././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.8597665 pymca5-5.9.4/0000755000000000000000000000000014741736404011477 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/LICENSE0000644000000000000000000000345414741736366012521 0ustar00rootroot The PyMca X-Ray Fluorescence Toolkit is Copyright (C) 2004-2023 of the European Synchrotron Radiation Facility (ESRF). Unless otherways stated in the relevant accompanying source code, the default license of these modules is MIT. If you develop and distribute software using modules accessing Qt by means of Riverbank Computing PyQt4, PyQt5 or PyQt6, you will be conditioned by the license of your PyQt4/5/6 software (GPL or commercial). If you wish to be free of any distribution condition, you should be able to use PySide2 or PySide6 because it uses the LGPL license. If, despite its permisivity, the license accompanying any of the PyMca modules is not convenient for you, please contact industry@esrf.fr The MIT license follows: Copyright (c) 2004-2022 European Synchrotron Radiation Facility (ESRF) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/LICENSE.GPL0000644000000000000000000004405214741736366013141 0ustar00rootroot The PyMca X-Ray Fluorescence Toolkit is Copyright (C) 2004-2023 of the European Synchrotron Radiation Facility (ESRF). You may use, distribute and copy the PyMca XRF Toolkit under the terms of GNU General Public License version 2, which is displayed below, or (at your option) any later version. ------------------------------------------------------------------------- GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all. The precise terms and conditions for copying, distribution and modification follow. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you". Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License. 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation. 10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. ------------------------------------------------------------------------- ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/LICENSE.LGPL0000644000000000000000000005656714741736366013273 0ustar00rootroot GNU LESSER GENERAL PUBLIC LICENSE Version 2.1, February 1999 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. [This is the first released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License, version 2, hence the version number 2.1.] Preamble The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This license, the Lesser General Public License, applies to some specially designated software packages--typically libraries--of the Free Software Foundation and other authors who decide to use it. You can use it too, but we suggest you first think carefully about whether this license or the ordinary General Public License is the better strategy to use in any particular case, based on the explanations below. When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new free programs; and that you are informed that you can do these things. To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library or if you modify it. For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code with the library, you must provide complete object files to the recipients, so that they can relink them with the library after making changes to the library and recompiling it. And you must show them these terms so they know their rights. We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this license, which gives you legal permission to copy, distribute and/or modify the library. To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the library is modified by someone else and passed on, the recipients should know that what they have is not the original version, so that the original author's reputation will not be affected by problems that might be introduced by others. Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be consistent with the full freedom of use specified in this license. Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different from the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries into non-free programs. When a program is linked with a library, whether statically or using a shared library, the combination of the two is legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking other code with the library. We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the ordinary General Public License. It also provides other free software developers Less of an advantage over competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries. However, the Lesser license provides advantages in certain special circumstances. For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more frequent case is that a free library does the same job as widely used non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser General Public License. In other cases, permission to use a particular library in non-free programs enables a greater number of people to use a large body of free software. For example, permission to use the GNU C Library in non-free programs enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system. Although the Lesser General Public License is Less protective of the users' freedom, it does ensure that the user of a program that is linked with the Library has the freedom and the wherewithal to run that program using a modified version of the Library. The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from the library, whereas the latter must be combined with the library in order to run. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License Agreement applies to any software library or other program which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public License (also called "this License"). Each licensee is addressed as "you". A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables. The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".) "Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library. Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does. 1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) The modified work must itself be a software library. b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change. c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License. d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the application does not supply it, the square root function must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library. In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices. Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy. This option is useful when you wish to copy part of the code of the Library into a program that is not a library. 4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange. If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code. 5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License. However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Library (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables. When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law. If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under Section 6.) Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself. 6. As an exception to the Sections above, you may also combine or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications. You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things: a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses the Library", as object code and/or source code, so that the user can modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.) b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (1) uses at run time a copy of the library already present on the user's computer system, rather than copying library functions into the executable, and (2) will operate properly with a modified version of the library, if the user installs one, as long as the modified version is interface-compatible with the version that the work was made with. c) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution. d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place. e) Verify that the user has already received a copy of these materials or that you have already sent this user a copy. For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute. 7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided that you do these two things: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above. b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Library or works based on it. 10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties with this License. 11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library. If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances. It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice. This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License. 12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License. 13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free Software Foundation. 14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally. NO WARRANTY 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END OF TERMS AND CONDITIONS ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/LICENSE.MIT0000644000000000000000000000233114741736366013142 0ustar00rootroot The PyMca X-Ray Fluorescence Toolkit is Copyright (C) 2004-2023 of the European Synchrotron Radiation Facility (ESRF). The MIT License (MIT) Copyright (c) 2004-2023 European Synchrotron Radiation Facility (ESRF) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/MANIFEST.in0000644000000000000000000000311714741736366013246 0ustar00rootrootinclude MANIFEST.in include LICENSE include LICENSE.MIT include LICENSE.GPL include LICENSE.LGPL include changelog.txt include qtconffile include README.rst include build-cxfreeze.py include build-deb.sh include build-pyinstaller.py include version.py include copyright include requirements.txt recursive-include doc *.py *.rst *.html *.ico *.png *.jpg recursive-include doc/man *.1 recursive-include icons *.icns *.ico *_256x256.png recursive-include src/PyMca5/EPDL97 *.DAT include src/PyMca5/EPDL97/LICENSE recursive-include src/PyMca5/PyMca *.py recursive-include src/PyMca5/PyMcaCore *.py recursive-include src/PyMca5/PyMcaData *.dict *.dat *.cfg *.png *.mat *.html *.pdf *.xml *.gif *.wmz *.mso *.DICT *.TXT *.lib *.mca *.spe recursive-include src/PyMca5/PyMcaGraph *.py *.pyx *.pxd *.c *.h recursive-include src/PyMca5/PyMcaGui *.py recursive-include src/PyMca5/PyMcaIO *.py *.c *.h *.in include src/PyMca5/PyMcaIO/sps/LICENSE recursive-include src/PyMca5/PyMcaMath *.py *.c *.cl include src/PyMca5/PyMcaMath/mva/py_nnma/LICENSE include src/PyMca5/PyMcaMath/mva/py_nnma/README include src/PyMca5/PyMcaMath/mva/_cython_kmeans/kmeans.pyx include src/PyMca5/PyMcaMath/mva/_cython_kmeans/default/kmeans.c include src/PyMca5/PyMcaMath/PyMcaSciPy/signal/LICENSE.txt recursive-include src/PyMca5/PyMcaMisc *.py recursive-include src/PyMca5/PyMcaPhysics *.py recursive-include src/PyMca5/PyMcaPhysics/xas *.pyx *.pxd *.c *.h recursive-include src/PyMca5/PyMcaPlugins *.py recursive-include src/PyMca5/scripts * recursive-include src/PyMca5/tests *.py recursive-include scripts *.py *.bat recursive-include package * ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.8597665 pymca5-5.9.4/PKG-INFO0000644000000000000000000000307614741736404012602 0ustar00rootrootMetadata-Version: 2.2 Name: PyMca5 Version: 5.9.4 Summary: Mapping and X-Ray Fluorescence Analysis Home-page: http://pymca.sourceforge.net Download-URL: https://github.com/vasole/pymca/archive/v5.9.4.tar.gz Author: V. Armando Sole Author-email: sole@esrf.fr License: MIT Platform: any Classifier: Development Status :: 5 - Production/Stable Classifier: Programming Language :: Python :: 3 Classifier: Intended Audience :: Developers Classifier: Intended Audience :: End Users/Desktop Classifier: Intended Audience :: Science/Research Classifier: License :: OSI Approved :: MIT License Classifier: Topic :: Software Development :: Libraries :: Python Modules Classifier: Operating System :: Microsoft :: Windows Classifier: Operating System :: Unix Classifier: Operating System :: MacOS :: MacOS X Classifier: Operating System :: POSIX Classifier: Topic :: Scientific/Engineering :: Chemistry Classifier: Topic :: Scientific/Engineering :: Physics Classifier: Topic :: Scientific/Engineering :: Visualization License-File: LICENSE License-File: LICENSE.GPL License-File: LICENSE.LGPL License-File: LICENSE.MIT Requires-Dist: numpy Requires-Dist: matplotlib>1.0 Requires-Dist: fisx>=1.1.6 Requires-Dist: h5py Dynamic: author Dynamic: author-email Dynamic: classifier Dynamic: description Dynamic: download-url Dynamic: home-page Dynamic: license Dynamic: platform Dynamic: requires-dist Dynamic: summary Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/README.rst0000644000000000000000000000574614741736366013211 0ustar00rootrootPyMca ===== This is the MIT version of the PyMca XRF Toolkit. Please read the `LICENSE <./LICENSE>`_ file for details. Installation ------------ Ready-to-use packages are available for the most common platforms. PyMca frozen binaries for MacOS and Windows can be obtained from `Sourceforge `_ Official packages are available for common Linux distributions. Please continue reading if you want to use PyMca with your existing Python installation. The simplest solution is to use ``pip``: .. code:: bash pip install PyMca5 You can add the usual ``--user`` qualifier to install only for your local user rather than system-wide: .. code:: bash pip install PyMca5 --user If you want to build from the source distribution or from a git repository checkout, you may want to have Cython installed on your system. Examples of source installation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. In your default system-wide python installation, run one or the other of the two (not both) commands below (may require root/administrator access): .. code:: bash # Run one of the following (not both); pip is preferred python setup.py install # use python setuptools pip install . # use the pip package manager 2. Or, to install just in your local user account: .. code:: bash # Run one of the following (not both); pip is preferred python setup.py install --user # use python setuptool pip install . --user # use the pip package manager You will need the following dependencies installed: - `python `_ (3.8 or higher recommended) - `numpy `_ - `fisx `_ - `h5py `_ If you want to use the graphical interface provided, you will need a running python installation with one of the following combinations: - ``PyQt5`` + ``matplotlib`` (PyMca license will be `GPL `_ unless you have a commercial PyQt5 license) - ``PyQt6`` + ``matplotlib`` (PyMca license will be `GPL `_ unless you have a commercial PyQt6 license) - ``PySide6`` + ``matplotlib`` (PyMca license will be `MIT `_ because PySide6 is `LGPL `_) If you want to embed ``PyMca`` in your own graphical applications, I recommend you to use the `McaAdvancedFit.py `_ module. It is very easy to embed. Testing ------- To run the tests **after installation** run:: python -m PyMca5.tests.TestAll Development Plans ----------------- - Use the ``fisx`` library for all Physics calculations and not just for corrections. - Compound fitting. If you have any questions or comments (or contributions!), please feel free to contact me or submit a pull request. Enjoy, \V. Armando Sole ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/build-cxfreeze.py0000644000000000000000000000207414741736366014773 0ustar00rootrootimport os import sys cwd = os.path.abspath(os.getcwd()) cmd = r'cd %s ; "%s" cx_setup.py build_exe' % \ (os.path.join(".", "package", "cxfreeze"), sys.executable) if sys.platform.startswith("win"): cmd = cmd.replace(";", "&") result = os.system(cmd) os.chdir(cwd) if result: print("Unsuccessful command <%s>" % cmd) sys.exit(result) else: import shutil import glob # create the dist directory dist = os.path.join(cwd, "dist") if not os.path.exists(dist): os.mkdir(dist) # move the frozen installer installer = glob.glob(os.path.join(".", "package", "cxfreeze","pymca*.exe")) if not len(installer): print("Could not generate installer") sys.exit(1) source = installer[0] target = os.path.join(dist, os.path.basename(source)) if os.path.exists(target): os.remove(target) shutil.move(source, target) # cleanup os.remove(os.path.join(".", "package", "cxfreeze","nsisscript.nsi")) shutil.rmtree(os.path.join(".", "package", "cxfreeze","build")) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/build-deb.sh0000755000000000000000000000231314741736366013673 0ustar00rootroot#!/bin/sh # project=PyMca5 source_project=pymca version=$(python3 -c"import version; print(version.version)") strictversion=$(python3 -c"import version; print(version.strictversion)") debianversion=$(python3 -c"import version; print(version.debianversion)") deb_name=$(echo "$source_project" | tr '[:upper:]' '[:lower:]') #clean up build and dist directory /bin/rm -rf build /bin/rm -rf dist # create upstream source package python3 setup.py sdist # convert PyMca5_x.y.z.xxxx into pymca_x.y.z.xxxx cd dist tar -xvzf ${project}-${strictversion}.tar.gz mv ${project}-${strictversion} ${source_project}-${strictversion} tar -cvzf ${source_project}-${strictversion}.tar.gz ${source_project}-${strictversion} /bin/rm -rf ${project}-${strictversion}.tar.gz # create .orig file and debian directory cd ${source_project}-${strictversion} dh_make --python --yes -f ../${source_project}-${strictversion}.tar.gz # copy the control and rules cp ../../package/debian11/control ./debian/ cp ../../package/debian11/rules ./debian/ # actually build the package pwd dpkg-buildpackage -uc -us # remove the intermediate directory cd .. /bin/rm -rf ${source_project}-${strictversion} # everything is under ./dist cd .. ls ./dist/*.deb ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/build-pyinstaller.py0000644000000000000000000000161014741736366015521 0ustar00rootrootimport os import sys cwd = os.path.abspath(os.getcwd()) cmd = r"cd %s; pyinstaller pyinstaller.spec --noconfirm --workpath %s --distpath %s" % \ (os.path.join(".", "package", "pyinstaller"), os.path.join(".", "build-" + sys.platform), os.path.join(".", "dist-" + sys.platform)) if sys.platform.startswith("darwin"): if "arm64" in sys.argv: os.putenv("PYMCA_PYINSTALLER_TARGET_ARCH", "arm64") elif "universal2" in sys.argv: os.putenv("PYMCA_PYINSTALLER_TARGET_ARCH", "universal2") elif "x86_64" in sys.argv: os.putenv("PYMCA_PYINSTALLER_TARGET_ARCH", "x86_64") else: # let PyInstaller choose according to platform pass if sys.platform.startswith("win"): cmd = cmd.replace(";", "&") result = os.system(cmd) os.chdir(cwd) if result: print("Unsuccessful command <%s>" % cmd) sys.exit(result) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/changelog.txt0000644000000000000000000011731714741736366014210 0ustar00rootrootVERSION 5.9.3 ------------- - XRF. Allow to fit M subshells - Compatibility with numpy 2.0 - GUI. Compatibility with matplotlib 3.9.0 VERSION 5.9.2 ------------- - XRF. Prevent considering twice the same element when using the SingleLayerStrategy. - Packaging. Compatibility with PyInstaller 6.x - GUI. Improved PyQt6 compatibility. - GUI. Compatibility with current silx master branch. - GUI. Add histogram of pixel intensities to image views (requires silx). VERSION 5.9.1 ------------- - ROI Imaging. It is now possible to apply NNMA on stacks of images. - ROI Imaging. HDF5 stacks of images could not be selected due to a bug introduced in 5.8.2. - MCA. Correct ID18 calibration issues. VERSION 5.9.0 ------------- - IO. Compatibility with h5py 2.10 (Ubuntu 20.04) - GUI. Compatibility with Matplotlib 3.8 VERSION 5.8.9 ------------- - FastXRF. Restore compatibility with dynamically loaded HDF5 data VERSION 5.8.8 ------------- - GUI. Compatibility with matplotlib 3.7.x VERSION 5.8.7 ------------- - ROI Imaging. Correct plugin threading issues introduced in version 5.8.2 VERSION 5.8.6 ------------- - XRF. Correct threading issue on MacOS introduced in version 5.8.2 VERSION 5.8.5 ------------- - RGB Correlator. Add the possibility to calculate the mean ratio and the median ratio of selected pixels. - Packaging. Correct issue preventing packaging for Ubuntu 20.04 VERSION 5.8.4 ------------- - XRF. Correct configuration error when number of energies is more than 4 but less than 10. - RGB Correlator. Add the possibility to calculate the correlation coefficient of selected pixels. VERSION 5.8.3 ------------- - Adapt to conda-forge.https://github.com/conda-forge/pymca-feedstock/pull/34 VERSION 5.8.2 ------------- - XRF. Allow multithreading with fisx > 1.3.0 - GUI. Save user preferences concerning default actions. - GUI. Recover loading of user-saved HDF5 selection tables. - GUI. Synchronize index-based Signal selections with Monitor and Axes on HDF5 files. - GUI. Compatibility with PyQt6 shipped with Qt 6.4.3 - 1d-Plots. When one plot axis is frozen, reset zoom based on displayed portion of the active curve. - Packaging. Add cx_Freeze support. VERSION 5.8.1 ------------- - GUI. Add PyQt6 support. - GUI. Adapt to PySide 6.4.x - GUI. Add link to documentation pages under the Help menu. - RGB Correlator. Add mask statistics calculator. - ROI Imaging. Calculate maximum spectrum of masked region. - ROI Imaging. Do not remove spaces from user specified output path in Fast XRF linear fit plugin. - ScanWindow. Calculate derivative when dealing with strictly decreasing and full-negative X axis values. - Python. Remove dependency on deprecated distutils module. VERSION 5.8.0 ------------- - IO. Add support of Bruker bcf files - ROI Imaging. Allow spatial downsampling of EDF stacks not fitting into memory. - Graphics. Correct bug affecting visualization of large images with Matplotlib 6.0+ VERSION 5.7.6 ------------- - HDF5. Correct error when selecting a monitor. - HDF5. Correct handling of broken links. - XRF. Raise the maximum number of matrix iterations. - ROI Imaging. Correct calculation of spectrum of the maximum at each channel. - GUI. Make sure QSize uses integers and not floats. - IO. Correct shape calculation of Omnic maps. VERSION 5.7.5 ------------- - Packaging. Correct PyInstaller packaging. - HDF5. Correct Show Info not working with PySide 6. - ROI Imaging. Add spectrum of the maximum at each channel. - GUI. Elements Info update line emission ratios when changing energy without need to ckick on the periodic table. VERSION 5.7.4 ------------- - HDF5. Improved support of external links PR #891. - HDF5. Single MCA selections accompanied by associated motor positions (if any). - XRF. Make more explicit the Fast XRF fit is a linear fit. - ROI Imaging. Clearer tool tips. VERSION 5.7.3 ------------- - Allow project build and test under Python 3.11 - HDF5. Improved support of external links. - HDF5. Simplify single MCA selection in multidimensional datasets. - XRF. Enable copy to clipboard from the tables. - GUI. Add -log(y/yactive) to the list of normalization options. - IO. Support LabSpec6 exported maps. VERSION 5.7.2 ------------- - IO. Robust access to HDF5 files while being written. - IO. Support ProSpect v1.1.36 - ROI Imaging. Double click on Stack Window adds spectrum to MCA window. - Support building of frozen binaries with PyInstaller VERSION 5.7.1 ------------- - Correct GUI issue with the combination Python 3.10 and PyQt5 VERSION 5.7.0 ------------- - Support PySide2 and PySide6. - Drop Qt4 support (PyQt4 and PySide) - Drop Object3D module. VERSION 5.6.7 ------------- - Graphics. Fast XRF fitting results visualization not working with matplotlib 3.5.0 VERSION 5.6.6 ------------- - Graphics. Recent versions of Matplotlib do not support picker=None. - IO. Support AXAS-D format independently of using "," or "." as decimal separator. - IO. Calculate live time as elapsed time * OCR/ICR in AXAS-D format VERSION 5.6.5 ------------- - PyMcaBatch. Prevent the use of the input directory as output directory when the input file list is a single HDF5 file. - PyMcaBatch. Allow XRF batch fitting of a single entry in an HDF5 file containing multiple maps. - PCA. Deal with NaNs in stacks of spectra. - SPS. Correct SPEC shared memory access under Python 3.8 - Adapt XIA Correct tool to python 3. VERSION 5.6.4 ------------- - K-means. Filter non-finite numbers. - GUI. Allow the user to choose derivative order and algorithm. - IO. Read live time from KETEK AXAS-D. - IO. Deal with Renishaw files containing a single line header. VERSION 5.6.3 ------------- - XRF. Allow to take user supplied transmission tables as attenuators. - IO. Allow sorting of entries in NeXus files by title. VERSION 5.6.2 ------------- - IO. h5py 3.0.0 compatibility - Double-check OpenGL availability on startup - Allow building of PyMca under linux without OpenGL VERSION 5.6.1 ------------- - K-Means. Subtract minimum of each feature prior to scaling. - IO. Improved user experience using HDF5 files. - IO. More robust access to redis. - IO. Automatic update of data from redis when last scan is selected. VERSION 5.6.0 ------------- - RGB Correlator. Implement K-means clustering on user selected images. - RGB Correlator. Provide a shape command line argument to simplify reading of HDF5 groups. - ROI Imaging. Support mask selections from the RGB correlator. - ROI Imaging. Save stacks with calibration, live times and positioners. - IO. Provide access to bliss data via redis. - GUI. Deal with matplotlib warnings. - Plugins. Correct numpy 1.19.x related issues. VERSION 5.5.5 ------------- - XRF. Allow to use up to 15 elements to refine the sample matrix. - IO. Support ARTAX files in PyMca Main window. - IO. Read motor positions from ARTAX files. - IO. Correct issues reading ARTAX and Olympus files in MacOS. - ROI Imaging. Allow to choose to perform PCA on standardized data. - ROI Imaging. Allow multiple slaves. - ROI Imaging. Do not close application when deleting slave stacks. - Plugins. Correct MotorInfo problem of table containing duplicates. VERSION 5.5.4 ------------- - XRF. Make PyMca compatible with recent XMI-MSIM versions - XRF. Handle the use of the % character when defining materials - ROI Imaging. Add action to export all PCA and NNMA vectors. - ROI Imaging. Support the use of regions with NNMA. VERSION 5.5.3 ------------- - HDF5. Handle broken toplevel external links - XRF. The fit configuration window was too high when using large font scaling. - Enable ICA calculations on HDF5 stacks. VERSION 5.5.2 ------------- - HDF5: Make the code compatible with new h5py default file opening mode. VERSION 5.5.1 ------------- - Qt binding selection tries PyQt5, PySide2, PyQt4 and PySide in that order. - PyMcaBatch: Deal with spaces in the path to the fit configuration file. - Prevent start crash using PySide2. VERSION 5.5.0 ------------- - XRF: Include full-analysis provenance in HDF5 output files. - Improved support of HDF5 - Improved testing suite. - ROI Imaging: Improved memory handling when reading multiple HDF5 detectors as input. - ROI Imaging: Support PerkinElmer FSM file format - ROI Imaging: Correct reading OMNIC files under Python 3 in non-windows platforms. - Support PySide2 - Support Matplotlib 3.1.x - Preliminary support of Python 3.8 - Drop silx as hard dependency. Keep it as optional dependency. - Default to silx (if present) for 3D and scatter plots. VERSION 5.4.3 ------------- - Fix SPEC shared memory update during scans bug introduced in 5.4.0 - Make default binding PyQt4 under Python 2 VERSION 5.4.2 ------------- - More robust reading of positioners from NeXus files - Respect the nativefiledialogs flag in McaAdvancedFit - Deal with underscore when sorting NeXus files by entry name - RGBCorrelator: Correct attribute error reading .dat files under Python 3 VERSION 5.4.1 ------------- - Support NeXus default attribute at any level - Fix problems in systems where both PyQt4 and PyQt5 are installed. - Fix ScanFit print - Fix mask visibility on monocrome colormaps. - Prevent problems accessing NeXus files when title is incorrectly written as an array instead of being a string. - Enable multiple processes batch fitting a single HDF5 file. VERSION 5.4.0 ------------- - Add training exercises to the tutorials - Support quantification accounting for live time when using HDF5 files - Add higher order excitations example to the training data - Use silx toolkit for graphics - Allow the user to select a particular Qt binding (--binding option, default is PyQt5) - Implement a user selectable logging level (--logging option, default is warning) - Correct handling of repeated elements in the sample matrix - Correct readout of lispix data VERSION 5.3.2 ------------- - Fix build issues under Python 3.7 - Fix numpy 1.14.x deprecation warnings - Continue the documentation improvements VERSION 5.3.1 ------------- - PyMcaMainWindow. Correct error trying to use HDF5 files with only top level datasets. - PyMcaBatch. Correct error when opening HDF5 files as input. - Use QOpenGLWidget when available instead of QGLWidget. It solves a Debian packaging issue. - Prepare web pages using sphinx to be ready for easy deployment of improved documentation (accessible from http://www.silx.org) VERSION 5.3.0 ------------- - XRF Correct several Single Layer Strategy issues. Support calibration readout using HDF5 files. Support time readout and use of time information from HDF5 files. - HDF5 Simplify HDF5 data selection handling by generatic automatic data selection tables besides the user defined one (requires use of a measurement group) Support readout of motor positions together with curve data when following ESRF and Sardana standards. Support NXdata and default plots (requires silx) - Add plugin to fit all curves present in a 1D window (requires h5py) - ROI Imaging. No limit on the number of slaves. - Add tomographic reconstruction capabilities (requires freeART and tomoGUI) - Allow to build PyMca using GLIBC 2.26 - Activate Continuous Integration. VERSION 5.2.2 ------------- - ROI Imaging. Correct problem normalizing integer data by integer monitor. - HDF5 Widget. Use PyMca plugins on silx data viewer. - HDF5 Batch. Correct error when all the entries in an HDF5 file do not present the same structure. - SPEC shared memory. Correct counter labelling order in case of using 10 or more counters and motors in a scan. - NeXus. Interpret new style NXdata groups using silx NXdataViewer if silx is installed. VERSION 5.2.1 ------------- - Correct annoying error message appearing when background is not defined. - Adopt MIT license for SpecFile library VERSION 5.2.0 ------------- - RGB Correlator can now export the data as a single TIFF file or as multiple TIFF files. - XRF. Deal with the case the mass fraction is zero in one of the compounds of a material. It can arrive when applying a Strategy. - Extend the command line usage of the FastXRFLinearFit module to HDF5 datasets. - ROI Imaging. - Improved external images plugin. It requires silx. - Plugin to display per pixel information (motors and others). It requires silx. - Allow to sum the master and the slave stack. It can be used to sum an arbitrary number of stacks. - Selecting multiple HDF5 datasets as signal generates a stack that is the sum of all of the datasets. - Implement a calculation cache to speed up secondary excitation calculations. - Allow to use fisx library for the calculation of escape peaks. Default is disabled. - Improved support of OMDAQ lmf format. - Correct bug affecting the calculation of ROIs when the x axis coordinates are negative - MacOS - Correct bug on startup when reading the default configuration. - Frozen binary uses now HDF5 1.10.1 to support SWMR files. VERSION 5.1.4 ------------- - ROI Imaging tool can add multiple detector signals present in an HDF5 file. - Support multiple JCAMP-DX blocks in a file. - Support stacks exported by OPUS in JCAMP-DX format. - Add basic support of OMDAQ lmf data format. - Make sure main window menu options are available under MacOS and Qt5. - Support matplotlib 2.0 - Correct factor of two error when fitting step up or step down functions. VERSION 5.1.3 ------------- - Correct minor Qt5 related bugs. - Simplify embedding batch fitting in custom workflows. - ROI Imaging. Exporting the stack in TIFF format did not respect zoomed region limits - Allow exporting the x-ray tube emission continuum from the plot. - Implement a "copy-selection-to-clipboard" of the concentrations table via CTRL-C. - Fix error message when moving mouse on SCAN window after having used the regular mesh plugin - Correct coordinate display on image window. - Solve issue calculating shell photoelectric cross-sections close to edges. VERSION 5.1.2 ------------- - Correct the generation of the efficiency plot in the ATTENUATORS tab when BeamFilter0 was selected. That problem only affected the plot, not anything else. - Adapt to latest SPEC version - Correct compatibility issues with matplotlib 1.5 - Improved compatibility with Qt 5 - Update to fisx 1.0.9 for windows compatibility under Python 3.5 - Enable OpenGL window under Python 3 - Implement Kaiser window option for XAS Fourier transform. - Reimplement curve renaming. - Recover interactive console functionality. - Correct the density of H and He. - Add more keywords for QXAS format support. - Allow ADD functionality on customized fit background (allowing multiple atan functions) - Allow the use of the regular mesh plugin on incomplete mesh scans. - Add kinetics related plugins (Rate Laws and Arrhenius-like plots). VERSION 5.1.1 ------------- - Update to fisx 1.0.4 to workaround issue calculating secondary excitation corrections when the incident beam is normal to the sample surface. - Restore pre-5.0.0 behavior in the scan window when displaying mouse coordinates without the crosshair cursor. - Correct multiple curve averaging when input arrays are reversed. - Add the possibility to save the Monte Carlo generated matrix spectra in the fit window. - Correct problem of reapplying the calibration when toggling log and linear axes while already using a calibration. - Restore saving of images in png and jpg from the main window. - Restore data projection on PCA eigenvectors calculated using the covariance method to the same way as when using the other methods. VERSION 5.1.0 ------------- - Automatic loading of user plugins. - Allow the use of user specified physical constants across different installed versions. - Add stack plugin to calculate multiple ROIs in one go. - Add basic JCAMP-DX reading support. - Add crosshair cursor option to the plot options menu. - Add EXAFS extraction capabilities to the Main Window and the ROI Imaging Tool. - Improved right axis autoscaling. - Panning with the keyboard arrow keys implemented in most 1D plots. - Correct bug on customized fit when using anchors. - Correct bug saving MCA spectra when using the Taurus plugin. - Correct swap of red and blue components when saving via matplotlib. - Correct regular mesh plotting. VERSION 5.0.3 ------------- - Recover Advanced fit graphics saving in logarithmic mode. - Slower but correct reading of SPE files. - Correctly handle Energy and Channel plot labels. - Calculate tertiary excitation in diagnostics tab. - Allow stack normalization by an external image. - Correct saving of curves in the SCAN window. - Add OSMesa backend to the list of available plot backends. - Add crosshair cursor option. VERSION 5.0.2 ------------- - Fast XRF fitting: Correct concentrations calculation. - Make license information detectable by licensecheck. VERSION 5.0.1 ------------- - Fast XRF fitting. Give the user the option not to check for negative peak contributions in order to maximize speed. The default behavior is unchanged. - Add copyright information to files missing it. - Correct bug. Windows frozen binary could not start batch from main window. - Correct bug. Fast XRF fit was not working on dynamically loaded stacks when negative peak contributions were detected. - Correct bug. Save action was not active on some plots. VERSION 5.0.0 ------------- - Analytical secondary excitation corrections. - Approximated tertiary excitation corrections. - Automatic matrix update. - Support .rtx file format stacks - Support .rpl + .raw described stacks (Lispix file format) - Support SPEC 6.02+ shared memory - Possibility to generate PCA scores plot. - Incorporate a new repository layout. - Most of the source code can be used under MIT or LGPL licenses. - Dependency on Qwt (via PyQwt) removed. - Possibility to keep image aspect ratio. - Improved print preview. - MCA Window accepts plugins. - Automatic download of user plugins. - Any plot accepts ROI selection. VERSION 4.7.4 ------------- - Correct bug reading HDF5 top level datasets. - Improved handling of Bruker/Tracer CSV files VERSION 4.7.3 ------------- - Correct bug using SNIP background with the Fast XRF linear fit stack plugin. - Better handling of screen resolutions with 768 vertical pixels. VERSION 4.7.2 ------------- - Allow fitting of all Cr L lines - Correct bug saving image alignment data to disk. - Correct bug using linear polynomial background with the Fast XRF linear fit stack plugin VERSION 4.7.1 ------------- - Support SOLEIL multiple-file different-scan-number maps. - Support batch fitting of multiple HDF5 files. - Fast XRF linear fit stack plugin. - Possibility to load image shifts in the image alignment stack plugin. - Basic support of MRC file format. - Add ID08 advanced alignment scan plugin. VERSION 4.7.0 ------------- - Add basic support for calculating multiple excitation corrections via the XMI-MSIM Monte Carlo code. - Add Image alignment capabilities to the ROI Imaging tool. - Improved handling of HDF5 external links. - Solve printing issue when printing from the File menu while the SCAN window is active - Recover reading support of SPE files from SLAC - Correct reading of .chi files maps - Extend the maximum number of counters supported in a specfile. - Prevent endless loop in specfile when the last character limiting a scan is '#' - Correct bug plotting a set of MCAs as one image when the number of MCA detectors is more than one. - Background subtraction methods also work on stack browsers. - Handling of scales in image plots. - Add ID26 RIXS plugin as part of MultiScanToMesh plugins. - Add XMCD and XAS plugins from ID08 and ID12. - Add plugin to align curves. - Stacks of DESY fio files readable by windows binary. - Reduce memory usage when working with large in-memory stacks. - Decide to load dynamically the data based on the amount of physical memory installed instead of based on a fixed data size. VERSION 4.6.2 ------------- - Fix calculation of the MCA associated to a region when using dynamically loaded 1D stacks. - Fix scan XANES normalization. All curves normalized instead of just the active one. VERSION 4.6.1 ------------- - Support GZIP compressed EDF files (extensions: edf.gz, ccd.gz, raw.gz) - Fix annoying issue of having to select the left side of a pixel in order to have the pixel actually selected. - Fix windows problem of PyMca not starting when the "My Documents" folder has been relocated (issue number 3537267) - Fix Debian hurd-i386 build from source problem. VERSION 4.6.0 ------------- - Add an X-ray fluorescence spectrum for training purposes. - Improved unicode support. - Added a simple stack normalization plugin to the ROI tool. - Added a simple XANES normalization plugins to the ROI tool and the scan window. - Adapt installation script to simplify linux distribution maintainers task. - Add a minimalistic set of post-installation tests. - Add man pages. - Correct variance information displayed in the terminal window. - Restore functionality of colormap-based mask calculation. - Add a progress bar to the stack simple fitting plugin. - Possibility to perform simple fitting of masked stack regions. VERSION 4.5.0 ------------- - Support h5py version 2.x - Support OMNIC 8.x .map file format - Support TIFF format. Uncompressed and packbits. - Support a couple of ASCII based file formats of beamlines of Diamond and APS. - Preliminary Python 3.2 support. - Support principal components analysis of dynamically loaded stacks. - Improved HDF5 file format handling. - Possibility to visualize variable width line profiles on images. - Add split Gauss, split Lorentz and split Pseudo-Voigt as fitting functions. - Do not automatically sort the list of files to be treated in batch mode. The program will respect the order provided by the user. - Allow visualized 3D objects to share the same colormap. - Lower the energy threshold in order to consider Boron K X rays. - Correct Arsenic density. - Allow to customize the saving of Scan window curves using matplotlib. - Allow multiple processes in MacOS X when using a non frozen PyMca version. VERSION 4.4.1 ------------- - Allow detailed customization of 1D output. - Add simple normalization plugins to the Scan window. - Implement a plugin system for the ROI Imaging tool. - Implement a generic batch fitting of stacks as a stack plugin. The functions are totally specified by the user. - Implement simple background removal tools as stack plugins. - Implement an alternative ROI window as a stack plugin. - Support convertion of big EDF image stacks to HDF5. - Visualization of large image stacks via dynamic loading and use of HDF5. - Support MDP based PCA and ICA on user selected regions. - Read calibration from OMNIC 7.x .map files. - Support Bruker Opus maps exported in DPT format. - Improve the reading speed of TwinMic .dta files. - Add simple MarCCD support. - Add very simple support for some flavours of Pilatus CBF. - Show file header information. - Properly handle Amptek MCA calibration when more than two points or ROIs have been used. - Allow Savitzky-Golay (SG) filtering of stacks. - Correct problem affecting odd order SG derivatives. - Very primitive HDF5 2D Visualization. - Possibility to visualize HDF5 3D datasets as series of images. - Implement a context menu on the main window HDF5 browser. - Table visualization of non-numerical HDF5 datasets. - Support segmented HDF5 files using default segmentation. - Allow the use of several processes when batch fitting a single HDF5 file. - Allow reading of pure image formats in the RGB correlator. - The fit configuration window was too high for Mac computers having exactly 800 pixels vertical resolution. - Workaround a windows problem when trying to select thousands of files in the batch file dialog by using Qt file dialogs. - Minor visualization and data handling improvements. - Prevent a crash when the excitation energy is below 1 keV. - Add a script to build PyMca from source on Debian or Ubuntu systems. - Make specfile LC_NUMERIC locale independent to solve Debian bug report 602471. - Unify the sps library used by PyMca and the one used by Certified Scientific Software package SPEC. Use a BSD like license for the associated code. VERSION 4.4.0 ------------- - Extend the usability of the code down to 100 eV extending XCOM mass attenuation coefficients with EPDL97 data when energies are below 1 keV. - Alternative background subtraction algorithm (SNIP) implemented. - Support of HDF5 file format. - Possibility to export ROI imaging tool data stack in HDF5. - Workaround 32-bit limit when handling huge EDF maps in 32-bit machines. - Better customization capabilities when saving images through matplotlib. - Support Fit2D .chi files. - Simple support of ADSC files wrapping them as EDF files. - Possibility to save images as 32-bit floats for people using the ImageJ EDF plugin. - Support combined PCA when using two data stacks. - Support Independent Component Analysis via MDP if installed. - Support non-negative Matrix Approximation Analysis using Uwe Schmitt modules (http://public.procoders.net/nnma/) - Add multivariate analysis capabilities to the RGBCorrelator. - Implement a mechanism to add plugins to 1D plots. - Implement simple 3D visualization capabilities. - Solve X-ray tube profile generation problems at tube voltages below 20 kV. - Allow a greater number of energies defining the X-ray tube emission profile. - Correct logarithmic colormap handling. - Correct colormap problems in 64-bit platforms. - Correct problem preventing data calibration in some 64-bit platforms. - Minor bugs corrected and minor features added. VERSION 4.3.0 ------------- - Speed up fit configuration when using multiple energies. - Import/export the multiple energies beam description as CSV files. - Possibility to calculate transmission curves added to the tools menu. - Offer the possibility to use an additional filter in the x-ray tube setup. - Visualization of the absorption and the detector contribution to the efficiency. - Prevent the use of trailing spaces in the definition of materials. - Implement zoomed window panning (press CTRL key and desired arrow key simultaneously). - Offer contour plot customization when saving images though matplotlib. - Possibility to flip external images used for selection in the ROI imaging tool. - Numpy 1.2 runtime deprecation warnings suppressed. - Interpolated mass attenuation coefficients were between 0 and 3 % overestimated. - Correct a bug appearing when trying to fit separate Ka and Kb lines of elements above Rb. VERSION 4.2.6 ------------- - Add very basic spx file format support. - Improved SPE file format support. - Improved semilogarithmic Y axis toggling. - Correct a problem appearing when adding curves to the scan window in show points only mode. - Offer the possibility to choose between Qt and native file dialogs through the PyMca command line argument --nativefiledialogs=1. - Allow overwriting ROI definition files. - Two column ASCII files were not read in the ROI Imaging. - Implement the ROI Imaging --fileindex=1 command line option to deal with the case the EDF map was column oriented instead of row oriented. - Add the possibility to transpose the resulting images of a batch fitting by passing the --fileindex=1 option to PyMcaPostBatch. - Add threshold selection methods. - Implement selections from external images. - Correct a bug affecting saving of McaAdvancedFit data in CSV format. - Replace corrupted Ru.mat attenuation data. - Solve a problem with fit configuration window size affecting MacOS computers. - Prevent the use of numbers as material names. - Prevent an endless loop in case of typing a bad matrix element in the concentrations tab. - Add the necessary scripts to build PyMca as a python library under windows. - The calibration was not properly written when converting to EDF file format. VERSION 4.2.5 ------------- - Batch fitting. Save concentrations as images too. - Advanced Fit. - Previous linear fit change was missing in batch mode. - Correct a problem showing up when Kr L lines were fitted as a group. - ROI Imaging. Show the calculated principal components when using PCA. - ROI Imaging. Useless stack background subtraction was not working. VERSION 4.2.4 ------------- - Add ESRF Xia Correct to the Tools menu. - ROI Imaging changes. - Do not reset ROI image selection on ROI change. - Add data saving capabilities to the ROI image window. - Implement basic principal component analysis mapping. - Support AIFIRA and SupaVisio maps. - Advanced Fit changes. -Improved transmission geometry support. -User can specify the scattering angle in the fit configuration. -Support "funny type" attenuators. -Make better use of the available space in the McaAdvancedFit window. -Linear fit: fix peaks to 0 area if they are outside the fitting region. - Simplify access to binding energies by putting them in a separate ASCII file. - Add anchors and smoothing information to the HTML reports. - Correct a bug on the reconstruction of the chisq image when using the multiple processes batch option. - Correct a bug preventing the generation of HTML reports in batch mode. - Correct a specfile compilation issue with some gcc versions. - Suppress shared memory compilation warnings. VERSION 4.2.3 ------------- - Possibility to use pseudo-Voigt as advanced fit function. - Possibility to save as data and to remove selected images from RGBCorrelator. - Support Lucia beamline maps. - Support Diamond I18 beamline maps. - Correct ROI fitting option bug. - Some other minor bugs corrected and some other minor features added. VERSION 4.2.2 ------------- - Input/Output - Support CSV format. This should simplify data exchange with spreadsheets. - Support 64-bit handling of EDF files. - ScanWindow. Possibility to save all curves in a single specfile. - McaWindow. - Spectra are saved with the active calibration instead of its own. In other words: what you see is what you get. - Possibility to rename graph curves. - Possibility to save images thru matplotlib. - This allows user customization (axes, colorbar, colormap, contours, ...) - ROI imaging: Use file-mapped arrays for stacks of more than 2 Gbytes. - This feature is implemented for 64-bit linux systems. - McaAdvancedFit. The combination of linear fit and fixed pile-up was buggy. - Calibration. Correct a crash under python 2.5 using the Auto FWHM option. - RGB Correlator. ASCII images saved under windows can be read under linux. - Add peak statistics information to fit reports. - Some other minor bugs corrected and some other minor features added. VERSION 4.2.1 ------------- - ROI image. Possibility to normalize spectra to number of pixels. - Speed up access to specfiles containing many scans. - Correct a bug that was making the calculation of net ROI images useless. - Correct ESRF specific data acquisition monitoring problems. VERSION 4.2.0 ------------- - ROI Imaging Tool - Possibility to calculate net ROI images. - Minimum width was a problem on dual screen displays. - When using two stacks, the colormaps where coupled. - Main MCA Window old ROI markers were not erased under some conditions. VERSION 4.1.1 ------------- - ROI Tool. - Possibility to handle two stacks of same size simultaneously. The interest is to combine fluorescence and diffraction maps. - Possibility to save ROI configuration directly from the table. - Stack background removal implemented. It can be of interest on diffraction maps. It is very slow and not worth for fluorescence maps. The advanced fit is much better in this later case. - Linux. Add pymcaroitool to the binary package. The ROI Tool can be started as an independent application and not only from within PyMca. - Corrected. Simple fit combined with an energy calibration works. - Corrected. Scan monitoring. Last scan point was not shown. VERSION 4.1.0 ------------- - Changed numerical library from Numeric to Numpy. - Added a tool to convert spectra to ESRF data format. - Improved shared memory access. - Possibility to calculate concentrations in mM. - Possibility to export the main MCA window in graphical format. - MCA window inactive legends after a fit problem corrected. - Corrected a problem in which HTML reports generated interactively after changing the concentration parameters without passing thru the fit configuration window could be different from those shown on the screen. VERSION 4.0.9 ------------- - Concentrations calculated on batch mode were wrong if the fundamental parameter method was employed and no report was generated. This bug was introduced in version 4.0.2 - Batches were unable to start if the first file had a name with more characters than the last one. - Solved a random crash when showing the fit configuration dialog. - Program was unable to start under Python 2.5 - Possibility to set anchors to the strip background. This makes the strip background the ideal choice when the spectra present background pile up artifacts. - Correct a memory leak appearing when the Savitsky-Golay smoothing was one. VERSION 4.0.8 ------------- - Upgraded underlying sip and PyQt libraries. - Scan window operational. - Shared memory access operational. - Batches can profit from multiple processors (windows and linux). - Batch deadlocks solved by the library upgrade. VERSION 4.0.7 ------------- - Improved ergonomy. A lot of clicks saved ... - Improved handling of ini files. - A lot of work made on the scan window. It is quite close to being fully operational. - Improved shared memory access. Almost fully operational. - Solved funny crashes under windows. The program was crashing under some particular situations like using remote desktop, hiding the windows taskbar or when the screensaver was activated. - Several minor bugs fixed. VERSION 4.0.6 ------------- - Recover material editor functionality. - Solve a printing issue on some systems. A black square was always present at the lower right corner. - Started to add functionalities to the scan window. VERSION 4.0.5 - Improvements in the RGB Correlator/Post Batch tool - Read new images. - Perform mathematical operations with the images. - Solve a file format identification problem. Some EDF files where wrongly identified as specfile. - Correct a bug reading specfile formatted files. In case of multiple scans, only the mca(s) of the first scan were read. - Clear all items from print preview working. VERSION 4.0.4 ------------- - Add the possibility to save graphics in vectorial format (svg). - Scale print preview to have a width equal to 50% of the page width. - Solve a problem in specfile batches when dealing with the @CHANN entry. - Correct ROI image colormap bug in ROI imaging tool. - Add specfile support to the ROI imaging tool. - Correct random crashes on startup and on specfile batches. VERSION 4.0.3 ------------- - Correct a bug in the ROI imaging tool. If the first channel was different from 0, there was an offset in each ROI. - Windows: Correct a bug making the applications crash on startup. - Speed up fit configuration dialog. It was awfully slow since version 3.9.4 Qt4. - Linux: Matplotlib saving of graphics working in the binary release also under (K)Ubuntu (It was already the case in pymca4.0.2-linux-p1.tgz) VERSION 4.0.2 ------------- - Allow the user to choose if the data have to be weighted during the fit. - Correct a bug only affecting linear batches: areas and concentrations were smaller by a factor 10000. The bug was introduced in version 4.0.0 - Faster concentrations calculation. - Concentrations calculated on batches do not force the generation of the .fit files. - Linux sps library made locale independent. VERSION 4.0.1 ------------- - Plotting under windows should be faster. - Solved a small memory leak usign the strip background. - Advanced fit config button reported not to work on a gentoo 64-bit system when building PyMCA from source. Corrected. VERSION 4.0.0 ------------- - Simplify batch preparation. After a fit, you can load the non-linear parameters from last fit into the configuration just by pressing a button. - Huge speed up of pure imaging batches (specially linear fits). - Possibility to save the imaging tool generated images in ASCII and EDF formats besides pure graphical formats. - Display (X, Y, Z) coordenates in EDF viewers. - Mark selected peaks in fit window, not in the main McaWindow. - The windows installation allows to keep the old 3.9.4 version (ESRF)installed. That windows version can be downloaded from the ESRF. It has less features but a faster interface. Physics is not changed and files generated by the 3.9.4 version can be used with this version. - Repeated HTML reports were incorrectly visualized. - Correct a memory leak in the specfile library. - Speed up sequential mca readout in specfile library. - Batch pause button is working now. - Force a main McaWindow plot and calibration update after a fit. - Solve a Windows XP specific problem. The peak selection buttons were not coloured under some windows theme configurations. VERSION 3.9.4 Qt4 ----------------- - Publication quality graphics thru matplotlib. The packages are so big in part because of matplotlib. - Qt4 support. I will drop Qt3 in future releases. Latest windows versions now available from sourceforge and not from the ESRF. - Universal support for Mac. - Started to add imaging tools (ESRF Data Format file stacks for the time being). - Added an RGB correlator to easily find correlations among elements. This tool is to be used after a batch (Qt4 only). It can be used with previous batch results. - Image printing added. - Error when working with Nd element fixed. - Incomplete legends in plots solved (Mac-i386) - Missing features: Some previous features have not been ported to PyQt4 yet. If you need them please, keep the older version till I add them. The Physics has NOT changed. I kept the 3.9.4 to make it clear.. - New tools can be accessed thru the PyMCA Tools menu. VERSION 3.9.4 ------------- - Possibility to fit separately K-alpha and K-beta lines. - Possibility to use alternative L shell ratios. - Ebel's work reference corrected - Long standing bug affecting the fit of L and M lines as a group corrected. VERSION 3.9.3 ------------- - Add automatic x-ray tube weighted profile generation following Ebel's formulae. - Consider scatter of more than just one excitation energy. - Take into account peaks outside the fitting region if at least one of its escape lines falls into the fitting region. Particularly important for Germanium detectors where the K escape lines are far from the excitation energy. - Starting pile-up parameter changed from 1.0e-10 to 1.0e-8 - The rhodium density was wrong. Changed. - Solved a problem affecting the calibration in qt 2.3.0. - Solved a program crash in qt 2.3.0 when Matrix Spectrum of a bad or non existing matrix was requested. - Solved a program crash loading the shell configuration files. The problem affected some Intel based Macs (not all). VERSION 3.9.2 ------------- - It corrects a bug affecting EDF files: The ADD REMOVE REPLACE buttons were not working. - The default short tail slope is set to 0.5 - The peaks tailing information was missing in the HTML Report. It should be there now. - It exposes all the theoretical shell constants in ASCII files. This allows the end user to customize the theoretical values by editing the relevant files: - KShellRates.dat - KShellConstants.dat - LShellRates.dat - LShellConstants.dat - MShellRates.dat - MShellConstants.dat VERSION 3.9.1 ------------- - Huge batch fitting speed up in case the user does not generate the .fit files VERSION 3.9.0 ------------- - Possibility to perform linear fits. That can improve batch fitting speed. - Solved a long standing problem with the L lines of Sb, I, Cs, Ba, La, Ce, Pr and Nd. Problem was due to a bad transcription of the used theoretical data. - The elements info shows energy dependent L and M ratios. Nothing changes for the fit. Just the information is shown. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/copyright0000644000000000000000000002362414741736366013450 0ustar00rootrootFormat: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/ Upstream-Name: PyMca5 Upstream-Contact: V. Armando Sole Files-Excluded: PyMca5/PyMcaMath/sift Files: * Copyright: 2004-2018 European Synchrotron Radiation Facility License: Expat Files: PyMca5/* Copyright: 2002, 2004-2018, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMca/* Copyright: 2004-2015, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaCore/XiaCorrect.py Copyright: 2004-2014, E. Papillon, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaData/* Copyright: 2004-2018 European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaGraph/ctools/_ctools/include/InsidePolygonWithBounds.h Copyright: Paul Bourke License: Expat Files: PyMca5/PyMcaGraph/ctools/_ctools/src/InsidePolygonWithBounds.c Copyright: Paul Bourke License: Expat Files: PyMca5/PyMcaGui/* Copyright: 2004-2018 European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaGui/io/QEdfFileWidget.py PyMca5/PyMcaGui/io/QSpsWidget.py PyMca5/PyMcaGui/io/SpecFileCntTable.py PyMca5/PyMcaGui/io/SpecFileMcaTable.py Copyright: 2004-2015, E. Papillon, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/io/QSpecFileWidget.py Copyright: 2004-2014, E. Papillon, V.A. Sole, European Synchrotron Radiation Facility / < other.text) License: Expat Files: PyMca5/PyMcaGui/io/hdf5/HDF5Widget.py Copyright: 2004-2018, V.A. Sole, ESRF - D. Dale CHESS License: Expat Files: PyMca5/PyMcaGui/misc/QIPythonWidget.py Copyright: 2004-2018 European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaGui/physics/* Copyright: 2002, 2004-2018, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/plotting/ImageView.py PyMca5/PyMcaGui/plotting/_ImageProfile.py Copyright: 2002, 2004-2015, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/pymca/PyMca_help.py Copyright: 2004-2015, E. Papillon, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/pymca/StackROIBatchWindow.py PyMca5/PyMcaGui/pymca/StackXASBatchWindow.py Copyright: 2002, 2004-2015, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/pymca/SumRulesTool.py PyMca5/PyMcaGui/pymca/XMCDWindow.py Copyright: 2004-2015, T. Rueter, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaGui/pymca/XiaCorrectWizard.py Copyright: 2004-2014, E. Papillon, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/MEDFile.py Copyright: 2010, Matthew Newville, The University of Chicago License: Expat Files: PyMca5/PyMcaIO/PyMcaIOHelper/* Copyright: 2004-2015, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/specfile/* Copyright: 2004-2018 European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/specfile/include/locale_management.h Copyright: 2004-2018, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/specfile/setup.py Copyright: 2002, 2004-2015, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/specfile/src/* Copyright: 2004-2018, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/sps/Include/* Copyright: 1998-2015, European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaIO/sps/Include/spec_shm.h Copyright: 1995-2010, Certified Scientific Software License: Expat Files: PyMca5/PyMcaIO/sps/Include/sps.h Copyright: 1998-2013, Certified Scientific Software (CSS) 1998-2011, European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaIO/sps/Include/sps_lut.h Copyright: 2004-2018, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaIO/sps/Src/sps.c Copyright: 1998-2013, Certified Scientific Software (CSS) 1998-2011, European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaIO/sps/Src/sps_py.c Copyright: 1998-2015, European Synchrotron Radiation Facility (ESRF) License: Expat Files: PyMca5/PyMcaMath/PyMcaSciPy/* Copyright: 1999-2005 Travis Oliphant 2001-2002 Enthought, Inc. 2002 Eric Jones 2002 Patrick J. Miller 2002-2003 Jochen Kuepper 2002-2004 Pearu Peterson 2002-2005 Jean-Sebastien Roy 2003-2005 Peter J. Verveer 2003-2006 Ed Schofield 2003-2012 SciPy Developers. 2004 David M. Cooke 2006 Bart Vandereycken 2006 BasSw 2006 Johannes Loehnert 2007 Andrew D Straw 2007 John Travers, Robert Hetland 2007-2008 Damian Eads 2008 Tiziano Zito Gary Strangman 2010 Pauli Virtanen 2010, 2011 Pim Schellart 2009 Yosef Meller License: BSD-3-clause Files: PyMca5/PyMcaMath/PyMcaSciPy/signal/__init__.py PyMca5/PyMcaMath/PyMcaSciPy/signal/median.py Copyright: 2002, 2004-2015, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaMath/SGModule.py Copyright: 2008, Uwe Schmitt License: Expat Files: PyMca5/PyMcaMath/mva/NNMAModule.py Copyright: 2008, 2009, Uwe Schmitt, uschmitt@mineway.de License: BSD-3-clause Files: PyMca5/PyMcaMath/mva/_cython_kmeans/* Copyright: 2012 David Warde-Farley License: BSD-3-clause Files: PyMca5/PyMcaMath/mva/py_nnma/* Copyright: 2008 Uwe Schmitt, uschmitt@mineway.de, 2007 D. Kim, S. Sra and I. S. Dhillon License: BSD-3-clause Files: PyMca5/PyMcaPlugins/* Copyright: 2004-2018, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/AdvancedAlignmentScanPlugin.py Copyright: 2004-2014, T. Rueter, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/MedianFilterScanDeglitchPlugin.py Copyright: 2004-2015, T.Rueter, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/MotorInfoPlugin.py PyMca5/PyMcaPlugins/MotorInfoWindow.py PyMca5/PyMcaPlugins/XMCDPlugin.py Copyright: 2004-2015, T. Rueter, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/MultipleScanToMeshPlugin.py Copyright: 2004-2014, M. Rovezzi, V.A. Sole European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/optional/* Copyright: 2002, 2004-2015, European Synchrotron Radiation Facility License: Expat Files: PyMca5/PyMcaPlugins/optional/TaurusPlugin1D.py Copyright: 2004-2015, V.A. Sole, T. Coutinho, European Synchrotron Radiation Facility License: Expat Files: PyMca5/__init__.py Copyright: 2004-2015, V.A. Sole, European Synchrotron Radiation Facility License: Expat Files: debian/* Copyright: 2009-2010 Teemu Ikonen 2010-2015 Picca Frederic-Emmanuel License: GPL-2+ Files: scripts/* Copyright: 2004-2013, V. Armando Sole - ESRF License: Expat License: BSD-3-clause Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: . a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or promote products derived from this software without specific prior written permission. . . THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIEED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIEED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. License: Expat Permission is hereby granted, free of charge, to any person obtaining a copy of the software in these files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: . The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. . THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIExpatED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. License: GPL-2+ This toolkit is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. . In Debian systems, the GNU General Public License version 2 can be found at /usr/share/common-licenses/GPL-2 License: LGPL-2+ This toolkit is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. . In Debian systems, the GNU General Public License version 2 can be found at /usr/share/common-licenses/LGPL-2 ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6237655 pymca5-5.9.4/doc/0000755000000000000000000000000014741736404012244 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/man/0000755000000000000000000000000014741736404013017 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/edfviewer.10000644000000000000000000000124114741736366015066 0ustar00rootroot.TH edfviewer 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME edfviewer - Simple EDF file viewer .SH SYNOPSIS edfviewer [FILE(S)] .SH DESCRIPTION .P Tool to visualize image files which format has been wrapped as EDF into the X-ray fluorescence toolkit. Files that can be visualized by this tool include European Synchrotron Radiation Facility data format, uncompressed or packbits TIFF, ADSC .img, Pilatus .cbf and MarCCD among others. Consider other tools if you want to do something else than just simple visualization: pymca, pymcaroitool or rgbcorrelator should be preferred in that case. .SH SEE ALSO pymca, pymcaroitool, rgbcorrelator ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/elementsinfo.10000644000000000000000000000055314741736366015603 0ustar00rootroot.TH elementsinfo 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME elementsinfo - Periodic table with Atomic Constants used by PyMca .SH SYNOPSIS elementsinfo .SH DESCRIPTION .P Periodic table displaying the shell constants and X-ray emission branching ratios as a function of photon excitation energy used by PyMca. .SH SEE ALSO xraylib ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/mca2edf.10000644000000000000000000000261114741736366014411 0ustar00rootroot.TH mca2edf 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME mca2edf - Convert SPEC file format files to EDF format .SH SYNOPSIS mca2edf [OPTIONS] [FILES] .SH DESCRIPTION .P X-ray maps were stored at the European Synchrotron Radiation Facility as a set of images in ESRF Data Format (EDF). The image rows being associated to points of a horizontal sample scan and the image columns to the spectrum channels. This tool allows one to convert a set of files wrapped by the PyMca Toolkit as SPEC file format, and therefore without sample position information, to European Synchrotron Radiation Facility data format (EDF). Its usefulness is nowdays somehow limited because recent PyMca developements allow to reshape nspectra x nchannels datasets in the tools making use of the shape information (pymcaroitool, pymcapostbatch). .SH EXAMPLES .B mca2edf Open a dialog to select input files, output directory and the number of spectra on each horizontal row. .B mca2edf --outdir=/tmp --mcastep=2 *.mca Convert all the .mca files in current directory to a set of EDF files containing two spectra. The output is placed in /tmp .B mca2edf --outdir=/tmp --mcastep=2 --listfile=input_file Same as before but applied to all the files listed in input_file. Each line of input_file must contain a valid file name. .SH SEE ALSO pymcaroitool, pymcapostbatch ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/peakidentifier.10000644000000000000000000000105514741736366016074 0ustar00rootroot.TH peakidentifier 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME peakidentifier - Given a photon energy, list the possible elements. .SH SYNOPSIS peakidentifier .SH DESCRIPTION .P Given an energy and a threshold, list all the elements emitting X-rays in the range [energy-threshold, energy+threshold]. User can select the lines to be considered: K, L1, L2, L3, M, ... The program lists the element, the IUPAC line name and the relative intensity of the line among the family of lines to which it belongs. .SH SEE ALSO xraylib ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/pymca.10000644000000000000000000000300714741736366014221 0ustar00rootroot.\" .\" Man page for pymca .\" .TH pymca 1 "January 2023" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME pymca - PyMca X-Ray Fluorescence Toolkit main application .SH SYNOPSIS pymca [OPTION]... [FILE] .SH DESCRIPTION .P Start the graphical user interface of the PyMca X-Ray Fluorescence Toolkit main window using latest user defined default settings. .P If FILE is given, it will be opened in the program provided its format is supported. .B -f bypass user defined default settings .SH EXAMPLES .B pymca -f .P Start the program bypassing user defined default settings. .B pymca -f LShellConstants.dat .P Open the LShellConstants.dat and list its contents in the source browser. .B pymca -f your_HDF5_file.h5 .P Allows one to browse the HDF5 file your_HDF5_file.h5 in PyMca if the Python module h5py is installed. .B pymca --nativefiledialogs=X .P With X set to 1, the program will use the file dialogs from the operating system. With X set to 0, the program will use Qt file dialogs. .B pymca --backend=XX .P Start the program using the selected graphics backend (mpl for matplotlib, gl for OpenGL, silx for silx library) .B pymca --binding=XX .P Start the program using the selected Qt binding. It has to be one of PyQt5 (default), PyQt6, PySide6 or PySide2. i .B pymca --logging=XX .P Set the logging level. Allowed values are, in increasing order of verbosity: critical, error, warning (default), info, debug. Alternatively, you can specify an integer in range 0 (critical) to 4 (debug). .SH SEE ALSO HDF5, h5py ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/pymcabatch.10000644000000000000000000000321314741736366015222 0ustar00rootroot.TH pymcabatch 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME pymcabatch - Batch fitting of X-ray Fluorescence Spectra .SH SYNOPSIS pymcabatch [OPTIONS] [FILES] .SH DESCRIPTION .P Loops over a series of input files to which the same fitting parameters can be applied. The setup of the fit configuration is usually made via the main PyMca application. The program stores the fitted parameters inside the IMAGES directory created in the user specfified output directory. The pymcapostbatch tool can perform further analysis via correlation tools. The user can also request an HTML report. This is much slower but can be convenient to browse the results with a Web browser. This tool is also accessible via the Tools menu of the main PyMca window application. .SH EXAMPLES .B pymcabatch Open a dialog to select input files, fit configuration, output directory and output parameters. .B pymcabatch --cfg=fitconfig.cfg --outdir=/tmp/ *.mca Fit all the .mca files in current directory using the specified confifuration file fitconfig.cfg and stores the output in /tmp .B pymcabatch --cfg=fitconfig.cfg --outdir=/tmp/ --listfile=inputfiles Same as above but taken the files from the inputfiles file. This file is just a text file with one file path in each line. .B pymcabatch --cfg=fitconfig.cfg --outdir=/tmp/ --concentrations=1 --listfile=inputfiles Same as above but calculating the concentrations. .SH CAVEATS This tool, when used in command line mode, could run fully Qt independent because in that case it uses Qt just for showing the progress bar. .SH SEE ALSO pymca, pymcapostbatch ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/pymcapostbatch.10000644000000000000000000000210514741736366016127 0ustar00rootroot.TH pymcapostbatch 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME pymcapostbatch - PyMca batch result analysis application .SH SYNOPSIS pymcapostbatch [FILE1] [FILE2] ... .SH DESCRIPTION .P Start the graphical user interface of the PyMca X-Ray Fluorescence Toolkit image correlation tool. This tool is automatically launched by the PyMca X-ray fluorescence toolkit after a batch analysis. It allows one to superpose up to three images in RED, GREEN and BLUE in order to investigate correlations among them. All the images have to be of the same dimension. The program builds a table with all the input images but only three of them can be superposed at the same time. This program also offers the possibility to perform mathematical operations among the images and simple multivariate analysis. .SH EXAMPLES .B pymcapostbatch .P Start the program with a file browser to select the input files. .B pymcapostbatch file1.tif file2.tif file3.tif file4.tif .P Tries to open the files named file1.tif, file2.tif, file3.tif and file4.tif. .SH SEE ALSO ImageJ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/pymcaroitool.10000644000000000000000000000466714741736366015646 0ustar00rootroot.\" .\" Man page for pymcaroitool .\" .TH pymcaroitool 1 "January 2023" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME pymcaroitool - PyMca region-of-interest imaging X application .SH SYNOPSIS pymcaroitool [OPTIONS]... [FILE(S)] .SH DESCRIPTION .P Start the graphical user interface of the PyMca X-Ray Fluorescence Toolkit region-of-interest imaging tool. This tool is best suited for handling datasets that can be represented by three-dimensional arrays. Typical cases are stacks of images (first dimension is image number) or 2D maps of 1D spectra (last dimension is spectrum channel number). It allows one to display maps of particular regions of the spectra or spectra of a particular region of the map. A system of plugins allows to extend the capabilities of this tool. Plugins for multivariate analysis are already built in. .P If FILE is given, it will be opened in the program provided its format is supported. .SH EXAMPLES .B pymcaroitool .P Start the program with a file browser to select the input files. .B pymcaroitool --binding=XX .P Start the program using the selected Qt binding. It has to be one of PyQt5 (default), PyQt6, PySide6 or PySide2. .B pymcaroitool file_0001.edf .P Tries to open the file named file_0001.edf and all indexed files of the form file_????.edf where ???? is a number. .B pymcaroitool --imagestack=1 file_0001.edf .P Tries to open the file named file_0001.edf and all indexed files of the form file_????.edf where ???? is a number as a set of images. .B pymcaroitool uncompressed_tiff_file_0001.tif .P Tries to open a series of uncompressed TIFF files as an image stack. .B pymcaroitool --begin=100 --end=200 --filepattern=file_%05d.edf .P Start the program loading the single indexed files from file_00100.edf to file_00200.edf .B pymcaroitool --begin=10,100 --end=20,200 --filepattern=row%d_col%04d.dat .P Load the double indexed files from row10_col0100.dat, row10_col0101.dat, ... to row20_col0199.dat, row20_col0200.dat .B pymcaroitool --logging=XX .P Set the logging level. Allowed values are, in increasing order of verbosity: critical, error, warning (default), info, debug. Alternatively, you can specify a value in range 0 (critical) to 4 (debug). .SH CAVEATS If files f_000.xxx and f_001.xxx are present in the same directory, and only one of them is selected, the program will always try to load both of them unless a cumbersome way using a file pattern is used. .SH SEE ALSO HDF5, h5py ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/man/rgbcorrelator.10000644000000000000000000000177414741736366015770 0ustar00rootroot.TH rgbcorrelator 1 "March 2012" "ESRF" "PyMca X-Ray Fluorescence Toolkit" .SH NAME rgbcorrelator - PyMca image correlation analysis application .SH SYNOPSIS rgbcorrelator [FILE1] [FILE2] ... .SH DESCRIPTION .P This an alias to pymcapostbatch Start the graphical user interface of the PyMca X-Ray Fluorescence Toolkit rgbcorrelator tool. It allows one to superpose up to three images in RED, GREEN and BLUE in order to investigate correlations among them. All the images have to be of the same dimension. The program builds a table with all the input images but only three of them can be superposed at the same time. This program also offers the possibility to perform mathematical operations among the images and simple multivariate analysis. .SH EXAMPLES .B rgbcorrelator .P Start the program with a file browser to select the input files. .B rgbcorrelator file1.tif file2.tif file3.tif file4.tif .P Tries to open the files named file1.tif, file2.tif, file3.tif and file4.tif. .SH SEE ALSO ImageJ ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/0000755000000000000000000000000014741736404013544 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/_templates/0000755000000000000000000000000014741736404015701 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/_templates/localtoc.html0000644000000000000000000000052514741736366020400 0ustar00rootroot{# basic/localtoc.html ~~~~~~~~~~~~~~~~~~~ Sphinx sidebar template: local table of contents. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. #} {%- if display_toc %}

{{ _('This Page') }}

{{ toc }} {%- endif %} ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/_templates/pagesource.html0000644000000000000000000000054614741736366020740 0ustar00rootroot{%- if show_source and has_source and sourcename %} {%- endif %} ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/changelog.rst0000644000000000000000000000007014741736366016231 0ustar00rootrootChange Log ========== .. include:: ../../changelog.txt ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/conf.py0000644000000000000000000002031714741736366015055 0ustar00rootroot# -*- coding: utf-8 -*- # # PyMca documentation build configuration file, created by # sphinx-quickstart on Mon Dec 9 19:27:24 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # __init__ start # uncomment these lines to document __init__ methods #def skip(app, what, name, obj, skip, options): # if name == "__init__": # return False # return skip # #def setup(app): # app.connect("autodoc-skip-member", skip) # # __init__ end # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. from PyMca5 import __version__ import datetime project = u'PyMca5' copyright = u'2004-%s, European Synchrotron Radiation Facility' % datetime.datetime.now().year # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = __version__ # The full version, including alpha/beta/rc tags. release = __version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "img/PyMca_256x256.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "img/PyMca.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = {'**': ['globaltoc.html', 'localtoc.html', 'relations.html', 'searchbox.html', 'pagesource.html']} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'PyMcadoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = {'papersize': 'a4paper', 'pointsize': '10pt'} # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'PyMca5.tex', u'PyMca5 Documentation', u'V Armando Solé', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "img/PyMca_256x256.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pymca5', u'PyMca5 Documentation', [u'V Armando Solé'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'PyMca5', u'PyMca5 Documentation', u'V Armando Solé', 'PyMca5', 'The X-ray Fluorescence Toolkit', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/customization/0000755000000000000000000000000014741736404016454 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/index.rst0000644000000000000000000000016214741736366020323 0ustar00rootroot Customizing PyMca ================= .. toctree:: :maxdepth: 3 settings/index.rst plugins/index.rst ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/customization/plugins/0000755000000000000000000000000014741736404020135 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/plugins/index.rst0000644000000000000000000000010014741736366021774 0ustar00rootroot Plugins ------- .. toctree:: plugins1d stackplugins ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/plugins/plugins1d.rst0000644000000000000000000000300014741736366022575 0ustar00rootroot 1D plugins ---------- Adding 1D plugins ***************** .. currentmodule:: PyMca5.PyMcaCore.Plugin1DBase Overview ++++++++ .. automodule:: PyMca5.PyMcaCore.Plugin1DBase 1D plugin API +++++++++++++ .. autoclass:: Plugin1DBase :members: .. autodata:: MENU_TEXT .. autofunction:: getPlugin1DInstance Built-in 1D plugins ******************* Background subtraction tools ++++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.BackgroundScanPlugin Median filter average +++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.MedianFilterScanPlugin .. TODO: XAS Simple vertical shift +++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.SimpleShift .. TODO: MultipleScanToMeshPlugin Alignment plugin ++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.AlignmentScanPlugin Advanced alignment plugin +++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.AdvancedAlignmentScanPlugin .. TODO: Kinetic tools .. TODO: XASNormalization Remove glitches from curves +++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.MedianFilterScanDeglitchPlugin Built-in Math +++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.MathPlugins .. TODO: XAS Self-Attenuation Correction .. TODO: Regular Mesh Plugins Normalization +++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.NormalizationPlugins Fit all curves ++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.FitAllCurvesPlugin Motor Info ++++++++++ .. automodule:: PyMca5.PyMcaPlugins.MotorInfoPlugin .. TODO: XLD/XMCD Analysis ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/plugins/stackplugins.rst0000644000000000000000000000430214741736366023404 0ustar00rootroot Stack plugins ------------- Adding stack plugins ******************** .. currentmodule:: PyMca5.PyMcaCore.StackPluginBase Overview ++++++++ .. automodule:: PyMca5.PyMcaCore.StackPluginBase Stack plugin API ++++++++++++++++ .. autoclass:: StackPluginBase :members: .. autodata:: MENU_TEXT .. autofunction:: getStackPluginInstance Built-in stack plugins ********************** Alternative ROI options +++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.ROIStackPlugin Silx Alternative ROI options ++++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.SilxRoiStackPlugin External Images Tool ++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.ExternalImagesStackPlugin Silx External Images Tool +++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.SilxExternalImagesStackPlugin Image Alignment Tool ++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.ImageAlignmentStackPlugin Image Browser with Median Filter ++++++++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.MedianFilterStackPlugin Load positioners from file ++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.LoadPositionersStackPlugin .. TODO: PyMca NNMA ++++++++++ .. automodule:: PyMca5.PyMcaPlugins.NNMAStackPlugin PyMca PCA +++++++++ .. automodule:: PyMca5.PyMcaPlugins.PCAStackPlugin Show Spectra ++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.StackShowSpectra Stack Axes Options ++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.StackAxesPlugin Stack Filtering Options +++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.BackgroundStackPlugin Stack Image Browser +++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.StackBrowserPlugin Stack Normalization +++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.StackNormalizationPlugin .. TODO: Stack ROI Batch Stack Row or Column Reversing +++++++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.ReverseStackPlugin Stack Scan Window Plugin ++++++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.StackScanWindowPlugin Stack Simple Fitting ++++++++++++++++++++ .. automodule:: PyMca5.PyMcaPlugins.FitStackPlugin .. TODO: XAS Batch .. TODO: XAS Stack Normalization ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/customization/settings/0000755000000000000000000000000014741736404020314 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/customization/settings/img/0000755000000000000000000000000014741736404021070 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/settings/img/settings_01.png0000644000000000000000000002475514741736366023762 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfx)IDATx^}sGv&oY3#ֿcccvX^Hڰ(͆wǫ[3ȦKR&x$}DE q q g˗ˬFwUClR/Yz_eU([{weETA{~ڑC+> E%"BAsPB.!,KÊ4q^r*FJ]`vAL 13F. HZѥIt]F|Hr/ ( ȊRHǨAf&3U-tϲ,tw',rrlKMU4q^Xp9#l.0 B&HH#$]D-KS4ˊZUWC;JTY6L-DLxU ƺ93)We-ꌕZM"ju(8 Kmʣʃd =J5J#]NwQʧ 0,-/ơMzVuw.JuQHPAK虇2/V3Uj΀RE""i/G03$FBiH_j }avGZx5yzՓO{} \-d+xiMz i]:/m[]m"XvDW|^QxH@5G#þBgrV9U1Ҝ.)EW{][!@OHòZ_.xBDkb[#sQ5dR,Tw/5 j Β;C PV:]1f/έH1inE uSS '-Jhd3\z-b!SgB-?y׽;x}y׽7Vѧ0fKX&z- YZ |=,5br.Z^`k9Wm'ڜuVB/#-$欏(tY iuUYr.Rjarh`/0BDgZieGfY6,t+8Bħ֜N?Ee&r U*8}Xmp왋LjjJEV9'Z3P/ WeTYaV* mi uu4rҴ.#!B. #̔hX9j|VBHTֿ9R*k#[\Ѿ׎ɹr.2k3WjBXmMLT[k;YjC!U!JP-Sg-D1F9 t1E$F`p6tU4,ii4z?ZUqJY".*tźoxvLΈ'؜".rK/5`PmLšSeʣB:a}(BJ5"QiVW\Z.RaIr(Xٽk!NELl?D6"q(PBȾ7eޣ-}k|ouj!&7W=, 8V-xS \0ʼnXh߬]n mdno+~,pp#0f,sxF|H u C=_.򨏇;BPԆL Z.F܂ɿ<_(ۮ6nn7PoOw{}b>`wK٫a&S+]p˞f} +RH4=WTgT#:ǜȡ7.`ٕZnD^KCGZth6ê]EU5zBt QWAy搪f(%hBNZzXu6g!Zֿ6JMBYH/D*WApv% KaUUGp?;u%'J*uthi|!B-5?CE -oLZ< Qg"j]j*m[F3U0a! EHI F:lƿS4tF%* =ug!l,DEY8} 3c!`BŷYQ婅sWBY1B:yB2ͣ.$ѥ IA 8 QZ0m[F31梪-_Tg!m*B-k UX)rU}{|U YH=Ԣڛp'+Aƹ&vuOB&7l@%Ƕ0Sao!]dW!z`-Dg (C%]FTH;-@{-GWq+z>W@Zz #k!d5"Hi m-~$!W}%~3E-JZv_uc-fZZȭr1 PW9SdXgm.BLXg7WW|ɫXy&=`MrZ,^埘9 ?\~d#)2PBsDOn:N$ BD+[ a*30d ~qZ< Zc!lkh,D?TǛ.LqL=j9 /HS/ BU僬BBroЂӝ ?ݸeV|`-9ӁbR}BمӫC-vEJ_1p ͥ&_АԲj!5Zf!FBt4kׇVԀ_YNi!RMxSZS?ġh|1C3I-X H{э⎣PW'ȷzGzpBP$Z\$WHa4e5=G/һ HBa‘\4Hi\udvq4#C dsKt Bd0=cZ)_ cQwOe'c\Y2$GKǒښVez `maN'AGE "*uaUGsF }?Dm},%YH jRBФ\DdWziSr\=s;53bo`b檡7,~@|t1Q0O@.,Ț J ,16dë(-j/f1IDDY`G& hƷ0\] rNYt*%aXGn/p:FqaY*` 'YL< [%h@/Ofw`(hZvexDB2L *Xf! "+#&zecWP%;_v/M"z [+:C0mlL" i*`̃`tVF遗g%Z%3%) C<>T6 ) \ n72`KPQF1k0FZ{l<߀A`keBFp6*B@fƘPq# 9Hs{a%Z%iَI-1ٞF $ɃMIi_vFZY;`sQl~s"-NsAf#ʠK9% מ%lA|2 L#8akh!<$Uf.i6E ,J`Ӫ]miX\lQV@YtOl(-j;Z_b8lQ!@=rLC%GV42 \4tX"@`SM -|SD ߑ06(+ L#G&7Mi"IEО P*lQV@F`SM +o$EF=AB ;ILCF`SM [$[2bH$H_mKCỳ@Pb]Irߗ{٥B|\lqbfylzyTappVͥK}KK=cc]B  rA,$XH @ b! BA.\  rA,$B_ͻW?x׽^ ~j!|oB<|[d_6Bǟe+ձcKzy Q h4d]p 8ƴc66|  Rk]8r++p) A;_y].L h<[1 E,n|X c:\2 aM Ug!rVpp8{z!-'WNlK9{_>B6B?ϸ`E-4sݝywy_>kإ%!h [cMϘ %Z*&=2Zh>X>|.D__3g\xqddP(>3g!?a6GF p;}苽϶_ :}ۿ93*|g߇kFF Tüc`BnR,d\l6!7QBu|!0[Qf`B~?ƽºqh:84k`tB.-fdP_BМB #AdP_}g`6&0?SBH@P 2Z/Ƣޕr,CX{B1~@P52Z/VϢ5X!3*+x"eu lGA h!@^$/;@*[P׳q1w\ sZ] |e!@ rA,$XH @ b! BA.\ B 33ؘ?0<<,tx_R垩1uoϧt@"GG'z ˗BT*]zʕ+NÈw]݊(_vmqq"C_˾vٹD]]]ǎ; vzCZK*8EjnXugWt9/ξā9߾gϞ +J.Rmw9|kK;?kg^zgggم9޽{udǁ`+XHp?Bӳ|~aWN;?[>{mf~qz~az83;B0?Xc`_X+v1ͼ)fS F_ g+dЭ-~uy{ 7n/}-;[ܽgOMŠZMi﬏k4RlRz6=cx->Uv@BS3sNt,u TrW9wZ1Q'gaZ#[A|,AHF jWw7wܺ:: c`jsd=30r V]Xybe[]wX$`I# XĮ=GΏy>?l;&ko/ޜ%^Aof)WT}[bkdRӎondq9y|s}ljw忾>19Z'p-SʟU=xTS8Bwf=zehˮя>={Tk֏Nu\k߉77/^+Z'xMj/uWbnlzKY,T.ܜm23|kmlˣt=ӽ{_^K׽ :f{`mY,(,/?~ggz~o{53vW^{!X|o+B +hxd`h|jww;-Gz /4*[099ŹK;v:͹(iЗaL hL䲐@   rA,$XH @ b! BA.\  rA,$XH @ b! BA.\  rA,$XH ȁ:StؗIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/settings/img/settings_02.png0000644000000000000000000006300014741736366023745 0ustar00rootrootPNG  IHDR"1sRGBgAMA a pHYsttfxeIDATx^FﻻݷYH6B110<ffffifffxCnުR=`=ٌ_[]*R=V% ﷿05=╛͝%5EUjTlST孅-򖂲YiYZ$-n5 z66_^_ jRSH4Ϧ2-¯BDr E:LI)RsKR$,DB&">.KǦcDJAt,:YLF$" bx  Cb1A1h~ & *? #d{fydydzgze@@___oO";+;++3##=p\]]\bSD3 amsmhmhehi`ѳ'btmcF&X ,B58n\1P5 oz2 m&Rҵҵֳb{ 1րPw)Έ"9%5єllbxYzY>Kє!JZ({.EegaEGaE]V&-iIK[%%IIB\Dh)4M"P|9H#P @AVK9-5YL au:OJ˯JT+ y܊܊r .O*CdebӋhDQTjQd""0H! @Ap<"(N+b$@/J%yGBp 3,#L*p| kPK pq|,{iiXy#<-4nH3uO3qK5qK1vI   =]]:Lm%0MȷC% D@Hd}' 9%9%f&XL,3,sDwckgǷl킄A"`[ƀQfM#MÈơ2~(Jjj൨WQSTգF*.WvQT 4(DT`tl6e@'~EHKv]RDV@)Q )r ~AK G& [ژ-%YL1"Cܐ.GӀTA] M$Vsr+f1@dZyDj"4H. M* "0N[[#FFDxGʼg#\&uGHB1"\EAB`S:`)정`lmemc@y{{M7oCa+4#(sW-?@d MمCa sD{|mTM$hjQQ2^ Mcͣ卣e #eå#e eRd T,Bij˩:Lj D_QWD^KQ2zGZMqi c:|EAm5fKY5SܜIM Hrsq95Y@LVMLfMtFuTFudzVVZR $!IeA @i _W!_'V^Q@g3JYUp,DD "nrW &w;Ce!2`M42h&#w \C\}=)uqdk;dk,P'R o8 뚧|Cxyco 1f~2Q`9[X` , VAV6 ""2rr ^}L]%@ I6@TU$P2 "U!ǫPnWմ״ #LJ3RAhDs0K^)# R#€FV +~:PPJ$@Y/ ."%@qPWt ;\9"GޑSdڲmLi[!nISM¦$AS2&M y@|nC\Pu1YuљQtDDzMxzMXZuXju(RTɈ$D & 0~0#|r 22Rbpch]&PnmZKmڷ@Uq::NyNvTE1!8i\nB@]軋yˌ| }ԯa0 @b (_) +2 " "**:& / prrqwDR : ީՄUtL = A)k]ND~mƮ'+g!:L:*%P-bm@u@|V=GPQ Q0!׏uuŵEE 0V*L T!(ĥ}BGP+sy{L[D๮! Ӑ(IqCv&*`--RVM SD4" J;$ZֶhLZ!V }cPQ<tԝ xڭ[z϶m81NA 07v1 s/B5zP j`{!AU%1qd,)Cb$"doٛ)Af#z#K(Iv{X\_MRl0zJC1@^pXE>Npa|95;(c"  \T ;5+ufz^ Q!ߊiT⡷HEe5( nش@0,,fMLĚcd|}ƺ-\~|ͣxpヿӡg}(=X({WI~_`Ah细/t^`cȫK'/ N\@o~ЏA"ΫҺs]R)L5#AXFD9:]SP>2 +aPУ:$'H瓄>PnB_A0Tx"z8b1>z6*k_nQ_nq?M7dNtApCdn\_]QfRl0-<)w (,;xEa˘&Ў~X34 ;4Î!TaͤX3i5 ͐i^4L}cByi*CȆD604d0Ӫ,CjZ^cy2 I@["_;Pq5'Rv׈W Ո ^5rg)xuexԕ0OEGO`He*)T M(:TrL娮&QNNV6ʮ&Q!E9FKP-j:X'@q@y4xO24`LKAFnS|TM+IR1:}ݓT@3Y7Zś)9h6 lK9XNٱ}K!XGxI.{>xC@렷˒˺E98?;-)6* ܤ.c78f14*5S:1嘆i4JfG#gMATnHLNfALTaӺ!]?+vzy##k.~B扰mklW<߭C"O['=4B]/O\4 ]::}M j_jǵ1 &ۑUQQsGQ#T19CdSv&aD6/h''6+M%ߐMj7% ȷdx=p7a&t@Fn Ϡ,.*Oa-7pjh6f*ǔu6c5PFд@1#'')4eCѲFNB"Ӕ1M4z@#ek{YR>>ʰsV+3zD<߾߽t<<:Xkh;z4P`cc5gҲPXs-)x@porR2yw e*ӶCJT9<Fϗ0zر:fG< e-=3]Si9#*Pxp ,*ڔH 1=I5HzhӍ3OYB( '=LkS+Irf)IfWJo$!d4H+U(r !_bz3D3~,YJwB[ C3B#LU4?mC1dȱH0cyC dxTNeþdC-Y4kš529V\ֻl}?o}/ wbe桿ȶ^?~%ucF> 8aJ+Of@*N5"G<!Bm Yqj#uhVIz]2C3؞͊AZ$$c2)'P1Өs!H3oih4m)BʹtElʲf06ͲNc) B%Ө$bo@`T5s!1$Ϣu8Bf<ڠǨhر X9!Zvr, !x2cV6?O?kuY$Z3*J@SL# ݼP6c`cљ.͍@W4n$%4'5|VIiHkM]|tCvb1v֔~،y֑6t>HN6*5C+Pjî*|M @jd'?HG1 :30*EX cԨ%`1O}|w#֍klH}EZYAxf3Vt2+(jO6$+iAZRaDzPG1mHsTf@T>u 1 hc2;46[PÚcBg ,jY7 6eg4,lӘ186 95C-3{AUM)kK=n/[;k^n`]ݘK}øUY]4c$gކXAԝ#SW[f>=}phbPİfnk@N+E!SQHu DMI*#P捤7S]VԐsHtfKFkvv M0MS׌1$#L]310D8tI7T1@Ju$囌!L#0}eb ="ЉGp}蹇LD| z%[WHj'Fs+[/n,|2BgFL96ƁfF.GH;S D˃xLPIj՟4P]Wnz)F)=jIEt^R[!Xyk]bOgfEKf2G- B%eEٰo(+ƈW|U$oLCMA5Y3 N1.ehZ ajm`]@(NZRKuRI7)2r2]fI@Oy!%:Cr %Vd䋯 (Ar>_~s>} S{u f+j Ą:=R_|=[m v ^3r 0 \&gORSʾ"/ ; =9@?R6 `cưf6ʱq-9ϫ$^ R3xڨkOjAG+{_Yf vvJщ@1u PdtI;=tiD4g6%V{VF:ZKź.c#ylsZgAD"l yFtM#]H.etW3-Ӑ/zDWfыjVU9+;Q)k2emU 踊1%'y^rCoYg_=/5SmpT⁽2'bv]<|lI>b[`{?tХ: \ŎwGO^Agoe_ɶ N\0G|Ds9;K=g{wЙn@5"i7+ti3bKbWG ЎiCRT@snDS0՘_ S Hֺڶ4|cCDs EъTho5{޲P8uå謍nCRv͠co3@$y^"!@ZV+ED 9=)~#VsBF| ɾ%Ӎ/ϋs ̻*[\ѬxCzۋKB0,LZuieFfև$Uĕ{D8˭f>b# _1]!V,2[269!\=qQGshA G TK*'0fapw p[׆9< z{q%E؜otѺw,5,2(/35\n$y9eigI?dz(/3B"vȷ32rIsHղI:bp,nq̞QOD2iIaD@4A"Ʊ{Lq{Mi^P6SjCuUM{Mb)Lc!fqs,9 " |R%, $`r+蒗w ʀYirGw+;}gۓon۬ZuSp/~a1hm=}S'ɮS 4 ںǁ֮֮іND346 C@} eey65MFDUWU[Y[Q"jT{{LP\YTYTѩ@O(,o"d%R= =K,Bom L}?W ?QKej15šj C@"fʘMJ^%*u G ;']d:)"!<.4ۘHG%0'#%}uqN ڥC-mZۏT u@MN@n`.$Yԃ+@YF/p^~.`AnDn}2cBaH @3 G7 Dz>PP|7w?WכG_ʰ^j̋==ݚʚyMBY`,XTVZQVUQ][W2:61159ZM MCMmMPu׷75!jDMcouУPFt5؞*B{qEMQyh64Fi zQaP^''_V+@OT牁\QU++2t ,=4 -M)RrS YEI B igEE*ADOL9AϙĨJF%"%a|HOXGPoWkc H=˰&AOݣ#[n>N(,i\qrml#јu-0Ad\ &nܶG#oW8'S˓_ d Y;LZYQAQX\\ZZZVQ^YQUUS]SU]U]tVuVvVֶWִCj )K**%MeMEe TEaICaqV((/P2EPX#׈J(J+@RTDB |O%YyřyE9EZ"5Kdʓ3 tYb,!M ħJS$q)dql NF'Q bbBh 7 DWLPdlDM! |ng-~!^~. 6QNv't{qsial޴]vfwh\]4CY8 T.&JPJ,6FF {)6ڼך)R2) d qr8F%btT85S%K.-+rD%qHZ!UJ2ENQR_TP\XRa(J`(PT# e*JRPz*Dr-$eK"%’ 8?(?0/ 7 ' /7''++3==-5%9 su400t7L]#SΆ&N#G@A^a`)iq;DqL8muDqG6{h>{֦m6l>~㡵^{Wٳb^ExuNu g~RQ3{4Q\j=#xiQ%2Hf!"WTCtZtL:4̸, >1;!1'1)&(yl]ӣcӢb`R#IͰ.JbhhbHhBHh|ph|Ph ||"}|#}"|={ vwî=zLv۱K]:who}m6n9#olv޶^6vֶ #{C#;C[=]=k]=+]:Ǵ͏7;rQa"8t D HH$OPAxj|d]K[[gn`۶#lrdc㦃on<@E-x-wz hИ݈u5kw5;W5U oXȫWWl}50j ^e#|' -Ġ(MH?E_0ozz{(.BE'>ځ6hmnE]6ZZ:Z;ۛ6hkkminjj@וe@i PB(.VRT T!(E4 y!C#gEAAldRiF +< OSxE2WY'zᩧ_|yg}(yx9³P $1‹+~1T5/_gqL쁣i u{}}vQIUOK?6.X#ǽ//O+Αde3SS3V.{?t?i¨M(|냯.,?yIqJG3L4eWluCfDV*5*|=bZ#@ۦ%(gu\F.?1EOz̹^6Mufժpx߮;Zܞ!X3&m41N L(o<$0%L&-0Xdx:wF7U9ިƻU-8~8,G^,s~[}kdeRYTZrk7‘Yx(?Z|֊l|נYZ3co#52ܶlaZ#_cJ߾J"4[UzV|jsذqW<*8 &|WK}&5SPx'e顉kL"2ӥxb<~2Vkmq6v Zef?ۢPieQ"-RfVT2gQaWNS_Di,i HP4VJm ,<<{wPSRZ}f@^lLAbW^v/EO_dcš9#&(3f"X+Ci[ek-92rJxk|鷟nmsn3 ZF杓J<|j| R m6#5 kD2qEX@G*f!alԢ).ى c}wNT>s}kr`2Dl4m-88~uoK.>l gKEh,\ϊq9.v@͸XFE9+^JQ1mG^ѵAaj{j Tۏ6F3j!W"*EQŹs|_v>~~Md4~C پeEmSCW>at=O/Ql>`]ے+U吖GEXpgEjV4nH)p ydnR/'|T>ހ7[U炟*rTA^cc(9QmO^X&*)9solFv߄yR/c?| K;GO$,ֽ@j6*ZL^`]ǚr:QT9&gzVMf!&VdKK*U<2SESvf>MꇵEbO%}x'"HB(N>n:O:֟88 f14A4psh҆Scי_{ԘӨb=ǃ+iѩk x[Jf9?Re,jZl#VPN/wљe:9j-ND*䋡]>HsuP᪵HBji Z}jg?&BD"9A(,ffήYIbEe='Ob{էoLN4;tx[p52ۂRx+'̂z1xhƲ5zУg*PQ+gXMH/Ghu WX/[:2xqH _&H>f__g\8pHo~lJ#//OL+>jպO>ʍ/4ʖs38uuigЀ2dJ#/'GDFOYr-hv?ZUOcM֥v"ު?xVv ٧_|{WNZX54~~J2.^޶m'|(8͸%@ s':ĕ+vާQКi=7@#cgߐƿf@E74θdV@{XD%i?4N"N:533s?226g/ tU߻ލ7NOljijtһ;y|@cy2v eDzg, T+|XfK~Xiv bةSOϜ裏5kW_8yllE(G9]p?;쳩Of* Ye0s8EPϥ%l +P 9=3siG}lbbBllԺp⥫/_pɺfXaV{[J}-zk_g?eg$8<"pޚa4M㡾O<5VQf>y.рNrp\hNXʼ}a+N!,?655gdfW.]|7ڻګg*#.+7ג-gKz:Ћ̭|U(Ծ,UUT.#2ŨE3t֬6`VC<=fWxv̅ޚw;Sjrï ~-zܚҌP}QA7F&T`sx,V3BW/.a>S ssz>x4;y`p4y5~O^n4S߹JвL,R3j}Me~Jk^>gw66轏.]:2: C2P<$P|}+Ll> j6.4[,kdhƢftKK[[[z6Kfk\pCVP$g,X@Z}js 'hݕft f\%ьEa+> PҎ;\*=#Zɲ4*F̧̝#L1@}^r,ʈ6N>*]ԡQܹfm?ag?]\\w<6>~ꪺs_TΧT L _{tR{DU`\:)ٲBG0e,~J?ݝ ،ݟ٥~U:'7%::9@Ui$Ƃ4 jw+ |믿o===,O.ח_L뒆wʢe-%鉩Woh 2f|J`ڿofw36>~޾qvj/]y[z_pq,s lIc88;,blFf -4XcٙN3_,4y e~:4kz]N3e+N9u،caXi׋SNӎ=JҬ/yB#4X,??_ uѳ°,>>>...666_~͍88fAAA>>>0T{'76XVyzz:;;;99uvv>ļPP䓏> gfԽsȬXDN3e+\\]lll~az]LMy<'$d^xŋ׿_9{RL8894 YXXcwn:}f^Cu4yLLɼьf5h3hz6K~bC@KuHpQ(pw;G3ox14ۏf>+vFr!h裏ҳY %byi'עcZmC#яQKJ3WWWf """OaP%>» '8Hj|i/ln4:G0'4yJ3p\oEfKi456XV`u---Kx 2/DG9,ӌcJ3r377711inn^w2f`H黇ӌcJ3b'N444,Vw2fFFF8-w2f 1}}}]]]:N3Ҍ1mmǏsqp, A(8uرZN3A4QD3ЌffhXF3w&fXmپc&֎n <333ccc7Bѣ,5vLfX%%%@x&&&offai$ϴ~.9iVؘhv\lżnn2_՝5~wr{:r?ꮐ_ 4 ¥#FTQkV%mVL9fԔ\o-0wܚ] ^44ܠJ;fK hfii 37766.mwu.pd(4Frsm 2̤59eܒ\[Q*oL_((ՂJޙ?KD3;5h){64{CEe4Z3\B31~g4Rbi\0'(ՇJ3kkkG*-踢4Q5zgdnT_fj̹a5C̱*jhpޝSi6YJ3☱1TfB4H FUjoYhXQkҜ{ +͈cG9ho_"4;~8c؁98آeJ3bhƱ0̾(iu7X43666Paܜ\iE~=7X6ΎqwPN3_,4#C,4J3___wqoO?4=%fXXio===?o(= m``W^/إf׸ĥeMRtxx֭[~)_bcca^dd$amppW_0 REXf\Ll5G0mhhh8_L#c <@7oBG#ьhFg/ $ Htƍ?x1`x i񋅩$au>OyL A^z 4oAGӌ S3PI$_v>ctB 5{f#i񋅩$ ^Sz|f@"f/Cia&'Ʀpuww466^pIcN3elz{{\{Qz|Z4#=_}uZXS'O;wzIᕤwq/k,BiƱajt .Pz\ #=sKɓ]]]8hQpq,sXiF0MG3Z{݁V0|#}uh889LӡUzp/15Y4x" ZH"A >N3eS3__ߴgRz\@>xxxt̰N h6sr22R$&BLnkz36r2ȏ]f^^^IIIUUU>3`F! i͠4f7߾ږ% ljܠ"I/_hwӻw>`,R34aP=QB8Q^P@4ߜu8*@ٙU05*++xЛLNNNHH(/%XٚsԤ@00ppwK/=[; dt jb2v_\4[VX`$v8*Xjv[xTQQMNNRzw$8͖lí⶚1ϝ`eee}}}Ѓ :<,&:o޼ 1MЬϾ=fZ_𗐏B[L̟xw_',*wגfY?qiXfnRfRWK35d0zw>3J/deeѦMLL pTd4=IU~g}믾_WqұΛb_ףi>"]G<͂fJXt f>r'//L{  ͤ"DO`Wkow`_p_`pPDW@KGk{SOc][zrʗW_98tl|4kSSSwYVRVUy}YqBZ.ʅB@P,ł"@.K 2.=ʯ~yH49Ǐ>ycn:XfĴ\ɓwYfZVJ!I %E9r_,.dYbA8/M3@4{啕tfxJ e򠐤PRЧY$KXi&e2-ӧ988J3BH wpq,sXiVRRRTTTXXHd;s̢5i񋅕f`Zqq1 kgϞ] Q.qi%VUVVl`s-ϱ<+jjk*** ?;V544UWWviҬ1b/.Z3/VijkkK.-F>/VBĴ˗/sspf}}}]]]mmm`Z}}+Wa88JA0իfa~`ڵk888J!uAڵ~Rpq,sXi6>>><< {J? /=`k;h?a`OoogWן}=@2i>NL!h҉{2b;!#q _2m?f8 ݸy_Y&f.-C=C4yXi6>>c3Ь`k*Ob5c(|5! ܸuN3EjƴBJ۷ERA7^X*8Y;)#ݾ,V #͆(͞~e -18͖=HyOJ-fo?`lhE~S_YBӌwNAHUf---MMMW^Fo!h@ӧOC ]Q/d\Z]c C |sWWo6f1 \tuj꿘~riv-]9hfطoߞ={vڵcǎ^`9V ?owo4T~r,>{ I'i@OOOGGGKKй\j՝kVm̫91GY5;{vZ2n&a=٤*U,Y`TN%Y3h,9vcu@"KhBƆ̊OtOZIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/customization/settings/index.rst0000644000000000000000000000624714741736366022175 0ustar00rootrootSettings ======== .. |img_01| image:: ./img/settings_01.png :align: middle :alt: Settings Directory .. |img_02| image:: ./img/settings_02.png :align: middle :alt: File mneu .. contents:: :local: PyMca allows a certain level of customization via user settings. Settings Directory ------------------ The first time *PyMca* is started, it creates a user accessible settings directory to allow user customization up to a certain extent. The location and name of this settings directory is different following the operation system. The typical layout of the directory is shown below |img_01| Windows ....... The name of the folder is PyMca and it is located in the Documents folder of the user. The idea is that this folder should be easily accessible by the user and this location seems preferable to the use of a hidden folder. MacOS, Linux,... ................ The settings directory is created in the user $HOME directory. The name of the directory was PyMca in older versions of the program. Recent versions try to use the more standard way of using a .pymca directory. Nevertheless, if they find a PyMca directory at the $HOME level, they will keep using it. GUI settings ------------ Graphical user interfaces are nice to start but sometimes they require a lot of interaction from the user. In an attempt to minimize the amount of user interaction, *PyMca* allows to save some settings like main window geometry, open files, last used directory, fit configuration, ROI table configuration... |img_02| This feature is accessible from the File menu either by choosing *File->Save default settings* or *File->Save->PyMca Configuration* This creates a .ini file in the user accessible settings folder of PyMca created when first using the program. The PyMca.ini file contains the default settings used by the application on start up. They can be bypassed by a fresh start of PyMca (typing *pymca -f* from the command line or selecting "*PyMca Fresh Start* from the Windows start menu). XRF Database ------------ The subdirectory data allows the user to modify the data used by *PyMca* when performing X-ray fluorescence calculations. It is enough to copy to this directory any of the original ASCII files contained in the `fisx_data `_ directory of the fisx module to force the program to use that file. The user can then proceed to edit the file and PyMca will use the modified file the next time is started. If you are interested in modifying the data used by *PyMca* the is an `exercise <../../training/xraydata/index.html>`_ to teach you how to proceed. CAUTION: At this point it is not advisable to modify the EADL97_* or the XCOM_CrossSections.dat files. CAUTION: Those files use unix line endings (LF) and not windows line endings (CR/LF). If you are under windows you have to make sure you do not use an editor modifying line endings. Convenient and free editors for windows are `Notepad++ `_ or `Vim for windows `_ User Plugins ------------ The subdirectory plugins contains the user plugins to be used in the application. Please refer to the plugins documentation for details. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/faq.rst0000644000000000000000000001364514741736366015065 0ustar00rootrootFrequently Asked Questions ========================== - `Should I write PyMCA or PyMca?`_ - `Why did you take the Gioconda as logo?`_ - `I do not use the ESRF data format nor the SPEC file format. Do I have to convert my data?`_ - `I use an X-ray tube, how can I make quantitative analysis?`_ - `The description of the scattering peaks is very poor, why?`_ - `I am on windows, what program version should I use?`_ - `I have a Mac, the program seems to hang or to do nothing, how can I report what's happening?`_ - `What have you used to build the binaries?`_ - `I want to build the program from its source code. What do I need?`_ Should I write PyMCA or PyMca? ------------------------------ It's up to you. The program has been published as PyMCA because of the scientific use of MCA for multichannel analyzer but PyMca is more pythonic and it is what you had to type to get the program running. Due to some problems I encountered with the publisher, I have some preference for PyMca because it makes clear that it is the name of the program and it does not intend to be an acronym. Why did you take the Gioconda as logo? -------------------------------------- Believe it or not, Mona Lisa has more to do with the PyMca code than with The Da Vinci Code. In particular, the support of multilayered samples and of X-ray tubes was greatly influenced by the use of PyMca by the Centre de Recherche et Restauration des Musees de France (C2RMF) to analyze X-ray spectra obtained from that master piece. The results of that work were published in July 2010. I do not use the ESRF data format nor the SPEC file format. Do I have to convert my data? ----------------------------------------------------------------------------------------- Probably not. Most common formats are wrapped by PyMca as SPEC file format. That includes multicolumn ASCII, Canberra's .TK, AmpTek, and QXAS. If your format is not supported but you know how to read it, it should not be a big problem to implement it. Starting with version 4.4.0, PyMca supports the HDF5 format. Due to its versatility, this format will progresively become the preferred input and output format of PyMca. I use an X-ray tube, how can I make quantitative analysis? ---------------------------------------------------------- Well, you will have to characterize your tube or, better said, find a description of it in terms of discrete energies that allows you to reproduce the concentrations of a set of calibrated standards. These standards have to cover your energy range of interest and you should give first priority to K shell standards and secondly to L shell standards. The supplied X-ray tube profile calculation tool is just for guidance and, unless you are going to measure samples that are very similar to your standards, I really doubt that you can use the generated profile without some "hand work". In any case, please consider ALL sources of attenuation between the beam and the sample and between the sample and the detector. If you aim to work at very low energies, please consider the atmosphere between the detector window and the detector itself. Some detectors are not under vacuum but under some inert gas atmosphere. In its simplest form the procedure would consist on measuring a thin film standard and entering as matrix composition the known composition of the standard. When asking the program to calculate the concentrations using a matrix element as reference, it should give the exact concentration at least for the reference element. Then, at the concentrations tab, switch to the fundamental parameter method. Adjust the time and solid angle parameters to match those of the measurement. At that point, start to play with the flux parameter till you reproduce the same result as the one obtained with the internal reference. Once you have found a set of fundamental parameters that reproduce all your standards within the desired accuracy, you will be ready. The procedure can be/is tedious, but it is really worth the effort. The description of the scattering peaks is very poor, why? ---------------------------------------------------------- Because they are fitted as simple gaussians and that is not correct. The reason? I considered that you could always leave them out of the fitting region and therefore the main interest of having them is to allow to deal with their escape peaks when falling into the fitting region. I have to admit that, while this is mostly the case when using synchrotron radiation as excitation source, the Compton peaks can be a problem when using X-ray tubes. I am on windows, what program version should I use? --------------------------------------------------- Always the most recent. If you encounter any problem using a previous version, please verify the problem is still present when using the latest release. I have a Mac, the program seems to hang or to do nothing, how can I report what's happening? -------------------------------------------------------------------------------------------- In most of the platforms I leave a console open in order to catch there unhandled error messages that can help to debug problems. To have such information on the Mac you may need to run the program from a terminal. If you have your application on your desktop, you should open a terminal window and type: ./Desktop/PyMca4.3.0.app/Contents/MacOS/PyMca4.3.0 to start the application from the console and see any possible error output there. Of course, you will have to replace 4.3.0 by the number of your PyMca version. What have you used to build the binaries? ----------------------------------------- I have used cx_freeze on linux and windows. For the Mac I have used py2app. In order to make installable packages I have used the Nullsoft installer on windows and Platypus on the Mac. I want to build the program from its source code. What do I need? ----------------------------------------------------------------- Please refer to the paragraph :ref:`Installing from source` in the installation instructions. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6557658 pymca5-5.9.4/doc/source/hdf5/0000755000000000000000000000000014741736404014372 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/hdf5/index.rst0000644000000000000000000001374414741736366016253 0ustar00rootrootAccessing HDF5 Data =================== Version 4.4.0 of PyMca introduced `HDF5 `_ file format support using Andrew Collette's `h5py `_ as Python wrapping library. For those interested, a simple analogy of an HDF5 file is that of a hard disk. A hard disk can contain files that can be into folders that in turn may contain other folders. An HDF5 file contains datasets (your data) that can be arranged into groups that in turn may contain other groups. The analogy goes till the point that you can create links between datasets or groups and that to access a dataset or a group you have to provide the path to it. Obviously, from a graphical user interface point of view, the logical access to an HDF5 should be provided by something similar to a file browser. The HDF5 file browser used in PyMca is based on a contribution by Darren Dale. Generic HDF5 Support -------------------- The data in an HDF5 file provide information about their size and type but they do not provide information about what they represent. Therefore, the approach followed by PyMca to properly visualize the data is cumbersome (at least when used for first time) but simple. The approach is based on creating a USER selection table with the datasets of interest in order to allow the user to choose what to visualize (aka. *signal*) against what (aka. *axes*). This can be achieved by double clicking the relevant datasets or via a right-button mouse click. The nice feature is that the table provides a context menu (right-buttonmouse click) allowing the user to save or load selection tables therefore reducing the need to repetitively browse the file. In addition, the selection table is saved among the PyMca settings (File Menu -> Save ->PyMca Configuration or File Menu -> Save Default Settings). Once the datasets of user interest are in the table, the user can select what datasets are to be used as axes (first table column containing checkboxes), as signals (second column containing checkboxes) and eventually as monitor (third column with checkboxes). The only selection that is mandatory to generate a plot is the one corresponding to the signal. In case of selecting several axes, the order in which the check boxes were selected determines the dataset to be used as first, second or third axis. NeXus Support ------------- `NeXus `_ provides a set of directives to share data among different facilities. It provides an API supporting an HDF4 backend, an XML backend and an HDF5 backend. PyMca does not use the NeXus API and therefore only supports the HDF5 backend. On the other hand, HDF5 is the most common NeXus backend used at large scale research facilities. NeXus HDF5 files can be handled in the same way as standard HDF5 files. In addition, PyMca will try to make as much use as possible of metadata, default plots and application definitions provided by NeXus to reduce user interaction. For instance, version 5.3.0 of PyMca highlights NXdata groups in blue and a double-click on them allows direct visualization using the `silx library `_ Measurement Group Support ------------------------- Some facilities follow what we can call the *measurement group approach* when collecting data. It is an additional convention to NeXus characterized by the addition of a group named *measurement* to each NXentry. The goal of that group is to provide the user with a quick access to information without the burden of having to hunt for the information in the highly hierarchical layout imposed by NeXus. The *measurement* group was thought having in mind interactive handling of HDF5 files by users. Despite that, PyMca exploits that to provide an automatically filled selection table based on the contents of a *measurement* if present. Therefore, besides the USER selection table described above, PyMca provides the AUTO selection table automatically generated. Other facilities follow a different approach consiting on having an NXdata group as container irrespectively of defining a default plot or not. In an attempt to offer the described functionality to users dealing with data from those facilities, PyMca also fills the AUTO table with the datasets found in the NXdata group containing the largest number of datasets. This is implemented by the function :func:`PyMca5.PyMcaCore.NexusTools.getMeasurementGroup` Positioners ----------- PyMca tries to retrieve as much information as possible associated to the selections performed in the HDF5 files. In particular, and in analogy with what is available when dealing with `SPEC `_ files, it tries to retrieve the information about the positioners (motors, temperatures, ...) associated to that selection. The conventions that PyMca is able to follow are: - Presence of a group named *positioners* inside an NXinstrument group (ESRF convention) - Presence of a group named *pre_scan_snapshot* inside the measurement group (Sardana convention) This is implemented by the function :func:`PyMca5.PyMcaCore.NexusTools.getPositionersGroup` MCA Data -------- When selecting a dataset as MCA, PyMca will try to retrieve associated information like the associated channels, live_time, elapsed_time, preset_time and calibration. For that to happen, datasets with those names should be present at the same level as the target dataset. Please refer to the function :func:`PyMca5.PyMcaCore.NexusTools.getMcaObjectPaths` for details. Similar to the AUTO table, PyMca tries to to build a selection table named MCA for datasets that may be considered as containing 1D data. For that, it searches for datasets containing the attribute *interpretation* set to *spectrum* Please refer to the function :func:`PyMca5.PyMcaCore.NexusTools.getMcaList` for details. The following command:: python -m PyMca5.PyMcaCore.NexusTools [your_HDF5_file_name] will show you the information PyMca can automatically retrieve in terms of measurement groups, positioners, scanned motors, MCAs and associated information ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/img/0000755000000000000000000000000014741736404014320 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/img/PyMca.ico0000644000000000000000000055507714741736366016057 0ustar00rootroot (~00 Nh )~^!00 %  / h( @w777sw77swswsww4571q%53Sw7wrSC50qsSqwgp452S0p1aG0wwx406C70wwx4!p41pss!Cpwwx5!a%!q775043pwxp2RSCssRp56wxsS1aassPp4wws2Rq!csq5!C446u%wsRsqssPq4'w765'71sRpt7GwssspsqsRq%awwss7771sw0vvwwwv77770xv~gwwsssw73wwwgAwwwu!w7771g`www3wwsw58fwwwww0Sss77xwwwww3sqssqxvwxwwww!ss770wvsxwwws77s1gvgwwwww1s{w5%0wwwwws47{s71 Rx%wwww577wsu0gswwww5771Rw0wwww53w8777qwwww37w710ww1wwwwu3x73wsw77ws77ww3xwwwww71A7wq7xwwwww7xsqswwsww( sw77sw7x0q5%1awwpp53a!'wp1%7qaxw%1sp0pgs37ppqww70sugws71wvvwsqxgwssswwwwwsq'gws7714wwwsx7sww7{qsww3{sswwwswwx(0`  (#$#('6%)+4/#)0%52-#,7(4;786@?:f<&:U#-@?6A:GE;QE>XT;`N*dP/Wd5re2!D+A2E6['/@2/E(7G2;G'V\]VduhqfvjvkuIUFXO[gyiynstGQLVNYe[h\o̦ƇøYAJOKOOOOSPTSSSNNSNNJNKSSNTPS N;eZ[\]J&%')*&+)++...*(..))))")4443.).)J0!T eHW<&%&%)))+)++..("..))))).442333( ")0SNNT7?<%%%*'*'*+*.).(.)."&"&.4/./31! (;SNTJ:H8<%%%%)))+)*(-.((.))(&))..(---! )NNT EEھ<%%%%%*')))((-(-)))&&"))"%!(( )J6T e=ڰ+%%%%*%)%((((-()").."% !! )J T7eZ=<%%*%%)!(((-()).40" ! "J B\+ %%%%)%%%%((((()0)   )N4T8ZP]< %%%*%%%%!!(!%()0 "&+N0JXZE=,%%%%*')%%%!!!!".4"  ")I)" ! EH=O%'%*%*')'%%!!!!%.44(  & S  8Z?WQ%,***+*&'(%(!! !02.- & 7Z:EݼhAQ/**+*'++)("!%421- &; );7 Z8=[IQU5*+,+&<0*((!!---- ;) P ;; 8@8:7LhQQ,+++',+0((!!32-21! &"; 77 ?E= ih5,+''A+*)( #"2222( &. 7  X7E:MkkkQ,'',Q,*( 1-(22( ;!7= :Z78$;kAAAOU5* ·!31!  !I");?7  hhRRhA% ·-1NNJ4KB]:  qkkhVQ·1[\YW 7WDgcuhRQķ—I\W7 G}mvrhVA% (Ź#IKB:onyr h,% .—1 IߢXEaqz h,)));K"\ϼEuzH  ϲh,*))<[·N"\{vzy`F=?,)();K[ȥ0"&Twyzt^b>>ZϮ5) ;NSŤ4<\~~xdf 5* )0603) <Ԅ~]Ϯ5* .4/( (@U+ 0/(46( %Bp| SYV+ 4”-/. .-j{@x JW=]V0 ĵ4/**- }j_IYBB5" Ē///!  Cs| +YWN( ŗ3*!! 'Ӌ))\lS. "6ę6-% i+ "lV0"&4Ź4! 9, "Ϯ6.&4ǹ* ''j5 !ϮS0&4ȹ- +'5U5 U.&4ǹ(  %+<55U)%4ǹ1! ++AU6 V)!4ę-! ,5RU.%2ħ3#%OU&k0!2Ʒ1(!))khS(1ķ1#0+hh--ę1!!N+4Ŀʬhhh.-—1!!T+4ϬϲNȺNIIIIIP;Wc;PIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII( @("+&3 '+04/#,7'2:996G?'7I'3E>DC;YX:l^?Wk2*@1N3T$.B(7F2۸>2NYfezwsc}αCĪQҬRd,X2]+^8c5i:p/h6l9v;{@dCgJmMpYuEnKrBtW~atg}jxd|l}p~}evCxQ}F?\[evrxqhqftkvl~G\GUOTmhsu|{opHPLWPZda^[{l\·ĕdLTTXXX^]]R]RNNXSaaJJ@s<##)),,!,%""&2211%"$\%7k9###&,+%&%",.,,/"M'ä?F9###!!!%%""&"!M,Yqi9"!+!%"&.,J.Oqh9!!!%.".S`:h9#,,"M,,@q@B(,0$5kFZ3(()!+0/ i=ضZ3() )&!1//%$44754IuZ)) *(!/+/''477=Pvu*)6U(!+00"4 ?5 IvZVVZ(+0'&:=  ee#ɫl= =o}ue+ɫ@ tzx eQlFC{e)"$bHx~p4ܸg("$Y˜%8}|n>iu#8]`&ذ遊r=(.21,'݃E)S-.-vAwCNm溴Mɐ1&!+DDy 'lh\˞1.6$mf%ɕ- ָu."ѿ+G9ٴ\"ѿ- u)\"ν+ *c3^!ν13cUg!ɔ-'gcu,1˔/WguM/ɑ+ffٲٛSQIJJģ;( @!,2$/:"/>&3:&2?,>>6D=@B=FF?LT80@0J -A&2A%5E)3D-;F)6I-:H/O.>M5;@08D2;H3>H(?R)AE*GK,EJ-AM,FN6AO2LN+@S*CV/KP.CX*EY-EZ-F\6DR1EU6GU1KQ3LS6HU1LV4FX7K[0I_4RS`a@BBGHCCKNPQDJJYBUVFWYET]D\[CX]_]Sf^UgcLvj@|sH~Ici\ct_DSeJUfIYfI_dC_kK\lL^mBVpI^q@a`CffKbiMfnEmjCknWem[eiSyoDeqIbrMasIjq^htVixWnyKuuPtu_qsUzvc{aqpfttikn{zztb8[CC^l-T,Y3]7e=i5h9n=m0e8k>q:qX1qQqw_ghooabds^}P,/((**291zO#'@H.*k{R$(% + Lzx53-":8T|i46=F<)JMN~mI Ê plK Xeő ]ۺVWմf.CrނUԵjEHQքӾvA;[YZѾ0Ĉ&Pپ?GyS澩B̡D!u>篣nΓ7q`ҹc\tPNG  IHDR\rfIDATx+NfSk.p|mٞP9 mZY-8yWb3kTӏv}c2wuVzcIf}x"gUrY a/v.^7Z%qmEcw*FVAn:/Z~Vbb]}-޹\$5XOS,#}+Sx;wf=??{bs2m|wŗǾoSWw؛Ui|s\{s%Tkq ~PO! / ՀwP_h6~ET\:[-!M]proo]l ^ ҁ6KBPNUbP><{F08>:|q\4E霠[yaT(cN%q]!^4"a,#S4^yթa0pE,̣T);]`a ;orcEkP Y< 6ؤ8AMcWȍol4q襰f#[j_ fcvxdȳva0"Tad*v3; h+`-?U(o(9* ^g곶r|\nl|~現lXˑ[c,/;{>eEa_ɍR0֧n[)%MaP&->\l+IҾAB <*<[2 [ܗ(Pz6`X,(AAq4&Rh%45v@f@8[` \ش4>v5]—/Cix`0♱9ɱ9PCY**g32l;J5>mUWE}(%X yP6&/@ pPzѠsI5( 1CCو" d1xo9I 8/c D*2~[8x(~ P:7"`\ }_}5֋&[Tg29L>[PރD8^#0ܛnZQ?X/$;7/CMN}6ܳ;?olA&2B@Nd<C._0^9O|Y,T T 2>0eRv'=X5x*'d+ Qؐ>A➅K&h4 V1g04:Oy !Aؕ.4'8 RGD8CA%eQZn+|a]}^Xl5xn(`0ׂ'A6r>cZZ~֛sa=XӖk虐2.iYҾ[ﱂlϰz֥˿UL;F<,yS PV"Ed[UKO0ҫ'}lZx>(  /@@Yฎb0.F A zh-,<-(-C ".Z^q{`p g2Xi o:VqYš@uÅQvVkΟ~  b"0x{Wϒ=<_뷁b-F0P0 B{vX؍!< eҮ_jQf<\>;w_F Ƀ~q$<Dުz}Ɂ+m:ۇëlgx9c%9Qm#f|wݒ; tY{Cm͙S"|2в+}ǵ!w#a~<{/[`ZDDD GO 'n S#>Ɯr<2!5?a8@CĐ ahhz {Cd4'`rA#uph |si/۟T9N÷ё%ksiٞ0BXOq=`<4B/}⧺Y ^mhyq.0 ^1X4>UeCXø &!gą$|j6{ؙC a`^0 `=clg&hrT\՟ әPHD sLTLswhaf/F&!K +^LE[lFUrRJ⅝Bߙ}(n(D!Nb[`,HlF\?>Rr_:6Ɔ`&RiO+p i a3C + sAzW+M#CR[YS| FBX֓/t&e IRڋ>gÃ'}xlipaDPƗrYS5(O)H m ("L$ňy!0uNKK 0| J0ii_h>2 %@c+1=s+eR]| axe߶/?vTWN_nq}>fo߷3PJ!JS{B LbR3udWwϱL kexT9p6BgMͅ'UB{5 O BQAcxP!{6g[F9 5b*V:{c[ 6,z3Iai4=lp2y{wGˆ@pd ݕz\@}|.qJ>3x>1@g''(haPMXP|1cN{YP˰]^xۿo!!AJq&"RJ Ԫ&)y]*$pCh#`PL!&2ō0,^bXg !ǩWU@CI~apIdKwfu[dve>l7sNVi -¢u<٪fvVhn ý2(0'~TfcX[xx)\/qe\C9YΣBF ɢu2>^8TQX3RWa!tV*q/=+U»F3@a2*yTB55UbǻVxgVPk@|˶= \3BQjBT_,{Am{Pȳχ[_#@\;ܷS`6R}YÞ *IF@vBC` PM^BJ3|~AxX-z B]d?bC c^N^wo셸fVrQ)}ciT'١ጂN9 l؍{ҫo/XA5m.g!D~x;`dL l#ڝdO]X 7s0"DMMy@$Kn2*( *(>ٯX vʜ!|;R}֒Ë>џן52C]dKVF@>]ݶ/ek3ߢ Q6Xc/w(': ?S⮶H +YN` a|XS+k$ƿC&X(W`Ylj}m.Y0`"UDCK#J&x?%%nJ^4t}4(Px+S+r5 IJjeDj Nћbްq`>~ PԬЮ?X`Cl8p0wo$ȸ?ŀx F} K9 yu.]V<❠\\=z@=cA: `9{Jo|{zlS^".⺲.)ȕPh(k\9!~+OԃMi\S" fJ sC+P1֎bk0(uyҞdWrVߪ,XQ1к0P_# Kkw.,1gx?]P`Å} GL ɥnpD- __ 䈤л%Zb2|1ʄ9$](ߌkWn ?{>?=B@4<;,lgOWgX \nd@%Q۷CVFEܜ|g^xپ9ovl8~FqS `mvS5a{[,f_U]6L{cX;Xs R.WwU"Z:W;,UFѷpޡ<!̈P|T^jd$/ )=IƝPZJ1YYgkJ뱐-qsղ755{,ɩm7tkeɁ /Lq&9D ɞ`ż%死3Fup޻wзg!9;{lǷtnӃ=~ݸv*kyO/mzC ;+:A#tJLyfSVBXxeLU$/R D`-+v0WW4e_</<=~+0J= -6փtm揭۝([o|g{z-~~vPǸ$:Lݬ@v0zN!֖_cr4ČR&1vb D?"N/xhX蔤 +[uS"L^!=<>_;=Gbr}eWgOX1 5hc`ePga" &K"B֕h^קa5?!KnX7fJȰJJ"@=6xXHۛ#&3E&f)>d J iC[.L5ó\a`3ę21OS@HّO8L-kcaYcRQ~P `J3a>2Mԕ +=G~IQC< ~ƞJ,cxo[8ٱJEq)0'Y@#cf`e?ދE*o5ĞQH3!kY^0\m.Zoscq} oI?$dK|v:C&'M @hN.ӓGnܼm?jO-z㿶i ?ed̮_ C~?P1WVJAɘTJ# (Kxmnss-bPʕzUָ6`؜t&$Yα+cL]S]Sb 0T,qiz4>$@s AvRh#^3%ޡ!?~ CtXp$+Q\3$M 2Bqz4 ToNyI qSfV7v `J #Kքk2|.or~qC xU*-1EArv0N,3QA1HMdYiVGuLIMkTdY'C#6ڶ!Ѫ0k99ؑ_@HwA6t0?܁2tJ3\s{{0&,^|=;|u1e"TN@5=Fǐ(k὘S$3n-|*=3e0_dXͲ.d#c-o$싟 l<+ D0}C8y F|h/sbbﰅ\",^}mhov}v&V-oT9[O-,wfGמ|ּ_տ/cՍMi§ılXhUV,Mn D cXJѪtN:<џN¬PzTϖ3la?b#'b< 2~L➼nڸ U]=F#|6 ő 2AdhD{pσIc{>bHa~[wl9׮!^GS9`EMON;z"OGv AC\XR1\h{`5Vw&F׵~ܖ?ci*1 $@((LyzIvHeQ ueir6^$5WU捘ڼKq,_e^h!gY %j1L:Tk>PPu`$y UE'!`mQ ZO+_~ۮ Y@r+8rn|cǏQO[}r]0"TÃ0$9󰁕T;erd{j{?Z^Їp tY$n pz@(!9{(t0e!;bP&W3FŦ& Q%ҊFmh{'[/ !~j> 0 xn< ݽ^).K]0Ǧq5R20AX[7W>E_Rΰ``xb/4R@ /jU٨7PL#%S{p:%t3T-Wfcd f5ևI.:&2xW#`x! WdYKڞk2~TZDFlOב%D4H#X@ FJ F<$Aahg){6zB#!d2 ]J_7# W^MCt9Xm|[_EC2UIeȍ{1ʼ6hC0~mtF$dpDbJaJCbӮ` GӶvɿ|&p<>;wk3# Z/~t~Og'^ȋU%lГz4̦p5JpS*N-,KLQ4Z. Dľn 5YY }G;b 15vFr~N MV"ޡbٌ6h9mշ]!>r7+=*s!17-;CrV'6KcCC2}%6^xsDWp!J}2{4*}K!)e Yڃ \Nɻx!8p}BZq,f0pnM{- YLQ"=mh d2Fh<#̘c# @C|GIFk* +~Z{F!nlVI<x@uƱ]6eٳє;cQB@G",)m :˝1ϘؑPD+w$ 5RnT+dmW-kƺK,{;C lZ q٤C#T d5dka%~bW})pPTV $V&Kp =P$T/֤wYPq; Mw[={?>p30ާ\F'^k/y^2JJ>H 4X&5\>`o[6ƻa?KOv J?FN2Z^Jr!2KC9?R/k䬗Edu %cqC6m[zӱ*\ '}zv R{ax2bƂLXV4rC=%Yk2VR HT Vi`h/:Y]Exu1ol aM',3Gט T`oo$* c7qa`m[̞<}h\-E,S2 4E$I 0& _zv~jn=^wWvU\F%a-hxUƎ ^!iWR.ؖߥ# 9ۚ cRQOj4CdL), pƌ]ZYS*dЈr}*̀| ]~ǰȁЙ7 8^ \57%C*"`Xl!B7RaE`RߕD=zf=f0om/?/r9*m컾}oϭ(*]Ʈ&1gB͜vwu{k7->gw'ȺހU[5z>+?҅^Qa*#ďQ98]\R|[ƽ%|"|dE{,pʺ2#EnF:LI IYd##c,°/°cЏi4πe?5RYra|.6Ӗ\֚t_zRش/Nmwvn(1(,ۿ[m68 ]Ιh!Tln%wlb_yI?軩DC"Pܐ4j|.j<ۖCRHm ![0Jg؟_ȰԟCR'[M$"r7u!:*0W0ԩ{A[M_a_)|!`8; Ci:>#l EuV0W |HeЕ" Q>qCy M1Zsvخ  #l(KSz&0BV BRw%ȦK1N$ Z T,4/vpd2r[,/UDkGśpZ!p]ob}xP;*̔8/@ۑx$!%>׈:zJ(7Ԓ6^?=[w[vj9‚CU XB>.S'.[Xd6Lj"4Ě(Nq' *Yy hkJyrޔJUhRJ 6.璕n )J]yP}ŸG'#S ZR@LGDu?=z cN1bݯ7)vx356\#]6%6dݓж{o>{wo`- چ=Ŗvpt`˭;g0 CGvu+6 fX/OTopV?s6Bl2"`dWUR CυWĴsh /~.Ə-Y~DcUQ{6B(>uPyDoý4EO-#!E&C.a8~$)ۧ .Ea7rўJ=G^A<;#{ N56?v||H'ֹ$=xT"&\ D_O?cϏ~{v Yaw,ݑl#Qð{. ˊPP#WX8L0'|bY}iFτ' 8;ԫ.ư'*/j%Nd,k;ϱ!dg c26rsMjF>HX`j0ej+CPe oJIapoSzY, ;X㚧(adԇHNMxd̎f=;;[i>="drt6OB43כD`~>܇wB4܃C16S`n2#i$$:3^ .S[6DJYFek+==צ pBFyjn f9.n8/*Ds!g^ܷ/߷?ZTH^gZ6cSNԖH͔ i,Eyx2`xS2׀vyr.Xy%cp|6ޘF#CfݣܱB4rr~gصr.!Ds=αHu l7ifѿNWӖ|ɗhrh?JͿsf}YYR(<%b] V"{UB9z8z_~(E!`WƥK]WAc<.RT2$!bbAf9f4 ,BP0qN\$`8dӫx,3 ?VY0BQ2f+ =F|rZARS5A$A T[p@h`w G7N4)a;/ + #)5+k{cGP䕠qajٍGvF-WsKn`fˋ*M@0 LTaIƊfs&N.NO3 j4?/12XAT8m@x~r|1a,XbdXIG]IL0QL8axkQ{n iM`(G4äi@D U4 ơ5 cT°'B,!p@.>:7],/ 3@ ʎ??:8YpҌߞڳ4CE~c?Fzi?yT 歕*;>ayiy-{cyt[X*:ftp )SSOC2u%Q,;_9G 6NB zpL2o|#!qeRI&(F b8du a>T]^*^ z/C&|jZpHi8K.`CN(5!}A&ΓkbYT`6BBHF*l=}ۢb\!$`TN cݎ'lE-}ɨl$@&g{G}sGL! Kx=[ ߟؗ%xƽTaAOUAkյp,s}2rl~1 |Pc\EC2 ͹Lm׍d0:-W;ŪUcaTƣ!?ҡS49N}${W4Alvo}J|v51N"D&6HKpbS␹(=66M-7eh9Ys& ީ>,@8Lcs 3_Q:Qhu HqKH@~=eAg䧰قk)zVYB3Ǵd.}7үc.` 8d O6|6@4>*@S,'Y1)erk`G!' Ȼ[N|9։M3%+FS1 [KZ2 $LTC9r,^챀3ҒI/qn;0_瀺d5p)krCEfnlNZBK~YkыxsҬ8i֞ + hhFd<1e3qYL2k`C>UgrgvƱN%b4UBbyڡ:x8بL5ĵRF, 8Tk%[IJ-xX (a499r@ g'3f+ůip; L 4T0:8z "0;'|VJɱ527-׾u5X- `Ըο ְЃžFgUa)4& S%CH96W.Rs1@atS<<[הg$#ё&jy0#nPk@1.s4c˶_Pi.W¡E՟Y:ݳ W s0 E_ďuq2 (<2^ZiQQ9k $&H|Q: ^:d%*vCYtƕl4} `q_L[XRC\[25hݒ6'`C7E3(UAI:x@Fw5q&\V~xQ/!C*91q$_[G6$waX+֔XSE$@Qk3S&Xuo29N HfP܃k"J8ڷoEskAg/P(]*1+QIT9GD G>­4|ŻsT,A>ұ͟s8 _/FkWB!1qm"UL3Gv'}xk*1G/uܴ`4VMrDV5*AUgNޯ8 pt xWmvG1ų^JaO ^@J̫FfH5 hUFtD.7ar J:fn"d$0L = yd(oP#!%Vu&Р ƃdo7Hv);*"6A؝ V?mHM6NWN mi+(1_(:ܹJt~fɔ-&_h ?c }yAbBa ,-rly0 ?OXfO G##lbG}l*A ~O}:D;X%LGg ip<t/:go^ƲN$kY$L _"Gpsi=, l[q O"wx_)JXBiU?Hz, Thh$OD!Y.:3d5gP@S}ɡ6LZM(Ha&I c΄lF/6 )Җ+m..$RhFt4sO9Wo}lH;8"po:%kG ۻv6'/o'O\⎛]^<=rCp0;V^ތs0xےNKg.JBcK0"'sK׏&+I!b +e )~^}r]mͩ%#Yfj4`ULcdzsAdW)50*g󵚏Ȯ}pT^Ciu_}ƐLM[ݯvUjZ7*18#Hkh ^{?se-4_krfI=23 y*BZYV$*fIJU t `7VWcYX’& tF5!!,עStⴞ:=!P|,6,?2?}D6\x q'!օ?'sRq/8j8{OS_}NxC͐'@ah"APrnw#2=vIo1_S(D,S e9901 I `s\ɲ5| {s8 P/Gt6CB􌍓@|]?i_VjD(Tpd#Fk*U0e57z0DG:Ȗ+'?O;y؟=ϕ~YaƘ[zWGTӸ QęPBY.C1)[y]a`F %B>Ff2i?*bEpNAUf$I@Ne(YQj; <Nolw&b ōb75 B2u,;\uOZ,1xBF&Yǃ<#=Y ?Hm؈BNP]_e}a c{ޝ3'\lu'Dn,LG'OFę7cH9;AmvR⚃4s-ݹtWx$ՍHnc vyIvʁ3?"pJn!ddVLbbeO.2;ݰ=;]8ԕϼxBf}Ϩ!]`VG}q5HP.O*|.c7yǒ=q*5]{npd?4D9ք9 gʁ:6T:B8pxZ+a֍5VD1#=5p,[M'bƺ`Cʐ xӓxCF\cP=Ai<-"=y>h<Uu 6lSy(sqAK6l:R\<DЎb_<=rG5;B,JwB2ZD@:dw>ُaęT^`e,a#=+ K;ᗹB*]w_U^^t́\}oܾgO)'Xu*+ ؟KaG&:^pr[vPo=y<і{EuތuFՁ.FM juɪnA`&:NSyQkԅgҳ ո—ZC\"Dj 5vwߴ5 IY=8Vk6t 89 >;/8ЋŰA Tl=bnfQϝWM55!y EDtyvi [`͘7N::%? Dimُgvm ۮ4w#B*v+ƟgǶn)tf-ORaKo @by<id qzѨ$l\Xoyf T[ ǪVsT6GX4$[*j!F5߃rwnBuc[ qDKGwMBU訲"ﰺ5f[@d;&VA"8ףG'l "U#Tec XtsR=١M z,{w[fdKh+Z\JQX{gu0TO' Pp9dxFeYD;C(RP^˨ǢcwX;5zB Yc΄>$\UAI< l!&yՀW54EWC? ,z`WUfE}5DZ; r.ȓ}DS.5nLؖs@CLJU"8=ʋ۸ϰ5AXZ.ag؅`-ZJe|IQVs -XSx2{6\}sE?.e ; Z`%KP;OƯH [Rv2GT)?,okE2g'@ArrӮEu$d+ickDty5XJpaqV[ v cID^#YbVuހJ$N )[(IP=BW'muaSSgl+%Ww&> :<=9)µd`oˋ3{ qa<~CZ`g阍E sE}$]XC#nN!<C2YI(8)ŸM;ԑs*4D yw:Ǐ9d <ݙb4т04d )ckΥ T`z=MefOtYΉPQa pb3vrh“jx#W=>GXX0/#*;uPפg#a270供Y$,sJn1()"p 9<@ONKB׀ڃjBM}L' 0T-첂=rpj:f1:Yؐe/+!:]0kF;c$eݚ5W7ԴV`,' Ѫ1^’ï7{ MN|ͷkf*܅a`v:-ΡbF 72ICKAGp,=B|:"[)yH? şgv|HCz$x0,zxh<(݃׏CĦ^ =xDDFⱼ> ~_X ec UAؓ@x&!0diLj|B3[&(+ ̶ "QUiݔ!=5(ؙ@/@ aQO\ѪS\7"!L(ĘsSgc^Н0l:m -kAnf褟N1ޮᱯ۳4NT||drn{,z^ N9,f'0d0$táX^J\G P*#@NzᨯI "M'$&R1%FӉ=={lo?k=|GƆj)BhB-ԛK}Own2Klr*)bA@ MK$$4Fb\1)I*C*;X`$Eˬ̷ܵt'ȁ4}>{?O'֛ KNz} @ߝcw5JRw" 5k,^%q4Ȉc45]/6A><d>QB'f{ <) w%7!9~[Op%YjzR PhTm:ͫ~+b Ű} gMv4CMpt߹6wFKzqtNx<woWO|2aa֖a*d4-v+U,!篰vfaT hg?C`dHYT^J ^ԁPnaVeױ:U˂S-%v\|Cr@%/\xB?@_N6 1Z%U=PIES࣮1.ܮ/uK~6˩h1/ EPH6DAZ)2;z$ڠj[֩mX֡cWz~*EZd*QH-&A5UXSrVzǃZpk+wX7A<3p~No*!;-hWzs6:/hxgF%3r|%'%%A 4\/t N],q6Eoq.o'd$>-i+|(=/ N|/(O*t"A(aȇKFU_HmA.J;b.pT,j`2!,zB`݃B@V[-K@vJUlw@z2{֙jdP?kfyX ^holPsg0~@X܃rkiy{f̓*`[ϘL{MB+)$D(o4+(jj%"!ŐXje0-re/B/U^Ieց.4?.s>W!PK弢YP痒Jnxp~2[X˗ɾ ggC2aFȃbK_S3foDkXat3l@XJP.~!(V KKG_t~z&?%#V93{^i鹸FSx"5IkC'q`oVP=٭mA? E8i0Q6lr9gN;}b2SzUn`KH`\ {65NR,U^֌Xz])Y@R><Ԑ8#6dz e:Pm7R2Q XZ+sx~uj+P\3/'ڑWYz-s{xy{~ ׾4HUUJ}\_*yϔm`.o>3 u:i9ap8,$H]VD/%D4l. N\VpsA Jo+EP&.5zze݃Vz9vI|G~iZtc)F >zo\jt;)SB)؆W/5)mu3h ~1c]S$|l)BkN-}NrGt)w"zԼ7BAvuuEj Ss@/y#ǫBDb<Tb]\-<=)NH<h>^}Z4N\nG` ^msKt?%bu6Nu`=\wOc!S/c;gHVq0Sv`=C6t~cdL?`EV;6dL>OQb.>ens FrHNy+y犼 =. $KgfnԂa ѿQ M ?O2 -BZ̓d<<6L%xLjw5&ߍl+L oz/QoF4}^j%fkК4jhZKG~Ɠv'Eo}G2F^fT*~ƨH\. v2-+җ*XU惻@FuvZ"@J듗sdi) L)S/˞j*OoJۦ`c^EJVH=z(֓Q _xh5Q^x$>j}ZxxVXݙJW0ʍf3~SV K{tKw׎=+MSgÛjeD@vBK|wRf7#XWXU!dQyH{(F> =w9P=m"Wّ1WeL݉vϩ=e\h!栢7$E4Fؑ~AQ^z @ۮXg˿ޓY`q9[S_:& L @џo7;M7_xVGʾ[nEB[LĽiFi^N6B_@=<)]P:b 3/ +&<0q"$!z0e/sEEibQHR0H%%8jɛm$LjI,Sjqj%ao+_yaŌ(yۼ\+= wL BJ1864MyJAjHP Tigc WfIkĜ5Ĩ?=`º䗻%:c#hƋLnx1ћ]Y3=D+ F'Y<' i3ޞ0hÝA€"xj`\?wdd!lkAbi=1mPyR1%eH]LaİÊo`D,2 Hr ?sÜ&-mgri_] #e/\䇠6d=g:J$TD\x[kl\h -dj!<7>jZmVJV|TgyÃϿ&ozf̈́]t2R`WRٕ.&Vo]jbKƪg2K7L5K5o$hDlƚ&@I}A"]~ˏx}2&IoX-ց/{n?; $GUxa6\ؤ7ȅֆ!y0K+.3.YP*Dؿ~# ?j*)֥upեk9{ӭH}H|/[ڍNS)u4$8N@GU2^LG ,֣z.& =&Sg/Hi,ȳQ6' 60O [r@^ ܥEH3^94$^M5(^q'*"aw 'zJ"Jk]0d_$,*#Η/yXv̟2`;?0H>l_h۠Qi" 3lK;S 0&[{߇8͕"uI:ȇr7^V%K$eŦ! ,.值JU5rTR.-e덖P<奵GBYmpb C"BcY;f=@fV)xm<;na+ n&f'K fgz#K4j ުDjT B߀]^*RAn{[Rζ;M~A̼|2^%zq[x@S% $:]spFWC;>yHҮ]?6ȏiݷaA nlR`Q~,URyՐIX;0˯1 z\W -s2=ǩD,|lMJ ^ːF|PM)Mn~뉃֪$:ɕ;7 6hn_?ςQc 7z _x`\) -ҳNR0 Q*W3Com;L7bXVg>?ߥo ?fܕdw`o*3,NU=h#xf'͐8>& J#n.#Uz1|s $/LØL?Xc"v&ت\WXANDM{`u|XH\ mF# xd<TW$!"'W k .66l 6@$Zvlj^7\5S۞f9kF^ʠ~Zؑ^ ŨJfSA-xJpx*01PP4W}y^Uy`Ru<T!x6RPFm*GŘδs`Vܩ-^A$47+ |a&'%HT^7ig|̙8R$-FEVDfzE>ԃqgfWdl`̙X"oqLpo QJ^ 8􄃈1ou#oor@ vzwbwՔY}Wh4 aU >y90] <{H  %z2)G_{{khB4 ~?)RTEb&j~-?J `,K`_\kv~z>&!-CBf؅ȿ_I-;댕}ϖx0i/YkRb`UlQRܔ4 L3VgC~hR⋈S_lAg홗0ن=mm5naAS>B55=4-"eUf: Mƞn3 2旗PK INO Qn먅*2[A^8K[UyVCPDyԦ'eFw<H=qރZ;vv* TI] cH ğ/ǒ˔D &~М/ӽ9LP:YQ^fN.!SwBe(f$x y7ny?\s#ZJ ^%FI =HRUPv+҆Inm,=Fsm3fNr_NuBPYCgZOF,Dʣk?':Oc?nI{j[PQ6t>d5_zw_Sz2,~뼯\B79VJ.]-C^8TB ?nY 'ˎ2|5("ݪn>Y:S\S֙ϵ Z-c/|aKEþlZ n7OD?Eܑ_+ tFئ,0L)=)qL*m$*ei;́]U(1%`+:Fvs8EoS TEfMŒţx9\y tiϥRۖI<5@;ە?ˋRsg Rw.#lB oM m8^TB sVX@2;"#W˭2.ȆQjV]! $ :wr&mB.?˃n g!7:퐬̐vpKC۱'zvn)F[vMCI߼D@x tK՟<Ӡ o_ ͟x9Y,kC%x'ޕ-{b zH%!CGf8ܒfKhQ*֑W~bc9\j:HEVô^`]U0'GK~]PkMװ6*L*6I7/B-@ ѥK4U)]主x9fQlu^L7tޠ{ENjA#~Uo b1!Yh:&5r:$^M~\R« Q@/6=w'0fM4@vO9hEXW_'QGm-iVmAhY~K]Sg6*]_FoˑlrOX٨7DdmP̶\*rM <4[/lRж$B"N4Ø-csa>M glKF~L[^ shsBep CeO?ڢG9N eq8ms2U^U2U8((& l^l /RB?#`&GnSKSr1oG(ޥ<3A"ss%H8TOKz[28%:d^ UB()_\1gs! /ť"L$ވ_rC,z vKW 5e+τ"[}@g/z.=Rf ^ή.T=KN0aezuŕ8 ѳ Ķ\ ٮlavDyAXD3P΅[D;.⢤&_]S[ XZ06ໃZ*!gAJ!#^Rd ڋwV PхgJ`w1 -qor:Q+E5 R(k%YE3}S ]k}%0X}?mjewDb*NEi8^1U[+2oV !Paza%&" TWeV^lPߏ|yAaS&W:! ‚rs+i1OBÆ//T /n%#/^s(˻m6"j=.6:+ЈrID @10;of7}L` ]ԵsHK#ߒZ.H޻Edy)LO<pҰBC~͙xU<LAa.Y@8g=ib0iÎL -./xȄ XՅgFUvĢFEZ/˳lʯz~PFo =x$/o=Ч:NɳO%*&v4Jk%hRZYh֠XmV Oa#Xtx3?&<C@vҚo"dd\oV+S.}/j2 9-n<jZfW[Q {*9T.?\^{j GO_v* >͢|lt8OO%MjhkgU&4?ۼw E&ȸ3rz* &`+(L}~*k-= 7U*v_hm~yw4yd cے}{`k4UoW[N( ͹e!."Kk@ e+t^쯅3Eܬ$6CEz3(P![ցb "`! .=G48A4T[3 BbE }I?%Ғ}q%vRɕ$0Ãtxqdg/bߧJ ^@Jk 6<a8aP~%ZUjnQY4izI Z/[zVv/ץ``5̛Xӊ)Y_d֫&bZ/6t5+ʬXyz)Q$uZ14eoYp ~(׽ǎ^Ul(GCHㅿcK?;态[Bߙ0\T ꡿9[uNe$B%j٤ (~$bŶD0,F~^9`:/l)eeU;ǀUtd"6Ȧk~6AG&4*:?XzeQ\Msg#K'‡3#P\kh؍T|OWҷQI7HDKa]n#߈څ4NjԾ2lqlʙ LzAn f~#Dr^Bj T.^.;hU&1fViy}PĚHR{ ,MzKIfg:h0ւ7%՚D&؈&`zZ6^ϵIw_xAEQ>"@/V+/mٷ)I pRϞi5E*)E hyYgZxd`VGGvquώsε ml ^4|&G;H`+{q:K`/"qX|`2|Oߜ/Pdwe3*a(8r'Rj尗{oYu"Ć'L)1 k:>M߻ Z"])񵛪F$)sel2i7@5?8U=bM,c٩=gMGLWzBkBY]Al UUMI/^֕Eo6_Nپ°/3 &}@,kG7B]jXv0@" ^ Xx\G+;>fߧר[/6RXFOJHzM3hp54\ RyUX[<1,,zØem b$U^AOTkȱt(8I$!υ43(I.]bJK'+@ ƻKRO(>KTx~mEafKF7~"?#](qcu!]?q;eD:̩h[Vժ[=arlÃ^ \-s{Ͽ^o\DndoWܓ}T$M^xE}!| }{)NۏNeʒJ]"˻?r;3L$P.uu]@G4i*FB]NG20P*YgSgyf4LE)j&bۗ.`vxmSnvYbq$/`(HzF?Ll?c-RD(]S/he,U6feY Et׶IlE_.N '׎]?#]7=y`z co3!;=h!.sU ;|,Ţ4K`W&{AbϞm¼AP;9u> iN  !APG-[|&e&YLXMڵ/^i{t8! l=!/ا>Qo<~o7ԨbrR?ZO5ݖ4?zȗ4^]7ZQ_| mk3F*^,+_qHܢR,RjEsN^+qAҫZ u쓿G'&nŔZU*KvŖJ7r|XAQBgTׯJV/PVEN 8uU^P,~?M{c)+|*#Lh#9G)wNGcq:J:q,x'cH*ۥ6Z?`Xٲ*(灴 N=xo#* 8ruh7DLbJ/ 5p& R L|#mI | p 蛣viRyyi ko+j]5ڑ Fdϡ' pLz-MWv[xJ"+`k~>wX]؞{MZx?,D۽$g=9݊/yvRg&d?GHoޟگoZ3_fc=t.J-[ D+3O)w KVc_J=󃣮 oVslɱ!E*k-()Q%[ Tx (J?z8_;{\[VS:k[v>IՂ0G^hJjuݪ&<*-7wwHZ6#d"򪿈J5:0O# k԰}0oۋwꠦ7Յu<00Ϥk Pk8g!crKB$d&xk׏[&4xH=]lNح!%J&6$ =@ .xG& G-p0Y;BR؈%8=$On\Sgї,T4 lV( ΍ٽS߾vfp3wzΰZg-fy(AnФ,xٙWWzcETqf\K--죟5/_fmCH'U .!{l{RUXۀc_b3o U+~?U~PXշʲɕ5rQ&r꽁E J%;.~'Re$`^KBj޳wbtYQ9Vl/39m;JՅɀ {vL)u=pj$UC es9PH '!ݙjcJ O` <[W֛0nVskj闣Xň4M59%A=88EvhR_W^Vw-o] PfH2t ^[ pp$l))2<+7ڵ5,Gѹuc \c+QA7A$T: 0 `Dž0G$1P V!My˳W ;6NzI'~.y˃ng3``v"B R7[ycH_}c׼ξpx"w&^5n ;~U(KOz5)%xwVn ]5<_ē~Q0} ,vr_[4tSGcOKITO={ 4p%*d۲Rk$^2cy9-WŠS[5WDŊr3A;x! (01^ӫ `֡(;n+*/GV=DzO4N(ƼtٔÀ X dܨ l&irp֑.=ch GVKa #TwB;r:M#x[oTGջ~9=+S$Bu DPӟ_{ \,+yH}Õ_r0 cWC^b7K'sojRB3wޕb>uNjC)>f3bB&i/v(FIO` 0zzuXosW;eUEbD0 pL vU; "dߩ&ﳙ/Uåۉ'o:sT'=!\)[GB1A6+H<>cܹ¤հ'bguO(]+~'w1֙NFVAV85^G-&+G>Zy GX޽+ 2gCW>O>vωr+Xk{NQ{7Z B$H92RGL5C$I#`T?5C;_^U91a[:O (gPٽstz%Mg.k*Orq YD3^ܕ?P[W53B%|Qlu~`f<#%EgD &*l6̏c<}gNf^gG}=~-u5 .ѵc{ϩ/,X'?8Cr\O妃:Uplȍ|%y5AMCKʪd-g$l,<ѣ( f Hgȇad3!. [Kt(qwRSstT'AÙ*#[=yp쾑MΎO4;P֗N"k 1,lKоo_(gWCRܶ{cYЍf?Vﷃ0-Iq yb9KblBIx!2&&v;u_3 Ŋ|IP9?|YDeZjx4ח{߷'Ʊڧ|Eaܢ{oŏKe^k>(+KLEhA w<%S&ZN"ȿ N_Y wYc}YD/t%QRѪ;6z0H/W1s/-;UEv4h C yX-V{j3b qIXude'cAhJ3Q brzC3=;Vōօh^^r# ol6DtIO<V=/ F2$2%Z'V&BɁ]^ki&:H  L+AS}G5obAҍD51wB@x`A1t+;=7&23oŠHutݾڪP%"n%]#N ۋ@ .sK+hUQlm?rK>X cj8g M{>?={ſ^X=״K탒}tfG,o쨹yHXnktbIKRv,J 'V q{ۻnE=|P DUo:p|'ݳWbxdxb~?e۩s82ptq2+--\&@a58{z䁀mMGW?ɗk z*҂\n^‚]SU)D $eh4Y'K=fTz{_1_3D* Aeq.gW[LʯqPk~FDA4f F:u1K*C޷G0i6?v< 79 7矻oxg}+O+^3fݶUU qp<"16HwJM6D:0F7 ?w#L[lH#m Sdيb* *H있\`ͫ}cYV!(pa9MVd-1CW J6U#A׷5 )$ZXֳTZj؇ٝ];/OsW[n57_9M?O?_{֭l/х7OcQCkW9N\w?7]^FTT""oĐ-P{`빫h7:ϡ1z~Cmq䅠 H'! ٞJ;ӿ>Fo1^  فMl2w/vd:Vi:ȬL΂.b2ՊΗՅuܛy`4d ߟ %C%PkBMzou~<YrĄZҜTJ c@jv/Mxϥ٭['R9޷nysv{93;B-& -$wV,0f1#A30a/RII]ako?zGx)mLB!R2?4\CT%΋K:k@vR2߻$L9gJS9=U?* f8 ifv'_ˋVHN򪈴>(Iro'3ϴBEd+ww?v5>=/PZy:_-U<1;*vla~_Z{Zy~/CXbF-3Pq*[8 ڰ[p5Zݳz[~i?>p^qM2ydi'R?_Ya6U]V䛳ITlJe7rO;Q9STZ#Vu2\Vżo"Yh+ޛOnhbr4?YKPxr`r.[=jF/ԥ՘NSSL >D (]^IbQ]d]_ŽKG|-΂!DR/L=*:vKǭ]6>섁b"hs~QP4; GSQu[ixIssQ({o_*ӠPJnי=6ϭ0|R%zLRûrVr`g-?`!DX3s'm0fΟaoN; osۧ}{bٰnӴ-܃?}{y%3o֪p}>wW%H;.$XEacj6쀛g8z7krBC3<(1ցsaU7q $na9{I3Ju>^>RfB% aqR(c2z)8yF_Da_l,, c0hʉSފY8u6~ @!o ͭle">mY&6K5r4Jf(__GvOdzjR{uZ {"K^[JʕW|3?Mn\Vlҽ/ށVfI$xT; ~l'`Rm- p¨Bpdb3$*#k #PIB[B &vx)7x8s+̒Z~xH8TO^eNd?Z/Zh3 e^~xӟMv:Ϭ)x 5 ꡁjجs3oyo|߱-CO=/7*eP{XJr۝@L.#i* e . Y/sU^'hV-•v܃Z؏s2ou|1PuH{R_28Pxuy:ZѬFw5f^]?u AWw`efY^&vdy vL=j>l z^4 vxj'NͿvTGUYx@u R+B0'v|@j0]̨+m=KU䜻'ºۑհK6D+^{E4 I@~gJ,1L7;oE/Q?6IUBYϹ?egȻJ| 2*WV,,): iPB"%{pm_{jSbɇ-kU&o7k$>$aw:)/=/Cf7z継\O=K4{USXI@%Q I@5WVAW- RCԿ⒒z$"1MOrMSZ젋30QHM!Z٩7PWUԻU%^W-. dp l5l!GӐrio>-,\x}gO(呹AVH7%!6f,#{Nn% k {J%="* wvyzl\Z|^@tK6 %R)u\gXNm8^ʺ*BW}9Uv >=^LrAض_2*3x%{9.] l0Ф{UD@Ja0x4FrUpJfh1hE06dv;`D ~o*oar {NU+i*㣁﹂es'U h?+xTqAW+ŦjoIK7KZ?_|zb~v#ͼbl_-b|+"CuZF6_ukȎu'{On1٭Dlp1C#"6PSckW`'4j/[Nxf 6D( C J@U9]".P`{uS9$z @֬f`R=?̣zۀĩ=uC<y30$^pS˫+vxr!D`!&P?aἡ,:=wj3di^zp *{?~9vz^wM 3o7ֈ*/U{ν@ױ|R]m=άP/R`28c K@Z_zkWj|KM"{p15f38U ]TJh, P<: :9gab]7 JSe$iϹcT2-O >c7 Q;mln:#kEJ7|g_soS֚_xG-}7[Ӱoyf#o Xui0]xθ!%yFKIdjyٟy;ˬ6/p< Yh0]l\k[/Wo恵Cܓr {_3ߦp~`U(TTP- d♶>~3Do<] -ay6*g膆wbkw:6ԨTuluϰ%HTiODA#, <]ف?]pWd? (>fS+kEqӠDeD-x a+:zTU vrvgY.j#?w잝W@=9xd^˦CPN0H^ZoXz(NT{|#c>n;]nl6nmm 9 9j '.8kJ4SBGB(YÕty=h,P]0T.swo֚kwp8t{ӔPϟ?+EⶴZHndHl=hR _Ao|Q&tTSwZUˣL{R%J4.}]2#7vƀ\aD?1G^inc3lH>erJufifngj3 ёKB?PIN 43a)(;3@mƎ6s೦Tpc_91ue(<-Mo]WY3,G tZ}[̢|:<!X!W}635pn" Bm DUgc4V ~ͧVLe /[qfgnXr猀q5hvo`a;%m[5MZ<4 %+" &H(`w[EWԁ4"`u =J7` \D dk|)dt) ,.Vd aMx+(1!9d29[CMeܲ"~w)t d-ƥcJ5Ǭ=AphG6Z)+M z4Hw$ ZAG|d?]io` Ɲ\r$L.Y[tb| (IBf V` O ;Giܖ6 !O۶>fLjC[xEI .4!IvKI[K8tAwX LTWM_d)Z-Y88*aP إ٘xdGmnJ&FSfN$ |LD$kP.Ч_$[ejX|x چ'Soh \ڵoٞS?ٯG*mDA2أ@֘EhB ]YaItMEy^[@#zӜF3%vepJ;n~ #YBB1\'hIq J%;qާcZ@l2l7`d͎KnJ=\5iY[ F])xgqxvQD"4N7 <|Q8y|vv ע鰢9F4S'AaljjMGtwmrb26 QnL6A8^2!%J }MfcOB Ӓ8K6_ȩ%Gϴ2@iBPp+~Yٓ4&VtMƬAaz+} _Rё&4[x[bÊ}K" .u hk97!̨aԩ8I --lHߓ\6M>"`&\+ds. W._[Yዟ#!E>PBv#R{]Kz1;vz(]f#lҰ^lE;]Ǻ3Q9Yl'cqamLɢ 7ptiؕSgF~);7& ;7.o >7DB)~ADVKD5ה L`DqIG2#R➣&-tp@;!xF`KpX nfbI YoءPE!ĢtEM=#+ArJ&n!^! )Ж\{4E KP!8OǼ+'\ pa߾8(`Bn+B4udN\pl3,Ώp9IR"Ɖt.̏hC)!D4NŔґ[75;[Sƻ^rlPkyd&Nil5kȘk+r&fgPGAY]/l>6%izI'+Yoc7&:B(xB @>jqiqUOne4u[m~lSX#`*>rQ=#D rzگIA8&2Y" JEQ(mơDA^TeO6ilT= 4JN-8B|Dm "&U[!=OT5Gca[L,/tu&]wѢCaT_:TX>6lZȂB A5j%s"S^){ Gi\r}I:cgƹcӝD*3ֱh9 )Mԉm:) cS_a)@p2a+=^57ֺ輪/p%,H%LN>Q2ϗ2x6A5ڶ:OZVnD"+GK1Hړbx4j3bYS&N EzӛnF&/yITǙ,Gl382>-XGp;v-ĸ Cig%LAJsVlXT؉#R !YOSdpa|^f-LJsD$rn8`J'%v-hK Y6w3@QIف$^cD mtk2m2Q|]d Pvc ;i65Yϙz!h1}s +m VJ٩\@.^fkuzYsQ A LRج>m$\*.MeF79n;;kdK)s"k=;-Zj? ̼3mn/oBs>Ȓ=߱)gXC@_;0YοyFh@☇sip( A 5o~=ՀUS.r՛*jWlMI=B/9z߾Օ q# 'w']{泟a^H4UXb44p& @A.Xc)$vM sK3-58@ @%-Y8,.o 2^=`n(#F(#FL裧qNӳ{vCߜvC"Dfn͋$Jy4"!wJHK1]9(Vx,ud2GR)_Y٫>IZttRB76[<Pj eSTvi6A DIgQ`CjQr1zp*-FzP$FZeVysJ9kWvhk`!ޟ}te+~"j9O$Au!7t$iJ] OEvrX2!b}jbxJjhm(Q6ڤ?LʧU  F\^yO 3LȸkIߪF*=5A"HёK^abBQ%%sq{?dz۵?9Pp{< jC$l$2SD ~T`dnxs.>zgN r= i{%[('lxyɼ  d#\/~B,wZ wr9!` s=GL&.'yOзUd5EB[ۮY[Y\n]4e 5.Q:HmmK[KI oQPג ABH)θ,"|ٓGhÐGդ9?|¨IePJE,YGclIr#Y9Ŝ]̱RTX[r@ m N,m!uAhڤ<&o`(سQVX YG\0\2% m5kRN<\IgbvZ];^XY6jRI+Sr(fjyҾ 1mqn?Dsc/$m<$5Ȼ@D,pl伦jtݾhXc_ ),y>J#G+ޞ.Ğv6Ւ25' WA7f\TLT5QkCbfQv)B \p57@"|Ep w< h>rI AmɌqV:\$Au-8e3%uuF]*%=꿸K84I|N<;E%pL@UV*%6:6(:!-iG<4&'2J}g\%OG=E3liQ+I.Y\j wnMCnqY?A6!:};Q;YK \m=N, x!ѵ8UFɵXB}Z#5mOLD& c$dL}z `NP19R8$YKC[BeTGxO}_ s*wN ptAhyy-|Vc3k߉3G &#~³{ӬZ:<+lRĞ ١Gԕ,q;Dj|/qgj5fwӛlP#m%x"[D2Gekrv\nT :')?eNsFˢ!.О[}_=@-M];; r+.\JN q!)f>M5y*n 5dkN`YӴv;C:I&HfZS} K5zYxr3(_ή3%7,66" z{'M-SxAe+*,# .Y^AqgT.EdWu/:mE{ vD$$4w0 iTVo "D\3\x e`$U;c vW@ GnLM(UVIw=&̥ǙFݐߗ!rUȽ\N[i ֮G3a"9 )'q^sgg0J8b̩N09Q>eo{)Ml ӏ=Z1/UFrZ `Oo}]f5Llzlΐ/^iQ|TS-wUBCs:]f$ЄG2?zRB5mWx% bn,NپQw45I ?ZX(j[VljZCpװޛU/![?x} [R!UGMz-zS1Ė?@pzF-dAhЙ vLlAnn۾rKh@GlJp-<Npxr.l7kd ^x"P̋ZebǷl~eڕmCJi%qHUntȅulPXjq w _MFNslEN:1̸|O'4-0N/^]<)@7Y;<QS WG|Z IrʑK8Xz..ʟaۍ)DF٩uaZ٢ZmBLlj%%9j<Fi8k־Gm*,Յ4gp@RZ((iR@0.DF`BICVuYVQD~uPЍ3eRx^|N##dw}O,̀A.9e mֻ;XkAtxw!&xTR N}H._5Ϫ~Y=0˖bv.:bkmO`;ߋ:n!Kxj Qd'i 7 h-;s'X +> m;g?NޅE?_Y(1&9N2ĉcijJ%msO?ǪHT =!N؜S(֝:lJCQ7[qEy8T-S#G~͕GH,t*Yg>ٵmcnOEhFP R[VwT.[G 2Gѭ&Sa7j~k y #uNZRa\5޳iD4Bp僨9ۮ;\./dZIR(&[HiE ߪV;ZU%@ \l%R@ 1xxP{tsQ{73Qy4$Zx(b# 4V;e%G><״%ϑ ;lIMk82@ ټ냦 /][&0TiM^n; *CAݸFߝE"9T6.<9mo=TIL9N.ߜH Y:rN!u]Y;H ҾvKmny/aed7ډ=,4J-HDR ŌdyO.鰁tBTx۝Hׂз쓟{IF ;?Q ?x]˴Eo{o>){v[{OG.ϋէeESa@" .Xu4.^j׶^m[nAw6mqib(ڍ Kq''vz.K޸~@RW}zҨmg=2tTJ n(#w`[3uxe!-Az*[}K&l>M[0[w*C"-/yQ}yԨ|kN@Op}\$jzT$n$WO*E?[^YBױL&)ΜH!/$;Z?lQ 'd pl@R\̩Rbq>XW&JFu6guQK hE⒑F%Qy2$^vgZMk}9am2PKU֗@P J;m8*R1`nK+^p+@h fN;E\zXLsNeq)u A]OAa2(_3cf"b;m.=bȬX#2sB9GIzL65r;S1czh2þtHx|NS{J EXM^ۿb^D6V/, #eɮex^B]69Mo:'`\'!:mɅmiiAZ(1E?7Y*X(peFZ%5a7xeF0vW p%W)X7K_9e6ST:s26GX*]rc tF)cg"Mj^7>9݉tY>fdatU{Aiolm`Gs)jy\®v6-OF`= Rq'iMc+W`PU@YAmt<@D;MmXPb(*Zgجц%r ,;!D sO*<8,Jj Gd%zX]KQؓseҸ$֘yg% *B y)ur5plL*;PsRNYHRu5l( |ջ *,)dpyq]Yle>qp$[* /s,& l$u=g~ $|1҄gM)Qci5( ;:56F0.(L٣HGpFȮ#J|u͖>$D"SiLv91Bq2%,j-[6Wt4(0H(Lؓ<ϵܞSJH劅Y׾Wع$9r!#h>ڕ/~S_*RLcxGth+uy+fv~moⰥs[?.[;Nj]}ʗ̆ݡFch.0#9"SiaB V u#1FJYrW6tkMQKv) F^Z[.[GN ד E[>M+{Vm{cZXp@C՟zi/˅h6yja4@u g[ͮD?x PopD<&v+dH} l5js<G8`(1fJ x-|@*-BE}lWm$W\Hd t0fk(;I.⸴R^0x5fd_"Y07:;tZWVzcӏDR?Up)öo_;)Mĩ( {᫞g~SrBRJx,% vZifdv쳟}oXX*)?~ghwHV, N,6o+CV-1^{\~KV_\!W:\ BEk 3kN<+d]!Qf6V K2-rbz9* sw/CG"MHEj2eJ-ިJie\/~d_{ XKk~T<O[-ő*;?e̓"TB~vrfN(CWz.\X9alsT; 3 D&6%qnW U⪄V9ax_X+ ,i v*UdEimm!;tc|/! 等z/hT縀z/X_t dMdl7Хd Ǒ~ni/n DplBV-ы^r^\=^&@1lIM:6[L5v4Ŝj8CqU{0ڵVY8^ 9|qd[>V. 8܅WYϭup=bKKL}*u}XCV¥=u52$ǡa#ٙYm^lR3@V @%D0 I:I%xڭ;, :LH)[.Wc4g8<ⴣEp o4:Lݓ[}133/2sz]uhOtZ.Zj< #p{O~ھຽ??eÒ(Xs:$>5FQ

}{,1 i$.xڄ K᳟nt]e6-MLfI' )?- >t8m <=u%)Ϸx,?TܙVTҝhfuj!n dF:IYn˦\Cji[*ﴍڽ) VJ?#d5&bȚq-8 Qzݩ[apm`6_D}No9$4쵚tp:}ٻqMa>P" PΝ#7ow,Gyyx٨hg)о '-V.&Ѽ?Cڛ7hgfGzHCM`r6LǥGAq㏒i,:I̸GB|:` ^ϗ'* 5ɱ}bc;o_y <#l!Zr6bk q|ϤԐzbo՚};|r`$|cApH K|ԴqvɊ$nj0DpMG& Jc8]\N-Ynw])FY &ՉfNR_͖5PD H%";FB.D G>d7ً~*?dws#\ l,:+ >1$,KR~@ ƙk>8 '\ƢX MSެYuNֱ|-(|`[xh+K\m ii*-@M񳷫}ysmvfmd.D 6c^b|@ @@7 \fa՝s6U〯fUh".`@wTzӧn/# X{8%U+2%[ OZm6,GeA4 )cVi#KK8q1(0sݷy eb2Q+ELvj5Aؑjư\\Ws5CsTew߃B51|'2Swto.Ѿs$ͽR\J7ӝ! VϲUKu ʯ1CKx'Rv%Ӟ h H~oŪ݋tb6z6A}E+~;@Kk)+g3H-ڽ/晶T|# -;6&C\piglR\88SE7}-#%"+-|?qGVv}w#Z‹YN=yϷx{g?022Ot\f 8j\<83IXoW( 4u+u+# gzE9wuEpsV4HPsIò3Fkiw;;Eƴ?G .*28Nᇎ9-\Y0 KXcs2Gƾ@D-)+rՐۀĒ!GK(kX1%K Yx6rFO ZG,~b?nY\`=a?^iΦVPډ-,Ib6!rz(۠Yd6veZ:Ujc5jKw$ t2FX \@ETlOZ);N&Fv(Le5B1̗!*dDX|CVLJ;iYNdFX'z(MiS"Wx73;Z췮}ʦ%oDױyՇIkֳ{pφŐ&T<M~i6H !E}[Zbp !h*,Ka;M':dvϹʾ񵯫瞅 _G}x{'41:j7lX |qeSO##܅>E'%DC˱"GZ79~|:ݵģ}Eu+i@paCD.m$#65$/[:;"̌4R3H!Jk Dv١0H)&KgޱdB2t\#3;+gkDJ";@#QbHs0G{YΥ U:NO$ +"e3f7zlƥ]u@n{ps ,C*э;ʄ ׻ ^xgPҋl8iBѲ`2$Ip׎-^thH.>,%^_x(3J#xm.a0`ek%\eO]z l[ N~[_!GqpׯdI@߅jx^P2Id3ʓݤ-)j8" ,~UvNaW?Y(Yg_|[XY[2' x[`g Ȥ4ڿIDATloYMjb'vNX! 4F$O\*u q/AV.nkpK<df.dzYL >Lq8koMArHiXM Izm&k~ :0D[4߫[2}Vn LBpAs%9#?,AOOeX MHƕp|c*!q9š +ñ)Gcq QB㞀:1ٛq@C _#Lf^(IA @XM0CIWSLŒƎNҠT܋ɡfmRr4iOQsy޹ 2Azf dDUY8U +P\qNrhe:Hti)rGi8Uri=쫁:ݡhΓRpCI."F{@\$"牪\(Sx⊧O{-rsRݪZSʱ,K`ПY^-ص׽^&;l e'l;{=tiَyAOz de .Oۏ2RhdyKH`C6eIj_퀭rRCrF.l_!م?W-ٝwn˶a.jy x ep$^U0DBS2͝o|~ӟXi~ls(~DDIK/Roc/ƙK|y~u&~PP%@8y-JjwKK?2R s쑃vԎ4wC^hă(p|8IMYgXna:]dfC422y.]4,ڱv#>8Yd+ iaC',Z:-MQYz̚d捤D|s@Avҁbgu~߆ A2R&$ZmߧYYq 2tV,9\ [G9Բ+%OT;eԎ[߬Kه27I἟u[ɀ—ac]6= PbH+nK˫rq)zCJ܀],='۰ /6B**[En;_ZHiㅧ.,,jWwlq[H 11|+UWKv+v>e_CvOF{5oȀm- <"yȓw=2#S[m۩Cv S/ ,^|˥.p`P.TsxGvz(&}+_,QC=ǂHRmSI4.z>y{IjZExQb@t xH[W_}XY!$EKZ7~rL߾AE;/JGs‰YwҶ'.P}7L#7',4$o߱{2/ĿF~_8c d]i) x[lQOͷ5oV8M%[}ܩvce^DaE}Q!6H-G9p:pRB{3EpH62B,-LX&CCEr"s )!T+9%(aƩr <*F78Dmv?Wk$Oِ.uC.DQgL=؃x@>xp!;{OW#k"-e4HJ ދ[)$rh`t,Zvmə6UHS ,6 -e 2Xٳ~v*tātI&@BN61P'!aL Y1:$'e@5茤LG_~ x4 (Q .JTu&hQ+ҳԉk teo~'S ?@\w~U9z~ԑD9SA|˻D}^+KZp;j8r;~>oG[^d |tۗE]~}7jpYEO;i-A)/_fp+$k?/.o5d6%rf/% ﱒU.uhtf~<~@8wu;ԙmB4-:=WGo% 812YB:̄T>6 dU^h]\ ˀ1[C&7)'j)цp5hAlٮ kFY8nPjDC]Fb۷l)g+Pw߁F4U5]"}@eW*MS|0!nFLP_% ˆY0.͂~j2uRLl鶥ʒNyz6fKj9)$'͟ˑa\ƓV_"tN+#{6BQmk۷J}(IPB嘒[037y TJ#@QkhFa4U#!6(vw鿣Ti5_c?m5=Xo_bNcE,~Ѯ0.O Ϧ+E7z_]].[\M!@NH(C y$/$$i$B `2m 1ے,ɪ{{3kz3-K;gs;07yիKLsͥB+`ev^XGل17vJmoux̃/ ^|[Mo|unb3;Y2/0ůgeYf",5gS1g`| wb`˧ W:d\向XỌèm8f@XefXb.Ov ؄!4KhU_=C=:#U耤ϵ=sYՈ 侣~/|4?wܦRǓߡc7/~96Kkv͜HU/}0ӏ}  >r 4S9EfT8)wOgã 6#CWxk9&QOq4}ʏ[yҪe`D2n&ū_8{}\$ݾqi :uB} ^ tɡCLE?vZ !`^bUVCY &a~at :ƑadjMר#N$whPp{Vl3O0/q/4~[YCjPf:d7: 6R?H&|#^`}%BiM% {d,d2dg`Bu_xA3 -%J_ji$B)>T@mS.2NjS<~K#Ѽ11U=r^ۘwc߼`!"CLhW@ Cr `)sԐK4*5ԉlViXMaO!nfYM\M&N~ܦF mf'ǭ܅4u>7˘_n?<Gwǰq^d ~0Qw e`&g@Aǃ,CK5}/d!,;SAs?l>̲oʿ5<)UBh=WM5\|a+'.1W\b-8cߣ,:b>M`8l V-HO`*`2ѩÚ^ ?5dfLB Vf8: k=ݮ#ʛOUGeVAޠF\}{^&y5ϖV Cڣ5%ujm%;@cP5Y1H(4jr>cмzQӀrͱrG>)3SŅN]q V7Rq'ӤG#Y޴$-4Bl̲uɨjwY>_:YɟmmwB^9f9`B&0R$e=s矸vGAh:Ԕ|eD'sϒucmP6O'v{wjPLLn\CqWphl-n/lkQHתuu?%|!2[`O!Ƴf};%Z&j2d!OָGH1a8`U7h+bq6o;Ry K:b;d2<$wJ'fY bu`s"{eU:e4St!>v,bussKg 8u"]d J*uH⧛k|sR/D+"kɢ|l,@6:|F; :Rn2H;މo~_G'%$+4Ϥ&**[ cBF֎EUݫgcw|ҙH&2J-_ݫލi*GP2gWʝ@cjtg!f3gbY;N,V"\LcH%s]LpoI㟽+L_=cL>8f=-VOca `5z,[/#kzi;jM|l1sN5W0ۈ2&1; HΜu~ch}ؚN޲n2sg"QT%['2_>M~6]0&WfK TX"x5%^*=mIfKTd#h1ȌRL3jjUD @QIC6/#fr3JFi*3]uq0n4;hԻ`AfPVͯPo]{Ma R Tml֒!` ۱Ϩ񪂜\4:kv*iT1MUQׂzc+;"dŃ m `Rz_C65eh`3Ёh Ye:B/|+JWO|Nwb~磟6{,is"Rkڲ[MJh9MCǤ0E*7TbA VN㶛nBq*k ܑ 8&gdx{Q<{?|s-,/3>C4_y;|Ínw=/<+W`ߡ밲l:f@>4b= ff֒v,CccٞJ kg>ʆ(kݺD%֗.?e6L"YAp3@1>FcqFPHs:M3%rD¯ /jW I/OϰdqYA H_¥vm|L!. `(f^>RjC"lm'qTy=x DK9~\ر4R+ 2hf MQLG1;-JHkϨ]&]Z:M+zy5ըUQ)WN$v-^>˙:}EߠPhlEo-͢ &.F:9qep,EqOPL#*2D} 5iLk:^Z<G]xe\k+xcvyvvw7)&I\rc`)šX* C F)>O``uPS>-Юz?^—>#%,5UFyՋX}[|WS 0J%8VTDÞ .vW,E33iLY<;JUGQӵVm39}bi|!|J5f G.<lq5ye 2Kfl aIg5saS]yI6j:]ֹ|Qp>^EL})|&h~.!RT'4d$0BJuHӼ lZ ۋX<|XkLb&5;4TZTYC2l&?gKePN:|Rϩ6XͺG6t,jMQK3v+=_7a[ܰE<{ckE?1MWPGV.I[Kuyؔ[ٔ" bL^$'C5|/'Et~ ~^~8w(oo={"Fz~z@us SDKnKx/oi<v|;2Ƕ,<CkU&kNށt44GI؞z>x*g|E)i9vL38_byi|_h'i g̤@Ĥe"@4IZPN3,+Oq<-ؼ8_{?Ss~k(-7Xށ3ă_տAy݆o}a,|KgNa}cY'`b`'4l<,6"nuiÌ*Vaݯ;[ٳ/r0BK#%- o=\b#!&5ͶOԫ2i[߶XGfY6EpѴ($Оٱ:<}\{ZT6yW:)۱WFk plF!kxo: J>߾#B\) Ĝg2GR2EkMčdcD Mk:ڝߪ&BF1EB.a4A*6Щoѣؖ#M <+)ݾ-%$"* KkvZ(4}^Ib(o@xb^N=17Sf1`TXၫVX4Er!~ljl9yTJYB3 oC0k7i4h>G&UwЪ)^}1?(;^T+&3#8pN;VWqq} f<>RvtJAW&s?*޹DsQ?nKj΃|7qlXM`q 8}Ȕj7'l,;iK_63c~gpش]y `{ui~hx3hɐ1$MV,-Bػ\`u&|ZxBfnǏN@T^H2jtmNıxыbM/ڔKFJ$o6p;Vplg^*BDޏfO؂FUIqyA]㾙QhaU" Ƨ/>wY< Hcț1ggg׽ɠ؆+A)5d 5u,8DԷ?gfN/P ҩ= NO8r]X)ųU>^#a?vqkznx/*>m*5$ɖfœb$AD3 b__a1q^rx|^ix/5^˻ڲ˿>B$qYk>{ꌹ7x,8 Mo5x>׿TBL5/OȞL!$>n M=T{1fT3*|Ϟ)NKdtgk ,VїdPhbV Jgmuߐ|]%4UH4 =>Ck fA쾡h`֠C0>QUib"`~*чgY;uf*ņ\ƮcRZc!VҲڪ4 Ȼnz&l:3eٵo{p^!=v7z+^Y l#3ݺ~Ϩ9j@/|U'=O5#bXf*Htj"(֠g2ҩNUv ,},:9\)R, >/@66+29,G8y4 தӬ#SC}"Qv*^}6\*/~-7pĹ|őVeeDLN/+%@'ڬFjj<<"^tFeH+bu͛O5|v{CjǓo jCx>I 򂉆R K.AW'Y*> ˵mXpMi?k1. 0{ڷkD$OͯJ&DAE,b:ůWnk1mm#ħӯlR5cLTj ,ZY}~=goLclToqlxrlfq]q'Z#ň0Z}ʝ/5&G1gbJ< _8t^[v UWI& pԵ[.="o`{#VqƶEzuuUWk-m}.aֵucю"uND.tRsB[,3x ٬eC9Bĸc"MA ܓb9[@xOz̒?4Jz Ǐ]˗|5)LO_ Lv-l^9e:tE46Z8`[2fgI!Xh&el3M5{ `‹iլ1hL[C.xtUñ@KAGZ,fmih*7KOA0;k"ZդSwbKgpC[R aC5c/% RG!c _xaR#Ϧ23kk0So2!rLqYHD(ހk#6:g<< RT71`&z(Z L CS 2_EFTjm4WdC_h͞y40Mi-"܏Ξ wރT@+XX1i۟bj\#Ry<Ҥh³gyyDCHd-\`&Rtu2bТ#8CZ%.llk ÕR?-s;r 8pԅJ$D[p^2z Y2PF<3BYN=+sqCk+Iٔ}¥.] 9"h/O)"+x}bbk'%oEW9p(IB]~c. |IAgm0Q{_kPk^KtCaF*xfgvNLl@ ^>a2jgOxf5sD\{S8rp͉;n{.oXSZ&=*]Q,-Mg҈$2a|gtbaf Hٕ'8Oy'|g&OgQHo(.b=WVlAr"t)lgI}9Go?!lREam3tZ>aSv~i~JI&խ6c&1a| Ohzcvj3i+J==QGIm#N`gCڊ{<)1*dR)ۜl=]wK1w8^F;dswAۋBbE|*!L&.F4nn  v\#c[È Q&yuu+0X҉5vh;y 6g F%M }}=L>1"xa~?*zLl՝u۸K2Iz\bQp}Z}x7b.AhDKJ@52453kt"f `4k~m0 `ǻ?K-l A[Z,$y@BA~&l `Ա%'`4Vs6ugɨcZU ҏmoeL(Wx.E.zYePFeS&4 dFl1F5cA>Ay?q ~mo[S-Mȱv-8P++1UbI<DVSz p^y-,bnj{G ~8P4(<vAsH<_#+*IkMlW[ LBc੧C`B Uٌq`AA @hFb;#~݌i#y)9*qRk ߰DuEٶ_,B1t׃x 9a- ]Bi=g+ыoM蚙*2^2 laK+[82bU+|p-@K]? =g9pH#U4䤒_'#*idPfed﮴$n.,Yc, d 5{>s$V2D&m=:+`ܘbϰzt!s-K^Blwwb V^VdX.M1IΓ3OS½1`*Ԉ͑ߕ$==ׄi^\fwRe5"kWX' ~kj1y ƵW K,ZUv< F*],'u{rjT`e+[H?" =?p ; ;iD2[کmlr3UQnW%#5V]@%S -e͵71bt*7B4C>gl k!XaXRmɛ@Znɴ" u,-]x4Ld۰l&`d#T6nAZjFUf|}ֱaWO&WK5 ;Fw FTR\j>0X^/ȺjuV'DVxdxNz,>駰;HKbRe/V9f/}q*v`>CrLk2"à ]915h|%n_gx!e\Z^"tTq/RyԛmA@:j|ʊM x&9^vmxD)fIWCaܸg xbo6#! ؇IyqmċM~(.>ÞTv?]7bPdjVQ? :PSR]QP+* 0!^3Aan&mc^{uqUXԙ3Q-oYO(.‘Qe^Z$l6y7zdlt1NjԴCZdͺ%=$9 oe@@t蓺]f@̶lly"qeT~0Ybh$ 6-Z9޺[5.82Ώ avyf؂aoFkz1+9=Ԑ$!yuY&DVZev",Džgːe>67qU\-" :y+,<ьJUTDTMXc ʻghsl{,\IwanʞΟkМDϚ/q)?NTLS!?|{O!jI\AN(YϻNĂϗ$PS7~o&Ťk:r)1Nm-X0U0>3k36S_Nc3mA,N¹dmŠ-.j{5W/?i`kZy^#65*eE38eх{"%seY~dcV \uhY# `ǵ:o'7Q_a_G63]EnܟHe6S]hi" Xw 3!ȚTXVDXu?c:ꖭ}-5%%>& OImtjZ%(LfٟA@&^jʯȸݞJ1'(>gNCKmM&FN@6Fy-#sx8~|u{u r=xA)&<*`و.e:4cS>ɝD yM] Y?GMT6Ms4Qk6+UtެoY;CDd.p t/ Z<7&*`}-%w BȥgvԵy ى$ D&F\D+_?ZC[áPHUm4lfH Jƥ]xh3$E7H'4H1r(?t`!YSh\>B*2D"8x!ڨM/U6m6!] foj5~$ɇ'Bu~>7lYEUJ8^&TejVQKieȾhjyG6E{8~*H 1Bx!3A!,Yke̾laM{&±Sb3)۩FS]'޺ԗ5K\| ^>M NLfqˀ1~h2gh@BD`d|(8H~!əx9jv'TA 5]vUPm, @>rAܙ ȝ8|G5 !읝QOE.&ZgRئ :|X'kJjB%C-] J SG/Ml?"Gmj&,[V@+|Ws:mn= 5Czj#yt= T/A{dt3zS8|h] fPn{HPHLm'FS>p˼;"1$!QZ3]m"_-#H+8C'Đ"L6LU8$->im MF5Z4a9}|X."6^B~2:'w]fuGϭӊXn7m GX_`ӂCnv/3%#AZJ*1' 1բM Y$crt .P5lh`k#-KBKʰC/{ χqrJ5!,a20v7l?ŃFZI׺FfXۘOQ+ޭ-;D\s4/RӈeV`f "- K`єe B Uh.&c2X 0e4"ؙ\Јi}C0Xf4FvU-߉kџIe| T֏t39uf!,H,/?ܝ²( ^3ti3%^`E~?F7xI8Oq)|Y@wRNőbIP$Ʈ^z/IdX쉩27(%?fz0i6GEI1"dfh‡r.Cll GhS8/sPe !f_O,8ψU5JOXNx@F3RUT%Hj8()ՉO bB ^y ̗Ү_Cyf9HtZNP_ʎ?Skje2Ji( Rb`!N /N.F53;c3i>DoaubqzY}:5d[-T2Κe@M8իl2R 3u)()05}YقE=e ŐeպTilUCPXDsi y"!l%GU0%պjtN<+pϐ^ Ϩx/4Rm* 3Uxvp Ζ43;59?P wN8gyeV8gyį} JY U9s*yKg +ё?-\edmj-dig|؋.?7ڳ|/r6qzދnn=w Ч>0P,O ̰aJ u(h0|_gdb 02(OjHbc Π3ى]X]|51ކ;*QtMj * B j0Axُ R?7Fؑ T|E{=Xϻ$ ˶qob[Ġ]e@؞YN2ť*wgւ63`׈65hW[f\"+$ xЯ2aga̲tݟGxݾu(>{"y/Q'Ke|!=C$pB2|<~;8_d& '5KQۢਮ1`P!L&lLL0Tn/%b<Afl Ywp(``ăWVg6ZYX63 z&C (lV0/}X̰r-aKΠ1(uTgTW?\/N(8Q; 2dg#%I ^7/V`ih6`ʦpo@"M\3P]l+jS] y]&:d䕁8j]fˮe0cI1σ$UJUSMd@u(u0%4\W7e-m]a'WW$؇#'C4%!ٖQKEhV} %U7=tȳó^0ix_ H {nFEwG1w7=hHY?)E.\c7=~?cwmVM<4_oN =ߓUY t"y,D53nJ卿̛yKfZYӴΨ% ::¬Viyvwv!7䥊Λ/ ~/'ahl"Kٶ߄XҖƆj!I\/l^165P=mRmgdJ?l8JwnjN&uJ&0Rs7`^66V -8x,נucuZ*RJgQ't4ܒHDP7jf"h尽q0;3gpŒg4YGklhHNOE.UB*Z 㟓ߘMtYiwE֒PCzxc~^å#CT=p<(BVIF JͮC䮓2SJoc(aBJaM$^~m5cnl7:-^v=~ĉkqϾ4 t}nI#N 0H+nRcT |Y4|8)Wڜ3:4z&N/)hQW/J&$t}wwm7qlQdᤇ.DB#w5s-.36D|X#3\?Y$!w4/K@`l(=f e̼%m\uh~S VRQ\0Qͥ'LWb1m =B ZٕfK/'e,ַʐcw7=T*e?Q𕡇f}~MiP)m]/#/Vň;\>f#A:3pMڼRFtslG7tǤ-m04IV^d)ktUH+,(`TlEjPJ2Ѹ:\m{-Dk7[.(bA)@P@BD%(-Iۖ O}݊ҭ/mhihEPP RB **|is\{c|Qr9g1s \.Mim&L7e.{фUO$kzMezu{iWχAjC$ntO hϙ3-k"{7r?n~cX_jG}6]K MbYVBT2;R#c0.!!(Itp" V$FRbsKE4UsBAUJ‘K(O+4ʷ {wƨSTD?2fGBvIM7#Ie;\ cA+\"C5T8t4Je^xG|Iq 醮ш)NxpJsJ@l*DTqB?"t:;mgמ0 ښ$9˘Β[,ѵ;H*% [_ߞzi\|ߕI6hV}Ry %0ϐv32ИFÿA[]Yf];3\.rF:ȑ"sՂ[^^tJ-!@+Aφ"m~}^R8k 7p7>ޒ)ZzVB!Ygv6&"looZMը`7G:VWK0Қ<^Ԏ%1dLe0g::#Dz8jeQf덴Sn2,IT{,si:Ɲ/bZ<.]:JI%,åx~W>$"ƾEA? [\'&<, Մ]kt,# 4OG> Q+PR9|ζv+e@]ʻ@MMJŪPVB4 eIas:WЂQM.WЖYiya9n5W`;;b3cB$X8Eg^,EyCE {]<ԯ!4hӰK$njB҂ga "0uuA@:0LZi{ nVگ|ϔ ޹fk~WU30Q {8@*lgb5lvxb8.E!I&4]Mڅ]$" '%bTrA")go{}oٓo+r- ը&2@ hwFE5&uZ% `yRTfҨ&ʂtA`@B{qԀ겱98D[e"2iԷ{;A5IRZ BhXI3Z9酴h EFGdP)҂W/X?j;5&P\dw1K,Yk4# 孮?shʲ*a6jpB6P: ߕȀ5߷Xr5fE2M(; ( ߽s0d׳ Iװ<#ۯGG)?dN*`S7뙰'0:[S[Rboxq{r[RpA;Kߞ|8Հ îUJZ%!-%LX2 VkӘ|b nR: ":J,5VRG-*IA'~XgL>_Q2r5Ej7hϚ<0HS##2BDu?v&22A8zk9?Z t&-. 4 *Wٱ\g]zl SץBP,\fɑDS[Q߽8W͠`iYihQ>:t!s5jCx'$j& Ɣ3wC*Nj{/0y@F[pN/K*.U,qr2.W8jqA&[ T>DWHsC0ek \|x[ii!: EVg ٸ unԴ?EdB-=FWt`\izTVDIP2ћxO]>D(:SqKUj=K88 y%uJ2LQOl beP3" " LsEuvIqL!ÀYrG2VKb젳Åf.o`l>g]l^(ɐ#-W.ަ[K5vw6BryA>KN,13;M4I?e]˽{*rDZݰ%>5ΨćRHmgDzTidLˀc>bmν}X(tѴC%K.W_MeJMJDmڵG/Yߟ !/;#b:^R.hT7Zf0_`Dd ڈ*\l^`ew-(͆XC~9?&Qc"\pZJ3 ^?[PukT#`°$ i~ƟRU\{R?;kLÝ1:i4a |>۞$$I`4톻DCHRt3JGm 3@Au(Fq-dI<ȞI @x,ŸI[$y;c7I(ZMtb'c du)LJ.#۝.@MeT\2GrQtiiQ[W٥I£.UhM6ѩK|D??T9I ~s>8\H##;h6Ve.;xI.n>r-a__|/Z3mȅ"A.D[sey{^'R#zFY,z"ŝu+!p<\q ]3"R*f PyS\KY<@HX13nǏ9xaL6DrRxS*m_>ljnKuCCY$U(L-EF߷~*x\f/L7 WQȣGfz{CY8x%1 vqp]Xf O :44} ~SLS0P*#$p !HM)Dr鑘AaYf}[R5ci]؇kMpٓ" @(lO F0˳&@Hb,ֺ3RgZ@ЙLJߥЈ稜G 2oNh5\+X-и,K0=niCNfjjr%kQ.^6lr#Y@z XV}{Q Mأ;;!H#_+5= ô)d\\dG,*2cO%3:GldЋ2rˡ K4,5=/~aY627f([)FҨYq TFg D?56Ώ+ S_ ' tdbݟ/[oMPZP )z#Q)>s&;3u[GBD< K ~Tf1ÉǠOHN>UiP@[QK?2gO>`vv3}nEyur -#@8x˂S˞zOX@BI],h(ı/dYSZuQ=Us2^`=V2Mŋ}QR."I7%ʕˍ;2WT>O~ɩ?`~˧x\…KM]e".jk{6?_e|5t-Rbd4I̦32";?AT]7⹇$ѡ$@pkAU&R;*-k30' jw$UF:1$ RoY*[VXD.9Dv6ٚ}bwiu6ىšK\Yv#4/ŔXkG2_>De4 B R3k)-~(h9Ԕ C"⸄@5R%`4#7.)n!q1l m7 ?L-{(٨sE|$E !g+D#0`AݜDi $QH3B QEc>_ Q~qcPVd?1ahFω*yA  X#_<Ż<Ϝ2-riun}S%w>~[$Y⶗Y\Mi'"vHEK8$H rLȈ {! 8C\:qL)vNʶ8m[fd&'gx(!{Uڕo7HJbqhK5BiZ$'TkC&3^ 깣Yd`{ h&/Hp\=-CBnC&P~2l\9,`1eؗ7ߔI $(cՕ$|B!+jxd93M6\uf a!G>dAzց=%/cwPP'"^G ncju"'JkP /dL*,Uvte++x^ld_ c51uEj8+KWf0\ @R66U* FρإD$'P2N:ѰW5]䉄?(U%1[ߵ^gNV2H?v3v_IEc˃UB-N(8Y#J@WG@i565fB2gkmxG>\cyƲ"NK-\Y $ш#IJd_Cd.p*]؞hoe?Ǯ ȷ,kO{]I|/>-[;D%:/xՋ8HDc.Q$Cm1`iAl Uw@ -@L*c44ұͫqцzY`Y+At8J¡,Uv؂ Q'5e:5^=}ݬRgSEg&rz!EJf}2ԉ# {f+G/tSti><;W}$2`$Oa 98agond  lE4CŘH)-4KlF6iyH)g\3R(V)kِԃ9i9 J8RU Gk;;"LDAr8^FS]twfή;w#܏1ݧ* Up!!N#[([=42hֲOA꾵/×sir{_3쉋)6ghF2c~UQkWA áD e'l@|#\~te]`)ϟr9'_vG[1P:y"b)a[12^T2Zl7\-] 4%EMev ȔEM<¥h BS;~6w~|lmF]?գ.[+A &:c;@pjB QYd!m0ʠшzsla.iǸ}\8$$!t_E,LKrd &̠>/7ډW ͕KB/^c=>^l' QiGʌz/cc3_IMGNX2930?2y Q $ʉĭR)Ln6,eeңGR*&L,LV,8Yl覥DTbsrL|XP@IP]iXeKBʙi(Jbn%Ȁgʀvi;vza ቞xv- Il?4 ݧ>F+ =ݷ -6<8G{@b+ FLogB)c_wVs•[֗%sdNcrў;R՚ZzT٤IG|1ZȒTNez6jv7P+ۥud|mSnpO+m\4Jiyλ6_Nv98Y\>"Z`I$^-SluQ gqt~Q}0igO&`\jZ*`$ېiأ30 jڈC<3CN:l`jri(yÉ-ϣ^g8|vEBE.gCfDh!b:vvw\z{8ߖ#d׶wl95zQ5\Hsxt-ebZ\P'(D$v'Ohd IWҊ< 5d$ߞMC 0pLKјʮ+B`CN>&3')f|::ܜ{\gl\But#y{@ʴĎ od|Y^߉^cR5*穠9Co7lwg:SS#L`${2K Zf*SOCw(Dʗ O'? OݔF&iD48@nVvn-k3ytu{v{dgoV+kK >  k^S(evݍG_-ڢ%,S;&O8|@"%YYCcwO:ʞJ΀Q?Tf*qd$8;Tr67z0̚> X>Ygc!jm v@A=x!I㙠ҖI/ bQ|k"J]=>w18 G\&%dEJ7hI"PBߴ Ta&i<6S)'@1{[kvgU>ydQ'q:XLg;A/p!kڜ {;,LXu@ZvA,r*wX3AοK 3}}vNj^.Qҍ*mnl.믷\kWWl{ߎ.[y{'O|]~͋-? 5@)yN'jb,3UvXq'V.#o4"./^NǼ126P&o d\GLكj$(tfHw+(82ɖKؓf"8k˸]k6vWEԳbW1AE1d1w 2jQ~*;TepKR0O\ αS\ u[/[6ޱxKX:*. D1spI2oj`id2 \ Aβ$9 1Nep݃"|SLl -&{=&Y *S됈?)2GʳG=8E&&(p5B,1pȆ/4Ѫi w<tϑ/C\p$de%wٗbSR]N:iݙu,87m&J4%"4%hjTĥ ]员A NïgEk`πO ʽ$@:g5\~xIgݤVܳ%]|~IWv?dKwin'oZG}Y~ VgIV%pÏY5<yog{8QJLtY#\.f!cp(~Tg1[FSMv]=9GpT2eB{GvMԃ>nO)7tPn8h 'Ia.7t>q-$٬9Y Y >PO+v |1]PНFm|>OK=u}ب [H|MHrI@ʕ5::Y82?sϪ""Y c"ù:ٍWLMÞ4LcM ݙP0"A},!7SB_c36.{'TΡ0q{ gF&_6 ׸qZ۫v ǟTSv\d1e|{Sy5r.+c /M NHUMMf2cG'z"v \eZ4]a-kFd5j˰dR cֿh>M;Gr٥W*vmuu(!ʀMO>|Պx8q|g2ȩS9+Vb.$E&?XF;xXI8\Q➉tfAeM+ ёgh:*%jcO:g-) +3 W8Ŏ(΁l ٵy[^8xd54d[ԭ0-E=[&dpBT|Ѵ+,#+<Tb,S`ё"5]k\ʋRNb@44t !MR)* ||- !$A_jF\7h"%EKr(-Z+a؃k8{[]{Ͽ~86ڽBr%X2k9vùlǯ=u[Y2l<Ճf+U/]Kwm{O'jkvޞw؇k@Ƨs_tKŴ]`"KZP,HDƭM Z%qcdlSY{ف8Ypo&cQ&N'dxqC҅B`a :\BG=[\"{-_;D Ipw{\vԹlFuk頶'}ڜmQ?j$˗in*X}`I_\MU糌juite#H ߛdN QD'եu9ߏ f{F$~VϮf8d_D.* q8k*'I˨ /jA B ^vξFԶ㑇dA/;iWZ:T%( Ԑ3AK5&=듞t# V; gl+. )>ֹjk%m_[.DwgscsӮ^E'Cc<nKvd>2mcs+P䐋9 ;~"/֨Y R$k; ֮e4cw :S㏆! M3(9O}֝b*eNYK1"wO oNҖPY8)"][=o+WΎ}' /\^wo?]wÛo|eidyOPL.{)+Dۚ~=W0S'# 2U|T늓ޞ79#˭U_Ã[G jaGwv2f4t !pzɷ`"i{!=ӔΊm#?ߎ/,xM!)IFNBL$I$hN:ʌ#d_׈N]<h{cdAk4CSLGˀT5*2`K'$eIE{Y,C|=LhwG!rP1Ձ hfk~ YTb,lǢ4ggJd5,H@q3FVQ$pτ]^Y?{QjBS+d2c ਩yhY,Ѡ#Gq1-水f@*y˛oyom$NBn OK dBGT<8 Ux'q߱K"@!}) uQFT+Z*]+4R68hF蕨TfF{ k?xJå0ATJEY|.^xk\2A\YY B2ZvěSkr>o[?HiTȚ׾2it6\)|!n'aQsć?kLXJd2#hI.I5WinII1k[unvv7@iڱ!l qKEVW"Ө^)6Cw^D\N@̄'"K5f^Kx2z] K}eRܹKNIY~) hf||YW ֙8g=hQfY G5D8IpHh*[FƩ#vUJ:<=XWi<3mb4ej&~ `L7蒰MDԜRF|Qͅ$z0 eD SO62#i&`,ܠ$!4 ;n YE|18#Qj D|vؘdLsJsve{&OM)H.͏qPpp gh, xxƟ d<iJA 1ǴO؞#>דhYrm Τ!Lw5_]yk'@qsSwQj+~y.a'*A-/0zPb8z~LAJ $md1`ju\!im\D3d(.Ԛc7;Cja"&)n-XFsKCwibT&%&@Ҫk/.$=}fv2zK 9,O!Z/2ȱGGYXQ&fЋG2vBrPeD12RTۈFni)|XwBI(nQz,F"ˀKa]9q$t ]"5:Ȏ{U}~u',YQOHx$sTQ 쏤/T!fǟ$cuNoA=8rM|-0Qm @,ktفf_Bp7 Hy 8=Rmc[ kpqGn]m\|}dvoAM| )R+e,84. B7;֜e`9\z\f:eGi*( 9-U<]b~+6+r-.gQs2t*Rh%C?zv),ypx^8ٟtgm_z-~VTR P@$o Ҽ5N*`,wgs /f"2LVW6}=: b(f8aF<@TTav+hdErdK0eCzp9'Jc-V j^zT.(OjHQq; 5ֈ(Ԏ' l֐h+SA&dg3 PN_@V-"g=+d#F'qa]|*-ԟs"$`4M1vIgY%ldN*|dȮnv&vI#'^-6_,K{;nXg:'mO1+1uCƘNAZdׄ; ^(DAe(g"JuPg*e՘ ~(1FGtYmXS3Rc?i[ڱFGg2GB& w$:Ǔp& ?\Y$3V<t'j!5<Ѕ&%(jnĮ;{ց)`ZXny5[W @)%SqebK$|:u{lcx#;qp9g>1W$s^M\{S7ٳo~[_Ə+tg Z1@~jbUJYGgn\Kj"beymN% 9-DpZ$I<㚗Ψh(J3 DT2k48wÆq@ߵǽM^J [__agf%בpN\&QXJj xfT[$xHlmbsOv~í3^4pz.MQ?*tړK9NCA;sOLNF q]3#`IG Z-ۨuqS򕙋ȏ7iM*j;?48PU&*5SHOO D78!W-GrP&rZ Vㅦҙ?  }*!@qQ٣`)>cxK?6څQLM<p5~,iNT ?d#[x3! S$>f &3>c',K]:u vY-=bq*2Ed2$S]5Sx@qBc^ 2K{҈{Ӏf(G\"EEƀC_oX]<nXYB&dne )ӈ@ڭYҨ[pe.> )g:c;x]Y٣TIQls KSmND؀w .20;t %ID p$&"%zf??=F/b We9A$]%9М?eU4/T /kŐwEƟp3B0h:ʞ?G,ȸ\S$ \, 0?KVPU` gjc$ XTϿn|eE %d dZ*o?xbǺ;~$?9 + qbϕ)d[2 Nxg'ưӶ^^'E'NvmiF~h}8)+*lز%)C"L'W{= ۂϸtq$]oM{^gxͽy۞(Kc>}Z~?[j|oo 0e_Le ;4gk5߻qZ4!^ Ylb! gc=.bOJ 3MՆ@or""*.ttU@޽Fߎx6t Ep3֜8Br_-+rH{rC+::{ 3O.dpjyDtC^zv^`MlړQ=8gXʕbl2SC,"LlRF|sg@ JY=v!oI;E;VIq-䝩lܲ6\%OA!3ЙvdF3:/y4Bu R>.#EDK>hKgd` p ҁ$"B˗.hyY]ۮ[n\ęmmspMXwq2ɢЇ.d&[ PǴ_,]醅M+>>Ǐke'l"L?~ Q>7{(Ҳ{cTlrsH'NLQiYij+m~su?C$]6.W}gٚݱ͓]gBޞڶ! _#'=rR 2y \A,[$G.϶_NWɹЫ[Mk6F..(zR>-E+!ţ)ȡd2xʙ*6xtkYDyOvsl\r%@9u^==>oշ9rЍ2aKy߷|df'\:zyDT kCtŧ:`M& iȹ=g5 R.PSTR+0^6-s4)xոv<.PTDsG܂$9ۣ@@vC.~F ;,φq=xljP##9CH-Uwq 7'@i(ʿչLE@x<;$qG`Jh{N@0kO@+BLD%ₑ{3E>pYͿ+"IuHx|ųsҧ`3sڂJɉ#+Bz fQ_. Ptm;uz17j"/KqYR}'VcfՅՖ,9)N! ǭ޷l}GY5STҾGZVmSp:JS,{1jίڳYyiiuXUZ매aHnGߔ jo)J j/ׁmo(&8y#@a$AX>Ђ wi8ji F$2F;5W ,䭷G#i3LOhuIXИ4YM#U2!i'dHa$yXNsm TŃC2k(Tj&ܤp (i&ά!Ï?T>Kj z=jmsg-][ >O2Jfn^2}ȶVskov{?d{Gg_q/W {Ӫ~[} jonMڿ7jο}ꙣMKBT BMd)@ɾ;mԹ;-GCmbf%fDoB T>ooY2?( ȗHtgR]l??zPŽyz%}DJRT6&[/ԝg %p{nR=&}/1{ҫ(欃L9~feN;K 8?C4lŜ >4ZlܢJ;γD֙Fy&5:ۡIR,3i6QϟUo:$c!Y)xAg`gԺTpܶ܂\uiq3t;36q4 B3=Q'kl^`{#:F ْ!;4̛do[N}?Ztm$mk|_yBtp8ya&Cd,$sO!&93<BPg+ZsB\<Zh#ۀyVM,fO}ϞwifcGN[wel~7{-wSUz}o+(}[h{oƧjXA}((;fu;&r UNd5!Qj6־wӜ%@eK />\*=^a_[KW>n^tӟ ;w){KcMhw~|"63k9[&N 뽈&}\QCKkzx}k쓖 [`j(8]\aJLZ3|"HFϙq(G%6*"PgAeQ05Z٤7&-KA B^';|2.8c6lNİM/|%`Wdq &i6 deܰ"֑EOFd)h*T lqqŗMrfkuPrᑜwf=:(I^"ѐz3'$ym(wP*5]jU@rfo"C{7.MvXvzMܲ|c >rPШh?vI\vr$4ln~e}H9&Yv8%l/[23}1k=3ǬzꨭȂ'VQrYz܎v%w%n~7?j~'t8"#sfb@鷭✽ůO~^%-yFڟ| ?cJ>c@Ge 9r0DFl^olF}2N Gֆ=gSv8Ђmnُwq_eDXeUpL!6l3+U*@]33__!h/cq, ;jkV24a<,-z?;~ sZy'qZ[[M<ؘX~3\j5i)ơjKsg(#۱ck +yXB}Cp$ m;,;3kV/~NIDH' M)RlQ  6DEBD/zEWAE!^<<<)ggg2j۲sDVVZDTί Wr m}-Ąɭ0꙽E]vb'~Ȏl, fRǀ/jdmmDϲ>6\E`"s4S! s)EaٹED_tXes5ɇRiJ)(V\"W=χG z@$UTH0ؙCުMp:zZ@DNՂLkh.4Щb)` ?%=Ѱ+? HHhQPdJbpb~.@F[<#XZX- q$\A!z@>IJ~Bgo^?G?ގC1,P%Y6,̽"Dn[cOHB'?l=' 6y!X#d[4nf%dԇ6ٮ$zuz~yͳl~ORi~g~NJ<L!XȎ^JSnbWoKe;cpK/n7q8&Q4[: vc ^1;jDZ2+N@"h'F\ Hup=4{TD3<@/Ev#Q󹺱) \hu$|ɜlܰr6O30Б 06Jac_N1$Y0ˆ%y򐡹%4[C4 V)HߠLYoQ4UƉ)-p&U,˅}?8Nx~fC/G= ו,)hԣGԟoq__̗dUVPcȦ; ̆R TYTd6XO wS6@r$7'~OmmVG>Z̞WY7ޞӬ(i:m }`͵u+GwUͳɎ>h*c<&.k/ -H=cMztz kr&;6eT9;(2-I[vŤF1p8߶mڸ㕌 l./P޲=v 6 :eeI9` tRT579L%ĒgϥZ1dGq$Vj-56LÄ`8$I\Pj-ޱ(ɝ#|H!j9s$6M_com:UC`d,+S6F.|> /`9Aq7 xiS'3ki A$UԉKRbFME59H%E MQƌ5m#큾+gV~Uv>$]ky) >B툷}S_|8r_yp-`|GD {{,fYK8TU\ 3ϢRR UkDYY^v{{Y[ww6'~Ԛؒyeh#4 \g6#ѵ5l|x*`(p7J@ "֒}ԩEpXqT%3c{k^r}w=[m4UGBzz6+M~1 ) 6/hؗJtA4X% HZaeO5_[;_u h׳~{C[Hh<;욛nko.$)^[Z͂=H+î 1k@r .(r! V1y6pyX&5Ҽ@o^,/1 4M4@KciP$,8#$3KK2aS1_[$!M@@Mp0@1`]+ޭe8 9%[[ ׼[oUkw^;r#4%x ,/~V'=/Rt>6O@0 ߅Tvj|Qbq~g/s6Q#{^촭׵+o~Ukc|o7`sھv{g??I'7w~^a'^ιG]4-bM;C][iFҌ K4g~Z  <ۄ?'*J-bL. k*9acNo/HtT8b.~&C#ٽ'N{ ?r/;jY۱} ;v`C->vxex}h}PjK/Gh$ǻ[tnmP,ƵW恹j+KuQSEٵ;{ `EC~O}Uf/7+xڛDbXK{3m5 O߳iܸgIzyٶ&Ƞ/JRJ_XK<[<TIKk3&O]^FH!qsŶ_8i˛"Ejd䙆H e,@v}s/J\=P]Xxɖΐ׮hW)cf5KjTBEwӪ/4]f22)4 5o \xB /m~츁-> S("Kzmtט{ޝH|ph&Ò{ӛY޿Z(̄%JU{v,z͂h@*DmL* |pJ9 >FiZBő>{bпgAs?rl 4$J w`62X#&۩M+Zv=},=8=5gt;{B>G-jYnwϙf\<>P1k"< q#ѠP!ʊ_u{grBY{R',6lIJJKfa'ϜChX) -\gd=%~ L77oYƢ: 3zEˏU/AXS(YQ.6Y.ԈpLVE(RG2)1TvDtY1VϰmR?}%aMӚ&B w`Ɇ!O{5:BԀul^/{wg"DΑfDXCu=Z$kE%5A^`a{BﵙCbԖڊQG13`dOÐi)K5g9S}7!AMXK=ڪ赥K۪zg$ rf3SNmē@iynWd;; PBQ LfT/~:Z# k_ޮ?pSGBu%k`;G贍'! 82ȁժD^QBcIzg.؃%P] g9VKhPvcV-l@?\`"+ě?.ȤK8fGJnK^mIKmp4DuKT:p=01"#)i@ `4 B!69˾|*WA̔ h@̄R7Γ`Бv"%$PP~T 8^*)t4#B>ẻCg|wleGUK#zv˵ǭ:گG7WieH]et}ucuxޭw"6Y;q׽KET %l׊a`iYmVHiAk2۞grvHfKa_K_v5u1]{U?nw\spUPfTT.p e嵖g%xoX1I 䬖3[xgj0e=dzuA .5WD,|s+J.I+!%5ZM>m/pݶ1pO^z/% I5u6jZV{&ѫN U1L۹/y1pݱ*p>KBx~V"a̡懿\"U2xL[HDIcj) -{ٟYۇxtvMy[9YˑNS )"OU"qvU|/4aa=Th[+`)HQ?>8`3La㏊5D6 ^j$)Daj%Omv+]eeNl_>WR,+ihvI ]~-{6lg_jKlpxZi^BԸ=5hvU}V=D;-ێgv0(]n]~?momx]6$|Ԟﱗkm^K;OڅJ:KP :˙c\7m}_Hmw;K# aK_PN"$h r]8Dp&ӱ?d KcM{A J3uj)@bMU?Ly42()d{g:h Gxz2MRAd&vp"W=L=5Q۽fwβDyd%p,9`CA#~sOU@bm$PAV{г@K(s a(+U.{ڣ)!I\Yl)D"}y졅 I{y[]^;7= dm>/O{blhW3B͍rch!+n^PTKKu;t`U,d?LsfJؠ@T6$,%(׋vu23MVc23ۙgUL?!*B,ad`%hƙzA)Q2.>ѹsQnE iߢ{5ԣv1*H`!QȄ &`8ՓVƁ_[-ث_\h_00D%A6Xr*Sb1&/М]4$ޟ'Lk6V[v} $jV'Z7z>!ph#\ v^moK|诬VW;sY{ݞt~#W8*P6P9--z-/ۦ OvH.n mQoK5kE@ZsG?P dXouw[DT_Zؖ=~XIʪmg+NBKJM,,x bсcU]0.: ([!E1|C .5yޖP2n{taNӰ@f֏=ke295 &@CEXFBt:PLPC L>}L=K;)`IC?L+oy&b@FS1 E5C5_" <|c6G o-Jꀋ9T-G.v",}VWy4 RL9NCt??v[v?*]~1yk>Oٻ?9U^SO\[! }Qz7ԝ4+bNE à9#~W5/s[{~ lG*!U"C+q\_8;lO{6x qmfs˗m988*B- m/(zGUԙgɂEbRZk:b,gr`:ϋrr1БIڻXܴKWSW|{SN"<H^֠^;.$kv>\?]տo6p Ssj{_(W!/>{Y_f.gp ԖdVAP4jM85ڹzTϦ^dDQ^1Uz0W-wԕT8(#+*G\eJNp{x+LϼB VZz|v懭,;h12$]H~z^V! =@4閃 !YA~cG t+ɕqWG[@G ?KAkb (%%ņY}^\$q>UYMlx8x3lĖ(raݮm H2-H=\kj"]'j/l2@iR Iep,Π5:{ܶ뮺ؖ4#P?3.X@#WTU(3 z3/%h4בDU ޷( Z " b ڂ:Yp;fgp]ޣU*h2׻MfO瘙D}$Fh*$qK@v#.N;ڒT\*/E[vl5|mKrfxYk64"S WjMk.լ;+hƣo|k7*OV}`Kc|ﵿ WV>R$%H.O2?v0R+;{ `RT d. ze(( R7ҠdYkB]`\Vd=CPv#R*tZ65 + (I31 C k (W%z*"Ji0 Y3Air|\w2b1K@FK^ :x>D&AX>,E]ޠ;KSr3L$E@䙦 PE*rKL*^2 2|7VK>85 b3/#<)H=̔Qk%~^оǖl<%JPK2cjpC\XAvbź RIg ;Se~TYɖ T\ |&yT  lW̤ j0/I: %Imi]*~YN9g{H8aW_p6u+RoX~gDs?Km%#q,\V>;mzsk ֚U%ͲaPbv`˳>{;mױF3W앿;W]v@FΞܵ|īǁM8/%!R"݆yHͷ]oYiO<2Ad8뇫@Q_~ɦY PJGҞ}}`LTVjKҕ0^HB$59vrIE3.?X%;]M!fxwK" enq ǜ((T*IPd!XdDI$Y6BÔ GOCreX~50cz*蹵VNԛϧC+bu,H:$gl$X]OF=bw (a_GP*7dt9_u fs0"R<\eb$)3m(P6S9@լU@.JToY[ W=WUV% ^(Oض-ocz"뇪cӯ~g|1mmo[۴ m*ؕ,obw%y{UL&w?mum*cLl+1y{N,X_W-?L}+K:/տi?VϦ(>jnixNGQ}^} G#{>eTla\[k ۄ42d8lA@MCF—'pbUP%A &y3dҠTI5<\_pV=1 ްD%e5۬j5*v}xc@HSoA j<.c0NzplgAT `Gj+h&Nѱg/8k 3EՀy!/iLD:N<ٕVFFv QJ< 2R@%B(G\+vռ*Wbvb tW׷|q;YCwe+e583y`-.?nU.fcn OBeq d5W \a $+8E(xU +QFgڌVRQ[bi\u?$Jej<ŞSZ7D*Ab fv\˩ !0glژ3dKEt\4! &eB]Rqq zz`8_Ep|b L,-EBQHlaɹ!/Ɂ%BZ*{PRTu(x F LH`#Rk3w~i¶˵۷s;֑??J~AھjΟs'v_{@n||!tK3Ul>ғ\i򮿵iy[Kk"-3@hFs,TGyۡ x;zOvv'[gO~3 .[Ɠ I@s_o5E5eA']ERiB=s)' .(f^T2`Y5c#0z.y@iUE#}*08x\i%)V%lk^zKqo3ANQGazɇڒ~IabEx!\ JQV,KMp$AH,D=DW]Vo4 藛W TAJ-PU89Z2 ŷN"<I.$`*WX[=qg54H4%45tfN83L 0֮ ZMGE`+Iz*kAY o an~8pޙl' ̴n#S *B I?LY1u =c6;[k,m{eH"aR}$M؏\ٿZ3"=ˌpRZt =&^'+$˽îMS)R5t4.e.A7 (덂84A0 xv8R?cBWHH=dwPFhq}D)P<(HdD4ʒ 70 MyԇEQ$!"Q9 Pw6lP⑥^QSZ~@)У(S)YHUZ@1۷}m  dw>c'OiUH;cW}?:{۝/ڤj_g>J]gJI 4D|3$\/ 5Q?*O"U0l($ HYőV+&|,\&X)I8ՍVJ-yTo i2J$uG/~9Qc! E?w< }u(1oؓ+L&i{[Fx,5&Y{>@mc%FCmҤȃ)6bZ팡)%iy0!o"D"91ZU^.&ᆦ`S") ( v2T ԒR*U-mYt&u}{/m=LGZ6.>8B_噉Xͅ<},!#I9_ `.*AT. ~`D-z׆_jvTWJ-<8.]Sq@Ti7@M@ؔ rw  P=dU̍`. !BQAkNP!i-Cͮx@6~>{׮'|(ư#D&ȏAXSEp@.\HL'-x]6{p^nnivWb,Ϟ9a׾/=wv5kXTGN, 'jhvo6Mkv5Wٝ? ɿ{l~ہ̦'Hep-dکk>4R?*j:VLz娳^CHAdR0$ ʱ $THJp1 QW]I?s{˭X4@aʹv{޼F:*PZ*Pi{a g@nzPӠ+\A1<ޝ2I\rCpU" /:E E`s.oLj Jhwr[$Bڢ@p`z{W)iO-hcqO*܉Z c\ nR Ni)AX:"NOA358WPa26!+lt-zEj} aW>v }WK}veK/ГUnVˊȾ_~oh`3ﵬjԏŇza/"; wޜGHc~P`I|}sc{HT$`*8,.fwN_vzҙ^vw %(Gd " # EVQfFvg%_V3E4d Kgz\oDp_aIU uoB! + !d?/=!$ Xы 2 ܞY;Oɵx`|bB՞pTK(s RX5JҪ4콕6\*яgP38D(g&~(k  Z+oXo8|cxfgH)Ae̦Ҙ+ReЋ#^10Gk"D̵. ]4Yy4Clf!jr 2LYE *\YDaUCi22I@HUx!0X{\{}៿%)FM5B vlQ8XyvmOO|fռ/W%Pk41'泾]l?Ň~_}:#+^t]y﷼^?l_7Y_d^ANpX,i+=j+bM- <ʯct5Lr,+jT(IPd w0$#)8vc ʒUtO8Fp&# zġZ^&Dh)c ]#aEEHְ4ے0J)iRR%_pT* h ,H3(d$% QZeooU fMX#k_>;ԚN4rR@Y {o/M{w=ˎX}V PDW@Z۰ՍC穪`O%}O&^,i2ʄ0.+r/UO[}hwvfdϿf'2cTTie>xn b _&`( ۥ@t '; TjY@@0HWfNq2 MXO A7Y?h>jެzy̪,,Br]-EGڊօ;*y)XQJ8b 04MK~7mgg{ޚ~%#/Va1cn.90} &rhK3zpio(,@$MxcĪ,`B0fN[E!Ʌ`^pw! %0j=udNĬ?DI /$O < Szka<@D|XaƁˬCUTJ>BY}844l "JҎL(@HA$W_FūTEac%~Oo#Kg"-_{|"U =o$b$GctU~r$28ͥwSgp&D{wJqJHB,Xx#rY 2|1 2dT"Ir )0oeTo)G/Abn$vdd[=pj>ۆgΪο_=[K.>mBI;e{䣏w?|E{+z|83p)Ύ|8' 9u}ou7u ?j_.J{ݏ^ǃ@\,CvHp%9 :-4`%댃Yy4kc}I.!D"EI9 y)Yj2̔$釨&B7lR*<ۻ};v!Xv=(Ԋ(lz]Ua >lh\fPDyy ))d/kҝ =/㙸 qiTW6+m8-SȪ,"U kI>gR ho԰L$p.cH&'0 N%&et{ZX "l@EE?t&G."+b+՟\K=1|2 +2> \LLI$fQ3wPS,'M3 q3%0@k2"UE`-Tkpp^1F̓ONW%,Ƚn2obV/zӬcZK!߃Cl}eUT?Î'/]]#8+ ׇ }n{,F[goy[썯{OSU~mHlQm1E^_S^ *]e*ԴfMVYcϸ xq<4Ȫ2s3ihg~Lޣ9JLa[oN(ߩGͳv`=蟱0G+~X `IQ$}nS덃:Y !pJ@g첁cX +OI|c8j@lD;i tʺFIხ[/WuƳKS\.4TLsN7k[3:ҿ7;JMx sl$zъ*D *;~Qe "ƘL)_ ʵrF H(LrZbIa\6S)ʑ9"D|e=y) ^'G,SWkOՏ7-{*jQI.xݶOt졳]2=?։- MQOetQ㇛z$›w=iOrE<ϢL8UҒU[v؅iFX|익ΎΖ {69%ɮIkWdOnS 0 fF7ti\9״rGbqA|Q")[L?Ze9B+q<pE ù-q-(H(9d- }Giy鶻^J%*Zk83qcUs s_1^(Z/aZ~?RNUʰ߃*S,k$">rxUF~>Wvמ =&"bh J`]I NJQ ǞP=TˡOW_m@ۛF3Ȥ.̫Q- *&f4g0 HQkve LOAbQb|U\w@ϧ) "U s3;Ҍ _NA>mYZ `?}OTBvOݱIaD`6M KY{ڴ-=3o=yՑvmMi#5,5#vŶ=( P= ncvG@BFH"l{svؓ/ymVҁ?vd5G^tXCV Qo8'\8 %'/TO'gQTkoٛ$MiSTf$♬⇟ u (@udw:*mDeў֠ '^=v>iwضͽR zTFg>wrKח쇞*;!iV%w p *V۶g]< zmn/o-}ƮE~^ao?}W큻v׃[m,_xErI'\x2 {Z?C 0Ԇ Ib Nl6L`BE$j)l+%ED8՚` "@@)8$E#%CFj綄j^2.=:vԏ׼>_ i@(I:`٧ k svJ]%>WzX!5pQd3Š:T*شF%Y0Ъ+ufHHR9Z6Dk٢LU (=I1{ P'<e|K0D Vџ򠃐dAav /)䲾yV\RL*zD4ДCs4TR1D[*m$+cAbWS6Sq %澒 ';]$  SqB19љs]m=PNEo$(X= ̞ܧMW?Z경wگU8DH[ƶec^*A˶Z{i<2nσYkAao h =~.f۷fwVmg7;i&LD7tcl $S]^r%'D}1X(ēοAKyĴ3vYv2za3POwgq |zL: g/ڙOH fkI@ BJ×?QfcS!@YStC9f2Nr8 Vej Q0XH)Ipam6 =sZA/$aQK" T:|O֍1Q+b6tz&O  Eг񤠉dlc;]S.U&Vև!oAi8f_XO.A^p_ A 'Z|VLe{q iW5KkXvRD0Qbl?uh962`YoeA^^[Dlٽ'{c! 2iKvX*,p͎PHga>B1͊|~ c#G%akDžvi}:ro:PUN/޶6a=LCmwOߦo9%WM0ޗ?p 1}EM;=Z8- xU9gr^8vᱸ̥D:/Jyep$D@"10ssX'eB(\wPMc ?C >[zsW5xBY˙yo_AsݝV.tU#sCP\Nd&K: AsVefw b^%𒂫x(Q$(F3ɀ͔EG%pʹT^6 s鷧NQXDȥ3U [ |rAW0N|k3Xτ9Jdh**2%l>ꐗ+(sZ]m)k$yp7,f!g G_h\\n{d&YpAXI}קE\l/ 4(i1Qf3?ciTfGQJY>~,XDRZQבĈ_Kk_T\*b> XL;H &a@Z[4%7c°jF|POh{84<V7^.x#.ذf&G<Hk9(P[+e_OZKLZNM֕>ۼq?x;z[9b?^V[_K% =!v}HZ^<^׿x1.$+IA2`eIb1{TI,&޲,}^{|*I%@ Ȕ0%@34`CDZQTEQQ@[Tz[Qv ""2iRI:ÞǵޝV*&U3Qg ʎu=Ł%(ߵ[KmQpaǽ̮|eB/baУiCс5F k &`6鉵dSMb9[4}}K88\B| 4BCδZ7ӊmKϠLʹ+3j!tK"dg 3a BՂL|a/^x?R^z"=7 ]"]\#!ع~&]~Q]Hᗼ2!a^_l^Q+l+2??n'nqe7y0h@(<!pS9ܳaP e%TlX,s ^")lYi:뗌rX}TјM\՟F@Ehb]?p"?:{8I` LFM[9dVDb{f]/ox P ` "q<9Y®&Yt̙`x,, HbNq?Ws`]H= ` +s=zҖ=-{e+7>Ξcx쪓FsطKv׿`_gv쑭: i6K|s6#{=ǡ9f_gm'1o9~{^x-0w>!_zR*RETy4")kc"I@y)֋ŪH dceH9^ntyV< 9=Ndp la4{oсw9fAejVOz^BL iЫ%}}^JEtȑ (˲爼b`˷i&G]m" .躅,_J^J1(s^!".l."VC\l Xfr =lcY L]r.VVnPɒ`&u& FAZҸPX$(K|k8#E-pEr :PJjDv䅰Q!+v/*RA>_R!HIyK0`ԟx`tilϝB x 5M@v?Ix>U7NڶrPݾZ@mmr#lYfWloߣ=?o?>nc+JuhU vw~ꇟcw9.\ر6[~׼So0bJŃp 3 X ϵg~]i4zvI LA'DZ] ֛/ |xеxߝ㗿jF sM%`'=lqm}إ5v7I.;q՟}#/ ~3H2i8N7@ pXu{گ2q%ObŒ2/zS<5{îU;BνlKȁcE@'pP C6 G ]7_ CcZg:C#w|@$ j#y*L]r}6.+ĉ;EUgY\"'"pd$Qͼq1ڊ<0XpcJM@"bWò,I܉X{k̕SYu%svxq xbB}~Kj9U8 =S\*!:L)VՊ gDQz=rfТ!^^^?Ds;틶cdk{0TT(lP6;Ue"_:yJ{^@ؗ_o0޿T/]%g|a@diI8dW-%CuVO" / ɠǂ 3!+sM6W߽X N4(be0k2* NsVmbȯQh&LĄG̼% $zvzrXxUI"kl7J:YT;J{3YVy< `.$bKF*hAe9:(a1Pk1PgKv\O?zKn semMvӵktZ 6JZ諏H &"56Wmmㄭluc֎S,Ʊ/\ ;w g;{|}_fWȒ>__ns6}>四~?j `h%;9ē^f!I0@\[|׶Q+y4! ~gBP%`_jp-} SzY,@Yr@:JdNcJpQLU["QfmbǗ*i{h^֫8~`s&cȨbEJsz2DB~8ihj(s⥄S0_=HsݳBb5 _b3log`=Ե#󦊒x s K7[9N('M8ٶkN]a/y L}Dq묯bm{%|u:bU_`Ň`;Je՟|=YwXΚP!$٩g.`p4'\7{˫l>USzk|0~Y,*mbKcD&1 Fj;=Jh!daw. z}DfL=b"7Ap^wx&z) O:GG}Üц<NC^2id/KP(el!)z@ǑLJja(sQ |`i`yj$}<,^[ fiUT%B3d9.=&l+R-X*ϋ鄟W(2a# sUzR $TLLEXG {0WQKsNT`()iG'qIK&/H((l!<h! E8 af$Xj r9dJeМDe(mxƫUåѫ~wd8{ӳ|<j@Y3 ݺy='jMdƥ+oV\mXY*[mO`k\uO.jY^%p΅toGYv UԆ=oǾ}g񳯵kp> 7 zî㚍2hj~9vR/8&{Pc/iKw bKxždn΀%1Nf4T_z=wRf>Hh"#3T$'3xC`68ܷvylfݞ4!PZ1TM|6heBΡoJP^oSԊai&*C4!B^ `tzP ^b>Ҁ B~S@>@Cvw9vgK^ jE@n 'Q!s1@߀?Q M> upL$f+< quzrZZe.&|+I>F-=7.Ndwf1߬(M a_={v\lO6#-qjJ+o{?(+z}oWV%@eՎm&vkTo/ǁlv~׺;lw!&a_TwЎm Bkhr={swcATRTO9{}9zxx. 9R5$1W^ HV*h~.7ZEN9 ]z6*Zps%hۆ\Ӛ{hG6m`k5eaL~%K~<"2 Lǡ֮7ڪ4tKLN_6&KLh\-N2jBN+E-V-!!Fc]a'+iUNH3_k8P?ӳUk.T/[R=5<(|XéuFoU+%sHƧْ/Ȋ*, 0Qs 1C`a PCLhB%3DnD^xI] "*q #$$-Ԧ"RsJ!QX@*1 Dc_K²Lc๾0%2Is2++Mۮ53>dUMO7~kr]Sagϖ۞b.S(yuY_ڊ;f6X~2>Lu v{z^A6s=:w`%L~I3<&\>w&Y pdw~{Pۥ<<V TZ}vງ] v? Mƕ< Y{G*:MQEwܸg=RݾZ5DVk-?~N{~ 50LQxQ/ N)jj v"4uVbE^hǔ,+A l$RJi@bBPZWQöBat{!ep4*$^^GN%_̓ޖX|0-HN8aTgk \VRV; xk `DPUC,Аz :RB1L-\œ!=*jR P}}CZӌKNՒ֗j{ œށ};}F bA!ȉ5f͵m 7-t<DRaێ]wA?~'զml m'7)+ v. vȆ{n7՚𞲇9k)7?˒GnΟ=g{~ډmO./**T6/Y*G9#@+8_Y߾X}!dgsf0<ڱ_ԚgYAcp`AMY".6Zy(8om:"a&xz~'E9x1ym.ɔJ"ktnxA^°V dI =@Ԃ ,8#nR\r hR\bǜ ^T+REF܁əKɐ/4g˂F' -G 0bU1 S*zXC0͗h&I/4k<0SA.j4'& .)+.D3([z8дlXj=,weÈB( >2pѮAmW5*zgĶm*T2={:3}" & 5R9@Ӱ+/~Ւu6wnُmvKVs]ݰ\r? P.Hךvo˽ 8n yVzPOP;>lݷ pvmkKz E-'-?bOO~{^(=<> ,:B ޑ'heQvcFI4 V%1zL|2԰/sRT/gBW5_\hv0r TuU%Rhn zjÎ.yд2^>Azy?T z,ah5( WU%tH`+Z,ĝG*.b~90(Y'l➇`Qm$o DyIh6Ď-:/7y]@pdE:-g"If{ 4 AMR`~If>_d_?=Ǟ7x_O'CP:ϛ+4*)at¨S+8"<~6 &5m4g 6qZMC`=b8[BCb]@d]y[yA"̳vLi]ƴx&T#/j5 hJnf!K+U/~_Fz2[\lee/THʽHILk#غ+ӵ;- ]Ι D:*xeSԳ+^ ^K.>QW9vU"88d?i5Q`-y(6l-*Vz.d Psr!lUQ[Մvʁ: &,ʒ4x25$pYY5Zpr}ydEյ] 70X ͮZDI7sm,la,(u!T/@_DļEm7{O9|*,gE!0*¬*#!*ՀJ_rgzntIX*b<+^E_ifzhW ++ T}4<::_ޑ{l *Kl@`PZ+}G3۾*G~])g?\س#m68 6&aMAO\~Wɍ*nVXd;jz۲ 6{/ߣhfǾ컭IW?c㟷|w'_'YEbJxPhjkEH#r-4KffnFZ-1D*꺄~_+Sui3J%hV{Z%MDa{)723zTnA#}+b?Δ͠N#9ǜJ)h$9ZRƱPe'2-Au)x0 r*ʩ,'ڬgJ|I_d:5U3cMS1*Sģ|Ζ2VTsp p1̦*:VǟYizΤ1e1u"T$)p8H[6"$_Э"lDR 'qVE[Dn?w2RK#$ 2hkVl08$E "dKT[CJ5 ߈(,o/Oa^#{CwsCօ`Vӎ5Ρ>ug֞o% k3@؆gΎZVZ}-!%B; =V8:|`~=Sj3€aW#GW?ﳍ%Onʁ@)$ly]pVKK/G")XfN#{Ú_bdmuC֟3=I:$ee3/04dE #׷vpYAp&5y!C\D0 TN+BYx/Z-AǖdyfD-^7*/UOFU@Y@LƬܦ1G9 x <˖"$KoV@Dk;XL.X%%~^EsU0T*e /V#qءYOzz`=k?s$۰Ň#Ken?gSp%yR g ٔ_$ȦA`p~8{rpaQԀK/MP +zy{~N=.ً5{_ϫK.5Ik<z0?"*iJ@陱t``4xcfúiJȼEypAݳdjͦ 0!4; Xc7/o0Ō)ga+2OX:q)&CMk ?ǰ\ 0#?G;ve`i.q6djɵ7u /U^iw?vjR@dA/Ghq{OۗŶ/vc?W^e]w]}kQWOUҴN%3}ӯwlk!W_n'oK'|%](@^9U !fnj@$z?#oC3;}nΜ`0;e4lvծj¼/Yٓ2ܴюԈִ+V -k"נ*`̓£6% @;8ص/~2 ]Қvdzo;a?ll;ΆvӋmqMvbJVC;ShӺpG{2I&9 \ʆ d:]L?;=B1+Nz-ƃþtk?5M$ޑeedz`3ҮX:ԯ&υH*UrPy_V_Xv![*fK?竺qQPwҨO.$T - T 1/be{iBeU$؋x-$]7x۵'44as/UKWEՎ_mzvw2oM.:R*ڛl=?3֐ꘄloةkm[츭m upxΜ.=c{wܒ_xM \|U`Muش|}5?f^w}k<2B)Qro{i2-ijJ0 bW K<ϴ@C{ʫs ՖgUɫ?+7vuecw 8:6;0:g.MF\%jR]R-fxUT3H{)/dÞL t0B @X!f]+ .a( ز-7P%QzgAU;D<p[t0vG$,GgDz2U :/(Ap4S(%~$1|[ %*1$TxWDX* M`K}ۙ|ɖ9dj7Ȋ"CŇDձ!gQ`EW׫_ ^=@_KDA{5?Z !fsҡ=pxH.k>&Rh5[mXHz3O'o[N?NUsa=暛{J'`b=5 y⸭ln+\ԑpdڷzݱ|p`{<\f?sHCNwt3uo|cn͍Z4V;<71*wON{iG 1*EJ6,dPfڒOhφGb#$v aEB:V1μPz@h7=p$:Qh2R  o4fC V\:3gtzب6wdK@ypT\$`'SK(LSeIЎ՝8<6$%$K< R ^ˬɮR~XHV^"'s%kWpUʖV]D1f~iiR)"εOC f!}1h 1)B{0)e<"8Y#B,3ow"T YT QWKI+JjPf~e:_%xA3x,p2Ѕ/Пkb֗<>*H NA2S `+zҬ֯/"`ZA=zma3sv%]pЗ !ZeiAl[-;ZHn㏰7<Ϋ=zO gCA%-̮E6L_"2W7WtdRF}E3x=W絹]h?f|͸ *W O=е ~Ate.lùV`]F  ~= /'CRNlovB7꽾xWW^fKA{}ٍϽD&PC1{V/j +' @³`*("i`DJ{ Er*VP Z:ݾQ㠤zS%]۶TahA7@Pb?lʀ d®_s <.HyDp˘Hp3l)K ]BhJ7h/'L -oV<yp.f*_i)x/> bO’ '(m\~DZ qYuJnWɫ.3@l~BVbռm-3- ,ra!ޝT\Q5@Vu)]C%DFGޚ>g9~j7#W ymZ wѫo}=yoџz]G[(dKag[UwQ`pj6ڶ榭nY+fCHDhh?[cG{~U??̫tBd=(W7kߴj]oC'Oyʍ9r K$f% -V?mXxKTuK"԰?)9>D,,0映ϧ-Kūuy0ZQBN d ̸Qx7!6pQL:0XYۙ켋h"46BfE8 0&Ud4DFTs>'lq.aN)ePIF6-b].y5=T&N/sU0#:;fK hFP Yw`)e&1]EU k;<B1vA+? m*hF2".q"4 \`<]AT˩8d %CbUt ٳB .XLd@M󶯄ӕ|03?^Ѫm vIz}=o["]MYm؛_pU/|e/msn|} g! ׅhYض[^y, T*w*|vZpi!IJքE,>g~'n ߅erPk-Pbu/LP[Uw<#- &EvI[d˵gve eJ"p%/W'xCg݄ƱUMKT|Ep\xu/)Wj4|z5\})Q lVЃc12;t>VGbQ"")9)HcU5J*B9$yYGJah>0,˖#\UFyOu\!< S0*Le0ŝzf*Sm$/,[ =./df!ZH}PcP<&K1 S}Zk`!Pv.q!-*f0 az쬸L كՄhQVDLe1a~w}}lQgEB 9Y_ڴ*Gv{,/ۯJ~ BEC<-O[Voi P3Z_Yǽܟi/S3 l`³ؿp?}]şx}SoyA`;W]rnV] Zg*>2ÖGîGcav)dGՖ/J2Ӆ2Jno3m#"_^ :+"]ܵM„u`qL=hb/ T&yWVGnG uOUY0Y`Ω@Ǖ &[RL9PM"x0/`gs2&A fe& 0ݳȄY8~Dk…nj}jK† <#*._|Ol`Ukh*LD(LM6e c ZYQ,`?W$ub,/XzK=$| iY DœC]汵j*OU4I$?VRKY&kn!d' hHUgXAGS.6^TZ[^}z5 T'АNUWX9XP+撈zP_X*2\,93z¡}[/g0(vZ/oh]SI?u/z򥯳%{O>QFzD?[_G,:Vx$cӲm{J`X(KmU 6/?L,GѰOl w!EFk+nə0/qeFtLcL':8dv 3J2fKjS'"kFA{#`KnCQAp黚+/Vd`z܂Zj 6~FTOطsXdmcD<g&~f%$2@E5h̶. t4}3 (z}VџC?*UnP#P{iQt-l0:sdqK%d BC:rxR,.b@T#PԞ>J\Xܝ%yP\5ԤmC8_Z~C] x@Tf|b J6F~EX'^vwl`05 ce_/ EA^7-z= n׫Y0PYUAޮ56%6?ǞMO~}o :?*$x^RSrwRe[r k5;^%W#zրO ldd4lQ4pSm}ԪԔ)Wd.'$ʦx}qO{vѕJDLdzzM_ p{"5 Sz؅2,U8KK(*sN (xeW,W^"9sDhN¨(5jeI 4QpU)VkQ S2n@j#VL0]z-nB猬xFeRa&Ti"IO-IJ48LCҕ5FagQM'#˪'hC[f69)J)YC))+~BP M’XT1g`!< 6Fa֡Ԋ E OP,6<"/ӱ(eT)16$Au:@6Ug{tݮt擙 ό}qݴ+7qjګ_B{Si?WIwҫy} ٘ iLT msxNhnVM$,쫛۶zuNLW<勵8 };;mWm֩֎f30 Oj.[nȹJ)nHZP|v{%N]e\S5;;D=Tsi PїCuBX\捕;QVo~$Ϡx Ȓ 8+ -ꬵ, !w{~<$GMմV-ho`0 0HxJ\gV>A(4tb}y!wuP pi}-{_yx%>$>"aa %, 2 /"4XJB^}i>Ґ4+-),{K.\0&"@zBo1s!.ɼ'$cpK5ąFZ?5ҙ.R1s9 1K:d ?YSU?szdDQ1א7;+vbOݞͷ}_q[x6J -NC(&}eЀj񊐤SCʓ^R!{KZh\~\$JE :]Ao9le\dLNF-)S| j spji'](kRUr=bvtA$2nJ(,.;)}{=|ֲAYs-$hpUXR=Haw|,Hτ7Ck6Ҍ"+EtVMcH7ہ8LB@­LԠ&K-yyM*m9| ;Ķ"{L?L9"C*,|A5ly Š(#~9sA-b˳(DŀR WO\UH?Y2\)Pv.so\DеT i j[}^e]Mvo|/Q~6쵯{影M&%|)=ob상s[ll[fF8 1#a,Iz:L2:O}.^ɕwӨ{Ƽϰ}K$y]2B 2vAkeCn亼 tӱmn갂d' =#2yņ~W& otGG6G$; zVJcDCvD;x 7c7eIi.፵mIXke!]uԛX)/4` /vxnxo{"s/Xf%s?<#u{Ж\mΕ$9a-Bkr Xz|YwRpWՏ[hП\DQ%Pd.ȹ\L LX"89bho9hZ9EX?%&@߹q"'HǎE ?s<(㳥Ľ_j)@C\cL]żKna(k~wkآ r:= `ņފ\-{^cǯUG?6n~TIkV0`aHH%_ FP0 U+ju.St{ qD-!^}q-ruKZvk{|̷|PB^ғIENDB`(0` %/FG.HI0EJ3KR3KQ1JP2LS2KT2LT5QY9U\6T`0M^2Pc1La.H^0Jb0I^1H[2HZ2EU2ET3ET3K]4Zv4^4]3`0].X}1Jf5Ka9K^;KYE\mQq6La%3H]dߜ{011qh[h]SRZ]X^hKKJ-HJ.IN/EI0IP1IO1JP1JR3LU3MU5QY6SY4Q\1O`0Ma0J^.G\/Je0Jb2H[2GW2DT3ET3ET2J\4Zu4Zy2Xz2\/\.Uz.Hc3EY5I]8GTBVfLl:Si&+>SQkzb|993}l|qamSSS-CD.EH.DF/GM/FM1IO1KS2LU2MU4OW5QY4P[1N_/L`.G]/FY0I_0Jb1H]2EU2CR3DQ2DR4L_7\x2Wt1Tp/Uv.W|,Qu,D^/=N1CU4DQ>P]Jg|>Xm'#2FJ_nSixJG@ve^Rs[hp+=>.AC0FH/GK.GM0IO1KQ2LS2LS4OX5PY4O[/K].J_-G`.E[0G\0H]1G]2EU2CP2CO2CP4Mb6Xr2Qk/Mf.Nj,Qr*Mo(>X+5C-;I0BR:KXGcvA]r!+ *:RiuJYcRNEvm_UPGzi~*<=+?@/EG,CH,DK-GM/KQ1KQ3LR3NV3NW0JW-HZ-G^,Gb-E\.FZ/G[0GY2EU1DP1AN0BO3J]3Nc0J`-F[+E\*He'Gh%8O'/<(2<,=M6HXC]oA_t%/#0Umw;@CgbT|e`Vy*<=*>?,BD)@E)CJ*EK.IO0JO2KP2KS1KS,DQ,FV+EZ+F`,E],FZ/GZ1FV2ES1CO0BN1BO1CR1EU/BS-@Q+>Q(@W%B_#6K$,7$-5)6B4FU@ZkDbx)5&Unz=>=zjwTVPv(:<(>>(@A'=A'>D(AF,GL-HN0JO0IP/HP+CQ+CR,EW*E]+D\-E[/GX1ET1DS0CS3Ld4Oi1DU/>K.?'>?'=A'=@)AG+HM-GL.GM.GL+EM)BP*BS+DV*C\*C`-DZ0FW1FW3Lc5Ur=h;i3Qk/?N-9B,7A*5B(7G%8L"0B"*5&/9)3;2BO?YjGk"3D!'Hg}d;;5}{]c]^pv%99(==(>?)AE*CF*FJ+GM+FK-GL,FK*AJ)@O*CT*CV)AV)AZ,CY1EW4Qj:`=iFxF~;d1FY.:E+5>)4>'3A%5F$0@&0<+7D.;G5FT?ZnKs%7G )>]uNiwPND|}xg[edp{{$;:&>='?A(@C*GK*HL.KQ.IN/IN+DJ)@I)?L)AQ(@S(>P)?R,BV0G[8^@nBtG{JAr4Pi.;I)5='2:&1>&4C&3B+8F0?N4DR9M\D^rFg *4'5PiCWclmc|zijgWQVT)EC(B@(EF%?C)CE,GL/QW0LP2KO-FJ)>H*?K(>O'=R&=P(>P,AS1Ja:e@qD{Cw?p@q5Wu,>P(4?&09&1<'4B)6E.;J3BQ5FUnAv6\7[{3Vv+AZ(4B'0<&0<(3B*6E.;I3AO2?JK`p#,3$% )&2B).1ONDutc]\Qfhaº9aX3OG3_`+S[+NT0NQ1U[2PR4LM4MN,FN-DQ,AU)=W(&/=(1A*5C/:H5@M/7>8FN # ##*05>G19?,.-KLDwtcZVKdbWytCpe@i_>op/[a-PW2QT2X]3QS4LK;TR3MT1IT.DT+?S)O1Tx9g8k8r4h0W-Px*Hi)Df&9T&0B'/>)0@,4C2;I9CN;DO'/5$-5:ISCIPCFI021**(HE={vgMJB\YNolr-3E25KLzLzoHvr7fj3UY5QR5]^6WW4KJ>YW5RZ2MY.FX*AX)=Q)8F)?T1\9o8r?=|0[)Dg)Gk*Io)@`'3I)1C,2B06F7=J\cGNOAUPMDCF"$42mL|qY|O~x@uu:]]8TU8YW:VS6MJA^[6V]5T`.G[(>W&:R&5C'?X0c;t9v?=w/Sy-Ko*De-Ow-Hm*8R-4H.4D38F7I+?UXn9HR046HIIDFC9:5??9a_WIL=hdSXSV>@F(-:>$A`1k?}>|8s/Y+A`0Kn0Mr0Mu1Ox,=Z-5G-3A05B29C08C7ES9L]#-69;>HGF>=8,-)451qnbIICgbSTNF !D83^Spbd`dM{x7[Z5SP=VP?[UHrk8\`/P[)CR$7H"2A!.:%Jo6u?@4o7n,Gi-A_4V~1Ow0Pw*=\'/@',8(.6+19-8E:IY*Ui2 -(`,*:Y|qein_@ec?^XHg]MlcR{r>bb,LV%9J"1@,6+8'T7zBB7xC.Y'9S1Tz1Y,Ls&:X!)8 &-!&,%,5->O>L].AU3DYKLO[Z[KJH31-992EC<==:,0*;Z &0 2/EE9\{fjsmTyXxY}nSwkVuEjh&CN/C,='2.>)^8zED;}F4n%Fh-S}1d(Lu"7V%5 &!&+8F@UmM_tBUc:\xQZc__`xxuTRM-.+341664575:P'=G@`N*dbhstchc}WtWuHoj#:E)@'=%/2E-i:~GGAG:u+X0`3m&P~ 4V$4# &_jxxbxizV}dhqvoqngic>A@CFFmmg`fNd&qVͦ$ʩ6i`bhnhieSzT|sFmh%;E)A'=&0 6M3sCJJEH:w,\3h3n&V6[#5#">HimwhuuijdFE@>8.oxV@ײ%11)icgfccmdX|V~sDid(@G-@-C!,5(@V?yUZQEF:x.`5j6o*^_\)AI$5F'7I.9B8K\MxYYNFF:w3f7r5u-g!Ft)C&#*2?Piŷlo{qlbi`StM/8ì\4/#lgrlfhicb]u>\\0KS.CS3DU@KRP]hdgZ~JuJKF~BpTYYIF9nrqmmllee\;^`-JT.DP2CT@ISS[admrm|cVvW\L8e:}M]O{9Ss7@P8@GXix¸{έ3޹99Ն!T"eSfQEeTHidRlprqomhlj]<`c+IS)G>LWH[hPi{Mh}IauQzYG|1[6sCP@y6Y~)9J&,DS`dw~^ʲO^޸:OՊKyX~if<&%$krpsnnlph[9ci,MX'7@'18,5<4GX9Wn=`}Ah>Xm@eJ=q-Ss3i3jjn0P[&2=&/7)161K`:i7_8`6_0Y|<}3h)Kl4m7t4e=p:i*CY#+0&05'@[eˤzRZFjc1ٺD~fotjelpnkgJrt5PX)2?)2=,374SjCx@u5`-Pm.^9.g$B^+W1b3Zs;e6i&B\ *0")-+=L|ҬȢSdS8B6.H59CH_rksnimojcimnmoSwv9QY,5C,5?/7?8[wI}L@wphPZjJY`9Ѵ:\Y?'-:@Vg`jeQYU^fcikjedgilsrUzz=Xa/:K/6D09E7\G}PGFMMF3Vt1Oj6^1I\.]h0>Q09I0:I7^G}SOMPNI2b,Ml/Rp0Mb,;C&8F%=S"-6!).%'&('63Zr\?S/AC&-;8I\~foiQZUiihdebckqs[?bn0BV/:J1K<_I{WSVWUTI=~@zThsnikieldeitumOs|:Xk1AV4@O;[yMzZWYXX[VOKA~7n/Zy)AT&1:$,3 (/(.+<:1F@G\JmƇ@]Z(1:/]TAjfI~>jl*7=,6Hvfholie`broj^Mrv0GX.?P5ZvBzS_^Z[ZUK>{5o.a)Qu%>W"/>!,; *6"/83QR8YWCh`KvuT?jp*8=+7Hkfhife`abmpm_T|{0GV,=P2Vv?wQ[\YZXSJ<|1k*Y%Gf$8O".>"-< +8%4><[^?fdNvpYcIt{-1j(Tz%A_$5K#0B$/?"-<,>KIkkLst\jsU2EL*6K\|[zdaaa\`biopla;_m';O,Op}/c(Ko&;WvCGnsQ\|x[}z\~{_]a`aejpqo_4Rg*Db0]?yV^^][SJ=w-Z)Gk':V'5L&4J'6K'8LMnxijifeQ|9QW'.>=Vuq}vYzw[|ya~z_~]}^_``eottg>\p(?[3X:nHW\[WOE8m-P}(?a(7Q'4M'4K'5M*;OSv~iigd`Qx;QY&,;8NoEkGUQz`H/7:)26( @ /GJ.FJ2JQ1JP2KS3LU5QY6T]1Na1La.H`0Ja1H[2EV3ET3J[4Zx4\~2^.X~1Jd8J^P*:Km߂JIDsi\erzVX\-EH.EH/GM1IO1LT3MU4PX4P[0N_/I^/G\0Jb2G[2DS3DR4J\5Yv1Vt0W{-Sx-C[2CU7HUGbu1EV!-@/DF.FK/HN1KR2LS4OW3NZ.J]-G`.E[0H\1GZ2DQ2BO3I[5Sl/Le-Mi*Lm(:P,7E1CRB[l5K]%1ph~e_SjeZx*==,AC*BG+EK/JP2KP2LT.HS,FX+F_,E\/GZ1FV1DP1BO1DS1GW-BT*@V&B_$4G&.8-Vf7Pb *r_gmzipoe|(<<(?@'=A(AF,GM/IN/IO+DP+DT*D[+D]/FX1EU2H[6Uq3Lb/>K-:F)8H&;Q"0A$,6+7@=Td:Vk"+g}V_b~nhiap&:;(>?(@D*DH+GM-FL,EK)AN*CT)BX*B[0EX4Qk;bCv)3?._v&0Ih}OUSwgjcv%=<'@A(BE+GK.KQ/IN+CJ)?K(@Q'>Q)@S/G\;cBtF{Bu2Ld*6A'1;&3A(5D0>M5FU?Vi6Lb",4K`[^Ym]^V-LH*HH)GK-IM0QW2LO/FK*@L)>T&O0Ja;g?p>o9a1Qn(7G&0<'2@+7F1?M9IU2@L"0",&2@JJC{wgfe\:^T5^],T[/OS2SY4NN3LO-FQ,AU)F%.3'.45]_KQNG@@C*+KQ|qSzBrp8YY8XU9QN=[\4S^-EZ&:R%6G.[;v<|5d-Kn,Hm.Kq+8R.4E38E5DDA783WUMTUF]XR.0654eX{n`Y~O=M^4H^PRVYXV;95==76747I'07/XH$cgsecXsS{r-KR+@&4"@]6xFBC-\0b*V1N((.8ar_rTsaworpVWS<>=YZRWk2sA$ebihiZ~Qyp/JO*A(6(KjCNGC0e4j+^3T(#)7evg}^_ZIB4|B&,H<eggci^Rxn.IN#4F)5B:VpUWIC4j6p/hKUZjym\NNDu<|9y.S$.B)3JjxuP(۸>rR=:5-,(nrmkjcT}u2PW1ES>IU[dko~cW~X@o?RGn5CWCM[Ʃ=2Ɔ-`KeSJ^ZKmrpnkjS/OX):E0:D?O\JcwIdzKnQ6b7sG@s1F])3;t·ĕYǪPҬRdwhEA9lqnnokT1T]&3=)294Qi9a:a6]=z-Ux4l6k?q1Nh'058K]jftrC«Rjqiioka;X_*4A,5=:_{Dy7c3c9{)Pn.Y}2Ul8b*Nk!*0(4J%;M"-5&) *+H]NsN0?C6DV]fakigfdonKqy2EX2>M>eRTVTJP$.5 '+!+-3E>ec4JM1?Pp~|kkhgfqsW~9Th4BS@dWZYYYOD7k,I`&1:!*1#/30E@`qQ}?US/;Lnpljkrn]Ads4EV@dZb]]^PD;q-Ok%1>"+6$282MI=[PU~v6UX-9Jjonieok_Dfq0DU;cTa^]ZJX"/>!+9+>F=aaMvq[@ch,8Hb}db`bipmRx|,AU2[~I[ZZUI5p'Nr$8P#1B#/?7OYOvwbpMsz,:K{\|_~`\]eoo]/L`0W{H^^[YJ5p'Jm%7P$4G$4FCbl_joOv~-:H\[~y\|^__emrh9Yl,NqB}]_]XH2h(Fh&7O%4I'8LPqzhjfKs{,8FCg\iZ|x]}z^~^`birnFeu+Hi9kQ[[RC1[)@`(5N&4K*;PVyjfbLpx,8EB]}]ysphEW^(  @/FI0IN2LT4QZ0L^0I^2EX3HY3Xt.Uy1F\>Te0BQjhhaq+@B,EJ1KQ1LV-G\.F\1EU2FV0I_*F`(7H7K[/@Ngyppg~(=>)AE-GM,EO*CV-EZ5Rj9\z.>M'7G&2?5HW0DTWemtti*ED*GK/KP,CL(?R-F[l.CX'2?-:H6GU&2ACKNsqe=hc2W[4RS3LS+@S-G`8k3]*Ca)3D2;H3>H5;@@B=_]SVZiVxEmjO+Mn;w1W.Jo+6K08D6DR@BBFF?PQD11BdbSyo>`a0@,YA5h-T -A6AOMas[eiGHCLT8j`.ehb@a`$4D?jM>c{aCX]jhhf=[hEu\YA+Qq"/>2LNKuu=Waa`dlDeq>q[X?~&Db%5FIjqfC_k\~z]bmSr|8dYX\*;PZ|e@ZfUzo&&&&&&&&&&&&&&&&././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/img/PyMca_256x256.png0000644000000000000000000046544414741736366017110 0ustar00rootrootPNG  IHDR\rfsRGBgAMA a pHYs+tEXtSourceCanon PowerShot A60 tIME  "(=6 tEXtCreationTime2005:09:06 13:17:34!tEXtCreation Time2005:09:06 13:17:340D+IDATx^Li[xb8;1ofefUeuuM]=]-cSml0_,XB-b%B @|@ldA0lՂjrweVUVfp{1ߊ,yΉxy^{޻cGhᰏZu]ݨVGTج]è7ۯlF/U.o#8Q1ʨ۱pJuk.[ERz!"<6^=*nq 9ݑuFTݨhkeDzZώ|iwlv S^حVnU+\WJFw@<qutVkc,я 2{xN.W[E&;w_Φ?0m\ޡ"<5E櫱@@;},~/|#N:uYСyUt ߌ?[#џ~`l Ey>> /~mƚ{2@OXc+4I~#\b Bo):vdac< Vp 7?@{EU&`aQ4ŠÜgbך(xge z @*ZGHrSy(2`j'l=`W%G a4bf bTqɀι:Zu1x[M)MY6YDYTתFT1V@;{D(f<>&n?EjF5Dz@N/&4}q9TPf1lg%EtN8wSHlpmS6U ۈ6FMG.hK-CơS/ͫS6y.ƋTW\O+`*@PG'p80nE xTJ@*h C!!$ >RJqW|kFf[CjMЩ1 ;eіh`2 &Jcw0& T.arNy^"luXPE 0*BY51>~z_|e\v{o޿hCyv1ObvóTx5: QfԀeb1FjtȮ(veϘ#좯B61Nc 8m3w+\qY_12^U`hZ@*dqR?"2_m`(Y倗}ÿŸv\S:mhT@8~Vbu7[n[BpϽe [XҷN*:/ǀn~U,*, ƺ He{OE>u?#԰gG_h ߧ=evG,S8j)xjщz0e(sj/ Qj )U+% uaTe #&mz/iM0!dttxh$ /ǫ2n>(FUZEAQKuk}c~;E/ÏnF</^*@_0*jvqYbY|4@Hc:#m) pxe@>]>t4`E-Lpf-Z 6l7tG)&r?~=C!wLM!gPp7AGC A6d:2j@+!3ڡ'ꭌ m8ʫE)cK,U՘4Շ p\-m~gk#\TYA6O ,n*GglQNt:x )= 62cy?'¿?kq|!Mpɠx+3lWv̄QEꌷxtZ *qx;AFAh8YT1#7Fנ ScubH Nuy #7{x2Ɠ3F\ͫ]tg2hGAttј_/fN`IXF@:Z?G^/o!u/Q(c;j},nnWPx˸'Ytd,t2n3}щK' ?8nIX 8])'WLhƵzlws5??=AKֆAI7<, /  v n@O_*z!㪪ݩ؆ `FN6N#JiI1?3mL5>nQPɌ3^#c}9(CڂOxx=c fT0fu†WE@Sv`_,+y1S lvm<~a;&24GR GhKX)lO~m^yij߉7^eS |d.#e]ȌjUK~~d+&NgG7i(\ପ\pLO5 x Z)-^KF(;PA$FkRPw!Ρ^al.6ÿێ8byٛa;LLm& +5Y%8~7;^-썣N&Cݣ_7p !D`/6Ckxz_MLznDŬj~;M&/1%܃wO#Wgi ŀW 'lg /:Zh{_c⦢vAYHg'%mpMk1&?Xǁ$״CT 4O }3)6ma*: + m+謁td Y:1n4&hF ]CFAx&}V-8uS9p= P_hJn2T(5pIo^) g-1Z ]*їHSONxss P#V]/aؑwC{~[_Wo3 jZoLߋ_ >? zxV2{x0_@ӍG=h& DY+ kPV 5 `"ttڰM^lp:O6;6*(K%&(v0Ԕ16f`,7Zzqn"fS(uԉy"80UF)g"Ie%VM_*n{\w &3@26\2_Ww@`,z_'q=`Y(㔢W#e{ʼRMPs|2:i'!*!<[OFgqsfp֜IgБa<͟ggܗ硇k/^ѽ1 gD vq;y;hNX#r]\&kAlPWTfSO|$i(n|W4(-qv V9P@Cy`@./Y%<My42iU4^LgͼOU'kk ]*ͽ)iOv˩y"dOa|x .GS'꜃KЄxc9|6Jxy9pWd$/q~K#B.[ Ч;|`>Tgxc|r^&ccL;L:]&86P=?eRE=4TfVHܴƹ$ks b9p*<3(z|X*:mT9 Y{u^@{l)`P8~+d&rڤc(xӼ&V-֣2k!td k 2 ;딳Z!s N #17,(|sk\/ⓏdagEFɆm_ Qr3^ 4N۫Շ~T[WQxv,jxwwWߌ|-^7~gM\x7(H+mKF!ST-ΐg>,Dp$C=2KUE64\=)U*B Yl0pffK#TB*HlG52 dwaݜz,HlG;vD"6v=Š^}7..`gWHф 3! KfaN{Y<[Bxvb&G[q#,`0Yگk fu,5朻Ǭ^.6='9ECZ [FL{ޫd:2J L$W/( ϣ}[`M 2*;@M36StiOVK(S ([xY%yFם6k}d(,qBy<+a`Ft(:7 0> 75.1/ -𶎴 .,t5}i:~nR &PtKoL.ZqFiy4oxh߆PXN<{"NAݘЎ󫘎gц]|Q\N`&OP~d`2w XId22W{q[(搉A -:y$[02Lٓ![5ЗdcNq9FegN%jt:YtEciLn8 F[GQ?e|~ j} }XZUtS=9k:`u"1apj8YE-9(g۫|爜6P-om/`_mѾ6:j2 qo ǜbhX֮4&xG1$~?Oa|??Q[270^_~7o~}t>byDDZ7A~ʷ8P$_Nx79(|朻(_E5jcx@=^oOb 0HR@D`&2m1 t4ٳ<] qo.b5t@e3c3+c&kUonA_Ԑ;܂v|z ((0_I+$xfUfаvx4l#+*P2^D.50[bn?xnIPn, s:zb?d)T覅`ULNp-F`rM`"l{ȩ=}1lIloOBVSё>H4bxG>Zh ?-j9@'4 Cuƨass\]V:e;m1al]r* %Cf\]) a[`XnF6J6i&`e:˄-2l(AP=f2#3d#i0n6h"֬WD{=&QvggsgaLX('ӘP23,J(lӦ)jz{C͟]\D9R0Au,Pp({RLo!UO[P=,&jҺ)H!#<`2eޫW;NͬTJ@A:u^]0 t6"^;y.1V\!3iC? JȂAhƔN[8\EhܪJ3x_VrN2 "Z^%d}$zځr1 %.͛OhXUY0dN0P)5*SjKk&p(\ꍉU04eBW,~XLw7o%Kp4G_^QHS3I.]Ɨ8s߃'F|>GΌA=A's02N {AEB2&8?$뜼NߣP9|Ӝ.6R#Civ\GcY#e-lRi ~Jg4cpя &l<<ή.b0*3MOZϣyҾ^/HpCcߖ¹9S}8hyR= 0X 7Hh6x{b6JZuΠAi^DHRʫA5z 082]|+)@]T!FfҬU"t{:.!|m'90h|'sGr>:+kOQt,e6!'z#k-zJt(W Y&RL #X4w>Evwc7q6"ܵ\ 1g nd(k ] 5?O 6Ǝ<,L2gfY1oQQ%৺@ {rə^& M9Y@.vI#Rz/aOAWguCn#:otǂD > "B mLd$z-0OT`謸s>V\'_ ^zp0cw$\ji"ICW6czśho tn8}tq TހPpp\@pNo<J7Aa` 4: 90,cCN%,sEpt܌f2kneaE{7S ;{\T`+]Ŝg=ƚ纯K' MH\ld ^ _=Ad Y . 88aI#1Hl^VVZ:/`x.Zl |Ey:A.)6m̽k1^\CퟒVEXJOe{x y'K]+oJ=71Ӑ[w9_g\Wosؠ8r%ЄFbC ^3~@zd -7jae FЋx}ðy!%0e $8$(OP,c{S'eJc@T*nNVn,-7*rOEN*+E>"!Sܻv=gtn\ E2b*N#WD> |GvjЩ .g[9t1RvohyCF/}apԾِ#\-_pgѹxgoR$| #v{RFll o{lZCyrc: er_2ǘ2 zj#x$"8s88%Aƞ-UkEz4'`v;/'?q<..egXNCFN֢\s~P.;A6ҹJv˚U8ha Pּ7*r9F .hUy+@y &혙^ZQQ(@g ׊ F%1XI3fn~#gܸ];26:miθ HvL:`gu~ \LEh6[k@%K{7؍If\H/lm-V6sְ 9г;\lRքӧ]٩OUfօT ] ߋFPh?xs(˯ IXf azKpckWW"܊ӀƗ.>]|}>eb #gTk Q-c2(6 B.s 9PAƾ7e\ (Y} r"cF˜%m}2sRу:6jWw Z@?D' Nʔ#hU9mAd0MWq9.ƏO&ob/rФtGUj)}dll<quqmB (wQ[{mwSi'@$4i,]ӜN1gVQ\CAwiwT8Y6㾇Zzt<9W9q$pfwg)6e&ͤڊze\` b#sxm/xo'[!sӉ;~ ޹9+"wCs1.8Z`[A43?=g|]k>NTWÝ{  )fQ[`]{ggd;-lW4wгҐdA=$ afnmGou@p}/*3^?ֺVQm {Ӏkk w2k GtŇg n.xGxopFn%7~#ZV @¸2kLnL5N s@H",FWmeg \gm\X!vrDoV̨&/#5ъ?+ ӏ HA`@S@)},Dϰ…AoGkUeU/x>s7Y;Psb^HPų⋛~#=3+; Sz)`/gjo1 hÐ6 âک} }^̑\OO]\sH}茗sLmFLifk+u;=(^59~&]lP cq|f0@} _tL 1Է9zGCNXaXjl2b2ax@^*/;AX} %-+Qd0\UGOݥķaS%LĻc@ps[cl;hddV`UK:~X- V0]قE$tIkf,eϟ6Y4yg$zi#REa4n1Qbd,qo#iyU2T'_{1C EiCՋw ['S(MAw*9+t!cx${@ї.;YJe#I4c-8/=t{*I\-،xa'x!4p1u`y痗Ϋx}t*&0yw9o^gl3]/a W*л +n ^:T mM9YHa Qf^Ne[Ĩͅ`YCG%0=Y#Ph4k,n&JuHL)C@Z,fm߬8qǡYQg,&,GV),=Yb Q}#d_A1,΂g`M֜|ﵹ)rS}^o B+] g3N bA~0APvƤ [ - kn b(kpx殼6aùK.l} c)HAұf Ln7I*.Z.]Dޒ{_cD44 hb5U׬WzVâ#Wa bS'*n/xG]Ŵ 4 %Y]Z6иو6 @cыɹ9lg /ix9[rB̉ly4N7ȥiۛÏ$怛@mOіV=!$n>qĜƍl2cx$opz~r5351Lj3+bjv^ciΰ\ 0]^)=kFzo;Jf#ؓ1]EX,h^{B%>Zt sQϖ8L nn>/Ks_^&y| .77} g.Ę'11f!P&Bw 9}LҖ M5X]r+u_񌟃dfר*> 0W<&ޭ] <@V¬kbu &:`ub ?҉BV@O!SYD#FjvEyo"*jڞG{ߍFQ\ 1FG<^aw  n!ܭWJH:oQӮ!@9-l1`oQMfxio@pa$ɍ=s =rW D" bH0h{i*Zbo vb>MG `OvK, H[}/3&"xh[N _8C)1;pk\gozCQs]Jm҄lA0GQ,=q{;T*΂ڢ;#F 1"W OI1przVA)ͻ|g]!w AW`g\0LސXV+<khG÷Kne]%0hQ24|!9'e8?T+^1d )@+CjW83ɣȥ5oh:.tkCH|x4Eɗi_{ص.7W;ژvz׺Q/|Bfj|$zMxFw Nq8ߊV`$B *MYH] 熇 @a )yVN25D46"0n4vp{|M p5b@b])}Z G\p䶌@!#0r_,6 p2e2;nVXxR;bj=h-h^-3 t{״A:4K_q9hī.ߢX3A 8JƂ8xPnV%&,UE%f|0c=- @J09RYIOKs71n!Ebb rCi?r,Fkd &ڃ~ 5*.sud u$N257\V^:%(U{Sv'Vr9P4KQSb%G=$h2Kʂ6| ͽYNXY/l-L֑eۙJ!D ,<2b\%J]垕ݍF)lf8'qZtZy77+ :WA~!(oM{?n.2sSl;4.#ڂr9 d01F;W6d BnY <˰f`P}ޟ! &MbۯQwc<}rW旃W&K )8œ%VhvVYEh7ng-ʚCYrI r! [z!c\ IoFh" r5Uxy)a$.GF&nTzoZ{@t)sT:*7GIDHFKk7X͖, `cfoW)D;o0[+cKupMGO`XU%9;wpl؁\((F/eCl|`E?_soόd,!̍ }K(zJNqMikgpCjn5+܈B WRHVK9m2T[-۸]V (Gnګ"@F! F.A]N>>i4]GaKG0]^{W[{=L7 "*v[.(CaD=q9̊ %y% L) 4&jpuV.t9SYrXO}82nno2nk/X:NdTd+GvFWX45(9ceeqþY˂Rw236 T|@`ya r0Ө:"JU_e.-^Fn 0: Ʃ0ϐ=k5} nNW/l8}iع=[˚LE DNvSm:a|([ʡ0pU+q/z7yt&APrlLV`:j>ϣ8 ~$#0SC넁nn jh`չSbJ[j 06s{户u&gg =ԏyT]#'uK)[B J nAPDPU|Iƫzo㳝qe϶f!iݤeiv-NMbCn`(6m[\%;zF'4TAl iTw+gXf.ńTxr3fzY:ba5|!<%)@9)2sSSnތ yh'מ`ak lBRlpDJcNS C7Yy%coqu&ĠuZ -6A˦B+uWA+ƿky}o< Վwo6tW/ƀk 8vӱ}y o 0]*2& zjx^ȕZhϑاBJ4*bݢI~ysZaBvgTCvY$&G49 _5KM*6 I&\ÏTjĪ* `Ro5g8xlJ`Wcˠ n\'FZ奇ʊx9?Eub?|Ч21v4$@xO5p`\0~6D{[OWW(>sl<7@4{gQt3Ls =_Puks׻[i*Nw^2]5GFEٚ@gzr'cQH{8IOL4@,dAϢMu*c): ^8e\,)Ks5knҬgH^96;CsM%>w!&wl{֖{zT θ}=tV Zi ~^i0#4CD0\04.jj?ͥ Ճ*;㛍D%Jv9 g8<|ps gr'o|orM){ gl?[JVrR7FDj{<9=@WԥV}30J|fixJu%}ACxbC,x/c"7>t!{fsڞ+Otwt(.fE }g;\>NV< (Ya6y"wRK@&war)/( e StR3Yp\p6L:̩(|,ʨ ƇU4<ƻ9*3F\[Xyfvlͷyu &{l Y1S1 2Te45 }!Bf@VN@4!iDGxhetvʼ㼺$t5>;Xd/{8Λ60˪MYL) ctSc8T0(bZT>1T<?71(PE/ GFIl#zCQ ({H.w{^ڌCT|Ń-'|0>mvv[Zt^r6"l_&B:*" Db--sXu׬=1>C2[:Ԗ{A~|@*1U+Ĥ0Ӕ^N͹nExSRuz&2K8:ʢ*%ƄUZnp/S7MpC<9 q?F`yqk0zՂ@Zӳe^ǝjKixQPw!8}YOK.[:ђq='NԷl&O6׃ =!ޗ:Dw譫%ƗEa0=|PvZ5TC9gě:El?,? [0ٗ`0v4XzZb;( ݁X:}@22H^gocV3' <7˃Md4[ftWiBeO(f@ϬZQGArw^Ke5i$38[2op?<7j;5S+}h}0F:awf[Q,O.eh] (zh`3C{*˚E=@+5A<}FG\ ҋ? `jBv[%m5[QCW( \I09"SBV,Ƹ/KVy)f6gh_2Qr8P4q<+&=^!4'~n4>i9!JOw~yUB)\,Qi$W?C!J]Bs]WNu ٔKl7sI $4L?yJH; Wь`|*nU*"001?ckucalPi ps !;!y﹟cs8-FYIfq eDODvYx`ȇii/m2p/~~'Џt\@t/m;.JYvab q#K;`uj& 8YݒEKN#@ wG~7n2+gϱ^Zw(=9*-F>={Ⴃ-b .Wfr־k;G b#`1(4x2WoӸLXx7qU^BzK \jKB-WuxmXqSV5Z} o"Fn0Eh}kh;8VYeݚ1(zxyF Y@/0r<0M@fJXrKXXjt;)YsOX>zНga10yfi5qnxl<4ܖ5 g3ƻ ka-ƢSG5U ܁ٙTv5 䉮%0 ơFއzc.K׀U[>SUx2tB(2z`[opp]$J3+נV 62a.+m2061c8Ð ,amw6_;@;7N՟ӸUPOvJ]V0~.mtBEP\bָ!'[Aob&6KiST4Kq,DGc4v3:P$:]TYheb\>;?\>m M [WY `ElM] C=̄~o D+"hGߡ0L";Db͢Y /1Ar/&=7@n.utsǟML&q>nr:qu2 lbk(:JW3uc |x~/_H&4;;8\"* ]g0΢"?MZ1̖8B6zmt-K̓[~rqC7`X'F Cڕy&z_•*ޝÒ]m$'oC7å݀ Σk&@EG@iU6C<ELg+@e%:Ո{ opnLnyPM2;xFݣ = k)fhր־)8*Aqh&$bs4l@IchG?E?/^Fk8؊z~^g|<h]th*cIt@tBZ7f(Oya`S@[~ti0 muS5Cpg_ԊzC#ts = b0f_V_cͶ/.#NIRl0>=Ϯ Ma!T#tXYPy" {4svr|6'P煷J7"t1X(QK:vC, 8(=s92qK ͓ϧS0 tk%;sC=' 顧/F4YUgsbWݎ.1rV,ݐՌ%;[4wr]TF8W*φ&A*r l9չ&>y;|ylv zc G'pf)Sbs kR4JuODS1RUtL nX_I_\@Ʀy&# k1nU. IܨSPpýHw/nB.W\LjSV}_刷@?/J-u)O xέd 2_A{f2e[tG}:@ :r,7vVfAy;W ^AvN(' 8ng`lNOMu=((&츏En,Xi931/^d ]]1Q4t?QYgGúx4g mNja )ЌQ{ӸRQ=ǙW97n븚G :2Έsm~x\k-<vhHDe|[?o>ey[Df$#g*BxrK L ZMwsdc-J6蟙rL; pk V37j76Q*njT ?J>8ՃRsKiDDPsbY9ƙ T1 䁱x!{Vzø|I /d1Na;m8AA #<[s:p ĵ =7T~oQ@[6K4H7/fInY0%Er z6qV˄{ȴ|ekλM7 pZ7p$3A7u G~7F0LG ưY$5&8`vu 'v܆ЄЌ/t/ۃOw|YYoE/#? {xm<+e^gi_ZwPst RqeN[sWtC4 9*)CA8Mˠ3++&ٹG;߰`5 Pc (n~~فNP ŨKO72 v(sre $%=_;8rs nVY& ghPV#XCnָi9}t83CA<֎q;M^hs>-bUTVfbxᴐy,W79{@߇x"'C[ݭ瞮2fӥbtNG)!sdM30q*pRZFX ]ls֋~pC~tUs*Im>[#I EE$\iѩ]^\r?wJ8VP2 4VrT.Q׌#:賹^]\aꍍa=@ĄozZˬ `0"BJxlmAU(8nȤWύdx9}>NGl|ύb]rc z8" q팸`X|9U1=eI'(R,34NLkj,)zi8AIVhϠi(SfMF7nz8}\%BԴ&` *b@⚻ffy@6* ݬuh-\l BbZ \m !~rpkYGS^Uw 2f*(2ٗFrݬ ^r&`2ť ]mܹ A";; %xI s˱6b:ӞiV=tԞDvh%z -*:#11ba 0Р<i J 5\ԣk"Le*)Lc^N]-!òWi%rT`c$+2gU.$K{t0\ggLJ/LYP ,Um STv9xS>E;2~7x/q>fLB)kx)4pv DN-Cda ;fFsy 6[OerAyH}obi"7]>O"àIlyEރt=`Qv4a""eCG241%rFXksO#'9踤wD}*,lGVQ۵CL*xJ ?}+:FSk01a!|:k)υ{^H /jӁ^.~q:cZHQc`p6 wYYb ;8>bww&..i6Jj]hwqgf{g ӣV0üzKSgmƩ zW :ϽK `s6j&^m 9_f2)A v y%vjd6lք ; J/I3;6Nh5NuЗӾ\2}F9CWdc &8mӮ<@f<ڳݪn>'/Ylg`tK"cɰb, ^ "Br&!@X>n(L L./<ƕ-{o:;{cFbnȓv =\rQ5Oq咢88|2]EGp ͹Mf02J QZg rӛmFc> <P{ ƒ <! m=Ց!N b9l;Zpش0lpcEi'Mοx ZOn._rN#6Wr\)F<;L"h=fT/⼏g~~%ƣ+O3eX~:jʄ}1SotmĞ\MVr?^GCqol2GD+:+,<.nW(%uC8Bmvr90m 2^`%Mt¤!J/XõĴp@Eq@)sWWNnByKn$akQN4{%FҴxx蘶. d\#;ެ7RoV(]ra942 K(,^|=WQ_b :~+5s@j2#zvOG+\T_.;f'bPR <ͣlؠ8| }e<.(|n)52|8x ~.azۆ߿e3 좟ӂ&7&q%\s~~B˪|XMSyH#B3pv|B6ʝ{1nF00[+]m\3``cvIl IwQ9ƶج9CM~">J|+`5;dоm4PeNq7v_c&:#.Qe]Pmɝn]b, q1@lɖ#!q' <T8Xr 8,(\dj5\ǜcul RgWx%15MoD3 09&8M>%6FcSM`zI@,pM/Ƀ3Aەz !Щ1$ơoQU=HD߽DscW \Z N ڑWFNz5c.屨$.(/ `i_ͩA1ӈnDYyzvhhɜzRri8i/9+bٸw-XZIN<Lvfzs:#==wPg-P[z Oov ;Bv*G1A\cV-L֑~LĥYNh4/ /4XFF*5-!]4zz L kRadD ^#IX@L׻|'sDHRvy_B*xA Il^h^|Yoql#ȀNLGkM%Nn1KX !ޒOYPXh LXZ\L`0~k,`:+< 0c>e "_6_/B{*^\TJs;A:oYEW:+vC|joV-30Йd 0qXo>ZlfznFx\cyZоfY8%JycfIq隁51:m7*1e13 3r(Į\(֣2Xߐ[c4=o407W2$s8hα+ڋ`<9.rre.Fs_#3i[|xkϺq?he:̇=!`X٨*Y)ꛏ>qzN?b6 %8 weaE2ؕ:voxxKSN/[Dj6Jg]x8k=fɕERVW&NLb5ZP%P S0̈wf2K7b'X!GC袓t3J Qhх[cD,@>w+j,r7F ryvl[Pnv@R3Xht9n#snJbOci~[X[ bo~ׁGK_;jzݾnBQ8 Koo9 ^J1,Bޣ]NKݏ@`ZbXDAB QF!H}=ZW)0<o2VYb[f .7qB\<*+oi(! KAc(d1fhkRG ( xrqTpS=Qs;{`}q i!zڿⴙ\MW#<4V>}E#KL2&Ӿ3I+އi,hzcso{`u^ܠ%v؍~}Ct&j0Q5b`7 1,D_sF,>Wgާ_6vʭ9b.auqGozDXevz1r9w`b赉<{0h)Dѭ V bNiMR }[3޷oc>5OkΆ| ˫g42؄/ o^Guqpv“{ܯAf} ,ZjȾRXzLƇzUz e=}Vxo<&;g -8"Fu$2kH`uN}"yƀd $tPߖAZSi%X)5u`KWn4c Vz諫,EFDWcied͋9taK/,+9;TOfC0y` q!XUb<\p $eJ[ug 0 ; ܭwiNx#,`ۻgkst.o_A֌oo}l R >󓆁,wc@VjJ=EVkh(R< OZ~vSw_3^bmnr ^tZJnubg! G/Dx<[a1nG~;6lP`qeD[jJ94 s.h+%A2gz U繾aС]'b4XDݯq$ᡍ!Q b9\N{.^^_'$P0 0-H=3Hf%5([|<n*B{D9{Y3Nuf  `BՑ_2grrK km:  x[3q#BwXxr#(>g5q6ѷb:[`zJd(!`r|}F?$?szsλݚ< J#!fLv)K~ r NG' FAnb >1Ze-k2n| pg3!#seXUもRS.4ӏr Z| CPV)?hEGr_.FWq2 uz\z2R|sx[u@\Z ڶ]^sR?m()IcV"##[UkiDT݀~w*'_>O& ;o%ϲŠy<;7FOhیOG(^k[WWގ /2DwY:K!OK "%2`j#lD?Hv2ovjI/"\n{sd0}(/*@Q* PVţa;=5A)CP]G7Bx8F2< iL%6x^v8ǫh`鮊E7Um1 h!g#q4k0KbX%ƿE| CY@l;i2A)ocGXz*5P,*6PsQ*ћϳ@gɬ}5]{vKGkPn YG(>rSg9}I`D~r/k\ jz{d1 4ʗz:N'w>Ž&1ZŤ7 8KQƒf¯]3!Ui+>vfy-P'X `&h2[L61t'2c E\Ѫ&55~堻voC9OU1w^Ãgr_YG+[he;+ju݇ϣr#XǘGQR=܃P.:o\dA9\w|5Bh7قReZ߅`OAWgca!i64 HJVb&K ?3N^ȫށAu# oJaW{|@c(+cQ~jY^!)Z~\]]sX0MtQ> `@3n}=A|R|Fq^"Ml&c+ sPhz> SzZ–SM=E3E;˴ ,նx|buƄmΜ0(諷@@& [@y^DR<I5n@wL|8< 59m PnkU} Gge;,/+k9Y.>7b:_K/c$C*=4$>i>:d T)y,Ȝrgl4`+.M싰U66^9ݩk~]` %0=|A^%Jo`^\AJ! LyL kf Sy6Qv^?qT2 7t! |nĹ \ £Fp׉#-݃O}{ 0yXAjbQ.xqq\@oM4P OqR bc5y"eb[!.FIic433Tfe/ `tV1ygw;X%V"a s_>O>z]#z71ܗ7b<Οq+[{yڏănZ<5eV]nIKߠ)Fx-TG6}ES= Ds1lsNsj݈zz,_>U|ف;lX=o ;L6[Eg.#:n>yyޠ 3%7" SPzrzgɬ 1PD=hXO26f|{6,y"9;VЏ4{g&0~d>=luZUJ?ݿa@r:Cͤ&iq\snB\NnF_Q3i:]^[Зm6ۉHy wiVk]Mgw<]ha l.pNCo<=7DoMŭT=i {( "OFitN8hZ]lט0_IN82T?3|a icKe x>VX &;`0xsC^mS0t 0V8خǣz>skZ|ŗƋ}U<>=]ٔE๴e|?KzZL-hܵ7c]NU q:9+1O 37է3{+?'B#e~sa%-Cʸժl,3@4]"Ε{N ֘ؐ`i61 GZZoEQvY ҁ; L y@/_/hY^Wܯ@`JڠI=/㑌|IĄk9Ru#jŸ49a{ME?u ~z>XQ)d$(傝pOg8&kO]}6$Dk 2خ0d(3 #Mq}ɖ`Ÿɇt!U|xc~7ug#\a/5&{=7`@kI*׶r&H 6A Ne^缸{EN{XqtI.M$wAz\`2SBVyyv} tNڝag1C 2œg7܌ċxW/@O>"~'ߏ7(;o]eoCM.i&FifsoEEb,vg=0JZ B fS%sbn@kc^tӄ OO~ ʤ!`<%ځޮ4@WqLAG 1COG; TY2 oe"_ݏ*3jh!8^ *ArIf-spZ cلp~%R+zm.3lpZ7~w6B0lc4љr=\%C)! map&6t?Vh Wϕr03Еwz0a4[ S(=&zm &==E4FuePK:6I&E+Ov$_Oc[1Jya";!Rxߠ(l=E5qq,Bm6(ێmR[Z &(97sP~*hĜEp6 %(`ɸ7¯{_{'C77yZj:m7⽷lt4p1<;W<*G^nu 71#8zCɑQgbg? y P›.! #, b`H( Pw fd>^li1BvnpU tXc̿Nh3miૡ[g3 ВpzZʩ.A|FrYVkn\m` _EƄ F:J o\í߉o]([1&[ 95~lf'Nz2(g#L9#K8ʏ1 ji]w>Ϲc Du@sչ؁0,ou9 8R33O=\10X5K+;PE:/VzruqN-[37,s3` .2TԜ/ي=,|侀ɨ؂r_+ hX|~N t{.hRt LVS< uX2| tk9:3۰@ФYj%bZmفoNtξ%R2*~|_fHxӶ:FDő6k4e3AV'7<ݒ!3CLN܉Irr-R <8B[p?[w1twﻣ}s{q!>B9OnD;"; +rܵB#\iRqZq4DC 1jg0s-mT&PRxs0{!b+b؊^YtŔ{]ȳM` | F2نосf4b H待ux- O@feiqF_tr*_ߗ {c-VzC_2 ÑpX2*Sϓ( L 3MVFc0A0pp(k,U Ft[Ryݏ5b<ꀖ;EFzސ L2/+cg~;Чu-zܢmtL]Y7#lc9Af_´q;KttvVdwMBe;h7S1"X屃Y/~g; Ip5Yej#d3+o5]V{&̸0AjicG@fv ȧ:ť.r2vxWFJqr@}eLr[pi^Apll(ɂn(5F2ucW4VGG90n|-YgϡMvVmdBQ.m˜݋I߭Cw)#ʘ?$l?Ўjًɾ^w&o2N3m3BҪJq|x<7pI=ŕPF6ʩGbe, }P7>" H`@Ҁ\Ab 2qm^ ub,>2)ڸo+~^w! !cNx3䊃pF;9­Xx'o q:U,=tǐ盔uaDqr-^//?ѽEϐa6۸{\Ǜi|z&>7?>wGw=ԗRdW03P'p \ 4Hv!qQ:M,y͝XeFfSݱ]N@]WEf^urop1źK և+.ٝDֶ03fI1#*y.u7x;]j3 }v,0 EmI+\ϰJ+jB|!DɐCa<)T~Ai͸@JfU་ͣۿMe1oexe-Y ~m=t\D(_ߎ^xd~ .O^͗{(P˜} 1r?s1v")?5 ^<*( Y6[n4o5eͽSubW鴢:: Mף]$4֛M*jBV $9}0cfwv6@.&svo}#٪yb'/5<6r߻%A[~d+ ͯd =dyǽ ;Zt*y9{e@t~գ[A=8J\f<s募=Y[o\TVFQY.:¾N8umO:K[ (5h:_09>7Dd)~hv=Q Q5-@\)6sUnrFIu0 Ú ?{4B?UOz bCx<3,*YX w ƒRT=qtRaע .Ft?q|{^k|/ ȉ1b.FoM}qiIdg˛;X.YW¦_ 0#b>x&eQ* PrLS M6<{ɋT6b.l 1zc}A*@~Зh.xaW*ׄH|5(0}r2p_q7zp63̉zAޘhxv[WE!|3Ϙm&l0=a8ss](3Ga2q!@Ye}|0Xys +vP2>kz^?聦,F;Wƈ[c[}صyh_A;sK̩ܿOGt<KM(W2* DQg`p.:dm^R :ozb̎|+_|߳'d^h^i L=p'^}c[m@ks n.U<#0ϝu!JT^w'Ms٨M3I|@U8܍M c/CljR_m(< 4/A&>2q"0]VX|n{^\܊/#҈\ c4a ^F]:\ 3nLփ41w,l8 gd2O&10d_fAof*jۗ}BAKн *7}NFNKiLNQQ*ƶz kLeS7lƽ殮e&[ VV_)&0ۏϯ?9~lbA3&avc.ڙ pB&ie#U**ǘjb7&qF Ϛ" +ެOq ?5=^o_qѯ [,  xa!ɤnTsWP &]Q{Y?O蕀l b?XAgQg#]ׄ Iˍ2aNw%ܷ0uW ;^ybqkbb1Z h?9{AEYȄC=̻i?qc >_Giմ %EB6ƹRwsnsj ]|ܗ5gLJ`L[[賏qd8>LyWqhƌ;u;- 8r؊ `ˍyl'xSB8uV3#leTڍ<\J=&&\Ǽny(0.3l&x^i8| ox")vc 1֮ RB,+@;s3!fƛ&w~Mnr2Zg8>Gh]sjȠBkנ0z?+ y>!Tn7q(n2;Q]@$>v祻7SDِjkMCv$ڒ~ˁ{nn#779\+W2}Ս]hY.ܖ|褈kԮE(|zs:θm3\NZ?/V&22 ^֡Z ~D:G' sY8W?ͧ-Bu}y| Uj/gF~%{7+w0V'C B\$2¡uTp^}inB% =:HfJOIsxZ;?7FuK{r"+k@|7ۇL[*I#+<[/2[>s e񨭶i kp?ZGyo=0cvםe&4;!ٰ51ЀQ2 "C~zdtعԚ q{ VĨ|IǓ\#̡kbd)Z`"/J,N,U z2nO2ct3<..C]['WL<>̶1>,x~=Q)4z!Ėt0z ~h\LnR_;o)PpqȕղShJ0!"{Dbx_F\:H"Ao5`4gf̜;Cꁌ_#I`bSpnUm#k.$I#ίC9Ir0VJvp>q>k)+Hmc2o5*kt浙y}Cg\_9ӂ1`CGB:E@>:d",dMdE79d1~iTp&r75᷂=*|Y! f|E֒@xn;+Ruxĸ]ol[s>3 w/2n )2$U~R#BA&+> 5r6Zm!օ ̞bK x Yfנ6LämrkY&7]5D+ PQku)̩` ;Bѷ XzKeZA L%gUzūwbTZ~ ?WI0\82q&S瀞JrS(jWxe%^` nOz /=npNk1.28w~gN!Mf#:7jу (D51,pICza Ad?G;7,͐k/Ll'(0x$j2;5 >g>B,g8'SXcoGKvь;㛏+Ce4:Nn,= D_d9&J4%`Lpsژt.Xi,0M:cB_|,1xeevdPa )s` xOf񟝝EU%@.U)dxElC;NN.d4nt(>8x3.< C,74dE HOoF nXeُ[#=@Y(Y(D9?q˫-FYbc7CVhD) \/`!xnʾ..{{l>n1/>T;&_u\K؂!,~<>]:9AqlVdz湛T>zˣ= ߒj8[9}vc 6Np`Ya$flo<$PCןG^}z*@}_dlݤ(R%K8;v|2qr$3m&38>sb'e9eIDQŝ&ݍjz|bNAP,~>f(He*>]6g~,5q?Ѩ"W2O1{eǟ>Jg%w"QjQoqgtkۡ#+:Yo22юgh*Ͽ\/Nn:&쐽g!V 0>E :>GYRa] dWn',ץU,7l~tCsx7rJQzVӬd$+o;)no5ME,q#/x27hgu z4E`Se|u7Z,b2A/k6(|Vβ@N5hJ|6Ae _Z†bgZLo e%>H ^l֣4Kϧq iU{6 b?]Ś#4Z}`P6a0꣖m[ ƍ/By ثM3=,16z3^WFqN.Vw޳9(:k=)1A@,&~0,xS *$31ϙ[,ˍb!|'H#Z`Da|VY=h&_˸7ۣΨxs }C UϖuůFbq#m+1 5Pû}.__) bkC\i޽HM@Ǫ A*݈Tk<`Cb =0NW+\5vvDZGNuۋt-y;i0+RdExCP! L26zu.yl!T~{}ߓ1yBRda듵|,19׵s2:x6qu .'+>2o2>¤ 9>OC/i9 ](yOx*6XS > Zv=&ۀn)A8 P)#'B&1dM 2~;1_:g"yl.e1`r9TR(>0/Xla6:Cosт&}vqEܸaxB#`e*SQN369y?n]`*υ]_߉mvEf}FƂgcM# ;td*=DT 1X30N`ynl#EzS/]_et ZGFt5jO^11GpZzR[Xu{0=`ǣ7SQFf$u[3ip='2=q*lRFKy/$DNI>'0>9k[ 9F,j(QHki.O<1P(-(hfo F3XkW>dxx&"@fz6dfܺV?^{{ L[,$Ĝ?VbG/d[GX*:1h.g۪>LƢCp,L,=ws҆=F$`HϫkkP2Da<Ƃ1lAAh3?{XElĹrJ9T؃a{VO[[ʎrh,|%7[-Ha|yˡ (=z\_ߎ.t驘[ l zV2ǵn"su=/EhWan':f9JXZU"JeRO<ߤ @g&uJp/|bzU`-7Рu@o`ɳ/(?ZB)v>]iI"B{S 4{WH ,Y+ yi3c?^Ca>VtۑZ5&QaGyG|u]'kVњ;bjeްX%?qvY'I sk4%\٘Rz~Jfb}lc?Dt7ƘWv1ȺDE8*`ϾtaDNx 2ECA(縹Va1 bʑaˑo,^C 3H7,e4\g{ʛ9l77πٌ<~kmfpd"ƛEHj4"k,{̩?"L,̟>*.VV}B5XBn\ (9Q0%|  ;#Esj&*j:^]̷:{&^ߊ"gYinQvlif3'K;O\Rtz4c0w]E+q܍?e KIP̋^&@iخG٩{?~M4aªB@[+VZ"Gy&bc Dp3XzPfġ foN CnFLiT6[ E`$L#K\ޣGXB@X`C۷ףW fkX5JP(9(?Bvu&aǚ=KTk΍۷;1UUs:zyv`cK2" XòZ4ֱjxGѩ7`~37[PZ,FS <{up%X#¾{qL>|/7 k^bT}Les:Vby}]dB2Dݱ '9R6KeCܓǟH5$55٨Ņ8٨,L¹#_x!~/}4ffYD,Tؾu5(eQAŵ~ +`W]뀩7O3ϣ/ҷG<\a|/Pt)enZJ^ykKKt cxٌV^^6d""57#f_ٟYX~7(~%ג]]lDN70%YPc=o q&23ndQB𸇏JkE.ls/i] Q}JǢɚO`X.~v6w0r6 7`ZRX}xv E!4Hb1/Xit鵖|B39HFQrxDqnGge(F|W0h'СM~I>%:LYOΤ] Gf~w/6)2iCMh6t:Gig 7J ٰìX+l0X^'[nlLj X(@S)؃\Єr}Z{K+M|$ÿ@Nq:V*(كm-S!nmQFBk)L)N},yA ޤ+4lNƱ6U|!۸mlc hzm M0ʚQVc}f;Zm@j#fNy@l@ϞJd(TwvdX81_E ?BROObi xEȖqʸ 68H[9Fu= xCb pdP)AKO37t Z]D%2sƈ7bК{aNǂPgsS ϝ3.cguIU`x :z_zTؾ)ee%O)a{>*~"e֦C~1\'!DY]Gt˓Ty% $;,nyZn9 <,wd}85` OOTtƯz܇,?/7#Osij.\1u.@4/bo~Z^Uu"?*vy-4dJ@^ #W ^3-ᑢkRn4Vq U-&e(l [8m$g,>j_2˫& Iz<eAgknL;c,7rAV~ІNC%fu*r> FVJzB6{frE6ж>?[,`z96 A!Se!&%5{a.^Q|NgF%TZK4TGƝu\I,˓t0 #D>eXq*Ę<t+vU#44_ʑ3+|^wADŹZb#wVoƩ'/^k+?{xUw;qɥغs'>bȺ]pb+鄆v9o|}yg\\QE5Q@3r/RͶeV:xg8X5I=?.G;;}~qzb{/yt豓qșXZ:x[oǟh|'^ q|å֕2z|TˀSQV|LƪԱDW_7, ^zV)U0x_Nf(92bGb]Y?Հ.2ρʸV[I\X4D+Ed=(f~D3݊njJ5v 1/S{Sŵ`"Ar[Y#0]'ǔf z 4VFv 6PK^AX[vchv/JWdyK, "34pv!5@oT.CH<@=v2iʹ׫0YY<΁W yΫqPfu3# W#3㋛#0w̤ >-RߞY,OLU38ydW~מZPRږQnolWo"[Dnuq4a3P)'RY^ؔ*ˋc#7Bߵ $\geØ.eFks;6{[*N983] `*c-z:S?f4KVx2og/7wPz^ĕ'7 ,;ی^{ 7l0AL7Tg."VX?S'.O_n^1h y5\჋{^|v-fkgYqXy/AXlGAlt574`_RDf)=3]@jfgQ~~eh6X J^T.MH(Tf5(nnQmMc~HYB8S)dZHljFS kϳiC ޵Q5s@`/eQl4L& σTW72 Cb[P.U6jJAxX^ljPn<S#@#uIj1#v03_E{ZJ G9\)<.`?c =6S c d*03L?ڈExN1 `zT Ya^E\q<{h.s;i5`ݞ`LJ3R&qi2|րGܾXZَ9ǚ蚚+ӲMWiyl#cs`Y\(߀V^֙`wVZP|x2p~ e5`cLcSj*pc>?tc4Z7 `g=]ȰgNrKr(fu87%}\Mq,I5UPų2'^z삑N?`4]dZDކhcb:c zyzJZ:.{T~SŠ[2.%~[A(ܑFnΔ$L'K)e3N^@@*˷QAϐέ[ ~*׆[W!6=gpR0|a7b9U ? Xt}͘"%a/7|t=E B1̗|olN-׼o{ez֣eNT+u^NB~ e5}( }j1*iR:tWumWCbA8O*@QDv,Eja ЫʣdcI6^Iw0 2 {x1ՊԑXd/'G8.Bwo-߈xcF,fii[IaM"dȰ>z|-)`*'ǿYzZkSl2êhEPP-y7 ?(|BǨ1ϋ珉hVeSJp F+)"?4}knA6eNA8}iWL fgI0ĕXkh& ǗWl۾~5NXX>mG2J]E,lǚ,T܊?wx`:kp)u`hxPm,Y(AYMTvka|],BqLz@uΕv'cO$ˮ ?wOûD3嘙86SOe^̑{jkRD<hMal*vO6ZFfaJPV/zMmMAW Qs]x)c k}pLWʓ se1ϼ򭫌bvwysg?vOcy`~)>v4NNa0ӼQg\b/Ű..Pg;JrCdeM2u6ƖE; ٬NDLg?O__g4{Nq䙈m<ܸV=%2OT@tp0GOqQtAWF= kSyBK=A;,=A {|잵ŊJKQDbDl;@tmlNEL͟>ox\dg6d ӄ:)iNx=b9@91idjv&[0Igi`^T׫Qީ3M 0^ۛ1`aPоA'{%5H(m!b>U="/ 썭.uı*n` zOᾔa(L2^80H>iRvV)p{.+SYc8F09b#>k.WiN0ˣ>iwVs^y/8 lg3[=1!j,T(@?ѫS+jn i2oQw>_iWv<w/_s8* $Ϛf|vh+]{Hݯ}nZ>Fd(;@7OVb~4pRCU%s[4/5w=Ӎi!z1fN|;рu}'?噳iOq< 3 ָF#ߏ7>xs\_>'S x9bNa ڰއgP,,ΞJ;B(>4Tja=£ v06 ZʆɢLӉ;4ǔWOSkX=mvRa (UYQ\}8NRvޘ󃞵` EK@ک_cn\v?K[ t(|/Z;|7ǂvID@ϲQC ԰w;߾3M<NZ˦ڤ4tD!q<SGJ ]ǪNaXS5!"y,(Eݛ*'KEz0N/HXJƗόbz$O%x&`|Ɩ`xJ !?70zNUp(?Qc3 !l60ͦ2R< 5"v'Ge/R-e|}+g04G{QWOӟ}@Qw3ɕA3/~!n7__ѠMp L1<|(؄q}@$nl;?~+:KA|w[xF/bZ@Hk1޾k7ߋwW?Wbsoŭ6@?f۬8>ŏ=z8{ҊܵdR t\of=b\̐=K G3/| jWɱYŴ?-Њfe6h"~%XmO;P<IU77YQE:ݝնo&ĪͤfDEfĝB!6W>-jZth1Lf5F O]FT{0 ASy,>@ k5TV9le֠T6E gr{pxk twP-i*TY#ѳgcIJ1QfQMgjXnU^9[$ltތF3ͫ_1ݸJ4<7E}f6f;*{;ךo?|8[<'N;qǭĻoV|x͸~CXh;._OG LW1~ V'I)xF=*A+vI-H,YKWk\Ѐ~vr(zEaTXF jxl%W|fD߻vZL{V( lxJV- ʞ c tcw7bky%J@1۔r* &!F^F@ce 9BSDxq;\0 6Q.XIgj3fX =@;f¾]\I,gb %,8sFl4݋ Pjn{ d]R XL~Mm a;LgR(O Wb`3k_=![kf`8KqUřbՊK|y8uvY#<$nrņzT(z])d 2̫ʟ.c 豧7a׾7ng[8uXZ>=xGZjsk0=dӸ͖sqꁇFZ:{BLa kM*''ql{Q=ߊߎ?qc-9wo71λΟ?,b2qng=Fq h؋c'3?ڌw pò>~xGfsVt`W.f赯a^Սe१/},\ 7~-I~u>|TUir ;*vBB3ks7$ 5K٠Šj%Ka@IHablGnˀ$ 2SעҀvE>vi3RENjgia;Xd@1ggȃ4C$'i [mg7:9mN{7VqtP*cZCS=>>V0>J ޴"fe03|R=N5e- VN쳱DƙdpS@:A:sScad]\toŕ5a)aXj' ~+2_;F9֌T1.܎j#8x_WbĉX^Yv'cK¨ylFk󇌲BqhmՕx% 'كˬ1:%<[{hg7ycU)D4ER-1h{nŅ8QѥS*ޓrCG`Ο|9xXoq_S2+;3ɚ1jAB{9eV&Q=:~Na``Qq=xxȜ y y;[{A132iMyE+2X#yG#g^JQ'tP}rN :[46J<a( טd} % XPgcRv4zq>5 &`yvHs2R:- VYCn,D[W QR~ .{깰 <6>ʔ6`4O>VxGWƲ%u+ Xv=Tlh1Vi{8{FӊO|pUe6d΁J{e|ζh>lS%&lf:by-Pw@|i35ĽA>=' D-?}l? QG!_3aFܙ/?4>`}]6%6 -`͈Jc p0☝_K.xqśo}Aܸ~=6W(r{lnlcpXg/ r9{t6:Oē}0'O7޸ZʪKu֋{+ګq_')t7ފO{wX_]N|ܙ8y(h)g{N:I?`3XAb _?Wv́ MAzU\̳BqjE6~z<ߘ0$E:8" mUlL" & ǭdqγY\+NJ"<6tR-u:zM"UǴY,yam@n˖T8[{fw0jXN',Lq1Ig-]Jf^aRMǂ(S|pO >{Qwz^D(%<kG7 5~>Uzd$6W')Jt%YfЗ70؆Κֽocy ֪l9!]p@oHUk' 1;]Gw°Xyd|g]/ Oϝ|XX<>ljqr~wk;Z=B} [2M=7Ě\cĉ3w ]LZ{~ؿ_\_O~5=aGC4ߋQA{ pyw>g7ƒ%\.`W`fv:~x+/}9{xo}%V|pc%61ğy1! C\:IDAT90 $5>t-MU(ZT Hb o݊c܇*q,D:Ș`m`aw"ԝAv!`Q'u2W/pMj5oV%̡?t}R|@~|[ц-RLRQj\E`JٖqjU,A;n/ߎhܼu-Wף_&Q1͙=O|6\~pVڌy4{_=x쑻㮳'^@JX+e)bҜWX* \tSo~I RbQ9Pe" ,\a{X=g;t?88؛:uycuu waB&/uTa;d&X0q5 y{^õ/(N͛0\밳+G?!7hu'daEdze%B;) A@|3Pp2'Kbpgq(Bc!Sv&Aw֣ssX:>,~PpeZykP:cmnp/ijOw2ǘ't,=`V=‚I祡ְ3w6ŶbBYGQVf]X0gILCU%d#|)uq55La}s|VWXU Z oQ{;jubQD K3K'g8(<lۻ,2"h[gL-g!I=p\aY\j93~њ $*Y{my=:|CظdM>m~7bQ~/ (gm)?Fя<19` 46<}h\vjb}+w=7f^_ď?#qؔpڱĝ yS(pZx͋ŇM<+ŗ~w⇷'!YF[7,ëˠ3n=6'ԙq7?xt{=zs:^w_ai1] 1 {\ddۆ5}z3B`. Gwƕo&@rYd4mzt?h'%LAmƓ,P*D0dw6%UH 5یLyE6{8Dv6Vъ_30IF3EC "Zkomn6 ,)ʊV<2lo-ƳˊA"zjDmNJ>RY s 8aHa)6cO@Q">Q#I$ʥU/URیd4ʭ.bYgo?v8폙z)'PTe,{TPn;"U=1| v{%ˤ؁R- ,f᮱ޙ3N6!fSY aw(2;q[qXU^s".2 M V;-y玔X_&Xe| # 5ʦnLm˟H:و޳l\v|d|ߎ^ލ|{}L^XȰu|'.k5,d= <υ7|( Pxܢx)bIFloEŻ w.1`ۮ8r( cֵ@3:a wE5,*3Hn'n3 vP^l&db:c.s2]EHl1/ۘoʺtVR pdB Կdhe贡)Z_zyªf#NX(WLz ߿APj@cn ^mh", 3f R ?vrR,!M.$@cR_{1uQ|ug{SM)g;(U`;⻣Ь}jIwL#kl. 8Ѹ.lqASӜ[#iRLax .YV# Z}4n50lXtv>XXx81e`aQet,VMR\[)5{7vdy2oWv]/~Ͽm\j+V^I1 qwji6֯_lۍ~ hVb~~!~D]<;nV2/@͢.AiMYc؍l❫5h|)SwZtbhqzq#n27z|$^,/},=yS[0uF&ɾ< d+g^~ |&@;S+0ɏ K()ʁVMVckNL[ЊaYЖ'mm7pqFw6ҥ}Xo0Wh?Ϣy`ڭ-vFQ.WDEψzm&lfq:zؼǏ^`' @Y-uG?&a=;JZn'!t9F5|iӎ(.EMW hL5JXnt:C(2|hzi[Wq%i8?+BAV/ev;x@lQeE]ͣ,ϮyE 4F_ؤ!3ʪi@ B45).c(0O/،{c0N #}Wp?$tR߇zQ1%bi `TɗS@n`:9 ntpnF>ahXbV} ?=xi#+!WkScG?\#8`)\ ߎYm,S'>vOݼCƩ+%w'0R{wv*q4m՘LI Ƴǭh_@n\_ۋLu*k7Bwa~X]y+by #vg 'L}~#i+a):Fwmcи3Ng2 ut!"TjMn ~q9&9j׵fZ,E OREN1`Q)L+:qK: n45UK.vmJ?V8 ns& ΄}&d=Ow%l><dܒj}>Ԟ:(R%oZOegx[VYlLUqE9{Wyl;p?Յ\l0A8_ُrǙ3q vތuuywaa~dSM 0grZ>{ Vg?@>LJVY(^gFvnE7;bb2FMV8~(^9/w#6 .c9tlBb2gvY"…!Գ %@'TA&BDB&h*0wvy>PP r"lJloXx[|QX]Ʀ|vlPt0;RˉBq&3(Ft]Hh4k7WcCHHuymY$%V'6;="Þ2 vEeK<  EXJ/YL>HeMwYߵ S)x*KsTJ$6Ƿ?>R%=dy~/ĔyԻs3`rV//t%o.5c'"_0ɸg⣟LoKZ 0eXLߗ?A\|ע:gga4Goފ e1og$ ?p'ϖwbNX|$#7jyn"A\{}泾evXڍ5dN {el76ڵCg1<۠`e_N+YyEf~[Fܹ}ZC$7X%X{aWoߌKWbn(!/Ay=4c,XbD;1܎qťЗ5ZRRB o fc2[xBEߎhn@#,wbwS;bJYf-EӐ{ɏ]wKGO#(Kx铟}",`-)_"+//Oqߎ3Qe'OEß\Wފf6SA}X+<`P";f6~_jjbIxwχSn/fafLЬ4уR iBJ0lT<37OFyAb>x#{OgoFu"*}h/AmZDҗ\)ى!?I@J v,9Cg@E^lmN(t9sST>_þLE d#\2%Ixa6^Qמ( b32(GxX>y- > TtU;6]C7KRBL7fPr`?V-3ViYZSX~*G T#SXW=o?5y}`{(/Jjd'F@pX3/1G@#ŶGN'D ^^!pvfo-5>0xS3q@b4` f7q)`M3Ѷӽ}`V/#Cw墇;Ƹ@۝^|~dq<.$ɼ3ǹ{'`d(y{@Jdb'ڥwڵjH001_oF|BSƴ\bʻsP!fm"<(gc o>X|[f[,2{J|ȩ}Պk qٛlns`t ~Gk_z,޳øq魷 Gg d<ԙ ֥(h%ؠf} Z#(D Ưt !=>di뇔8GR5"lXuZ bo(C8Q6y/0}~!)XCPDS`+SY2QdC3<EE2:}*ǏCrX;A[RR8nO|ﲛ)f(q~*˼'Bֆ[-Cܴ;;M G0<7%KcYZ[^ B0'v_ cd)_XyS,q/^uSpm{}'yi`O6r ) ΤAJ9L_8ڃ a 2۫杛G^u,FM?@@-HVa}rj5<o"NJÀ[Xfk#6Wn csZwZ?~ C?b%bb/a*7 e-q5;\Zl:)Ĺ{x=K Ã-s'ƙowݼ޻@si't{8nr[bw?Ꮲ62V?zG175\ntF=~ H[zP,\;}m{},zR9B9io&ZHeWn_LN!6(DLZҁV mxdXS7rs96ɦoqV]g2*M g٩ nRJ޼odQ ()s3 GLGG^Hl`ӱB ]m9fZi y~]j{av[*?] =1߈?zXčqڇK;[1WE拿҅ tBpv?3Am%/@xJб6(FN2uX6:$Z)6nrpS{U6N,xeVK6W yk|"~kk+L ;-(ɄHhgsc=q嘙1֦VSF5&`# {:Ŀ560_;nHTr,0ق(E6!>erW%h6apCNDgc%*п_@(02†,#\XJZ#R}OvSS4Åx߻\)E~+be4,n_Hz=Wm<Ӵ^O2lG|}E`|| y/1JՉ.2߆*,t*NjgN1%qy֊uH`?;oę`n\}/MD/t8 eO<0 @Eys{#VW+[_k\As66ӟ?V^NL V\;FcqW+T 0jB-ff;f86Rb]w2O-E_[]fҀq- G?}=rÍl}7zG[_Vj4{}2rkZGTۋ'_oO>hxɸqb~z6@ؿ| &67w㟉G~&޻|Ex9|a|'.x ,SQ(dܾGNzDd{4k'dҏ!6n`Ro-gp Ga&M|l:}}9_Mئ[(d l>/* q+[q3{Q;lil}S(BL4Fd \߈񦵺(WE+Pmalң<ј5brKSVzP/8vDLb eI;Alu`G+4`?*%^ඥ_\{9*s(סWW6Zr]lM|2#@A* c̍`&ty/!s }XQzZ{pbԬe Y uV}):-b^g/WOjk9V0._]ؖ"=|eHGR>겵cܻ\[cθ W,bmm܉CN(g詟AR?xU'D=y W+u ʥKĥo7;ҕTnyN߃jO5U@7eԞZXk[\y=v4޻x;6޾w3pyz867N5Ӷ3 t;&z{+ڭA\_3vcqcvd6e?{<GɼnƱy1ק' ]c2꿇Ph4Ô7Xc(:ۛ1(F&lLנڭm4Us9Jr¹AkQYL{,d;WoD̀r 3aa2g``AO׼ }ppjcd:4sl^:;e">S$FT8s|gc 1ug,Z;fVn3״\o`om\A7 7'=Ѐ= r| Knxc"pumb-9U`65xE0l!+մgMd` }zC3Xo ZC[azec}ѯkq|`% :$Fh1g>qШǺ4w7],t۱z;wbֵxg㱏!GgiN[7*N ywvJY[k~+qqËoō++Cy1عKvaV!8,l,1 JX{lTwucϼd|_}; EzsPS<'o߉Z45^E\b\v5n]bMܤ_#V<O_0w7eui^0pNQ'B{bN*{δ]KVAID,e,櫩8.SxwqS O|4:?z! jiRPfMiSpZL=5b5(Gzo^b[\t2Ly'1sʍMEN&)#6CT|Zs`)fQZf ĺ=O{wـu 3!Y3 hBx0týNqNyF_^J1ly &_Nk>߷ұ-&&<3 {(9*w#n*[kf#2ڀ;&Ym~5\ȔP(gf#@װ֫_~CϚ-;_/d޹C`=x򓑭6\[ &ȚlzEފ(wعǟ{~({Zxt)l[:̵E7exOJĆ Ѹw8{k<+03b<wD9۷?7\j?0(`-(Eb|]SNA!'y*^cֶpe'`|ZAęlg/ff?6q7fQ"L9 wY.fa!j9zx`BdRM瘯mVYOcZ"3lL4 _Y-Ǟ'Y6VFuC ]k]a'k;_7ka/O.$&a9~pȀ&|aH"[ǃ7f/}u5H2Bnӵ?]_\C9@J&#t2J5Zehl=@~qPw@9֢f@3rEdy k36fYQkjo%j?i}t&z(=|lBlϹ Y& ;L 2!e!ȕ*5(  L7b{zN}*|}F_KoW76VR.ƒބ:"nNn/fSNTRGbc"Q'Q?+9mZè3@ڶ fqgt9xU x?3*%-|)3n t80`LF:tz#}؄ś|*uul" &Vy.{d+ cJ[ؤGʱ^=L_>a , Sdi 汵,67c\cc}(ձoY[`:XIPP-ƣy^ tYk xOsPvv{ͺ˜]PD&4ދ5d=]q4̧ ufxFv~2mu e^G.d{ߢGv$ ufFnnrt6=R e¯v2 d_yndz-bOTpd08(3-Ve`A5frI!%CT`Qҵ]'760LtZa7 ZT)Lo xB 6y8jl)N2֣4u'tr3',>9;?o~DX؂4YTx'%5no1߽%(9,~w:1cp1|)pƳھGP$[hyg,Fl:ϒm~YhBivw+1DAD?bMنv+Izf)eE`|/#\TFe`4n=ZUYbf*j~sOJ4L~x罷\;w/ &2vgmW=O[|:Hnjc\u/dyԘYCJw\G ajWF,x҃tƀ2SX] ϻއĜúƩF̝Q۫Ø%Fʕc.NuSYrzܸz):iǀC1'[z'>r8]1EL-$J?vQ͝j%*SiɗZ. ϞF^߃.*vPV:.4nw#!X6ʻHj!y| VS "{"a\ + q@aĂ#jRJΎ3Y3oĪD@FXf~7!V…|1)0b>zzw]c@f7ZxS%J,z6VɄKԾTʤ;{ݔRZlO+ 5XBG %nCVZ4c&%UOG0ʯb^<MڇEW̥7cβZװ(&ߺ&rÿ1i80OY/+7c 7Sa,Jev|| ok8{?ŦRX/EǼd{;?9򍰵 轉.gl[.t+a;t)8p,f٧*͘g<פk.r³0-'NŏbdXtjl$8麙qi@z, FO| fNyIgB!֨ }@.~=]2(3vMѓg0;)š-E,u K9 ړh3u42vh0#( "ړl8&k{PR*YvZb,>/6KG`S &#GKIxZL l($1]U4?~ia.ll2\LW#yĦ)Xn :P.Z؄M\b+(q5mAP|:]|mmF{X2(68jM,]h.z;=s(=C4O `e>,oti4 ^![Va-[e?&1&f(1^}x?z@yoP0i>r 7F朵֢װo>`#3QԗWPL3V>B5ǐ=BٟGy: qB<sπ?q`,0*;m@nG{c9*G<8oo9/Ru67s4ƙh}[ؙx廯"LOyE~{^z Y)O-=vPkLB@.Bҋt#:6ff?w![C?hZZOf H¬pe.; >8`q"omb*"ZiAPڬ05hKZ=:(WkSsVͳΝD-{J('شi /|`Ǡ`ҋ}")[r;?"^Bf+eolu⽋7RsO9NXl^ϝC _!0\am$+ZTD'YJοM|B%ꏡZy@ !w`խRCi2=׵ Ш,;lB`X j.W+jRv b3gfXG!x% 6< S_7܈Za=y#QkԑztLX.sG MIWav,߸X׀0/K{rBb,0 5 ea0!l.5o}7x zv7S,gsS.c%j&fVn־i=kaS]Q|OWqK0>>9S8y_Xk~=A1iXkC7SɟEtlY*9!2_.xۇ60Yg A"pYI?gZ[,# iL%:A?ZJRTIK ȱΦk5X6)48sxklJ`B@HTX@x= GT1C k6 {~/`yؤt&Ux& <('Iޛw]MVw¬`ϟ n3T#a?qFP˗/%Ƣ5Nfm5^L[OyVWbu x%LCd7,@dW㹏ozlm^LQml͍ڊΠ˳>ޓMǧl՝> Dq&7Gٷ!$Z|[O"G<]K?ءb̒+^v W*=j8>slT6l_wM*pvw?# 1쑯8%&?oKU'+/GDz)y5\{4(zpx`qJiTlm,E2lA{z+0^m4.:#\#Ӊ4ΰkÝ10A7 )#H<4 #l]*Qz(B?}6A|ʷ}O=y@)"ò9Ͽ{ƻ ,gJފ~^e؉`s{?غhªFdDŊ+a Tұ$&adjsq}q}*+}p1ſt?}N1c𘎹 0S箻Ё_28 %cCdV_4(g4z0̋/?~s;;B&+fǦ` \L%z\&KbCϢ{w0(z?&aG\L4sG X}r d]$C qP=B_ؤ@-&M\ `hksc%]@JT2,E@{ >k :MD.tLN;8`F-2e]o)܉|m9dMeF]XRZG|E:Z{owdF!%*O<70j>;l[Ⱥ04s;k`lvr_Syi,\!Q~#OS\ܖy̢ӊ,42 kP튮:C_^LAIQ>ϗm8}}Tw$ Pqu(E!Qp#';[iq,).P63@FP,֬ 0Fq@6R{WPZJɣsOay=_, s9dMo 5~;Cޓc'Nm܁7lםP,ram+1[ 6V9˯Z]vY=pfC&;Fjlb+((3ȧxTMZQet=R^d18X}mPX1`ٳѨi3m\#{!OP*Ax^׿'):?xXϟ:`aeK@1l#喚g ـ*|51>w&w0/hގ[wKWbms#N,GV2vq1kUZ;;."c5WMtXdtP|2; E#Rf>.`R2Ј(je._:+'@0d‹!(lFCW'K{}@aVmv@ y1aFk䞹 '(: ]5_FN< }ĕ%|`itک 4[4G@&`ÖQC'{C׫,V6 F `) tmYk\F Ζ%ϙ*J[eLMU7]m@\&7a Ӫۄd2ǚW: X`#5㚩J@6ڦnB9oVʠցoH=UjZZÊ52)N3TXVwzvdFbi~]%x".*~LKp\$?X,WX>dLbUͭۊ&XR8p>Df=;ib,Jjt{) r'@e2n?Ql݉cTD9txߏw_#]M\AǞ@Fp?/~U;2F4rsҴ}W_pz}'LK.G1Peх2~{e^NS7~ ހg6OR0]7`.[e^O\0b*IJ brSXQ/yVB=VST,H?s\KNs U{ĉ@F^ta ea̫b1Y^#Pd~kLk2:&B[M̈́Aڈ\އb<Ѭ=b.dˣ O<2Ń|NIE̤V±ү@i| ӍJʙhB.Ο׾'[߈G+>93iVC>'i11A#`5!6զ>XfYGXs܏a|sxy)&?6{KNϟfc 7kec a& Ḻ#s1 ? 2BLUeBtJ~>TgNOҚiB}@PRE4BBo;X; 2Aڝi Z<.pdiY$cTRfLEIrkͱ/OF{R XT0P!kF `$>YPa<]5 fKހÎ<1x·e?H_8q]?zX?52(Uh\ܸq;fgn-6V IDw2v:l52gxfu~^,>n^閥^ i:Ж2vrM<@GMaM1_,wĨ.Ger0h3/u̺%VeK.xIb^aFi 2tۭ$/ XWE VOGkb]#n|[/sŗ_z.HOeG=O?`<УGb D^ڌ bu+0WYntzr FSx2}NJʥ"cd5=ݣ̬\ot1x q0JU %:zy\?@_Ydk̋_xBW1Yۀ{}bӱ^*_`I izt:<$?d<J|^L.7X .VkbVR) ֩G:k2-=A(0ZAOVk0CcMMqD[dᙏmzi@%byoF7‚Obj.YxV(V轴ĦZrUR')G۱hpP~=檠kŦ2oYwKQte 6wI': vZ/_;,#nzln=SCR[a,:⹡PM~\p`jrZTVP덞KG=Z)/9a( v5ӧǑ_ϦS~e7mc@#u$dp*,8|gF>2LיŸr ܫ'tgk026/2{q ? 3x$:{cGTKM Xb tenm SG?~Mjo߄oGE^MSƃ'w7~w";`6=2u=e]OݳSOŵ/}&:NGfȦ(>+k,c~ (~ k}r_^siZ@(%V3 h G͕(V6ǣ#.h*JO"96@El$P/ `^<ʮ*xw>F?4 gkɷI`?^!Ǟ 閂G\dP7!.Bi Ǹ=L~"#@9kG)8{eoZLլw3d`(OEYZح曗ƑcQob*t9Yseٯ,=I<ۭ*a?TrfjmM)fLknA(ǪDFab_=Ǘ=́ Fz dM-zwL=)I݆?#3=x?|*ͷLw)I|{*E_W3O=cgJrd|_S0?ۺ=eoX؋QP`o{'õhWwҋް CUƨl;wbs.)(=T=GHL8сmν(GW1tq>cS|6L[.meMqZq}Ǣ@|ߋ<)}*ۙOԓ<яXolXvo &m,@Z)=tZ{ʻ" D:zh"; g`ͭ;ɂJQ2lxԂilnR5>, ڙF<ظ/XKUŮ2l7`Rce-^[/ʉ*&;j&yDV[^_CS Y'3 ciZ%BXt{+ZˤBor(Y fSk)v`7*@jyit^6_R]sڇ#=g:q1è8V/\"T9uc[ȰYǫDaKjc7qE S0z%x'heTCU^%G̤nFĬl&97oع֝CuG1u"8wwwيPٰ.0o>`[\ڥnߎ"7@`B\ӊ_5OxU0.RQ~gC?ڭpp藫L4z%M|J֙ *e=^|{ P~$?YMJbyzdC ,}Ӽgiַq؟-\,7/zߞ&uMQl,B^n_ X[۱şݡ'Knkniw|=Vn_  6[aymۆE,/9>弈u-6ދcQO</}x's/1NfcŅz<ϜFvllٗ>e*,36>Bs(MB(k~;`̧rma`<4s,og,i3z?Â4# i[L*o~dXG3fN(v וd~{u+jC˳2ʜ9,N:k6Py,YXNo&nKB ^ l9U꠷s>BfCuNʢCf$4^^d:7-YJ+ WB¼=?"Z|#IVq7E;1 9k ]ke(u\LM21(>EL<+Bis-e3pJf:K|C7# `-Qu1D83GUTmuiGRg)[(D{'?he͎ϲ gI=1#K0v&x3}O>ӵd)${k'.Y6wӬaioc@FK gYxZs4gu8?ۏ3>/?aRWϸYI-?c~p8=m♅:B+q;qL%vYx&y؋]/]oWgIj1NSc:_s s*~bܺ?cgڙ9\tWTL|/Gk~ֈcu{9޼x%"4mhnm=G0:[0?g?o/ zwqc1.v{xutq{4{gxxO~ȅP@A0PM~5P vv\KZYL~b%dc,`m5 3|{X mA*߾y;5CamА"eu`)UA,*֭gs$,mu im+P2-WDXvh|*j5Lm[f.3td~OTS: [w`5i!Ii^OTcͨ6P,FZU Tݯ1_3eH.9N623{!' x*-ҏ~I1gXiSvJNuW[{Hd'{!Ex[oP%@ⲡ)j1hX >k(}1JGQ6]D-=d` oǤm:>XieŅܼv-^Eӱ~t:1%[l{dlP^ŷAfS@7+ȸKߍiC?cMZ%u~ 6.#܎Wo6c0AIt wґ÷SLL*'}>)+& biї~1^[_ wv,[d"eW-B,Two.jPϸk |:Ec؅OJ?QvktF(.XɈ.TR1~*4+ָKJ`NۇBwc}҃me{ J k8L[;%!@K] DAkm7Ehb^T|ry!##jn#qI LN+1eeC+mT  ?U{ЫVg:~ (_nb7=ߵK[C{[E׬6e uOlaj4u@|YAS},Z㸾wM H%[eCH\FjK]QlCla9Aj1 0ŔZ\}ƫ7vu!d\˅u@7`KannN/ᓲA~ dunj e:L[f{YV֚Mi5L$?8<QBJxO 4>sq|%2 ?(< O}e^LLsS*<(*Q8&Khx {[+_g>y O ߅Y3yנh2@zgRpjvՑC$=nVN͖V?޿0>3Fm7AuktM2Wܙqd~>:UkXfm9 pD;_Ô`al{?,e?DGNMYɪ;ݭ_GoF߉gx.~8ݱ;u r%7`$!G`}yrL΀:P!EoT h)Hc2K% >V@SAASlN&vV@ٌ!Xh/Ns|`n;Z{Yx=p @i~;*b@U+ػpf0/ ÷ 2)Q EEz0&{&e?He/ -QxϚ6]Ȍ_nykzr0[NjPw9uE& tprlRds T}@Q2EQml݌Թ%XYajL5Ь`dkIα/9  2&`5*3wG >"T$] d1).d=QDBY7D)p+ӟtL͝/Ŕ<8w4Z~w9՛q|d1?&7|_rcgo.(5 2?"ϟ@-%-l-.bcce3+;[sUEB-n5$- C9d5-׬kot3:aC> ظ}+`cOߌq=={PxF+@%\:GwͱGB1""c9c"LE&Ǚr ٻPAi-d)+Ȃm|h,"=+vb䬶^T _ ΠQD#}ĈC!AR/`K %nw-pU9}"Tbj~! ߘ]L~^7]"x E fi-f%wĒ[ajgbiT5*$N?z*5!wϨ>) }ַ7v⺥s|֋3&5ڞ@J]'O. 0IX?3ǎ7>&-NNtoa`3},(;Y rF҂.b<"AKcѼ'#OğEl,Q!2L㱉îF}!;aߘA.8n>JBiT:ۅdcB,;j Flݼ(}ϬG?UAHxeg/i&6ŏ3Js,5Ba:s L"sˢ*6܎:@cc:U|3zNajԗhQfTiXzf&:m̙@qPxiGz}4bSTa9؆h fM[[3f$wTM=[S~ α^CR<ؤ-v0ڋ=v)fK9BW' ~0O- )G2<0Tv쒝3ʔHeƨ).DA֟J˜zPFm֑{ШY9޶FO?Lٺ6=5i5 @5rOfp[Y)>b"Nl_a%A ş{.[ۊǙqkqiVp5̇c,jax;)X[^v쬭Z9_e?u4?o"SP'z> dR<~(~w~/ [C79ԉeŷG~q*sU|^3l`P3JqN#r쳎kSgTgO¶[*X]cge@y+ؠq :$~Ik@]6ݖCuQavH_+VҵYggcƼȽcFh4nn,eE8혛 Œ4^FHC8f=cc|ϧ JX>nO ɔdgk35@ !A-T_1V?RyG_o}`,>"m̛Rz/DhP,Yzb'iKW{Z?e~ O|fz,Y]bDex`Od1xptL#xAyB;XrY_^ ?{3HYkp1 ۿ\ɸ YR5Oicii>՚yF_xSսeUIǽ-X<)ՉQ8_ |:`MTMsk Ps+[ 6#30hjY$37SF:QD|;5S/SwO0}Z?v((뚎 +je3 uNV0Y"8C`9c*s@gd))9˺2>.&?8h3'+/ɾRLL[2V s@LZ/Œutbǰ:HӮo._NĔC96Do2'Q=1V>Ɲ|#7y@`.FYÄnL ss55}cwM|?sMWwbInF[V0lַÇh>{¸+= )زz0+m}~TJ%Fjb'hIDc:u+jUZ$&Qc3Y, "\nw| r搗6ϳS=vanYwp^!64RnKm&!LAzFk@rp̣30H43&'G,m9USA,ojm cv,S:TF*fǻߦ*ZmϺیMm$Ōmj>"{y"'iS4ڪqbRV5GY;`5Ce&.-5տH mtTD@3jTfbf$nju٬dp30+g(7r܊XcY;[eȴހFXcA mW>[We&'p*sb$NIsg>"h'd}Q_MpK`lxqX}dx֠(=ً0;XǍ07;x/rWGr1g8}*xieNwBS,2 eA!FF&5ɣVܰa7`R,f+6ܸ &V zb#65o^8jBiԠ)V,^9UduLcaҕB=Xtc6Vnc1!Zktegb[> S =݅=xK F6^K(Qͱ$Ϣ.~bL},:%1/P{j]}nn0'0ˀjZ(5{ffzx7GH1UtigJ\Vb}U|/QlkzwbkO>7 舌IDRa$H֌ .}p%Uc{eYP )`:|;oF>}<+zֳ؅/ :csaj8 \%PݫW>'֛o;o j)Pߕfhv N3u{@{ dA~E W$w:p|˽FF{ѻÇyvx.;-z>}"C1'{{J;VPy9e%+ KfK(:<tgɡlFf﹂8S@ϖXW_?KM6x ^m?",aTlYt>BfgEx5U1eGE[glwOFqi2˝7#0wcM-5<{­W\3&iI>ױ?(ƞC_o% ,>B61tF?L֡ 1vha]B`Y7gswF zj-f 5 UhX}ܐpǼ8#6 KA&'1c~pb}BiU[u) @C) , JQoQFVxk M{: tJg& dmHs+7e`4ƟCT,nmĮ"mߏwn>Mt Tnldp?(=m{'"„KX,հeH/oC{#<4%ugףX L,*qӿsqzvܾ{7Wn4V黗D=o2s@J,D OU >wTx7CWZQngucqzA{abPcˉϙv(Cb1w5ĤE8'x^ﶳCxic91TYaύ0e)w/ĵǟ_mŭoD+V3yAhmykc[Svp.o9qxO_ ,C 7/~)j8:N+V)9顚3,*y*o؈1Zfp~x,P(vv&(~?ZP8sd`,VH: YG$* JR1ѮC'x`eA'{>h;X?[^Og t^&Ax(KSeƃI4ڭ߶a#A uf̽W%l!<_63V|(.B;\=?:koݎ/ɟ{ۜϯߊW~-ZȢ % >#^]4&ޤ\``ျĚx].6cwofqɍ!c"d57^C]V,E]{<'i}-:t2Zݻ>B L\ q\lX1σ)GS Iцx9؃#?s+V2f"z6^1u;7Ȯ[uALA"6575cr!>&lu%O*Cd4φK.brR+<,Knn$* "0Xe0(X0G"X345>e|s 34Hk%<‚׵b tZ/ S-1*ڄ sm; "$_~$BĊ%n8G疪*s)d]1qK{`m/.ǂb4N(sK='Oe8jecGֆ'Aj#9,qiG'~dPJp_ V/h?'M>t)Rݰ~ܼ6r;rm{p|/4z?9R=0%}'_z=^-c_hɯ2v_9DBe I;]Yfg 0 -=9.;sVۍZ?#*@_/&X=0󷘻LtOc< uܪsFăf1S)ĞɾlG/7{;[NՖk FlLlK; -7[bG,s&0E<}J04h3[  ^, bL.7b5fD:>*|#~Oπ7~+~eh\:\zN bՉYS mlZ GKc=9D?a~øw,b?l<ł}`JԂZZzz7zr{uc%6Ûw0v)g YVϚdYf$v˄2[=v!x}|4v֟1Jvl\DИJ vwW]}fkr;(* ISc\1dڸc fK,m '{HC8zZ>_Ŗe\?B7V"[`O\BP13=D҈yvOis&y'/QEAt "@X=7u\(bT$QuZ܀Cp 77!z*a˿bNH %D !5`Ao9÷UVfĮ1Nw N岱|;M r ㉒Kh>ww#סQĕ|(2~/a3τ.%C(!R#.^C1ڈ{a/Giou:\$SK;wN?o^|!Gv0zvNv rڞG.cuL0A݇.CbM[@,k(iL{'l"9^xCo}ghwUi*mTC8pe-Cbs']c\L.V͍z͎:&^@ҚHM$*{tXr\ ^hon9A˟ TԴيה_qČn(Ѯ[bS&t2ibDifl tYO[~7'cv}$z=.=d|j >O(4.(o;J0B0 6L^._!#o%(vx8Qғ7)p WD]l55Bz eO,l5jܯt^d /p#[OK^CxZt/ =(zq2ZZjiB%)y6bsS|&fE_ANOcCj C34*6ag͚a&qC6Pzgۆg_730׃GXf4Q:|zG IFjc@+((B$`dh!1xCA mLZ&]%x][1'(bF|sn;U>!~< n*c@f35ag<*ᆱmN4aVF^{p`ːoPÈ/ NMmdU<(]AenjjJkJYG0TE=@D!@uRm{`{ HEİ?i87O 1Q:(&.IUꙔk›΅O91Qphm|ptg}ga-VW:Qg_j<ӈd|.!vsxN+[_ŗ^ KUdTcv| ߻ *7W~#q);{xWqd,Xd2({L8B0|:0fݘPj Mcnk V.'D Ƅv^[DI\r 52!f߉lIVl5DCxX@aj8VZ ^g $co! s~+]G(g*φvj .RHКk)La j<ӧDq5*2'槷4Km`iaKmKza؞ )Fn<,9> o0J@ e֝eCPa|-eAm M:N(aK: `DaI溸K\sІ[0 :Ií-#1T\3~ r2;`uKi]A|$JZF3K̏b2)Qjy9!9G}/*HfCch-^nt?z>xpTM[ b;F–[OLV'QF :42C+p VkQ`v'@{0ȰS VF/*c$?\TR0,vU%tt|58#MX!bazN_#=d` dA=^7j KSj `Ybo J]rpkw%z0z^|K_?tp&bF ;0HcC^`"-&,jcZ&Us77g@QKƻ0^_YY5~Q䠽,3er'X ϹW 71 ݡL)s:L /V|E/0肭Ⱦ<_Gc;)O /?h6Pb"B1#0" <BI V4_f!e \n.VDx_CWHftrØ9Q8++dڡa ~Gw@v 2Ez{o3NB`t+}.HWf0ô5ȳC*/tqy[oy>[jvyħ{4z 5Z/xsv\1ó!g.F2@,kRU&/BN(`xd"%l`sm4I+LkX+y\7E,hdkXiעqilngtmUmo ,}#.½vNc)ıaͻEDf[LekPB,Wmbm*)fy 1Iu^25%tVClA< .v4R=^UX-S't&!8z D:qx5P #0*Wzj E׻Q!5dCk n9POJ]J%fx0Qn B!󖠍1&1k o< eR]$Q;Oc2HD5޹y#`I@Ḩm6%-3tWZc٫q:@En@Ǒ{1ve+$lҤsbT@,Fq2bkr!!{m 3 m+c{9]ϐ-^kabf"SӸ> ^CJ4+<6B&Z^O-cGf1{MvfϾ@84bo\TMA'Ĭ{$QV3 &34^FZ|WL+c} B%X aHER-VJf[ ܚ#vuI wѿ2]gdiaȬUnuE cXiW\hV}WgsJq$1̋q1n wYL,֌w͝qn q]9sDӈuh$:0^%P[so9fi!w(E0 [w.Ә/eK ^`)*&yO7$\d PWEԑXRYC7hJ@𒡡wZn4:*bؐ:vt5c#ƙKmx}Be"N:#3Pճ#(-Ql`]jڤM+ ĵn̸ݺ+>wC_k>/Ƌ{RL*|ñir:y0o#ƤZx+{qp :7#Wb& Ta6[Bbg6;AZ,:CmF1Tt!Dh M:;ߔP`q&9W6OX5CDzM:sk1ЬFQVǔٚL} cCTUJI1g0 oww&AËfS =k$Ezo>3zj$dtv ^rX PrEfDP:79_`|,Ҳ>=;ǚMBUX7*Ʋ'QhTVk7tW7.(ƣ7TK] /E94&*Әi@D9߮ۯ*Z5ǪIͳR_K3 XVP]uNT\nC*Z bLZ #`݃0 7ue6`[K-wW({1j .U7x(^|U!>v|G a"9 LLeZ<ӟ|3tA6T|C/^*ϟ)?iKƾp(=c"Jpף(DHC:MZ/^ـtohqtF?ZVC7Ki6TU{"8ϓqn* 'n'3_ GgGq۩b0U7.Ml:"{|Ͼ&rR`L»et]~787R<5@:⪌ |2VLVTlPgՁyK.tP/ ; Ub^ bY]SB\7fA:bb6DiMt h4! cr }9~hCUxZPC)vaH)@el!0kT[["';nq0L֚as+0<\* 2!xJ1ˣ.4FXrլtPaMWeOvk40dAco3@V Bp+ 2Nuk˅%ò<{؏o;f(Yp{fn3Oy,M*Kk~\ 8&C繁K5Ȯ@̿ c8ჳo?:j2U ;Fِ( |Ӌ3T̰s[QAyq,/%J{M>N7\${c\kB=wal'oѵ9Gl # %.\~xq ܓyN <?P;M]YPaE%BHC0!L5C_ v;KĖ]­AsVL_t8'1B{}xN˻ߊoqͷnP 2$}Ά")!L:dԥ2A_O}Qp(CO<r#Sb< h܋}(v%v`a^͌&BK:JO0n.e,#QOQRLK܉kXP$2^Rm3r Q.BT%#-[/ZO_QFA,zf`MAW oލ,NRD E>ds(1fh: 0n"B1]lAp3AmW 0уѴ2!lv2ﺸz .]CҬn!t2q) ,rGKm\ IUt<EH[=0l@"GU~ eAv1͵dMqPxQOcήZ&"pͱdpI n]UB[ilT`;6P-"WO\j}P# w~_Շą qxaZ7?/xl7 |rk+mbr,#V1Hsҹ551+L@TP(.q?I<8 gVO 0NZ.~x!7qق߽c =6}wo Ͻ/oj%ճ ^+6. 5}8dC- +ôr3G I4u+^[أovTWɂ%rg²ي1ay>vLqʖJ*࡫Q1Wոs߹zrZ" ~?o̧<^"N?8n~٭.˱)'Ao <(J$ ֘8˙IafN(#a\;MJ7PcCqr3BH[iWH0 N(U,O63 V -¼J>F%D5%d8P xG;,f z~4x<Pp{=2)i,FVݮ?۞Ye6UëABwXaf Kb7EC Uip͍M3ĭ?(uR>'EzB6wLxHuٽ 6 q,4sN*:$ahC`Fx[TҪTJ{9 sre]nyyw^(# AzY-0ċ[3B;x߷q|iuc|lb>PoN9ivosK92f ,T!adAL&[>CGlL\t9nLe&W^\˄2/~>Ӹ'߈/eEdű?X8u _?/f#W?~*3e~ِ/|".^8׾Z҉?_bb4}Z(VLS{1={x*I*<| nXӻw]0%20S\괲9 #L $ava S Pki˘>M0`a,^0&ܻt!([fՓޭz[xZ+:R8<۰w0g7`|f;fw`iPlh3cTi{dcy1Szf kWe XҺB0g<  y^d #1=Ci4Ag蔇XA5nz"_#^xs} geQX-72EAPى;v|n1q܍?B8` 0xW Όq1!:N`83\o9>ascr0˪Owe]>M`/#-|(NR}CwY_;WC>Ӌ [f[v4Xg}__Kc/?;€R7R_Yi{qC1{KP-ydZ-Xʓt0"(XZ-5fyLUKlcbk]7ji)c>q[R7aJ͜S8\P3y]#;Aʎ< q̲y݌ysz,$ficegNz4AbHTPp2*.50ɥBS.!(Fƛ] Yru4,TsyQ!2⍀!PKQJN5rw+0ϕ“h]+wo?!h[JIX<#Zj K` )<6fXp )߮B>戶x,M1OkA<_sof?t`R\,7 \Y/jӟ$al-0~G>j`P DQш"Q35~7pqen]d흸u&dFWWػܢ?8& ݂woCыwL`3t=ğ'_Jq|_GABhd9{'eƒq<Ϋ{ݾ| GH8Vg0ϞƑ@xe=@6aƝlhvQc~Qg(hZE+JU(KR= =IdBVRW,i,3cIU6p_ي٘u ^ b14ee7a~C9__ח'KW3waABkV>?{zV\(Fǃ^٩֤_YQh`f\ c#yf?9- VDOfǀ!᪝qΠD[* : z͙y stc?3J* jws# kpeIXwi2%H@'@!d/lXĿI ouE`G@~^ܹoVD<#q)˜Ch &|_Ud{1f޵:(Yt]-P!bȵAo[?x5ݽٷaSWWZۯzL%[}[ݽ==$\ɺ++݈7o{ ]Y☸;@K UE1\1?,^(v:e&Ģ3RMag{p3hf;wtEŠ6sԓWmZgN(=Mh5A͛G3skja5&nU]7c^?A\^FVCy u9s敹a4 ~UupPy7v.b[pub;wbzv׎= KBoev'lD| ֎6vNl#ʚ< CoH~oby~ ޗƌ?U~ITz|=wLD69=aoDv8$@J1߈o?#'Tj[m~j-Ă/( tS`D㟂G~+/.,f@ ƸĎ@ 0w# +_زր{OLv'׮\/}Kp4)]Эsxd~qf1`,b.:3Q>=ȍ&=FDZ7a c(V3 &Nb6zL$Ϟpnd@<Ɓms?ZL[Ӻ@Y_ 3VEA=u6&J䩶ps#MxakZwGe%N㺳'e;Uk(a,F/e/2mU9yg8546/aXp #=qe?J|h] f6 ^Ԛ<7\uQ4,07(Xè1Px>1@](zQcpj[yFvwjoznPp)>S6[eȹBisBp goݺ 1h>2w_=ԝ6V:ޭ= L*O]2xAgHjnkb?][C{`mseH_Af -1Qy+> У;7쨏$o0dkwFc)@@;?!`4Ċ6kz2`daA>1*x9DP0?[ ,G=''x2.jM½\3sx%1rAswEދ*(ƥƍBXc^cqad̨QVUzN JeNK,v=@jF*24>wuǂBݾ"@@*6*x`~c:O/hZ bzEW 1>]<Ӊz@\&&٨UrLke \,QF>=MF.b4!Wcv¹xz[#xjH"^CAqT-;!#Kr, 晶S&s"]u@xZ׽Ϟ %gq@m?_aٸȌ+ϞOfQө="ytYops[;K)%kUBHEmyc6 T#vۈ%o[{*}ޝx1yo^|1se/Pf] ]bxW^~n:1#E[hEՁPJ櫘~A9\@]^(| TѭO_Y#6MCE/;*zO4FA}0z5}bdC~܄[dU&h(sk,s #j;hH0g*"`w'O_Ҩ٘r{+̽W>r."H6a" H#mu7Q)˹CPVbۅv{ `:4wuw^_Xd=n>WOƅ=QTN9=004kp` ~l1'gY ?Rw+բ[/P?|)XUVCtL҈4H9niLZXTO*@p5 w>al6C (\Yq,A ,qk g?Z|?+$0;xPe<^Z,G|4?h@Ʈ{/W] 46c Dk*n0O!M5.608;woӔ ^Iۊ-B/E\c7giAy;՞<ǸqFg")y78ʯ|F |*;4іp7!lsN(嘐%7@TZf⸏G_XحQ2B*N{}o\;;xpz7ƅx/! OY`I%;gJx|XT|^7ky[:۹c{[n> nTbG:܍/⑇z%~ҏ3WSO?>'W.J;M[tp,>#~'PS॥0Xb,ى(5#'A"h%ۅQj{ۇ]ڶhknbVMaxyt|!z]'F(ݤbO<[x,&Н e CD̘z^@// 8P&JfߓhF(M6[^ӿ9<b A-lK8uոઇGBt˦(54,ݦhh @m&VWw%ó7!C0 ˵o m\ҳ*'GfY_Y!RhtnPzz,^3URlk+=1qA G҉`tJ[1?\\w#o``n[wĽ^x9y'Y7ۄR[EfaOr$`#Ƒ?8W3M3 Z:[QَvBc5΁ٔop5d?{)/o#ٰw?R\hu≋'|g~$_yxg >||z΀Q>b%@Hs2䚱돻ۍhn5>P 2` e%BK< EU=\fY 3G' I7(3U<%k"Y?3 Bƒ +!}lx?X#3۔clbOp&26dtY%]gF.JVzF[o#k*1wڒ@-֙"}.!qۣs* 5nfxSNn2_خB\oDΐ` >Z$N1~SOb\p ʐAghV|t~]D9B.BE@ 9hc|7i|Ne枉|4ff 9<Ls%j1>e|bh6zUa7NONaEix{[??W~џƶXs'd#KYpW<6xw #y~pn;!|Yb.z|Hۋ}36[śog8Nw#j1aK];(CW_h?!#q`,NSKmƳ*z57lb#nL"T}L#L3dU{|NgCF= 2ԙƃWe'uf ` ƃ7r7|d1>Czfu2SL%O0WH|ےZ/g(FEbr`;wA<>{|R#?ЗiTn^7 oI/L&^we$CJC$)9Xd(fKlEvy;wh5ϵ>#{ 1몉щ"5D.ENR;"!ե'an$&zdE)ưa qٞKߍ~[qwpb"(tbUF{(mŕK!qWs-N[]rჇhOw篿nрhll P&q%<J7=TKV<&& /VLLWDlg&F8f1a21XcvSC<{>Щ4!*PB.b.3|fχW`#vxV\FѰ peW{bTcy=46T7񋕋~YoͿ+$ >|$ p¢ i,wFGTHv!S :^Ci*l9fK-X,-Z1V ߹w/cW&п^/N+^yw6V<"q=Aj]H> QDŽV g?sJssWY٨ W{Zlu\IFkoG\z) f{Eh(xعP|~2z|xx!vv@<ߍ^. Yq;.ORJ[⻌7=ߋҳ`L##*^Gܪ[ixow 9nJzd %BIx"*`9GH#B!Yqԅ*E*"(=?;DLnA5C1A L ! ) 2ѭN7 bAGB+Ubmweu㒖"f}xX&C3SV`X\s 0^{ƦZp۱L^j4wZqK 1sbKiXA5 =FsY> k'rhU\cFI 3ha"Xf:epG)'(.qNW|F5K佒F(Jl-˝xyoҙox D-~ %¡1qA\gw2>l|gC݊7p`5MPXV 6ՌUCxy|nf7Y[.F8QdW9NN1F1kp]j j~U<>vucO?_%g_EN)``^k;~w]<~}m21N]}x9[v 08Xb<X 3mt,@m:--1^wd dV>;,58ݍiԱYe ;[aC zhԍ%B4aH:Fk_kla^ó*(䒒M16fes!fzg~sz^)r>5y텷.N6ٮ]ky 1@ʢ#Mc[k4Xk&{gv*qiwNy`0 4N׹p~R0PK$bI |+Ur#7$\ SdFf~#B4J8!`nW,Nov"MiliP sW"1qwnߍ9!< }4vvi97 מLg# |b\(ly<].W_2ig'@ēxͼg(:8p^x!3?&ADWUl>a/^;:3NS^FG) *B=ϚjL,[#9q+3- o㡧BdЅD.m=/9>DU#``JAs?JZ1R~4`(NVQ3`@s Y@'<}M$zEc_WaqCT&L횋G!gZugf }&SnJIw CC@DHd;z&]l[}vukWGvqeG8==ѹ~RSjcYcu2?sfoݹ)ֽ{6ش֣Yf` \̇ pR8 N(ojVfݒEeҀG89Gxl֖6d.f#V#\j2&$d͵9 \62LXdnA!֣1TxNJkzNIWTxZXax]N9&3=fB=*Z>DBMg𻡇+, PU)Á(!vеĜ< Yc7s HgC,3AK^qE"'2y52,YeVM䛉>XWK\^NV,fkQZsyԪã{G' z:!hXgd˜2K65PfeXnB Oa*Y< %3( Or0e6ɥ>PQj t֭ xS&ԄX aN Ki0C@zV1"T/XPЬK@LR(d @n`+qR} {c~p1.o鮖<`sC 4,D ']pZmW \/n!4J6Xx 2`5}Vfpl~"۔Dfɦʎ 14,Үd$H Uwx]tQs=h3ĸZsD]pI pdldo%0x0ÁugnJ~(\rR__V|շƃH{)be&޻sM:a(B W%1`H\0%W0%UhX7t"&P5WXP@@IE8n-2Pj~6~zN+~ϵnW3?9$8+W)ad(s"\e *0 P̽;3s*L #aPc,&x޽!E7^D6Pl Ml25!G].`BB: @`RƲq7"z5ψg[<^~ÍF`uDAs6v7C{v:]<E<'T (PĔimfYϮFQɽZ@*0&x9ĊK4+=qT5ǝB)^*d QeIK [ے_ DŢ!$B!rl/Hu]KM`{jM+ve'.l[=/i'\sqxO=|!&8/g%e3]&JCPNOy.njT܀xiwxFFQTc2zР0nܹoK/8Eϩ;caik<CĘX$]uS.=t&PՓbV{'ׅ0YDL=ܮଅwEh]fǭ:uG?g_9׮]iB1 3OۋF!,Ai^ ߄cFX ZGlffCM\{1u&@L0mv!P(喫fa\Z,D;^;R18Xm+ɠ+] |P*Zloy&VX?Ii c%ddD`\.luq7^{ [\lm5XU͘ݗGdE1n3M Sx` *oͱ(SNU1`Ȅ=c5>, aX"rRoe.wr7s1kd}Deai2#kJ;461P&s}d8^[(cr j(if7F3ӌaSWz,EiQv<ފvofA[yב+Mru/t2.g24lo0= o|%|D }TAհgƳL؍y:Ig'"͊Cӕϒ0(lkՔr+N~3&&x}Ĭ LڭPLm2|mSŔp)  v`0vytX3alhxaL4x]bdxp6 34 N#/˜m(g7Y&P$+{J=˞vr!x<K=|>ӛ"XZ[> []_D`6jc<[a۶ hUe:kԋq ;˭ L pƁ1%_.3`J}MVL./aˠġMP(AsQp[Oҏ;S26|ҫclq>G1O:|3ڨ:$I6"_?W%+7y%B{6"r$>уuLCgD[&-`"̳񪃷'O|SFfÍE*Ge ;Ե~\g'!n+( YNbύ!dFA\[np6n{{;v.z6`\9\ī\f,Ln ֿHY3"snZdhn@,˂glfq (A»̤c0U(דM(Ŵf7dMh%T[e3hd՝q֒7 Rxb\> Ö&L"H0وp@d^ nAn@. xsP#̔ s$/3W7cQ@q ft+G/Zc3=e4mA/Ja11<7]~{e}gH\}z,qݷ$)?O3PeOFqDheMG;7/*F3?xGI!Jـg7# t*P..3 aFIuU-յ0Dkj}`H~]O3O( oּLmg9O?Zk5=һwڋAhndNE'~)Ty[8y(1+!O {1&^*alYy=E~aӑbd^d,6tW% sP6ĘWD=!IeOԐVF=. Qgx<^ &3g=5չi >4@*B,5ea߃j 5yFꉉ׀P6 F]7am 9N*<jT\`M^6A_r?žc KFЁۍ0.fY<"z[ ?2i=27qd7[x??ޫM_?,Ta I1H'$Jr]O?0 0ݰfEFFM>8,T( qiyJz @ofo幍r'^yJ7·:/懓1 &IFOYva-"`Xlݾp&h{ie#*UDyP#Io7W!Fją`RKV {xPD(3˯~p~ Qqv֋ng+a Aln:P~!^ȱI<~gӑʍm~ns % s[Bܯ2$[SN}{,Ama2؄pxS>X'k M/DCIF ,#6aNgy{qa?\JX I#c{ˡJ"tfЎ)3_n˗KP6o&Dh̯jCDazR2_4QVe6k>*`dCRC ^ĿY)YA <ʼn9̄|V"ޝЇ{ ?i Ne3SBYI0:! N o7Q֊qx/;q/7P~dQ A'gƅލ1Zܼy3[Qt:`~Ѽ, ;mVbB~~+.{g f+KlK  t_mϿ = Ӓl Վ9Blh`߄64zy=P;$Q1?#tb0#s nz@n2`Nʫp yMl!*H&0l(D.ZfZf23};u-> aQ3U&EO6#'k$i?;TxNw=k-A-K[3歭z6 n~'OhONCy6~~g/Ň?8L KKߎ < f8= ʽk<^3Z'>1>W3 #Z&.b:A,5. i-[DPgQ?[}JzI5B93Pi"(v.쵖K{.EF5)-B"h49utxB8c.Lw{d. FT0g۲fBa혐So"t/pba gnz%o&Z^=PӰ P&xx PƮpO JV駤۠ G,څGrvwq7e6La,\5ez*ݛ3^A\ChfBK;B_V6A>r]PBj}lq(Φ1sރ?ҝMAyQX5, 5\gg_g pwp0,0ve>НefX]B658.(ԝr~n4kal׮~W;xCÏwŨ^oşKqt-c#wxmp#n޻"PjU;=i؍1<0C֕g!e!b UO˝dt0 ,>] p0 =njZڼ 4zѣP*a9G8da|w;'=4¡#QaDf(Js2md(B.\"BBL!RxiEư={!|&dD'0vVVatį^yxV!H  yqEȥLגsUbziX6IL 1ySEG9j" , #vω6ʭP{96â\YHAcOԸNNwIYilw }<7aels7'Kj>n;%nćL>XǷ9Sdv48=wݎǧٺi#S8G?Z+QD:nQ̈g+u=_xk*&/1|+{Er aXóMjxl iŰ)ùpW_K$5rX5]u 3ae +@3V &\kEFU ȳ`؂gi r7 `\^mƫxhde7XM B:Fg=y(@V5%:>gBU<lYU@iזh&N5$UfW/AҘW<5ڃx}5@KфȭrWwiX=<cIj@2(_J-Fj h'Do3"ULd~9װF#hSf9z6v+v$|3~ŧ?øqܽ3Zc\-*}_Qx,`|SL"W&ӆf5}[u6YcB [va`.3F2YUu"&O{.Lc'D.`f-(􀄲V !4̶EBө, kIDATa$L5f>7bR())Jc]]4*B7@X=%Jsר BvBgaAh3E,rL]@sdS {CܟcX5=u\Xe^xOZa{̹>(i4t0"H 6tQT t1> ˊӱ茹+/QF;K !hqJ>R\r3NOEDLBi03@; 29SZQ)* ֠ɷIOУ]i{%up" QOIxzvwo H%.c4vcg.6c"sqN/^ubv|=8Ny<ømʛW4} @NӚ&օ!Xh\a'Ϻ]"[fU+epƺUGg)`4AϞP{Jw^"f1=puEg!ty$!k:P!$^_q!nE##  @1@ \V0@&"FB+36{(tpW!@/ Kaқ Lq)8]'̵t>vsz<1n4 O:{k@2V gېCM f|0bC0=;Z!<ɍ7]YRW𘪩^TĔ# pUjQAA:I l_g4XIl (q_en$ws1ѓ-a\Bزc0/3vwFx.3Ƚ] 9h\S"[wj]ωqeo)Z|&#˼ Y c>LWb5#ƍ>dǠV'{ {fd P/!h9e,xg ne~[q;a^c#H7+ v(R,_װ;q3tO*̂yzqS^z7Ťv]y9bL1$`׶B>Ȧ#%lb^/RlB<`*ް݂(G3QVNiѭ|j78{ys2VGD˺{{ pW4\*g[s  AvY 쪣 ͍*u5b\Cj]ňp/W1P5(hi,wuWc` =^ eɞ<+"XYa-M#VYm`_n%|- K~w!f==OQyUl tzL Ő2 =w M|>IJcl& Cd,{j<B^j5v͵;J #jq\g5~5)2-004Y AZ T7A$G\j%t0fWϬj\=3*{k\x#b [MP`btXR' ݊訑77_z)b{{"n|+JYS4%ռt6L&PdwH–vڶu]„^Ɛ0B@mU54l^_^h,Zt$qxޏB/6F<ag$x\y(>ƘCKkR|*^$aBOO4MVɿTPoDE/MLnl؏.YZ T`Bx!pԆQ-JT6Aj05/&70/ f\1s=~ [iY5 |;rcCv&vn 4ٳk~J gҐch8 QeBjQvf S䗽$S ZtX~\o*wٹtͧ+t5#29Os .;O qsI5䂱Xd762kDXB?Y-FIP&O82+ Hn,X_s̵}?K@!{Bc͌ k-^/ǟ+eQ:N!JA&dPcnY4@؋=0n ^LchP Dar<ٹot!%Wsm]Ji 66f1Zu4[KFr$q *:*1>b=ްfJN8wk6(c"1z fJi0dcyKM0|s+6ȍ?B` {% J1pϬWL5 Hû QpWjpM" 3We{gj.0pŸԹt_ֆ`RV2.fCUi3P`K*rGcs YS1f xufb.c| ^ZTÉıhȍ]P^OíIn[Ma^e5~4D8ǵ%!f"ήc3`s>E<12t[q…{Gϯu癘Ub .x.A?RaRxR/Y݄17qv$1xS , REh~feL8Rݒ=yhiP2o!![]nncjnwxƍ(/ 1V4lqzPXoT%$##kLR|Dd$~BaN#mS8;}9Fȳ,2&CЙP+m6b9!>=a ` J7eM0LA+ |p2!$r0fA(l e"_vS'Ww0NEWFfƏX y ΃Oϰ6W|un(.AC*UŮr}+6<ƒ-ǡ[Y:5}Yҩ^"MƺrG,:_磠ʐd]C/W Um]Ǡ-Ȯhc,3(Y c1y /VXZ67 ++=0 ~*}̉sQ8"Ӭdc{WݻxxV:<v)0űcDYn;&nkn#LՎ6@0I$Dg+1#x@ <,jr&s2-b \#YFFh$A&/5 ]6썲ҮLYo`!;{x88@XE{MoAOu ~ʕ̓FXt_y/upfv/j"ck0kPs+k$6'e j}&06Qd՗O6@2c0T)? t³*ʥDxf7Ý Qܹw7>S5~Ž8ي\=<~!*A %] 56p_; uiJR⣠êdCF@ѹNxwz 4.)xgrdx5ӆ*!e/~6=,iBnLKXc20{T㒘fkDǮEHEf,؟h 헀sE(ؠÚ1C s&MSIM(ʨ-'4Eyl/Y. <>iw΁ ?}3fej!|)+ 9V&M7F^6Q{A+v+-Oc6<׶m}nM,øT6ƫ6HQq*h-f0㤧,s٪š[}wZT$̖pBr] WV1<@pC(%ܧEdVZ7R jEs+ ; i$&V EJ OESo8O)'$Л.1-_]۹ Q\{Vrt|;{7oƽqtWrj4=; S)Ns7Muƃw5d Qo^\Os8:4j{WҨǥGƅk߉<0^BVE^p&[fU-{LJCxNرTht(™p*Ṵ^1@j4?a;6=&x(O- f-砯xݳ1L :aL6WXRf)Opa bebfU6ۺYeA R+L[ri1TD`lɯ 2)f&I7E9Ra )bQ}Py6VXn=5- Rǘ)bÚ(L|\=! 穒a5kJixr}=}0l|c(iGb]A֐ˬBdFM:%(1.m:ck, YL&;C♧> WVYu~r_D41g?l<ոz - "k> iGmYx8€LA ~Dbo8U{aď~G~g~c9|8;qpׯPAn=R 3VvaAH-`jlagdFbC"@P5u] Y p@DžJkMg&I=θcN ALFbov=LCgre`'-Wn49+Aױ*s߀NƉkM [U56UQ͔`SjKi Oy7k U,x#%9UlɅ5BELHvd{fP`{oM6G}<镡-%l : 4wn~w ,<^ǯ\ʐ;G!eat.޹?Eٷu.Yjm>e2S)*}bA}ҋ3xJ{~ԉK^\}__}J|f|+/D|㟌,Ɲ7_w^3^L c?M8e|׮ӓʋDXByxl]h*͡+p#_X?.#  \\Z3M`qe7F7iSY&=n +ڱD߼[c E&yTF^_` Vu yN0SW.MH{}1HfO'^jބ|S, fwCla|R)-*:qvx?jq G1'PSi1~%Z~vM" 5*ϑp~.e"g._fs|6^qp vݍJn7?L ܍''J~3Gr{sF$eQ[-KxrusA,o0i?ڋW__gjnGkIWϿM۽q4%Sx ć3OǸ4q1ؿn$ď<7Ϣ˥;nHӽ&Duj"yB-jݽ ܪ2}DQ>ÌKJ"7M`@!ӖZoX\7 >BP4n@Sˆs2i?Lƒ7q91OQ[iqY4x~!lұX31ߌ'/ݻߍ7ckl]??w7>vVڍWf믺8@n7Ǯm|_x=c5ۄ!u Le/?rɦ vICI\ (k,HFoH#ڸn*NQ'Y( 7lo>u/^ݖzًcV^@)+Bv8zp,On!9 *l*4b>BqA"P84!AnʱρK9M]\" 4.5o=qטy¬' L fi6ɯb7QlWkőЮT lśmM6X4,X3X~{<𞄚"flJ :Xȸ?kaݍ2c!:<oQ!ޗ0Ex4a="|<_-T`Ԙ!hJ%xBh9wH%`<1qMz~35g~f˥/ Bwkz-rs #3X(ޛb\Q ]VFq2 e#1Hå! daV0M>-V'A(Ќ<´%7^P$4 `pY2h 1Wk–wדYb)P\Tθg0 Yb*jn.Fh=(#HXnV}UhQƳzampԀ$ 촌3߹̝ ' 窉s3a 陈5#fd ±a5wˮE٣rӆ~W7]^+@i\6+7/b7V݈-Ŷ" h{N>AD48'9PG疄h ._43A.j5Z߂1HՍ[oq/tJV3Al#RpMfbrXtX$c_>/1{~f0T dtA2{x*-o B L«bTD M zg7h͢G(>="v+h`Ɗc[X`憱[]B=qFAw7 CI+c~}gN[yz%-b*MS*aHzh㒍$D@鐄ư)Th*.?J:Ǩg)Zi0| z c ՙՓq5Ve2[Z+O*Th ?`luAg!( ,ʌK!Ky6!Sy.hJri@{ m"W 'LRjdD!>(wvn羅a8## jaftdNMlidKՈmЄƢkB ܼ ~p:brgT2~t^<3OOu *.s0>- jJM3. w (LIq`?qE$!rpԫd5ܓ@{seLTJ+-Dy*v؍hbgYavϔ@wUMwZz+ '̪:E؋n7J FvSMSl>Y-a{#i-\OFơVsX92ąߎ@鹡bړr赆אr7 QHJ(S7&@`=KbzHwk*Gh?8_G]r5֥LLmOm`&J\Wq,rNil{W1">n,sѺBz(v칈NسovpOnG8:G=5ECAQ :"W=b 0<;n81*1m&T=vWZf/&+|zq=p$.}cxPl{W._[t ( Mč1y&>\N2KM_M `UZ6IsU `p8&(d( 46~k/0>4taB\rwh<53͐v<ęɄ%/r*0EI=„xnką"EaeH&ό46[kV«s"3Oq`[#e^O`$fkL=D*!]!Fh6qc0ZR\YH4YE|BA4Y {MH7à͗ N\c9&)5.+هr-hpՙy(3L݃du:X/ A#Xᇆul|#TKO_s~vwUg0ͤYb3֒NADVA֚%w%1D/L Q0 Pq)d [i!巡B~7]ҋ0 7B`"|zˤQc ce(J⹷ڃG+D1RILU5XSP [}U&vszƺI@ qv8kxE;<9Ӹo@|`9 0$JoÎ<^ VQ~60-uW\`V$^X@Z"@ `ڀ@C-z jcSo#/6 g-}RUxs_d= ^K~a HiQOgm8|͛I_"@#BME /%FBi(B ʙf\.n=m5|ov"3Ыƃld0[8'HYxޓ:AWz5y,mՅ焭Ʊ1ꕰ# hLLJ~KC`~ʱg"d?׮sïJ24ض"}4l e4^-]2BmBپɃА^o {nUk*j1zG3S%ƁmƷc4hP(` bۀ![|-s<Dqۦ x#t,(ҎmGb^{ +=8>3Z}/DžP{5 v?TCi&7LvɎ'l2fbX",:t7Vd)7 wẳ`y\֜q}rƷۏ]X#0g.Yc$\!h(rQ{Odž+\f.f&= Ku"doC˃ *71j)EfXlP=4ɤ0 r]\^v'Y 1$@6 C=sތtLB[1g<4Nب`(9Ei q4p+fYx^<$lG+),S5uIx9t~Z y4-,*b@çz<0fzjqg(&2h@*18DJ5PXEeUEX~[[ݧ+Q%5V{7vW(Wfx(ulā"@v3v?9pE?YDoyhR0ėSAPE7V!ř8`tckvp"W^VEZ"* cxP *+< m`Ò4*|^O扽+njG ˙tⶔgvq(X)Aok)Lh2 6s2Z1HF&; - ٩67“E2E&+ 7^:9ϛ0 l 8[Y<Ȧ60Gk:.?iZ!7'n1!]m";w;ﭒDL(\o6O|Ho\y/퟊owr!<3-{#gxe>v; +5J:,b:rD&҃pf0L6wa Ɓx\/{T4O +y !y/^,Wl0“g‘1h ̪B CP4)po_bdu Kgct`Cgīff]R/5 R#@܎f[X] ; l$6NǨhK9B`2ap&Y- Ӳto[Yl< TL+<ڍgҗ2ED%YJcuZzWh!#&wy)ơq-),Y"6AW9?M {KZRZ2s1Mfa|{uK+5Fl?+bY{NdL!J:+cRVU5CL&Uh[GMPJl :8AzQx~8[>o^Hd>_O2ghaU ó)b6j{q{^;J<73'WtT<G L#2(1AA?ѿZ&F&\VXL[Ǫy&ZS V g@q]bB$(_\7OaDPnG&2UGRommqM%X:1˯}<[1n쵀q]K[s|2 R&1:q =ck1*L  c gg3wuӇyңzv BglkrSa\sXvex-nLE’q3g$xa-B208Gyn ׳hzU[dQͪ͞aih\Qd {)ѶE݉&_(%Vޘt\`8]QШi}hhrDEyÅiҒ8a(cU@5h+'g?M4`a&-lWl5)#?K̺B# ii# sJk!W>k~J|C-}a X8zǽ@pHqO1$݋{! -SAsf>#`ŊCgG@7qt>`r;).׉ml .^_yjǀ*%{e,7LIF1 VÓFҁ4=@h7vLv5>$e~Ag^sۼm>%;z+ѻq?l<|v:23&1Ϸn܃5-1D" {tЁq@{MnL)^%1 w(֜ a<0 ]!ymDCI s>ijų yOMLCru`{'*`D,0kD"1[,oTM7gⓟ{>._ qnqpbI)RʗW_{癌Wy >V _á,aJ:~^~w8 sʙ4bt  TG)aqc "]x{ 5L>V}*ЍBV12a **B,.i' K7*VQېjۓ- 7mL~92 Ǽyx\?7"Yia?h/(i5եo%b5je)KFk-^SQ}tZlyWJr^*qa<9ԺfeN1zz\m[q|B/o|w+_tOgQM?9k[N<}zI`/|Mx֒{ŽEփGx_~(3Y&L@4Z C0X/(zƷ&6:i+|:>ߊ/g1s76ELVH[}S-1`GQ(]4f wyĭIcL VN&*Ѫ+}u(, &r[;C n2B#YýY^L.g"!aU(M%cO>Ѷ}fB`JUEybv 8%ge*#|LJ-`.DVs>uOzG1.RphSŢ)\T =^r^AlD8@*Y%JhF?` z0Rh vHdռRr. ¡6Ŕi n 7ޚ{W# d3jvB[k3>FIQhGF"DME#Z6s6)(Ts GBL7֬іp;\C@O_ko %O<`⫣Cg MZ@ĞٙĄgKσC 3E]y6'0Fk}%s>**r:x `]n7a{'z|Y-q[kҝ{ܝW38kK?5mAHAG/LA$(s܂1bu:A~^!|.,ڱ`0[EWMK Ђhd 1 Zpy8 "|F,8>=v̟bºc|!μ{#0AP6$yK썶ׇA ф-̽K'NJ 5t;mE;=llA ' (}0O{O+ϭ"l3~X c[XCsU ]|AW1'ݶnT-m2[+dpЂx Km 0Kq15ͤ _,A\gpf c0G떟12qGUmB  `cnw? E!(<~y6Ч/KToA%?w$:uW)Ț6TL:B8Vq[ۄ(DTf-S`FN0$TuJ!JɏXKQwA0#Wx#K{* kAyܾ{e p d~ w]Nf1LU\DAVe}2Y)f#j?|I]'RFStG[Q -2LJCj9;^V~5ZLWj?0dNZfV[2$6ޱu{*kVдZ ^7-4,w6 d>8(mC $.LL / !LP h$3b *5♲)r2)$yN~JB@ M;t׶] \РW2TvH&x'QB֝9O}uѡ5̫rvg6 {u;IˌI !bA+iǴ%)SМ[,rB9es2ԃBֹP1+ҝ()9hDEU)VI܎ X \qkoYݻyϸ;8UE\3lrUgel熵N-n% {ߡ,E9O#kVEC&s%r쥐*^`Eb-` 4N58-&k4=~q.f _ %r݁U22']3~2)H$"8k)<5^>"&W3ΐoGyDyYXy(D#fy]*2e;n}jb0XvAQ7@Fo/lA %Ri!蔾TqY|E?NC?1W; xyDٛ _OeMM^|'-i70m< Cx'hWlT")RM!=EQ\^MMV9Pg-/$]TbmZ٠8u*taJdoxC4em>34jV9i\lL%e$dҕT4CM4wW yN3ch @l,S7b'oP"9b{AcŜqHVx.Ng aAYѥ sgC{P2G$";c#sj3ru6~kE= nFԻI 1ddfqdJ,$;FS(TGp<9PbdۭAEEc"P<|.D(2*16hqax[qN ~a)G_[ 1k]e ʓ e>7I䵼۟2Dۺ\XYh`҆(cAwMrG}dZc;HJ.UbUvʩPh3haIM QRFyt[ -a"(!];PȕRx^ss\clь{Rty]|3G]J~v1}k* +ːa(7 [ҳY0 u:X)-Xy?",Zahx \<Ӡ|+6|s1ՖF 8 \K膰6"W) M ]zO~,(]LiCҞ Fn}BKQ^I6sa´1on}kx) Ji|FF&Jw'Q@N5у?_{JQ߱N f߳b('?v7ё;*nungIkƠw31kKl AVBpHo쥏"Ƭ!t`d-B -:Ơ%g-2-RyE@afh?" Y*+UKׂ3Fc Sg PCa2x`Ş"-_B"+]`\#-7mJ˼f^AԖ>}3&AG~4֭p~1 q-P{Y(ءEaf "6s3POʋ:eo=KՠnwrHSb`)|J }ng<=kӔUVf9_9 XCcGƵDqUɚ JЪ&K^{V7$c9B0~Oyi"j̔WݭX£XѢHݷƼgJ'"M{#~[ƕrC(H~7썡 PcLJ|\,l?LR!\l7h(hbsh#vu/%>awGYqiǀ mY&,> /{/I!h?]xxL[2^0Zl昨ǘ[NFDto_. #X 0OSdhg`}h ,E.C֑i38-9 icn`4*ܺAc2;ߩ >>Uc `Sf&MZ/,5qtS5jjT0_ X4ZRvGaHƀyig*2xT > `j%_埜fT$<& `B(Pլ/}Tt7VO&/Y2fѻBƌWKZN2A X~Z:c\ԏxwK܁ƳO@2:k,SotGPd5&9y9\%Yv5%=yHiε<^3J;&'Y7"AE2gݻ뜯7: Wu:YX\n f,(č~4"89=+Lvtr SO?;#|~~F{~X!; `>h[-AV|x>8~*k`Q +FWhXN Z_l ~V QZ^ ,iD8KGvSBh<._ {H*ybiӪ<<SPp,_R e.s5NMJ!yɈ,rЗ7BƼЙ|dUծ7Ȝ YұTCX꙽8tgE'F÷%f%HW#p3iV$J6+c&vm5x;:yfd_?CHfS^s"wmChs2j\c]'xXƒ b\јngF*AQiPgqF4, ==u1XN3e^"K;8>eURXkta! 9ۃ[kX+kLrvQ(,zBR*(k}wT 1k'e+/jzzb StMQwu% CӿV^5A4s+dLdx/:p],w y0J=HΩlf$- VG(.ЕUz*b>VgB&mpoANA#NQ҉=]߻(|Q+:uaeMם_xGl~e,g9yxD z㘽8淣y9'dוGh3dZ/0q^ty. 7=^̯h:ָ֍-:hbEyfOMs@Xytnq-#g]-$[ ,tyM E=, LýPyduEM:bŸMd6~s7He雹%}pG ѽbm>V-FnS YdvV ̅I^NݖYftu~e42L "حm i2~RW}` Zѵo%a-yb%wtL6#@YƭA(؂b`0lۃ]%җ0v shu+ z@l!Hl)"6t@H&)ψ`~R(nV%S!c4AHX"̭ט/TL 4Hf.$z\`EnOon'-V-76({~dxFycxh(] QMU,V^h9Vt*ڵ]k mxV R1X(s>@l>A DJ@k&fIe~o΄Xg(0VCnCCdi</OX5w>9{?G9nEY^8o[׎o~[DŽy0 PK%>B7yRX{IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/index.rst0000644000000000000000000000336614741736366015424 0ustar00rootrootPyMca |version| =============== PyMca is a collection of Python tools to assist on common data analysis problems. When first released (in 2004), its main motivation was X-Ray Fluorescence (XRF) Analysis, field for which is among the most complete solutions available. Synchotron radiation XRF is closely associated to microscopy. To properly achieve its objectives, PyMca had to incorporate more than just 1D visualization and XRF spectrum modelling. PyMca has evolved into a set of tools to provide close-to-the-source data visualization and diagnostic capabilities. The proper way to cite PyMca is: V.A. Sole, E. Papillon, M. Cotte, Ph. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta Part B 62 (2007) 63-68. Due to the copyright transfer to the publisher, the online availability of the article will depend on your subscription to ScienceDirect. The article `doi is 10.1016/j.sab.2006.12.002 `_. The abstract should be available in any case. The current version features: - State-of-the-art X-Ray Fluorescence Analysis (Quantification, Mapping, ...) - Support of multiple data formats - 1D, 2D, 3D and 4D imaging capabilities - Extendible application via plugins. - Large dataset imaging (XRF, Powder diffraction, XAS, FT-IR, Raman, ...) - Multivariate analysis. - Common data reduction operation (normalization, fitting, ...) Table of contents ================= .. toctree:: :maxdepth: 1 overview.rst install.rst tutorials.rst recipes.rst changelog.rst license.rst faq.rst customization/index.rst .. toctree:: :hidden: modules/index.rst Indices ======= * :ref:`modindex` * :ref:`search` * :ref:`genindex` ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/install.rst0000644000000000000000000002645514741736366015767 0ustar00rootroot Installation steps ================== *PyMca* supports most operating systems and different version of the Python programming language. It can be installed as a stand alone application or as a Python module. The later offer a greater flexibility besides the possibility to make use of different features of *PyMca* in your own Python programs. Stand-alone Executable ---------------------- Stand-alone applications (aka. frozen binaries) are supplied for Windows and MacOS and can be downloaded from `here `_. Just download the installer for your platform. On Windows, the Microsoft Visual C++ Redistributable needs to be installed for using the PyMca frozen binary. It is likely that you already have it installed, but in case the application crashes at startup, please make sure it is installed. The installer can be downloaded from the `Microsoft website `_. There are no additional dependencies on macOS. Python module ------------- The best use of PyMca can be achieved installing PyMca as a python package inside an existing Python installation. For Windows and MacOS there are pre-compiled modules available in order to simplify the task. This table summarized the the support matrix of PyMca: +------------+--------------+---------------------+ | System | Python vers. | Qt and its bindings | +------------+--------------+---------------------+ | `Windows`_ | 2.7, 3.5-3.6 | PyQt4.8+, PyQt5.3+ | +------------+--------------+---------------------+ | `MacOS`_ | 2.7, 3.5-3.6 | PyQt4.8+, PyQt5.3+ | +------------+--------------+---------------------+ | `Linux`_ | 2.7, 3.4-3.6 | PyQt4.8+, PyQt5.3+ | +------------+--------------+---------------------+ For all platforms, you can install *PyMca5* from the source, see `Installing from source`_. Installing Python +++++++++++++++++ You can skip this section if you already have a properly configured Python installation. Windows ....... Download and install `Python `_. We recommend that you install the 64bits version of Python, which is not the default version suggested on the Python website. The 32bits version is limited to 2 GB of memory, and also we don't provide a binary wheel for it what means that you would have to install *PyMca5* from its sources, which requires you to install a C compiler first. We also encourage you to use Python 3.5 or newer, former versions are no more officially supported. Configure Python as explained on `docs.python.org `_ to add the python installation directory to your PATH environment variable. You may need to configure your PATH environment variable to include the pip installation directory. MacOS ..... Python 2.7 is shipped by default but we recommend using Python 3.5 or newer to simplify the installation of the Qt library. Download and install Python from `python.org `_ or, alternatively, install Python from the `anaconda distribution `_ Open a terminal and type ``which python3`` and ``which pip3``. Those commands should give you back the location of the respective scripts if you have properly installed python. Linux ..... For Linux please refer to the relevant documentation of your linux distribution. Installing PyMca ++++++++++++++++ This assumes you have Python and pip installed and configured. If you don't, read the previous sections. For MacOS and Windows this should work without issues, as binary wheels of *PyMca* are provided on PyPI. .. _Windows: Windows ....... The simple way of installing *PyMca* on Windows is to type the following commands in a command prompt: .. code-block:: bash pip install PyMca5 That install *PyMca* for command line use but all dependencies may be simply installed with pip. A convenient set of dependencies can be installed with: .. code-block:: bash pip install -r https://raw.githubusercontent.com/vasole/pymca/master/requirements.txt .. note:: Detailed instructions on how to install dependencies are given in the `Installing dependencies`_ section. .. _MacOS: MacOS ..... It is exactly like with windows, perhaps you may need to replace pip by pip3 as follows: .. code-block:: bash pip uninstall pymca pip uninstall PyMca5 pip install pymca or .. code-block:: bash pip3 uninstall pymca pip3 uninstall PyMca5 pip3 install PyMca5 A convenient set of dependencies can be installed with: .. code-block:: bash pip3 install -r https://raw.githubusercontent.com/vasole/pymca/master/requirements.txt .. note:: Detailed instructions on how to install dependencies are given in the `Installing dependencies`_ section. .. _Linux: Linux ..... There are no frozen binaries or wheels available for linux. Nevertheless, there are strong chances that *PyMca* is available as a native package for your distribution. If you need to build *PyMca* from its source code, and NumPy and fisx are not installed on your system, you need to install them first, preferably with the package manager of your system. If you cannot use the package manager of your system (which requires the root access), please refer to the Virtual Environment procedure explained in the `silx documentation `_ Please refer to `Installing from source`_ .. note:: The Debian packages `python-pymca5` and `python3-pymca5` will not install executables (`pymca`, `pymcaroitool` ...). Please install the pymca package. You can also install PyMca from its source code. While `numpy `_ and `fisx `_ are the only mandatory dependencies for command line usage, graphical widgets require Qt and `matplotlib `_ and management of HDF5 data files requires `h5py `_. .. _Installing from source: Installing from source ---------------------- To build *PyMca* from source requires the use of compiler. While this is not a problem under linux, it can be problematic for Windows or MacOS users. The installation of Visual Studio under windows or XCode under MacOS is beyond the purpose of this tutorial. Please refer to appropriate documentation sources. Build dependencies ++++++++++++++++++ In addition to run-time dependencies, building *PyMca* requires a C/C++ compiler, `numpy `_ and `cython `_ (optional). This project uses Cython (version > 0.21) to generate C files. Cython is now mandatory to build *PyMca* from the development branch and is only needed when compiling binary modules. Building *PyMca* from the source requires NumPy and fisx installed that can be installed using: .. code-block:: bash pip install numpy pip install fisx Building from source ++++++++++++++++++++ The most straightforward way is to use pip to take the sources from PyPI: .. code-block:: bash pip install PyMca5 --no-binary [--user] Alternatively, the source package of *PyMca* releases can be downloaded from `the pypi project page `_. After downloading the `PyMca5-x.y.z.tar.gz` archive, extract its content: .. code-block:: bash tar xzvf PyMca5-x.y.z.tar.gz cd PyMca5-x.y.z pip uninstall -y PyMca5 pip install . [--user] Alternatively, you can get the latest source code from the master branch of the `git repository `_: https://github.com/vasole/pymca Known issues ............ There are specific issues related to MacOSX. If you get this error:: UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 1335: ordinal not in range(128) This is related to the two environment variable LC_ALL and LANG not defined (or wrongly defined to UTF-8). To set the environment variable, type on the command line: .. code-block:: bash export LC_ALL=en_US.UTF-8 export LANG=en_US.UTF-8 Advanced build options ++++++++++++++++++++++ In case you want more control over the build procedure, the build command is: .. code-block:: bash python setup.py build There are few advanced options to ``setup.py build``: * ``--no-cython``: Prevent Cython (even if installed) to re-generate the C source code. Use the one provided by the development team. It is recommended to run the test suite of *PyMca* only after installation: .. code-block:: bash python -m PyMca5.tests.TestAll Package the built into a wheel and install it: .. code-block:: bash python setup.py bdist_wheel pip install dist/PyMca5*.whl To build the documentation, using `Sphinx `_: .. code-block:: bash python setup.py build build_doc .. _installing dependencies: Dependencies ++++++++++++ Tools for reading and writing HDF5 files depend on: * `h5py `_ The GUI widgets depend on the following extra packages: * A Qt binding: either `PyQt5, PyQt4 `_, `PySide `_, or `PySide2 `_ * `matplotlib `_ The following packages are optional dependencies: * `silx `_ for enhanced widgets * `qt_console `_ for the interactive console widget. * `PyOpenGL `_ for 3D and scatter plot visualization It is expected that h5py and silx become required dependencies within short because: - h5py will become the preferred input/output file format of PyMca - silx provides a better widget library than the one currently supplied by PyMca The complete list of dependencies with the minimal version is described in the `requirements.txt `_ at the top level of the source package. Installing *PyMca* ++++++++++++++++++ Provided numpy is installed, you can install *PyMca* with: .. code-block:: bash pip install pymca or .. code-block:: bash pip install PyMca5 For MacOS and Windows this should work without issues, as binary wheels of *PyMca* are provided on PyPI. Please remember to replace pip by pip3 if that is what you are using. All dependencies may be simply installed with pip. Please replace pip by pip3 if that is what you are using: .. code-block:: bash pip install -r https://raw.githubusercontent.com/vasole/pymca/master/requirements.txt Conda installation ------------------ *PyMca* can be installed with `conda` from the *conda-forge* repository for all versions of Anaconda and Miniconda: To install *PyMca* with all dependencies, including the GUI, use: .. code-block:: bash conda install -c conda-forge pymca silx If you do not need the GUI, you can simply install it with: .. code-block:: bash conda install -c conda-forge pymca Testing ------- To run the tests of an installed version of *PyMca*, from the python interpreter, run: .. code-block:: python import PyMca5.tests PyMca5.tests.testAll() To run the test suite from the command line run: .. code-block:: bash python -m PyMca5.tests.TestAll or .. code-block:: bash python3 -m PyMca5.tests.TestAll ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/license.rst0000644000000000000000000000022514741736366015726 0ustar00rootrootLicense ======= The source code of *PyMca* is licensed under the `MIT `_ license: .. include:: ../../LICENSE ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/modules/0000755000000000000000000000000014741736404015214 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/modules/core/0000755000000000000000000000000014741736404016144 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/modules/core/index.rst0000644000000000000000000000010614741736366020011 0ustar00rootrootPyMcaCore ========= .. toctree:: :maxdepth: 1 nexustools.rst ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/modules/core/nexustools.rst0000644000000000000000000000014414741736366021127 0ustar00rootrootPyMcaCore.NexusTools ==================== .. automodule:: PyMca5.PyMcaCore.NexusTools :members: ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/modules/index.rst0000644000000000000000000000010214741736366017055 0ustar00rootrootModules ======= .. toctree:: :maxdepth: 1 core/index.rst ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/overview.rst0000644000000000000000000000150114741736366016150 0ustar00rootrootProject Overview ================ Releases -------- Source code, pre-built binaries (aka Python wheels) and frozen binaries for Windows and MacOS. - `Wheels and source code on PyPi `_ - `Application binaries and source code on sourceforge `_ - `Documentation on pymca.sourceforge.net `_ - :doc:`changelog` Project ------- - `Homepage `_ - `Source repository `_ - `Issue tracker `_ - Mailing list: pymca-users@lists.sourceforge.net (`Archive `_). You can register `here `_ ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/recipes/0000755000000000000000000000000014741736404015176 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/recipes/recipescode/0000755000000000000000000000000014741736404017463 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/recipes/recipescode/GenerateHDF5Stack.py0000644000000000000000000001027314741736366023176 0ustar00rootroot#/*########################################################################## # # Copyright (c) 2018 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Script writing a stack of XRF data with calibration and live_time information """ import os import numpy import h5py # use a dummy 3D array generated using data supplied with PyMca from PyMca5 import PyMcaDataDir from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ConfigDict dataDir = PyMcaDataDir.PYMCA_DATA_DIR spe = os.path.join(dataDir, "Steel.spe") cfg = os.path.join(dataDir, "Steel.cfg") sf = specfile.Specfile(spe) y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float) configuration = ConfigDict.ConfigDict() configuration.read(cfg) calibration = configuration["detector"]["zero"], \ configuration["detector"]["gain"], 0.0 initialTime = configuration["concentrations"]["time"] # create the data nRows = 5 nColumns = 10 nTimes = 3 data = numpy.zeros((nRows, nColumns, counts.size), dtype = numpy.float) live_time = numpy.zeros((nRows * nColumns), dtype=numpy.float) mcaIndex = 0 for i in range(nRows): for j in range(nColumns): factor = (1 + mcaIndex % nTimes) data[i, j] = counts * factor live_time[i * nColumns + j] = initialTime * factor mcaIndex += 1 # now we have a 3D array containing the spectra in data (mandatory) # we have the channels (not mandatory) # we have the associated calibration (not mandatory) # we have the live_time (not mandatory) # and we are going to create an HDF5 with that information # # Just writing those data as a dataset in an HDF5 file would be enough for # using it in PyMca, but we can create a container group in order to associate # additional information (channels, live_time, calibration) # "instrument" can be replaced by, for instance, the beamline name # "detector" can be replaced by, for instance, "mca_0" # h5File = "Steel.h5" if os.path.exists(h5File): os.remove(h5File) h5 = h5py.File(h5File, "w") h5["/entry/instrument/detector/calibration"] = calibration h5["/entry/instrument/detector/channels"] = channels h5["/entry/instrument/detector/data"] = data h5["/entry/instrument/detector/live_time"] = live_time # add nexus conventions (not needed) h5["/entry/title"] = u"Dummy generated map" h5["/entry"].attrs["NX_class"] = u"NXentry" h5["/entry/instrument"].attrs["NX_class"] = u"NXinstrument" h5["/entry/instrument/detector/"].attrs["NX_class"] = u"NXdetector" h5["/entry/instrument/detector/data"].attrs["interpretation"] = \ u"spectrum" # implement a default plot named measurement (not needed) h5["/entry/measurement/data"] = \ h5py.SoftLink("/entry/instrument/detector/data") h5["/entry/measurement"].attrs["NX_class"] = u"NXdata" h5["/entry/measurement"].attrs["signal"] = u"data" h5["/entry"].attrs["default"] = u"measurement" h5.flush() h5.close() h5 = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/recipes/xrfembedpyqt.rst0000644000000000000000000000102414741736366020446 0ustar00rootrootEmbedding PyMca XRF fitting =========================== Besides providing ready-to-use applications, PyMca is very modular and it allows to be used as a library. Let's say you have your own way of displaying your data into a PyQt5 (or PyQt4, PySide or PySide2) application. All you need to do to provide XRF fitting capabilities to it requires 4 lines of code. .. code-block:: python from PyMca5.PyMca import McaAdvancedFit widget = McaAdvancedFit.McaAdvancedFit() widget.setData(channels, counts) widget.show() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/recipes/xrfhdf5stack.rst0000644000000000000000000000743114741736366020340 0ustar00rootrootHDF5 XRF Stack ============== There is a recurrent cuestion concerning how one should write the spectra associated to a raster experiment to be compatible with PyMca. The solution is not unique, because PyMca can deal with (too) many data formats. For instance, if you have a map of 20000 spectra corresponding to a map of 100 rows per 200 columns, 20000 single-column ASCII files containing the measured counts would do the job. You would be "compatible" with PyMca but you would be missing relevant information known at acquisition time like live_time and calibration parameters. The most versatile file format supported by PyMca is without doubt HDF5. You can find information about it at the `HDF Group web site `_ Let's assume data is a 3-dimensional array or 20000 spectra corresponding to a raster scan of 100 rows per 200 columns. If each spectrum has 2048 channels, the shape of that array will be (following C-convention) (100, 200, 2048). The simplest HDF5 file compatible with PyMca would contain a single 3-dimensional dataset and it could be written using the code snipset shown below. .. code-block:: python import h5py h5 = h5py.File("myfile.h5", "w") h5["data"] = data h5.flush() h5.close() Obviously, besides a faster readout of the data by PyMca, one would not gain any information compared to the use of single-column ASCII files. PyMca will automatically look for information associated to a dataset provided that information is stored within the same container group in the file. If live_time is a one dimensional dataset with 20000 values corresponding to the actual measuring time associated to each spectrum, the simplest way to allow PyMca to use that information is to put it at the same level within the same group. If the channels associated to the data are different from 0,1,2,3, ..., 2046, 2047, they can be specified by a one dimensional dataset named channels. The calibration can be specified as a dataset containing three values (corresponding to a, b and c in the expression energy = a + b * ch + c * ch^2 and named calibration. .. code-block:: python import h5py h5 = h5py.File("myfile.h5", "w") h5["/mca_0/data"] = data h5["/mca_0/channels"] = channels h5["/mca_0/calibration"] = calibration h5["/mca_0/live_time"] = live_time h5.flush() h5.close() Additional conventions can be applied to improve the user experience when using the PyMca graphical user interface. The code below writes an HDF5 following NeXus conventions. Those conventions are attribute based, therefore the actual names of the different groups are free. You can :download:`download a script <./recipescode/GenerateHDF5Stack.py>` generating a file using these conventions. .. code-block:: python h5File = "myfile.h5" if os.path.exists(h5File): os.remove(h5File) h5 = h5py.File(h5File, "w") h5["/entry/instrument/detector/calibration"] = calibration h5["/entry/instrument/detector/channels"] = channels h5["/entry/instrument/detector/data"] = data h5["/entry/instrument/detector/live_time"] = live_time # add nexus conventions (not needed) h5["/entry/title"] = u"Dummy generated map" h5["/entry"].attrs["NX_class"] = u"NXentry" h5["/entry/instrument"].attrs["NX_class"] = u"NXinstrument" h5["/entry/instrument/detector/"].attrs["NX_class"] = u"NXdetector" h5["/entry/instrument/detector/data"].attrs["interpretation"] = u"spectrum" # implement a default plot named measurement (not needed) h5["/entry/measurement/data"] = h5py.SoftLink("/entry/instrument/detector/data") h5["/entry/measurement"].attrs["NX_class"] = u"NXdata" h5["/entry/measurement"].attrs["signal"] = u"data" h5["/entry"].attrs["default"] = u"measurement" h5.flush() h5.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/recipes.rst0000644000000000000000000000027314741736366015741 0ustar00rootrootRecipes ======= .. toctree:: HOWTO Embed XRF fitting in a PyQt5 application <./recipes/xrfembedpyqt.rst> HOWTO Write a stack of XRF spectra in HDF5 <./recipes/xrfhdf5stack.rst> ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6277657 pymca5-5.9.4/doc/source/training/0000755000000000000000000000000014741736404015357 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/training/matrix/0000755000000000000000000000000014741736404016663 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/training/matrix/img/0000755000000000000000000000000014741736404017437 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/matrix_01.png0000644000000000000000000033022314741736366021763 0ustar00rootrootPNG  IHDR `sRGBgAMA a pHYsttfxIDATx^Eچ3L $HFAw&LVAE3PŀY1" IPr,,wvrڼ_Wafvfvv=.]UUt~uKW.|Y[ҨIt#H;Kҵ ХKΝoS۷o ,CD:ªox3$^Ps"!脑&!Vm>6 ԩS[n=-XdƜy0.to//BUTU/)4^ivJBrYJU,4UVHke*b45 & KF֟+#"IyIsZˡy<t @(+-)'5C _!e@ ÇW5X7>Xj"@)**v8}W_=~z0k.]}3_h.(Y==2!Cr0I :.D#UbxA#=OYX =*Y=/+{*qTQvG^2 P% 3=3]uj4¥iI؞ayY RbJEFTaQ1S1[F-TX my02 YC0_,fъe\!C8NfitKRRK8!kqq|AyyM`WG|Kړ ֮@]a\ɼ'˺l~s-ss(Z~%ɹGkѴGXOe94nO>? أ.]=2 }vD׮ݜNO^1$#SA쑅#Jl1I.C#C$;4(^\P=R,L5Ts hÂ" 8|QNQT,S *̄ fItY\YLBi ghc2@ ($"Әh䠰YZ%&K=HBKJHf^äTOu\ꯙ[tMl:]%Rmΐ}z4& /)a)XeZije@c']vNAn^ sazzFRRR\\\l''%''C,"63Ħdُ hAֈe=89ˈ_20H@@,ٱ)LI NBaaXWA]q1`ff+??,SO? ]aFWZ bngWTT&S + W_폇 ʖ{P ~xū7޼{lspmYm*F}HĻWZsշUV}k2]/]]e9j Ն#(]+׭[G}Хko؜g{;"ᐤkHVC2i,%bĪ+KR9HIgR$fY#v&Nh܂L12|! P$er-1+eA*2N2+V 4ץ>IMŬ\dO*dpKzIE ,4bkII4OR3&$IB+ T^'8+ā++ '&01gff?q0FYY0 #"X+=㥀== 1Y 0n$N31*#)#SbHwPgyj"`& 1zĶ$Q"/^ R ?zX/} ˂,_pY˿t.½ /JuHO$2g(L[}n^i\>?y; #%Zd3йKܢX+AЀ% K Y2*T[>7?*rf1Y )JpL\YLڵ Lfg%S^:sJJJLLeL1~ʬx陉PZRi!M3*&RS2iINnL67@^=>nEeeeoh09<* u"RhJUB tDI]*Q t O6 ]/x#H `VPF7(߆js#%T&4@#%$~vGo,y;uٟ[U[O*M4U!WY?o]2O)% ,_ wɂ% 2ʹJͤLm<4?VVW荺po+f"C`0Y+blL6)YKgt $N]/3lL\% X%8$p%E%EF$||ɫ\&8˿"YL`ek/}BUZ,0Il^IMNI)$3%5#9Ɍ$PDTIP"HDl7AɁlҴC!# >JIˆYB2rA󈫘uu2sfrJiiٙf7JLLDoOt a`a!"%a5pˤm Z%f8dEOɠ=BE7b^bC `t"b%9a"z-g4n#`|pZ>v1jOZ0IDN|R^+5r}ZeZwH|w߈-=O9?g=5r=eyWfē7vcm_z턧o>cn|):OuʨSF0O| 6Xljebfnwr8\JC3X)4+im6 -٘O0ĬRR2M% n\ŅL\-1Wm*SHr)Ď~>t&$mJ\潸b&)7##'##;==+-yGIiIԄD )( [E@P l4W6U|+̐ ǝ Kde,5(#0e'QIg}4e޻=8mmE~_&4JY!^ 1w$$[v_ܰq,ۧ*/Aگd`X$ nW{T~T'Mb&oSUȺPN7I0<ŝE 'L)fbnz0X) m}+%$O-Jڦ1^X9#;!!,m^GP*9io,QC5ͫ;"/d'HM@6FFZ"FL @Ax#@ n=2Lo&TL8#rD.HH+!?87ވ"|svX_]'XὯ~Ku_Gnj?՟?g}V|zwl.nbF!'{˭_),TmB5I'CGpHeUeQ[:ObV %C>'0ž$2_lxhO*>gf2O>IϝLrLIkC(mI5BDߘ'@/zY9V(bqZ}WFظ'lA׍ &Š wD*)(;kAo1BdW z#=™qAOdA/UUι`kC`92s',{W]qo 儷ܔs3ޙhn-|wݹ%\f"L }8n\b ޸h9%1IeP1W;sA d.g'=;͹o΍{sns7ۭ#t(b3\=_ݿ]x{nkfڱ.¿y/sXmuK]O]CV&h-Jx9)Bl%|_A/hiR"c>ރ_db$/YM93 8sA% ad} Ir[4OHAF423SD}/L}/.:2[Ϫ$á;IiR j Z"8 -RP7#ig o$zZǏ_9A}嗍Fc||I `5|c62j%Scms~_g3{G=3G?=晘1OOŏ8nH!id=~H!j{>)b L=vPWAc0vPAqcŎ3zpԨG>S{G>~7\@@o:CWb8Q,o9[?٤OC?I)w?u[r_>e@M۱rh;aCq\HD/l^F+M'%Œo:deᅿDEE%_:g^R'ƴw$)Wç4h֢Rg0}-ێto;6>xdžX8*8([7ԉocᜇ ;?>MݓM=Os@.ooSק6 `]; O&M4A:nOI; a YYtmҧ )Cs"[dD4e@DR5Xğ+^,@YcJ vQ#AӰ}4FJ9 hciGr@h@Hɴ^7#`r߷o&{e>zD<h}1E(bި}pN8g;^FF#0κ}wd\;Jר6~+\7%^v?/_4}ݫ~laCIث({u5x+^Ǻu"s aMXLy,bnZLY+X[.\2s-\ypZU8"a9сÛoro8/,L,lK1#]aoZq"oRnl%X:ɱy9o<3f $H-b Qd N@ T ^Ob\?&FMbP7E^g$ 8=B oqR2F2Y3xT1j ]$ Tr=IM J {(odž;7zm޾=p^1}WýG |\S1}٣+z[@[=x{x{ogmݽ1ot(!yn kLLѣG!A @``{c-_Lcmq+鲴_/7 z=wE+upIZ/ B7.@Yxw`[I "D")JOKZ?Fl[ Ⅿu(?Al x^k3H`=:Vqo1G1FGe0 XýpG,p3,Gnj$'Iၐȇ7%ƒ%72Ao9h ((vGvdAJP=Q] 9pG-D8HFd8Y7JMO &'B@;)@_EoC!#BS$/i"F[ >o{(EZ؏#QDH5Sz+=ߚMvZ7xs>ܧf_}长<06>G­zq Mp/aw&N7Xa%p7-!L~~E sX K;V3NIm|z8H6I@6&sٯvL23҆x#H 8ۡ=)GuBs;X ]h9hՈ7Ѱ`p᳉g#@Y]b$7jh\"h4g$|2q{fHn\@K$t`SEpow~Y{C Hkv :8u<,b߾Bz!DEFEG )is^ {۞kgk_+]G;N更wꥩ8_W 5Jpwh;w=Oܹ;=q؝scwx/ q0$0oԦM8`#B;v؉'` /{5M}3ܩA^ |WO-f1 XaCF` x ׁ%cH#QJy#9KR0DpF kt1|6,rk?vk $2 Fx GNeԛ ."W>^"o{шA 6Ps_$~}JzF9eawꉪK`#oT+Uh\ ?Xˤ'6|\{Go6s }ٴ̽ڳi3^f۵{{ if2oo_ɡV[~TQp!Դ9H]|Ӑ~O=v<ЮC91>pN<@$<@/-|jO J|~,[%+Opz_w=!!} ǐ>^~q0$Th/8O<߯@j[4Qode)~I4N8)j&\̧`w v; kCVE`; ^rP7Qi rҔ(R #TY[%Gëި\V9Ff^CR{#pDJdo`OA'2} ǜqQ/.(1bQe &dΘ#$9Ic G%e=${xW,Kw"ffwO{iϴNg:8cDԌ13_::{DsG$}!R_y! )Jsi"A zyxg7/|!zL_W>8|Fp8:tt`+xq+/% vW=w[0x[^>bĈ/q{WMo^A!!{,$]'jUPe]5Yl%rN`kHy/k).1o$$l#x99ą"E4FHY,C$ E4T){3 )Xox#@t8=rrN&ŧ%ԱIGcA /̬9s_+*6!%8&+>!dbBb!)ӧ/~㶛swo=ڴOz}7ycʱSOsj[SSޚpJ;SM.rߙ2&/prʛLJX09n&}}r4h#^M_~3TYlcbbbcca׵9 iw3.} z~l01-|KA9e_83 (G}+WBmq=A#4p[FGѿ 5/)H/\dk$As0c;!'~Sb3g,χ{x&8<(r" %EHH.IrM~E"ɥLT4L8*g ay[ټe!@l7K= m5~d \Hɛ\%URJU%򪲼%M3oy#-h7>|{"b7mJLV%Y`07MD@Pa-ٜVݞe}[ne*޺θu]v&ۮ ǮN.Wr\;wrYv1n[kܲxԎMqt0^7馛XOIxz :ċFJĺPlV2HR\kCeI~81ȎcZJ`OI1N  5;!g(*V V 1+GI%HSF$taL *Xp|t@Ak%" ѣGuqE^ǥUϫyK>֮5 )J>g8:d@4$W$Nbi.szKAD;ֆH`%zGt;Fو Hkd57R]17bGyHyHFwH)]/g?Y@K2oEĿ˅g 4V)9v.r2A7kfsΆι_=<CvΤh} `! &&ȑ#`bccO8MK`-7y.pOR>`OS7D^  ɈD XՐ}l9h`p;A]MG1ώ:"@؁>Ǡg7BЈp/R7jF7c$_[:R٣Rq{8ˈrW;)_=FBF`<l9Y C )0Ѣ=BAj>0Grh28+b^DlAOxV3o}Y^^13C\y7Q)t288I&}{8G D"&G3bwQl2= +1MfxA=bR]@r®iL A NN#6㈼Ԗ.D@dި#x`edd@ g>&$q#%Tw;ZDFܝ`l%Dy 1)Ol^]wDF[R'j`DP%E܅ {2шA 6ehRM#S)/p1T !5b '|hg`DPQ35æ \<,[#;Y93k/ =bS,VmS#'S?^7曡`8C|̄>''4(oCzqx3z-( J@DrH!X ۡ H&ӆu]@D7 "lA@.VDBؙPCBшA 6(@KdgaGA26Ty2$D$(l?8 <"xh`{ͼQΝَfZ"hPl@8TxDIAL$uZbq7qx? q$*H}B9`~N x\AoԽ{wC.]+ K\n ZrEVJ`D{}CSD/!AG"pg6ElLhA+`G"*ij%vf*JuV'E As@D#@BQ0Oϝ0s C<ݠrЯO7AYH jNm14`WkUÃ, *WF q^C [ hh1RsI/ˑl@#Yp2)*Oװ)DD4^ā@䐏u\0!P;<.2P}<4)E/ufãaG#2P\+=2}]:zE>t،ֆ流GD)+B{c`Og QncOG XG@9EH@=kAslPbb"cǎ'$;kRBR͈J쓺i<"&bt%ͣ ASJ3aXa=:phpd{Ë AwxY(~EH0$ŋbs3fV^GIÝOQ~J K8O4`^C/Xsv w%,7֭oOu#hz ^z؅Lxm CvX`!ؤ2J3'̔5Qȁ{z'@`m~'q'qZ|D1 2P[0 8I6p0C<|V<3~OifNQDVP1S)o(.34 u7-x4kՈ"Q-Qk<=Şj<єuB> L")8| ,xA8"70Ȋ+&A4)i DlL13~1cƌ9G x饗Fƍ0a$c`FȖԢ@j? ]XI*&v>.qyQWFxO dA-F D"H$R#]TT\\XT\X(]7g]F/>hr!H$DjZ,{ϋlPb+?Sw. ^A 5|Lm&XHOz/jtHӓ}4+A!#^hs)^4 }MaIHJ\7{jFFF4x{.AyW D=?m4:jkAܨkiiBW)5N]m%6QN-%b Gqb[Q&"7oiFވtZIꏏ$ @U3fQb *m ň+ޟ76:C%jtiM-57Fyk8FR6LҾ+JrY0䖔*jFGUc-HTLj̄0i4Mmy(omUxoъ pQhZG~_P17!m6n"Ibm%TGr2eIHj)ߚy#ʕ3Yv}:SӞ2 ӀTɴĬVl/YvMӽS*& F%MSZ^d;FOae%7&)URG~h ͱH*bO}T ``6 P,P%3gr$R%y#䍘="oD: 썤QF i\D5X )sc iJ_~Uuf(D ,^iT4Wy#&U8z{_z:,WqiBWKA6WIwW9FRHU!DO,]7*/"oD"5T31D"N&poTXd*(7JވDj7"HƤ '\"SQ RaQI!F]H $F$Ԙ4qdS\lTRTDވD"H$RKդI&b&GH$D"HM4QhoԍD"HɓxSd221oԍD"H)zJ& My#D"H-TH$D"Bod1YPfDވD"H$R Ff H$Dj\7"oD"H$EK&3.TUV7"H$彧GH$D"P7 GH$D"\t7"H$ih{g̘1e-iEވD"H7|>(**j@ @;@kh'<)lD"HM@ӦM305;Z6 O7B7 _tm+$Ԙ^UU0-hh M'u#Fu]l D*D"5fv;C$QL\]l D*D"5f76[=y#ɂH`EFGm6(D izo␤ټHJyfjfsRy#z2>7 q<S+hؒہ@s;Vj7,6Vɇ7*F>nM[vlݱ{Ͼ{^l@} :ͧ{1h{##|HpF䍂z#`y#y𱓨 G@2rr󢢣CW3^lxUlӨfIp,NA7*2odFЭZM9g} l<*|/rOM"` aR"[lC9RA^V+GL orCoРވ"iF0ޓn̂Z6HG(2t$!o*DЛ?O)mڐWP]7DJQ on|+&)A +Zi+' P$A_9Ȱ6A ܗӹ\>$ ^uF8a/+RB3*RSoqD"԰3G}2;O4gdޡ #qR|y# Cj7XEZkL#cyɾ{2%PT& h1(7R*"OgP>ϵ,+ \+' P$AWP6 \rrYy@}`Db_!YI|K/kd>ӷ8ἓ*4gy s9%,(ce_T'e!5Ј/{#獠HSDF*M2'\WtyHX?z%) M7(tsC]A_Aep@Ē8 䍔I)Yٹ8#&j¤p8s΋^-wF_HU֯ư*ldVk uǛpI szz*B2_4~ V^)oR0L"8 od{TUӉzrr2lo$]K[gxUTMXeeJ@n9LN?p)M[22 KJJaF@~~ f^T8Φ;}P#ZmVHhZ+j-5堽Q$v :۝_ : b7X/ÒS,dyvɖ|l5rxUYodڽbny?R%@^f) lXɧEg*)o ye-13yM[ved( Z b"|MϳN3G4շYrA@@;(Hp K)vٻ zh$ȇҕƇikm"eǛFdI < 3`>پ6G-}MA_FFH={#<-uh%'";upg.HX9)uHޥn ,/ Gv  RTso N//E >A;ԇ7o7 SGߦw7DOOMZ o$hz#fؙ!{$oOpTN~CEݦoFJT47ivVi6V/N}'ٵZټn"oTBo$>l"&O̼{j2hڴi999&qBstH$t}&oDSI%BY,~B[ox⼼<8B !H'LDS䉓K=bMf`bިk׮O$A(_+q9.$,Eɑ~*4qW$TD"HM@&zS QYYEF$D"Td6F]H y#D"HXح4b^7RBވD"H$R3dAިgϞ=5DxC ugB"H$k8 0i%%LJK+yOz7+dgϫ=/F+kAM~}wJ)^ -׬ F04ݻw׮]۷o)333BԚpT***[2?=7 o(1gRO 0(7RJ9/¤x"!59-3=#dpLOpM~x;-k"1 z)ôְ.Rda+Uk9tΰw :#DpWy# oԾ}{sСI8p&Ԥ>jj̏(R¢a RO 0i$ϋ1R3srM&Y<oݛ'{ZzF+vJx"HE)6OQ\&RP|;D-\[h+r2uUv@ _)KN,"ln+#[KQ}yAi.ވ#F'O&A7T\X/a?Ou6d"𕏲7ܹsyyyfffzzzJJJbb"$sir K=#7gXМb'w/M*o貃"gUIfCo%] B@H) gc>?|A"f A oVTTTPPf6G%,ELz|Bi|n(-;e|z#/C4 )XY)=2hPOo8\#/pi0LsCikh 1i⦭ >}O}-O&ŷ> d}VvB2lsdY!a!2vWPJAľĭk; ֺ_1"uOZ7R;~Ti. !%#ISн{wXZ ;v&3+M#4>7UP, h+s¶9=aA XeH(R r"+, LPŪCr>7_o5 S&gH΋6m/*^6٥}Ĉ/ 6XPB(E)OFUzQnM#sFuwY^V5iz#9ΣcbU$diF  eȻ7*--YlVUjިGIlJJJnwʎPO*PZVUC+)/z*-(l%$ [[n+|n]h`@Ҳ FἸiˎl3U}}gا+Vy VTT^~>}`g8;q 9ˊܼ'&V0f0)VGW;x#`;k0Z&áG '>mBeSi}/M72M3;saī>NT¢3}?i$b *vjٳ'x#8mP /I/zތ˛gAV_%% ,]$f+2<{Iz+n(%xW(,K>6(s:D7ἸuK@vZ>;:1cBay#^}imUH"FF555eeeh8gg̘%,EL2W΁y)D{x(}z`f.,$ɜC K*3shEΊ,P/Iz |VIڰ̙6T,(tBH#;{{?q_ f5E>R[nofRQQ1sLM.L$J|36@3y#p^TX tz#%_oaQ}tx#q7X#Rޖ%qFF&MxJKŊRx#0Ch!UVVΚ5KKcʡ Bo_O%Cry#` IA$ zF!IyEިH\3oDM̞ŶZm(Gof,Ϟ=[Kc{ @_ k-~*:u*&/ݻw 8$X3{&jڴi999&qBstH$Li%kF=z ozŋ I(Dj~Bo$'hD͜1oɀ#z#7 L6 q9.$,|&l54f͜n\v>8={F$oD"H$Rc=ˁDiٳf˶-7X@NDވD"H zg3o$]6 ,7"H$"4TN:U]] HvH@ވD"H$Rszr&D7"H$5k슊 >܊\^Xo8H"H$Tw͜9tNiڭo*ިqfD"H$R5cҲ2n2YM"XQY٥;hQ9cYD"H05m h/*-(-H-+/SgCFI5;c M.$D"HCSMw=2r S3sR3O$zJ:tУGF;lhn7NɅD"H$yhiv;= 9='>9=DrxsSݻWWW_)x<.pC4i&D"HI'urk׮UUU Nff7N D"H$RЄSvGBjVԨؓcwv8]7ХKF\.ncT\\ ѣGkr!H$Dj0i8q$.ٺƶΝ;WVV:CVLK/ɅD"H$yh=.11qټKF:uofb)..χGhr!H$Djodڏ'F&2oSz# h47z54H"H$ Q,x)%%DR$OiYUrMG25@j2눨[[]^ f>kH@:@⼥vDk읿t;J;kKu،D"B3ݞbe5WU=`)--7@ԘW>F2;F_OBFX1k~x PREH @9``ˇ=PDDڳ* τDF#BVAR@*W#wP w\]"@ c6> phr|5fS/b#Aϒ2p~fԌE$foTn;PvYUUݳ-Fod2\.K/E/7 ,Zh~kG3MW0&_6f\d^U)e(^U+ *[b<ea)/+@4A@>@R[X)R!.KD=E#h6"[)%`}l1pD$jFYvǧ}QFy}HZdAG3MƗ =lT RRnC,7a(^U+ޚarH R_VO&&r ,hPZ EjX"XLTJayz5 ݎLG&oLF$)"oG"鬮o***vFܰ(l_>FN Jk佭N/DLS;GICٛE1ˀTe&&X "v6φGyr %R0@Vh M1nlcE5EBA,:@"5Ā#A{@xV;k  "G|flFXD"Hj֬YeeeITUUi| ,v=?0$!܋4=u7҅ B5G(R¢X` k(^ʁ(j!O\#+{?~u +awk#|od|f ^E*O#rV<{'׆9HZ 6f,"HP5k(--kvњ\JxQBh|#E !Y(HeRɣ51zET*zꦊVTCˬ|QL4k^YNjmD+H>wTARXY"{NAUco~$3IyDfΜ -H~x#H'0IcǎPS4` k%:@Q3H$R1cD2;=%FRO0A^0B O\=o\.zaAD :@Q3H$R1]卬V+3P)?[qM+@ވD"EDӧOW]7kdUx##;m4M.z{tt:qE4&ElFXD"H yQ GGPh) Gǚ,ʩWD :@Dy#$7[9s&`BKlD"H$RNǢͻ@{jJo=f͚E/AAѬ9ՀdfϞE/FAA4BFf/7" Y7~!!Fsfy#  !{# FAA4CFs oDADsAAx#AA FAA^AAx UVT [!oDAD"4oTɼFAA4+AD=@ވ &y# PQy# NWFHKF7n8qRZBqjBވ ziFyyy{dž FX@CwqM)ԘEɀ@DIz#P8~>l͚5;={e5D6S1#5 fCF\Irr2ś&͸8Ѧj= wNUha7 ֯_ر$+++33 t.!WwD6S1#Kxި:cKK\ʾV]xDlLDK"ToT.q:Q#y&M6C}(${ԍZKN:e6mny5xӳo7$:QlLDKIz#7ڲeKrrrqe. =t(󄈪7t;ߝC %U/5K%~L Y{I*YXPUY9bܘܼT7*_GaU}m#60zVRAL#6#Bbƍ۷o?"իW_4B퍀¡[U'E6 K^tse.[".nw1,X$%r"sKH$~ͳE1-9CPG 󊊊 sssFK"pc6j< \"*D»FEE9vɓ)i陙N?p͛mAodZO>d߾}bصkG}~X/!qp*b H FQU%'544*o.u?3b0F7y> T7v SWd6Y9ԽbE(jsT,El݀DQUM%evԜkL(.pkLG&]`UΟ䤞HII9qDTT~e˖[,'pc6*r5an LoAhIF{A5xg>=vK3M>n-qdOdkT])r 8@>`9s&|ӦM;s^uXoݺu^~'Ӊiu#׊"4oį+Qy#vHM=y /PR`;t_g9v)Ŋ]|]UkD/`ڽ{7|vy ~g}p;-6!q+#T1GPhSrג wWAAx: Dm\5#p]"Piʪ+ ?=mL\uO~\ÿKǟ^LLJJ:v [n1cƍM&Ȏ1^«bmZUG9Q֥7B)S3[,EEpP2Nt/ VDLk#.. A38[o_\.&#S{j\7B?"e_,OM7LϭKڟoͪ ?Tt:Lػ_7r|x=4 QQqqNnnFFFw >M/#'7V!20pgvmk׮x< Z,Q܏|}ֈ`D$Q,Ĕm]~/Wz뗨 Wkv`_G!#߄a۶m8'N,**I&a- (!mV3PhS_4=n^ LMc"6h"XQ *-/POo=s0o ћo}]{?`gŎi"6ok.p*o߱cGee .(AHdVg6}`ok OUw>ؓTao_:q@`cf HAAA޽q{0, 0'7W|F%ڬ>zG"PDyx#i8)2gAor 1ea'dF5.s=j`s x&Yg5c (" p'pIz7ڼn}fXswk}t׆W\lPY{47Vqm {!њb3`ꫯNJJ OxF0 0@Տ?F***Av 7:t|-..`Hʼn6y#D`={#s_ud"/U`Ѷݠt;%&Ӂvٛ:9z1cǍ~ }vA>7|̘qӦϜ7Cч.vuG {.77WE-+p)>`Bj6'?[b/v,pmaOw%2{{lV!|q'  >lnᆿp炥kʪ8F"`6}|5 >#333/2ׯH=hޏp[naNNm덪j客R+xOR~eOU99UAUe_cZ3c\kFodɉA#{#nLF_}7srOUWcdY^0<=o;Yk'mf߻}PPX({#>bNhbPyxgyDdG-,,WqVC !ިZٳ57 Ԅ"=:Vܛl/`X"ڛB2F@`gҥbE@YF@rrW^ eq;w#Gb0bZM_C\n-\Rs̐f(ߝ_coTv;*_>_V^ak,XJM9 -Xt}=n-'Aox "oD  _}Ք1S6n6/7HK-Đ{g̘1oԳgOB"fWz#yplͷKG \;C#urn}a&h`Ñ)?U;v83qkݺmĊ^M=%x#ؼyYg%~!CX,BMŵ[⨽r!ϼ< ?sL1_^xaÆ  ʼn6UP]S6dooZ2Hyw>"P h/grxgcڳ7r{֞Ö{BD .\vmQQ4A#F^`aC"dc؋5&sي_n,T,WܳakUzyo{WӭN;E/x}fO ?ǟx#O?|A4`,jޜys5o΢Es,d̘)wq 7t!-[h=F=zJ5zƌ\ іu`8\yVWuuU:r4ם]6քA| ;sao^?Wkq>oap_07j8F#~orJ|`@/1>U|0% 'TA=ǏN_Vs[ߘyM=ztwR?=oTI2s哱>^!Ǯ]|y|ǟ|ŗ_}ͷ}};ny#8t^(Bވh 22 a!A G3:l!K,Y2D7\q芋$rF0;’E{4eM.z` f(DvHOX6̶L\&n,r``ڵkWVV6Fmg2xJD"?cPVM;x#P`%^z饉b/,ï/.7*(( >:6qDXXd D*pTxg}~e| MtZ77yB=y#9/O۔~燻D:?;֭ޅx:̿y[ok\x'OꪫzEgj._GϜm?Fmrss͛ }DzG5k_qH>W~a$k׽kmx4kLWq~,LAhѢ 6`0)F#썪+v-1fXv+D8tPrrree%z#s*6_O=K> +a{#he?Q (׍D,[:!!ф8VP[lb'lOd(߻w>,SO=1SL4-oF!`pAi00J\Z  D^&NĴmQYiiWߔ.Q~MOAS+S9Ys~ŗ_}?ڳA4K-ٸzjв} Vdْ%_13|EFIoԾ}{ t h4n}(]F!{\mVZ'_ح{NiM<|#H ^hE0O? a-Y1"̑'<Fk֬ϋ(?Y\4o߾ . $8|0Lꪫ_|rqM}AunG K,NUrj1+>}i&7lAհ7v_wo=%5_~O{_ג7"3F7*\W_oI+Ձx#t!~SXXrE0Q1ގ_w(U{O?߿QcSK~Q?YwG ^mPyZ8P8 QYx{7ڼy/t]va^/"t\E8Ѧj*+A%6he;1(4w-{,\BFSC(ljw|#77߼gey4k t<7*»Vm245`5m.;k}ZrGuqXr?~ hqyA+KᗈR!XHkxy7{j} ֏=& 7mQHOxG@^J?䱻|_Ox[b/̬ls|.ΓD*h$GFM ;]r:Ǐ߻wC7z'ǎ֭ /TEE鲟K?ƛ]~.j<+\.~wOjGHwT^vf[zwR*'biF87o8$b{r(₲|.H5uo .]1x]~(d* )vth``zꪫ/_.b9rqM+_n-I%m8&I׎ tQlhSTpZX=u?+**`rʝ;wV)6V[,p–-X“k y# f Ygժ)޷k?qEQΝ|ںukFD dv΢y{_XfHZX-]=l"7={6]`oԶm[)=\ 8Pvvez}m&#{8Y6eDppܷy҄?4F3*{Skq_4+~׆&mX(m~ި|,"̩s|QKteG{~axPR^ 8Ѧh`oTkLWҥ`^<8/#77733399f3g]VF4f {jֺ ~k/>Ò~ gFO<Ĺ2fKE^ђXz!`Eyb\tEsW_}%>RمHaF[:tBiO?EF^d'%Ь,]%¢8~ye 8Ѧ(X22k/H$\S ӕG]7Mdā+=p-[VZ矃I܂iAdQuA4Amg/U6?}wظ6<OBBHKKqVEDmC$!bC'xo4}t?ekpdz n૚?E0QxD^d'Z+wЇ䊨pmLט8׮f*%pNÇܬl"jިBMIuW_kª:? [M2>Rn ]t'OQFir+ oğ. ojڕþB_,᭯8ѦiLy.SNr{h! Dy#À:# xo4qD͖ ##Q׮] ***Y?~&FػM6'xz=(Q\myʼn6mnHB=5  {qƙfiRcYݻw2L a?E6l0iҤ#GzLܹs]hf 5fd!oDD73fLIIɉ'$?x:u$j |mXnxFvހP\37"^ =<cn{gEDŽ 4դA y# 0)/Fݺu,((HKKX6\"oDDH7"^ %q3Gy.]º'O{-..1b&F0H$D"EU$xoSʔ~OSN'&&&**۳gOnns=E/nDAD!xo4e)`7ر#۱c͛M6mܸSS/6AA-ѴinwIIdPYYދݾ}{ݾnݺU_~eʕ))) y#  !y#c?mbvM7AԊ+~P8`M.z7" 7?p8v;Thٲe~wQ~  Z !xNrUWWk`~駤jrыAAɓn7X ⺑FڵkWZz_9iiiC y#  {'NSIb{j=۷o޼y g֭Æ y#  { ;"d6!7bS>|СCQ/&Ax;nF?8$)))~3  &FhhZW\Td,.WWBrNg~  !xQK~NNqa!أ*fUPZZ:uTM.z7" 7*ȽY~/vϞ=kjj yTTT̘1C^ h<ƏXrrJLY,z#0Jd`ݬY4Eވ  Ch¨QN7/b4ZL&ł¼-YTK@, gy#  {FVSAdY,vl?Fjt̙=G^ h<&Z-vi9vo7" y7̽ivqAѬ fs7_Dވ  fBHcًRCވ  ChjUyR? h>\2FAA43FFAA4KBF/ļQQjoTvݏAA49BF麑ofHy#  F)S# QoT^VFej͜9S^ h<}&AxQQxRFu޽ʢtԩ\"oDAD!2ިk׮¢"5qDM.z7" 7*X|{Ν;q322vq4Eވ  Chju7+7xN8qĤ$\"oDAD!ooԾ}{˅_?r_|Q^ h<^, ިRF;vx<'Nw?At ocjrыAAмo5?1+~kv,AAMŷ7֭[eecL&=ydM.z7" 7bbeFee^oԽ{*'n[VGAAMQ%xJ7rsx#n4q"S;q% YA\Ғ7xUި[n7l`$7N^ A\Ғ7ڵ+x#b4zhM.z7ocƏAQ+f1$BF;=57ҥKeeSRRa6GE/F tqW 6Z7YlFVNQQd0I/&7 P!oh^^x?~?z={w?VTTw 333F5Eި!oDA y#@X y2)OިCވ FƱ5<m=*uTHOQcA*ck /-[AlvYnvWWWуyJ͆bCSL&z1@ި̙ uA48cknْ0Vfs9tftdZGE/Fǒ%K:vضm[FMwd08 qCDA4,ck.=996n6;l6!HB;%& 7n0VEѰ74E/F\+x#~!{#|/viiiYY{. |҄ 4Eި!oԴ32oЙgZnnqz oh^xrsmF#X꽧ֽ{wX*CW f䍚w' ^~9k/D,ADB8Ylž7r7kjjUTTNE/F yūot EUUUbADB8yl(++o?6m&7䍚?`O5s.VA4 cK~j8nF%n7YS釼QӢK眓 wb{  A4c 7ڴic֬Y,O^FM7<7. 99& A4c ϼ[덬VE|IM.z7 3<g"䍚ݷU+z8F*A y#@X ڶmk6lذ @ZZS?.T䍚=z>d8ujݺ 1&h(Ǣz#w覛nr8۶m*YYYC y o, /SMf͢_%!oh^Q].A5>&w۷W^ q͚5"_sNϞ=#bOjݺ5صK|䍚k)NV7:CLqǢW ot7ƫ)))1b&6m3gի5hŊ˄ &wyٸ*??8qkFMswje~ FƱż..፺tR^^%76fHhQ޽G)Nua̙" >|X$ʠU䍚 ga뮍"9[n!A y#@X"ۭF]v4% n7l(3<_ 0~;, X^{ךf+Y)!opu .8~{E  oh^;nw80yO6M^䍔@GQ~~>d۵k ٹsgݺu]^yރ>~믿NHH8qy睗OKMcٯ竞>|D\"L 74E/F"ިCn;66ĉ)))0y<z;Hv ]Pɰap|uם}={ܽ{7Fy W?df<(1QUD zq,zF7tܻw? niʔ)\"oT={U+az#n$hǢx#FezoԦMرСCqqq&OE/FMKM[n9غ+i+V$7&hǢW ot 7X׃=ڷo_llljjw?6E{Dꁛn:|yQ" wox7<*A y#@Xz#ͷ7Znuy` X!/..ODE+<~E23&O>$A y#@XRy#KnFͶiӦm۶e0o^]}ՑU+nt;=5 FƱFee^oԹs|[NgEE̙{jz(R8>}϶m曑w*aAa^xYl FƱuڵl6vUZZ 1fy%HrѪUɥ5C'NQQ%1fvVp{/ODB8yݻWWW{<*FFuq)..3,#bb,Pīam8|z#A y#@X zQSSٳgkrыQ}Cި}V$Y~}xO>9, uz!0AD] oh^QϞ=%BWƈQ#QaןW_}őϓk+?yfA4c ӧ7a FFubܭ޳>)̟с>ק%A y#@XQZtVUUxQ9hrыQAS瞛ѩV\g`H1e1F"`Ȑm!h ǢFfRY^ZZYQDϞ=5jZrZG|~T l=w`("`PX.Ay#@XBodwͥGSQ^QcQ)+kS0x1>M=m0EXܹĸ8A?c "k^lvl.W9?H|眽کA{_tQ30A-FƱEިBި.DEM{뭈C}[={n9vO?9#нOPᏌ ED q,z7j7 WgcKsf2%/Z׿6yQ\=`.-hTTTjwPUт!oh^䍚*‡g7nm> ypfwx`sV}Uf58qd~dTol0Ts*KD q,z7j7 g'ⴭg0y$b?7+'GDXG[ BA ҏ.D#Vҥ:SO4֊5oA-FƱm"o!oT^| M{33bhX(%7@um,Q"+ h74E/7*-%o4 oTg- ?x66W m=:C;V]օ={nKa A43Ǣy yЭs.ʈ}Oj*Л$/˲ysmm8Ln2v'5C521MWb!oh^{#+<yyЦ́qk]t13uY$,_Ξ |^3ԡ/@'8 ʇAǢ<䍚 {ju窫/o?E8t>@6l``}ΛUrXn=G?arVs{<;!ݻ;h B8S!ox oT9'k-"`]CE^tW]9[ ͈/a0gR$jnx]1+MDq,z!Yg~;#p8|_Q[թS޼y~]\pA7UUUe0xtMfo{kqYW4 G>j0T0A-FƱԳز7eFFuU+ǽFӧjaw4P#?eu`(w/vBq+Wz_`0qsM7df;AǢWH yyGR>т@_ jjNn]b0|i0T̙'AZ.k3r;MΝ;/WTT@W8z}\o}o fy#@XTUU O$Aި1@(lv|3vj::T &MzY:t-3ΰ}7{-uZN;F= -)A3}D?<ػ!W* y#@Xw?~c7j7 rl|<%/Ijғ"쇙3٭6mO~ e}rOsw|@k "yn&N$%ӧSC >H#X5xo)9m+%{;,US..>Xu`?N EB872y* aZ〼Ql|Ò%>.8Q̩=@Q^Ⱦ`nHc٪aՋ/?p:m+Bڶpy>~m4(cEsY{u#hѐ74E@ި@(l& |Ê>޸h4:a՘1:ܬH*#&Oŋ\yK/U9\q.sm>٤I' _m; +c '7ΈCި@(l-b_߾=^@7~>?jD1jXv>򈏗_Ę^qᅵ<ބ\pn_[*ӿr8hEs.F-FƱ7R#FFa3kIp-'N{裁~ ӧ/ޟ}vB> Ж-yk=ס?9Urهu^-v= p0mۭG7" y#@XUTT(yzv_{SLa7 Q BVs}W\b?̞ZsD Z%uJ^8xڟ"֭~ y#@X ="o̞= V)jZN;70aؑLk!oӟ|>cW֮%2%g! CѓOj墳f(!텣n_?{j%~ y#@X+/7?RRRxoQҷh9"sOvyGa0Uw޹ΧxXp-{ܪo$77`(5Jԗ_]R+i]rWr?VH\ZAǢWHG䍂d}+YFr>믿sٳ={D,tINN&oT}wLV⎘?ڦM{պY!C6_=H|;w2m1Sk8x0r{5IJy,86m֊Ĕ)Hnh74EæM̙zj7ZbE֭˄ &wyvwQ_wnZbmtIſ}(ô"R,Ғ/ ))5jDLemQP={=2:nȐL@T|9 q`|0mE},FH.e^ͯjSɦMj׮]zurŻʕ/SCBǎr=7n'hi|M8SJ9z6{pM?+Rz**6wRV.kN[&yô"R,҂(6,,;2((:,,622>.m$#r6B5kSP9K>󈩩w1,@ ۷Ǐ%E~zk=SZTUKK7jdRE ._#Hٲ,,ԇJ9ka2@5'@j^So g FHH j,m^!L鏃ʌ5JXyf##FݺL$/8}o`JǬ^//};/Tx ޷hqZ-[Ԧ߿:rd(UHFǏGʕsӝ̄`|0m(6 hԤt> 67wջ!x$^dQ]q=;G?,~+rems7m ?Q޻G>ʕ1 QCIu(a0+L!""-Y(I6(%%i ˗@qߴ޽8$eƏCӦ(*0AG"%+-ek)ΞM22m{P0E=K\6og8a0_L!""-ƏgK>œ9$ァg!w&^y@@Lܵ=ҨU##Z3gchQ#:nt&yjE"Et.`06BDEZf (P6ʂi ݕ˵ ک|y5 -zk514gheCi֭([<쾭-7:p[ڵKco·U|F) 'FHH F*_7,bRÒ%L1?Ɵ L-^V[޺>.]H+SF*TY}ҷnv&&nj户oߖ/_[2FHHKQrr2FrGLM8 )Sb@"5T8@LZZ`.^|<*@25aeEiq*[5}h{shQiVcyf0L!""-L}0m;Ty`a-Rm3P]kry05T<ě iPpz->:n>5d6Tڹ"EhĦ S JH(p d0>-6BDEZf}0m;ʖ}\eШ-##5qF~| Q.+X:{2Q!-:QyAUr(Cjg |)sy2Ob64a(wX[?PAmo)PjEDy[7gϾo=f6̟Oܘ+XեKO4+к)#uu*3VKj,,t,6*$0m;}LƍtۥJeOW)? [TݺHur}|Gժis4@0oY7rzLLtxk 2k$I`gzI"R,´ѧßLMPPCPFmaJ?D}lݶY\Qf&t͛7{6dJ1-]H~y:h׬YD#V,S  FHHnmD'$PeĴQK>󂡡Wfod2f=/Ȑ4|ԩWq3꽶猯=xЃڪܹBTvڞMr['G*+RPNnzPݞ=KZv+Ne Si#DXj#-f6*0m;򀯾1n4s&ɹ؝Y.woN㪤$cr:gMLjΟ' F6oVtik} dZs.,em}BWK߾7yvkghjQQ,]˷n̵ 'FHH F*LȞ=U槟HUQo O51!dĮ] U/ZT6)y~U}b;v<3F[8KhPѢ+O/0bn˨-[f;߼M6)`0 L!""-j# L傌 uS[%vׯdC׎ B5;+,/J_gWWB-rYT$EDEԪOW˴i$fw` d+>!hY`~6BDEZ(1iOrAll"&ܣv"Q ⅕ YRLM}jբ>%J\)]Z32)!!ď{TO,XP,]JMܸA+]KdIMղt)EsmCIƍS`z6BDEZeSi\`\1ge@D'j)^m e 66JNNH9R'Z޼ym7Sǎ unsznΜ l?믳+Q6oQ`)iQ,jaڨQ.xe>FQwf"Vv ׎񧶄r^YYQ`fvfMgaY'oU?կ_,←_m7ƍ!O V['Gkg~(Y 6d`)iaӃ75/e7ɕk4npmjXAݽ1~ FFu(0ednkEj O2p೷o6?~/]668j9vv۶!ƍ)6/a)i_F)L}*|w9x<۷OZJXI*af 15k詡!ޯP8h&& ϶mk5[~O&"0m0m´Q.Xv螢ܷjtz"+gZ9@`bb"F|sݺDFFB#a(&&}u+yx %Dc\D7e2w$@믋f0b>U6?p;rwwݡ}dN.Qic f&H B6tXj)ZIjjDG!\t(ZV*˗޸-) i^&&*N..agOblm&h4> 6&CBhA' ڞ01 :/&.W8yBW&'جdɫK2w!+,kW0R%TBĐ}Ǵi"R,ҢSRRLv6C\Ď<)Z06SyV)KK/jczol…ίpabʔ)sdI5HZ sŊy }" GV727wQC/*#VBǎL1L!""-L}0m z>g("EըA /~\9mi@ AmwqaZ8XZ}%1?uOvq.%elAբPn-p22򳷧Iv F!i#DXQj#??{ŢVii\СYLŋX1;3bjzfMmM@bŽ{/ž=zY󺹹~馦\ƍ=ϖjܩfM5MIIIH;񀓅k*s Fi#DXebBCmQe̴Qi\Ь^'K;*Yߤdj{J3N]{.\Ȟ{jmذ৒%uk>;V$ҌJԸ7ik…4l9Y[f`0mQ񡡉S3225jD bybbb-Z$jEZ6*h656֘CJZZfi:wK:4x%zl}p_͔|4o~@駟T*50x0FŊ);+~J`$Ȏڵ5Q`)iAmj#AEDFF&&&.X@Ԋ0mT0m W?W?e5gGGJmu#u;\S…ʱjo8{,۷1SjL/ '6o~oB .'\{O %2e.nMM-XAaE4ck{̃z3j5l?6Vwbu:91FHHq½cBC㢢3QA RRRPDGGϞ5[Ԋ0mT|w)YR~hBF geeրQx::w^`7x0RuѹsrvFM-w[ҶZ .lQN.djRΘA26`0>:L!""-3ƍ  BA%''{zzzxx㭳kXXشiDH F FXk*s2Ys#GvٺUr6]H7%bk/2p 5p* keJ3[W(>+UTرÇdd śhfv=/N"\[VVj|Onْܺ c"R,2]Fa~~AAQaa1QQ4hjՊs۷nܸ;fQ+´QAôQ.04oo׌#D\ڵK9VrLY3 y3177/S&t jj_}Zo˩PѢNj|-Yr ô"R,Ғ5nH>O'Ii~h  {w6`)i橅yyVJ\{={ݻwpss2diaڨa(x-uWzujݚ,hcWU*V3glQI 7 "e#7qwϟP[||%3f<*M(0mFaa1AAqaa *WhΝvByqO|IGN>ݷoE%϶``(WD)p$/[wByyr(4lo##wOs&*#ߣ;#O(jkfZjŋ +Kss5ظ "R,"Ŏ NHMNJH7BUo>TE>vޕ>\Ԋ|6ڨI&Ǐ!CT^}̙ڏF9A)S1;lYvSSݓׯ'kp+Z'ޑQ`'ugH#899:tZٱLj;z4'%WrXYi#DXS  ILΧ&9r'Omdaaw]jU׮]qݻ*TW~L6)/.T͛D]KZY kE߹3׷/ѓd|ĉ*ml"Uk:NznْD{ǗDDc0b,mDr͢6OKNyyj/^|kn޼7~xQ+hE?tycbb¯0mSn$#V97^S+Z8yh#[[nHZ';s7ͳrJK˶|mWP ?ryu>45eObټ6!>$$)**pJݻ{Ǐ>}ߋZFuaȑ{544\Q k?"LcH-[rK6`k֝MLMFzT?gΜJc \\ 'PԮE5oB`|t6BDEZi#!.˗/_~ݻ3gZF9;;׫WbٲeBʹiӆ ",D6)[^DAp䈚`R9,.FơWa'"<];*Pש3 [=b3Cҿ>#=*T>z@cA1 FHH F광OfLL9sEHg$&&R#ۤI{{{b[na(^}uƵkz1_nܫq 9葝^MaaT;CCF.RgϞ#9N}xaÜ FÆGFo2 0mdj#_5ڨA(63$$ϟ/jEZ>m$L֣Odd$VR#HKK2T_N0mS-::c}gd)[ąׯ_>\NO y]03UKE5k֬mO@}<.x۫%̛Gz#/0mhF 6/QDGG'%%-\PԊ|6H&4ECCCj*UBJm 0mSL!3ިWԆALz$۷뙑M-Xw66*ʖ-ۭyccj/2Gǎj#7 Sj7ZL|ySK0mhHmԨQظ8+,$''/ZHԊ| j{ ɓ'NZfMfnݺիW/,m="˅###FNp%K8qB>lhhm63gj R[L售]7a: K`kk~2w^Nfׯs_H --SC wyTLkc?.֬!S^۷}qի4~ô"R,"h#H6JTj%Z@ T\Y-툴Qf&OL U… npQj( J+rDӦk?|2D-]J],T5j43s]v #ק5K"WWIQɓIˋʜ=! Fai#DY-ٱ6* QrrB8bƌڵÅ T<ԩ ~ ?3̗v~gh >ի9_iz瞯Z5P&ۍ?#>w%ٽ44G [nQZњxqNJ=/$i KIIH><3 FHHHL~Eƍ7F N,Flpw/ YrdoooggW~[X+ 7zFU}CAkd 9.hxxFh\|r|t%KTccgLҭK`v6BDEZQpnm~QhٲerYf}]Rmt_iӊ+lmm{Q`ӴVoLL~25՝K?6mBλ=>Ot{f>}zQA`csX1 G'(Cs:G˖w`0 +L!""-LL2{FPFZϦMj׮]z/F p\Ξҥx/Gm=3<<ӋxdhӦ͈#ZF*[ ffz{CuL35}Y.{`v6BDEZ6F$-F+++!QFHf;{jp/>|Qeu8Ke Qb `XdeEL &3R:ufΜY~nRC猌4a6-[t<,V챍#j0 FHHX1mvbccYn:\ sw2k,sssoo(|wÆSh{Q9qvvV޳Ȑ^:6mY3s…1n̲e._ren""iBA ')sd`0bemAQFF3fXZZknڴi52FVm޼ȨQFY}|Ԋ/ {k_pUí[hN.dGZڵiǏ匌 cc7ZYq*gt9 ?{Æd?Rժ,Zԅ ´"R,´RGǗv~'%%Y4vco}Lr8pw<[b [YՋVwڴi.ĐݻO4Y+hp)tP{k,gQa)iAmS/$.v!K;=<<jE\O: `Aȓ;ؾLPT5r$,8'3\>v~ϟÚȑqA_5kEO۶Wj0 FHHˬqth#A!Bΐ/$Z!K;޽w>}Va*}@Aoh#'md]6CԼr"]Ϟqyʔ)j#5./c~~:jꈛ9BM-}  ´"R,BFmI_X~ ces ;!cExBd;+W֑rNȯM"M|R/d4`qt$Q.jjСoސOc:)2 7' ݨQ$ZBB:`0yi#DXE/mUQtttTTTbbEHgf)1u֭[+VlƌtK;.<]{-]/LӧaoQS4wɸm `yHxafff5ּ~M7_֮_m |pjke\9x`0{6BDEZfjF5Bm$ * E4o_]:,%+Q['v7Y*Wjm>G4:}^{<=mRJmɡC&&c9ɧ-V p={ &g3n|{g0>Yr?ssm[Z"R,ҒڨaÆP EDD0iӦZXݻlٲx|QwBBB*$Xa:o"E*Jښk҄\q# @/Z 5c3oaoZ~*U矯`0W\.xB~/^bmڨA(QL6Fׯ=7vYUGl׺fY+JO…ڼ[Z%oЉ C3xˁw>۶qZZre´"R,"hHAh#{{{F(}||ܞ?8~xQ+hJ;vW,iEׯ= s{ǏiIJ&,PȾ֯ok.TV?Ai'k{*i`^_W8|-`08nN{sN:vL!""-TyyŪF)))!!!_~䉿1cDHg -_h"oj"N7n4#FƞՕɢEDAؘ͂۸.#5h@XaÞQ[Bll<@w;տ?K`fDvT###56&=FHH6mdgg(((;ީ?|ѣEHg۷g4%1_=f&ʧ@/inz6ݗ(\ICrЧFs{z С`11 r_Ç4ߚȻLbemV ?j#gg5JԊ|6(88C2x▖бcǐPzf:kǥK(ZtB'PZw')r1+5-7g]FzLޱjHG2`FFq#CLMMҜ^dEA´"R,Ң[}F cByI&̏Ba xadQSg"oPSm[2J`aaѿOlZS8iْ=.#ZqMxռFmԧ#hCsg5j<Çd@E3Gs[`(L!""-bm+F!!!_vU=x=zTX1j|< ܥ;Ǣ(1,^+u [ҥiMgOwoԨ͛G c'?,r<5C;w BQtÆ B̀\S ~i#DXhOԤ$5ʞ苝VHyYѢE($ܹsoe-`^04\jf&czYlܨ16+WСգ#֭2 rA`n~zudIRQC?*Vt,^<I Ɨ…\2Ix]z3Wx ܾ}[)86BDEZP(& >,,1&&%11##j#!QdddxxߨO>ڵÏ/~~~۷ׯ`~D =`gZ6FWqqqmlȴveuWۓpA={u DoQbܩɸ sbs+2Y5 :8Cti*3,~>G 8FHHccCC?| OMOOG]=n Qll9sDHgnܸQvmCQN <576ґX"  `p/Fŋs&lUx~\BV93Q7e~jAM!E*PބV,M׫gҪi#DXeر1!!Ao߆DFEGhFaaa͛'jEZ>mԻwuQC 60#([LP(׭&˖̿w;GK͚$ҩS)}~_11btB yO*`?cd>޾YRɓQr)f0ϼ]ΤY3n ss?V L!""-6 ps  "ڨAD\\*UHWW׊+RQ͛7d۶x?ѠAKKUϓ7W{?Mw,lE#fwr6"&%%> [O]rxsb9g\Gwz\ x/~'qq} ׳fPJ˖ N*xkDmX.é`0$w L{3;v3gΤUFHH˴1cym(22=- uß}|||}}cbbgjj1Ąp~/[ԬUk\T6]c?D*p5aՁDg3;F( W;t˶oMJN(ިW:t97gc>4cc-X@w' .]N$QC%O(E ٴ ~=O~/}3gVZ&V*ǣ0͛6._3W\&C)glm5>iv/EG#"+]/4d_=.aH^Q*D6~qv;*]pDE\{Y7fNjbo`ksFFg ={>b3gjټy3^jVy[9+Wϼh*!8wCk bPww5Wyɓ(.\5rHQ+h#ۻ{r\ƃ h?*Ti]3'** yNo-:@F2vηq" S_֬!SoՏF˗&$@Hwy5(;Ȁ2h-#x?E;;cŊ%JFHHO-#?>4T%ZʕCCC߭[ܹs޽wss4hiQa~E"E(<2Q[|KÆM/^dG=qy㐻6FI2@!-Zн!J&o̎ߟV qrm[Uc괠PoՊiχGz)b- t2r/ǵc8pիsqwk{HH_`)iÏڈᏉocch˖-(oߎ_ؾ}\\\(jEZ6*h>Z5W^3VVަmx)yډ]F*jxuΙJOOdEggug\+'ݲśڙts W>58IIIP3˖lk~b*$:Su!CH"E/6a)iQgl@FiD5nLƍvرsNA߿ՕiG?_+_}FmeW8zlիPk',r%Be4pgk /QʢBBwIDATs9:[UA5ڊaD"EOBB$xHdEw40N~~)SB˖=ge U\̿/A,?Sz\_9=qdaubmڨVZyܹs{! 9嗭(NPJپVnݪWgϞ҈@ ҥ+@h߾x9 +$BaE]C䗞#N9lx:qbwllr9Scc# F)kgi_h6=R09{n]NiqqڵksPO6BDEZi#ԭ |īWBCCL"jEZ6*h>=v?3~<66{׮]۶mxI(bz{{6…ϳ0Lv9iv5vTo<.֯Og.y[PyClmm1t8Vl\H0J0<)EgLFNy=5zh#//B>i#DXE6KJJ5gΜ)jEZ6*h>] bs...O{!$&& 8{,]q7o7fd?O+z=**RAfqP0H:u˃۵FҫeMk ]U6k ='2T!%%ş_HB= s]khh( tTw@^M^! 5tg4۴ +b/s 0$;hUNP(^hRRZ!#GX۪I:XFbKr'ZSxVkfk׮9SQ` FMbz&M͏Z'L!""-ڴQ RSS37oiaڨ۷o6T,+⽧,]ZG?C.? HKKy P֭[+V56֬޸iL ?:IJ*c cn@y9űHZFFTINS;̞}_QRx˗H4ϼpl5VD"?hsLjd4O{{s_-z͎;6lM&&]cF^AFF&Ocb4Wbn~zu#wO'C~ھs $$#ԩ^=TSxwQ@Nٓy{1Y:VX !2,qQ5+C꧟~*_<_0mQ(99 DGGϞ5[Ԋ0mTp!ox=l*Uf?X'dyGdzK,_Um]mz^g96LHX۟+7")wQQΝ}9d۶p!EpXMvq) -_ߊ+*,+-)g=7&:iZjf" BAi#DXE6W^bb6miaڨ9~Y%@35s` \plĀ9Їo W53fRKTI2s@K.s9 f% ޥaR (ltB.9hqT5aJDmޠhR}{9}4^ჂtnbmڨvqqqOzϞClbYLJEzymj֬xGt옱Vi#<h?rgg5Ow,pp$IrZZ.:섕U4]_>;˙CkZF#f3ff౳{lli3g`.|UKcȐ%lT%3T[ur9=Si\d$ hG;>:9FQ^^qRmTz˗/_ʕ+^^^#F"-L4޼y3hF Fr ݚQl5;j?_g'.O-sݩDUM8iźuo?Hmb̦v~,6 U7L5i<zwxY3q4ZooPH \_ί76BDEZf@mdkkO>z|}}/va /wzYZ 6'OY Rv0 KMͪ6nyGͲ > co0I.4Xuӧ頽 i ܫO*qƍO1)3Ly;bpW^nց1_lhSjZC 9u֥K A9'pGK{k bY6Fm(Fuƅ˗>|7fQ+´QAYw2̆扌a׿Rć޵/nথQ*yrB]Cbbd#Ӛqq*Ϝ_ƍ4:Νx-ƿ3w]32(,,Xcؾ]sOfͶGY67@2Brɒ f߷P2Rzh4t]ǣ>xv!==wBy\4IjS@4ҥQ2 @r-Xz-@0*#~>CmTNeT[27*1<…aԖP p8ĐңG݇d?}Gx2uΘ1FHH FDKk6 nnniaڨ:'Aʕ-/@:x0?I&X Bp'耿ֱ.p 8[,wp6!8yT소A]GBArKpv-C<OȑYlOOOTr ƭ77{LmbKթ߷>l4XcHɦ{gAQL\"Z kРAϞs}VjZ5n|ܥKP#`)iklmdoob($$(<<<"""X>@Gk5p6xUhB%޼y:XF211V5o|p031yۨz]GfF3=Z$J GEQg1>Xێi^NP]}`掩S9&qRnlOٳj]q̚5Gժ_0mhFfi@???oo﨨3fZrok׮]~}QG)6 믿͐ŋ-\Ϝ9#TfQlYj)88O\60װӔv{UQ'qiaPY:*Uv}lh?G<3_aaqlYԱ |u|P~1Ǫ~5Ę7?, 2:89Aq棫7c%~;{wcƌ>u~ϲi/u3)6,L%aa)iQL6R޽{7o^z|zUlY<O"IJؼy37j=ɓ'u~o<>.Z J5o>l ζ3ekl>)2`7䩙?hy6rh͛_10/^aNnvV>L nĝ>{FQ̚5 `5BgofZ8z 5vر]# 777pX '؉ZBH.]<"_ÆE u|9W ]c˗/0m̙8%zm3?#߿EH Fŋ,Y"emtaCCm۶̜9G)""Ԯ]޽{րp~7 e˰~2eJ:H/BU\ML[ ti$CE,+[ӯ0D|{|E?EBBxgSR>;v[wBUR4e,ҳ:՗U>ۻ@bS&jgB?oir`,V~ i:]kN1z@,Ze1!/Ĝ9\$NVɝ:с[Fq3hױF6qFFʌ`׀-obm{踸۷o;88\~իW\5jiaH<Qf&OL U… eUj۶@6:UluEnDd;P y CBBjMM3nY}+Nz\ɏ!eX}Ҥ{{Y??[xqҥct!w;毯G櫻#]е.pڹeРAD+i:ao 'ͩP:_͏;&G$ =5jp&qQQQ11~}2ԩSP-z< GdU>H[_?0mF(~Q5jDr9zsΝ9s{'N|j9O,mB8lƌx;?,KUo-Jd>']Pioo[liaTXf ."Am_CGBXX]jbr\|uG |O1{eK_iix 0/bǼiQ[&IҫW/0| iVZImd> r#Wk^ohH6Ylі8H,[͛q!=ҡ^^Dʜ8ATek׮-Wхi|uӅW ޮӧu83mdb|jaaI11IIxq#ڨF(Q=zÇ:pߢVi#eDF|hiGf+WY&.ܹsG&>cA44#-)3=tt U[ƯV9~Be/6xv8##ŋMГFI00*ĕ+c;w8m;G{EB) 9nxzm$.y'...T]ւntY /2msK۶{l#bLIdTַݺuK5DGݏ֭\zϟ߯q'  7+Uk냓F2ϟ_Z5jL!""-6 Emg~#FիW$$!**9!AE=z(܆ "jEZ6ROD}ɦMj׮6awV~KlP5ZXS }_w\d yvV}]=glHvӰdz4ܹ\0yJWEY3fx$]HA F$;\ QիoPiQ:uÞKP[,,#ÇxD ԰S?~8߿1biaH<ҬYϾmB勭?総Ov8hS*˚~eJx* oFD )V)C~?AHK9 ^pyi#DXe qaaaGDƆƦ7lؐb{e\zwرVi#$669֭AÿcYfHz~GFyOXWWo3`vxpěB7$rx@> mr9ĥKxN&${͛)ki.'RC9cH/Wn¿aV' p6+cPdGٛZJP /зo_\k׮pK6x"$tݳ҃c UQcݠh~!(tkqfyLW@j[\?kkkZ&2 Æ Ȝ#H.nnҥe:Q4jbBCC޽  H{߇>zW'O"-L!TFVm޼ȨQFK{orMh鴙O>xiOI}9Ak̺޽Т:ڶEUE Wgbx \32Rp;Ʈ}P;o~pyZi&8ZZ%^S$>A7(tV RT˺Uuk9V˞>$U U<J(Y؄C0 oYcHaSHcLj6;rt5ɴQ~#mmW_TppLddzZZ ^zعqquu;K3o$=:ڑɔ_s?G QogVxϋôcKK8>~6\5FSYh-qh<~{x8^pG(>M5ܰmƇB'QCIR[Vٳ.ȃu z`-Ν; U zu*lEټ<&֣U+-g6BDEZfdjF>D6@m}x|}}P"111s"-L4]|7#1bDP:Hf){wRAmyxh|hbcY3Lc]S٧%Kf)CY]<P$A2um9r=mN?<Эn9 e e<Pddj 6r;֌ů᎝hHI## U5VB4MÅ%goܸU'WRlW,]և^>ɓ'žK}G yC3 ǯ~"-L4L1%/gC`Qj[4zXZzl|L&?)3g(Rd%UOٳ*Wd]F#^S`/ƃ}[۶_C竸s΃VI<w5mVK2~d5 `xѢ$C`#8W Ev/kFL npC$涊'_x+wim&{yoȔ)\|ɵQ;w.)L!""-6 ~.+?:$$.*?\KJׅ Z vQ4ש KJȯ:&]cpz D$uSUxj*]tJJʃriy"gnmܸ[v,-[]Z9Nhc5c~lg\mm5\:jlZJ)Ԇb{H1HL6ʘ׏v&]->{/z۳>M񘠉o5w?i(O>}vL0ʍ3yϬ\tYfNŏs=b;=;* 6,,>&jFR*xh"Q+´Q߈#A!>"))6'\}ß,*g7os1h֬=ؚFǗ ^\ gCJMP~: N^O8` @ԩ9v[fV(fMԁ |J)O<;oWۘ1Ö7mk|_/ܦ˟c畳X?.jgo清Ϝ9#@bX31AӦDų"gD2.*?&$+)FHHHG oəAmxbQ+´QA%ߌ&==uC7E*zQC@z|}ÂosoQ +.dL9dqlT)lU6n}0a΀D' ,[Νq/۶8~qEª<"dƃ@m >*g]2GuLj[{9d]7q$ E"^Ⴣ;qqf$qL[,E76?NL ּ̹X8 VQ!o+;藊Yp! L kAeOtS _qt&H旋FHH؏BǤxTD$cƍq ŐҘ6* 0m(htKdŸQƩDLH +>Ae:v^t&]!0OZ8wFHHem"F*`%ɱn^sc4fQv%KndOMQ KKSO_PU">|7t.|uOHԚ5P[ T9VYٳ$O/ML4`ěG2RwGx2f\\\NGw^Gm }&EwBiѱ[1sP#c;z_-[h[Ǚq鼟:.+򒗙EpGPL!""-6!>$$)::X:n$Q!K>=5ΨRF&T~v?eTAmi3\}rMѢ~+VF5dȐu2x#A<{DydOܻ|t]3fIHMU~ZGEVI8q8L!mUh+z7n ڨ\r$@yF#X`jK  5Npq3յ$/!G>b〙)Gڵk5tf:ܴi1.K>$9r~$+c(F76BDEZQ FL1cN=\h_=8* #}+yܐ NYw֙\~gNV#x_.'׫^3 W0lСJ7n!* i{Om%HF$pxqZUu |q9/mpxAmU`}?(环Vs9x1߬S[jKqzZEmU6m &=@W\{8lӦMBM.kߚDG \22j N"9'`J 9s7*i#DXELiO=w^lٹha"J<~}]jd=-[RS||R^~<84rT7m_chРUj(j###G'1Q?ANa>=YLX> 7|NM4.lӧaU+ʴ2eي{%/~Pdsm$yvj xO+ͨT… |}}q'OU"RSIA_\ WoB<"R,BL}b0m(v?]6P^X<*]zL&6l/CH]˕E={ck;w,ch ̙Oq/*ݒ2e^:Ttl-@:X(HZh)cx¸0Z?-4'L*tx`5k޼yCkŋaj H2JJVuؼ߶k<-Vv+YAvo XRq=dy Oʞ?,5rfK`aU,L {SYfSѣ㰿A e$9%Kp/O }}5]f]qTBPⅎ1 tǏ$Sr<Ŝ?338ڑ̜-Ud62a:O]]IUf228sdy^9;wZ'իгSB[ݘǙfΜ l抖H'T˔)yi_3bڴi=peץ][tۻw/I }!PyR _Ss٫DEJׇBd#O޽{GeGN8ݴ؃*ϐ>Hɒ%iGrju.dEA 7.]ŋmll6BDEZtk#>c6XΐF ajbbbacL4$⩫<<15PNAŊFN;d`)2(]=+7ڙ#=GIACBB ϡ 'TKgPFxE|ܙ?8dtGpB͇qVU~~_ 2 ~v-5HPbvay_.t&do&W*%w:&MlV^U+ 6Kee :1.iy Ixxx|<wjղyܹtY-11$\r(Lo. Zʊyi#DXE6r&6bܝZGKERVV*O[!ILJOx)HO9k.](t4$y`93SXiy߳B0ujRaRSMDSl?~vc9X}b>DcŊ҄dX[[cӧO V/_{Co߾  66KK 9I$&1u$sGXzoALbˆ6k#<PtejIINY`iaڨaڈQxXp< .;Ӭ[1{"\зo; roMu@M}pq!Y'#G n7J-wKL_.%Z"Ҁ 9lV45s՜%]ؿ?)L!""-s&MҨ4hw$&&Vig6Ғ{<*i)sΖ;ߒHzB1`ɓc,,I'=*+^|FY;ΑaÜO"I7OsOv&xmZ6@lr^`r1cM,OxJ9ɵj"_>jMcB,&x=6Nկce[y&$iѢE}kP;W}^D* "m @E}*tҦM|]ppp֎P-a}ŊqfY ˖-KJEɹ\;\ٲ֭۶](={CP9i#DY-*((HE٥d6$66v٢ViK>H^Mޘ%'bd̘+xqoN+ZjY|Cް(.]vN@jܸDjkft… ^(MLNUg>'ܽ{62:' SˆW˨ӥKXPm۶III[_r M#6jw`vo|9xS`a.;whr8.7@4LxZUWtGѬY3|СC6Z"S*U³Kem#G%߯'ۮ]g']'N]+%#AbAEGIQz^iӦZ 'o&}ܸD]ժg!ϡ7nϷ~K#MR=3ׯ*mL%kIwx=ZȏҔD8ln#ev~G\q!gb.(YpvF3;CK>r U?M7TmIL1}tşmﳽA2;o͚5<ϐ .gBXL?E[XPܼIN_db s FHHXEFfkڵk;;;CBB&N(jEZ6*h6bB8ĞIYs1мhڮT䕏 mLJ'x%U 8|{2P%@AEHppE JgӦM=A=冱-qjZƏoWQeΞCOTTAVeRӝ̷o1PɆMwϣV"` ~`t7ؾ濭 ԭaaao]oѣG²ur$l":x `FHH FaoFyy$FDejjժڵ7n\~//CZ o îq) E/ Y^OUJ?9̾;{ZC*V-h۝yHS!C `~2/lQC6maE,A36oP-XdmQ9Nߴf2lC9iٮ寄g;Ejf\!kfsxDEwQ$:vvvYlmmK,) >*VZTš?xvB(;:uj/L!""-Y(+FPg"# L1 -06ryxfWE@}aգҬeܾM':"ӤIsEjB:Sp>7gn^VI>|8H'믿h-O]ׯA!ƎVs7r8 r;#ݐ3xp&g?<|:R_}hhp`w[)jVF/hFl޼lߦ K .#k53 (fqZLBƏV~K¸+_ii,8J~. ^SfffL!""-s&N$-QBxx6ݾ}ݻ֭[Æ "-L,q0-“4@3N6[ŋk&:ٹS#iCZCzmmY󤕨P\#ҥ5NI=z4`"[DkGHʊ[%7ᚘp&77؅,(il-ꍍ\i ch.Oۣ+1>ܱ+v>7CZކ HNy/ ue29<k><I '@0,X_mܸ`"ӕr޻w:I)WɅ DRU=. +VLxL!""-ymÓ6QFll'OǏ=z?j(Q+´QA%ߌO)ez5@ҥ:u~hQ5aU;KʬY6O͓/{Uƍ@K"&Om2ܽz2k%KfU)pONp'p=ܞ*U:3ܞ+XSL L%#\$`(13I'\ o Xi-k⛅Wkeݓu!N%|y |-ZDe, ZDYtssFHHK6 KHO'ڨVZo޼quuuqqy˗/r jEZ6*h6br> Z~wxwNש</~dxִiӪ>ذd={8ghxAJرc2]6)V6{l$12zeoXXbqfrt]5ڃ'i__FQo?L#F-lޜgzu ̬75w@ -\~--f y|4 ,` G]Yf/.hGI?{6WC @ٓӇ. dFv`(Hš6rqxhФ6:u$&&zzzz{{{yyႇ^{Q+´QAôn ҡ=9m$U*+*C@ իyׯ_N&Sq;jFTݻ7+ mڴUF`Dv2e 7*c! N񁣿STVGbF7V#Փ7n:PxUyD%2!|ѶS;HUHh৘a6 pHWVmL~U% x JE~ taܹ]uJ #8ѩǴQə6 vq Cm.'EGSmT^d 3c Q+´QAôW*C`iiie񲟕Aܤʸv`6o歏l+_>{2;vVI7v\(Jh-Ϙ1crgO76f= jGRm;uǩ䧉7og-ѣt]гgO*/txm;UhIF`B UJ IqI=N .j"df$A"Y⹀i#DXj7oݣ|}ゃ5h@7]?gQ+´QAô#I$sl۶G|-hwQ0ѪR4J++^PwB;* m~mmDF2@(ʮ]'/,$8wiCWI  `Gv<d}ΠAN6~>닔bPV-~݊un!" ?g%=],d,qd^ G})zrܹn'!%302c,˖T)r8Zs6BDEZPfi#ؠHF """"##͛'jEZ6*h6b~q:wtHgv-Pap-Jth"2h3'Q㆙M[hY"VreR6r `aNHᙔ/_f3zv^+>u7n\A|ֳRkQd|!3.wY#OW(A:x*%gZ,8'ܠǎ`ITϞM ?N dg7rƕGr´"R,2KF_{ΎA$# L1> oiP:)ckeO >Gֆ#F@ڵ**hmy$;P[Rڨx@8FQeCD}$99ypK|;w.Z]Jd@%KUM6V懈 wKp']7(ɁtE@S3ʵo H0>Z"̐U ĪY+4 *kiǵk܊@|w&M2'Ob~9Nd_(a4;ӧOiUa)i!(88됷o#BC6_ׯWЄsZ  /͏¢ڦF#eIv[V:: x,<=TNC6BDEZmeki#sw+{.22rԩVii#Ƨ7IRߠaE'D5'  xINN!L.Ј2U'-[WynV$+&9GPX Y+wE.v.WGG*Pp$bNٸq#>}^銂Avt!;XM7=}ًp3fB@7/Ӏx8q 5?3ZJn|c$xb,m;: huIǸ8y?zɓ'O>}9"iaڨaڈjѢE3W6Pf+NN+܌'`]ٹse˖=}Mx *ŋ[вeF-kD9a'/^f+]&* ?oݺ0w?[NhvS2quu  C- 6?_R *9S@4`4GaC2^\/xKS֩s{X*DyR_BBNfŋ_:ᣘ6BDEZ6 "%=+/-9Q͚5s;wܻw/scƌ"-L,Bxt wN <~PA%4n?}MǴMTnnI5 8(;fh*9i`a`P\x|ty.XlYz~×B>&̙4wqI쏚6mJvvܪ̂3aU'ʹ]U44"V9[FKhw+sT;4}9L!""-6"͛w<=#}}SQթC\7n>|iaڨoƧEdd$%J6ϳ4~a$KŤG <~f1TP]\^GsQ#% FHH ޼ z6#'5)j#|%%jȐ!Vii#ƧB\ (SF>56rfqP!l;&&dFFQIh$fԫWO{k E{YlD0*V>qTcUƔ o>%/N`:IKK [.\|`ff׿ OnԩS` wtlByQ[9.7p,sMgL!""-6}@W w//Fv"mt… "-L4L1>_]1f9`4C+(M4 bO>_.im]P}v+WVt"p/}uŊJ ŋYx0|s x7(Ԭ\oݸn]9}3Fmep[i HO""8oo+}e1nNnz߸Gnnln4nDnRƏ'˓'sS4fq?3Ξ%2?||@P}v%|Dj'j,iC8رcU,ܾYfi)!]f4;ܜ.$) ݻw'>Ǐ=z ;VԊ0mT0msur)] b<'xs o6l" HG[#Tf5h4TH8՜]P5PCT$!!ܳgܙ3O?qOI%9_rVV\2!jH*y;;qcE RP4iBsꑦprHh##qSB14JjZ&yW.OJB<X4ZBՉ0j*jI]M$O2Vwqz|%4HS$BB´"R,"h?77֭W5㉈ s<& ޿g#UDE)m7w.*pm3>~$1IvZQr~4ww8]Ϟdl u^ǩXڕ<_m8rK5C*жmۆ ƒ:A$ىۖm5,Q+U#A{p=\ z5aiIBva)i1aBd`'ϟ|A7}jjj*s"-L4L1>?Fl%a?POs}_V#?~<}A~ ̳7!mj \ g3ˁ>333;O=|H"͙}5>hL­[GZ޼hԂ2. {۽[uM%1}Xޣ\B,vjcCB*8;; 1*WL7\YnXnJnEb G2p)CUFrny2>UG(Q5!"9KdD9BדÂĄ?M9,hI`4w2xJ*M .aȀ3չݣǕ+xVZVZ!L!""-F^9 63,Qԅ Z xJ#MPY z9Vt~k}o.݇*tn\7Gs5hW:67ڱsrƌ,"#9?SBA׮yx$|RjUDѣG U*Vo7fPF+Itv^/M2N۹w7ׯ׬'0.n-'] ,`rhV62%F5BmJZZڢEDH F Fҳ"Fpړa7.ˑ}.ǍH)i>ܻݮ k].].rƒ={r;{9I!YȘ!۶%5{3F73)#( 8x) pJDq~zfA%3gҼhbiHilE עޝkڔ8<-Jwɀ\Nرܞ= i\\=׾(W7,P@TÍFoT;F,~\1m̞4 y2%ېq#A"O8Q+´QAôl_߯<()) +~$x7?Nm0okOANžx܇$.)[-o5[|SpQq&xHW‰szqH;uutY>CFb>  ʟ3yEq5'M~ؕ(+`ǒ4&Kbr)w3.bcAB.HQ3ϳ. +>}>ٙ;ӕ*T50.-];Ob}ĉa"X.]̃;EG@?hWv_L /d[:oPI ͚1 ]nl<>D<{ǭ_]f6"thLq{×.+b˖-?#(|>`yg_k׮ oݸt̏{wͬ2ſPV.;1͜tdB4kҕanzrKޭ}ӹ3/οB"--СC"\>Ly2I!UʮϮ^^uDSE$k`:E 6Uy~9^ scc;F~6"thNڈ]:"mtţG\ MDU;w;._Yf<۰a5j4i$>^w:uIoe]P3{敺C޺ŞG"otph#BXƵj/$%A:mk.%-[ּysq<p-ק#g=k1i7Ṃr͚W< {ޤڵktUy$7nA96U=pܡCwjElْCuFA$pYܸWjּU9s֗ utݲeHr^6rlB/A{N*"f3 ^l'u#\EF!dfG8$#7M0'uGO/|^6rl6:˵Qb"k>@wޡnO?MJJUiݏW᩿xeիӟ>wjo0inJ,?V}|+wIKsfe^6rlL]ȴڹÇ\CLL,~{챪Uvq۶mSE0[EG".]4"]7g߬)<\7rE̦&-uK$\?#)$mGoͩ@w{RLa4m400PDLʕ+cc~$mcXa۷C?FP޹pa[Z1/rCԬYGDLիc=uJօNlzY YmZ46rk?`ؿMU44UuѩS'2j׮-BFmiƤnٔBy#YiF ?6ViMT^=6rlQS'];6eƤM?'mȯ)/+ufFn bp͚37U^% c21|᭿ڸͺ֪3Fn "$8ۆUjT0ڍKƍc>egڸ_gv6Mo\1UVTniuG)6rlS_<jֵ7~~rO_dg]m mU0-3p@Z/_@ݛ8FmԱ.O毶lr?odeh[m@W_MTJm:[ @f͘m&L ;{Do7ofӶ7nj/n\m׍h#*ig|hJ3{(ʕ+Jg}!-FmsWNm۷.&Yi׷7rxb7FTΟ??d T=飏> em۶m&GL;q󮄍;6dj 7ro\t cO>1b-;vTh#6m֔/<؞{ޟ;7?UFn LZPk֬9r$tܙ!-Fm72%=sf nn ȭ6ruZLT0MV̵Qn6zmآD^Ϲv3;,0m6Fn o@Gvv6=۟yNffN5jE{bK/}D@9Ysfed]8#[AaAvm\7uχ^^37U0h#Mn۱'yh#6kYigm@P),,grXk5ӭJlrv8"##_~I ۴wj ;w(4~OMD4xѦ~ߘ`SFCEp gzrv8fΜy-yyy[6rk(҈i#/"QSOo2'v3f$RȱM>ʕ+Zn޼٪~@QdFM]_tn]{aCs۶MP@9iӦ6JHH8$m@Qdi„ w߾}䏊1+md-:u#O =\%$$Q+$>V Zt<h#2\pm8vX 7Κ5 {A茤dVV-tF {TmNI&_yV Zt6gΜZ ۵km@EB :m4m4˵[oEaȱ͟??//۷owȭ6 COgo"""ٳw}GaȱEGGdksNǎ>b6)ťR488 ĉyS3gΈ<6ZpaaaM-ѝ-ZkhFwRE4B+XKk#9n*/!DHh#J:6ܤG'))H+e/CY~2B<6Zh1FZ6ر#([ .Եb4h##++W e_̳("0d%R4 T:::Z׊Ѡ< gQVE`ȀKp6j߾;w9 /еb4h#g7CY~2\ڶmKyW2222ΝkhF@G~~ҥK鯈j gQVE`ȀKp6jժɓ'O>}̙쨨(]+F6mԢEO֬YW_]ɓGѵb4h#FΟ?|UV})))!!!Vm&)22R=gώ5A5jh׮޽{E'Cgŋ?իW'^};w<d۶m7w߉TmHK.tfϞ=E`_3Vnݺf͚5f̘s,ސ"!8WRRԩSvΝ;ϗ\6lMgWxw?ߎ92|p]+F6:im۶mFW^}ƎwԩM6?~\y2˖-{Qzʕ"Y~=IoV <>|888V7n8md_tޠWۿ'лt.5ڨ~^gΜIcK/чwy'!!aȐ!Vmdy晍72,XЭ[7)C 0`ܸq"b6>zhdq5"yģuƣM$!];{l&Mci#]HCq6W}p8qҌ3͛/Z1 @YF-[N 6졇j߾UDb ZxRRR(|~/Y ѧst%FTD< PO#*T.vΝ޽{eFQj׮kҙSNFh:u]<x %mTJ_|QD3g "ɐmڴ)MHH4hg2p!F5jHII%y4tБ#GS׊ѠMwjoǎ/Ŀ/Ʉ5i҄ڵ 6">@ n7 =D" ~< iӦ`颎`od<;5{IXJUVљkJoΫmTzuR{۷o``1[l޽A%mD[uժUkѢEIG}O>ŋ <8GK ?JҥK5jDףGRH`_$gEDJ:!Dm_~O?MG\v{\kQ5EYСFڼysu QjG֭Wո6u#x.F}Hnԣ7'JmԵkWU5z˖-={ҵb4h#.n~6lؘ1cHmO•ڨ{Æ  YXyyy 8paaaLkhFp\݈QPPF}QR)7 fh>}t O```ppرcnmOe(99gϞBBB÷nm{W*X۷JmԫW} 4(dĈqmm6ׯxQիWE^)S%F]}Ȑ!#G0aBllAJi@0L| }NQO?? ȑ#~~~jzG}޳gӧϚ5ѣUgKZlqFjᆪ޽{SI###jժ7oqJm3`aÆ3fĉ6ѵb4h#@p6m_;v,""vڙ~ .\t}||H*ؼyTFwi޼98x;uj/~{өGeh#pү_?F)S W׊Ѡ%QJjIkN:fɒ%LNNN ~g Ky䈈ȹٳkQݺuO82f̘'L>}ٻwƳYF=Ǐ:t(ɣcN<%22jΝӵb4h#F]$F=~3f]8\j֬8hPHHHxxԩSokhFp\jԨ?lذ1cB'MkhFp\Wܻw~|ИZ1k>OՆ3FF}t +Q׮]I ~?FࡸX6'jm˵QoFC@X6m` h#+kE1m/TQF\;B6Zp[y27o޹cO66.,(ͽI9 h4<т nYYYׯ߾}CF(#8͛w]ڵkWܺu}F(#8̞Iv/?wm۶Y[dc"6'Y{e7&<~K&.IbVNZ/m|`q>9l6g6 is(*j֍Ν;vmڴHY"g"eq PKYV2gA1c!5ކszv"k)k6 {j@ymqzVzӧN?v,hR͛Z2hLVk\W,~Q u d͆CTDHmCw +m,ʺa*ͷ^IB.ݐutP|C(.aSt":(áb$Et6rhƌW^=uٱԣG$:x37gڨK.ZXE& ))ZYHխT])JDsmjvDEIbQyԽ-X.ɑl䖔,GVo%"k-(0Tl`{Pp^M6=3#X1$F߻77'e˖O8۫g/Q "~ItX bbo7XÖ6-ϓ\}I R1Bޖr:^`W)d;v!EJHőڔ*QPRF(8Nzʕɤ'$ؿ=99-ZpFJ-a͒$Z(*"5`cQsրz,G)Q;-"Dͳ|%Qr%K=kMGg}ܦ `kFSLr"!Q9mԿ7HT]VKhj9 ŗ'2Vn:g)QIcE jN*_Pş wѡerP F/_IT`h߾rrr6R⥕%2֐T@).I8fϞ}ƍZjԨܫW}ߺuA}p^͚ŞotFxQ͚5SRR 2jԨ &z{Z1hZjwAAAaaSLپ}A}p6]c 2r'L1cΝt ڈoBڈo?~QppرcLBJj~~~VmH܃mA܋]N'N=fĉϏ0`A}(6>Ehu8HhSFFF-XW^y7889m`0 >6v -mڴhF.}F|nN-""իZ4hҤI3gΜ;w^Zl9(`0 >>ru{EE8!(1\'ܨ⌻Ƶ~-}YSՓ{շo[yy{Z)0N* .R.*%p}CPbN6QwMn_2Z2UVѣݺu0ᡡ111յRq]7Np \T$pQ);cu*θhSN{i_|W^~~~C 5j-1}ѵRўfLqT"J x߹CMD,aua&8.9 ?F;wѣG߾}8"}Iuݴ:1JW6p|8¹!nW1'(n{dXJ.(8."ާVjUF$0unٴys^%FW eq"b'-SN3 _,+ i˕DԚKCv2QD4ѴZ,SI][Ka fKJm,aMխHUY*˖6"uy Mrc)`{%]KdyE~]geٳg߸q#=lڵj]z{{6 H ŭր>Ҙi.˰kYW̘Xl썓릲=nfm&E"16;"RZX^rIhRDnU۱T#rIBㄋD v D]RTiq] ,ۂvYUc%+k^yM:Pp؂(ujJc$g\غ!!OʶPJuAa7֭)ʹ6Ե:$7ͦ(%݆W_Fkwmܹ999o^hkF#.$"D D܈,'DbI7N%u}Q%}qc . q-)9-D ZX^F.&c1 6 eciޒM5D8"K vn@NT7* M5sTL.A%Qײ\Wv-Y5;8l&DY9Lho!+;DŒkY ;Ykcd(M,RT%j:]'Rٴ坔Y@e;젮ጻ6|(nYp֭:h)Qj$aF&%(=&,Qߚnk3F@.9Ʃ.rKtq-^/8ݶPH 򐱼qquYǑДT#rIBㄋ-mXJ%UaB^ ^F?XP&+k^yM:PQksqK8;V(͸ϚDf;tJ5dXJ4f1Gm:GY6JSJ32ڂ ].۷ ȋiFfUâ "bAM)hOdMExTFXej" RXR|6ǩ.r/*Dg[w5w^ptQBJYd Y+/ͥjņEAXIRcM C#ra-{亩l/*DpS|G%)H]gu*"rSR-Sm6Kv.7`Mc6ΣJG?k ڢ]RҀh%K.c/2պ(km A1lrKa=uIn,%TP"\^8V,θh .,((rǠ׆ZQknil{qr?7ʐ44ݷeh9 xd+38.-ZhsYJk#\2_-&.rʐ<4ݿeh9 xd+38.qmtS i{NFϽeEKu&E$sJr }CPb<ge4Xё#G:vHڨFJ@BqT"J x{ nTq]Fw(;;8t`s"HRw0%ƞdUqќF}6VRm4o޼\ā.*%p}CPbN6㤻6ôѰj7V={\y<@~ oCq"J x n8.9z]mDIEogTHRw0%Ʊd ݥ3Fn]F0 `oŽn4 `0X6rssţjCmܸ`0XY5U`0X9dr#mD`0X Pyζ'm4QϞ=u`0  [w5n׮_'}vڨ!CucF0 ʦ͛??7+]ȼuV{Y‹z?x ~޽ `as9w.k^h:tܹW^ 4hÆ ]vӵ`0 V6l֬YYYgΤVPPжm;6ٳg߾} _^|E]+0 `e"##^v ۴iF=z_~}Nt`0  93"3Zic߈Qݽ֭[sZ`0 +6č#IGecڨuk6֭[޽}}}Θ9.$zէOR諥O3L-Bb 2dذ!!!F 7n܄ &O>><00p#xxx8>e }L2B HQE|≌2٬-9NY0ώ9@WRyv͈Ȳԥ=ms9FtEpU5hErHE}M fӸYF&M$2P4tLި5a :mON:};}̙4N8g\ H咰Kw[=*q@D#(F7=F^&28aAseM`FRR4KQGj#IIŽp;BHtvh5:Z =ڡv*XNeh)gxL( JDV4W^OD!P|A .zhhi8-F)`懘'Hm%K #4-BexW͛K/L_zׯw!:xI[V{Bta'q1,bI*-Pc|acJ"~fם ~RӜЂ8EZPab#vS>C[b,:'aeUuM>Ku(j[LN2MFq pbU#J"[iӯp$e$Rb(LATˆ/KU#:4pUo+cK=4ǎ6"fHvKhEO$K='G(H$^΢lGL0i^q]"RKbW9|95kְb57`* nK_Z:GpyDUѢ:"<"R"c8;KI ͎c@"DD :s,f뢎1hi 1EH1IT!fE iC(eH^͛dzõQ̞=6J?D&vQVI[f#eވram(NӶ?s˰CC6gF?sSB]hbbe|AOZ/1"搂,>{LT,(.ҊE1Q1VQ˴uM ? 1MNca9Hs(f}L<1:T>a8)>0 fZ9lTKQv۵kGri:u}Qppȑ#iiᡵM:b]$hA҆ꆖV b_˨ڊ@|gE|vwmO0lbl"Xa_^$[ 1 FL&G rO >C5'YZP l^yRT^/\W^y7?>_7ڲeݻ8@'_:ҁ%r؇2EAAC,4"|ZP0j&OJ0&j? y_9\FbTc`9M>|UĜ0@F">d|󯨕I9VH.kķbH0p"եi\$|/8" N|\c]{wwHݥ\9mÈ:#(^+| 9FMK'YM6Çgڈˣ+WnݺuŊH%_JkX̱o![X`!^2K!/YxYH=q!ӵZPN1 b%ĜPdfTJ >u^KsxժU׿֮]˵Ν;K'_:'!Qa*@U"_Z;(|1`EcGt}೎O^"dBq<*r QK:)Q R $33>W7i$ VF=㴺h%sq9@HDqt]"_R.gdd\U~ϒ~wkfss)#"!!'s-1\.Eؘ!FL#*!{m_޽;wܬY3RLMK#'}H?O>O?3|n޼y-Z*<[ x Ԕ 'x.GT(t bPAxHx>Ѷm[Ν?x"ĥIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/matrix_02.png0000644000000000000000000015314714741736366021774 0ustar00rootrootPNG  IHDRzinsRGBgAMA a pHYsttfxIDATx^yuz/$MIċ$/ cbDZc H$Zf`v0, @vH3ig4Nos{]fOs>YnOڵk /G]~| K̝,_{矟я~);ì9s OU! i%+:zj!L#Qdɒoڋ*կ^/~1g?h??y;Ħ#$ p9}6!Gii !1aH'l8 'N#Bd /U G@ǹUapywY!7tTFEnDMb{ '^xJËO7nfeӭeOl~r0 my*X/ʰ]2Yygz_zg^zg[_z-o~/}a~29'Bq'ZP;0J3!5K9÷1G̹l  #/R` PC>DFa &G޲IKn ) ;KwweoZ7}o:c <۰2үJ ~w]/ߵ?{'yi?r+V=Lxŝtm͛7O^'xuR v%z"d9>RDj%*'b!U wLJ^&y)G<ďpeW.nKUVO,?z5y~?~[?OgٟC\/zE3~]g~̯eSD!o/B7nWX>SRRzww1MEE%6Dd /o)8p/+5~oॅ_,a?bao6kj(aش0i9/Aj/Q\/b?:l@Ȇ"DEd(sD*++D!Apqy!Dޝ]T#O^z52<~5xGx1+5?~Ǐ?[~Ǐܵ?[áwdw&8cO˷;~~nP~>Q'DO('O4$5`={$d96ⲍJNTBA(#Mai !l*u4d*D^H Sd-eb8w8Da q!nQ]TR#$awvttJu MPWWW[[[éiii?]G7Wcr}e߾߬7ͺ'y{{TZy]rwlj7uim}-߹_ks_?N>'8%~nۖ:6̒PY@|Wfܹs cIy(<y9j/-1Q#@#dC|o<~ѯ=GVjZc_kxk(߾H**}ʠ;VƙXxesWz~㜕7?_nq3h\#tmFyJ>Uf8!" bTr1("!%R! C[qywێ `*:<QHlyyyYG>7~P ZWKɇ.{zG>4C_RW9WWQiy&^@OR {*[~ߺ_?׋^;H# SW'0\}_{|Cʇu= gz+uٹ\?۟??'>XnsșBz#V,ؤ[@ ,G,\$DJ;D3wB,/rb݇j{`՚k -R`Na [>GR~+J/B_֊T\Gq$39c&LbsS3f`mmm _]zO|'o}w. sջoiٖj#84i!OF̿0F!D/TG. rD7Lj^psm{{MbZ̳/n}js-IN)c;_=xo>~3 σRzީ̫|0桼Ҩ˃pW@ Lkhx(aV J3G64Ȇ:^P7zh6<_)z+GJ_ڲ 9sL6mBq46j~sŌ?|>c]?Oxyw/M?~? a{O3W(9VHlOȋ4'f/U1) #9 Db<|4EBKĹIaR/ 3Dmvy/t8~QPPp8p`?c]0sOm7_W]Ky{{o-W,Wvۮ:yUe]U~U)˷-}KEDj5P*W\S⚲ל\qMkh5G_Spۗv[}{ٗw-˾Ʋ/Տ_$eVvꔩ]W3}eUUumML%+n{燞k_*/˿87goj(\o^=v/I/Ԋn\l=A=W)q qs2.=d~>86mbpsU5+R^yuM7Pk#WNyχ/>tϾo] "#r®!\K\/v cR%k،((M?Bq[5`9c ~LM+0JKT[K"1[TD/W\ BHnD6a ! ,ViUw,9qO??_ݱc6Zڗ̾e3Eȿ?>O{?ǼW?5ǧ9oz={3sR_0GG_|%_2% ..o}fϜ3 ^ŋ>EzS:H~Xf‚#G+9vIx҅y~X__POU?O|c/X6=_^g_˿j$r 8r k^ާq*>1-xFFm3'1BS 3}d| I\x"|{&5&ܴT\rŪ5_e|᧟޴sNJn2}8r[nJ S-TZ=.8\PXphJJ:U;.x)Kgoo3kOԗNyKb_}#y_^sǟnEx+o-I^-LrqH F,k(ᇥJnny1h?h&&Zβ?>ÏGR9,`3&VIOi wR!"Ŷ8&,Qr#h|t3Xڎcisi cJ._" C âRɭ@Hþ}<{ۻv~7w|Cmn}Wģ /0  O}|'泧σr)+\z^}޺/q~C/}͟O_Eh+.̘%r-fr{/^/7բinO.}e|v1wy[n:E[=27hp;!MFXaAn*GLn.Z';P!C~\Jn" Ln!}[r)˼Iim(KH!4fp9(Tc( ZP IHS)O TŔH!uё#&G.["M}Àۃ/ ߼13QQ!o7@qAn_}Wo7O?1?=_[>uڧ{3߾伽0!9Q,t~_vq/|gS|Y>./]% v^|xg.| e? Vimqea;⼿{Xy%WԊ__Z^z/~Wߵ?5(/,~~1mWnb($YV2@h gfqC16ݿӄ{cn\n>&VioB"FZ&Ʈ"Mvˮ۩L?-.\1H$IF] ChgLAv[bD [E!0X䶲e~PJ&e ޽[o.x}۷۷/e (_ Rw'\|3^ -W_#}#o~#{}_>ZpG\5XG&W^vo;r\CW|lesv]7.؎>mǶ|c>}̒_n?-*.B[rx)Cڃ8Xas`w[{vڛ۶^ٺWmy[YG}WUЩ.pO9O"(]t`E{]{Eo]^ڋ]{k/yK\{ɑ>]0KBnFn'O q;ɧJO*(Ῑ|ߝ%Sv7>{~''|+?vg綖~Ww P^UDLq1zj͑pmrČcԆ8l b_-'կM 3|;uor+V{ny]4p5Ҫ 8 xQ$"PON0CP&oacqwa GA O.\$D8!nK!=Xԩ.S@JP߷pツv;w뻶xk7^ƫܺE_9Joҍ_ܺ7_co.|-}e]~h/+Z_8 /%hˉۿ(ۿXKˏ~šW}]+wz^sUۗ^ mwS$j50cLnN -yu /ӻs[o̍/ܺ.>e_h__~ͻ7=u?%[_n ymB"FdqG1/r Gx~t͞n#>gbN΍OJʥOn#&rf^8IDq3K1H1ԇ]dLMFףctZHU Ghlp {a+Aoqh{I]q .*>^rh8假 ; J>v`G?g/]>Vػ=Eť_S7ms;Xkw-޻ƃ->wCцJ8p2Rꍢ'|Y)p 7l@-kBu#>)2cr+>U}ƆƦ榖R1\5o/}߻/?׼w {rտo?{.YdwY{ny5뉈' /\q 5TP%_bpjRm;)8ps[폲݈˻;^< Ї]t"}ārCy zn݆ Zx!UY|Us(n,MUdg>SSA\0r"䇸\ C;Db0pw-kKO՜8Y*]JNTʱ+;Z|H#'?{x}d=Ƃs˷my+w;Yk+co<+޻7We+O=xWTfT=t;2VV|p<~ߝ_uG[]Շ{>(;x~^T~f̙3[Z@_٧%wtttv>tſ֋Ŝ?}M&K/>7חܸ/474׶׶նT?@y=r+¯5V%ls3XBh8y,N x|٦M8ޑ:km!B(*e\0CKb`pԌsq~ʈN EU>bMVfѢ-<1AUO0)\nr8w8 o'@`q544r-?]=)J{G/.(mPZZ;[ڡ456644R,?:xqŖg<[噚X{/=S +-۞Ҷv^:W@LgZyiLlںqӢrd˦?|un]]b) FF . 6]}hѥ[{_= s>s?1zۇ'3;=zO靺19:ƈ-{BnKtc'jxԭ#/UN!n#1:JTGG m~HHq;FOꎒ q /|_)7rn9-Zpu/q|p|{++Uw]=>xɼL)_Aٿ4{5҂ٓ5ʙb.gi_S e[|M{;{^/idr OPckn٢G~Y<_'دo?v~;wNީzfJn~[7R2xc<ώG1DDNPv)w㶑3!0 M'D$=3. ;D3y3qC@x8 D"m 72 ӈe;@X"&s΅珁I՜ygs3sҏf_4y?{~s~W^A+ cܓQ)_-dz΀|p51_` DϰYn$WqAPa' ],ZƱ:5鄢m΅8Ι3wȭ%ɳp >)|NFLC4z95)!62L!{ Vt'(=q}ɒ[܊?% " 6@] VނG ->V\ںx$A %[Rn:p G =Rz㍋܊" "%[7@.4x[DI/A2<̦Ar+~v+֕moEZ[Z[["qEzUgR4z%oi1N8v'BGnE!ŕr=r(ڒcǏ?vMK܊#D𻅓^y8tH(18UI#qV~@ɓ'C;ɧN*?Uѱtdpo'܁mۡNX08D;{=_6A#{'FdxPE`u{sĎҊL1 7g]M{cPj[RnN:?P^^QYⶺ[ gScI&Сl{Y꟰Z!uNDjvVcQp]0 Žl̤Rnjh]k/ U%D2DB喿!WʭT:yR @OOSHno X;vNŁjCl#ϑ}5V8 .3 npO5e/WkvL-ӒdBnK "l^PU뤫$-P0WEpb|uiY!{?Gdg+V2H!{OPխ)= "r;0!vȭx#PWg8O[r{ r^5i s']CѨ}XV(TDb9Z }:c vғ r -yy RJ33gg&݂˟}%cIs_W&](/5a/_2ppJPCa`ѩkp vvTrЇn:45SZ:-D.B6=2ɕr;w\x΅YX <_GrK,ƭ+w|o*1QQ9M g7`D#xݘ2:]ColȉDLA ZnU|[)[W4r[LDz|cy09{Δ Br O |\sSnOur G {6iκ͢>9N TrVCi.-AdP݉-AXr! ܴ䶐  ,S E(8r AAB)vݺuRn%PΝ!k֬jnn>DADHJak׮mEƒaLAH$%%{Fr,'#P} LAH$P5kr؂[wTPB E|3Y- V~3y޼y gΜc =rl붝O=<*TPB%E,-[n]oo_KK.[x 2mUՍAADr+ [}}} ,DrKA1r Z*-}̅x#P7?汳WZErKA1(J?BY---MMM===  brr+]Rng̘148X麺ښjx]v2[ #O6m@Eyy)N{Hn "& 6lJˑr;uT ǎ47_z[  [%S&O;z葂‚ :ۉ%.X*RYBY:dm`#(*0~%g~Pn#?ނC-kt#p~l/[n/>k6;B'v&/Q˜c%U[sdq6Yv 113~# ưGQ#G?g݄3gKn + :k:vN>(cFni⟚3fuyqԁa>G?gs#2;Wv޾#ȼ.ljl|3:CNu3X*+MTFn7nfxv<mow<#,8I%1M` WcV (U)HtzDI'2 03aeM7a7QcrR.}Yx6g 5(sL`zY<{xxȍ0N&.pBt*tE<<-N<ڗIIt I,g;WNcWn3g_2رcENJI_j;aqPcgFT(wiWMC|wCR u7#N 7Qm'7f] FF̀FŪ3/=OZoMv{08rfULVs=؟d: Smm?ҧ Wsjp|vh (u|o\SAbۭW݅=3ej9o7:daxidmu*)QӛD5̚xkyT hv_?o>?ID]ȬaYkyT .bN=seinn~Q^0U&ܦӧTWTװRS_ĉ)c| k.R9tBCNś7 ƶÑ eFZGwG9WдS)eȩpG`(DVQӕuM(dÒ,ڈWGՙ<:<,hv_:ʛ pgF`}E$|V52S:6b^0U6sPYY3g Oo475|#?g 9>G}|N|ةD=ćr %$ͰAXBn*=[r޽֐R{=-ʠQs9tp,Ī"lpAIw5n}]Po={X*5"VM蜢Lvp`= '>G$,fa]^(͘QyGPѩsr8Oԝ@gNX@t]GQ30| Ԡ {`g֤DFNq*]7=``g:{U7r/;sLoooOOO_o(CCa/c''9VL<'?d|86skKL`r'IL 2.p*o=A"(6SGWfpCc(ɜƈ+d3uN]R( uS@qxE4^7n dKX¸yKQ! O16@|O [<zz&_81fxc f<7.,d" 18[ftS @G@JŪQC>9 k.10d82pb~v*%>UJ|`p`|uF_+|5ɱƉ89U%zgFXoiجCz'*]tTO;n򆳯xc8"8Մ#`K{S᫕ sHaAދF5^Jw'<y:+)@ૉVV?brd(\n8(`/'+>`M-5w_8UdtTvv連t=X` v_@'Z WPZ9q*Ap0HzF u+JBF+`F'L Jp0^g HpPql8]>}L'9Q5>tBh ( Q.OaJЍOb 4r͋vȭC#WZܪʪݜ.h+v Sw]'xMcȥp*4V/^ GgV*&&XդBc0PSVѪAF؈;fè@]G;?;r`U%*D1$ -g: Adyبdj\q~_Q1"OLsΛ7i5k֌ɺ*kUtwJxOWEHKg>O 7mlv6XFCY(lդȩxzQ荲8=a88u^F r?08(mYHvw@ige~z)k/te"Ƚ΂Q"mFaKȔIt݊{Q!)Xt"kvgGn86V+WO# Q̨Og0“M+l72x'J\Q{B"0 F^k-+t D-1Y MA]]ϜyD TKܮ[=݂j;wr6 Hc44A\nw [z% ܮ]C [-AA-SY%G?" …m7͛nuӔ[P>ܽXc:'ĎA&[U9_ex[gSYȭyIw,ΔͬǨ߱8/(݄i{GaHW6Ãzز@Z#`lLbcc]~=QsՇ8'^fۑ~f'юم aOGMyƈ}%2lǛ0S798pAnہ6侗$j0L t{m0ɯ;VZqG%ey X=!@Y(0Q!Sp^׈GTʌ-(Gz-8>5t`q.=׈:hedy/+s8}9{ D)wsɌrqUsL, Bq)sjmimma477755d}lgO45t;TMU`#ԃðޜ"TbN*+`M ф|c mĭ=CXDeu0ywT0U>DŽrZ wygf͚Ou@mmMuuUeeeyy{{˖Jnᫍ;/YT%ڄER ˦ƞ0᪕᫧V;NiE3XM 9 ݻαr`]XT2rvTa _7 J`#,܎^YV$V>Mȇ[fKR6cETBYXl}29:| 6lΜ1UUeeN,=qe7ZnSN5V>%bF$>TLt&,aRְzQ؈gPVJm x!gP^G 'J}U[W`Pp9U=b8pRG&c9(Ҹpkjϐ:| " !, @L' Ak9&ax 1}*;Uzǎ-jjjF%|U} ԙ3XowXvY!JoQnu(}t= R{;sꗼzZG0rfT ?gg@l`bqTWV86bO|T졯G*S #Te.0ޜk3XZ>Qxxr0Q݋8u Jw?!sQ>d;kwR p9&BnOG'@j=zq…[QW8 M ,/> 62"dN]tH)kًCF~Kح4/N@-PI|bA3O'r1X>`tnEvOޜN]!FF@!\F; Z s“ EG#!ow:(&JnM'J๶haaႆ]"A)hla۽2OsK5`5OBn;vBt𺰧[ Ɣ$$I&($[@G^=-A$IAsK!r;s 8\ZzxKKMo"% ;?ʿt[]춂[  U*P__iu+V % `e <9s@[+fNg&귿J`F  F[xr+O@{@ToZ/B_ ^O  m0~r ?sLwx<{=߿n]n3~W5TA1Z--.`9//# g-+ QH"0$:LKIMA]g^Qw*]etKJCVȏUE3>QS+D(Juh! P  7 ,  ȭB>yJ:X' &FAFZ‡au Fm_)ser +Xh-lIQ@$GijBDð:AADrv:&6D[j@~9E`*бN^N4heN> AD4 k֬핅r;gΜt^R$KPTQ{W24vk>xUkTa "իW t#@ngϞ6կJqR5 ZnLK늠-o~.X'% brj*xpQ>B0<ɱ vݺu1  'TUvΜ3 EAAL@n/_rb3444c [^a!\WZMrKA1]lYooo '͚9j%MMuĭ}+W[g6??Sc<s:lbBx s!.YDvڴifLzNcC# b™*lfQtS|sγcF3,N.pSF2Ч$ȸh]xqwww]]iC;iڹB8]w$ ۖn#/Sزvsγcv:^ ;' {&v}Ë΃u@ƴ:T/[zQMX<@/!F5l]8&_= 'J8`#2(@S} m 'UFUr}Fu+vl!6.A5? *4c^ng[QצCӌ2z%gn2p*5cGum  `N9X`#TVV ;` GMu]#nc#NBC|n='դ@n_wLnM>@΁;Õ[v;56|+<9PnV6;y˜"'233%f8Ž(g ×@ ?ӈuʹ""XGlUQo +RF٧ў J@$^Kf 1VG|qXH+lDuI9!eXPd_jn >@noۦ&) )3fngϴ]]]@V=A)zK IBrx^ Rng͚u& }kW}F/QHm$馛z{{ [wsf* qmڵ$Adȭx>#qrdP=.Rnnm^/OAKAC{0y;6 yyy$Ae˖vr[F !6ЖOrKA1]|9؝f"ƸL~=6 3fHGnaq@3g3a~3; /i9`I=$/gfOglQ2 wycYB 2,MǸ~ArF?pvǐB"Nl0]DBw=!gilL`j0irjjPR[P~ٳgLn71ʱs;]83O( M)D̈́&6 k"s|%t5(jX+ $}3v၏Ku; dĢ*/&y~Gyw&vvZƴi7Uɉz4F{N8ڣKLGƦA$#7rG4[7y`<}%]w*TJ9sV?Z]j=Y8;9E%rQ`;F6,؂8tjNQg& ^DxݝNdU5^- :[ǰEּCEv[gS⺩F??VqcxBF؈;f3 ː7Ȳp8xSGd4l9%}V_G[bOP|X8xө7Q;ZxI<}% 5kjr+o&k:0c6R<aT="3ȺFSyY d`qO}9΂{*IфnCFuGnpFd,}YFCap\ ksVTFUhq5vd{{ #:ʺ&Dr+tpPKns̙[j)*5:ueQM2ʊY"s-hg6'/ աH5n;/ƀ#P@t|ujc|Pu"SWB," ɭ#Ebo_&a(0:Fy_;-X #TѠRuYT Iڨ+Mv 2#vszʎFbܑ{:=:sM#N0ۀܮ['R\)̓'_2 CJ?Wg'xLU7+e5aLܓT u♙Su3To Z0a0|/F̕lUM[]uBQ|K`0K5)r O LygB pwp3__چo*e Y_6Lk+ԅՊ쾮CFDŽu3h#B9DmqQ!mb5:0۴#פȃ{qMb%뇆sc(o.+ _#Ew&izh@nI + [x4gΜӚzFwOuHnKͳUBz)Hn"VVpr;{lrFk ^ r҃LArK|Bt)3g;V| (9VRRrwZErKA1r+ Ο?i{zz?:twADL@n7l MLnϝznWWw7x뭷vA;]mIn "&BnJ MLnLѱn}խ۶m۾}k55,[Cn϶gUK?"HA{zȬDޔ 2Z\=H !SN|mVveǎno or3{ɷi5Sezzc~fUf3Hi)<eIToMH09 4NT0?ԅ׵?A#iӦuwwۻvݬ>]k7;-]K:`0:>%ta9 H}Fj I;h|QFQk (@n Θ1pA,M޿e~.v}.at(聕H”AZ^ױ1_msf(|QV*ڊf!Sf# Yf,=yq`*v睁OxGVuuk7@"lBs 8[wv6X8!3YAF KoT3j|Fi I0 'u% T(zy|:!Q4@^ u6In RrCøHBuiZGA6/x0.v܎ 5R[ [!\Ο?̙3]6$c){]Z A\,ݰa-ALn bHn "cp]r?0 \[  1̙wΝKrQ (w~*LsE$\n "Jn=ro32;?~aiF2T: H۵k vwbmGmr;"d_6z jRe0-A6i-`6?[^|}l"0ʉß/*iQ`ڬ >y5Bx*QCa]4Ai3ƒ[@ʿ* EMA1Bnz{pr+>URxsh nֽjμ"gj΃u,ZT8k#ԇG:AV!P.WJV|frpy0^6#l>OQU_ᫍPa: )ưCl# 6/ohhx``1s)nhhGtwwY|_pGP_x[ Ho&Oѱ_|x时TQ^qדADLUs۫۶u۫n߶}UՋ/΄ү'! 5z6 r6mZww.୷vڵ{w}ҥKʭ;Q =lKZ#o36Ʃvg2 4Mw3f-,((8|HSSۖt&6ywt6[nTmH5k@N:QPe`UFlbºPUJ˜E5XqK w<83gWQ( Qa$\Fnm,^׬hinz{{׮]-[J@/n@µ-&> XB4!X`(홺᫧фVpM ]g7}=1N?MDt2i`Ůcq5Nq"bE-C0{m$zf`WQav \C7P&-df3HFiԭ _=(l%ɱ1 &LiĶ9`;j61Gt뎥ՙCbYt}t4`ae @n 1f`` //o,6QpjN*'MrPX Q3ukX=(lD3Dv0aJ#|8T,XP ;u;РV*̫A~ ҃-{.RnϟrU 珕M[=5js0?~*p,-@5klٱY"d0s^)uqRz<8x ցG9H;LDl)g!SJJHdP%Xq rR[ڸr r}aR[H׃ IXr -A1ܮ[3g̝;ג[$A k֬%3g+[ H ۻfxx-+y.gY1=M!bl]jUooTdHٳCvsa"cFv*i'8A;iI5k[wBLnnӕ[/a_-kerXc:t|AXr˥vHVT SSb⎔KNQSzph&oDrqo– h 2G0') Q%? 2*W{L}xTīd5dzdp@ezڄ-RK`A*Bn Hn͛ruV!Ķg[p" xtΰVQN9·FE UzGX5T P; cݩTnqx!{FtxzT5 4UeyQ(ZVC*zXMcc&"'?reoS0#Pw kӛnSukm9~ᾎp=(lD5poNUgzH{b Rfʾ:CB F9W+8!][2{a TcSu6(;O ʫzpcnA$ ,\;q䩲 j)ӧO;^rĉSXVVYQ־Ғ[o?y QW oD!uVWRPhz AC'DF }!ӣ)8N"M؜B^Rd^ro>vvtn۶vz{GHn "-@nSʶlypbzێWn߱c[or{ADL^uu)xݺcvo&o{=޽CGЯJAD|7)/غu믿!$Ho_ߴi'M ϵ<|ȑ#EEERng̘cJJ(++9]ӻzrV-4I}OF:#{ Jb<[D%7T"AkA1馛'Gs-b@Lng&WTTVVU544Y&2AD6jP^k\Pt`@NT9sXUYNьvӪ %K:[|Qr~3Y{`ppݺuvkè:$ @%(l=q/y?ȸAg ˖-kii=9)-eVTtxOLl# 4h+fE_mB2O=$}9~*Y  && ˗)*!s=sLOOOoo/m<f2~cQc_r޽֐:zŠ" &, wq{V4o޼wy,C *ńD2 wJ7#B8=,r#FiKWӮ[QYёIAL4@nWZM6 gϖr +D˭Taa#1.(tpOz+-S;7Ay0nw%%ܮYx:gΜI'w[  ܮ[nppDuܹRna[  뇆l@R͛GrKA6//oxx$  2m~~,@jIn "܂tJE@[KƾL& O܊?`V>")9:'̌ΒHI#%#+!?-D]6u (#qI1"sIįC`jr+>ı d ]6ͧ۱g!!޳@\qr!F3bsv=N|$sIq;GȭxEAsssSS*@oowTnyYD3mv  v`!N1;3kO{<OQwƼFGgksC^Z#a~]ʦ O7bpVًrr'ʆp3[&n0؃+q^ZaGd_#0:`6ヺ{k& % & Xx@zDaQ9,f*6JSe M4f!b_.ƫD5;Čn&`W USN?G; !eDڝdST==SMQ&O hUw

r!:sČ@ dyYS'|ee9öF]m63ffC,X H]G gd_ɌVw2 XF= +a~*^b6';sl8[Ɔu67zny(yJkv Qce+Ϲ0rFΐǮcp@MPC]g(6@u9,vN2?uؖk!ӧO={ٻ{NםiMc(fO@hX_"A?u= S t>;n<˯&j|(Q&:[w>jUE֣n0aFc"ֲfu(7J8"ZT&E2'gsqEpnPqb[ FYZsuS<ÉiӦ}o[o;ߨJnQYYUi;`یe ;恚8#fpF LWa83~< lqU9 ɘzR{2}dAY-x"ד\dᢎ}@0P<`l8{6!HIZ`̘*ܪ+BO?ŚeF*Q{/3K7VM1E_#GaqbՔaN/֝2J'\wgZBƣi׭NO,}{n!oUWU_4 N5>>QpOIB~M#GmOA׽FQWh6ʛ(, tMСegkz/ 7dm OH#K1IP34LfNg (#]MD)LDuinsHD3C==ly\HǤXo20lkR;F~رo<#W=ZjĒ=osӖ[lݧz9ѫN1'\{sz%gӦؿ{@tٷxn %k'f-mj%3O;RPXpۿzRInkg>srёJΜ9%ǎ=zq钥$A5k`uUueEeEYySNvm$A3{PcccC}Cu5w~-AA$BnWtwSmKKKssoOϪUF*tgb4(}]o=X;?ɉAD-_o(lO7߿f͚!9Ĝ+2ݻț %Bn8֭rKd3?.w<$݁A"Jp>GСn=q㊁gSd;FC[-҈B'f,L5, Sנ~MGzEq v^ȩIayNXXi4Sp35 4Kxlؙ ĕ[P -`&,5Q-)v+SF'CE%6UVU9qfWú N#|#1"O5<X2Z0$ Df YnסBMdՄqr&42-A[DDWMV1jμ^|Q[w+yTEͩc)Hc0P@GN`a&&glջZ5+:Ag yg@Eqr;~vk (#`&EUWtsձH? :#g  # Q[E`0qt2D֌m CalHxF3)XmK1arJgzU)ksb #U)a)|QgoCB#)lOK ˨',l7+\ ֝nn_u2lz7{?cKj;Iڑ:c0/c2a4ʌVM5bcГ|VB{&T]: ڵkqY&s\ۀ[HqFIޑ8ai#ģ#҈B 0z3i}&H=X#6 3>5W 1)SW{~v9%ĮaE 5k@@;l@dAj'͞=ghh޾ի-N}5 "]}]}}}m܂ԂܲLnniw$Aj;*Hn mܮ^ڊٓfϙ5 6]@.&fHn m@nOmm9sBv;L& ݆fZo&A6o& mkAA!ܦېO^d  0MRBnG;2<|&//  br3ϟNgAD\@nSH-hÆ Hn "& wKrKA  Ɯr+,AD|b-aPlU~jHlHxobš˒h=\";>;C@N晆GgCYVS]^Pfw=0TX%p;Nrۼ<[hJ-fmmztv|)߸~=bɀJVc}G~߽ 0XE1,@]UP)ω;:^:*8r~~Kj;NYvz1 c.b,e(TwCԾ6_ f gHyס](p?hQ\|b)O<:ꚻbyru#{au*T&B3oQ1Qh]n{$}fro&vɅԡwC %fT,i_% wz l!,>Ouo{Zŗ*ΙO<*1 7N\`d/Nfo PvK!,Br{ך5A@q?׉? c䎉fed[HhR&I?L2euօR'>ďeY[ciaƔ];e͓vɃ9qAC+8:TSc%yv: O$vwhfώ/bsTXp}'rDŽFv)8XJsAҥKbQiӦ-}f2@!Be6seM?ŋOۿP@:u*- tTimJ.\7߄[PނL!B t4fg/_w]UU;v^ ɓInPB%{vCrK *4nnh2! \܅ Vo& No&SBJc>nݺ.(\V7pӧ۷~U *T]}1Q .K4559aĠ?B l5k466#&pAŽ[N* Ϙ1 *TWV\ Cr&&pYqq8Cg"B ؑaKL$]zu___[{[;8+ HnPB%Eȭ܆ ۵kڜ9s& $KZOObȨF=*gErFL8ܮ_*6 Ǻdy"<ѧ2;˜hAѝ=qR b &MZ}0}D$\V!à) A)@^^ڕ";d(UӦ.iuQ2N'*WBh"1 . 1] ,Q捧VTU+CMZY\h쥭:3Ӕ2BVlr^ztZ ɼD qF0;竜Eʍˊift"OP`tE%Gc4Rnrۄs߻GW#Qvy*clr H۹s9sfpphݺu(lb[0:)Z.*7)O莸M)JV M|yNH17Ŋz{R!:k3$Bt{7Sp=8Z"$&JxނŒNۣw-ؑ{{{O=oWOt1N'nS`H.+\\N~BnqXf+·^0MS>vvR,B,aЁ8?)\389((cW*/ʸ耹X9dr+nmIeOsX?ݮq=OО`a-)yvn~6b".n݊LƿC%~3yڵ]GI_\|yTP!21Bb!vڵ w"֭[%)J;T<͒iYHnL;rWWW1 WݭR۔*(TPBe4e͚5UUU͇ \PpqS}ېLvo*TP2ԉ  ۴3ba^{R5>NNjcXIdtIw*T&B!Nn;ː>~)%fKd'$AJ hzMUz|(RUh2H ᢏ%cz:?-Dȭ2h߯˗{y|XqV #`:r;7x[ qd_Ld2nKivw\q-ZjՃ<ӟMl޼7Ln*Rn.1+Ռ lxpc9ɲzp2.ՏL8Ck; yąXKlOa=JEܲQrӷDźkN៸ b.M\c!>Byȝ\;B*.+nG;WD {, - IbNbz .d~ό}p|ˊx֛ ry+)%KL{>͘rL aJȅ q.i=i6BK,%6_r~p,ʭA`/ ¸`6x jMv;|[JI 8``iQ| j*x[{JŠIX/`zfe +wӯ9ơ:X%Ge-1Yr4,=0S&Jɷ+VvyK=dh6P ^<@<(Lf8+KZb&J68MaEmssZUc{ٽ`blҼ=ȴӵUSDv(Pq P]]vA8PwO_ʪ,wsu[GPh)L;]LCGDv(Pq ޽z.ެ,wsi%7<6д'Rv֩\\7>GYh)bڡ@i + 555 x45466544՝TP`a³ZbلXRedK쬓z&djpƆvy1. %Mh%ȖY'k֬qvc L2L5L 5 BrKK,kKǕ+W¿ J100d喖X6%$`hh 0մ$BrKK,kK h/2$Y- @FC{AR$. ZbIArY =K%$@ԗkh/HVCK,)Hn# ^$g Ē"K  c L5 gE< heZbI3r 1BncC{A.B{ARh'rZbIr/{˦[7}wr,]hMh%ECE/(>XX'OUTUٻ7{A3h/H GniMTh%Enc'JNB)9QVV^YSSp---aHq*TTV՝~:VR񽠉 $EPniMHh%ErrːRʁibG7lU5uPNjmmmoo?y$C{Ay׻%'sΑGni(6-r{|HAGGGyyEfSDwBZ0մdNXrF8rKK,wX! Zb'%&qVɹ4mFF/1.X*DL`CCCM1N䖖XFSHK,[_b [@iꏹ{A%'**.477FШ^PJd#e&l/ FICCҊp䖖XCK,\b 30)\t!s\ݴykeuu_l @+P[[ `n[ZbZbcG%&⑼n~eɲZH'~qC| `Xp37d|/8Ad -- -Iݺxronn w^T^XniM``i%Br+ 7wٻpAP*+jt4@MM lBdj -- -I I6&rZbIғ۴ ١ ^Zn*2x@IJ -HPn JrXG(b"+^# 2-,CK,)Ɖ Րܞ%^$g Ē")Ŋ jVH,sDV [ZbYXR$(XqAR[ IAr{@K,)r@na --AK,AƉJU$(=c=VSS*$djp44@10 --AK,)F2%)JU%A> S-J Lx@K,K`eVnܦx% E i<2%'j'xbݺu߇Ę S-j붝O=<,j/X6%T˸B[NrC=r4Ę S N?X&얖X֠%`u+nrf7c`aa^ [ZbYX$.Gn?rrJ[1&쓠&Ē")9hu+nr # L5Ē"9r Xr + = Hnh%Er+TV[AnۉSM{A"$. ZbI\ps.YIAr{@K,)F/]]=TTTr`a1V mDV )[yc -ȈΟ7w-ٸq>[T|C?x}}01$TÄôI?%5h%5ka  S .y d\-0vʕByc L5L8'A%Mh%x[Ar L5Ē6 IAr{@K,)ہ!.DV )[yc - ,C{ARܞ%K ^Fd "qw1KdV@rKh/H ۳ZbIcrcUG `-DV ^ଠ"G-,CK,)rFn!Fmwlh/Eh/H -rĀX.BK,)ƃ Ґg[6m޺[]($[geBKl@K,)rUn*eA(G?yf޽ @{AR8rKKlBK,)r[n+,>QTrJɉʚچ($WniMxpテoڳmN["$Y-%Z[_XWPS{ @kw^zzr?W8ۮ"+T^--AK,)F&kj:::Z[ۚN*ĉO/..9z=~_'x5kTUUy"djp OrKK,kK]Aqi5~}WrRnz{UH)000b/hhnc`[ZbYXRlVWW>}ZK_bp,sRn<{p%1$Tinh&,#Xb)VKzr+TVJno/[ Q#aI_ׯ[N3`aaa+nSB DO<-, S-X6ȖY'K= S N?X&% %e2[_/#[@ȭ~mq͚50n1$TÄ@^"+$(IJ-r $.+Wk`ai/> --lBK,)r@nd & N0մ$BrKK,kK h/2$Y- @<1H\n@1Ē6 IAr{@K,)Hn#{8Ib )[yc - ,C{ARܞ%KG{,"< ^088gKdj A ,2x2Ē"gbvdž\r+O h"Ē"'_Mn~e|s9 IYYK\}D_P|JO,ٳwof"+^Kܖۃ ORrpA!9 I[ZbZbIr 'OUB; t99{Ah/HK\n*kjÝ $ހȐZd?޽Ꮼ RCh6źjC;v|0;;xڵ{vw./_ress5 D/ڤۿZ늦9d_pauuY7k{ww!^Ȑ,= abAuHSTJwaanH0q;33 [g 5,hkZ+[}D޼yS0qݓԜmbAuEqǒ9θ%, m b]Q9n777QQ}b8  źr>!-ķ^-gAW0nqџKY;q+_҉o8  źr$  TK`ܒpt6h4vLW~Rk `ww_ 5gA',pҋk@ -V$EVI7nw Y0pt[Ohqjq3g5j-bXU1n_bXU4nbXjU"nbX U.n+bB`e\ts!W?;+{1J !G*|PÕ`B#(qrU^5\YYaI;X8.Zq:Ёa#("ت{-aKql1naKqlՍ[aCPt%cjx̿xoGx'툱qlm6D۽ݞcHvqzqjG֧{o]ZԠɅa;b/M3m~{,Ҏh^hGϽy8.q#Q/|O0` %cu9iw=މ8%ҎhZheYΜF}Ź9YOI\jWSsGzS7wnBF0ЁawD~[l7Mm\ҎhXy3b›9oa9.qg\=r#I1"6lʿ#d5EK 0iP*~dxOĽ8.qW|FRD$|9?|8jgD̋Ao?,G$c[]D69Ѱ83W.y@ s>NLIEU7n'8{撻AP1@#➏mLҎhZ KH1H|(z89 iˉ<G ~Fc(~?#'ZXs,3wX cW;g'q̽X%m`h x g*y?*=?69= ͟HՁi;qӎ"8:Ie]爞 V>!O?,aI;X8.Zq<~ aI;X8.rq ^~͸aKqlՍG##,iGP E%qm~H>Aq,V{ַapeeXt#p\\viqieeecc? PÕ`B#(qrq+['?i3ar p\\˚7nY,b*q{m\F!ܺu\)G&z1z4 =QSjfx;th# jFi} r۲RUĠ̢aP *!yThi:j~c;u QU }!<Sһ7əcW AOG"#O }iiubvc>.IE1| `X"ni>lTvnI_IHce`8wir+qN#O(<*A' E+ zj UI\q:&8}tÒf-жpоvr'gY,Feb5!>En `X>/"&PqD~ֲ35*Lr0vkƑ6!'&&&y6?͌,pYqʠ+W@A=o(c)XN5BDUI\ qQ3=nX lk} mcfQgDlM b5y7|kb|/"D\riNn@6>ve[uEcr1qd-ˇ=B9r7;;+_pyIR"ʣP>z^] Od*3D-q>"{ٻ gmm&'9蠊ѩɡHѴt,-{>pKgEqMYT5ـh%f;MiOwHʢp]r1V AvjjwSN۷OH!aR2WB%@rǡ IE^1ZHW_k!--mcfrq(j$D =A3ebPCf b\i'Ult#wm5]rA0^li`x=z(_E /^ӍmqFW27 3|xLЛvP$ BLw0E"X333ϟﭯ"qO|xrrR`IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/matrix_03.png0000644000000000000000000015677114741736366022003 0ustar00rootrootPNG  IHDRzinsRGBgAMA a pHYsttfxݎIDATx^yuz/Nb?8!vN fc݀!ac;``Ll0 c vH3ZFo¿S}g=3:o MsNUWwg;m޼_Xb&AAd6( ,8'<3}џ$O iUH+1R)8D 4 6 /VF 0?P~'Dwɒ%=o~qO?4h??ybc p8#4b7҄ Gy !N Ӑd7}}p *G\)r"Ta3FA٩g \s5P e]>:6 W*~(uoP/4v^:W{W?߷2'(vKeŞ7_~7_xVV^j~F^ּT}9!~ӟ;N׊l<(ʄ,r_s@6G4>*WB\/~‡s3L! S!i- 5V!e#5V!]we}/?'JտM߷WYzݼ+}=V_)\u\kϵ\k5\ë׿|-/{v\RnUS'nsAqx3f̐*>@ ĪCO9#GVbO<9bDE_\PAD!ϘK!ν LfdMSn;_4OKq#OKUVν.7u~]_uu[t//<ʯzŧJKү{b~o:_mKm5~[m۲}E_LwLݴi?q98>bU҈5+A8r #MyLDXBBo8 ٙRy @^?9IfR.qrjt[8i8\6 |g|`Dd4<۟ˠ畿y~^xi=o3ەt/J׳`剶ghygh'j~De<ѰeE4P Ln(Wc\QuB6 dCnh"w2 9$d*W ~"sȓ !N "mQgO]~w~XÇ|/edW_>\ˇ~p/WrU/W`5l {S`z.ꑖ_=G~(_=ZG~hů-c}M{i0K]S$-`*+FR !V4Fq)ᐩY-///S"@݂Tx=~|z%?,}V?ú~X퍁›#|dᢠћ5=fT`7uwgss͗O\6oKLZ2wʒӗps/zڢkg~/8~4 A:ȶц8FcK> 4pBD9ĨŠ ). LBsϋ<;ܶ MuAp# 8F!ǎ;do~ {{~}o+nyZ^QiEy䦅ЗUNpnnx4=t{/5T@yo?K~r~GEh?X7S$֑[jݮ.&K;N{N{_x o=y%S\4OʩGϿݣg/ C[;\"rH9 69d-F^$DJ3D3gB\^ >1E]uK3J=z"=|'߯xVj?˭&Ia45jຓx˯?WeV޷'̝|o>ķ&~jh/[s{~^M_LWn1ֈ*G7.b,r|6-%Fqi$!B!aH C^ѩ$|mdȋ 88aR#O/8€|@n[[[|Ͽ f/FUUպ߻溥Rq=)A~jۻȇ;^<(%w'ؽyeUޗWs_^-/܋ <&^vMuJ+Eiz^XYK+_yG[y[|y弩' iӦ8q"UUVA8Ax[@5i'z|\O/OO~>~_|??ƫO_S꯾[4[y`9l W%G im# yrl`*#4d$GbT/y)qN< LE<Awx|oMo b ?2.P؈_@q+C;?W4jp |C);y)Kk0eVھB U1%REcD\JKdyƤD^ qZAn˅F+?Ւ#ǂ?6mzw} ֿ [-`o{寋~ğ>륯zY9kY_X{֬gzYssOvީ;SwjqT{Pi̒[*5[| ;}ay{>k9c9gq}ƞ,IU2վx*9TrȱcUdW=~ꏗ6J~v㳿tI_M7[Ƿʃ`% ;ڻ-rXݿJeAc34>.jr ~LMW`MD9>Y[TD/W8 !%bqڄ!O/8[A-*TXrPɟ^x{W,xᅗ}AkAh2}sj??/|uƋ_|?go93gl:sڇߘ;Ϟ^pgO/JYHi~΄R|̽,8wsgn?wsf~p̍gٳ֝Y_x/~S$R3s\wwwaAނE{aӅgy_s^xͳ>G~ufu葯^[0kO}}_|oV\>U ~x(r 8r c^^ *>, cfpVZ#[@N|!)>2>&.CG^yD$LjICprSqAҎ)/ŗͿG+7n}GɭP[o@Gn_ GnĖ[Rmwr *3lwW]{ Wx9rVN^O>ekOOz{|Ӕ9oK___2/y O@yx^~B]s+)_rYն~ KFj6bYC/%URvs`ADDRkYg@/%unN&3v8h 0뎎idhN6q'""Xl c+͢kk,ٖJqҺK H#l7BU,<Ɗ Kً^48$gHULxQɎ9b`zȋHyބ#080v.;v w?z&w=(6o r.o wp{ eLn퟾zڋ_;<կƙ9:o{s(73X!.橪&˷fߜY;k_x/ݞ}kgQ0-{6Dn?Y[[,9z,Gߝ7K>C~8J=]/}Y_^_w_|Ra߿J ȭcS]bٕˢXl4I Pmk7Z™yqPLM4^0Uۤȭ.E 骅H]v*ӏmnä .[f > .lB_dxIY\=Ta3 ! `ar[Vkמ;wc(nh%Y>t[lpnp}w uoͷ֬]A?gz3^ʅgzљ_tz]|滗3߿^W|}Ϝ9_/{w1t lh*L]yޫ΂{Y;眵mY[fgow.;ge箻ܵs>ߏ, ?~<\$)9rңegǾ:S9{m7wsWN=K_s-k;wmg}ƣZWm̵?@yT1<ƈ GfQ53QrDN㤲 *V6fHC5D˭ZuH&L<' XIdiENf0LV/amwa GA O^ y88aR#O/8zM79R`=q (Է(ܶí|;`ƍ |~æozֽ'し{﮾o^usߙw]?/ؽ-NMw_-~W [KM]x.yEohˍmM7\qx=/+/? S$nj50cLn'L3{[.ka)ҧ۟9O{d+oᖹ,feӒos-z׊ys]U]u:~)QE[jQCPumvk V^3meӲl}ޗ )2cr+U}TMm]m]}]}}}CcCSsV.w}_^/K?~gtgƿ^o^=e͛}ݍO-~S7Dē[N/Jyb*?#Dɗ%X~ ܠlAhN,6ܖ@l7b΅&/dHP^޻[Ea鵂xb7^EMx.xiUdlA KSuBaUٙܶrlTz= CBy׃D!"61Ic8?m:rH,)2]TG[tp=w.ޱh}vݶp+/%K쒓/?S _ۏ}t?.ą>/ {}4G]5W_%9<ƈ-kB.Ktm&jxԭ#ըBFcqXS54 t3*["!%b#y>3Jn(Ĺ'h믿E\͹ꪫ̙3gWp.pIw邓>}O_t?_tʿ^|g.K&)l/:.zi t)WZء\2uS_4N|I=g{~{¿I2o^WC,`.صͯnyMzT;_ |^~g9~OQG?T_}L-xbQJ_9n^.mrk$ hn -8m #BLB IdOtKd FLg' 6!pq)-pyBD!c#bxqb.ac`R@5'_Կ+u_Lu=Oío[A# cܝQ)_-dz΀ܶm1(5 ˟"g|,"Fv /ё,BHn8g8g0|R-328i3D3| A{qB+GB@%hHP\jJv-5&Rc2 [!bw€dr;s?rG6$T< 1{ 2c)lN#.84 Ag:c< #9qEhuBKF1y2 N<8#Nc8LqA@ₘi "D Ȣ]P"Z,JI-Bm S`>'G܊3@yAĂ{$7r 1ci"8% F)dOhU NHq3D0y&D{yRS^atbi0]hKBS#U! H)-csV,(*B$8 0x#*X9|s)9@#<ˈ' 䈇pA DGr҉P ["<FO!#Hq 9 '3,eHPqeo:+:D(Nr)MVȰp7΂/V ([ x%F΁"#BCI02,)5LyF$rBN AvÑ;W^q!py"NyV"kcy] | V3X'K^mC( va h%.. ,. ֤ys8m1"HrĒ$5BLOLF C:e3!ȝAN ԤD0)p+ ^y|&<pcq˾4*\ZE`o\ rZp[``Mmr 8^`u,́Y@ i Ñ~RF"'ሉ&|Oq6rWS"g08DEGb!kA^q!x!OĹg$_eZn] .bZnW*Vw0mě&5XwEd\)+nG(@xij j"F-G F^9s͘ȓ/ y**$V3K~멾dE#To9s`ݭn/#VA0%ᅑ%o (˗/[ ?:y7 )JARos@qa"뛩PB *1 *n+Wʭd>!F?CP_DADHJp_b D /C߿tR{~Z3AA \n@nUc3f<=/,V us .^"At!P1AAHJq䖫Aĉk›!nAeJ  P\h烾jwLn'4e9r豣JK;nF!ˆ   AZ 9s|OOOqQ`'ӅtAU׍I Gnك<}grd Y|ge< ʷT9'Ee (Boyc9-+vo=b Tv 'A61eϻr+d> ۖ"Qr@nq?!~!ņjMl#G+Vt7]gwSzhCm^mRu{qy ]<!A2~qѸkĕqB5J&lmE(9M 4v`hgM / CS=:A&@(ܢW&RnOp; +HnQpMdࢋ_[ qLTTN{ͦ)>5:u,^7Nz#StAJ-p*^-"V-r Zn HrX#74'ΞD(ZnN?k.r;s?ϠZnxA1x WqӖ1  |mJsIn "À(}Hn ’۞ֶ6Q%AA`mOZ(BqǑ[.  "J!˗/r+iv]tiyyyccn  DP/XlYwww3$7s==Pe%e  @"A(A.=*F\>@rםwhm2AA B1.rˑb r;BnRB *Tbb[@ȭ|1yƌ Ǐm lۻ|5*TPBJrYrz=MMͺRnnV~y#πWWԃA ȭC )A .;ؓ z{{z{{FX<  b"T-[- DNc{{[;x/^  br+Q&х)S@ nw뻺޴  brr+o]Rn'M4_[SSS]]]UUYQYQ^7OrKA1qVr;sq'N+=vNC%p{kHn "& +WJˑr;aC 756^9J[  [%'ӳoᄑ{ v_q$cƝDn$ijd9s1 uQT`0b'?"cA܎绻 va_.eZnMr3f#t"n7j!>usJ u&y=٬saש"ÇL3x1|QC:ur!f`ٛ6cƞ#tOc-[xAXz>])zX=O [G5w9fu^< 9CVld# f`Y"s5Bw?JnǏ[P^FpOaC}d&nj:Y;vUWaܮZͲ!>x<)mow<#,f;I%1M` WcV Z%U)HtzDI'2 03aeM7a7QcrR.}Yx6g 5(L`zd`_ VX=<]xQ&4-CJ@F=rdQ1X)C:,8Ut%E]: j$86@GQu'{ ĄW6?BF*%Y*dd, U EIwét1^sOg!p+TV#v ]!_wl~mp}ԛȇ_wJC|X PBRA [o%VBÚ.(i )e z%M>7Cg \J&u2B3<X [tU>No+:4]xQTO_+P;8drΣ8"+f;e#n8c#usPuzG݂vtr;vԩP_쨀{G=Cua_}yΜox)Ǥ[j{&>,Ī"lpAIūx[_:[tJUS=1: X‰w32ɭl;0 xYXgE=*qT*:wxNN_ Σ(J{/B;u4b]`# Қ >qSJMO6!bTS|Ǐe |lDm5 ɝ>Ƕ䛬"G/fnMyh98ILd0X"iAFNG:BB<*"h<58~P' DMe殷A4FF}>]!۝u(u&t4c @0q Oo'ė G Ǝ#itk/&[͓>X  aPWxd<C݂y tyxxy _̈6䶯[nayyy$AclV<b̙3܂ `'%sf VGn V\IrKA1ar-Hl+  2 Ln9-N, % ._Jss(LnO7r(V}X;oei7G%2Dgl9ܣ%4Q.{zzm,p6?hrwUϘaO:Jg=gkS {s0B# 5kjhl";He lN e˖u4iZr(P?Ѹnn?-{1Yȭ>)k.QŪ4g@VNϨ}fz]s{`V³ͭKLϼ5SZ=Iphq3zs|:Mpdc=XyoQ_X l"=E Rcp5鄧LU!|`wG s@]#$\ c`2TqR=d4w*%Qm/qg:zzj~ADi=XZ#LmJ lV!v.:`7yOcx{VviBykʉS R[9`Ͱ uGa#I;Wܝf j D _ 1BUE|> [%# 8 7 rN ~`]Ombxʚem$&Q+˦6Mv5 `7-{x Ǎ@,LO{(/VHn24Ӏ=+6qYG:hdx΂,݉t 7= [3!O@_V~~"~ߌMz16x豏6Zg̳Uzr hlg+>`M)5w_8UdtTvv連t=X` v_o@'Z WP~Z9q*Ap0H~zF u+JBF+`F'^fnwѢErưVuv(O< ˓m35r ?g0s\_xOiu* Jk\"3z98Mi kl] ƤԽ&k쉍fl3!u8SOC%03xd:uN N'<ûFmll;jDu'*z65 3#|!Ǐ3mUAēũd 3RgH};θcdW[k k`Fbﲶ1:{<lAgl`7\ ͧIŤvŚ^8NPPD?n*wB0;j!n]!m~OtD"Ҡ5Nxv |u3tCf%m<Am9sSN9J2Ŀmmm]w]@nag pBmr\B(54?vʕpۅ0r{{zzpMMsܚדهQlh1Wn)'?PaΜ9I˭|dh/1Ý"1 -1Fk.Qv +1/&AH'ؾ;W\NrKAqJnr{ܺںٳgADLvsۮ=n^)((hhhʫb-2Jnd9sRNwDA8HL.RCijjk,5%fx Ej'Hܐ١6Ns6iuQE~^wy ". /&r)Giii?~m:3j}q9sZejTyC Dɓ*P.\;jj_,6xG9ILwj˴ up 40 wϦAIcqSW:tS#A;dV܊tvv0` ި1$pH,@ng܊L3мxtV]k͹ ŊU]W{ ^t9ri7 ˷љUʳ V5L:TeU|ww:;6N0*FΏƎꢆXUGw<9Dit BFهA%2p6*nW\73F>;fTAA mg'\&3f>m {:gҥCz1YU%2;lumU=ӽvsp`:qAͻ;QƐlʟ5[5;u(r*<(@lڋܥ$_sWlw33lnf@ OOfʽELԛ͠VoݛTH7OHub tRTAy}r6 Hc44A&.mL-twKAq]lm[z  b䖩ƒ[-6 prb3ݭx_7M؆CI ރՑ?y.'v:7a.'g2HfTzV~TJAQ)!Be5 J1%bl)Y;fl삗wn´ϐ%Ra`3^993331@nWX梳e=`t%W r;L;l]X~l;wn´ϐ%RȰuoL2T\gR}ߌr+ı[ - mZ$C|"\R쒐o1Cۓ2.o;Y('fX9]k)e|c:red`bB.2;>2;%ѩ[Qu1,[p|k`-Xp'':\{uL+{T^W<(p s@R* |38⪒}L, Bq)ӦMhnjnnb466644teylgO45:7UPPxs:;R  8O@5)De & {`A5 MawS T=zFm/Gh-T>裙3g2e VUUeeeǎ0~ڸlXOeX@Mh(`YvJ+.P1Ql?m sHZzQhV)93:B`ڽ9P Q*8ZfUpn* pAA `qU#jo ۺ v 9|"5V%bF$>TLt&,aRְzQ؈gPVJm x!gP^G 'J}U[G`Pp9U=b8pRG&c9(8pkjϐ: " !, @|O' Ag>&A t$>v葒%ܿx_QCCUW]5,ӯ5( sPSgz!fZC۱& M4v5Qaz8vCyą645Bkg@l`bqTWV86bO|T졏[*S #Te.0ޜk3XmZ>Qxxr0Q݋8u Jw?!}Qd;kwR p9r&BnO9=R[h߾usf܊‰ 1l2a } vU@v`,(q:u?G!uVWǯўokd/ )`D&LN<6J:EE ;%"Wֹze$8ar+knܿQQ}vawAd$$oI($D -`v)޻J[HAsKd ^O  rm {Yj?)+Ϟ@._ی3 z  <Ŗ.Lg'4yL"}$! ֱI$`FߟUV'6)~; "5 +# Tr;sL[ \E~~+LnITbȪh'P_p*tC(WqRMPDDuJAq`rb|F%|uT'oV QG$$ڈ4UYl8Qx3NAh5?^~LnAx #-I@"2jXDգ( 2ZZ(V' h@n-[#h [ /GnL:IIp zɛau vҥ]ݲp@nMzKd Rޘ*jOHBfT{&WuI6Lv`  B]dI___'vԩ{>*UK!(h 1##0-i+GrVr` ŋƕE-> -Bi9!rQ/ 8A[@n*@nL2n&[ȭn]Hn rh"[ )k.+.}}}+VV)[ `|Bn[ 'Ofߙ r4C|c{Gc-AA ۅ mV(6|YGAv M6&MbϻB%w%$Awww7؀ܞr)L 5ۆ[PEEȭ37oG;}?s>>0rvgMlZ} 0fHyuuuـN8qܤSNZ-q馅ž*fQt6~OG gH9؝]dw9XI50r;wCm'&N4ƺ8C|;fܯS1 3Ȉ8jg SghĒA;U0f<֑_.`܎?~r[Զ^Lΐց6$9:€ͤ>OFX6U܅ iTex}XSo՛kt ˦$'#*3 BTBY3KdΠŀ:e6\:T`B?+m au eohB 6@mF`a[# Rxݘ F9awW\!VhmuuۓN: jp_[Sôn̚Jٛkt NϓMuPʀ'h$jׯ>Oʼn΃v_]'F3eXEZiDa#“t,:*Sn ܅nգp76:IԆk>auX&-C 6:&6p_ 8lT7Nf'vKsMn;;;k@cgN0a``O}CccSssKkkkooM nI>Ύb5Ao]Pk6>auO/ To`)'<$S bYQҭQ!;UW]rB!vҤI잶C<hž[ ᐑ$ sfȿQ vʔ)ǏgOb: ,wVzDAgJiԖHk=`ew;m4[@ږ/[FrKDWG y@CJϻ^{m;GN:uhr^d+Νtdv̴ <HPG34ў] Ll֠Ez-JkQBԱȏ7= WINdo{RwȠEUjo_M2 ԟMyVÍi (op;$h p3GQMYIFNoi0 oxJ [oT(ܾ>iӦeV?d\})(8mL=u8-Q/&0jpTشeeXƩ0SVSDu2:K%L7ix-p'tB'ӨnRXgf,*0;M-UG/74Uޟ2`_gFܩ7X %0[ܥJqu' u&<3u]mOGv8;u8VΙ/m'2\_6Lc+ԅՊ쾮CFDŽu3hGrZBڐktaاiGI‛L=J +V ­+*ӧ`(O.tww# v'ޙ%;U&(@nvܴik4ήe˗' {Q A %[ޭxsr;uTcRN~Rz cuhGi _3 OAjr>3A -vr+QPUɨ(R^^~LfRe^2D\W ;Hڑ#'*lgo˨6F0躀 H.dKn)Vr-|kPS5$xˏX E!2pւ5zG7[t  2ȭC>\M(ߕYamF|p/:&$O;tSa#ԛG:Am^`__?.k.MR\WWW\4YyB(A]ϠŠD`a9 0wz۽H "3܊LUH:uj___m=kteW7;Jv݊b"`x`CY7Fp]-C[Q*LPVDD Hܺ"uoȢhͨzv` Zni̙N8kvc;vο~~@n쁵 }ܮ\e :::{}ޫkHn = b!'tR[[ۛkּz͛k\ڷ־UZZzՕWfYK1ǷʫkkG3{-AA$ܾ˯ 믽NrKAibmmmx_o~s͛JJ[ IG׿~[ֿNEyܹs3! $t9$5!~]\tb( Bn'Nٹ-7oٲ-T\wuq_L%wَOR ;p=y " @nSI ),( mhhXpnX]&گ9v\Ɠ8bKF5 4)S9|G9 9ҺhѢP+|e^PҞ[iDa#"!z S.6' >, t?d]g09ہeR!g^]-7 w\nnpr;sLN????[r6m<&xw+XUXmZ>Qxxr0Q(aKV3< ˩\yJ KH܋ר\'e0.Ąup]c\Q9@%<'_nw 8D݂B#DXreVNC{_(8^`{t r?@q~E0 wVWBG!&ۋsg>5klٱY"d0ճ_)uqRz<8x ցG9H;LDlr)#g!SJJHb2h(ƒ۾>LrKR[nm\ŊKrK0-A$ +@@j,Ә[ " ˗/ӧOV+.-AAҥKAI;l@nMʭ  [oi4r `=9 ŋ"+@RN*C 3JΖd޳:t|Ac[n$uʔ)Rn 1ݦ+_ú-gerXYUOp>q  O,R; ޿J;a!7Gzx*tJVܑrIi ʺKdh3U0#MR!8\27!2 Bx%˝GE*5mڴv[pzknkqWCpӈFM Oi63l6'y QW oD!uVWR\Phz> AC'DFk }!ӣ)8N"M؜BRd^k={8pPIssӕ[ 8a={Neel۶c¢Kz{{'M<Nܲm[ڵ{o^ {믻  br{.++-۰ `/04nᄏqӦ~ w} #% ^r%G[mP-[ܵg➞SN9e?߁͛?ܱcWa^[ H ۋ/ȑkּ70I]Xm[[6>v_cC]OrKA1ar{%Gwyo;v"yb-[wܽo_qSS}T  _Lرu6&!{{z&N|_sX1H0Vf "ٳgWVV~[ر`jw),*_rHYyeGGE/qgY~|% h@nꪚݹsמ={-**r;i$CG+^dIjz$HQZþ'CO#ӑ=%1ʌ-"܌x* Y] k^s5uuuྖimq1C &;KK+ꛚ[z{{.]ZnH`J"X5(/o5UK(c:Zw'*̾Hpݪ,hFUVs;iUAĘv޼:[q}2Y<?߻5aT mXAj66\r8hμ⍟ud\ 755└/qdr+w *J: bŊ[&6ZdSfGG3RUr6iv`V劍pm?T,Ac @__ӧ?~lARo4źXnzףgw5$o򅻞ǯ 1 7//'͘1㣏>" mh-p~~~GMcNޭt3"szR*7hmĞvt5=AXvp`:uT) PZNJ?れBgxG;ʪG:BB<#zFqǯX[ ҥK{{{۳iӦ9s&8I|Q~ʀAv6 ӧOr 7+WAD\@nWX100g:c [  yyycPT[  -Y 4ԒAD"&#CƾO&A'Bn H 6Q: y̌NKIW(&ꁟ P\ߗ8g" Z:/g'zE0BFCJ?t{$lHY"}IďC`5_}}}˖-K6{=R=2BpV,v;'>É $/v=b=r`y܊G466644P,ur+g"¾i;dhDFit݉Y{< vx:35&?[cTVVׂu  M=6fx^;V6LO2qu^b?;"'}Jol.u'UM JL>ñ¢s0YTl&$6'iC/9Y0zW@DC6J3=D.gG&*ut:c-"vԩ@e*;-Z4 G/j ʣްH3#bt; A%ǎB-0Bc`D2_巍 u>7dc`tvdbCVpf3閻!oHƓL"]X*jʍ10pk֛lB5]@#NGxl(3L"\%VmL<`4"fhw"LfVUoS J=*VuZY*nbueL6쀣T>Se5Y5Dx%%%Vܲ`Gn |{b :''xvL5YFBt? +xqT@%8BeF]m=9nZЗ&8 8`EOӢ6py}ϜPH#ON,JSpSZf= ȪJ}/Ө7^#Fi ta v}x<DpcYxbw¢ˆ[9,:PwX59eufNlXZTy~34iROOO}47\z19,[ȁ-ky3Zx-PeOVSy u=~ڰΘmm+ԃ#-[:Fc[gEܞr)ݻvܾm۶ApkMu5sɢܚiYj5vjb}\(m6zl#4V& ,6#|v^]ey7_MMPXM Xu)|6ժRۋG`Œb-/_FE0e86Q=1npEE^kSjX+MPox Q8 p@MVƉśnj'Pb gin N;+A]O 'Bn'Nյ|y|7n%̨*4 ȝMvJ2%AY,F.y&l(5Nb0(?; OjOf9:wDz@p,\Աꑇ̟ b&#SW>"Xi3)QBS[uEXx"H%O`!`Fqƪ)f4 X(Wp0NvzX쯚20޺SfQ LKxtVt5թ%n"vӻ{݊+\ܲI~Q 9ch- ߴ[=.qDPw; 5B۰QDA7d1]ho6-;˥_`/({P$ MlNxnϿƗGY݌M20db~(7 8o@!:hR%J9- po`g CH#H&fEwXC"Rş9a㗰P#E:=&"Ӕa]ڙ7-ƶM/xG|ѢV'n򡸵ƍ7':<՗h#*b]6Ɖ7W{ґ#n'N޹cǶ貗7_UYyUWqN< <[R366Jn'rJOOނ‚{vܵk[ղJ%%bkhv[6s5zOQ:Qb!'O=tЁWXP_ݼHn "&r;eʔҲңǎ>rPIss7HrKA1iS TWUUUT߼f[ IN(hkmkmimڦŋUn}wgl4}\اΏDF D-_w(lW'ۻtґ!9ĜC YMH!}}tyx˗<%rI̙i; @ bKnAb%b ң`7 h|/OA$b+ 0pb'\%shEQh0rnjE5zayԯ{Z4nq 5C#l=8 + αs#½FA{ g Acryyy _X]|56$jeبduĦjj1#g9_r2jXw to`7F䩆1Y`Wf7UV qH3Z \^#QÍs>:TTp N@n&#Rf~e+^w4|蕈W<ɪ;Fי^?*8rk.:zC9u sV9i I 2|8\lx8;ݤݰSפmz@&a'wN| kXfQ~#bLrtR6YqSNljjƥgɒ[}rK-ct]a"}.֞\@nAjAnw&765ݽd $An.Y܌۩N5 6]@.ƪdHn ݀*n[ZpawӦw;L& n>d  ܦd[׶\Am VL& *%V(In "& 3y̙t<@~>-AA6܂:\  bry$A1|Hn "Ė["޻% Ē[&k. "> p \N5 nAb{{{{zz@tK "> UJ|#HlWggGGG{[[kK  ". 6p+/?j1@--MMM u,ZDrKA1e-pZRР N:uܔ)S@fj**KKZ[oZ  br{M7jʠMzђ@޽ uGrKA1;wnmm; e' &;=_Tpou̝KrKA13gNeU|cI'ܞ]\@񁢽)سsgmMܫIn ". W\qEyy;{AyoF(LnǏGr h_Aa.% pa˭x1С%As]{5$AٳgWVVۓN:I~Tǎ;RrC764\7>*EAqkjjm߾XZjCʊʊңG[o[  y㰿b?2YE}]m]-rUU{{›n"% p--G5ǎ;vl8 qlninjnjlZ|-$AۛoV%S>?S<@`}Qo/g /_ *Tdۻ|5*calٲneÏgGX9KPB0 I7[>C9g *TPf!]8) 8IEH9s&8:;g *TPf!]JL[N)hr 2sPB aхVHnPB%vt::00ЂE+dMÒsͺkcPz׬qYwpB ^HnGBn_KyTns2" Ɲvy S/';:mܜgKq햑]I2' *TFqAr[ K(U%J(@G9󖯹vk快Yejʞ̖Tٛ7(YMKnzBe#V* tvѝ"< 2#w={׬E/xwaf,kO ?K ~y馊zYr~ٝq3$挄on>Գ! rB8}gX5CJQ#%$?oset/Q*?*_LfzIvtt2$[-E*Qb=5u$6h$rIu<͋ظ&$_!br6shvéy#pj<?# ̒ QVrz܎PF6//RmY%aYd˟^431_:znbOX2;=5iou,) Vn=&DףA#T s+'NX(ܪoImG(1 8ܮX_|A$|ͅX%l.^cZk[Qs)a:T˕r7wŗ*֞fD.''.8ZG0VBe,p{K/&H@GXDvTq^Lfg MJ9:X.JلCXV/{Zŗ*ΞO<*1 7N\`d/Nfo P߻ܑ[}!`uRW٠DroDub-wxb"YsY*u?R9I:LedDuɬ7mvE{x1Txy^.(E.Cw|t̎0f:Pt{OdT+24Ylsָq.7NDRar;88r Cm`M֪/!;TLQF:MdT"V>JFӀqݹMBxnvq嶯hߪtqWS zz:Ew+wPVg:{h+{ 4̬P8C2yF}{l/_n_)3%rdUxΚ5WLqsCQ;R6C)ZMGw3Q9 ׃UX+J+Bn-.ΨD-*T=z_8R]am3fܶԙ)TQ~5; o v.h~Y`_4oTa23~B%V䮮_\4_:cmta^7=-T[Zf"9]x # [ZpqVw+ f1k=-X^㣋n>!h](N ,:5rĊorP8*wڌuQ;Z\R!{ѩŒ:{ [*9+BnkVL7}^ADWHyVE?GA$[ywkK*6zV޻]%) 5+v@[SDFeX;;;وV8޻LƟL^ls*AbRg),MTHn"䶐s]lY'>-``Y^I)l$Id!26 Ę+\wRJRnS~{PB ᔥK766&p@MRBnC3=QPBp=wCUVV1f .H'#RnS>=QPB0]wA1P8ppA:"@dAjTPou7ר[ [*TPu)klUca-9V r+E$TPrgb BrK *#܎aHnPBe1 -*TBr;HnO &;]NT ܎aܦdy #!HDt;;a%I%ީP v 3<,C2CЧ\-.*܎a#c;#EYzpFAOxqƒ ~i];4X]x&!;._T&yь*TR?q|ca-[R}Բ%IXfzE`$V; Oʼn f@?GgY»s;0\.xy"#2́ hV_m^^ސ6v;J·[uhGY}%><I;MkFLdO,.n~.Nқ200 Ô[ `RK#cc )ExNvś סC#ěQLAF3(pQvw T>!.b!Ƌd2[ 5:lMudDYҾ9*Dc'KtF:7PTh34vwꁉe0ށY,9g6ZvXXzTP[Hn0 ===P 1 _X5r5FXKup+<5U. gb=9/+pVT֦/,ՅgbqApUQQ3뎻`4:/wbInPR!À.[O>t^qiӦŐیd#*TPI܎a@n,Y RwNBn3%Ug^n{G *I1 onoo/ p;yP# -%O/*TBr;]pMMtwO81rK *'z!À^uuu;o߾m۶[~! &RBJ m]cXVkέw}g;PǏOrK *+u5u-Td{UWU_o֛k\kִ}s ە+|**TPBJrՕWЮ]իW-9M9=v:։@Ӟ0i|oooEEEMMMSSS Xzr[^ڷZv}3ݭA.IkjLAӞL;DiOf~r{UWUVTw޻%=iODu"д'L{Z3?|f55[>-naK֨O&'$0nY#rM{"$2t=`Ӛ-C=)(,(ܻWmOʿ%=iODu"д'L;ȡ܈}Essɡ#=rXiYiJܞHд'B"N:hPn`r{3ʊښں:G|grRr C5"д'B"N:hQn`rxƦf[S==v:։@Ӟ0 v)䶣 9_ ۥKuvtsWWwOwpӧ8ݐ5"д'B"N:h %f79njzL52i l<090rls'N=|zN3#x~!؋]Cn}WRN;3T܅:Cg-ds`ŽYvG?0a7+DG8./ʪG#- Lc1K;QB/$\2~I<؁R*OYpМ ܪN9%kl!lfz$ᙽdxf5fk҆wJfւy/9!.=L.1_68Mae$-/4M0z^^FT$"U(owMdk Fůs6rbהO|w33r<w N yڭkGo7k 9$ 3)^/$>]2ܵ b\dI1Ϟ/1.!-߄a_Y%fK Ttu^>뱟~_I2+*SuCދl\myEKz_I;KBrr4,=0S&Jɷ+VvyC=d%l>xryxڅ1Qzp,]3yLPrqAVFfdv-E^6iBӞHIdX* M{"EL;8Ma%IY<^V^NG]y~zKn M{"%icq_o_>BӞH*NSXݾ}ƱZh;ZZZZ+*p)--?rС#6eޢ~ذ嶷+geppXiy;BӞHIdX'Rh)bڡ@i +Bn-JƦ#GJq9xp{u{}wXnO('=}m9+GS*4퉔Du"=" T嶳]hm]]Cq)*:PPo΂-[wRUh)L;D M{"EL;8Ma%I-" $v Ch!ic4Ӟ')\"z|G/_200bڏ[/F%&<@X.K,2K섓{$ L2L5L8L{yE}]c< D.9V K,%CN8]t)2000b-ǀ -]b9.!z\hV(V"TÄZ{[r ]bIArX ڈSMkA"$+t Ē6Z r IAr{@XRFd#"Z˭<,CXRF@kA )HnOK Z KdZ "qgeK h-1$ ]bI1J YւDksE< 1t%Ũ[r ƄւIV^?1Kl4BXRJ}vٻoMn|3Z ˭squڰn{t^K*wxW(xfO~m]_ @kAR8r ,>xʭ۶%6JK,)F*_X|,奕 ߼.鯞\VVݵ`۝3~NCxnܦf:C:cji&Wn%GUVV)($&([X<|ѲƦ;Y Z{§;d|-h0[l;ʺ&ԈRzJd.AŗҲa@/1"&ErrːRʁi펂CGW ~o\ӳg?n~#Gl4dr%}m-fHeNˉ[j]4|cGnZZ*jnnnmm%F ytmd6uɍx-9RVg,hyvXifׂ#7r %04㶧no='FZ0 Lm=/m*; P8#e&܆M]]XAiE8r[CGK*---YĈ %F ܈GFvp8GJ.]Wn_Yٗu9={Ͼ;VhTUUÿY 6RnO(ׂݒ@],p<|XYuuMCCs&ZZ~e# msɍx$/pXYWW9?;gϽ`Xp2e|-8yb'۞r>L "8.m$-\bVVV+>%^C%FdTMFܮ^yE%}O]LWWOGG4@7] ֭ Ko,KTkz Kr܊KQx 9w5`In!YŅqvn۶~>2B0մ$[}?>.uX)t%Ũ[Z F#$ۘ%6K,)[CzrV0;Z BmZE.\BXR$(BnWnK'xyb"'ZCX 2]b9.!r Zr+TV#/ւCkARܞ %I-H--V\T#Bb}®#rL5%3K嶿+.Huw!=q )HnOKQ 0䶐 $Er+"%-V\ Nr{@kARܞ %#DnPUێ"'TZ-]b9.H\nBM,W.]q7e`aai-= -]b9.!r r+eVw}=Pee%VHddjp5@d.AXR ˔q:r+5V{EDISQB%g&<@X.K,2K,r x6-AAR#Sr yRɭƑ[9\!z|G/_.?$L2Lco QA %KK ˸B[Nr{}=õr4DրI i7rI%3Kd߻RZw'.}?t ԞNS-یV\buuuBhk9ĈSMrRn7ym{ kj[[Zʫn裾!k *D KlqcJ%66K,)F @nbAZ0 Ƅ.]bI1BV\ЇmZEyZK`i-H-i< Sr ]bI1 n.I>^PLjZ akAFK,%FnsZc`i-HĒ")*=." L2LΞ*9+0ṿr ]b !\b I-AAR1r+$HG]|00bڏ[/F%&<@X.K,2K Ē{$ L2L5L8L;K}.AXRnG.] ch' L2L5LX 1 rBrKXΠK,AF#An-Zʳ200.\BXRt$.06"'TZ-]b9. ւCkARܞ % m__ZHV"'Z˭<,CXRF@kA )HnOK ZBZ "qgeKdV@rKh-H Ēb=VCb-49ւDksE< 1t%Ũ[r ƄւIV^?1Kl4BXR!/6X^sÎ={?i֍o`BkAR`u..]^Yn[mx. ]bI1Zv"Qv*<l/56ܵ+kA#h-H GnX>ZZ^Qu6F)t%] %W=~?ʳ<7{iwnM)(2 :! _ Vϓ38cUl"2Wn%GUVV)($&([X<|ѲƦ;Y Z{§;d|-h0c܈ZCJ%"AŗҲaNK.$I1B嶧G*-'(; _+]{KqOϞغMad͹ܲ{V !qj6!/j "Fqҗ[s;o4rl>I#p}-h-\bUPjkk577f#<6CrqҺFv_3?Y% ر̮0#.7rCʪ<ŭm3D iUT#%PVV%n*ʟy٣= 籵 JAɓpm!%Ob~(oҎi`d:\nO /uuub9m--B 466d#2kY Ĉaȝ pj}yYڳ󞨩o&AUU5[ (rDҞ/q{-\b=VV]]\ _aYĈBr=\br#69Vս:gΙsnOhamm]ׂC'.7}:Xr[yqDAMVq脯>ݲy"ؐr ᣥUpŊFאsr%#˨u+ߵ]8ɹK&p^`J<8{-&/I{Seo;,kllB+^C%FdjDr 8r[mSPX]S^WW_VV^UU tC ] `oBjZ ˭`:v ]bcĒbt-xcňqx`4BkAR` ]bĒbmZEyZKh-H -i< Sr ]bI169ւZ1t%Ũ[x/Z . @SMkA"$+t Ē6Z r IAr{@XRFׂB"'Z˭<,CXR Gn;::Z[@koXJ~(D|s(jE*Bv-APnK[I8DNryq$%sgwv3x[μ\s׮mŋ ˗uŋ#]C'??Ÿ%`/6%b2\|nnnҥB;̙<}ŭ׬in;a vK Zv`` ޽{Nr~q17̺|Kѱs- q133Hb"Cj^<K Z"̙3H\|Z ^޾>B+RCp3bbA"'<䯆xm)_{zz~ D"ʽmVbŒX!,A׊kkfB!Mi0,ǭER̫;vrϞ=DON 8Ǐ>e%P'/ =x -RXb]XXXOb"Cj$_b XD[Z0q $n-mGG !5^c@bbAYd-xW( c1ni$lq ~3S7 `7niĠl{A°؂qh1[0nk}3:Hb`ր a lM -5z<$[X[$fh1[0nk^0`ܦZMoUz `}}OKRXAzAjXbh9+a/hF lŭ'X3B٢)O;yK|yzO4)0\^Nk^h1[4kܞ #{xo0t.\I"آ,n2vS3١gi&Es텑#cWG .s~pzzz&^0Жd?[\o?Q{ZqUVֳj\.jxqۤ0nmqFpiڕ7,uQd펗~{ە׮E 'AAPq째wdžq($+S6bqkZ 55={<<}1Y ƮNl>ͅKSO'~37bۮmU'F+nښ>}.zl*?TKyY en0@KKKs# [saFN]ӕ`lOLu>׮!kwG9\irr*^6iʹ;ު`n<ſ'L,[ @)KYm `<^.P@Y^z:-A ^x^HЭ[.J0g'Kܾ#yM&n[[m) uq|elXt_M']6 cko=Pb q{t\?>{/YcFrU |Myy ;[z &_+K9TJuuAY^zcjzVy8<~hb!ZLWa?n|tpn!?C;`07w_c[w5@ܺ2p n]"o+6`-,6v7auq;<:,VxaGJ06NNLNᶝlyh/pvbB.^pU9LfK,vn[Y5{7b~#PQb-,vT6;F#Ҕq;x,.61{?ѿzoyy0.[/(bֈ[9[H n5mq+r|^+Nb$^ 5 1n1[,nOٳ_ ܜ/ݹ}\M5n-.F  $ 5{̸,vyu)-݀&[\C֥,nM0ut{A3^` 3nB5#-6oܚkm]P I lm]'7.J% -f&[^t${-BHEĭy{A°؂qh1[l6CܮDVXbb6nMʶ[M`ܦZx`${-ǭ3-5`/H[0nS-f m ,//DVXbb`W蘙I@dH bbAYq[\g?e___6ŻB+RCp3bb X„/]qɼkl'1!5++fsYO_@.C%D";-pό[juv*%B ` ̸E>#sy}zGmmm:FzI!Wݻ}?2nI lM -B->JYq~Ü{-ǭ3-B-$i@o[R[0nS-fqOӕR[@98;JoCRXAzAjXbu4ned-0V_){-UkFh1[[g8[bX+d.ZbX,-`ܲX,[eX,+D۾7w1teP]mNÿ VB SVV *:liPq-.0ee#(v 0ee#(EjŲуw`Hm5w-RB~GP6;x][a#(Ej]o;3NW:?qDѴD=.R[9n[Ve%Q~19 X1>{)[Vdhcd-uY]i^* #9k&6kD/g%^qvj4ncę]C ux\h{HXQ3Í onP8v)9"!Z*b7p=YzhqKɹvVCq6#GZ3-N dZ/9E7:K1ЁaRۑ}-N8QiFc(.;/fhɹvڪx/]p47Dw\(]q"{#6L #J0=SįSb2|ݠD²Jkz+vj4nušdN},`pin x(MuYplԯ<{'3L wXB{x]۫1r̖A]q3V7 vno eL}œw;+wD8`%D(.%-¥\h`Hm[3q͸]]]g=+.R,n wzXq䤘+~G4/X6ыn;::ffft0ee#(v ==}}}lo PÔ¢#8Eˌ[!hܢ~Wx֞nteP]q J5i]̸eX,'|!?*[6'ztk%Hїo%9i.t*#&:o#Xr܋}]myRUEEO=**T<=>FP#j/A,ƭAMYkW5h=>tw-VwC:ȡllrd< 1/AG:u 2X*չ[wJ]`rij w PӍjQΜl2dN0T"sq\qߏ'FW}Q ]tS ᪄7zrx UH\q:Ƈ8l~tJ@Λ2LTDJh Fe)s\nς'CJ"b0ATG[oOQn}p\TŵW \G6ލ!d}[ZZ0x6?JA _ Q6r<( 3&j&a5#/30i㡓jh*:)k!GӲi0y5\H wg!TSTz">@)'3M9ODp 8rRw^uLU\{udC.Bv۶mݻw\ $(z:чE7UGWxy|h""]"2l0ud ڨ hW 8iiYx, Z%3gA5̢ҧQC&dy3MS< >j"/U/zՑkq\W$m[[[3oƋ/Cɷ!BYzP [9^_O_]H*aBL6?2^~d|=o0exd2vR mQժrC$M$2ː 9Q^ xL<;/aEբ\NT9dA_~N!w.UAz1d`D04VSO=OÇwww#q}: l:UЙ'ڀiUP|V[ LVdm{{+8t^xgB! Ol߾_F?q >1IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/matrix_04.png0000644000000000000000000003561214741736366021772 0ustar00rootrootPNG  IHDR}W@sRGBgAMA a pHYsttfx;IDATx^ݏ%Iy|wdWHދ/vY\@ޕX%# cah 103 LJCwWWU'"#̓GȈ'dߜꗵG*s3Z]YT;]]zG8r@`ő;+9'Xq΁p=[ܹvdsm̬ݪ6ȝ`u;%-idC5i櫟kϪPW;#wmTs{H2MxjSQYȝ`u;lnMbږ,Xa׬斝(c>㼘)YN68Y;4wnm*&ٸQL_^Kcϣe5Diȝ`u;([&|WJxE|zZAO3LX~UcWɳsMu6v̈́6 ^X[4gΝ4<+r'Xq]άY Dh&f0ω&[A8 NuMa}zllZMO&j3!wC,&+o}YO׬VuZUq$_s'^ t;U~ .䦍-1~~roCk+7?U`)^Ž$Z<QtudlS?r猯~}v{TktϧBR@J3׭O^neUA:IOOWX6lp_q۽d[{[FjNTlF,E|:bat8Y|"4Cď(U/(+ǯVE'϶AS WpigW~nZM3EIŊj(()pIsZ<h:XE??^q32ui^gw`B@dA%*R,2ҡ5S]%lbPWKOV8`j4٨bFՑijBq*WAjP2É }g:(fڎ[,Q|ZnU5}fG>hD |rbEJC}WVΎDLyhQ쵨_ިy' ھW:J>bJ1KiC$T{g3W+A4]!0BcyS橜!&y'z xP.,ҸZxvwW~F>*kڶ֊ZYמ.%'RL'[`*fPVqUsğ+O{P8X~S_n=(6khju*-fU-?pY60YZMOPߙK蛗a_j_/(%7R?Ǵnr6plz)EG_Zj>CO~<=(J3w+"fܘ1́R%V̯~~DKGWEjceVjWKNr' 6-tqL*"x( *wnm)kbg;EF^t;ݏvO;a*8%@=r'b#w@/$w^ymʓDr'bwh4曼1#Kb[G}F;&OBy*'% DĒ^u=P}]"wbI;џ~36L*N, r'#r2r'#wbI;;wj;`*r'@K'~r2 ȝXNΟ>3NjTSC}2ȯ10uD4W@w3?wnA!ȝPoܙ#'hdRLoOqSƤRt+H|ѵkMƅL w@s/D(2+Ț[ 0\ s&\tCݻw_%ȝPܹy41?MP2~ ͔걤;K[OYLS'EUU*W,1a=f_vk$T49{z9u;MR )DAR}SL׮2]h?B%3.P]M[*wAMƊ +܉H߿sN'mq Su;(SM=٨ԓ}5(]UO܈g1Uܼlk|oaZ0Wrٯ[̽Y!7s;;oNwn<vP;`s @od~{wzy,u镭.M)KSN*Nnj5O[ tC{;'v73wb:8/NG{_{]/S;@@ZNGsNGM&; K܉ w@r'şF;&OEȝt /7`h )-Ol\ڤVh.޸~<^q7wͦvvv\w IrK܉Ƹ"wH"wb);CNIN,Νwq= !r'$r'q;DĸloY3 OZɮml*r|H4BR"w1.{ȝYyrӢIMʝU9hAfEYNizquqq;DD´cO^yqCY$td+5N\ӫatŲbjkꃾ}C||4aKfVKis[\w܉EaŤ,v"٤'~eDD3%gE4CXUe\}<ܐJAUօ+;ƒ;'5jk7Z,Ӹ6r'zL rHLq=˝H4.3CO4?-5?ɘ.!Ŷ/Kq:rUߞh>:N,%rgv⨼Pg W wb);,ǜ6"'tuƗc-3O*ل/d?wYRuۼt3rGTK]V+;w0 mhϓ܉IX)AGry&H6Y4ll"b*_”@b(#Zuh8n_\5ϦO3s: Dll0`&! eA췀fQ͝;^@}|t#rR%UԜ^sڠqu,;N@W(gy:2 w6hy8y}Lб)h:E1ͤ[, OYS*ϝ-/`>U y;3A+.B4琂;/{t7G,3R]A+~$>@rb N,Eϝ#wؔ}IEܩ 7%+Gszm\.2B]HR%2w'hrgbOM *$)pS[ܴAgGRK۟Qt [%g<{O__{;eval' fv I*}S!Mj=y)Z]Ys罀B.]y$o]ފcUݝdR>lC ܉DlT"%*ČcR[u X}nrg Y>i^ުcUݝY_T. `:ɝocSzsW)wگ06ïTʑjjvZSMX9j\.˒_-uYS`wcvI(#f iwh%kvO̝;بM.^ba|'׎>z݄~uMb3WbvZU9<~<} F 3Hy$l_ꛥ7`pE|#sL#wJN4.{ @SG{4j Z,Ӹ6r'M͛;>ڻ{Qt i4.{ @SUi\n@s^|髟ii'{gpoFm2ٷXHqٻmNI=JX>#{<|tggQ۟L~t|yFD5k\n@Ki,4ȝȝXJcɝe@Ki,n6z=ȝ#ٿudsۍLhzZ"-9ƖjfN,%r'#wv܉e1'7-1/T!]C!wb)%wOMQR,(شȝb12sɄ!4}' F;<.ag?5{4o`i?xyKhfEuX4ZM;Fsfϝa^ W`߆R;7WoªUXwNmBG?3ϼ$FnU%;,y G{4j l !r''ǎ}#v$Fn&wFysG{ww7j;ϝh`H;ѷ~ƍ{{{;%5r6p4j;WCN=yd2q%Ar SwX&UvΝvk=wȝ"woF#&7*wr4̛;<|tggQ۟L~t!;;DDlvϝnȝh!r'Fv?r'Vrl !r'f-X}t7)gޞd `q;7yʟ߾k?MUα;d_a<}T=ۙ7wͦvvv\z}.ĻmPfӤX?7 Aa6& K;jFOvJPU߈oJ {:8_5G --;;DDlvwf۾3}e7P"Kj6US]}tC'U+RVesfOvũvl~6<4r'Z"wv܉y|#SgrݦPs춫;QƲt|=v\G)fjiZ>!_M]&YN.?x|J&-KRė45~7pӻ'jY#E18hGbwg -(,U/[ː;ܹzCNM߿ÄOc%;>izzu5U`j򮨲v:M3EJKk)k׫nt,?"7*wVܻѲWC_1EȌlBkF%uHpM֖mvꈾo^wX+UlQ"3*/y;B};82cC=;}=ʻ#^`7Vh&5-W&{K;'l]/"\Y᎓T3'`ߨ:b7лf,b!w%rgȝ. )g'zTz -Z+ZP\t~H>Y-r״X&-16xRa"L_^ݯ`05'XU]z0Xeȝov= !r'f˛ x[n3CoQjI8S|3Dpdzrj׬UH>97nT6S;ݤPw8 ?ytm .ȝ%̝ "RpXLݻiӷ[zS&xgϝ&83΅aj4ΩS9_T/r'M;?j1wDGK-3襔nU?G˷R7vN3wښ{Ѧd)475wqWlw )S &}G>rms]} ;N`Z03?gnXet!Ν.]T @T+[IysGQW:VH8Azc&67mZmƚ;A}bŒ1 sgvuW1?@UHeݾq"wTGOgO\|ֱB1K%NQ\aub⦥LN#Q0Ҫx;hjܹCNZcýM.^ r'QΝh @SyXȝ"wԼdrp%[C"wv @S·o$w;ȝ"ws;;Dsýdr[C"wv @Sm'=o`H;hܹBȝ"wԼt[D͝I͝vÀ$-F)r !wv @SB'w޹s0 rgȝ4E\!;hܹBȝ"w۷oDȝ+!r'MNua@;hjܹ?ypQL^aX[kkkG6ݦydmc *fn7^p_XTH;hykk?{:ȝqйrg/6oSͽVZzN0!;hygΝY I" D/̝&1rg,(D5'0JN)wyv} '6ȝ5A>`FAs^xT=q%r'M;O؏|a sAi W_߼c'0JN!w~n}8wfYDuR|03}뮾7SAӥoGs 7ϝ*;;&+{f,haamlEN8w?a5cťrgx3,s*bh;hjܹ?QN[w__iϞVsI|媭c&K,ή35/qqMEN6wFkNE3NNSa.*G#e|͌Hᗫ)z\/r'MB<88tcFdن٭(w ,#Ub,:xiTDfZ>T7r'M͝;X^0h wb܉ȝ4kL7ra!wv @SG{4j l !r'M͛;>ڻ{QyE[C"wv @SBΝvk&sl !r'M͛;<|tggQ۟L~t!;;D)r !wv @Sm:CN7w'X\N7wO5[XPN"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N"wm;h A)r'ȝ@N7w>V͝?j凹k_?3GV\.hrС ;hj>ۺ|K.lEK]vڵ7n'?}Ύ˥<~r3E\t:YJys|lww%wJ#! >OȥC@v-$w0~s|f˧mN(Ͼɻ%ߩ-Z2pye _i;DS>]z };,Wƻm#_z-I|*6bJ_(z;D_S>s~N͝i.&W]~Mb'?6kou-]rҥrȝS2N:Kj:ïʟ|Ss;wo̙bX< /ج/I'Z2p;u̫yoI윍6w>?~w|$wЉs|Nˏ=WIrgWٟ,v {N:}g~;'_8(6kJܗ)h;?ɿr'ηG_ɝ]5rg|?O+t)77?N찑;stAr'%w ?Ƕk׮gCl+?K/٬K'Z2pwxo˅"wv.&wYS;D_S|Tϒ;^?x3k$Vx_~fͨkfBdW^3%wvFLɔǏסS;DSg|Zv|Krw櫯:&'mKN-ISgȝ&^=7wN%;/\o Uկ˗8E˘)N:1+_/}}*_kN˘)N:1oʏs~嗿o}WM_ooa:t;hmɇF>_}տ$fO} _\:Ct$wμS>qXoV@+"Eys';ʝȝC w`N !;0r'@ȝC wb;{‹/}WTe'}/d53(zؙ] 569fC=vC3w޸f?ޗ];)>%Ou-OIV+CTgf)lp`loӌ)wngygQLЯ٫yn0۩׷v#/LqN=bSVAubY5NWfZ)$7}=vbVu2|II]3ɉZ\&4:C]VݬZqn?0ըrg-vϿobj|P~mt>~$Qߘvĩҧ44-wʠ"l$C9~g gߠ4]3Esa)ռG-.5'yf-w(#^ygUʝac^T6OIX( ktfE:[]/&O A i! ;4&|0J3א3fM>Tu=?`ffh"袾0ȷ.5AbUJ=@3I-(` `άY TK `d?'lA<=md,gTvS~o_,b/AȹQjSN0GBM?I_ r_}97\l|,̝y5WyB:KqҜ+Fգȧ\ztj˓g9)ǝViM;C5+jqeHr犒kr]LnZ7[}A4r!"vs˙l)؉%B0~|[SN,HlK^:`*r'qJ wJym r'ߢhClFޒj;0r'@ȝC w`N !;0r'@ȝCh;i4FhFEɔ t !;0r'@ȝC w`N !;0r'@ȝ߿SJbnIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/tertiary_01.png0000644000000000000000000004370414741736366022327 0ustar00rootrootPNG  IHDRdϰsRGBgAMA a pHYsttfxGYIDATx^OL[~'7ݴ^+ V1jvn5ū`{q H#ը8$<+i%J7f3‘]nBJ}LJ=>Er>6cy9sݻw>Pu4AXa @%M4AXa @%M4AXЄ"ɟj @nJ&=RX,^ za#1yyy)[[[UR難za044/ˋKq N'UʊT^nX޼ysiiI (.rx8. ####BOxKp|>?33355urrҼ{j<\y{{{!*^'O&I51^'l:yʲ(.ؤe ,).$Qޖ,'ZYYj`Be8\|ܜ BX* b1VJnk٬l{^YxZ}Yjs#>"IN;88Ņl~> *+P8J˕}`+;;;\^^6RHۤTטKQdH8>>nY222"j)%aPY^c..ZC$1R22;)aYiuuU-ifEg^i*emӰ5HodԚ2` х`bbP_7*(.ᰑl²\#5D/li8-drr(+`6՗AXőKHIJc<44$Mc#`-p"e#0X\njjJ |m5aG.`.//GGG >p[ٵiF8-hqqHJ!5@RMpB6nh-bL6799i\ÑK@7@e\*RK`Es& ,R j tZ*5&&&`@mTj+BAbQZ-*˖T }D'`",[e>-V M'x.SYȈ Ӱm12Rjc}н|>?>>ntKm%IEtzzj}zmG.O¼T*eT;::R |L&@X#Cҥ<==Tzm@b1st)햔lG.W[XX`G.{ve'(.{XHJ1n %t#N쨁Qx\864@뤠5wK?88mY),;H$U+ť5)6*9)aٹ5Ў\- $Is tKoiخ\\\ܺuH5Ѩ fn PYv|%#[H$bl'~MnWa٭%c] M\@=xH ٸa57a{ %I}YjsILNMMe 7@XG.1By}(ui%4ŌJJAXG.\.W-= C0 3jbqttT}8<<|zz#eP\@E#)E&qb!AX G.ŽF |e;wKoi^X0&-}llСǧ,{ H-ݡ:²8r B~jݮ`VVV,ׇa{uqW4M$2x͛R38l=L3@06 fJʲ/(.xɉl(՗d2e5ϝ%n 0 / [D@=җVVVSk²_8r Sr[ͅB!5p>a# -=DXG.PEtzz0 ;`G.cZCTI),1$厎Tovv6ɨW033c\$ .wz4-O=991_ VbnRS&S\s ` [XXT )(Հ#,G,`b1#)7@XG. J:Qmsn 0 k/ zRPPVQY %n$e^8r bd-}ccó`v8-e"Ҏ8r SSSGGGn 0 kG`x66vxxHY"*KH- ضK]hmabtnݣtKD"FRm}#,#:V-}xxX 2abdrrnB]}m!,#Z'I^aI8r u+++nTa$Т\.gLD9.ae4M$2xPЇtKT[[[jX,f$&)DX:qAJG vvvhSL:R2=G}Yv9n@\\\N###ǔݣtK"tKґݿIa֩u떑 x\P5N8<<ԗ=*K`'`ea`nTn4qZ,n`0*KgUUal<<[q2 Ƀ2OznGGGXseQY:Ĥ|TC=+K rdqqHJWܮRot'V"LG*KѫIY4gHKյ55Nuzz: nll)1"ِ T^'Q:33>1ܤP(>q OnpN#,!onnRz1i\ljj*˲,;###Kهh ,NHS4)ԝj#N"H4MJ!);Dzm",mM>R)~LJ-@5O88]>7‚4#I)elCdϛ0;4}L&C%2RNNNE~h3٪7ryeyya=ku4}3155% <pxJ:HJ!E5F뤲tɻw=x?{7R<}So룷o95Hy=R\'8Mꉎfdd$ɨ1ZcH-^TY璕z,;i}=9ϛpK&vJ)+ՠ#>XWMyzYyʻXM\08-pTA\ZZ ؖt>+@WgTb ah6oߪqťԚQ^˟D/6AvՠW̺jGI ȿppƝkP^ԫH^˶^R$'\\J٪`{꣫9<ؓ=5`KphJw_ف0RҒi {Z߃uI[]\߅cyY^MԁD">nH[]qٻp{Xz|m[SrKոà~7 G.{:==5@@=g~ͲIS%,ZkшʪU?]Gq ؜@OLLO-݂i']e$䝳aM+z-eAq ؜aʹNJG*\U_PI[ý]Oztfu-Q֕7M,mz ,ŵ84*^y~s;Cq ؓl $'Sn崓axx ˛W&FVؖAe7፰ԔW5-^B4UkQ\6TqX6UOXknnkVcsZU_`4YiU_lPX*b+zm"ٟV\[ٺe}l-൰h54,TYCf>>h  démqmWYz~ulb5??ƃ@C>/..@]e4%I);й\Nt3 ɳ[i}[a9`0h>o=0uZ;5Yħ~߫A'ʖOۯTxampSI\>^'` q͔t@v1*[jTY<99y|$xp*X,vyy,D;k7P[َP6}KVCa99ؽ=sD eP&}5>=:c&|>.+_ 5f^N}~ ZEq#KEXL nj`òm&+ 6)wR?Qu!ƍ=/6ϴ'vqq!T ά1#=KH7M{MvRT^~wo 6=aM:j`R\P\X[[;::RvRɩ=իWj}{GIJ)HGH9r2` KKKeNNNdT |P(4774lJw]^R PO|Mbd2/ #ہqkwԇ!SSSj lʊ,T*eä옥V899xczKr1#s!Y5ai>PX,F"5 JY$aNs B>WW*O!,vvxKOvvvhmu5ZDXZX,JDq z;MA˾Yz.g&қb_awBaIq V:薮;,|vYEqe풽E5&&&l-1ȑ˾{{ァV]\ t&s3lb;bJe;Ao;sq)uK}@[z*rı"SVV#,qMEqEq d}}] |`0hn 84 $ťƖh|diU6,DX|͗Q\-=H8nJիWvn9(%jXXX0>@r򹹹Y5p\n15ܼysiiI (.neEt)+QNNNr=KFq eqq[=oaۘ 츩c hޞ[z4uh\.GKEq B#zFFF666i~}'jwͨU]Ge @%M4q㝅G%///'''X"Lw{uw~~Ι@<_YYQ[enɉpb'ޔ+;4)[VXWYF֭[_4.~s85p,sq)K1 }(SNxv.*Kv;0F?رť0S^##)E*rhR on;]@wo߾5dYQϹRTc'ht)ťzCΪ'ȳ[XTY;/:HAw?Q\E@q r8V-]T方C*4bE]s)rwwW>KxMY< 얹3Vwvve)G κ~ܲ6ׇtqhM(O@kqtY-s,RܸaOGhT koooffF 8-!;hJț5zg1²/*J%\pبĄ8aaߠפH$>|˦˾sLq ︸-P ʃ]OX6E#ut¨  FRJFnoo,) j<5pd2LQo`XfohmG6igh .8PX}ׇRP^J²) {C}*_{ڷt=\}bb{{ Xx5,osO|_]1<99ZS rT-,,A5y5,ݒ2%X,oW9<<\qsxgw?U^ov7(pE2 zlXf-x/ccccz(.D;5t_tɣa)Q{ZޒK8RVg~K K-*O-[ZU7ɃDҙEeYV|j"6;OcQ\¡LtTzg-SY~ԇ@\P='_g~WWK`..T6vzzj."zKWKo:=FݳKʽ }c~W\iYQ-}{{[_<~RxsR[MJ`e ,>r)1y-zJ= ؆UtKVīag4[W9Wj`277>;lEbrjj(+e?owwW_m:KGڗ{{/^sR\ruvCCCTJ_)eQSǺV&Ct}Ǖt9XB }so4b~$)閎F?'JgͶsׯ/ҒGqnԸܜ:t۷RgY5~Pܻ~ypppޜ"%Ae )+ jP&{5p ^_|1==D...B Vn[e/$utjuKgͩд?vw+KחZCR\q.u} oE*S=a:%Aeٜvf'T/+ ˲t\ZZRۼښ}t:|9.V'vRc)+ o޼1_p),{(.*+2U˨6y5 ,ѶoѨM飏~R/Ր9hq||R/HU4<<"F$+m14zeHjr#ٰ̃5E6o]RIv5~Lm 6~_?WcB.pT&uw)1'''j,V??P y<*J&NwO}oܛzV9%C˭~Yp-[ߠCo"͛7Q{)y1R"gx\C%V$k'j2zɋPa>66䉪7teO+zou. Q9Zlcڒ5YI룖Pa *f˨zIRrX6ӲlU)i/BBk^sDj upVUX4%/m+;_ :^K)tNyos |jt@U8cP-P(lP Ӭ+ʙX+tG@WI-*KX'ɬHdR_Xv^?n7u7ii )+@kT@KXghh(HD"YҞ6ҧW|YoֈSou?U^oW͛7ft&&&.Uɉc06w?] \}^ H{{{j---[N .lԪO>!/W6LjJJaKz SmlmmM T*cŊor~zjѺ?ںYEieXOucD"b/2= L&o$/WWWMTϜ|x|шgUcT׊[^s~5\N |D"122@YV'bl6 es^??.J-BkI v zHZ$.CIWNOOg+H^4:K].)vlPjWLqibTwz]WU^{OI۱13~Z=릖PakCL^K^%K<,8٫X 4V[1u-{%aݱop?niҋԔsmm|AwfN@eoq&''盝T-sS%JpP?D^nrtt;44tzzJent yaC s5 gJY"n;88jvenKG Fe7'I!,>_-ottROBWYyqqD@떞H$诃w>@T6U\h5[PF b1[[:t {@6Ć,~GTh-5bo N쨁'߬>{JO&^2Ϫq~l[nIu544$A{ze+=`%&v[榨,a;hT6A\_?VHACʟ+.m IJXA&dOufjA^)( ]_ˁкtҹ,'y1 ,ws7oި ebnnNZVVk⌤@ @TKDuwwwCRDloovٱyqYEvx[% >nV~{OiXQuI;yiIz*V+%5z-sS%˕>==`0-27EX\R0oKb /=r||\i}(%qEa.enKG`w~{{;Wfz/bFR y3a zq~~~qqQKr+&k0 J ދFj\|[Qp?[b%ccc;::RqC`8⢑"ɐ!J\Vl@uyN^:ڎF |ecK8P"jl"y)S5 /Ṅ*Q746#egg ,0@>bjlaPtH$R4uKgVQx>~cNEP~d=iIXyѨDޞT4v!/hkkk_ Ulg4ZB uw?׏mI 9B^jԞԻ:kKw˷/.AiH$f~zDJj۹u*t ϲfYkCקc&_>{{:Ӱp% E5X'Z[[3_H$HJ^[>|O]B!x<&X?&/DbѣGj܊t_|KF%a sk,S\^^F"P*җaoFZa ݕ:҈=)Pc#KR-)n-]坵8 Va x,g'*&8?VԊRO*򲫥NUtkΆEY鴔odjޘcX,>iv^_m$-]{ؒiX~zpb>֞SBVI`Ö&bx]LOO?Tߖ@^Ύ_^^j+5)E,[>nj ["~t\Sϥ|TMׯ_[%ZjDM>}PC?.G.{ϹaJd25sppдGyi 7oV*PK \+~6ϵܗDiK022R!vcccyyY /k{{[Ye P~jKU^y8}׏X*y>_| ԸΏB0::j 8<<ԗ1}2m޻'rggggjjj~~ԣG׹W|A#)e f2}ntoIMXJ???###:==mc-^k첨'08"RiNTp)D&''?=IJuP_Zd}}] |>Yhu﨡spQ eh Bp2T:KkyvhhH^y}.g翸EX¾Ţܭ[677e_%kY"*nKR:/ݻG^ԔȲjv/pIVrJ???F~vv^~=11ʑȊ)??Uϡ;tK3Y#jJדK*K؈kkkJLJ5Ƥ|"|z* R1:%juK5p;1:K]^(NNN~0 }ghL&_z6>H;&:S]6П-v[FBXdyFQJ/K@ʂԎq0쾈lL6ٟ|I\kM333zxn+)|hn27EXdb1}811͛ u˩T*4+ee...O}_#kJG+27EXl A#/{\KF{`TN9ۼ'vawhک@Ȗ}ww|gQJai]:6f/--p&÷W&_>{XIS_Ɔ+}mm1ˎI?>>n[~m-sSU>Xaqէp9梧ˎE"Uf=p_gIV)d۽Jx5)H@ K +~?\6T ˶n j8SO’#Id,y"0wK&`KΗN6Twm< ٳCCCMoK#/[!5рBR) ta={,ݯR7SGfZ[ɿ5nFz>7oި|WQOde% VVJUGhQyX7!/kexxX"Zz^PG/P{Y*W%I5ClMXTWfjg^cd}% dl4چͬdxQ+xիKᄏdRH$Ѩ4f*TO d% TDF%A{Y*VծY7yۨf25hy{,kt؁5:@j{Tcި*WUKNV՛{@mlNOOո䥐 k 'hժ(MMUY*Vzk)h$jRs~~.yVy 8A:j=ꉶ˺wq׿}Bg7ՅK3 zpsOVx&H-=ˀ+Ue-w 4O'Iy'ZzJ7|xY~w!,ո55// ]GGGjM-.*+`KG{HE-3:Y5fb:p)8F;8W={]w)JtPG YV[f%ċ:]CJa[$@ڻ2/?22~[z a[*rRVl^&o<+|bbTh>-[z' ÞdU%Qu/>Wi|ҍuD?zw Qͳ/~y olla5n͛7y=~嶶@^Q:nuCS-(*%>wɏYUܸQ'\ғW*..lEX:99QcW'Ņ>G\lqgG/I)'+>j')GFBaooO[]P_...I)2 I zorJx0"Gח;;;Yյ55enD߹lH$f [мrtt %!een4,\ZZTv8t>V~Y#)%#@BDf<Wv8./@` p:awn]SSS{T)|~||re%e [K[Wxv8"/'''Rw274,! T*eF[?V-gQYܽҷ~Kjql[_JLHP($5 a%ЕIt:mg})?\1 u7a tKo1Xņy@]%\N'jmoo\-sS%#+]2f}}++쐗ׇtKM1 F OWVVԸ}vbFR )IJ@@,//nKbl^T_ 0 J/Run M$lzIJCIp8M-82I),`FX=&58/tEt4,Λ+={hT;b|lP5bxbbP_GenD"wr95H2 A'%3 @X"#q 3ygjеxM;Vx$R{ttZ=>>?CӰ$666T~>vqqќRS@c%``0qj__F|HҰg>F4EX֑mI ye}oч )+@'c;V~9:yN//֫S1# ?/WzzSf{?{zzV{~OC%0UJ&jܝ㗆}Ajb/KEUjL'<=55e']m޻}?t;BK`0666;s~( #'DbddD aP\\J-,,A$ni+++@Q>ӫB/nK)X1pz^~-*S;`V׿6 `P}zgh{QѮ}}޹rXMT}D6Om'T6}YL(.{UV$jԕLâ*^Y OWVVԸ}RSfz3Up{ҏ\hid%ӰnMd{`0I;EQ5^ *Kp)ug/~g2Tɯ+ו瑩d@<j#k_CFV>Mkw??YVnvp5`0ym(fA=t-;n5YyNVz@[*DY$zf@@ lp%+Ny@fU;]{ʪyfll\spp044Tq=8y {Ʃdz\9+xbbSߑ<<ldcOp|>&muzhGKO/R-w=}jnVjQx8li՚Uu#,c,H...*ר'@^gNUR{<]hDʳʪT}kEʇ-9S3,--I4t:=::*i) /a_Wg>o*JŠJʫtTl|wTt=zvη,_V9glX>|yݻ7oȃjߵ'n''~oIRl27hk4mVA.MAY"ɩs7[o$Kŵ&_mr knKt?rWƳW̽*]8hԦpL&3<<\ZZPp6_4Մaª%VWW+9m_/+9'%%ZV DX c<88!xT.SV+]t#%l\__prll'QV2 8z+++j ֏?(`Ua%333_|E(Rc`ФuK?eTloo?zmIRRO'>RNHJAe $e8><쳞v*8ۼ2R Cp#ph4Z,w|q3y^BXJ?~,=EVSKn޼yxxh71d%:EXhY ",'+-%Y T {j1Zg7o31|;uz=ծ,y׍R}ӓɗ=}DOv^og _R}A,^kG%׸|;KBhi6TtgR~#TQWIY^==^U_p"(~֬~z/\켪7&w>{ӦO3<ӬnAoQ.֯Khםm~ul+=M !HTK_gRE^+e`ÐWӷD%<ͨF4gzQfm싰h4p`q OYigAX^V>qv҉?/ڠvz!{\-7 ,3)ʼRQg^KusAZ/N!,3z <᥾PVE@yµggFF+Q>xpW{DΛNBX^Vjyr*$(,'(ged;_<?Uݳ|xWrEX^v*|ϣwJE)(|yZOBW_?վQ"ՒRK;~NT±hxQ ΰs5[Ɩ]l~F:$%M0 @%M4AXa @%M4AXa @%M4AXa @%M4a%Ύ/ }۲",///oݺuqqƚ7o 1ve4Ғ-,,G%e%A,:8E0KJXwQ\RVF*˦ԗv*LhJ@%M4aٰ8%M4AXa @% |?w@CaIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/tertiary_03.png0000644000000000000000000015552714741736366022340 0ustar00rootrootPNG  IHDR `sRGBgAMA a pHYsttfxIDATx^w՝w=zwݵw!x-{w&k,DCHBᵍ$@ eQHs9':u{gs_K:uԩuz_^o'+ቓ L8Q'MW'M8q;oƍ=y;Ə;O9*#2rw޻`'~!1Z/_AׅI==}"vuR+3:fzD¤+tzVNT[u:H #>ȞϽ1Eנ|lWwGgg[{Gkk[KKkK AJh:GlcW \ez{{ξ?A.ō[.n޾>z+&N"Cq=g<̟,_oFk[gM}seu#R]\]\SRSZSZKi`kh71/ ;# ԳcU̒BcXQ@RwJk jҪJeQL RXd%<+2Fda> s)Y.KJͲMKN{%*aQ0ɖ4裻}kj% 9tQFd'Cxΐ! OA$nRj(!I8ڔ,#F%$CFLnF{nXbDn=: Gd볁UnģH={E>z$LHQ"fB܇*/ =pmb];ܨ,TEJ$HZVQeu$H:47 7"qYˍD&CF㦺 yRΫZW+VZ՚կԭ~y+-k^nY5/SZ%^_ʛ׼ܴw__rꗫy}%+R+%oR+oRou;+Q>ӣƦ '}4yګ^Y]_V^SFz$ R4$ueHuxI6' eٵM-mZǡyO3qnz9bRː=$aH"ғtj]%.J|ݨ-qɖOOw~agW+N=b7(Պn$Il*x*j+jDѰUCSY%~x |;D?cUdQw ʍN(TP(eQ- 9x^){喐egf˜*ɠdۅx~eEOk% =ϐ3oJ.ɓTwJa&"LJ0¨w#Mˊg5ZX*n&'Fi܍ػFiaH|b+ڍ!w1Ɩ7wѤh=:Ln$daHs/5(X8Fz I,rG̨2$}B|N"2J!R^T¢KZʧ~EnAUQ|B}6}e/yqU.OYJϫB^UUU/yٺنS,2Gl2LTL τ^xR%/>[/>³9w*xWא!1I_Ukme7X(G 2\d)M(#oCGCZdYv,L>R(Ѡ f#YY[u9LuP~!U?LDJ)?C8%FՐ";TDJv9$,,74d"99EYٔŒ,SQlJ`^E'ţ58Xo]ggBeȧ' | {0ov}t1`>p)z泩.$Fn7: hFGM7i.ؘUFm#()#^k/9#Ӑ̕p#FnH*נCp Gܐ9aJ% kg*Oe;Œo2ur Xr s Xrr'_<$ 92*2ϣv1[Щ5WT}ٕ']jeΪ'V=YjEs+J[Q܊sOT=D'EΪ_X]ZPw^UOTz(~ggWd?"Yq]Q]0EuW-hw#v﮴,TZ^oU  , ̊X)M,MX1|<"U{M=xS}}#l߯m%do]a9q^!Pk &'e,eeJG`ݪeKq6mPb9$XC?3BzffS3X?3/^7e/T(52FBa6%Bρb|#2| {”Q.fϺAl#C|Q< I Lju"ѓncTë IcFڍ"fHL"G\!GLg(.?v,Ye7pP剓YvNeӿSpr2#d& U%BICU? rHeL6"v-(OU+/ qO?ϳ~,7?-O~Ӓ?O+Y{(7W':IoR<^x~ԯ~ώgpDFYnT^ ssI sr sJXzݒqfX { ԁB5%d-BL`abJRXDD"⁅ټ$j=6^1w2ۍNj7ڹg֝ndhO>s9#5ֹq 7$>DQazn?s-#M;s/Glecq 2MlXfȍgc'29~"8'=7'('EHX)̖O9G?Q[^ܖK8"va?Ty4a-߽SS?xS"gǔ_8>_qOr+{kBrC=Tr+!򧗗P~ZZ3wFٔbF11*H=z빯'.|x'~:gٓ5uz۔]ͷ~w;/.{m%o ڱQB3PKs d}HcD.L2vngjp[jY*Pj(Q"E檊,Zօ"zO(_XYIo#dOr.I4=xv:pBO_Q'-^qi1m-gw_m3hnt7!b+Q܆ -7z2$ңF"!a#|i$ 0CJt2$Z֫rA&Z`H I.xH3$ÍeH=c_t#˯Ǎh9Ld%^MУ(?tHC{#F7_ndn4IQYyY9(D{oow_?:;Kg~V>~oҎLȄZvtmb(THf&G z:ں:Ó*a2RS]mV(SU]ͣ/."{R%=hF)oh"Д#%a&D& $Sgg{>v0 *vB=sw+qg]qĨJz$܈Zdn Q&s$s@S(s,C9$&$#GF[=&t$53!C*́؂\QQ83$,?a?u- ('}?Izkjm$vKGѦe&3ޒP(YɩFvB_^QNmGV,[Ċ'W.XrISK ZRԒ?$SU3+gWS+$ >F{|JM4,t"܈e]-y iAD-Ʋ6=vl߱wNXص;]h ;wSH5|S_Orjܼ'.:c7nq7Iq_>| ~ﬓʼoV}߬{)[͜9֡$xh(Ϲ{ϸ^돤\(eY{;[}.ڿ(7H&\9rD3- Wߔ7=7o\W_k謉^}lʓv@r8r:PѵADCw26f-Ey#ql`մ/q[$=IƲ1cZؒXX[E"jZ1f̕NU3eᕫ39]f~h$B2z9R̚:zS# GyC^ZEi@aq?RD4mW:8u&DVIĭ#F%QG XccBl0 7wdk\z o[AfUD̊BF.H;!БWN]y[OYzZY>`Yk~(k?yC?l kץ~?ޘv}"}Yaǩ[>t'nظl^~Z޸wlqŮlL؉S?f//G}˾z76^vі+.~Ņ`fCߟq3N|˫WoFߛ~{~oMuOv/0 _zG^ҋ>䢃yrF".70aBWWWAAN?DF}y.满nMfy9ߞ5K|ooxo_ߢttvRġ_1~TŊ|(^[%peH1W@B H?W$дg%{9MơDi{BZ.ADV%'I40iM(ifz=wYZ5̙xH>yS sr?x㺏7dId"[^N˩lgĮflF9z|k^ >k/`|r|mNyԽMwԃO=zOM7sy\P˦eS\6eS.);/%S^2m%7|w3>{FOFǏ)<;;;-?] *ho_}}/*yW/w?w}Ӿ_%L~k?yǍl\P dWqp#M4Rk>['1$I9Ԙ1WqH I4HLMUkԔ#'gCfHb4B>CLQ!z>J9aU݈C ȊijH ;б'(|*TiQvF: X=cW%Íp=ǂ=,n$H؈GGD'![D! %r"WM#2$Fאcҳ÷(JD\?q Уsٹ(h'Ihَ7i<܈b#yH7TFFʍƍGvzzɓ' <7;v=[O'-;oSޟ3nM_}p_oog_o𗫖>#ـ Nww7wuLc:H>$^L_}J67_p͒fY_Do=.vl#fڮSMFOs)HѾ_ƌy)Fy-1O$7wQwxS޳9=dNUb&~Jr%-m\6؁'wəFs4߈)PLb93bnF$BDG "1 y %CmBOsI7aP uJO5fH<ʪ2ˍv\\nĢeȸ{wyFʐ Cҟ4<-}HVY,Dfd8A1 I,dr7J;|YJ"ޤ{n؟hݧG[Gq7?*hFn ˿^z^rK.pɅ\ _:ce^>m]1ӎ_1-?SJcէS!:r×OM|˧lgLn4c3_|3u{/nzOMDرci>|ѣGɐ233sssؤG4=2\gOO?9wou^u_./_|W~ hG2nq mQ Vơu*t|\7:xh?G6H-Q\uڏ BL ?FȒ#FCHt\B$V-U-Z!a-rQ#WօКFԴ0V]Yspv#Bt&BDG#ryCēD!<a-x::@]~Rw^DF=53q#?s=?7Ꮘp#F"9$J3" !y":#DGICbrY7n7o$@">~"}O%7Z>dG6Q(]>U>܈=~jW&>k/G^ol`9pn삝W7gߟAǢnP$zTQUMnnTq##F~+{d;lȄ1 p#)C!c$Gҍ07r>{[M]d& I1RJyH+ݼs#ϧw|i'GNd,;3~u|{^oۛ+o+}o[ǯV53\-.S]~7_Wgz桫vշ[?ֶ}kӏ鏾Zo}o}o~Wntg|gϞ}M\gk)GnN7n[8OܻKQ׎hHܑ%r7Ծ#=OsFqs#ѸEݠy(^~߈bQ6(:7z{$dH:R$o H#4eHvr#y+G.!F":z7+>>S2?](n|gC>чo}m݆S/{i~f=Mߍ[dg-=|uXpE Wl7\wtٮ/w%i7_rKz[/IS7`VoXĻ-[9~GxnxM7^KκlӬ>uYxI7r$>-t sEn7rVPHV}¸QcnV1If1PLb3vU= !3v#B>blCGPݨ<1nDY1cu/DFBr#ǐz伕 ܈sh?ρ<ڐ373}iG?ݲo݆]\d^^+RvS>Vd "9 ?ݼ-7n=i[e3s[?;uǡm;oudw=(;*ɔs?]Ỷ=|GXv=zGqxGqbmKoXv[&em9V8sdMֲsO,a9Gc_xGɳ;);?+Z87HQFFMO _+:__1RRRY?GO}ٴ"p{G ٵRɖ ʍhq n_[giI" ;j_鸑#B(ry wbywPvD嬔T(eXq-)Eq#Z3hӞi:Ӥr=JDkGL"e 9,r#@` "$~^r(ttOn>rdQF ;Xc)0y;h72Ycn􈛐!"Ƈwָ17z%G7$}6SeտyOI_Ȳ;oudn&@l{{|׾M9prOک,{쳓 Jn~/_m㮟yެT 9,f=`ƓC'X??z?9k'ngqȍ. 1|SV=IUرcɍ/(--СCi=w7g9~bЎ4/]@!̣G,NG!Eȑ"B^9m #[h>lEl ݋qFya8#xg|Jq#_F6ǡCq3QNnO3OGaw믾f:rݬkMNY7̚uӬxfLr#:79έ*lq_k~ssq_Y~ÄfO{ʹ7L>w֤O< g];kv帯=}*-,FdEBOd\/sׯO__/?_%=y3<_o;cO̙3gZ>?Sϔ_gڑfz;(vz FdCp0HH葼xs[! 1y = l:ʛF&r[4fd } Ϲ?8|&|a ڧRO"q܍ɍ(#Bs۱Gq##-Gn FJ)%RoI7bz$ ɸ]rҡS5,uMu|Aesj\h; 2 2, ,- M-&fVJ{NÅclV<ɶ;FzsϥYYXqAqHѤo}o/翚ϴ_/?3wNg_ׯkWׯO~8i7܈?s7*|<a"Mȉsأ'sJ'uPEȐTNb{xAvLjrҘe9n (OnɓI)z> D Q5J^ʨra+o ;&1 =->C9z2rT' Ofegdf*(ŕ*BoJ J/b.WP; _>cVС<@aHNu ,aRl<:ZϥЙ:ѫ.7"">|ǏF'FY)jTs=@cnDO'zjɧBx !^Dšԍݏq#[z"% ŲaXC,7r􈻑cH1Cn}HFx[M#lGI7!ȭG\U`E-kCyrs,GNztd1GYG8уAB_R"Fdp#WYV$~gr#G5nn4ydr#k1pX/ֈ6$BJBǠESw+2MC'QXAM#O=(pRK r ;đErCgcgoLO/Q<`F@sW@@j# _ĵȋ̡q:\z݈bO䱤!l,αzn:H=ocjsM~}HM~כkFҐ[c"d9\"'2W%}3Iѡ̍ĂG7iA~_[#=#)yLb 7#@Q"[D =29bd=rfꑺuds4$FSL!7^HwD#n[=/g q<!N Tcʜ)db8ߡE<rC@B2/ȠԈ8-M͵u 5eҲRZ^Y"i`mmkGjh5lUL8ʈ՝JJ5LHG, Tyt}s*z*UZRY]SEgaXFJJɆ:-"ZE¤I*4WPk#`Dt/.lh4 )Ѝ".X#0xB?"B  HrDDM6Oi"EggEVAA#̍ZqQ%KX  $G72HO>AwwҥKVAA#F FŠI71cӚe˖Y  $G<.7ZYl  HrpRyn 31gUMms߱6']c'>:i+/MA3ҍ 29Op Wq+/d8l6rڙ9b؁$t#&ϓV ;7ɾ#T'r#<>OrOrU ޞ$1HF 7뾰rD^&$An$)m"u,zrzyX0,Au-7TS%w1O#QY#H,CnT/HX=Q#.EKN:"r Tt cPv= {sN5P,Q^t_7(p856u#w¸њWF5&gvqM$@Ѹ (w,vq]YTj ;,2c \B=Frز?II/䱖gvFm٦O<Ϙx #Ms 9fyAbFBFȐG^ "=ᮌG*iMfdbڰ${׫AK'9N"0Sj+>Fb'ϔ-K6"'K#IQT?<؍/Nf(p̝]̨f2o>HcFXt#Z!Cy)4gA_3Cp.dksΗ'֥7 lՠHaQILk7.>s^r44r #>"~nHPh6cDBCpBVdHLk|q#u}ވ;6qk-N5['rO]Ϙ2,3mnAb)=!Cn.lDQe]\k5¼zd܈J>3~1\kFujs#iɖ]~h㡼"猂CX N>D_q1wE#Z28kYd⚉A!FJ FAS=!H7BN! 8and#  4ڍr#Gp#AAFiAq܈AAF>  (y# n  s߈HAAQ=5Gp#AAFinD! 2J(d~FAdFVDnoqC! 2Jc|Hn  ##>ŋnhhp9n! SO瞫8hX3Q!QAA{-ZTSSCSsFƁFn; 9t듂0qѰg`IQ^a7lpos8; 9d͠!nOn4p wVAs5ػipߨSjn&0XB#u~;䅬`O&8| I"M'3r K(%e5554nY^]3W03]m6\g9`%.'NmԤp̅+ "E~ 1RDQ" 2_xWTDDGKݨK(1>BVW&\1wU]cPn٧<='kx' } ~~*?XBk:NώjFWH"Gs#qFVxDfzf.M%e JUUXCCCSSS~Aa^G^wos`E3K)qP3"ȸu{*qs0aRNo]]=)b`'kMѲL6f1cfl-%vԅl }k9Dt8֍ 1s#.E!r#v[_sǗ}+tcsT<'^ezx~~pz_\{&S9k];Β_#Nf"K(yhzvF6M%bF$jjjiRlnn.**vyx5_b;Z^tnu^Zdb1QI6 t8 幇y$I'}FM\yW0 }k ubxnĈRS7r^9szUUs.UP\j:C xZHh&VY<&aY!#F= p#3)|j"yWneM)V]-|k2ρ"5:컉[u0M9Is1Yo4J=V_!jG]ļ-[|\sx.纘U-zٯе{ؚl ?nt|G=J t @-2MV5秜^lQglR#ƞCϊ3EUsa:rSQOn*syrD$\rCȌO-,.)3"QWWHbKKKIIiy^wU+ޭT]X@_d\5tػJù`WfCDd'NnlY>m̴[7sßZu_,*v 1[n$2Ӊ{^&dyl(W?^7fcȕQH _!1/FH`(3f! ÍFN@[7*TҿܨnzTZ[[O$?\7fu+ *reB MuQ=ibfv|/N'1NX.p8Fptk7j3܈n4,Z:hQztA/C30$?F%φ_>g}!0Tӣ@ $_3 ?+7`6FgΜN'WcC zA$)X gr"?>F]]]R8p#AA8FF&p#AA8 J?7BAdF){d祝7re˖Y  $Gww?ݨMwwҥKVAA#ڍ FӦMPյxbAAsHt)SֻXp  HrD}ȹiɓ{zz* *++[Adg}l 8X#3p73Dq &tuu* xDg]x**0$ӣ`=. IOrsUVU8hX3 Q>!Z?ԩSOrjkk.D䩧~sUUUƟz,GA$pѢꚚ斖 k|F=5G{mmmLTTT̙3jYhQMMMOO: hQztFsy٨b4NXXoݑa Y0:C@aIrs9uΝqsJKKgϞm,XON`G ͡~Ή$G89!mjnFhbFU%,Ft>[n޼yӦM7nLMM-,,kV{{{PCȌ~ɛO6n?|䩬vٗh<5ػ"FFguYѧ~aÆ?ꫯZAD5ndEϋe>y4=RV^[~►#G&qX3wE+Ӭa~ aO@F:qp#R"G{jі-[6mڔ' 7W5%knsSGP0`X܌5JJJEzλhaO؏Å+BqAKS`bqY :q<kk aO@546"1w#KjB{jFwޱcǶmHȐbڈ~%w㞞- ^!gY Q1w,ȏ' zFfy&œy9E%u +~J-Җ Fq8">[UbqW^h^̵p01y.s׸O2<9as)KhbFOj=n4nܸÇ8p`߾}BJKKoeD; ܨN1OtVrx8fλ|12"?J0FVxDffnAQIyIiY]]ѓWÖYb/( ¹`%ƪSomb܂r*GRD8.4{.Velbpt>j&L 4V#:/]<:LؗwFhIГkpᓇ2!geddp&GJ-*07ٍ&N]TTTPPETSSs[ (}%W"eZ^ʷ؋S_U7;::h8/3?^ cfE]ӵ^lI5dzA~9ZcV=]2ڰvt,y_&TAȌw?ѦcߛzAN~%m \{uoKWםnM;{ZEb?OG- {N;1X;_%[j 5Vcϝs(#pڸEl*t8\hk=]KLs7o_RsH=%uV^_/5];_7b30VX+ V1)I$(gOwJÉ-zc+fղ#IFa##ndE̋[vW?^v>[z&_a M---}9_VrDhGߟ[tkJe!68x+s1 c)8wWD~˨\ x֍;: yUw>[ WU}˪X!n$?o>l|hԩ}}}CՕ7oʀW񿋫a/Nj w*$/sbVZغ|:-U]̠Mcf$WF ],S.5fEs1cU^]2K}wT Bܡ3KnFVļ.uK^~ U&ϕ5MI Uп8qaՠ1j%qyEt. [1v>esժ֍t'9&7R%GP[HSs7w-76mӧ' =FNL_ _uľfղf'r%a̴[ 7UZsßy0vx-˧{M]Gu|wTˮn 1/n^PTޱg?wMAu~>ك*]ڑŲњd} 2P/Dr.߃ 321H ΝJPOg-%xG&輬 |y}f$pܼON x\e?NR@/)Z7>qr#R;&>}:lLD .ZPbJӓtjՑW+Vǹ<9˾pcdK^5fڲMbyӲi|T6Y/%cG]5)6-Eej_q gGUMl0&%;Oyqe卍ҝjo珞6m8QSS8/ )KF_l5_M d;wyc ͭ 0.ZlbqRzsd4eVЦqWf12>('77na?.bPyXme+})LݨU#ǍΜ9%LwwŋVؾ[a.%0/OsWeJ^ uX\akz%̔FVU3Y4kѲQUue]ѩ&qڒ%~;>JFVļkϾHkhjlj))) *iR ck3!~MFf}h츅tU~fG}_%7Qi6嘆!nt#Ylr3f =,Yjee^4eL]*WzFfļhB(<$ ҍLz$FPɧPtIi-F_0v#!Gz{{.]j2f7$$҇?1SD,'5(TU!sb힐э7Wedf"uFQFHGl2%l[[[O 3p1c,KrQ!2B6v)!nԚ/݈}v>-/_jYhQiii]]10tӣ@ $_F:w#y#GF/>[^^ z豰ApH<q7bzTh}H#Q|rEƟqAIʐ ?qqU?ߏ*AAC.ZTRZZ[Wwر k|F-yEbG%&AACz sƖD6SCA'\pѢ 8X#3(7*+/`_td矟>}H-AI֐7O[G =! nԜ]PFz$V/s#"GAAQQ)u?uTP\!h{jڍ AA|b⾑afAAFYy%܍C.7b2b[  $GȍʥM6ܨ[Q{{;.\jAA$9"(3$(4&hԩO} ZAAIp7j-r HM<ĨV|AAAˍJsjҍ&MDnDVLbT]]M  HrtRq먫ĉ{{{[ZZȇkkk+**HAAr8$9X@i]A"Q}Ccž}ˑˍ8QGGIRn41B@,zhbu-B<HćI7>}v7jɘV!F qI =4rVԔ1),Vyf3sUXSRwvjҪbw7 ;i{ʪϞ6Ӻ!DFMY9ф*n F===qɋuCl\.T=dMӈYZ꿰HOu!:Io?ggB>F7xu)4{F~ 3V#a$>hvDՑC#g(0ŖӰgqlGBtqg*-$HB֒wmu-By1sޕkuιɃ1baaQ>*i(R۴(ѻ{t=7YΘ#.*g':itؿ)Cp# .$CϑFQ&8:E>BSW͔-v\3t16(ta@?ih4+(}hFQ`i/&%E06ז{$Y=÷?4ֵA$nTĨ$ˍIi{Z ]H cx\1qm1_+~WUgO葇0mu-B<ʍjFԩS-7kkk{V"&~y[ mp,eu9cr*u2i(R*n30;hsZcFu$\#kp5:l }6=vpC#g(Ôg+55]U7ЂZ n4fMjf>XxOZ yȍٟQwX s֬s7|Zu* UMqßUYK` Ĵ Y)>[Oݣ@V. TjPSgЈĻ. Wp5`zhn5G &ZLRbWnQOha tadrH8hS@VĒ[PeQOOQssxO-FT?_6-s&,D1^ˬ\-2Q*_XED'{ O^5kҲ(= ,GE{p Yj5LSF]$o;.h¨Y= cV }Pz;覌6Ej趌iy1 YKf'ihee/ #.Ȯϱ }bZ,@Ff 6 yUi ,\YU|(l#V]I"$9OF xZ"A#( G~#r.f[ZZH͛g)bV1HHb衑:4ֵA$H7**gauӧ?J4|H/bDHrECA,E ܨ%LWws#7Cȍ^I{j4dLE#8$9X@i]A"sւ␓Ftn$Y#=-\dBPUIHb: 4ֵA$H7* 9)v#wcV"&c#*d$9"FL &xZ"ACnZX2#hƌtn$]dՊ7b&F$ˆIklAD%2oVq#BtRotܨLi-[f Çܨ IEnTR^URV-_jq#GFH*F%e,p#$u#iH=p#$ѹQk[iIyIETn^) UwT]]]ũlkkV y3:>Wkڈfi_{\ܨ_FxCǢ)"n$t>H(Q' ^uUV+̍JGh*Y) 4n?F1} %_7Rq#GJobF!U5^XWpf ˷ܺvzEIfe|fЕ Fb~:h68!>WmD\`=㍡BȽTh:țBW6b&3PfW\tũl sDQwOKk;Y4ws9W_mMHWU\\]i_WPyДnMfe+Ouߋ1/IQOq&QWb}:DzήTlu ѲVo#[] aVqmZv0.a?u"aU峈PH BW}Ѝ>{0wUn-4x *sߨ)QHE7:s-7"ȍzobFA]O5T_i^v.֜rº[++ /zT^:/SCt\Sf4;vB.i|۷zÞ>X }V}K= KAv=!G= KAA~siAuƉgs1{zhv11w}ʅykl͡ToG|ZN~~M7dHd&aFr  u#{j۶m۴ifΖ-[JJJΝkHy7"J2HvCH݈0$F:t4Eeewm͠G>Vr(EݸQ5;98~`;)iCQm%^HP]5Q}p`7j<*H=n$;777۠>3Dw= )ôbI/6u+3~ւ1shr;/t#*++Cq;oE$A]f-!AjxymV ෬F=qqcȍ#FӦMkjjj4\pՊ7r#K8m ~@mnTF]kΊXu$"hgΜ!0YxՊ7q#6Y!="TvD4Fmvr]5귦>0Zi=rQoo/oҥV+ ʍQ -%B20Ѷi7 DE{/pˍ2Gҍf̘AMVl2oF Aa֕mяx! ᰆ*iӮpg5LF5uM2 )Cr˗-Zfn4*dqsǙ"s u#~uj/7,dQz7 Nnt"H#Q'#Qˍ(p#F'02F G~eNl#ōfx5Qm~ ׸MI7g 7I7O$!O-&0N@Η ԑb?'Lb-? 2F,.7rCzdoR:!uDXw2i 07.m3Mu#ZGg7siӦ>}tww?cV+ 72pT)~nV4 ^ hD(="HԩStvv.\jśFƋq[\ 20q$q/; ˍ&OTTTTVVVUU-XjśF\HҢkj۸*{8@Bhĉ]]]|jśFJI$D#$l}Ⱦqyh%^nF~GGGzzɓ'322>o)p 7ތ|߼ոCn5`эQwymmmiiiw\oFHrۍZZZر0H;V|ػw*++oFHv#tqƵ_?rj@<ܨNԣFǏ8ySFw? ىq=n$fHaaa]VVVPPPWWb`F<ܐb׋[G{Պ7p#$x};{Dn$f~ F}#jkk#='O?Պ7p#$xco I7:uӧ9dHdE---5 aBh~M6̙3$F===Zha…V+F,y2]=.7"ȍ:::hyѢEV+ތP7JdU3mG>"c>OO&׍9N>M>D?:K87JM+)rḵ&׸l\gMzW=.*-% F\555_M[x3x7J]3ŔI(AnBMn bJBh=== N(jii_IL[ ^V"n r#y'vuuqr9sՊ71tUd*YB3(9+o5i7ZA3Y;+N[oM7"b4e=H.w4țUEMvtk{.+L kX@8GSFʍƏq#Üojś HLi }^AA:,fe+Ou3s3uU[[ B<K捜CW}Ǔԏ#uŬ dG_nU t lλ*kY<Fƍkmmݹsg7|Պ71t# Q=VLiršgU=+솅d͎rqEk@^Y"Kp "ɭJ/t VS wG:E?ϥ꼹_sFsNsssjjYfYx37Rӕ|f*gܠršߚvꋵDݙ9VllY杰ݽL%hX ?DrǍTg}Ts:n_7*j2;E߮gfĜgUr^^u]gȌwq35OzbUv&U+ˁ4̭њ膨oMf\{.FD|d!jAHZMyzo"7(v^ZGL0h7jllZ 7kV}#7z>sZ78ɐo5 zwVeš?`i*TUM,0}&EVS> so"sQΡUMIa1'555}9@'=5 ϻ{ iքgbMVeBŭ>&>S0j,(S9v11wCd;*9\(۔ v$ԍƎҲu- Z...馛Vv9pà̙y4&kٚjŸ3u}.;VꉐkbFqqƵwSQQqmYx?7b]SOu:DP9o{_GOY0=؍aX oĉw0AX[CVw[,)>= d]Hb~Dϥ0 yk<Ž0ؒP7:;;;OMIIZfn4ӧPH uI&uww+J8q!#L N$ԍ&O[SSSk׿5;`@I/hnnniiZhՊ7č0 mmm===/ZnP72eJoooCCCcccss3,Yj@?oSYYY]]]WWG҂F>$ԍ&LUPPPTTT^^N@%=Պ7p#$y~'OWUUutt gVC$SSa\G<ܨ>ȍƎں{8q"''lGZfn$EH2}ps#Y{LBnjjڸq8^PP@#Xx387R^čHw S7@I}_oll\~=ў={?~qU7JQkT *jJPTnmF|*ԆliMqm x7bp}pBjFp0bmv4u+3~Éւ1s0IuYMMM[nݿzzzaaa[[P- nbڠ^!U+LGsZ[V9ܼ}={;v,;;} VIT?nCl d6i]F]kΊXmɍ|smkkKKK#1***۶@>odi,CP~&>r1h.U~kL>;::222ėUVV'H G)%B2` ˍD{[\g NF'N.)) B55TgɒD=5 nAa֕iЏx! ఆ*㰂4׺S<&@$ԍ&O[[[[__I%K.ZfnR ԩSO>-~GGGWWWwww__(8_I{X$n4mڴ3g%%1"[ZlՊ7pA~ujHM>܈HX# u3fP‡LF& |roFHp#!~ndf$Q7)-zCPy#Z 0 {j)GxO Æt#naE(;J30|72hѪɂAvc穲E Nư8~( zo739PhbTj䪁27J&F1s!@<7zh7yXB'nNFfȍ&h76o%ҍ. F7r̍%ȍf~5Gh>/2)X/fmS2p,Ь2v5M1lz8ooݸGP K-hJRuxzq*7^cN|0 ͋؍q(1n'k]=|&Vjm )=ɋ/M|.7)WrP99VVSj;j&y]4B|"|zN6*=V#O*tfq5k %Yь`<A'![N0J7=JeZWOqAԳ]DVqIr߀xTMi|/R?aº[;MW9/=eilkxG`j"]\u"̀EЉ [?ØAFMaݨkH\*zz:zzW]=Дy\+w(A-k*l k_/ޣ6ZÃR-0TfGxe(ukn=+LNdSv c"0zu#Gw#B\ g]=.ހ 7Twd,OrٻBsmǰKވz5DGs·*d߇rZt"x07NaL Fqt##>}S:"F(TJiྲྀ~ئW'sr)MɈ~:<.C]ei[swmFA'2Nj) ;a1= zۛH7ĽzIlJ%~p?N53 O D2:.٨ a>o}]c9M>]W(3/< a(HQȸB}4/XrU]=f,ߦ+/]Ŏo rWMC :FA!9z#3}dnOQ U7A'2˷0/ `770hˍGw#vau_*iD_MJ~ئ v9^0xO!oJgk@ Zp0R@ rN:jvy6Fp+5\0pFG(䜵=BBؖG*HQ6l.ZFqEN;zBc')Q']˴a@ `T7;rF9wRȍbΓSWrPX,uS9<p4VFCF{-[f  `ܨH 7paH(Q+kҥV+FӧO'7Jill\xՊ7p#$8т@76mZ___m…V+FSN马(///+++))inn~xV+Fmn4y‚yYx7@ƍ&LqĉǏ=zLIIZn774#kmmݽ{]vgm۶oZf8#a=ArhYfnS#| F.H uc655}'s֯_nݺ[ojśFQjFQ2EesUF1R{Mver`21\PFg}vCC;b9997tՊ7#Ѝ#yR];͆#|n͚ yV!xՊ7p#$ԩS{{{kjjj9=Պ7p#$Ѵi]]]K,ZnP7>}ӧ[[[_ݽtRoFH u3fu,[j@(7u-_j@L#C~Y؍ޑF;I<=HghYfnW"|F.Hp(mp# %W؍̹:`VUF1R{͍0H0\PF1@]8c:rUes))z$|n͚azQ-9 (ȹȥ0bN%rm8Fov5'+&nfYF[I7c Ab^4j@ݨO1B`oFH uiӦ 544yV $ԍNK2TWW Hjjj^oFH u)SUWWdgg;vZn'7)QOOOMMMEEEaaS: nvoFH uɓ'UUU8qeeevՊ7p#$xQQUVVB!rǏ۷tܹV+F*E]ݣ侑bk_Gߗt_72#q˓ģ.-AFTVV&獜YOzx1HdSKc-+rPrפ gUp9QFHԌJr!ܣU3#*U49adoUpѦqr-m`e1`4F7oX__obfYzL^&Yo $E6'cۍ"iy1 ږ!1n)H/6Qr~/gV\-nge5 wĄnsV$r:rLM)Ipg!F7ǍZZZHꪪHS,O͙ش9jL73ޞ, b%A C =,A0Z7"jjj%=jmm}GVind݈+KJY+D. _ ' .IHZQQCCQ]]Quuu{{… Vqn$΁:tȑj@Bhܸq͟r6o޼m۶;vyV+FsNccڵk׭[aÆ9sXx7@H}_{W_{7xwyn&oFHqr\_7׾V[[ //믿ofggϚ5j@Ȍ[_Wɍ?Koy[x7@H}k__/ 1z7ߍ7//0&ntYg׿λᄏf͚?77wV+ތ 7~;СHHk|GbyAffc6'ݐ3\:>0&pI;cΆ RSS7n~Od=5dY9_vH5/He9$||FUX2 YX'rHZZھ}ȐJKKYl F~GGG&'== ~Պ7#ߍ|:O~7[]UN2 O-72'D=98.\-]5;" ;\b|0w44ĉrssɐN8QUUuw[x<[lg*#xnbœjƘGH!l4aa+r96bd$%qt##ҍ&O,lEEEIII~~~vvvmm}gM=MOڍRI.?=kF8*35;rfÒjzgrj0HM2d& 444析f9)ԌA qpNAJjgX\Ҥ)Ys7z M:UQeeeyyyqqqSSC=dMRk~ R#K nׄSsvMjkv$yFkA=QuuuUUU(*++n4V+$!AUd"w#_=fp% Fm}2E2&Fs72㼧CJTZZJVTXXZx,n(%P-P<'g#ϔ*O\Ղ$Yg<,*B] u &ttt;viii߷o_(뮻VI7ғUl$9OxI5r`c0 ZI"aO6.CBhmmmv϶nݺyM6ϝ;jś$r# _FƍkiiIMM׭[~yyy{j&$ԍƎD>f͚w}wy뭷gϞm  nt9466^7|7^, CFk֬yI7xՊ7p#$!xO?|?]6??[oZn0޴iƍ_bͥwqՊ7p#$QS[߷o޽{UUU{V+FfM83ʪU3ÙɓK8eGyj@BHZE]]]}}}GGǢEV ˍdL76mӧ[8%KXx7@HM>ܨMooҥKV $ڍΜ9ӭ-[j@݈t3f 0LHF˗-Zn04n$H7a( F>Fp#8Q.#!~nd##|To`P7kM/? v#GҍMv6E;gV+FFSNkpٹh"oFH uɓ'T(*9?Պ7p#$Qs[nqF&8qbWWWyYx7@}J7?~|{{O(h&%%j@S#7rHѹںo߾ ZB~Պ7p#$9ܼ} JKKoVoFHqr#C}MMM[lٶm֭[i(**馛V ˍ +r(R7jnn&+z7!nTo#{jvڳgs;v|V+FEʍƎzСÇӿLKK BsεZng7bzDnty絷gdddeeeff:u*==;Zn'7.G?⢢"Z(((hhhV ōUh78qbwww(+**ZZZz!oFHrvHQgwɓ'q9<Պ7p#$8QM2HXQCCCcccSSSWW… V wQ IÇxQ~HѤIzzzCPEEEuuummmGGǣ>j  >nԒEnt'vuu'.Xj@ܨRAܨSё~̜xj@<ܨA#Fw^[[ہ:tȑcǎԤXx7@ 7bz]nt綶ڵk{ B~Պ7p#$Eرc[ZZ(nݺm۶[nj@(HF7nԠoZn77*zQ*gÆ g϶Zn'7%7bz$ ͛7mD$$覛nZn7mh-ez tqƵر>ۮ(--3gՊ7p#$7 pǷ}:QKZx7@8nSiɐ4gٲeV+Ft3fPG˗-ZnW7ҁ`dO7an$?o70n7{jލ܈#xQnn7p8܍0r8Fup#PFqr F"qsR ?FqrLF"qpGZF͍2r77p'!nT7 ~n$7Hn7p028Fp#C(<3nD<݈#!n$ nABܨnn(7`7p8F-fFFp#n7`7pe0`d0 e˖Yx7@7:naBBhgΜsh)Â!p7GK.ZnP76mQ%KXx7@H>}MOOc=f  n4uԾf7]]]-ZnP72e QG}j@ݨMGG#n 7$nn`O7rrz7p# FCFuE oЭ7W;Z.M/dQ@tn^[Ǵ.M^` }7^vwOkMN~` Xot}c7]{給fK_ɢԅ7(otrL{xKNk]]` }ę'&]}(u:F7$h /}YF{[:?5;C.t@I-@)hJkv*@o otwo47aљ)- 獴F0x# 7Hx# 7Hx# x#@6M`0$6E{7aG" 荼=7Hl72hoæ{E x# )NF08l7p7Hl7Қ]!hvq- x# 7H7oHdQ@l77!e FF0l7:367a㼑@o$F @o$F @o$F @bC±cNF0Tx#z#eF0l7 ;o$s B!ռ@Y{7-ŚIl-F @oho,J]x#F_[Mk`k`Kџ7]0UH7zi- }yمou2flF @/otz#F!BMFEXrةuF!Bè6otFgǧV?Ϟ=7C^ŏ~,ɀ!LU$WO={ߵ $,ey:قSEӕ)z#犢7_'/^F2 ylds~vE2 yldQE*zǿ.^\TG$ʲ'ƺقvZRE=.卜6޽{bbbiii~{#g' i}?7R ~ovy!81T%SJg[Ner lm@}o^$J9-r*]7Tõ-U,{SҸF*9Q)Y˭mHZJ:FS}sΑ5Zw6}H5-S'(9~^oX!CAz wvO7gfh_C7Th&=>r02-EM]Q޶tvuZlS="ޛJ07۲=`ѺUU5Pf7.{SҸF-^`zIW]zɾ1 :ߐpTBNAz,!PmPئ jf7Y:EM5g洺`Dݎi˰|MHJ RBʄ4V܆hkt5ިTHkjԐ3>i7li=לdaξ)S'Hbc*o7_XW9 MPfNH!;)UQGb, "3;Ca֟2u喫fgvz[UjWL;Fk? :-Cm=0u]󫾮۪R42T-P6٠eܙ8MnŽn!f k%6*-NKqT.mݝV J/骫So^<#|Ug rg|onݙ5Nq5Fع{# zC!v5zg*Tc bY :ÜR9ot6Wud;GxFuȭZY;?|E=;TQjnn,ЙEqU]_l4鴍6Z#F ;cX*&׊IU Yd=©R 7lFص04C+!&31uZ*kri{nR>O~2gm:F;w g;-C5 zJ7{# ִ GZZuzL ]u*z攪ycǏ" {[_ie#Ӕjzh;lpRdsljg6.mF6fik퐡5;;Քj[Pj q vjBE6.-p$Jg chS!;雝:-5R9XwTce޳*zIW]yţ}yS#;v Vסƛ bNKNqmmiF*$ ;5ճr+ey(3U_STaՉFJU$+= 8J]l<+˱m|zT$aw<ͤ/f}tPaaG_ڻ#Ɨwt}!'Dp^JwǔG%K%oǰ{ZS~_+WA7O⡙i-*ZtO_H1ŸiSjky Mk}2ɷxVot yT׈ZhowQ۾Gt5Te9K:vѝ-4vOSo~jJJ5; =*jFIӚ wSN.tws9f}aH8$C=Y؀wQN{[ ROov}4ԶjivHeݡ=$}ukʆzԭ:mXSj B8ߔ4ݞySҸF*-1)jIz@w>7'^UWmٛOvo8lTyw0}vZ,o)6WTÃC:[}K7o*F>C>"-H<Ug*•+o<7M7{(mФNkVr7? &sJ7VDXEx7tJ5"-ވ*rH w0jd䍨n(0["iH/骫#o{sMMMH$,?a~~ayyd@ #-UgϝC$ɏdIreODuCK N4:zLW]y{|3Ƀd#ˏ'?{闯`~j H$Y~DT{'??::JH$WYDX70[NKHtՑ7=Qn7C?sϿ|;K2 y2E Uoߣ}]$ɏd)[55О:-(LtB!_sF!BN=9v oB荼=yΎ_֚[7B!VFDVFF!ښ3=pS"N_7B!жT捜=!BhJy#'cF!ڦ!B%5{#[lBmOռGٟo7B!vQ7GB!VFgƧ(o43~?2 !Bh{?hLQG-\u ~5[m';-5ӮͺZKQ(7M3aս$WJ=}}Д]S^{R*ES9e53?ծZs%MfpjM4f6m**ϋUr^)p«]MiQvy=bJqU5YrisSEo$3Su /[˻dǦOM:e4٬^'O:7qKYI# :}ᘗ3LPӽD?-*<3ٿf{bӎW4NM6LLMbGM.X߱DUĨlMvْz'*} ϔyNt{LzvEW`Ǝh#yctzlұo;ӦFo&6zFYI2O6Yr0J- l\νڗ7[WBy `j`202dp~LXfʬ$n.WV|d_IO_uƛ?LVT+h`C++{(8\} \m[odQH-I{ce*({̂nΘ׽OHF"kC _\GgP+A]dْ dU=1٣R*WzVjƲπRer߰IOc5x#Q=+z#+\qcdr7ϋd2쑭!x }|i{K֛٩qSER*PSVYTIF*.ION#_4r_y-[* u^- w6ULFMI{+6(a7rFeߒ^77U3ƺ7 `lf{Kbm.Tw'cIt6}ed#X~SrH>>qŬY &k(Ze%~l+JG[23$Gf%ZGɀ<"yW8{~#!594OA'Tul_LQIC>;\;Ⱦ..#?Ƚ_鍊o09 Or(5mTm?Ѐ{}4(x|'{dUYoyTF⊢(ooUdgHqT{ƪ N;$s"#e7ۑIMf>h Ip?JA72rNӣ%]+?U]z}2{7Y-Uިb͒Y{TS|\7y,9WoRfRWpE*!@/ɛT<UjWYoTGF+٣Sc&g #?zo܇>;5pulb6Zzm XЊoFoUGM~OrQCEFNۣeSj}&oYKMd[?:r(|SEt@),rKz# +՟>SEosSk,(/z#'{dJdad72<&أF͕bzKْ-_BOzG!Ue)uqA>ǟ <{$^[{t}i9_umuzl@T6ldbRCֶʏO*T{luU:~5 +VpRZj*P*8,:I/~#G\?'~|أ{?矑s!BG'{>e1F{LZkFGIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/matrix/img/tertiary_04.png0000644000000000000000000012431114741736366022324 0ustar00rootrootPNG  IHDR@sRGBgAMA a pHYsttfx^IDATx^ydU/>{w_۶-`neTTDhEd(p@mAAA!#3#32#繊~k=ODdf䉬,}^{uN'NX=?\K }ǃt9"ź^xĚ2kUN8wG?u߸ko|=ē~33sy.ǀȓU d쬒PFq4vTI24eȔ)A).l%+ˠ觳Wȋ JO,M+Ñ'?[+Go\.'| P농xnx;?xo.Kgz}PPug20?83B2MaVJ(\u%ۗ&d*If(iX"K${\c DJ;cAՃ ҭIlKlդLas{6.M(BKM𰹵 吔f6CH ]؂] B5 1lgتKC:¥ ^.H*I6)]\ڻ$@y;t$P$QĒ Ӑ!.y)(C()Å&B922RBƘK^1ٚ}?{% C(Ϗ$ʯ_̫]8ѿ5Q&^}~`&$? #u_k`px0// / ;o=0ԄC G* `cѱ((Hq $  FIFI vKD̩9 ԌܟW,xBF&Qp 66Lb@ܜS=o2ٓĆDE+]qu(@j63gӕM] %.1#AI 4'8LGJ,X)@OuI)I&Ĥdu@IB%%%D*_)HŒe(cO&W y& -Y튱ޗcs/<33/?33cG3S$3VHq 73ag^z.s}$5GgRHvSN=hwYp6{Og{>@iE  Sځ\/Fp Uqxdddl .4\2x%61==9=S*_''I&&HFA& JSهx<j2 q9w (N@[8H/.l&D\B3%^ H`o dVa rh1!BIWI@R2K"g cd@zQ}L+]u JVJNU/Gq9ˌK-8FH }*Oi vȒ9#52QZ 0^FjFRF^Mr3J?h IQ #qZkzi1a7Ob !e/vj+v YrzӚ4!"Ɂ )<AUC p?!&J.(RF,pJA`a4(g3s_PrLTr=^^RǘB_ xoafXR*8+tC_HKCR<yg˓?s?zglnsQ 9@&bVd߿3ÇO=un?8p.偷9X&SD"uwwwvwuti +±T:ɦs-J4"?z~!=%7 B,IC0.0D~d ~srOz=rSܟy侾GG?ro{GP7+%8ɆM]@Gn9!$NYAna7.s g8$R Xö5575K?~K}!~XPKfmX9!-)O`;~v<~|O~|Ox螡F{$ 05C0"ądCYAna[_wMwOɹsi|2 ,J_&ź:ښٻ}߮7lu[;xy_wη{kU=͍]-d 4CCё|;zZ20"FXkb3lU6D!E; \2= o[ *rWx{kt D.K1!oq$ᖚp%†HcMdg\F6lTqUK7g^˒bq.qj/Q]d-ٖENideӮd^˒q.Og{3\s}KB{%tܟk\OwwrΎxp߁"RS[_SW~MT텁ay\roJ{R2d/1QQsq!jccqZp yVgjBȰB*ϻ,_Qg\Ѐn)Lbv hG #!${wX].ltXj` i",!Xۺ\ZBMd3z8 &  {,,5څ.~( YK dikv 0l9 2WҨC8j+_j\`Bv9 {jJp~-Qp^֩_!o.3|t`Φi]&HL=7|3O2.x4?&8Db a>9ɀ!#^=G@_<ڀ4{-BL9Cj# m,gI d2O] |߸ǻc 4x2 ~|tmP b.a?20 apqM,s؜dq\[,M&fX8_zqǝwButwt1 vGWw'nC,Ξ w/;}qu_u_~oozn,qe.KtY+РQL,cOtYttYۍAܦ0e]tբ7_o_'VltP[E5=}M.r_}IRD'mMKkss׭#o55766RСCMӓL'};\ZgfKvZTebr9*_Oɸ(>*_ Qws{=dCM '"M;ݏ m ~:`kԃdb!|s07Ȱ>Jpn$8qiJ'a5{ny۟7~'^g|>pg\zsْ$΅ڞʽ }cX,ـbiM2vq.| 9N>$ ҷa@ck#q`TN, _6LOA/3P7Ǒp` N&%{mM}@b/7 wEC(2D,H&@p)ba`d3OcT[`V ֭eMon3,aqz#LA*L"!z0mMM͇jxnӺu76j< :B55eNmfX qx̀.aKjQ%j(]&\)62 sC8d˔/`W,n\^'(܈̐s[YeC}ڭ46Ȃ)L&z;[9[wT>bySEd F\D s(㮷ma HkF}+j"ɱuV=@y]]]݌<~޺u??Cή=qn=wGb?SW=x6o/vt9VP}s!Mw6࡚}wO 'cab9D-syr8"+\&_ؖ xbͶ\_9?1]sa62΍/0$ Ϳ/]>9grY8=z8C}|.`˅l!rH<!x6(&6P|pdyիb?9BNwWGsC܏?'O>??.rc[&׾v{ww YĹMnwmۋ;µ៾MzǛ?|{ f<{',xv}{牌< }@M{-= |OOSW۰T]7E>y7_O&HS[EXZ Cj_PsX xe<{W=ls}g{k[{<=@Z܃];m--;]mm/n=Dݝ{{W;vQmkmiimm-kkkm(ۛ~ k6=][k__{v5ukkkû=ܹsǎ;wڵ={mjn Z pA  kŹC\&62Y$eNjȅ>(`ξ8W[ ݋ 7~ߟ?W[矵コ\pOYwxљ-vљ}P{<ÔXvr|љ 3w_p&y>fy ~|߇wsZIR 5,:;S_~' o}{;@s\Źiꌧn^_/Gs)Ъƹw s 0`7Yq3 l)XY" f{v$\;dw=w@oB> _OOݺ_N'lzvj?t~ꅮ\/{L W j@;$ G7pryǻ=w]Csc,*ܟ%gȎ.-o{ߵnu{tGӶG>n-ijlxV<҂<㶼#va㶼"MMLpq_}nCeCcc6<]+9ڃjjjsk`"wwl߶XHw;{al,ƹ O.B^ÄEd|E8͹Lɼ &XRZ]Yh5S.Jmټv{;P/LV =吒xߺ<>OOgoٻ>sϜ3g}샟9sg|m|+(VJpx%=2i-|s|}}g G\]sg8osΎCm\7spݿ;Ne{aIK[Ѻs(mBFr.6m|97K ϑs޼u>OOssoK~phƥ'`Y n\޻}/%؃ (m tuXFnuv+Z[aOXy"U*K@||[PJhH Zo754п;yo`aXsGKXR#)*^l!6jhn}aT<64l g6>zA`ԺuuݽWۉswuC⽅6Z)-YKĹD[jkfEĦ]E2ŹD[ R;q^)5(-[9a?Hm塤|jҠ'~exOu'__ }W[wŹ8s[yϥO~^3t?Q-4FGG9Զāq+Axrϵ])%\;߂5c[ȹO fl|:׏1m91w:9ȹĖwts?nNC ðLG{$-]?YJx@/ ȹ$D5ܟmG.)\j3م7&8  N:W. c< ky|T}܏zo}`Ԍ\ɹpNtmn~hljn$F?x 0g0oj?jeMM;{wڵkNo54vvRT_.9o€[pA$kX2J-K$皴Y)p5])id {uwvԵiWkI&MhInC45uRoVof!-5[j=RҠK&4qz8/⯽k.}K]sk.sݥ{t>7/?۵=n!B4w w=fKSnn׶gܙ8Gҙ8>ikmǾ'_y3w|ۿ毾| p_oMOO»rƹ{;b$0P-raё(~҅(tc}>28O#{mhgdw1,34vwK܆~<_> ]-?tp.Pnatl~o!toA|dzxݽ x{azl>xprCxBss:-=]7l7jKm@m=wB躏 V@mj 0[_vnm2Q8߁Y =?rnk[0kS39n{`CMnkngŚ[!p`mM}w߾"`Cd2Ĺ܂\FpI! YK$ZZD Ee9M a[6t4tչ^%H֣F%zo]΃M] tsi*V.MJbJLAڹw[| ekj\S嚃_kڿqUǷo_XąXzPO !@("ą$[[^KC6pn[Kιַ!:wJ[!u%>Xq{vSzs06{Mc_Xa`90ɘnG)2A%3= mZA ?V\厎j/ffvW.?{E*'zrӷiC} JzU'^{AAsJv.>C;}1zޡ϶wбg@? LaIۮl-mjjatWYY;~M_=閗݉a$V:XwqNiP"okimnm#6b~9ikknn5o}}=A]!Xw{'L8ls5•h7@  b8Ź sfޙ_>̏z(lJ7'\RD&!ШQDsGIK'J4$ iץGJVJH o`?1wݶj[skwom-߻[[߿%&$ʦ7|{o@C=R?~\|scu[gejb|׷ȷ~PS54RL_,BøB|q,*G: wusmûY@zƒ|j[lG=_W/G=>IC$[{Bmxc%_3=q0^x/rvOg+Hx˂ZƵ/*-J,{|?Tq?>J? 3+" q0q[^uzGWwوjrĻ{`qndȵ4 >қ=4 J :e^xVsAlش RyǦf}}_ߚ C#2Ab)CwgG&GP& cL+uȴ!(?[(o땡m(;^x,14x可ч/:9' ~_>ƹu9N ћ _ҥҷlqm8@p3a;]=nk¾[nn̿̾ ~ iW|9@[h޸O6 ~/ ~wC,>/V- MbۈL'_[a^⠛e_mH}Ղ}.+2?Ixa6`=@R}S[xvmoO"7Eߊd-s 2 0lPRw0 RC1ڝX)x֔I^x/]y%ʗ]ºB _e+|ɖ+CT+r}_| yɉus)~^~^~Hӏr@ 6LiԿ)Ŀ E 'UMoY br.V.XyPo?{G|=?'y_w/W^}j*`;:?A9=V'nDmq.F1~NBh{ܺO.& e({Z0 D l10홋; jo0pL@DWf_.s =͆]x阶 :Dfz{wGIF|ȀEaG4AfBHo׆xS|1aFl!0H;:8 TE ns  If2C %\ιK_"".f]KWVVl•biyP%.L)C)ƾm/DBĞSLFTvU!GLŶL$ oc_{߽¯ӿՓyK?/۷o۹{瞽9P[_K&`ByX ˭Q8ړom÷4Au~)mMatgNRJa(q-Ձvc[:WaXӆ^@e8m4. ?FIf{a92¥n$ڜ  ٠,snjuqn%WBl•Ub[2i:2}y<@m|AAƘLNr$g2eaf^a%*92Wi1--ŢW8އ)7mm j{g;mmo_;~c׶?k}8x(ve$E.*nr ^ڈ׀@] n>K\)Rۉ1L%ujd EczSxBt/ie}6.IgLX@A c&WyX6;R[A jF;QHHٶ(N'3Ӟk4J_L0^`۶7-/wn)e"d $NY玎+h7Ts(r(2 ,ΥӔKKK6A5h8\ݩP UH:Eܙx87oPxkw755:X_W[S{}`ߞ{jmmjlkkX f<˝ a_{ -^X6D}0(} cN;\"7F _ ϖ,$11'Q.oFHe+bKSÖqJ"9"-CyV)ЇuяIn (E ~-B`@pGp1 ac%|'o١B@ب׷ehȧ?vsY+h.-2  F,/d9ò5#WFjpJ A1lt 7d]qYEw os2)|lmLh>0(շ[J"_L1F9ۚ^&P>tG7;p O|!̄I|,!DЇRlф8 ɹ1\ۇ+)9L{7N }M @ńqM |}P>4 }e |`L zwˤ!J P2~X̲ߝX9XGܠ\dkqOCZ d4ޗ#$1[SgT]g IҐdPo:.hI38f+KI/dqq~/\#q:/  2Hy+|u{C;/["[[y15r|ӚqiBDGqZ\p>Y! ԑ#GN;tιȹIPvUAgI{mp `5hѽ#%ƕB(yO2ῒnXvgJ}%:ЊU+4=hܤbO"%ӯ86_wQHuXWb(3(¿S&e&$AXғ.yY׉$"_$JҒ?cx1_,)WB,=b9!~|f*vcKp$)Sylm, \{lUt&)ެh,Q,Ъ+D/>rN387NMXoI5'USfs.ge|"EbDAz% * 1=zLOw&}O1B->DžvBm R]ؐE˰S'x.B~Wr(.I/"^k+{+jB"/q` +1W6B$8^|㫉M(n3L3ĚjbQAb0%㚌>|SOœ xJt2=7|7t㍦&Ņ^\ ҕ7kL)_Kb]b-*&Z7y^ Q]sO9E\x M.}- xb^ =fnl9&Ϲ^x)s ظ\/^xYy,p@u?;2qϹ^xTٰ~sq͌9׋/^$7lε=T\/^xlܸqnvN\#ssc8~Ls/^,G6mT"sǁsb^x$a7Rsq9׋/^$~ŋ/ t?W s/^THb Y1|.NĴ\/^x|~mTlT*  /,,r)~ŋ/nazj7q\I'E}z[/^xY,k`?Зf2djnng;}NǹOUL&?<<qjv+q< gI4@8ҐG ʍޥyC_Nʛ!)"r%!0ܾښ5ݽkv\kO.\,CVX zy[ҫT^%R[$,W|Ԁ>LbtA7m2WA?3 .}84v5;{ 8F 0@_5EO?)MR c{n &6G8Q2r!s(¹SSS/Fb {ş믭ٿwٽs'80ΝC[ЂɺoX_Սju}Q%_Un )mcgTiPxBhhW:pB>3ݹ0G!pAT y!{'@Y62P%@y[8tmFtfsA܌_,F5XIq.#SN9.h8%\PCxؿwx˿Kf\G%@eȏEiM@ nRʳl߄{Һp=(@;";kx`ЩlnyV3fpx:9T @B/;n4"=C0"$Fp* _͝HKcN|mp%,s/e|KsKKssScc _a;,ef<jNT7ДUAȱ<\K T<xLNĝhCbvh:k=E oCZy6ۀGQt _6 D1E5d-cAΕ|3_qÆ]5医$D ]m33}{āsS\k+Z5U"kOWJc%6uo n%`:QNA@eà ?Yp=rUy-8G;G1pL+ɲnAOpCC8Zјհ88L3 ,‰FwFazA @ST:Ӱ8W.nw<?NKܫM&D2O$b ~~ ]s3\tU t64MCs$ 2Q= p&l)̌xBTWFDQeȺ[mҸP*5Z  ҩaҲR DgA3T:{iX ~K_ƍ'_vkK뮽nrbIo~~Otqn-ڂ&c%•FG G؆sso0 848p's> 9W<[xD>(\he`*aio^?;3; nHX;ȹ|s,c͢FnܰbAbZw,_B}<<<9c!JΝɹxo!᱖87zŹӜ* _m^7V&Jpn5i@=i1](e8 ӚЗh+߲JGs މe[" HܬCYsάpv2穲XKW|jU5p.׉%Vs\ƹپɛq?פ>XʀO(dC<ڡMEܩN&tKv sO0ؖ`Jghj!t2Ӏ!B\m4RJ-ks/B &(GEgrG(s.{b͹Mg+¹X-Lt!6tfjkZȶ «BI6q8_xl0k,u;Gsҝ%1o!\43ۚjR-q;;g֏+GAv;3\@U8WҮ\ȃ87-dz\Y%zaMlb^ WPʿ<*Xj;Zf$/ܳ{KXSPB;77 L*Dqf{{ΥUU UN֕2Oр[09:C07d4#T!Vuf6_g@ӇCqu3R%߄uJ&H?=*r.ιsd*E"ED/),%]mE 3s:|mK] ͜c!d)N.tuԫjJ!eX(n{C G((97ƹd:dss\V4ZI^y6Ҁ0/-)M ME.8{6UKƆ`dȝlЕj"ں>D@IKГf2j<XGZk @evhyb(_snTRm&Z4*qj!q_R z/t7Rhj"8Qsf.\n5u,D^ayV%ve}bRA"Mz{{a ;5U4RRVY/~w`+kK;U{) \3S%ⶹ޾^Hb.)Ю.XeׇcQ_e"VXs7n؈-s'X#z*qp.>%- Ts=<<ܓO望b\sǚDd{7LOO  #Å O>$,~ڽ'>\w(=V!"kv@ `~0?^XX8Dܹ9ڦk~[}tXuENxoEʉ.%<`(<ӵ7UJ qW^(X_w { 'j׏;00|ΥԪOj>QrGy%cU0%R@ Bx (Bȩ8/7:X:"+ѱd"{v5dq/sj4@[XKU+^Vqz LG`Xdd*Eo%zQ-?SGXΫ[hBRP8pz`s(A_9$ټ)Wr& X t6'Og!,Pu ( @@Jƕ.K X̼x r@jx"BkGXs/BgGWww , +-㓹@045Bܰrd]XE V7}- 93ɲ +K3B 7an`\ 4ʸ ̀ں.6° У.,Os;r82ґ)oW$[AԜ97u \qnh݅2Ujp>mD5$! Og!,PJE O{W6,o.ٶ-فҀ=X!]Vp?FvfF&ft# z"Dwo_( ]xo!H2Sbxc׹s[^$,c-<+P 17\ű{ݧRb,Rۤ: d#cU QT^-)ݱy|. 3Փ2TAܬRz "/D*%x>s.~zGwɹ*^ "waYG7ռdt!m@[=^ēJ1rHy5DU-+Urʴ^-a(y Dh!cD1 DBpCyXs_qx2Hb't2r~cah8wfZSfr)ã"s0ߗn*>|do8o,"7\ 3ksNs=]ǀplfvsCd{7(0m܅Z HatsCd{hS$Ss" "Cfs%]w~`ƶGunܰqa~afzFGޥ;8wlDK蟜S+rf{+gVNvI,ّ.C@Ϡ[څJHT\Dts,-Ź M\\Υjlm`u}\mk pzQ#+nZV"8_gVNvI,1.C@ TasF[d'Q"ܯ|ssĶp1:}osr9PfK?W|gUd*K1\,-  ,,="Gd{嗿`. Z r#G$N޺ \t@.vRJ-VJc37 R !Eo%zSppXΫ[hBRP8pz`LX ~5i "=(9wnnM r7y ]/.Y1g-"C*J?Yc38RFn2 !fEjPt}M5\Jg ʽLra؀.ܿG5ὅ̎ёB`-ƹs4dқvǹ /R4.~0T LUdL[TAd{WQd*O{z::ggx"LʬsueѩYf[!tt[4DʒC %߄Rq5*k˃0j`B2B6Met"utw̜psZq]PQJPu? +hN eJuSk% 3V O#RA-tL(&AԢߣʈsoɉ\_?ۗMg҉T2=ҽX,OTsW5pjU|#jDƹo y{3ss'7AMuέ:z"܍6NMM  $ rvo8-$ \|W]Q Dǹ7NOML|.۳s[scqZ޼~ [8nڸ 8ض0T( qxa6ܶVX<9c- / "fAIBK\ ݑ1Ϲk s.[KsxC,`ǣ\ԥ; 6粍cp-Q{>J+^1MuS@;" kգ-5-'Iʠ*+iܖvch\*E)PHneQc ʹӂs{Iι\_EtDeM0%h5A~S]43> =*SKF棟snPu9ܾ]sg8ƒ±9#rTsI\|hn榳csnoW ,xEnz'e))oj8!~\씁Ўfq0ZJ84Q<,="jtwe8W_w))d ,VV: D\-Ay QŸjb7p+ fb' <+@0-BHn\Mf԰ 4B{D-T2$s{s\PnzbQ|@G3.??w1c%3T:#X*+Dzgh7L&˜S^bu%W4@wEtfYVtݡ- 9Br+.,9DPM)Wͬ2l<3 0,,y x;qC|YAd{-LNNsϟ~Qrn]v5X.j 8>rB)a32lX\m[Mi{ },HcV2sN:Xвr_%WںLK5+^KR:H MJS Gеp!2ݺe܄#G_ =*S&r)cQsozcsNs=<"Gt{&sNqn,:v8Uݞ\~/,,@ Mf{ V#fV1nX2 .J7!]x!SU d;ذ6-K-!E@*#P#FX (o>JSMlCw\uyEM! a*KQ<_4{GϹP^frP\ɵ3P0|e ̔T$[/JΝal˰˸jFBt%S¿> aŭU]ۢ!%`ŕ%ѯ ߄Rq5*k˃0j`B2Bzxx㈌s/t:][[!"ql!2ν⋻mVWW M9c"2ν `~׮] X,>|XpL{ JϹ+%]w~sWƶGs?>sofMMMGGG.[9HU,SujEάxoEʉ.%<;`XuW5 tN[_xw`{gjSgUG#yBQzXLf aU-J \]x"ܳ>?K/k׮\c_HZ?WT2!PDb $v,D0+千תGV[2_=9wԔfWsWn\(ODxc \hkQaϥOHU,QA2yԊQʉ.%<&`XuD` vjJ0o4Fd}-?n"AJs6xYmךGdE[2VY(. r@Uׇ-,EǣrsopNa  Ċrԙ-Vd?(d NHX`V 3UԟA-b243Ӎ6濜$=8wÆ @CCC@a9jii iH 1ՠ(O5śjݕ3s1{ !$7P {Ɣ"ՉzTq-255Ţ#,2Yz-m Pkn)?Pb9Mc8].R/'IܢbԚX-c=BԽu,'Sf-=I6,MRKHE4JH*Ԉ}ʛnT[]i03<A]^iBr3FN1,*C{TksE(tJYƁ j}r2 ` 0ޣX И0F]f[p(UohQ4gyB 7an`\ 4ʸ ̀ں.6° У.,Os;rPҏ#9 38r{TsgVsJTz6p7hZ4mMe ݧ]\YR(" aՐ ʆe ۶%;pYД38$ P}C`L@)3 x}΅jqVԆ; 'l3F T8OLMU˙]Qj`3i0h(Ucs4%&!hjՠ9=wґf**MeZZі0XXÜklmfcŪ6N`MuS@;" kգ DX ~mz-+.+IbMsn ֩OzĆ\ 9]*٩ODKZzlXJi T0p7@%&xS ס`f.Yyƒro"䆐6.%:K `msJ8 WhKazjMuP?ZXeT֙-!ks̿b9ЗrfáCzV"'bP7:jZVJ[7iiF[P:c4+tBJbj(}R3Drs *EeϬH+ȹcsNs=<"jܱ¹9#Bxs=<<<\~ȹm RX۵{W-ȉ?;e c!Y)(o@V=zHŠW lp ތn"2νe-9vڊqnE襮AGl݈)! ~\4G -Tu4qV.[!JսiDqaTܩr+ Dl zUK~ f% dPSEX""oP(t9WspcnHrJbO}- 9&lW"PM)Wͬ2l<3 0,,y I6(钛N9 (=Cd{'tܮx9jR˨:g 4ONP;ZN젢ڝf ݧ]\YR(" a Cƕ ˛@mKv4)m/gpH0 EhV[OۀLۣ:s:ܦF 6Ɠ\hWbq7dK}@5 ꗽV[BSc9ԣ1J\,?z&xۑC}#Run<<*UH+9L ׄ9̬d2t eJuSk% 3V O#RA-tL(oznAJw~.Te8(N}rzxx,"-pd-έ:zqMJ<+9X\|Ww{s=Jƪ`2KpťrĆpĔb]kXm@ǬXt9Jɉ?;e c!Y)(o@V=zHŠW:0;S^IcXu˿V]sCdKpuO ֘'~\4G -Tu4qV.[!@pʴ('NJbq.JDe8*EuiKCs5A~0k0υzizTsa[AΥBKa6YU\C| Ǫt[4(]\YrB 7an`\ 4ʸ ̀ں.6° У.,Os;rPҏ#9 E|xDUĹ=+TZF9kP w皫1rb]4k00>rB)a3$(W6,o.ٶ-فҀ=X!]V"~+Ȍ鯨87I_BS +]j gңDg*LMU˙]Qj`3i_[]Uz=jܸ\%9WASREה=,nY4wґf**MeZZі0XVunaŕ%SbPS 70YCe\`myf@m]LaXX@Q9t9#C69? 8cu* svrPb{ 4n( ^뢦'`xsȶm\4   A@ ]2CR{ruΥd,}vecc*%o5 ޸F2s7UjKhJw,gzt1F5˂Drr*%,ʳX[j:TiO;H3cB}\i2-hKJg@Fz.ZH"QL4Q%-7G&9wVpDcrzxxT@sW U\Ϲ @U\scksM_u)s*jaouqn6ۋ?9c-op6kϹk@|spwO@|ks+mIBq2āGt%Vά(?X³#\ K9S,o!Ds6opn{ l6;-\e|~xp0?00ןL~zX}Qɶcc##L.d:OvuZv#/sgps=<<-vjjbbbttPŒtvw67?Ps;]JSMlCw\uyE ̩4#8 e9+GDǴ9.~dTjSєt(NcIh(I2:tq.4䡣RtK^Y:æPun(]]\Yr<5S 70YCe\`myf@m]LaXX@Q9t9#C69'yTA?u^tуmmGRSm"rꔽ%v8ʖ}scEMGݧ]\YR(" a Cƕ ˛@mKv4)m/gpH0t@ ]2CҀ.>c ȹwy'6kll> 9NʕkV5%j-^vkCzk~فr5 ꗽV[BSc9ԣ1J\,?f&SK :}.ʊ$Q!{ =+Źt*gЕhJGQ [IGZVJ[7iiF[P:c4+tBJbR'T9Z U aQsW±¹U\Ϲ*{p.=ϹUI4N9ziy^O'ufDiR0,:kVW*[sM9w)m QlXLf a4*UVp4֊G9w@5nT8XМ)ҽn(&}rkգ[r`V243ӌ){ѲxU'MUsX2U, bϽS+Ӓ(O5śjݕ3s1{ !$7PCEL/cU`s.kRV NvO.?'w1(a5c2j zFR b%BC:;Di@=c[-rH_]]\Yr#vJ@3k+- i# @=4G.%@B?4H+͹ϹTH9۩@sP kÑZ5><Û@mKv4)m/gpH0 E0`+ĸdɹc@\nKCjkVs+ɹ|zCgaV9Y5Y& 4 QT^-)ݱy|. =Ӡ.=V+" ^ooss.@uٵ{v.s9 ؜z*˹t]J5k >z'ifxBhY+mTm CHT%B )S$ pLNAJ^n8fccctca(n,ץ 0twttu8PO J{yS'8c"D(ãݷo.[ ?Os9c87h5ai`Q<>>ΝtK08{mq..zX}suڵ87&{ 6VxXXe᱖Qe8w~ϹKn;+cc 9}׷lOy&9I.as2dKgʉ.%<;`XuOTU#¹ꕜ[]XÈ"V-?k[.%cU0%R@0 +U8bkcqXEۥqnnrrr0qr S2b $v,D0+千תG7ef14e/Z5,& ɰҜWsXɊJS86b]So+Ӓ(O5śjݕ3s1{ !$7PCEL/#jX z駿p)y]鋿/>лK$*̹,?YZi*80=o7] Jq`2y#A͘qUs~/yӦM~ӟ>۷o_uι}\,:hCG(azp(Uoh!} Xvvqe!xM)Wͬ2l<3 0,,y n= ]rd@"zT voƻG­ pq.5R:v*azAe Gj2k] o.ٶ-فҀ=X!]V"~ 0b\2Gp~h{?# [9wѲ\>ء H 6 4]xTH&``⦪_Zm MS.(sY0~Sݵ'`U T /.h8Vsk\:⇮Ҥn Xa2MuN:Xвr_%WںLK5+^KR:H0P<=Va hR`ή T*] ]1d0rBjX28:97\Ӝ[uQU0&-@4{ |۷&9Ur=zxTsa˘LVsiun!νy[88wttcUd88:NxXk`TXej\\cs9.\͹={Zs\`ϥ\ů-s!;xemK%9-tŹ^xEr-u.q\/^xYGt=zr9w{ ksxeiRsϹ^x|Ν\+8wjz9%}s/^,Y{9ڜۆ7ftttpp0tww455R!cE]jf*!BFTj`xgQ_ 3أ#B0+ r=L@q 2}@or {Xs>QKvקzb ӱ:L>hK6SɖxS_`oOMol׮ޞݹTMPaul{r,3=9Hl;7323905I PXnr|pr|`b4;^Hu uO$Ƴ0dv:?'dvj,1>>pC#=;]!@ʳSɾxfz,==$sxaj ,p/c၃ځځl`_Ca 2杛Ӝ>xu׋Օ6{yྖVa`9 ȹή ҩd*D" 倂_Ϲ\PP-p.,pnsssGGJp.fsiJ0`^J9 Vɹ  pn 97U씜{ 7V ۛhMs}ޞlw}@tLϮ|elk97?ǖHss3ɁQx!9VHF 鱑hXHzt8>wȡ@Ȥȹ3񱡶\Pv(W?;8<4:=1 A%MqΝ;gr ƹʞKjs{s;FS΅5x 䎊C/6VlA CWb5 O?{ǟ|)aƹ==1s8ssupܥ].B(>@efYVƹX 8ɜ `:h hq]]"[p%X+0yR#Cs3M jܚdWm.[M6ZTGrnSowC>y ݱ'ձh/ S?<2jspdӰN'F#C@~`Bj$+ vcqP9hqhu8W<n#M#碽ΝBB圫 ;a0KwRȽ6W '-&/9xVqn2Mg87?84<\rʃ T\Y\XvvvB;NC%.5`s8 0 ^Xe;Iq ra|`o.q@s[@MÿلDGMDutOm:V)'5g3]tP_S!9Nd4q>* eF# v[B{qfXdd2rކZ{rΝΝN'Gc Nyz'9B`Ca.pnNܩىr.zcJO6{yOXm;ggԧ6mڴ|k_;a Aϱh?EdW]Yt"Y!*t1^p? hY'!99i>w5Wʹ鹙ٙIK%C8 أĹ8޺Eޡ3y8$2M@sH_K&s dy꘿gt-Kr,e`,¿$FR`,FTrd.Utf0v{ [`ɽqtC\=<`]~uO}W]u%\r)r@ SO q: xg< vńk ^O:O<6Ӱ͌|1 v%NqƩg~Oπ.%`_ In that exercise the reader was able to properly account for multiple order excitations in the sample. However, the actual composition of the sample was provided. A more realistic situation would be to know that we are dealing with a stainless steel sample of unknown composition. Despite the fact the spectrum itself tells us what elements are present, we are going to ask the program to perform a quantification starting from a pure Fe sample. As with the previous exercise, we have to make sure we have reached the situation shown below. |img1| Configuring the Fit Strategy ............................ To properly configure the program we'll have to follow these steps: - As usual, enter the fit configuration widget via the Configure button. - In the ATTENUATORS tab, enter (by typing) Fe as the Material of the Matrix. The program will automatically change the density. You can reset the value to the previous one if you want. It is a thick sample in any case and the results will not change. - Make sure we have selected the Consider Tertiary Excitation checkbox of the CONCENTRATIONS tab. - Move to the FIT tab of the configuration widget and select the Perform a fit using the selected strategy checkbox and click the SETUP button. You will be presented a screen similar to the screenshot below. |img2| Since you are there, please take a time to read the algorithm description. We are going to select a set of peak families and we are going to specify the chemical form in which they will be incorporated in the matrix. Since we are dealing with an alloy, we'll ask the program to incorporate the elements as pure metals. If we were dealing with a glass, we would have selected Si1O2 as completing material and incorporated the different elements in the form of oxides. We can directly select the peak families Cr K, Mn K, Fe Ka, Ni K. The idea is to select those peaks that give a high contribution to the spectrum and that we suspect they a present in the sample. For instance, if a experiment takes place in air, we can find an important contribution from Argon but the argon signal does not come from the sample and therefore should not be entered in the sample composition. You should manage to achieve the image below. |img3| Press OK to accept the strategy configuration and press OK again to finish the fit configuration. If you now carry out the fit you notice the fit takes longer due to the fit reconfiguration process associated to the matrix modifications. If you go to the CONCENTRATIONS tab, you will see that the obtained concentrations are quite acceptable despite about crude initial guess. If you are interested on knowing which was the last matrix composition used in the iterative process, you can obtain it by coming back to the ATTENUATORS tab of the fit configuration widget and selecting SingleLayerStrategyMaterial in the combo box of the Material Editor. |img4| ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6597657 pymca5-5.9.4/doc/source/training/quantification/0000755000000000000000000000000014741736404020375 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6637657 pymca5-5.9.4/doc/source/training/quantification/img/0000755000000000000000000000000014741736404021151 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_01.png0000644000000000000000000040652114741736366025214 0ustar00rootrootPNG  IHDRv <sRGBgAMA a pHYsttfxIDATx^`UƳ˲u("UkY]+VzS@AzDR((H w5&IHBsϙyJ^^B@96ܹ̝;1%~/1cƄ >Ν;WAAA>GGoO;vРAO({?/8/ܵՄC&xOҕp+vk/ Sx /EGɄcT½) <6p_+7\X6m\iym׏xBWwEbrڵO'L7~xxƌΞ={Z"=W‘5II4IP)b1&юD)"-r" 0 'wiCH^nnc 4y+2VZik [!NN>W$z`t/ƎhpjBP<5U@LHP0 &H!j6dՏ4y1j '"=O NrBFCVV￟ɆDŽ-Opddd a}WQQ|ӡUѐ%J^6?мtesnٜesr+7hr|4;hnA3 4?P`rP`R²إisrr3g 80Ȱ=3pxW\NzS'7fu<Z&hɣ|'w XACwКN݂E,TK ':c8(\@@X3h Ѵs&v@'{Xnj{uIj.B D(I Vר𾂳:*T4o]:8*@(+8j%+ EP=©fJ SsvX}Tʦ+\TP-0.3(΄ֲ%:}6f9cb† S=09ifjxf[/*Lڄnm؄N\9gt Dy `1| ECʩV(PH 'H9D5bHHP4G8j NRPTE_  !7{lO.Lm&"Ǔml"mcJ[kBhf™) g-PƢJ<*{,e*s3g/uzѬEJ\4+acRw6fCMw~ZR B+j P3!. 7;B]X#hգEeQct3-%pCěw7p& T96S4E5`%<"FsmЩt/2{oxA;h-6DdKNC(PH3Ň\)`LQuzГTp<} PqdG?L7PjXg` ÄR(k˩"!?5viPOBGYN[UzV!Ij P"&(j%Yg}᪦5='hYZivBw [M}{K>heA = >lg CS7G~LH)(-M`'z&4g_=Љt7#4Xw "⁦zAUs ŕCeO3mЬpj~'X󨓖* EPimqJ[5m#e >V-RFP 2SY}pxt~ꅎZAfTPTZѽ֩rBt9*C}sF-\ T9P# 4JP4XP'1Z1` =|Yt*K >K$c,4d bBQʩ )AMPǐR0P$ŐFhb ̕m*GCh@C=@0(C8pt$𧁬o!+ pGhs6s]ްBkرpflr\9E{~>OA|1|73Oٙe.3?e@ʘCOϚ:krʬɉJ&Μ=sr$䓿LNܺsm9w,4lg-(XP+/8"+h^,K.3/535Cˡbg8C@7ot'7hhZ{8 UVЮ{X0.&"mA@s&>tՃg,po9Fi*$}:\SxJ;p~G<ͳP >su$w4+tԃ!4}'iUQ~BWB: T Xb?ւyЙG'(]B, T͡]5&(O[AgB9{B ,~NdFYcQ-jCfc抭ѵ!N.8D`[cjњhz QAt8]8PhBO S.l־YAZ5(sPA;CKVYPa6@ u>9 EI( C# %>*P`ERc'ERC^Fi"xOvt C1 Q#~sOƅͽ 8m3 zH#u es \̘1ci:&|CFm $Q9QLhNǧL81eBҩN:!~ꄄNH:>mSǧO笀Oz[g'a!&6!uڄiMM61ziOM6ub5a)l/\@I}F<ԚT @!_18@j.4|Y[ Kzw ZCX% '3p]5>mC9 Ԁ,2%(2 ٧OP,{+ #4Xr)&Z(a G`qe^j]2- roRm#nٳg4mj3eꬳHQdR(CAѴOAG萪;* .I`G8 pFw tQ[qdA@D耾hb8 ȉ"㤚POhjFG}a?6Ag0vٖ}@lȆ(:1@ 󜠮چRVéN`QкccuD-V*B23A@-Z w mF|l`Q3>`^q ]A')Pb ߴ\@P."p+_{-aCFNud_:ȈGzd#G$}="аT(`U.a돻 OCH SF$HP 02*`䩀F8G&>%itFW{xQR¥h{' ⮡%|Op3AmagZDhuphhF#t@ӧ^t|b D#_ԵRT/ -Q> ,6g(8=!c :k׮;wرc۶m۷ov?Jt=hm }ROV6*B۪n '6A)p t=YU@G-R :?V*WLpaCQTh MG &*tY kA+({W~^zMUCQ!ussF*n;TG ObthВ^ X DCF- j)23AO4TcIU6Y1;!pxB t =D` EIrj ('Hj(s<)H5Rj!z's ?L{?pdBƳ=M344=bx fDEKF{;/op`g~2бc_ =𯆞74rИCc0Dd=v8ւP)E5h7b>;6_;/rXʥoWm~{7xmG7(2^mT+lYg'zvٱF]?G}1mٛ:Ůܹ+E3l N *<;h :]VbuZnhIVWp+ntpw{B7 ;7p& MgеA((ONz :βpB: oPJq`|U ¥}XVM|)YS+SY8U(UJ ogzny֭[l٤v?S =3BY@>V?ъuHAL+m#Q'jb)cxT 'Pmڨ# ئ9\3 ?ue+!c-RmPqyht4"1@q'E"@Otp,ZGLcLfLl,\ih5Ȇ(zP-uӌZmYQuzjbo.4k:Fu%>khMp]*0j)2PKWYs)PKuc#uPՉV.^< `1|D,o*xj(IPZBJC(,Yx@4 cS8:SB^ٮ]&m<(+t*#r͋zUط^۲nC |/bŠN堘/9(A)ɕ&vlyK ]%}58QJ _ U|c;G|:Cc>=0_G3iXi=_tҢr&OlT凴u3'o͘/:>-M"kU@xT}sѶ 6g!!Kh*-t_ 6p$lLZ6{7p,' }Iw>CBݩ D{+"7nP7@ĊUpP]x(\GpxЇU 'L)RV(P_p#B]' TA)@Q҆Jټy3ƍ7(]$Z@)2Hp;9`6-D@5Q&t80iґʢJJRv5d#D!D[tYET mox% GA}<1O:F`#èAw&REks]"T 17\b.:,U Z5<DŽhփ3CmC3gGny>tꍧk9sW@nu"Vl7*@:" LJ7yjSjx@dSQ ũ*P8 %F NբQ!']CY~:6yJjCq8( 6l!-8؆!@~" Cf$k̨Y:/(!P _cvyQY`@L~V"vhȘ(aBj6]cNQlS:2PYH&34V-`(!?u͡B6'5ǎ{٨{.1,U=v5kh)(dC2Q4Cka,FhjC-bmjF& :DBn?!zc8ƋS@(JAc )ALI"IPEpM(Fk(&^BEP ՌV.u9zC8ptz-$/qdds骴AJoxa`xOFN6lj3 nZw@hȁG =GF?1O~?rL1WJt X%1!IrIs]>訁F <0jQO-|Jym.6Nyu~r}s~_[|_w{_[SEYcAݟfv@ԥ+l e7teWivK0'g\f`a N]x>MBC+KΧP7j}P7 E褻K$:!`84X0y9 )A$ UP0 'H" (bHP 5@@cpDJ ]A[0F5Łt=)[X85hh `]X:C";Å[HI6%_-زatlxrK׵k]mil[f;7աMtlұqhG;58SNOzԗ-[ښFMN9 )unrscvnrmct[[7Ծv͏ّ W|cO;WF~jvnhD64m<> #wzFUY"WG;/̾f-Iu\3',KuQ SBwFm9g>s 66;sBy=sakmn*tۆM9(绂K>a}gΤqq3\±W!ct)N@qk@Ip@)E0 #j(f#u @<'BRwڵzQX&Rܡzi@*c;-'L\IMmL}OrMe?]9g[yǘ[FO9+bA}Ü9gq{Z) gnr}ξ<xoa'Mkv䣵[֨W|MR|@;g\k?X\ENAw }{p+v tponL&T5ឡorpca>a{+?UЩw:ֳO).VPOAo@a)N|d$O~< X5/%%Kvr dB4\Rr[@oS[*E:AiP#f`onP%푐2/"lP$@5  kİMcvJw6|/64rΔ-R5E 8vY5} ̸ !rt~QL G- Co ZC7 @)VhRlSc,[&TjMeRqy[ >M]tB' C`1pDcs&RIP<5O@L_<) ihP) !==(0"&F́0% y`SیEX]ڰAX* VݻcRUQ v@kΤvn?j,|Ƣk,}kx5>_uxu߱K 8ZKԩvN}uשNWZ =+_Jͥ\JE/ jw6OW{u~dZԏDұ5;]%kzsw{O_g{8f66ƹނpst,:b"Dm4WtW5dgh߬lц雏χk{ǜf?wήl3lqk-(B }{-Vhw& M{A QG +  v@'{X~z o0<4 Q`!."<1m`Ȱ;b8W;:\O4HqW-{Y&TL2! P!' ^`ⱞ\~kNH!@ 3m:T3D.F裺? @t  a^rqA( JWۡC[2'!]k ^h=A701X)•'͐ۯk-$F6+[o=[,J>s8S߬*zyeP~C NhGնYklh 4kjNQRVc9ILgд̈9tλ|p2kʡ!3;3>mtk 6z{:_>a|'dBU~D gXot6Z@g(uo5; @Y.Sh ӓG⁦! D|[(b@օ< k!(2 nTZ- JQ27 $A 4C)GCQ!yfճF?52i*Av9wnl?pLBQ"@A "Bם:h m!g )3P" zy^A:2 :"kt.Q;dc+VC :1Va TNmv ZuP+PZ@ Z5:áqcrz>cbIg5IPH 'x &0I(HA 5->K!zcƈQs,9y=!vpiq.~֬!w 6l擪<&^V;ͿTsK5A]JXZ= uS.ywms޻oTwVQ}Ճߨ[TZuek|fЫO-}ů< ||Vq_xB_ZV~i *N~7nĽ/>P=(u=8hI$/Ffx_ ǣ03(Lfٰj iWV dN6Ͱy/5ocm 3Vf/=[3b/3G8i˦6ƻ#gfyΜ]S;B|Yf́ 6g6;A +ແ8C;36膡󺅣s @Y.PD `=`,AJ=O}@\Ax?%rjl(c)Z0fV8=+9B>leTV4W!Ӡ0F;$Y-v56[lՃ ?2i5ºMg=(LZ~a/S\k˵`M=ⵚk^<'w7|2ĕm®з)ު-;߬_׾ןZzeZ*W{8f_\{}߆!Վ{2}Z7^vhffZS$fw=fR:Mͦ+. gYv&'|AЊ #o t%ŏ&dAy KRé&^N%,+;I43P!W(E-ZjMT?wmv9#HeEƎ]4f4LσF5Gh XkZаL}Ш;,.oYQt|+4%۪ TPoĊZ h84ApGGd݄jBs j@ucA>W0:`t/Ǝhp g (IP$ &ѴēbHPBƐعG.9Aa4j Hl#dq}K(#֭@Zv7 C:M^WuqYgnix_YBB<#/zE1OVmax'&ws7K퟽=~pʶKwb_=~Xgnm 6Tc.<[f'̿G.mڠd$6c>piy@Y`aGf߬R"jg{!mi8磆'55?57m5lS0 w}H}Dt̀ͅ -6dB :m@p, p4 }Љ.VhnhxA+Np2{(!tRj*D8ÇE/ @63Q=P64:V(:(#O- mPqՙp=(F+J/V*P5}N5m:3tJk ]ӽ=ʊZF-r+͛P48&pNyoBR4tv >t Dy `1| Ecʩ B (P$ERc'PC44f"8QSpqf4F w@Xf`,ϰQap` [a˺Ia0ޟ^YɓknZnӐϾՐ>l,zkӆ[CB/36y}Yח7}}EW7}}M64}m{ny|y˗|9ĕ>ov= mM!^9-^╭￲64{}mW7Yߛ jV{n{;޸JmVU4<}ɞ]:Wm|) */CLk&s5OfͶm{񶙺kl~2p-{۬!ۡOb*;Y+l3vmƩ,m̳C ~]b͸j`I; ?a=)8Iթ''v( MS .Zd壡D})]3k5p8 ume@ BC u3h%8 Zx9sZ;LM;\@m]k6ZTp j8f1jAs[CUZClg6liWCX0@p =yˮvhmظݦYnVu[HDP9u*Z"ZѲvڴyg:| _2᪏v 7o}m`w{;7߹~H!]RO:{k=ѮBtiwncÝnpKF;4оњVC9Rwhyw}{oXյo^U}^Yb٦~0e衝5~_XgkmO lʹmG-+lڤVQV=fnl3m+:f_\ve{?n]x_+_6i%ly̶ٛi0󧳓KgaÆ6t/7,t{зXgheA g ayg}۠;14BO.i i s%\(~AM[!Xs=T{Q)8m| ҄N}DC~UuI9,]-q 5t9{ ꃵo1jrbaB>zj7H^@PEwp3^G768c9̄q@sД֨)ϨŒ ̷aImJT!ZA?)&%G(kNJP<RAL@aCbHPjh32Wm]tB[0F Q4a.msϞ=?{;im۾u[0t֖{yn wx]ܝtx"W)bɺцO mf[6;zէ~k}!>82РN㎻a?$1hЇ @6ݷmUث-ep}>Ugj|:Loѯn\Ro}XMm۶h_c½GRKTҀܩ1֮6v,51![2}Vۃm.pVClTbL[̱'v kbf`CSb}m>L96ˆM6K6P{zԻf\Vی)KΡtc lЪC8C3|OpgRpEk-9 !x :voqIض`-:czN'?YԺ[imv1 oXû~xGG}||awN~TQ(rLWpCcw?:{F?Gg=vB#z9L~M| `:6Www_n{°])1cRccRN4s <dP=~Zll^*!o(lǨ,,+Faƴ͆/=۳#5J[b/l|y͖hL'Q.m9s>.\b3g/۬.;CM/N= ɄV}ϠasgZg8h p h:Ŋ+UzxnMzG^hlpRZ@k/!7p&6T.: gt1>V$G{lw,P5 M< X3؄gseN˥Wl3a |v#|)E%F1  w g5xZ (" (EH #0 Bk8(AEԌ.{-zQ`D#ˁ矂>Wcƌ9pPRrZBb'${V\|СϞ9]֜R=g?rQ/}A Cq+įXPʚ@(mMiәiRRzaʅ +ƒZ87`ەaæxe[H&߫u/lw5p+t}\ena .t)˗R._]x* *#i{lN@ e_ymLo Cg ʀp~tyf`Xzb%R-ZG8 j&\3 @ +4E Ip3 [`=h V<]oȋ:e\tj][C4tZL pꕁm/Nap(U0y &e |@ЩB4 tXc0^DBQyrj ('HjlHj(" $EL)(zrk(t0L !ι . ̙ӷoXk5S(/-ê}ߠ aQҍ+>Ҥ#M*iDO<ּJY߫8~U"Kz3SbTI(ۨc +iPWtrCo}j[ܤc"{i>s_WJ7x_Evmװb6!L+6cV ]uk`yۃ1\BKg&an ɄB艾gt۠{mmDA(O=@ЬN @Y.VhAo}#>A+|U[э+B% [p![&{e |@RZAz F ( B P< &AJEP$Ő0(bV8"^CP.6FAi^C{X\a[ԗP= Íy ؁c`Kmm)]Ro{ok}_ЮƄe+M,^`9\ŋeZ '=|p& =l`k{3:f; e+&Emtc7xn6hwonL&\V 9Sݖ#pAႢ'|AĊ vQõ[8 (i1 *|2;&44@gatWZ;qQf` =7Y:1NpǫbD]N-lMe>wlXM\ܼG.q:Br 'T> 4eiZ4w/Gpc^u`;t? 'Њ \{6lc9멂xO3_QShNxDC ]5PVA]p猫/j\XmkhhxVYigBQsԍ#x=:-|5{#|v>]Bg H1v _CO 8&O@I(HA 5->Kc HR(((!> Omn4c[Vf3~PnxmƘUaV@l3W_ut{S hܥ{6#&'9'<5|']Wt_UbBW_^ꮠou{ڠEZ5t7P+;w |u.`gN6\9\ŕstzМ A'PI ;L1 5T^7"] ]2/k …>a' O, dQ#Wek/ [EߺNКZ Rm@8w7ZռR[-F 5PPl 'ܸ3 R76 jbB!4hCSB l:u2]@G#tGԬ45 Sc-7p ["c&rД.qZ&EG 7YDpE jV'CKEAAW 蚄|'N42eB{LL+ӄ[7NТքh^[|϶<2`t/Ǝhp8 SCO SC}x$Hj(s$)t#5\M[[CQ( :'&4Q5tBle(]V5ᮘp m6TzZ~9, Ν2^X[boj!wPTH#) [ LyZaҁuZ qf @L4xyL<̀v)'Mh`4Rf[)lZ-tu5'Xwi.ՙk9W\A4T3*?8hrvqȺ ?9} ..؆ J'츃3@5`*գ&#CqAO$4`=ۡ3HT*;;h eh:X@P)"8}W| h2t Vp n<IŜz^g2PX/UX]_ | W>Ej nl3 O/Z_&|d-6h5u>W$1X 0ywqV U@P< jx'hzO #j(p*P3B9FAa5GH. 6X~iUNmXYT p?, Ιrs!rmsJrssyj<o .  Reܡ :mi϶*fjgT-c$D6'.XKтK6NR zjbm]mM ;[mڥCCu,+@"D~n(lajŊn͡r4o߾`l#ҭWdB }G;(€dy⧓$9=pbP 9y^PPZ-ym wq&DyL1 A'rRfvUm@G̢{< jv4)'+6g\Az zҙJԥ`C. VB@!sJ!zimeBbBWPwk^ t O X&44\kxju4btkKԄ/l3A^ U >lYOF71tp04/aRp=YM(jBk( ([<)$&4v+A W@#abqE Wp ְYB'HP%h~tf'A('zP+Ԣa`{*3!+/d=Cf{6WX1''w/6r=kT-aؼo©^@߈ :{˸8^CPhBaIP"P^`6A)|2eP|AN>E@yhzvIڀ]î/:6LO#t~2Wj_l ws .1bz7TG iaW5AA+suvl˕+c?A6nҥ"H$D"H$R>pΰlM6-[Zې\tEH$D"H$ f--`em)Rlc=ۼo>;iZly¥܋"H$D"H$FYӳr-Rls2e233K-ls- HVH$D"H$l*N[)OGصkݻILL$<LW}lWM;cs3GwfK3sؗD3"H$D"H$TطRl#<ۼcǎ;w9ٳYkC|r7ʽYOu+K{֭[oLֶy:g֛й溁~ߪЇ/=~^S2'gD"H$D"HdoVe)g(C)k6ۮ.m޶mv0<3Զ=3mNzuwmy~>1{Wf' /[Llޫ{hͱ'FJ1m)*GKm^0#Y.&nD"H$D\4CVlP|2nCW֞jO-7#QSj[?=P}y!R~U%Zoϱ%-Z~?W*?݂iـE2eʝ}H$D"Ht-ȥv'wX;^-JJtHd7ig޹s6o>rg9j,??{׭oV0ЪU&YVd[JlH$D"H$ʺ;l%Qwt)OL2WuyTs;:4vԷOywzQck}8.?CS&/h쳚}jk2ǖh~!Ni|ޮ>j3Zl2ǡڈ mi(pӹi8QmķB}2j^. :͡3ylfD"H$D"WK36lK{fNץ<{,33s޽߷o~VZ/snkɿSc#ɗ.]t8atlx2:N h6,SA0-m̵(KmP3Cy=\=xZ27 (![͆UQ[lٴǚ!b^Ҝjk8LAiY2:СOlۼiӦ9׹i1o7}#2Hu2iXunܞЯf5\0Nջt[!k`KYzhI]S بu#oȖmːݏCpȪF.wYk-$;y%K?E"H$D"T&}rgmE }rW eRYYYl+Tf8}tax}op{$lsCBN7Cb4-F H6,/ŨzF1xȡ{ +UVH15R֌tn^F67a_iȞFkC X)ڵț3köR)D"H$DP9[Y`=u6WT)777:::$66ٳ]tز2+]yݷA!mKI2?N7!1o%[!KqQ<~k=rZU{WݣmgQ;fS Wq6ԣCC,ڵ(Ϭ5mD"H$D?`M^KFȩ p"ۜ 9al%9ٽ{w±=wxfXڷ>ЀW,y˗hiw^hpļu!gaR7RZ!b\^j~[5G3GX6vlҮ\^f[n ㈌~\GMG94Q@#Zɛ3km^I*&aH$D"HY 缑ێS!KilulVz…&^z Ӈa_+cgCU,9lC3mۆSl{4}Q[kuӴ!U2}S)vm9f~ٛC՟2L5-V ~jΘg)CKE"H$D"RQ闏gy#J6gff$ϰ͕+Wxbd۷a_ SgiJ3jCzHeƹ`dT,ЖzS\Sphf0-jLqL1[17{*6S$D"H$D?`~?=ܹTG.\`f`sW)ۜ%D"H$D"џX0{NsD*~6g:3VD"H$D"O=zdggvJ*~Uuٳ_mƏ}\ /][   jM6B2dNvv>SSEׂ6E"H$D"HTTٳ'l2g6?ϟONIIMSr-ZfH$D"H$O`!jժ~*W͍OHLJ&l`^tܜ\HYV,B$D"H$\z9.^h+'&8smF]>dɠ%A:ETf9"H$D"HTݻwnnnffU~*6DǫΩOVlڿgu!m9"H$D"HTӧ2k6P!;''2xݬlsK|% ۡ\mH$D"H$V}^8¥KUƶ9*:6>?lQ1aWoݬ=+W<q,..\B$D"H$DpB#liW) )aևq ?ջa;%n? >6wE"H$D"hտ-m_ ƿ]ڰߤ GNl>g}-V|zWMFd`wڼ_lvԉȓ[싉UA 1 IqI))6%'|f+^H-[l͚5*Vij"H$D"HT"vylիUT ~TIkN;~tm."#" ]{KZu8i^ɈE6X+oݔO~iٸ'qf;fꕫO>{U+Wr֮vzZ{&|5a%Ef8---EkE"H$D"HT0`ŋ-k6W6ny))0ͧ `) )Ǐ8u*:9>vT+$xUo3mF망q틞aZի_> ۹3f̸馛([U ^/fڊx|Y$D"H$SlOT9ݦϺEFxp իUe/ [ʄr؆sWfH$D"H$*NyUc sFF&{iE䤸S۵}[Ï#%6&.$û]_6XbСׯǶ68'?E:cxcڰBmH$D"H$Vl?]R^O) )ɉq1# پu+fΜ7ߍy~G[Ϳ7ETxo͍7 bjt@н{&LxݺtP-*=VA)mE|Y$D"H$Slsjpr9;fO}2dÏ ?zlϞ7n]lY{߾CkҤQߵ;-&to?Nq2,Աnڼ}3g͝?rAw3 K}r{sgx1Z~zsEz7mfM{V  w"44?g* `"H$D"HTfCV23rsG'=r"<<*,CJ_7*5֫_s}l5kLҳSe˖!<~yЬ^_|SN^y6D"H$D"QqlC 6WJIہ^z^~6).Q#Gvڻj Xu򊡧/t&U3ȚiOR}[.6O~x}jB *9 `8kcЩSڵ_,]|RagΜiYfH$D"H$*N99J9wmVOXBff{}S00G >vݦnYCqg蛹So42l\mNy mHno6{𸸴8lZ>%xff[fN \TiTRжڜ%mD"H$DT߾`3egfeQ_Ŋ#bp:XQqG/8@Mۖ,}BW~fxom󷏦o15vҶiӦ0m۶rKAm3`ez9%.K*]dIg[Β6D"H$D"Qqw99dd> ̈́yξx?lsٲex !!eZQR\#'N:rt֝AW͞3Ѭ)'glmiG6j m]f=>9pfs 7]te`7<4n@dmH$D"H$Vz>rlR3陧f^x߿_ҥϜ9fjbɓ>mr|rDةc;v\nӦqmS͏]?=E*f|,l3}HNz %mD"H$DTN] =},"6,2.'|ODѳg=zt}e<4}_M4aφ,6Mo6Inݺǧyov6̎>q;`J46`,ܩgɒ@``BgwE"H$D"8ն}甴c'8x$"x䑰 +oҥKΝ;*ڷozx@/iÎ͚5gN t6t79iB^Z2k'mz͕*UjѢŇ^SznɇÇ;XĶ͍3`f6<3js)nH$D"H$ڴ퐔rzhސЁ!"e甯PѯDpڵk۶m6m'WXa0K>mLdEK zϧote[fΩkG?mSh+ F͈+F*,m}yٲe=;,]|Rk'׆j+*K wE"H$D"8պM=xrY˕o%3VZ6{)).iM33[φ,3=c%MhM k0odu۲|uБzfhǖo_}͇mz04XXD[ N{/M{vyu%mD"H$DT%< za9z|뭷FGGѣ[n;wn׮]6mV\y=>|6).)޼aG?z$&9" 5%!Ŗ_d|Y$D"H$SmuHMM;z<ȱq<\vvyn-&&O>={ҥKNڶmjժZoߧMKJMU|Y$D"H$z葕J:U:tfՕmD"H$D+^zegg18uŪUm߿޽իWmv$Y$D"H$훛ŋOuֱcvڭ\Rl#"H$D"HtES|s&يK.UVM0=zOhG?ܚH$D"H$Dz9ͷzkTTH΋D"H$]0` r-E6W^[nԩS?>E˗/{mD" ^"H$XlDNanݺ5 ߬YRJjD"6&H$D"g6oVm#""Zj{5o޼iӦ5Zto[-"H$aWz̓^AwDmD"o4qM7tSxxxf͚4iܰa ,Y"D?mVK͜@lH$D^womnܸ1~w ?eggWP!6g&`WD"ѵ栶~m?ma,YKƂfNS Y$D"/նmۤ&Ϭ/` l/]TnH$]k6[0d VdjJI9 vɩ#@xJRp3dIa`sq&H$D"g} vޙǮʖH?5jjD"Um?^8oly~rRAWe~-fNr5F47a]B!ri֣`͜F:htMzıf= mD"Kh2&6v-6o2زe֭g32ʔym3)gnڴ^ti[-"H$6NjIo1pͼc8Pcsp~rRa)^+SKj9) pN2fAW9]ezP@lH$D^EGGoذau֯_aMϞxL< 4iҢE+W>cZD"HtumVmg| j-ж9LkV6p ΩCӚӚPzIVVflpR=l2w(6I!啵ԉn;h\$D"Y͛7Z~Úu*ۼA漷 4gnܸqfZjzjD"QTL.UT%lG}oo[Dׯ|3zTZ56LibfB*G]fN- c=f&:HrCpw!Y$D"/՜6oܸn6mܼym=f~3{uk׮TH$y)knִY^|ʗp@6ۤ-wFٶ- Ϊ~~-(فS,MTvLQz+!mn [sۖ4s^!Y$D"/բE-۶mٺuvڹ{Offfvƍ6mڲe˶mۮ_'"D"oփmoK?\^>flmY'V6iG|dr#?+?|rMmwuAJk)m'q%]a˩CyeH"H$o ?x(ܹr;mn֬lsaVjE$Dިv;u\!^5ۜcahOs{%m.hNnCHtT ֒F_AOѽ1k6i錑LyԦyֺ,^!Y$D"/նmÇ!pc'²s*Vg6mJ_l6;P$CCJ) ifl/_n+sj`+ h&j,kX\M9]xƾ|Ta&}Kw{fNkm͛XaIdk0Vc "H$yΝ;NO?yTdTTtLnnnO6hѢm۶֭Cp$p=a[ m*pz 7SN\~1a+g|,D"޽{FFF\|Asq&H$D"gܹsiӧ/\o'NXU˖-WZU\9[-"H$W%J(_<>VKl?VIbRUDlH$D^O>gg 2.^ȶ9,,^zקwp+VxGmD"(_DK}Ty:n?1m')q&H$D"g7'''CIde6WV669((衇"D"oDƘܣ>3Ҷ-c(mD"KYm3ߜgm[n]_ҥK>[-"H$F=`XY$D"!zz!|sއO8LXd=c{\D"b [I/  Bz}BzzïWv)Y$ /6&>Hl V/][78~ҿI[\jUv ׯlnK{カ5H$]]m-Bl A?_3333Ilom>zsPP<`{\D"ՕfA"6 PUmNL$̰m馛Û6mLѼyŊK=D"Z˖-q7r~rU+f$"6 Pl9!16|-ZhٲeV>Ï>h͚5?qM$DWWζ9::zӦMsXdI_$w+U b]17ǃѺF͂pȳCډIɤdC6W_z6mڴm۶]v;vڵ *Wl{\D"Օmƣtw}`uW7}bnY\芹9PD،5 ?/{/'ӧO_x͂pW={~z*Uo;uTNtҭ[=zg˖-իW=D"6_#4mtܹxN =z?C(ss>|8<_|D"HtulhXO;rʣG&\y\|Bݿ6T<k~w)4*zxɥs.N-/zpg⎥9΄o6lN\ķ8xObbim3|ꩬC,_v߉M~Q?+hY\]g}BN-*]dR,;b;&V{nYoqA¥B^^|iSbh¹Ӽ|2>JN* >ٯkaž2)==vONSF=M ]~7x릟߆kfdϠ-+`_χWg&O@ӹNG[?}ͼcR+s2숍Ⱦ7Oky )Ƨ|.>bp rA ֶJIMٖ9):ꍲqM$DWWζY=0';g򸉻M~ᇟOѓ[b8nvp>xشH9'p!*Z˧;?ŃtEZZz)/ ܍)uf}ꊁ@EsQ)c̓ +/hW-ʢe߹. h銫nɧclK_~6lz&Rr-ćaz& ,$*h7ʚH>\`Aɒ%)Ł8xYxVZ-X`+!xxnƎ;rk kkZCp@[v=z0rR%!Ya֭02\9m%&8xC =rĹs+TbL<=zǎUV=D"QjW秢?_V92s}X?syz|ڳvg\`˯Iι@^ά^#ŭwN+Woѻm={{<-CCC͛E&M; oFkG |8yԨ_TG-F?T]Cy…XDЮ6!!!t%>#GsԨQpq9PFFƤI>C$6hݨQĮ;O-y"|iM ˩o_p9ѯk ++ ͂ di YZMHL޻/d?xcY˕ȶ xaÆ+D"4j &`Pt6ԉLMTHۼjҨqk2Of8raOw̺ :]wg;Ξs~[ą=;Չ'=MznӦ %YRjժ km}w|E7ǃtm2e_no\d RNJ ?-GG7};@ssq?X&,IU=8Af:Gnqu]/ 9ʛ] |3ZA? y={;d> Ҷy+g>SMts|8 СCܷo_<%^pb} vED0MlhS2HKI 0*)Pm+"32~4'A9+W>\oJjŊ7|3K.OcD|8?˧9ͼ /go֭[SbDDwߍoqŔ Afa;`lٲ7t+`;**Ju6w5mWRFFFҮXzj."> Vv 7ymW-+l¥i9`'[ K/aת t6g_ Y=س>Y\G=RA †aaG&MA_~5!6.NfrZYMrss-ZMmPٳR67v~m=|x=֯{5qSBW6 7;3XQ6[ls0dͷv[ll!C 4`>}cݺu>x"u=*lӋi&lrsPt e+`Zw@MTۜq]Sb2& ?56cma88lz̪6FDD֮]{ 7Й馛V^\A"++ X)Nĉ[n={K.!Rf͚O?=hܹsTGWv7Mdccci>[oaaFa# r=:9[_ЎRxlsƍNp 7 >Go_f\`G[2}O||Iٿ-c`6 O͐oA0 5}Enz_ŋXxaWXόjʕgs[6lط~_B3;p3gPBl Dyiqiˡ//q~RJ,Y3G?_m!9%PCa>z8,h6|ͧNر# s[E6mA 6'z=aҀ@pۄUڵj7kڬ^z/brKj8gx~93s2X6Y?L;t`Jj꙳gd$>\xϜuҼao֧wΩ4^lْܰaCJ_E)إ.+f0c jvܠAwܹeؤG}Sytl3< {:˗/}ҤIѹl.&%aZPEhv, k.=KA¥mԽ;6VYf\nP Զcǎ $mUw - g^K=тm>4ޯuznCN:uDPٿ5<{h\`;wܲo{w}RE!;6=3N?KƘF\SׂwîptsuL>ަ{%K,}E> ϣ#L6>>vK.]D3gδnWT6  <7+ᕼoڊA_3>n m>v&mYrѥt(=7Eh%t`m-r|PhZZ C!l3ISF~\Fwtl<֋5R&HY&TαcJ4%3W|վCԴcO=?qxX$lsŊ?L35k^z"!NN9_;vfKV~-f&q:9Kqِ ":./y`upRANwMkՆg%SNpm`zl剎 X6͚+W36b5xڠϿHNL<z76_ߟ{s»M&҇=z=z xo7>;&zynmN9zؼUj#55uڵ˖-KHHsԦ:UXо扴Myܹ/{we˖5k|0f͛7GJϞ=}l3}%n3bb \v}#~9+W[?]zucܴ{fn3l9?5\pimS4)}7?g:gM׸m7 61c.̸H~qqqmʕy[hk5h`ɒŁ|,. ,pY 43z90i8%pJ̀)̝Zw*ls6waNE 5l 7pI̠]v:tXn<@OIᕇlܦC-fQ*C:c)btTF"Wj*.`ĠA6o|!Ca׮]wqv^/A n4f\6?W߉?sخw֯z^y^98deejժM6cǎEN?8gSqff&2`{xH~WPv…\W!Y\lxelh3O}ڦm.UW|ձSg"NFGDE?#NF6W2ms0wرk׮6l(]45,+aV5֤I5&8wc&kVsqAcr9IU ĚMpڐ'~!Vy,Y^ fvu Ÿ\%V8K B3C?t)ܮӂװހ~:uD~12zr=^̊+UNX6ϛy/u_9it]v|wM6Ķs طoR=:mڴS>nɒ%u06xmsaq {Lm|bŴ\JOW]]sw;OԾ;qf䓡}CիoٲE{f5qLn""">te˖\I&b%pŲVG閕ff>>]S.gNFF-NA1͕6:u sNFs͏=5m&4qH7pms;lVz!wme2QQAs3mv^^P1oӠۤ5F߅A.fA TR/bZ9[3[ 8#4Aezeg9&l*ۜNC .\qP{T}:ܲ]#Y.?lVM޲郷{af XgΠNmqEm38nޟ{kSP,;8'9ytvhɏǏ믿=:wͥA'm]NZ칠޴v4W ]g͗δhr `13?gKY緌]:[nKoߊ^31S5ʫ*['O=Ԏ;g5jԘ1cƏdɒݻw_`zݺu[, l~@cB͝z,'R\{UgeOEF:Er0̠K.=z۷֭[˗/OO1nlo9E%=lLwƋ)Ʀ5l9`&RQ巕%ˌg-"`ym],/ҹsgw1)-~AJJJ6mnƿů# ό\Gl922:J):*&::677Re6wܹ[nxPݻTTiV ʲaCcm5Am[ݢX3c[Ub [Q巕%KqY \hCp^5'Cq3a O?|]\tJZy"ºv&lܩ@ x'R`m&gیGCxa|`{F51~ Nu¥"B^54(|{++N xܺȽVq|xnk74"{_cÃg-8x$==w,ѹl.6-qҡ%}a]ʋ:Aꋻ>[[ڞyt ץ ]qB΀R#x_q҅g,`3Z>. ́}qg_;o[zʶ7EfܦMjڵƍ3f l3?7?_UmݺK~f7{@l dٲe=;,]|Rk'׆j+*K UNϤG&EFD6W&یk׮ݻwٳg߾} s'xmGpڙ(/Yc:b&6bl@l-6RF"紼NC<.M(ꏑ`fC" B 'i<-RomgƢI}v<q'9H}fڥmM8?⧇ msp`Ș!'nY\]ڙvxh^f6x+zt#6_Ѻ\T)q_'0ʞ^ {wJTT ␑7o'n^xn_~1b[CXMUwAb[nI=I.怀:u^ܮp|=p{o;_ĉᙟ}nsڄMζ|J.<[B[|KHK^iA AG֪Ocyyn "fdA8s oq(L~ZVv,YӔw"b '1r~ТEzbɽ{#9o_Thh̉99OTĶ^5m+VsnuoU齄wA% !~:G+vLU9+-wD)h0eʔ!L.ڄMζOAAAW΢bnY\xѤS驼S<7WTxB!F(8E׭[o_z9pWm4I;}[Oo_ùywް4hg}srKGFF&''A(4XL`aF<s6]yɒ%ݻw߳gTBDDD 8mss<⢘GW "B爃MAZ ݸuG7m ۵C͕+V4lstt4bš5knwoιs˗g L6zQF9rΝdfHtKl  BѢk4%){ ?lc7|sBB¸q//޵kuhE/%D,AA(Wl =p t`<_%曯z„ Ǐ޽{w}]=a`6K `a,u]-˂  ŀ~jܸqRR!a9wqGjj꯿/L>y/Uu|9TnM{Pou'N20 0 5ҥ۷ρgΟ?.6/[lɒ%-?Y:"n52'-ʨԭ0V npYvJUi؟p@x)V6"J5ޢ\ae3'N~$N 0 07GݻҥK=*[fl={C|ٮ݈\eYjao,me BXE-T3npYqvah@ l )4Rj6n=XvY5]cf6U!!@Y jmn)זu^fQ]\#wK鉮X6sGiaaѣW$oݺEl?)S7nf7odٳ![|ѫqW#}]"cB渵sy6*F5WHa --ǭ7bbb2;^땮+qM$'Noeaaj|e$3dL43y)7UC۵֔k +PP[vm>g[騑]ּe$lH5t!d?fNH>aa/U޽uiӻӧO4fs+}-=dZ* ZTܦ R"QWQ u-.lEJ۟8LZkOhk²'?RN 0 0@Ի*Pnstw3fK6',9q#0 0 7߄l,mڴ@?G@|@rݻ/Ez8q2N:-3 0 05߿?!!(0[$ĉqJQeaaD@yG=p|v|E+?~<PIKr޽ /Ez8q2N)0 0 ջ:+T d3%KOĉ JQ#9Z,, fNH)0 0 ՠA 9$:XlO:UhYN8qHN3#U 0 0L@P?yY dstt]6ߺu Ryʕ+WZu̙`a 0 0_:PG^zڵΝ a&a0 0 hՐ!CVր8L7I3oذ9>cI|X63 0 $ne(k֬f^~͛ϟ?0Lòaa&A6C3[yӦM[n###9>cI|X63 0 $ne3p#>ƍ7o믿^p!**3aće3N.]2dȰo>a+ >Ny l:th:uϟ%KjwL6m۶S.^(_K/cC35jTP!ܹ(e4: Le34 6mڴe˖~e30LRadUb*T?P $4J&iժm۶Yf-[%Ȉjl_Q9{,?~\zuO?tرc_x>M8,X^!bvcyy뭷.]?Δ)s=Zp^zPׯJRҥKGGGw5o޼fds̙VڳgO|X63d'|Ν7 y[B6_xfIX63L2`ݺuSx._|ѢEoݺEw°Μ9ڵk !w!l P5yda;.A1#cbbD.9rOA _~%/"lҨQ#3Ym_lY3Ym%K HYQu 6t=w69u9r(P;Cޮwk ]|yTTTLG9֌<\Tn\ƌK(ѯ_?*?~8vTRB {c8|=cYŤlVa0I6?QFylfVe3=3g 0fI@B!ٳ(uͷnB&M!,iӧOO>44t̙٨P - ۵kW~͛73RNݼyŋCmB(br޻wo֬Y[iӦ +W|Xq=(?vXzhU6CC@ I{W_}E]ڊ)1gΜ+WVR?QZd O߿OW^SNݸqɓ۵kGU0pBd v #G+p]믿 cM,&y-ZZ4 D(:-ӧ_bS a9}D­[ MNzȑTE.\Ls=̺uV-x{Av"8ѣ-ÓlΕ+0Wټf2QrQal۷駅ֆ+ ÇXfêP2vX5S?lذp4#ׯ/=sE^~]²a3ifͅ 6}:N8qd&!,&y_@}͝;tPVڴi%m۶'Ν;k֬ǎaʞ8p@1lZVիT̙3QsΝ?O?I6)SF̫lz(zm64 XT0whZ|cW ?}toI}۷oGʗ/U9s&(((88D7X6351%ӥK٬8 q5/E.s%"IQ=9}0Krrjlf3fةS'w2C:uԩSkuOe=m8Dرcr>n30A C!k֬I%6ʕK;7(\^%͌> #La)ٜ>}z )ٜ?~:XN$ _;Ve3ä=zTbEH/ui<m۶i ]}+ G{I˺L;#˙3g^ʕuBIjʲe˰+W [l.]tÆ amذ &l%K,UTll,Zr f[b4ЫgϞf.ZnprlfkbJ6gȐ޽{Hlv ˉ$=9}0Krrjlf§~ ݥ Gu;w.SLtC *ThK,ٺu… [ltsвuݺu[zI;c mbU[l}H%J6n8gΜԩSXs neСCSNծ_o9r䈏l1lMi&}嗩 -cƌ_5ȑ#[HOz3h?sL7+j9s&mڴ]v%%9c5X63LJ^(+:G@ :y ԨQ@ҥ˖-[*UƎcj@ˮ]cǎ9s|ꩧ6lxq%ܹsPCk:СC[~3dPXW_}UO7CaJ~:`@G6cq e3!hР;D/z,n޼٭[|eΜf͚ : V$7V O hڻ=P56ZhWu UjE =08A@6ٳg®]vyҥ"Elr"InON r-a0e30(ea<͔bYf޽{IoAB|aٜpe7.<={lv2]vMF51j|YqQLYf=~x_xz ?ŋK._٬o$TH-hԔ&A](m TArQgQKJZEi$ĄbƟfFuw:mjB^2tjɋ(S:\+R"o+'=?H9f%ã@+AP uK[~B|aٜpeD t7\ᯰ욌k2®ɈyגS9sG}gj׮] J*o,q9A'bOjBKo<0$5˺oVJoYkfN).CsފWQJyQx3{U[9y}=Wz٬fnc=ԬC6ylNIJY"X6K&#욌k2b5B+k@]6gʔȑ#UT\r%dΝo٬|Fa!h*W|7aUnF9ۓF՘lctq JUe.jP嬖<kêÞAiڛcjCZl\$jF][jmT4m"_X6'\b,,]vMF51f5.3fxС( 3g,ZyϣǺirGo#BuIٻh\:0 ye]Su_B.iN7?o4.(/tt\3o {ծt~z<k=Hf=fkjnq\vW||]R\{{x!ǭ@ '˖-[L0>}zB%!6dJ6+R! Շ6G*H{ESiZjTf"9~@ރ8tLd}l'{{7SbͩtN]iI#-quB}"_Uq Hb,,]vMF51f5.ӥKw SN͟?66흓*}d:Vkh qYQ#~}"_Uq Hb,,]vMF51f5\,YD L2%_|>܏UDSsRM'wnbq:a*9i*<.]1#<k0,n+(+WGvk:u}'Oy8%Ğ qpDKb=>!D !IJY"L O<9q0dBad]v lZY9mڴA ӟ9)aۓ|ABFW) eD6mf#FPF5ad],Vրr7muH0͜(Y'S@f07Tj8o߾¶<&#욌keP6g.Ydhhi|*6;wc-=~s)aۓ|ABFW) eDpD; pP(#욌k2®B+k@yl&\D3g-ZԼl~{=~|ٔQNA !IJY"L YdA&MpP(#욌k2®B+k@ylaaagF fmJNHdݞ> 2*NI,%LC5kEBad]v lZYd3g @aaol3qÍ7ЦPBe˖EBad]v lZYd3^|jժ-\yQ.rHlnON ܱ,%L@mDB`d]v lZYʅl޿Rʖ-ڵk/Y$""¼l9a3,`ܸq,z=6/b޼yEPF5ad],Vր8RLrUTgYtidd$fa²Y" wF:dɒEY e]vMF5Yhe (͡e˖T\s=lٲ( 0eD~y뭷RNMUAk2®X6Tւrl._|*UX63 $,%LܰfpP(#욌k2®B+k@͐u凴af07,^m&M׮]ֆBad]v lZYʝm/W\ŊiH0h 0eDf̘6DٳpP(#욌k2®B+k@l.]4rTTTժU.\&l^7Džp=V3+{8Z٘j!0` /vTr~NJCB ⅇ0)a&nSNMo8>|XZ e]vMF5Yhe (%KrT.WJ͛yd3|I^zm?MUٜFŮ6j6,fw,v<ЙCOeLF5kVO{ΝpP(#욌k2®B+k@l.U=9{ŋ#x`*>R׬M1}ab٬5{@1ly ðl 3qg}?#G֭[EPF5ad],Vր8\D ͡P3f(\0f#r ꝅ+Fp'Smu-ڥvR;%d96`N-ǭ2@8:ُ"k(Nz0,L0hРsΡUDPF5ad],Vր8 Li (;XCi]:hJnsqVbm9-+tט*ԍh,m ĵd=ScKvj{n(1aﲣ Mwn0 f077""ʕ+hpDZ e]vMF5Yhe (t8pRYԩSϲ+D^\fFp jۊ5vټZYz|>y.iZp- MjӞ.R_[Sx' ò99u3<{=Q3qkVR[nyDPF5ad],VրrlN>CU(S BiӦl6 .+Ni0]e޹6N):硱K:.( n07-mVA!By\iQO椥v=zD07tԩf͚<@ӧRkAk2®X6 vٜ1cÇWXFttt ʗ/?cƌ lV"s^wõkYX^ǹl9jzN-n(sF=tBn= =aR$,zh:uj׮]fMHʕ+Ϟ= 5F.ɰS,\DU{hmCRv׾qv n ~tާTZxXLIl [liܸqqu_d(U?~|PPPƌqSFf͚5iҤB Æ B ͛7oذ!2ӧ7nZ e]vMF5eٜ-['N4j?<Tvt ֦"lI9^脓q7t q\k{]\ݢrҞ+TQ*Tb;5vN-NCi~'ZD9:=ádʕC YhN7Z,l~aڴi/^L&۷oڵyQTTԍ7}A'֭۵kWdJ('PʼnA䄿NFk2®&#]Å/%~ݽ{yrʥʛ7~m4ݻ73իWGFFlf ,lƵ oF&6lXhh(W\IF[T㣏>ZfϞ8aaRbes^_~ԙ xH?~~wI<֭Pfa²9!]'mF&:thҥ _6WT Mdʗ/?`*8|/EF5ad])ns׮]/^}?5ܻw/,,L>@7nXbE 0esBigܸqJ7@㢉 doA!"'v2]vMF51.|)Y6w̙3k׮]!!!B6 l0`@7mTR% 0esB͠rʽzLC!88x`ݺuBAk2®Rlnݺc),vp%JwoC37nLB A94&$Fv p_=%dݻ{pu=z424M@O?:tW,Y9s 3qCB>cdjժ+PPF5ad])\67kӧO1cLYf]~=((>6x^z_>Fpbbb=zlk$('vL (L9lڴ u-;w/^qiѢŋ/HBad]v pLiO:u3ffz6lظqK'l~ˉDN,R`! &M|y*8&#욌k -Z9rdܹ,Xƍ!2gΌԩk… 1$lGItcٜlqCll,L>W_}ZjTnq8(vMF5a@ ڵ;y+~nݺe1=SLRJ+W.^xRsoiȪ8‚Kt"-ʪ#!kՑʕ9D- '¸%tR7@%tWes²Y" oFy!GGGSPF5ad])\6w oݺ_~ݻwK.*C ,!22r֬Y N2=*]+UKXP/Tŗ]i>(ѽ_FtF\mwK%S쮊Q(lNPX6K׸ʕ+h(}-[-2®&#HᲹ{/_޳g^ /SL8pZ%,,l HB|=CWˑWWKF5tQ7 wY\J ;\oe[0ÖesBòY LLŪU8p SPF5ad])\6ƍ?~AlllDDDt߿{-SN͗/_RwÞ̢.#aߊc3z` wkOյhZXQK8t؀:ho: 1:_= f7O>}FB}  Liϟ?doΐ+7yw@tFyeĵw[T*Ck%ORA w{7q=!c)]|X6'(,%kܰc4سg#G̑#[ e]vMF5esϞ=]v# GEl,mVe3gf.] *T9&&? 7l2JƸO`ul`2;/kM*ĵUrv٬]CcMSh:YЯ}z*8&#욌k W^yٳ6lظqM6oތݻwlV5s2e̙T=va&,;s%#x)v6lq7t q\k{]\ݢrҞ+TQ*Tnשiۇ4Mg͢~,{cٜlqhpI'NKUVBad]v pܶm'N,SXbŊ[nٟA#L9,,,22*i!!!I%ܹs'fwulTgm"֔(톽*69TN[8Sc@ ⺆kN-Oz(@b!e끯eDxV^ΝC~?z􈪬 2®&#HᲹUVG&,Xp7n(Q"N6.]lٲQQQ5jXhQxxxK $:,5nX|9\x3f }2&#욌k -[9rd B6@'+WbŊunHB|EN8%rbٜаlC-^ ]<߾} 2®&#HᲹu(;smʗ/_Ju.[,222IdSnݺuʕ ЫH,dw{h$,%k0o<4EpP(#욌k2®.۷o`xŊb3k}ɒ%l.]tDDDTTTժUyT#$w:w4&$Fv p_=|WIX6K׸a֬Yheː-2®&#HᲹsϟ߲e͛7)lܸΝ;q#iZjI+S'O3 8IQ=y|0k愆eDxNZ ypP(#욌k2®.{qʕ={VصkΝ;cbbm~!ma f7L4 hҩ#OQY e]vMF5es>}nݺ :8qqزeƽ\L}N:K,Afa²Y" &LH.lقƇ&pP(#욌k2®.z뭘˗/,3 l PB.\e30La,^1cdʔ۶mC}ie8(vMF5a@ 80zqTTͥJ XyJ,ɲa&lP5*[l߹s'ڵL+Ak2®Rl4hУGO˟??:ƿ V ]vMF5e?NsHHȴi (a&lqÇ~XH?~7nHPF5ad])\62"Yd3ifԩSDza&lq(4^f VBad]v lZY9]t4$ ̲a&!`,^PF+Vie8(vMF5af5.ӧOPπe30La,^)SW\A%Kie8(vMF5af5.3dpҥKC|SN%pP(#욌k2®B+k@]6gΜȑ#5jԨVs*U_`Aɒ%Y63 R0nܸRJ JZ(k*O4L+Ak2®X6TւrlΒ%ѣG}ڵk׬YA@ݺu,YƲa&lqCvp͖6m &pP(#욌k2®B+k@ǎ{ի4hlٲ 0eDxZl/ f˔)Ә1caa8(vMF5af5.fz 6lؼy|,af74mڴQF°ٲe6j(aX e]vMF5Yhe (͸7VfnݺUY63 5nhР°r=|paX e]vMF5Yhe (M4i֬K/ԪU_~y͚5+Vd0 @X6K׸^z[͖?O?TBad]v lZYŻ$7o޲e˶mvqڵ,a f7ԩS_VH°0&#욌keP7$=ݪUwyݺu*Ub0 @X6K׸F\ f 4h0, 2®&#`,es̙!4hЬY3͝:u 0eDx*Wܭ[7al0, 2®&#`,eSO=u^xq-Zh۶m֬YC1 5nPBϞ=a-[o߾°0&#욌kePn3f/6iҤe˖[^r%O@0 XX6K׸!""7UіBad]v lZY9C Q)F5mte˖e0 @X6'-iӦ-}^ҥK°*UԽ{waX e]vMF5Yhe (:t{(:u˗/0, 2®&#`,{?fa²Y"ㆋ/vٲe¶ن;wnaX e]vMF5Yhe (g0 xl]rmQFe˖MBad]v lZYY63 $,̻gΜA5km3&SL°0&#욌kePβa&`,qɓ'Qaal<Bad]v lZYY63 $,%8n8z(j7o,lmҤI(PF5ad],I*kA9faăeD B*lmԩ(y𡰭 2®&#`,lfIqaU8(vMF5 2{&MܮcڴiOjeP.d)òa&l/ȕ+0dΜ믿UPF5a, ,hTP:ۢE_]-,[KB+k@]6K3,af0 'Oa8ȑ#ȑ#aU8(vMF5pEEj۶v}O?}5$.ӧOҥK:6m0 XX6KqK*e7 UR~?\VEx<욌k2"k4/E;;6O=[݋ Ge3Ie-(3:t(**|fΜ#i3 a7|ᇸJ '|" "W욌k2"k ɼRJoFyݢH̙3XѩS'Q*f5.8rHիVZJ s)63 a7ಊ0-Z>U+ vMF5ȵÇK_7>O f{䉢Sm۶-\pAIƲYhe (,Y;v矯W^ݺuUXpaRX63 a7{%J\VExW5adDh:}pQ r0`X/k2d0j( GePnٳg?yd-^zf͚5UXtixx8fa²Y"DTpPt~[VEx5adDڷo;#lkEłfZ|92@HyիW\?j,VրrlΕ+ӧ;wܱc /ʕ+###Y63 a7?<<\"""|MaXY]?`d])\Qo*<&!oZ{Ǝ>}zm,?j,駟>{l^z믿kݺu[vm X63 a7@+WNp1U"vMF5µo7 k>5kg}vqQp!BI`lZY9OrvMF5k ~i̸ C5^d3if|ۻwof0 XX6Kqеk*UA:uhU+c>rvMF5k%J ԎOqQF 6bƵua?j,)r/f͊O7hР~/ŋCBBX63 IȱcZh1eʔVZ=p* b>rvMF5k?3NSNq̙3ʕ+- fhf9sGSNڵkժUf5j̛7/((e30La(lҸq ҾdQ0~x\2fuVQj5m@͛7h@ނ#'`d]+/}]aנp3f%QcL rlƁ?tr0 *̚5H",a@rJ\-ZsM>Ip]ׯ_,YΞ=r  @&P0+jU19I&#욌Xֵׯ㼍}Ǥke˖ݻ0$Qc # N6#8p@pӦM+Pfa²9dsʕ{) -,,lРAo"E/OgϞO>:bcco;O> ÕMnZzQvmaXDN+d&#욌Xֵ?𩧞:y}Ǥk87jH`DzYUq9]t/ Daԩg0 @X6l~aڴi/^L&۷nk}Veو3a& .)Y6C0?nd3})+(QE|X63 vU6072aBCC`,m_~୷ފU1A:5adĚ={6s¤k&Mʒ%˽{-m& Tb xf0 pX6Wټm62СCK.- 1~N:p0paXWvMF5k3fIʕ+ mذےk*G\b_!CI6-ZTUΐ60Lappi!m37.<k֬°*#'`d] Fa+V J2`5K(>shhhٲeQ:o޼ 0eD ʕӧ0@oO^V|$욌k2b5/U&x`޵ʕ+wM2`5͐111Z$氰ȪU.\0<y<ҥK###Y63 a7,Y9s`\hmIGN&#rƍ2}y>B C̻eAy[n߾ ʕ\s=lٲ( 0eD ŋ`ѢEXڵk¶$#'`d]K6cƌj,?0 pX6Kw ('ڵk3E'#'`d]v4iŽ7]q‡1Z ~#G*;vĉNCS4$,af0;l0a8ؼy3UVؖ|$욌k2b}]u/^(xc޵ӧOck׮1Z oƥKvܹk׮ݻwٳg޽߇4& /_|*U.\Ʋa&l!W\#F~a[tk2®Ɉu\)#w : >}-yRl~Ν;y-nz]Hc!J, %]Bsd0 @X6Kqܐ={/RvڅEWؖ|$욌k2bh} ;.#G1Z ͯSVXoݺ"dsŃI9GDD̚5 %,af)0ns֬YG- "-OA\k2®ɈE\O5jԨiӦ°<]K_l`3f̀(駟^ 'yc0 @X6Kqܐ.] & Ȋ+mI| ]vMFڋ/ ;@ZΝW. c޵.nܹs̙3k֬ӧO2I6a&!`,qCԩ{a8~:Yh-OA\k2®Hd)kNhh0,yRlԩq)_`!g̘!N.K8U?~ 0e+vڷoqEo֬>|H%IAjҤIvp]+lKSP(욌k2:uJ\1bD\ay̻es.]h$˗/]t .q}H8p3ӦM+X fa²ٕ+₄ɓ'3eԾ}RJ׏j#i?zU'O}*lKSP(욌k28a\эpw-=z;wnƍ6lXnݚ5kVZu֭T2d8x`Br(3s̢Elf ,]ɞ='1b /̯ZH2)1j ~kDQ@5DO._,lkc޵.x .od֭w O)SÇWuf޼y%J0/9qĉ$Λ(ٜ-[cǎ!S^=ٳ0)IAp}T͘1C2d0n8aXB`d$!\kԨӧvG-!xgqph|r 9x𠰭yRlׯիW_ݻwϞ=wH%K,ix,Yf2>Eu8qSMCRlF ԩSӧ#=~8J6o\xqMB zy֐5kѣG Ò&# Zԩ }EQRG-`tdo0u1\;r:cU̻eoQ8ʇzArRe˖ĉ͚5kL-VXɲ'NyӐ%={?JӾ}{'!q۷Q5orH][~=VZҤZu\Z|r駟mm̻e!O+@#C3?~\9sW_ҥK׮]wޣG 6TZe3'N86!)J6Fvy& t W^EŋxC %)( vMF>y__(M  NHU}u-[lF1Z 628vѣG>,Ε+י3g_{5^zg5j`̉'NMiHͩS CzҥT!.]*l !!!%5(vMFZǎk֬ bܹsSaG- h53ν4յE~°6]KᲙ;{ڵ+&&lٲB6C0={|7etX6sĉS`8oBd3d'l>}:ŋ{*%qÅ Pb akHIkP(욌ܵ^xYfL6 S.*O|dI=si^I4/^DWj׮ݡCaXpܭ[7Hk׮[n͚5#&yfHHӻMqR .W$'|FR/N3#%uPPPN TTj*l UVڵ0,ADk2XhYf!Q}ca MqIJ%<֬YF ژw-W^yرc .\hт ΝSK,iIɓhh ::ڧ SH[0˫HN4 \4Q~zak]6°$H`];t[nE>&&ӧS PjUQ;j3f E;ǵlٲQgnݺ%_]ܹsՅam̻es۶m<8uiӦO?4iҤ+Wg?;qML4o|>gh8 Q5Hifd|J*dV:w`34fl)_x0)˫H{]@L4 Ↄ/R aI| %]; fkذO?cժU]v\Gr55iӦc7,Yݒ3ÇN,|uoyꩧam̻esV7pr -2dȀș3g)Rħ =zt;#Q̚kI!_^fFJ~ܹs'P .l {9aX_B`WA`]k߾3<# SN5j />x۷ {nQ/:j^ٶmh~ԩSݕЮ} v"k4ϙ1Z ͸:th)S\vDҧOPdТ@>gh |+#Q̚kI!_^fFJ~w}O?0݋?S׬YSנP"صD|paǛ/lR6o]tiaxҥ0a}gQ/9jfhѢ>s {*W5,U*a'"tRt5&$]K'N`_-Ydŋ-Zp7P` Η/OC6LaNU0mǿno#4U*4 ͓kI!_^fFJ~}̙v}yKN ƍ^T) vBΝ;{&9ʘ1c. *AJhQoZŊ/31axٳpmLԩGQ/ tR O3QLHU$kgh#q;ۇVJUivaij] Pv4[ҮEcbP)k+~Ŭl>N]L9a$E43 ^uT{=h_BHᮡ>˖-7o3j֭[l.\\"JG͜}.Wz HyH*@|0H"##BFS$Wנ閜ByRl~wnݺuJ‰'bcc˗/'9 \NZP!34GnĆSEAX&Kd]9Wz\[j &*a l=V-Z٬y@[h yk˫H{Md"^f;|5|ᇸ ÒJD w IBޘ9sX"͛7oذ/E^z%Q?xΜ9-^X؆SҲeKرc3d;t-A'SN}>˛70\Hnܸa,*rIyRl0`۷q>Q~6/^DK1cJ|WQ~KeGj =dZHyoNP RT^+fuR=N_x0)˫H{_C޽kԨ#G} nؼy3;&l C͟?0,A,pה@Ν;wD!Ey2dHMJ*uؑ(EQ?xie˗QtRaRv:P~Μ9XdG]Kht<~B'k_56n(?\ yRl'Opvt'Јٳg1d3/R!U!Ǥb{іyo:*M3)Y p\rt3hN &~yu)%|?#\t 6l@0rH#& ~\;{,}͸U׋"CuVbE|=QjHܹ?sdoM$GoAǞC㘘#Y>tkCT7Q۪yoƭJE3ۻǯ5N6#өJ#L9^3LD43RJ^?~A,X5۷!=^]۾};ٳڋR<~nCs}vDgZl&L@^;WS%2LfϞ] @`]/+V䷚j*ӕ%]KᲹSN'NXt)v(7o 988844L2ѵkFH34A6KD1k &~yu)}_еk{o͚5.I1-[K. [Ì3Pa[?BYk_}>@؆|xumܹhv5ZdDg4 e߀EFf~mnQ5k„oڴ)U4o޼A yq)al+W޽0">%2ehjժ, gT"?\ҥKժUaa̻es92k֬ ׯ,YRfzBlٲ}Y(쨨(34wށD1k &~yu~sΝ+/_>""~1,Y*̟?Uo#(뻆!lC:w{u-uh;i$d?~,*<ޝF>G6_J<>G }Ph]$ 0%2AAAz_&0$B`y;}ta; ., g>jZUޫ'Dõ#FXaw-m~Z~a56p;hBrElwٲev@{~5-8c!¶~/)0Ib޵.;tpQ\gϞ=Ka̙N6#€QtrUTiaaa&34KQImytĉS&4X|ZdϞ!0oߞ#GaxfʕC gyܹ&M)ޯ_,Y={V) *^ nUȷzxɓ¶~$M6 Gx}ĀZ?~+V(J= ͎9BpcO?z(uS'uVreO:$,u+fG?7nܠ^Gw׷ кMyfOo3[lzuwgcp ܽ{WVżk)\6Dwԩ˗/[lHŊ .U˗†6%0a&tT43R;f͚u2.ݻe& ꮕ={:  "(ӧO#1}z޽{րUXVj ;$A㈃:u";O<>lҤI6mDh~dcr1n8#6l=Ѿ} R~ݺu؄-CaZ;j߷"s?sdjAȋ E4Uŋ;Zf͚jՊt*TG_ JO?=x@-5W*>5aQdpmŊٳ¶*]Å/%=zuV\79phѢŋG˔)3sL&1 ΓjcfFJ~ۦM֮][ *fh\/^L&۷/֏̥K _\/މ>k2{l 0 B)V6ʕ+{ݳg.111e˖Ŋ#\TiӦ.\d|8ayRmH|{ܹ *OD%KD&::ڧ5lo Ν;˗/Y\ &Pw駧z aڽ{Rd!͘1~/쩧>|(q j6bDM͛7oٲ%2C BOiӦI&/X_~i4 QFڵ'a8L`?ȑcر|ms%xQۿ?`a{/Z lwܻwm [(ܲe}Gu {" Q`ܸqT3<̙3g*q5jTiܸ5wQ|R+k|_mU̻6[8S8d34e|Lg/c ,>':͌\Ϸk׮onjn:QdW٬wС(6<X!Ǹz]tQ[vKll7g… Z-`ƌ¶pQ}ÇyҥKٌ/ (ɓg2>Ka0L<6iftݰa).NVuV2e_{Ww3iA@I8pK¶Ӳe#AWҤI~GQShzj\]aѧOd.\SA˖-)K/dڄ aUxE>;ׯ_ t нb alÇϝ;0G UhRwAKD rBρ<4`>(JӦMfZhQÇpcOچ  =vZ*wɓ'hBf߾}˕+gn$Z㙓h4M6Ib3"h_Vz 5=}A؍ط51!pбիW 8<3)wNf-a8ӥKU CG6D"kk)\6;o߆$ٳglaaaJ*0eʔϒS0 tT43Rr:"LW+)! ܽ{.Ż ꧟~%Kש\Ltjƍ¶"' ⋢H6ݺu˓'͛7ܹslٲnݺnپ};>{&͛E;g>rHdD`ڴid1@{܄a;:ܵkm68k|ܡ ;k,ܻwOb樹bri«ݺu+|9r䈰 6~;k/^N:ܸq%} ElB@_] Oq v{k/RVżk)\6#rIĉ/kH~+W\2ep8Y,Xd|8aX6cƌǏzZ6mDAJΝjŋrv$q_ 5. g ݱԚ5k܈7s[,q9}^khW(r;eʔ;֨QC^*r =}h"Q=;qD!T7nUr)M}ϟ3p_G]6ҥKC48AalPMno*Xŋ¶VXU{Qsː!CokApOԬYSNr 9s~'T /;e3}g͚%lg'Bg 8jUYh>@Vżk)\6ի* s}(T3g>rH*U*UTB(H3g)Rd|8aXDnߤFa75*{pFW矅mر*ZfOuJt?/A^o޼wŧTcӧ 6E}YQݎVߞ-XLyWh\;w|rcܶm[ M]-ޡBalovXX0ܑ+W.,b_ _5t]}+M6mܸ0Acccy 6kGŎRy`g#GIFN ݗ.]*lg͛[n ہG(*} #""|MaXpٌOŋO\ ݻg*k֬ǎùVZիW~s 2%0a&!<6iftӧB[? /"gΜpʕ+X m6Hh{h*+(gOuWpkPHzTTIC}Qoɔ){fʻh"Bi!E'OKPƃ3xӒ^ ֮O?-P0ѳg *C᯿J?ףʕ++F4ĹGr~_P۷/LzkzdÆ vf˖-uqħFOO9EYF<8w-];w_~__|ܹ*{ǏoР /3 . 1%0a&!<6ifttRB-X K1& px}`%z+uvH"k֬;zn*OS{ 2O8a,VڥKa(̙ޣv˘1ctR͵D$A͚5@jGG-PкF^t_lDD04 4(>Ok8`G]~ QgrF Pcӧ ;?3t\=NQCϋR aÆ͚5U1Z ͝;wm7nćuݾ}tҩrqIƍׯ___2eʘϒS0 tT43R2;ԠAȉ 480/_>a8s],/ nj)SL~-ʩ4\x I̱tu[$P͛7:S֭) >3h, e.la0qD|T}5c޿a((PO? ʟ?0MO]RVq3"z\!%]*lo!\j7>*ٲek4G&K,ttڴiGuSA;6߰9fHԺ_gĹsD ^~eHoļk)\6w qڵk!W^}֭T9sl yM4xnڴ###Mg&}:N8qJ~I Iuɧ7۷׬A',XP@x`)흢> uTI».n#'iQvd){omk7o_ڶms!CBkTב)S1cP^Hq=z# F+W.a(/f7 nƾ;SrW4h}<~kmHcQE@Ƀ15rnիX9H};W< Z'Lq).:mq@^z>03g@3b֯_lnݺ5N͚5f)B &3Lܹs)C&-|2Ϧ/E1+0LBò9!?ppɓm}GEQRСhlzPFjᩧҥKcm j֬ vo5j ՜1cɄc -δJΝU& e^/Cȑ̙3Ӊ`^{Mԩ͚5W_}% q4fƍ|Q᠅ᎆ +-l!aQ`N+WÇ #ӧ>C uR`=*4F7A%Ryk)\6jrܹ_~7-[@BI6jժE8kHUVEGGL6l~wkw}:i3:ƲaR2,+q|`0Nѐ!ChѣG+d=zDOgFN6/W^E@>{M?mxQT'oF&SB,CCVXQ ;SLBʕ ޴tw^? >pPpaR|U9hoZj^믿#uz:TvժU3=Pg ƽpըQO6 :&B8%25&]Kg .|k׮;wА{aaaB6NwS|q4lwYuE1 aٜ\1lpcډ!{RJ!`e֬Y꠲*~… wr}Z*p9 >E f6l:A+ۂR_<~8M4QQQpmرԅʕ+w,J.ݯ_?W^+44;3LOfժUi=o ZDbP֭x׭ٳgtt0\(Tn1z}vQ"jCy:SL8ڵk3g2 ټh"Q7f͚%4 B.설Υ=j }_CY%1Z }qqvȑ#߷LP5jԨqM4~nժfIͮ/0 r`ٜ\1.t#*iUuԨQ° \ٿ=. wmok=4kp1@~qapmڴiUْɓ'9sf3ʿ+$;={I""SG2eT)X tv_}UIZF .'OO,D@^|-Z_̇*ތ} ۙgϢvրa4i{aټeVdewq;ܧ~g18& Q{vaTS9-ȩYfډmi,! ==ojٹs'5 T駟І^0NZr Cflڴ -?N&m62u-Z>ҧOO =CNM G͛/ZU &es6mhiLNW. `CNZ H dݻElnuGV N0A_G [A=j< `q@%K"Eےw-⊆-| q,_}4#Gt֫WyŊIʲ9qccƚlN }$@?3alnx'b޼y=tG,n#'lN9b# a- e˰1W:|r9|0:ζ/FKug@ 9rMqFFױj*lW7)ٳQx5ak@ uP@{[۳gO{$Cy  x v%lg~z:?\lvCw^ap%t ;!1 \PڛoZ 7ȄMeÏ$^?wQA=xq"x~4o/իWU/Z\9fX6?~k0²9b7ZQ.)RD;B# t,>FN-WOz@ Ixz }ڴi5D5RO?<8~8 S3gLy$U`Λ7L-n8 q.154i/^ >rcPi&a;ի0P]'2d݊sU *ԧOa:Ӹ8Lp!o޼XL2v\LQdGK.qʙ3Z lr ;ݻ~ $ (`Dc޵.+2:::UL<FʕUVNEL6[6,&,+qf7:u2ӘVZ5v،3Ҝ*EpS{uhbBiTzsw0vƠ'N~уݎ[N{ON<@wLr@*lC:65w.\(lHVaСӧ=CKU?DJr]k~H&n`ݺuXԩS 18蒰ME/B̚5 ^x t|߅$ 5%l_@޷o_a$ɜ9sA|$"##j˖-B~|@+WΧ_spٌ+Çh}6N#vٜ!C)S_ ͛f.=z KWY_z`4|}t Et8qJesr nѣ )h=qxz?\#'7V( _~]?摢IQ;ݻwG5;v Fʖ-fwR{D޽5 C!k֬_}04k֬h2111p\w{3""BFK i]dži/[̳ k׮acSi &LTV; 3f@(O0 z17-4]x7ׂTQFNaI̻Ʋ]RO~߾}Ŋ+Q*g͚Sd*W5U _+0xPUQkrn9oe3'NX6'? ֭[*U,[o Cye^z0޽{鰰0Gfz*p9GS?g\ϟ?OkӤIFkOQA;@7ǯҥnB 9|#sƍڹsȵ/R^{J* CCΝuI]088n;h-[ I2Ҙ#G`C,_ҬY^xA3ۡ5sV+O&ם%KtF!H6;vL& |@4hॗ^%1Z jc/(xO^*ؿ>5KTh)L4x/OTTS vSy~gywE/x|#L~֬Y=z3.^͙3\ː!&|@m6'(]cٌ^6Mv޽y-P@…!LdU\u|՗ARU΁,n_lĉIJ9b7ݳgOalM6u{S+}<ջV^ kFNqBKKhFjkN3"E c)Dz#ʻκ{]Ylܹdjꫯg={F C^znGxv{|T.֍E}jݾiOCݹsGKix C *3gk6iBԙf߾}pӋǮШ&^* gze5 3/nժUt"J5;v }+onT 3/_F37[F53˅$]cٌDe3 O?t|Ul&M`B"*W}@r C=K 4r5-Çϑ#0 ʱS [vu$3^z znZn*0ȝ;OCQa-0n OCc/~QVjĈT2m4z ֩@PυPjI' գvK|>9A5#O\_]cٌ@/q΅ l!TU'γV6SPXDFM;qOz;'͜8q2H,+q(_Z~<~ .ܢ  ஑TۙUULlU˗$Mb ͛7cM6k?sQTR#""Nr,2O?t˖-[èQܾ)ZdIP&LK. A۶m]_P]݅$J>m>sLTa;0#SL65> npVՔݘ\~]`?EiM4Tll`R]Xhj]禦htgPʰaLW8]V ޽{ ?;P5QGe˖3Vڼk,dsΜ99 +Vlʔ)Vg쐵mGfOWk`̉'?A܀H{CR5t0l6Hadh._220+ZkTZJPRVo܋͠}Ej0M4'N$'BCCKkT`?X6[:u>>B{*$9t/#vB dW(իWgyu15X #vиqc+*4} 22ғjݺ5Q=A`ѣG RCh0 -O Į#7iD\zUYWo4^Q&t3{B8Q<͚5Þq;:E0f\p9# )PB%J6mZBL@ϣǺk".5͎4{na;>O.ܹI *lCl²ٕc ]BH;M1۷OОEɮ43.]:XȑрM ZX+]v%W\o{X?/v 1\*C{=m4 BttI#u_~Hppp۶mG}8jw;РE0f/Y9sMg&'_0eJ_l֊j U6;*':I|X6'W FgM\J] #~/$3ƍ;,\؎i/ݻ\3RBa ;`޽{۷}kVk~33>*8 zweN6lJ,5fvϣ>O ;^ͩQ;F6wNlwo((Zj$R9t CI]9qBA[݀a+Wv;n@[aN9jeO>ڀ/JYd(r:.@@wcX hFԁŪ4i҄aשذa ODWwdRVxWW. Bݝ:OA-ZT4vƌ0r-W\ E 4ьI+1Ȗ-|h)z':X`U' [yfG$m#O?f6xi4c={vv,d"lw/;O q {G4p"lk4ɇ~͛7 [p P6zUZO?4.\_DIU?@0 F_ӧO#iB7NF/)@?rȻ>6e2x8Xa;;vl?+z_.M+fC(\pq-lg&TԴiSj:p1va;|aL~fѽʕK +V@3UȺnDNV; SLcƌݭul庇-İk$wQ>haѣGɤ-"}-ޥD45rК@w\QeaO?0ܡl!%}>{Ǐ*@bnAd)S(wt;^ɝ;ljwARJn݄;_:Z+2d GkV&>g&]3%cU679_6^o͉/X' {]BX6s┒A܀P>gϞڑʗ/=)CQlxhH(À Pʴi:(e [h)@3c&?hT YfQk׮UVqFa+}%@@-\[Be Cru^Q\r&EӎXbp… :Bl!g4;L6WGÆ GBzKy'w {3+̜9͛.Uzu*ʅ~Wʔ)cReԨQBd GkV&>ѻ0'!]cLYdvH0yzf2>3.cs7Ƨ3皎ZoՉ/X' u]B=tRmN8IJ9b7 >vOH7,W0##88;3qDQ+; ]e,Hynz߇"whƍZF*T l^|NZN:6t‡"0a5 ʗ/ ƍXP7ҕAitm \ij"_@Սg5|PE_~fpǙ3gȲeȤ CKd谚W4Ƹ :6P57 "rڛVzZ]R ?nĕ+WDQPԽo ;}OǧNmբO+:%t C'uĉS I,+qCժU ^|뭷Å :PB?ҠVւȞBEAӦMquP'U )?h j 5ҿ4lQvb i(&zY ]C1J C= u cƌɔ)0!E}Wyљ3gv[E]zXЁQ5rB⥗^BKu&gQjz A+КգVtiS+\x xhР… BYu| Ͷ{n{]_|A*̀:?@SGMɈ?`nٲEük,!>|(tdsΜ9i… (Qb%K4lƲ'N/lN~7u7TTq˻ヒeLV%E+W4.R3wAhh():$@ t p׬YZ3нЄjP.S3a;p-[nVu,eO;O3v-yX6d33 %:8@}c&`ٜ\1z- >#\@h3'aX\ P hW ر#塟ES;5=MЃܮ_{5sZjnq oE5{W<ѺZכk>z2i/(TBA!?><<\4u!k֬;OjVvmԨQK.ZR^uM[h3g5CT$l QPަMalǂ[uJ (Fj6mڸqcahй]bEEa/E!D`ԨQb1gD7x^W]CZ0VZaΠAkWK4ɮϞ=KK>|jڵj kAtg$ "S{Gʍhk%Ѿ]c ٌfٌ/!dV9w3l݉ Ư=Yi3htb:e3äpX6'W 2e_.1B{oTR0,AaæL"z;s̙2eTD ݻwڵkݭB-ᘂѣ*ʢbvYT~gu#T O4wÆ W߿j۷j5 d9 믣W^:~<ek{}}=q0/We3μ2 $ߟt3?4V_,c)XNb0)QFb* 'A!zy-jբe(b?ի4jrUאB]dR]*5֭[i)ZSob3j7.]ԠA*I k$-YyX6ke3!dstݛ&fIlN !!! cƌyꩧa "j@ndP]#FS S{ẅ́v1ҥCjժ hYWV;8THo DڴiE_Jd 6BGE$xfBFZ|PG/su4P'2fƌd^ 7I\ t-**yX6{2dطۻ(Qz!!@B@E*^^Erڮ^'"ABMzM'Kw朝ݝٝdwg{ 3g3ylIzPPPɴi㓴`N`? O<(4~GlPzW('(umn޼9bv_~z$~9YO>a}._̷(%c["1&G8p [e'fu`Y-+~|U^gop"%wAӊ׿K@h1W,ˇډ M=oիWo+VEl "ۄXt) Jq[cɭTy/mٲeرjkTVCsCC|ݝhbwUAQ͛7͜9n`4?D?Nt묅|ݑ~]y+᭎ȇVJ/2lm[DphCcSAYlfPl֭[{ըQ^GڶmKbcc̙> ٨ |Hٳ>|/ ]E(Em̟?oՇ9'&&>Vfiɶlci6_}db;w.#(,}*:ׯ_?w?%I>4|V~i*)gj.ի7]7:"Z)}0Sg~rSCs7 ԩSy>4|QT8&ⱹVZYYYݻwuUDסHn`co6K/?ى[V[~3QN[Z)]paÆ _|EHH6L{[)YAF<<6t(*]zʕ+tAuV\\>n޽}%KjJc}Ow?q]kԟeV ĉ7HO>OB֮Nаa/Xp!QiJ_MPXx?C1I?ZoJ#I[ *AIBB'ׯ`I>4{XXaeE$ k5MٳgYRt?Z[ ٓ?KgyA OII> cرc)*_x.Ν+,,yfLL8`K>|֭[k4vClAl֣h%vn+6.;4KK XLB:/͠G$C^5ŻwN}dy믿Dlۗod54޻$1xݺuwgʊ̄ LmhX\3MX ;v_dOO>z?44wP&Cc3B(h&7}hnjs5t?y雎tV4h?dȐ!y>n`<ͮy>}4nܘVoQE\J֭[S[MW٩ԩd3]d5|eRVNNŠC|4v84M*>wDO?4od54%\aaaޤ24EKڵ? 7$77 Pw}v괷I dh"֭orڇ;]89BСCtʺ~:U^ 6<|+襗^jժk4vClAlv?pѢEtu愄J*M2%##㭷ުQFAA_Z>2NPV`KVZ~-2) S.4sμII<@[OUY a̖uDo׆X?xmޤvgا8qmr˕ЄD >4o<"ᅗf)35<b]۵k7b_cǎe7nҥˬYت-pɄR79?? +tWl_ZjYYYloeT9Wn =+W,\E'v_?044qFjjhTҝ ٨ꆢ"j6.\@ϟO6( Gah%L5EC;\~./^$[nƪ>؍˾^ko_QUXub3Cl6*ʕ+Ԟm\z:\>?lڴil;(`hzVRZsBF>4k׮Qx&@jg͔ׯ~9((Hc}b3bQ ؛ɊnܸA~WZf6c SQ04=C ݺuˁ}g~~>K>4>]XIܹӺukُg7lח̙36m>M?,:?4޾H.t/>7fl< … ;|`hzQ._-޽߭h>,QlnӦ c2{찰0n`vʵ(t- M04=N>}W5 ` zw+#ڇ?lͱxvƍ"##Lc7*.}qM"O sClpFV7ʦ⃯+\O?D ׮]v>vʵ(t- M04=g}FWӧO/slgϞneDyVvslf߬YVZ͛7e˖3݄V}|MEԟeV Jnڗ-[וT^~`sa\BC# ܺu2[ blf=ˊ!6,Cܰaƍ͟?³Lc7!6չߦi}tӽª<bQ 'O+Vu%uoi}ܹsY;(עе04=C+=z-Z7owq%!6,CԼysj]pallLc7!6g[~TԟeV G?~ |嗴>v_r>·GZ 4m޼AﯿJ[Kaڇ̳ +͏hԪo4*{YU!6x8fRXU__>.^H͛݁ӊBC# ONWm'CClYYڕmnݺu96b3 bQ Ծf$ ?תgsZQ|ahz7xcȐ!t~[d ݑ#6);OQ`NHHXiF:zw7>7flTjuC~~>[+iڴO ϟ ,`EahzV5jD ?L~W  gej4m~~~M43g}XiF%M͒{Q:u[|xJn8toذ+ {wh vwr M04=PӦM2qwf͚!6,CܠAooof͚4h4vҪ~p3c#rrr}ӦM|]I-FM yѢE8(t M04=?OXZR~)}ݹs'ߗ]ڇ̳ csξ3fhҤLc7f0fR}˖-|]IVx Z8{,u^x1kw/ C# M02a#вvt}٥}h<+PElnР%gƍO:5 @c}b3bQ [u%tq}h̙3ԙ}p~Q4ahz"L<lS}7n}ڇ>u͛7Ν;[XbRRۻQFSLXi ƃlTjuCzz:o۶+i߾+B OTvwi04=C+C21gJwyYI<<6XZ 2fɓ7n> ٨Tj߱c_Wҹs©SҥKY;"`hzˇFoƍgϞڇޣ\TTtMqqq^*UJNNkBx@ fRIvJxAe˖vw`hzV~qwk_ >4_]ݺuKضʕ+hyڴifJn8pٳ+iѢ+bN8A ˗/gEaC# %~oA !!!dv$%%I{d˄m%[l84ͣG| ~͛ZRJjjjӦMD ٨]vQ;]DBqIbb"PG~gٳUg"BlO^|Ç[nÆ 7o޺umۮ^!Čh###hUc}b3bQ ;vTDP\rZ7zW04=ȭvm o0n8|E"b!dбZ|9]׬YCp͛{U^bsLLLTThڦMlRc}b3bQ ۶mtDP?YPP@ V]=C#͛7(±wD|Eb?ߩ:̜7oޢEQxNLLtRXXͱ###}ݷ`hn` x~'EPnXz5u%{>teyÆ |@GahzP%fZy&]^lxxl~7Ϟ=~윜7nDGGLKT%4o|֬YM6Xi ƃlTju dsNƍ7zW04=H_CK +Yh[P#?S,yxl?q…#Gq tJb3f͚QZ;vlQQYQaas.\p֭8U5k,(((00ԩS4g!6 6ZݰtRj?}4_WRPP@}VZI [l]=C#} /3gzE-jlcsnn.kX`>˗/~ZopwC# M54s=|ED-lT_}˷onӦWʕSRR(0R`4iRF4g!6 6Z>v.|] jC;##n7ԻzG]_47ndggHՇ~xuŋͱRJR`Mj4vClAl6*aNRR秧¶m7zW04=H_CUlFB9-0 Msrrؽ 6_vb3Ki bŊYZ& E -k4vClAl6*a޼yNQիgΜ9iii}v # M04=Rn]"Gח-0 Mٽ 6c3K؜~H@ fRʕ+|]Iqq19sfjj*-رopwC# M5F_P;bbn3K\BM(3{?p٨xj/**Jn߾M}LB ΁G; d !6+)6˓968p^z,37lؐ3]Bl֑'|nݺ< _Knߨ|]Ž;qdsNPG`ht!M6e dϞ=Ά6`啕bql2i5g!6 6Ȇ -[VR͛7 $+}ݽ{7ouwC# M 04v g ?"6[+}$ef__ߠ~j4vClAlv͛7ӧqtu_d oM0!88J*[޲e o>6O>o߾UP~~@M# M04=2էElv6~zyeffMVb3ҏgS5wHn`<ͮH׶E]*U4eʔzF|[YSR;w CG_[]=C# ]}ZlkgCy]%&+bwƍCCCccc͛G[c}b3b]۵k7b_cǎ+b7.P=A{ϧRCyjݻw={V7PTTD}G;cW۳(6j֮]`U.|,6ܨQ#pjتU+n`<.'tQ[x1[%Fڵ+_qǍG{:CᱹPģs' 888""[pallLc7f0f?N۶mc/h޼9[ٳgÆ U1]Zm8qbZ:;wnoG`hc, ` ]X mv}}})67m422@#f۷og?+%]?Sʕ:/ٵk},ouTQD_`hzvYZ.]XK/ĺ˟Imn۶-~H@ fւqdd$uÏ?XjUXΝ;i'ɼ (TG;a˙JC֭cu#Rl&,6߼y⇴_b > n`#G+EX`ک Ǐ^:_QG5idǎ PC# ͝Eih> cCl:67jԨq͚5kѢE|||DDLc7f0fWr]ݿ{Z`hiӦedd=Ffw)f͚|E?O۷NRSSy0@QC# M04wFWd=C>z"6;6Ko8Ϟ=;$$Dc}b3blܸ]%C a&LФIʕ+nzͬQ;?v|Eݿ/؜[݀B5ahz3zh/6ՋUbEl968pA,9S1sL> ٨onݺ|EW_}հam۶Ny0@QC# M04w&_wެ-fbxhק,y{{CV79E`hz fhbjlYffffǎ۵kG[񡡡3xO?njբyyy xNQh$ahz9C=zx56x}b͵k޽{.]:uDΟ??""Bc}b3b6gԭbŊ5??) C# M]E-Z> ٨mӧOWԱf9[݀FG3#GK f96m~t~{Z 6ZlݻwIc[S GyІ/Q*%lIw_Ν-Zp٨b>SOu'Nd9vouS Gy>~R,1ի}:}Xi ƃlTj{9V|:u7* C# MRLc7f0f*}l~WXg&7QEa`hzG ]H5 b3cUӪU-[FfϞ> ٨c;wX=:t(L]<(4 M04=򨡱+0ȗd\f￿cǎ:th߾=}MHH Xi ƃlT۬vꫬKx004=ȣƮPJ*|Iuݻ#<ҳgχE/Xi ƃlT.v 6u|2orUGyT\/ 6Ḵ^zyyy xg~駞zX"..Nc}b3bQ)f*8X=zX+W&7QEa`hzG ]HŊK.,ⱹaÆ~W^z_|^Wn׮Lc7f0fR6l`_kĈիWy004=ȣƮP$88/ 6,ȑ##G>|:taÆ[SN3x租~ Y= kŊ?b<(4 M04=򨡭Y&;;{̙ ٥MfFQl~7GAə23}]~=b3CFn n믿W܆GG;4vic~m,O 6:W^yWn3FWZ%boW܆G;4vicL,bC y{^x bQ>6曭Z+ncB]C#1}El㱹~쓴y晾z bQ)իWEe˖|mxlQkahzCc6f̘1cc|mٳg=|z@ fRk֬ MyԨQt%+ncB]C#1)*_ܺuk5kfff:th׮}G_4g!6 6bl^vXThoV-آP04=c.mMΉn޼)jժeddDGGGEE5Ξ=;88Xc}b3bQ)u։E=22 - u C# M Y/n޼I!رc/_|9AEcKW܆G;4vic)6,wL4iҬY3gj4vClAl֋m۶=lyԨQlYbl޼yXTh^HH_q[GyإAl̈́ʕ+5iѢٳ6m> U(ӧqtu_d oM0!88J*[޲e k\`oo-)}l;vlfآP04=c.m b3#GPrns\\\ll,6m̝;Lc7f0fWILL-ZDWwylNHHTҔ)S[oըQ.x>|ylÖ(?C)>iӦ|mxlQkahzCc6c`ܹ߱cN:ue3x]ܮ]#F;v,-X9sز܍7.P=S!پ}{5_O>EEE|=ݞUC# M]ژ?ؓcCڌi׮];''Gիâ={R ҲeKn`<.'taPŋ*ܵkWZyfhh`ܸqhorTgxccѣ/^w$77ƍZWmׯ3<ӷo'D˖-H> .Ǐm*/xҥKBBB&MZ8|<]C# ЅϓcQΝ;irPth >|xȐ!=\)<+Vj4vClAlv9ؼ}vJ>pO?jȺJ"+_7 M04=Hɱ78{lJJJ̵kע K/Qr0`@~@lv9ylC%eԺEahzF<<69d[TTԢE !69r^{嗟?[j> 䱙k׎y|寿"##Gb`hzGڇ᱙Bɓ'wYz*/8`gy橧ZlYttLc7f0fWr]ݿ{Zk?@5mڴѣGרQ.ᇴu C# M04=>4fͻM,b3fܧO޽{/Yi4vClAlv7u]nȐ!lӄ 4iRr֭[o޼5QzG~H{}'i?3?x^z.\0<<\c}b3bQ!6Gahz}hGcgϞݻwܹsǎ;t萐> ٨ nؽ{7FO_`hzGڇF>{R}5jԨg?CU5hrvZn#ߚ4i> x~駈uR(4Qfy&"zz\r?RJjjjHHHf͂Mָqcn`<͆b3}GahKƌSTTtFt͛^*UJII L㣱> ِP9Gahzdࡕ z_~s2*VK9Y2yFi4vClAl6$TNzGxheBƎ{ƍ/^u+T-C@ fCKq+_7 M04=CXR}be%ͭ[汹}C 6T_WD,<LqSNXi ƃ kR})6)-L6_c}b3b3IWMX~}96SfLi988x̙AAA3xtMb3͔7nLI&aaagn֬Lc7f0f]+'O&e栠 JQQQ͛7Xi ƃlH&LR ]&l[`ܸq^2>>>Ν;UV֭[ZZk'ϟjh… |ؼys>}iX,Y[v8)))]v}駴Ԇ6dq  4^?~Q᯿ hoN[ _m۶f͚}v6mD~lڴĉy+|D trNѵD:tHLLdz264O:9io[59T_\$Y6Sf*rlly"##5g!6 6OBBBJLA%H5ɨ&gΜa_5-JMM˗٦Gye˖E@kwT~g˻ΥK|||Hw;M.644>'O;wo#F]vݻwuW)P;mevի׌3Ғ{1*/dbyyyTw"}?w%}o.\mr>;C 6l0>m'O^x]˖-[re>7JSFԆ)۽{7VZIdR}864iҤYf۶m`j4vClAl6vQW+""bر|Ql򈯘ܹsח&[qF:u~ZbΝ;٦;vЪ=47!ϖw7Qg髯z)Pl۷/_؄z{wժUL m;wn*Ugu͛i k'ZKɇF(IEN$WԩS 6e -fʮ\FX!'Iڲe/\0::Zc}b3bWPa|FյkW(6W^qtM0`CRٷ~և<iӦQZ>}:_qlywyk$twI^^_wfzTꫧOfׯϛ+VZ}'2k$ԇznذTNN=TZ!t҅Y;M*\#Ұa hߖ~Aw[(JU\9==`S&foѴ fMsH<6ܴiSzFl`?N5Ķm_}͛7+n/11)))B Jz{ 6gϞ@K?kdh/+n-n8?0ucMȇFVXAalٲe111QQQ쭭9sP04ÇY#C=ܹsܹ3[! ҴFfĉ|EF&OLt4q̂z!֮s^7jԨQBJ+WLЈГWׯӲ4R}et۵kG]3x ƶ Еbw}g[꫽z*S* zVÑFرc;vuב RJ-e:^{fk {Q1W\_oҤYDw7)0[n#vI"VCw^ze999{;vlÆ 3eCLt:eGiԨQRR[4R}bkxhwBl6*FҦoq|M-G0?8j;4+wܡ(~T$ѣCC/_1K=f1|=ºu7qM,O`cbb͛>؍Kp 7k]%RgLNvFW+22RG &w ?S( ]vM;wU]|$XI?׭[:ME# T믿2*ئ'NX}Ə;H0:ol$!=Ɉ#\1EjCJ>-L$y b)ņWLt:e/_g.i۶ /@ &WXƍܢEP8J:)utPAǴiӨx=zt5>̷~{ӦMyyyTӧVZSyGrTQ 4/6jj(::ڭՕ+Wli1Ց>>>ԙBw]krШfp7nر44bT[n2=zvJ}(#G١P>";٦իWNߏ]Iߛ.8jCOCrʈ864s–-[|֬YCz284L-釴&ɤ^lPBRR/]uչI&g͚>C`_^'Vnxu &հrt.?bL原O?- ߝ;wƍG*Utڕj>NΝ;S&p PtT)&PܥK kSg={ #G;ש_~jըocQ;m>q >3fMw7iJӉ'VWaCyHϜdHHȨQp[+^L23š`lc&ɤb͛7LcMU 00Pc}2NJ23z P66̰}[I\Vxܮ]:̛7y3quRl[pO~~~-ZX`AVVVZZw}NI<7"6ѣ[nI׮].\>nnٿWL Vn%~xNXo}}}ׯlS&M⋗_~f͚&Mbرc[.'$>k׮M~)0SxŋGEE>p>fЗss=_~%_D9 >>>''gԨQw?SOvޝoU^}޼y.t@1b/_N&O6QlT;ܹsfzٳC=]Dzɒ%Ѩe׮]/^-Ѧ>-_zV^gy-SХx|-گ_ej2ղ58q"-O6r2MTVVmմ 6?#{(Bkժ3Cl}ٹs_`M+E篿ʖ)iӦaÆ5jԨT})ݛ-QFuޝ-Slo2zO?J*TH(ϴ 쳍͌،w\iu:uf̘A ͫZ OcbbX[ou֍-Sl27FѮ];ڏŋib3WܫW/ݻw衇 #H0oRI=J'O\^K.v9fOSlf~('i@BlmѢՐTXfddMjyk^jUVVG}D˥#ݲe =M65ѣ S 5k֤W+JQǎ͛G/=ĉoʕ+?7nv|ƍ^zV֭;rȱcǖ&6'Op>f'O"+Wdƌ~~~i4J*L:Gc}?njjլ ti4+&''7L}:)9Q3W9|UMp r{~,  Kmr>v'zq)b'Vvro:o"i*-=ʳS|,@lpM}$X&ME'O|?ԌCyt;\pĉgΜ),,<頂ڗ8oJjebEmQ\L¨._q ,ۉ8vro:To@ŝt<⳥K8\خ@lpMrʩPMM:Q ?*)T9z :uٳϟxb<Pa_yE˖"Kesb,ԲZޠXX+6|2+,[ܬ[@lpMv999=أ>ڳgO :tJl;|3g>(m***vکSU+x,fu0 ˼:7X²mahX/Yυ{Ąe{_S3m0͑lt 휶FjP~l$m(MnݺzꩧۧOJΝ;w ,Ql^aN>]XXjwPeR Uknkbixy"ʦ;)Ţbajsw…CO9u9EEׯ\ҹg~Ey dtDbwj "v,9`gWħX 4jᱹ^zyyyg)(?0 ?~ԩT9{V'Oxӧ` ib"643<ӧOݻϝ;Y#Tnv ̝7!68Ulq{!7~7pVSf5/onN)6W^m۶j޼}||fn4@V0w:36fV޲eK aaa͚56mZIcoK&ٰv-[w7;b3hUTIKK o޼yhh(e໋{)tKN;|]ww7;b3Ӕ 6Sf ܴiӧw)陹t/8vӧS+L:ay`x"kTxgТ,N>M;')Dz8&CO;99""3 d̙=5#'+7P^=q3g ffVTdF%2զbYrH5P{X]*;*Q&" sopqy+KOz;5FSlZjFFFVد7hтfϞݤI)T9z :uٳϟxb< ^FYlY lZ dzrÊnx>ܔYΑZ{&viL[lg<] Yؼ.<,=sWFSlfݮ]m:iӦܹsCBBJdgR^jwr̙sQ~ҥZ- ܺ"m6^BQvdsWb我͔yQs_aJLrv+{,-WeAL}Ժb3h5k֭[.]‚ """Y URЪM=nE uoSN Οi4)2 s"uoSe1qѶ@^SPJBt/ք*ރ=N 4bsZrrrz’%KJӲ2e;),,p/_.(88z*yyl93ZZVN!:V]*S:m Y5Z,Xϵqy7<mkTN)6׮];77ݻ#<裏gٲe111%Kfd8qٳDTSN['%2Ц*h۪٦ N8'EΦ @Tt`-DZiRdރ׼Ȗr3ujFSlS}>=efZX|y\\\bs y;~ wMEEE׮];uj8\*e[ kE&b`,sWhllE6;V=fͦ&K=?$ۢd5ʚZ4b3Ӕ 6?䓔)3?WXQؼv#G>}E;^p0Ki;RnQ[,Y̝, +_e0qj<%v@6|ve- {U|,Fګnu&Blpҿۼe]w'%>(?0 ?~ԩT9{V&FSlfLi۬*x)L!68\VR~vnn \j^@'FSl.m2 4bsp>fVբEHYf>p>f+WҬY&3fC}|N)6WT)%%% _fԩi4+&''SH]Dޤ(?\5:A9zڏځ%±# Ϧ )6WP!))B̤I6l |wŒ_.Z҆ 5;Bw0+Cث}f5.l;xP  h?T,{Vߕu]ђiB|gVw<9#6ffnNdz0ò "#voBMֆߝǗ}X'f]nN$$UlT=ƞ<6ӧa6,al;D1CSlf?~66gfWجPKyLEX`ѓż(,EQ}JFܯl]>OD\d "nDڕt wbA= sCl*X"m4MFҮd]_Qx4fG7-~0?ioBl+Re=I]1Ll in6?uP@XNb56dv%Px; Ƥ)6תU+++{<@׮];vHfGlpf-3Mv999=f z)6׭[777'ӧO޽)9wqΜ9Χ Gbsz:3䣏>ڵkWfWAlp7\ iC=쳔۫W *N)6ݻG:t .ES@D&0S:qClrXobs:urrr}^zQfڵk۶mgϞ]|ԩS>>e!/_cfJGNVxZl|;%MSlZjZZ吐 AAA'OnԨQh",7U"ʏ*Gx+W 4i7b!DH"LL*t@Y Ty)6WT)99rÆ 4h/B h"SD&M`tdgf~&*%MSlXbRREzխ[wĉesh"SD&M`tdH^߉/Ӄxt/bP: 'Vxb_ٶx+Tpʤ?y,l<ު,*;VlXű'N'gj,'Lh6+>kL4cJGP$Hxzy: %6]H\,;i5ϥyZIJT %" nPRR ȋږ)6/#^}7& Vi䧈"WO:8AXh7F! MD7;&Gq )a,; }U5mZLX`a\dl>w0Ukt%v&?Ez,*̈́[ĉm`{ϔ2MšfyNػBW]MV8<kS)6K <\O-.5'u9έ7̓ g8 ǿ?e,4Vl99Ak%M$*df+t\jt讶2_M6)U^^Wlv!XQ7+>˼"z Mt(rdYU1: k6Y$ZOy'$mu4wp9)%;PbOo@azl{=*SyjK+-K Xkټܩ]e6[ucb/my&i>M4˦bQXoccn02*[MBTգjI&cʯK.kTܫ®H]bsѤ/TavMjnM~(rd Q";D>|hMhҿ2N>[ڂ{,()@F 06U6)'DJdyU ּѾeTߠ5 Tl:1 [5ϰbeF0*2RREU4Kt]`˶rFdbsDzˋZ"-6總Y jjn:qQ 5)Փ%UxʎfL>TfElNd;V|p-(K͞0w'u U"|Dd c)Y,*faL}gV-f[ޖzZre2AW=dI*TJU=+ɤ ҥQZ֕(lpWyyVL56g)LDZ׊m5)Փ%;k?3Sˣ͙o^dKBŔX6ʛd;t9)ف*46R|UfEqpJalVʶ6[Y֩YuyžeOp ૴l>=9`Z BtգJIf}f],eKѢCȋLy梢L77W|Y8@>X-I+jn&B:EzdG_ldLHjG)>kLY(U<A_Mn]dl Rf2grYZi`پ,anU\]X<*~U$Ev:;K½doZPRRQ۔d r-]mX7K5\#Qz2ˋ7$LDmY["\=YIp)=&M`td1c9r.FP KY5գD^ 6ĉ667!oLL*O|?p1:P KY5գTi+VLJJjذa_~ǧ 3&ۤ0S:eJb3 ]a:.MSlTm??ƍha 3&ۤ0S:eJc38GƪxTڴi&"Z>}z```gx3LatDdi #*4jժl2**fϞMA!68\f̎;o߾Q8b^>v㆛otODp撛S,U7Dk׮?C=L-ZԲeKg·جG9]x8x9']8K%g)tju}'-[ J=tc3_pft%8pQkbbb۶mQ8b^Bl7 PܠAMVZվ}{g·ج(!6.,6>|&k֬С3Cl zBAJ6lHy g;vD}|Ή͉ý:J=p!fps͠ %쇴_~e3 *c3qIi|[/wIP,d= S}("R@<@Bwq7)x2slH؞x-*qlf 2d!m:np Sl6m<^2p3,vS3q Rpz:t} sڵClp>⢩K9y?r$v^Z A16iZjeee=C?pϞ=y޽{/]4664fxya""hbl[^ždUöQ}zG|_5d]mxz\ Њ(cl,p~biB%5j8x`ǎ;utwXpa˖-OCl%uubAd"mV,w6OBbaMwCYߛCD!2fɦr!6b BVyر7o,csjӣcbbbccm۶ 86 < -E6.b–; ӘwwPfpZ٬l]iܼMx]V9R²(ֱY~=UST B%UTIMM 9{f͚!68,TĢ ER~/X7݇HmQTMx.~~t7˴(4P١rgZxy, $t_ك,e峔 N҈xf_PM/x-oXURd@Q&MON 06κ+ NF铴y}bnfN|0?K`&w]vCfXB7$ށ=@" Sl63y*gEoS,,Yb{G۷o bŊIIIލD>>>SLiܸ1b39&lps& g)S,5K<6WPDE 4_(?>p>f@. nt*6+k7\Gnݺ'NF}|zR\b3ul~WE7\Kv?sÆ Q8b^Bl7 ` b3 6z /'O{lY Χ%8KUUn3&جW^?znF?YnOQ7؉*Wx@7KUFcM7p 7kUfU7p 7p 7Jc?^-fvgp L7ʚZ?3wFã۷oߣG'x:tko=m;6"[o5o mȑ_{m^~C^z= 49v{Nj0`@2`5? yW >r5D|hƌC{7V;v옱yݷ1};-ncNݷ{w{Qgt::Kp8x^LhvWӝ%qG>+~wkҞMEoHz89^ a} Xp!+(6*{2Q/we~#Rqw JgOhS44=gSqW'^?QlIvU7ًxՄ}|_ywĞ{4>Bә?4=%[LѠfϞ=KYf))):qٳg/\@U׮]~ы:\|ҥK}gΜ8yG]Xx<=(ǥGpU|ll\=k "*ȟ&7enYUL}۟7,n} 7L; zDzty'Ŏry\?Ṋ#cs5l&l/"&I"ӀiSYSS'軏O<}Cٹ)){ݺc^umݰv;mڳ{foԼcǎ:u3ϟckP9}$r1Ǐ?F{9zGvZ m=ݜw^D@Cq_t_;&V ӴW;N;uԙgX Ea EǜNr9z-y׮]特ԶQR]z5І:GD?|#'jVS3~әÞ{4X:th;'>"_"?GBӤ$6vфqioN ?Q|}ٙ#s {ݐcM*aߕ9,a'3`miDltq1}WvT6}c>+&|L؜so*eJx Iž=7z4vHټKJ&~ [)Yg&ݥK>}1%˗رCωş!>M,((8Ma7###=##-=nIɻvٲuVK/X(~noϝ@q}…,Y- .vښ0oK-_jy )4hG1tU=[znb MnK}Dl(,櫅|*X2aQ  ,L_+q+7m;)Q$,_ X Rb"“3{.^\?eHFG @)+O WC=[]h 錢ӌ ϐ k0Wx(]0y-;Vx'=#Dzr޷y &Luʿ0vܿa 6nq{Շ1?)o޴nϞIIL;w(;+3==Z۽{׎۶nٲiӦ66loׯYvՉ'H\o+kɪUm5uYnt6o޲叭[m۾}ǎ;vIk׎mؼiuk׮'~_nYݨxcֱGٸi?عsɩٹRE[qҲ9v0Ie HO?ر#z'~7v~U/̈%=Ki] ŏ#|S[<k`Yg#BG&@'RuKrVaeq):^/KWF ~M7(g]#͌e؋}J7vʱA+;N ?UoOĞ{4();ȰEU~efa^Lə=[z4;%ԳeL`$GOM c35R1G5)Rsf&2(?_=wYc@i@hPPǞ?퓞!Qtjѷ,$yc-FYf?qm^a ~;>}igC_kC?/>᳷"|N 5IDATLr_V,Mشq])#ST͡hs0#=%9i;wnʓ,Xz r,ĕ}Y^.[WE EF[Je4e` y )-lٶmVHkVvlѝɒ-nN/Ui&U~LhyTGذ~֭'%eddeg+cDŽa!NS_`8#zYP g ;a<6U][^jOKbyX6G~3]x&ֆt'FϟF@GV2]^\X]^&X5oߥ QQGG~etY7aga'D wv τhH7}Za'v!?3bbXv7"&g{~r%~FL${,ztzblɳ4d6dgZ A#Gϓ 47*(6=zgsrr(9S(|N i]6ojʥK/\xETRIEu6lXq͛$fP$.Np7o۾wjZZvvQ1*RQĞ}B)#Vxꈼ3-C'C),{›B25\|t3'gڦ~T[9iVF»L^tXrjrfWC{δ7znE< b^X|Wb3A(6o}nZa)6?꿆|+_xQC}?WM_^xwv`޴zJOKMYzVz-2W\lK)ŲEbBT^hO?onBBܹ-an¼y͟`bZoXO9Bf^B)S^^dŔYn,^,h eq&,҂yp )#`Nn.xT~ߐ$= Le&'`}Lho(Ldw},u,f,3|%vYh#ocJS%gvə*Kw,g'-vC;biot4BnKs=ȱcDž؜wލ7,tYS=~{rبOC?ҿ^ȗk`;fO׮ڱ}۾}{RSh/Yٹc[6n@Qĕ˗/Qrf@paQ`'9n!stu1g-Bf͚ E򹐚Lf!؍,[xٔYlf˖ ?9kPl޶cǞSfe!Z m%&gf-gFlzٳcbb~i!6J*QrL,%gP>L9==;w㏭6m^nTm۶QTpi7ݻs$]d}Cff&=%Sd'IŸ -ڛv>&Cz z&=xR1fbzYLBxEo/_.~Ƶ 7q썢kt+~^LєR6}B.x7`}جŤi w.4԰L{D],6 ̒\e,c3%4G2fݵoK,2{7?~?_'C^q/W6/F{ogܻ?}_LXO2WUkIu'pWY&%()PХ.*V(BDJ2ӌX;+,S +Jq!HH߯ {tŸM)>߿`߾}G;7c; IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_02.png0000644000000000000000000040420714741736366025214 0ustar00rootrootPNG  IHDRNIsRGBgAMA a pHYsttfxIDATx^]E^wޙ ("` f,YDPA1g@ATr9es9/9ꞙqXܫW]=CʵfY0oG^iޢEVEKMZLZ邖+btÆJ%ysQ!=RLx:OgϏ>򫑣5h1 !_G2<;#( J+;k j'F %0Rs8=@fDyaPGA2m5On:< 3= WAːB81ЄTh#} R)V6ؓAnjL) ,))/A%{(mQD[Z4@B5 X'KB%|"K>7:A؝_1&} if =_Oz?Λ+x%f`1WS[rRp%)sb78==)Ya a.HS&SM$][c $/521Cg! dA9r"SRғqL&TH#<y'f'$cO.ȝ1;wnwnK#Ę1@"9p᰾@'ęlFfÊ*m м)`U$Cgi,s=.KBْ1%MJh(6)STJ6^"%iᣵO i7(LiLX ޽HG B_42PA,_sozrYgV-YoьiM;h\#R&&2ބS/o= ^8z3*(#.Q4Fͮv}C%}{nVu#5mo'WWׂT[^XTN9RQ;&dc|T= R,..zF" 3 HG0^ox^ @\^"T& s(r|DJU-Bgc83 8ŵ9&Bȶ2(Ej &NHZ M5JE@Ty6Q/ЁjD1#ࢂi2|.qUNLƁ{eeA\qsBJm"{aL >R2O&[FYgbKCDNKIa{"٤"dL4)Ez V'\$xi|HÆ۶,TLEEBqSчBP' &CTs~JpM% G!(OKЀ5v(3B3 Exci*D0$ZPՐ"A8m4؛X<9?KP>9Uzws3w|ssq?3gJ)5T͞R1{J)̚ZDڱ۳'#%]XҤI7knisK-+{pSցQIT ௠?m!-,SYE6*=u͕h\AE KHqR[ Jl4 0$%GT)$TpY(+ JxBhe z-xb(I1$H沐 XCJ!_U^teŻ^${e 3#\xYM|%VSڑ.p 2&.'/l|p]*,Z>G}J?j׮D\ ց&>i~TʦS>iTOX;}3'- UՁ_@0O~g׻]=_WNX6mb鴉%?L,ab~Xemoڷ{wFbbzr>VIM5kCy<#xkݢ" qG1'UU5qK>ê*/cxNѿ_H}cW?D3A*#$XGyx&t4?L,K7AXݘ /i .d&O9a@U0 B" DU!9#JD\R-`B$x1 $pE  !/q)Nc%ˎTG`D.n`$ C!KZhV ~Il%"H]hE%ߔ#}$2u]mICK&uA4Y@#ʁ)äbxBbtCg&L܏, |Jrf![ H&/cKX̄xy9dSN:{o&?,-&j ":⦸&gʸ_|Q4_Ny5qLlߔO!!8}?݃vgՓ?y9dE~^gy~7I_}7] 雉\r%Q͚5: |>cpHy 4*| A&"4$HFyTi&'/ а 0R8@1% GqgK:E`Д S$X6)'m51?aqQq=(0$)hp=V5ߔ`,YRb'b!DoW#y""㐨8`:8K6r@N]:vk؝h!"gU9C8:yh" pѐѹ ދH0D0QY|iH4R6\&-P>eV=r),~Ё''{ 1I _aL4PqD)ؒhLÌȏGiB\P- BJd::f~0XQ|ou̶>ʚa?~ǿ_6Wz{3;~{Jqw>NrqV{jܻ{x{^e3]Zg_mMfB\VRbVjJVZZVz4iլyGto CN` s+B8,,ȃ0 10(n 8x P,r$E f >ʋ1^R>"ʚ34: G g7^^/%#w`lX+3Ѽhanl/*UDSJJŃ @ZyVYJ @ \\^p H1 @k.O" *"ya^AG_>|I྅Wi,֙r-t@goK1QHP#1@DLd́)1$n{^0Ilxu^0YƇ$=!1Ms$A>kY`Ј ),`YIf$;&ĺNH|j4WR~섑G1)%CRhxP]Kʼnt5R`Ø8ˆusN:=i"_] b\z\ygX=g&9coy4q`2$*RS*L$yjKzICdғ WR>ƲE,Zh$ ̈{j_0nփ,F 6D\k h7"@<ad5x*dVW(KCyʸJM/hb%{~'x8`HA T'sv BBxNAƨb>zgŶ4oe~Vևo|8"(pD#>|7jAÈ& ?OU0d+?^F,(xoD{#Rވ¥:r:(uR3ҳ32~:rN-;F׈F# ) e  Z`h!oހ4r,ƎPbDR AXiS fX4(fUCԨ>!p Gx#('! )7Z C&׺O5tGXmF~㸨pH{6s$yCDNA)DDJA=.z3D%~u$2SRDC]4KNrWxi&;.`(!㫹bI(bqSN: )L] .bt#:'o1J؃ WE)ALFaI4KJP> kYaKCN>2Ii3,^ZpCCʇm(H?Ha4>'䱞Xz(^v]l~&î0؍߀bYLE%LRpa*41]|P  "ܳwߞ}Aٌ` ymOЎ(b{tG$+bA: 6`kG $ġG# %IkTU}pm[%;"qw3,m찌ej;}`ZЊwVVE~ڻ4$ >~ڻ}*%aV)A-;y 34c1CSG<ѯ%~-NWWSiӦQ[)9UVT+*ҡywk>wݛ5Cz_Rz^jЋ~5u,).( :{;o!؇r8#yCYSF|ySAK|DBp?M 5"#كHqw@"Ew {`Yn7rMeoQZգ!l8!L?* cXXL x' \M:#YkcV㓾IHzČwj+_鈞W|Z?}W~zww~z(Aekk!L#i72 E"p$ PboHbxW9 A>9BQCyN,s49!`eԖ?Hv'ȑ'5Jyn~@C&kݨyR8gX_*}a *WS1uD)}I𠻇<>/̌/t05[ ؁Q3#ԋh+T8,Yrx^"L( _zaUc$x7I4 GN%Rt9L" ҴR>%=ʇi /Y i\%:IՈ3:#Fg 14"UpuWS΂G#o5Rgr.tދ)RO0=<4$|8qtst+׍`1+1LaXI3L `UUd/"`oi) ڃ5aLы B4^Fab 22.Nj#Pk~ ̀*Q)荵*@E ?|K0M24g0Oac5,yOj!xd " \/ }$vF8f3@T`(E@vDEP'J :(u^Mx{hH:C~9^/3HiP,Do#?~OWrA 96R'e7'98LR̘,usriyY iTB'+ 5]K>o;[>xݫ5y;?:7;߽?ƹ_u9UWy9 g /$P0!fc)g!c8~g`BÑFtyܬLEY N'XST(~G@$9N'QGѽ0oB69Xܐ[@lwxAknWS5%.cqYUTvJ7S.vg#vfwB.Ȟv wXRQDV˭O%D/vLRG/0(CQQ]! -=LAhEڑ <9IcM1OLAez 4G@st9dIA9rᢍ R^8RtًJ+}5$:ctSPFRN oبެl lq‘ʐ8'_`##bwYdXŤRdz=C  5cb뉃v;UbC̤v-oc<c:[1*z  = fChy#35*Ё1AC](R$xb@Hqڜ?`Ngx؅A;Raծr/'9(e`ƈo?o/y_M/@z:KTK#BҷA~d7o+x_pD2F7%] =7[Ys{VB\njJ~Vf~4o uALK2oMܹN޻oo`-ϟ朳k_'w-m.eP0;+ pI8!md3@j`l!V33,*r!( qˋgOb B:P D}[jʍ jDeˀ1LFq:qRl[;p+p!,\D^SI+;}W;J/RXYNucGzpԩl)ʒV;wTdCZՎ&g?}fdE]t)'Kڑ?jG3-RAucGy2COcSB 㡯ۘ袍A%\T;F\.4;jz3wXxBscc4 ^7vcX GƎv89yc0^ Хy~oM^>VR_jGJT;41ْhL)uTCR :§?I=':T;lL'\ -Lpur4,6dK1h 0TbN,[O:񐐦C{wPPıJ߽qvY_IjG<@_Ǥv Ѡ}yGqqq\\.*bcgwl1o}@X~y433#vேGG?Š vF]8w5Ov[u=nes>y{1=:1gǤ';>1ɎOvycr/pPW{ 9?x{e=}_f?9W'''CNٳCZ=;$ߣî':D?q]0`nͥ7 Q1>Ȱ Qޙip#f5j#V)$RXDN ʀX m2qu! !ٻtYY Mg{:Y꽳 !]NшJӔ4?ٶ†>9rcԎD𒁖hy}K,rcG\JڡQUor(8XvJcۑNXLˉ Ln)cM~l"mڑw91k4䍅{BA UKcp$E$"! vN GnP;ոEjӁxiw{;Qt'>'uxG™ai>.v#d: l mKΚPR"xF<%Ŭ4 [UTX篲R r3 vK%p!rm,1UÖDcyo4'L?K M (海R.v_v0g 1շLR>GPV;@:P 8'x"++kݺuk׬X>ñu׭k֬YjՊ+/_gY_40s׆^tٲeW,_rիVC)$VLv_S|5^5 obI˗ikoi&[6֮It&q$kd0(?&kԾibf I;uN[&2']vMm6նqlmokx-׷iMӕm-mla[7ۺ-vzƿ-c2Ii0]rӒvA@b~[sYGKg?RW'=26>_zoGߺtJUMP0#=1?78<ݵY73C Vc0#}(:z1hVA686fv1t Bȏ$#ݻYlb:ez稨7@ f)G! ^- d䚪ֿyZ2BP'hO΀;=ěv$^kp}\G꽽2 _=x(X.Aтs N04)Z2/Q\݇jfkB1iN %^3}婡x嵱Dӷec(NIH׻:p^ CP;@ySE]mi"W,WG';@/ GdAd,+v'kyAU)]*u#tF\.r&Ig-Zx%K.[+V._%cc_)ߎy $怨٢.ixMWhM 6n;nn77H͆ 6 >PjsDŽvMA)Q͗C ǶݺkoƆol x gx M5_Ϩ-+Mܸ>mĄt!uZZNIQanfZjb,^mc=SuEu];ܖ-q#/s W𧿷C_',퍗H%f敗C r(M8Sn<= ;OOe-@?b|J߮yF*HY{yP!Rp#D5@|Y(//O\˟'P_/*V ?B}3* t*? tN҈J~uPdԎdz#Vf뽵ZnCm8Q]<3u @I_A0V$ +R$Uc9qp}#k%u%֢vh@/Վ^~x)qqo;,Sr¾^Rh猔 mc!)F`#ۓ(CO9ސ^"&^jG=<"G9Z(AP;r{G:LG4kݯJ芙je\HCRC:qp.qhNAgH PeCpJ1LMj'ѣv8x]G툨=*u;Ec8yi!;56X} HUC*?C=[P[]7RDJ Ӳ#-dJJ$B6V豞7;  6\\)\4 Br\q˂'cHI7GWLJ\j i@?*/[N:gEAN9?o=󃇌8q ,Xp!;BXK.^ R'yHoj1fnlUol`M7߄"H\ V |#!`߶I-۠ΉG"'&dM7]KxVj`yo8\hf^xۛC@Ԕ$[}[fB\NZj^V@ϯd$FC<V?ӻ_c;_kKJ!>@$V`z:b7. $j] ?5lQQ||OT7VOc':(c^&ӛov*'y6ܤz(WXV!>"꽵ߕE H}{7vj68k*\TfvHyu|X;ڨ_,^x|aS:uBcI(\Ym)` A3M 7<;"MR(!LI$=@Zn bUgc(b 9xYТv,xEDRǗ&YH^Wb  Վy0j ٱBV;RǢ+!;\2NU_%ibLJǰR˟u#6#u$uxċ"/Hcrom9Akl겅fV; ¥av`ڡMi鯀vG[{/}_=k ;<`ZjBvvzA~;0AQta5H-hM\zQJBUc^ֳ**++[~LL-zC%UR@"u` c[$KXS;CT+0.dTT)1Ht݌nBאnw>tI;vFO3×),\rwŨGhhhmUS\`Rp&-_uכo3dϲ +$P@ _..ޛ+RB4\6Z7|9\V]XɱٔP[ >/.&HU,rQ;T;uԇW6v-jLCI+;}er%+Br;evxll!EǛ0 b:P\lmv%* ႷAid'/)zh:Oԑj"u\:@Vv`頨pJ$uj؊7a 0]Jv1wXWV~X#!ܬHtT;8gi!v&.Z56W@coG}vВ> %l4IzUedcc7yH;rǬv.O+W^|e+A,]L8K.\@K06RH9Rg%(酋bQW̾[k|!dٍWxڛnjp w0憻-f‘c5|q ҎL;ĵmwK6ŵiq77Λlo`SnjU.ku.C74}}5֐V}uI+lص+;5%7K{U,u Sv퀈|E`P7:yYʛM ~ w=>}쵿<ߟ)90`"Y ʤwWjLǁQ^leR ^S}Kw1 }]CĽHb  wȿ#q2򝘼[V*p@;NELDdIDE^֢@L܊嗕8py;p#obk۱4-.Q}p[,Q-LO?$*R6#ސ d/~zm4tl9 3^_ [*|D8D44vPPR.a+B`>:ĊU\K!wNx|E"*MKKuHz|bd{v(kHv}U8ahj3yR +ksr0tENhjh:vd)N O"T~vNj `,)]$d~ (r_q9 9)u0q.Xvxc(_"'=!Oo-ZHV;F.rC G9yk'ҁ:ӒT\5Y)iUa ko50 d{eCm 0)jIZRƎ(Ƃo.^֓kT;h: <.Kῑ1IZՎ3Q@;$uU+׬XjUKXd9eKW#/[h)=i̙3w.Šs--K/[/^d☝ѯ]゙sf~ۮw땋nb魗-׵o}-[nem-v" wGshw ro|tT]2Pacnonk} ZmbUڵXܮ¶-bN3۶1Vgh*:)^RBHi 1!n{_htsuvːƛ^j^;FyӋj7S_\;`eBe>ZWrjRVvMj0a]]C&`D'Nar8ar4x(jĪR ԁJRb[V:qi0QT@Rg؁p %#0|)LxÖ'݁I$(&ܰ%yyU/@H Gž: Ez Y?^KJ{3 236} 9[Q _"@^.*改DEĵ_UopސyK32$gܜP,_Lw@z-~/^~nXPoCqi+ZDr%RueP;ƚ*<>"jR;F NQ^~xNq!u 3Ru E"! R(]3mai/e1b2$:!(ZְAfۑ%\qɷA@R9+~v(xdPn-D=_Վѥ16v|E,tގz og^.G>FRАj2,}jX'8fuWvr|aF_e!gg[b}FcE49nhՎy˘$,BP*r$MR*Eddd^au+V]|eA^|2zUKZx( =g9sϛd . K.]t]1^윔iο{,|NviYV:ܰ:_[;_}ߵ1]˵1ݺ@c?)cf>5^.k6uϖ?:gMV}һ_| a=vq#o_],u23bV3NjRmx;_&6SVi8Y_<2O0Żb&LMyWgPIi)0_```dC/}c/5|E̔}pCFKԛ-GقJR_䱠#h[ISqpPQD2gJb7"cBol㣬$H0}1=[RFd y(!R(DCj&<1t>x  w}) eKH桓s'tt^.u GEx@܌Az畹Ow$%+s ȀAFPPD"jN g,5Ѕ9뫭0 7+R;}*uSqQ,*A/egZ( ?`#;!/ Dr^ `KA'?Q`c)" "hЯ$C`+)1<ni(R CH&5SJA6\ڑR)bt)uH툏R5R;("jr‘ziRƱa9bXggxt{N=ic.D,LoOǖK%Ս/ԑ3Dlm¥WFvC:&G;mommݣ}ܾۗYZQCY( 6ՁF;qQ76/$u`"ȇV&}Wz.50qz:Wj.REyF5wF@Bf!,uHߐ-YٜQl6M+sspezI(-5M4 JCp ))ܔ4*iMZ0`go/yQQ/DkKdTP:sЭ@KhesVFBJm _|7K[OA@P2m2= 1(uRR%Iꀿ1vu /urvg/рjGƔ-j,uBJ&0yEQ;rEq)uPYwM+' )a'`$ R(o8tj%8PXASBΑvLRh iy\v]tގyS|_j4vzTՎw g㐝uvؐD"9nQ;Gɪ> ~i^'&%{bT\ \6ʥB%YxFV;F3ԱXDC+zٔi =⁑+-;e\}/,xLJ!C<>*ܳgHA'$qS;oرnu_ |#׭۶f7@ Aߕ6^2pfgm=TvKRbd/_|l~u/<7=٧[Lnq}Կk p@t- 1">* g!i&ܯk|_`]}oyMu[\=k<7^TSV~mʎm9iiy_`C9%'nGskӉ>za2?1W9|$rDlPG:pؓ? % |*zS;_yjOmyn|Scvf%'fdy Q/S m/z\y?|E}ُ7Gz9g^L_ çteS~ f0;k6 <.6ȸ㳋{_fdC UiD tI闕~ 9=e!8G| ZIo-x5az~aS2pW:\Cm:(dh#Gy0Q* :'=#k 6L"v E(_aszhHΖlsf&m1tE8/0NRbRZgMj| f8"8 h!bU6v|;^j\G$Or( vc-&Lx;"-N؞(:L2O)xgPݧlz]Љ5L}av`:V(0ez$4=8H#ukParNԎ,8#H>`=.rk>Ԏ`ގEXtB!;.T-8vh7x]D<-R561m=GZڤ1VQ;Ҫ<'X> -ԎXvXڑAycV;T'&uǫ#Тvb,`%t_|@5Qw#dJ}n>wǾTQYSZVYR VTT#@89K˪Ơ7]].0 Ji#7g 6t^j)Z jgb"+:af_Edan7Va=Q9 Nr'靏;"&Z[DǑn$\$VZWAnl$W2 u`1 D(N k-Aޤ4 K$ò+uԇ1<>:}ԍHLJ)W3)-u3#R) o*뮅rI\?xŖ;$C' yyu9@GPz }}0e%?q dvAÉN% `$u!3=dPnEê3B56 :=ڊ;L=:YH}t",|}vh/dC-icU64XH ɘIZB;O /LBxoHT;"[B_yb}kY(•%b@v_{-w#xR[Վ!xٷ{nY0ݦM>x+>#<Ï=|,Gbߥy r_v.\@lvC/yEGZe.oH_ %>b?>ze->ТAozIצti|}.|م|>}쬴۶d%'ef=zg H HKNپK?wǥ.? |p߆o0ύ\ծ͈S~/_E&B  "IPljOI(zB;m)KrxXQ𞸈k1" ,#{9OC%bTk`8 #&>ڡ?EBܥ|0Ԥ<,]vr2#v8T>nH9s GiQ@9,<(?@7n+,{YMO tYXe ˪Qv(v: aTU;v _OKp˧rAA/M:odV&\\(Wb)`vhfy vJ%?!ȃCxI%t[4yځ MTJÉH%AU56 چaZr:@vE+j2qp&Q;$uȭRUV|5B]9@16v,QׁؐR;CUp9bӻ8a%IUʍ>R;@u۵GEpBp%2& mU jP/`%IvKJ*/zBP,ՎdS,`%]}ҎOqADqkxTz|utET]>U}PjKyhPQ;>]AV;4l#_RNxB oZh1КXa'b Tr$*pA!OCÉE%BUCW2x-!ALJ,4\q509#ɧS!I|N.I_ AT;(xvDcƆU#:yxhHzoƬ8jfёw'plO5NLW}RG1TV·MVENjgH ^6%i ƔGJ9nDl:^=ֳQ;RĦC7XƤP^K;>izL@*:lwqd= ~c=/ŅDHӿX\7E 9C?XAb b1DX&7 ++/=='%9')1'1>;~Wv\L2+:7̋G4sDJS*{p`,pG0f{vvޖs[4ܞ+63!.;917= 'c`:-Zp.+=-aW}]!4w}ps~}4 ([N[H⿜#ohQ)Q _8= BK;< h'5(݄" `LG(t&7E0?c upyL6͑:df[ FB[|B)aQ@3h,p*]!o1w;Ar~ NnQpͳQ Lv(S7v;ye/>ېN_!o;zj3B_ K;6뺉ԑ ƺ/#"rT9 yvGZ|I%4R;2a^Lx19V;rZfIB%d"ǠICfGRXryȱfG-4W^Cb#)R}5,_CJDwMQv$DnsThR;SzR;sDŽ6YHm-`1a@Qժ§}:1KnW}UI:@aI2&ՒhLVl=yMǷWOzd=/{;֨!20]k9:L\@TF8`nÍȃq.m\"1 x؟'A|Hȃ CfbG>T@WBFdيD}h²‚|`73,K%9l`i%rege 233 쬢ܜ²r 1=vI(u0 K 0??+##91~W[6m^z%.Zl-_aMVoݴ~Ƕ1;v&$ħ8 Bn0rfA)C R Q!1@r@Ƀ#it $cNӀ (<%A>Zxg(Aw_diG~xexbtuzp%z0iBeߓb 凗 + T {"!H ky鍛j `hcx4=:ho(;,^YMj0}_ﵱz|#>r\TI)ՎyC*{af{&W;@ ,rTyh7;<`*=yhuW@m؄R v8Z*bVsr()N2XRg(y9.iQsǼv8ɼ:AJu쓅q uX@_BؖNrnz]Rv0JŜS38iXI 8M* l Sf?WvLƄUIU;%ٌLgގ!$cA6Zj_ځWvS`a׼@H'TIДGI:(. qrL<5uU55rb̖eҒ*d%3BfҢ҂d>-EEe;@BG[J:zZ0xlR`Vڵs-oڰ}Hܺ)zۖ؝bw%'&P %A.4-p@aot5 ;m<(ÝA=8K,8e B鐙u7_6#pq ͡4PBkrc`f%6tv#' 7!O8вxphK./+Z@Ci*4%x:s,޴Jw VCꠗ7LI%VMLyD10#Ӄ#/E*YXB!l&GR.<*ٞ1CpΓG^Bl∔='a@J"=EĚ"F9ЊgSDD<=)=X$yaO&@t@cxLGes,#W4Ø8j1/\4ʑ䨁őc9mتsfdgT&%$#GN_bw~w,x0d7a=;Peog`+6[2UѰ|lRTg"7ȖDcҵ !4Y.?!ԁt#'8exAdqf pYio)ޜrp]=5Facndj=FVJʊJTDL%+ee . װq ̸a|YYUΡ' h"p)0`MJLNOIGa ?ütT#P0C9G0 CMNn!>\(KV3NRA^ HIﯱVa"L rLeck]{=&}H!t:ލw~:ؤw@Ы}hx^H\ +fJnYdZUqUbqfrrDCT:jȍ 㜟BR7f׍8J9s'61䍇 x!x( H76}KYc"p8Oy}7JzedIcVGobB&JlUU1 ]ݦD,4O.Xr6I%ΘO&*受01brmb}> z}q `hDο A>d&>b+I|Ѫ$h̀AZ:K`R9u%q7C2*%ˢwB[]Y P W$gXgsLHhV50Dg'y9 lr)a|BC6 %p.jGU;ȿjm$Ҭl;.;[ P8_a¬@mC% \ 29a@ga&[@#aߍa1uٹ7G,o_W1teO9.- @̓dՇv`C 0?#6& LeBcT wϷﳯ;nN8zC^i@nc<D/o<%=ކ2p HI%8/,RZHL%E*a$߾NҼi\L%R: )ORXЊh?NeS)ܺK/O∾`ut'm2 ~Hk шEN:.䜙,r<^"GZrrhI.H9?lA3&uhg%r!f%vwG( R΂quB2|g1^5?*iJFX(&),aRACp&`LIpؒcrfKf3fT,ɶ""= +ۍc?ckIX1K r0[Tc4 +Ӛ]Ïm"C[F^Po=LSNYQA~!UD?bCiʦfdmc#&B ya*A ѳ$$lh7KOhn +Bx?T)\mM FBp\H:;6XҠ_0. J@ TcbVƄdF;dJ\ T4Pz"&99-?bi@xLaXuJIêrg̰ EaU3ZDx KrQX\2Fÿ|<֣ zʃ?Vi4AtF$LG8!2 7`&+$jņ:<4`>~yrP*gv1,~-x! P%рb: u2,t@i=,Ʃ   ,}0(.CiA:9奥93j͠YԁڭYg b.KSRRrYTV raΖZ455555555555Rѣ?E?@b:tO>Z455555555555QϿ?>Ӽ:=0jWUUH޽{s?xȐ!~@PZ=tOQSVTXkjjjjjjjjjړ~!tP:&?o/e! 6;,sxBԱꒅy}:]kƼ0gGqjjEؘnΛ9oTiC:().RطMSXJ^z0X%u N9wjߍmqo๶gy޻gLYQ/rzu6fY9<sub|mRSSSSSSSSS!SbzCR^SQ)QS5\2os\czmwg>d9,~PPO~^]q{ǟxߟ@_|ΚحqŹWggL_KN]|pPە9}s<43Yy[P,zRk^i' r,YGxYۆF@s@iI)HM_/U lR:{IN=K੪][+Nž=65g_v8@ }J=G>K]'ڮxcIalt"us_;/^ҤJKK'Ϟ=GnիלO?+}Hr͕=8ᕶc!9ڜ7UkSSSsrn۶|5ki[f'r,YGxYFwuH }HP:Hv1j;uK._|թI<vWVYv#=v_ߦopDȬq\YTp|1{,"o: 6&޶bEϵkjjڵk?LHű/m?ڕ|B:sR?~w'C6?!7F#ڵ{HFi^o~G|B:ycwN' ʼn@p\aui}N~|\.=&g fjMˊO: P*u,W(*q_t}gԢR8>Ӌ-kbccH|If5c}|H|C:ycnʆs~x޴.+ஹaSk?w0漹K@/Kg8//tptpXMMMMMMR'R?p`iiE4'u8~;VdnV\8+mYв k++k֬(\Qj-uCvˆ?iƲتI5?yb@S]S8M8&vFZqέ:cƌ={;6`o9F>ydQԫٜ7.|9O߿TUS-NEsř{jُ-=[.NBmΛ^R'}wy]̏mMLNqƒ>rMMMMM̀R'R:<r#l"uPT8pigk l߱+>y{nY+ߟTp]mG^rʳO>9sN}iM5_LUxA AL]+' f[V͓ZNK"uD?S߳?;E}p?>qa>{f/6lg^U#ݣqM%&&¾^ws>QPPpF/\~-\4ު=cMj| ]oIIm6ͥ/?S4?H]R7 +7|$~̝pO1o|sRGSSS1Ez̲96ծ::u0`C@͔M7k&α vlN^NΦ5벋˷W/Ϯ^=9`{]Nm]V[QU&׷򫚼|QpNRggo|͹ՖlNOUU,.^w;/kҥŏNsۥsiŋg?uGwq`3n.]ZUU5zucz,rʧ~_|erw^ZdE(́mZθ&﫮ٶ}džMsrs|RggLlz=O|O>ջw 51ZhjjjeƎ"]#pݘuYdr#eAI8X'8BG2a1RbNW 5ZB\ⷵobyc,g~n{'7Ҧp#D-H:E6RSm 7+NnIEtAY?L)Z9\8~X~Ӛ^sS_U~ B]3.o_QW\wlN[!$ <F}t{Խ/}k捛vlmF\k/w8Kj~|;|^ŘV~ʐGu{*++YK~Ueeuffuj A4W]=f̘x@6RUes"-漹MWA27ׇѧeR값LHJajY(BkʏO̪Rb;#0Yl!%BѸQI?7_~ U!Cn EWg@73ƵG™,ٜ[<3g>\obǨ'8>bªv͝;7vW/?nܸ{キVg@B\YiBn^IHNQf& XꔖN4鱇ZC=SoBp\uuaaaݿ+Hps,uDs=Gm_>6͸ۗ}pO:0}{ ,ucV[$?jY#‹3#uzڍUGqp#^z J/c|WhBY^x^HÇHOذruAqIr^u%KSK楔J*_[՗6KyLQP A|*fKa j'/ٿ4[n1n,?^6{G:YY9]z<{z7͆}W=~z5; n7Ӧ$dggCӟ!DGGǜ8yn-Y9₹4a๳zl+js%og> ["qO?r'~3ii6-u45550&=?~ѪvwkxCK^ҤGro@ A uB ܙv7\164ks/xsA4mڪ_&-ۓooy詳ϻmH111p}Ç߶m8JHLe[6jd_~9{ &xKv+⦍{2P'H-ER e)uk+bwedfd,\ZqGڋ7j9^z[)imfY.;3S5\v'uq%q̊=^sGK/ß{:ӦM{@ V'o;{x+uȿ[n߾s/rB3?xjpV:%%%-Yd#Fϟ^RzA ]ZX ~-}.]_~|(lFرCU|ܹZ 9oIqGwb0|9ˎm|yHǢaѱq#fia%EhnAJsq:23is8u;_RȊ0W"l-ŎKE|܅`' :~GH#o%HQFƯ,Yc 6ԁDKRT$,Rb_cV-Yn͚7̜Uᾚ^bփ}=%m(߬A']6;#S.4}q۞|/ql;벚j_|K_Kzo&۟3o>YΙ~PСC7m$>+xkӾ&>c Ȋ+ hÆ qȂ/3$%%>W9H'OСC޽׭[G-Zwl~ _rNpp˖-;w4h-p\FfFzVFZf^yԌ`&H#_\ԩh1}<$<(Bap~<D':.D~P^m-{VsJIb mT[rI!bvWml6#t){mm!Ts0D|:1ɣly>ZKlq# 7X쎠JG:^:BT@^bcW̝1YmnQa+a&dff{]v}djflݽCbb"|Tgs111ڈ#XSR7~Qt7(8~|+wg_7ހ!%\4ehw/6Λ&K3D%_Y2x_-UF-|n;lV۞۰_9wOr Wϫ0aȑ#go_sOAErI|'};vԩS- 9蛗 ~7{OŃ'7M:gt;U> ;;[f(z}2@JƓ6ЍI >b)x#,:V3)MIĤWt:v~K"ٹ}gcr3[e-˞雷|mV*jO ْ$-%O}<۫2_a{;*L\ ǻAA M^Ç''' $l={M1z?I ymzNM>W¯Ν;c~X~^ҷpϿuϾ̌l˖-{'/^j9v.hS3sdlq9o\ w//Z_ef:?11 0.!QtG-u"I-uGϏ=?*uR$uaSnz YUdQ4՚*oj:'#:F0cWl쏓)Qy+҆Jٴ3#9-g@ A1*,|iCB˹#n^[[,|:}[]%KB~,A /{\7*a/To}tV5lW^ߦ`̻۶'%%9r@lll1QBrjwk>IJM'\<0}R~Cf;,Kג뮹;F:N$N=h9>v:5fsL)[:$u*wuD`k =>!ѧ;Q_HLL\h\{Ӫ+پ~qH<ż:^|u #S6RgΝ}Y޽!U za=?m~?VE=tNq]OS}6ά^ŋ6mJ߾-_s='qKgLi_5F \Xy͍I"۶m[l믿L9qHvK_v!N ǻ?^V_k1[V_|[YDSKMMMMMwR'RtH*:eV#vu `,d<QoH۱S|MOk{Sŋs_ BvĦRW7>|9{Zspӂz4|cǛC=}qW窧~UȫO~i|r6Frr^6}+mTe{OӇ5cYej:ocCX`wwFw6o PJ/̇8OΊ_jZxϸm۸8Ǯ]Čv,9LO~onSˢ?ХkW5 tG*k\N]O2k@߈:*++AфA;Mg_nZ8JPeoچ{?S;}ӧveol*VERŊ+/^ >b ,r¸7ǎ6rć|nyE'=^1wkEp$>9#.Ʒ'cS3|")9)1ů 9ܿmܞ/,Wo=si^zG%6<4:.x=',YGxRZۆFRQ)-:(r?)u l&bcwF'NjpD_H+v49v:}jK[+.ĴyZtǔ8?!12WgܦMlIIb7޹R|HJ]vmg_p\X6{WO]O,hjjjjjjjjj!_`D!SV:ǎo'uA }Jk:,>~M'=?Sk>-q;zu6z9Biެ߼/nV@M]R&:UeIꔖ:U(u*LRsve "q+^Zo⯝Ms]a9,~U쩏ydp8^]eQ^刦f߿CI*z ]6~h;ɱ|\9O/IIVccnSն1#ܜfٿJJܳaHWhWw~%%%~@P?WhPCzWGCCCCCCCCCCDcHJoUkqBe:SH u_o44444444444NQwu,RIRGCCCCCCCCCC×|WNi:Kl u/JkhhhhhhhhhhhIٻwӜNi!vP:tHK :!uxW~@:,uJJH9:u/I R7v 8:55U(u*RH~N~Di :A,uvSYBLJʎ:' #u).)R7vШ`ې:gJKQ4kFR(H;:'P9~tѣ̈́]RRGCCCCCCCCCC㄁GTVVЖcfC?:GK BoASȟ%TF7FH#G/M]Cc/F*uA锔U ԡ-b)))]H*-u44444444444>X Rc: JiWRhhhhhhhhhhhPNo )-+7_RGCCCCCCCCCC| TLYYYIqqqRD&Ɖԩ0vu lʮoiQa]ա%RGCCCCCCCCCCĀ:]gul6|MK ԩ-C:R4oqرb?ZZhhhhhhhhhhhq駟6:"u+,*.{;N~Di : !uhW αcR-(,"@ WK : 66:GiR9H‚BP;۷(Q'Rgմ;v dNT:z47/?/ ?wߧOQZCCCCCCCCCCCN_`cC_ש(--3N?t4777O厖:~BЈ 0 1i/R$urr@߷o_޽Ei0444~{1*W"$4444Nh: a+XNEEA: y 3l!CB\뺫 zæ*w30f e]7PJ2398 BlM8fI AevFE.lA GϲxNDaPkiJBBTdI`-8C0&2 WRG24I udRE-uN 49g8pnA9?$ġE꺠7lrw0a6pQus/,JOWCmA p>$+|6p]6؂:Ke%q"˅ZLWj"{@I-E :{ÿL@B:syEQZ㤆9VRRB3:/l .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:aExfӂNs:[.~9%bm߾ftg/ .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:aK{wTstN.]S .… iF#jjjQް)F |EYE (I AevFE.lA Gϲ-u8MK,@K@ߛ:  l\̱ɓ'ӌF .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:a:O똥KӴ]S .G}D3eq?BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',P4 i9 R'/A`QQ:⋦M6l096l0шŋ .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:aVӜ‚"0+Jkp1zM3ߋ .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:a3KG+(,).--Rԁ9ӌ:?sq?BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()pix lԡ@iinU~Di.؝wI3:s9r8P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihX:Uicť s@:ԿQZ㤆9vҌ^z%q?BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',`w^6Cwu?Hfɜ 8w'5\̱ƍӌO .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:a*u]!uZ0@KS.O3:nҥ8P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihYfuNmm-H'5\̱o4u֮];q?BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DŹH!,j2S< Q= :AYL:aY 3}WEK:?kkU5e#G8FD^^^۶m6m 78s1~ьٳ^+G(. huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1ZԩS jG:?\QJd|[Kmڴٴi$f|cGӧ*q?BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',: lRu-uNTz;`tF+]t8P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihX,AU,uZԩSawu6nرcs=fQ—_~y%yyN:]uUG6vl&9'# \뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-uTW:@hSwlٲ_}ܹ0T3cƌO?}ĉiii?3 Y@~ ضmUVq~vAs8 |g!NG(. huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1Z,uǦiW[7uXRf*u^|&M :۶m;{NKs,::g3a„ رcBv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNX`:{Bwu:]ZULRѣvڼy#_~mڴ+uqŜAň#hJz|[N/cqBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',Ax*+N)uJKK֭[#`э5e6o?ʮ΢E ?-))  \뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-u)u@𮎷ԡߚ?KP3"umFjܸ cӦM+Wߌ qBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',:ؤhS73 l_4mڴaÆAͱg3a֭766VP\@(pѮ뮺. ܝbp'\u\ B)RZ Tf'Xa[tqDX,+RAHٴ b KjC&`&X~^~D ,Av}qBGEߍ7s~ .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:aEM[^`ß%1~@K:`QGATlzҤIiii 83 Cy9QQwҥBv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXRg߾}cZ,u:tNyHуO}_|gqWZ`ؐ!C. eh̙Bv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXH!uZJS[k(-uN!;zN2EP\@(pѮ뮺. ܝbp'\u\ B)RZ Tf'Xa[tqDX,+RAHٴ b ,Rc:uP۷OKS^`ٳu]G3:?3~xqBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',R_k$Jkv=Cr hgy,A(. huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1ZvujP!r)`ؽ{wЌ)c̘1Bv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXRѣcH!Bg:ܽvwڡS />|8P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihR IZ-u4α6mJz"{@6-u-uU:VC/hsJ!9vuуf4N/O>Bv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXCZC9sь)}?SBv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXkW]8yH9:]vYiF㔾[}QqBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',R@Ac:%r>E B3]wյkWqBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',:/oMks "9cĈ4qJw  \뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-uQO?RAsO;C3>ڶm[qBqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',`uԩ5K@$Jkvvi1hҽz9?ް)F |EYE (I AevFE.lA Gϲ-u8MK,@K@:OX(:8@/isP&L MSwW\q8P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃih9p:k|9RTBPs Fdӟ$NA(. huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1Z1R翊]=)Xbb"dްaNhǏ?i?ް)F |EYE (I AevFE.lA Gϲ-u8MK,@KαcPLgϞ*RgUzZ p l;vS P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃih{޽ŦxMBj~NBBNhE_ް)F |EYE (I AevFE.lA Gϲ-u8MK,@K@Jzm?(ԡRCPs… !.RP\@(pѮ뮺. ܝbp'\u\ B)RZ Tf'Xa[tqDX,+RAHٴ b ,R7v"96|\PPU P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihH!SRCPsl鐹'4MM6A"##C&Cv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNX`::26uP᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNXRСCp |Ki99u7niN餤$HܹS58huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1Z~:-R9zTKSAͱO>3TtVV$6n(r_\뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-u‚RWwuN55}ݿ.**ʕ+E_PCv]wuAoT#`l>᢬"_JYR2;A #ߢ \ 놎#gY:PBBTdȦNPSNX@AT,)oKUUUXp P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃih%"uHRAPslذa]t:a0Ab̙"/šE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',%u|KΩ+ҰaCuJw}'r_\뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-u'/hs!96`͛S_~WW_}%r_\뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-uac::IKSAͱ^x᪫L?~)g KE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',RGR@%8{ꩧz˔rް)F |EYE (I AevFE.lA Gϲ-u8MK,@K?|a9p$uji[k-uN5ǺwަM˔>sz-P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihxI,uZ 3K#l:95{o6˔K_}UP]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihx:@;i!^6!u5N4viWz)q?cw_,SiӦ{P]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihH?9!u l#l(v9qg5.]XUW]/rް)F |EYE (I AevFE.lA Gϲ-u8MK,@K@::>[gO?is㷓:z?lҭZիgP\@(pѮ뮺. ܝbp'\u\ B)RZ Tf'Xa[tqDX,+RAHٴ b 1~oZ!lܸcǎ{.̄狣/K.WoڴIO?tM6l#9ֺu'xFNhcJkG >a1huW]MUN1f`8.ʺn.E@)-uNj*0-u` n8",}h $DElZe1Z,u9RՎ]-u-[ϝ;f*uf̘fĉiii?3 Tii)MNN袋Aj]wuO?eJ}]v > .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:a*uƎGwu%Rf*u@u<ï6idС⃁+&&F|PO?᫊PJؕW^ٻwo˔ҥ=|" \뺫 zæ*w30f e]7P":'5H Vml]7t>Jz"{@6-u-u_RIB:Z5LRni6o<ׯ_6m {nP2isEyFASsiӦ00,Sn߾=gP\@(pѮ뮺. ܝbp'\u\ B)RZ Tf'Xa[tqDX,+RAHٴ b aRERf:q֭0zFAh/+,pӠACZtϞ=oFP]]u]6U;0O(뺹R!8A"Nȷhe-躡㈰YV'ԃihxIT;iRGҁR_Jш<`&Xζm#`ԨQ7/hڴiÆ ϱ .7ްLꫯ > .uUaSS|A@(ePJK$+|6p]6؂:Ke%ZpB= Q= :AYL:aEƎUJGK: N^` Aͱs94eJ0Yf'BqE꺠7lrw0a6pQus/,JiCpRDP `o[uCa鳬DKN!!*dR'()R',0I6!#tܱcǴԩkvu׽ };0tPi "bE^Pl@ET (kޱEz#*?ygٔM6gٝߣnfN|:矻!CP̼Y*ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDA3+u"1+u!VFoŗ$3s~ڵk̋>5yCe;zфu/ _vA R$$ ϨՑ($2fJ*(@z`fN#`N"xRyN񤎽S0c ,?| ʚq80v "B C3_t;8eII$cBQ7#;QId2:TPQJHGLJD0:/7RHa>f͚#FKйSÞ?>yq٧#/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,XCH̬ԉtI::^ձؔ)S`9~xה=z4ӧO'3/q80v "B C3_t;8eII$cBQ7#;QId2:TPQJHGLJD uH@vmRHرca9uTה|8,̙ҳgFde졲hBP/;] oxY`A؄ЀgNE bFD =0R'SR'ԑj'ٹQ:a+usE%L)xbKf^\*ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDA3+u"1+u@uU:t(,/_ҫVB"3/.`eEEf0|wq|3JH&L?oTGv,Șe+u6 遙::pwر#PDJG>ӽ{wm)Ԙϱ> k׮uM?>̼S=TM(^j@eK/+uL"H"0ؾQىH"cAԡڈfVD:b V$#u2n+u Q%xaa|I2:wJC7o}j0v "B C3_t;8eII$cBQ7#;QId2:TPQJHGLJDPJ\CXS0co,$3stNNʯ yq٧#/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,XCH̬ԉtI:9BgC"g V ,ےʔ.S?Oe/q80v "B C3_t;8eII$cBQ7#;QId2:TPQJHGLJD ٙӰaܫ:/vܱR(a>^xᅒ%Ko3ҕ*UׯxӁ=TM(^j@eK/+uL"H"0ؾQىH"cAԡڈfVD:b V$B l$uϑ:v"߿ٲeQ7ęLۯwTOF^Pَ^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "Y)X:9`ͪٱ~ y`j7."ϱ~UT >~*{ā=TM(^j@eK/+uL"H"0ؾQىH"cAԡڈfVD:b V$I9t~H%K.[o˗XbʕRu{r(xtݺu%}:0v "B C3_t;8eII$cBQ7#;QId2:TPQJHGLJDY(tu֭Y_m۶5 g̜5{-X`…0R`>~UGyd׮]%F^Pَ^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "Y)X:7o׬\r˖-[dɖ[4 3f͂ԙ;o|+us8PNM^Tg #/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,XCH̬ԉtIHM6k dɒEmٲA\R'sUg:E9v=ԩS>S**{ā=TM(^j@eK/+uL"H"0ؾQىH"cAԡڈfVD:b V$I+2t/:6_J"իwJ}mڴ8K@yCe;zфu/ _vA R$$ ϨՑ($2fJ*(@z`fN#`N"~#uVYO̜IJg… ѽa:E9֭[ -[ %F^Pَ^4x]Dah ×.}G7q0 dlBh3j`Fud'"Y):RgժUTw}?p*yTP-QJHGLJDtQsC̚=Rg>z3R_jX.]>hSm۶guY*ы&5 |aӥf:&$M ~F lߨDY$1 ^T.[,|kfΜIeJHGLJDp]:Γ:= бd+uskڴ) )ݡCf͚QK% 졲hBP/;] oxY`A؄ЀgNE R;C]tѣ.\Ho K0̬ԉtI\yVgY:{,ZJ"BtNB;c=^,q`eEEf0|wq|3JH&L?oTGv,Șe-u@jըXl9sN=#''Gc8|Gԡ#h2JD]ٖ:lRd$\]wE6heRR' Nfi+usM6@wJy睇z(Y*ы&5 |aӥf:&$M ~F lߨDY$1 OL>v2b.u9*̘1Cu9䓩kʕ=-n97 ".VZ}w}%F^Pَ^4x]Dah ×.}G7q0 dlBh3j`Fud'"Y)LRgxpСT@d%A+W/_Ֆ-[y+VDm۶[nt< RpHXRV0cg}^wJ?S*U8K@yCe;zфu/ _vA R$$ ϨՑ($2fHM"ڠAȲU2ׯPڟ|IjYMb V$*uJyYbJݚy]|ůzR^zNUyE% 졲hBP/;] oxY`A؄ЀgNE KK/,X jdY?B-(z[NG>b V$?Rg%oYHy:K)@ 6 Gj0>S0pڵk)Sqƿhݵe˖sM\ԩS{A;GY"F^Pَ^4x]Dah ×.}G7q0 dlBh3j`Fud'"Y٭~K.\ȲRo߾ʕ۾}*D>b V$JݏCуQΐ!CJ*/C`z˗_t)?3QH\p< )MoS4iU]Y*ы&5 |aӥf:&$M ~F lߨDY$1 ԁ_>ܽe9_O?Ǡ?}V"1+u![n5WuzL0cN= )`T]_T,q`eEEf0|wq|3JH&L?oTGv,ȘeTl޼jժZe9_jիW{)XRꬄ Rg)$: RXՑ#GRӧnݺ⠑::*Uׯ )|rTā=TM(^j@eK/+uL"H"0ؾQىH"cAvSӷo_8Μ9SF:w\@=EGLJD"u:QoݻwzDŌ~r+[lQNu֡_g #/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,RgߦMQF:w}w͚5)Xb:+ n`3|,Y^@;ޣ8K@yCe;zфu/ _vA R$$ ϨՑ($2fdw:v{1uTQF:.|w, D>b V$IUVeβeHR̞cN3AlҴi.]ʮ]קm b8rrr`/۷oG_8K@yCe;zфu/ _vA R$$ ϨՑ($2fd:]L55,ԙ>}:| FEGLJDPRH3ks-X0#u+D 7n쀙O@JfӯYw^|%K!n`۶mx }tɒ% $*yā=TM(^j@eK/+uL"H"0ؾQىH"cAv;ӤI^ZP#r~K_/^^΢@#`N"X/tؑXVҥK7nܘ9/y}t yQK% 졲hBP/;] oxY`A؄ЀgNE {I҇}ŊE=5,|p:|I)u/_!9'u;/^tR+usl0Pr+j/q80v "B C3_t;8eII$cBQ7#;QId2n$urrrV 7Ȳ9&l:@RgʕRǹ3oAnV"F/|t5z)*yā=TM(^j@eK/+uL"H"0ؾQىH"cAv#3tPOBE,)Hn gT. D>b V$~ԙ7:E9o̾+}4;STg #/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,FRK.9srrD=5, u\D[R)XԁYhԱ75 0PGyd׮]E%/q80v "B C3_t;8eII$cBQ7#;QId2"uhg}VԵe9?}T-D>b V$I+VHҞVX`aBwJp :uY*ы&5 |aӥf:&$M ~F lߨDY$1 ɩ\rRp'e9C_5U =:q˗/˽{_,ܿfNp͞=fÇGwJqڵY*ы&5 |aӥf:&$M ~F lߨDY$1 ѣ̞|IQC,)H;w.]瞣j'SR'"H%WZS0cӦM٘1cP:J^,q`eEEf0|wq|3JH&L?oTGv,Șe/uO2Mae9֭{mJa'SR'H0BŐYpaԁ믿)"α' ;۵kwgJ^,q`eEEf0|wq|3JH&L?oTGv,Șe.urrr~Me9sjJT ;: !c%CguƌiӦ;;utNjJ^,q`eEEf0|wq|3JH&L?oTGv,Șe.u}u3ȲԹ馛8Q)D>b V$IK.ν3+uReĉg}֪U{キ h8dž3MwJw#Y*ы&5 |aӥf:&$M ~F lߨDY$1 \o6mu3Ȳ۷oJLv.D>b V$Ά HαR'm4iGp=.;CnV"s6\`ʾS z_X% 졲hBP/;] oxY`A؄ЀgNE R'|'xBԍQ#r:RgȐ!z&SR'H@,ʽ]:iRR% ?gˆ#j֬tf9w re)ݫWjժJ^,q`eEEf0|wq|3JH&L?oTGv,Șe+uFM;AȲԡ'O,ꅚGLJD xbH9so+uRbŊC3Ϥ7A6NgvW_}+W;|=STg #/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,LS/"FtΪU>BM#`N"ԁYp!9sBX͛7СÛoYT?OZ7αO?fk׮EwJ8MTg #/{lG/P."Ԁ04N#^V8DD26!4`5}:eD,@uֳ: -ZMQ#r:R'''g=z"1+uRg,Ι;wY`N1eʔ VTW^ҵk.Yp}0e)믣e۶mg #/{lG/P."Ԁ04N#^V8DD26!4O8MؾQىH"cA ٹs'5jdYNGzWD>b V$I Ο?"͞3'ԙcNo߾]T{w`F{Ni8K@yCe;zфu/ _vA R$$ 999UV%;xlߨDY$1 M~g35,&u9看.HT 5:@Rg[נsf͞mNtA֭?= zwJ󸈳ā=TM(^j@eK/+uL"H"h"%9ؾQىH"cA myJ5JP#rjRnhܸj"1+uA:sfΚJ-s̳R'_)VQqXzu-ib8^~eߖ|8K@yCe;zфu/ _vA R$$  (^8_t G`Fud'"Y) RޟC‚YS:=PժUEP)X:Ν93g͘9s3N)u:Rg:ΛoIe'|uF l/Bɒ%;i[ɩSB% 졲hBP/;] oxY`A}&MydZt G`Fud'"Y)RG3ψxHS:/2N~|-dD>b V$Iks̜5kƌ_,R'Y0Aũ@.]:/Fp 0@n;MѣGB% 졲hBP/;] oxY`A}ʕ+ٓ ڵkwalߨDY$1 Y:7nW_}%:b"YNM :AI|#`N"@sΝܺ6cƌ3fl޼J]6\0cO?tŊ;.\~I,q`eEEf0|wq|3JH&hΙ3 xG˕+sN%G`Fud'"r̯h -/XJ(zjёUS:SLA1cƈz%SR'ԙ5{6tδӧM:)α'xb}g #/{lG/P."Ԁ04N#^V8DD26Ap%K\f |wwĉҥK) #?~TGv,믿ҘNqDkDϖԹ+(/HK#`N"#uf͚>}iӦLHJ{kD_0c}w};7l؀!CB% 졲hBP/;] oxY`AM[oN:8|(Y&-\PQى^KDkDϊ)S %%OXe95ST^ /:pc<3s4HSLO,R'իWś6mڪU ;{αzzT۷oGk& q80v "B C3_t;8eII$c45jԡCՠ^z?ŠA(!ZьVOTGvl}Q<}Cw~ Vjպ{E)X$ufϞ=cLɓL3FJTGvi& K.ȑ<^{.O~4N6m(͛QͿF4Nٱ)X:̙N6iҤ'7?W΂R7+u[nXO9售]ަ AWbjР E'* q80v "B C3_t;8U(hPH&|gc`ذa(̜9SE믿3x{gFhCN1vyӧO?)ܳ4YӔ:O=T^|IwSN8qqƎ::VѼysѝ= ZF46lE'* q80v "B C3_t;8U0ʕ+ES^LR_l@ΝE}(DH&oC=ՀO&*]tbW*ѣ3#hDud' zP3~HԡJє_,iJ>qBJ#`N"ԡu&L0v1c: lE9v7s1TM4EE!F^Pَ^4x]Dah ×.}G7*u]ES^LRdNI"I$cbQp>?c;v-[g }vaa@hCN;8q Rg…nt}Q#rRg_z!%SR'$uC9jƍ뻥бR'ռa8:v%C)}YgiFT,q`eEEf0|wq|3+eWESDn&xѪ`7nՀ}':eH߀+eΞ}B e̙/Ȁ5!#;Ql۶TRw_.VXԷ *uh;lX F4>,/(ꅔGLJDȕ:'M4.#uF92Pp[8nN:i=}%e ֨4/-ZB% L}*IDAT졲hBP/;] oxŐ:ʕ'ph|WV_8k۷/^zC&Rdlo/-/.s9_~ K.0w&Dud'JYfa1%3Cd|:OG!\$AȲ+W~GE)XqxIdv%R' zd9ֶm[5~ДVmT,q`eEEf0|wq|ѣRG>~ 6Dkm&oziW1pQGa֋C&Rdlo'xB OˠO>*Ur_˗ǑWՑ(}ի]c?Lf $u#G!<>He9eS^BJ)XRƌ9u:Eya8.;ASC&78K@yCe;zфu/ _vA_PNcRjiӦu3<YF_yp 6}yч MK.AL[q+ziٲ%]R~^9QىkoO׶hߴiSҥ~23DA j,w}Q#rRO|I:3f̨Qn+X:ofjD%{1ξ 4q#wiSā=TM(^j@eKȷa0|Js9Vc\Pj0|%*mTzW^MG}\roЇ M؄K/m۶Qc۶m8 *2/(Gz8ꨣnFԀ;wFE`̉N>GqC:P$?FM~x?HRe9eߛ :۔)S uƎ;z4NجW.RhݺqWD〟]&M5j԰aC\;0r*M[oUfT%F^Pَ^4x]Dah ×.}G ,f#bذaRd iܸqٲe)瞫&Kr;{l>\B{MdF;p$BD26iixtNӽjjgy^TJ6cNTGvXb޽QyРA* 2HR)yDSjdYNYt ,* q80v "B C3_t;n޼'|"Zܹ:h5F$v{W.:9(>{*U.їK1õm.H% Ma~  \j|@ltb[oPXz59QىRfw? , 2HRzL~`$)Ȳ]R"1+uAJS:RgcR0_xڵkE=9ּy/ASW^g`q80v "B C3_tlG:e8OxEB(RJٲ;wر}q35s"9{7g=qŨ~T5AIP`RP(`rAB,)KG;)Xԙ8q"Æ:i[oۓ&MMa 6EժULd0pڵkwpƍW 5e˖}ES0sYf:trД~ǽĀ8K@yCe;zфu/ _v:W_}sęnR0J$lgŊπu]<94qmNd˕+'>?B oQͪT# }(}HơŊ,T _Zjm^_:S_{BƐHr#G <^k8&$2H"R8(e]F7Y IF唥ᅬPza$SR'>XD7ozkP8ӽ; y:th=hoMU 2 :Yfz˗_tsXz'z;;uD)tJT,q`eEEf0|؎8'G| .hҤ yL RQ|p YП?s'@QL6M5kڴ5\#,."Ҿ}c=V:Le ,2/!]v7c=F]xcH$GDf&\r FHeXnnMT AK%KRH3$YS:9sza$SR'6q8_#^!jNжmc9F ? 6.UMLP0:w,*vvaFs |/߲eˆ\]ls @Д?z/RY*ы&5 |a$/Pti*o\y {gZ u^xgK/JqVnC52|./~]5;P?C{]D23|pđ?Gܴiތ7pCƍl|O+Gw0HG4CuF`ʔ)A#9&:& 1!j F唥ܹs?F"1+uh[!uY/TT ]T 7sOQ13AJ[(QB}6N9V^S"/~PNzLcGu7L)g #/{lG/P."Ԁ04NG):ݛ+3K,q# {]v3G\zN>H(G-Z$#ІѮIgUٳg \."5ġl2e\I{3BXF VZw]q"q ;C.\HUVJjժ]T=8W_}5ZD$aR )SFAA,)K3M#:@R'^fӎYbN>QBɓ'äI*V(*`&Hb T;Sn]e5jtGqA9f\iРJ)M"g #/{lG/P."Ԁ04NG^N6DӅ ]3f 9buMpqegt?^жmۣ:J=V7tomGMAn(',?;SN:(ftLg }(}Hzz8[Sx3b-aٲe _\!r 9]äu;`/ eOPt-^ –:/"9#: F唥~jʕ{gD0)X:+DG3r(]Rg:F˖-O9,O=֭[SQOz]^=Q1矯_>=:_#*M/ާ,q`eEEf0|yx7Eŋn8ayUsΉt.xAu]7 ハ+zzTz\D  , ;j .f͚(xoՇdC'pBh@=-ԔܛpK6NuMBʕEG^U A4MN,]-; TR|0 7L0-*s cz鄄6g #/{3M\4cu/ _^ ڵh5A XLGP轄ȃ>7o, Bwq>- |7neR5VZMe2 \.N=TI5dYs=G6}(}Hz7o޶mЀ^ڒaT T?@UW@ԫ;𵁀!GyKo߾ 5owa dԹɅ FΉ'رcGQ)D>b a=$uJO4i̘XH-H|:/ hڴi.]De.,tUJ?4=Bh@=?R5O>* 8qD'L@z1ژ /"s9i h޼y`ޞ޻ /ڵky睢 UऊjdYN_\|Ť +:@RgڴX`1bدBXXp]O_tfO?mKMXaw^|HJ X{E)Mݽ_o% B|'HV1Poǎ%b V$Bԙ6a:8ǶR'%.BHQQ߿ɳ:  TҤ\-~`ca)#z]I$4cu/ ?\;0NXTr#06j(ӿ +P1<SCHѭo?蠃2%=8cZ?.\:u15O?"z\*+\UαM(uX]OB}z !k/)#]?O&d'#mB M6m޼9Dz+(;87Y49`jԮ][TḀmiHD=5,/u~_T #: ĉq9|s:+u[(ti[TfϞ}J6t>ӷo_*Mi|"4>\soy8ݹscXz.Kz衢#:1P|rdɒnr>Hi%ڵkƿ&4QFF޻|i۶駟) kNsCG7o:]t-FO@Pw[hQv{&d: AЀgy&~FǎOtڵ+#@%|iݺ5 ~a ?27|M b(uH37J Q#rR祗^*^xLGLJD t:0Z+uL26hc=D%{α+>ST$v>}ʖ-[DwXz. ȻӌEf0|/Br3g$*U<#O NǛ5k&I!MjO?V8СЂW\qEÒ{6KC=|-4l{Ţ0h8Ǹ"~ }t.{.{キVZ%ф^5@~.d} ڷoꩧJ+]ހ '@e=CmyG9_G}lrr穉i {?.*cƌu-2Hԁ8<|W#6A$>jdYN_V {)XyMٖJN:^~džg*+[l4ߎ%gq.΍^0 N/莈f ."Ԁ04%/s=  &m?pM K2Dt{rÆ 4?=C2ۯܳ~UP]vt9&!HOuE8WwHO\fXʔ)T ."k (5x衇 88㯹Q ؽ{w7#FϠAJ,IpO?묳LgSae6E35v*Z 8u-2^Hq."њA$>jdYN_[Q/tD>b V$:l:#>/u6+u5lؐnl޼rg9VT)BҠ)n:47B/t<$*U:i3 Vp_Q0ɋf ."Ԁ040-Mʇ\{wi֦M NS~#ɃO<Q=8P&WrQܳ+cP;(Q0`K١!o?\(5vmy*L~z%4E$c pyॗ^yp=Po{YF *i/ Ԏ_F貯Z܊@ũ:~FB^iu-2<_f ~e7^Nԩ5,/u/-|D>b V$ַ?cX(ƎͦG[,ɼVJYzu8}~g8|QEc]cYoz*Mijn+ذaUuvt0Xz.p֢:x ьEf#MZ|ǤmR2R7o[o~ƍ܄qu1Ǡ8dɒӫxĤ!=W^yű!&fGFdŠ[9眣}k W.3Qʵ˼&dĶm^C94|ߊJ*=cg~&g̾@_N#d-ȋ2urٟvi曅C&M0`w;"1+uΌ:Ǎy:r(cmNt+^8@ŋb26t4!ͻW\!q`w8P'd/"Nrbl`Xz.3OQ2f .BG9I L6q{_|wܱ2Ο?۴ic^T̙߯3>ܳSpa$5;9V:pHF"/\^?4^.3]@"."AopkΡ} pb-o@pBjKo:[pƉ]_?=b]I.:tԿ/x?~v;O? q~+ 1Q#rVv;"1+uAJɓI9JGر([TLiv4h iӦQ :A5j_R0 8c+rjժǸ#t^{%|(ar6@"͛_,R/,[7|'2>LY,P;w>ꨣE09\r M }P+8Gyd=z. Q2~WG("hK^5 (ˌzDP(B"q8Gp/4Vol7Bw'7 =L h:8C=$Z\t ]tt8~F7(VغuD=DϿoh>HLȲs 'BI#`N" FH}Ί+gN6Z){3nVmh#Gqpk|q9^y啨2n֌EdDq;$P>#FB;v`֭%K|8-[CikK5k74=b:8GqDcT 39R>:udڃK7t} J5Yz)TJ@Ud-T]"."ʕ+ k-~:1&SU`4~8u$!Dl@:/\|nM &z0}`a5,gEP@D>b V$:SL?~[`E(+u$&s,&5SzߑwyA`Ȑ!*Uھ};NF_~e "႙A&#ТE ni NJ(A`ĉ#vzȞ6駟DwtbE d*8 0 N"aO+t^xq#0iEfx.B^[?CѵkWy/hԨ]h!{z)StGӮz*QPa!l_ !KPP}QرI'?\K9 >zNgb.WvPfMT{u!{#`ơ*w t/|k9PE$ sZhAЀ۷ot6D vqкw.*@roR ^ .裏rAPӝ =; D=I!oڴ kg4$&jdYΊԡ?e7."1+u%uFg=co`+1|]fJתU\5kd z~뮣+',0 ]:pŐ/hu O TB@ } g}>PS>E ^cuPW]u3Ϥ}UGFDQ}Q[Ax^JM~`CnN; >CJ˖-Cphpm5* E{]D2#/]4U0ڒney`r{ FA@4iLlݺ5 A"=@3ѵ׋3RbQ P=Ȇ(5$jdYΊԡ`MvR|IU^ۖJ"#y)@3֭{J.M6 7㎣ *Dp :?b($sî7oh ~͋hk׮K6Xsmۺn2`niժ/,/Q鋭9h_"U_TM^gFK9غu+:}\jT1 Bȓ7At^O>Uus?څLQ JK$c_kz$ .h֬S^=2{ }Y`jժE* Ax!rѿo ?JQwF,)3g|%깾0J Y"ulRx^ڤ|LN,ꌖWu)˜oK@7TL#<:*ޜ|~'\HEg**{6z]6m?x*8cC{>}#;-5[o^3ڥW@ +ȗHƾгGЀA_}&MD%|E&oݻCJ ڡ*A"=E+ 7|.*?#]4.UެԡڈfaR`1p)X:gu2&sl޼yLi׉ 3{(Dtx`,=XSOMZpYDAjذ=**&B}iu8;ǿXD_^qGh2f߫^ďK|\Su뮻B5R*UHrVTIh8=CC|邏:,ŋW$hٺuq衇#+sOCT>E^{|Q5yn `!=E%gDGK_*XCH Ͳ)XyθQ uF sDYJg񥡪fJ}N|yٓJDǮ]ӦU{gZ(o1D݀5j?tA,Q1j(&c9.8KE7pCFt&{]طo_) )RWuDsΑOTvΘ1eOel g^{Ke/\>N໇M6-[WF+r< ʾ&ԫ^3!C\WJJ˰aȘ?\bE)CjZQ!D7 VA;hݺ 4SkU`w|VKg]WnE"XCH.n@_tER|LN,HC#\R:VALwhgѶm[QɅޜkFc']t:u&aBtCǤ :&{ J.$ >yM׃>vyf{t)CG r!u7|StuԱcG5TpSr{eՑN5*JuDoX]tUvj{#VlnV zC.>zKГh7o{op 'y:t熽5kTơ{\TSNދNA#BGAw5\/; }褐yiU5A)֭[ D%{KD=طo_2jC-Jk2:TPQ@@9c E#`N"Rgqyn`#yVJ"S_4S .`;_(&FںuΥqP2;/%У#&ʍkN>͛hh(VXU_ G I T޽:Ҧ /K.ˡWȘ._j>fK.҆W޳?r:ve'h5 p'HʕO?ő裏^H]7߈cD {48P G`Qw HRY+ж&!,B/|GT A -zu|ofZU*hAԡڈf8Ok^{!~?ݔGLJDRYU,]JMFU͔9Qe} b)SFA8Ci{kA!&'H2yM~Cv[{5qitQ *Vد_?W: ȗ꠬:(31Ʌ^J*(@z`wqe=D̨/`-|IU8M[cd_)>se, 3vڡ3fBsA/ʏ&iٲ%,;vhӦ h?1\4& HnK.%{I:uƏ?X5}уh[D~g3D!!zq™: mF刓BA.X:=?Aoܴizz-|U}e7$ރW޳|+y^V**?z| G+>ƌCՠt9PEj7|·,mA{TFsO-uN;M݌^{2qu]wz?1zi\Bq:oq#GqQ7>Ȓ >}Q*`iDJ*(@z`YܼЮj)YBQTYbNdѭF3}w38q+T+W~q0.;I xa/Ѓp@\ofmۻw*U6! {;L҆NK(1 _DkGN}5X₶k ( T\ DEbQW_[Jf͚hQO% "^XӅl߿F:DR j# "y7_(""10K(-ٳ{y >Rgsh+u&sO?E38@TrK@\gN_\.T֓HwꦛnJJKm2xzw?~<7N(d裏cK&OX. ʿ;龔.Gpgm}Wx}ϟO-TU{y(,_;T4h 'zz.i"Ƚjc]q]wD知 C$ut=D!4ƀs<&;( m}.B;}y}y4 {ޘweD VPAmDA3 i"1+u!6f䨼79JGH+u&s3 4SGoDAޅK@㤪/tNr,BXxs^O~]wwAUVQB@^{Qhw/@UvS{R.2N(0>Qph޼}|tBwzJ{w m!cQ fP"ԤIu-… *tg x EVZ^D/ N6՗J#ip9כBi&իWDIz gqƍoFaa9 ͮ1y{3 /QQ H7~*dL/wrrKΝ$(iAPwNLf(%gER j# "-n^H޻ޱ[|I:t8q[FvXJ{ O<녌ր;7x;<]}]z!jٰaW_Me t \;[ּ+(;U>HE$ _ NUWXU"RBٕK.OӶ`YrL28s 3yr .MoVA#*U%tM+[DE^냠U7 =ŵF>Enܼy3]wqjޞ ](ƧrJr֭[Gf|Av7HhrA+Īz.d yח띭d@% "GsMI믿R^t+l bFD =0[ܼK ٍ|I)ur9r#usK~[bʍgNdɢ⬙838c C8 ~ o^{5tIp_,ڵkw8PF%#Oʕ++&&@ ;ߨ KT BCJc:uvpTVf9D/<#oF` ů^bzjذa˕W^yNJ /PE#du@wZb@h իGDhtAJFh߾=T&3=t{avD=,}О{キ+hO<8[OD닥cǎ MR_4tлM6R^nLu $gER j# "LJeڿ)XU)ƍ5jԈ#i(!ԑ:N4S^K}.2% 'ԅJ7ɵuVQΝ+*PK~1UE6o^xZ^z%* 3=d_R 4{ ]E6 J?VZ$ ; ݄}[ \/ -sO<Bl?F׃Fdе2 O%:`} ἓug`h{(x7ڵkK>2 dJ >;,>5hʋ@UBhhQWU땣d 뫮y&I&L r| =E/9|"o$}Aԡڈf0{y%wD>b V$:'O;vȑ#>/U lE 9SbŊvJ/{-P8XXzB]2P\t@~ hBɮN8 ^6a)o[zWI㘺T+2P2'1\)h&y瘤e˖gy&nuꪫ5kFe2?G{vU)-\ d] pZPѣQZbAnKWͼy\n]*H"ttUP %RwKשּj@єu}嗢йsgjh6jȵ{YJ%,Iƞ|n1 5J4O~]wў u+W~gE]}Aԡڈf~/O?BA#`N"ԙ9sɓnj3|Ĉa_G_:{uu):̱^xAu =Ճ;[1`,q`,= Бcv ~ahBɮÇ{ro"ThӦ ! 8qzQetMT6TppQs7RYB^ǠSzt(#j֬~+ zє~YK}Nt^(ŽK 44xg@\BF=us54nܘhBUC1Af_^W@/z F H7 _(4vЁzwojw)I&?FP Kt_߿tRr4A/Q?/2:TPQ _g`O "1+u?2Rg#uFHSϑ:o2oYqgNd_}?fJ'hRIzp! [ou8͢E}UPޮAګW}RO*h /8|gWZPٕBu|wS;*zǻӑG7B￧*A;%U(QɅEj\f;Ot/^x pBK-(ٳ'M4!cy? L%Dw.qj;^OIQ]&NHU@feW@/z F H/`RK/=GhѢE%4I}z+?~` _d K@KÅ`;zф2针\4*sرފ"O)J(A-Џ 2ԬY믿}Ս `2_:W^,r?0a~ 3"XCH̴ |(>տdD>b V$ep":~QF12iHfϞ=ЅX[rJeFds=|h4ݤްd2% qp!؎^4x]D58q0v׭z }L{]_Gjq!ru^Ewg\|}\NUfl@x"Zs 4޷F0Lab4[D{g}& Hw5cƌy`sQG[XoE.Шd0Dud<>>w!l3"XCH̴/Po|I)uM6~ѣnj9*ԙ 3o XS88#nA̱o^ztΧnh"2% BhBP"l;_\4)h&_ܖPuqՑHl˼yOa41 VPAmDA3 ԗ5D>b V$Bԙ 3a„1cƌ=_̟?JŰaZhQZ5ۅXv2e4n_?A×A}fJ\{"cXXz.ы&5 f֭~hRmڴQߒ .Xx=SHih#L":|7H]ѡ/e'5Mv;wBJ^B#01ۨ/BU{7hv~T 5>|S1H؃NaܦM/_f׵daYER j# "i7_(v#SR'H̝;w&M7n#u&l1t=zAT3dȐRJ˳f|K.}3w9v7FLi>% BhBP/;]oۀDB+@-T. ޷xihgN;MnHh&fzo/Un|CQao@PN8󰒫/%؃NDE0bAԡڈfJA~[n!:͛1cF#ؖ`9s`p)h`&RiӦ;w]{f͚T (9v7s1p;#vQ|ā0\M(^j@e rܶm۪U:v_۾wi2R_9xw|cv6/w^b V$^-s+: s/Yt)~XSLRvROӧOݺuQ>|xb2m42PzUk9D%lJCc ~0\M(^j@eK/+uL"H4ƿYgKOhP NE bFD =0թSҁ/ s} : ԙm̘RWb V$Is*nK N%e˖pF+u  &7ׯ_¡c_~~J7180 v "B C3_t;8eII$cBQ7#;QId2:TPQ,֢E JBu]^-)XƎusDF@,ZwߖXbƍޖfk[.]ʮ]-r[H̱vکSOi,O=5vX2% BhBP/;] oxY`A؄ЀgNE bFD =0]v%2aQE#`N"Rgĉ8Tv`sN)e˖/_rJ) @vNvLxQMiW_}u֬Yݻw/_%K:^zg-*aSVZw5j(2% qp!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "X܈CR ^{5aZ|I)uORG:[3weo+VXj~TV\/;vBW.]qÆ ƨ̱.)]no]Tv1b8}alG/P."Ԁ04N#^V8DD26!4`5}:eD,XCHbK۷SR ´)XUgu\ٚQ:KV)LX˖-[h!*aS#ڵ FƀA?N_.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDAR$GLJD 33g:;3f:81ݲՑ:KA\r՛6mRc~\ЪU+Q M4E%U)p!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "%!um(|^~§)XRgɓǏ?v88:Ee-YeNd{_|MO>Ck׏?HƀA?N_.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDAAC)8w"1+u΂ f͚5eʔ &WЃ:VALYgզMQ gqFvDe׮c ~0\M(^j@eK/+uL"H"0ؾQىH"cAԡڈfJ?JnƏSGLJDPSN8_ 8;~Rg:Eؚ7o޾}{Q ~֭Ee׮oc ~0\M(^j@eK/+uL"H"0ؾQىH"cAԡڈfJ0}tC(5kĿs΅Wf5jtwYC#`N"8R篅 Ξ 3mҤI&L6D7#uJ~J";SJQ Үھ+2% BhBP/;] oxY`A؄ЀgNE bFD =0KZAa 8xg˗/OC{P.T^{-IGLJDl믌ԙ3gδi&M}yD>b V$*ufBL6eJ^x+sU_w+u&sqƝ;w)}-4lPTv080 v "B C3_t;8eII$cBQ7#;QId2:TPQ,QEbp?>l)G07p E#`N"dƍ,yi3Ց:g؁-:E9֨QoYT¦wq衇ʮ]>p!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# ""u~WX>}`œ9soժU[h7߬[n޼yv)U{qQ :ٲq%K@Κ3}THеٴ}Nd5hР[n6{qʮ]p!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# ""u$f: 7jժU^ 4o> "4GLJDK3{3fL6-#uϕ:/Y|ʕ+)Ṟ;n)k׻Kƀā0\M(^j@eK/+uL"H"0ؾQىH"cAԡڈfJ@#|wЬYڋ*T Js(Jz9GLJDR"RgFFLߴYJ-:K:AZ ?*+u =zwyM'xˍo1`,qЏ v "B C3_t;8eII$cBQ7#;QId2:TPQ,KR?Y+ [6:Ap CEa"A"1+uvG,]ԑ:sHlVBh:XAR^)*̱:us=6_lYQٵ뭷"cXXz.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDAԥ#<B<+V)uk&D!SR'pGLH3R#u.VJaR1cjѣMi,ŋ]1`,qЏ v "B C3_t;8eII$cBQ7#;QId2:TPQ,uob?ڥ:t(iq(DDc"1+u!W,[pᜌԙ:[.\:KXCGeNdլY)믣kT}708 Å`;zфu/ _vA R$$ ϨՑ($2fJ*(@z`Da=aҾ}{Q2"h0r#`N"lB:3gNJN=+R`2ǪUCJؔ}dkFƀA?N_.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDAԥUtQrEɀ & ,XСC2v#`N"YHf͚: <c!LؾۻwoQ [?ct}7T}W08 Å`;zфu/ _vA R$$ ϨՑ($2fJ*(@z`VUhU^uU(7iT63Xd (*P#ԩѣlzI u-Z+uf^Y|:g{LT対z/S08 Å`;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Y-)f̘3$O?2{l/rP+Wf͚Q+WR UANNΧ8`zIH|p:+)Ḇ='E~^T% qp!؎^4x]Dah ×.}G7b n0$$ ϨՑ($2fJ*(@z`cq?66ܶm[Pڵ۷(/N ML:W}ƌl6[-R`2*TOJآ믿R/U\X1ja,qЏ v "B C3_t;8l nv)L6&$M ~F lߨDY$1 VPAmDA[1vJ*ѧK֭{ӧ(@}HbzIԙ=c:Ge֌YA6^"+[lE%lQBT}/N-% qp!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "H|;3''e˖ADvQ6l sIƯ$uhO+WZi}hQd.]Ey„ KՁ,YZL̈́Џ v "B C3_t;8eII$cBQ7#;QId2:TPQK-B|83{1YzHc: ŋϟ?{.{Qgʕ+sR`2J(1h Q ['NHT}J*E-fB Å`;zфu/ _vA R$$ ϨՑ($2fJ*(@z`H?}˗ݻw4X&Rg:E9/-ʓ&M^0L2bh&~0\M(^j@eKgqD0Lab1 dlBh3j`Fud'"YR j# "Xܲ>7,*v=?s*R'\RgΜ93gr({[#tر-Pgc=tL8}alG/P."Ԁ04N#^1f7`LocA؄ЀgNE bFD =0e+Wn۶MTvׯ}d:ANNjFi:˗/_d IYfow^ـMٖJAۺu+ x Q7X9? v "B C3_t;8eII$cBQ7#;QId2:TPQl7:O?4>﫯aW: 2ժUC/x}zIRg9sR'w_uR:6nw}W _vWbE}>:N/ EEf0|wq|3JH&L?oTGv,Șe+u6 n.uy|!CПw[jFp8@XY:g:+VXScׯ| }WV-*?*Up!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "Rg}P/ :+uV3wlYhNQ%t},?O}^z|"t^.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDAB$u$8PѵkWQCbN"Rg…͛3gc:֬Y>L e7T~{o}>:N/ EEf0|wq|3JH&L?oTGv,Șe+u6 n.uϫޫO,XE8;4h yQX$ua3-uYv`Rh:V\ /R e,{}ʕ+qzalG/P."Ԁ04N#^V8DD26!4`5}:eD,XCHvs3`|wyGs)1 u /PTrnݺr)&uz1Q~ɢn(RvT5]4"t^.ы&5 |aӥfW "01ۘDD26!4`5}:eD,XCHb,nh@7_W͒-[ ;?I2G,J%v[f:+V@uȑT}mg]Je֨QBU"]=z4 M&|wuADUE3!BBhBP/;] ox8 a 3II$cBQ7#;QId2:TPQ,VRGAΚ˗fB Å`;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭ+u:u$*yɓ {qE`N"Rg 2Rg~F4Gd`: cÆ 9sDlQ>Zh|8]0\M(^j@eKgqD0Lab1 dlBh3j`Fud'"YR j# "X >ʕ7رCTgzNAJD&hQY<󰎳1:׶]t]ׯnK`NuEK.9sQnݺ8]0\M(^j@eKgqD0Lab1 dlBh3j`Fud'"YR j# "X >^B=b8զ/H>/k٭I)ufӾRٗJƍ';`&<(ЦҴ:k֬ݻ/_~ɒ%b l? /^,frv[nLBhBP/;] ox8 a 3II$cBQ7#;QId2:TPQ,VSDܹʾ6V$ƍq,YpIڗJ l9 V^-f^{ǣеk׆ &tp!؎^4x]Dah ×.}G7b n0$$ ϨՑ($2fJ*(@z`cq+\?\GN|Y`X$u-[FRg޼?Rg?R'u):αO>k׮uEolҤ 7t:Єu/ _vA R$$ ϨՑ($2fJ*(@z`VN(#FU/3f̠+uR篿g̶~Ry:E9vw?uEK.0X~= Gyd}~`2N EEf0|wq|3JH&L?oTGv,Șe+u6 遙:yU? dI:l'uuH۬)L۰a-'t noQF8]0\M(^j@eK/+uL"H"0ؾQىH"cAԡڈfV=b}=3QeT 3`N"}Pgܹ̝"[FꬶR:ǜ)g3YO?t@p G}t}~`2N EEf0|wq|3JH&L?oTGv,Șe+u6 遙:#6h jTxadNB@lذa΃:8ٴ#uyX'#unRH`(ul"f\kkܸq}~`2N EEf0|wq|3JH&L?oTGv,Șe+u6 遙:#kQʗ_~IadNBYhт Ν;!#u::V ζmDlQ&sW^{M4 LBhBP/;] oxY`A؄ЀgNE bFD =0Rs~mjT@Iફ¿VĄ…͛3k왳fmR:Eguh6"آE mk9cCq`lG/P."Ԁ04N#^V8DD26!4`5}:eD,XCH̬zU}]Qʋ:1Y~}f5GtؼysՎy,_ϳ:V B\{M6E.A֭;vxqDž&tp!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "Y9bo5`NLH8̅șa?RGl6lc7."JN:@%&`۶mapyuNLBhBP/;] oxY`A؄ЀgNE bFD =0Rs^yjT?J@tIgƌSN:mZ#6`[bժUk߫S:W_}58,_~9 O<1>?0 v "B C3_t;8eII$cBQ7#;QId2:TPQJʦfBÅ`;zфu/ _vA R$$ ϨՑ($2fJ*(@z`f}Ԩr1LjR^ԉ I9s̘1:g)3Rg?R'W鬄YJ":tVEpǎGqDj.f͚&tp!؎^4x]Dah ×.}G7q0 dlBh3j`Fud'"YR j# "Y9b999h:1?fϞ=}tHI&?!up>JRw}ڵ7oRzU+VEgϞ5kl߾jb8TalG/P."Ԁ04N#^V8DD26!4`5}:eD,XCH̬;bXxq*hR'&$uf͚3eʔ'ῼRG^|gy}SBhBP/;] oxY`A؄ЀgNE bFD =0RQ:)HiRg׬R`MBQq0\{ʕ+n2Oq0\M(^j@eK/+uL"H"0ؾQىH"cAԡڈfV1j,]4Y8U}R'&Rdՙ2eIR:FۯYSȿ:}g}Zju9'8U.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDA3+u5-[n۶.?|kNLT3eʔI:ζ HcNQD/u`>{ׅ^x'8U.ы&5 |aӥf:&$M ~F lߨDY$1 VPAmDA3+u5VXܹ.ZhԉIԙ=c :ٴԁұR:rf"د_J*a_,Bp* EEf0|wq|3JH&L?oTGv,Șe+u6 遙:~G{oFVZ_+ubBRgl:S'OH5R■)"۝ȑ:O?tŊs.1 Å`;zфu/ _vA R$$ ϨՑ($2fJ*(@z`f}ʪ/ZE̜:R'QJ"^lݺՙϖ/_λ Mp* EEf0|wq|3+@ SmL"H"0ؾQىH"cAԡڈf1B@jժ_Yuq饗_+ub"̙BLdA/uMpf"G 0lٲsN˖-Mp* EEf0|wq|3+@ SmL"H"0ؾQىH"cAԡڈf1B@ƚ5k_YuѶm[kNLyԩCn`R蠗:PLH{L2g}v֭Mp* EEf0|wq|3+@ SmL"H"0ؾQىH"cAԡڈf1B@ڵk_YuѮ];kNLHnKyVf1z39RgK>3/"1 Å`;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭtڶm{]*UT~mkNLԱD4hPɒ%wرa1 Å`;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭ`~ 9990! lVXc/BfF΋/Xxq̗daeEEf0|wq|3JH&L?oTGv,Șe+u6 遙:fGIXRL>}ԩ&YcE?lN^z͗daeEEf0|wq|3+@ SmL"H"0ؾQىH"cAԡڈf1B#3`NR^!:aD+u,s_Hg6J +% YyCe;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭ`~ X,Y+u,nOkٹs,졲hBP/;] ox8 a 3II$cBQ7#;QId2:TPQ,V0?bd*TbN"R^cEc/rfF:Qb8x l߾| HF^Pَ^4x]Dah ×.}G7b n0$$ ϨՑ($2fJ*(@z`cq+12V$ԙERgĉ:RsnB`8f֭K@0v "B C3_t;8l nv)L6&$M ~F lߨDY$1 VPAmDA[!R'Y [qyCe;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭ`~ X,$ufӐ:)9uT֭ۻK s`8 (.% YyCe;zфu/ _vA q67A&fzH&L?oTGv,Șe+u6 Yŭ`~ X,ԡguƏ:Æ kѢEj0>S0pڵk)Sqƿ+5~7|3x'|A=oDpJٰa,졲hBP/;] ox8 a 3II$cBQ7#;QId2:TPQ,V0?bdI:MO0Rg<~V :G1f*u RT_~y֬Yz+ҥKJ~Q9{ DpJG?͗daeEEf0|wq|3+@ SmL"H"0ؾQىH"cAԡڈf1B#3P\9+u!W̚6΄qLPNӦM;w,*vvas y*lٲeC.3f@qayy DaܹԈh㥗^ $}0v "B C3_t;8`ܹt6hB 4a 3II$cBQ7#;QId2NHFeQ\ G@ٲe/ZpF:&M4~{Ug3AJ[(QO>*9SPؾ}!"%Xn33,bX,GYXxxs: RXՑ#GRӧnݺT=Ѓ>_[tK ?8VW-e=Pce=Pe=P氏Nso.N,,H̜9kiΞǎ:[):F*ݻwzDn +C2(s2(C2(s.RgԩSk l3{ {̱{ {̱*ԙ6qqƏ;֑:[ۀ)ږK.kWi[Hؙi=Ve=Pce=Pe=Pc]ԡ:ƍ3J݄7NvzQm:hW_}?ݻ/_~ɒ%bΖ-[zE=Ve=Pce=Pe=Pc]H l&L;v1c=_ rT:vH]UVҥ7n}:~_u6lp Xݨ߅=zAZ3Ά  #۷o8½_~U:P:8 ⻵jXѱkWΝkԨ?L4y5ڱc/ZЎ^F7+9_.<u1ȢEpbE K4,k}uhNLzZj/wrt7*qծ]#R~ Wm ƐԱ7q6m**vva uZJ.999UV =Ulٲ{<eV83f u=Uo wp^x{12(|Tiժ(d B+V/^oE eP{WLBr5kpvr]wavp7RPei֬/jXJ,m6Q/, īJ*+W/rT۱cN1K.Ҡ(T7R޽; R/U_|VJΊ+0G)vӧnݺR:tG}4m4n:%pן}(pᴕ T}QQ)h3x9묳`FF‚z!C+~5jРwy8>7p 8J(S#w}WT 999^x'LU _9j\r \ KXjڵ; ċ1bUDP:P.&L' @x?c;O&2ZG1}0fsbI-bHyF#>3=f5,ݥnݺ]]5]]U=EuwTu^?.^}CCDV+A^s5Yl%@gnn/-Z_o}'Ħ 9k 8@E+8 __S%҉{nzʠxcZMM jTADjLqPoJ T$:N%C7MȎ9WzxxXn5Ѡf?s}y{svر_6MEF/˴ K 72.k_ڭrR@Q"ծ{w~wH@рַ駟nmm9|N[)zi`߾}TsűrŦM^o2Ш[2oq Tg?YΩRۿ۵^{u׉@o̙3T*uwҌ?1F 5 6*V<::e_zie"~z7Գ%Moz_ߣ]R>O)"ha (Mi# [ʮ/"ծ__QOJ-_WBD6OO(RF-ƣ>*6m. dhfF]|2:"Pjq__?t8 Qn5k CF 5 AJ 9᜴:+idV<qXF::EY6fuau[X%-d2:]FfuΝ7wuڔ]@Y6:pW@/W⠦OO 2AXt:pܹuuduV@LNN^~iJ ,EV… uuugΜ]^&s-z߼m۶|;l6NK_z׻E`uluWgϞ}auD?-rHy?я'|Rlzmx;_œ| _xӛ׿~W\s=ԧ~Accc7t5\C|#!%auV /y]:Ɨ9~\wBVo}뷿CENooUzOH`uV'J555q3\t V@t6/£>J O<+^}k}}}{M0'}LVĉb]ݻk.:mrD:uuu=O?MV睰:־>bC=׽@刋wuNX2887i۶m/ۛdxk6yY}dٻロ:{Μ9C':tŋ V4 3ϰ8pYeoy[>vٳ/wunus=]:rF:e+:2[LwwGGGccsgֱ::CVgii#T_:LdSTss דչZ3 ( f--- ϟ_YY1I666^аauauoV'ݙnkkojjjhhdV֬΄:sduɽ ~ťlO+Ȭλ 9rdqqNN:M.Vg[2;kkk:sŅŞtg33ͭ,Yo}af   (:|BwӲ:-k:AA:0t:,Cv&9AAAPueu:yAAAe#tw:괶:G1AAA(TwuiՁ   uA V  rڃ ltGGAAA[AՁ   hȲ:=4YT[[[k+AAAe.]:Rv`u *V  *!eulAP秱,@ 챀 e /lu`u  S:  {, KQֱ@a/yV'۝JtH V"S 챀 e ou2]XBSVҥKr D {, KQֱ@a/yVg1ìNggg{VbS 챀 e %A@fVVS 챀 e P΢fuRfuau *J[#({, 챀B,aGY}qqQxꤘY__AP1թLX@caXŽ ;YW"iuzn`u *V[ a=X%(XY Az^qJ,qrj&L!aE{,%(X$N7^ݕb_I@T>];_23S 7T}I#V#S#/?`ζthŌX:Evg Y"xykKleUݭ}/nRZO mz-P=DC:== A>^śiuY9ƭ'$NĪPL;*b\[mvʿ7eau OmyaՁ (cuD)i, -c*NCN2:Ä`uh7YT'NdMծ F"mF:khz&G}Hc3qB~&u~F8O>G`uC+pT'˂i<#W, 9qJ'pNbGRu_/(١By.ř[ZaS+<Äp&턽%{V'ݙcu*"Od(Rvo63D #:kG$٫zkuRch#1C?wҥ7pCv"wԿn˴fr%\euNq#esʠ}4KWO' L\y%OF"oҼዝbա*-r=R)E:#דg{U;gs=hLч?4I V|,pNbGRglOu۹KvvbfgG_jZY)Wo-P=D'~PN'۝b/at C~5}2vsC!2&Bzgf;m }V!:[sD(t?`8#QMqKDHϐc|V(v.li=Cr^hBчq>$[fyª=)XCQ"J'Gݣ 3"I)zMv0z;;CvZ^TZ0au5Á^:CD &]AN:tN"ED Q﫰=5llIJp:*apKY.]۪nxePb2pЭN4}RBc*$<+@%hb^*ia'тIWAsHXlV'F;fk*ϟp쮱N`i>i:,ARTau(bν":2X%(XvX5UX ;Q :1KQֱ'iQX`QSqʕy jeuPaD'NܳPֱ'쁬N/{4:ەչ(::TY Caǜ;J`ubV'F(^V}S {pӗVgLZu`u DMVŽ9wNP؅ޏտdz3u:e:%lVynuau DMV.sݏ5_lbrư:25\ҸO V'F(4u 5wdZS=cS/=tznRKk+NY'ΠxߴV^*USu}r?F9%7lO7>ԂU:[vBh`_V2ngd*gwӨV&fW)f꘡+z@/c¹k%2Ɏ<9c+eO ƭ]ݰ:TptxltW=Y?22ZB.=.a!eVgeu^O:*Yð:T)ձg={>#uDyIrĭ]̹g|qwkh8Ʀ]Hfs_RVGjBQvik!vfPV6EZDdeN$s2O!ܭetcf$>ZKD(!ә /?z/-꠬# :VGznvՁ576ۧJt%瞔k>K񟸅;TmnX{>a$z]^98GZZ6yReY =Ay/dm7S=](>jkCaWV#|k~pN^[[,)T(pݝ`V/ ßa#VW6T:T.Qү}ˇ2pMtF*-gkRUu# 1'v4JqC jAVV;w?bĀ'z}Q [1Tړ0_3'QYLPaƜGl MnP/aUveuF&F~ƾ;#w/_|ҥXuT8/CapX:}Ts34<:*CfgrjV*IT#:6owtLJjhm\ Gu4[ {əֹ"42>@9"T9npF]Ubg)a 8S2 E/Psy|}qϗ!5\kVsv4s ޵T礖o!\wwfΊ.M?x탻C..)qK'?I[KhuPQ΀iu.33M0&WVV`uJ-9JD\QSx qtCqDCPs>1v0k'n!(bM hzr4OV,-ߐ+`&{8e Oİ:2UH+&Q4WXGsgysr(L'!xX=x,YN{ ﮨ s?Wo=sST:4]^^.k PQ>ΰmuKVgphX=61>rNi5zqfznI!HT"}CFIUڷ1]GDM ]vcF&jXa'^SROB^cJt5F5^J@+LmQ ;: c}]Չ@:V'Xmd'c&1>Cj+C[1OnZ\r k'VX6u y΂cGMA#c֌ \,g 7 *??\?B;l8Ajꞓ_)YB5mY8V"o/ᙳ⠰ shr80<}^[XYYMT@Li y[ՉV:V' )9~zBa)-Sw^WuCr% TuݝOɕ- ZYPnPL)KY]{!vau746w&&'gFFFi:55M>gfvdVD:s::N4I&:SPÛsov*yؔ$6Zʰ:1BaVGJD.S &N__e7 lV'NeBasM쪀MRΔ$2qNPɽܳPֱ'Y:Ύ3NҬOd*: l5Ҭz0(qcuسk>L#n ,`u V2c%:#e ~: ~ٴe6{/n[eKr/Wb/_4h;k$sXH: 4RtHP+G Bb ;:=a?ӯYwuhuﲾ9dBѾIuyƶ"Fn]Գmھ왷]vʑ_9._ҬўfEx N T&G͵CAPS(.=XŽ?a *Cfg|bey$Fip'e-"'V{9Xk~+Ăȶ:8G75zH: ;q (1d 5a=ރ%(Xpu"QV'R-،\^KN T&"{ѣGCAP#cDL,aGYǂ:WD\qfv`u=ɧH:V'b Vg8U1O`u N Ne"|;%LF#;XŽ?a$:[V:V'`u*  J BMGأD Bb ;:X#^6MNgI˦L-" JV'`u* ѣGgff\ J BMGأD Bb ;:ݿt3<<Wgl9IXqqzJ\QS9rիrVJ G Bb ;:ݯVV:; ~WgՁ5UX ;M_z%Z@PA#C]{!e ~^yQ'359 A#j:?v̹V'`ub$cOZ!I@N*:GPŜ{ Daud*(1:1KQֱ'쁬:lCC㸫A)j:?v̹V'`ub$cO؃Z6\f322@Pe*]̹A$VG#e ~^ao`|ywu`u bDMVŽ9wNvu, {V`ppHbyy?! A#j:?v^reDZY=2TeBa$,u, {qVz>vؽёQMG *X=̙|GPrD%BbT%*s(ՉX{Y N'EZꍍl6O4T:5zqfznI!HT"}CFIUau(sG N,]X\<ޙΞo8SWS {`Zau2awzY\\5T:EVGH:SPŜ{Daud*(1:1BaWVK#Ӛ!]z|s ZZ[au?a/l^Ju]L;ۓ]XX8pq/Xdeu $c.1=e F])l_[[oiimmmkc#Ցo>(A_:$O r}h= ٸa ,1^B9l\s v̹CḐ 6N)v"q\{r6n5qCaWnsG&;04262zqnnsW?kv pP%-&[Ʀ;ٙ}{ꜬuH j׫y,'ݏ| L Zq'ac.tV(AЋӵщ}B~<s`'܇=U- $DUTT :{p[T vYmƁWkg 5:v5쎌ML}w>F>DfCCqX` nR&NcSs; r;33{5T!Y-Nvo6 Vc/sz,?q Aas>**T. uѭxw8Oޯ=ECSH_K AY[M[ԍvWgf&1NŕO. kkN"L.#+G{@y uc<z](hu|>4lDJ+XΩ`&$.Vǵv>>֩XĜ-s(Չ@VGoyqw[ v nvK;A=-xLKF{913388X~u'k乑 Pë{w @)hu|>4lnɪTgl%{HeW0E9GUZ떰pj]?TceYPTlg?q@as^ Ց:vauhms:\8v1C#kkG_>Tj666hM_:(q IVJ|A[; y49 #A=1M'81OlVK1+Ce%r}aMZeV%&а]}nVH-aoT St![[˪2'>ۑyU"?z[ ;Q V$}6{5w\ᚸa/^[\\o|?m&* bffF r"@YǂvWZaթ&SLNg:KO@=x= d\E-&˖Y5Cu&}ZQܱJJ~acw!d5sZ".B]xV'*NS5Z@VVa vYAPŰ{#5199<==CC4Y ~^թVp9]]]Lf~~8JP Ağ0CnVG"Zun$а;3jT0%:*`d ;Q :1Baî\V|"ΎTg'9= kG ZKQЪ5+4q\IcO:)њq.طh^xwu|?4ldZhuƾQþfXeiزcN/au(sGs#Q.= ;$,u, {V?E>'eϧ.,}UIjh,+(t>+%s3X&tPS~G%Nt:6v~F{B u츪Z[]C]8]̹3  #SAՉXŽ?a/lt7euewC59rDh= c%:#e ~]-l6ۛVPE[w~ >߃F:$ѡQP.bNS@i jeuPaDH,aGYǂ`u::wu=Yag[{_O$Nk;'RT4YUxn(*JR9Lwww1??a(A]mjNU6Gt8J]r9/t!,cutfC#ᑋ333sssԀ XvU`u6:a6']_8|8Vgf'i.oY|jhRUrKsk($FIf0bmRf$ iȤ2sFF/Ofgg[TĿVjpoWȒFpX$N:I[rU5c>mjȌ J|| _r:`hgo!+ձ\r#%VNk͈09<jfCCyU-^ϰu,eˮ;s&pX$:it:D¬sźQRr ZG %_v& a*ա-ʁl%V:T!ߙ{Q_ a.V $#n0<7شOlFsg&ςLGs{]dRt=#!-//:iLi{*訐G Mt:H iuɱ=sۄR-]dqwqC@eaN刚*HVV'}s>SSSWAP)PYPeT! i::ѣ333W\YqC@eA%bQ*H` 9rիr ʂJ( 5UX$@VN`cVgzzV'^IV'`uPRZ99wuimVg?N%H:Fau]ugV'$ X#я`uPR6eum`# s;S7T:%"H:FiuչEۙՉ@4r|DMծ{JҠ *XV=ߧ[յ.\h`Vfu\ɳ:dE4jɡPQS@eu. Vg:/?Ծ}NA 3Yq274x|wU X#я`uPR:ןiՉ@&c(+Bh;=NQiZ63i;5G:()~Π:9V\z /LNL Srz}}$?ݷP:`9TPYJ380H3:ƬNݹz3tҥK##CCCTWmfV29tW+3?7_{8 AAAPDVg(idddxxdhh/VWWW7Rt+3?P[ AAAP%ŋG/h[t:#lN'.,,=h   (Q:|816NΎ;d{zz}}Ձ   (Vgb|4I_rE:NO[>X  @ϙMNMLL:NYՁ   |t𑕕9˭{wuwulՁ   (ʵ::du]L9y  KYɩi:Vg}c{tWfnnAAAP%Τ:0:'D7:R'D;G   J:Nz{{G{$Ցݿoq  Dɴ:dv f>33o>(AAAR~}m}hmiՁ   (*du֛[ZIM?c޽Q   V NʴV  d˟!#NAAH'|;8RP(Fd #6::˾0ӌ   }hyP(F|l"tB]unuk l7b jhx3gAQRE @I(Deҝݨ9!T1i=ztff˕ E@0G`*duZZ%mmm[e ˛v5zqfzn IP M%UP MBY'uB[u9BS9il( #>y)N(QDtttnM]޴-(dD)<4H%: IՑ FV祗^.]8: h [npR$΁(j ˛s-T:(SB:K`iisVG\ٔTHu2ә&jVb' c"\ƶdS!T:L)A'ubsVgcc8L5RJ~\ƶdS!T:L ,Š:Np>Sͭy.nrzzzBVdMծ F:-(mVBթ+k!/q5ա<8ԕm螠n& AC'Tꈛ99X{8J1j>bױfc·:9u`_~yQwVUT*C |njrtV9=v$ !=V * w[^uT/a6K1oUru3=HtY# ^W6C[{=iӧp|t^顡! *edu! pSsRS3gnQ;i)nP¤pҬh]mu8'$Sˠ4+m{tV*ǨS@ZAkQd m6R7`ۛ5At:ꏪ5ڊ2tY\+O [mX!pT.y]g4[9{vVU~\ɝ5opN,аD! PAs'KbV'aJ{5UBuvuGMTԡYx5#̱y䑜mEK,N/tVGJjco/W +\/%}/tO, >!5EА%*[zdI--@U!.NîZtgϝ[3vǨ`'Vтi֪y|A,x9Kl%,Uize{F6gp׽N׼52't#5Qm) x 4 aCǮ93]crYfS~N :kiu隔.C>r- jAh)< tA.<ձc `ܞ[qt?zE.XbK N³YbB,k!y狮x!O \Ūcyƿ!XWg]|Vml]OBk/?fq2ϣL[(9|4܏iögk+gpL.Q9DV'gUJ̍M4̍/HZMtuPh/dpMZo@~A/v;ގ!B:rZrfc'XS8\NtvNue;f^Жu *lu:::SNC6fĎubcB|'lx7)8x親|JКԝױPuC2y-Eqx"߅{Z;;OmXEoSOQ=K{d__Vn  kzg0)*?m9w,!XejزY֞皨U.6SS9?h+Dkrխi͜ag2#L'DP>ܤq]?"Pf~>,F]qgpN\|Mi5xzjdԹ)б'|EH.۱Җ>uM,C :?ww::Rdxҝ鹹G)FH?d8>3vhX/_ٱ@!y*V,̿i2?CLl)ܿxzgJUm% |-H O":6v+%Kf rKwN+s^ YŖ5ׁy-{<3.BΚ;)ӦJ軭 f:1*x4}/-NJ·Zyk&=~3e -]s"P|p(kC)DtNzIBƲ-vM7Y!r:bBz-EC :mmmٝ´:nZ%:MmA: 6BZP$&I):\E[shf|Эn9#wl·:۶o_[_oim;dugEQ#/A..T:NVl$ʑtR)67guZ8Q-iuVVVMB-(̊ NS98)`uJΦ)ٲwu=::::77'\Ҡӣ4NxaVL`u*XV)[Je9#wl·:]{?w'V qŋƶ%ٟd@%R N(h:j%ܪK3TҰdCqju:A :~[tG%:1:=CE(ir1JH NJQjzr8g"Q0ʦ'h"c tM?Iu2әJwe2AA'h"c tM?TWolt=== j@AAMdP6BGl.t|Vzcc8lo_oBm-AAAVAs's4AAA(I3nuvl\%?008H\Z\:tq  Ddu&'ܭ˗{K@AAh)391cuv0Ì s9##ĥKduG   J:<1[:\!{d   (QbV$险i 3<2:zq|||llr@AApɻ::s갻:du.^G1AAA(ꈧf9a(:ʑ#:AA%Zd[VWW͑wuv!B'?0<<266FVgyy6R#"P:T, ynM4:֠8ՈƢY[NV?ʖ;5RŕP*'^]jD+ja\DF #]f,DKdduY~YduaSivz{GFF.^d'ϲM'h5c.^$J32"Aa>No0?ߩ~޾<g{ް >A_?A X^K7XuqeRk*=4:7[+tl_Nff-1DzAE?E?9EFT\DӳEukꗐ* 4OBTѠm ۲ٜpd֔,d.-5,m `N'*bΊ#JG@/p$-TʋdA#dC"Go,lr6qS.ԩe`Z"j[q,@F ǠVTwF98iZ Htd qmX4j(x*Q.d}*k~۪6QͬvW3X^X]2""bujGx 4e{]ϥvf"*@T " i҆ +\J| h#G o\+Jh沑.&]i܋ﭻr*l!O5pxb +nkIDAT1轍hW?5McQI(GvD "QnwrfA=Bz[ ,<C-|#.8Gaџx~Oᰏc.'A|,DK4C#B4+B4heb1Qtt>{ު;vl^Moim#C#T(}Į-E͒eg̡ e Ѣd W x?HR!h cf΅U+mXC^EX}VB| im5πH e9"`1{N&$ MB֨) DW$& NU$JpKV+4TV) h[*8ie)հDu_ݴHʑYĨc<+]-EݖRXfF\S19JdKa(DUՉW0Y'ÓrtbTl3ĠW-\T>hTG*EbO,ʪ]獪b=.HRyIvr"σ6 !5j$[f\OZꈤb\f#5%ۯ( =X)YCt,{Xbkw񾈇BEԬ% Qc4#ov@5ɜRDn#u0b.D1Ö*zQxŠ *fRM3Q%18!C󋬈-ͮh&@P{;nKTYN?B4I4I\,Xc͊-de7Yթ B\VT5U?UxPp9j^ٴCR`)d6M9rn:UQy$XDq)Q͐–dx]R-Kϕhۗ|f'Yɼ"rlk~a>V.>-+kDՙ[r~E{1/=dp^WWtM7po&3=3C55:jt]eז#u,.LY[jc2PiB5\uvҸ"ڿ蒣tdg*5M>K[֥hbTN1XHZC"e=@κkxD$J֡!A&eGHYSv譔d蔨f)Օn+CsvdrOhnj+DIK/]z!jkSDPkf¤6e$rTo]F!*?$~ɮц ![ ɑ S[{ʒ+Z[ujֶͣvvlcjk3ݔ*eF5QXx#Mkꣷ.T3ۅk {MfW,z lXQȓt%'Nrpj6ͲDAt案%GZWWb%x>KkRmD4"ղTS0.t(Z_X 7ky;QgϞ~v޽m[uu7ydq'"N]끴9#AO |H^e*;w@8`~-J݄gӦ0W(g(K\1Eʸ򐎱G1ꛔѥoZs+FkbȎ~<<\2jmԵ8]ȩr ^d`NuaK$"D/*.' 0Z2_&ScǶm7$S/տO}zϟ}fڶmz;YƎrV *MBo ŸtJAWG??x?sg}XGxT3IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_03.png0000644000000000000000000040446514741736366025223 0ustar00rootrootPNG  IHDRv <sRGBgAMA a pHYsttfxIDATx^`UU3o͌cq>F;@DԱ͌Q)D"b  bJo@ I =!оu}- ﭗ9g}v]憈KΜ9?{/aÆ\WSF"羘yOt$)$"02^.T+)J4"[~ߎk䚁\Ppjr|"}C:H ?ƐY,Af-!DQ|kA"?2HFZr#@tѫW^z>0aŒ3"yEǎ[^^O@p$ rR/r) Hx#ʩpAX>`*~eyR4Kf%a΀!\픓j"%ia#ŹH\;"!yl' +?$:D_$ʾȓ8*H4_yHz$U2U~:b j"!TH)02s 2# Vpda ـk)W!QH H28@HgBHA.R4T!2(TӖUEn9a}9:b|Q9:NtƏOܷowy/h׮UW]ug~g{IIIٽ{wzzzfffVVVvvvnnn^p)''yddd4.! v\bQ,Z楦'͊wݻ+B`8@ \BԂBX]tP.'nwl$Rp yP VRR Ӡah32qBИd mKPܹsǎIp}m.8&HG( =e6.h^hNLDafT,C xRn F-N1$ !`7|SJN);h|GSNQ~jƜ[w4d„ {.sD˖-ի7vX+.@O'9@H2vjcY0eY2#W s@f܋ V4`tUc-Tk.Qچ #rUѠa'V:&kW `c[6mڨ>f:@4B;x,̅1Cs!U՞!B:?#&S(q(E +qbsT 灆\pa C/!GO#0s g;>C4  H yP`PA8w%LYG\$C6r/ B^d!=`4rF~`ls0\ds΀K, sܲ wd&nd[>h6LcgqNI#`HIV`,w0 L ''`$ #I1c`CKiv}D7_Nav`]o'.S:5"E%`e csP+Rlj`ey8eu4NqwX°l:Tɀ% M8C㱴I ,M~0*J_HV ?l66Ah3"Vq1E~8[ zKqq@8[&Bgg+;aGi(y6 / "pnh<*N:93VZ~98끡a ϩ.lRr(DMA Cp‚pl H\| l\JQF`R.2j geh$kp).Z@.H |2| ER@n0-$Ur$>Gfr[5Eju"#/sЕѬ%g\fXh- ߩ4hn娔^rx=OStg4nT# tH `FTZe$=a FB'DŽ)GtP=hzu c%oT :ȴi&j6 jW ǧ?3gH z&I0&zLcҿ9qL^‰c&~R2҉՞'J')viO'}wҧ9JY>͘iOwC_9+<'~Q^=6K GSJ ymqPM1JNu#W~fK[<(V, F?&Xa2z!s`豁a `ë%k [  gA02U&Y(\ <<dRk>?ž5)"E a8!D($4 ) L-™ɡ`A4rd\K%{J#rMaI$Gv6ɡYۆga fB7 H#ջ !G Vc&2I5K,5Um8|J 9WD}?Wohgzמi$jISUxR6! &a$1H@ HLa`㎆衩h0c(cEH裏pz@"N)i0x T$\`> n6v۲V/:mF| '~c7RF3zXae;zXiNz:ף `Xò2?x#7|Fo$0<7so/{U d۬XfT5kLC9ia 򊜲^@g@@j*8sjG%sSCPqK>!38 >UF Sk@5GycP":1 m$ RIXp  yFli7(2~d^"HaQEeTsEj{KvXܮ'ΌT 0DG;G(hFF>r=phpkaw_O V0!G` =6(sl`̄%k [ ܄#' &jUCx.x:l RB"=q w;rY!(O"I }*(̢υK X E 3> s B$ T[Y-ê;d(;K`jB_cJY|k<3GdnRz=5$)66O0Q#H.N teh*̙' [VUaY]&Nek#%ʄ/T&|Y[rԎp΢&`> M?_}L$ J`Q;*C HLA6oA3C5dO%a)K0qg5߳ӏ\}4#W=%#|=]aֳ# 1sjq.:1`6<( ,poK>at,"XJ Vi趡*0@Q#JIhuF֋m<,?O~Xc`/(e\=}Ԩv@p@'.@DE1Q"o0TPQ G]xh0lc@ +6;g(QB1 =*80868 wxI"rx6)l G `M0!@GMjgE-@FCJ񅗀d-3`fp#7Qu4ÎBDŽk&崦H I2쫋\6Zޙ$W ̸!BCKj*iy02å \smı ^hV>l /i0b 0&h$a`sv|!3gƲ@+Bܑ4y4̄)x@ (гyzrz?`>n0y x $ / ,`E2YnfHI0!QHLaN7O4G_8`At:J( Oco>&*Opgc ܂U&co?m*;ոno %r;/w_Nw_V Q}7rppC76o>RoϴCF=|~ѝ_wQ{)ny'qrC⺌P⧚vKFl3X4,oK,>W@&"Y\( %c=E]hE힆&!= h;_Y)AW,NtP,ZVq|Z<8A#jW&{ճ=z̏Q2ڀUhl?U! y~'" 31bh sTx1 SLBnV4)4l9a_&0'4jc5L\8ÄS@##l [~ {kL^ɻ@0sܬХ*+  ,SV3:b4%L H఑D\M-XNs`ɨA34e< ,x0odKtc|q)u^z FliÄ *0<jt<5R Wqr`T|f1@,`|8/0Ad¸\-Ȗ\s)G/ nzd8g|4 ߭\0?ofT aD-A$LH소!B3@Bc QS097bᙲ=h!Z=OJH#ôyC80@MP`x`TiqBɵ@FۼW6CYt\M\~}(dx*f:+כ5_3G8F>u{.rYw~]s%\]>l1[q#"'ɥMON88J9ms L.:'Ǻ yt",lLfW=˶q=Bعp$.hÅScÝ+#WI7<*3 Z[k"?([Ӂ=GEɄӛ VI=4:9}<njpp6 mCB։zq`LÍg N g_U<x0a`BNS%b!`υ7|8+0GvQZN̼a!,j25Ld%R0?F$Pa,%m츎* 5`or6rTSI d)jt`"BOcKVsJ`\F y%\B,Լʱͬu1[*U6o?1K~XI-G=RSYd!5zN#;ڱ#EDh$bP>jo1,̷^HSJFk o GmK[eK:wFfX):gf:+ߡ<֟>}O7uߛrڕ>}L{}p#WlZF0'EԺ]Z|*7T3ɧ` .d,jz[2'6z$rĺ44]eyGQjd6V/(Ú +gTi#'P˯sbbdccnc܅X40§%>Wgpl0aK vpNˀ) 3P G3$a Cq !mCmjZ'* +w,=̱80g 5!s ESf0KO NUNQEFSq;d>UD)k`քI PH- "5GWV"VM7z<Vvw^dfc͵,jg6ձT:]c81Rl?qߐOqqbtJ-9t .&tt&3 DmC;lM0c$U ]PbHU3l:Lt1IP#q0Tp|l?{,t2L2,G"hیg 7I ?[}]N} 0<^z%TY}EWʱ p̻DO6iohzfO{ܿ?)W :mqktѧcbtL1%~!OHAz%Sק>z߿zv^ѳ󲞝<9~g{<یe*D%fO6YŝoSM?`w$Li۹}ot߯=+5=͏ߴ7br.#x7HdJwr LOQUd/]+'ӰeN&/b"sNAV0Ypۙ榄as5q nb,s_4?ɽ;TH㊤0˰r8vlfF 2U;{R,YgyU4wMT9h"s-+sFgNU s"6a_GddWp"PWDmA>6kcQ 1nE~F8h=S:`' &_P =*"ϑ<< \x{`Ua5*QS5oa Gl8\~U z.38Յy?2,yʔip8{BDEe ƮT&Laj 2gLM#ۆ<=a'1hPa8s`plxO"׎+ 1sI|X P;[w5#2`:`63 ,Ą `|303 K[P  Y ƘF Wv9[cÁ@#5I i\5۟g\%B[P4 ,SDL鼑lW-`zqcQTQ0EH &FBH́lt@!CVQAN8D dYV We1y!U'J>--Dkl=C=3<M!$n=-*+Wƹ$*git0 nGI%}j)_K|_Ry}p Lɾ(op0OjwT5CV5#zڮĠ0^hdZA߼FR~Dmƶ~ssZai g)STMKF-Aoj#;FfCH2=@Art=b|2mCf؉;a|&ЙC 1 sP8ΙՅM6;PS CQSjɀ {pj@4-dwG1af{feJq~*  /1':2'oDQm R(.y6* 3W4xG)jt@6(e恗$Bz]Ȋt3%Zֲ@0e Y-̶l0c$P63P90g \U3wpn5-ϜS䲯CLdV4}A8=Ã!"!زLb\Xt0=8V T=OPC0zl*0z12  S`KxxSov=?F1|0WlK,h.I&M/yMkl陥J_9e-mwYǤԴ䴤)iY3r`>l7\RÕ_:yv䛎n8庿z駶tS 7*/l5m'\ni90 wSlo"n 򉾢h5EJVDb9\fդ (s' 7`p $B6  3a=]{q϶ @săx e-~zxpl zx"rR{`U!h!KlPΝp`P6u <_i۶xa9&rwmRrY[.e?'q>PBP4 cH\: !@rdds)> #Od5бeTUgq])`$OatHzbH$4.2&2:Tᳩ6q+|i3ۛp{E-9Vj͝Ww^{UqA4"O]Wk]WoMw]ΫyW/ŎmnE-Y_3km< ѱ͗oPV/!5sgjΔYrsawk͟/|`\>e?pw̛Y:gs=wx땸14*, -j5u{Qc˗9ͥūo[ 9q>XsUe:Nb#ZOT{Kw _plSsZ^PR^XR^T8 W>`v'}*_;ѕo!\uD#Ju5晻i=Rޜ٭&Xlw[*OxdgS>W_~g4ŪPlJY~Qթ h7p?[a+n~n' -N߳gp3Ћ{pªP[F=s=t"AG96V9g9Rq\85؃&ӧJpV  a¢KvND)H5[$v Y >c r[ V08jєupUKPDr(,ȝՇ+[ \1x9>?x5)8ƊX)`,d|FY R6E 2Z} n@g0A~mMmۼ[j?B>8+|*l[qcMaP絸f~hΦj.͛n{wӸ6g8嗜\8mUo銻.ktqf?fAktq=ŵnn7 K_^Vo{JV|JdޑswNžr@H'DLI3+zޱˀ@((  5 9< @dt&.hO8 gAT% c0NXpT5 B"Y "w* ICnsT78OacVCY5DD"a9GYC H|k U!ETZT}ij.h_!#ÅOlf##Y#>жNq1IJ)kk, s[66O)@r}UsGI$dA Hnn!՘Qe3RH3:H:/Cd4+X7:4aTٌ:I~ů@GDϱɩmWLzC5/_8ރe`]pʕUhm1¿mw0f{Ü{o[sqE״1͍q}7Ķ!4 ۵E:~_2oas6ԂVq}QiA涾7j}ߺIm⒳+-%w[copO;MmMښ5%7.ű93:^3fhpCGuM]|kcV~Nk~Z~/䬢b?@ ?G5uc^Ir{K]%~lp68VD8%Bu%ǡꪛoɎ[ @b7aqD\ob܂Bԧ(80pl3-oq1W{rT#JG|=iu{]z9\+ԶRys) ok=Ϝsܳ3N6sKP;8"mr' 4>ACAjq~  nNz0Ǐ<< [HX!n8 ,1BdX%U{Ç5 OxFB` c0wਮDnd%8C#qQ%)7g&z ")K#KB:R}$R/K< E 29~8YXӸjXկjs5.̭p6aֈ S{g%?9cSܠ@ e<) T0D)Ɛ/B0zD⢐`K,th l?e't E'x"!aצ7nFmgjR1hLYIk Zj}ޝ*}5jLH~svΊ׽to{=-~ۭyߚ^jv/6qOd5R'B"PO^P^lQE=:,z?ug7| &m߰|?LrR9 {9[V}WSG~qZ.WƼ;^Nwoޜۺymsi=S,ι4?6^B;<;7VLK]f])wܔ""3=ۼ$d/lsf+2Dw+}1pYr`t,~Ε6mQotk6C?vv& K98K ?V_uVv]me߀Qv~W릶\OVNv;p wI@f φPJFEhaQۜm3m0t@9vΈB缎Ι0ΞA±dd9g91`F50&-7aa4]xpLCMǰCq^†S Lj)jH\jbUspV_upN2ӎ7dd:HM00a&28\0rd0ݩ@ 8>ef,&(Lel*dIu`nDŽeq~l3V-^rx05hp2MGRMGj$SèA0DǓ{}1ːo$=Ƶ1a rO3%zbFOaad8Z\⋱[oߵ5.ݚ@mݩyhxj~<6,uaJHL}~91`%i0dXkK/5Oܯg-menw[; mu=Ν4ln:wySo{g>iՇ/i;Udfnr~.Dh_h2x)嗷%m9Htݓon˧'wMvI[);$4z#6o:'W+_U63wwjtX!r0L,%dgwlrqVgvɭkoVpap0T h%n ChIpwyplh ;.~qz@Ԯk6;g(%ĊÆN'zxQA8$ XH8RؤШ^  (+^*Q-0jF G5Pp HhHhC%)9s z;I)>23-?SO.jw0݅cpbr$kd1/YԂwO" ĉڱd?sδybfPJ3q.hWZs]6?fQ[, )`TPO<Ibt =af ] סC3zY)E%l&O3NS\;:w|'GœF0eEe%ohW6+Zyf^s-xmn-{j,ҍf8>i=}i.oVۇoj!:p z'Ȇ6.D~3XڃF3w& b$v`ev@LXG 0a ϩ^%,!Xc0ت`%JԄ a q!8Doy`zEp&L?ˉAԃ O.jwrs\ݫ,^ Vߣjv h4tzL ܅PrX&h&$@8DMG}@xT`زX)LIIn@ #PۚO0@ 0n)0th'zl?衳Cd,Z|Ana("4mC;lsۆzp3cbegy.N85zqqpC3ZAlxy#,JX]ت`&9@M #S%jUaޅE-%ҁPA8F)Hbp]ML-ƂgL< Y%.?2\52\8 ss1uX 4,z[VbY>ek#љcv}vrԎ%׳ḓq3è&ePLPR!XTR ) t<1LO$% DMdcQCP)jW c%cwql D EgϞ=xG5]xa?|C=\\zvD/>%l{9m/=z綫^opA/𢎍.7D_ةp nwh|IFkx}_Զm\кս>zF8q hܰQ$/3Ae{ {Yoۦo)wus7_05]p-jwuo.LZmp5B& wp3;rna( .mC;3e⃈IH{ bX918o ~Ιcp(b"rx!6)l G `©0 '\8Y O!q5D' ̀nHbAsp6/x_2 dpȐsw@c5f eYtpEoUEVg8wd:: m8fS2.Q>hYs]ֳ0tf$y x $ 3bTRT`B;!e$ 1D(309uP:ngtnjW tD"ngyrAH G!@ƍ#,Rb%yuOΟ# g~AT{SO2}O>nO_ 7+-U8*7(Vs wvɠpw ( hĮmC̉; 1XBÆEիB廗9<80(b"=|Xi@Ԙ [Nؗ`q0 b0s NC " xb{8务KW &e"+942D\df;S۲tYْr<%ST-7^zrz>'qӑ` v , ԒPUt0 1b 1 RqC( )ѣf:0& S`K3DCp@z`^o Epxvnҫ@pșH,|aD"@+#ew! GXq?*uIlL#0cHsFԌ ꟠U%y262rT8꥟?;?iv;Dh@Dh=C_Ap(a9Q<e߁9% Zx#Pp k [@M/ ap0 u8๨p H  N8^).mEQpB. u_AF Ǐ )bY6yF9Ȣ%˖$\6em5{@oc;pG3߬` ?8ET4}A8=9+H43汉D!f : &2 FBc QS09U%hG;,t2F2-ac10&qǤE)L=E_"\XVj܃7 ?$^!QvA+m3Na pe^ShOpU"m{4i5 '|ހ@ỉeebo!.csp墯,`Apj 7A~QV0=J8pI.qtGa(pwtiű?<3G9H86G-r`Ua { N pLCgg `{^8SA@443XaEU/D#3G٤ijx5".?2 Cat {F>,:+9'k,~f8M#s63zrTͥK.V.:4g%"FLGvѱeHU3l$1,ː_$@ ^%FRG TG1P2s> ̈1&_.<#Tgj"3I!Ep`FlX0rW~E+<$ _HH啵KnH9?9JUNOW:ruIljzA\CrHᆔdp/. T ܫSo.qA0OIۆ%l3l3Mt:sH2 <y`' +uq@@8.M"z8o 80ǀyjXB`p<NhtyurQs+,`pĆ vD:=V?μ(5s֋Ad.)dij:_^FaO>>s43 O䲋’=px`{{`< V%b_iq(  f ̡}3fyq֔1%%H ̨!&r!8;ȵ0Fց(8R d)b\jdo{q,NUp8lpp0  4ImUgG .0Q栆aW:y 5# _6eD+'z[g*afR%1lUh~SA$A.($ɀ!i&jWNH֐H֣T ѩ&WRjuL!;p~idY~ p!b#CJ p5x@B%K3`͔K~8][6i8 s-FNOG( SX%6JtH=T{O$=H\\$dLGN3t@-ãgz衳8e*d[DFf898$^< h5WH`a5F0p+ktspJ9>`64BQv@u h<[d 9*$wUH#{TyH2]8IgԨ.nswgCmpoW($I<B04-l\2(ƚAw)hId1vcLpѥǒ@lG'%Amf =9z0%jxai5 `yapRhԤy+ ȹrYHD-m@Ԍ K#RAp$_DDRb0O<}ۏJJ UBfLH˯s hdQȨRCNBϞI!Cم6"K@a)N! V]YXe5Wpܸ7ekI23nD!(ҍ\#NOsVr2 #OduQYj fT&v@H(f< p a4#!иH\ȜfPBzBT4g=v\W˗ bK H|}_1zz@9b@g Ԑ}!a&. l '?l/? ?`67ls^: !"r!'Ñ KgOOΨ\-( ۋ I+G%\ @QX>1h[F}4BE1 h DFt $G큗oeQ?L u8An {aU^^uxNCM1pMT$(`:#8!bF- |5%qC ".ԏ.%e)T`K6GI=6zaZ=cF Sǖ!Ata92 pFs@ö~#Ѓ+ a 4@XO0%00M&+ *} +uR4EZf ȊQ~x|<@?6>$>>46 `jh_䚂:yJU;]&|@m5ԫ@ϩF,/r- ?80L8Hg;P[+܅6bl$(=6aTL$G y >w ǚ"H 鳂(q$ ƙ1|<ƒxB#6R!)#8 /(pRG2GSH5 [R}U&Rw@f2!DApd8 JT~Td6Y\b" z5,I">3Tz^Yi"YB]X 0i/없5a4H֐/}zݫ#>}x #M@JxF,st\ƍ(W^?x=h.]cȀlȌ[X.S2Z^y0 4$(Vi ~= IC.+XF{"mR0P \C.tHq ւg3M0,0 zti4 /`ɧÕ"FH፜pnA"ÁKRB rXgTrA!l`Zyr Kf-R_4LH L/)d,#T̽@X#c%>~Ν =z<~KNY]zRQ e/⒒-[n{n,8`eeeeeeeeeeeeeu85-8_Vh6h&#n_sb_q|rB_FD ++++++++++++++]Uf: dff>@g86&u-|r;.my_9[>\ ʭ<5(<]SvWh| I۵͎V8\t]?l)Y3Nm X[LOOd+ F{w+m_޼y͛7m :wv>m^y5[ꅃd|8gnop&w9=ʣYـwy<3wf V\]7oeeeeeeeeeeu,(`X;^-&j(.} 0`@PܠA]wڕ9Nn阻{Yx麿M~[6[n??6`6WC66M:mldOjf++++++++++cJl03 1Wݥeޥ e/򊊊4Ş={vvTXXػwo8yv:k1UʈfUD`B$z2̆$L(9$OQjK>-\5ou+*Ksjl?ɧ(ձQsW1OC?PK{Im#P߸=|'n>lǕ8XYYYYYYYYYY fe*8`8`]3S:]67jh߾}YYYKJJz)x~{;FW9`sw' ATSNE,6lDFǭcX=2܂ڎa씖~!Г58}_VVVVVVVVVVVǗ G{ydbC.fb7ny---{g^h[,yo8w۝Fm^x'[,x3d޲#7>T^ƃ 7m#~nܸeǚ箈h>cxݲ6M qhXs}FJ̓.qB#F9KvkxmN[֜Ad|F+:No=җ`s /Aj9hm)}c}nP2lXeSCSG|Z~0[JV%+^8:) ^4᩷R'jo~ȱrҐݬ*5TO֌yT`++++++++++Tivf#6_ i***{9O7qͰO+^ k ܉'B/ƄH<^<dx򝔇> })pbo_ajދWG4y]v9ƲoEFNuuk]=rɋWK>UTSNP+dV6R1[YYYYYYYYYY( GLym30Yl3YPm3IO_|K]17%66oOO: 9vd[7r\9u֛bX U^qW= SW7H'~Λbι]r:nFi|feC[ l1rښbSO!~q_MFKڞ^Svi sXZ*1#xi]DOjo:F{xW~K-ij1?Mqkq^rtOZ k7_ҶʪvVTT͎#̴Lx.6[YYYYYYYYYYYYծo߾R_fH9%uwέ7^py?lY)q{ZZ'ۯV!ls? +++++++++++++X`2_<mdL޵(vͰ_tq~ݧ~i>[3;!%s˯SmnUj0հa~6sOfK6djYo9s2_uƠˣ{ul]v$'-[{wN؝QVzVn\yn?L͚5k1H%w]l32w7mfKf~z4i^wGR?=Kk0 ن+K)$!!vmU튶n67i$,|8ߧȉ߶cӖؔ]ٞZ[? o|JM e@0M*ѯ/}dd'~)f+вm:mvGE_7?N/b½N>/veђtMfƑ>9!F/igaeeeeeeeeeee+a5mKG;v%Y6G0 &vɉq-+3g׆A:laZl6kemn׮ٳų̜93::gg&:=酣l}_-|ts#K?_:떾niԹ _֟l ƌӷgYf!<{~/-V6bwҡ3&&f:uz0Ϟeleeeeeeeeeeeu4'%mvsQQҲرs-ۖ.[5{6aL򢏋 6X%CHfmackGJAH;PC iBla÷VVVVVVVVVVVVVjf9{lsߧNNܹkKb_8۩cǎy? 6_80)(ccbbbc/9 i?; bM1"Ωο})_VVVVVVVVVVVVGS62k>mNFNJR1?.\q?͛y٬5s׾~ى^;s'Y2m^fۦ؄;SR3dznW,Y1ki2Y6[YYYYYYYYYYYM 99mv>mVZ7YeK6loe~hʴ͂6C5>mvZVLXhOUh6[YYYYYYYYYYYMӧp kns%h~hI;33LxmO ~*~|L~leeeeeeeeeeeuDϖ[VVWq6[YYY7amկ\}-))T޷o_Æ f'A_x"m3$鄀 $+++++++=) 4e N mkTϞ=mPYYYbkAU6͖Stͻrz(ktA/f+++++0Չ6ŸZxK,^袋.vl w޼\}>)*LE6lެy[muowi8gY-6 W(oF({NMu3`dDDO(r|&I;EeW̏;qO´͒T%N n]Ynlt4&bf+++++0չsݻ,]|eKWXj5k/䒈ƍ߿?/7/''>$+3 מz)O)VVVVV]Z y8s{^]jlqXyd$1'V6Ր|~.>߬|A>cOL4 6@4H0S+<9ձ:9,/@;I{mL mذ~KՋhܨ}3338SU8jެ9<3c=[_6WJtE5l3,%=.h~|.!{:S%w:q5ͬFi['y|Sf+Ͳt3sXXleeeeeu랝u+m.hذaEEEZZԔ]v%%&ݻ{zJWYYYY Y Mսn!ʜ:x SմͿ$hjlyα>t>r##WnGWp 6KRx Tb6Hd>]zefXf+++++0իW/$$/<_^^+iWBBŽ۷o1O)#b5Y ={^Vm[ 0gr 0NP|LPc bmUz'9}5j(.+++_l[b7oޒnRT:un]l~l~x SǗm|\mtX|6qr ~yy晒윜\!/o7_~ii-[6mڴaÆփ̬.]zJR'tRK93k1+)*?|_^/i-ޛ+̱%֭_W׭ۘ`VVVV5@xrVKzYX,b 3JJJr 67l_6mڒ5++++jIj dmb13s91`K߯[\\YY 6W^ii/Omm۶=77{z^׬~YYlXL"6[,A_=Ӱ͙.̠±/++sǎ {feeeefbbbm.**Vfib4hP^^k׮dEJJJjaaO>y]eu,Yf=$("el0-abbۜf:̊ Kڗ_~9 =iiBFqqOYYYYYͩ/_3fѩ}s~uZk-_ m5o~H y]eu,ӧ[.HDenΝrTStuɣE8;| O͌ցy+:'Lit m|Lr 'F;4{͛7=Gen^܊?EၺGн۶kgJj6*GI'-h!,S |q}ĖU볫br1I>čuCكw(nxi e.*^ӽ"u~6[,/ɧgedgBYʹ͸lm:ojXo5vh޼y۶msɆ#2zKH?߱"q$K:yݻ?QYA]>0Dm*'@]IKavfW-6gd,_ru[lcgb↍.[6gXyĉδiO5W^={6Ow}w۶mrgUiYTT4j;СfώիqXuD'u^xO>Pn6[,am+///Ou)A~뉽v'%ٕ;b6[YYYG\K9g_}&M63gmۼ˾\yuE%#CU ;p¤$˒GeVIcyҗr."X]75_Ib%gAuc|/.}V? ~ֳr% gl*ࡃ3c3Jžm:=3yTMjh'ޮm /ԾC':>^w߯K v,tl9̣pΊxݯ_?\>|8OǍfJhjpΘ1഼߸|yDޑ)SzV %3oN;5߲am&px6^߯z蕛}gҎv$$LLٙZV^ѠAÈ+kA|b̺w_x>z=\g7[/9\3}aι};ER;]v9V^> mŝ. ^WgZcPt2rʿo9 ˭险dpXzv9عrB,'. av9 NboyꚘ+TDLw\r~xY~rRos>pm31eyئ4x{򮽙 myH}672Zx;"')yLo)) ӞIb8*}~ŏ0mzjLL ӃQ8M6M0ANz衇Lq+!f?Oxf7_|≈#"9?~yV>^y%r6ޗ>}" {9YHͰb e˖Or8sa߯t힙qӶmڲmS-[wի,s)U۷o5+++Z;oӿ?( exUecoCJѢsgIWkʄ[9W3˟~=MOOgbFFSO=y󪶂Ӷyڵ}!山'Oί?]z/-'eblwQN}JPS{HYK:c6;G6W,YVd?dĻ<53Z]歳_nzkoYapT?J!m:u*V,<5m3_e^ H g\\\߾}_uecL\***=z#<6mڠW]cif4LYijP]RwoSRRbkK8pl]edf[e݆-6nݰ)n%eֻkVVVGT>ރq_{4O*<:L<̔5iE Rf6=Kw^y %z6./Kʿ&7vՎ;CgϞ]ve"ޕҬY3d`b@>>䤦ꤓcƌo~w݌3駟v~VWBo:8fyE67d+V>\3BSV|ݺurϜf͚+Wnذaor^Īg"wDniق-qkᆈ)S&bRjK8fiC6+|ձ͗֏hҤ ls/G.)k0O*?~oOZtZ7nPǬm'ӦM .`(dĉZu]5dHX("y (Ek-pIKKK#66?+ڼ&fS m>X,_-稰Xgkiz msƥJNߑ].pn9OU<9x/Ϲn9[}9뜋Ahϻ+Šcʅ0PFzl۶ "couI'[niVp\~}r믿)z+6_GĶ͛a65px^O\겲S(]fMh 88XX|Y*0{FWideA[W`:fmsp r3&,<իg=Z zNqg6b v1cw֬Yp0Ϟ;'Dت7ܳg0?y͏< n3~~BfR,˯9* ު{ZP{T 9mj;bV梂 d+ږU^lOяy>hw^8crO&&&3~|m6ˉܹscQcfN;J_tu@  @qq17O>K.)G}#s89D.~QX,K aUIYE  ,l0#ny_0,G y66WHOO-(J+.ڔQ6h垢1W]/ w_rOx^{I'_ll\^UV6;("s+"--MNX ѣ."&V]t~m~lH{l7|@ɓߊ.'7ڼ{lԆ<'y/]3/Sӥ,N:yqLgM6~b÷rrm-[f~׏MA-Z 6^9U 2a5v.PջN)}ߴ^?77 lsyG ~F??g>⫟T qf,K.;p ygݻ^xE? faq/l3˩EmXϙbi'$ TLllL˜c:F-?fXVvq7A6mپ9c? FK?m>/W6\^:xI#9I4UVA^XyuԩC& /ޮ=d9˹ffLV8aܼEiyrvdoؖ0wOrιw_P ;>̦M1}t9GFFK K)WEuVm –-[ƿo[n I'QRRWINN9rd.]&Ny2a„q]y啨#t.cKFyϞ=<qwy'PFn88Q)ݥ,N:_mn׮o_OKKc?P_c\`_HZx5˾hŨa~B]1֯[6&f*p}yӦ܂¼̭۳v>g>zԶݼs^> r۶m?2g@`|vEN֔UV-]6 .h0 O{o A͌l|~V1˾k[y V8eAxܲVl379?w/ir)<())x| 1/̩C9>̙3WXѩSw߭?k-D8JyKȁ4!6m`߁X=e?37wm [vnK۞}Gq˔m>pJJ6o^qL›>:{A-X,*6EC!I~3t]V 1sH>?¯C~ faVf-Z0n۶r=yӢͿN:{gm!矓 CEq91qΝ8eoĀ0>UQݳ+?={rg9/#] ꤓغ7eGA橧bӟf̘1'uZ BǑ(6==u=餓 t~A8HII2d`?ޅnwn츭嶹/@rzf_tu@xl=gOzϚom&/W3Q\xFOo;q/m8uۼsl^fm"͛7!yoVRg\6FsWw=$5iǵi379#d ό3,^x^{mo93Oǎ;zof0~|tllBLLl2/A ~g? vA,#FD9/az->߱+~g2le]^bEy|#!^5;ع2YGt8yY1j"r, R V7$Up4oKd=[еWYYϦ`p7m󤦦 fj}Y rƙ6Ffvfظ︷[|3i__6Ahv϶;$<_ _N\ ]8 9`rssYfeddIq-O՟X%#yL7L>NҥK?0f:uBJ߾}}_1qPك饙 f=3|/i7ils8.yixVmm6i\ᕇ*BnXӱ>ḋ~Ǹm2m۶/0q1I#iii6o<䌋Ӟsηv[6mf̨޿8P%6[,5+zV44>z8*j {I58xw&l~ftλi8?Oo [m] _Ʀ3Hd ejnGW'tYh]5IWwս7Iػ+?[:{Z>=q+|w}wƌk֬Yh 3)… tbmr 2d1QЈlsϾ7:RPpU^aw%ڕkW)mnذ}S gc+--}o_bӭd W ART:A0vshfvT<Dޢ1TR{IUڣX,"0am,/.x%K ׀Svܱy&,Y~H4 'tRK93kb#Hn_¬0C84iRǎiIYGm޿3! sByfRXPSg\p ?7h28ȟ+cov%JX!| TXW^PczM0mR[PXNXjЅi<8Ux=,^RUfJeJ2-_/4x1GPzz4ѓǍ,*jT=3`W'"c\%ۗ0pe8+Oa`Vᑿmƫa ޒz.U:/lϘ-~^dKF]_R㖹~qzna:Ӽ=;rꤓAg2}eИ1遫f<9$f”KBHa!@.`u{2Go7Fj]>'Il2%um ,N:cؘ(}0>&7AUA1si+ԟ{jeVG55v ۵k׷~g~wیwp$~'q-BQ˖-ۡd0` 5!b ȬY[n:u*ӪIE6+9*%L U SSwmehРls"==#]?xoA0yx||_e:StXAe#S3yjO:r]*o\Y\2<6Vf'͆\X,8,)44b]b4.fX4i{/i|SK>?¯> ?C*||͏?+UMԤݻRR+m3 mxU4֜s:&*%9@4oB]D.#2HTįR7osϹ<V.>}F6kf 4wD&-SGr`Uh8GC `% W^[Yg%I0藲Sõ^L[I:"X ^6ǹ:y|)5E.Xuc5Z*:g@F'7?7ٰ*kJJJ><pM7-3w3|]bqԩW_}* ' B7'd| -B0E_n.ܹcY؆ ;v>xabJ 6Ο%lРSޙDzq0L^ RGSܺ;5 C[ ,Y2x`鷀"\!;Zfa=쳗Շڵ[ܻ7#==~}X SccbSRR o=05/| !-nX'֬& ɟe30 -e30ׂ_3Ξ=~6oܳ'#-AzA!!!YYYq >qĉRA<"& e302, \ z|gb_Wټ9bu5j(;;;))J.IF2k8qTπ7+ CuV8qĉ'N=!esW樨kr^vJOMWNPXXds*H!^:fCƉ'N>L>koWir 0 0%W6m{7_~ƍm;gdsڵtG233Ǎg8qĉS& 0 0%W6o):n=mۡ;!RSԪ%dU ;YYYX>!<ĉ'Kuaa'U׎/޵ ٖv>w/ds5]fPfN8b0 0 [resΗccwxϞC{@3ڷdsXXd3eq&@͜ ?$'N>5;aaz| /\t?oߡ!SSSk֨!fҦR4zѣ*>Y^Xt 8qdkaa:wl> |M3p~cl lo>bĈp޲EBF1,9qG eaaB@:ut)6ЁP4LdsÆ !`4.k 6tЀse3'NʧZfa)cǎ!l&FW4̌III8p`@gp6`2ȏ$'NS@}-3 0 z|e͗.:q2JKKYfP3^ָ`ÖINNׯg+5!k&XY6"?e3'NH~0 0 c1Ν9vk׮T^Wjo߾yϠc%q&uc3~z);wh/lE~ fN0 0 ØW]vN%M7$hIڲXꍘղ0 ˵ 8-68i0$P&An w^(y,Eg rОy͜8#kaa_BX hc`*1M|Jӽ]צmA IڱwI6\[uWW WRR-زc /E1ʹ?LꊡuTSo 'N)_ 0 0z|5hР4̹@,C2fgg';1bĈklUWY65;9l:z=rmyFx˗А2H\ooʟrؚ;tXY6"8EρaAl)Zaag 9==&0QFP2GI܊Bw ubyY5\[ǽevǠWeAg@nj)}e(WNغP,9qGeaaƈ_lNHHYvvXX?sԍ7.oD,]s$}sM"나cB͹kpV3_t 0O 0rKWK9))) QCCޙܦPo 'N)o_ 0 0'L6C6g:1>Do.ie;sB ta,ʵ.זsq)%h:OwKZ qKAf[t^ BYkg̉S>Raa 7iӳͶI6ÐΞ0a3sbq9wmHT:uBCK;KG͢3^ɥT ͜8#kaa~Yv\W^yGzOɗl.2X6s┏䣯eaaFWlԱmJ0fN6INNHȈ"?zk8q2O>Zfaaz|5lذWرb*98$$d5- Q$dDC5HN8Zfa)jȑRv CCCY6 >/E~ 8qdkaa1cdeeѻ2?aaa,pvőe(cX6s┏P_ 0 0_7-ò8ˉ'N~{ɠ*aa'!mSdK@6 @fa?e30 0LW&LbX|aƿ`0 0 Sh$(g0 wlfa)4\fQβa`0 0 Shlf,aa .F9fae3X=z*Ujxw.]J&:˗~"Q-1rHMNN2eJHH-W\۷ovZ-8:4qSN ;HLL4iC=t-[688&]wuرvŊR(u|sUZ# R hoժUʕѾ{a1fhaylf;X63Ձ{®^J%/ ]v[lټyy4hdD]6/9sUYYY͛7`~7Wj̜9뭷hقF֬Y#r×,Yz_tҏ>(k‰{ _Y7N:={[7pCfce3l.F9fae3(QX^{ yл;!!jsi<¶;v[⯿B_-l;DF6$kC>ٰaǥUVf} ze˲lf|`"Y63 ,F uܹs„ UV(e3[ԩ# SL~,K/UXnhݺuddրGʗ/_L͛矢Bȑ#:uJ*ߵktZ JoݺuwֱcGvĉPU^wޕ*UB7 .on;F_wk ]lYFJ.]n]Q5#^ۺu+6wW^}СTUfMtrhc8_ ػK٬la0Ýl(_lf;X63@BUZDv dٜfO?J/SN:UdڵkϟBZrgϞP_|0xj0wbŊ=쳋-ڄPuwrʡ}-ҡC+WļXL7!E3gY2hQ6WV wE:w>i$HcǢOqŊM6>yZh/^sR+WAHHȷ~_}ם:u*t_-GZMtu߾}vfOf,a ?wܑ$|PW^=~x6mʗ/sNQmtW_ARw٭[Se{9alڴ %Pȧ@_hhh&M|G*T@؀˛!P-l x̓&@diԨT0 nȄ-PVC|.UE)P膼M`0 faa}W\cƍLɒ%/_.4HXΙ3gHHH,2d.6QXSR-/I@=T];kHNN,QD>}h)dsŊa<L0~x;vL99;w曅ֆ+ ,EUd̙zߦ*p(Oj:u]˗E),?)$;38qĉ7I|o²aw߅?~:u TuJx͟yJʕ+wqQm쎃qP}t6-kM6mԨ2=j]r٨(d|MZʀ;\~}aA3YQ+4XT04|;4-J{=+3gUרQ j4A͛4͗.]'|'-l39))B *gy(IY,]Yb5\:uD]䎿a7|K~ATZZVmgϞ-]4]&\ѣ/^~_~Gc hY^z\rٷvdܹs!;vU[kOM3iW^/믿~Ν;ɓX>a .eI+}|馛E6Ӝ^Ȼl5jw߭Y_x~?hSzwu;zEi:qBU%Jٳ'СCQ7VNyRڵk7 `P`)_FXSn ø$Yٜ(rHlݮҁ_Tr`04'/,l;PVG@ ^d"^}-Zq]w]6m:s̬,j@ˮZk׮*T(SSO=AYR%yh-Qs|ͥJ{^z%:3UM`C(q)322ƌᇭv f,w 0-[z">>W^v 7poذTku]/f@oO+Me j@N7Jmd 73 cBe3` ˉ"wJ|IHHkX63 S88RaLyyes0a\lfp`0 =l干gs\$=ˉ"wJ|'a|fa  0ޓLE$)ϲE„dsVV²aaȳlVErA U:0 `\@lfa7 :LdsffVZBK/DF9nW _ΝLjZ'' 0 0F%z-Jҗ-JLl㸹.}-2#\lF95d뼏nw T[CcCc]ͦ֫<&+Ԓ>\ K,aa7{ݴɼF~x4-2G;SGb['Oͺ~O!.Ғy=PMzhqm,],u6k$_X6\bl!233o~̙a&`?00(JLWDfR5Zr-T.列:u~_ae9xȬe-T ȮѯgΜ'e~x}Z;BjARSRtژ\zȐ赚H$Ąb&?Nmur5]/y A ) >e=C*TmRӮo䱇玔l]2Zm zBy8{b }w{q#zenLJ>{( q9, >l,e9xȬe-T ȮlZY喾|Fa4!i*g%mͪ\T I9ےjl]c#\2'5(k9KaX>wgwثf\P;Vk"9S}muDё9/, .l,e9xȬe-T ȮlZY>W3 !ށCSB ג#wtp6? K{^L.IͼN7?m47b(9wһf(]^~|]um|:@>Lqؓ͞A^R-067yCw rۺ >w.#Ęȗs `IJBl!엵P/ ƲYhe f*"L\lĆP&r+٬IN`ȯ>tQ? ؼvTABNJj)IEZq1lE>ϋl%[{Ӓ=ĚzOu]kN#+yBG1/H8$l,e9xȬe-T Ȯl&],F1iSn"|$t/yF -ڴ. H*[ި-9^C_oڊ\ 5յf{-wƭ8tZ_n;r/=ƱcZrw5ڎ"^VnfZ M!D !cIJBl!엵P/ Ʋt }'fiMGZ,.\"?eeguްQ\ fl*f۫Kͦ.L*&lkboM;ť\b[GCn;>b` ZkD4t0DK;b=nc"_1TqIbl!p1P/Cf-/k_@veP(w!A>ds䔴BKYYgFF9nW _1TqIbl!:vf?#LjBU`~5BKܵlyWS -!?}@('* 2*N>I,-qC6mlԩ#ZUI,-7qCFFڀGycD _Z_BUZgeeef">͇aOl qqqhSrp-~2k~Y Uk.ǎ ͜B@Dٌ2p@ "(]䎿Bx7PJԩ1P/Cf-/k_@v-eQRRRR5Ҳ|#EaqfK0k֬zլYcp1y'n-~2k~Y Uk. {xFlf)$X6[oݻwM.]n-~2k~Y Uk. |騨sΝ a0 SHl 6l@Çp #ZU#Bxl"f4–YaP y7>Kx趫T~ZC¸M 7=a›>+V؆ X6[ U]Oe&n7n\jΞ=˲Z!엵P/ ಹSN,]tɒ%=쬑 `v&K#t2єfp%r;r9-e(t՘*H1`iYqXČ-ڝ+܆Qnce{9z0,-7qÐ!CcbbX6[ UBޤ'YZ}so=aEɓ'~zA&''R7x7{oBBfk_Z_BUZf/^ή]vܩ{ N+WIuækmXȴ\ss%wA { vKj m"˵vƞ;Z0 l.Z|#sL*t7qCn4BU`~ٵ̓ ?!ޠAV "sQwùQr6,/1fqN[/)b¶=gl=0nM'{ғ|eOesrG}T^MбcG3;;eP/Cf-/k_@v-eaÒ/Pp 3!!!,H-ZVk&i7te#-XDUi!gu͵.; Ჰ@>u즎TlhfUOeYn]֭N/^,J5>U^ty3|СC˖-{O*U:{lzz?j*jo↖-[B9#s뭷rh!T Y Z] p|88q"I0 0LN+v!>y-] a0 Shl.pv7͛7 &MTNax"WޡC"ӤI|i*!엵P/ W 11陙ͤ0 ǰl.dlr̚5^z5k7@1͈6\e-xȬe-T ȮȲС\9QQWoؐe30L! e3߿0rr iJMPZ#ssh!T Y Z] pw>-ҩSH)uQ6'&&={)h్)2B``Ch>}tdESÆ +[ӧiz"Sl!k֬y]{TWRTR֭B&owAe˖#ZU~xff&3'N 9ᣇ(2f MPdYf!ӱcG-~2k~Y Uk.m>ujɓ)6g l';{„ E(9qTȉesAòxy6Nh0{lv1P/Cf-/k_@v-ea&QQ;5#>v]2(B|jf0>z, cܐsAw#ZU.\\լB6#\def7dsFFrnӞD>yJw @M}Sյ'Q%/z6M7lmE5nZJQla7Dz@al!< 111h8Çsh!T Y Z] pz(刈'NDFH4p`QԸ|SwƷw ԛUۖ\'Qoͺ&NkmXkB5Nu%wA {ܞ+]l.PX6[qÎ;`Ϟ=O6cD _Z_BUZW^y'PuMII}8pC.]Կ菸Y˗/S2#!엵P/ ƲYhe d3Ԕ{TڇƹE"O<szSEl=>,-ǸahO .DMUʠj_Z_BUf%Pn 4HKK;~ ͈\$g&6>H6nz\GOe~f 1n7o dƈxȬe-T ȮlZY6ܰaÌ (sΝ?>99yE"w xlsdv5 al!< ~-Pb N*eP5FT/Cf-/k_@ve(L2iiiF**0 $,-Ǹah@g?qP5FT/Cf-/k_@ve3IedsFrIcƌa0 CX6[q'|ruQ~ڵ8e%TӦM+_e7 6~?<ŋ ƈxȬe-T ȮlZY6ܠA#G>|2.]߿?fa²BxJX?ʠj_Z_BUf%PnOMMݿ޽{wރLLLl>}X63 c܀dƍ)c޼yd*1~2k~Y Uk,V@M6׫W/%%e׮];vخc޽_f0 CX6[qC=5kFd~-ʠj_Z_BUf%Pnuօlim۷nٺem۶_ݫwo 0>e%5kVzj֬i7<322p|d*1~2k~Y Uk,V@yl޾}m6oނIJa `l!< :uzG(Oǧ~J2#!엵P/ ƲYhe Mt& 7i3 c?㣏>"STU Y Z] pe79>>zB6b{955uԨ,a|ŷ{ѧΦ[nd*1~2k~Y Uk.۶m{y}?u\jU 2^"HII1b8fa²ه[uwy'/1No_}xxEiNNɒ%QҢEk׊"x_ptܙLeP5FT/Cf-/k_@v-e??B0ln\FrСCX63 >dŊ… ydzg>|СC˖-{:w8p{ILLBwxnI&Qۓ r xȬe-T ȮlرcDD%U԰aÌgW9siĄAlf!, lnҤ<5WݺuǍ' ;O>;!9M@ucͧNBʕ+O:)))8 T  xȬe-T ȮȲK.¿i@QmJ0͐G IDAT'Oh 0e30a\Ȳ%J,ZL0dȐ|8bd s=/_8q"&? `a'>V6ܹs6m(Tvm!O<yǏ8wrY63 lƩ&vdɓ'T CBBBCC Bj-2c O?4ʠUiSǏ87p@ 0>eIJJڣӑM Ç6lٲ8"yeYf 2ݻw?J*J _nz77igddo%02ATBU`~ٵCMJJsLMڡ\FpBrraX63 p1~2k~Y Uk.{aCѣȧկ_*aal!+Vȵp@6sk1~2k~Y Uk.{q…]vػw/nݺAle30LB ˖-C-άdRټm6*QUcDUe%TCmJJ p@6XJ@QU`~ٵ۷o߱c2йW!3f0 [X6[Cmzz:p@6/YJ@QU`~ٵ4Ν;h@9pyܸq,a|f a7|ר"_~J@QU`~ٵ/rLĹi۷Y*,,,;;;UE쵱cDzlf!,-y_!J@TBU`~ٵ;qDǏ=V~Feee%&&x dGͲaƇlqç~ZD as"%P5FT/Cf-/k_@v-e!C\rÙ3g222BCC333ccccbb/"]2b 0>e0fΜYT)a毿Z)1~2k~Y Uk.!!!ugBBBBB^ٳgN>yӧʲaƇlqÌ3na?\)H~2k~ 'NxzI&9rDzd\65*==vF|||\\\VVVhhhPpp0"";v#HGCY63 e0}݊+ p||(RUcDU}X63 }˔)_.{!Kc{4RSSի'6ܹs[lݲu;/^7i3 RROCಹk׮gϞ믿֬YvuIIIu _>} E;%X?aƗlqرcW. {Q^="%׷!W ޠQ&L"F"o߾0_x䣣OU*!Y;FFF.]tٲe˗/U#!!VppǏ=z􈍣ǎ8hfa²B j׮- {2bQ~Ue0 6l( {Ѵi"%)P/Cf-دcƌ믿G222͛[oEDD"_eʔYj(Ry\64~#dsFh$ڰe3FͲaƇlq1Ξ°-Zݻ(R9R USO=%TA;w{uP]5~x 0>e0u֢E a-[o^)H~2k~/^,Qħ~*lA~9VZH! p<`ǏGDD/8vXZZZ j30L!hIII{|yХK|PM6>(R9R U;v|Ga8ڶmۺukQr xȬs jJ(ѵkWakժU8;3l+l˖-a8t"_V9R UCQl͐Bܤȝ:iDddɓϜr%iذa,a|f_bŊW^ye…<%KΞ=C-[3gPh`ԨQJ6?! {K/=H @J%T Y ˷\|jРEC8118uqDD Ҏ9rСeϑesFFF%-ZD&2d<50v]6;w&Nodɓ'׮][O>d.]a~ԨQH *_Z_>̙37pg}&@ke˖MNNGK/={?ΪUԪUK۷COo޲u1g0 CX6gٌ`ҤIuF1롇lq*_a~2k~sK;&&Fի-A%OU ''N,T#!!f͚B6ܱc۶mlٲu. 0fS{nYfh;AZhѭ[7aUTEJ R*_Z_>u!!!(tv 6 #YN:;v'y…3mQAzRSRv޽k׮;vܹk^&m 0>eϑe3hҤ N^Ɂ)yЬY={ p[wq(R9R Ull@ 0>eHJJڣSӑ9h^@W_>|xذae˖E,Eq/0ԩS+U$@TBU`|_Dxa _ORfΜ)*}?~;vؽ{}<(;;;ɑ1cưlf!,-77i׮][~3} TZ9R U}٨ .@7j((<<?~e%;7=߱HȁJ!5mSx/Bז-[~:k.Ǐ͜Ͳa`l![ou°6cǎR#R*_Z_Ș1c{a0_N¦WZEUVGv-e t|͐,a r xȬu- "NSNՑ]cLYV,a ͖g˕+7}ta}a-[RcAU`|߂La< o"4k,!gfa†e0ʔ)3cFhRq,vZQj} 12!WtM4WӦM{Ey#Ʋgb0 SxlqCRfΜ) {E!bDeP/Cf-د|b |\ZjզM[5Ͳl&̲aPal!뮻O>=E/_.J!FTU3a/b RcAU`V/ېaFYvm[5$e̲aPa̮]OyygddPIb7ٳg p̊QZC xȬr x@V -Y.ƍљCiid\6?>%%%VCW>͆'N8K{Ӕ͈u6gĸ(Yvm*U1P?[ 8ʕ+7}tQj}@J%T bŊ "+O`4qq^L}G3j_v-eq㒓/^A933e3'N8jߛl޻wopp7SɠA:wL"$nHLLDՂ -*U2e(>r x._'X۷(Wx' )(W(*t ~AM?j=Av-e1ck\p!::9<)J/o$QٯO6MVFv-eСC/_|رȓ'O:u*##QF,9qĩ4%dsb ӐFGG\>_@jɒ%–Zj=ZZ9R UPfR^fFRs /NTR˖-VX!l)ׯ(>r xzPr-6^>(vڵ2+-Z?y _>`.]aed\6̙3Z5k ʕzl'<| cQA3#Z$$n8}4~waKGfpGTBU@r?o<;|^_g!0vWEB׸|ĈMP(*jzgZj% +#ಹ{o,[,>>v>h I8X ^fFua7?SR⋢ȁJ!;|0>ׯG>%%9sP7Yf;w.8 JO*_d_5>d˔:`q1(-Hju ]N_эoQ_8y°2k,!k~˲9X(fU/fA43z;#OwQ&qáCP%O=\˖-E)P/C6rȪU #'穧X<@NfΜxƋ~ lӦ ؍5jԠq~3 ##C_3f(S0Z_|WWKٜ:Y &@?͌RJ9խI@71nٲERGGTBU@!Q /ܹ?,nݺhB^PJo۶ ݻw҂K6o &/XbkW_Egg=g Ev-es`o|9Au,^3Lx I1c|Ma&q޽{Q}vaK_Z9R U|pya^O<1bD:uቬ뮻O>** /i۶->}46mB~Ϟ=T/AE*lٯ%KsoB"ಹW^ Z.]!RW̺'aDhnk#jRCQ/fA43z!CTP4hp Q]̚5^z5kķ˸a׮]ڹswL_!R*_ O}0 ==] REQa_7f2e ^3ge˖a+Ŋ/EEA*PV SRR7Qᛐ bD ~_]=z-Z}FEEmXnuR6c__h 5{P;Qp+f%,a!jX>NFK/ݬ^x05hf$>.:L۷JlԨ(>r -}wET" /Vڸqㄑ3gGK(A׿5~x*/P4^JV~iahƵZ馛 ۟p Dogv,Zfǣwܹk.ݱcN 4l a0;wv7X|Ŭg̰!k¹MCZ+FakH.4L↭[:=>|xzD)P/'pٳg  @m^Ei_P\SNFNo={Vئ뮻(Jƫ@ ۷0rrZn #/v334a[ٵC=x!tڰaCfl&tm’zM ;$7]ҦEcbP+m#Y5ALϪ9<5XkH.4LzTaKرcqZBTBI%Kxھ}lO^۫W/X*&&F 9I.HyHy~o! 'aE9p j A ٵÆ |cǎj9riiiDR6ЉWÃ_]-,;uڐENomբ޶66lbLbVm e![ 2%0iƢ^fFRsMd;#féTRk}ݢȁJ(IPL/]i <>S6l"=(-ӧOc-WWgΜYT)d~r(Ŋ;x뭷nVa|g;5Dү *iDve3fesG|:KaH|ir@&?B{*t؄nKQ~x _1B#\R2Z8Gݬ^x05hf$>8? 8E7tӐ!CDua7]UǏpL4oGTBI@![nAWdID}Ԕ{キk׮EW.J ol,/^%K۔|K.`TTu'OW_$ˇ_|/Qjժ$|"HllCݧF㕰WV.;JŶFg##yO:* +2),f4z5נs=qđ#G 0V^HaKԩS)_gΜ>r-lիWƍsrr(5RJo62XdĈTX8x3d3f@Dz-UD>LئԨQcذa;7nHf_4J}+~>—'/qԠAaYd\60 ::|ݻ]vR6cM>yCPP/2z[=UK9⺽kfdssR!NIk29iBx0Jx )>+VFa7Z UNp pD)_8@jjC6mGi߾+7oEdxu}+uO>$ kSJ &=III9gϞY<ɡ>ߋ/ ;'g͚5(9.S'u0E~K7o޽{waXٵ}=wܶm۶k e|Eԯ_e3TY~gmBX9+|2eNK٬\ͥsJ 9B(Υ @FIA3#zΜ939&qz駟BZR#R*Q~:u*##C:tHv-C2Ny/W>z{bAlNtt4ZΝ;yY!KNN^`BV2LyF 0@W\I+W`«P?~| 'Ovɓ_.&O,~=m۶e] pܫW/|]vÆ ׯG@ Lw{q:>7M+4V4W+G 7o_Vf_ zy) 5p(b@FIA3#~Ngmڴi%^uQ]t +Ν;'l)ȁJ_$:w,lS>34&D{mۆf{R6geeѥc{XSN=?*W729aBɷiӆt}ٖ-[ =ɓ'ӤI޽{ (CO>wGKB!oqW=5k& "ಹk׮zD4VX|ZjR6'''T Ŭ  ^fFurJƍCCC QaŨ'~ UȁJ_86aҽ{w +V }p7io&{Iqrl|/Q{hl٣z [FQVڿax -"lƥ_nР0,Z_|ĉ˖-``lޯ:Y9fx IΝ;Ν{gJIIAUFL0.\˗/ [ 8U~ߐ)(*pl2e EƭZW(rOhh(#O?X*wǒ%K… {믿~mQ&GdIf!ܛ^wu`-ZF!U[K*G ε<<^.Rk.Q߸k„ UTe] pܥKf͚IIITB15(5hf$>/^]X+VPGy@e'=QW tI9!!AR|rT?^TX9R կ_?ofNJNNƱѶm[$BJJ ըQ7Ū -[KVkGrw|ŋDA?>TnB׮]7oNyҨ7o&p2y۶m+WFػwox3`޽ zĈuF%NߒΙ3Gv^{_#  Dү)Sٵ/bdd$+WߐYd6C6Q Ŭ  ^fFRsݡC>LC7nE֭kݺ5b/^,J5>U^ׯ998텄)Sf֬Y=&qyaKI-Hˆag*ӧ{hzO?0űK|A̙3pmҥTcrQބzg<ͪPBy).Ydzz:;8}.]Zy zofa֭[&.\vP |U(QBV_‹(Av-e3M xsBBBڵ} ,p1t'NE' ͌XoqضmM7$ 4'#ԛ={6СC˖- !!46oclj7|[ =ࠛW###Eő)_}FxŀZFDDoƍEtfG#~;855y|sR^4iBo$QX22 !4h~}!DvLJamxWX,a_׮]¶C~AS7|c֭yzǏѣ5wgk_?IJJ5] pL/Zfz J0aƷ{RolH}ߖ+Wn6/ݻ˗// /]FNsPADrHՍ5:u a9s)S&99YWBB#_²~ [|0F(x CjAeʐ_#裏)dTEEE wuɓo,xa_ڵk'l;WQ{1x7C Ԃro0X2|(.Z|9|9s挰N|,{m۶@f˖-IIIg0 S{RolH}߶iAt le MRDE # 1 o>ށ'bm2?" a yA8x "`HMM f0 S{RolH}ߞ={6,,dɒիWQ2y:[fo6m"L#ɵ_|܁#""`=L`?tM3gիVXQaȢ?3&ݻ- lW$''w}'l (\n=0 %UR%T|ᇑ9}4ӦM;!δnZy0^:(;: lܸQDv-66 'N@_8#~`0 S{RolH~߮Z꣏>Q5βYwҤIyw֬YճjM_J3p={PcQaqt  E+.^6 tw3f`)=X)_v#FP%8ڼzEU.Ag~ ?^6]` Ν+윜WZUa0.ϡC4ٳho .+kB֕|CM6_8!nfz}]`֭T[8 2ЙF;/_ t bG4X|sryJ* 1 UǛ٤e"##?FVVVbž a_;wo~##} rL`.g^(8jԨ#fy0^ĥKa* -x4|a[5ӟرcSRRb4mI`τlf)p=76hf$o~ӧ C?͠I&FN``7̚5TRGb<~={h@J%<զMr}ϑ#GhcNY!C7@ZʝFZj9ds,*\3.f2iZlW78pm ;!ٿ3224=D??San1LWoq   \RTzɤW(ݛ[pG͚5F^0A"Dp>] p<~x|.۹t'Y63 8y43J߷R"pORReZ ]P}WXaʖ-*Ws<ޤ&X=V8'EnbDKӫW[n%66ܯJ*=<~Kmۆ=c_vpō78uTd<^G)STP.;vl5(OCf 7k.aYyܝ"v޼y(INNvc8|4Q_=zTv֭k~{@_(z!*1117-߳gOa;[  ,Z8E{ ÚȮl0aBzzzBBuX63 y43J߷_}DD0$Ph.Yf a:ݻw?J*JIe^b7|PHw,ᅨ B7Ŋ_]ۋ6P*|5ovڢE Q zʇ>]ppϑGs֬YTɓ'69 (:ihág'NvNTEEt\pA99˗/GǷU áL9Η￿[n/s ta |W/kР}޼yv~"+l1 _wꫯ ÚȮl׋,a'N`G?0o|/~*7(h.j/YD؎,X xSo߾TbQ ~sQlٲ&OZ҃ow! W/,,LJ mgáؤI_|ҥ&Lp94+b{Ȑ!0/ ;#ǏvCϕ^Z؎[qD/{j8WʵߘPȮllbe30LIA3#}]rK,2e Lz3Anfĵ LpkOϢ.Qrnɓ'޽Jr (rvp5{ŋnf60=q}kg>3?pΝ)O?őI+ ЬY=zP vɇ~XLah8$0ԊUG(P "T..=ҿ7), q]/6|2t+۾ɡ " ̙#~GC؎;v qޣWjj*@DEEjb8uzgyFDvesFFβ"d3 X63 <}O I[D-[( L aҤIv04#)) Kɳ={m1aE?Qt>.P'cʁ6mV>|8%To։'R}Pєw  CK<ٙ?dd҃&/Wްa(OCVj7|JA. pKYy0_ P$%]JU3f>eK=ڍC|/tGlٲ4::tp>i;6mڄ͹{6j_/z>qYQgeP^gz"k,=f@V>o3'NK;Δ<]A3#i=V!..n۶m/&qoqw CC8 <|護ނD{u EQ!͙,R~NRRСCkz.!֮]k.;v裏"CBO(]~Hyz!凇Cdʔ)+V}寿ZNOJӐթSbȑ# o"؄~3-['4bZPgq˟h]cLYV8;fY9l3~u]B=Qaͪb7꫆GraR)tZK>} q¥E=KƢot엟COks㏷k׎h_O6݅7~G46ڶm+laƍ C5xoF7oս{b%۷oWa׿ߣ^А_4dyU9hne wX5ͺljvMl~%'|dΎFeOZw:{ ,U$n?~‚p@;|?رck֬ j͛O*o/wUVjj*-Uȼ;*U>^~p{}ю;"c.!Y _{5#LLL$T.=K"lGҠ(r~П|!{饗 3x`?f/;uVj*a;ZWկ__Edg:B{ e,&jp+1cPX^=a|(߹[ppjL>b_;vL4>q(駟(Q~7k,Ͳrٌ?fwHaͪb7 5h9߈{je.=&xWnaL<* -(Ua -ŋ'GR'4iҳgOdes:uJ͛v^gEwgf͚Ѧ +~ӦMvC޽; !8p`xx88SrexРG%lGh*o l; |(~KƠSGVZΟ>}Z؎ ,F[*b@c .s>qT/s.8<۹t~zѡ| 8mAdX6C6fFٌj)']6- (fU1. 3*Ǎ78m4*`9p-tC\\\!_1b! ٯ\ϟ~&D#ث%nŒ/;IcpϞ=d=$@u)XXX.. hp:Xce JyJo!¶OmV|(b-[ ۑ3gΠvʕ–/^g}&a|rC7DMW}E #&ytEF4h '^|M7&r~ UKqi~^t ebbbP;c]ׯ1 Ŗ-[Lx v%lG6l؀Zwv{9W?Otqݻ/h,ra$UV5yW\WBfhdGҸ/^ȮFp~p+'٬+g, 0²YULↁB+ CC8.y={6kL0a0߂2L|E@T1@y >%JRGHI"AJ؝_h_p 7@A̎X Ȕ慪Ugٳar).DӡH׾\A *pa߿?0P_6@.Źϑ?b+W4h{ >ݼ&HAa8q뭷b ---MN~  T*T0-3=-qEؽ{7>.R 5$ 8 se3>gom8lf?a٬*&q|K3yS8 Wouf21iӦ~m̙_=VG(HSsuTǾ%Ey4*=9gQwkZG\1?/V]ܹ3Ejk.1cdRPemsSz_~]~\d%&MTdI t(ٳ]hyQ_//oB?"'OvAİ1蒨,vd޼y'wa8 a;B _¶S^!C#+wgSRRԩCU֭veuLjذa~7dLN Wβ8TY9lJKEz!:'s ]BΝNep)fU1cZ8 ^xᅇ~Xޡ{Wм述5 ׮]kDD>Y JN޽iDh=;vriӦ/_RYS+X. re" rʽwak^Qfx_}% &_`5Z2uoy'Pwq0$ 56Wt6<79ժUsO>A<@׮]zB l0/aiҤ ja`o(2t7S Q$/cW-,=sf !e3o{|07> F!Jݑ LN>a0_?sL_;t/4h JFOreӦMtԥ>|N)cҟ۔qC on*}k^x衇!Aw;_w,4WVMҡ8u;ٳgc_RO-erZ;];waÆȣ j&~{7Nށw1cƈR DFخ[~ /g\rpO>}|D~GͥJB:&~uر&/dX6c?xͺr YUM$7^{Ug\mY6sUb٬*&qrޯ_?*mڴqyQ#zM Vij+fL+W 5}K4[;u$J3MTu]x.XnCLv9u޽0?>2~/7]^nժW=]^ACE4q<[wK/$ 4g"M{5؇$:ӧUV=k tYEw4ow~E>wy0ܵMݬY3>hz/a1y:eR㽙_V/}Cve3fZ6]9[E67ir:hUKYs;긃Ag~-fN8$ͪb7tŠ"䀣iӦF0̙3m' ;(9s_2q6I8n"a)/_کX"2-[B/!KV;ӼM((Oĥ6 mpWVǏw ibm߆7#Ă Dak=/&!s w?/^>t(/#* {HÆ ]ɌufhWlo߾qZѣ_~aRLI{`LdN8q- %zmtm|yZF{M;_#GS0,f$6UXK6?]!Saidlvڵln/MlĉIb٬*&qCNyahG-wN]v#Rע E EΏjXʣld]62/>H^BU;v@_0yQLhh>%2+O?v/tQD&MG$wժU!AE#\M:Dw޹馛!Ѽys8oVҡH23 m{&3n#u9pT'֮]eEĈgJf͚ 4^m:|.o!nРAӦMsh5+aOP-l;;vtƲ'*+WP(m=cGҥi=2u5e0g L솟 ~QcQ5Tzzx\… Q|<-E++Àtz[oUnw}ժU.h(lS4l@v_Vį;DZȮl~0IIIlFkf?ԯ$݉^Q.'NH,U$n@x$_rE ]MBEv2Esj;*EDaz0|Q6`ҨGġ/矓'j׮M4FOwy믿Ny/o{^}UahTR00"oAdo ʕ+Q|_?ct˽[aK" ;[6˫Yc".54=v٣l ^m:w;mN8Hb٬_@EaxS8 !yB,3h #J.<5T%C3E(+U M?BPm۶u&@`ND5.esrtB *L:U 4@ށhN?SvP(1fE<^B cCEUֶm[dL$4ҘE?9Zve[ٜS >~8/3/O6QΛfե,eQQU͎8#Z-鲙6sȉe Z2gH8 /jnڴiϞ=qmlذbf֬YQQQ(3phpU*/(v$KƌJ(2{ֶlܴ󴷤^xgak8_%tTvׯbŊ͝;W+VJ` C[no_'pbP,D8ٳ]Dqqq0w܉+dhYz8_!\Rxqw1mwqyo,OsrX{ڸD/} V ;tTT/Kcq;PVCveA6\ٌ:|ɠرcϼlfW3SR󔲲:~rځT{d3_qTf8w;@C[D͞u1ih*)K]}):ns)@fU1﹕ÄaM41<CRaPaΝC~Μ9Bg"C7ΏD $'R" Ӫd%@~t388%?O˷[Ӛ/_,lիWP*tM435^z͛ prί KK.c5j@& GJ.=j(ah}ٌC"Я˿p-Et?3UC3ߧOaxxIqC~;v ͰE׸{&N37xb;e˖ϗ sbqwkǛEL4~aȮle3+P#H$=f>EX6s e  [7n콊"a;A@3x6xFNlvBf$ô*DT 5wÇQ|7G OXNi@G 4kfk׮d9 a6ͯ|U~Zow+p~ɳ|(R~9-az if}EԩS;_BVDNUVL&g\X+]fC׿'x?>`4h_:M1ҘCdX6͍5>wkT߉#F2>ˌ)iyJYYgFp?Ow8Ҥ):ns)@fU1}ю; CC8w!G <w ]y}&NA1t4t'NX6I`x33޽{7i҄AXXm|i!g S[RWN \_'}q/B7-C'0s&!!TRE99T('i믿e dvWO> sJy-MS9O hРLe˖E;s7 CC>+KD GDDPG Mg ]Bo!t@~sE %*UrpNӦM{% ? ?LDzxCG+fgRJʅkL4~.-hdX6d39$$Ƒ#GkDu؁zydC?I&KfN9lV>rѯ_?yPIaZfpmM:q 򋮛hThDTa@-wA%:} GI67h@hFKz*8grTTJ͛'l={6kL_(py?N?L@!T04h/;ٶ^Ǖl۶ %˽뮻Ps=АE/`%CbonrF3_`⯁z -ɬW)|(f¡xooI%t C' ĉS$ͪb7 >6OH8ܰaC*!!! FQZ5[.5,X@u֥ ar-e3As[0aBDD=CKn/]F jo}N2'OD)ݎ'[#44T [0mQv5NY\j"_–r Ԯ]/C_04C>},]L˛t Cê#4Ǹ maf|RLЇy5/iҤ|ј@0@w_ ~׺RM6rG c/}RQ#9 ,_ݰk,u ds cvu-Νӧ\g$^IS:y/})ڝ.c:i6'N$lVYf0cգr:/I,,C}ll쭷ފL6mg! ^LqQKg̰aH"0[ j按 O2;ڗ# /|QahFM= !ἆ?tpowWfϞ Q>1rBd{h> l t-Zd(jo [nݺ#FFNNtt4L4IvBBB*W,4 ejժexarڵ %;SR%ah9D w a_;'uֆ=ɇ"е=aNy2硇B˗{ݻw/[]vuv~ÚMr ټw^QG0X4@r;~OxN? [ta/bE> 7~r2h |C0˺ ]cLYV&y]TTTAܤN !}c`٬*&qCF( cĉTԩ$ .0XF]\Zj]v ᄡM6[+HvƍM .\E{/6m(#΀!yjiЇLygܸq~2Qj .D3z3gh#GP̮]8LDDX0MH('jO?]. .}kǛeX6C6cWhQ6Ӧۺm e|e3c>U}îh bf pX6IP~aÆ CC8L"_[Y1ca5t&O7߈hd (n(]4-#Znݻ75&VZ&ZhP0Pnmz%|a"٬OSB :rB :v옰% Q%OP-YC-vo݅_U_=馛 2ȇ"w^߲e -D)kvop~>}րj^0PSN [B2a睉'e3<wۼz)+ZS-R89 } @틪~xxěȯsGhqt@v0z|e&6lz`~|@&&6v^g^6Cp9%sv3*˴tR?e38,U$npZ8M&O m`h#E@Aia+]вzX1kرhsY**dѣQA$,ɔK ]sys'P%Z[C… v^DPᆪ*y ѬB 'QyG nfo]C /^H~]l]僊jM#~zZʥlF?"O8M65:B`݈nٲ%M .CA6K,洴4]̙3?i A%B{ŴZ ŋISvΣ5+5x|2eɒ%{Ln(~+))!,^}U٥>[9/G-vF +''*ˁfij8@aY9O K{Jd$*r|#m"Ȃ ^_J4phD?a !~ґ~gy…擴t5fj:;;͛3?i A%BՄOmh~w,kא`))$zR&M$%VX%? . _SU\]x,1"?GeUs Vf;餓=o;A>h2_={@PRv"EO}S1 "6V.]&\bÑ%wp5 4[n9rm͚5^~ґ~Y_>A6ӝNOͿmȠtQ|A6dsP7~"Pɏg>F~ Ĕs7Іvil`}/Vplue;[|ӟd?%>0|_|;V_-&&NGng;%8ė"UUUTy2e"eob}瓱伵֡ <^vmo Z|~!N %l^`Ic )Cn-f^F|A6dsP7r<$IM8І$7կca+m0第,X~q|Zr80~_I*2U6[Opk~;F )X-_u]'MMMr`?5ꪫ|~*/j n \׃Ybfç_/3&nb5q^$9ͺP]]-sΡP{!o83yԄ^ gMklPJ(F*jo[[d ClƷ-6pO= |Mpcɒ%l'я~a[MB&aC$ }a l&>2꣪^W^ɇbχ>y٤W[Z[[ACzz:d^$9:2n8ǏDN?_\ hC묳Ί XW@ ^#OPWE׾5qU`G6裏 #vk;"n2+d˗/)'.XOϖ,^~+0P6 n"[nE<`zN+K |%#B?յ$ӧO訩^oC\6ll ɁlWk>O@2?NȠ|[Mn:fx!o8SqԄ m(iDq5B+q(**JiXXu5馛(n)n]wFDrbLrE#') #y| b:PyQ/OD_b\qܔ%l[ZZJJJ}}}̓zA6@6Nj,Z^uZUټdɒ;ϟ>}#hÇG9SN9'@M8r+N?G}TC+H /Z)ėenFZ~v~#T a2抝DW׆]W6SLfn"/ȟO ] B"/cʚFu-e]wа{= ===cǎl $9K/tҤI\9|K.̔eZھpx*T7\ZZJi3<-W]]]p;WXA)޽{eg˲v~kq%"4nG2ʸ.BdժU暚I𐑃Gnjjzeee98׾}2t ,^t?>g' >Ox =\nMlThKf| v˖-۶m۾};oݺΌR6bY0ܲ;(<)/C6渣fk97xCViӦ]~T裏n|PBbK/Q&$ 򗴲[o%׬YvuQ?$u|ddeOqVK6WUUQU?LKh;ꨣƛڵKN[x1WO<ĜuYg=䓲_A"~pm̙s !_z_F8vm>~/Tגolٲe˗/wmmm ,kAPx whp 6*C9+@Wpq J8[n w!FAYC+H/! 1/~;?L'EX_?.--%Ldee;K.mii1~2y0/fC/i駟5jy#Wj‘MnٲEvtI$ W_BK/b+0ԍ`ܝ`%l馛JJJ% [oQAS6K } Hr l&.ɓ'sE?\ ޽{`ղ/ڡ$ҋXjoo c=-յ$ͷrKEE e˖}mmm/C6 @/VZe, &L]/>HfddX?M+&/@M8G˗/]xdY;TDP"2_z1ɍGy-յ$ͷv[UU7n:R#Gl $9x 5ᨨ {Ovs1iW_BK/c=fh7"1P]Krӟ.;;;G@k $9x >Rw Ԅ ~muG;_A"~^/_mmmq+_ʞ={.ި%l2eJsssXo߾ޱcǚY>Aۄ.\3?i*mSf&@6_\ GCCXO)a$ҋ% )1ϭl?Tג\6O6ܯT ̤, >_$9A+o^z5hii!W^ya=կ TL/^ د?/yTג\6Ϙ1^ߟƲT5jrdޘ7}EC& $9x Ծd Ԅ[2Z>?V$ҋEz/~]%l>}*I3755l g>3fT6jd 5%^xa_~~E dzb0~]qD׿5YMյ$K555R~xMM 'ݙ>3fl~&.b5q^$9#6`k\ |~$ҋAEATVX! [l͆յ$`+)))---//SAgtuu=WWWwvvΛ7g~ < WDo\ꨣOϖ<;CP"2_z1HZHaѻ7p,\uUٰyĉyyy{!WXXH$4:G.))++oko3ģ%ӗvev8 A@~!G7o^?oF[[յ$7|sYY|\@{\`vww;mݺyӦ͛7رq>3fl-~EG~E dzHE*~JezmZ9stww755577{CCC]]Tw{zzvޝk׮ݻ!3g|A6dsP}\8r/}K~;h%c+0/! G¯2/* 7Q]Kr;;;''g׮]6 ٌO A+oؼy3:u#2ғ^9HVVl_!~^/f? u믿^*Q?,#p;ᨮ%lO~RQQ]vݺu6lظqcgg%\²x$IRC6@T W@'r]ȥ$%^*];~E dzb:t˩R㏋r(xaյ$7|sII -e(+WlooSɿ{2jjk뺺ϟ3?i A+oX~=q]ȥDfyy9{=ٮCP"2_z/I pgvTג\6xEEEK.}~nkk袋뫰ؿ>3fTkR={.pRFnR[[[VVFZqev8 A@~E|ڱc\\|~g[\XXHgd/fA$SJJJKKgϞ3?i A+oXz5ݻG.e$&b[ZSvpҋh"ZSnFZYR3Ie`%l[KKK?+W~hLgOi>3fT+VP;Ib bJfTt_!~^/Hz~YkYg% >Ζ%lumܸq ?I{ر$vޝkƆ{N4l7,[KKK.pR>,Sl_!~^/H4h}!N=TYG^Au-eIjkkwؑC븄ِ$wڕ+[P__w)>3f<~QFp}j///Km۶lo.eʕ+ev8 A@~EE qI'ȑ#eB(յ$sOcccAAAaa!-q4fR;w$m}6ٓ'O4l7ȟq;rٴiSQQVZ%۵W`_BK//Z_9z'^uY~3z']KrCٮCP"2_zh~BY~7cB}HljΜ9mmmՂ4vni6C6@4 WoS;-\8rbOKիWvpҋD֗>T[nn\bYʯΝ^UU%53^ߐMg<''Gisv}})}g> 9x K.: Tyy9ټ{TXfl_!~^/H4h}!,ˤݮ*j%AqqܖP]Kr,?mu@eetfƏ*y/&x6D9x o&744p]ȥh%~l_!~^/H4h}9ꨣ"WzzoiiU d_͜9Ԅ3ʨi 3f|A6dsPcW.pR$Ɇv~~>֭['۵W`_BK//Z_|^w]]]\@6XԩSsssgĞ={zzzƎF*R>{lO3f@l*^yëJ---\8r)/J^^֯_/۵W`_BK//Z_K.F⬳Β#纠HkI..R[lپ}|׶m:;;mNOOotuu͛7g~ < W/S{[[\WywM 6vpҋD֗N;+Vj$>lYޏ>BN%l;***>u֭_~ڵWnoo7~;##-*===>3fT%KP{GG\lRaƍ];~E dz"zWT+E8sdA}oqC6XՄ JJJ+WZjٲe^kkE]IJ4t {{{,X3?i A+ox饗G.u!yvED#~^//Zt~ >fo[n)..H3Saҥ\pAH6A6@T 5{iR{OOG3MU7 A@~~ѢC|sb֭wu]ǭ)){VkI.oV)I3r~w|Ml,.4lfXr[o5Hi <2Rlz߼y3F_ ~^//\xᅲ@p7 B6۱'$)gX|9g:3,I67Y47ffd^Zjos]K)IJΝ;}˖-ܪ~E dzB c<ʄ;O=B6۱+`k׮]f )_HKKNP+H0 dsXz5\O}V7|[/>O8ᄌ ZU0x:uAx.E6Ď;]^  -kI&!x'5%[%l4iRUU͛iw+WlkkSƏ@bT}g> 9^dee{ッ:l^dqsO>}Ĉ73G\RdCl߾޷mƭW0_BK/K>cǎ;O<*ɭv׼`cWSNݵk6m5jTJjjjooox_IYyE{Gǜfdsܡ]͗^zIr%\ɕhVC 'tWL(w8p`˖-uVnՍpAP"2_z_rҗ$ wH6s'.[W_k%l9sfsssaaaQQS2@Ό/jʣOAQ>f͞3?i qG}}}so!Ĵi.rD> K/Q&$ wV6ϝ;Grjj*1S]99rssmii9ķd3 x@6Z-\UUE*_|Ų|Wy'x9.?6?3r WL?i&z߾};F_ ~^//-կv wԨ6ϟ? IeeeEEE___ZZZʘ1l޹s;svonn1we dx衇FɕX㮧~ p;Ϳ.ۼy3gggsn  -Ox+_lW;-׼`cW ,쬭OʮAg&==].wؾͻH67Ϙ9g~ < ƣF?z7w>\_i&$''[u#ܯ`TL/^h-:,W\!mTNICS3f1Ln^yOIx.sٰa ˭E8 -E7w$l{IThjjbl=I[O>I{̧d3 x@6NjUVb„ kwzj_o~+&/O~R6޽[uCq/! Z%H6*R6r)dqƅ~n39x =i\Wՙg~z$//[uCq/! ZeQl+),-<~>:5WVvuu͛7g~ < W裏~\1 ϥqR֭AU7@P"2_z_(:ilWdsZZk74tw4lKڏ<șg\ꩧ:׮]Kٳ[uCq/! Zt˗s {PlWdszz:B}MM- 7+&;n4޽{U7#:_BK/1chef+rf]6|T`8l,2;묳}߾}ܪAUҋ 5}t1V~I6?_S]]%3ģd3 x@6Adv){II FrDE dz"H~͘1Cf%okZ UTG\f͚3?i cH{^ZZʭQ%~^/_^-{zzX.lNMM+-))WR\Xei>3fT(cp~\1 ϥ͒2nՍ *A@~Eϭl+),-3fTdwk+&Ṕ*˹U7#/! A%JlWl&\d3)fRyy wO3?i A%l\J~I[RQQQ%~^/_'O%JlWL(yޞ={rsss l|A6dsPc&AUҋ 5qD^V~I6;vK͜3{Νuuu'M4l%o}Ix.3̃VRTL/^ɯx(d_Eͻwڵ+;̐IW_}u]\2 U7#/! A򫯯(d_ftfI6g4%m dsP~\nGuu57FrDE dz"`~JlWe={6s#g~ < l+r5eٜh/! KPf+e3UTO3f@l*d~#R7tL>jjjI7#Z/! KPf+$SSS***Thkk1çd3 x@6/o~ӧl,ZnҍA@~E+ʯ"洴T 9{lO3f@l*^_\oG]]7FrDE dz"`~JlWlV3t*QI͛3?i AK6S'\[nGJ}}=7FrDE dz"`~JlWldsFFơCfff|A6dsT2k.u뭷JㆆnҍA@~E+ʯH6flC]vhB,Xg~ < JO R&Lƍܤ-ҋ%W(8d_IʊY`=v.\3?i Ae'?4njj&XhTL/^/Br d_E>fg~ < em&u]#Z/! KP' lWpDl*ͷ~4t#`9EP"2_z0 E1ʯ,,q4X1 AU6r) Rwq4ut#`9EP"2_z0 EZl+_Y l*СC2 ԝw)ڸI7\ A@~E+q '@6[d3 lS\73d_& l@6~zԨQ^xaxސ% кKM 9UVٟl3g_=q+/! AlٳgD dzl٠&Dff̧d3 x@6koM: /|Z/?d3e]tW$9bP"2_zTf+5kV[[[Bii)Il@HE|A6d.loo' ^6ϛ7v=q+/! Al+)Y49#Ò׳{z;;:t|g> Y֯_}OMK/ɲyՆh'ϟpEO\ A@~EP" *\6l0-3glO3f@l`O}S*Xx 'fꫯ}ݲc=esff?yIPsĠE dz"~V~%esEE)g llnmi5ķd3 x@6Nj{_]K,9{ӧ1lq@p |A@~EP"ThKf,V ^/_ZI&n9zhS6swwW[KsW сl;?T?4%ϟ1cƈ#&>-v dz"~k$ X4f3~/VZEʄ dŋ;?>##cղ1VbK/@~EP"Tג\6/i/ja6!tsOOOgG;gY>3fT ^/_ZS6666͵?L"tswWW_oܹs}g> 9SްeJRZZK/;׃L/^/Bu>Z=%V~5}"BAoooX6p5>p|g> 9xȿm>)oϼ(&V~5s̶r2A___jj*~ν>3fThL/ϧ$޹v dz"~kG /Ɂ_͙3FPmB9--͒̈́8Se>3f 6J8A~iBK/`|bWnjjjT inP0d3AM8v dz"~v'V~bl LR,, ̀j! Ak>+l&lCu9p |޹v dz"~v'V~pB]]] $ ٜN6tϟ3?i ZcWR6I3f 5V~I6R_uuu ;::f͚3?i ZcW{o@geqc{{{Kӧ|A6d3X*%!3f 5V~I6=*DccÔ)}g> 9Xx 'dddY[kF:7DGx'uY^{mAAw_b KH|A>P'?IR()ynMl;"HǮ JM# ?ׁ͛7vؓN:n喪*~5ay/}KFb3fٜT,Y{O>bĈr3ٰa1Cʞ={cݴi%$W]uI,J(wsvvvr|QDR1csBII J (K9=%0 {USl2JWZ}&+++_Pʣ>z)P{nn 7@Y{{{;)$カ_7^~eR/7n$mIrgxlpkjNb_:}qB+}ҤIs@v}m]*>`WᲙf:e;v99K/T+_r%\1)}ZnF$#h/U;g}6J+?QVU\!TlB:/H6_{\&oE~_犝ď[[[;%KȮ>ޓU WbY*fC2/j ٌ/i@ c9FVi.r|}'r0=\$r9|;ٱcw$*ʯž7pgD_W(\9|{8p 38溂vR 1߽[b/dزeˎ:ꨶ6+fTguE]twqĿ=zūn/"$~b *77Vjj<Wb0+K6tk3hll2ȩd3 x@6'UUU@_\⋹brqǩ?x$6}_溝7^f~O<^{'W\q'?ImτR|UsRp)\Ox^~eҍ][rEB?W^d|QRDovkɒ%)zkcƌ!} {ׯqNq{?7'NWb0+U6KBY>I[C9+&K\9| 'fʔ)w׃aT({zIOď*W|~5T/iI_ / VE/iYڳDW_ʯlۋ̒>ȐtbYf|Qr^x"ܵ^1K/t\9|xԨQַŕÇI$#(?O/m/~nzCI9&ͣ rEgzO"AЇ~(~9Š[v~g?j߾};w$F~m޼Yv%&g&JJJ_s5r yD~I=餓fΜIRp*СC{.1^tɕ'| tд|7rsso&goeK2Ew|3|P^.7Qq/jްaCiiU?t/-n^hkkDkI&T\|;҃P9G+1`XU$ٜNN ͜2? iD&e6,^;322j+&L īJie\r%&:_*THN#:+RD(Eӟu]'#K J()"?8ay)R{@xʒB@I8N)e]K2E+ on~y޸)1c4iQKEEok>'*ZċQn===SN=;jTWb+$8".s!*d3?C>i;43pZ! l7/Xg~4"}2vhfz~ 0XUl<2A^C3 [ʯ"f?["3 `>i;43pZʒl6 l ?s 04t^ -V~]6Ϙ齯3 CELIء-bWe,3P}2vhfz~ 0XC6!ٜ~裏z;w iD&e`hpLlN#|POO/)gC4vuv̙=g~4"}2vhfz~ 0X+lNK#-3枎ٳfϐ@dbOZL/o ΄ R\uU _YY"H7Fy֬>3qC3 [@CꫯQhnnA%j*lvСNi3Y|ڌ^xW1}`;43b^{-WRRR{}{'x^tR8|8//[ֈ#>OOCCl+3gq_~9ٳN8QF-[|7k_Y ?+Vp"bW>>m_6wl З3K/TTT4mڴO>ګ< $ޱc7Mrd6w܂|uȑdvK/Ԓ/ۿQ*7o{S+/,qm3kHLp6Ó !}!|1njP/~A$q>iyQGTJN߿,Ke͔v=ؚYU?m$OemL *l&irĔIfj%6B BFT$+"m/owqdE]$NanhѢ}s\9|͒ĴivIL@T|fwI*ˎB?gfG~d3@_"|Iےĩ׿ W_}u] ۤH6O>]( 2 ЗXe… GIɧlWqf%ZY]|cK/83^z%n8d%%,3l6d…  ͎OUUUgu͛7۷߿(.lFW]uUNNκu/ј݇O:O;nfBfld$}…`l fR*u (,,OrOKf̘A);d3!14{}wtttISL:ßlX6 l qn:\?|裏޾};d%m@6@lWx>tٲeG/~n.-/,fݨPf /pp s΄ eURRR.]vO NT~SO@Mo#.Q_fa×l6~С}}}/;} >@4 6ÆC6;3洴MF̙l~]_Ke}rkm@hD;ܖ{޵6#v.` 0lfE%ǏO=p@uAcƌ;k[N]ٽ7oqqIY[ O4"ne^\ğ56m߱K(pfaU6KByܸq}}%%+.,,*577O:u`yǮ= UPXRRZNB.;gW he))-*Y}qeKǎXbW\RQV߷=sH~Mkk<3xGJ+YHeL֖QXmVQO]}?{ ,ykkOOOc92u1Rn }) Bv_#5_ē@ wJKKJ?L))SbV_YWW(swB~E;AGod 7$rbE$@6 f#y6c+ɖP5,wXfj *v"~f' KL,3 EmN ,n*hULxaa뺅-F`؈A6 c…{ Kܝhlllii""(Q̪PG\J1`.vFtS8F/b7 EN͊ݒj-6FCNd-69pظA`%322rdҬe{KJ˫kSNDUU5G^Pmf#ϚZC 8k?ᡠCPbbUaʕm(K^ a  0l gff$>XY\RVYYU_Oɝ8"5Q&Z鰒ARmXkk%'W7A![ vG! \U`etjlzHY0FI\  _9==СCd8p`1e+WW쯬kll;!?3yT$BnmV! v(Y p^'6!PUZ\FuݗvQc 0liiil3gΜdu6oْkO2zWTUUQ^i l  _955x(՞9sfL' NS` 0lcǎ-z=1x38BśxKo4`%Gӓgq`l6|QFuuumS[[ӟ ?Æ/}'´ƌ20y?~݂F(2@_6w^z͚5k׬]KYz?lx0PM\hU-5#C6@ P%77-UITxsKz8IݐGWh*l,lr}%I" yzU7\ϻ1WNFh1AXTƗlO^vu7֯_v]eemx$ăfm`)CDђ 6K%T4J\bSYy(#p{1t< ٹv9wr =FWƵ6Wr`E:F PA`bRt&A%Ljyㆍ6nڴq#窪n fU102p FQ:Ґ!ӁbB`uz gN(ÒLJǾTX8ϣ_鵟FL#.:QT+_6wnذزyMI?C6@l6RGo 9@XvjYV"[ʢ2@[[XLFjoTcc;A t2bC)Xk먖nXH NQMΐ/(sP,U`:E9lTmc+6Rظp;">UOVqZE:$8}DsAA QS[|lƊKTKWv)H Y~,53>m82P,}T0E%,e+%#rD$tictB"ܪ}g 0P\bm3Q7uY*mle_IqhΦ٫DyB]WK[-d I+;::6@`ho n X6B0`"5Ƥl aY*: iGX •HŲ @3Fu I~@Km>tr'~n\?>vl{%6Cn[Ԍd#$1h; c0GV e^R6~0( hf/|%tvvnڴiŦMwqd3 ?f%Gյ]ävĉ0 %njݝ$//q`l6|c LN fa×l7n\___¤m`l6|T$3gm~~3@\P 8$ Xqd3 Gl&\UUmPS9k֬!~cokkkB!@P880n X"~8 {87_vyyΤ;;X6ϝ; P(V"Hi`Df7pP?YE(q$odx$XOQQQ}%zؿche3d=&+  +A@4"jb"d38r"{`%od={ -,*.)-mkkQV6Ӱ P "VHiD`Df7pP?YEh&odѣrrrvS@ʹuh-#DÂ5GDJ#+&M6өÿ|GUdjK65d;vfg9/`斖iӦA6= R5X1N /+QAh&o1m۶IݼyOss=3䲹$qJ)HN̋+QAh&o1fS6755 l>p š" X "QC/&L7pѢ˸4d;yH:uK+6'%'_]*0ÅQepe/OH\5y%G%%\B6OyÔbJ11ennOh*.C$m^4'ɘ0vK|HH L&|N_5?>e3+_EE .{4nn7]׻4ٱjC;5cll+Bɛ/ٜWVVVZZZRb6wi22[/7*r_d=@XSĕxvVs8hu٫Dg@BPT Cq'#e;Qt=ƮnpKu5X1U6>UU35jTEU wʗ]f{ispi&[Se밙lE֘,D VL B6(z6mleLo j0a3ٚ$qk nE"a#[Pmby&dzL}&A #ۇ5){ ܐ٘F֠ K7 [@0LXʠGu$.m] ,R%FI؆Q2ߨɛ/ٜ/͟X74twu͝;wesQgۂOٜqrQ40DW{BNW,S9-1KW͍T(VBu#JT=zdwYۨJ3W6 5y%322:)0ZUeH_fU 5E\wJPvFi(b54C_%>$v'*tj]OFjpj !jb"l6Y j&MZVEʱlc8vi5KQ Vdd0&eö"Q3Ɠedž.ƄEy^m/Å@;=<<=Fea16];W{B8°5lVڹ_S\fvn&~i&Q ϡrŘQdsm $l@b6Mn3Pu`/v a4LEu/!#5$aR U !Sb‡l6`ش?+laߐ5ѥN=M9_l(?Kw.)r [a7J0hLhPWH.#1)-|XӈCaߟma;Ar5S sFl:PC!DeGLiwiYZ6qj{SƱmjK6kd… \6s@\Q+VHiD`ńOuvvNT槥r3?JI:+djlCZٜYQRa]6^ X "Q)w%.aJڼw;R~ GhXVBM qJ)HBё,aJJs Ċq!(ZgeBMb`,8Bĕ= R5X1lyܹ;0 K,"{PĒ͉aB`kVHiD`D{쩧VXZgi5٣+yK ٌ_@DJ#+&M6>(@Z0 K\p=J[f|  R'X1G#yM6Kl&aB"kSHi`Gd#yK, d3d.U,[ a~ģ1"xxeMԁf! .@6BV0+*JD0KA\?E R/ ٬ q aǿlKLK ;+ͺTf@6-l]lz @6hd3 d. q$8@ bG6gML1u;H@l d3ЂdsFFUzl_p!d3 ?e3K_"-Ztax٢"YBC38vbL#zz猍FknvB}#v9׽ <#HlS!G,u v\ O!8-?BF[RdCzB6@-Ռ9jșPgfp:v4$=l6O{XPdt+~Ee*qWSp5¿Qk*\looeĬa!e0,;MHAC6@)9iș< E˥QYlrDc&5qI^ւEvZ EiP{mS<t76F|-b?r[Olؘeco fiOuxQmG pf5F+Yv5pm{%- n)N ;F7Y PlNOO?x`[kkk[;::8`f~f B):dHBDhBϲLTEx{#<'Z1w:]RjrSC=t7VJTQ6k%b_rlFYlJޅۘvH pf5"2vA>\ ܷ2J2djlH1l.oqØF<""b+c,`A674ѫt___f&d3_Y$faT$MšCɒa+c$hJx·޹ ոd7؀ gJAh -6d`岉#}wb簡1^aAag=y"q5} T fT8:]}Ax lf)CM yeI;fffB6C62`YLTxP"uؖ؇evj!Mػ%ܚŘpoJbn`O+nmaFhߝae~$ \G)͘z̴>s55[Z}M 7g)G$Y Pl4!3o|f~f|'%S̛E/(ҘMx%!uA!fn~sa}@X :LDlQWpifnbظcچ$ NlҎ]Ʈ VS(emDܜ oqCLQuZx,`A6U+*WVWtuu͝;H [&bc(E?[܆6e7.@574;QC Zm< .GSbhY,<t7A#˞YxʖT4fM4D8Xڟ uc1OA"ƌ0JYjr\]ڸI޿Eh7njE3- nH5"Fμ+6K8 ǍGTo_Iiiśl'lΙN S,TmcXqa;sza߫n3~fV.Sc_l̈́uV,_-MrCVj>1HPL"KYj[$ FuP2BVc ‰f@0K8&{{{ 魤}ِ0D A(84ID0KA9E RGbcǎ%\TTTXhKJJf͜ f]@d3Hp &{zz k}m3gD~d. q$8@ bcƌ!ٜٳuƌ`lz @6hA̲9//o7vr.**nmm16@lJ[0BϿl,Ï)J`xaMds^^>)(.6 Y:;{׵W\^4x"Fx|NQ8D%m.SP} `%*?@URZZm 0lͩ}}}WVVuuuϝ; /k_r^x^x5L" {{{ϟ/7^H9==mm}}}B'Fc<(v7<ّ]tf*uc[y,'P@EwU +]#n`tʂ[ن%ɦb'r N+ W[!.v"g;,GD j"'60*}wxc؏S (=8Ip? = ׁ(F{3Gagm`}z"w'0821aٳfΜ.1cLb֬Ygϙ38<; 1ׅ/\2kA} cu:ctΜٳh:P2h쩂1@V'&X8oTxdDEBQpĉ ŌDtR !|СN.Aooo4HHaۡm}T/ -dnϕaBSM3xK7Xs *4$1L x "dݑ&FwcQCt{iES̘4;RF9æ=$fG#4VxƉ'DFQ;>X*q iN(@%>1Lu[% IDAT9?ts6A{[ю K`t5΀I3V,62.C@npw!b?O1>}:2F| 9>}nxG3H8-| (a/!0lȠSwzS8|Իޞ-S0W3 aʉe Azݟ7v_DyFμO:r.yRp&l!ick` nnc -hpEn+ӱҙcd-Mx #&H5^Ci&ܮ![Wr.Iva0,6npIxw,PFzD9GՁUtgWMvMMM,MrRLSP@zGՁw 6qrUE`^2 G((Gc|˗K.` и,:ghx#W+B-ʀr@y~yhM?uIE3xxXC@\"D\jو A"'O(R!G("KK )lBFł=6xc13YeSB g7Š@tvx[HtY;-Q"njrSD&"r QEH=rA^H9H'C SBy8x ̎w@#Zpx1n[v\WpoB W"dף@XNQbYsO` cv-3ɐ Md q쑎\rg(40f3ְv)IfV.d]G M19#"2$6Yb q'J`_/[dRD7@>1S\,sy6#KQrtM!|(D\'m9qH aoo)5G *!*CeC6qt9C!o 917C>2>b[DDDObDR+>=໯rvWX% ^d;oiW˄t$ɓI\ Og!FUfa]>bkS_% 1guo/=+ /,y:s<je9+<1 iJWeo;/.'<-6<s4DH"cBnH1#&NgC(9)\> ٚNTs0@# yC\.ⅸ9#n]>X[!%n{eȐBbvٳt9C C-QQ A"Ǐ y>a""|* y9|>♗x2IH}:EdiP,8q'B We!&BN-BN6B^;j& < ]DzҘHGsTL8/X3A۰oaH婠pr2PƂ'9\%$"R*#EKaf9 K3BntBKƚN|rr)"Ϗ5䔓3͚NTI0bDb^򊂸"cCz7&ry HE!/d5x)O<Ĕ)S;< qLd-d  w |`""|ו V U ^LM9"H>8ѐB^hWT^ |a쀭JGgOR>v$u8aȰ@_/<3Lx(dRwWxP^B!e&cЀ#:$y&.ωdEO>X ǚolrvY17d #2^ȣrD\^o /|[ooIyC" _B`@&)=ܯ~+R$322dz>J';Fxc708Z <}<3*h 0;|vg< "|Ao#|ـA@1 d3fxR,Y3ϐr4iM7D}@rW_f"c ը3IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_04.png0000644000000000000000000045456614741736366025233 0ustar00rootrootPNG  IHDRv <sRGBgAMA a pHYsttfxIDATx^`Uow]ˮgUq]l Zv׊".v"R절(  "Q@C%@ <;|ٙ3gNyy7!acƌO^.]m8s=|ꔅ3F"硸yOt$$!ѧntq/Bw Ra@-rh-rA.DBrX8auFJ94>!OB)(H2qRLPUyG EEA uTiO&r#@tѦMg}w4hѣCڵ_RR۰aot$rRP(r-):f ;Hx#|}| ͚5 ??8''g˖-iii7oضm[fffVV֎;K۷oGd[nō[B4p($"‘X۴i~ح9qΝ; `%E-(nذaݺuׯq@pc*H%A-l[aa!|,36̂Ȑǁ[P2 Ac6n܈Vmk׮YfIpjժ+V,1A:2 'nGQ)ǶYlt2 i.&j!L8Ut9!XjA]AT6]àS@l⌡ ކo942s:|~?h 2F&Åa$#$!0!fEEM o  p <tÞFC5 *YdDD\7'yeɦ<}F>`o #prdj Ν\-\-Xlri׀ټsk[ *@Nw7G aXx;;1 ƇP"Q6 )p lHA0L`8Ɛ0 <<2}#b&GࡿۨW) 5 i\$ЋܓfEƸP7ó𝞾7*bO_~Bv#Qla%^4~xx=~voGlfD޲-w9 #4h'LаaZj Saىy'r{(H&)7d4 SA8wL'fՋ\du I>rsL$k!MGdY%b Rd09 Jk22Xr9,h\d5̔UGh.܂;ٞC[E^F\肝&p>JBr"7"$6\7IIb a蔍!aC`&0Vx-A{ж@:Jbp9č40g~$7 F?^~7y,Ҡ(o-wM_}yWo̯??9ӧʯ_#?+yϋF|^0>pYfua73W\*ɡnݺ7N8K-YBA:]"ÆN]QΐvhQ搏(}G/>J7wyN9VZ?lm3ǛB GSJ ykqaqhuk%: ?%HJC]c-De # QWX&\+nr6aV_.n4} `aI$1堧-^2 'Ϛ5k̙0$d0fBیrW҈@M-max7 Glp8g F//g`=mȐ:Eg(C2kx髃! 92T䚏V Lr  (3KB`pʄc2"r>8s`-D C.LJt ILg%С/@RG '-V1#\pUyOr>IIOށ2?yg'O4 F5}J/f<]X)@ӋS~hLG,+l @N]% zZ#6"ytmr.G +5[&a Q`"K[$$i6og]l)5 <6H"T.2X`Hsˈw&4.} Vڀ;2k)@r(8\udH̓!3$6lpC LHrb50F"qœB CS`݉:ƊQƨL!H#qp@"N)i0^yT$|`> n6zk2X++~eU+^Ik]W6}%o-}{o̾=w饜0ӤrRᗐw{f3hۻdʖw_+^yu;~U:1yM֑'䀒Cl*n3s9e\̀b5HUq K<:ۇ}dCf.p|(mf֢i$Ǹ ETu c چHd@<2 21Zn|.. HR%,$ӳ\mUw\%d00vQYe=_b10 p&""yf@kI2ml=paEn}9643N 80/d54ò4Mp˶`GK _\poES9O9CM>#}@}0HncUB`ODu^hLBl&ނ/fxBcd,1hp`1C1C8lgϞ='`DHB{m=uY)}z,ceoviozq[/fvcqĝoj([k捗V7^ZK[&}sq@᥶ >~P K {?4>&;=p~wݡչNȅJlwo?ka# 1sfq.61`6<( ,poK>at,"XJViض*0@Q#JI hmF֋6S'?x10 2G>j4@p vK ]pb(7&( .H D#ʅAp1  c&n9̳yk "לuHk d!K@1r_8(|ǀ}жL[aCacˆ5]FrZQ$9oEC.;-Au+@f!Vᡳ%-L14ɽ wRdi E]T }OY/kt+6[[MӅ,lEJq04@F;;G>g 3VcY 1qtt<f <;I9=ßpC ?<<ՇϗE"JL-77$aقBc(Qa\$d0[ t\/0 :% T HÀm #3ěxmf%El k7g~JŠ/z5?}-o{9:O4Tooͫ>y㿟}mGF,xr*_<$%~[jdD8I<#U*Jɏi-sĸl+ q(ȅ(^P2Sԅ^hm2 ڃ[P;|Flag:ORR dqt܎b*< WH@̦ך9133˞1`~BH4mfo(kψm;a_q _&8}86Cwl"00;6xL" rsܰ҈Ia  3 p0813,*q)'Iu1`KZXO<\dJ`N%D?f-WXepp<f`@<) fאH$`-q"DA2E$#EfF_ofuKF [,Ka ,${#[bKkm0JfHw'l0IV`i|Pf2bg`/y "Ghn@䲜3O?z(Up T#9n0݅y;p O 'l "e`F&d7d }1)ɸ@ϔA Bǘ0V2@`mޫO(*{uvfLیLm, 0%>_I ;g qu{-PUڵkc>G'S0Y>`okۗ}_gO|=Ƿ錷x7y^ l7"RxxҘ\4 N;of}.ś[ p cs||kvzK *`bDlF8vkQ@l#gM⢌&=\X98%01ܹ2r~S6i)*BɶU\.Y0=xۃyt_YL8 h9cc, 3z0#a o6dlw/ᛄq4HU%pWo *6fP{/1D 008e):\8ySȹLӟ}d%  F+DX"e9 cTH XƎۨ2'a:. \CO.F q(HAEJ(HОrY:iK&*[{($6d9de407Z+BK̪YZ:`P680më7 l 1z#3NYc'|;:ۃ;2_T\;)@r/6( NXS6f_">F0h{"7l`Y&R`RL`u( 1"ql >nZyxl?ޱB'gt p#6sT<.|` r ʑpD)!M go1eqg=I̊^Ϭ JmCnim~[kݶ-h{d= ݶ[/A[me4l2tQ ^ӫ_}zUWzvygzvIg7ݰN-y0!VΙ G۳wu:e'7Gs_}SzQӨoyC`6r-# xrf.,>*30P25-=Pb]`KXU.< 5aht\eaͅ3K*഑Q׃91d11ܱr71U,xFhjS@  v3`Z6%8eD (h0}ޡ8a e voD39I"לq'1lUl~E!C8eA:N8+ q/Zw8pId< /1[LyϔܒӂSSWo @܎&OF?+vnuaER#!9 d`K5$Hj`zՀd8nDD` M]]bs:&Z(Ĺ fu6խ'^ Z7Ǔj|Ex2K;7;="ń;21zq}Q>j v}4 8apxHnRF )l< &pb ya FHh|$d>LD623>E  SL'H`4~O<~gEEKͯZB9Vy&-0(jQֆq#~x>;f>rǜwk}[rmi۶\ٮv-׵k]ˍZw)Hv#ҡZ5hryۖmq}^紾sV;gs#wk/!6cJ|nc\^z8{{קi⣦;\q?zG]?vq|esGF,\څuDvY/@9ʹykne9K"L_d.+,2 1s{3ݔ09 }pnf>"#n\enK֗L;ex6ҹ"sn+c&$4 lUޚa$$4$~-)] ]o_$0pp*y1/#2+x3KwYbpfe51 Dɨ@7֢h?tC4dzvwa1Y/bh k>=NXc4تذ݉ )R7e0ƀ#6".P>\BcJD<xet(d{@pljF>n600D+'&Jxʫ@"\Ը$)nrNwX Zrq \+܅.4Ocka"f%v"&+Z(fh Xm|x PCxՂH@> F!6p bڇ;[0 ,ybCm3`č(r+Gh6s;|@]bX$F[= D$%0qT0Z!e$0 ch^<CƐˆY"C{,L oؘn:WJπ9zC2<}?~-2ݻm=xKo=:6<=3v-5}Kpc^>| ݯhnEXt깯^s!1nls+="9׏hl.%%f*ٵ{=* 3%ڍ X>zyNSl4;qiYhsõoٴyDL^̯jDiǹp¢h-mgh`&"G02m U7vylYJ!uedž1@0MJap,2&2g-0th=F7(cGR~$f<5ebFID\Y}`D͔j&-ųͧr`WuUW5\Wouͼ_0 ^) /XSK@NWMM-k̼i?\` \`ћ\r#qpl]7m^yM7nڸ)9=#~ f}x݀v0/8,mҀבPl>Eqa6p)h%l7pl x@fgh0ZG`]ƻm ;a_ $0B:wxر8# 9Iev'f*a(,f #9~8+  DBv}ȹfqa:`6[p-s*sFeۆ> AlIBp30H#}K`y\.bNdÍҚPX&`ixI~퍬6]e-3^.m[ɹYx/@9.,Mb -h3iQwL !LY[ \>sK_ْ0E.?ύ,DlEt10<"1R-$n`H@3OcY 0hI5 u1th Ǧ2z#pq@05V#4p sTb}bf@6K2lbC 㮮WaL,U96ϸZg ~SƺM6OK߸ykZza}W.s}ֳ~՝g|㎺OG_z/;^1죛lW7̄l4r-\nQ : # _H19wCv;XEt4_(_"/.5hnk&Խ_{ MFobR2N,K%\Ml6sA>onTuWnU桫pf!y/\/[^+`|oh4"7 7k_7ͭm6M̝2wp37 M"6f㈊02=3g f0lfː 8?;b_&`n!28!'Ug k[¾̆ ܉1 uXe6pp܎wgσ^.ݜh-Zn֏}N 1hny x $- ܨzclH#Ix #fF2C"09С (㘔jATзl lagΜE͘,bg"j9-g@ۼj#n0jާS/y7\ pa ^o 4,yVxax/ZrE oh jxь/k0^<暋m< ѳg>xMnں6mkjڶu37oߘf]Wڃ8>;7luWEۅ5Nϙ'uk>?tqGnQ6W//hĪbN z9sI,MYY`NU~8IMhnF=b@+ꜫ眜 +Nf9\mlN-m!nm>yڳ0xu \u Xo6/^MVtQz5di6g֚n2o6E۪gK+\sF|56;NtMpwx@fQ= {B8!b2H"'X<]BpD!V_ Fyo`aGHrn$8au@{⁍'N48#0Π2aap₣\>X],T 9 5HRrP$ё| EȆ]!.&;HnI˩NdQ[ \0H" EKVQVk%Sj| r"7 < bXdH:˦ɲ@Mott|r ݆FnH#I`x" FAHh|hCp{x 4CSf7z C'!Ug7nZ`Q/?spm[p\^R]ٿhN{5kt H-ovf-իirLS&OnzŤ&Wo|ŷvqGʓp|zsJvؘU+vOS?9o5\i?o>녫/yCG1~ym^l^.YשɋӋrVIN %ᦡB́I&4;hWǛ9sjsNm7~ yxx4R<)߲w߾.@#x19|䈐9%*A6״B>NKqQX'6kϏ&W48~fF|C :EpgELgh3Ec=4 fF7AFR~=%- .'9_|ifΚ\K6m3R/(Lus]@^1vۮxvۮzu3n̻w_k{Mʽ׬^pi<¡w_|5sf]̸󺩷_ 'qä;nx aG#O!6ln|i;VyyIG]<ƌnHO|yZ|V=s~Lq}>Í3Ӳ 6exyG!4sT#gn5v"_06xJ8FVD8idsiǡ檟gҡśl ܊7aq=_$ڌާ0;r s*36{Lz}f[_[ 1` .M3E>#kbm=rl3-m÷EFSok=Ϝܳ3N6sK0;8"m r' ,>ACĀA f pmݴ{ /pgGA-mf7w!2,pΒjVŀ'fǂ"!p 1;N|pT Lr"7GA2Ub3R]p\=gIU9dȒajG/?rDj %p10rAf#28g :g k>Y 6w[ܚ 7hf>8.GvV"ᓑ=< XƓؐrIM#Il01b "@ G$. V(B=;YBB@XT\9l} KZd%h W -_0J^j~Rj%Vs. 9 WYn7gLn;oq@nVkS7>{Ik`6`6p4H٭oצق6?l飷xɊǚzɚ iQ B"P]6P6fn>S) c/_\|\ܢ=0ɥڔNKO8c߹‰j}oOo?gb_[<| I|Ǿ1MI5mv3g曇{YsQe~mc\-!&%Ҥ)6Nælk0cg,mm [AUg}m>}W릵\OVN`v;wpI춑fPJFEha1ۜm3m0t#;gD ^|q 22œ80"Ǎ`bG԰0.>8&ac\xBq)'rO9\du`]$.EJqBʪbx ksA8wL'iRDA2H@JdXIX L>fw*#p@Oa8.Sx9[YR}dq7q-1"vG_$ c m\4.&{3q4уm,00fy$$0r_c 2IF"m{L|(!: Pt HG^ $U<kIDFE `<L%受䃗]g'=xw~։hѢQG2jQƢE%bў]J\mc~6MLaJhwvxW/C׳x%"*FNpBK?o}4@`306ǃAQ Q GО=D3+]Yۆ<vub±Xc Ww/wxp`910E.x{҈1 /0# 0q?(҇(0D ĜJqb-ME&3 9,2D|df{Sk۲tYْr<%#ST-7^vrz>'q` v, ̒PUl0 1b A1RqC( )ѣn:0& S`HCam"! 8 p|p/@w}8BH;BtU$8\$0Vq"g`msbb]$F]g+HɮV'8Tl]R53R"Ɯusn'qU GMܰ=`&`np.v'NN`~g}1yp2Q8ڀ&q0Wr`@ AcNT>"Opcw.D)0~Æ/^2|{,'a*qVƼ7z/10S$CA2Cx.f+(҇().H1μWntp 2y P Ef3 9(!eRL [&(pG>Yt Xd ˦fMbvlx.y L#hf/'g%@8 =v(7 ZT `{6eFHh$j0gСja~vcQƨA7nC m"|LvLz[4 P%)‡%`.IaHx CeĿ6o_uDW) xZA{]p[yX 8$(Y\-2}070[87Q.Qit w`p3[Gi(hZ 3_翝GD]Aa{J PK8#v七cp$I"ik[G4 P4>$vŀSED"N8^)ΏVTby0M,2s MN1L01eщ_=Y X3ea 3{l{ Ϝ3j.\ruћ;+0b6< D$-C ܨ!e3'`$h^"ZLJa,?:vngyA>ιc]$a/]$0yG1i6(EFg$ApaذhH01# W|H ͉8Kk  ݑ%p*=aHsٍo'Ÿt=$"' d8E)#c!h4^P 5`7]#=hpvKf3Ng,o1搁evyW8 p!\E\ ۾+p`8^8ax ؝ؘcV\0<1!t &vIxy/`QRkl u\2󑉧<-܂lQP ?q# AʹsFrDwܹYɰHBq{@x HVFؐrA`0:f O14B!ph1+sA"sСp7zhy?fƋ=vA`d(ꜫ _( /Ͱ';y4g8rGa8N=`_p €DA+ /87MRTNX!K<̍B8 Zʁur踒$HDfQWNPZ qcH pc2qz.\L-އp=x, IXm6: \mð{d*3#F Ac(0ðtA< rOβbɼ-3@0 ) *6l?`wb) f  ഍3@l$kL$ku!ƄHt  }]8Sl"_u>2D8~dH79` Yh Xdrz`)5:gk&mW/9nǹsF څӓF FF"fIM@0m<͞@0%|> ӑ CKl=1zlĸFJ3ڌ<G#qG#G#|c=KrAcJiwZ8츅ш#b`upb{ޓ0) t"E\P(`.ARg=pYX`L1綜. }``/,:==Y' < lc>W n1a1l,m @ $pA]hmKX1|><TqY8;X^ -_ȱļ$o`J4xW8fE5FL7#3Htp3ˀ㹼x`rA6PZ|HUib|fsD)ˇr:+43$T~Nϝ"CGP!'CЇ3jp?,+-T$lj  8Z l-][|)rـP ef_)P{)},sc# L3O7`$D 1zlƧ;aad8U A㩅eA`Lw@zcpXǀKHk㜥Wa$"a0bq"QC*o4ł'2ג]tY:CLr@Th<"YKA/&Ķl2b dSu$ GR+ ĖaLi0C"\.ei9+6"X-kDD {A~s;<Dcqd°3y*U Ufcާ͌a`8#нDÌ ,baV 6/N"N 4xo%ap9C.ɈRࠍ峲1`iD*䋂cAJTGI rshQ)W µijJL lp:ǀE*َ<0d2}h.,8 2Y `Օ؀ZVs7npS ܃6$>S`d3#xi KvAuac8YaHBaa@‘x,s9zgG+Ȁ\ȉ~1Ҁ'Sih Vlx0d" :H: e|#5/@39C8an/-g/[[i Iw=6n c%'`7C x }x(|.BrH<KIY $ayAŷD*`|cq4̠Y 0ÌRX{48D {ב3 a^"#!9<;+ a>q"If RGSaRiD ^8NN Gf}.2D|d\ Wfb+y;2X?fXf1YteY}&s&Gq Љ$9g.\r̢h-0#{Yi'#alRSe`4tyl iqCHW&6Dhpc$.2&" 㙢1Zk1z ߉a#XDF# hh|c23#;g P8H1l[DW808H|gD' DxpJ>E蕹;)G#-sdͨ>c<>`iWKe:0L@Ft(rW⼋L%B.>b`ƶe`GbfVrC.$- rlrE 60A&y[HqVa)'^ CHT TÑLё RAV%@/EꎴȌ Cf]$d~*?KdDGHȠ4HOLfYBeˇ,>YT(?C噕.5 )ԇuށ #!~YY"dII$4 VʏD0 < B gYi(HQ&Vs|H |"vГMfY1tCi߾c=]vm۶mivB& %t0y~/\5[>/_>0oؿϒ"sn.JRT*JRN\ʶt 8ضmw '<.Op OsՉy߾}ot}~=j!2/]##=,Sݗ1gPzJNhb,-sB 1.𻗼3y$WQd*K6;1C"G|r;edd<^_BVJRT*J:nh8-λ w6Wv\Ndg.egQQO<B M|ݴO}~[MaN:~媄w&<12/[#3^: M.2In\f^ M?Wu/@;M fb\rZ$V\y1RNdP؈h=7R/}M7Ire>Yn㍜vT*JRTCT8 { f@.(=w6޽eAlsbb"Nrrr1z_3rܚL@!alXMNU*JRT*!)XӴ2 rZ\mwϚ_;ƥm Tl۬۬RT*JRTU'|fءn۲m5Ӗ7mc_a3wכ{/n9ի3ݰa3V,ܼ9=PH eedmݼ53=sefdfl% [Jjر&MJva@"6l~n-fJRT*JN=S{k,4e y㺍KL7ic;qa!x5׍\;cCg}c,Y2PN4[nࡽ{nw;ws5az68Ι?o9z荩U6\qvvvz(H!UkU*JRT*JUm[8~\2O}+,YaSVFVղՏL|Ao`3Soش)'fL7!!m...tر~^xק~&11>L[(b+jmVT*JRTTlGm>Ozú.ݚ03?8!ev д]qf/X'qG6לm8U%,T*JRT*g]-["f!KilXoƨ{}N|_ڸ.'*`~oٸ%P`4c c21p΁[ʔnJRT*JRUͥRVFVfz [V-_5wּ?H]-ӗ|ޗ &%M(_mǏO2ǮmpȯGn۲-Pf=7 -tfJRT*JRU!lsvҷm޸%u% ͚1o8w{+O=^-L$7@;`3⵲67klܸqY}ƌ3l0ZXN:3_׏}>PfB(V Sn)S*JRT*JUn۲-cSƦ֯]fuꕩSV͟g;aР}{:?í[y^~eyٛv]sȜMx*Dz7Q6{챧~5j0[nkq҅KeƯpj?m.׳PT*JRT*U|NW~^eO,~чuޫUeqT6W[.Y$Pf6lXrrrzzzj)))90lX9̳nJRT*JRU6ǣM[WX6uղU3gv/6{C1*oZ֍\+{/, E}YN͢wN.J:9g;g*6x^;2JjI; 8 z`?x<~7_~̭[>J~PT*JRT*U f6Vw-i[fΘ3j7}>ɻ̟i9f;W [o=7<̟ |l?dɡII!>6lXp6T*JRT*Uu ls~v /'mZ0./et<93'у>Xf}زϾ;7M>m޽7p'=oN[Ϥ/6K̸7PZD6T*JRT*Uu ]ߧݼqc^|F|sl]Cgfٽ޷|=N)&mٸ%P`lY\1kǎۡu5kըQPUD*;6)qzfHYRT*JRSPfz揓ΛMltOIZ/6cv'}o7_EsX=} r߽-_ȏoڸΘt޼KRRWݴ~Ӷ-Kpڳ;jl4M2Z6T*JRT*Uu\٣ egn^~0ƴIY&y]<UwU*JRT*:m*VY۶lbKYRT*JRSqR*ͪJJYRT*JRSO=l3K6˕fUJYRT*JRޗ pY?m>x6T*JRT*ՓO>{P`aj*mVT*JRT*"m63gV|ImJRT*JRP[`l 3 RT*JRT*aΝ;'191KrE?mVTR~R*JRT:uT\\6mVTT6T*J:ԱcG3ٳgo:uYTRYR:ZYu(0T*JRyΝs޳gfJ:#M6shA)'jU*JG6;fJ:thf7CKfI:,P۬RT*Ufe<%6mVTWjjU*JI0e*//f9OOT*AC6M wmƁ$_RT**\I~fJ:thfjСk%@mJRTqs.Ͱ޿0EŰjU* T9m$]j9ݿ<\p245µ͒tXYRT8 \Rnٺccf*JuB1b}7l;Vy'#'oFS!wy k$=.T犹pQr L!)8 l|8pX Rt:د@RT*J.X`tą>0˰,mVTM¥瞇fM)IM͊9=.Lsde sCȗpH4fjYkzi斣ʘl{^N*JR)~,7l/pmVTPͫ3l\M͌=,'.ޅ ϖPp S2=K}p 0sY!M/M0wl?m)gԮqw mVT**N6oh a7yyPlsΝT*Ul1μ/d126^&uP$9S K777g EfHRx-l_N r;dӥ{61jۣ^H*JRem6'&&_;ǩrsrr;v(ERTRjRv?_ݼ;iMƅfJR*DElcԩgϞ۷oܖYPPо}@)*JG̭iF]c8皧Ԥ¶GN"xb)h+=m4uEքħ`S(d9ȴ[KOm3$lPMHS165,!n $JRTԩsqqqng|;fN޽ny۶m[n3tIv҅fv U$6T*J:tPXXdefeff62's9%%%oHMM]zUWZ}|(PJHQD`% )55mɮn-7]q0Q1?!jU*JS۷ 2 [lٵk,sYgU\\ r o]t̬ PJRT5ߕi~n3-ۼ$m3$R4Nqr~JRTpkhnnMbmXf9vEEE˖-[dɢE.Xml@)*J*SGqD3k9gc6Sm^|HfI}$4FN~B6T*JڴiaÆ7lcYUVB3,,,a^`A'''oݺVT*L#jRSY~fی"//tX~JRTp=HpyZjՊ)0gyF™6/H^MEW۴ٹsZKګS-[dmsZyj<%eʕvvJR~BmVEQ۬(JeWm۶mNM]r)˖,Y,_Ү]vqq*իW{:5uΝ9mڶ T*꧕fEQ\h͊T~裏R׮]re˖q g}vII柧HKK۔c^T*J`cǎ}ZHP>jIf4J"jE }0›6nXa8gw9]vmْᳵ;^T*J*6oڴiԩr1zzw@NUI'j]5W'T:HfEW[l޴ yŵkN8vޝUw=DJR~Zf oڵ{>@?}jN:Y]Ts調:REA T?]vZ^{;wܻw\j¾_=۶nHO߲NSΞ={vdzKݱSJR~Z惄-Z|xO]v Yr%~KYtUsuIU`[ڿX:X {~m?MNiZQ6+O}رcaa333aAzz: ۜyB^qqIΝk*Jiu0QF-X @u+5kQEI'xzWySbFkoꄢk%7}|Pr '^G~޹w)sjηd=o~phsN<\rW͊Sa߯:uTTT:oߞ{;/!11q޽y()mx]ST*Op| иq.]}c^MX1IrR9Ptݻ֦mJJcbYN:T dz o3\ 7,[_̻&>&7T,K|y'/~u֋Em/gwmhAߜvtfE9tW;w...ޙYg={ԩSGls~~]]mVTKUvX1`&LrJ1zؚq->~ֺ%T Ptݻ;%I1g'T|ɑ0Zq.% 禯-S<<|PR8϶m犩Sܟ 7 fjB׵Vv>c>ݻw Bmرc'M0ÀD0l0;waa6kfJ:n+¾}/ܳl-E*'QvZ1ztxfoJEne[$UXܒqƇ/sħoH.܈Y)bF˵[Μ5{˖-[zu-^2}ƌoƏnUkܧO#G,0lǾru6YRB ߮3լ:_ySjh.X(9|3x(jFvo6l0;́}͟57Nz/ƕuI'#+xQG? Z>[>Zm\&ݦrC,'>'ul\g9NFbgI>G97ݕ0 9N/U%'YBV l;320R,_WQqsn#Aym38k,&ƠbqȈ#u5OooR\0g?e8gogԜ>6myR!6+JK{P/i\b 3rbb]kmVTQټ>oMz7ڞM+Oߜni,ylϼyK%W3 !QmcʨNzT%Dvv6ի'UAu:q`㓇sn, *eҶg^8> ?S#|aʷRNF'i;ۼo5o~6{0\;"'}-i3nݘyҫHлweЮ]O\6oݖvz|9YHP۬(0c c21pΒ5n\یlT6`a=ۼo߾b"ݻ|JRUާsx*PiH<{RNF`iu]f?֑E}?(EŌnlq/_I~H_<}ђ(ú.C #vc2QVL}[N*]R7~x\MWHN|n¿tPluH;.ۜw#=K!EŌָN?ڼqأ_`R:ukv§ b_ >rG<_o4ᕱpʢW^恔ҬY3)%úu|Yf';k׎5鯿'M?b3Ǭ['eF% dIB/''Y_W۬(= .LaÆIָqm].az)U)lq?Gرm۰0ɇPUJC(p"pیKIY9jݖm 2~؜?jCgkG?,3ψ䴔♇;"rYlY5b kʬ.`Ǎp뭷w}L322$V'D6ٳ󩧞;,O>8@2qؽ;m)Snra{mofl-xfw9ط/NYr7]O5c)?N]vmigϝצm{[ǝwhy;t=Zn۱S_5gnelsň*LyX ȹ1 W]uLިlSy睇7n `buisɉmDuI'#{.(ʆm_ݷN]) PͶ_Q;C6c%0Zf=({APފq}Tק_{-6[-\$B98xȑXg֭`̙(d x 5{?0eJ5$gJEmðaÒSHIIρaʱl32)**mee)lbb?G-:SՠLUnguʊM6fY #of9P0t]Է?:t,Ι'\Ķ^.l߿\cgʕ+_'OFC=_yNF"`/_Fv04rW㸒{Ƿx|x%;70h /'.]QͶ9w]|8ؗSaeR1m}JGy? 6/;1`頵q{eɉΘ sε /}h ~bG5y7ުJYQbݪ_~Zw;v,2sΩIZ6jyWn:OcfPm{ہ EQ-sTΝe%"I1 r(WXO̓Դ:ewĭ"ܼEsemޜ23/9#oƖ7yۍK^} =$ u~+>7}\^eVag𱨱~x'q˖-w!9BI'#l(䢋.S,<38Gu駟;}O}uA6m)2dHӦM;tZG5k>FD`{ 6~9mrN:X?#S6UE=ݰQNg8(t.|cS1U8kV_5U={v3<;Gc#O.[0׫{iuwhqۭM5 o;χmao;vx]wy.l [ی'.j%IIw޵5\ݻ5w֭;4hpe͚jԨ ᄐ<'>b[ߓO>#/%%E.GZ2h/ N: ?֭.°I'#l,?8?Ě 懦m/qZv_WH:t(R_9] -ݼV6iZgܓP ^<7eeHY[t2mm20U4M+oe˖O2)-1^st '}=|UMxiڹV BɰF/xT^3·}zuw6,zj=}|w>x'~үpҿیv_==0Zjܸqm۶=ӎ6\wuO=sfaq/l3˩B6+J49sjJ*6tJNIINm۶իW<ƄQF811^2E\28l8`6lؐ5/Y|\N:BbƍzVZ <+ eРA P/6`ؽ;6ilS6>.\nJÈARRsۻ߼25A)`NF`5k2~+L\?KV lK7){O޿wwɼ_\?`HB ɋ.7?9/6CqӥKUۼdɒO>k]6?j„ v饗9-ܮ]?[nVUmV<0;=[#?ZG??{wM{E5>hgl368EQʃ%?ǼLzy(2Hؠ~-Z6j]YZGs1WƧY>YPKtVPm./>tɒ;veo[*"s欓ᶷ5m6ac~[KT"ZpZ.iӦLb N3"zY]4 >SV"IQI'+ի̙3}tؤؽfI~GyÆ U/m۶c}2'X[| %- +yju6P яZeI'#67}YIyKr[ekʳ7mSEig^n@"m3f ~z88^p{7o1тm^z/J=k⯛-δ9ڵۜylU1یM]U%:?Ĕ1%9գG8^z3f̬Yn7ި?͊aI*qb]q޵CWfUiq$Q]8N9 >#](ꤓX3mMnަ}ѣ4oϾr-{GDӚ5kqZBw}wg --{8`N`{;X>A}4$'>'ul\g9 V'D6rN\ #Ze]oK9 Ny?>5tWw>x/Um8rۼgiJvMGiK.CC:m3do46R.}ݳ2=EI'pmWayRۜ७K.|#̴}sVҫLwc s[iboDd1 fl9p k.'V:!V55ŀ̛>o@F5 5OٲEKK$p(uS<};eq?\Bs LUn0"{7'NANv _>d"g6"#ѬWڎ;v$_]ϓs^ѪİÇǒ[tg=I+Fy#22~/ĆmRCޝ5m&O?i?gEsuQ8=>.vum&lsP*DNFm:t7|3}tGͻ4ig]?z٢0Zq.yx_n}v~Ďľ{qW]s6»ݻ7r3s=p<~ ؟|?|UW#FHYUfEl癇u ~R%A iFRPtf:guٳg2߈+))ܹ35,+k]7Oۼy݄%IݼQNk!>MlC2K^M RŤnq٭ȔSZ~M0Xu(3sx{"(3%.%0D~zf{# y$w$)55mɮnU? F$w(qVqڵX?O]a=~iǏV8q(6Wx`gVR=|=hHIO[Wo(*ϓ[ܝ-Zʂ/㗽)[ױc*nV'u/?m]817-\!wmg7ؽm~`f%0pB\SLanђw06ꤓ8mseؓ.Gp@ {t6߻7ڛ/2KЖ^'_?~1ݺP.Rhd(y"{|~I`Ux3z;yG׭[|r0;v„ ͛7?@u P۬(IJ6,obqnh lva%뮓 m%;+e;vĺ!NKJH$ព&oO-ņՈK=W-W0G~gm_^p˾YO[[nnoٌ6 r-?ZFWVsv?gvHP⩂.Mls*ۜsSS ׬U2n$EbҔۯi"7.ZQ kyn y+7eZ^]jA|}q».㼬ՒJޝ=)'ezjoq?>9Vݎlh}wSA[{:8;wdI'#q}w޷k$6}߹~W{z]Ak>}ұmeްn|oڰjk]^zg϶_իo1zyM2zɭZR۬( l9''Kz'`[w8h6ls=):n)$sQAm?%{^y!4h2#soQr5s#`5k6)xS]Uĵ=\Ϟ=az뭏>Dcƌ6mڢEϟߣG͊R$%y Kl~A$eLb3 ό{l3fs9׶Y23񞊗pebĄĮc/=هMfƱ)*{J#^?p/)+sx{p4%bˆ/F>Hyذ|u]+ΈUTtyJ韈pqHP"1 .OVPmƫaޒz.e}aӁ^tG0"Z/lk:[|pzŨny>rꤓQg)3}l\/6 G?=y5BLrrr`!.bu[]:7FZ35H<T3~WN :d$tMturnؽoOEwϓY `* 0r۽1}֧>{#FoeT1\1w^w_ᅦgӧO^`?|=`ʔ)(jƌk ,O>A1P۬(;vlj֬UFMCZVP#ؤAOngk[ [3AAA>6?n-M6grNpۭ1(dJ`@C/QKZ azK˒Knnl%ِEQV`I!3oo[nm|ΌE27ܵb*xrO< l+DqJ4lذUV{.އ9看/}fX觞zo߾_9s,XW_ifɒ%RJYQb0lذ-[]Jܱgg`|G}WOPP"fך? eb׮][۶m6.9|囔a ?B0`.bKDf{^$BqV7K'23'=8ɦ(Jk*'`\7dL3?5 aUa #*oi'p$E­"6{+O WzŮnŶ4~%IV'..;wY#>yGlrǔW%Em>ȩZw˜l~'w6,?/7իV4)%^wyy+[g~?SN9o7t=܃UZj6+J#sGRÈ6uY͛CצukaAYZ4Nqr( ˆ٭oOIU}=X!x< hD$G$B BQFlM[E@ᶹbXĶ^U^eViG"WʋN:Y]Y/k2$ŨdܼmY!>ɉ&򍜄bN*UDhU~Aؗr E=kƖg'qԧOoqO;t}W_=餓M#F4jhݺ_"Z6+ʁyy$"fKm޴ >xoj:$N1r(J6g>aaapJÜkzuJH{ZYJ}$5:Wq1_[o#Qp(6հoUBlUUXUfu[lA`NV{wcŮI'*"`dAK:T&YYqn׮O<磏>zΝLrFF俉XUmV( \bt>m~سU4I8h9QpK !~SO+|M<$w$-VE)o0ϧv3]\[E@ oƍKKKC塮jN:Y] Y9;ŮI'*B8Er-oa>MEpm={"泍mbm>i̧;vܸqcVVEQJK ؿVj"6=}燊uu uUsuꢚ{WI'*B9RTU; *R۬(-YQmS޽{rK+..~'k*JUU:~ " .xRT*JRU^xhAmNLLm.L:u T*U/NUOEQEQm޽{7m3(uق]t T*꧕fEQEQ%6963Cm?+^OU*`V*.늢((J`߯\ cfdm?6T_jEQEQhD-W/il**0kdREQEQ~6/i/':vz?CgC**~V˲((󀓚xRET"Ҏ `4i{(Q@Q+J/{(\{y6ͦ^nw|?#3LI$3L e3 \lYfZyM|||߾}5>|"("l20 0L !Uʙdsҥu Dz%=l!䃣n 0 0i<2TɒHznݺ9j|g#@@Q[$qpmaa& WF6(Q%.\Ν;lqǰjBld~PR#j8p0[fa 2ѷВ`vq ܩS'gб :.d,dm7mw*)Ew,Um_ЩJ `DmU20 0 c<6m,lر)6HZcallv[֒ɸ].\]n*QEV% 8p`|-3 0 0&+)\/i'&^rYf_Vd$q;+d. Mi"USˉʭf٭*FreNL4G))qjmt0Ь+GdXe3~n 0 0JJkJ0zxh>%K7k\!huEEWfʛHXFN#jt HA 7V[nQfJ2GU+ \TU?eaay|C6h&7~-@%^BJ.Q!n݆BqK6k#pUkVUdY~9UΠ̩wNE9h\1K D(U#)J**cƢ*Imaa1B_eb[' }M%^I*e[aU+#'#=no!4A ['^9=0LQfJ2ǫV5lRM{Ucuá!%eaay|%d=dsr!l0`@g^sb2^%k#pUf4 + 25l ʜZ{y= 5E))UC%D8Rv[faa+ll._|SvQQQFUV޼yRJ#h3glҤIѢE3dOR>&Lx7 ,ǁ(U _}{ [nM XF%l#e30La( /_)0oyM6/%KD "-/Ȝ9sܹSZ5#F,2eJڵG)M=̙Zd;?}?VZf͚_rxK/A]hѢpVdsb*TжmGyĊlΞ={ժU;wse3J6+.F:fae3Ä+VȐ!|8sٲe)nݺtiԬYll޾}; V^M}n0~XaE6P, Cbܸqhד/,/Y,X63ft 0f trرcСU˗/ HQf#+V C,%KB#rʞ=kvI,a /ٲeVʕ+iÇ6m'O̙3Cl2>>^) ivgy5i:|p0QuUVo>wܨ9zF=ׯ+W.k֬ŋG(q\R%UmٲeɒPBzǏGC.\ǐG1pޱĢl(eX63fbt 0f  ,x=tܙR@h)esdd$d%^ԩS2e*Z?|D ۶m[ӧCüyO?eȐAχڄPegϞ9r_5-Ҹq[n]r?F_|xi)i-LCF"LeSO=m y駟͚5P¨Q   } J{'J*믿.^J*h>zpjhyƊK.E2eW6m*6¨ܹsh#GMTu޽dòa=,@:fae3Ä f͂ʗ/۷) һv %;v7޸wAR[([裏jjݺubd'%mܸ)P@*%:~e˖\0_xᅜ9s IB%mH;$B`-SܣGaU|d'%+W* /Ps +y%wA)RO>d2ljX63L`²a&`0FSfлwoC\[LU$$$@ 7pdHȑ#d\r)?^u@,a6r"]f;fq+V߿Umž6o߾3g.]M޼ PJ+pBxb%4esbիGFRҪUczfO.\8>>^JrݩS'2/hWϜ9͜?~䦰lfeͰHCĀ/Naˆ# Dũ^Vi&@<%JX5G~+LD?=k0&>fJs9**biH f;fqМg:t Um@ #],d ի˗{T2eʔ;w b˗l2gΜٲeWVٙ;wnqh-ږtСF=C3g.P+?8qSO=C@Hє ёٌf.xW!z徸yfvɓ={g}v0[U@rXoPAWWB/ M}E%h:ȣD"=0/foXN tbH2a0L-Ja=TYĕl 洄es²ae30uTYғeYItٳHCĀ/6lf&m`0 cdHYY6{ò9]`ٜ|][a0 0 h,Aty O҅oP:1 `ٜJlfa 4|9dsb❸,`L'C7{(—."aa&H?Gv(Rs%-T p?#w09b0VG(ye઼M]c{kvԡ.wa S652THd4 mes 0 0Ff1įR 3AGWCE6:/]6\$Auϒ)P6; , ?}1 0 :UmVU#T\B]1KNkI2F$B1%$3YYcs vo NTBK6ȣ2mĎ1*޲9fr]:<7IzPY Q ,3grj:uj֬Y9v6TagC8k1~l4 jJ.$]<* hSTy$IVb$rHnQLJMK8)CwQLD).OER6kPwIMZ3w i ]'lU2QD!88j3D/,S/l"0tN5ÿd. ;8YSO/HwLϸ'T\TMuPh ! AFya;YteVJ)#kr#$Rr;$]]1ϣV0"6w2L5tCRfe+iw 5Tyh3esAfq UP9Κzʲ:JuH(MɂG!<]Aj,fC1Qd%2/5rڣ[v:-GcjPC\-,͊E_ #rijWř ͩX6,m9v6TagC8k)f nl7jt_z?XP֔1my<{5t:(>Qk,X ƏEg:_Qm`K`Dlx P U㬩,.Vtd1rXґ(RbbpCs?.JHFUUTϽibCձ]D 5:v?mq#*b %9]{ KډvWTmۃ^{GZ J'C E2E6EGɐ|z9P9:g:_Qm`K`Dlx P U㬩,.Vtl$S&S;* rPtb_Qm`K`L:5<$fHO6{vL;w:} J'&Afq UP9ΚzClVtds\|Bԭ4 wD:㄃rfCj[ e8SΆ*lgM=͑#fHgC%uD!=N "Ml ,ͶO;s5c٬ 0,ͶO;s5رc,I +@m91AgS, I2tbPr'`Dlx P U㬱k׮eLbXmcaaDlx P U㬱+f βa&`Dlx P U㬱ylX6@:faesv)`gCv6Tqƞѣ`,U e30L9`l; ;8YcO+U[olVt 0i`ԩ fl/ ;8YcO^zlVt 0i 6ێs<lΆ*qӻws=Gf٬!&wD'WxLoL3:.vEw(Z:0I u\>{Kr{$Kf4ؔ"tj8Afq UP9x~z}iP8G6 SmD=yijut8]KV&mYX6*qE jjMSaTlx P U㬁/TP,0ןq! =7FВYVr)ʽVXz]ȩ.{zrL%򓋴 weNr㮼"zЫ ðl*X6ێs<lΆ*q&MԪUe3aHgٜbP[)K:hJjhɹ#Y.R%je(,e\;$%EuTQGW^U܅;Srft2%0 栂e8SΆ*lg tE;%m[G[aLlx P U㬁2df βKz% 5Fp,u)=&+2)VMt2W!yt ((6<\-eTBU!zO]sςSQMò9`l; ;8Y=O4ړ&MbLbXY6' "FЌ[S%b.٬U'3JS8 +y;!D|pW թ\}u5= 5a e8SΆ*lg<}7qD$ esʀX#a% !+;\N(3"^mbY'\Y 4Se;zg5eɪ:;0΄esv)`gCv6Tqz9z7odLbXC]6~SeH!(MD80]P 'jv@ܮmɛ\ؔ[/TdF9]O=2kģ|LU;h'e'vtgQLJ*)G& ò9`l; ;8Y=Osʅ_=DX6VБ͒NS"IfΐZǬVCqny\TG8X&J+rkwUFRT4U;8TbzS Ѫ ðl&X6ێs<lΆ*qVS1nEe3aH 0 e8SΆ*lg<͙3|f βa&`L:5<V UP U㬷e˖L"(esɓ ?C4Ao81ť .E&`Dlx P U㬷gϞݒ%Kɲİl>vXbb"38H" l"X6ێs<lΆ*qݻwn۶mdLbXғe]JtsСCQ6s!Ԇesv)`gCv6TqޞXw'l&9 ,!6x:Mc&Dz9UaDlx P U㬷fKpTӶ^RDe%(zVʣU.T[k*+cٜl"X6ێs<lΆ*qƍתU |wލfM@yРA(oGGܺJ =mCK6Fpfgy ̀Wx[j lplNUX6,m9v6TagC8iҥ;wLf\l;wDEEݺu6q y%Q $<2<&'Hh @¨ZO/ǖKQ%BNuӳFe*Q\dqÍYS#Fcٜl"X6ێs<lΆ*qٳgdl6eʔILLzk׮۷o8xK&@B4ʨ]EHQ0b/UVfA>RV̵Cr.XRTL%l@YCCɞX6*,ͶO;sUy:zhM>]e3ieHwRJ%$$={Νws^zl9U 5`טqEU. :Q5\2Iښkr^!jVf˛{ ӻcTNDLL%Zxڃ (9aٜڰl"X6ێs<lΆ*qV$VX6[%JXȑ#.?~ĉ'Oy{n%ccco!?A7n\GҠݍȧJ6Ǝ+{sXet:]Uҫ Rwyho5x'PW5Dz9UaDlx P USN KHH&`LZY]x111w޳w}8pk׮u9d3C/poP29|ŵ Ǒ Q5H*R"9sf:Q"Y;JNe*(>ԅRFr X6*,ͶO;sUzz 2(5ͤ %-e˖[;vڵʕ+;vL/ٌ\*U,=f28( Ŷ-ҴfpyYbύNSEdNˍ2#Fv{&6sfh&چgyV'0TesP0u… lx P US K7k,Ids"En߾n 6lܸi-ϗ.]СCzf\)կdɐ~#ů!#Š48=mWC2'vmKĦtz"(66 <3kģFbQ(ÏT4p+ .=ͩ " >RِDx-[6 8\64(111Γw/_^C62e30l"X6ێs<lg:JժU)5 IB6S' o@6+W-=alesv)`gC8pBUx5k0ܳ!e y|կ_ܹslٲo!IMK@d` 0²9`l;JJ9s&*3g:u*0ܳ!e y|էO˞$&&)SƵ4-<&66Re30l"X6ێs<lg!3eʄH|F!ِDx )HI8\6֭[p_IBBBҥ |/\8s}v޽Y63  ?,9v6TIcƌɝ;7"pφ$֭d{f?<޽{ddd'J ЧN:y DlfAfq URСC|ID$̲9pSNd{pܵk7nw#1dsɒ%_\\Ç:tPk׮w҅e30l"X6ێs<lg;vXBD^|ÉC]n'%yY)Al.QDll}ٳknD\ke30l"X6ێs<lg|ͺu"W_s=Kܳ!~ׄl>{ݻt},]Txnulԩӕ+Wٻkn{%Jз%m HHHm30l"X6ێs<lⷳ͛7QYfM2_-@nuln۶ 6nܴy1ŋ'|5͐c0 c#,ͶO;lݺu|M2zQti2$62eDvp"d[VV-[={vU+V\bժf۷-Z*ALLL߾}X63  e8SΆ*~;>xTܳʵϜ9#hew:uj%-K.[|Eԭ[E +S49֭[zd0 c#,ͶO;lJ:t@FR҄ gNF Xt)F$ݽ{$6]4h@$.|7d[.4irĉ?X?_]9**paKNHH8{V^5ѶݻlfAfq UvTR={$#)i̙ȓMfPκuȶ'… ѰN:Ġc޽Ȗ0Vƍ8~(gl^hђ%J |ԩ'# 7uʲaFX6,m9v6TB 4s5iӦ(gڴidۊ{v֬YhϿH :8x p Rң%K=68yıcǎ8r.]lfAfq UvGp/ tYSKlNiӦeȐ-ܲeg}V$˗/%IvesӦM]bU+VXm.]dsɓŲ·>tk]:wf0 c#,ͶO;,W֬Y'L@vRq9|0~1l0*$[qrB-ȑ;E.]ĹAnulnѼ3gV^f͚`ݺuLis͸zI\c0 c7,ͶO;+Wp?7oII;wD %/ɃB/_Tpr֫WRJ[ol7p?~[lٺm6}{tn%Ǐ6>|_fAfq Us㸟d8^~=~#G-[6 D䞭RJvɟ??=(҃Ttڕl7pܡC+Wݻw߾}q%J+S%O>RǏ;v7nt֍e30l"X6ێs<l⟳~yfΜ9e˖3fD!N:jN٧~zm-[Dz!jzjݘves׮] O8~䉓 !">>TRepskSNI PEуe30l"X6ێs<l⟳[ndϞ=d'%]z) , /PpjԨA͚5رcѼ+WAtvh|nڭ={uֹs#As.S:lٲW\|/FGGݛe30l"X6ێs<l⟳k׮ѣd'% &/WB1TplnܸM*6GEE!O?I;w_~% LᲹo߾l2dfaaDlx P?g'x 7 @:sYܣ.]/ܰaCn#Y4,cǎT.(1VC6PrݡClfAfq Us_~ޏ/ާO2|Gmܸ ԭ[Wۈc{@JNxV{lfAfq Us[n3]WPSNdXj޽7oޜJ!JgիנA&Nx} @ܨY&ٞveLڸhYY63 e8SΆ*9ۮ]*UBe˖dΪUp@K.ʕ6؞}饗5j$w}p";1b*}Zmݺ՜W^%J w.?ivlP ;{1q҆s\x1ف nul? ..[\K6HNtffa{aDlx Y?Y&.:\'J*uЁ 7C-X ӷoŋ9sn7o]ճAx%{ԨQ!)֭[H={6ف2|eô[Y6'܈ PJLi X63 e8S@g tmJ iYfx׳Kѣn C(?n/^]84ƿbSN 2L6{E´[Y6%\y[_ 0 e8S@gegQ_͛zH" #G2|nݺX&p?@c^|6H<~)͓O>9tP20V&\~[oY63 ä,ͶOl$/)S&J < 6 7_u 0&Gzmtv]84ƿgFc޺u6H ##CU'N4lvesbb/_ ed/i3 ä6,ͶOl>R}5 ۷R ?zjx7ߐf…Htپpy_Tj6mڐa<ȑ#',*Pʕ+WpVu0V=Fފ9UeHHesR$e30Ͱl"X6ێs<tVf^9yf̘믿޻w/ʁx =~',YLDD]bII/rFȰ wȐ!i=/il8{Ueٌ,aRAfq ߳Sp1>gΜǏ#ӆÏypl7b(9|0]nIIofݺuɰ wfĉ8TZnsd`ڭ,d3DmСCY63  e8S@gl>}4ʕ+;4sYx1m0K.?l7pl_سgݺu+II-ZQ6v{3f<<1V&9h 0²9`l;8ա0$IHHuE9TYhv?QNvPѳOG6l@Cf LvRRv*WLMirdg[jRstt4ف' [ney+?הAmᖧlfAfq =z4(G._ gB5kF>`~XD#G# ՂL~&GDDԵk2eʐaAt xMh] z`޽dcڭ,ues޽@M9h 06²9`l;l|~'Jٳgc[n';=qGϊmF;v }׮]dœ9s7NJӧObȰ :SlZyJu|r4wA@\\%cڭ=z UrQQ" `0 c#,ͶOA9{iֽ{wJ[۷zR}d̙=!!q:~Ə/T{?Us{i+̘1#C Om=s 8Ζ.][nfƍ,\,d]vu]3aa%cڭN=u lٲW^rʥK._ӷo_ 06²9`l;'{5kÇ{~+ӧb/# ?z~;ǎ#ۍ zl_8qbɐ}Q2l"N#;sxСf,Ƒڈ9dils@LٳgN8u QQQzb0 c#,ͶOA9~ziָqcJE3gΌ92_|#SN͜9xG w>dknYl_OrEĘ1crMMirdgyQFQY.ٳgS%bڭb&Sg*RJ?~#F8r7uƲaFX6,m9 rakצ$;w.rʸqrI>2zhYxG wΟ?O/"}…dG} _|q=DEEmAtٳO0R݈u-ZDv qIs}xKIves>\Vi2a%K;޽{wލիW;w²aFX6,m9 rW^8۵kC,?gL5kVJTbŊ"ޯ_B xGϾ;ha2#}̙dСC|I2$֭[lذxGµ^x Oe6q?~޶m_s 8gЌ LvڅYܴ[/{EFގ8u>99HtXxxxLLm[7o޼F(K.uЁe30l"X6ێs<A,4sÆ WZɓ &LΊi/@+">jԨcXL8226«Z~}>Z6~?߬Y32<)YdϞ=vUT .dA)G8{ 4) 2|d˖-C?Np9 lĩ3dzڼcǎm۶m޼e-۷|20 c/,ͶOA; MԩӖ-[p{-l_8+tm_~QF">{lsMa~lʕ۷oO'>l˖-;!S=igq 5W˒%ɓ$>C[.{u@DݳgϮ]):` 0v²9`l;oƹ >}ܹ%_Jnݺ gWXBN:E|k޼Y=zT=[d^z>QX!qi4ڲeȶ<'>رcG9ѣnܼ٭{w 06²9`l;VHIP`C߿%l޼R}vYozWVM6"uVcVvG>ha2nݺ}X63  e8Sή]V6v>Qx}8A9-f@Gϊ?LI֭WN/dɒeԩdH$&&fʔIB4Nw==Myg}@|[|v޴[.w~5hei[lٺuktt4Qa˗G[{ko,alesv)HKga (2aQ~lE|!9rHNLL 0_sܹ ({UVwʔ)dxҡC:RV7ߐXb}!4Nw^L(ɓ?0Ж߸q#pܵk+Wvnݺ5k֬]۷o P.OX63  e8S૳cƌ8wܙ ;4j-ZEI,͒% 믿3וMѥK6lذbŊK.[ [n-ZTbFܹ3d 06²9`l;,N6@ӮܹsC:qy&ma{aDlx |rvӦM8˗)2w͐!ԗ(R-j*7Kpc/Z>~HF aг}l5zӛ=G!2Fׯ'o]vm28ξ Z$O֭[f?rΝ;Q=ȶi:\6m̙3nͿ_eʔIK..\xw혘~lfAfq'gn݊ bӧ(2bg!Qaį\"6Yfأk*Tȏo h["qM@eݻQvӲe5ja>pz:t$Oh]v,_ud$˘v+f?Ss!\t鄄S.Nq̙[nݛe30l"X6ێs<>9+?m/KѣGED jK,Aş.]Ё>d_~!;)dɒ={$#0٫WhU<;dɓfJe6oތ2O=yZ5[4v*U޽;%yrA4ƍNW>#IvaJilO!!6wa 8pcnFFٓe30l"X6ێs<>9rJin:JxcQZ'^⹨m`LSNc1% /=+}-_xv#|\_1cF2,fyqٳTRd؁p`C$O"""+V ;]yGPMI1Vf oK(wϞݻwعk~FY63  e8SUTagϦ$ˬ_;>|9D(2ai/(aZW)r]"b/y&PF-ZH#GE\vڅW3f0h1{ybb"sSyߝ=vigq2/ɥK .$;]AMne ټxb,X@9<<<&&f۶mۼemvs.]lfAfq'gpXΜ9njCI6þN:uj̙)2K".>޻w0-2m4lo:{!Cv 6$#0Yo.gH0a}'2xvPuU7/>p'3d%y"fNW\WX؋/H/veXjٲe .`F[ɲym[lٸiӦ[vu]lfAfq4+PO?ŋ{Dh5֭[o={PDSL<9W\C!ׯ_[-2eիׯWAnܸ$wd؁8B6/Zbڭ͝:uli٪U}֭E,Q"..ۻw}:[7 06²9`l;Xwɓ8V\Yz֭[Se\cgi2-|A}]xC r´ȰaÊ)";+¨RlDr*UȐڵkٲe$ z{eʔqWH_zFDo_6K.OgΜ|}Q맱1gΜT[l$/;rH2 5j>bڭ͸.]y 6_nܸ1::XbaJ?q.cq###{aesvBS 0qHJu늗>rPnʕ+o^DV ,EXdIYw!ZqƪɍWhQ2 }wU&ho>3gN94h޼y͚5P ̄4N1Occ\m?g!qSO=Ԑ!CH?ИKnul֭n3 p7۹sgLLLxxxX2epϟhΝ;޽lfADLG0!Ch{*4<;1cFDnݺE$޲>uvuQ *o߹su믅i]B{`~$ zaÆbs`PmFd(_Jmilہ,d_1J(ѻwo2҉cǢ%}NvkGW^y+ؿ?N%K-[6112]׏e30l"X6Nh{*O۶miYdÎE'O שS'D )-RtiHJʗ/߇~H5 !dg;V[-Rn7| ѣG?d=[VwyG1cƸ:U_.ݻ[ 7xP FFv~PL \TE8 le~Ŋ;vHF:-O?;pܳgׯ=zرcJ +_ݻwo{0p@ 06²9`l;eptY֝O:WHdd$v3gHHxx]PHaW_}aÆΝC5/^,Zoڴ)rAϢ/#b&M:U_6uڵd[N:aJ֯_:Dv~ 5Pj!l6F-[$#=|nڭͽzqe ɓ'!]ܗ/_$11q,alesvBㄑg)S2gΌk,sNn'xbذa`}}Up!=޽;֨Yf֭eg\jժ3 ꫌38)]lRal;xh\@aZwBGA5c\>SD0Vm%sV[J=sTZSNQQQٳVȯˈm. z6sSL!S.R7oV_Ť_Di7n$;X? P~hg!)E ^y2ьqMi:\6ڵk #G!ܽ{wС,ales:DSO=Ef mO+i@K_oZwv FD h"nHSx֬Y'O,V_%[1Fv]vV<9sjRJaJorl.zVf|@H"C AlkxA߇9R͛WD(5B6R:Xд[.Ŕ`$<䓃 "C pc46qly8UB6߹shӦ3/ ,h ֭[GeʔH~:gf mO]Yug4i / :voEʖ-]gF!V'چ ֩S k@bR興 7"uw['ƍ8ܹsN11NWd͚uʔ)wA ,~ ֢k׮ʕ## n8\6uw ,xu?²a&m`l#/Լy뮔ͳgΔ)ӌ3:ԫW̙3MҥKժUÿdvBS`6, ug .ܸqcǐ}ҤI"nӏoFO=СCE }ʕd'%hѢFdX'˗>q͛wȑdHlذu3XA7٭[{%[ZC )lɣe 6iܻwoKs do N>-6YcܷoŋĈp%A .wﮔ3d3?mfI;X6uWʕ+ˋ qLdP%:u cT!`/١Kh{v׮]/iYO>D?fBrpӧfE 8ɱ5k.]TV k@Jg+Tu!l?~<۷oGݶmFv׳ϖɓdc (믿C…N_od+HHH&hTSi\X1kΝdlP\q()Νl- VhQ2Җ)S7(_ U>'=z\r'*oh}Çg˖ ,ȑ㫯J*Kĭ0rȂ !=+Z*E*bN5y䑉'*}饗ڴi#V7m4%N8!=Zs=(zV-;38_E'>qH1q$-DܢGN׭['6f͚g}7o^2ђ`Э?mׯ_ddɓ'#$Om5faesj-7m$L0jԨbŊ 1͸c`/١Kxjc=D8`Y1 qrjZn-VP ! D/wĈ#3g/>>bQ "LZd z=wm1֭Z|9ٞ@6az΂ƍ >y@b},pԝ:u*Nx2ђ`Э4 (oݺu E.\@s/_e30L95}ecS1۹s'"O+Ϊp]o-V駟&#)iȐ!O=>|0IIy9Ȱ(_/ܨQ#۷Qrh Zƿy*z= 5 *Uj߾=8vf=)Tl~,W^A5@z( 7oLcbk!mѢZT w%; )@[e.qEGG_$qD 0il+Wҥ II "Y6Nx86[lڴɢ/[O>˾>+^z5\Fh2d J9sYzKĭp5kgywzTR=z }VZa#ۓ%Jݛ)SPAqgyĚXׯ_hg۴iC Cv&M@)@[e. .T"qUPB 0ifovܹo>y񋕐 R }n 爈T~C0|[eׯwL<~8"Eg1&C~>ovڵE ݺu+S IIƍ{ɰEpsΑ믿"fξko[A{%F~O>d̙+TvZ+,m'(< b/={%KXt/^,LDhEKo G6C<(7oٌ3"#k6l F/ԭ[ק_+^O#<:-[VRRG}ن `gvJMZ;va*UԔ׭2͐Ͳ`lfISX6{wD?mÆ O<1=al;)?ԅO/]._pӊIڴi3ψ}]e~%wd1mڴ 2k֬Y;F~!6#`)LS>ׯ'ۍO5j_}U2, ^P~䥗^jܸ1)Fwyu˃ 2~ҤIYf%C_&#ٓl-pgƍ8͛2Ue,6f8p`%}G_1ڛ8>gΜQҘS.\8m #!=EݤѩS.*[tV(u sbTf͛תU ?|sIĎ;PAk֬_|Y(it+ٳmFznݺd z=[F$WZ:y$ٞ6AYxK}'|+W.JbѐdHjժzd~C,YLBFtRzraTdz*òY%mY5z8J6?H㏙2e:~8R֬YOHLG0!C{pŊjڵkkq>[tv޽ȿuVaٳTR"n(^z磴k׮mt).@2$=дiS駟"\zUlٲ:Fz=9sS }"tޭWn8sԩC;`g:tP~VPⅳ}:ʕO?%#;wt=׭2,Y6sCo(ټgx?)ݻwiTe7oޔF.'ߌ{.1cEgmۆw|AiJ ,YY?i!Uwٹ/͘0a+E @Q4*9B|2ٳr /Vutٞў}Y2Ri~5d$n)RJ.MFq58+OkO<$&&@ @[eX6lt4Qٛ8H?X6N{*L|jϙ2e:uEg8x0+֟EuQMF%^ J1c<*gQ>=:ul7:tk$Y>ѹs *a _,q)DY /4iunݺZjdHׯhѢdϟl~Aʈ9^ʰll4 t4QRSzM9f ͶNٳg)ʥw>̢bdy+B/7jԈ۷c-[m,~dP7Ç?*gQ֭[ٲe4{V0g}7g͚cEGGI^J,IFtTZU;u-Wg we . (@Fg.]Jm̴iDWF[eX6lt4Q9C /_&CҥK2e"# 0tP2SOy^{ R-Ѷm[?cΊTϞ=+L[ UTQl,p5ZlIOM OE 4Ei>}4{.,\l_߿O`gΜcZGH1΂ŋ l\vmrS#Fț7/Çʕ3^F ,(,[RS^ʰlf́iCd?C%[|#!m#;GAS[jͧJ+VС?9#ߩn޼u:3<ύYN4 3e/s Z mry(d׮]4Eop{]hxWٿO uDf̘caN'~c=FFt@~G"SH%s\ 8ȐPy볬%'O6m"[\5ڵ##A[^A)F[eX6lvh Tia UifP!AƌED9sfh?2&rɓTtJMm۶UiӆR-P\.]xBl9sݻwܾ}0WjF\>2ܹ̀3npN6 3v U۷fذa ͞B/@>dX/0x;wn2R0QTC (R+A6ixd˖ nܸlj֬٢E 2RO?m?^xq(7ڐb4U fDm0A|43B] >RZhzqO8=W1Kѣ2nYՃVŹ2dK20+Ί?lذA&4$[ܹsH\x1فD JQFI6٭JX6lFfr8 2 DxU4#@dx(t|7h7n`X/R/ާOӃYtVZ֭وTlժU4eĉٳg'CرcsIFٳp{i+|g?@ʕ /N9sf2Ro=89iҤlٲܔL9ڌ55ꫯ*O=P k֬dۇf*aٜ!OYyx0A|43BH^+W2dHv(mƝ Nq%-ctG$wСO(P@^z 4_!C )f¥KYcRzI}r2ܠYf/YDqɒ%4ԁzr:}Y0eʔ,Ya;ӦMEFtvذa##)ᅦ<HW}*S{iOv 1|p+o/@ZȶnU²9dP'Ƭ!9f' _*͌z~1cʕ+ׯ_bC6i6n0\rE;tf/*TUV>,"}-^HC=4zhoڴcʧI>ctYdVJ*ɓ?~H 2@AaFÆ ֭rV,m}>H)d{wAg֗V2}t싁7f||}(ζo^Gyሻw&͏?'Oc嚅"#ո{. >nU²e=ј5 WBpY[ Y(tf#Gf} do+>. ;qD|oYq=d$%ǣ_a=~82^l +ʛ7#p1$Ì_7P9"}yP ޙ~ ;0م >?`_SEf " !VN6j襗^"#) pD9ǎ122Zf}]0?V\)ԩSdݪesZfј5 WBΝ;UjӒ̓ Na9sO3'c5yE͞=,1ID)wՒ5gcEsAdgfԩS)\}nWRWp*g\ef) P` ͞QUs_z/[G~ ^_Qڭ[N֮]&#)~{*̀@O>Vٴn„ ;V%,q!&UdsdDc^3C/^fFzϻ)ÿ޳7c5|:zi"?Ubnʖ-kÇV͚5v؁_%4hP^=2̸?32ԯ_z ?|fTb44OZ: }[Wg'T?qFo>ѣGҥbܹ( |SeʔQ[&^iO/|RJHt5;~x"T$V%,q-߸qCfA曡_c]g~GtRRL:>+*mPdN !J3#uݳgϜ9s֬YC> hsPu7 jXFD ,YW^̘1Z|=X55pɐ0n82 e?1@%Ì,YL< 7>Pzu*g1̐!Ӆid h i8a8پp1mFN](ͿŽt6{쪹+VرcG2ܴlRs^.]+W@sVYum!!!(2F[lN ٌM>8$ZF)aGo'#k*dB HvaiB*/(d~^3C/^fF9-SǏJ NLj6" |Wd S6ɓȼrJa<駟l-jԨAD|FI!qUm۶UV%Ì3ziܦM%T\CE!d=eĪc˗/'یM&Iqy;+oȖx4iBҥKk߳gϒ%KHk5ߢtMx+sX f!9Ud5+nh5,]i6 SBW8.-l4,rReBox0AxU4#dXPjpb:Vz ͕%KK\ro}}zιo>d޼y0.+֭[7$C`ZVh.#^'vӵkW%r=#G-VXƔH)Ywŭrl3Vںuk2szhΊg%pL&M"E @}+V@UVVYfN)-ȶsX fY6T1cJaFm%Kk@^q)2ʥYtqL-2JiY3טUſ^jNOaUifӌ@bdd XF ÞyOIȔ)_.e˖a_ A0#mj8[rvڑ!QxqsnO+>ID%JӧwΝy䑗R"C>z(فi ?~2|D26xi 6]v2vʟ7oժU#͓O> )Aہ@fͬ\-٩y+a٬ UdsllISV_!R]Ӱߩək3mwSq aY\5f%, J٬xA[ t5)ūw]WG f2 xhCpb:V͛׬Y-裏RJ)ǡC&cR1!g+)RKDrvJ!'Nlذaۭ[PO)} pPA=kUsU4Oz_&G0"s%یbŊ׏ /u~sPCR\nHT)I=B_[ѨQ#+׬xADGG|p5վ^3C/^fF뺷nݺU^4xL:5<<zm@~!81Hƍ_z%Qeʔ$30HE /X]v!}v$Lk֬ZqɐZH͜9sY.\@=.\HYZM| ݳH' Ν;QS;q:u_l3 *4x`2ާ،v#aV5Nc$˕+_Cpb 3D \bMUVm7wv"9escx|XV̌&dW&3QqDD=*JBM` Ƭn,prTt32(4' Wp]>YJf̙3Qx(K?Vad-1F +j^b/^DݐǸqFSg!M3f̨{w0dĈy%a7ݻ?ɖu_|lCEO0#[l&M"ChM6h5klѢ>:~[^I' HΪɓzI۶m#;`xWMY ^S?>v5nUW͛7I4KܹsfsĜeC.#Kfz㰰"r^9nhrQ2ʽ<ί_cdٌhrLSLj{N^3LH"_*͌r"#7ߠ_֬YV)c5~gϞz`˖-ctM3ZfȩzMnݺ[jM &WqF|Hoϝ;7I \LK2-Iv`yWTCd=7z/?<#ߊ[nEmCDӦ ah5 es:uܠn1Qw!JnU9pdJ:KϺRI&XNy+x>*elhc\V-5fU(d<]85A= k IWp]ֿGM=A6+|u_ ӱox\qFd>x0?9rӧQβeL={,r>}7իG! (\0n;ieu!ϝ;G3f{lٲeuFz/2Sڠy,Y2%W㡇3f ZXog5i;<Ajx P6 VnPzs˗Q8HU5a%,H6Ȓ2^"i.-% ґ$gHw]PdH7!ƬN^3LH"_*͌z5U2 4R ~Hӏ@͓&Mʚ5]XFī'… jҥK̙32ӛ bMa'N #f͚)K3@s[+NO_OQ7 ɒ%ԩS{RJ7&x jl%/ӸPB_J&sSL!Ìdha}2vSU]&ބ|wEid 5j԰rgl*s(W_M)ǀ9eJ圮9h 1k !J3#umbl2ږlX^?駟F}0ӱTVu(Րs"3G´>t[lI{b:ArC6mѤs˗'͜9sP&F{d룗O+=[oY\9!!9s& 4:Jw4OG}>"wrȡ9)&Yf|YTRz"#ex;+>}r HBV|-n:J5/cƌ´>txxR~WSgك[n%[K.*T l ppB)Omsi~>}/^ Cr;f"[SL qΜ9ǎK˗Ϻ{5[r嬿!ot Nr%8m4aBcT!R~ TX *{%XCJV,Ulј J3#ucǎ~޵k%7 1xZ, X6[lٲ]v ⠔j=i]Hx|jۑsdK@pBa;SfM2,[ eޡD .@f˖-Hǀl}CE(^8pO?M!9s搭At:y߲hѢ7!:uDFv8C dyꩧdD@*Jo7az r9n82lbѢ%5b_6߾}{oDcP^3L#_*͌z5?qX\0A^P.lqpLFb:Vٳ Bi~7MK.MFRR%, 0d2Y( ao/Fc{3}tDmvcļ&J"'wϪN]e-9c og-Zzd.]q[SBժU۵kGFvvԨQ "D\"0_"-ޠl\& PRݭ*X6l}6 1k !J3#uݸqc :tHA6mTH ޽{+|8\xSkhԪUb<쳲M!~K/ɓ SJæ~쀡hѢoP?8: ^h RRݭ*X6lF6Gr;QUʴY|*'(xT+lݺ$#ܡC+VFuX.?c'fWvʕ۷oO!ȑc„ ΊO>Mħ~jq:uxsN?G=PO~1Ydwώ=Z7bKe og:g)ZY9|]k޼9)َ;*/7xC#.:TS$F z J-ԬY-fݭ*X6 ,_6Sa§YB~nAw%Oln֬Fd$%կ_UuXMRJmܸl3pyj}agmժ@̝;رcM믿POX&Mʖ-B͛7'|z@mŔȫVYo_=ɕ+IF`µkuzD+WXZ@7i҄l˖-qiiӦi@d͚ud O<5+(VXɰ bnUY)façYB~oԬY<̻Kcǎ5k֐ȑ#Kڵkȑ#ȹ~z0aB0p# dk믓aiq4lؐlFm۶ŋ ӛ|0%8,ޠWR%2@LJX6#J樨(,arffFٳg˗/)SB =ӈTP!}N^p7`jժ|h}tǪUx:u6c/˗-[b<W^y@Ew|>To&$$o;v$ NneaÆϟ 'N@ W&[:֭[{e2 9x ٴiٞ(P'#0vv֬Yp!::liР72 /_l- ׯOFvGWN8/L^ycqQ䡇xabw9W,arffF-F'O4iҊ+()IqTRݻw'#)iڵѣG6Ljz|p\PM~g䏍E'M4yɐ^pKYq-V؀L9%K2܈GN=zҥKʬB \#JLlJiӦad#VMp Spx;?GXy"\JJP9с0C#.ʼnMϟ?rlٲYA ɰpQ&tD_ɲYa&M>)gVifP߮Z c&-%J[#ds|nݺU ;0NUPl3Ċ@5jhٲH7aÆk&CJӀ{W53<ӡCSg5͂E孼_H,oܸΝK>z D3ɒ%d#f>xwϊދB{c{�sj}Yf?<__0F۷qt L%Y!],&@JM-ZniG}6z (@9W,arffF믿矓`ҤIm35*O?ǁXMx-؅ oݻ[~##)yx RM ꫯB:{&|rhU'|{nCnݺ)S bY)+Y9;ݳ8oI<7fȹ~= X iٲe50@9;W Q9{y)T3{c<_ݺuv lw}ݥ\ɴ ,a rffFm嚕>|X4&exWVx?GXMx-Xr%%W_e̘Qġ`-~kdHk?3d胱*ߒ-ѬY3SgSOfݺu(ȑ#dd룷F=V 'wϊ1$[#+Wn׮_~K_X<ـxDzii Oc@)gVifP*Thd(\ړèɖx'ڶmKFa:V*U¿'7&LDW/rFHJ۷o'22hlvըQ>}xQ3Zjhт }y .'*͌Jݻ*UJ5jlliO7o&[({&;0irMï;uD`l3UPʅ?|򑡏XGWDmΝVjSA*M>S |έM |~Gtʭ[{vɒ%tYYhr+xWΎ;V>O?4gΜd0f̘ܹs2TAM˗GfD~JB9i_0bĈz JkJs4i2BխްllƝMa&M>)gVifP^t˟?? ?>H4~1mHwټk.T`ǎdK/Hr AXMY_@@6Ѳ8$[İrJp={wy Oʕ+׭[72߿6ۻgEYylƍd{b}A4.\ 8p67`̙hRN*gم猼y(Us"Zxq7(q_4ѦMʗ&x*X6f@m#L t3'+gVif 0bDܺu9]HwټqFTdK|[^@zJC $LjO/TC ;VRdɞ={nj)xmdK 4DζkZ +KZиqc+Rn߾=TXcǎdӫW/jwϊ%Rl@ck֬IF`,1-~l+hsSY1ӛܝ8qԙ.̙CZ6l@v0p@oP;wDUkI mV7%͒r͉*b>fFzTQaP%ex^w1%8đ#G@JQӱ&.߿b(9Vϒ% v{>D%V #{͉ۋ-jwץK6_ A&MDJVjenݺ ݳ]/l} 8iӦ *CF`Wq2 iݺuA̲fk;*gz=Rg={6j1vXy饗틓 ٳjF==0Ϡf; B6+Z6+s||N4zTQaP%e"Q!a[oJt"ӱ&RX|"Z]<ãG&#)ɓt+MGY^E5j Ct:Ss^bEl"C~zdx϶jՊ }䕟{V#`evhd|eogS>ݷc~mW ' BC/S"NMZէWOGzie>QsmHl٤&1–W}`,f fOٌSfPyws *bUa9TIw,>@MFo}aa"4?OZOb$k֬fTd-"[1W>٦Mj.Uv X[SՋGyȑCN$ϞmVyBgQ1cƐ Di˗ܹ3~d6oތ&)*g 2uݟ~R@ 3}t]VR JO2R{@Y sXEʪlV*QQQ,Q=(0΃es1u… ͸Ao+-Z@iFz\㾰* Ë'#0vPB&/KSV͛@5M4iR֬YEbRuȔ)d;v^6$C Y i9e3~qljٌh>փ,}]aPesf;e˖ڵ+@ڵ]㾰0UMj|{/"'O6ˈ0-Q)WNDLnMĉsmoYn]2Xk8mV y&:͛wĈdx+[d;=[H^2AU^ :`d>c~!~1a„ٳa݋&ݺu+)@嬱GNћVnw&#h۶mZLY3~d=%ĀsQVYfr֐@(gͦe30esY<3^9jժiZ1=kjS#ӧ(z/ʈ05'$… qR~uԨzO姸̩pBl2]n ?-2eXYgہrG%#0vkIL2%sd޻wo2t8TΎ5॒ǭR ن̙O?%#E /XACWzj}`l",?p%KY6Aaesyڴi3fV?|fTt*`ӱ&ÇQLW`V=m۷Oz?~V^Me Lg aPEČ3eflzׯO:.h`ٲetun;v,m֊y7_yD4{%X`3QөogxǓ_5.v2 y'1>'Cq2dÆ vF)gƍdP+4mڴnݺoP>qgĈhO:ɓ'_r! h] ,dY6lsd aB͡J?}4J[|9)@ .,-Oӌz 'dQG);/W.x*X6ql@6LE3 ]ʲaesBP]:uO>y\0J<5K.b#˗E*,޾}0TV(%yTN/Vd>۲eK2 0@ =< Dʦ 203ȟ@klz}N:f/ZՀ~8L YL'^z,YRSSO=yW_}ߠ F>}B@IjBJzVoX6qH1ͱJJ91N\>(ҋ4S 0f,pKP%ek%7o^fM2|D ȶ_JUVիWGǛ6mB6yD`nٲEz8@J3f焿\reC C؏j*2X3/2e ѭdK/=۰aC+)[lB|:Pw0}0C|CY[ʕ+ȆJTZ|"=z #x嗛5kfzʠՓbJ1Uzpٌ;00G>xIȯjl>Pt$ \uPsy8p@`lV_۷"PPu4՗׼J+G4_lΟ?%ͯR,X`E6M|A*Tߺul]6r U5jhѢ"=MVSD 9_&Nu@,Ϩ!t0Cuƍd $GrȆ26ck׮͛Cx ^zVjժպuk7(0ؽ{7:|"'$ɓ'#lGխްlFHϘI3*T@zW9d}l… 8 :tp_Yŋӧ Fa:}xc6YCN*g4h"BK/y晎;ZAрT2n "'T lx@խ8\62n> $4dA6W-(K +X^s\z>_MKTή\54]SNFfdxd3U@p P'*gk׮ox i׮]%uf%MD/9r䀼@խ8\6㶆YyMH'fr\iHjcjlVVpχҠj%;lA`l~LJN1cƠbPed[F,Jk޼e:V#Ν;#qqdgO07o򨞖c$m0[I&j"͚5k{Ls2c̙  &?ϟOlĉj#<2zhD4{V^94W2_%*g-Tgc_l_%P2~xz_5^-',~?f*UO>׬h7c\~}-o޼AA C-C3GEE]~7U4WrH6Rs\ Y$ Fvfwe3}4Ͳes9W\~) KׯW"JJ1E37dLj/^o߾".ݤb*y4h~*3h~^aÆk&Ͷm۬fhO> &L\{LI.]ʖ-K'+<⍆˓fBQe̙3O:@o0A!(Ȇ#dW_}E>opJD,N x"B&M5kV2 |oPьW{D͛SR`Vo. 9| +W\p!!!L2ɲYD6U&G mדglէO3($OT+V_~"Bp{d8&L`%m۶mdkQN Uzpܷo_\z׮]f>s ~J*EY|,f4e -kԯB6^JW~͡Jf1eOٖ{ ()Ŭ_:tHs'c5M+,ݤ+VPAm:R/b&MAsfӧOf pDפ+SEѪUjժsl1j 4%+WС:⑦fϊ7/t,\l-reKrvڴi3f:b(ת1G ſ5  P'*g-o1\ .7?fa7n$ۋGBal0>}@kٳǏ:vMᡔͲrFS:b6 .Mq(RR~,0f AiЀjs!esYg@L ȶK@I)Fxej:V?~Ku7pz.:|2e"Í<$ae*b?V 4h֬72%J0LLvy0C *=Q&2_eeoM&Mʞ=]]˗\ Oz_ fX6*+{쉣kZMPed[W_}]h z7oܳg"Ư,4Q~*DO"JM6%C &w}dy] y12gΜ/K.%[EѨQ^z /*Wܾ}{2@p^xFCP[gM{[2-[O8mA,)Ĥ|pܸqdq< OdЛ % nQQQϟ]DDāH6WP?C8>?|s/fR6+EDAY6{-7M D f~́P%}eٳqt(+=x'Ȱ+ҠAd&G.#g ic5obW]U àEx W_}tX\r歷ު[.:c) T68qh>hxtVٜe3X6SNů#i3no7IhUF<>|8JK6EPTȢLyl I 3Z1K7Fʓ'͛77 X0l0e[hF#C+vؑ 9r0vveӦMd+__xl-j׮m 5Vb@[Ҭ΢kz'\ZfժU(ɓdkQX1y2S®w%Cl>}J(!)G1}:""͵rJQ5͚5CY_V[Ţ4gGN7o4,L!0YL ڵkgϞ=vXll,rʡλ9⟨(\ogapobtLOΝgΞ{c^+# 0j z8ppH`ٸAs#VXy{g}( x5 KPE)>&>dHk׮J*d0p~ 7m۶Z*:-[k׮d(ȝ;w/۷o'[2eJ,YI D^.\ KK.E!jzgyܹs D<%˗oĈd ^7^KV2O\V-G{JgM IҒ>W1kd{rEuΝHzpܯ_ׯ߸qC,@?pOHH!qǏ#nRgapX3^K# 0jW z8ppH`loq!̛7[KM5 ?z9tP,Y5ab#LMz{ꐡC޽pөSd`ǣXgǮ[R)RAl?E^~*) iNH'}&}/$fݽLÆ eQ'^}c7lm1{Y뮻T @2^ p\@_4zL0c޼yP}ƍCEȨtu<.ꪫ|M2,/_lkz)UFXrrcqD.Aڿ  #pZ'Lj DZ!."9333++ &M?ۻwݻwܹ355o߾.3n(- e3/^%qCQQO?8 R_vid(ٍ\Bs({-Pj逪)IN1?h2t:uꐡ2lذuaA>}tHdX=!q57fkvm/2o~KC?]Zvٳ96#<scGsz?~<:&g\yߜe8r~_bU7L:U LTigy"TE;Pΰ%FiRYM6AYi{A!!CW_Ȱ{ƟlVZc!QfM⽻}-מTPů |ʔ)k͙3><Uu]hƌP{=z C+2EgyTp \cǎ%|ޗ_~; PPW\V_n,8<Ճ eܸqpt=ͼz`p[yԨQ*999UTTְaCHݸqn:x7ԳgOK7. *:~<*:0z{K/~ȋeW lkA[}dXz5T} P!W%o=i.ҫWf͚b$;3 #Fɰr2$@7vɒ%>HyuCu=~l :l۷o\r٪gz6mڐa.`Q(faw8ɰiӦaJklV{9. _kdX|d[k F.]LeoWVzr 7޸kt=>bHAqRnXdd$e- q D89y*gl˫׬+V=z\lfU.b|X44iRj0/.UF/lqU㲎ݔQK.6;H,`~2,06v믿 JGR6mjXlO5{lͰS[oaƙg |f'Pj޽mճO<*YXl3Zhѹsg}-%EEEdC_p 7[ٲe 4|ӦMd[3`ݘ #x/ݻwxx8ȍu_pYG-Z'PnӦ $'CcKC\63> @9x͛ͅ5hիWd-[l]R>Y(h_t Ä$,J1X3`> . pAUSFY  K."~G`ڄb-[BhT^뮻P:uYgE. &!7WݪB9Y;fʲqe{駟&ÌÇ1Am@fճ[@_5Tbر#l-%^kn{j׮<4r:  zs3An죏>bz@x##G7gAmg'Sy:e3fټ<>>,iAW #areW `?qh1F0.2Ռ݀rGnuP fiK QG޶m[}ciΥ^JN{=2$^|ElX)))dK>}:f? k?pT,w;z=CӦM;ɰk߾=l8p(RrM7AU]cMW 7+-/X~.5jaz;<`:Bnx=dT(8kg_tO/Y9Y+ ǖlgQ>.6l ^3\ʕ^yK7.|د~|Raao+8g`Uqȑ#NJ?|jO>L#qhU]j*LJqXL/ yi4qQeqg؈cfDiLfs=#z>//l3~֭[?RZ> ݻ7g2=]A?͸+x 2 |WP̀f* ##j?6 /-nճpnV2p\ Bnf-%7,$5^zSK  Dx!'Qa s/~-3ĺ|9Nϋe3Ä8,1nP qW/D F0Q/JlȏM4 o1;v@phDӖ UVǸuzz:fIc2$kX +''l o%یK/tdlnݺaѣG_lF*s8p A2̰yᇟydEܺubmS^uU GqkO?u|8qppB>nW*Tz_>ªI*ǖl͍7۹cǶm# \Ap99?nY_PC)X f qX6{+D\Ȍ3(Çi3rZja //k#8hgk .:/4q"ecfDwL·r.uu͍+ JY RNСCa5_m|M-ͅ~g 7z7UI`>(.ZwGO$7BN;믿ƬФI?x=0Єބmhrcᄿۘ:wܢE 2*<rc݀G*˯ ǖle3Bި}ۻwl]g.X63 =X6{9nRu뢃KQQ F0%bX.o?:uzcǧMqՌsƲa٫B5*4_u7O TL> l`q{62\s/,UbڵkqTdd$TtR ݤA8+6/7n*nI0i$2|-zapI}cGN;42 O0B۬\V-ˊתg0_6[oߎ? s P:!7Wضo=nv|g O۷/> XL/cU9s46W,-el)5k1aD")''gĈ.3n,, ]v}饗_"^{2|1y衇':p3sƲa٫``ûK;Hn{UVs7nW\ۿ+Ivv6%N:¨L5$bR{tPm-={@)e񧍅 nfM2ž&M m۶dQk8D.ReU!J[ˡzdX7@{3<0LF:uDNȍe,YY 3 {̈́sV%FC_|q*Ut( /@K٬Yu<;s 01ql)fY6 y**&.3n,,lvZ!n?ѱ>:9p+|ףYb.7| 5>miKyeϟOsɚweTT6;w16܂/lm~u+8/% 0`va`8S`ճb$pr,ia#H( XŬҀUaxZl[px6` S.UDc/FY&hܳnt%d*UD01ql)f\x)l`̘1.3n,,lۓ2LfzǠ*ӴׯqƸ \"r_~![t3m=upIgynyDuym``Tz`:.d4677lm۶dxG}Y2 ,XʊSMI駖Vf.lo߾M6me5"Â~C[dɸAN%sFzڵkGNȍŲ6܃UaF~~`ܹ 'Ua @hʕ+!fk]s5dTbeg]md'ql)f|T f(2>s3SfY=._w?҉ylfeWq#m% ֭[}],E>4l8[Zk׮~;n;N'/mĬiKm0vqw;k, `/lT0nޱc> w7h_dx 90XͼǦgɈz׉ 39eڴi#ŐzϞ=h | pٲed/kdR Q[Y}9rW_}lπng|7mnnZCK& @s 0_CY UP'-g 饗ԴYH˖->ѣG%&ޘ1cŋoZzTZ:erwt֮]Kȍł֭ìҠD /ϐg1ޤdhР9%aapBV>}:[2ĉN7?>)μܳ.1@ǖlɫbX6|lfeWq#ђ9{/}l`.Rql'@BY gkժUd޽;L[j. ag6Yp!4t5瞎;akժpc2, }2}K{#Xl۶!Ʀgf>9WjUP|͚5 n$K&xX~!q4i-ï5]t˛+- ="ϖ@dO1#Ko嬅:)pl)fƨ8QX63Lò٫ oUꫯДc]k?l:FbA#[F 4KA<3Ɩ#l  4 K @'f:Q6Ss\lk,/a^hٲ%>S.RB\` `53*ss=dptVcچFC&#Garpr֭piԨMG_x 2<-GۢE^ fӳ*R}[ʲx3H9mRa0LeeW1c-1\O> 6iSc>%%%m+l'jԨ1f2]v%D@DիȎ 6..bUnPZ_Q pz^^vgqX}ԩcvNt+|ᇎ뮳z<5zHJJ A+6= 5P͛7GM"-[Bn sb=rc_y86L/%8t13tRmq\;6NnC4w߽K(5@`+`+aCY2qm|8e3f$d3F]X63 S`U0n,{Jsm 8 oc>mM&L@ƩSkZn]7@)w!j9ӧA@cmn`֨Qcd(; {glU֨QЂϥ; 1!Y&~aӳP {uMSuW7=⸆Venݺ.=ǀ:؁8| Ljݺ?LhqP[]@1= g(;(ql)feb0!fq>Q maa=zrq{ȑl.xQ-L aAff7HI&8M#n4[67c58KnY&Am Nx߾}0矟~dh1#" mf5 l㭿:uXaqF8lsF ^ol-M4ԦgJzͨ ."]VVZAq\ 0]t;1X=/V^M-!#ۇW_}믧OdW |1=8m N[ʲ٭lFX6|lfeW8c= ۯ6Oŋ<5il|W_}Er޵l^Fp+H>#ÀccΜ9dUOr'ޭ[72 L2&Cmfu6phڴ)41UWzu2,_ګVmV'uYV+ ׫WoȐ!mӳ#gϞA>E`Y@,Ĩf xG7 Xo2rc;vh_dee1\08˗!!`R8r^~e|[ ;b$%t@vE ({G1K{ 4ı,eٌle3Ä8, x by-L1g*}],"?i`Ї rssݸ!,СC噴.+lAPAXMԥ[3Q;w.IHH }/a?Cۡzɽ@dd$Z|M`8ުrp1f͚bMFDDX(ՇG {dڀc;AcKY6l.f qX6{$RXXHA0a\>1A2,i7n$O&MC:]ֆ::ZO>dkqtP3d)mUV=yK/ -wygΝ0-`c?3 s99 J#k\s lR~|]fP -W]udس"hJRۀ61116O@rOūK lk֬]v\VRI)@~կ_Ri/#9<TX@IAcKY6l.f qX6{_~QT222(:,[ ͷ~SL4F0rEEEn|ud:5ydmd)%KdkqtL6O`l_( ty7A{ر#tce6`s3fZMV΃M{/\RRBn^,&aUK.D沍-N4!&..Nܗ\+\!gY^1T(C l'^yS˗#М'~T2eʔU!Ѯ]x BkԨAݝ;w ;~xiVXͶ`3S:@9O@jj#w}7x? Y;# as ,)JO? `z˟cd֯_РA^J|d;  '~! . XJG`\Ʀ` npG>M4 X8 gqRJ3"/-#%8q"fk駟Z.S>3f̀mѳ<9,+;"fD#8⣌dӓg Z< ;rJjX63Lò٫8 ʫxzYG:uJԩS&&&.\"mxyW ~w3v[jj7jq3XZJ;udq:mtf^DuV&z)Æ #[ 6k, MHt`P0VA2栄tӳ6)o{p4t.iѢO?M?&أC6}r_|tucj6;y0f1پp9=PdTp]<9,+;"UHfffF11zhK7 x^MK K/5;j(QqsD07""^k33@C?5)gY!Z!S!@ -(Mc֭[lIvd۰VZ{ij֬Ir{g!>ϒk+;o< 8s![ |BAFl˶_^[d o\oM5~'D=-p+Dc`2J͹;i$2 =pwL߿?6( d[v6eQ{֮] + M;͕_9T HIIMM˃uK7E6O5hQԇ;\&l(b0!f&nJR =Ӎ7n,} ټk.H:4'|lkϲN2R|Z $=CgGs۶mk5QVĒoB-Z[">ئM2`cO?moZݎ6eO{wa c 11Ttg*1s.ꫯd;6dDc񷏿2JE]]CeLyuO {ײ5@YAeĊ+0wyY"#qli1c(Bddsf͊R#ǜ#F\lf{l*np|C=۰UCt][n^۶m뮻xȰ^ 1Ʀ8HN;M8|0yoZz^2.+oAj4$dj6`<6j kf2Lp /Xرjڵ+ǏpB95aap׶P.{hڷ UVQ ;6yDpl%+|뭷0`L)OxAwﮞs l&+p9>626*a\fT\ :ua]g. |jʬK>ؓ5~g.C)X f qX6{7qgep .@,d3=)((@gdԩSϲ̴i(dhywߨ4)x/+Vmys0 vJoTW^yl-D)͂7#? 7xýSO >d4],V%Ç?,^xY.r<}  _(55kִy?h`g}Gɐ֯_O~#p!As'l,TUJt,+pxpliÇZW9z(|nҤIX cڵqjUVmذ19%.3n\>ߙF=-9dT/ l*/B \tE7//|VB6[fHtBV=zK1KF ./cC A 999>6ׯj+Vwu2>sƲa٫^6#B,%Y?LmOC}\uUk,(ͦz.]J_Q)aUdK\r%.Z."Ӭ2 Y VqZVS 6 N>fX@\` n}`%k׮%[Epٳ87dnɰ`P.[ 8p2JMVڵkg)oܸ18 U:uTư`cvj5_).ݕ|cgHe[y sVVVJJ իWn/_׬=|Ld'b0!f(LN8@fh7|CN!V$:t@}\q.ݻ7xvܙl-X[+*![/?~<Z;/> +B Ț>}:ZC|dܸqdh>dkqswM .> 8{b%b/d˞ժ4_޿?%`Ȓx_~%ٶ?6mg5egytkjfl+nݺdH`ۭN:.^zpme3|._\re4H[Q 0Af>n/r%LvXoF~N5Lb81pף>0kܸ1lx㍍5rs޽;ZZ (Jql驀dH^K:ܹt#4Ȓs,&dj㏓Z_k2$!rXv.{w 'Pn(\̔g MpY1qDya٩S'2T܏b/tbsukȐz> ll~at,ݙ@Vֈty{ǖl8p,Q6dgsWlժ5knظ)%%O ܿ a eWq7nNaa<D0l5k9!&FLs~x=͠O`ʕ+q+"dQiFF?Ȗ+_] 6kQA֜9sYU~'dhJlHp|NwMĶm ],d֠[; hӦx"[W_ꪫp7p5M\6>z|2Vw4nX?.A5XݝYТ;un۷/NzP <޽{p5>=j2e[ʲYoݰaM6mܸqÆ mԴ\lf{l*e*k֬Iaa3!eN؀O pY]~+\}`pB_5jd:uYVV1A`%@Bf\ZjdKIVsc` j:}ST!n:HZ@Hk0z>d8?+@[VVשS T%VEڌ}jitG֭;l02TO߃L*1 jРZJ0&gzpb#GH0q,?SXx ]֭)5jZ\/ʎcKC\6);3|SY4|ܹ>[wڵg^pnشixSFI A"ڵ˗/'?'tq:F|IHoEBc=͔Qx3Z/^̌}Tjsjy۔(2{l%PfAK!j68`ȭZ*}dSV ]/2$Ϥ5 @GWAP?xGOIMyJtt͚5njC >`3oplgtB pI{zxl~g/%bzʔaÆMqeDZ!. 43M=H P5itd$> ua.3n,,_q^DD_lƘ"xrrbjč7H[Μ9MC6AׯZPɘ{﹏Jѹs-4.?>p!t;>3@=Ȗo :Э6l$ի[M.3lkJ7`ӦMd_HDP 0@ g{1`=mڴO?KF2*~z=|l,o3_ CcըH@{p]esj_0ҲeK؝1<yrqeDZ~}y_ >qNNN^^=rtrXӦM+S7>!!;'g.3n,,J ↩S_ g:`5Z`d,~Ԍy0ņۣ3z8T= dk_4>>j֭[CMȒ%KȖ(**lxLn\%n3[M8[0{6TbmƧz!kݷo_YccO:?9Yp:IN> &9e|ҍe30ރeW)qpCA4Wo>1'IY~Aٓʵ^K[oVQ a}o(Gn n3ji0wB -a54Pdʕdk93Lo)?sPn3750Et+1J8:+v\0\]i?ދ/HCǎVѬY32O?xf.6lLk:ٌS|NAcw?0 &M:sЂRؾ};1y>YT?5UO(2>sƲa٫8nHII9sfڵ8%YhѢ(` 0%QB?|i>ø$hHH4!˨4::,^l uzp/VSLWViӠQ}ݺŊ~ feeEt)Sa6jB|$j .e|^Νp8Vѭ;uӳ8;lT k$]t`cl?>Lq(#)2 <ʹe˖6EJ 槞zr}j /ʎcKY6lnn.jfO8Y#t5z̥fafRʸaĉP [0y*_N[]?io:^x7jJ0Ksm`2*%ɖѣe{իW!gUR 3>{8gѭ/%IXCgaKDD`a[o֭.PNP  _ۘ^2P^lw~'L@L> n7݃?F8~}! yB!nb~Y/9ɓ|La˸#G,((:zhLTwa`U-nSy܀Z^z)n%4FӞ?\ve f+TFIM{ ۷sɐ:uYgE=P۶mɐoBEo/l JZ*t >z+ ["##aGiX?iO]׮]Àc.YlczVL;qD}`:t7`cq_m(p9ɖPr>o " |%PvA㏓]b"[ O|+;- qJ]vGI~W_)џ:7̚?l?) f-TقEL\M,"9%C-w6Eg5U[ >C2| <^zd؂#{7nl3ވz4SNP1 `U.nczɈ] {M߰Jꡅ;lЋ-"ۇo128,+(;<#2wqB\zw+;- q YYY$pA:VJ'd#Gttc0`U|`0 $?Jpa3k,t6||>}6KR|ذag 1]zСu%CDEEsɐ y'L+Ztq|u4Ԧ\tE>>zmXV(@uÅA 3W| RS< `c/`Ux1dA 3g$_kl 7l ־43Um7I7FH:u*flggov(;Рl'AK-~<,_P!~g˞={v QPPаaCeB i.3n,,J%͸H"]3FW'hl TZ S.`>b>1SգGo []vEжm[0k֬I?zq㸍%׮]lΠ(; &a e_z%w 7@mpd(- :t(fg[je yιkɖXrrrЄ #"ƒ+;- qܳgĵk׮Y[nÆ kҤ (أG›e|ҍe30ރeW)gܰaCp\8qB 4@zǎp-N pv"##q.4  Gn`R^ vd0a߷QD Ȑn&/###fFwy ]vɰ;w.>1cƐ5 n`֨QM1 @A`xKS^d`dGƷyd[ zMg.1CK9ML8°.]m͛ }ݻ~" xCA%ح͓]뮻pvȑ#hs(tsWv[_-K,i\Nƍ߿?B}2332>sƲa٫l.eF<@ 6DGW_l[N)`u{G0^|dHX ڶmk:MoqWa?PۀT^ݸNK/2 [pGQW]u<.wfN&Ue,X_Æn~.~@Y B/`\7g%!pPԦM-[ 6|r|{vW?pO> }ݘW_cyf>qeDZ!.#pf̚5 9r 7(>hHO8p̥fafRe3s@t?lwyK/%C43(2 X0aim:e@u`BAR|t޼yd[sWj߾Ay`NoxY_~LkX?`ïզm niz ZMT.4i%tl dazG} wZ\ _~lժU{֯'Efvķ~ _|l+h| /ʎcKC\6wq믿fddԪU+QFڳ{]vT^@Zjj~\g.X63 =X6{.ǍG[*y'O|뭷` w"lVo2ZjdHI:u2k53zgȕW^i<]/"IHff&#E]d|d\lnCK.`^uUhaŋaOKOB=x8{C9 bJwWZ>[Fă>O/Z}~1p{vW7oNI>ӦM tM'$$ ?28e3UP9׬YSyy wر}m*))}qtc0`U*l;xm=qjT GkhсE6nH`Ȋ'Gm*Mr\_(qpdn⋧LBI>f̘Mg;ӡi*#g5}ѣG݈e!6 g/X'&n/NX[*UoݺuzIZV%,uYSFcc LW.%xdǘ4dDLm/sss @ƣ?)I6yPOX'&JBԨQ:vHZ!wŚUk??ƍSRP]sQ}Pk8? 7ծ]lIeBI*~.ņ>Qx594M3Xp͚5d[:m裏BO-b$*USn]j ;_ B\uUevy !j5k҃ /l>q,d۶mX+BI[nP6kQ6JRn3BexيcYe\qlifx/[lɒ%E.\u7 ;f@̲a ^f)sAqNb!ZaRǏ?l߾<"dh竟~i}\veyzReFm?%rqr!kl6l `˖-?Uw}WՌYV4lP 4װh2J Ur饗VXZ8Tsp,?3Ә#][bt{Q6pw%%'O θZS}݇V`A˸ ^nիW\ _yٸ2%ݻÔ'gS2>sƲa٫TR ~h"%'6 a7ꂈ,-@%@f8曐e|/8q"pkS#GUf ~$p袋S[dKI> lks۶md}V[h޼Hff&JZ w…dk~aÆdT6YS\.]lvٳ%w`^6Ygx%K( 284eaÎ9rݻ1|r3iӦ111|S\lf{l*K6PcB)O,Ǜ6mzbčRRY6WjZđ&ӮV(۬#{PpժUdX߹smۭ[;3|(lۿݕS[t*i@N!Uu cqD7WY x.-7xcrr29IU Vc CB6C(OId:b Lq9Hs/Թ_Pa~]ƕǖl1b|4AX\PPo̰p8qI@x:e|ҍe30ރeW"VScBĉZ @ഴcFT6Z^u})I~hAM4> +7-m^o$ʡ;詛sK/7nNپniѢE.]` *8K%vJuANBXesӦM>uJXl% qS\N ֩S ,6lx0?\B}uWj[Zn_Ak";;qRQ<—EXf͊RUR|و]g.X63 =X6{%K^ {GZ@7lh+l4iI >dhyװ8 9g9uT2 OPw%vk Bv6J۫W/haݝCis yɯ̝;wbK#Wu cqD^P]f!j/,UY]fx7`A2NZhу,@^z|d3 C.\Y6c:n0΃*ï˸RR999NNN圐GyǏ?r$S&??ʸ\lf{l*dP`:l,q>'( dh0aZZ駟.Rk? *f͚/ӻwիWm۷oߛn| mݝafʈ)М>}:5\ p5P_0G끕ˌR+Ws+\6|dKyҏSΝUuޝ, n:t(7,—Aٌ:*\>+5- qzh.((=z̥faf²Y+DJʲ <|8wPGI"*]p|>@[svƚqR7mۿϝ;w?7@~ȑ#QX nVxRw۔57'˂{T0jl|e. 9**mY$5faGX6{2X! (! [lt BSSN]6.0a*(P1^n$<8p`&M(G>}ɰvOPoLJp{ĉ,yUV6eu cqJeW_M~* ![KժU!e-܂&=z`"CLt\PPnrn߾}f@Xfn馛 qʔ)-De\qliff9rHll,y5" o!1c\g.X63 =X6{J-Ν[!6A..DҔ?ŋcm0yaͪ ZR:k^u2N?!~Gë6G_KvI&ɦ{ҥK@_P,8O#""rBlƲXP_pRFqEڙ2{EtM6)mFg :R?@A1\~]ƕǖl0`@ZZe\A[nz) P%(S%'` 0l*,e S)%h)#K2*nf6k oMS{{ٌpYoa->є gL49rd:u(G۶mo62lȫCcO?D n',% XCiڬ8sOŚ:.Roւe ')#p<裰뮻u3]_`u]c#,كGh:aJ,KuWj[ⲹ_~틊:x]6nu*CA+S:.@5e|ҍe30ރeW*E $-:QpC43aPGҫW/0K{!4?<@-dsaa!ꪫ0l1cnJR_l5ȶw4g})ӧO'o&Ϡy睇{pxK f8Z*`bBBZ ȵC)ϧ{`իW'裏lڵa[vYnxS6>#\Oڹs'%Y ާ,Y6kpMFFFر>d=ZN&M;R"#F6mfqeWa,k.5 3I%ٲ]V-h,IǏҬY3qhxw,p֭[lC\}+>뮛l}uWj[ⲹ.6۬ nԨa^^Νwl߾<2xK7 x^el=%h)(OybсlLZ2֦MA$ ЧUV!Otb(ދ`cz-H/'S %v˭XO~Fj aj֬Yd.`7@ҊpR\(,*IKj/?PV-ݸqczrŋS6˖-@,޽{ ,2Tv%>v~]ƕǖl8p`zz:昘PyleJ ټm[nٲu4e30, fj@ZJI'li),utls}?$ sMƎ?<)I_dۂbH'?*1rJ\`S@@*?cYܪ F0HKKlF7`:flpG2|@@ٮ]6`Kـ@GiA`@PDWZE5؊±!. qqq۷oQ>Tٜ -[6oVt 3 2>sƲa٫lցvJ+V {NfDZvm`ѢEaBY ɶpf<'1tp f, eJJPJ\ 7`;vq7LZ6㏴' h]z! |Y:J'&NH[i@ ǖl1bѣGA3'&&I8x |CXnԨf۶o߹s׾l30X6{: N+! t-U]K r {駅l/)P詃!?-F( l,!>>q,%𴋁u@aA>p !MNN~с0Хb a1.e췎{l6+6Ge 0.`U|←Ք$Q6l W (rҡC6C48B~ \~=:ÂH .| `SNtr~gJ{/'tsr-P->(߳t0n8u_b2.#[Zn_A~ȑ訨({%ܴiB85qIIsssAj\lf{l*,jkr_)ς7"ʶ\=}穀=vd[s͚5h믿 "[MqƌX΢T #a9o&JRAܺuk 8 .V2.e{M6tpzڲ孷ޢ¥#/2±!.Ry;%mXy9<<(990?r(K7 x^esѵTxA{93gRn1oX1 9 ]qbq^ݔgMI>t= xFÂΝ;xf͚l~07/< (ҳtaaVexd˸pli޸q#|e[nڵk֬Vfn֬fP@YPP0e30, 怣k :}8/ml3Gm j< Dc[jE$T@eٲeQʻ͔'B6{C׳Aʶ[n&VK0AܦM- ~gyUz` 7nJ0uTTN6 6&&3Tte\84es^K.]d |.Zh…YYYuUdǏ`del=z̥faf²9ZA `;C>֭[Gy^\%Z6AT@b8ܠ<ԨQ "'BwyC׳AʶgϞ&. S\n/a__5%E7aӦMᎊٓ'OFFF-Xe\84esnݢ̙3{3g3fȨ]F6+e30kX6{RreRXXSDZbL%>,wf ϧ$ƞ L{A"""m@nn.m݌tׯ wTxq[0`\KM7pli:ݻ./LsffftP,aaUX6Ӗ~gj\%\By.XP 8U o?3eX SC !'P,N;qD*B~"dE]DI>L{6Ay <֭[g|~(7䉩kR;*g-(OH6ep[_ܳg7|j?/O?dI&NN ^a , cR5Vݻ7%JS| yw}`ʰ@4(TF4*BI~"d֭[)ɇMV,x:(ςaÆ[ǎqCG aS;*g-HLL$@qqlifq믿GjjriӦpTsrre|ҍe30ރeWaplZ >,%JVVNHPgϦ Dc[lIe|;}*##$AV$?IJJ˗/'[¦g+lʳ`ȑg=Sް/h޳t*UV-n&&pO^DZ!.gv 7l.Sج!C\lf{l*,MK8W_sd .]JƖR6/Z PRي"駟Ny;\-x*V,C L2R]S=iӦɓ'oݺuƌsA( 6ep[ⲹ[nsΝ={,LM4),,:y 8e|ҍe30ރeWaplZ%sX AsΡTkDcK).\H|P?`>8lzэNHH x rࡇDoX 5oSkgɐތ|ǖlիW||e%>=Z~ƍD8}*stc0`UX6~'믿doqh-FDV(RS1Xv̙dpڷomG(՚qƑ?p%zÊeaÆQkgɐތ<%Xpli'''o޼yƍ6l@nnnFH6b{]*}qtc0`UX6JR5J'@8Q5O<A7oq ,*`YTҔj̈́ ՂGy]ƽz  M 'Cz3 |ǖl2dHFFH#??I&a5*߻wݻwܹ]a[JJJ޽]g.X63 =X6{RT҉zRݿ?A;w.A~Rs϶nێP5w+ZjU.~qTI3ܑ`cKC\6><+++666F7 5jz]mݶu޽z\lf{l*,Nn<Z#7FEEK 0>(OJS֑`g}\qj͇~HT.(OJS֑`٧~dggS5&M"o }Jt<y͚5dI,y2b884eѣsssS$RSS7o۬f۶*RRy60#, S[t[n.:uP5rc_eݘTIi:=ۿl;@IL>-x+e<|p8+W'Aҳx8uꫯ@̗q`qli1cƀ4Nn"ټw^|صSo_K7 x͕{キ~71cZò9T~pI#P ,>(O`˖-4ܳ?Oɓ'ي'x]Ƹʱg̓qÇK6pÞ`cKC\6;>72333$?fZ*R,@" .3n,,+ [n䫯q[4&&欳rX5X  (O> {֯SV<䓕2v34݊ YsƲaowY6z뭽z"ԩznW?#l8R[ف?ԩSa#]ܥKYO:ul)fH1e\-p*G2>sƲaow! T2k,4s=qvڽn |Sfسg _e |B߼&tZ pc+;稐?|0' :X69rF6k)**3f̥fa G `c'LPNXriǎ;AD5_ `ae3)fɓZ@6CK7 x|d5kƏ_n]2eJVvL6ܳ^%tR̲a&lpd _V"Kw ?0n82$gJ4ֱTJfD6ùClfq Gڻwo2N_/X6i)*X:ul)f!v%YZIDATQ3Ϥ-d3²a=,+*G.4 P}7{4hyEes X*Xǖl3fL^JZZH͛lf)9,+e˖LΝ1O?:,[|9& :-^UB- q<;;r\\\llltt 4ib"Ǐlfqe:ujoF́%tZ pc 7֫Nc[yȐ!ؿ}ٳsμFlf)9,J ˱znW :4esSSSm۶u͛7oذaڵg0 SrX6{'tZ pc 7֫Nc[ⲹW^ VZ|e矿;++nݺ,aJf²9NKnWzicKC\6w-66v…?\͞=;33Syte30LaUX6i)*X:uliN:EFFΚ5kƌU~ne30LaUX6i)*X:uli:DDDTTjժŲal*,NznW :4e/o߾~ 4w*al*,NznW :4esߏw rvaaaQQј1c\g.X63 =X6{'tZ pc 7֫Nc[Y~_Gfffڵ43fal*,NznW :4e/3i_͛?>lB l=z̥faf1u+KMl(RU^%tͯJbbUVիsrr4h@3PPrԨQ.3n,,J ynWzicKC\6?55u[U`kܸf6\9r̥faf²9NKnWzicKC\6<833322@AAA&Mš7Y >|̥faf²9NKnWzicKC\66ѣ8p͕AʭܣYYaC\lf{l*,NznW :4esrr|_8]lF @62d̥faf²9NKnWzicKC\6fTN6y9G23rsr2>sƲa٫%:-^UB--BW>rHh+mfE5`H4e30, :-^UB- qܯ_ݻwQ ??QFaT$3T{l8Q$4nAfߜw4g^a^es X*XǖlnӦn3.lFݜ}7lK7 x^es X*Xǖln߾}ddܹsϟpB_9rD‚Ç\lf{l*7lذB2%::_~d{i)*X:ul)|| ah N:Aۗ.]._|ٲe}:uhe33l9e|ҍe30ރeWaaB@WݻwOHHXn`S^=EEEEEFrtc0`U{/ccc2cϞ=_KznW :04U>}RSSwعs4h d3 s!Gvtc0`̔,`/%tZ pc 7֫NcC[#dddPاߨQ# meR0 0n`̔< 7֫pcJ46="sƲaaaR#^z%%%T^x ϟ?o޼#GxaM49vXbbbI=dK7 x 0 0_u=..Y~ӧ/5k kܸQAA2Yߨ(ptc0`0 0 SU׮]gΜO?}__~rׇ5l0??{۷/##_~.3n,,aa*5"ܹWӦM>k6Ayyy;;wR2>sƲa)7\Z.駟޷oexhxXX":t9眦Mnڴ2nUضu۶m۷zNMMݻ̥fafd<#}D_wu999]6lI&_}.]֯_d(s?K.7o{dW;v̙:sζmۂ&9z(UNL[zȑz~۷oڵkAYtMUVR6mzUWyC6[5>.Çoٲ.NNNDWx.{(m٢(gE7oβa ,ғ(ٵk^xa.3n,,Rr'|'!)Ha۲ѣAVM6(s;j(Rgq}w(sȒc`O+ oޛnCd{]cnٲ%\հmٜGmݺuĉ174ۼr%K,Zn>rHڵi&mu m`߾}y&ma7lfJI>} >;t^$..z۶mC۲3ϼ;8u~;c\s ݱcǏ?x-dɁ911M{<D;O7kK6mů!ޖL0۷o&Ok׎DW kƍ֭[]^Fu*D)DGG\g.X63 =X63Auw/b5ѪN; 6?N֭N}gW]uީSqo]n]2,9Bm6hgyI&%(+ȍKd~ 1ȍ-,,<3 &0bĈ-Zj ###ۧ.μgyyy 6 D )))''gȐ!.3n\_^g_rW843 fN<ٷo_T$rQA07|sǎaE! o>{/>#CZvm2,9pJ{MP  53Jrc #Gzii@]<%|9հa@">tPxdkڴiQQ\+*H~~a\g1 pifxgݻ7o<:aÆ38c„ =ܟ~>*U\&"9rdAAAFFjTx/5kn7#Gpq0 c_Yş"}yof`ܹ5Zjz=6DЕ]wg]Vcz@S,[ޟ>:w 'O|7 {3W^L[MxRJUxF64o۴iĐEWFϱPY>@,dk޼';v ʸ8cǯI[aa"1c"U  |IP2=zhq 09)u^y0 0 XD|pnd3d|?~| 0I[aa"⫱cǂ9 A ,a_Yş 0 0EWB6#ٌwUɬl30L`sR843aa&Y6𷰠3O 0 (: /ea ,"rJw^a&09)u^y0 0 XD|@ln֬ى' [XX0|0q 09)u^y0 0 XD|ep'NrVDsAAnNvAAC]g1 pifx-0 0L`f-pyy(A5gg:d8a{: /e&ܹsGya_ ٌ\j>yȐ.3asR843a dsV$222(0Lln~ĉt6__adO?MDXXW_}3Ϝs97x9s(ԩݻw?w^;v옚{o߾}|%s=w;Sjժ_x19{lHS-vYg?d3 "+wpaCfa&lfb#_~ VZzz:'&&^z饣GIe˖-[" m\W֭ ۶m[r孷*d?|EALRF tdJ6#g4ge&?ffafa*/ Trĸq $>999vڂ `^{18txFDD6fS138#)) Mn3_|oYP7maGD|5fxY8z4dn30 @X63 SyC qg̘>~6{3< xΟ?@6w]uWc)X63 SyW63nݺ|bN6 Çd]z믿~%/0 _ 6,???GVVVvv6f>H43f4g 0fa*/ u PV9!!.kݺ~4cƌaa0Ld3Yкؿ> rsΩWޠA 4tlp*6w\s…w{n>}fq$###"">"##cbb@?5&(}lfX63 8j*ג}T\\駟yfa!nݺ%%%mܸqӦM[nݳg 6mZX63 T,aL5kx y睘~ر۷hSa#⫗^z)..nҥ˖-[r%ݻw4i҄d3|Ȁr=mfX63 Ø?xUV;wթSgǎ0 _k.22rܹ[h(͛77nܘd32ETngh$^T t]bLEc* ,aa _n:""9s&K[.//QF'Ndgg-&pĈe3m J wa0 0 Sn߷oߌ3?sɒ%k׮%~(]%M6 oذa~Ys_<屢._j GM[tӶF\.7a0 0 Sn^ؿYﯿZlI67mرcTHBBvvAצ{"DDFF_aGM?+ⴌ[p6,aa _o>**j .֬Yu|E67nܸ *y}~L6oٱwǞEkX۶pLnb2ӅZ/!z(yŪ"bS#~7cMll\EY͚>9R=Hpto"tQH;ڝpڟ* ,aa _u)>>~ʕVZnh{(StwϞݻwܹs@jjj^J !|߹@DdXxJLLJIIIKKۻoC/Z&p6ǿ+;V}1;>h*Lj*Q{gX{~iծ7i%gbwG _IT-j$lfa)7D|գGӶm۷oߵk;ܰaü۶mݲeӦM7kÇwl޴}ώ=!|;/xFFƑ#G"FGJH<$MJ\C Ld%Bj946M,r0:6.--}ΘV/M}ӧWͭSpYL;8݃NJW]PL=MVբfaarCW}̌uQQQxxxX rsl޴qÆu֭Yv͚5 /yˎ}A;{VV6ÚX}Ŷ.ѧbZhZ4ѳO:mr9//頙=Nf@J A8뼋}:z-lx5TX63 0 Ô"p 4lfa)7D|5lذ lO8yy[ 7m.l޾+bC(aGV"ȕg-%IY=Ř&zL|gw8{~.;W5cAM)%jKp%{Uo,V[i`0 0 SnjĈǎ$ ܰa;oۺuU񜔔ԭ[7dDDFE&&&@; "W)Ǿb[JÇ!8AD".pHG&?{WI)G~SsY.jAMsVdpҋq)GkM4lfa)7D|5rȢ }QFo2]v޾=%%gϞ~/O8݆,'[F𺐸V,58Mѱ,eeX&zwcc?{ ;˚!GR$tRGt]"$-/gL 0 0Ȳرc /ǏWSm.:yt3}K6/^c)X63 0 Ô"uT=rС @6&r|Q1&u㋊1__T$lfa)7D|5jԨ"e/u$Z* od#mX63 0 Ô"=z4f@~~ѣGӏ;֤IYs_<屢._j G]%;۰lfa)7d|q(g )M6 l޸u76m߳e>xm'"22*&P 86*)qކe30 0La% @98q"<<&`ZqC N&r"R\jKRи!vqlfa)7D|6c@6ln֬Ye3;> CI)))iii{!0JL!2վ`:rVsD!` JJ:N2G\V\š'bfaarCWL@Je{v{lܡDx>|8555##ȑ##x %Y+Wd C,vMNwʌ@t$hztA> S=]ܡ*-\l+ee30 0L!aÆgj9~xioٱo>c1vRRR!|ʊq#X^TPr}Dۺ4QJL7F!}'%#DM;}.9ҥ7/ܗأ֔J<a0 0 SnjРA<'%%%p,3iRz)Eiu. M3c@ҝp)&}"<?&m pE arQJc(,Wi <'²aaU߾}333###킂uO3fy}bba!|?zhll PUŘҢ\\WCޑN+w$gvb5i`:NIѠkQZeOrHT*,aa _A -[6o޼i& ۹k޼ɓ'k)l3ȨĤt!v\ !!J/U#Jm rqmUrҵW{‹;EƐZ VŨNOjZ)eJq o&nYfpՙ^e30 0L!⫮]&$$X]l]|yvvv:uH6>FlȨ8,yyy'[F{pXCm54QZm ʖuJlb<~3c)X63 0 Ô">|xaaaDNNΉ'5k&dF7űlfJ#Lnj.vy;L 8l2OPۿ~۳kS;-N!N@lmMi.ajԨQEEE 'Ol޼9e*4J{2 0Ee -( *\I%x}RE3&P]MShr땺6J=4KVdgwj϶AsO &)R6Ma#ѣG?~,/_bŊ+V-_~С.,a*∟(N'A(s0% J/8G[mz`Bc,mAzM!۝xжLo8=(aәMdhR 0՘1cNnf^rUWZ*>>+O 0 SP6DB(ZX' Z7-{Q6T?z}H5Ps(K!"qF O}ZԣpiNƍSEpM@3+N6m}m@R\i"0 mD|5vؓ X6Z^f֭] 9!!k׮,aʟfŠH5mI֞(Pv" W^Q$5I=jX*aR(BP+Cg[9zO  ={Q4a4esΚ5k ׯ_3fa `~ro[NM%R%tSleC[rtСd/ '_Buޔ+mDa븕999xyuxÙe30LEQBlT `Du&Z{hJF)@A2(XˢH0_W v(-&gT d'e۰'Z(3Lalƻͨn30LRR٬JmS -m TJ)o{~OLRutEJ#/Y&#gERZ.JK{me:NL (^mփ֞MaV6gggYV63 T%̀DPd3hIQW!D)`|rMNiB'M{nLu(>gyE=5.(J6Mda<yjemS1 T([ @BÝffa }fxl~Y63 Ô?Q6aYnzuݺuc0 STR0 0 Sq%ׯYeÇ{ɲa)0 0 ØJ67l0//oΝ|޽;--w1 Ô?,aa WQFUׯg 0faarÕlnܸqaaaJr|0 Slfa)7\&Ml>tP<@dgg<8'|2rAL]A]b wV=UpYa0 0L# ͠rrs ߟ2eÇ3 tttuYT%Mgfaa]J6Aڱ(A;X6><%%رcG :: `{ᦳ"e30 0e|gGD`LU5mQіl.1+پgˮk]H^u]*W4XvctQP3J-Z0 DRQvUe.gv|+٬\}e0%Yje`[nRRU 2MjKĔ,Y0=ۄ88G8a8A尗!{J{tX3ɅPj7qTβdXL 2|l>S ]-T>wbJ=nZEMR.eVKf}_QŨۻnGr(bػo=}Ǣêf8lgJ&8A\|no?7WI&111QQ RmTyyy+ڼ_vaņj7LӃqRѝ99՝mEքNwHq%%2%b '{JsizMM=ހJ=* GLTV"Qb[ld6xE oQnrtTKީTp%U.ߥrK!L4L+0هc#r-T}pSHp5GkP+ҕ7=D⪕=JH3-?B0LH2C*t+?u!}ɉTHQP͕lnڴ)HC E B'_w,FDLRN@:t@-TJP*:su}^wOiNtLO6@JbhYFҫBК+|:esRf! W6,QsmC.VCH\XVa}UVڲ(sfmJeڽ1 m*$4>>'Q~,ӗk(8ӷN 79Qoq-V0 Ä*N[ZDRQ|0L0mVPP9xs%5kv,eELue##G l|6W 6]`95%bJEwtVmV|Ng(NTN&n)i.&@)I N?$aLWL;/eUm Yt*lZ6[*c+T*,6oq`VpT4d?X:Ѱז5#*DD|h^[)rͻ^F{5ylq^R}pe͎a)F*-B2Oi 2rLơT+ܼy'Nd(,,5jT`esnn 6ammEcad4H *=)YY"SNH_)%":.iLN3K==QŧK7 /gbgV[18v_8fUѠ94Vd uiZljUIbdѳrˉbP.hLC)Rn (rYmDqE& K~ (j.~([V͡:()w4e4U.;⭭VCÖZ_ȓMa6zT?ŧ9}JOua5R"`Yة_7rl-QTT4z͚>@|IJW 4 )HA|Rѝ}`/() NzgMZ03K=nyPŨV:/\fҝF*Ф^-V>,eɕC~lރ|Qܫm٨"kR}%PM_ εŕؖU(. T1YFj3Vs>)x*qh)wg^ɉ;*>R 2 0ň@%ѣIH&jD&?yC 6KU%qoR=!od3@ 1c\6S1|$pOU";/\f.''gW2dx :>r> 0= G9xC6j e+9* ) {Y~yGY`J¼a?##pQ 0C*= e3c|$pOU";/BP6gggof>mSQ_Ow 0k{rl>v)f2sS8YAT%±"dҶ2 0 hgs9z[p`2_ *&I&ida&7,|·-|r( |3!Hm;+D,5 pۋaa߰=_="-d3L_ *n:/BP63 0 Sp7d3RF k YT%ege30 0eG.x .0 øe30 0LaϜ/~ .)X{IN{5,x;<UD=LYzK%4WŠ%Q_Ԋ}mg*b٬FM'w2L@O68q"χBAfaµl#fH"@GU uM*BuֲY9: a 4_-.yJW,e*>nRߥrNŸTQr˵jNjym SlV;F= ]U0oٜ#774fa¥ld} S1=K۞ j(cjUL<ߗ%dx[*޵agQR#l_LQPe-e+l1|'O|sʴN1A^6lQ|_m`^ʬ{O*޴RNH|H_lrnx,oq<HV z6Te4IH:bxwƳ#6TjuG6GGi|Zq2굊P)IO0.&_vIe-;%Fd&THۯ]vOLH~K 0֞i^ :EM;'We}Zʤ/6A z%[K|Bvi誗%hq]%gJ30ޝ I$PSX_is09Vxu[RV%M`slTRXi*ͣ# c:/{qK 0֞i3}'YTRlsIcw!WB戕=n9 =aU&>Ia Ľ*83d(ud:cdNexBge@V!T,?ViKas.1TRXi*mmmKKKʹsG.\zjww͆akOݴ]M/r^l^BbA!T25hT846({6.d$0[XbCtYz6x-5+(BʔtQ1:kgnc=L]DzQJ9a/,2KDĪ囓t4l3lތ֋RXE*۶myP9{v`pp{ZlM5K^'"ྡߤI<6,&wxgI_*4{Lf^ RˉH`iz%k -.l%AmXKg6)AenBZ@H6& H6,^0mvoLd(5UZڼxV_tuvYlMuBalKbQj4!*XMBڼuVIΜqO__`Vi30VzFXXl慅^iyN>vzga=6 v3:f%6oٲEԩS}}}v?3 X{,mng4KuFKP9m>qqy̹za?m6 h6 r<XC$ʧS>DRYZ-m>qRig{O>700833iaF30 0 c(6UT6a4K 0 0֌Ris[[yeыǯ^'{Y{w"g'!f=c=c\ׯO(.]Z\\|0 h YVaa+MQڼcǎ7nLj33KKK@w($qnA Q(K,kŵB>߁o^n7D1sBTK)#HMqNПG[#*N_lX>nLQ%QP.2K VQxwJǩ aa|'d{%Q Bը9o8aT$g.1aXDčsϞǔ=BgggW޽{tV[搚g */=ŦRgD(3&z6"-v-ݔH%]z Hm+,W0֤1a4Hӽ{:%:xARZ $[jvnrNJU?Ha:C]-pȫ,SP7?)ZVz/Ҩ93-טGKe}:"Gy}Q Oww߮};ws׷߾;w~{c߹{յ[ҹ}a,_G6WsW$Î#mEy'$ C=Ϗ5}%`e2 Ue!߄3H!M R ,o/" AG"o8b#io6q*y ԮXxOWiJBT ,hĦ:Ua=^X($Z!Bˁ ̢+9,ч879%&0P/B 2l6c[Yn$,O B|Kc Xȃ)8EFE;}x13b&"D|"jkTҥgΌ;6?yѣG>p.;6us3/MM-.uu~>q2G h]tKXQ6ܹS\^s=WjVsMB9i5OFL*4{P*Bbyk ۢ_=4Ԃ佀Iǹ;S aEVJ9|b a •rL)rm el2Z8't̑-w{'Dԅr5Κ<3+P]}y`\ ,eBhfNJ?  $>岳 ,?2HD"LE-P${"V–)U(Bt \|ph5H/&#A`ŵD¨0R& *dnCsg8' D&DPc9PFH7!hXIr< )F$ *% ~8`ᩐFO Yʔ.Ț_t}GDw Vǁ6@gsho1VEb+˔.^8222444888<<,ccc##}}C_~y棏Ngt=y|w߾~~=wW==.LOLԦ$4Y>TW%ZmY&H}9}  ƻť^zI"`VB89>|SB0Q)@2`u>N^yl;@DlM) &?A #G!{p 0@4ˀ0N1G L< g`dqkChv@ˇ`y[I%= Ab#JD2\XBXQ_{-@V#uu( "p;b ]`^2rgyrd i΀b˄X*wBR4@\h`Bȧ;Ѯ `Ɣ !ǥ:0.0ֈhƞ"] HqC"%6H06 6A8ubM9'5 bX'Ɗر3=='o>[??~g9 g^}uO>?{ʅ 33SSoCɁ#OX2]e.uCU-v3G(pA+$.m~v) 8KcC yu`U(A #  ʋ3s<#% S(gx,1SlsL'(`ZK(,$\>hZ/=Atx~C|ԴR@z^yq)ok={=Gէ{ޗ_?CC3_TT$1`}kq@ƆB&l}K{` \J ]wuSWW~, K3#$1뀣V+VՃ(~̇*_n9p^GJ<PȖIablEpSeƂ?F&X_!XMBK@ X;,U6U2DBN0*0Sg9g%3xF?7nCRvB/ SDZqp:#͔3@T4l@1-b/LNtn+/]bX-O/<駧7>9t83<xz:օSFGg._$l>.~gJuU#CAhmX_\X@oxhmt_i&Ѐ^M&e5?駟~ofdzALyf]p;XV}Qz0\sq} XVρTɂTK2gtC?L8@`UR6+%\9') =W81-$9:Px#B S`Z1`x08~篿׿~ɋ/~'_~XOϥ'kW\gg%Na &zPWEtshCK. VzI9lxhm>]u$!= 4$Ȓ&}]]]7=O>dΒFܹS(px:lz\a,hj Ζ:0[P΍QfX5x*z=me`+ލ_%TUɱ%:=-):?=P-jK__X$ n";u G`6R4$ŒK,9sGGOv蠃>裆Ҳ¢¢",aS8aǢb^-Ă daI;*BJKJU^~k S5JJJKK+++*+****ʪ*ZZTM..U5TT1rJ[hj*]Q*)-*/(,"jKsQR%QvN%#kKFf (-}KjZԴMSS6ASR6'l6&@I7$m hC%̬$ƀ6BLGbS2 ͪaR76wJT40&!boF8+QyjtH̬ (egVv͍sH98Թ/9UP3TPG6+' "# \D)[h ,=0%$ dLo1iQޘs#:8aAI +T@&qL츚3ZKy#-!T %XXH eS;$.KdM{Tu7\?իABck+oI8~(T!p.颤&9ğJRjV)YÁ GTOe%Z=g 6S^/\1 JAB5բ=Pj=Cƫmnhä/T|;V#OV袅0.NE)e"b"EH "tef5I[vR {-T-+J p]D +e4BY: ˎE \oH:Zפ.Xڦ -w# 3}U!XUK݈jn\uK] =Q]| ]rs4J&HRDzdG jY7c8(T\tȥ́D_R7ՇKywuՠTm@D;:0]耫drڨ+OqP=eCFͧQY>bdr=г4#5MMM͐EKX1WbPQ&n[~@HToens\1soFR 'Z/`|~*q" *Ua9b%K_fTT޹.FXY=/aSKAֱidS C4(jxS 'O(QJ>_:òIOW5i\j'}P?I4AmﷺHtE4MaFq+|\gJ>WٸUXr٧5nNMݜӟkاw+"N803*U8Qg.LϽUjiRBsD,ICP? j(x(y}+' bAP^Yo1h 7+X6C}tFF}bpɒs +C1j&azESӅ.E*pleUtún `/@Bn%,ExNF{P:1(kJx}[33b+C*хjo :F%"g%O]&2x8i<;3N݇k ]) :y '^_T\UP˲hRU!:A K{}c&>q$ z`A gQױQOGES=@P(ݳ =ѐs+aeV!VȨZ1PG9lhay4@ULVha ݡ'=[;>Zui"0N{xD @ _WFcMLM8UMuœ/EQ NR{{'EM:QbkA?/2k߷r ̉> \3+E݇MBLS ʩVף;o 6eC'}No|Vф'-0|›P7k&Y?͆ o4Mxy- y'4&YBZe,͢,ƿ;%:溺ܔRr6e|8n~\^a|Rs j ɛ%+sKVFzfFz(M)# -99Yy9 &+uQ74@留`斍 oFe+EE@ 4L k} )~f0R:"QH/}"Gq \@Cԁ;OPpd+h(끟iYi(CpЍ4)BE!@&?sˡ]"wSb 0ucCq`̅ևl!{%N!N%sQ;jl :o&[XR`ʪcYu.( D[UQE.jmT7ȮB⠋* ,ߌ֘vH;z01۵;a9Q(PAh_Fac~) e5p3aJ0jD&RԣOteR *p]1Nѿ @ :K SixUiZUU4_I@O@#()t:ml紶TG;qZ:gkpо\19)fRn"eؒn iB uGC h / @]`5?4Nc+WrI-3>ꓹ<ʨW(zeT+OD+W+=V$O!5>MHWzT \ WFe<*'_8hח_smMnM[rq`ӧ ":B/1isqG  pRXc\1Ӆf AP( ELh6.p5ߺT?8G<-,UMqX^p.k`бC.D^)1+8tJ_(| Mg&&N- mPs T7F>tNP|EǴ€hkq1h )t(cq]shx\>MvV;kWIU%Lz|TAui4?MW@f2M'svhxCC QHت!jЏ>9/[EQB":fvG 7. N=2XN~B[)'v!c2 CR;']}  C dP;FcEs惍$e387c"%M[cؘ4'>vA _5ӻ=hBw,5Vx岿VZ饧6d Ҟb g029=?R£%?R#/(U0{ 77U/>ZIXUU#?#=ܣ=ώ숔gGy}ksׯMJ,؜R^ӧwo;L) Z~~.~䔤p~W~U}_~?:bM{ҿo;vo7_ġ?? ϗHX\T D.1f tťXiCaTTXۅŹVs!3ef7]jN#|<8i(|D|<h|8H9OX8 <9Z vS^w@&S6P0}B&u P w:3J锇vrT,1 (]hwOhZ߆F(@F%4*Qk4 'hb07x)(!LTO@31y> 4X}iXhP8sϡmT <: s-v/_rnE)?cy1pm`sF??g(~g(תԪ7>3T<Ҙ*<C>QT~ o<ҟy 6?PS%=P7_\UkW&ߔR^b8BzVdmIKIٸ6q27'Nר4!Lm o {ZSDM>W5|1C#HA#hd<?MT@0g@ӛsP T S@6):k8~#1rQEQ4ZE-S)/@XMTi* 4TnWMy(?\#f0=IC Ni *FTMAhd=2-)(~b6,ŌPMޜ4vFBMM#R0cƌA #ih,g٬˟cOv?Ǔ<>>gz恜g=3`KG/ת u] ˟y? ]DٳËG+C }fx÷<=|0|z5UUfZnu^rRaze*O nSRkV,k⟽fy7޸s{/=__^!棧N}/޽p;LyGKK0XGzi@zP@sA4ZT@ tE3]WM#tا}\Y |y ?H't!@qhp(NNGs0?9{D+av'׊/9PQA:0F..82_Ht:QOߘZpp#qzG$ i4iӉЪ!>-ӏOZ b{|H,hi(>nxif4iaπ7e9 u憞G5P gE <֙&,Nddx kQ~颳J-HzѤC)O>R?u԰QòF 54ɡO-yrhVV%Jsz {K}teP ˟>5BZШ٣f>14퉡O ɏݟݟċXYlq}9ljnIQa~vfZjĵKW-]K~o=3~Y7//ya_>xӱc^^vqq! NND!B5'lw$Ryf)(vB5خWNm* V6Rf #n 6v諉 *<$\0-47/: :F8qCtE$G7:cGt?58qv`S)ÁB/G q~qf#L@&-M`@'s(Lqs/b&SPy 6{<؅EQ("&TRB t GJ)ro-O@y(?펢1U穔[2 &WjSކʏU-L;A |f uŃ@2S {vD4Y 0i\GS_C۔aÆD|βрzp xKRU5֬Yzիz*'ʰf5k׮]n'bƏL^ vmv[Z~˕+]K dà]開n(󖋲n(r֋_FO/|s]W*y~YvIέgkezі[/JM^|EI.Z?5/Yy%ntM.7]/زbiv)Y_i[T9yՋW.°?o]'?7݋!k?#s?O~?f ^4:هĎEy8G4YMF&9E󫶮6UKP2RgUAcVHQS Bmי]Q N u&,Wj5P6O|( 9Sϯў:nG:3pQA]#B]Qk0ևAu*𩸸K>ݨ"ټQjL\檪ϨI&apԡ'تAt·(QvEH4\ Z kQWq;j]0|Q7"P Y.ׂ[憻Cе g:R'1f/ZX ?, h`_)Á AԆvhsщ4Q[À4Mo@&? @a"@4"r$ l=a}Zc+(hI-h-Q!/`E'AЀFKט=IV]/FP7ATM"T1f4YASPFB0h*bNb~R4YN'>zr˗/YdA̟PhjioޜcKeh:L˳gI=g֬3g%̜Iy%$NH`ܹ͟?o~Jrc< osO?O3>.cwYůYy1k>:죓>ftN@.Ss_6S۱wy}6{ӹ6+c9&c֟ssY~1K:fY'gvF߯;kG<?/+<vEYkW$eeؾ-`ռ--QvMIk֯ZrL8W+?w깥_^_p[[߾8S~|4|4tLm`9~|!?MZ@s3s=8ebnTCF߆=|@d3XhZHƇT~]T;}ʃ̴/CeR$@˔/N# Hh0gsOʌ}`@ ïÝY hKL?g(!MKRX0i, tRy摇VVAje!,$!P HII:t(*2 EG M`yƌP|ӕMWɆ *'fƨf٘4򐟦Mx˳zqSczs1N;jѩ/;O?<ÓO?<%XgB^)]vIy}RtN/6$utGB)g|8|=gvSsQ3O9jG}_|^#Jgؼh~IE[˲eEyd׭\b ҷ=eNZT/׬7JzN/>rSp'W?oe疔a4+;{qm b|R(K/JhDNz1PS[fԴ𪢪6( M@U'bHIOMde[~j:Kl$E9kȑk4ONS}S=^\)Qoآr >#"2"Z`4sd\܅Q!\-#VhbnV5SuL:zaZc\wA'/6Z tƯ=(XCbCDžT(0Gh[hnsd.\f}FDW,b]<> Ht`)t7|<hi>nxif4iaπ7vN\8n:> oЮ^~z{L!O `j9u!CP@mf/UCiw*v;~S#@-ʧ[W1`T{{g*>=FRSQ/5Ahph3hbr Q!O xZ;v<ڇ'N>\bLf72И`q& wUe$!!imߝ&ߜ73N=fiG;Hm[~aO;li%vX.hexؕ K/N>w򹽒?:^o8V~ؒ[taO=bΩG4NڬfM,XJg" e%& 2qN1bD\?>Xt,Q.{ Jv&2S.Z0 S/E94 3bcG{RhdhhÓV#vJSsb&^fĴ[1 `/^<|m#|8u֖&2_=/˙q!n&BX~P4]M>mZtի>g&$%gF?ݟqZ٧P?_ÎÔ;F_=gD^>wqG$kP?IXrv'/龲][\a7fX!`KZ/)*Sv?qe͛|]~)9|ѿy?{ǎ7es`>C]tEEk6qe'qw|}s#Nqcs&(=s\#^ *ᓿ"u>TvSQTPzYVT\*x|zhz{q~nz}ũ,~کo_*Rߜ80z& K?9`{Xj n3X8Xg{j΄`Mߧ/NR,)MDK>ۨ~ C)'"O.Tq S{ф:V^/*+3s˖ic%.KOʣpሔ FDf`_VT D`_  `/54CF`~ Ҩp U*j!@k`c0="S_EQ2P7(Ozdɺ+AI#J%PQT5S}x=ӏ400)xbI3sv`ٲ /_Nz&|-U!ڋO6C}ga+@ofc8UONw(_5x?O=넯:nڙ;޳O5ﴣ~3\qƑkP7-OZ`,:Z [0EUTQH}8qs|*WfvhF5AnP|ʻbzק;gZ&_R-EGu5R-(.+Q: y:xu[먹zG=d.Z &מz?̌-[ҖsA\,MMKO@⓻zvbtGqX0*=:`C\{1:)\AåX0jCby}(h.ڂe} '2ǯ}@0`1ͼm6{:|<8i>n>άɷ^A(8TDE;Rx+=V)yȿLaB Bj0N/tjb/U@9iw&ZD`#zdZ=Ӫ ^(J4ډ4lDC1haR4a&0-ܒt)yΞ=yL3w@oWv| AQC%$̅fϞ%E(.(Y)|LܢILLq/>뿟<]p<?~4-:߲<[>J}IXse/sW^)Im{~~k-8ߜ:ߌs}sN9=7_?egNK?;}Ų yQnEsΚ Sw~vQ{a{ߟ卋s>{G/wϮ[3[vasM0`ҲSdff/Rv_?+LaZ?Y#g1א%{}ygѭsϓ bׅn`~(kvz^MSqM)/٥=ș+V~#<">3G'A}B[8psszE 3pyz|^| a-T6hmQV񙪔H߲lԣ{u=]ˣ3?+:!P UazuD*oOu]r>b)x0p!>  ۅs;B4T/Hkj:} ]Q 4Pbz0cAG3p2 vV}jꁷE@͠aJ= >$|4k#hWzRN 88j99jW?Ck¾Q>EQjCj!5>MN* P `w'< NʧZD]BE/Z }4LPfHPvS=B :`(T:L?v'&<~NN/Y`9s&^0+ay3g6I5ߣϞ6])~ƜsQJKژ2dȰs:ZǞxSBs(1S']ʂGMOӯ:/sf^~VegξS]W]_Õ7^?9H]s]sxͩPӞp{UHL&dN6^uRJk.?i'%_t/>eŧ̺:S/?sگ~V[RqM nYl36$w7.˻t~>N kQqaq NB}6]y=Ʌ>;y(#WDu8 7VՉQq`ljUs'LH<( 3F|O={U^P,8-稻eU}2zыȫa\DH׸U:ZeP,ǦGq#mؒ}gdeT = Jɇ>>q{=:mkawmI/Uy|_]EwAY{0}@¥> 3?A .jFP=pB/PR׺P,<#hl-en;X]Y`hknӯ8>$>N:S|C8~f&R@&0LssPF8D㣆#b?A@v_*B '*J͠xHkL/h*4PPL54P: ah)^*JL#I!I;v6ۭvU<:nO)Qu41'itl32WڰtEW_|s-=wɜKf/h3f-1s)~|-^VGkfv,A)iC=W8o2΃pjLjLz}3(d_%'=wLu]6{%snxx t_;qyɷRo (MK/U6oJuAJ-ڪsnɷ*%7h͠W|_ro`M̿/|цw_=$e^BꒅkW/D-4.fύC~vῼ]_5Cz}ۡt/saO矺_g^q ;fdguQ|3O V1_@~v1>B;W\4Nl?7@U$ T]4!Pɟ]~5Ӕf1?BgN(AG}*m"kg\@Q%d^> 3ޙ!~γ}~K^uj.⨊w5@ ot#gCʠ+M è+;}5z8iGeffh9PiKzwWu ̏ OFƫGdbx1*6h(dP`B1pE:?&@ \EAPi怦_/(^ lL!|\ckrݎ},}"Kc12gpǿDICGjAifuŊ@ABSXo^M\DlU&EirQP4!ZK-.B U_@i>(yL*2S쪩L@Uk38lC错 PLkj ~0Il{r?M$0zMӓ6^bee/YhjhU V_bނsksD&Gȉ{%p*7f?²K. %ӀT V5˖ҙ`%֢PZZϙ5m[pݴ{{_yߵkX?xW'zS:WgҖX\k+]+dK~Mt5)à7aȀCo{]_A}g'^v!eW.?uSI_UOa׭Zx^œiWמpŇ?pa_z?Cy%뮁_=߯tsuw(X|~~9/Iz'pU;m{B?V/_BtljOt_OMm =1k1}qA1T\#S/Wd~g 4if,4iaπ7MuC."Gh?EBmE6E4 B Bj0 6QfBK~]O¤PKNTnV G7e=5`{0 &a/pzU Lݧ7Sc<Hzhx4K1?_,esVbR)+WoVNZ*i 2H\dzhH\ŽI+V%ÏVZ Vk%U{9RmP HD(C`z->u1 l#]9_{͈׏g∻G޵i䝩ߙnuGΨrIv-O2GAwly⎴'Lyg]Fܕ]kk4O=y[_3.oT2 |d7_bɼٳݿCkӳGGꢃФj֔5֕L8;f,YKu  9TsEB?ޯ42Dy%%RN$^iTľH`(1_1q1qΠUmptB'%` "t;#N ́<x'LP-ѧ=n ‘#¢%JxF_|1"JǸqժO6`9/$XQKӋ(hEA)H1`_H74$¹ԨACbFv ju6GB_q9~@(GE[pp#wPT6KVoB%c3FSztP>Nt >tM h| hw;~.ďH@xSb7 lJ% Hj0^J9 )BR{Rʏ}cLjOK$hLh<} ;j34U42@g*lT?hw@B(K휭h˯lڜZU]W^Q]V^UZwVE1T'TZمAeO>Lss+-;MFN.!ёWE5\^Q>˫_:_mFZ3*1pJ^M)T=Zh֧u ZDӚYViKO,>6p|c.{tNZjQks SKr+\v3 ?/-u5+.3{UAun: sӳ~{ny̽k5jݻwv~,>C옗Y}&>gj0*?9_$@ 6js~4|lP&.楞BNJ)b+/fyU%;$S%|^`8'Q&P6&*`NIzVYT50E+Ҏ(QR5JEP!*;q}# /hsJPnT4Vc6ҐGW '",(I@ TnP g5څBlTP#nhYs =<@$r_A$E1Yp#V 劢P!B3-zxB4;G J MJ}>GԂ&O4g` (tP؂ʹvrh ɑT }@=|$R6m_eQTM;R3-,;HP P(P:AfHP(? S/F%B]6i$eR 6ۭƘ!dI}mxT:L?W#F馛on_tt]ZwQ"*3n$zDy\FG7t_q#>wWkc>>^=cߑZG(|zu%+~G]@6L;ck~uC}pQ\z;?͛,+OMIސ9pK~yaAuYб}Zv KZuk-?o+N?zuߜ?9;ugMǟsw&޽cv|E`LG8gX|5jk"ipbvPwnZL\:t ?c^FgQ_WۗpDRDO4*AyP4ÉMAZlDKȵѩ甎j9H 6a(J\YvA՝i%K?I7Y + &vGI:ޙTzwf;7 94RP#&ѡ5b@e=T=CN;uBCFE[p,ϑXWP@QWd|8 zOR' Q >ޑhrW4g~B|?vv,otWs HjbUW_UœUOWP@O8UNh;kM4qS3 4zP3~<ډo6Lǹa&pk4:u"g ЃQ9=KP'*UW%jb z=:6=(M冸*.Tg6QEe)tTe= v?APlm9Pv_(j*A׆z<@=5ġ4|"F r-e} P'snR*7V.L͠"G J=>|4t >tM H3D4oi|4y;'" p \rt}P| P|Ҿ~Q2Xhr/JNAС:;c_*ʤ.I P~S/F%4 g<p@ZjH>N3 ^:W=@Ҕ3! у^;@cd=>e:HS#s\R# JtpLۑԢ~XUQ8*(-(.*//+-)ɂʔ2s LҝM2 ,gB6aTQb栅0%euU uEI#i)%qKiAKQ F^_O z @)dCG&3"9xGo`Js՘jGR;zr(GJSR5"$]MJQytP5mPQ¶W2DSs ,?/N>R )o/ŨܺVi?3TQq{ DACh}.UxQjv6 <4$|4Q7tM i4Mo<q xN\Iא7w>lyQ &R r{DPfRP^9T O@y(?펢X*hMz\#Ѵhdtu.uxeeMEEMy9ltuYiMYIuiI2VKŵZzU ՔCJEP0* *G_~# |ŤHߜa+.[4fM?+~A9,l•˗^bݺ57nLڼyszz:}>&pIi p0T4u'K!uma0 8XAԅ9HQҾ`)Pj')P V:M.:Q.7x^t"p{@aռ۴= Zv"T]Pg~  :?E  U"M8 p TGF :JFPSPc6 tupDLen;X]Zx[v_ :iD$%:Ղm{j$l5pd )MIC^#ꆎ8k d3O@4f<" ) b" L5 + P P*MܣXG*Pu50*]hw%LCg(WHf< FɆ)'T>Uz4 'xB39|K)k ;j[}TWT74y0 M-MJGSwY[6oJٸaú5kV._|ɪeKZl׮ސ.))19y㦔-[/(,,ǜITz?5t緆|$`w)t7|<,Piz `Gi[À4Mo@g98Q; <ɆlݧEp[=&RhCngGb0*jLsf;M~:tD.Jg%P/?| =>0A1|\>i4iz|)@AP) J ڑWi+Q6!UPCnw@U6Ci_*cw P`(hj2 E(څvԫ/,'xW1@C eTXTAvRc*4LV =.w<ؑY釩H3Ӽ@g~v݁O'9 ε'[m%sڦj]D~B"pkYFWe*v_'|ab`zbfgA)99yyntU: {`ao33( FhNx. `]̈́ "y=ȂQJzgrL) h*<N(saȬP~X?U߸j4ceF{oANG >8 61T"&P/!u>>caЏ` CB\'|B_oRuqc ʝh4)\u7pCSi ={ UAE:DGM-Z %|sPgLlޟSVj it@ >A4if&87hzcӴWg%(,{HqC'BYy233mP`ZL&0j'0mVgV _@=Tqۀ{dPWNPT5U P(i<} nQԷi0D~M3ӞN>; ,f: _Wj[`Hhh`i7<~!mkU0*L !MkA:| `+k'/P>VKbe]õ^ %n{Y qO-ԤnvIm8j:DOghky/`9 0:QTD #X9뫀s(Յkuq_f|}p"Yxn |Q-0@*IMK9~(ޘ@5Bx2̮fxp]NtvA\Ϡט(LThÛ#wHzxNX :žcGq^T~Kxϐc{zg!ۗpmb9Mge]ZLҌL\-G-JU&R!(pSTۤ[栂5ٍ ƣD bS쀏IduF-T N<1!H7*0eM4 *×)^ЛکA;ՠYW jQ; YK峠NjPM*/5;LCLIPV\b8 ԰nB523G #"#Fq FO;w/ԝXM- 7%4Լ{9) 71B/()zjwڝv+'Fu Sgy zЕQ uPs9%7tR[AP}RZ W7pT.D Z؋ACKjg,O_߸wpqhk! Ԅav M{'?2 A_hxU.øo`Cy.W}P]\aک=24hJ҄!x=Ib0,!EӧO;v/0|2xH@aE+7C Ur3l0%@8c0r0680C=)vfG3(4Ca0' D9Z<|qO0Xc'qq)v7{;` s3Ld8gT!.:4&ى1 zÏ ??#>e5:M(T fڹ~Kеe|v \4U߇ VG(Axke6/ѓoYnjv: E:'xJF|R5 zf#*rEP&@]/:e&lw*H6JrN:CcJvN`wAE"Q g;v5SHԅ c(evM [yrO;ۿ?|.n-S ܩ>Wo:dHUA]6%EvfUx`qd\/e0im`r NSͪHq99 1e<[.3PLg<)ϐs)B+"j"4ܓ-hX;GLQW3}#N >!Q`GA`Ӽa^D׺>}l5bE_ix/|/zߔqN\ $Pu`ҽ^(0D;eً^sZ;CXu6X@xzzXf~?}f}P /_)D"H$b^a^_H$D"H)O;`UX2xH$D"Hll./D"H$5 gv_S QQ:x`O)"H$D"m7v~YY9 _Q^2>"H$D"^ ~iiQTr}yJD"H$D=PlkCE)QVZ,v_$D"H$+uV~}o^)).)ծ_{D"H$D{|~C/*"_\ZR$v_$D"H$;~aa(/RD"H$D{~B}D"H$u^{~x Feԅyo}yG$D"H{=zEE FOl_եw^D"H$u|;v4`0 tLdk}կqۉϿD"H$1:ʞwO>}2k'۟D"H$cݹsg؈q#v3[dJoI~ϿD"H$1WEv>U]|P2x}`u B(*kQɳ>#O7ەgZ+"~.._%OVlmi2x( F>bxDQ %ba?3"+^7Svo_}XJ aDsoʄC쾨DVs}5=a~¼E-]bվmq9 uF||v zNV0{vAUC ""2/.~c)1%=iSWPT\vݺޔAqǬ$yEԌn~2D:eN #C|{(ۯ6TU#|9qL7OTQ&\ɦ:<~`Z[[S[S]vN4za4?鰞C agK)rQ}1 Z恞֪V\TᔯsfgЎ !{ oӈuKLIߔWXT\RZUTT`r544慴z*d! \B$JWl hH N-8b0E]OC58 趾u@[u5[pGEu\$pnkkˍwc ybuqq׍,%^T;DSY59Hw TXda0 >Qf ?L3pLb}9rMR-0rQaVwǮ3C?3̾DkO@1PQ7Z,(bπpC (*)#-LBkll/msupy \h%`58&[Xay7טtbh}s= ոv"|~uwٻ*B178*y_%RᗓtJ~v9XSڙ *՚ o%(S-gxv Z=AbEݥXX=H=7XEW=ݪr&[X"ޜI@[M0E@sfp@[M6"QTv, [5rbUaN5~tgUkntѥvڹc~ItEs&OP,wV9x=۷gCdsI RPƙHs4ぽQ!{4܈uKI+(,&jjj󚚚 ZGwb]B\G[hGթ_lYˡ2"%q<'%݁b`mC~MvʉS5~i~h̲o(b7dS"| s:4hɚ+ )eI&%0' _frBubxDQ^¼E9y%%UUHUIo`&'nG+**CZcsdBվyB>ȓ*TYOE#sB!}7̡TAy<- Q"QLq2$w8q4'?bE@ LgQANS5Jj;^Q/[buS6mP_UTS^U] I㰧j]|hWY)޹ƱW{[aboC}r}EstӞgCm^o_f~H (*Ջ.ݩn)'7abE{z{ُU=gӭN8*){-^Q ḇf~}Q-*yvgfyM1.kʳ{$v_׋>?ۿoJozw>oO>`QQk}`qp,~q}ws܍ Gs\D"H$|ɓS".݇'W/v_$D"H=' .]v_z{D"H$D{W;v_ϣӯD"H$Zew߻O_̖}H$D"hQW7sZݯVm_"NH$D"h~[[yꁱ}wܩ7QU]UU%v_$D"H$[WW[vǎJ8~}PYY:dO)"H$D"~S}X>W+**2d}H$D"h/mWgdaKe~kkkeyzcG2Xwv7~AAAHQ%=؞!"QTzעg}Fn+{<]kWE\Æ ۵k_o0 tLdklAacc}B (*D>lq9 uF|ܹQhl8h_Z^ZRZ\T\XXvW۶m# oW~! Yg 97n\jmf -h>9sE΋Tck Ml ;}F=Jbn+MX NY䮁q4bE%c Ks +Ss1 ^3Sm؈%eE*ucߟ8fxy*eS7 Tڗ#[ g,e!iSFZm!]PUUnT0E=Y/vQv #Ţ̴#ve 1x81Alw]r2}.ٙ}&vƖzdvlV)f߻ۈcE@XDCBAs-tّjt7# pTŝB>ͪ^nY09]>v稜>v+5;>vI}QEKKs *׸ںlHCZvt >pe~3GMM ]@#0kEmEc*}Wbxo w39ԹbXd]\ =}s챎݇G9~CzJbq}3%hJ ֲO.Ogރ~d65:eV*a{id+T&K`@6ƷIΎ?ߎֲO݉}Qw޲֮[ 񳰰Q5Ջgd_Y/iU#}#.Jd]`?$GuEqC3~[[MuMMUjj?vǎI~PY#u`sy皸?=+08 bE"z6׼i#dCGH]hVw}~AcmI4;1]`kkׯQMXݧꚪk t~9k=oa}o;Kqzh&-(uޢg.P} ~Ti"?߿钧5~*_[[?:g}ɲ_sQinnNau5K\oq>}H$:ң_s%ֶick׮~ݯQi==EEE/(t D"H%vХv}lF&asϿk%%%BQH$D=\d+_Wmb՘g<8}zpcqPikm/D"H$h"o&>lv_/v_$D"H$+c]Ow߈m!v_$D"H$[V ?6D"H$oۺM}~q?o/D"H$-}x}zw_H$D"H* ߨGH$D"H(Շ^~kߓ"H$D"Qn}m~q7i#[D"H$u>H"_'H$"H$s<7{>GMW@0{/xEy CO,D"h?WPv_l#) r$$FO,D"h?}>,=ES=^@E"H$) Ν;Mb@E"H$}rt X r5={V#=iF'">9Ή 9DƿH$'j_}ʠQ@n'f0E'*ŝ@3}rj(7Z:tLk5&6 jos0 t"H$Kmp=[x~lrwR݉] -5VbFD[[I,pRթ a s,ʿG! awq`jh'}9@ FۛkwC Hdg2CBE"H$b_ߠkv;ޜlt8`+I>QvtW]7N/- E*5ݕ 89v.vm|:ZwVCw WYB\p 'gZ GGlvk<p6^֪7?Lua:g 1L"H$˶&otW}eU)0Vޓ蛧}УڸGI.Ivry:bqg5LQɡ !wRT=mjgaB}`e wҊ xIWyMj@Џؐ{s'x ぞm2H+'y9DJ$5nt.SmBSoBŝ*ҫXm"HX->4!V&beiW{5V*}\2C"v_$D`ooTҏCf]EvG{0)ُZNrmt%dO0n"D516W wU{U|{V7E&Q1(^`"Cj]=t Ŝw<.@'/3$bE"H$ }׵o>6rb}H$e}zc[ZZG{-8&IBOBPLa"H$sEbqygilINzrb 'D"H vvi){-8v&IBOBPLa"H$sWGe~k~gZ$'!(&0zbH$DlO^^D"H$D ~f?  C)l-v_AA;^AA}AAAgݗ_AAEtvw(/OAAv_^AAD@   \bgd[bAA{'WX/  =&҂bAA+>6AAv^x~F ]왳yIAǺ,v_@  DN>y}oZ EA݇m[[wl߱Yf 6壖}"v_A"'*]jKJJ/_+nj3z볮8u`!AAz&΋fqi W!C|dٲeqk߮tE3x~  3}o۪>Zۺ)Sgu%5xLQd0cK_Ѻ*B}k% {3Q} y}~||ƍ󺒂|Iu9QxLQd0cKykC"Զq}[wA}<0^Ў~yU*!!!55jPWX3xX^VY[\R+uز&ػۿ&3&_ܾ>;Aa%*'}r]mqi!v޼y] _]Eeů']Ek7sR'h^x^4ԏ?YbW,(g>BfyYeiAei~*+]#`-.ٕ+ӱwO<]5Pvs'@lD0ܹs xOZ< 2k֬ &Y L:5Ft~HOVmM]z-ߖo^ |Gnnnm׃WI@"A}X\pAA 5Ftcm玝=U#jK_Nb2SpC›7~^l{#\/^ 0UV弡YPuO%~Ʃu.L^^^ף$`6',lej¢YYY7o^v-J8qbjjj]] ?=4=Ƿ ݟ$ǟu7] {׭YX_ݔw̹[®G#G\\#<ȩ>?XF8O~x≟yss3A1q>ƈwOoG͎_z̟ƿF懟\O/3fF>B Sݧ['eWNxL-귷͘*mhըo='񄙃.Z>5Zz|WhػMoCT~EeeQqq^^^—^:'"QۇX0?I'4m4Y) Z <'W`Ǝ𿪫>qO|\-K&ή N8˵yy-fq19><,X`fذaXYYySy;fnu{O}ʷyӠ.S?<{~qr봛5[m.ԈW{o:nmϾc/~pe$? }.;Ԥ)S#Q'X ܹsz%KԏlO>EŻC Bl=<=-ؐ zGzȻg$,,nZВQ|/.k۵޽Z_O_cS%;D|J(V7|OW:J,W:ԏ}f]ol͜1/_mO$i OP;ؽkwwL4ݭ9b:fR__4u(~ 7&ͮ\Ӊ&Oj7g̜6c瓿7~o7^{mBB̙3NJAWUUqY >>l|YcGvݟ;=>jcEҖ–Os[f7G|޴'OaM< MZZځHiӦ-]>> ڭc- 0>_auG|uk֬YdIee%F.wܹaccO>5fwM-%~[^|?w&jtnzƦꚚU,Y<'7e{d׮Oon恷\M-~c|ѣ[n}g/ˣ:`[oA~t'}\#ͫZyC/yM=)q-AS&%%?"==5Sw;oAN(),k̩iXѼT9i_.ӚC˯oWrdT^7?kf!PWy>o/^)w}7Hy|i#q7hy߶ amLa{ tZj0GٽSm -<]98@te7V}x|3v![P/ t8q wYa=}y Wp{アzKNغm-M)kjK[2*W,*QNQg^S1y翋-~@WG , a1X>8̝;?!j<ׯ_O7pC]]pauGM_ߤ?O(V_|q5 >R>kO?;f̘ATcjpPQѪ?y\<rέ\V4``',1;Id[ҘxK%[8_^|iӦUTTj ^MD?owƼs^ؕiНkjM^{Ó0t}yWwm-_][?gF?ĨoJq4m_zλyۭy8kK.o6 ?v#G /{?W_}|w`܇Mϖ1;:Y s; o?c_}ٲek׮E!_YY9wΜ_x?}w[wMΡ<zu/\I;v$XĶiN?n7#G>.1:f}w? ?<# {;S'Nݺ˿+ۏߍj^z#aqqv_|z>hy+W?Az/0K^~mkM*\Ls!Qbnn.V)W_D_VGfW|駘1vBaudi7(V=MMM~;,Xзo_,= .:S?g5n 75u3iSC߉G͸W9mj0[JRϾF2XKWu#¬f͚LDEAo馭Umc߉7;l1ԗ{b}[S(χ} ''NMOKJJOZE~)OۃO,L_l:/=0\P'(=v?w ͟}N^}/TSUqEW\wޅs9˯km}/ M9_g/ohjW\-ݟ2eJ|||jje]Օ+WoF >tĶN~ϱ8 = j]߰c߹s O6lX}}'&q۶n6?fO0~wC= ן?a??ƽ|K-/ DؗΚ:k*4q*q9Q-eZPSM7vرﶧy\Ow 9oFm-*;{KTM<8⒓N˯o,B8<\q]%/2׼D^:C78)VgڿYA]yc#'`Zvܹ_:$''#%33sK, ;ąCT:S7; UomL[LF-|$^d9s坻wqAѰ!BavEKzvw+Wm}i}jL6z׮-!c/Xo 5T}/ ƞme2ovҔ=b 3v,\~=c p\D2>sWrA#vz˸i]L'$?2Roe3 ?ЖAMhkl}'+H',y|g+">דoEئ&i<\pu;_~|_?c~xL-zqbcn^!C͚_y啿q;;@nǎgS+m5;W>c([?C~N{璒OT0? ŷ1?tP󕩑Og?/n{y츱c_`~SrAcO} 16(ǿ}{zwWn^gmMMOeUe͍lyxd7gȠNeE)ܠA]˶|Ec~5+QoSUTvOv?>>.砃4ijLu<;Z?̞͘a건jt܌'{M'Gk owefï[ވW_UVVロ3g'|Xeʔ)/F4ʪopnjKP[[{^)wŊ)}݁'t6>}ǩEVt۲xC[i &M78cϿYO+:S?[wmɦ|^ܽkdĤ<^PRKBy77nْ&KRx7kqm߮~|W:/8(yNIOO_O+~{ǣ!v_aog֬YN%WӫQ' tZ) :}ztKoݺGlN{q3f' NY2]9շk) ] ;Nx}݇/*,**(*.(.--ݱc},WT)H*+Z[zֻ&!!õ[]e}͒"=!.䓉J'0ƺv\[ڬ) `o AF'>mIelڶmݯ,/+_ ϐ!CpCEC]=XNc1G ?b?LۗyAa&*_[SmIgǿuϘ1߰a=U"{1ԵoWc"[ BӧOK~;/TVʻ  #'~Ey}AAAv:c]_Ĺ}Ҳ eebAA{7O  BC]   (bl+bAA'K_RRJv\   t;1t_AAz-i[B}~y/  =~]meeedKKJ  B7뇴0eebAAۉ/.-- F  Н݇/)./  KW}h_   t; nm"}~xb  н(v_AA}x,/v_AAzΗAAvŰE7AA$j%2_XP(v_AA~o۶ka  BO Z%~o3v @   t/Y._ v_AAzJ}yGAA}x}_TTd77AAn$v?//vP   t;QzKa>ybAA{݇0bAA'#v_AAz.,v?~A~}AAAv:fMOar  B҅v^   t#l  w>k  Bwk`}AAA^}y/  =~C}CNV>#v_AAz4JѾ}AAAшAA}}Xz  sͅϕ  Ѓg瘯/  =h~nv./  {b/;w\nA  B瀣`!DO,~~};q  }=Q}|MEEEbspG%ߕ  tzw>C}y]A<9‚|'rZ +Wt}w׌;W^Gq  '*Oowi) B_y9y#c ai) B_y:cs+v_  _I:fsO bAArNjAE  BDm_Յrrr ^ ͛S!Dks>~}!  Ą_|Q~ݷ}}AAbȑ#>`v?/'/';/x/ BLX|E'76s}2v9WuAA!pby/ B =zN3[b  t%KQ̚5K|E'߸Ж}B  kHKK_I:fozw~  t .S|EoyB¢|)rZ y3x`'Z_W@/@+v_RAN{'/Җm]zwmb  vbʔ)+:O~^n?RAN~z؉Dv~.e}B1rZ I&O ;QWW'De ^l i) B'yꩧ~_`A|E݇\v?_  SN˰ t/vfرz:#A3xO>$w|m]ˇѷСC=K>  t6x &`Y|E e i) Bgx7%/^e'j_}  tKaY|E~A a"  n83hY|EW߾a7/"  OťŝBŭhCq+ZXq"h*uZԅ*.,+9M2sd2IszҴ W"y:,~x"KD"H$}v֬YϟOR ︶v?С#piyXJ$D"qw}#;^>v8wa<,%D".DFF;EÏ>VpDD"H\qd/]˻sn+[a)H$o߆ԩk+S4h2W}1H$D⎽{ET\ 0va쾴a<,%D"?_YK_}oHR"H$ *V8dqH_v_|v0v?lD"H$ܼy3]t˖-cqk}va<,%D"8СC}8;gj~ԡ(iyXJ$D"q͛Y!}w˗.WyWgHQ'H$DEe̘֭[㐾;05H$D7hЀ+eݗR"H$#aZlZ`}7 KR"H$#J*PdIkO7ݗ#KD"H$Ȑ!Cdd$k Wx'v(ޗv?D"H$Gd͚uѢE,#}wfI\lٲ%JD"H$An޼ ~zv;AWED"Hę7o+:>WxG}ID"H$q`֭[YG 8.]{a)H$DXIG!}w>/p_FD"H?a"yqjpU]i%R"H$ -mpkWx'vHR"H$6B ︰1Vv<,%D"3̞=Wxǩ?}4&:6vP!iyXJ$ 'N u֬%0/6B 8/\ݏV?,~#KD"dرۉ}67I$-qjc9iyXJ$ yfnH†X6A ︳|_wF_0GD"©Sp5j9$Aӳ6A 8.\>;bh`sa)H$"|8[FFFWV$l9s6A 8/9||c<,%D^{ g˗/O4{V$l%K6A 8pGWv_<,%DUVN˖-K>+ +o.qlǯijQKa)H$b̝;7wܘذaN=K$ɞ?y_p9WxǑ?O}?H$ƌST)L{8m6oޜ%dO}f?"֭[dqjDE) x(|_}?H$tҠALܾ}ӧSD]DG#"UƭH_Gvs#MK$*#}vH_gv{߷A ~|#Xpdʕe˖-Q<,%ĚO?ʘCՔ%d۷+W=Ui۳o}pnK/GDb;#S?Cr)RuD@I +GFF}X(yKRJzj֒0@ˆ(;wO/rC#?N9{/|aiyXJ$- ,79D 8WoK/GDbK .]Bjժ `!I(Mk֬&H_v6v!H$kn޼ΦMvЁE_y[n$ oܚA)۹!WxNj߳{ݏGv?ӧ9Wxǩߵs׮vhiyXJ$5Ǐy?dcUTE1c'd-Ilڴ <ƍ13SLOYB ︳wnoa<,%JCm6 Ǐ/Vѷo_H_B{_o>LrIʯ/b + ni%R"Hq_Y+̙3'w,/Z /J}ɔ)&芹yfjOfo;w\!}w<]v?p<,%ĚW_} .VXlYYϊ#٧ -֭[bELy7=A_~[/ 0H$k,YB7w=Z]v n$J,9fLܸq#~;oߦGq[3;a)H$̞=;O<,QVDĊ+h[%I̙3/^sYh&H_Gv?g|.nݿ^i%a)H$L0hѢ,Op򌉉aR}JxWI&o?2dkH_ovߗv19H$k^Bq|8yoΚ5+Vx x$5j57O?!C7nL6̙3= }w}JĩGJR"Hׯ_5X?ɓ'7|Ә.It&N$ȿdAqg}J/1DDbM|Aq:t'/7; ]L^:UT2~as;w;ox֤F Wxǵ݇חv_b<,%ĚJ*;1+W^y2~`q͛7SN3ϰNå׳qgy}+XpEDbM޼yg͚"\Pq|饗X{RS|'N,IP{&N"YСC|e˖ ݏp>^pDDbM,Yz)qܾ};u+WdUVamW_I$ aÆP]vϞ=Y$ u놏aWxNj߻w_WaiyXJ$5f9rx'Yxc޼ywuM8-$%Kt/_BnժcǎO.PE{GgPiyXJ$TH_d#)ID]]B޽kժ"9sd+ﶷ'H$ ƍYk(_#XxcUV/_uD.:{#G,[,Lgsv>v !H$߿oa~?~'Iċ5k۷/ o<#7۷oJ*~ QΜ9o߯5s|}mX{F 8{wﵲ11GGK~\lٲ%JD"@1'r,$GΝ4i":(>֡L۵k"@H_i%FIrg˖g/TTI{z ٳ5̝;7W\,<@etwΝ֭[jT -[l۶-8(S*zCdޑv_`a)$'N>#: ؾ};Vjժ]tE{"iƍ'Cnx%JP~)kI"={ 0~bŊM('`8 1ǎ!~8#K$9A5A…c޴i>5lٲ,{a>}[ 旿… XoZܾ};u< k f̘1W+`/Ça yXJ$ѣYYPf.]H&J8H>ttt4  TjU TuG}z,n޼5?%k-h!\2M4!v-|.Pn]n (Wxǝ߿w>}R"ID~0Yf?>[=p)w}ݻwӬgϞua/ìҩSƍnr*yML(ZE]ruH҅/䦀"}wl}B0߿<,%Ănړ;p!h>i +:t`cyL 4Zs[x1 Ibk.|ұm{ցF 8g|=v4<,%Dĉe7" 5mۖ-[{ge߾}X1Mf-ZU%{Bn)_#Xđ7oYf$T k | f]aMF 80[D[a)$"T.IicU?3ӦMb jwɓʖG6+cngtN""EL8$1x뭷9s@=Ixpfhk?c`hiyXJ$W)R>믿ƪ6S,X@]HL_|Y4zS*;]w5o<q-[vȑ,$?p=0kVС7+ӭ}׮]3`R"ID|MΒ[ݢMS`ӧSk>C0&&(^v_}:>tܼy3kd̘qҥ,[٘I€/%C ,sN||n 4Wxǝy"1ݿ ~8"K$8p`TNa?GP'sL,Y'v,X K,c>}ԪUÄ_S_|+{SHvZq=t,$ٳ">ܺu+  ݏv_"K$1i޼yv0QhqQk}Y7otJ{1jwԩS|}KH:fͺh">Æ X1iҤ"E$j*ǏǷG*V~; }wd+J/aa)$"uի&ʕ+=P駟Θ1#M?/hE}ᅬ3ɓ'Y(^ǧ(Ν[[1cFYHAURE|[۸q#СdɒcǎekocHR"ID*UDo!CPkM4ܹ3MfĈ˗gqΜ9sr"<[EݩNjt֭~,Cd%0W^M.Q=H_Gvsqv~vn_pG `Zn}en)^1QF~Qkƍ46i 4jժ,={ujժԩS[$Mjժv5 Wثϟgǒ%K2eBzY?)SYu0j(ؾkA JR"qпnɓ'Ϝ9s0Q^ݻSkZhrҥKFh5~cslقOXoa{cǎ_{֭[㠞 Ib[n,t3.P@MuEn WxǩݏIY8~lqiyXJ$NQ> 7EUuԉ]SB8k֭EڵkÆ YO&L8{aaD=` Ybٲeiൾ I0Б;wsHTPF i+t cKR"qʕ+WfY\ 7oJ0M+4,#IhVx h׮]YU \㮱ܿիp.l H8RJ >E)!禠!}w}x}i%R"q sଋ曘R5;ܹshhٲe6mXܹunٲu0tJ*0bذap_Sw}{;66$ɓ'ٳYٳ"s!)2l;>?*Dsr+䰒?ӴBiӦ]bM&֭[X6vԩShyX'/<}߿;vlRXb̘1ȟ}'% =|[lk-ʘ1xcǎ8+WQ+@vOa) ߡC_n_>}a ۷o!C02eJձ+{Ga ڰ˗/W_e/^:^zծ]SLY_a2zo$,}W^!m>Iqz9}47+"0p=򰔄vKƍ;wU[O?a 9i/cֻK_~!?k[u2>)I6ܹs{S twc-IX>#?: ~KH_v'sa) ][.ƽ}X>ɲeˎ5]w^Mͨg &t !|P7)o^;XYSO=5kVԩY*t-_$aywcX u櫯R~ 9J<ݿxᢴa<,%r[J.=zhZkƭٸq#֠WR+캃bvE.,~zbBC=d]EkժUiӦeVZmۖE|rȡ$0T"oΝXgO`夯 }P]i%򰔄ݒ7oޙ3gҪZ"E 5e_h -AV&M6ر# #KdoذY-B M:$a{@XOTuԩ'| SMAF xKa) S'X͛)S\v-jʕ<9-ʞ=;;wj׮ݧOٰaի$q|HX+TPaذa,2ܹss; ҥ #lRF $aYbEtXqI|~= YdQ~7n #}w}<ǁ<,%r'N Xv~͛]^.]WqV՚z `͚5"A&W;dVHi&,sBJ* b!IX.\x":  <9B 8vX\"Np,VDAE˗+ߏl߾̙3ys6nĚ3fϟEP6ˬ(+7M6͚5:IC(*K1bŊGխ[G,$ K PuӾ_vDDBҥ Ou%O7Oa) yK,܋;v4gΜ^ٱBpθqJ(BCYeyy~[{4v#8i*[n2Xs5kk׮ I‚-N,LH.Z.iB'MG ︳nKR&(<ؽ{7:G}c {9>sM4aÇWXBn4h9֭'+ڵkH.// [l~լYs_zu >_#VX0`@jX$V^nra/{J};RN3ϰOϞ= +pIU<  >}:Gtt)Sܔ H_v_Sf W(D<,%aB5E3]9#"}N7nL.Ȑ!:,B ,ӽ{wG.]4 L6@,9rdٲeY$7orݧBk֬I*u>ݻwcCh/:>.~,L(YO<"QvmnJ3Iĉ? g/35򰔄 eʔ5j,~:wK8dȐʕ+S RNzjwL<{a}ٳgmuǣ>zYpaɅC/_e`Ĵn@nݺCv؁o߾u|ƌST)!܅Ob {Eң^zT+?w`A׏ZHMjifĉ%$$8tO ʕ++Ꜻuf˖ǎڍݺu [ϲsg9r`-Z h{qڶm鋍̙3'BK/%K,v3?ex'OdiӦ,XEаaC|$>U ݪUZۆB{O!a;zU#/yjժۘJ>}׮]K(NsyXJ>dGLڂnٲeXVPPMÍ*Tr5lƆ XMԩӳgO Zo!M4ԩ8/_n]{(yH T"S9{,ٴikx Xg֩ߓ4pL"[k; HKoA[#;n}3Q 5kփb'L ~k@a)IPn͛7vykv-[vԨQ4 7~FB9\0_,q{X' Vk;sL|[ME*kPI+ҤI"H6|C5kK۠B!F ︳t\/~0ɒ% L4idҥN>231$3fJa^Y;S>&@n3g`3wO㏬;w9sP"8ɳvHO ).DH'3;p ,GY&eʔf7ŸyzpBaL̙57"Ekײ6cA]);.>9ȫWƳ'O(6lثW 6IR嫯2, |ժUTR ֭[ǭR!SOvΝ;A Fn y&IG܋~ᇬŊ:Ysʕ+Y(PIp3&(ARVs2eʴdYtiƌY3ϟg*ZxF饗XOնK"-[D ;'"w֬Yg̘A-Æ p)-Z]|j7C+p۶mX1Y(247x'O_Z|vm\;ws粈~:C=NCNӧѢ­(Puu],t|G؀XITxFB\7ndmBNu(H_v?@G(&v_)~/#gΜo&RyG+M:|9Y~O;v UMuZk^{5V;Fhqu,Y蟨u#:ټy3>9\rh$ɜe꣞ν_b(4CzA_Nڄ9rôkqsw+Ho;w,پ}C=?~<.*ZH"8TR믿Ve{o "KI'66wRp] WO4pfx~Jr˖-e^xVuH!*@^'} ь5 @{j5f͚1?,tmY'm`eEh@GM<}u#}wk i\ũdɓ'ER.l޼yɸ}\ٳ_\Ly_V-$q߅K#FPi6sعs'IGMqdΜ]8u.!x?:;}֭[Xӧca5zGX8nݺݻwgc׮]؆zi`YA#d蘩T+-RdY`۶mM(34ڷo߬Y3PCB@; Z*̀͛ctȱpB7=Q?rR K,EN So1Teݗv?a(RYkp'}=ϝ;رRJ{/i}-!KBdoܸ1&o3=n8a]vʡ5kٳgvœ9spp:~TJ#(=a>֭[ X8ĺk D_ѣ$GA-I-8/G~fK0"wz9Fi#RJRF wMa{BE*Z*8ЇwW<.+V8|pNؾ};V~&MTH!ιs1z-֮CRLfF`'Nd`gTlǣ$k%m?!i2lذ{w9ꡇb(ٵk&Wx'vK9sOUs=iӦR@B?Z`n z9I] էoРAnX8AOر> /Q`;0qԄH5̚5+tACeeUqCi)UT*!Yl泥T˜9 x ݻkH]*w~xjXs-K?$zK K7]:`#KIPQ>>#ػw/d,Yz)&kxX{HXrem@VZ,иqc}m&9rp%m^Y8 O>Z62{,B$_pe^z=:S ψ * 7G#x\u]>"apk!}w}59O|Kv #p=Iaذa4`ʕe˖-Q<,%CpA/Ο?m۶m-X8ȑ#Y(6S`믿^4*jX ,D?1g֮X|roڈ &ʰKx*VMN_;vE1cMC}7oÈbŊeI7n,W_}ukUj͢^ k׮,}$e4X&iݺuv4PVZ=,cǪuq<4mE%ivH)sX4%QAE++GY}8.~"KIPQ.@>Թ TFShQik%QzTnݺZ`̙g! Nؤ>uG6類J*e%6իX祗^:_:y뭷YΞ=Tڵk9r^hJԹsFH@Ɨ.]|Hh6mbG E%:~{-0a6\raLpk"}wQ?~ݯر ǁ<,%AEE8Mօo={,_8;RHI&Ѐy)|NCUVI[>쐓'OXd6l@8m۶y4ꫯb;SHARb+8OB+X@@A^T5Qv;.Gk+8{豋"#5 :vٲeKj~a>}$rF!Ce˖ٳ7|í|xÇI6jŰEG믿F޽{YU~(jiAB3$O<Ř6sNLBIDAT:PB,c3ppƏ>_B{R ^z4۴iCRϖ-[3;vd:\pGpӥK"1jDE}︳Qdz12`јp~kI(O>fG -⧟~b-IX5k wu.*ڐі0[شi^g_a;YACwCEnϺh"(6'OzJ,bQZ?̙5kV޼yY$ W(x}BC9s 8XÆ f 2^~=NcK, HO$H`~ ]~G4LH4#Kp8p]v$a.'-{7y0]֭[xZ>#㬍 ^GZrlܸ=^.mHtVXB=Wd-E !ɓn駟Clݺ/ xb ㎎>nA=Awܸqc֭[:x嗱+WX',xk;?$xF"w :~׮]:t8#s0bp6lp#H/ `^o޼ {/qʀ~FhPbtw7藂GRPcÛ8c~ -7UD=ztҥYF;#GDL%|ki|X喝m'+"lB9Jpဃ&X' ?|W];>avpfQFT\d XfKXI?>XLgB9FyW7EF;k1h"^:iY,>b-^}Z0=z _5PfȐ!+Wfd^v)R$pܹse˦}9sΝ tڕzbL|OCu [_u@}+Wիy3F?w~ذa~kI>7~x\y^ZK$=} &}47o^ñ֠S 3B?ZpaP'NFu(ct-Zp6YdYx1 1:|X`Pz3`Œ76mE<y { =צRf;} r}`}(䌳"7%BW$M\Ç˻ @̙w 6'|=!tX=EpEp!qJ2e+-Xfm6G}iذ6%p:[n,paf;uԤIb,Xú8k\ΝB ,_֑5kV]IŊjޣok ;|JXcG>} a{,tIBEM1= r:#T$JF [ 8~}Eb޽}iF֭q֣رcwpB谄eQo;44C\p壽MNЖz9r$<4-_$Yc8N  4wdf2`jժB *ΊS<V֑߳'O㉓ 7nȔ)q)~4jEpfmE*Uט=,3f w][ܹ3gϞp1#[;Q$b:jf]tk>ParnЈҤISXŋcJ*I` c! ~H$߀ΩS*T)Y$ޝERAA9sN:,ŵ_~,4X4dҤIf?(nhbF88ł wZ6~ʔ),B9$qʌ,YEII(RȤI/[Šl;w$?C$E /18JwJ~'qL6`,0`1+eAZn` Z^K?1A6"MRF~_ݻwoР a^^z O@ŃhǣAs>L\7n#`ĉj&W\WoMI i_|yLGEE / 6o-?i`x ט… H>?}Cpȅ F NI.݁Xh@cY$!tXvQMZGu!HAΜ9|ɛ7oMY[Š˗/t'wݴvnTAlĤE\3hP(t 2Ѷm"EǏgGbNX,7uY@ŸɢEN89M6ُEY`YOp~ţ?ۮci5u],ɩS2f̈d{ǵW׮+vBkׯ,AbŊ;,4lڴ)!Bȋ?f"KD.[ y9s&5 |ri5m6p')Y`v_D 8$ױDO<lٲk;tk,y9"8;aEBׯ͒%K`"cp-Fz87Qy"믿c T\Q䧟~ڶ:r@:u*#A%0{Nj *1G9zG<N6lvիWY+\rÇgxa٬Y:sgСJ*\SHvZL{n?o5zY 0~ŋk׮ 6d!{g8K1=k ։q %U4@O,_|,t,Y$s,Ġ\L/kGmˊ+RNcc i۶.GFa6y$,"kj=!J3ޠ3yf(f-8s C k.,tRxqG*\@ 7%UBW$Y}_v"cǏAȑ#-Z & >̳:,\ڱ_z%Lw޽nݺ._6nsԵ 2|+cȐ!׮]cѮ%d? K2c|ޢEX6J.BBGm{օTCֹPЖ[nuNڵaO/-_E|I6 X;ٟX漐poU9:7YӻwZj>f Ɂ̙ŝ;)S݇,]`͛!.}({:QQb!w\}?u)~iÖ:,_lڇ %g )~رNRlүD;45ޚ&^X/d0:?1W_({:Vٳ =$Ao ya|)P_|9~~x+Z` F;w lܸu(={ 6w)"=i+75vƍdaOnKa !ڹsgSŋgϞjSvX&B=EW^ua̙3BsʕûX ؿ?fƳkڳg~ѣE9s k&O|=0v\߰ ǐ!C*W"˗, _.#L[4R,Q_/m 뭷X (;;B$+ёv;Ncvb}fiiÓ+W-[8,/^|Y+&3~nƌyGԱ34aF̞=]t'H nO<9 4fmEU`9Fio:>. t"O[cƌyo{?$@p>~"qظ4k:>49A1KNv$"mլduyfΜ9-'MkK?}v)iÖP9,R >B ,$F򴣜i߾}izɒ%NK :uW:thڴ)8pN*x tzӑ?}4f{ͪS{GC%)PqbGmEe"d)Pn!NG~'N%"Acǎu< ʬJ.Rb7Ș1O?"Ƀs>2#G =%Di_W|Ii%rXҳr'`$DDD8 !`SLyIv8~P(]1cXкuk Jr/^G1gA憵Aѓ:6o:>ed6몫.ێ^bለ"wse~;t'NtZ5/2~c Hb¢ fE :tr4Fn9ɓ+3p@Z?v?L݇'Ip$Tŋgʔnngtn۷oO.VV W) pf? iѢEvXAHml};VZ:ujoPL^$K.i%.mڴb-}+(o̙yi„ }(i_tY} rXΝ;7w,\Qz*B8 5j#o5?zs_zI&;wf-_X7BrP&C1K kWPpW)/w:c̙heB 6iUX'rXN>]{nlanD qFbŊ_J)6>pA")BGBA~wуE[xe?5kfRD z3'Xt*ޱcku#F`!@ʕ{1:v܉X `I u iӦ]r% oȧ /%W\am3<*Uy2~x.Xm.\8u&D*4ކE*Up~X[f[趮Et ܆YjCʔ)cjLyBA }3FP:%KGʕtO=T̙YXa/;H <غju1d=:i3`UbZl GDv;'WB射q,]4 85 [.]1cFL.UZuРA4{!)g褱P0kw߭C#Y?SvԫW/AJZzŽ~" kQ}' ۷o ,Xq[5kV`~"ЭYd` `a OX_7|5C s\zKD"3:͚5c-]tRJDHUv;>3rX10禋!իL ìY(?koS /x_dv7tGR,8ȌꫬȣU%*v\>`NXƾev,Ol<`mD4I :up UJ~7Y Zm zN:zba Bd<V,`<Ү]-Zfҥӧg!Ƶk,X>LzA}H/ 0rXQ:u*뤍7nݺQ$ڵk=dԩW9sf<6UU-fUo\WPg6qTh8sѷo_l`ٳggaD˖-ݻomB=czy}v!ܲPW^ym۶ea } -2n`Bd6H%JDz!nqFgt4^B h{ǩ?~L̻/ Ҭ6*Lj'YS7MAFĥD=k)W_bM ?ZS5A-A .̙'OF㯿[㏬w'0t#S+VH6m[޼y;ڵkG'L"dH-<gr%8UKD5k&>GZJ$ tv;'|v%+W,[l%BⰴHtXXqƱH(nL:u(/ =s ᶆi1͠\~oۇƯ%X0!}˖-caG'L">XxZ=zԫWGk HhԩӃ>*Z;v_!YyI3g˗E pq@N.NJ (=E^ \ GsA}?~I}<>Qp$Tf͚~WE9uH2%7գSy]/S]j0O[SeWdނ{ʔ),~z]O3̘}Qejժ6B7n:1,E)◩ւ,Y4H"h C'HvP>S駟Tq4$ wأd}hݯ׏bq>>B#TKH&M1I\+ ={v*Dj/ĻUze 믳r> q$*Q"ٳgKwd}ŊcaH֝۷oJjլC{Lf_ ~8%6lq9kaɰwTG$ݺu5٣GvP҉7oVp4BJmZL2=,C[॑͂i׭g}V R@F~cmBo3%KatgjJ8 !BB:Q`xYRJ;Eиz*Q~!Av"igE|]<I,Bi?v\q?vZ#/:Z֢v?%; V(B}Wn 4S6$8Q4p>cLbZ< ,7o.2s,4d͚u,,e%SX',A3F,pe[oaa|֭K"6%۷o ,X ɾQxdz>vʝy鑚Mqڵk׬Y3I|͚50v|G?s H<)k詈>`<egyf&MdVW^ֱ*`&l&H[0t\rH!ye?+dΜ9"Q:j'5l|`:X?b1ݐzȢʛ DpX… ܳg ovo_͛'N䅴 ݧ%!qX8joFk 5ׯzpTm V>{񾂕J(1n8 8>66%}U L?vRJϰakJ$T2Y#Tp3gMO$^6=֥KL0A&׆ O$5EX:رNᄉ$Mz!x k|:"fmĭ[6mڄn!-̭i+^?`:#$Khzfl gP/Bk 5Ш(Ix,Z([l,jKXPpSPdm eFXhhҤ`?n2iҤ"Ez%xwYC> Қ.]:>'N4{GϞ=֭v|w'8vڵkNvt2Ý_fMʔ)["8,>IkkƘ1ccǎ6:T*ܚv;~P(J#3'tX:IMό8b\"f|7xy޽ )X]֯_Ocƌg}y֖.ҧH HǒN:ĠSz~\WXwaS/kKƲ㗅ꢓ/_>&@aL8f@ Gׂ[{'PvWf &(H4lɪGH\rY<GpJYO<ٸqcLٓgmlwroCT`~N"؀  ze":,Y!Bcm4amĂ D:!9ag}cC>+ca%mTӼt Oq/w,ۂ[˭vGRdI[ه=.4QjV$qck~ ]b… F Ɇ+W-[Dt$m#\5ܥSyMb"vX yл@ŝ;7oě5 7:vE@0uaaE`)SdaɓO>3gNFd͚U6|n6䗰NBIrl#'-YfR ? `?3>CXd %5{{<}^?_ѣ1GaOիW͙(dʔ gIF#cիM4`VG5A~t`k׮a[X+={o6kK$X" r6fͲN@w'`a>X8ec1{NH O%$jo5r @c/^dmӂV+V@gR~0 =;wĄhЭ[(o8P챤k#Ի"C9> .\1BK"x 'f2r޼y6 kVvwusu1Àf+WΰzxLEʫ-:e[yGL5mWo6N:"7<*UJ d8|-c֭æ6Qa `E \0c g4rݰw X'Up4>uYk -#r"t!_YK[c/\||~kITRqkpȗ/@ؔ)S^ĠA*Wva=cǎŚ:G| S)S~9N=|7//_X1G.S K5k֡Cj"gzW^x{Kpq&Pm/~"+-[,},,)P3XCfO h,0K.͘1#i&|%4^Hʒோ}qwGk :/R!qYf~X8*[ߘ2eJPwrA}?GAC$mmnݺ<쳬Men$ *Su>"lc7o.2u嶷H vALpチ0=+Uh0/1+kժH20Y|8VO*B::9x |}J@]I&Vȟ?HX4edʔɰ|yr’իߟE|݋I l=2bŋێ@߳6aȐ!"5k~On߾~;h`ԩS[T8IV F 9hb >.㏱oei#Ru$*bEOy駟R R\#GpY~#Fg^zaddr_J=]?tؗw_ ?S@ AϦm#ѩf j֬f -lwPćz饗X8T_Kɓ'0o:ҥK=%R2"\Y~˗/cl{O>ֵH-h[eӭ[7Yf?i0XXLįSY: 0"~&4hPժUY*-˟Vf=p=4d|4/xt\ :X,Yrر,CŒ{[:ti5v\9\$yQϝ6lZ'3eQF͠**e7۴ikhqT\>/^|ܸq,1LS4R^x">[ >}zX`8YOΝEjւVZ٦P<+m"lA$bZE$)tߴnݺcaٳY7}tzSD }q iVJ:x)Nxo@ Neh3){'vϞ`߾}#D8waȖ-ȀHУyBh~C>>)xڵ{Jk >`dɒ GfwرiӦ,}'N,R ,>vڵhт%4:0_fmuR1?~Ɏ:B |"A\M8-hE'j\^N'$=6gΜS3gΰNzP.rfz!wcȑh3){Nj?qe]run߷aC;v_kǚ>}h+^c"c=] )@iѶ?r/8=&MS9w3^{5ӯUJ>}*U <9ϑ# k b$2B:;zhgfaN-ڵk #œ/[ "hk.OD\l3{RܝHt=v4%QO5F<ǔ8| M$y1}ֈW ݧ*3@B_aҁj` 7jϣFvн{wnMH@?q5޳w޳gG谤ATDNhFݺuvFXUqPA+jZ.)RXf I).NUVa~By_`IiӦ*TGyD$ҝ XӨ?90d!lqfF >\}fA߾}3h%Kdaƒ>bѣ^z,L0Tm,8lGTTE0{6(A9gEzGPg%tbQ݀aЀ3gvRV$x ְ c ma (>Qt5"wjݻwKaI!r&ЫTx_yĺ)[.'^>]lzŪW 2w\}I\\[l"7++roŊiӦFPH`!s ƀ].ca{_&ofm *„  m*lQ޻w/kKjժEw#Rŋ}V0CI /z֯_OoAAl( []$W_|g'RlWZ4ijј)=LACvby[(h Y P7/v;vw:,-bbaU*"aTyԩS0Ǒ?ㅪء>q~'wz "P#xMRZ m*¢xr ,cCj֬i4mE#w'oq{#G<#ߣGrr҆B̟?߶c- bIBppeMs˖-mS"Df1~BmBf@w9ׯ_2/"ksmoU6p@MurZ!M:"##1W$o#hܸ1Vjժq):u*rAz#f a"Kj)X 0~5tO K 4i% ڵ)gz/"2)ԑv;>Wr Wi9w?~- @2?e!^ 8*1 y*U0=~fgZhu.9eʔ< 6Jcf8hXCV/V؄ XN~YA~ a t<-<"*Q Mk1v;˗zU=x0 :tÆE'~2K*o<W p(-[6j߹8?QL"}uցƷu_gF=ݻwGe˖eȐ9ֵl-t1o gEn}gɕNi?d.׬ZxSeiO e\ټyΝ;){T'#%ˈdHI"иbaEҢoKMKRaŊW;7vW^X~T蜐QfriӦ49k֬qTV-۔={3*b,Edy/h` "8Y$=pT6E^o  uw/>ae9zEk֢v?ٰrʲe˖(Q|gပRD…iB/mXX{}MЍ=%Ԗb% )jH0jnoT/;X+8~(z.n%R2wZ`b-"Yk(9P(,#Fd5..CDm9MiS8JD{Y,LHC0bA]v>CցCǣ.]:,„;>.ٗ_~Z=X{װ\wfH:u`g>裸N@Mc Iigac}= ֢v?axXSJCxQ;h%tFkd 8q"kK( J[;w 2PGPʊ䍴 ݿ7=9 aa4ħ_7n 9P|7X߹ӿZ&sh1{?ZVZE4M&,\0{,C4nܸs,4P`l&-5oNI:)QLlΔeч蓿dЅ"wvK!E'~2𰤋l_r%R Ĉ`1 >}7CioZ@U֭[Zw֍E(ƾ }NI코)S]u@1{ӷ~{~TX[8h׮]ӦMYMFwdbĽ{bed5%~zv5kVF[eԤE=4*iӦ-W^cnR~(݇5ǪhzBԀ!);@zpjذ! j׮mX0-[`F]dϞ &yC_xT6č}PQ=T s:J>k2| %JPN:,LQkDo[$֡+)Ű|r^ʿUꫬ1>GիԂwTc}nӴzHE@]WC%``С*UbPŋYhą η;~TReРA,43?#,:8P/61W OA :`N"H@?OZKӡn2H"XLCn2N7o^, Z E|X¬ qc)F0]ѢEu&nġUuBu0s(8t^e&.\b4j>} kxi9rWݪ+WM T6nˉ}Yx\]Y렘 C~P|[MŴw8yj$ }FEEu מL2a,ŋ†Q(f%ZIm!O0}tZF=腆qb4NBik#'axS,tYX{6r{gaݕG+i={v޼yY #8bEP)TPϞ=YSES }ܸq6@~w<`UjnܟYyCvdɒcǎePĆٞN;v"zPfihX0K{Es.]Zu`ԩSY$%h* hZH _!#Pvk Lt_-iw?|p y2ڛFG寿10[ hѢx yR?f@E(}8/Oƌ1Q CB 'fSNm=/W[?D"v0m4) J֖r&(ݡE|{jժY<:oȷeX6.Mʔ)2l9(T X5|0ۛ mwЁ0^oVNv@CJ g{gҤI,|~Bi}B0a |X[ٳ/XEaL+yg6h!C`//B=HڋM?5b./Qe˖MVKͶf+ց:,ȑ#˖-ېtJ=[o6曅9F^)5-rQ `ρx:p2GA &>^[nܹsϝ;+WN (@)))cHZ\[e/_>vϟ7nZǘ1cl5m6]믳6oTti]IRzu*ۡZ<]6/^ܵy5==ѣ:,QHq۱ھuk7w_2Ki =:0KO; XDBE"k9Aw\h ئ!lXL6mZ,B`Uc-<%fz#ϑ +7-mb-5YW`[\rf2-Y$z,vȬI2e(%`?ݻ7vw}R6m~*&at>RtVsV1A(ćb=H7|WPu%4N BCu͆>|gYS.\E|-Z-[6F^ڢNuPc4/)„5kݤ$n޼wyY!XjὬ3ƪ`IBK/8R3gΜ+Q.N Z75j0 ,G?D!ֺkhw}-xA} 䳸cnẐ14k֌eX74+45ث{ǽ?<aDhH.Mgsihn{Z৙*U*UB}WQ{O>k׮ 6`$?x 1ҧOo^X,/]4cƌ,X`AYGG^S}U!C0X:?lSOg]+W 03ׯ\!j` s@lܸ#<5Kuܰ m#v܉)bl+ϟ_ N5Ð6ڊƂ1 @oFȑo>믿fzZԠsq5~嗬 W0izBGn^=K6Hv__ASU7VV o<3 kmx95i$WNbmǓO>M-M /!+2dp $СCrۯ[dqyĈK~bX?olV Xj7ԩc^eܹRba?fQz࢓)S&bdOK֊v$T◚5ӧO{` m]X+Y ^#"#A]lԁHQ= @ρF:d4@[=LBH7v?.龿ُ݇_aI &LPhQ^T/㭷;v, Y@ z ;8p |ADΜ9y 5kXYd F}t4""t>}nN З+WdmH-nʑ#HfaqGV$s?1˘dڴB6 -fmU|RH Y|YN*qh qbC&s,B2<:А{ic YN!P6~B[xm@jЦuDi=aj;v/K;~v?~X*Ic`-B:.z$W ^ia{ʕ+)SNwEDX5Tlz,yQ@F="P$݂}Yx">+g8~fu7Ash*]Xc^{~]e˖eȐCmLL @c]R3R·~u|D 6O◈>|Z8㑦k\{Ǚݿ:yJa B'AKׯ[n ED?~L8p-ZרQ h}v)b1v#?KpA|"uB~(vE ~ ڤIEHv?W$/cÏD'Z8dzhQ"O<$k jM۷(UKjaI~vTxU`.YNRN89ʖ#Aד9nO"]< :fZ~80,2Zei)^8-u,HhR:Oi,<>K)%h)5kl1 fI->|88j?~ߍy;.M64&kQ~[I2>>v!C]|9uKOW_}5k+WsA#}-"0)9u ^{ NC|cVKn̊u|EM_xq,YX4Z!_~ey󦗲$hxaYuea sKY6n:.(lw4h@$\1`- Wq|%Gc^pa~kI~X0T^NիWyKW*[0h Z  mR5& ,/Blh+V [}Z;ekAmޅ]5[$&^nф t s- ZY2võ3rzRȐ_º+`ZX;cpV~Xp6u'S*g:$h 04p%xiymYubY" Г-[`'ci`C, o'0uXK _ݯZ*D֤H, ,"裏rʆeƏ%i%uŧiӦY' Uw9sf3/>ІۨfSI◽|$-[6/>^CWouqaV`aѣK(!=zW IkRt"[ ,T $L_f`-dOik>rG?~~kIancٲea%۶m9◴dUH, )E(R]V4h-GBu73?VYzJ2m2eJ,rŷvNe-Z$R߀V/>EL0Xb,zf">44ON|A˜%ܴZ-=IRQX'Kboh… X 8wʇ :ɽ٘ZWMFdɒ#IUqZ ʛgNKp2|w?$nxF}︰?}v?* gQ!iÔt%V3oCL2A>F„֭[;4'S[y)Ri? (YyN+0^`h9"s xeO^`A T3fxZP~cmV:>mڴiժ a;ܳcڴiRpǫaB}dS.\bط5k}DՉ)*1"PAUZC^F6AOP"AK@ѽ{wl ,*qgOECQQϝ6lZ'3~X޸qc̙%W~fΜBqɣBN igk2@ K'o޼e֐`/'mTRblBT"s;utұЁF{Q=<9r >';vULc-ڬ\-ڵkB 8&O|=pu5ӴueVG3ou>2ʿbŊ\qk֬I2%0tJ*0> 嶫ݳgF!pੈ캁6QrаaC[%v;"? T0$x%VۡCPRVf`%*jh&ٮ[%z*Wxbͦ1vO>,4#)pftҥ,SNl.Gfi=:P.4dkDP!DI:5Ί5xGe2f">M4iePpdFdך#Fp Ww +VgtoJ,Bukmtjy@a?T#ٳgxڮMIwP6}m3yil3bXćc̘1xݷZvmVJa0{} 5#Rffo]+ٹs':B =1Lnݺ)R8AZxzŲޭСC54IzJ*f#[lQ|e6 z`F0\o 2_pɠDG\xCi& ) 3$v;Aq77V\YlY O:%A$^z%ҬVɯEz&ݯ_Z^T z{f0ǺYCFj?d.j֬裏q5 0 WP&u4nqӇC:t@:>4 KŰWNjuFq"Ea  oޔĉQgH<#wfѯU>GD:/y’vX`2tDFxJfߋ_c/yhnCb^ׯbK,"j *4m4Qk9RNeXćPZ;Jg̙D᷌0 sͥK,r;PqH/v2T:$'I\,<:$?h.Iʮ#>\u[Z.T:u"-)dլu+Vl„ ,#b@ (ƍYǧcǎM6eaݧ4뙴k׮e˖,젾aFI&9kB bٱBuҠjCҥKcfRѣm,Z /qs=03Urٳ&cE͡:~+<;AwzfxCM)!<&hv;. #?!3:ѢEm۲0Lhڴm>PJP/[ F4>B -ZPN!u\~ٳgDŽۦ@iLZqyf\nɄ{LY4_d(e޼yYg۶mW[ӧO"MZċF~Wj}f=䓬ŀ:vi )+v{?v҅""-ZD wc}Uu_?r$GQc.\0bOf$rhGP\6 RU˙3gFTRÑF6%+VU :4SL<[ zZjdۖӟ>}كok 駟bhus,̱~РAnݺ 2 M7 ,Xpƌ,@]Ν~{~'4yi;=~~x!g˖b!~P!3_-W?T}VU)Mϟ?ѣ+k6lH)p&VGHׯx@mZbʕ<͠@B5ER 4=Z _F wڕ g6/z:>ވ$,36mZ04ӏ~zG,@k3&;wsp’%KNmrtH[z)dժUt" ,-¿3 2G-\YP1n:@k Ps-[ Pj ̣}4r#ڟᅬvv: 4=c}Z''P=f5Ei(_vV'/8LŋZ'3a _{m?~x^ZkT~Ѕy3͛ǯTy1!Lk-ޚ0 :t( p%6Mf*_53D66 DćتwYk۷x~w1[-@[nYl'Ew۶m<#hN)]ի{U # B5YښE 7i*W)y 7AgBblٲsthРz)S~}݇۶mۮ];j IH7bc8qtKv$r֬Yh}'Zh1Gܾ}Xb] _rBq)D!|ML<34WfwfdɒcIN">.7b5eX[b$JG'/_Nk82d`[f͚iT[nOWM]j'L)g >{ɉ'4A"*=|_:թaXjh7YҢE ,~5 ~cn2:Hv=~,M'`0s_X %Bʃ#.o-`趋-jSjk5Pbt= wZ҂% hj}Gyo̟-psIRNm ՚zu,ƴP:PȎ5 O;*]t $"z"*=|8vC?M6~ =a `Ab}zcaR֭[~TB%%"H@h=u`_v?IƇ%%;j@Z8x- 0۷#T_fENZ.\ԩSYжm[ܰT24LqŢ-%,% 45C ʕ+GaXyfZ!k a-ZNPON駟x9#:u0&nMo{V}zҶ0V\˗ՊTM6t' ~c}C\UC ={0]NIxK-1D}3]vٳgc%Kfmi j#v2BRQpX`]ޚpψϙ3b… nB5͋ k̒H wiOԩ-auX*íUoX1JuB,h_N*։rʥ2(:YXk -:FN:h 4ؖt jȊ`Faa&8W\ ʗ/p%JW\6DS^%v;KL}Ac jYF4Uə3%KpS"saXo8qEd͚V+k!Ǡ E>{{BCs}Lganr={TV8?ŋy&l۶jdRbm!qj]VPm&hoCL-0an?ϕ+:([Nr̜9nP#-o}pMݺuyE!wݗiMӼCMEO/_<ώnڴgZ\j1^@3fЪU+mH3,gϞ'Ov`WB0ګ _}]T˱ss*Tshe޽1_g\uxՖq̙3*zKPxqv(c3% HҟQN:5i҄zf%U,GyA iׂClrQrRqpS2:٫{G}I òXb,$ÿk׮V… _CoQ85E_#1rH`O~aḬ4iwŽp? ?Xۡ?qݺugΡoMqA=LwUY}`~̴*"Wm /ǔ)Sh]yŶˠ#yT}"TqI2K.F@;[wWYV X UAKfxJ)SHtO@.^NU` Hi%&K.3-A#35<rͥ0b֭jjFt0Ь)W\ǎY(EA]t&s԰]`se=0oێVQ?~i(ѝAײKbj5EiGhUu[w-E;v,u(VX#Gu&!x$zJAO>:?4qB`=^©SBY@Pԑe˖ZIv;K<,r+K~zx]#@Qc,YBzEXk .\8p`B6mMvTD hD#?Pȩ^bz-5yu9y^%hѺ~{X:KYoTA|(u/*qR;y5_*e. Y$ fPO z{) edU5$H_i%FD|0$bvg(؆dbSLnɹsΜ9C);D>׬YCj urFqOK[w2s9i: m8/@,k1Z)B+QGk׎Z$D H/ 0 rM#SLjr v:v@ 3ׯ: %%{9^ӧO YBDX(ˁxKtW eJK ֤y׹ +WL& :$K.Uٖ0ZyިRJצ/ʄ xJT J#׳l2,c}^Y/*MLN:Uzu&hb%4yN乆kY$ GVs^x,Iƍ̙3J:.Il;K<,r:pe^Eԁ*a뼜䪕@$S!-Mp"nZ 3ӧOׇnewpE&%X~)5K.5k֐t}?x7pEd E}t\4B X|9^*뎠Hgm_~I-JXIRJED:^"mV 1!8qbݣG"H_ӧ}uugaX3 ց?Xn=WBBh\b 5믿N~BН]޼NăgϞ/nl߾&hpq#I{;"v_ 駟hA|mۆk]6+W| I-'A毿^ip 7X :V4xaJX$6mڵ_p΁Unj3Μ93i$}Ws3fB_̙3aXKޑv_`aX|ց?i_$4^4pP%c\r,+|@̛7/]t,PmH#D\uiYMgɒe^zuz<>ݏ4,ph/_|MH֨*4ٺHjgՒ7Ux LjPMkWZ篿Jsqՠ?ԃӔh A?`! 2WxG}Ie`{uI& XbԢ T ^4.! %5-`M) /@bMEjsII&r_P--[jB-Z zՑ }79jժyoi=֡)tԉ֣~۬MMJ ie ׹)>GFdj/ܹscaB ZPhYZLPH_}~iyXa43g6@44V U1zlG j%W_[Caw}oAa->ܹsԢL.h۶-8 >eq'&Op gΜ化ԖP 7^ 6mN! ں94U!I#ˀӪU͛7448t\rcN;I/I"*. V~&ԁiYr)xp'\kῘ~}< sr7 IjN% J/A$~ෆ+TF?/--D=m䡇TNΦM]0)?0I7i_S@GrѢE|'h1TA@W>LB)9s7KGbRSSq;8 ) }WFl;ИT^J|'MOQpE @99(cca~@v[.Փo x9s&hr1L%+RrD ef!&p0O>$ zK>ٳ;8 /h0O5yǸOVƟ*kgj W$%EKcc#EAArrƸ]0:~BwO-luwoeŊ 3f`*]: b0-3qDߛnB]$/**>Nz{{E8(wաq=ȥ'P0w2rLVlk`.{[L ###j!+RWj"é={PGGx$\"u A`Zft-4HB)$\$tЍ3<=puh\?>^r3r>L".jg\$REm3jX WL<wS ԁiȋ{C;p眜N8KC}$׏>(w3E[Wtաٱc o?N I?/hJzxqV{%$SZZ/ʂ+ |`b@W>L E\%w\1]:zzzb@W>L J;̙3{=R<\3fPuY\p]hlWR7oВȝpuRݻ%Y"xqj$й:.۬T@~3QY/2|vWLd}vn "2swG_ RRH}⭷g?I<+pgK~߀.$\gq*:.4)$ô_:KZuQ*ҢDWWSԁiй#7wS~\իW\E9"4:w6b߀UeoU l۶3ӂ7xNcpu\<ӂL¥Ӌ_k֭;3;)z@W΄-[@g- $nq/Wd7 ڮF6΀,_o}(++^/^) ߙNss7HsO_ +R'*Or{#A !3: 3k֬aU%H/{ySEΧ?y|!WG nᨨ^gy<]{G%^x?O={6k3 sHαR]]ήAƼy:::8%t"v?^\&ݻw _Xr%ñcǎYf;ŀ⡇R?ԀI? lԉFܹM(~ &˗/ꪫN8oMSx?_[[[TTtᇛj;wU8 %tv]YY:F{y]~駫4`H(~VVdmB@O]hr8oߜ9s~4//zti:Fp[nI!@*@N4r?77ottgccYiֶ) M-7|Se‹/{]p>}Zyed4j) }@NTr?wtt?+֖V)M-)kޫ裏uYXb~wMv0͠u }@Nr^}![[ 04y\r*K<#g}6g0 O~SOq>+R'R/~_))̓( ԉ}L”Ă N7w\S݄@T@WNrA}u.ݟl߾\B'zz /P[[[\\|ᇷ. i H~}|}bѢEg=:;o0Q0-ϓTZ_>mJ0-W7/ޱծ^f/Ν{g`Z  S'JBZCPQakAO3iZHR+ ArD$wZK!DMK u:$N4r???ll~WWW7#F(&hNҧp<_ !4?>H7XJ|[|[|[|[|[g|[&v_ _____ _$Jwv᧺ ܹ%xe2LOhOlx>i$Gr_=w]c_>5[&^]l``5  yy ~M @6"$VM-Y5  55D]]]C}CcCc?>H=\pG{\s } `A.)**|vu-̜9C=s֭[ -<)r!z=О={.X|UW]u 'Ьy뭷t߾{>TN.K";uˮ];[Ue AѢ;ꩧ|v-#<^xa{{;WHL֐'߿d1>l⊥Kҥ_ٳWZZJ->A'|~MMM\<#G}'r믿NW⧟~벌w}>.O|3򪪪nenK_{5k֐z;UU- *9sNcU %Jo?1Óy@z뮻hU|vqqUTT,ș} /p&'t|饗fΜ/r]b*%7nܨw+3لK*vu5̟??;'L[sp|*K\} . &/9o?|gs&[1 nјnQֿkIrQaĽZoT5c 60266vڢ=sEqDJ4rx||>H{]x16E`߾* .[oWg+7|yWqqe63sLy+™gəlT*ꧺ?T ~PZT֭[(+1B{«ӽޛvE Ou)r/AD%Iokmkkk'kom,,(t5}-wy']w?M###\,p3xGc/|a7e7-5kzoy1s=\el߾\BJEd5ORC!G%7N:養 ^7mB' ,'-4}<{VWXhF#IA}h5qtR?񏴂|sy4\)BfϞ}!vi<@V6> ,D{k?x /Dj%>rƀZr, (ZLPq /pg:s9۪DNtrL.DPQakA0AD&;Hwwwwuu D/}MdrߺwSyH?/J/|tqyi̷zʿPKI{A}ᇜG[LCr$?餓^yX,VXXxGQƍ9<]).2 }jvwS={>lj@W+V,X@_~oovܩ:>3r޽{U/\S]y յ5}.LOH?r?яT/ /WDgg'lhh4s=WشiʚП9skO~D4r?W}X,NuB0!饗 Է$߫6đGl2J|k_;ZTEr;l.xO=T788>QXX~\^^N%T9 r?/O=wZ>SjK>woiIy4':ꨥKR+]T~QQl.xꩧN;4x~ee3:;; *h~B54XoF˱kA@Ƒܿ>lfrW7l޼Ye?ט ,|G+\ ~~h]]=IX,FZy`@aAkA@Ar N }p %%%??޽\r W\aÆ+W^x4o=stg?Q.L4r???]IKZHF>d$IFrJ}#~衇Ι3X=T% N#׿۾}av]wq@\H76HX EV\Irutt̘1c>ayBǚZZZZ[Z[[(*oѥҗw~7_tE$7[r;H뷵  -[vg|fZhQoo*裏rrr:JU`\;I7'Br>$2~]|@fq/O[}u۶m(~SSsy_ܲ V&D'l(.*v5}&vD/o $*7vo ;c&Ny'OsS3>% /?}b]Wق`*'bLz_޸k D-ojj&ߏqF"B T Z#O $,X~_|O>}IrQ|!H/|)HW }}}d~W _WW(54467@^##u D=QWWT@ڈRWԐ⯫uh~#UU$kjYuMoOoaakA0AD$ܯ" SUSX@ڈJ1RaRU rQ^NC%{,)p5}&(~YYyEE'nݺr4/+/g@ڙ/PW_(>k} ~ @ډNH_P D%kHlwll@6"B7ouMoO/^@F ?JZ5(Iz-, {q?a71ӓ8 BHC].2 uG(&ׇoy$O$ae 6`>o|Ƶ'&D&GGGk&EKIP3q5Kz5%Zbn`w(3WGoH)kQi)R  0g1FQ>{„a"碧6 # kv5 xcexLYg5@ݲjP2+ 5 dP l{ '2/n!OZ_3Y7HUZJԅZ8Z(vR8M}CkaI >.]d}Xm}xfކh[cnZ%l?H],i9|#OY NԐ௳ݟH-s̺B֕\RH$iMH aʊgF_Jq2Q+R% D#rOV\r՟~ZB-.(^0@_`ŊVtͧ vvn"{WY3 ۉF[OYMFZduTx1>i#*/_RR*_ZJZl}xV:@ݱcxJ݊򊞭=V]/< UU===K \x r "722RYYU]U]S]5  "##uu􏬶rohhhd }}}EEQohbM1Fr4ܟGrI_T@ڈHSr?B?@zTHW_C^1}/nIT`0 ` u>&Z(D)'`0 `[\~"℥ݞz{キ8!\pѸE)&M|k]!)6ohH?3l޼ywvC ?7\!pѸE)&Mk]B4S,ܷ1Mdw}֭[w5ݐ "\4.pQIuBW %cR56 3c7O@p .E4AhFظrgC##~#~F=:`pEh\&uBW/obM, !h Dp.(E r, D3B}q>7D.E4AhFrF1m۶Dp.(E r, D3Ɨ ~b4v+\.Jwkr<3Ӊ khFr>PJDL'/k]'AܑIKDX;]62wkdMqv^Y1Ht߇0.8ck{o:B;"]Hb3u)C# S a~^~hmm]}}= }z:Q`SJԛ0ޖGK9!nm食'uO9aVd]A*gtDF.rX,A%j0_~ A}8 +^-ho7ng`5#tShDC B4#Ln%/rrZzF;pB<"ŋWʆU#GLX#܄8FM(YLv,|U>΁qx$"硍%3tY+AU#\Cؾe%.6mms6rkUe;#qx ]s!JRi0egkX}2g g]B4qw,fnbJQn@Tʪx_Ij D3l IԒ쯩r5 l=:w 9CXBZŇ?:OVYo~}E߉.ӵ0C~]uQx,L<@Gq;G8wkg U}Zʰo̰pxj z|-ه0.R#q\YKiч)Q؈Zx4|=&Gq?B֛&8*m4KvLAEo}6 =UԺjcpDR 9kF覈 yr#D7r*ьxr?W **IWUWUT,ܟJ$X @5jL%f_Qa[0A+QtuajO} ']D;4\A9 ބjmtxB>h'rcrcT*tznB!BQ3M8bH5^\ffwNBf_nTwM&TD(^1u.2u)82(e?_Ij D3”r͛7;uׯ/+/+PrC%%KFM5S+|RB<S猅.%9MXY[p'h%JEWa!zwQQ(mPHQųSCY--ulInBAlNʔ(2AU]iȊ&s@FB,t +;7!PwJwqt=ݮ׌M9+gk*tޒ@fœs%֭[WVVgkϒŐShGyƜ ]HST(}h/rQimB+a.C~]uQxcѸ H9 H$]K"6.q#'oyь0[wXr-TPRZZ~ݺ[BO}Kv%2]("¼N2W*n3YYVg EXaU=((,-!t!%L\+}M̡^vBa Wp{@]h\{DeG82a-bPWvoUmI;6IX~δZJ}FxkF覈F BFN1%aߵks>LZo꒒umٲrYiaI'h%bF.W@' >,MչaJwvtji&ZgTVDp.(E r, D3H uw}S]qϚ5t-~ͽ۷o6|W"H \"p`^Cjaodo=(--]V `0 ֯u-722RYYEFB`Ik `0 6%<,"d~mm]mY_o_A> `0 FrppP|?#z5 `0 ~K珎'A`0 `bJ|)Irr`0 r@}2%:rIЬ?> `0 )~kskkKKH;~} `0,S̖ͭmm^1b_&w`0 +.*6Ԭ~{[['BbM0 `0XXR$;;:rv݇`0 2Šokj$)/ooo4N!'O 0 `0XFXQ֎B,8Fã;!f2_tm@awP.2!8Nb\5ՌH3Agb"g\3~dmtrz0kua;q6FlH;u|ibኺ4MP(:m}ѫ 93ٔ'E%B.B&5DZɅ/j5e\t7mDbM>w[U7/oddD>Sܾoӟ 뷴&qT &ڎ -WJf4RѴ_+,/ks9KX"lN-l4HxIx\rF~$CF :aA?ɦ7>28)J25OK޷ȪI0瞻kvĦh,x4 As)ΚtDDN5N%OKqk-QqqF6Zu`uFxkvӬXgFema"P*/zax;Qo[}]iuujRSSS[CgD:Ni%ޮy2OCx87]]K.rL'Κ:tu0ґ9 f3:,u'ޢ2xJBNimi0Ҙc:Nq| FsejqLMI3uh| 6u:a* f#6,Dq:hLY866&.]JeOg2ɥSA(j=6V(< 9\Ohp^)8ڀFs_W^1՚E -[cq3M`\LsQʌ TD\Lk6b1ebYUd:@7>\P&66!D2l^tUhoњzd܅#(I]x2ީ]9qęؘkO a=T* >q+P'ˇPiAナ22w7B1a-tU\zcL117!)$JƗEݎo^4X"5hY&=S9d#Y D+eF3̒4?trVCZ"I'HV@p |aFt[\@r⸈#!M_5&5w|<;1>×Hwؑ,r&@mxtut|饗?EҺ'?7HJATqp  U;Fa$0=%DPCxmr&5=9!_ʣ"hҊ)QW4EljTyqng~F3n``I'tukG}M7}{ߛ;77??wIJm'F$`z459ˬ.~sK@'"M"mF{@'D58}E8Ooa&lv, 4}iԎG,p(Z%le`:3@n4c&aEG$$æzHRQ\mBT=i9_~ٳO<\pa.''ygƄ9˺M(sR,qe.iי:l*s5,. 7 L/ٮ&aI۸kjH8o?_?k֬l\t'IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_06.png0000644000000000000000000007054114741736366025220 0ustar00rootrootPNG  IHDR폋JsRGBgAMA a pHYsttfxpIDATx^y|Uikm믣mufRU;™PQD (>OuuRDeB2HHIc[{ug}=ޛܓ*޳>{soMe˖;/“O>9mڴ1 @Ĩ¿ äs?~7w'N,> =;~ 0vcԨQS;sѣvc:Lq/*p YPPSOoσ7O=ԗ^z k܊mmG3 4H c{DСC%hВf/Tv&f(ԡR ڑIvH(mh|AJhl'jI` ~pMRQ> &t!m+|7"8 oz{)h= Yh8,[z| 7p%Mt#HTӧ.6qw\-՝(,{Vp GT)$-~ q$mqL9$ܤJ ) t>tm HL9o;}kݼ08╦4eW#;-C@/W;_}W ׼aM?$#; P%mܸq Ԡ&sO ]Jޫod k!'dLNG< =7iRdt1{l莶P>(pTzfmyE_{7^lx7^lz7gs@爈EN 4 z⁷^lK{|͗ҞTϗv󥖵+ob2v*TЫRy1(@cR!=hm;'"`?6%`(ń?F82:hGWȑ#ShcaFq{駡GxL۠'# g j)Xw]?y y^Wt?yOG3,4~?ʾ!Ȥ]#5h0ABTHОP=4$t%Bd |BӾv'UӃ7?m N/wT z zm9sz+ !6o\STyaN s09-/<³^x )`3.-DE Bw ZIdظy:SA uSH i]hZ &LBC4tqdT'< X'g@@H!lYZ;Ѻ6}qMsm0R9 h;h. e> CI r >ZpHruvKj"'PDl.4wh 8t"fiIM'iC64ᠧ$7P'x> ?8<Ѵ-c !zs?oXtGg=R2)ȎW~zC5>6I *4mzAh. je/9~LfAwxru^ypz{#ws?u{aQ0w9{Mu? $'B3ƶ!8WC_oP:#@p8AGյ3͏=\<`( p*~̼ +?) DKf>XԃO=Q;g=kO?~`&[߁&4]@삘%!(YAnᮅ^\R\.x ~[Oܣ^w_|fFf?^¬L)w0 =ݞ]34w!H.|D@QthG2vt N(3EHX'!SuX g̏y}_{ֈ߸/K_䔓>9yկW?>_SR'ei*H + JCBn$T:,clӃ/4dJ"W6mv'G@C8I^ިpO ~͏Qŏ_OQ}3龎y'{'k/80Q(crhy3﫚)z?q_ r klN8pޒ?r]c?piͩ?9u|o]S}?/G_v. oy:N'M P+ ]6Pa2 KxF0dVBS۷ӣB`{m0")R^^nT?p~zǭݺbܭߺvn0h&޼ΛYΛy7$ft %p >@Kɝ7O!5㇮YAna~,aQ'@;%`G'oW-s&pmÕ;^ն?ZPp?墓ϿsJ>Ç xxꏭriG$v;(n/Me.b<)4:kށ4=Y=_M3%K$ '@d(Б> eL( =@Z1u!X@6;v{ー8m-;^cQmߜŲW^w^yqဋ 8%W_꼕W_ ]{k/zۮp{xFPb1D6E}W_Cɿ\d/%h RO3 .\uo] O^C o{xsCzg~ÓNp7O}}o&4'~{}'t!ܶKӆxiB$˞:gT'ޔu>u4q$Q'eO0tACz>b^6AX}d>x%:vAd5̪I]z̰:"%Hp %^_yyVc匳[|WߞK?'4?|Q4-=J(/NM]xOFGZ3`mO*nxg׉P5tՏn׿]EʹRLo]߭c=&xleu@e&:htJF*1,2TgU:A0(Fu½|$扊ssy\n[xEޢ+-P瀾kuz7=}Blo@_+ʾR Ww 2Q :0u":?&t=5uJo^Q.E҉OTaT(фЉ@6r"MGЕpy9\g p}X'Pz#:kF9Ƿ:=7Ie0\y.Z4 o񀼥kkīE^X,^?oRg *4&rݭ.tdEdi%}0?>Yloϳ*_P腗5o!pƒn4Miʅ[ s!n v`21Co@"ǯuc<ӑ(Mʷb|) KP6uj&BE!4a$(ׄЉ@64@O./Ϊk׮^ ԇ֬{z|nj{][(%C֯ߨbÆM;**/һ] t ~;d!K Y:~CVOv o4hM%LT:yPy(¿ . 69xw+ƋL>7cGn)~寗|)u“3y񩟿~97^p9oݿ p/3i?Y6nÁ؇N,XM3ףA~nGFGi FY&o]wթ^$ͤNڑ ;!h h2rY=pQ׿.ZbKQYEUu}?d[w(VaDͮ{}>:өcNrǬ>f77UrUQ -CŲGz LlSug&ENx9/N;}~wSM<ݓz珼'??Nzw NTIى=J`XA;5zm ux.sp#OZ'Ǯ^>16u>  <pj1 9ꫯΙ3noyŮe;#EIiuPuv6ݷ_(|ӣl.={d|hꇦ}xlݔ-R)%N)}x53'tT(xDrHiox_??vb{ Azu/KkO-g|3|7S>+o{66mܵy׾ݻV>ҟ@CǐI qh|T5<^*v Dґn5XnS@!O=Lg,ex ou֯Tԁr!̛zqc:;sNxw=;לy*Q7ӄp s^]C0Q𺋿1߽)~/\]v6'/9?}gY?gwT'zCu08K8I:I?@Dh;%(A'K(/W\Qtyɠә/8yݿ{z?~ύO;<=s  `N xYtH` q0aTq8$7LUe< C&8ӿXHvۗ$htu(Οf(`h=qTaxqhRW._=̢~8D#|:5R\ɡڙZi9S]2GOȁnpX) ^O08EaQd \j#/z05A/1^@2j4tp: q T(K{FG}cl7d(A}R4dh/HߩJz&P9SŊא>tl`pd`p0xU8>1ZDBj+P~s क़&҇g*U qB=itB}?~xѣӧO7ZR%{6I-#GL6hKh3 uiv8|=cѥ4ߴS:Az GeIF;D36"7&B׉G$FC9[а:S VgDObSĮN*.k8NrM wUH%)a͚ E)95Z IrkD߭?D JyəԂՙ[_Kf<_L𪓉 Ԃՙ0\$zƽO"3Z }+Ԃՙ%7jnWMVg]갎bt@ )2Q- uC Qn9bgh[bUEk6n]iΚziZظeuiΫ{zON.+—qmSa[o#ouʿxK8.FIFM-Eb!ԹnSۋij_}-WOיOY:dQz{w z+ӡ{ᙀNDǨ3)̿q!#j/`9Q5ߟ$q͘Zd#tny!npz|2פe1d$Wa/ǎː:ix =.&yqQD Ŕ JI:(I>ؾN_aUSx`fLoƁ:ы?ze.L_U5U{6lC2LyȑyEc@G`2 _s2h|YnG-2{ahQBjϜw@\&q/,tSS7n7i:(Iz`\zsz jkW[PncYU\]J'&W'Ul 81d@eO~k>{Ŀ65&\HL,:!uu[sz}{Wo&DzC L(|, No~t&PĘP w` 1!#F*%)um%$>S'7wӫN ;`/6 >pA3rSt_ɛA;:'PgKv_cs5t0~?gC`R߿?D cd(2Q}SgLݻ f:LL|Du)ӡi,p`GwӅc|y1JYI:\N3uOI>:qu r^ucc[uxίua&$η [~9TD{n`7.d׮}^(=A@G΅a&CzR#[U舑:3Tˡ4E͢5̣9hZ1"eu% gUa3e4\΋tӈ^@z,vJӡDS;p:xo`:ayE&W {as_UuJ8K 8kt:gxUg{\(ګwZҞ>"CFǨE$Mg&>|n1]W+B:)S%I7 uLI$O%ӏGwN`Fuq%+G#:նC3{Xչ;k+ S^:xpkk+I+Rgv:<1x/6ֻ$4|ݔ ޽{T":HHQHbm7]&qկG>(mW|lU6n][۸y=UUpT *\tXG޳{t\?ZB a]G m YW'J#=μ갎td ":ɚS*мtHwx waI)F;I8<0Oix0O3ƓqxE'U'G{E22H" ;Ȯ:#b:9Lky&(K GVYk?]PzLEdTξ:A8C3G;#0aNXJNZ`uf>NVgZ%"Z:LjXq!: ) +9T@yS͝i3ܙKw!m# 1=:UzɰvȤ-r2Twret wQBÄ"eu @ Vg`rM'Z4ŤҎV!@}c^`kR :h!U3;?p] ExjƼ'qs32bHDc@ ,(<4yU0lb9-NHq s35U ee`M ]c % "@yz#hgd0& Q wԦ2pF9isfT2u @_pgJf`徭TZd5M®P29}a2(U]1̇ CxuN>dv 8n2VfЫN7:D-eeDP:e|!d}:i 1Ĕ&D(mt MQ:զ|:R%jֻ(O+dR9:`}/4\vd!R8wp6f|e!a^SL:t9uJ3 Vg`\xqYe |xee￿hѢ%K\rÆ Gaur (HLdSKHT#+0':,X:WXO$pȔlH&kW^UU룏>O@OZ :ÿFe&:aչpBP租~7 I:V'>9u:ꤠΏ?xҥ:?349a\%:GQ]]h"P':ͷXXed DU'nW#GP3b 裏@p\nңNݞNF`LάGU2Lh"sΝp'$R'd\əUVJ Mxu9֗-[fQѣGYIn=fm |[r0ve4(+_y7WPjZ|i`gqoGyZ2` (0aMuR)&QՉK˗թۓ4Doc:anԕKgK*#AYʃB(ƪ3 !5!Ayv*mX`kAh;ڵ[(jRڗSÄ&:Gk.\r%cT'du2ǒb&;ߢN=*|N=UO8`u ]hZT5}TKN:X NyyN"uh)h[Q j uf6b;8](wV%iYrc&4ՙoUVYԩۓA$!)v…^AYʭ!䩫Jisri9_wqioLh"sݨNXu::]u+:V'# :!aTk|0csO*!!>ӿzߵP0}I1N&ޭ:? OALO`Uބ|ƚpa_gUSSל'Z 훯0ZM ;hlh%2.#_t!dIwɱ)JF{Kѻ!̄&:7թd*|2PsQW*UuԼ{E8$qZ(uګZ/wU?ɜ`B^Gu4:'<`u2I*X%&:ϺuB['d\UVJ MTuYF3:V'#gf"VY*&4ԹgϞkע=Sd&' 1cƀ:AʞСCuǬNarH꬯ON`"VY*&4Qչ~zgu"NƜYXed ЄWرcA$N&4z*X%&:7n܈{vV'crf=bU`BI 6mu4YL8X<&r> ~x0ve4(+_yP1>{!?(~_S%ciDAKgvmɄ&:7o \~=,CA: I.ܴ^Sev$5DU֭[;EX ,N!M`o$GAYʭ$ap Ղޔx,]XwP^<|Ó&Hܻwoqq-[6nܘDэ㾽RtKoEFSFUWyE{G{w1 oNn bɄ&:ǍܶmǒbJ5. vHJ/(+_y`TY%C9*;n2]^AaL-!mIZk2IA"V'Xed DR}JJJndBcLάGU2LhRS'SdB`LάGU2Lh«s۷:DUgii)aN 7Y t]0LW':@%%%EEEINa"QY^^ :; f60U;vؾ};3F΢H/V~!uȞ:|)t:«s„ ͨNxVg,Pr,tXL#:+**JKKY1Y ;yՉt\NqF#qLn:YqAcV>ES0~Ng==CA թND]zOt0ΖJVgpȟ|Z#I_NcM&-«sĉΪ2@ؓՙ}45hxǻՑNρTCGtYdԹm6Vg\Tֶ_|_/'v')#qL^wy'sΝ;v())?dbgô+Թ~V'SkTi? 6'ӡN͛Y tEs׮]Na: ꬬdu21pX#VY*&4ɄØYXed DUݻQ[nݲe I19*V@0IAUUUJfu2 1&g#VY*&49i$β2V'zꛥf9lv֯+ k;'y7=-8Zҳ5*Blbl13ZIN&4Q8'^.S%Q 3{)(+_yPL0{b V'3b Չdu20&g#VY*&4S}ݮN&a&u/O*//gu2 ɰ:ͺ)SaNDTu677:co:UX 0 λ[S}aH T_ٹcVg (},D_H–7YT0Չ_dQ'x١>!ȮNQJIRʱ=$!:9Ғ\ Ͷ6VgQN|O;UԱf R,g^p*9u?@'.Gty3MjTvH#(D}j7ّ(W4݉{ĖH}0LjNⓨ1Z Vgx̡EVLCmOEcM]3LW' AGuWvB 3(C8)::ڍEe :\]sZj[s`HMێY1 HNNlnu7uV|_/'v')RPE$ØfLuzp2(R` UNN(9XY%H1SN\b(z=Տ*2zSfS}1 CDRѣGAų:_2LUPvHPt lNC {PgUUaHjTvlW'HYPP`Na:)S}eguNaYXed ФZV'crf=bU`B:-ķa3b .񑨖OEDJAYʃB)D\[X8)6tgh:wÖ$ԩ1I!A#\1j_qve+U:zhY sm+ }i ^G5b Qb; kLhEPz!wF+AY, c Gbeuډ)yݮաr'$LSץAB􏌥΂ՙv Չ_iW'Gd3VȩSZ6,4[CTw":&~^~{O Nӳ+6"_UI2ζzNF8[̷MK$x6ՠ|0]7YS({ֈh$35Ÿ$tYSSH4iJP:s4Jj0:8*e+Gd*o{5jF˃jB$L MTuxru4Y a؆7PU%UxD Wn *ouQj2=Yq^{gMɈFHZ/A#/@N;Yh{ULh«sԩNN&R b&--- PVgG@Fqg!0?=SSreZTEFM&ν{:j 5ĉVɤ t9}@u{&L0Z V'&5*ôԉ7Juuus9JAǏ7Z V'lNCIgՉ޽;Wlhhzƍ3Z V'0e%φG`S䬯wqJP:DW3:qeQ#Gj رcVՙ8,b ԩnC<묳@`LwǬNƜYXed Фtyg>|V䬭ݹs's̘1F+AYəUVJ Mj:Muڵ A555P#??h%(X919*V@0N{SSS}}=3΀UUUoFGeΜmv~fYB‘P=v@$jPV!:+(5vAl-p>%z,`Be+'{h7IgT^G5: Mf~/_f͚+W.[lɒ%p~-3g1dQnmcS8*zPVrkH=97VʵX:.uW B̷c&4ԩ> {R緿mP >Å ; bΜ%PvF9m>BCT(DwAWn !Aa@ϫ _ci&iv N'_dB&4)T[Vcc㫯믿kwyVՙX] (w6b*J&g==(+_5L=hjKa;MD)S/jUВpSG1IG 7={̝;?xӦM\sJP:sCnX%+cZ ٺNVm{хZ!iaSG1IAi":կ޽~G~'f͚+h%(X9Kt5˵y饷?|PVr{%&#mQjrB:.=Oɨ"ujWVd3ISmmmBrJMMԩSMWX_h%(X9:b2˷Vh[/V<0T_]jhLDU"rn2%;o/ I Bup&4Yu~_5jرcǍww~']vJP:sXed dF'|rEEŐ!C|-vmЏ?'?JP:scrf=bU`B:k9wO:k檫AzE~3g1&g#VY*&4){_~_+xM7-\.2Z V'0.K@\`A^^JP:DdR?O.gW\qu]d-a#VY*&4W'=ײ:19*V@0Ɍ:O:餲K/?OSXu:˜YXed dF__’/Wu"h%(X919*V@0Ɍ:/UTTJ֛\s xn`jΜE'r  ֑~1JPV>/D|<`U2Fa< [Lh2SN9jС7x!Ca>C7Z Vgb*RDfDR>fPV Й6&~k d|x)Oa`-&Ʉ&u666gؿԌ7nȑG;v%K~3gSQ.7%>[L֯$zߙ5(Lm`-,ФΖW7kkk_7soΜ%:~K"-RVrkH$dW2g(AWZ:S 5uWv:{;ܽ?H~zhڵ}LDui 7q;i9VT7.(+_5t+VrdTeKaSepY+X $> &4s޽O?}߾}_Νs͙3gݼy3Kŋᇠѝ;w1h%(X9b:#9u *IÛ<0T*=]jRd^PvQ{V[dB:MvWݻw?rȦM֮]z+W._vF+AYUVJ Mf ?zhii֭[lݰaCCCøqVՙ3b  :{ vQVV-))i4qD`u,z*X%&:Avu ZWWk׮;wVWWWVVºtF+AdUM:{}q؆t~Ϟ=Ph%(X t"RP'xTg>}N8E---͒#GL2h%(X t"RS'HTg}vaWoԩF+Ad:=ﰣ:z9vشiӌV0L'"3EߚO&@jݺ+(:QFR W \Z|hɛqT&62Pڋ igփmmD~IqHYRQD@\< Kp7-'-VuEKR fÙа:vƯN=#SV5JH|b-1\Ċha(Ջz΄&u*{:$,S‘X9~s^^P.wĪӽ;NpZ *BN_!HEHwYgB:=YLƙ7P-IWi}P€ziCjzVTɈn#4 Z/|^TZgB:V'95 kEm:$qjPVP{NRTfANɨj@X* -ؒ;3au2;Q*V@0IY 19*V@0IG{LəUVJ a&2NaȰ:a"d a&29W^NaOB JggYI* )Ȥ:O88YY( R73tԹ~Pg޽=$kJX]=T ’S*?*qC|c-aR#Mu?~ܣNR# ;ZpJ󒈫I@sZNV->@5K' V':IDruY$PܞeSн)5äG:lmmuGDT:;a4HN$LAgb1f+dL)S"i0N z9ȩ/kd2EI:MgT'd)xM*;ePv>&5Q'm ;,AT'(.-w4flu#@Տ*2zfo2 dJ6$dXhL0bfTc {1F+Ad҃t(yRQO>v\ӧaNDxu-^@vTI> iӦaNDxuA:{ %h`u,z*X%&:Ahhhٳg[[-((0Z VgbLάGU2Lh«4Kɝ555 L-ݻw?zhJIVՙ3b  6559K়G;ÇIm۶}v?~JP:scrf=bU`B^&LhllD=*@ns̯_~Æ 7o{c3gi߭Ǭ}kV?D  jk GdhD W D~.·-Y iX#I/0"@Eʇ Axu7sСs=g}UV@1cVՙ xl|\:#bj?;V›:!Ɯ\Dp JZ_kk1dbM{*ЄWwܱgϞ^`sҥ˖-[rR'::6D1j3]qϛY$l-LPVr{.Vq.27 BWІz͚$3=2vP+77mpJP:sEP̷cÌƦZ R4y΍š괫JAM!ZT/hrt*Ug:|dN'HT ;JJJ&NhΜ%@vPYfp G:VB:NwT9QVԴ$,]"V:0|I|W;Bw$Z,iWVV߿F+AYΕSM#qcg}l: (ܦ"(ѾWaB^---KѣGu>REE쨭=xwmΜgU'V0AYʭYAO~x2ԙBc7PIz›OO:A@MM x-<g@gk JJ"e+Xb2U%WkhJ^=}6E{z hPjTH0Л! aB^^@3zjkk&xs F:uJP:s95 젯N̺:!T_]j\?AS&㯯bDBjԚdp>L«s C}ouuNߜ塉UVJ Mxuu:u ;***@`Ϻ:X1'g#VY*&4Qg=`_IIɶmʪvu)S3g1&g#VY*&40 %`J3 Nٽ{wuց=aY^^0LN:?sիVm߾2Z V'0̨;x ڵk7mMMMNarLsٲe˗/_f a&P۶mvar̨su.^YRR䷉I2NXun޼3 dR6Ѻu늊@{ ${СC77pYQQD $Q'~MЛ;v쨮nmm/c&'Ɍ:3۷o/--U $QNҹ6ta$3ݻciݻw߾}P{F+Adu.斖=c `u2 ӉȘ:O8pGkkѣG`u2 ӉȌ:1_0LIu:tF[[۽35Z V'0V'0Ld2N0LndLTuNa"N0L^X *au2 EIGaa&2NaȰ:a"d a&2NaȰ:a"Iu>|)au2 :a"audu2 d^a܆0 V'0LdEa\0 V'0LdQǎcu2 :a"d a&2NaȰ:a"Iu:t)au2 :a"dLՉ:msdM6Sړ0L:u{:E{%{9888:EdX37'qpppdDXIyVIhuҡHN4 `urpppDo)agurppt : :9888D (@ Ca:9888CSٓ$PDT'ړ(PG+'#QD{:9888hGIoa)2>}ԩL&9q1#z iA7nz˰G5zqOwUpSL{BswAɓ8aqcnj5bÇv۰az-СNc'n6lmo~bȑF=f̘ѣG9vhVEpmp8n$ԆjOI' iӦMN';c=0o lkkHP@h;A_hҴoښ%ۀm%eUU5v74ݷ\&: m4A+ R]jv0JSUUzgM 4{ZFzkhm@p\-"8nϞƽMM-[!C=*q?3&CЀ,1ty$`doڕ`p4>VFDJ]-00PHpܓh;|? ܴTrG}x{o?w ?W]~Ӗ"PieU5JTXW{guՎ۶nٴqڵ+W,_O,^G>Xp¿Pp>Zђ|e+WZjk֬Y~M6mٲe׭[rhqh}O._b5m(**.++ &P(\x9(3T!\ i?t:RC^0pЧ㘌l  B_ g 'CCM9/] yɉ6uH/RЕ/A9_ s/,aY [j>X~{;oϟ?}hɧKWY~㦢rp',B8Ċugueh 5W]d%S,CO|lWZj*Pڵk׭[~Æ6m.**{nذ~+VXtOAɠO˖nQ6l*..)+QmS'^8LF#j"kO4Ju@c*PA1 PAQ!y!/`diɹhpu#'SsĈ}}xB̹ˮUlMV-^>hч~ W۰aK֒;wJs=uuwT}q[@7_d+IXMŠRĪ5`I X^jD ذi1[E}kdau S)M,ԅvYڻ #j"/fjFo"t9Е -iL*2)h79 I14tĎ %HNF .]  @`yWt+(('Ֆ ȗ(―g]ΪҒ-a>ϭ^i榢%;*`ɹk7 |SY]/nQ.,}{Ixx`BEx%u++b[1TpeeB1ffN Ыh jWTWljn9p\9<8 1jKNs1uy> 6# ҆3s@{0t004|kHy%͜9; EPQPA\{jxr|RNN@hK*+zs7 Nq- zV/"oHF Qux,7+ia[;$6GZ2Q  ˡ>T%^~7 gLd9x rEupݦN-i>f N!g:@mB/ ' qC4|kЈKI*:Xqvw`OP),Da4v.t r@ԓ\0 Z1/VrE 0@h h؃\{!/N@b=$&Mo~W^;w.s̘1C }$zKz: 5g *"0F$e.oo>c?`UӜ IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_07.png0000644000000000000000000021640014741736366025215 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^yU~}>3̌d@PǙ"`$Wp"Ό:ʸ} ! =t=Nz_:}[uܮzzLj=Usԫ۳֮]{ϷkXws~pHQts*4KRaNȴ3dUb0s$``$]"Ќ0&0F0a)F\aα6f5oaPhŋ-Ze( O*>8't靸1@GE$ϟ?o_ ,-F#}܀/~r~{g}__W_8zL!Ήc|G2-]Cc6M$58G񘛡>"$5f D8NL0u"cYc굞Fuo;2TQDW4=3є9̾X̑6غl2$~,g_1`0~ӟJt˾oz뭳$׽u2#Gǧc###(K(g)Ts!T5*FGFK=|dڭ҈3ݖש h ===tuuuvvvttjZZZ񇢵MѮ18߿gzzzUAv(ikb1$& yA:kc.Rc<1NҔ`\,Хpl--&S0!AdxCEF cI^33C@!^d23Ff9l&^SLゞ1db̮iTo>96T.-B$TK?LzcM2zV0b(kof'1>'5紴B#y 1.'ii1~IXl,ʅY<'?Iw}VCxz>11U.7PHV$8#G }aWߢxrRA]kT;Cw!e| ʯ@wR~!Un6p4+q<QU](u24\S{p] iUi@ 3 ƌL+0A}2?6mаgϞF=SouLr˄Hz,3ln`'̙טX!Dq,s\9ɨᡑ.Ƙ :7=L4g7_3B3C'@ cIHTa3F=dF1SlBiOe $GC3Pԏ:@DbKDX߀ƾDU 1qU1IF cR%Bf&;) Ufȉ5K+h@.vO 11ih ]d߲;q}hS?[B]/=ge5q䮑f.jȀUIh >>{G罿uﯻC}n_tQƽ2vmRF%=(C](?BчǣsuViཷ{ہ{oWU./ЬM8kOpUVͺ⋗,Ygmoq@w)1NR1XTz RӘMz?Ę ة{C_eg]57Tf9\UJu4gy_򞆆ݻwUKݻ둞QQi}ϸKp֗^Bo3xS*"G1+Egxb4⒏+芘ޚ1\v9kf"Pg-m$ Q"cnjrNp/Ǩ6S4j B:)L谧t cf,HhDDB<&7}.c_"!c DUS5C#+-3q7l| : |4Iȑr:44@ Ag=8 ?fJށNl-tO aVe*z qh.14F Нۻqo~>ыO;c__ܬrg0N:GZwmk(wΟww~~`]F٨*?e#e[QF~;2tG~Х_߃w>'8't?wԥ7?;ugY?kg-ww3 [ qo,ZSOu"AM6؂c(cK1s`24cb78LfE:R*! jׂ[RnF;H*!9K,|W lWeB0W 䧘 I̐O:'aԆ& 6H{@ 0rFZQ` &c1sYN %=K]h ~G^Vs`~شi^!uDk[C ~=AСm~_u~uu9?÷pze P~?}H]Ua?Obν퇽.oa/~îOO9[9Y .D`a~u::Kea>؈6mkoQ,#XӢof[#FmA*FԨ(ߩgNs#N4ՇHݵ *Dz;O #ťV)LOr ~B]Q5gƽ{wڵYy֭[l6oݼw@lۭd躺*75BӵC_B1MfFȮ4`8n !e/Eʮ4ڧuh"5#u+#gaԮͮ ogn& G IEi!eMhaR͘mt3L6OP @VPGs;Teޘ*!ނ4ږk Z Bfڡ$&c6T&МDqR{P4tjd]#"^jV0cnƄBP鶻+PtRo!t1B[X-zNq|p^ݓ&)G. e:->ݏ| ?ޟ|I[U{~{~Э7z7] ;(?^}Wo^ue_ܼ˯ۈA {݋n= o/=x,"V15>ƫVtx*UpS5E }nnleqy{cڹsm۶l޼yKh޹k.XPO= {`&L41zh8zK:TcZsTUn/WDjSi\`<&M4&kB(fdfh&#F0#\nAacD3 yy:x`׏A0*EB3yf,JP@slr3Zpir'.c_"b,W Rr?Y*N⡏8 @PCy&#Gԏ:@A*ć 0DP4tj@t@a2>׏ 2鶳AHe\$ ]:d,S B3,/&;+~迯d؅(VhӭW9 7<{7}[TiM{Soj߿7vǍkGJWҰiR\kgtWwo 7{_¹(=|Kv[zWoj-_kk{nq7]ZcŰ޸ s>R W'= >YQ ^Qɲy.Xj@Ê-E_[qK?d'GD)|uPEyW|YWTmHByO2i}"}/.TG"[T1Mg]kL҃S0E }]H*4؁ĶX߆3g3vܵciFMo6yɬbK%d3+LBa>9ScZenNDQ0ALJMI2lM<3r љA!H2Ҁd P`a'_CGFV1-B$A$p9:k2dP}(h֞F ctQ-~}ڵm߸e7nv놆o}e߷Ϸ~?߹puJϷGFg[."% VW/O [k߾[{y}7_aMo~.Q!`m ͳA[a/%d?zOtܭ_<7>_s^}Xris⛯{/o{wsEoʼn/СYlރ/ouOPOmrn <Y^7}N@i(򣖏ڠ+U5մO^Nܬvԫ_NĘc($41NΝ;?P[zrΝ} {Gf W*4c-9Zp'T4, i@%x%ˎ  *'b|6{.;\hE^b4/嗷ֿbcPOug*~ٌaET0EGg]D؆! 5%Wg?o,jF0>zNS4E\y `x%cR9ғy)7cN< ̓"1#pl' 2&C=x q(9O=4vvړy'zԔyB0A0:7~hyP \܌AlEpL LF!coX*Ɔ\M'̴AI 1GRTVbEЌG=~Aw wG]t缴-~Y.9ҳ.=ҳ]zVg|G[~&JF{عH2q{.Ƌ1(r*8wϬ_~gX~涋r.ƋZY>u3:Og?okcCR ͰJB{cr^{X?OnYC>/O-Gkn=_߁1p}?.qϿK#/?㫾< b,6jS:.qCױc/ާ>IJ|zsSYطoí'~NgzQ~ntjW!:Ir Ouwյ50Ky_V[~A94Ȏ i4%r{ٜP.4G)[V+"z#r>asr=]n@H9q"̢Q26 r B tG<cޏFyXOzxHhSy2F0 JP3BI \JlEb0&`c*]*? l?Ā, @3#tT(EhHXh$#HH_]`q)HĈŝRZVs\t7ԝ6&rԉ>O`mX~ /n ?ڵk{g}gyꩧz};A~u={߾om~[;:]vIy;߫ʎx%,c߲cq;q{6{מ|3'ɓ{{޾=o=oķk_tvLS sgwEhس1웗m?xW'[vGD=^ǹp~[N7?>pnqj!0^5KRSvB'6Knu}m_vqƩ#?m!fdcTVJ&m|Qڐ&[)> )?}Io=[$S~"\e$Q}>Q@'̂{7ΚX CGtbnN0_;shy}m֬SۨfJ3BS%\B30uMl.\v9:+ GD)Ett"<`=FBI!2JFxy" HI($IDH$ ҩ'DPrU Џ++"qL L@Sdc,c+~ b[3dfb X#ɸ,bHzP'@sh4=\xb :r IƌrٷC3fje׊ͷqQAC%( Tb^'YB3 Mda;sY]+GQ j5\]o]oo]>|=OgN:޲l<-Ny6tw|l8Cl߿%N\=r1[N:fIǼt1O:f{yc:-x:nͻ]_WN.Pi -Eswg(Pԗ+7U_s k߾'z[Vp r/\g?wş_s΢_>U*4ˍ?q`y˯_: 6׻ 3M6);.W`L.jSUo:(-=W'`и/JiuqO܀zo7}^{sںS7WL~"3qk K,Q5l,!Zo܁>fk:9e0Kz?iϋz~.89 Bs:S '#@'O,@H tr0f0iTr3'Șfz2U~dgzRLL>fǫd&5{A*׏s! %}񈥂 PX{?}IO ^) b +|Tj+X0JB4b R10Zp]F\/.\ 0d1/KG@oP+1f$c !d2kB3:.<|):adbS`Օ_^u׽ e"sLhݻȻO>vzUNRĬ1mY*T1l)*4ϟ ƣ*^H`q76q9]weٿ>.Y???9r??poÉ.lW_3wó^%y'sM(3/#Yzi_C%_*Ns4ϩ: cwhˬ<') x|k;U_[~Q://Y {JBVޟdf-u Ot7_|Jߪ꧿ҡ 浹J̈09v}޵-jBsZUYN+5uCQ݅?K۟swt}*0u:7pـM7go۽Ö}_[S%u! 쪈Te5 a}];)*U f `D DPÌ$JvldʀZuA=4j6רڊz=Lhˀ<@|7ɮJdGxDGh !ׂ>-rK!KOPLq6cgXcR7e9T(Eh(.+CьDw{Nx>GO~'{ߺǿ7m3\C]Dpo.Oy N9n)!?zqm2z32111b*4/Za4cTV/`gjUB:/.z>q^ycv}-;>Զi)7 >κ:?:szpGp"XMch~_3{d]:ё³nzAç"UanclmG珍t,m 0%%tw7}-mX & RC#_5^ftH_yVﮟAzӌ:L6,/@ӭ>. O^.&G\Ivh֛MdVp, Ie!]hVFy}0uiLssAqC3Xќ+4 $ {f$YHQ\ dǛ< % ѨBilIp~ !ȪPjChlq¿}@,XP$c"N:y9. th=\Lexb<4'}ꈉ;F ^LYG?zۭ~Ih]6n| E|w;<GO{\w;7ΗN3޹w<|z?x];>CCwt;֟uSxwCM>yYJ5e{qZM4wtHh6oMh+$'`pf[9ڣ͛5C j9坳 oMtiRhfw%Lu=4s1YdUD1k掚g]$482l34fJ2 3F=a/|g<ܬ"$ @D=sY@tB9P\n|\܆+c_sNyS='9sN~I>~ƏO}8qWrA~3w`ugBeߵE}s¹Zw={ΉOzϣgY'=tIk:i"ϠLh> y]sO?:w_/}w}ͷ|}yy+W}/?on|#I:VoO*x Z{}/lhWZQGC s|}SW7ud&[}|UΓ)z>=t]qg 2YPYQӷd{C>KR\%89Uh.m`h¡z]X?MrNjXSl5xLuws1¸1n&b|6 h39k>rd $]5zȘfiԴc`o3R5ǨG|:=$Ix=wO_xS:egUzjU]sk.x/]lgm̲9ίϟRiPc}s؍O*ۮ;uoלO+_?ڹE ǐƖg ` |蝯7}h_ox???qmSFOw[[#BΞfkV^*@}D_ s zo|𧖓 7 om|?QB=)S~?sA5OoNkP||]h#O>>+_|Y#HԐح\{ޣU$tW MY! H5odA)G~CV}*r]e1W.7[++Wh*FFF@")jxoZB!T6j.x A+"cpDf䫈,tFd;6YR`d;hƽn&iLoE=?5r R*D ro*q0VsiqDUZbX*(_}?C?uo8)DxpV87|Ģ8`%@{ru4fNX 'L=@x%_pWޱsW_Сc+xǒGk侎G|TG=ݏrɻQ{@Hxj P?~W]WzR_ew-a] x o /^4!Q+"NyUg=m/y{̻s.~ѯЅԫ~ա߿W{~j7N<2f/j5 50陬LԔ&+Mu3v.[Hy ^i"nH k&^x+ ק1)Q$XıpKh i9J%V LmnAG>!2N俰!FYt:L#@ƧB#fzS l r ss}ZHHNuj I1jWOziVs%q "܌~z678ַwUGU1QK#~!?'=q@Q= 8IcjF[h2ڠQ&7\L ̸0cD(Z믿ysԣL9=mk?4uwg{o7}dQg->Gd.s>dLS^2,MYGt9s^t Ђ7>s9{ѯEYvL5ux@T-fyE$WqȾ]o8}_oO?_'ŧ]?n}W_ݿ6{qFwS?蟙J篢W@w 銪:s|N72(ȭ%wStVT`ҁ^QΔc (ГK90?۩כv3wUBf`+So8"WQ\~nEjc CjVJ; ^T/b~Nca)W!?`֒1&༱O#[ _  M? otQCœ_$H޹#Pvl߁=¶m۶o_h hg}oTmU^z|c ـ-czgb!334znh;EcvLu/dKCWh,CȄAbAķ~*S4CCcʖc^_F^hRn^آgnDht{6yo$3 d߅ÿß`? o߻|Gμ{{g?' +N(St^ _@so*t6F:C|\_?Fu~?d`%uFO% nx> ̿mjŬQS̹qC.\bh<9M~LY'J.DԑZiW=,S:L'~J ` iSʡfWtv9AO eu#M&4b;Ctw0Is'W‘N1)`fbǶuֲe-l Kޮ4nqoQiVezx*kvUm1qҼ?̈́:Fɀ =)i)ݓ0=m'ePB6M q.i^H%DTVJ5QI=D W*J(~CF3\HL2 2x`)&4oa(= ВNU"LԘ9eӭ](*p^{ԝ'Bt3d= i$CH%8IJD7+R|yΥfhG?pi:#%<Ε㱋שH3Ls6bfBs#5k24T~;k.gAC)qW,5HQ#34k^,V//ė)q?[/P4  ˖*F-Ƃ:#W.qtGqUلʺ`s84o~i~8E7)q!_2P IvDzX]IbQMX7TĊuv_S7;OGr+)y=PYEL6V)fԵYOʭ^&o"ޫ_bڳEe5])_y٩L+BNV,Y5)*@"ƌB:ߢۓPEu edta̓yN v2?+"!D=;!4!/zR`C1NR Rnlʎm;vnW q-r'Mg{#}c%c䈱]ceZ(k1a6Sfبrj9dCc`bpT фax3E.MYLT qlH ʠG24%1֪jk)Wa.J;K(2lKb:Xf́,}omWu^&Mn=5xDs3J)eYJ(@[E'xJuZ%oKG@G0q<8Y꡶jQ [ӽ=L$ﭺ\Y])&x*gaydM`O9%JP \yJQϡ sskԲ\fFmR?EUr&7EcGzz I}^z6e{Z.'y6U؇v jUܼ;MWa5]foX3`[-\d̉ybwTc`|S?J-R]t֔]ΒcT%;qg6(]ȅ雠2xԬ2S?ellLyLߋeov+P!SXJ hA(+W+%G@G ʂs ["f6$%r 4{Pi(?{o*k*_&X^E -~xҫ~5ZKbXBEdR2$drϊب ҺQ*A<ڀ'RGT%bz ty/̇cg>s57dPß_Ϥ@5H-pǶ2EeHʹ*/J7Nоs?dTֳTJiUjY?d23dJ1!(O =XTE7\N]MjoI"@>M;bWkR R bϲZ `O*2c#7j@bҊb$S};ĿfP"ZJP h_~_Lb~ )Ϥ0ںzdR}?4t#aE?Ǥ,{ś{ .<4إu_kR'Nll5R%/`GKҲt=,F3Tϳ.%0c@;"E^1Քv5I'5Got1v#`)J+΅~1{wW;wR[PbE[*yngXb5IZ*N%逥LqratUDqa7JSos/̙tDHR6 |i]HcSS"OR p[9x(EgI{_oiC" ͘gkKy*4^wOA%ݏȇL* eV]7T"98ZB+i徔@X#@JKb03 ƴ2~ڢ:롚OU,֌JhoKJ*1$TBPmi9%te+[BKAx|TilSOݔ.S:t?t%ly@%@VhEE=N/\zjh̜%%UBi*v PBXQo›E(mFg?7'f諢1_}5ЦxoΥe@X|PUKR_?~~ D/uy<%0j$b b~x ؖfT ]~l i5ᰰdRW'=iJi. T94bIPTЄ)6s3 `"ԥtzRK}B%쒝bj\![&~EVE@ pr*_T["m&!h՝зeFgg[[(4?I~u._u9 ˴,e\V^rn Y'Nuhn+PQoW/ )+VCsGGGofhfaaaaaaaai fp ؏gHnFahfaaaaaaaai%42ӊ ̓ ,.7~WBR;Y b~zRs%Ecaɶ9]] ˴)h2 2G \B7Mh6ZM؜.̵xx#O63a3:H.'XSAhF لyc߄fe[لM,eqF~ u}NV,[7+2F<9 4 P4bNH Շc&qx ֶ4!J@܄IzUǛZ^`_/g};UxpC[2S-)­uT)pP2l¦vՉX8Nj2YS_2"sm mls]X`Ah5=̮򭗧+ٷ7.7_BĔocP].;:%\uEA'uPi2U.\.W]RUT~A%!!wP4Е(|zUu\N(L"Y%Bswen?wq_^oV,B}MZ0S ]1cYnz2Uf(!\hkݥkJ4@0L,Qsp &2s̵U&J.01y:<,UXMmBG:8"FV 8:̳`-vNtG;\ruXIAH_e؈B_R 4_zXV&4*lK-n4Dw=/ᎎ UŁ-梚 8;OIRz لM+oH5-9&x;+2VH5.x;BV2}R+RՈU&ĉn/{x3nDŽ`O6Fu_;-˱vz_HMU $%vPPUts\%B{j Oߴڈk JUd/(Дؑ7=r9h2J<wO{*3g̊Eh{a ӉM:Dz!}昤- LԖb@9?% h6aKfdIGd Ug\Š8j̕/ԊץDjĂڄ81e4| l1:'TMz&0'\.9@`v*R5*S):(<6*hS!zJ` V,uNU\>LjjT!K2+޾v v\rBшe:ԿI|hFbN+# g~̧ՋjZlLij*qSN $Z6*&ҲTkK F`cY[M1%l¦=q8іݘqu|2 "sm ]:@iY u&ru\Ү䆄ji ee{&B[HBLd7]"XOپKEsj\֔K-%VHC5.DDyZV'$Ub@%fL M/ocJT+ʓj|ej']a7a;؎\N(L"Y4'fIiBó~bwXlLY,i*w#^tS1BRe- h(M6"u}]-4@ЌvWwll.[aepE*S֫*@Lc(sfjbCzDٍjiD'_ L‚:b&|[} 1wgS://xZ[ _jQ]ZvRu‚WU 1[>4@^*1 \CU Bj?4$lex%G=2r9h2J44wvvVQ׮YKYm; 7a:1B-:f)NCtWكwn([iP`j V 7`-_-/-FkMtl-/OhƒYP&3l2eۘ;~`oe7[V'&FU*VfJw:ELP`tGLbsRWZ%,^%|]]zmZƸf )|iPUts\%BkK=urjBXpa)ↄtؐF,Yq E#T|@egtΌЬo6o%ACtW~pF2nv}wD`{O &jK !PUWxلMY~mNX("r8&}Z? q;="sm)U]2@*%nLE5#6V'&⵨}7;d[JCpD`N(Se%`*9^IAU(Ju:He)S}O|%)-!^׈ESURJeMhU@.'XS,Bh\14a\^Y1`o&4*c5_ہ%(*/Q3G2hТ>eΖe7t(mjS ,q@ \ uGgixUVJ} zD#6APV!n/+;x:_=cWl,p> [Á59!*[6Vq1uC%o ]wfU]&h/l^2U#lщ*[t;qj{iSՐ4v=C'd5xy>usDYC%rɊWrBшe:5߁S'pFP@ \6of&8QTpY儢t*~hFbX@0Fh^`A5yppp[@܄ESjh6as+2F<9 4 P4bN===*4(C󖼱oBԲ-ltWdy siAr9h2|-4 lhbC&lNpEH<'0GQf$F,өHhfp /}Mmf6 "sm$ȓLpL E#T%4 ռiA2IńBXXXXXXX Uy&4[TfvB!Bj4B!\*枞 ]]] ̈́B!d&UhFb ̈́B!d{udC3!B$fy,04B!J\h^bzs @h>pC3!B$ޞޤмc_th^B!L҇Çмh1sgG*  B!LC4мh",\P- ̈́B!dP!4|;xyႅccc-ZP(}}}+.]B!L Ӱq. 8hC04B!i@rhfCܹsGFFvU*;z{>uZ !B4 Uh> ͳgfS6-]]]P- ̈́B!dGG3B\n.6tvt=T C3!BT7 <̳=ܳ<ܳk{fm[[=7T C3!BT ͇TfBozz⩧x >3_B!HcB3,棏:zppp tٸq/mxi>q~fB!2 o@h1y9{lڲum[u`٧B04B!i@| Sp.]vU{Ejah&B!ӀF@P6illhTiܻgC}^rifB!2 HRh^pX˾}Xhn9Z !B4 94([}'e!YY'k~֬@ ߟ<@ׯ, !I\hKUh:мֱs|8;tL6Cs6dv!Yb.9jSxKeLe^@P?YOXo$L.Kտ߅2:::gY4/CCV Lj2Yl2Q/ͼ]6 ~$NUa_ekJT{ݞ*/{.jL%=I'y$E/́WsLXiSoVhÈ 5i3QB&f92\hV/JԲ>+FB$;;:Ulkkkjڇ<{Yَ͝mw  L/LZ &R>ݒ̡|We:%pjHc72h;$=D9:GxkSG$Tv q]5*&H6 lBǡ+l_?HdB%\Bs{gm޽&4/Zh||T.[qYfRH*%0k{ ͅ9 a'ȑ^%7Yav Tea*ǜ8n͑ve:VꝴZmvċv{Q/n$L2qRy١JGkKƽ*4Ϟ=k{474nhk]򋗇jah&lR:i$EƜCrDj*12`s(5l.ժ919@򒆸5e*flE^k,brFL<ʅ''zvh*cqI&>4{iִ755g̛;y;ܱmmgO]pafRۘ5MfBij*V͹Б@~2Kg ։A= H喊Yf]lh]S-TX /I!eH"cS}IVJn bGn&03Bɖ,٤r|3O=Sϧ|'nin LȴQhB,.OCBHĆ*4с=#>#MMMgP- ̈́B!d{Ud>x Bh?G!4˧2|'ԛGw4B!H|:Ϭ]y'~ꉧ9P- ̈́B!dWX9<4,h>t,X0kѳ6a ֯[V~{!B 򦹻ۄ9sbM[lڲ͛^z/uvvyZ !B4 !4ح=`қyoܵsJ];wܱ]~#B04B!i@xƂ FGGioğ v/L!BiCs.\866ּIwoť+B04B!iӛUh^px[K[{K; Z[/[yYfB!2 p ͇uh^hxG[GG{G'e```eB04B!iSh6ϐپ?JΎW]B!L ͋?\*&gA!Bd0"IC˄殎.?1gҔcӄB!? V| bBs! fB!R- 4˛fYMy٬C?L!2cY^3Yr! C3!BȌvC+\24B!LY>L!Bf:fKudh&B!0BsWWW04w_k"ep`pժ# C3!BȌeE*4#1wߡB~6C3!BȌeچf,Ibnom2?L!BCX ͋-R[k{[)-m,T C3!Bt ͥ(A/--+ !B;&4~# ͭmL!BCsw_m>n ~B!3=CŋշgG288_9f٬VכȪ ̈́B!:e}&74>|Kqe.}Wjah&B!NK/Ah>PP- ̈́B!"Yf,-f)Y( ꪫB04B!cq ~ 3 _nhx~}3#4`h&BIR籘nUD .S_9щ|{xx+B!8:$H.Dh?ƽ{657މi&B!Τc %&14ϝ;wdxd]uuw7:00jZ !BHE&4eca桹sgƾM/oڲimw׿r%B!83,.D G}6l\6mټmX2TdȱiB!+枞ph>ꨣ_nuox۷DZ !BHEGhFbi>A_ֿmv04B!6Zi>zІP6nxq-;vbh&B!1 Bf|CWNo fB!|<<4\>4/Yȑ#ۣރꪫC04B!LмtW^yehpp```p266~5ׄjah&B!,7s̫:1>|k L!B*2C3VBu]B!Tdzc='9|q9rB!TtͯhOӡZ !BHEhCsB!$L& #"YH DB3!B!%)4Bsww7C3!B ͇|afB!2`h&B!ɡY C3!BѤ ̀B!PͯF`h&B!fB!B*PlZ:'fw~Bf1FD;'fw~0""atD0sˆHbh zzz&74)'U|['#|,(*@9l  !! .'j.<2<"O<:!c1D1UDe\N!$GX QLUv9Qsv$fW oBrTh5gM <mBHrah.h|['#|,(*@9lBH 4C+ Cs:!c1D1UDeSUh>߿+Gr*X8rDk <mBHr첩%1Rh>c^}#ccGFGU8r\y":!c1D1UDeSUh^W^D9<<|ddÇP- ! !! .'j.jBŋ_=rdСуx?k*T CDȷuB!9bbˉ&945мdW߅?G{z+C04O|['#|,(*@9l ͋?2>>66ށ|dt+<mBHr첩&4/;Xަ斡݇:4Y6fEݒXl,BaTIsR]Iԯ>AKR]hJpJMdMpY+Hf}瓲&4/=ho}á=MG(@h,XzTof=!2M͓(ǢRbKYwƪWbYHtbRU'k2ΟYˬ|R6]Mh^;XBsHwxƔ~9Qej] \g/b!0z=Hh]1DT^Y}122C"R2)veЍK;7KTMw:qeh)GvQe^Z& B!ӄeDdXd3U0yォ+kBQJadBX\UR6GGF%1+4=6 f:td||j9,^tT;O!Lz{sR]q~Œ*XeY +BiN]AUj"$ ل@Jt5yth2kw@r)G%[REuS^wqc8,BaT($r'igU"KU +HBdmW()T)l(Y;dC `7 4nhm>=z Cպ7U !iBUrO"w2z, LU+,.[V] Z8vM,]^M +4^uxhGP-344ndQz|d? M :!c1D1UDe9Bo65rP}{5W]y":!c1D1UDeSehز@ަccWO4gF1:!c1D1UDeS14KbVh~ mt]pesU.<mBHrIkfP sƱa٫^6 _yeZ'BB>CS]NԜ]6Cs__m۷mܹqW<mBHrI5:zŪUZ'BB>CS]NԜ]6Cs K,yWB8<6~WjahN!$GX QLUv9QsvT.}WdžGFFFFF>|I:!c1D1UDeF$4iJcAhEU ccwWjahN!$GX QLUv9QsvTq]Ԣ \y":!c1D1UDe3l1М#FD;?B!3  #"ٝFD;?fwN0:"9aD$2Ь2`h&B! B}WO3̈́B!\3>|B!LKl² W14B!iHL34B!E|كi&B!ӕ<6?aB3 ͓sB!Y3fؼ+^{mfB!2 (Jh6_-FD;?B!3  #"ٝFD;?fwN0:"9aD$RMh>cqRr뮻.TSh6KSNB9N!$GX QLUv9Qsv04@B>CS]NԜ]6iB&_O:T CDȷuB!9bbˉ&94;f  SJB>CS]NԜ]6 ?oBrTh5gM,04O5N!$GX QLUv9Qsv$Ph~W|['#|,(*@9l  !! .'j.ȷuB!9bbˉ&)4B3|['#|,(*@9lC CToBrTh5g CsA:!c1D1UDeS14Kb SMB>CS]NԜ]6 ?oBr$GeNX]oVRRb1UjW5C Ԝ]65Inl&ZҬek̪":ҵN!dR#~ O5OɄU#<*sW&f)B®x: N5KvŢGUM'n"$!:$eC3 OCǗό6ckBT><%vTV[lT gBBTXfeJǜ*X *ItBh><~Yyԣ@y'Lwf)B. auiN kUfB G~˟fSU&i7UW*CPC5'3٩RySM' N vV\LtRh>X.LhV?Eq%4NhVVNm<=!2px!"ܞ;„> X|U  X:f*,1g2Set"ή_)Ez 3vi h!aѠ$)QmLG !LCH&XQb<|%\PR]ul"$*=TӉ 3a x<>>^Ь<‚'7&^sזN6d&BL"ܞ;6KvUDAUUh($,ǜLQ֨* JXHf2^UͲө*5T'Q!#;]na8|1EPUL]z٩KUjHZlM'bV橣hTD-ʲSV(0U9A9lB'?槞| )hTD-ʲSV(0U9A9l44<2>,`hj)v9AUNԢ],;e^b ]NPˉ&.4g{9vNF*'jѮPRL@1.' De/袎CCCMT@1.'ʉZ+e+PLa rv9QsvąK/k[4[5 ,`h")v9AUNԢ],;e^b ]NPˉ&.4_ve==h,.Zy(0U9Qv씕bz)v9AUN.'j.|W:thI%K04OF*'jѮPRL@1.' DeꪁVK24OF*'jѮPRL@1.' De SJ1.'ʉZ+e+PLa rv9QsvąkvhhhÇs1 SD1.'ʉZ+e+PLa rv9Qsv$ SJ1.'ʉZ+e+PLa rv9Qsv5f_.8Yկ>'x,[c6W *1KvEPΔ,a"$ Gݭt!aW9QjSU+;UY0n"$첐A7Uw 0`* e٤rjE±gGp)o@̄e:!aW*ʌrkǼYJA1Ui K2^Z!a֕]~)̔MDžfLsgf M' 4= 78,EHAߊOuZR]qPݒT8NTAQ+!/LF֔:_Mav 0йCQY],[\&r)@(ɪR*>߱@R x7y?W2&L]q&p3fJ6Ӫ%@-:HV`+]Q Hvɠ!aWOU@Ť /dWצ͛7oݺumwl߱sddPF[QUi&鴪H.+ܗ R&UEmq6J,ap9lT% \̙lyblUn \ixBY|{ӌl}XW'aL 5\*0M%N!T7a M' [I3`!aW_#),Z 2vi^_Mk#  KǤ ͟ԧ֮[7lܰ _Z`a!`4G还9^ oG7Y iPzYl]0 :OɝT ܼ*%kQlUn \Je$ eٸR3ͅz,ꇠh?:4M^VvHի iPZ|M*72P[@hU(2#a6ű xb̲70"[^lBy״oߣ?O>O><7008oidJ=Y]b J)e\~9t²e٩*;rj*7YUmWRʲ%3M3=3UF/3<٨:NUQ(g2iG}yL,8܌RBǢ?JSVТw+w%5j,[HXI@I䨲 _К~w̙[,UUF'c5˺&-8,EH$)0UhDŽ Rn"$':īY =sd˫n ', ĵ8,EPM*e ߞ;|ULX BXcCɲr6 u $6:>pY+JYU#]f)B® JQMoݽ.fa?xrK9uTb"$` M'f&.4я{~{}s=>pСٳg'4gCF=F*'jѮPRL@1.' De:]uuqw;7wy=<ꨣb ]NPhW(NY)WhTr첉 9vW~}ۯ׿w"4qxTQLa r e)+ Sr]NԜ]6q܏۰_Fg֢l;w>CQLa rvrvr첉 AsKO}ɵcODE0%dٲ)bMRhݾ~wކnx݋V!aW9hT9PY+8*kkk䋱Uay*Gi!a-²S| uF4'zR]A ef n1KvAFFRXX.ߺ-YHƣ7m,EH!= *2Kv#bH`t d*[EPX&.|%+zz{wk;wܹ{ddt¢iV^YfbK)0^!l"zLU:k:: jG״nv F[, P`CQ:,eΈD*PQA7U aJ hq:R]Vnp2UPE7mSa.1R])p( SBN@L]6qKW8,EH$Ǜ"J_?vSeoL@LWoI N2KvY(oBM6U+ g PftiA^N *1Kv :U  $.!6i8,EHUK皥 ,t'[9e/U4VМ= M Sr])*0UƋXf]nPˉ&94i:4/(Ѯb(0U9ASLU`RY_r3Ԯ*'h5gM\h^j**47604OF*'hWz L0N0KvMFUN.'j.yϞё34OF*'hWz .'hWz .'j.o;::Z[Th7y(0U9ASLUv9ASLUv9Qsvą.S|yݣ b ]NP+=Th+=Th5gM|hLBskk@sSӞ]FϝӼWQљ9[)v9AUNЮS]NЮS]NԜ]6qyʕm- f}3CsSr])*@])*@9lB_><<|Ksŋ>!04OF*'hWz .'hWz .'j.|WY9rdҥ,04gK1.' ڕb ڕbˉ&.4_s5CHlCsSr])*@])*@9lB^{1ͨ1SM,04gK1.' ڕb ڕbˉ&.4_wuGAnGCEPWi%n&A@iY0ijXf]9/M%HXPAYI.:Pe[/TCvʨ^[к;MaFU]R d!&*Y{#S߄L*L]+i.4m쯖Ӝ@InR6 xW.]Z ͂ ڇ 8`T&Q ^PU $_NǤ c٩Ҳvx݁,T]*beN2K)(VU;Kd·.#٩*+Cf?'ӓ04h[u/H/;]!U+֧Y -kmeUH,\ɴ۪s MZoCwM*doSMDž+V %{tvvvww#/YĄ|B3y6`"$` ( e\Fd"$& ڞI1a"$*`5-Qvɒ]V)pY+J,a.pY:::6lذq_|qͻvBB^hQ)4Knfh$)v9AUNЮSv93Dr첉 sξ}{'x'|gGFF,X`B@ RLa rv Qc?2)Pˉ&.4nhh{xFn?~)4Knfh$)v9AUNЮS]NЮS]NԜ]6qN}wu]Ophi04B!J\hG?Y﨣fB!2 sNCCý{Kt ̈́B!d&YB}݇>C ̈́B!d&?5663~apsٳ'%4 #"ٝFG;'fw~0""9aDD0`v #BȔ;'|ꩧy{npppܹҔtb ]NP+=!@B\Ͽ ׯ߸qK/4<<<|)hTJO=E!3м|򮮮-[lݺu۶m;vعs… b ]NP+=!@Be][__ F{޽ccc/fh")v9AUNЮS2 W\qE___xɒ%&4kLdfh)v9AUNЮS2 W^y2ܿWWÇ.]u͚uz%)l27-%&SU+0쪞&I\h7cxfpff"j:BOD`Wf!L+ԠVQ ]F Y 5do~HAvvJ/ ʹTY*Yl+qSjZŢf)B® =|d}m!ͩH4!lH;;;áyDc"3Cz)ͥŒ[u ~P%Ęn]VX3i.OL@2*kKh*P4bӑ*xiQʉKOBɀ,P 424lkZzfmLMh aNLOp{jf5VJ-(,iEӲ lekc`9Y 5_:K]te߈Qq)B!vtt!`ssh3 ĥ4?ɺ)If)B. xIkzN\8,EHU8Ӫ,Y\i f)B® A)qt !aWvg/ WmJ>vS7M!$BWY`+$4)tb ]NL,bz)TB BF}!.baƥ_nb"y2(0Ĥ*}q[f.WjN! .4\wϞ={mnnnllܱcмyʄfpal)0Ĥ>pN0KvMVs!LqK.驫khhhjjŸ[l;w.CQLa rv'ߞ"H\h8sݻw766ϗ_~y```Μ9 SD1.' ڕ|{Bf q.Bhޱc={^z%ٳg34OF*'hWz)BT f橣hTJO=E!3м|]vi޼y ?1uSr]ɷ!d/Ҟde3m6448uSr]ɷ!dW\y&$f溺34OF*'hWz)BąUV/DnCsSr]ɷ!dʁ厎N=::h")hTJO=E!3Ќ ߏ666d)hTJO=E!34oRh֘< Sr]ɷ!d/򾾾}"1f М#FD;?fwN0:"9aDD0sˆ`v #"ٝF!)!.4Xg {iԌ C3!B!%.4_tEߴiӖ-[m۶};v!  ̈́B!d?gy[n /~4L!B/qsݳg<w{G}2F[B8C3!Bą3ABؘfRއ9 *'hWz .'hWz .'m}$恁IE {(])*@])*@ȷ R14۹$Q0GaTJO1UJO1UDO*C󫯾j²C3)}0rvrvr"'H ʄQ5 ͤa¦J՚eNX]oV*RL@1lUnC L0g1>Se3FUNL&lp4dJ%Y<ahۘ*K@4TEBTOve$x ҝƖV9!Yw̥ZCs C3)O;Cpa8,EH!8A@Zרg,Tym%8,EHejlӁR]5DH!aWc{c@U{ra'zݕIh:aW$e\ǨDjZUMdAow: H[rjqSUgE$-1 "VhN$irbtelvId*Me'ahuZt$%r&W¢d3ҍvar7<&+7U a@wjk0Ԣk٩:f+tS\Z/q+hooo_dI I;!n2 lw4MFA5:R]ArS8aUh΢Kq@ef)B. eGE1i.!aW@{VToN۸L۱Q$SɃy65Sc;%YVJ$?ɝT=3Yc;#ǎUXDZ%q߉ *}FWbCO]@է?xlv&hC:V6*mO׊èe2shW^&{Ku<6ժ?u۲V ̠_  v"TOڍ[h޳g-͛7oܸ!J6$4Y+18]f=F{ D#]' F!Fg]̏՟f֊Q9T`Tcʢ|lZ.a;a3(Z4>4إ=i/nyǎ/_tŋ/\ 7,`\י\} 5 B4r_PZ1*eqnMʷKn>ZѮqX+FxFSтQ/ZRmX):s+a՚Վ:K4Ǖ܇^ e-j6gPhT}*h*Bfd8qǏ=駟;v,ͮ[ g!^uk>ï%ԥxnҊQYn&!F|죩Io)6;%U y 4V尕AZ%37Ͳ2 Z4*PTchl<47qe WºmG%l<ŐECS7.'-4?3w=|?w}Rԣ>JhpWyUoƍA y%+RMuoqe UэVUs0 Tcoܖ}47)Uiv`/TcS-9V }F)Ku<6ի隵7Jȩ%Ez&''HFUsm.d?zǦZFYVn l AxlUteb;<: y^㱩u œu ϕ=i/n'~?zGy g^ Gp`*\{J$]F> ۮF %ڣ7-4;߹yodaaa&4Y^QBkQ̜v5=G%hW(In ͯkFh# vמl mWcsTvћz?O3ߞm{F80F =G%hW(+]D{&g}vddȑ#{!" |uU(+]ЮsTvћ>رc=dspնacTЮsTvBkQ JGo[hr/;wٳϟ6l 4Y^QBkQ  =G%hW(InyϞ=TJׯ_vMl̯ц# vמ+\{JЮP=zBsبI͛ pֶacTЮsTvBkQ JGo[h>xҜiLqww7:p`*\{JЮPhWp9*ABMr }}}ӦiqqT*mƨB] vמ+h$_,s\,ɬmƨB] vמ+h$<00 18_&YHhLh# vמ+\{JЮP=zCR΄fxi01PhWp9*AB] %ڣ7)`hVjBIGfB3+!ZzuAћ#QGoG9"zuAћQGoD9:zuAћ#QGoG9"zuqO-G9"zuAћQGoD9"zuqћ#QGoG9"zuAћQGoD9:z ,1X}ihG80F =G%hW(+]D{&~3IBsOO:p`*\{JЮPhWp9*ABMr }}}l&IRTT&4Y^QBkQ  =G%hW(InBaaaa~~~LqWW:p`*\{JЮPhWp9*ABMr rccc###wM;;; pֶacTЮsTvBkQ JGo[h޳gO*u6l@h# vמ+\{JЮP=zBΝ;/_|ܹSN0e{ gm{F80F =G%hW(+]D{&۷OOOK\O9{TG!4Y^QBkQ  =G%hW(InO$.oo| gm{F80F =G%hW(+]D{&{nll믿7ܗeB3uU(+]ЮsTvћGGG?~_W/} gm{F80F =G%hW(+]D{&-[9rСCokꫯ|X,l"4mƨB] vמ+h$мuɣG?᭷ZXXx衇pֶacTЮsTvBkQ JGo[h~fff>'N|'tgaphK7_՞7F =G%EEMWG!Kʹķ+h$мk׮!Ϙr\4aJ(ؘC TnRM.l6@sWѲUI4}+SтQ^[M]:Ԝآ3V5Cy^㱩NozRMej˞RMj`5g\U?p3 @ Q+F`0V!^B޽{376nX fæV jg`V֟ժ^:wX۝DhE*&>Ңѵ]y4F4kѨLέkploW+47^gzԏ6[]:jGlRZ|BC|>?333555>>>666::*񸳳 gM_Wm-5qtMjdy$+0y^Ʌc 2~oTc.I}B͏JBEk, Ku<6a@͎JȓRMu,-4Be3ǣI RMu,*>CqRMe1WFZq0oջuڏ֓-hŨG :*Yso,6QF/T%ð!^SrM*͎J4.MXemږ-/%;Ku<69ԺZ4v cPKxl*?n>dOz& },}u`5g6ĨD#F%UVJ)~M!^Cs*<777k`%Pak7ǃHFUa;zTWQ# Q 7-u49*9^ !I/ؤg(͎J45*ChѨ. a5c]죹Q;jBJ4=0Q9 N,w؊Q)Go/nwiiII4 B3Zz&[qp:kN*Z1xkqdR-p-XmTOܨpT )ivTU؎VJF%..'ܨc]^U%KEsfZhz`rDYQZG,bTJ}7ׄ-4۷/IP}[ Of: }MtPGl`TU}t^c)wƲhWlUT?ͱk\S28ݖ4+9NJ4;0rDcj2oѨLx[BUQXt,c++ݖ}4+˱ͩi5J4=0ayJo 0VJM_BȣмgϞT*%AW^|ŋ p05يA PzjP"TcXB=mzǦZGTWB^xl2sxc!ܕWY쥉QYgO͎JȮRMuU^9CTc+օ /Ku<6թi0b]nlTcSc++ݖ}47*70YTBzǦZc3FR~Xl!$z&'(2kGB/=B/088(Y̙3'O|$?O5y mƨB] vמ+h$Ь=ܹs'N{=Wud&4mƨB] vמ+h$м/]t̙4R~ gm{F80F =G%hW(+]D{&]vIDv?gTBhF^QBkQ  =G%hW(Iny޽ܹsƍi^n+ m{F80F =G%hW(+]D{&KDpD䅅i b gm{F80F =G%hW(+]D{&澾>ȹ\.ɤIqWW:p`*\{JЮPhWp9*ABMr  Rjww7:p`*\{JЮPhWp9*ABMU6:ArOO:p`*\{JЮPhWp9*ABMr +$  pֶacTЮsTvBkQ JGowhl,O#4Õ\ 㨣7GD=:zst8у7GD=:zsD 㨣7GD=:zst8у7GGU\8Y}Y-HCdMfUSY!4 |CsDgyCh| 4WKC,K:)[K if$whie3$ Mʽ{zzzth6l̈́}}ߧ((HJGROnL|^, Y4v{{{%%RE,dY  Xr {rS鹹RMh@;wR۷oܹ311Eh@[^1]|yhhHtXܼy3}eΝܼIh@=ZvK. B3-4߽{|~GǏpshV?oNKnܹs;vy ͛6m+H|?ĉ/^3Dn'O=zӧO_| $r O?ɓ'O:%… _|?=I{/^tIa~N3-4o۶m~~͛o#t ,]IBoH* !t ,]IBoH*݅Z~݉!oV޲~Nhмk׮L&#Ay4999;;[*ch?X۵4Ċn+aCC膍{~q$$Yyu jony޽|~l~~~qqQvMhneq_!VtÆX bE7l{ootXL'Yyu jonY^f -.k64Ċn+aCC膍{߽{wT)1--ECH^*\Nq3T\V 5bE7lhݰ!VtKTZYYI%eLC4|>/qYt:-f 5bE7lhݰ!Vtmh7мo߾Bd$7˂ ݴi}͆X bE7lhݰq|*#JIЬ͇fy tZ$=ō7CBhnٴ_Cm+5!VtÆX .YG1a!o#4? ymօ<bwܙfgggeA ttrW֬Y,G"mc7J}!nM9 YSACWi6ð C% Ǖx~h0Wp8Vgמ2uS͐}~)[Co2,{:~EPD_xL&#Ay~~^RԔ04MkVs\yTHDnD٘U[LYe9oqQ [U׾%4*n(*4[R'?3VWhmW˧S/W%|C~^P.w|=W_kǓia5;r_/<|h>4o߾=NONNJ!KMkVQ]޸o`^rDd>p7_y%dWu Q7ĭ 4]ak}hV@P$4O?TH\x 9wgZ?8̜%4I=EYuM yAZjy% l_.X޵ZcT]>d'TwU5~pRWUP;`Z%(4{x Co~zݦ5+9?̻WvO֍ޱƇ(aJ qkB4in S$n(fhQ?\S]R>2|G:x= Ƣֲxil y9|C~/p򉎿|Or,w<1*Oe|Og-yI|h[hޱcde lV]"xC!dV/K+nX?'C8qǕ!nM9 bgHPt>6)#5ttly`#4W0ܑj6H266+-OȾ|˻84⋹\nnnN YwsgȟQ}CW./ZևG qFZ=a3Q qkB4inD3Wڵ!&+v|lUfn|eSKՂ^2j<U2Y?/t̙:ѱlytkef*x-2zh>4R)˅B뗛T<15+?Fc|v+]1Wss"mS7j:PӚ5Z(ꆸ5!e7k$Үô߰u7j>%b{k-~/_^_˲L=i}oh ^[~qsљz,!O<<^ꗛHbVPȲѮxPC3&kջ|zs_OH JsmVXքh~0gI5Жb3sP,եv nZwtxXէv̽xdeK&ۡ7n2!hݰ!VtÆX 2Մ y|h든I%[Ylhݰ!VtÆX .Q)^Nyxp *+[I0&4+aCC 6hCC恁ͬ,dA&fCC 64Ċn8w/&ohKVfi5bE7lhݰ!VtKTd2F޲Gh!B3#4BP*`Ch@~I+bcB3-4I\.VWW H|bd‚Y*Hм|>?;;;555111nIh@={d2w_~P(lذ dq ;w\XXtٳgϘrc=Fh@m۶HP>q|tG!4 YB-[&&&>#G:tmC=Dh@g| z/,,|_&4 YC###_y7xwyB3#4{_i@}?;C+_ l299ycǎ}G?Lh@f#.\~HS$@gٯ~f$[hޱc׿W^r%ϯ[ dq ͻwN###w޽ch B޽{sDXܴi߿4o+[YYټy3 ‚IEgY(J]]]f$[h޷o_>-eB3-4޽;NLLɟ|{-4ܹ3J ߺu͛۷Hмm۶9/_,#Dn{ԙ3gN>}$˹\_nq O?c>OLGd2>(|ɑ?>8rÇt:#,nݻw%(/y3R~ d %.~w%4?Cf$[h~'GGG?>|I~鉉Ǐ=z?=H"мe˖sΝ9sԩS'Mlq ۷o~ׯ_Oh@wJw޽spƍ Hмw|>?;;;===UIh@)UV*H׷R0-I0&4 YBsT*֒`Ch@恁UV%0,YGa yCh|fAh|fAh|fAh|fAh|fAh|fAh|fAh|fAh|枞jym/f@Y*JnyP%϶B3bU*2LU:\X h$4o޼yeeevf(ef6ݻ׶B3bмiwZ+JE^FB뗖 Ujnnn۶m{,˝l}~vjr=g 1HhWd2Ǐ?qQǍm{!4  ͏>6Sb 1Hh~fN|vSN>}S''&}Y^FBs /\p҅K/J]y~ 6 ׯ]q7oݼ%l{!4  ͛6m*.''&'&]m{!4  ͛7o^YY F-,g 1HhZ]]fs\X,8pB3b#kBh@ 4{,)YVJVKfGVkl{!4 zK/d 1WWWu.8n ͊Ąf$[h+J8n rE㞞B3-4JVΚ$oZZZZ]]֡Y}?=#qyvvvu RKffĕ[h޹sg*7NwlTHn旛 B֭[0]vP(lذ5څ²V5)3LNN*;mr=Uy`U,8` 1w=b:lt:#ttuuJT*mBk 1o߼y[o7\XXWұy敕ܼ}Bh@ o}[׮]{~fnnK_ +33{ p 844_?iur={!?S ͲEh@\o}[CCCoߨ~Wf34LXKB^B3-4?ׯ_7+ wIROСyzZfĕ[hwsˎ9Ge248;3k<1y晱'N|f:}sUh}{s!мu֙˗/_rիCCC7nX^^޴iwܹx;щ \Z)[k)Dh@,{riܜdR]3ZOnP()՞B3-4B3 4>B3 4>B3 4>B3 h04MY+KYkIh޻wm/fĀ[h~饗tR3S3r{CΕ䔵rܞ{l{!4  bqr|ZLvݶ MFhV&!4 Zwe 1Ph6=cb|Z|{?Wkeee<$B|e" -4ݻ7Mת C_ ]zK3[{ζB3b-4ٳGBT- ͝:4ߘ14tuތK/J~Bh@ 4-l@Kh+!%6˟/=B {8d+9Ė[h޳gO6U,iްP(\7]&um~~~ny׮]Lfl$yӦM7n\^^mS۩TjΝnYⰅc;:;;%>&0dݻwBh@ f[-* 6lؼyʬҾ}l{!4 B֭[%_%x]]]RIfT*md p ?̥Z|ݫl6#d\N63;Lh@L^z^yׯ_~q;s EB3b#4.lyÆ KKK_\~ݑщi#4%4Bh@ f#s%4oܸP(ܺ5|ݱ陙Ŕ YԄQIS3tOh@57o\,fffSL&b^\*Th-ynnnaa!e$L.5fĐohfyͲVr*d9̄fW,jBsOO<ȘY#2/ fU93_dм$Y^c 104jhA%1 B3b#4KP$,Th\Ah@yfyZ54gM*4ͿHh@,~YeE"޽{,Tn&4 C$akn ϛ1Ьr=4s̈́fU,Tn ijfĘGh0Ece+4///KCp͕Lh@yfI:2BP \SNfn&4 f ͅBA%f< X ͕l͋&Ίg'ƶlb 1Hh޸q |s}϶B3b ThߞB%Ӆ Ϝ|#4 fQ/_|g~~gcc|`hW^?Ǎi~ζB3bЬ~zƵk׮ʕϟO@5͟|֭[7o޼W\ھ}m/f@#swܽ{֭׮]7  ͛ȝ۷m 1Hhм25mK h$4www˶ιlMf#7>^C*z3qHh6X̿85FBfG ?yݻ#clf7n߾N{{{m{!4  7n.\8…^ڵŽ{Bh@ 47_fO:-u/\rn~ ⨑мnݺL&spg'%8;~ff_ XͅBAeS94?&36:s^xB3b74+H͟:uzrrr u,OIh޶mm/f@c㒗|SO_i&4 fQ ׭fO:e3g>vB3(xhм~}.\={8/FB ꗛ\xҥKŕ+gggwa 1Hh޴i[]vBh@ 3BsggB3 h<4L:2_flhf[9o9̈́fRY/5恁^| k<4,$1g2Bo 1lh6s:J---Bh@ 4od6s*0? h$4Hh1/LrBh@ 4"$ { h04JX\]vBh@ 4̘{Ν;l{!4  n;÷vpEQEQ uh<3=5>6z{l{QwCs3Eh(((jAhf((*{G|OTJλ}|?9xn$w9P_̐$c3C43Gξ۬ݻ9zj#y k1C$7fUf#3MeTr}?! $7fUMfЌf ͋H*{3Lxc QEhF{/cIox!͈Xм1C$7fU-BMhu$49xyo|Z?9v̐c0Cwj04B=00`˃[v#+kݗ\xxZ[&١UKɵx5$_3)qfAl=Ɲ'+u|gСguu5_Ko n?kXxzɎ|J?hBӎ~gͩqc{I"{̊XU}3n+ḑ򙮞88! ͙Z϶;5[#ItwdFjUOqE\ ~O||P3DU%ۦLe}gKLBW+X.3_Ra%&ϴ U5j(knNg\vf}`,/'FigFzDu'G$qMX7%j ec։6O}%6bpbS>$3DU)FFFݹs'J,>`Z^]~Κwi5u[^5JCxO{tX?0Ԭ8|z,3uF8 ikƄ'iJT&[0U2cb&A8Ɏ㔨,X'NcM s&9<;O ^'yb$kg|~c׻D̞դp'>}cb=ֵI;CTׯr gϞӧNxl{y`CU%"+0Z]ՐZyuew-s89n>+˻olezǪ{'Y֕O7Up̱ΑMyӔ_92=dFXg4ML3DUмn:a'?;qس>k˃HvH$& 1Cwj04K`V_cώ?6663BhFAB< $}O;fH1Io3DU3g>\8c|J3Dh79|ޘ!;CTׯ| 6>99e^"`hN?$7fUCW^4•+Wfgfmf A ͙L4$}O;fH1Io3DUмqBp[7o.,,sm/CoJ3r<$r k޽{wvv-H9ref! $7f!BfGX${04Ο?x&c|I#]ξ۬֏~'2d!iٗ9`b$ޘ!d 7o,f ͵|>_f7~VrC}ߗLH9rm󡾘!I$7f!RCswwwTZ\\LBpA^f((j {zzVWWl΢X,Bh((Q %ȳl{!4SEQEQСY%LQEQEŸ ZRI^c ((G)((ʧEQEQS f٬LQEQEŸLh((b\f((Bee)((+nm+ÅfTn((TB_-jeh((X((|LQEQEQ>Eh((("4SEQEQOͫo H RI24Kn?C/nhBHez|Ţ~?f?jqkxzr4Dϰ2։~F]3}3m34=RKuSLS]Ţ[xeY&R}}otעΠ~Ker]Cs=<窖vʲdBJKYUejx2Ty#ۗH夯0n=OjjX|9K]t PWe(jgxR7Tڳ~1^>%&}"˧R?@SB]S"S&6zޔ)enJ08!,Zp1)GQɘ۔雺RI>T7Ty_1lj:YJ3[`ܨ7\\+ձzPƧBruh]9n{cztu[[B?XtS =\I:SވzitR]ZJCl B..ob%u*z $?ʪW~j].i[y}>3OX-urW:jJ =3)ӓB黿`p?BQ v:_ffu  [ދSy%uf \ ˔SNMԪL!PoQxTuFrqͼ"fo@PFh~g{zz*gڃq @c-.P'@%?z'=IZz>KnVTPW ꜺtEM 5=lKנR1u=6F]B?vI]V*Wm9z#PHKu띢>h{Qgzᨳ&zҔTnnJ0!~TP3oה@jT2ly/fKC%#}3o?|ǕjPRMʹtNsu s^7HY7ü"b^!WrZ%*]Ǿ}唫3ƼGphb<ѳ =ji7+*Eަwj]_vJ 5*𦮲z N]z1B;{-"iIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_08.png0000644000000000000000000037070414741736366025226 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^Eg{ow}\u `ؤ5aN@ńHu" b3*Q$)P dܹgTWWw}=C_ƒiO:2O~a=>GБG:Z^.srmޣt##-Qz?~ov[{G-*%Ԓ 1|PY[2=~SZAkLQ XM\o K|^Qe)6+qk \%d ]'D**)ӢY[\h!JDT*gUҕn{|t,ZG",եrG6L̮#uX>$@*˕BB~ U@ю Oy[[m?ߡ 窬SOr~j6/Ud++*),T]PNH)HܕѽYY%+*W"yFJWO_& USGCXum2g M$aiID+ B-B!' X@VoBª-_а|ACJGRk9k~4jԼ|~ /_l~[rڭ/t !29O?i̘1o u1 2"M`dt3z $.-K[ sb+,*H~) U**by)cgERxVU]V8CbsMHH_eXeY_q f!R>YMRϞ>MKqوC*VВO=הΪD]-xJw\QCSim=]*G}ޔ܋f556@e!ÈӐiik'_i(ŠNRVG jO:^j?T/!0~H |QMTPVoGDŽ${BHUu r~t- ҳ ۚWPLwRE99yt3  ɼ -kvnFP\Ie§ʟdU[Np¯ ?L̾ /f(Fx\a^i584Wx+KN@/rByEMxry/qPZ!UOa/,""t'Y"XqHs T .3}<'.FDOZ/J(< H\"Q k x9)dB9P|1EN!m B?CBͳ_鰕f@b),gO^niWRg“踮zӴ\PΚ5B*2{uUcfjy$ߢyϫ\@iR7(Jp5CE{yrSV3B Ҳ"y_lWT]~[~ 2V`D` rKZ.XmbG%R7R2LBPqAQQAaQ%IIpg *iE]yaev_NOHFP]oc_HK<8P<(}8SB2 (.d{Bŗ,1%iIt8׏EDzi.nvRZ,a 4Eyi}jrWZJZo ^|jzw_ ;9-i%-x%j^J@hNÂ9u .S%_07N9%w3jחd<1~~HDyVG"GAl#OWl7}f9 ( uŚLyA|bJт\3rʼw$rՎDݣɍ%w($)-QS(9+|m t\7VHI'п0b{KɮwǕDJ݃ٷLλ>Cēגi2SI9 K%LKJTb6 $C k(W3KE>U]&2lR9&?( V {/w|SUn$jiqI YUVYE$V-IjUaW枕/~Jg%v=x@myV~GkDJXbwS:܎0[ɨ e- )~O_L:&:0L#BEŅYdhP<(iQHrA B'F_y掣GcE?٨tzkWl@$!]s)ق[($1,=n'HOـBx~90f݉ )|a$@FE 5j9"jhl~)\KϽŗhu0N%oʟ\ J\U\վ\ߘxcvHgrcwS#CΪ;vI}sg͝]2wv _]2Ʋl(ӎ?xtW(rѺW hFm9Qm&s LJA™H g(.<NYCҗKI_啸+Y8Y% 1`Ț nGJbX gr▉e|V_څvwتTN ⓻R;5zKq!OkץoXVyeM|lg#3SM *+]zli0#[5Y`ON6X ,)!^< XOAY*=5RVgx$WxҤ U OeZ*$*DzbvJҞ2})>c?݌¡8?] WXOJa߂ ʐrHUؖ @i:v:jFu`b.EHH'tL pxFHp9vGӻd 1rC TR/r5 čkگrL"N 7Q/ NZǔ8F"2])0 T5 J>UZU&[a%nUIKrS^J]e_BGDȃ E%SH#m˘QQ!萪h:IH")Б1Ԑ{ad|mUdly0 J5cB!TU>\!Uå<\Å<9<#O=#iO=R@$'3JvN?p%Gt\r #_x']?`G ~˟yyZR֚5nܫ%&T*OԿw~,̇2f>6󡔙|ṃ!ȂR.'ȵO7:N~p/;>pYw<7O۳Κr뉴!CP{ia"/U @#0(z >|U3Dvfb!QBġBEnxy2Zf k¼djD< EpBJ~Jli t]Wy3i ˵|2M^M*!FOr!OQW`b7h_>u{OىCuAQC<~;Y:eK ^8cK5dڐ3TH;ߓU>y_TU5v_J;vRĽRE3-zނ͛qo֌{3gܛiݟeDs [d_9˗`?ƞ~Ŀtm;w'W'_|?}油,}e_x?ӆ|#"/R 66NgKPMEnQz)Q8xؘ Y baP$j{ O;c#U|O '*9P*$|'TYGùJIJ{ |g誯v|뱺Kd}(G!~jѮg HÐBDX'Cꊪ h+#IaiևBUr~=B豙#8zEL\݆ Dv 3]ӏN<ѴD|'bwB>v$3,YQJ~cKYRu5-SIPFCt#uķcF3bm#6vֱWo{uث2]5WhU*xܕZO^{kTBERfM2ܕweƸ+^rەɷ]嶫6j諿}ף^;ya9( \湫;ʼn'.{ʌW/]5ݟ ɗ_1'=r_X7Tn:J׫23DC3yV@``휇_(8֌*‚'!0#)j-!s3])Md,%sGFώO}Q󍁚* Orv uӡFMjpz 4R5Tz?|'!k2iR ӧJ`(iATz'xqXoHuTÄ#I̠N|N#}HT%=ntԙP#( JS p5f_C3U9㟜~-706)OLxwB6}%B9jH:{ 99 4,$(T_,xc9?U?>O_o;ey'm>-.8)んB(ҌK.rJ2?ɣ2?1wb'n>ݹ'~}_{g眲?>jۓwEK~Fc8xQvC~}e~h2e)7eբ!H8 O7.Ԝd&ШzV5*=Сٙ'kWMs0ʨ4ǗF/Ng@3er!^!؞jOeaJ(i@TZsFgk$uG%;BCƃ5UCu4ؚݞtT9 z$xI#I1dL>Շ5HhtN'1'Oqt,tPtt GRQ(xaf#!CgΣJ>#pj=4!AhYy=YL 3 Q1M&//{eu !ceUUM.8;eK<3O謓?>gY'}yI_ssl6dCzsdVưf\t_J> a' ;a ;aӰ֝s·gk>3O̓>:g'n{?Q. 4l^9{=`ÃC _gzo[:}mCG>_w꯿8?|'v_$vI>hqr*ܰ#'곸\}EKUDk/>WMB@drFuW΍DAQSG.xbUɂUJhxoLQ8. *?H%Pid<4hM{tEWy B;~Oe{M [R.#~?קFAjًұƠ`+OCJQsU3*rQLaoѣgoGYHAhP8Un#lL9_'*$zDK/S+jDCmˡ>0%*}{GF/K@aَW :_hԄ8֧5 )"u'O~17Cq+;/s 5$ڐ2'GV]v_/x/i;}/*fI\3ľL/^h $pm$i&|2؟X75KB~H!?hk+4L/_a<ݗm<ѱaZu^"ϡJD#j*B*Yжi cCd]80SUI^f '22~ h&*cT4!ݾ&SC9H%~ezV<R:@:X:|"=x!et`99x8}c1#"h1aPB|=FQPp1eB@|2J;/9YaC7;tyCzf{}?wd;+H9wsl;wȦs6۳HҧgDw +w#8ySp04)"oNp#ç~ %Ǿ|ϝبC?}w_f?u-7@ʹaS_Bv)M#'_oܾXުd[39>_/}tK6gv%0CZx*s|luvdՒ[]5.5ol!4k{%UIxO;"سRߨEx0XqBu4kFCJQEoS}SH$8nápԙP8pLTb6T|p>:u 4=N?:>j52yu['>@}oagsm/F mm[W_΂7?}:O ;a|3u NJov&Pe}CC?1E7wsOמssNWsʳŭ3 }>d҆r,ݿ׃AO>xꄴ>eO?̛oٕwTgWWІ:#5Ҫ+otܹ0\|o*3?V;Pv_7Dqpֶ\1e36a'.?_-4t[ͨMՒ]pkuv߀K{'FFj ,,K&8Ł&>5[K,&JiՒeL_ ƞkz 8iU}Tb:TM*TcTB}{Me<%UC(O-kJvF( F:v.CuVg` OJ訪F\X#A3>CQ:㧣#Q8&"NBP3F朇~~¡;ӏ#zx+aYn_9OhWn6lD"S+gh6m!m޼Uk˖mWe[િ5ɶm۽/? O>U%ͥ͗Ӓ/?-SӇ9o^D3.4OGTRKo/;uen %~}ɩk.9KNS?ԕExa~s"JlO=??g<wդc3t+^Z2[?4aն1+6_6A=Dt)H~eKA. Y70Z2pʈZng>^.ϝE`\md [s5ȧ'g^hlzUnrC7=O=>WbJ&ШzjՑnCfq\8Ah8C\~Z%TOYc1GT7%(5]]%tW 3i\>ƭ*Geٹ<+u@;~? ,;@# јQet`yUCjFUO$ID$$8n&0p5܌:C}RP(8.trʱ.01h&3Q8٪Fj7=2!u7߰ť u42{ݴ9yv{⦅xMBD&[lKNu)c]WsW_sgלsf7 [w9;kugmQg:+}Y4+jgf\*#Lv[=sgy#^{9k>}zORӃ򄳅+???_s/Fۇxke;bm 5a7o7*yo7m( 煇JSD_tyS~pq؟ W c7 9' -P>s\TVߺpwfweYV_=WS"52^f 5<yQsDaQ$jZ tJmI#=V9g :NH52XBY怡;>! 0lOrڧTB}ݧF9z\zE]çPPX(D*daM!q0JQ%hd&*01#Ip4c Wm) "b8 Q p]p >:C=}?r[Ԃ 5wPzkVVM7lL6[RLmٚں-- JUے]JޞajTXT\+>}rߌۮX.z\?ͫig{/|h{+~G?x;H:&H`v9O'U%'=F^j[߷ YWgA$mesiC\|$;Vt{I#ʱbw]T.9VrwByfweD}am xNt&*BIh[&χˇ/Btj UEe4#88IpUyy.R/Qrv˧z?0n2Ns Ԭ%~ GLpJpT o` *$xP ooH# 3HzTqEQ8&NB{ p:6=s,K/>Py2mx ڑ#%ktVLSwdՎlԜ**突RZzVzF~|*)?pQş\{]Buݲ_lݜzݘ91)7sjQy2J{o~M[i]7[H%_prl7}q6;3_᎛nic9GiCJG;*#g7/i _>\U~u\p#_Օ7KG{ 7ʕ#\V~_zj^(~_9ubs["|ezo}. ٧Kn~^Vݧ1@1$TW!ߨXa έ; |(/,!jvvߒ,7wA]v_V (wX,3 [xRG֚@WuFނOn@^mhB&* 5@UUuxa?fq\8AXb!s#8!x0F` kΗy+/y TOeOdءj+ ^!x1ҁ$T~O{OT(%: 'H@MEG PѣRX0)JP=8$!9++ 99hp:P`[1b\YPbh;%W7xO>^[XSU}CSP=BS ]Qce_k)O?}3ϖW} /\jE5KT% kI~eU.t㔏IsCNQZlG;}>ϯwk1'}襣X]v5}]*[UڰY:5RjA*JV I SA6+P]F) FĄa׳X17v4jKnf@{QsDM`Q$j]RqڂqB7<1vi~c8|$/J}~?[U4@ ҎhwYoO9R:@:^BQpq Cu$XFQehå|iC.{qŀ#xԕzWwTkC?h\)E ЪWwA\>ui#.a9c&|BoO9BC_oa ?]m,yqi}vwUl+ h{uN#;I}cQFoLeBM4TTB9QITc$+E n.xV2Q3g}/)8CgjPJyWKrH['H 8K NZds[]%tgoʸ))IDޔ ;W֨M:CRyaH1(_H8 j8*CʸBj04DHFàpފ[N9z+=::(:@DF P9' b ssNBN˖-^e-[6wٲW6ڐδHoai (O٭x\a hђ]uhZ U#CU)$ZLPN $f849E؉tYozQs(teSdT]񀣁VGLe e ' J)9+ `(PR1 VsMϡ ZaSBz $ـ&NFPyy$'P+I{]k^QȵRtxVT ,sBpO2RI:""~k BFFB 5E0q*ܞ{ <#cO٦3.osq* mˍhd^N3TgyaTp^P#J"K 9 rWfH1K) ]@@y fVv_ljq"z`uB3SKgθPOw;ûQ(TpwJQ"FXgVϬ0,hv  M4M)հܨ)-997u6j2'2jAM14sFαjet8QrT%1{ ]Oyu嗮>9D0!mOn/PCNnnN\E@-K/+Y$[ 2փj:4:X0'Pq }F\ Xk\38RL㉾0>;%~IE#C#7y5 =qc$zb*̌ Q=cƲUeY:sex,%ݻjJx;'0C-%6M/:+/U"dniix|Ix6S,]G(x\+TF{ӠqOjBA=O|]Xc2x=E#w(Z<#N8b~l-'I*3]γ*VB,h*7 RY}5)^J49* mpBWVX]R:J|vb9Iw@ERS)f$%[SRs515,&nU$<.R{"uJ'+`dSHB=OcA NiiSg𣖹WzD{IZ^>%DzSYYYh5;+;;Z͖֟Ϳ4ºq_W꾟JE1ӊ(텰G|MrӔ=<'֌K-Q iTLv<"Y≤yc$S;zԌOѓGϘl^+ƾjS&QyL92P^Tox oD+Yg!ymlZB2y@=/Y2,)G3ɣNW@;Ԗ}p}3-M;}3sb)ȐwqIZۍU %V9RHJ#fIY'YiZ|r_< i45)5YJUaܢ&iK,1̏t2y:>Rt"bذJIw.,j*CGZjS*󨔮đG9VĬ*fButfYS!:1: ,䒸?Gݔ{T9*՝*) z .#'x\Jf xL* 3*T_4drrd1ȃ".{fRFF&+=3Y$Q"* =sk2d]Cqa]`hs#2PrVgl*X`'X1xR焬` [/dIF!P1 L! 2zIEO=:6=:p@Z/^9NIJ\k$Ohk8N4sOx $RBJ]y{n =؅J>[qc`k:]BY!чl aƺ6dƐXVR0uַ?&nk/g%J)R*4j:J9v%zPou%Lh4E^ʉR͕Z\H&k$'ɔR\L r>rNtC,TN?UZ$eZ>R\wNeFphpbޖ!# zXT^BSҲQIY&TRA!͆hrܖ&P)}!"MPh.0s^gP3*ױ S:Kϟ2/EyU!9fRNTؔ*# MpB04.TJ,aFsɆ '*hN.m},Z†ff3YiJԴtRRvRx95MJrZMIe#~FfvxG}YJGFGcp bV<0c+eRZyBjǓBU09I1[zC%F1厡 NPG)m%/NUDli'$GJA|jT˺iwCHPǒR14JܒD.Ӏ8$eig!jf8<< h"qeEP~fNb%_6{^!)'[PLNw~eJ2IE$_78VѨ UʢQJL>Zx6Rv:IIDLPC1ar5ECͽPfv^܌tRfYjCYY)B)iB;2J+Ma*uvS)[Sڶcsmߴuf-[wʴvm'dީ?gYɣ1N#_>_>Tk2jDVz+*roT3njiz& ff ю$&:t w!J5Ev%ijFuG3Hg).DeMԅ⑞]ln/i)ςLE3y%!q JgKmZ*Uj /*-2BTGaIkHVG=%;CNKiCoStdK)ͺCo[mP$W$~Aop~/>kE~ mYow\u.{C}#&ՇZT2cm$ǸOKE8ɣA%HAA1+CAAО"gׇ݇  =H^Or}݇  =BAA׊~>AA}"o݇  =D>2-$Um#>M\J6Tv5x zw_}>6M^H3dڳ4mX:ukR[y\*Iy2哼=dnH{A*zn0Aw}WڧƕHCCP| Z<]ꆣ (a?I})}QYf+Wh.:p247 顪lB&Q*CPY&`U'LJ$PVO!ik*Ȱ8R.+6rG*1Gs{ (a?iiCP(:2|t uZO|x앷4@맍$s9$;x(69j>dB1ˇ`fUew6J[MӦZ GѸ.1O$⊧# 2:"lݔ #II5( &lG[&9 %b."!Jv_ɲfS} c(0ohe}BK=n@HϨ뷷-ԑ5QjCX=ClD86h(r>#D^ =J]9j3T.O!ܑj"iG+QG$`.;1`cnkYO:d9Rr%P х*7ۄ (@7v>uUB\lh:r*kWU/ᖗ̓ꘁiȔ=T-X]իN=jar٠x0F{".P3DzWJ2bj|Q~r1Ov9)[繶ΚNQN#+¶QmzOhsdobstq Y{ɲo"ɮV JUм6}7/W-UxVVե =F]=jt=j!r~ {"*!"z::R{5xdeƽ=\8T#S%WW@{Ԟ#r89S. cA,]:zWTͥ8idd q8H[7᷍[SrpK%Jƻ^2Ov A L[Z8 I]A}T8Bn7f4YJ'zzakYt6: Gdō6jCƞ#b3JԮŹCx!!$NXA__}m8  +w{{{uIlT%= !v ~gGS]mSC}ScCSSOC)=>SVoT֦-3H)i99yE%7l-4tzWWT8c%ݷ:3]Ubckw){'OrWk{GCsVcs f)4Mͤf>MNLg&gRdEq'+zE.JzOO !\VoiY9’ҊmZ=8bUߴl̋fMjt#Qu#qx#i8vˠ9 A [8X0y&ևSVoSr,yE%e$GYSSSWW)&1Oy+7/17rSliXSW!莢OCuػ *c?{j䫛@즈"|777gt5׆'% ͵(ԢPٮ. ZbsC{AqH4NMmv_B^!ooii76W+q)a 9IU= ʉO}iڈiBofbў" &@ p%^':;\$xfm,fJ{TeMksdžƲuDZ$p@PLVo rtl_]]M>>? ͕[9h;jԞ!u)%"QI󹈡evt8䱇]5d8%D]I_[rBY՟P@~[G}͔~GORssCںj%.YDPt|}U/ \ȗ`5U.)ݷN2Sme(5BAjp ,<̚kCrT&T <^݇zJz$A'8KA?MYZ֔ώ5Cu8Ge TW Ӕݔ)WEú;r+聈>uJeʧSf3.ϡT/+tlXs" u6S#(~]mmMu)8QVRFhelU~@jB]3G/k8}3DN(2ŪUh%OJn*sx\ U#ZrKN+(,fGTUU֒khh(,, klm:Ԛ⼫.y?qB8%"E?;j#* PAhy=*CPBV*+fV38i=՚˓.ŽB ^V0 t6ePGsS]]muu+ilVR, :XˎΏe1!jT;:KƉ'^K"-y {[W*q,۵ĬI6,GH-]:-3'/ZB>L}Jh1G"OqU%Uf,*\P,ٜUw_f|-VloWEeyuU7\wtFމF/ EZVMWꉅ=m0rq9x+da+UG;'Voӻ{߽IlV|yN^AIIO2 H2TsWꭟ6TlR4qA'S\J6\ ᔀ8ّ8sQS}^yvK=\S).xbtWro 4dYNB8.`3z`. hf&n}[vѝmuEʒj\j%.>D#:uZƵl!gFy@gTUq)^JbaҲe/ʻ)v[±*ڒHݛX0mYʬ=Y8B (&[E%UUUl~K>  BL\8!cn -4>Ղ*qG?[ r,CTR,0]iz.tohm)Ȯ*ed(HRSYvZXtVhNVy\ҥ/.M:je>#b߮߰a[ ¢2|2ԛⰻj;|9ǫTp^ԲW[Qkk(Qu4Ue%Wdm/MR!w۷վjbqn|xqIHG$zQ6'qX8z"n ԣ}v_}d>V-Pef&~g-[;w C:++߾hd$t466&v$)Ԋ ݱ\Y݇zDbkFÌ(]B:rm5C{w6 w(o8~@}J6|V'_L_0 Ě2eJQQQUUVsP,йp zzi/$.v2{u%k?*ZaK3?]j??㪳Ou{z)(t\AA\xr$%S?ڢ?(Ufx'e[+Hk#)(t\ /<9eR֎!v+g.+u_q?NqAAA]}v9qa-ǯ~ClkxAog,H]@AA vVcKejkYnֲcѫ[߅݇  =Fdva5|~Ƈ.}+yk[}ŗ} AAAPovp?ϖZmKm^4<+e?j  ^(Uuͦ~G),M^d ?w  ojmkoQG57l:SZ󏷮W{\@AA 5a*r I\R>Ǵ4nߒyCR׭I5]j  ^ 4ݯmkoXv~Z[33rRSg$oM߲\@AAPԓOyP(-l-ocmok/*((Ȭu(W+rI  hG{g|>_ E@p'>6_գ~;JKJʊK K oy $v@A4eްoC8P4\O._wtWT+ Mjb!G{!|꩘|0#ʵ-סEks5a„NuE߷8P4\OoHe"﫪U@SmO^BG$roً޾uEt+?`ࠎΊj)UuOrIl>Xʫ?|Ӷ)k]V/LHKW^?rr"Ru.v&E~ѱa%C=%m6nMemJN۲=T\{yWO~-{ ̴̜6#N[*ګsk+I˷TY2OYe=e؉Vvz| ڞdICݬVzv)ޖӲR3T{ g\=z48:uNoW82 KJJ+**%o6CmR^W"7*Mxt`iH+ yW[ksxG*Ⲳr_UUe6MjY *%"6Mb^ttEF#j3rrZn59 437ݷ~cwJ^>p\ĥ=z QIHB<^cԤŤ btDn; ݇zJmJNK/,),*޲kf5kӛrr󢴹"m}ՍBVGKؖ,̼چQ7j%.%zhYϞ :֮nr!h(]$N]0uȈz~5i[%\5y{*QM rQ0-HVX.ݰTO,݃ڏv)iWXR[X-EB:SN eEŬ`+XkBjOrٔib/Çowǟunh-۾(~T$<^݇zJlV^S6yլ/|r{ne&Hdz3B] E}[cǁ~rJfFV^Aa1}68x+c1 yϓpH޽z ՈeT/TI9FC'FJ,c/*ǰC%gǯQmjnݲ=kLM>#op:PiZpѓY'ֲΖ-qf+PN)-|z`b}4|Z0jy uє{kQD{03V5%42Yۡ#UKN8B (&[bub g\-5nz_G1e3k"\-qH/,++/V'+G<ձlA&w-\ glꄵB(wGR}+A w W[TC+d[6'g'm$mK1J\J:ۚunh-;aV9x/\rb׊JVX}`A unh-;aV1`[|_<=G`ƖJ}V/2t"BLem(;^6Z@npԑ٬q+())Tn.Bͱ _Y%Vip W΁9(RO%c<`*e/_f7D rW5?O?iWurOUm2O&;:+4}^^4;W: P jn=id&7`=[=ak  z[q`=f?v $%eomK, XGZ Z8s~?[v{/K.yZJ:yy>#"\wz$Ehck. vڳv_}Yo`$_}궵gJgM]M$_M?¢fn^s$%]*ˡAA{/J>r܄W6*ԯ "_nay^/"1]@)SUUUm=ş ف  v_@?V*!c lk((Vʄoأ=S%%%Ys:;ArW$7 _>I/***B 1&Z=2mʔ)tz@OA:/A~u#P(ħ o9~vWU.Dv6}  ({LbL~8(/~yu>ЌAAP…ľv\}?N#UEUV   {DbLw _W_-(F߆_Յ  =@Wu>F~%yb_m}  YS< b_//+vqV   UJU;~A_#~Na9>AA)Rv_<׷|_/(oU<AA'ȶw}R~xq?>_Յ  =Bo9~Ayv_<Y!We_nTM%k. }\wxJu{,TE7`! + -ݯ4}v?S4<-Vܤ֙VȚr Uqַ1+Vvt&p>AyEֽђU /./WĎa]u:ʋz~u4l|dp00֫j F \ahoog7I (JcQltC^wBQF>UW#3>hF3D쉫#a9vgs X8> stBx<8*[}F\AAo3PGNv cԂ;柪[_%WƂIC٠Vl6<2p|dԤŤ \ F&UQ4ΨH#0E%NޔQ&t#&g߂F k.XEI\'8]cGD 8Pw7х HwDao3$AvT~HV5莩׆;VC6B4n(wAx!8QnٻfhUw(X\ڨP Ad6tm蚋  h\vTCcs}˛@&mmg u"CGsZQP9r{@(1 ];VȘnREIUbZ Ք$\# *hı큷* KXxG<'KC^>R$ 6>P[TwliL "`CAW;`ApU.꣣Pqa p20TbH8 qEa}UݟxOʐsǻ @T0H&-eDK\n;cv豳IQFM%bGrGC؅1#- |hjeGZC>16MmGV$%Fhy^mv "NvQ*rjSg{9tDiVw vVմ%Q(]%`IU%6VF7,ki*m]"Yf<)0cYwUuUZd?oim\x@7'hj)זWi?0߱T7nu`&"ئ!d֞_Tn[ns>Dvc[Z}ԧﱭm%jFt`&7r[CR mdO:Oֶ"ںoՊWt1okh$u\}ږWmQ7Z vn"zcBc>VTmmj+}xcZv?'j+}X~Iyvǐok/dJ_w=>=FLv1TZ^iJ~&ӷT}}Qx#F\4~߾ۋKJM544tͮV(~ʔ;~yT =z`1Õj W UH߿_YjjjsU]@'6,~u%e @vڢJyܸqV>=1@S2~%eY뤥e„ VڣG}DxEwB^ v~KizIEkkĉ]x/))YvZ9/_~-Fa Dv I&Z*Opu7n܋/x/lkޝ^ X\vL@$֧ɓ'Z*K+.\H>#;̤^;ӽ32O{Ӯ&UmdZ**kMuhsF'mmm{_l֭[󺓂|W4UKޝ^ X;>iyo샣TA;7=;eoՊWq^.+VPW}n엳J׈beh_*{)კX`߶r2oyz}(Un_=Am aUv,I}'dffVt?U~;7YCuoXtڗi0Z:nv$b`9J!d0*J *J#_V6D`vtff؉Eo(Ϫoh_5FmhnlooO^:j3{)}g}[ -j7^~Ou2+SE]bkAWjbgԊ_>vJ!T0kR׽T3Uy󕗗~ՖE`v577?4-0] (F{Ǵ֭߼ukjjjVvNn~~|U>ڕ+W>_57͊&k֬5k7|C3 :Ձ.& 򨂪 bj[䤽TtdՀ}o WQfJ*P}센~ݟ^ 7U_|.GWsqZA]m]?wষUiנ}c7];VV֫uɮwUԩ ̆/ [Q]#++kǎׯ֖-[6o޼՜$|0{߮kel7C ΢Hݿ_qW\y툫o;Lްʆ/rǷ_uigj1 uYIIIwuWkwL=-to'?2d;uetOUݯ'Uj::{GI7KqMwM#e6UBy>`/ !fh_avj_s<'oGϦ&J_^/RtڗAm[`vr)ӎi^V&^~'oj+]lOz¹y ƌU-/ [[˼RK3322nJիΏ>J5' L/IVdF¿էJӽsֆko'2OuMMG'%/NOQ뜁;6F#}}NxW7/h*-e>[mm/?/TOTYMi%onG^Oo[D h_wwWzoZav7eݜ]|{ם7?QtڗAf}ɏùOJ&Lbĉ\'3+vgX4j7ϫ.CR1 n~g>/ִM+4gҨI-iڌ[Z޶N#<{+?N= -$HFWo|j4U|5kP'tIyGG 尭'O &l{ݯ뙗ybbK6>+,*x}Y!}p/;w\pq +[yCi`8,TlС| \>*paP_Fo_>p5j%^u,TLwU5?]]CF??SvP+hu|W_~׮m.zWS8j+thx6o޺u[=5OjO|k _x,_΂w6Y}+v/_bɇ~h"q(~y~_`χ&| O.#&ʯk~ss3{}~LZ,̿ei`YaUz 9dKqZ]IQ>d/S[F"!6IMMdɒ/?!-xR;'oq.3z|>OZD#߿Au֭YWcBN4HWlwuttltᅴ wc[2FO|z u}+nݚ6vMwqW^MQcƌr]S>nƮ_G}tЧz\wuŪ-{>^ǟGtiNVW%(Mh,H<37V,ɪM) $?.?Ĺjժt>N9Z~F.Y} WݱW+Օv IFTxٲe\%^; D jоTLѳvsڶY+i?.Z5~[ MWݯ)JQQZf79sc'΢w]u3l}sFO|j?ēϔkn^kV|v?>ZY-{>-ڲeKyyyEi3e촌"_M}NU`qmpK oZ;뭪&_%<>{y5\kqw.Odff}?/[nὓS:ApWmw7uO]Z`99sL3>"gOSz3g_yѕ~1c?V_][o@CcMUյ-oqQ`O?[6QC^ L/E"fyBִ߮S #oUUݺA'6?56I]-k^>*zǦ><XkR~;7t׍q+K/‹vW]gϙz{&j=3g3{cL>;F޼o03v?w?YPMC6]Q\X_ؼ%7td_oWMxCB?h?C~ҝ84E]PO<9$|76Q-ke_p!׏mS{G%?u'|kzw*%dcVmBP֟ƫ.dqo~:4^nJwWrϿ@Aڒiwk[#&߱Lܔ M|-~|]u /YypW?=NAkg>7kU>W,`~G+/LmIKے7g˼+\9#o.oiim0Etiάrm^nnMmm]C&SN7a=櫿_t5^'_f͚HOv魼dj+ fCVC-;֩^KRvj`zmvn~_nqO8<3_pot_ꖓ\i߇}.دCw|ΎMϷ?#nVt ʿMu,yMzqݧBQsM7'>H?V#?[lyl~G_U{ݏw^y-eǎꚚچ?=jx_u1{ե2b~_semuujH7r#Gd u饗r~JhkE{ e 8 U(wwqHRv­J-۷Cr=?5 ;`fw?hQf߲EZev}>ۡWBX/Ev57m:g?W_}~6>:S҆S>Tm^!O^뺅Μ_){wæ-.wc8=EDx1ߏ{V|}|ݯSr}:%_}}_ddf}mпן7뮺f=V\v\TU6 */t1n / L sssi˟|I. ~C#R+Nz-* ActJ-|>^=~5445?BqqԩSi_䚄ޝi0zg5×Bn%~h3GM/>=zүqw#(IVvm噪4jfΜ|rM05.OjΝ_4fGSV@Xn]fffGG}EZ6nӇT?sβ 4dtvM[eKږo7r/咈r|~RgiQ5Ys':3~Pj/ٹa1 g,>x?%W<;*?+-s.??W\0_"A o7en娕 {m]CZ.i-毟e .\lYJJO|СCӟ˿ꪫdH,ϴvO@ kjZ^yr 7Iw}2dȄ jkkvӦ#<~kKK[^{sWs|>zs_/}{kW^}m˯yŗ;]Z}2{}4oYys< yA\4gќfϞC^̨1IO[[kHe erxV7uc;kNT=r}UcCS>SW /Cy߈532.VEo\A[}RIK ;Mx$_* A;vhgᆵ>Taƍh/2oHݩv?]|[HK-Ngfvko~M7;x饗VXW4?LE|+v>1yygK[B0v _t)%b>2맭٤9$y,@vQJxvҤIVyړws}*5صk;}8$v .lijV5vhHNe[^=gwX|\<=:u&}~/R u  j'NjūcϿTXvY(_!979>`Ffϟ}޾0zs~Jڐ$~λ;_2nfJ$L2k֬_лS15%ݏ]ȸ7?TKƍ:tuݿ袋:蠆Z޺uAn߷{9M?*Y:yq;/sKV>T-L>}޹<{l3IdLoE@OMO0ՊWq8ͫ=om+y}ᡉw.?z`_r7gNz;׿vu4:x>UQ*jlоXAK?W,(n _l|r<pUDNԠOH3SXnn6j Z>*ľKnEs~`nv&BG߯P~oA ~4 Κ_)}t?H:}2oz!'[gg?bĈO~}ә=[<'?s*YyffO?g/``O磏>e~wgr?yce4v"EDݩc7 T0Y[^;APg7wa(V^QW\\I&rÆ wuג%Kݏ&{skCwo?&:2cab~zzE]x3fLYYj ˢEr'N:\ rN?9s?NTs1l ߿Z#񋧴rmZ}.E(X WEqqw utSq{|%׬y\Ƌޝi0Z;ۧm_V~ƹ`-IX,.n^j*[^ ~$5svav2۶mo?^"O֢ Abβ  kc=Z8Im洴4:񑓓#~>4vbijnW,UutXv-?/T]]]7^M8<\b.Xo\Av\E4(oZTxѻS1K @>+ͪ,(///...(((,,Qmv®ʴCݚ3:s>i %Н(OboK7Tڦ~sssʎSd固n*jݹMo.wb25@UQD5V6ʿ}$D4?6~iyv|CڨԬoinIKI3UUY5n8W+^a{ ƍ[bEqqq;a'GUˬ,"eTLR3Q#$2w/)\~; Jdg?[2O/a'Nܼy3?U&^޽;ӽ3ѓ?p֜VvV6fnK;VmP}aw{7f'>/48HnN>+/;TWS7i$W+^v'nώa YIa v._aAڊXl'Ojū(>]!  RF9,ŦkO~{[;>.}!}z/ > v%Av_eR~^~~P]m2=Hb[[f+3/3[fcܒ#TUeƺZ vn"6_Vպ`v_~MM6im\W}hW+^M$s1 g_|!UTT4j(W+^MjGydmM/&}@Z%9\}`&b}+ءUUV믿6wJ_v`&?+**yg~gfzvYmvZ vn"1v*//LjM1}3ߴij+}쾖x`YYԩ<ȴG=*}M7 v`&b:J?]<ڟ9s7o9<<Lj*~ٳ{_tEVgvCW:絹7xͷx+=-}]x@7/Uv )T,z,^.[,7'w5#\x@7:?ꨣ?3O~5E7ՊWt1 ;W_>}46֯۰qæMB7oFj+}~w;yii)B)UUUcoj+}/߿KKkvfvNVnn6+v V#8``kkkAnAa^aaPA~A}]\x@7ݯfc I;~VTP\\h~$}z~ۍAAKKJHR'Mv>DvMnLvC7vv>>F8~Yq>8B)d\vvBv&SY{>M?>=Klvj_\@OߒRZb붤W7o bгjov_8v@__/roo/+ݗeKa=fd3?>~͆mWzv_8~}zOLA~@ߘvN_ @/"v6`=f+k6O&vv$}zl?kP ?>=Kvd4v@/!Vy{C};>=HvG}IGGdž  9 .ݯݲ#W;~MͭMh18](b'N~Φl7? ݅Tw](b'nvWIҎv߄F& KlSrWvʴMM H]'o8`vߧ^ט={v߾}@8K]"6_%C}RsS3>> OSv@BxhI]%v_-? v_v a!]'&vzv@B?]~W /D v.ȐeI߃*myۄ%O ͰX4|A]$/?/> v_v]gI'=4w|E[?gosY.OS`M`u.}ښ_EbIͰ>?:})}]d׮]K:o+>H0"H4]v$ KtW=}kKWt}`0,E~.+>H0"#_?7$Z: `XeON\Z: a̞=o߾Gy$%!I=-w}`0,~ _u`A@Wpo/+>H0 #=GIeey _u`A@W6G+>H0 7+>H0הt}xa y}:^: `X nN2-*|Eׁ qǓK"cɫ]v$ KǮ]?Sv$ KGZZꯪMo_`A@|pFI//QW$}`0,7{ -j"1{}yڿ=Ij]u`A@qE a >H0*x?Ժa 88N>iǣպnM5w!_XZWt}`0,>'ڵSK+>H0S>џ=]a Xߒk9T[Wt}`0,+7H>i;u  %by#~Z: `X Vn~혟'utu  %bo7?R+]'?Z|S_2oa (,,<4#~ +N"~eEI&Z v/1qЃO:k/Ժ|EI8j 4Mρa u?"~GjfCw*L&N@L LZq_ub^VRn!0aDW+^5̞=o߾Gy$%וI֝wKKM544?ՊW{8PN+NbڋJL57?ՊW{ݓO> >_ue'?vQBrWI'.JR+N"~aaz} KDɷ};瞬=WtDB-ƍs^%g}Ҏj|EI߿kkk OnرV@4tvvBCWtc=%Afuu͘1c\xa hX ._Z|EIׯ_sssd-Z v/&;OqıII' ߧO@ ~:uee7p`20, Jnv0]v"%vW5&UT`Wtc>5k|Aυ:W+^e`X@H/Xb*`t'_uc:OVZx劕4s1ՊW{ 4[N8Q_&;zz+NG}|˖-[t%?XsUWZ v/a4[fee!Q3rxq~C_ucI Kz'z+N~m/~݅ /> W+^e`X@4ZؾBI}uh}lܸf׮]q:Kq%0iҤdɒĪUഹ|rlp"=ϟ/E 6l7WX9vcm<ɃwݏÒpX0`@[pfձÉԯ_/Yf!((:Nٲӵ ݸa=vM%дiׯ_9flp"1?n"Au:VMs~߽{k۷o믭[l޴͛8Dbv&R!}Ԫ qϑ#?y[l ~Xr8 3gRG2ap8|%FsAYVu4پ};Ԥ1b{9}}};~豣G9rÏ?n߾RG2ap88qNpD٢Er4۷OBI3}ucsw3gΜ> O:ٳN:9,E~arʚ5+?,9GN>D٣G|4)ks~c(je}8ΓO/_t .]x˗]vuXH?,9G7©իW(g̘[N:ϗY,z(S+WXǠl盷nݼߛ7oz ~Xr8.*?~r ܹÉd/^}8,E~$ҥKTWGyeN$cСn/x wZ:α /~~~wXH?,9GٳgǎDpsy$kǽȓ'y ġ&fs~}BA9,E~$ĉ&MJ"8ƍpܿ?i'r*Ult7DMp_aB & `Ȑ!Kq%ҫWe%he˖SjՆ p~~~\Is" BR-gֹj+^v? Kp?HiڴiI8 Qmڴ4'bg]D/ ۷ofPl'}uoݏÒpcLHsN8y>|e`i o|||Xz5?>~B!0wjWX%v>~M^K"Çʕ+W?~'ׯ71VX(# 'N, v;ѓSd+>Òpi߾}bHp8y?~5={K?a&l;Æ C@^xeTBKcTL}u\e~ԄM TB"w%m#GҠ Ӌ-k4 _z!C=_j۶m# qFNi p_an9NMtB"/_sƍ}vXXI`ޏ opBґgϞh9{wjvdap8ڤHb$B<1uV~) _Hɐ!ðaHD 6lXvCjvdap8ċo̙$BkI[c4 ٿ?o޼/q-zINRZjE"Rмy7&m +>ÒpQ H(?@'ON$ N;wN'OD _bĈ1w\vZjp|}} k( &kp_a'…a6~\$rJҧO?b}: NѹsggvΝ#F nUl)8=,uc  o3GaapS W jJ\t cHK_>t(VXIJjر$8G%ןQ~Xr8 ޼y$j8q;ֻuu3gΚ5IpUZ)RH3B:α n( ?,9HĉÇp@֭[GQ}wui =zȗ/ kHbܸq$ ' ?ڵkWxq!;v v JB|O}uc ˧>} 9ݏÒÉd7n\ D7nLQ c࢙)S&?%Jh۶- NѤIʕ+[vgvѓSqϟ7o`@Ǐ! ?,9D=I| H[ŋ@@rXn|7oސ0iҤIѽt:u8kT 5k֬W0S*H-`J/]$$~<_|_gsGUaD&^xGS<(rXMvZP!jJZ ϟIKpVKzxxUtpaҦMK~-[E$$Ny$ܖݻMwGi+쾿W>os?~ԄNdƍpD-?~|Xڭ[!CjJ,^ׯ%,Y6K={vرIYz5,۷97|ӥKj֬Yn]nK<˶t%$esŋO>>~Ndwܡ&k#!Kq%@}47|ӴiSahD1]Ae͚ &6m C ɜ93 iBPD~6ݏÒÉL` ]td.L6lW^KQ~ʕDh6o ŋҳgO޽%Y4'<… IK E榱mAAA J&}ucmUu|gk~ԄN8ӧ5YGLˤV <yf>rL_r_:jժt$B6wi4nܸRJ$B7`'vӦM%`ǏI>|HT fls,)s~?{kv?jK'SBѝ` p]z,<ڵ /\hذaժUIcݸqYʗ/$@mƌ$8˗.i nvRlvT~_>~ )^Xnyf(?,9pӧpN;gX|9`ׯr8wܱ2 5jԐUE= L!iɓw$BH"Ipƒ={ i ;w ]X󢛅]u,s_a… p?Q~Xr8۷ܹs'mcG>o{̾QWV+tix6;i@goԨQ$BȘ1aHpƒuk`'3CB,?@n#.F`s'.\ׯ`ؽ>}~w?K'ꀇaEam N:ME`%a׾QoI$~!<رYbǎ={l!)SFm'l%VX$Bs%?L}.Xpp_ag}6owGAa#;w; wtl :ujxm۶-YUw#&gΜMf1Qʕ+I6ǒ%KHп9r&LH"`?pϞ=CHH#7i}uiC ԐG9a#իW_>Ldʔihe˖ ޽;fԨQr]]v-T}`޼yO>)ϰj*! >};GMacǎ͒1>|8N>}ׯ^:Rk4;vXhQ2eJ$IHH6q5㰳gޫW/q蟅&}uco}zر-˅O.Ht#D3>RlvQ~Xr~~~=zI^`? B1휵jr%WX5v?n D/YYJ> L6?Fe\&v,(^ rС(M@i;n|5iРt3gƏ)7n3Fs% [6n;ëWH 3F:lt}}S+:δ_e>a)?n#D`WC,c<'ASq֮] #W+c._(MYE)ڵkkWZ`AIVZ#Dc9a ?ӈtpQإlJMp_an9Nis|cwJၵXKzxx$Vou-Vb0CL<1B@ժU5jDB -h *rJ6QHpݺxEDUϟ?}7`]^0 @>*#ag͚ jgfʕz`I۩Snw˗M{na֭[0RExϞ=0I8?~=x$ӱcǢEӡCC̛7ObSNE!YXhgΜitܶ/Lk߹w5… IUV8a8]P!M4cƄE*sÒE(Vi m/^)H%VXs!ܧOy0N-?G$3zԩSo߾r"Y^:>]xC8W\9B 8l`ʕCvS;|:{; e6`}WST"5m o?p 0 GႿOBcHwN"QlsRS}uwWΜ9sEQnaÆi[~Xr܂wҔY{#筷ؐl^h8m Xe˖2eJDgԨQaX'FAի' +8qb-Z)S]ŋ0`O|8mڴ~Xr">qǎ#av=`j k֬%a׳gÅt}H߫V|4]VC:FZEC^^LhTxOT˄igǎ΁sFɕ+ ڹw+|`ղeK"B9s`{֭U#ݻ2 ªC])l:+o߾F8pvکRgӦMjg3fsM…؁nF $z 8xD%ֻweijg;wnųxJ p_}H}@ϗ/<w9nF˯TL8p^0!3\'Yȩ)6KJ.O'NL<9ѣ #`5S4iҘK)c X:͛7/_< hwtM13( x DT"E ?~rIT G(v??z(JM9r a~Xr\ \ǎ gYj좟>}RѣGUrHȵ$IIq^as/gԨQ%KlӦ #64$;7oOZ$_}ŋ'a5nXD,4R 7n9߅$jѢ>svGt.]:H+D4-T;nnݘݻw6C$k #`Òj7n ցF NP{͚5$I2ydٲeŒ0øq7gLζĉo8dȐ,YF'a̚5X/^*vӽ{ 0Vc6]"+y!@I7Ŏ%&b2tP)bi}믿6Ea;0ٳgP"Yd&L e *|JqpU%γg;n1U,XVn.fMnvp#eʔV"a>'&\|իW71W6uׯ_Ƿ4`⧟~— %RX13M~X$%XHsx*}xsŃ1B>9_|z"aoܸAZ3fHy-|u֑6 xbJ F" -# *|8'i{)IϞ=3Vk&$N*x ; /_ p$N}(E 텮| G^pas~Xr\ b.pQnb<|7oNO:jnU|スIQFUT!;{rwX71!i Ǐw|FsYYELo33JJ%s̱:JpqƝ:u*g- $.?܁x"EH[t}vX 0^_¹,v]C'x@X=+U$*QD$[IZvFؼy3|e M/E@~ڴi6|ϔShpI{uΛ73iJGE"m۶-Y$ M$I#PxP{p_avC{zO̟??W\Yf%uدA6%&b \YL ֫WF$عsςU@c J:5 HvlL6VcoT,X M9<|͓'O6ܹsmׯ_ç_*Thڴ)0{ɱDzN^eLڦMRJ'}%Xc4;8wǎM=ϼVHYްj!W&.l͢(7*,Y/%;,IZt .M;VZߙfux)QN+QIx96lnE\tBB(cb~Evdaq)w!ԩXBH~L2ؑ'J "ȡC}J2b+:t}Y{m0֭[IsNhMz(@u!!(Eh"D$B/2I3֭Ҧ?&ڡDM4X"0D:j|ٰ˗/G)mذtb28`С8 {&M ?U")q:|pݏdÒR`8Fݰ>|0ի(ӧOf˰iY3gBX;lv?t }Y7ph[H3;w}KLf͊'矰L[/BK`` iS]C,Mh]vkxYub &/J9أ޳g'Nl"." Udܸq;r4$Z+cP {%4p6lRCwϟ?7r.q0ash>}rY!Y,YuO}y`5FHph%cƌÇ'!?L<9iҤ$BeX&ݙ Df!mݺ6ȳgH3CSk\ EիW=dTիa==<VqO?3ùt؂=l<2̈tݷ1x~߄ӧOpl;,Eu떹M>@ R8nٟI/0Ÿ͛gˎ'e۶m'OV-xo-IqQXMw`nEbĈ1o< JhĐiঌ1"C $r Bgxv^3fhͻ0Q_li!-[/"+ԩS㨃_f#>(P\ؑtD/+[ǰݿd,4}uX}gjժTR?Ky {`!qJN[fG -[l!ƍuona¹ UsPD9K9jx3Ν;| .;vTNUA߿9H>lY1A/.cE0^K:C{CիWO?Zay`?PQ3;T avv:F/SUݼyuEʻwz/ΌŊ2A܉c-b9@M̔)Sz1Lg9?8ׯ8o ~"C;i6nVtFཤC!g*U"Z7&b߶mi6``[`:e˖jB1I3ݺu+X ~&J%KxxxqȤI$H Љ'&K7k֌|fxL|x?u .7RA)5Eݷ!kMϓ'\n۷=zpX}sо}!C^ W-b1w;tt)ǒjѣM. f-[;4 (OOEfVC/9uX1lrym/*_K1V˗ҦMH3ӰaêUͽ{`FADLڵk]@1qJǔ<5Ꝺ6m8,\VC1V &8p!x֝:ujĉIP$,y1|t[B=p}|.\Fh޼yӽ{wݏdaSX[$r`pTѮ]b K,CggaI$!?_E H Ƕjp'JG~9 '|`=޵yfpĚ5kH3SZ5L,xjׂu6mj=!2na1i%0 K>RL[)@H &L`OFw&ȑ#_) NN1l޳9~ŻwÀӧOÅ~3hEa9p@ۥ}}жR`A8TT4(&[4~֬뼽IH8'΅YIE7'N$Z.@#G$C x z,sC`' ;ifCk< /޶m[v̙Q@]/)wY^ <&9rXRgk>!=؅.[ǐw%7p*TH(Q„ abŊ/^:,aUYfr\ng`43wUְaC.SLKkݻKʕ+aeHv={vpIkX$$(ѕ4iHQ̵p]t!͛7ai](^ ~-@:4>}.BCE4h@)R01 JH)kxTR9Tm %;v ^R-Z={pVΗ/_XtXq1EK!1f_=yž&M|7b+W)RD vFqSEpk֬Y^=fzO  rI"B uڕO%Z),ّ" j,ZˋDhʖ-ۢE l`$lѣGWѩҡ.O?Dڝ1Nf֬YCB1Ivs`[R5 kgϻďa'$H@"pGE8Ns) BMFȑ#xzb`;u֭UąFwW+tҭZ"X~VzĿ5C+Ξ=;v$BSF "ś1c 6޽kUp7hѢ;v$aXNNH03x`ݬ{ⶩ3ذNݠARJ%M#xE,t֭PB$H(?@"B#pV{!図o'ϫ=q=w ;pm)r{IDATqhP(9s愽4M4⛥x:t٩P4&0:Ķlٲ͛7'(_om̙RSNU׸q*U`C8kҤI'MD̒/i7څ˗)&{T 쁺#G X 5!mV1l'a 4jI6с@;,(!nct;bH… s/_ :a)?nQN8arѣGʕ3t 4N ypíMMFz۷h} tZG"pZIk ,S1e1f_9sK_8l07Ç *-Z̙3gɒ&WڵU}%LÄ[{i׮]1!510sԨQiӦiveN"dѠĉt$XnIr$%/]ӓÇWKѫW/CqfQ+fX``O&-V~ȑ$ܝQŸqxxFxfΜI`7n-kchѢqN w $,Ga&Guyn+",F7\ qWLC@KqogܹsxJf]U>}ΝaFMۻwoje!;YbŊsPN)F N+UA@@! 8p"[ǐՉsp>rO^&\cҥKG"pR!cE}ׂQx7:Xf!g8~8JxC9cѣGa!/_&´i&LHÇ,ݛM}쾑pVKFm6XF:-ToGSzFӡv)`jY`jJgc\Q4AX:bI [FϜ! efϞK=hz2fH rرc,>|0pG v:FW?pdΜyƍ$$lذ!,F 쮶 +V [8L9s`"EƍFFΝ ~~)X(Y3fx}p$PrJh7Pa&6˧N%)aG#f:h ٽ{7ݻwI3GhիÍjժ5lؐDpp=` (@ldΟ?tFmٲ4C ɒ% 5kVB l޼>WK`tDlЯ_p!i ;.ޭ]K]RLxM @O,eʔ$d̚5+nܸ$\L~~~eH/vN*Csw1ԫWP"{VxZzui~d`*ܹsJpBgHTT dH#nc?~ؙ+\Ǐ!=Ϟ=K:5\ݧN ?%)pò\rڨ:u5ǝ Zj*og4iӦ+V$;XڟI̙DF׬Y رc媗y|i K0hRbj%r>|FGNe˖:hdMmٲ:D k`<ʼn7nl( EHW+m=iQׯ_6@M2._ 3dɒP˗wtu!Jw}*B?-v:5vu/-Z(S 3␍_\#zʗ/uf(_>|"|ϟIphRwd?AP of8+ӧn{9/ʑ# ?,!hRu`$ U ii 7oQ*UJm#޽ ܹ3޽;.]QF`@iSoiۭB)uݷW~8͛'Oµ)#ÜYf g BvIZǡ+hp ϛ;w.*Z1@u@={̟?? 6 @ׯE:>)iӦM%Kp=E"4SLINЉÌ)R=|SįoX t cݷ1S}ƍK???XsC&x^R%J1~ƊR׬YӡD̘1<":tw猦OoMBVc/u{o>` ed .\ h}?G8|0iZljiv^~M#FdȐ3 `"/'Nn ,HLR- C.#كR,g(/ܑ뎯[ (_<|DB^v:FDO_vϕ+\|=A|߅M7vX|Xɓ'+f FL0M6'H ȠA`''!G_48R1Qk֬! 7n'ĭh߼׽@-$a"}*#N>}d] V`ԊX`-<<}z H-S6 VoӧHo ZUŚYbz\tĎ$s|)CeFv6#y,QVv:C'.)]K|VPU 9z(l7P "-&(Yо}{vr1` ԩSG>6cƍuk_]憴J]P8 5y mٳg?{lz:w v$`p}XGN]v㈻3f̈'쥤호/πѺիWobh"E*E8HԨQ~$Bo]ի6[#g oP˗zK:4Y/+WE$dti˄&{F@&=dEأƌcn x{{Ǐu`v{XbAӦM e _֭ ߫O>_ mW^ƍ :<-~.1 }O^>q 'prҤIɒ%#f/"џ@Ŋ{?a >>>(YEvؑ+WnҤ Ν;kr)zׇ7Ѐbx+ׯCgn1Hb:t@B̞۷Nq ܋8q8+D>%츲X)gj] RO{ݗeOJiS`p ;???q\Ǹqʍb E`3v:F?4sB.1cq;W\W̍A֮] (s/dG|uVX\P'O}S|y lْDkxeU5kV2-ҡٓ&euӧOw$(X`Iȸt|ܱcH3I Wѣϟ?5LS-?~$… Mڕ 2N$u޽{s`9x8A6E:uHN,FG%J1ӜRٳg8p ;`Co5ȟ?OY2{H9+Vlڴ)(P@%;:U$d) ͺTRFt (̙S#ƍqR@ f$vJc+n߾mhfΜ7n\Z "v]\r2p`{/_tDZjY}j֬ "?w.‰qSnc<|w<〻`sABYƊEYfϞ;aY3(tӇ_z% =N ;Ur5H><dIQlYA"%KlÜ,'qiѢ=G{7;`zS7ƩSnDǏc"OD=5 ,iƌ:ujW^v%=C51Q-i۶ 4V ҴiSȞ=;[tr_Yӑ;[Ǹݷſ#'/Av#GAݻbMCHÑEÆc~tJ62"'C|C2;7锏|֭[IQDvڑMժU6lHB8q&w,9S ֽpoJb`L8B2>>>0?@Z h"xp(af@ZZŵBҥ[nMB83 ,yh9ìREׯ_F ̞=;f̘$ԩSŇič'$y.TؒnLpqòUVJ_| ?j(;jr1͛7H%Ka wǍ=bd1DUZ[!yUKmzѧO MKKLpO0! %j֬pmJ6Ԯ]Ġ[8#w44߂(7^QسWzulp5qR6* O51'@ᅮΝ;CbM ɓ'Ij=i Ä4(;ex ~ACGHhM81y$/^ uqJo0t&FF4͛=zt6A -U}tV҉Ia7oP&pTV}H14.i<O(79.N}év?J1\re͚- T^Dh2gȑ#I槟~i _-_}`坅 asEZ#FdȐb ǎo"նm%J+)RvZnb)+-ڕ1cFLċo̙$\I̙պ" ,6 -/`>|HZ@rT$sn3PhC갩\ݷKpqR#5!p3$"6Ӹ o,.[9|pؿ?|7]\OibŊ'W̘S>~fVl,YI&#uj^|KYga+[W 'BԩY`ɉ aЃ@,Xji7_~r" ƍ;k, oLB•If$Tx=i`S>4 H '؛7op%Ptb n4W\($+WfOcO6¬4X„ fN<<o?bVa$/i;s)> `q$"@Clv_=_Sf t KCBw}Ȑ!3g&Kxyy-Zҽ{wּLl$JHؙhѢ? ^Ѫ`K/C Y XU?G {jӧO"nq7  +)gpog}!@ Q8,a焕Tpih\6\WX2'Zf{͛;ԚٲeKz`҉@v gĐ{`(0 N8?#493g{ЫW|PbٲeKXm4"gϞ%Bov۷WkɓkuQK{;ŊСMΜ9OiN92{lj1._,a!i!(@q}n&nqX&Mܘӛp&gGf[Aݻ0{n|IFUZ;R.\-Z4irO 0D1$hBDcMWzf Q'yuVY;YCBt35E@ `!mڴ0,WHe| P~!F`S7k֌D\ SӲwiT #07& *]nd/([?LwI{X! 1cƴwPw.!1H/Gm߾4{*쐰Szut/ƍKBBg̘AB[_=vrLT?HCm ?lkXb$0en:Y;ҥK=<<$OZ0@ He,Y 2X yΝȗ/_Gj7ة_~jHDlRL9~x c۶m8? }˧\ek&7}GN^R_|z}([Zƾ}f˖ dҦ\C&g@ҤI_DN,|ivӵkf>e$$Hb„ $4A/_]sΑ`REkܼV/M6J"Ď;` K䏡H~zl+ vMaOv:3n9zanv1^PiSDl߾Vu8 2`: cU)͛S`AX =Rˋt6l|TDk)3{ hQ Q#膑+d'_K{ iM֮] 3떛4ixp s OH%ڵkGv Av51#GO@@L̘1ΝKHk7_bn@_ލjp ݷ3>xs%qrʕC3m4YӚM% l~X1 =P}7oWdI<8riuǎ}, PO#V^fHk',b35?\H0c nFvcKv8(W\-H0+cہo6cW\d;ۛi}ݺuqf8N.XOmv:&>}tQ8,ϟ=zt2X@uŋ&>} Q޹mڷoߢ n|Z֭[kǾ`pZ=~u6WU<ޡ^vWJܹ01J7 %ĉYt $xz V޹`Æ HHڵԩC P`sawޑvwի#*16i#ض5֫^:Sj P!X8LO#uiEp5qòM6ЭPEΞ=K@ٴo߾hѢ0aڔ,X }X?~\J@YfBM `Zؤ\7عh ƶ˗ajOȓwcH9[Džv?00([E 8RAN:K@و0I{L>=A$BJKh.]QFo߾MZp+V$!rʌa}QQ>|xƌIh=ilڴ:/k M{SM\v%K`$sSV(;͚5S<0g/^'6MaMŇ+,im0`ѣGBNBpn1j,}sݏa Q;3BA7i9b-0|O?cرRw|܅ C-}sEҚԫWO1 `Zyv֭PB$B3a<<laÆOAXvظX!X8pp qݗ:~n&na&M<8<(|Ӂٳg*UVZ NE9۶ō3G= (@"$@Ĭ<6@ k3ފZn˜:5kfCRI:__Ç;NN9a-gycE4B81蕑P6i^ Aܕ8 /{)%cYXtkUIeF©5 .8CQhцac ^`1a}̟??W\YfųFH$H]̥S0^ǧjժ0 mXW'1H1RX0sGA#V@*ҥKDch"OOO'&DY*h͚u_7U$9DKeVFxzY,={` U^]YbӦMڣ*]8X&Vz 6Lӧa 6cЧ J7˓9sPre`j րiH>: ``h\Z~}T$5,?^;8 "OڴpwL 1k=NKOC[BkG?e&F Z͛7/z`m`ϥK`q мyrʑp*a8PD$ Jwr-Mr;0ِnc?O㇫Q0`ǒt3XLm9ydtȮ={%wl乺1{Va .ѡFܹ$hĨ^ք6ȑ#oiC/I'}3da?5:J.r3}CY@Xa2h8,]V=3b0|"Θ1! 8ubS4@:G?jGp]' žXD N202(豏5ʄ '' #vڵ+Lи` Cn1a(}Q0v L0mڴG&aJ*^ [P oquX `2|pvRJ#;F:pH#G$I8qN<9Yd$4)ZhǎIڵkz,)A.k !`^$#czQ*t֍f-Ĉŝc4Kv "(!6n:}c۷2YffI6,Ux_?~$PSV]TˉΝo߾$_wg֭[kPkjGZRݷaF#Gec@8lTxtYkŋY#]t O>y!__~!f̘#HٳCȑ#GL 㼼-#c斂 m۶ծE?^3F=?b4m,ʁ͛c.ժUݥ e4?S`6e2"_D]t '2Xb8U~A8|0HQ oW5ppv68<#$ٲe8p `d~Æ a8|a,<5\poCv)}v )@*+2f[Ws>P+lÆ U% Η/1|8B 08!&K,&b1E#L?3i w}$aޚÇ{5,] m{bӤI@ZtS(aΎZ{%VRaZ%(xߴL2caiժZ7}tzCCO٫v|9>y$ { Fquw: S10ENe. YE bvpovxG><, 1]t$LW\8b˜S {2i#uwȐ!8k7w  4 >w(+WSʓ*UM6${;i Fe˦qdvFVJB &w^5׮6.\HZרQ&qHi=믤4N*LJv!.7o^jA\wݱڈтVxfeH6?°k8qKc1sׯIG< k^L>I>C}BHB4a>zn1`{~<݇?_O}?;d?~v?jN(X? boF XKa6 J.LJRH1~xvE| `P[eOͣr  +Wzɘ1)%pE.۷o_xqj9W=0۟SViTV XsϞ=ՁY7-]5|XeyԨQ0yf89FMvFa,Y @Iq|6m۶V˗p1-&zHJϑ# `4h?2f Vaݷ=`O7nc_xvw Y/ ^XU KGh'uI7.|Mr6 jLW BLE .ܵkWL2%QD$$WvѣG/^HZP= ^kԨQ~}Jпz^ue#Ʊc0ۯ!]%@˗/$MT7'ݱDc78NHqqo#,ya1ΡC`Xsxܧ {%A},mQh(#{HzE0_~4o,M891T}똰}#xXN#H(c+*4n_jBESF0^vU%znc(8K:v,Xt*W\-H4%F6mZ{H$18*CW_2TT ֙zkk^uM 0[C*U6-[,[, U+lǝ;wlOM2.͛IjXN s6_|43<6"P:D1ݽ{ip#뎩ƍ#m-KWոy&ta v:DGLtWB9Эv:gBprʕe OHӔNЛw,XޢaP2elo1cJF&M$> ך5kp80W+Ӯ];͋=4*L#@Xô 8W` EswAҊl{pGQnlC&سxGڵk5)Y$5r`Kp߿9 'zSa%"BO?́+( [%W؉T-ەʕ+bphL)z$\v._L:=XCG[jR1 L^u.ug_(k?~_~>}0`F K%9… *|'OEC}[h>` ́Xz)߳LjA9$IDRq-cZc(3~v10~ Z.wgpocv %v6`7X2-[)#*ih/Hq)S$M:^:^D9h@r yÁ++\_I!Cȷs͚5uSjEbp(2 3[떅keH`wRJEZ 9_fVv*5D)ҹsgڽC#q5ɸy&ʒT,0,Y}ͨQ t-ujs" a,sJI& 05tO h,ޠ4]+\_~=={SN\'V;[ǐv?%v5,lJ z?-b ķϛ7%0fΑPaꦐfơNSȻϒUZ-F^I$!]-Gt{ժUkذ! 0Kv$؞={`L/~#F-k8.{F&X1_'Ot/qq|#A=p  ng5j2EI/B[aؙI;\=`U3g}#G3v6M,z&oӢE y0gΜXbPG-o(ok"vEZ \}[VSSdceVBZ eI$\py3رҥK 8%#ipG10G۵kG,brO4+3GGLݷsK1eDƍkO ԩS(b -n8'\ΰa2eDB앴3H2C4-+PೣEFB&M(Q AYFиWT nV%vCNWv:ę81 s bi%;`4K ")8v2l7y[Eҝtaaد@5S`/iJgn8v¤`)ѹs"E&@X`mn8  {_W1hߜ:]8"?,Ak`;1+$NvRf ʱcb -`90yKz/=،1v]nܸA(~KzxxP^zKkH(FjЩS' >mڴT%xߢX`챯&?> 2g'4寿%|{(ZgSPrhV=p/Bnp 5 FZLBgV&MBvܚѢE[yvdlWᗅFݑ`,vݓxR4R˳B˛7/|F?K!'5:y$i%W-ȣt~ I$a$:h ̧#[gz--[@;c.n>|Z7nl[5S.9sfXTb`Zo4F OXF`ٲe,u¥Ԯ]N:$$`F@ .~9 [|y_9!EJ 9 nc?~n9(V O3av{–~);4xCq͚5;vKI1μb lԪU!d̙9pԘ{< {zCyUZ,2 jYq`nl+\EM~%-cɺA,Szy5|(]z[Y]>,?m$fn>}ȇf_V sv3^z[" 6/9v@~0 d0g GŔ ӦMK0! f *UjҤ ǥ131fK3헳j%ș3'Δ/ PAoyv:&>9~n92Kh-Z%B-&~! 6s) n۶-.&up6C ҥKIQ\͛/1c_rJ\d iׯv=][yU|;R~UPzVkP#m_so%^v Y7e 'v//J`履~"MnI0.E~=f4"ѣGϝ;7da_s>XsX@%3P,*1n4iR2 Nr4UB**UJ/FtݻaFb]Ymܸ5x6:~Һnc|sMva> Ņ`HұcGjR0!rV5Y}I0!̬yU&pӾ"f]|gj0Ct@#Zo{@֬YuD`(]4 tcTX䯚y0Ivho\J1(\xf6iV^MZŌ"}z󾪏$nݺƔvPP s&H;8eP8 x{5_ta zQ@N JVuǁ… w҅~m`Ǐv KM.O ˁ%!?:nc_w?~Dp5Q<,_zUdɗ/_tPЗjG'y1=l cƌ04!ԤΦ8E$E0ܹsI&M( v+bcbL25oޜZ?X@/_MbPݻݻwV!]tQ۶mXKJ߾}b[2ѣPK1,z4cLFơ l9G*@7n\re ő]"`6.]DM={Z@,PVnʈ#U_3|pyx _-7?  6{_~M5E^+h$/2D6!p[njݗ8~?/uGMXWo}UB[I}菳:t}h,6?&p-g͚EѢE_Hu/W9h{ \PWk.h-/^3f3xnJɓk0رcѢEIЭ[7i@S{ǀ=Aw@$aH+)e zկ;CݯЫ #Ċ ֤vE0=YZ ďPh|l7J404Bd1cԸ;Ю];-[ mFL@M.#iҤ,9 [d/nev:&~vayb/}\x˗ ٤a|yU␾iӦfxCH+ZI18̙3c4+3E_b;dg’ۖ%;+vBǏ_tҥp$TpȎ*+i:un?V?aal>wǞ * =͡{0Z^꩘<`^IႽz.#L& D[whdMaQb > tQ#bĈayw9ݢErʑPˣL0!E$T` ^1asOO=a#Ϟ -&(XIJҥ5rj ~qTn3 Dp64:%,-(17ɓ'hg˖m$ 쐰bFhZZ-۷-;5_mߩn<@ڕMvԨQ$"a Ua_%uvv?~X}p6aG^o}UH<9#izD.^H/H/ݺu .>Ȕ)Ѕ˂n߾,B+Qk>c |#Ď^2}:AJV  ޮ1(С"~͛7VbѺ,qmgNj`֬LwC@~#Wn\mZ%aH"E4rj]a:˯#eܹi].(Fd)eX*@iX5￰b7A`nذ! f0^ȝhٵ>@ZXn+ɐ!ID$p 8Fa) v tpovMn/ln&Z~nm&L8uT!ØM{[nҩSǺ`쾡"xҡ`"H˳e4œ9sG.Dj @@-H߾}sEBݐtL=n:JΜ93 u맵>?NOK Bo$s'Fʔ. _5xd|ŁG%Kx&G 寇‰l۷o_ l]ë?3>}>ߋvVZ(``Qٟ.C3K`[̙3qFfϞ R+%B]<uVX+)Sj񁷯]9ZjFH(? |P9HSt+ 1+ܭm[20PN&ǎ V&aC'˒%iKlٲL2$1cFqaJJ~EHvlxpssn(@;v -%Y."y浞CCjb8+Տ{un=~n9=,~ j|4m7o.v+F*6N# 1oƍSN=n8;OK` >}?{,i;4N9gxbKﰺ"3Fɓ&MJB ,Fg$Gy˓'O[l!-C7>P\-ZPj*C)b7ImcUΝCtg0 *˄GX +W)ml5PSqurέ.SKEwՂUŮ+ə3-Cܯx&QGz~M6IÄ?>G7S=v \ a7nܘ?>H0!^jԊVa3Q7/u!Y~"`qFpPc8 e˖vFJ.L>=A$XhF%pNN:4h̘1# /v OYbi%KP1B+9PZVeYւ^}_`dKZeCFB_t UYfĉMWj\jժ k+VL-hqi`Z:ʦQG!5x} 䳘dɒj*PQ|IӁHĬ, '%פ<||< z8OkVev:sr1BP6bĈ+t*GgϼHدShQP=AZfR7k֬B F̘1;;gώ;6 %N0aB2[4T;{Fj᪅ M+Y5>t 6T47褞K^z H3~)Ss|bP;3#jeaO{x@ӧO 6xxx.± ?ĀH)Y6j? &AmcQs@Ɇ$JZe=)b۷o6۷+r#M+`nK3{#u"#[nj?v˫I_z_c;w+h)O4|p`=}H?X -.M +b2 B=r/]VIs޽5J~–~ނ_Y##>XyA[@ս]ti趑PgҤI^^^$sJER7a-@-NN8qHq,p޽KR>%_HD-- QpaԜ3fn]p /_Lڎn@Gb23:`#jٲ%@ρK/\@ڕ /H:b$-6DٱK?%|Qj, R}g>X9,W6[[[n:thLhn4u 8Y | =fܹ3t3ĉ TV ޢQp /+kS۶mvsMyl ЗϟOZ Z<(Q"08C}mlHj\eL .pf}?Y.N$H4T\rEܹsrRkxv7. `۷ov*8d夕84 ZN!PmpH Vש D(/mjnvB}|"\lRu8+ׯAN$OH~vY>1$#I$-db$$t޽`kOOOooo,] Lyejww9RNMBkX5I{>Xה)SHx=|}V`?REIj-—ҿm`IX5Ae\Я&m* e҅6+V[[#s̉+ `ۇv6%jד Kfɝ%{%-v5xiX?,Kk㘥G '^"E ,7 l"W#I5kVq.fD_8Xh&=Xncl FhF\,lܸ^Ҩ$q7v0C1tKIF{zu=ٳ?zz6k֌_EUVCխ9ܭiN gك2/{!ƱiM &}5v i@\ׯ_˕+1cF+-۷o72Q 6Q-};Tcc" +87 G>|8H䕕}2jpon9Na o/Ojsq |2a(vvKk(<9"-GҁpȞ=;Bb=|0L^.i<֨p q҈of݄32d aիW9'"I^yyƏNH9s$Fڶ? - BlpٳgN>M85 bĬxvF$1Y&[l(\0ݻISi!,y&i%+Ά H\@:A[W(q1ʵ91a}#N1c o IN|2^zEsT:0m4@ĉq6Z7nq{L8l ̯,!q ǎp{qQtVj@$mڴ,[ ޮ ]v#}q҈‘sņc(3Q6Vm鍷%e18ݾgϞ!н;M9~xSX {GMv0.ӧc_j `G말X#H "&a@a-Nvo8PVTQ-c.ᶽYd^0s RELQEZ;g\mݷ9/~n982 _ q 9ܥd` +2~x$$%֠W^ɓ'718uKp\PQv(̯965k+V,;w.k"3=ÒXH4IHp -^վ{u2`NZXOC|̣V6g+ +#%sf "DlΞ=[x̘1#^x$LlbKYA(-h,V .=6YƖ9:H S@_z$m`%oH_zX3&N`[hQ|y &.Uxf;3=~<,25[ǐܕ;>G}03gLD(7ՓPn' |2>}DsK!UA.]p "~~~LHI?j0uTK|>I7f̙a~m_SJ ߑ#G¿jT]Ia Bޮ$TОy0\pmj9=?ism/%_>춒 %KPb<F۾a(3 `UńXt'S"XܹsC 438puiyݲeʔuЮ*Q19>ǿ<8w0=h XaXm :H+Ÿ^xܼ?uW}8Wӷ~a X*VXISeg ? 1> n{f8 2e4h }C QBD?~LSqI,O9d=yE/F)hܵ>(E4Mjᡖ~,XFƓ`۶mv2 2^/ %ѣGk' :nܸjvCن"%J<|;ۨWޗp OA:n:R7?1J$H_|D#ߡ];*N;;$߿֬YIe˖e˖%!Ay`bR%Kbt"@ʕȽ\6E|YAiAA_OpN!v:V>9}v?jÇr+Y^=X`ʴBپB !X"g"[O|6T0,+b: &D>.VD#^[؋F)и`.] Mq{j@DOէVLkDxzzjd>CS)Vp"L>.!#СC3gLBXNI]*;|'i=*WTv7R EE|mu%`)Cg׮Z>9ycQh'Kcop»#X0X;={4^mLX( |?5)/^< 'uX]D~0N6mںu+G 0QncGovKo޼q֖7?!Opw#fqqbŊ~K0uꄪ{9лv-!G<<<qRN /i94Ь3thFZg|<6?j« J(1Ϙ1cҤICB  ρ.Dh|JX/gϞ%/nݺj"Ȋ6`Hy,~ -ZPѣGC)08^Lk.NL.]:aڈwYV`Ġ ;Cջt`Q{/\J#H#cR/YhK_w֌}eqv:KWBsq%HƍS|t_uj0[y94g♄f;~x1# i^d'F6+Bs&EnZC\43e;҃b`F6!,I6nܘ MbĈAB4܋rIW^9pBKV'_uiVjjԨQ~}L,m SF+:Y)5G˗U/$zQ tK0Z[???^zo p)Aή\u%*TAUKb|̊'#[ǘs=peqa mذ! p~gǜ jHNBg,Y7w4԰CC3zٔ݇"`3fpXmLnmۖq$%#V}3:{l)]4WUM@DLRnݴ )wڕ*7tHKɘq2;?K.v$CSreq"eAe"SCKqn(qJ|ӻwoav͛t нɖ- HDnÇ+ƃ$Uups˱c䃃˕++PkRq?66v:sLD8,d|||kS˂4MhJrBl-jH/pLanf ȟ?NHfec Q9TR^q("0k8jqD"_lǎ u!p\ R}1RbwIN1ѯ)x3Gd"v,ܽ{ iRF)\]d_RqkEaaȐ!U߽{d@ WI?qÆ PvĮ`' ix>{|huL}?vϟ+W. ׯAJ)7Z(p=&ؾBvu8_hJrBEO]+WN, Ecr'NH"4hǏOZ \>^҈#B.ҦMX hRaÈU)qLP(3rDԞ]/^C$)\8sgTm$C)0Mrz\m۶%a  f[]ea5jbu$˜)'YtJΰaðQ^3x_Q/ Z59jpovT\QݏDĝ&﫚vt8){_5RG˗/mo;+V) .GO\#0ـ}$BCoшI6ѣIGiyH^x 0Z"f͚Q0Sʕ+fǏ'-!{[S|7W|vQp]P$Eqh:L9AyAi1G-J6KZjA'A`7!| ͆E;^#F m\L6nHZL$gls>g>hO$aG^ǝ^r|8l|xiݷa}\$\ >8~8}}CCuؑ'w g UƍQ:s2oY:G̙3:DhXC *нov-Y4jԨjժ$j=׬Y7SH ĺIda //XbJ޼ybaTn!TqP5{!E={ PMX9`jRiٲ%Ki6L(˗/P3V2)S ٿeܿg[n>U! or)!%|QxJ><4[Ǡw}6yb/_>m=1։A^zx(`XFtj|!5Ʒz.UF-C#e'RV',+PZNlv֭KBLPs!"S!JRHB΃`%`` čRhRJb`9igu)CؤC/c[L-*y>+ ̜93^x$Bxk 5'|xT*i4 ~sm}1fw# 4…Ÿz;ԇ" wĸݿO7}#nwXJ|f_L'ǩ݃={LOީgJ,r^f΀ٓDhXɎ1"cƌ$B1TAK`6y>uF#ޙVQjU|"E>Q%G2>\iLJBѣ`[<<ڽ;`P`\r & qvx a;v쀎%5н{w(fǑ\¨2ECw^xա\7;Ї3&{۷o&u>|3Ka/SUm޼^![>hԨLcHC3lӦMIOU \T3a}olv(㦇e@ߚ#L[1l+ϕ6c j`elHR^~MTp8MtSR:/_>\H=ĉC/oԸ^)Rl<(ҠArcƌQmEoC&MPGIB7oNB_(+W`k6t}~xK6iҤ;v, 9]8a+Z≿;hQ!؁b1/۝fO:{,px8F3}w?A*9Ձ+!Bfj{.-?}}jpWnmpcݽcNP+>^N$ݟ2e i6pkٲ%LVP_BlgG,'j auJ/}[pLu mspנ=#6wʾj ҴA:4нINo[s`NE4wn,;oF&KlҤI$vkf͚k4za 9s&,dxT# ,ӧO,B3СCtҩu(v  -=@\KŁX` >ю@FGd3pл44VHw -[@QN:4>c}\&sN,~;r]6^Գ/ NBX04o^+Zjii`עّ.΍7pCoyͧn,'Ǟd gΜ!mGz 2t͚5v8"Eb7oLMԨQf֍^&﫚8'9}zM. ތ׉Q v)0kc| }`9?ഀ*`\-3`hKX}ߧk?n9D3}іXa&_Ř{a "H骂T8}U0q~5pE)S&"X R0^1t`6|H+$HH.F5D+؇Y >:C&N 5z$Uڵ. pjK҂10XD_?[[|(>iڴCX&=)֋`ViAڎ}'axǻcOuJ0ݏ@@e8taA3:o)cL}eVj 8^h) HpL'O5 v$vtFҹ3Wb e&4Ul1icaW !b+S"5! |7vّ1t ;pօ dh6{Kx2C#p% =yPDӈz>1cP"'Nhܸq*UH(Kc#jua8Ƀe TZf3?箯)r%68V2ӼؠsG3q[n0}U.]$Er5h߷1> 7iz 1j/xnܷ]>~T&ׯ_ϙ;IW&~$=ZvKׯ_?)Se.Y!4qķca*FZ A1GTtkEZ^hT~UZ޽uK0'@B>{;6i=C}h}IF'۱#.Z_BDNj+{yAwWf:(Dhĵkצ);v_~5H(1aXH9Hf<i;b#@ٳc#Ҽ_|J4!/A`6y4h;{|'SCuڴix7Xb)R mI(LgKф}7hg/. WMqBDӼ3[FN|ҷ㴈vpi%pIʇ ꤎv%:wvK~I ^ |Y/§~Jd A]UTLD*lo׭[w ; dzgϮUtHA}nX5,[ 8@C}YçYH1ԬYS4GYĴiQ*>䈛ozIr(r55v߀>znԷib@WbE1$\Aa #/^}57ІH+?cp+=if͚Qil1ӕXW7;Yn۲;~m+k(YFi 55V|W//LˆfH // ,MZ'o%I _Pr7=Pm^aJo|Y~RG>}V}X>MĉqFȠ:苒i#}W_s;7|СCu4D"KUT g;ׯs#PoBbȸ}P?}F}@ ',>Z~s}&tnmV^tBr@8x 9$W~H_tozOG}$8ySu~k& UDZDǏWd|/5ԯm???\ T6>8qÃnS?0?,lڴ~z/mY2I>.s,IɁm+_w" ;v|MeRyCT,u&5;&uKJ3X{r?<&)\Y3z|V$;T aCuYϞ!;wVbw'HwQ]zH>F$zϝM4?HhxyܰHkX`AÆ E.DBW{mInWsvا99&Yf"m+A\r睘gS Q;A.ꗀ*+ Ykf~mdBȊtIaд(qӗb6'$3FzO|Xd)$oi裍79`ԨQTiq5kYUP6mDB?" 3%i$XB]dSP_>zhaCѻMUHu]g^|CBxw(jW}t -=q[vNzp 5WO=M[4Bm#ю>hE &'{ 'RMVT*dÁ~WRAWJ*-Z% OI;ded D+D?}FNxwV UA^{5,̤WvrWW~hS#Mlٳz0*/X]&a%i/<GP?}K/|T19 vʍ뼣W^rn =Jnbux(gd|"$\۴o{Q 2"ꪫk:.͌r:;rk?O w}G pjD!DDB_| @ ,*A6Ξ:'$Y.a*~`Aʕ"m۶ofaabiy1-5jT$IUurCzDN1K׷ r_LiɃ,]e߰W|W VT'46ʗ3_̪PXp=wQjuҪݓuIMMٳ;w2Ae<=O><wktZP] bm|uR| E}/_{o{^To)gJ#tW*Ç\3N[唇\Iʛ ?@ :D!"i̛7m;8,*o`|=rqVS@޳zu5 W_QR ̄4$MnU:p\XnzլR n(BםP?ݯyZB~evr1i-{\B3C8ԩH'KŷDObkά0oαdcBGppr2A<^XIoX"wR(m @d"q9}$߉QGA0!t ٸq5?>!f鿻G:pC]XWxr_QgY3:xwsj%FT !!!|n-ՇW>$$_l" T1TCήzo^:Hn^` &\X>{ OE뉏G %8k׮<ݫ) pA J+IseR~t]uT ^PFҥ G[{[u'߱@<юGSN#H(mۆ5mɯM֭H~:77Wd@6l@ @xmڐM22ؿ󛝬X;G~4EdɟHabZ QSpy'G}Zۻbc*vU$JC?U.3 GX>+rm?~ff9sR?%-Gx \n8kkԨA ͛oYBWqXWx{r?tD Y3zx#kmV7KRݶIKUz{R|NSоD$ӰFf- T1T?k,_>%-+_ENYhQժUEŒAW*7o3Ԁb{SEG:*\Ӵ ^РA ~EfK:eWƉյ+,|uM+0L {X3 FoKk8|W{D|>/-5kTk2ؖ V"J+Uh_دF&/ \Rly衇P?i_~kOΦ:/I$4Mxc䓰.j4HA+IR 0N?x EJ~(EhGsN*9B^xnIա*],D T_ Q %:#7O&6:ZFɿzrxG/]oj]"L{cBQQޮ_@D_D5E!#Zl)ӽ{wQ5.^zIԱ+b0uTQMZ,ԿW@&RN\.z\edSN-b3L.^A=ٛsoipIK~Bʟpg"ѪAѿ\#mZ|M$IN9Wl,Đ!CԏBhM=_w&*n'#?bGE.]Uy)3zhtU{okr <_~r7+?rwR0wӶwk}[ճ>mB@Z=ڵk}X1C/Zj;wNTBlyED D> VLzz:U\n|"'E ;v2nZo!ZAegH%i$E7oM^{D*g[U޽E\h/rr_|ulE T&n;|ykq*%)ԫWOx4O?۞)Y.ʢ drBZ=Ν˧a]=nLSx,;@Eŭ.OhXhBҥr3棏>\RŻ8 ָ.hO.X[D,ZHԴFv>AZZZNݺ e?~s bX ;}MsNabbbD\LKAQ_.s^ )%lyړتtMoiֿ6X3[5/H dܸqcƌhvLoWDǜQBTu{/#7d nY69zO ٳٺu۸]/4P V;CTu?m4Qǚ Q5>Qet/rٿo߹ʕ9!W*ѳk_0Z-P"iEEӘڦP=M=I|_?QlfR*GYE+MYe*XtDrT(((t+goz9`m+?Z7l.D\ 2Sӎ4UdQ~%oddo]tpne r)fx,$[Ck,X'oܶvo}r3>"/b ָ.qp}tRQet?>޻q#z8Tf϶|* N@CZZ-Fڴ}m)tif3S3{KS˹Q&‘$mٲJ}m!5~1CDisy E5GV Mޅ _hӴ|[V8u{WUbTM;Cwܡ*Յ Ew0y^@*W</cL1ûey!2&/[lwJYҵM3E.n:QY7n,r]+HRlTJI#I{΀^"Q5}b狚 FouߏN'ܙkUrrL5j,I쏦wMv6u(3՛`˴r1 y#3;CuV$njSBpȉ'DisyK:t"9c(@%Wq\ܡHG̫wW m P(τFQwyM/L1ûe…M?E '7HIU)'@IogsrN:)8]@?jv|v*Ϸ?.{I7U8&2 xfŎ+wMuw]K"v-Ks \ڲ+%) K?Q3=e/ڭApe˖7o.VLaa0Z54p"ܙTxÄ SnYصR<2o{϶?{?$vm|δ􈼼SgfChߍH7p/?w.ܤSYBR7:'>Ɋ1SLS%_JR tޯi#PzĿ Zt۷OovTԺ$QuڮΪUDe b >ԡ$V:Gt~7d*ܺq5QToiZɥ"U r&[DgIh:N;F{v^PbiT}})9%Mj$u}|3E$չұD? QtRM}]Wرcy){xQ)cb؝7r7ݲ\U3<_,Qhݺr={ɸGEDS~_x=m˜<|M5V(iR#Uޥ/K=!UD|m}\m׮S㵈un+KnIQY< -; U^}9w&7dg-?w˭PvWnժQ!^£H]T+էwG};*{_D^iQ <|۴iSXXؤ4^~YXx9{ͧ`]=)r7ݲ\mt&u .Ksgܵ?웼pty aR\YU:'<&[usV귻7=L &_]Esw$tXuUfo }79ȋ.}J0om˺I}Q1 UG؞B9()m~)w wS .HV}'4^ MwUa]=n}IVMx,L>= ۿhPTT4a„,7:uj``HǠȤV/}Ow=ajϋXL['_{fޭ Oٴ~uW~7eX;vϏդ'V~rB;QDS%H> * ~U,UzЖQZ&V3;n|ä a=~(ǔ=XWx{r?t8}1[2| r͜7Ot|gކI.=H;%Ծ:O~)Y"Q6R7K"6f /.}$KReYsӦ?Lkzwiݦ$T_? nC/]E7ގ|0\ D;.EDJ*KZ]' ϒtiŔ=XWx}ݒ)EKKٗgާ{Fge$I~ ]^}km~:aޥ)2MF_lg+IXgC)ciO4m@զ=fz7uҎcͥKn+V x~^aޗ6l(J_ 2֭]nȽ8u:xur_$ qSB ů~OYxdJmA{{l k{?y{vpAj5U=+kOg7wݿeͤfoh$u$\Z` OtK]S]۵ko364MӛP(fJS2٨Q#8ˣ$cKoA};\9rX uIMNkV"x u%n.Քe_a]=#11f@ L)X+E EA'YCϼ|'BnsM*p5LzZ.IK%i$JuLuԵL>kzvio߂LAMN(QZH3F?qT'KQ5ju w=~RzMn}.OS Wk(Â< qKg»%S>|x֬Y ,HNNn2l0Y(,w(4-jTm$mpI o%(MLܡUFZR&I v:}uѣG!_llӦWky'|+tB "ӧH0eNW>o߾}Ν7k-e嘁7ni!߭[T)߬V[l={H0eYW`+=uHtBxLF$,lӴi3gP=xdJ/[ϰ*\:#֙1b0O _yY/**X5k( Nگ_?,`d 6o<7kM ÔkjՖVV3Lr{ܓYGC" Câ vUeѴ?oѢE*Un馀t-a).XWx{r?530$PXlB'3f+ -a).XWxr?8@H4!Y/999/΋ܿbڷoߦM-a)X{rp|?$a!~+OsssSSSMbk,0[bda( !nԌAQ⑞1r?;;;---999''gҤI:/r vKaaB }ܓ)"=y RRRp+cW }41-C8,pX q7,PPBg0?/!6r̙3'OKOO;v΋gJ\SH3;pX 11b]P8)~z'କ˃OLLIMM}t^l>Sr1!C8,pL a1r@[p|?{,~ZZZBBBTTTJJʳ>bk,)pL acb!ˏWr?F>}:55㑑Nzgt^l>SrΛ741-C8,pX \~ܒ'S循ѣG}aa)!ܕ{7iii$SRR>0 0 Ô"nd/ 0 0 S(fOw< 0 0 Sx&UoW`y5 0 0 SBx,I[III,RdѢE=zYf  %V0f"IM&Ҿ͉'FQ^իwbrslٲZj_o#XcBԿ#GaXΝ;7sN:ըQ~'O*lQ7nV-YD}1xkժu^ ()>f[c; X|9N!!!>`Ϝ9#1&S`` \.]X-Z<3߲eѣG:_߾k?|g:;\} {'fp|ðs=kTT޽{! h`oڵk&M|Jۋ ՛1cFPPP\\6bSx#aBtMZOg8ϓw 7l޼,Ynv`psω4dȐ#G+.]jԨ?% k׮W_Qҧ0ԵD`` -[۰8qiӦGiѢO}]LpGˉr?cpk_`:?vX[cϔ(8ʄ3jԨӧc>Ѿ}{oРAnݾ‡Yx1DItt4CBB6lj*ZhJ\\AAA<,%lu͛|˩@ y'2Y[ou}۳gO{).YcNMMeϔ.][cǎgϞ2}ٳ޾jժXBUj*U¿-+|Xٽ{7qp _žAo1bH`{[a>8u5j裏/^i-S!OgJ'ؚ$Ҿ v̆ P>Qr޽{4eʔ[oU$|\6k :_E+VH'''S3f"Kt-qܹAu7omX}:LC=FW>|qӧko&eH("p "h Twߥ$ T ߱cGhÂ:81͚5_*8ji;)g!Y3ń pݾ})330XR Ʈ\F?X竌=iӦ"5kԯ_̙bBӫfyd8_{aXΟ?#4k,$$DyOµ؛-Z|a{1SroO?bŊ;w*LIܗ1Ǐgϔ"8X|Xǘawԩjժڵ7(W̍͛WVUVs)Ѧ_DZl5jӦ_~TG0 .EBJ:>٢侃|wmڴAk׮k׮LpOf;5gSRRX3 0 0LYk̖*aaa) ܧy Ǎbk,aap[ ́ܧyX3 0 0L?PKr?22>0 0 Ô..SNdzgaaRCoVVr̙3ِ00 0 Ô0ѣ7 0@canLYk?}a_r_ 0 SL#gad  $$IZlWަMu։&SxxOy(TȨR֭[Ea1>0 6~fVZ;uԚ5kfff"?99~g!(({v*(6cƌ(٤m۶(sΞ={rʕu-,,K.mٲK(0  _rرc,a` +Vxz 毽9s挟߆ w}P2::ːݺu|*U©ڻ_ij͟?a{x Ɍ>>0̕ =CoTԪUkŊX8p`ʕŕJ_ nj㏯z0rssUNJ Ƶ)aGq}E,al<̣JsPv˗c2d20VAO6M).dɒVZ PBRRҔ)SpA 0ܓid#`VrYYY>0̕rΜ9m۶=}aVXѦMU6mt/Iҍ7J9 0SܕBa?S`-333Y3 0 0LmX}~aaa,aa/,~nnnFFV?^X3 0 0L 7+~I 0 0 SpW<sP~\\}aa)uܓYC!cX3 0 0L9+8:ߞ܏`0 0 0K'Ngaa'r_Q$cX3 0 0LOUY[z>0 0 ÔܕBcaN>Taaa YȦ.\70 0 0LOB 0 0 SFqSg''Lbk,aapW+}z3}aa)uܖGjf0 0 0e~ɁħqgaaR3*~ 0 0 SvqOg(rLQv>}f>0 0 Ô"n#q~\\}aa)uSgggraaaRs?q}aa) x >0 0 Ô]ܖqraaa.,aaMs8}aa)'3>Jgeegaar_ݺu#O_`0 0 0[r?r?lfo%!X3 0 0LY]O}}z>0 0 Ô.Fgaar?2p1٠#~fffjj u^l{qLcE1Yh/fj`mŸ"˼]EW1GJ9vFJs nS`഻nܵ%]m=0 07~.>~+}YO,qH+iPe,ܔEv..;3oA^mjJΣQeЍ˳θφe N^BqGA{-aa܏:.[ò/8[d%SRR-wK\[>U7Re*vlUlŔSDuK}.J V6mh3u4I5bȔestI'ȥբ4 Ȳ`URES2pЎs0 0W0r?==r}uJY򢚩 ‹eQ^VMuQ=f4Ds(m4*ӻRE2hӂ%.f\18sb\ aa-}RySN]Vo Odc#e*JițPPa֨m b)qy^w'CY4@z72 0 SF ~BBI&ZIWZNi^?KҢ; +Z-&o֦+m-r<K@[|h\x98]]$Fa)!O+徭r۰E&-Ъ26/贜O 3=vT`i%33̴θjK\V? nf0CjG-fa\܏*rV$50 0 0>]vU}D 0 0LYCoV.aa,?x$:FJ0 0 Ôn,aaI-ZOIIa0 0 0eY'X3 0 0L]SY?uTRR~lllDD}aa)]ܖrP#cbb322< 0 0 Sx"/~.]Ν;GOEEE9r>0 0 Ô.nLWܧ[$OXXXzzĉu^l>0 0 ÔI٧#cOÇY3 0 0L?jG;v,&&nM0AX3 0 0L ܏5Ν;Cko:t>0 0 Ô.}U[Ȱ0,aaD)@}aa)#?z(=3 0 0LSr?...:::""7󰱱#󢎞*~LL = gh 0 0 Ô:nkBǝ*~+O/⌊  sllllllllllln(~w!,]%-5kt@tQC8DNy !ǡqxhVr|_/###x;K.MII CDp!`C1B39f͘1#--ܹs}Dq@4tqS8D^,ux}:.:dmDCHCpK:79*nn`NڣkݠxcTl=:`ڮr?fn.ߡq/YhLW̹?zAvv6}Fa2JeaHpm[^z"ױ ܉Q8b8 #c @wjR86"}4F]@7~?[e@1PYﰳ<pm,umvfxfԔ})rLL|Jt)َf%T M¦3F/f(sʙSa/bBVgx`vnWYx[d'V^~i\:"4J/Aǵ3x1~$ ̽3g+PӶXFVI7%jRR ģڅ7mނM-(Ѝ=$t&[ VbnjLi.JEʂv[fڶz@ZF8`n}%{Uʨ}XB^8cnj>%evgi%h2&hڂ˔ifhFXoy9kn%VV4|doeu y WLO>`~HH-[DŒiV+ȵ:Q]&y{!rm_Tt>vC~m9g\Tٖע-)' !ʽ9:&Dž=mQ2J.ɟC4Ŵ5qƜk ;앷mL7;8 /.[2JjbM1muAE5Lgm]fYeU]7@ Q*皋DQ+N(q/qy*eurg+\ o+F!=)uY$̨k\&9-溆 eϱz"1l.q =?^/f[rY%Z4k7ّvZWV%Մ$%"yEeIҶV[X/MROjŞg8Q[gie^yPiŝ1=Y<ٶ*SE 1cΏT3^ڡq/jOUj!ܗ德6 O$̨X~Cmߜ)//*NMnA>~i\G]Î F/n^$|3Բd馮HմoP+$R:SVBqhG^ݨ4ڛTRefg19QCheHV2Ѓ+ZtVM6,7K=m#(C`gybuwCx!pcy(Z,k*x.q/1:4-9V !Ekeh? ƾ^J+(D%5[Jmw4\cM|ܮܝmxb$cڕh} 3̙3GJ/xKmzZ a QY QIͳp1!r:+wu!Y.)~ӧqXXq6c{!T'Xk:<r|ؕ Wa ߡCȨ(+auf2C )"/:<c/t>n6nx)llllllllll:u?sӦM[x7lr#_vcǎ=z .llllllllllȜQFA/Zߴi?V^̥ӦM{wm۶8ʅ9?/G;vlr?!U6C?~Yf}'Ǟ={W\K/!+ӧO2eʸqF裏w}ӧ-ҽ{nn{z'xbԨQ/´if̘1sW_}uBkGO4h @;FrXO3fҤIh0gB'jرܰa{14 ц~ˏ?83&L@y4?sſmȑ# rU{/:eD}ى'h\1WS :GD#<m>RQN; PEP ˈj^`PcZC#8۷/A^z Dii@ÿ,z)"%0p<w=zcn`pQ !OwM{:X7cfbV`S;EP{MtsC7t2:# (:y5\3Nq 4}vt V.]ڵkצM믿k͛hѢe˖[FN:q뭷b1]굊\.!]s3{:.Q 6.|QQÈ@)+/I_zqڋ)S ̓P'M4a'˜{~3ύg/<7v˜qǎ„)'M0ye2'x6666؏+>c,ԩsqn^/rݺu'O-((8p3g '-- 8k.͛7_۱c*=zĉRTTt9xp-,,$?HLL9|0\߿;wĿǎC\ݻw߾}h!|FEEUh<҂4PQt Arhh(BK65bZVYD4 aAG?u#۷lقذa1 1 6VԤ$S0E(`FM6mܸ>  k1k.y*R|_8@`80hRHH@hZhzDE (-ZgS,I3Mx }GTqF3sR2#<:C.V3D88.@Gk׮?~qe X@Ǫ~ %1gmۆƒ#Pč X b3~.PЗ0 +Z"999I1i1KS]TSO@QE 2qF0a+4ԓ#[NvNvV6N 0 --=5%ԩɧNLNL:y!!MQTH8#>qqqPvp駟p' P<#QxmC]:A$D k:g@ hIEGGcDEXO>f̘Ç4G=z)S?KA G4b u/Ѕ; :|~g;x1b?ϸ D_— \XWb`_(P %tjԨQ뮻zѡC6m4o޼QF^{mӦM[h.]qC Ⱦa1حy,<-,# Zh=du؊LuCu-6& 3bb cLM ^¨MB#yY8b'QWs(mpQ]@h6ohOWPXqF23wb=1)x,1!1񸰄X|\|\L\LtLTDTđ#aGB  21 WCzҥBy4x&A#}*͛5]j*:"\hF Q -q ~PIл6$<\% v(lPNBE[W .0jC}u>~xh8\ިrGx1/;w\~=O?WF-  ?<=ۃ$pc'DG@F kϞ=hM*\`a͚5z=<<; #\nTΌO >>}L0^_e#6B V FpN~޽{ƍC7k 7xM74`\* NIPBASȻ5TxpYk"ky!mB*n4sz -bhڃ(Tf> M\:Q&4p2 *r_~[ߦ,rN90e镨Cө+tݷ6ug˪D⏅ /~Er"OȢ_az5WJ4t߯ة,7ow^(ohe8, 5_5dӂ H/Μ9o0iqJSz8U Phͪj}M<>{f!#zBAjƍhypp0S,Bp T!D>CD;44U `\|/T= ?8f=bj0^>FF!1[0FCt)Sp0rHz衇}Q$qAkQn %yCw0Bx 8ءpK/j 1ƕ6`iLTDu8Z.``GCOq}iݏ R\FbEWQdo u IhJ@wҥum۶ܹ7|]w=S/"/ EMQk24TDYm9Di.]U f"]EQ f# v4L:b 4hFB"%6h W>*ᑡpфDFG-Pƹ4 Ӊ܏wQv"wrw`ؾb-r?2^gQd,%E:XOM(FSLU[.~RQ Xd x'9:,Aݺu hSPc(N`Ц;wjϡϞ{9tdb=+8:cGF܇\3@C5Ko-[awprpHUpC<桑Ԟ5k@g@b *J5H7h8q)7lBr-Zx'|yA B#ȠmZ:P4`< +\qN @^~DG|0_rŠ#Ç fES;8,}РAw}w^:uԾ}ݻc_~Yp|!&ء|ۃ Ț>Sb4hc>i[hڌ^`¾`(+B @ a:ZwL{ ҂Lr_6=?V ;l$a ~XMBلBc3KI9E,菔徬"(~wҼ$L/N಑%9ߴY{<̘B͛mo,^ Qǵ8%@CĀLpx1UW!'XEgIA: k!q4WL&նFqNBE]{s-8PPQMҙmC4) oZb Yl>UDDUͣ Dh3Í j>VUii&N(8  BE \pyHb4C?FƔh*M%CԂ #Nf)z~!PwKC@ :H3cJJA1G1}GiL}wn3"ֈ$bK@`e⋙O EAJKĉ(z*V^sg͗|PNd{:/'4 Ϝ;S_p&l~Vp|X.MY8sV$[alWtҵS.?a 5j4~Ç+vڭ[7z>*hݺ5 6mZ 6kׯ߸qcdjoСCΝQ K.Xվ}{zkjIzФIz6ԱcGWnfm.Q뮻~ؠA!ڃ͡G9FQ|kÕU+õ.lDuZ$UJn}W5Ž6jvļN:kF䱌#bLA5\OiaiVZWiY&rԩ!\jhא7v4[IZEŀfAyEuA"tf,@3ة֭AXB:tPc+<pyZ %eK̘qÊ.Kg<ع%;:bwh߾C۶kcv7IdvЩCΰX3n=f"˳QjaIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_09.png0000644000000000000000000035711114741736366025224 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^ycLc`MɛذEEQHS!te{{n߽w9sf~]y/9s̙gs;kʼ%^xc'_4˯xC:5:9zvW R:hɖ(U[tuȡ:֡ButxE'U1u1d]bWC܉ꖑ؜q;F SrHTx9"Y=S'"j +Ȼhӭ30&2 ҠCnܸ{瞛={ŋS~3^;Ïx;:;:HT(Ijjj02{"Krk v͐jSjMڃVU@uR%I\VZF$;ە`H.1jF40#{; č+\RdSi嚜BLG54*jY%{VV[+M]HL8;BF,z ^ѷmSpGUL*y4pD츙S9٨@}n$yFHeEX^!ywx ?`, kD~ @J"Z1) Yi%*g˶VGH# s͓53Y-q X(:\-/W4a%s |(Hd-a͉FږiY2yɜsϩ[͘ЅU2#FH_۳{{{{{&$i+(~ )^8If גծ!KmIk/ͶDӸTP}|71WD?h5č_Y6QGwp WJ,%dR/H(jaV$*w,e\}foNj\RObQ:?JyIj&|?Jsa(?-_Kߝ|[g5B[zJ[C7 EBe}&uu &Rr4Q gPo9TaXt~4On}*j~GHg `@3PQY*سgնV~4Rddɛg-('VXKF_zV 9}BחTav,盙mW 4U_`Ŗ·X!XA뒖KV[.Q eTp&MBR\S")TV\ZZ\RZ$"iIF Qٳg"tǮʰ2zv_NOHFPWoc_HK<8P(}8]SB2 (.d{Bŗ,1%iIt:WKDh.iRZ,a 4EL3)#d+es^ }7깯ԼJTT˻ޝwgu澜D}9 4yƹΪϝ3rάr;JߙUzy;2o &r_"QޭUȑtz(;]G:gAbMȈ˼ ~/b5Hт\3rʼw$rݎDݣɍ%}QHSz-5u(9+V7ۅZ{.p-$kp^R /-e)LX}Rq% R`#ϐ0$adZTrRN*|'//Z ,P[` f i R%%`o*i'߇T!=RN ЭZ͍".\6ԑk=eķ>ª ZU^QInpRrO5ܪ0+s*Jg%v=xAmyVѾ+j5BF,C)[G`LnGU-aeTEHuUL& IҲRP"^s(\$ S_F_y掣G'cE?٨zkWl@$!s)ق[($1,=]n'HOـBx~90f݉ )|c$DƎK 5j9"ꘑhi~)\K3I:'sS>%RoޘY7fֽ1ፙMohycFoL'H?5sM=M7> O}} 3*_QfK6f՗#JcYj6iGuxm6"[qfTǚf5p{ɔ֍G)kHr)髂%ncNNuB YQapTHI?gBxdb[Ê+\Nդd9nSFoI" 'eM\юeYɑoҖuD2sf D%d+PѸ9# xeT ЅU%%g`k)(KżGCXjd@ _Tj!a}>lU+UeKZnUISSO5Eg9௦_81AaQ k UI"U !eD`%*2*RziD<:t"*UUW11,5$P1R؁eQcv ~} &EtQ7V"aO<@N?5?gHޅwr|qM(4=O: TG|I(Q '#* A;󱼙|NJVzQGQf&C.ꌛoizn*M5>7ṇ{FG{|#e3)hG f<7LO:IhuB,i#Sbyz`TV<`3<`3?`SP:pJ'9Py};3N=Oc5K>[8|&=buC&^?C_1xU9?K/3De S"obb`n i±*BPQ=PQ3P2(=<4J>!emx j%^?|"tv|<-wMF * TrZ&TI58!H1r|w=M⵴@ZUG&MJkjl*aOB}Z8<+Fp`* ,!& +: ӎgԑN1d8Q; EEǍ)z*1q*3yts,1ӏ9ojD彅 6='}j3Q'c=FUeCGvvBgYY2IYO< TeO_U__'`lՒDx]XR5O*'=u_S?y_ 2 ?!V dA)'^zSW8Ż{!>QGL<#yg53|o<oO?mЎDު3IF'js _opyPPk`zPe!"7SӭWݮQ64*L}XعR xV:}h;<ӧ.~E}#'%_țvMdj=.TaQ0GԨ^JT%'6&jBrsóXT=_A\L;IqJ'6! g(pRҪ<^z+gj9?D!~n5v&?5HڳRy`aH!pqQD ,Ǔ!uEU4 ~$0r4lC*9v$',QJ|oPPP@YR]-S'T!1>YѫѫǍ^w 7\Kn$Ƌ_{7]\|ť7]\vA*֓]:4PyYE%/*Q_=/J.x]KU]KrgI猚ˢN7\>n>fm~w/~e䲉'_ߝ/&b(CՏ~mY6}QR\Q5`4д5rvJ-:ZM/-O O5 BAs4/0ҔJ R0tG;=A YCI%LJ>UZ}{MFO ;G+ jr$ H|v'8tiC*qk΄AqP8U>#q0f2:ӏ&& N`C&Owd}h6DF&'4WL6Hhe}Ll9Գp1k:3Yuq+<3_v qGg'>;_ee5Eix캷}7?.Yzy]?hv1jx~>}g@;VK{yU ]E`rCTP􅓗 jQ—\WȆr PݵPG‰\xq$5FՓоQ υNM /JהzB~GB'EIqp(UAw^ 8!f6rr1t:3OXx C;ԈCѠ>_ k .jZVO2:ON;ni}~ڱ+8vǬ>cC794̡g:shNhe?zڈs2TB5>Go~G>oO?zþ:N=ScrGNG3,ǭ~}Ӱ=?}Xrðyv?Ky=v_K8~k|G?bA!o r*ܰj-.,W2ba*x>E{}Մ*"'ݗ6um$*r x>rSfJjWBGTgjq!PD-J#msFDp];[(w|*;T kl=Mؒw!_>5B R.^NNN5UCuL\xRŒK쨚!Uq` I q0=j_;~v@tL)SQ)8&̔#u2OGN?ދF4ԦA C]ݧ!}wE#}Bx()1 $)"vڹ1jBavSv_Of=GOz܃9s.{Xsˮͻhiʼn~v53=y+w#e$O #,x/iG>ߗ<B mͥ6MCӦmvuõ͒ikخf6cz0 M[$??AorCggQfxcluЪy mT*$q6PPj ,t964xOFN3U^%8}_ip(#8!y8*S?PńnmR١2O5_K k2>5tSމt!?'Xg 1H!C/ XMp`9,Ǔ0'ORG':3*cU)ďGt8tcT.b3T|-\i)FD rzt2P%L?OXx9rӿXPCB5XdmsF/ 6e}̾)&heoƌBa!P$;7tEDiWs9 *?Yȸ'*c=%莮>!4k{%UIxO"سRߨEx0XqBu4kFCJQ7))L$7tPB8~Lq8&* 1q*N8 _NH:uge_^`BmrC Vne :@tP}7س ~3s_,^_LB e}LvYǬ?gǬ<㘯83[v.ErB3dշ< JʱvQo{_&љ9g{Sc^|nWkS/uFjUWv4rQsa*37{Ç:*0֛+lF>0FղnK#+K' ՌU- invrpۨ@U5EU %ψOO@%j]FjI2/c5=x*~Os*1*&`{1}*!ݾ2NȒ*SD(O-kJvF( F:w.CuVg` OJ訪F\X#A3>CQ`OgAgDgѣ pL(D*GA֡f8I=993CwG^ PܾsP=vx굤5ki]DV BׯHڰaƍ ݿWMZ6U'jh͛ӂUXT睴;Uy'}qI{'#NxI8i۟SQ0%Xd><Wֳ;i}}ˡUoZ)'\?.OXy U:S$c`{t۲%^Y,;-86bA2bjY? h/vg-W;ȷ^߱xlc]Bc} ЫrGۗݐkzoho klDU5FճUNǯp5 B*p~:k9T:)A-&/r^rʢD}.YStdy1`(ƌ*ÜR3:xr$L"b$  q3fumF8p@(D*GAvSuhg xsDmp"U0&5nGdCEElXvKkmΩdjw=~C*k4¢ɓ,޸i>j!hM7fTT\zA{,zK\v/=K3W\:K56_~Z2ƞ5/MBp}ũi;7]loʺt͗S]v1~;%g|q.%?dxltWieGθp ';aK6l\œ7.y}vSï )RHkZHAʟ;.(TC6[W^>A'`\%QsXhT=  C #vaQ>Es .JRy S((,"_ՐKQ%̨tDs2 RJ$8t11z SQ(8.8_FNHOp^vM.x/Z0]A-X>mTw-ac2X6gFTQq]wW]]95˥ԴlSi[rSIi彇]Ϯ. W\w7. pGmqGm0*c9F<2)yZT-~/xo` |7nԪqV^?kG}A9QYJ aR+?q9WajC?+{×~=YO?r 鏾G)rմ9 ^vP_ KOye]no?^gA$meypiC\lȃ[]+M_sU.oE\];z1j!h{?IIƀDj ,4mr|j||"4Nǯp5AXT8tYpN'Oz覮ne ,Jhʸ|j'ƭUI5+-B>$\U"8GQx<]ooH# 3Há#K Rtѣ pL(>*AAA63:'u6mj{X6^lv zO2;cKz֖MXi9ҶzjKzVzF~xoJMM-gdU]+sU_Bk{^n-w_q5w_sU]U@Ttߕ ZTO{2'_>Wow\Zjגiʆ*a=}ƅ{>~/S`_q򶫯z5=oyf)兀vݼP{|j}#&_ՕKG{9o+b+G:ҥQ8rjx4Pv[\bw2TnBҾ[WaiE.+Do 8P P} ߆MxNt&(>JuwMB4 10-t e8F7^ 5|k= gM*MS`OCe،wٳ5AJHXQ +KG ʌ$#k8zc0Aq uJ= McŇP%(8&FFhҏ}<^({1bFp^hL={ʫs32 ISFٹ%Z9y/#Ujxf^u)T~aE?x!+?_kܾnʤ MФԇ'?<)I9N{ւn-z֒'&ʟ"j?>! R-M{dbЭߺe꭛ܺ| キz180lG0rOKſ~oϸ9DV7VWV>{)3$QTޛ hW?eY[LB>!⸭CAvT,ODW5};oɹ ҊĹwA]v_V (wX,3^ [8w"G֚@WuFNނ/v@ޅmhB FMTj dA%:~BqhCqGpB`|}o|W^ +"ؤ|*}&U]ix}IΑN ;~BЎ?8DRIPICOT*zU9 &2!TT =ǟ$ ge%!g  N5y/F+ jS muꪫz'32[Y^MO55zǞtjniKD-6(>ْυj>_R/V,"XjEF6Q˅_,lqg}>IdM?A4ipn)J@˔Q6j%Iv k?w#wክ[nmݶiֺm[+/~vd/'GluM-#aZʃ%+y:~RxT z E@U5PbDL|?sGnG!Qxmh4q0j ,4wWKIJ85[[/~֭*O?-Pt :{Vz΃NΗ"@P8\PpF* с%tT:"OO  fHF!Dž'=t SQ(833uNA.ӏ ==H\wLq|P`{r+clZ ,a׈?+{^Ǒ=}{a: ?#|ё/|>)gŃHTU/|Ш#?#;8G =I=+/SPD9{ݿga;q;7?Ͼ/CN۽Ͽuk֭۶n۶t◥$!%FvGDKeBMcr~L *NQmX,IՖDuE(Q.J&jƒlU՚O3PpphPLͳt 0Q!jI.si|5 g)I˙LpnDnM=%=e=5Pٛ7r&BW.ԈR߃DDCN UrRh!P}5PrlaLCzS۞$)TT,| ,mfx/-[/dÐCC$@ F\ Xk\38RL㍾0>;yIENN3C#75 =`=1IfFOH(oc*U|@~tU9DzH<ϒ]C5%fDf0>+oU"dniix|Ix6S,]G(x\+TF+A1Ԅ%$>w{&(eB"ݧ'To}rhg"_7⢊/$dgR!g[UЅYTfQYmRm/%U֎ƾd+]l.F]%:1ޝ;K xK"oo)ɔp3j-qY)MϚ|AcSX*Zx]js=dOVIC$d } 43KQ+OT}d"̽$- g/_S"lT^^ܼ\cI_Wa]ɸ ׯ+uO'%Ǣi@B#'i֛ kӁr`=BZ!SOe0t0HE|Fr1l UXՎ5#b'cSu43.~JDؗ_} gB %.#}M d$JVY**?eFHd2$ۧ;ꃐL&B>hK KoJdL(Dz+t%/VzGe#|)@Bov&8pQ,ӒnN(ʱOZ?Z"qRʼII^P{,)S\]$+MCR{UBn&&Qj [#m%Ars@j)1KXQK7 s|!K+ -5)Uđ7G9VĬ*fButeUS!F1: 4X %qG7!I)'RTsT'UJS2u@]IOX񲹂 B)TLfTXi/ȀKbE]V2X$Q"*#{k2d]Kqa]dhs#2PrVgl+ ,TVG``k:]BY!ѧl az6dƐXQ:~C[p:JK!-GmID EOOϑd$xDm , wf3x@'+ϝf<{ r=!gu)HM.5,j׃DIPS(i.QIv[DK:Sqv{z8Ȕ#8yV1JvxR D́U/DҵLt٬R̘,u+tBUjܪ+[Xj"?Ò*ҷ={H$WKټ{DK*JhZ˥ R)݌Mf=o:zYʾ>K6TLSL4J L5>mK^XD3eh4.H!|Z4GKUV<:ďyqAΫ/RPQBt7T^*-`1Pq~!(/(7P) GI,Rvn-D3X[2,eHiS忦RlM\ddpy y:4)ɧq9ٚGt*g`ɩ UTUHET!xt#R׉Ǯz{z-[OOqG_|qIDdZ2nHeᶭ*c(-DR)(ґU-jY7y XR*2ƕF[re䱬&(?/ Q4é)8TLA+7r\) KHE2Mvr,.S]E* HeFedUC} MRbтNjIT$RNf€r)E[,2lr mddrRMIڢ!Ů4uMi7o4yߔAj-29-c4Rz6#|B4d)C1XV`-9[IJ[oVTN4x!aYL0ڑ0YR]SDo^jxfdR(zI1|!nb)KJNYtP<ҳ3-U~<#@Τ,ܠ<,h*TH!ٷBy+wCC@>LJAD3,BGVoVʱXWV*zPBVmljNrH:-z1xd\޻ 9#Jɖr'AB\ +JRrb܃5yR7GIvT[{Ǎ7R﯇   h{W`>޺@&Z   h{k[GumnvT[GouAAAY}su-i [j&}  Dֽ_B_7v  Ⱥݯi Rc~AAH}~}  v7CAA~>AA(r}vAvAA)vlw!  h>AAb_ AAA;d`!  hv? ALFFsǢycdĘ9MЮK5SsoB Y+ς݇) iN}ֶæwVj WʩkIJCWD7U$TwKΠ+Mںlj,[ҸIstw(Ծo:X˽:>8knQv_ vU- %rC[wwǡ-CÎPA:!jn8i2!N6Yu¤DeDbJ6몂 #j^._)Ծ;Uq8#$p5AIML2>;~}yieX;.Nžzk5ūf{JLf21ci?IRc̎rjsY]!c9,q"\>t4=ZT[*,NN EvTenATP*Z >kUmP'vr Eٽvd(U?DXPv9)Z[WMaߨ6/hkdb),ƾ9k&Êh'Z ()RwAnj-ߔ_z-U7x^V%ji@СC}5}>3C {"*!dxWtK<^YeӭC{F2T.tl&+ȍrWJD7r).N?r_5AI> Y7TÔ6%MQ˚n3ݸw&nt:t\=qOuRG<<2w] Q?B;ף?.'bGՈoܚ<5wq)ږCsq>9k8~'>]4%.+J4Y߮֡Meem;ePJ{L-]DRS uy4.Bu[,1ʎ&뼴څ|O8 `xRJS(šW<#RۛR̃r#F:h}c-םrW5 :XU>qK}%KƷv_eVS]`3mhF4.$ueSO ݘѸeM{/6RM9^֡}naEgSo8#+n00+{w(Qv-νU!N!Yuc{y3*DYiȜQ-;Y:D$Cpv߁ufFIsD*WjPZG$B]C[[nmm v)GHfJ[`!$!  4IdBJdKҮEZ r v n8^?rޭ́Sݴ `! h[oj [zz{ ۻTgW7j  nnn0`imOAAA;&vGgwwC,iAA#hwtuutJv(u`!  hGmw!khk'ɏyAAHS%^J]]o݇  @Kcj^v  v Ed`!  hQyķmmmBIdoŷAA#Hno{g)C ٺuk{GG{{0wuuO݇  Ad{:{L9~nAAA;AAzɧn 6+2qa-o477Yt뭮V   (A=#<ٵP('=?ޞVWcĉV   (AM4wuu5P(fwtu oKGZ_ ״6Զ6uuOxH ?w/ >ӣ< ŁO|R4~5HϿ  n"(IImW#?_e@cv[ @ ?  h~#hlLݿ;:{],ء uMdo{J~5A1ɧIwN3\rZDv]\.SNO^_~C^Ue[yBsT I!Ƚf'zrJ5k7<7]]Nz(>_beZtOXŊW}s[]9JDt=4,E0u_8$wt4w?R}hmmPb@[)>5scZ6)5='3'?|ڵ[ycRM]*}~.{$]B }˯3cU!vvyr=Iwttu7uju ?xom#ݟoip2tzwdG379srp$,;\7 rQ2pzHzӲ2s3IٹE%՛SZ=8zUߴ㚩MQ3lzG5[8};ehHCPRV6掦|=WU@ǶC_ӧvcÅ::;o%)'GGygfڇɕ'/wA1ɴzdK*+~?hVvvh~Д1s1UHS\cm6Ɉv'=\TM̬24e5jDlav[Laƥv%aܸW6Bc,rejK+ɷ,~{-@GGDŽ 7ZKӇYxAb<}e3G內d2ƱnLc;3dj_Wq1cj_ִ3hGkЍF@͉&݇KOL%WRZV^QI|!h *5qp.s̍\1[%6Ղ{( qj#)`QWrUqQ:?$ޙeԪW&)mQUۗ5;W#vꚉ*Hƴlrt%l_WWG>8͕Ǎͼ8Z lngH]-|kJɈC$\2a:\qI]O>{'rbU0 =k: ] չ$wv7:My4!5ZhzjhokkaܵV⒜L e),#U;%p!*j: [ĥAi[cޙg$\;-GvB P)V$ݞs~ ^ushʂj[SJF|ÞDUW Ӕ)Wa=y"oSk6ȡbQi,Z0KWc5UŚyHo tvޞ@ss uu@u׌uBM7ss$Ԅ3G /k}3D.(2ŪUhT$( sk9Fv/i[X\R&mhh \RRZ?e57J_/S2tsG0D%qt `$zʍw Irry ^vЂ fgMGk8^vCzinjll}-͍\9J\>BωZvpn2ńQ*^\t{Q.t#3} \ƪ\˵jҲl_'fMµcrT?Pޢ3s J*+jjj$Vsy ^u)hMNɈCĎ ᴝrU-OƉCPRD8x|z=%&ևܹLvZRerBMȅ Œآחy)Z(I-B%e8Φ:_UZYVX{ZKӇ6BhPet5QXәgI3G )KFX$L ;L\d$76-vN frFc8B (&[~?7he6:[3u٤hR/='S\J6\ ᔄ8xHHt󹨩N>`b{ЗRt`ɉCPR'hew8q$\8;vg^. hfnհtv4V6kʋ W\zb`ؔ^kBΌ Ψ&f1&T#z9Qqf*^ j,e_RT} ǪhK6"1Zvbôf*znIVo+JʫkkkZ|A0w6ڱ"LqBhZ4j8ЁLd磟ϭ[q 8qru)?EɉCPRR esXvh/Ϋ-fm)X_Syم#\@,*4}Ko2yȔ/U+ t`~[W}fͩiYW5I%%>_5<MMh3h a{[~=wrhWY)oi٫(ɵ -!noMMX`u#t8GӶ?68 y)oP$q@PLb%}lsSy70IzgϽRתCͷ.~{CVOoOwkKuꪴեW*wgE8 ĢҒݙy^Jy3Պ mZȽ$;\Q<:r힘`^lۻ]۔7ecWrk?/ӂUg}$ Ě4iRiiimm&P*еp] $.v2ZW~T/|6?c<Qŧjb=#O=Tyy9]!_P*еp] IK-,Ϟ] _|P^NWW+ԇҵ1_P* AA_xs$ݥB?RO|<'g[^߲-xW+AAH˛'vr:> _^eqV   b_n۲{u67n2e+ޅ݇  Fd7v~{w67~d,z+u}ٗ6NpAAAa7eط)Y8g^>wAAA6[vOwZV~G.JKޭu:>AA"UVԮd֚vU7_d||lZsZ   hjIm]vp!V1wڬe^eWK? AAAPnJvUN|cC9(' 3#/=-;uS 5>e\j  SO>u?B8"װݷe=0 77/;nc]@ZO>m~ӄ POWu]  zGy׳kC8P4\Ol _(awuuWTVWU666]suV ԇyg|D@uu  4ij޵P('ݯqÏVUTV+[ZwuI~gWWSs3_Uk:SO$;\QwhN-\C. &(ϻkCqhnv հ?H&_ Oj0>9tӄ ==. mUk:D-5;ەDD 45QkǯGIN|mc㆛nqbvuw765A+ PKOXyKzVo|۝ꅉiK?b+v8  (oI-2dݽoi# P v/inSk}jƴlRY_? 7V/LRs2s K׬]oI6up@h΁vh&o[vp1OeM}܍7ZǻlOc\S!}zӲ2s3ݖלy\2yߖz4 >@W8s J+7ES׫B{€S2rRw@>/2-y9E%uS]J>75rQfegGSYcR2r`ԡmqN"2C1[kgHNh nWWW]drd6?;*2Q\ĥzZSSګrx5i1e\(}~>_Vo}jffnAQIyIiYmm-ŧ^:3jmm/(B;A]9Ʒ-QɌCZf.]CyE%7665S ˫ ͭUh#2* 9@'qOU4V:/]<84T1WvF=@P2WvCrѼvWR-`uw~9+2W"y׻ZKɞqD#cֳgCuh\{4Zv_S#%)CGϵWMkXU␫9f\8WC,#xF}%}.ݰuL*膽W_IljYv/iWR^UPR9]mkk9&>88Zs1SiP~:i\*W ܈WlvdJacZvF696y0O0'͹M-G& JF2Ӯ1D^F#T!(vsLK#Hd~m"CkJ$o$B>3#C*kl5VRrgcƷ[lh=BIP nv#:tbH:*ɟ2JWBʨWek bZ^bڒOE5QGeݲ8ѲX ꒮l.noE0qmneN=54|YɯQ\bյ( }lfNq5mh9Җ71onts_(wb_Ӈ7/=ƾ{seQIݿY}<j2*طW* J9FC}'24L eT D8bBe$R š>;~e|РֶirrקfJ\JCui]GOfeG7-[b'5낔>(ZVgQܵ\աM)e-c^gw QT2Q/;jUu8ݲqw%ֲΖXt>_bh _kOD=ms#~HJ7k" \'q/,*֑'+G+sqق*LO,\ glꄵgڔ̧#raB>"vVoIWu?~ruY>ţǺZKIq"feG7 J|Aʐ;eZJ)l+.QWp%+,]hnZ~ J*#^&/ZƎX^F>=%ײ'z_uY]hn\Ĥ-6ej$d䀼ؖݺT⊏yÃg8+j1a$~n"K޵\@txK8j&CxݗG}o}O/oqy-H( Ʋ!b)Ȕ!w|˙/ V?cjȨ`v* 8|e/84W;:F쒵;X8D v/zշk֮ݜVYUU[\]/))ZM>_S%WAv+_PXTTL8"9?W%2}xYy2"*H S(^:nbٝC\% Cr~ikt!Wu3 įf I<}~b[?/eK];*C"z&4_ O%%[o}svڱv_ZvQO}ck'H_LYRv_ΌbR8k뛮:W+AF[?g= (<9ۖvVC%ro1ɵ{~Lr]ԇv?&vOXЎ- 33vU~lU+\TA7\}mRI(3i;,fsK穸7#hN) AÉ n H״jԯzdK}%U²kjb:iRIiiMmMş] Ձ  h v_DU5BB~DgWwqT)vxoꭇ~ɧ*+/oniK t-\W .i --vE&mIvdKjK+k2@Zzhꭓ&4a_Up] පTCMݷevW[+Dv}  (ٚ4iRiiimm]ŁO|~8Wv_RRe]S o! 둇yꩧ[vm(+>~eMSk?X~#]@AAPI&MصP\[>}kwRK2csu7Wu!  hU] _A^~a)? AAA;?)^ y}W8ʫJ Kݿ~  [U+gjv/?v? v  v)/r/ K c  d}>\|_XZBAA!ݷcŷ徢ƦqCAA#ȴ>wv˫ʪ[_Յ  BuT6a_aoj  (kEվ%'CAA wݯ&/Wjݿ AAAPO} _RN^/vqAAAv?ݗWch:G  +Ev }  huMf-PuLoMY p" %~u]3a7A{k[Gu]`_Y#vt_z5;r5wDh+/IuѰai֩ \X{w%.tTrU#\nTQ8Oꛣ졽<<ȫDՈ#㌶h=qu$,q] ;`a.T@%ήVڌk. ]\wv_׶e˜{Zp5;#y* /֒fkcc蔡U+6kJ865i1e\W"DQ`IU 37 bQ89F2*؄nD7h3!ͅ#8VQ2NAv8 uwC]?qgOFh)xmv ~)/Cҁ;6J۷WYպk5ZjbCx)kԊf͔T"&m *Tx7 TE]:0hE] {8wPYw8LSšawqp_U}hQH 1ҽ8[c_gl] "'0D?"}  V}//ݷ1[:}Q*u ꨔ&V,>|,WbԴwl0*M҂*p|ԫjS rlB4QB+F<CXqǣهfhUw׮6j 'y$Y=÷k. ]\v[[ޜQlt}wz։ Q^l"OsgjEAefɥ"ŋ(tFX5#cIU&%:&Zź)IFUш0"VFqHGn<\ w/uyڤIApjcmP{T= C&O0a! (Xw7v_t5u̷֢@zZyWg kZa/[Vw Q{4%TE{D~[D j(D#]t -:p:*-# >ZՇ7RajUuyv =z4"`CAPo׷1~yU@} ӚJ`}{g}гNd茲cSܹLH2W͚̥J$-,t-xjC5b辉n94-z.jQr! rQW kхÅg#p]sAjM s>!_[(CQ9mح lO$,0jҢZ8%Θ]~|y|6z졬enhB7"Y"$Wi;Lp;]9Ңy8Cݗ1hm b젛24Nx$‰%Fhy]hK6CAA"NvE*r:S}g8tF";>V+1ıNXETyPJܭt(JDm9n8OYXh6*pYfRixӳCq] NGUaHw6HSU mv v_RC:S-; }]J AHoWיjiu~K `7I  $p5AA..+OmtJU݁Q&UH%}  o+Lݸv@()p]sA"n|#TheÎ8G~M]n&,ma1ݤ* \AA".>]av]]WuQnq,*n  أLxȺnfa?2Ïl`Kv;&)vDgWwYTsKu7Lp,}>Y@k{QaGrdK*M55^;&W+uoiml})=g9pu7Z >}Dv{s W~ʠC/*2\ v>"zOֽ9ZVY#NrZf`G`q'(>>YvД _\Ze)@?A/)"g55Пj˫jLu)ȡ]]*!}~KƔcUjLiXgWwYEViEuSK+>Hv*i+}?)Pu3>Ï"ݯ&Ւ-Oƿo vomFʒo >=1@k2~]G&L/(vn$DOv_OY1>+WT+ǒ%Kڙ3gݗPGc܇S1IA0 v_}_1wvn>~^xa_%_58:}8ӝ3IoCn]@1υ^8o<}INN_kćS1IA0KtnmGm=j/`G&&^]`۴Uյ;_xM ⢢":V4/(PKGNt'L.O_>c(1ު jg`%v^T.KS:V}3JbD<\NIAYyZI:NJ`&>D|w.L|ۛk;<^FOP;;,q}-gwvn999}+|վι03VmQE px-czyϦ4u $y+__V !YUY]Q\]QQRK$s[VޓVb'o; \Qͅ_6N]]4AvA/r>?h ӿj^ai= ynm}𑞌,ʪT+! _Eףc?ܛ'ݪ(nE&>VߧbEcg5kn1Ijcٝje*M_l晈j0_U***ʊKJJ~j"|0[Mͪ(FǴVٰiSFFFn^~AQQjږoe>$?[jwj| -μTHW K@wP SXXHT$6r}ף= ޺T{ѩᄋy?('=KmvB^mφ/\WcC s8_O:]Rm0khl8[p[&Kԋl{ΨhR뒭۶gV7 ̥m/N2Z94oKnn-[֬YC-^x9I`]r퍁;\ ="v{uZ^xe/kn4qUM 5_RORoj1 vi)))wqGGw'Me|GC}wZZZ r:03UUM&R-^Ǵ5~t}A+Ovko鎉oڬjX(ן9 U+V())i{XaJǻ3o"goU_Or.)J O])/z fKW{Rk*r7mDo>V5' f0)o`2j>Oi|{6nj޸^>?8y|>(ߵz oF\DZZڿ>G{@ؙy4z10ogkV󥧞]7>sh9߭QWT6p}+n[^V+pVww)&ڐt,SyFɄ |>VWW|\駑3+ᶏg?oS+ CR1b;̳]mn]x)y֥ZrTi$e;:uڶoУjC,1wv?k)y~zʿPyoRGGu}1I5vٲeW_Cv ~1|;`ö<=/hv1πXVV*yY`~q`kk9<}'Mg p9rBM~~~mX*++ Ʒ+ s ѩz2&~]V%WNW+ ba=Y_僋k|x]]U5>|'`jsb-==۶nޜ|%[[[樉/M7_aæMUo͞3w,Z%KޙW_v,H_pK.40ϟϓ>YnM^oЄO>zy jw'Z_S $B_hqQeEE`qIୂ{9cpcYfcױP58,V{F"!6c=p+V|ߧ?٪Rx8'oq7z|"+_zW_}U]]ͫ1b~(bj6N[k븰r5ݛSy5zvGR;VY_1KG_vE.|q7N)S^v]"vWՁxphh%4_~yYYj Owo#}?>tkN4en)iHn2T s- tt_ß a\lُc~<-?%6GplJ]]MM',=Cرc跿-?\x1pd[9o+CZ^kSC .~ֺ.[J“Y&G'WzϸhE?ƍ7&S驭kQ~uk*95-}-V("/?-ZOԐ"]TT/~]G?g}6E{e˖?#{֭.^pu+r^%}ݑ#GN8K^y .୷޺+,Y…>A֭I-*jާu{H_NǷrKwj+h`?nKsWh9>̦l[]֔EcʳTL6m…>W3r"YWkoWu1Wm^ÑǴ=5}[Imk׶dl #Lyp=ܻsflvc_u5W\>vc.G^0?#~%__3f̚rה& ֔O1n~ cϞ7r}Ǜ1}% ySv?Uߵ o]OSZѓ">t){7{QG6Q+eݟ7or!lJ{=*Ο3=\ЇS15i*'۝]tj+3g>K/zxWٟg gvv~af!*Z413scᬍ/xьog̞5\~{Gc=V &Qlnݯo2wvnݙ5+V7446ZJ1F߃J_y=18~U_}UqqqS$~1#MTŋ!CȫJ!¤cE<ܤճÇdee ^Dy?Uy~ee%/ Gn޼3Ϥjm„ 0c Ié4w)ZAz%S׾ȫZG}xUx҉.SmB}`6n?1sߎhΡNRBc-ZW3f[/裏SO=EFFƞ{wG/=">t|ݟzM[u9%zzit V̠:y C}Ou~U\}?;:njP^dnmOݸqw dUݏw^~5}˖斖?+vx_A\w#/t;no5njjȑ\O%5=.B}B=SN9E Z줅믿ϟ?hРJ =$TLpovȥ7]=ڵ/r|[?zL Arָaس3_5k:;;WWW/g}t?N:i /yR󧟩Cd_wj"B7㖰KI{o2|\XPP@\Or' ̖Zq[oQdUQ<}^Pj~ӟyرTgvaPVV6eZx&bEʽ^kaL·uEW#wÛ\ fFLd۵bqct e իWtwwݧG~ݺK.ix>ߘSкg\J*"[k2{37~˿+~)DTo{_*=vLj(bK*OƟ74@v_M{УWλGs3/9?y';sFBēxCeN/_Dy+ԊpGlOȂkY,/ݟ7oŋ>lZo \_L%'N@c}#Ώ?p>]t.gEjlmhl՚_5f =4hС&Lhhhp?)ck>>zѻ_8g5/+kk^y^ /ѿyWhGI=-2/Ϛ?k3f7vfy}m_t}\+/>ԍ)|#'y'-H\T}z,oUQtfקպD{Pӄ ,+PE!p.e{ժU{Taݺuhu=_z%ޑЇS1v? &ZWhXW_n{.]i;%K۞xcop;>%uYY /I:ߧ_`!>X!/ /4 ,>EU+ytӼw UW]EKUS1uMio.W>pWSO^_^ڣ(~l⫶/4?Cm۶Pv'/M{B> 5r^3ެ6;i 4nbOڸ9U/3;,>m!,/5Ly>s#TC }aCf=p~#oPeȋKN;C)k5mM{=ܧp2Y2gDqo^D;/67S-fJ$&M4}?/0p*q2u+Ǟ`aeÆ [#FkiyӦMGyW^Iv[WWw_?|vk[m7u}:޿7?\mV^R4/CS7ݿ馛L{gv;g̚Az|$&UC }vM-Z M-T~6Ώy}o_r9ɋx_Sۜxz׼vժ4:xc?TU(cyYWAʑ_L |Cmn q^_x1|r<{9sTDNԠOI3PXnjFpG7Zx-//_'Gώks{ۓG~Z|G߯V[mO|ͮ.Zϛ7/խz_#}uuu{K9nVV-g=9ؕ|2a6z+/ˏ~#}љ1C'_ZZx||w}>ZI~GGgcS|l{i߽ݧ[{whk;QŞ%KUia qFuY_ZFGǿM~5S.,ď +~Jm{9cCK.0e; W aijj"OV TLt޵ʹ".sWj=FB3P=AyۂKZ> ԖF4:;o&@oa6\߷Ey8VI^3#̯w\>|GMJd ACG:NJ,˒dy}"Žml>dmɘva~[7x'LбO!O|JU;grADéz~_*->(eHO(Z]^XVVVTTC&rڵwq… ݏ&;}cwoxU?n~LèYYY#Fi7R`e]4tza < 5kzD5#}̖e{5 RR ;'PpE{~|(."*yﲟ>үSbEGOԴywWԊłf~V ÅݏwN/M#yoO?}_|E@n-`$Vwԑ?޸7fCcΑhkk̤W(oJc'ֶv]R]#|e;ҳ M5ݏSݤ%"5fdz\Ds WE~M*}8ӝP z;"*ꪪ⒒z.ld}5gZOG[P{}r x}"Cm}cFNNe[m+פ\mGv_~ 了Rw0!ÝֿV@Nt'%d0҈jh) H0$~? 4DLvf-ߐ)v՛V.]ZVVKѱrjJjɪ&>NJ`&]$Dr?vnbU5+פVU"%K|6l෪}DQQɓX;TLwRDO>˶7Z ֎kEx×>ڧ ۹A0>=}wT]?@m~T } z[VKǟ\O7x  QK2Je}D> vKv_vKR>b@lO~ >>;-}`0 W֐׮m`o?cXz}.}eag'=U'ɵ[x3 v%>%fڗ~5>x,}a]v՚-$v%&_Zk` j{}vbd-?m</tv2/}>;oݷ?>~7I쾵An ->FLvW o}6-$}Xw3].av$fvomRu[H/q/޷z}!}l7dwv пfkWoNv~'f1S;~Pv@ݯ[1z~;>XM i_@?? e`_kWvK쾟~`kaGbk7ge/?q}ad}X_w}z`jץ欳6>~ۅ߉ԯ'Jv_wmȒn}&>Kv?-O]+s*@o >U:Tm_p bmds>驄_o7al/+}u k׮-)))H r+](b'&_]ӰqKvd[:XKvp&4&S 3@i_g}Zˎ_~kBO<,S9@kDrg؉ ~ޕ_j]4,_/O/_}y$r v"qcs`wM0,,+'v_<vv"q{}vbƌ ӟa 8}ςE@+$Fh}]v_yNaw]`Nm ߔ^~<%@R~~fk7OZ N>g֭g>O|(T ǿvWvOK9W$H}!]}$΄{ONٖ+$&v'ݯi@?"A тoH7ko _8/ O m%RR-Hxta>cC cZH8ev_y [`wM0,~ؕh"qbJwv Zvv&IAw߷V+'OjR*+VZH `X >.{ߔm)k:|E2Iq?rԊ"q`A@;S0.H}d0,--u |E$a X4U)[{T"q`A@Z-+v$ KMٖ2j"q`A@}oؕX_-+v$ K 5LW_8 `X &jU2vAj"q`A@L<:Ҕm)ﭼOW$>H2 )]j"qka%b ' %'?'뗵)W{Zw_8 `X zz抔m)Vx|OW$N> vs~Ҟլ֝W$NRm5@ e𥉉 +'vp&_ԧ +eawZ[[{'`X Jxʶg_փH[g';9r$>eI{$G_8"Sm흰;9#Fx`\]߄pH>[`"+V>|{9 ,P3g?O:ꨯZnvYg =S.Z"qi7x.]z]w͟?eΝ_̼馛~P… oVZ@r)RgZ"qlY6lص^Vm;Zk}׿nvs0`X .|KԺb|ǏV$wtt4YdffbX "zn=Svwu/`vŴ7*CxjE{Ԃ %{ؗ;Q!O>a24r\voUbʔ)tZ@LddgOKoC8ɴR_ v ch> KD䙹wlKcaHufdv6lu]Vm4hn`X "W@eZ|EZly'i&!W^y%33s„ ?ϊyX@DNnZ |EZ|4fLƌÛfΜ>?>ꨣVXqa 쟞2rj%4ݯ o Lj̘1cРAӟ0,j=4*2`X <.1e[ʗ=C_8 `X  )-Mj=4 %s?=𥉉W$>H2CqIS}cāIaxm)R,R"q`A@nxdsQaH}48{lUaO}d0,CE?S+H}d0,֟Aj= %B;lKSz$+v$ K׆+"Z|E$a P]V"q`A'f?j= +v$ Kx&e[C֣"q`A'=$[>xXG|Ep{.UG~$a `n:dIʉHG|E$a `223~YrŬztW$>H2R8 %{ҍj=:+v$ K3]mVݿvD\H}d0,ࢧS|5 %\|S)Ryr5oj%X; l^<~UmZāI.{䦨XH> 0ٺuߦ ?$a Ҝu\>`  %LfϿ9e[ʼeXH~M$_h v&7vZRj=+'v_l v)?ZIߔ^h v_S?%+'VUl vwKٖrKH}d0,_ޏ*"(+vņ+*`T^{%ə\nk|?6of߼`~SI3ĤQ-+ -~, `HJT 1ݟ1.,&U~wcϞ=666&Mb͒`0 ;%0j0o8~|Cng0P5K`0O 2|tapg, `p,_ h8Zp~j}apg, H6I8E8E|002Y2 ͉Zb].+ }a͒`0n;`GKT>hٳfҤIY2 ѝJc6f }a͒`0Lav0R)]dW #Ú%`0m[a;@a0_a8F5u3Xd0 {'@1TcD_>5K`0/ yyk.¸K 1OSvwOXd0 ˖b 1o av{š%`")1Uʨf0n^y@IIT ct?, o2j&)2rhIWN[}f`0DFF&P[UE27#mU O0_a8meÙﮰf`0[^ފ^ݾ.e0n>? ^.1WN}gv{š%`({K.e0n:6lX&pQ0_a8k:~O+`v[š%`(szbKyRsss 'N"QkA]]]h 04e~5KPy!C5+R[`<\&55c@.$g%ӅF i[j-fo2Xd0 eb--}f'Ds`YϞGàхƃ 1WrwOXd0U=| -5{HOo41'r0_a8Ƶʎ k Bat w|/<Ύ{44.,w@*0Τd<0}ưf`0-D9?$*Bs';>rߜO+ ǘv?~5KhK/ůJJMVGGztʘtapS_XT~bϞ=666&Mb͒`08{o#D8H\y{ڼtР>xP>IqYT\>"t|໙f`0-ΛknNLcn~fT*KNozȂ~m#Gg(?W}\f`0-Oӻ72YҀÇS`t]Z>V,.o0c}|(?, !C|B& 3ƫo_*.JclȐC} Ƈ+ >>gv{š%`߻ӄ Td>3gF[YQ`tQekC>Rm`p k BTd.wޙkjJ&%//ۛ+6 r'%.l30qvDO~75KJ%kP-9YS /P͸5k^ק&F֫ ɇ/.m#+[-v?n k #}-e2W_%T3n:"x3_/^cx2~aPՠFY#]f0_a8miKf`0ah~j,pI?Ռ| -]tqc~ɁDta[|G~5K=rDnZ&K:~D=J1HNN>y@ =қ y_2En]+ }a͒`08}+x %_M1X~=uft1@EE}!, 2tXW.lc0fF5Kp#FTdҢ"\b+TnbmۨftAAA)s-_:wwB7Twheti|s5f'Y2 ϣVVR455ح3ڰ_/ܔ#]3v/^wo]MWn a.5̨A=WN}3=a͒`08.]Z/JYjbbt)3čCbAbuii 7 h?dgޘ0fF5K8acSlaA s0Ζ^-Ką Ϛ>naff0k4+Ѕm>Ȱf`0Fѻ7 b{v8 9 vm @ߞ=RFջwر7oܼ9/`tQ|ᴕ, vР!CPpC՛I1|".i/0fF5K@***bbWZřFݸ ,? |q@n9C AfRMntxF" avadXd0 $))) VzuVQ$6H7 &@=TWT?xTvqrǎ]|S|002Y2 Zy3 ~ ns$[Zr}.B8߫2s66Tti˫zH+v avadXd0 IT+{\^M߿?gXWIFc׿T:̱>N/+ }a͒`0G>L[q@ O{EO?DFr[[MF!b$ϛLW #Ú%P'lhhQ|D.|j(073jBo.~ALٽaT;W1>jfۍHEK֮]駟sK:,.T*KKK6 \v Pb۰Lmd:3{.҄+<'$9GNT{zRMܵ &) ouQ;.}3x!xA*&&wE\Y%):thĠAT0ڗˋPтTZkbrD=+`aZͭC`pl[5˖-{9bnnKv3,.ͱcǰ #R%7O?p [s>}|5mo`k F_] `pizk@IqqUZchkkөiӢUx/_ip3&ZS.i`.{˥ꭝ3]:+ F*:,./ (2ɐgȋ/)O wo P%wЗQ| ݯYg p@#P"jD.[XA_ ,,.0f*Ǐ/RM\ZZ 8Xd0ڙ&cD*q`};]d K\gvH;miyul*T0 L5E܀+ |=ɅT3ڑ=ܦMB[o 13K}s}=]A0_a8me~"H dhOXd0ڙkfxL]]D2uj5KR15;/:єS݁  QСqxyu$*۶NC553הj6x4#̈́ig,=A*gpz\&?rp[o5e5K8q"6:Ύ.җА_g b>qwG'[򛟆g￟JUlGNۗ })03zmTIaRѮHkPD3TTVVREhnn^ W颎 avF111pXXX׿z#'pf`3'L tϞEXg1O.4?>OOKx{槠i &M)TgՌ67ۛoRDRaMihhxG_}Vɓ.0+ G~'bܸqTt&Xd0ڙ5Æޏ?p=NN9bX}yZyII v_GFL^hiX"j\SIH /fs'HuW?Xc:Eepg,vf 8:֫oi۱x:9"x o\L g'6mTr[+ BPw"]ndf6 Ռ"a9NZrLgux'W I3 ch!onjz駟/*A_8Xd0ړ |Vap}K~1lذ#GPљ`͒hOCB?0G z2y?) T\׸srS1wnnZ{?=SLxSn"/^ZAD^ޓ'Sh/Bx{T+!J+|֭+ݻ ., av2`d.mk @[Uӧط/8Ȃ^ 僗J+< aCJ+WH$~{>q_~+рa$X(F֩GSh/VHS:[jb{TtG"tЈ0_a8Ƴuщf۔-[|7Tt&Xd0ccٽ{7zOh ]]~d"gKqϓLMyf ɒd*d7hʢ&ښ 5R+Ā;n=1*p6,r`*EmB--f͢wߌ̄5FP `pD}UK&aӦM~/wY2۷/6j `32C zQ(sm(~ΝT;op q=:*Ⱥv wE==%KR-؍dp/X§L/ѧOĘ1TtnBBB\$GtQ' avT˖-/wY2>tvG OS Fb! ۶I\~Kx΍4ԩYwmD̈NPa\\g„ KQHt0fF5KC +ti& +ח*R8y"02|%˗qAEMMdޞ'RFeR Ϗ@ <9LnŅ Ѓ~lo]2%f͘ا s bpg,݁j9wh(!k 5+tGfAwsQT M"J=y Ir.\'5wܩ^N'~f;_}ՇxNhXd\jPyQ=f z.O9EATVVrR,PkUw{!OF5;!  ((.%:'VV*01q ++[MBaz:Ռ'7* yG\gg;+w<(?Ó.Si`pbj[D$%%nfɸB?zQУ1c>1}ӊܗzPcbrf"yOqR,~۵j57D;Fu[qQɔx#3Y9rpM k35 ͍ɡ @wb??f "z [jnniogg_~`io Ls <:\1ߚ$='#ezX'9kVHq1WI3Qa}h845lh'~{*R_뿬)X(?1_ ڲjFu+dww(HH(Lu矿ܢ:r;3|ሲeq;~f;x饗>cZš%SO;Ӑ|Ħx㍂3f"9O|Ōψ~CboIڧYkcT$n^tj&h$6n\Dޥ~J^yE*lemǟC?gQ:Wۯ+ G/*K? ͰfɸdbZ4^zWo9z=[,q=ٮ!qrR,!Æ LR"q>*D1 Tnj׏Oɶ߷_7`#tO?]IUyf| : 4װST*-:Ka\w_vRvG|̘*ڿ} #Ǧ?G;v,Ӥ]c͒qss, oYh۶&}l¨Qוy3nFb3R}}QFnID15uRKԖ-1TOOу nn/2IR${R%G7B~w.$Ma6E*'K$KRxw #;.d0_a8~~Qixl:F~~e$IO瞂r%*&:@ŋtH.ϙ{ȹsty>|_~7YY(CybI~T*VV=t@mm- r:cp7/N s]SF8O߫">u ?ˍtI43Ralo%‚ BCͣ3-tP_Y _V#Ǥ*;~f;{[oU̟? Ō5KMDdIIOtHBn- $$GXR>ZuuuAO>I䙛_Uu$_|yDB[>yֿk? &JxYr93Uyb<>pUӔs u,nSI=zDNIoV|tQ kbRv_~ѧO@*};,B< ?P p "1ݜV{b}kcZF扶pC"7Dri*#Fx HH\OS|6l@*kj7o^[4j|?^g}~,z<:ъi\25(':N(bNuVÇ Dq3nv 䯖bSrC4ydyT'=U[p&z5}wnɓμ@ T7e~R66Tp;k:٬%7?; ]YapĐ(Mevqtt7'''(..3fLaa!rͯʺs疩&XzP\CuV0Qv?8(":~_S[~{bccnll鞪m4#F?7nyWUZZ:{lkk=V@#Y2:-{ ~}@Ygg܌8z؏e$*^se2;|+)ssƾ={Ƞ-ZRkN%'ϯHfVb]-Bn?|aN'Enee7kK qGG nF>$[X yf Low)ʢ:r$.t5D33Y&~x_F\ {D[Tco|_Pi~O<"E+ G/ CWh3F3%ݾ2qqqU+bj_`믿NL6mڴO> 3gPD]]]6,\<]Kpo4EzoqR8pQlllAv-'EQ`fve*>X*k׸UAATъas,SSŋPP+ߴGؠ:k%$~j+bΟZ ^={'qw|Q\#J&)..Z+ڈ]˗y5eg;J35r 4هz  Glg7qv?( 4.0,>(ǿibLJJB \h%&6___ojjzN"6mғ塉'#4zꫯI?XdtB 1_d>y/2nbH.:$kh?eksስ?~0ae_ǫM6v ۶m2e > ʜٳgϚ5?^mgMMMGջ{MxW"s8E\\KQc]N5ɞ"d?T|U#qc5@h=xkUSxa7?iAh鲉15 nAV&&Rݎ{Hyb.]b/xt)2Յ?@Ҍm8_o+g;A*|.0o8~HLqDf;~{̙kjjpIDrNJXdGҥKT vTZoj^uML"6&+ [_? #x}gz<8q //OPkߥp{YW7ݿ}-H> _U|*4${P×TTJ$ZAVEF- 5ʮ !7UyOGQݡc `/P__Oun0Qv?;/$?$?~7bĈѣG{._ߣą:*l5KFq/+oǃs>}C$Jʦ&p}m\aIHƍTbHM5k"3qmJRWTT+٣.RJ;a&& R! ^7S-<3YiQ^6~<~dsO%\NvH,]e򢣣Ҙ׌|->ٴ.ӹbpDG(:~yuM-@zzobb"!iiiea(}do(]mllԧ 5KFA.R. U&sĈS={r˅S[[[4^vmj*qES߲jB . 3~=1jc9YYO=E`Jp3|4e:bst4.rWJ <? j\kۻ32w YW6VčQ{Z(2v AxcEWhjG73r' hN#vt_ncbv))) 't*++xv܉O\"766ٳ'?k6b"tݿO(^YZxuWjL׻51B0e$A5<91f|W@5_XXXrflN)c\l456aF|G?qv>Jɝ ~B*v~r F)S ^=cFDRWQALܥg@^He?G vUXp/ștΎtiW gs }H,:jfnnnlyÖ́?cر gϞ=666&Muf0:pN@֛'{ ONk3Joi^~Ev6\֮oc_5%QS 3߶tR7 S:} (Z#P!$`ջ:0`OCN $? (8}SCuzy_mFu!+Qhk-,xu777+c[?ְfh# 4Е(y' y6,`*\\8i$JREX^'LB0ӦZs}\Td};Wjc5C.zT(@ KJ8z-q;ף+|N~Z/J$g]$s|þj5*+Tw^шgQG2|ΌE9&&Re\Ǝ`y@/ ;;. 0_a8bw`O`ffh#NR@g+S|I$6R)s~U"ƍsWᇸ*՜:߰]z5SSEEZeFݻ%\NыwPW#v ~d*cjꌽP$ˏZ >6P.4$>755I21WSE>mZ݌bj_u2_Y5;Jv0v? R3h k6"OlDG vLUwКTߊ۵ *ёjcƌ(q)qÆHpDbp*M9[YܹT(@fpV#x5Z*!]R$5W|Se,,\ėW?u ?Z[YRI:WyG1閭:oI8IIВ%TtƎ6fe⎻5t3V00L=+ G/ hqAhkgEg} oV_= G2VncD+|ܫpR Qnrh(hӗ,I?6jBR᫯%>=gOR#OIiǧoB0ASJOgTVVR5ݼ`"g~$X[ΘA`Ȕ˗D`˖ w7@ZJ4ooffwH2p`!Th6bSct}ȑ#.c lcȃImHpp0ՌFssɻn@p/r ⧘J SR"Z!Dlڄtl{YS$ 'P+iv6ڛoR- oh*fԯ1TC*&k#/;t%T+ Jֻ(VZ]u5zջjɽ4|fϦ]Z6;!^{5c8&G Pฦ❙j{3¶e<]6园[}L`t WSN8S^_ dvFՌI>xrqƗ^y.Ll߾Ί˗q%I?|%r[khT-MíJV\Uٳ4{&2yQmm-MYb|-JujE8b}`:! uJU:`T&hɊZ!zHBi]]'SH3g8 'WK.&NR'a CrfFx ^0~6IN>ݬ6᧓G=8_Ub3gtfiffF>RR^ڼY#Gk`\IuZ 21G;^h5k"fԩњ;'aJ"}j%W?ᇋyZS< k|yU6e*ʢZHB\>JXu+ժ8}w84 ʻԼ@a|R4`0 vs*v?1#:1QTR~Kݷ\Fj4T*uuuo@oJFJ𔚘؊gon~eޛ㆓v=)r^rg#x*7ztPT&襗* T>dH^) /Z&knp)Cf?jTC4ظKu'111 MQF;~ ]tUmJҞ=~ CkUB0o8"~w`D'0R%ܣnIWli!R&ݻw~pNOr?J"z=2@3w:$F ^B cbOIBeҭϜI0GPqaΜB䙎b>j%Y|GBoQTNlgD{+Fr>ޡgEDb2j4#jS2FM:!vJ } ]$Q# d2~hZZNn*/D\TEGS{ƌHñir}=~D>dBI$P{?B\[oQ507? Y+b}O>.Y'LJ 9w +! Lc:|.IPSdjz۩x~BaACڱcɎ҅7cLA>Krc8uNᖻ4n@_cAǎ-8=}:]*G;\Y*26=O '3ΪK] 3\gGOE@*1xM$T]{ʮHss"ԉ{* =dH/ks{e`AћI:~j7K]o)O$++׮3m~R__u($͝KEzl$ 2s+-IDAT!`vpo[tf?<ȍ:gdh7=;-555>w2r$]*0kk_E'ǛՆ};IJ޿i%UP3鐏kO?-?تVjU>L%KP"G(Љ"yR#TI"-7)nU"8e睯'ߟi!UUU5j05urQ˦*T&ٙja[Yg9\x4(PSԼ{5_NdnSO5 :?uj ml _]<-Gݧ_~5>,BFf[s7>ڽMOv@[]}FTסUNgg vBU+΢"u/T+;\LEŚҪp)Jӣk_ۘ޽&NBO[WWtk,˖eɀt讻wWkKrrr o9,2c}j原Ik4yssM.!#Pg稿'd D Y12- sRzR-w$??uIRU_L#G&OMKT4 =@|d$H57w5ҥE%[Lɜ,ܶwޡZ}kb[OJŇQ/NNg鉡J"q>*x(#7gyRS$pɒdDy~Oq޲j5?PJuX1]a},]avpk0=r{x'Nue/9Il~b/k^HhE⋜yK4Ր80;FppSI={R!q4Tv ן{7պ=zߟrժDZYΜI.w-JL:&HBZ>%p!iYIW'Vn֬/:TK1/%S-`KHrfk 93F>~;Yb"m^d;A.0o8bO`ݏC/wwg\;2*0Ъϝf Gf""原0=r؄ EJF?(0Hi[9+kdZ2YD-ҾIjuLG,xoʅ;9p`dZj*Mօ/ېM*E+ }ʔ~b?ztZE-Ēqw*&L-@,:"f|j$;$uњBoKnnndh)E9Ijs;'#Gډi| ~;m 3Ҟ.0o8ƴir.ݏ(,fv;ARB>ܖM D*Λ7ڌU`'CR>𮻸B8Õ®yE@:i煆:j]8ps< _XRT&>>}5e/5jۂ <| tTk0~reҤ 1CQdj TSժ2u!.cnN!:T L[wPL[BcQіDDH^3fN~ISB!N B~;T~-ظn1v{hrOCznt2[^5kvϘ$Ⱥ~ 33 R|.97kk/EKǜ9s!{5R)YGQ˗SM(%FOSFlmPнa|!ցTVV&|ÃmˣZ#Fd7lX ܬYbmK/i{9Fȑ1F Fjhu{@/TӑWR+S1Fiss9"ȑvZm8gH*8`A_~m8ygv61TFƟ@Jlmqߺ;dK$^]6a<* pwoy= ܵnUqqq2k,&?mRA k|zӥ7~M]XL q򐞈8f)]YV= ՄoZ__JE.iފdnEΕK7\p|ZA9ڦիyJ5容F7 .#djǓtY"I\|GWᯩSk܁ǓvtR/.~W֭ ոj;v,QijzJLcpߺ HՏGO.~ynp\VSH}}}}1~Eyyy b_~%Z999eeeu o6Q`vқf ->ғV~k5KgT{}\(×j|L.yL"qQ$ 5Jߞj+JSէ\3낝i4qض F5ϔYu$_I W.B?nU3 ߣ+ݫ)µR@RI09j5._/_!ϭOLϞno.if9$׍KTen>s-b@g7.X ux`!n"<'";v&f^:x3f T}=5Kٙ.)`vp}ߠUv_ ˘tfy~R"ktx o jr߉=E˓'g x-ɭmGJ\܊V}RKzjmm7}:8aBj]^{qEqHbZ|[ץKsa.pE5kȠZo//*Z?/j:ib<r/LF w]pRx!puER~4yw8ujPWH2P3_ erLyPrOCztfxOJ .I- G8 ;ksR$fMjCJD~zgQ OMIr4rmԨ$Mw$|ϝÕg-(R_5x3߷}4XᖧuF#/,_R<\=@mm-j\!:ff Ra؇,)y?l[i|d#+?6o'TyZlX.\ TmG~kw x81{IOO;}D DM0o8ƵrCcS tfx^;%8h),,}s4 斦~U:@u&LWMn;~C=~zj>pab4݂'Rȓ4#Ѕ}[¨ED_`{&8`)`Æim?\aCx8]jeT!'I\x x*8ޜ53PMnLi}{IKLS=7_Oj9WP-;OL8{>?{[Giuavpʎ_GO!=wWV\Jӵ3|tﮐ( ]BuO>/r\EG8jV,-Za S8l ZXe%%r_7 '>ʓ4= R&EGP;fWWRTTT?cߗ_dׯS Ւړ Ja iԉBb;uWIcD!xqH?juH(ݿ?<|ΜI裍xeQ؁_-_p7cazu)++#^3*x)= ?~v<ݯV!QI!'wOV["S [<hޜ;w-[袶$%%&4Z+ᷢݴū#Q++!c@ Z3@nNZ#mB"C#xUJ$OVR}|pK"oZs fkP13wΝZ+I8MIbM٩STG<6}gXu6-W^0"Fp3x-j xΘ#86Lo篥t@ss㙪I9䶥JU;']1611uj^Yhy_ HEFU7IZ9`vpDfv?CztfparArC%׮+>/UɌ؋9`+3 $} !RE_BCV1yrٷ w*T73.,;$MCI4_+6gР`Mw896 w#@wQƷ[b* 8s?1o~>_Ma% ɉڀJh999I6P#LC7-w~=;+~oYT[ȷS.g:q4x̤гY}icv_ңit /*evҵe̙ޚr=c:7r袶ěDǧ_OBI$ H ΁] U?g!PX>7KSRV2sfX++YP%VXrGqKyJ{U|5Uا? .3TNN~n܆0+} [[|r /jԠqdHPHjk~3g q0 2A=V{bbL#5qv:ct꒓Z3#Zk_.Ut4;zzODk+p{\: f GORI\<ғ_~bϞ=666\j,3 91zd9Ν;_п}ʕdCY^mCod)O#l1 Dk/Pg7Ԫ~}wh\SS'!C@%3h VoE-Pc"@٫Rt`hIhs\z@U`R1x [sx>iZ ~EltT \f￧Z=n -ׅmbSp6 Y2Y_R[&8R499NVoV 'f G=8'W~f)]YuHPY}=^? m_}UB_uIG v-ǹ:PW NYY~VsQM oTk~:8DW AC acx EVyhA^;Qnn`jxyykn!ea@SK$Z-izz:vTӮj\cX;^1`a6gZ yBa&&O5hc#㯼֊jww:E@Z8]#< +̇ 0`+!111Lpӯ>M}ሶ!v6(scywKV233;x(.y&N P$O0V| !|7ЬGwQdW]ȇWi*ے{uySˬNbO5J~)噚:}7jdgg;c3N@9sp\5$B墢DN4{q=9b&ԆK$SPR KLЈ+Vr{Dϙ%ءmh<1 `+9y(d:a鼺.(}}ߴZ.,d+Ov=\׈ӧ66Gϯ.AHSp-ɶU9ZY&//78JjEe%.Tjeٲ|Mʖ U鄤Z *U ;7RW{GS ;l%SraJ*UTMgćOPkt}>qGS$tR*4 =6zublM>};i"‹%}}6QffAO/E¤IT/~J.V0ʆwiٟ[rsስ 9~5tfYM?>jU PR -.26#Ft E 2޽`\bynsw a]]%x#Tj;5 ْvYLҲ2|<&|/NVeCD% vZwSll+|~]W IVg{i!,'E1 (;K0^KѳQB' "٫]mp$OGķG0Jԑ#/Vm8gD*.-$t*7vM*vUյW~gݓ.,$3If%?+frC8+}p߯[G閖K' z*Y)kdyyy0a6yv)QJ"M:sfd\"_HЅ'U׊hキX;SjV a'фر7*SWWv_״ڬ])^/8N<^o!'' >ceHX Zd=KVE\M@D-, xV,'v{p}Fkf9FX%L˓?f:3O/?xπh-j$ wE_h3j֮`mPR#>&&1JW. ->?_3ŅjvR\4D2ҔdW&޹jUܞz _2ĉZk*9-$';?7h"E;T0}zpsq7x@26O؄ڴ8|sS4r2g}FܾHg[ZRaO|v2~ rg)R̎Idesስ"}оf)\6׸=l&|5oУRHPgg|ҧ6*=?C,?wQZ Аz5EU;G&l*e5..椟pr!F+7֦R͏Z'<\;6]y =x?1.r̡T]]/MpmWP͏'k+R 63 3^\UPD''os`l>d )B @asEՅTwBq <)))y\d55t& 8|0P*.-4Mi`vpD|v8~f'\<$EaKϗ ]xF^oSDS &l*(b_z πxQG ~]yyyz`?}NKARKcR'hK5G} xoق,)w+|2$j~b`ALZ+ ?uj~\&NǨpvynqo|g^Uė( J$!KPa0́N|ZIx{XMAK̙+ǽbNzx*OTIu'ο bXAv;?x@޶\d'd}g  }ƣx0]e9_ VVZZcX]h_;j۠MҊḫqr@޽F0QϯF9b9\{ ]z#+ƙi*8UXP T9] ͢="NPv>ZGv~:E~2|ѣ0]\"ܨsJWGԄ'5k6]6mR+GcNZ+ehyEG׏_kdEĉ;pHllX <-{V1;vG$*tV٢ۖ-q`|Y@Wuɒ\M=J!"2!juy[W @Lb73 IrsooϧZ#Ri=9?P>FQ^h ݸ)ΆV &3x$_ld!l0^yy³=GVbI;^ם%{B;6xI^BJuOq K 7:~0rҙ @]]ZYH'eOrv77}?wtnȞ={lll&M$7 ?$&gΝz={h ]p%<&'S- N:U Yԏft-pRZNFmo$2*)AW>ߙzNjkR58Ν! |SSS-SOQJ@Vx!Mbh(~/x ]2W\ @ex8}ܕiLL<Ԋ6Y]9|\IcF,~@|wA_T_-[|pz _r%/Z'̌ ӏ>ɝ2D^ #+;~e_'O vVkQ05KȁB\I:-@***Nd[X\z-,\ LWXF##b?d`$jHu+Z<H/hjO?WqLYJc#vG@sD!,{|;07?2_MҔ?3":/^#:Tkq|`I$P),Lf GݏH Ox^~w`RE`\III06 G$ rTV6nLZ N$aWWW6H_gx &E׵lݠu ʫLMϛG?A$իT2PK5?>&j|yYAG*ff*.\ߵ#}9#-;p$nm&?^Ϳ{jtu$cLQK$wB+?]n!9F TO5EE|@ӧmؐ"Su*BwwJA.2v+Vd8u'233---v }EOϛf GO?gU~$%JH=/^'+$Q5գR:ZEœs'tOM#W$6T= 4ػЄsQZksMuZpDkNd9kTk"ӕ'2G?ܓ(Aӈϐ!Ct%OZ%LBHbvdl=Ƣz͵&ĝ䃯0j^|SSeH⣏a9/j]xaPYo6ʔ>_!Ϗ{U =,'jB/[L#kS"2&O4$4W&0o8z}>>4᳆K*`69%ԡ.ɇ<',$۫5^#A?cbME/^@@p?.^/W g G7R"z@#+Y[\L5!dIP0(_?M F{v,4>ztHZ~D~;<ʷDnnn9@H,-sL߰i-̒NӦvhbos"A?ϳ!x4)Qi쩟wSIcDฐI |d;/\HVVZ3f -ȝkWIt Q])d½̘%_y-~qTTNpcn|ߎ{\&h&M #?(7K,es qq#8kO,(,BR˫s7iE)KF!S $ؖ3. B ]y=tڜhOO'R={:LBW{?B Ls}XGp: ,ZW_+N!_M&*++3t=ff%N75QLAa]\[\pQr(UbJLL܅ %!&;v_~enQ$ZZ ˟2o^:~;-i?Mv /2+2cjf̨3`[;eh w$}UK)Sv ‰lfO;/***ѓ#GQ8w^}ϑZ;@ɠAenz7}쾒V3ߍQȝ iO> JIB]vez{HJJJX-& e#ߧ4R]%٥(\llw/^D\Y&' U՛pE L ෳ[ WmH277 R@|%KP:)9T~<F;0\گe.왢k@"_O+>&&1]H0lK:U$,}Z $DE5ly_1O>)pe6uN=:D1ƙoQcb}m'E" ^*vrC>:5]WPYY/\bCCC֌2$J'!y%s+y_:._^*eyNS}f򸱸NQ@q؈tM@.= Ps'՚!g["]C߾:kB[zPo&y{cJ^xDرYzQa$| [pBq!٫MMw4)"rY47lWI(ZLTRRߢ;Itȱjj,,L`vp~O^fv{,D`n&6lڴigJpO#Ry/H5?uN8K153- /Ié-ٰjʕymyݹjQ+wQ" Taܸ!It%IKIuY$yEgQC;`0ʛڵ)(<ՁRt}l -@@&hOXj~lmm>՚#"RtuB ѣS^"k@`_+ Ff&zGD<oZW*'#\AJHH'pm[K~*TW=JsRml.^Ҩ(;iiie-Zcǎ1OPFn0T_нavpD$eǯS~D0W \r{"*?nN\}axZ$ᇃGJ5v!tTmf梈3ހeVr2~0U3 ms[\ST/_s}HMw$P]-f-(%sLt1y%0 t|i\V*̎ioĈ|\{MF]WCh]Ueee4@LiMk|;:ROnn.78TZ+C+FnzEn|)lj!\FI>A` ǍI(kG b4f̲e˂Hll/=$o sOQEٯj\BosƣG+.LڨD8:]{j±Dž:kCT *B0^T^4+fM"]#>$i+aSUZy^ynJA{..]w}w֞C>+fZjTkp*yZs:e fcff²7ɦ$݀{4lկ/$ቷ7}A<O= Tf!'b>݋Lg/tsZ~qPͲq4.\I}R-t_XX8Pw,v&*r}.y'3]۳%Kэdt\j!cPVVF5kd{y!O OOhjj:N("_:bB sO/X+?;T݂{[W=5;3v,mRljze7>E qssՀ5he$guU:rJ @~$XTk"7tćb7~N<ـ]6ع`pu.(j8|p8ɀVYmTLP-?jt8>0o8zPfZPoeIwʇ'ۏ#_館(^&EP̝B[eb^Wp"GI9ބ={v7Kp^VTǒ ϩ6*oW~X޹ )YX8iymР]l. ~t M9:?߻ Q×T̽vjM$agCWJ!7:LV! uҩ "Xb:ĉkpU/.OrJ;I =GTtTTBB,w+US-3d #Y>c͑2sⵂ/QQo*?Dlyj*TZ"؏*WJz?(t}]jč/DQy{ \nUN''ojjT(qi~"*KOZ03 =:yWs ooR-N_pJ@ Tq] WWޙ~Ҡi  ؉ž;~s8hJvvvvTqPE͌plGR+:puT{M f>v{>5:%9;/ʟs=]yta8d)Euc'/]Οǿ&$˜m%rŇIW XIT!aX;M~noB2?)&jB4ZR\Qf~J%̚UZ~G#dTֳgĉTARF2IWTk—w:-[3ǀiRS?.TIVϯ Wu2ηߞ)0d8.^Z,(mbccbV'6' #ff5ܾaUBznXѧǐa?tE&r"jfp?6iKrcܸb̪{/qG2WIE |F;س^>U}yh=t77fFFݗʤO< W_}f?oJo_)}<$[Z=lsS|7kj;*͏ /\OTp?X P'{R|RԩTc GTIHHH֞i=paq +W71lX;2<&!>r?G5ڠACP~2;Yvjws ZA:{vO!Mڻ+Vpc@FF< >Tffy^҃+>Od fw]s Laaa%@$r~CM={jʁql:T'\V*: ǎ3\,kgN-^ȥCSՆKzٓ|sbkcorKREk^,ssnB^Х՝<&v\ULJЁ[ԤD9eee-GX(4<˖ {")52O@iYL ^T,[;hT \oObj$,z}+WP-^&O J}Pr(:marv>yj%z`1 Zhn扫jjȓM'KMZW?{k4zҚ2o_'{L^4[D-x[[GhC̡=[:o޽4) rSM&Su]~jΏ=P VAh߇9joKWcUC\z?b >| }S6¦'O8 Q-<~.eh}~fѻY^]1<+ O`+,ROm:KnB3&&evvvAA>Ç*8GkeVXXتE\J `>|3aMA(ĩ{}\z7-444x$ˬǎ vc}t}Uܤƒ/R2=N'W5h,DB:&՚4Sf%KR-DYZGM wIV4Ki܊bsORbD̙Tk@baFHJJ)M$ MO5eJd)wȳ7qVOKí[k!rbʔ"C B Ꮘ#U9FQT+}vWmSF {1՝eTE~2Syg'3Z`vpD`vC2.w h>@6fJjoFPeuttmڴi}^#=bCz^:616=t@ *܆]>8$L& \)@쌫ZX#ᔕEݿ>89|x j5tT|8՚75G3א醮ZBZß,`zG %{B+g>{;*جw7m C O37wvϡ_Οv9[}e\XkXQ$?p=7T׊%(hؖuݫ*zˆv:93fL2mp5*—9,D*x^}w񜰗Q,.=/$cr;"VDpĚ:}d}d#G$XO`vpT~$0߽1YJeGd>:E^y9ydccT*۾}{K2I R S9hhٳqGݐ)ngԪ~P@Ȉ^,mS%OS aF"??Fxo-iXQ㮼\.?77/uK+7oF&ƌ ך&`P=z? MiMWOBsYD3$U 'uܷ TǪ tBI\v-Y}R~H¿og^ENFEnC% IUeB ;  #DUn6WÌe'&9U d7}1㣕O&f56rY4ٴ~P F sOZǏ~ wStt4>4r$~z %+KC2͟P|DEct~C91 /h$7?h 33RZ^yB}m 3C^,v/zI$/jVL1 TW][iQu.O%:U7ˡي2uj*PHSmޫWs}ZlHЕR;/P*vਾ[x2-Z46v埜aׯ_{-\>=ػwСT KR $VoJS444$!옅.] kZM >y0h2Ng]o<O=ԅ =E=zOL߮sHH>'VeO$D+R2~vf#Y@̓OR[ƎK5F/b7崩i'p`SWY1="ŏ_Z"*HSҀ<ﳲ>}zCS#Nt8&)?2/p {NVGze>0o8~!TC1ƯsONVt!aY3DOJJT)FY㋲q@O2ሳei:>5wO,/gK*y4D 8ft긹L PǟB#u'J@V֓  ̏?F *w&7[←V#O{ډ$5^ @,Ua!U2LL|4 pxzzV|wM~V#LZEZӭ ]5GH )NUY!CR!'ɑv TrOvrOSQ-Ϙ&2Ј^!; '\f=\<;SRk뽺Q?̦HWB%_X:1?> ]ׂhjYdfGen32002j5^0=ް_ľiȇd2jvq"Z$`YoA"o/!]T+($|4ݷBҥHZ<!\2$ɀquuujU }eSQQ68:(w4$H_xaT)^:}'n*7)%6c?|= SI.dEn)i'k;!71v8p3T1b0Y?T:O!9yR>p'ͭBY[R~(\-I={LѿDBERɛ!W2 ف;ﴷoYy3gV"d׉O𶴌> 5,-CϟǕ'D9mV#+ҨRWSS_PQU /<D*9BG^B;'L3 %xc~QK323L]Ű#oojj*y`rg4_:5wx.~̿%_-^c! 0@XpW=iidem~}s|f%ƴ&/O?*s_xS=VV|AjT0X¹sCZVdggcO{ t{훙q[XI\|}y^#,_\[2rHBujMqS%-!&&)G|{ }t :M OSFORchpjcD Hi#;}(l4411{) 5cm߃H-uٸj'OPMmiS-9Ҩɢ r1Rs֛u J>Rۇ[׮f>k4kM7YcB۷m38[):}++vrd_ d#d#gLolO,ql8ٸYkC,h&wCk˓`]> ylrȈ`ݺu}j\! OF*T+HϞ=_u/qQ )A?s|'*^_(/o!ct𹳳c?9$MX|)OV) ?8ص_HǕ^JG/?;n$8V{9KOZj8~֐=_G*>SYQ_)nQ! GB2)AԈJۙЧ(>|i,(O?ZjV6"l27D9uY~;n zgmRău-՚xO|OO<*[p_ocj$y?90%7zέ &%aLj"G2Ў%GN?A/?ʄ3mߣG ]RE T@* Z@F%󝘘FWWnJ0+1L<((Hg9%i}hLWڵk߷z =u}άX!ch*/'z* >/e?dk~3^m;p>si >)~C*ёj2KG(y{Swމʄ MMOLHfE۾|xH褒=nm}Mkia\"sE#>v_-AǯLn| ۬%}eZM^hCY?^x/V;_TkbI? ?={O# zoFׯg49 "jMD"ϒʓ铛#~bgƈr=qg%qˍ1GdG4O=<<27G[lE.?'a<.VVs$_Y uK /[ )oJUͩrYmnV HBwyM߿ei\~MMMسӂ} 4<\5*=䧮jp!pohwE*'WK''5E-4 kEiiuv<߫D"q\ xEqN\jjKZJeͯ ?+oZ$QH˗"~ݞZoCy}2|_:I">j%yTbm ∈gdke$r~a^Kv& ?~j5ed42}gKv{0Ќћ%NgnR/̕D̽^~h\$wŻcINKfff_R32`&q ''=܊֬Y qinnjMO MWLٲeI{n5?z%T_%)7C֒АM&^_7{hwA*BL^N?ʔ* W!Vs8kT0y]ïTde&&!?rW^-Gf`SO@O0 ,?<="ZONL|>`M~޲;~x nY`O>CEG̝KԖdgg3HNN7E'܏U~_Y߅2J1avpDt}m,> ?ƃ `%f1rS0fV͘-4‡g@k)Se^س ۧOPm7J*{I*Oz=Z5CBjU=XpsSSN )v?N`ꕦ6y 4RffvD1oO\2R+Wc/Wɜ H֭[=LME"#"r㩧x&~ {LZsLiSIrS辥Ez^x{ sC̸c{1ſ&"5QeBb1d+$fm,I?SQ9XEE >y9yߵD82oo?3 HKڒi LKKKL=Jd9Uf9HĄ* }`&N OlmhcC*\ͨZ +FiɈϑ4cuCU$6a1KlGЎIthР<%uN̘qϔؽjU{rIo$o+ܶ>.U/*zZ`vpjCB[wOڡYϚ!S@,  **PQ8@P\PDD(.RZ o$O'yyZ:}%.\;) n9tNwڽwG?2sWy;Sݛ˄, J333_%lۇ ^ V{ЌL B^9_ 2$I˕7R% M"\9-[fz{fnexl"/aգʠC>=W4Pᘓ* Zϣj7{73}׿ c'>74 &Χyg謞8/4hwTɄD 끭[ivWNz˖-2'//O`g /P3i']t [0r$lZL^F {5w!ӧO;( z2~g,c94>w3(ǩ܏I}[lٴi",ҳ+ʁt`-Z.6;ڬk/P/"T+EVBk+u^b,Ox%ħ?#6%88x!.Nx ߠ߇K$'By )t S_}be!{"`ʖ]ן:߄Ti"٬XVF

h2Ђ.Xs9ǿreXOjj$BKq{\ WmuO"^YpU[onOXqE1֯__8ŧYAW~jȤiz^5PS ,֪gOQ:EY^ 1βIJd@T1ؼq#$X2篺uckԐ Bx"zd\B6Y\ZA*?w%HRÆK~N\͎tj*_?m ۦM&1vxgN灞2 6,s)4>}Io@'"2… l&B&4/h=\uW.p9\!-@f2p-wi!!!;*]TI$ҥKEX '{ɠg*]_7Q^z1ⵢZAzv5:dHr8Orô~h6Kߟyff ҼH!5m JRg)]M >>ۄ5 VAh;W<-S裏d:J9@dP> ۄ=lݺ~2-ZvE0];ب'GYhM5ýs'Y99P1I VM vpǬ͚m#G`:ܥ `_d7+6͛'ö9po5@݀NȯN*;KYױ˾NI 55ӭwAšCq2C-4ِCw6Y|睐^B`q ]} ,\E| .IpW\蔮FUx`EJJ ٣GXvX%`ɑa%D^/e7Pv!~rt&E`^Зr)~Ik tB;~h޴r{>/Sӗ.MQW"2ief˅+NO7Od~V͛C.3 Ю݅ ws0%"zvVۛ7hyXKGBl|RڿZڶmEgƝ[nav Os\yFp|48n@OW8hР-xϱgN<K2l|پ=u =|22l̨޽e< hEo^XX.5xǫ>̙3C# i} n34 IUK2`1Cb߾}ayzp|d#>ӑQV6L~NY@= c(ǡdr+~! r=WE?6g-\īҪt%j|2/\96V}B2?ٳt]vAWyC'{챭lOO 2(!WhazZԌ!{wk d:Ac4Vvo/0㳍 Z ZjnV{{kז=7irx;v #豱$[)?NHۀ_-f'2 g`o=|a(؟=ae6/V(U`g.4@o<+s}_ cݐe o\r_Ο?/eURvhs }Q+\őy,h:z\Я׾AAwQƍ.淢s>*{З?z‡WK*1Bp{' ܶTժKʗm tnCfTx|UO) +y2lP-3B}H~%&33:t5Rgþi9)_zS@ TG(~,RFեu2߄6IGp8:@W`ӧíT_`Oy!Hob<"rD^TT,^lGԁ.vJ |qN~*S昷q@s̱G/zUB>~l^w [5; [Ht{esj=AAeƌk2pXᕭwޙy:!#l)hN T;`[xwǟ}f?dg,'7&{}vȎ;`5֭_`ʭ-c}o?lԈyC=kRR$+" <ҤI \<\ZC0/Llll>pqڵжXK;֨jժ?hHB+@?~<Þ>S2OR%zi4^ntlL]\2hػw| Tc\U999 `B8{Y 1{%B^50_;U۝7g.5kBEo-*ܼ Xa؟R{5?l իeXüa)V!$3n0::fڴ {ZKjjJ!V9~v[,Mm :f?Lҥ2]%!@7lY~5CsJ~O"9WV^ [π;С'DX+c ?ֳS{ y 3!6gJƍ#(C0_a? -}y:B#F}ݼ$syىvMk&@ ܏LLJpzHbWuԩ2FGpٻkAk'XY2hA,_dXUv}}lzb|n߳{GlYS9C;>2QEms>A1.jlt+( `Yc1ՂխZM_ti)3L> #{O=[F9.=wo/6ۜ) 6~8?8Բ\qE8r S!f;l7qyM `rr2X~իK2Gt5(Cl~Bϵ82OR%{vEZL=WqLHuvW׭[deeedd?n0l %O'$})={v .uEA1e\ŊKJ2p'dL/_S'ROA?Y֯z5$m6o9F>mjqX>lճ !)n_az&$Üc;>v̗;y5 ?,^`~OV#!]Ͼq7~*9߿˔ɱҸi[ϟ?ղe2I; +@|i6(ȳ,^,Ôٳg?!_mΔ뮃BΆd:%W\=E:ߒniXAmaaa~"rJLM⿒|E}+}G fA3>VJt1q㠜/]<^Ci0vʡ-9WH0,'m`l.g&uPՓt;Y| ??kyx@!ݶܟ;w.LmdT}dXb[?~\F9=/eI;f3A2''=/ JҲe˗{{puzCAztg޽"#:Ԑ=I놟 (G/?}č@kbr-|jr-u+=3{AAر ! _S FGGJ:rKamot;Nhݺ5+_AR}9gT85'±1e|h($kZV^}b'OBn0N~**f3g zᅦ\5Y&|A3kT(0`yĉ,X_Mٗqd7NifŃ !dScw̙#}'6?s1/W|@|?r(]ۆe\1L;!iξ}ɓEP8p ,GDD;0hTDC @?(|&К2eOK ?~i}!o#^q'H>\m\GHChʢED'g}nxU A-\#fpJ^FqN&vy}r.afl>a && kPNdZ2]sl/8ԯ/L?~PȐa{/^PMR_%ٳ34iRw^ߓ9.qM|'d>βJgC6S yg4 {d̙l tU . %83tS;MhAd-{dGBBBF?'fS+? Znߛn<>o;wY+>P66r,S8>W9(,a i,:Yͳ}l&yȃL+cݺuUٷ4mn4q߾}aW]"A=|m޽&@i\Kwngj:RȺu(?S*~A9{SOȈ\A8MGYpD{ /^{eMćl [Bx)]vK  Q!,*̞1dKnZ>oaL6ߠ/˨`A2bK;#GܳgL#$$&&E*Iѣ({TPA,/^|o_s/m61 11 Y뷴Qt,!XOHArSGTŏr1hcǎuH(%3\юD'%QOO|ի?poܴؕw/8rw_aN׺uAl bP8Dǎ' 뜷iiiVSF+M6x1;Wr_-Üs6셜o,B9{AW_߇2BL?\ : dR>q"!b0TXOǀmOԮ-&Ȉ1,y?{aJEO6.;Sɏ=JV'|A ƍ!XsHKAͩ<ő%"WX@xWNS޴wZiit jNːz 0@FE1}q~_v˧~O?RJڵecHV1Z^jgS9}&B~ѧ ֭tTSv퇈3a\)ŀ2!*/N\I tb~'>zx8-<^(f@-ac(œW^/񳍲ܓS?֟6d κ<Ā?[H.1+foҮ];|\#w*Η_~  3U VHEsagBB\ rgY'f- eҲOӧ_ ̡C&-X ҥKKF\uv hV|ZgϞ]vא~HcEԬY%!=lBRW.K 2aÇݿPGDfS?hu2ҥd't]ZV\)[nLQu~l%߱ _/Ei`Μ9pȤ yv}!Ik-ⵐ͛7 XNt O> A%y9!?,h>zؙ*UG9ّ?K{Q_|?<+ѻnƒ(JkZD<+7 >b6KHiSִ5x:^}gp1s=2!Kr|1Hւ/BGL"X z rـK2G]s>]arld呰0)ւSNnLrW[we;kX DnLZI]Jzj1x) == c&I hپ};ph-C{q/(!8QbFnʷڥNya>axmb#6S{_ENe9ZG@ު:q#ňf8w\$ cƌo*ܹ4ïI s5[a䊃|3~l>Gv]ʴr JJ&~ߴi\Iiׯ_/Whn/6o+,h=ij@goCU0 3NBHd _W|s!#Gab"tt<9СCowAd(o|g @zO꒯Cg#҈WAWҪ^N"Db.nYd5kʰPa7}2Ti1O4Qoܹsp"lm*9оX!gΈ:MB mGv*222KCkћ}#VRѣG{]{aO~kfPر#D0rA]?}sr/Gt`,5H;װ.ڀSfsҥ'SCZSJ O򟍼'RSsy?grw,Od2͋Sm0'""PQ^%lZ3 LydMx% 3f_Mu!pWž!CYF  aC/^ ZCvmx} EAWa,F6la8?-I֭x .2O# /kS/_^Jろ"gϞbA;SqG|p!7w[0z,<![N+ K@2J()%q42͇1/_,fiJ:eb|Bk'}%5ާ xOoS$ArO"(/=*"=sDXd7̙#P3Gw2e J@C9CXH!Pr]£Bqw _|]eAٲeŧ pg|2Js}L5{ $85 ' lݿQϯ^uVh|7Y_8A:p_.nBBnV9lWGɫ'_}>RcjJ*Jiǡt ='k5kq{w %0\ﻀR <M7> q3Bۨ[.D-$;<ШI"Fd/(r.ӬYOEOZ,,[T#,!eȄ 䒞ן[Cޞ|',CpA]?(`w222OjT~,}mƕntj qNp&Jz@@ꌅ eRkx:q-IjyUWe Gby)!1N͌B*A*X(dN>%%E&Աc6*B~, >35jU΁B^=^999rx8yսxN<)9t `75à W5k#e dߧi… q 7뀋T&2 ByBRO2J}siJ+ A3,0'tp:#x IuZ)wN'jBN׸ _>}Z&xø*G<:g\e|~<{ZԷg]d-K?Up |D6/ ٴ+[;W4hu*ڵ ¾p%TC}1$M9]tYfu25eZK,幐3[DG6Уfh e˖Jf^r>U2e?K?Do2 ~MQ-+ռTjw]pA]?(|e!Cs6cػeh)h~ߏd,7A>p@g^=#enҍ+c۷yY3H\[feL*%㩧l:M as2go>(TP a+/ LȬY!#wE+ۇc jr؃me˖AMoPu8RAVV|]^Uc-)2}tEiya:_]uoۢ[6%ڀy+k׮sS\W5j?ɺuQEPOW9+҃DȃO䆠GYh_tx{>z :h1]J]S k jO``(s^ZYk Y[GϞ=aYg&N)loEB7h#|7T_>0B Axi!p wZdT1D% TV :ib0c6JBN*(Q/LsT8$Tؗ+6Wv0LzO$ W˗\BYDy`,'eCЖ%S҆F/%2 l2 tGQ7L[n{.)BFO> Zn*-76凬"~=|W3 f! W Kc9m ځ{~*' a_$pOOedD|1iRQB ,߱LQKMNNڵ+lwΝٽz|\ 'p?|)ز` N !K練pHuGlE|:А6_ҭ2[^њGcJ1?Q- xaN- ڨ1mgoӦo|V|x jo|wp<G'%%qxTu%g瞃0I 8*UXzf(^M)K2x"^}?C{fڴip4iS;ZA7N)XχC33g΄G΀"]''CM&*$ϟ?_0UZ7)j|Q Uяr?0fY\ȣy4{}oڻڅjL#eדV#M 1 嗠#/p֥C[oUHp>`xX\퍼#\'bk>ǎѤ2O%WۦGwc%ܮ\!ݻCiO(- U%]G.'/_^x-@͙k͞={e`„ NZ"PñW)hLs' 1Jv6tm* {;Eo>&[J|Z5IU˞/J)0PWODP4,#.]xW؆%.TG뵠-:]h7c/3̅tjz+BChBM˹s/FBZLc@nZ@stW߾HOOo&/KH\Nrmq賲}$Hv_IMMM-G}WneUlYfM]mYyvM?W2~2eLUd$~PG2֭Kc2 C(C\ǫ(&XR9nhcPW#fՍ?Isŏr?fY|:t({E~=2}7}#ؚnHVJQ6ׯ:_O*TD;=F{>*}u1N??џe`?JfѬQ#GvoW$dѢErq|(!:{dff^Ǐ)5\1dM,Wȑ#}?!3x9b.W|> nݺX_ѣعsd8r%NQ^|] ŋ_DU5Β+Vz&`iӆ2[8}VJ\<Ŗ9ސ*ppѻr2}RE}^wݴirO7X_xvbMzzAfVk1]C k2; 0iP!_z /FƌѣGe\3\+s40=GBiMttt:S:]:Ebڧ;ޕvִ ~uZ F`AyAlQ%"}x Fs~@ͲO?;p,}H67#d<i"-]=KX:o }A􎖴%*Vww_Kmz)MHZ.'uj|gt:thtoMM-` +=HJ>\(qwP?G Y߫ AttNMIE ٌ L[c,^ϨNZl>}G Z4S<׉AМ4v; tJoZ?#ߢo C}>rm[Fz*ES`к+J5i͆aszKG~z^>z9OOҩpŘG-KVUt;i>ˠ%y}-y`Hu8g@KEܗ~`Ͳ¾y=rD%c@aɀr&'A+CȜH}%ѤSl] !!_:`g}V=W s9CȇpzW4M D~5ͷsytB62k]o=ltw ~)4%A$`.ͽD/˃1a=Ë́OzlţoV Y jJg0Y)Tt(:%qP*ҊDjҚ7ћ:qHM~.8RdǮ%+mw){ RLA]?N~Dl2S+=Rj\NnhTP :Թs-[ifɒ%2lHN:P"AvpV 'N&cA YGn"E+ڪmv=!mX֫MkWի*ޮWyБeijZ-Z.{Ɩe:*wuw]tA/?3AG|L?B@Wg]L7C:8C8z@O+l{nҎ^ߍЁKYhM[28h#8Y@Cwq2 e=]Fà֙~b8"(`K!+Ǚ?y&"&)269*0}(K2ǎ gggx+Y"E.]eeeɰC|Ο?%kJRbgPm8Kς>IOԣh2M>@4|!=tNs;ݾn@7E._J"OϥsADΠ3i _|J?>EG5 :h<}'铏w]BoiJ֡uϠUuiN} CБt$lw:>΃H7#]n:oo7>̢V;8+8_J"e˖cNtt d)Πrt&=r?hӦ H"%RX 8t֭EF]:_3gϞ+C@wДxBCmk_Я(ZB@#*Loi[(Kjխj s* hu7лItwtJr3 =8[{se-Z\K7ς!۷秋ـGNEAk!]9NiNS3ZW)Z.ێ{>G>} "̇Bvv-< tY~u8'N?~1d֭=Xݺu,_\rƍ+Wn{Uؽ{wVdlH1E^zɰFAT\9`ͥi4-&@?A;Wqt0:%iuF5aa ֐6lE[EFҁoѷұ7̼ϫ3=45X.]ZNZ|<ݼut&+-d6K^G.&zg~3y]F`/#S!>-Hu8£7:"ǚ5kFŋ˖-;{lb[*UJNNt6-[elH1%33O?$H!=9{-_/3c7耧S]i;靠A,-[VoLmw?LM{COu:'eGG@#guyK}>?Igk"izF.  q*â~E/~^}U?s=77?,@3 [fS|+)"@?!f1&i]1~l?$} "fjJȭA2Hn?ӼsD{;}oz#גE2,(ǑOM? ?''G#aEPqrK^lofN`!//o߾g%Pl mwyG222aA|8i!QB@M:}rxGG]'6k ^tBxxH#RLٲe \F!1P#<-c_d<(~9|_|q;vA`„ ͛7'`D}=$%%0 E Tůң}PX(7E2SY" _grD}B"F%r-bV:txdҖ-[:%   q*)?!4:~#+++gɰ qΙ3'::zذa*Uml +ǑO9qrwX,S"D%}a(&7ofbշ~ۨQ}[nNf  H~ԓ1BQ4ӧOoٲeӦMY" /r?$fwh,(L8{>%   q*wgCcQ#FYCDAP+wo8Rw#_ 3$яr?0AA$u!ugrx}Ѡ3Xgr+~ŋMB/\ 1/bbbbbb t 38{A3w(}hs_x!!!!!!!ErQBzΞ1\G @@@@@@@M|.?^+~H萢_rWD'Q#Lnn <萢#x{W?}AA)8;D _/cIrAAA GrQGdU}駟vm+WUV=bbb ;[oprȑ{z*T#W*/^=ztƍ˗/ߤI>r]u{nݺF/_.c)?~<ăs:w)WtLr…#FnݺbŊ?zXUⱪ!*USLᒎDGG?UT{wܑ,W A~}|)tmܹpK }G6l-6ڶmr?##QF/]3)Zv UV$$$@p߾}"tZ VeAAA6!/_b(+W㏻v :XUQr_A yyy?8>-ZԪUXF_3rHp3g,_y@|L2O?+v!}=}РAcd 0pI[{9 B#e)))XɓCBB>3lٲEE y >R 2@СCk Ae˖뮻d7x;@: 4?s'.j!;&/ܭ[7 Vp…=zk.ZٳkU;(|gDx+Ha*~sG.:ȗD`*   .]) K2@w}W^=TL>](O7o.VLW/'x2xhT?A2Z:qℌ 0 ІWTP[+O~d\>Rkp?޲eK¹s:_c)SfĉKŊ,X *_sٲe5k1b\0deep@׎ŀ3&MK !/^޽{ BCC6%zA2Oƪh ylٲf͂kiJ.m6)܏I`/0Cp10w\AYzu֭˕+עE  aÆ˗G N͛%CzAǧ٪STN:K< h2Oƪh (!siڴ)\On+VHp&SwҚܗ>  .~}4[L>  .-GAA"c79{(}AA)8)Fے`(AAp/8\GAAG(~W?i(AA0I+WD?}AA)d|P#  HQg>  .>`(AJ*+tMCAI&5_#sG~:}A z(ECFF\ϟK H>DC 0@C4BfϞOTPiӦ+W+(z+UTv~Ν;:߮QFN fw}wrZl~z(s}AJ~UWmܸQA3P# 4hp7|r'OcǎլYsȑ vY@CÇ˗/7on۶C_\oiܸq^^" 8KE?}A@~ҥ+i!1cD젠 ǎ۵kW>|R2[nEL2)))"}BzX>C Xf*3ů~ %]t 4_dHTRe޼y#-[V 8r͚5 /̓3NڤI̙3|MMpHH%D< bE~Q1rwC R2*́UΝ;z衞={ʞBvv6[o)S\2&K*u7x"A3dp~aBOgD?}AS?jԨ͛_xQk1}2EpÆ 2;t0nܸ5j,\PF! 8g_+/pL %8H;Vrѣjի׮]֮];`K.*܇Ht-,,lwqb Yf]uUժUɑQ 51B~t0 %µFxX0@\\ܓO> 2B -Z6lT 1'hzHzj((ʪX!CdAr_(Ad 8 Ô:tTR{aA#(AŲe֭[wtMw}pBrr3<ӱcG x%循Q# >0o޼M+W~OOO7o&4k,<<\  ^q*wƂ?}c(P#  HX1\p}0  R(~  R"g>  ]|G   ErOX7G   3'~?U(AApKŞ)  RO@   E_>WBGAA#}E}(AAPq*ǃҸG   S/"~Sq<}P#  H!EsZ,6}AA)"8P#  H8A+/pC   cy@xƏrAAA ~^srAAA 侪r_k(AAPq&ӹW_A   #"Thd}AA)W >  .}n>~   r_-~ }AA)li\~1ftAAA ŏ#  HPJD   grNGAAr9s >  .~Dfw\w>  &N~xAM~\b }AA)"+sTB؃DŽGAAű0l"3PECOH:NJ](}- =z5rDو •O鶓 ϑ){ę{H`$R'z6AP/L~?.,W@s &C= 7tEQT2_EdYh53C`.%5\.aŋHWaI)]lhp.72W:lI)L+\Vlִ(\[mR  r?&09o""rߥi$:qTPbbFҨzGF;ٕh݆!CyrI-KiW6xZs)ٴT5:}&OfXL9b:M j0-k.HAA3N~Dђ&DUE\qlQT>,ŵȖ䢺Z23x d2!'5{&Z=fzMB;xbgS̑ Y6џw*%Ǵ(o@A$R]o"OT]gɗՕ2:%SH6Qwvt.S=2ò@X'.dV4E4%MM.]JU(k(ajHY&/Eɢq+l},Qfr`K L# g)DAZAl8\Pj< Rp,cp=#h8h%1(~rԪ+2ɌtpZ[2*/3thtM .qdmVF*gGD5߮5j]{͋2ɥm?AA_r?h} @ ɞGAA+r_X@}>  RQ+?>  eC`Be   #r?>Sfr?83  R4E3/_A   Er?ӓ܏O:4  R8QqJ3G   r_(AATGS}AA)8zk%P#  H!EG>  &I>  ] Oe?rAAA  RLKǣGAA"or_U(AA?}AA)GAAKhhhhhhhhhhhdN~V́Zş{_/6   Ha&~QV\ яr?l)<~0xF5t. OЁ793~gMo?~)"X) pÚ#bP >ĉ.\ l?`"+"?A:x |ƃܰ4zr_6lt:ee l E*"X)+aQbǘ?p̥PmP.^x9s`E*"X)+aQb|ǭ 4vx9}ڪTE^A :S3V pÚ5Ďِǵrߎa;Tj"tWE~,tܰ` cR'x 徿&))v.RAy]'BOX. k ;&cҸGAͻpIIi;D.t`S2Pr]6^!vloZzqW;>dVV/Uzggz^o8waxp;tvv]hj?g@jXCW1>9Ukg1X6x퀧%QU;Eѹ e.OGE rs y>LZϱmy1e60T/Y2!{q(A-`~~atd Q`kݷ K3cY1}ai*߰J,44˲\_j%hqv-,)m6g HU&+[kVk69(R/A[ p?ў}%^sY$[Y5)_1g&y7!-%(ƵmxajKe+ %G:ƪߥ a01F ];fTdbPk]I[4mQ,܎+Ц A#6\$K8F@EDjw@%Z4]cvr-[ׁc 24UM@S}fhvo_Wf3x !^r ߵ5!v*V p?yVM*R/XCg\r_cQ1DjK(l tk&Ӥc!21Dc݂FlH) h#Սj])&6zHCڼݰXe^_HWix,-Eh#bˀ.'4ɴA,Q" %kvbUz]^@ bj.TW& Gij̓jYĸ|C^bPv}He@A4] @|rP54Y0,U;E1C7-!q"+4b=۩umQJ ]J5M FlUۆk/(>ծ,e@dGݧKJv/\ikWe:飼8s<=. }uj.`r< rtQ#y67MYHV}@ծ2]W{O` cnr} jٳgc37i7j (@z ZvT;Iy!l 5-4,?C_]d"=8[0sx~EVG!0M̬ޮ%akѯ QEyP+Z +WvF)i ]x)OS(ftekaYѤb7Mpz9 6O*jFb\r_QkF!_2p%jEEF rQAUBknV:f<>Sl\Vrc1!RQAΎ,lf< e|e?"⢢@ rQAճko:f<>Sl\Vrc1r}VD!\űjxR)A.B/@Y)Jnu ;&|G1?5vLp$<ܪTE^A :S3V pÚ5Ď)OHJ (5yYYYaHXTE^A :S3V pÚ5Ď/>|CCaH. OЁ79!6 ~ؤ&M2ȑ# d?`"+"?A:x |ƃܰ4 W ~>ا?<~0xF5t. OЁ79&\>Z1U CVr >Z5hhhhhhhhhh% r_(~hhhhhhhhhh%>|hhhhhhhhhhPXCVb >Z5hhhhhhhhhh%PXCVbM}!q^y;rh)]cgvdYNIO,#3;N;}"݋A\U߸')`f85l:0 ߺ?c 0Ӷkt[hJu`` vҞrD6蛉ü_5m'SZ0-&NiJ=10@9M 2W51zA2D-͎g o`5]Fm혡&fi ;x) trLٶot<1KQ/'2;&-h1 Gp~a,a)Ɨtv(2֩%3Ipj'߈0Z)h+K R[};{\89yќ;8 ξ u3TNwӧ쒫⩦ֺkDx6y a͇ Xx_JU13ֱİ(JK"퀹E'-^Zx^O'-fF e;4ƫJ.V`xlv v v\a7v偖xL8_mWM04 ղ6>X 5U!M=5I5` xJLDvj,3mmmnʥʠMƥkn.S>ڴ NPL=7̕R[Txqmzab]{.kLܹ, s3\ ڠYRjBrܿyO;iLTfCUP; iEO7&ˤF{C䋹m3\ k[A~zS.T1'u-ܳڹ0Cplij,|RBc.M\4M.u\f(7XKhnYf`nF13;3r߃mCk>#SB)߹\*C+ʦma&ƛ3VU_W6.i ]50qAb]11Bmj&黱ͯvL# 7 '3tbCm.i4"G(~vUޡ댕`!`i QA+y">yw6mo>Gۦ j&e`,>mD}Ƹ&H@>~q pd% T }7 b6<=rm]H\7O.uGsM,ib 5 5$E5Qߊvaih̐]Q]AKq-MSLj[3Ŋc__H1m88jpk/bRc]_5m41n%ꞸPvVϸi\33`6D{6WXf-ݖ23\j.R3.#)rpA07U >sD~{_ҺM۟z!QѴdCY˗r3~pfGi~iR 3޺0ӈ *3M\`!j,Mc0KTK kpvNt[p,8B>$58v ξ ߺKZrEDdd̫h;DK U~MvU3.~1S^k4w1XJM3uv ij7pLզa~Eִm3?LibtKnˊǮJU.e Qk:auF?FsU3*{LmCnRle.Ls͔˾W[P Ŕ #L'Ϻ-UnIg pA01%@؃O?y @̳S[=~1qT.:@c.N 3)[ɹ0>kɆmuAw7$&V.nf%] ϲs] 12oDz[ 3T+`|bZWM4sg1%h5pIM@TiCœfo1 l)ˆ$P`.RmfZ&qn.ӳAG\ nqBCKj;_++a4I擩Mײ]yc4^ #_rUT /5kϯϞ}a57~_w37WhL@c J2* ؕV ~w[qY\E˸z{r`Y f XB& Le畃uo,nnf~`̭)M{%ќM-Ӊiw)_M{EkB>Z_P7X ͧj@̃aZpմ&|s/>ҽg6mЊ}C@;/ai.bIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_10.png0000644000000000000000000044045214741736366025215 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^Egwus5 LEQT(Q1 1 $E0NNw Oթ7a~{lwuuuS_I }닧?ĩ\y~au؟q?:D0\ڽO5@FF&[Vyn2 8G pH[G:¥#cQ#wP)g\Őu] #w'[Fbs;JLɁ#PhD4;dNA;-"斣M„Zv̈BD<$3D*JZvHaΉ#D`aV$i4\82%WSp\q,Wm)\Gpرcg}vܹK.Mzezi3RUuyPYEeTI9W\VQTZQXZ^HQ[RNeeR`3E`eT2sSI[ETS(Y[H$խR)(JB)|֌[3f$gnJJJͥUWWS55KS?9@xZ`;3 9H 9Y][W%RW]-SJǩ+-()*-/.**-*)-,)JJJJJKIrhRZbHUU4*B5ZTG#֋EOW\q=qRziqDC(^Ёf͚ENhSϳ7^ٜY|E }^Z>Z&nGv~nW]HJ/_ѻ@6}uB|~T+>|qKu y} )z}ݗң>z̠AoVGg.^[[%ԓh1P]_QE{ DRREQeE_][%fXo%tL\fmq_/}D\#T;+=Y,+HM",e zF6\̮#uX<>$@U%T&%ʄ ˪HT!KD;($xҪ*NRɹXYPR/sV^<*-TSPnޤW,,_< 㫌y"t+/l}=Vߪk!@y04^Hͭ`)``!'_ ^ E^FOeEX^v!ywx ?`$ jD~ @J"Z1) Yi%*g˶G"H% s͑5=YحtRxxJ>=% ^K:(:opAxsO*i參dNl r"+c_ݕ ,i╏fiI_O¾S!!$!D)[vqUWQN яN '4+aE2+龥 XUK,#ͯ_6ae}0]3:XX"QekZ6qjΫ^:j;Kީ߼B@>:Z&?c';vРA=@{G #LF񞯡_OFGsjKU|#"^ĭB8`i}U >RX*I!|r^vlj3x[)Iim)m!{MHH:_uHU˲xBb˥|o-I{4-тj!g#jPVGAK>\h(.yKb'R!zROY|B%(=qW Mt#g$^QzSKs/޶JA揅 #NC$~JC) u:Pg-Ϧw"%Wa"o\TiV?)ʪcdO"T j.%ZVA^PzVa[ KI@8(7(@TW_sPKhSWT/YUV 7ܪ⥾ x_Of_X}[73 #ȄlkdnJ~i0Q "On%=[Z $rԚHakyz%zGo -<몫!) ܼ8M̙3)"{q15g-K-[pnբՋ,[hnâ7j[fѫc#^ozu-L{zߪyoVfŻoUV{o5lXsѩ5cBV6,[oꡛpBW5x$_Z7L _KV,%a6bMR Buآ^P7N~f$GYC)`_),-K꽤j^G.F#$[$mssE9qvI=G)r(D)'媙(I΅a`D|Bx,a;6~w>fnh &n-m kN"P qk-_ӛׁ֝3PTK!vʡDD+AP9`2 rZ\΀njnLwuI栖x/X-)K| OVUՊҲrte%dU[e[$}V^{VW"=+VY j˳^Qsp5* t`-?M:+fr;l *B*,巨2dU<}v0T0H g"򞣤E" 6bʃ0w=:+z9 %Fc_#?g" K@!dr>Dz}B1&4NPH#A'2fZPPaQ Gs3%SO=ER]ܫ\tmT]8Oߐم.*{]g׼>n|}Vjy}&Oz'97qR$ lzmfk3_Y,Rk|*mVkJ^U(U?v`rVL;c^%EVd܁h>Dx)ܞ2*gg@2e8#Eup\J@ۘn]Cք.GT5v;R&(IJ~''X֐ .d(:@52Y 6:[ }Y~cYi(kr䛴e8cu̜jQ$8Y }4.hfsH!^٪1;"tbheI 9:Xf} R1萨9Zë'Y@:P|[%MP>KTeBªJg-a$)ӧ"3Kj_WÈx/x4$*[_2"URUg4["UUduL3yڨ]N잸 e~4{9͝hs>7=R#z Dno&*7g{jgx~h#ɛHάGg=5>>o1NjFs}'gLӫqP!m h)Q'B=@GਯNKl٥N$bG7U:mt. c+H{z D53U)H`!n8ƺe2˩\ * F5tW9&I( 'c|~#UjT|*ym[%**HrʭJJSL۰m7ݪ^Tg/3sc)(\JeʨڈZȐ tHU4Ns$ H t$u 5EYE:_},[^0 ׏G|CgMAP8Uށ13S2urL?Bv砎U]9~[Cpk'&=1 @3TJ?@<@?@<`֓f<`ct ghk?{]A^p<[F~ǵ4ۮ:j#'8An|˘A:f5>?I/3De S"obbв`n i±*BPQ=PQ3P2(=<4J>!emx j%^?|"tv|<-wMF * TrZ&TI58!H1p|w=M⵴@ZUG&MJkjl*aOB}Z8<+Fp`* ,!& +: ӎgđN1d8Q; EEǍ*z*1q*3yts,1ӏ9ojD彅 6='}j3'ᣏ>JUeCGvvBg^:H?8򞼏T}%OW}OW}5OW+Uo{fhՒDxqk]X5RO*%=yo>qod??K?AGV dA)'\~W?N|A:j҈.: s3p 5H:_ {4X}b bRzLP3`/1v|8o<̭C{ac}o~u}{;Й=i Y;} C{#g ʩ(m-zxLBahUW#D]k'~lY˂*Yu: sx֨YwMNi܎_RGt_p_|g{Jx:~۵! &?Ue ;Wj!J`pgl9):+'aƓH`b4 p5ޗGQpth+6ss::#:A:M:e Bĩa339' .ۜ $\2BP|7$dGdiw^#28u=͘1%4:sZH$zjw_nq)m=3z잜"~Wwjw̛Ǚe䙛U?~WZZ!UG>:5SfL|N}.xУP"9̆-#s/|ځmI!>Suwqj\` rH~B噅98!yD0*@yʙZhǯ~QD}{Mݧr{O Rt8:a<yR(\pT5a$tH]QU p3t$ 37 `J!:zlfrWkB/]—CW˪2OG4-w6߉/,pF='O) IvR>{VT[KTI$h;:4AQd5SgE8p@(D*MA/ָR}F3 TyGrhxGJ jĄG'hnݧ^!8#fd+NJ#hArr2hY-S'T_}.Cj_?7瞴6w¦OH9O< ʲ4aCSIy'xO;|;~w_s'8/g%,ⱬNX<Ӗ'N+{WU-2K׋yzޯ<_'oЎ-U҇-u^f^~`{gFmXQv?}e~p2e%7#eb u\C.+Tw-p"$n\9ɀg+FM`Q$jTBGsSS',K3O ,|PӀ,a`ʍhJH uzKvNNkhckVt{Qx*0Ip$ $ ǐ1JW R; O5PǨ<ѹIi)s( %JEwNH/~ ]A*^¹G5fFf2r4(lE@G4)SPVӲzCв* UM=.8'eμזqg'~|+<3O>5g0ts'38 ̡vy\JSR2-C05gYǭ>kg?>O?~/[z/%4f=qKg6[!Ef?M!7 _qfȁs:7.6 oi-X]Ev_mrń꓆-.PE]g#${/0PbB@x"rFuWDAQSG.xbUɂUJ|_LQ8n *?H%Pid4x4׈L{tGW7y ;~Oe{M [R.+~?קFAjً ҹƠ`+OCJQsU3*rQL"0#$8&p5ޝGkގȳ)Ѡq*4Gĕr;NB3UI^V{1ԈC>(}`KU4`\T?'>^ "@J2N,hg\&TGn7?idHi?>yG.8~7o3p흇vFn3˿_Lj!}ϩ _>N)#yrdheohp+|YL<"1lGv_Zpm$o.mX 1Cl{m$X$kLD'v5;փLh C::2tG cewDVkhR!шPsDM`AP,h_մȧC'ȧ̱YO{2B.pzB*$ N3G ÁPj ?re4tgh1}Zn_^arN?A2=+u) ,>A z!j!et`99x8z=>ѹTJA~<rsWkJK1%b˄ԣە*dx˱Lp܈ĄpU(/X"kK3r~O',UeݧMQA(桻߃3N><:iY'}z։_}Cl8gs$;$! "xUy@SD9Sfo, <@)F~▧ݧTah8S\ǟ8ԃFNчϿW.<ˏ}cu? s[6ɳ8Q΍{'bLi*9z[ έƢV%H?!̱9Zv/^"HnTluvdՒ[]5.5l<jFUvd.0jQn}'^oƌBaAP$;7tEDiWs9 *?Yȸ'*c=%莮>!4k{%UIhO"سRߨEx0Xqu4kFCJQ7))D$7tP8~Lq8&* 1q*N8 _NH:uge_^`BmrC+ ֬ne :@dP}7س L**v_2o.[$Jȝ3]~_VUCГz7COX'O; u$0S~ohHyǧo{s_sߞ}곏W}⊳O,($?Mv_} oO?3Ľ'KOV8wh#'q5?ΟH;w_]wq 3R#Iʝ ϥηVW>v efoֶ\1e31a'.7ju[YY:yefԮj.gL{w˵uv߀K'FFj ,$j/X|F||l-Q8 8*EWK1w{FQCUy#~BSP 6SS 5tBT9~jY{Vv0U#4By0ҹp _è:Kx2UBGU4DI>wtPdj:~: :#:;cB!$T9 z5gtNayǘ'3=Bb5ꁶk֬#]^kݺ $2rVa&ƍ6mڒ']JZڼY?Clْ©6/8 N]q^xO]=ovyv)#N@D3.yo&*w)⿧^Nr).v~AYDIBp`)>\pon> }'mGT5b xwi7~a-cohWGt?Qd"cۣۖ],P.Bghqa S"a@x ;h>@շr5ȗc}W^;ܾ\{|`G{OXf#'j ,8v:~uШY7N׍V F+%pXcQ2M JliMtGW7y ;z'͐kT5'BUp}v.JЎOC'H'Kqu4fTXGQ!uœ#`a#Ip '\w7GPߨm3zŁB!"}/((^vu\Z~;\=M5ϿY,AcƏ}M럟e_埻2oo}w5Ҏbpx5{4EI|dmKaI[~6rEf2V_=6X{I9^l?6EE i'qwF0 +2ꝿNV^Ї@;'hd$j '}UuVp n(=b' Z18!`0` e5n>4¤=e5jJ&2Ч3>5 q;~nYWU9P:A:Y:} BBW` 3UhN&!BB3N:p5ޗ!F1q*Gǟ 0X.EP &Ը >(C}xy7[Lnظ56nJ5isk*(,r׽5[3\JN45+6sľ-Zu%p7\ |3ondMyƛGly#_5~x֭snr_h*ǹER\D2M7]ᦋtwcG|=vG|~H7L)=)w߯g_4x߿7Fr:Kn<}7]>&Mz=kiG3# r@컽~k4ӿTAH0y»~~. d]ςVI[l;$Wt{I#ʱbw]*{u+fvrcBL.q̓HϓTo#ω.D%QXpT= dEh_Mk,qJ N33t NZM]%Xq@O2[e?L@OjV<[D?#&}PQ%8D`` *$xP ґ$F@g‘ CGPޗaGAP|8 UށlgtNlԣ:̱,m/Bme'Oޚ55{ VrJٞښZ%V]]Oiy.gkedĦҲ{Sɧtדnf^o\.k&kH]S TsUsI\yPkS^2Mw^aukt={oO];l(ۋs聿>7_|>》\kG]7[붧_sH~Ge4-VU^ ǭ6Y_|xP_:vXΙ~\\9Em.]hR mRMJ}*f=͞ R:G:eNJP`] X"0 ͐OPf$ >IO\p ]jGnPgcU9Ohz p@(>*AAA63:'u6rF~9uދ3BuԦ&ܹsgΜYRZ]YO.)Tvn Ws5K9yrbPeU^ӵLZ;mi7>8qĴ'f=21ۋ@*}ֲUHT(t[>:! B>tovC7?qλo.#/qJaBI?e:h1>8w8_^~o.?g~ߝ}V䩭)k(+/-|mڱCf$Ip7}eЮ,ZjAn|BXk|ɕq[x/ >?Xa ' |)/,!jvvߒ /'۷ @PYf^q%g5>D_퀼 Є,UɂvWMKtq!4YT*-.:Ư@W(DIuT{MFH)#8@B+w``] DǓP +P6"Xs::#:;:M:e CDz?9IAJB@=x=9}k^WԦA 5\Og747h9jljԣ>A*4m|LsAn٪*V}[SO|s/\jF/G/7}A5-YzR닏S?^޳38& 9E h2*=;F y^dO/_\r>N;|ɇ=p/mڶmo~[ҥ/ӎlȒ֙ie}8U Wyd%OO M YZ0jC Âgbh1$̀&|?DU5GՓu:I ǁfk 5@[nO;YG^PIlAχstQCUIp'jDcJ}~Ry R(c W%2:*CG I!U4~`B ɰ1qSΚ1q*YcfI1e6rɑ9~+Ԃ 5J-Ztw_iqUd ^P6%:' C8}E/>GtQ]2OG2C_ r^vaJт*p%:C/xEGi]xA~/<|ʟv?p~y{L>o:i{z=Ͻm[mMo~mK$& qT(1$^'=%jd^^b\,j"PcBPq DmGgI$+E v.xV2Q3gШ}:.)8CgjPJyWKrH['H 8K NZds[%tgoʸ))IXޔ+ARk&MQWԀ<}~>ɉ(TgmQZW7r9$@EU5KD`-\!%dƓGN8H*H'.ѰEPuxGnAǢF=L\} wFiTrttqq'jȯ8]pMF42 ʙTgycTp^P#J"OK} 9 rWfP1K) [A@Rd[4H}u'҇Lj q,ד/-]m"B>oG8DPBa>)Ea1J^Y%Rp[X%<hRcQSZ(%r<Ɍx @n冧Yc5rU,#ǠÉ"]-(kNxͫ;td -!g1 Mm{vlPAZS Բ¾RMxn(oSCA|G/hs6t`rΐWxrHe07H%:=:EKΧw Ք~N`GJl!o1jDVĒ%LItqP1se|S : yšs ŋPv:R$RqBȡNs:|"*frtILrmUB:dASGeIk:DShV),rTZ;::v t!D){w>/1-)$SͨIPKPeI܏ȂfO!nJ}W zU“RK%+(8xMM" $#L3F18!oYZ^{2#a''iI8{zޖarrrMegd;՜윜,k5GZ6Ҽ JU~e\UtRr,V Di/={+if<Xjю*#5R1u^SHӊdi@$g$wCPō%[Q3"v:z2vA?u_GONc=c+{xd}9ا {&QyJ92PT @V?A dpSfD-ÏJ}jY>d"3!dɰ4Df!$b{,;BgYP[Bll,w4Z6'2$$fgR!?cin7ZQ'DXا-8)e^$/(=b)._uw)*@AF]RŨT5-iD Β9ƃIw Pf@D]%vQݨZJ}%땆TFwp⛣+YbV3:eQLGCP,䒸?Gݔ{T9*Փ*) z .''x\Ff xL*$3*TTP4dsd1Ƀ".{VRff+KL(5c⥸t2r4Yb g09c+̇3nXi GCg +9!+K9#YhDRQH1X *KȂ'|jR_FMFN\PDVKWz;'y}7:@" #z,@ SgqB<ƅ`)!d|_PV6PaC3HYtLVZzKi[IR. SӤD9ʲ,j?3+'KͧQo,c#P#FI[‚//تiYԲV!ӈ f*O$˜#l #I$xDm , wf3x@'+ϝf<{ r=!gu)H.5,j׃DIPc0i.AIv[DK:Sqv}tG7*JɮCӁ95%SHY6֝.5]nEVB-[ue]bQKMgXRZg)^՛jw4bhI彳TQ BkvaX*1,9-BYG.k_7grɆ iWAQ`Aߧm h&M)SOhr_UOc^*苢T!TfdP ;JK)6VMuCdndn)c쒫ouC5B@RU)wuu5p`?ZqUbO%bTMc VѓhMEї._\4Yg;z̴[ERbCmk%x`K;Q%9*T tGUˤZMCBBEB< qQ'rn!y,pq"KCVmtjNrHZ-z1xh\; ޽[cM9#J~qr'NB\ +PJRrb5RQUgJMvTk[ͷVWUAAAP?YwKTgW7Y}= COpAAAP?Yʚ[ ]?FSn AAAPd[ګ*kmI=u-;o݇  Ad[:kuu?ZVSOtAAAP?Ywd-uuav  vibAAA;cF}  aoT݇  E.ώ?[^v  v }^>>AA݇  Vlk`!  h֨~+>AA `!i$h`l=ϵ 5w)vy<>~\~ }eY70Mz!vbqȴ BJT97}-Xp ʓ( 澊κ4@ErQ[8e]yk_W;"i7rC`gmuT g APtmKCPʺzxnwh.t8eh0HgCU:\M;W:M&&NH(C,W)~]Uaq3\\+7rG*Q gu8z (a嶉gA}#3m_q ~e07uZo|xU`UiNM@52z4?-'IpQNm.8k9d1N`]{\%ޖei։;H\]uSŽ'UȥC@VX `nJڑ$^R 32-'`F[έIYNyvQGp%PNdRmc)}= Bmw4M>AvyS7 g;- #WEkg lU.`t<=BԎ7 J 8j3X.EO'Bf#+2G#H$ю,vgWH\vS5b`?zcmـruHwy˃%pglJmbJ+RwA qmJvR} FCc!SKP`uU:VY%'g/ƃ1\ 3u@3APu\)g\&pES`d3IR:ut:Yal3F..r!{a읳 (aeUP]衖6 :wQݷ8#;Dέ\.OʰAr9Z[ z-N6PqOיګS%+^6:g$RBwF9omOк܈*wD}#.7 ,z]2.r*YC0CP?uC5LmSBՎۿ6sٍjq^m{`[FV%WW@+䌭\.4p=,Cu(WT'K1+}  ôh|=q"ƙz[xF^έ)˃^#{"m9h: G镳 (awCP/IMS^<N!j.kX^֝޶SFe bԲٸE/:(5%@YGra)TŲ-#gRK]Q?$Cg@. ﮤʹ>Hh\q3 R?\ .u +U<(7bD;GdrUvoNqD{n+E[8;{!Jn?a>&iMݿ vpr2 FoHv/ԠDv==mZ m `!  ;{N7ݳnqA>Av VRTCskwOY}a{z5}\@AA5aήvS# a!  h;&wtu:L?fe[:Lݿv  vM4T6ZvAAA;߮.Sdi$?BAA a{:M HoQp;>AA$~{gmNo{}}  ځׂ݇  G? 'ݿCAAЎ =mݦԯ4h۶mmmmK5v  vi6DEkkgg'>AAvti9~[k{P[kK[KK>AA 8x"/3[[H~}  7ON4i ELr}[vc5755ZhxV   (N=O?޵P(&-݆?W} V   (NM8i׆"@qH5'MP RWU״4vMpH ?s/ >ݭ< ŁOlc:'TSE_J T ?  h nWWW#hl8$!~[i>Ȟ MNOo&gRdE1'+E.JOO !\VoSJFJzvZf.)3;?rKrJHG- cּv\;ݼ)jLfK7Q77vs'ѱ ^>qJJQϣ5>uj9hvmz-~kk+}R{Gm%/$|ș2[`Qs2ٲGʙS2 X7@&A/VU8a/kGF\#d{DmC}%m6$g+*.)-+'|>JκܼVOLY4Mq?W8F`ʘ-tj=8x(&;XA%6}v9 ,x[GWOn!(!wkkk^|:ؤc~ ^4עXRbG][fг&-$!(3sId[:L9~6nMVba 9IL{飦oE{t79s3zU\|:uwf}ꕉfJGTeMkwǎƲՈfJ-8B (*i)%3-]<|^cccAAap+'79yOqv 8jjϐZ֔QI󹈡evCt8幇]5d8%Dq}$Nz-z٫PaztsaHjwoiBjmm7TPr]$9+ʜS<'kYGǫ}KBUxTu⒗ݷ.2Kme(5BA[52\jc命3ϬIv X턊A'`R"I=dVєoB8(]3X=7-x)[)lS*{Ez:rDD} ުyև^[hY5lՔUjf9],*C f^*tXs" Sojj^|uc\Ĥ`Ӎ.helf 6!xQAn0K/L9pګj)@b%79 x\Zu@-9݇J%fef#jjj555z6LbuMq.nW 8(Q3D7QI8ws@DC(P'B%8%DlfAITk.NJ% -z٫Paztve8榆j_ẫGZIӇY9XˎM沘u5*v_]%‹n/%Lm%H1GyM\᧸U䭁 8XHq {J)]2{HD8%DtniiɌ/ދ^Tkb}Н+d_Y`m%Uf,+\AP,yN-z}ŝ"`.WRvuwv4V6VVUTU76\}eVba3',j/iY}6]M7t`Qs+V40N)W&b#ɍMbz+BJlYn~aiiYU7heV2[;}٤hR/='S\J6\ 8xHHd󹨩N>@{ЗRt@ʉCPB'hev8q$]X8;vg^.hfnݰatw7TJK * sJ2j"W+1)!&iӽ&ײAQMbLFrMW@~Gj,e^&[ )S*侄cU%-wP! laY={з$p@PTb/KJ+++kjjZ|A0w6ڱLqBhZ4j8ЁLd#ϭ[q 8qru)?EʉCPBR euz7[vCjo+̩)gl-TW]~%\@,*4}'49c&-W+ t`>[vu[S22ůj}JyUΠmUˡ^}gyne8$7"?P?R\R0u]ޖok}%jbql>㘤 U+ij&sje$#[eۗ8,eNs݇vx?~dV.Pefn}Rm~[==y~]-͕)k*Ro`kVՔ\> W+JsssvgIIV+*8eje>'"\4rfXv_ ^ʵ{|݇vxWovmjPvp?O(eE9#5q⚚͠Uk:As՛~H]:e?b;JWXϗdZbAUAegjb=O>dii)]!WP*еp] IKum,^Mş_d.;uUi7W+ӵ1WP* AA_xs$ݥ]uMmB?ZO}4/kٛiK^ۺ쭗$W+AAH['vrMuů/2GDW+AACݯmje}:s?z'{^ݺCAA#d v};r?y/ӖMLϿZ   j߲ܘҌ S?e܍ _NZ   ~MC-՟d|a'K?zoӲw*r3GAAA;wV74)v?u:ҾZ7WwC]@AA5~ֶΚr IL֚){㺌uߥY/J/BW+AACmb ZUe8̼Ԕ6V|W AAů'xrҤIP(,l-o#,.,,̪sW+O\4rfXvߡ:rAƏݭ< ŁOlEz?j}դ*Rq9Χ[ƏvOh] Ձ roىޮ#2]]]v_;~ex4٦ʺZ)5 n "*C}"z/[>lÖY]V/DHK\g+?rrАp_Y"Ov(~cxƊFb_`z76$oJ$^/kܸimB!95+=+77tua!׺ vavkv\:mW7*ʫ[|>q;v$;U=݇J.)%#%=;-mqai9W>wY.8գA`ȴ uŁ_PTZZVYY%9%8 Aܫ$Z`;hy>WVoCrzzv^AQiQqIMMg\>QWhiiˏB;4A]9ʷ-ɌCJz6]CiY9UWW544DӇ˫ ͭaUh#2*9@'qOU4V#:/]<84T1WvF=@P"[vrҼvW\)guu5?3<[,+i̵7ZIqD#cֳgCuh\y4ZvZJoN&m!WQTͨfe q WV"rKxvÝMx`a{{{cccAAa6%.cӠ0}x&U&욉æ̴LrEl􉪪*׏* īs ٔB`dD@03:Ne4Bb10Ծt9A"p,fKkkn^+#i#ĿzU.$xE֑/Z ͭyN=V%-YTSU~^--Հ.ܑF!zW V P/^Q.j}CRnVnm:EI,dg3sӭi[,f6Gˉ}u Чc-xG„!9@7>E`]jcY.[1QC^Dt|(45s/L" 5?mi[6TV׍W+1)3mVY_/xლu ufe*T$> v+[W8WDb6Ђ(L3O"r!D\a˨`^0 y0EQ1| 徖2BK0^ӡZZ7doLɒސ髪9jW+1)3uw= uR=sî}61eeo46EFZ 6yQW㐞_PT^^Q]]-?F%OfW!8WD U`_z\u iu 1)OGR}+z_aͽDBd'Ց YII[2|Uj%&%t  u_ep5mݠH+G1GY;鎗9P0mtltr KK˪Tn.{Bɹ7 [}Y\RZ__WX99c&miiknnM4}dZ=9՘Y,4g' 9C߬mN\e?L8TVV԰X"C4 ͭCMxw=۲[J\1#`E{)+Պ [KNJga྄f"8$s}շ<=O,_U~3=;s)x޷]X8Clӥ^4hGjǨ hG/&'E-/zc~:HOOo}_/* ѿu ^n%#,LN"ܼ%9_iօ*.II غS>Ap"SAj*!qv;J)G9~n/"ؗ_R_\r[\@'N,*.ٴy3WUk:AskhovIFvvtvVUʅ[oMC?%MP_OW@Av?$7 ߨ>I#:~qEMqy ["To;6W+փN}[ƏJ AAPdLqHݿŰ@aK}5Kdo݇  'l޵P(&7j(eѯ-&6[v  J~'|y׆"@qhW7Vȏy^F~  _>q6+21'/r._],I军AAHro/#_M^?W  B<+ŕE8 AAAP_խ|5_XV%?v?v  v)/r/*,_W<AA#ȶw}RAp?я_Յ  Bo9~?Os  ~HRosAApRvWۤv_; ~.\AAݷݯmbu9'yMY3ޑa'V@(!P ]sARo[akvimIU@ v e}jT 7JA(⽾x v+.v@(!p]sAr}vX~ãTKoa1ݤ* \AAbi զzQ,*'guwSFwq8m&衹0s{*Bb@)46^Apn '(-͠CAP\vJmKʄzu xwZ:fZY;m0ȬI  F&UQxDW' wQaΟ6XmT`qF]%vgW)ZB (wqЊ;h3Va (h22b@Z՝67yu${lsm蚋  hW'~^7uA&mmgh]uCgsLYVT6b\Z5 /Rеa &UQXx蘬jmj&QV G#èCXQuO"Prܽ=ek'aAeS>\. D,݇ @Ihvs}ӑ\1[i]uCg/]4hJP_+ Rˁ{4!TEa{D~[D j(H#]t -:p:*-" >ZՇ7RajUuyv =z4"`CAPo먪k6mҊSM^҃&\;r5וht< WgeFNj% sZPE/eB5iK=wwDJKK IZPEYq'y1ZFi񢋬Mk (}; \ qhZ]" ;Z F * % F<0" ՘v}BPmecs۰[?v IxY`ԤEhqK"%&7ɝ1ESmCYєoDDH҂wv0sEp'^/;bD$A7eiZ HwKBђЖ0mv E֝~u}zsң2)?R+MX'"is Q(]%B`IU!6VF7,kz4yF!qmKqzVvā|QPEDLy<\'Ǫ0 $;$da6AAb_U\M]]eZSͰ; }]JApoW֚jnu~g7I 'p5AA..+Oipʺr斶UQ&UO%}  o+kM5޼fv@(!p]sA"n|#T`e#]VYg#ݿ VE7]ew6ﰘnR.PB݇ @uvUW®d}MTvRVQmJ}1eMзDi[|զ?Rv>$rSvPe>胏ݯ$Ր:,Oƿ>7"':*~m%w}$} rVevu?ބڧ ۹A0>9Q:RgWa/--]zZ;-[vϞ=ބ5jk>N X\vL@$ڷ{r_޳tkwq=-7ꫯѱvé eɄO}wuoj5[wy. HM_Zc'>N Xbe[KU]De[Z*MuvƔeK.ݼys~oRXXXPP@NJpyyj)V:\é %6ߓI fSQ $[=O>%_|TOoC {O2,aUWRZV↎b:e&۷.&ɭ׫Crjg`%_Ucakݧ[{?|IVVVeC }8_w.Iz5[UQ=ܨ}}j%nX*^uwܽj⭼IjbAWsW~C`VWVUUy%O))Q+۷ onlj _1V===4Avu@mmm/r?O?d ҿj^ai=ymky WP+A _E#//c>i'](B˂|**: ~:ԺO#|w~C`6yê~ܪRWQQQVVVRRRXXXTTTUUڲoc[c*>15k7nޜWPohŊU~@___G=_5w/b̙| -μKTHW K@wP OToiGz8?v=\sq[+?0+5SmvB^Z 7U9އp*?{|wQj!VB·o[4>X*^lg߽gueZu{Zl~ʶ%ٔţVUgl޺uڵkKΝ;755N5' @׷k?E13)l\u%^1jM7^7iuknn*w~|]zT@3LJJdѵvh|hLz?֣$X03W|0/#]WVUPPyfV\9iҤ?F5' f Io`2j^Wiz_O7mnڞ^>?8yj*|>(iߵrR+p9y;޽S_Dm:AVcno"7ѫ>pX؞v_ePr]ZsҠVfc-]ZK</v[]]UTlknn;s7jC4~3S3*+KJ>}˖^H쁝MR#OG?:/^5|d[|F}-WUGB~gsdd*1jؿ6?/uPvQy}"sjժ%Ǐ|\XYYy뭷r'wt>v9hᘛyV Kԋ1v}_e5[mR(/VXA߷mQ!yz?#r뉫L婛Iޚ/Dh8B+Vw}_|!~ e} 'guuE~z`ֿ<\AII %.0yǝ2m7=_Q^C;_v *65!)//2d¯j.$%tG \˰{/\J;17V@Nԋ{.}lڢ4by_O$԰$oo󫯷uwm[זFnkiQ#&6GBvƍ7oIS'o9w-\d-{{;s^y홙(/_>Xp!OdyAۤIT[v|h§ilp KU5qDe[}-ݯb~TXj2"ye/,Pr'c?bЉ/Z GhCl{-|_~CZ{333U hp.OBE]d[oq 7TE;_f_|QYYɫQb~0bj/m]]]7Ljj|u][y5rbvԣ)MX]Swkjun^ l׮ps壮ґ+3vC mճ+,))Qm 4.~8o'ߋvn݉%ߕWo?~}/˿>Y!UGBE8WXpI'D ?%c=}R[[]]}ꩧJϐ4f.,((~G%ҥK0#꙼|GSżt,S/wo?-vwmoUS-5`/_4~]q*mպ$t05y). 54x9}'RE3?wN'.vݼ֖Vlv?6 Y-;> .ܴiSEE;HOOJ.LOݯm`oimyr3K}u5;e/.jye7k=\~z?EІ8zJ%ts}"++?N%_="$zwn)ʞwm;sZZ'cRζm;:-_Zɥ(" yg_vIl3֯t`̙3a?=~׿zl֥.=Ǝ7FSkQ>jjY͛|ߖ?+b$/ǃW^}'bW.((P]p|g?я.xժUjCH {ۿ{ZXbnFG<֯_˗^zi]]$Vc9,--Uw>| JJJ_|ͫzٲe\HélFΛT,|«Zg*?]mh/+\Mg06oYrEcg %[*P0cƌŋ|>^ @ًDfyB]3] 2F_}G;OBo}?]ec]\ޘ~xE^ V7m3}k1.}%]4avsG^v~ ZϚ5gڔiS&jڔ2iƎp≧p=h /U/}қv;#%o\s#99ٻ}t+xpń;}ަZ2Ԟ?y[9{dƣ+MqՏ= <ēO?=sϽҜ_}7kS>=<xNO'_A 6oʟi.s?`H{'YJDeLѭܶuzӭ=;yyu M:n?'9 _5םsawS|_|QXX?^KAWSI {kW+ C#Pp_eʿ0@e˖s9¬Y&bj:K9^:[HO8bɍtj+z{x3!?wP۳yG}tɒ%]"l7tWWG;68_iii{ׯG?=WĿ б}Ov{4>Otulx}53̠KP,C`[6oظ)؇>]k;:ϭW^>?gM2,{{W>ӛv?Z~ԭ[kꚚU5C{}/~'C/wu]Рv GhC!=zhPÇ}*Upay~(nv줅o.\8`J >,$TLpov巎Y3url[>}}eqa1瞻0駿ꫵkvttݯ\O?Ȟ秝r_XwĦOV'O{/><3++okW]y#y֘.ZsמqKM-$Ⱦ͸9$/}ݗ *?\B#?V曔1}UvZ|zg?kjj3f Z#iӦ?5 }8S/g7^On~c~pYΖ}\C[Y6Fݕ6or,de?"KFc=l2I05.Oj~OO痫}׎}!4֬YvQֆ#GUVz.ߘS9mpS^TO}}5;wazzM雾K"*=/|i:U5{l֞{L_5vm{'Ϗ?|ꓕ fԍz#&y ,H_XV?_ÕF}YƥyߪKhO 7up a-Z'UW]X|3wu_=C֯_OގVk/_ }8S/`@ zik?q/<~lyO/Xw~n'ݧP7'?<{?ŶaI/-d_aXښECDz{j(u R{}޳1@^:>Xl۶z?t;GTzǓ#Ⱥfӏl^/5۬б"ݏGvX]-[PIVV+_p!k(qɡRp*N:{Hm ٟKrb+]ۺUCѰtݏm==}:~7|}}0ߝr\tADOltBM*Ap։=[f'-I$e}3kx"_zzŧ-iy:kj(bz/w|Do>2F_'}Ro %eߟuOgn#I"lS=\\lOaF#''gĉ3g~\bjO'۶qo}ɎǍ7dȐ5k쿻?lذ}٧7o|G_}dlNsZxHgokOƑrߺ׻uiϝS=Meߗ tmMfo'S#}a`G~Ysf {'pBPDv ~OCcV}c3%÷y'P^injIu&N];U>͉leQ{m_' psVlo_$:nSxTHGҥKk͛J%p*-/|BrwxUe7\C>uyya:9rv\"ۛ=8^eeoI |===l+olZzm~|+g?a7ߺ>+6G5ꪈvvtfo?6.p?!OV#*7E&>n9@|{o=Z'#>ycEC*bϲ482ܕ-_#+˩kpoGU_=6DOýM僗E_ !ill$OV TLuwLFJ]Ztm랒_ 3q)6N;+ t"D),KZw!N?Kv5m=m`NgvBY2A }><o kUi= $1bvA`WrA-j}?_q{ei~IIIAAAVVuM FwkO_8:s!aaÆ,VƎ[^^òpK/sډN$W/l\?!{lN;mΜ9ŏ\Dg3[ꮪoiiۡ>_#K,Å>\fU!Ƕb"bw /QU+p*^wwNOY~ǹp5IX,*nnj,̏^:Jpjz2[lo?{^ O" Ab~O:G+~k=_?At+~.4z׏mimT@&_ֶԌ|Sյ dcT7pE{c˿ q5h[]bENt'%X0)/oY59ͬ.())),,,**Smv? a[u~{y3s? MӏjҲ w(o]6y[Ud嗺n*k(3"<9+w[j%TLwR_S)ڲfBH3A@#NODe*^zVfW=O7nKJJ ;9:V:\VuQ YոчS1I DH<MTvzvٲezƍj/QPP0uT:}8ӝ3hϲMV}bɒ%7|נ(vnDNlv_8~i]v?Yj>91}v."wBv8֯n bOݧ<AAAZ($v>}Kv^kaDg˫kWOB5fDkş1,=>v2_bC }@ׂW_Kcv~Lo}>}Ov߰.ڭ$v%*_Z붒`'Dk{}vd-?m<-T~v2-}>;oݷ?>(~7SI쾵An+#=>}FTvW4o~.$}hwҾ]*!v$jvoiR[I-1/R7x}!}l7w6 зDg+klLNv>'j)];~`v@ݯ])z~>h i@? f`[bkWvK,v_J8~ݷ ?>~L)~ЇDim\ǎ_~/ϲx?OZo;L}/le}? @ݯ@v?z2ۘ!݆t}~J|N(mTv%J_OvCt[ v3}aDk7ڎ?gv_}S@ߚk:~v_jawA֭[WTTT(WP>DOTv~<k߾awMhL&$rgo%!9Ƕ$~{vׄyXrX׈.Ͽ+"42iXҿj V+'j'esH. %|Eb g`X QWO"c=9?%~.%|Eh;*]Yf 0ư@Bݏx>i_g`X QpEqot./<.Hd'Ɲ6|EDk7k1`wI`gg_'aM>Vٶmیsg> /Q|%i=p`wU`?^~}? _'d`wM`?󪤤{9r8Wio}W NjjjNX0BSrM NNr< "~[G^Za KCgg礋wn^K  v >Nw-WOv2N/`?_8i_`A@lLj+sξS_`A@lLY3_6_`A@l{ɇRM |Ea }\% %b֫IJKU RUUu_ӊT"~`A@|'0cW %k|Cn_? `X ZƋϿ5պ|Ea h9SCj"~`A@T[۟O}Op2 %buw$%Ժ|Ea 8vg +'v?v`X *NI}`0,9_}ɜY "~`A@nZ"~zo|C@#gѢET2{?W_Rz>ܬ,}$P{_?a=˗/2e… ]v?_z[n?yQQ/^o}$OyԺ`ς!Czvɓig}o7}Ba Hxf5II8:|EvG?ϫĸqN>d" v"==a/XYֽݏ]7|ëă>x!Ih=P &AOOϟx O}v9.*1mڴC=TD *Oz߿Θփ?R_ v?cH> K+_<)#PA( ' go律v2d 7ܠV~1a tüW_O WEssf 'xn|Ǐw KeQ/_7Jp+v?1c2zh4{'?ɱ_ra `X ,nȃƩWOtv6O31k֬|y4_g`'jQ` v@hnpRҽw|Z|Ea sNߤփ_? `X 4]ŧ |Ea lٔ2gnH"~`A@罗ƌ/W>H0CG^t#ީC_? aq ,}み !8hNZ |Ea `|ѪvSSု}`0,{G0dc7_? `X /^9s_Z|Ea `='V""~`A'mmm>e}`0,sܞtCU_? `X[GCvczW>Hl >?fݏ}`0,ȶmqK{FG|Ea @93<{j=2+v$ Kr߅^?GG|Ea @&ߟG.p %moۦ#"~7`X #GݡV""~`A-)?sZ .npRҽW] v-x2ڏgz)Oݏ}`0,b^|= ӫvv&۶mZ &?pa MOO>PQ_?SM`X@׫M}azWOv?%>pa }N{f_Z wpQlk(;݁W^[ ElDTPA@TNwv瀻1˒r}wfewΜ}@ P==q,&+$+$>!ݒ@ "++IscV8.+$>!ݒ@ jT2tK@ C7(V؏RABr- @ o:K !O(cH$5DC[5CtPƐnI !99-7DR#^!9D e @ Q<q\ZWH}BC%@ 5usǓ{w^ڦJ !O(cH$e}OpSi!^!9D e @ p&+}zGweK !O(3tttuF%@ 5JIў@t_r- @DEuWU$x'1[PٮVFFi4=K )3 O ݒ@ ͙VÆ]:,%x䔡x'nI B%&QK}8SmDk&[PcQ[ubXbWHN~є5- AۧNMIN1rScNXbWHN~5- (=pL [{p\}lDk&[7^^^ݏJOǭ{jR^7 S^AtB%@ pc\?PWǭ_GЏwVݔR:f WHN9>LH$nnND\`t)n%:۷۾xܿݯnI E lAێ˗gһȟm{9z7QvOtfB%@ ;at2w՝ܬ1 ڰbuZ '}e )s? PwCC~D%H55]BuGfT(,4ˇ2x䔥{>LH$"o؀?=(m?G"7 <ݗԌ0e )BtFЭ[7- ٤Iyg .zqcAf dVjn./#/9eC[~~@l5- ဢzׅ ١]8&7+$G\~ G_LH$"lviԴU8 -j6kgBpMJ7 )kGB'_3!ݒ@ pmҾU+P[5P=n)=@tۖJ{;S'_3!ݒ@ oKP}߾kP=x(gruW;S>Dk*[Brr6CޏKF/_odˇeйA׻t[ #' ?5- b%|=f,DŽ~ qN޽W [>@ݯnI 4Ν8(-[PKNR ߿G'<9w8-ͧ ^!9Dk"[wH.\1EH:P@ 7]Қj)'}f]ZLH$l721E=|Z<e`#P45L@=bt  /{RuN!^!9D e @c{"pεNNVI e… Q7((DŽ#44TEvhCT?HMM;|̀s6k2cqZ2tK@yw@S+>\5腡jjj8&T!o) N k(\[SƺO?}Dk&[͛kܳp/^coo?O'Mn"TՏy $>VxԻTr}LH$HIK$-m=n$;X@M- PI;4(|uV6Xڋw׀6ݻ?SCtPƐnI 4jA!j4s `zĈPI:ߴ^*P~>gîzj]kk Ԍ<4+$>!ݒ@ hoA5qh۷A]raۨ!$7[*8ێwzݯnI 4V͛lb\?%%x$jti !, v^ T]}a1N?;ҥƦJC x'1[͇;wkutzFN\5 !_e!wǠrPxtUPK;Ly tXH ci4kr6;nWH}BC%@ 8ֿ֪ׯu"J/vm ɸ&3Nٹ N9.2߾Sk:sToЬ^=I*n> !O(cH$Djjԩo/G(a#ݏm'ift;R|{A^4>Dͅvau롧=6qSEABr-  ~V=+k;cFRW,+$>!ݒ@ p|\^ii1˗ uuQ4Ihwt/ 01CB7+,]gzOe+ZM=㊅x'::: ݺu#ݒ@ m۶QۛWQboocv7駕۪Eoߢ_맩I *@:8kf_4*yt&_]!O(cH$ܴkԨ7 7oFmcGK O E jJ7+tn[C c=9`9̵= |Ǯχs  )KG1 ˋ677;wcrrrJtKZb.]c@m܄ ȑK!X/ZwG-qq}n^| +94.. U-C9l6M$ުlU}p\Օ!C<{·Rv˗wm!ݒ@.gKFfffߍ݋ԩffҤd))qϞ-[S{[n,5a>QYYY `}{:$T04!_p|xsٔ!ʓ/cpaIq#^!9D+ 6 Fϟ2e Kv8;+- je5>OSF ~ϫWډbM+YtcyǙ,V~iv#K:$T04"-;:(>\5 Ր5?*CtҠA@1i$--RڵksvV&[՚ׯ_.pBK.()i>xu|7Ky×,ѭMB2 Յ#6P}7U+$CVVV^^*- jy4n(ys-Y{p'@`! Mea֭4p7u,wWѬ*ԬC۶8N#pP8~q3ʀxݯt9>>P#*- &??f".׫t="9ŋݲmh> JJ_5(y"ݏ(C׮uԴ;?5vcI_?pL@;O6֝\\]]o1001n$WHNy>z/Wbccq!&&FNNB~n*Tl-uJgn܈6פBX mʯysTZ֞tpX龇# HXy%\KnJ F`{Ɖɸ ^!9D33;w? ݒ@`v:7W]Xu;ٳf&a-}\ 暾H Ltq$}FpSi-+bPps ۫opL(Xڙ]/9z ḚPPPp|ڲ'u<*CtD!--MoԪU /*- k.+a qMTZ^߻u t֯R]ĉ;vPSHpBSxһsdݺT XJp\w-\#G I\L0Ppdsq &DI֕*ŋ@Ikr_qt*DNpP ݒ@`5řlteTZLE(5񻺺⇿?():[80nXz_O!ݒ@`&"i*Gӧ_a|eׯR+:jlcm3]=AdK;wF&~y ݿ;W n*a‘㹟3""cf*O KvbX B>%j2m~o$ =|ٳ8JnI 0d۶mhkkT>t- k^fגiЀ޾`؎OPZWicrNEՌ[:uΝkho k|ܡ"Ԫ*s0j Pp7yy~pP9yPG6B7WHغϫHW{iܸ1cvڵ ݒ@`HFPgAT<,[m;hFUyuBokK~}\VV%%OpW}{n*QF;Jpӭ.&3"g(\d] {_޶h]+ uF5t$9 nՕq?~<]ynI 0uVA[dT~^t>6t!>J KJ[v阰q㿫P4NwysNC7c۫&Y~'ky8 T_՞jT %&uD=Tmt2dnfMUCtPƐnI 0!<c8Z?"ݿgjjjqZ]GFb)  b/~b%s:PY>+)S8&T?+(݂꯻.ѕsV]W WHغD+ zNIʃtK_4^Vt(M)oz++VO.}W\XS~O('.n8.ﭖ<\jbTW^1޾p\e ^!97'_ibΝ#GlԨ$閄u֡/KՖm7ܼrԚ-cZ=]"WAsp)F cB'q &xvbCBp\U۽wC㛻qxB9Ə~̙3閄 Gxǥ>ŇgVRy}q -=֦ѡ>~_S%9?ÑG9qbUXwNlj3nMJB g%..>008&&Q[Eoi'O/?k׶\ho@ooDŽ'#Pb<%V߽qUEc&36@BrEcDAAAM4AA%ᯧ@KTU{gή0O=8Ƴ>-9PT? ./''NCr qƎ圜D׶u3 y9;{0*]v>|DŽVTp"pvp8jjHB?lC[Xj,ml21ɧ!vvgܴ}mǏܿ^W++kOP&&إU+Q\B]p\!@*r'OC+%xzttdW=Fŏq\ ^!9boW\\\Bt(.22u Aǎ8cǐzyիE8Iڢ ʧN-?q0!TJh<~emwHlY ~3\1/ qG8 ?{ջ!ϧ6soU{nyOVbEt?6>7kJ#66vRRRM4iܸ1ژ0aϕ 閄2"Nu FϟV11ٸHƾ}ж;/g̢ب=SGo]劔~8pN8;vȝ:cKVTʃK څЩwofȧ=׭{h33p&"8tDSyE׵-B)rMTa _ODVVsʟR(+WUx䈧qI>OtXd?K>>>C Y DH$\g8hNT *&/x~m?v;꿭!-L( 8hJK,n\١C8(duMUoF=r$qbܸ@+bm]K]ІaxEwY8y2$,ZWִeԟ5|[׫{wT%bbbMёQ:6*#upJJaÆNNN8بQ#T[2GSuܜS߻!RfyqWml/]m]6-|]qQ٥ 8\!/1YjU;l=ujNp/Z6m<==]܈E<еYFFŋ-n/oKVn0yq8FFFE?jXr~gizFJb͛gwՁx䈥1qn߃sWwM֠AT[2(}]~g~@~)k^}s:UL˖S9߱RWہWΝź;sN7A,J0 287kg;@.@ujj1/]h]Wx]A[P~7UUWH]hD+o^vի6ɭ˃:ĉ O% znRٹ8C)?~C[^W'U0WC/ @]G{c+6nz5 yx&`{p\yaeWY0Ew8߱l6~)Dnn.킞VyM';'ml 66x.~ :IM5kk.PYT<+V5hCG޷MU#3?3+~E{vcɽ{cgg7k֭֬[7;u$//?x`_Կ:upݶ閄*IH^vQAgr^ɴ~A§/uB#GP,JoِG9Sz1pn>O>[.ϟ# WڌFU Ǐ9:aGo^S/ᙕ_?RkйZ <~8䤧g|[:kdD=nLuJhW6FlX̦* aې&8y#w ?ٳ555qիWՉ'LMM龱ܭ[|}}[^pCLL̈#q,- U#iCyMt)) G6.&%x\ZN7ӡXtڽ ptDia Hy=1B G>tݵkQ wG}g%Ԍ1EէJJHmg&77lN>VqxްSn8(ϫH޽{{7^"d[[rĉhojV`%#Lcǎ-_x@ 4T0+$G,ݏwtCHO'_NtС(>7~~~۷aöqիѣGqPz“'OpEvvvJ!赑nI((\mAHsrrdddg:=yLL xۻwoO~Ϝ99tKBox#a>o=)$ϮC ==CX#y&&&֭ 7tNs@Z ~ &! 1wF7p,PLcquFwoqaEiH?ts@eV(Qe äOn%0^~-W$-n kgV=I+%?`gOuZpbKiQR~JUU՞=KStKBahh]JIN] w …R!:[ROBm±":z }Nj<ZOJI F8GwLQi~~c<<b1[~~^()ر\49|x¨Q8cm=w*NErzt?33}AA÷oSU_q8teTKJSA"RSt9ƿRN7 `m'BBBvV7\_G/p,es!.Wl޵=WqWHX?=~%ӦM_pyQE[L- SjôéCS t"uX,q/6^x;ܿP(/LS`VHmuui3@wg EVh =y@l,. pׯ_tX]0w+عwtETs,+sW}WHq_] ?{FfJǏӧO6PW2[Æ ۾};бXAR]&nI('>مs*#jIxcO>8> >M\-)̆7Խa=ڡsURR٩8(}}w? ;D:ϊ7qe@wUC+Jh ^!98{go<ꋌ?=~uGd<-,t;֪UkvQPP֭[ʜ׏x֪nudGRІ7i1ߑ?u[?F1ߧhƳ<+n:m[`~g߀c\(I Hnjy]~PGn:zRT[""з+ʍGVgkEmm˟>"+n }WI2=]]p ڎҹ;wP Vy%}ҏjj8&(L>hVtuuI5KbDKNit{'tKB9W&Ig bDeƢb+-pWm;cxOZڟlcY`HTrvBG-1c4~ffY[?{\LڲeCUЏz\co8O'Er_ߊvpQQi?x7e ner2;!3s=ً20Sݺx*eO\sJ;/w |+pD%dl=W.]Y΍Zpkux䈫_일0ݏ'_#!ݒPN<pw_@)J0 /7 >f|=oijYX<ї2p2ϳg }!DJ ;]}:I?I{jI2 mo,(vU&HZځoG/;6.j@0)T PJ9eV)85붞q @Br}G/n'O(閄rr!*)[c~{=G.5Rz[8af Gex2i}8L~}cflA!HT;@ nlEt}g;|c.nۦukZU Л%xh֣G]]ݟ>-H/^!Cp+c^hB ae?@_1:c*:8E})Jc p;?77KE8ARR \l:v㝕ė@4JiժnM=U#Yd_g'PM'U5D̷ĞQ|iE-_teFx!2-P`&%v2g>Ɠ=gξ9#u4KrSSG)d3 }~_;t?;Oy) ;vtܳ'-^]9zSxKIte60_--_qPPPtҥЧnẹ#s)UDAѣF98С*@D2E$z{SHK$"+!R/mp~4ReIHH, IK9gaE/#;{}΃~ͤvK.LAA>ȗeϣS1VTS&Mө+S693䜆RNiWJ۬jpPH~~M',2Qǎ8B z>qrڻE֫)EoJzF9 C0[,,6~z##cMVֶ坿΄w'uvªh ]ݢBFΝ ).{|m`zo1/^D\K;|Vddd}}3z-bWJ%PrVYŠZ 7lՇ䈧ѿ8z;"g?:'Z>DŽ;~b0jlfŮI.4b|,u|ui1cB~BŸ&Roi*<1S DK煘j6_M.M-8y$0#++"^pՆ I=ЎN+EsǎNHUc JNViNQtQ]ݾ^ 4˗G}{'+ eK7iEBxbŎ={6zS V˖?!i¼kWjuFW#`sFyӃU גNNz uI#>}AKz:'Tn)++˱}U${{ ^GuѶIDAT6Sf>o2GRԔ˨!{} vC-442|щVGyFihU_i>SJ_[< c.t7+~عysuN>}گI{hٿ​zFX >ZYe(ª_?x22`9[.]jꑙկ81|2~[(fjc<9t]Pnn8(jg:ݗR>mi<=0JtFQˏxP PCX,և cgP)$Y$σM [E<9yfO9Hi+ h9b1dVm!{hxTG1z_7_ryPRriSp6̓_BXtDhegw2+Wm'sj+9O v^8(PXA3gZZ~\!vHpڿ O__Wy{zڷ|nDpQZ&HG{snnݗ1u?g+g2#~:v˼<) G 9}6mZ)-d櫧Sպ{ ;Sp B4XI3[?>XS|k&y1@:wBv pҼMG>!RR& wcctXZgӧq,eK{@InDb\M#dZLcD/$@V8O< Wd>uۀelG║bSD=0scLUF',kb.gsp_o1X q̌2Svy8f}|Vu =wn|&!,--?R繿Q1ŀԈeξRRc s0@掖K@fHW\nuKuv1&M\ v-IH@GGէWW!OqeALlY_8qF 9DR /9ed2C5C4uP^/pc\;b>K`~d-D"ItE~V8mGt!3j}8Sg&`:_t#?cf>Jp19,I55;w41"/Xh>wv_ ݿuxEz|(tіt)Xcbuqq30п@rr2neюHX;CAcz5׬ST:EQRk0+$I>;e~j})S3~ݯTSݏ};ڈB''BrPϞMiHi> ({? ^<=EFIj}ƊG!e3*[]\q!-- 5~,ޔ.R5dRaM8fǑ{^c.LVTE=ZDÖ/ϥ+ {q\=i3_S\t"){y}70{˒sgWQu1!8(ϝݽ{@~ 8vl@oN@5թ舊y9\9f전c)8+x(ݿZ#/9e$gMuK;;66F o"Pv<1woʘкY\- >aaZz?X'b8J`93\g~2<1QÿYNP\ކR16 Hyۑb{7cf ^vqqH/8Tm((8~`'k Մ 77[S m\ZH߹ݖSPQ-ߏJ,n:޲ +P4r΋ ]C{c:ycQ 4ϫXS_4OtfR fѣȭ7=,H(njm[ʘhٳ92qvj0舵:66:Cv ω r.:d9II8搟F13W》ճuvϫWqˑGKi},+-6HNݮ.$'#?ASX7*~t4=b|KT {p3ʽQ=i=HJ_8~bɛi80Zy:uj W+(T7jo#*!riСsgʣ<\™ִS'偗wЁE J}!O(3i} ڵf(KNN @g),IJJ0ϯkF1IRud~$S2q~[X,TX>n fȞ8d$l^t.(:஡I,ƯĮ|v.Z@b̜>_zzh8 ۷زǼd"?V3ަ~>)s.QTHݿ<~w,>>c=ͳ{ppwW{^`q*BHuW^/_^WB= r.,Y{RԩğaAؔ*˅ӑHa{rq\;\]>j?=䔩#g?@tR3M83ĺFAFP:5n?8{}+8h)ΜGc"ω峨i3 ;;Þ=\!OSEq~aU75xsMPk.._yEW}{ۻwNml!ұBG})jgJc:E :'DPiq썽jzG?X.,Ftv1$ޒ[mٓ;^㷦zAt_rRcgO'_3vĉjQՖ!!!Chݯ:=Q77mBq۴ MBG\'}VTq[>'7ey >^D"AfogT=[ډ1 》[8E"sO˗ևc? ؠ]_'Q 55;Mm{Bk|K@y,5E)n%11 ƹ>hd&^1W_*)q\,}?; M<]>|@_EZN]S'}Og'28bspZQ~ݗrݧݯTny@Q1MZpmƶ~ȕj\jnbS[sRRׯ'3_9ϏU憟VQC&8ib!ךS "(Ǣxon0'l. #|xxi_>X,#^c.1b$1PPP`-?ݑ? @Q ; 8NC6/Xjg2Ź} 龃/ \L@G{~+ 8=1P8.w<\Z/ ݗqu[{!g?LC3Pv6Λ7#m6tH(+Qb⑄͔dzyg/9¼ަl6V,93 ο^(<^>d.1 *cfO>\X@i!S[tŪ3fWr#rtEÆ8f-+g[ܹsau  55\sp _*)Aj0Z71L'ñ|H]Wkgf*_`y+Zvຕo!*7h*ꝺ2ְG#UlŘu+(q$J>`a Eg1DA8|9u0{w6r oy; ɡG》o[;峚5Ǒ~`4m\8'iLv欴KX޿tHO"![NYՐ5^`H2{}@WJ[ZZcZY ?9xڒVHSQ4q!n3q‹>}<|NEΏCzhbMp<k1;|S>qY_sƑs;VJ/^ Bt_rJzO!_Өe>שٽ;8h/%EUeADD,`5iI>9pm#o&b[< a ߮ y+*51wsMpbs~nFݝri8㧞:.&0\%]&}]y낅^UV8H͍p\[e|aS{n~txֿ<c{4 fNg-g "%%龡T?3@[FF@kQWw()!w %m۠-[pP ' 9F!^~}G/iCq_Ǟ^Qf vtAy}7rRBץ[^+h=UQeO}'c8>L$%%o~L+ 8imK]afǎeӲ)1ZCt_rC)=aHWy~~i$/Wݿh4uRDGϜiVmٯ_ΉH-[l皉'>i'!l/R7p( ͵8&t3%-˃|F\PD׆/?mļԍ k$S/=tw`Ν=wrrp\ VV8(<ɓeή W.6@Iׯss %DnjDqɒ&šבȌQi0p$,u%Ƀ]z qR+C7>ڸZ-V Cxs:ڻW{Է| `u䈫_>zw;!~ zuW/cg:@kYyb־! 3{!*{E Kd':c{UMo6 k1^|nƳH\{W\D̝ W!/9}΃GݐO!_3^t I V!I-;mkҹU&!aaj;g1c\Q\H,y!E[3.;Wqi\偿Y$7:ƧTPPQHz8k:O(qiR ۂW4S9sԙ3|Ь=t̯eeXxR>/^쉉|]ֳ]ˢK1WG%-גpPLyOabFĚ97/j%'NAo.p0bO26@V얕K3=w3]ʉ:8:ŏ?|}}٦ρN07mbMݗ`p}CݯTnqz vQ\w>}z#jԿ8nlƌyܹY'sfXY GaXSKX;G*dJ)(ׯû/`w1:-.Ώj`$%sjf{J \ܬ0BŌsxSqsgO䘌',ۺ#%8h-䘯?zt3R8|U:o!?.]j@pS ޽df7nbd!BKz|&|ޙ7u֎N}%'OZsП2t~,XBHNN=ԧUKy(;D%typt?K]\i ݯTnmp&S'Id!'ٳg>|ǏqSyjhwoC[6˿p^$_ׅ BC]c\Gq! ,EGX(o. 2-n5t+:|V=N)2}B Ip_1hWrQ61ar0\tn f>j @ch]_8 -hpU&&8VdE) 4BQ+V[[T-__{ LMm45ӫX-s FBB֓'q\tY;#Uوŕ>-w'"N íUS@/9~]{n S@{r:Mo"+|(~D%G,ݏF^H8c)=Dk$ի[ ˂ $XEwh7'N@wݻцibZn*9…ƉϟӡH͓Cj/ >z}c؜QDf^49ɨ1b<E,Ad,ORxXX ǧl\\<ߡ#֎xKWa~&66H.](cQ6к w \v*:K o?x7#((}}nbO˓Ce*ɔo; hyID;w~^: WH{=S{>ZU9wsV(/3b|oqm/_;wN < :~0`Խ v/nڤkǕ]eAt_ro.>Ϟot3?6>~ zuK>eS&*K$|t~ '_3^2Su벷9+E>F'O⸪6}/R!ɚYZR;|,\]}ybYÇkM)$/kא mow*y8Ũ -W|[oOPT]玽;KOs_ĵhnn|M<3.ǦMڴPu {aW6s%ڑ#p n$H/{3/UeQݯNŗ;7\$FV0>ԅ'lߵJꖊ\YݗR~ᔞtnw Szb,ttt`ե[5Z'_xP yyyۙg"M$/_ƱP('sU6}:IG!r[>^A;f)Pi\BNoXVV6!.|򖤧 :Ca]2ʵ; w<ƍñ(/[6x ׯHW|kZaVْ`O&z9< j1fYBYEGMMc|WBh r8C۶m?\N\Jd-'wDxhpp(λ74Hn,WUm!/9}A1D_(Dk(ի[f%jLLΚE者99ݷߴ[7tfd]$kDϹL}I(TC\1}yE 4NFu?x+s2}@V>3Ŷ"gm_~~>#tz[${VBNP>(f6'ӓ__^7+P()u?x*K(p,VnVG_ulG adx?|h4m…8JC8:رw-`_D>8ł 3z=@pzmݺXRtb_GG&/OȵuD=f_ }Nd\R !`75zbd/RI$ H{[VyTU @:up| YǎXS<`6:4~E ѵ[ .̜h_u䈫O 2X5j-3?4#"#S ؕq5oooVলM6+8yBF ]M9sOtf|9sf @GUFk˾ע8,@mPva5_8LNl2:Gغ$0ߧhx[`>"gw4 BS; UUNp,)S'}f5X,VݻW tCUp2yϝp]9ӷODWIqqqeq,U8 ^3 o7n̗暥Ð)#x+Ԯ׺uM,_si&"FG3е":??49BǓjKsϯXG,l6~2_3F2ΎޛqqV4R(*JMͶ5aCzW={69লƯvmF!p~ZnvnZXӸK#"ٶglnnngd`v;}&WvIG0ZZ|>Xv`Ñߟ'y}x]`.|SSs%˜@8LRkj~?}G6'x>@+z;J٭ͻ9ujs˚;wgmLCg`@Kc:VpçѮF;~D/zJ8;;+)|TpPߛP)x*.i›JdX#uVI a'׏.Jzb)c߰ѐGu䈯x>Gyu'_3exx80?>D'ZCvO=Di~={~r): I^X0|ANo)L>޲ /_~uwQQzf@~=!d###q`nux^W4O̦˝:uQ ّ#۪ZLm㛫:q,JglAmкQegѧjg_N8}6KonZ<7[(8DDu&SSoGC'TUi 36c4PƱPkA]<1EqIc7V2w@t_r7_>{G zxG'GwݯqRFeV)'hQ̯4.Ei"bwh^?Ydꘔϻgmt?+1| gJX89H_ΞMo&M2}!u+\55butw_WMuu19}p(ղgsuw2uWy ra lw mTMEΛ7U d0~/7/zB< Z]LH@~c RvvtQEh{&Ɖ\j7q!W\D|%w̲̓;:Cֱ ;CClٲ>t#pf?| 8FQŮ__urU%PfU3VVE pz''M.((x d@>:”ظJI)]}W|Õ}>Dk(tl^>[NQe{ ͳg>:i̕9~v5 a[2%yzy 7;ʇ8 k࿛7ϤW2.}o@iΣG8b-'f}3JA:4yMPg!A>W;#q63'7m'`U1N;v* w>=A XG'y:=!~FӦWeg#d)R,Փ'$ju9xp8V60x D쑶:`'7~mARagw/EqxF[`/!K'ZX AQVհ!5)_Ʋdv2| s))@uh28(j 4;6MCE !(`+mۜu̻o䈭ntcDk&tԇv 'VY|y﹫SgAB70iHZ}'{ kr^Zvnؐ:Yh}|33C~6w+W%'%%epOeCXX@(S.?Nłp(mR',ZMI]oQN&o# X(NU1Ehw38(G~1"k72E|={&7lxUhw,- `-pAtuSVΙjR] W![\;!<:p-[@JrJ<4_(Y-݀?AVm$AoǏcx*^# l&&i5J7M2iWỶ6Ϫtve0;ի67BMAj))` %,S5-"#}7C*DVδ/Hxm"_ O41T0$F!'G{k-FK2KXt߃Dk&t<6|.,D1c}U ;ҤpM,㌃& W4QTJf礤J]ֵf|%塀[ˎm an;3|${i /G9?BBF}4 XY %§?GK˖%=u~k.ܮtmJ H=9hOp*S I#888i<p~1dš'|6B_U Լ-CQ5F^D)[U'g#%%Utg²[ZZn ~zoX럊0$vt\x˨VN }N±PX߿_ 'wf^ ~ O݉G:{zzr0)!Β\1PFnJnjI/J="t p͓Ɖ6ח?;Q D%G[\?o o) Aw˩5m7fVqnء0FX(J (g稦GUYNF U]Bx˚-DϞog^WV۶!-LiaBQ:;pw_Ϋs{υ7M)Q+,A2ļXgp{n DO)=Po+ z G I_ē3g- ;@=eo$)cBf OFOx]s]NNWTë: /\!;v gK2)VsoFE]$T:Q?8,tttLrsE\ۿ~}wxxf nzcQAΡTG?;WSA*ݻnbއs(.AAT=[%h'kJ͕ڝ_1,5g?"t:uf'Rԍ6<[%D%4ݯ(((t uKy*ShY1ÿ^={Æڴ3b9;’0n|fl$999s£8P[S2eC uZy7*kg t)L/)(]7;;rSvT|~8"_48A~~~ D>}ϙXݐ:c<$0.@д#w/gNXqq dZ d=-#W_>}^<;ǂ9v-ޕ%z본/cuV WWٳjVq$p$]lR$#`ѫDhB6.ltuBan-,g ZĻysJYb~du\bO0Tu" {KK(tZ( _&?cIK+i/EJBt_rDgnlv}G-%D2n٣W`4ل ]$!Ȕ6lS+vr&Nı`v,]t?FT9O޲%sݿ.3\Yxz> KZԉi x|<@XvAhz؛=WX 4AQx5l&ˊc<#pZy~N $8PԴL:??ǂj|;KOf l 5MRx8u mtB F!x`$j""}t#'"ЗG([{mj>ѿtdZN)%uCOPJʲ6Οt?5MDAŪvL7o`_Uм{XQs9wb{版wr^Ņ]* ؊Q[FW O[18ҖIz`*GQb;+ɡۿ=>%b'g'tGQN.RU֧G]gHm Cvw/w"QtRjPӮ]qq^ 8̗sЫ 1/^HRdjEAA8 ǿ?<&%0'X Dvv A/+|"nX@uo5ץvm FV;Ղ͞}SFƶ{w fHE xþ}={tAD+ﭵЕ />.zVw@@?z h.vF];f|rRvEEŜ46Ǐx`vnقލBl!N-v9hKQTSߛ7ߺ5nz8NάtISqj/YDDDdddRR'Ho'ߺ +D%41~Zyuߋ>O8Pnݳo2t3E9`aӦM H) MAX'3bd,X>5"=zW[OQj :۲BCM(ǹ={vOz|^9^=ނ_F/D+Q$9)BeH~ r`M~CI~hWH.5zvB%Rn&X ޜwǏpuDeaS:.E; d`$.bӥKɹ^-5 ah64;|8)!!)XE:dddϽ{Μ8MX&Ng ^ǞcR``#/Vr}{=,}pzyDZ/]TUD| %jX%-+<sNԄ{C]2PGGv./~Š'I a :D'QqJfnMڽBz)B̛;"s#^Nݮ+9J`0CL,Ν;~ƍ%?vަ -p|}G[>?qmm$PB rc-3 z׿gO4[;j׆hJM tFU*3ҞE&tpTvĈpU*沃_BixB=i86P%np:'y:}|씻z5#s^wJ? w\>aajzkS@{O>0*FbbCoĐ 0EE~<^7:&&XIQTulQ$%q  Y},JFW8((@'3 RcG=pgOKkGXjɷ!!LR"Y?ry1kyFbG'9;e8(1j rOW :z`z[q !Cnt}3EH_ csȹv"0!)y2{3᜔L8G=RR 0-8|VoH<{&\pUTj]e9177WWwٵ^ڣ%zȕ)R`k˾ecz ĉZ"u}Lǎ(j| ( >LZw01]#M4v k|O! `cQ) :_})sF ? wD':swN@W/_ZXXlu9q pd!3IC=#uv 9}}g傂:S}t^VٺϹHV ;{޸S6x?l;ݒK&J]DmTI03 Fw@ {l,jAsS.mmسbAx#J2g bBؐ’mx [''%%'~iC+4bϻ˜1 =E1^ffHpu`{G8F(i )bJJ&}t89嗢+3'<<|Fǎ]4=G B+))K/!w:^H bs+CdŨD6 b-BghW<<?F .NPyy E_+aCK$vե ƨo;Bգ DQm( }u9bNBh/ AA3 Hi8TRKN)u-}|| i~l3 Q;9/ W0&;`@-Eb$/T!;3]˖\CL)IRΐYr)DHjE gObGډDky֭+Oe'8_lBtZj<UDًOӀ __uWXoDHCWՖɜR[Rު C6vHh%b&ˆt>}KCh\Of4|e -9!ݷ/"ϏK*uċO\d24:d5zE+ ZpMe9u6Ձdd7 (w pNAldx_jXܻw榮. zL./ɥ`U:AmP /f^܅Aʵ˜lgl{),fJegןpU2MSbbb`N9ƈtDQC9iGI6hx|<@ޏuZG~gdjD%G\w嚰#X9LJvNvi} vիޞ? _ tt+:Ǔ!Yt߼ FO@QC))HW@_NxD<M|ڐ}^:xkd<)ٻq&;I`yGWY h`}*6i:5a!!,3O?_vH8>~ʾ*7KvBT LgwIA&wGgNJp?B yipHٳHU. qSAK+F08fRpQߟ~!7:tDD:?Ob:s֡CTN™zz#55=w5%O\HOQPS|1ޭ[X?~8:g۞.Sn%0Am(=f;%GS_ξ<&K]yuTZ4W(JkrWEh0xp ַyO{pj hdg_{{k kՆZ ׃l5k fdddێT.cccwX۷?(OΝ<>Vm5zZC|ѣfc}l@#?_ q$jL4 ?U2F]߆ ׯ9mZ]|Fo߾f1UE)GF^.{ٹoވȘimmm 6BfB8%#[]Fo}.`cc$] KQ%Q-Z<41154|Sxs2&2 %Ja|_(0]NB꓍lDd,w0jRg--#yp_ݯԔ)o-s^'^ 0Lc(((?du.K38`|Rǎ٥:w:vkH0`̙b=ɰlZLbs\i?79/ׯG,M[B7}:CiOV1{fEL&^݉Owwu]"bQtG7ח1 Hݝs΃]͐c~Dx#;QUPq 'DC/JT[V߿-baG,YDddd=8~?kO|߼. m&# zZ3N:-#S`?U]w\@32ٳdG}r^iS%=s׬ٴiO+Nb|pBBlkvTҠ իW&XZZfx1(Uַ6j$a8`pg퍰7O1_PW,A%3 |,%%{JT zېeT ')7,Gewp ,,,-- clm[;Ԫpbj2D%Ft svǯ5|5p~EޠJ$&L+V#={ϟ(FPA&5h~|ى3_a,n[YQBO}v-Ϯq(1e;k:EHM>:I6KLD zڢ#Qj cy 5bvfH{ɹUedZݺfkk*>H׭]أ}{/@IaN3GۉsP$?*@$ILL?Dz// +'l1(r"UpC]ݦn}Eբg,?~;PDPKAPFT DE Em݋ϯ}n;}^R\L.v??G;|y̬&-W5&Sf#0?gl WII)))в.lf2׎퍖N#C柆X9b/oFH\n,ڿ !c5MX+Vmz uRR9Bgy&?>FFUUίE;-Ɲ1}]RAUWWwPABSS}*HH$OBt\JD&RR\lșR~|2A br|h/bqtt8p`߾$fekk KWO"3%eAGfT P4Fyc=Pi!I04e9&9F M? /442 .] } &7ψʉU((PA B@3MN:/h!6`R@tK VUw h>qwՖL[r:ۼ.gkG,ˣ} Њe˨TUV69qЁLY(ǏѶm!B6]?^2j=x0Huݻw崵gNR%._4-u]³gcA=-/ٳ>gTKrefgo)ϟÑ|-6;y/ +--X-XK1n|Ō m''; 4mr/ twp:@áق1ã$dd)s<^͠zbr}C)~ËfI±EfIFL5ʤGtOa[|`.QKmOT0'e> a]2*Z Kc(Ɏܣ7oLK R8)=z\i vsj>УLokXb-g]3 ^]=5.nMog4ɽIDDgFe(N^~{nCI aa?P/XYrVCvUM- W\w {D\t {X#h``"TynB\>< ,A:-tG#5TGD8Tд63S2~EQ(XmgPr…t?a1zzk֮^p:hqBo&4r}13 s_>iϜ{ Ro ŐR)ׅà}m4-vNI=~*JJ~AT1`鼊<-!E,Z2s&XMJgQ^'}^<'̟>ZJ߹sgԦME oosau@@c(]\ QFqNu'ȏ_aIUyyAE챳6m޶/!y Zα1N}ɳs?0tdH@Mȓ#1_;KaWrrnjc#NUL%1b徘}HMySAԡيZ j*Θ.?H|Č*ǃ@,Vчqsgײ f2SrHZ^cy𢘷F#uw)lU3lq(f >Pˇw`ŋ Nj__yN>gB~:T:cm?Mkl v5 t%5"!GRI1=#]ĭ[wal̝?,8PuCƆ /o߾-eС롪5kp\|Q _j-CYTԘ))^pHs#u3ϑ>> zJ+VC_.Qr3 ^!Ǐ̌~*(0ZӃ 3>(?ϟwcG,֔-ssn%t5A-yB\);BIU=/r]6s&SD\W9HV6_CG#"D {߽PP)5l$"Oݻ=~4B엙Sif֫IH藔T 6J ks3, 供6(x14Y֍yXNdbϞ?auöl^:eʔV ){8rEyGOc;w.dCDZ ߹TT5N`}oP]o&7fX30e>,SVmN;0cZ(71)+^HxkΖ-UE:)*ֽc"8CYVX9b/owgn-XceftB$+QTzn?ɾt+;"ӽ{ s62ؑraqeeیFNR'i$~j) *%#%I= ',y΀55(]1ګW$܇.YwvLY.dKFhM{*^%W.HRD*#IS'vEW 3~EJMr"].aZ'ig ,OvĊ2Mb5sQ7Ѹ@rp4ky׺e"οV:<[3BmӶ|GsM TP8Bs磺cMhZ֍[_O͛eeeqT ;=20|A.Bg0x-&4ԂmI6W%IT¼<:~H#S=S‡o"rH,0=sGD>y,22*QR {A*~c,dC5--wcZ@rWVΜXMnm, 0]=}26v!tnVzf |Xu>xpܹu8w[fʂv@@p쉜vo4f|º@TY2>洇てw:4~~s}בj?p@jZo;rg{ԗ/tMMMIIIuuuq.ݿ},u hD-&eExM+_%E?AiI\p"_KSr_kZMd g wB3B%'c` Ԙ9s1|5|=3ÉT]UNN7n6͛P"`<ڷ-pAXfJr9nOWw !OO:=x<˸#.r 2G+»u XTTԫN b`/Bi LY_JN|ks 5a//v(8 wep~&9+ 9=) "5/^$Ek$afF_Kk>T30qrrzn쥤\7g BqJ"NBNS9)UPPؕ-veYՈSJ꒧s}?; 6 rv7nX&4 :W2]iM㝝@߿fddB΅v1){akݍȴ!Cqɪ*oݻߴ!QrBMy"ퟱw!r_V$hF{3SS566]Xq w zjm9plH߇ UyˆIY k-)3\::r-"}1fk]Gt7ud3y^I.9;J" g mx,X7Qx,kwݯbZ3~jRO85SC'cH{v9L!y )R|筯oPxǎ[bf񱵇bs-N uUϟ?3883uxL f$>K`]1e2Q…nnYo߂ޮwo_*WK\4a<9&j]*GP7<='9?|ăZ!M émܖ_GcDk  1e<8>|Xi 6G PuҹsoMH}q rg`lT-?Ĕoy#,41ج,//OcYL+.ޓXfYTX4m]ƆSwʚ2SSS: vayBƯ[u_|BM@D^%2dۆ#Gݾ-,aipRчM1sn+?&;Q/(ůQ"zD ɝ"5kϟ?#{" I.!$a_fycݔ_4Fɘݢ I̔}ޏhqMk[X_jB/v`P .QG`9 NH~*3N: J: o 殮LFN ?Bȫ.P\QDe WAB]"(첆e>|`'X8zO>$ *pagqXXXȫΜ=)&--]wqK)`A5.8;qΚbh ƨ Cd-f |/8/OD!t5srr."bkL7i|7˗~nΝ˔96kV4 moTŧOa G@Bt-btp$Fك&eGy{''_—jqRJmF-}m.IiQ%LYXk'b3Yf} ayRiee WWW{Ι{؝feTE[P4fx#w< W۾S֍NN _NmܼqjRDŦA@rЮ]SYl't(vH_rǬ"ÕVްx1Y|IV3kT pMvh pp3֪U`u`!=~:.\'-µ$ĵkLVwfBo1y}c[`g-,,,MUgX C, _r^Yjn02U$Mٸqcdd$ɖ^1^Q/{,eVƍϞ=>pcEh&u{$˹s,PA$=loK ޾Aw䚗/LW)Ulm_"LR$B7 N3gyjja<[G͑7ݻo I7,;V(jt_TXtӓ)qڵR9bx6(;\[)ׄ}}OY.T9Sl^#6n!,=&RƻwD ? m"'KT`%-H faV&FFĨE! h)w˓E'!.w˖ 6heoccҴ)3↶u.?Jް;fnwwΝnXQNllSU!FM=b=侰\ӮorFTZrr Mcrטg6K:+ vԦCB de T!!o@UJ 7/&"86?nPzLb{7KΖm붴GJayccuͶpRsЬ7w#~ny'D,ߒY _O`O?Y$#cRwy VY㊍ p58mE^LU@l"#b1(!L-7@Ч^WsP7z^Ѱ+]:L ܇߶-lW|rW@у aɏxOH~YG2pg޽{]ĚԱFejQj>M*NgʸuCLXUGA1Lhdž(#pqT;!5ra̓0BZ)ssgݾi]s(G(Dhv: ǯ< U? R+:< ԸcN ronjz]CÎ;x#GGF$%'nfhȋ\XsV?SM.B w0\8:^(,̈́'' ֌l{.~ mͪ YY)  7.-P_#riWW;wàAϒp7BU5B@6ƒ2%›'ON4$]DG,ߓ^)/LfyrR:Ǎ5\n O} 4\U3yBiӼ++CѣS[H 5$ ᭈs߸MMY8Mk.@tky 3s[!B "wK"TP~AaTi*q.CW 8y8hЃ2qJJfv@CC߆FX>Ν;KBg7̇I{8 ew_ߊ`ʂ:#Q2SXm=gRDsX} )YX}҈ zp> vƌaڌƛ'b DE]!Q[xBo$gt"96rQkulS1c+nKT:<20زsdfEٳW6}W#f555/GvvLwn Nۅdee5܎٬@S5t{_yyf $l ph{{,7j}Éiӥ_ѻdUkr'&?"o>Ϋ*qIIIRRrI EpqL̬+1ylZwGC@,zzuE>j77{76(#bffy#:j+;-V!OLA.ۨ3"wu.)\\|>p3֚@\Ò3\\,(~*r+QoX׾FO:Nꗤ9!0vF !%9D u YaQ]Ok#srQXnBe0M?Ϝa |^QNBVCc5w S^ -Ɠ]r1VF?X::U8GZ8n/19ɼ/`D3lg  b{7 n<{O-ﻅAXGA(Xݘ+^v"ϔ1^qQ{{͛z53ݻWmڼqeeeׯiGfk%ɢ)((F*LLmT\`>>~~sDeހ\hh:'+V; Ÿ?N"=+.oMݬxg=\hJ:bb..0.-( ɋ|RvΦCgBY4I_  ȯkKܠ;Lb㙁'.a+-F$bEO) Kr_ 7cܷZ_a[$Z^#j_VVV8wT[SS9ŁmN9f5C^zr1-)86Q6jGoZJ^^xCx}ѵ%[HHЛ"-%̒KKuu,6ax"VϣOД)S^Z-*4{/#C侕S),zncÔjfkx>lcO;p#"{Sp-wY ?rV/C 27%%%Z2?q1{PQB,YYt>$1&p@5iÐfmԮDZa`(NK:W :Ĕ]R@7Δy"q69Qk~{չ9-;|׮˗X4㭰KB 111>|/T晙C/K= UUU nۉV_AY#lmJ̥1e Cl_\i޿'Ax\O<'Ue,j#o}|?#ϴBk;e58r rТ]$clᄐgܺ/&IRMSLM0O?NUT.VUW #0$iϿyӀqgao5B<ꁇo߾^r}"+WV_aii WF湨mr-@aWr}kN=8l?Iy @gφo̼&;,z,hgחob:韀 Y7^,a8: 3Ϧ9^<++K}b ъiR$2yR 1Dh f)tIER P^Ji~>6̙|9 ˜xEٌ!Sʜ$G&kƔ1u;(.{DϞqFF,+=%%޺nA=sSiҗt~f_̄XPbj8PI p S"taJW} `ˤ(5S`f;8zGxz O]ڴ)oف.pm3| _./CB]XOi~~5uC?I+[X'6չdLLƈ6#s~[H> b2 6Mu7_kPu*631[M啦}Gq<ǍGϰhݱL`sV yy x'' Mݻ~Uʾ~\s"??rWQRDQn¯)b2$q˙2?UUC!˺-ތ'՛O>l$b֎4)Cr9,yF=( ,֓ȃPCJ6f8}Ё5D+w_Pת¶m YQUU=Rb%T∑bxB};vL۶)Ǐ7m >99Eb]bb'NF>U޶ Z` SnpIUV:|j jzк Ho ;3&Lx-mI"* r!뻝+WTO}f_֭ ~K]0vQ6p&DG3p?MddJ+j;FK!#vI<.bզ]ZunoⲼAG,ߔb/F8_>ma&;}GUsw^۶'O֎o 9YJ8Ăt4A%"ijstvJSś.lS/'Lp_3!bTr$z]h_x}un(uʒM⦱1΂8-ɓ'"͝D(Kk]\\Rzu,_߿0)S@ӗ ^>E  ,**Z>ntlh0R Ct3e>ʔlCazQ<<279,&3e*Av? mbV݉/JbJ;HHmSWrZk˖I8gܮU烂/Hm"Q8ʥ}s& ǔ14I۱c 5pW3AӨa+ qt4lܚm2^2Mߟ/Ÿ!NfNS.!=f+'OqC  jwYhB_bpIIIQ_r묱i11!YuPPu1?'fb/YkٲevrrGXeڲ1( 2 }{ɐ (^xƊg0nRAv`u@2B;i ${^^)l' ק:uN#˗D34iҤ.ŋƍ+r۪g<,=GQ9X1^Ѓݻ`SGD8!ٳa28.o7kGhcǎJرE Œ X;rj<3]1ScRtvh 2L rΣLuXOGX:)s:fجwK~N><e;oǶ'U$h5|/GHl4w1*((l߾#F0CAfTyOm=)rϞ}6B: M]~-zG-i']]~{cD;*dmU &6&СC͏6I~~~{Z(e>ŁfjGb,77nhYksQMlL~ g7pjʔ981Dt/_ϩFJHH(..޼&ѓ'Ovkh1DիKꆪ=$gX}Gc?Rit]A7mρ Lc~ȉib!r͒cffYII't4 w:z+i\^lEEUEBC"==6(D}2'$RC$֭[OH` .z:XI R*F(nHKKӎs~=PFIA3C1119BhR< o;Wq כJJ[ Հ2q`6pر0n*`$˄}hGX81bT@_wJj o-:9q"S挶9(G~&/O՞վAL*sgV__rev (EȠd ,<|G)(8suo(P;r<\9Re~%AT_q"ګW>"dJa2.vk4֯eSSSȳ3s%CYЃlh|l~Bo**w¼PrB@|qTf7~>Ā՚m`ܸq6m#Gl11}E;4Eվ]֥ }`hֹӿT͙B}@G6{X r'}1l+%ms rǎ,~ݵ5B}|<]FsT=ʂO;]*!>.躮 %ӦFF уÆ9WWq"m[UT$xQ;CΞe@gҸX⏔'PڿIޙ!B/~ ^E QM#r=x**Zki&]ޡzstޝ`. gpWy.HoII !!-ILLrʒd&!b'\PTʿ|0> G4G1W&O/$gP- u[^ȃזmvD|V#'r?rQQL^I+I7o]{S^1ؽoN_߁<x|)ZmGl볽Ʀ(,EAA&z^  T (H@G46/߳Н;7oHzz_7&11aŋI#$"Y=Bo7n]STxo y*fY+!,i< ~X7ty۷i3Dѱ#vA cM,LV^p;=GQ8m&#?pu=JX* YdMalzbbrS}1fn!C0s)~I7̈ά&(1Y1c>'.. oYYhkmI}P:ҁH=|̛RI PT_$ҥOy4\? KVq^Ad6Tl0ٳm@MW}]+Hv;F%_K;,K9SdC'Q~]PL?I[GAucjG>gێ0SLDPۑ?~"@~"yfHyIt{XXkݚ Xnl7xmްNߖ ?s;'tDj'5ZG~ ʈܟ0)spK_ߤMXx4 [[ɜKg`fVm{vqD6u@!gF٫~$A=UFPk4eؾO[⌆5@ EP @ _CBrA'tO\=_?~h- ʹiޛOX?-m[_a!ZP@/]V gϞI7'G54YGq5^v{fWcfݻ<<~AgYl9iJOm.?otZ+zxLt_\7"A1KJYYه=' ջ9NHH:{%u/޽Neee-(QYY)~<=jW }*}؆_X9+_|OR'yK!ur?fcث4p<jyEă҇&N`yn`ܑRaǻ ":#7LqkAB@b_aSYY"U=X#If 15.H2jݼk>*|/F.8!033 ._r.\ ??~ -oذ+(8] ;T4+Rr86 :+kdIKD(a<8TIi 犇Q~`#܎c,DEvsq ̤0uAAւù&׼U[myF1@[8!!+ϜtYcSΰZ{Ne"s6E$"eV7C-'P)4RئKmZ/~/Wr=sw@-, rN0ޘWb^rmNܧxg,kjj,,, bί<#-M{FqsșgOK >>/$$5w䣲uhBAHŢjiSz~ x W {e>qEL*\ 5B}:[KM5۠~ACNmfݧώN ( aȐ!xet_8p;`mUֵT˵Y:| \;'3Ei)vDo5~6q r}!m{( w(F|X./rU񒞞sUd{Z|Ć%ܹsʕ6/0*  ^)&y@>~ ʾƍPb{׍:\j~˖fLr4FIkt.Q3;v [{ : R-1zϟ?\O7GWSbտkWO]&{2Nph:,/E]k"hNPz!?>h[d/Ig\Г?>~'+cjB iL[OmXƸ.tϟǻ<fP{ѴiCzUddd6/'ٸSSSa%@~$Sc>BȻ_9HJ?~6_^|I"|>}F/L命.f<݂N WGii #_[=}юLχ CoEg|dgjtzi!M(H[3S 9aćl$aUYԈ#^V0WXsg޽aSQE dpkǔ2J^tXL.PnCk. ' ecTbܞ e=U T}IE3)ܠ$m#s~t=܅ŋUg 2>-豶?C[KK3eBctz?p1 M7&NLW$'.Hh!fΊ:}KIIIlewLj%^ [7Bcpm YM77 v/-ǯ^5j\Ư_B}dЪFg϶۰ᦆ$6-\EIOnb|;y }-#р|h0؆ˉ ??uO"qLLZn= v-V¡CxP{[bx=%Pm07yiddT)|Z Bw)4 :C"d 4jfV/@bP xF;3cjW"o")O~ODX3mf~ZELx"R$P z|ɓD$eƍĵ'WʺtɌz"\p)z>{Mi𨷭f2 TP*Hp%KeFGΜizʺ^ǏӅ3gNi@9*B Є3w 5rd4EQ>S7P%Gԅ_rJQ<yԇ&{cd-ʞŁ"aT'O݅jɃ@VvG$>z~>8MJJJM}?{"&~yDy7s03v>Ya"v-,'OEDDD?LcZ~*<njrFsa;ׯ͍*UF̅}Ğ3^Q W;B)tGh޴G aڔ4ʘPӧOxjQ!ֽ̟y=#̭,::mgu ۴mCo)#?{殯/RܗhW%f]:Kt}}߼ፌ9b@wY@+D6S]b ɓ'N*+ܧДӖB0݄ʻrKpgsJYEbbE_g<`4KͅN6r&a' Nf0puPke::5P(*Le>nh>Nd ɯE׾q`I}ThMQ{EAׅd9!Cʉ%CKXcՕ!#e=zTVRݻ-[ < *]JL+~\Ȕ9P^XR|~fiYag*d1)EKSe~ywrv*\2lTz%HH4hЕÇo?ڿABj&?tժ LSE^9W TJ{)TKk>BoŞ8̂idg3Z}C9ֺzb$ ,&~ aXYBBS [s2Y,\^ABoD~}:OΗ@+z.~u%LAh,p srMXe߾}0 ZZZϞ=[zuUq.9;GzO_ يCr]k2}1iٹNZǃœ #2$ GOYF D?i[fjP{xν OG[&)Ru)!šjX̀GόhzTQdzۺuA5 a&ă'DUȖoEy̆M^s{qCXٹ3AY9i;u _PJJpq3<6TK_]O?W?k0JMPk HLx9xYb\0c/P`܏7< Oszg 3gO{߷wae_ rvv>2otj&uP<%)xÙʹC/`?ǔ9ϟEnc^PRbRh(lMqHٕ,Qy9fr? c8aY#JcWȊUiZ_[GV·ۡC3eÇ㷄TH-@]LSd.Dbg nj颉P,܅*șf~3~_@޸.t[Yǻ<&PBԡ`jB} sr ^TĉFhժ_aTԫ6Dډ!o Dyk^Y0}75GxZDXO|uaM'X7r>Vɭi$Ν ?E٧Z4UE88(:uJQ%yjiiHt5luF)R60۴Q҅Ew*v!mmm|1(ok}]$(斣GzU>:N̙λKJHFR3N/3<(#5ZmA'rOc Zm(T 24.>vdU˃XrEd3*qTr=z4BI@o''gϞ9LTUU`'" * Bj J..O `kӧGliSa'Lh"(ׇ̛Ø:č g¡C*=Eȍjj&;pڽ'̒Sp`r,;wN]vItt4|{<˛"ّ:lp::V :c-3f"f.,z"(g m ޽^lw : ܟ2CWcHH}c?Bz-]GnnxvVK%Ip0GNKKˠ&w@_LJp.]p;vlԖ#KZ^M$,' /B,?X>Qbqwa#WO`x\y!sgQPTvXWQ1xM) Z7H54:' /_55##ɣeƌT? .lC({$6JE0ߏ1!|5\7LL ehBBB l6 :lkIl[{ }/~+z&۷#fB?2o! C01mm+wib738,A5˜s4=QT H]BbCm3@mpb݃)s|s ~Lg Y@u =ŁNz4kfjcD =t\l .B i10ݩ"\( ytp) ~ƌvGY`ɒV\/=k[jPoF@3MGyvX!'1v77PKHH̺qի,e{/pi{4OOm0j9`&}wwfo"{eOC$%%mF|Uk 5.6ĽA#ۏOT;}*2A7u O/.$/_iXZXIЊA$+djbb p ѣGP"l,@=L1ԷbK̿sT}qd(ezzInr.xup/yM'hW Xy왁p&Ӕ ݾlF&Q&AJb=ٳg~.o( }N~ѦY D@f6ucǎCݹ%-S,ƫjj:N"y|;?4'w2c @b@߭[.fuuj'T(@UƧNmH\^0*{8̕.=~s]%TO HW ϠJ\[ߛ}oZƺS%2x3o{/QM5h|LT+u:ĺ{ }0>ߨTn0ݨQ#?7ftlX+K6IPVn~7^U :>{}6H>}zz/2Y$jUsYE!B΅uxl+,pXuיXˊU?~cL%h.57 o4"JX<Ap+h<L ȞnkX?}JӢ_,j>,VZXi%-m`iA5w:4fվ}IE|5Ӎ;%f_͊!YfdP|w Ͼ+66>\<۷c7߱hƶ=1Ksr@I2ԄOxг,nOS#t<y\۵qpP##}vfEyyҠ`ݏGN.%cm0 plA_}z1'P_aV$ 35gP%92NFhe0ATЄ{kӛ*GWdtTUeD,|x?Mtcʐ m<'Mg1jٲ**tm`<6lk1h=:$K+DR]72;6xAZ:_8DY)bi %Uڸ1{%[e/1e y v&(舫ڨOcfs"4ڸ/9|}Ȱoy&u+\z=le nNBJ~ߋd^!]ʊ2rOOy; TYY\fѣ'wlXT8pME#L`*Qǧ  3o1AFfUcG3msrrQb/Z6&-Ïiǝ3q`m`vzg߉D8̢/$/A*¼54S4B U0+0U(:vl2}U~kƼ+p[Sc1@wFP4/_Ҫ eBײe۶ml87i60eAL3FJW,iB>a[RZ3K99GEq ' r/11A%œ]$ߋ}{̓l񷣣 thu,vΟ߮jB'IIE'{|{?vܰگ3ߒq/lv҅xr[޽Y/GE]#4qfBiԩStZIأ!8rr[kۄc}$_X9b/o,餌H[BQafLu&^o5Y1lX(3)S@qQ6de *IN3AOnMmwqe߼j#}իK2a^TGVT<ʲffdД~qF{ z>!3A< _׬ٖ-б'ϱ-;rZ'tqɍcn䏊h̅EmOzWFS|&Wf IcMqH<ATޒU }e&ĕ~T/J(9 W 1 %%/zy ڷ0mo`]yWCO{*aosss8 Q1m7uumu BS! l2 pNujrտХJU71BT> ҥe:d3f N-zez?èL...-]P6:}{s{ v\N. PXh!}i@.ݎD3 WM~Yܺ9b뀤jԽ;ّ8w3Xe?UFjPEw}.|R03'ߧWz"'7*ߋ%DW=gb x(~ D SIPG),CU7Gnn̜Z^}~=oe*>o"gDh}[B={LkTPՂ,pr8$bUUTNMv3Ep:#5ƭ={V?`vm؜9L^D't]wkr/%WN֖D#}`kk"'GϬI IURXN$5Նy> ;}YiӔK8y6* E+JZڬL3+ёӧ3eA(P N5Į;88ܲThnnwp#uIGQ={i?~0w--O<â~8|z}wm Gv@,89 5$l.Bm2 (F:^U$ƌ.\\Pߓ݂ru'qu(j{T;}0"n "3 {Ir Pooo]hI{D)СuJ KQT߉3deK5v,Ӎ wOuX[[R`h Hd`2LJm%ӯjp] =haSQ |h1"w*(bqVс5?x)L0+⪯/7oԟ[:RKObjj:WUUNT٤O3ϞCхfA'xU 4OQ4Z$&fAr\/U-#h,wjQV6΅iT@B:.޸c7I\ʼ#$Gcj5YYķdNR+pYA#/7jz eث٧ݦTzO[n/hzfs={{φMpu2ny:ݻ$eۨ(P܅4VPW֥,lal,+ =QλY)MN"LotBB-**A$C+22Pǔ=l'`7(wcjS=g+<٣T1L m{_q N L4,8HjL#G O,՗x54o݅b87b//o`Wqv/`?+綄 R ӿ{ ]_]0BCae"ofbz4 >lw{{*fX?G,͈eù颶E')-3i1G2P8aaudsP$K99kPa.zum:0?-H)PG45*̂iheCSUUE{@b':vdУ=yÆ}bY>}ѣG (ˋrlhd =m{:TShzɒ%?~~<:QYMUuRڥ}N=Uzo{(ņVv8Tx:xת􃯩mpEΝ$>h#YKӁwʘE $22^vLH( G !(kRK?~$Ow2zCg4fHH=dO<@PbA|q6%%V`"p:]׮]=Dtؼ5~OІU%h%}=ymr֭5kիe,ܹcbiَ)b(iМ?A"r%I%dԢkY>?KAAAK iŅ Z-D6*O=\1N26}D́iѢT)f0IPUZx-zi1,"l:bF42b=ƹ)^܂D ?Cp&Hp{w:n2v۞V clǎtQ̿sܧ>b/FfԵ=y{eŌS#-Zkeøׁ^ǎֿɸdPSΈ+1ny6p2&:!$I=8徬,= 6  cw<Hm3vB# ޑ#7mkҼ 2x>T;`իa-EEExl w^$b>MH%DN}`flDI.PG¼Tg+Pnnv|].uKkWD?ڥqvOY%`GMrkwgWu$b~Z_Ԏksn/prr9XJʀBtt >>Mdi &O夷3)hx&o͏9IG'Ij "##GOÓscÇf͂&еkWm4S>ӷsF ZM׮LY+/:qqqԷpOsqMq])(,п?eO˯Y}⳦0Ek9y$ f Ç@`2iV6Gz{w׭5!_}1_&?7_uZNC_̷m$m03F3'e O#1߿E1L4% S9bќ6Ğg!yz uja"bLױSK{/V"?ڸt)R,xZK+l% o~ fNN#d &?B<4 9apP/BgDЗ# }(1]Q>_|9vH}VXx"~ ZYؙ#E][޼ClEk7#QwW6BG˱UrrH ~ Pa@ԩar..NVV::\WIjoݚ1uWTUVRR1c,Ky}WuԮEi")]ݶ [knrN9uSA}Z,c!<("nOGQtIK{뾜ؕ*]aa!5É[TWWMЁ핑!UO$3j3]&) qWsky|'罭;^_tΝ1@'3BJ={tvyA9뙯 BM) ޤɼǠ }۷ol'M2i)df&MLY̿sܧiYXB,/7?#5u3'P#IŲ6#e*/;FZbR"f-n@!igPz5t*,yF9MF3DYhj'h˞=UU%nZWFaR(ujf&3:EEEzEbt blpsɣ~U lͅ*?ahDyE_]T~q;P9:IJJ@P~fͷD +yd3:n[G4ܿ0:;\\t}?* !3dQ@@OlPn}URRț/Nh*< B& P0JJƌa}+A'2hqSځ3Ws뇜9sЯppƍm}˗/WVVxBJB:Oذxq;u3gq~M6hTUUN|9y6U8]2x(uCD9$ۘo3R89w Mvs8ߺoeE^*;wNĽ=D1(66/ qiVp0KɤPQep2s>EcQ,xo{~ȐǝUHHxZ83s*JK} 򨴴 O l4TМB: çY `ŊzD#G^Ce˂npOGoAK-] ӼW\ #ؕҼS/\ !uuwVC|8~Bbb"t,]ڇ}؞QF,glA^^ކ `$Bp:P$)J!HO8/W7ONE#ȸG?us z\7 (nSG5LUJJDyIO#\/~qtF LJ1IC7M*Bf}[BJC}hoahI0_[[gYWFҟΔ trʑ9#|#M0K1uş[rXYںbHu'_лh&Ȱb'>=EEtd5֙ P[ /1u}~_$$\w3f̠ /)_)*LWpQFV"Zgiiƍӥyp5 z-^/>~l+a-s1^=~v) DZc[pO>u@%xٲPhj|!D3<#Sc6Fc8D$쌿yLȫWNy &YhJ[j`q? R9t?>CY#&H0dș*;uС l@E Ya(!!n݂r?pLICC#bcիLQ(sCjus0sƍCA= ˗g褮YArbܪT {Fُ!zy?;rmw㉐6UgXAsJhoJ {h+X%-Mp&z|W0k#{+|“ݨI*)[ԻiڜaaOثᆮJJʴQIk[b"8`llLqsh릏'/KnÛxE+ߐr_L7˿GG:McvPwCai=12|dtϻ'P/$H&z]}qF?gwoH-"}5ٙ=nTΣL+k&%RQݽ[Æ܇ܽ;/8NHT@,26 Ԁ* FCUMƍ4e ]55N /11ҥK) 42@׏ r8Y/N䮈O~z-N1H 2ID5NMTUU&dAuDfy}y¬I:/'I0J;О P30U4uxƬ+^&ًY'+Ut:0L5!ޥ >;}nfٮՍMy\>s_aʚ "4bT#`2@lmǗ6m,HzGF~ml,)KqY|>+ozx᷄'VjZ8۱y ã+߃XW9b/oF,Ğw\OB1NYz.\ "0(m6a)m_ %E@-3"ڿ܆ {ڱfm4WFF3t*_* K>[Y%12j A :;SN!{# }Zl1e)xgڨI&F9#:4p\2@Ennn?{I:SPfX;_ӭ!;d͢2L6O57n:csmۣ (6Bs;Ǎc <{-pt/ô{M-yh:y9 Щ3}t.]Zl9ʟufݻC;rtGY!d#pظwט2SY}Ftc"djլ;MGl=K(OY__"C<ئzd5nܘ vkbcOXYu硲;9MqM8RXc8/jk0~]zs߼ ICsuk}g-,P9q&c/D+O}1f_}.S]BkwXoi"N$uoUqRpk{5:BMXjnJKpEň=1k##A{;P-/p};iUU*3T6qm5f- j1r^o< $ŧ='HF|ش)]2)(Yji)OhpjP_I[  |7d̙>UZ8%޾e ǖcO8խSׯ^) .]oϣB9'%b {=}zǼp@$$$ܼ͇VZA'mn DEz:}$i۶-uP4)R;){R@ㆼ|EcN̷RBj9j"CCcކ%hG5|45Y)54`2rz-]GYY/WA^'XJ͢9Ǻ|wÊ$Id'ABbbW`s,/OtuuCofcfa3蹶U;-d$L^4 7.sr_ߌYqm~#ӭŒDD[խu(eį"-}W^)ܡi*KJubwRS߿4.pUݳGM) &TWVXۦLV%]2(j^;=z a0F8tS  3)m:VԱmjJ~2WmLQi>ǹs$SfL^K'~'ka!]9~7yy4xǎǻ3G6mA('l=[uAi9:6j^qF"OP߿a#~YMm@Kz$\MH<~w>(Γ'gᨦFj8ox{y0Ç֬5vz ;16>EHWPpRS?1*FH9 zy)**ܻgɔ)~H9?y񏋻Kٸ{}*ۇd=nW$e? lso߾#޻s͊9M-[qü1=xp*3\1muş#bf=0LIYǃ5,w_2ZSQLmZ#.㯠`ԫWe+ Y[ĴiɞiQQfͺ}O7G'BkCB:ruv#v$s۸9ĔK$рnQmERgd/wGskV)x;Z1Q/th$+bGQԩD:" LBz G%z^i͢"T^ãiPfq2'O5ٳkș2FSv7n5%FU7߷Ч D݄Bβ1 %%Mm (1UuşDX37 r V7IC#;:vTvݰq°߇3F utBnjIrqɈqT94 eH,3r=-hFpI*9 zɒjjGn{Kv Kڂ:bLua:w(o(8 \GUGU-De @B|XVKj$Ya4h?>:Vo +6OK,RTjkԒqrŋ_D{qV,.f|/%$$\]=TtJ€p!ϟ3eJPV[gƌukg_*2?B@0Z_]]ԧ};n*ΟP݇n:eZcc_~[ۗ/>dVc!"˝p4EVW$f< Ç΅ue`Ojk+?$þf5H圵s}BZ$14Mut22^tiiYDDTd䅲2sgG+$wܧ`֔/ MU'sub4ȏZ&d$O&u[=vMzF̻/ڙhG, s^FX7ER?nr&FYFj\iUKNzՑvzxթ}3F͟hfԀ-OQRui}D餆됙v=v8g +ޅ0x8hPի2Nxcq[? \ʕR6߻膱bzk9BeP$^O_)TYY eUW лXux6atn2s.0憻ovd/_]?{>3?aɒzzzԹ@ǦM"oeT_M~r=h9}oÌBc:8)z~:*K[W[R,[F~)@GVkJ[!!+._N$@'ߠjqRӠ:%(( [;HZRWq}9t{cT fgnɛꊊq5wQ>0bo7h}e}jGG;Z{XM b]'Yu}^ܧX7]nEN(zghzY7pDX5KG6MEXmQxd4HKqkgVCl ݤ۝A[R6 <GF>~͇/_~QfE\ w\ [zzL7F~Z?~*4)cɫ5Y, &5j.WJW]RTbiQQó@oA]"tM-[s Q:>/ɛ5Jz*3GcE[t3HL E`lLw_xwr׵HR\QQ.Eş/\NS&F1X Sly%*pׂ/ % YjuɝN^|rY}۷;m!,t 84OTߍXW9's r_pqㆆ3NaAQa'5Oely߁7vXبHd 2ПݫuChİM+.7 j{w ~AcTͣ|,[^[yѭGhMzsV5h[dOmSck&1^{cWisI#hC^Y#ycPpoCʰo?\t6 b4??`qbBfWWi y9=m-nʗwáy,݋ݦMMyνOA7{91| 5bmT|{'b2ĺ}}^g.8{Ոݽ#l½GV 4uMM{Lfrbсv-LߌpyuK,kc5a)?zDN͐ucd!wB_'k+P %yi_ő !οFS?S,.>>>p>~Ȕ z6nۙ(YjUʬՁT9khìsڞe@iWf[75|_ Eߖ;Q0uqww߭+O`ٶCw:s9cVqq 2haWT3CIIYQZηo/\rI.CFf;YҼCLƎŎh,rZBdRy$S䧢.f7@ 4Eښj|RU%#t| #c`:fY4)p|[R+=;c@Gee/Qnhk[ud"onjoic GE] 9tcumaa6JO9ڵ{eW}Jg`a!%婻Ure0HLtpi@[ׅ..v tA">)lǹ)WxJ2;9_5 h%Nu\;rۣH8WO¨f| &8K~qᄇ10feԤ]?t00|v흤QaiP<8S>05'cdϊFe9ĺMrQ(/L[&=SZZy#TKဥ6}[-.2P [B{2f~6[jf-|]u >;>LaЗj}}K<δ_nLl캭ZT^AIDAT欅 ܭ ؊if=◧@U%ފ59>E&]~Y\r%"acW\m%\=٨`OΝp4LJK7EdeKK:9 0x/!Q:۩SG]߯ BV2*Ό_`Gş>6pe`;{N?!ɓikW9 իHBBN[{ɔ&G։2ܿv-ӹ7j<j()8oysࡕsI<q*\#?#_QUs9VW9sA*UFyOyfPljlG=-Vc}H bޞIkAC&z?| w}SMKڍsny J++9-M17rSӔOQtjRӶ#>f.wST\R1uşrջ/jP-DR̿cab`pqAgMttϴ*kg;,n?{āγ?P{D͌Yc/Ç]"Z0] VDZGMm7;l`lno3܉z4'`ڐ(k_%%SR4_f.kWhޭ[~))({\E-^stk`%{'gd.RR'7ef-[FvF~GUm7o\y`ZߡR[7Bn. l*I-ذVa*뉍o>uZr[F%%^nk1̉ -*Ry2kC i.3St4.SGKgV-dd v(B?ZxgB/L{w3|bo^"4li4#&&&.]u`SJG l^?}ʘ='99YdT9b]M'@R0vXf'zq#mױ_;PvםNm\fveNeY1Uژ1L?9u LCe n-l[&c=pYq?똬*qZ5~ɾ*͢>b n ]=}{&%;%C[L4:hpNץN7٣}CZ{U \}M#++z Kvdv)nЊ&rry_DG_ CiM{ΞMxڵff@u۷Z66%~'Fͬdm ۡJ ה77.wY 2~ Wv 3Ww!z޼jjRygԩ𽏄o^Ls*`%k{6@qE-fam{uݶưFt>QͲ*',4b 7َWUT*mRhtt u:V1 9bG?w~RgkMz?xВҲi/_O>pCLC,G g@p3Dxq'g'\g~ұ ];Z?>xXCɯk':3ml rfz};&229͝kK8_68x?bKd5&wl9`s֬oȠqcC9RAنígҡ)|G!ykп>C؎k~c;~3kXԎWFkU%FZۭ ӡG2FF:7oVj̙ǨSLj2?9|nٮC8nތ M¢UT=>%''fb :cz{++pZ}8[$/b ?s~OOzUw__A|.ϟEE!!nbS̙3BcBrrȑ#M ~.~y~T@'{SS--7y?xPR.#{6YlsE|8QSdViϡFvE5[~릸y]BL?w!dN}[=߲g 5~vc[9}@Gyw7hܸq#yȯAC>W+hMd۩in{[pƧUa]}]Xo0Nl04Q;nqTK]/$qY +ѮCC^4c555I Ҙyi"..im@Mrnjk/:&O2UgYA%%ͪ!Hy'{wl`6ZvklG"glXȜ>rȢN~fj n1UG|*Y Q?JF72ׯ_p4D+ߔyIo>zK>KrСCA1RoܹႏZϟ?RhE:rFdNYYYqՙ_oѴQ6;?k&{?5ǎ-VQWW 7Iޠ |E;jv箫?/o,[?S)y-Z$[9/r.]ڶmK/{vիW4Qݿ馛d=rssɣvmdA:v4?ӻ>+cfoi_=ys43sOg wV_8[Ϙqқ9`ΤBsN9gbZpB[:{߆ϹyC?{cY#|;8Yُ5i~λ>쒭v{dW|+x^>SN^-|rȠA?B?k~l ~1o̧]/ }3x';w]=__#N}`_4}^䦒 $} h^WO0_+B~_>dO9,Y2iҤ?а ,hӦkFȮzCUUoѣǗ_~) -Ae޽u|MYIb,øG3q=l^mdMYͻWV_|Bu_w\"L9Ui7{o}.|y3.>V ^9/螗& }m?YY?){1brrv=mgW^%g>5p7?3bH@WOPS}o9~&a{=޽ĉE'?[o%nh zMVH}Wyo߾;c't?ץ/t3`̯O/}yw?{٧r__G>{ߟqY>wYT囃ȸf% @O zWvAt+=jv:58?tPV.رc `%ȑ#ÇW VAZ˗/G#<"qi@Bݏ`vgmVAYva9ܢM Je7oLU:SN=@-Zm+}@/GebO mgmf~)9~?9t_}SL֭i hB]~啕[@vm^ 9~e{Q)B( v?~/i D_?ڵyeYes vI}o߾{=ڣG@Z QWOP&rمaP TpS"_0##Cm%|E[wԬ)f?43, &9ѣE/|Ygwq?я-[&@`v{ͪ"3Jkv~ZK/ѣk׮HK$ lVg_ "~YkrؗaIUUU(3 s 6-۫Wf[U$ғSbJ-H. fU'?asv?9|0$ ʓ=b b!GA܅ 8Brg[ R={s1@@ 1@@ $zmp[=b b I vvY;I1@@ 1@@R~ݷLŎ}dz)W1@@ 1@@R@v_av_9~}Rv5$a;~Q%$@vi vJ95{`H" tb~wv>>HM֧O;vyȐ!EEEBzHӕM6z뭝:u:{fّ>|xҤI]ti׮go}iòeˮSO=rdѢE#G}wj˻[ݻW5k<{+**]|ŢCһwN;-}_@کSqeffӃe$x>ɰU`ǎZl1;s.]zWݟ0a_.+CoY9ztذa#GC.G9Sj}}'ꫯjnVtM6~guV}zW$ݯzMp}RRz z3jԨ *уBqM7u /;wHcy)T>ϟ/ݻS533STS6JzvKh"o+C vѱcɓ'_s5۷njF2H9r 7s\w=Iȑ#?ٔݻ7OO>#GN?F+##C?=ԩs=WVݻ}gE ~TWx?ǎ)BoxģU@/=&LH_mz?KE{i {z_l8p2]"[:ujii;Ӿ}//]=z駟.~… ?^ w_;pfH#ג>3 {ٶmݻ7_iWyڵ;s&M&N? zDG:Sh 0L ! )4kvNZ0y׻vJϓ޽{G$`v{\ڟ/fv_~}K>)@`m vݿ/vݷi-LZ}ILvrkeaH21}!}R>wa}K`i}'@se[ 8PH%f5ǯC%_ ^{VZ% "π ?dYBڍ7xwuŲтg:t8GsN~W?I'4`jYne]ֶm=z,]\h_y4ObTWWwq}v@`38ccǎرcMM oٲ>JV>33ꫯ&.ݧaƍ+**o[n4 ;;{}UvwW__/&]t9r䈨$_N:~na !ߪU'Ov?SWWעET~'NlܸFS^( ߺu[>N:{f=Ӣ 쾐eaBv*5N7o6mwd"?f>1{>[Vݳgرcgee{JDҍLJ0Vq vạ9q'Tk &XQzg̚5sΑmٲƍ|Az!!Q*kʬB}aJPcuâ]ǰ<۶mO?Xo߾O>I'4|v?[}u]ڽ,!o"Nv͛;w|M7\O>կ~7Pa 80''gŊ^z)GGΝ{q}=xlO mG",)/,Df}r:ѩ v()):t(?{v<= i}oua[v@#b eee~ ZlvZY}… UTT,]?e]&Fѿ "yuڵm۶~ѣE ;\ "Abru>wc`h$fW{2`H. bgv%Fo9~}RvMN{}\krͺ esv]fmwLjaH!b @oWv2v_}v-%yR\̼LK}Rͮ}$X7vKq}Rv>Mv?+,ݷ@r ltmg$~sϾ#@r+o}]$`v}!=J>%Q+;vA>%vGuH.1}"}M`_P.M„OH [ s 4fkv@:m`H.N,oz @2 js +%뷒`H?PRT\EvYajCgVom4p6Di[+.7kMv(^"A3uVLn7^wӻulXyh{ omBo]w >/rE4,>Fa2 `K`a @fc%lfnO) w#üYe 6JG#9>2~Q%Ӻ+ɻ+`TIJ3<hdp,O|qx-@$O cʻqzUv#EA[ 68]:GE1{rW'G~ue,'z2a7$l~}4Iݯ_?vc*)ZF^F:YQf C%Ku#<žg^SgbD]?c<wO'02/"v_|8nz4b,He}Ew&bhXXXU;2a27kBGsX19X^k7.ֻ)l$v=h{ k4Mv)u>݌Ds+Y`=P#uĸcVcLVqxuTm8 Rü=4@Fz7ZPjnc[SLѽtMy}=1}>HebOw@*o/" ǟvt'ݯ&_Bv9~/_ v J>K@7/T!@r j J60Ky}\b u j K6?@:~ݯ bkLs@ݿJ7`he40}aH]bBlI AAAP#)WTYw0nI_Yw AA%]_~h &LP(Fd"!B'` s ZՏ?i=EPA$$/)9?~z/m۾Io(B$@" t܂o~=M{W>G(?'Ňd B $ vQ4nܸ;v444Mo(B$@" t܂56;HQ^]G!OQ2!ya EviI*##t͘P(F|H!B'`=_ٿa!}]])>%#nW\.fw+.b;rE;{=®q]/Q iބni'چ9%m[3+;ònJY+WNΨˆ |}\VR)r\-X5~ykL޸@>̅x "EY<eQQѠ.c#cHy#(Bd:m1UI]8c Gc6n YY s;RuZ~<cԁγ`|1d84iv㱿ddtʭWnPW3z]r;n!F1=>Νr1#s"י,'K#:C#_aǕ|w(ZU^*~,넵%oZdH ɻ0sZ/ ]h8p<0Ɋj|x_QMCd՗ 3c Q8.]~f wxqb᫄hQU>G/Udlmመ5$G:sфH1ʞ. WazGq_Aé[]hie.os' :TN[@FvV|`ECƮ̑d؜7OoXz{mٍr:Mƫ fYʡ>-p4hq+޾#$W< \6oHZJ%ڱزzپR[ZƉ Ƶڵa/Z%KLݏO!O! V#s6$}.0V6㗇{T_q-؈E)dTcPuF'}i})6Q*H¨D"5 h'Uu[xƎ˦zFW?.Yeq~]APFW Wli5Weŋ_rAc}?~yX?QLTV,Tg/: l단f(bXXC=(F=/ܽB "Ojt9va:0m9pIQcyꪚD"kkTA2ᨲ%zaцӵ88oYaW`ި˄60}:?!j6'V>q>]~snىjήWsISA˷sbdkX#aD_M7VOcͽD`b>W/uw̥%o86*Y.~o<, k.TV,Tg/A&˄U\FQ<5DyFc \!UܧmPI+{ֻtEj]'ЗF8F>0&Q^.kAtSeB}_Vv/l4]oyvք[q +d|Pߟ/9C-f% ;tk:FS671qب&3.zg9\ wKL%e`f͡DV,T#B7h䱋D6":jd%)8xa!ZFc g'! Q%7%2:^ɪc[|Rl=٨-uxEA U&uMj<ψFk]ѦH[NFL]rEGAaWЯ-%ʬsZlAz=O? - #;/jU .!t+呕:QlSGdٚzgRYc)EY ]`Wi9@; 14xcH.rPNsCfk#y>ƯqmTm[zVz/~va}6ǵ+))s/{KK84G/Qsjb\%˶ݏW" S?RMK0B4Qk5%-hF{,J- #{ϧ}-eN%7)[7y\.aK+'R++V)t%|l8xa(hF!j}B|(i2?{ߛSFo_3pјLQ|`jt`P!YX㗇xT)Q`Iv?f7 5 _rAݗ_eUuG# 7/"B(Nw Ȏ҉mDw ɫK.H6RYvQݏWۗrr(y) Dq&[@F#T@~U% vQ4nܸ 6TWWg7EÈ ! DAL:an1-)aPAH^At7?3}֬Y6m7 E@0CBQD8AN[0AA5[CAAPa݇   'ɇ݇  &/}  j݇  f+}  j݇  f+}  j݇  f+i{4  Yw2Gc7oE-BvO@Ǵ[5ᴗvou,ڳ3jRDwTGqb@W"@qdɸ5nm)cc3[c\KIu͝olvtm%s%mF;"&: p3 c3M=fl eB*,N4k{yXIȘ!&J+GtcHe:E)cK-I=CcD6y4O HYw2̻78~c:vl*VZxyb-R妊7KZgkS)S!FJ,rC򋃪*/U殫H^]|d$Ui(H,Ox] - 5?ӨDw!co"csϏԮK]^6IӅX sD' s1{l}Nlr,2oeJJ單 5LŦVgEib )/#sYr[B*2{,=+!-HFl9Lf[٬m m`qS`}#H+vdԃS],?׈qNdbC j ,#Lp쩢BI猟LQ#0MJd{c #Q˱! v&zY:^60^vH9">{G@ YO0pxXb/3֧GÈ?cGC8~ɥ|XvrJt;-c৸QU0_JDJ1!GrYmo6h#ʹ!j'DLl 3jYRڽɽmlb?3{Dz~DKLH+Baz0MI`&O:ke^qગ'W0و22A[dޓɿ~7bq5޻c84WJkK܉LMWr}r$O0ivF_(OblvtC $}-ё0l:R bQevHu#Hu!c{jg]%}ץDxK).b̥v_d hqE -ml<)cl,cMm|?ɶh7Kw~{ܻe}>-H?=p셿J8~R?f&LALԵs92Y#o9NImO8F$Q};[}G+ϟB쾐rk! &-F` #D+W[X毹gqdK>db"+A 'KOƞU>ozx#nNm5ĦJqP MYkqsݑdl$81S~KaQtu8s}^^:yb ;AFlTTݛDJD)%TU3!d!fxzn(IœH&"iyd돺{ǎ ͜ړSfۯ< zAAADusG>n%^IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_11.png0000644000000000000000000040077414741736366025221 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^ ŹrondQqjhr&*((Qqp]QdSAAef9s~fz0<\]]]][O._kKf֑G vh[G :ʥ1}R(g\Őu] t'[Fbs;JMɁ#PhD4;dNA;-"斣MZv̈"D>$3D*JZvHaΉ#D`aV,i6\82%WSx\q,Wm)\IF1pgyf޼y˖-f}s+ݩEBNRV{Vۀ٫Xm_:M\KWmURkjZ{X-aN⚴ג75$ٮdCbtQ7E{H a\应"Ls^-f: 7EPAVSZ-܋$ZImBmmmBb"`ID2bceEpDpm;;bjuT+dKD$f BFŤuŔ4 J 󊳄2s2r 3r ӳ ҳIiYyiy;2gnپ3g)=gkz֖-;6ڴ=sM(sPR;2enڞcgVZFvzfNFVNVN^vn~n^A^Aa~aQaqIqiYiyEyeeeUU& 'gQ*Sx( Ԕp}Cm}ߊmMm䯭*"*K+K*J(qK/7 lljafNA)`j^z&E5w)#3k[zE)K(]oۙ}gLٹٹ9Yy9y⒒Ҳ ;Z ^}~'(OAClg8'(!9'k"Z~!RRR-r*,,*"U*|Kj~n5C#Փ$ۺ1+'NJ/-7hE2 :ٳhzy+[ rW,&?\\PGkpEBt~Nׇt)څZԹbaNJm&pQ󇋚>\T/^j+ޫས.۩)Zx7: vy y7;mZ4F.EcP<چj?=U!C7c*HեZm~SZ UŎbw%n͖aUaHЭnxKJ*-}Q$U%r@UKwVzѹhYVDX*Yu$$lbj]c9Gx|rIei/T)%k*J*$UA%UMw[y_[oء窬STLrn5D; *UJ J-U8TP7)2z6+d}B>*c^&H]髄"[_O5ikh&w^O欹$2vRK#h|yJxA=:YcpHI@BBQ/eigYרCH^blݭ|n>@<4G@Oa(]IdX>z <+_b~lkex$`J*%J@8|)_ȿ I"ǃ\V:)%wC#eI%/-(+,"JNTzUr)lUWVU8Ul-Rf䰔Dwm"mzs0Hb%EKF^lI+|J!RjqZ\VQ\Z! I@> @n_BZ[i+?3G(YR"\y$2$z4⧣"vR6)2$|>Ox-DpvzJ *?U?9)~#Q>U3Pl2ʅTſ>)ۻ+ ,i╏KQPP4ƤaؐeF-;OѸ(SGJM 'œsǁss,߲, 4._м|A}tHuES'k9k~,jԶ|~7-߰l~ݲ]j/?SerCN82s7!2dDZ;Z/56wNMtw"$n-K[W sb+,*H~); Րj#*j)cgERxk(m!_&$LP6/Xr)[GR9MKqوCjQВO=W %JoWdU!DTJ)˖OH'.*T>Զnlī>JoJriViZ[Zx Waiȴwvď_i(šRVwJz>j?TKC` !Ҫ'C5S@YU~ ^]?^RX!VWV+յ|5( J*lkQI9= HÀx(*&*k9yBJžrI.m *%*jp[~Uɐw d^_y3@1sJᥦ)»XC"'dP'ԄU>RVjg"! )BZBO*%yB<DD9Iӗ9zIbD p%ʠϰǾ@&d;]#+htS%dMAHPd9xr,ŏtX4X Sk"EjC:$:(`r4-f͢L!\ڒYhɷh^͢yj ,װx^7j_F]s#_kzmB{ 5QΛY[6\x͘ЅU2wޠwo9GnBI _א⅓Ayki&/0I+|-YZԖrlI4K5 '&~czeHjV#I8E%kutg}IJxXK.ՙjI{&QoEbx2Qvgԩ%$&ȩTfB$y;rIū ᱄!PݹW {V)h+zS]P4@)͟QXַmLo^Zw>@iR/(JpCE{G٧w$z7Ue=kIYEIi9yVm[JJ mK*EFi>ymUKĿdgߟ'{} OVakx}vU{POSuVl+|XXU$_.id`pZVH 2+E0*D0+J)B%ee%e"d$_=K{V)/H/BGp쪫 /jEdD*d }6J҂| ^YR/I5IRmom{ni)TۂBsm\0a܀\UVޚ[<17|~;nDC)I:و8 $,Pk3EF^ ~$A,w咜a QS$v$Mn,q~&.B"қlɟ5eMDYY7%.sIvXՇki%_O0!,a)KaJ]ߎ+YzO}' C%ReOrJU9&;yD$Ld4. J`9 Mjo0I9v(~/ X2-)!{SeL;>2 rZ\΀njnLwuI栎x/X+)K| OVU*tdU[e[$}V^{VW"=+VY j˳^Qsp5* t`-?M:+fr;l (*B*,巨2dU<}5v0T0H gR򞣤E" 6bʃ0w=:+z9 %Fc_#?g" K@!dr>Dz}B1&4NPH#A'2fZPPQQnjFK %O>IR]+_86..d'٘9%)|Mڜ^Sڜ46f6$֜S<%Mf5:Y :uUήxuv+K_]~?Ʋl(N8v*E.Z"Dͨ5'kNW)(?8?))ʭS֐RWJ,,w뒅0&t9"ਬۑX0A!ψ;92FWv!P'lIrݾAޒD@O˚JPY#ߤ-[dTJ$y=JW>qAs43F V> C.KJȹ2SPyFDͱ^2ׁ^4B5B|,S٪V ʪݪLj`/s~_C#p(NOc¢DXPoA~CʈJTTeHUT9*lxduL3yڸ]N?r<79yGJY̊g~a߳}8C >(`T!Whuͷ4=3 D̃ܤrҰÔ>6dM<}-7YKy0(qw ap`326"2RMg<I+IC wFViF_KƖ 0YS8&"Co k9)ƹFb<;ӏ9cBUW& wOLC1UWQ8]У{, G$\:h:M_d=9#O{rF3~ʞ^1kzլY͚^/tcfO9,憧3U}uOx|/}/x'}'zUs1Nr2 wrgqzwo7מ.;򶱿2[:f'9vuC&]?1C&\uk~+HJ n<'Oċm4#˂l ǎ CFBE@]xn8(Y22zۧ)ҷLB550Pa#hPi$ѷ@# vNݝotW7_iUd٪4[+a = iKj\.`e8+$*`2O;1GR>;yĐHj'GP=:7\gp lI(L?B^[ 5Nr4pt dpOxP<Wy. cv'e?vcd/|^R?yoV?uoSNRh͚01ܫ%&RO㓪 =qO<~Ocw//*>~!GV dA)']~ӇzЗ;;Oy!w:fc']xfqʼ6_=o:c'юDު3)F'js _opyPPk`zPe!"7zww;+;}Y34 q*y VTiReN+{dZ#ӊfN˛9-w洜z讌J ?n0%l(ߢna<?Ox_~/{/yiGNJQ7=xQ;3% zB&".xaQJԅOM! ~jѡg HÐBDFX'Cꊪ h+#IaiևCUrxAc3G=7Gp _z4f2P]Vy=i!*N|a# 679}InDb ? ?ܳ::ZObFC恓t_?6Q[olxY捗L4K oKnK+BT>ǯuh*2)& K'\R< L$g%Y7^q%i7\K7tu}ye믻lu{=75h jΙ|Ҳ[YEo_҈N?wot҅GxO$=0Ol]lx? jC%ŋި 6 (a]$AypCl/kFqaRMrK64%j-%k7])Md,%|DF/} Q󍁚*Orv uөFMk0pz 4R5T8~6 NOCeR ӤOV_^Qӂ,2N7?mh`CC!I3f0= FJ2zܚ3GP8 "NEk\i)̾Dgfs#h92#% IybGr4P,1M ӦM -- 4,ēXY,xmY?Ǖz?~9'o=m<9'gFf^pT{!:I+ܓ2=i'{sOxI_}OY{?9+ÇgჳH{z(x,,Fؤ73Tsq튫KgG<;?~_~q߭[A¥{yU ]EPvCLP􅓗 Dj1—\ WȆ7q PݵPG‰Zxq$5GՓоQ υNM /JהzB~GB'EIqp(UAw^ 8!f6rr1t:3OXx ;ԈCѠ>Q kNJYM @BA˪4W5(<{_]z)~g:O8yY'? g 2|ֳ=4g 'ίzx֨Y7NN42qi<kD= r˧Cm&ӄ-){zS# rEtd]cPE0 \['!%̨ʹĎRG (&ȑaѣgoGYNΎΔHAhP8U>#lL9_'*$zDK/S+jDCmۡ>0%*}чp]T?'>^ RPJ2N,Rhg/&Tn?idHi??~ԇ?c~2_n؍wr!:|%x9s>mKiGHZu}[X~,u߇~_6v_Zpm$o.m̙X7sf7_0\,4sWX>^2]ڟ~X3KB' Bn,5L/?ay$ݗm<ٱaZu^"JT#j AU5AU}U:" 2džf=5[5pa '+8N<e'$Be'm9ЍM*;TkiB}{Mݧnr;n?Gyttt<)DzE ,сxdIBDbFRE"j #*"4zE]}+-hA.RnWGP /2]nW#Kp#J>"}`WIQ<`3-yء?枰쾏Wٗv6 ޲rEq_QxgeyOU3Xt%#wՅiWrk-n_^SO'dI!㧖geC]%;B#N#;A: 3'Q%tTU@Y.Ms砙HW UOFڡ֨q ]㧳3Q8&"NBP3F朇~~¡;ӏ#zx/aYn_9Oh_Ta&ƍ6mB"S+gX[l#mݺ]k۶Yeિ3ˎ**.;}ti+? N[3u#NbiGuiGvi=ܑK:9 D.e_猋~;.QH9E<G-XR/u\"ђh-.VFLr?Ї,j'V;"_m^hl^zUrrr!o>wbJ&zjՙnCfq8Ax8C\7~Z%TOYc1GT7%(5]%tW4CQYvVeٹ<+u@;~? ,;@# јQet`yUCjFUO$ID$$8n&p5݌:C}RP(8.trʱ.03 dOp Nd*ڤM zHvlƭ7msi1Lm}[nK**.6.mwӮvپ#cGZK%eS?p]v^uٟ\~^{/.ኳ6^y+qcsF3r4jUf^tI+3v\q+N|F3]v֚/e?lx??lxy{HlO{Q@Z}`-:B&:D{{X\-շ ory,l2wj;Z{Q(BGy/ScvyPÓQ(j9,OR}6<'PDM`Q$nSq:~5 "ĉ+%8:@s58iU|C7uu(S`9TB;TSC?n2NB?YlG"4a:G%8*ǓB4{KGIW G2Aux_jCDcB$T  ǟ9QnsP3DzNPf [ ~Bf ~;3wfmߑJK53S;322 "w=kkh93Х"TQߖ)׭r mOvfymΝ}M=$6s":.ic3M6vc~SƑ֌%_Pӕ Utף|  wG.> z_=tξwW6vQ׎͏xS^o$H~Ge4EVU ǭ6Y_|xP_:vXΙ~\\9Em.]jR mRMJ}*f=͞ R:G:eNJP`] X"4 ͈OPf$ >IO\pC ]jGnPgcU9Ohz p@(>*AAA63:'u6rƒ~9uދ3Bufؼyf͚U^QWS]Dܒ+/ U^A9yե SE _IGVdS6NyL'g<89ɹOGn-~&*2fU<:1R-LhRЭ޺sƭ;ߺ/7}ї80nGzgz?/sOσwa?YW6H@e}ce}Ue]ɫҎ2#H"KU+[`ove.\֚U t+F?k-O,{9dbAOn=aHKy `}Qӷd ? `Oݾ@ejre2㕾.=~4o qUg$-b]؆&PDe&0JjZN/','6X018~:w'ƈPlwq 67~BB!BM˧'k2P5ڕFF(dyu 5]JjY4(kĨ5K,ijlIejW/|ѲwuiܐS)u| ;w.>r?1qKսkW]MwUlKcg'}99ufkZm.w swՂU*Y"lV֓F) 'b°Y;r;u Dk@3 ߏCQsDM`Q$j]NRqڂqB7BP)b 9p:"T[Pn? 覮x)CFnUyR/\/ nسRߨstt 0UI8,yBxfHU4f0F2j 98.tT?顳 pL(D*GAA֘sR r~g`h,Frlʼ#`B|ŋu]WZ\cpjT;_[r8 |ё\tF닏~{q]vRG\~H9 /=KhAZuy{؅vѿ_|?8"]{箾O9BC?^pOg;߿/~/niWwڵy]ݻʖ-{Q}MQbd'IW{yqL[@uLΏ)A)<M"%IڒHT%*X{YDX"Zs^|t  y֖Bs:&*9^-e"o #,%8i9 mu?h@퟽)㲧&Q*{SvKQt >4u:F]n ÐbPpH,!p<5UBq &a3g$c'\8ztPJGNNNGQ12Qe*H)*sIB'XÜ򜓐1O]ȣfTn kQㄉ'RTljcP8Ԟ@R4(V.agr;8'C~ \ǟ?>}jaG_M4a[v+zxPnf$Gi^.< 5wd¢*EU 9 F5'Qݡ;N!7PԜ$))5]UWahU/!A~5"@YB #3ȆRJEŊaE50$j H(9\xS{hBVU4!$d(j@D*w6(thr+VJpTb%܁uNh"W2IF#IPUU$V$_aShǢp:#Fcqc&~@;^g4H*9~:88t \.&Cr#|L31*8\% 9@۫FE3,䘥+ jN)y D2md :Dꄸfɗ6]qC1^qD pJ0bD%_Y)aY-,  M4M)ճܨ)-9~sojdOOd<\ a7r,ϱ9ǪicD Q5t{[<՝_Rʖ|3˜=eISDY ,* jY~a_2_b9c|gH+q<92}a}v$+`y9"PCg.*Fn(j <3z#zb*̌ Q7cƲUeY:sex,%ӻjJx?'0C#%6P}V5"Dbl$NYpV9PNWC2qb KH|U$<.R{"uJ'+`dSHB=ocA Nii[g𣖹WD{IZ^%DzSyyyh5?/??Z͗֟Ϳ4ºq_W꾟NJE1ӊ(텰G|OrӔ=<7֌K-Qz4!SOe0t0HVD|Fr1b UXՎ5#b'cSu43.~JFؗ_} gB %.#}M d$JVY**?eFHd2$ۧ;ꃐL&B>hK KoJdL(Dz+t%/VbzGe#|)@Bov&8pQ,?~?-+ꄒ%'KŽG̒2;N4.W(XkRjعE9M>ҖhY"x07ʬ*ݟ Ď%ݍ,XtՐ/Y4ܧTJGw+J[oO82R=cX Y^#:B:bVB=eS62ztn2zt""&"8^2r9Ƀ쓔qI(5pc2]hZ?1.$H !+uz0 B{(ăvA eu܆D5ېC~.bGK^H y>?'n(-Ag%J)R*===Ǒ?cZMV'Cd6IS䥜(\uɅdF}bL)iK+`Ɂ!WisbjZeKY]S#y纫KF;Q$WqHzP%#AC2&z_aRuM1+GQdRSeJ%4Ϗr_@\L4VS+ByiDXҟAIgTs1UK,=ۼU*W%J91SYcS4} YÄӸBP)†-$*0$E†Ȇj Mee)2]Iʐ,Q)%i5#STR95vA~Az+g%"D1rH:ĈxyaVVN2 OFT0KWxg$|aU dIǔ;28M%/.Ft,tMWť Mt{xf-Pj%G=E[};!R֍G7gqSj,IRB\D2c|R7M}wU@F%|+AKe+L.P M1*.-4UN<-{Q1ͤ=Iи""xiU-UX?%Z(9(JBFF U-PEsȫbB%E⼂"\%GsrI9yYdedd̶a*3mg2vgHJ۹]7qejD>͡eK/>SDh0Ҥ$dkuq`%6bVQU!QuYHoӈdGR3\ A QZ]YDO=[)cǃRZRƀ݂mJS!N64{uqSW:?9r[}̱'_'YDjItlD?=)>t⒈B=Գe*˜m[[U(Q[ډ*QRP#?Z&ղn*ⱤT"d+84 u;cY+qoMR_iFR1#.Sp&~W^FyR<ӹ X%$|GWUR$sTVI誁\,Tyi#eTeqT)Ḯ<S*?)W Y4d *+&6!%S)'=S*#]iNSMelOfjέJ߲=}Զ;uewGz掝Y餌::G\2+E4i$G7qSۇ cZrс `i[!U,0)B˲)Aa#IaÝ1B)N Aɣ.Qbf7).C"S"$uDgW=KgZʫ SLQim9yP;GEY(?3'Ty!%TY uKD:$]]ŐWő4*}.M1 dԽMIX%4 LQT@*&Yw>|ÿw91T/Fq"hF^#,bX1UHBgHrY``HԑT1t4#n)Q 9G2(a%,7@9rJ`e>©({d YAY'3[H0*DjQn–ph >G0TtO|!KzR=Lz~ TQE>_AnRVKxQHmA"*T)%-!`^ ! iAH>cX3$촔6Vo;EHv=Ҭ;$#!ю[IwZH[HfJVZ"ҟa-# K C#gq)\bKfoc:}:WHχ9PHEgpHKY?uʊxAeLS88uU O{$ȀXrSO-WHځEh0YF$I0(FqgfMb脄Bv iG gGuꐣ%}qARYѡVyZF!^2}%W8tuZ c}vsM7' r5F hȕBR-W Nr5?r"(W#וگ ž-׹j 顥_oJc=~T[{Ǎ7R﯇   h{W`>޺`P[G焉\@AA4Eֽ&h۲ jkͷZ   h{k{Ζ [j&}  Dֽ_B_q7v  Ⱥݯm Rk~AAH}~}  v7CAA^~>AA-r}v!vAA)vlw!  h>AAb݇  }OdmAAz݇ F-tǣeMK3.tB Y+ς݇і ixڶ[f æoqQjWʩIJCglQDn1UT%vKΠ逇*Mںlj,[ҸIstw(ܾJl;x˽:>8kRnQv_ vU- %sC[wwǡ-CÎPA:!jnމ8i2aN6Uu"D eDbJ6몂 #j^._)ܾ;Us9ѣ$p5A)ML6>;~}yieX;.Nžzk5ūfB{JLqh2ѣi?IRc̎rjsY]!:,q"\>th4=ZL*,[fLN꒬vT:kRn3$9q:V6SAP49 AAL&_jT"OV_ަvƖ. A[A4t]Ž`q0MZ r v nή`IZ:Luvu>V   4yJGWwsk)ev?iɰAAhmwvw;M?~e[;Mݿv  Mr{WwO[G]dO~[)h v  v{;M6v AAA{m1% +]~[UkҭAAh]=v9a!  h/RtJv_ v  EG|&DDvV|AAA{wR;dȐ]vwtw/}WWd}  Dvǔwmm]]]AAWH٭mmBmݰAAh~G7l hmi':a! ?1eʔ7+2 a-o'fc򭷺Z  $=S>g"@qhⓘvvz{zښZ[_ɓ&Z  $5ydռC8ꃚSnP{loOwk}m6X_hmh<W+~_A1}GyEesLowwKO('lݏ$j ڟAAD 45QRfovTostowWڲ`cv[ @ ?  h~#hlLݿ;{],Q uMdo{J~5Aq'KN3\rZTv\.SNO^_~C^Ue[yˆsT )!ȽcfzsJ5=k7<7]]Nz(>_bZbՊ?]o[9JFt6?0l`UIBqHinbiv5Յv_=v/iy{&kKZֶRZFnVnAAQIYyMz G6cp+neQ܃ %e-Ό~[džm~)&֩)C/~k|OӇ3%s>ꟹə+#dQ JE G%ۖS@+**.ّ9Q Ħ570oaӷ8ҍԍT!󍦽It,ds@OR"RX0y&և>I-}M}Rev?lkk#OC喔eO?9sT杙y* N&W"ܗG%ۙ[P\XTJ*)-99ޖCWVB"o1OE>`=9R8DljfNߨLFoeti\jWƍ+pes*4raWDziʲ /鷷  vttLx9}zY.LWo:Tn1i-F/4۱g8[h0Y9sT^xJ&#aFD0V3C6%xՙߪG3!eM;;Cv߈k ќm}ޖ L]bcN]-R>;dp!Ħ;3o{j[M8Dtnkk+O0i5G4eעXRbG][fг&- C!UfS7vr}O;y`}„\$$,4'rG$('>-3F~_5sn0r(g+9dH2j+͔*˚ee{ɫ=uDZp@P\Vo[zNf9R6yﯫ#T\\FcrfSNZ35T!@T|.bhx.yr@w8GGW$٣'A)Qv=kt^1}^*{5\Rl;<}ښ-4=54ַ0~$g%1CsDc-5xUo \ȷ NRE5qlFZ(h&VXmz,_J#IbBW]*୺Z֔R>k&Ѳo"4ekmUehXOGnyo[u5'b+/Z%Esi,^#tVkNq#v1iJz{-764[-];JB 7BωZvMj p^NV.̮ yWB $VrS'UsPԒ}^ZFnN^QIi9<"444knn.--hlm>̚BW] J%C")q9Pfnpy瀸 :QBOJ=qJJͪC Ji^hР^tЂ fgMGkSv#{injll}-͍^=JB>BωZvpn2ńQឰ*^\t{Q.t#3} \ƪ\ZW5iYk&1d9F}VoUYEťUUյuydh+QYYEb9k>Ņ&o ]T!j"}SUCЅHC9誖CZ!(%wkkkNp!=^ZCX)Kk;-2c9\զX•w QbcwBl++yDOWgS]MS_.*/jj \}奮Va3B',j/iY}6]M7t` Qs+V40N)W&b#ɍMbz+"KlV|iAQIEEO2 $~ k6f6)ԋjω+ꄱ}$We秒M} B$ '|.jSO!T! )7A}<1G{h(T}r%n 4dYg!{Ʌ[n5e-a=e ڊ:U_j%!>D#6}DZ3|B h3Y ׈^NVYZ0 iiۭ)q_±*ڒHݻXmFXʬ=_R8B (.[ڲ򊚚@ &׺a˰ю-e2FВhէuUWTād";|nJSǹ sKI0,"tONR"P,SӷvŲ@i("gIڪ+.> ĢBwF?bF_[ HqV_VʛgGXj{+Cj~CK) C[yi5yJ26W>jٮV hێt3jxAZIV/F= GYo/aa^{ 2_(237:]^aݭ-57m[_yMކՁ; ĢҒǙsAQ+*8je?>/"\3rfTvO^ >Ԣʵ{r݇zWooRjoSvp?]͟Tl fymie5y䲲@  t-\W zs:IKݷLGƊu{賥e\/ιS]@|'+ ?]AAޜ2}wvݔe>JV[oe,{_y? 5tmi  AAޜ2}w)~Gw}sivㅅ]FWw.~&o  J^xsJ͓ o9~e<-͜%fҎrFW+AA @ݯknm_t67|v޲7sK߆݇  Fd7vu67|noe.}#m~ї>j  w o8~Oe\Km]ju^ȿ AAAPlmo~l_qd|4w- gAA~kGWmc[]ɶ`/>|O?ھ}_I%j  &w[vAGqxg{[a7}ake_x  &2~CPckDzGydgGGqnNaVf~FzNm[k}+. AA%'bʔ)P($,l-o*+)))***(,ɭsW+?q۔)7M(t\ |詧|=7EvJ_~UG}LWWweUuEEUyyeiiEIIYccӵ^jbx'zK t-\W ɓ'ŁObrZ?خꚺj__Y]z]@['O;ş] Ձ=ǟx".vg:ͨrWujQsM8GyEt Ǒ|j?!~Ä{M'v'EW@`Vor&Dq {٦:)`k 7jbnljWt`~[ }eΌu_n|ՋV|Oq@@P2bSnkZdo{ T]Al>_VoL֖m9 >U۶V/B2rr J+6nڔh4lFW>7>#}M˷T[1c&VumcUmcKkov3w74dǶ BPegge搻-+=gqW~YZZ r0l:]@+**.ّkآ y NG- Ýuq-WvꮨUT W5]7&W+ iq;@+PW'(:alW=#Kh1mȊ(}~]}_dZ=y;s Juӟ^A> 65#ܽQ윜e0zlPJEl1Լ-.~IFF#>Eh]jcY.[1Q>Dt|(45sZ RL* շ?mi;2 wde֏W+ )3mVY_/xლu ufe*T$B> v/[jMnA+f>e^%Мmmm󚛛"g0v|[cǁ~ZFnN^QIi9}"444$\̦BZ|IE8$^Z{k5y+$O#`\&}2*T"s1\2`Gz)Gv=|pk[ǶRy[r|F_j%!tơ:?Ӵᮣ'AֲΖ-ϗ{ѠSOku.Umt\^;筞:D-S!SW;*PSFh飯VMt!ut:;Zˎn8[cљJXP*}5le9oFTVVѿ\C<9^@j5l&=G>CVnAQqiUUumm>]r^1+Ta~r9R>esU'<'4ԦT>AK` cox}ݷ7)W[TO+ad۷'m&.5JBJ>Z5xh-;aVv?7/Oŋ c\ŋ.R<:bEZ; dU0 MD玎CYsGk B v/[ťmyϜ96ӦV*mkj[=ehEͅ_99QLwlfρb_Cg$PPTRQQS\'8؅z!soMyȤ@)JQԻ*ٮF&y*e 1]߬A)>D\Vs0fxשROj~hV_}oݼ#w9ԿOC%ׅVkB+:m/m^DJ@txK8jCݗG}o}mI/oqy-H( Ʋ!b%ACn2>X~x!-f >oT֗\AɳK֎~׎Ʋ!SPܸiӎ@}cCcsMRj <mmxZL{D8CxAaQqq L@\qJබ!e+ՊD"3B,{Bw q"(զ4w?#ůf_*L )<}~b;32`SV AU݇ElLhVK!۟v?FHBշvd>w?쾴굥ɣP+,Ov䳤% qꛮ:W+A GY?g=(͹9 ۖUC%roqɵ{~\rGԇv?.vOZ-Y ++vU~jU+BTI7n%#,LC"Ҳ#-m@i*.]0;d>) A׉ n0I׶B5RWu:Xe2_QyMQYMcs7ZXN\ZVVl۾/Q*еp] `5)7J_],?c;K*%*o{So=C?DyEEsK _Uk:A pO驵-7iORvc#_V( пBunqi=['OiDD.A |miiIii o9~+~/P+Dv}  (՚AA-Rv_׷|_/)_<AA7ȶw}Rqp)_Յ  Bo9~A{k[GM]P_U+vt_1Úu"EX0`Uaս=Z~[:*b7I (FcQltC^wGSg{jDqFn4MΞ:.pBN G0g. DȉgWe!m5AA~.i; /kr}a=-Ӛ[n|Wk)X0j6M %8hW"L1`IU 37 bQ89F2*؄oD7h3aͅ#4V12NAv8 uwÝ]D>qgOFh)tmv B~)/Cց;6J۷WYպk5VjCxՊfT"&m *Tx7 TE]:0hE] {`PYw8BSaBwqp_UhQH qҽ8[c_0gl] '0L?}  U}//ݷ1[:}Q*u A'LDX|2YhĨi/`LUDȗ ;^X ۔iDVyF m 8GGЪ+]m+. OHf{Fn3,F\AAB>e[[ޜQlt}wz։Q~|%O3uZQPȹriT2P(JmBjU3:TEQ1;hqZcW[ᚒ;DjDZ%8Z B{azlG=q#rRM׮6OEpNcO0lbv B%~ãe=c zOGnXsQ|o- wz։Q^|xѠ!SW\Ul\5uZݣ1ݤ*'\BwL/P%ZV5}FaQKh]ՁסVaD4n!\ )Ъ>Ip cW γ!'Yl֣v B%~{Twa+}`7LvNk+тyB:ѡ3ʉ.4䎕jEB% j֤e.U+&iAEg<{ha= /V#4Z&tDGMlt3t5¡i!staT.vyEWĬoh%\@\-\. .<蚋  h?W v0%ͩ|}o ۚ:'a~<0>8 :Ij9№JBn;cv 豳ţ)3 ߈ tg8\h3vaH<Ov_v87Lhnh<;('^%u-Q >A;چ eLedRnPde}x:aQM 獎BY*qM](6qg=Uـ,fX`! (Tl-$]3{\AAv~MgAv@(%p]sA2@TWlů|ZL7@(%CAPWum/x_USgU@)蚋  h?Ywc@y>ʚzc7Mr**@g}t $pR>Av'?cR+,C7tPMW}vcAA4eCE]Wum7 q:XV 7Z  nɺݯ 4{:c;˫[ZaPGnɺ[۫ յZ]d>vБGCvTSs7Z >}Dv{Kkc4;;J}cJ`#bdݛm[Z]]d >RjSMkj%T}Z)?/t?AG(_ekǻZ >}Dv[;~>Y}G0Јuct`aKʪmW75aGc?ز$2f}x~Eu.e8q} OGo`} vzRWwaݯXnZ?/_>nܸ9sٗPFcۇS1GA0S v_}_5wvn>a„{nş%98:־}8}3Ion]`۾1_pB}Inn._kÇS1GA0SKtjǨ=j/`o&.^S`۴5S}/[lE}IIIIqq1+Dpɣb`~on}P{\oV3גRoOT|Պ+222?} +>pj%9.\$ Kt%r0S>L"o;_D&?-] ]&?`akݧ[qnnnMCNJ|8_'/Yw$zQ>ΏJбTLhk;JԺśԊ’uR+,,*U%9@-W+ط#\UE_9^]]4Av@/r}>O>f Eѿj^ai= yvjlުW^W+a _EףcE>'ѝ( "nmv>VߧbEcgsn1{Ij⢵eje.eMo⩨j:_]+++KJJJKK~j"r0]Mͪ(NǴ6lܺ}{fff^~AaqqZ/Õ+Wi ~CCÇ~3Ϭ_λɚ5kf͚_2~̋/Ht|?}tw 0EEETAUMqΖ`w7cNL{o/\]]]jk/tu5=tҿש p V>ܽ[TAR1b]j2k;Ժd]Y5j=N9kE ǐ,ߙs΍7Rk˖-7o^FFF}}jN9/71x gP$y#/T/be7\ɓ6mXP\Uh]zU1@34hɓ'}G47[opu>agx"uM^Ǵ~t}+8凟inIelߡjX(|xǻU֮][ZZб"ֈo~78Of4&^^/SbjHƻt|W^v=Ux7x,/UFO]׫E8 ̖/ Gy Vl߾&UVM2>9g0Ct 3Q[ivg+&?oISW__E)xk,{lo&h4n׾O[/<~u'"ʦi .FU~eU^sUp/cE=m_;JrD8 sw\^XmH:AnS7^?E믟WYpRc%%ƞ l{W[2U:ţ>lٲZ. f(dr]-W jii?kjC<$~ӇPjjˋ*?y+ZX̯>Fv׿~I'-Yk7/tZ&ǯ1ϼ[]\3Z}gcQQkvpvqy}"sz%'N|\XSSs7sGwt3v17~ZI:{c=v|GkRJc&Uv_)߹3wwxV!ykaWO;/ǯgl"mgF, xBקUшlW\yY#~ e}'駟vwz`@}ciW-{bKu࢒W|yOYQ[ϮyW^;[v*6TUU 6oW_}5S.DeM/\$Jc_7K$> f}.%uu;Ui<ΟXaI(V \Sw޵{GzjmUc&16GDv֭۷_qm?ߘ7w-^%˗/ً[ݿ袋VXAi`/Z'}v o|SL-{?4ӴO^l:mɾģX;׷+.+o .+ Q\C'g_|_l+j:_W9EyԞшlM2338/Ydڵ_h?yNNe[\ ͽ|M.|>*pyjm7lذf͚^ }8S/`ÑV޺u=j_UvHIӎP7?sDSsSm W|0y7o WQW\|e+3~o}7lڜxaڪg ͕W^Y^^j]hv~O>c uuYi;k2jZ ,/_/ ~۵ _}rKt/Oq\??}衇o}[hбZ=Ӥg4f.,..O~B%7-[ƅD=;,++czѿvgWoCg@vi7ڽVM`xKpel2Tih%v}'foY^.6j$OPhxzc?UU]>y;]%~b\q4T[~-Zm۶jwEΓ,ZJӟJkdomyr*J|Mv_˺JSܺn#_۸>O{_Vbp.Og?c}k_Ϩdܸq|tr\Ǔ}4/vgc)}SSӔ=%4fw2 ~bwLwe⻝]T)wtv._ߴܓ_@P< @b[գt4mj_%޼e v@;w>rd]J_4ٗw_ǧMvɔa{zs~-v?ܒyK![۲eU a?* 2Bͪǩ}b|ybEƧ~7W^6DD{+W~ߠ#|ɛ7oK.^p[tufOmVTT*o1bҤI\K/]tEoW_|r.$TL zw"M*kU?UWEr?}8[U[@;__Dˉ}`6ncߺ􊦼Ow:Ta̙K,|!e Z3fvAdf7fWc; ǝĬݝ'Hwmռ;桇~{'UGfW]9f/ G\t޿;{9]z~ ^Ϟ=wS'jG:Ǐt)9p(yx(fS.xwv?o?^P}s! nn nݖ'e?߮86 ַE ?COrjsxz8OO9 :蠃N8pdǭ{]v…zGҳ_W*yw;sMBN lw2:juxYco.oWm`M Cv_NOpyW_uvvZZZ>}/rtۊ6qRkN3<}߹^3GhlYxx{Ȫ'G%hڱ!ݣ=@%?SO͚̳/8W^}7?_oꓘݧ'o}EYE俊i!ԶmEsͻd%=oݹ噎nb&]굳=ؾept]h_3cǎގԺYߢmd8dU$ݏ^|9cκ斖?;/0L|{x鈋>~>?F[4"b ѣG1bS rMOzpv* C8NI _=/Zh_ȕyIézߚ=q+naMrbD[?D Cj$ָus9g?Sƍ;;;Ԭ裧~ztWÓ ظp*n)XѵFdOO:mӖm.x衇h΢yۣ|]\z1Cv{*eUO4>>7*9Q?i}bK쳜ܢ/獾K/g9U??/j ԫ"B ݌[" /|WrABZ =_hD=gԊ7x2 2=R>W=o}[cƌիW}ѴP^^>}tZx&bE_,WƑ1?^4ySSWAK-OợL7`ERJcG]|9Y|^%'h5vk:se 6vwwݧGe_re]^ol,1ݧPuOj*l}ɼym%F\QM'䓬O裳dUCIF_W}2(^·?^pG@߾tO?Hʹok9_"D6[r}j%6_ܤV,|8bO#vӼv…˖-8si/6l˿KdҤIH.t$wݧK ޅ ^M] /\;kF':tĉ eo~4e}w'ݧP/}Ջ~wwE{JK/‹s{o|>x}4oYysybA,wEsgϛ={.yc_~xL"/>KvݴP%`Ň޲77U#yzߨ5e\V*/dZhpvſ\uU( 1%׹>sw_.}Tah_xޑЇS1v?I%Z_kXرcvm?+=~'|EcOu,\WAn'ݧP-8zqn?Ů{F,zo >x!/ /4l\i7;BCwXȺsߗG_['}\k'|oЎ$Ԧps'Kɓ'Ϛ5'?ɷm >C ~|Eƽ':[li0a°a6ly_o~q]}dwwu{?(\a^'fwx 7?x#3=z+Uݻ+JnmM%fo&'Scᮻw {;dK}w.Ϟ;GIdO -ZJx^߶mljjhj}dv?w~3-ﻷtkO>ag UBCYStΪ{WmT^ԵpʶϟP'^\?{'NjCDȓ}8S/=S^_%ݻzV_$\0-5`pjHkijTY \OSmje} ]'owשxuy;.%fvv>I'%W2x!CXCN!"%eI>}^˶?igwfμiBNdjuoI]*39d "TLv/`ުO4um++o(*///..%iӦo}ɒ%}> GO Oמo~?n~t##bw޷eUUU-{--19/S [ O/sU/~$>ٲ~wA^}]p.hp9ߏxW%D547C\y\U(p*^ttH_~ǹdIX,.j^gje._V„ VXQ^^KѱrkKdUFNt%r0S~L"6quI7)o[[>xڴit}p*(fjb've\jҥKoFKAQ )vp~~d{} v]v?]*`}>;I7 cOݧ<AAAZ(G$v>K2v% /%v6I'vv~v}>agjkWOB7}f7kş1,=>v2 \#j}@ׂ`W_KcvLo}>Ov߰.~N @ݯTv_}CrM;I =>{q}{}~eCgo~}vxێvKv? v.om*߈W_n`ۗ2PI% K`Okǟa6*o}ؼ@}_(}Ke5%'v%>_ذ5+!~k},}>K\vnölrV Pk/ݗ >LBv_8~'Iov_9~}.})]v ~9R?Џi7Ď_~0 ϵx00oNl;}.O\vaBuh߱aOhLH.Iv`KZmiI.;~? =TO¯]('a/v{W:~ik`GhdҰ:@W$Ov?P:~I j K I?υ?@HT}zKz K I+iw~ٳg<7 %R~$cIN? v?⎉W$IvѶ %xIߞQ~</@J 뮪H~@}GPc yvڔ{|+$nY$M >gժo+IGv_vv77_H_}듞vv?vIBҒ$I /D 5 > +}"y;2v_H^` K$CWW_{-+'/?/86}6mښiKҧmeI[iş,غS vptZ5ZH~Vvݷ? %rkuf*|E$cIm^v_ v v Vm{5W$Ov_ v@7qݟ͝˫gv?v?Иzgs |E//@b맭r_ `A@bH1mRӣ$R %eyg|:}ZH}b0,/}׿ZH}b0,/z[׸ƪn_< `X ^>wW+R %⢮&0vك"y`A@\twݽvkj"y`A@\:厎:Zj"yRk `%bmsZq_< `X v rn ,{pZw_< `X vxcwj |E`_0,;o}j |Ev_8~ Ki7OL_N^^y+ >W+^W$Ok>g?ŋRɜ9s9:>xsNnn.>RK0,U^W$O*Vϊ+Nh"_`7_|1++릛n]ZZJK,[iv她wݽəj Ig|\vذaƍS+wq~;-п/>Gw7/k0, L@vd*|E律v_{ǫĄ ?IMYYYiWMեֽOWVV_|"3+冖|\v?yRi@ƴ|;ʛs=vWo<_1lذ뮻N=x`U@T^ޞk{%j= Ҳ]B#8_z饬'~.))]Qײ]"y`/>33&GMs9?NXv-&%{ΏyY"yu~F)ٳg<7 %"PP{mzx`'n]l v@dޛ;k_< `X 2xqBCwSZ|Ea |~w~V"_< `X %%%k>))xg˻^<v KDب#_< eq *Sr[^)65V_< `X m׷/7`H}b0,bs֣_< `X  |k\WevZ|Ea p?;H}b0,I{{{c"y`A'[vݽt R %|]؀H}b0,Jfff`b{W_< `X wxak_W$>H1ݯIS_< `X %Br5wVb"y`A߹!3R %\YzX |Ei7Z >3[O}b0,⃻+V"y7`Xd׮];~Ѵyj=+v KTu^=xH}b0,`ܧw/xH~m4_d v&K?rCKsSZn0,|ڒ wRq_<3L`X@U;Ҥ{zW$Ov?=>pa GIt )Y5^J&vAl(RTT"+(T {z~\_L΄d$׸~"m6̾yoMP|4cv-š%`0>;zwH$Z W莞qUAfG5331bk `0V_Z8`,3`͒`0 ƌ/j0_;3 k `0zcR-+t}a͒`0 [mέZ8W =Ú%`0 { +t}a͒`0 PῨ +t}a͒`0 rWbs+Tk>Cϰf`0 糺ueETk>Cϰf`0 TgATh >Cϰf`0 C\T;΁+t}a͒`0 Fo4OaBwg, hDV[]Li >Cϰf`0 F'",g^RH[fz5K`08׬>}j`Bwg荣G15K`02w|Z>>%j`v_wg, h䦧{E$E:|03Y2 іq{nZ7ʪ`fY2 ѶزAl.v5'+tGv:8}k `]j E0_;I k `Y|7\WG+tGv! k qk-.*xx8)+jaBwngvmš%`_]D0_;d% k !_D/Z.e0:-`ٳt>`Bw~OavMš%`syԨ|SS|`b2yt!_IG~UU]$y~ۄ5KǾw>}H$]`<qaXd0ϜAE9tH9p@ldtu)Ρ O`gvmš%`4pd|y%u&Qc[*XptaBwSǟW~ѣfff#F`͒`0\{Z1pW8%urW6l^[QAfuG?v,,*G2>AXd0,L41B,012j F%#ClbpaҶݯϺZ|a)4hev9~f&Y2 FÇGtBX#>Jzh\O7W莾>>d k @@>}R!֭ F+VܧϿ]D튲Ά.oНF k @t.vÆQ!{޾= F+Z bo\B7WN}|0Va͒`0H51: g3`ڳr]Ӆ Om, C3sbq$>ǟF3R__ bNtÄHT?ܸ5]ޘ0_;3 k !9:RZ__\T냅 Y7..jF󑘘-@=}%%%􅇆 j ';w +t}a͒`0؁ި26jXK?j} 7Ph>'O.5u􅇅گ*h\I62W莞!} k !܋JKF,Rg<<<@ C:ڸr09Yzp.*_ :.j|НFR~ۄ5KruƌjnZ͘AΌ$q#O2fߢ*):4XmJ_x8(-0oZgq|03Y2 ffQ!#];ɓЙnO?4]h&n աY}}և얋aܰr]eaY%eBwg, CʵAwB.]Bg.8f@NRF3֥KȐ!>'._}{:@HߛtNXvMXd0 )zC >}L 07+yyyT^᪭[1a/>)6GEM>Cϰf`0R;w: =Э[`hQ3eFFFspU9/UbcbSRR pvхM>Cϰf`0R|ڵ 0 ǴoOnX};;|^ldtb0rFpu>9*lm2I++jSM7#40_;3 k DDΝK gI0ŪUh(Cϰf`0H\\\@ŠTp~B=[͝[!K2zn0c@5T?KTr2 s&Ȧ|03Y2 X};2}NN'ƛJ{Θ֟|?sg*E&&̨huPtI|03Y2 ig'HGexm؀ˋө{>w=EVUI%#G iѷ/st\@5!W =Ú%` gϢ>}jT@\׮ֲ?ޟ~ JFߡTBFp}(!|JgT7-W =Ú%{ٲe555TlP-#?pyT@)SσO&\&&6 ^t_ߓO?Q:w(oǩnZfzѣfff#F`͒`4'd͚5Tw/_Ně7qyqS}} 9s*WuT2+ 9u@5g<:}hN!6_J4- =Ú%1!!!tQ򨖑˽ZkpheEcb"lJFs;q"qan+ &9矘Onr}}7[n曟~iuutI3š%ѪD,,,Z7pmߒdEn-/.V-OM.6Q-ux kTfD.[&&;QJ5!a\'+Jq}ٜ-wCu|0Z:u5о}e˖1ba͒hDDD`ި@o>.mؼR̘*G$:m ~Ed41W?RMHwO[Oui+bsqh|gBwot5>>|sH즻ɋ k FBsӫ64d]66-Ą E*l_ m'B"8bXd41͓}DTBDEE;ښYP>aBwot%66K >IIIiJ*f`j /\jp>~Þ={_҅.mEtH"6=Gܙ=\SǾ}CzѴ~bCC** Ȳ'FܷlIsn=̙33gΘgg!-`5KUs9lˆ^J心ɨI\<د{w*I21q| *fڴtŻ&EkGi;6EՈ[FNWeZ#?3Yl.>w~k%88xܸq]v/K֯_Lb͒h/\|.ҁsO>oT deepdhJXd0-[`[z2UUUv Fܞ1.#ɓI?MtI-Pbhx駩PĶo(<;u;bo|ߣY$ZUY9s41ps.jwxo<~63gϑ7n|'?8}S% >beeEiK`@@@ʕQf'D>D᧦W^RAuB[rTIaRѤDQ)G{RJ_ؽs'6E~>bhh(}"]v޽K|f`41Ç ;t^Es9Wi/~|T@ONnƑ/"[W_Gf4֭ZtݚRSSSx.5՜ b72߂xrsshIf`41C??wp=%vvkdj_kزaEϛSȕ1crMMЎr\PI /f4..罱(qckKuk`޽~{m:E >Cϰf`41;5ű^-^SwΎ@یݿq#~5~8IuX}OW\BZ%єl΂#;ϯBG^_wz/h/JboߖJ-w`i~wVٵuQw8pj2 tJ$$jt&?խ>*tv?`f/pڴio|9k FS4o^ԩ.p{$2\#qy'25U*}GYzrUX.*Z89ׯ\jN'Rh*7l#SՅ,/_\7{F}5 #+Xzf~9sk FSPm[Y9қGztvʪ>LۮCիVr߻oۆ{0>jD޼IΝGT,]Z=JD% PkJޒ av#ph32i^74B,^ #-[3P"9tCB~B{Tܽ@SShWR-Ku l-=|f7v_~9k Ou농Z+\H_26_.ҹ/(}fd4pvN/W;⫯p c~q4(G*H]COR X s/PܝK׮!SѲ  ?: C+t U̜9|f`Ѿ}uW]]A^!TBXm#F8yq CoܠƫW/P"w_S-ɓTM5jT]F#ѿ#Pu~ϰa,?;yg|lMK avgXd0bc`h`KrK3fQޠI~m)#U\6oSf}Hs۸~?&KéP4.wT gH2nL[Fwn}+ǓZIqfE.QQ/aBwg,mr[AK tYÀv?W zdYVRTD$ % [Urg֭pe͒AE1#}T2qג%KR$u~ksQ\UhtcҖ*ϗJcoaJ<.!;"{F"Q YToP!.] B}pc2f4>E/w $7[$M@6:Nu OM?-}msJsÚ%pݻTkEk -uW^KmjzME+R)s:|]_fƯzH;x_? pa2q d9~~~t)չRzoo*X(ݣd>3Y}bsqN|+tGϧvaD\\\oMkv}Z+jŽrkޕԂ C+O?-}lY6@^^T 뭷 `}>gz?֮J9Մ4##Gr407&LKL~H*R| Q,IʮE//7Y2rʍ}%Z%6-%?'k9[rvR sAAR)#۷ǵY1rC~eT s]@ZߦR Q)QnQM۷܄&y(..![Ը8.uuU27ΊTQ^ZZr%Ռ%sHUsp|na0_;~^QHT3P k$یZg;!qHrq:MBq[P;:Jeێ>uJ*ЯGTJ l_~ D~=nL+CwSDbK2ܚ2%`t[IYyj<ۗ ԑةPB$x%/w_~ | pGC[T<^4 OD?_Gu l#$ٳgϝ;bҮfx9ml e /h`A!&W(ϲ9pjE [Y}]`Bw܂ a~f]RA&ߌfh}<5ͺѿr˛^]]7%nZ$W l8b+oRx zy+' YVMcn}F5o%s16KӱaO 8kr~4T0v#Gj= Y PC T|j~\ǎffTppg+Zج'OEo^>#]RaBwWU^Qi6f,͆o믿EF~~sss5KF%ԠGSOEq77?((?DikPDyšK BzrT"><@ jGRM=@[ԵСT=s?%[31$~Te$r=p_V錪'Nc;qbr H `Ӳǘ01)ε7[yywn:9.j0_;*in>!~ah+G1ߴ888Ik76PTT4fWŊ6*qqqy}/FpS1c{1SS)Sȯp„ :t8hTš%K/ ^IV"q  u-gʂ;?JADu0bz);E ʄEt4ocUߦw]Ϻ"QQv \B?O ZCqw꬟~:[S@uYY9עE?UG%N]M ~ ??L_ާ0_;ʏפe:9{xzyU=FK7&;tr|bݻgϞׯ?`/]dbbrĉM6u)%%Fz_9`͒bPpq2,썱ce-~dt6_SP?mRY^2Cm'oo5~<瞻K q[[ nF>ķk4+ [3wIK8`.4<*ɮ{p -m{{ >aXfqJ_-l})v֭-&觟~{KbE`vJt;g/oGW'7_gwQ͔>q7nH/OTT ŊyO6m͚5TţG޽{72 W\BbmY2Z&wxYZҥB8׭[,F_z?ë4Nmd-ʈkR9wM<21_~_'Ϗj?Z1l¿#fd3T(LOzoHukf=(N>zuJݏ57qqqTȁ ɡWWWݸqC*7Jӓgee'1cBTz޷o9kwϞ; oG Vǎ =&}{4'DxlMK ~C*Pn`pS!~=@[IC"|#|xg`0{62j̵ꐴ4~V"eeeT%UܷNQ-v'NB ҡߨ ];`iN?T% v,Ub?snVbbb6M =#JJomœ7)Æ \~}85`i(i7</+'L0~]}FPWWwY+'oo7fL]~>{C`b%W{OȆB[&k#OyJL^{JqŊx|[h=x᫧QUxa okOMTI/ts46&XM"ǣK6ҵ[AH{KK|[T7+zMyk颖 vNn.N~~qU*N𯨨&e)ȁFEXd4gΜ֭[T "QZ!74 ٬4lER"V^T ˆQ-1WSɟ܀+KPI[\xߍOҥ9OPk ޥpZj9&+Oyd`KT(IfܠgJJ* ~']v͚%])H$ze*\}W*u"qSQɟdFWAo߄̛k K-ϓMBrr+bhhh@'(ȴi]̔5KF#B]$t!$'Lj:u.Oeee@hz.ڵW_7 o B'h^N7s'ՄT\/~K jiVaFxG?q9rv. ɝ?~B"v~r Fܑ䘯͑c JJӱU[ @;iw*/ㆋş}+baBw͛DF#.>&>j & ǎ2dHvL"]ȟG1ɚ%C,'~= bY,46?#܃M >#, gx75 PL{χ7/T.P"n"[1 :%AS2S ɤFo1QlZ=u(Z[oQ8hŻ:d0!mt#Pvqqqοs2}AP.tsÿr[ ["wB n{6ka'0wْ.ߌ0; SSRRSS'N>?Xd4_qpYVJ>, I6g\\t9H* Ν;For߸^:_!}h3">Ri Zx Ro hb W1gⶅ?O'Itr/,Vk׮L*T+QVZZ+nؑ~~5K_Qkǎa%G2|Ogxs2$Yy<=?)jtik owYRRr?-MHOOKHKO4ij~5KF#q ?EB+S ˖UI%Ob ˜}{wMћV+[!sL1F-BW\M)駩SvJAkkk=nÏ}sr?3|#ANת"AFF H87@Y hMB-Ib.WMw.^Hϵ$`5vl8_~ sWn(ْaBw]vedgf##++3+v35KF# 7={֢͊Kyc1jTaZ[Q_E]Ǝ RK+͒GrF_s$b+I&Qocɓ pD&*6wn:B['ޤHj$k0u*t ?Z wgJ) 9~\*pyT+M‰30{*Z vCD3}z~۷Nsd=-+tG߽Lb#3;;+')36={h9&&7&L%–̸ᲄ0>_}%j>>Rɓ/  /dhHo*&>C [~6Q^Q:y60Q52mTƏTzRU)t4R['۷,׎ǎ7adJkT"؃Wcsg THU*@㮔8Xi^z Ӈ \ZlJ<~N~~,su;sFav_w7GmV,q-?_K67DD|ٸ*]v7/O~;{B.QѩRіQ*f׽TC$#?-;t%Tr[)+W*/Z+ºtqV_C?G'ͦ־DŽ T4 ioY/lzGDHx#~ߓ'q^|Lyy5~|uBb.PF bWK.Z c쨧NKOOB/ av!OՌI>xq"qz:>t9o"uŦG޾+wIx:ZT{/#hίTHY#~/b}\8N*صO ɋ*++݆1#}JhM& \;X'<6h ܻ޴PUй.DUUUIe)xEuҥjeѭ$V/dHZZZRi^o._\4ᧅJ}Eߺm[Aaa|bRbrrrj <0hؘ}f[(x}$>.)ERǎd\I  iHюZъoۉq5G Wv(uS|9rϞ.|f)DEP:5+I Ǿ}z *O2妥Q =w$t!kWOƍܿjEl>OUעEŭj^GJJJ/Wv}"l|s']`v_wM7G%$Z.3OlJxlj#6Eλojj:Ԉ>H݀_2)44$Δ)yYY63/8KdR̓<8nw»O cA}Gzzz5@n {R;twZy- iBJ+נA~=zP>(+Ps>!Zl't5j Q-[ظIu'666 IVF=7~ ]tUJѣa3W_>+;;($44<"2::&.MUUD9/5\f$Y6'֥L&C-G/kש!IWf`pϫ|τ>d)'x< nyJ}ۉVzӫrܘ81W` I#;Õd9BH ˀ=!ff:'Ut1"XxU߷.ժ0 Gh|c##k~T@*-{ [pj9\IHsX[p^Au$j`]#LM߫I  /#5q=' ۙ``'{Dr.iҳ#1K)_|AZ5*aai#ծ]F\*55Sb+*ƍ/gof}x8|jpx ρ\L_ ~ӧS#ltHᆪ)'mV!/~#aݺ9?rX[Uˣ$NB ǿnV/Wh [{ݛ m xhMϘ;wg i[XPMݣЊo0 Җnp\m5$%%ĬZEu$-c҄ q'5kj_?ߪ 1;{{[wn߱-.)=z4a1)a1,g[5KGt v"CןG:dH.1cRx;pݜ9cOğ8eS\+N"/vOpEq9TK)oSɏLcciӨ#q:)fM@JJ p'@Sii9mZRTQRYH&8*ŵozơK'q'Sw;7禮4vލr[7n޾}{EţFR cMZ]^:i7=[,>0`]ʛjkzu+|XaBb;w,޵{ϒPKofgϞvdeBBT)mRɇfvL!Mxߟv$2z R(U:*>O)ёjMĒs Tsae"QU .Uw¢ЎfAmQ${iGJ4]I05u4 9ǎuU,l PpގBF4#3g ɀs"טdddӡC䧁k֬NKOsuwsuwuqsuvuqvq))-133ݧv_of߼ VubB?~|Mv8O$yesOKPl"|8׹sbp%q^^Tk•̾}j у $OR]-ygO2[&&Κ屝1#۵o.$dFZn[Ȇ T+׭WSMXl I cPL2_"r3Yx[t/U@|_x!@~12bs'Jxo݊oOLe=mZ߮QEΟbs;]av_wggg* NF~ۤ5_YҥK.f/2ߺ "<<wĚW*+QX!|njrEfGnv"} 1"r\Bm|GPgq{ΝZ=Ǎvӧq}4'[@(w!-^ii84rMn輸zkMugdb'AkQ}}G5khbIlu|INtU9a[ qԗPɟKR9w|).m0;͛#"###C***ƏO~H}gv-SJ:Vٓwp_*bLL" s˥,p[ 36S'9a"h^*boMW.-BEע͡K+--VīS#Ä 3 є]83oViĭy%%%TkMb"s IZVb|9ԐMS,dF}rz[ IT{?IpM.BzL>bog}_ Ҷ ]av_wm۷%&%&$&VVUM8QjBB%06iuܰayrFW^9)+I{i[ǒkdRh ܅Tw24VnJ(yOҰ]_}EnرcڭϏGTl OnTYYYpZU­1'v+%!=!QQZW-z= _Ik==fKK$˒m;S=wf̐Få[`޹bJJJB,ZF1ڦW_BWL)Tƒ]FzqDBU6o+߹û+pǨQBv;;c}~|Jܞ;WƷ|w2 (52$$ejsoy32h+ mo8nJTWW\Wr$ϑ|Ȑ̤LLenݺbw{Ύ.}(`v_w]v`|4Ґf$Y]_~p`\(ƗJ"v|X ^d` Kn=p|2[j;WL^^^Ox;Gg]c779*S,۪"wm_}w)J{ ĻOtǎuNaVXH&|I%xpd&Z>:9񾹤|+BJe\7nQMw.}05b3竦MFR\:u7 ufRȼe ;x`Cũ;6mrzEx+3҇fu߱cGIII}T݆Su%v?)%Ij*4qsذźRW.H$_IbGqjOqƌLxTk"];;nkoK֖B&|֮Q>y-$SS!] := ۇ.Gy8|t>}re:(1rw;j_kK2P]2_~ J9r$ڲÇKD7g/",ᅭfu߾};ϓSRh'6@OCzofim;&$5IREMM SB%R6~mҤ=0ub%iidd˝ʕ=PWTVVR2Ϙcll1}:}Buo妭sխ"sstؼCdDqoJl2xN#Tms}~kw x8!{INN8}41r3a$C\]o~`v_w۶%$&%$&'#UUUyݏ82~[u5K+|-RvFF@nnn@%׺w-JJl!_U܁(ʸ bl kkŐ-$gOW1vE+.)%Oav.^ר*/L]ΝU 5Qh``]͒XY@mZz>.*(709s&}HIR^+߂} )5WSSBZߟdti*)./-\x;~;*mtڎoÇ>ٴi&8>%zav_w[ ._򈏏WahiHm,],(Su 3ƽ5$ D}aPć'b/"{]4yss|} ̙S:YJu:}DҳgZErO7 3,F2EUҌPݯķ2bD(wŕpVK^^^5?d_|k߻G&@%&At6A"n޽mL[,~2CF;c4u*ʐPG}|Ǎ˹q\6eK_Bo3/uG\~@X\~f&Yz͞5͚~_o]{{ΝNN* [h^ ۷G>聎 BTŊ)S 1xpo?$ HWj``+T%Wb#n#Ŋ6p0 {ʑ#kL\d$9r XS|IUB!UdžZoOۼF]n.nS!; 뵝4)_ ױc#|_)P__flСx*nx$m\행')uGF* ի!;Tv6lZ[]Mp۶'JyEG%!=IZW>=LP; SN17ݷ|faA_W{7Do;v,5򘰈X~9&0j.#G}N< E䎿„>T˃~I"~sCPVV&q}@ {/6[~K%e$*(25j&or"(>\47QQQ%XV]J '/ŭS#PJJJnBjU^ߖf "l7#s ?CpyG?Klb`e~w#&KɒGUuIe6Jj9;rO_ʖ7+FW-@kCт]]D\#; "lJg>Մ vNZ,SNqo } m044x+)AO_*Q #A7diӨP _mDu$t- {PpPG%MNN.\oZpZwW-q{D!9}ڵ 8 l؀ۙo:M*^Obܕݤ"駃' =]#<+̇<#\CCC#c#=^;c?2V[(**MHJ=Ӫjb+BKt?6Ije9_Y<-/+G!|,#^~3?r<KZ|H,ooUܾ}!j.Dx?eT3L 60y*H RU:y"00pق^z"-݄xO 3(O޽{6VͶ_: oٺ$.1-.!-Vz/`v Ҋ Ȯݱ*|2ԩ7~.ڻ,j%(XMmE(V zGjF>0*0sf*Ge! UiZ^JE|&O7 ?%Cժ˓6o^j̙CΈ /i>A)]F D&" g̠Buuujbqzu`S3ίZ{8v^~j-I ŗ=ƈ2tI ˋW(]O?Q-/woEZz*Y gfR͍)I gW(z韢ܽ)_Ia.G x(++QN>LcO# @%u)$eeƌKpp!ةDnn.#хUqT7di (xv]8` j|8G?}6zO ׾SVh 0;M #S"#*zwLbc?ofM&ypL2yXry͛GN"}վq)~,KdSSkY=yWӾ}\b4"|mZFh"qT#sdPEzBf7@TEH#Ι)GUSSsO>ؕurs}ȐE|婪Fi=k./wB'~Ɲ@FFF}D=k<j})s}a7#i={^R"M _$J$Nr []]N6m/ LG䑈ʪq~0?miLIIB3gVĉ_}™2ev6nxϤԚ\CCkY:^v&&r%F|]Rޘ\##K:thlLL瞣/4vo)}CiJ-Uah![[[{&q ~,eZKQr] Upv$#M{TsE~:D"N#;xX*N>t8tDuT4iiܽ <ɱ]2~,Ѹm۶Q́Ϙ1-ϩĶ[|Ʉ,~jvQ$r2Ğ={ۗ@f„dSS*ܹx!RfbT&44'X~n @ @GH,v9RM?mfuGݏH }O}I~p?>BB'9REGG"-WEߒVVrR*ԖQU~Je,74 L.H$~~naЃc;u5 8v*/ t}HgV_10dۡT(sHʍX1 M9x4)M9R?G)R.o'"Ӕv$Ў$ow1=4ȻVԍE<x/[V!73%B>8>>~;@1pܙDd#SW;;8Ke};~E/ڗ}ZP$ _SkC#GJ~3663xMX๲A>| up[I4jT6~SGExċ:>}"{.o$rȢ_Kߞ=(늋Л61c4ZL)}$R4/uRqAH\sTss'cq>|4 jn2_Q-ۛj cœZ.Q͍Q7nn9B576,+m,%Z/@cjy{%u~K;L+KBNz!<;C+\ISQ(f1BMv;7xF*Y}E@//O*0_,}ٺI}#{0V6b?OLL+SI;@Bjѐu.vT6BٳqW+=!1TOtG0.Gԩb9~]rx+F*8Sv-ܸ5G#/ YԓU[vT(sZ\Aʊ`Ev~:EnR|A{0M"ޫuRWsQWW'y֝]6nR-g#.\Z-Eh9E}j'KLқZ<]bu1vqz q#yT!xJGϯ @6@LAHɽ ￸=YB611$.9ptŷoS tij\M1i?|0;>ͻ_~4~[D,܊$qн{wZ ï{wo6?݉?Gbs?aջohHodYE|~DHg9-̙RX??|g06J9BYtǎT%KPHL\,(=IK*Z1M囻&\gsr?VMJDjk<~ == Т5:jS 8&ur3gHvPʿH'!`v;' "9u+kL#]/ja/T<\?@pO.V;k/TUUؙ~qk$X!v_2!1 }f G5331bYۧO/СCZ7ѝ:9 ;}-uDW(7ɨv/@Ki9zã eN[jVܹEf~ŋΩvMmRpfuG'ڏG)+WU~[E,o_$#3G;MMM#bx_^WVVpsӦx=}ѮR%l9[oZ2#SP 8.{TFFR͍Lj,g*10E y3ՊH9}z wb_Ms"GZ<;]`_ghu=nm*x 諪Z̧OZ(_bܹ΍R)W/~vٳSx\?ʺbo/ÇWTWdov9Ts #$8Cw\ev_nwىxq"52`U5ieC_*mRHD:9͸9dy2e5f-ÃZt1[FPދ05 U坥Kq r9H.TaߥKRFQ;-8 PӜtv?vݣ4eaQ/p$ENETѧM |Fvړ#9a#w1LbK: T餩iiދW?Yn:4H|O?󴴴H+DJa{#GtQ8`j&&&ӧS9sʨքرQ<~2r9IۚLzb"ʐ?yg½xƯ_:iC\"g%?ras8OS=+m0;BMxDLE% E?);L:aW9ԩStqj(K< HqsyI>啹˒IڄKz!{DoB-1;6̶裞< ]nҜpWW'IGuc <3/ cDɩnWllal ,@91A|w+W>o'\@39S S&Ӓd(BC;(v|*F)]Z] )VB~8,OsBt mfuGߐ'Q11x??'q2~DYv9qGB׷$R|&d xl!EGj"y8oVtӳd2W5_qxy(f KE# h1{,v_/RڇQQO"x$K557arX|dj=zbäI A D}8ShMESxH~j\sR<<޽+4R?!x|$#Zㆉ{ @5cG2Pe`馍 dWY| "CcPK㏫ߩgp̧q&Qyyy9x1zrb!#_3p9oؚ~TJu@~H<6>#>/772<"*<2:2:::&::jSu%v8~f0<;-$ے@Gm/qqq?K^ĎW_J!٥ bewo\ U&ÇU՚`Cà0zt jڴL!JP5_ ^x 9CeG`r`{tåݻV[VN $KifH~FhJd c<؂tunܠZ6K(y,IJM2ǣ `=r$K< |Nϓli2RRR>"딌Ϥ\03QA:LРAB9f;<ܓ֪Ǿ[ WThytl/րh\2OG%Cс6 #]_UU5a 9eDDDLL̑?U|\.圝':p!z˗/KV:Uؗ*2{w1&X]sǠA1Doo<}~TPaO<ݘy ^z դIysQz5 Ԕx.fq!Q:K5dne,GKY yN|[TM7]x'Z|0Wm\>6"'8MS[W:D*"m?{ C ?",Lij_SB<룏|5'Qsz`ϞniIIx ߴI*u2 `" nsd5ot^EU.Qvh9jn,,,oB*HK&88} ԹsPBCCo)7g $ԑ^v\>#^(הI=;vw1;=Bxtbbb8\C"_98( `j'S):* ed-KFuK"))`?1OPn1CW׻Z0;޿P]U5qbC-jgvm,QN{vJ;[G;wH:t.q$Eq^{RRkȜ?}ziC+.dYYYQL/h<{q}yjY5:?h;a[7M#[144⣏œ+wq%ʦj)16>v&jp(ڈsqtb'F]Uiii8@4L666M{dRMfftܱb!Ǽl湸׬UƗ*_ߑk{K?ΑI BNG6[6Oib WشMOOHUGn<̦'-rvn$}Co?kwߒ_^S}o,_lo16QiCsOtnݢτ\b7lӥ+7D0Y՜Nd? K4y%@&TVV^u,,, W8.gT|IIxZ& SM4o.WTṔg^~S4OZʊ t$$—,IWLڀ5zM/vuN-({J5(q]=yq&~jq(D.\H572'F 7K1c:2jTLx,CpM90NQ-ӝHN0InnBdjV>8888 ;ҊCz69CuKƒXN;{D?*=vq/G7x֭SBbM%~w88Dć'1x.olbH,R%J̵#xxMX'i'zt^ӰqX.X{ݝ [[[wj 9_3`Ow#sVE_{l\ _HMMþ_)ܺ~TT$I|5ϯ~ct2xubRJev^Wܻ-J2~[Κ7jm垓ioD*h2r}2y'3M۳ эŢd\d | 9PTTD5!楢!I IO৶N ,WGH@s.ip6lۚoFv*ݮK!Co#*]TCG=_ ➠BN\e2H&ǼP4ח4Ot8SDVvGR7n'\ڜ>ԃi^Ȩ3UR ĵ!T׮a޽{8Md_yet$δiVZ-NNN8L\S;wT E]N*B֭Cә](<9tb v͎c {< 5=H*?y8<8}t0ɀTZmTaGwOKmfu_曩ng޾>AehhM2:;se˗կ?!>*;(2!+EYP̝B[ԑfhZS_pGI9ޘGןKMSK%WhϽ{+&M•Vw~B|JI٩i٫Wl6wƏch*G|_ݽi76ۈRKlIs*wR)ee,gg|2M3J/|nE2њT%/pPtgȑVLJvN MfQ!:u˗G9Wzk<~<X\--qra!Tq'?DjF{x*V]*zA6D=j#GV~\M={6iapm:oA_QW[ǹS@77ܶ=P*7<>}4A^`=K:K9y= _2&o޼Đvt9ǧbq3Cc$1$0\C@6Hv M.{7^Α39]K|'˜m?'pŃI XR$\JGB̐!Vj76v߄`yN<,n\DՄpϨVI}=?񹚮z ?B\YI"N: N.d(JēzaQ O21K|ǿwl')OV)Aqz^s\įHW@ky|2G]a)fI- 0 99mAddd~ST&d5}djl\b|nOO *޽t 7XcȰ1MQ:I#; 1nG9bQdsW,PM8isdUn%Jxwq j@%q„̙Ңvl1weĈ.] Ym8^h0FJԦL)ٿjUdrtoMUC788Pl7rGh j`ʕxfgg$mTTwTp\ @Żg´p`!Q @;u!y*^ vGbB`#ݎ*TTTd-Peb򭪱5~VK/IGm]S\钛 . ]nЯWGܹs1c #/^ey⽫Woܰ{Ʀt,w,/w4I?0@*,nX)1!61ϲՎ6ɕF5\'L25/Mͩ8IkFUOcR)c9deeQ? >w>QZ B56tz+HWr~Qѝ;GۄfI40>EjU|ڵT*qj̘}~nhմ\|MnH?>dCIz>w #/Y}ҥWX\ny󦍅^J̘g#YTD}EPRh0<;T;DV|v,"jn%[`0DpBm&e֒) Q91xmقkB+7XyqnITaR2={>(J\=נf` inժUf^Hfj5.MHY!Ewf{) \=],Vy,]HtQ!i;554)>hDHHH*TÓd㨦̗,\<4Y!Y} nh$ܪ"WHL+29OUDW%"G)** ATqG# T+a&'VOnCg͓;L7tTk|}[mϴi< Oǎ~CH{Y 8Ru}pOS|l&bqON/;>ʅ'8SOo>I"'#֔IM2hc>V00;BU׿ykImti"wŷ'>nC΀/^UUU~mC_V2I I.Tx|2tb6jj\gQ7d{r9QË%qSGNT<~\J=WhUK&ҽٳ8ܕ۝;ՅwpNIy == |C*Vgܸ@]t : UVƽK<~#%J\81͊ v?GOnQLCCG9C̟{pNSN.!eA$qmSq&wF5^~!U;i;W%%"'AS el $\3VDzUH)yEwn\$5!!T $4>4g[NgiKXJc˖-C]{lml\4'f4:6/#wu<K4ԙ:ԆÁ% }7@l,^)vvvdĀx~?.Q4A)wᒋDQ. >] H;/((H ď86ݗK+@-O#^<;d 5GbDP͝4)rS,w#FDLD(o0oV=zDsU?[Nģzltw.ۣGf#oqu⺕UcKsh>@㫯R!\rdbpUiVGBCb4TGFFU@pV-jDN%Ѫ\jR’%Ki+V]\QQ1~4^g'?x0q >]>dɒBFోO$I'"QfD-x Wehx_v6veQUVJ]vD1JeE~%2$kW*. {}1!R7YXP Cj_HϞΪj?޽t}N{j.%v?_ُq|q"&N.׾`iiIr +Z#sH}s7 72Q[Y#H! gzL]E,v6֔#Ӯ]O.u9Y҅xpC`-@?..&44SYX&jj]uŦd{[}oͳEFFZS~D_֯7*>Z+;2ތn^''IU(TR5|/d Te!:A$=Yd7͖de/ZxzBI9XUW}շ;gCCUR\]]Mr{ O\j%Ȥ5n>tt+^&L(*3Omm NTzC?5u)ÌٳkⰘֳgS& tld~}w^ ¹[2>G|jԸ{E 0;ڵksssGEEVUUM0}YVTWsFo>?s!<%/U޽{1PוҪjlKx\P d1>{*Ęt5xɬY OS-G .ċ"Rv NNz4*pŕpgͩV"nN|ʤ \}n?$fF4JdA\A}JS4ݏ;'2<{s==uS-#xPu߆)3f#jpO8 <@bz 2L5oJJJbt#[ƒ %WU2x?)?o.@uAw%ҍZ߅n( S]fu_~=ZGg<f埔;3Y?-W:._A*+sd,.Gx >KBYkR~(X)IѣGѣG;.RL\%З< pr!ɾ}EE JɮT+nj:f Jr,_+N4nh|ˊT+fM)@RRժk]*** ʲx ſ,4 RH~m,X]xzmꨖGIwQ_ ^y"]lH쀢("{K =W{!vfnooNBx>{'!~%1^(IW#,IX,G.]q.jVlތ^Jpeff&4pG;cefٲeyΝ;5gϰݗ#6v٬UV!50’gFk}Utu?y}z5 /gϞtE؆Ζl:H(< ///W -vh'82v)ZrmHcO2=s_&R&@{Du%?&BACnc XKa)8* QWF)Píìv3Od2~g=.X fc;_E8.]ɚv?fUql-4I@}'gHtw?%KXC I I/Hg(Hvf vDR$%!68F{ؐ; V\ 7o UJ( !8 Bv?W_};g,[iqd!-:gak%)B_^O?]u]+>6xp{ *]J[R!I L<|1ĶN3ULۛ,IQ=>m@7؜rS) Y,f,41i%z^xwb /|FDcg9D޶]dp 'IMG4z{PmgۄQvGV~c"y8g7]rIq̆X%߶A'#^"C|f|O ug!ӂ܏_NUU}Š(\xم5grJԴwYc #M{%i~ev'~L^خ8%1m?DfD{MX)]q8qoOOq}V~29dRs$ ^~l}O2}V6@IJc?mڴ ???[ \^N=a b"GlzlcsKس $qPPPpL͸$5--o^xa…(SN=O~ʘm6#^vϧudqv@vp.KMlP\Vk׮P|yIA]r@H$zL6{dĈHf3ZH@=.]-I$6IUswr!}`,zY҂{RI agn3>ʮCVK]ߘܟ'֬_k?NP2C+jǿa|8:= -8L~~9eVК:ˣ-JLvm"wI A rzI`c2êѹsg/ضmHd2uf>0|qrqqyA#%jI!駟f$nKE3f4aО}wޙ?zjǎ=$d#]lj33EG$iC~%WY&0"֯G#::ȣ Og앭ɦ5D55cC,r[9+M~Ed*q* VXNa3'O?l~6Fnn.QSD()=𴹊ݔ + MfDp?R zm]S.:|dyHuDBB':!X['G~Y\q?bnWo> T~{dtKbܹsQUW/f%ܒ\#^޿{MɃ/_'v1ڔZtEt/sy{ƍ/q_쿴r&v1Ev~ Izgkkq"#R ǃg~Di2\"az-4}tneF{sAegIZ / nU'b+_y[ iֆ`\"lM#uŰm ][{ W9ȉzdU"`gJ;t&Qܹ_>q+ܹsg n?D~$f=#UmѩSkM$5ED%%·`[w8Ɣ]ʪ a<??sI6q{= I>:?,999yOdw3XfW0ZXAH7rҤI8z xI%%%P8AgGDq _Q ly))IU]֟=Fb}@H;/O_hkl.#d>GERu8,Gg"$ s[S5gOOX'p 7v`D|N|^{ot hlPTrL_69rD9"Iku}xǺ7D19dZ߫W]a+>@Xh2Ywwkf'ul_6юdow`ynt~'qHRIcD~D2M@o>F89]RR< 1cnk||qI >\5Dƈ#B$=9Sh)IETYQ!Z $ĈX3ى9r}ycz<]~0.N*\l+@zOHONA ) 6zz{W14Ҕ87m٦mwԱ7'?޽iMW >://˚xP52I*14"232EHISsya:O`>[o{,s;ѳylo aϊ5ˇ .}0ZٹR= c_7֙2km?>o +pckѲGw a}%:3-Og}BzzzfD8?Um~B^ 7Yc6%whww8q`sy /z=i~Mi&!qllO~e[i6Wtꆳk/0 ΰ,biyiY3?+QDBrӧOFS(**0`}BٳgH \;5Bo Qj%C򯸂?_kϘF~py(r *\s`"r2f̘^2بDjDR{Jf"lÁ.jv|H0[En%)x @nI:<S֡îGkV*jhpV .XrE"'ʄV׼n{ ;|c2aT'&G"ęrI0BP9 }v,>u[gGJ[aС[%igJLԊ.3F' ŋ:r,NԡQ{`Eg5cF ЃgnAp6Wx:`u& 5F$MDt99sR%/>.~1.g͚USSPVV?oI l[4cQҬ$(I="kH?3[V~ ߷onQCm6 JU([&M G)I>9snbcI oDHҏY_{m%5OwD+6$,Б[>#< BGv7FΝsXO_Лr-MocLL[&<<2lN뷋D.|V8?m@$ڶ i?O(g^ʝ9җ)V%KOJlAAiͧ}?Dؚ%)^:ƭSE̞;p[nn*߿M_Yo`S]]}!&ΣG]]o]w0OB7PZU=?:kFVz>)ѓc\Ϟ=2SEvf/?'i2 >}zLZ6ď!}'{ 1:y.X˞w1O^ ԙ= ݺu[̊zab#{GD̾k2!SG֯+s΁~DzHޅzvHos$fS{+pa@Dh1̎Ts'].a$2oオ/"3gla7@O2}M.m9 cTܤ/Ǐ܊Zy&Iz8eto$NBfRz\p:]W?]gУ9Ai1BCC; #qݱ& iE\T"` (l/V/=Z'S[_$dB .+<q |9sjP5wy"k+|||˫y1i_6dIB*OT>sdͱa{{&o԰w%l7E؆nE Fie6zo*.,?*M A7^g!?:3C-J4H[h7JRA_谡k״X]З9a5N}Mե S.nJwTn8Oq(sXNHH={* 6`_}b=kFGk"Z)SD.UrB_}Yov21;m[PHc+|9xχ<5C"n0_yJ9r3Ed5 i7՜=7uj^|L /č36r0v耫[+͑ILD?HTEȇgf~Պ{/Ц}tnfl&%%U\KMV@9isժzHgHKbsƌAFy4{\믋uf:ycфJؽp"&&K .8n=QII pxzzN#?,V|ESU^%0!qȐ!Xvqk#2oM#vgme!|,9/?WD?-SrS|xb5 '/s5ip$ŤŔ+Y\ G_\3[qM:{l9n[b3Ą3< _{[q)k R\)>+@JxɶǺ^3n{j>܍ v%TpPЉ&ov i/"ͤʇoLŢ}Y I3 ]M$i/Xh P&ܰBya[;}ß}V<(2Jt'7E@m 닭Ȥ KY*^6};vVSdogMIIDCn香Х B%663k 8[ *9s/ E.gGϏii$ɐ⧗y-g^o ˣpR!t9o@Epp?ۚ5&1++* `I w\Y/IA՚blyK5狰 ]~93yԱcm)q[c{2k^xT#d1O%FFGGƭa1qMj&};ZN<nX#XeqTe{_MSi智&}h0cBٸ:^%xFSO<$.dlZ#|+.jE^>ev X@8s!Y˼uQ\uիW7PAiӦ/Q'R6a3ý'\)^:2[dd$vGʚN$)V22a?{fq@,X`i6iӦ]{$[+֎ wq |Nܧy)g|ĵ'04'1 5wWK;~eee ~ (gI^k(`]Q;.{n1{IImk$M30z:/ZBԮ]H6ޤ9))"l&&&& zl4 sZ_e>ar?3bD ;@"u}YYY"lK)"BjJ^. kdH't+4nؠU\:W~U:ot;t԰_vW[$lD b˶wr[Y Iw6gE -cE<%V5:S }a;a#u]s;v%4}繭+NMU,*/ھsy?|Caŕ&amo.? `_k%kafH8D1ϳk8IZbзoB {*jjj%)OvJv{W={PSݑlAz36el j䨨$g>f'(~&|P?Jz)ʹ;%gύ:BóI?0ky_/JMf>X@As"%Kl&!=?x!߰_z5T+/ˇ-闰]a3yoq$I~+kRIbosv֭RVUU݀{O8so~Xg-z)A[yzWL,>mH7}@r޺%p PTPQ6DT~/(lw$A6O ֯_͗y',,l|ݽـt"lC޽6 O}~{|زj*+ǟL43D 5uBF;cݻQls"!EYփ2~-$4 y>ˑ

|GΜ,I.^[oE!bE@E;_Xrl># r?KR$7NO\s ԁ_cb'TdeAKキ킼pyڪ*opK$t<*XԀ{,/^x{jIZQB<ӗ85[I_1E |0,/\p(E_q8vfoh:1xH)_y%j5D~]ƾ9r$/;w/5|fS)..>,I[ 'qmL}BlꖰX>3 g&_j2IqE&2aQ~_ZtDD0rr$Cb[g}Vn@+PمU}/=𳍳'`;W#ە}΁~ Im4 ^ڳwopK$U^^.$I pͷ=P :r2 <'|tA,:o9~Ԝ脈D%: 4HW4D C8eUe~KkG֌]x4ABM&--Idso/n`ƮsaאVOGԊHS{9l\$IФ">. "̐ 8lrdjgp(ޔvպ{{T*S_@NJ'"-;vp3?K`b]3!*V{"԰jժ/"M[6|wWL#MvZ^>/|oAPj6bGVZw҅?u']p]D'םFX6HÒ+ א!CN|@$r?\d=7L^D9$<<75ě_h_~e) JL# sfoLU޽;wVv7OΝ>nnBr{xb,B=߭ڍ%{eAGS 3bKbh(2a H[4v}կ_$͞=[YDx*IyoMfCdꫯlABeޟ ?Wc%رc,۩zCgQ}ͱ ]u?<|qO cvL^^ޅ+#,x=D+Q=R!/\6E؆S 5uSccL56ĵls8ll<fv_y%ޯ:r8­paQL4 i>D;I9j\z7pbɚ}cm۶g (ϸ_~e)¿[N\K¬>[巀q7$r N8V')tE!O0-[Mn'DKmood 3tݒtf\s[2^䘆`ٻ=A_|g@N0H~ЗA_#'Yu\?VTTpغo<<(u3Eu#}TPEF=y ͳ?Ysf A?럀"""p͹+t8묳 @D(..~M>ȧL'Mǽ'kKR ޼Qֲkv@g򣍹"3= |pA.+4w9t'"Z͇>Plq>ᳯݽҕ׻ tm=:K Gr |";u 2'p!I1#-I?8GA|wp i-999S%Zݻw/eFQ⥗PTE2'>kw^ȏ|>;~/g\s "@?*jCu!]|H- uV4MnInPT~7߽>N}]cbx4t6,ER}O)77;qU;`W M:jHql$|"$-goߏBJRDDĞ={bccQHN>;ۉ14|1ʑG%2susq~M6/{H_+߈4W.i첁 o73:UUUbdǾcMf\xHm Up V<.\)KW40_??ct | n!G 8M5t[ZwM~VB2HW4D CW-|QxjĂ|==`] IE5n b! EV1g*6Lc| "X+ ]d5lt租bby,@70"rIʴa#D0_(^P٩(c$E]sHcM7vG!O,}r$j~괃}>$9=_~)INgXJ(Zԍ7,EG>Sftufs֭[$66UΝź V.=M6#LwgϔySN-h>$e+RU[Cj!fdy(?}&J3p-f3b$kEx=bW䖞d )[v=JUfJ0+t*%i3Fnތ:<"rK]v̾j#~m$}/I+V@̈+@|Y?L'ˋ]RTJ=뉗C&JR}&'gYj;.f͌}^tEwԭ[E:}x?(ncY1:f=o'")*ijlhF9pYĺ h[Q(NL\0 %qťE괁tEi9_UJrnf(* t=?ǔ)yXWt6j,`5/{pMcoza[2$i;n_~5Kd~/YF1ѐ:I) {@5f͚}* :|+p\`yѭ[7OVH[̮Zo2!=fz4DrBD(#_4>~:)%K(.cYq\ISH +kl4F |yf0O$ m۶} 12Bͳ2MNH׋?__ZUʋ"N HW4g~5','- GBwO4A֑#MǺG?*t 2"'cQ} ;7(K/Abp;4CD Ų]V?P3v|G?L9g˶onǾ5vc9r%ecQ'I.IH`rO E"}*ŋE Ѱ rD&55'v_}D?g~!11+MrQQXwڲn:~,?|)Iu;fZf7DۇtE1.gϞ }_k $OXn.>gt\FՅ.]h#}lfsKv*V7Ưk|]q4> )))|l2SsƎױL?vկ;?ԧⵜ!8**П~c*F6~C'>\D:{_ qqYtQ Iy…w-uz69]+e(+4YO4 pC-gMWԈu?lda]O;av/8uN<=EⴂtE1.g͚ z*FCCÀr?*_$'-Op'oJ$`Jy.K&~A:wqI 34 qwr>~ <.V7v$^]ojcdee}hRX!Ia{`}%'wTn+~dݚLc^xhn'`d; BC_h"uzφ ^cn-gr엁qAlӹTD/&hRl| owK_=3̾:Mːs塟+ Ǹܟ>}:T~YYBQ__߿E'Ɋ?~Hmm}h]v/43-'e^ʱ/S ?||sd#!GCH(*ʯzwx$95v>Lfzrg'22/5<T&I|"??M&/g`I{A0?<~-QTF\+αdbs䤰ǖs$P}?1k Twߏkm{^ü  gγkk.XIO;w /ߴR'HL!cƘ1#V]bƫGM)~flΔ(8 !]|)STTT W-'ߎny2vX={wM>͇}c/>/ 4.}fzºQu*TN͘Eoh5B÷G9蛘UcN W1Gz\LidhPyMl(!\d:T3Fii>xE %L1}Xm d?&IrtiD}hw'9Ǿ0e g_0?l 97߳aprN3(Ͽ~ܘݰaG엨 =OpTM|r4bP\l"+ĉb11}UVW>=vߣ> {՟gi)q37_d#NOHW4r„ %%%dFMMM޽I[7Օ'bu8a:Q~<6+4!<7?#%eޛY~p~\~ *0 5dO޹t$I)R!hlX\U׏O:5Ѐ=^!"3gwWq žGS$UKM>oiXvFOo:Hj <9R#'nsֶN~~~R[ 5\زe<Ip@_vmG7ԭȼys1eff#qϐ5eYYǓcb"#CbB"||xyxxusow՞>+|~ \MхG>K5#`rA >ژCIy+>sQtE1.GSktttTTTddd8gϞ6r)\ꖧ/'EI ܠ3fQԘjMIpzݦYnZۏMwMZ%bzqgm[gGsj.jG6;-lVO{g7{rs 94181+"8.NĦD<;ǟ#X,I;b3癎-Ig7W{.8زyTE٩SCd&5B+ o7{pVjh]v]2*ۥ7LfX_PSNo90(ݡ*,?=/=>3>2)28:/'퀛n7n=zx7ীB""&i^"5} ƗMKqX6m>7wWw!xzn?u wEE boZbLjǸ>|8NG.++CBoP<}5>#l\΂EcpD@E4,+>/>"-" 6;!}.[]~ӟ>>q0FԜ %5ٓl+P=;;a~BQ맬y]}0lkÆ?J|D|vBvIFIC^,=E,I%Iu/=A6|+ŗ$[, l"d%3sW $D>V6Uܿ:ĉ"ϩa8YZ3'A+KIN }g^?x?z,L64z~tDzF/X=='LmvQ¾ \Jo54!wOo?#G"PIG2RrS+kqnxǀk׊(tE1. W...ٲ[o+rIG[l^{U܆܄PBlOݾ1vo8aͻr]#c+5F sӣ9g4Ⴧ=xGG&EBZA_J ,C=mlva-&G&SP-^bK!C,q"tZcٴ"1:z\ϊ5sp*]yuyZ^ڛ_;t6wW $v3uʝ:'5"~:U^<6<=x 9[[RYR[FgbL<&**En'VtE1.~d{ڵk;[nѓ$!-V]w7ipatЂPL$={le7v]7rad촲e9U7.gRN ,/W鍜7&&M3Me54s L }gGӏ~YnZʴjiz[M[wv_iYՌ/L~bbbҳrr " *TuvMmT;?i0廢1a"I$w)V<&7.XΝfO Pqq>>n\7ԧ8oG_Y#__HLHtjto=[YY)6vf0lcǸ뭷ٳsm۶mٲeEEE7|ԫwʪ갨$?3HKK{衇z٧O7X}[ ~W h"&0'.-.XoswE\”/¾ c߮6ؿ{~uN -MK/14w mqĺ"2a?u0сV}VY\\c+g]x,巺y{f 6=687|DLvtrfrtEq"o $`BCCsuוx=[c=WVV&Nd%13sT%]`*1d2SM ~WFDEDgdfzf{nkضɴ?kMkWV4RMcfi/>1}24giӔ M?4}aþjî XMmx엱Rs:x w yg'G}(Gn.k\oؿw޽swࡰC^1^EYUYe eF0ǚ5kK/TD@ykץlAM<'l^5y鲚Cvy8둈#<.g?n<<=7"!"%7B="p&rYgaEncmǸ:thJJѿk׮ݻwwޝ~{O>D"uK'7"ב#F_N1"p75T4f%GGG߂?ձOffOt|i#D~ra OHe+j+']tac~ȵp IdKϐÐͩ. #<>m?{6'Ф'_Fmx0[k|P^^^ۼo8?4zfBÇY:tå=z :s]s5<۶YM/xs.{8"L```^D@i 7hw}ot3SuIuANAzjz\l\dDdp@A_>>}|[4(ۈ/cRNuiib? _$PO/yn_U} IIN+̫:`>aӦMW_}T ImG`&p}|y 3>+}ŌJ}?.wonP^Gbe5_Д&SVV-ęc\5*'''888((PQQ!+Ǒosݻwܹ[l 6uY+Wsĉw^jjXǦa}[)hĉyy))ǒGztc~U$47xѤ"G+ϛ;/c# )$`y_ ^ -jS>{м3o9jFפI Y67ȀQ] N2+q?~cfbbbYuIhApK'gY۫ﯿA[ [)M+h#8q<$')'h`_^.]n>n^zUxgi3 &dO>eۗvo3}zyyy#L]]]I(r?33A: ,ѣp-СC?3<zOi;NY3fa $q?k֬"Fqq1]}}<[˃`v8uK N#x&AgVᖖ$ ]֫wʪdnaHqr$Ocr 4h"`2ST)[ARh>M\WVVBy$O'pB<=| UVEGGO4kگ- h)HW4gM]ύ~ FͰa_~n8#%AA-_Qc$5?sϞ=wNݒ  ~qJWUUyԟ'nIADKA8+!8'OhIMME @$ hP;Ci4M+_#Sdo$'[AAPBgܷf"#d?vL]]$]y§_nC4C4C4C4C4C4 @Q@W@]A8SrϪ?}4mv9D9D9D9D9D9D9m/((P+~?}աrrrrrrrHۤ r_r߬eOrhu輣6iyoɹ$VO?_nC4C4C4C4C4C4C&M+~AAvqV ܏IMAAѺOU^A }  hEN}AA4As⯫>}  hu,W='O" .뮻?+b111b#IĉEo_z]vׯ_PPX^|ܹ7xc.]n?Ak7xxxq /ĵojjXA--e O^䰰g}///7s}mrnx]]]ĺ/ݻw!6mzɒ%b]a޽ٲeF|\p###x RƮC{7&&ȑ#Pr|^ _~^{mzK/>}zHHHbb"N,999bO|Crh4!혲[o塇jr̙< "`2?ĉW_}5?VWW_tE˖-v]u !]wѣGo#4]q{>AB3='O%qvСC'M={+^}++V+1_}dJll,®UvILLD0$$ /$[uҡC6! <A>qO<α k<)$}zh38q矧իWUUIØ={64ܲe˺tf2k,Ν;… ŊvZ ~=?)"v!/?8:Iggg#x~_}N)|-*HΘ1cpMOOJZZڕW^ƃ$:{WLs="^ an7""⯿KO.\gee 1bēO>)P;$((誫RnI<!C4AsH?}u7nKRRcpɷ,w "E;>|L^+tYL/nZ<@/طo_H՞P;➟Q9XձcG~vHMMMΝqA0cƌO֠r}thUN81vX8վ)--Tq]w;XoI&O.R{9[oZOu-Ză2.zQ C K̙3К3S]~ܗ˳1>}u=z4fv:^acty瞻n:2lذ뮻Ĺu/|ƌb],_;|8-sP-g N^֭[XX8fg.H9k!j>]? _摍>Z༣abArk׮޽{s9~;_*.]|sm'N8e]Oij4|? yhZv%8dժUݻw_~۷oDkܯ*_r/?}  h]ٳgC?~<;;;++ kkkUr?V'OAAq?k֬řtFMM̀Tr}  h8% SRR~UUMTlQHAADܟ1cFII ~|||LLL_~v>>AAA.Ӌbcc=XQQѧO?}  h]SB뇆{yyyzzqoV+$OAAq?eʔ|h}???}~Vr,IAAD+c\O<9///00u۷o/**ѣ}  h&Mwww߿m6nXXXؽ{wr?>AAA.#G>|xݛ6m n;rFr Leذab|3O>XGA% :k׮7]6??ofr&*J'8CꩧUu͠F,A-r\[>ADr"B+W]v޽; )**駟>wy'//?Ccǎ$$vY l111Xpm!AXXנA_r%^Uge Bg~@@Ç߿{nM7~Ag*=X |ƍ< ׬Ygy欳w ܻw/VA1%YdM7$&SII" 7HIIA>w?$$ gϞBGǧGɖ&[4} /(\tEWSO=/;3X?qD\~EFGDDt1==}AGW^\&~Ag*9svmuuu<^Fy?΃2 '\veׯQA>)S =  ***z~-S/,%OqF'333W_}?11~}}=Vi>"qcOben߾]6VXqg_|UUU" ǩP8>}#OqX+A\\K/޵ko}ҤI|P| Nhz$۵kܿXg2{cƌa !>\A[' Zooo6:v,ACqwx8AAAʻ$ `֭LNNvqq;~_[[ow}< hrȑ^^^ ,)#(~ADXfM9뮻nذa߿+(*#OAASr?ڏcXEr   )Sbcc;T>AAA)ɓ'@凇UTTef$  u1.'N]^^~wh>Or   Zr999\{xx>|Ϫ{ T>7AAѺƍ;~<n"VHr   Z~vv˾}S\\ܣG+Cr   Zݻw'  Sr㾾߻woIIV+Fr   Zr_?t萋Kii.AAA.ĉCCCziGǐ'  Ƹܟ}zYYYzzzZZZJJ $  hDό>AAA.>w{ر>}rV'  ĸ#@+󄆆VTTqB%eHAADܟ0aw?88ȑ#>>>eee~;5qٰ,n$  u1.Ǎwq___///wwCtTEZicUX  N_y{{yJJJn֓%E3)Hl#Se9abɦF\r"^+/[n>!m GXGZ9ڼnZc!cSw  6q?iҤ¨#Gh?r>ŊY¨EèՌ@*"{G(KVs%d^׸RW a+O <+ly6asFf4:\v#%m X2+  rʔ)%%%IIIёYu[IQ*$mN MD"j,˴s؆.JiZj:5b*٦t%6 *q(M*pAٙv#Ujۍ`i15& 4ĸܟ>}zyyyfffzzzJJJbbb|||uuu>}ZYV<'!i}  83gάΆȨׯ_;>AAі1.g͚U]]]\\\TTTXX~>AAAeٳgԔ2JJJ 6>AAAw9sU2* 4㲑'  r t?wIr   "(~+r\da$  ui?qℍ7~AAѺ4AsHAAD[>AAA8%7/SHAAD+ܯJP'  ֤ rCr   :$  ⌅>AAA'  3&}}  h'  3AAq&>I2~C|AAA<4"r2r rA(}3$[~3gNj3Q!ߒ/Wq6v nd@-Ġ?)W_Ǐo\!5F}pզ6^ >g~ٴ^4ރQ;5P7o2\΍ZZA#Rl鹹x~748FqB J*(,'S|_@W7kF-C-Ġq'|4i*c~74E|HRAEZI }[OR%J=Su&vnr1'~E Fs$vZXjiqKzrةys];7j9 BXxrk#a1Q\ ?"rQvWHbq-c}edBݼ蹮j!F̀O=6F`E"~Cݼ蹮j!FL-9EDQ^?$)EE=Bb k@ /'MFuܨ(P 1bro~H.R 5 a׻Dא96xIOS;5n0iЂ@8s];7 B5RCr~5[9;>.7%7\OڙKm1wb,U>teX/n V"\4oCsK!Z4ƷkfNΚM;aF``-Uvʹ@ 5i'0ͭw*4ڧڹZN3jVМyRZB~}x?p@.SsVXR1fZal*ݽ @lp6`QQ,`6EƱrC7Qyi*8#cq9M,~4:C!9!9;^fz,3[Og9Fk`vj(;,kfͯ}cǍDW CGq7g֪ 4Vv0ͭ18[uT--O2BجY 555|~s<{|0#+'cVDVՙD(͂ elaH" *)aS]dkg װ -{; λz ޙ3mz5ke(*UCҴ`RҰ\"H?\(3]nUʑ|Fw$ g۾/Kc.y`X#\F/H Jɥz&%r|̇ȺȇPKk0[3j&KlX.úzm\*lHiRreޖv1 /(E#b*(s*:;bg9RS:U5tV饷k[ VW9֜T%ZʮI ڹZN36 㪊U<ѣGi Sݻ7qN i\0D] J AěڍYn:z.2k"Z]j[bZKըֺ u㨋2J)&EES^R4AB%߂OԑKIҰr:%upǂa̗53j`6Vu&N,zK>ɲȗc8,AR7ڒzxC].z%6E3pHM^ZY[5ͭ g[gH%_?2v˱BSɲڮkj9rHVxX^ewA^1MZ>|xvvv```ppphhhXXXxx8\wwoUTT.IV. s@(X^_#U *7&Cr3: #Ɵoap~BjH1#~H.R 5 a.wu(̱K2q2nd\΍Z#ؾ}{qq1fZ^YYY8?"rQ_O9L%=Om@ݼ蹮j!Fr˧$`ӧO[C7oh#qEE}ߓ D2;Ɯ/W7kF-C-Ġ ><++ȑ#>>>| N)Y$ᇌ =?0r\(\F|3|smF+1_i6vjnd6jԨHagϞ$e , <?h<űŽ?LxI7Ũ7ǮkF-P 1hǏ/))If$ݻ7}222222222&O\QQc&Q[[۷o_ddddddddddM:К~'#########;bEEE'OFFFFFFFFFvz۔)S*++ ddddddddddM0,zwL1c%&&&0սz"OFFFFFFFFFvzۈ#rssBCCCBB4>io^ff;G$No{wRSS|{[ok3o2 r; СC>1bć ,ذaHY4loE)'Sxq9F:Pb ;;eʔ3f̜9 0a˜1c>#$Sj3*˼XJMxc-rJ((p:vX8qI&O`vbb".i8HHKKCv |$< Jr㯺|Թx"g2Brrr ˫ ,!k F^a6 yvkwA9PWc[x\<ԧu+))6B+++yj "xy`;dvy -ŷ&***iAJ"şҨ΢QGqr4DF^OQlQ]v'Q%HAG.^7s7j*5 R(ꃍ2TbkQ<#@)֢bp#92c] Ϩ9+ l)g*s,!z/W2ɐg ةo]U5iVrdYJ,>x|}-ll9);V,aZI`cː-^hҭ,ll9Ҏ:kŤF:kR"od fX,96 ;";M[ղá::ccjpL6bikvUU4<ŔVvM>M&ab# YX_iǛ 3&%Gi-LX[dBxa,NXlAj-LFMNi%J*^_Xg<)IYJ4le0K2ޓ[L*Z܄T턷gTڏhk!G##z7(/'''/0084,<2*::***$$`//Ç߿ puuE'y3||||}};(((888,,,222::رc@<*#G / A|`>u؀d`(TRazcQ ܺ@MBp^GF. Lla; #|bQ 5GU`-pp砾A͡ PsE͡ ° 9r(|(W|+HE.6u?`NV>#AP+AzT uYRTiPE5P8T"@^EaADP ֠@%5 `}@UQlQ'1'܈ M /o14HA߫@,c_P(w=jTF Ġ_52i(D&"}.^8** gJ?wAJʨ3r{ħ5iYZs2:)g[S 3qyP̑Wi}vјP\X }ff4 SqY|4kզVZz_v}ߜY].R>Lcc&>~X1iNq5,lZBeM6M/HYLS>= #l>5i`ZU0Yi=r߁4r)+~57+~(.WzeSʖ0Un%ɱs|eܖTM-hN 8i~ hASHU.  )+:.L ;ש \ rɇVr@MɈG$F jT 54*p- 㚉><ٱMk}Q@$" /P@P *2\ڢ>3\r! ڨ< !:,RB9}:_|u 6pxphJbP+xor6 u@}RGWX-UU`sУ.OU*|[ *JеrJ<:'Pr˰Y^OLg*:Z#BeϨ5:x¶Gv PNj AEJl?Ԗ@54erPwb1lV(QڮY;^y>}Vh3A\4&. VB}aevD=/+ZfLXbԊ)_ EE)Ou̮ز5gjc-Kfٜ,|* ~YM eamԚ@/rO1VYSw̖0Uc\BFsk*JPkM>LB~g?$$ Ô:%2?Ye  )yy9a-e&1Ue |&ԙWXooH *q醒mAD0%A Ff{ ߮@!p]9lVo? qx.V!R*RAb"!AblomgJ=Z @ JP>I< R-";$rqQzJ*54*a9k˫}vy= # y^8á_2Rrob s`ڟ[8eDb(%kỏy4YV{gFݧk)(j6i+d_l+Y넭Ȗ)J&d|]iY+ d9sdS̬`XM@19MD#&p;d6&̲EpY&;.~懀GqcG Ԩ[L0Ndiu&֍w Gf9Lڼf}'AƯjҖǭ„% J `dXlBAYm܂"bƴ{`xdlZVQ <;otskh_5ul 3w1nV| O>߲&7*4$BBHMN#h̘bu得AAaGGD+?=@{-U#[eic__!>@.4Ҙ7 xjx<`۴ bUYkrRT`EؠلJƺj}dC}Ps^yTUT ׸X,Jl<mZ,<_Vod8Ƕ|,a-O@ VX%G9/(a剝bXWb F!IUp7|57ײhJ)x͡(Q,*D.d%`@M!bo(UQ`Uє)A^csd[p]v "͘|p]nPť٧䭞f?R2vy{YbVr_&41/K[>&}2RKpKlMO[LBYͱ[>)~٫Drd՗v]Saq mWU+ՎMڴbđbb4y{ 4? &ix4-FZⷈ9H4h;S+~o~`f,\ Q57+~v?z|a=;+s366hJl!SUϒoxÓOѬ퍵4֜ۉYjqL}2Ox$"r?$ε~XX^xUŦ\)XRO3^1xb#Mxv@͈*ϓj(H bQcD"% e[pc,4WfըDM R+J( +˵i P DN0IDATu%:H`V!VPj+gF.4EvSê]VJFYဗ/e(d<><P J^n_K/M:U&w?ݧo{5umjfUU7jJgt6fsDdЊ, ΍&27=W V|j!iygm;ۙi_{0,fMm#QRuUefemRVX@P6?~. "$ "r:Ah:dL::DfDIFlDN!ʲFkQ  0p@hI&}'+?{慗{KFFFFFFָѫw;z~G{ѓݻw ~ߟ_t1DCԣ1Djjjb و̈ض UU1#b 3/*ԑ<z_}ʔ)|pRqEIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/quantification/img/quantification_12.png0000644000000000000000000037147214741736366025224 0ustar00rootrootPNG  IHDRsRGBgAMA a pHYsttfxIDATx^յ}nʽIL$Ĩ1&jnbCMTAQD`GT XQ "EPAp{kͼ{p΁'8gϞk0_/_|ܹ<̽&9uұJ{ 4ȫcˬBf0N 2qb!jBSq(WզZ8I˘q ctgk"*hD^@'p9|#WkAz#Үfر>K/4o޼e˖%קO~w철%NVgnݥ@OhWr0ڜrn_ jImf)rABc!2r$JH慁o`TJrR)4C#ǰl!HP⁴9ȹ`3 xEÇ=IMHC! \}曥ýٳexy-4@朿% ;ﰫ}ٷ~;aܹO?{ѥ Os4M754657667677WUUVTTTVWTWTWUJHťJ%Z\Z^RViy)̯MQ%2QRWtnTYTEW^ʪ ,&@RcW*IcuATƲ6UpKjA8R-{5rk$~*!qY,LʔJT***+**Euuu Q륮A4 Ã䊕-T⼲3U YSC<8tЁf͚EUB !^톦UI,TuJ7~ɢV?;#ew5K!Z ,U+*V}\;)nt@ƞ=;r hk[[Kk[sK+ܿUԒbUi:(yt[4ȾUeCtt*kE'DtAT*U Q5JY Z[$ PP#kE%%X~۷UO -D#+:>ю}Uҏ.=ƔO")yPCr+\ {_1^BJ!I& p{|$$)F䱆Znښ 4SR~~eͯ\6bK?(ժݵ튿IN)-'O?aرD^ߦ|['d)#d7ӵ%S@HO`ejϴ7 gQ.yEa/:dl&enzKtE]߉[}DX(\4XM>c)y+B[z+]3XzQ|d"^.eu)'aөWfTFKnaY=NC="OBÇ#̙3)<{uiLO.^4Th^yU-Wx^һ mj]n;};#nUze;CGiZ{UW-ҏ+轺/?fLB/䒄?&Y茔[M KPY9?l89Z!َE$r4@l|4ZiH m .ײQlʬL C4|spB:|Ǖ,L 4AejYC==c 2riN`yuN3$dCހV Nϐ`C >*[ 덵֎g[<ھ [%qV\† 9Q NP8b pJpT *!e8oHyI(5tO#Iؑ0HwͿ(zt8PL8Dwn99i=H2ӏS&]#gXpG9p|>:DPGn&`! /Rx5|8@bɉ(F1ie (_FoTkk5}FsZ?vsqT˂כ4,S`N9UZ ͟S2N9ϩڼ񲿜Ac{dݗL4L4@*u.KL9~efiG^d!﮸2瑂(/D6/*&~WKTc%AV)[ [v5G, G!eS8K ?yd``}c' e,{5 e N '$O4T{Ėo|'ޔoi/E66P{]/YlyR} NJP`] ,G+LIv0q 3tHZpt\:: G'4LAP|8%AAA63vNh+l(vNc۔XСMx8йIH^ݧiт[2(|bū6_~GE$E:ㄮ‹W.q{ysgkTgW=ٵoϮ{V۳ޞLVm͞8qdhfܙusgΝY5wbJ*;YyZoͪ%BcȆSNQvH&p"I9,TȮK9-m(f9|U4nyk=bFQ(?#ČG/h@ro6A*YP ҴFzK;~ 6Uŧ9҉g3ʺv?!J؉b/pDgUp | i2'B!r#EDN@J;1RO-p>Tzb58! $E7~p2Ɯ o8]( Y͘1g,@";;>ϿWn:iOK~ZӲ^/>^ԢSKfN-9bSkѬw~ KGMռhUXVɋX X eXs?xs-FPiƣi3MhҌG>[qhKYPʅ;ꝩC>6GO{3mC#Nt.?K=tI3?cދf7siaS@#/9f__jk3B6 9B#B.|IJOX6z ԳuvPHy&[&!# 'f(u<NH5"\O@uM*wSnrG[};Tb}O'CGJg΃HXq =:bkJ!%T`tEcf>\wvAW8zLAp8%MA/63vN˕f)'xnq󜐣ZŀO |}ii9R}u6TQA+gg~__kyMCuo?E2g^W_9 _;Π9NPNxnkc&jC We^ >}:W54:͗pQg ;{?DJPg<9R yJ}*}J ͼcy\J^c\3T)MvR)Z3<=%)9ӧdL>}Jړ<`ғyO ;i%üPqWsYڅOgz\t/яO?~^͋3Iɗ?$&a)s>]B֣B\^<FR#ȅzO Rt8:Yy`0Q8Aڄ ,ǓCꊪ4 ~$0rlB*9zAf܌c$1q_ Fv _3]h]V<=i!$N|a# ^Snl? PJ?cti=KiM:_©FC~tm#66bǎv_kqmפ&k&k k|T8j[^TBZfM揻:wwuڸS:ofl{1ns1nsmƼ7Ch~㜑,L?l~5ӖsW.7p5şѩÿ je_,wr/On >v_.TUzjlEx@}pj_ 8֌qaRzKNOHtiiu*֢.օdH5|ulo dBr"UvzvuSפVxwMNyѦ42WJdgs~0d ]&0M*aTmO bo#~[Ԏjr$ 4ىOplTLO'(zŁB!T4Gƕkl4@<~-w06)OL|tB/tdinl̎٩)SmHGATpQ/폳?ϫy?/髋Er;.>}?OSyz?OtK/uh*Itf+Ӓ/>mŧ%^|ڎOri\x X?/'iZq_?"2ip=pw?{vWUb /]?_~!gGar>{v4o9*~l^g b}x7pvE}_pCXP 4d0Kn.ˢ/\C/ rry42'l}Q B]̓5& 9OZe$4|AgCY_Ng@3!؞> TBYRmCΕ=+#dlɎPwk<]P"c{g-;OBB`f< $p vj/C Rt8:(]S::1:O/)&u@(Q*J@pB2|9l24ѳ>tCAw?;=xܬ_87`zwܰɉl '\$W4vyvo}i@6D@hµm9]\A)ǀ#NN> aq>wdpi q7T;^O_AM<z ۓ!YhO3[OkQ4Wvlj?=?Orof?t֢7qӎ<92ڷ_xr+|]LߧR~_7SxZpm$ omXW\2}maY0}+WX>^2]?AV3`?T,1!|C};5zT7>l 2Wid T}i C.slh֓xOF *H/p1x<NHdϿE26tg&*cT4ݾ&ӆnrh#~ezV:yA,u zAC؁xdbǓpTbFR"h2AJzĎz=FrsW!p5uBڣە|:J×NE; 4=N?:jmt+:n!'7wfYƒkEƞ;ymĶüaCޝ+e8(k?Oka\?_;}3v?O/j4}i/:mm 3^p Qd9J|| m/9 gjC=wjÿOzy2:[o7?[sd,ise߻Ufn>܈>o7@?t۶\1u31a'7_lte[Ȯ-gkuv߀K'؋F2Wid TK:8'Ffq5A`$Eŗ%˘껿B= p#QCक<?̩tTS 5x:!K*އ@Z=+;:U#4B<<9\0Vg` ; G* el"$f]}0CQ:_OQ8z Pra; ǟs朇~~ʡ;ӏ#d=0,o9Ov?'o此-[ںu;L…o߾c.[;wVvҲrZk\?aC޽W9ySYGV묕g/;k6 ?gm~֎g~Vg%_qfg_W_NV_1<튿Пܥ+t_\~~ٙ[/;xٙ.;\{陟^r'3'lvg-x.;cM~߹> ݗWwt} v7F@{OFf#'2Wid Գݥi㗞nFfq8A`8C\7~Z%$ WJƘL2M JlmMtGnf5E l nU.YlOOݡRg< 0\ƌ*c9Q%8fT퐺ɑd`!#Ip '\w7GsS6GP8 "CQ p]ɩǺFhg xsD68*p# I>:CزuK[idj}ؾ#c[9Sן1명5^cW}W9-ӎ<[?kvy/H>~9{َg V_Sn*} luֹ|96y72qwF0 Tel坿lXW*<{}A|J#sX`5+8~3b' Zrt2 fsM]NOhïL*S\SDT¶ Oq>/z܎[pyV:+:U:sA,uBAaIȂ~q0JQ%d$JabF!'\(tt8pL(D|989!< ~v)EP &Ը >(C@gxmeddo۾gDscgYvTn^./ڝR4S{G;4k\s1W}=ojWmw\+2y㇧5<)ke2=-u@v_̵:EP} ~.&ݻdإ]5ܾ]n,W3yV ]'v'FY]D ,0ROCmr5,w_e ]Eĉ_WJpu k8pJ|C7ukX*򩾎e~TL_OjV=[?#}@Q%8o` *aGIt! ooّ$BF@g‘CGPޗ!GAP|8 %AAA63vNhnsP۹gem~f ? 3&Mص;'Ԟ~7)VRrVp=ZZNNv)%5VjZnt**x~ɆIc6N}J[=zۿG]oܚ-ݒ-٤Gn Ol*ǹjʳHݜRʔQISF2jwfFy%PӕʫvoS۟?o_u~ }#8'_xnwԨQ#nۻ=퉟ߕ#M4Wi}E枸v3WWU}qܴ,v6GuÃ8|ȃ}NWHbmư~jמZtu:S@ ÷/r띿]O2׭(O+zYPgcbxm6ls °Tv$uK|^wMBF 10-J:q=$G56|[;n>kR ۤ>;T({z!?=+[G2@cE Wc( ,U: f'(3wǎ$І;nѳ0:GJA'C'FJg=Q8 CIP;pM8v6r~9uދQ3TB9jCؼyfΜYXTC[yAo+=WYҲG{W].2S+j; oylҖMĤ'&&?91Oݓ=3f虻Vь(OzzBҔIz➽='죙tO) %Uh?Co;wO?~3uG_/UTWהW͝7vloYÎ ,&Ut㕘JY}٬Y.{GZ_+?]AGd)xGK|lhU?0Xv?C< C_x!jvvߚK,on@\ʿeZ=cxlpҥ^[k r2鼅}B/2QYdAK^PO,'meHpu<NHƈ ໸ 67~>_&S5v6+ !>!xR< V ;~ Ǝ'! +&d "3"PT̩/#uLAp(%AA`w{OpNj3s'a!>5y/F+ jS A : ʫ[ngMNIkm`rp7U}C_=BS -u_Nn*^t튲?W|y˫T_Ը~iVs$jZ$L5[ҰnIVKXVvYeeu&}죗f^| 487eʨv{kO??_cƞq 7MԪx{1KGfч?vű_qot멃^j >倝6?[qe' ~u}gg塗t4xz<=ee^v_A>uױn<-fv67}^? %jx^ĸ HdƂnP!1Á s"4,iK#SH |uX#U9^S8CgjxNDCeI/sX$xD'-g2-s7e\)cS)vKQt >4 *6R= )&< R GCʸBj07HCpދ[A9ztVv;) G"12Q2 ŜsRZl[eX93$|5C"i(7lMnF'L8B"cO g<.bE)QvOg&՝k?7?z7gC~pg:䅑G_uՕ˖-^e-[6wٲ7r;HWZe?M4a?hAK^8[ynfLiĠ,n,'z'iN#@;^7t}9ICSMS2]+/88i:23<NA^ 9FP3Ơ| (e %0'̕7u&;h~^EMM6P99$'P`ޕۤСɵYѹkCY . XX焦k )y%3d8Q")XtO]O!uxGnAǢ=L\}F$9~vqq'jW诹8]pMFlt^A3>(p^RX8`i伽H4BYK,po!G tk@c ݗ8>(fvfysL'JPt$foCwm^ڕ5[ZVF->i@o굧l7v*扅!+;;+Rem}6 ԛ~hA!zQM]* H>bVsx-U_=*}']Yvbo8ЅՉPI RޒX}-L)7#-E%u? =)W =9f1=…'%Ky"Ԕ?NW#47FoFQcGϘ˕P,ƾ2)~R(żrtk{ox хYgH~e1@ۧ;- 9%L~ ;/Y2,㾩G(3ɣ;XYP[U`H)@J y3sb fdHdO>?-yۍP+| WK$NJ*)ޣfIu54FW(p֤ԴV?عE9M>+G`n+ ;>Zt!"ڱJdF,XtϵUVNdҰ%sGt'%9yfU5J&!LGCP=)Ѽn,䒺?G{TlJiCC=.!z\Lf zL#3'o\2Z9Yd13ȃzE]tQZZ:+՟RRRYi$U*#{k2d]Kqe]3z4RHqL3U[uXm,Ԟ1x)YT^<#v0a@+YpOM=Qt**&*8z_:z{s;;:u㮮 PkN?{D[ùyDP^?`MG^$qfoCf % oCdDbxiQ[RHhԒPtuuDvN"/M)M5kUK=Q\i[C,}‘N)yʞyWWle)ҟ*-[[e$*'K yqH{PKG@tL}): EE4X*,.ebMi64D%4j7r5!ZJq0ErkNL3/*iT}eϟ6EyUU9fRNT*!MrJ04.RTKR]P2dCUf4+Ķ>GPVP[ʆgRY)4VrJKI){IIZ T9&%ʺtj?-=3]ʡsózF GFRĈzyaVeRZOF$K09˜lPHR?1+ڔ$h/uQ5cEkJg-rxD7;@72kg\+=)2 Ye݈yts7>qX.'GJ[V6fr+댵Rg-iP}W $j=ѶO w fuVf<h@յGTRɲ^Ӄxp=He$u ۬ӖewMzz BgW׉'p'7{CjjӁ9UV,]D͚.Ռɒ[mLGT* V]X2Ud˾yljڛjH;MG$y,4_HZ.H0,Xti_dy_־s&l(QN^Ahg $kd}+='fR$h\\aB<*9Zߊ'_1/JUBy"*U*62JnJC^RMc (er3r3rD"GҕRIi)^)'JNKJNۛj)eOĽJڽ'iwT]Z+S#l.%-3\rf63J㭬eG]3DOP'h>~)k$*,("0N"ljg dN?=:ZJE* XVzIOٹTJxRwCKb -X6\qƢjY*P*nrq#=?"l` ʐ~"TUpc\-T}_'>:?9TxUauOLV\5,T*Itl zqWD,MlҞ=-3VZPn*#H [*Q2u!!|%K<%c\4JD/ӀqH:\{kg!jv3riqIw<\!ehI}'e I4ү$PsTPL*%F*UY4=j=^7s I*l (硚R\fѐasUvZFv*)=,Ԍ$=ZIJJ޵TҮĤvG{ڳCk箽vew{St>Yɡ1N#:KWn ZrmX `i[!xfT!MMgYLe3$uHý~cHZޚ*z{US49-NG'f6u2-R]] }UIL3\T˭ vm +{HrE-eTH$'4#f(ide9eW4Q1Gzx$܍URΏMyiYQiuPJnQSt-rP! C)T-O'a~1+TPB-$(T\B(R(ُIIOwiyEoZ2e H9٤|k*c֒!JNe)f%)e&dMɰ79}rZRwU%Jٵ'eW;wMJRڕvI# LI&95TFq*hFX+Ɏa.!w ;<-8CJˊgF_# I#&qsH&R[pFe4Qܥ,7 X\ QzJp*$)dboXKSܛr%JSTR/7G%*['@ <:{g7'yx'pÏeJ@=5Ϭ("iҖʑzEUR_*kXU#3%u8CNkن:[䝢>'~g6韾mJCM$Z$J EՇYo >o\u.8o9|#"ZX2ǒyd+_ ?qv5e'UFt!8a?q@Ho^G*;xT2RNNc3s'uʊxA影y5-Z@TD+V]ٌ-WHm!VMd$9HƝѓ͚TV@t|섄zC<4W&~~rg8;$=CvDS+. J&+%/J>C,3 󴤍(9RCQZln#S?D(YQ˯E0WoMk`wyWt \c\I/4.rX(W}#W(rE?r]JPrW?XH-5pIdjLq55AAsuojn-5EV~wu]Sq'Z   {sK[yUWu?YfS-m AAAPdݛ[*jʫvdekMu AAAAdݛ[+jb -ݟj  ~(d+k7VZ&>AA vŦv  <'AA4`ݯCAA@ׇ݇  $_Or}݇  !}  ov v  ?oCAAvI vHPX*D G6]S}[ Շ]*mBYgCPhTlL{kON+d/W'޴-\bY!Ӷ'3{}8zݿ p_}`t}Wz/+4GCPt P"-w^B![>[_3-ں:p24osR:^;^+.|,dt6^uDebJץ#j\(о;`F8 .ru + (ngA}#?fں|a⽩zk5ūYh˴d#i~$c̎rjs^{OU?\ FG|ȑo7ص*OoĿe>mqg`}oJx#&j~r)x:Idq7%v$?ISLn씏i9e :(E\FB!v_dOS{ b)mw4MXzsvyS7~ gۈy-H|U՚o!֙xClDU6h(teB?2ޤbg\$厬eFH]ήPWGz\vS1>i7rg>ek$r%@ imBG^lJ+ymJU]|%ny){w?ghi`g(-Xj:-^ {KN/1Tg*t87bJ w<R$F|O5P.']$qJ6yyfb߰6}/hkŒO,WN'k&a\@]мzmo_7%&c-O{Y-(tvqD}O!rnr)^cNkE@o.Y_^@w<]=FOKW6t~#~r9 l##&o+ȍH+%Bv٦oyk)wQ[[ (n݇~$jM vS]m6.դq^6qgpqϓFd}JSt|{#3rnh<@CU{zB>t/'s\=qOo.EO#OY.VH_|\2:bOՈ|˹5<5R-,8J) A$DĿ`q?; dVuhcY{Ywz2Pq2Y6wQspn>=ӸjX 9mlx sp+;N5eO}:(>2DHʹ>HӸ:*= P?T .\߻ɛWR<(7bDV |ʹuuӸNqVr1q5{H:.3taq> [Xfٔ~zdōv=s]{jzQ"u-νU:*O絳zV҆9#-;Y:@$`v߁S349"cKhH˝2$=s.rǡ- K (>{ZګH 'j_bJa! %!  o4d뛔Ddk]jqA>A5abk[G~qovwu44jk}\@AA@wso[{G]S ^=-m;:iW+AACM8͔oji7EvD}  x}흝M<زͭAAAA'a)oi#5Y݇  {wggWk{)moV? AAA@wuvtRveO.Y1}  ~[Gz}}  @ mۂ݇  o[Z[[Z߃o!  h Hnwk{)Q)ӯ}GGD}  "eaۈV}  ?ii-m-J-ͭ͝AA4@4qvEv_3[ww457:;a! s>7iҤ6+2Qa-oO&XPbm=Z  O eee]6EvːmO:hk8a  Q'Nh8PAIut*oC'\ST]TS\[\W:qݮV [>'AA>ǻP(D'vz 'twv6V)UUo& T AA>zP_OqݿWNStݝݯj?߿  h~ݿ;Z;LYv'_X]T[\_Gv{U@*k@PDz"kFnk-WBʵ;ݷol0gdȴ:ɜfnr( H6]u_䢦AevIݓEJ/**.//ߝ'sN#ZMkv2ͼ) Q+N#q4NcĚZqJUE#ȚZVY?z^.~SSKK }y>}|Qwfm}|*:\r!LG>ooJfzVnvN>)/R45-->mH‘*$).6VxaLqz-S$ ELޮ|ԩlӸ[I7-Rhl.\Z#%vݔeOTv_omU^m;]D%ӇYh/녩xA#^bB g~UHǺ:U} ^uTq1=վN=7!9٦݇J۞'%|^~AaQq .+;'SSMb>&@S|.+2fKot|Q@7فNT?3oTC|;m%;R>rJ)S>57LHMעZE]h`/څ~kB{Ƞ8=qvS?i%TP:nV,4'r27O1m{}e暯S8șWŷSC?3}Y_3GuMkwǎeFML"#"mvIKN#G&&W__ǍOqhwtwoM8JœU -䄃/$08U3Ii!(.'q|]n^Wha(tO A~{g}S)c>MH-- M4=մ4>vg%5Cs߉ZVkW{KBU)ub?o]dZSUj@[moeզ^GyfMµrX#$>^݇Jz$USK~,x]-xkx@N&ղoiʫ}^S.Ez:roGT} jW[zEl2#edUʚ9PbU9` 鬪֜FF~]S)Ш~]mmMuuEsS[orM7v߉ZvMj$&D{9V9sԺ:$ofץWEVX Sʜdu5E7仕J|_.SSIզ} B0!~:|jJ]!I߃})MzOw̑3WqV6ɲ ;q4_[8{taG3s=ݷLe9(4/0;.wLjQ :DZ3~B h3Y Ԉ8GSWXlq}VB /XUmF4F],8HA-2̽gзq@PDbEUUUl~K>  /c 0q┌[hhէuծ槾:>sVbtW~?(\xrqV_LNFp:Zj23rҊ2,K\@,*4}'&0eYIJzyxɓV]}OV鬒lݺ;qOjQge ͖trY9ȽE$\ )kZHvMЀ}y{w`W}[vt4՗lh|u+3\@'TUU}ş] Ձ  ޜCa-/vXWae9_.M_(yŠܴk? z'{"BUk:As)wlk[MYvC:j 8oGY?H[~Ҳw+>]@=> =OWu]  ›S&.oihU2I7}0M^:w73^?Z  ؅7D|]5jotAҖM _-KKogZ   ~uCWu{Cm'd,{7e[{}  0"Bvް ]l8.볏VEo=Wߟ\@AA5^e oXՋV߽tގEsK3_]@AAvt?mM>KbegK?hJҮ<w  7uTֵTշv߷4gmݘ_ŧ֬(˾\@AA5~Ė֎*r+ir±ڒggƎ[I޼auE]~  =~mR]sDz{l{[[nzZvJrfҞ];wT]5V   (v=sNt(WdJquwdeggddTWtMV [>W|GAALӞx^(-+:E8P4\Nl+j+ӯ'tttzW+ 9AA>='WTwt74ȢP(D'ݯtN*-.-*-,)(.-ohlmV r?(#"ҳ=\7ru3\hR!םwvu( W|ӝW6*YuM?$eUe RmSssO~8Hޚf?zrYW_Qzێ_ 'DZ|U]Sswjb!G8B ("xj_&oش嫍o$֬5_/XV/iE vA'݇J۶+=1e4RaQkz5U5;vܿ^8$&gemٺ58,0tWa~7~#X)[q-Uv1OIe=uwZ ppK (C}%۹'uOJFrۂ oxkgpS~~A`GЩ}w)-#''7|wp0dv)^wG* hy|a+_ vtb;Ď΢ꢲRƖ1ct誴wtTUWk}0:6աo;Z5?J/O@>'2)Y9U5S_\E>qs223Ł_XRRZQQQUUfOjY^?[ۧ 1o Gvb|\\CrB\N+ߴOMN͌-lq'utWUVU7s4g'9ZYU`DbV蝹\FMZL5?J/O@ v+Vo{bJJFvn~Q~AaUUνy^7lHmnn zI ^ Ubzߡ֦/ #|8I Kq(*.!UVVE-ӆ*k[CUhOdbUr:瞨,h>TX _vM@T!evd!޲ !os m˪˕X'xr1ޑ[!*N)mimVRgՈ1ygCuh4z! h+ъJ-m|L2bwu޴esVC#K @j<[u5:7UsJixT9&9 ^%9>W^~Qiv~$NuMxlQ[[[}}}nn^6.cRӠo6i\*WS ܈Wf6oxʎ=iil#BÜpb6e8(9L:b _F#T(0K#Hd-^\L%c7b7Gslk[{rF>+)WY]MZJq2-fCBM: ׎|Di!*--YZo^pʔϳ߸Riꅄ+uRߖ]SWPϧ"{%jK>J);#vFjޑ< C,L\[*C}"zٶdF̺f[u+׺Y5 @Zj"rV%=Sݚmh9-olv@nvw}Q_~0nAGO=yײ_jj|䈡P /޲`6P=؍iTȿG}Cv%&gNޝEڙY^Y3[\D8^.[u}{o>YֲbVʯWZcck lT,MͶ+pS*ḾԬwGk]zW O݇JlVYU2q/v󞜽|^CCC3LPscBcю~zحYh1f@v?1)=-#'/>QUUU[[m|V_̦|ZP|G8^Zk5d +$O#`ޓJ| XvK/jKv>qV͌5ܓcOVĴkGj%*uơ:N:= uh-;Nٲ%ьL9W$2y--| -Xs(U&:)9l13cL 'uT|ݻT#-pױOɬwGkqΖ{YSW v+[jMqY%[ϹV=oKz61%g$6EF+㐒_RRZYYY!OfW!8+lA lclvc)OGR}-t}aWYzQ]e"ߺ#1\>iiwjYE5#nr:ㄾ}:~waVs4=#C+߿F/W*-'\񺷎Zv  t50`ܯ7;::~waV3C}%z>";7e?G`ٶVL--ee偭eH ԛ 5:rTsxh;}O;(;Y9yEET~6>B{!xoMyAqre]]L~*ecfJU>% &T|Gq43dZʪD˷v_mӷ&VZQqqĴv՚#wU{ v.=CtUh"OMKz^˫=WjU/U2vuj2>V?x͵UM(u|NI5;~J^їb}AaQmmmv^1sn86#zz1ѳYhNz~>b9qYQkϸɌCyyyUU}%8Nv5I[1tPU}%W|Y~x<*ǼPv/y/I/=}Os};;}c'czhgl-h(+~W' ^NI~U`Y侓!WJ''-/<աH~O󷣱})}V鬒lݺ;qOIiiUM]m]CyyE~~Aqry^|3 @Y9y>z+2}}s!(^b+e‹vK@z.M|W̰/5~UC9VnJQݔDgEUm~3O&;*MM{^,I\*C}"z&Ͳ>}idWkMmC[}aW=X'vTfImy$qVxW+A GX9߯'bgO./ۿwi>W"\G$Dh#k lw8f1Wn{GFNR.k5:.n'446NLWu%!Y>[KU݇ '}%r W6U)kɏwd ʲKs r s G ĺgʪvA}%?]AAP?쾭8;/lPR~ 'wtUWJM'| ş] Ձ  Sv$vN"_PZUPRE*U74wOgDAAohV|L~]YUq v_RIu}S CAAqfd%cmׯ*(j  b&dvr]v@n^QEnaE]CAA4d8~߷ׯ$SXV[߄_ AAAB/T}[8ss sݿm  _-Rʪv?Bƣ~V~)>AA Wr/+T_g<AA4w}Rnp? ? AAABo9~v7 A+꽾z vt Kgg'IZ"П F\AAv_oxDE&'p>A~YUC-_i~Ll(YgF5-Rq6bVr vbI) \AA"V^hT*/-ͯŎa]u:ʫz~u8l{|Gm9بF3D}tDr{4`l һ@!|:I]si3 8 pin}n/4~/WܯwZs˿3?Jo}7_ F$ y|x±ɨI # &(hǧŪqsI')(|wq8oUDu.5hl"At.H@wy&QZ=x݇  _~+h{[պk5\G<-be*?ȬI  &(4TO4>E[p!> MjY JЪ"V8e&?APgk%@+w]is v"]@ qG2g6atEAt\vTCcK}˛A&mʻ (32搧VV*r^Z; /R/FkwG5ªMJQH4-ub֭@MM5"V G#H CX~6:=u ƃr}lm$ vbmUw}*~L "`CAooxly~Ǿ_GnXsU|o-*UVUNhG '\Ul\3y,01ݤ{&NT}bUk5PS{wU8ڷ*NTrwVCz7RajUu{w~iE݇  _)^Qh˰EUzknpۑ;]LY_pQZdvyWˊJ.M {լI\wwWI477) ɋ9} i˭ Mj(QDZMljCB}taT .3# f}\յ{G+hAZe@o#~0" :/2]~}o!muSu۰[=п>8 :Ikq|K%*7'ck;Lq3Ե-~ۣ(|wqUZmƷ[qi<'bD b`7eiNV$DP.%D݇  _u'_YۨrjSg9ԣxL}JJ' vVrQ]%ւ`I) u^ss:_cOS~{VD;]ϊ6ӎ:݌yCQ] 'IGg,zw6H'U mv |vwvUjDo>(.CAB'_^mI&v E? 8 pYv_>aJkJʼjlnP XL7)E? `! W^x_R^m'XM҂.P\0" :EG<ǟxRGgWqycwNp+M_nR@(.CAȺ+?+?>YO8C~TWZEy_MWl1  b2"Uj?ᤄN8?YAޑWXfiԘ;\ v^"|Oֽ VGG'YA*[PjѷZ>Dv{CSsaIV/?coֱV|@/ݿF%OVq7·d~^AWM!}1dR}V}>}IvTck((*W*U765VRv_}c}S-JS?VAqy}c3>}HvmKʪLiϿS C ^BݯV*'U::-Oƿ>7'2ܢ~u%w}?@Dd[Wtr_՛Ptp7f'BZZQC*e}gx{mذAV˗=z&#X$)f|q~2!HFߏ/)4{vn>nܸW^ye_&_}8:}8~ _\vL@$ҷ~g'Ʀcj…3{t؏'1OA0Kt44W)OW d"ͭ啵:M_Z^ey˖-۵kWNoK pYٲ-.vILSA SmsN.!;}x˴zOuWZ*))Χct++/޾`s^)oTVb%1GkW['eIyZ#+,-)/+/ %O.,JϔȉEo(ͨoh+;@wwwGM]>Pykk+ɫ\Gvr?|& -?j^ai=yzz{+9UVC]R;Ut={:Výy}y> E1pswJ*ʤ(6XSԵ7ѱ~%>$+WJ!P0k 7Z !Uc^EiQYYYiiiqqqaaa^^^~~~EEe[jWVדH5J]ݯ1{oTפo*D|{2;poҮRB>趏K?W_>??c9)y{9O#DMý>+@6KbjP4+m9餏@7nzWm6wx/NڊOm kn!٘Sw:o԰ܴ]vDf͚I&\J / 70QYxX*SXy] ׏t1OuMMiY]o<9'vlFCgϞ}o}SO ^|Cv?}eٚJ܋f\c?OEy_Oy]voH=%:~%R@7c<ܽ[#d%6n9Yuϻo8gS? 1@ǒ}睋X俿΅*?F Rxhؗv)osa [>ieZv1cƲe*++e]7v%{48q _ˆHP7/+//(,)i*/^zOQKb4(>oN[dIKK i&2[|F}-㗪#v~39S36I~ǟw~%'~0vy}"sv;4Ǐ/++?,cc<ܾt/Jб$ӷ\G^yt) x}~Ӧ{Z޶~OɆHcoNUx⩳<_'M GMDi4իyu_Cv |;ö<=/ov1Ok(,,^yaӢUo-<٧9˜۟~^ڔ)^?^*;|] :o7|3S.!7akZxDKG7ݶaĀ}8?759?f1{4lz꩏?ΟpivPx۝_mtp=Ͳ9lUt`ѝdرk$s략'~λ/XѢKX| >gZXW\j*J+V,Z'}{ wI&UTTH[>4ӴO^p I?"-mɾ-ݯURj~D^,bWYeMf7-uQG=oKvu~J!^23 Irr̷%K_[-WJKKJ=\ù>y4_~{cƌ)++R0wG7v֭+//Ո'1~ be~Ogg]Sn~dZOU5v5xkD^ _;$ uK7WVUmf6deg7m{moc܍7r݈믺Z74vo'6oO~rQGj67pCaa`k]PvL/}sw'jSV&7~SҴ@'ӗ>_o}/ѣG)r<<yy{蛚(kM['s` vq/SH)/_tϿi+3z>I1qVn[ ̙3g +W$gO9f̺>cMvޔajvm۫kk+w5n*iHO >}ѲOؐ"+.B(o|wvZÅ<=߼Nv_V,V^|xo۶Ꚛ$1f'Lm* >|„ \o\q7߼|r.$IL {zy տ*fgj5\|9/LVi+hG_?vk6h9:7;7/>㋺½JL>}ɒ%eee$WqAZӦwn,]ɩ #o驪n[aI<7.y~ˇh/ZON}l>Kך'4nqȫW\K.vѵ\g)g͚3uH}5ug͘:k gqG :#ϛ߁o07g#v446eV5-oQڴi̲!#=6 Ea}ds`lp~>cip衇ҟrpdGox]v…zҳ7*?rM> lw,:ni+ )7]0 3gky㭹oWDg v~NJRZH13%egΜyM͙G. |d6[Wԛ=Op̖rkjkJkk2+N2_v5^'_nݺPTTTviD%,[./ n7: @|²1RcM]t/9-[///_/'Ou_~^o+.|?.d_+jd"B7Ơk?zd0;;VgB_h<3[wߥ!KQ<}^PjW8}{ 7t]㏧©S+5 pSh(l4_-gF7w4z򱤟|4=&T(vKӥ4lf̘|rN0m\v8FyQ46oޜvQm~w^{mkyEˬ>³TR\q~&-JIٹ3e&\C$?S9cƬRL46k5vuu'Ϗkj?|ogkNQx)+~7.ŧHI]?ƊW%!Q,KV u ba{#?v[7l.\lٲ/VC'kJ&Lt`}-߻>]v.gEjֵf嬗o9 4dȐ:Gy$62;=--/%o)K?{ՐWr#?Փ7ޜs^y5j>H5cE+-"?o9O-e^P.hάyf!?iojHOo{7jWQ}nv4'kQ564>6 O?s@*U@lĺdeoقh˺pg/^oQ[2ex`ƍ?y ۶m#oGrk}8?`}_| zRtgvMF/yꫫVjmmkۉZymᢎijv|} uc₋OŻ{B= 'ss}v@W^J+ͱjiI~|P DhkomݏӾS)5Ogǟ+3[[ď,nS/{ӖߕRmhXsO#?jիWh{n*IOO7׭[22dr %.9T)5'1uIlWm]$WuZo^钆"atݏ/ֵ~_6'j~dZhaTWj_<kPJw?qެ3wf'M ߓvNaϬY|ךGS %P Dv_}vO?v1}j)GZRʵ]BCJykvbZK}{|=gyۿ02X>.{ _?_p5HR?@mp.?~zPdffN8q̙?Ͽ?@؇_GFOkxIScqy_r%hy׮]'t7Lv:W4?gTu~xgHYC:'yc_GS;slo*:wڿ25|0!nw{9H3f ;᠃&-Z$ @oMﮫoU[H{G~WvNm$gkNL?W'NY%e͉_W^W5il7WlN_qWRXc=$ ÿW-Ш ',-|l2rx9K>ԠHҖSXnf:i$WЕw Z2{_'AJ$]GVO?}w:::h…_~eww7WtЀm{󝞊J]Mtg|; g669v2?bĈw]}֓̚1fbOΚ>yӾJlDdL'vxP}Gqw_dԇ=̻|oYJJ}bs.ZȪ-X=͔O]NpAe.~T`s!rBU|ԝ/(R__OLV ILoj=5障8ogMGH`6omP}P޲M(NvvQ{iˢv/tQߥߡ^ ?K.1q):0Yr儱_ dkgR˺$^^~qokgzR&O ?OFc?=H%cϼ)38dED؇c P02ִyo_Դt2[n,Ybp<3ߔ|oݷL۲"_9&|z%|/ZƎ[RR"m,Zo:IgW^ OA;Ϟ3gq"EHdv?eήZm <\|=\åU#)m>.nR-$h꘶gaJ¼ $YX\ͼ/e(Mi~{޽{ӦM}G}ꫯrks vd+EW { }ё~x| )-յUoimKJ1UY]Kv?OuN _lpnyg ";.QVlGB)p@l*ӴT73k+KKKK kjj>!T_?+keHuo=dO7'"W%kmkԲaK^T_)ZW~f,y kow⫁kKq×^ڧۿA0>>}wD=@DmįQ@`nܲ7׎?vnAAx b>}K,v@%@%v6+o'y~%>}>-`/T]=ɿW5v>&R~aaDfo-@%:>ю?//˛Y-}[_"վ6aDv?gDn K%ٛa["bkoKׯaDl[~޿ݷo'Y}o0pW}-d;~ݷ6mdGgDdKʪ6mKoZ6mMZ@f{mI+KЗDlݷa[z^>}Ko ~$>}Kv,vU=-;RQwn}@ߙb;~M> v%"_Z^yg*9~y~+>H]W߯׎;>}LTv_9~'WooQv_?>h쾖r.oB~} iZ?ݯlݝi/)n9~eߖ`Dn3? @ݯNv?쾼wiHJf{ >}KvO~U)m@ݯ%=Q;DZ e}aDjw:~E}v>%b7to}~_RV ٹuB GA܅ 9ڝ{mOvͶm[vd@ w!>DNv/퉙^OKwaL)<D F$w!>DNv_;>vȤaI:@WNv?)[;~e3I) %|EDc `X ^WNq2}ąۮjW)o:vq+ }NOOۓ. "F"9"m} v֬,߂^J&3{WHDv¶'=A~e->bjO˃h2J;d?0@~V7v+b'R;9g2iv@,ttteQ+b'?/8N}ؘ2eʺ)KLBݷL_ϙcvpawX3%Z~JHnvs{? %x[;GwVf*|EbI- %fZ^>pa yt❝;3W+b~ %ɛn캵"7K+b~v9 %cŊ:Y `X :|dr/_yM+>3)I%v KD,;yh+bv KD߫WY}g0,7(Oe}g0,)Tݥ]]R}g0,)7n̸/鋩e"v`A@<нQ! %"{QW' %">FY1}g0,U+=W>37gg·e"v`A@D̝tۘ:Y7,}a X; +N+bv KOVZjU˞%N+bv KϻO=򃹲"vnY.zYw_;q{m? %gۦ|)+>WNaL0,&Uj_;`-|衇N0Aփa 0Y;Q峟u+b'v?+|̳q>vOZ!>WNv?TKk;~NFF%\[o }]SWN6엿%ŋKfه~r)_}x]tQzz:>KSSS=y<"viw{VZ5yE )))wy|*_d=C /o̙YtY|E`?.?tѣGˊs1w}@׿>~ӟ?|䑀?8oa pxz8yȺ?+bvŴ?c^%ƍEV4[`X $<[2C;(/..կWMpCQ &Bww)_l|hv?vzqM6*1uԣ>ZVo)ɍ7|YY~K}[1O`X $y3ͻz+b'?FĔ\S~iC3FV?SNY~=F%B~~SV_;v?)ƬY tGbX Y9ݷv/6U;\S %񜙞Q- ޒW>3GӞWY_/끁}g0,Zd%( %WqWG_W>3‡{v %ִGW"A}78Eλ7-Aݏ}g0,^ ؁qhimnu#-"v`A@ 9(Ϝz(+bv KbOv(NMPW>3NgdzQ}Êo%ݿ]V"v`A$y<<1Z[[3'|Y؁qr`V)z=ֳt4Y؁qr`esm^2n=kyU"v`A?5x㙩f)zMYv?v`A|*@Ք_; `Xz<ZC)zK~V"v`Axz<=~;=}ֿ񃯈}g0,z `4z}g0,xx3=F2k[88f>%a_;HV|߀fk㙠vhߨ^i0Gv?v`A|L )WeX+ٓe%+bW~q~^zݓ7}:eG|E8a9~iz3Ǵ  yeШN yn7}G|EDd+CS&'ECwwWSl~ ʛ |EJ1`a9,E@LI_ƄGd=B+b'R'5>pa90?,E |?h~N}g0,;{ '@ܙy[SSzWNo* N[e3yCs#_;qڶ+9ƬY tGbXk-khݏ~Z)eJmSd5@/n:gLȁ}g0,;gɚMd/.tG|E8av@<3=GeQ~w)nyccE |E8aߙE@o1sdE^-ۿ_;q&ϧ(+'$x;(Y`?kϞMS /vò3\{cϞ=Y%$65I)#{_ȴyneέY-(ss&EӔr?A/,X"3E9MB4>%~Y\KjL&-ܙ^͕Qr*ܼbY+v=z#Fx$r?ZEoE /0AQ__ W22m }tb՟VgdM, ia),*?O2~pmYCfiԄ_D-UQ4='LȴdXX522m k;}vlK3&kuHa)(Ur)~YOfi_N-ìEynݨ0qwu!#vN|GXψ˛YWNS},'r4jܯŞa>E%_?0A 6Jm-ӯMLLGl˛YWN3}/,7"Eqa% #'iu6 ;RCFbm<߳koϔyu4Ǐ,+r4j3Z'RKFF I8 SffԐCrwwz YW4_ ,cRneNQc0+h6~DWPKFFP(fQalfͪ/-s'Cs>0**]|vxz͆+ GW1r?FY57 ZM0Ԓi*32e˨0΋BjqCN~^HOkWò0oҨ0h6D7 /##c0A(~ u+.I>ML_Na,ZޕU8p.lNd]a8M)5~DnFyL!r?Z222MѣJq8& \r)W V@b.t靄BQݿ[徵5]ޜȺpd/Ҩ90[h6DQKFFpWyg/.q;j7sŻn\\eZğQ())_1M53M^ρ.lfd]a8ܗibfieh6D'QKFFKFfE^.j72_#M:ggŝBߗ̞7 ɑti3# ib~d>Qsa~ۤߌ)ed)6|^QZJmjj?/#]Ggw3wouW8'.\|9pu4g,'r4jex"%##T2ĤQBSS)Sa0#~ϧKeZMsQT5kw]Zr/.d]a8ܗibfi`kE) r?Z222Mѣ;tly 'KeZÆeu,ח^XYak+?,,k`0Y41r4jv2^ZM AԒi*{nݨ"[7éa0\^{G.tL+֭[Ȑ!l%k׮M\wIu4Ǐ,'r4j~cx "%##T\'_?jcjBW_1J^^^<ǚzrV?E0Y41r4jS}} Y+7)X]NM=;)i&^_e3nΰ, G2M,6;40iQFi `@HH]>L^Ud{{r r_)1& bj֔ianS0?vrt fc4[YWNS}eb|4/_kmܸ]ҊxazSK_-ʴs mH0"Z^w6V3Z#婩eJjK>_ϚYoŚ2-y2wՕڄ;pa*VrVg_;֭%ur2qG3!!cǎoֈ#V0Y/DSKf?-ʴs""" h@D<.mؼBWdLEUֆR[_xVVVD?O>MHySylviL|vƷ,pYW,*ݻw?@@r#{=jaaK,\"# e9Ǐ&4IQX<îwDDBx׳'54Ip|QjͤIo~8Cjȴ,VcǦpetrN-ߓ Ñ~[%88޽w}.2IZr4^2W 80ѢL;gΝ/8s ]d} ??xƌxVhyu̱@xNncPC_\x \ԩ\dZùzwq}^o\&tQk ÑCeeemm-5ZY/iD'RK# e9? sad2GMMۭͰaį[7é/yu5 TԶfƀoRCÝlb]+rVg^{P笯B#СC49Bjr4^O'Zis5ULd?Dc fz@$o--G M\+KJ"ꮻl57jVrn26u&sg>`nN6E@@_ħG]JȺpKG͊Ivv65YYYZYW,(SSSҡC׮]+r4^"ϧWi{ 6l( ?wb\ب_zSS]] XNNJ''k O#FBukK$# fnj˴XN}Fm5׮ů kJ-LMM~>2n\#Eq}RØB~140_ТLcր'w6_~e,] `}qRncj,aKEx'c1ЏrܾP o-Rd`{c"?[[j6ol k]ԪȺpd/xAڣZ0JZis#Z?5zp;uiiY۶aΎ~D6v#OXǾ'ɩG-5, Aub"nߎtZ'Ԗi)tH o̔~Vmz_RftQ" iJN4|roܸq…Ak=fi]ô;:\.ٳP<^܉r5mAfJc@M+ GL)IFr?U#f3554ik6[ u!7Kœ:ji0KhQm4kVĉ. p{$2\Ti'21¯kW|c{xJ.yUTTP[:9.\*--ƏLK|9L_Y^~t)?n1Wkj60r_Cr0`ѣGaLxq%rs<у' cT$EYŜ30r7I TqA@WZU'GЁ-XR%_`S[:i.Q[EH׮#GRCX{VCPx̙C[YW,*wuWCnƋ#pč 4Սg3(n@dNBB/a+0t|5g}sLL O&zlJa'+րAY(B+שw^K oڴ$KЋ}Gէ=PC\oo ~ty$k"Q*4cw]zhG6l؍K^_rc Ⱥpd/x0i1DPKHII11O41cX%)SR(oPPP2X.V| w}Ym9ܾ?P&[7éEi\V|oO&U7ĉEу= qIm胣Vđ/ur_raA-Xϩ23s413dk~=@: (4@g;9)UAݞ~:]D$ g3O. @ަ?qرRCB 'b4ȍk870[-JѣԩY&&0n|> \q Ñ,c4$,[ uGu!7K4|GI"rG"Vx~c3W?vZT:kA85t0jЀ'YWJ <[-TfdWMo,^x?eYYt!ЦQ7a}8peUsr4+{j ˉ{֛n Ñ*ÔٵnKzYXlٓO>٣GFra4Rp g"d"0衘>.O7ߤKԳٲϨQ.*u ;TެiKRA9#??{ 侢Vqqw=6w SR +W_tbu6j}-Lf` e"H˗?I? mX{E+lGmA'~Y~xOimfiamؘL"%# ^ȵkרE//6ϫf꩗gΤKmiy^E5sf@ii)kJ:|[Ӧ l080yh~~~t)9)Y)Q? ̭s9 t͛Ԗi~2°Zim > Ⱥp|*eoDbx90bcr܏0Om7kQžԃ SӳO5?~ʚRI ?ZcHaxu8="Ǩ!|3\B$ZԖi~΃v젶'N aǏSVgGb7EƄ+ G܏徱rѻ\9[Y/2 0js`!r^A+/|XrTV8;kk.[V ok477D7zL=ySciܠPKCمU..hLU2~<5SibrF`|k 1P~5+nNmں_t1! Ñ*CÔ嬺j̞={fff}7君7%N)!r?Z2B? ׏.у,p_#zxg[5C ֔CEvH $?f'ԔHٳaAݻ{pyU*Vdee4xD ).]￟R_rʎů֭Le y3ȉQm||ߘ+GEƄ+ G/ JFODRrP?x666VEn jTTO-6>#\ ntGoMR@t6Ռϐ?D3ښ59th`@Z7ޠDUV&xk/!Z"㦑<+sSYSfwU27GQSz -\yM< 93I1ⓂOm7C򡶑! Ñ&BX/}nfi0|7[qDbq2%Zz=*= T~ 鎎AbM ѷ/5&&/H D3L+ ΃IOɶާlW'LXD$];uRVFƣ_?!:27v*P(E^ek/X]>xRP:W7_>F+ G܏LR*~Y ǎ;~xф]+LZlL=Ԓ/ըW2V*e?簟ڵŪHD3YS*z9{/5ffvyR [w&121c:wF}޼rg'',Cf6E<|p{ 7BVi&&\n2'ӕ8wj+Wqwꬔ# , Ñ$ #ejdgg?s&&&zٳ'u!7KeqE<;v =Po]DJ$Z u K9sB܍NKC3pr֔JB֣FQ߱رԐ;TTVVR`=iR95>N&DB!m&HuWc?bDt׮ԐH[Nxrkn!K}CE 0&ӣ|ؐuH_o裏FF"""&N@5cɴ21hH߳{ E6A쓕#\ѭɿ?P-tfUUU [oT,,i*=/w:5Ą*nB¶Kȑ*Yْ% P(YyDRpٰ/`!;zq7Nllla`Һ#t.;I c"++kk?>/C# Ñ*"r_#V{ PoEfi|0gh cKw0O?3K B=M 8NdaA VNeƉjCNN=y^4)SNK`5Q[n|qϋN@mm-]p@]~Y7{j>4DǭmȺp$܂x,[]i ֭5ZY/<-r>h Q}׮Jئf;dD, d^LMeMI=TZ|$S'1c! ܹ$x]"Zl-_QRkiy:x{{glum|s' qFn:Jw0:rjȞ=GUgkޚfN@kJ"tObo22-6Q$~)py:e11nԠN=;}:5e?lڄk꥗*~^~'iлq3 {GV'G!Cùѣ (Wg]xZy# Ñ&s BYHDoRSSy aÆ > &LhPWWW^^wС:xY0iFymj:Qe ? LqvƧi{}J݂8Z1jn>}!<__<4-[Mpz}N| o+ȡm,Rcn_aˡ#.A {A_3Ϥ񇂱9RI-̧5$Au-'mVul;z45x8SF6kgvJ+0r?46 L#e_]l<877}5&u<4ݻM6@_ԽСPz(JɓnĐGn*#^5vkpr]wTN}4?F6̇ڵk=NaǸǘȰ+W_hj]~ʭYW$C?q⯨~K0zh6wcEEEcƌqhÉ+r0Kas}YZZN0A}SƍԩnM), #+0hx_Qj,}|wR/dܹEuGg=l&oL̚2mdMIDu0b5nG%R=qΛWǫEk3%XmK]W(kٙ.fjKq0NOd o Tx͛ >5d0rLM pt3nmwD[ݏVG#^/E? 4U>~s2k֬?jb|o޼iӦ .4Oؿddʕ+t钒B#dee=/y("?'m&N,31O^;6]GFgumN|_?`224C?'X~rǎV=D OK%]Fx&G6Z ':8i ym?cIK6q@\hkh ݾ׌˯ɮgp!g(m%{{>aH}SbA-/'';;x?ݿf  c4F7n׻ bE10Ir?#;'( H,_^)~31xpDEEݫSFrҤIK.<6l \ٳPX,(iG.~aô_$nDTϞA7?~7R)#I^#p;^^)ͻ7?DcF֢1S֔DIAp~BZSÉ66gLj9>$5TWv[K{ќ}pɒxDOڿ"jKK` 㖙H7$??ڂ/^\]+W\N&B|cyg=?6c]PD {!}Ñ&||K܏Q}F[r_*qqqPvCOܯ633x"k"+V`Ógee;f̘W~-FnFG-Q`;G|0{F>0 {;}T ;wN>{n'DXgWǥ)k5)rK ꥇ0X'1>ڄ#<iӨ`^cWh/++ a:Dm)t?~<5p zJ_QKmkx1kLLjewAn8~BĬ7o;wF, GdYYÆ S \pa84t4m?Xq=C7m#6@%Q4 E=gO=cǎ=cG1cߤW" (UL܎?xB2LF ܟ>5C"ej7r? ‡(~H,[?Ԝ_QQ ;M"r֭[GE )H)#r?ZbH$r\CknUft쐻*WWݧ Ñ$ӳr""Q.=o{_~AsʕM\s:r_G*r4R^0 E2$A᧏Ap8Ë=ݻHP"5\y5^'Lj_T}kOr2љEI 7QoBfJDO ǭIU^R;w>F@ dj8y25S2mZjl_ dV@y’CwGݻӥ<W.8Gefff[$[Hӕ&/<<< C}||{>xvBh#G#qt??\Q++*e $''Ϝ9Ԅ4PI@]#&MTBkl5#--˜ 멭FJgTӝ4xQY-@H:,G"er^l-&2w ^W4حӧN}J0""~xcEWh|j7pw€v^\Q6EF+ GRGPU&V tJKKx,7@\jU.]$fid.H:0ȟW3I.kak ERx~0<`˟܂>13 >9k0td" l] 3>ٵ-X\'>?Dm5"elVaFzG6XEBďH*?x5$| ~v[gbRURBmI V9lFD(O IsW }xp8̿+nȺp\0:\m '''l6|fž={ ҡC & ų{ѣG1)7K#u+ey`Kt!WFc4x4ydE2Rk ZEo*PĄ^W1ǎᾅ8Am5"yĥ-|& 0W7b)01]T27ZVZZ 2#;j">Ν4B+dƌOd*Ds2$Uyoݽ˗t- Ñ*}C=|ϓ~DnFJ" @590"GTc*~ @g'L(R,cM 9fϞޝ:QC4EY忢6f2͘:7Uv633'h:t Z[[p@ߵ *Mj :t0^ dc/T"𯿨Jby"Ԓ$76*G"lLM5ww{.M?VnVc&KɍӴܹs$Q̑.ӘuH>_2Kd@Ћ #0Yt7ԉsv%i2|ػw-ʬ(T4GJU==/GiR"q|+j(Je0~)edԈf&yA] 63gq$KKhCy*PY.H:dta3fD"vě$I͔T&NhOƟV`']+YRJ:Wc |cu55U릶8gFnȐ(qcW'OoZ?ߥc=ws1fd]a8~OHC_!} hܴiӔ6]DR+ #0wk*& [ UaKfJipU@Wj5I7_N^IM߄iGA5y[+>lׯwBrI"$kۨ!?)+Sܹinx]X1:9K ф)Won9Yى& ơ2 ]+y i]z׏\xZlJ"~.-6vѣGc #Imψ?&0Lp+'kTXO)GR7T..`3 h+q;ERv|*>*K@e JL@{Q[ iҥϬ=;5EjM|NM2x±oңLi^w$ !{w_Ɲܲښ>L׼ymj^GJJJgQl|s']֐-Y_!cScS>y%oWSy>y|g0|P6LJ\0WtP(u|R<ץ3ɶ:a[­Kt ~h]_2 ח"(ʌ[)n3^Ν!jpnsH{BP IB ׽E }q @Z*m +=~`>ԩf:'4dփs]Wq+2FOlll@*w0 +\U{wskVD#Q4|<|CK5yп~re.iͲ 5 @[oѥwD pJrUW$ tvڅƋ/wZN OF|2k?ϖ|%:τ>dI'xsE^@Vf̚}s% RF:KjJI|<.@I$e@[nDUt1"XzU7(80򮻨ggFF2<E7KKF֣R pʕ9cͧcŶpX7r_9Ox*Jr}}&mͯQ G@f{M)!W ='9ìYxH?!W/SQٵn̙CME|%f8 7Usjl٨2{)bLv}@Z>}﹇j\:\I'H֭VÕK Z=K|7?nD lݽ;5",-!^›,5x9th9;9 gjvzg?LLT}ouH7[5$R7P[zxDJmXX{k~TLBcǏ3+e>iwkʎ_$ӽ 0w{_9󺦑B0#j (S?~K;9hPđKk67odj#j?t6j Vf 5֣}QC ׏>½տ7O27W`j0qu kJ6Gb߾<|qzmL՝'_Nm•^gVxs:vNL[^VVijHJJ*Y-1~-XQХ<, #Chr@ĉYNŽaV"7DsC#_ePAMW}^k"8/ʲDR髯}F8 ٻ75/"8DK:T^8t5jАRr<r$vLm%A~յ F̝ PTTDmqb%)6{ϩ"+ڄ򵂱4ݚ\ha~Ⅎup5mQsſj. zv-\Qm=]4ܿ=r}F~@ΧbOe,VdDs wZ*th\ RO*QdZ[zy;uKKq]Z F BIqq5S[kcePK%{H劭xiRzI\|-&599Ae]RIDAT˨6)8(=Y#"{/o>*Y'Cr9c͕ӱ!4rYOtVPMpy%O<3=F u<\q~X!-ϱ`6ǥj֜pM'4I Ie?Dˁ8#mYC4hӸN$h!l]ԝ490?ҢxO2$̘1th{4-M^(7=A@")FM$Tm:Z %%p/@W6k}KMͼ1iRVTQzYH&+x2uvơ~SlK[GFܹSԆk?J~jlrp^7r}/ ;꜒{- !sE4s #9-SQQSnҥ SIzDa~ Oqڀ_%l3"g!EU(ըUV~RS7}jGW:q+˓a$A,^LLŸ+Z`ߒ. MNQuq&nW1zt+"kTj73G'hM(}xNyΘ]{Pj=N$~E\uqS86A3?7{EmY,e6w~ڱ#ӻ7PXXX{(%Śa]c:(,,T{ $=I4N;InU %9e睭'3g&p#䣬w"ܟk7ܯi֎L!z #hLIZ"'6a~mbsT4oa&&"(lJ"p;a~~GH׮#GR0x)! y0njGOYpNb?qZNk%ph8o:e–﹓!do8M*Q+?J#vJk?y$mSPPOn.!B>[e7vwyȨ^qTP>fx2k&/#YS ^[ PUy;PЛoxhާc)IR,/+5򑗝XLU~uUO }jZH'UUUIJm-n9?NNX]Bm}I$m-u߽,}N~x=3[-ө_Ndnoފ0jTĠӣ|YiAoYNSPT+e>isrӦM:0deBBDw7;'I|ET4|GJ؄\\i`o8~ >"().BiP(P.'f^d|mlGo#Ik_YSbjʐD'ܖ80\nED<1qL?JR?xГxKWN!#!׳f>Im)evJ BqNtyvq>}¥d}ߺw8ZGŲ|foE, >Ԏ˭^*Q-\!NT9/E;IjT$V~͛q0őkjj ye?v3`iP#|XWuG^5@sϥJt(5':uΐȲ7ݧr_e>isr \z*]mF]6un$4oSho?X&.e~xUҤ$4]V x׮iI÷nōyyQ[$Te+Va5p`l^A5 8:N2I +D g]NǯZ:vtt2#- -d9˗_^-5a9&Ǣ/vvfRؼ"5x("/ӜGe&&Cu먭5B~b"I"&9YEΞxvwK87ɨ\zd>is^RUN ,8ݖ7 _DD|ل /-*anqN'~͚tGGp/)~ϗ4tp`ͺJ4]>5p2I&̎Dbj6bDr *SgǑlC>3H]Ec? ǏS[Ў=|"<9_x+:ؚBiy/啈@ Փo/'ֺΖN/jPKKVFGSaz%1aӹb!>Ǔ_ 1n4/[W][Mqdo8R徇oBToϴfwDeT*:{rNÚw{f'-rSJD7N)GQ>#n02LLܥdw25nJ(EOҰs\*\|qtd5(^V?*r j“mr~Yo߳g*+?_X{oVE"I(7vÆEKj<(%+/YYXQGK e>6 IRGB_b¹\wWNNN[R{J!dN|֜x$z@+)Mcφ xtS-;;-, )~pdRG'+GSreisj> }RC9ܖΝ}'Gc!"ӕ}3è^*铧+;Q.ʹO?.wQ>#B'!iV8:ml9Z/N.)_+6FŞYFmp#'վ}ծj įZ"e3@េj5fLVV6!C",,aXQG_y"&mTA<Bb"e pSubǎ{d.gMNSL!NRޗ s|~=wگ%On+э }CNTԥG6f˭S͜5Ǝ31a~2 ~gM=] JwYtW)-5ԩ[>l9ex,󯿮|F[t0SM($Bċ>h ^7O\t\fjSC5s"Dp!o*8 3g'MJ6|z(GR}o %?hFVn&qF: A'T(t$ƑJUMQGQ__ r8p7 |vGu2*2u;)5H68AO>䑮 Ww.#H~aCm_r?"QKO,'mY*H͑柞z ^x$Ծ3aǐb)8ӢHb]&fJ/1Cp~*׭ϰalY ^|O~FQCUUUfQP]UU.)\,ZZxd6s^HV(3~jx/_RC&IqX wܷ.r lp7 9DRp:֭*J&&n]fb6^yjqnrΝs*???kQ۸.ř篿?yBAdee ]~ImcHdo8M'+"WDrҶe^nn @R=;^I;m$03g 4y3 3]kĐdf ԧOfXLaNR]z+$ 7eK/QC&L(]sFz~D\hWʷoňN>4~55BJ6];`ǦLQtlx_]1C`== a25q[g(8KH]k1ddd%&&V"L|g_n]zG }iϺ$r]Ҷܩfո9ww?0NQQ۠[0ZO1 O*XA~|lMm۷oX1yyye\Y2oVZx +v͏?bLզ[op kK/aRC=>>>I-ԢPzKIc[!bMM!7f Η2Sqhe)M"{w[4(덄'yAz2^'}V塬N= N'ONOuneXwqdG:ڿprkjyyjJjkq306rͯOL >)X{Vm:^=z5Ǒ0GvMDdl߿1'HIUZx`A̭HJz_?SU(ڸ ĉ٢; A .[Hpޮ} zO)Nav.VfRTz,veܸhX֭ýb8qPhbb˟`ߪUʭvX7@0, sdn\z9j!'I 8r1 (%9ޜ37O nN i}{)KTS]^x![o<8ҫWDflaʕaWnvEWWr? ~lO/-\I,<xvu;+rQAn" LZ4#TYϕ]v?\F8u+Uj yyy} nyںԚ8ѕ=x]'NȾ}mL[,q2CF?c4q"gٳnq?mZn0 RTTD=7G,Q:mY~r|/Waq'of5m-.4uj,Qޜ?k{ݺuNNZ5X0:396ʞ˂>~T/-"_e]Ȅ߈rw:> ;vD3@| ?5KdfdP[+ڦL+.5'|^̙$W)7sr!c$mڅ\s^H\9?s~X9sWAoO=c.7wOm!(eS@p;6OS (:ߡCNUݤ%m ղh'$]>6)5J(˗, dt^P8-_[iUvQ6]B#IgW~~(82Ưtɖ~m5Kɓø~؝ :DJ">VSy+Xg$_-/bVaׯ5t(zB2c/؁(}ǎ!q "&,"7W #ùfrԥSCls<:`e&=CaP`=~X!nG>\oX=\!nFA$V#@֭-[sͿB#v ^.g/f2hŝ;jF!nRَ+yOn7o瞳SDxsᚻVlgZo1$G4P'СU?cX` 1=@C#QyGҥkt +~;m5t*ع'.cf=R+v h6!D)#0:fk}d a*t(Q"b`OSO'ލ[5{s\Y@m>'z3cGׇ&):]\%zU[P[ RJoSEͅĉq\3 '!zomx)US99uIO{=@ϰND/k=\1jrp ,'mY zˍRӛ7SXٵk+X0. =Gd(ryz?9OͿO>EckfĎ8LNiN8d h DHGIlVr~E|+3' u Oͯ 1> rjaSPGmz9@7g̨ާF CA F9$[X8ND -=%kikfrCgAI]8sVpZVtaaܞx"QJyƏ ˗~抛ή7KH?js+,=ϼֈrgoZ'0 vv$.1r]w#sMGLMMق&u/6)Hr/RcYofYfngeٍ;$BfDJS m0)sÆ #7d ^6Iu zj5I\kͅ|ΜYT箸wU7yFdj`Kx-\Heff3"==SOQ[3[;ܱc!sb^q[Gpy )jMLB|iRFdN!i 6m$[?O c%|x78PP'zb%@7oF^&|꫺%unUy]do8~&+#h+Yaf C[x+Fw4j5hMI+>ԅtYG9cx$f?!o_Gkő_X,l[eQ6##ͣ(-Ņ7?8<\6:tBB[yPqs"?ث<+;ڂLN -w U3^l2*7n.f0̆w:x`g?})#}Ñ*UrUZr_Mgr]҆e9q8f 5_DHrrr-Z ]X  y+}Q-osaTJ;[7Õ%#GqW6guKQsˋ(.ߨ͂;^WW)@s5j+Y:OWGW"j~LcO# @$u$%2eʭ p4wnCnn.#|ڂUq7nPy%OkD{ijs LFB5}{D]g,p{`ܺ]=1 }Ñ ֐)+rL)c<>iC2L2dfs}qo̚5ܢEMMxN& l0GZ S,-YaqAiscx(D ~\MQ\7ɜ:U HЁ'T۴ihc['&&g/BrSSsSPciyKJr60d-$TUUe5m&fk͊`i\?@g7Qr_\cpˑ';.Ϙp 7Ii,6/~"Gluuw;_I4 7r?ѯ)QVo2%%FLɓ8 8YJɅkR &#>w7Q(ML}gS֞"uq5/`tgo?,,K***ō]Vܘ\3,E$ ryq8uŜla2(`PTD2&beرdggBu@6C\ذ80܃}"R.nJ+.*++Hןx"_ܫ-IX-OQ])xd$|$,,][: W<;Yr_2a`qa[_;i$OS(c2`#fg Sibr&N~4SZo/è{5e {#ʵ[rajpI\xlߎ8IX%:t#i oޤ6?Y$P[oLfA,5ƤO=.'=gI\F ߻Pq't) O=U&΃%6:-/̓Ϙ1F8#odBm IQQr$ E?M6.͸qɖh:g 52 sBCCwtKj:ߎrԥ`U~jdo8~w`Rw?8?! !r,lh-BQQ[#o6@ſ%3S9ָq{M!r?Z\dh6HNQTV9~HRnqs+ S(SԞ75hۥԎ;qŅ$wE$M i&"~ L̋"|Q\ 1DiFY"RuI?jiMӒv":HNP$+{+xb֍E"p><xVTcL'}>q||ZbpDT#S;;8f;A#UFO)Cʏ(~dNaeMK{{;K^?nJZ=R!r`njI$r_8ZۨR%'Ϲw& M:4JgʕZ7=ME up-m׎FԘ`!E#7V LVqkɊy>f716Yx Qo(>TF  /;<Y V[K6  c߯_D~r:|wo B\oo[A68p~]qqqj7ޠ6zwZƀ}ŅN 27K-m@m~׭5 xF- 6?/^,ï3yofM.tX$Wna(]}qkWviakͿE9zYfȒ41 xYjL/V/ 1.X"().q?7BEtVPZқ .yH#zVnj/SW _kdo8~NoP~|-OxTYWf2 (d VTXXRʓ;zdti;cF(Vuq1w_Z܆Dus գPw C2޽JlpȫEOvvv9}(7'NZCx (rX1ԏ+TnNN=@ЧRJv$c'eוoc9~ə^?J2 ;p^vE..pNNu\RPWW7Ym8xg8b5>zW8yڂTWWsؗ8"ŋ&sghQ#.R2ae pd[F0H>F?T<)djGM]Md߿Z, GBDs}~YOfyOOg)m^nDo&&)G5i޹7TƏʮ %ugcˆ:Iq`exx${x l* &Pl Q,o:...KctH+ ^f.Bhd6+_>TгgO׳`#v gEbd鍼xgLԹ5 . oa@ض "MYO68jSFixg])g8ݹ35b iR[[  "W˜9؛%._͝s\`+-%57\9ZכbML:Ter'\t I^s'׍q r7:qv!|t PUUfeMeƺ ͛#h#o+(}YCv=z#F([zTJț.]_CN|ԖBQQJɰyN>]_,G}}}W3{6>S\Ɋ茙\\6ED|r$Jj%r>HHuuuoMmM:sf.Ml` K_SYRCLTi0τp#\ Sݝy'zM88oH*ܗ/\ +++j%q~Km)QFY"1j1 S8 _/A% pCsZNQN;tWJ'|t|, N̟ϚNvNKk`do8~_pWUpj"W6ڊGwlXqbiJ$IpZѝH0w,O ]n D(xk^r%`gS"^;4_.l:!xklbW2Z`p'O w̚<,"f9,jj)SR] Dc.HLږ]O9$ۛoVbu:tl3$ ;xfTjOoމ9b;6jȑ#xسǨ7onlj,Ze쮋 tEf E\*<߲@o2N\/Id.q5}[BD-is%/Cm.ov@9_D#Y*EoP4~{m[Vn)Y^?Gt&yғ'bD?YLM/e[(Mv$.Jѣz_`jglfzM} ,?g9srj70z|jGo]Fm=>*##͏Lj\`7N-10E j517Ts^Dbw}ŒzC_y%W4`k߾'Y8i\s"}q<jHśز0:ՇST\9D}i9@r }= yr 7c~gO o 0+*مNx" {~W4>Jם2NEc.後&lKHׯ?+ A_͛K.u+n5**kS7p6{/ j%d^ "K,!&NW2O<7f 5&Ҳ43;W "*Ͻzsō6kV=:9!!C^<6ΖabaԡuEkR|T!w.%l̴CQהܗ,} ݽ-NBBB ?H3ԣ C4ˈW+$-cU3{qU/22 |؎ ; W,Af uLs] #Sc>\!"M`~\#W,-0:f$c{\w&8]|ǘY__c kC(]Q##cE("'$hxOW?jT+d Ͽ &|2\\l1Nlfͪª"2H'l߾٥nI]rW:w$7=>Ur?o44˱-Y^ϟWH~2 Es{ՒYkǷm6r#>*.o|vd1Z+p P5S8MYOm?f$"aPxϞ\*F8: ä\)pr :U0gicQ$̄G*20\Wj|Ӳ7jSDdIHС"V#N崴I+ ~ڵ oAǁ\uzM#~dj5}z@YYuyGu"3O!bDI&ybccw`!wG4۶m-/\~;6T t?'`)qdoZ> T~f$"ھc 'R]nݮh`9Mx2ZPy=$ 'ێ*a= }Ñ,qʯU_fٵg/7ac3)U(((8K.i)=`^=zVŐp͹5fLAAM˻N${ux@9K̽L@o۝_yH㣢N"DK9n5Ը72ݻqɭ~8)}oc֕[4Ro9Gmm0]~ALLEhb͛+(-< |)"^.U&zؑLgGVTzi#o/%K"}6uǒ}Xjp;,7g⅟+',?E1s[ 'WP<@_9}m, G˵>QoǨ7K,<5%7Z7n\rEy?#...wmEF}©HTi2dٍzOWB+ /LU |JYB<BLMnd jҤL!JP9_MM}j$)tُ&""c"K{"r. $SSif(k;u(b<:ꔱyǚ3A^;j `=r$K |Mϒ|Cde񤤤|L7@=:ODIwJ{un'N1ۙJUYY🈺:ܣG{ax֔1@ ; } ʡ@];FW)~Y4FYFDDZ[էU_OXxv?sr%)oX%1aC1.XV{t‰^^[fSSulG⫁ H'^}NZD^ K Ǚw"nF%k JKKQA)OsͨBt6dne,'ԩ"PZ.'%#UM} +3a5Wֶi~؈tM@.;WP"ڻ_,̓M:s2L@@qk׮'f6% "dO?%mtœ2$kWj4ݻp=w8)vd;oUffԩn,6G~?0`<u<<<q:wLJ_>8W{X_㩊"pzPYY0o nӦe)WF"MĽ(BuT,S~RWD͊+ LRBVi$xM!b:d,o\KӂuW.'ocef]6v*_瞣6?ׯ_OCZhFiD OS`?{n]zL?7LǍ23z^<x\W('aNt/-{ A'rmJs? N:#nj.^0HJJ*"NԖζm&<]D@3tZխRG#Yũ+~NOE,'IOM]Z{mͷիlAƍ;?OJJ Ng rX=]P[X8PG6݀eZBVk|jw'{Z.+xp#KE}} oe,Ecw?$Pt w<4d9 X#Qf6L}ܓ)wnڈƱ8nn1*-- Ϛ`|;5lkKm~233qִ)@ļl֬PeƯwk:_Hyu= 004cSEm(&}ۑxr&6Ws#L0nzz@&2IQ-lyq"׊ÇWT˾[?>'e/6wz }/?Ֆ(~,'ruͷ2OI-| {C6"eJj<|jsf ])S#y>A$?f1hssOqQw_'Q]t^ha㰞=]>q{E'^ AIv6t<書p~Q|{ld"Sv҉$rY)TI thॗ^5lu'x~F.~۹Afd;} 3lbȉM~5kL Uggd '7&MJ y8OF"?{$EؼyZS222I.?iQ2]ϓp*++cMNmc qĞ7{ .Lң , G2M@|7O|25`YG5яh__\M]ɩt`"yĿJQ-}h:q{T-ڒQ NeV,ݠC $|1cpԻ=d}t63rd IN&A&Q5{L8Am.BΟub6G>H"xupce>V~84RWH"hn ?+O#f`ߟj] B ܚ9"vPÆr?vp>+27eҷ4ރwұ+727fr?wȳ98 G>/wy`O%O y3X5/qa-̥ynX6&ϓ|թ7Ydr_a,en{ѣG,sssw؁nXh+>[eu|~I}Mm0ɰ;ǟ -1\S׌Fxnf5ݺ)P(~q\PQC| 8Ң C9R(RI~teh*51>u*5Ը0|xZ.{2<+=;t~!jp#3߽\/*{p2~ 母zڷԓp])|ɍ oڂzi\9w5ɸiӦP ux> ts}{j˃V:uM}D/ܼqഈص`gk 1؉ž!?pMzqg+++jkq`|| 5 NJ3X/;Ӧ8|8n=E+?ѕdd#QܗifIc`wZa2C@V(L'Sf5d;Gus#n?0&~OKhq#*,)P{ԐB}Ys 4ss{ Hp1``T ;䓸qUࡠ5&Nxߍٳه,Le%5q%dpjBRCxP/[dc|֭S'iD|;)|Zq*`c" LtDV:99oAddd) @) ϋ45oW 2,ӧqNJE$ߣK DP8wu/|j^nwIHPV%cW7Zr݀LTTT| -7_"gߞ\o& Y,erճAڥoEСC봿 G%(ԼyN}ե^0ܿt)5H5۵xjc$Lի&`=tԉRH$WΝ8A0B*j&x@BƉɓ+*~eũզӊkeƕ/N572`@+"=O>6<w#E:D\iݰ“VE+7u2]QgR[Ը\-q:v.{9>Ci*X_y-HJJ2 qYjn0}WW$\%yJE$6K3X2[  I~^{jv891 NP0?;QMcHƘJ|~dr_)PW_wv*O]>U,gsD?$fcpOIFY:l E52Y.9QK=*Rbi+}@\˕)uu̧U%èKHO$c7')x~6A0lQ]Z-W:8A.=T1eĈnݨC8>h0FJCUHlBm.2g^,+G̭5))Eqv\ڂ`K_˥ j܇ZSuSN61Ybt84ߞOxr1ssO$GNoԹJT6y'|ńFծM),,~ݛj(Nl%sw8 i"EN~%WDɓ( vS}zIuƌC!rp YY~嗿{(ISwIÇ5Vm7#F]vnx<[H4jG5q< lBT3رTcG,@_1I~DŤKڕ,RQ})f,R=wV l<|A߭+&d眲3&^t33ǧ6nK~V lqca_Y.x^]޼R3%%%ƥn0@yy9ꑇ.D-N+ j RUU6."43 [skk5 O?J_~k*n/>W &ěVoK5m짟RSCcƔ4uF/꜋ղ9s*=n\?)Y^ϟr}#}ÑL#YTD}kíy潀Ph0<2oK>Nu}~Aty8ƅLۻPxKP N.~9kSP"˗c)RR-@C]CWQC4111~$p͹EvwaBmIrJ+y réEW^m D;᯳Xg!ҍ?՝;q0TVW+w yܹEO֏|7ɽ ^$^> /W翊RgGgHF YN}F[rCfQ.#Odm D6WU,ּ^#Х8::VUU92%07.xyyQ[}z}75(I$ɈNףF(:@)SK0Pdy5cg:GA"$HO >"ŽD9}C\<9_ׄj{A߰NlϙS,xܹs3.>('{P#%fE||j b:6]K )8 @.`jIjDݻ7F8~|nSL41F- S!KK֔ʾ35d]ǟ{NNmBtq~jhn P[| p+7|8SyPpŸpBMfc]|ݢ:7=侺א$,;5Ȕ^{9{ Ҁ| (sϱyYR5JJJp~UJE ƅNoQf<p|QjsQ5?,}6 ^eNB8\i2(Sdfi%[777E: B.`jɔtsO?[ߨ7yr![8xwor'vxu 'L(.1}{<Z7 c: !9Jsrrc}hWm flDz7wϤI"o~CHY xR?}㏗YX+xwNRINSfD{%݀…Ұl \{jE"IP_~۲w5|~]%;S '89;xp8T8?W r&?^R[+WF$8b"& hEX'=ִIM.hEIsYT/Yo i oWoMNUUU?SC39U& RTr?>> C-8=^a^C͞n3ZmɚIwBX pH(>?gC2C/Q>Sv"SIHv2@4 Flf>[ ixԕ۵kمԻk)p*zz ?Hm. M""ӻt2t(5P|T.ﮬ-&fأK0~|AN_<9$Q0i7ob*g7x# rm$<%3yEڤ_~%LD5OiB~J~ Lhc;lX 'tAHmM8{cF H=6bߦqpDeBB-М/rJPN[BPz^Y!r?~rCxQϮ 2{lАg>v+pمca=+^(]}|p7c8 ϔP}yԹ Ǎv#'v7'!tj@WK vT(BOy,poL34Gx ֵkׂvEP4)r۽\8P߰a"FUzw *-g>[M*X@Wx MLv6YN^1u B~lDK/QC FK9M!\BCbtŦc33ûԲ w8ғZϽYzNcƤwVmu ߿ښv)Voe4IMMM/~wV;W^0UUWz,y4A!YO>ܗi2!3xE3;MP~ŋBQliygY}Y5wJkz]F!%(4ZJ?_Γ]C/?@V6SJ]]& !*J; #lD1qݙ~f ?S_3&Gm`g C AxgСZ;+xX$8xx=n"fz\7)(7*+3~О( Qֹ e|.ưab:2*ER޼'`v E |^㜔<;>$333"zz|!CPѥK\uA9cf״fԘ+sΡGӯ fя+K!xc1c4 l ;~4!x<_<`2? W|R !תg̛oy^ѱ7Ir?~d?,'M,=<'n;=+f$t<u<==0< !AtEXI6Bqnڮ]V}f|HXM![CzRfYQ|9ȴH7䓃ſğ!a"?= )^_'9dH|Ф2?姻{&&q}Wɻw ~7P y@jso_nC/Vf#ZYa[ݾmR65xڗnܸAmuCmDR,8ƨj81)QC$XPF{>ڻw,(8,,Ց!H_KdncІ%~@nVt!a^3DN18j6ªu=MpWv, G/ L)~?/V,8Yw'g3gU5'P*i䤌3(2̯^UÆٻ-[A_ .z9[ph#pQYQwvoQʴ"8@fē?LcB`S&䏮cӷoT?,N)\,XW5?'L p'í{]^WHqktJTyenډ<[s/j혪W',49ȕ$L1'ɕLm;6Hܻv /(pf7X<.;S5 :ե 33뗦M#1KML^ :uFrub7`R ҵ).S˝., G2MLS5ˊ qWt|ڨUS?F;Χjp2OG sU~5NJ𗈹+k'UرW 7|ZT|)E ~VpWľHX,sϧNM8Dr?Se~~7CauPIOD -H~\n1%7q AK85zH9 k%*K~,Vf!]3Ɋ;"<{5j4ǘϘhxqC% <IyY7r%S[<1/NJOUUUN`^3A?_S[4%%%A1ӧSIc.$?~qlrei(#aj/^C"ÕMy[v?S8ME~i~~a܉/d }SrR24ae_qsH!uN#Μ9 ]WS>Wlo;⾯]n]* ]wI`RwNϞLLHZR"y?;jk+ {ꩧٹIR:9q[ԄXL&?}Nr2R^(wKP\ YZ,_ .}Dm-b.-HJ*/+GUTT$! x a̢)|+Y\lݺy|mBTsr}m478H@263Zsfذ,^bok NLp;;T]ɰ#o=;;kb>iAW.ϡC"4HYMr.8]jXU7mqM|܈$Δ2rpr?>[&lE ?FbUxp=t=MP۱c2YY$|0KH$K9?ʦLOO {f^FÇ.I_@|PM %))xDѼ580 Cاbvhiz]~?ojrijKهv=Z"wE;ddffR(J 9"BMNrĔ e2ku"ӭұ<]IDN=( ;rfŎ~ 2ɖ$03g]OG?M|$|FO?fhQl#Xid ]tYt)\#sWؿ?ـ2$͛m|W'jd?MV`g?!Xl 7e6+@Ԉ^jӽ $WW>f1ąGi]s 6lPT7$:j9FS{ wێǃQs6Vk"q.xUe`;Ͽ,Ǵ`+93w"jef7YAdӄ"Qr_F&lJ нw7:J7|yӦfskܹ U+aaԝϿъ__I4B׵jbccpeݹ:;;Te???6 5_"0 mӧz|\bǞgMS*\g+S-eeei(ϔu~y_neQ(DS[#ݻT :jþ;*M ׆UڮE {&"E*""HC$^IO{={vONIHy$;3w_~a56꼼:+!;T7 @)BVWF6dӏ}E횏 ϼ)ϒ/R莕ұ~S AuƓ*X'}_~z261 *2v0)=*`}wvCFCvθ' zAB/;vHllo]vָ6 \^n.<ǪAߋgbf~]`B4w~xD?}DK6o_7oئm^|I?M^'tk۵4q ^pCԩF3a$B~SVAr /;sxS)ݻw!5Y|cؾkǁı B¬/_Hܓ/'O>d͚5"{%iXz ;"Ս'x)aΝg}Yˬ >cl ĻR-kڂczUHn1">7}iDVhzYrPFENy{ WRf?ɐ}Q߾"(IڵS/kB(x'D!q;w#Fi#9?TQQ6J#'3Ԋѣa녻xv&;5u+J*Q! haaϟ4ɩSu_$ l.>n6 zeAtJt9y%@<|*Gifɇә?>Zj賏77tz(_HEr 6:ݵ`A5h8vHOO_5M XY-{bZ2fѶm[/{nH:Δ=z4y J ԙv! EX~i(n 讏۶'L򨌦7z(Cw0u)uko43`Fa 3]Ca=N!/ZR=Bi&3flID^-򤁎<켺m5ZS;n\Ĩ$0'S J8*&pkAI*lEw(<k;v,s|F^@" n5XPBv/FwГQ1.1x}kבGACmmc^qEP}] [C"f5Sւ6Z YT/Ljw.6ۻ rp@4b%9ȉzf}EoXc/\ܪ8Da۶ rϞ=EϘ!PSSSFmԾcDQ)<\D5(g?~ [:Ɣ.%%%p @`U ցҖnݲt=SP[9"h8p;zMtV3;ϞhDn3g¾6^9CHQ}Ddɒ|i߲<χᚩ#))N8#sг&7ߺ_#\4ہWlgrcBCCw2d_(%@LADl"s'$&&FĚH<5.w J 8}qX3SP&Y?) de{z{o΃MzlݦNx>尖ػm5~~~ph٨5l>^`6|YFޓ'WL6 23VkZޠLfx^'IL}پ=RAwý!ocak Леkn'"zXFkgL]ÞW^A5kCl`mO?jm_Α?suPtPGNV)f<ўi,9>o'}ۏ 4ﬧ}b?|%!K'CZÃϖ-%{Yt> b=TOGwXΧ&qdtv:c/$QXXuean-fd3a-XFZNZ99" iPP;r?"&Eij(3+VڵwL~~=fU`UԭPzC//ZIH5WLu`aRV%#psV9ƏO~d^ _ÿ[e4LM?7(b<Ư~ $lБ;)x"pڴy 0U<#jֽ6졍2\~+555 Om=P!U,d#2TԝS&ߝx%wMaux #G&廔s+Md*@ Uc=F-˿;eʔ?[*"8%> 8`fIy>_1j^j& qH0@T?| ɒݪb#۶="ח^=ܨ ҟQ1GTVKjJ<< e`S/>LrNrrFBt$m[Ćf-^bbbRjS _֦DXAvvOwƟXMf !UyW.;Udee-`ENڴy0 Ɔ`26 xȆ᪜ -cDuuoo`ɋPYs3'dE%ڈw{~dl*XDl &rG4f{5~]^oܾnuB愿˄Up P?a߸ .aG9DΝtQ"E؀G}2>}dȑk& ?a%2DRK@#'Jz>PcQjx;KEO<;lM+? Dn0 7RG֯ 2~PSOCQd@ʭ9$f΋u@D-Z̎Tg]\uId'Q'DfL.’{E+r=эaط6Q` pNRЗÇxaUUU|jؤMf!!9I ;[ rp{% w-&n`N3mGHH7A ZoG8"`p_e/vNv٧ɆCȔ)S`#D>*ˡczchzw6{݇\^g{?~vuQzVبWF=CB|B'%OaV7!E!isձZG'$O uAX? ƍ n!왡:ջ78G NLLWW(l1TsWdNm"%zȮpsW\x(k]tugϞ2 ~C!¦84Wc<+ x48(.K~ZdlZUrTwMZ\<-#%_GiniwT!by,^L˾`P> yJ9yd;6sih*ŜtDЪ:%o_P;ذw[yI̔">δ{>=(_HGSi v]wCIL·LwUS^7 PVxf* 3aƒ;ޤJvjR;k@:^@ʜ[1@16q&hNz?1b;Ex1,N2tbK LJ |A$:62+SO=nfۀ"l:wo,`%80 &&(<|^R/^~9HDEEECN)|%^(Qe0Fc[d]$gH|waQpxeQQ ~~h# }SS?O_ˢkre0_S w++]YN3a:w6:>SHjk=}nAd*lN'字gyKv+IWٴi9B,d~y[EW<? {ꪡ4* g&t7z ݰ+[7M6[a5A"W_axꩧ"oQw]z vso+NEE޽{9ܛo(;YqtNQxyy߫ 6:MC:l[wIlԩSSָ,>TVVB 0d >uC8(M__<.E,iҴK~%앪R楜=]W#^қoƌ:݊ XVOi#KV!Y\cMB!Aܸq>J| |hݚ֤K.Qadΰtk|%x2طOD*XթSX{xCux[70 x4(!Mo֛lma%JoDgϮC>\*!m,|QavWOK/Icʡ,t1 DXJ@$<[^"jTqh,.>"oEHޗs5!oKH>e1fY튳_?HY"$c.!ztՒP ٳW~Ǟ ϴN`o,W{4{6D1m'!rrs. އG,-fa_>qd:0rqX yI)V< Dc܏;P(-M% K{@JHʵmߦ= {d^Sop~BVXRQm9#xdf;=W>|c6 (QHTBW'M 46,d '7b{mSO ___:<IFyJJ`ၿE[ ;oguBxOIIYfDUnvp9!! 3 :Olll[6 "> m>2'N|1X*~zșIgDli\ c܏ƺܧ;,_j87=*`LE9lݞ 3֊3g~L"..wB6mZ}*:u}_K7 ɰ ٭,ξ:?Iv„ }a%ӎ}uz;!?dE!܏3TwM.fY)U>Oo}|3lWm8GEj(駟k!Do2z)eJ7ŰOٳރ_|@R8LOUD:RiK3vJZ׮[6.&Tuwn%'@Ay"!GN^Ep;7?>xcCrÆ 2:78|j@M@k|tv/=D}P ܜ.;w]C$]v73 ֩~||/yВ .;ݷ ?mP;r_(~, `qV DUDϭEKe[>}.c1M cLEH[lq[LMwN4ZT X 8vLM'Y9t)5͡ Iad1HIk@i)J;p@H[Ճ*j1U?.Y* K]:w:`4|u}i;ٗ} O2pR@}/ VOHrHK֯_/|e ?sȀxW"G'4i$*3ܷl(.a; ?%KEh /6B|駰àC(ʂ}gYsυ鍊6~՚%/@i韜?T>hE~+{eV7n .VNӎwG}^g;$h;TM\z~qu; 9H =ksf0 |6R>d磌l{|rNVE#G >Q~,Bw&((h݃YTOfiƃ:&4 %`FD_z 椅 ~ĪdFoZ4{yYXH9,Yj,} z,_K!=E5mˇ9g3y@YNHS;[ax:vBfϞ-lvcǎ"pal6î.^^^|p3 |cd##zb+b'>I\0P;}r8:>LV(-,kkkOn9ںD?V =>?ġ:x9z;6ʻnZP,ܾ->gHlGNl+ʉ 3! 6LD2^&(w߉|~ 3?ceV'''hl{aǶraƆ vuQ=RVk~+rEXbQ<.߶s/E`a*g !d5;gElK/]K6ɑTB/~ {.Hi@h((++ ͛7 Ntx8<"QCb,^ɂҪU! +ªPK/KOXldlSN9`>O7Os/YBg<xjKKKi Bzeo=`g.Hct,O-ffbӪ\̚%%\ۮ펱߂Џ  A40,m ?T YhGP쑤 bQIZa:]Qi>`l(KuJ.L㍈r!Y= ZGȫ q9."4Hd hRdD?5x P D_~Q*<>m&f%)M_'tגX1?l0J )c;Vu"?԰~z\&־2V\yI&Jxxa>)ގ7u˖A|M5sdP\\}/Z60W\!s{H탨f…w"\J;¦ 7l?p |-"grzEg=7.sGdzn6KAo(O[|?&}ZvvYc>F=ɠ4/B+B!dْ%<lͧa7ޢ;#|\A$ʟ= ;axJXX߳0y7uy9 J3)=u/tmʇ֝Ox3B5utػwv^:'vICnJY†G"Z~A Q7Fڕޱs {a^#YQ;@dWź@Qc )f2o-@+tdHJ#ܱmt ӦMo*+AkEȺÊ'OHxlPt0`O)u8"w(-,n9)'6F,pA ]?6=pI$_H1f,U02uyn}Y9^(P4ÌX&7{?ɓ'0>ib:+DEE#$G'--m4 2DT}̟?߲LKҞcO~XBN>bgAX:7r } WumNNN'.H SU(,D%_/^7ac=ƸkGMM >RE P !х$Xn-6_B!_.?YOI9;+>I$dm裏 ,7%ضybcc gOfDDD|>o/cҤI 7!\`g i+K\d2BopժU;v@u$s*BAѷH=y4_;}nx/x& UWWf:X¾믇r5CQxS F5JuB?r1Ck$N6׽{w{U$s'x!QQn>1fM{m~aQqߟ/(g 1**70) >h/dx"pM`uuuPD࠮p~}l H|N='$DSn7@sɵ Xþu!K+fB?.SrGx!Yuȃf}{5<#d."b+@ă ʀgIHH$X>>>kX ֯_7`gOu؞wIb.ۥRr٬ukluBl} $Xw7}Yt=A"3L (<<9wEڵ."JAaa{A>)m>{8ז'\ 6+J#\l~abי yOH>_[@ 7~”Ӊ s!M KGe=[Ϝɵx=Q\7_'k{}]w?~駟_uSa!z?#jP TKe.OblyLل,<&$99G%65;&Œeÿ o ;(ؙO˶w.¶O^}߿?66 dɟ=kKOrD&nl Nв'¶˞Ӫ&*5׈4le}bEMNyyXx8aTR]Vfyyy\A͹6ΘOc x0xDk ljQl+XTϱ]LV n!k@e]!ܪr?zB] Ҝ@]<(&$/߇-XMYё"kFQϝY'{>ymaHjfI%$QgNtl|XѥK'IJVߟOdŀ1(+/cd# 2J^Nʸ[a[gr?^P֦ hnit)W(${mruss=w^b.yyZ+ 55u<3|HY)7W$j>.Y`Tap-Q Ѱ㏋M7 ]??ҷ߮ߞ߅ HLL>i* 傂~'cx@wpAk­PvԪf.G?+>`ldHMH* 6umwww y=/S/ӥkgUضVq6gѣNBuy:vcʕp/U퀵-HII|CH%Rc2aVȲeB[R1fn9 @qTncnm<3~}*66~m羛?LDLxKmiHu,_<N! ,1 Twq( YSN؊;jOoOiQpQeяr5fR5ҚҀB=JM&z3FKhI@91Ns{Cq !] g#QWWtR7˔Lն#_f-!vׯ;y w4u:c>}Z=,J+Ҫ=|"eR[[uw[q5gmgmݺu_̙SPP.RNF$ */hЉteJKqj_:6æ;ZEq4R6-C׆(V/2 - Ӱr?*(. 6˖HUM՗+k7 (txtҽI,}VCINNn۪zM^}Cj;IM-cC RB>;{_ǎZV'jybHhC\YYY)B yj=~bVK|7?ݽn͞ļ 9;Ϯ.6mZľW9sf۶mY:=,oJW:T&!&scB(ĸ7Z!I?16kLVTrH@PW8]rΪ&:ޚg Ͳ7{cd|gJ3HcHCH^^|\zV֫ZKـ%Khg/EgƜ{zCW򏓾;|  HO,]\vX-d,\1  wf:飏:(..?v(oQ@CbͤCӄb\צ4&kv;_߂0e b_0ۗưѯ_E.x1N3(Ͽ~֭[1Bԉ֧iWLܸ! B +l^0bb£GTQUQx00붮^}z=Ͼ쯛+&LicM ip~~q}:,[.Æ swرWTTXꤺR4SʌbOIK9ud·Ǝ;s̕sW:w> ?=>s|fbT-s\O:8除g-DCNˇ~Y}J搀AAg ˫yߕҞG|zۆc1)+!UٗB'd 1\hutL]b"65kְ@JHoʓ4q6wrss?uOp 2P`ԱcbaäΝ#ӦIK"i0.yYeY^I^f~f䘴Ĉ@_^G}O>~?Zz*tahȸYq)SS2'd;y2:ll gTΡioV 2A]<#F`lopFd< :aR̭M.O'Ss;;-)fnjvG͊{ȢE3&DL:3Ⱦ;7no>~~'C UY$I񂛿 )V'Nk?.^v`˦Q5[ֳM\+f$`B +7 wڡVl{e'-֥v@ ?Hjӆ*Cމ9W9vm.7<~]S@#bf$MKZ%9crL:8=wþ 1? {r1wxBPطxC]q\Ṃ҂q80eyE g_W яr5fr{|z:{4'jӆ ;''GJ5řřiqnn<9|GO]ˌ_vpN̊I?*j˚1)3S~ Zjܪy#j>{:tzNzai]5Bo>V"H;acj/>,,VػNlb)+=a=!Elik@ݿ-)\ w28'%+%:%:$6/`'~2wJOw<}L!$zNtt GZi5`U_U(69-~f|ԜЅ{FO-LäqwOo?A'"`O""RS-<_XQUWNϗ0x i&LPW8r?2.-*Τ\6K?f_Dq++VڶM`XJWZQ鶟b ;b~DŒsYyfNI>??ud3٩EEeEU5t&f~DcqiBPW8]r?N_rf4 .xġ RRRxZ{yFDFxzzru'E͏J36*:kTVtX4w 8J5N7I4M\i?J?.,FZ^ZQڸEڲ]ھKڵGsP̒ _ F%$$$'%I8wu_Um*jxcZI'I%)>h[OȠADl}9SoF|m[셢Tu\z\Pt1wn=V^:TYh193C\uRm2zxGF'Kˍ]uI߲2 ~DaPPW8r?"6*~S!uQV^4iiiO=T׮]{}vk 6KI`wvʕ+E=@UuReEeV^V\Z\Ht)cǎM=ek}59E-n;;nnYz$uDԊF7ZbhRi`d]Դsv:\&]vtuu7I7K%UCKkώ%)H.!P={|Ç:taEy'xŖĞ>S$*?}hR9c(8ud|4o2с>|~ =6[J7eg&ܟJ]nnGݼa LlVaVu#С}Ȯ OEĤDƦFť9πrb&333$$nRo6Kx8(-z%)gPϕRy<(<)/Kʐ2R)]3g=]{OMҦ ҆uҺUҪyҼҌ)Ҕ ҄1Ҙ҈?>Ddpz<@S]lq٠5Si3:'yrr}q;衭};r\kQaHu) #NDPyE%}G DlHS駟:۷os.r9d˩X"pjזfgd%GGE 8UAaKN?43)sbf(o=A/Θ?=>|nO?y辣G=}377(>(LTRNҹs[yN(**?wAm{\﹧ytBN|TW0CB',Ti͗5gǟ.:`YO܏EٶoJKK/NPW8]r?;0tǫzM7Aٽ[5?|mon{"ĩSu&`DZ(\"?C ]vY\H**Τ =g~]LV1Z;:7mrZ췱a߇ZzolXo@H@鰘Գ99eu ;v#$B޹#6mB^={~2>1D?gv7P^'cP5_STÔDGGrqy,}_rqS_uvڭ[#GKSSS:6M׮]}||DlH o&HQWSWv,'/'%#t鰨___w{lo_ВA*2|dҜ9D]lˆn5oܼ'3s/ӎ$N<|2eJJ`_vyxxDgEA]<$ߤQ`4rw_}'MWTTyHPdY"- @ uuuYEYIYIAAᾞ'N=ȱ~uZ?l~Xشiy#Ύ=]^ ߗz[okAc-Ju)/W}X0ܯlӦͮ]x1bēO> p}wJk4%,ixyy%k̘1"l"??iP;}r?'?$*!4:~xLrDlJ>4Ygdd@PWgܹw}7,UV }AZ(pɚ0a#@лwﯿZ$k׮vAAu+L?14: ~ˣ$gŰq_>::zԨQ^zcncDA@]uG:D:D:D:D:D:D:y֓&џrib***fΜ EAh@h@h@h@h@h@4OrNR/+~  |WFq_-cR rAAA~VGYTYGAA&(AAqLˊ߰>}AAir\[G4͛_ve]w]~bbb 92rHvU?cǎ``XTWWO:nС֊u.ǫzM7Aٽ{3gB<8穧+.vtRUU5a„ݻw V}|EQ /`Ւ%KDbNJC_{+RSS )hhyf@߾}7lW^y[o---\s={tqߥK??99رc b2gΜkf߾};vzҥbpx믿4e_~9GDD 8MqqXwQ{n۶m111'O%CU=F517:r!pEǏ,i `jT7>,Άː0%%%wuѣGz)'N|'Da~*ԿA.uuu7x#(~+W^̓.ZW{wk[n%22K.#e4bW4C'r>}9va>QF]+~뮻XvX̟?dJll,,^[l\vILL`pp0:&p ,խѣG[jjjR[[3P7.ٳg pݻQA. 3l{=.v֭QgL<4ի;tqFU2i$mm۶+\v񁠲{:F\#z>aAh/?<4"XFYvi!!!χK;_4 v}:t(\yϜ9#®JZZ_ʃ(۵kc$ >GW;w ~\vr?33!CW\TUUׯW^jP:$00nQ+ { k"4}ח?}i6lȗ$va* 6&`UVPSS#Rzg}&rʛoY\h,+VIp=;Jp@={Q! Zn ul۶-\Cx0a?.HSg#M}Io@ʼn(צ8B?] &u.CIII vY`\R- @@~;w*gSsQcTCTg#@ci׮ڵk|6mxyy,Hܧ]zTr?2&,v框ri*ຣaÆ brwݻo{őyЯP+n:qSNuM\2LSױinF0O>$~G!@( sQcTCܷyp=o4\(}Q#  HWLK,Q#  Hr}AAi-YʨشHj(AAY`?mC   Mrr)~  Ҵ8(M_+M|  Ҕ8$M?HOD?}AAibP#  HsarAAA~Y}0 +۷X 4'yT+BWTFũ~.}A/YbTVV%AGB P@OB֭[ot; Iz饗.믿~РA999}o߾k׮G2w < d(\rEA> b7V~Νl?bĈ.,//333ɓ'~A, !cbb`mmm= BCCz-͛7_-[vm r? PLGqE@iRgφxӦMiJKK[juAX>} /3g@XXxҷmٳ<|Bꫯ޶m_f͚ŗA#tM> {.^|< pWlܸ^~vډ' HJgYW^y `_߿x20QZZ @9%,Y; ޺u3g >7x$ b~v^@in!`\S> Ŋrʔ)sOuu5W3Ϲsxرc2{=cƌkf˖-" A1n*}r|G(c$322~?11ß|IMM }}y{{?2oZ֮]{%\uU" A1..;? 4Z0܏OC rrT r{7Aw{5jTG#>'hzHw^(СCb$tiС" XAo(AF~BBKRZZZ֭DA }Ayk׮#G$''=zӧJMM}q K}YGA`ƍwygox777BwcAzW ig?>єbi(AA[QJ_'>}AAiZZ+?}AAiZBSяrAAA/}G   {~`X\B}G   M}r?'?0~P*~  Ҵ8%b+ 0/@   MID  ҌpD3E?}AAi%do:r_ғrAAA{~Px<܏I?}AAiZTQ" JP#  HD όMD   ;~}AAi1+C"}Sgf(AAi[G&(Q#  H܏P}in(AAiqLˊ_+rAAA~.ܘבr  Ҵ%s B#Q#  Hˠl(AAiq\3&S]AAiZJo(cP#  HSc܏JDZ'eR÷    4_>3  Ҵ%s@G'Q3~ܯ(AA)WG'sů#΂GAAfr\Uqgb3GAAn:9t5PC/}x|i$ i7; vHcv&AQ증Xt-L> 0y^hN⼘Ϡ9{"hdz  3v"ܸsb?_Xz>7ёNj,ŤYŔ!r44߆WEiCдt ֍t54s.b>tIэřGo_hbMx6AnBtJUe:r+ "͢GRA/]T7&F4 Ad^#hՆmCdĒ\6l1CE*(jaYevm=tJ,< te n "6oEbA(WG4/id)CXIHYRR̋tI,[Q)H +ׄ_P Gb-MQeTGoB7UNRiZ ݺrH,( AAr+~Cwa侎nurQ$[WHT : C..;Bum}ߨzU sta҂NVQ:Y㺑B1XgAA.J`Vfv_4r:eiY%~&FUĚ4Zʼʢ 9.my>oK1+/UK}AAi)sԒGAA^F-V7~  Ҵ8(M>  4_qgd_rAAA-vxܯ0)(AAqDscߪ/B   M]r?O)G   7 OǧGAAr?>  (AAܗ?}AAi8"1ŏrAAA/(AA䢥Y}4444444444F2{~ILBRWT9+AAi<4"҄OP*hhhhhhhhhhhMnf?(,^2qQ xl"]T/V\ػ{~I)^_iu삁a\5Gk-F~aIlbY'wڠUWW!EEv.AՋ@RTZ\fi9%#u€a\5Gk-܇<)BШdEb" ЬxɊ^Flc:792XCl1~9ܷŰCt ^\rFC`3w#׹a͑b -&) 徳aRP`E2z1rH1Uh dE /# 6s1r!ə˜GAͫC]$.#[fKFr؅S"p1a:7l2XCloFh;z/֯jɴ`a_?.Ec][qW &SX/a2B`"6ݽ!wGs Z+4Ʒk= 57m WXTJb[YoDP7m64sؽ vv8(j3gQjXClz~u|j<)\ydnX`umGkJvXv訋lG.zm[~: ]1Ab(fPw[³o2Ҙ <Zj^ɹ2[PnTr_mh…XTy1"gP8MPq:7Eq᧔aEPJډW/9b܏r}g j^YYY.ypq0!G [eo3.)7ADVYtۡ.!GPm|]1AAPZ(ctQ.ߔɼR . )2ݯGGxAy/N>]da­"*bäxJXEٲWeŶhe j%#oc'B"`%M um@T$3tDiڪ8 >Dǧ MsU|QX64seP[w#Evs)t6+]ؠp"OQlMQsDyjzRMO#zOq^Ҝk-ԄܯD9YRB[٘,5͘[+LnIʼt MɚdvcRe0eOhEu#];AdDސYWkIYeQ4؎9P4A-F.e[}]Tj,-ճEXViL tKۥ *Ms"mFUymDuZH #5ke@d%N3ڄnit4(L_]2/W嵡Cz|OuLlލwռ1gփ%ݠ[ch*2Jk:7EqYlSNE2:Yq^Ҝk-F~Yw(5h!S 9Rw-VxkN,DVFj4DG0jv"T["X)TM+N2e2E:R.`HUHuEP@N:`u;&YIT) empބ|n r$,kyVҋG(EV]iڄI4 ee?CG]d;cDZ=p~G1k̇IDB" ESr#*Vb"#\(`~B΢6_לkXѥ,R]דQ&6VsJ9g]VF7I2XΤ1Q7!wӏ1*e71ѩ$)ϑ9 %^y2)rP&+Q2VZi*)7(" W)-522eSvyA9:7EqS=qyWKb >cQmf#cd-Q}eq<(0eEu`F.UF(EFi"he G‚j2XdIE)r[,j#}#>fEGCyPŹp(~ !X@ɶeWb1R1ZSQG#TS9 dA^i'MRXhE$+xi{MbZLclK3ؖI^ϙl-,+2]⦨9Nb:1 (΂2'z^9S` r_Q;kF7#@ۛtP.$Fɸ\XE a6\3ͽ#lD6}勊&ryqxk-~|J4yMͪwYeZ"L3٦}h"KFr"mMw34: [n_rk&.&LcR%s>7M}A2mv5r_t1J'f) -a8nE2z1rH؏t< ͺ}e1f0FsqÚ#53?P;kPJJJ0n;DɠE a_yhd4^2X. u.nXsdb(Əڀ EtQXqQOHD1J=0clcu.nXs8XCl4b /XdIzz:7hhhhhhhhhhGCCCCCCCCCh >Ek?}444444444,>|hhhhhhhhhh-P]r 5hhhhhhhhhhGCCCCCCCCCh >Ek(.Zry[~^A[!Z37 Egd@xDh>_TJ.+Voy֬Z~q#Vc5+έ E.zpԲóԓPӜv604ۺi4bl)y|M%QYaEղjr |sXvgir`FD4S{Q7YTfkʶ@fjed:ꉶ_ L&Sf:&W3hV0bhBԷZ0B/#tﶶ5i:) ;x!-~YyebJ7ŧOַ8jgMƖR a f;mtjԢQYr"cTj1)7"bX,9,ȒaǦsPQQRWSӡ8;s&2Mp4vdxɵ=M&abh-H4FxL]٨iXRXB% L o ⅅY8aaj-کИz4a``^XcWh)IrTlʆhe`en3xV9l1PhR^C4K)h݀KM*u[Y7ӥȠMƥjnf3]6i+VL͹i`2,1sJe PVqeꅊzY6sm^Õw(jeh4 *Ը-RSϗUp6ei5iBgDGpj4nTN]SgaU(fӔBglBX󑍶:yr(~0M7&S)~0[?pagB[QlPJA?|&&\ʝ/MkΦl a&ƚ5ZU]U6S]RT j=Zk͊Vz?Zj]S5IǍnv=eLsj0Z3c\l-$BpO*;0z12Ml\ Ms!jDe A'o ԣŦ4~TBSAi D,ܧ ~=O3!!/v`d뾅d6cz{d 1op\C3qTk覮I/6%q,܍ CmGa&%Ko)N `qc"W:v v\Aۋ.4կٚa6)3Eu_5?]XU\ g\k4 ů/wC}0?D[7sthӦ-&os.e'LsUUp~zEN ` iBnyB<'~|7Y񻃋+pƱ3Md/ Vvw[~Yf\觗qd6qq4ͳQLsA04ͅy A? %.X2z>Eeu*Ǭ\ '.+[i_73i*CfǴfo4\iίw>Wh[V@f.Ӵ󦃵l,ng~`͢UJ8Κ\=ܥ5Q7o f?8lriltݐM(Ƣi>-4W4 Open->Load Training Data->XRF Analysis. The format associated to that spectrum is the simplest that PyMca can read. It is just a single column of numbers corresponding to the counts in the different channels. Under that situation, PyMca does not know if those data belong to an XRF experiment or to something else and offers two different visualization modes. One generic and one specific to XRF. Your first task is to achieve the situation shown in the figure below where the data are present in the MCA tab of the main window in a semilogarithmic plot. |img_01| Step 2: Calibrating the data ............................ If it is your first time with PyMca, you should take a look at the `Calibration tutorial `_ The excitation energy was about 17.5 keV. Very often this is enough information for an initial calibration. However, this detector presented a very important offset and you will need an addition calibration point. Just imagine you have previously measured a cobalt sample and that you know that the peak around channel 1474 corresponds to the main emission line of Co. You may reach the situation illustrated below where the calibration window is shown. You have to press the OK button to validate the calibration. |img_02| At this point you should be back to the main window without any change respect to the previous situation. Prior to go any further, you should instruct PyMca about what calibration you intend to use. Unless you have changed the name of the calibration, choosing Internal in the calibration combo box should apply the just calculated one to the spectrum leading to the situation below. |img_03| Under the calibration combo box, following *Active curve uses*, you will see the calibration actually applied. It should be close to A=-0.5, B=-0.005 and C=0. (Hint: Make sure you have selected a first order calibration when calculating the calibration). If it is very different your calibration is wrong and you will experience a lot of difficulties later on. Step 3: Select your fit region .............................. We already have a calibrated spectrum. The rest of the exercise will use the McaAdvancedFit window. Prior to reach that window, we should select the region of the sample we'd like to analyze. For that, we have to zoom in that region by pressing and dragging the mouse. PyMca implements a zoom stack, you can go back by pressing the mouse right button or by pressing the reset zoom icon. At the very least, you should always leave the cut at the low energy side corresponding to the low-level discriminator of your acquisition system out of the fitting region. Something around 1.0 keV should be OK in this case. PyMca (still!) implements a very poor description of the scattering peaks. Unless you absolutely need it, you will obtain better results by limiting the high energy side of the region to the rail of the scattered peaks. Something like 16.3 keV should be a good upper limit. |img_04| At this point we are ready to access the McaAdvancedFit window by pressing the fit icon and selecting the *Advanced* option. Step 4: Using the Peak Identifier ................................. The first thing you will get is a message telling you that no peaks have been defined. PyMca has very good peak search routines and it could do a very good guess about the elements present. However, the author(s) consider that the responsibility should fall on the person carrying the analysis. In order to allow PyMca to give you some hints about what elements can be associated to a peak, you need to toggle the energy axis on. Your next target should be to obtain the image below. |img_05| If you now click on top of a peak, PyMca will show you the peaks that can be associated to that energy. If you click at around 6.9 keV. PyMca should show you the peak identifier. |img_06| You will be presented with a table of elements, peak families and rates within the family of all the elements emitting x-ray within the specified energy threshold around the selected energy. As a rule of thumb, you should aim at identifying the most intense peaks. Why? Because that can help you decide to what element they belong. For instance, the L3 lines are usually more intense than the L2 lines or L1 lines. If the program proposes you the L2 lines of one element and the L3 lines of other element, there are strong chances of having the element with the L3 lines because if it would be the element with the L2 lines there should be a stronger peak somewhere in the spectrum corresponding to the L3 lines of that element. Of course, that is to be considered as a hint. It may well happen that the intense L3 lines are hidden beneath the peak of another already identified element... Step 5: Fit Configuration ......................... In this example you could already start adding peaks families to be fitted immediately because the sample is relatively thin and matrix effects are small. However, you should aim at doing the things properly and enter as much information as possible into the fit configuration. The experimental conditions are excitation energy around 17.5 keV, Si detector 450 micron thickness and Be window of 8 micron thickness. For the sake of simplicity assume the sample is 100 micron water and contains 500 ppm of Co. Incident beam angle is 0.1 degrees and fluorescence beam angle is 90 degrees. There is an air path between sample and detector window of 2 mm. To will enter the fit configuration by pressing the Configure button. To enter the experimental setup you will need to use the ATTENUATORS tab and the MATRIX tab. The incident beam energy is set into the BEAM tab. Concerning the FIT tab, at this point just make sure the *Stripping* check box is selected in order to have some baseline to be applied to your fit. If you have done that and you select the PEAKS tab, you will see the excitation energy in red. Below you will see the selection of the Co K lines as peaks to be fitted. |img_07| Press OK to accept the changes. You will be back to the fit window and by pressing the Fit icon or the Fit again! button you should obtain a fit similar to the one displayed below. |img_08| As you see the background still needs some adjustment. You can do it via the corresponding SETUP button at the FIT tab of the fit configuration widget. You should spend some time going to the fit configuration to add peaks and back to the fit window to perform fits. WARNING: It is advisable to save your fit configuration from the fit configuration widget via the Save button. That can save you a lot of time in case of problems because you could restart form that point. You can take the image below as encouragement. |img_09| If you need to take a look at the individual contributions of the different elements to the fitted spectrum, you can do so by selecting the *Peaks Spectrum* button. |img_10| If you want to highlight a particular element contribution, you should make the legends widget appear by pressing on Options and selecting Legends. It is not shown here in order not to make the exercise too simple (remember *No pain, no gain*). Hint. You should not need more than 18 elements to achieve the same fit quality. Step 6: Concentrations ...................... The additional step to calculate concentrations is very simple. One either needs to know some details about the system (flux, acquisition live time, solid angle) or to use an internal standard. If we have set the sample is water with 500 ppm of Co, we can go back to the fit configuration and select in the CONCENTRATIONS tab the *From matrix composition* check box. You can also enter Co as *Matrix Reference Element* if you wish. To get the concentrations is as easy as selecting the CONCENTRATIONS tab of the advanced fit window after performing a fit. Hint: If everything is OK, the concentrations of all the elements present in the sample should be in the vicinity of 500 ppm (0.0005 mass fraction). In real life you often do not have an internal standard. However, you could imagine that you have just measured a reference sample you have just prepared with a concentration of 500 ppm Co in water and that you want to calibrate your system. Then, obviously, the Co concentration given by the program is exactly 0.0005 because it is used as internal standard. To calibrate your system all what you have to do is to select the *From fundamental parameters* check box and modify the Active area, distance, time to match those of your experiment and finally play with the flux until the concentration of Co is back to 0.0005. From there on you will be ready to use your system without an internal standard. You would have removed the water-with-Co sample and measured our unknown sample. Step 7: Using the Matrix Spectrum ................................. PyMca can be used to calculate the expected measured spectrum given the experimental conditions and the sample composition. If you have performed the previous steps, you just have to perform a fit and press the Matrix Spectrum button. You can see something similar to the figure below where besides the spectrum and the fit there is a spectrum corresponding to the matrix (in this case is shown in magenta but the colors may vary). In our case it is just Co what is shown. |img_11| We can use this PyMca feature to measure the thickness of layers or to estimate confidence limits. Let's take a look at the later. We go back to the fit configuration and select the Sc K-line as element family of peaks to be fitted and we perform a fit. If we go to the CONCENTRATIONS tab we'll see that PyMca reports a concentration of the order of some ppms. The question is, can we trust that information? A simple exercise is to add Sc at different amounts to the sample composition and to ask the program to calculate the matrix spectrum. We can start with a fairly large amount like 1 % to visualize where the signal should appear. Then we just have to repeat the exercise lowering the concentration until we reach a point below which we would not trust anything. The figure below shows the matrix spectrum with 1 % of Scandium. |img_12| After performing the exercise, you will easily conclude that the concentration of Sc in the sample, if any, it is below the detection limits of our system under the exact conditions of our experiment (including sample!). Step 8: Final Comments ...................... If you want, you can also observe how the changes on the calculated concentrations when changing the attenuation conditions: - play with an air path between 1.0 mm and 100 mm (what happens at low energies?) - play with a detector thickness between 10 micron and 1 mm (what happens with the concentrations at high energies?) The information to carry out this exercise is also available within PyMca. To access it, you just have to select the FILE tab of the widget appearing after a right click on the list shown after loading the file (right-mouse click on #S1 Unknown...) and *Show scan header* selection). ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6637657 pymca5-5.9.4/doc/source/training/tertiary/0000755000000000000000000000000014741736404017222 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6677659 pymca5-5.9.4/doc/source/training/tertiary/img/0000755000000000000000000000000014741736404017776 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/tertiary/img/tertiary_01.png0000644000000000000000000004370414741736366022666 0ustar00rootrootPNG  IHDRdϰsRGBgAMA a pHYsttfxGYIDATx^OL[~'7ݴ^+ V1jvn5ū`{q H#ը8$<+i%J7f3‘]nBJ}LJ=>Er>6cy9sݻw>Pu4AXa @%M4AXa @%M4AXЄ"ɟj @nJ&=RX,^ za#1yyy)[[[UR難za044/ˋKq N'UʊT^nX޼ysiiI (.rx8. ####BOxKp|>?33355urrҼ{j<\y{{{!*^'O&I51^'l:yʲ(.ؤe ,).$Qޖ,'ZYYj`Be8\|ܜ BX* b1VJnk٬l{^YxZ}Yjs#>"IN;88Ņl~> *+P8J˕}`+;;;\^^6RHۤTטKQdH8>>nY222"j)%aPY^c..ZC$1R22;)aYiuuU-ifEg^i*emӰ5HodԚ2` х`bbP_7*(.ᰑl²\#5D/li8-drr(+`6՗AXőKHIJc<44$Mc#`-p"e#0X\njjJ |m5aG.`.//GGG >p[ٵiF8-hqqHJ!5@RMpB6nh-bL6799i\ÑK@7@e\*RK`Es& ,R j tZ*5&&&`@mTj+BAbQZ-*˖T }D'`",[e>-V M'x.SYȈ Ӱm12Rjc}н|>?>>ntKm%IEtzzj}zmG.O¼T*eT;::R |L&@X#Cҥ<==Tzm@b1st)햔lG.W[XX`G.{ve'(.{XHJ1n %t#N쨁Qx\864@뤠5wK?88mY),;H$U+ť5)6*9)aٹ5Ў\- $Is tKoiخ\\\ܺuH5Ѩ fn PYv|%#[H$bl'~MnWa٭%c] M\@=xH ٸa57a{ %I}YjsILNMMe 7@XG.1By}(ui%4ŌJJAXG.\.W-= C0 3jbqttT}8<<|zz#eP\@E#)E&qb!AX G.ŽF |e;wKoi^X0&-}llСǧ,{ H-ݡ:²8r B~jݮ`VVV,ׇa{uqW4M$2x͛R38l=L3@06 fJʲ/(.xɉl(՗d2e5ϝ%n 0 / [D@=җVVVSk²_8r Sr[ͅB!5p>a# -=DXG.PEtzz0 ;`G.cZCTI),1$厎Tovv6ɨW033c\$ .wz4-O=991_ VbnRS&S\s ` [XXT )(Հ#,G,`b1#)7@XG. J:Qmsn 0 k/ zRPPVQY %n$e^8r bd-}ccó`v8-e"Ҏ8r SSSGGGn 0 kG`x66vxxHY"*KH- ضK]hmabtnݣtKD"FRm}#,#:V-}xxX 2abdrrnB]}m!,#Z'I^aI8r u+++nTa$Т\.gLD9.ae4M$2xPЇtKT[[[jX,f$&)DX:qAJG vvvhSL:R2=G}Yv9n@\\\N###ǔݣtK"tKґݿIa֩u떑 x\P5N8<<ԗ=*K`'`ea`nTn4qZ,n`0*KgUUal<<[q2 Ƀ2OznGGGXseQY:Ĥ|TC=+K rdqqHJWܮRot'V"LG*KѫIY4gHKյ55Nuzz: nll)1"ِ T^'Q:33>1ܤP(>q OnpN#,!onnRz1i\ljj*˲,;###Kهh ,NHS4)ԝj#N"H4MJ!);Dzm",mM>R)~LJ-@5O88]>7‚4#I)elCdϛ0;4}L&C%2RNNNE~h3٪7ryeyya=ku4}3155% <pxJ:HJ!E5F뤲tɻw=x?{7R<}So룷o95Hy=R\'8Mꉎfdd$ɨ1ZcH-^TY璕z,;i}=9ϛpK&vJ)+ՠ#>XWMyzYyʻXM\08-pTA\ZZ ؖt>+@WgTb ah6oߪqťԚQ^˟D/6AvՠW̺jGI ȿppƝkP^ԫH^˶^R$'\\J٪`{꣫9<ؓ=5`KphJw_ف0RҒi {Z߃uI[]\߅cyY^MԁD">nH[]qٻp{Xz|m[SrKոà~7 G.{:==5@@=g~ͲIS%,ZkшʪU?]Gq ؜@OLLO-݂i']e$䝳aM+z-eAq ؜aʹNJG*\U_PI[ý]Oztfu-Q֕7M,mz ,ŵ84*^y~s;Cq ؓl $'Sn崓axx ˛W&FVؖAe7፰ԔW5-^B4UkQ\6TqX6UOXknnkVcsZU_`4YiU_lPX*b+zm"ٟV\[ٺe}l-൰h54,TYCf>>h  démqmWYz~ulb5??ƃ@C>/..@]e4%I);й\Nt3 ɳ[i}[a9`0h>o=0uZ;5Yħ~߫A'ʖOۯTxampSI\>^'` q͔t@v1*[jTY<99y|$xp*X,vyy,D;k7P[َP6}KVCa99ؽ=sD eP&}5>=:c&|>.+_ 5f^N}~ ZEq#KEXL nj`òm&+ 6)wR?Qu!ƍ=/6ϴ'vqq!T ά1#=KH7M{MvRT^~wo 6=aM:j`R\P\X[[;::RvRɩ=իWj}{GIJ)HGH9r2` KKKeNNNdT |P(4774lJw]^R PO|Mbd2/ #ہqkwԇ!SSSj lʊ,T*eä옥V899xczKr1#s!Y5ai>PX,F"5 JY$aNs B>WW*O!,vvxKOvvvhmu5ZDXZX,JDq z;MA˾Yz.g&қb_awBaIq V:薮;,|vYEqe풽E5&&&l-1ȑ˾{{ァV]\ t&s3lb;bJe;Ao;sq)uK}@[z*rı"SVV#,qMEqEq d}}] |`0hn 84 $ťƖh|diU6,DX|͗Q\-=H8nJիWvn9(%jXXX0>@r򹹹Y5p\n15ܼysiiI (.neEt)+QNNNr=KFq eqq[=oaۘ 츩c hޞ[z4uh\.GKEq B#zFFF666i~}'jwͨU]Ge @%M4q㝅G%///'''X"Lw{uw~~Ι@<_YYQ[enɉpb'ޔ+;4)[VXWYF֭[_4.~s85p,sq)K1 }(SNxv.*Kv;0F?رť0S^##)E*rhR on;]@wo߾5dYQϹRTc'ht)ťzCΪ'ȳ[XTY;/:HAw?Q\E@q r8V-]T方C*4bE]s)rwwW>KxMY< 얹3Vwvve)G κ~ܲ6ׇtqhM(O@kqtY-s,RܸaOGhT koooffF 8-!;hJț5zg1²/*J%\pبĄ8aaߠפH$>|˦˾sLq ︸-P ʃ]OX6E#ut¨  FRJFnoo,) j<5pd2LQo`XfohmG6igh .8PX}ׇRP^J²) {C}*_{ڷt=\}bb{{ Xx5,osO|_]1<99ZS rT-,,A5y5,ݒ2%X,oW9<<\qsxgw?U^ov7(pE2 zlXf-x/ccccz(.D;5t_tɣa)Q{ZޒK8RVg~K K-*O-[ZU7ɃDҙEeYV|j"6;OcQ\¡LtTzg-SY~ԇ@\P='_g~WWK`..T6vzzj."zKWKo:=FݳKʽ }c~W\iYQ-}{{[_<~RxsR[MJ`e ,>r)1y-zJ= ؆UtKVīag4[W9Wj`277>;lEbrjj(+e?owwW_m:KGڗ{{/^sR\ruvCCCTJ_)eQSǺV&Ct}Ǖt9XB }so4b~$)閎F?'JgͶsׯ/ҒGqnԸܜ:t۷RgY5~Pܻ~ypppޜ"%Ae )+ jP&{5p ^_|1==D...B Vn[e/$utjuKgͩд?vw+KחZCR\q.u} oE*S=a:%Aeٜvf'T/+ ˲t\ZZRۼښ}t:|9.V'vRc)+ o޼1_p),{(.*+2U˨6y5 ,ѶoѨM飏~R/Ր9hq||R/HU4<<"F$+m14zeHjr#ٰ̃5E6o]RIv5~Lm 6~_?WcB.pT&uw)1'''j,V??P y<*J&NwO}oܛzV9%C˭~Yp-[ߠCo"͛7Q{)y1R"gx\C%V$k'j2zɋPa>66䉪7teO+zou. Q9Zlcڒ5YI룖Pa *f˨zIRrX6ӲlU)i/BBk^sDj upVUX4%/m+;_ :^K)tNyos |jt@U8cP-P(lP Ӭ+ʙX+tG@WI-*KX'ɬHdR_Xv^?n7u7ii )+@kT@KXghh(HD"YҞ6ҧW|YoֈSou?U^oW͛7ft&&&.Uɉc06w?] \}^ H{{{j---[N .lԪO>!/W6LjJJaKz SmlmmM T*cŊor~zjѺ?ںYEieXOucD"b/2= L&o$/WWWMTϜ|x|шgUcT׊[^s~5\N |D"122@YV'bl6 es^??.J-BkI v zHZ$.CIWNOOg+H^4:K].)vlPjWLqibTwz]WU^{OI۱13~Z=릖PakCL^K^%K<,8٫X 4V[1u-{%aݱop?niҋԔsmm|AwfN@eoq&''盝T-sS%JpP?D^nrtt;44tzzJent yaC s5 gJY"n;88jvenKG Fe7'I!,>_-ottROBWYyqqD@떞H$诃w>@T6U\h5[PF b1[[:t {@6Ć,~GTh-5bo N쨁'߬>{JO&^2Ϫq~l[nIu544$A{ze+=`%&v[榨,a;hT6A\_?VHACʟ+.m IJXA&dOufjA^)( ]_ˁкtҹ,'y1 ,ws7oި ebnnNZVVk⌤@ @TKDuwwwCRDloovٱyqYEvx[% >nV~{OiXQuI;yiIz*V+%5z-sS%˕>==`0-27EX\R0oKb /=r||\i}(%qEa.enKG`w~{{;Wfz/bFR y3a zq~~~qqQKr+&k0 J ދFj\|[Qp?[b%ccc;::RqC`8⢑"ɐ!J\Vl@uyN^:ڎF |ecK8P"jl"y)S5 /Ṅ*Q746#egg ,0@>bjlaPtH$R4uKgVQx>~cNEP~d=iIXyѨDޞT4v!/hkkk_ Ulg4ZB uw?׏mI 9B^jԞԻ:kKw˷/.AiH$f~zDJj۹u*t ϲfYkCקc&_>{{:Ӱp% E5X'Z[[3_H$HJ^[>|O]B!x<&X?&/DbѣGj܊t_|KF%a sk,S\^^F"P*җaoFZa ݕ:҈=)Pc#KR-)n-]坵8 Va x,g'*&8?VԊRO*򲫥NUtkΆEY鴔odjޘcX,>iv^_m$-]{ؒiX~zpb>֞SBVI`Ö&bx]LOO?Tߖ@^Ύ_^^j+5)E,[>nj ["~t\Sϥ|TMׯ_[%ZjDM>}PC?.G.{ϹaJd25sppдGyi 7oV*PK \+~6ϵܗDiK022R!vcccyyY /k{{[Ye P~jKU^y8}׏X*y>_| ԸΏB0::j 8<<ԗ1}2m޻'rggggjjj~~ԣG׹W|A#)e f2}ntoIMXJ???###:==mc-^k첨'08"RiNTp)D&''?=IJuP_Zd}}] |>Yhu﨡spQ eh Bp2T:KkyvhhH^y}.g翸EX¾Ţܭ[677e_%kY"*nKR:/ݻG^ԔȲjv/pIVrJ???F~vv^~=11ʑȊ)??Uϡ;tK3Y#jJדK*K؈kkkJLJ5Ƥ|"|z* R1:%juK5p;1:K]^(NNN~0 }ghL&_z6>H;&:S]6П-v[FBXdyFQJ/K@ʂԎq0쾈lL6ٟ|I\kM333zxn+)|hn27EXdb1}811͛ u˩T*4+ee...O}_#kJG+27EXl A#/{\KF{`TN9ۼ'vawhک@Ȗ}ww|gQJai]:6f/--p&÷W&_>{XIS_Ɔ+}mm1ˎI?>>n[~m-sSU>Xaqէp9梧ˎE"Uf=p_gIV)d۽Jx5)H@ K +~?\6T ˶n j8SO’#Id,y"0wK&`KΗN6Twm< ٳCCCMoK#/[!5рBR) ta={,ݯR7SGfZ[ɿ5nFz>7oި|WQOde% VVJUGhQyX7!/kexxX"Zz^PG/P{Y*W%I5ClMXTWfjg^cd}% dl4چͬdxQ+xիKᄏdRH$Ѩ4f*TO d% TDF%A{Y*VծY7yۨf25hy{,kt؁5:@j{Tcި*WUKNV՛{@mlNOOո䥐 k 'hժ(MMUY*Vzk)h$jRs~~.yVy 8A:j=ꉶ˺wq׿}Bg7ՅK3 zpsOVx&H-=ˀ+Ue-w 4O'Iy'ZzJ7|xY~w!,ո55// ]GGGjM-.*+`KG{HE-3:Y5fb:p)8F;8W={]w)JtPG YV[f%ċ:]CJa[$@ڻ2/?22~[z a[*rRVl^&o<+|bbTh>-[z' ÞdU%Qu/>Wi|ҍuD?zw Qͳ/~y olla5n͛7y=~嶶@^Q:nuCS-(*%>wɏYUܸQ'\ғW*..lEX:99QcW'Ņ>G\lqgG/I)'+>j')GFBaooO[]P_...I)2 I zorJx0"Gח;;;Yյ55enD߹lH$f [мrtt %!een4,\ZZTv8t>V~Y#)%#@BDf<Wv8./@` p:awn]SSS{T)|~||re%e [K[Wxv8"/'''Rw274,! T*eF[?V-gQYܽҷ~Kjql[_JLHP($5 a%ЕIt:mg})?\1 u7a tKo1Xņy@]%\N'jmoo\-sS%#+]2f}}++쐗ׇtKM1 F OWVVԸ}vbFR )IJ@@,//nKbl^T_ 0 J/Run M$lzIJCIp8M-82I),`FX=&58/tEt4,Λ+={hT;b|lP5bxbbP_GenD"wr95H2 A'%3 @X"#q 3ygjеxM;Vx$R{ttZ=>>?CӰ$666T~>vqqќRS@c%``0qj__F|HҰg>F4EX֑mI ye}oч )+@'c;V~9:yN//֫S1# ?/WzzSf{?{zzV{~OC%0UJ&jܝ㗆}Ajb/KEUjL'<=55e']m޻}?t;BK`0666;s~( #'DbddD aP\\J-,,A$ni+++@Q>ӫB/nK)X1pz^~-*S;`V׿6 `P}zgh{QѮ}}޹rXMT}D6Om'T6}YL(.{UV$jԕLâ*^Y OWVVԸ}RSfz3Up{ҏ\hid%ӰnMd{`0I;EQ5^ *Kp)ug/~g2Tɯ+ו瑩d@<j#k_CFV>Mkw??YVnvp5`0ym(fA=t-;n5YyNVz@[*DY$zf@@ lp%+Ny@fU;]{ʪyfll\spp044Tq=8y {Ʃdz\9+xbbSߑ<<ldcOp|>&muzhGKO/R-w=}jnVjQx8li՚Uu#,c,H...*ר'@^gNUR{<]hDʳʪT}kEʇ-9S3,--I4t:=::*i) /a_Wg>o*JŠJʫtTl|wTt=zvη,_V9glX>|yݻ7oȃjߵ'n''~oIRl27hk4mVA.MAY"ɩs7[o$Kŵ&_mr knKt?rWƳW̽*]8hԦpL&3<<\ZZPp6_4Մaª%VWW+9m_/+9'%%ZV DX c<88!xT.SV+]t#%l\__prll'QV2 8z+++j ֏?(`Ua%333_|E(Rc`ФuK?eTloo?zmIRRO'>RNHJAe $e8><쳞v*8ۼ2R Cp#ph4Z,w|q3y^BXJ?~,=EVSKn޼yxxh71d%:EXhY ",'+-%Y T {j1Zg7o31|;uz=ծ,y׍R}ӓɗ=}DOv^og _R}A,^kG%׸|;KBhi6TtgR~#TQWIY^==^U_p"(~֬~z/\켪7&w>{ӦO3<ӬnAoQ.֯Khםm~ul+=M !HTK_gRE^+e`ÐWӷD%<ͨF4gzQfm싰h4p`q OYigAX^V>qv҉?/ڠvz!{\-7 ,3)ʼRQg^KusAZ/N!,3z <᥾PVE@yµggFF+Q>xpW{DΛNBX^Vjyr*$(,'(ged;_<?Uݳ|xWrEX^v*|ϣwJE)(|yZOBW_?վQ"ՒRK;~NT±hxQ ΰs5[Ɩ]l~F:$%M0 @%M4AXa @%M4AXa @%M4AXa @%M4a%Ύ/ }۲",///oݺuqqƚ7o 1ve4Ғ-,,G%e%A,:8E0KJXwQ\RVF*˦ԗv*LhJ@%M4aٰ8%M4AXa @% |?w@CaIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/tertiary/img/tertiary_02.png0000644000000000000000000033246114741736366022670 0ustar00rootrootPNG  IHDR `sRGBgAMA a pHYsttfxIDATx^`Usյ7eum`BQT,vl((JWHHk:23gfInBǟaΙsf9sνɺs75w<_;O8Tuޥ%}NsD)d$sj8KmrZ9ETINM~8qZף x4^.264c&x ,RJ|㧧āGs2ܦ.'yfQgt&2gɜ+s]H1/pu!J`WP2 3r= FO;#pՈo}`3OzaьygM<}0 qf0Eumӡـl64owV@ %?cB5ERa$L D4ǩ#D)D a-NRZ| _ 1޶lO F^C G!9Mz@ U4ޘm\1OjDNd%'/ƊA. ZҸ;ZX]cLK?4hKEs'Qeo-X6_2;KtKÏ?=pc//=G=~*,5>rE.f+kwrȻH]$Ja%j'Rs_jOa]25n&66]hShSdƜbsn)ԜSj-Xs)L>jlmn _aHZJY.!@=[`졈˄bkET2T6 _j)"dͲSbözmثԾ,19Gg8Uw /Pbϖb]Xv; ; @q>@ݒUTMظb.FvQv%kJXpf*`SM+_ط|@s[G`/|ȦX-;ZbJ],]CS.Vm·Zwn]iO喜mjvw阇A$;U*]y IA<~%6r"F@cbb˯Mk5_ df_ ds ]Ը@QAʭyeA|磆`D| T.1-1-Sg<̫ڱ[=b[qHlIxK {J7!?Y ;U세T)[TSbWj$/%h^)f<֬A3hr,bv:I* AW2;!!4&&›> "k"~JCS{kh$f(MV!NPޟ%oJ*`op3[}Uk$V7w @XƛqK[kDuow"׋_/}"7\,~go? Q>>[Y*Kb"3hw- -O}/\~\}o0?'{?mhol8hȵ9}gwdJ::Vg]8е djڬ8 VNb+ds;@Nɸgq7$ z 7s%`l VMG$?yQjIs|qp ڍrz O]ڣt 4:HDmRXa  Qkn vk!Y[e&?y%`pe@F G|r"|p$RcdC.Pl- kB.Tey@mEg0 hdըQS4ގԔ͎낢>D9t'm$s~*3 mS5WBz_ u'xn0Q8r6O '@_}&, ]cqLj lQ .VQkXj,e`M,Uȵ% ]$rCa1nPRWI:R5PT[TO WWTTe5EJCi\Qk4تMZ`ugu힀tBnO }p3F@oCj>x!~B=lO r "Lɫv'Ky 60mnXwYcrVګZ*Xjsi!-0SH?w|o.XxFh2h[R,w|<|}|VŸM=o?#dK~Ut2?',ܟ.p~ ,,0R ,|%C56@!e 4}(m [ayZ,1NOF$ġ ZngyIk{4GCUƇ[үf4ߒCGm"5Z4m#"L1rtT <`F5D*PT䤺HCrXX[i%"`c s Exz0gFBU61CִM6$J8 g h&X ke-`[c SEsi%` TJߜPZY UUjce`6ZjMVf869=v}8%5Ua7DWL-pWr D!G_ @G9Y?j|6juz,v9. )`qgF0 UKgT!,Ҳ*"ڲ*DPmq5@6B]6:=>7@(@ޅL s]435ɯqѡK&ЇhLMs/Ҳ?}@|'za8 n^~U/t%ah`%Bt{ҷ^).xٴemole/~K~!Aq䩡wf/2U 5yWb{;y+oZUoZUu7  Qkkxrd'M{d^ ?,[o29M8ٕo̮xcvp 4Wy L/ڿ-ԇn9}N'ucc|܅S0mticN{xȴGN3d}'?p:voz "M݅_-hSqo"䬙 H`$rmeVOi^Įu4+(wxRD6" ?%G {>a4Rw_}M}Gc(q={DƂ~'ժCp䅩^.+i9(vHF|dh%XVa!I$Sb0&bLbٝLӐ [@~7:P=BNnL=$l3n Nb+z7GH`iHiT!%/<= F  GnXMi(4G`XhQ J7hW %ɦ.=80DѣqsĈx x Q?%X"T y@ @Q.Mp#؅Ld.^_[(9|կ= _{{G.H6d5 L| ztRR.YAd!CTmZ{sHR_.D{-jx6b2PXmI"|G t4< C!Z%!҃}1>$ut@:B%vȾVdb ҳ2F)F [6MDa/F`q^C^ r pĐdh~gٽ"BRznU^\A*5I4,$ExTYHyTpP<T@'R0|҈՜0*4n  cDCg'yƎK+5ވK>;6Q[Dv$h&C͖[x`,4MI\!qvH* FpBŦ,oF5Js~#YP*"!ѱG$]vkK/'@4Q At3I iR)I4&h2GN_N2 v I3恔Nbk_*\M4c&O?B!%wDoSvRm7Ib)[ ,7IrH< rHI<%YSvaC$9U=(1ŃƪHИ7"Gbr<,E#bx5!J[cǂ7k^M*/CGBa> T,~Q!K,ޜk/s\3@ϔLT:0:4geLܙ3sgz(3^̟0Q jޚ0LEӀyi' }rG;86bE^|~6}{S.\h5|}GG;_ͿOӴ~z˦/>ؑl6aaPh>"n岆D% I&Saw9kJŚV$!'xt~cS$r⏨="Hh;ADo9sy ϊ{߹QqqgZ뿼G ;#LݲʪR#Fz dNKdK|_|l6a$x#4( j{ T'D *:ʔUF 1,$rHt׵C_{k/xE뮾/^sūMFFfBވ V$?|6?c}Wws?o8e.˱O9 ^/YFQEIF҂z-ocT%5uJ&8Q6)Z9+: y+g]:i9 n9c-l1D hT)ކbu颪^lQZ!6[NKDoaMG^T0(,Dβ8SDs9HΙt"#4I3vGza%x8lD"ƃ(kD'$GDQrp0bTY$AHD}"M e(iI$GG|! ,Vl@xE% &`|#7wPSSKSF ؞}v;}.zUW^*B_sk.|ENv sݰ}+~XJV.Pq[1QA1YL90S pa f_^}E[_K_k_x#ZoDgHEPyy'w .>~U~Asg9J<sr;INjEӆLTjڎP]&:*T#/RF,>Xx#řXxwֈ-ҹ,tA)3,y,,-XA#f؁q‘CӄP"(Ջ3Ģ +<;J$hX$;RXeX %V]X 4 ]@_iӇXDYE E }!rsjj O>5te!e=z*:UK?_uånt퍗pnt͗n7_Ksnt͗zi(P1C#oz_G^Z2Ң,r[.qe[nl-mo쇛.[}e1!F,ovk~s??׼sَ6\e?_v.}duud۠Î0YC@C}\ɝTzy#$Xf7Y7j)ވ/yP%ջj70YCIо\=DWD>o#!$xPO"KFMzw.XP7:"CDyD"6PF+u9@r.K 1obysX:QS'xC雋Y"X=@f#X~¹C4 ,%2*LYV ,H*H*H)+z#%nֈN:,2X@LkZ^/E)K8;8S8e9z,Vl4xE%4!O|@<1 /x_^LSO;}9y{sg~CB뻳s{TU>yVdpvÝnw^kvz+sF_7ʢ{,{,Oīw.vŊbX%S~U%{ʻ窜{}ծQl-w]?5dႿ`|* .J?{qu.ŋ{T9dɟڗޒf~C߿}pȿ;*+넭Q_$5[AtfS${\FFTo}UF iEZ27o_ F`ƆŜlPLꍔme7u$XRr0e1JoD"Ib"b$rlX:gӹ,A,3% ryK}y%@b"9={BqusRfGnxpOݏ3nDθyFNQ<7OrI|K2*(%FG;~dݶcmmCmU'쾖mo~߿=b膉|w)+g_s?| 76gMe]5v'&YU5RL Ҙ#UGt$*bS,e"fov:~O(L+nfHZQQ4'zO]y*IφYFkadވ.h-J6T7ꩢD !p&:(dnyAYp&13ivh&3tb9;LyR(V֊ L Ah8Vb ,1G&,L=SƐ"# ĊfvA_); 8$8B8`8~v:pv,zp(6&A|tzg+ RZV(),VϾKEƪ Hq + Q"r0m :ݼan9O=PeO)zL3cg`|djgxP6sḻE3=96wƃٔ?~ђx08XmoyޱO5ͭ'Oi{W2{}رcG=8)q vd5z#l@/q 5wժʺHkr޲BxK{"fSΩRy# 0#b3yjDIkQc#an. sFPs;b<~Z^HwL ԓZZ'ol=kWBpTlذdA bCDKLrx9HF A,XR "HK שxȨ*3ݤ0 @x9$BP2iK>,LɎ9a$5HCĄAJ{~X# @_)lL|!,Pl4`E :p7|=AYkt읡&/U5V{He2W LiAO `[Zmnݰw??}r^i/N+zqZi/M|ij+Sk_j3̙dMma"L5̙Z3gZ*hG f= 4#|򣅯F&ິnG9__v̯so>wkc%m!{a>]vd3ވmC8 =aG.iqD#CSި< =⢟˦O^}1y*13YG !Z#"1Č2:%u&Y^gb%obTk^7Qq&{taabqq5KuE, 9L&'HLviDFsv3t]μkY|6Lm͝;(XϺmY#9b?|Ω7;?g|Y'^  Q/2d\zŹo?x) k?z}9S.]Cg5rwuղr3 U%&F`4;Fg:rc_Hm*zPɣ 2gm9bbO2$'D7C !ONdOCf'D[ 3`:V񩀎U ./[R*&C-j/o%rcN$icC/ń#U <8kA$<"6ҟ ZV>Pf嫥[bO u!t._t1*I3H#Gg(]h5K/O+dg@w"_Yr$ QRC͹0Al"cMr yP) p2Ha܏9be, `"6"mFxo@>~Ӕ6%9Lq(Y!_U"BV$dYIe)05\vT1*ؑ9>G`2^< dRӭpDNi9$fd6JL s-$lH1TTVV*j mT@(,-,) 3JʋJʊJJ%ń¼} Ey,+(/ ưK!IJ K)rI)X%cyJh5`Lpp^p`P w) >Nu`% ,x )RLB R!U5 I΋1r ,)2Rr 0$dOy"BJj9iFEN^XdC#xj9JٞT-H(vYh5~MlK90#2jni8рMͺV2ɐ!Csg+ClTJb :@ ǯȀqppZ"VINȑ-^kjw6r l^$ 32;~A;;,6 + ]Aƌ;;X4`I``ZlKRC 6SUk1V2 *7eե UU%0Cb'T^H(c39y\BPk`ehSfA/FmU5y##/>Pje؍ FGAR5<7Z(`"x!IIR &9fUIYU cG<"L**p%@zO  8Z0v@ =BN^euK"Om4Azwf4SͲy&9͑. \# _/XɎkH ?]<< WxoP,N*W :`F|QVFM,\頓 n,/?E!H2,֠m2k agbXli9Ve#Xg1!²_;Lv&SY(#rhCϴB:9Ԟ ͉ܽcFAl\E0ԚmCǪZ K\U0U՘*rPƨ-`ʫK$+cTTZYXZQXRQPNQY~QYd_AI.#(ɣB~1"][dOk`}R ,PQTRARMYU-EE 32>BĂf C[^؝VX)$ im'"LO%,B0!$F 89} )-Љ+$A;e=0d`˸d3V¹)9P M=;Pfb4&%J>;Gu` @2Wylx:L09f4jja0* ed@I"hPhΪ0 9ڕ&ڏp4-#9(hЀ;B!' ]Zir "&l1WL"Ʋ*T$BMI9P]\V]TV]XV)*(TLRqE><|_a\e^UX`IŤ}:cÃC-2I_  "܃!1qR䐊5C*,pEr$ 9r8}b7y|(02UZXhUUf3bUѓnC~?y&fg0,2*89ymS 3[JNR!R=" lC;F;*&er`KD!!* GD&1.ohRQsƔݾH,%&fm= TAVueꑘZw"m&Hs" Ww #pzGBL9Z8v9̠ /hHrl3QG`0@F;C=VYޔ i^GF7ro#FHWçB1t"Љ툷ѨK~$!%FI[V5HFjm䅋.p'}xHiK鯈R$֌TJa֫'t%1q(+\w9k$:oDH荸CBot5,d%@fhTdvi\&Y}|$*+0gMOzVy#Zt-4(wuZ p֪-[Zh\ET @5dވZP [OBT.f>e>&t RMb筱mfڎx^>fa85yNWRxbkZf*t ComBj]yk$?$KTIתK)Q۪֬REʐz;B=p{LvIf{$Ӏx#O B~Om {j;HWI#.I2<]T5Gl $ι,Ix#ZwW3pzLHŻxhB(>oD^ ޲jЮK9trFɶO Z d i!z5"$\$Qsl+;A2x}7o{#?,h4F9TA9Ȁϩo"-74x$0" D>A:z#A@8&Ҳ|FH]CkZA7BIihh E"-795:xy=5FPT  }f<ko4y_0 EF Uި {!Ja=5AA0 (735~G~#AA07ިA~;@,^ߋ  H_%;x#gv.! WIYs uF^ku"wA飀7"/?~`j!ٽfф)4   7ů8yO ,<&7?  }?x}#,5:=2z#AA0рA-n3:FѺjZAAɇ Md: FzNh F-vo39DZCqAK/.Dħc)5 h0F_ ]~yz E! H`)rh "qhh17#x#M~tDQFg]} ғIC[&>cc:oQSKx Fz͞>YEɀhnnaCѣͨol F"*omM%h"z͞>YE0oBBF MH7ow=( pUZf\L!}y.44&{5SkHFqoDY1"ߎ 'NѴ0OPOCbiC98*,Q`fQ1oL18ܵvB<7Bo6FE<7w%d koڰiv^edoDF ]?kcV:D@LxH˪YFJ*'ٍ*/w.<]5GKO"mR)%]4N-݈Di5}Kj7 ’ʊ*le $H$b6[REYäcAj] Dt?ɨLqUP]E1@fftѐCG"PSnmxjH֐6GfeP[y[y9QXpKUf*ިx[Z7HrC@ i״!k2 -^WF7F* \te.a+HS)S2iҿj[4;j WPVYc0SARkAv~'}/jЭնR8y`)QSfl~!4T*#!,2q}xE0#>%R:ZKzXurJM*=9WªtqȘ7z{#+ iC$K DdK6,ɷ/;,a@=F φ[Ɗ402DiFX$;\XE(cRAy/'kD'(wH߀ŵ7L6Z[6 tI"&$}ǷI#IrGTd  :"'$C䧬]=SRYzh*!%'7D$KHRet%#C|2L`ϽQ ,#7 F|H Lbonaf'4˒Knˈ "eҼ^([ ܰJDSZyD#QӟdM8= Υg{1p<$)švɉyyGI_\F@M@F.yC B ψ7Ui hンn}JJ޽5kky\F",/n۱k޽E䳸F 0-vrCRxb_'šA=w41];R.Dq?cu n x{#{jO{[ z1ZZ[;d ~l5/7`y1Mu'88,%=kQސ&깣7Bz7O"Cc7b{#F G`.cADn۷de6/AŠV!( D յ }ifγT$v!SkQ¼]xhK[F>f^ kG3{j}ӧ[,ϗ:xUk: }*7r.0h^G6 Sg /믿n  pZh H_3eU1F0Cjnn8y& :$E{4|E/Άku񇫠. }|MΔWS%FM5[ks!pnRff  _2Q4N_Ih Fvw]muO3fAAz=78!ߚ%]evUY\OiAAo'7%49j+hTM+  }FQ{x#y#F&'P(AA> FoHD퍬j yndq&{j M&O;o4?  HE${Ľ976%odvU[ܵ6O8GA¼ HF78j6;XdGA>ϡ*A3iH pRSſ]CAz2/orZmA  M|:xhAXZ>;kk6 8F{2{ dOx" &>z:+@p TksO }lc'(wH`믷 }if^D;cX6}yy};/v}6{GЧ@ {7yGVx{tDMY]>Mo#yY~'$>6FSK>^8:@H&/UV,&{߽,e6[E* ۦ8 +لpЧdZ*U&;jyܰw= u7W䳹|Ik#';!Uijjs}MNp؋9JQ)QymzJ.A?" DļIXk0YoxOÑXUuuJOO;kQdsgꥣְ3,)pRay[3Bg~Pl o0PF&']M7wB`cը*Ei9-a1kWt1=Kz# r^-,+5mf{գް< 敤{f#@׶y.DddL0IB1;JE*[1ۡBWyEԪNz){x 67`yv-G5)M+"wiDp7*wԵx2]H9q -(1".aWJ){fITfK?T*M Vޗ!,JbUt386RCKpHa(taS^Me ]#ޏZ|z# r^4ۜfwA yZPWWK )N{aYCCC86Mzۇܛ&)w(ul3X#d_~)[fa)y"HB:"6%LĹ'sIF`}/Jc #n]%"~G_vfv 4*ވ~cUcVw(5;AaAsJ~ܜ-fG֣0t]RWWWmY !?"]ȺciiQjQO3{%fF{mtB2)IhCҹkG!JHs˿zԂ;'~ EWo,b *k6 Oݡ~(Bj|ܚ!j9d>|^OGZHt. 8AHX d:s^,5 ȑY#?՚$aGy^t O V +,Piaq;J˪78hBoŵ7x羽f;׌~9*uu.;y^L4旌V^ B^{R8q=Ȗ֔+7;k$]R^H\>I sKɯ,ڄcM&>$;/t9э1y_e{q>;uaHWU!NX)¢$kL)3D܈y#nlqyMO-GfW }xM+"wԈ>IZ#mlEQTӓ pU`~`D֐'ױuOP/ #> KmIJ,o`ݓ#NW^CQڌKY!lNP(/+-DU@o$M[-V[05o}xh4 `NyKY]fфLy#EYF=-PbOOr.T0oT>X?)fD$ll*kVieac)ݞ.˛(;*q%<$i!3f$QXNz# ,/n۱k޽ECc6[v冤z̢7=]} _vėL‹`qJZ xi/C?qF <>7:+apx݄pU`Z)z֬>, DX^_ҩ[.` WAs]A$0kByC[&>{#=52oD푳쬶:37CAY~y#/ ƞ?4kuZݵ6Gfo" )L4F:+`GMF6N0=7< ?  =,(0QF="*{oZ^Gֹv?cVAAw{t$?Z7O8<i״  7oeHG7k=Q]ãA0odw74xHssC^_' APo ވ#XVy#?H  }By 7b7rz.o @~O AA> FސأF{j5>gsMEo  HQxdj<+H4>i ~/6  }o~8<;{j Q7r.FFf 0hz#AA(joD+y%^F! 7okp"57k7ze}9" ;$獼f4S'qo   oTGވx#FmZF|4s H{ύ=Cx#H8Zwz,6x(#j"AB7R"61$ot>7ZR/B$ʈ!oWY)~5F @(7a=0CqO߸$K%oTcyiZ$ߒI҈VbU$@z#A2n$π'F&`q±Oִf()9Y;lCʠ侇lO6Ϙ7򧣜qkҰsl =oE4kRf3fu 555 *MOG:6Up45]jIm1"fX?Gh$:tT)NDI`).Y@@oO5KǬk3 0j"ABQ7P7CL65;C&iZ3鈸~Ec$D'oOJFQYC_ 8Z%l YTr%i0 W#r0hE3FѓR8M (J~UF)i׬H*Mu @WPXJ ʇR$K$-wOfR7B$#7o"3duN0F5&G } V =E:JjWT+FʿT ״)+8#oD= kϬP~*qKXIASɕt$^^նȡ$d3v\J=¯f Nє:Y#L]5JXO^ŕkR ن-ZEBfwf i˶%^^զȁMu/)KdMEjKSQu[@HL^$O\ QGȖU8AB4*V𽄢v{Kq T* PGA?T#FZFF[ qV =E:"~ǐmC"\L{4 i[pFUӇ#<JJҖ—'h0MW)H"%&/F 54¥E*ZH9EжJ@SܥԊb[JB}vn&6&z#A2(q⍚7g-{O+5,chsi*nӶ*ڧFd yr/PA͈2H.[2M&]qzaWuOBJП| aq)}uF5a)FfiCH݅r H h/TO $W&%l$X5s H{8zp%P=7"_nވ}d"o$q1tn^(+aD T4}RUI55RHL*MCT$Z8 ) JxF)Ѭ%~sIfҵC:bsTԡ $؟P=4I:b^숒$ 7U7@+STQoDfytQ00z^{#T/PFAQNEQs鳲Ʀ(Zb1zaWzeD,AL,y#ё]K9$?4n=0CqOWgTk%^^I 7B$#LCl.?ytgTkFY^I 0j"A2a4獀 &9Vo5gk%^^I 7B$#4~f#e;` FNjF ^XB8=&No"e`#~ G;( BP]'HsK s@f`s1‘CP( B^7)^E[e;ccoth~# BPޫ؇'.oP߹wnCc c>iEz# BP=G{ otNިd#9Pִ BPvxGu_loh0Zk7AM+zP( 9J$\F72Y)F(V7BP( soܬ>|lXpd >7BP( ի.o9~Fd9$V==P( B%,6yOs755;]MpÏӴ BPz#7 ½Q}>z x݄ GP( {7z{#S8pPKKK(B`aʔV7BP( s.o׻Afh,FV7BPK( j7w" 2Q8USS?iEz# .7BP]vz/$½y yƌV7BPz# եʤ7jx'xBӊ^֬Y3yۻR>r(t׷̠P.U?$FMMMQ7z'57l۷o煃UV=Co])hԨQWǴ YiQP(TQ{Iԥύ` Sĉ{~sWj۶m󠯾i3x2!P>z#ܨAxOmF~Oo_t)Lʥ]J4Qa03o{@K Bbj7o"-)?oԷ? Ihʕd2W:򥎪]u^rw<}T̪cha}& w;PCIFC aH~hTOQx$kזt6[_=a^\kYyӂxLR3uFߏSu_ oOM&Q(ԡv{`DsEzk{1M+z:`Lg*jAZ~}ee}vϮ6NFmYiA_iEOxؓO87¯Y T5Z-0F3Jul6o )*Rt{Y9﫷U<ʺosxLQKRoCZnCN% flm Ik,UUU{V\x⒒@ J̞]ч&f<}n諫!=̳~qϨ?ӧz#5a"ְ]}YYY3f̀JW/yXhѢEGqСCh4ʶAP`}؃"܈fHF PTe?FomePGO6Mӊx4?^ in)+o<̇O1$nN8Y ~k ֭[;jA_)|y]w׃a@70cĨXN1l-X):o(#~,[Ұ%b S&^n3Z/W2"+FcEEE~~>L6lx׬YxsT Ws(dn_ۥoӆZ#ߡGGs{j@rE1|![ w卶+"}o[g? X,6CqdEXԒz]Q[}.;l4o,xw9\W[i=:Q9nz}Wo>{\7|E'} ~z]'}6HQ9peGNo3eǿ[b>LJHw4wܕ+Wz^^JLdoɘ,w7j =kF&7mWGQ䭓!G9F.b Os޾QgҡS6=mKF? /\|y]]:d/χ5"eG|)Ch Fuh.FWmƶ,K7{ X oÙ=j1%Kxmܸqɓ].tSLa׷m/6otڲ1v cHZ>7ė 9v\YkV)v7j\:> }Y+|E{Աv|甂$צƗRcذalY%X"Vl*JmMK慎*Nv#B'$wcH}% fNHż6m+}<~ , $nFXIMvhmm.(5VǼȗYMoo_~~A v{<E/^o}bV} ? }}gȑ#׮] @ի1'=cp?=o :$w#MOS{Q0Qk]}h'u7j֭Xitx]ѭJsتyO> l-ϳ.:4琋1~%߳-vJKK=X6-_|֭?`㏯%N`"jĈ^_|].fw{썲ᅯfvI4%SF/v7jmnnޗ\[}~V`sA!+}hA;g#aϷkwmkjkc93o''wyQ~]=7nf̚RޜxgykYBֽkZy[(!)+Ҩ'<7 ":oD?rtBP/+,z%nGl<:ZT񝯽'{dׯ-V~xQ_&SN9K.#<,_ݖ6cވ~NYcƌaFcxIrJVW݁7zx|c" A_mvF?~͛7CC=zʶI6;cm{-moT2+yr0CUc$ɂyxx<:WZ[y-746Z{ Xn84Ա 1䆏D?{8e7*٠@@oBu`\pq֬Y6'5Hsq_~q2 )sވ?5~bhaNch+d#GK"/o!Oڂ$h4jK6m:ٔwGlܸH)9ݣ?o ֭[z袋rrrwjݙxx|#"_8]ټ,<2Vo.{}FX.:꾹ۇTjLۑoǼ˳^3~Ğnx4׫s>03ѷ~[GtM ;#7BA`,X8YOM3멹sZ0wւq]|姜cOxqE.oD$oĿߨQz֯X#قj_qU{NZek݃F#N:#W'.7 t:y'~Fivoe7Zt)90׿o_]y-Arw<*6(ڣh~L2otWvտsj{gսO풨ވ#y{B.nw /koț<-^QL}ިqM_;g6Ko.xW^+hႯ"̛ow?pG|٢/Pq7CGGfAo:4Ş ',䕕-#,^,)Ǟ{x+Py#Bsy#ә ln p`bՅ /%䳶|%{Ih˖-&)ܖ<υ^H3Nʕ+!C@b%-fwӳ7APh?|E"=Ўly#CN0N :X&O ,`[xLEU?2q(sI][^kmG]3bg V/%ќ9sVXSSnFHw\pX󫮺귿miiq>.ecxNo|`sc; KeϏ|.sjaA~d6:t#m;uAg@YV^\Ri3 -_wO=5sont%~z>Bo:l6><w`̐C: eΧ= ѿDiXx)S{S['[6o4wf;sÈ W\?#- \3W4>Px≐Yemm-YyXeBoG^P?oī(7b֡eŊrʑGDƌ7n߿?,XYf{Ƕ&FU ?uC`}_>FY 7O\=s8ߎzKJd 7a|YkܹsWZ~ ,7A1h]cǍ>Lp#dggWVV9*7'紓O뮻ݞ+F.iFP4x2C^^YieT4oO2،n9wc&߂7 5#qs#捈=oFm7,}uyrG+s|OUY]xۿfۢ3R}"W /覆"a^$'݁Cx-3otҕ+Wp Pܹsa~_%;fڴi z7bjo DĶb w v_~C_.z˶PnЂ ,[ X |b@lᲅ /XѸ1㎦`<7j5F`sy#Y-4;{HO^wek?8E"%KxրkԖ_WU_{72u'+7ϠxUݹx#~zǎoXg rrr B㎃|$wcH荒ύWKWKeuǟw;v{_vm}}}BoZ7.kڹ5_Z ¯/o8 }UU"~޻7t+pW]+} oDѲ5+",~*,$ot:yƦp4NcDZ3o4z#VFc}5?ZAp}/]="f]m'[^+$47__>R66TЗ;RxfwnhݺuH*((ʏ?x˖-ltkxLj xCņͬ(sO['rsk o=(u05JuX7nR{9眳sgeygowlKy_X{jMBǫ'vϧ^;ӂ jHaa>3C@^AR-X>"H` HDf͚ ވv57:z#  &MiEOx sJƵxU"Uu n@k +±zS z_p7a]{Wws$m OߝF//ӧϟ?c9ꨣ]xLgBo>˩zwcĉ |M7t 'D"X4h@SS[%]Iuwش~"PŽw)}:va+e?$1o4i$3<xq ,\]0o4nG ȟWk7D"o4`܈hɚVtuF-E61E#<́g|}q:&^͵4`~vXŧҵVcI'{m߹KF5j}i?#A-X@ݙ; | I s0K?%6b敏1}y+SQccS4V'F ؿ|R &iZo`toha#j-){(uߵ=X75FNx)lgq߶>,]bޒ?}Ug}}"0$0^$wcHyƧLT⼀۩d}C>S]1cv2h8wsD#՝~.vF wwɯًW~~?7t&y Ԛ5kƾ皪_?~C0\ \L!˴&SF:hnԿ?xx(?~=FݣW}/,Yj%\J5qW݉G\i"u7 % fjC|4$䚺onLFlݣnjJȸ{1ceoN0:Z2}|/ݟ8س:NtMGvTƍs8-PҲec_\ x .H j>/|…%Zv}ި11~TL"Oдz#{ȟL^f%'UxL̬-WuHmv=^|[ڎJ4Zf-- i_=/5mxA݋ y(Y0c?8x|y\QAA]֯_߾` t7Yo߱"m<d4|v߹-ՕjjjǰP(TzHm(%ZZZ7jjjv<"xQ>^q%Kx=rNwk ̇x1J̘(m=?u|>t:Vd2́@u{O޲Ӗ%Ԭi=B0q[ cj7 5fGIhhlb/nH$8KS.@o;b!Bu{. ^xL3l1M~{b "eF/͡P>N#P{x/_Z+o`h`SSF&ug{&NvZxJ}*fNKǴ*u03C$̾BPyy%5":orEbI=BV2eʾ}.h9s&շ1`fVP(T*3hAG$O1ߋEZbń O]&hz9`fPP(T*7BP/F(K~oT+"yA=~FӺo͢PCYP(T*cި% 3`6DA UTF( BPݠF~/BP()cHy#?BP()CH~ OܗBP(TSf@Npnew"IbP( {ʌ7߿cC`,Vp(0VӊF( Bz2N;p8M[lߵ3{O=81ޫiEz# BP=GF'|r kaO~ڲy2z(M+zP( 9ʌ7_N|_|7,[bڵ?:twiZуBP(TQf 'x>}+W\m4NM+zP( 9ʌ7:n~٢/^w߭Xbz# BPN|nO/^VXfZt] BPޤxO<}e˾[j͏?߸'rњV7BP( sot)+W+[l߱}sM+zP( 9ʌ7:3"Ȗ[wlߕ77'7/7<8AM+zP( 9ʌ7:ܼҲ򊲊?0G4AoBP((3sΩLPc4LPx℉V7BP( soDc##6n;lX$6ydM+zP( 9j7OrvX|ꔩV7BP( so4hf}@]nTF( BzJo ^xiSiZуBP(TQ;QCZ[ހH} BPޥvy#7TPbpBP(TRGGP( B)Bx=z# BP}HP( Buա7BP( ՗9od@oBP(O ~ BP^Fݏ( Bz2ƿBP(w)cިEvECY BPJFy1zx|)V7BP( sIoHcɓ&kZуBP(TQ@⍼q1F^ĢI&iZуBP(TQfy^bD'NDoBP(7)ChfC;# 5AoBP((3hMMNp19#Ȅ4AoBP((3ި6as1d9xF( Bz2=cCd[`77 ?^ӊF( Bz29d,vtlV;z# BPNF7o0Ԙfz# BPWFΡd1P( BJeբ7jnn޻wlP( k@ sɡ?7SSBP(TCIF ZL>-z!l|( B%2%2繁VE~Fݏ=A0a|O^FP(-ʹ#3ިft;=nasb7BP(T{q,zRy cf{j7BP(T{q,zRz#f?7.w7BP(T{q,zRy675{\^vcؤ4AoBoBP HXM xCѤɚV7j7uڿ3f;^FPnz#Ʊi>#7O='|%%v=/P(Tw HX<^7x##LxM+zn:|?0{^Ko|ɿ/;mGtAGqݲe J"FHſNZm5Q(q,zFFڵkze˖iW_}?,++4iQGe6*?OĄύzǏec{1BP%F cNodGoѮ]X4k֬:֡<{<۷1{6/Sm=xBK@Ǣވ?~#FR.7-sS/~8/P(Tw HX7~Do6l? OYZ`r駣7*=F@LcYYBP%F cӶ7h> y]};}QYYɓ:(vI_]3~􁬬l^Qv+A%G^@Pnz#Ʊ葼Q17t2%q1Xm=ܸvto55A?v/ oO:P([q,zz).omߟ~H"sjvƍeAۏ=6cxBE@ǢQozRvòweAN;׿ 7iFU:gPkeAYVo;,hàA_P([q,zV7꼶}v[{ٿ=[Π*QwyBE@ǢQoz+cvUtS_oTk/ Z5,^@Pnz#ƱAo)H^Pr:8_e z7i ȟ5so܌ި O-#5~79BoI;]-/Pm;㌒ _8t2g;w^@Pz#Ʊ!{jM>OGzuR%MC82$ᇯ"^ЩؙO8P(T 7iѷu 7=ס7 BoIug T*{;[N:*[} ; (6!xp(E (^@ BS8 {B\%wwAB}I=}owfhSHLP(jCE;ER7*P7*&{$ɼy܌ XIH(V-{%-U` OȪUT$ FXGD(:2#Fe:Q"=6,[syz$& /X@B 8+ qVVHd9;RKP(Apn曧GnKݨPj48< /_ !y߬Gj$PK`/~9!yH-Bu#g,¸QtF#EEDqzYnTFnT#"0ޮ^Mb۷{{X}H,M+@=85LWUJffSj8m)Jņ3a!nCtFQYnTFnTbmlZ~,>@$.6Q/_ ^CxۦJ0Y05Vn^!@(J3a7sfHzgM΍"#9=Q7*#P7*Al~{i~8޼&ʹow& IpZպY3o01BXeP( 6#GH-BP7x",E:$zYKKu0ƍQ7*#P7*O.x>Nbl ̔7.,>l&W## 0ǔB.  7lg{xp q`lBj)J3a7 q#7ʎ=ʻzFݨ,@ݨ88 ՕR27c^؊#:# bay+` %\RٹO k|WP(FXqXkGO#;.>>rn)("1$#FeFzRDK 08y:JݢE$5p,02yn>H6zyijJԖ0 Bpndzd7葜qzD(QQq00!D >ݺϟPrr2҃I\ovbD6C4p70x^.r\< BTXGEDGR7* P7*fkh@U[$A0! !ѫٛnqói`y΅zzs ~ѣL_ qP(FXs#K{wGin)S!lڴanTP7*f]z@:u4 A6,PeSk'@YB7OX~m/S$b^^7[p(J3aa("MVRu隕gH))6R7P7*-[:VJ̛4qQЁP(FX(4"q#[7K;w+F<u%3#7 /0?(( 8)1iㆍ uҦ"Q#O`Wz }VVU@/. \z"Oc5o^6BII\Y"P( FXqh3r#ߍ222}}}}|6P7*P7*^UkՊ21"1Q#ZHLe_zD(K0JY߾2u-9P(FXeʵčl\ ȗ`"uuK`2mZvacT{o6$"Anl-#J\lϟG޻Gby7i0vlB999$P(FXs{gMZf?shFF_F!RKwߑ@3HGO;&8@bExWfԢ ̙$VweҢ@ϡC$wq*1BQaa$P(FX%ߍ]m2mAIIIYQqH^ NػT$Vψ$SA*ؑJAb`sw,\\v{ө 0v25%1BP7x",F£>X9KG익΍u떕Fo-[",ԍJg$`wD!hk_@(]HHm2Ma-wsː(2;;vG%jJfH+$P(|(EY9YKIeݨ{p c HMMݺu+o-BݨnTt.$ .l ǏI(kkXƍZZ.ڑZ/ omm޽I'11$fqtPpIFeEA޽$P(FXGܝ597dbNKK۾};o-BݨnTdnHb>\=T&olm [ W>R&B/ _梧g)sKFg 1wU$Gxeze'%A$P(FXs#KGGl#F=zɉ!666==}ǎ u҆QI`pF=r:zJxLWD990uAVV/޽c_խ(mHē'u Q%2CcS(FXEFNΦV5y7!>>>##cΝ u҆Q`G8s2D,[M8lƾzu0e'EQ '&¬KX j5nLh*@_Rj(Lm/_%PKDw k3aq#GP}FCP7*#P7*2AW7߾MbRa$VBk6~-={zYR`ɦM$Viεk@%o\"2#Z[2xl(F(LJ,NUX*BT7n)Qp]v",ԍJFEQwH,x!"$ $bq B2cUko[ؿJx߬{ @>TԼ9 <2$SQJ5iӢJ& 0[ױn]P( u#g,¢,@ݨLAݨxFbyuƏ'"bnfΞ::ݺqӲ~ ٞZ{$b믰4kkKqo]*$jԒˤKP#ԍ F؏%%5}GqP7*=|||&MtFØ1މ COLCǍKChP8k J05|%ӧ,W$ `+Q2D8|y^ߴ͜903,$BP7x",rn]7nT"3A>zԲ={Yf=z s7n7u~`o:XLz3|,, es'GX L˘2\`mv/_B}U'}}C0 5Q(FXF ԍJ/^ݾ}[[[… ׯzCC-[uƾwo yX׮mӰ! a75kwvp$;:XڵPIb%c3HI Rŋ$6 #^Kߒ@0HBTTH͛ηWXP Bo k3a7 nTȺлw2Ԁpm KE޿IPJL y;~|vBؾŤfMA.} XǩS$V֭tuI ϋ:u e6ܶ02" ^zzGP*ԍ FԍJ' ?\_}K<==7lؠ=PP7*2x7w.DI2_~=_7iF Hв6lSnGl Z5iY[ BbWhڔ AP7*-aeܬg6mTGGG\eanTd44 @&kրdFEX%K`n|~;.7n쨼wQBFUZHz$ǰcpދ!Ĺ8 j&BxP7x",}rnTn퍊I&BG"ݻAVt73&Vp.iVu*A#4 !eH::xԷo|o JLL$ j^͢P(_+ԍ q#kgY=nTwy9m ذuB߽#}||`;Af{ʕŰw$1Kِ!$PEn$PӧON޴Xl=cլ@6‰E6B|P7x",YQJju2upȁX@* jreԻ7 䤥CL d.vM+[kGEܸq#CH,!1Ƒ+iْ< dP( FXqh3p#UnP7*SP7*^OxxAbb8 FĞ#Q$z3b dHF̸IR6ի(a=s&!&P^ :yLOIS'7v\oq)JŁ3a)ԍ-vqpٿ Pux>(##n I[m^$UJL,]Jbשc߰! Ǿ}6|& y%n)җmir~=) u#g,n&u<=RFu2BE޿æM $VD$!-<a:r2"X_q(hkF\ Hء1h"Sr̻ v^8v^S( u#g,’F\aQ7*P7*6lҏԔ+"@[DШb\k0ר]Jrq`=/i8BǓ8, +MP#%2Z^Mb RnEXX7w#V iRd>X06nl%=kXIM$e㏌ّXHdܴ~䒕D,Az (u#g,¹+F FE|Ԩ?tZLQ?/S@;xlI_۰ߕ+$V=utH}2n#8jkM 8| ċDQ(FXr7JLL$ZBCb54H{KՎ1$gOomm`l}<,А*1?Re;vd(4,+Wvvy~\B45#A1dpP(FXEP7*T8(ĺA:uH )V)GQ[%aBeR8|(SShpaY~n҄q$ x_kt㰰[1,ލ5233#1B)'P7x",nFFEâ}{JHW' &LPr?jd…wAIUtI TZFHlࣴ{qɉ 0w ["AQ9ݢ+B[BsmR i˖Up.MB(HyV[+Ew ')0BH7Vr@%MlUkޜ$ڂߘDžO H,h<Μ~R:ܱOf΄50B0jI . ر%6li-LUZIPԍYs$E,ԍy.bB8gedXu.$'MZF u򘙙=B(y@+U&>M0gL۪7B) P7x",YyP7*gP7* M%8BQٌGb"#g-Z(i-$6rt5B IZN ;cxժ} Wsaaڪ17z&OYmp"Ho0$cdn4ibZ$)焺3aa(J΍e7Ύ'55їoTdk?OX Il8I$Ժ>7mrD""?@vX9NaKyyΜ!qawz1[W--P(2u#g,BSV("R0nї"Eƅm31LAXyW=c9kj:~7@mv!mUDwH\YAdaAbL-KQ/sBP7x",FnTnTlC?'2a7g7tr28 -4⍐Сܴ:xX(i@nA̓\45.SXޱcV1\MH\>pbʘ۲B1"/gB&M@(##~Q |$$!Ε*YvH$IMMxXI<:vLX͛ViibFÆgK|?ILP6ԍ ύ8="nDe? 't%eI^_׫Wy-]PDDDbbb,B.fj`WlIIIAxz*%Vܼy9*|+!s%MUS'tB|~5Y233i>u"lXmR嵼ar ZBm著%''-bnTFnTtHA84ib.s+;; !aHP{f $j`ԧO"i_T[ r̘^,_ț:޾ tR,ڷw\ lC7rQ7*P7*O[ TC6mlenrEGG 5mŽy/,[Ƹ3W44H ի30j湷z5QկOIOb??V0Ғ݀Boy1d{>c֑X9~~~? tK/*<4BW-a.S(2 u#g,s#uru"`ҷ/ Tvk 02Džʈ{#6!Q<6m0R]8݄Ǐ*d[Uc-L#H3BRq^] #&X$FBa>~ oXK 9CT˜B$Vݻa a)"JKi^$P(eFX+u#888rӆǏ߱cGVaٖԍ KdddΜ9$VI 8>|ȅ:vLWcCHҽ;Q`vCH{2(f҂]"111cDgSH,Os^~~ R&nEXwu>n%1˽{ 87*j?Ě]%{!$MÆ$P(eFX%ߍdQ>ժUc[>|xĈ0ann޸wLJFYP UB޿0=z ժ:+W6 Oj#+1ܲe$f9|sY7pzVW^7WxK?GP,ԍ FzD(U vIcg~IKVwBh 9;onW7ܴ*>dTm[P}Rz=z4 X6m4Ifr%E'u6ucwחPԍ7r7wbFύ;uTZ}\Zk֬9s&7nTX^Aҝ;$V { {'==B}QH r@oЁY[I*#r%^Jo%[ϓBy"iW_185_ʷckРĊRvǏ^MbN:{S( u#g,Bͯ78n4իWQ#1c{GH-ٳg5kۣG8Zy.]*UtFq˳f1H₈Tr&00#G(_qfDqյܙ,dG QM}P(_FX%ߍu|5kV-ܨw+V ڵ.hbx󓤀ZQ7*G{bH_b칰gWRµukʕI7o3m0²JVHP/aEHbX\` ,`q#)JY3aYrR7JMM%ZĒUܨȺ{eR@[n s;22&o\\\rݻ&KEۿ%JTC8$.-D86w.@;;2tpB+U$?GJ5͒љ(z(3a7Mpvwrc sgMFzT۷;vXxB<50ύ B\%{{]vҥs7Gn#BpGǏԪ:u 3>ad.wԵ+FdFwv$7ɓ1y[G:$(m|*IxHd$P(eFXe*pDg'FܘB(}ihh{d @F28жm[ ߸qc*8 [ ~K/L^Ǐ3U#}qp6 liwqƍ3#УRUӦ>ի@%O54 K%B)P7x",č<ȝ ׿^7n➚9s}Zh7xB #d4r$Ux!Z& ahc0Ce+)LG(o~ܹ  y۶2͛T`ccPY$VkJ;BU}ת(Y t=Sc(UeKO)J3aa(q#΍B(1x`2Q%#G_W8[?f͛7#3v,?E"x?(O%VR^u=99XSչ:<81F4x_2M׮ބB ԍqQ9FE>zPʶm,u8q℅^S4 lϛG*KasYݻ/7orKܝ9 ށQHDf EnEXy2F=z%H;vEX6m677t)L;88";l7Kv驭]v=@o?È/^斍 Vj׮ esn~jZX6!49ܹCb;6P(eFX(&.5ߍGrn/OFFykƍ;hB/Alo58I;E$[dIN5[|v[,=LL`s?n 5k`ܜ_ݽVLb%,Ryj${7>,)IO'1B)P7x",B7Bܨ{9991򤥥mݺajh W߿׭[Gf9*}kv+Rziu7n\6H E_@*K[[\*U233+W0'N(QLǾ}KbEdee]@(Q#tfXaJP( u#g,ºQWRzFF]v'99yͼWFB mrVQ~JE,fn?/ FX%ύ\#/u~ːaZ+v#__ߚ^hVEt;8̥hߢ|8OOgz5ɉT!"Tn]1c6L(Q>qۜ9Lk$V3{-S(xRYnEX}7bu)##SKllڵkyk؍_ޠ2jNOOCS3AfpۧNa%A=qfd(W ܳ'@5BcX7={6Ss.\%>>xKkyv;q E5?B*KFX%ߍX=s;9EիW",_Ma„ }ܷo%m_|y^Hk#Tbw$J2335 ~IW"))i1Çq] ͹Ws F D8B"%P*~\0|>93aw[-ߍ削Zr%o-ո-Zm6###2R'OZhhH%1_Y.ELBbԅs#[[R&G3ٓJn.l+I&35͛JȈ\W "l#5) %$P(*|˩C2>ԍB*cǎPMMk10D(oIsˋTɎ̣dtŧOi`Jܭ.iRRRrn)"-%%!I\$!ILPTlYN:::pߌP.|ȬR3aȍs#!)noQ17nptt$U_ /]0IqNN "ȹ PԮ$Yx 2]҈pPqH,^ᅮX >iht:J9{Б#>gΜ^i^۶3FXqxp|7(u~jyT~jQQQD5k֬QL 2$::r;><<5&¡CGy,;VT%PvŬ}rrgm[ !?L"+ sKGǢGP(edd`-7'WT)77>G$ڢ?i$@iBr#n|0*FӦMo===ãgϞ3f/BYkPNʨͲ 1ˑJ5ށjժMm->_%F߾x2 Wy45!qb&8[zS(UX[ñkw ʻ0ܡIN;v$aiBW܈;VJN?mllWN/Gٿ>q(2Juk3뗿scNX u*ԉ(̛'(xas}}VH N7u@=LƵ JuoϬ_KVVVf5ÇԠnEX p#X’,7näwBCC 4a.{ʔ)F-F(I<'55,BMX]8Hϲe$ftqq~-?&M@δiHke pvd:3Tv* K5\7&hm]@=޶k#PX gDZHݻ}og`{nRSjP7x",<7:7oeN}ԩSo޼!U_K$~ժ1pSs"mWrXYY #h~GG'oHn6;FVڕ.æ$cgoI_%-粜` 9ȵѰa" (Brsk266&5;,q Jy#FX`7 ZRqݻw۷OIءCpKXel}+"m提lSݻ )SJ)ZZywBorCojĺQ͚Xe2۷̛%,fm+߰u۷IoNs U( U'MM8:u"WՓ'OHM@FzTqhرǏ' N8={v6D"yS }PO!$Q@1(!ƅ6m>ѣӧ3=AnUvaSaμO*vT}\IW`B)d$̣woɂǎ#5u#g,²BFԍX4i7,^^^RٳD"ɀ\xfͰRi1(Ҟ=0KL_1B:wvܞ=abH33Ȁ`Ogog[W[(0=??<><-Kھ2ϓka3dibطo& yإKfnn.Ü8uR(Y &/A۷_~=)<EJ044nRMвe8;RY P7x",Gr-Z<|2d,IDAT9+r8IZy꜕-l\l=="ã"#D$DĄxvuu562mby[†n+a7LaUJ"@<%'\jcirN|^F~_{˖$Pa/\ 1 555L*J12IؽmTjP7x",ԍf..YʵkגQ&ɦf{Dž%Ņjb(FFJLJ 4d`28x1L7KLs3~dr%keKt':)ZRBm}`=6'o'cW>/c6Ř_0O"Uþ||9e<<zpyqPtw oY i|jؖD ̅#dS;z1!!BRn-A̜={5:t:u*rkjR8=;B*KFXpnT7F!b /JYؿ6i|Ǐ.\ȅ%BbbBCXDVDp^鱱={{`!Y+O؛1/+C!.%-uM*#Iy8_&gDa&pq!1B$;Ҵi?l^Hxg$,qq+Vt֍Tԍ u RU( *U/t8pD8x@"Ba/E JĦĚ5q;Α6URz^)2-Wdg0d\? zI\2/}) wwz%#e3IvO\w ,e'N8pv{Bu#g,R933hKtF=I+}*ўkg~KX...,:{;_0\ 7m8pw (AK\qҫم F۷Cw!~4׏υs҆ޑ,N,J p,\j-׸}.]"1V-W^c{tt4,i IJ316V;qlJ,WѴss<Ƚ3 7$ :RN <ᪧg٩ (8/ /Y)С S4ZàAẍ*UVj}g|]X?=z0yƩV6oJ9ޭF m KW^'(Eb1BbxB5 ek\]C7b2+w#Y=nTFw>" zwnePQf QQQ&MRפN3e-Ӈ+#Ѓǐx)H({Un^=uI@)޻Qj&uLVVVxˈahO(G'9+q_vmRMAH v&FyzDݨ~ 4H"?>ᝋ2HGGGVH #AnxR%%=+1(HQ6~ap;7;R[$rt7^ݩiSΝҶPJ ]&Zz _a$mcRHGMUHύoԣG6P7x",%y=b I΍A}n"k@bX17o\i#x$յ#9eX:X~)ke&QQdF#4.Lo |Cr7RtwNʔ,}ҫl{PA$5sP 466םKYP7x",Fѱ^)s<=nTF q\G0OOOǎ%@ɟeGп 2CX@GK:s!&0L囹i݁En䃐`\( 7l"jek)%aI8SH$YCoLw$!KL/o~:NFb!G:99Y$]|ԗ(ԍK~ tre*r#QߑJԄ(by? ¢'kEkgdy]acs#ql[W[n gt3+3RU\45<4Ĉ&R_8-S=4/>ƍ$7oބ#"NDa%vi\uBpnn\7bb{݈QާJ'_pرi"k۴iBU2558p@Z.0_9+r 3 _IJp^MnDZq>= !âm(yubj֬~֎J*'x"Q 5,8us&V޽kPV6B٧O*!99] ,ݻ7W]P7x",%x2z$&wO dnTFcJlmm$ G#{P<BUV}!CfϞ}Aq%=gF2A_35Zew.9]^ZZ/\Ģ FPdVօ_({9 z*//V8Հ{HB C_~iԨWWP7x",FQ1 G^AɹnT( 9C>|P7gQJ[I?x`HZbLBC÷SK_-!wLҳb8z9&K<~w5j7nL˗{q* 5$}SJ8&WTɳR $ҭI,sN·GrX|1n}a F&&J! s455Ku#g,¹)p<=`QY[6mJG(a^˰~ ocCb)@GG_Ǣn?O?௿HL)ibbb~$%KR^|!ӑHJJJ{ڜt{,4( )jӟs#_.8~Κ U ԍ QdLgwg-ߍ`ԍ&_pNOO}/yʭ[J-3;wH,pm, H石kf3mge6g~Y&4.4`w@Pu7WN F$.$z)?EohWcx‹3_+9lܘ;Ϙ1ӧ؆SD zK2mfQ`@7rt#&mee5g9;*~Hv$|a5kփʕcj i"60-:N}@=zܦMH$`ũ7쩢'x<,B218& ~ExOg+>fē}2N~:-4p>=? L7f /RO0nKt؍Fe/={v(]A3W^=C(u X 9s&3fff0 !3}B}̮e̊gujQȎmtMFL0E}<v|ڹ#N$MuKUWqN#^kM$!|B4e~nAKviҥt BngΚnTŋB5kr0Ç߭=pH$^loض0IIׯ_!*Jq ySEϵ;dD Ty٢ OZZQAYYYՑoAWv١8d?D17M$ a¬V$Aǎaн;Ryז,YzU ԍ QDT7GnNgdR7*|[nzč%javj dԬYll%ͭ ;0E?y'K;i9f s/5?H>}HPxw($::E.Vm ,}uV&4 q amA\n0G]'1E Ufx`R e_IMҥKD"QJJ 7nEX87uhYKSFLS7* s~+UtZ@d,˗/ P633SKS3R%'8*aСƜSE(E$>8:w)yprdrRm&7uYRf&&Hhhx//zT}]<}4 F8a.d&XSqPr\')j0s&3򿓁>T)‚JԸv%>Fu#g,nkeYsSFu2EqoxlV .e@E={8 {$뗈D3I;W?W4aF_,xoV(%y}a |b 3]]_$?-vduMyӮDH2m\GKx?CB/L8 fi4V7ste3porsJ FXqXGOґZZ"7ʃQY8wNyZ߿?vo+Vco_lpҥel\9Zõ=?@'|)\kl _¢fMߺ58-NfLL 5w.HbÍ>j]82bOZ 9-dTμy4.px Q؇_p~o_R7x",Y;x8z=rnT(ݡCw(̆fIHH*vjԹ3n\O uoN3Wfm_%( {R3PmM.::$ޫ^IٰI2ݛiy}[U9>&& S1?Q :a (j0eʔÆaMM|NrbU5k>\c4P7x",Fa1V֎ܝ5;oF}et^|rܸqd6 :,, s _#MMLJؐ>6{9nsܹoTHQ57H6_gm={z Q`/!g#QFHpⵚ*i Y؂.pk}dO)i>aogO"E ~9F1IS&>rرu钂3a!ndn]:=JKϠnTۿReCfͪV ϻtKf={B17+9`Gyި))N֦M?Gο;?5vs]\#kgkܹ\?'Bbz4HmW>AG"ÆdWuS&td⬨JG_x]83+p Kllln69?| *hoM>|ʔ)tIApndinewgQ9 o#JO)..N֭[߿kZ#q3gn2BzzG&'3W16q)TxgF"i%21Fq.:5B\X4lWs@|D?W;wNem&Y_as\u2 ^#`q&dxI![-Kxys#/5wa~K FX;G9yʺOΊ8!!! j߾}Ν)pw#+Ɵ-ܹr۷oǏsy4hРiӦ$`)***''{j?3VdwIPT 6f~~G==/z{sapػgsZ5 u`{v]+ , ێe5 J̍2Z_T_݅b'zyDu N~q8ƙϨQXzGxǎ͚5K FXq ;7#+N=Sn3nTj;91iAG5jNGSF/_矹ŀ'6,22r„ +WxAowiEs鿦N)P䭉x- mֵ(ChBrapexA8BN?1-y C< []AAAɓҦ=!q1IH7]ͣ@mpH9u>P255厥Gdbӝp,=~ KFXGΚb7}6:wBEpwLNqs4iMM65۽{7ǢPOթqyVq{ۙM{͛y|+8L@hֺ>L;pv)X+$,FvA#tݟ~ãߦ90v5%voH*^(#au?`2|:M LRرc.\Ƚj ;v&)<666 KFXs#s[|=RFu#_ cƌiР숏=",gϞ_=z hgggQPijtٖ+BBPɢv_e%rgg|VP Ӱ ,,v4:pw ҨOH--";EN)QpIeKomذB|x̙;?:rrzzIT*.I]qjOBE|1ko$Vooo Z>~d 葴9D` g~}n ZcQ7x",yn{g Q x8u۷okkk_ps2(O[XGMF?B탚9 `ժU5> XY x>l[Ŭ{ 3WfmZw__aO ymYOƎggeΥKd뱕v<__,19OXjOWF>,}\-KrSÕ,SGZ1op>}A:u:9bZ3LPT )ŦMvm ͘1="FnMNp сw&k(8ԍqRҕ@ݨ(F{^!]v۷AҀ sWjO<O#5NMMjdoiMՋw6/n (̄kjJ"˙AA"%Y"d-HKK;P X33x]C44`O&U地N?+1ӳ=ciӦ=C(}VJUC;=͎jDz@xSjh|jādŇtBOxĕhh ΝkP)2.1rd/҃ǏssJFXE֍(Q;bP&ٺu-ཅ{,j d&C]v}V f0+JH=S#hg׆]Wg7B(2I\xC|\Oϫ$8F}PL߾$YhIM9'Xƍ5 E_1cjhbGڇ^ų&?{&YrY:o8<bIǎϞ= KR*2*_sx=ڰaCp9:vkײ(##fAq|#%u#g,ºQ q#V\SR(#7-i&D" Q҂ &sBy%ϣ^zd 6=vm3 J+/>|9P$212sU˷3J9xKaȼF7ndmmI\TLMMAJUB۶Wa]|RSSg`-eBmIU>&qQ0`ڂ10o%8C>gO!?6~_v!LX,s? y<ۏ5k,o8p&fu`oϸ֭[[lMԍ QhD G!Q7*y`G乑읋mۖj߆?W˶945L/7V.ϵ0'P0mURjoDf/WҡS*#ΟoCS(n_*F(,5a%h >#sǽ$W<&sńM.n Y4ʸQA-4W,)/O _޿8Ɍ e,20 ْIT~}˼jijY>܅79 .7]"P7x",ynDtDݨQ{jjr̙۷j V{)3[3mb=5h,=zlԦ8l1p)$)9W}4wOíys*UHu2ٻi@D ʹcc~k}2y%-:yb?SHdqwHPOeܳglj33],^*55<4r REb|xnt.w)3G q4[5HbdLvL&qo+{3~tռɳ@]e \vEq猌M==]Ԍ5`@Ay?΅Ň3aGԍJ'?\K<==7lؠ_F;1-Օ9+r%jcԣ:z 5~(<=`o;e,$q$4P44H/_f 6ɞ3!3ó# FhWÆ{Ott4L̤ 3ҟ7#.NS+Ydd$*8Əѣ 6؂ |R(ݰc%q)%9NSOcٗ%2cH, |-ɂ(YLWJp޷ Mh@z[MlI$ZٳtIf&eARzr(0FXkMݨT?;{lӦMuttzQ o8fҬI뷭744ȀPMSS7;TcT/8b [`%>"t ;23RY8sMtbMF qtn'C͋E#1Lxއ);;}YƽiaEhyzrW&qܻǸQ|< }{q#7 P7x",ŀu2l{# Hġ\tU"||1B95>۵+I*G)d^mԶF s!v+yw 6 jd[6;vp7+`.l(zj0Kb8v#PH .dH n#'YHb$-*v#7q1MawW-A7(B>t6lWؽ;1[p,sL I333n\X|rsd†s+sE|&8u$XM;,Dq; HIG^TMujj\(BUJbL܈Ž7o^B.(otIX@rϊxc,Y.pCC=)[{1c@@ג|>q⋤qf*c]-}}}_Ϙ޸qc#$,4%G^g= ;[7i-IطsS1cqܤqFXQy8wKhMtbzM[9fU֫WD"Q.j#tPI8'ta{ "2Xb߸8֙ OQm3֢`P@dIN. 빿iQttQ79#tx:<.pdQؓ$y1|y{h:bfR&t^^^ 􆆆/۳&Gdv66[*aT\UׯK'xP7x",+VK݈#ΐiT7PItRI;rCܢw~ ~'NaGƃh˖-'Ӫ7\۰!76 Ϝ<== A۷ FC.[lBm5-*bȟ9w߉׫GY.X!Iv?ٹ-fG!-ÒӌXXbwwpYz$sݚVn= vwe$&2n$̙dZgk 'YRR7x",rn$5$F倊SJn8gEpR6^pn޶<޽mܘ ".RopʁTݺ$r4L=6;|emmʞ"] [Ipf.34 $`mme9v`lG%BXtlqÓ1c2#/2@n9VhnnNb=!׸x!cdSiӮOPubJ#5|J$IgE)hl4xLÍ7Bڹ6Zc{u#g,¹FFF@tRY+>"GBB˽Ə'17Ɍ}< /Δjsgo_؊s'(5fkh-"##!&= .]BKQZZ\ ܹs|\G_OT dgK88KGjiLNK!#.gMW-gH h!}7`vWfP:%,b2JX¨X;))i7?BrW,(K,Gal߾~f9~W̤yVVC\DН;S u#g,¢\SҨy*M.ϵ:]߯ʕ+4lHbc -T+W" I\VSׯ?k,ޝV|tr߾b˃*y|2#=)FeHpKro?P+]xFՒř8S&giKbI,fLqo߾}VV: lޟG7Jᬢ'$/V֏R aaaL[qwʜH(m[a3gnԈ* Q2-ݯNקP7x",ԍ-6_-Y278"֭K`wP& klN`26q" m\i&U[})iyyyq5..\oz2z{a -]7UѴJ:9;$a]0ۘ*ORX޼yxF< N8OrE s*û6O=x[2Vp CZa1v,Zj/Y{d CfxN2-}R(Ca1Q9"ߔ/N$+'6:<}:Dee;$Yg(+ *ѱ*WXIɵk!y~*ؼsxRaޝ@ӧuuu'-*nEX3ngHԍԍ(_УnR3.p^?dž !v3 B޽#U~'mW 0dGZZZӖ-I\M^gSʲ{:B\VT.1{ݺ 9 #FU|/ϓ'jAAA;vZh Qz iFwB簻Ir +v7b1Lp+,--[VǸџ E͝;7eVEňFZ>\MKW(I&.ˡ>gfPtW 2> ˃*`RܣVcMMfp0| СXҥK{ޢzP7x",ԍ+ԍ(_`v']#tkWrH$YLyfff: .&Ujd1mCQ8R@ѱMSRRA kbvxTjC)L3"ggg8W>7od0Z 3J oLS#Uk#$cD $K.#3FLܹiӦ$(ԍ u u#JY!kee382*)zzWxh8[LfO3&R%Tj\YfU_.)ZZpt# ]*h'~ر; Ԁ w%9pcqK*ar[DD0۱o SaUaddOxa ?,DFFԩjo+f`"x29!x[]s3{$VBWx^,&VKIꍿ'Qiz$Ӄu;ťqp݄ XF޼L+$9DLXd%eiÇR6 wanEX97 Gԍԍ(ess8Pcޡ ӌ-`SJamTP©!C346oJ0vtJF { 353`;px77g 0+KxA۳VrZVB˗/2$+rqHy}SullM09`Thɓ. 5553y FT:k<|4&]?ȶ6[ 9p<6],wpp ߿Bg?|ݻw'bmm,OL$ $avܢf믿LBnkea%Fԍ>ԍ(e.ϵwСcG}w`.^Dv1q7 RX<=3Hw̛ǜi"AorMbO`)V{FIBǙeBK< .!4]AIݺuɾ9? Ы莪lLo7Yb~{{{ŋCJFM~g 8^iPT\MST)!99YWX:f͚ߜ_Ҝ׫qsQCcAt`zѢE\ktxPol̷:~:a`^. HWpz$,G`۾7n0WXؼؑ#II{DHtJmߢE Bg6nn{2$jK2$wfCrr44ηkGBΝ;o4p`b%BzQ:¢?ta?޿?'N U%w}=*Gb)̭{ΞJ `B f;w.%3O4?2jgoEEEml ~X2}Ȕ cLL`QU4CBq cO<IB݈#F倊S =zdIF 2xb[Æ-[re> bN)^UM@>PgkoNB`@O/rn)^gnɒ\.Q|o  >|4]5Gh o$B2CR@o{KUH ydG* Š͛܊eT#Ez/T)3X222>~TP[ ~qdGݻ7ukll ɓ'pӞf 2dKv`-|+n\`S u#g,¹eP7*P7Y#3J4BϪVY&x72_E"z5Ug+/{RSH} sQ ~;_P>d̙35D) St/Mu adxkY&|=sIժp,%U,2cdGF;m`aÆV07]`m}{cyƍL57H㜢6CV9mct.}yF$NxevAg twJQ۶mԩ],>|8Zabc*{ dNC:򄄄F Bs$iAbvq &U \\ 55TFX("*KVQ> Ϝ]:*0,c}=3r㹐I&\z5N0a BהtџѲ%l;BudNss͸yq\y^;vh.>::ߵn!~j9^ Od4jh]us"G7 y5Q:,^mVszlY"pA & ~nٗ(B]]]nn>A{R*%cĉ72 ߿Okd}Nf*\"s# u#g,BݨB݈R./2;|AY<`Pp\hdd5`\Ѿ}] TAjDJJMӦ[PMÕl1wּ@VV֭[ǚ f 6lOժ4afkB7E剿(nMQ WPF!|(F OuGAC6MF'K]<7HGdgϘm{ύЇiac%Xr + <ӧO_|9L.!F%9).7n02̞M:88CP7*P7\\>mtwݝ H NGaUl8.݂#@J*8_$'}Ls'E'_~y^cn EA<_{| \Ɯ +|Ò^ySaiH$8|N%/q+P[x~m4,(K233nf]~]E,'#!SS>9s̛7&ld29xר!{-R %!o l U3anT^nD)/ss}~qT vIp2@(ݽ9|pVZ 8 ܼ )G_6Ob)ACGg2P%exN9ޤFߏf3]ƌzK\rF:GEE]Z~!qpikP(}+3-wn/i!.oܸq*a8t:==_pH^G)N\ EM2&>J)`ƌR`,񥤤3%gP7x",|7bQ9='8iٞSxɤP> bbbƍ>>.OܧӷfR1!eQ 8v)Yfz;w ~8;7\ S.]T8'-Hb>)V4,uHرIUqHR֭[IPx!ɜȐ ~GUҬti%|01bcV>t`DӦX/k͚5$(<ԍ FqNeQ9U< V1VƧO*ci9 tMCi⑝ݛ]g_ڷoU^xoR5Bx0ndtR#;w?To(pdNde&AyA&nI}(jҡC 4شă>dy"%,?}ta=l`"u,2ݻcy)SdZ(3@BBGԍ ԍ(WONhɃ%2YMի+B5M4))X7sG6N3 yiq|* 5"QON1XLOO2DhG?>YWNSAp:`ېK%\Uo-v]poƽ{qk' V4 k:X*hcz^{ܾ?? OZmGh2Feq8'O04)yniLgϞEFFD`ÇO443^f2̞e#ą3a7nTnD)Gp(9D=o-sqPڵ5E,XV&h;PBB͛75n O,!ćHtKc!U*Zb.k6 źyvFpaxLAĖ=~>Oɑ8a;X?03Fq7,bJe\#8'vgJeZmڴR^z :&޿Z"g ^`z0͎KmpdZJ˖-u#g,¹ԍBݨ<@݈4jk 1bO:0!Z5<~a<AjfeOFLZdB)klH@dHĉ2xx<<d4ƍ߃l[OC[l#o6]-}|>G^3؀7?!y 0{0aeeuT}W-0>z-`fײ1.մG0Q:0$FXE΍Dݨ@݈4бcG[gNs} @ik\Ϻ:qu閎Β%KJn !^ES ;؄hjSren+@*N֗MxH<ԇ-f^u{`tNVQ^  *oǵƭnƵ!nu_ƿcĈM6 gggnf{ (3716wcd!j'f=eoW2oRF Yؗ[ xP7x",R7#FF uGWv22VfccFdF񛵐m!bt6W=qb*@ - رiB@D "ga;^w" 7TIƽe9x[Twkc&LS0Dڀ!+0ދdȈyWR>|^]vH\Ht{8 ^>jñ+zU|DCMEr* BDkHҤBBzeS6d{3gvvvdl 9gΜ9gKvR{_sT"qLWz/7ˍ,#H;k@쟄]r7"- ;ۤx3n𳯍T. wЍs{{}<up4˗/gI.)ߝHx;#dn2m88;MsoN&-}}I7y{r T<m^ŭ "Ob֎kG- 획YOq%Hjɤ76n:VXO7"bePG] 7U :>|X64>^?@BX0E W_E/H pHerY^w?MX/{}Irƌ%kJ~)e$7 |{&a?X뮻gF9W4_Ey4QFݓy?w?'uōj\'KeqE~nnNGkQ\؎qz}Cŏ7[܈PqnC7? ]ρCWArJvvX [s_Wo9܋ώZ{wɄaIng=HKfT(_wdݽч볈[t;]hHT*UppXUVtxZ:pw}sߟN$p 7*J6#OjϵK%Vdɕ񗦵2,.2~+ c1эB7 fQg-… p#֬YCW u3pnxs9MZP.;7`7Bp\kr{s}矙?pv;YAn=< /FT\v--߿sG#-tzm6p9\mIsOaøeׯo֬X!p#Ba,AnѹGp#pҥ>' b͛{{gϞbbժUt;vL,ێ*wm MMnN%"%J\o۾} 4ZlIWaaaw}Fc 27rwh07f\آX+%qM ~hlGsiÍFbPlɓ')W QF̆.۷GDD:+XJsu)>v…mx aU .c}$|X0q5G+9N7ņ =p߶m5Mb&ҍ=nԻwi1!Ҿ}EnTVV^ߠ)l2r}>m FB)WцkswBҕ H>NO ~_~^p!bs8 Q}AFwqǡCX3gN~ĂE7HUn+yyy...#',,l͚5ѣG*m{{O;qc +K˻ٳbQ@ nD(8D7 't!JnF˲9]zuv}駟U~^7>xʸx=Uټ!IW\+RYy'eX8p\ǰ00Fp#[C\ŠĪU, mi޼9=b7T.u7Ϊ;/+'LGGn\qYСCrJΞ=ޏY 7B=jٴiSoPÍ;=?U\Nr'䞜;rV%JkA1v?^7z7b!Ѕ,Ǒ?m%x[OXMGiGqiho,܃rUUbN>.W/G ۊYFap#SXX(@?H a7;v숈puu F ;'(mNۨϹ΅ U/pUW_]~]R+mE,Fٹr=ن .gWo޼g{y%Vi%xO ~ylHйFwW\{~V ~믿bjcl+nd9nĂndu#lE6mDKYYX-EiT زw ׯ#G*Ņ^WS ,Q&s#p#{npttG2 2lԍQN-P/uޝޘ" ,FyA p#;nС= gzmB`͂ƦJ)[,pnd$-(HFp >omٺu+= ܍bקTqOWp܎;>*8*ܹS,^4"FCt z74$=_=l8y$W\)Ft#~7&Wr_d` 1q *X+**Xr݈^@+yߝΟ?DXv-[`_t{쭷իXYFp#Iչc`O._-kZj߲D֭%HkF%p^7&5Z^Sˋ8;|pz`y4 Yl+J/8Yɍ 7F4mwf7s{z#t2k,&=͍%ڶm+. ,̍X4Mnp7>ΕI>}L8Iٙ3gw >KpD>=p#hdqY=һN/Jz믿Ό߿ݻ'L 7FY$IF |U~듫>SN#G fYc7 x8cÖ|wm3!Zl9dpwK2FÔ%Í:p#h9orSc͚5{łý+.ɀYɍB 7F6qq-;P޽%x@\727baF 5FΗ*V&~ѲeKqd,FQI|(ܨgϞdBU]7j>lqIyӂG}T\7̍BMQ=_QVV^^^QQAKђ%Kܨ FԉGg﵂'|R\7݈эwA.TXX\\\ZZZVVn-~GGɹzɉfǷjՊؿ Ft﬉nԭ[ʪ܂fHUUUp^7 14eKu_'144-!w F+QABE/7oFj$ΡG[]6f؛k6p#ˡt#AD7jݺcNNɑ#QEEnp[zJ+͓;9<h]-[:xmFw܂T>bR7*ѣQgđFEep#rxqp4i?vXZ`J nʷI"D7(BF27*=v,8r|Qn@F!!!δ ѦMp##iQ 7չQ6ssKgnxZjDl|ѭn@Faaaƍ &пsΥ6l[Ez7鑁<s\ܨA7 yFǏ)Sп̍~GHZAn-HgHu"7:u*x75 FФpm)hƌ/s Fmv+=}:F 94)[7`M3g;oŇhHz7*,,L|nl7|"ѣGh֭ž/{{キu+V~t|Oҵwanܸ|r߿XXN0y\ ,ܹsfh՘1c*;)`?n:l'X8A=<@>}揝jF)ݨ {ۛ___nvh(''g7nObbsu̪UyǏAt^~9y$ҷ~CCCGA3VAA0y\yyyoցi}*;)cP =yꩧ΍7[@@@||<=4۸FL^Ma7ٳѸ… _}UЈ=aqÆ Ă=#nܸObYYC=?}aR ECKMM}iݹHCSS7Ht#ZлQQQw O*~#cǎuuuF:t裏{ݻo۶M\aY&hZ zV5 S"1x`Jł]a,ln߯]Vx *fq#:x`ʕ;I޽͝MPwjFyQ +F#7z5Hp#5Ԃ}uԩ#xbb{w:{ƍ-9;q#._LEgq&OLX+̹=^xѣGe;Dqht)t}rq#ZMf͚㏁̄t/^dkmU 7ʆR VlLnt]wbfϞK/{\e˖oHHȞ={Zhk.q=#"1iҤwyG, `TTT 2Gv[]C?IgQqԨQH 4hȑbؔڹvloϻop#PS@;t2=+*ҪU'۲eSO=%M6믝Ă=#{j$FCڵkvvXeL:o'Cbk qy(cEb} ƍD=Cr׮Sn7RPP*W^}-z',e$EybAx#Q,3 }{ڵHS,6N:effUv=AC.\SF g_F6n3$7݈nNczOח^:66o֬o&g~i7zG鉬),,  }ַ~K>DH-MEv7&r-[ R ̝29㢋ڶmI~;ӓmlK('0:!]nfz7u1qرΝ;s=۷o4F@UV{o6m \\p"9$TϾ'ׯ_?2$^0y\bA̝29Fkǎ?<=uvV lNQ@@FxxVn.vmܨCލ$7R nT2gܨDt#_40ڈsE/7@nJ!7=n{nBfn4_ыqp]JnDϚ7=a{7zUjF3lF~~p#1qy7 R]7]bC7 V7e :yq[QʐM` :-ѻ+P@NNNMȵ7 1 n?ȍ "d888l߾}Сw?QqDž{?geeeϜ9sܹxb򞀀~DmBnDܢhםAPPg޽%7ߛ7o^VV6ܰas=w V4lFYF$FF;_ʕ+}#G9n۶mw}?\ZZ*V qΝi7ʤr#R9$4TO &݈iۻ?1S;v<} 5k6c hDҍbb̍Z1En'9NR~bЈލfXFϘ7%:sLbbٳg;v+QFۗtXc78Fݻ{駟vvvf.\ppph׮]HH42lF=5oF;lF7ʄeJn]<}:m([F[Qw`֍{jo`ƍt(.nnbDEe`؍y7 ф`ԍb(ܨ*!(n;ŖnKn Մ{`ҍrcbp#)uXލx7jF3lF]]ON(22Tyqq9̍""F?lFp#1tލHM7=ac7JH 7ʆNUV^OM(:n{nľ1"[hT [QZUbp#4ɍԲF3lF=ލ5FS`OԫM8Fh8ʍz07~nn{ŖnV ˀu܈n7bc7JLSӄ`ҍrbcF?jFE1IjyZ]Ri##Yl%6v\rpoŮ렣X4'ȗoa`Xaa:1ّ<=/$&gq+hz܍2pB*/>w#7)BuP[xMB~Qm/;EߡM®Lnn&1⹱urcy1> lfx&ܨzFFaJ 8vMq#D_AK}ׯg3y@F7UK:ͩ?qICY600߅՚V7 S& Slзar#T`+Gdİi4 9HFYAۼ_*؋~_ mjЯYb}}RCi N_-!v/47ڧ'Slz0e=[gɣOdyc5^9wM ۸Q屟 S<ݞfs²R4ߒ:Mk ! +&4Y lq~s&+ҹݕ!?q5h܍ğT dfM8u#i&+uSŖlQGfY {3?l",o>Qsɲ ĚϳrO$̜,VФ ?(Tizv# C_AKҭ^UT MXr ~+6=KFV`G7h~4}tk67de?~6)75Hv΋r+s :4V䰹?7Q0~lE/Q77$f/ȶ2h)MSX0*aM-NNK%ݺX~;yY@ZiX+W7!deS䉳l=qV٧ۘSJ+[ uBr3|gY^nDy-WӴ *]H-,2>cz(`0*1ؽ ʙOwp@l0LJ)%^Za/zi7fdjBvT49lFލRƌ8Ff8X'F lQQTO1}ݨ 557!AqjRrvĈ)^î [QOSRr/_OLI^fWFy*6>>3$$#&.N3lE/7@nV%'kcc5AA "cc3 8Fh8ԍb2!w*:799( ܹhAc QeF11~~IQQE/7@nDnKtwL{} Q&Ӽu#y#w>`Oƍz`7a L>{6<*J=hN -(#(;.2d`37hRR5!!).Dj>p`c7JM&&jBCS6 n{¶n# [QffnjjvRRFxʕD'`Ou,rdoČ#F'lQNzzJN ON5 {–nA }f!@4egnqv=5{X*7V5)'NQ@ 8z7(+-M6mkbݏ.\ڴ P)"jAx)5S'>]ލrsVhRRR8klE/ƚ5nذ!##:lP( E~("RT-HQAo98B42LqXr=ɍn Νpss̬(hP( E~("RT-HQAo98B42LqTFBzT\\+z6\]]6m( E~(" Z:rp ji&]Q Q^^^ii… T4JPL'H) Zc.u@%IqTFׯ_/,, lѢE^ vHI EՂ$SPk̥NH52%t#[^^dE/ΓI EՂ$SPk̥NH52s#F](;OHRT-HQAo98\4JX.ލ먨/T42P ZʃI EՂ$SCBc\+YštnjskF7э6ԥ+muo־X︖S_ʆ4}SjyͨyoЎ؞GbX>LA'Ic4V3l:lw]l@#atVZXWݟ5B-mߩ,u '%-&]!QqlFeF5fXW#,]"aiB=ס[s究)t1vX˧f* zS` N~S'Y SX.㨱njFY5?+|ĂVJ/CY#=SoztIVMĮN zSmSd=S#TgipܙH y ";:] l^Z>+R6h~}.:x">t.VHkQGWd:l F@~c[1*i+,,O>:'?Ty܃nX 1wBi| ) F@~H[JcJ,iC:"';>vz y*KGaa[S5uÚtssCϥRɵVUJږ_?r'$߅X'wSs(&SmSd=4T?pꏚH10EH&BCea1]~Q_~Qhiб1X"փԏ(eo ~ޔy01Ү }UlYh#L,K5brce= [ }٦Zj%d/&! v{ R'Y|?Ba(zY&J~]Ga~[ke ߍ 3K~Z#T6ΤL˷WPhf\Yc̝'] űd31R/H4[%ocn d7a]e~JEuJyYo䃠B>zLY^G˺ͥSDy!KcZ6P}V{淵|j52v#v oPBb}mNFGlb5`gΜiӦO0| ||5xヷ>:t̰aΟ|2a)M|{}ԯ}⋯Zn}W^8`>lY..-V욊TI4B|ҤYcN1bС 43ըQǏ>mJOt:]]]]\\߹| mxtC3%L{.I|阡C?8߯f}۵s}3ϴoٲ38iɩKNݺuѣ]w^|w^uޱSv휞wlԮ]N:tֹG_[ |CF>z؈:~؉cO7aʄIS'N6ei3g͘=g Ύ]yEwwO:L_߰ش,j\TD٫ĮΫh5srܤ贐kb"<=#||DƦӮOOYOu?/tt^_ P=qzv]PPYSEF{x\=}'=ok׮?w_ڻG>z߇w'ߧpW¢SS2Ti,&Khsss h4,ŪCzm {_3}m v vZ≩gؾh4  RM9VaKBDXzY UTDAwQ&d )rrsrsrrZ)defej25Dj5!U)iI)ID79519-IJHMLVk9Y9<)(,oF jY(BK[(<EDQeu#a?z񙞞Exɓqhi5[.ݰ` ssq_}o~?N" M"- R$QQ).>O Nvϱc'N\&qwx;]~/gZ8g2Wׯ]l֭[9yjTL:5UKQZZQ{2n4_/..OL Uyx8p~m>}Մ _~?v3f;O/FWTD<Ҭ`o*dAAvv~l7=h>-[N^۹bžuqС+.%9lRwPc:STC `tw  x󯿎lٲcٲoL|Р/~Э;ۿؿC]ѣ^y鍾}xߛ{ /~GC>t1fΤ9__q68cߙ}Ǽ?w9ZoPt`D\xLbt\b\BrB*)%5%-=&L8ȑsssYB)E&g"3ezXZuB&=鄲 2B<1 vĂDC&ˠ"U*j)vQ2# H$jzXFL+UfܤST*>RTР ?k욏+W/y\>w3O?u⩳y;/70/8?460,>(""D!I"4&LAOq U :| lsU8EL ED,Ej$E\ET9Lt/;#VBУ:;;[VTXzd={vq޲d YяϜv6-]U~۰=N3F11iə9iiY)~~1/?{ȕ=_;xC .[z'Mr6mY]\ento4 GZM7uu#ge$%ezy06ncɒ3f4i#?7 ~իѩYYU93u%v-@ nTA#QOӁ{zntr..3ge;LZD), 느n힝5~4zNa}@attωw޻vy~=kw;tо:N^n_z}W_|ߋuw?p1sjVmmӞ8|+3 ?"Q |8MQgtVV6 6l#X$le-ԿAiL P606%}ҙ ^rϯ9h/;5 ClnRbGBCR&ix=Mqy\GľL+*7OJM(<,<888?YUoWx{z^>̹ 9qNtFF]cn^c7ba44FՆ" .FDz(܈BA&CaBơJkw&NسgOk)숇n"&=h4t ?w㯿Nlv`-]?̘_rƌ̟w߹cx KMS25l ?؋Ov_yϯ޳wڿuի?g=u„yӧ/%7ZcixZM7brHH^Y-Bcލ(JK˳ U쨨toCl9l6WW:5'tv^:u_~ay\^|Ӛ mscO\ ֐ is X0 hf;&&Kͫv$yEFuK;!ѰnD+D+]оh ߍ!%V<vD;C*Jkc7J"12rبȨа k~]|K~g:wuH>BX$Y~ލK$S{ Cja ] Ȫq.QJDE*Ed|*DB$Rc(2LX7-4F\uWPܥk~0|22 D}JÛt3QXXիǏ߳Ⱥu//}:vzcm_l;rB}zz߁qcƑbŖ6ݶc'=C##iY9ܬi 6HSX!650mU]a 1(>V oO ' LGA=z ҃Ѥ'G@<uNj4nl&NubI7JJHJNJ(1>QF!a>]qųΟv?wԙcw?Ѝ"G)H#QDCR*6q#q\.M,R! YU%.ĻhHz$G!#XJPPm{:w~>,8n "n%BmףĠs.b+Wn?>mG^6eW׍+V>rċ("BG̬ m\F'Nץ={N }5k6}w$F3g3fʐ!3Lb޼VڹsS|UlGynD[V%&f%9ׯ?{//-XumxpgFFҤϧt#6Faɍ ]:sw͛\fM_}E"x_O[\L3"FRFCVU*B(hЕQ!F9e%eyi q!/;qbo{y5.sp2Éo=Wvc~mme/9uӥk/[ݫKhd%LڛA<(( Ьj23jUJZB*6>1:&!2*.<"&,<:,踸U*=5=3#S/*(,)*.+)(*( \i7!(C>_ßW !mCƷqFT"&Ab9Ҩˤ2eɕ\dBB!E~= DAO2zU"FyC<:] =DmT"~ٵKnt%1;a9nߺu+ѴiFET#Hzѽ{.]vة]m8j'}챧7ᇟhGm㭞z:>|:wܭknݺѦy.]uɩ#mg<Գm-Z<ڼyj=t>C?#D$?T<ƱmN:wԥ٭;;p>V":]ҕ*G5]G:č 15b&dtgǻtDfN::vhߞSvNN9}nthԡ]{z,CH:vBѩ3EW1 1^?u4hxG>aIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/tertiary/img/tertiary_03.png0000644000000000000000000015552714741736366022677 0ustar00rootrootPNG  IHDR `sRGBgAMA a pHYsttfxIDATx^w՝w=zwݵw!x-{w&k,DCHBᵍ$@ eQHs9':u{gs_K:uԩuz_^o'+ቓ L8Q'MW'M8q;oƍ=y;Ə;O9*#2rw޻`'~!1Z/_AׅI==}"vuR+3:fzD¤+tzVNT[u:H #>ȞϽ1Eנ|lWwGgg[{Gkk[KKkK AJh:GlcW \ez{{ξ?A.ō[.n޾>z+&N"Cq=g<̟,_oFk[gM}seu#R]\]\SRSZSZKi`kh71/ ;# ԳcU̒BcXQ@RwJk jҪJeQL RXd%<+2Fda> s)Y.KJͲMKN{%*aQ0ɖ4裻}kj% 9tQFd'Cxΐ! OA$nRj(!I8ڔ,#F%$CFLnF{nXbDn=: Gd볁UnģH={E>z$LHQ"fB܇*/ =pmb];ܨ,TEJ$HZVQeu$H:47 7"qYˍD&CF㦺 yRΫZW+VZ՚կԭ~y+-k^nY5/SZ%^_ʛ׼ܴw__rꗫy}%+R+%oR+oRou;+Q>ӣƦ '}4yګ^Y]_V^SFz$ R4$ueHuxI6' eٵM-mZǡyO3qnz9bRː=$aH"ғtj]%.J|ݨ-qɖOOw~agW+N=b7(Պn$Il*x*j+jDѰUCSY%~x |;D?cUdQw ʍN(TP(eQ- 9x^){喐egf˜*ɠdۅx~eEOk% =ϐ3oJ.ɓTwJa&"LJ0¨w#Mˊg5ZX*n&'Fi܍ػFiaH|b+ڍ!w1Ɩ7wѤh=:Ln$daHs/5(X8Fz I,rG̨2$}B|N"2J!R^T¢KZʧ~EnAUQ|B}6}e/yqU.OYJϫB^UUU/yٺنS,2Gl2LTL τ^xR%/>[/>³9w*xWא!1I_Ukme7X(G 2\d)M(#oCGCZdYv,L>R(Ѡ f#YY[u9LuP~!U?LDJ)?C8%FՐ";TDJv9$,,74d"99EYٔŒ,SQlJ`^E'ţ58Xo]ggBeȧ' | {0ov}t1`>p)z泩.$Fn7: hFGM7i.ؘUFm#()#^k/9#Ӑ̕p#FnH*נCp Gܐ9aJ% kg*Oe;Œo2ur Xr s Xrr'_<$ 92*2ϣv1[Щ5WT}ٕ']jeΪ'V=YjEs+J[Q܊sOT=D'EΪ_X]ZPw^UOTz(~ggWd?"Yq]Q]0EuW-hw#v﮴,TZ^oU  , ̊X)M,MX1|<"U{M=xS}}#l߯m%do]a9q^!Pk &'e,eeJG`ݪeKq6mPb9$XC?3BzffS3X?3/^7e/T(52FBa6%Bρb|#2| {”Q.fϺAl#C|Q< I Lju"ѓncTë IcFڍ"fHL"G\!GLg(.?v,Ye7pP剓YvNeӿSpr2#d& U%BICU? rHeL6"v-(OU+/ qO?ϳ~,7?-O~Ӓ?O+Y{(7W':IoR<^x~ԯ~ώgpDFYnT^ ssI sr sJXzݒqfX { ԁB5%d-BL`abJRXDD"⁅ټ$j=6^1w2ۍNj7ڹg֝ndhO>s9#5ֹq 7$>DQazn?s-#M;s/Glecq 2MlXfȍgc'29~"8'=7'('EHX)̖O9G?Q[^ܖK8"va?Ty4a-߽SS?xS"gǔ_8>_qOr+{kBrC=Tr+!򧗗P~ZZ3wFٔbF11*H=z빯'.|x'~:gٓ5uz۔]ͷ~w;/.{m%o ڱQB3PKs d}HcD.L2vngjp[jY*Pj(Q"E檊,Zօ"zO(_XYIo#dOr.I4=xv:pBO_Q'-^qi1m-gw_m3hnt7!b+Q܆ -7z2$ңF"!a#|i$ 0CJt2$Z֫rA&Z`H I.xH3$ÍeH=c_t#˯Ǎh9Ld%^MУ(?tHC{#F7_ndn4IQYyY9(D{oow_?:;Kg~V>~oҎLȄZvtmb(THf&G z:ں:Ó*a2RS]mV(SU]ͣ/."{R%=hF)oh"Д#%a&D& $Sgg{>v0 *vB=sw+qg]qĨJz$܈Zdn Q&s$s@S(s,C9$&$#GF[=&t$53!C*́؂\QQ83$,?a?u- ('}?Izkjm$vKGѦe&3ޒP(YɩFvB_^QNmGV,[Ċ'W.XrISK ZRԒ?$SU3+gWS+$ >F{|JM4,t"܈e]-y iAD-Ʋ6=vl߱wNXص;]h ;wSH5|S_Orjܼ'.:c7nq7Iq_>| ~ﬓʼoV}߬{)[͜9֡$xh(Ϲ{ϸ^돤\(eY{;[}.ڿ(7H&\9rD3- Wߔ7=7o\W_k謉^}lʓv@r8r:PѵADCw26f-Ey#ql`մ/q[$=IƲ1cZؒXX[E"jZ1f̕NU3eᕫ39]f~h$B2z9R̚:zS# GyC^ZEi@aq?RD4mW:8u&DVIĭ#F%QG XccBl0 7wdk\z o[AfUD̊BF.H;!БWN]y[OYzZY>`Yk~(k?yC?l kץ~?ޘv}"}Yaǩ[>t'nظl^~Z޸wlqŮlL؉S?f//G}˾z76^vі+.~Ņ`fCߟq3N|˫WoFߛ~{~oMuOv/0 _zG^ҋ>䢃yrF".70aBWWWAAN?DF}y.满nMfy9ߞ5K|ooxo_ߢttvRġ_1~TŊ|(^[%peH1W@B H?W$дg%{9MơDi{BZ.ADV%'I40iM(ifz=wYZ5̙xH>yS sr?x㺏7dId"[^N˩lgĮflF9z|k^ >k/`|r|mNyԽMwԃO=zOM7sy\P˦eS\6eS.);/%S^2m%7|w3>{FOFǏ)<;;;-?] *ho_}}/*yW/w?w}Ӿ_%L~k?yǍl\P dWqp#M4Rk>['1$I9Ԙ1WqH I4HLMUkԔ#'gCfHb4B>CLQ!z>J9aU݈C ȊijH ;б'(|*TiQvF: X=cW%Íp=ǂ=,n$H؈GGD'![D! %r"WM#2$Fאcҳ÷(JD\?q Уsٹ(h'Ihَ7i<܈b#yH7TFFʍƍGvzzɓ' <7;v=[O'-;oSޟ3nM_}p_oog_o𗫖>#ـ Nww7wuLc:H>$^L_}J67_p͒fY_Do=.vl#fڮSMFOs)HѾ_ƌy)Fy-1O$7wQwxS޳9=dNUb&~Jr%-m\6؁'wəFs4߈)PLb93bnF$BDG "1 y %CmBOsI7aP uJO5fH<ʪ2ˍv\\nĢeȸ{wyFʐ Cҟ4<-}HVY,Dfd8A1 I,dr7J;|YJ"ޤ{n؟hݧG[Gq7?*hFn ˿^z^rK.pɅ\ _:ce^>m]1ӎ_1-?SJcէS!:r×OM|˧lgLn4c3_|3u{/nzOMDرci>|ѣGɐ233sssؤG4=2\gOO?9wou^u_./_|W~ hG2nq mQ Vơu*t|\7:xh?G6H-Q\uڏ BL ?FȒ#FCHt\B$V-U-Z!a-rQ#WօКFԴ0V]Yspv#Bt&BDG#ryCēD!<a-x::@]~Rw^DF=53q#?s=?7Ꮘp#F"9$J3" !y":#DGICbrY7n7o$@">~"}O%7Z>dG6Q(]>U>܈=~jW&>k/G^ol`9pn삝W7gߟAǢnP$zTQUMnnTq##F~+{d;lȄ1 p#)C!c$Gҍ07r>{[M]d& I1RJyH+ݼs#ϧw|i'GNd,;3~u|{^oۛ+o+}o[ǯV53\-.S]~7_Wgz桫vշ[?ֶ}kӏ鏾Zo}o}o~Wntg|gϞ}M\gk)GnN7n[8OܻKQ׎hHܑ%r7Ծ#=OsFqs#ѸEݠy(^~߈bQ6(:7z{$dH:R$o H#4eHvr#y+G.!F":z7+>>S2?](n|gC>чo}m݆S/{i~f=Mߍ[dg-=|uXpE Wl7\wtٮ/w%i7_rKz[/IS7`VoXĻ-[9~GxnxM7^KκlӬ>uYxI7r$>-t sEn7rVPHV}¸QcnV1If1PLb3vU= !3v#B>blCGPݨ<1nDY1cu/DFBr#ǐz伕 ܈sh?ρ<ڐ373}iG?ݲo݆]\d^^+RvS>Vd "9 ?ݼ-7n=i[e3s[?;uǡm;oudw=(;*ɔs?]Ỷ=|GXv=zGqxGqbmKoXv[&em9V8sdMֲsO,a9Gc_xGɳ;);?+Z87HQFFMO _+:__1RRRY?GO}ٴ"p{G ٵRɖ ʍhq n_[giI" ;j_鸑#B(ry wbywPvD嬔T(eXq-)Eq#Z3hӞi:Ӥr=JDkGL"e 9,r#@` "$~^r(ttOn>rdQF ;Xc)0y;h72Ycn􈛐!"Ƈwָ17z%G7$}6SeտyOI_Ȳ;oudn&@l{{|׾M9prOک,{쳓 Jn~/_m㮟yެT 9,f=`ƓC'X??z?9k'ngqȍ. 1|SV=IUرcɍ/(--СCi=w7g9~bЎ4/]@!̣G,NG!Eȑ"B^9m #[h>lEl ݋qFya8#xg|Jq#_F6ǡCq3QNnO3OGaw믾f:rݬkMNY7̚uӬxfLr#:79έ*lq_k~ssq_Y~ÄfO{ʹ7L>w֤O< g];kv帯=}*-,FdEBOd\/sׯO__/?_%=y3<_o;cO̙3gZ>?Sϔ_gڑfz;(vz FdCp0HH葼xs[! 1y = l:ʛF&r[4fd } Ϲ?8|&|a ڧRO"q܍ɍ(#Bs۱Gq##-Gn FJ)%RoI7bz$ ɸ]rҡS5,uMu|Aesj\h; 2 2, ,- M-&fVJ{NÅclV<ɶ;FzsϥYYXqAqHѤo}o/翚ϴ_/?3wNg_ׯkWׯO~8i7܈?s7*|<a"Mȉsأ'sJ'uPEȐTNb{xAvLjrҘe9n (OnɓI)z> D Q5J^ʨra+o ;&1 =->C9z2rT' Ofegdf*(ŕ*BoJ J/b.WP; _>cVС<@aHNu ,aRl<:ZϥЙ:ѫ.7"">|ǏF'FY)jTs=@cnDO'zjɧBx !^Dšԍݏq#[z"% ŲaXC,7r􈻑cH1Cn}HFx[M#lGI7!ȭG\U`E-kCyrs,GNztd1GYG8уAB_R"Fdp#WYV$~gr#G5nn4ydr#k1pX/ֈ6$BJBǠESw+2MC'QXAM#O=(pRK r ;đErCgcgoLO/Q<`F@sW@@j# _ĵȋ̡q:\z݈bO䱤!l,αzn:H=ocjsM~}HM~כkFҐ[c"d9\"'2W%}3Iѡ̍ĂG7iA~_[#=#)yLb 7#@Q"[D =29bd=rfꑺuds4$FSL!7^HwD#n[=/g q<!N Tcʜ)db8ߡE<rC@B2/ȠԈ8-M͵u 5eҲRZ^Y"i`mmkGjh5lUL8ʈ՝JJ5LHG, Tyt}s*z*UZRY]SEgaXFJJɆ:-"ZE¤I*4WPk#`Dt/.lh4 )Ѝ".X#0xB?"B  HrDDM6Oi"EggEVAA#̍ZqQ%KX  $G72HO>AwwҥKVAA#F FŠI71cӚe˖Y  $G<.7ZYl  HrpRyn 31gUMms߱6']c'>:i+/MA3ҍ 29Op Wq+/d8l6rڙ9b؁$t#&ϓV ;7ɾ#T'r#<>OrOrU ޞ$1HF 7뾰rD^&$An$)m"u,zrzyX0,Au-7TS%w1O#QY#H,CnT/HX=Q#.EKN:"r Tt cPv= {sN5P,Q^t_7(p856u#w¸њWF5&gvqM$@Ѹ (w,vq]YTj ;,2c \B=Frز?II/䱖gvFm٦O<Ϙx #Ms 9fyAbFBFȐG^ "=ᮌG*iMfdbڰ${׫AK'9N"0Sj+>Fb'ϔ-K6"'K#IQT?<؍/Nf(p̝]̨f2o>HcFXt#Z!Cy)4gA_3Cp.dksΗ'֥7 lՠHaQILk7.>s^r44r #>"~nHPh6cDBCpBVdHLk|q#u}ވ;6qk-N5['rO]Ϙ2,3mnAb)=!Cn.lDQe]\k5¼zd܈J>3~1\kFujs#iɖ]~h㡼"猂CX N>D_q1wE#Z28kYd⚉A!FJ FAS=!H7BN! 8and#  4ڍr#Gp#AAFiAq܈AAF>  (y# n  s߈HAAQ=5Gp#AAFinD! 2J(d~FAdFVDnoqC! 2Jc|Hn  ##>ŋnhhp9n! SO瞫8hX3Q!QAA{-ZTSSCSsFƁFn; 9t듂0qѰg`IQ^a7lpos8; 9d͠!nOn4p wVAs5ػipߨSjn&0XB#u~;䅬`O&8| I"M'3r K(%e5554nY^]3W03]m6\g9`%.'NmԤp̅+ "E~ 1RDQ" 2_xWTDDGKݨK(1>BVW&\1wU]cPn٧<='kx' } ~~*?XBk:NώjFWH"Gs#qFVxDfzf.M%e JUUXCCCSSS~Aa^G^wos`E3K)qP3"ȸu{*qs0aRNo]]=)b`'kMѲL6f1cfl-%vԅl }k9Dt8֍ 1s#.E!r#v[_sǗ}+tcsT<'^ezx~~pz_\{&S9k];Β_#Nf"K(yhzvF6M%bF$jjjiRlnn.**vyx5_b;Z^tnu^Zdb1QI6 t8 幇y$I'}FM\yW0 }k ubxnĈRS7r^9szUUs.UP\j:C xZHh&VY<&aY!#F= p#3)|j"yWneM)V]-|k2ρ"5:컉[u0M9Is1Yo4J=V_!jG]ļ-[|\sx.纘U-zٯе{ؚl ?nt|G=J t @-2MV5秜^lQglR#ƞCϊ3EUsa:rSQOn*syrD$\rCȌO-,.)3"QWWHbKKKIIiy^wU+ޭT]X@_d\5tػJù`WfCDd'NnlY>m̴[7sßZu_,*v 1[n$2Ӊ{^&dyl(W?^7fcȕQH _!1/FH`(3f! ÍFN@[7*TҿܨnzTZ[[O$?\7fu+ *reB MuQ=ibfv|/N'1NX.p8Fptk7j3܈n4,Z:hQztA/C30$?F%φ_>g}!0Tӣ@ $_3 ?+7`6FgΜN'WcC zA$)X gr"?>F]]]R8p#AA8FF&p#AA8 J?7BAdF){d祝7re˖Y  $Gww?ݨMwwҥKVAA#ڍ FӦMPյxbAAsHt)SֻXp  HrD}ȹiɓ{zz* *++[Adg}l 8X#3p73Dq &tuu* xDg]x**0$ӣ`=. IOrsUVU8hX3 Q>!Z?ԩSOrjkk.D䩧~sUUUƟz,GA$pѢꚚ斖 k|F=5G{mmmLTTT̙3jYhQMMMOO: hQztFsy٨b4NXXoݑa Y0:C@aIrs9uΝqsJKKgϞm,XON`G ͡~Ή$G89!mjnFhbFU%,Ft>[n޼yӦM7nLMM-,,kV{{{PCȌ~ɛO6n?|䩬vٗh<5ػ"FFguYѧ~aÆ?ꫯZAD5ndEϋe>y4=RV^[~►#G&qX3wE+Ӭa~ aO@F:qp#R"G{jі-[6mڔ' 7W5%knsSGP0`X܌5JJJEzλhaO؏Å+BqAKS`bqY :q<kk aO@546"1w#KjB{jFwޱcǶmHȐbڈ~%w㞞- ^!gY Q1w,ȏ' zFfy&œy9E%u +~J-Җ Fq8">[UbqW^h^̵p01y.s׸O2<9as)KhbFOj=n4nܸÇ8p`߾}BJKKoeD; ܨN1OtVrx8fλ|12"?J0FVxDffnAQIyIiY]]ѓWÖYb/( ¹`%ƪSomb܂r*GRD8.4{.Velbpt>j&L 4V#:/]<:LؗwFhIГkpᓇ2!geddp&GJ-*07ٍ&N]TTTPPETSSs[ (}%W"eZ^ʷ؋S_U7;::h8/3?^ cfE]ӵ^lI5dzA~9ZcV=]2ڰvt,y_&TAȌw?ѦcߛzAN~%m \{uoKWםnM;{ZEb?OG- {N;1X;_%[j 5Vcϝs(#pڸEl*t8\hk=]KLs7o_RsH=%uV^_/5];_7b30VX+ V1)I$(gOwJÉ-zc+fղ#IFa##ndE̋[vW?^v>[z&_a M---}9_VrDhGߟ[tkJe!68x+s1 c)8wWD~˨\ x֍;: yUw>[ WU}˪X!n$?o>l|hԩ}}}CՕ7oʀW񿋫a/Nj w*$/sbVZغ|:-U]̠Mcf$WF ],S.5fEs1cU^]2K}wT Bܡ3KnFVļ.uK^~ U&ϕ5MI Uп8qaՠ1j%qyEt. [1v>esժ֍t'9&7R%GP[HSs7w-76mӧ' =FNL_ _uľfղf'r%a̴[ 7UZsßy0vx-˧{M]Gu|wTˮn 1/n^PTޱg?wMAu~>ك*]ڑŲњd} 2P/Dr.߃ 321H ΝJPOg-%xG&輬 |y}f$pܼON x\e?NR@/)Z7>qr#R;&>}:lLD .ZPbJӓtjՑW+Vǹ<9˾pcdK^5fڲMbyӲi|T6Y/%cG]5)6-Eej_q gGUMl0&%;Oyqe卍ҝjo珞6m8QSS8/ )KF_l5_M d;wyc ͭ 0.ZlbqRzsd4eVЦqWf12>('77na?.bPyXme+})LݨU#ǍΜ9%LwwŋVؾ[a.%0/OsWeJ^ uX\akz%̔FVU3Y4kѲQUue]ѩ&qڒ%~;>JFVļkϾHkhjlj))) *iR ck3!~MFf}h츅tU~fG}_%7Qi6嘆!nt#Ylr3f =,Yjee^4eL]*WzFfļhB(<$ ҍLz$FPɧPtIi-F_0v#!Gz{{.]j2f7$$҇?1SD,'5(TU!sb힐э7Wedf"uFQFHGl2%l[[[O 3p1c,KrQ!2B6v)!nԚ/݈}v>-/_jYhQiii]]10tӣ@ $_F:w#y#GF/>[^^ z豰ApH<q7bzTh}H#Q|rEƟqAIʐ ?qqU?ߏ*AAC.ZTRZZ[Wwر k|F-yEbG%&AACz sƖD6SCA'\pѢ 8X#3(7*+/`_td矟>}H-AI֐7O[G =! nԜ]PFz$V/s#"GAAQQ)u?uTP\!h{jڍ AA|b⾑afAAFYy%܍C.7b2b[  $GȍʥM6ܨ[Q{{;.\jAA$9"(3$(4&hԩO} ZAAIp7j-r HM<ĨV|AAAˍJsjҍ&MDnDVLbT]]M  HrtRq먫ĉ{{{[ZZȇkkk+**HAAr8$9X@i]A"Q}Ccž}ˑˍ8QGGIRn41B@,zhbu-B<HćI7>}v7jɘV!F qI =4rVԔ1),Vyf3sUXSRwvjҪbw7 ;i{ʪϞ6Ӻ!DFMY9ф*n F===qɋuCl\.T=dMӈYZ꿰HOu!:Io?ggB>F7xu)4{F~ 3V#a$>hvDՑC#g(0ŖӰgqlGBtqg*-$HB֒wmu-By1sޕkuιɃ1baaQ>*i(R۴(ѻ{t=7YΘ#.*g':itؿ)Cp# .$CϑFQ&8:E>BSW͔-v\3t16(ta@?ih4+(}hFQ`i/&%E06ז{$Y=÷?4ֵA$nTĨ$ˍIi{Z ]H cx\1qm1_+~WUgO葇0mu-B<ʍjFԩS-7kkk{V"&~y[ mp,eu9cr*u2i(R*n30;hsZcFu$\#kp5:l }6=vpC#g(Ôg+55]U7ЂZ n4fMjf>XxOZ yȍٟQwX s֬s7|Zu* UMqßUYK` Ĵ Y)>[Oݣ@V. TjPSgЈĻ. Wp5`zhn5G &ZLRbWnQOha tadrH8hS@VĒ[PeQOOQssxO-FT?_6-s&,D1^ˬ\-2Q*_XED'{ O^5kҲ(= ,GE{p Yj5LSF]$o;.h¨Y= cV }Pz;覌6Ej趌iy1 YKf'ihee/ #.Ȯϱ }bZ,@Ff 6 yUi ,\YU|(l#V]I"$9OF xZ"A#( G~#r.f[ZZH͛g)bV1HHb衑:4ֵA$H7**gauӧ?J4|H/bDHrECA,E ܨ%LWws#7Cȍ^I{j4dLE#8$9X@i]A"sւ␓Ftn$Y#=-\dBPUIHb: 4ֵA$H7* 9)v#wcV"&c#*d$9"FL &xZ"ACnZX2#hƌtn$]dՊ7b&F$ˆIklAD%2oVq#BtRotܨLi-[f Çܨ IEnTR^URV-_jq#GFH*F%e,p#$u#iH=p#$ѹQk[iIyIETn^) UwT]]]ũlkkV y3:>Wkڈfi_{\ܨ_FxCǢ)"n$t>H(Q' ^uUV+̍JGh*Y) 4n?F1} %_7Rq#GJobF!U5^XWpf ˷ܺvzEIfe|fЕ Fb~:h68!>WmD\`=㍡BȽTh:țBW6b&3PfW\tũl sDQwOKk;Y4ws9W_mMHWU\\]i_WPyДnMfe+Ouߋ1/IQOq&QWb}:DzήTlu ѲVo#[] aVqmZv0.a?u"aU峈PH BW}Ѝ>{0wUn-4x *sߨ)QHE7:s-7"ȍzobFA]O5T_i^v.֜rº[++ /zT^:/SCt\Sf4;vB.i|۷zÞ>X }V}K= KAv=!G= KAA~siAuƉgs1{zhv11w}ʅykl͡ToG|ZN~~M7dHd&aFr  u#{j۶m۴ifΖ-[JJJΝkHy7"J2HvCH݈0$F:t4Eeewm͠G>Vr(EݸQ5;98~`;)iCQm%^HP]5Q}p`7j<*H=n$;777۠>3Dw= )ôbI/6u+3~ւ1shr;/t#*++Cq;oE$A]f-!AjxymV ෬F=qqcȍ#FӦMkjjj4\pՊ7r#K8m ~@mnTF]kΊXu$"hgΜ!0YxՊ7q#6Y!="TvD4Fmvr]5귦>0Zi=rQoo/oҥV+ ʍQ -%B20Ѷi7 DE{/pˍ2Gҍf̘AMVl2oF Aa֕mяx! ᰆ*iӮpg5LF5uM2 )Cr˗-Zfn4*dqsǙ"s u#~uj/7,dQz7 Nnt"H#Q'#Qˍ(p#F'02F G~eNl#ōfx5Qm~ ׸MI7g 7I7O$!O-&0N@Η ԑb?'Lb-? 2F,.7rCzdoR:!uDXw2i 07.m3Mu#ZGg7siӦ>}tww?cV+ 72pT)~nV4 ^ hD(="HԩStvv.\jśFƋq[\ 20q$q/; ˍ&OTTTTVVVUU-XjśF\HҢkj۸*{8@Bhĉ]]]|jśFJI$D#$l}Ⱦqyh%^nF~GGGzzɓ'322>o)p 7ތ|߼ոCn5`эQwymmmiiiw\oFHrۍZZZر0H;V|ػw*++oFHv#tqƵ_?rj@<ܨNԣFǏ8ySFw? ىq=n$fHaaa]VVVPPPWWb`F<ܐb׋[G{Պ7p#$x};{Dn$f~ F}#jkk#='O?Պ7p#$xco I7:uӧ9dHdE---5 aBh~M6̙3$F===Zha…V+F,y2]=.7"ȍ:::hyѢEV+ތP7JdU3mG>"c>OO&׍9N>M>D?:K87JM+)rḵ&׸l\gMzW=.*-% F\555_M[x3x7J]3ŔI(AnBMn bJBh=== N(jii_IL[ ^V"n r#y'vuuqr9sՊ71tUd*YB3(9+o5i7ZA3Y;+N[oM7"b4e=H.w4țUEMvtk{.+L kX@8GSFʍƏq#Üojś HLi }^AA:,fe+Ou3s3uU[[ B<K捜CW}Ǔԏ#uŬ dG_nU t lλ*kY<Fƍkmmݹsg7|Պ71t# Q=VLiršgU=+솅d͎rqEk@^Y"Kp "ɭJ/t VS wG:E?ϥ꼹_sFsNsssjjYfYx37Rӕ|f*gܠršߚvꋵDݙ9VllY杰ݽL%hX ?DrǍTg}Ts:n_7*j2;E߮gfĜgUr^^u]gȌwq35OzbUv&U+ˁ4̭њ膨oMf\{.FD|d!jAHZMyzo"7(v^ZGL0h7jllZ 7kV}#7z>sZ78ɐo5 zwVeš?`i*TUM,0}&EVS> so"sQΡUMIa1'555}9@'=5 ϻ{ iքgbMVeBŭ>&>S0j,(S9v11wCd;*9\(۔ v$ԍƎҲu- Z...馛Vv9pà̙y4&kٚjŸ3u}.;VꉐkbFqqƵwSQQqmYx?7b]SOu:DP9o{_GOY0=؍aX oĉw0AX[CVw[,)>= d]Hb~Dϥ0 yk<Ž0ؒP7:;;;OMIIZfn4ӧPH uI&uww+J8q!#L N$ԍ&O[SSSk׿5;`@I/hnnniiZhՊ7č0 mmm===/ZnP72eJoooCCCcccss3,Yj@?oSYYY]]]WWG҂F>$ԍ&LUPPPTTT^^N@%=Պ7p#$y~'OWUUutt gVC$SSa\G<ܨ>ȍƎں{8q"''lGZfn$EH2}ps#Y{LBnjjڸq8^PP@#Xx387R^čHw S7@I}_oll\~=ў={?~qU7JQkT *jJPTnmF|*ԆliMqm x7bp}pBjFp0bmv4u+3~Éւ1s0IuYMMM[nݿzzzaaa[[P- nbڠ^!U+LGsZ[V9ܼ}={;v,;;} VIT?nCl d6i]F]kΊXmɍ|smkkKKK#1***۶@>odi,CP~&>r1h.U~kL>;::222ėUVV'H G)%B2` ˍD{[\g NF'N.)) B55TgɒD=5 nAa֕iЏx! ఆ*㰂4׺S<&@$ԍ&O[[[[__I%K.ZfnR ԩSO>-~GGGWWWwww__(8_I{X$n4mڴ3g%%1"[ZlՊ7pA~ujHM>܈HX# u3fP‡LF& |roFHp#!~ndf$Q7)-zCPy#Z 0 {j)GxO Æt#naE(;J30|72hѪɂAvc穲E Nư8~( zo739PhbTj䪁27J&F1s!@<7zh7yXB'nNFfȍ&h76o%ҍ. F7r̍%ȍf~5Gh>/2)X/fmS2p,Ь2v5M1lz8ooݸGP K-hJRuxzq*7^cN|0 ͋؍q(1n'k]=|&Vjm )=ɋ/M|.7)WrP99VVSj;j&y]4B|"|zN6*=V#O*tfq5k %Yь`<A'![N0J7=JeZWOqAԳ]DVqIr߀xTMi|/R?aº[;MW9/=eilkxG`j"]\u"̀EЉ [?ØAFMaݨkH\*zz:zzW]=Дy\+w(A-k*l k_/ޣ6ZÃR-0TfGxe(ukn=+LNdSv c"0zu#Gw#B\ g]=.ހ 7Twd,OrٻBsmǰKވz5DGs·*d߇rZt"x07NaL Fqt##>}S:"F(TJiྲྀ~ئW'sr)MɈ~:<.C]ei[swmFA'2Nj) ;a1= zۛH7ĽzIlJ%~p?N53 O D2:.٨ a>o}]c9M>]W(3/< a(HQȸB}4/XrU]=f,ߦ+/]Ŏo rWMC :FA!9z#3}dnOQ U7A'2˷0/ `770hˍGw#vau_*iD_MJ~ئ v9^0xO!oJgk@ Zp0R@ rN:jvy6Fp+5\0pFG(䜵=BBؖG*HQ6l.ZFqEN;zBc')Q']˴a@ `T7;rF9wRȍbΓSWrPX,uS9<p4VFCF{-[f  `ܨH 7paH(Q+kҥV+FӧO'7Jill\xՊ7p#$8т@76mZ___m…V+FSN马(///+++))inn~xV+Fmn4y‚yYx7@ƍ&LqĉǏ=zLIIZn774#kmmݽ{]vgm۶oZf8#a=ArhYfnS#| F.H uc655}'s֯_nݺ[ojśFQjFQ2EesUF1R{Mver`21\PFg}vCC;b9997tՊ7#Ѝ#yR];͆#|n͚ yV!xՊ7p#$ԩS{{{kjjj9=Պ7p#$Ѵi]]]K,ZnP7>}ӧ[[[_ݽtRoFH u3fu,[j@(7u-_j@L#C~Y؍ޑF;I<=HghYfnW"|F.Hp(mp# %W؍̹:`VUF1R{͍0H0\PF1@]8c:rUes))z$|n͚azQ-9 (ȹȥ0bN%rm8Fov5'+&nfYF[I7c Ab^4j@ݨO1B`oFH uiӦ 544yV $ԍNK2TWW Hjjj^oFH u)SUWWdgg;vZn'7)QOOOMMMEEEaaS: nvoFH uɓ'UUU8qeeevՊ7p#$xQQUVVB!rǏ۷tܹV+F*E]ݣ侑bk_Gߗt_72#q˓ģ.-AFTVV&獜YOzx1HdSKc-+rPrפ gUp9QFHԌJr!ܣU3#*U49adoUpѦqr-m`e1`4F7oX__obfYzL^&Yo $E6'cۍ"iy1 ږ!1n)H/6Qr~/gV\-nge5 wĄnsV$r:rLM)Ipg!F7ǍZZZHꪪHS,O͙ش9jL73ޞ, b%A C =,A0Z7"jjj%=jmm}GVind݈+KJY+D. _ ' .IHZQQCCQ]]Quuu{{… Vqn$΁:tȑj@Bhܸq͟r6o޼m۶;vyV+FsNccڵk׭[aÆ9sXx7@H}_{W_{7xwyn&oFHqr\_7׾V[[ //믿ofggϚ5j@Ȍ[_Wɍ?Koy[x7@H}k__/ 1z7ߍ7//0&ntYg׿λᄏf͚?77wV+ތ 7~;СHHk|GbyAffc6'ݐ3\:>0&pI;cΆ RSS7n~Od=5dY9_vH5/He9$||FUX2 YX'rHZZھ}ȐJKKYl F~GGG&'== ~Պ7#ߍ|:O~7[]UN2 O-72'D=98.\-]5;" ;\b|0w44ĉrssɐN8QUUuw[x<[lg*#xnbœjƘGH!l4aa+r96bd$%qt##ҍ&O,lEEEIII~~~vvvmm}gM=MOڍRI.?=kF8*35;rfÒjzgrj0HM2d& 444析f9)ԌA qpNAJjgX\Ҥ)Ys7z M:UQeeeyyyqqqSSC=dMRk~ R#K nׄSsvMjkv$yFkA=QuuuUUU(*++n4V+$!AUd"w#_=fp% Fm}2E2&Fs72㼧CJTZZJVTXXZx,n(%P-P<'g#ϔ*O\Ղ$Yg<,*B] u &ttt;viii߷o_(뮻VI7ғUl$9OxI5r`c0 ZI"aO6.CBhmmmv϶nݺyM6ϝ;jś$r# _FƍkiiIMM׭[~yyy{j&$ԍƎD>f͚w}wy뭷gϞm  nt9466^7|7^, CFk֬yI7xՊ7p#$!xO?|?]6??[oZn0޴iƍ_bͥwqՊ7p#$QS[߷o޽{UUU{V+FfM83ʪU3ÙɓK8eGyj@BHZE]]]}}}GGǢEV ˍdL76mӧ[8%KXx7@HM>ܨMooҥKV $ڍΜ9ӭ-[j@݈t3f 0LHF˗-Zn04n$H7a( F>Fp#8Q.#!~nd##|To`P7kM/? v#GҍMv6E;gV+FFSNkpٹh"oFH uɓ'T(*9?Պ7p#$Qs[nqF&8qbWWWyYx7@}J7?~|{{O(h&%%j@S#7rHѹںo߾ ZB~Պ7p#$9ܼ} JKKoVoFHqr#C}MMM[lٶm֭[i(**馛V ˍ +r(R7jnn&+z7!nTo#{jvڳgs;v|V+FEʍƎzСÇӿLKK BsεZng7bzDnty絷gdddeeeff:u*==;Zn'7.G?⢢"Z(((hhhV ōUh78qbwww(+**ZZZz!oFHrvHQgwɓ'q9<Պ7p#$8QM2HXQCCCcccSSSWW… V wQ IÇxQ~HѤIzzzCPEEEuuummmGGǣ>j  >nԒEnt'vuu'.Xj@ܨRAܨSё~̜xj@<ܨA#Fw^[[ہ:tȑcǎԤXx7@ 7bz]nt綶ڵk{ B~Պ7p#$Eرc[ZZ(nݺm۶[nj@(HF7nԠoZn77*zQ*gÆ g϶Zn'7%7bz$ ͛7mD$$覛nZn7mh-ez tqƵر>ۮ(--3gՊ7p#$7 pǷ}:QKZx7@8nSiɐ4gٲeV+Ft3fPG˗-ZnW7ҁ`dO7an$?o70n7{jލ܈#xQnn7p8܍0r8Fup#PFqr F"qsR ?FqrLF"qpGZF͍2r77p'!nT7 ~n$7Hn7p028Fp#C(<3nD<݈#!n$ nABܨnn(7`7p8F-fFFp#n7`7pe0`d0 e˖Yx7@7:naBBhgΜsh)Â!p7GK.ZnP76mQ%KXx7@H>}MOOc=f  n4uԾf7]]]-ZnP72e QG}j@ݨMGG#n 7$nn`O7rrz7p# FCFuE oЭ7W;Z.M/dQ@tn^[Ǵ.M^` }7^vwOkMN~` Xot}c7]{給fK_ɢԅ7(otrL{xKNk]]` }ę'&]}(u:F7$h /}YF{[:?5;C.t@I-@)hJkv*@o otwo47aљ)- 獴F0x# 7Hx# 7Hx# x#@6M`0$6E{7aG" 荼=7Hl72hoæ{E x# )NF08l7p7Hl7Қ]!hvq- x# 7H7oHdQ@l77!e FF0l7:367a㼑@o$F @o$F @o$F @bC±cNF0Tx#z#eF0l7 ;o$s B!ռ@Y{7-ŚIl-F @oho,J]x#F_[Mk`k`Kџ7]0UH7zi- }yمou2flF @/otz#F!BMFEXrةuF!Bè6otFgǧV?Ϟ=7C^ŏ~,ɀ!LU$WO={ߵ $,ey:قSEӕ)z#犢7_'/^F2 ylds~vE2 yldQE*zǿ.^\TG$ʲ'ƺقvZRE=.卜6޽{bbbiii~{#g' i}?7R ~ovy!81T%SJg[Ner lm@}o^$J9-r*]7Tõ-U,{SҸF*9Q)Y˭mHZJ:FS}sΑ5Zw6}H5-S'(9~^oX!CAz wvO7gfh_C7Th&=>r02-EM]Q޶tvuZlS="ޛJ07۲=`ѺUU5Pf7.{SҸF-^`zIW]zɾ1 :ߐpTBNAz,!PmPئ jf7Y:EM5g洺`Dݎi˰|MHJ RBʄ4V܆hkt5ިTHkjԐ3>i7li=לdaξ)S'Hbc*o7_XW9 MPfNH!;)UQGb, "3;Ca֟2u喫fgvz[UjWL;Fk? :-Cm=0u]󫾮۪R42T-P6٠eܙ8MnŽn!f k%6*-NKqT.mݝV J/骫So^<#|Ug rg|onݙ5Nq5Fع{# zC!v5zg*Tc bY :ÜR9ot6Wud;GxFuȭZY;?|E=;TQjnn,ЙEqU]_l4鴍6Z#F ;cX*&׊IU Yd=©R 7lFص04C+!&31uZ*kri{nR>O~2gm:F;w g;-C5 zJ7{# ִ GZZuzL ]u*z攪ycǏ" {[_ie#Ӕjzh;lpRdsljg6.mF6fik퐡5;;Քj[Pj q vjBE6.-p$Jg chS!;雝:-5R9XwTce޳*zIW]yţ}yS#;v Vסƛ bNKNqmmiF*$ ;5ճr+ey(3U_STaՉFJU$+= 8J]l<+˱m|zT$aw<ͤ/f}tPaaG_ڻ#Ɨwt}!'Dp^JwǔG%K%oǰ{ZS~_+WA7O⡙i-*ZtO_H1ŸiSjky Mk}2ɷxVot yT׈ZhowQ۾Gt5Te9K:vѝ-4vOSo~jJJ5; =*jFIӚ wSN.tws9f}aH8$C=Y؀wQN{[ ROov}4ԶjivHeݡ=$}ukʆzԭ:mXSj B8ߔ4ݞySҸF*-1)jIz@w>7'^UWmٛOvo8lTyw0}vZ,o)6WTÃC:[}K7o*F>C>"-H<Ug*•+o<7M7{(mФNkVr7? &sJ7VDXEx7tJ5"-ވ*rH w0jd䍨n(0["iH/骫#o{sMMMH$,?a~~ayyd@ #-UgϝC$ɏdIreODuCK N4:zLW]y{|3Ƀd#ˏ'?{闯`~j H$Y~DT{'??::JH$WYDX70[NKHtՑ7=Qn7C?sϿ|;K2 y2E Uoߣ}]$ɏd)[55О:-(LtB!_sF!BN=9v oB荼=yΎ_֚[7B!VFDVFF!ښ3=pS"N_7B!жT捜=!BhJy#'cF!ڦ!B%5{#[lBmOռGٟo7B!vQ7GB!VFgƧ(o43~?2 !Bh{?hLQG-\u ~5[m';-5ӮͺZKQ(7M3aս$WJ=}}Д]S^{R*ES9e53?ծZs%MfpjM4f6m**ϋUr^)p«]MiQvy=bJqU5YrisSEo$3Su /[˻dǦOM:e4٬^'O:7qKYI# :}ᘗ3LPӽD?-*<3ٿf{bӎW4NM6LLMbGM.X߱DUĨlMvْz'*} ϔyNt{LzvEW`Ǝh#yctzlұo;ӦFo&6zFYI2O6Yr0J- l\νڗ7[WBy `j`202dp~LXfʬ$n.WV|d_IO_uƛ?LVT+h`C++{(8\} \m[odQH-I{ce*({̂nΘ׽OHF"kC _\GgP+A]dْ dU=1٣R*WzVjƲπRer߰IOc5x#Q=+z#+\qcdr7ϋd2쑭!x }|i{K֛٩qSER*PSVYTIF*.ION#_4r_y-[* u^- w6ULFMI{+6(a7rFeߒ^77U3ƺ7 `lf{Kbm.Tw'cIt6}ed#X~SrH>>qŬY &k(Ze%~l+JG[23$Gf%ZGɀ<"yW8{~#!594OA'Tul_LQIC>;\;Ⱦ..#?Ƚ_鍊o09 Or(5mTm?Ѐ{}4(x|'{dUYoyTF⊢(ooUdgHqT{ƪ N;$s"#e7ۑIMf>h Ip?JA72rNӣ%]+?U]z}2{7Y-Uިb͒Y{TS|\7y,9WoRfRWpE*!@/ɛT<UjWYoTGF+٣Sc&g #?zo܇>;5pulb6Zzm XЊoFoUGM~OrQCEFNۣeSj}&oYKMd[?:r(|SEt@),rKz# +՟>SEosSk,(/z#'{dJdad72<&أF͕bzKْ-_BOzG!Ue)uqA>ǟ <{$^[{t}i9_umuzl@T6ldbRCֶʏO*T{luU:~5 +VpRZj*P*8,:I/~#G\?'~|أ{?矑s!BG'{>e1F{LZkFGIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/tertiary/img/tertiary_04.png0000644000000000000000000012431114741736366022663 0ustar00rootrootPNG  IHDR@sRGBgAMA a pHYsttfx^IDATx^ydU/>{w_۶-`neTTDhEd(p@mAAA!#3#32#繊~k=ODdf䉬,}^{uN'NX=?\K }ǃt9"ź^xĚ2kUN8wG?u߸ko|=ē~33sy.ǀȓU d쬒PFq4vTI24eȔ)A).l%+ˠ觳Wȋ JO,M+Ñ'?[+Go\.'| P농xnx;?xo.Kgz}PPug20?83B2MaVJ(\u%ۗ&d*If(iX"K${\c DJ;cAՃ ҭIlKlդLas{6.M(BKM𰹵 吔f6CH ]؂] B5 1lgتKC:¥ ^.H*I6)]\ڻ$@y;t$P$QĒ Ӑ!.y)(C()Å&B922RBƘK^1ٚ}?{% C(Ϗ$ʯ_̫]8ѿ5Q&^}~`&$? #u_k`px0// / ;o=0ԄC G* `cѱ((Hq $  FIFI vKD̩9 ԌܟW,xBF&Qp 66Lb@ܜS=o2ٓĆDE+]qu(@j63gӕM] %.1#AI 4'8LGJ,X)@OuI)I&Ĥdu@IB%%%D*_)HŒe(cO&W y& -Y튱ޗcs/<33/?33cG3S$3VHq 73ag^z.s}$5GgRHvSN=hwYp6{Og{>@iE  Sځ\/Fp Uqxdddl .4\2x%61==9=S*_''I&&HFA& JSهx<j2 q9w (N@[8H/.l&D\B3%^ H`o dVa rh1!BIWI@R2K"g cd@zQ}L+]u JVJNU/Gq9ˌK-8FH }*Oi vȒ9#52QZ 0^FjFRF^Mr3J?h IQ #qZkzi1a7Ob !e/vj+v YrzӚ4!"Ɂ )<AUC p?!&J.(RF,pJA`a4(g3s_PrLTr=^^RǘB_ xoafXR*8+tC_HKCR<yg˓?s?zglnsQ 9@&bVd߿3ÇO=un?8p.偷9X&SD"uwwwvwuti +±T:ɦs-J4"?z~!=%7 B,IC0.0D~d ~srOz=rSܟy侾GG?ro{GP7+%8ɆM]@Gn9!$NYAna7.s g8$R Xö5575K?~K}!~XPKfmX9!-)O`;~v<~|O~|Ox螡F{$ 05C0"ądCYAna[_wMwOɹsi|2 ,J_&ź:ښٻ}߮7lu[;xy_wη{kU=͍]-d 4CCё|;zZ20"FXkb3lU6D!E; \2= o[ *rWx{kt D.K1!oq$ᖚp%†HcMdg\F6lTqUK7g^˒bq.qj/Q]d-ٖENideӮd^˒q.Og{3\s}KB{%tܟk\OwwrΎxp߁"RS[_SW~MT텁ay\roJ{R2d/1QQsq!jccqZp yVgjBȰB*ϻ,_Qg\Ѐn)Lbv hG #!${wX].ltXj` i",!Xۺ\ZBMd3z8 &  {,,5څ.~( YK dikv 0l9 2WҨC8j+_j\`Bv9 {jJp~-Qp^֩_!o.3|t`Φi]&HL=7|3O2.x4?&8Db a>9ɀ!#^=G@_<ڀ4{-BL9Cj# m,gI d2O] |߸ǻc 4x2 ~|tmP b.a?20 apqM,s؜dq\[,M&fX8_zqǝwButwt1 vGWw'nC,Ξ w/;}qu_u_~oozn,qe.KtY+РQL,cOtYttYۍAܦ0e]tբ7_o_'VltP[E5=}M.r_}IRD'mMKkss׭#o55766RСCMӓL'};\ZgfKvZTebr9*_Oɸ(>*_ Qws{=dCM '"M;ݏ m ~:`kԃdb!|s07Ȱ>Jpn$8qiJ'a5{ny۟7~'^g|>pg\zsْ$΅ڞʽ }cX,ـbiM2vq.| 9N>$ ҷa@ck#q`TN, _6LOA/3P7Ǒp` N&%{mM}@b/7 wEC(2D,H&@p)ba`d3OcT[`V ֭eMon3,aqz#LA*L"!z0mMM͇jxnӺu76j< :B55eNmfX qx̀.aKjQ%j(]&\)62 sC8d˔/`W,n\^'(܈̐s[YeC}ڭ46Ȃ)L&z;[9[wT>bySEd F\D s(㮷ma HkF}+j"ɱuV=@y]]]݌<~޺u??Cή=qn=wGb?SW=x6o/vt9VP}s!Mw6࡚}wO 'cab9D-syr8"+\&_ؖ xbͶ\_9?1]sa62΍/0$ Ϳ/]>9grY8=z8C}|.`˅l!rH<!x6(&6P|pdyիb?9BNwWGsC܏?'O>??.rc[&׾v{ww YĹMnwmۋ;µ៾MzǛ?|{ f<{',xv}{牌< }@M{-= |OOSW۰T]7E>y7_O&HS[EXZ Cj_PsX xe<{W=ls}g{k[{<=@Z܃];m--;]mm/n=Dݝ{{W;vQmkmiimm-kkkm(ۛ~ k6=][k__{v5ukkkû=ܹsǎ;wڵ={mjn Z pA  kŹC\&62Y$eNjȅ>(`ξ8W[ ݋ 7~ߟ?W[矵コ\pOYwxљ-vљ}P{<ÔXvr|љ 3w_p&y>fy ~|߇wsZIR 5,:;S_~' o}{;@s\Źiꌧn^_/Gs)Ъƹw s 0`7Yq3 l)XY" f{v$\;dw=w@oB> _OOݺ_N'lzvj?t~ꅮ\/{L W j@;$ G7pryǻ=w]Csc,*ܟ%gȎ.-o{ߵnu{tGӶG>n-ijlxV<҂<㶼#va㶼"MMLpq_}nCeCcc6<]+9ڃjjjsk`"wwl߶XHw;{al,ƹ O.B^ÄEd|E8͹Lɼ &XRZ]Yh5S.Jmټv{;P/LV =吒xߺ<>OOgoٻ>sϜ3g}샟9sg|m|+(VJpx%=2i-|s|}}g G\]sg8osΎCm\7spݿ;Ne{aIK[Ѻs(mBFr.6m|97K ϑs޼u>OOssoK~phƥ'`Y n\޻}/%؃ (m tuXFnuv+Z[aOXy"U*K@||[PJhH Zo754п;yo`aXsGKXR#)*^l!6jhn}aT<64l g6>zA`ԺuuݽWۉswuC⽅6Z)-YKĹD[jkfEĦ]E2ŹD[ R;q^)5(-[9a?Hm塤|jҠ'~exOu'__ }W[wŹ8s[yϥO~^3t?Q-4FGG9Զāq+Axrϵ])%\;߂5c[ȹO fl|:׏1m91w:9ȹĖwts?nNC ðLG{$-]?YJx@/ ȹ$D5ܟmG.)\j3م7&8  N:W. c< ky|T}܏zo}`Ԍ\ɹpNtmn~hljn$F?x 0g0oj?jeMM;{wڵkNo54vvRT_.9o€[pA$kX2J-K$皴Y)p5])id {uwvԵiWkI&MhInC45uRoVof!-5[j=RҠK&4qz8/⯽k.}K]sk.sݥ{t>7/?۵=n!B4w w=fKSnn׶gܙ8Gҙ8>ikmǾ'_y3w|ۿ毾| p_oMOO»rƹ{;b$0P-raё(~҅(tc}>28O#{mhgdw1,34vwK܆~<_> ]-?tp.Pnatl~o!toA|dzxݽ x{azl>xprCxBss:-=]7l7jKm@m=wB躏 V@mj 0[_vnm2Q8߁Y =?rnk[0kS39n{`CMnkngŚ[!p`mM}w߾"`Cd2Ĺ܂\FpI! YK$ZZD Ee9M a[6t4tչ^%H֣F%zo]΃M] tsi*V.MJbJLAڹw[| ekj\S嚃_kڿqUǷo_XąXzPO !@("ą$[[^KC6pn[Kιַ!:wJ[!u%>Xq{vSzs06{Mc_Xa`90ɘnG)2A%3= mZA ?V\厎j/ffvW.?{E*'zrӷiC} JzU'^{AAsJv.>C;}1zޡ϶wбg@? LaIۮl-mjjatWYY;~M_=閗݉a$V:XwqNiP"okimnm#6b~9ikknn5o}}=A]!Xw{'L8ls5•h7@  b8Ź sfޙ_>̏z(lJ7'\RD&!ШQDsGIK'J4$ iץGJVJH o`?1wݶj[skwom-߻[[߿%&$ʦ7|{o@C=R?~\|scu[gejb|׷ȷ~PS54RL_,BøB|q,*G: wusmûY@zƒ|j[lG=_W/G=>IC$[{Bmxc%_3=q0^x/rvOg+Hx˂ZƵ/*-J,{|?Tq?>J? 3+" q0q[^uzGWwوjrĻ{`qndȵ4 >қ=4 J :e^xVsAlش RyǦf}}_ߚ C#2Ab)CwgG&GP& cL+uȴ!(?[(o땡m(;^x,14x可ч/:9' ~_>ƹu9N ћ _ҥҷlqm8@p3a;]=nk¾[nn̿̾ ~ iW|9@[h޸O6 ~/ ~wC,>/V- MbۈL'_[a^⠛e_mH}Ղ}.+2?Ixa6`=@R}S[xvmoO"7Eߊd-s 2 0lPRw0 RC1ڝX)x֔I^x/]y%ʗ]ºB _e+|ɖ+CT+r}_| yɉus)~^~^~Hӏr@ 6LiԿ)Ŀ E 'UMoY br.V.XyPo?{G|=?'y_w/W^}j*`;:?A9=V'nDmq.F1~NBh{ܺO.& e({Z0 D l10홋; jo0pL@DWf_.s =͆]x阶 :Dfz{wGIF|ȀEaG4AfBHo׆xS|1aFl!0H;:8 TE ns  If2C %\ιK_"".f]KWVVl•biyP%.L)C)ƾm/DBĞSLFTvU!GLŶL$ oc_{߽¯ӿՓyK?/۷o۹{瞽9P[_K&`ByX ˭Q8ړom÷4Au~)mMatgNRJa(q-Ձvc[:WaXӆ^@e8m4. ?FIf{a92¥n$ڜ  ٠,snjuqn%WBl•Ub[2i:2}y<@m|AAƘLNr$g2eaf^a%*92Wi1--ŢW8އ)7mm j{g;mmo_;~c׶?k}8x(ve$E.*nr ^ڈ׀@] n>K\)Rۉ1L%ujd EczSxBt/ie}6.IgLX@A c&WyX6;R[A jF;QHHٶ(N'3Ӟk4J_L0^`۶7-/wn)e"d $NY玎+h7Ts(r(2 ,ΥӔKKK6A5h8\ݩP UH:Eܙx87oPxkw755:X_W[S{}`ߞ{jmmjlkkX f<˝ a_{ -^X6D}0(} cN;\"7F _ ϖ,$11'Q.oFHe+bKSÖqJ"9"-CyV)ЇuяIn (E ~-B`@pGp1 ac%|'o١B@ب׷ehȧ?vsY+h.-2  F,/d9ò5#WFjpJ A1lt 7d]qYEw os2)|lmLh>0(շ[J"_L1F9ۚ^&P>tG7;p O|!̄I|,!DЇRlф8 ɹ1\ۇ+)9L{7N }M @ńqM |}P>4 }e |`L zwˤ!J P2~X̲ߝX9XGܠ\dkqOCZ d4ޗ#$1[SgT]g IҐdPo:.hI38f+KI/dqq~/\#q:/  2Hy+|u{C;/["[[y15r|ӚqiBDGqZ\p>Y! ԑ#GN;tιȹIPvUAgI{mp `5hѽ#%ƕB(yO2ῒnXvgJ}%:ЊU+4=hܤbO"%ӯ86_wQHuXWb(3(¿S&e&$AXғ.yY׉$"_$JҒ?cx1_,)WB,=b9!~|f*vcKp$)Sylm, \{lUt&)ެh,Q,Ъ+D/>rN387NMXoI5'USfs.ge|"EbDAz% * 1=zLOw&}O1B->DžvBm R]ؐE˰S'x.B~Wr(.I/"^k+{+jB"/q` +1W6B$8^|㫉M(n3L3ĚjbQAb0%㚌>|SOœ xJt2=7|7t㍦&Ņ^\ ҕ7kL)_Kb]b-*&Z7y^ Q]sO9E\x M.}- xb^ =fnl9&Ϲ^x)s ظ\/^xYy,p@u?;2qϹ^xTٰ~sq͌9׋/^$7lε=T\/^xlܸqnvN\#ssc8~Ls/^,G6mT"sǁsb^x$a7Rsq9׋/^$~ŋ/ t?W s/^THb Y1|.NĴ\/^x|~mTlT*  /,,r)~ŋ/nazj7q\I'E}z[/^xY,k`?Зf2djnng;}NǹOUL&?<<qjv+q< gI4@8ҐG ʍޥyC_Nʛ!)"r%!0ܾښ5ݽkv\kO.\,CVX zy[ҫT^%R[$,W|Ԁ>LbtA7m2WA?3 .}84v5;{ 8F 0@_5EO?)MR c{n &6G8Q2r!s(¹SSS/Fb {ş믭ٿwٽs'80ΝC[ЂɺoX_Սju}Q%_Un )mcgTiPxBhhW:pB>3ݹ0G!pAT y!{'@Y62P%@y[8tmFtfsA܌_,F5XIq.#SN9.h8%\PCxؿwx˿Kf\G%@eȏEiM@ nRʳl߄{Һp=(@;";kx`ЩlnyV3fpx:9T @B/;n4"=C0"$Fp* _͝HKcN|mp%,s/e|KsKKssScc _a;,ef<jNT7ДUAȱ<\K T<xLNĝhCbvh:k=E oCZy6ۀGQt _6 D1E5d-cAΕ|3_qÆ]5医$D ]m33}{āsS\k+Z5U"kOWJc%6uo n%`:QNA@eà ?Yp=rUy-8G;G1pL+ɲnAOpCC8Zјհ88L3 ,‰FwFazA @ST:Ӱ8W.nw<?NKܫM&D2O$b ~~ ]s3\tU t64MCs$ 2Q= p&l)̌xBTWFDQeȺ[mҸP*5Z  ҩaҲR DgA3T:{iX ~K_ƍ'_vkK뮽nrbIo~~Otqn-ڂ&c%•FG G؆sso0 848p's> 9W<[xD>(\he`*aio^?;3; nHX;ȹ|s,c͢FnܰbAbZw,_B}<<<9c!JΝɹxo!᱖87zŹӜ* _m^7V&Jpn5i@=i1](e8 ӚЗh+߲JGs މe[" HܬCYsάpv2穲XKW|jU5p.׉%Vs\ƹپɛq?פ>XʀO(dC<ڡMEܩN&tKv sO0ؖ`Jghj!t2Ӏ!B\m4RJ-ks/B &(GEgrG(s.{b͹Mg+¹X-Lt!6tfjkZȶ «BI6q8_xl0k,u;Gsҝ%1o!\43ۚjR-q;;g֏+GAv;3\@U8WҮ\ȃ87-dz\Y%zaMlb^ WPʿ<*Xj;Zf$/ܳ{KXSPB;77 L*Dqf{{ΥUU UN֕2Oр[09:C07d4#T!Vuf6_g@ӇCqu3R%߄uJ&H?=*r.ιsd*E"ED/),%]mE 3s:|mK] ͜c!d)N.tuԫjJ!eX(n{C G((97ƹd:dss\V4ZI^y6Ҁ0/-)M ME.8{6UKƆ`dȝlЕj"ں>D@IKГf2j<XGZk @evhyb(_snTRm&Z4*qj!q_R z/t7Rhj"8Qsf.\n5u,D^ayV%ve}bRA"Mz{{a ;5U4RRVY/~w`+kK;U{) \3S%ⶹ޾^Hb.)Ю.XeׇcQ_e"VXs7n؈-s'X#z*qp.>%- Ts=<<ܓO望b\sǚDd{7LOO  #Å O>$,~ڽ'>\w(=V!"kv@ `~0?^XX8Dܹ9ڦk~[}tXuENxoEʉ.%<`(<ӵ7UJ qW^(X_w { 'j׏;00|ΥԪOj>QrGy%cU0%R@ Bx (Bȩ8/7:X:"+ѱd"{v5dq/sj4@[XKU+^Vqz LG`Xdd*Eo%zQ-?SGXΫ[hBRP8pz`s(A_9$ټ)Wr& X t6'Og!,Pu ( @@Jƕ.K X̼x r@jx"BkGXs/BgGWww , +-㓹@045Bܰrd]XE V7}- 93ɲ +K3B 7an`\ 4ʸ ̀ں.6° У.,Os;r82ґ)oW$[AԜ97u \qnh݅2Ujp>mD5$! Og!,PJE O{W6,o.ٶ-فҀ=X!]Vp?FvfF&ft# z"Dwo_( ]xo!H2Sbxc׹s[^$,c-<+P 17\ű{ݧRb,Rۤ: d#cU QT^-)ݱy|. 3Փ2TAܬRz "/D*%x>s.~zGwɹ*^ "waYG7ռdt!m@[=^ēJ1rHy5DU-+Urʴ^-a(y Dh!cD1 DBpCyXs_qx2Hb't2r~cah8wfZSfr)ã"s0ߗn*>|do8o,"7\ 3ksNs=]ǀplfvsCd{7(0m܅Z HatsCd{hS$Ss" "Cfs%]w~`ƶGunܰqa~afzFGޥ;8wlDK蟜S+rf{+gVNvI,ّ.C@Ϡ[څJHT\Dts,-Ź M\\Υjlm`u}\mk pzQ#+nZV"8_gVNvI,1.C@ TasF[d'Q"ܯ|ssĶp1:}osr9PfK?W|gUd*K1\,-  ,,="Gd{嗿`. Z r#G$N޺ \t@.vRJ-VJc37 R !Eo%zSppXΫ[hBRP8pz`LX ~5i "=(9wnnM r7y ]/.Y1g-"C*J?Yc38RFn2 !fEjPt}M5\Jg ʽLra؀.ܿG5ὅ̎ёB`-ƹs4dқvǹ /R4.~0T LUdL[TAd{WQd*O{z::ggx"LʬsueѩYf[!tt[4DʒC %߄Rq5*k˃0j`B2B6Met"utw̜psZq]PQJPu? +hN eJuSk% 3V O#RA-tL(&AԢߣʈsoɉ\_?ۗMg҉T2=ҽX,OTsW5pjU|#jDƹo y{3ss'7AMuέ:z"܍6NMM  $ rvo8-$ \|W]Q Dǹ7NOML|.۳s[scqZ޼~ [8nڸ 8ض0T( qxa6ܶVX<9c- / "fAIBK\ ݑ1Ϲk s.[KsxC,`ǣ\ԥ; 6粍cp-Q{>J+^1MuS@;" kգ-5-'Iʠ*+iܖvch\*E)PHneQc ʹӂs{Iι\_EtDeM0%h5A~S]43> =*SKF棟snPu9ܾ]sg8ƒ±9#rTsI\|hn榳csnoW ,xEnz'e))oj8!~\씁Ўfq0ZJ84Q<,="jtwe8W_w))d ,VV: D\-Ay QŸjb7p+ fb' <+@0-BHn\Mf԰ 4B{D-T2$s{s\PnzbQ|@G3.??w1c%3T:#X*+Dzgh7L&˜S^bu%W4@wEtfYVtݡ- 9Br+.,9DPM)Wͬ2l<3 0,,y x;qC|YAd{-LNNsϟ~Qrn]v5X.j 8>rB)a32lX\m[Mi{ },HcV2sN:Xвr_%WںLK5+^KR:H MJS Gеp!2ݺe܄#G_ =*S&r)cQsozcsNs=<"Gt{&sNqn,:v8Uݞ\~/,,@ Mf{ V#fV1nX2 .J7!]x!SU d;ذ6-K-!E@*#P#FX (o>JSMlCw\uyEM! a*KQ<_4{GϹP^frP\ɵ3P0|e ̔T$[/JΝal˰˸jFBt%S¿> aŭU]ۢ!%`ŕ%ѯ ߄Rq5*k˃0j`B2Bzxx㈌s/t:][[!"ql!2ν⋻mVWW M9c"2ν `~׮] X,>|XpL{ JϹ+%]w~sWƶGs?>sofMMMGGG.[9HU,SujEάxoEʉ.%<;`XuW5 tN[_xw`{gjSgUG#yBQzXLf aU-J \]x"ܳ>?K/k׮\c_HZ?WT2!PDb $v,D0+千תGV[2_=9wԔfWsWn\(ODxc \hkQaϥOHU,QA2yԊQʉ.%<&`XuD` vjJ0o4Fd}-?n"AJs6xYmךGdE[2VY(. r@Uׇ-,EǣrsopNa  Ċrԙ-Vd?(d NHX`V 3UԟA-b243Ӎ6濜$=8wÆ @CCC@a9jii iH 1ՠ(O5śjݕ3s1{ !$7P {Ɣ"ՉzTq-255Ţ#,2Yz-m Pkn)?Pb9Mc8].R/'IܢbԚX-c=BԽu,'Sf-=I6,MRKHE4JH*Ԉ}ʛnT[]i03<A]^iBr3FN1,*C{TksE(tJYƁ j}r2 ` 0ޣX И0F]f[p(UohQ4gyB 7an`\ 4ʸ ̀ں.6° У.,Os;rPҏ#9 38r{TsgVsJTz6p7hZ4mMe ݧ]\YR(" aՐ ʆe ۶%;pYД38$ P}C`L@)3 x}΅jqVԆ; 'l3F T8OLMU˙]Qj`3i0h(Ucs4%&!hjՠ9=wґf**MeZZі0XXÜklmfcŪ6N`MuS@;" kգ DX ~mz-+.+IbMsn ֩OzĆ\ 9]*٩ODKZzlXJi T0p7@%&xS ס`f.Yyƒro"䆐6.%:K `msJ8 WhKazjMuP?ZXeT֙-!ks̿b9ЗrfáCzV"'bP7:jZVJ[7iiF[P:c4+tBJbj(}R3Drs *EeϬH+ȹcsNs=<"jܱ¹9#Bxs=<<<\~ȹm RX۵{W-ȉ?;e c!Y)(o@V=zHŠW lp ތn"2νe-9vڊqnE襮AGl݈)! ~\4G -Tu4qV.[!JսiDqaTܩr+ Dl zUK~ f% dPSEX""oP(t9WspcnHrJbO}- 9&lW"PM)Wͬ2l<3 0,,y I6(钛N9 (=Cd{'tܮx9jR˨:g 4ONP;ZN젢ڝf ݧ]\YR(" a Cƕ ˛@mKv4)m/gpH0 EhV[OۀLۣ:s:ܦF 6Ɠ\hWbq7dK}@5 ꗽV[BSc9ԣ1J\,?z&xۑC}#Run<<*UH+9L ׄ9̬d2t eJuSk% 3V O#RA-tL(oznAJw~.Te8(N}rzxx,"-pd-έ:zqMJ<+9X\|Ww{s=Jƪ`2KpťrĆpĔb]kXm@ǬXt9Jɉ?;e c!Y)(o@V=zHŠW:0;S^IcXu˿V]sCdKpuO ֘'~\4G -Tu4qV.[!@pʴ('NJbq.JDe8*EuiKCs5A~0k0υzizTsa[AΥBKa6YU\C| Ǫt[4(]\YrB 7an`\ 4ʸ ̀ں.6° У.,Os;rPҏ#9 E|xDUĹ=+TZF9kP w皫1rb]4k00>rB)a3$(W6,o.ٶ-فҀ=X!]V"~+Ȍ鯨87I_BS +]j gңDg*LMU˙]Qj`3i_[]Uz=jܸ\%9WASREה=,nY4wґf**MeZZі0XVunaŕ%SbPS 70YCe\`myf@m]LaXX@Q9t9#C69? 8cu* svrPb{ 4n( ^뢦'`xsȶm\4   A@ ]2CR{ruΥd,}vecc*%o5 ޸F2s7UjKhJw,gzt1F5˂Drr*%,ʳX[j:TiO;H3cB}\i2-hKJg@Fz.ZH"QL4Q%-7G&9wVpDcrzxxT@sW U\Ϲ @U\scksM_u)s*jaouqn6ۋ?9c-op6kϹk@|spwO@|ks+mIBq2āGt%Vά(?X³#\ K9S,o!Ds6opn{ l6;-\e|~xp0?00ןL~zX}Qɶcc##L.d:OvuZv#/sgps=<<-vjjbbbttPŒtvw67?Ps;]JSMlCw\uyE ̩4#8 e9+GDǴ9.~dTjSєt(NcIh(I2:tq.4䡣RtK^Y:æPun(]]\Yr<5S 70YCe\`myf@m]LaXX@Q9t9#C69'yTA?u^tуmmGRSm"rꔽ%v8ʖ}scEMGݧ]\YR(" a Cƕ ˛@mKv4)m/gpH0t@ ]2CҀ.>c ȹwy'6kll> 9NʕkV5%j-^vkCzk~فr5 ꗽV[BSc9ԣ1J\,?f&SK :}.ʊ$Q!{ =+Źt*gЕhJGQ [IGZVJ[7iiF[P:c4+tBJbR'T9Z U aQsW±¹U\Ϲ*{p.=ϹUI4N9ziy^O'ufDiR0,:kVW*[sM9w)m QlXLf a4*UVp4֊G9w@5nT8XМ)ҽn(&}rkգ[r`V243ӌ){ѲxU'MUsX2U, bϽS+Ӓ(O5śjݕ3s1{ !$7PCEL/cU`s.kRV NvO.?'w1(a5c2j zFR b%BC:;Di@=c[-rH_]]\Yr#vJ@3k+- i# @=4G.%@B?4H+͹ϹTH9۩@sP kÑZ5><Û@mKv4)m/gpH0 E0`+ĸdɹc@\nKCjkVs+ɹ|zCgaV9Y5Y& 4 QT^-)ݱy|. =Ӡ.=V+" ^ooss.@uٵ{v.s9 ؜z*˹t]J5k >z'ifxBhY+mTm CHT%B )S$ pLNAJ^n8fccctca(n,ץ 0twttu8PO J{yS'8c"D(ãݷo.[ ?Os9c87h5ai`Q<>>ΝtK08{mq..zX}suڵ87&{ 6VxXXe᱖Qe8w~ϹKn;+cc 9}׷lOy&9I.as2dKgʉ.%<;`XuOTU#¹ꕜ[]XÈ"V-?k[.%cU0%R@0 +U8bkcqXEۥqnnrrr0qr S2b $v,D0+千תG7ef14e/Z5,& ɰҜWsXɊJS86b]So+Ӓ(O5śjݕ3s1{ !$7PCEL/#jX z駿p)y]鋿/>лK$*̹,?YZi*80=o7] Jq`2y#A͘qUs~/yӦM~ӟ>۷o_uι}\,:hCG(azp(Uoh!} Xvvqe!xM)Wͬ2l<3 0,,y n= ]rd@"zT voƻG­ pq.5R:v*azAe Gj2k] o.ٶ-فҀ=X!]V"~ 0b\2Gp~h{?# [9wѲ\>ء H 6 4]xTH&``⦪_Zm MS.(sY0~Sݵ'`U T /.h8Vsk\:⇮Ҥn Xa2MuN:Xвr_%WںLK5+^KR:H0P<=Va hR`ή T*] ]1d0rBjX28:97\Ӝ[uQU0&-@4{ |۷&9Ur=zxTsa˘LVsiun!νy[88wttcUd88:NxXk`TXej\\cs9.\͹={Zs\`ϥ\ů-s!;xemK%9-tŹ^xEr-u.q\/^xYGt=zr9w{ ksxeiRsϹ^x|Ν\+8wjz9%}s/^,Y{9ڜۆ7ftttpp0tww455R!cE]jf*!BFTj`xgQ_ 3أ#B0+ r=L@q 2}@or {Xs>QKvקzb ӱ:L>hK6SɖxS_`oOMol׮ޞݹTMPaul{r,3=9Hl;7323905I PXnr|pr|`b4;^Hu uO$Ƴ0dv:?'dvj,1>>pC#=;]!@ʳSɾxfz,==$sxaj ,p/c၃ځځl`_Ca 2杛Ӝ>xu׋Օ6{yྖVa`9 ȹή ҩd*D" 倂_Ϲ\PP-p.,pnsssGGJp.fsiJ0`^J9 Vɹ  pn 97U씜{ 7V ۛhMs}ޞlw}@tLϮ|elk97?ǖHss3ɁQx!9VHF 鱑hXHzt8>wȡ@Ȥȹ3񱡶\Pv(W?;8<4:=1 A%MqΝ;gr ƹʞKjs{s;FS΅5x 䎊C/6VlA CWb5 O?{ǟ|)aƹ==1s8ssupܥ].B(>@efYVƹX 8ɜ `:h hq]]"[p%X+0yR#Cs3M jܚdWm.[M6ZTGrnSowC>y ݱ'ձh/ S?<2jspdӰN'F#C@~`Bj$+ vcqP9hqhu8W<n#M#碽ΝBB圫 ;a0KwRȽ6W '-&/9xVqn2Mg87?84<\rʃ T\Y\XvvvB;NC%.5`s8 0 ^Xe;Iq ra|`o.q@s[@MÿلDGMDutOm:V)'5g3]tP_S!9Nd4q>* eF# v[B{qfXdd2rކZ{rΝΝN'Gc Nyz'9B`Ca.pnNܩىr.zcJO6{yOXm;ggԧ6mڴ|k_;a Aϱh?EdW]Yt"Y!*t1^p? hY'!99i>w5Wʹ鹙ٙIK%C8 أĹ8޺Eޡ3y8$2M@sH_K&s dy꘿gt-Kr,e`,¿$FR`,FTrd.Utf0v{ [`ɽqtC\=<`]~uO}W]u%\r)r@ SO q: xg< vńk ^O:O<6Ӱ͌|1 v%NqƩg~Oπ.%`_ that is well adapted for its use with multiple-layer samples. The Monte Carlo approach uses the `XMI-MSIM code `_ mainly developed by Tom Schoonjans and Laszlo Vincze The code can be freely downloaded `here `_ Currently, PyMca simply evaluates the ratio between the expected measured signal considering primary excitation and the expected measured signal considering higher-order excitation. That ratio gives the correction to be applied to the concentrations calculated just considering primary excitation. Exercise -------- We are going to learn how to account for secondary excitations using the spectrum from a stainless steel sample. The data are provided with PyMca. To access them, just start a new session of PyMca and, via the File menu, access the data following the sequence File -> Open -> Load Training Data -> Tertiary Excitation. At this point, PyMca will show you the spectrum in the MCA window. We are going to skip the usual procedure of calibrating the spectrum. Therefore we are going to press the fit icon and select the Advanced fit option to reach our usual McaAdvancedFit window where we perform our XRF analysis. A fit configuration file named Steel.cfg is also provided. As supplied, it only considers quantification following primary excitation. To load it, just press the Configure button, load the file from the file dialog that will appear after pressing the Load button and press OK to return to the McaAdvancedFit window. If you press the Fit Again! button or the fit icon, you should be able to obtain something similar to the figure below (please note the change to energy axis and logarithmic scale via the appropriate toolbar icons). |img2| At this point we can calculate the concentrations by selecting the CONCENTRATIONS tab. We can also select the DIAGNOSTICS tab. If we do so, we'll see that the program warns about secondary or tertiary excitation contributions when the correction is more than 1 %. You should see that neglecting secondary excitation would lead to overestimating the concentration of Cr in the sample by more than 60 % and that even tertiary excitation is not negligible. |img3| If XMI-MSIM is not installed, the MC Matrix Spectrum button will not be shown. If it is installed, you can also calculate the corrections using it. You just need to press the MC Matrix Spectrum button. You should get a window open where the output of the code will be shown. Under windows sometimes you need to use the 32-bit version of XMI-MSIM. The first time you run the XMI-MSIM code for a given detector and geometry it can take quite long. Subsequent runs are very fast for a Monte Carlo code. Besides showing the Monte Carlo calculated spectrum following 1 or 4 interactions in the sample, the logging window will show you the corrections we are interested on. |img4| Whether using the analytical formulas or the Monte Carlo approach, accounting for those corrections is as simple as selecting the appropriate option in the CONCENTRATIONS tab. You will see how the different concentrations are corrected following the selection of the appropriate checkbox to consider secondary, tertiary or Monte Carlo correction. If you know your samples require account for secondary or higher order excitations, you should select the appropriate checkbox of the CONCENTRATIONS tab of the fit configuration as part of the fir configuration itself. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6677659 pymca5-5.9.4/doc/source/training/xraydata/0000755000000000000000000000000014741736404017174 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6677659 pymca5-5.9.4/doc/source/training/xraydata/img/0000755000000000000000000000000014741736404017750 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/xraydata/img/xraydata_01.png0000644000000000000000000022516114741736366022611 0ustar00rootrootPNG  IHDR;IsRGBgAMA a pHYsttfxIDATx^}ŕs|>2ؾ9cQ@ B$I( !A ! !@dF& ` 00`ڜl^e꽮3SiꮪWuu' yV<%7}e?Ï8 xp ~0`gAѲhѢx'翸_<;5V6U7V5T6W8,o,l JMK[y"E5š\` 2aUNI%rM9rKY!l+RIخBm$͒ur$srw`dǴ[vKĊ7W|D~ ]-USqnڜ5kj ֬ϫ]X!nȯXP'X(n*n.T,Yr`ݖz`Ni}nY0ظ!1.QZ(kh)olhjljjjNU״׶vԷv4w6w5ut5wv'[mѾ}g];;wmCɱkώ݂HI4ًniKgM['e; n۶[p[Ww7 ށhhmk[[[ZZ-͂- D(XX'PW/X[W_#XWS+X][WUS[USSU]]Q尲RgIYb[a) X^V(T_*R]SS[['PCa675[Z#Hl!!rd  9W8i۷!)`l vqdkk p",)ڄmlhu@g`M-8 *HR"D _ڕ!U)`pa\<, \B>k: L@1 Lk{m 2Fiݦ]bfס䋒;aYnս NxD[[M^έM--t- 645õ,YX' ]Ь$ug4L](% (GkN'Y:a9wNXಂK$5qҥ _p;6hQqPK F\L >\< \dL1`Ǯ]RаWxM? -v >'{^>sFcw׫|_C׫|m/BdӚBGΆi?: cK_P yÆhnhOT&kkK0h*V6T4W6ߊ" )B`(`).XDY'4C"yR9*¥[_j7mMQ֪ݚM5o~f nί TPklݸfZ]>z}^ rV˩mNj^P$닌6p;؆Ԯkխͫ_Rz   65n.nĿ[%&`N)mRژ,k-yMyM[+UMUͅE5DI]Ki}KYcKy֊*)j:u ]]]B tokֶ;ݻvm۵VyqI' ~:Io=J:_Dw&鬓˪,Vl6H1BB RmmHȩ[Z E Y (D䲂5*tVVgEE\P$bkP` Z6A-ZpZvBj!Q2 zlpL;Dx!-s ԗ ,ضvP( DH6J m@! W-1@mY P Ǣ"E@`l8Z<=Lv  ԅzIèŔ@iJ^* :g&)@z @ 1澐"A4?`[0 0EQĺ_CvaEjQQ^,VRS].1\ 8p:U)) Lt? $ڗpE4)  /F6: ٶWmW?=Srwj܅|*)w8ʪWVuUm/jyyU˫^}Kl۸$p k3<3rHPCf_zaûkjilUPY"UA&QV(n.,,l.JaPTXTXF#r)`)v`%B6K$ %yHp>NY+h(bNjܢX(SX6IY((s ڨͅ Qܘ/(^ $ _¯]O׮^f-f"釿"W@ͭÿka#^Ȁu[A 4G7n(6m,hXظisbR2$5˛ʛs+BU4olZ,@esAU*_(i.I&ZJ[Jz VV^Nb@gSgWSW7Hmo۾cǎWB1 EbQ qKFQ+dXl8Ĕeb{Ap/t :ʋ|m.G6$CH1a d \nH:\hoPkn^K" I A}=&00$ZHGdVnOR+ 0_`-.2*00T"@QU@` a#!ꀪ=*zK4/Y]zhC P.MEg6b'I"&e0pe),E'=3CAc42@5$ *OV\Rbq)zFFFBjR>`j /S槃I`u!\! bC`i xx΂ܚ?L4L $^xgt׋l{3;_|z狿?>CmP㏿l{7]/ߴI?<{{~0IPw#=!CGx7O';j$ho$A HDiU 6T&*(@bmttCl*RBx(>s@@*yt98[\?sBi[+iȃE[mDRl7 6nȯ߰(:|u__+($ETYqX+6@ 4n\q=0$@ӆ¦EMA %R2 ̫H+yB + B k[j[$H$hlMJv5@GBtw';wv ڶ{vX,( KlW` -`m!SMly7zq~bE" |y[RK0)Ňu*@N Mj){@z@)_y-Jd,2T"ѐ7;@ u`HBRXJ:ʐ`JQSE ^t%B#  K /z  MJ y/0JxM?K+^њ@$ ʙ: !&>1+ֹb :U!4HBnxiHg?i_X có&nU{U7zwH|]F*ܱܶ]X˶Ul]fU/kjoY_6 XDә,p.AaÇڽ!VoJC(b@) uIP.MTXެB$x7+3œ$=$y -o8@n2) DBNq㖢-B4aPP/A~||EzG@/jAڴ. zͨ6'6z` 1ЂZZ! @$(.Q\pKIPhlijmnkimK>"e۶V$޹Ӕ{#,{޶x{ PB6 8 qcA),RLaz p;/rc lH:+e)u4A*áWa0fh@( *>)x0'CPH%SI0k!7 1z8<- C+}Br'A9 '>-?\B*'IsnB6b! 0]h4njW {.a(x"(d^P@C@p̝;I <: 2> 8KyMp=w`⡩gmZ[#O#ABRm!T$"H' ʚe͠ @yPܴqsaT Ļ[}[%PQz zc5=xD  ,m= z"#@Kn`^$) CT( [ j@$ j kBԹTATB]Bt*h۶}NG7޽T΃ CѺbȉ //\ʈ$tCPn ^UP),X,zYM WU M -x Qy-wYcq jx`1=O'HbH);Hzq@`d(^T Xԣ!zx8@X(^ZDs((;!I(sKɧR{Ua HсQkDX$d\AA`1PC@) R4()N`W$ 84g瞖XA#=roe[ؽU[=uS=M?'~~w]?C6p>pQc+௿ީѻZIѻѻѻ{$ 5 ί>m`bY#I^J֪VY"o *)R P(n)N HҶ,UDhB%49&CSV9 ALP I-U-XR,(ж 6I6(mPU A"O<1hʑ@~w|VzBa) >= \yP `H͠6z9[*@=H *D VNj|! k HήN!PY6R{' Hh@,QRi]ad7ޱKpJ 2* ݊%`;7n*qbR`,"i:K٫)}GF^ ^S fxFqԀ Rox*P@%0#LDFR1Lލ$FO#AC` 6c+MQQ`0l= "CrR(4@P"@"xyg T) 8HJ x oC1Y pP:OIQ"A׼pWDCHSBK&0?j+W\QЊ?5-{hy˛^V;}| UcC'$kgW?]y?]^Ɵ'</gIڦAbH1 @dxːhh2)DyMKEMK%% †$4 % J`t4Ɉ*m-qۂzRI ئ Zh *@HaZڜWҜSҴisaԯxP^|A>H ȭ@NX+70h8W) C )Hb@$xVP.b \IGV& 0 XX(t?m*DV<+wIU}RCR$p8o ށ J޶{((2@ދ&MnMЭށ@[?~"rYb\^&Tڂ9 a00$! Xe' f4`(Pb<pxT TTO#9ЃɈ0bX0b*S4XF#3f-#m`4o1,-R[[-rWq$Y10[| I0Tq$|="=P6o/Kˮھm[jĻz*7I1 `/@kUMRnC[ֶBpJ-Q+HRہlr` b! PyRw5mI H|5:|5>t(=QnGB$ 5ITG=@ HdCdSn$lHa_F/ABh G ʃUA7m ć vP U 'Gz'xB@7#-pr*Э>$- 3NLݣ^ >T. A˜LMM .`(P6FD㩀x00zt9I D8$R# ~tK `ï @b-@ےKJaR8rT%{g|6]]T!HyG$dނ󷺮XE$QUpuC NЩUmbnvRkuWەU ִմT$4A)ơ@J ۹WQCAI )8Լi}8xPмDHMR EJ DNyƦ2I@<4A"y\ GTR|฼U5APz0x2w,l-Zޠ@mG=m t[xŒ Ax: lW $$n` 8$$ \_ƍu``FlQqb6r$1t  AE^5n1z`8q&@6((jNTD'!L?5$ ~^ A$p!!%Ƭ $/o ("$b=tܤK752e:{ x*@zMm(/p3?Oj;[{-@ ~K}7ﻩ←遛)M[$W"䡫7?p#0q-MXw2`*[Vq߲{o,Ƃ{}S7}ozJ3/Ww $_$ 5uwKr*JhHaJN4%>XnW_ b[k*( -@})Y<((lU$^|lp`` CM@! )AMBl,UHzPЂKzCі 6m)#^,|L2Ā>!|Pqm c$0;$%f@fMOo)u B4U6)U@-PyNq}!]JQV#4?0g?@+}nzmLb]`,SV){@ 1cNJ) 8(H`<!9 T x*`6&j/XpTKeF?`2 v  U@PC@ pAmMņ ʖ-[Wz/ klC: o[?˧ӏ[sqqܛgǽ;ḿOф[w:,rƽ5LCIYc%((N?aL1[&4a̺ c>U,)xP=z@v AZS$ ~IEP͚0e"3g 64n. ] TZ"2ۇ56ia0Rxw8~$t3wr;k+b2Mnj A AE0@W-s`ƀy- LP01@0tGXQU,SAE` |;"I =P@5`8-r"NC8YS3˜j"$@ gbq `B h hk4 I%ȧ:JKKoT)wI6^؆$c/07S֭7}c=c_9uNicr7Oc;}c֍?fcru1 K=l.J\5C=ŭg|/m>{3OOFo:S1:]p6g/ #Cݯ^n|f͢'^W_]޾bHs~~+  4$(n$Ak $|Jr!  T &z,D6,J\Pa $ϭB};$H|}zhki"ޡMMK K>Γo~TAz>Ez㭍ӻK=|ؕB8}JbM74 HUUڳ яh*ؾmˤ*0*`7!xRHJ b)'݊%> m#Nw{ HT%J5MLdBHmAS?%5 AETv@`́] 6800tCh$C`@"0*L?`FFFF %Xxpx0`=F#F.{jP#0l\$GISf`8zq+ug /k:a0 y(d^P@@q$ ђe+ N$)@=%BweޏH6|W:$ PzLzǒNGT'Ļķ$woϺxd?;y>) w؎DI0$)-hʏO$^u P(I9ߞ-v#0|Y C{WΛTKSy!Cn~FE wYlI=JګG?9pSPW&4{!3)oش *֢Ve UY"!O ,>Qz@u@$ ~P^,nnt q&"т&1ic{ƞI<(@UkKF o)H> #MGqT# x9t2PYM0ao@` ``T` x7 '0cQ4`T+֠$E闊'"^0t:02:0n,/z H^b''0HfvQ 4^& 8ltNEDY f(A$\HlHg'5@b!`$Kʩ'Ǿccwc>?zݙן9zѹFo0`( =c`]hSAc9*g1[q1kc=}ۧy1R|P,/xlJ@~_.?/1p?;sg?vy{үWI{m(Hr! B|F`H' E>(( wO|<vЌ1~g"ry@7oLa loyޗ k0x $[4@~xśO tAyxJgΗS! @<(I rXwHGkJ@QB৊G@C_`= X܄=AYf@H-K+WV>ۇ:ˤ*>!\had=tO$}WL,t+v;퓽m$zT:(9 ANgZpO`0tG ,10 z`)* &IqPaP"lp -`=EE- F&%/\@ 9 !NE5 u!fB$4~ԑۇq+z.ÂW+4 yp$fJ`RGIذeYYokt ֭Wz]IIo'_>?vܚǽv7Ǿ3ǏL gr֘ܳl? Yx ~~InXaY'ș0z˄'^;ag=cg}~욟@۴$Ҽ'# * IPF'w=rMكg=w'n~ $qۻ$|]!d/I so@ !S6"TZ޲7'OV{D,;$> q&!gۄp) @1 @)018b+ P%=(P}-)Hzۇj_*?^ex! ;Ia>(7|seHlgm ͗\Q"pqۇt+Bϛ^dr.Ybc)TJ]5 @;7Z$ } 4P"Q\H'Kcj@W  J`{ Dzpx0`b NKM\FڠjPpB"p6RMEO?b}RG/9@t_ `Lz%PȼxҺ'mxҦ'N>q'}SNC{ϟ_̟|ϙ͓N8ĵy';ķ;ƹ'zΉk9sN}pfi8S$G4 IPg|A ;w鿽eƳ7 Ix1Еėoo,) mH<=o46G =BR$jrT,g> ;$[Į+^ZKۇ*$) w*Il-k-M4oi#2˗c )RQAQ?A`S>؄)._'RG$(B1`<%I|'. C$hs# AnxYJ3x% pad9h6]x>& (ݐ# "$Y0+U o^0 ƿs_pN]x O˹܋Nzi^ >U5*dS>5GrS:Y~0ԿɻO{~x}N?## 7(Ip{'O}n/zZXbw `*+I 4 =PTnqH}-WQ$ U$ʣ$K@&J ]l㓌-rJuliR AWSCƠ k -ԌAAE HDNi󖒄T͛ AO4l-]s! _0<p G&GR6 6m*IJ$(u@eCR$hJv) :$'twmֱ}!jڵCX(fTݸ$%xSUPy/&I7xk=ߛC0U46CJf`"TX }Ǥ*Q`* "0 PM`$1`$ÈPD=j `DG|ѣ`hF:HM m4億SSB] O:XJ HсQkD-!$; D^.?(!т ˫rrq㦭e7ؘش9K¸acr bYV^}ˑ_+[My)o]6˦ŔMpޔ<ݕo- ]0`Ă']=҅tjXR*B!t༜~&0o?8+ߺMݯNpi,*5AS5;=ses7t ,;w3kzھ4I%Po:$c^.#?p{ACPxVDY^+jiРVfd]Iov$X_EBɜں’6@}HҖܒDNqb3HHŷ5m(hހyL D/6@lğ"F˵B(GH `E" ` bOG!oEYIcg4˟-K3p$AM͝]-]]ݠAO I@Y0"Ak9;@)L1C:(`%` ś1ot#SXJdT ɨfV){ Q l0HZ0;ep 1nGXC@1x"0LO}4)Ԁ$N㠀!R!v -0GF_A ,.4qiC9 'Edʚ*Sf\3RGNrq!8f<@ ȋ/ o92<n/ cҪꆛo]ܖW`Nn%z޲Tk/{_*u~|ݥ뮻t s87ƹ7^\pŷ\\r+nĠ^e O99e,dK_ڥs?|Keq;o3f$OTԊ Ry)Cc!z:;`kTDeM( ėR^.;NZ_Hq/ 0oH87k9ϝ9ṍߒby! m@5P~kC csP'Jw`4vb]!vc:!CxF~m%Š ăPC-9Y|\P'"o[D2e%J?7i+[\V+=rft͹e Pb?U\(Ge -ŭ6v R$@twKXav+\ʄ M/pY$!oO:{7 >MwoM& 4X%RW/U~gy- 0qL& 2(  F`O* x!żʈ$@@$FO@q@Qs0zhcAld2*8(0qKDtE-gwTN8Ю8C!$p }HՊyA 8A=Ʀ򺒲&E% ︻U *jCg~aEU;Q~w\׬[~͆lZqMΊkrﺦk^\rWܿX}5>>Р^BpQ ]Ttע|9+os;XۊVy̩ph83΋+ j$%h. GIh uuO ~J]=RYm!& oHU@=YH@l^H[jk$qu-@_Qh [X$zXFt :ker/q9$xCV4vB]ؖ r[+^((n/ A@~@~@h-ͰI&CݒS&Yޒ @|2*VdΗۭj@VU<`+ % @%P@KQ]Kq}T@ 聶vS @ꌒV2zFB돀\p`ЄM 1UN1O:Joޘ@N|_k&z\Og17Uڗy-Q.$0&.8c Ol4O `x+# â"3'MDǃуa!zx8@d(^E60:(jZʫ\!N".j|sOMBwTNԻ9:p< xKLk:a/(p0b(!.+.(,޶{G ;ÎmS`#@xgYqԽJ/7)oxK%m{ɠ^zmoR/5R=Ws^}>kXy !|P Uq(.-[ˡDEMR R^m7nIv5wT `TjH5]@U u5{Rd"OIʤ}]ekEJ2[oAB륧Nh&[ٿJ H1 uĀ@CKEckESkeskU:::Atv =t%혌QpН N3Ȼ XIPK*nx{/!X-fL.\YV){u@@U@~U c> ƍ0 vËTj!E`uSzN>IG}{Q>o{7>g59SqF м"$)A]SKMCKu=Қ荷?xׁhDž$jZ&bIڃ&1K$;%}2MEzILi vMA(BݵMRHUYQ,aP+AM{qM{Qu[aUkAUU--zQRY8W# kEu6z`XnP4KZuP%R*e*V`9)*ͭՉZmBhLȧm]]@WHI@RXIK->\qtg`0B^2ĿI-s o 0@k5E,ӭށ@(0^V, z. ,VRW/HDLmkaH0BNM`> Ft:1B^U'̩0{aF0ÈS(`[iDÃYF#3,#m`E$a\"Uf $H j{0&r y \gx(Јȋx"", h(!S jh(Aj M,Ѐlzw@ t4otI~7*U|Ҫ-[tnZ9tC+ l-Z@N@dNԘ@v -Ựvqwmn[/Y򠹫I>.P  XRV\.״eLہIJ6 a7s&ڐ`Zm{[Ah% (@{-V)څh1Б1 5$%xD # * V2}^$ZQY>Ќ%S$}nZ O@),@bB,>%7@ Esz^ 1c"/JJj!ĸQ(`l,TL?hUq`p0b:&T`<06'F_T1z MJ^C9 }*Nj Px,V`g8fLk:_?(x@ >tZ,@<rLyEJ¿kr@4xh|>?BlN[M`t5pCNܕͭ [kqA5ܡxg\~Ǩ6KT;ou&V(@C*ѡe̖ *FI! ~@$0ڠj6W4vHlCTIV6#oS* Jp!DO3eKYՐhj d (Ȁv!% @[{S; lz+pJhk^cthKVF4]$pyȥ[&nsPG"Vwnӽ=\PSXhb"  AA`@2ſ<1pH0H3^B$Uq8jrX?RURRP `0!1ˈ$FOQ)`!c@hBEcq°q8@X(^pSZBIy TlI(o*ȫf @^ A$сCBKY/%r 5Q#@1:I)ZAshp)<)-V/XN}i c`04S z!n)vK#80t !9=1$[S UA}uAM ȃ$$ b[J *$A h%PV/2ؘ6H&_ )Bltv;naZuv\)ӱ d+K_!$6(BgMPlw@OY,I;b]tlpt2&@Hh  H7 zĀ˞80iK^cxhEad=hBxAE"`rЗZOtK m"T@ehCy-8.DXCTzC P!`0xb0_d/c0, ,T 0zňC021pYE 5#FŽ'U3'=T@K99pHy(b s""&j(AS2PpŢ<儋vMi K $HҖoinɞ gC `@B I'-m@G6Y+EBmCB(l65Q J㒒fV".mt$n $laһ$qB*t5 #t(وlllR%m]ĦޡgM 5`{{(ŀ*= W;p8ƅW]+R"prgRo;:n/g0_F` (LL U ?T#1cN2r PP k$@O{K`<O L!tI@g1 *:0\:§=0уQ_5:E.{z3" ) ׳O @ $4~bi@6BTG6@^I&;t9 Z/(!S$i$Rh>w &/N*%/bEIU0IgW|3(vOT0ػsG3!U^R4v# Ɩdp倦]^ƋZT <@QMV4ˬ Z^сyPvL#bt A€ y B)AEx"0èD SAnB=vH6pF&.#mP@C piՁs5pApP@{:Uv= - c^u'HX] : os]pi &u:b$~`R p}nHe Fh~ p᠙2h% XI XР%a NB@&S 4La{=:7̅Ns|6@cE@g" PG=2(v)F`ԯS^xT$$@B>A YkS+d2L&U* xڎ;P 1L&9XI=0L0LfIg! IH%KXzx9c2Lf-L&37o~_kJ%@#L&dIL&w8bc;ms'B苆* I0l0/hSŋÑXz2'd2oy|e2~3{ι ``T7MX1,$jvՋ-#U>L&쇴~{(رǂļ*8w¢ ]P$:tݻgZtuu-Xғ>L&쇴~ pu72,$7MD зa@@K;_p%QGk.ˋΫ 2}2L&i! F6A7ϝtͻ|9#e$8#Aڗ;hoo7oe&d2L&-L&sfU??K( U+ TC[[_Gv>L&쇴~{(4^{~ `PJ# H 8`Id2Lf~{(4^_&|>K`J(*+@ʞ-fO&d2!d2@}~wq$OPAŕ^ttt\yhLd2Lf?[CL2D$ؽ{7JG}4TJ8?>.,2}2L&iP&HX %$СC{…ػ3'd2oy|e2%BQ{ף$U?O! u-۷o_x1+}fO&d2!d2{Lz`Ν$ umvرd8%d2=&Kfꍿ^AG]pO?Xt)ɒd2%3{XUԘho|׊ 8HnP #Y0L&c$`fAP6wO&d2 ny!ԲI(7J)D2\ء5GlxvbHXq]H :tϞ=꧋A1,\Ӭw#K&d2Ctˋo984EYOT!6vL8/u+Zt"Nxb g ZZ2=sD ®LOxʹ!iͼ`hF{cI/+$_BzQG\wP'5p$e#a f>L&$ :EһugO=4*BLUQ/ᶖ=k`ukn`7$Z'ɁQ4ό=:?P#"G:1PIp=ͳh_HȁcHۥinڿNAZBtK. Ձ$\TTd;wOHvءS\\\mܹp$d#+DL&dCZ {(eҔf.1Zi:Z' n@fOBe#!R]so" M=cRbCm8] R$a, ?kn$ ر#B`KK˜9sH8zGV>L&쇴~LZ>-ѳz2*  Nܶ%Jf@ ?``6f͔m0b<, ?A|'I0r!rsssyy @$ٳgÑp0}2L&i78I2iLeJM*5>KMi%+FK[',$vw04gS` 0Jvơ"@[X(>^|d2hЬzߎRM BOzB_, ?$k׮2 /#TYa&d2L&-~KQ#ŵ555]vɒd2%3{1N6%Gɞ= f@SSScccwwW^ G$`2L&dIvwnl A" rCuǎ ,#Y0L&c$x ~e`2@GQ`~m݀.Ν;w.ZVL&d# `0/ ?oiiiQ}SSSI0bڹs`$zɒ%ʰ$`2L&dI`0l$صk7aH! $%d2i%K`O$7mY0L&&Y0 [' $ ?E&-Z K&d2{L JW}P'T~ Ķmۮ*Xe`d2JYaȒؖM.J%CS细3LMM5/^~_U~6L'U[ad2mV0(RU&6 +Tm E Ê"U[aȒ~Q& * IooE.\xwy砃U&pI}Z73L&rZ,k, luI UbJ,X`o̠\:L&  ɮbƒdB=%dABk箱$`0! w *`Id2I9WHv-5 F6$رc'0X,@=d2S ^!ٵXsX0ـސ/Owy%dFsZ,k, l@I X0LfR]>w% + *H9Td2S ^!ٵXsX0H׮](Yz %SoK&Ɍ ^!ٵXsJ5dȿW1 rJ[I ƀjjj;*n񢹹rӦ-tIp%tDBL&xdb]KJ}Fg`\ʐa=1PnH+1^]]t ''MU\{JX0LfR]>w-BT ]Cu+1;H|2ږHV,,,ٚ_ÏoߴiK ItRPCB, L&3xdb]cI,@@ccsaQμ͛sׯky7$}2@ @S&LABkY'R1`.J'ec%~Wtw-[(B|?Z*S&LABk箥) TrIZJYt-t)At= `k҅%I X0LfR]>w-ՏY7Swy= ;0N+t%AH$pbA*msؒG$_J*xX0Lf4 ɮbSo.MSP̮D(d~ Wp *`Id2I9WHv-ܵt$q%AܮX0)7Je˖ 5Iz֐+>. `̥t1kQpQd2l-ň*G+FK[QQ%)]bk}pr׳~B3D1Js\7C ŠDO1Ж^. vŒ->%px%7ިG %_:+`Sg2̴ls(L2`dlmIFRn=6'J t--DO1VZz1$A̮]%Ahs@$馛@- RZztR0]J%L&iV+}F[bTJ/-tmՊ3WE{U%`Ls"nmPeӒZNmp7$ٕjߵx׀ob{@qIp7|VO%E/y?dd+L1WHb%L-ArmL4a"\ʣ\XRڊ15Z'FPfbW$Q0jeW%#?a0- } Ig xJz5d20 |%#4J#_ cm :=HRw&jJ6:Ehe(UD/[[-$`0,%$[o $p˥zd>0A˗A#2r:{hKP+ldbwvZ 4nmPnY0ـ HIJ-HnzXL&3-&[a/O\!̞jge`W.[RfLs!Kh% # nv~=7ug?dd+L1WH„:gwĂw=67(q((z)m$`0$>%!{JnS eIVRhj(UyxvTPi0L-&[a–(BKD1(c"Ehc(FTIzWOzw b0%AQdI`dҗK.ݽ$I#F$X|wܡ& zȈ>L&9WHv-5 F6 }Idɵw.mO?%IP__w*g|K&Ɍ ^!ٵXsX0ـ%ܹ$>|8I+V$g~!K&Ɍ ^!ٵXsX0ـ%W_cǎ6 O>6l+ PX0Lf*+$}Z/Ik\<0}%W^ 755K$pHC$.P>%dFsZ,kᒀr饿Tа5X0җ]vYggW@ {9ꨣ${{Q€%d& ^!ٵXsׂ%VN0%Nc;,  K9s洷WTVVUUUWW޽# Ip}?fId2+$}Z$0@ʹ+41I}ژ;W6ЊN=JtNߙ<&p5A; FD`YEE%%eeev:I/ڵkY0Lf4 ɮb% NfȮ"x]N ٲV&zzawPa0Kӧ'B*$AccOx}ݷn:L&ABk箅|y]`ZeeŲXˢ6$Ȧn6jC20$Aw7lֹq$:ujss"/ok>EEw]?V\6X~=K&Ɍ ^!ٵXs?^,AٮLyͬ`Ԃ$FE@#c׈jCܑ{ F_3r_vҥ:!ܺ/ Lq$! Ir# ~z`Æ , L&3xdb] kz[Jy=Iq|I-ֺQ-yA;rKo 6o\PPӦMkii!1PT,Q"$F># 6nȒd29WHv-ܵImUld M䮖E7k_ayAذ $Йf̘*?[,>\\VVQVVk׮~W~c=`ӦM, L&3xdb] y<.z?MnrE_H%ٳ;::*W/!صka&$Ass L&xdb]KY@% / ">Kơs±ev%I `l, L&3xdb]$'3ԑg ͛}Dz1H_W?[laId2+$}Z|IxHC ,N:::O>:tDP$`2h]>w'ob0 KŋڵKO?6lI'%p$A&/d:* L&i؆aE0HնaXQj0L(RmV* @ F6 ,YdϞ=;l.$>|---O?o$CId2L&% H^$Ν 1bIg6lݺ%d2, l_LCK I Wr[|L&d$`0$hmmK$Z Jtlޜ~f$>$jK<, L&`~I0$`2L&s@0Z?bIS2#t%AB1;2' F)$A[[$mPTTĒd2HI*oKp@6y}Ā〴 w$Gt /$`2L&s@0B8J_ 'OV͆qD?hI7w.YTK>Rni)-  p)^it9gH_\ H 8p%A{{/L&dK-d=9jr.L{DZz{mW=*GGgB`0} +O?U# ?Aii)Jy؇j0L0L-*cE Ä"UۆaE0HնaXQj0LC%eC{vz kIX)l7i Hoފ$j8cW0 Kn!$X#g eeeJ苎Fi\&d2ABk箅HzA5&ͳvX+Zi_X&H0೤zR!T'~[}OH$^uP^^Βd29WHv-ܵ`I%J_ }v2puXR\}~80}ސkmd2rZ,kr]OKY7&fr%:uuu/񞃚UfP.L&ixdb]cI`d2+ k/8Xed2V8WHv-5 F6 _t$o*3(N&ɴABk箱$`0_ ׯ_'p!*3(N&ɴABk箱$`0{7o޼Iv*3(N&ɴABk箱$`0/H[$>hXed2V8WHv-5 F6 `۱cV yyyDb ʥd2pZ,k, zڏ1+>@Ϯ$yĈX_ˀ}Z73L&rZ,k@;N Β7ȸ$~֮]F Ly}ѱˆ>L&9WHv-ܵhI sa, 8J@m@Y{}3PIKHpF KFCIMM E:srnܸe GonO {?ԩӦM1c̙3_C*S^_t0O21~&D_aV2zGFd9`]g-R\9]$P,T,EE{T  a.V$`6Ptwwhllo ` |o,$383<[syW8Xe`닎$,CZMV 諒Z %Zd2i2 n(}f.Na9hh(FTIzy| %44J#$"2J#?Z1ZAZ;kFKZܕ!jڦ'+6 gFZ^Hg}Ck(ܜhjj.--Y$>T\PPukAn֏>Z6$PXXO>S~z/w]Xe`닎XGRc`PD_,IuQd2djў*Cɥ,uF:nL=񮇶V{VZ IHŠ<9 jvi0^ ϠFza/AbZ8{ Fo$|Mx`3fرca8?իW߄UHqՊPB[RMBQ諒/^D+rN F db #׫u)Lr)VBTI۳Hm3zC;Y9k3pXׁ&n I^nMI[}zgah܈xEw-$oiiiQٙ\|s:tG1rH(~??IZW%2h\$se՗aDb24%%OR錳B*0'Iӳx?gXyw 2JܹÕ&5gHg;L* (90mb67]8xC|I%82IaHH1 YH|3zav!O+_UH:Yr-#.Pg(uTڰ(*e-&LQ+ W-2ZiJ3 Se"9hj(FTIBR@hh(FTIzEhg(Vfu$!@~"3Վ5_Up1!A[`,J ]|;9C੧җ Ly}ёT ¡v"5{dPD_ӏ\gE)J[L&&#VE(Z(Q)^C64l%w]jE'z)(  Cf%ۿ$O> Lң-XEYk r' 0L&3M0"i ^tY!è$1i5`J{dKZ[%>m F6 }Il2O ԃ)<%\"E-ҩZ56!#l1Lf ]a%{i;Cz!C`́uUeOl;gͅz`ƾq aI`dJG%7IY (с{K7J}UV(oPc0L-0/61Cɥ :"45J#$;gOͅyEhg(FT \dFٟ!, l@f%g?YơaÆ~~_U&b1c.)2xL&9pV`- f$`0G=vc=vsL墐Gə?d" i ȮYa`, l@&$z׋wL?_:ol~ F db&V>M[@v ;dI`d2+ ?xgy >:_>`K'dZ ^!ٵXsX0ـJ޻tҤIԩSO>mڴ5kuQ ʥd2pZ,kY近 Ű C `})++1cƬY.‹.hٯakT_t0O21~&D]>w-Z?ɺ%ӮsXҌ? I3nr ylFf%~WQQq_r%sν.7xcȑ,T+-Fi\&d2ABkEJ= Qv7S$ G$;|i=VLQBTH݅ي[ndV @͛wW=c`9/:Vѧus?d" ɮb! (R1r܁ӅFUʎ#=O=@?שR ۴xJg9@4*'Q*'[FoHI0j(Xe` ꋎFi\&d2ABk箅Ki M\SO4l(;]S'mB wdVVxٱ6v=Ȗ>h}:0{ \1ơK.U聫ꭷ=z420E #n.g2L ^!ٵXsB%A@&  쑺3zWm̽X*{!T9ybȬ$w}g͚5gΜK/+7o?%`2̤+$}Z$pRIDSQk!y,SJ  9-x;Gapcw-u`W Fl-{,Ff%~ ԩSg̘qE |M,dFsZ,kIR%qMl;n+_ٓ"$ Τ$XM5yFf%>{ӧO={9s71Lf4 ɮb( ZJ.^K2O@՜֚_3W(3z7m$pF3`}pC$Mm-gd72+ /vi&L8q"3fÆ U栾XaDebL&+$}Z$H$) 8MZYA#E;8`oTӫwXz'dgpMߌHP1it)Ȭ$k N:gyy7iҤ?OGy$20 E #n.g2L ^!ٵXsB?^oI FJȬ$?uֱcǞx≧r駟>~_|CUZӺLd2xdb] H$2+ >֘1c?N:??oVqfB0d2HmV* TmE Ä"UۆaE00<`=`Df%g?ܡC9rԨQ{q0L&xob0#U0b(ajժ}kƊd2L&% IpQG$>|8s1X0L&9 Ȓg @ 93g71L&9 ȒdV^G;vq;N8Ï3L&dI`d2+ /x?~|ɧr /~XqL&dC$0~Tч炿i#??O?38cgy ^~#8XqL&dCKom猚$?36Rv[aDq`E$YINr0YGm8L&d2!#%vZo^K[dX՜ 4J=Z<q3)_ `///9s3.a`s>L'U[aBmðHVaPj0(RU&6 +Tm E Ê"U[aBmðHVaPj0(RU&6 +Tm E Ê"U[a$P# hAtܹNzr 0i> 3}0qzS퀸( &8{Txj"ߡ0p@EEŜ9s. /p֬Y ^{Ç*3B_t0Oz]Bv5+dl]S/eL1sr7zI)%՛R}{t_rF;ܝSm-{ nՎD9s؅Z*Ȍv✖q0V$~JR,$XYYy%\|J, z@v 5[d׬]Ev ;LM 7b#wt3O%Xgsh_?HDXTk$Kpo_-{0{tӁv)?$0TJs̙={6?%HkȮY!fv)J*FP֣s%;}FpL9ENx칡]C/Z]OUU}@mB$2%# {bE 83^|; Vc}Z7כkȮY!fv) \xSw% Ȭ$7_<կ~uA*3(N$kȮY!f}K#qIiӦ>K_UfP.Hv-5+dl]Bv5 F67$ATW_, z@v 5[d׬]Ev ;dI`dzCUK]Bv5+dl]cI5dȿqM#:T;_-M@$8tU_%AȮY!fkȮYa`~IKjU, R 㸕T(^S0VX]17nQ$HkȮY!fv! etV` Q-@@<>:bd!zU%YCFHm|A{t~b49 (Q  (Q è6(QjmZbԺ壇ZN+zt⠥Q“5kVz&D`s@$ Nhn(VtQ^%tR0\[e^xM)ę!@8(Q 9hn(FT2/`|s-g0kMTYd*kJ$G.qzC~*WKkY)ߊbے7Rbmx9p9뉹8Z,3F0QTLi+mNP88z@pMRnrƵ%t[=3v:"B GBiWcmd7J 0I0W6S Wʁӱ+<*5N;Ȟ({rܼ975ΰiB T!wo:ԩ\#+{@@ܓR~&ia7x2JDv,8 5FbDv+ -0=[ZĢ\v\ĉb&vؒ-^8z 'tNDMקˠ"H7(Q Wk|'sh+'ƴ9=JM`DU̹6IB]VHIyÿnx++djU״)ZK09{V$k4gLS440$ZCz2f*jP\?8+0:D(9AA9ض]P*j19aߕQwq].Nϩ-Y@;Rqm+:_ՇkE]Ԧ{b|snA/gD1L}m##HM8 atތx>àRs?Od(Q 4ʜD1ʓ#iѹf˚kv\C^82rn(B{D1JVڥ0V:hՁ$[%~S-H+ UnM Cb$ۈQ}!%IsgX1' 1%AO9{]Bv5+dl]ӑBu'EYi$@}:UǬ C1S0F+<aGv֢cNX|ɞ={?OW'i XkȮY!fv c!`Æ ( {1= f-kVȮ"f$`0K믿4ݻA($9r) XkȮY!fvȒX., صd׬]Ev 5[sX0ـ%ҥKAt;&駟1$%P=#f-kVȮ"f$`0K%K@'T!|=O @ o:蠃`K']Ev 5[d׬]>w% H_,^x۶m{6l~~K_UfP.Hv-5+dl]Bv5 F6 }Ip®Z/v=tP8:/~|VAt"ٵXd׬]Ev 5[sX0ـ%\]>!g6mt____*2rDkȮY!fkœ+A/CKÚ9WTѿ|t-t#}IpW{uQ$ @ ׾o~O>o|VJE #n7m5+dl]Bv5+ 0\P@fXе18%V>tt, Ky$($g?͛7ַu!vaGyO? VJE #n7m5+dl]Bv5+ 0XP$rW `IJ )%cSEH|s۲ewC=aFvaD_t0Oz]Bv5+dl]%W$\̐=M(kFx!gDA;1$ꪫeЭ,??vFq1nj;=*WXaD- f-kVȮ"fFIW/{tɘ?;vT&}5?#ZSʒ1$X`VUUA? v8^{ȑ#Gu=ܑG \%c}Z7כkȮY!fvY'wv!ߐSR}B $` / -Zm۶F/w @}{=0v;?;(ɮY!fkȮYa`/3hȃ$02# Z* 2~#9KY0җK,پ};h_/[3f̸qN8}=#f-kVȮ"fJ5s=;ÐHOmSd<%p4`IH_\{ (@է~:b=vqǍ;O< 2Tm E Ê"U[aBmðHVaPj0(RU&6 +Tm E Ê"U[aBmðHVaPj0(RU&6 +Tm `$*RIkbG59ƢRt%u]k׮n/@9rcǎ7;NHơGu0L& y7LPB@&))tD͸q, V$ݻ{J|}O:xCY0L&9 cP }IpٳgIz;N?8?Gf%PVV6cL6mS&O2! F$Mv 5[d׬]Ev ;L* HAK!@D63-J< #mR-`Kl۶ԀI<| g͜1cS&O|ޚW^͒ >5+dl]Bv5+ 0$XCɰf&O{>zR{7[L B}4*a0 ,J]$8蠃***.x /5 M6y#X&f-kVȮ"fFJv>40 8w1#<ft0v% @̽9;P>(6yHQ, ]Bv5+dl]S`& SNmT^P&K'wHwWf3 %' ΝsECR.~.}ѱˆ>M[@v 5[d׬]Ev ;L)ۂq0lxSr.CF[x`yCޔ߻'/a0 2! Ip%\tlPL:uDƒ 65+dl]Bv5+ 0NjL;(ʴ}2{tOaX@ԗ@[ @oH,*)/dIkȮY!fvL8pD7cdݺ жaS Eo䵯, 1`YIp$={L!Or}G eIkȮY!fvTTj2hYJގA!`d V$]H 8 IpϜ9`Is/8%A|kVȮ"f-kVa$`0 YYӦLz`ysY/q(65+dl]Bv5+ % % I H$oJKK'OŠ/#`K']Ev 5[d׬]>w% H_\{;vPO${kƏzpYgs91̠\:Z,kVȮ"f-k, l@`ɒ%۷o$g}N4i͚5cƌU&Zz֐+>2 K'Һ-t@tZ]۶0BҒ-^F5 F6 }Ip5l۶ 3|p;ɓ'O6^7n2AK:fv3wW (Qjh!CF/_疬ɽmNtE\bdRCpL(I0-:Y~xN_$QT坊^70Jle٢7 G%UV 4=1*V BFbhvi %!b(TyO\k%!U&N8(Q4z1fF*`ڋ2 !K#$Xxqww7hhܽ{ϰaÄ$(..=0q)S\p^xoNU&húJ DjY-Ȉ*Aq?P@*[`CL[N:Y8kЧ S2FbDUicE)ђL5Ϝ\FٍiK&ƨѣS`ls2Ë\FBk&1|yZ 02<q}X0ـ%Ej5޽[HơI&M:u̙]tܹs~$Xe*)=-MYND$A}\Unemi/Ȕ(: s"_>W2q֜>AG/_XT | D1Js(t)%AU^+ڴeZs>`Pg(Uɉ2{FbDT2π*wVLh@ҳ ax QH{ň*/M39Lٹڠ, ^o2~5=6'# !"1P`Etvv$IK0}Yf͙sѥνy;r22p苎gTy3-d-^ ]I$TyPR.-F&mZnQ9H0-:kg/K,5\7a::ϣ1]ST&̡n4?=[Y m 1mgDlό93RL\|אCpWhV299ÖdF۲E;k\ t({bb5j,σGxbeԫ_lP{PM@?X1CEc$ꪩIx_<.=t 2p苎\x"hcy+"V(QRz^{hWRŴ 7!qV&t[mQ"z`˰Ia-tMQE l0ccVvD1*-[@8(Q &-RSMޙÒ*5bFT=G9o.hѵTlYYF}5mx#[Cgi:_2 )'O%,^iӣA DB,26$⮮ںźx`EE%\rezk_{I_K3t-IRi:.4mź%{d#$7ӖN l]ݖ)oofbN!|ޗc"/CӜ޴91ҁgz3'bPWyϖKաsSȞ Y&b8krD1'K'l At/4\ y-m=lPy`Bރ/{[}CNC: W\qUW[E \s HG?U}ёVIqUkz¶ݻNe(zmVJ9S2Ӗ'uf !l[9knwNX隢%P4Yޑ8M[SЮ-8eN^-w1m)B2ز$L5dhmN=ٹڀ4\x,*Qa&PC[' Ap FIp͒m:w3l!|peeUW]`W/XhSxXpW+\ׂ$W?Z΍,SUۖ`lsntd4-Oeyt0UNrb1kHzwJ>KAQ1%[zkis /xقڍ^fEozߖض*z``3jԾ-F{n, 3RipA}wXHwO°` XM-:]IPUUuB,\pKݷ~Ô$@PBQR%VI ~|FbD`\s{'⎛Qhk(UytLkU1DE0J#:.(Q 2@DUJ^uH zMLK{@7J}UfE9t'$AQZR=_H8(Q Jey 5 %AUjD1*pEJMBQQs}>B3DW%Ěrǵ.4g_BRd]Ec$ol ^hՋ-fт%|o=*XaD- f-pBYw-fk}- 72p苎Fi\okVȮ"f-kVaI J)!Sƚ*|nƣsEرg4B{p!S_ }I 3a-$ `ʔ).K/+zoɧ*XaD- f-kVȮ"fƓ+='wU >1GzT)sT2$-m]yl+++z`e]6kY'?9VlE #n7m5+dl]Bv5+ 0\xth{-xZ5A't /a0 Hֶ’Zu@G$˅ \s57xપE-]z7߼|<-9SL3V&d2ђHAgI=Y><эQkǘv<(b0z$Ջ;KjʀĝvU`]w-ܺbŊ\3u*K&d2%\H_\} Ip7$`2L&s% H_,\*+jtz$Eo;W$`2L&s% H_,Z*ku$?^|W/vM7޴<@L&d $`0$ŝ5U5kA Ӿ,[nl2uTca2L&ɒ/  IUS]$P?Uv.]z7s=7o2E| )}&6L'U[aBmðHVaPj0(RU&6 +Tm E Ê"U[aBmðHVaPj0(RU&6 +Tm E Ê"U[aȒX) /x޼y/^lي;WlڴχU&pI}Z7כkȮYar'~Q&5 F6$読@$~WZZ:sK/tK.;6n8yAt"ٵXd׬]Ŭudr(IK#`Gtv)1P[#{oIIԩS/yW̻f5r &M̠\:Z,kVȮbֺfi_fls% yV@O g'O5ke]p›ni&$Mv 5[d׬_fi_fls-X8?^7~8j1a8跕1׋TO?g :=@}{]\\M+׌4m$`0! :zJp}>’d׬]Ev kFN&kFI6X0ـJ,^{7q}=,$4iG+F1C^άi+9v5+jk!W|dzmC!L( Uג7ek, l@oHE{VxACӦ&x"f5!46J"u+H8(Q J~Î`8ÖL)@B{D1j!CfZ]|k0- 9lpQV% a$r]u @{D1O:Mɯ hk(Wy1"\؅cuťI#ٿ\pfTx&3'O0J#$2î\ȒdV^uUC~']hY)ס}.Z,ZX:!UɗmN&F|[{,wJGA!Dd1myzf'X ؓs#sx izOlAԵ26\rg;| ŒXՕ* IN>}Μ9󮘷x[neÆ &MU&x [Dy˱K s &Q؝ڬ?=!hmSigE~wftӗ *r_iN_dP_;Jsߝn*v ݝg( J@EAQ44m>dŨQWhdiVI`flHhdh(*_(uGNgO)<1}b*K+JSvvv.Zҳg˖-ǎ5keo:1}YS]q@9͚i:~_JkwH܅3" Sއ"/r~ pǣ6='"/38 pZ'3)^2y}i87us^|0Ebz7~7\go9C3\dM;+]Kp&7д(u+1H]6=-{ 8}mm"lMz6̑ t=iCKC"pVf08O@'NfQxErۏBf31u~ JTk?jQt$Kwg@)Cݖ EJWE\44k0~nEJ;-Y-O-zw=K!J)Ztx,-xt3D;rmhjwm.iƣƠ** fwҟSdwW/и@hyȗ  PY-ij#A"TK(GYt~Eywx(-3U|*7gcn)n h$8{l.\084sҥK-A!RlX@h\ ZTߒ4ThVN_ j)HV$og/ D_hZfGv9N>r6Њ AXJ<{^˒@y̙3ϟ|kn۶mxx8_*FMvwU"  V_aVzY9}A*4 Z͒@ 2jepXZ3suݞ:2NQ #ȡj֭AXP`ӦMAIp:p3D)UW]u[C+{6nܸs{nvw b]BPY9}A*4 Z͒ TڜAҖ!kY5eCIqݙSgo>}4J*[0Quo߽{~)6U@h, 4. BZ jKK %MS"8xq/x>ϝ:ujk֬6m/Bgg'e)@h@h, 4.Z64+/HCfBCIA% $b@% N>zM6 <;/Cwu Z.  PY-iP@P+xIaU>@]wٳgE=cǎ={<ē/9s.ӔNBBcqѲY9}A*4 Jj#o ( xno۶m׮]/ϝ 7BcBr4ThVKAZ-4 *SQlݺuΝw>pJ@h, 4. BZ j$VP`ㆍ{wX1$سgρΣLS:-EˆfiЬZh( T$ش!GHϞ:;o~R)y}{}[z%|JPBcBr4ThVKAZ-4 b( 6n~~8 8#K믿?/Gt 4 PY-i%_zM_ ΥȊkGC|٬!3(eL U$K%<<1zf%^{+W[V[ۻ/tOи@h,4ThVN_ j)HV$}X6X$52TەeVr>ʷoTɨ~NZrƀJ7ϟ;/=;zŠ$kxe˖Uu7o޵kϞ=2t7RlX@h\ 4*4+/HCfBUDi E%@48gM vkkpd]m'dz'yW Rfjp_B >.%g?_}K.]ճjㆍ;x:;.\2%HnVY.[fB!eyQnVY.[fB!eyQnVY.[fB!eyQnVY.[fB!eyQnVY.ԒMdД-D; ƹ}8Sm irVnq!w+5xJ%UW]522ѱp‡?vY HzI04D4AENr'(CCrlYoh#|zF4xSY&9ɭ8L h숭$8* ƏO%3͝lٲիVl>6=jtoKӧϛ~qh[fIȆ冡zn{HfYE)iK'՞ 5xK*@o f͚yC[n۶m ?ގKK\%/ Y\uU'OTHi]K#hpP@P+$%]ŋwww_~`={_8248( S~q($C\sͩSz(E}wlG_zNoqKnVY.[fB!eyQnVY.[fB!ey4%( T$شiSR1fP o)Kk̙3T >#O 2l *^lJFGϏ;9* RIpA+ %}E6 JjqGߤ , vر{ ?BcqQM@. ԯj?h~ѷ+k SBvLJ1eӀ2,}bMo8MbtŋgmݺuΝ{֓?3geo:,dwW/и(&QyJEB|[%Ʋ'g,Jϵ9S@Z&>i1y?__&Lp̙u։>^@鰐b]B VIe2&%a#ΨA$DQXI:o=B'%e|;7yC|_%8}ʕ+׮]+)‹׋o:,dwW/и(&I- ںԻmmaKl衼y|]ײOӛi7jp/ /\{Q H.]馛_/~7,Yb e<;;.C~a!&*}E6 HzI04D4AEU:2)4/3siSpgPТY7Ӣ܊Uo*^ l._W_}ɓ'͛tҞ=oر}?>2t7RlX@h\aЀ( FD;—QJ$5e< hQڒ˗i7}Ԩb( RIpA裏&N8n###fZ`YfpsQ eo:,dwW/и(&UD5=(6ܲ3n[FԦ%HYBИP`K.QUKW^yk6u9s,Yӳe˖Y3Qи(&YAF-0*۳JekGKd2dPɫxI088xe DIp7+N81iҤŋ\s̙3.CW~a!&*}E6 H͒ JSdBJo5G 3s_=+'wM'>i/ mF%%$x:;/BIPB ]@\*$ qI0yٳgwuuCE@h, 4.ʰ h@P@P+$裏d),%[iӦ͝;wٲeϋßo}ƍuP׸[0B %J!Q\t^%.\ݽaÆ;#oe= Z.Q!{@բHzHߝ/`]Oahբpu4fh%xV匮,Yr"Dhih154( [DU@@.eV^Ȯ,?U/IIS\]ί r8[n59}iǜPW*/B)J ;lV/B /H8Y-%@aU@@zҥmܰq```}/BGG%AHY{J2JbP.EE9eZ7X- O33 rʛ|_R"\6%0%;EҢ3ΐBVR V5BQD5UxZ>Oj4%( )). ӧO\r;x/tVbk&%MquL$-ӗ2#c /zxbws.AN_HuTB: 2ZӜr A{(r"4Sk)Qrm'j?ԕY!Y6K;vصkc> /]g.R#Am:LAnokrBS[Cy5r@ J k,D\HkE;ƜV⵾k,SS]<( 8j[)D`\a٤n=!in4`Zo,6SeT„xtH[ҲZ$۲e`P߿ Zo-P|~jQ_N@EsU!lEEW{%s&o$z{GZ. HZ؎N_ô]269p"3 fVI%2&<[ jkzd$Iv:x$o:Whٌc*ϋgϮ_֭w~gΜIw` )6U@hyp&c?4/H- ںDKٲ͔}U}}fE/{ Ƕ,.ӁUL0===k׮ݸqc__Ν;>}:eo:,dwW/D6c4,4Nhf"$ "_ qʓ:gLwNOvTěj$)lz[f5k j\[|s;uԲe˺W^~[;vlڴit+F鰐b]VtbTqB45J q|R4t,L3e&|j~#(rK~󻺺/_jժGN22t7RlX@h\aЀ* :Nܑ:Tzv*K/3jh[\uU'Oloo7oU=|Æ G}vtF鰐b]B fI ^5cI@Tus}i"CHa"( f, UnI0~^{mʔ)T̟?ɒ%k֬yg&Mz2t7RlX@h\aЀ, byv,Z2Hކ1KL}}lSZ|8Ɣ- 'Nw}ӧO\hѪU=O?$ BcqQM@. j.^w})S:::.\r.SqJ_BcqQM@ZA( J_BcqQM@ZAUsԩSgϞhѢFIPE6 Jj[\y'NxfΜ9w\[@h, 4.ʰ h@P@P+ܒ@Co/_agyfJ 4e4 ( TnIpW===GBcqQM@ZA׋-Zlٲ+W_~`˖GNи(&AIA%rP|s;u{zz֭[ۻ}cǎM:2)E 4e4 ( TnI0a„3gάYfÆ }}}v>}:e*NSU@h, 4.ʰ h@%_g~M,s [> zn~YYf A%֭[/]>hĉ㮻gnܸqsfo߾gϞ%A 4e4 5J8WHz`w4((v-#R|GOM#l!U\4%K믿mٲe۶m;wܷoϘ125/F#YePnnY^U E!YePnnY^U Д* W¤8KV524%՞]:tdzo M zg A %~Hvt%GT!$ gJkW6<=|blw6Kf4@`tG*j4[!R\xdI `*ضm۞={?( FĹ;—Qdyb^%5=-Wr%Td۹75AI?Ȓ`„ OM*صk=?sJ` P$އg/ lC dn9ZCbgo"쳅S%Xlي+֮]KUۇşYAFZ%ٲ=Kҭ)ʰyx(Z6wzc tƎ[_dIw5k ;vL#hpjdZ6F)r a@L/j5dž2wp eyf AcGKq誫ioo7+VO~KK, ~`ڔ)S*X`enذѣӦM8h@P@P+$Д, 'N{Ttvv.^ܵv#G$( T$Y}3yWI&,\j $VP%?W^y}7cƌy#_-{*. uچdo:-x~︐lq室ʧ 5PK@eElVY8|ʘ) M%A %- R. c$kU/UYIps- VIICQnM/ivrjmxB}!2rAP\ȝg",VR/ /3 ) \ô&R%/M1[Ib%$g;?4b ƪUT+|ə:hb"5W{ܧO;'VEJ-PdЊi*-YpZ' ]UY%0V(*Q:}(W3iR9_ PP^'KgI>m IkR+=R!/ѴC$~)׋1@6 F~PL:kbSW͒k ٿ$5m+@s)GTz %AҔ 5( _/kjX^@J@6%Cq%JZ)k&!F&KvnkxU*"jpUU}wPAI%xK@fvF#$XUX Q%AiQqP) j`UT%JX`I@igP$e֦%G.$҄/9;՚v}%inV KuP( }=ӦQI0wʰ$/ u4=CU^WĦ&6%"{\iq~o%f#>m4wܕ+{yY*;&sz*2QE}%9d/P Jg^5sߴSfܩ!Șה'R'P-fj^+v۽7cƌyzY Y@-+Y0h@MrK|3T|߼gΚ`UW%t%A+pSPsW_;'OѱhѢ5k9rdt%A+K@ܒ+{`ܹK,]~ѣGOaqЀ$VP%W^y …?ЦM~̘1ӺAIArKǏ̜5k޼yK.]jU-ófͲ8h@P@P+ܒꫯ>y$K,]roϷ[w4 ( TnIp5׼K-[7?{/̞=ۺAIArKkӫVڰaC;C- &Lp̙7mٲeǎ{yo?;wu@) Fڒ ll~W6I=E{*˻'ƒCP)*$;xǾ~>o<S|WFV%Aܔ2˻VһYcI!^n߾}+~iӬ;(B?ZvE6sZAK 6ox7?)S̞Pw3<3u*JNви@h, 4.ʰ  *^]6Opqԧ$Wrwd<{O?ԩS;(B?ZvE6sZAKիWȓ?yY?>iҤ|J)SPp<BcqQ\J͛6F:=bo_=yyʁki! / VZ;0%A˖$nVKAR "JpwkܭZc?4/c?׾E yRi3(f.%t6ŦqŦPBQ}8eߠCZp2y\Һ}^wA=iJTe!!|JPtZ$GWJ @n?lBí+tw>Ž?"Efwo`)&R 끮C%5EZxs&sZ˱Y.BM>wQWfH.]58K3ku12C&Yl eH;ӾF a+^tTi^L4 %AIЭjrV;A');e(]3r oENwM~DuX-D?Oa%_JjQ]A*\jQx|}ȋ{ uX- Wraqߦt$sMFOWȗV#k(nEJ.cXum8 [دCgqA*N£iPD'[)!{I`cy1md)}$J35z,n5%TiK J~wyg( ʀV?2oZ0jk&;(zYՓ0#6/DIXڱ|&̾U$ysbHZh)4Qm- N_~YؗؔNFY19GXumq)EK֔_#B8z})S(pl>R3o6$,hy|2T$Hb$R@Od*UIDAT74ۃlA`+|*jG[- WWdفh7^~V"VR5]8n O^4jQ8|%QS$Yq}Jf9RU5 /Ke Pp@;X- O1qxVՕ^t~M,/˘1:)o QVBGJz_r5nJQ```? >裉'ʒ@TS$X!Ѝj 3-3&H 9yn(]ΧZG ;erhzmYo_5#D}w}9\Ë";$>o Z?j5[9YhSZh')+4\0FXSmf^Le/c)]Y#1QFkxoxs1'{ G 5m9 V`֭.]h*. ^y啯}kw}7g^a FePr>j<9i6)]rO #BY./kxQsgר@L}[CD!_jӸC#,)6BZ|cFX,/( $ ηdk1Pѐ(U)rxxU$|2UPT < Ki1J]`Tt ‰fCQAny|Ռ:&;ʌBT2|7< s ?p%.p ~'[GMNk1rh4Ac}uD IǔFbY-1C#,Sf˘B#RU$ )_* z駟AI&(JQy@H3Pբw9FLz>:PբHtՌ:&;Q(fuG:.2bH)~gP`(|]Rc>jz"jQe2IWFb(\]VPf|3Fё“Ěl(\]IzuLNwm*9\(jQxtˤv4j *^XK dv=3uNeH1XéJw `c6 4.ʰ  * Ȏ.* 8$J{wڴs^&~! 4.)fE6sZA, lr?R* ow}ӧ%3Ϡ$`x-; .w55Dви(f.P@P+xI…M%7MQ̝;wŊ( iBBи(f.P@P+xIy洒W_3fF%( xiBBи(f.P@P+O DIPI0o޼+Q<BcqQ\$VPKJ3g͟?ʞgEIL?ZvE6sQqI=qDuTP AP5!* I&͚==P<BcqQ\$KjݲEpw^3 MTD*. X4چdoRP*9ּ.)qHhJ;3, ,XGP<BcqQ\f(y"5=UYlwhU_a2fJr()eGI:*^bQLYMLj/i'ĪHɸLƌi*-YpZ' !/ mQBd9Y^hJ2hBBи(f.RJabJHy)JTj˂32{;uMF[솢_ PP^i+9KiIZRpTj 702SkP%wM%ٝ/^f#GQ<BcqQ\#"݌>./[*qL;3T3dFU$p$ZBzz( jM 9gf~ʑ4){I4lCcWSQG?ZvE6sVIj:TgAPD\'oIb+VʚIkɒ洳/Zfg2UFIBSѦUU]]Q4eqX@h\a3%qfncyZԓ`]V `mRo{Z3%Aig_4qP( )5OdXR%l%<BcqQ\ȭERX3ΌgmjkӒ#wi—JjM)\WZ-FM:XJf\(d7,/ *˅Bvsݬ\(d7,/ *˅Bvsݬ\(d7,/ *˅Bvsݬ\(d7,/S$0U3uk Uz]AR)KElÙ4J G(}5MIFȗjqJ $ތvI+ &JP%=3uή.$ VgDdd/P Jg^5sߴ,rև c^S@H \C=h>=h %$K4vUPcn71Ku֣$ ( %{JM#ZA( %P Jj$ BI aB!eyQnVY.[fB!eyQnVY.[fB!eyQnVY.[fB!ey BI ?0R pBиhЪ_Ʌ$JxJfn VKAR "tи@h, 4.Z3j#Cm45+%mo&)2zSP{-#P?@)BI un$ /Jw B5COI m MVһY2zI,3{LNWe%TA׼R쾈*!4.  \%jY~2 :ٽkJ̣\Ec[<ޝ ) FIP*t[-I1BиhЪ!S+OMCߧ5A]4ufuջlQ2C*JKu( ءKj)HAv_DEkV L%PYRV+ZHlJ\]f2FsI._ToдDPa+_k jQ];. 9Qբti $VIP1^ujQx<@z$uZ- %!#jQ$"A h+|УV툠>E\-4 !RU$~5Ӽ5v[[C:?7 c̎W-igJL H5(}/Xlٲŋ4ue$hXpњ5kQC|EC8w?}]+)2 :K۔Dow"jQt% G'&%APʅ^{?N\F˗7FjQ]2z$[}N䋹MBFbv-?qCX- wWeF tICe{11 բHtI rf,ٱ|e5W5/ArX,RU$0rQ#KM(;24Q%Ben73^e5,}c }} e.M+$ԼJ) tY-zIy%Be@׮>}]NSX=";e3ͅ"/eS6u_zVmS;_s$75ZFW9]V_1xs#ܾ|6\V*6^Eav9荾1}0Z,B4PvK|o{/휾ə{cHqW ΒKLC99i6]IC׾~VŻч=}#eכWEU$)JRjHyH~.lr";޴ /mhSǜI܍̾Ȉ9r;.ȫ\Yxw}),zV b0;^F<zJ+ K۾k$^x$3سvR{(YC,B9Le:&)=96=wU$FIpJfZ"BߠeJуߝDRxbuuqi_Γ G$Na/cʾ:&GhU_./f$>Zc~wYbtS(4S]qAB/3}cYcQ"ZhqGs.r_9} t7)O dGz:RBW)@αCe#n־s=7uTPxI_BIP.tZ-!o6PբH r!o^CˌH.qm(\]#$`qh]YgGՔ:& ]MOeeʢFnhբt£7ynEav9g7^dEr])wZ.ӣ^i툠>E"~^$4j /!a-TB19~Rme#GHe.o/E;KI&w DIЎ,ҵZ bQ;&_ F -+EkV ,ՑORL ;ߊΐfNʺtgyV,}ch&Ż)T=wyU$( J] )}UcиhЪ]2L!l() \ E+耠F( (OKo$(qB!eyQnVY.[fB!eyQnVY.[fB!eyQnVY.[fB!eyz'~)SG?ڿ@g眮5kn l޼/DkkAy j5Pt+ [dv-1M6lMMl->-ujMj.u^DJLRHf$D'IE"^bb*" .,_ .ZhqKC:4H". M?^bB+7DR&C;7DCHjkd)$_=z'##'ϝ}}w|.^.Ѕ )/L~Z ˯p=M]#yXKNF0W.PR %%$Qq&>< IJH^\į/2)<_>vsH /͜b`)|ZZ"ZWI..OMrE<Wqj:Cā..i.L| :%)$F'ߖ׿ӘN[1Upoۿ[ostsgGϝ9w6Gie34>`VPp+- -#Qt3ܑ_}DөS(o~C-.y 5EMX:8?ՙnbܿBS7+JxeB'{G??g}:#Y k4% 8yEpTDtIw#S̕ch+j.ȩ.UOd%Zs(D-o򗿤ˍ,_}Ɠ#͙O\ *EV K'I.BrASN,X%Z &E]Xk(7I\hh241*MB(:W,\5o߾e˖ȷX JfdIE [yIJUO8} o%K<%RdєĴ)R],RtN)h$F:餟*4 ]PVN$f[+ƫJ  S$RpK8c3J)q fJ^{M##o,ti B.D\5*jXK6 ͊MP;X(uIԼ*ZSr-MHlR8CHu N ;IN#1:^1^qJF')sGϟ;7𚮭nAHJҝD/ TU@%e-ti BD^6zftz01^R;E tAQDIӎdIӬҗ4\`ȵu%⒀6IE3CE s KQ ۱&rKDMXte fF5͊M!RЂY*$HdA0DhRF-\jK؅Cin4%'MXDAQtX4>qI&>O{ɓ')UIt.d\L5J^H$9(oG  /MQ\t(0E 2$z) 묋\+%"iCH_!+$7%LȬ*|\]A$RU6HM +GI@F@v5͊&Lh5YJ$`%aAl"/BQIf(k1I2U "ߏJ) r%1^!]At4g "(^riBR|D0wqs?S Ç__QT)q,CHRgpx y箒8}ylII̧QKĖ8gyMё 99S8X Z%ZO\rPbMMHlR'Xgqā..i.|C╸(QKQxז8^th%% Ɠq(׋FrZQ,VLZ9"&^*4uPa &:dSXk+6ȵED)Kķ ܘ4 k²p<5ɇnlH$|%(j.L^h4=0BKAR'*I.\-Jbm-Y!EI'I'I.$} Z񊒀D/hS4@X@Rj 9:Ci4 X:*MBp(@ V\PT_̙3{{{uuuٟUǏ{̙3t`訐KɖfBը[hw!VeuI}GyH;\B$T\PIMH9#˦%'JKv;yGC^LDǑr#)Q$rJ,A %5L[($z9E'$W-JN"ĴI" !=.!9/9.>B0LѲP10qěo 6ܹs܊+>OOO>^{7/|K_M }Yh!B e%o'{Q ~)ǐD?on 1Ip]\("_mRXs9tLq1$;BƎCx̋?dh;GVmtɎPr#9oW\BYNH%JIܴiv@IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/xraydata/img/xraydata_02.png0000644000000000000000000023565314741736366022621 0ustar00rootrootPNG  IHDRbsRGBgAMA a pHYsttfxIDATx^wu}{x<35[bHꙴD{H3w>(YP QIɒH$EJ(Q$T A @"Fws>NJڵkW:.4Y^wڵ~Uu6??qÍ~O_߭Om?*#B{˿-~YcoO\sc(QPZ/ԼtP?9ݾ r#Йv~Q^[ Jhm(PhFWm9ө.ZbS gCq}6=5Oo:OϜ933; .O}3_m'y{?o;s^܋{J"xnxi/Ϯ/yqׁw;w^9=kϡ]{6yߣ/;>~p{1N8r.?pk&c⨝y Ml{~3&);pL&(1n;vHjc{㨵XVuE¡…هw/5m0^c%GN@F]:.` ]=ΗwH޹Yb3/B_~O= SO?g ;_~n+z]{vw=ރ/;ʁ#{؁9qX'GAYѲce6ıB8 *O>^~;y-;p#'>0Fc{E_O{&.@O޸O@o$^>/?/~]-z%8;8Mp}Nj8wW7_;^,}ٗhh'AGyy`/8[WTk-@dڍ3 _Ac2%P~ 9s|^>p38wȰG\_o?mbZfΗa&-sBaߡ`!//.2:ؾC:^q p艃 uN>Aeq^4m3Q̤2AQʡ5OfGvvz2='2^2DX L}?33?0@=,dC=oW?Sc 5=<} !1fǧm3m}~܊ȷ!]"'??2=3?099Co} OO_Zw=k%pQ-fv=p HJa2$2x M^N zPi.2}w~p8RG+Ap;uipx:rUG˪U̱5ʉkOTԞeT}z=yP,5`Jy6ETl`ِ16'd.Y9uu|{RUW^E5ʩI`GEU=VOu4ʚhہZ;F%: u35yʫ>J>ZvH)px%8xQtQr=ѡcOɮ}_>}]{i/{f/ž_~O>gv=w|i'_|yG?ǟ~G?CSS'Ov_ o͓XW{P9('G24þv!EN2H q?]aa!-?x'*8;zxyՉ5'*'NTTg*ZJ'c?|yaD[_9]}ڏ=%2i3h^F ?%-K۟yi;=¶'G|')oȤ=oBfbO`繹^|3N(Bv}a$ h./;MD a8Zv(_SJiS'OUVYދ>|pYax tcHe|^|ݐWCM1pdzt%2dН/`RBݑ9t" C|!U*EU;R *5Ѡ2Kyu}EKC T7\fN*\bG>9q vՑl|t;]~=8= UE!Y t*PәI}sJko< ꚪA}:*Tգ4VcxTTM=Cifu=] #iZVn|boprw)2x}LMm>ӭɩsCըO(=.f܀d[6O4>(m;#;؎G&%}d[d0#vߎȎ;} Tշͧ5W֠5v%N;^I.pS@NJ;BgCe<28p|{iѝ{Hn /zavxܿc/}ŽO,rW~aώ.GSqt7%1- tIJ9o>v$%WWD<$]{Oࢅ| 2ƶڦ:K34uM#sCku=hkkF;L%Ƴ[õF5]ax(; -LԐ*v;[{!1naς=F&WF<"lA ӰjGs/k \Y#4ycll2rAHNTPC< CBZ U/ɵ 7#CEZׄ\YoGS[gs{wkGOkW3zz`O5 7V z{ں{ۺzѤ-=-=-]M[;ACKG=LtZ*8z8O6!i\JtK6蜔e4&N+^Wd- 4-R-`RSVbNbƀҩ&-#*XElF} m581}Z@.F4 "n Gh v[DpS+4[}42 4L5њv;L6јFipGCkGclB7#ߺ;[tΞ]L'uQA+w7wb+ӢmۻۺS@ԙq,0щԱi~Wph|G:ZG ^B?yO/,,қQ;QKy_"%9̹>'}COz_=~5>9ҙalQ, (Oj<'~}WOj_=^ñ(dD\r vCG)pHޜJ|MN`WF~Y1p8s¦D9LJM4 k7>A*xTVT"i=] ڪډzT7vs˔!oile20k LBu0v_YVo3D[π|_iΠLGs{ 3L`vd;oN8:0].}f۝)`1]*DO d LDKC@te`g=AW?h}-Efv+W74^W70C7&; Z^{NdU pd2?}|©}G+O(Ox 8]{=G_| /Ͽ|݇uVᙗx na `/"h)V>m_scc(AdV<2308mȄN6!1B]/)˧.~|$#I &#v:|0xlP5xu d̐&`,R0&@f > p-rb 1rḇ]\نl/ 0Hۮ !{*k"54F[MDwδD_&JB;t+;7gFGGƲ`t fr}1NZrȎj&FAvFfzNte0 0u[fZzCZc"xZv(q [n#*M@)Ye+tu9JI)yN>ttb-/#ܑP'jGTn}h`:{8h(.j:80zabАazAvdY2 MCw]٫Ny >mEi@==C!4aXci '&&bk 5# tg3 :$H;0$b}\cwvg"4)Gvɧz8ٹ~HFi7flxs;f~o?@`|({ٿOfӝg?<83~6gs~67(Oo䶟m?"~6Y#?y{8|79sb_X\o~76~cɺ#e>'Ը ŗu뎗7ܽ䩦*N#nj,SB@:.>k3x;QUQ 8G7kT5z)oj-|@KOSJMd{/'^30A&G1MĘ|{3FfZ2JcLdi҇}q[4g2beF/HCE2be8)ж>^DY󃑉Ab|px| >ap;#ו^c:`[h% Fs:~@*k)Vy5\qc!!)9"pcp{T9\^9TI8k߉c;^pEBcKH>PM^9 ~cJr$`r}d$H>76I!7:;-VE7vufڻz;n\pŢd ͈$^;SSa66UFFBLݕkC8 i?sn=9VYs 5 'N0  <pD!w{0Pu^(;IGB*#7v P+!˗[}L;79G۟5cG&F'G'&ǧ'gW`01=  0 $g~;{!T)db1LyJɩx5HGk2uDZ rlmq a/=}0I(3('뜯K.' )0F]h `S`a Άv͗)M Cg5xq|x4MSKFЩh@vz9yD%[&e&W ˢXlG\r#=xf>ɫRd}\0H=cpߟw?U$~/'>?ƪqC?dz&?~#xO<L??' ,r~`C <@Cdzt2#?pgϞ]\\Z\:cyW/_^0;P^ztK٩W6NJ _ل yfU^RQZY =e#/oDNq@j$#4 e2fRy9}#'^Zo3{i$CD]#]}#@Ryf`wPRmLOJ<02 Tv1KӘiaN/M`+c1L`}0O bz # ϟ#LΎp #16`"4?̜e|j&tWLr8qyM$!23:!L{Xw1: ?g`\Hs)G p*#oA K/ T{;ur;oQK~its)buȾaM*nѶ#"R:7nɕYne8A*؃>Aײ=5W-g8jh=Mfɀқ借!I8]4ud9b&lewKNN$MnvDJNo{ul?]nL?:F'$G?=;737?;foA}:;+wdM IIy1Ý rBF}(Krʴ' HJi;i\>%%Eb꧞ `|rA<>0 h91 ^haϏYqB^0"ۆf 4S6`wwua Nrf3Q dvljpڍ䛒lIyljvtj`iǢi3.EM)>c4m>A36i6#|$4ƵЀ8ÄfBL/ #{.P9pSGn@L1 S McŘnr|yp)} oowD~B&ֆ6#xjxƶFAt# zŨةuG`Pj*"Gʋk*Nkbuy+ߴF殺%ށ ށl wW#!zs~sl\Z+̄w࿘׶ ar133\Q##-rfuQoӒ7]RznFưJ/7Ӌ U 4*]/י3 |R"/44hpJw+=}P":;vY0}\z%3UF/NLN;3S33sxa~qq,-3g1g׌P vڂ8`4CIv^>)g=wUkd:'zc{ 22`CyB2y]-R|>4aB@030o08>10==3HBYu1&BLMM1|hֻմw讎;{~tgѝ99F1Ïo97׏M7E(g;Gwd~xGm?mw~݆|oq#<ٳx/,6gzzOwD#Zt}WU}7nA95M޺־&J9tǝ3aJ# |IOpT?F/0qK{Ř02%pOۇgS G>g䒅]a|1-2&{i3ETOtWN~a%al K`d„J¹ ,rW+~BTCơ=4s I |I #`Y7yo s58È;r'|pB̵oi[㐹7o]ftcT}KPRQ\N4 MIZJg[N؜osꏌOau_y?!O19es:;.,]Ѐ% &X4%a\`$ql\{(O~F$"c@c J1[rBFe$_&q/- IGfdh% ~CCSOa<1199955,xY ]Bs_6u+X\0P~IIyfNPo瞉;g9[_5ܝ29~LxyP~/ῐMQ s3{rx0pbJge$hOizUyjFBUkvH`r‹Y-r$8 J3aKs}sLlLpG1Ai2~bfmku7)4uv>EQ WQy[?OO.-?36>ι~/addwr/ZWc0,2P(.FPx#羣?vf~{#?(37ޔ)oPD[zou}[Vl;M}ޗ_xe op#2u-}ݫ2H{d; _wW7R719ҕm5I0{N;e眔xo4D6@|LsL~^ɎJO8!#/ɸ,0(w3u-,=L u_X4ӔOcz0Kx3>j!")'{gYX<{f]WEN A&aB8c1wW ;JkFniU55u+}={]N11'2(s5ƠRGmKA59ƶt{DkUckuS[uSkl~S.v JIM EYsGg(aǐFFFސѿ岓SrߋS |#/oIp k]p% Y -_tr/v0Hw. .ڜы*hf}LwP[uv"^igl6-ch4j%zPnXqNdy[x*ˏfH@Z@:#:)'\Y^?kR2OrSKrrI~`ae`rMpGh+kG s\p5E^6IK楝|͚5?)rp~n|UpRkV $~*?r[luYrqm^$+ >ĞcM =܆pV~sIǠlޙ氟 -ꊰO;P>=7̅{ 'Gm| >$^(:u},@?ͭ1]x؄6 l\F[@Fq~,\ve.hΡlC`}@]k-@K߽xYyNW,+"|XSѻl%03kHC0ݑeކaK,Ar)zRXPr?d =5+i mV.:z !Էvn͐&$:ΞLUMY,<=@Ifw$_ .i,]rQ*^qRʭPδ$nʋ=~WtL/,AOB('8锿&7hNƿf.~t3/ҕ]&mfDTnh5ij7cPkW#12CLg=rf@r/FC4z)56eۦ[z#roʹDh:"usoP2pu49"4pWޚ#9, |+0vox޺UiMV2pP#ߖ>Pw pcHI}3@9Vhψ73$o[-!J 5|Pi1 FciXCMP7f}loo ~3+̗mGs6(|o ]}{_oכzp?{ܻ.פ%aK7\x%D[{FZF:;ڳm0t{@g#3e=/)'-y^N%dKeV~$ύ?=By/Idpڗԟߝ9d6 竩G. ȴBڼ֬ #\4 ]< lIkrwiCEDWV\j%K07(g5圕V#(ik^5׈a :3}sLk7,tv7]Has;sOVrYzKl?]Y,v>#}d8|Śf=03× W5Ә8} ZZA Ѹ 4$ ˗a\ w <:]允QCM[pN6 K K 3d ` GgZ䟞i7ېн-/%4X4V#Ͳ8][ڔ٬m剚K$[Ո.]|a3 ˭ yJ۟tZS&${_A6j ~__ߐ$ eg,j3@`qG;х 탮i,eD$U˴rP{Plo$w9 1S0R#lҟGyQo &qxODIN"+b"(F̑Y㱜x, 2(0ŇefGe+,J srv|J"+mq~F Mξ>2=ST_vz=OU O}g|P>7 &432=17"L΍o_g@807ͽy8]7?^n{% f$qe!亲:T =LOpd:eb'_e /c=.tp=ƕYиh$@F(PJ+Gn d_}N 63Ca dֻ dAleYNS(ёtVp\t7RU & FU @I4TZռJ9%w-+Í b<@ gd, UFJvFNirdƑi5㐴* >BܝbwJI1%yr!98f"Rf]G\ley>}#c%id1(AQ6ܠ̲(cfs$|Pt$>1?g{YL[LHY"˔Xhxd&s$)'XH@") _*FE +uy/~ᄐݗ7ޫatik}yջ]uuuWx_y_zۛvM/M7Umo?/2S81㚀9_|H{4w4u GNv};oyk__47k܋z @ovohzϝOW_Coksrw/k7*,gh뤟y t{O.<3`N| `QAR//A gT)HQGrpe^Oe0X/Wv$9/JL6P@ֈ/q w~2E~Sd:L.6z{EOOfY8yl@&e 4\qM2m_rQzB԰=EԪBNҤ*%DUQeTU72-lA^ˑ/$n\qnm4薦zY몠q\Vc IBD ɫD !"Vr!{ХDJVp%=ID+<}veGQiGOh[֎̑(Zf3#8JrC2GAq7X2U5G9͕U|%_Yo`}c6z&ganOn9x5XAa~PIajΒ. 0*;#{v׏u{f[Z'CޡᙽjF L_*~':G&G&:{ w=C>X '@4c|y{7l +|9 >i0?ix6ܷ;IҾ0]|l@y^H%""a%std."JgdD*îHzsuR7?p` }kDđrVC~C 9@92}pXRaJ{Ě @r6$sCMbB(# ;uvql 0cB} Y$7_+Ig!Q6GSH}\hz'ۤ"U!iOmO; ~Q$ [mfl̷P)嶞HK$)It'NW JN$'8$5$'ړtBQ+!)bl\:!y"ݶidZ0(928mXfV#Q2G=xܡܶ9B3#W .sڙЎ*tFy9<]V.R2y} á|`@h-QXRo{WϿo_||~y}וuw|~Hu.wL0>4q{S{}=}]}}o~o+_z7?_p:<)k=G?/Cȯjq.}wOuNCó\}<#{^Wx3 #- Ó s9q?b&Db-jf~0ڲ}6yy#H`l4}-|p=}p\>|4ⅽfpc\C"ɑ'9˸˙/]hn\c,OBe[˹\! @䏒 `ڀjc 6%6uY2N"NK:k%ZHu$SAm恖Ad.%& Ic%)Mʗ*#iL7 15tlTJ xW֗ה[ܣ;i BEPt@IY iGXrvCҪ"Vܩ7 >ŋ9 HDH)ړDݠ3$J"-Ls'ӈжdr2k̬(5r$8$( !G|fJX!$*ܙ2yJpdPVL&V>uA!(_A d旃69}:ήG^|[_ꭻz޺o=[~ezkzCo[?Ə#5.o"wC#o[j?֪{Kro9[|-{|࿾R}4`K ] K< ?ÿ|}<@w<40;9=0_MH)zx|# !; 7&$64lez3۠ o\YXlNw:ՠXWA!zAd0RFCG\e_ "˒\!sR\oà @"l{ABOg.ׁ0ic)?&͗Ȇ$H٦/<8h"i⋗_:}VBM 4HS${. J}E{ 6YqP I j%%h7(h~-NWL%&伆A|ZIH="92!cmtdQ)J"Zn)TVs%`L#:2 %s<ـef,9AaNGIlT\eI1w**w2UAS݅Lxa}FJX骺\:z>ݟ|+|O'}:w;>Oo?Ͼ9{?Q7>ąOԧVcW'޹ww;w}]? g%SbpP;{Bw>zyK4$" p <PGqxLz{H.0_An>bF& Ov_[dd'8}9Y+[:3A-"3rxm(I#%# 4d7mI =Y`<~8c<'`l; d=`r؂2)E2F;H/ȶLDJZM*M*M*Jr)+ Jn%)tbȴNPt"9!9!{=,遮ptD!:ɹOILXۃ. $Y+)A t/?!dB F)(ӂmM[eFq2۰̬Qp%g;JAwj(i:W1Wܭ;med^wummNWTTFR^Q#, αw|q``ȍU .UՍꚦ6o^'/sG^|5=zG^Ѳ>Z~G*H#7}5֛?^:mP,@}u>~GÇx/[Ά'NR8(۠!M_h0{?77??{3 s)@y9z ƅ\З==_8}_Go⿄R|4V_Rx.ǻD$!r?בh)م?A_0`A~'T^ X8 @l-? dO!dt(](5JFgWj0o,\z910+\!µ$,$>B p7"~ \`J+,rE֦/6\L呬&&q*e$; . ,n!`Fܜ3;2Œt ձMZKe'NW J[$6$'NIt$<=rs%KCͥ@WJ:OzydZL5m#s0٦Vf(!v}3%ssP[ǐBeM&XPfWq]DH׾ږ\k;]Ur ivWiKgW;CCcnu.umvƎ46ufz߼/2{_:k|_!ʾ~_8o|k?U:P&JF-u_R-+?->}O ' 8OqOnڴx`~4 `$.!/s~>.ɼ=0<1_إG*~pkr6ߎڱl ?_D G xn#ba4x`rnޱi\\EZ7@HjR#sD@|E%#+E֓ "Be[$ B$ !Vx@={cz D~I\Mdi+7uEm!@\h7f$j%M* I$)ƄP $LYy|6eJ`dDgPFC>)}cȴNPt$$5$}':(sܾ(4*GV燱r#%$%HVъƚmU~LiĠм28mVdd8 w%sܜ5$"; mm 2'$t۶m?[3ͭ=]!:C7v]nַۗ Z2.2/;/;o{{?^O}{=s[no7ĭ~mwDVOu[՝qk]_>u[_!Y&睌 蓗\rA'Z4=?NO-pQW7\K\=0Ng<݃2/bL{KT١lLI2 OGGG;1z>^66`8=d`]DBG,.84T/ȷ )3428Gŗ _jHFd,c\bEr" 7h+pv6 \' 8OJ2o@n" '~F+TPS- M!WA4`ƲMj#QnJhH)HvLt@ReHZeZv¬gJq$샕$){j7T6tKtTӉu/@IKBr^C {":I'l%?gggٵ%#ȾF<7Af`K/=wh|9Q>>C| a/Uz| w/_>rtt_|쒿%K_ϼᓗ# of惏^\o˿?x_u{콯cr.z饗'C^ sco_92Ӳ$SҾܽ|WU8zk0ѣJg0l(旂\M\ k6l?*o& #,`'0DN L Wx~ajaa Y\Y" Ncyp1bI\:T9A"zf%Ј,'<$Z 0@6 p7Y'$ג2"D6z7\ /06{&`l@NwM2+,䦳'Vv&.6MA}Qk<&hi.i7i\:"I!iRmRgGFҞ"jIGۨ2 I<d>;הt64$)k7 z Uӏu/@DrvCr^CD :=IѹH:$d;HY?oaʮPl%c*bGQiǠ¦QGfAdv7JR_ߑw!DQdf崶 #7Ӯl!2!QaaB KV.,s eNs-7LXh9^&ˌh!@?omVvUw5]BVuWgNgN7dN7f{k[z;LӣAz#<v0Dh< ` A>H1G^Y~wE@A4`m8]#itȣ4@ ܡ}3戱̑ԫiJenwd:GPsJNry!evvUGHK7\=oCD"Aģ=! `l{y Ajˈ xOdEBÒHٌ ͂LEɬM*TFdTQK:=7cI!i7 I}v¬DPYI|#l OtWӏu/@DҒא|,ipNiOErv[vH9Hty%k$%Vs1KbGEiĠм2ǣ <̂߼L~%6C@;CYMwj0Aax dgC0#dfJ>X!E W;0Ng X<9xCY@2ɀhFJP6ms$I?R6ۯ d3ϩ@d2== i@藂L6Hg!ΓM: & ۖj$(rqX +M*M* &XP S=OGi%' k<)BlF2;r  vCSePWM?dʓiGn"9!~"~=+iH:!D'#Er}EK-J"Zad"ev%ա2]iGO¦㱜ڎGfA2{$j(i:WC31*_"ڥRJYΘNu`;mwg##+Ț$hH+ Esrdn̹%T&t~a7.x ݯmmֶ =ot k66woR^ {y{J ~֞~>KWd+.gp2 MM O$303493<9 302=;Jf`n|v~`bn~r~~ff<`A>Ќ ,sT)09A#GyYeectd0_&zzZA[w79't0IhVcNImhp9ǵMVlRfK6iZӑEpIBԤܪҞמF5l jRGRei`/Bqd`68|gvJ7vܦCť _LVi)OrRCt1J:ȞtjS>ލ;dP'в|D+AS. \>=2!TMWRC1-lH0(,n"sOLF"Z ڄ˘i|\xð2#ɚt7dHf+3KJ3;2Q#nj 9M޽}'.X<5I}׀A=6Th '0= 2/ d=٩L6wܝ-A"cm`if@`LO NL3㳳wvLs;;?tF?USR,uy:_|Q70b'6'j+2KJـ.y RB-"sT5DVg *wpޏDUnN: 6(5 ͐L$WZ64Ż.҆VMu>oH 2Q{Rdړ y6D9~U@ QK}qC8'uq[Icֆhkj7iBi%OSdvC$[M->i:\Eg9eOsFxe'HC9N?N'E+4Pħ̼"+.Gz'+9M fW,rIer2\i(N 1k aC9VrЭLq`&kP9aLe[I:"G gY;df "aB&,R&K:'j|slr9usd@An2` peo6/a I@u@mPfhh":;w16hv#)؉\:r `S| D }h@04wa P&#2Җmi]c݃xxDDdv|rhbjhrjxjz8!t9 =-1JF.e5qB ޛUF^Oxxc:`GZK՘.̔WoSP]d }D?L__O/?)\I?Dt4w4w`wttvtutwtwtvtvv0]]6_pkĽ}!x&d*:11PR 6Q67r"!?%RMy?I)7I?{9 PϠ<:8PVHEm=c܁J샏n6(㦓7|ksx͒sع2+ N]Op;!Rw'Gd;JO |O"WӟY>F˞#D}6ehf`Nx+9=l-? B5pf !fhWF0BQfpMp2M7cĄ݌LXMuD~EnC^#y$VaNEPCc8^9=seB/*=ep!yAdT7 5-uD=h d| 4u5Χ[:[3O aw@1dKrOОYvr\gQC6vV&Еm6wg[2CP{pGHgHHHHOv434;<727:?2OFxvl,;::`t&FdžGF/)rwJ/v :٤גmPR r̰x=gt$3aL1WY\p Ydr*}ʳ =^=LwMήF.4׃6CK+h45߶ֶ6 $z)eLlreɀ9%ėld2P?J1Mj1jOǟJ \"%Ӆt0BMQeZÂfaZ[ZlF kͶz[ϴ? ]B#o\!2vNȃuQ:j[&|t7uI}!`;ni](wNʾ9rB Ht4|R J@C~`^".9+r(a_;6KyH3ۙVP,M zQ:346ϩtcQ0eR,u~^ɮ"Pu*uy[ +sD3\8a,z _k WA_ڶjj[@k]K}kChv0:N%39t3=CCmp[O.mEHQsN;n^ץzQ̴Tb,O ;7;ٗv d0̀dzl/^PNi|;2`~a3~ ^O`xP>K㸋7VϗAܢ g .{Iz@Ai47q^߂Dmimnin!A-Fhilnijnm4$`h'ڀ7,چ 4h9gȵ%A)B i:i@|Ӫ894IUSS7joww@{#Mdo%H %j,&oYGVvZ[ύ%  +. ,CZF,hC4 ;A=P0xx >t;'x_O/uHOt:;=vPGe=WĆ2hؒ^t y䤣6HCZ2iЁ].xG?B{pSW09G?hxA-n93yЉogRߣ =b X[Y3ߛqEQt]\zWvO<쪷?\^gwxc1g }6t W!;T?9 m lh`OzhKsضNe (?c4>|oEh5X_;SVRb{(;)S/÷WRJ#+Ϧ % ;m [8*r80Ox31"IʘbB3 qM. =#ŧ/;:52> F061N{LɝSD!FC8D;<6b03"#1: t-8w@_0L)bz 9ŘU h #]"U3=~E^?Dظ&F 4Y}MȨa22茳YsSl(kt_jGp1MsNFӤ.n CLz`Ã4p166w Lk3mMV !Fۨ<̀UܶC^u{qNm9# N>C+qȨ{⮟ Ru"؝qpwAj[ق( ѡ͇wBKK/*xC7i|,۞1Bу85!⡏9Yʻ`ɞЫt9kZrOO󙖟r ~G(>3<=_ gΞݸiӆ .8D؉~><6l/\o5o1P2_,І+겄6dx}nµx7~rM:\0+Jn(p7ƒ͏v'7SP;[ `Eڥ"(IB{UU0:K耞BTPgB{^[%#p ɉ<$TOhg!T'`G'\Μ9{M.h,3(O SEQEQ|hvnahd0Jpśt ['g&lam(sU(! 3g\񒥥3#>S3sp \!F-EQF>*^_?{apߏ%lx%Kg9Ocl@QEQVzEQK/{~7\+wp[G&]Μ}*k70g]{͵7Xu<%9s6;2pͷc˵b֢LEQEY~,֯|]Q#g>яI!wkx Kc.g.)9(C׾M R({^}^sYI,šEQ\O/oga' @QEQ%_b(Y7\`` kPEQsI>*ku&'fJ((د}z1U2 IwLjEQ\O/Z#@aj{Y(_b(q0]`N=(+bTQUhxQ(rNڧSEQzA=($z%tvO=JP5T0T@QEQB=nz2Cّ ] UkU (t`*ML` WUc4:l)(5}+Zb+O zM.9;8<pzEQE JQ>6`E=(HF`QhCO((ʹ$ڗZqfuņ b*l-aCK"B/QrS*nX{x"qbvkoJ޶I>X=0 4aS((u+qI4"uFS$s "f7ܢBWBx76o f0V^7'H 9=39v[!D EVsvY-GP#D`}r-<\ax!adr;đu =롏,W(k_k(m6ss5=B3fJn*Ht# 2yh,Rv'ϡsS@!Э٥Mz|NtٖҰU`Q 6V n`}ryY0q=;<650;pEQ%}Z)术KX缚⮆r=4p^U[9'sNY<x} ~W ;5E-&;y]wQ w&Q6CZQ>A>415b<%^02>27pm_–8nAe*(z&k_z.&u6K0 4\cD*oOdElhJ fn,С (',uv+0-U>A>xfjf쫯"'70612x_Ɩ8nAe*(z&k_z.Zsn/xId{A…vlwv  HKX _\:338=`yߑ=Ԍ ^~E0 bb~ 6:rC'gE{H"?eߧ7sd'1M3m+Y)M=/[<M8}((O/Ero R=U⾧`}|Wκw ĴϤ~@QEQ$k^L_3p|$B_j S>RP^h<.Шebz<.(C>fPl~o`%䔩`}@Qb_UTQEQb"k^Luz`xl yEQ%>( ;2a UK@7]tШc] EQE JdS *yA_``x|pdbHLLwEQ%FO{?<(k -ˈ_:x6^tohlMMLo*(J$^<=`]PT2踣Bs&''|شt7;7<5/PEQxPRJ=_ҙWϺ#‹ ңa] nW0PEQգ@RDD(SQŒq2p)H2\dT4)pxx%KgR[Vw!E(tKq@" TRIqyمEY7] ?;214:1<>9<15pm_hr`-TE{=\ Yz*M|6]r3g&⭷>D(SQŒq2p)H2\dT4ifxّ 2S3 }I=({=\ Yz*M`f>6ѻ@x`({=\ YzZU z)1psKK}}Suu]ee9}:&)7f\p1yLv4'XQX=N.UI,0+y}3"sV/G;o^d Kܪ(֮3)j(0O`<? 2S3st+F}kQ(%dR\5dWl6ț&eQ\CQ?(\]_v dwJunXX'fJtbpdrfohr`-TE{=\ Y` y1)ud>]dQmWc ַR%LL[=8O@<oP(<'c⪁$E4̒ĢΉnE:wusmОAz@憛1C$X2EQ,'c⪁$ETPjQTH./6`22Y top]eDPb}mZ $4GQ%FdV2aKE>ew]D:9L.;j]qgEhi$X34R`8p$yZ9E+i@KdU((*UbS 604>3PĿ;Ή!8荘AP地 5V@˄+:J٪!O]oሢQb< XCsz*MZ{ڀgɎ![6M"qFdXLhHCdQ VAQe,7D`"(}8J9U;ٛ 4]qW+iUTM=J&&gǦdiqG'F'ǧfou]ze:pss(Zd"Ge(}t(n UbjX],K=J&y7of&ǦFƧF'&oKM 4;\ԈUCs,y.lf^mEQYn7kX ,7g|-X , :"Nh/pXTiR|`B6nٳONMΌOLL,,,v1D1@ SEY='c⪁$E@Jb{KMNOR?9= nW0C$X2EQ,'c⪁$E@JbsA?D16`jzPE)tKq@" TRI=/Ƨf`b>Q(R,'c⪁$Ehz%o(ڹV/~UjuTsщYi iyM]W@}I(<'c⪁$E4v${@^YwGo+Aåj pF{^}Xo U7D֫T0M9svtmۖmR̄)tKq@" ! @jݺelɊLl+8yf+{=@ @`C&@uTsX<7 ;:3@.,޴B p8EQՓq2p)H2\dӧkkrpy>b\ɩA@yßTsտ t-  e0(,Oåj pX&俤*Is'ܵsb+95(nTZqy/8 $`x|2K6f&8% p8EQՓq2p)H2\dy29@k`wnnVOӹ>+TF%} ] L`9zEQ"H8{W $.e|J:ZL@``|fn^=(J1{=\ Y <:GRrӻ@c3c8MB(Œq2p)H2\d{*U\`S(  M _~h-X.fq EQE3ĭPYBQ,fq q+bǭPYB!JRTU1|&~@m@m$ wc((z*M\OLLNL+`SEQ|A=J&.wʩ41315x-FEQEQ3T4)GFF6`jfmW=7eH`rzvjfvaq[n,(gTiR,`aaLN{`%b d3sӳsKK7ߪ@QEQ'3`iQ"*Zqzi6x[nRhdQEQe=S\p . .Gu`ϥ֋byK.W__8sEQ|-@05 ps88(A^8#S}TIx%/7<,9(rQxV*okּ+i<ț2y-&b&W3 fvN-5 kȫ H֭z^A Us<} LA.\(#f[(8nXX a1V(,[(8VB0fÅdۺO9Й,Ey]ߖBl.:{k * ;8% p8EQՓq2p)H2\dy=Im%i|X*$_2:1r'͎-ݵ*j~L*9Q\@Rf~zf?{K. }̿ \b@ SEY='c⪁$E6(J&zȤͽx'3 \mIf"HLI9 W$䖯R `g==$a8% p8EQՓq2p)H2\dɺL,srG]Ϧ9A&y}gIr-]"AJL? `?m9}EQ'dR\5d#=InI%gN*0˘i#w[ΦI -!)u0[j(b\p {ِ[1|pX(PfEQVOåj pFy: 5ɤ[dÇΚ 5~]WVms'}9)xx Wm} y+_H k&ݲxQ>'u8Phz՚I<̌lvh` 7P[['>wn K.x©Z^Y~=;2oh.  .̘"LC"avg1).wLv\51PhVh" kX ,"6o̵kN<[nA6}5yӴI-2%O+ J=Xoo$42<<244Bo6557445?#ihr_`pgOn&k ;04^qCDiYd{|3(k(2 F˯"0jQ*Iy?Z"J9 TyŲy*b+ .>9Ev,[Iٝt֙u&ip(+^2;ⷈLy+8-R?R<0Jt6x .83;XycD篹 ;0<n&Lr0XcYą߹;G} BsEQb ãVfM*Ia੩ڄ3 \v|V+ Gf9^jɼZl֑.(gW@Y'u'ys2;Ny+3 %qkxTdFGGM399955xÅO<^uDpw`s_ ;0f~ Qcb:LC")܆}t` SEY= S<4㕥qBCb$kNNjsX^.KXd݁bÝdFZd@:L:f&+立Sqo`Rŭ@FX .sr/)ӗ/b4Avmy2;PbYh%g)B/"ҳZ4P ()4ȘQ ӔzHWRIΒl P Z9<"+Xcɻ(miX;ɲdIIݕ֙=i<~ev;K1J<.yɗ9\;]]\;0ɭ ޕQeryj7V ()0o82^R9\։Id4X}XIdIL+B46Vu.۝KqT+6u%<̮e 'p$l@q@^l6+4,ˡQd"(z2$~;^YJ'ai GՄB(ݏO(3NT*y<ͷMP/b^[,toPvw*etbmۜc SEY=yKcXaz']A &vQ+ gX+Xa8r.PܝD=J&i. =쿂pp-F!&80@i>Y}8o9E3iRX(#y{4HQ*IMZvh"fC"V X ,"Ɩ1ow*U'=*/?vLZ-%Ew\*(XΟq2/IKq@" TRI|y`Z06(.gUW*9ropx5c4YC@ EEQ,|,$åj pPҤ{x:;#L}gj=RQw?;k;%!9,4GQ%Fb)P.UI,P=J&nU~5\ \DN58?4vu((SQŒq2p)H2\dT4ioF_W[Z2s o$qzvH @ݱ(Gåj pPҤ{koydl4u4u/^q!?`П9/*(SQŒq2p)H2\d8Y?U` 굥{kiht 4t&:f.p9|p|'֢LEQKåj p?pHCp^xl=\V//8[෗}W&+bϣc>_Z=1;2quvn‹6nxÅO?v 8vq"ӟ=~4/kQ(%dR\5d z7HJM.$e/B2erϱ˂PfܝS݀/VU lꖓ香 .6^w[}\b@ SEY='c⪁$EXdrV7M=yE8y3tXdJ4S`9zoJqa:FU[n>{ }7 lMDfCsIy4)-_R^Z+Cĩ㕠<''WLg>&j L8(I8{W $.$~gg&ȅHNMRigeuyA`gMQ+ LO*u>}RuO5*gɩ]{9nh.P̄)tKq@" "nіYʖؐ'Mq:|_V<3?({̎/>PU|z h?-< uӳso"rȥW=(J1{=\ Y`!3KWnIlRS1ef^8'7;(?,yj-ەeiXڑEY.-_R'k@xzpQ<ؽsP|h.P̄)tKq@" IeN){].'Ȯ2(A`4grc -(g*u굡<&z \055w=aEQ'dR\5d#=@TkI'wB]l쬞-qZwe3rp6PR`ݝ ((yGKq'8/~?NпokAW<b*AZrڀi-wr1V(,U8nXb1cU(,[(8nXX a1V(,[(8VBXb1V(,U8nXb1cU((L2+i)f;;o+5Z]ϛ@KR.u~IJ,5U%=s K,(|⪁$åj p)H2\ ⪁$EXGi6ٲ[槁yW/d#_ l\oN9<囟+ݹ::?$VUxahXhmCʿ#dxaX)H2\ ⪁$åj p)H2\dyd$U6郻 MIXB&ĺfspsNz7?zq:R'+w*M`fg8[(~SBfffW $.UIKq@R\5dW $.<R?c`n١dO5s"9zӁMυrwRo#SSg%ß2PR'O~3$$X'g;gusk:Zspّ(@=Hq@R\5dW $.UIKq@" ,9y(3礒n)SRdVTd囟#/ 7ʭ{e%c,?>y[2[_o&psDGfAS-$< o|K_h.P=\ ⪁$åj p)H2\ Y`0KrSdinNyT[*_- vo~" tRR; d6:DKqV^7_Ĕ6ΪX)H2\ ⪁$åj p)H2\dxIMɯ˜fUd)1P)9wʭ(g;2 .P=\ ⪁$åj p)H2\ Y:}HRHk} l#EX)H2\ ⪁$åj p)H2\dT4) 0;;+ϫX)H2\ ⪁$åj p)H2\dT4)!033#6X)H2\ ⪁$åj p)H2\dT4)>(@lBX)H2\ ⪁$åj p)H2\dT4)0PṴz⪁$åj p)H2\ ⪁$EXz7l+?/ 7Y[Jqd@ < R\5dW $.UIKq@R\5ds=&lq(Bj@[6,)q/%Jy7\qWpŝ"XYvXiCs,yQE|]=g`K`ݶkX ,p*bwU8srYa;cY$kvg1gs)%$rCs,yʡ9v~lW\>ٽ-|ʪEh%ߢÙ@XӭEh%@ĵ|" ,ri*ݖm+?_R^K*Jb] `<^z JܱQnv&3u9rGd@ b\\cr@sK /KXcؙvh" \ih0|tmͤCWҠ`eFʖL8@{.WrnFz!\ U6x7.-. n7d8^~J")0&兆ÅJ2]hXZIFyɄL7V޸W-@,D<p7G5f4T-PRk 5 WQnL% UCi9ܙy)=[#7 c\]8p4[ZXqRy*02ϥZd[^ |`4s^z 7 2=ɩRt5H½0C@ɦRϾ7? + ybSڶ^Big-jE2ڊ;7G%ی^8Z!|˭ƌpU2 ZZ8[[B,j!+y|֨Obq/Obt#BRz8ب,p]?R ȓ/[ <@{+ϡ\yBm*41df }n,vtQ6!R.ߧCs,Q$ `Ih"&w_pW6O]rYaco"K3ݥyNW{.`ah%S]/e9+%ZIȪQPO`K"JBVPzh%"6n d (4Ċjōnx}``KEn״ cws^ ݺ"ޫ7ϗ:/WZh;2\ၕsQhjUzzҙ@6O 陛oIlŔ>D$åj p)H2\ ⪁$åj pRXa g"ӈOp( [4XiTXʁ/V+;id%CC.36JHrIKq@R\5dW $.UIKq@" \lv|y ড@ m~lq_ /CٍOvZ +poqZR[1yѲ͞ o>Ј-(W $.UIKq@R\5dW $.\R_`th[wWBC$H2\ ⪁$åj p)H2\ Yz*MXff=pٱ1y+ UIKq@R\5dW $.UI,P=J&NR)H2\ ⪁$åj p)H2\dT4).pwE ⪁$åj p)H2\ Yz*Mb]åj p)H2\ ⪁$åj pPҤ=Kq@R\5dW $.UIKq@" TRIVER\5dW $.UIKq@R\5dTiR<`16@=@R\5dW $.UIKq@R\5dK[D) Xvnձ0 ֗߻5d/p֏+}.UIKq@R\5dW $.UI,00i'Nc`voΕ[ީP'R* ⪁$åj p)H2\ ⪁$ELze>N]*.W:O06@=@R\5dW $.UIKq@R\5d#=@Znq<I4Y̳˻@f/x{AHx9@*Kq@R\5dW $.UIKq@" ,DA'Jɋ%a>͡ϡouwM񗫈3ϛ@`@mzåj p)H2\ ⪁$åj p>,L7OeSg;!k;vU;z\uZX YBQ,fq q+bǭPYB!,fq Eq+bǪPYBQ,fq Eű*bǭPYBQ,fq q+bǭPYB!@ܔop2䐜yx {gR ޖ2W=j)&0b=؀<(( `@n`y<@`+WľxB|y+PsEQ%Unjy<7Ɇwnvgs},]Y:R((y伞47 eV]*b_ Vm+TZoR((,}Ju^)6PpPEQ4@Jb}#((JQRI @QEQҋz*M'@QEQRz*MT4ARPQ*,[(8VBXb1V(,U8nXb1cU(,[(8nXX a1V(,[(8VBXb1V(,U@=J&|+h.P=\ ⪁$åj p)H2\ Yz*MZw>>D$åj p)H2\ ⪁$åj pPҤ<Q \ ⪁$åj p)H2\ Yz*Ml8⪁$åj p)H2\ ⪁$E̿+wsW~Coޢ?Cd~oh%+(VJLqy.UIKq@R\5dW $.UI,pY:LQ.@V G޹ xJ@XUT< ;rT⪁$åj p)H2\ ⪁$Ei8Sw)'Qּ|\B.ᢣTNy;åj p)H2\ ⪁$åj pu6+Pn[vfKAYYfB9*պZx p)H2\ ⪁$åj p)H2\dxހ :O&6Yx $惷іnO .W֥bH=!p)H2\ ⪁$åj p)H2\dE=pؾB19xnFrfwYt_DΏP0~"Q֝bx.UIKq@R\5dW $.UI,p{uTLjD6󃟬"|GHbrKR/F=\ ⪁$åj p)H2\ Yr|S@4&8( ]1 ji`yH=@R\5dW $.UIKq@R\5d65eBN4]5fWzmD6HZzåj p)H2\ ⪁$åj pF{Ju~J=H2\ ⪁$åj p)H2\ Yz*M p)H2\ ⪁$åj p)H2\dT4i <ـ=,43$Hdj% :pkPBq \!_B\B8\dT4im<@=FyW. z{ y9bÆ+l.,SĢb*vX74*R8prl _9E2+WWcZj ͱD- Bs,y]!o\lcɿ#-J{m+X.r@ˀMBs,y\)$9<"c /Z ~h""V ͱ,4N}.DRRIx̙3ãёٹ[nI+-IIQ?(ehtKIJACͷh<sr{Z2I~]̵@X ,*.!J S*[b,.M[z8_qEuɥpLn%U#:LnU$)If+ % \Yt[M=J&%8C`vv9ɝIt9LC"?DM˼IX '@EͫEռ2wyezλ@WV,ͱXT*4SXcZ:=1nU!Ϣp~zgWן(pÂKEN{u,ʌX(#bEmLN44R`Qє fâ@JMQ`yICCCفM7ބ$j 6K6LͶ#f%YDW#.΅Bl344e56c-f.棉U-ŧĪYl wE+:IK <=/{"sRcp95̥!;ڄ X•^5 x͡}J < YDLJ%YHre%VoxRT" TRI1yed lڴCC}ɩIã`uJu!_ė#726ͱXd< +N֢j^Eچpca:gʤCP@ĪYܺ0ᆍpVOqUh%jѪaKEpQcUtڅ{HLRծlnɅ*%nAPPlcɳpу 6ͱ_tV.D pg]dT4)Np:lܴ478751>qݵa4bhHCȜXԸp 9-)sb-G+WWKLdx;Kŭ &Rb89{dc()ǕA_8QEWbݒ UJXi8" Y(+-s/y:jYxYV:hD.v=Fk LQ7?kw28{%{XeVZZ[qƥ%d ֱѱkp F8!]S䎒^*j\/,AkQ5L\`Ռe:fS%Vօ NK(N8$X @3[5x=$p6S\Je%pBA&\`X9;$X]ՄBMpp;.R<@ C^]*\LQYs Ȼ7g/[1o J.  op/.,vwvww576 ~&8= 4TGg~+LC"CR)(Jf-G7ZT-c CQ7ڄTX۞núєAPQKF&2|Uܹ9E.T jk?hݺ id(RB%@VZ0\tEa @`s9&8= ^VK,ͱYD#{])j\9n'B@tq]s8p̤;^Xc)(\OKBs,QQZ4D-ΝYqX OQ^՜'H`yh%gQ (p~#9?+8, ͱ]d@E/ 6 ͱD-*f,ۄXgW,!rp&u Cs,bZh%g7c v <ÒerxYMy'edgKQ֝/665T՜<588{&8=% yKq@R\5dj1f"X R\5d퍿;`Y~̔-WoTRk.h~~<8]}<@@{W $.UI;Oj6a]@åj p틷39S,S.xZb;GZw =f.Bx&%yWm}BPay#c`@ )JEV]nR(ɲ=F % #qfFCꪻkݺֻ[kw-O,'dd9DdƓo޳YLMuNД5.@LK143rϔ 0m(Jz#H.@L;.Ȏ,*.%W%<+9(`$R[ gWgSSx4Cp Bɚnpi ]¥v b%\ipi s@0BBGɷTq!0p\` 2ܝ;Oƣ KJtK1. ĴK4.@LK1 g\-Vzy%R.ܔ3g1Xjͺm=+xD? 88?; }9v b%\ipi ]¥v b9tg4g޹{Y< C$ipi ]¥v b%\ipi sA$RJ ǁ ,]Y^`oP荄K1. ĴK4.@LK1 R RR  ev b%\ipi ]¥v b9 @" `בQlpi ]¥v b%\ipi sA$RJ Јv b%\ipi ]¥v b9 @"P`2EpK1. ĴK4.@LK1 R RR 0* npi ]¥v b%\ipi sA$RJ &)XK4.@LK1. ĴK4ι e)%wXL2Snpi ]¥v b%\ipi sAw~5\r}?[Eo~ilZlm 'M"-ipi ]¥v b%\ipi s:Xv[^Y:KZkBnѢš򮐝HQ,̯Mf6?`в\r:, -E!CrQ頲,r:,-E!ʲPв\r:,*B!CrQв\r:, -E!CrQ頲,@ p.ޠ'w.3;i֢rw!1yD'UA @AĠP@|`l%t.8]ۋD)rYw $]3둅  ~ M3B%Wm+"5rC #ͯ*w2Ie  C&ݳRFJVعzޯwzOSqD;}2 e (jg W&;W)NyVsPqD;}B4e $e,T˄urMZl_onm\?JdȷTq!DAѝ uY[WjxMu>v= PD"#>AAqg4 @ADw(H)aȲPв\r:,*B!CrQв\r:, -E!CrQ頲,r:,-E!ʲPв\r:,*P R' 9v b%\ipi ]_Ĭ.Hι e)%QhDLK1. ĴK4ӮJ:Ĭ.Hι e)%QhDLK1. ĴK4ӮJ:Ĭ.Hι e)%Q0npi ]¥v bUiVߜ 9 @"@%\ipi ]¥v}U7'fu1@v)H)2@#b%\ipi ]¥v}U7'fu1@v)H)2@#b%\ipi ]¥v}U7'fu1@v a\p_nY*;ٰWwd5I T .@LK1. ĴҬ91s.X/W6=՗[l vp4r7MXZ\Ζ( Јv b%\ipi ]_fu͉Y]L/s:@.7SRb1csg!VA X3Ԗ(4"]¥v b%\iWY|sbV $l\ .YJLu.7)4L59˴)DVW(F¥v b%\iWY|sbV $l\vP/7˗||gGi F&U9ly/#\Y`q~q~n3w%%k]¥v b%\iWY|sbV $l\gTg)Eϥ5~掅븎[jf!eR?+\=,-!>u&{.A(Ys. ĴK4.@L*^ a;=f qץ\d&$wWK,-,DjK12,)@֡ xll(knֈ7&٠~ԴҮیֈdS,(Asv>]i`rQ(nMKF8_\jeF%SplaP~_&g[e)%w6w7nݸuڍ\;qk?F0^Z74+ XvjapBؙ=e^Y>'nFQ$-,ͱTvlJIByTPDO^i oQvwig-j]5ˊY<́}q_U${=UU?27-kj7,!@OL75휥EDJI2W|#!nlloZG x+/GÙ!* a&m}}9kDr>ʷ0ֈ?:iqll}2a~ 1ny )cDۺ (ԟwtГq>#6F) ?U[άlt^;lm(J85ˊYҒTWˌ!Hke,+KkK jzk1nBanFh筕B˹x%ǺvO]Q=kZ**omrjz,+JPngu}}ǃg 㑹QiǵW 3*2`[kDR yM^HnP? t@㝐'Ij>Dѐ?{"A3;N^ZP]-3RݛbϬ' ^JFhQl8F~v:PГsJ5~Uݫ̷Tv]NqͲvVx@UNѴ4kZwI^KztSN[P2N/$RJ @}'v_1@oȃKHj>DN`KN#;A^SWvmW_^',psP2ʫ0'B>dҥCГsqVRԳ_* jn.?JkVgե̬4]N|Gl-WٜӪ[ҬsM ;hKi[&3-Դ3KsFg ;~P7y^7vv-ӻ̍էGULC=K"ER #3@6(`c.0g(=N. oU,:`[ٖ{Ʌ)sFZ7^QQ쯯u֔ҳԮFX9v b%\ipiz ~iVߜ 9̶IoΝz~$Űn}P~md,)I(j?<}vm)&@LK1. ;<{Y?$Ҭ91s.Xu:Dˌ1ѫoX5_.Mo\NYbܥ(DjQ23<ՕU&4>@}. ĴK4.@(; Y|sbV $l\<; 3hqoXi;o Jq1vU}m^ŘAj{ >V !3VWD%%k]¥v b%\iWY|sbV $l\KXco"(Vv\_YwڹX:qkqպrYŘהL5NwNp9v b%\ipi ]_fu͉Y]L/sn@{E=x:{9)]!fI#WZI#\YAX^X^[x4Cp Bɚnpi ]¥v bUiVߜ 9EB˶Z~4r593zzDcCƖbPW#I3<2@h@ɚnpi ]¥v bUiVߜ 9rB+He[Vy~њ岶ۛD@K K s w-F9v b%\ipi ]_fu͉Y]L/sAw HH\Y  b%\ipi ]_fu͉Y]L/sA$RJ Јv b%\ipi ]_fu͉Y]L/sA$RJ vQɓ'(AQu:DˌXvƅCBȷg\3ً GIQ $ 03gX,AA39hYW{rPZ m ߾qy%;Zr,'eD?E K b@X/-p)JFr߾oq:3}PڑH}?2G3 9v b%\iѷfc1c|,HWl\ܷ|q\oe9'ƍlt3WtD׺dёKC[ۧOƣ KJtK1. Ĵk [3s0/AVfO,\œ|]s\_Qn_շ嫘+kaZ,S@,^,2x`dh˗.^:9G; 9v b%\iѷtktXŠJ-wG¸8hPzIS2Xڻ\%cQЈ?5GKژF)gvΤ(.}֔8T WLX# ϔVq#i4y2f s;ɪBeN0a0Hr8r铧ˋ ˈs3sӓӻ;/y&`Д4%)È}W*eZx%'8<5g'vAkZӎ1Ǎw} ЖB*-:*)'UNM;rt^U۔xHnxsO>t,/--M+x47^ikDҿ iт\?&gY~'vF)k5uU?Pv#;BH$RJj7 Vow)Ys. `n_Z18~ wP$nkf[\wKR3;x/+Hqzxȸ[OH6 Bٝ?b@f@KHL6 K8й Twy]/Q;5 6۷ʚ2XB\fr-:-$R)T_ZV82Ș|o[,I4N}1 ۵qA-2@R1qEF]ToϏzo,v\@S<##"÷owNvh;5.@LK18~ p9&]Dz7{ݮnqڋ]8;xs/2M8D6;{FNɚnpi ]¥vm?A}Ky8w-/fe>W"O\ދ& rϯ-!$q!tW bšFK×.^͍ӧN %%k]¥v bڵqA-]2;E1hϹd\Sf;ٙ[ef:9|U)W3]~6>@9v b%\iѷtYwV7k|fqyJ. kV„HHP`ldLdKC.^;S%\ipi ]OD5jezq!CƖblC`(A"}Wǁ.wyk2@/$\ipi ]OD5\M)k3e{+(goi&JeFĴK4.@L6 ŝH$`*R` ЌK1. Ĵk [(H)}H4.@L6 2gSK4.@L6 2e}KCz&@LK18~ $RJwY(2>@m. ĴK4Ӯ'o @">FX$\ipi ]ODBDJI33N DtthY. 9TBN墐ӡe(tPY 9ZBN墐AeY0H&ߟ[-C.#lnl  A2"fZ蜲Y g@^ُ!ϏVw{-c}}N1_~Yj*GK"e<`|t1`xhrNu:# AAL 7ުܢv. >.ݲmTwvEKeԤ{T8Z?0Lyp e\Mp@[[[gP  A2"e, _fBAD?CDJI2dئ @Ae)%E+ b @"$AAt2(Aѝ3@c?r(W3HBeU@  Ҥd}G5~wGDș@αsr]E<,Hhʮ4PG2AA 3j[;bD\^< L zt+F`~'  @/u!v6k? H/ҧDa3 0tiKOY gfҵ2 p.k9"mZR^h !Ղ |gRK»^P !3Ç=3K/mmwk9%k]¥v b%\ipi5kkЬX~DWI3MTƄ);IDAT=Թrؒ;H!2d$`d dKC[[[OY&iNɚnpi ]¥v b%\hcZx2hpU_kZUyݼ"ݵpW[r')Lؿ2X,#c#C#C‚k9%k]¥v b%\ipi5k ߅ĵVw9!:*W1;T2U]}}dadiNɚnpi ]¥v b%\hcZ`5nWkm\)G2A ` Gdž[;;‚k9%k]¥v b%\ipi5k()g\_u[p_pޝDj`]QoǏ m -k9%k]¥v b%\ipi5k$Muݙ#q PVcHwB~'8G>2_ x4FS%\ipi ]¥v X2@Zxg.rRc@wZ 0:<2eiNɚnpi ]¥v b%\hcZ4Ys%jJm!҄ܝ5N"5R aPG?02:2 @  N攬9v b%\ipi ]¥6֬E o]|*uronj-wOmH23F Q攬9v b%\ipi ]¥6֬'HT౑gs[pK1. ĴK4.@kւ2Be `\d.@LK1. ĴK4ƚ @" 3+ 0>9mё7N:m=MH-]¥v b%\ipi5kADJI2oF  2)둅hBm. ĴK4.@LKmY $RJؿ zyxksTc=MH-]¥v b%\ipi5kADJIa3DУw PNmڝ?qc cK+#] ^޿dWfBu^bzyf-(H))hc;@}b{(2xlo(Sx^5pMq|}YW)5(Lvϛ~ֈ5e:8p6^5MM$WQS-_WWfk8kX# הUBՊ5FP 6FTٟإb(S԰xUdt#X:%vq @"2 0>1>:6:@yE95KSZs.EPΥIxk@jܻ&LKmUg.Kz* XKY.$3oskJ5o Yv}Aϊum \T:r@"'P %k.` ˳&( ƳYn:^]+]ΩjVX~ֈGn;v" ?ZYBk)MMM;mYj@^#лqIߐ ,ӒAfY#˒JRgxUn k~E_mϮ97WXAw%D2?L s2@PaHx/< e )3hS\Soe.%ֈ0յ"v"(/a'"R\}"ֈ7%>x-n~jֈ?U@VeM[}դoK$R#{Fkf# <@X#)Ys. ĴK4.Vv X `ZSZ` of^"ܾL! uJQ2<R !攬9v b%\fg|͠Vv X 7Rc5^6 5ݾ &U<.Yo˓jky\AH<3@ 035CU a4dAK4.@(ZZEb%\hcZ2DD݀Bd`2@`~n npi ]¥v b%\hcZP RR 0#3s[pK1. ĴK4.@kւ2"e@=~n npi ]¥v b%\hcZP RR)`|t2@p~n npi ]¥v b%\hcZP RR ;cVH-]¥v b%\ipi5kADJI1P6(a!I-]¥v b%\ipi5kADJI2FFFO:m=MH-]¥v b%\ipi5kADJI12,ХSS# фۂ%\ipi ]¥v X3@c?73H$(He`EĀ 024r[[둅hBm. ĴK4.@LKmYb5 lk۽cbKET עq윜A$Ch5yORL& d{,z,b.^@X~n npi ]¥v b%\hcZg6R/][ f/B[#֩* v޸R-qH#+^t3ߵ./aYAP pu\2>|ӧW\]YZY[ޡ%v b%\ipi ]¥6֬7Q_`/BS.!X;P6ʛb[T+䑈 fD/_/?b^8+RrG,u1s.UV9Sj?`R*Lsr*b K29|gV]Y00;5G<1!E!CrQ頲,r:,-E!ʲPв\r:,*B!CrQв\r:, -E!CrLI;QEiuNSGkgbww:Ք/ʺ|ͽ[ə[jTϭp,UZT~sZJO'eIG8r7ݼv1`eyeqaϼl=Aϔd5_fo4Jby,0bgKjLfk4fGujV |g#@ӳoA6@UryK*ZOEo* (^_UG;*'MHS`1RB^:>24M Km. ĴK4.@LKmY $RJ ",2X X43<2SG i?K4.@LK1. f-(H))H@c><>b.>@X~n npi ]¥v b%\hcZP RR 0tÛED Km. ĴK4.@LKmY $RJ opÝWf[{{’s[pK1. ĴK4.@kŸ.tpp\ĿILr*Lpn&݀fXXD `zr2@ppFS%\ipi ]¥v X vA1Ws吔>D^+{螹j@e  3'O82>el4dAK4.@LK1. f-<@ת4:NWeC~HwmwUtPr<))wX% _ pgi/R HsJtK1. ĴK4.@k•Sk}ڹsdP]Sdrǎ<)XG @ xׂ)mk9%k]¥v b%\ipi5kQ>З_#.:Wu#JOfĻO 2>@ppFS%\ipi ]¥v X2jIuz|+~g>?AN=i,"eY>3!iNɚnpi ]¥v b%\hcZr"XZΎ TroSr@ڻ̒>] r{!?T>>FXXpFS%\ipi ]¥v X2@A?>{2e'O?23"2AO:m=MiNɚnpi ]¥v b%\hcZ4Y0ljJm!W]*l sOeu[@>)둅hHsJtK1. ĴK4.@k֢Z=.>%73nj«֮jXyDO둅hHsJtK1. ĴK4.@k“H$@*H2=`zvfrzwgI둅hB''}ct?m. Ĵ>GρG_8!*Di^XH*,^]gGB8K# !k8,+kzI{25(*S^'PQgrk[(y7o^ֈ3e̱_X#)W$׋-gʼӅlo( SQd( Symqdc/޻AmE](H))jUE!dSsG?v*Ru5ؚGWV=E0lj(\Sln)-e)%<ORɆ.g^;2Xs)\%/bQL ,렦_7F\Y QϤ470e# uV^F{!ujx[# ϔvX+ie.Էs]u0g( O6YsjJV 7a :%<\,pA?^UdgR46c#cmP~Ub:j(dr'ٰ*jەiT8'tQyl'씩uUOYjР85x̮ʇJ@DJI2"3>.}'805lHq6sS}<*"EMlM(e{]r3iyֈž2k9LzyZZ^FiK/q7Q*馶YĪvEa62b8u3ps/-b}?޻Aݵ)e)%d]HI_ peyoNNѿ ^lʞx?9W`֚e^jM񪹺{=MҜU $W-5<3rb'1Z7Uruc S;qؾrtj{dͫTI5(L9A^x⸨"[^@-b޻a* GH](H))\1gggv7MO6jXS{z6a5F9OdWr0_DYv $3rVb]*)5ԷRf0z6uFrNov, `޻.$RJ 2|7fǁwN:m=Mɦ쉧sk5)gO$}5Ś mX@fUw?<3wge>j4dA i;xi ]¥v b%\hcZ3|miAٵs:kJn|5Jqŕ׬^K\ݷaWPw)l^K_3ex3gϜY&>j4dA E @LK1. f-l{Dv&W}i7 JU-7~&''Q/pFS%\ipi ]¥v X Lg4Kk&j6mPwwDwٸ>Qww6y`-; &L3^ǝ4r~'XĀ_OO'ylJ27²2@Xp7FS%\ipi ]¥v X @"Q }hw0"z`yiYd;{I-]¥v b%\ipi5kADJI F_ 1c?}B4!v b%\ipi ]¥6֬e)% {}W]@ s ӳSS{{:G i?K4.@LK1. f-(H)Id;wzm|+`rfwgKm. ĴK4.@LKmY $RJ@65=>|7߼q톊{త.@LK1. ĴK4ƚg|զ>$R|o9Gmڸ}6bkW\w>@XOhY. 9ZBNeӡe(thY. 9TBN墐ӡe(tPY 9ZBN墐AeY(thY. 9ZKd#]2sG76nݸu d?ޟ+/}^9 |o~ ]cVmi-R f-f ); ooꫯooo~W03:/_گ~_~~~ _/җ___/ʗ_Ƌ/uN)ۿ;kw?W^9{s/|k_|߯A_׎_x;\ /8c*їa cK8vLb~闾E7//xC0ѾoK'OvN:Žqq[:`_((q_w~ nDD%oooo>_.<&xMex>x{-Awq.>!)s;]p JS>3XyEygqiiiy5ڵo޼{GO>şA??ٳO?q[[2{-ݝ nancc6-`)t~ڵkpy۷76=~*p0;۰X:.m὾2q;cOL=~鳏>eJt&yvعɅ}YHMhz{*fX@ᶤ2 nq5o y#77}8_nܕ*{\m]+J+>`{jNuh`UPg<3y&SrqGU?{ >E-ӆu6 ڼ{sxJE˶uwgkgg۶xs67%A2F7oߺq t ׮\[*okl[o+\e~^[Y[]YW\-geydlz}m -k0B9z]thg'F.]|?Oo__7 \|otlbn~ڵ<|1:4Ѥ6тx;8VWf'IgzvvaAG17; h|bcF.1 t.^|w~߁޽{~s 81k ڣ_[8?==9>62<<ݱ./_ƢܕU dD"[454abbY-r=IO[=$Np* gD\Kշp~p{=wxbi#]y굥+WVpsvnщC#\[ [&46?44:}e|µk">.ݘ]9nͯ b}%lzkDc؟cCL~9T#nNwk7BA'nVvnfnF>5693:1 fW3+c3WӒѩɜቜqy [j epH8B9 aWn$U^~}'V]~8|SO)'ɫ]$?j9éßF =-^M.(:tg\S>{{p;wvL0cػ 1%uT`4@<} t޼6." dʻU-dݪ*hmjXyj ռ5k^keժʎ_< vbUqD!(Mu83,U2@vn}WpR=Viq&T@, ۗѩ%X8 !=O eozWO?wnOSaނJ*0 g`a`-+$2j-v5G ]a-(Up\4nB4j*zŅٙ)x!ݝmYQ&6??||pm ]~l/>XF@}.3޾u!}މx ZE@G@wLJDݛlD. ֒<x?ߋD_"0sUsJ!* p)|ifM- Z ^Ⱥވ#c=oz$bOG[U*Vy*Ua{֬m Tjs8;Wy5 1OD/ŀeΨXN~b)?oR)eYy23iŀ9X5E 0pl,|(NymҺ~:1UGr/sۿ%x` ^ollm0PDW`Q :5bG+Q9n2 2m oY[ [z;]#CFcmħ#V\e- ZG"<ϾIq]DG;~2aS\|oJb8>$}!0mCʾ`k8atdw_m˥N ?3e1=XSߓxĚ. W ٟg~>?S?O!كCG .g}S3 鮟IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/training/xraydata/index.rst0000644000000000000000000001034214741736366021044 0ustar00rootrootCustomizing X-Ray Data ====================== .. |img_01| image:: ./img/xraydata_01.png :align: middle :alt: Initial data .. |img_02| image:: ./img/xraydata_02.png :align: middle :alt: Final data .. contents:: :local: Introduction ------------ A program for X-ray fluorescence analysis needs: - A database - A Physics engine - A set of algorithms for spectrum deconvolution - A user interface The developers of *PyMca* put the maximum degree of effort into correctness and transparency but they are not at the origin of the data used by the program. The theoretical data may not be reliable in some cases (in fact we know they are not!) and, since we do not have the time to perform a systematic study or to determine them ourselves, we have made sure the program can be modified by the user in order to adapt it to other data that the user may consider more reliable. Exercise -------- The objective of this exercise is to teach you how to modify the theoretical data used by *PyMca*. For this, we are going to take the case of the L1-shell fluorescence yield of Pb and we are going to force *PyMca* to use a different value from the supplied default one. Step 1: Getting the data ........................ The L1-shell fluorescence yields are stored in the `LShellConstants.dat `_ file of the `fisx library `_. As explained in the `Customizing PyMca section <../../customization/settings/index.html>`_, we have to download that file and put it into the data directory of the settings folder. You can do it by opening the `link `_ above in your browser, clicking on the button with the text Raw shown at the right side of the page and saving the file to the mentioned directory. Step 2: Initial verification ............................ In order to check the data *PyMca* is using, we can open the *Elements Info* tool available from the *Tools* option of the menu of the *PyMca* main window. We can click on the atomic symbol of Pb in order to display the information used by the program. |img_01| We should find a value of of 0.0932 for the lead L1-shell fluorescence yield. This value was obtained by interpolating the theoretical values in TABLE I from the article by M.H. Chen, B. Crasemann, H. Mark in *Widths and fluorescence yields of atomic L-shell vacancy states Physical Review A volume 24 number 1 (1981) 177-182* We are going to update that value with the value 0.128 recommended in Table 2 from the article by J.L. Campbell *Fluorescence yields and Coster-Kronig probabilities for the atomic L subshells. Part II: The L1 subshell revisited* with `doi:10.1016/j.adt.2008.08.002 `_ DISCLAIMER: The goal of this exercise is to show you how to update the data used by the application. We are not endorsing the use of the data provided by Campbell because we have not made an exhaustive study for all the elements. Despite that, we have to say that Campbell has performed such systematic studies and the value Campbell recommends for lead is indeed much closer to the value used in our own research than the theoretical one. You SHOULD verify yourself if, when calculating concentrations using the L1, L2 and L3 lines of Pb, you find a) a systematic discrepancy of the value of the L1-derived concentrations respect to the concentration values derived from the L2 and L3 shells and b) if you can correct the discrepancy by changing the L1-shell fluorescence yield of lead. Step 3: Modifying the data .......................... You need an editor not modifying line endings. That is usually not a problem for Linux or MacOS users. For windows users `Notepad++ `_ or `Vim for windows `_ could be good choices. We just have to get to the line 93 of the file, replace the value 0.0932 by the value 0.128 and save the changes. Step 4: Final verification .......................... We close *PyMca* if we did not do it yet and we start it again. If we repeat the operation described in the step 2 above, we should get now the modified value. |img_02| Please keep in mind the DISCLAIMER above. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/tutorials.rst0000644000000000000000000000500614741736366016334 0ustar00rootrootTutorials and Exercises ======================= .. toctree:: :hidden: ./xrf/material-definition/index.rst ./xrf/strip-background/index.rst ./customization/index.rst ./hdf5/index.rst ./training/quantification/index.rst ./training/tertiary/index.rst ./training/matrix/index.rst ./training/xraydata/index.rst Things learned by practice usually require a greater effort than just reading or listening and tend to be better retained. Therefore we have prepared some `Exercises`_ to complement the usual set of `Tutorials`_ teaching different aspects of *PyMca*. Their combination should provide a good starting point to use the program. Tutorials --------- The `Getting Started tutorial `_ is a very old tutorial written by Darren Dale and initially tailored to `CHESS `_ users but usefull to everybody starting to use *PyMca*. `Calibration tutorial `_. To be used if you still have some doubts about how to calibrate your spectra. :doc:`./xrf/material-definition/index`. This tutorial will show you how to define your own materials. :doc:`./xrf/strip-background/index`. Description of the parameters defining your favorite background. `ROI Imaging tutorial `_ . Introduction to the stack imaging capabilities of *PyMca* `Kinetics tutorial `_ . Illustration of the use of the ROI Imaging tool for kinetics studies. :doc:`./hdf5/index` *PyMca* can deal with HDF5 files since version 4.4.0. You should take a look at the `HDF Group web site `_ to know more about HDF. `NeXus `_ files are only supported when using the HDF5 backend. :doc:`./customization/index` Description about how to provide customized settings and add-ons to *PyMca*. Exercises --------- :doc:`./training/quantification/index`. The classical exercise to learn how to carry out XRF analysis with *PyMca*. :doc:`./training/tertiary/index`. Press-button exercise to show how to deal with secondary and higher order excitations in X-ray fluorescence quantification problems. :doc:`./training/matrix/index`. This exercise shows the user one way to tell the program how to automatically update the sample composition. :doc:`./training/xraydata/index`. Exercise to teach the user how to modify the theoretical data used by *PyMca*. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6277657 pymca5-5.9.4/doc/source/xrf/0000755000000000000000000000000014741736404014343 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6677659 pymca5-5.9.4/doc/source/xrf/material-definition/0000755000000000000000000000000014741736404020267 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6677659 pymca5-5.9.4/doc/source/xrf/material-definition/img/0000755000000000000000000000000014741736404021043 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/material-definition/img/materials_01.jpg0000644000000000000000000006160514741736366024045 0ustar00rootrootJFIFC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?-p4,̓@'Fm-wyyv#-J? a^"ךmզy-˂#Kjѫp,@;#a7Xֺ6}xnSK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩY'?#egϳǏ:߳z|mt4-n7~`FOhyfbSrnmF?cZZdZܚEixn B#$.l N $pCѿm)Y?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0諛q$ :!1;sN:ݐWm0ʞ Zܨ`2 T$qIcL2z gISKt w$_%ƖP ďᯕna?hӼ˕7/<\6 tV P=ڙ6c '' fYYfү?b{K1h[R,6 ~%qe#PS*ڛW7 [DLIڊ cXᯓwyc͋Nss \K6C|ڼ͎Q@ ERTTM.w*oNeF XH Չ[R"BI#TP2I'4%OMմbݮ4Br%*8%IPEPE^Ofˍv4z(uʌ s:Q:Th=M+;#Lu_#Lu_@Ѣ4Zߕ ?4Zߕ 4 M+;#Lu_#Lu_@Ѣ4Zߕ ?4Zߕ 4 M+;#Lu_#Lu_@Ѣ4Zߕ ?4Zߕ 4 M+;#Lu_#Lu_@Ѣ4Zߕ ?4Zߕ 4 M+;#Lu_#Lu_@Ѣ4Zߕ ?4Zߕ 4 M+;#Lu_#Lu_@Ѣ4Z߅ ?4Z߅ 4 M+;#Lu_#Lu_@Ѣ4Z߅ ?4Z߅ 4 M+;#Lu_#Lu_54h3֟3֟‹ Т4Z߅ ?4Z߅ ,SBNY.Xdr3֟3֟´5rdSOiQyn ,u }#sVZ!חEL]sV;RbA9S CxLabCp;=7S٧[BwY`1w`zV_]f]>.Ck)\Duao,[MiG[q7'N[860&J$>Ko6ͪYn' רwڏ@/.Gu@\|)e%ԯYmLdx#k #31ev- ݏeۿywɷoVvsW_]ڏ@/.SLVQ,/ybE$y!hI[' Mt$ge$W5.F#pO)#G&޿ʂA]qtwWԢn,g=}4EIqki{o73+6?0ZnMan./a1RG)Di\oLds ?ڏ@/.Gu@\>e̚xn"2-qkWW^-ѰӝFbx[Yb /A.mA~v *(sBZE<ϾV_(mr?'jRj?憎g ߉ZL$p, mc**ApO %z/:Qw}E9/7lܸJ}.gQ_͌mؽgj?憎?_]sF]Qtj?憎]QtCv7s^K m&]fm.ʑukDdBqƋ(+e2HanԸ{-'GB$HOiGhuZw?z~tGAEsz~=_x_?EtGAEsz~-_x_?N˸sy?ur7E`h:?u?aoYݸn-e* =$#ݟo1Тݟ+-4(jg(Ƨ?v ry5C:L+u$iWϩI2sãoF=F8P&[6F>rˇ-d]A&@8ϛ?*R0Vfsk p;\-tu,WKo9<±ԹZuY)J&RQY-PIE-4f(3Fh E%-^+gD.Xg8AG9vb.QTW/G?h OJyr4iC?IN ^W q"b gֲaq} ћTW!v+*>cq5Z|u]6ݑf6 p Od^gK",KVK[M\`$Bs~"%eԣ4ItHbF?2֞ޓ%ݵjMsuBFA!s\r8쐭9ψ.x^1p Y"bx,CdshzŞ]ueXV=`97(K6pH9dRp3S-^MiږT=,Fq0Pnsu=w ī H2m|FH$97n(8eB]L˷gcʪ)鷃lͻugIgiX AmE4}IY,+I.w)+!HhO;K}+ZԌs@w!t`zVe׉˩]jwv_nDyd,I,ceW ̭%ܖfaK1O^մ]B8.쎝^ʢx$b]R_ojIu rB$k ]K~f of4-UTT³qcbĜ/1;A|^yԟR;BGS"ld#j-K|HPoZ ||08 >$U-9 1$$'XI}T|-#XuOuwm=F63F@bֶ}ZIn#G#rvnR hFU%rWm4h]:Iz"B#3 ȑjq\I7m^QV~o^ ]b'68QahGI%EnF‚2$᜻ [7gdM-爵(uK":, ei,@h_g?0ǡX?XeҤUx|N"L7\l'i݁=Ɵ\vuMqKq4bApG NrۣLǑ7>EYXn[owseYXVZ6:mYoSlq®ř>brBlhOiii햟w`/pV`@Cr66,7 Z[xxiVkVbWr(mW77x]\D$B <`K02-&êMeͦ 6bq,%y%9%vùyQ}^Vk-0nA-G9 +V5˙uhkܗ1ybu?0w͕;@ cIm#JGuqs/qs]* \e?\.[mbK;GQY˶5D# Sĝ [%SKK$D?c;0b \jT4?ף.z&VYt}BI,!_P91j<  "tG %V82~P}GQha8kK/?hчy^MiF9?aW/ZtQjfh4b8?qz@(c>4b8?qz@Op{L y QgsE#͖U|,F鹔f7O8? d`KU.%UX&72 hy5̖~o.vXX՘3`w6t>4}/Oh-#{Kܰ_ 澝pVr9o6>fl>Ү#vԒṫT4,T9Ir ?1>4}/Oh{y5oİK)bs 夓*He|`6)4nͼlJB;w|ŎltU( ֟q+HD1;QΙ4K܌\|qssQ@-XA-%+IpX64Ið|8[6=[jB¬mL,_.T38GEE1b෸mF;h?.e,^Asmr }ߕq/.51@ܙ p{~l Դ k$nF0pOJȳЯDZqڈ_$l vgsn<765Esx3NIAoan䭜Hz?7鎵cL&-ӭ}r-"91m܉w[TP)`-xCo0 #]-t.U QC&ڪq~b~=I'^ gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?O)]_]ow. +<9fMi ƻתo[w!Tަ[ ft]5 \G>_, u5-&3^a6mo}$؆sjC7TvLJ|7i ZV%N 97L;# "1 5o?b? >g?p@(o?b? >g?p@*mG),X=e B<Q@Q@ZjXgѭVKv ahŢZ)( ( ( ( ((88(88 ( ( ( (Z)(Z)((((?zY_oO =EVvO~nm*KiE pJ386hhI%#hP50)NHU<>^^յ[M)o *1#*Hb 0{;YђO. I Xl%(@U:4:ֳqykLxOkF8bHR2ۗP/c&[n)$Xp[US}:^jRsK6;,dN*ͱmlqEG5R2@) BG;I8$zRS((((OpLj R:r$v;V$l|r}u?W'ajqu$צHRiڈo>ҹܪ>G?.R,ȮPH E Vsb|ymiqll3gh"LHP&o_arde,KY-ˑWˏvVlȄ"e F.k426efR@X0ݍFkt9[.M]fʆG>F qůC!ӧ9 'ga]qB~c^RnҴ:TZ}$vΞ`Y/V( h|ϜUb?>/V( h|ϜUb<&Js7U?%94⨸_i]OՇk≮5Kx4n4i2w` ;eFN ϴK>siQ?׼Q6q|XGqddǔHN7'm%}sW;51ș<ѵ '%94D?Ur~2ӢNXyaެθ1a˰,$u!!ѣ{0sy)P-Lʃ,8, }_O*K>siV9uQiOΑ&E0?xaUH2ddGA@/G%94_ϜT}_O*Q@/IbI$Re|Vjm@((ɰQ/|ZU[5)n;QR0((((((((((((((((((((((7zY7_oO {0)Y:5Ս~e) 7#[pOJ*4$yr2nW6JW%&6?zSQ5?-+H;[y8excmJrx2- \kk}ʶSv;?<}9ڵKln"*FAh'^x?gM杩WW7\G݋aiwsq@_e*`XߓQ{~O@(/?TlߓP*?U/?Tb{~OF?U?|/5o#_}ơm"Q4no!R>Lݫ:]yֹ|ӌDx;e*9_ndzn+Ӣ2mp"sJyWhzkƥmo>;Kp,=RBW%v</?TlߓP7X:ixd$3RV9ާwKd~,֬O*%$d۟0 |ϻy='e*+ig5JIٮCwc?EU^x?y=' U}6^x?_e*U7uCj6^x?,r- yd@h(ɰQ/|ZU[5)n;QR0((((((((((((((((((((((7zY7_oO {02ݗ;<-C"!U99 jOjwZE3D4d@s2LN V88M9頑VHRRB1)pA3JM>]BuH @#U\sܒOqGb/xÚg. ]vNBf܃5eWwTc2 OQ?CƆ;@ăyEx1sQhcou,Ʉlhr9Ri&JY[,$,hȊ ª_`@+ Ԯ#KHԈep8TIP!7ltsʠ6@3K&&I~c1v`@M6gxS]kE6KqⶸxrC&6U#%I ?=VQR1اdv77''\euOT3b;"-l'{͐_\%ɭ_鷗vph:QA%n\)2L68f99R+S,2\s^Vͦ"TKRxv*0 >]3VY O$k2HIUX S\03m&wY] }N jWjqlM&B~K2G `'z 4[-#6;I.ss%Čpfm,B2Nt(((XX((&D?jUl?K_3֫TQEHŠ((((((((((((((((((((((n8ֵdq?7[E5gRHXG#XGZaM=F`9fp:j_>B?ΥcEW_ޟ8?PcEW_ޟ8?PcEV60 3#3_ޟՊ(ƏX+/Oh_ޟՊ(ƏX+/Oh_ޟՊ(ƏX+/OjXHcI'$iPEPEPMjgѭVKv(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@dq?7jɺתoCف[K[ځ$W:BR`GAoy],MO"EZrD؆V"UdӤMIkۯQG2{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]WOɶf*y\RF#E- (Š((((((((((((((((((((((n8ֵdq?7"E;֟jW0y^vnxLtX׼SZޭ Y'XY—K?0GWac$uW֚]]Aum&vMѰH8aT TF +apAv J gIKӚ]Bm=m,9~\ DTʮ$a[74FM}RWgQq-H+9-!="yᵷTHU I;w׶nsw'mmM3'j(%'zWMR, 6RH<ɋ]!73<1~Qo 5xsuo{m-vrbJXeƊI߸徴k#BmylN:T TF +apAv |Q~$'M6r8"8̊BWVC 뎻כX.YFlnYd9#¡9:7![ Eyݞskf.yyb*gJ3b060Jыou=_R[lHc>a?(?3<hhZ5ۮ;[[_Im\!S*3#(/Q$qWx-I$l]H #qZ%φSN-.-[۹a2#1|;73jOԗn,H.JĠHs;+{=vLy34H8T# I$K-2b\GkJyLR: 5RTG)$L[&tgH ̪@bRezזXYk1%hQ[ACuVmcےpb. ^&eR6dK);.[ Ai# (h?yIqscm_EPEPEPEPEPEPEPEPEPEPUnƚx|ي Rp۸#jw|7;S/?%hgy#v @9kC2_ 1,ve}o |8t3,[|,P,HmDvihww:ͺ[mJM4+c9BD.rXcZqq\CH^I$UQ@$s?I/b3o61.O~uqQY~&ԓZVE&[-$3dH+e&mYV=mI 2х2JA.=(9.{LBFĒ@UUI(@QS$ˤ7eHI2;BajpǛ#Icx߸s ~aɤZtPvj#1hhC!`M /??%^w R{--gw;:>aE30[@p X-NhM68ɣW1$eQpfKA;/"'y|W?-/u?c6^v?I0/Am,/dԮf Yư΁GiQL"EyzfsyGkk3E'c2_ 1ǫ]3W0ywI*5*N+~s6O ]?_Eowok:,v$XY'i~)?07 -M db+>Q\~ ěW.弽sF2~Ք_SO"yKo"EHaP$Q2ܐCF% 9-u(-}ZkOhYMض դ;o\9V D̗w_EW=ON$&F7#TǑGZN?ڿTwg<ϴf?+?gݾy\_KW:OH-VX!󃷚wyP1bL̗w_EWxl^na-vr03ȎB?oC\=c rKK2]ߺ\|Hك)#%1Qn5-?\m~;u[KϵGq Ё/+-NGX4ײmK\Ik$lUH8FSjiqx odʋ,r̼z}ea=)Hd2 |1 r擩jZ PW`вDc;Yر HrpZt u3ۼqs %i#6ݾhi a\=k* wGz]ŭ։ si $Fa'@ ,D>~SOj6wwm;RKB :EIJO.(y} 79h˅mRm./!M,Qxn@;ZL"[%q w{xT8BJHluJRU-uJ͚(#nUyrDv'[h߅/X[Y/?owsxZJ!llr xr~#^wYzin+jmZKup_r\ I@鲣5y6-ͦΙM7{ۀPXpfKA;/"Sjiqx odʋ,r̼zwem][nf0'!ŘT6f`l`mqZY_DWsK=~]{7)*WEw(IRc̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (XyY;Fcd W_oO ޕ {ARC^Dt.ixV3NlKVVX#Ze3VZZi4i4Xw-QUZ?Z,-QUZ?Z,-Ts ռ$ʅ$E `ڡ!ih!ih z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? e9!x.YqGiz-?z-? Z1?f^X;fbQ󃵘dv$w!ih!ijd?v?V rڟY3gA OGA OEY SK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩXڧ-_Kjy6ik{,)?} c$eXZܛ~`otLrioeXE,gH2w秸'CXuwϲ9biBDġQeQ9#VjU߶?V(o|o4$WRvRB,B qQh%]};JNrKD5!߶?`3 :ˇvW7P˹bqqWQC%ŤFy/ Fp X,p-Y@ J?~`kIN鷟h[hDdDHʊ}rVG5'KKGI&dj N8-ԣm0??&9PQxy4[H%S1E1mcnGO4L%6bU>O̬ۂ*-ԫm0??&9ZZfeyŧ8Dm$qpѻ(Y;pFt(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?kQi ,Lc8 AM MqաʈNF # MaGv0^M$ n̡x#'9qqVQ5:Խn(Oؗ@p;yKBn-M~oP7}ܞ]M4ϴ8zUm:nG<ش7;.`uľad?gm̌]%U)5KHHryvPD``T Xxmm常!$/$0UE$xs@QT[M-K-oW(Z̲lTq*QEQU/mktw2@0 7V5_ ;[iX.@ $ v*'G'EJ )y|Q )y|Q `_E`_E0j )y|Q )y|Q `_E`_E0j} ^1} ^1|*'G'G.[} ^1I[-Z OB Ԯ>n%݄/)w!PC0YdF$UDQ"p *3'ՖԳmVaq"HŒ_Ɯ?FWzypWcM$ur*RE~sy+o/_0yQl$9;4Zߕ ?4Zߕ 4 L ~ m=vm`xmX+nOYem{$j}cIG+I#d~M3֟3֟S}qK>sh/.͖{O6ُ.4^fbWHggӟM{cJ-m3yq).O?F@OGF@OFCg.y#f,K 6r[3֟3֟SF?i~W(?i~W(54h3֟3֟SF?i~W(?i~W(54h3֟3֟SF?i~W(?i~W(54h3֟3֟SF?i~(?i~(54h3֟3֟SF?i~(?i~(54h3֟3֟‹ Ѣ4Z߅ ?4Z߅ ,SB?i~(?i~( M ;ifVyaFhִ4Z߅ ?4Z߅ ҜɒrV9M?ɥDX̞cbI>'?ēWI?j?i~+.֚(cH[T¢*yaB5m'Qþ(t廇O0=2i莊cuZ|Mhx^]m2uXIL- [2ڡ `Ofm YJb%fMdƭ݁EZ]quw<ĺfئq=ՄQm59mܜ 9l0ԚjE*hXO&ݾWY3u^]qtj?8+M2OjZj+YFo4xy8$H l15x iK^xԻI!?z* :Qw9_RUH'IŭhF,jf3k#K|Cwslu5ʻ8CMI}q1j?憎?_]sμ?{_\2k%ӄpm^]xFNv Ջomg$?۟i(&ׄyti!e.[| =w i>Y|]|'I u7~$~̗v#"+^2` GsY`jڍ&i3@py >` 0:ڏ@/.Gu@\?r*&)d8EDc+y##61b՝]Qt+;Qw}E 4Vw:Qw}E'o ״Ux9..-iuK/*Eխ& ,Q,>E!R7#pC=ݣOWiW: +ui:V]syi:??]syi:??;.tV<GXF?ur7EdZ\jWveOڜTƧ?v rsBƧ?v rjg(\Ю?d+Ƨ?v r/ ݷKXⳋm MJC9 o0jt_W nH&үReu!FŒzqǡlIjCHG$ tG.u<#>oHY.[p/-r?T\d\B- k/Rǵiud+VbIEdXRQ@ E%f њ(4f(3EU{ȭO0Ucc'~u?iيES҇y^MP+.U?(9,ES҇y^MP+.U?(9,ES҇y^MP+.U?(9,ES҇y^MP+.U?(?9,ES҃y^MP+.UD`yl̷8'*@*J<XCzl r =[DuY/zJGa$1'lrOSJ (9;:M_o{ۧ{pM4>IN8O~5~!< QK Ωq|$7hHyP|8cP(@4o-?KNM%:*jZF{\+6=ċ dZɇ:}g7FmQ\ڿ謪R(U?4n?itvEkxBBt* '>xM.􋄳k.v[-m4Kq ![DMRX%! {ZzkzLv։Y5BkxV EYp \bxCX[B'> x2 d`<͑֝zw-vTkbQaX mߐr @__I.shڅZΖ#@"FdG@IžO7K{1y6jYPLH uJwBš}Z+1 ʐ=Y[Q𶃥%lmDW6_Mb˵s(%~a'FyQFn$t8>{Kf$hĢ ۃBxFxfb%7jûq! x@j^[j6 YnvG.b ~b16t-n]_ht`+h.|X+>j4uEGqknƞ]=mtW8R9`OB:֕q @i~#}:HTm$r'nJr;I:WoIRͼ$1'C$E\7QEjEPi?ozi?ozn[ E%#J(hQ\!w ^Z{49q->HżS;,fl)L\vk_ >}q&|wZq򼉘FO3iW~$ Mcvj5KG,d<2~YUN].am=#Nm|#O旒{4[~`DFnVjZip r"pvbLve]k]WLo~k;GχŸ1$v P/>|W-[g(dF۶:+Ɵf+湰xͼse<9de~A-f;c5[h\&fqEM gU Ų+5u=Z}݃,mIY ۼ6hzTvim?hmYY]ʃ``NK^O/HXnn`i uq@9 08Bv,ȷ66,0KeIJfxGS G{Z-|\|Z@n.eգIbr\?6T2 %*)u̾užWڨ F~Uw'$K07h_glglat]li4li4YvFFfE*ƙA?GƙA?E]h_glglat]li4li4YC>t?*JYWwWz[3J c*Nx5CK?zXO %E-*9^ܔ`s,#D궋?":Úޫ衊n`t"scO9\'<,G!ꦡ}qocXM̶(cI+2"*3, [Xд[V[Fl[".axhTUxXu ˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\ǓO7~ٟ1Re?W.?S5rv&]#^dcEC.˝|9P\?ף.zSvw[&$qܹ7Iw);?p(~f2o:V>睾S[ bO"1m#)P$Mnˑv.vsC??rΣh_mm..4=F&uf.@6N w -lxMM. M/T+8c+3i2sb?hU{? ]dښIl}ҬLW+}ҏU( z`h랗r/|Z-ؖIE!E%RQ@ E%RW#w ^Z{tIq->HżS;,caJ`pXZf +{$lOn̆55@ߖUSuxSHӛ_7侞&EV䲣~`DF\|`~o9E;'rXHۛv\r98޳wE|62@-n-)̱$`[ ݸ.IܢkyCasd20Yw#ێdGyt]N}J3 ƤRE)eEE9"8d@;+\XMsmVKa.umȥ&Ǎa_3GD{u;$H-ftg'mKT7@ΞOc%燗|mBҏ)X6@o]?4ŧ5ޣ{R*4o,xB:z*Eڝ»Ago%ċ dZ̳կmeҮu_*9+o1+ ]l6I7SN垠r7Q-0m$c* `5ϧ^$Wvc%Q|` ѫ"6'.Xg8AG9pݷ{MGPh}C_`>ŷFaEf$ q,N0+Fyr5Eg?hчy^MiF9?aW/ZtQjfhW3<7ɿiW~$(}վfږ}\gӆ#AlWl`~ ZQF<9]9'P+S.̂3O#1l Ӵ.'6-) 3T3;`qW t7Z}ĭ {qR0XF@VE4GG:d,r2rWeyEE``g|Otd<-&`7)$#?C4o$ImY  0|P @;ŋÂwյ wXheySs -~U|'Ӧ{[ˇPrd,)/19殪Rl.-bhfL#=+"B_]jǩp^Kj#|.ٝHMT:')˒r"'Xޣ:Ս3DWwN޽ȷfƱr$~ZbW EmQ@X{ 4gt|sUtVx\F\.gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?OFF,li4li4( 1glgl>.̥uguw8$r8犽J)7q.kC^lV=SCzl2z5w8-sH[[I"(C+0Ag?p@(o?b? >g?p@O?Ҿ FymhNj'?'fۻU{S50q ljOcM:MZ%^MjDMK˻He3nEW#}P}I' i2NWDk]HOQ? o|'װ\ZRI`XvbCޅSxM޵hzL1iZėa:C+82B4*ĀLdנ}~P*(}X~P*(}Xo?ऱ`ŔY F 4QEQEei%kUa_FZ--CJ(hJZ(((((( ((( (((((J(hJ(h(((.8ֽd]q?7=[Du>i\ili-Y6*Hި٢I]$l@Sǔ=9 sT{{V^m4Ps5L v u!K.©(ufFK۹<)$)bYbIMVwZ٬m2.'<e!Hn\f BDϛLn`p`&UclJXgTTWCMzTyiKi,^h98 pK6ŵ4Jh*Y t$dtMIL(((( ?2T:tsgѫ$HȒ6UX>Vˏ \Ǫi֒XHXk^#1J}j xJr: K:fp^O"A#I$' 9Q?)tˍP!{F`E#w"JWcUbF[zη}G5嵥ųFDk2!C+ؚQ}iۭ.^d.E_.=Y"Z4LsMvV] e{sCKJӧQi :ygxpXKxQEQEQEU{? ]dڬU{? ]dڀ,QEQEa_FZ%kUR݂QR0((((((((((((((((((((((7zY7_oO {0)O2ۑ[y:ϿsiU S#"E#!v:g!#M;w;*< Vv<Z^7u25a4N#0BXqY$hcϜT}_O*jZg%ӯ~󺱔yQ81TjS%94D?UX+_O*K>siU(%94D?UX+_O*K>siU(fDbS)Th|}u?V&-kOf߾=*~\Oɕ;@7>/G%94^DEae6XIRa#8bܝ\_Ll\"fF0b#,W$ h|ϜUN;: yb?az: m.̰s$DXFn y@!3* {Hr(I?>/XY"E>c{:Di!WsiQ?EWD?U%&ؒINQYX((&D?jUl?K_3֫TQEHŠ((((((((((((((((((((((n8ֵdq?7ggoV7q02H܍o##=*?xxhW̫,G{t;XcOO͹_x3]*9^ܔ`s,#DOqG`?"xmX3m.e+Hz>ȴ-q{Q*gyL~x;S1j.m$zy='[7v]\qv.c;c{Km,iǡlU}6^x?⩁b{~OF?UXߓQ{~O@(/?TlߓP*?U/?T\@jõ܉DyɼOˀH2vuZhIN1o}#}o$R1麬gN$ŵϝ)8^8;Mꍮk۴-ΞaI i\3wllߓQ{~O@bjϧ}DviK Xz1- qOXZ>O/w<K$Yn| 6 >e*i}Xu)&fOo kW݌VWy='e*,QU^x?y=' U}6^x?WPO y='ȶ;-ɒwY((&D?jUl?K_3֫TQEHŠ((((((((((((((((((((((n8ֵdq?77Wv^ AdlWh09<9jiw${q汑38 0eXdm68ӦFeY#II 0 }S)4u #{,6,UUp 3rH=Miw=: irՕ]Q7u=F?`MH50 O˝YGlǾ[&wO-'9Ihv+eoD`;;"(' e|p/&R/o y#R#5mP9$'Y>eٽΰ3 ds;fP!7ltsʠ6@9}sė&]EQr2o ۰HOHos% {[6V4R.J0M쫒|(vZgFp7 < !%U`%N[pn>cυfK?7Z ew;,,Lj0PN; 1]\}S7˩ŲXn6$ ,#vq +?Ll4ڬ$5̗0 @9Р((o'bo'b(( 5UQ/|ZR#QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɺתoZՓu!TއmŝI!axah}?U4Oo?":ӭWv&\煙~4 :4}/Oj_qzGƬQ@4}/Oj_qzGƬQ@4}/OjXH$JΗqzV( c>5b8?qzV( c>5b8?qzV( c>5b8?b!"y$ɧ@Q@Q@6%kUa_FZ-G`*FQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEu!T޵&C^fm.qoj\| )HLcu}/u5> Ajbu[dUN5'n_&Evcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQtcu4kv%iQte]?&٘pJ#*TwpJ(C ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɺתoZՓu!Tއ AZhg^wyyۿo]=3M?c^"Mk÷z/mdQag ^F2ci.VtW\E_ZjVwauմ4F GRC<7^ RTY0 U؂+5(5'@{m.Nk)u Lbp2(QS*0l߸=6KY_YmEws K"0N;g KRbBI#TP2I'Q^}ܞ]M4ϴ8^w/6Jܲ[$I &-vdT Fq.ڞ-޺㷇Qս1]Z"a)c]+I'~O {Iw ˴e98RC<7^ RTY0 U؂+FwL6X]kp2+ ]XY w:^o ;-cL}eYegX (`glzwvzVڅ +X aq0m(͈ *F,ZϪ&}J;kin滋WQ!O #塠_hnmm~%s Ľ2AG_xn㸷&Teu# 8 h>M:Xonxn;ľ\\ͨ\k<#XR^ھs"7+ ;qh3K-2b\GkJyLR: 5RTG)$Gm,ɋkmq+3M1K䃈IR1P@=23· nҠѝ#,72H'^Yagiwwė=jQEou fZR0UnI֋Lƶxi7[YJHّ,P]n2d%ݤ(Ah'~s~Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Uk8cf*́IGnU?i*J'NLgӬPn󭡞i۔.F 硭'y|W`. Z'泖(H̲m@"\y٦xCWw6o5+4Ю `' cccW{Ako-Ʊq !y$UE$Sj8cF$iƅܺ>eב=EeRO iZqoo<Ӱ c̐ꍑ"cl aE30[@p  QuyO4ϲ3<zU'y|WkwVS\aYE$֪p;4Ɛ < -t~^jڭ-R0ad8`(74\,wْN;]Gwqm_4ǖ(GVPy}Mݡg77b.fWV r[8.=2_ 1^(=:W$܌SFAk?;tjcySyٟh>јvgmq~,\\V }= [ _!`jۡ%C ˓.=32_ 1];ų}zE|m!!"9q pZՏ4/i/tA.4w~p#fpFP {-FMԴrIƟsB (\u9c^Yk/fr%J U#8 QMM2)[E*/m2GqY:z s[X9!'9 N[TNh3~OmB+^BxDEf`#b/1#q[ikw_i6~(K7y0nǴnmsTeZOv-Hlr,OĨ5wwZ$6vͧL$؝4p9N5SK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩXڧ-_Kjy6ik{,)?} c$eXZܛ~`otLrioeXE,gH2w秸'CXuwϲ9biBDġQeQ9#VjU߶?V(o|o4$WRvRB,B qQh%]};JNrKD5!߶?`3 :ˇvW7P˹bqqWQC%ŤFy/ Fp X,p-Y@ J?~`kIN鷟h[hDdDHʊ}rVG5'KKGI&dj N8-ԣm0??&9PQxy4[H%S1E1mcnGO4L%6bU>O̬ۂ*-ԫm0??&9ZZfeyŧ8Dm$qpѻ(Y;pFt(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?kQi ,Lc8 AM MqաʈNF # MaGv0^M$ n̡x#'9qqVQ5:Խn(Oؗ@p;yKBn-M~oP7}ܞ]M4ϴ8zUm:nG<ش7;.`uľad?gm̌]%U)5KHHryvPD``T Xxmm常!$/$0UE$xs@QT[M-K-oW(Z̲lTq*QEQU/mktw2@0 7V5_ ;[iX.@ $ v*'G'EJ )y|Q )y|Q `_E`_E0j )y|Q )y|Q `_E`_E0j} ^1} ^1|*'G'G.[} ^1} ^1|*A HuK  C+]YaK6f)tY wUp} \i[ -ͭO=c?jUy=ow]_7Yv=L~g^? E+MS$$ea /3֟‰GF T`7iF[Ks.V ۻ?Ǐݿ6{m 3֟3֟£A`\xό/1s?noVae O¡-;I .%gⷎ)c6"{jpsdi+di+h7%YEgnD'$g;cq43':wrfHeyY+C#Lu_#Lu_@OmPVgfVFٻ1 Erv EV׺rI& h4;x26J q?i~W(?i~W(58?7tw6m'mmEa.xp9|?}9ݗ0-+ab0kW-LLH+di+di+h<1ڋV}-lk{H28FbıR`g% ?i~W(?i~W(54h3֟3֟SF?i~W(?i~W(54h3֟3֟SF?i~W(?i~W(54h3֟3֟SF?i~W(?i~(54h3֟3֟SF?i~(?i~(54h3֟3֟SF?i~(?i~( M+?#Lu_#Lu_54(3֟3֟‹ Ю{Sk˅kglܬ6AkG#Lu_#Lu_)Aܙ'%ceϒg 3j[<]:Qw9 Yj u+V[k}>fYb`H7c~l1orm~o9wUGuG:.r/d=ƥUifK*7XIcZD] ƙtI=蹻KHɷPmj?8?_]s([_MRtZ^bƫ1Mnq8477w6[X[mD4ԑylW9\=:Qw}E<ϙs&"[8H mFU׋tl4kmXrCmxKgKvB]ʰzp3h\ڪ2{;Tڏ@/.YwO\Y^wb2"U(nFw5rk돬=֓4 7 gʱ \ ^]QtKn ?.?ҬbiKoYF2g23cv/}Yڏ@/.Gu@\|HuRdf# g1dfnsxRB} t;KkKK#"2yZΝagëX &EbZ8Rzn$_A(eQOE<mld]UQF|Y! K⩇>o*5mKngXT4\u^ОEѯ}I.dR/K 99LЍiCmW&y؜=j5]56_x[ 7{~TJ8hj V{6iaGSUja7Ut_ ^>'/MYO+6vdU i]^NUKvg33ߥ&KEw鮿gm^3c C: &P ɃEp0O~Aws|$UnX\`؄ {Fi]$MVaGSU/&u?MVO,éi%h%cTfi<߻zO@j9(mEM\f}8 \ntBvl?]J{Ъsg p:<`Tza.t: a͌;3&yl7c=B8&y4infHfh# z"<߰ٶkWA"Q3 I }5?MV Vug-彅ֱg̚8Y02r``sCiZ\OnK=fY0hK0@'St7'ݛCSUCSU`iZ}"nsqʯ'_&|>,_9۷Lㆃ**l }5?MQ }5?MV#蚬wؾzr.hHÞB$p#LM+Q^]}?i '>^X~_K!o*K!o*lQTO<O%a7G%a7\(W9?/?!o*Kj_0[bթ*<O%5/MQ ~A KUbQj_ʃΧC &P F(/A?gS ~A KT_CRUrأ}Z3P ?/?!o*lQ>KP/?!o*Kj_0[bRTfu?Կa7G%5/MW-1Gթ*y3:Kj_0 HFV|fuUʷ(*ռE?:  1ٖ,K2/S{W9cz8\3iI|IGֿ"j'uO!I;~l`ą8 hVly tkO3-;T&*8-z#Pt')= *?h҇y^M|](P+Jyr4Yr9?W/E](P+Jyr4Yr4qmBB '%@VYc޶C^oS-nAǫ7EVviTO6>`4$M=IuIAEP'sIuk-[tn<35')IZڇ4:=K}2֯wqg Ӭjٜp9uhzlaҞ-J8YK+Fvr,% 榷_\$IYk阄 E򔧚p`X!'":fi/  03<-w W0,2euyE[+Եǻyfw0&rD؍SyFٍ?]ZP{qdXiwQ,Y! &eFskC{x֍5º%A8@1f]/:>'UXa)ac./ *9O z{QH iɿ$Pɳkgf!O0𞟻|~gƺ=4k2nmfFU c$e~o'|?_jhӴ>mtk80Em^@5_]e\V-Vuh' FF2촸u8xӢXhc'5~!ҴE t_Az#ſ?H|0c1UNatMyg NKtAx$b]5F6Db֤t[uD_)>gk3 /tg`c>j .1?wUY{w&R_GƆ=/Und&G@]wH`21r@杮kFuh˃Tŭ%c|ડ~p|8-++oL_Uxb:8{Z\Z'v6|2U٬f3&2@ݍNťiz}Qʘ|= $TwQ7 &/*9y}濳5:Kzv-He*jԞy ^Zx޵]:i$R6nvBpr}qsoL_UxbBPUBrgƟI6anrFAs`Y{ >cL8..&)czW 8G}$c4wRu5\\LAiocw| QNUY6j/EJxWVi0\m¯ٟSSF3nXΆTShz?t6j.3עK .4ă:a8kB^Eީ)"VOy cb${a?G .1 [.ۮ_j3ػ~k:ݥommfGwvG"lș$Czޡq )RQ0#K;bfY̱I9sTwSGn'YDaF6E=|$V6M7v<ܜ-;9l<gq~AKmunԬʾlq/]˅ڧ!0-uaLW&6w 1H%C:oO٫r QHc8:< 9ݞG2Hw39,ľI'O :Fϴm.3Qilږӵ {\ڿU "DcI"nuVSF/:o S,6?G .1j&אl[wocrm*Nq I/ &*A|]@c0U,v~GG7<]' .1?wS~GB's^I> _Ux5G?zq?OIo&ɨ>}W9$QJj/*A_@oOq?OIo&ɨ>}W9$QJj/*A_@oOq?OIo&ɨ>}W9$QJj/*A_@oOq?O]/ /7MEP| ? 1T} ?#'eisLe9-wLr>Sge2GUbZgƟ.R1΍jЩ Ε>Ym* 唜2z$D,(> r5׭R(|+3Ihӂŷdl֬7E>RFFٞvFFfE*ƙA?GƙA?E]h_glglat7P;Ou枖pLʓ hP!kC^mV-_SCzlQKJW%&6?zǫw(b[ bȾ\ p3(jŧO,K a?.z_\[6yjs- J̪x- C?-ա绑[8d85~*ǖH+j(w5?ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT1_g}|TsCˏ \ɪir__kYDk y2s0|NT1>ȥ7}(뼮/SҎΕ_u=L0QN#?IT\|gsxM=5+p% ϳ׷Z9M(SQ՝],ÖaI?5Vm83Sr*l4%s2LG(3(-R!%#q)$mI4:f[y@&l/@*6ࣃ[TVn=ż7' ~Mm2yۑgNmnty }l}<<@Å'!$@;cQ7gsim&H|lb]Urppĺ\R4%rZ Ay3*/vKyrEsMe9u7$%NUDF=?h\[i/dKqNF݇!tQ)! j+<[Kq$0 3УA"#Ӝq|jvXfDKt|Cp1>ƀ-\%Zƛab&ܥݔ:\HE\#< [+MdGVT;L X6S`BR0as}?jiC9ŕF۶7A7̼r3^oXZ]?"kO㐱DB@j䌨ܹ`[hڢu=zHSMpmg5BuxHk|ݛf7xp )\)`N; VOؼIZjoĎe BU޿6ڧu=Wu,oH$Ps"m8`%X+6=MhyRͯB `g?Oxk"0 WOءWYEr,r*+Ig(rwPSEs֞)R=bKY,iTW(YwCO7ŭ 6"ɫ L`Bn)xŠqD=VI@9\qA񎆲ʍs:RNi0Aۊm(0gbn## W=xMi2<ȷq,מCa~rVŘտKy9RBRNN/Y-]-5i4֖u)V!IU |:`n,R@2#I MM<2GΨ,. 4ETQ 0jFRW ~)|ۑqQgO:tWhFTXdH2*RNA _nu ap[Riżmg4@ =99-ej ڛ8v?*ՆР,X UbIME/5UvHg0,2["r%vYk_j&owUY~O̽z2igX-"vW),67)%72D=0E8kx&GY$**LdRn ƙ][=Vvmep$ @*@ yĶ 1BOzɯI8#*2zKIf50+Fyr5Eq^g?hчy^MiF9?aW/ZtQjfh4b8?qz@(c>4\@j}P1 {Hgw:D[b9ePN2inHg{c󏄿)M__J:/1Ya+K"sm$$pߘO `"@:^9_;[ ]p U쑃6A${;M[fpsZsk^#m*( }/͐;dZai޵jTi$%;N0xrk[i26]vxe~A#5xEt#og0|zV]˧')hzVOon4W֒yw6k ߑz֡?<͵4VRGal#=,vAyxbDZDqKA 4hak9۹vZk:v5TәkHsK**ʼ" 9HͨXfbɏzǓx8i-&jrk441o d)ɐ/b5Ν\?is* yK+$Z 줊դY7oaEb7D O._ `򑼼`!ɦf{6|^<Lw~ͨ}-"up+fpb31"\0E 'oo#xl=MXԼ)\&kaei3$c?{'uk]h6i6kk9m!H%sȌ.Ik2&J/YDGz$$ɏ$ v4]VNӬ๽Y0ƱQ[Ts2cw#fMekoȵy89o1=yYZLk$$*\ʳC2=č(9hq;7osCo]j?ic޹q0s{㛫9Ώj,4PB%^(uFw Χxn}.di|AmcQU'MAaO?j^>S?86nۿsl(; X#I%eٱzŗz&uuy4xL&K6@U Þ0;w7kiK.{) CX LXm9p/'$vzM듾c/İue4HP!g(F2EcK#jQbq"2$ O +9ʼ22Gv\5o@'hIOE灬ɹeep H<)`  =m~/J6[±~ r S^5ќζ.eLlDD `|B4',6r۬VeH6wu{O\iŏؒK wn# 6mP$,PMu=Sg1luv|͡0r>^NN5oVO2,1έ p ؏~_->ɼn|ƱܛD(gʻ8TE>4BeX_P^j]aya.U $nmF 4k`WNoMΧ{p|k,~o"$OQKe@"džl-uy'^su9"o+NmM-`%V<).CѮX9t:6{5!8b>Y60r;UdEݰ̀yr<<%ǹw͸ 2vHŽߑ=h#3U J(Ta ݢ9;IZ{+mǜj?hV$*CaD`Bآ WtF"coFAWu%Ac'9᛹/Xj0IsƑnHFsڬjdW{)"Fv{`U+)Ӓkv,|6|Αix ZIYt% \^K6Ӿ#}>!zen^8m 268 woEsZ/.bVtSr|'4\hmJAd#QnPmVY1Fz+%:T]QK3g?pL UQ? EW}o? UQ? EW}o?}u?W_cOHvcדms=ԋHYI8p65O? 󏄿)M__J:+K"/8O4[-^0(EIcbB+?{W77k o ^ \zg t5𝏉Uծ'Ebgʅl^+"8"XEHaUFE P&bH9(?>8AEYA}eo\[\ʙ#r0 G,ɋZ\VT2Kf9LH]vYpF% [].ݡG{H,K1$@[1m7j x :t&ztI h9:PM׆9yBތ)XʃQIm>o-ݠhp6-OHБW -v$<9 e2J$ &tangyNK\I<pfm,B99Ed"b;LGVrğ~J-9ˆs +b%/,4hW`]($xkKq\i#pRHW mø-07t6%81Gs ZPN/J7vNnOix6Yؓ1mc'3wl>='9v<3*BM>j2Ku||~TҶzT>.潚{M^,7q$H11c':PM׆9yBތ)XʃQI[5m'gv64h 7n5%fpJPMt+l`gF"9'<c99?hqܤrh "J4/).dH Y&\|y"tP烴;e[i98Aw4>p_cG![ olS%;|%$.U6,DdIKIf'bI%$I$((((((7#(2_7‹!פc_E%j-PEQEQEVESCz׬7zCǫM?Wk6m%"8%I{4I4k푴( |xb$y/sjڂ-{fi1RIvU=h{w'E$,K6UQXI IY5E\<'`1 )mˀw X\Xֱi-з  Dʬx K JJckzf~)J/5M)tm9|2g'fضF)^ w@K!#= )QEQEQEQE^}u?U8|C\jNy 5s)sRʫ6>Gعq58M:K  bRk$f)RoDi\U#p'_w%JoQy]OS'bQEpEPEPEPEPEPEPEhO/Ft)'QMcty}:u6?G_΀E `z~@ E7zy:7QMޟ_΍S|l_΀E7͏SC4(((((((+%? /"Wku/%>kGE皅Q@Q@Q@Q@dq?7jɺתoCفOJy܈6@6}5[EVv>eDZgxg Y?Hn (mZO*ƦS`mdNS}_O*_j/>ai ;9 n۹Wqg'j˨ # qтÍA#Eh|ϜUOHT{9-{OՌʎ@.@IqR/G%94_ϜT}_O*Q@/G%94_ϜT}_O*Q@'C5$ N~FjD?U?|Q5ƩoXF}Ɵm8&S4>nSb~L|%JoQy\_wߙ1!EW QEQEQEQEQEQE&e^\GxÕT@8(ʹ INF$L_C9@M?(?ß?¶3Fj99#?ß?C9@M?+F F?2&TF`A ^k>ژ$i.5_GQ74R&dss6݁l|w?s'Q? 2p u3UGMfk=8؏ \* A()??II&eq܌YbpǓ·ϴsKrDZ[Od ?4Oњ99# uJ5mXPaU٦V tS>(/K3iq;A ܎S OqRqm;2޵ Kxc#chS.iZ[Q%|f)4O й Min Y?/Dfivjyn|jK,|=${_"sH? Gמ_^FЭScLvl+G;_>i.o"sH? G֖7Q%9#浽Hm/4.oPImJȌhX[՗ⓝ26_SjU]iQRXQEQEQEQEQEQEWJ_ zEyįaEѐf_K1|O+5 ( ( ( ( ɺתoZՓu!Tއ]X[\ʙ#r5`G=^2IKw,a>c!?6~yh t{rRmlȥ7}(뼮/SҎ̿z?+ ( ( ( ( ( ( 鿲?GY%g4jãu4Sd}Qe0խ$Ném:].LmՌ`NZs害eeb+DKB䵼ޫu"/n|'y-"IaJI]H#Rf{FE[c!!KUM;w(;>zpn5+ϗ*hW§prtNHrrGfxj(uk@Ҵ;[ J~J"FK,Q1Eڛ kJC }.\k: H 3qDQf;XrCM^kvSOo'22hG@zܢ.1( A@_W?n|Z]*tQ\ڢG_J ~7G%;XU(|Z]k*tQ\ڢGjP\6V~y粖DUgP:)]-SCJڰ)QEQEQEQEQEQEoFC^^o+FQd5ـ:k5袊B((((n8ֵdq?77Wv^ AdlWh09<9jiw${q汑38 0eXdm68ӦFeY#II 0 }S)4u #{,6,UUp 3rH=Miw=: irՕ]Q7u=F?`MH50 O˝YGlǾ[&wO-'9Ihv+eoD`;;"(' e|p/&R/o y#R#5mP9$'Y>eٽΰ3 ds;fp' d32q`~>cij%0$ 뷌gֵ/iyny#YBJJ|1 hy5̖~o.vXX՘3`w6g}?er"&5ON7P'*9p>n91*ş Wi-U湹F8]36і!sY':}qϸCyjY?NڿO&?=^E\_?w_y?ڿO&?=Gů WQG=yOů SSX"OiW>S8?WU{? ]dڏ/{/?__'W wǫը}N?ee[;Q[;WG׿~a쿼̿+УB?+УB(;=yotO=GotO=^E^q2B ǨB ǫh?s0_y__Qӿ!?_Qӿ!?zm}{N?ee[;Q[;WG׿~a쿼̿+УB?+УB(;=yotO=Ywgx×Zmmg3ޅa'{WT:ƜS}~b)QEQ@Q@Q@Q@dq?7jɺתoCف[HkbΤG>o}'z7i֍+;[C. suԿc}KH c>5b8?qzV( c>5b8?qzV( c>5bla$f%NFg~K8?PcEW_ޟ8?PcEW_ޟ8?PcEW_ޟԱD t&1:WYLE{VW :DtI^_ /Nd;1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 2lUtN Gj*[%dQE!Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@dq?7jɺתoCفsLE{wۭ??|;`<߷񞙦x\۽[6Og(/#c1+:+~`A"ǁLHl5+DL `pÃ#!/*d,V*ÎAΓ=i}5zY]J&su1HQ(]I¶oiyoh6;[%đV'RrZC3 zDko%ĩ 1!y$($wm>O.&gNPKO;I֥knY-lyBng2*y@b8mOo]^jè[.-f0. m}p}iݽPGssȅ2Tt!/*d,V*ÎAGIOdnm,.嵸pDq m p,@;wu7՝\,s3rG Bs0to3B@=~;=v+mBϕ]ŘT6f`m`m-gt^z}s]+ ٨|'~Q~fx?c/k{]jvhιBTfFP_ pH<7V[ʓC*H2AGzK{ wZ]H[Hsm<7[ 6efF. bvn.f.5 /m_O9X \@ew4Wz1mm#%qq+,n eO9 w mOK6F ÿq,h'$6ÏIԴ{}>m< a__WX^wq]ݽBaȎ0-E}I(:W'gڊ cN=*db+Vg+)a"TkU8TVHl~}/5mVϖ)VtXHN0S ~`nZ.;'y|V}ŝ ĸA6]cy{F捔d(<+EٴqEg ̊He 1KprZQZ^7=sqnгܛls3+Iov޹Vr /?azmgIkuM nF# :?ϴyh~V~ͻ|3󶸿 Yx t.u+CZ/Co5mc /?پ">6Zavgކ{{-jÚ@崗 SdtmaR#(FKpckyyjZ~my"XnGyꬡ @.=#2_ 1fKA;/"Z6PQN'!YИʺ2‡j/Q|wy궗WjOAw_WZ.: pie۵Ɨ3}FH%Pq(&}B-Y6y#@=O[R{9,S}drm'F-cv *@'RԴ?kݶrdnrї ڤ\^#/BY 2&܁/$wޙE$(KH@<񅐨pነ냞ͭ;weZ]4PG2R9 O$6$,5 x" u˲I^r;4{26K|$cqu-Дrl.mp qV#{)IF_P7h@eEM^H=kltFtæJnlq(_0^ddX]?uYV[\jiZqYuݭbK-R69>|_*a6 2_ 1^(细 ^䴔C8@9G=Ŷu.4ӚݮVڴ乸 eGmk BUmF[כMG3I26ooٷʠ"Pc̗w_ES&}B-Y6y#._P}pyZ`O;Cs0m(͈ *F: >/ⴲ,{ylhG6nRUP#6n%bP:A/??%ZQp/??%ZQp/??%ZQp/??%ZQp鶳Hw;Œ T8ս+@?*SCz\?c^"Vf&f}jF !Gfi44EU!ih!ihZi4i4X.Zi4i4X.Zy-"I I]H#CBBf-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-QUZ?Z,-T0+A$2$rC&] z?Z?Zдcjg*9"ydwhģm+k0HKBB]~O~?f=?Ə=?Ƌxn巸h%BG%22`8IS?o9L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,TrE{3` щFW+aؑޗOO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.H⽅xGhm 'jRnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.ȭ&j lʋ Ո"K`GvIz-?z-?ad?v?V rڟY3gA OGA OEYݩ՟7v?V rBBvCjg(ݩ՟7i4i4]ڟY37jg)z-?z-?ad?v?V rڟY3gA OGA OEYZA[8-nT݌g7zsOO_&XwXAlZ6 3JcDZq*SK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩXڧ-_Kjy6ik{,)?} c$eXZܛ~`otLrioeXE,gH2w秸'CXuwϲ9biBDġQeQ9#VjU߶?V(o|o4$WRvRB,B qQh%]};JNrKD5!߶?`3 :ˇvW7P˹bqqWQC%ŤFy/ Fp X,p-Y@ J?~`kIN鷟h[hDdDHʊ}rVG5'KKGI&dj N8-ԣm0??&9PQxy4[H%S1E1mcnGO4L%6bU>O̬ۂ*-ԫm0??&9ZZfeyŧ8Dm$qpѻ(Y;pFt(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?-?&9GG+D59o Qm0訢 Nw~`otLr*(CS߶?kQi ,Lc8 AM MqաʈNF # MaGv0^M$ n̡x#'9qqVQ5:Խn(Oؗ@p;yKBn-M~oP7}ܞ]M4ϴ8zUm:nG<ش7;.`uľad?gm̌]%U)5KHHryvPD``T Xxmm常!$/$0UE$xs@QT[M-K-oW(Z̲lTq*QEQU/mktw2@0 +_ŋxMMD71:3#< ܌ڝMǦ+ETb(b++J )y|Q )y|Q `_E`_E0j )y|Q )y|Q `_E`_E0j} ^1} ^1|*'G'G.[} ^1} ^1|+>kxLS?2Ȉ P_PEǹu?[澧5*͎֮xCi&G?3sqTiⶺ $Ryn$a59idi+]ET`7iF[Ks.V ۻ?Ǐݿ6{m 3֟3֟§B0.< Gq`?nw^70Pږdq[=`CI94Zߕ ?4Zߕ 4 NsÒ_G, y"3q"CA8y_ ;̹_y$2ʍ`!_:Q:Qj`_xG|6lil+#lϘ9_;pjx{+k9$PŴkHnW䰱ki5䫉Hp&Wx$4Zߕ ?4Zߕ 4 JE`+>P5sp#1bX3gdi+di+h4VwF@OGF@OFEgdi+di+h4VwF@OGF@OFEgdi+di+h4VwF@OGF@OFEgdi+di h4VwF@OGF@OFEgdi di h4VwF@OGF@OFEgdi di Y:/Q:/QdVF@OGF@OEjhW=K5µ 6nV@ :/Q:/VLiM*'dRI=A$gIVF@OYwCGڦ>w)W gi:FcO-?bx!ODtP>sîpkC7ijuL^'*aho l< H`g{4hRS+2l&5nB*:˹%5tv5"=i(n&IgT)WD\@2y ?K-]dVz`Qw υ,vք- LrMtdff,yCŰU۱?wڿa7|6{q:Qw9_ ixRSQ_*4y,H1- "@]KdቮĐLLX\ƥHn e$hyPX(6_]ڏ@/.ZŌG:N-m/mFb1ecU78ٜg Y^cɬ-6U"jH<+錜pQw}E uZ̹\o-֜$F[#mj*ź6s`Hݶ[o k9!LQA6%3ͻH!.wX``cH^WHG.[U=OGu@\'^/dX`7}N;Vl5uID eXXH. aE]Qtj?憎%}ۗV_1O%,#_3GuG:.hYڏ@/.Gu@\Ѣ_]ڏ@/.;nТcX:-cK1l#XjG']7ouŽhD(rZ/4ojjV- ɗmHH]T*Sei.+ui:tW?uYwAtW?u컇7QX:~cx_?G/syV<GXFiq]ۉ>fRjr SB:+V +?+1ݟasBƧ?v rjg(\vA$r؆5ڮixNS25̃v ʙPTぴ+OG-͛#ufo9\ֳkxbk8bhbY.OڶE8!Ź\GS-4:7'6m @ee^]gZ]ҟASY.SZDO-c>gXƻUe`i&H㜠2$n]U @$g}e9;dKE%% E%RQ@ Fi)h3Fh њ(4QI@ EW$ %V82~P}GQiC'tgk}(Sy;w2'IoMe᛿;5`\] vd{1" ,#snBuuOKn.сnUyR@7_Z$wi5ڣFHes(3#iW8k_;WӤ@fKw+v7*v,\OS}~QID?rOUpEVQE&-]ѭW-]ѭW셰RQR1hiv:ٽNl;BJ6:gKĚ6ooK? *fd/s#GT`IFhs\߈5{Kj[HĶ#Lw10vYsu٬ |+ĚYʳ]i&aG<ͤF][T@15Um,]P0yF$FcWT-eU;xow\񅷄9|?^KdUnK,nac ][mj)ޥ6qȋo8o1۹2;aٔ_vɯxV w_1e> |lc̓~cp0Cľ0K?__\mpKIsn뜮G'~֮6͔X0T-n$g>İK1ػ,1yi$ʒ8c|>Fbn 7JKȸ+Lϴ.!SwXfE9/zx{-Dڑn0.bG`mmY,$隈H,/`4rHc}(niI^jPڛ;xo0 H1CyHnl܃an.5mFύ0?I݈rbv䐠-eg}[ivSHZ%kUYZ.#1}cw{{a9/#VX-%̻|v<Λx6I|ۻmm_PKGX}yySGn|Ւ[ M@+O*±$wrR~\#ҵH;i>o蠉|YrFf]xl֧}geMA-ѷ.crBBy۵N5ϧ^WvڃIqcn<>91j< mkoٮdY"4r<|'f ƍeRW%~fcL&-ӭ}r-"91,m܉w@GCv7W5;B]}%nH1@9-uW8PHFwG5OK]/KnLjn4퉂6mD_RI;"nΆFFҳvFFfE*ƙA?GƙA?E]h_glglat]li4li4YvFFfE*ƙA?GƙA?E]h_glglat]li4li4YC>t?*JYWwWz[3J c*Nx5CK?zXO %E-*9^ܔ`s,#D궋?":Úޫ衊n`t"scO9\'<,G!ꦡ}qocXM̶(cI+2"*3, [Xд[V[Fl[".axhTUxXu ˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\ǓO7~ٟ1Re?W.?S5rv&]#^dcEC.˝|9P\?ף.zSvw[&$qܹ7Iw);?p(~f2o:V>睾S[ bO"1m#)P$Mnˑv.vsC??rΣh_mm..4=F&uf.@6N w -lxMM. M/T+8c+3i2sb?hU{? ]dښIl}ҬLW+}ҏU( z`h랗r/|Z-ؖIE!E%RQ@ E%RW#w ^Z{tIq->HżS;,caJ`pXZf +{$lOn̆55@ߖUSuxSHӛ_7侞&EV䲣~`DF\|`~o9E;'rXHۛv\r98޳wE|62@-n-)̱$`[ ݸ.IܢkyCasd20Yw#ێdGyt]N}J3 ƤRE)eEE9"8d@;+\XMsmVKa.umȥ&Ǎa_3GD{u;$H-ftg'mKT7@ΞOc%燗|mBҏ)X6@o]?4ŧ5ޣ{R*4o,xB:z*Eڝ»Ago%ċ dZ̳կmeҮu_*9+o1+ ]l6I7SN垠r7Q-0m$c* `5ϧ^$Wvc%Q|` ѫ"6'.Xg8AG9pݷ{MGPh}C_`>ŷFaEf$ q,N0+Fyr5Eg?hчy^MiF9?aW/ZtQjfhW3<7ɿiW~$(}վfږ}\gӆ#AlWl`~ ZQF<9]9'P+S.̂3O#1l Ӵ.'6-) 3T3;`qW t7Z}ĭ {qR0XF@VE4GG:d,r2rWeyEE``g|Otd<-&`7)$#?C4o$ImY  0|P @;ŋÂwյ wXheySs -~U|'Ӧ{[ˇPrd,)/19殪Rl.-bhfL#=+"B_]jǩp^Kj#|.ٝHMT:')˒r"'Xޣ:Ս3DWwN޽ȷfƱr$~ZbW EmQ@X{ 4gt|sUtVx\F\.gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?OFF,li4li4( 1glgl>.̥uguw8$r8犽J)7q.kC^lV=SCzl2z5w8-sH[[I"(C+0AT h|ϜUb`WD?Uh|PK>siQ?EWD?Uh|PK>siQ?EPy ֿ Jx%9ϜT\@j@/G%94_ϜT}_O*Q@/G%94_ϜT}_O*Q@/G%94_ϜT$bJ&Y8=Gfo'b(( 5UQ/|ZR#QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɺתoZՓu!Tއ]X[\ʙ#r5`G=^2IKw,a>c!?6~yh eܔ`C9עqwv5m\ [GvDs$zy='@XߓQ{~OL U}6^x?_e*EWy='e*,QU^x?y='}u?U];ۆ!=pG/?Tb{~OF?UXߓQ{~O@(/?TlߓP*?U/?Tb{~OF?UX/?Tx1lf ř$ h(ɰQ/|ZU[5)n;QR0((((((((((((((((((((((7zY7_oO {0#?ѾN4Oo?":ӭXzB?Υ/Z ( ( ( ( ( ( ( ( ( ( ( ( ( (2l?K_3֫UVD?jJ[ET((((((((((((((((((((((+&C^kVMSCzOo?":Ӭ=V(^Pj+ :(((((((((((((( 5UQ/|ZR#QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɺתoZՓu!Tއ8H>t&1:WYLE{VW :DtI^_ /Nd;1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 1ݺI?u4( 2lUtN Gj*[%dQE!Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@dq?7jɺתoCفsLE{wۭ??|;`<߷񞙦x\۽[6Og(/#c1+:+~`A"ǁLHl5+DL `pÃ#!/*d,V*ÎAΓ=i}5zY]J&su1HQ(]I¶oiyoh6;[%đV'RrZC3 zDko%ĩ 1!y$($wm>O.&gNPKO;I֥knY-lyBng2*y@b8mOo]^jè[.-f0. m}p}iݽPGssȅ2Tt!/*d,V*ÎAGIOdnm,.嵸pDq m p,@;wu7՝\,s3rG Bs0to3B@=~;=v+mBϕ]ŘT6f`m`m-gt^z}s]+ ٨|'~Q~fx?c/k{]jvhιBTfFP_ pH<7V[ʓC*H2AGzK{ wZ]H[Hsm<7[ 6efF. bvn.f.5 /m_O9X \@ew4Wz1mm#%qq>Tcϧ+HAe+ݶ1vD0"6lVruwNɩ^iױN\X^@#vI9wr?P$\,z'db(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEdb(̗w_EhQEV+Ϧ! 3c$MRתoV׼_oO 'ksLE{Yv`]*( B"WOO_OO_ùjBB`jBB`jn䷸&T)$r(eu#x A OGA OE\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\EU!ih!ih\P\,ȑ t,ˌ?L!ih!ihWBяݩ՟7v?V rBB]~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih "KH>gTjc5u!Tޮi5$\K-KFw?Z^hO/G_ʊ+2O/G_ʊ)yiQEZq*hF̙V5i;Q[QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE3H-{\>ȗki߽3G6鹉Elm+{MR 4(eja;@$Je:訮WK񾝨hv,7Iy-RYȬUc`]Hea G-rmQDCU&Rʀt4W3 |j${mnKt{ᑣ,H) L=5QEQE8RYYxcPcd!aZtPo.u}]quE+ 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(*[`5ƽY-O=c?jV.;}隄>MZyl>&o/ OyvvV,otLro Umv.l"k]r;p'OpN=dr $aB#nLrF*Ro Qm0ʞU-(be;*W.HVUV*3 [$eӻ'㲝!@ ,a FotLro Uhe9UoisgO!KW!9~/  dP3d J~`6]1ӯ 恄NDO/y ѷ/U`$oiɤZjy$D{o* $`vF]ܱr$5*otLro U{^j&mkc4Ȧ-V mMK-P<\ ?zO+)6ࣃʶ ԃ~`otLri͖5O$qm$qpѻ(Y;pFu1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`7Qi),2ŽLa㓎p*wd)6otLr%0$GU5 2jqw,<~h12 mC!9DhP3.A1t|[CuLk>#HS}c?>~sy+o/_0yQl$9;t[N]$#jm"{3.mǸ9PNN8"oyvk,]Toif5/r#zyt_/Clr]vqlmM}BPt<{hii;QA,p98T[7uH.b<,yi.nv\>|~ςWڽZ*:Ziw{S~ĉ"절K$qq ʐG`I$&i[ƙk{FeC`qWh(yyoa s'K '/#h8fQx TQEPIE-BΓPHA@>?4 5ۍbDWxǓU Hِ V})W4`_E''@\IU>?.>?._0n )w|Q )w|S 誟`_E`_ErSRR.[`_E`_ErORR.\ ]1} ]1˔VtA911ܬuQ Y(Kej Ka9ǬJ7͎֮xC^i%G?3sqUg)x^mE2c胐PVF@ODˣ9##oow{}-Yr Y>HĄVON_ly[~m%ģ~V,pOr;uvNr;_3֟3֟S'7Wq 8 8 NH=w5#o%M` EΝ\ټ|FVJd?i~W(?i~W(59 yY 6U9ٶ㑶nB`rsj/.͖{O6ݏ.4^fbWHgoOm8-W䰲ki4?% [˜\ W?i~W(?i~W(53|1~q Y cH qYg?g?hgdi+di+h95:Q:QjhwF@OGF@OF3Yg?g?hgdi+di+h95:Q:/QjhwF@OGF@OF3Yg?g?hgdi di h95:/Q:/Qd95:/Q:/Qd5:/Q:/Qd=[K5µ 6nV@ :/Q:/U\9++)SrYI'dj?'M[g?e Pkm1$qaP~•jP+8 [J`+-:yn ,u 莊cuZ|Mhx^]}2uXIL- [2ڡ `Onm Z\Jb%fMdƭ݁E[]quZ^kbLVFpٴprp$峈c Rj ID[A2@'g 3j[<]:Qw9 jZWڬG+4@Ffb0[ZA *ag&`|'˓n+|˺j?8?_]sx&QSQ_*4y,H1- "@]Kdቭ36b{[+sun]FRFMwoQw GX$zh јYXf)6gFxRk{*h 9$r[ANW8bs]Qt:}s\ɭO#-G{u 90$`nV-E.b /A.mA~v *(qE$p3h\ڪ2{;Tڏ@/.Yy?ܽљ^wb2"U(nFw5Zikko֕4 W gʱ \ ^]QtK@7a_UL0tp-?WFFlcn;Qw}E 4Vw:Qw}E4hGuG:.Li(𦃫0դ.I-LkbI,d`YGP8 хٸ+-'GB$HOiGhu+h:?u?-;: +uh:,: +uh:vo#>߬~wn%[tJ*OI*O~+*O~u?VX._m[QS?o9EC>L+̵$iWϩI2sãoF=F8ѥ'͑7gCu<#>oHY.[p/mr?TTd\B- k/RǵjVu$+VbIEfXRQ@ E%f њ(4f(3EUkحO0Ucc'~t8?ӳr;\҈'JRF[n?)59,ESӃyMp;.U?8?9,ESӃyMp;.U?8?9,ESӃyMp;.U?8?9,ES҃y^MP+.U?(?9,ESQ-HH_2Dd+4;Zļ׬b}? e-/zJt_oa֕D cIcBO)ؿTQErw?4M+V%OlΛc0i#]2|q5xIӣԷ-Νjwpʍ:ƫgX^ NL?3ũG?ehEDּz=}7m}34HRTn $SGV",u<at`vy8bŮᶊSXLNO0ȸqb9cڎvwV,nR(^S}/(11""YWk_jp ̗+#% #$A}̺hnmuooѦWXC$'8xOTj 1E,,c:ݡ!@G7 SqC)8-:?&В@5MB=#HԧWhm {0 E,@84[83j.EeVbGr9q&x][:nPMwg5m!!C:J|(vzEY5M;F䖶%ظILIg- hEK˩Gia lnč~e=ǭ=5&KkD!5+p挂C,q5|#-![sjNu+dyeJ#?C,Z,Ŏ*±01!@ v@^_I.shڅZΖ#@"FdG@IžO7K{1y6jYPLH uJwFº_i7SGqm;,JĀn#*C`f}Fg䕲\A}5K.̢Xy)o3qE-HYD$7҄&t5+/Jo>wAnB2@ il3wk&l f$\%cmZιwV]902ymʰ;*W|hD=fT{hLpru*_y|_O6[X%U +)azГJ h?"((4o7jT4o7jDd-E%RQ@ Fi(.kisMr[qn|xvY|ͻR;@,:?'RPkKVk8^D#H'+k` .3KٴP0yF$FcWT-eU;xow\}4=z8٤ȪܖXC%v27W^,RWOKl8pcsdvó(-*^-~w_(S#cd $zY:ϊkl;XHۛv\r98yE|-l:<9lv'*[-LK̂3O#1l Ӵ.'0M+Lϴ.!SwXfE93ŷxk#cډYI"ݮ`]؏@۲YGuY^=-mh1u!Q&嗂l L졵6v4`ACm>bnٷZ]^jڍŭǟ4`=q!@[xS. J֪,\3dGRc}wfh^9saX_EG[KvyUE?1#&}wR^Z:S 3$ݳ4  ">wg欖Zj^yV$ 4'&9I|EKwp;:0=+2{Ka]jwv_nDyd,IldY'{vs+|;;. w%`5׵m1-PH쎝$x$b]R_mj)u rB$k ]K~f JYUk-3oaY@ܱbN`^ky亹x5'ԦЩd$4Q:ȷHyo6^xWS%i$)-~U>l>nP^-Ηi%N t4Bi V6R_n; sI.7x]c%Q|` ѫ"k-%rH_-ٹH1aT_X4I uwt}%\yFhKp7"G8]%r$PnТ.y}^E `4>K)>c0:sK-u{WxCo0 #0i]v5pڅx0@&SI5gdM%-W6Һ/|_'moMmciwi;$R!\=ƙAOJwE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jCuӿ*f\]^ou. +<9֕7 XO jn<KbZTr)66XGWm=[DtWzno+,< =p:ƜZ|IJ ԟsC-[W'ye?ݳ;ٿ6|G~#iڕ^iGE0$%ȅ#U]`)OH /j(w;/!˟^S=q%7O=FJeyT/Ty,OI,*ɓUu+QuO6%g嘸fH>T$)VPC 9P\鿲ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT1䰞7~ٟ1Re?W.?S5dY^^M^{{H'bPNKc g$.[˟^!FͮIg~ Il.MR]N( ڎT2ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT2ק[,8#VVRO p'do4Sdof^6:"\zw{_3֫t=ؖIE!E%RQ@ E%RW#w ^:{&tIq->HżS;,caJ`pWlXȍY[<#ex#vd17̻xºFFH^KdUnK*:Jdn8 }xg/>+}S{x%$luW#?kWqb{ۋxys,s*7n x7(sz宩Aipm\<̌!]av9Y itmN}J3 ƤRE)eEE9"8d@;+ZXsmVKa.umȥ&{Ck,f-VvH[ NBoE?ďǫKs.YRm ',N ܻ# U];g/qH&׀$. jڔz>}Ύ%ċ dZͳom5_*9+o1+ ]l6I7SOݝYtF+<"#ۻ$|%sH.7>v]߽F63F@b؞+wD0Ucc'~u?i5m^QmR"?jfbۣ0"|ÐNq֖'R?hчy^MiQjfh}q&|wZq򼉘FMHr Q@ׄ-mKQM>.DXiyI̠BM{kk-~w_(S#cd(| g`SRAeI'T6  tmiJir73yiݙ*v08 (ޝ Νq+HD1;Q?f`7w6땝\r;.sz*(- yj7dIxCa: "Ab0."3OŲOtڝ0.h@ ˕@Q@X:-'{}WQye6ˆYKe71\w\gK ٴ.51@ܙ p{~l+[:}͍~eM ɒ7#dr8'dw[KۭRx8 mD{/6b;3 ajޢ9<ۤ[`RJ䭜Hz?7鎵cLf-ӭ엯}r-"91m܉w[TP`xCo0 #-1t2T \ imU8ڈ1?pEUՅfGJJԔQtdg?g?IEAfGJJԔQtdg?g?IEAfGJJԔQtdg?g?IEAfGJJԔQtdg?g?IEAfGJJԔQte K=-$G c*Nx QI!sX_O ^.:a,#ѮKưkGQ8ILבM[$ gtd%~Wfe `ϧkx,Rr(eu0F A犓Nд7/Nq}"ߌ;@23J{;]kYNc'0Y=˻ج}^\նcyiAh[bɞYwDys< R&G&Nu6wi 8:To?[]ܷ&3my;g:,G$($`/ 2iBӏ 'g>>׻|/gv+}Ao?9o Hu Z[82rI$+dH`{ʫ,0KO EV}Ao? 4UoQO EV}Ao?_i]OiC-My 7J ;@V8=_'~{c50q lj*%!Ï2Foچ6g;jxsqu\X#O0C!mlGy\(>i?PG?(ZI5v W:2b%JnFuV3Ƕv(lc-xˀhw˳O Y|c" va,d1QO EV}Ao? 4UoQO EV}Ao? 5ZKY?6,زT!j(( ?=kUa5'RQHbIE-PIK@Q@Q@Q@QQPEQQPEQ@Q@Q@Q@RPIE-PIE-PEQEQEVM[SCz֬zCǫM?Wk6m%"8%I{ $I4k푴( |xb$y{wV^m4Ps5L v u!K.©(tZݖKzgH-35fǧANuVk[FVNShTAաp<rf_jxkWfMs$4ɐ$VSu_~xG9x9ԯCk5"՜񥹑%^3d1/@Z RU`I/,7y1 7luB3~8z̚tg-1]o309qQ[=0 ( ( ( (+@jtˍP\Hgѫ$HȒ6UX>V \Gi֒XHk^#1J}j xJr7Uw<R $XPʤD7G<]ZtZ$_(jZEI6wPRXl~>S oM5(56ȑf״8&[wŔ80o;7qyj-w r%d&Uo J6wufm~b,n]q5wN+N Z[^ڕSTP_}dB tQEQEQEUk?-]dڬk?-]dڀ,EQEǼ?jUtgѭV=-QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɹתoZՓs!Tޟp)O2ۑ[y:ϿS%94D?UGc{oGwi'17.zCA W(%94D?UX+_O*K>siU(%94D?UX3C5$ N~Fj}_O* Y'Z]$O-ʚx \K(S K>siQ?OmO4RZ]ΖXmďa;|W0MM6 4xLRIJL^J|r7/G%94_Hm%u(FdXLYYXHb~ggWtoy;hm@FL݆a3YA]%94D?Us#)|UGIL74r+ab9l+_O*K>siU(%94D?UX+_O*bK[T2>vUZKY?6 4QEQEd/|ZU]?=kUOv(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@du?7jɹתoO?2Tdr8'3*4$yr2nW6IY-I m޴>?zS%u -FOw2xۑku49,`,<$,o"9') )#l[Gt(ވe*Q,{t ȳ2F%%[ *@ m$|ӡwij m 2BRlߓQ{~OL U}6^x?_e*EWy='e*,QU^x?y='}u?W3iJR9M,u+J)V2h~0vϖ>Q 6761 ?RlߓP!x{^ԭO>Ej-."]eS;`|jShk/Wg.cE >Xn{m6^x?@׮C,:twdNHeR~6V~lI<oY?夶׬:̚Rэژ`yvy='e*8iZx-`@6 󼈳< 1?(U_e*EWy='e*,QU^x?y=' ZKY?6y='`Y02I=?(( ?=kUǼ?jI;QR0((((((((((((((((((((((zY7?oO ==3DFC#:ъ;mԯjJ?Φ(((((((((((((('Oyj/|ZR{ET((((((((((((((((((((((+&C^kVM[SCz}DFC#:?ѾNb+:R@((((((((((((((_FZ{_3֫T#QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɹתoZՓs!Tޟp+iS{P$HYJ@c@#5{+X׼UNH{C$J@t?u4({_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]SNmK2Wԩ8"EKww(0((((((((((((((((((((()VM[SCz֬zw AZhg^wyyۿo]=3M?c^"Mk÷zﮭdQag ]2ci.VtW\E#ԭ i3h$A ¤xn0`X;#WPk:V]Riieu(#eDP"Uta' ٿq6m彣v<ڋAo$DaXIhwy 8 (ko%ĩ 1!y$($wm>O.&gNPKO<[I֥7ܲ[$I &-vdT Fq.-ݺգQJ;Kc1 YL%,`˲cEp_i$ZAwoi5!yyv<'*H' *J # ;Er(?i&ۛK mnw[fEv!\+!kᏵYje{(͍ܒ,3:$pT yG3F8+dר4crbv|7 Ҍ، b{Y]7׺_Gmm-q}¶j$10Du4Z$dH(\8uoż42x䍃+w/Dzuޱiu!m&ʹtnw,# ٕ19ٹ.e.5 /m_O9X \@ew4Wiz1mhGkJqȕ]'G&}FMuַ'7NGKD̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_E'db+F.2^}6ixQ$j[SCzETתoQ-v.ixV3NlKVVX#Ze3VZ-QUZ?Z,;z-?z-? z-?z-? ;!$PȡԌA;T?z-?z-?arWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rAu 9!x.YqGiz-?z-? Z1QO~7OO_OO_v+!QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.Ȓowc8gu?7z-?gK$WzȂx0#IQQ?VeTlOE6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'WQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QET(P3././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/material-definition/img/materials_06.jpg0000644000000000000000000005601314741736366024047 0ustar00rootrootJFIF``ExifII*C    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?-`^YY$OQMG༶x#B2T'+cH-{Q^j%&M6}ܶ,;-Fº\nb*/ZI%h&]ˑ~6 22"@%d T(Cae8==늗HѣtQŵ!/Aw4\ڼr9gnFetmJUmB++_ʟhF̙V5i;Q[QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE3H-{\>ȗki߽3G6鹉Elm+{MR 4(eja;@$Je:訮WK񾝨hv,7Iy-RYȬUc`]Hea G-rmQDCU&Rʀt4W3 |j${mnKt{ᑣ,H) L=5QEQE8RYYxcPcd!aZtPo.u}]quE+ 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(*[`5ƽY-O=c?jV.;}隄>MZyl>&o/ OyvvV,otLro Umv.l"k]r;p'OpN=dr $aB#nLrF*Ro Qm0ʞU-(be;*W.HVUV*3 [$eӻ'㲝!@ ,a FotLro Uhe9UoisgO!KW!9~/  dP3d J~`6]1ӯ 恄NDO/y ѷ/U`$oiɤZjy$D{o* $`vF]ܱr$5*otLro U{^j&mkc4Ȧ-V mMK-P<\ ?zO+)6ࣃʶ ԃ~`otLri͖5O$qm$qpѻ(Y;pFu1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`7Qi),2ŽLa㓎p*wd)6otLr%0$GU5 2jqw,<~h12 mC!9DhP3.A1t|[CuLk>#HS}c?>~sy+o/_0yQl$9;t[N]$#jm"{3.mǸ9PNN8"oyvk,]Toif5/r#zyt_/Clr]vqlmM}BPt<{hii;QA,p98T[7uH.b<,yi.nv\>|~ςWڽZ*:Ziw{S~ĉ"절K$qq ʐG`I$&i[ƙk{FeC`qWh(yyoa s'K '/#h8fQx TQEPIE-BΓPHA@>?4 5ۍbDWxǓU Hِ V})W4`_E''@\IU>?.>?._0n )w|Q )w|S 誟`_E`_ErSRR.[`_E`_ErORR.\ ]1} ]1˔VtA911ܬuQ Y(Kej Ka9ǬJ7͎֮xC^i%G?3sqUg)x^mE2c胐PVF@ODˣ9##oow{}-Yr Y>HĄVON_ly[~m%ģ~V,pOr;uvNr;_3֟3֟S'7Wq 8 8 NH=w5#o%M` EΝ\ټ|FVJd?i~W(?i~W(59 yY 6U9ٶ㑶nB`rsj/.͖{O6ݏ.4^fbWHgoOm8-W䰲ki4?% [˜\ W?i~W(?i~W(53|1~q Y cH qYg?g?hgdi+di+h95:Q:QjhwF@OGF@OF3Yg?g?hgdi+di+h95:Q:/QjhwF@OGF@OF3Yg?g?hgdi di h95:/Q:/Qd95:/Q:/Qd5:/Q:/Qd=[K5µ 6nV@ :/Q:/U\9++)SrYI'dj?'M[g?e Pkm1$qaP~•jP+8 [J`+-:yn ,u 莊cuZ|Mhx^]}2uXIL- [2ڡ `Onm Z\Jb%fMdƭ݁E[]quZ^kbLVFpٴprp$峈c Rj ID[A2@'g 3j[<]:Qw9 jZWڬG+4@Ffb0[ZA *ag&`|'˓n+|˺j?8?_]sx&QSQ_*4y,H1- "@]Kdቭ36b{[+sun]FRFMwoQw GX$zh јYXf)6gFxRk{*h 9$r[ANW8bs]Qt:}s\ɭO#-G{u 90$`nV-E.b /A.mA~v *(qE$p3h\ڪ2{;Tڏ@/.Yy?ܽљ^wb2"U(nFw5Zikko֕4 W gʱ \ ^]QtK@7a_UL0tp-?WFFlcn;Qw}E 4Vw:Qw}E4hGuG:.Li(𦃫0դ.I-LkbI,d`YGP8 хٸ+-'GB$HOiGhu+h:?u?-;: +uh:,: +uh:vo#>߬~wn%[tJ*OI*O~+*O~u?VX._m[QS?o9EC>L+̵$iWϩI2sãoF=F8ѥ'͑7gCu<#>oHY.[p/mr?TTd\B- k/RǵjVu$+VbIEfXRQ@ E%f њ(4f(3EUkحO0Ucc'~t8?ӳr9?w/E](p;Nyr4Yr9?w/E](p;Nyr4Yr9?w/E](p;Nyr4Yr9?w/E](P+Jyr4Yr9?W/E](q0<Ŷui [Ȁ?[f{XCzڬ[zL_EVviVn?":Ҩl| =LhIE:{\Aꒂ(Nij[Ķ"ylf $kOS":tzeӭ^QXw9r=k?i8Fx(og,9۝Ȳ>P3z׃5}oP'O]fbX&ZcRj`\zZ#%b. @'X6\4Jb+ɔ In0G1x[Q=Ewb5O%f6$XR+8ukA=c}aDd0d2h3TxOMmͮ Z4 d{?] Ra(gSr$<>^1y(`QE ?㷖%S|SGi q"b gֲ=g7FmQ\ڿ謪R(U?4n?XKxgUm 淍$(gBqY:HK;hռD I)8,zItu(=!m]-p̼gwmh\]D&nѐHt\85Ưu$+r~mIx^1p Y"bx,CdszŞ]ueXV=`97( %ntmPKY{hḦH)8Sof/&4K* dq8BҨWOk6{-xV eHx،/[BV+h/IeڹK?0# n<Lj;^.aY+1(xFP$eIMڢp>m|FH$9;:n |lc̓~cp0CĞ/K?__y\mpKIsn뜮G'~o5Š6͔X0T-n$P| e`ScwYFbI$p2>|0:v\^E iݙ*vP5xB5dlu;Q8k;i#6[  VK?n; ;ǸX.2p_w8ܲMZiח6ƌ"(cmR'Pr6[K[Q{RGb"13$( oYjv}ג!yVZVVq,L{. 2l + HU y u2.=*$s{_6[[k׿KGX}yySGѮ|Ւ[ M@+O*±$wrR~\"D;i>o蠉|YrFf]xil5;KNڛX[oyEٹ `̀q+Ź$I^nftPy9!!?Kڧsni:ӯ{}Ad1W5bcT6uE$I ;7)4l#*+6f4!no{o!cnH Į@$o ׼UjĺWx-HEiXYُXBTEwW0Z<Ć`G 3>9-?KӴˍ9|g{-B7\[#ədH̹$brXU7Wb˯j;Ϥ\:΍d8Y5} ι{4En%Q,sڢ0dl]pȇj+ݵFwE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jE*ƙAOGƙAOFt^li4li4jCuӿ*f\]^ou. +<9֕7 XO jn<KbZTr)66XGWm=[DtWzno+,< =p:ƜZ|IJ ԟsC-[W'ye?ݳ;ٿ6|G~#iڕ^iGE0$%ȅ#U]`)OH /j(w;/!˟^S=q%7O=FJeyT/Ty,OI,*ɓUu+QuO6%g嘸fH>T$)VPC 9P\鿲ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT1䰞7~ٟ1Re?W.?S5dY^^M^{{H'bPNKc g$.[˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\˟^!R9P\˟^in^Lw\Z5ZKY?6[}ҬLW+}ҏU( z`h랗r/|Zb[ E%-PIE-PI\߈5{KI%Ķ#L۸y)˝]_fmic"6eot`$IِƯ[ʪv2y {kq!y/IU,+1uW!O[QN㜖 6ݱ9\N49^j_5ŋ-n-)̱$`[ ݸ.Iܢ]떺yasd20Yw#ێd'ѵ9+k7Z޴QI@?x ;͒ C[kAc5ʹSY[.1@@"*H?t [۩"Ao4;8~;m X ZuW <;wa-ϗ_<`kK9?aW/Un񍖓@,n,'w!9!]\$|x@чy^M0+İK)bs 夓*He|`6%4n|ͼnJD;w|ŎltVNNNcpn" F <761JɿnٳOtuή9\` 9=5{[!yi0n ٿI v}b'KmNXUm Iʀfr(F,^oG,2wmYo3%l|חOmypnLE8E=?6w|Q@>?2&d 29Ҳl;-֩n<ϲۤ[ghOiOqGbk? ؘdu;Gwt㑃,o4M6(-kxYy3..gcD.}m!Ss@gJk`8vm>l@gWe~t$?&M8_ۺqy||oev?o?>X.RPq}V]I$elI |YU~e)~i?P@ho?fO >i?P@ho??Itx#"Э#2ҧHQlE\cTo?+Lj-~y6dRޫ # ijaW;_6VOU痟v z?(}Ay^a. oZ͢iH$ׄ,D#P/xfv,"$yÏoQO EV}Ao? 4UoQO EV}Ao? 5ZKY?6,زT!j(( ?=kUa5'RQHbIE-PIK@Q@Q@Q@QQPEQQPEQ@Q@Q@Q@RPIE-PIE-PEQEQEVM[SCz֬zCǫM?Wk6m%"8%I{ $I4k푴( |xb$y{wV^m4Ps5L v u!K.©(tZݖKzgH-35fǧANuVk[FVNShTAաp<rf_jxkWfMs$4ɐ$VSu_~xG9x9ԯCk5"՜񥹑%^3d1/@Z RU`I/,7y1 7luB3~8z̚tg-1]o309qQ[=0 ( ( ( (+@jtˍP\Hgѫ$HȒ6UX>V \Gi֒XHk^#1J}j xJr7Uw<R $XPʤD7G<]ZtZ$_(jZEI6wPRXl~>S oM5(56ȑf״8&[wŔ80o;7qyj-w r%d&Uo J6wufm~b,n]q5wN+N Z[^ڕSTP_}dB tQEQEQEUk?-]dڬk?-]dڀ,EQEǼ?jUtgѭV=-QE# ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ɹתoZՓs!Tޟp)O2ۑ[y:ϿS%94D?UGc{oGwi'17.zCA W(%94D?UX+_O*K>siU(%94D?UX3C5$ N~Fj}_O* Y"z?eNB:IQlw?>/TfWENEIo"6[i*g$څޟ)bt%nUSyv䟓 d/G%94⫕>m_g|ݛtM%-<{0JnMmsI7[rr`ds@D?Uh|PK>siQ?EWD?Uh|PK>siSlIkbJ&Y8=GjYo'f(( ?=kUǼ?jI;QR0((((((((((((((((((((((zY7?oO ]X[\ʙ#r5`GxC%Yf;ۤ/6Y"|B~mў0%)6և٧sJqwv$NᥳY|( fBr7muVx8ηFg=إl?gEG$!#0r͝h"9zSlߓU 8?}6:EvXrxyؼBN)A&*I1k&s"f/3voޭ:U1]Z"a)c]+I'~M {Iw ˴e98RA<7^ RTY0 U؂+FwL6X]kp2+ ]XY w>^o }W.FlnYd9#¡9:7![ EyՖ wŘT6f`m`mϪ&Ե}J;kin滋WQ!O #塠Onm~%s Ľ2AG_x-I$l]H #qz%džcӮK i6m{saf̬!_1s.q<Ѝ`]I{jxΖĈLbDwq֭fKA;/"f?;ǜO~+W͍ˍ-e,3 .R\\r-|+>-H;`qWE̗w_EA$;/U_$m'k)A\]77~|ݚl~h+u#}ۼ)=@jeٿ.->7ۡ{-L'˟7fg߆R\,vꐹn#y;Mې|F5k2_ 1ڭcjP1qmjSL!kI!G}iDu~5E=2 M+c̗w_ETtHWR$̈P1ϗ 4.~jPEq/s0ev~Vڤ,}09pfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"'w|V\,gfKA;/"2_ 1E Z|>k4s(q5JC^[ҿc^"\u?7;4X׼Uj6 ٫_Z,2Q?z-? z-?z-?TU_=?Ə=?ƋTU_=?Ə=?ƋU[oqM RHPF A=?Ə=?Ƌ0jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jY ɼB#޴=?Ə=?ƅt-g(Χ?V rBBӻg(Χ?V rBBvC՟7vrYfZɍddFeK OO_OO_vDaoؼ#b>_6q}2;;[X,h$(| OSi4i4]g(Χ?V rBBһ !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.vu?fgS?o9M!ih!ih !QO~7OO_OO_,gS?o9Fu?f=?Ə=?ƋO~SZ?Z.Ȓowc8gu?7z-?gK$WzȂx0#IQQ?VeTlOE6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'WQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QEQ?P?QET(P3././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/material-definition/img/materials_07.jpg0000644000000000000000000005724614741736366024061 0ustar00rootrootJFIF``ExifII*C    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?-`^YY$OQMG༶x#B2T'+cH-{Q^j%&M6}ܶ,;-Fº\nb*/ZI%h&]ˑ~6 22"@%d T(Cae8==늗HѣtQŵ!/Aw4\ڼr9gnFetmJUmB++_ʟhF̙V5i;Q[QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE3H-{\>ȗki߽3G6鹉Elm+{MR 4(eja;@$Je:訮WK񾝨hv,7Iy-RYȬUc`]Hea G-rmQDCU&Rʀt4W3 |j${mnKt{ᑣ,H) L=5QEQE8RYYxcPcd!aZtPo.u}]quE+ 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(7? E.︿Ң 3~s@˯/.\2*(*[`5ƽY-O=c?jV.;}隄>MZyl>&o/ OyvvV,otLro Umv.l"k]r;p'OpN=dr $aB#nLrF*Ro Qm0ʞU-(be;*W.HVUV*3 [$eӻ'㲝!@ ,a FotLro Uhe9UoisgO!KW!9~/  dP3d J~`6]1ӯ 恄NDO/y ѷ/U`$oiɤZjy$D{o* $`vF]ܱr$5*otLro U{^j&mkc4Ȧ-V mMK-P<\ ?zO+)6ࣃʶ ԃ~`otLri͖5O$qm$qpѻ(Y;pFu1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`bQdG(߶?tXY;m0??&9](AotLro WE1Ejs~`W/?ZhGa@\1U) MMm0ʞWg Fv`2 T$0ɩcܲL2z ISK١B|ĺp;yK m^dfj J(hjvQiM'p #k,F j6O*CH^I($svne KYU pJ3=](*彄+-̞\m,PՙGy-QERQ@ E%U :MB; FGcRIxnxax5KBʹ\d0;O; CETb)>?/?J)w|Q)w|RtUOOAK/"OAK/"\ETb(b( 誟`_E`_Er-Sb(b( (`_E`_ErORR.\Χwu8dKoR͵iEĊ]#-HCUJ[ -ͭO=c?jUI {jDX+T}:9x?ꎗ;l )jk7 siI?ͻ UU,'+YϮGWJGu9n }} ?ۚ{ oʹr1y>*ӆ梁QI')PN ^_kSf>GN a?nw^70ZtXg$}Oc8؉SuN)G%ƏgW/<<#=%r 8 8 NH=w5#oda?h˕7C'<\6 |^_h//4cKG՗<)+O*k 7s!hW9AZ&OGPѪ#bV0F\6 K%Əi?fw|W6m'mmEa.xԆp9xӂ-eyK &N*R\) ~[//4o??{O# xu\@V}-lk{X28FbıR`g%:Y^_hƗ< K%Əi?zY^_hƗ< K%Əi?zY^_hƗ< K%Əi?zY^_hƗ< K%Əi?zY^_hƗ< K%Əi?zY^_hƗ< K%Əi?zY^_hƗ<\'4}[ZkY\j.X# F|^_k?F񶛪kzVt#HKdU I`8@ɨN{{ \'g7.7@v68YA`06I?jO|EּY=OLh!KmZ#IYJo3;xgFggw"ffd^}u5J46j0x{u&hwZrFPĆ 0 vZfN-.%1A&2cV"j?8Ļ}]3XK-lSW(Y6ҎnNqlajMA5I#hph&H^C},mRtWw?հ^G+]qtj?83[-XB]JUfYb`H7c^l1orm~o9wUGuG:.r/:j+YƖo4xy8$H l158fq,ROkez.nKHɷPmj?8?_]sյ([^MRtZ^A73+6?0Z]jM`\\^o}]b!$S`>Ҹޘ A_]ڏ@/.^o|˙5iDe[h6֯r[a;X jů跳xQA6%3ͻH!.wX``#H.}2@m ;UFO`jQw}E88o߬~^=[}Bx9nl3ʦt9 ٗP@oɐ23ʺ(Ԍx .|[DM'qfv1rI=4nYɁ'i$Rm@m$ܡvX-`Su3ŚΝaf|B-1Vߋ{x:l}|0\Fmh[up;c# 3,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_Z|M}E5G}k44QWP{4|]O?Wֿ_/G!>,_[|M}E5GzN]Tšڕ:1ʱO úE<3ŦĒG*e`<jl~U!9D>-ܥXEVviVn?":Ү9EGa$1'l_rOSJ (9;M_o{ۧ{pM4>IN8OuI`$Qi)Jy7yr)#_hnƞRZ0L\0;HN~b m@ocKȬK+[KկHfKuŐxɠQm>]4i67h[\+L!^J}vk<'Cx5K1NHnА#zpǩ縡QEh_[L?IO ^S6=ċ dZʋ|-pErj1Il9WѸWEa.WM(&6 p Od>gK",KVK[M\`$Bs~"%eԣ4ItHbF?2֞֓%ݵjvMquBFA!s\r8쐭9'_x2 d`<͑֟zw-vTkbQaX mߐr //$YmB-gKy#2# rȤO|fZ%X,&{Y:%`;Jk]?{Sկ #W%Xb@7!b0{ֳccm KJZm%jQ,KO7򢖀nk#Ҵ8>{Kf$hĢ ۃBxGxfb%7jûq! x@4^[j6 YnvG.b ~b16t-j\^xt`+h.|X+>j4qEGqknƞ]=mtW8R9`OB:֕qIC/P<־v lsI-ܬ ےܪNv`o =LhIE%Ǵ?W }QZQEOxwF^OxwF^[IEHŢZ)( {G_0Ԫdž47̈/u,tg?$[.9ǴJe}W"t}BH\Ik,jե2PtSo%֡wb 2\0|򙼤$3`6c h0Dyu̠E<ڄr]UXgN0͞':6lڙH;{'l薩 Ǖ>оj;7&4? t8:6a_"$#f7@b_G͍Şc-_J%9?0_1o Sᡝ ȊX>l[XyLqM6N :;[XS$ʼn$rY$$I$jPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPW%'IW]\?'MIK *9^ܔ`s,#D궋?":gu+SI77C\Ex ssܨiŧ,K aI??Rտ,|'_+^3mjw6]5曤}\_ 2L],R5UަdTs˟^!>?O7rZZtۤo$WBUG˂Hl5]gR5'Tn-O.X&xYdBBe T; Λ.z?׭J(As/.z?׭J(As/.z?׭J(As/.z?׭J(AsK xo)>'\r}u?VE4gG{h- $&1rIʂ!˟^(̿!˟^(̿!˟^(̿!˟^(̿!˟^(̿!u:UԷuCji%\>G?*r?('Y q8ȭW*5v%RQHbIE-P]K=?jP֜.$?}Y1c3">o2$Qxh]g\|WqƱ S,Y?/΄H4#Uz.gU5L\FÖP1N [_Ӽ7R Nmnԁ"7ܐYXx]u9|7ӢiX iŮ% @ l@%3h*Oiek&-bI %uiVs&P+̡\`;oi-ϫmoCXU"0Bb/ RFI'HQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@r0RQ5u!IDԞIJ]l>XDt%\^[%ϗ4]ت0Y/L&9m:v>:?Q؞M2 OJmnmce$rx:z /tY.Em6\J,jf Yۉ_"`fpgy Xޟ֋`(^h.MOeWRAc'$U<#\$ݫv,ogQ(bu]8k?Oi @gtƘh"qNޟ*ƏX?Ohޟ*Ə?Ţí\ q+ /*e Hys$F鹔f7Xޟ*ƏX?Ohޟ*ƏX?Ohޟ*ƏX[/ƛbmK @(ӿ_F[S_F[a4fǴ_Z5}wNm;>\v?a71#譍C=?j6U%W-~o7_=H4ui~aʚ"d;Fcq_Aw3jH.++{k(*/Kf%G$<#D"4{d>2,lyho+>?HTYM\e!TmdIN~i JMdUg2243A?|?^wXݻw@8ɭ:(((((((((((((((((+B$҉F OJ&%tFy.…rg/F:om&3+^Ga6mo{-$KJȡ *M:B<:Ǚ[t~38D*;]kYNc'0Y=˻ج}^\նcyiAh[bɞYwDys< R&G&Nu6wi 8:To?[]ܷ&3my;g:,G$($`/ 2iBӏ 'g>>׻|/gv+}Ao?9o Hu Z[82rI$+dH`{ʫ,0KO EV}Ao? 4UoQO EV}Ao?_i]OKOIޱmqf>Bd,`=_'lE$,H8}Aq^ZuilOS.aǤg4ڂ"vqF`jG*!63=,l5W/SLYJ[˕EmmX@ xgKyn!In@#*Y0؁_>Z@iQ.%E|#, PFeM;: s[cu\td͒cPDc:͋D6|}[Ⱦvfyϝ'01@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@r0RQ5u!IDԞIJm=[Du>i\ili-Y6*HިY"I]$l@Sǔ=9 sV 뺶Ki#٭Zf1eC T]v'Q.-#OϛĐ[I;;g $jUN:ֶ#❜+Bᕀ*x< gJ خ.-v&/|Ii H,tsXsǩ_%jEe9uKs#K2g|&b^1 ֫wr^Y$os bnٻ$)8fsq/[4[ hb/Gxf`r㉆2z*`QEQEQEQEW_i]OBӢϽV0H";%+ml#c|?'TTӭ$a/u2Fb&N@~Q> wo>!4y H$H8oʏN+xDg4IZIQԴm_(|ޛjPjm"ͯhqX2%L3>5)dqa/wo#]Jm`5 ǚ[ ,JL*mr bV2+X j.3Vsi-+==!yĠ0L@. 13((([Y[Y(('Oyj/|ZR{[ *FQEQEUx6WIl;}ZW7l} >t//F>]oO\ٮoi|Ӝ8#'^l -6chG-&̅ywW5j:æ.F;gkAiXc!^y(9*Img 7k(qQd+4[^y oQi=~WSǯhSZڿNcYCq"P΁$'ֽPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP\?'M]ur0RQ5',4mȎ-l<a_nU_oaѣZ{w ˅hDz QصUE6rk&0:uj?̛R:|Z.Ew2[1mثuH8H =?ŐO1W j쳜Q@Ab3ݢ K>siQ?nq[/. siTv7wvyIH#r窜d05r+_O*K>siU(%94D?UX+_O*K>siU(>y3ZL1)o%94⨸_i]O՘.XCX4X.iT#n[ʫ~0 h|ϜUONl4Z$X/ ʹ(9lU0 8rM])Yn)N[,&芅U?giI2NϜT}_O*[>H7ٺgDُ"RSwi;o:$ulg 7/<6G8K>siQ?EWD?Uh|PK>siQ?EWD?U6Ė$Re|Vm@h(_FZ{_3֫T#QE# ( (*Ǽ_ZEK[YZ^ݹi#GsINT0,>sC5k d9yq?ewX{tďg-lOS3Rw}=n&'w93s#"G (ZxCX½Mv֯dUy^8IYܒNpܐ;=ź~]ZF<߲,XgH#ѻ|cp`4'Tk+ǓyXLio'q8`sOF\cþ Y'OK#X#5 I U 8_F8|O\Z\[5VK-eX$DU-$m@Tb hV6ivDH`c) UQq[/uHnedyY|yacX6%FrV=WOohg[YV6UC#n fڄN6EFwwb6mA@LH||+e&}GYc!?6~yh teܔ`C9ש]ʎėi4k/3E>LUnFO<YC-0(䟘6d|Ym\DG?z"O_m?O}FHGH0["΄%n\d2^|5UN_-ۑ#],[,UpKwm{~OF?U0,QU^x?y=' U}6^x?_e*EWy='e* X7R5.tӚ OOԍsn6^x? Amee\IJq0̱yz;p]kƍV>Mh7Nɪev Q@,&7 (Tp :(AfqivZk}/|ɮݍ6>ՌqCYn_]M'W>|2űFWhƋ3^E,s[]7W+-|eK׉-D]ç^',}}BWʔ1*hS?sz(Afyŏm-5 tH{uܶB\|sWl|3adwF1%°GlHB8wTQ̂Xh:{>i;I)*KFw1&'QJӨ3VƏ3VƝE,li4li4(Af7cL_cL_QG2 1g?g?:9Y?%ih?%iiQ̂oƙA+OGƙA+ONdc4 Z?4 Zus JJӨ3VƏ3VƝE,li4li4(Af7cL_cL_QG2 1g?g?:9Y?%ih?%iiQtc4筤Y5] RA|&C^&՚Nz'z7ifDGZul#vJ?Φmԯj ( ( ( ( ( ( ( ( ( ( ( ( ( (2tgѭV5'QEHŠ((((((((((((((((((((((n:ֵdu?7Oo?":Ӭ=F(]R+:(((((((((((((( ?=kUǼ?jI;QR0((((((((((((((((((((((zY7?oO 8H>t&1:WYLE{TW:DtI^_ /Oٍ׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY׵KkۯQEY4Գ+ipJ#*TwpJ(C ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (du?7jɹתoGp.ixNuڠo}g۞343A?+ּ;wxIplc&6gEp$XX(:+MJ..;&@$0*H' *J # ;EyNhm_ie.6WRLR?.TE "*eWFp0~i[>k+ͨdIq$FԜwq<6\\JI*I<zMoi}EJϱxjS}%MT2baMEO(_g۫Z;xu{ilc3DR ,-4WN-v]A"hmS`rqҤxn0`X;#W+S&=mp%dW`2º\}ּU\,s3rG Bs0to3B@=zK-v;{[7&-^0.'aq0m(͈ *F'U|M{jvwخ +fC ADGQC@!>uZKo:A QA|d#o<7V[ʓC*H2AGzK{ ǧ]Rm@O {0͙YCc]B^y#-ʼn_>x ێvPsEygi֍vD&fbb?I$EkeL[Z7O=z-5nn 5VGbyfS#z<ˏn\Z} NoBK[PO 9>oϿ ԸX!svFex#Bwț 9a:jdb+͵[-VFԡcPԦB2C{$?gh9M>+_Suwk{e #復V39 +9%e/1X6x.IcO.?c/5i\:y,ԥƥ:3Hҵд[Y`ZKtޫ6sgןk2ۤ?9dfi HB M̗w_EْN2ӧ4O.}7,ZLPf<GJtz}5۹5(_9RaxԭHYb~` nrc̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_E'db+F.2^}6ixQ$j[SCzETתoQ-v.ixV3NlKVVX#Ze3VZ-QUZ?Z,;z-?z-? z-?z-? ;!$PȡԌA;T?z-?z-?arWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rWOO_OO_rAu 9!x.YqGiz-?z-? Z1QO~7OO_OO_v+!QO~7OO_OO_,gS?o9U'䳾ͺȍʗ?A OGA ON,>q߱y^Gپ|/vmߍ1Eevv?ٶd0YrI8P$Ƨ!ih!ih !QO~7OO_OO_vC՟7:Y3oA OGA OEYΧ?V rg)z-?z-?ad;:Y33՟7i4i4]g(Χ?V rBBvC՟7:Y3oA OGA OEYΧ?V rg)z-?z-?ad;:Y33՟7i4i4]g(Χ?V rBBvC՟7:Y3oA OGA OEYΧ?V rg)z-?z-?ad;:Y33՟7i4i4]g(Χ?V rBBvC՟7:Y3oA OGA OEYΧ?V rg)z-?z-?ad;:Y33՟7i4i4]%ev*5Mp1ϹתoW?ZΖHwkyaG֓C'Wbu*( ؟_ʊ)lOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOElOFTQ@TlOE6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'Wbu*(bu*6'W6'W@8P? (g././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/material-definition/img/materials_08.jpg0000644000000000000000000006201114741736366024044 0ustar00rootrootJFIFC    $.' ",#(7),01444'9=82<.342C  2!!22222222222222222222222222222222222222222222222222" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?-p4,̓@'Fm-wyyv#-J? a^"ךmզy-˂#Kjѫp,@;#a7Xֺ6}xnSK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩY'?#egϳǏ:߳z|mt4-n7~`otLr>*"..cKp`Y!!vfu'\ +ܥh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WE\߈5{&XQ 1ۜrqsN\ &Ҹo TjDnhpw#Uꦰ#MN;/&f7fPd͸+?O(j^7'Kx~8c%+ /4=$ |u` EΝ\ټ|FVJdҵm5tZ̹SdA98f+2&~6yYGKDb܈ޞ`0ag9-(1!Wh&ڿ7ٿ(\wm>O.&gNPKN=*p6 |N X#lZv˛0O_0FlvZ*ZZiwkS~w("0vRn*@O<6\JI*I<9 (znq+i-fYT6*H8r ( (| 5Ԟ\m,pՙGy,QERQ@ E%U:]F; FGcRIxCxNĈZ%0[$ XX)$})W:*'G'EJ )y|Q )y|Q `_E`_E0j )y|Q )y|Q `_E`_E0j} ^1} ^1|*'G'G.[} ^1} ^1|*A HuK  C+]YaK6f)tY wUp} \i[ -ͭO=c?jV^?׺s@B-U,\n G{,RE'?ēWI?j?i~+.֚(cH[T¢*yaB5m'Qþ(t廇O0=2i莊cuZ|Mhx^]m2uXIL- [2ڡ `Ofm YJb%fMdƭ݁EZ]quw<ĺfئq=ՄQm59mܜ 9l0ԚjE*hXO&ݾWY3u^]qtj?8+M2OjZj+YFo4xy8$H l15x iK^xԻI!?z* :Qw9_RUH'IŭhF,jf3k#K|Cwslu5ʻ8CMI}q1j?憎?_]sμ?{_\2k%ӄpm^]xFNv Ջomg$?۟i(&ׄyti!e.[| =w i>Y|]|'I u7~$~̗v#"+^2` GsY`jڍ&i3@py >` 0:ڏ@/.Gu@\?r*&)d8EDc+y##61b՝]Qt+;Qw}E 4Vw:Qw}E'o ״U|1}D;JOrˇ-d]A&@8ϛ?*R0Vfsk p;\-tu,WKo9<±ԹZuY)J&RQY-PIE-4f(3Fh E%-^+gD.Xg8AG9vb.QTW/G?h OJyr4iCuI`$Qi)Jy7yr)#_hnƞRZ0L\0;HN~b m@oc;K+[;կHfKuŐxɠam>]4i67h[\+L!^J}vk#Cx5[1RHnА#zpǩ纡QEh_[MlBJuT5"RWhm {0 E,@8t8nڢ YU6Q~h "35ݜ񴄅 TN2}+'R=] gtג]4Zhb %2'C/@5..-KC7.Tk2 w7dnOͮ|Au+dyeJ#;C,Z,Ŏ*±01!@ , ]fOѵ -FDȏ4 "=ohbmcOԲ!f@7!=*4OWt#W%Xb@7!b0{ֳccmKJڈm%jQ,KO7HYD$7҄.t5;/Jo>wAnB2@ լ3w{&l f$\%cmZλwV]902ymʰ;*W|hD=fT{hLpru*ڀGMkjt cIn`NܔT62vtޓxIcBO)(=In袊(ſ5Pſ5ݐJ*F-PIE-4Bψ-hr[an|xvY|ͻR;@,:}JMFYy0#|f#\*H *k6.Y[<#ex#vd17̻]zFF/%i2*%7P0]σ 6ԵR8E77ę d/ʻd׼+Xweυ>b61I?18_%|[QN%$luW#? WzWs` {ۛxyss*7n xYjbX%]dQxI1O#`LޛGw\Nm畦[gRvgۻv,w3cq@Η=HּG=YjpvFmHk1v#0AP6쬖tD$vWWp Kieo9$ ]f1dq e4oK(mM7DP|Oۼ$76nA᰷VWqkq ꤏnE\bg91;rHP2ԭ;K$B­  pYԘF]z徱AVFƫ,ef]{;UQOHMg$־mԶׯ%E>A$^S\HU^306dxVK1jp6<$~F oY=Ěơc/ƕ&e mqeQ*a;N 4 T{k[g# 68]j^\˫F\m乏Mo+9~ldKiTS;|닙|P*"">NI$atnT4?4,ER?#gh?#gh KcL_cL_.U/36Ə36Ƌ0.T4?4,/SH=Kt H™e^+͞oDQ oMfdȍP-9P3pcpuglglat7P;Ou枖pLʓ hP!kC^mV-_SCzlQKJW%&6?zǫw(b[ bȾ\ p3(jŧO,K a?.z_\[6yjs- J̪x- C?-ա绑[8d85~*ǖH+j(w5?ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT2ף.zԢT1_g}|TsCˏ \ɪir__kYDk y2s0|NT:!˟^ƻ-ɢh$Il.MR]N( 錽[:ΕϯyoVXȌ[GtT 7j|>]* \e?\.[mbK;GQY˶5D# Sĝ [%SKK$D?c;0b \jT4?ף.z&VYt}BI,!_P91j<  "tG %V82~P}GQha8kK/?hчy^MiF9?aW/ZtQjfh4b8?qz@(c>4b8?qz@Op{L y QgsE#͖U|,F鹔f7O8? d`KU.%UX&72 hy5̖~o.vXX՘3`w6t>4}/Oh-#{Kܰ_ 澝pVr9o6>fl>Ү#vԒṫT4,T9Ir ?1>4}/Oh{y5oİK)bs 夓*He|`6)4nͼlJB;w|ŎltU( ֟q+HD1;QΙ4K܌\|qssQ@-XA-%+IpX64Ið|8[6=[jB¬mL,_.T38GEE1b෸mF;h?.e,^Asmr }ߕq/.51@ܙ p{~l Դ k$nF0pOJȳЯDZqڈ_$l vgsn<765Esx3NIAoan䭜Hz?7鎵cL&-ӭ}r-"91m܉w[TP)`-xCo0 #]-t.U QC&ڪq~b~=I'^ gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?OFF,li4li4( 1glgl>.gƙA?GƙA?O)]_]ow. +<9fMi ƻתo[w!Tަ[ ft]5 \G>_, u5-&3^a6mo}$؆sjC7TvLJ|7i ZV%N 97L;# "1 5o?b? >g?p@(o?b? >g?p@*mG),X=e B<Q@Q@ZjXgѭVKv ahŢZ)( ( ( ( ((88(88 ( ( ( (Z)(Z)((((?zY_oO =EVvO~nm*KiE pJ386hhI%#hP50)NHU<>^^յ[M)o *1#*Hb 0{;YђO. I Xl%(@U:4:ֳqykLxOkF8bHR2ۗP/c&[n)$Xp[US}:^jRsK6;,dN*ͱmlqEG5R2@) BG;I8$zRS((((OpLj R:r$v;V$l|r}u?W'ajqu$צHRiڈo>ҹܪ>G?.R,ȮPH E Vsb|ymiqll3gh"LHP&o_arde,KY-ˑWˏvVlȄ"e F.k426efR@X0ݍFkt9[.M]fʆG>F qůC!ӧ9 'ga]qB~c^RnҴ:TZ}$vΞ`Y/V( h|ϜUb?>/V( h|ϜUb<&Js7U?%94⨸_i]OՇk≮5Kx4n4i2w` ;eFN ϴK>siQ?׼Q6q|XGqddǔHN7'm%}sW;51ș<ѵ '%94D?Ur~2ӢNXyaެθ1a˰,$u!!ѣ{0sy)P-Lʃ,8, }_O*K>siV9uQiOΑ&E0?xaUH2ddGA@/G%94_ϜT}_O*Q@/IbI$Re|Vjm@((ɰQ/|ZU[5)n;QR0((((((((((((((((((((((7zY7_oO {0)Y:5Ս~e) 7#[pOJ*4$yr2nW6JW%&6?zSQ5?-+H;[y8excmJrx2- \kk}ʶSv;?<}9ڵKln"*FAh'^x?gM杩WW7\G݋aiwsq@_e*`XߓQ{~O@(/?TlߓP*?U/?Tb{~OF?U?|/5o#_}ơm"Q4no!R>Lݫ:]yֹ|ӌDx;e*9_ndzn+Ӣ2mp"sJyWhzkƥmo>;Kp,=RBW%v</?TlߓP7X:ixd$3RV9ާwKd~,֬O*%$d۟0 |ϻy='e*+ig5JIٮCwc?EU^x?y=' U}6^x?_e*U7uCj6^x?,r- yd@h(ɰQ/|ZU[5)n;QR0((((((((((((((((((((((7zY7_oO {02ݗ;<-C"!U99 jOjwZE3D4d@s2LN V88M9頑VHRRB1)pA3JM>]BuH @#U\sܒOqGb/xÚg. ]vNBf܃5eWwTc2 OQ?CƆ;@ăyEx1sQhcou,Ʉlhr9Ri&JY[,$,hȊ ª_`@+ Ԯ#KHԈep8TIP!7ltsʠ6@3K&&I~c1v`@M6gxS]kE6KqⶸxrC&6U#%I ?=VQR1اdv77''\euOT3b;"-l'{͐_\%ɭ_鷗vph:QA%n\)2L68f99R+S,2\s^Vͦ"TKRxv*0 >]3VY O$k2HIUX S\03m&wY] }N jWjqlM&B~K2G `'z 4[-#6;I.ss%Čpfm,B2Nt(((XX((&D?jUl?K_3֫TQEHŠ((((((((((((((((((((((n8ֵdq?7[E5gRHXG#XGZaM=F`9fp:j_>B?ΥcEW_ޟ8?PcEW_ޟ8?PcEV60 3#3_ޟՊ(ƏX+/Oh_ޟՊ(ƏX+/Oh_ޟՊ(ƏX+/OjXHcI'$iPEPEPMjgѭVKv(Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@dq?7jɺתoCف[K[ځ$W:BR`GAoy],MO"EZrD؆V"UdӤMIkۯQG2{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]{_$MݺIu]WOɶf*y\RF#E- (Š((((((((((((((((((((((n8ֵdq?7"E;֟jW0y^vnxLtX׼SZޭ Y'XY—K?0GWac$uW֚]]Aum&vMѰH8aT TF +apAv J gIKӚ]Bm=m,9~\ DTʮ$a[74FM}RWgQq-H+9-!="yᵷTHU I;w׶nsw'mmM3'j(%'zWMR, 6RH<ɋ]!73<1~Qo 5xsuo{m-vrbJXeƊI߸徴k#BmylN:T TF +apAv |Q~$'M6r8"8̊BWVC 뎻כX.YFlnYd9#¡9:7![ Eyݞskf.yyb*gJ3b060Jыou=_R[lHc>a?(?3<hhZ5ۮ;[[_Im\!S*3#(/Q$qWx-I$l]H #qZ%φSN-.-[۹a2#1|;73jOԗn,H.JĠHs;+{=vLy34H8T# I$K-2b\GkJyLR: 5RTG)$L[&tgH ̪@bRezזXYk1%hQ[ACuVmcےpb. ^&eR6dK);.[ Ai# (h?yIqscm_EPEPEPEPEPEPEPEPEPEPUnƚx|ي Rp۸#jw|7;S/?%hgy#v @9kC2_ 1,ve}o |8t3,[|,P,HmDvihww:ͺ[mJM4+c9BD.rXcZqq\CH^I$UQ@$s?I/b3o61.O~uqQY~&ԓZVE&[-$3dH+e&mYV=mI 2х2JA.=(9.{LBFĒ@UUI(@QS$ˤ7eHI2;BajpǛ#Icx߸s ~aɤZtPvj#1hhC!`M /??%^w R{--gw;:>aE30[@p X-NhM68ɣW1$eQpfKA;/"'y|W?-/u?c6^v?I0/Am,/dԮf Yư΁GiQL"EyzfsyGkk3E'c2_ 1ǫ]3W0ywI*5*N+~s6O ]?_Eowok:,v$XY'i~)?07 -M db+>Q\~ ěW.弽sF2~Ք_SO"yKo"EHaP$Q2ܐCF% 9-u(-}ZkOhYMض դ;o\9V D̗w_EW=ON$&F7#TǑGZN?ڿTwg<ϴf?+?gݾy\_KW:OH-VX!󃷚wyP1bL̗w_EWxl^na-vr03ȎB?oC\=c rKK2]ߺ\|Hك)#%1Qn5-?\m~;u[KϵGq Ё/+-NGX4ײmK\Ik$lUH8FSjiqx odʋ,r̼z}ea=)Hd2 |1 r擩jZ PW`вDc;Yر HrpZt u3ۼqs %i#6ݾhi a\=k* wGz]ŭ։ si $Fa'@ ,D>~SOj6wwm;RKB :EIJO.(y} 79h˅mRm./!M,Qxn@;ZL"[%q w{xT8BJHluJRU-uJ͚(#nUyrDv'[h߅/X[Y/?owsxZJ!llr xr~#^wYzin+jmZKup_r\ I@鲣5y6-ͦΙM7{ۀPXpfKA;/"Sjiqx odʋ,r̼zwem][nf0'!ŘT6f`l`mqZY_DWsK=~]{7)*WEw(IRc̗w_EْN (X̗w_EْN (X̗w_EْN (X̗w_EْN (XyY;Fcd W_oO ޕ {ARC^Dt.ixV3NlKVVX#Ze3VZZi4i4Xw-QUZ?Z,-QUZ?Z,-Ts ռ$ʅ$E `ڡ!ih!ih z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? z-?z-? e9!x.YqGiz-?z-? Z1?f^X;fbQ󃵘dv$w!ih!ijd?v?V rڟY3gA OGA OEY SK? >[13|TpxGܤJ2d@s|;aͬsk2iܠ3+|q3o1(..#KQi[^Mo/ϒVF|T.<B~}j3x'ij}#qt uܸ%y^ Hm<363i=%M8zg+[[_|?Yg%VFyc*>f rj ;yS".7~T!0Z/ og]oh7r$_7F)2rG_0 XcMg_&+-n=OZXQiy̩s|PH? $<ljZ^6V\#]%y&]X0 |g֫3:F4 [;X/-a-䈣)Ipq|ج!BJ4#fLԚb(Š((((((((((((((((((((((((((((((((((ixW+M};6~?h71#譍3ŶWvqsj\&`C(PϷ I W,GAEr_tCv,7{-RYȬUc`]Hac< 3G-rmQDCU&RʀtW7 ``^[wv8dh$H<0I@Q@Q@f I&KIfA`rsiQ@heG.u}֕E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. ߴ\2? J,E.︿>s@˯/. o#,g^otLr?`ѩY'?#egϳǏ:߳z|mt4-n7~`otLr>*"..cKp`Y!!vfu'\ +ܥh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WEEjs~`QEG(߶?tTQh;m0??&9]Z!otLro WE\߈5{&XQ 1ۜrqsN\ &Ҹo TjDnhpw#Uꦰ#MN;/&f7fPd͸+?O(j^7'Kx~8c%+ /4=$ |u` EΝ\ټ|FVJdҵm5tZ̹SdA98f+2&~6yYGKDb܈ޞ`0ag9-(1!Wh&ڿ7ٿ(\wm>O.&gNPKN=*p6 |N X#lZv˛0O_0FlvZ*ZZiwkS~w("0vRn*@O<6\JI*I<9 (znq+i-fYT6*H8r ( (| 5Ԟ\m,pՙGy,QERQ@ E%U:]F; FGcRIxvi[~/uBŴ dRq}; SRRr%Ub(b(TU_OAK/"OAK/"\EUb(b(TU_OAK/"OAK/"\KU>?/?>?/?>arSRR-U>?/?>?/?>arB{Y:?!.ޥj F^,;8>4-֧5+/X^ fkR[{!f]Mc.|#YK:Z%IJ%1I6VRIZ]VL|Ce [wuWsM2Ed`Q(!)_T/6Gj_N-)HibMӯ˓W-^ԎP/"-$żt,  nc v:/Q:/Qj]c c hh_gg*>@?G>@?Fv:/Q:/Qj]c c hh_gg*>@?G>@?Fv:/Q:/Qj]c c hh_gg*>@?G>@?Fv:/Q:/Qj]c c hh_gg*>@?G>@?Fv:/Q:/Qj]{Sk˅kglܬ6AkSLu_Lu_)AܙEXt&cc2yY)$ àM_B$҉Lu_z=FTE T`^xz jN|QSw؞af{d0* 漺,eڱj ʘZƷe/oC(+麞:J̛ɍ[Њ"ytb3]Mb&{ygjkJ8rۉ8ra5$U' y^C},mRtWw?հ^G+]qtj?83K-].}mo`#]Y,^Pñli6x->}.M|򳳜g?.]qtWše'ԵWʲ,ie@})#q BHR8bk$8.)'7vv1BI96T GuG:.sqc<*N[KyјYXf)6gFrk qq{ w4q9O- Jzc'+1]Qtj?憎x~V.dKu mZʺn`07mH>PM | snC˰]V9@{R.}@m ;UFO`jQw}E88nI+::+=Ù.FDV*e h<յ=.Mvqf#`lV0!V |`t+_]ڏ@/.xagULS0tp-?WFFlcn;Qw}E 4Vw:Qw}E4hGuG:.Ni(r]\[i63iv^TZ$Mk"X4YA_7s)|C vEqoiv3>_M](Yn)N[,&芅U?giI2NL2 ]O.|`\>$ᕢ vGfC(7>-4ojywgu2*?IN ^W q"b gֲaq} ћTW!v+*>cq5Z|u]6ݑf6 p Od^gK",KVK[M\`$Bs~"%eԣ4ItHbF?2֞ޓ%ݵjMsuBFA!s\r8쐭9ψ.x^1p Y"bx,CdshzŞ]ueXV=`97(K6pH9dRp3S-^MiږT=,Fq0Pnsu=w ī H2m|FH$97ndF |`9$w 76>ڏ{G_0Ԯwn.{=7FdĚe2Ưj)qoZS01n;|Au; huAdL321o) ($;͘ -:P"mBf.,s3 eU 'fz}_mSͺ-RH%CqO/>gb ɍCm ;o>=nWȉ Hٷ#e2pv~ѯaqgq658Jr~ax%f|OI??\_i]Ojw%{1Iv.w3˴As˟^!Nkl&Dre%ܤռSZLwvNl%<ŴwL@q6.Gre?G\:~-$Ӵx{x՛ cTB1ە8,I0Y544RHdC;ጬ"n) ;ƠAsC.z?׮~w^ kov |d)"S)]/i#K6T^ҎT2ף.zԢT2ף.zԢT2ש--u:U7uCji%\OQOJE1\OJ>Vh.emz\N?+UʧǼ?jDb[ E%-PIEU?F=9gqɣŌ̋ PG H Ǽ_Z°5;޺-ocg]@X~_N ,hG(]N«z6 &.IMD(DxRio/Ym d׷ h@PH󂛎@nH,4 I,uI5bziX iŮ% @ l@%3(+Ojv6hQbKX$0[gy@X2sY<;6.mvya[V4m 2I$ QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE!YDW'gIRј VDGIIXjy2\{H O mܳ'l#,#};oDѠ`!ʲ0  RZUΖ4R\-ߪ\Od߀@!s@85z] u57ƴ[b8?qzL UcEW_ޟ8? UcEW_ޟ8?}u?U8|=[Q EC<(ݳ"*wOٖ{H֣tG3?ާ_ޟ[CC{{KHZۥƗ ,rLdmp͙fK?7Z ew;,,Lj0PN;:c>4KӥX/Gr_Nȃ8C+9}3q6K iWW;jI:[mC\*lZc>4=7nHc}G(Xc&4Xc>4b8?qz@(c>4bo'}/Oi,T-Q dQ@Q@z{_3֫yz{_3֫t.h%.h%4P]C=?jߎɬkk߾6鹉Elm"?j-=ow;yK  /U=t'_FvzVv?X T $y7nG AQAw[KYEyTa|RX+6I*9$fcĠGҭ8LȲFw!y_ ;̹_y$2ʍ`!3ѵ;rjUm&ʭg?p@(o?b? >g?p@O?Ҿ FymhNj'?'fۻU{S50q ljOcM:MZ%^MjDMK˻He3nEW#}P}I' i2NWDk]HOQ? o|'װ\ZRI`XvbCޅSxM޵hzL1iZėa:C+82B4*ĀLdנ}~P*(}X~P*(}Xo?ऱ`ŔY F 4QEQEei%kUa_FZ--CJ(h+j"?j/4oܚޤ\Zeޥ=[")harF jJYżS TAӨsKbzy4:="{9)3oq&՝UehCmfŏ,tUo/諥TX`pE9Hg|Y  1be N]91ZH<*ĨeC*C( xQ.t!.Y2HBft1U" C1QIEgǢi}e>w-_;|KonΓР(((((((((((((((((8+?O(I?jRXM=[Du>i\ili-Y6*Hި٢I]$l@Sǔ=9 sT{{V^m4Ps5L v u!K.v:oa%ܞ\A,UFK1bP $&?tht;f6 s֍p2e.3cqqc_ZͦLB0S80I*6%,3**፭隶=*t4m/4mwmXɜ8T%b⊎ kxxd4R,v2:pH&EPEPEPEP{ Tq:93huIJw[*H+bONH4I,$H,5ILIӵ߼}sT|~]3IX/'\A$ @yYT[:eƨtϽW0H";%+ml#c|=V[>o{tm#o#I"f5DMkxY /t[K"ّ o-HEˍ &]=ZileIlm%̤۔aO<_/s \9»F7 7I|?I^COsF9s Or&»+yi.29!eijtH< ҳ<8x%d~c(((*mV*m@((ɰQ/|ZU[5)nl(QEQEVD_ZuO씏6:ݶ,mC`0A'Γ24ޝwcqYK74^| ܑ[ jwV:~uu1XD죚fB.ӧKK.F@4&sF_c 6?l}_O*K>siU=#WmRW:u>wV2*9'93JJ`WD?Uh|PK>siQ?EWD?Uh|PK>siQ?EPy ֿ Jx%9ϜT\@jõDmaiw}LǰOK2'h%94D?Ua(HX,#L]B 2cP$|C' P}ߛkM dLyhڀ DeCϜT}_O*{^i]GXuo,Q0Va\yyĒxhѽM9(&rAwIX>/G%94:^(ҧ~uHC~"d0J$22# h|ϜUb?>/V( h|$T2>v5^CY?6 QEQEdgѭVja(QEQEVD_ZnQi{%幒i#GsINT0,>sIx^O3تۆޘ\yzWj#Ɨ-C{C\`$wLpGr#^ Eҷ{Cvg~o|?e%ڮ&縊w93s#"G 3<`Ey+v=;Y)n~"Zl}dHak@1b9Su1"k:aFyį56"Hwu̩kG.t{7|%sav}]r<L`n%@p_)\Twq[\]y/arX,R/rU1x5Zܖ$/K ; BYI8#'#캋^xSQ_.ͭ|L<:َt]%+QChAcYUV>%jC-q?,p+H*ccR9m'v_-Ye8?#AӴpb+xo+sK=Vѩ3 ʨcBV9x &kYK H[YQتO6MxI5VmtG.$S ԲʏGT4ωg )2!Od6*?Iw/z08XL&16+5u%h(w߻ė~pwlc؛Gi7%߻;\/]6&u{D}E|vm&$gk8cc0?Iw/z08XL&16#J+i7%߻;\/]6&'xMI|7 ~q:a1ǯ~?bQ_Iw/z08XL&16;oKvv^?61 lM=~ 'xMI|7 ~q:a16~_ ߜ`qLcbm?_GؔWo;oKvv^?61 lMNxoݝtci_=>Ģ;6~_ ߜ`qLcbmw߻ė~pwlc؛OzA%Nxoݝtchm&$gk8cc0ch(w߻ė~pwlc؛Gi7%߻;\/]6&u{D}E|vm&$gk8cc0UB|_E5AtĮJk:mZ0sV^ i};E|x]ڞZDD;cbRAca^1Q'xMI|7 ~q:a1֒ GؔWo;oKvv^?61 lMNxoݝtckǯ~?bQ_Iw/z08XL&16;oKvv^?61 lM=~ 8+?O(g6~_ ߜ`qLcbm/CibKvHd1c4(9a&3S ֽ&Vvvucwms C*d29ң{ʲ$wI,^mܳE4ە獣<%ңI ??zO??^gQ5?-+H;[y8excmJrx2- \kk}ʶSv;?<}9ڵKln"*FAh'^x?gM杩WW7\G݋aiwsq@_e*`XߓQ{~O@(/?TlߓP*?U/?Tb{~OF?U?|/5o#_}ơm"Q4no!R>Lݫ:]yֹ|ӌDx;e*9_ndzn+Ӣ2mp"sJyWhzkƥmo>;Kp,=RBW%v</?TlߓP7X:ixd$3RV9ާwKd~,֬O*%$d۟0 |ϻy='e*+ig5JIٮCwc?EU^x?y=' U}6^x?_e*U7uCj6^x?,r- yd@h(ɰQ/|ZU[5)n;QR0((!φeM[i^4\iV6[ KKE~h@W u׆K~T>k-SI=Y&kftFFB n }&(X"shK;}p͒Tǒn|zYҷ*ϛ+>wx$Hn I G)aUURkֱjΙs zmյKnVѶʄ-sQP =a|ΧRj|8&+] ve?s>RNqV_5/iVp>ϲoُ*kyC,~I }癈\/4Sy9<ϖ4-Zv| oR)bp1S[lqouB H^K PAcG /⾣]կ{?3竽C\֮.m=N5̓(/ ^(t%T_^i,W GaIщ@~>H8Ϥ(Y_a~?򎽡 CxDhUɜ!3 PpvJ;VBx+Rlۦ߷Eb=0-sVQ_'E&ͺkqD^1?.sl}x+Rlۦ߷Eb=0-k*=x+Rlۦ߷Eb=0'E&ͺkqD^1?.sl}bGo_>:OxMttvc9<\8DWٷMqn7Hf3za󍏷Z(٭0~gIIn~ng'h 67zrxXL>qE5~?<)6m\oۍ"ٌs|c^"f5"/]O96>߱hf'E&ͺkqD^1?.sl}x+Rlۦ߷Eb=0-lU{?3WٷMqn7Hf3za󍏴OxMttvc9<\8~Ţʿg|t 67zrxXL>qIn~ng'oشQ[Waώ^"f5"/]O96><)6m\oۍ"ٌs|c?k*=x+Rlۦ߷Eb=0~/ue!,I;@CUINR$IV$ۿo`HP3 U:rJjw<_3:8Ҽ9$Is+ 2r[Ȥ1$nϖE&ͺkqD^1?.sl}Lh#m:tvI(uT6F!,gTaxrE&sWٷMqn7Hf3za󍏴OxMttvc9<\8~Ţ?k*̟g|t 67zrxXL>qIn~ng'oشQ[Waώ^"f5"/]O96>ߤ4iA*% bc^7znjnF7Wv^ AdlWh09<9jiw${q汑38 0eXdm68ӦFeY#II 0 }S)4u #{,6,UUp 3rH)Tv"7n<9xrkHT(m`];#VUwp>UF8# ߱C4?lhm# ,H<טX' ?.w9efV6PilK F<?+#&iT%ABƌ술*Z ~К]J;/-HX @$Ng-f :&sXrO=I=I `QEQEQEQEW_i]Oqi/k崿HQ-Ƿ3yF,3b: ToF8$i vHlG;, ?3d?IJjiqiz^ȇv1Yf D Sa wE;O5ֹqj4[a}+khw,>^ce];Pm KoEe5+?svH7csrry<|=[Q EC<(ݳ"*wO_LywgZyF\$ɼ':nÆc"="ɼC%̗05liX%Kde(7oK3j^5k $F $U9oc>њk,7yh%\찱10gA;$lWơuq=L.ˉaؒd/(trx'3Eygnv7LE{50{9E)yɍY\up: < bG[e}iZ%݅VgdHAI !x%IP;!d`2VwGb(ԠtK9&Q3GʈDELN~Ol{G-e}fŷI.$±:pP3'..%Ha $Q@$G}{o7ryv4>vXrxyؼDN+_kro`$̘Bs9S3jxzWG7Viw,f!k0vX[lh $=>[H.&;D/ .іڧI !x%IP;!d`2VwGbW=ާM2{$siaw-Â#KlȮd+u`9d2޸뻭y0.쵍2=fIeKc8\*S+/\VD3<3;|E[}SDû222G~ ặTP{@A9!|NE oPKpV?%\=z?YLoEs gqZ¤ҷ@73d0_Ayj|qJlEv႘XppfKA;/".,uO%r I|[74l'mYA4]/ͤ+8ndT "E,=4l B[ӒRB湸-v݋`]ZK|3ʳlXO'y|U{k=^K[h_dcr0N yuMf}FcmgjİKEqsZ-l.|8;ynw .O(X'y|UwЇl# <#5kV>-%{o d=‘B2[+]6Rm&7r8̷,UeRpْN2_ 1ͬ:Ʒ鶺 =溊q9΄U;W 9zUTw}"{.0,"qpKM{-fݮ44A*8%TqDoe66mH rɷ |ǭg_z6oabC `ː+lQ:1lcIR/i:]>u{ $F9Pč ml ޙ}O.,`\=ѹ0\  AR^=qko{3m=춎i Fֹ?tǥ\ZhG60KkbtpC<8gwp,&ӵ$,C\K$[|ݿ sX؍&}B-Y6y#2)%BZGy緌,C$ T\mlu)H[-BXԯZ٢9ʕ]!G`by &a^I0\\KD^]J@s٣A[䕉$ h̖N.asm _ `gMM2)[E*/m2Gq\-sg˥h725Ϋ2SsdB#"J︹ :SJӍcn_lU \,uْNGw=0j%(|_\'9-{urդW%ğ1*;mXjڭj2޼oWMCf8Iu!Tޭ_xU.8OB Aj4F45kUe0UPA 8#5gOO_E*A OGA OErWOO_OO_rWOO_OO_rG<[oqM RHPF A=?Ə=?Ƌ0jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jBB`jYZ !#7X{֙BBЮS?o9Q %/&kF%i\8;YGbGz_=?Ə=?ƪVCjg(ݩ՟7i4i4]{uo-ĖA*9-ԌA*MڟY3gA OGA OEYݩ՟7v?V rBBvCjg(ݩ՟7i4i4]ڟY37jg)z-?z-?ad?v?V r+ٞKx_|L֌J6ҹ_pv Ďz-?z-?ad?v?V rڟY3gA OGA OEYݩ՟7v?V rBBvBG/3%<ϾV[Fh\9;UFO`jv?V rBBvCjg(ݩ՟7i4i4]ڟY37jg)z-?z-?ad?v?V rڟY3gA OGA OEYݩ՟7v?V rBBvEi4TT %SdWmT^xWߐ>f֬AVXCH8eTP0L!ih!ih !?fnS?Z?Z.~O~?f=?Ə=?ƋS?o9FO~3OO_OO_,QS?o9L!ih!ih !?fnS?Z?Z.Ȓowc8gq?7z-?g4W:ü* dRѰaG֢W$Q̠Q@Zq*|ɨ@ƍ0vX,_Æ 7HDDDDD䂐FFFbƍ̔-˗/ɓ'1bc0vXTUU) NC=AaԩF<($a-ЫW/UǮ[pM7Y=&(qFIDDDDD[!o> [JXh4"11F옓'Ou&-L555QW_} ZTUUhXwhIK+++1k,|Xt)"""PYY7|=KDDDDD䪐2*wQ\uU6i8x Ǫ())A˖-~=#Gĉ=k&O!Ch= 3ZHJJsY=VVVzؼysUW[[/£c$""""r͛ ]?@~~>n;vDDko]Ϟ=b3LصkzNs}Ns$e|O=g<ӳjkk0ȏ1ZeVr$zOy|O=gp !39~RQQ&MhXC8{l1V}g={bΝ;DB O=~mGFSF}kuEvEE#!""".!$X@HDDDDdBbSmC<6!X!!6Veem"""`æ2qczmC`UU5 pczRЇDS颾eYh$DDDDŦ2! @iDDDD)dXV(Ա˨˨,aMMF#!""".v%X!!v! v%}]F%aXX?{B""" V2Jj1jFЬY3@uuC""""v%)$ȫM6(1RH0 mB"""" I&C"Q(>m'#aTT#""" 6vbЇvP` }NhGB^ !=n;Ajqʨm'D5B""" vbBYc 5DDDDD)$0Yc @HDDDDdB(!Qv!nLv%""PI-V}kG1C@HDDDӓZ >č#_ddT!DDD1=)>č#^~BADDDӓZRH` $""""@H!AT!BV0RHOY!$"""P@H!Ai(+DDDD)$BHDDDDdBRQB"""" u *FQ!iP]]ٺt: G:.2Q2L0@BCRS^\2NDD4\H""" Vz(}(##AHKKzH!C>eTBV(X`0ܹsZPxx4]|KiczB""" V:켇V)$r(QB 2JDDDDdBYc )DDDDD)$(Me $"""P@H!AiB{SFϟ?:H+ SFTp1,[ cǎz(Ҷ->ӧ{1曈֐Cڵ PPP 0ǏGzz:&LfggoFdd$ߏ|tXptܧ~ 0'mU[h!>twGDDDDEEEҥ ڷo~=z4tR$''#!!C׮]'NӧO[o%aaa 3Riit >FFFbƍD&M|r &VVV=+2UUU`օRJv^PPP ۷{s$:A52DDDDDP&&&F tQFmg_]]&&raaaWd< h/VTT}@HDDD6WsISFeΝzLtD]zLzYYYdET(Pdee=TZ E$@(ӵkW@~~c⾎;5qFFF Ïǻ-1Qyu&Z~NDDD/ƏoRA$@(3x`@}wuǾ^DD"##>8]ԳD苈NnVWW{yDDDD W1{b v3g̦Bףh*#>L&C JB)O6{(L&霓BbSmgB(P @Cl* 5N?yM6e $""Ħ2hޔQTy͚5CTTB""" ,l*CjBHAOMP)+555&1R={Nؚ2*DDDD8eԇDQ!"":N5]F*:k( L&F^&X!!vՆ3Me5jx@ cJDDD]FI-BbQmi*s@޽ݺu3{+DDDHeQbQmVVVZl+^{-p($v%X!'B5UUUs=RSF(BHA^PL7|S:B"""" fRSZNP4+>m'!sSF!"n;AjBCvBT-qDDDDNZ >m'f ͞ !"n;Ajqʨq m(MU[!d $""@m'H-V)ٛ2eTSF(1Rг7eTjQha 'BҔQGBB"""" f mLoв Q0c )DDDDDeԇ16U#nLOjBCܘ^jjj0Qpqczm2*aTTsEpd $""@I-N!nL 5MelB6!""@I-V)9ZC(>ہB"""" F !AB !=GSFB!$"""`@HAO)+@("ZGDDDDl)9  A}!(1RS;er9 DDDD)ٛ2(r !3B zjzBHDDDDP]]YZFg/ʛp( srB̄^>rssR3LBHDDD"77zZedd`0HiiiZ)ImU]F-4 ;wN롐Q 7 %}ʞR B""" ::<$X!&`䁐k(T1RPBpvuu5V(0RPA.""aa !TUUZ~~C """71RP>P^!P<0FJD^xMDDDx) aee1m޼k֬zDDDB jB2 Dqi+0LZ\@HAMB˖JSF/a}}=5LSVVш{bڵZ\@[oE޽ѫW/7r?bkK N'5^Jɜ>}Zj8"""r7wkW^ycƌ_wu.r5J`; a`0ŋ+ʢhD_NNt{ͨDF4 'N0؊ݟ bڨ)횚lݺwq#""""Wܔ˗#)) :qvX| ^uHCҞ !n HnϞ=f>|X;B&?~0aJJJoؿ?ѹsgc…Vǧuꫯ"%%[9IB{vB|FlrOٿC vmR-DDDD.@XYYq!..M6СCq1_]tA?8ڣGF\\.]d$$$`޼yڵ+222nذxѣGdggq|嗸[]>ሌƍ&M=v8y$FavlXXƎ*{V GFFzg}֥qR 5T%Q8q_~ ػw/n@||&{"yJ̜9˗/G=лwo$aDӄHi3233~deeMDTM_Me'WTT:#11M6p#DDeRipܸq8}4y|W=zuƧ~7|{v ϷzLױcG2Ȁ`p1~xwQS!B#2 ={W+X^^cƏoMM1uTim^JJ -ZdvLLL F* >cgΜÇN:=~߿0H-#GDRRVZevrc2xbDGGs-zjd-!+s Ϗ?H]h˖-e0""Nnn.*o;a0JJFΝѹsg謲2e5n/Fii)FB"##999xw,=ck,5d 5 KL kK]|GZZ*´4>|qM4!CpV||EEg2`4ȍ| 7o[!jh@ȍ'6-Sz$] !BR+ !p")*!-Qh֬㖁{ݽ+(IA{ X !BR˧SF'MdtW_ɻdByy9!zXCH!a˖-ZVU]S]]-TjDCtmӦt!$|?C결l2=zS\C[⊘ ]ET;|xx8ڶm @&.jJkZ1eyx衇ok=p oJ토 IDAT\LLt;,,L ~8e=bhѢE 0D ,N%"G\CHj49s&IС>lvٳgtRSKIII%Nu+zP%|ddV. DDkI-M8t萖_縆Pbݚ%Q3GE𮨨@}}=b⤢yfE8DDkI-QгUYW6mj2hM4g5)(m944nQ @xo"ʈɤV}}tVOŔ7%2y0&&F=f5)PyiL&霓M@MM ݻΝ9-/eff"33Sk4Q eBˎr2yP!66pSF墢c"""eԩài y8}b=7aમ`ݕkOnn.z=ʐC_|?8<6!Ȁ`>lu$8p@ݥKUϱW}f=}(ž G>e.b "[42駟k׮qW{>2 F9b/B aB[*K.G}#QaQRK@8|Çqa GC SSSAś(q RB;v 8r >\-ztM7n V0/~ZU" uv @XPPOaEl;!>?:vKSغut"%+Ϋ*5’qgkczR@j=""Mq R+`k= s^|EUJ`ĉ +pt[Byu͢h~,"+Vh="">OɆ2pS KJJ)0 tQ*J_6MaBB""ge˖4hk;wg=K999"5Xr]޽{>_d RRR~z{zj'7wm ~i鶿[G@hkڥ~WY!$PÍI-M3gбcGUǎ7|G]j7~7_ oXV0Mĉ?ӣau*Vǐs0Ci5 v1=QL&W6_z5rrr0qD>ĺm~WK[QkӧGæ2?7 _nu 7lB1D:uJiӓZ ̙#lLo9I4/6W &:hиqc]-ռYfʸN4iѢ@(? *Q_CXSSbl߾gΜ7裑iGZr!t:=z))):u#q%+ƍ;UϷEX!t]vZn;khb˟*򿣭ZQVVለW@COzi$Cחh@3m4 3 `PZZ h׮˗/W|OBV]'~ fGGGNJ+PPPI ?UE!$""Rs0мys+W lB;wy'{\pCEEElEu7. {yiƣ@#~f͛7z,%%+B*[П* DDDiZ!!ܹj!0}R>>O?b$&&}:F)Q!t6]Dy F 5JM4鉈l4FtI!W\NN&O:X.\8U]]Z`˖-Uƚ5k26RNtihIIODOB(!!^C }ů#{/ZMNš8qR=C8euRG;75jxtt4)*hBhøk/bӦMػw/Ο?f͚km&] E׻@9"5jݺuòe˰l2<8vQVVx֭w8:~8=+PdzzSDWت;w|NtիcD۶mƈ '*.\~CB""""Ο?SL֎%$$`ƌxG5gՙ5"r-ػwΚjM8Qm41`voذ,cڴi޽~&h߾78[k:QQQ V^-V M4ABBΞ='NWZT\n)S-E%OLUc $e2`4| /'xB1  S{1L2#Lz#77y'ϫ9|0F#>3l߾ߤ= O>_[_ŋHJJ€[GK6_cڵ7n[P֔Q hׯ*Bɺ|#qWk/~RfAp‰?l}# NQͅ^FdI@m6̜9III5krrrP^^шrٳ3gDbb"f̘۷k9\edd`0HiiiVLj2ׯ4`i,]~!KG<[lmS%%%ꪫlwߍn87о,[_թוQ<}45k'xh۶vҔї_~Y}a_,XRygZ{kغ^oQ[!o,cՐSNXdc-ZN:yyDS:銉A=P8pØ1cSOl,Z>g|+ ^+Wb„ Q?')U?#ѡC̜97o{뉩.\+"}w^_9S!@(*bͲذ.41K,os'epx'2j/̙3[oIu ]tAf0k,Yb"ؕD5L0L!ZXXXp!>^x;ë㰜e5B(.[d5uآI|*35tc>[ooDjj*bbbPQQ<ܹ]v?O-N6m%%%xgu1^GNpA՛ !""¬̙9sӧz۷owuŔD{z@\: zW}Enݤ{؈ޟ¿g(O/*++=Mv֬YرcnV9\ga.]l>veI] Foߛʈ !Jh۶@v7JayTVV?w5°0L0ރvƏ6mڠW^fnk_wuʕ+1n8W ݻwG1b,\)))>jBx)̟?_qƗ^z 7|ǾVnn.vv[h>Z=v0Çnΐp1(>nY)g m',_IIIvڵ F||DD|Op䭷Bǎ1|Ǒ &8ܸ:;;7|3"##~sHOO… m>oǎǰa\'ܽ 67ƪUлwo '#F<9sk׮vJ<5rʨyVD~g)d=>|8>|:tHرc@6mвeK>^.lW-B7^ә?9_- p(X Bƍw%4½{BBaȑ#a4O ХKo~x=z4tR$''#!!C׮]'NX=d2^ɓG< wbb"Ξ=ݺuÇ~Ʉ[J0zx'Ѷm[DDD {1{ݻ;5{/2gQWW8tP9g}fv`@UU9bf~(--űc4+((d‘#Gcرcvi >CŮ]c͚5>uSMn٪V SNU=FrLTbccmm*B K U~a#E9gPT0~m|߿,[ GZZ&Nhs #ظq#233,_'OĈ#̎ رcQUU{ySLA|||\@(GFFy͛gs="`m믿8ҠAs΅^<ѣGc̙=z4J޽K{NڪZgΜCжm[eeeQFꫭW/ ҴC6melݺuVTUU'O6{իe[S7Q]Vt`yG%K 55G_/]ٹ{)%.H$%%=NTӵ\C(«oe 4fK(mлwokVI0 0 feDDF d`N!t|(+.E ,,,ıcǤjpyS^ov|pZ89GLutAMB-@hy_}4B""" d<شiGem߾}vY=&͕[e˖I<{-[`̙nߏo3f@&MXf ϟǏM-m߾=Zl?F555RPI Mµk"::ӧO@"ګ.)M+Ν;K9-9&~&.,kؘ޲*DDDJ|V!,**2;asV{pDDFi\[[RX| {={=)yjy:/ۯh"!CHcСPVVfֈ%555nӦMѨQ#?fg˓'O-zg IDAT 7܀뮻A)F|wRV+Y55ܹ!=@(M6&=/aUUjٲ%=8"eTG^:~8^NLOBo={6z-bbb}v|MT/\:QU!,--͛yfl7\dz*ꕭ>P R 4LDDD@شiS;w_xOAEEbB>ͨm۶NGWWWg!?_|<ߐW 6Ξ= w"$33өžsE߾}nkuVyf)B 4- ^v;bɒ%#<4vZkz8D~؎=|cǎرc߱c:v)]«,:v:+33z؋.XS aaa! 8ѴCaO<˓N=_\=vɒ%Vhꤶv 𾦴1}xxT6 V/Ǹq㐝>L_+V>?:tǏܹs8Be>Dw܁ߥjjj`ʀ7t@fޖ};vtizZFFԩC=߈JAv;ZDP%AϞ=t%_~U.Y>x vʨD+"ʷ4.MU֟ܥ)((n/\}@xp_9GB9ڪB:u ǏǙ3g@.WXf 6l`~gॗ^{嗡駟hk֬͛~-֬Yc8 _|n݊YYY(((^C ݻwcʔ)M6!)) ._`/E(r(K'OƑ#Gxb >111ҥ RSS6q<3n}mq.Ô'qXx1.5 CLL Ndee!%%ť1ddd`J'Wbܓg+"abstK_|Ew}zgҞ8q>CT9̳]Ce zBK/aԨQǛoiU1WN8#Fh?O~NB&Mדzj _=Cسg xwO|A$''###EEE{q- &&lOZ~ BӦMѬY3Bɓ'[=O>ފ[W>wBMZZ *** .BN?]vŴipEܹa͚5ìY0~x/?Ձb۶m6m:uшݻcHOOwy o+IL֚UE"qeے]k.1+Wč7v~-+ΐy7Xgj/^(uȻsBYY;߿?zӫO|YyaСhݺ׾۱i&W\!ƚ5k0tPc˦6m݆I&a˖-1cvލ9ҪxMM f͚X1PTQv5q aBm?g~N:SL|5k֠W^6l}߾} CXXƎxѡC3K/!!!BSj92zw믿V|\FkN:FUUUIr@(o{PLt'N> ,9s*x`ڵ ~!=K,ZHWV.`˖-{':d̙ J[戩.\U\Q\\/^Ċ+pW=WB[k=kI-!Q]J<O`GV T:'9zhvJJU{Wm۶fAT?O?8S ŋѣxgq!,Xl 'OwܡyYzꩧPZZk|xá+FJQ o_om>QcqbvMxߏ0 W{nUM7w\aN<̙#5ٲe vލgbǎؼy-\LO|d25#Ї0pɛj҉ȑ#ݺu^{ͯ߸qc|WغuTY7nD߾}~vgϞѣG}BH3f ^yBb-r-VS\AW5jNN'`×jkk.أu JUgbo ; -[зo_deeIǜ:ػ(MHH J tiP"rū!?X(RDt. nhg~'pvvw96ߏ+WH/YD 6i<)d׿7obӦMxꩧyf<8ؔ.DC@CĠMKjyt@rXű-o"44صkP|y4jɜ)""BQ*T@vvN6P'Pl!T,f»+=7֪,NW_>;_*?\RRd~]r-bkΝ;oҺjժ?zp9Bb&1hK-j- Oձ$AAAPGnЫW/C8%ZCD1/&7l -+...Ւ\pAiӦ>,ԯ_ߖEv+ &н`B}izN]FD}J8LG!;;sљ[?g}椒QYä2d*Ĥ2KuJ*RN&vGtAAA:@@@C~#E GznX9}rֹ?zhwUoeo(`ńSLΝ;_/^?㥬DbR2BbR_t=cV(baa⎺BgM^oɕ1gϻfN a{=t ̙3W\ꫯڨN> xq1 |,DژTLŤ2Ĥ2K~W/%R`m6Ŷׯ!믿_cƌ. ^!##nBʕoܖO?oa{y %O0F l_QV-\v EEE9rj֒ݓ>|{DJwPzbݺuZXz5֭}H&!S0 tMvYﯸȔ̚5KmLL W|Xp:q sZ͛7B1G c0zh$%%ǘ1c]7պ N5֕`4k 3|7J{HDdK ] BԮ];eʕS׮]k_8#@ȻI=y۷Kճ=[ Xz,iӦIզIKKS=c ]s= W^UO7ÌOt-]k֬A^YeXr8IqLBzbK6mܿ_Zƌmp `5\P :TZ/bN,{4i^xlݺc4) =2JUeTakїn_B(4r2뉁ވ#ebk< THa,ؖ "ѣxWn:)c8ÁgyyysNnXs]ЪU+h 4 ^{5ez׵ivBxx8V^$|kqZ4Pw!==?3~w ___Dv'N@rLCr?2Jb@@2?y@eNLBӞ^NjȤ c, EY… 1x`iܔR"o {jKEJ5TލտoGtZ> خK.󩧞25jPLѧOqjj'[˗/(Azz:4h5;vx^vmtMz>d۸q#+۹~a޼y֭:}cR찅bQ2BEӧ3 tQک՜9sF+ZvW^?裎(G26}x.~~~<󈈈@ kaϞ=_!w%T^]:n͚51n8|Gwʝ۷@:W!33S R,d*M_]vEϞ=uzjH>7^Bm=zTzlf̛oڵk,W ߿_zL޽?bhݺ5Ο?wH; ,_<ׯLԫWOy&Eu4h#223gD^^ڷoƍt{EΝCJӧOKɗ_~l)Pl׮j"/<ӧO׻xѣBrpI$&&lǎ3u ˖-ß#VJNJ8%!_[ne@& mn3 ɓ'Mڎ1VV8kBSرK.Y.FɵhBbqlΰgw4@zv=FVX???̛7~b6m(¹sb˖->}:V\~Ə///hСЬY3k+&LXb+"::aaaBFOxx8ԩcZ$,k̙ұԩ(<#U=~~AR||<&OlRA>=86?~z_|Qʰ{=O,e=s OD. xQ /t4Gj|>u]z5^|E)1w E{,3yGm HVWcPRR\5 ݻ7nȐ!ׯPzyaĈh&< T mߖaPP}| P\\S*WXo/.j̙4hbg}hܴiN~ ."(oډdi1)pmޟB &9 ;vk?( ك.]`޼y6=FK)~W)a-!׾}{:lM{< )iݺ\L k:uEnضmyXx4.^*V???°j*̙3G\^^^x饗~۶m/ ԩn݊q! qδcσxӹ7= S1p }NsWO_~Gqpi<[AAbL|6_~ױw^ܙO_pDDDW^:< ֬YtP+eԩz)~?… mV6-@y0h 2DgSL/OFnn#b&2k1GBB6m tbbb"bccO1u'lb`aa!Bi'T Hߴ+-M_;w̆I-[LqQ/_P)`ժU@ifcȴUZ+V^C oݺekZʖʕtƍêU$m۷@!_|kז|=V^]^g(p ʕ+1g RRR: N;Ab@P*k?e}jѢ6Nzw ywuܹsGz.OyQrssi!O7:!#;;?ؽ{ůi)[%}z1m47y|g>|8|}}yooo!..6)퀰7oCdXw;#F"H IDATQpTREZ~zZiW"fK]t|R%*;8N*[]O奖c]5j$=}˨|vۿpnbܹxw!//8{U%?̄P\\H-ܹSw[)ʕCQQ J*A(a4xQׯƍIRÇGǎLY$~?;e^^^\2V*ݔ+v}gi&spDue;9rwO* ׮]k29JAANUD\d BCCaqVEq dff… \2|:u aaa7o4;#ժUKc)y)%K.'|ŋ#>>^ȑ#pBYڦxWpBDDD8܀kr>I%!"gc@Ԃ?b.!! H˨ؽP?XD7l0 J]G1p@EXtjg €ޯI&c???T b`7rH鴆ےV7|iiixڶ}a7]:_Ŕ)Stsp/ccc?f#hgǚqoJ>{A_Y1E@(~"]"xbG۶mѩS'J@۶mѦMNZj5^ UylR{{ne4f߾}eY1 t=!!!t'\fkcMѝ]E2*N8FEqVǏGZZ7Gx_sw^u;wā 2>^z8z(f͚N+H{Hc/DժUhвeKW61 Nzׯ^{MgiԀ׷P6 2e :wlpb̟?ߢi>9ijH6m0j(_ܛ< Uo6kLg|gω N#Nӵk216pbz28PRROf@FjԨs,g cC{9r۷7iիWرcHKKÖ-[nyfshZk%gŊ:ܓߠCsO 5 A@xxN7P<|n@(fuӧɓǏ-[ƍ_p,Z@iǏcȐ!lMt!uv1 Ё&?te,߿yW=Kذa/O?O>Ĥ`hp7>i37oyDُF;]vXv4[' \2>S47o_ ?W".^XVٱc-Z$M|Oӓ:<};d@ʝh[n7w83 |g1~x_oڴ }5i[<ҹvCVZ4hڵk'm#;[,XFBbb4u P:&V\kܸ16mjA=#CЗӓeݑf@>EϜ] 9 ^i_ي؊a38Ъ9ԩ-[ 88:tKwI}L&.^^^ ֭[ &iݺ5n݊i֭[:vضM68rtԊGXX3n;DEs2w\_YP?{l|J/f̘AZgrXzm={Ct3(+W0^ܛxyyyFDD 11-ZG}b_^<.1Z(f{a@d1 t-[ĉ] `iw@U:q8))Iuk5nؤ([ СC n#h I&ꫯ0i$|]b'&&_|bISnrO?T cccѸqcǪ񲶲sN[w|1 tQQQ8q",Y좔y 0맟4փY,+((?x/^k(gT44כ~6k ڵk.]G)<</E֩SgFݺuU׋؂8|p4j?:t Aܹ3y`+b~Q&#rO L_o=ۖ95yf]n~0gzo;vPlT+VSO=%}z聟~ 5k['ccc&Q3nݺ=z4{1iYѼysvNAcO`B'2{w!ZjUlSb3/K>ׯ_իWX^XXsr/ǣQFf/ھ};Ų˗#** ݺuCxxeND1ׯG=_|z-ey[N"[iٲeo͚5J{}01Sd3{7GR MDnM1rrr0|pTPp͚5?>ΝkU@8c >}Z1bݫ7 K5NQzu?~\zާOԨQ?oDNfJQA}a@HTn0Q @Cg[j7Pw﮺mf&)1ˋѱcGt SN:]5Eb:+yE^^4vϐsI<Ʉ t9᯿Rdжm[-\*..Faa'/H5m4o=,ڟ<ܿݓgPft¢"߿ HNNƾ}t`]@XPP _͵kא3gX=z4/_ޤ[???e7%rejŋ;$)=x"<+W7oDJJ^{~EsÇɱe 5'! ()) _jj. ~O?JS6]h'ZЧ;wFXXNΤ$s1;8P ƩS"$$K.Ō3rJ7L*[L3j(hB^kTVͮADQ&-Σz.eVV߿ ժU3gZ:;wDPP=]jj*|}}좐c6,.U~-`ŊmΝ;h H]6>#̙3 سg|||^W (( 4k@x1Du5oƂ Tc hFε'6F#Nd d{M4ٳ1j(TPu p}ǹ8zH;OK!ı0]vaFCcIrOrKb 4%!"50Qxx8}v;v,fΜq9A͛71dOPb uDd>:A'&3׆ geeas?A@3j*ݻM*ŋ?IDZ715ԩc!b*U7x)))Xv-M#GtfUmܸQz*w:7%%?СC*-QŀetS{ز]E^1Ӊ'ЪU+ǖo>iqmDTj֭:-eqߝAAA9Ҋ+0p@Ÿ霜EP;w'rE E r ^{5׮]+rKz\;#G Wj̘1&˙,ШQ#<ؿ?`WEFDyԩ jj{xKw`ذaؼy JED3f ~G:tgV>}Jٳiiis玝KDY:c d˵lQڵ]k 111zY$p5Hϗ-[XvH<B'88szҔۖsÊ(m1 o+Wƿ/oʔ)כBi|||мysNBjj*RRRЮ];1`رcqYܸqc,,,Lze暽?^&99YZj8s!m1  ?c־l!$\@@&t>>>[lэ=&&i7j׮#""HD%!`x>LED(rss1m4|f1DӥKge8p| `ĈsB5׿PTTIqiGy.KD#hy@謉W\ip Ʋe˰sNmb ""%J*'h_v%~^^^h4FqJ@h oٟv@ߕ%%%q3f 0rHȽ7[F/>?"00:t;lV :u:t͎O\ݻhѢ&N|J NGl< 66%!*!t ]ih|\rE15+) ˗/G0anݺep_~mڴƍGX|Ms=@HH7n hذMM<) wsbŊRˠ>5k4xVn]pzC"OBCЭ[7<~Iϋ1h 4cƍhҤ ֭kt蜜1!!!Xz5yTT ~)0yd\v2ahh9le˖.h'fӧRSSѤIZW1lDdb"(Wr}I={Hϋ~z_!ݻw#)) +V4u됞(¨Q3q%Ĵ~~~҅B"ԩS] 5kS: B(c gϞ~kʤ=<tV"wQaʕѪU+ݶmu:e6֐O;>۷DeChhK:v(=~GеkWWG謀UV3g4_!ٟ8QxCgϞ 1KgycƌQ,իc cSNDEEȪ=7:wΝ;[|," qХKlܸpUmԨ4h~[E6-&Taǎq}Z?,_yyywd܊G͛/&CBBPzW[l}oLnDd{e% 44 kc |qɮݝꑛ w_999Çׯ_Çu+..FaaoÆ XDƙzzذaxW\3h"i%=4 zjiy=z7oYxbe7n nӵ[f, 3f7|u+S#2z] >D;Mډ IJJO4m4i8GI3DxT.j] ސsd-7oΜ9ct[nP2|:חS쇿zDDDjcqbT|ɓ'@'={lܸqVJHHt}իgUL6((=z09P6VZ69:u,~Ȕr$ƍӹ`@W\\ --Mg,&&ƪ}5 |||DX2-N"w:ҩ$ f3YJlѣ⹗4Ƹ,b t )s>r<zjcefSh uXD"2L Ҩ6hMnDlիWk@(fPm֬4  4)FFAll, ==C Abb"͛7c9s@%#"O" lk=Xv"w&Dd Ui֭8|Ƣf͚8y$oߎcǚiܵ tvlBȑ, )PfC 1d*k!t&q ٗ9T:{u,ُ. H]M]%[n 79LŀЁ1j6s]\ڀMСCHII>-[Ju  (**B25>B{B9>DX*T0yڵk۱$q1x`.'Ԁ0((}:عdeeeY3g6lرcw֭[8!Cؼys'3լYꫯ"++ #F0iK.:˗7>==;v4v5kO?j]~,Zk֬Aձ~4laT+Ϛ5ˬW\ÇKu ]i^i!$S˨C4D%Dwrۢ?#"g3B(~O}:{Z?Sf͛:uJCHb ȱċ{_l3 $"weP 9; |%̫ɽ1 t C;TDaÆhܸݧXhԨvR%⃈X aFиqcծ׷WLs<җyڴi4iSmrbz2B2TUVN*;b˖-HNNƔ)SxޢE qztG?bݿo鮲  l4!rPPقw}!99Yu ثhFݽ{WСCf#%%hѥKbɒ%:-2d*d(a&*˺ux'逸<3:̑O퍨(sjc=ٳ͏MDdƍ(B l]$:uj-]QQY6ʻZIeTd@0 $?1y7E_O>Em|]ʸڜ^Dy %1~VwtM6I5 bcc&''Pn] ;;qCܽ{*U|L*C╄x "4M*i4+IDATP-C|]6GeI%"ڀPǜ9a]F1:-~q.)x%"xQGdeԁ,j1p@R n߾-=۷Gx!-KHHk`kХKx""ֺukԿ/o֬"H:p;h48wm jog"f%8,2J\՘1cn+{N>,,Lz,v? r̤DD_zDhSLHOOL2Jb@@2 $r.@Tw[y@ʕ++֋sni4-f Q=f:u/4)&Lxqgmf%S˨2JDΥcn|[///}AjODNMnG{dhѝ;wtegg###ʕCHHh @Y2Jb ! ۫jSB)5DDDe@N/^jժ:*V5k"22R# G4i L$B""͛7ڵkqeԪU _v-AvZ8q@iзf[o7o^ njW_}ŬQQQޘ6mkҥصkQTTt,+'6 ĠAL^4&&1:vt+֭upM)C)hذ!6lhq*}A>}Ϟ=;wZ:B̲*vO5i'Q:i'ȽS&""wU\ٺtBHZgm@i'Tq CN{մ͛7P.zLa(3PncN:8~ҥKVN֧vܛ1Ԯ]21# e=-[8N]jSMXܕ55+/vuɓ'7n1 $""" HիX7l0jJg9 ]<aÆ((({U,rS >>>;Uj`""""JFQNd>>>:is3  ӗ;0rk2֝Ng0 $"""yXBSZLų Yg٨^rFHA'bϞ=̔ٺu+N<8 ())q)-qDDDDaJhT&"v%[ K~ 抭0 $[ cm`2Jij YϚН-RJJ :wv!>>fBII}9;_(ْd[nSN;w.ƌ,mǀ:bPKB-ŋѣG*ViӦaлBcҥ(..vvQ֧Nmi[Ocږk0gf e@Hij ;w?BhӦ /ݏuJJJ0qD]s4OcӶX:-sӚLm_WfBB%:{֭[Ǐ#!! Dc.\H2q .=>B""""XeZ 9l#Ξ˗/G0anݺep_~mڴƍGX|bl/_^L|5!$OVϞ7nI&[.kpۜ1!!!Xz5yTT ~)0yd\vMھB WC|^B}Wn0 $[*gvލ$TX֭Czz:  FBnn.-[&-WǸ~: ::ZBO"#"""eʊ2T\Z2im۶ZnN\&nO?49B:x |}}ѹsg#s:elZrfg̩SQQQ:e(**L:999Xb ++ ,iu-쑹y& 44Tg]HHPc0<<{իѶm[k{{guYGҙs<RY&2t?d+=ɑ7i`EpE+WܞF [n/@`}ԶX=֩mZ˗/ݻwUי{mꫯǙ3gL>c>?~궅(1t)ًbŊӧѨQ#ź<nݺUoFxx%'""""K/ :bB(/޽{:233- @zܼys9$""""x']rA epEm۶uiiiX"asLBB:e-p Lvv6իApETPAڶYf8s Ν;5j8DDDDDD-ÇuUP+WDFF ׯ###'OƟŋ ?~  E`` :t;vή]Fk׮:XRe=Xn"""vTݹ{}Rŋ1sLh(_<ի &ʕ+i؉'om۶ CrPR%tYoF>'QرC .ݎ(YE9zн{w!88XPЮ];af={wիWw /@ꫯlrkW^ =Z%Y߃4{BhhsYWw\ԧ xN}^tIBBB5ku !!!BHHp >y~֠A>333ѣBfŒ3t9%styyyBݺuߥϫnsegg B*UJˋ8_zK|W^*UdҶgY~Ӆ@aҤIa0qTݹs}S`޹+Uaʕ:V\)Zl)-i)Ϝ9iӦ, *9ji OO4̝;III9Jmhݺ:q gI}rhժI:ܹͩOKxR}ĠDJ%'_1֧%<> 9t@zrW2e  `(B;8u **Jg,55EEE,),,___ԪU &M۷YR|J9jܸ1Acܾ}111x5 5??&MdrTyR}sl<쳨_>V^X|i t{Ah",\PZs<9jŋ1o<$%%ԏ>sssѳgOcܾ}gϖiSab婮s(mYR=w377Wڵо}{Çuɂq'Oٰa#G:Ԓ9jw:x-0 ]v >>>B>}k׮ 0qD;xN""##۷ 999BFFpB[hذ?(>{p=޽{‰' q6G՝;׷iɹ+SBnBbb0p@O?`!'O  ֭[Baap 6n߾؏:Ky!wĉM{ 8qTݹk}Zj.Ssq&L 4mT u¼ylx3>yǜzd hMCDDDDDDIe<B""""""ŀC1 $"""""P <B""""""ŀC1 $"""""P <B""""""ŀ\~.ڶmJ*\r DѧO̟?NO(&MһDDB̝;իѷo_۷cԩ}6OM"&&gΜONNFrrEDD @DD /`|hㆅ,’%Ke={<@II H|P_ךO:ذa6mڤzLW^5DDD!Q׸qcܸq.]qst7ڶm/uAr?E|֮]k8r9B"2{矑}Æ C^^v۷/ 1|DEE٬ m۶ڵK';vlihܸ1k4 ^y'rCHD!,Y:u୷Bll,Ǝ!!!s~W,[ yyyHJJĉ(gdd %%EWgl9spAܺu :u›oڵk̙3:ZRRR0_˗ǖ-[н{w|7xƍjժ!-- K.Ş={xbl"""rAg/c9sYYY Dѭ[7;5kO_Mgz8s {=ݻwEŊqXdmRR&Mdڢ%K`ƍ8s vᥗ^?9B""""""1DDDDDD!b@HDDDDDy(DDDDDD!b@HDDDDDy(DDDDDD!b@HDDDDDy(DDDDDD!b@HDDDDD_,`J< IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/strip-background/img/stripbackground_02.png0000644000000000000000000003143514741736366024622 0ustar00rootrootPNG  IHDR%sRGBgAMA a cHRMz&u0`:pQ<2IDATx^}K7xsGxw1a%ͬnwu1+cB3$;W)d[lHD5gu=㓅* @" d_@tde· ݛ7?F`FHQ2'F`FHok 0#0@h-Q8x㳯ݤۧ7;=0#0 J&>~?}ݤj,sF`F`XP?vF]}J_׷7i@;8MbbtCJ5lNWn<aAԹ%+V)E&J~ÿ%hbZaK= w -Yu\ `ۥoܛ4Ni݆(SshcZ-6܍'",:dqŪ2%KɣѰ_ݛ=Iɣ/yJ% [ĕmODXunɪ])yFڋMhYQMmiZ>;;S N޼ە|v6H~˽_~R(FGڅZ8OfxfS V+jj]V[2Q,@ptC2·2SGdG+>vn,SrQ?]QD*L–Fq8Z1͆2%%{jelܫni*JUU5660PU4%[?9r{ak:̆4e7.s{p*rJ!Pe LmSr1,KUWvSfPyJi ա۷o~}Qz@υV]3d4+Ve}b9Y`YMsut}c1k7;s8XNBAֱS?DgXǻ:Yj'ZBJjCF)e?=cSfcroҴfkZК,~ee o^m)_#>Vfm JȩNʊRthٛuC pо6qӴf{VVl#lVeYg`+۫2Mс6F}UD(d&]}Xj TQUz/ϟJJUfGSZa"30o;&fj6pVUe+4M :LmzP_VS81M@}o&XwESrL{޽{j΂ۘVjaK& w -Yu\LmS2ޤw_?y"d1M$L.o֗mz? #!(xy?K?'` +b/gkt?2>N9tS#%7"#/x> `"j|<'ZwK9g O)hR:Pј#3 9 N دAoD7%ny|>FNYQV9!p¼pgOᣴ< W+qR{d©_oʲiN\'NT%Fe q⅚Ƅ+֫_Oi蔀=S辫)N=}ą:ۻQU*!9(4%]( XFl {oCEݯb!!(Џb^,לFqE_@u;a !,g6 ?Yb_`^C%7hi-2϶'.ImO8­R0%tf/ >so[k_SqzɥG7OvdwHedQ)xtJ?͂BH Msx[MJ&>~|d9ۏLnܛmkt֑{(~JQNFWLsn)٤dL1JkN|靂)nGɡSp&~yz:*!sמgD3I-m 9ҳ7%,'ZV1{n˖Yl^-SZvL_E"J(9Қ!܀Pi5+%ǧx((9`:p,suLsFΝ婤JT33eRCrqXX`,1 ݡ(YdJ '3V3!GLDto?CE,{ >9!J^%Z!ԛ:I qI6Eԉ^ZŵxSF22)t* ndk\Սí*%ǓTEY[MVo{1O9 !d |%dxpdo|5944|u@4wuwd>>i!G=lGK/ &Op-g{bMJ[rz q=JxtENOuݟ|XO:zUH7WzsX]aV5dlwhTOCYBy_}efwd0Usm oZ 2M&cTIᬲ Z!k.JiKZ~dy0-d//Ny'b"}HDɗM>ڞus׍чæqūݯ YLs|V |VMGY  {VE'bwg)z5%O([Ë_k;I-Wjoeɍ=]&X| [gZ RI)<'SI~|ycxuk\d~3DG>,>v8[JJ~'"_ȇYk мq3)?hL&%?9[kmSj)91Clqgs.Ut޶z34VC6q8W^?/?P} F`#lR21냃W۷/lWLTq] v4`0%LK|Lind,eJmi}/LJlW&q] 6!G1tB_;gA?2@MLH""h&JV,:M6qJrF :/tJF_dcd%,)y4.d\$iqo56ˊ;BZx}5TRq jď\΂Li{0x %69J6%%K>j3VƦd+QFee& !eHYqs!Np41zxJF 0J9SLMJ&keRW<"S.dkLl95lRr|P[[BS-0ڰDBd.i%DJ) QydG,%K>;u/2Lɣ)1ωA\wfh<~XuգMI=dI:|*,MV6۴e[ZYuw&eJr|4JѦQ2z jicC]g噒MJ&;czI^9%?`4-}[t=JSy]VV*C++sXAe_!7=SބƣpU>tM,+)Yeey:%OkI ߑ9";fOoCd8J0nfw;Ư 1/ӛ@.5W/䝝(9xi*JּUC#ǚ$Qg͍KF@:D&MJ&%i"fJtALw(#^s[JiTI1T^(}Y)k wwSy-c:z-((9`?[bF 1/YgO֠vdk>cQD%WJlQJȀUU@2!@)3!H%2r=c07. gZELء#np ?Q?2̋n?SBN)x9>Dv@G=!R BpJF6JF'*sZ_> pJCÈ"L=oQ~NF]4GC0SU kUcr3%'6,Bp)a r΅ԁ8":cko@@2\zK#@o`\S+P8sM5?Mh\@M-!8: |K/(ۥL¹$]a|VUdbƍՀ#9@/D^ƞ #t6!t1pϔlN2vL0pw^ҕ˷O.>Z?vp^p\C2O#.5<d~g֓sJ7^{0qoL<}Nष\Ǝ`XSLw.>%|9C}Cp}`c)٤d9'>Lڷ/Mߝ|=CMQ2sL%hr|R?5 Uguo%*E~v̬10@4TS1)y(ƀs~xN.n_cyysrus|mc~+ئ(9ULeSƑ_+XFx*d^I6:%/-,7_YDkC(dxάZJVŤnW9[ΗA OD5K凇LJ(Yuk+J6*JH(h)F+5UT'a4Sd+$YU!/Ni;TDo/n7F56.9(9-ϖ"AQfv!u0W7SY]34^ĔlR׶F.'7Ǘ6GD!׃׍k.j^ϔlR㝳_\uHo&(}~L/<">~s*(Ҩ+3d%q[BgByiE; aVh3%n|_J ޷%p$?)x3RbNuUQ2L;p ݡQ2%Eބ7q<@(Ur|jQQJ!~[2xBR2 nHk gb7 V?P3P)9@GK_ͧj~_1 )9|U%#/܅R:9Cή# h>0%Sr(m,_G_B+$g  &-bD0ß)X#tm[v_fu(M9&iIip*~I("1HQELGthP[M iL*I@SI䝺C1b]63#5,8X͞w5\U`J=-k%\*VJ63[#r &j.f^et6N+khxbl`VRi;|փQO$h,e-YYueX죶S6P*f|~~7k::fm]$ ULmtֿ ]Dq:LwNOfj֊QՐzec55hrfEO9.)9|W(-i5[]s+:0i=?X|խ(9MgL½CZ ó3RcJ9QrӨzU(,RIYD!J rfO\,ysx^9݀l8N߃d(؀G?%Oɀ!B0` d#OU>hѓC*[D_JB)9sZ^PgK`J6)w6>n=9twWo J*(cYݔבYsUT<+ԭyLОlC*ӍO.e!ߍZ0s7(E)٤d9'>Lڷ/Mߝ|=sWQrdr^Px=ز2&m19#6Su590G&52~Yn5TUZo2!;)Vʬtv 0p>)_яgR2YRrcJ7) &>7Ois|uCFɡK/\G!1Jɠ?ϕ4wjnzpnJ.!wʠ'"%'J0pVcsȬQ `Ie@@U%^QlɲڵicJff,^o&Ug5*DO2pU?jo<*"eRVܭJUe B[7ZDnACU z{%v(FPIɒ?gD&^ۻiNYeb*Ĭq%i$ZkTm/֬lc#LwUMDN|!S#e+MBY:+/XBY2L\A[~oLLl5se+)ٌT4ւ!#ߡ6Ђ0wO*u*sm/`;pi'Q3mvwYkk56>}Q 眧 LXdl 0%>7'W76:ׂݤۀyzvv:0^_y~+ $lRN\Ox%N4ճN~%̜r)1kBj55S#%\Zt[8,L(c%|kp EJ֖+2~;F(K9*jsb?l W>88VMd-Y{.SՉk3V?J厳+PUk(g&Yey;QEyfi{YXzꦒ}7^5nd0c9rT ) x76~U|qJ[şޙ'2Vx{|qXľ1˭ŵsɞё(mӆU1&k#ךem1, {w88N1zӥod|^g=5WtT<99"2g/ 6JJ՝Z3Da\jQC^/FłSIɏw.up!Z$1}xiG/|opAS4CpJ` dR)SrsI,R8 e 9N`pQ1 @C)^niB.JeB "4D[ֿW TQri~4}`"/5Gd.!~>`'!_Jf3xC @YE;5ӎF}pq6?-YM ^HOɸk!x6(H%u+X@ ^/3 ,^ 9^SBO 96~}J2ӻo&w~~8;k_SqJzi}@vpn'p0W&~uѓQrN_ IU#J&>"ų_~}۷Pȧs7r𗾙T">~M<[O)~txƽ14dfͳIE>z%/^x(XANWJ?(8AjՅ̳%,+Ŕ,F6 &\p{w'mOD<[9>L* 3BJNEV>?1,ʢd Gat[ݼVT9)EuQ]+dGJ*t-^TǀwYV)|0Xߌ?ٚ %[>Y H]Xj寍tLO&t׵ ^ݬjZD"-cdlJz]S]i);q7͇|hՅ/Q/VfeQ`\wUsy ZdmR9օkU]25?sBio{!箫v݊c"`L"Fbڨ$E9YQ_f8CymfVل45!{4FUT:P/`AT/U=fseklat\lrH~w+XYG^s Ҟ=eNeL ݖpcJ%.O _X툒y.tKdldkDXF%id~&i(G⚶ֹZ֚_+egcmu%Ҍ>yLm1Q2kd(\z*'%}'4Lrש=Qw(YLe`M q0&Eq_ۺ *Hׂԛ/B% ^o7Qi µBYeJuփk[#zEHɛK#"cH||a}pa2/9Ypĺ# %C],\/}OfbT?9[k~j҇#G;3JfFYA_@.zօk)] qUTB )C`P6x ?<)/_kZݎcJl~ E"SS M$Cl`{&( rOih_RPUSZE~yT 55a9M^e DXK翃OΪ(6ħb#Dx3HFq<0|FUQ2n nL}pĸyJ8q׎2Ump Gӥ:.+)+ueZMEn}X;?k(IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/strip-background/img/stripbackground_03.png0000644000000000000000000015443614741736366024632 0ustar00rootrootPNG  IHDRcsBIT|d IDATxw|ս?,K޶!oq3!RnKR+@o({N)(ДՆ$@!BB ;x%$??#yZcK]F ~|=c?9r$%-8C8Üg"##g6 ztj'ls "G={3WLn6oތ!2Ajc6Dsc؁~yqhۤ(h4qjQqh9l6q<[fǏ^8Tbp9Q1/&"_-G.]4^KC#"""sXR+~yVv Ջo(D)"ݘTB bR"^ѥח@xEW\A8\mOMVEDDD4W1 "&!>HLx̯gvm1j1,"" aL*Ca1 ץ'0PW66"" ML*Ca֤2DsuGS.IGJq|ߜ!$""0 :AjCѨ=$9+aA,tN*G26"" ]FܻiO cќPSE}]n~'Mi3>."""! eGF)P3,Z}FEDDD41 $9Huhb. F!@=1 * ]y+b]”bјAg踈(:AIJDi~$W/ mE͢}@BNPc@D,;Ar/==Mo`iޠhaQ` u e'|SKp|>Pǀfâ]稥knz7D4}V-k .Ο/=m \ǀfIty3OJG4qnz/AIJD텧L'0BH.7ƲNy\ixKNɋA7=ƲNy&юC/җzt^A\2ZYaQ` u e'WS*̋&³7ǛwHDD4Pǀf Yr"'MOWc5*D47=]?(ڵ(#LDDDD4B"ժD{B;=]rgB"j2hAar8=""""  hRFٲInzhHYHDDDD!ZчxqzWguv񡀍(T0 $Y6юC/ ^*lXDDDD!a9l6Pf=$r\q 1ɯf֎""")"! 8AT\\ ^/jhVs^-YI-rqVRRpaaxxX< ѬV_'gs>?P?lL Ș({M6=T{DBQsZ9/= az.%""i4q =!$Y'{cJ֪Tv me,NODDD!ZM)c3BB"F#htdUޕ)KW4}B B"ڏu89u2b,X5B B"~Aboe# } #~(0 $Yyygd ٻDDDD!JMN;}z+7OVikLDDDD!Jrf/#MOGvs__c"""" 5 hVjtZޙ޿a-MO"""ÀfNa47Wu2Y%!_"""" % pf(jhjYEt/}X<(ws8j(Qqq1zx=$Ye8U|8ġW^5DD~Ž[II! 8ATTTa(,,T{HD߆6%Mg)][>qӓUaaw۴i! 8AjCaM4ɴu@qzZLQfntӓȕFnZ{ډf+D4$t!&9ƯF&!"""Àfeg2krfh B"ukD妧g2eBB"uZeZ~'V4w(0 $YY2/=/ZQ`@HDNS\֙ה)?N;FGDDD*Ѭ+ gϴ@ v()p 1(f!99=ɢ nzD4(# Z}Bŧ!33fuW\G+_(ӟDDDD4 _nڵkQZZ4mE?dQ?MN4(9iΘ]ܾWݨB@GUydDDD4qO<jkkQh;)p uqޞKY{9y/Axm(y@QQ(`@jlݺ7pC! VNtB亩1=d 5a Ϸ }y3L """1 ƍC!**J>N \Ank;AԖod1b!xSFDDD! _|h4n۷^z)F#p⭷r#%%^8{"]khn#_}W?'o< Zz5FFDDD!bׯ7ߌV}w܉3<:FMM VXOl6׿5y` (47Inzz'+Sj5ύ|Z-oÇ3 ȅV^!n_ǰCQ+WĂ k.}qu`0CNNRRRPRRUV p- ===H "sf:˔]w&p_9_ӹQ8R;# ې=>hn Pa(..F||۾/"pW􍈈 7܀<xw/y睇^x1ŬtSf뚇m oOojF$,oƺ)?"55գ:3Θs:]^O%"ʼnvzvྡྷRbEmÙ4W~nh)ADDD'gqh =W^^>u" a \|9+ة$c6Ght FpU.!PPGDDD8q`]e`6T֭ó>+֭ HBWC΄_ԅrr[}zY&Z\ȧ__h ҿ(4Qo \t rQhٳ;lĎVbDs` HK nz{')'Z8QمE)ӜEU^JcU![fN򠍏(8Ofp%D 4hbcc'biO>o93BiK7NASwTauw2qxEIv;mE?7)DDx'G+))Q{DǀIFFbLxktyNCro7EEEq7 >$t!*1p{ Y+v ځ4OprK3&4`K}37xh6mR{DǀɪUKjjj&6ҥKJ[V N7E)\UvZMOߤDYEyMOu}q1t=:bVLU2(-FĥDDOxFK/Ǟ|±Q(hn7=}+g;ZgOޗYOjTA-dH,3-6#" +{7!PĀUW] +~ظq<& Mr)!K:S;:4nzzY"chZ,˺G/{)E@Յ.LxY\\~if\{hlllFQQ<>cBE/3z+=Mm믹ËኳgZ-Lo#B!6Kh4h4b͚5/ݻ144˗#//x7a1~mF3{g(~IuIhX^fVؿ%3&0:fUA<\$܃kv=Tv#pW#r ǭp| P ,# haWzf,ӜEDDD bR Ԓ`g̕x穛2~ >Ł#^:󫯢 DND8DD¤2M",fǒ$ye}~2-p@as5msymp׮qwo.5eAID&TB bRu sjJK잙%y|r54gKM?)Ǐ7}Ugp),QaR u Ie9$Ƨeg}RLW7P<8\S4ϣHS$z5Px0^n,'gU+=(PTBB":)>>0:恘_(^,񝸍@pxj!ptF@Ֆ-A<:&x=CP'""pÀT7bA*M g콒3c-MO?rGk(J^*?}^@ kz=比2|?D:s#pLK3^,9hq$]CoI%#+hs>`pj?'^"v]-k)& Yg"AIJDkK,Bb 8#'̮+综|>H פCgi,;Aa*eLSD43p8O6ku23p][+_7 aҴR"$" Pǀ0XvhrUNaT8`^Eh;jX{18CpLRHc}]\:AIJDmS2- PK]]^^e@4'9ۿ452xed0P=ENPc@HDkn)i擡#DO_6iDah:/GU&5 .?DDDDc@HDkt0lw30"匤%@ -Ndna%*av;(˯VDDDD:@43[\&jn L[ ʝ}d؏f`)inoc+A`鉈hz Hu2ы)kgb嬠#0)ď6nr5X9Q 4X50ALrrƋv-ŷQXa@DCH4N1K71K嬠⦣, ku9q sr|C2h)i&""O!:A:DkI 3~)Fc+0KT뎉.W`hQپ!sDh#""CHa!D} ӗ޷T,'0KT:CX27՟c4m8=XB bBZ:]Ӗ޷v ٌKdݿS'0:9 A>@z,NTDDu)1 $"UVb)Nb"g= i:1ʏn+Ru?ȅL%Z}T!)zпQc@HDj>.k낳ј.gY}NI%X"-񟋶3I}UDDDB"RUs@%,ɴ@XP7A闃/bJ3Y&K=D:.=q (iȖ,0BF㢽'ӣsah,,|/ADDDsB"RUkJO NO+GG<7x7ChJdR1^nf5MO""" w H5M_VgRYok>m0.+LK z1^S@]S""" / H5ͽrfn~p6L:V.yK \q\|i/s+= H5òLCR 1C΢YG}Fsαxf֡ΧqgZ(Үb{""" m HV3wUpg Yr[IjD{ސEglp,G2\h`@HDh9Ԇ%9xW_ΊDx:ME-!LI2IO[B""" r8l0#A*vvƌf4e "`CmZh-!Dhimnz;{7ápaC׋GyyC"RM},螭o '\ Vg˽yyU^a a#@`n6RurV? $" GޭD ***x=$"W vNB` {C5Vqlinɨ r $rg Scdh 5Qaaw۴i! YcÆ 0 HLLWUTWW=,iZt:h4jH5Ur&,/}Mϙcʠ<չMm8}DMy}}@O8+I<߈F3S2(4wj+/D4=z:ǾӃBEUsh/,Pg F\Jzkhtj @:O6ffTG?>T _xxnx饗N; xG*X5U Pf!iise ¬N ۷ȶ=afzo/DDD4̜;w;sDRRE_^{ ?p(@jredUaN$;txϮ^%"rS~o0+cf˯>V""" ;v z8ZxWwqFh4lذǏWeDX-\2:L7g!.we`j#E;_A5 4 ȢMhZI͎Ρ\Bao랝^z 0 ]^wIhv# InzϜvxuX 4G-Bpɀl7DDDzT pE{1-ĸZbƐRY!/*0/ Nq_##hJ?P-,> L-HN%#vf%""TCf?lƇ~Ѭ}\s̈́;vŋ=D"erlJDTV).-P!ob=8nBk<Ύ*paCh}z#~kQQ5 ׿_Gj⩧rk׿((:dɉ%9 &Ly╦.Y)zN9 \dV`3'9; R4⸣kQQu(׿m݆̟?BÇGo4 /_enGww7nFBDs|qtbȐDi\̑Jr{"Eq-L LhhBxfm죟o{rDǎCAA0+V\z0HHH瞋zkҾׯGvv6mۆUo l39+=`, lN Zr"~!:C0-M~ŷ[=ٜCX|9fba;węg NÇ+V?iB7|---kbΝ>()Lj *;>AQК*g9Oȩ3#) $""p;?Oo~$'OAQXVܹ)))>oss3V\믿op'Oٷ]w {9JJJ{nK_rrr\j(**kn iDZt(2s;8 > ZV{SGLd~7ǺIDDD*GtvuVϿ|z_N۷cݺu8~۾/"@n7oO<{gW\bI>[=р0OSEO'2~5L_~MN1`v"sp&frfu(|̉%7G}ԧSSSng3:3Θsc}a]!-Dཝ2Cc?;ۆVlMԝ0 a':a Jɕf{#""Ԁǒ%KPQQdN;z:/\g&뺁u6OE(\iipK"U~Ϫ`.R={&6e]ӵ=E$srO 3pqë^XВ)_N~d ez(cEYF(wB E;vd_TUUa```ʘ*ddd_F_L(&qF=~ayF4p8Kzs,j1d5V`蘲Pe%qv3fgdhS଼'" )CH!MՀ=n̟?ӟ䣮.tuugsOl6kEcc#f3pA<~0pxxX< gGEO>EF%OsFprD )pS/EŒq9ifbhAmd""o{M6=S )) Kx +Zbi4a4f͚ ύwcˑRذacC8FT"U) 4qW9!KFvleUE[3:`/MM]:LD-F#ݸBIe֭[i3`SOśo1CɠB#`t7T1\C_hd]@hv״)KV웾"REdB E~뮻k׮iLB 7w K1 /6aŊ*hx ?%gƴ)ݗ5K ;5L@A)<}T"p=T!|j*|_… q'h4N::3i|B_JWm|,bl޼YM."0Dl , }S5li~Sq8\fex"gن6:KΊmmDD4Bu)4lٲE+**PQQ:Nl*h#U Q" ۦg6`1'ik njYԌG1^J4QC!cDzB7m˾cD12y'E$Py`BcqN,YAs{$h"Pz@NTPGJqO䳖!s|JYĘ(gG$Nhp cz>3-\gY\7Ǥ2T E8㠿ugpF2:lܸQQ,v$lBoCS}[QyƹV_/r덍09}uu7y瀰޿$E;ۧȢJDDRvhi&Pj@:P(L_\\bq|Q,[}B٨=hQ1c 9w2f;C2ڏnc/++sǞmhQRpbըIFR^^˗= 3k Ӈ" <+g,܁76&,9a_/r"F\d3>RZۏHDDDeܹ)JPp8בVqTIGSo`Si܎^z ۶mOm#9)G=T]-` t@Eu NPS}'c!"bN wJQ^^|RZZ#|ѽt䩤)iI`p_ J fL}.Z}߀D }M"pQ^^.ݘaBѬC844ٳ8Ӄ44UTT?]xF<8SUR#4C{_ॗ^5@-k+k@XPDcKM7L+MDDXvBݜC__34+;A4v|[{1e&m}mʣ_Z82hqŅty藧;;UO7CT&a\j "a?V}]"p0VvNPHk0#"";_qW=$ca޽.>̹?۔펾RFK?q+]gTgeTA"}~_Bk>+V= "rb{2ÿxR|n"giyr_`;RV?F9 .N2KFiEm榁\>UgZ-l<<G3hs:,Y@u5/X׀l7 e3#=3{EiMO""" 'v˗{f(.xE[~ވO=# gsRQ+_% tN(xB;B91Fft0m:{CX±oy###,1wطokÆ 8s _>W5w֏9: ?)PN|SFh0ѣo`L@ex9+h1󻇈S{7!P1رcJKKݍ$^]t^@X=z˖-SqDW^qw=YwuVZ۷c֭z ڱ#ͬVՀ;A5 lGϏC38F}x>מ ^?Sہc'`B:mhR,}K1e _B=' >hݲ3# #GngyF###kg_jK.AKK , xOOK!RKld YN6w<>}꿒8C#G#""Рj@ֆUVywժUhm€l@7 8z5X%=n*YNFvs(۶mCuկ믋kbY}S{Rb%*G\bxsxu D A8T 1WfkDDDr@;iftvv"..nGD`oxq಍'4/{j:f ~Vo& `V932ۏdØ> HVX %C.,=?7|9+@$z&}˗/3Ek5k_j5J.}3`)o0_:^xW]uǎ;3ރjݻ!99V>X ĵH{saJco&`۾]>ۻsr] W^gyz+V}, 6mڄ[FGX6M<0IjLO?Gƛo(PE"Fo`O.{9ϫCCCi&@GGp5נ555xpw⢋.Ŏ;hp??(Ljb7P\K0¯Ds@ؘSk)N7壏>B]]9}] ;+Zvv6pq%n؁XO؊Ýx9!4Ftay/a1AHOǶMx$U084l*M}:Lnsӓh4qՆGm /ovBGGl6:::sNlذz}d9$ vrwpӗ렋r{A_P?^?Z" cڵk{=8*s=8zG{'>,Eg fȋ+C:!iiUxHD aJgrmhxBxsV\46}O~lf"""%!s|ӞJ Zr@oymFi&tvvs_]]qD݁A|GGUUvtvN_qLދ/c1.x؋xv9pM0E}ex y>ьf%d),^ @7 oEW >4' =CDDD!.ctnVhNSmx||q|IYʟȥe#eO+^{ͥg;n}1/UUU.;;;o|vW\qV\;vH8sAlH\g o(YLyGU^HHBH5H"lUz(*T{m \(H'!A*IHHun)"׼rΜ9sζyyx4p+}%k~cZ%*Gvkӿ׭+W J%̛jAX/'_6{;yG}fl-[ƚ5kyowdR1"uU38-oA[d|8bƍͼxjZk/{5kSTTDnn.DGGxbr+mmۆY#G0ev-}.~?v݄t-A\a6L+6&r~]…iά\R^@ڷ6J0ߚ [?yrl"7P%U"_FFFFFF^tIO<GroҤIhZ^yVs-׺H#=iH㜣,%178~8R|;v|ϦM<Kbș3gp l^߲D!* 33gT&0PfbqlBǧY}rysa(+?...4ݿJ+9.tN}:z=T:` 6hM AQ.]Aѓ'O2`^{Fر#"((uֱhѢC;ABB999-MV>KN<&z/*2yPZZʁǎSN!tSO=Exx8BʍhzN@KiIޤ|X))pS=rym;BQQ >?Фk5vYUq5]G}֐KB@A׀VS&###### ˆ̙Ӥ̚5_~Ew9ɤ79g~%B-)]?-,YA,@$wN+,'Sv@L?Sھ;zS2:0/2) ]{orQ*aDҥjڽYdj'\&0B +3aūS^Mm۪ V5O>87=V&&աז1AFPPP:i$''BhƈxXivG~q3uҒ`@4XR=5RT`,o\_ICHna|z]NQ8ZE=ex&@OKsDYD25I"1!|g~ )ax 4+s?M 7,@[/3f BW (I߭{cGǦϔhBr!swOQQIIIjժI~i'}H2lW'ޒ>~+7 ]P5R%4,E >т%>1O2_M+Źŭs~GhtrI&uS-'8pɣ[r]Og쵶8:\CqS89b_nRѐFБoOm.vƑmM}>EE:RXQtRd;ᆻɟ .(`Hr8!v]좂 ,tXH(LK>*Π_O?ꍷ lV )r6FCLL ;wgiBZNIi;&;vٳg2dH={;NaV\ʕ+zPf ۦ7^ׯ_g5 ʕ#)\8Z+D>ݥ"1= ;#e{S >-3UMz)xiQ{;E/elR+PZk+d5NmםBKII\sF[ynyh+3 F?\p'[lQQs=M6dL2A@$-Oak! tCL긻Ú50aBAS0]Gz X.|tA\rҷ!HM8ZyJuW[DEEѥK?22;&G?uÂ<)//端gM3̞=KJL'hZT*_zɓ!駟4h-[%2j ~i,^]A|T1Iה$YBƏ8wms_U EBn~.EyE#y{;ʗ}f7~SXVKjjA22-ʩPUСS &J!鿴ְ|Ta[a2i IU(QjX[PaYne%֨M7 5 Ȯ]k=^nQN[-biUϫN?ZݰFaڴi\~3f^^T*U_gڴi=xYYY˗/‚ Xx1Ǐ:XZHH$R2s5RRL`%ywIdYx紥G{c0`hђFd))"E<+squ'χ~nyfU)%%TW lvackBAߪr[M ΪOCa(1$}rʋiQ(( †-Z1#kZ[Iw8F}p1cc)FJKKٳg|QQQ,]ooZmqaƍWgsѿIVTTcny$_|oYleddd]rhGq ዏIaCB>$Қ:5*x\am~/E@^8.]ػ~/nns\[SXHc)u(8``#(`6jl=%J>طNG]()r@t:ʜ&8>,?%?Eη:OH238/iM':ѕ`OC@DA J1 şX$Saؕ^ ;f.q[ jGA?ݶs4;&}]bbb0a666tڕ #B|2/rc`ݺu7himdVVNNNzBCC?rA?رU!^~e-[Fy^>7fEYFz'Dvf/v\nz2qh}6ʥKgW,tޏEi Υ*WVk9 m wΧԹ+g+prrɒ0֪mAV& X0E#$\?\uӢmEV*@}h?+?/B:ia;;̖'$c c9t=SU=WҾr~sGBo[nq9Ν;Wky''',Y̙3d7o ! 'K?\,Y7|Cjj*k׮!CPQQW;v V[CS pppS$F0$sr_8w6/m.:W4Zzkڇ8eP@p-gXѬӑKK.]XXbb V.V8NsB7nLñ|+Su\R_ Xd[ 5WnE1Laih4+{vV+_GW9a i;8OeA(#####sG!D9sxg8pde\zxxѣ:u*...w e[>6O p36eN-ؤgr-?#O?ƍVAaa!ϟ鹄<;y2zE:|!^)'&RI(nA>q|zƛOTk^UhqSb,V?ԃdZ9õ3-i9 r0&P*I" Ϯyaj ֮ .j\oy쀶Ɉ`$׀DjMW*@' 3&*Y H%VuBiU"0օk1G|*ʡ϶$7]AFFFFFF(?OVR\\,O|,?i9ٸE6L,E&:w Z(q]2Ŕ$)e^$@蚩,hF~#i٦ /[[lEvfUլZK[  tљ˙3t݁9ȯXedH +5; T/O20 lr[?qgĹ78~W\@]t<<'Nr/?eXϹ2222^{/0lmZ2w?w|^cKz8u;˛ OMYΤGOKh4|c>U3)RNta߇ywŠ9 *j0XjjsIݝn~I+g^}IۣTryyy2g9;f{ C222222& )_oL,5$5%QkgÅgU8y-O Lڴp&ޛ*h9 <_zaƝLYuV.Õxy]<;U *M///FB`̘1h]5Q$@$!YQFJ IDAT .{UnIυ'AnUSzC[H=C@̺u2e Jn0 BBٕ# ;g9 6쯐aA CEFi>EE)q䆃:U/Bzg . Gq,|QJ&.V~6gwZkZсq-q5xwLjJU%&/8bbѩsNt҅g}7om۶q܈9ΤI8sG`\?K1#BcZb}>`<`f0^r4fqFù R6n&Q~"ǰ=2Vt NÖe[X{5,쾐.A]xwޤIj[[[QF%к2=!VEL?a1xAM[)UXQF9.xqq8X,[)S=С" _-~gƭ9]ӧ0`iiixy5ILÑaIKK㥗^_e̟?aÆVcva6{p/jWTy*nCֵ-`jv_\m;[,<,ppN~<$ѣfu SNGaڵ,_ Hgexzz. Jy͑mx2e!0)SL-A@0|T&LeXW ƢP"4agPtKєp:(O/8dɸz{{9's):Brr 1bcceA(#sA~$10gJJJرcGuK zq<8/|p֥#`Ayb < g37H|$!EIiﶿsA%7=`ǀv'L>ָ T 1zg}F@@<`XNvxWЫW/<<<ڵ22.-1;MMI0c8sLZ wA jYU4#YmJ5} 5ʍ1g($&%},^ JKKH+2w//{ 770B;ZiU3uٳ#&8vFfΜI^?~<;vɓ5oK8;;ӦM ̟*%84F1L9tF`Xs sR ,hMk\4X)$KSpRIl2R5M g풶;iSgZMv0pen='**9s4ܹs=ѣGZf…܊Ν;a޼y<̝;Ht喞/yFaiWnZ=oyL<'ƍ3!ss3[l릋ϟ?Ϙ1cpqqAz={Joڏ ƏO׮]y$AXOxzz0gŊXXԯN*>XYYڗ3gЦM~7ڴiS9ddV_Y0`)Cϟߨ?^9 >N}bQ(}Zq&:$i~࣏>j/Ҥkoqodd:3ڵk=^zz9rV|21zhZG̻KvnZ?ݺuY0`@/&<7-c]tٙceUsbuaORd`2.d MI 4Ivj! ѾDV5-0<ݦ{U~'TQ>!4/yL5(  gϞ=,\PONN&::p.]T|rrr~:zĶeeen,ƪU֭g&%%F|Ш3F^^^6hCiP3>={e_{K G^:V; l /u*%jsό;O:JFyuo1N ,8;={vx- BVˇ~hv… \͛;Ȭȳ}22@t`Np_:cփ $rʛ=Ki;خ9]n}ݴΰ +cN:EqqqcZL֩deeV^MpRRBN:ŵk˫ 4**(&O'|9{,!!!lݺ0̪F}3YCZMSym۶qiڵDBBBtl޼ξzki7ŋ$''~Ξ=K~~>iiih4D7k/MN(gt'e%gkgMUC#5T/os:oiŋu.M1Iii)w﮷)׮]˗9s$f۶mTj:07[]t))))8a0/ONN}ӦM8pu3<<ǏzjvYk?8)++k薑'{w^Zeg… l޼Y2-=Jk`C {g-׀J ":K BN(P_:U(sd81:''ënƅ!| P[bb"5W_}%y 򋋋/B7.] ot:}]iu3W\_իDGGe6Ûɍ7 !))E!ر9sa*ϝ;'9TTTon =!u5󢢢j\7o9|D||03GXҙVǔ}ZIۙzWh[uιI۪;wtVN^7z,˥Aqqd>yaว61P}(..7|S1@۸&?L MgmV^MrrrsֶTpjZ._DBCC2dPԩShZ5~:~]kL?FW^#GPQQe6]zHO?ƽ0Eݸq y{ɞ={ذaTv׮]pERӪ<gahk+W[K1XcDrrnիt:),,d߾}57HLL$;;Ǐ`}T}8589A0V32%;Ʊ&wUu9IۑTGEki[bgSO=7o)-[$!fTgȌ}˗/t:NJII QQQdff ff،kʪUtԉ={5ұBi㤧j9u۷ogϞ=ѳgOie x")))!'@ZSضm[ jMŝAQ͵k̼af:oqIf 1HOOܹsf}9s&W^|+^ 4AGtY󇇇Ƽ$т#ޢvP:{, ,kvSqg|l߾6}={VZht2cZLcuAxU***x7<^ʕ+~N<իWUM Μ9ܹskmrĉ:t!Vhh(Of͚5l߾F8*..gԴXO=FLLʡJRի5t:nBBBWTT$ՙ={ij͹D!{B'B[A埯zoit}&_…>+V~7&յ)FhMǟg}&lll\[,Z{8};9s!bԨQBӉ'xB:bx,]T{'_-F-_L8QwttfDPP:uj|@۷OͺkwppZV5J ݻw=sB!5J^nBP){jv"##ЧOWk1|~رfZV:0`{m޼Y7N+>Fv~~B7|S(Jѷo_våtB,9.]3<#ѦMaaa!5k,1qDѲeKW}]ĉKTTtlժURc=&[f6}][h!~7^@@tlk cNJo}رپuՖ݅F3f̸7`}??zݟr:?2mPհqTޠ †իW7edd24BB\BBT.7$@Ĉ&ҁ)X fm4Hzj\h߾}P`޽{oذA̟?v)/˂ǽʂm۶8qDciiijZh4O!i09BulBCN$> N[uReJ[n5֭[k-_]nݺ KKK۷ZB1m4 !$>~CAO0s^ҥKj*6qFkkk/cQ˓>O\J:;~طo_v S=P:*67G}$";;[1]TT$0gL Ĝ9sY裏8C˗mJը_|!Ç{ @1BH}G mE+⾶ī#)v{XfDѴq,~ܫݺܥWeױcJBV4, gfn&R&65T-:^4p*WlSvT +ir?4Һ bHH|ׄ8w1Jii)'N<=T^ׯP(xbL|W^i̞=W^}zuѣ~zNtt4ǎ7`~+m02}vf̘ݻB`Ŋ Ү];~޽;Çȑ#۷___I|j/"k׮ejՊQFS`죻;666R(Ν;ӥKnӣc`BYrt* |f^Tϝ;'}O?0k,+3#v`nG֮A,xxoDp|Xݻ7!!!>|/ү_? ɓy5kVVV}Z֭Ǐ<֤g`N:5+;b)Eyy97nm۶<`K+$seoߞ@^~e~ !XvG WѮ];y~Gpqq!;;B!9-[xbMxzBFIr$|De.]]Ì3ꫯ_x衇!Cӻwo9СC9~8 q̙ҥK $..Nj9>M|]}~U&DΝ;6lX VerP(xX;pTЕ\:|*5B>䔖_QR3y%TmЫURX`-qaw#;'/g!*=ckk+ʊ j?֭[Y-4G^5J)!4>y4 a3cرL;uD@@<\BAǎū*С`>KٵkW)LJxzpbo23f'''jT*`C :|}}qwwΎ/ӞP {i FݣL!,(QR.XUFee JerE +ZB^G( ,-TTXY[bcoNve]ń;v`^:_$&&M4 & 1ei>"-.1Sz'OӥKZ-w3ql,52222xTZ{m6}0w\Ñfj<ԭSnZc_FMz.j;Im)5bgӣGɄs(Ƅysc>r /^HVBУGI:Ṭnc0#|yG:t(tn0k:us:> !!!899IиNPVuV)ޢ񘝝>>>\z,yNnӦ mڴ0qƱo>֯_o6ヵ5fG/X@2usZ;l`\߱-/É2Al/VS|@vE'M%`(''pw7{ZS9"d U~ams%;U'022#׵^jl[Sh]HU!eJ)UVPLz 2u`( p9KȉS(*.`y冭 Δ)Sx7o:ud+H1 q' `׮]LF4&keddE&rŁafZ~G do &G+":L;9gXרF/;pA,|Mjջ^Δ}XYni)lw*B&L;C޽|NR777ΝO>,[7x%K[oOrAVZő#Gӧ4˴~z(͆effҲeK9qqqqffz݉ٙckk;6qv?iiit ѣG:F?0Nؔèm爏i Xeܸq5TgKJsfԩ?AZn Pco|vYr???aWXSi׮>>X8nz!$@B'"M@ ""(zzūRĠXi*Vr`h&!=lI6l6!y?><̙brޝwV(ӂ1h;w.+W$.. 2v"'&&l2~g:č7pww{K=w߭>/8?ŋeGV$kBn`.9_cc˴ 1GmiѐK# 'jŮ]$8'|aIrhO.>A}x࣯; sQ<=!V^Ow~FUVtԉݻw`=B\ϙFժSsς?]PHH 2 kԨӣG"dʔ)`urE#F6^yIxA\S Eǹ6eN£t.Gʕ+x{{/ LZhF)]բ"""oSޓLZ7x^p1WFM{Էo__ϙNzl9Cq'?@sk˂':2dȐ"HjׯLq=IIS2Fa4CvR:;9{ t;֣&~8fe;WKo4{+pw0$Ƹ{iM woF]Fjjg˧Ҵ^}tōhÃ6mڨi{yy憫k[df7(r]fA8ȵi'HvQJ8a5sssSŰa*yyyUh6Ofgȑ\\iɓ\rGG&B`nKp`:2!q=Wtv]7>?s|vǩ%Vnѿg(^4\2}oSNf+3tFz_ƶQg^z%.\H= >d׋2`"R&|{J\2Zsq/RІp*+.#~G80qINxg7GsAN XlYOQS}322peh.žWޞW_}}sUzUjXFCPP/i$hӦq?r%@K5nܘ7neJeL4˗[ddd51-ʶmۘ?>v">>^VlZ@RsZ$BT;OnA-Q'D?Ii\89H@3 5>z]zy7E*x?N\2IIn`Pѣ;rsyGIطo`oaQXή+?J(΀Mtc?LMu-2wr r\iEӴd4‡FWR+.W8ySNeTR\58zz܈Vnw0{Jɾ{dd;vPb0nqQQ3f̠Ak֬Y7]t֖FJo'''ioAV*<( .+ص%HJJ(r端bфqF<d%T=0 H!F爞 w~y'ZE[vqqE3 ۺyCf1H)oxE> $я?9 @h*͛xzzԩrg8K3LZJ@@s;7+?j\GwP(VF:uj¢TܴDm?B̉'DO77͗Tlλ]8.HI` Zӡyszug%gL2m?_Qӊu4{.6 7'O.hʕ+@0,,ח5Yhh(13}|:#34cǠ oA}ZLڶp+ <~U;wa6&99Yf`ڶ. ެ ݙ`_X=:κaBه.pE] ;7ōFY4I]n8 P)v)v=yk\A&vzxӾKk=H*hѢs)SܢE\g׮] 2I4zf2գ^TaaalٲǏZZTW04;;\mzDa !D-tO=lp@{.Wr/fת]ވF\ v#+OLFV[vU() ڵמV#++z}wߘy( 6[A`%~i4Əovncb׹~.kh5 ϬhAkZPɓĸIdfHP@څ^׊ =lٲ/ѣGoqƜ>}cǎMU߳gO坜HKK#''ӫW/RRR](; H!iH!|;[z.WZE*w5ɸvuG+WI5}:R.:/qTh>ΞA`3V\{9oߎ(Itt4`777\\\,?[t,j`0׎@|' Wgv Z49~@s<) qz9pK28ճ#uc:tiC}+:Ps MQuUѣG_?0gOVeҥ޽kfΜԩS5k 4SNDEEYm۶ܹ(Ν;&G*o=$ "I*#ፇ59N$7@hq^Lmx莓}+ >>^p\^yꩧcѢE {{{Yp|ppf޼y|X}Hz #44> 1=dV7m~L)}#𪐛u{x*7}h,RfqѾќt9O\N& nΞi]Х䬝B4G'IKK3K&d0`0HΈT] eЊ$Ln0/M#}حG !* nm,mrutReĝf6+]f0[!}ꭈu3gXz5e˖p+Amߞ{=`+{_ Lp)=ke]e(nhiO-Yb\M.G3p'rVٛ.1ȿ;}/=E-PIeI$ B:@^^ CNN,3hG֖ ׮]cٲeٔCnG{6ottþW,Voi8V]ƍW^yذaCuveo p77»b+A&0wXлbu#7'?D3hDPRJb_}U(vt%¿=7eR!D"BZ^u MX>#>k@y"f_wu}59!4.݀1,ӮTY5 gggo)yLQ .vWl#r7)aQTK}'$Ixr(]һЅ.%^Og!cIpɠq HW g'B IDATQ$ B:{OgѠEL40U;uDCu1W^ưz:&Ȳ!2!YOD,EIII!33S}ƩS-_( yQ(tM Y!h;4~e<;FY Ԓ;o.\.- k86]ە>H(V$N!jo3[l;ʕ_Or @rr2}heccKcZt`ÁV SSSR=zEQ7 M fKVFԛ D7X7CϾ?x*W6a/11 d)5} %\z$ mL;;sA.D-$NNB+m'5E[m[?+_'{V=t {s ׭[ǚ5k'n]8Q%jx#8XeE!55EQHOOё"""ߋFi@0|Æ@_lNim{<#9wPҎY,:BYp͡[iBBJJ턨2m4  & !{e㘍Ω͘81?ŋ_\<®'Z4oQ%md*y/66+W m4hn޼T&""V+cAk '(S-77&v9v.5wcUDցG}>=-ZBrԩS9BXVdvBHG9gkmYv'{A7! 8¸oUpL}~u73}L@ޚIooo^|E&O̤Ik9=YmRSx~@W>-8..oR^d¡utn3^=%RSS @]nݚөSCo*ߗr=8BM"r qBc,Smp`` LO:W BQ={d&LA/9~8fٚG0.3!(Ȃ3)EH@(u=g-;ݟ![p}#Yo )b}hvo5~4k֌m۶ѩS'_дF0((OOOZ6n#1yd|}}|v0 m_6Âo{< >Etg]LiN+}u%>-S_\pF,7cBT- B~G[nB}yü޾-i|G'c!˽_8U:60gzaO<^'00P=V0 TlHo^yGقG]alV{/O!"nO cXpo5CGQN:fqVwe a$#VȿV!jyfER yǼy#ϵe=Wݹrk]ĉ<fO̎ 0?i̞Xoǿ?ad L C|k1,!~d4?o@hB!jhm!,NFhڴi̟?_}m,yBa)' !ta _~W;bL|:zxy@z4Yhq& nM螉i_y%''i&Ν^vM.ꊽy72Lp5]5xոOan$|Jt-6؝jI y!AlG+Dgڇg|PYepƇ$"">BQSо}+|X6Kގh7reZ4GnBRS ޕrL[wSyկ_uv"99~Ghٲ%` > ;]f6̌|d"Ns9_ύr"&Ft<axp[42[JۊiB2&%oVKPȔQ!~eFO@Gy!u?upZ q.D?.z]lk OmR_Zꫯ2acGfҥkSFo10=<%pI7;6/<䰍֑pp3@0LGYpW2}ϲ[<м-2T!DM##B! 6W^ypOjj*C nthd~}p wHmcc øo`ԭs=how5zINNƍ˗)_3g &&&/8>w5$W[x :tN !..PKXXeD'B3-[$$$s¬Y {},0r& &By]jpf@r nſ;AAA\ىa [aJJ С~~~1 LMM%;;NDž @MSB3337 srr8z(p+ l 緆leԡf]=끏qg{*('|quBLBQi߾=666mՐ: j82CLjᲭYpz < {"roL:yic@vyevEll,`Ls~1-ir³gaa۶mMطo,L~msk:aA<RW7BQ[ɸrrrؿ?..." !(djpUV-`|( q 0|P@΄zp B !tAL̫رc5J=GYb` L6mՕ_U=bc3I8i]Y,^ o$l2:V~BQmۖ;wŹs5B! i߾=#F o|(ph\BSc^9gD(=6揀gqK$p+ 5 b ۷Zijk&B____N'2]saDz2yp6B:AS 3)WQEa޼y> L2wk&,EQlɩTz[nDGGWE_7+V}BFocrT.-rDž>;Z\n~c,RRRػwz]Qavv6_}ii5ZbfӁl /,4X=">EFg^t:V*)5iӦa0Ghh%voBۜK},t .L 'a~>[yطRGye+XT@x u?taU,跉ܼ}0r5m2_o3_.*BCC{SVws82jE666nB8 `qk!SpM{/}O%-vo߮1.]RĠD_y3Xz=ËKQ.]C(4zfccSͭdP!DaÝ8ll2~I~4OӬ~[&)lLJJ"99YM Pql}1締mn8aOO萗FB!uB!j0>lMy mslqfB׋3o4ub.SY;[N!ةlx^oLf2nnnVYB"SFBH3:Чt!F7=Բ aDhoku{f^}1s{D Բ2B(P!DUp"'яImՒ٦1jXLkg7>x%t}pAlmmyjxyy8::PBQ{H@(ʕl] iFA~Wt@XX{/fS_B;wH6oӧÃPz/t*S^u!Bq gϞ+;+݋s: XПMo,g6^wut:#G4sȐ!fk B|rBBBp1W^%%%?xbvC=TemPsѦM BZZŐP!m'"" &euW찅M!NFBQkc1}t """prrΎ`yoߎӥKzɺud)@ $ Bqiܸ1;wG_=@lll㋭ΎƍK@(Ÿ~:?8kŖkժ<[fnƍݛ3gxb? !{sS@x}p]w1yd^z P!dRSSy衇ݸq#FBѨSN&NX칊Xx1Fbٲe GGjkҥ ={dݺuږA z=ٹIJk׮%..#Gj? ,YRMB!u"ϥ0n8rss3gVn]7һwofΜŋ.T@IDDDnܸ]:g:f*#B!DmTlŧ~XzQ~Oggg @@@@scdgg[UB!B֭cŊzjE5~s<lڴ{me̙̙3͛73bĈ UI@X˗/^\z"!!uqeB!vt&M@ddd)E:t(:uٙg}0&syf1l0-[_E+TG]TqaAtvUj999deeZN|g!B+!772Oyr__I@X Ҋ YzB!D|G$EU>e{>M6ѰaC>r]>/]O? &0o<Ea޼y) 11й7n뗹iӦa0J}<!B!D<ޣM:Y#:uYfhXbEp0GaժU0|f͚U:!,F۶m9}4"NW.)r B!^666.ٱĒW\Jc ]Rkrrr;v,iii̘1~UAo̘1zƌ P Twn cРA[]v1fs.Wt:|+"B!(jVyK!wyTsk.Zn"$%%yfFiն9NǨQXp!pBvQ瀭CN:Epp0EuAZZAAA(ӧqrrRˆqqN3?>J,_R`;fW>s=_C{XsSIDAT{#bŊ뮋\@X:u{B!Bۋޮ&Nĉ+tmIYVk.WgZ!B!}º~un au5B!YC(j:7e:B!Bۋ! !B!D%#V$IeB!n/TFvTIR!Bۗ$;g(SFH!B^$$ "SRC !Bl2z'h4> fڴi\tIGfN:U%m'B!Tcp< K.]v !B!*%>>?9s[oUd`^xqwwg :kZ@W B!HWw#nisQAgѨQ#Ǝˋ/HӦMfȑ=,_\F B!BXK&q+ +1?00б-Z7FTVdvD:B!BLQd 999d$ H"##Ge˖"!BQhZje RY&#ЪM:tB!DMfvg^No*66kǏ <Y(meCϫIWwh4.m[=ʬ^XZn7˗/gΜ9eރݝ0E=uVΟ(+,-- gggf̘… Eeeeakk`(2CϫIWk3Xh`sttT PFB!5V$ !B^dBQEFFbkk>IB![ЊM`P`B!5iBԩS9BXL">B!`ڇ}E$#B!BQGI@(B!uLbA}cǎjlMrssڵ+Z|G`-CϫIWk޽{K-c0moO٘]znB!61V(C!Bۜ?:m^#LM϶B!B!dJ!B!( B!駟h4h4N:Ul}1h qqqgϞO%]kj .\ԣ_~> EQXz5}N'=zॗ^*T^r9RucĉfIWO_>zoooʟY5oAvpttŅݻW_xy]___4Mշuu͛76mZnJnDEEK֭8p ˖-5 -Z(Ѹqc疑Y`g&..D/_ѣGkV^r@HHZV͛Ojj*;v == 6pQzw}WKNN{<\t8Əرc3gNIٳg8p O>$W\).BZW_U:v *)^^^JJJz<''Gi۶ࠜ?vϟW<<̤͛e˖z5>vXB2dׯ/tnÆ sSpUZ}+$ %|M:ujgddƹڪ+uMmgoo ёq/sY^xe$%%˪UѣG/syw+Zd 9{eee1qD.ƎKBB)))X7ҿͮ~W_}@.\Ȓ%KHNN&55իWokdEQ>:[>>ݻzyIƍYn[naÆHWk|x` !!vڑ'jycCu?#| a\X۶m6|U䚺*t"SK[Fhh(:XsKW^\\^^^Ιegg%@~:ѹsgUZ}+$ E)aSؠAصkWLlv"fGApBN:I[F~T8hJ$^5vޭN+{~w\v9ScVk{_PѣG>:[/*NNNfv?(ӧOWIW~X ){M4I3g:h"PNh˗/R:uꤴnZ2;'}^q111JQշyNZ(11QILLT߿_=͛^w}ʅ x婧R壏>*\S[9rD???eӦMJzz,\PQBCCxk-cʕFQ^%66VP A SRRRK[իW;;;%22rse%00Ptʻᆱ$&&*ʚ5k''']9rH+P (A9|2dG9zhHdJQ)b˟B_E= ڳgr=(nnnңG"G*{MmlٲE0a)qԯJDSp0),b˴ SP2 *6s5X\jc3F Jӱa;NE:|c׾}n7111fӦM:;]ff̘aBBBL``6w c߽'++>Z}޼yc6l`n72ÔXǾ43vXdtbgRSSMuuuukS{{kտfCe`QB(!X,@E "E`QBAڲeիW/+88X󕝝{l6_X|1F;vuI-\P/^ԝ;wte^Z^RZZF!Ct6 `u/_Ç+))IGU``ɓlT/^А!C$I?XwG޽[Vtt?~z-X/v:#!eddH233λ"U]]vsVʹidQBBBݻwOӧKZcnܸիWk̘1 Q@@zꥉ'j׮]r\u=ۚ7o~n{뿫SVVF`uM p;k !((($ 6L]vڼZ`f͚|檱QJHHϟݮMCi*((Э[sNUWWkڵ~~8˳gϔsʕ+ׯ_[\c5J7o֌3TPP7op̙39rN>m0n$ŋ{e>IF3W^u;vX ʌ$s9LHHd6lu97C5=-**26vѣMIIi/:+${uށjnM2{/c=抈ٳ%Iyyym^my9rD>TdddO0AǏҞ={Z]+!@'6j(Û^{M[T^^u#""~{ݶ֟={V4i$5mСׯ6V Suu>~yCCC=޳M|1^WW婴Tjll[]gϞm^=ߗ$9sFΝkv?յ!XUWWɓ'^e-yTVVxfk4!+Vhʕz,Y"uUUUZp{xIҕ+Wn~~e˖)66V_~UzzǸ1FlZvmto !EEE)##C111JNNV\\zׯ_ƍڿ\.ݫ߾}su߾}KM:U7nԀt:=RRRH{*//Osщ'T[[+ák߾}*,,Ԟ={4nܸ/:;1ttw:tt:UWW` >uQPPȑ#>}:Z~.N?t P(""""""AkСCO~M7Ę1chGdֲm6RRRp݌3-[G^ 99o 7ܹs!*FYx1999xΝ޽{ꪫ 7@UU/7p8\{\p<裡ADDDDDD(*Œ &LТc?CN?c޳Y4eȐ!lٲŏ^WTXv-`8/77:uF]]]cKϞ=CM) <HOO?潴4H&STTDMMw(իyOgEDDDDDgwZ*XwxJ?0g^u⨬d֬Y~a믈"hC[ne@YFSRR`Æ tIޫ]vҵkft:ٽ{7nE}t8Ixq5{L8F=+V`ܸq #}n}n}+j_5R@x3f0o<-[Ƶ^e˖pvvv6>u\\mè%!!o>x{̞=;Axx<;M6G޽[tFjjbX}ƍ1o> );QRRBII eeek(99W_}"fΜɞ={(**";;իW /8|x@?HDDÇ޻yvwG$& LOO'==chӦMcҥ0bÚ5kX`r}%>>lذlFK`s8{X#tQבdzp rQ[[}mBg֬Y׿ɱG""!t\6F$n ai 4=0;wdРA֒Duu5/I&<}n}go! LLm P$0< }TUUqM7xJS@FZC(r^}U& 0k,:w͛있D(!H05CuEZޢA1uTҸ+xw있D(wBD (''#77׶/׿馛}~W\q.?>w{s>w賷G?\{K$RRkT&;;g}$==J֬YCVVMH.]())a7Hie{J*#B_aᆪ FCf&LB_0yd#Bt EO1i1W]Cm-xओओxFEDDD|0TFw+W< hglm۶Q^^>HRRt (''#77.jY֎.ZTM6""rssnVQzH0TF76m pڴ<bcv""$nD"Ҫn2 fڈ2N%%TWWo""""F*g @qj#4:حQBR@("JAAD#3@`ǎ阈HR@("ʎ|X/k;w[""""I*eWŁgص}{&"""iHpF'GbcDDDDX EU5KNT@#Ttj<߶-ND("Ҫ7KN8iv'H0\.އ㱻K"SI 2/^{rH) \mi>lƎ $3CijjjjD\ٳH) lN1ߔ"j7'ެa(,, -^Ç޻yvwG$Qll,އ᰻K"uH _?(=o߾:&""QpxbccH) VlZ 11 8""""MR@("FM^%7֩U77ޞHR@("F̎dfޘAq8n =PDZ$3ǜ 2*"""$"jt4k&j{ AIeDDDDPDZM*:fe3hAiODDD$( P]]GV (,Ě()vС<(퉈Dza&[dy\'<: @gڠn۷o_/fҥvwGDDD"l߾7|ny%Wp0>fǡC߿?(mӂ 0`wy'gƌYnHQ@oYfhm:7f`t`߶mAk7jjj@~HLL?mmg+¹s璙z+V0c IMMe,Z1s̡sΜs9Hpo@Y*"(Ҩ1ߋXq7x-[Э[7֬Y9),,G{"""!" ܱcӧO;Ьsv믿n_EDD$bD|@ŋ!%%Ν;{rUW5:6&&n*^z%>3Ν˔)S2e o., n봦#mܹs l_\""""-gwB-##I8ӏy\dyXgEY"=H5-]3G [;[o~#p?o[^t)$)#D!ڵk#Ѭ}ՅW"pn.Sv&}IIP 7Gbb" ]ĉ0cCu{TWW7]i6`)KOO?潴4jkk)**0a SRd CBrr3G&2'"톊5"w77lq啜;y2_]SF}QUU}^YY}lٲr5ŝHLL -nW0kLJgN<<OegfM=K 6@e%y&,Y]ӦWHrp#i4B@;3=}SA>o߾_䐐_i(ðad%|ڨ/5С0f Sb|!͋/=ٳH) lWpɺSN~lq뭷CEvPٹsЛv V6mtMJg;=rָ8JJJؼy=0zkhwy : deePD2k߰aÈomll,>4]TM~G7޹3~ɦMo?)?Ge% f$8p\fNm_bE)"Zr{4D 1c@k߅^wBxnK$$1}qD*l ~AwpEu χ8VU1#󱈈޻i D" \}dff;P #W_%))o^C9CzYIf`+5341ߚ,[L`5k=cG8,~QBDDB'77Wk%EE@XRRBII eMg} %''ꫯRTT̙3ٳgEEEdggzj^xzw?^C8|pt69tRH.Qձ#ݻC~0~zr 4QLõP"ZT餧3vcmڴi,]FA>}Xf ,[n gEgnbj #D_8t 0$1tUq|ߺjkkƏ… ޏrrr7lI!i+ssIv=CTpw@BQQH1tSSOœ@w7oO}'EDPnn.#F"!#Ⱥu썋gsb{9믿'YV110iNJ1~<k׆""HSF%) ;(:zE))!Fb߾t 5Q[[˲e81~Kp_ʈHعw%:7 BQ+è_`:J'+ sDDD$) 6׹v8֭[خۥK0.WV^ ѣ}?y6cAŘ(m KS@F*L/$E'엯hݻjgTWWO?3{O} ==~4۫I"""=Hx5!mÔ$+*j'pZcPdGL 0血PDªL{FS755~t:پ};кÆЩԶEDD$2) 33`%'  @;*+jc۶mnRRRƍ֟'n8d9"Vqªm~F~1GYr o_:{n j"""H_VǟbAе[7GػxnN_ 4*b?EkmH rQ[[}x<$^@D¥v;vɐpr2VC ޻\.#t (''#W7lm̀0eHÑ$ }bMnڌrϟMDD޻͞=0tzÇK"emހLfܽۯ͟cРA0 &,!"">|;ﴻ;"A0bcc>JF!ҖV۰C~nu5{`?IaB:26s޻ŚKD"B OWNQax<RSSg n1Da9jٱ4$틈HdQ@("aڲ0>}ב.]/.Tk_؞t@ʈt I"""YHxkNуۺۣIf _4 }VY fP'~~ aO\CDDD"B ;qT$c D3MJeZ_S^ׯ7JNtfZxF3O@W\ haΝav>~HtR@ݻw7z=uT 4MK:NHOOCPTj+ 4GRS}?L⋊Bzinܹsl+1c餦2yd-ZtN'O?4{:!kv+!C|5]4D3j/- DDDmpǎL>;d&NH||<֭#G2}t^yc>}:={磏>wޡ1D&A0ȟ`*jۻX2Ç~uE"" ܷoFb|'<믿4^uzEΝ={6YYYdgg3Ut…߿oqƱdɒP8"mlѵt @́Yo9ח>Vѣ}?GfNgȯ%"! oew/D$ʀ[n4:t^n/>>ŋC9MxΝ޽{ꪫ 7@UU/1ƒͤI/~w_E"ǜ.8){wKJZt.eNl1> ;ַs z<Ԅz"B?vBD" '.qn2sYgQ\\u2220aBoZ}1M5j7܄V& @,ᐘHFFo۶ L8x0n (QqC%W|bCD[7x >ᆬK95_~|͜zڵ?!ڵk>/77:uF]]]c8@.]BM<N?D;dH1Uvnt^z5+WQ .ɝ㒒8hً\.xE{!mGAa!8k /+0K,c}ӟ#Zz5_Yl_|1yuJf&FG׬Y{7~6rQln4sZe Z0Z;5k1 TQf[{/c{4\DրpӦM?ȑ#̛7Gy;p8[)C{ 3w\ƍǤIkyGyBOΜ<4uPjpo8B3k.%7۵cGخ)'j1GSGyN'dgCSKTD$bZz*轞={R©]h׮AƾsmqmmdG!66튴f_|A'`}l,w!JKud?(%\Sx <طsPmN{i规ؑ#O }BAg[פSNi믇gf, \Mfk@s!ضm#FhuXnׯoW%%%P֠d^}U9s&{졨lV^ /_R 2:< Eg RR|/fиf =[GEd"a,9h&IVVK?v~DHI6[D,n7|xaƗL3τQj2*1M61`RSSIMMmnT]Ak稛iӦtR{1FA]]cƌaj&ʚ -.~nViׯox׎w L$xu5pQ?l]v"..&@$l^afͽiZCH3 PXCЩ{w`d#T@^ Gz>N>̤e]pH3e3?$cg|x<*;!)-ϽkwW5M}7 NRӤO6.u:1ZE'MDΝ;c%wa6Cjj?놽cGc )5OZ}`r-4ƿ8x0}rZC(Mvb|Gvw% ZC(b[Ð _Fč1U M{nn7IIIt3д6:u +~VScTѣς9 QΚt`D>$#Ahhi D61"kD999XE&$7뻭^Gi8]Y+<*YV8$$$p٪oںuFt/>曍2$ 5u$}XaHYkUL"UX>-N0Op,YB6Bk%z #!HBeF??X#6PZJΝ\?jYuO=i;o1|}fAYu[bX6m MB|a qF|KaCNN 8Z.!x ~d~T5_ a|k#a6MHMR<{reV6"cV@>N6 |JPreh%h"MLԩ^{-J@P"7|ÇO>)+.6%NSOSWN'_c ڵ 1g_8`\C?]**B'i7W^[P˗m%$P"]XCxCh_SÇ믟pji[5^{}]z>*+nާ~JII L4ɷ5͍Pm׮$53CBwZ;ڒpH#huu>˖lʈNG1IPi D:[G7m삈/ȟg>x-vtӉNi52'Otr!N>+cwOH>rX(z5Oݻs, ?i[hɗ رoUXD|&F +M"=wŤ}sZ8(MH`U7дj*N&m^XڸOęIBm-֏s'̙c<:S$72VN2V3M7O7o^0fXnJ*#ׯoS,U^"͎;+q\Ĵ?/TZe1Kc;v,tp!3Rž}':TrmwZ諣د]X*L/.YFRSSâEXf ޴Gk5H*z_5UX.СCۗkUqvw'zAa!E7zo>YV& KeddƨС'6~K@h߹LK,,1'wFw5^~T{UP(ֈdL2(n%iN7!ҬYXr%:u n~xIv:h|=={Xv-YYY0C[--;b={d/0 4Bjv?:zl;7:iӂ?ix5e4謤2HDuNׯ E"o3<òKGxkqЯ\qCqn^{5L[cnw}r¾}bn" ;ĉ~5]К>(?1f z' ND$j~'tڕl۶㖞XwmH[pߤI\rqW0sL[3lSk23ҥK~ǻzom} }-fd=z`R_]bDؚo2y=t"`Mk2ls;x ?<7p'))H[V[[[otXpv}Qe O~:Əhk}WKTWe~C#%mlKijV@w*-<ʜ\?ʨiA2l ;v&99rdQtzÇK"ͪ?:tuhwpx@ᠣ@\tEƍЭ~ 5%a}-=ؔѣ!1XS}&.Θ] F[kTtrw5 0a7{4X^FCwgu].r&5Fs 1AB}Ƶz5< ##=_??q@Go׬ NuSc;a1 V?٘ Aa%WRH=oxPPy7_h ]6>'?={_?=o++Q {ʁ:t(=dZh< ̚El^MhhV4YYн{hΝ cFN:)!Áо}}B`j`vE$bmNCs )//_̞=RxUͻ6I -͎._ }׌Ak-ر!X`:v7̎vv%rY#z'X;ۍG\_~il'M2֏ S t֭;nHCxq:vwUx'ػw/_|1ns>jj`x)_ 3f 338^F[a@ءCa2FŒ nX[ҺYfƏ~V@)AlN_AAowWZ?9sϒK/Dف<Ы?lx5p8QA+pv>ɤ[~m3& FClNXx$D'b%)(-i֯7֨p0i0TvB"k} uZ6lW_O?:uuug?>?S)//wYOH0£ Ac%e~B(,! :Ph8|ήD*8,<93򥄴-O}@8rd۷f7( 4B(yg>hTT=ZokƍqYË3F@*L=5j3ihloHtؑ[ٚo c{a۱HC}ka"i3]+v=?۷ovС8z}qgm۶YBbcQsYl>|4e C\.CxqpdfG7۷%N>3^qGTo@apy<Сi_?c0rY ,+CR񼹿c""w}nHkVWg&jŋ /P\\h$-k*]x1׳gϦ0~iӦm6͛e^&O޽{won!mV1;B*iiǾqC[F];Eq4`e V9kPSF#kIBӾQ(HٺЗ*L/'R[[˟ﻏlN'dN%}4| IDATyϧ~OBS|?yȑ#qS>C2e o6z*v_|1*o6?W^y%{aaSPiEZ)S?qǸ\S>;\K]J TUP)Fu3jsCB'8Pص o: 6HDh5Esr~VWg<ҥK裏׿E5dѢE\|dgg7ϰap=K,a|mXիW,|׿qXA1󮻌(v;lx97~[>}6on|N+$dSQa$+ ^b>3P:d\t̞mn7Ĵ a"b#*q.1_\.#ɇôiӘ?>III,XӧSVVf[cQ[['|=Lyy9k֬>o;>{?π128aƘS"ȴ2Ftc:ӽ3i#FpǾv #VZ4$82}ͤD#W]9EѡYgAJ __'UlWB.\ȅ^]wE]] ӇC3<~1pyh"RSSϘ:u1We>{f̙v~ヒ"?? 0o<TVR\\xꩧHLLFsi|h69133rro-|kIw7Zvb_[ )=D/B1BXW nb{1L`%!:D6xsX*L/ֻΝ;Xv\)..g sK/??LȔY[˔h׮+V撆kĕ_޽njz&n5_gggԩSyܕ__ +Zp2Q|1'wfLj:4(=2AdeU@([{3^: c(( Hgk@x!Yq-𚕙 [簾s9N5ʨԥQ骫8kO>$exSɓsBҥ1fTRy Ж,,wy']?M<«ha¡̇2!|PAJxRu^\d`L RX."~kQGGGG湎C[nFժUid:;OAa׮]?~tt/9s{.]P{{)6l#Gg4f3w> H޹T }n߆ClXod</Y@[煡hѢ)a \ٴ_e'$:/II~o~Cg?&cG``2] ѱsmynݺXf tC b-K40C8/NŽu@t/IX8!!A n41tPx}8$''ݻ6p6o5\ԚN:xx @a@֭7b8ء=<-[P@;/i])ҢEƍb`߾vǠrSX1PA)!y ..{}gDv-\w]`ҥbժUaٛĶmЮ];F̛7W\ nܸB' T'>VCSyyaƦMȽw/$^ ^RW҃&o& ٻa݁///\= a摵!!w,3gĬw\u߹s±YJ!!k.* _}5Ǡ\Bј%BhԩSn+)) }[FLL ڪ'G=zdlO"6G~}%Çcx=8ftʔ)Jݻw̿"ۖm࣋;oo,\ۋOs# k"qcb>`n! &%ÇPt-ŋoF3˳6P!vB|"E>-:SfL͚SZ⠣&MFu^n.\5kVۚѷ/Z=J(()"3Ф I*"`ĉ߿?jI ?E4MB?DDڣʙ3(}yڔ)p* gkGAOT@hESFLq:=JPFeq{/>o}J@d\{Kmڈ(^UkݻZGYl::::x¸8[&L!C0a[q/QP^Ʉde{&G<.g[3g iRt];XXgD'-67zj`YJפcpQqtDDD 9? @-<=n**z;!"BPӱx GLGEѢEq\>;w_~ rl@٬Y!;R۴I(h!Ug7l *|Spvx߶OuR2w3L9=ϧl\paN񩉋ԩSJilݺŋgdd$#"",o6ģGJ*4Liֽx"M&̙Cܩmƌ2whgBM))Z60gԮM~$|WYM֏%K~ٲ4ת%+W&,ǓNNں矋5k{HL<GlK.;vlL(THǃm?ɤܹgۗӑ`_0ٯyLNNK&b|g?#za8uyǏszh::YB #FHQ`RoG>jpLJJR6g98Ҵ;v,8zh<8r&۷ogf4ˋyf^_'Od֭٬Y36k֌3g$I&&&2$$-3/^օ >t3\ٮGpA)lٔf +f7l=n//R" űtNGOL2|r岵ؽ{lg޻ }^dz 9=2L&׼9@#za0m@ґ&{Ŕ)SP`AL:hDll,=)S@4i84pvvV6՝;wj]IOY>}g͚X%^ttڵ0ػ};?Ѩ)CL6 ŊCBll,`9c +6n܈7bȑ|2/^(ɘХ ܼi f|u>y2f|~ r+ q;96KZ(Vr\07:5֜Tx{{C{->z-ZdT65+ϣG}_:c6௿ilfi(<۰~]A 2wsttd99*Ο?AAA8v D 0|pDFFx+/~9~!L&7o7|MJpR\5Jw)ٳf_dd$߿lۆ3g}8q  <NB@@bv prE#˗IIIƠA|{ l|NjQ#ĉb¤HKӦٯ[`Ŋ6m,췦Z5k#]2q@XMQ븟/$@=#ӟNiqŋ urn,:::9*޽cƌAS-W`A3{ɦ=?~ fϞhF=z=۷<=<?/_›_Jk.9r׮]?(y6l@ǎ/("/^^z?,G닥K*@\zuE wl3f͛q@i A}{BtQpw>&L@ݻn݄`ݪ0(+mruBPnnoEqKnݴˢE3tt’w|:?6iG_|߻wO!Bd@X̂=:YHBpc͸q?ԫMzV7QΝ;52i۷o?=[N8ӱg|hժhLD] Dl۶n[F^Zo={0qD$%%!11 (9˗-ÇKcǎU֭[!p׮]ɓqomcĘ̟??lق@="\CFzPbEDGFb͚5ѣV*Ms&B'B8//`L.\<o)inYttTxK 05SNy5w\D6m`0wfi" ,)QB|޼ >>xDYQ'''^rvǓ$׸Zd^9f38 %I޺yw=4ܹEgf_:3z&]Zi>s rzD/TF#G5eʔUvٲeEh4sHLLi4IJBgςjӧOѯWq)Lh?FdujZԫU r<'1p@=`+&NDӦMAރCt@_sf΄?CYƘf0?or%SiOSX=bpЫ0l ~}j֬yx*7vZΝEZ@R`3fcƈeE=zK@|0n8ec̘11o޼e cǎ!Q@q\\=z׮ñJǰ0O|4Aٷ߆z@ϓ'F]A:n&S(}!?`h͛v)SZyʕ"/HH/˖ttRPB_y}*UO?7o_` 9+]:7OݦM_#9Yسf.Ϯ+WYş~IOOerݺlYxl3HXhի___899ŋqgd-V6QjUԩSG92dS (_b]muiegh(b Vryzjp zO~(V *sՕT1󫂤qpZ//<]f{4+4i#Gb]"`Z+yϔwO{,yUU2EW -[ /Z_u癷褈0.'Ν,iV IDAT6l@NeR-[nݲF6Mg,ER!bH{PGinr6}dU y֬="#?a4=qF$K;::W\Cy@x}vDGG#99ضmz ԄӤ9KUJqܥJ @g[5|RO)7\}fłd@NNЪ;IL7CBnt"ի##a,MjeCw,A^+HȢP>jm۶(fw[zu]w̒ ١LNk73TddS áC0sL0#ǪUR*L&dKQo`&xg+V^qtzB }Ks$qe8q+VիWSqF,\0ScLSLu랺~,:eI3΀ݦʚ5kPRKj,Y_3i j.h́uO,)r ? 11gΜp[O]ٳ #y>VٳرcСCS}dWyׯ_mۆ5j'N+WPlY4oߨ > FBH^"Ie"VcG@矁7d7͚AC!Ծ=p2IEN W4L66y)_^lл7в(VBBBЩS'!-*}=K?]_-(|w! m'%k1tttY CdG!@e)03<+<Ξ9!,֧l6ĉxAe._b?111CDDN:0U$99¢ٳƍKYn2ۤŋV2~Ӧ[ d֗(H٪S'DFFb߾}8sbܽ{Wr*WK/qV@Uyx"-[4W%$pZHLLL:,[ ׮]8oܸ &͛C󼓭a֭Q^=eKYf!44_ =(WJ(۷Z6>>oɃ+W?>0p@6cƌƏjWUB]bժ(դ ШHȟ귗veŋ[K ]Zϵ:;}d9 ~[86n H?,Y5 (WR6wnPK.9r$, 1I*P_7O5 9Vh(0`_Dl6db0 M닊+ajg&0WFK'z{\x@x)E+vZL8O#j%)ŪU`4DG#Zdᅬի[H=;ߑwXbM{VZ0L8|֭Xr&رcaÆvkG,S^Ǐl%K`ΝHJJ3}ILLĭ[ݻqF}-ĩ5\EmVMGDh&LNV/\#G%""BcU/6Ak{>al}NLӧOctزe N8a7?\y!2<.iIudd$ƍ)s%DEEODZH$+3g3Ѳ|y={4s~ܹm$=Z+W(ZY5,YDIG{,[ ;vLWX(8pqqqXtVБEemS,o, ш_~Gn"E/y|~oݺe#X@2]LMF={v9sJb\xڵL#**JqlmW\i~"&̙3پ}{&''+i'OVa'v)#׮%o޴4l6p=Z>|X;d2$DJL$Ϟjִ2#F866#qv,e]IN&_y};md˗/'֯][[2զlf ʕ+G_3wѳ8W#FdY qi敯`q il6_~QCBB4Ͽ1c'NP4lؐNNN߿9uI;PBlٲ%{y}|,:vL147|:UV\9~/I2m۶Cݺu۹~111saxx8=z #G|O0W\ܻwMޒ%K+UT7 1?HY#A"ʕH:TZn]`)4JϞ=䇆W^6](l6kΧ<~:_y.\}[}իW M4;DHoۚ[l Ԥ<- :/&nݚ5 -q%(QgdΝ;*Tl?AM`ARo!;t_`o2.[Қ5Ky ϒ/,d"~~رL]\\o-ѣ3wQ8W*v>^ݻeh4bK?6b?Fd5l5_|IB e7|W.꼼d@]v=uM6'HK tpp d2)u/_2)))h4MS EZoLI8uttp1˧nkժU@///FGG sw3[Tt I ۷͛~iܹ v4h$f.]fY#RMďlɏ?O<_P!o_&֯ς *5k'NpRڼy4aɒ%y)B'3sgr]@Ӊ)jVxy1!> OsVUm.8tiXL;G<  0͍}~M9wOVp;~Ϟ=y%aÆקٷ/\7n8~Ȏ;j\JaX)6y{lݺu縜Tt5׽1tP%BځrQ:::fzY!pj0ڃ4tttt_'nHL%=J[n)BǤI2Th4ˋ2\J͕$Y5kI!իWK,ի9l0ɧ5ST]\\_WWW) 3grJ99)@ykݪcv8*/_|231%^($,Ͽx[z6LrtuIr?|Çk. 0((`oUIK7hglԨ"֪UB;6$vj:(֭[S,~Ѡd? rqxM5j]Zf~4%۶-[47N< B\B= pǎW٪U+ҹ3 G u.꼼d@'Ot;ݻ5OKV!LO!y38V-1sr"8H'ݺu#)S&Eo+{)Ie˖%v֍$9i$(PCe޽Yxq[LRRE'CUN:qd|@\*)bK!4 LJ*AjvwP!PР 2V+V~}謪s>>ׯb* tJ0Au^^M Vd|qƌٲ0=^F˩EjaFd6m"N#ӬKW_}zǂ X3=7)2ݻ-.\O~T]l6kL<X`;u>VAbĹ|uZM=YfQFYq˖zkРMZxx8GA,]4Th|Ǝ˖-[*Ǯܳg0o޼44vΩrqsvCn;9K)ߐ|_U1+֨ʎudP4FH}Q:[[n͞={*6m+W?lsΝy|H'vs?LC)\0СCO5w*HK?IFikהp___~WV p4 ^:IvAηmذ+W8l9dupZE\gU~%GIڑ} Rwe V#~x.SpQڪ_lͨ(♼9OgY5JB|lVim٢ŊfR P`wqaBh( !`ɉǎ`)z={JZܹhEMG̕+sM@k9}M߷YkWjNySPoժUcbbeܸq<7k_CK3 ċluC}dׯ+D= ^f\*ʝ;7;BtsqadJl~$iYgi/0;m4.[XJI ׯ_+;v1I$v҅r72=¸8,X ް$f3+T@77 C5:::;Q@L#}7FQq rSS5Nvmd9-Z ۷9- BQڴi[+/֭heԔh޾}]XS!©'(h0q\n/)LܷGל(d|BNf9 m-W SAUfMʎvPzxGRwm׮j$0|}%ԉlڔfGGz{x͍͛7WSn{^#I~JZ5H2K,D;vmB A~9O?RՕjղq*ϷۇU{פ֩Sz4-6o^qSk„ x7,U58sLN VI%N l?ڵ^M6?] y6,dڵj ?'?sL}}޿_YNfӦMtvvf6m?0&&'.^8C;섎N6ѥK:u,1 $CBӬM1ItpԚgi`s瞺,%4ttk԰LXuj3ԶP-[(ϴ#F?sB К.S0d˛Ϗ?Z]ݼy,A,ͫҤ|u9wwro^=t?f3۾5k*TAA KV䧟>][CA-p׏J<-Zĉ5wǎK\rַo_[ch"EuV"ƠgMIcoڴi$(kԨO>'O S€țll6۬/ӧ1gpBhzwfʟ֭-yƛ7oYNߞ+amL˖&NS).~&Ou^FU 4Q@@O IDATs|ws xke8x 5kFooozxxf͚OsJ{֗$vMu^FU $P8sL>苄PGGyC*V r yKB]rLEVΘ1#me;MB3… zΜ9>,!L&޽{W){-%c,Ref3H8HrÆ bȀP9*ێQZgh9:5O)kgrf)!AYvZϟ_y٫vro>-Z1ٹs&/5~:;=y7|ϟ?gf…C… mڛ0aRfӦM u7l/v}IJYcgBCɸ8޳rbD@k>?3f/xzrk ZBUZ4ֿ*?ڴB 2w3ذaC,XNNNtrrbBبQ#Ξ=[1x5:::SL!v]$|vӡC/^L@xJ,}5iNmd5OJdlllf߶M849Ӓ-> Z9ԃ,ڛl۶M)66ĵF'jWeܹ/4֮%߷x: #嵡k4~rS ԩC^$~OWV4ͱ*sUu^&rL !yސiF$\  ƍG|Oi=an+Ө4eʕɅ vH0Xzu֭[צ *(e2Zj\j HG m׮tK@GDyEɅNv" >$h4l(&Kp,lS7..d23Li @ʕ+gSYf(X 4i-[ꫨ_>Zh|pwwg0кukwwľ,Xٯ+K С|yr b\  Qm_::/@ 8IIIʖ[fg|96u ܽ{%J@v2=YC"َU_uTmժʔ)gggԷN$&L:uk(ŊK5ʹԮ-&;I5Qݺ5o.v:v~j)ثfUL  //M%K \F`B''`-Bg=z@֭RJ^zOU`0aVL 08X|bժX"*e# u,m5kpKZPVÛ7/Ч:23_>EEr}g(ݵ+r)::/2N9=S @XPp.~cc}"6m`رYggg$''͛(Zh|j._۷o0 x(Vԩ5ImvNqsK^Ɍ( h?кx p0']6M3.\s Ф8MhR6Mjժڵk)7n8K1Mvpp 'ԧ@( Oj! 6/tU^"_ڶ֓MeԚxY/%M!!C//m!!@T6(XPhǠ~Rbj0`lZ ::::1&$YLՓu$N}Ww^yY2-Z.\3grN |ӦByWXX|}}ѧO,ZGFٲeQTQv 777T$k'&⾾@B^m_@Ii^׮{bE!EZpssC…d-.,jSLςŧ3YN x8ЬHS^ rܳm~~bmٳ4Y|-l*qc?nKG%A7Ft2:::@h6g-Y98pгg45 VZӇm۴{ns$36yX%5~xz}fW_} m-ɓv wuB_K4m / <=ź?]'pweB)yi /˖/-qqtASM|QڴTv6ӿőzj)I$!gOLǭ وTFGGyM1Ԙmɓ'"4LŶnݚfA!::W^EO2<41W^?OT ={jyBC0OVkSR%A@8(Y{LE!L].̙3mi[GCݩ`Psf#&]DDIkqʔ)z11@bbS~}8DLLL}aNHIe&y&"##`nnnYzC'LNNB'5z+m/Uݖ@( 0o^E^WjͤIB,;&ѵ|=%TRMw*2 وTFҳ[GGGY ;5k.][ 'qq?& (RHϜ ؉ //ĕ+W%VZ WLp6oތh4!CƍSLFe]v8}4& 5yH!\SQ6pySFv2QִS 2wӝ輌O2 j!?f֪L}HzUũJ2e`xHzN'Ç?X'&ː-DKʕ骾uV̙3vRB.\'q%Y'IY @q|MGGd۰U ロv;)ii::/;@D+o8k9Or<>{LB !+$A,"T@QJJpVAjQ# *@o)E(E"$ aKBv}Lfd&$319s3g ~r6IJKmä/.>TZ擧J;vԿ2|KKJʕ+e֬'&I7K;뒛+I[ڡ\dF$ٯ ^{b2ռeU]Xn]wfN# t#V\롇ȑ#%Ix챽/,ݺk%ߜ8/OJKmپ"&Fze-$]!>кu!N<l:eKBI+/IϜϒrJT d#wPXRaXeވЍXe@s1vX;>o~&U|˥ᄈ[W9ӎucҹsүm0ً\UǏK_-IZRrڵ~<ehFm#Uغu/Eq8/OJq[ h~JQ*vn*_|_7mڤ*^djx-ϕ+J,rt}-.$/4ER5˳lHmQk^|}d+1-Ͳ@ŊK;{"GP|QIRHH>cj̘1_@5hԣ%eQx;B7bQM߾}նm[?^?$)//O۷oWV/W/\u_<\L ;Vm/;KFRϣGoVb:Q3Gs^,,8Xz~eҥl/*ԱcGS:tաCM4ɶ 7 Ѝ+Y^Zeee5,ׯ !Vz3rŴ*KҝRRR.׿tcUUbgZC2BEIm^YBɤ#FrӧOWΝ-!nIu\핁TЩ/.g9?dSXVf9eDwIWI-im`S׺YMI xu@8zy@2%E*.6lеl88X9e%~Iz &}MZB7bQ͑u/oTπpNMl _5kS,ϜYehU]$ɴt"%EKol\ i?o wIܫѣm HRDDD k((kQLL l2\B'3O_WSLTS꫖G-flvԩZH;wJv5, tz*{կA釕sallL=*vn*#???Mir벲qDRff222$*v]y啶F%iĉjyc6벉>ɑ#8KPXkhݎCx![ڮ{{V㯶ڶIҙ3gtrjlllmW$I{q+rM o/64.N )ҭ^|߱tʭ Z6<'skmBI'N}()**+U &u֊W_+rS'o~#Mfym]ƙ/ƍx߇IAA}{eXx$k=bcu0zCpWɤz$I5h 3,O5gO'u%A[\FݺINr UTme3Npʯ$,L j6~-[Hl-d)ފz{QQRb4` ֹ;Zp Vbu/[V={9U+gGˎkU33슊z|Zɺy͛%I* t#6tM-o,{1Cx_?d/iQ0ϸ8'V~;eϐ6⚧]9GgYUfU&9yMd?H@:6# t#6{5g[cK/ $kwQuYٳisYz"X9Ԫ MIoƖYyΔʹ|9R*_^{1Bձ1=1=m[W Vi rI__'{IUX{+ WY9{Yz?'I̔$Hjd 9!A+{ %BؘގЍؘWiVt11}K90t4jLUV -7|Ӗv> @ ɏ'OGRv# P];iH0NIH11ʩ\= V&dbbtQ[;wܡjy3$I&o~F@hv;;߽֙% @YU7oV Ԝ()qZΝelݪC^|mVT(}M7/mlmۖ+[w'jOc6jSbB9Udiҥs8 ۷U&K@8~xmV=z% B@-\(UYŦ-'pY~Ֆ HڹsyIR.]JF9&F}Qu't! xaaӭ[{gе 3FaaaZjC2?^3gt8I2L7oL& c}-4m-ÆI˗[Q,ᜭZIC(_?СC5{lb+{?IIm遁2L^" 4Ps.o|X3qqR@ŀRǎOK~kȑc_~Z_,IN$e!N7K^۰rW8&Usrօe"""VOZ8B@ӹr髯)S^+W9066V4b=Zt뭷z* 7> @Kش|š5]v)1Ѳ`XX5tP]y2LV7fegga*++d =n@c߾}4_R=hXK %СCժU+]qu~~~G ۷v6|OWp9B76mJJJl{_.MDDnկ4p@I҄ 44PBB-))\!n/jWv| IDATt… mmOe2lo$7" hgm\"B@*b1|!(BQ]/sy*P'VuBs=ԩ233=]z]HӧO=]7Bҍ7j@l@b d2՚oǎ3f"""aÆiڵn%4 ;ѣGә3gjͻqFp 2JIIQZZzѣGkn14 322t5+ԦMj[XXOZ|.rEEEiݻM'Oz>f}JNNVHHHyWXtM0.&O"-\ MƧh 8^yW^-I4h1k5D>6ݻ%I;wv8fM۷oX+p>}Zp,<<\TZZ,Im˖-wO$xJ+\I;.00Pm۶:Y^^:߿U@#<4+))nݺuϙ:-j@-Z{{ 66Vp,''G0226mJJJ|$&&C^GKJJt5# A޽%IiiiǬiݻwW@@Gl6`({>{4x#3Fִc69ևa(a{7 J>nݺI@]va:rڴicۯ_?߿_T\\\)((ؾ={G$h*{UϞ= \\aNNrrrVU6m*++K&MҩSiӦԼy >0!!% M#!!9j>턳}i{ G-[h̙ٳԷo_YFGvK}Qwa(@ŐQx;2I hY2 osCF=ɺ1Zdc x#B7n;a 6aLv^9M9-sCF!hYCoǐQ7b!@Bx;zGCF,*в 41hXTގ!nĢ2- 1dԍXTeaQx;zGbȨ(@*v2XebQx;,2 oǐQ7bQUF!E@>|s݈m'Zcۉ&ƶ-N1dԍvea x;N,l;oG!(BQࣘC4avۋl6Z3G@4Rii<]fE9B7bczִ76oblLrwcy]Xvv/^ui׮]QDD^_rވEe܈Z_ߘ~˖-zg~AZvN<k"Ѝ[ hެӛfݘ>44TK.U\\f˗L?F" رck7|XÆ +eَի <] ץK*vWK~FU aFFzԷoSxx/_IeM6Mr.rIRAAa}_PPD5˵h"%&&gA{9gvߺU7ӵfͺl6;iFt l֗_~kb kԩ`P4yd=Zp^}UI.\;?GsUQQSn?< gA{m-݇꘶:3jNK>/<hEGG+ի%I r8fM[z- ڵ:uJe- I5hҔ`~IR=Q%O-*SݻwK:wp̚o>InV}w2 Öo֭ Ԉ#|Gi+W$=\ӧOK"""Kt[x'TXX_zKӧOWddj 4NsQNNrrr/.jhy(**|l``uaa$)&&F6m5x` 2Dƍ+ MdȐ!v۫-[Liiiիڷo%Kh֬YAy†VAA %%%׭[kiӦz鹫kޓLyy***K6o֯_?͟?ASXIrWaNN$KMNNV```E]@-Z{4!x#*z-ɲRuִݻ+ :VM:p GKJJt5chcƌg}m۶鷿ݱm۶IƎ۠sVjl;YD 4H~~]]hwϠ=v sh{pgu)))[WUFf2|_Çm:ڵ Б#Gl~i:x}ͳg*&&5BAAݺ%%% jĦު邍h>|:///!ͺ$iF~ƎI&i ֋/Q-jP0(/@ӿb9L!29qS>>CXu}^3g֭[UVV}ѣV>1~|XvL&L&>\c;vh̘1Phh kzK)N 4mڴ:mܸQ7pfRRR^ziZx]}N:uKFqqƎ̙3l-YD{џ'k=>>^eV+ھ̙Kڲe _hϞ=駟:/77WK/Dedd(==]'OֽޫYf9-G7̱c4zh=c:sLyն}2K/~ C!8tCcǎFv팼<[zyyѻwo#888qD'NQQQK~;#::8w\yiwIII1k<>|#884 wbM6$#55nH2wnNSO=eH2}Yc/a2;vإ nIIIΝ;m.θm} 0!l4{l%''ךoŊJOOׄ bKɓUTT 6 o>փ>:Ӷm[7 ,=ܣHI+>}Z,=U]uU~.vw?Xtw8կ~%0`tھafK%''}vgն}CF[\&LkͷzjIҠAYӬyShwXt СC땟vwN:O>qzlƍڷoNjKCjӦ$v<(Iӧ]:hc111 6إ ]=֗@" lѾ _r;ݻ%I;wv8fM۷oUWGUlluW())IgϞGƷ~+IЌ3Թsg*..N>N>mvwk߿-o@ ?l۷ouewߵ+CF%IΝs8-I:qℭW훒ږ*..O@Wȑ#iWvw^zI;w.\\kٲez7lse ð훎ږ:rx %''+ ^e%Yn4+))nݺuhmo1OT^^.vwc:?~$O?… z4e%w^{M/VRRz)EDD($$Dw^um߾]=]5bbbkԩ3gթS'}gڸq.2IRXX mtն|u-?cjĈ.+~UNN$_Ƭ2̺[~~m(a@vvm?ҪZ~a6;8y򤑙iL:Րd,Z/7KMM5$;v4֬YcYYYܹs #!!̴+CƇ~hL&;0Ҍ"l˳Oٳg #99|}>}ڈ7~6˗mڴ1"""TrkH2Fe:t())1vm~FLLgehޣ{g-ᾶ m߾ݸی0M6Ɛ!Cv506l`|!(BQG" E@>SN饗^ꪫҝwީ9shL&#))o9h/# f0 ͞=[]vuwh͚5z'tY=3ӧwʧ(%%Ńe.\kŚ8q}6lN9sgсtiu]ԫW/OTŢBh&~m-^X ~뮻rc7" fܹsz$If͒l @c@3tR+88X~{ʌ1Bah۵kƏfuQN<0 }z'Կl6+**JC ܹsU\\P,۷o׸qԮ]:VzWկ_?u֭Z Bh֭['Ikh 8PŚ7o^۷CZlluvvv-IJKKku;tP6G}$I:tjѣ$iӦM^_> kNsy###Zje{]VVp++Kyuuӟ[̙3V IDAT馛?Qڿb-ر"##} ҪUtmiٲeUbb:t蠴4;ڰa͛뮻3ax{NһᆱkjWhh*5J<:uP4?:.I+M6ܹs Q޽[jJJJju]QoI*,,Ԃ Gi*..VLL '|R _G1|!(BQG" E@>|!(BQG" E@>|! ,IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/strip-background/img/stripbackground_05.png0000644000000000000000000015101014741736366024615 0ustar00rootrootPNG  IHDRcsBIT|d IDATxw|ս?$Kޱdy8;0 B6A[m!BRJ{ٴ:@YBa|o F!$@ q8c{H-Kp|۲5-=9:VUo(ŽV:)DDDDDDa!Qb@HDDDDD)DDDDDDa!Qb@HDDDDD)DDDDDDa!Qb@HDDDDD)DDDDDDa!Qb@HDDDDD)DDDDDDa!QP{pࢋ.BUUC!"""ƺu`0 4(j"utt ..NaQutt &&Fa3*Z`EqCѨ=]|߃:suՅ={_3}>x.""bBFoo/ z |99P:mZ\|߃:}WNf]g)tP t1AՋu7~U6cnL5zUaQh4⻛NS{8D%Ar+eh2Z{ͳ \cll:-]Q`\.GCx! B X,jhRj \ qFDDDbnEB  *(('_n4Q(ynR'~8(4]xGNj?aѤ-(S4(wֽAdŀ0x ٥%<]|ODD2!Ϸu!/xtp}˂66"" M4rHDDDNFSP1U8b۬6Q/j\FDDi'(1 " MzBwNm5Z fEU+$""+Pǀ0v7śjD9ES&eE]6."" }L;Aa1o#fFNQw0.c""фwO'~H̜2<ؒ:.c""""  h;P%O;{9K3esyhMDDDфw,yFm?sL=эhqMv i'rP֛#곖rb@|z4M~諆q>Pǀ0v{U_HQqjHy2]mZi'(1 " ^Wr/]S1ݗhPǀ0v{{dʉ,Y̖'Ji'(1 $ Tv917m2딀(T0 $ J/ʹYN-@.-=ܙ1 D454ƶrO%Q(`@HDZEG(X?KeZ|WqD4a9KZmBQ+lQ(`@HDV׵P|LiЇGcLC(.nВ(<1 $ N9! R"$""": r\EQфVC3fjj{ؓH_<^qDDDD!MHA&^4"D"I${26"""P&r6O R0M/)arz""""w hB+gR5m#zLWQS=DDDDфT}SgiA`eCK"""À&ý}RY(W#фTS#>%?jZcQa@HDRuC(geQ1-JLZD4!UĊ>6C>uQ( BoF∈&Zټ>:(V$C&EQtJrT Qq0 a0b=$ ISPJ)>:o`s_DD~,vZCp C<фRъnYI>mBZD~DDDnWV{8Dǀ0t:zxp(Y<=00_v""hw7Np!M8u%2`?FV‚(0 $ K 6K@DDD4!M8u4Xe$j(d0 $ -hK3_zk""" h©iM):{DDDD!M8-Ql_SO D4u&rZnƈr3BB"pze"/L)L+К(|0 $ VE=u>S Nlo=*`_?ؾ};EQ{HDDDtbѢEh?AI#ؔXDC"l8Ĵye6v= X$> A!'BLv=***QȨ ;MSSVT%l,k`ϰ-&\!/m\Mz!áCn:\yj(dԗrCK$ZDpW /}ap0xm@5*BB?Z ?)DԯB&Ol;12lqfٻ{/N-A _yo8sa2SO=ޠ6/f3琉N} R:oJCx{+.[^}?Tԟٶ=a$"""]XXb:{lyf,[ zwFyy9,X+Vgl6oC=:yPJZbC%~k&a,`0'"WDkOݥh  .Č3{lى/F/"`6vZ磠UUUq#55cD&{SRd_͆;,Q|;4<ӄ39DDDD P?Daa!<}WPSS /pP[V+]]]x''W^˱|r Dz{(eorDRRƖwtIC;СC[pO?oD.f"5;p3yI/TcKbtQMp W6_+{DDD4Ʌ 7v߇;乁kN9hir&rʴ؀#6)`4/smyXi 1WW,_^Q`@覮`2 h4lҥK /ҥK0RrФE=uvfrEيD>,S~4siqz(oaQ %?Oy`:;۶ms. jnda;hCE=eN10rth)"qF#!m}Ou[ʇ>ODDcr9-5L$gDG41\pf111CB QO>o$W_&D7=卄x {7.xIajWp=yyy>Edpd & rՎL#T=vȍkyyyCH!-,BɄc=vȵ}زe zzz0|䠨.V\8^0V"ӻ)9_Sϵ{̀.Z,NOuBO+{xDDaEp!p^%K`ƍy#""i唌<ߛmhщVLQwqFMBJp6":F"p( ޸BQXNCHYC&Oyߜ̩]koD[&+!PKF'=D4Tws0ESf%5YѢ2zh7hL31ߍv5eK3DD4v{p!$фи64t#v.ͦu~97\.= 4G&_w&IX=?`<3Gwv"tP@ ?ct{/UH2>}r}dq{-SسMMxJQX?@(D"\$o\h7l*+`,>Z4Tz9D4tԷ rV0eCk$_w[^'X!iPz5o 5C:wzhIDDDԏ!aM5yf1k{?IzQέ+|:Nz@ `[okw&G׋rE8CDDD!a1E٬!"rh$fDrkJ4f(/o9fsq8Y?;?l2@| M}a.B"@` u i'P.7&LYܬ~[K ,h3:)8E-둊n%SkiP kDD4VL;Aa1j+D9%m\_˔#D!pW{̖S3.f)dTDQ\OH>l̙+g?+;o-Q8a u i'W}XS7)7aPVnixW= l09P~o2TbO?V&v}DDb u Huurfw\_+:>QhnZe 3fauۙ@Fm}{e0qSOg Hu2`Jd}~[S(;av8Qޅ]J0{~6 &:"""T!zII84j{iK v̗]73b|r& HuKN_e rX""" M HuyJjC0`s}`6Y~lFlr\up|cǀ0hx$QNe`bddk LNrMt{U A@b\&Zu1DDbB u yrvN:02_8|+ʳk`S3 Lm.!4ULNOD/!Pǀ0h}V(nEy?j L%g,Qھ 23}9Y~V(1!:A}FFV t-Ӕ#ʆY 's!A[@%""ÀTSY! |afV˓^?f(kr<wLEd]9 Qa@HDӓј ^iinTd˙i c?atrH" u^wDDDjjZd=uhgGRTՙt}tȀ-10`^_W"""<jj;eQA}m9B[{=YMws\̎=0Egj!""ƀԡ(q6O 嬠7ާ>*ZwrJS]P8za(P<1vr`}DDD*앭h /)="X| ˻r>jkTȀ[Ӎ44Mmz+)**=Hk2QSRQ֓uuZ6о#\&hr\"""<Boox(J`MFU{[E9CW.ʘd#.^0ȵjk@iPu?1ɏX-EQw7+'b *,,`ŢTSY)V-LJ1[.t!-^Q(9Lxr”l9+DDbnk׮U{8Dǀ0 p8#//O!\&4{h9>,Re>rYfNI3 ̘( .3>H "E^^zjCp2 ʕ+a41e8tN^&K&ӳ`b!UJM5*e=Ǽ1/P)* (CDD@шn:Уj@w^zDDD _O?4Z[[ֆ7|vG艈&&q!V-j-ּ^p3:Tf 3󓈈R5 |嗑zK\۲e ^}U@nn.*p ?P(wS9/rrݫ{+mEխޟ*faɨ9ՌD4zcwU͛7;+ĵ@0sN<ضm~VkD@ݶNT+rU1R,XսU2afS4~ H{^FQo(К•}dQx7~;si4\TeDX[H^81=lrCD9=C6ۑNtޟx:mDDDT rꫯ F_|233/4Dз6QV""RMX(xŮ\gׯVW>ZzX6yhIDDDJՀ0!!;vПGDt#v1$ɭl\S8tS{wAiU j4ZN洇ɨEF "e*F (lEd{ӟ͆/K.dHM6a"}rr;hNW݂֙ZN$ qPΔNkmQDDD43+WDcc#nflذpcҥMww7^z%)P(,U<|cLDƮ.Ԥ%Y>$uLK!g&%Mm铈B\/0s=7Mtt4.2tuu .PaDhŭTŧs("6S_(U"˴>z02|FDDDDGdoD]]M6$Iݻ4:|58{ \.N'Z[[_7x#4' -e6*Tgfzh=rh+CZj-r[%k- aRzQP5 ܷoOxeeA{クqW}]wyHOOe]&&ˇ4ÎE&em}S|_i٣9G&C@2MMMNDDDT]2Q?)FmLUUU"38P^^҈&-2ôRhͦ3bDFZ*i)Yc@-͚"m{DDDT d2aÆ XfC'Q"ImWq$1[.Uw!mUcN_IzS< >e4=HWٍn:YA7⃈&IavEEVX뮻ao޼˖-^ݻQ^^ `Ŋxg߸q#_ <6o8BYo[7:gs< -l"g35YZne=- 0 d: sw"##a\jT5*s-}=܃Qv7o P[[ +=܃ŋض_~9F#^|E/)[v-lقs9%Pӡo6nFرçoDÁ㉌5]R0r/^ft_}v0"0-HE8Pu9^}MSP+GiMDDD&3<:ںu|_z|Xt)<+ hZ\yXf x }޿pB4NPzH@8K  ]eQ>.(tL%KtRR.]:ओN6p:444 9Yc&OUd4trcu7Ԡ-ubiׯy 춏0KF .BM}ZQ8 j@EQcΜ9())tmjŋ/qiiڵ ;乁kN===x'EEEX~=q'dY?d=%6:Fm]] }̀c"Akz)>hbR=1DSw{49x^l6w}x#** ---_n)c& m؏zy}8UQ?c8r^UkEYk=^0gcc:1p`UՏ|"""(]]Kz (wvvkŵ^;].z{GãjFmG4l|@@8K30em$j#)Л~V&KF{1Е=sc"0ryi hgb={;0.ps8r.,,`OMPooT`9+=zTjrf^}xvyED.|Q]Va3===xPTT! '7PZZ [Zg>g,((>8j;vDcb+mrFp;=.QW8+D9k*YvS*`l9G*WX铈(]s5=Yf B 9UUUX|9JKK (--Eyy9N>AϕΝ:N7RTPƝ{™$_/TyD)I[tyhٯ>FXdzh920#CF4}#1K Z ~EDt:ݨ[vBSQӟ&T0{.`۶Kwy>=p(`A ^(Yx/9N fL?t*SFwiuOJzzt#.`+#ev$cTHRE|wB E6mBJJ  ]]]#ؽ{E]4ǵ+"N]jO}b~$W2|bѰŘ%0nضnGS 3cg{zuGm t_2  DryQme-#$"X,!j@؈GyW^y%MoQKK ZZZ6䚻X(}CAAx7M(G>j2QS \L#j**Fl[wgOJ\41t;F R"S"ݢn=4rKDDCnWV{8Dj@9s挩 Zbi2`2pv>AOOϟwʕ+}G0NM%Rˁg>,;~,clG4<k՟kĶ-n9|z=BCe#ڀ#!QP !BKF(4U|TuUz, h喺M]f0TWrVc0:Rlk"""Tw=bA5'&pr8kj&a^矯F-ZhVF<4e_N*tԀ0`3rU DD`bz uᄇP8,;D>rHs;hψar֗-!)}Gt% (&Nnl|DDPS5 Te'p"`bz \]ɨwxVRyT%&⛈!mXUn\v|_}Nmv uce[O&P bbz u5__rv0~K/TQd> ޠ0K/MO fφ@,OVG&P7iJP{D9nLF-So~F,? H޽{=( j| [, s(fQD@!ϝHDDDk?*C{Eh,/V4umݦΔ+HDto/JJJ6{}At#3IfĠ;m(4655aܹcjrJ <""㯧~,.ɸ=!0D8NƫATt_}ht44r[^4 bu5՗((--U{~a . u$]9mobcV.I_4h4\ p}(<r\x db r`LD4L;AnR<I1`0bQ{HD>)ڹYx46< *w `h\xnHޗ}A`p@؄&hZ'g)Q0Y,ݍ'R(y{zzPWWm۶ 'xbF6>v&|G(zAoa82%OA]{XO. ^}Uy@;cw4DMQH hf_ݔ)N l#ꋈ(0I8$8NMFN/q}b~rb1* $%5&xN#wOI{ti& zы^F l " Si'0 nH"11˗/k/X!Gy_5!Ԡ?=xz}&jn@r##ҿlS-W<Y3s[ 4GhNk^m~GDDDA5wƂ y܌<|߈nv# (7vn&P1^ee>{ i SjTL@:5^mZQ8Qw}Nd<(<0D;<+7ny8GXSYuYX3e:җi1d a8QB3NsFDT z7Pz$HB^x!t~IJ{ SNm42cxnfxݷrѩSȑt@2#Q)KHDDB`>C[wm~6>~z'8#i-r5^W:2z{C z@ŽT%" uW{DfB=nv477yl6㮻µ^yU(P;@ff#}Q㣏>͛}YL0# <_ IPJ@ڊJq=ۙ0ݞr~qk-66Fԣ[e}!PzDr뭷yՊUVwygGxCdkсDCڊKVtw HH> d(F\Q̒gF_سG֏jgZ-aau}!P-[CZZ~ܹvNv;v}݇Tu]ضmåIl¢ߝ\[?½FJKK\{ꩧڊ$,N(lDq/_g /TPؼ5܀ IDAT{V xĻ/kXWB. Bմrs# }j@vZL>EEEc9tǢEp7cΝ6m9\,_5^i:ke'x`9oF_oozkk+B\C=#L)w7yna2RRAOf{P΃rѹs1w!lE+k-F+B[#F """?~;RR<:o_|d͟sF|}܊ ∂kϞ=R?Aa__.2߿|n?!,{$|ѽDEs G$3S.#F&s _Ec= 0:.6O9&"""†|B[ok'<-s5=wؕ`9'垩R~:(p7c۱i&g}/}Ѡ vlܸ#) |h(n8: tLA 0{_[c{ލ'A26#"" @կz1} v[l<ꪫݎ?w]؆ e3w㩭 * YAD& \n  ?'Fd[GO^x!z$%%;)Sinnߎu J>\A|DDD0A-8O?;8c6dP<~_ރ%0>y+nK sO j滧_W^ hjjBSS.<(//Gyy9***P^^x}mۋC8CԠ^7<{6h0Y`?` '˧l035mœ(bod^YD4Uk0|/^TVV=T@q8קB"+xaĶ2BU~eJWW(ק(cn+A)//W~{7 (b\\[s𪒁Acys$mۆ,7N^/\.8OQ'ӱ w8tvpbA]KuV l zh,UD[سgϘOp8pcD! LG Ў5{.D 275u35K?fKdt#n4>+'8xX!M1C. WwDDoQ@dd$|hjjBoo/yf\A!^ބ|Kg}#h~*_ LiգPRR2ҭ^g c^|E޽{O<x( a0 QIՈvow(\(#…S3{*p=|t|L& q 9g }{@X:-&!GWUEkEDDD&D@HߎVq'OK?)&@71yfXV<#9tИ7ė_~غu+*++QVV)VuI|we(w3.̊:xW-=\z->KoOf9n{-ǁ#9_X3⡅<VnКAP}O?@EE;>jm϶lzo$$t$ M)fA" \EPD{Q) (bGTTQ!j$^7$Kz!29g,Bz ޯqN*]i6,>^͛7sN~'nj3?gϞ=uΫ픔kW^yNN?&ӣG / 9y$)))tDLLܝu|D:JPοo]'go3zP&W6U.]Q.Ej;<>/yV)Ts;_s5?tXܹMXre+P5ٳm.s౹iEQ(kҽ2dF :\tB"is YNҡKeF][N |iW:A s4=-Gf'######GZ:x fٍ׵kWvAXX1oUZLkHnnnRoU:fue?wTn>v,δ%0{y8JKKپ2޽{֭`Mq͎;0LdrE*I z'XVjgrk* @Sj?2222222(4PZZkf}}}2O (.x"#uc^H Vυ|z1c>h<|5'0e@ +љ8:W*apQCw L> 8q;\挓Y)|~>߰7bt聓 vf;f5* YB(PX(Dua[(CU*ZTJ`Q[0X4, B#P)vVRDUנquUJ?7p-&^DYRVt=ͦ/o$'CՏkl,<6¢#l #Fĥfar%}n~ȴ<&Vqvv5lh4JuZd-ߑTi;!!QF7`+lͱ-rK$I*=6b睂{@<>qfSwΞ=4x8^G%qp+uí 2WJp;l-Ya<}{ذzn5(m@髁H9e͞FZ2222MAd}ih6ȴ<&vڕޤtڵ0+V`ŊR̙3뇢?"^zy366mr% Vsa!1ܜğ;|ݛhMa;qwo^蕥}_'#|:1A;EW#>/|ʼ)xrbK&Q %xxBv:JG*^$y%흍̈́*$# ^x'x38E FRJEC\"M4DIf !%,asѽ{z22WVGɚ5kxg@z=W5̬YXdTWd2Ri B3tPڴiSggJ'""ibnn9\*"9 .iN>8`j8(Jʔ)V#FI'՜J^aEE :_CxxDVj64`h4j=zڈQmy*f(T(PX6/f_Y& QҠDeP65ۣ15]W!@Գe2s88QbczX;-F4O36&ӦCTTa ޚU 20aB݌ni;VGϖa,~R xaM"###sӭ[7 k9srʿxE22-BԖeIMMcǎ7u֡4h42uT6oL||<tٳYlY͚5iӦ]eee+ٳ'\|E1a„ʝ&P|&NpxR.*1B!dB!gC.ڻ2vXlق ibN!'/b yy qs'χ@ yf]%N%(;QN`Z8z(aK &FJ)Q"1 ( h 87,1!mMt`4Os:4yNM3CF7F3{A BQEa"k)cGx9xQhFQB NTLJ! wo<3H^ts1MKb :? %[zՁ@>,[(݉Ø {vg˚-. WbWB[!]8:;₃8`Ǟ(m.4奊qf䕗\k1!TEu`t/ugP % iOLDowH"#rg&t=n?>|#ݸwGq'|j6Ч %_Kc0B] ^\ȸh IDATc/>ƑGK^=aGX5 Bѣ1i*s}; 0 v,VMbUy"hQ<`0NyU !DNTMGʓ4um4$T^M2=J\ < 5n+#####E[2kGw]N$Sdi%b2dXBԩS裏Xlaaa<,Z???222@d2~%`Q]//Pë5 !F lv) p|~Kq׀oo[ڀfΜIPdz_R%#s=kI/ 22T / s̡7:… ʼn{ؤ-ǢEXv-lʦRa"駟f֭VPFF5M$((CٴUJZ,qׯ!ݝ^zѷ՟Pw@;f,Aph0~dhўI@@ӧӷo_&L@׮]9x`5G;;;Nhh(EEE!KPPiVzVT&k?@`VfvH\rc^Of 悴?K}a;C6Х]^Lo;w9s4ji۶-GaԨQ5~[l7ѣ-Z駟㥗^ǩʼy;w.6gϞEA[x 2+V0nܸZϏcheddZNC~zuVdxxxСCJb„ #,, &УGnz- W2pz'R:;;V-O:U2?~ݦHhh({!44Z,G^nVk(]c3RUl@`gSωͩgñXLY,GۣG+PeZM6_ŋDFFJΟ?Ott4Ou\||<Ǐh4zk"??3f]G!W;vQ49st}:o| !++u]kcРA߱ f/JupF!M:7zW##spɌ5~mvŠAh4DEEDXXF>qzyѩSzףhh׮={'|7a$w;&L@x`vZxT*L LzCMM jHvJ&U _4QaPu޽;UepE^/?~}fAs;w+EEE6srrXv-[n7ސSRR!::SNU\.]bҥK ZOmQVVVI&q:mڒ&//^{QINNl6sNgq|L+ULsr/k{nr\sisF iiiL&I ʪ^r5^ŋ믿rYr]9O>i0)#ss]у:{:κu ˋ+WҳgOf͚Ejjlà 4jmGB[._M*G>}h/-#s-W*ĪEl BYgs.xVqrHh[8^;-FK`wNzJJ䇭0̚5?|扉B믿nرc<#\pA (,,$33}!(((`ȑݻWlB,˼;s_uǎ}O7lP-gƍ9qǎc\|T*֬Yld2l2㉋RU0 a'.._ B_{]WYqE@;OOOi_UW^yM6`Ν|78t+WuQQQ߿{/PF#_Acddn\FaǎXgg:_4&MdWT#PZZG}d3|w~^-?ᵀ퓑i 9^W|U@]HD7yyAAAT3k4ÊiWBvJypY'qF:Nd2SRRRm_봴4GAjj*V"33SsE:td=wΝcʔ) 6=?X*5Q&+>>^ hRijm۶?#6۴iIII=zw}WZ, TpqRRR߈tFdo>JKKmq~gϒ):#G*kuMٳy:U¤B bRF3 አu`kdRSS9p`l\oaϵ3::j*~Ͳe˪}>oNdd$eee ed\w_~1KE[EKr1;ɜ222)!SXsV% X VTЛQSN8V5My]DWi_)WЎt8Q'G !o6P-))jիѕ/t: |rԩS5M2̼y$ag}v霮4=HMM%**Om&|gΜ!&&Lzeddp!x /e~Is"il4b111BpYI:q[laڵ_p),sT._4ϟ'99Y$W\ 9 7ndΜ9ET9" JK`-qqqV;t qj 40>zѣR KǛ={U;/ +O\QBBjLPFqcPTT$FXMbMK! RŒ#'7hܽ+.7uf)++j ~K6o\֭[ {9x(Ν;'b͚5<.]/yyyB!&O,bĉ?iI۷vHMM#FDqq.N>-{ׅ0"((H( Q\\,OMM9knRoV! ɓ5KtU{>h۶tM׭['K}g{gϖίk׮c=n,bJ+3- ;DXH',,9$%% @8qBJ !!A[x*';;{zȦ7ߔƤ+W @|B!Ə/qeq>4?:uk׮B{ImJR @xxxu։{npBj*rJX{v~qwgJmzWsM7I:^o\z6 +CJ)h<3*ڠRCVa޷l2ilfԩp9lH)))6 ߫+mYnݺѧO==$ d2q!6l֭[ϧO>6(**"?Njj*BIH>:Xb0++MrrM4̚L|Wdddp96%%3fجaHoV^MLL 'OR;EDD[2 }z>ئvB<Ņ!:/P(""W_}U:vBB[^a H{a{]s!VzeЙƤ$l,^xAjX,XBZ)SXj~ͼ/2fܹ9פ4i;v*8C6lPmLCt\%F N}BR)l&&&6xU5fb2s222,BcBy]!%&a.EҨ{|Ѿ 5wjq۶m{ UeeZKkxb7߬u~!m\ϙ3G!bwu0͒rK,Ə/>s1j(mРAbҤIRUdeeU{S&NZ[m۶IY EL&q]w\DFF jnF#<"R+j'O~W:--UUS~ծ1cl~M&h4j(^yN;V?ծF~~~gq|2a?czt!( jZ:ޓO>)&M$ڴicU,++9I&\sIj_9WٳG׾}{i߫*S@3F|ծq洢T=0' <ئ޶m:צ!޴K${( W$q̙jJKK :^UeժU:G!įB)!!1B^/5\ my,VZ ;5x˗J+ Okim*2!lѣ999b߾}˓+rQ5kֈ7{BIOld?sqYjms=6U?|$;;;1tjz&}6mdmVոgBb lLN7֭Bsέ6oϞ=T T<;~{xxH&uǎmիW8~i@J5AO7(0 ;Jtz!XX-.N CBPxwddd]Eܹ͵*T"!{ڇ &=K"%%fΡC "L&0wg[tܹP5] 8Ц_~6O>D2ŭR]y\P1> A4\!jQBdkb$T6c.\; J%~55R0R(ذaC"bڴiBI{mѫW/Vxĉ{/SZUX(5 /r믿|T/rF_x;*(߿_l۶n>"淅'ň7<-:h=mT]… BgyF/gqq'''1gh ǍWm;vQQQ6mڵU*U? )˗/...RoĈ#ĉ'bA{um:7 ߄yYO|=Tq}щtǏgӦM[|fÇ8p =z5zڕt:)}ٳm;ddddj$ ȫҦ…;/QQj'6Έ ~gGƈ> K=3esemssO<ԑsp>,^{k/ Xiĉ믹ٲe /|9B~P*|<|;wbХK$?vV^GP΀pss#??͛7srO1<|dzڢn9fQQ,HC'JљK(13((-)Ci1^%̜8~^É֝Jvɛo޽{qww5G#<—_~ X%ǍǰaäIIISVVRV*EtuurEDD0o|F`̘1Ml6K wjOFF:=O6 3tn/kHOxibY 9щţ2_ ~wR[bW.mAYY{B;w.?yyy9pvʙ3gl1b}eR^o:vHXX` It=^P{$ZQ en١TTIgƕ+K(RS$t(6Ql*B+b IDATM$đ[If^:wO^?{֙0Bk0"`Æ <l޼ł( >qԩ{oog׮]l۶ ^z%/_F&>S|G 6`.4j'5.ҫ?'y&h8NqGۮs D%Ȼ'P(?e63I {۶mᅲRS<䓬^N{q%|8 C۹3v2J LM;rWlƍJm$!qZ₊/Y@`AT(Q*JԨP 5.B*|ٛQVD RS i3PGq=*#s5Wر#B.\ԷO>2ܚ櫚*gΜl%###S+lfsxE.`^?BRG)WcZv̷Fy}ė_nΨg-v'~{g+2Up\k'N3pwY넋օa3b.0vθعGw E:|qT:cgGkqA邃 #]y=3~o{7r 0)X3J;8*(Me2Z(1 #sCxt8ͿQ1zTˬ%_l(k+ P3vCz]wIzcbbv"rE: v1c=z4+WW_}UVO4UYfdi!i楷//@yӆI2[O>1hx_TZ_p^0q8?Wg߷giM  %n:thI%u{_RQ(xtFXcY`^̤ s"^>xpCth!%NZ'pP;vIalNGΨsUz ȳ+DUJP %FmQX5U;_ gkep Tfr[m 0z^IiBcPЫ & *#҈QaƠ0bŒ^aĤ4cR1b,̔[ X;{ d@BQTJ%j;;5vZ v;hqtvŁ43Ҹ{k'|,@>KCΊcǎnY{xݘ֔Wwy޽;&޽{m6F5T%##B8aX} ˭1o1m"ܨi}$XlSNnn.U,D9 kf,`[*F=r& Ջ'ObPsjt{APع{NTkZϦ6&ʜ'МSVǏ{K[o笹#W^SOUܻw/Cvؼ.geM~~"y$^H$/WeW x\һUkkE]hZu|܊&ŔؕP-FՑGs6ɞs80сX5$mA*3:@Rk+rW/%n8:6hQP 5 EYoA`R uBiQP EyQDd&)1фhd2חb0)՗ҫ /~޺3==[kVȇ~SO=esoJ%z1vݺuX/6m{We_}&d[UMu|2%%% pB<1Ӄm.Ldnvࢁ˥dAC}J#{;gC>>ő#8jӇaÆey /44Xk.\]+ɓ'3dH7afΜ9pAAA5Q/|}{ebۛݙ?>fGGmf2IKL#?=bJ 0*0qPuY8bv䌛273nzZO] %v%t4%J(ҔPQdPW#[Ob\QH(P_BIA)kVeZhP 5[hw7"=9unr+"#%L0要w}oF`TJ(qst(@_UL&3wD%iL?ˉ 'Y,XW^ygJ/R2ٳ'NZ,Iؽ{7z+AAA|BBB5L.Vmҭ888[gϞ>}QF?b# &"ԩSQ*qY^9mͭсdd\7+XbT}eddV&AA|S{=DZ0d9 Cp<{ ر#}i2/, ??*!osatڇ0DD%#8&D,}Bb1"nuUuJ?Ke_,SYmӦMlƌB{LCP:蔛)_#dOOy~-=*~W>RO>ZYF|B[w?^[nϟӦM+s[edd*_xxW^_xQ؈ѳg"޺uTu*-̙#-[&B|L0Ao^ɓ'1d!(3Þ={=7M6Iٳg]xQHkdggKiz{P (4OZZӧO'L ENNŠAtwyGi3go[333!DZZ2eQC#'X/,Y":vX}1p@%T*xhժ011J)#""L唆1|aq! @W@VK`*:f݋{鼜r=HsPdž%^MFU?? Oꮻ";[´LeMaQ{r ;K ?;FG@ K/5!Kч.:y?ݺuCNN`oo+࠻h޽)SSS&mF@=uLMK6n,vzر5jԐb(L^jӦ Ο?>}\kjHǎ1՚iܸWGf͚P)&/"zo=z$ twwתL&Y].CT"33ڵ{ L8'N^!wΝUAR^xuԁL&C.] =d/tηj }yn #dX{E0g\~N*0 l"-m۶ SN͛7u}C*DDT$yc9,Z"%Z:T?}ULy]}s+ϩ4&m6պ5df };$lݪU{.v M;ͳfHȗ6BP/W߽{w™1ׯ2<Vht u|r9w5\0ZgggK +L˗(f&Mpboo6mHA y{{Yƈ#Vy/i6m-[\sqqK'''ڢnݺn|i޼T6;1c`Ν 0@k%prr*Pmڴ fg۷/u>F ݺu ="}CfQͫoJBᢀnx[:b؋g?r|nsXo|Hw?sy61ϣvmOs#e*zի^xZ_abbR/ /te~~ 2LktCrrrrHB  *Q5!ጆk&剈L,0Oz֨gg~1^.۾fjՂknvHRI[NtIZV`oowҚ9C|s@w`X_ԉ]V\퀭7/֋!h wwwZ={߿?&Hy^@ST@haaVZNq|:g5}t( 6,V@hjjZ誳yYYYC}'8~8LMMf TBBa|aCw؁nݺΝ;ؿ?222 )N'!]Ch@mLOD/2 }qhyBmzM,3"f禕DWf}5qdD<6Ewg x/m)L&rwk?Y]z1}NE/O011a@'7.p\U¬ZeoՒu=UL&m;Sȑ#q0^ gee*tq(Qu#_DžܞB\g!Czuz(G:~}x舸[n*dd$={V& l߾מ\.oٲ0 y:LLoYsA;^X{w v ѣѣGޗz ?\۵kWy4s_^EhfggҥK)U9T|  Ȁ}[\s)įGlz5QLlϜb|zO{@:r͠wQ yVNNfϞ @='SJo???( ڢvڰyI]րVuE,:?_cƌU%BM_TUÆ C~?cGBB-[sgƌYf̙3˗1nܸ7k ǏK#*>Eenc>Zdz%C3o O)A/;dCpg11[8y$/DEEaÆ fq {{{4|P 3E5LY QKnZTdعs'ϟ͛7wnݪk׮ɓ'cF.]PfM̜9+V~YwР xyyaذaشiV^]rdT*%%EۧEeJ,QԏܽN<6۠y.~=wQYYYHOO5!.J8nX4^sN_=Xk,}bOx0}ttSNիW6M7];R}kVy-OǑQ˼QBH.*JT*׌3diѼ AȀ;tܞ;cqW:ױxO>V)>>V:jo{\/_-}mii)hd)}X;:7?r?R (͢2JRoU& L&CmqE\_{˝QIEՓ'O={`%FwMѶ@ձvH ͽziy|2\uٳgy]N:/ģf"GEaQ?^*{ ""*DDFBPgnp{t -M+fACn/c-Z?L5G9x81tPV]N 3;z.a< o{V@=/F/h\u'""*+DDFvFgcC18 I<qvδM f;Qᕨ}G>IIIR .bS:u,ZI>Ny]/&DDDZ 3![^>=_ !Di&oYαP>_+d$99Y+ v0/d%-RX^Ǚ?1e2q ",y5BhᘃQOjϞ=ضmd2_9 \+:7şf;dTd"5Uh׮NZntV; FBCq֮[%"T1 4@T*]U""#(wՏ=-|piSpinWEdgg?sS.HMMFkhzB=RYUwQFb,,O .`{߻,STCۣYMty:j\91| 'ם[]WzG IDATW_}}>#b˖-رcƍHKKӚ5h 4Ue*B""#1C3_GbWx?"7J򫋽==O/Ṅ_999hذ!.__e5kaߛKE3ՃoLMMѽ{wiӧӧOU U"  p}i&d',1 >.M-0nWհ8{_{!--M !))IzCF] ޲я,COxIՁ*;LB@9 a@HDDRt8Hz ~: &F Ch{T-_oA}ߣ L&ֱXs_{zzj]?ta*B>DT9fA!82~6; b#9 u޽u.@(Ǐ"] ^jzDTuq\BikͱUuZA_DDV"U}RS'µg)9|{f۰")M@x?x̙@4݋k&$$^뷤N?Ó 1>TݙTtI`` -[&r M|\0{9 rWZ=@5 d4vzڏ"^~}ﯺ^kTbb"8ŋs>y<wG5uU`@f'U}}`̙e † =L#CHDTYyyyYslk DX`J2w=Sd/dIq*O? Pb$@@5kwY$&&gϞҹ_~nnn^n]u7 tt@C!AƴU<>PJBe/G. y: kNkWȁ@@Hk%-UVq;]' w}9 .Ę1c 6 6l5+ڵK眻 [*f4Ƽ`7`޼y\t 9U}==8H=x-Zx`5 5QCB[[[xyyݻp;Nk.K@ll,~+k>y R9HLLijg!7n@=kƌ=&fna4HTr0j%֍o [llrܾD*T 0 $""->>>BTT0k,deeI-3qG vYbet }{... {սz1ZlڵkPʂ 3 $" !eSvvvצb_Ṹ;tPpp0LMM "c4ڌ:or7.9y!r x߮'`~c8wh)@@ff&pZAaVV.ڌ+ \:-k>_Ee/åg2oJOT 1 4@T*]U""05.sVۀ#V kYؓa/#[!C:M} CL1M,^{2ټCHDҳ۔)S*:Dz!P(T*o~egTG6J3zX\&C۽;"#Zu3$ĉR90::`mjnTunn۱9ZB1 $" L&=) * h&7@h: $i|쉕;VԦZ ƍHHH@bb躩/.wU1M:88~1B""2 RjUC`2iJL6ΰӓEa̜2ʇ?~}_JR{7v^ R^z>cuYhذsXp(UJ>|8ڵo/x}^ ԔB>zz3^m5ݓ:b겷Ѡ ^z W\ٳzjXYYVZRz`@HDDV<ڨ_ޚ[M1MWx-$-&=C>_SSS̙3rNNNRKKK0DDDB""rx9s&`@2 3Jal%8Z`'MЯ_?YR#hQQQÇqdffԩzvڕ ;w/Ă9DDmۖ(۱}yٰa6lPżrrr0k,lݺFǎT1a@h@̔MLLhzQz M@غukdddjԨQd9۷/ZQU$@VV1y&Hg+~ŋѨQN€Ѐ,_v >>>X#"ATmdãG@)$"*p4iDo~ʤgO JHHXXXSJo޽B`+:U B IJeˤc6?J3۶m _CXC"R3gĚ5kT^BuBKKK$%%!--*UJ6m˜1c!*K#W\Tƀ JpQ""ZYYI{`bܸqrUn2Lzv3*7n ~DרQe( ,[ fͪ*U""j!44r9$4kֺu/^ĹsP ^3GRÇcB`z):c@HDDW%XkQ:VX/J "##URLh8x``СXbXbʯU*=++DFFb[`xbaaׯ_Jw^sajj+Wbz-a@HDDDDD2l0|wXj s!55pFO?ȑ#8dDDD@Ra8|~ XjM{T ؆ԫWƍ3lmm1h ٳg`|-Œ3ԭ[;wĦM4pss{nd2<==/+`޽ի!0zRՙLIzkkk9>}:VZ@gii)]ST033J*X?C)DDDDDDF!b@G~-{UtUAjj*z!66CDDDDDT,!ԃ4̚5 k֬B=ppp@.]*DDDDDD%bꪳe~/^D>}`oot4P-*^XX{q^K,)v祡]@x=&M£GL{QtJ/z՘) ! }͙3иqc[=:BhBӦM˨h4m 6oVdT曰öm /k֬AfDDDDD׉'RoVK.m۶ܹ3Su * T*`X[[vx!V.cHKKúuʻDDDDDG-ZRR|M`7pr߿]vŌ3f( KUaT#ڵkWo^& QufeeU"SNEdd$:uT~ldff>7\.xg""""FNNsӔU,b>*s9+~O>ŠAo;_Nmcԭ[ػw/X~=>7v  aaa8J%/ɪE~nkbҤI.櫯ɓ>H**=K~W8pԩ/DyyKCi&3AAAB ((T+-+ >>^ڳg{k֬Y2R0a~~""""* &<mʔ)]Jۘ5kd26o\aZ#aQe( ,[ f*sƄ=hܹ֬Hȑ///  ECPb)NǔiVr-ږ8Ovv6FL>ݻw/áT*1|p,_B,_U%0 ,D>}g={Ç׺/طo^!"""!VB8`%Vxb={ LÇcabbCbŊB`ŊCU$y׀5"o߆'&HIIs~~~qnݺ܉)))Zu5'!"""ru4iD|JJ7J333Tj;"?D!qy4k֬taaahѢlxxx<|Qz߷o^uT*L6 +W/7ϰ F7ٳgxteeeoqqq1b!00VZUU!DDDDDۛs^Ĉ믿D4i,l@޽K|o!$"""Zd2fۂ}qo-2}Q xzzJy5z/i{Ww^Wի1j(l޼Ȳ%!ۺuk/z7U-CXU;cǎ-UޢK3{yz!N399DDDDUc naEB"""s3!s!=DDDDDDF=Ee.*C)g\T2X?C5 .*CDDDTpQfQ͋E*7͢2Jd@DGGKy:uꤕR*=DDDDD\BDDDhk^<̙3a4onݻwc5IEWh$[ѕW_w^x94hP`2d~glܸ=!+(S@Xu5npҥWJi011)))2YrcĹscV^ Ϟ=CRRqA򦡢/ ^16lwcW d2xzzj?o[Nlݺ36n܈ {B{{{iСC :%Y/-%%ӧcŊ\#]055J*p'*lv7nL_?~ QaSglӳCo uD1ZTmSuCHDDDDDd]EDDDDDd)! pB]x}􁽽=lllйsgL+=] ]wwwxyyIie^{ 8uRSSo>\v ]tݻuK/11;v… 1aDGGÇ=z4F m^2C޽1i$7-]?BCCB(5kB!==]XYY ",,LO?$///l1c ̙sm޼yB&/jgÇ2e|RC1DBj&22K,Apppoߎbr=iiiXn]P.~/Ę1clwQ_kbСY&> %%g6Folٵk_~:!֮]um^2JPmk̟!ԩS1x`k׮to^&MYP.~lٲBJv׏z,ѣGɓ'KeWV-XYYn޼u֭[͛kgMtt4Q皋 ȑ#Z%g C1Dje߾}?tOի777ks*Sc'_>LǏkclj';w.`jjubĉJv/k֬Av/c).] 7Nϟ?YfN:X~V{8;;>}s->>p}`'C-?2v tL6 ,,^皝uW< 11=™3g3|Gذaڴi5Ym#F ** 'N@BB.]-[M6ZA!۽|EEEa߾}Z]_&MÇ#==>>>P*R}uB{ݫsm߾}{Mp˓ږ;ħ~ L2Xgjj*OMM-SGΝ;KKKp=̝;WJ6׏@NNlقuÆ | hݺupppγ.33cǎE^0rH!)) 7oѣGja… +V`ݺuHLLDrr2n݊KJsdRy1T cǀs.]`+G~*JzoiiY<՝#6mڤַo_ ؽ{7222a;V `ŋ)S`ƌ5|M|8<&M^6...p&O 8::^zسg=:ulmm}gϞ)Oso߾ZK: L&CFFε۷oP+ҬZ6׏ݻPݻԽŕܹsкNɓ':4r8_Æ :6/?j[~dy{@s-99Y ,-Z"**yP@8p@ܹs1~x\?aee%EJJֵ?XӦMαLj#We7~x@̘1CڪUG<۽d2:)Zn-|}}Eff5yEDDH*1T cǀK.I:|P*W_<bꫯ ,4y0@Ԯ][8p@8b P(6׏oFd2ѯ_?)/,,,HJJJvׯǏ 333\d:{wwwabb"V\)Errضm",,L'۽l={RիWE@@pqq׮]+0ۼd4$.]U zNpmk̟jHǵW~ϟ򊰵VVVSNx5Ou#9"ƌ#<==077M4~HLL,0\?=*z!lmm ,5`'|"EBBsӲ&66V̝;Wx{{ sssajj*4h &L "## v/ٳgVZ kkkP(DŔ)SDtttW! ׶yɄ3!"""""2R B""""""#ŀH1 $"""""2R B""""""#ŀH1 $"""""2R B"J… ѱcG888666hԨ^}Uի:d2kʔ)PEDDƎ!Q%"%Km۶a6m?~ٳgy7 ja{3 Qq!$$Æ æM`ffusΘży ,R|nw#""b@HDT lٲɰ@@@@t BtڵtW\ARڵkcԨQxNZ!;iӦP*ppp@Nb +hqϣprrz}˚_#99| `ccKKKxzzb„ Zs-H!Q%p!@ӦMaaarsDGGc̙h۶-={/,QQQ4hpalٲم޷Ν;hٲ%ϟ=zСC8~8&L;vEѬDDDՇ " *C<_պyf={ݽ{W_}N>;wnqB[iiiG֭)B& sssq֭B;yEDDT]x)Fzxx{Zt"r5777!0~xjժ_~w7-k7]vuo߾=ڵktZ{DDX˖-uιJKT# 22UV[;w⋐ oyo"""c}*'''DGG#))I֬YS眹>++Kzrr2֮]{͛HLLDNNHV}K|߲z*`ǎصkWej~"MDDdLUr -+LTTv튻wcǎѠAXx1疣P(JUOLL 4Hھ02"""nU ~W"==]7̐Ow^z8rN= q lmm R __ߊQ9DDQPF a3l0d2̚5Ko8rFf7oެU- *5kbɒ%  337oď?sss K |2bbb Ls=r 6̐U#""U'NĤIp51{! LMouر#Ҽ=xOo|}}9s\B`Μ9d9sfԐrB"JdڵhР͛&M`h۶-;v ֭Czz:1ydaaaZqqq =g}ӧOѣGx饗qb-aaa]6j֬Y݋oU 8khYE<;"b41 'Zl&i.˲vaՙ3g0 LvTUnfjp~MzvpH4y<iL&fz}'L]i&+N'8"Ϯ _ (o % % % % % % % % % % % % % % % % % y1IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/doc/source/xrf/strip-background/index.rst0000644000000000000000000001062614741736366021476 0ustar00rootrootUnderstanding and using the strip background ============================================= .. |img1| image:: ./img/stripbackground_01.png :align: middle :alt: Full Spectrum .. |img2| image:: ./img/stripbackground_03.png :align: middle :alt: Cu no anchors .. |img3| image:: ./img/stripbackground_04.png :align: middle :alt: Spectra with and without lead .. |img4| image:: ./img/stripbackground_02.png :align: middle :alt: Strip Background Settings .. |img5| image:: ./img/stripbackground_05.png :align: middle - Introduction - Batch tips - Using the anchors Introduction ------------ The strip background is probably PyMca's most popular background model. In its simplest implementation it is just as an iterative procedure depending on two parameters. These parameters are the strip background width w, and the strip background number of iterations. At each iteration, if the contents of channel i, y(i), is above the average of the contents of the channels at w channels of distance, y(i-w) and y(i+w), y(i) is replaced by the average. At the end of the process we are left with something that resembles a spectrum in which the peaks have been "stripped". Clearly, that implementation would give us a baseline passing by the lower band of the statistical noise associated to the spectrum. This problem can be solved by performing a smoothing prior to calculate the background. The parameter associated to the smoothing is the strip background smoothing width. All these parameters are accessible in the FIT configuration tab of the configuration window. Batch tips ---------- The strip background is very useful, but badly parametrized can be very time consuming. You should use the SNIP background instead. If you still want to use the strip background for batch processing, please keep in mind the following hints. You should always aim to the lowest number of iterations that gives you acceptable results. You should avoid things like using 20000 iterations. That default value is there just for historical reasons. A strip background width of around 70% of your peaks full-width at half maximum and a number of iterations around 4000 should be a good starting point. If you are using linear fits without strip background or no background at all, you should set the strip background number of iterations to zero. Why? Because even if you decide not to use the strip background, it is internally used to evaluate the starting parameters of the analytical background models. If you are not going to use any background or you are performing a linear fit it is just wasted time. Using the anchors ----------------- It may happen your actual background presents a high curvature because of whatever reasons. The spectrum below is really a challenge for any background algorithm because of the pile up artifact around channel 760. |img1| That spectrum belongs to a series of measurements on copper containing alloys. To make the things more difficult, one of the goals of the measurements was to evaluate the lead content in the alloys. As it can be seen below, there are lead peaks just at the region where we have a sharp discontinuity and with the strip background as just described we face the situation that we find lead even when there is no lead present: |img2| One way to proceed in such cases is to use anchors. Anchors are simply channels that will remain fixed during the stripping procedure. That feature is avaible from PyMca version 4.0.9 on. Since the energy calibration can change during the fitting procedure, anchors have to be given in channels and not in energy. |img3| Spectrum a (in black) is an alloy containing copper and zinc but no lead. Spectrum b (in red) contains lead. In our problem, if we were going to perform a batch fit, we could take a close look at the lead containing spectrum and set one anchor at each side of the peak falling on the artifact. In this case we would select the "Strip Background use Anchors" check box and enter the values 736 and 797. |img4| That would still leave us a small signal when dealing with non lead containing alloys but it would make sure no lead would be removed. In addition, that "offset" could be easily evaluated with a standard as it was our case. Fit with lead anchors |img5| Interactive fits would not present any problem because different anchors could be used. In particular one could put one anchor at the discontinuity and get an even better background description. ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6757658 pymca5-5.9.4/icons/0000755000000000000000000000000014741736404012612 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/icons/PyMca.icns0000644000000000000000001525336514741736366014534 0ustar00rootrooticns5VTOC hic08l6ic10.kic13l6ic09aic12/0ic07qil32 l8mkic11is32s8mkic14aic08l6PNG  IHDR\rf$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs  @IDATx> jA PEL2=i/cq{y۵?aZNɴ|XO|i6_Linًiyt4mwMgGaf6Oaftlt<-NfǮ{rt2Ml-~?M\gttz4~Za晇q}Gbt89tX{4=~t|v5m>\fi,ic GGn:xQsn}ylo56q؛4ϟa:ZM~qq4lޤ^Z[W/Ջxtf>],hYa|4=hO '3_fa8hVkZ|>u;TiZ(uzoNc5N/~:y5-ONώKL1R2ٸlhsڞ嚜gzGnfiEG=O䑼ێߑɇG4!󛱆ô/qp^ezAֈyr:?O?tOv76w'4dqtOa4_N-sK)t{4EtOidV"~Iy`@(<ʗϗ fFw;?b9߮|+1V|?Äqzbʙ'E|v\ݷZfZv5[ #% 14Ng烨i{sc8$ݴ{cyaZ"vZS)4)Cl{azj_樂׮ \CSv#Ȇ34m%7Gρ!|A90`,&D7 aaM#n-vOPX" %?v`SޅiEIbFS)Diگ<%._g ) i:+ 9Z[@ A=!)Atwi@`g:L҂@gӂaL>B`s}Ҵ%l8<'9E__8}?_Oo7_N0/.Gt8yzV3 -^! rzc8?nn>O7X?xzGGָWW鈰xh`19?ޞ# AXC ƺ^#?YȲg?jO|DBn3 XZ׹~뾀}L =C{7f?e><+<9:쌱NG3cu|ra\Φ)8C|~zk{wSrk94f>I*e6=\[W@Ҁ'QWËZ9zF:Ew5]Ϧ~|57C˛,FS\XnYc7Ǎ[Xa@9ac,Ą; AٝEN|1 A(ԜKI2OY)OʵG5̵ dLpR:,-H˓Nө_{Hk8^}vZx bV8~x7 ׬ᘇrȢ#qJHF/aR3izyuBi?d~/9>;Dy\闞0/Q7((Khzz="+* 8,(+xuq1]Q^זh1g/N('hyF3!G!ԑeRq P ay+] ܓ "wyf [~O ^,7ufx0P`( 1ˀlM p:<5zm%e8-X߸V,9CJ$Sj+ S:Q;b.G\]5⯃&gC0 30}= ~Hƙ禵hmнq#>>Vo=ۚ(`+t/nqm0,gW0w{`Nl 2c0OQOX@θ{t٢ǃr~b~ӗ_ ?Kbu_੬bqg/ 0wRK;k~u[ !Y *ͺ]M?0|k2-/,(Ŝ^,]y1_F@Нu8pEьLQާ,d2H8 JLJ߾zF2'<3缃~qsO}X#X WYhx,ǒ7qG֜< Ŗܣ〡1O✧ ]=8`ϼ`ƣj9L c|/CRNrl;r5[C߀?Wӗg?ǟAzs+He<< ޅEY3V,(d¸Ijȭ39E |i,k`<(Ql_0LnL[J&? ABBm/=b:p"y+k΄/A{Dԏ7mp1nytE k5˘e UHrvyDH#XM8-zB?F<a$Rs|=kkM8@g;XPx ~2xpO`8y}G(%KJl&[sӳY4N3Zx/}Ě,[.hus2c($<oy!B [Lt&O֌,4rib$ ݛ40ywr eљs{GhxtYTyGCq9+[BŲk_\("@") 2,Wl "+(|Z- >7\ !rW}aPDbqtɹ JHO`Ybgm̈́:w Bkqͽ`)K2 r%5*M_/z%Dt-<?~BۋkYV>?\wg)ЈG`|+O%`Yp?} h%3nn9%(;XH2ƒ( rqe*>?mpOce~+CpbeSPa5}AsGc^ŧs+TaiYR$鶖Q=.yr,VnυV}}ffraD"G=綒C[KKkMz)?J.Fcc /^^o1}9C{bywgwL_ㅤd' bEć&1=($T RM$&G ,=J n-+Xx`MsI<1I%,2#dۓe㚯K`r^C!HaO|*+>̋_s+)r6@=|)zl)(/XԴ1@!@oݵAN$!H)G پg+weW')~ :$Cepiߐ9U?+# yVųr)v̳(XQ2|=?(l=y=CYµ۠y +_^>>Kom_?O^|S aX^0nqIO5p~,y *269YxJjˢڒ\D(藔Xgt7+U(XǼGD헧p |'pk h2%/T~6BK>W/„*K"Ⱥ ; MY~Ja6d=P ;^S$2d@==FS<[YfΠgVtjesߣIs*ˁ|$|;.ZoW\)^<)NvJt8/YO'bkfJ\.!ghms2X /0QFߘˉ^xCI3n&cF/^ՆEa*Omv+^ib Dj!lâW,/CAbV_`:4&>3b@c,X&:2s HȇyD[2DVk lt)g4 Tx"[u7D)c]?GbK)oK:{5[UI^ 3;4;м$ZOpZ{N9]s۰dk@˫K`(sjD߽nTV+s8ZIa@r ^Zs 92g>z4X$X!x^2_RuVmA.,#JO>G攒)Q2  (t|D؋F /Cc{ m%wV.ÌYo@akqhg(Ok-b N0<OM?~~Gӛ+/t##p݇Oٴ>[/y{|74i9,Q.6V)dW ;/e}oRY nx`&&r$dC*‘p!d%mu%M~#/t`J4B|a?EÕ!g\|ApIj ݆)^YeUw͕Ojȅ~KT#X4Y?F=S{sdw$'N}!V|&^f֕o$?KɽƸpPI-m{ = Ck1!rF2v=~ˈ6q]rTX09tDWHE?~oo毦M_oV@[WlnuMGt, [EiVV^cAOato9մq3'cx;G,Œ?3TbBDM%Ã.,фPB{6iez2 m,P}t|~IfzY+\M{n~>=tky_|4#rz?N~]vB V %wJVTYyL#K_6J2ҧD;*׌Rr讄4D5,$ utJĞbxB*\n%}.P\€m`{zâ ?}kO0$!<Dy As!'@Q`eYǐ<&KGl< %kc =TN[T<'-*Vn)3*A ޯ:ORG45˹>)E+~^l H\Pe$Tx-~Uw FJ%#w5ϜVS,=J/Ѽ6&ru汮TC&c$ͣk'0Q¼,wo<{xamu }df"ɖnl<#*)45ĵn9-%c[GU(o;ת=k@dy>ݴzO_"7/Ӳ' oƞ>+Xr5왽\*!@egຣjYs {Z a>fJXxLjR',PvQzQn;X @(bq Ӯ~k#an^.pVԵ;xbxc PKe ;ʿ*kwIl-$z0$ǕAyGG΄; =&f} t R[%!p\i3xPr,ÆrR0"|%wYS̳k׏sI2~Bf] ẏIdlJDd~ CbU* Sdx KxBJRzB>s]^o^P@d% <[k4B p˸?w R^0%lv\'>U17/*Zܑnj}mn|~O<@h9EowZ]qINОo~9C [H+s'GetǛYWpɣW߿ܶZYWGnH |Rc(^Rax_~|}"|в9|^_^TN~wnG0dNirk";%^זkʔ>[o—⍪JoY~ @YN@ p Vj$>S`[ pʖysg~К06SF|l4jxԸToѷ"ݢaiƯ=c` G|h~+#U twǟ֑k}K-y64]5ڔ2h'ƬRNIХݶxb43nl\3re)C&;^b=f%nVN{#{b(5cÇ;/@,AZ憒>_soX`pC3cf)gu-*g I ]UYl)qW*]s׷c3ӽ[q>ܣQ*8=/{% N$BD嵟Kϑ]ry)q%JlԞ+qb|Y UldU/.\W(N b$ ;+nL5f3Wg29"B@};c?x31$vL KE8jIhWf2TnX#r1#K*->=!HP,-boI_+;0GQuo$Vo>)(]WѹR(,E”{|xcLoތJ#<(r!xkѩB0+U63ǏGOO2ʋuFΠ 漧O 0 ͳ(xwqh[(vOu$+ (PW{jS8gW \݅h\u6?\=s^uevN2\{<ouˊ݆]ܜžfN׍qn}1}7w][ßQƿ٬=5w 2÷r#YoxMBy^_8 Ծ gl ,9ンϦSyy%L䮌lNxS6YajaDSԧƓ:1yؕ#O+eDG>3VDQ:5gRmL 𹤋BW" :ߎfKHQ/_2 "yQ|} ' *8 AHa c,Xku?NuB ^UX>]C#vʺ0aOY¸ G=].d Mks=̿y4Ϟ(EJ] q}MmeD ]~VeNΪ EZBdJ+vm4Ya\mXz歰f\{͇CU 7е_N/syg4o<*5hSD-cqY/5CNE3 {|K-f,LZE߿V.> W:*)Yl6(Q s-kPJYJO3U终ުYW\MLE%!4O]edz& Beb۬_i}-S*nYLUpb.XNOXj?bW=yGF9&Jh=)f-xm>zawbwo~~qyB`k/NeZH ޱx_Ju- ,q LR;"Y?}FmV KKp,rGO+0=,TIQ/"ߔҏZ@:,{_`|rgx4'^W1xo$dIg`!p?QL=SKsf\AN9.Od)gw m >_<7MJvMahz"'{}>1g:a垲/PwaN Å+ qQfX,L[wk5^1 v|Xyky9u-vOqM2ֱ6ɁmѨQE PxK$DL9}Z^0dk$:{JS[?C+~euT]mkc~C>B,!N@[L7N>:ƵB.լ׹.xЏUM9*, %Ԅ)Km9, IMo=>]u%d ET{.ШKd_4,gV`aNm"{Gzޒ'ǟwr&TrDaBaLFp?d4ž÷o=HX  Gc-׌| ~v:yʚ<!Dq1j{FMHjcrg§'_Wt #Dc1ScҲ{RrאPm+⨃ZP9zGV L(pVDݘ xKhZEEce0hgJy9, ٶZO? p b@☐5fJy䈫Wxg_Nz Sߎ""U2Џe)m{Yg.@Pw9Xt/1 #R ROw|&X脎sڑB^ey~9/!dvrS{^ WH%{%v">Z$ iOGK͓{?WH|q(8)0t}{jAaHQk( /FAEk&B6oS(gC&2+gdvi=KKBRyE-<]BYXyHy!Ë3+ߒuG4fݕvbF#\5tx*C/;4_Dqoldh1tCO|٦יd'.e?d{(.-$KQ`!gAێ976`Qy(ɘKE/'fUŗԒJX@ #@ZkFeQ;pvQ7zF3j[ۙld;'#&aT2Z:{7`Id?b#c>Ԏ(5/=ՁgEJV% as#}P6w;$8KW۳_?>߿~ w8$bEwHbs{;T!eΟXG2yYj78_Ιu Av&jjCI]C3 ?7a2P|"7 sg2eCqm <i.ϓJty#%FvNҠTκ]>2z$@֝YڌV>Sx\k,!1dnA#^BȪy~PRW +JDxXWݚw<XǂTE \;.9Ap;lrny6Vр!A<\.g9ꃯ+˥:\`xWt3|~ū֚*k?  ՜v >\cp@cJ.Y:TXK7QF>3Fs'ʓ+gظjϛML!->8&2z#4$X5mEٽ)[U\]):wy42b\=jּ& [IN ڻ$3<ZOv@yJҌe=cn>ʲ<U?/,v5YܘC6^f|ƹmU]uXvy۟$[QtV"_^W jd{IՑJ}_^O y(Gܝ ˣc@NdXCFF=iMC@*-4Y4il1DQ ! wXC⸋0BU(TeE5AMNf?S%4^l[wkmmnX0Dnhq lfFpI4sڎzl3Tga&~1UxBOσ6qn2o7јdfsy/0/>}*sO\A׿ fGb<%I$q7qܼM@0`#n2y7'mrb=)x$ShM,W`#@ې)-A"Ëyu>b^CjY9{Ux5Ьr(2`(DThQ*D+/=YTP6kW[u蒇’/_#@RXY}4v`yl8ÓDO䦍g+tXUk`f1q۰TI\Y?tDѳfnMfS\ͫhs]ymם?AsFm( Ovub~i]Bv=X@:9Wp=C5iƠs4_(vVj&Տś'Q{ptf`0W Ǥ+ Uݕ$CCm4ntӋ7#T)B2hKRtĂ֠Q,`8I d 븤yΣ{ŏ2ֹmiV%S5 9ks18Pb+K` _62za۝{/帷 }v QOA6NwV?W>N;hu /s ?_L_˽Nf}>;p$TTjq . Fx;$UI::{VyyxR!g%ݟK cl]x!W{36;*HK.TrR(ZnZm[F9Y8>2 a3e4ʹ$OTg`$d#+x|VUC R٨YO)@0^P#:;#k=nj5S!ϯЕR(ӇuܹwE!<: TfP]&}z(A)^eȎS, W)ze ? %Df4P{`S`^AaYjF_{,v*>G@{b܆N5]:ֻ푄ts̕tOVm3%FՁ 7bZi<_vN G $6(^=7}/ 5* s˼C37x|GGM!l)eavs=뼤'VWNBa@)Ӽ^t{wF\?~0?3kk1> Zd'90B 5꥗}'D!!ktk 6N4cϿYߝTBT}T`]J gvZYa/>(5P >؍4~-ygz"ʝ<GdọZSf*OgZW{wpp*-8;e8OΔ%(cy#WRkcJjJ eMx8^c=[y=O(^tv% eSbag~R2~άg QF2%QݚLkVI7m"΂0Φ5gF^Qf|?όIC.݌bJ#37.fS\׋T ũ eҩ~Ujڗ;'ȶ5eOcګpXc+&p)k9/qQs1Iݶ_cl3NY 1ux; ܃T2+i^DF{+:XSM įՠ;i.PpEXÕ7^U%VN2P}rhue64uS9.gQX,J>ѾrKLjZXaG[ovVKx@k |t\g,T@fą@I6-HhS.3,7׸l4.?o2P) ez`2mmB>]zUIr(sy/mmܛa}ԡŁ}?ťGakcoxK< 􍝀R-Ř~+ʳHWUe阵SD>qٝ7ZïZk]vUބ ,0AҎ&U:xWy&SV+n۝I$Vpf"ҲUάs?LcW"'?JX{mL,tBNԇϿI}GuJ% y?#1뼃[`q ƶtWU$ֶ՛;,BFڪPނut7_ZwPJ= S%*:!eJg"%^ 5 ?p0T%\%yG:`xu6x Q XDOB|\uzno x<'p +_Hг\j GpИL}ߐ^Q[{8w~Ϡ9r;HԞ Uf% fTȑ5G"T H֡XD8xЀ4crA+fgcXhT FXKjd&Gx< K BRm# %(yqG|1El3nG=vt{=Rh:tw~o)!fB.: <>b3{!u[;vR&;X*$-ە!̏<3Sq!<@3?Z:tr\n ÜuT9z? ˁa=J5mNb[}_"S WFo dX|^as/^Rӯةל .]!;ҩ\a'D;:y^\C$oP<g U&{UɒUKƋh{{}i\v⼧i3[Ü2RuED'BJwbLsW vZRi{-![?ʶWvJI vVJ֓C4젙<5)vӢ7 upTUȓ|ZSsְhT{l4'|!pNGkzfIN!^*eBbt#IZ(]Ee{c@ftv(RL܁ ~~\< #R;.Iguw ڧ됖vu|1X&eD$/2| RgVDyѦJ>FG;+b%'!,1wOz$/'d^jRD]zHc Mrيky[J^ ${fiUK[B_ljuE*G1U4W/_6+5WT\QeqE/Fҽy.&KF"ssP#J;:<Ȩ bQR^r86XY^X>NY{cPH9 \j|G(\K3I`SƼ]UekcCDi%(oFA2gZ%Hr}v2=g@ K̭W {f?~?:~ F'5}x4cGՌg%Չ8gQx9[Tg KrVk6yP~p н&ģMv;ڕ~r@d@A}N:@t^o|iY  똰dЂbqOybR *>$C7݌ ^<H\ڂKi;haDlTӑM6Fcs @QVFJH}恈]p7ƸfĊ*y"YJu=Rw6f}'Êx?qǙE|W:+4(5/7 K?_3w,Ss+7G45uD6/P|-/Κr׆U~R~lKB_(6Bքc>wQZ{jInۙkGg&zL7|$V^˳9w Pkx,d4/uٰu}w н,oƿ>:&U0h7㝰Z}o>3>{v`ƑwyQjR]uLڤ7۰ eҼ䬷+dˢը691p ^2"y?B];K|//=ʖFtT~•ͱ*+`; <Չ}!z^z,1Zǿ>2qbyVI5e;F] \ܚj O'fB {RAl]{}>O0eclXIZf[Z>*\&n,,M^ٴqաˋ.54BwWёH1V?t;Bg,Vq.bynv4XZko#w%4btZ\X_7.(ޥxu'g bludp3l Z.5ƦS}Vv\y|?xz_Nd<cIV*偵#AXޠWuF@^zuYo=f"^8>g Ju0ް3\s2#W([K&/p3Z9<HJ? #;a1c\Qj1%q@s^Ȥz3Lej!sȚ\dHڔVUG_!JQ|܆rXkUeԒӎK`_~; ٚaqMg;s'E \"GPא]R%7XLAajIQ ,1q˚ard'8W yL$pktՕ=%hK=\vLtWx bbڸSsRսVͲqZ/scgh}v+A„Lz[¥=d<ҙ &Y`[(@0J%+u8p}H" ?IQq1KclPo6Bǂ:N5@ h.Pi^:6喏|̫']v%+u6[?s[eS#SS$xŠ>OٻOto%1:ASt.mw48̗)}M&odZI T n-6^ݜK2f{;Ȗ,ތs1 _qpR#%ɕ]G$AEkԚ#zfg ,XZ+v܈A+5v=͖3LY7( "mpf˰ph@!f.U \$g \|Vؒ5զr[i1Z)|GLu*}xoZ/_9dQK]~98{5[B3o((I<ƒ iJ=v|4dJҒ[kV h؅{M; +ֽVZ;kq>~ڛ@Y0\$0h2|#_z(|G r` ?oWɆb32cva;5QV4W[D//(EKX*cgz-\'[7ٛyrַJ@{T@#ʿOt|EQFaTf1ģT`#t< :tʀ~liT'\f#j5cͭ5Whxuʇu+ndшr(V{ G  wy+{{ @,\f/(J+Av[3M</Bd/uԺ/5^kc3P#)w 5RuOdFg$eT2;_2}k@"[`*S]_5+\Whii} s1xKoXr.yٽfሶj&/4svmsD Q: N 9ϟ1~,>Jz/ u0N(Z{,Td=mkKnx́}TGHÓM>*iwzSV<=,ޛ1]g^B%)I>uZSjQ' %:< _ȫBmwy&CǢYUp!4g.Bha  t B>NՠY+7II>Z\35˗82v4?Ϊw1N733B?gIkQ{;K A |Kl Ljea9.+< 8 [wN]K{:}998!xYG jn!z?y#*Wէ_u8 {NyR=cѶ}r.jvdՕJ/wJL)LnYju &k5J>{G(ɃV{~_CX¶AB7Wyo@gOޙ;{!JNo(+u*N;u"QHᅮ|#//5oUCgÛ $jBPFp){ xL/${R J"gH.a!S'%ٮQ!6$5 1:o|L-;.$G΁9v x`Z:oxD5 tNp|7WgFeJ Ac3\urE^θf?AO)7n&/*pݫA*Љ0:%(Sh3^Vdx;9$0'N.lݑ)R Z\zBBvᅸaX&G3AöG\(6C8(EcO ,v'#ږխ`_jبagɕDxU&*z;O5f':ଣ-QP05"d-&ͭhIDP<yDžKB#1wz,ʀA%ڀu'LP>ųvwk)Yumj?#]|`Q??s o򖅺2)}y"H*%//6ONA)/d$So֮N }YNogA%++џa{3ow,l4pƭ9%yKe]{]Z{&ی\ tϗYUt22 @&HF2&Β v3`=c,{75k N!:2Bp j2:qQ/FYŷŃXh‡Эbz+UmZgG:xf(ܝP$2ѾjIB kvfa=T&<7>xmNؿT$ JRZws1[ 0n:ׇxrf?S:(!7+oš31mhC:PԮs"{ B DXV#pn^aWjI٤($HbC)ƪjG |Ex.KSCn*,rFT_9S -1UB:?[d\s,_ZsYfbN.!m_@4IkZm)uu `]ɶJ }:֒zv|6!g7le~|L[A4Mᴁ͈H^R݇Y zHbw WC3f5@X'W ^z0X45K["+ʹM|55Igmw0Zߙ;P?`XYmP/ƿMxvf ¦ 9ɽn*]{+K'OǏdzٷ0ܽ5\s6K㿭G0b~~u#.!"s}Td^WgܥG% j,NG$s˨u"7. sc7/ai1GiXK[ͪ/P{ >Swu ?oY7~0@@(A%焍kGM, 傤pIiTW+kJ^"i !Sh{'<ήG=#3٫w Ň 3kƹO(9 V ~C#^*u:7dciL[!T2uJ =s/ˏf(wd$(n>X^{,RFCtZ/c9f9O I#4NSYzj+`2vATS2dsYnfW-&8/^M&r>yQ&BKMRlLl W5݊EʸV3q<6}'HqE,ЗR:h'hFνjȤgň 2ڨ (5ڦQH ՉB+unF[o3Q׿?x"ڔ[Eд'2o$E+~26 7_{C)]7k3gI|,Tsn"E`hl0sZ7=\VgWEZX'Ouip+¯%NHʣKmRY[1h8E{Xw6|$xub F1~;@9Z%{9-ELϜK&\4o*b]|q/TV^ǘT 1s42=*d\bru U[W֩kX[oxvӶr<$soB:R,+Fs9t fVhaIe&IVl>@(uPF3z[4Ũ6Bx:gar-Q[>6c^uBFx6NȦQ@bUadC2f\Ipǜs{cK?kb[Vf!3Ҋ%?e٤\ ډI8<+ZfM3l#TXYAQr)ڌ CbEN^t ۄ2H1\gF+.|KH%͗1v}񪢬Z~(RvͷXut sAnqCSݹ@OϞ+*=T#jO{z+6.buْ"++ LFmtX^]E6{qNrC^áz3N⁓*LDpDFdkz$ʚӴ# Pfƴh2Rr1NٞYaOuKލ%L|c47RpWy_G2%9q^0La c{68;1d+Mt,e4.&^AX "t6#DΡpMQ=WDC/5@-20$w͔ρ=6_if 6wѥR~7F)-͙D? (iHfu+T]㣎9J@kD.gⳏn5Ҁ3 .(sћGhm)!8`k֖IItaœD"F oXJ&N@ É9_^>_HjJ^+ #3כ-3ɇVm)!鎂kQا۟k vM`vkN泏O>~`ʏ`2FGt~=t, C|sRwLAs=> [tg]="۞>}JNBC iUYO-xTKeZ$Z*|L/J?0@1S/ Bn7~8"jD޳حwn._i-?` p)"_!ݻ!06S~}4}=2sj(N"$Ra/.>bNhFR zU&KExtCY=#K 5a]ԕ39cVc^54?k~\ ޴ uR tǗI9;w)'`^ߕKa:\N  `;j5|A&~67FX7H2ZWZgrEBY1n)kKKo$>q&b.-E]sΘ@ EXJ@ ]sJMn:˒TنK6 8$鳬Rg &blrQ{M2 E9՘^cs2VkGӳWip $}x|]g/^67Ǟ n/+@+i-p>wo=w *\<&Vv_EQok O1{j7OWz^Zh$BeQYDE({:2gf:eפ,.ٰ)|!F- Ӯ?/%aq&Թ j)Ac"S"R6A2ݰǿeFp=2[{H/&XF{͍{bY8T?Zbͼ£E;ꎧM.g} tY{WMgAy,ϒdٖn3 Im+ԫ pށΒ&W2{TEE$ 7H|UuvIf+pI}jwh &sBabvy숹2! >wAm5 rfx_O9hIOBO%Yv77#v?-zx?n܁Y6 _6}?sp?Jxc/ ߀18aa_.kh5Ӷ[EV_JK˵'CB,2ܓɗ;UpĢN7?,od {t.H!|x%PSRbtSrJj.rz87}s2>"$jqT ÇrD X\-GHS532Sb\"ő{WSt,ΰ C+{euy0E3wl: 1C/oP"׍# z,>q'+ 9v~ˡ`qrIкz q>_~G¥!Gd9&t#eqL,5zX4ft 0(la)#3s@hu^YC7ľ hBp,T\9ʜ'{7rH b+B?UUI5Oo<*Gt< <tĚFZ]"XC6#Y/ $\CC!0Io9Қ$^bu@= סnEQ H8@sMŜ5ϼ>֏n@αF2EMҭk7!,C9g'`@Rkޖ=Af$ 8a7v @)MMS5 ˷;Kaȱ'w;䒭kpg(1gp\cw5*yy{慽cz֫O"#'}hU[)B[ٶ.F#Z&X?!_spgc Fލpf֭f!Z  H$ wa 4phqToо7?$XX/Z\]POF%Z"(YFnU-Du~i42/DXM@u!>\ey ) ߔJ;’ٳyHAGr)]_38Ğ+%K# 0 \Jp9wƄNrIR(q.rH\_p:5+/RV8aYC64 b&u ˏ0jdhDUr2ꂤ>&kf6`YRj찬)u霙ķ??yX&B"*g>g 1Q6Jhe^J쌥ӏ$a2*)"}W5VA +z 5xse4^4Lp{_2o  {{S&fB͇!@T,taÇ.L;,f Usm`Kh y Q*j"R-X(҃6+s>SYUɧ/^@IDAT,z>tc̷ ks璵0zs-D9ӊ6 $ZPkH8ES:ۍndD@+x)odt>OΝ`jOߊ՗Xvg4!a2&n흇_N>޿Н9V cN<A0ٗڡ{V=<о +F{M{3DH4tFrݮEiO\/w0Kl>~yLx̲VK2̓LŸ>Mi&ɥv-UAȋ7wh.'0y`3< <=@a)Nba}uy6slg:j;,=ԅ6xtjmyQ}/Q5?mMɄuuy}<#|JRz.5c 7nk] sb/y SۘHK.\\KH[5fi!%|Z}ƅјl+ yY%R[5)/?{E(hlߖ#pw̘Q0a$# ɞ#5~.j V֬ \  {,u.+T;Gd8<]~OL}m4~9+>$Oscxg$qFGK ^(XYZWdku_H9Y]L5͢%˘zzg7L'n?>uӪ7ldqs%'J IƥлcNvsfj`a A!b&yhO:0\ܓ@Z<\904ă3Pڤw5Wg$8,icUK6(ㄯ;eli_˪ U@9 h*xB3fʓvpndb %"/[/-{j]u٪ށ׀k>sHSh;jh,_TO(jX\a(n5+'sQ`(YHo}ʢiw`n|֛7`|?|L}bqTVqad*zpL8]lf!G% zVՕ moKUiØQg ^J(ŏ8"liڒ@Tv `{{#%Vgw@ۈ{;Pص}:k+5)Wѷ=wO,D0KJ`'G+>N'YukHQY]>w' `OHw1Bu|Za M#?_L[_>~sgv;_~[x 1[%nuـ| ̹7TwW7x#(Rrcf/ &n$=sѿ nv2T.>D/~2"Aq fq3u@+@Y(4l5]`V9uAU)(̻CH*З1?M1?G HȬ?Gsmg#btuaI\擟l.C;R(iy£̵[NZC]I5-Wbk^#Ge&%̂IzK{6b ݿ h:ktºerpY;{5 [ߔa[ϩ.#s`Lvm M&[WN֔*G:YQ_ƽ̊cJ umҞ҆1*uȰ b.%eY~Kη9Bh?ų, `)Py2 !|>zϞysݷ3~Wb_~n=(wVMS?"Կp1=sf[cah&xT6<`XE~ x?di+Ae6zE0u8 N 2 zc!]|on# 2{|ܺ+iU TvY{$Ik :ؘwgB+JYN2yDh5\dND۬m4hȟρuHP71y󒀄3ux}aRaܦթe( =}h0ET=º %J@RO0C~E{ eE%%]~+t߸o 3[Gݯ=U iZ ƞ3N暉DYKmLKBz[q&ҿ˒,߳IoXپbXgGG6ܿ,qPnWLz+=Nhԛ"\#<0/Y, EY,LgcbktOG€v _cQn CE{QaH|-,IE,"b%}%xJ'C_!ck>3<<AYT-p 9uݟ47~KpkwBʌ+U_?}I,R)FHb^L;`,an|mcxD4tt -RGFK|j.>#U`gc3״3U?7ignw (l3i" Gw?宱Zd_1./Y1\ H29yCgfDg\ Vs%v]8j(y:oj/X?x7B-9]&膴ޔjYcV2,'~n\QE3v`ֳ~bN4>*X{bS 5a#e]IljFB漼gl{`@-\@b^3== ,QO} `^k23@XwڧXVvP >6ѲL5cǙAOw|sVd`_-w!>Қ/+uI.*2«h?CטwvK|]nabϷ((# N(EgBuu8C Stqhl㝑j_+K "%2}8[\2ϡː\0[OHm 0tir~-4ӡ.bYҷ"*1diqϵ(B kWvVZSN eA`+x.a%ˢ#̑T p)5ӨZ悔#x^q1OBTvhr񎉗'xiD5I5 g-/Әz]&[s {]^@Z X-H8;{s >G˗}9[K<[9_՚7a!۞:6LHANN_1c » MK]  Amak7VY5Vps* 2v61VhUBy<<:: BxUeg mgE!1@h`$mN@xnV`EMN)Bn5nHƊ$`&LnO#~?7b^MJxM\Hl4}ߚ6E-ɓ!,B𛣲vAƣVDܑ߬XV4཯Nsc{F͍+׭))8ȶӷ?M؜vIJ/Ss._VEZXa3Cl806ep] %͓@k半1&pH15gtLLj7I#UXCA%iW1\sFF?\N?kF,V#@0 ?ZAk" '[o#}Cԏe>VbXL@uc':%!Y'\ؙ,;0fIsӤ%}$._MUu׳'^r150vtԅH !H?ɛYO_pdVtȮ_cF`ssg/mNޒ|!<9c&L,?KU}X 6<Dw ŕS;lc#&,\]ݹvQlv"c|,`T;5K0HzUz{2㎸kYS Tzm9 3YDVXSvf 鮤=I1 ?0fBGg}4GRKs?B*~|{hҌ"bB3΃LϏv[HܐIg%};a=m},>o{PcQ\-VÝansҜKˊ`q*J՜z[w\R5BlGX}e(7>y *BBLIJPpݯt`35vuRo= .*S|a,b4 |,:^̗fOGd(քkSSJwE?ijưw#FOӿ+( r6SaD?/3hR> 0jVK++ftѶ֬c=Kϒ%Zd9.+;2_G7 "FΒ u <6:I ƒֈv@HԮoZ8~?RZ{8hEvu1sUV YxOWJ\z|`6*qdm3I8s6QŏTB|ZsWJ9<</_R*B lyk2ƒKez>-WP87-pwM}|CM,tLU@7p!D07W I8+bLHخk!+{oun_wo|i^މ|f {BSf{`tR+*XN(a,vX`1W="/8 !LCd_fY5 l`BPXYf*$ >:t7(j6#mVQI]k(n ޟb5 (6,SB)f Y?ea GÊCoqK0g"3vDZΧa?5 ח+#Q{4"*>IA{%i z,4Hy󲜎h1z0%Dڇ֛uQ'#/z~}a?~_bŸޛL eT}W=պkp jB sc2oȕoA@>]tŕx<*}*+. 9p-@z֣ {9C ΑEa6Kv ;={vnN z:.AO`ύ|y!5^eoZ~=@G3{"ȊQ>/ =:ٓwhU>))|<ə=橠efW } `<5C{I90VMTJWaBK.>#:y%U5&Ժi>v2ilNvgO]ڒx]߭x<`L#/K!Ks DyρB\>\!}c=5:@TLrq]cSFb//k&aۃ r0E?Icj r,"#4>cϋ攚{˫?y1sKك9Qhomud*i>T?-XEUvun^BFiJ`##x~T6'ApF.}F9 0?{N&G/H>~c40.FM_y k S2,>SQ1C3L$\a'0{ptmp+r<!=$ \BuaلaZҟ¾+{ou@6:42BcSPg]x:ZLvO`W,=X@hS-3Ҍkck%t>ˁOGK$üQfYT\26p1miwĊ8,94Z5#jGF!tR^5k>hyOZ<\u: \BgfXNdK\ 7 wH,H (Bh4nS}X0?8DKr꿗~kւ3ȼW {/`(j|T~ƍpdχc59"&A ŹN;i-GeƗ>G_h\k{/8CK'D<[Ikh$`182dBl=ӡxL_~}g0Ok7l!0X$ib%]7av?CVG?1(( OT<(f$rI8Gl|YU_= <]93ʩ_GfxH/ 6]I«%v}"W{Vߜ %U@;t9+t^Ѯ% &NWbɷn,H.0`+\U `L1Մa:fm223˓U?1f®¦&I^_ۄ#ÊP o`'6-{/h;Jro-JyS3<)J.,Gda AJ&WZ;-N_RPWP"ʼn5MnhƆ_vnGXsB+ q.oTQyM!,F]= fB^}vez¸`~{3ߞo~io>Ϲ*z$,M.$|Ylh}P/9_BKdWLx/sӞos|3k0Ǐ1}ie ~1K:i+BLX#d0A,]BFcDIYjJzbMe7f. :]U`r> og$E8[Roqv%)ѵ2+PH؜_<ߝ^<ߛ/omʏ=< 2)swo~˞􎁧E bZm"tVrb7z{/YEKjHqu*,rA iBb_W),CWI=M"4s 9̍hF#*-a%Q+^O!:%Λ1%<$d}ﮓC'=:㈽rV!Ҟf˦eIY?@/0 ZkoRC`$|WZo)ׁ{EˏηzX'|(}m//~?䙉>R oϷ#{8g4'C[>z>&{oKHPBUtDB D>&|͍UfώhkἴFėV?lBmna*4ƜӀ9Z-9vZaQn 7L het~11!?d!wMh3&=b%+ űS Pɟ&*}>z= "%0@[O3F^̍r 7HCםMXY?l*3nGNR6h{4or<~\锂/Eaͳx}O<1jևVF7rѹN$p)G I61|u?iC M\**ZR[ s?A߱1՗j|s-{C[O eh= B8*jKFE ]w1tLfR{1!/|Z2UodgyM_zZg $\x\/~ktҩ?׾i 50kw^M>xhZnZ%Y[ ֧15k<. _2"t?+BQ 92SWzN[y3-T= :ϝYO\[W;A9sLUMh "lM@>qfijUs% )1Yclߵѵ_cwԘ<6~ 'щ '-&ĦPi3+(lluH9aug\D|L{F'/&ⳀߛabUN/ ihQ0zY,ĸ!W;ŬCTfF<ϺO%,Ax;c;V,y4i mmRARMx=%eˈ/Dsv4BmMÝbKsTZ[/P$w}7T'WZmm2Ǒ6Pv0sZ]+~!ן=[{q& WNC:= g> 0U[wF; by MD=\/{ca(Z" }[C:OY\,M\H0l! -\{/YPm:v^`L8WOvxl}a`pM+9m&"g`/F>I4^Z}mz0+u#K]ju/%8 1WtO* BvscVH~Y^#9NnAW=|O\EW H0Q\Uʎުtٜ#!<_#\%lf{yS ]Mr -9fnmܑS%#K0qorӭ;/`ksXғ E<ƹ.sDTDp}){/ R߽UXDcʵ62ɼhV3a,jҜ?_ɴ|qZTzAs=|<'|]َlo%ud nS}CMZߗJcW6 _`u Eh@HF%\\ lڒ5>7H&lkdET+Q&[P ,,S0ׇyLy_fӊ0d$&DƢJ HfGa ?vGGϚ޶эɵ0h Gl p|eoԢ~(͍<   / 2Hi灗uÞuQ֫Ђڍ], ,6\`|ʙ޵Σ;w.>S9._u0-eR[6%9G#1%NRyIN 4TO͇)_f1xY4 G0|J)#qpF(KhBL9ygt_VEfSsR99 &Np֛';~to++\kїyz}Ra-[ko_z DAcIx͋_  }s$T[3rbL¤y3XRĶ\ #W` }][# )5aT6E(KG⽽;o/dl5rS);be-7SU.L4j߼خvg Х `t1{MwZ>n| Q-f5}@8jnRZJ̕ظ;p̭RCiğצ}&DY*,wn"5'sw]Laۏ3L"h%<{g-`4]،xX& WXl&oTQݍz>5`0JR-yYYB䏲W We&cKu+< 8uhdA Ḱ|1Ѧלw_k^fs[_,u;ܴrQ"\f9YnWݯ}؍^ݸm'|ʒZاY94nEG;:,>ba<)a1;Fòb꩐溋5+2\782v z_xwvKW)|3o?G( ȷ=po]? fvY Kb@ =TCR[WfaEaRXlO"si~z_u;IU妥ɖj):֝|<˜jnzl;aNan툛K5N-zȻ\j_g;ou_UN`t$qu%JDs x0/X,ۯ_ٯǯ# =?c_d.B N`|Y珯ur-䏓{m)0"B>ݓ_zK$* Y]u>#`ymRk BjRxn.á2]Ϟ bB@2"3y1a6BSvc\f#Ēh5k}{7N%J̉s3x3z$>$eNY|1k#YB?'"}fg ,o6^hm;p),"΅:sX(59r χaE"v#7P}n^ G3+6JaE.Vu[t o|HX"뇏{ zsνIj%l &Hknxh&X7cC={V^[̔<;ϷӇ|>}Q~giʰ?3\7 WҪsϜ(B@5w(V=Z60ey%)jg_]Im/4(N`@n\81Lj֜>#2Su kg,٫Uq djݕ|mG3"CxA:?"1:d% ,$ Ok9s|g+_w@} ecf^:͈|jߔ=@{nYY>~: &\&Z[>~[=ҁᣕV:aeXcg0ͪÏPC@.Vo[g[Ab.T( hC%-==M$p/6ׅݒgw+BpScAcH-ש$=5J|Ht8L;%OÙ=eVgKҗd2S Iۧ"y6疑Kӛ(JT+saNVySh@+z!aC@ Jj17М<š5\LÞDbՙ: ¼#kT=GՀ{IȒ8*Fjm1f/aMk/W,4}bڌ{"4y`qGkw̧/#<ȸVY@hX2FG7r|n^_{dkq  [rW>7Ex6?7U4u @M)“=G Oܰ/gdTyYI="`{o6=*hx]ڸ!؞Gsz g|[olI>3_ULHan:~/4N;;+<8BL;B[{">(i)@}~b/Xܞ'd.I[4>j=ϔ0 rHRM^,df^1a ]J1 ֳu .xښ-Dm~>A 1'sڅ5kɯW DWx9zk̽TTa^:yf) 7L1'KL8zp6 zJ+)6 {L- % D͇~0[u&.qp-ЖOߠE4Ҝ˪Hs:vA 3ӊή3Rg~jӻ?0)Ĝ9t ?ѣXz6(:$}ͯ|eAj<`olkS cOʤ\r"~&` S<:3ɯ:r1p5n/NCVqc6oyXglD}עN2V`Җ E٨b #XnC-eBظ&@t/$ld1d9sr_ӱ4ԋQV_S#)#ynutXqKiHfAڳU3ga LǡrYxu9rͦmVY֗^DSMfOC&4vYhuP^a-p _ZvVosq/BB/^cif" 9շt7}]Bh.3VsMPvFU1F8<=خć54{)8=s*)_ G@hFDK9@}m 9\պ}Y#:}k t˲u 1uQ*ZY&[V阇V@I> OG>?OZV{Ne4ݨĞǢ^x&ii%_oO;˄w¬j Kq@嗴:4x|…N!›2 ˀC/EjC SRpG #p<+M!ojjA+,?}iY%Pg..43iW]9 uyTh*m׬h [T5u=iV u}ܣ;gs9Ҫ R~Wy3{q$(. KP:.+얐~C>/CpXNFU-A t _٥JF0E(-I0}e+eJx?g'ڔWhٛ{,A8$_ͪ펽XrD_p:ED~$P,<%S9 0,Y[g0ont"gR|MΡK!eP~1 akZIrfvBBxYӗsӎr{ܬ %6>&(c`?gs{/LCe6j K@P4qQ?}.)#) F D#S#a6mN *t#=EDz޵`;Թ2ʪG{ x\dȖ ߅.ʂ%, cs&0"A>}%%F\<`iMN؄ V:I vDCnmav퐵*w2Wn$Ha6p(6Xb^_6zICo/pv|+Wp I9OCrp+*B$mLQp#D_<)CBR <B?#>TbSed2u)[OшSwˤ)e` ],/wW^CYu`bܼG˄ EK_V gT/DgK=??f5kT9o_`~q-!{bD) <9!~gI kV-ܓ:6k6Y~:KyָpCڲd >'6G#,O!;l%I=b /cYpE>1L #?$L2sF ߾58d  [k 1c>l3݇m7%.>\$o[,kGʰ;Φ~ΟϢ ?|vQ0_dZ<}NkLZ*u>Gf$|$8]N{mQ1J ίKʶ7PMoJZϓľIIwoO 1\6YOt~%7 lEgUOHsOK$P;7S=_\qhyx(u9 yhk&"sؽ Y,xIc˝iD\X\Dfp[Fl_u_<4[H>DBS`ʈӧiw1)uD;QY b臗IE7.cP&gBPBd@4H"YF_V#f9ak)Iյ"ktsy+WZ<:^9W,#{Üdy۽B,]Տg,Xg[@m^_Qj &LplJX=gJGЬbjCNz`3ٙuEh0TH;ȓv+M̿bMg򫓿1qs3Cc bC&$ts&~_ hOKٲg3xg"}60[Rוs _ []~R h@uyl^mꆛ < 1aЈA飶aoI/"sBB!rcsS!ŀ/[$^jcCXGDi=bXgMsܻGLche5<_L>uB7dQDYVYk%|n$m8%t9.ٗ?o7pƻ{-%ioo Ϛmٗ.9pV}aߺۈJeעLPgZuѣ6☐hxG5 Sۻl;Lԩa[7gOdJHp(oj?R$>ľLxG9.0g%ɓ9+-#Y*>m-ܻ[=wʉКn­Vhmy1F0zWpc(;+셶>)Dcd͹ѫK43G& a&!r /Me_Mλ2~~0!&;`'ktsOP=IXMgঋ@ ǨWǷ_Pib[<Ӡů8fd'vh}_&n<2Zo3+1]$͍_ z1Q2>+H(gɗ|54 뷧Ǐt 5MXc[0 .ِ `;[ B2Xa>BIi"N\ssڃ"&Ԡf u;:=ָTyESχ#HB^+vJ:v`&/ NTF#TptM9du/z{og|CI>YI}OP$Mo­|SZ$ 0n}܎gD絇0 _^)+~1QZ 2Po4MǯnZ̺@)~yu hlrs55,qX8q#sQhƵƕ/Fd@feֿiHdiWµ)RHcT=`kge8#fweЧ#gC֎gj8ވ+ܧ٭1Ec{`㌵Uvr䮰~g6yJ0zwLeGx>T0YEM+s%1mUɧrfÍG{/+6!Rݫs-fGO>႖NHX(.MW9/ǜʼnG%Y{VKk4Qզ׫9 Պ7 iHđ6FU ֌_|^zhTg T|ʟlSuݽ\^<9!Sb-a'kvzܳ 菐mwMi{-ZIV<ַ?Ѽ33U|rhS=iz2l{ΤLɕD+yz6CUJ\ #ڥuyo1<#h^:F(8c8p` q֦IL.F.fx i:O.åEwU'CIoGYg0t1ry;k1,v"oN?{~fc{}8}[ߟzk4uUtMѮC~ʹ8V1tI{@O?>Mg((Q~.cLY=I//TeT6,,?X߸@#0ߙ1 楓'fr0͞q;kWS3hg8CY|z@Rݗ[:$9 xxMtӊ<Lz~גPJ3j7D[oB J]yIPTPD/TUb6Xx:eެm.<,ª@DfUWPI=]2|73Oխֽ]ݭԻݒ%yAeKBf0xa MxBf`g$,@ 66ƖeIZ[[}}[- `tX4y¿W19*Qm=]x╫p`4 [n,e 2ro ͙*PMURS[vF}D`Oٯ&B#+DYʨ@w^?σ;Mɂu͔2'n& H vFՕ%-Aap)ѬXgY$[/YsO/8ʙoEl‚N௑oOVxlZ0XTi !ųs\Z#n \ar .E3V'Hq6ߓ6X?tI 3[*n{h, 7h ߉%A;^P"CcL<2 `";m|nP&(-Eq*/A-!e8(|c"8'>=7U~Z5g|!ٿUwR x,m-tM&4%Lfi1PmWpm#-^Gk2k,YHo6Sp})&lg֐+*~\Wk&b~wĐ%tu9&4o=1YKۇs0 x,\c iP/WPk̹Ru160ޫ5"/hR6~ ?ӿNJȒ{ <|ް MvM!wECZ61PDUZ{_PkߙͤUֵuh]&֪ϸ6Ja[Neaaq`e ZkB[y R]X,J!W{.-1@xZhQ=)omie CE"1-qq5SqNO4]Y9xұe` &{|L@jHk'@!נBg TcLnbK0kӫU ꍝɺmɾ6\3v6KFpP Du5mlvMJlG=g 7C:uozd$keLܬ\{-ܚIg#E\ɵw͑Q.W@0@FR#P *@E&{18DK(!*?ů3ųkmg 7-O_.z Ȓ1㶨M?r;M=bݕ5 g5QdRc 9J5F`TQRGHXϻqmy2\0繑ReeNg3$Cy=bkW|_rt ſ?>o]>neAbUWiF--5VF^vX_%B-mu:ӯ,NyM'qBQ@[d3fpS_]wH+]HM d!wHky {! 3\z`N]#2%¨kfk%$Q"O]VnQҌJqqFlAZr.hob}( g0 gMy:DMxpxn>Q҄VߤMʨIVFP7UY)%o\KO݇%-h"*)y<y`E4x3/5޼u ƈsFj@XvQ6Gu|dlU䪆\Noh,!cak\/´,&D*zsrIyO*%L\G{z{\|M Bh|rd>VOt*u 燹9Jܣ$'AzF M='[b4eAXڛEm׊B{ZzY,!w̴ RL޷Lxfbq)UC<5_lMaHދAҎV'69G#'h<@C(!-(CH7dx 5U!|Y\S^Vm֐Ru &=tv=ng|,lqi:&F%t=y;[>xo:8tZļbif)~X!7B_ehs CAzE}ˮK9&^y~ѻP5]:NZe$=0rER^E nlf݈S1| 7]w亲X*@t5q'mEګPAl35lh;B`>D"&9}l*Ϣ{'kӝڲʝƱYy23уfj9eΙRFDl6#۫To7KwF2ev3^U$P@V{b.^: ϾmqU  ]S(bm]DŽAު56ߺk hs= \A<;ƀGNaTh9mֵ*6 9Y'Vp$d؇~Vxah\',u%@07m7%&-Rxh(_[VNuK-鶩&vef^ݐkXdz9)wvMrBEE0juXYE˭&a mCHJEt! \LwQ(_5+)2v4@}X^SmX*Qj!P3F2(vލYSD7Ѧn9v!ch9N9?Gf|`5V^f ut̘YRSolSV=S~;/O%n Oj"DZIm{,>'?/c}+G='Œ,K?q<>=?}'RDoHVfW',$ϡn%Ʊ_T/tluC|gez.;oC6J o|5Gc7GY/X\ Ow7hD<6d]T_݊ץ A@6j( 'ѴۻV6WϾt}4ma"4`NzOc@Zv SO 4֊PǍoе6hMgGQ Ĥ,L% 2-F3n0{eQ*%O$8Hym4)H׺ 6z"Us36Z옛I5mgG,ѻQudCj;x?oE OD薪SErJ*bX=y&sdFȵҤD cM.q79il<%5Vqlƶ,徸NeރTT}]4zjTxkŝlZOa>WQB&gogAMnc :Oh3d :aW[=xEʌB·M pI^kUFlZBBdb~ XLMKJZ2~K~L8 g,Is  ]942r<_"1ş_mxh,,0{2AF}qP|)c<%)sEILvxuBfCh@sz}qhJi5{' sKw^ >]zlNѲ%\Z##x_= T]Hs&Ǝ]{B?}}nmڝ}[5*!סFN:NQ}ߌquסV#:V L=Ii_Q017`s^ Aq<ݦDeEcm˒k4"23ɜ}3_FsO۩ng+简!qR?6vA%]ŴY a{_zbT r2ĈhW"}Ȇ!ҙ2B`א)YaC4BюVPzӽ( bMj*A׌O2(PSbNZ7znGű` _)M xk,MO~{!i! +x_z<-*VXe{-I vPԤb5N[XDdr)xfk%ֆ#|¼}7/w^v𪺸 mc/;O ?Xa}z),}q#ړqp]e9e~2BX›eݏ<.^ Lq83 hs'< zb(7qIÌo O/ijoM a E#ezQp4~O|_7C8ɳ]c~{)Fy?Mn|Tt4va龜w- D1lWzkDqeFhOҫ?<$x ޞ m :8xQP$7bc~˗מoė?f5' KW"wS_#/(Jkq*LYYw I<ŋo7f/|x$dXt:wg=xlj:qi9x}[MaC!UqYV_u|Of#KbQ"aʫvlEwo#|d\#4pZ[cTC{$D%!A=OW#=UoO>s A,?eq=ƆI]v[c_+KN؈4MTPöRoiƋn+"sP85u9 򃂗U(mM19UkKz.5iǽ#ʕ>F>}(͸6=QMh#*Ǣ SJcO{Rd2. @_;+oISk<(4W;']A?_F)ik\V7 &$W怤F)63\'b:ĎAX͛W(i'SPqi)a!CPb ]ɺ嫋Y6AZ9۶YB@=08To({AՃX˄2X>љIؗq˗]a!P{i뿎ϓط2d,a\Ϊ4vJ1spѻ1?aVblrT<;ٸ"[p >le,38QjY >vn+5-lk(~AZ/l|O/=gk|/2Ƕ5 ȵ42%gY97GX H5gX✝9s-{$e:>!;JX!Дv<}԰Ps4@Uc߉z;idki9M:~، ac&@*5[: iӁДVdزhU Bkğρwq,=رSkt:8Hu7< فP^;IWoso:,O ގE'Y%^ *W B.Ip (!Lw t}u֐(#kyN:HО,19f6]~y:DҒC`+b@Po@ABUo &<`y8|mqǽDؾ}x ^ujc5sT<X}=1ew{9.X|^Pa3(i:sP<}zG<{ ˓g3Kuii ,8F|+/ț׹ b۶-q/>u˖؂w(*b>Fd͛,>K2$3gN؄?\t +19vES@y'k嘵\pk]P ӇG0՞iVn@56Al![5*_ZZDȀ 8 qI\1*^ޜ\e&@HK;X6J"zM بĚh3XfPF#+VbuĻY c=]lVdқѳ!e tC3p2jV#nc [kF#s2d+jN0`meV"iʩ9!1MWbf ԉۯЅf xvonWڋU1 $C}X#Fݥv,vjFi`yO0nl"h]NU=87d)f9b x Z:&. x1Lߺi%_9 ]73Q[R??s'LOY=I*Gl򪒰 Ƈc5$d`g8{Wս RDزW>&'i y<x /oz?xԵ ٥9bx񩧢{ez:{v0`&g/_ Xg; Ǡ#?4o/Ʃ;W4 y;S;[W,iJ2u{*TqM)=i_O tq=zi^!YDt&= VRQ({=b߿v4ނ$֥%AK^ql+@E'DݸQЄ력mtvpVļrG(w4:/ϤT%2<|xn5[@/~fPsC4 #XLA NR.bU5<{v_p?5ppsZ6vK,X:9c= 4I[xϝ ,[#(ځaRH{٧Yr(-7$E'DB=;Y7- v7+·}q=1sSsWoZ(?ݱhe?9\=C\LqX"a~ 3f42ǔeK\,7dzFFUY..5bv3܃R|A+Ӧ!tr6-`[VpaG)D)}`up @zl`a*.h&ׇK{&J0:-l 8@WllHj!a{g;i׆Qx-:)TX,:b "3$uR+Js@yi)LO!u);VBXlXi CNQplb¡Lhf'ۡI'YNnY!_!jڮvН Ed5!mac-]Yj^mD"v´ɡ\:1@ 5>‚s;iG,=6,!iTop"ӟYkˌO;  Vиr.GY; )șH]iQ+n`&2 uT)&NSs[Bs[_|_sarxnin[n;">#Lk0$̴p MkC~1SG#kMj]oăE|a7qz)؏|>q8w(MKqn?}45)wc wGg՝*\`0[{JL7")4jH8s1r+έqY2-38~D_J1ȷ<찳2(EiEq h}# ߤŬ w#ղX )?&9mhGVk6Y(e0+Z vpVdÍ =̧d6^ F hQ, >]]Q Iji!cS^Zq3e$xV_y@,[؆'"| Ɋ1^VЙ,'_%!F!W JLoN0C쫐Q+9D {(SgndK1-! `vfȟT.L؞h>_=ewO.j48 &`ۣ43Ï08ȼQ/`YSs-v m <ֶQl c7ͽqr;:x{X艱FPkh8xCGcgwo>7žҥ/㉯Nu F~XgOKtZY^].KF5<< :E+6%P]9Vs2&Ej:nxh~=t$~=o>{Ѱ=]k0_k{dzPzzX֭=J| cϼz|?KQ6%40p9#N~Xgίč`+eޣg$T'@/?o|0Se\9ߟEEDž\Y^Wz01ո_]f xY) v3=>@B%mL#f!._d!עFUB8ZIr37 ) ]$-V ݏCǶ .dahgHf !'<3?n~+0rt|s88z$ZN)G?[Kزeu-ĉ{Qi:H-9RIdPZʋ øZ/Oe,f#khМVc49W"Kp(0wګit8=xVM;1@1^`øY چHr:ϮP0zy^-zq.,eXAФ8Pf:bdA׫{W^M"{11'Vg`aIDoCOwTɉuePhOC)B3ߜdv<` Pg?vmu灸ok|DyzWC xR}xz;Gs!^x9fU,]=Lݹ5ޚ-W>ѯm=os޽AH#l}p㧐5GG/g7sSF&Ÿzixϒ8J+_&4amP^!jqUB)cnyȝ3'eo&1 ngQX'),mp*FnN">4wQe$v `P$['GX<]SMDqrP+ hVnZCz''?K(嫩 oZPH\-P 鈭P/]USD;; kK$k5GyoPJKA&<: ~fj칁2 *i`O44 ="KS?>{ R pɆ6Cr0l!-Mq >uj̟d4"d! &eV\T`e)Q׼Lq +f@+nngO堈> x y-ݲL ~SljьnzE*L`-m*EѬV+fF;Xa0fI" 3y9U#_%|Y#?PȃAT85nR #v]M,م$@m[k84c1ߣ4)*vb^ӏT0>mr4t5V5[e"npR/y+sYb&k+fLPTSbߜ.E@B0gooEӴ?Y& LV ^IB(ƩCU R(0cX ~E].[:=? Y'8Jkx0G8q?} 9Gi]3Ժ- id Mۋя<p%niX#GhK]52 NM3xsA Q"IcN*Ak?^]_L߮G<Gvn@Z2ч`@qejZkAqKHAZPn"k(*XUAM وªB[1K Y=\[E/s8 R bHbua0:5Z9젛l*n^tU`y9Oγ5* u,""5瞘ǯA읓~=ȾOJ6!m!ECEX`*V(&gx; a*u=F]Q QUӠ`²a 26Yp-ʬ0?M8~ ?Ƞ=tZEnc І/M ҷDWbgFlN7-Ga(d.6o]L42Fo>=;cں=P}wg`DYU͚pt?fAyh[6kXfQ0Uq@`y*pf=Tfrstk"j7y D)N@jݐi-+kɏq^6.)<4+\X!X-+">آJipeg?bB v~duUbyb*CERd>O޼4L,6q#z'SrLTg:Eҡ+pNa;^UY S!ֵjTRMM\~]j_0kE۽(U_=c 96l{<iE;N쭰"5})XK3 LIYViǕsBML]ξllӧF߽N hΦ34x8Ykc!3ѓz0v0aX \wÙm~l$ IVe O{ %L^Ծx,k􅇱B!Lj.jqJ iT{!ebxkwBF8xFI$>H2)V7eX='هVeNM,AB}t)xcR|I~E(LkI_\5r耋qY.ܴ,:E(A6OaH Q*L>^ {4 fH@V ؒ\"NNYll%ŌဓgJfb 7hX0Ɂ(WfހT~ ` *@U8xÝ!X|_PJˆ#&x>6Bc<"J¡|ܷmX@]a[;kv9)hSwizmieDb灡`Mh{o-{ʃ7X}mv5@ʄWZĔM,ѿ%mπ @:ءraT &aQ j(M#' wޅɠ-lJU^j]I32p#-Ҁb e$op %lS0"kN $xt!oD(P[!Tr$I{<ۨyiKL2Op'=wyWEڍh)Hʚba7L tV;6-5z&6+Ȥ~^v.^zxξC$ )U`TXTbK%va0 ܉WpK‰,cq'f;bOMm7["B̻(mٮ]퇟'ӽT܎ [C 2hVu`y9Q䨔7zJ{^`spo@uN3T~5{\^;J{O.xtBKqiJXd 70CZ嵈;wo"؛lgi+Ӭξ,DܹGcn?d$ﭝ#YgqDK!7Ë|W 9#Uilw0.O9!!1 WIvޘgɯĎ- vpy.N~ .Z;2X3 cSSu<uO?y>vrr8E< cxtaa6֌E@ ՈUb w\f_%>u"qȬaٴ8`^sMh>㕖vX2;!etֱ\SzZƚgT.\cU@(mc) #_gmjB̽qf:# [ veZ6<z4f*Kd0^Mp mxGe Bqv&>e#NT -"op؎3T. |;&O=ۇvE?o?/a4{N _SN`ّ:`q!z:^EN ^Bԗb^t_Koa02>pD-nLQ%NU*ltI]Ag5*URr)HqifTEmPp악4SWצ Y#ˆV JXnyBP\1 K1Ԓ_~',7il!2}y*Uْw3 \uk3D% sh1 N/W9^œ:-ֱc`P8hЎD,9T@ikAނl24u+k~3GK21 NKq L @Z 3V;§fC8VY4T9s(h:`lN1KюⰈ&M%%>d( ]c6s?36Ia9S`uXhC" <|IP.q *#ùuC%6䟺EPNk/XAI ՠ-x+ 6e[Y =+5E(emZiVU܈}*JJDLG3To9_$x߻资@Z]zGѱ۱;e;&PNJQ=phy\{%_8e{=zxٓQ? ėWխlȌx6k8cgacIlw8N@zQlҗA8vJUcY QKad0)Xygy'9e>\@fzjUC=eqK$׵N%MD7Hi`c=4f54ˮ+1 3d:R)WpAxbKPX>K! dZChHY9:\1jd$$LBҍ_/z4u@r)9iv<2asJN!Rg=@'@ҺL-fUswScRRѹ-%G)!#6M# E;z19\+Ve NʎEָN"BA jq -hb0D ZMU]yO˼vog_.66䝮.@;>EB/)j7(fTsQ Z%gzfB65:-F 9އ3ƻuKk^o"+%l _ĴK3l;kɗ^{ivnd i2~!}1&(aQf.8 }01cl|dtTk!!xj4}p`87w[ ? (PVw!9r/n09Ѵ0Im"z JxkX`7جR8B}(M[ׇ 9==Lb97^J2ZfF' DO6SrPSz6Z~ii<j$޾K,+[2iAHvhYqoi_\dܑ[M,*[yW2n .=@8ϵR&(2Hnzf8 pi,aȷ yh_!)hi9rx6Xa#R ~NJCM=Z.W:GEZB.@|Q=VE#ۑ˳S:iMq9FQ"ȔH4o#ZOJ%gHf˖/ ^ 2d] V?|UMv X %7:]}Ya! s=Μ>MH;"!]6)6 9d8dQm#T{d>`J\WXc.fHMf 70bNL:iųuॕ5,fnkkLzccy)YYJfQ`(P>íӟv<"wNWx13y-_LyEH=!ӡ]?{J̄RuyjZ Ee ZC"ƑE`J;B wp .+f@E7qW%pH}iNeViy[N=,/VI$9qHWz ht\d,8Jb&5j=l- )7REk'j9McU]Ljf8*s{ <*UPxxTz$q`Zлi]>̢Ϙ~EXֱdR< xz(kV:H|a?e<@="[wMa=me #h90U\K%=5~KyUW.uє,'y3T$vl;_w;zWw틕O=! Xo-j8M,[ ;$}vz6q?,`Ky&~gu*x;`l{9碈'֡ $d ]#?@Eik![DJ!Wv ecW_g(z H|M\ BD/F:AiiΟUƈ)Y,9[ȨC̣<& a+'VVX@Xt 0^EǞx;231zM3u*$q,IX =:))&tT9|大lҀZ jaR]_ ְf,d,b=[#KGMalG-&_$ ?Qv\ݕ&87!s`h+tS^5U3U %xox8tQ:/ Ab zwƻ85FQz=PxOW^Dcxl#VU#z6ƴ_/34q@l:$kF{uyըiPf<7ٻ 8Xo8I9=AP ,rO}\"ެT;I\R٤I6 Ƹ; 0V}(}ǏUߔɚq < ^|71_O"y%050tf@Y=! {P; UA9w4,b(pC:qsCVb#ji@xh3jSxc,2xbOrqFWrO#hzK+{k߻wͭIq'HH{FѢ$!R}V"xm?^)d˄4{`%♖fGHVD8U}JʻjR{Bg2Q@޹sp{dW~˫8;7C]/ QHڢ6_4ijݰoET֥o"7p 82O|}7fbwhсcM,pAT:*b"=ا4NYHKK5M5ӪJPW Oއwq:kp jjXri:#w?.BZ*v1 vWdk;&[װxb8 :UMpcrϼx9+;=~x97HGf 4fJ3e|@%ץ~T9E&T`T4|@A4+ɽ<|!ʼG^t&"7`p > If[%3#7mʩhrC@IDAT@Ëċ ap% @0(/3@ ǗMՉF46?Bn$݊@NElz? ˰jX1*(XHNE0F\ g X[5l52,@Oh), *ͬkk/5SS lbQ4&Th\̀sQ#=eyսS4G84]:?1BoLCB5>쇣-'s }߿qz(Ι4WdXcNӵ5qJim<c:B" g hes|tk3G$eE [d _K{x؝Jz;D nk+#@4.A8@@guLg='I޸Yo@7h<B$7WVʍ\@uRyɯjNK /`k`3V,d}1|,r+3u %ViixKm &Q@0~M䐂9^Gxُ Y|~}hs6_CG!ʳ- T ]ʴ~?o{_~=ocKGmhfK4<揞 ~E:HCħOyJ p }b& ~Sӷo9ڿrxG]CHJM/[o\~ d*Aunj=P7W*_zfn뮞~tn7AoT&4 xmqlt݋Ư_Es|a^a.7Hnߎ_z>,M{sJ~a1EtY7IZ0`2܀s|Ϛ;X1AIZh, ICX8. , FV(p"6vWzL@1ʂ0DAAw/lHt1fY&D hbd~7E3>),hk>,-4GTg 888L Z[:BڎF)\gK u̹ZyE`uiWulzWp g45P vi>yj9]JzOͦ‹(>>I>mg˱\BmaIMk0yp]-mY3+(NWׂ .Xf|q}Ng|TK'm$"xQ*h+Ȁ&Kwd*F:c@/MY IK}N?οK[7?yQ ˜ޫl=CK/.Cs!Rxg$<ھ^@Fc'Φo# 3,g 0sVFfZR3Q{]owNxzN=Ȱ_ON<fr^gN2g :{syT)ܠAJ/YZYxH-MҪLɽ6 `Xae~sT.i/46 Z9$0p DsE##臍Zmb]Pq"h"׳ZMTMXH6֌QWjPDfT>i)6G⷏/KDִKbFbפ#X!O0jm{ P J.q[h1N 0 13(i5~T#tL31C0U4_loOĚ|Z[N5ku>XOq{Xl`!Orp pY {ﲼ}TL$| bDJԪO'$2 _,q_bEP灴 H8 xAlAgԘ RSѨ D N?K+-nonNCP4ErtHC'P hmU( ޽I6fLׯc º=.vwqBX4n.9P:_7͕tx~)4UkrV06kբKZ!*~ <{lz9[ :Ό Cu6J(a[;F_kc3ƣ0;BfQks7F.q]},~GTuDS]lʩ'ӯ_Q;x=pdрQOX.՝0g c8;3Zre4TP-h6݂hƂE̓p h1XZ*of}pSi3e+5Eh XS ۣ;g˹S t%b1DT"PwI- شuٹ4 -b9OCeqh֒hQZF~i){c%'^jsfTsA(7YZoEL2U[t9Աfػ/ǵ1R( ͝!~z@TWtGS xo+A7I79|#rYaB#)=JGEVE_¦b@mlfƄP5p F`uT -oV=+OXrU&OtAX`A8B(3B"U &II\*@?UG|FM"t75 *t\]ώO?t?30qAsc 4$1C^ j@Inj%*6'⦗>兙0T ߥnpb$C։u;]t)tֻMS:,#KMH7Fcr ig}Xnڠp*఩X‡' #p!g@;6 P4s7M.֐n`&?Z*MS`yrΓ,՜`Nm2!䢝UG޲]cQ컁!.:F3ʀy@d3/"#\L)lkEPh~'F Z} 4p| I'nD-ޔ4``66m UK9m{tl7A퓇Y;Xj(_HFeg{bi4ye QtMTSt)ѦȤ')#C(L&l#ox\oJ8|_Hdi>F} W[1af;`O6HP_VSB}}yV{81A~*"t`5#벎,y?6Hl{}`5k5 - Bqn u#lL2Re`{&BUJX1ुT,Q x.K!{;}N]{ߦAqcq-M70Y̆ܽI@E=6ҳL6# 0pLIkoSgȧ*WOᅥA&%q3Kl؀'&ƞI_LgȾ:OnM% "AI?vsng`L|EGƞoou0(&#L!ws !iGь2[B]]f.Fe W0TaE&F G+]&7 Va2~?X~gkCKD4""?a:iŀ *[$a-{QMr$:jN3vF* x FXrjn(p_H'OMS3uLʵ4?O!Lv\r'ɜ;Y.;X]Dpavp lw4XF)cI/!;h IV abpV8s@C\gqABSsXw6J=wuOju2J}QCx^ݦgU!l8 [3B,g Lӗw1Z>i9K Y aH/^'X|ҋϪ[͹Gޯ5_ݴԝۗ^'W/0W "tV? 2:Jgg sw}<+!z.ѵh|,|Z= յr;; h}fjw(? ԳϥSSP"v|Ztǭf-#<=6t 'S3wܡK-An)Biה+ΞT'JL2&#F<&H#7AK)r` Ic8#e0r -chm@B{YU0*R!@ΐ1WYGfW`cc><3yFϼ4׍Q("(0F_mcWIp R~EǡZ`*H apz3ԧHȾ]:֌bDzf A1HKvyХCQ.j9ogl R E1Ϧ'T:~Q,0\d6m C$w JOx5ĴZXYh,SZ:49Eڞ(4$_qZo)ΖLR@-dGSkS#,xttfG#g$4e{Ks(x_ =8\E Rgߤr,;j ɁLp GλM=^<)E:x2[ 5H slzFݠl7Qx|V;kΞz 5ehr1GևQ_] "ʣ2lFT4A#l:b&߮U329JAp\2ѿ Lq줳)WR5D[3Gm"T4rL `~(ea*Bht1E=hP = C[ >̨`rsԲB&#(6ks=ˠ rኜ1 cmƏiז/ T:wWNNAc?K@e5[XJ{?tpK Ia__{K=%`?L7:"F tEEq n*]loQ']gYRe|-=72-Te hrZ5mtg1w/ ޤtK$kugDzT  {0`V.kФu Ͳ榈rA0J(kki+j4%!ӖA- Wӓе&2FSEO34ȠTg{\?CjO8M{Xkj )1XsAKVFYuC,ihkh 2h`VY>/È}` :Uۗ("8ybvf3S AS8\t$y& A7cĞJ8Q7`jSlHo~HV[>7_}:qXf ֛A`z4`T^ =H#} 遳g /!d+u?O?B7S E1}{0k I6i2vƔN Gb˜K0)_`玟B 8!}AxlS- g04QD vM;R9$Ӡ`ь6g=!)6*.9@)H: B/x;Pd]A3 1 $h%!.Qu|Z ګu 4b?C4^R+/ܸ &涤^N)* Df_!M q뤧q jELt$LVy"FY0HA9Ie>X8R">0j0BiRl܇ݮ#816P0!rCuDeSF3! /yR@r} 2z+z)a, >DPfk x crNr>p[!Q2gLl `՚ꮌ3yjT啛Qy*v郸>4{7`stAY<ɎPLأ3O_8b:F{N`P2O:y6*ƺB>HuZD ذEpj)XK/`Ѱ@M^}3F6Tc0L񏬹眃rlш$fgAflr"-h>Rt"V"5AkRV",n= *:l^㿻 =ޚYmA & u{-1K aa4+, Pc*#z23ԇf 1It!X'Q(e@LQ(1Fw!TzD9WjiȽ ,N|M z<ywIdUC)Q`N=t c khkT4n i[KX7I /:p|>ҨCai$xV2nww%O:sv4rOmc_B{hX,b\ { =y~+}ꁅtbi*:ub+{ ?]}MEO`=afRb g5Dkc ΐ,.--'հG^K}\_c& /|;վHg,K 읨^(w؞};Bz~:JkoK*{wϞsi8v:qfsˬv&F` `yq YBu%p @Z칟a#J\EYiBwj聎ՏL,I&M'0|8*F7$JmZ1^V%߃ӟy# O&cf ҀgW(0 8EP=M[CUn3$oM3s~3- 7֕Ӑ3fjѸ@Hd 32%>JopVNFcgV!OBpT0<{v!ؽBȈB^!d1e"x0l2dXL"0 =$2fReK}X( uh$f p z~0nWӃ$EbCЎƦJ*?K570C5phډz*n?o.4; J8g}pate,j 7/߹ vQ7Ʌ[p@1WL_r゙po̰[ Vjq H"|9[~)]yܳ/fs\|*hLm>"EB#Q6(Դ~qg-gFˤz<y`D;]om|(tK4'& ,y"6NaZ\@LW|GtשӠlӑT(>s\50'9&"LG1);X Mn;{g iӕ 2w㕏ca=ҝn8<[c?!*' >A 4syF(A#&1u,u'*;N+%͢6-ʳG`ϠP=+5CxZGMuߵfQ9 |i,rvi"?!wn*t0#Pla Bt?A;#Y#bp]tF  Х.7Kl^xFʶvVj 8h108nHҷm28 eHAP( 1 V"+ io TfYdr=Ж_ /Ӻ[?O/~`TдX_M,Fzv6/N V#ۧ2̿Bj)h.]h$*VdEUJk SF>U=Yk!ᅰZjxG$Gi,Gjm9 aQ  >sjVgs˰:<mwRHF=s,GkN;ꞅoȇh%'ȱ@ |At>)%903%_q` x674p#jͼ*Iȿq-Dc H̿Y3fAJD2g۠( U&ҬUpoьmC\|&'i*^5-6[eI̩"Z4WDI 4DGYED;ڽ8( B@\ LI lb)Aw-#z2s!QKԔ![4e԰d\`_[0?x6BVgT_JoDiQw#v"~Uzhtɧ<7#0嶵Eȭ-" VVǗs(o͍ln:ԘtaEd(^A\<.h?;c6wi@ͥ}9 Gm;{A|Gl7ŸCE:z_sMޅ \;P A`5$j7?r:ؙ&}t.nH`(`p+)G<)R")؞k9|#l^ NVdv(ȓs݇J|lfe0?k7UMH{&֍n,߶hVbu&81blv n.@ )͠Je`]A1d'1JA VƉs^ RžQHS"|ti6p5m4CGjhy[P#RhQԌJwM 5PY0޳b7||:=={ĒC8A  ߫d6}hoY!*B,ct-wta?>Dx֢Pqj rljc&:9,b^n?m/?gԸGq ot_|V{*C3|Ex쬭c;=ǩ㋩0ݸ=J7!(",.)>#`}SܙO+[Ȑ%zC!͋lPs1<38MTYPQH>ON=#:pڠedncUG$Z"͖| iŜJ5w֕OA !56(ǚts.cj э;k2D 5eæRd 6S%JkH|(~0deVڀ#㽯"Ws?z@Z`zlb"n]_!p <ϯ ӰY s*Pm+{ၙer" 'tݑsWRzڻ'wzK6܇&Ύ=:<;c4 EPij & ! B8?"IJp >qhhӦc7 X)l9}hu82Ԕ.nM[GY'AP4s2QTSU4ӥ2д,$"oz{ZTX_|gX a^o_A+Ro8:AQ>u81]! jM<F\Itb3jC 6氻xQ|\D!J*\:j& S~\ , ufp̳ qP0=ѢٽnsI$7{7GV0jR9.S(}|ZJڐD"cOf\#Б.o.er뱆EDjN1~F)řPu:8wp=˂9yN;WhSS'B{fx:ydZYAJp]GC*xg`9@2@@&w|!Jwy k/0+U]q -8Ezp廱>J>ZQOΦ3jdDRΜCkyq[mH]FTa|d\E x,tB)cE~FKnu"mۼIky|Dv)"H69Ie(93AE Jۤ~f*X+`a{xEpw;M<aׁCU*hK1vU&6:\P M)X gBGo-"3%_2\W1VɗDT9X$KE>z'!jcJѨ $!0E)l9=Zv⓱BRo15?_~a @FNܽxnGB lD# ;#61;UU:A >Jl3ZLB./ <@VNq2NC\HcEh4Is@xf!fa0˂;TXfq-l-卢=iܰь 9ƈP c;rSTRY C`jI T Bd_\_2@ M96c@0xtAJE=gЭ,,0RY@Ru׸5@S_`9~5ߎytr>+D@9S0#KQEA*<֎Š"RRDIq0I@ᜰulm{^Sqc̃˜k1*fZ1fjDevAm@>;{:#-H1Pܖ2ŠG*s@]Sce\r]K0Vm]Lf'P2ѲI7j&ǤҲx8!fXdYͨ1d@49f i"x,'A/fq1}vftDk4{BS "LF;mv[QD@H|Z`U xa֒atm,ϭ&mM),>o]R.rP_ޜ di: JUF̴_<'l^"N6 + p"gdtoK5&. ; e](h&""n΀s7y K VqcmMff­W.[Wrv5`$1 Kg t"L= lb]j ֚~q!a|SaFrsFʏ+tg|׳E`׵ -(dc A  .2Q}2V<0ҺNa݇\!AkeN$tu&1f 5b}_EÒXglhT ] Ț `Y.0{OH]n1jxH?أ!5nLD1{t9^/B!)fDM[LIh]"ZiR#E2PnlsuL40>H"59 htGju4F`{&fӑiɑK@یz7E6\ ceX1cf:uY!5=$~Yi)b:K-fAu֦ 307Nn>!C<A*8!ehVkAGL $jyl$M`r0\"Ɛ`ꘖX %ASj?XputأSଁqVm0Ҥ:ߴ΁`.ۆO)<+jn",,ցγi A]q9EibX65*s?+K?8Ib=.v^1OG5;]g0_osTe@IDATPxmQ=z5ӁN K  ŁDuwm2U2 и h|@#,,F:e 2vc҅1@U&njiY2nTЌm(}(OyyHˌ72P?@cu|;/~A*]&kC*9el/RC4Xmn ]g1y5k%oS7ĮbEa$#)$"h?pH;]^}AB=4M3 f@N g˲b`=jOi}v08VX*5>=0i|1g=8  8RkJ`-O!6H@Xx{a15**94[+)(!m% yFc%r1a.ZU `>@Æ0>?T?-[!2/d]h(8%Fyc"X.yez'P/Q# E pO%ґ5]彚jZ+m}fDC6yG,v҇#f9qip;i8Un0m-CS}RȹCr0q&tfM]; #@V'3QC(!dpuخ,FNL hp!q`DRYJ;ęiwӟ{Ϥe})>| ){|nsJ#x8&⧚No}aLC f@J >@NUhV9#Zj3V5/R?L \CX* `ెb BB`"5z; 5~owm^ktŚ~Xc)9c߳b!ӑ"1`g|8PDщ,c=ۻBL#qD# N `ı2gMwl7VG)K)5In=rt:~#dZ\I?y˿OZug:"eMŌ y]`r%/ub jQ6CF 3@Ю95F 8m]Ցơ]mi@ tKh+Tl p:}n^%,K\C/<چUZJט+> 9yDOE <#CmƆ\Иލ[Zwn/jL"9HhE8u>iX"IjǠIۓ;YKE ۚCpXh2r fȅfLe69ˆ,g8fi1&8A G-o6Ɩuva1SE={-}uԨrzQw@0Ր@F(&vIԪe%3[ےxC g!X}g$r Q SŸ64= ˢCAVvZUZ&se ~AZA Hf 6/7'ggӘu\Ot|w5R7LL3V 0Y#RypyxuHpЅko#OHWӓ{Qw[C ht(`:nRM0(*V:B?1CĔ `g| x6ڀA{v(@Lpb7Kd60J0c$>E DJL -ol ka 6.m`o^qv[~]AEP,XY,DFI3y|F,@%dHr4b0\Рm ďQb5tj3w s]{ٜxE+y9<`@ pM\d Ds^ ejiʺd bϭxsGCkv Z .c/8 u:ІW*1`W+mCgyޜ)B|[kAIaILBdLI)c_'6 C(PG X~K ŧc1s'~g2hzHkCWu~ޯ{c|q=pRY`F9>Cp az7?ji`Wٸҍ cK-^je33ӿ<,.گn J*ZfV̾s'}]e: ^xPNȂ8 N(E#jhI;4_/%Ȼ K-sVo y]Cwso3fv A.$H|h.C0HsLZfo`3uњ;Dm,& BiVa)Pm]8 vYY5oncp|TQs&kZٚqY܄fҗG,?fj=`Oyj Yl~5砕T8z:]ѪX`Tl>P}a0ڐ͋3*0g@i^n Z,12P̯Q#`Js]9uLC_X*9,Eu5DŽF5YB63US05H);F 6շpꠒ Ћ~G,٩B/2tIR:rx /PJ6ܽcrj`̜">unD htU3 GlS`kL4;E\i-kH( jkCӁq&V Sd݉ UؓW!XE#0F)]RP:q,Y4 _R Io0EmXsjOf?%u`H %\78/ጻ•/36LZa6a_нH7̲`F5㰯[A_o6^?,d^ T ,bgLgec+bCx,KlMnc U!pY8訅0R5ΧѺ}\3xR\IJӕ/Qπji.1M}͑R2$Bi? Lw3B@cm͜vp{eZϺzQ[ {#>3RX@&ف-,>.HJ[IyJ(r}>&ÛF A6в7`tCZd( 3}JTYqIю9Z'N7YߡueG~~)$fQa-4UteI©)Sa v;0ᖉ@ "uK 0.|WWO 9Nm׬al=4Ƶ8 g<,/"xncSPU(=[AŲ (LÕ?KKװr7^ +t]}#]bJqPateZ2X+ve:#!5\T^j!'aOy}>0,<Vث FEZ) fdZI<'мCyEbuo-TX0y]__`[ Ua_a+טx 3 &ըĊGƩPc#_)CZW%fF@Ie^NJ;o)@+~9|6@NZ @0uUW 〢.ǭE֓:1>~r"HKY%_k̉ JǘcP?t!{t4FIZ '0q?օ(D˱1}6uU_%F^끅`^YlCʮpT*Vucrc-yJcK1{(AFU|fj>!h(ƒ!"Z:|NBs/eOY(.d1r݀ DrF! hxt#N怃C=? hnRp#ca'h2i'`q2hHy^/[E5GBSa.ìLMQžmVpO^@"i2`+W.ƽ ~fڤq}5F~6AlS_ v- H 11,IġOEh-ȸhfn(9[uKG0׈%(`GIdM5MӔogw*MВ9< S;Eas=tqۭs,.8Fn%3aː 9jIzU$Sv^&Y1P&G`gHj MgE0V`3o~ v2J ;XSDJe3G* "Wi`` h~z0X?Yg>gV&!M!JXm]TA=MN}}W{7yц%(b߄';PZBrмkA%ԦqApF , 7"u㛩h=1jm@3pS|T\n,/IGБy,r~0Ռ}A&xŁK,7@Y ~Yn313ܫO4^ W'Em*1 V"AQOfESDY>4EyE)7kFBDp>*ŕI?lKy*Rg{^7ŤdPˡتWcF mMOTBy 8z4&HghRNd Ңl¿*2~yl]nV۸ʭ;hT"(ݠ]"L`&-"].:sn$&݄P7C {qdDoBY?׌"g+kgq1/ӝ;v)ƋL/~ymAQ̳B@\u"8,A؟тv_+;8}_ΰ<Mw)`\_Y{x6 ݛ@Њ[QMe%6grG 4RRG2H"*$R1C;@6VTȞH,,.A* lPyaɅAJ2~Y[=cXbfCo4Dͽ6N\7"њN`F gwhs(a6% Pdw͕nHĩ_hD2V( M&h[g22=&6p!;dCdNk!>s`s  km  "aR TmKX)w@8qZ֮:O!@3( b&]g,5K6c=0=҂h7aDoJK, Yk+cC 5kwp{\LLY#]dp*'Uu>#+0-Rwqe*@؇nab"˳j--=֥YkȀ\ɴ7 ֣ NdciZ-8Ƨ~zg(MW? Mwebu @%hG: B 2>9AzAs|zToμ{ctTcquW)ZdhQ灷f(-PZ0F(k2YрưnSi͌$w+Yd|a*Źv '; ~(:@|w@w%I)1)γi t[da-ئ,&WY74jB(%;P|RVFS }a#XzZbPӜuFbI18Çث`pޘ"hiPfӱ-hXWu9X ;Va8xd>> i2+16Q C9<؇d|GNLA&e!Z5* ki:\l,k$ MAD[A!/uMDa2U |IJ#P-k nD蝖v Ɏ曹%$Ն2®`1{L"M)Y:Ī[-%} 䝰$v, :ILњ(f׉L\3ʌƅt-O3 opyge9X%]9C[t9`òFN2X+%<<0x1u>=6Ӽŧ8rv g3yg- '/U -y(QϾZCu(:#Ga̤~2D!h*jrU9bWM^._/js?{G|hoex P>}#r㋳;|TF=' ^oӒVsѯG /0iKMo^wh}4)پy}y'\&c5y':u}Wzb!.GR1S?qrkfΊԈ6CAC%"JL("ᲅz旈pJ8;O N&wHXR4&tk{~/]6k؀Bxs$=M=/ ;8%D\z_ucBȃ`sUӉ@*4TsS&FdMNwP 0TVak֎TTմ"<,pH{<1,{I]Zh;4.`{z)tX{͜ӟ&YHߪL΃Y ?f_iZK%ݑs5|O3!-I2Vޛ\!XTyhkib%ϖ~xH({ ̅~i_h=s  8n37Q9]タ5*f#1MO|Ir]*Oh1vf=-s=Pk2+}l:tO=,//|]03jL7Zߺ|N~\v+9%e`b9}C5@4=gZNy5۸pQ jAm]ҋ~%,_uَGXuHs WP`1s*dH#Ÿu?9osQ_nTQgڼcЌz c%ۥDB~@?V] l0M6r yܢWQ Hi2B{~OfQ#kzm_ &\).hEn& =@hC1:Q#7A\^0 &4cv0k̍\+_C <i_dޖbڦ g֤ `:%^+8"6iVبe+v|4a?dO>ڔl\7>l+ 8(Kؓ9Ss:h<ˈn5-r)´j\}dclNℒ5e3mcuNi7`yOG0şڗW?ˤP\}|Uc_y`/tjqNE} 8[3(O?ǜ:u٬wI%ć6H=6%$i-'I3+UL׀!$ո0*([ip*jE|TseJrI=qc:< nE-%R4mȒ@q˸kn_V:fBBUPBYk!d,u: ^:mv[< 5I"Ås@C # jQӆ 0O.Ta˪k M{KʮvuR/R2%ͦdzͱ$L{8P^>r֕9KSr8S3N̤gk "3곞*oH&@(NߟjN\2dH{)f#i>b` ;a,7~ы߱s@(}[ffBMLk)˴lpt=ˢVg$P8Fp&iW5 ?Dqb^j)75?^rNr;\ %}\X;=e_~-חǍL{[_˿*~Oto/)F,_|\˰_LkW_7Czɠg'O8f3&ĤWyۇ4``( Ѫ3RĦ) X9Ϙ=#Z_ )AaM>E0kO//Pf^=)&ۋxH֛"W|%Q/S滻|wFI&1yU9@,Yug>,!I??幏}|Z}0J,d[8GK 3[=' rVeV  ţ7WU <補29ƣhaw/_<в3_ML)t ocH]8׉D|jZq`}/bi8z@HmG^n] s5uܩTp/C9 Hpcs_Uv{Ҕ \)xB4D{`rB4#pwDr z(cgQ]^eG*dv\k- IZ.5WHvS(1 r8ƅKв?a-}aI17t;>FpSv O]{6d[*HUawr@I26eU?~C﫸xܩ+BD3$@N ti'EviW~LrX~S,o GcF{K;l5 ē.>k=w&z> Uj'b"XcgnDGH4bTb.b;l3)$}ܤ G S8~|UB7q-p!r} {MIFdӕLnbtQ4iaՇ4 ʇ+5OV/ v#UuFpjYIwLTƔK"^gȨ>/VQ=E~bװ= Ar>ࢮ/*ѯ JDۯZ7O^۹1U90,$*\jD$Ksyd^5^Ior=➴RV/fXD}NghNKeA△n^AQv ffh`#M+߿3ut..(o_J0\Ǘϖ瞖kP%#83(YXu;m_o}C?[X1{=HiOH;zhYuƟ4.Ypp@8-uR|r-&g^jGXiu &#'PVg &UT CzD R?q*GN!($I$KMC ٯ"L5W5-g $M7f f 9k~?ݚv+Ns;Mi ~Ԙqw͑L L5U_q|+>+A!$s4=%tuyE1Jb_z_e~?%^yky_2+缝ٖ^ N>W3-|Ϟ~by//C_)N/1F9I]ck-Szg-ٻ%w7]edC.}cm?KFu'VLӴM5# %Gaw3+IBbMנߢk:d^018T./ۥ䩺y?` @ VU G[CmI|jaV1K0Hҵ#E1R~-.Uw: eqe D\zqcӌZfykvv(fƭ[m޾ځT L}BwG'Nʿ:Fd6$FfZhW`vؾ`9ƚ!hlxHy8s?;RI~꾘V2=b@80rn {(kѽWHj:9ΛYV\[_C#ݗX iivӼ[oJi2ڑ}9qvz|.Y{8;-˭m>TGlfS^4巹 =3^lŏ~˵'Z~>\wr o``9\q2!/|h&n`RFe OQOUɦukmmC*&{}1`_;Ԫ?vͬB_8| ƺ ۤݶ9aN0g\sI 8h߁֏p.rņBA\&zϖC \%TAqrRYkH{xΨACI] GHU jc^aQ2``TJ|ӻ?)~}ˇ_:p^sté#Y89C߇'X[Rc\*ջ 4o.${C #y/O4a2a6 SujR#6@Y6x6WǩJ'ϪE3!ⵇ=T5Up8!CnrcS*#_ 9i)AKoٞln@igf%"z1R3pBdB*S&Rsv^CjaX:Sp/I$i}s{S:p  GԊ|Uib_Gr 3g}i1.dx3jM5BJ,<b){lbt9!q#9b$Z(/)4دɌBI/7bŔk簏^S,Y,Š'?3˵ˏ󶿽|?onCu@K40 D9Tt4gpL>;}+Ö-nsf1U,?n43ソ|鏩^6U6&&wG/<58_7H/wwdo\Xv2"-c9u~;$ځNAjR;V8YHu&-}j}P '9 cLQ[8`9N$@eg߮(OhUS8s"Ou(wSsڥIVPc'>:xa0iڭ:yՈoyiJSM!, 74̱2rq)"R8ԩs,~};fQWiczdKm{"Ks:Eץc*]Om7`틾 eo![ P^v}y?|,c;P50pGAH{'SIK?g__x+T||&> e*A3M9'62Ǯ5o!QtpJjؑٳrQ}A ;k. ::eNn2] nq]j(sKҩClF?6+'qDG]YbϒU'NZZIiE*jHJC|X(a]d!rRgcxbY:]6_e$G"?án7HR_/9.ɇ]ѨOmw fP-RWQxxZe C+`F&? "¯P/f}ΤEV77F!{w(ss?q_~ȇp\Fo"}mL?-ƻ94xբ=ӣ7ל:ߘ^ chFfЁ"`S/zNp  c8& Ltۦ2O~ &N&|+;'X=3:_X^>˫?z}yf;.#]&"QGXs OCm\!1$?wb{n"\Y j*r Sղ5B7Y-fXsCbD長yI -@IE^͕ \F;vybQ^z(8y2't% "20J1 j9ZAZ=V(y4OJ17 I=QNCmPز{xE'CO`wMM7e71Ĵ eˮOJn뽈ZR85~ԙ>hPir1`c]`C# ;2 f3LKCpe4CvEkv 98%{֛fSPĵ;;+ !}u+Gb]yO #Ӝs~ @cne}ƴΩQw jbIޝv ([o#K-{~4̮F,\j/Z4GHw?N̝c_ם=XerE0Go_?ey+ےCn_71QFLγ1zԔ8RH"E7qc4uvA)(yr :3*\@>@-lSw Cy_Oqj_=wMeF'}ZkRD<ٛ4cI||z ,_8Wk)< 01/J/VW1MMK=FS@F+LZ1EyWMB 4I&|̪Gk_|څهe YVC\k-̄29wkukgSáuhmA~).buvsLJZwt`'"yf7'_n.w5S%=!!M'ȧm_>˟}/<;/ms~}ׯ4W# ^i)&huu{OVʞS6 _ RlxIhL~3[o,o+C0|"28j5CG!MF-Jsp@㸲 g̃gmplݗa\2FZcĞSC7hʈL%]blk13.w%" abw]]GS(|kkc/_Z՘nj&puduh0Q楟TԴ* &^|ZZULF&IIЎ^G K_͉ ߁31HF5?piNMgbVjbԭ8~E/_rUXQp^_8]HcziYV^|p* AmHSGտtkfX?ܬӶw%X]/#W;]ZBm '=myɯqx*0%g.ZN)tg3ǜ/[늓Tǻ$˴WJ]hmflʛ$ﺰՄ ߩPbХZYWrH6t]yIYe!n 2=Gq1&E98h?PwwC?[8zɔǟ-1*1P.4 mczVkXN3 u(2897?*o!SeTfJj{{IJ9䪃-nV!L-˭ӊla8b4#$|Չ>>ܙ6c>DR~<(ه˗ A6.V}~M|Xx9E2So0p  3QUݯp[ַ&E!NNjh$Řc,u5*gt.tvZuakёQ{3_ʹ->yYi_"'= qV壸Θ d.T nv-X:ۼ`7D .y!D G %50ڶH=xJ\Hj˝ۙAuvGCT҂t=P@i3qעz!fG92gRyC1HbI7rH9 v B>5*dr,ܓhpvɼ$g'J1>y%U in&bQV.y"?ּeio> #8pCfHHYմ:CHtEĖL` {N}+-7r{vM@T-Fy;9!Hd0'FUFϖXeZ}/;/oӐn/|6e> XghfYT5⵨Ɗ!ܲO(\kn{>͗ieXG#T:~p2aؘh@\/x@ٛNy 9Rv!djӴw A0%ODv~>\.Q RkԗH;rJ{CI=bbŷvT' _FIxuuN 4T{4$֑OIMm~1( bxwӈ8Ѐ 9eX~UrOR %MJ}QI aO8l3`8$W^sl݉p*Vo!i&9[w~NO>Iƶ{Ι#XGZqs}j~4_LLBKҁnMȝ8R0ayMN5JfſKЯ&R#jU>L9k ʳ~Ȧ =ZK($̆ϷJ9r4eM>J4U1wɹ B;iDzЙ62_0rvXTΝB*A@H XCw?h{'ĐxSxO~FY^c{A],CVktxn9D=e3$7 ̇Na凧"̒Rֲ)'Ig4hx{X:o:Ģq-t3ӊQ8;R= P!;Fy2K&`X_ӪC;"gua8MDa7>I\8V1Nm6~}WKٴ{~i9ݴYkΥTkW,}83ۘ!O9G{=.6ru=m_:\IĺJHW*1rY3_yi箇öܓ9gDx3¢:頾iۼC[9C~qҒ3E mԕ =g}9}@sۘT/hSIg}`0w$JkMlvH|Ĉ8I#ڤv Y |t >ĸ 2!gӾ\ě=2O;UHuD}sѓ=,VYz#H+kUIiKDpFޗZJ%oj*""=)i>}h^-Hߘ=C45pu'+VR>0kbPii^ڙGv՛B%j|w%<ш"K?甽O!&7j9]+iw31j0Zj9V#;79Nǝ̺sI>9:lB=>u26!zobMh`y qHVg+Wj' q䲝$mZzPSQ :[d衺ySGBuUm2zk9j+4xW>%\mMک0$:  uAY*L0xH <\w^} ԅ#cҵfC'%KmnaH3DTy1p&9PSa7ggH朢{Fpa][Q$tHeVfrgѺFcvZ< Acz`G@V=%TKnJEp% eiVO]~/b՝'d=OAP36ХB3*}*]y)ฉўʸmj+0̼ZAe,ȷ7sݸ#_S~ḏ2m0dg- A({[dž^P0u|yC>/~vyGf[7tT>:+ޟ&h:!xt 4B=ymy?Z~-/|"ZLֶÁL&}^ c7Ydsl7rsPwhq1 XNC~6L9[U1uLl,q>ς,ґ9Iˤ _JPtʡ!L51<:t4~8u12!h%`> 3?pEHyyz5ŠMӼo\KK۠`iu1ȌAiǭ= `*V"x0Cۻu)j- F8\p vIH81l{oWo& Yf eL qCUYǧFUCp\p'Rc~MZU&n%x> cwpI~2q'L^nvSOg[>SCwJ+XտWrώFu|zGo,_-w31?{z8כ !P1-Ho[㏫/4SM,> bCDʴ .좗 IR` 0@{Ixl6Uea-jRcMRd [WKޛ^W͛~8CkTZW2B5 /){7"A.du6Vcq߮ H4`cS*]5ٙ NnYkT7YUk;74@Tץ_U\WWV7;o)b;8w*O?{>Gδ~ygy1u3`_Zנv۽Wt(qNKp#kC+wo%љW[IF&ܿl;=kk?pC Xp=>ˎ K\3 Wİ)}٬XkПvr=ҧ.!MN <᝼ Y&`SλYC:9y#7۔i,WfJZ/o3ٳěFHMY$'R/=bOs`L —[>6y$ k~.ȍ CN#9Ӕ\e C)fSXՁ)DL߾[RўS=bXJ*0iO) ]S`U=)?ƹd5P{b.?g^LV37&ǙdIqM>=M$ϓ3W_}SeM> jTbL6ltёO-Vu9Or"z*{1~smwI|/;6X!T{W}G⏗2 Ny/T=9.ŵ+_ :-Od2{d wmrn/k`l0xުlOm6>|r^}o^6`x#srڴ-p'֬'I,b;?挓ى&{ahktBY)t1p%, 0TrHPE;_HI[WLk5$S S&juZiqL`f~X_: -?`rΉ8#Ԧ U,es CkTDߓd!>I3'TСZCs咺2ēW{0X|3vbY`Ao^HlYui)'c0i39$^),6n=r̨IumI"jq``cK&>/)ꐭ]>-Uϛ\ Ls !_}g1u{1t.!]1b`# H?yU5nJ0H?>gg=0vE|g^Xy`K%=|@~5owΟZ\oˋE}իSsi<زo%n5|m,'|c_3>8QTJ~ՙ,N7|+jUuױ6V.t ,]rCZaո] 6PuRnT`A]XU+Z!tF2!P~qUT!'^SMp9p@S#-hu}¤cьh<Pʪk1"ěF?gOBvK U|% " :̦ ƌV~ b01-8goa̳8m`S7x9vh~=egoF=~EBs$*.3T 97(B셭?w,B.ˏ(#\k̑5p>`DLia!1lCһ!Ѿ܀z;HG'k';+x޳%%F#׮, XSQF[gZ^|2(B8}qc/}ry])׾gtϗW)'OIC},1`_2gsyo.>uzE`vN7lKcFڡt9$T0$둶|@-T)AE kLȻaXoz>U'[#"0+Ztc952T$S\KI@Op]O㔙.IHaA`4f y١fWD lc0J<I치Pj%I$=Zv[oI}Ow7u0eazwh{ǘPժ'UؤjǐbN$S[=\RcYet(h=cBty)Gk$DKNgZ2JIRw죳pΏ*Z:t^u5+yg0kcp _ I(rxu; \ K𳏣^糙hg_lk0kӟfimý2\ǖ7%,/~'<NF3KOLJ/~{o>q|KGo}s?ysWu߾_[tfH-v/̌ΧZ34W_^>W?A8%H}^Z` >w)p|s;P;-4qg0cdiBfy^f 4 O4|'\ ib:ܮru -#š QV78X*֭a[l}3I ڧP̦hFjN~ # va#ʻGQ Y$v5:ŸvR0A"^s@ DL!"͍o.! `E0cDnw|P+\|WȁƏ9t.!I1U'2VI7`0F\`Y-Vınpۗ<-)F{2"tN j>s ~YONɻΠCsA =?miF|K",DyhsYI#άfcO^Iel7yGh4SKkRGِ=yFbRhR:pz9:v| .?= ʂoskٶْroy瞾{C^nbJѻ2NBc `kvQ̑ nT妺<=Rs E~#2βݒHg$Yji/qy4Eu4$i$yq @$A\~zz<$nTg07)' 4*G9X.-KM$K|Z < +xKZ| !HğVCQe =m0x5HN@\ݘs;R :Ó&fV N#R> y+Dֹ[g571{&u20ˆF.l\P,M!-.=>$L'-ZsDh퓗߄';9ńnҒ|C!s}L98&Z&ՙ.{G0L Wf^xg݇\42wk[/3 $$=t19_D+?ܧ]~ dy8 }UfOA\ >w04P3u6 P%ti5- ;DˇkŕzT떊4YʦZif. f>RYW]{Fq̹e@IDATWzUH/>_ LM;B dg'̈>}9քƱ2Sh:I"X` ŐD&Da^"8yǜ%GZLߔJ}`_l[ˍߧqXNO`S~qd9}߆Nɹ[e&bB2V@^`3t1.A\-7b춤Dvj|XV,i8A9c8kS$Y"\䮛ZO8Cz)$.Ef˓O>LE"iXps$_kB0v⻐#^|WNletXU@ W~<imՕi4U'S" tz@IX~z9FU\n\n; u1(ka/v^?5~ِ9)oYT㴏`YVd'ĊҚ+-#H{Hh0gm9GLSI Qx綾%VX8Ѿr~4nEֲI*71 |$nb$1d"n&=\XZQ5.@GNnt+E>[mp݃wC9ԆfI8E o^Iz$/|ij9 ,zSЄ}Zɯ6hCwݥf)jw-~}7^Әw&o6 yIkybx1F2Z,Bcr F}nl#ٜa5zWg_PO/G86P/@PSR1{yKAX)+M? I|w]kkm*Dߎ}Rh2DNNALOP}=*{6i#1:T8䫾ob8u JU,h`QF)|dZ{x`'~DF~e0}Q&{Y}_\-,"OKU4yζ^ (ΡA0Mqkpy^>@CU_W sD=k2c}YZ*=G-1AIo81NlsnQ/\|Q*F䂼ˣBig٩: @, R_H[QH*}ܲF:09U8AKKع]ب^g*_ஶGSߗ@Q%^DZ93L !]Dg7NLUM>*{$%O82XGUe" sD k ׶u`pRMqTv*%9yhH2C:&]݇󇀻OM/+FA;;Pi HѮ> w H?몳L-~'Z:\D+hH˘ $Yɞ yfl[;G\~;ᩘ\Rs&%A)ؿ'Q|+[:`နo2#3<^:= g3?_⦕>J;}.m ^U6cV5$D>|i@3,BN0]y$tvc t;=}&mގup/umO0V'o/yA[|C>7|cgY^@ͺǩJFQcag8Vsgj7I Kv:G(AڨJݧ7mC5jlvRZf_ShK8DÝH&l*عB pԕ{W+ܘ>Uޡ8B[97%U˝kQH:YbM5)"gX}s J!i#Ds%&Qe+/M,M题sڰR >~n7ro}?'ynCuY_Oriè6?I,ȖȵeRzn1#u6bxg({$[t&&pߥ{$0B:o$ c,^6&ENF}S+$b9K-aisǹK,)m1⿅!3:t(TW`*i9GUTD9Œ: 1C2G9UyDa[=f`^ aҺrF/b3Ru1#4&u؉S|k5]&sM#B iUbkAė2AX̡lrkQz$sfxanǞyjծc9?Ћu8\B@; $d-aRkogK?61~#믽<>.+snΥ=7_ݩ֥ $cG\|j :9-JuqIZHnm`q46'JTK]ߴng0:~GXtH*ބ#R @}%VLJIڅD85ɳ-6a8&_q-|Ld%= d̃;*?IY3gcW/:C)1$ӚJMAc H]Ýko>I$~nKR.6<4'a-[TmLwhVNzBCv]̅24}Q Tͥ9uQ\C &g䝊&e6Q(MiGa*xws* f8̕sCp&F83G\  ύZ\ 9}`ʑB DBuS(9J8,~0L-drl\0Wm+uxrן0t%hUsメlp兏?^<;1vy&^a?[gS9h=5Xh1wҺ¯j07ח?e+ >sm]>P.:?sVhnm xj އ3.ȠukPUc)XGu ~@ 0!VJv@紆=r힖 \Rkw9WvMOu+3N~lOG[gI?3<Ƣuu(m,xAI hdo8 NN븥x-&WsH- ;I:vrtkIRs)$N7Rʍ .szQ{u}4S`tA0TL7uo$=0݀-?psq!,ڵr0\R9=gӞ=cΏO;";o1_OwkvY{znLl^$^C I9( E,CD"HɑEH !$Eqlxl3ӳ}luj_wuNS{/}=]"<_vC`2GH1|Z=EZ!3D75^l732&i;6gT?> sHeD`F1GPDM!S% fVl91mE? ]ϔ˰k0\b4pxVjk=sS38{٘Wx!3$wvSK9wVc#)%y$Ľ麷/2C?!:nwVɎ[*\ _ז\jI>jڕ'O\5DIl$P&R|r5iXGw9c>c5FU9BpSI/@9WܔFE?'cSB\a8&з$$WSjKh}>E=HIt H|^z3^;{MgQEVs+MŞy1vQtUZ&/jI!"Gi^^/ #wjSGn a38h%d%sm"Pc#)بEK̎!fJ;}rИpn>߁HOO1^Rsi3hi7uPZGb&QLofmi @r81|֘,DLg1bZ5Yh~ Y yҜҰn tC*s_ j4'7-ou{_<-{./tw { _6i=<8Dx[:'^Z>2+翼oʉ!=D%\:(6zwIO.շ"pWSVנzHʭd-;oqVmyb1_!u`E 07NLfŕBy >Nzy}Sq.]K(E@qD߫u_.a԰HhG*c US4fNB Ϟw#p'A{&~E}{FqD/ FU4zǡ[3QЃDL t) 'Mj)筧ux\Mf: ?!֮BasĜuKʄˇ󷚘b ViM6pcb> ڋ.]~?}y__~~ח_.v IJWgЍNohLr.yiJqKbⵖҔBC X1cG`O<N[ZSu9b y${C_kE|OStr95ӗAo6IZ4> O*ݐ=31 ki$<[1r5 bH!OVhr;Y 1ږ%|l#9xEӝ:K߹E:]8pDkiȭKz`e>*..ߗȵZ7{wo_]\>g>˝峟+_^n\=bO+7rE?/./ůxLs3]tnWj+ RU4 ԩ9/$e:L 1ɌDS&K!":sd|֪6=3f-bռtEɕXO{I=okV)͙ټ }^9ZW}fgyG؞zk^f"5^} t3R=k8>1̌ ~9-c_2fk#r0 š_kw`앴Ρ ^%I.sDҐ3E*oeuvfT fE*0=!x~y6"aݭ#rk)>n.C0Żq-_wkJ~+ц=3Kw?_g˗}}@ ֹA$>yKa.CseEX88(9 Q\9Jɖ;BM5oʥ osR!\b]I@$; թݏXF^e.9)nHAmI-RL:Y*T/\}vΙ%2pGqk 3U6%s5B>7 'ۀcF!,*bWgԤIȿB|9%rdm)&f4J)cF0`$O[W, aAv"\dH+57p7u/ YhGE -'4qg)g;O">O#Иz:Kتz8I?jI1h!4߽1!z)SoHda'J3-~Y(u_g- h1-zҖϚפ3-@g<@ݤjc+~1TgܙvML#Nvpt#֮7|c:݉y 3y'D,Ŏ5=r*"<x=f65iKX:\ڬ3/O=~>c^^9#<>xiu#w >ӊo=ݯkXuU=A?; tw[Y~'~zYS[3F2`v;)SÂS!t,dvb.מ8<]8t!hjw޿ǡR~3U/1*0tgWaF#8aC R5Gq:j29σ9N9+N'Rc(jэI *EJI}YO? (.@$EΧFĨ!aw4NcT595g)  A0ynK gM18,]~daBn-izlu36\tf'1GfeJf5D5VkȌj#}-rDOD]FAD 9MD%YWL2Եa"O1A0%[6\5] seǵk/Y Q$k#șaĻ~Y8Gru_83f>prܕԽ9 װ{Zμuk&ߥeGCc9U=yk#ğ?;v؃p>Xs #B{C5YH_O3 VT*\61ٯcpcmP`F إT#Ikhɡ'j:ذT_ϽNջu{?P(됏?}\xi9)۹)wY7y92M<Ґf=3"4z &ǎ BN(:EĚB$qL9XC4BBBPw%I##RU{&fobU@CU@MgښnL1*n&+Tf&Aek| Udꃑ$%V:Zy͗P)G1cxsU{OR^lO%bp5d1gLQfͼ#恿>O44 Xf`2XC"6{guil >o)5 [^7S KEbjy zH  {v2{ ai9dkg`9um /3KKBL2q'uF_L &f9v&ɽje lŽ콛46*޼<~j]ˇ6ZKh)ۑ,Л呧Ob7SG\6;+<ĸ FY+_nh,"˕4.vrmr叼2ZI΃8)ܫ C$JrKLK=OK ƗխU 1%e:Nr:fw/O.vwyrGҿ13#"09Nqk3"lO҃B El1=E 3lfDL kymNk=vMM⭦6/d;TqQ!]IԜV!ja:<^:eH)KouԻ}@j{ϥW$広 K G I ٩gRce D 8lB3T_"dΰO^L$#5`0OEapA̽+qzentl ≈*∡!2s'Ԝ&7K|q+7-hRw}̿U#3Vb;EǾj.ͺ8~0N,IXH1T6:3?>V bv0T*Ċ8+3w7KC<3PDJ6Y|uH\RJ*Bh@wE{cvֶ\ w<Q*oL5̠W[- crnjk<_Z"T=D5>|OIRuVw}gvϟ1 WF]p&<ⴐZT}V~ oɤʷL `JaIʗ$ qc&Zwږj?> @I@YG+cm>~1L~pgY7 劳avrUJyZřC FW: id}TwÖ A9U%BF%rNjM托3p*P#({T*)Y>–t Isv ٛ!3 %h. .' kIDEKή`A4VukZ];Ne3N4P'QbIQB#n[O[ +>Qzȗ497{glmۅ9&˯- ϩSԯ~[#@kT$ r0Ť+]E> OIF.[[V3_Hmk p1$dFX~ Gp8S.yVkz{NBZ+2"L~ _gC 륪#U|qNBE5^zLژ4!]{ LS YG81t*ގc'@lai+dQ+;g oơ49Fc/ 5i."f(F =Dg` [kݍYiщ*!{ͼ|59vMv]G14u7@&7|ԩd91{s}einw?;Jj;>O<uI^WI8xxs qn <<^ְg?:k}[DM|W/S㰻]_U w:3)9hLj~ j-voIzN)Qլ侵芳NGq~fUP[o cF\ַ o"aj \X3׫5J)^"(0D \("׀C)3h3[lk* RHlY:9ѝΉY*_b*i蒴&ed_#1Hڽh ˾reWS%baf;_~~$_ `@H!?%%|=TMLܘ9믜v) yn?-^ˏ???&eVMkԛ!z趞 Ч/=pNxMGOby֯WQvalD̩c,7~#ƅN-.6bOa\_‘{|zx+.Sð64(TI3qD<3HHk g R/ ŀ'PB;Yie (YutBS+y t{$=Zgy!{jx㸠yTEB;Q\3IKdE!Z 3!!|'@cfN:f<+33Xx؂o0m% tD33F5 q"pU3_.:h* ^u[^ec(10ZU9 ~BTGc;R, u͞ N.i8Z995"LXvgJL7ڤ+q5sa%.&Q<0xѶMMN!Ƕ̆;n3巒$UJ&~J@*I1j7P :Ճ='if[CQIDWœ kXl*wp{9Z,*(Yeb.y3T"biYBX:`G~r;>b< K).ZAAs glBbYKzE>=>LS]H E""π{ 7PL8hUuW2!1v~bפ>nhSޟf=l/Jsx9.D١!Vٽ>ۍH\\ҙ!d1AgܸA~-:.քyR[WzPGSoL3{"ȝWxvm>ip!{Dbժ{iuqӔ)'/xOwÃ{w_[ x[a}t K0$>,ż`i>G?| w8r*^&ƫoy& 9E16XU~B/UJ̻5ڏU_C$UqHY4~#'9f%v˱kOe:l6XE /sJr٠ԙu $=޽xvjE޻<əPx"Ļ$Yw|Ϸ-|_Zr$(3491kr0` Hn?+u5F ]t ˿e MF`* H[ԏn3G('b F$Um0^RmP2!r<~'vj:|z6$CC&!4 AoXӔ!}l)wjGQ[7M(6FpW*eN|%.enl[d JwN HtMbl" M^㞵*NBJ$|`d"5_H@hص5!;<LV^#a,[o)$˘}ĸWjj->>6٩?ɚ={DPƗ`i\:K\_{jLO2f7+aN#6=3>نFGcVE79+M}F")].uroKG+|\CȆMw^=kr~O keg7% omDQV+j']}|C?w/on3984cѫ=mMi{y!v$-9w4z盾c6Bx|&kf] #W ;|^…t)Yyop^./JpJg?v.Ɍ L|t/>痐XR\bK*b{:yhR@qW/#ʲ; 9Z1-!=HT.Ӻ:<^#h ԲȵsSs!1՞Rֵ,Yzmtz?OZ0Ch ~GR,@RebYIR>Gm؏)!Ӑ>GIíTC@!^cpweMKo|P'Z\bJcg]TcvrEi+Q !/GU)1꣙w;L(xdpCq+0a:w;a>:[aౖ/n2E0bƸ( y|@{\lGc4tgp啗yy~𻉖8ynW4η"XyN+Cp06ybˆ/9 بzjDI_!!HyL"OD!SVƺ&2'ߙqcxD1OpG0>z"˫^Yo!֘|ٲa< mؽ{ )S,3u}:"{>k\f@IpE18b u_h*L+B d<[17ZHi2>O~S̼zo4ʝH 469u't. a\]8ۊ`!*FM84uHe:`~>`d}Le^ <)Ug`4n7_61d4<5㬣hcOXyZi䈮0Mwn. +g? t~ݦ,u>'rRBdx/y}7@q,0:<"o$sg/Cw1I0-@Rz* Av#]B@/u?| RlrdN8 `CW¼ě2wC"pg_ h!FWkvjMi=+r+晐N_RCD,9R$~Lr+tej<7 AJYRG 7Hrb~O\l`8'4f_e!U,/\Mc##kiG_s݆P` C0r#veYQ|I I 3))8 fє/pN =>\ڝǼo׃W$4+~VڳuԫĀ!tׄ=xުOHAwjXb!r*oš&HbҾ"O~1.лwވK-Nr1ap3ȼEKB=ē(m]y@q@u;I})'PHb812 d3fXiَ>=FP9zcVB z;(dX4>j skJk7l1g)rʈ=XgfTgp^W5(vXt^o~Er|* ^g5@vtZK/~8_滤IIG:P~\COW;Q z-%&й_{4gxiE'" nj+mǹ,&W(9~zIODTR%5c)'b5<~p5繶JGܵ'ogDӸڈRRC#L%9vNp6HU)/b8Gyi! OhYo*G{v qdhcL.<ǘ}|Y &WBPps_)ĸyӴvXɿ,O:@ ByVk=j`YM6{{˘e'H 9cu[r0&%&TKLBtC!QYGRXlN(L ^qэ=`Yu-';W-\{ 3{ %euE=*#_a[ji:-Gλ]Rm;T`S,D=3ԃr]WYlB˶>i=F'~cpO#=w$qM?`Dx hU{uYV9*h T1:LD^Nآ^S"%(F>1bc RR=>ѶJis&}szD(9IBijƆ=gG';cO羖9TYh'bu1!&w~&'5H*1f@2^iv ۊ3.%]Վ,p3b[zRvmE>N|l2c>KWRÁ7mΔ*#ˣUu!;c"v1m&ʔt[Dkզ'b?ܜ`J%Nmk*MBH2<鵘=8piDTi7}+LN+f_ نg1̼KA>0w 暘aTο~q|^ \dsL,ƟDǸb~}~['8+8@>=ӓAr#XșXj9ʲɡ?VZ]'6J΃. )кS'Ɔ,h&.zNo06bQ*H.8P&9R5+( eKĉy0'U~mHMwH>-0r %`Lw$"ѥqHєA"60,ȋ^NLK3)VzۺkH2z``tgjHpjITBe%B.`NoclӤؘ@e~e'3S^kix;֖ /k,ʾmU1aLU3 `cΪ%`r7n~JN뉨}`TB[mҰb"IV:S˞0w!Bs8: 0bǤ<]\B̿@djPu5gFxu\<*7R5F_WIcY4y͟Ip2 3J c bIO?i@r=$K2 ^rV|A[XmzCL+hl;k ڸc&0p9SKnKSz }-ɔZ[a~>b1DkċJ@يyq^cV6Y(үM/'/֓[q>y::@GIɒ`rwy1gD* >"F3.XGu0(kF.|ȝ£yR[QF1( WEw<3W@]ZgqCqv-6Pnٻ*k I+Q8=ZWx2ϖ0QݭJ[{|tG6vMJgAQ}?6Bp>kMxډsB8]|@&7gQNʐ$*2/kArC0u"eeyxw D00)$܆T$o}yRecF(fCˎVxՖг*-VsI>m1=4Xl (dh]I+^s2Bs|o`',Nb>q p "4^N8܏^~DԻpcϷ]_8Te!?]30JZ+<֜U-ފHRA'dO[@>OQ09UxQMpX"<аHWm|h*J5eoshG8^阇28![T"isssKS~ӹֆRz`Z\rХlX㇥42Q^(F580VMVALtҜ{WA%) 9 :MÈO75֒"?^N7\;NLFCq؁X܁K0mŠp8J̸!0={^èO/PۣDr2Y 1H ?u9s Wڃ##mc!& 8ELϖe6"<捁W9gνgiS[K%d7qfK5 uɓvF 9o0b2Z#"7쭍|5bf[ V طLH"xc$qӼJ6xBG 罽%u$ vWIa}| M3M]P)q=ϱ\>ôU{(l]4{|5-orzk'PdBl'-ZTz{N궠<ӇB 9_Ȅg2].OܾApEn"I 'ɓ<1GZpG: Dp`nSՆk>{xܚ~9qZ9xRY ,䛢B|6$ |;\bf9kL`dogo<}U4jj ;^K~lLk>ҍOaiD9m/⼳-12P]%,AhsưcvWh cѾ# ƛ0hZ;Lb5TbLig_שc,ͬh@8sм,M0Y9¿J0^9*|w"bVTg7lyue_Ŭ#:zͷɁaԓXI۝h#%XҥO}ϳ7Dj (4㨞Tn=?’qZ>wj-%i LW#~krn:6ҺVhQЅ&׌!hm%t$ 9Ak23 us'G1n9V{E$GL̥@dH!*V( X_|U G>̿}gP \ci+.aȑ]@z9u3>&a(cחZ6pS`ScEX{tFe9,?"c\(u~e$Tر˃-\:oNѱ.UF qwYw`æ.*>g D޶df5tas -){&UkCs]=Bר={1= {Щ* SX\A[ˑ9 ğʞwҫ˗sMvMAzwo`Ux"jEup$P蔖B`bWA99_-4+%c[54vyˤ[OLבP)xᜍXs<fZ[gNJ{,4{ &K{1i`\07хEy>7_ 5ݩ=Υg˧֪&{Wa m W}.]}US° p(c3<Y1:)}ݻhF\oGۈ֗>Z-.3^u>_~臾s_ v9K2^H;pS̽/@>7U\ 0{@qxK^r.HBIkt2?&s^d>d.9cFb<6H --S]l73Sv6'{k]_xEjbC6q˳~Ӏ_QkOYE?$ ^D˼׾b{sy _^,E*`0~;oÁ'H/,'M4]܊IENDB`ic10.kPNG  IHDR+$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs%%IR$@IDATxLr%˖m86YdRr@ K8"| _g50sw87۷ҥپ?/..Wu/./;q}y\*wPًUm_kqu{cիƋեg u^<_zǻwrxui%"uQ|yp<>FNj!} nooջׇ_χp>uWk<_{RA#ZynL~W]_^~Uy_\>!ߣobJ^W:yQ`=MSE|.75 qtń1mtw}| ݇/>*xp_!7M//Ȳ%q,E݈߾S2 %Wv^i!.tg{}]oUR [b.&r?=%rs[ߑQl}_BmBu_?6>}b+G?|yp|ߒU-<^Fʯ.Ct#Njhwv࠵Y Z9@`W/_'l5]%Mn//oWd`X{<&!\vC+'=}cçϗosw}?N< eد bv?}An|87UŖApb!T'3X!f'y @zu3syp?J;)uUG.]16kZbkvl_E3@_|ypCU=:˯wqt~ b)ba5|s2iMk-~/?>G6'8%HDe>|}KYM%\)^]woɋ>$Ljn G>\ÿ/_]e1ߥ,ba1ׯ_s?ewo^~=Shlo}]~5ߟc ~[uU{%9..O|ߓxo/~dO?^~_|Ku^'޾)|vsu?f/o}7˙?nf)wok+۷/f/.=+we /D;?ɣnfAʹoV(6_ cchk\)#e1Y=ޑpj 2!+1%g[%2?de;WB]A7abC?QK?,z䮔Su}F]J>F5X/u*?)Vomɹt'R:S\Ugі=;]O|Q&.t!]US9S;Jf(dY˿/šbCqի*5}R]Hb[C߫},LJ˧Ņ/doxWwr<:̌l˒˷c}Q?nj/?LU1L}/=;:{_kqv}|C_Vg4}Կɿ 4e  :ጞ_MRlbMd7LvxwySO?w?l3ґxf}az5ݹxј͛??bmzI~h?~r{o.+>}o -c'&s َھ|z}y]?_~wͻty%=/r֟^$_-pPI+Ɏ?#vOlT)ar <-wt&sppj#xWtz2' 0MSZ & C:Fur/ fM`n"FV)`\8&mɀlTFgwLzQӽZM-8Rv\4HJ;~A3ڱvAc&G(+ r$H3NF1d60f;x lzRW0ΜBȊؓ7j I6L9{ 9U ֩6Y$pHr- Mm#D_6.KL;>C&9M˲ʎsVIrhl ")@+ zĺ=D~&ؼ3I^g~8(4x[Kοĉcxf0\'aWu0&ag&_N.\v$< D_/L݅gQIouL 4nX|6蹯#/2:bJF~rK$c;1DdXϾ9J NqŖu%x{ <Үc b3}ҫP"LK%y(h\G}&~/>eoJ8%1Z"Aޠo/%305; sbb#xlǤ&K"UɷwYCzl%3߾5qd1ȳ`7-I9<7 h Y| Аcpl1!)7ӏ?4Yr0PMC~šo:e~&~xfd11cv|m`sm C>(! t7r5K1䧲M|cB wŗ߾yuϗѠ'M]2LFzdv5E<[L$ߋeu+$ռnJ?Wp:W`=6M>Pēn&6p 'ȏ;%M,E˗=ğHn]*^xy4V/b"0ߑ;qGnCd<:60}ܷzo"g_HYa!7Z#̷d4 hA%!YxL83^#S:= ȇʱzh#4B|dJ0N*=<3Cze~wn&.nxs?F"Ъgm[2a' o^ݭcJmhA"3X,ᄅ/jǩSdgWff^Pѧy$h1CK)DN;c/`Et_U@ٜBISHPpeqPVV9%6q'g'?$&{W;v:VOg\!1:dYFI hztg3#xvn}I-qkɕ~HEIdQ}*jT2pXX)~CnLCeq>yhV ,I4ZV[zY{ݤ%1(ُtN;@Mg: ᗟߕ{6MH^'OA/ `3xO+mv?Z~"gW~Ǥ۰3dW ԾIgڿfoWߋ]a7ˌU7Km"ݾ vmdۯ[Eyb}M}N%8oM(?Kp5M"S@ϓMĂo{ /ǫ/~lv4PUl4Y_'pzdO5 zv^le:VupJluP-ҹUjVYDjY2X]{bSI_C1]bՓC+U؝GsgZo9Ws ,\x3'^OK~O=mn\gD0Y,%v!n %ٕx̣vaϮGkP8WaT1g+|c0dXS^ `;)Lj.; g*}B= ;/HvTx`Ќ:z3AƔ|#Ђd4=bU,C<܇R1?MKL } m]G:(c$Ox !Ӿ:Vf ْOf} :V쏁>9ש6]UDrAd :2II`Q& d{>  f@ d̜:͡B2KLANrFn':hgU:IOJp6`g_^jQHVd:ғAGa#6Qc /e#fTg-%8)h!#Yt}>o%glS+|Q姷.? nŀ/*>uN1ɭGvEsjX}&bӟjPXC3ʚ,^=/ޑC n\nwѯ ݪHn9}p_;wMؘ겱MZTĒdN~C<}a9j^#ZYJ<&<ݖW$'`b#<ÁtGhWAJTP*5ܧ _-bzûc9cZ&#._~md]&ZXZ@zXv<~FE"MeK˟%y%::oSX|yY%Mn4!gV\O/[KF{0Zan1(gtvstqijK[Mpm v[.,OY&U..2䱅+x|R?ɳ[RrC<`sU[_m= ~tK_w y ;}np0ZUV޽{<++%~ 3d1MU3rȴz:ꆤ xp+Y݉w6m\De5n廕yvE=&egH80|[ߛ~Ȯvxg2+׈%vN؝?&{{; ?%?\^? A;" x1" .= ;ߧ* `;ˎaQcgܡ _xT`Ll"C5rz@AlXtĮ MJ߶r3^0tOAó-W$b`&H=kF$,9 f!8F bG#yE7gt5IV|xqhJIѦwluc2t?As^ `m5k{άfo 6M0#zO>5IhR~_ѝxɫA 6EC=ㄧ>Y=" r_j[&hܤH| Liƛ[M&TOxpn/K*)xdt `fɫdGFN<>p qUQReѵ sBC7f %xFѴ-Yvtݬ]+l- Ez DZ`D ok7WЉE6Rg KgUJdV_6mߛ1yf] I}_=&Ʉ@O袻KN l÷VUza T;;LZtOO?Qu$P봲5q+U8 4A^ h BbX>j鲏* $vH>XlLNBK C语ަ >73MVm1p/|*>l5G_"Y6c:۶vutE~&C$`MP2 0_sM7/ M|!m#Zʏ~+ZV?>"à  If{݈;s>sSj]+KCmt;;&|I~S- o&ʾIĒgY%W1RLȿx#s4"[ ɉh.=5/|#k2`1. 7` 9PHRP'' {!_OL`p+zux6*?xo>4]z|L:ztn@/o1@l~&ޤ:ډ dO;Eו=0: s(slVl%:N4 ǁ|"ec`׿H`VVeCRew# ح|IC تoqSpec9~,XqPcoCNO6KˉɃ KM7|옏es߾|(oBNJXk t Ț=zUfljO,_$G8ŃxeP܇M(|ޓRaɩ&SE97g`"io2_r;-uj8ayPZgҫg|rxNy;՗p_gP=Z;xAo[/;z6GzpB[^47sȦd@ }ŞTB<5&mrFlckXa K-̀@y.:du8aqsc~! 3;+8L:?rmlf;m>ux;bD粼V+!2a,xb :Bǿ{%?K.\gT/{j^){$%yd}rdK꿣^vd䫕}w= ѤDdvml!$5U8 \I{5:=װk\("Jq  Y}]¾n!*": f?7Hy ۗgtJm#˖ Ů/=g@]U%k]7 Ų "ʭve%&.y.۝V*̝`RABÄE?]7X;f&2nz] <5Գ|N$p&xGo8mz{~n=MkǶZ\KKΧ[(>Fw_,}4囷8~W+dT%rϟS6=lÇ-><_r_.?^p}xWml'«:lwtm{/Nj2w6X=xLN 18K’4XͩG{ Ȋr" {FeV$MUG c⤘'2hOfمG8Tzѳv/I)FV۲2l||cD,Z!Z2K:g q:#)zN5`=dyRUWv%Xw;bCτUTIxJ?,Yj䙄`Fd218u`9:4t]AAW'}1]=[,!S`75ķǟoѨ.;3!`; O6Խ&t5jX쇮|?uPiHN,bf nmu6of˘3V6ȪPWٸ)ħw/>6QyW @vg>:#s](k1_ <٥_\:Xv yQޑSKvXNnaO=l㘍aMvW zaF^c2^Zǯw6\š1 <]ɬ~$ȺlnXC9_I䒁^5w>Mky y(cA?o;>U^o ~@>&*nѲm1]i=c2g~ 0qPo+!Wrs]|~/^V^&9sU?ng'qrb5!;70B c27PXh/kիV_r^]>ݼ/[?6ɴ #W7ErD6-H(# +C~G׸xDMN}L~Mk $}v"뮯t  Ǔnsčt F'/בL.%7̰3:Q:C"q8D{$-DƎKՐa S KyUS'ZĠ: GVg̶ڵIE:sˁ:$SN ޏ'xgI'Qj6RyiR+y1 e/[/{u<>۩@%__UI:O fm#mb2?{ s/<</t&Wʼn%>>l-~K4n`>-.|{"|lK{أnݵ̀+z+|n o2@r4oЇPnJu0It&8fqvn'z*SOt0'(-2Q@|0ixwNT~5@+EI g(c휳y09}D&l<Cd-/Nh(O÷~Jx?9y܈ޅm\C>[NDDSf]"}hU&?w$λͳ=;{NgU#H\dŤD=^򻧼oԋ=cG&1r`q1NsO4,AeoՈ0\qslJop (DUy_z$d= `Ȃ2FL&R'DsS/Λv^ij׏Mʰ+"b<;^*_lH8p=`nct=1*Xb;ȃz>/Eo/塝>{PՓWo|#_Γ`!b .9s<ѬNpIQ2ù~ih\`I;u)r~,/9\ !>uxc,Ilmh$]wd xp2*S kH1H]m\gQo5(:saO0 u ,g٢q@Ք<2p?Ʊ`f͌'NE9T^|-DÔ4LyIv,ۇMMNv.dX<IdpL9LedJAon =Ode^Hs }4b9UUnu} Z 6Lc4t4g" d zΌ-Y9۞T震2t챂{9V䳕~ Ya%-daȓ>pIFam1mIj5hjFkK^VUpWBB^ܳd7td=|ol<øNVoK+{ON.QGuξ& #H PWRu7:L.o{I'ض>6`25l2+ۉERߪ&@>&+;ȧx9Gut6O wݐt(!+nx7}uW|m˵$ Vfq׀M؀4Ad%I,8ckw;66X_v &6)+s ?}jDI`ƛ YnF^!nKzz՛%2mkMWΛ@:39a6oI^=W]^߶4y >WbMxlBeg+ɥi;+62iB"#姞)VlooPx:g?LJR48_=?e7~ŽA$[4u:}hkWω̵6_]/4?kv{`I8oL-&`右k2N,2 Hk,ފ ukp$^b҅6}cW:뚎 CcdP{Հۢߗuk2푽g^P-<rys?1apޜ4[ BQdg'1,EuўuG2ti"yH_7Y;?LNgfW t@ᕬGC6g=;IjT.0t+ &!6PV=%kR6DYOȦAd:92wMwp t;>eULlxIp.ɜϐb/ȢfE/3E@q-[5̪ hU;5@^AjX1@q%,wfH6O~6g8Iy,1}KG( AU$+տOigvc"'cTzϝgcjp=~- v9?;PNy1CW<.tng5\="՘fR͖lm9EdSВ~Tk?g[+~|z& Nst5o$2py_v[L}U{ ,r|vts?1y>N 2/A4o?Ct9m2G_ %VZNv#,Jzut/"^*̚p,/)k+]GD^$&]Yo&<1Z=V߉`+U, L_ŀU6:39^D0a޶&u|v>S{4Īo@Hf3rfbJOįZutNo? ! `< oj~@IDAT4ÇL2w2"oHJ/*t{q>(6f~`q ד%.{_lek2C>V{EhEB/r!Gز1:9]jo Tp]'$!3;GKp1r]};om n Vy8jO>~9JYr&9$O S.@E z~<$}v gI7:3_ gS};Sg#} O{_%21-+D& 8=g0r]"y~:KG4^5NFقd, +)ˮvrd<`B\WIb?{. !}<ڡ^ˡsf^Gy:U͕Fv~qq ^ۚ.ۘP˜<,F'kK7HEk(;'F`9f7ɏ ׀w~AYrcx#ڳc˴Lңy-?ɤ\N3p5y36 A|`G6aEoe^ĿRGβt$ ;u)v/D,N{h,^7Y.nbO7^s `=2<.MԿE5tH>t8w|gڪu|x8u5#E<,@y>BdjL}V n 3Zb[ 41xf8!!%G hОM7J\rNlLnV[ .Ɋ X<C?PFv,Y±Ɏ8fA'%pPc: (lkQ(86H_͠Mɦx-icgkxf!51Gw bQ} Q6ZڑRAgl}et9jN^08<`mC. G[ž¸ <с՟|#s%HKv Cmg/mcSlMHt!7Jg&^2 (I g0Rinu+'!ͲGg%VdN*ݥMք{gC^4%VU̎w sr5?x /6uD "O{I\FvʻۇIӶ ) nCM勝$mb 2sѕMaw%`۾k'oN+l eK^Zg;<1H߀6n-93}凞_Uzoe*:߿3<&r4gg >ok}ϛChuCWo9$f;O/g0f:=I*N,<j[sAYfO w+׿^~{&R_~~ܢD-&cث})|G^n; dqNnmOoTJhK~&7h}zG>0b$H!h9k-Gg&fsd , C~9$_Tdv6,VDXs,<$AH!=?:+ηF{K5)[;a<䖖/TUNR_qsgrLJ d2;ԵY\ Z1o R| ::~g:0tc Cآ17) AmlIIJP,z[GpceC-s'' wxf*p_yu'U;4x>CurGQC<|c%km:f#vl'X5&wN_3 cmkAxV<^ HUn5NS4q(*.|ySB=^kntbE3z ;'vP&8 ĶU{Ӕ^ bvf{F1)e <9$J7蚂?b`+ v N0&Gvd,Idy =p~ghH'yyvg֌=>,2yB;@j0u *N1az n:3%OOp).i{2mV¿+ R`iF1cKor(DxئsUNࡣsD'o/.?~* _V O&."\s[h8?z X=z.=lK1wul,۲>bV&&zW>Ui"HX^gsomỶ 8>+ޏSQ"627Ei?fs*kpɫ4mq'/ˇ[ gFQp%;? hL7t1>*&Ol6{)+d,&ُ\9?v IF2Goo@l7{pqC_!Knjy獝OעY (?Ռeriԡ֒ar`#&9BȗDJF5.^hYIc )>ɋ%K4QAUv*1^& w8q,Ge{խFο1ul%Go%׳3g8#duؕ: -FO : f? AԂ_L!yO60'u|q[u1DXR4'X311( ٸݨv7?zyٿy3Ao~CEҹ:׽7 [|@tC_%;$#'턎9j?)!{2^$>*9lODb [`ѯ`8ćk*@ޖS^Ytf@O%V5-Ti)t0pw0%PׂV' Csp&['\i8 ŵ+8ν r4YV$aetIp #`iGǰ^9~Gģy mk(hp=2 H鵪 g[8@hRcdp| :tB(тo4M#Wam~)G?sfp1t9eV' $%[HgՏ`Ƌp%H6$u^3d5I15R (g҉]vhA?\mC lG6{wifsDe&&=2|:xod dR[qT!M tfSw%ѿ Ndm/ҋX(I!X $lA67 3 %hO@xX}왕%K/?l6[gN:ϑIعN~">#(>z̎.rSػ{=spoUB-W]ddKI&J4 |gAb`+:z2bWl1L@Er7 GƸ%a}(4/F~ d#az:ٽ@IdX!%Mv^teK"L&@=V{I_~e:`mx9$,΅MW+a{~+ޔu߷^z&!َ BUF7I@ {U^'.N^s*۵^ ǧ^?ڭ{;2${DʗޞLɌORyop&ok=h7,>I# gXL~ؙc~o[A<=Hkh1@#%z`e'97ɟG7`Hp>~"pGMwOO-}Rh;3T@9GVcMkVԣF*m5k1P fAD']O=鄵!]A?R7YG|>*M^‰s3ؖ尧/'> dNyGKܹJ>w>\!oYY{Qo]# П[nD{;_G]sOG\dU[=|{v|)ӘCy=:~ ÕgRP;iѓm /CA7 pڿW™7!zrW&3T Yp{Fժ-蒻¾& >&z6!idfCX]v1gh/{eɵ9\q` KN&ʸML¼X_/U?]. g2Pgbl%jomw@[??\~=/zͻ>-^ӁDElcI֘w OrInI300Mf?k[շXV b=/Ah oųlKߋ8fPSZM I{,e Vz!GLm)vN8s([c:xf[Aȷ by>$fKKуԞgLV 27\gÊHĮp/,9y/z޺d/7 A-4ٞoKɔ$w!c08}  ̂*jN=D `KlSWC1 CD}@ůޔ.6`re+3Iۧ yONIDq?g?`f[DFc8y 6P+'L^Lt,਼Q8gU*Nlt2ѝq] ~iѷ:06[2 ^tGU ɹYT'*uOeaUNXǒ.zXxD8$l77^}-w.-xG[}Ma;Ӥ?pNG`j| E%{upza׭I/ù|'$l^H"+=,7iP6c/𹽼_VM]5ӭ|{6r,u/YioB=r&i+ns3ѿ7{U+t!a{bzg ޼ħOK!>~mĚ~~˧막؞[IU4{`hºi鈟s )_+e=h3MNRQn~J3HޯxďzI`*z|}oyŗg:@~-;=@2lbZ`bաc^^G_ym|>'o^Mrm$_umv)@u&'ţ叵x/R+lAz ˓zV=$g9?VyؿlI_"&~V5{T<9y*  ,=Oם>j;BKz{Y4$wO-<~K¬nϊ&PQ>W=C3Gkwc+?tTgƥx4Lr+6>g(u.ԾKdr-&?|v l%JK7 Cv BDf!/'_M%& x嬈([tkLl!Yh5/wـlN6yTeG 8r _&69clDMԎ  'TN,Eӽ|M(Oer g&Ҝcu1؁N%Z@DLLg%ܴ&~kѧ6n%fwUN鷼Ad-=&lSarb5Џd !bAQz;NJne.}ѫګ<y[v X:ŇŜl7&8U?:ZDFЗx׃wsOI V9 ؘ[x{4+zA$g|qRʏX-!*j<_Rϗ_m=] ܽ].^\hcya޲wE&xP%vIC=0ޟ?ڍYlB}K2ܸ#U,ˢV(^9V`f`;U̩IfN되>qΎj]XAVΖA&1L(~ ' uUCrm8ժÀQGtG޹B hŰBg#t)weS !bsęMy (7!@A6d[[ ($%ݫGrѐNIB O4>zt 5pcW8ڄ`r1 PeԚ\{\S tIPKVҸwv&랤$ဦ`([BV~hbK*ʣla OFtVZ=&RU/}~>zfmJr% L$o`xy#)wVi&!ly份X.4&>GWp,;?'DoP MKy^r$%w0{p}I(~o6?= &lK<1,}>x9ՅisTOϒS՚ըȊK-t UTԩggp:T{O['#Z7ΏiO9LL,Ml: C& ?2f$!HD$w:AF$ {r+ 8GG^G ֺACOݭ[RmJ%{YgϑWmx^$_1Ir7=΢TR~dͳ^gqV)4sk3@{fITt/{\HO隮<~NϽ{#id~~IW>dvO7[_Q+~V_[-H~~R}[3b~~ ~E>. '7IGK:O^a/Hd"lwLean7Jf/ߚ\TgCFFh"@O})e_ؠ%: ]p&۳ɱ3xޤ'ߌ xpC\D fʡ*'w7]&dw"jւ7on`s=NIr1}{ℶݙWE *d}*fC3Zd^h nKA,D\_AHV{?+ NxsulO-oJ!F2@ Di7QW&ָ0gt| 6wO~d/fělX_T5 8rDۋ]v_û~BZQڀ+_ opM1ٴjcabq½oqTl Z&̾uɯ j}Gt_%|L} ܬ3yص &K#&5w(FIEVע48Ivr5l2 LbB6N21^zuRA U?]Gr6`ʈpwO\1 x tZD]xCK}N|n#R}5E16-в~?h[!tk.P[Rɉ"վ hkAV`}QW@h_4.bgM~K̜&7z^t5n0,:U^C FwCb<~K X0.~~ЄO׿/6==P=DͿS#ldZlkdo:H!.G>[Wt;;:M_=^5v3Jpj Adg!G #&BD``*0R ԹkLŻ v@\ a  I$@Q%i3u&8dBB?zP tu_g:g#-*3I Ö{dSbLm<(|hX"툨n^g}-;38If k nS\阓d{QRK$#|'5Y9nN.xuȑf8bgO=9 -+ٖGCG˵TOt/,ߟ[Fo-k % vhss6x9| .=nVO2~F;]$Y= ? g*+36w,kf P(D2?dg M`§˟DUY@.>&ޓd%hO$;MؤʶTt,&-:7q0ElҳLY$exhچ5NmR+Trx5ܖ֖ fx;Ŭn~^A4u0y-o-}nMOtWUWDj6 \ d4P5Foy|[ hpT[:|Md${Z*>oXP6xכ7^sw%cɅNKhu[ajAji|nP9Ӝ*F;x~[R}cD㗖?6>=M|y[ 7<~yrA?7%zJC6bFd=V#lC1NJ %?}+~1~m.B< U NVYŏ%>j)TtUg ^6Pپ>8\@OXl9G=[ZXAܹW`^p ̈́;@ou=;}?Kqpq[K?nFwo᫿fz~z#iuCrnRI`+?4*Vv?\pyu pf&!OTQ$VO=^ĈP:rl?MWP0듏fm2dB%+6IhxՒ/ BzK3!v ~t0lTaYT)VD& ٓ7r [ͷ'Jj3g7~V辭xak)\pF'a  .٩"Wz5F1dVv2 VSd̜j@M2Jk$PX4اP肗o" {J!b@)v:s.x7F2@ ^)5\{b"&|9: - Qnrx*jkՙp7%ķ[>Q 8a?9G(b5ԟNLǀ6-h. /*4[]u}M⌦^+Ygηk{eleB6'C/$tJ۴Rq 5ߑ3Na =:|c9UN(D.lK쎃DZA?];'$iZu`︆g`o78EUV@9=L9Vg+meMR٢\A'=,H;cs& et V<tYmӌ3n |:{!g@UcnyYtnW>@8Io1aЕUfvۧTs&'xX1o]u_7-`-n8מɪ';@V#kgzQrd.7 o9[g}θ%Tϳ}7`F:'3Om;`QM˾7de@ >|2Xb6}3nm1oO|гږwJ4_s!zI? &1_'`rgG߆fcgFxDYҘ 췿={vn7[g8gV!\)%cfOGEbk{ |,n=7l,fML{6S53Y=Y7N136[XW&387X=?@!anfa`/O[扇!ڼ6qw>~o0vEA_`^;ɭ/YQ^'wf1p2 F/ZN_~pty2۳# y]\/|dׇހCg{Fx(]& nI!l6 #\ʩe8xg/ nϨ?Z؝Gg _U{iɵgb]u8BߵP;x׭`@鞀_T~wRnn-pɀf_k"G~({#/Ȥj/x6єl60s8Th T: ֗BkYt3bE{dfe !K>=nCA}e+*UC5W@}P6l=È=h)v~w _yr&QHF &`V$?p5|%;_ʦ@ƃM7 ~{ `X y،f9Z)y{V^9_0}x[)v)r` \kuc3hxbo v!]ŷ(S4c; 0?ͧ,0z R+ٖtqNp5ظKK@k+,|#+I* [;P b-A/ܭmMw8ߋ:yxwķ77_?RE"ym$ 6K>HH_^ʜ/><3>qd8]'^w43ڝV"ӗ8jj挊4Fb.gBzkp4~[1P` z  M@'dr4r(` >- N#o뜐Jʴ-u*3,?k] X[!H]OYX0bԞ!\y9)v9R2ًe;\۠Y{}H\ }QT98R#2xR, 6ܟoqzUrg> sf],^m)Hw n?OX!!4SefhN6Od딟 Y u]³ +<吻-8XUdGC-eEg$?,CIG6x:HfeFA8gK?2!L6vnpqWpW<ƿtNےB z_Xҳu73{qNPkzfxj|>N Pt"&|ӻ_$UVvsxnYtx}h]T`|ud|5(`ٵ YLl _Gm= Ax!Б =2*/Emvv$8KP$dq$_<=5|/n>< /oo!tJOoh?B_KyId\L.V =t pQ&m/~l{+`z[bJ~?<wϫOvq?$ Z X4 ]aAdEodyECz|+3߅YĔrjir*W9[ߠ6r: ҷ*[_ҭm<~7G>0G열=dIXh%~AhyA]ϊ1cXNVum$+lPAB4Kmn-5kLh,rfp͟~L֬r0n5EI¿.y5㉫r쇦joKQߺ`o*|*D< }-wm. G95R=~lfSNa#'&DBx> g| vFx/܃U~Dr׏x F~wo+ o6"7O^ۇv1%+_yJ{ =qFXm愓l%]Gg15[8+RG4<~ttBuljȝll8-\g,' }0N81 G!óT˒/F#HO"JE9=8݋9tÁXuN[>0cDK# 3-ٲj{@.g k2=kMK8LpWh!T2#)lغl'ב&D?:h w{֡du@Q{TF}Je:L}:Js t>ӱĆ8JXsN⟥Ďɏ x]k똃,?FͳvO \/4MR ̼l;kA 4EOU|?0盂8& c$]-q>,؎n0;k>1c =^fFkcE~@IDAT*U4c t6ѹcr,7?bBGiid| xw:L'.dl/ .V/ o$uLnѹJL ɷ B ^}Gm"( .FOlE!^]up>f#?Z}H\gt(y<% abh 72Ffegp[cP}-,aZ+M>\k8|!@f[$P H?H%~;pNj>곢:^-?6P֎r`^:.u?bSlBvf'dg׎XӷKy~tx\&te6$C`0XQc`~ FDr|{%tw<~DvAok-ŗt]`\] tKю/|u Ʈ9ěAmH@u7kFXZU lXJw6#teΝo' >8ЁuQ5Gg4Dy7u.f!W8szȸh{PY vrߠ A'SF}KuC?2~F lΧe| Gp=+yA ~97Y0-X9~oӹ)OK9̶@,Cփ_jou97 셞yD%ٽIÂ#>u\/-_,>/%:ss8ft6%{yfD>w.~ g։ioo^iC*;] ަbE9e#pP}=*|NGot~Fѥ[v2;e'vyף?[ݓ\S$$)^$3+n51xզ^iwtn0cG,-2_@Mu<PJ^Xܽްg~RIݘ|3%ų=|thՋlpƫVxo !ߕ`eOZ Vxyl> .|?L*JK"]S1QdI+l/?e8K Ul"kX{y`w+*orٝkWx'=CGm7dqaD,fYb?B<°Vڪcu'p\5=@ vdˮ}N~"r[ zi= Q9f}גBWp63c#Ո@2X+Tϩ/kX\=/径4>dT{uX"zUn蜎Tmg"$$=NȔX_R$;l:OYCߛcґ'K>V@~/e, ~ӗ>|oC և~fK6QJd}WݟL"4V}h&DKja1_ tjH%_VR@w%%:>,:̘>[%?EerI+G)VUf Q@Qv;;1&/.x|dzl&á:kh-3tJG2:z~i;>I8w]6G6<\ϾM`Q)ϑA1$1lv?.ҵÿ ce;jj6NŔYJuczKzC} qGY%Xw6o E&%nV vI_OXoN)M4#~w)/6LC1or!dwFr7ܱro:]t`:Dt0tؠ?@gk39Oi!uiejad39pŤ )7- (0g U3d,AM X+{tM~v6_G*8ùWlYɮ%wMoCXHscڧ.::;b,Vv6-ocޛK/'g ԰YAnKf՘F*gw?*t|ͫ^QwI{$=f hg%%j$)σC8oVc}x9^?*K>| (/7X{f_t ׯ[zxYf8'ejkp+t5c޴dn{g׳h0I`2o":;-$qKd{~5]x^ڤf} Mo?{V#{j^-FOQG^f #]#:|*qYKfMϪ`4-K wceǾWgo}gV Zx: o2ޫ4ԇk}B<0kTmnOJ\pD[V@S{{\\Pktn{EɓY~xw F'WYUwQٵp[S9:#1YM< +9v \_BnU#am?щ]%w& ^7вjQ#RxH B>8DdD\xq1-ft!|/a보e s;g# ߵl?IX2.RV,H$Φk3( Gi1:xrȮXet~欎/%x&AV=C7Y.^wN~jPml)loTw;C.0m,!a%qOvb\rw!*~@;}Q*wVڱ׏7_> zKiU+~MI/AqY@\A5_mL tp&NNҲ cK(@#u|Ń#r~w=!>ݼFהt NݽTqLd:A78 rkx y}tzdIAk=W#-MYpҥ}' 9`(:ZY>a]E\h$2Q UAZ\烯MR$)@ڣfq~?Ҳ+XLm8Es j5͋˵L&;08m# {N^Lߒ;ON}Wfxs^=| \/Е~#)|XPkkG^|97ij#C oLTM!}_o{4 aI$o%Mh%86O؈$E^E>T4%TXlS22>ɘp. |L3_/e4;?Mp|{7I2>1 91ޭB؛XE0owL?y_~/k7|&& V}/ㅼE'>LgxUYrOWӑ?K\h}uС ZF lyVa>Sf96ĄeL]AJS808AVQ#sX)|r ʂ"@]Ogĥѕ13tgrD\`!܆[m-쾦cxBG [$7s(7atEG:h.p0"pO|w83׀<,S'kz9sEc%MWtl5J?i YOy|+RX'𠍶 F"&=1 Nu6aG1ɰٟ\A=hG91tv0UK;;vaԪZEF9vylv@?\}dv]?G aCeU3ʇv43P2D0Iw~c hz}rlQa&9qG|• I^EΣ{[%xןg6O}֏e'OK_9 Qblua. ;{Tm砧g .cHdk‰xX?/?]ÐpuO] rɞ o&Z:_e^].Yݵ  Πu{S"$LOGoAWYN^W̖oúwnwCsF ߂ISkHO/7޽xr><\MLK1@#\X\ò=v"^/-ݛo^bA89 D ;vo٥䣭W6ބz!,we;g͌أ 1 - i[^Z1Yx7|*ACގx{D2ez$*>  ^lb&޾zӳ=/^{JJ(A6|g=$e*%@14udl5c*O}kP$f$zt\C6Fy3dfw| 't#je-| 7ܽchlۇxA6='V&;V@ýH…#S; '2KGG@C̢ogϏʮx "隺.gtI{6ꜛ0~irM>[a/::t=Yhqf[+<@Yba SZ'?i zaR}jGষjI ::D1bq3~9>J4.ȆKd+8 Lee8y[G,{euKg@ρf#H Cj{*$U#ҟ-m6Ya [}O1Vc|ڡPgԮ*s]bOp. U;WlYrzDnW#k6aCU6K(dJ/jS%֏_}s5 txl pp<:o9Oggc@FǬ6&!VCn %ɋd&Bk()ctѣ߱ ,TN:x(Dq*ـ7_{ʯP54Y'x7L[(h챑qaxv/OVw|{}蕽m _zn꿗mSK~kV|z8$sË^zb }xqԟ^|y~/[HT@z7槵k$`1iV΃}d0!a&XZaS!Riy؄~7mi^yX'hJƕaޞE:7j^aNQT=L(ik]tڈ$kw!LV:P?`#X- ]{(Ef:>[*(9t#uEfиYT-O99􃷎CÈSژ,+lbN UW) &r$ ـ}pPf*p\>j9'pʋF!_3s_;oȳ aLj?";6$Yupt(#]As1zfy&mkBPɀ(ӑʫ$ϐԡ|N0_V)|/cпߚqRLk?A:k8^.a ~\/wo'ک>pk 0}/.24~P2 ÄN# &8U%lIHz#bW_`'L{ѵ U$-sRZ";[X"I}Om;$X.]ǷC3x9w>NlMns_5sp|i휉 퇟x.٪m+<F̤/bjE7C~ P:I/o1xVVb?V, x}d5!6MNJ`5;J[=|UğpFw}ع/fWM[N~OYZPI JN%Uت"m n6 ۜM/D{5ZkOR¸ vɢ>uFi ׆v my+o u;ס?*؎K5q#zġ'3Ɠ٨ѡեpnW)tͮy"+Uj>K AAR}\7Gtp.M!z}o;- ]: ~tw= 斯 Иj(:n[?.Txzudr7j-!•ƒ8D'U[ѳ;0`Xh;0i[[$G(잲4+Lvfp_rFGP'Eӭ`M)o|ڎu@c'ڽ߾uorigll ?PAyY'~CjpL3F9wU(U<4-[R+teoH&`iz}{wʂIF8~"pHK a/ 6E客A? o>Xn93h5xtFo<[ƿYkJoFa,AʃG=,D@]ےgݧ'9=7ʭ|CZq`_{_>$WڀiI,{UWkQ+6g0˖o)@wS6zmd>>}Og:uo {ҫ$"|P,7^Ɂ F?|=]_%I"}ë2݅76}tQg31&lˣCo VgaE=0Ὑd`A?˳籂}%sN?6|V,! 8(*FЮ ,;&?+Cbl⚈ h)Q1+k/]*f/WCq Q6i%o}h)9~f^6AOib|ܷ& +:sw[{ x-FӋkFɩo}pX'+%.xGRQڛ< ?/Kek㍎QOtAQ;8c~ot1\Y~|i#űɆI`_]cSboc? >mUCjKj&dMc_f8$ǽuiD.0h<*Fue?Yi kvY]}ğ6(R6^N`iB6BAJ\~W; =u6"/^{DgeIibk[+`{S ?*#_V+ª3pbo٢E_`0zfwNO f4RcnP]<ؘ$zVw>E?xdݙ.l5JbGuN\WєA:<9W| O76_;t7{L;~o ҽShzf,>C(vغM~o^W|/Z뷿|Ѳb?IJ ASy}!K|8x͵Mc$8*,n㹼"%7og>yO7|~,z?7W7VmK+ d3p8ま0Cg}8.hpɜQo~莱tܸmgg/g)I)GJY' vjls?SA6!$SƠ1?*uA:GLQ<O{Y_8(_mCv8#m*ǰvgAN{u=+CYs sYCc.E:ooK3``2S}mZqqIpS>l̍NZɉ%dQDǃq*dM՞-ѫ'Co52_Ω!sI.]b_kcACV"p%?x6j;BҀbt4j~wϕTwf)X"::tV6:j oub:xuR9av2?*7ac +.ylC2 j2Usy#8kqak!q3{ۏLXfB<*Kڟcg|dM/f -Af8=Vo&ȋ_{݂D i^F{~\7f%{gV|mmߕ@ϽKNQo1Jy7cK>|]oo~mc4{2Њ_?m=:ͦ%?a0@/N-ѽO?.SJSSnxVE`+zݢ[t"'AGW$l>{#O/^7fK  M]胿f'<")[1k.ٍf˼}+TsF'`uyu4 ʒVfF{MroO*LC rOglw> )ʠhϏnV4tX'쮗MRؓz9>8IܳIxwN/*>@*3N麲wL<+@C7U`>ǡYvń5B  f5EER5U|ש/^n[󁉖p؂x]7Шtv>|] D &1x4IPv 5fwHמkn˔/^g^)w[$v}'gJ#"h_}j2x2d"J8m5wAוmĎ[(ءߴppɖ1Vlcmmœ~J=o_ <.!VG)/'Zo} ~Gg0%R6v>]۪::IkU;8܉i$EQ%7i[¤ t}Y"xOg=pٚM񟭐&9t$U+~9xCuӒP?D1ŔN Fr8N؟jKwJOX}>9pA wq{c~Ey5b{t?~Zc}&fն5saCLz{6Gc6N?i箄ؘ:&$މC>}&MG?|*Qn4vJbA[ $oI<;]4A_iSo(Fe"=k8wo}I`[𥪃35mJ#z>TgiFaKL1'4ha2V_2^V0!'C}Dj(DR̩R7#2T1c²S[~0~TP|F)7a N JH'Fm0OV^އ㊆-E &Ɨy)FjIgA" 9!:i֠;^|~ǜo80;u}!pR{̨"q/uלd~2t\>jx8ǯXN7w8XUA>֏Z+9m*uVK^ZƕD <4ZX|x><_/_Y[5;9 t."z p\}iua|:7 :dڵ5󊭼 @GpOzSk.syK93jLt:EA]c7R ,k.DYtD6KuۢBe:K!=M.Ѱ>hFUQJnntAM*mwʿ&fڃ\uEdv9/K&Y5w[dw/$ZkgUƗhKMQNoɤR`U`P i{'a`z>hБs߯TX 5B .x>3KLƥD/{\B[$too2r7;$9@:m+/]S/3 ~xOW60Ih`_S0 e+?u n|ͮÀyG&Q \8#|3ntE>ns>z<2sߚ1|摞X \Cdo:|S~7>8:z*CV7]#f\ÛңT6"lk$O=BqWaK%#p%] A+7;ya}z Xt9_V/Ci48֖#7u/x;+#^M4nj)f>PM}1917QZeKJYE_>gKA% /F2r3zBgBF6~z rت{t֪=V"Gu|fgZ~"[2ӧ&&ztE>kM ugLYxvqVψY5:&#c~bĈx^{kC:G=j;8L6$< J1ȐHIy9c9lŜf$~C ށ_˧LIUtxIR-(oD{VwLl28 (*C&Tn _ @!A=,[9 Y ekDx])w 9 Cv;=d80bxg[ k.YBa곉g$*_Op_%:Krm6HfD@hJ`}5C]uh /4) 6W;pyr|U}rޫ%GMg ,<.Uc}}чkֵrbaV?wSvLq(% uE4,/KLn2_|){Sctsfrؚ-n9#A" V/x?o& =_aK]脺dZ|0;CZ Ћ=?yAГP@ %Pp l1gPo,1ZohsRe!sJ^CBgO{I٤ O%'St4 %!L&ʟɡ 8:G`ǿRVgT0S/%YH;}eWL;/hӭOKViR%v6H7~[=>h-q(Q3dxT׀8=|Рo-VPu#UNYY7$ze4To<~tLM, z5£8*UGTN8_?X?[}W,^Y`/_~fm$k֕JmUu 8b Ȯ,)Ƿ.~ßYysxr8CuE^y+A/zf1ʃ5u%k;?~a:_*ӣʷ>@,V!_6T?'>_0!auҚ-UMf|k3'%ZwM}[_|ۿ}ySI3JM8Gxݨ^==鰿އGFP_W}U\^o0ӑ`\z;0%tpf!t/:YЫ [q+3Ǝ`RuD>}f 2-d tZ'C.eL=w\wx$';~rK֮Peh >5pGqO ޞ,\ ;6+F֓ =+ۥ_?pstn˕ae53p{a%BKg:JU. mSΧv=X{es[V^/>V$q•A-{]o J|ܿ,7_oW6Б?Ͷ~Q8pR"[_CviE6_|yu|f\Ht=ֿjI<˘2ӻWpOW _Y&6ә¡^@2V'qT !y: 2ey;ǹPRaá.Gl :Ig.'<<}|l+8V<|l;z%ZX x|7ae<{Ɩ Dlp ;炵x1j6yw$od$c URZ0pYp>r?Xug}Q|0p]?J]&*~9V mEg}s#Btyqr ZΒɳN*dU"}u8л<:K}'ikb$s?ɏu|nWЦfл఺ KL`#zP~kU{l\n{H i]L\,FGvޢ!gaȿwEޯﮕ&ෂ&m? 'LÇ~`K\;q{rǸMv8дAq q}`%3~_#ׁ?=<@ SFwkҖҧ Z: >HEh w`drא-UGC|PTț,`ԝ-&FIW/5xdY~Nl7n\󝂧p}1F,*qwkD(`A\hLY,<4¸<2T |RZ C;Rng2'5'x+_i، s4|R`psI [&xI}--8`SE e[K$CV ;&(k* LD pMX?lv }=*W2ҫ9_P%`\Ҽƌc5 @lS<6z@,]Z9Kf}6cmk_!Noz}XAAvZe۠coK ZB֖lX >V(Лe&|Jwĵ, }C H#C桙}PkFPuק[je_FmK' Wp]{3:N\x'\H6N~ʏǦuth4'vQj@K8d_A2|tkt@.FЦIVt?<^v>תrt(@[2 _\~w-ZOrѤxbc=Z_ѱeڥ+X o]K3ݽ @8(ӗ[KGS $Z/ C+_ UGῒ &7VL\AnxLj_zlh(> 0]# Koj>hA8xSzWW]]t'N o%Cm&fqCs۰?d!%`kx11?Bȇ'U'xvɠ4lcze4CbuRo:wm7V_$6-Y v_9nMvìdX+"7^GP];h1B,plVӯn/76Ҧ>_m_ pM uJW /x7 C?}yaxK;3]{{L6Sf{t<r3o G~_Z"nuK?~?79͓8$MHw&]V0Uo_{s"{xKI &`+bGQYx_{{w:d2oO&I\6D0 jIS~vN:~Lis\YwgŪznp߱#ᎶԒޚXA}=v`3ls =p&[2Pf3b`aeqTbhI j,D4srDXq$g˥RM81TvYɄA +_e Y+_Y|-N HR8}wzf#6[n_tM(8|{a`G*;~~ډ̭ ޔ7;G:[Ru1< SV998{0?V :9r857z?Fa`> OxT9WVYdhU~//;9ѳk_z, h[] qS5d9 p>̈ڲqDJMYQQy͡ʑ0j4~\ \ vZNM8Kg&یlS1ƧQ W^ m5!, ZLYfSpS]D=,Qnk;cvlv aW5xn?'&7N!ZUBcp50Y?"d v2@6n;<~> >7f<&zr6 DQ\/92W3x*YD_q|uM6تkhhpaذn);we αM;hdÇN  V8eJ`gY}`s8wU\?Sk}=VO|:Z[;H,ɿ&i*MM1KyO.vn0~͖}4;3M2㫔%dM޽N`t*KF:VGr!CHc#AjD?p) M5Z3Ou#{(beLhUwkm"[nmEB0IW&Wp>غٌ`ۋ(_gѝV[,yC~Vh}9ud =V>l GlZa&jC4>Y^z^yX*:`Qy^zthÌA0sxȯ K|cW!~팀`~Fwk> }1q4 -}!ځr,5ׁXkߕ!rV_z\3(q49#lNC{躷A%:wK֬ ipddp9{;|pDȄ7o=1Oǰhe[:NH '>'?odQ Q:< _.0WtVɧv9 cz- ҭ%o3CM"c,=0;RԺ{fQAsdh 9:4"zW}/b_kkO!3ҝ[@k5/J/@ xR~K歞0dxf-[)tp?N" -"aU <}uo:E D~iA ^QB%g,Ĉ_X*M,NbD|{SO>n8!dO0u{l y+_{*DW`\ Ϭ"x_v,9ƚP>HXn,9Wxmf 6 s_VAdtے.>O1 -_َJt澅a+'T+7tb)Г׈`G-gx='_3@ݽ!k]+֏}Nk>OQ~_»Ӄ@ooNW54Y +AfN GL"bѡ%ۧ@ Ypi/~(mP}k>h=ڨWՓYqe[J<<9$[v.`(ٷӠ'hv\3Z)C#(d ŭ kŢmp vm@ϴTKdNʟi5Uz _XT7Zt7ة9.Lf!8ҫ0h^Nr6yUI0G7F$:_ofެ !1{M^|7\+o_[ꑺ^*1hx 1➣[~t^k_Z~ \:#pF5bV@36vQYX3S V4gHQ,C $|;@+V|8sDӂk6H]鵽FeHmMcb~h8400ZEdr@}.u7Oj>ξTwu:'Oz|:ċf,Vpzʮ~۟E@OYmr],P'خpm|Q_ey;G'P;:#YIfeÉl9;I `W1PH kQ'KT@#%A+)Yy+3?}LN挞7x $a|tXh:EaoK-ò_>pfLN6uUfۿvjVbUD&Ve? o=^`|v^^/9`Pg Yy`ϝm+W=[IDVJx4Ua$W1۞cD$ ff ʪV'(<&#f.m6N7N aY0OV~^}FtqAuYOXٳ˃S"I6f>{Am߂rFų6hgQPta3T{rϜp T(.}I|R.D_Cfgf2$xԶتmmh쬀[K d)FwieA*[Y=o6JI~:qj,;ˬCp>sA`\uzߖ-f|._&obnݳ|ٲu>./nlR&-GCG!NӼ=sg8$Ӓh40Dop|C? clf\f׏]%] flMvU4N}04XOܠ[( |\d#"xo~O^+}=KQVKX M P#l-]*7s%TD]T*.fǗYP49 TI '-Дc5(_Cut#fe9rԀVqz2Y5"`S^SHq 86JJ!BA`Pmp^Srw\}heFeXR% gDi&QeOYɇYA!~0`D r3N_Q3(`&؄~koL3t+W)!kh3>ZQh 6:$wwËS ΌL)w^Ox" ze\2PCdG,cJnɇw[׾;rf3Iŗr]azY@TO۟9a`q<]VOr' $L= RieY zv w fQAm >혳J([{jЉkL«/}ftL3[j,a*&($GñI&DU]h_}#_0x6Ӳ^Q|P}*%y+&hVYO۟fɿδY.Os([VUPb @@ j}QzL+Y;,}L Hյ~~r\\wkxe $k^ 8;l;Bo^,cGd3Y"+`"ryi&5"BۛL)=a9rWd,܏tO_;}tr 30ℊ  U n:L+gTjHom\\Jthp8'.SGE{RM~U]Rp:>2zԻ2رұ aPOpw׷܀_ڸ Aު@jEV%/]泣!d(Vhk1WrO>ūD6G6`*kt!qU8XUtk0Om2|8ј[Q5b2L'#MkO\/ taWWo?J푯2[ D]>WbTՀZ6n~pZI] @{Gm5:7)fivP4?6՞Ε^>W?k"x3G}!ֆ \ ȻR"Zqg i8̘gx_s?  [":Gwj6\}W엕uDoY6#&ŽP-袀 e ui q NFhWYG@Ʈޕ!L!}گ}s*_ Xhy:xe7'گ'rCfzM8q c2pmey7% ЋSe ƩiWzS0}D!jE$e=*WwZrSy}<9clx{}Ѩ =#<|.H/o3YzFi lPza+E*.: .WͲqL %UѲfG&7=;^u4fr1ܶ$Y%;sCBL`2ICBU0K.p0e@7xhi:ؒR;kr s,ZCwɋn6' hջn+N~Ñ'2.hCww5+ɑ3pnڬi'}xeFh$$-0Taok^,3>f +n3* 32ː)aXꛡ!Qq8P-esshj 1O{1codS{<B_s̃<\L5><{ԭpն $ ;Xaqv==9|׏{xo|?4?at:@a OXG*Oz|e_^p_ ~687LϮKF勜a>[?z|Z}_ܿh"{,^/? x>T, 6C>jط60Ԯ_ QfՀS3ݶd8hV9A؁6wӇ/_&)~}jOH69pi:Hr-:/2zR9kmbvn]%)z+W:Eˆ~_|ta'/lp+g쵕2DJ6wCSeV[V#' ϵŖWaI)+7+Gvt@[,1|xņq`eA uPU}QkCA{t6 j:Oq/+:5?>o;lcфͯtuk 56t.Ѥ{h̦nv4Z}_22XAXɫ~Y/0D;ki[IX M[b3M}"aiŇ,V` [m)_oۮM l#{ejd3UK}g$>Y%JJO?[Z3O6{zl:{6+TX.lmNNYr6zG G0 p #b[ YI>+CyLW'Z0`5S~ΐa0b{5)y t3'MLG`'`( dтWU.(SrY۽+6BT"wN L@j5|kO`#HB{_:){/dOh\?(X BSCګY9'3/JvL:hr11VbxEgmn:fi~|Y+̍^2`ys mF.tQ3͢fY_@'On,$NI.,  1:$ui/oJS=^m_i'h_7 zTbKa%ҩj]>ɛ}SPq2 hVf+Oc G TXb xG&pWO{v:ZJ` {MP}ydA^`b{`㜭}Ղ`3%wWt ,]^ lٜk㼙Z^ֽ pV?3}Ri}L闖i{3†ĵ`,PoxuY7؃w ,}@ ><܂p7C%K'^0 <%~_9,,72.Wk~xgdcv(l>4KD}{׿_c$$SMQo/=㸁w)-Ty<85}BHAt~ьOkka77RO:D_ gåЁM~UgTc tqУ~<]c@v6ؒj?u*j V<Y vr@%I=gь`k&'<;ӆ ^SSe]MoTVlil(.|J~=lx.?On䕎m\vJv}1ն~3@-o?il%7q8 KR\?'g[UYMԷX|9;QG_2|&H#'y>L7]w$@*dR|3>LtǾ=1k3]|8YCr:P\P%-&(sS._2 s+ʥ3Y*$59+r*1a \ k@}y~cv]_luZ[|I~-~yZ{ .OL_dn>}0=|&}gkx AZ[YѠ*AwwX?}J6JFT\ ;҄ML(U#M]+,xM>) sW{+]~FvC1'S}HZ7 qoItcṾSF2tO9W.kkm}+x9rNY\girrӑd;g2MjѮA>ō 5(c\/mÀ,{zY >oLֶ ~cNsU\j|*4^h/9A>~qOjYPmz6$W9ꚩǟck Vak ]6NpSҠ?|/kw V6@H3$_y^` y O F-ӾN~ x;|,1c# r0 jԴ!-X!K8 &As 'W'َGe?m_)V / p[E|6wQ Bsے%A D -oRG<m?*!:Tus^Eϖxi59.X"!z|J0DGev-(˿=KM[^G)`J8iUب0dei&-7-k}v?EGz.lhY., FC`}7ZF/m߹f8!6[[{q(4jٴxG ; r|Dowl9yF )@|kzͧB.8ܫl|'WmݻpЯt B7Rce>Ϯ{PߩI%׏Ltk-BO&s |1/]댁|ԁėO^$ya*c%B[o%q+}"nk|F6%``tz2]g &P1}7CcBchjo!AW޵xpxfB1SuQϑd6@ ŀK`t  j{} OsĄ'Ȉ nY'q۟Y%V aܒse)»ˇ0: /Jq 4 G`)CрU.:rp<L chƒ/X  eM אv(c\ϓnNheО~;#Jr(>`7-W_p{xLu= #BGǑq;g&Ē|=t. ‰‰Sp^ sER2C@98v-,9O' Vu2DopCp4XNP| 4>ӾOhL0K--M%Kнߣ,{r2ڷě52 +{~ͧ.ЗȒxqp\c`$ 'A99f@Mb+ in)e7=:t[Dc%.MCJdo ߗ`&?)@̬Hr4:ZJK0#=:K]{zѹrE1jGC> v-AG ~J~ =#q?f G,9%2Dl$,@ݖOndC=+ʗ>=$kGםӻ?khC(7s闵Nŀ2#9Rjg )ǷM=70{ꍶ:krK^IV \׈ͮQ`qU# fp7pl\]GvoL";n6VM^YQ3I3d\$u7Ll?X?SNV7z ZZ JgYL14p轳6gY‡f>g)7?Rג(}z::`@Iڱlp`Znjvm8]_V "+?~es^X;;1FLFWɟ ΎIVitmpf 4K5[Ql#=e5% WKV ҁԏv%DnD1nq]f7U`=|G}3*=YО~jJ.1uن`Y|8Z< FY=cԴ 71A(w-f'1Kxe~UXI" 3~Ϭm+'tYbB>6HdO\?\|Ϙ}[qg=\ѳ1`m[kBqw-}[1q8w]6x JD|ӽpe}B?,Idvl"_mlf,{n5e@7m2*xBeAؗmw]IOx>J~u 8~yzHij'Ls4$vN9+KYVfT$6m`KQv(Z]zp(},O6EP9 s25kK zTY. \6 |8;8A=ю7F?c9ѻ22?>Hd$Pr007]Ъ#ybhf/ܞx)\$+KĮT40QUOy*lBEMhh6S+("䁮˪;K7U-~yۓjs3;&.3HBՇX hd=3[=o[MZq'Dxnzw`E.0'dV> g^2ű[7 p_r*>w8UJD{:~Cd\i|,>9w0UMh+ǟ $+ (k+D jt@{RzTLdu-T~=ﯮ:In,zGvfdSnWWwI1l:fO=N7ڲ|~ijj8ۆpa҇ _}my ~[&MSΈ0| ɩzrld->&UapX-~Luh1͉Ս$ Y]4wcfԼ+ڋJ| oK9It>GnO@#뻁sѯhe=Im(C#t}8,-P fP%'PclakmZ pV:2V?O_Tkکt@;x:>ԮlňC;:3O-98U:,O1x\5E73b7G3]2~Il{GsAPg=[\v< auE.,Ûl>muxoZ10Nt~:h!9V<@^0ڇkKݑ@5~V_J4dg-88"'鬎-9ϧG$A~$zzӪ 6t6]4nI{ĵ]K4TAYOk}D.^tגū t"\`_n5`+j+  Wmeuw[K2MW_f=Qp ɁASK俎O^zq݀ 'a@gیCMF˂ebsopdTR4Hګ'85Хl:8;NтC ޖ$S,!+JM?=m&`NgL%:= S>JYS 5'٧JAŋ,Z]>0>I4 !:>`jqz>l/tX@-̦5J/GaIu~-24RۻލѩzLJ 5HuVF⯟}ëki೩Pѻյ|FFgEt*m:49ݲt!dEf#o<<;߀:lB9xN\lRiǑsq6>E/8z`${QksL`,xK>R]BĠw{ѧz1ؽڶNpc֤Pn/IȶG o 췊ϧ5ŵQ1CC~&[Re ~qX"}?>Ԋ2cٴ] R'?O[;$ۯ%fv337>71nU P9+VG3oE$dq϶y|ob Qq7=FX$P_.:/sʿn|ׇU[kP*ыj;mf𭨸-rŶ-V(zw<&bqTl&؛\VEٶc[;Sl£˻lw]HW#!TB2  >8g F-dmP]6@4񳐽 ՁĖx1~ZO4 n9iw+i|&2 ]gFq1w9Kہak{YZ`7[VP\ڎNR~+?h:*UDzh/ڂkZfwVNߞPS;ݽ~<ch xjbQ?>wRd4f(O "eAcՕ_!>va00fGЬS YzM9Ö78ٌTp6Y2m{tYC b)ͻx=%೧2݋gگOK؆g =⏭gd~`wrlӖG tk'*8mpG~-UFdKBr]4/#diY=4} :UĆG~ţ`حީ!xn1G3xYe'Gus0#ysI.}[%cva:G[4!,pj:]ߩީϹpzrڛl;f 0ahzd='C4o]ta}E^GwbX%mv/G!! ݞ9/L2d]V,>rv/辗8c?*1kaȓW5+=<\xww'…LOyϧl,[['9^;]VoOQpw /n}Z-F/6[q~ެ;#RY(u֛^dg1pEl<'_Vڛ|Ja8]eGݖNG} WE㽧>Ԇ*`gk}ҏtpGۓ8bt=eM,1? l7ݠK !} wyAX97jȄxnԍ8l;8UՍG| 7_lcuU)51 :uɣfB,P!綦AOb\ħZUAx7oh)هm%|4ԧX>ekv//>)Io|p ֭~i_Uoߟ_| ?J1ZaQK8 >D>rf e`MG% Kȶs,gv7\br%%Gƫy1dsT>>\F#q_V4> vM=M؛8 Кmăso2|Q1ylU*>w`#x|{jBfȾAl1,?t-9Ggⶁ=5Hˋ~jf_ZڳXg"a?6dsm Vw9{q "Ai9N9ߔ@hGL&I^>Oo lD+tf=n;9܉qtJ GL^-*Cp~V|, 7= [ KV}^r}<+ r8`,s#$<o}’my#hlyD */xMozLi3WU tkm3#1g kv&b~)@>60 ֦ΠhgM6^dKH?PG!%%qkGH+NSúcWܒ/< u-JQ :/ 7~H\c-ZAtOly_Z48Oqj[?_g@ɢ{ 1uЧ:<.->]C9 |Tc|>/G٩^UGE1A4Xd){gu^+yuuxk~n VKKhہTC ; Bx^ayb"۰=рxXp~r}6QtfGtxBb GO Nřp>dRO,:ţ!ft-@X]K%iXWЙeAԽ $%S}Iޭ@aOddIj1[5xխ_ƮʣY y;لX|a&dB]vI ;ۧ7 ^@b\>}mݖ}»|@ǧ-wM!eŤ1Ƙ)$ Ï]lSzmOV<40L/2 y11(B>h-O9A=bsMqnB`(إ8VAS;*+fX1N/-X@(0i}Yv]kvQ '[ %ؖ0alq ۓ2p%Gh!CŞ(#J1bFB*Dpnn h+ȓ$|E`_90yo藺aed8 X܀,<G,CY{ G:6(aOd \B"y/j\.Jx_kelnV;唳 B~_GȗdD>gpΠw@wMhۃ F*cVcq., _(^q?A44Y'Us'YRRNK@s Ӈx/ OOѐsţ`{_wg-==A@]s3e^ Z&1; a,##c#ٛkހC]@_="}/5g=%_x'?kCvG]--}PJoxH+X_<٢^]7ѕ-I LtPBAYֲ[C U?VW;ٿ? ؠGGy%G}Xpo9isӾ/9eK#fgEߟsh}vzK}vTP xc:TA HprC~tyu ܓDO n;u&KdohN=͒`)JaWё#6Aң I;ɿA%7$G6PCh'L >_|*o[A?^ݽvJg*<@o=)r(vDI+/חK˻}~C<=}\f-'U|zӣ%Ffל~9 vZ)HJ&ϟ*Gtaό8C֐K2Жe "36嶙 DET:X{N闟Rf+`h?Z;g7y/53m@yA4eV'I>J4xR:,t&NuMfsg%p Jkna/xJGZb }%54x§*zN,Iޕ߬mɒh"]‰lSW͕7VX5zIKZW_\6QsPLͦJ5xisg'mү ha $)k9*stAiPOስaix]g[, _ ``p#ȑ1QxeG> =j`U@bFyhlOBoAImd&G7%_AAVd˱UwIZsb~v$Oƒb8փܸv7͓s}+? N^ oWllLg3%{׮S&k&^CtZ^t̳Hd?'d^Jx]Mi 8(ېpEқ9 & dqNi;OUſ൵-5~aVe3ŐH u?iPm6:?^љJ)v4|?763>90 4ք@qB9>$6j u~ɋ-xߓn?DI+2x{N$Թkշ{vgl\ 8\6*BM&@bzL^b0t60 Nvߵ1 3%3'%0_S27ul9 jN6iHL)rq 'SRNXٸ=Jк~dV:C6G3ˀcNqbs1&8Ӝ=UW 1^[a#dm#4y\1E{ Ƞ@{52W=5AZnx_C*k#?-ςk4Pm=Ï8vW.~N64ξg5r 3G5@q9F?&x8s8b-oۿ-W>83[ E@h1?ܻ6=@H,F^mi@r#_hOP-Wg.;0\֞`֠dQnmN.fb*H ,/T`֌h >:X-1Ϡ߬?KΫ2a)2b ~٬MF0H}յǾoV3sW ލ]aC`C"];YBYNYӍLD 1ʙyz k@]lUt:N"=I''=GrKʵift6X,_%glq~\- !WN}cm[XO%Ag*˹(dW`eU{N?mU> Jd \]8A 9 0ǟ7_%'Y'9kֺYr/h /  t{C<cg#^K%aD\UA2~{KJ},)dͳh3z^%{J  WtIVyYxErYO4Mrx>Z{VdmAs j0 f9ZQ,BeVn0]0-#YG;ox h\ S_1+PQ,)>=ԊTiYނ_~nri>Ex6#HO}TLэ]Y" h3t`ǒK»otR`Ulv}c .Zzwt\ @<)}Y;.;TȵRfP3njC=6\↾>8d }xn%llL:17nl"Gd9_ۋJy U/O;{[pSp$"H";h+ oT7zH^s "o}Jr+VZZ90T`D\<=NCGqɅx4dىhхҹ ZǸoתo+ {J/br|V5Dg[6yuDɦH,o%Ҭb\$jӷ! G~kug?~veI  Y ˨Ō~fUVMwˣGdXSB[Q+QO0́&Kpz$Njg5P?el3vAdI,42]K%+P g\-\@w4w7| F `TƵi\ObD.f0qEaX%D{;uS]#_膢d#`Az[!]4؀8TU:䴫h '/}ʸ:,j.g*ۀr~m fʊ>A77 ZjC` cȆ7y$s4po|R!hN1~Yhn`f}E=el%U؝ȯ\9"ZV\|eJ2 |&@-SRjd4hʨ>- V83~|KUόy#QVLԞT=\ZA*lf{[rf6$70 t)pYDxZN=Ǟ딠anPN6Vkq釗n{>c~Xm G+P54,~a/ۧを93)Gw:Γɻ-yr}vݝ#f#^d+yu/g lcV=pVN|)iaj:K>6'uz 3ٽ~ (*ޭmW6aV>߂ΐٻ ~׌d\!'HU@ζHBd!U$6sʶXmКD`GAz0.>Ο.W\%ҫ6lx"{?t]C8*޹~;_OWҗgttR ];~SuUkp&%jV}[Bu4+w[+6査IПǵ8o|]_CXy+X0wt;LNsZa ;D޽}RtS_q#ש2[X f]'?#V\D Ґ^=&<-D]k0Dkrx, zO2;K*{xג}6 g %gj$E]үיNfSD^ lJHƎ( 3t(M\wЅG 7㜭cLƩdg'Xʊyд~51nhykÓ"dgl-}.(NX~,_o0+->Z;^/4Y&tB9Gޥw kz[a_P+GA?5SG:OKBy V*O:}%,ֳIV 7-.m&!a ͨoUG:N\JL2Fo}cyD=JYx ÓCs Hrg5/;6eJhm '~ꊭƶ-⺁B|>/qcP°g|2ɟ{bZ( wCfHю[*ߵ ynR)pR59;Sy2SbtFFrv5F8Z!wbim6` ~jШ)گ1A{ I+FDRN% Gvwipg0&oȡ Og `*^G1eR3|uCyawZ2* g*չ`2vnݏ|eBgItZYjhs[wGӮ'WZN- ҹ1_Y m7vtY Xgk"O#NnmcsJx=46+T%ϐ_;,~{rK!3x:gN5 ~3བྷrv/~'܀9uq:mu?j5Pè*FJӥӿO'h^Iѣ4~K}A6^N72`l6׎z6[`/޲>Yjz "`׋aDK%j Y6Rk\Ɂɣd"{/:%mK-y U႖[?eso $6(8ْ.ܽi_x;<7{ *: f?Q=>xgח|xh`ֶKXwUʗoZsV5m}EyMm5&Nw*[BOS%Њ/)[Z1'a:eRu_?fM(v('h8Ц\\eTT twArr !ѱ?[ ` ,S^pF+ Pw< $Ǹ:#3Fܙ*< ew l-Tw\TaqTWѱ昋/su`AOjܵ)֜Y-$'gA3. 2 tQBx'F)FrAkOnV-U"Xd :OHvm@mP,yCE369nG}No7:9ʦ#l \r)#9wffcl$'+{Zϫ2AdAzY\pC| 8Yy*c٢6i6~ZL޶-/д쨃 N߇S{x["ܷ 8N6` OJ|;{>/u> =&G'}|FIAbY}̿sSAA{r7͈8\`M{,wnH8,]s9zٷ%\NΏ?f%jK} zW|29djPul [,@BP Q/ Z J$Bt` MH3{gJ㛶z7AXMh4@lM/&h+P_! z1p6ۡs+}pcUkkS}dɛ`fmxrhLA/j'F8*[nr86}/@{ xFm|+EJa!oxx4}vg6Vp o@%s+en jT <^͵(C]Q4&-–3i#%;~&`S1qSUX' ى *>Q,{;9i,ت~-'Yg|x01&0n6OSn}I7A-&#r;qc .T+oQ$feќs= @)tnrɉϱ]:_粋6OGowVE0r;>_6=ȩQ#:KEf0R6Z$Qw+XGy`2 D.>gx^yDL8k|ɄS ݳNJ} ‰SvOR됵Ѻd*v ىrVT&'qE|ܳʻ`2p1 ?_w@ll"moE$+7BibuȾiPNwG}m F_Ao&g{C4<'갾كK6!|_tZ~ !kx)aj$s ؿ?2~ufHAīc p3c<.+ӡym'ixSɌo-,uh3Pr6_+1óVH;'eђd:[rj

}xJws̾C6,|aPKO0x%].޴TAfr6iϭzx,ɆE؟Yܷ^l83;]##XW O/?63; ϞW7%̋9e2yːPw@IrX`/ rZbqp'?-)Y!QfPW>|x ږnU;U`5}S ٣V҆kOr;}s!caOHr!/CMtx, 4&'%ɯz2mj %ך 멼*_b\ЉDE;`dKTOu-n܃_'/TF-xπ$"X7RFp wtd}|+wjQsd5 [Eؽms俘F&c(s݊[Vù*s]^~<@Wo`z;jel{ . 6~%۾ kvx1$KD=}றYCөFݟ 3Ac bkrۭh=P=/bC:h܎_BYl߳8F [8M2RCw+b ++L,40TolocDvt-xtm@]rpi=E[BF=}c7薈>FB:64.8t=pܒ!MxAV'0m|p <̌[~,Z.|?q5goq5a;*:>٩ 1^uw4rfS x19t{cyѓ`a1jI }e'YK0ѝjԱ/0Itls}%oTW˼wW%hs]xMmm!ZS-tQX磳3.:~''F|ZCʓ%5(Q@h o!:9a~ ?z&Ӈ!izIijvХ9G,? -ᚻ %8.:1ߜ=f6w(ۍ_~6ޒ:sJ#]RW1;8t f8DK<)74A!s=BFlH?ڒz񀟠|w^ 3N/LLDH.t:5c(}٘ߴQ Fᶭ,3#.ISB>,Cm֩ʶ_ 2H ,}vM]]A.j,m:~D/޼ÖēU^%)'/\O7kJ_i3Lٙ=fw?}޺ x%xǔ0ǫ;Do贊9tk念̽3n/{lJm'\^<{/_Ç_۲W2S?۷wqtƒxDk[ɔ_wC;BD@ k@IDAT1#݉-79S? ڻY>he+A6co2?IfMZ'M^tIz+)n|g ;j߲b̏8̠d'1P['^[ۢ֬mPvOWㅦ R݃m2 &kUD %ȮMxgxn}-OZj)ozx^k[{+VX4'v7Fkb/{,%?=}j峘(A>.QO׾ ^ާ5Wʞ23nHJ[vjQBkx*ǘϏ=Zw噎\~y$ >; ɡ{r]T2'tsӾk%z]tp淢'11Vw}@H4im& K fȗN2H7YtB݄;]k]B~߱w\}&!eKj&p^]{| X9*[=v-䮪yE[HC&l zڿh ~&ZȵZ,[[ ce]ębIozZ-z72`2;Fkx+S:'NUAŕӃ -i5~Mrٵn{dS է?xɇ^&es#.JY[ dckJ58ׂj?#fޥDNe>m\cy.t~D́_>9&QMFzDob,'>K@8p ߠ3׬:]EQߕ2'} ހ>SmB )}ҡVD8fI~"ФfOoOb{.'Tr;퓅{ cAYA(%w N wH@fѐėK]{QP yoU&"ƊE˔VGh3#1Ā ~LX X{|ɿ6H:73i0r;⡺Xu0G5eA-,6ݾoX.AS&-DƵ9cg ͠ґ2nj\w8L+l2}U~}]{z|O%fs9Vr4PUfP +wB(Uށq%N翴?7idʿ+>ꐿ\J6ݻO|x 8n0t qNP u(A=-p!:@, ͷT|L~dj;f4o? 'ۗΧ=G`dAWľi ==Z?,s8\G|7 w/^~⛧O.Y3ۯ9;=}A?>{úJ?%=1MmNL0yʌwJX i^\yъ Gl0Gbn>ߖ+TAF$wItOPo.dNOӬTV1‘>i]~URA0UiOvXq $rbo:Ptf5~UDC{Z@a 8d6ȓC3^@r/y m/?''עn5aum /Yv4y_P-8te Dpm;*-j}ɆO{9 'WQLKE ֖Qė^ɮEC6KyuΧvY5dFf 7 lqxr +[ࣶ]?]?ULR^M)Vk-H_@kv nPV9/ԏ{O G7HzG${ȚSK"75e;F|Jw7.Տ ?T_Y^gz7: 0/lY1?;=zq~>cv\%c_yl|`kZnY嬙{wvC ~@$_Oo(1ʢ@*=>%eØ32ӼUѾX;+ݝjC8*ȞzKW4v?v{o]g1} ¹37ޑ4p9= 4wAX U>{Ac љ[_Ųeĝ(C/gJ 4F}IWG%a8N}4{ޣ1kLOywv!giýѿ;[) @V$\*C8G8Kg&fKi(z>,,.3aԐR-9nb|Us: >lB)!_x1⛍I9d8R⃱|jn3 ˈƫ3뷤„,SuelZ~X/`%\zEZgFBx-ZA3>g4C{]A[4z<̖n4' ڞ҆;tbEm\֬5i̩U3ЋCe,uJ;:p_ڿӿ^8QJ%b 7]wU6Q,ݖ )ONlriNGФCtnOn AN8_$;Fkh}~pA1gt+ݺu oͦg5ϑe5 ጢ# Fastd[j[L8P|_P V\o'@Be6Lg\ȣtl \+  xty6X˾\^m%!zL: XdV=9 Ǐ n5Hzkп-Nnj렯޷= %^=5n`m-׶B43|>uxuNop)zvpi@%ao?\~,m$&KBio/g6&ue/zS*j^.J|]ſVy|(߂|>8ܪ_/+IV^ѩXrO~0ݴ}m~ֲ{wۡn!0_&w%mQbnd`9* cM흎~n/2inrk/;/?g-o~mIlt6]%/.~&/'᳓O/[_v; |;P2_^tB:!ϜPRt: }*+򡷞bGa|_cO6=h; %|4r[1EGv7Dڊ&xv},?N%γȿYm`Gf*G8x% O/W^8W6SG+Dv O[hГhfT GOI+ZVw'v QpL{G*+VM1,>+4aͿ%2 >I2y0w*|(<2WUti N c4 n ֵ%)4jCKV&Cѩ1 [ ~gPZx6@Ik6ÏMK.xM3i<ŗ*ĿٵqYOg Mn+=m[ ^ɕ=+/?+pUx"Glu5O ߗϛ4 OI!stit]xGus;-&F(⛆`R_IT%*}bu21u&Χ$HIͭ.;;jylN 7a7;"7epcđfH06C|ʋc^p^×\poKQڷlLrg,A@ *:J:4T~k p3$pȼP:]I\}}?+>Y[oe];E>yx0_tʾhb^Vp9-|},ǡY Ҫ{|a30$g 8tilQ0C?]{oz /x{ o7_?kftz^BS]$%O7C7 z!vŭ躘f8#m/ۓ ̄o^<>f`bˑ˶ǟ>"MgV|g? %[?u>{}Ee oգ4Un/8m0jb%o-:Gߴ{|{@vA 2 5P`>^~!\ž+Հ#Vս./&=z 7խNYjKg\V|28OPw$^ǟލt)"r7Z []pɵkN13RhjMa% 9/^l~bu:rҖpsX9%ū5'{->Ñɶ>@v{7C%4Ld_e"0KnKC+l΋?ǧOLoP{t{]t 4gsvz^ӕ$ipٸԇ TşAc%Ed|z,'=$z)$MJ/?KV5F?X1tTYJDX諱еF 1!]Cfhջ:1^݋4N4t٠_C[u8HH# +y  'kN.2Tlk&$gD] 'xSF3G0uG!ܛ~: n ?֙gXUم%Ѯz/npEd*ћ\ }28꺙%Zҫe8 [2y J4='F{zfKilGT 5\ZCX>3lkه ՟Z`oEO;"ov%<^v?> 6|W>cY;d0g">[|tR:w&1:Eݖjk@}Cvʱm 8tE^>w+&ӫ'scV9Du sKE08r@0o_mW_]z/z_OGmhwͦx?,A_}{eȥ2YDύ˒ <8VAFeс^{Rg#)vmhdǶUrgo/=iGs` !tO؍ g6e0v0b+!e֊7;?es:W+^*ie7WyēN9d6U#aq}u+0htAzu4W@~#Q䣙Uec:,ؗ-Bxî:1s7/ĺV3;T{ voDLtЇ`F;4v[H~ֶrU6Ѝ͖15aCuc04."ظ|pX mߓ\R^ 6K}:튆I:25S1EZ7~ W}cY_MܐŨU0}dϭV;#?JpLJfHhL:HΔ,o$l1>naUč3oegJdxieYU Wb4p1*ժ%:˳jmt^JR\ vM ~U%w/)!.6C,'a_j>VPL=pTKL&v:V|S }KhpGS{φZU5{V!9.8}8X봧a&ѵ+®|Ji݋0&#Wm'WK(Nl8NM>X=pѮ`}YM+̸!l''(v4BOzei3ctyU> ݛ~bjVfU%`#ˊ<{ė ȸcSa4T/plm+b YsNh%jIA*5`]7Uh Wp mn½7L}i]V6|dV?ߗ<—h%pVx2a-&% 39'cCфO rWϢl|PbgW'WNO{ZnWnMM< 5G6yP_]m($fy}6rը#RQgxk\՜2b@>R:$hSd_BT֣a2p:~N?O#ҕ̮$#h17%3)ߜ}n:2f%͌K':-  {}*3h®ix6I |Mn":莳 !8 4EaAR Ӷ ([B*`Pdt\L=F|p]FMaJ_#=BmIk(;܂ۂUH8u8f^AbGzIfD0YJXKe\<[f޽TqV <n$tF'0o;r`|EX{Ddz:5#fn"G *~JF[I'k|"Jz8ڏƉt>mGutu*X >f=k[}z77 N45^^nsx|Z18N?EZm7\:$A-~6lN+`W>Wv zWtڧ蓉᳑9&=Ja /ֳ/P@4 嬒ﶲ O R[%Vpye2Ûj0+ج[Nxbs&L7A ^%"O dX-icUfpQ߫`^JJl>cTcs2}F:k |aO4eh9tmƧAtxVӴ=nْn|-yT_z ­3>ya{֬vӽ$3ѯzGmsOo giz 9]-- 7Cf㴆S(7hq^)ٰhkMByawh?ޞ;nfIzC#yXЌ/~ {1~X]ǭpH뿝=1ßv h}w[z5"{jQaBlϝ B`:7+%Gf{%t!r?RYf4;~*7ILxm8o ߵaW *{M+H~ 66ryW߻J ղ Fꉳ,‘WqJg߷k!;)V,@$# ,_p-4h`[?VVV8$Mn}~z2-l}P 7j-+,1ҿddkk&z 7[ʜiX3zc~PMIqi۰+QΓ;*j}VӰA`3Ll\Qu-QG>)VV^w8:WD_H_n{dWel}c5gsAZܻbvLw:dK{8Z*/iuL5n=Bgeeg'V/\'w[xw.ͷ\A;b,ٶhxW4v@zH$Hfl4ؘ5>?c+}<fV2y{RYE=J8bIkyr&J-z3БP϶PõCH3#=╋}Wv;/Ul?}'E~5dPݧXkxjBZBCm_O_r#xz>ةK'=ָ#m N`%cRxK`Jaēt`z-Yzx$TM\R⍥x>\ٱã0Mg)&JX7~}W]5}KFG[-y|YgW}Nx0D[\ \AHj6F~Uh<צ_zmatˀ{>Lx`NHc6b[&' Hz J2aqA'ߠC9!q sj>{lCG)9MQ[s5TM8P:Go:7_+H7d b7nLt U/[j͌+xSWr7ƏIhG Ѓ+]^f!0g:mAwŃ87j,W+Nr*g"N~M4G?Y5Էi&_ QKOákypVs}3dWR}2V6NNqq.͌^ 2AҠd 5[]Lp9Z%`rb.M+ǖ P Uj|\2=}@y,T["Ys՞sGI X`RI/*A-PAO俻I5 H2-bl~ xUx ,y`՛XNo@itkF~Tm9>l zuw~J4IO;#bHv~AOş`>r޲󋟳4]f?^[g.y@ci6Ƀ%YAH-дҠ>&XB}m8,VӯtwscK-{߿mn3;AlS}e NzQ`^JNܸe442]%jj^Wpl~  {XX㰲V4Я9ν[#s$~sKgs67e YLF|ǯhu%;]-@-w۰k"{ׂ_%,# h#Y}sII:VlܱAK7,羥v`ܺ z'~%?K_k30kI&v_?*+k\|>^>Xv8 N4s r*jLFn5{| xs‡O81·3kosx7[cpJOtD3pG?<a}u?U'v? >F].z+x^Oyb;^9C᾽ӵU56^A[`%l Ȣ4ҁd5Yx\?!nl|%n/xO6Ij=R^}&ht]O8vpp1 εFf~<{Wͮ&_4o~"]'䉁/JH~Ƈ~ϏFE|Ki.h!˵}'nx^#p)rN)̵AJ8f$~Cdpj(m7 N)I8HC/DCzL63汁!EQ8<\T' u0^x޿:{BHR+^V@eIڂޝmb~\"!?SݠZporxQ &#o2 Lsgd orx,}?CYӧ<G3Y3-Kxd|Κ eg$`&*lװ@]S3/ӊ;cfu 7#4D.Nm`Fb KjbVr>Y3}`}N]-Q?~ڽNO'ǨM>dk%$a@v'`EK9舶ƫrr- S^;|&C8ǰh8q&}y|4Qq*NVpnk#/BGOZ >fzpf hw[ei#M#gT] `U^_NK3 gPcuxN^tN֗2wfTO*\QK%U϶gdOw ɴ[3,t:=[2@ 0'N@(ZONAg]9[s8Ov'}}ٲy&g˂(cj@OaI:܈%#X6ct-ɴBc >$)uq~ KXmi@_K0|ۉ}ueY(L M悹ׯJ2i2t2/*asVVJLz𥳐?o=z(}/_~ g?}Aķf짂h+BC$?}]:q?ċng2{:j΁z5mo`Ӄ|H; _$EG[rxA7Ml‹_NH066fv[}LzozK(K+|,:25jl$kFc cŐDwȃ sk9|iv^=yݟO[D[Y7x^{_sZV3&U{fUpf/#o4D fB{_+ T3yœ5  D&!D+\Ԗ`l6Yhј}d &a,nhHLj<$qQ} O&nt ~ٽ}< ,*I<`/X֜IR9˄#/B;q.67S?K'&`zyVy3> ywt_$qj\wbtq7@IDATzф~.K[. K &⛕l|AWgtrCi:Qg4 鄞aK?gY'Ιby-ӆ}C ]+K7=,w_Vvsɸ|GK b*>] __׽o~L t*uN 4q=hfّE lMbٰ{f86gp+R%,$$A[Bo{̖|2{/}0KOGO_ B[Z~}wNl_31{K $evS?োoyߖ@;;cnO>>t|WtlUoc=^5`K0; Y}#ӛ^W c',/o:w]7^<[2Yr$܅h.~ÂY f=V3{[fܣɧCkG6x;sZJfZ?O>s̓W=j6̬6yV ÇUBHۧȓ:GCcv/q4b[->lIeOd>kowVwyW>C7SBm aM¡3){NEK$n 80$m=t&WcF&0I|dGF|3=soasJG2$[Q}_ّt,,n ٗw'^ǃ;|,<@ǫ}irٗtlX nЦ>!tTz+؇D6ÖH$Z;Xwvpåqmxq<@Hs5NQppPp%n MhntRt0nضe GGSy+k<_sx+`aޟDߕ _nolsޜ`4ly*ڌEpv Ɯ:='ݫ-L$F >y7 .QqIzX0m <ꔉ>xi/|e;\ l]Z/1Pi%&Z\4S ~!Yn"vx%/c }6+VtNßݣ;ͧ6 Q@$?U-zyv+_:/ptcvhwɣɬ E߽Zׯ<[ذ3,>N؀ׯތV6Y"na$W/DeQEjFNq ;)?z8pͶkuqo{oc<) s[?g2ŋrlKF+9FqM*38Gِ 2kwĝ1?Ot:>F ~ƁIҪKqT1Shd `@ 3 D ˳L2n>Nr$PgJ=m{vxP`PY >}CV wud Xsa<Ԡ. mB33G 9ø,UmuI^Pq1 C$8`Q$$pP&|#gʆ&++4t%>`<%-y3~|^ٛZU9%%sIU=K'nL>,pe)=9YmyBsj}F]'ØЖs9ن:$9H"oj߲b!KTg\W^%rd a!4|2v^J'xAgdJh c ^p zHKO: .\J`-qY=h8q5z~m$W HFupwLOMݪ r/̰g2v*X2ٌ=s&X=٬pֶ ~L8Sx=pON h֯.B+(AHڪ5V XHתG p6Ar Co=<?5ǻ%{^׍fn5;j>deF߾e7 kuO0.\`Q w>-=qϖ3%|8"^C命3G޿ʡ@9iA:<Ϟ`Q̀EXm%ǣCFoݠ%!xת sm _:&{k˫3hfV0!xd7Mjf9|] <+7ʽ'^;@o}k2 w aě-E7f9T矞CxR@?~ /49kZF!yYmH N,jO>[7b0ٗ^Xb'^6<ԡ*ߥӳm-RjWYO:k $,В0^,Ě=.;cu+'hl70cMڽov@ozhSF6VVk IVgGlF+ScCD[vX/AcdO)@rUko$ġɆ$sƜgq+$1;Y?lMhL—3oO&ۊF8y᱁3~N t4n&❕FnVJk$|Gp]PcP ıG/.ݿFQ|o^n"}t;wi>&˷=U}w;|Yq&>b,@oJͬӦg|1d%H`کuʧ6mL >`%X g"o_L'm4NC钾_Țڂ\ep r__RXȸ=C4g=u}0/SpΤېo畾l':#|NLGї|%.mت昽7Tt:%o?( Ch%_2#UW(z 'ϣ{O|CI1Eߥ _I="m,CB1\0@eٕh.֋`vhҫ \Mի6_I :pʯl|hpod蕄coEL蘝]jE-'G{XMZ6CFi+:g*Ky&|g#x3'30s&1 kq@,fٍN~V&Fo9}#? &qׯuĎ#BQ5sX:Ut z34Aٰ͙X23O`/ǜ,3 3eP (JDw ٧~~}h,Zή*uIر~b fw)I`*,a`lp^a2rT]l80}$3 x3Y%Ax1dO[n!_X=|S0\kuhy&9QY7Isc{f:#(heQ׬|zs0YmEU)Kp#|P[&zdF[dObK&|50FyN[u$b3U@73Zg-AuM~z 1X1? ez>M&.pUg<ЧZ^p'LyH'MW `)xfTt(Z(_䤰 _57_/e,T3S= fg7Sed=>KfwK7r̈́AP&'ʹw#}U?O)-}o`.;ͬDAff7#a0nx8#Do 3 އ%ԆEZ@z}Ul3a3Ƿ(:d3%:; &-{,u*>xM?+MiI/ͦVg?ms{C[|dJZo?`&[B^<ʂͷwF6+ ykŋ_껋g՟$K| vnx>[ꓻKr.ޚ< >*eWwC|P>;ݣ쒄J?ӽ ѫ$g#]3^ fU!rˈkګPɫΆDo÷˒tʩNHA^6[/ֆQ+X3[іNXѱ6c+mߘCuzB]Y>Z8;0/1s=v$ކYp>(iBBz]Y=c6p֞q/W#lkf ٪ʲKy$}<~E;/ 6ƄZSP;&\xSrw&kOUb涯`yC}f))/ȘڅĩW~ UceA\ݴi}cS/)!<FM*(p n3$tctΏ%Hդ` f0eU}6 dפ?D݊3s}zKuqޓ |ɪ׻oV׷X=|M-/Xu~8Oq~ %FK4CÚ"cf+l#U~u[xFƆ} ֿ m+8fh>ƕԾϩIEc;?.Am;ʁtnԷ"& *x(H $DJEN͗8ܫer90G΄82T[]x4?4Β}^z!Z61_x% bM4 fxEÍ=۷.KBO+vxVzO V )\NQ%^R/C~՟{>򝾉Owjpe0rDfs(YB*BӷP; ߧQ} 2'ݗ)ߌ6gb ?aLO((kK"\fXk"s:J:[, Z75_)Yeϒw-QǨwXsEW^ TGoŎ`m{/L3^"(:vŒu ZXG 2.,,r?Jd? CQhb a [dVBEG [xOrn(gI@Y,2Vdy+=*okF`2:!)zVlM3ZYj>WL?J*E/eYLrwA6\?|>בwH7_y{@L^F֌Iip=+WNԌ{uA =;?xm34,ɂY%>}w}ʎ%gֹ#fn>?x]L:Ġi>Y#_g,G OAg ϵaO#{.X{o})ŇNp?.P|<:ZŨ׼/ ׵s3)qVx8MJ-{Ug {6/:nr>~>lIGs"qI79o:WI%FC8YZMF?|}Lg>+P}vwP8ZQd@9*'ϋ|Ûq'|W+ۊ0iu[Mosxx\liZb/0zWȩ)Vpӗ QR+^!O)O1Pt<}|sg*7ӳ^P|CokjSqAC#\+nh;BɆ9IHȞg%A'Lgc A :3LOJ\n@ Afo$;떾ƁK!Q# JS>݆'fPԪ_{@T{Kk^4\'=8ƺVh, *l僥:Nz;ߣWFSJAPJ!r8|_̓3FL!| {O N1D܇9=QY+wGد͂Dˠb |x9AR.?H[%Y?˂ y>yY:f}J(F&'KoG7]ޗ~tcګ񙺌pkV}$&s2#/ /MdЗV֓+yg|9o@2Oy(`+g45CXO;`dEo-qcCh!u}neVCѣpQ*jd-y蹶;+Wr]G[_-S&ذ!2X8`0+ j$w8[;Ia|j.ww%d)Jyu@,̫.2߰=<'u%y[#'~tU`'P]ӈs>X[!?,#IO?.}^9(zWx)VTlXs:キv̆Fl `n@h5PWdt~;0 =rZ)B̲'e͠pes-"áWq y75}Mb0ܬ]aw7PO=2=hK=pzxd՜~u4<=^:伤Kp!h|ä N)r~b+<*:14ᶎzPp n)ӖS]4ZouM%cO},'8KϛnZ+aUhfE[`omn)(- lJm듵KoPf̭x}ُ?vkrrRlz=K7"A[B.|f ]o{f[AӴ;jй'ό;V7EG8 ,[쵨_/_l%NpcK]]F-73C լ>Yqm蜂^(Gi| drwأ~r'c3ѥrΞ? 0 w+'\t}F_ɢ$pqۂ%jt/:#O] }P~Hd|p;دm7g<,79jb16}B9fzo'exY:ՂD ڌV6}1d{zn!H*.l>9B&F)dPIc#lB"R^޳]px>zht ѿWA^7U٘ik'1~ /W|ƸArNd tY{ V-zTݍC&:WuԛC+eɞCf\H|SOt[x݀>( `TOlM pΰ_}[ + fOƀچkcA;1> ë24wRlF2dDp8-}1 n묒LVoOdG8ufϬyT[-0}^q 87;>ztk 3g,*OIȾ[g<=6ۧ>N?Ӄ5rvu9أ'8h:絲1oɖ> 7u}a$7>s ZV&TcyrRכɏ/\_r=7 /| ao NTHYTy5 MBB nsѶkxuݠgb0+p1}W@箓B _ttg|]q8NYm@6N͛bq6*X;/pŽC ~ |MzӛF0j \. Km ~V/HIcޅt. }HyzFxUMBK\hs+Dέ4f-Uɵa@t~U|0D{nP`#97"1eJ@KRIܞ XF`2V *_a  q FZs:{xX. c]9m۳E8Oӵ9BD60ky'@\fSg`R8VZ0| .9%D!,L=/oʬՎ<ǣva T C ٘Q3Faih#_=һ  ?Ipd N>!뽁t]|&݃r&k8\GeH5w>t'dA.rPf:0%Oٴ7vlY[%L}ffA?%Q W_>Z kAGTom+ac驠E9KED>=[ !0زD{-nKAdq#ÍH.X̤D 3hUINTמ_t^&%Gr(ق]6l$xZq!~Fq c7S=0l{q/zoTO`Zex٫l)}Ιf:,tKoy6eԓ`u38yg%xѷP=~}}?1:Q7Xn]ϛNV^K 3SA 疙ݖ ~.a[AIؽMK~ՋN~ï&ыwV!_{7zVKwB蓢Ohjvn|5Aݼsv&'%1$xFy@K.U6a {mbvI (tO@[46[ ;ӹP_I Ʃu T2j+C͠96O]g|Iォ|mO{ϡb ƣhߞMFp v}x$_篾N7Ty՝:_ɚrK|Ƶ 5×֬:g AU4lg; [Ԗy;GV vx($g/g|6< ~Y~%{ʹ#dfz\#q/U\ϫB%Fn䮿YjDq EҸ9{nrCni34n¹KN2s8ҟkĠj7 jG42Kz\3N~fgLӶD Kw1s~]ad%o&$$1vX&{%|:ϭ4a{^טZReD3c|c5MO+o:A)3G|@Z~w B|Mz@G5Ce>Gubdc/[-NW7&#n}c7 6ϒx58:3+8Kg5때@W&kc 9<.A= LE{᪟*nBB֜8%LLf}.Zhu:[ 8v_xg :*2:v/;_ ??Ո0js_0B ?%#+l*nAl6Im`GkKaH2 K8ML~ok8=D:@.K RSK綾f7nLp*?A'hb ƏM+4\R+K_߶eƣ;Vi3>L2y|*Ia{VAzmz׋ s5 4\c$//T^nJr;sDB5#* ^-- +x4#O}<G7tVA'e Q'Xe~j3kKj9u"0enPy 8NZ-rՆ `/`~40>"D& idhpS6ƅ.Xβ_[#fpO'2CT]'pemUxBqZy0`CyQ ռ2{ 2 OeNvK\93SK,UXdg/sx @75\kKdk07q=K|/X]g@Uu8tng^yrC#*N+'c]_H/cX졒LdM0+FK>W[K8z ̐~/VmEA/x`nt.PqGs<)qrN3v"?nf/?~OJ#Or E’fi21>Y>Ssf(Ƚ )SsSG2$yYp M"6T/V}߷$=pf9](do30O!OR~/X,?ę< w?f1uI }WI2ߍ d*sjC2 k&t=12Um .;2c8~n/O8ߺCdkf_ğ t sfJv*Dƃ͜*ѻ_IJ_u|f`; ;(?m3I'ͪ9N~~^/\K3͐88;crqz ?;5'8|f1'n( ?ؘJ(VGM<)c1=ʞyMdN[<\ _Jϓ0gpLJ@oTMxiviB j5?쵐 hxW, b鯾nFmi{-I+1Bۆt=}evDkSR+߷@+87|e?7#AīnI+E+^ qՌ|I^߶o>}{W[>|5x!5 -V-:<Ca2'U j@S_'?lΣp?phYwyYƨZcc>e>.AaF}ml-\Cgx|Msٟ/lw֖- =;WcS|1̎/c,/mZH(􌏺/JpYzW,7r<+NM8ِ6O>ǑUnB8GgZb];d>EmOpjBF>Y9P}f낲lIg{vJ7]dz&lp(R7AGb%(l&NB;,ScOn\<^V*fKpD6Y핻=L`YF~DP7.-@tiv8^gI& Zao$VZyuDx쵎hVRUqQm{=޾g}ϥM>y *$=ق*i_[œ z"&(u5,KStʳk,pOBFLd,~)_89#i5D$NJ?)ŏy][ي>WJj,FGX7NحٳA8=/`Tc籵O~eO:O}K'[mSFKKO[_o6YөpW;dze+lnu}ץÇTA!VNs#opsk0ڲ<&XIld,B$v~\RCxmf GCd, U1dg WmjYs& gxNP8zdJif4)KsqD94gEAVvR:4f?3.9+wx.!6eUCO}B'g :F_+[N,rmV MF!ny6]TG$#͖WeNڙSܻ FGs@j Ͼ[!k_]N<|6HOz#"Fg)YO'D d8&f*)sm /95*2J:U~rB;x3GE;dEeC2 mr̶.GUowHz̛̆ATm`!o cPۺIy/7&,Y- 7hob͑n302%hNZqn  dI=so'+rY0F pfn]miz'? >9{'3'iC>D`ːT3HP KIywp6:fRjVCt)}Y"{:~[S}.%|J8άxK^ 9[_▹m7w<{&H_5_:у[X;%U3WoZN,pHp-T-[I!⧂7iK+w{ޛvymAX/y埥躚O@oW ~uQKfU\Oz W3g<$/df;1[[D/^ֆz$A:+lJ M"I6SJ2"}G'#NneEɿLk2~E.Ju:L>VzMBgJ~֪y ^'6:>-7!T6@ڰXIt+9' VѯP N@ă@tSKnjPՑٌ~VO >?VF (~ {.;vW }Gk~P?Vg=p +ߞy|ӖƒO&TQ^q20++e]|=WmjQ};3\l<l8xEw*cuO4=r#êgd o6ഭՙ|΂t?ޭ?k []/Ho\%$;YYFSo*s1ڲ V4f//DK@|t*Ov|4#:Ut2>?҈v(ئ&+i a7KiKK'O<韆<5G'p֒Э 84Y5X}*B ݂)*Ö92h% #zQ)٧ăI*7(cg > 5=+Z|hvO+K_Coo6 +Fm6ӱmǷXYz[_p8.<( pNk bY!rU&Ilc}tU)[E{xW-o%\ et`4stsŠ5G%C%Һ-u kp7!F_fy4!/#UGl`{< D͞Ѳ2- ,'?dc W&枣w DhmexB 2SJ` /ð)o[eд7A: N y\3iUw cw! C)'Dmv`p1PtVqYp!!^xNNO 1'n! n(eo:GF)hw\-7(O:h4sF Of-8r{ ?dmu?\4 5n&<%. ;4|ׅ̑19\{U%hKeOyx)(1{nb+xL%s;yɊl_xx#CN!ul@$x:p=1/3Z.:=N>V7̪&*:`)o4j'K=5km1Vh }6zY4UՉy^ ~I 4[\tpx_Ŕ(_=K%ڂoOFː%+$R&q:y} 2 HxrQz!UpMc$<(|/ْo_^˶;Xḿv{ZX-yO[pax8l~!.0mYEp}B~~lˢgI_|9;.t ߜآ-,A4q}tp雋-;J\CIlhI㧝Yf@IDAT^Pn:vg%0ܒп,HOUk*+I~6$S`;`3ա[mw7[ wA|# ףt!K/yQR3}c[L?t>l{G˗ǖ[ZU֏׶u _oӃƂ*;Lq0s ޴}AINRgs,QSK(wɈ!NCp=mζpP΄AuB{= 8wa#`'pB9uƋ`[I!?g~Su&9d%F6EJ< \VgeVL5QJmin گqWy~}ΑG+`-K11{P+\L W紆E;i@;ӱt7KT YH=wA5ѾDɆѰj+0 :,f uC0 Dԋ8 ÐT>:ˑ~Jx-?S<L~ lt·B.#=Ow W8V|76)У!}З줷L.;1Flڝu8ltզ9-pᙿjǂO vǘ}>Fr?Ox? XC_gҲ%^e~:Fݮ.==q6Fv~!OE_ؼD{e .pYª[N@/26OAP `ez~[/L|qj^ `omUWI=Ɨ_i;{lfI1[=ŸSCxS_޶WOO}vnp.F}+^F`ժ-uwe\5x7ݞE04Fu?WXRdf ]056_bZk@*k\H:;fS[2cN' %1DFf7:: |Fffpf \08zqsrσwE:ta/9 6rw?M!83<@[unfpf_r`k8O:[*&lNl0l!(5 n O>:Ƃ#wւѾ 2̡lr@,=_TD&xP,233ѽeÑC*(^_NxhpmKv25ɞ|G&bNbPĮ 7b>_esar֗uX[y. nKdi 3,όhd{3sA͵:1"fnc=@ =f_:qtO0~Vǟ.ޕxu][>oq$ά*`$lǂJ%]hUx7K3S=},/gOC{ݡ0JVp5;6y ;{k&ޘY&[+;Ԙc|>Y~ F'gvWliuş@@ w=[{ ȸ6[SѥZS] p}sWVYǗYItb큠t{\S1gNyx(~UrZ] ؊V}:VXgVqv 7̇m>`,(kCWAә A5iVdgL=RJ6d/I\@uٸ)`t6L?rMGW{ ~Oaùy{s[m|ڸ0<ЅCXl (V(T8Ý8?rTe2o{UMr_m੭ڮvxm%MkO]HVnYLbTW_!чm4gr'өot4Yh kͯx͒m+oJGwo?`y̏ǔP&ˮLw p ͐ R(B8$/ɹoN*Huˤ_ `0_p.lԽ:q{{P bn;}lfm:\d= l3L(ik}:">*o2]+,xUyfK+hF)rUK5;חG_m#'7%ɔ:\t^KÒM\"~7-Ay jks =J:h5. }L lo@h/vADYJ04 f#N9CGQͨBSF<#-ʢ992QC pp ?0H:r͑RlQ۵)Jݽpe֗{Th5Ǝ! SLG))aF 0݉w;5 g@FxHGo8ȹC7geN!o&Cwa<4P*)r7G]N) x =,Dz,Wt+9A('exp–a{[H4 j'-tM=W@T6 xԱCxJє/ż "MpfALdd OZɳt2VsmЪ6 k43 h+KΜ%[1rI0aw*s]31NW4mv\8UA&w}ZxE{.H GvZT NH'A`+kXh`V>ڬpWL9+ߙf(#Z'⛡F>G:# уj0ڡ^խ=APkD3 o<W$3?o0 ҩntEdp00bEȽWIdkRWɸE|@" ˗e=B!:{__ɘ=w/-Nߚե{ةhq𪺷v Ī`ݳZ +wd<9 6+^/h)F˗/>DY?Rw/|?}YueCKdA}pqg M%77+ ~}فŏ=I3_jNW?K^b'c_ϣ@z6O߾fۜ!c3Λ.Qӓ] VX{$m3?G|ɮ - OȰ,A䵁ٛ˶0XKo0~~7C^-s+}d#I-}l{!g+xJ|ė=_W#Jķ7?wϞM1Iy%|[aE.>>HnuqUta9M^(,`~ ~dJ~߁?yg(]5HZlpqnJ@'z5^"U'~lye$^ʄ6JM'h/||=ƛ˝F^\צs`{.Y(J )dݘ.9S(z ߊkOUWk:$3~GYz"_OO;ltM+֎#&|P ]`=v^]m$p@#>l[L٭ld`8+#ode+jL@"qp/S?&92_$x|= EhO&,*tyy1~wfɪ7R׉~$6NV"(*}&= ==L'D#h  =VߐB7z'4~ɝY%2D5>!1 VЍH=_Rr}Cm O4Hac2 ɏv%Mz[`B}?H1ڨM<%Ȟ{|Cnp,|,sҌ]耤7OU;/sMHÇ  "?K |Fz"llRp5]gta'#9zgV.]$3ӭ>vUmq[WI ᱣƈ$gf@xy@,+ȵXzw$ӗK>crM7?o{G-$[[!-M:&=:~p<0nDH`_P?fƫO3'UL, g=&(+;֐BʹxcUFݬ@C +u@ӷ ,΄ ˁ2&oIwUjD)t ưL(G EBhs s*cp9RO=Y3Kc,-D-p$-Y Bwڟ 6mVRh 7)),7ϱh` 2z3~`/䠜GD1Y@' sD\o 0NY{f;f}Axr;)e/A5:>Z` "eG*S%*7?1 M78'&>S"ƞ8 &( یR8ٌ,AbW˛Sգu*~B1FmB,Όdy9m)T NWOfɈkvW9lHP !3G/zE[Y} h#y q0F. 9h6|օS/h'  Qrq= Phs?GX94<@\RP ȡfɥrݘW?h ʖֹ d 7C8';\z% d̻Knex8y{w"}O/n6gx C3?KH6e "7w*Y,{ߪ%ox}f8w,o0l?/{]?t7}gHz5;~ w QO}\^-//, vkY3fĽ[ضV6u͘_OG>v_K~X%0믞Ԟ8ҽ?=?4V|,Oz6wzv͙N wKl(eƇW\u'ד˭Iǜ`ճgGmQx5{jv 6;U}n|?@CO)ɽ%ç,xI'8aKp¶9kE=]:ܳ"9}ム^|㋗FvڰepnXBE[ %l &]V:¡At"J{y>LmI]v>Ecm7۳@Oa2fȫ+#4L"VU[Y؅CEa3El|{oJ t2Yz 3k-3_=vcNhre+[`6+ $zg1 fTV^_sk{gtSy4eZupm]5w^xfckqA6o$7Zw;9C*^ 4 `ƒ. xj[,vkɁ{W|eU ěEpqI8X#dq'#@FeuՅ|so۪2V$wO`Ih~鹊tf <5H;`C~fI[FjaTAKzo R` !&|$2U`J@sԪ(H+{CqCs?In i |OV9g=2za~#+cqMvYIGD;3o[(gGfd *0IM;[`ACJpH2Sf~L,=7ǘe+{eg7@ 6!" df_7Y9=)T7j 90_|]RNn#Oݝ$" h)z- Ɯ)v7 \IHW};<0=ܖtA`" d0![+熤ፂkЗwͼ^AA޻-613Ha<=xjS&*) ڔs0>JxU׭E+!>=K Žj+eN 10$9bqCN+`GOLG%՝~It k#D{dN]MRD꼄BvQ;`nC74n#'߽B4-C6E8ݔ$_ӠCIzjPNyf&+Rтy^wt=])7#d< fRȳ3U^$W]NKVx#{KP&} Čqa0ef)؇CNzvg}5i+v$f- `?ٿn5ӋځwAнmbs6:or":!_BMȉJggqb$k~rQC8~ſ_/=K 6UK><>Wgo?m(%w "٣H<2g@mIʲ5o7 OŷwqQ7cd}ё_67&4Xui?KH\]ӫ ͨoyh[c\.aw]bjU])\'R8Vx|(!| 3fq+~ViX݋&)1o:_Jlڒxd)]ɂ~Yëλ8=v+)aI躙aVXlh̳K{O-* 9tc/2&թ/NHL AtM<͟nX2~-V;jɭ0ίl N2]E,x¨i:,$Wp-, J79U<+Ev4M|#H?$L6|ԇd՚и&Y1UumY9VhOT w5xC@RU獚sg 8ß̟iڮw%xF(ZO`U}a`9|=8mȽ|`Ddd~zݒGoЊ};o\ų cd Uc3o٠NB,R+ۃQWc`oTNba=|&`_\ $6n|W1YCak>eS?4}ɬ#3#i'?+cVDrjETr8߳{QW\dz#~i:b"Kfu՘ ͷAc&_C#߸csY|@{: 嵟EE1UU/lB]jwe{>M!0҇Vc[M~rmѤJs ~_Y hV&wYNzZ:-ߪ)wӵ&~G{+O[ɚڛF7%x)a=Es8B3n]^9c짛8@CoTuSH웿ݻJM$LaRo`v|x,#Hd=0kG B3+b2ĩO$HALߪevl̠h~G' l2 x7`gwY&gYr3 1m.#v:V4D "+'UNxl ƙSpsILoVB[MTF39䀓)@I&,L#P`)$1j3R"pdwO`ɏd? wIΫ4dB m@Ev%k#vamsO$O2E'萸|;T:a3Z^աҕQt׿)}<ʉΌIm-o0;ONF1'rthB{5L^Тr_%':_ xϩی,Z X=? ZL hyګGrH`.P@Ya5s'vb>!uU?kbR- q9!w #KUi`ߟZEPT5i481z>eLh.(їyȹN(&咣_: B}L'K ύ`n9hT]qMyaxZqEtbJdhU (M=t6fh mpBj7Ou= >{}UYSu'ݣs:4 REm /]=_-aiݝ&ٽ `+|8Z%`T8`MWJ %RwM0ܹ_ѺUWYoшXYy{q)2ꇂ{f/22c(W۽/sX2τ@`Me;P\v֒e2`lQEKI,d7T~Je\ $5nN`C;Ɓ6CS y>Q3pEѶ#!Y ﰎx H_t(L&`E|0,g"w{YfSt>  P8 ߍ˳+߱݃% h?҇~cʌbRfZj$XhǠt29g|!f<{vSv [k;J e9GY*oUTaNB-'amʞ@Ƞo)˙xoշ-ʚHB%}Lw?ӓ+p*bI]3d3aWk>@͜#_:Kӧ eokbps0{⯝^:iz['l^/qD՗!cc"杶b*80 M+Au63mU zgqfI>>y, V$/6~XNu~,{~n+?of߿(V3A~BE+32/ H>tw *?~7-߷:qc|Db鎕p^ 9x/;DgK-hgGQƜ+/h+G_U?nK2l( f>hPad:qxw<,^eVV! ve>fu[އ3馝x:zx6ʢifO_癌AJ{. p=|#1Vs&?cfK5"&BSc2܀DPѥ0],asm_&,9圏 dr]NjS[r&\S*v#wq2h d9#VP B6wHv2E8BsYh#|e+5>CeD2Y}rp_RIg+5п -G+|">1A=,|~̈0`_2p>Nmq'gQ*SS[GtRU͈d;1M''1RX&drv+*$'3;s|'<dN/>Q3m{L:nGA6@[Q=ɚ<\0Y%>1WƵ_l2@{>{U^J 09]b)x~:,KQ0h(*TQZ}#a=l;jn`Dx>ouV 8-L{ &1 '^`)80@Wa* _0X!gw˹0Pqfo~22Z*\" L5*hC83>,$I/ljCnZ&q?Ӓߌ~UwpԆ/ǻ48EW$$\ OCwfv Ɨf>f@'1l<Xc}X.S[`2s 4?˟lO v$la0V8C<"7_w~7Eg_+eϙ A=ԙp߷onda% Зݯo]n ?g93Y!zZPY@y nCɢt$`1˾X2Vl ٓh&_TBll;boxї~pՠ8#73?ߩz+A½,óiK9rٯ.cKndjۤ +\lj`rh~.+Ƃq)IJ-}p>Zπw*W_k~O[hN00WTֲ^k}QQ:)6t[;#"FeO⎮|  [013͏?>?wsۃ>CۤA_ο+$729fmڹje'B:u÷0,UW::056ZVɜ=Y70*Gw'ˈ߸~ӛ:~{LJϹXd"x?M"[x*p*ylѱC[T=;իC%_[DžD %D{@We.lEO>d~*3{T{-0;6>/ OM~m쑘qA5 }d3zM-MQ*0_2i>l{\6ɓxuM~;!)٫DlB~dz~go4Uh×m&1j uԎg%s,Պ*%J?Mf~^e?3k\U#uhwωI c8(%AހFjc %=v,pۯ[+XercZArHoJdtk|H@ `$-~5804jF6Ȟ rYqF0'P-{+ZWL"|jdY)ago h#%|`a=jhM@ ne+f H*Аq~4`gh_Ѭr̸ rK+dD_yd8d9X9zSɯ=- 9 ) y?vDAZ;QmbpF.)ȂFq`,Q ]U>yALM6+VgTH^9WP92UOzf'f[C6O rJUMK_}| ȁև~Ia'o(x N]$3ȵ% TI$[ v+gNB7x 7^sٱp 9bGU3W>M"ZNL)߳i2یk]pᯫpU}L<_td~)}#x WlOM+k޶]{Zm94ۤ%^[ tD l0Z:p2{$]O$p9۞ K+N 8|2d$!tր% d\!f&Mm||$dTmpar DI`Nj?O pnÃ/yrfc3$ #b (i'+azƑhQ^j?{2xi|$IK'=7$T۾;->O:,-Wa6_*k#<? rXW /?y5Ѹ]'h:c&G9. t?ΖH$ٍ@ 6`rB4L1io pȂ13Z}3e=Y[@EJd &g+Hk-麚ÏphЃ|t _"mgF?TQ4mXpM4m ߃e6p 6#KIrdzNډoԙ$صQ`$X5hbͧŏRtx~~M&D]]P_8@IDAT:oUHԽaB@pC0XDٚenb!DzmF"^柘2Xز<~"BWIT'"(Շ%pf Z}fȖEŝDw\K}Ϩ6֛Y;\{~Cj%|$=_c޻ƭ+-2nJ-L\5Nf/yτ2[x!C =8869L04#^ N-LWlϛCGkr,^f8_3#IUفX]*HosX^;3&yRN*T14_H3C6i ^`۳\YL". Sj* $P]f 6?|6 oB)SEhNͮlЁ[,LX(.fKP,Q$5N2F`; O``{A} fՇh>&7|-0Q#1c"Pp%Z^@6N:#RG^} ">p՞_ dyaY{ɑsNj9r;(q0k4Jn&kK]Y,gC uORxi<-1wǝ #よXo~}hW{k<ſ߼?6M0OaZ; Ɨt@iHp`{{ڿH$$ *d^5_KT=o6A7N!Wݏnw@S 7Oߴ[T&~h5`:?N:7{87GNjU7U5گqq'}?q4N8^>5/!ݟk8{cZQh/H8LuzW%Ɨ;Or%;8e%#CފO[!A=zENX?ՃVI/9ԌVwW8Y KЇ4Vf$eB0 3$ ^&3Տaa{J40gNXAxhnmNǷF-AlAy$ϘyiîsZ+K1*y;c Ԇ` #+]3ӖTOtt}  VPĀp;ֱ+(mH߲ъ J@-РǒxAt@hc3vjWO28?e,X@+z9He3zeV7BlAEbˍׄ'[s˜կ.(Hqx_#<g0]'Ѝ;gҢ1]omJ^/)6"T_Y*W=U:53/]*UTș }F0>y-/PcY9<$L[P=semPH<5w8?u;ݏ</m@ fYdb׊I#g013{Ln$ƌ$H3zT_M~ú[\U)z4u~>|] \49U=[zC/ef3=wA.~qW4%A!8 ʁ}sW}3nǦWGHև> `rI y[4]=oo<K պ#|-萶.*辄Z%WI{ђpJ$j{XqJL:C՘ӭXpɘˤmP(R?҇k(0 HC _(@8Z!.Nf'a16(:A)b cDDF\3L "lFԄ. !#kK*)uʜlguPy{;nUO>Ũ@+hW ؉>Kb*`.*U6/&?X^ndՋ-e`igph>RXAuZ?C(ald&9O"jիM|e+o͑C6C/fѐ6=^Wׂp~,uzos}SSR ,eG㌝,N~~LӀs&3ٍ7F]_6d[u\W_,w&Xt4VaFnDDUު B[4Mg3ȨՅݟLW-b:m ![kJ-0E֧.HD:`>sYJD> `}iY \A]zV``϶BԦRzΛ1]`F9dym3C/n]eeI/ 8SG ģ;\#Lˢ fQAvcw9Bfw"}3¿ve.v:~bm Mj[>.rYYEI6[~K#%QIo W x_~ g_5sj]᣶esB~ܼi,^)AnߕBM+|2c6NbWeW4Gf 6oY+`Wr'>I BDȌ1;; ""۷{^ xf~8vFC -xMcvsιɔq ivs{N&|fTK 9sIzomϰKqإ1dAd&c@p":,]⭧RS>Un|r6}U!z&A<zh}^k_.G3 ?3P0vk*r#Ƈ5D9%vpX @A ]%vP*FYNK9vwJѽ&V^sG'\@$ʻJ|W/,YW pֶToƯ=yߔ 4lȵ Ƚvlt|/K?eE5%c;- ~NѫGǮh_IOv&F<ƁSвTb < I$Y屷'4Bz1vZ%wQ;Ri 1;ЂI{(a vu[EBKbdM0/獇cM^Y#vlHn4U,I]uӽ|z颓uXgհD;"u-z9 Bv'krNFnYFf{e{X_!~}ݾ ؗ!5w({b˜2Gـwy04P;aЍK̚r4lY$ƌ>0lpVm3GM{`JYrLs̈ò&l)Y1贁5 K*G4л.$W.bᆏ`LC_g)h%*C@3k7x/V=9;gAk NeM.`)E풟e1`#Ϟ0:1j΅zd^}yJt5~L])1P‡4pnIL|]i U\ EtOAB𑝺236Ś@%8 hq6>WnNzx( Xhz{-U9N"xA&jF\9r%(x. х #T}5V3}K6j; L-rڎB] T3_2/!J2?lfɘNRW_m&ڀ®L*<|dt-IJ>TVYef,=XZe39iY_罙pe"N#nsv*z^;AE2S9i7%ynZ1RcZzr{l"no' /=>&QN%iN;}}Sbċu|% g̶r+$v΋1z9[ơڛ2)wgs6a=M֝!Xͮ {/R_=,JzO| lG;gF'5ꁫYNz3µbfzLYq\V^ޕT8ܽ.ni;6Ʊ9zFN ?-vlj &I*?;3ň([XBz;~YfĪM\h":SVJh7X_7ꡕ=`+jkɥC >>LlBMhh9@˫Y-أY nҿ6 tt_ޯdnc޸h=Ch?Fw$ |HfGn_pHFYq]^_cs:?\rcTg}\s;[v|Y޷ NIgLҸWvJ3} ,AK_oMlXFڪF^6 ik&>|%d}+} #P 겲@[ܘDc4CO[nlO_ɥ/镛F:x\DWnpHFTF*v- 6Iyoʀ__cA'JDJT"x7^㱖 1F%vwHzlXJ\;1+6N&Dn o0u(8LԈx*Jx5&%KHqnmU#My"'3F>:cg jA#8cecU5P d rJQxSK*P]9 C^`^?eprY2}9 pO5+pLOU 5C 7Ga<9 A(!Ew21lDɒ%hz}?qwn2Zpp0.Hѷ/\gt9Pe88Եn ֞S^+"1v^֧MG[ |߳a9 nS _%'7XyA,;&3؝a 'a\W=CJpBO l6'ѧ ]Wj۾ӌ: Յ9i :?K.gZlf0@m/虙9F-a h~CGV 5S`&, "-ʠ9V"$p8TF?kϦezIë!ՎGnx >G*J Y;̩3f}#u;^5BN2YLeq[w4h{1MA+M>IJ 7_g+8p,頿{:.z]!~-Wxu˳+%g;H0_o7|xmؖ`$$h&4pi t5Kӭk*D(P}aLc\yp V3ـ?R)68lyb7NK/v|6V i}S 6>v ]zͯނ7"`YX`'S;6TG/^}>-ūhh^xF,Op)v6ʳ?[yetOc|>q>@dU!wiktE|FZ9ڃA2"Ôq4K m[sς06k;DSuly2XI+Wz>=rTp\d~N6ؼ 6827+O*rQg>8zh|>*_[_`0.,n˦k: 'pV"Sژ_+W}=e^DRhWAv>,^ Up&g+JΫ.>5@D皝@Adw LWpnTgNN[hl3٭oG ˶EߛyvY=PcMp~3*+?L*kb \tΚ!39O5y*o ü+Xp@Z>@pHl7ɚCoP.%$eg E(%$@3B ԇ #0Z7F_ 9R+]d& 5z;mv·2N:s,TVKS~wWa ڜ31p>nv[2rD 9~Y ?hڟS#>>\g %8Q(6~&&Zd-p:ā1̡֜ Izt-٢tI?*#Gɰs[, Nesߏ!p<0cRRʹWϠ1#g *7w%k5{:QBμe fn՜0^B]pȩ] z|h.8+8s3NߌrMid쑓M )d]խ %4^Вގ6tz2h!R3EhYR]x.HA?5s[Ԅ_-. JuOY.AWlme淕կv5ޣ`rn]֠3-8-)щ%=ѡ{h,bDt ѪBD-M_pj 7sY%~w`ꪏgN^jetўN[' ,ii6`viM{߾(7YXBo˛nre *˱4k?G퀶fBW˂mGy079Ǹ>%8M}VdlCbx'f/^'aA."U`XC%l* (0ȟ?0ʱ7ޒygce; dpyk![% r--lw9Xؽ,Tަϝ%(dI+6sv^ͨk{~sY{/84/eg6H2;ի$vlϿA/!ɷ}I07 lMoīXic%lvɠt>4"V:ra|ʆIa8 Zv.K&jvpYN3kQP xu5֯)ʾ ʢ N@{@pQ8x0n 9Tt_ʏdy6'8 1 X>kjUЖF~a%^̾|k49\8tO %x~oVS}46c}Ҧkfo}:oA.X> h=/FוJMQ[ vkHZCg,{[ZC=3``QdV/:hJfpBwbD%y}\PأPSprYq{q Lr J k|xݬxc}I}  :Nvtm͔˲2q:kypн3] peTosZvB:DO}7i*$'`)+ks9ndgu˩>2pЩ\W[!'Xk{v?p#Em}YP::z&'W:SxFSmIm?fsݠ f:Ǭѓ\ F.m&'  k㖐P>xA'neCyWG#ÅmYݾH(9,0+D7ҝlwkK"϶%Ü>;D==އ0fDO wo@̳N3 jf_o،iɧdw|^XܓP};%̗6]7x9Mb2C0 ܷ% ujoo ׏z.iAqE{'ŧ/?.J:Uͩow;en,V~t[Bi moߏQUY/u|[2e^Qptx0~OpJ<>/A`KR}LJh}e?_~K3׿\<_׷:Ȏ{ӂ^z5_]6-9M)pVٚK3/|YI2ڿhHd,q`St3=Z9bUeumݰ}}l #; Í_i;Զտ,`%gۺU[5-Ip">KV)#yDG85f=+l%i%w[Jgv[Q ?fʜSpmn|y Rх[B E!{oMvT~4;`EM?*mM 0NXm0gF:* %a0;c˳{3~=dX`* 4@\ڼnn.;ó%.vJV蓼ur NQ߄suϛC+ˎrƏ+{p x\)U Lj>gjU6D+T[0I-H$ydpoҎ[TSLʮýA8z#lWYh$Ue>Va>,IhJbTOL5e}ЩX.[|_ѬK\\u#=x O3 & ~9xA18ڂ+Y8 L/2@4e36!2SJNy dF tT9Erԗ=Mᢄc!,qDIA^ Rp8vPrN9!ȑqph$ vxfAONih6#x* T[wn4Y04{x`X d:ݡx7*Y%!N]k+>z^Չ7ɖ$X:0Rx^@۞&sH@ l!=6ue8<)P]D^#-<2n'E fތ[$KHA 9:MBAl&P6(y1Ϸj'm'VH<ѣ"^[抷f/sbj@e>Zs'ZI96'U8ysT͈mI8=rޞi< .N6;9*ӓOFt&ۊjϾk|M@YF~o  d xen8/C0wmլ̺j mܫ_Zq[$#X<^4 ]f %beWY&:9FCI9 I>zP֘s.*Dr2݁l1rOh66#ll`~O+n9,F[x\eder8~L/Yk\|jÛ[zArm3G3m&)HwҞ=pտD{A#]!Pk6e:86-jn?N_4rXȉ^VvIX_dK]l3/ bɬɓ^kw㗋z+zM`م0KLkE?/CtȩwĠ]4Abg pK^e[HĻct[~$9%%U$??~$843<4_ƿ/$d&[R/:L2JY-pY4<9kWǿ*u? ߷%r&o5֐)xq?z}ÏG68G+ KLGV9m쉇U4nWl\kɩ/=qEOND.qe3c?Y@hT$=Yώi?>_d^P/ӓǽY]1.KOrRS58G w-::r|xƎGO>qs˙5˳MF WP Kc 25:AQ[q-H o. agWgí'ZɆhgi7qrYOo4 g\UA#&/K4iLVuqċ>V,A#?vRɚk-Xq -Dg~ (cs >&U*c< $yflCݐͩKx`[?I\rwpL(N,E蘄ZHVyVGƲ[~Pe5bRN5.!mߠOI6FΈ;t6e?^$VE;ZG06=$>l'ypFθ&8q!oK5qz?5F$ 9k4޵]lPPAؖ'fQ%+GI{S}+::oM=: >e6`T~l0]sijO0{ +HF(7o7r5݅Y4N.v[>_^Y%}\YzqAD`P֠{>խ1)wKⱱ_k{>vaz%&IѨζ%l m G1zjm50|d"! ? f@B*3o\>̀ q@b ^_n$pZa01X1ԌT8`Z,QZU5jZʵ飄#Hxc5 F G Dwwva  W7fܐL9YlYg/2l $8pmN/sN>;#P?_N1Rd0lc<`ƒ I z<{@RFeg&e+f,Ā$r0pG 3f9FWP  ཟx!X7Dzќx-d8\ڢ;^ˁ`8A3,#3袻>$?lKPYB RbFҲ;9U#a33 `_ˎS䚣n//zqdQRha`2]Հ` G}Є#H7BjGR NBHg1-~ -c5@\K DgYEe5=޳V` YFD!.fSz)=2س`8frUIhpbuEkdڀM ~#NXa npm$MZ*I6p-Ӣ:++>ǩf"bo\lt%^jUˢdә ][P;V 8|n FzDHLwdj Xsuf]ԀmMg {ڳf>4iBѤ[ړNcg%:d<Ͽ|dݪTpd[Z `~2l ;)d1;+] >ks~kYCV˒w%{{9|(Fe ۰Ȯ#~R͔sJD-g_(ϲr˒}l{Tl9~Οږ@9Ïe% tuȇU KIxz^DdY6)I4h?+ࡗD(!`ڐx?1OWI oKl "-zIBZUqJl-L#'gQJs;Y$ڒaL1#Jş;Wq4iAaF{r\x.25dep>,xԏo,h³SdlgOumIHNn\G\g4Q> @x z'v nZ6.&SX{ Z`7 wV ,5ӻ04m]ɦJ= |!$rlf!7K|}n;+(\ _UoGFx|L4A-vLF[gc @.k?5L52o!Zi|7J>zW LɥbѬv^DT*ۿ%`ʞ~[@RcCr l+wࢩƶzB򚭩}s#mxg}Md nMȸOnrcG}efD|ۉ!z˭^wdlݙl x JN}"HO^uW~Is+!&QD rh*&rF|f rfieHjO"d  0`*iSV=<JT[NLJ?J;:Ԗ-3kɍ&@T?9b3;x Zp;yȇN0*|@$rBLD`jҨ gqu~$g(WFZ1F0V@m`sju e׏eh$pĪ=k۬Z-e3;& H]ޮqԇ: XWY kBޠܬ|Wp 0Z9Hlt p0*?V Y͂wFkN]1Bz븃 jFu"skQFpƁs=,zU N:'SS|ZGԠ!A^숫F!@IDAT#m<u_CMQ4T=qN '>+5qJ(:NO_WCt2+ }[<9[o'?Z"lSrq0j׽x{`l˛-KGc6oz#[ o 9xأҢh0pmNQ rJDtwAmuoo4YPN ^O%wv ̓UC3RhVrs3-[/  0 PqXJͷg_Crc3OF;hO=s`d"}9GlRĻh=*2Sa<0~h6.a JTϦ_2oϯO?]\Wb C`x`38iMDța:0!d ȗfh @Ⱦ-$o{9|{tyɱt-IAU%ȃ떵JW3,J–?׹+J%z糶ޗlԖ[=m u]m$( LƗh28{G.Qlws敘H.+!4;lKο ۳ܳ;SFq>G-w ̶ҠXrY2XmXHuv^ח0F~.V5Dr/!Ba1>Tfj9[ʼn7 Ht4TVy>WmͯZ[f|4GavpXl=sa+ƋJ'9?0-k}SF!{?VS^hk+!eN(Nލ A=x9GA hm{j63`ìl%k2K|~+fn_58C_с=X,-h2KBނc~e 2910im.ڬCZR-HvC7 -^x iUfW.rhL)QA2,Or!;:Lxe fI%z7gk?6{>z!j]{͇ z녱4WqEW=hnʵA$Tn5+H?j B[C@Tl̻xF3:Hjt>H;};Ūnpi o@Wq =`ACؾ,fh[)el_@=.:A$lEma3tfMxM`w唢LAߑ Lzai1A;K."Hre(j!ǃL-:f `So61<8v>5DPg lo8DOFiB it݀68B9uz{6PqN"xA poFd1R AWf'f2DS|7v-8idҠz mNJcRefv_m.=!X A \[Β & wwQ ȏ9İQVH lCu=XtYR ^zd@ߺ<~F юݶtՌӇ7 aYw-1B?(=Cu=e6%mQ*~ԢY1zh`S/bpW' `ǧ:|( l=8j-he'`?xqt  )%}7`ÂZ5𠥓V(-V` ˞͎xI|7zN~թ{@ޣ|0VE2Փ+?1J;b 9&YAhjYwwmSxucR~Us͒$NcR Xakwmg289pDۗ`bDH=v.ICGGx`ɶӾ sڢa2_q*ٛ[E)G GE _yIvŁAxN}Gh}/@go1}KJE1m$Ȟď/SM1>xL";h9k!MO?6xdĒNK)!Ӻ5G-ȟ|SzOUxLd| 6%^pps86l f>P(ܩ&l₭ ʣq1Mjaҡ-ThwYA>l9_%|6A/5s||R䨢EwzY*~_ߵvR?ЦiKS~;+s)xNz{?ς W6MA?trvznօsѯ^ɀ.Suj+lWA 4!/UW;*·DdX)%#*W_Gq18}mu_^. !X" K-MRz#?de 0X}vm2T[Ūjy.u_D@7LW<-(\1ɅhN'# u2qjI!~hGU QdI320@btAYQ|Fw}Gi9`nY-t-+~7|lYJnVwBٽrV!@:` ~mV'Xj'֫I8DgʑȯŰdlh Q_Klk]ddPfಖ]j"[yEl=K{|w.7Scw:{$ xm}XX.l?tvNL 4t"uQ,x!ߗt}!LxD3KN*~l6tz4!DuÈ-g41+06 T\qX1oT'6YN70pcUG?څq{1b} "+8 Ɲ n7_(D_i3z@6Н5Ipd޿%Ľ j[eA0Պq: ό& (Dm̔{1a,2 N僝+e60i`ЊA,zIƠ[q;j`[E "7I&?Q흥}^x)V Cf{3u3l (\y#?u8 ]fr=:fh$] %$_Z, c;/6#uf%G 2`9N2G.-s7>K[ANЏNzigv u/}?Ug 7 B(PĀ_}Ι^כs 'c׾YcryNs.GMTk37[9] ]ff-ap?y=R"W,U jl%}G=lz2U2tz3 +]4eĂfГ8XNn_B/k3mU'ܫNj#nM_0C҃gߌ#-TXn)CXצǵaުͳg <,t~eIj6-sC~k>[mֆUnBAg[ q{?K/xe,O=OW`cfCz`m?p_Jn\m[ᇧvfx^?wxdEK$+_> :ru7ٰ] ;XMK:a[6}`>;>(W$脱ztCz̉w}ĆzaxǧG`Az#za__>ၻ`޶%_l %*R{TGtq]wK8MݶVXZl+:+9;XeE z[d‡JBo խ3*u9/_T0] h 3"bZק.u]98qdv+8ؽw /αb .(?׉.2p:x&z({.)`L0ُW?RamЙPMM S1hdD';0@)e2p1_ATHᔄP:B1Rޝը+!=J`tUx\$, 3R&4LHrQ Q:CX]a =rC]K䰙Zp8fհـ DEHE UBM(k CjoԾO4tݣ<cWɾ49~2Ap!?Bf|3+a 9ݧԴerd=*Q}Uy"&VL`Z1\WiA[rJVYU/e L8a~ F<jm]ѻF$} Oelji5ͱ4~nyvK Bط K)~{̉~ qeARwHxUe|+/P 7P] :?K%8ѪO0|w24%bJ$x~4f-"O5m4AW]@Ev(rc&[]^V -CmT $\? m"lxp8r`xN Rͦ Zw&HU7;tgm~߿S`if ="Ofћs*W쏯aoNF@,C$K牋gնd57?"(3y'iJȞU$ûγyDd/=`3odΏ?Pb_տϝж>Vdo609)1$[,l,ip$<*Av- /C_5C >i0/Ihl_p3 zklwtˊIЋ]Wk:dSy1G[!ǣ[:osWzSg[f F~x O2Qw4?|A5sOAi`$wa}ʚ%cN(i$1݋&`=}cz4[^b1O'1n~?2y} aҦ>M|v -#X߄ۉЎx_ԕ6iߴBX\Ikc;-E w)*d2$訯4EڴecKEu :zk b¼`WKI/1|M j8vM XgOϾ4>M/Tj~dϧ-*q'Ad }bqW:`3!d27߿b2%8d*\ crR"ӽA3[cAXi>~rm[#糽AN'NbG@7 p``D7@~buv̨i3 u"YіQwK>q,d0( 0в@L({mt*]#=G8ƥ37Ld1qNvo7LQ''ɐ97;e=>)g44@|S`ݫXKt4`/X^%wOU,@wXSz'D&ʡjPĠr(}BJ1)8l8_)Dq mFIt+>[ QЂɽ,Kl^nCrթ M9̹ 6Uoi09D12vismIev Pq-܁29bE4k< :O2lC79@TТL( D.@a}6 M`G.>[]A3U[NN%זD(5ݬ,>?5}̹d%gŒ{Ȭ}Ρ|uG3oD7}{Ҷ^0:[^Y~/ZU;!tnI&Vn޾_棫-g1YGAn0?v{$N}8;N3Α~O!XV]xᜢ:?}H>O uA46Z{%,] *KxS vC~tW7@v )MmeߥG-LfW^yfٿB %^x{.`mmj7/u?_/%?fҭfp}5/o9jK0-A::x𬶰W8h=gO@GGv}L{wR#VyT v,&gbkK*?SɲmFE`?V4/mAuw2. c V\<6]6Qc̫^m;X&QguY2lj: kפJ>:GG4L8*n{;66 x#9`ej7X2>JmcWGQ0Swwk Erhz':%`p8vr6UXTWaq+Z3@c&?q+MH!8c}~ 浽Y `T)/i@qZf r|ndTD]8y >! !З1u̬?8 %I`E\i$`ƴrKdh'ylаҲJZhF&"fwIJ^F l@ۮa[Q;'r9cH<2IA:mqY[ `AqG&vKTR`Sj6#5qR*35kg'7L۝| c?s:5[Lΐ!m"$~:UԠ8#ho2KcӪPE-S3Spsv'B6ĒV3(pqbQ£~[!DAA mX3RG"C O$'B}MɄь^KTG‚7yM^:FmX QAxvDJ8`GI~dE/ 'dM%6,;=]־?YcU&;h͓ 2XQU#_Uisݮ_HSR$71/fwuh`||epe3Â;-mۊ`3Cx۶ar :1 g_޵Ĺw@H\=V,)Q[B:hζr- Yy/{hΙ7hfE?|5F/jixf-ANiٲrma,8 5k\0xYBU+WCZX%P6[ /|O}Z?|+ >Ӯn4_pg48R4@ouԍ-* 5Ju/ҽچt@!Ė_wr=6;P%fׂtvUegt'0ݣ'0~õ?~t \?XQ6X}Gxk+ڟm[eCr)uN,ol}FtӀk{?[B):Z /[ ϶nGs/I1ƣav])Y#9<ٶ!nȻ28o;A 5GقńA+\X&u>~al2^,5~}=22-Ek6&%/q@Aq5H Ա$Ҧ:;9]ξ=7n-z3JK>CSP}nw;D?:bC@elF8 2Amd6 6&9aȡ$RIr3Y.PeP/….Tϡya4Y&0uø #dž;[Q ho03ȣZJx9 8'e"! zlhA9(3!׏l,>F&12*g$D| [,e*6]ߒ\GSF+Fߣ F0x2X>+C6ȍ4K0Riìɲs*+SV]'jC< -۫RU?< [I` 3lR[vpDz ^IT5FVӖG3|8Ny_& " <[ɗg  њe.rω2.ӏ'^ן>Tvp@ M ^e`7Pl*v(F[?k7yC]'4g Lt̨#- h$NeCG#)3f> g[.X^Oңo; C {y7{ dB hftxY~OƻgϯJ4l>5 EKus2/DzD~XU%+_}ɝQ6샅sŨ hcQW̸oHOә$pN¬h3BX60vwl39 ڡg,Ќ^crgtʊu!jU`T}W7N_)m ܜG'駗Yvn2sI<L:GQ:1Qp @<i !Z&ft*t6cg:b%k5WC6D@˴pCSϸ%8g/!cǞhk u]-pD"{+Y&v4CζO Ƅ67ݤTӡku<5֩3?|?9[lǣ(5Lsw{ڙ$+v7o46݃7yΠ [xgE+OH㳂}F]ϓ)nGvn6_׊T}\dk黾|-W$ag/w<9005D }F}?Ny?֨?\(u=@l%َ--w9:7KPlٻOtftύF-S+Thw P3CIXƹ"HS 7JhqBp/$`xZ]ÖcroߜYKeg3yљHHT3Xh\{GnN6l}u+6'4o%C|871Yj%qΥMT o\=.2^!Eۛ] Vc9xX#I7 Gɶ>Q_fW-A|W<* V^AScW?uB[*>xk{f^ ?/'?T3bdcl&rVXq1=8ےI0Yfٓ^5rvoh.@ V<k۟zLfT4w< Z_u= GՇ7t8wrͣ7LF6D Aڐy_rrƖildM&x _sF}ﶱ*Iп#y/{!;ޠ"6N[7+9LhQ$enѶ.{υn]mk|kKf.'fL h;7dIo.+/I |.\>j<&Wj4Y2K+wt`>}M`1~dǞ\=|%F7W?FM7KU Š\ O)z OR-C.NLW8[{3pu`O(4ڲ*c(Z?.E -U(# XcDh"p& ʁS@'[>3+r&]D-e0O6/L ݐ"+eG&Z3t V 1,ms8k^ %8(K@D!rDvhqųڶ@ix P]ﭬ 9kNG6$V= yK`{}21ǧdz۵d25?W&X :D Xׂ\Ptm:44 2 Z4i22o >m V6Z{'+l0b5]dhSI `hH@̌(^l8'H<}eoF蕼 v'xY@8pZ03K9~t?bA~91c k~klSezc&hٌG}%Dz^"dGs0ek}n\IO%$5m6qud\+K=!_YX_N@'xzv͚w>zݬKm6 /ן3|[2y3CKFܱ{fY' ǽ=]).'Edێ=ڿ՟|29K' $"~,{#!X]%_RO `KQ{n ZuBzn&и_~m@ W:iѧo`Z=r+*\Uם#AoSZ >g̡8,Ё4p38Lwk)g<%f$C|&Y{%#:Zr4y򴀞>PV,\Fp[]0ϝd9v` mL@5q?wG2ыwusĂ17XVK?vPҾ~9m/LˮtM$, `;O:~kϝY)TsKm>و@ `\/6טÆ#md^GHGnygJeL'k~^eSw}\.i~Q];8&W]O6+ViP0]'Rl'Ovp=cyT`=aW4^6, e&\ӯ?%9̇C>i9gX}hx0w~uz<F;Hća!X+SG$c1:Qoe6INl ^Gf8MUy#dԩ}žq5m_i}֮VY+o ݘ1d[˂ȲkdqYYS(@IDATz$໵I&f9K 12:Syɔ.:dt -}6~v'hWh|YQO[ۺSlǡ>c2%Py :?cZA#8(3ݩ}pWunT*l`^t$Qujp,_\ w$zɗZEƝ%pI`:4OM .zuu+\}>gjR)M#JͤIGB;>ad<4dJblL#kf_rKdUd){px\SDg| !eG @ eu=Q. p@":J2 [m;9"dX)! i:{7{ڸcv. k֩ Lf-+L{|dHpduR:49G+srC,u!>Fʊ%82+2hyUj7lR7+b6d{qC}׾qA^eZlK^9~(yrb>% [j To!q8!9{92dIm b]{=<$ 8dʁ2x]am;4 h#= 12"\yRAF#ֿ|p4p[ S*L5;"Xd3yG ҿr4nd1vdl'0{qu+Q0['iǒhQ}6|/~׿AX2!x׳a}!׿s jhː$J~ DmdDWiYp,zތ,k I_/W?W:XVHEW?6 |߯/eG+IIW%5m-xdtvҁ!'j:>CO%u6C=Ӓst^Ԏٺ OJRoD{ZգV+N41Ne2nyub Qі+}NF"6[m]=.FtJc)#H նq3n;9+#Hh5HBUp/~&tP5yZgJuNgTW/urzh%;}N.jDA~|s U[wQ +ZKtD0 FdUiaO6cxWvm"?4!a9sxޒp`^IGok݃1^ߊt&Z2l)70;5VGmd3WO<GڷN7ߘ~)1 m: n'5+mR3}Uh.X8'cK2Δyom[;$?چy=:(VFU}oȆ1哫xE L=UΖ4N7b(xڹѭ(xG=#g,i%bOO&&; h&F}iE-q `8rG +/j؛U0zwv S@SGgV?^$JM#2LL'Ґ5+5)%3UeqrA5A0 hrJ#d.=Rh}Ӿ lÁ;_[ՊqӪ s 8ȅw#iF Y.'Uc2ǛaPWN$g"Bl#K\ Yq/CUaS6$?BUfD*ۓ.{o@12RrfB(G3 #kqS'50Nd n.#ArS|7h6]Gq->oWТASbpsڬ2|kFSNUI XRnjW7'$}dbWw\o˭1H;;p3ec2A:O B'0Af3iK'h%~{F nKFq _BȢhq Ca8M`^J>hxE$Jn<^j=Fkb,UbOxr9(<8a۵lA2Kj|j'?4XR*џgѼ_iJvhQBE˘-E5GlTdߣ*Q*$8ܯVlpKgۻ z/`i85YC'?Y@uz㖍;w_~JP9Lۡrjx-(ٻ&Cf%/^磎{%‹~ӪO30~_I?M]ߚY.8޺#mSlE[M ֻNY2٠\`;xꞨt{?h󯿍'wĢMkɅl5P[u!)q͟_3XnIJ1t2~c;E32ޒ4]]!VH`mct-MLr*0 mHvG`% ؜0q26Џ}e݋yVgt6č1hK߳Aoڂl糒Wb*`fᅫ;eI? %K8BRAV$`qCbgd6V2~xjcf8Zƹ'Y ad!7`%; [m|/Oy& \*- oDXf0 Ќ3Vٛ3ӛmjk-<]gN0rAٿխ3Dck<7 (mB{!:`q}To>eDcOV4gĹ^fWGcK5/Qt+~K9u=7pcXE.|^܎٪8_LkjOH< D?O2,a~A߃|X18'Ep7IMC8ӡkQIt:~cmWrȀ^j8,⌠:>ZVpagl%Fjb B<7 !G̖ =:<p=uߵ6a~ϒke%E:'GgՉl͇-5IrW&{!*}~N9od܂zs΅_ώ fY.5 B$9إE ]ۀ^V`lv`0~Qu<k`A{,IL 8#]; ډR `~_zw}ądd yv-k!-<wZR/yck7}2'(Ցtζ#%7c,%4A΍Cnb Ho>u.|[C$~MnvBcE`~[ jDh|Ʀx'})H[vh~tc VYA$]'IGwpһV/8,Pl@O] %k^zk=?_=nΉ0ebZcI]p◐y<s*hXC,d/iKoGL:`Id_~ë2eN}v[I wyOb8̮%EdmB1^}i겻/gͮ_ͨLIi`gY\ }H7MD~Vk,<:ew-2@b:1Pq :˟ @kwX28}_ثSSۣj[|rcp|v fw4ǟ^8^b䓳t1c46{}h`L?]#Y V%qТxŎ 50Bm1&Iv|J'>gO+1^i`r|8|^d7qPO7{K6&QdneOWw(_g>ИvP;GBS|%]`_ђHwb y<k`xےKh#"!F t][Gou@vk{tkضGﲠ@5.H K][}cyeO;E~]W>Ej}bJ,bĬ UG[ 赺 x| h5!ɇ1ڜkBd44R5\/e"#t 1Lq)|%NZ!6XYN(k],kّR|~6ORQc #Ve@yJvyJ)SpYv3XoL33teQMzo0r(}S&s{xy>D8dNe]9"6shٳg lZYyA^)hXY 4g;ɨ Uvڂy j~+hڐȀ1l +1\ffj=|U8Ϫ9 tnAYLj?8L;js V֖bDD61_=~7,䭴c:nuem@ `vnc9%Ny}HܰQgԇG$ 𭻽j-l]=bJv@>ӝ_ ,Ʊβ.~WՋȋΞDEpDlGYz߶[M2H&8yR/xI GL$Jo\KXy2vͨҰAm~trxCnD{f2!G7bhO?ly8Y%Tn's l)9qN;ܛ, kN󪙘=iBrQ?M[,JdĽ>yx 2}'DA z4|@ڃ a,| Οyي߯*/<ңW_'"._"=>̂زys6~ifgZ fn~:h:?|Ϙ^_5եogl:A {rVOmedD U^yVc7yժ7{DmVV9wϫo,@Uͬv(] (+gN7xN(\iEGU;#Gy5D.,EmTv}c, rs d";7_u0Z!=>[4AkMD%p);gLI&r^{h Qm$~okՎx$M<7\&NoۊYi=!%$(HzMNk Gl^Mj8/~4[)/vRI ݌Rk4Co]W7 #hL~(S(,#49JYp9]뀌DDGYU} %ʫ@-ۗ㲽ЈZs,mҁ~(h0~{1h i-rN,>`NaO3^C߷9b(]0n4!WwT-i5h7ǽ>-`_4hx܍teKx=AýÀNVn//iCPpO`y|a}v{uPLGJޒ.߷gr%ҒpchY3ڹ+K*|r#>vIrhlҁ ,fmSP/[IQ]½O~pVm~{ۂ\KyFG=nfY-S6p?~ՇK&|Ờ`ow_>l0vE2pwߚq!q{8^ͨl#.%hzWqyHQvi[E+M6ozT~4-c$גs;:O>JʰO[ Óg8ytrnk#j(IR^RlBw/x&~Vq`:MmY=EhdH}Jf%lс!76W7=–9ps=v"\ӱ`䁛5 q bƣ l>K!].Ԩ`2= QW |wDC2ɮl>5%aneEI.[p*(0Wɕl084]ڢpḮf}o]`}?p۠߷GmOih')?zU`?t?/WZN>iВ(_JV4;cN%,Хk~vd2^֨.>C88z ECtX6YD`%!QGxxFFwX)2DVV ꄠxk~:nrP!gҸB-w==ZWOAkAk?_Y88[-&>&-{*UnEv-PCa0Yxm/5Һ>F=Ss4ȀJ,C9&5x{Wz9-,6 7^&>Op'͖>pf QiYp֥/W:leK&R Ag>=ear+sO`NT?ۭ;dUtH/ahpj짦8pj 86a+eNŞ ʼx@MX;6X'.] z<0^ܡ%>@Ⱦw?!FOg`F!"7N<7FIX2_ť>kozLj#X)3ts&4R0VuTI]eP 3X>KuYMl&ҭ\ |Ʉkm1U{d!t/,76%4Ew|BLVG m28# 91{+!N@0Sq*7' ;C!K&22d{V}L>5:T6AU{QGd7,^8{pbHiE CC5`N0 *NRZf\R&5F` ԧAZ -!^--[ h*_Ra)}"/X.'>91f O˧]96EWNn҈J 3@!x/c~ap\dȮPMQpV&7xC+`s㇞99|pjo&mu=ǯ~I9ՏNꟉ!Mnh)/saDQ};)^2,<dAG) Fr+߀_v>ơ^cVWnXVF7o"Ӄɯ~rى 8$Rz9|@r0/ݽfcp:~=Ż~܊<W3Z"ǽ pO/yrj{OOoiz:oMi_˂/|]~)?òV=2?-EQhs22.ό75Y>L .:N<ݟ:9 [ٞ//:{僲_??xq]K-t{k^ËwͿn}ͥB Z"t &WŎgQp}e4!6 _W'e~DV#fWkg,/m*=r[ۜ0"_5],| ѫ?C&pp0*̤$xڮa^3^U6`V#O)ŗGkًך+h1;FB=hw ?f^G|SN߇گ; :͓.F+ ]xjRkSm=yq^O k6$,IY5.mG{ j1.>k4vFj޹=lU o؄bh7R@y[%>;H8 l!9'<3"/U#uÀ$(>>k.iS[G~ʆ|}H\A gզaUZlFAU;`RLanUD* 9GPSG!i<|9E$fz72:?Ǒ}"`OYI NAcL 7WGU:-mod|k3p0.%*&ݞQ"R/dZ\/кts߂bFK1Hy`\SՃep{o[_PTetYvDe0/[A(.KujkN/d+`P3kA3;H(}f{׮ WRj7= &jY ZۻǸmLԺ77r4RA68k<Mj8F!rH12Q@+bnߜW*]>^#݊ϔoߡ4LIBVmWPF8. 7W1ϢJA +o%4IsVVo'^n8|~up݄,<&62nYG4QNiA>+R!;; as(f[{ qtͶ `jՑ1`>`|~ZC~+;@|`/n }`25_|+8j2I72|,{l?h뜻Gr[M~PyD6w}[萿&.sr#m_vY+?';VvI^h9N>;{$>qJp@?<+w.o?ڽ?|ςz~ţVst T p2>zĘ T'I6ĽDY[U /~[yndXvv85f#D3&F' kp/aVp Z/f6̶F%`} ^ z|%d%ީ38?ηƂmccipK.ؗ}ט V򌏝6zWGْ'#y5؎>]ƸŬA1 cCj>/#-ݎaHF`3+`"}0_V<mБ9VDa V G[M(wrO"770x ~xA;ҍl=؄IcjOUQƱh8K";p$@GSn ^ìh`=ڛ;Vn(X]uDs4VwDUytx6([~i_* l<c-Z+ 2юěoۗ5uk61HMz;)xǗi4>DI=N 3Ac2:SXhX)q82jR/ .ݗcup9Wj<`@;=ysO_mWygT, "ܾl w)(82 }poWڜq2[5H n:Pߜ{3ƪ]gߴJ&i| 7atjwV+VHDb'H&˸bJ?tǔh0OpSDvĨPAۜz^0H7=i/x oDO? _k ^J1d @@yFG5fe?dM$.52Ҟm9ev`30 \gWwmpps6[pFxgrGg(s~92 lSxV-S "{gs6ѝV;X~'j?~i歇~> xQ_жU PxKƻ* 謍58GPч̘3]oSxRP1/Gfuas6WRޖ2O2y7?{5Yq0§?xY cpIWlavzo?2jCq|Qs`scrNS,W&g:`_eT8 }'䌎jW?E"]}esV{#txG@7,%CnRcL tagq%c` uE\p[ҹW=_]߈Pvu[oG]zSeNofЇõe_Gb^9c3!Y{:W9uL#=\_@?&xEtr q lG<[.6J:j\T Rh!`IQm3|='Xh4zeJVf?Ն9]NP9rՓ9:avZ|<'`<,[Vp4{vVO䶝/~?x.{{$ezo2_mqr- .y3}ᯓM{SU`4|{ε1^6}72No!OJ j㝾To>s3 kGw`0UNy4TN7Zolzd_NCh+HmWٵ[+ݰ}LLH>TNwG5 g*L `fnL+<\a}^3k:UG/|9tސy;= [X83-|7?&@k$(@܃<0kUp(?<72nYgL!H;^X`)pB _5-\+ֈ6SGu^å- ㉾# ֔hv9V9Ybq@?/S+ɉc6eJNoJP96cTL JWK9Q,X!D1vm'qg2$V@ՊȖI\;0UwNGRr e:zw L ۊ|e.7ƽJ$A5)P ")[tf6[ Vn^gl3~D_e@IDATf\U"&- F8(ʥmeuWkȨ|ޑ5n9K rܤ=}a 4ᴷ=D;Τ;9=~WKU6xNǡ_9Jt"s8!jQ3R2TDzwl=.y18R{KWpB|e]~8,ݏ'njGp9_ʊ`Ngct:jy ?|~kP՛q F~\kWYڶx`JzPaM9G}":6[OA}\r{9NSa_&C&УJ H*l%fSm%~u_1yPVO>W>:sG{ڪ'g n}~u:}/we*u9ď^]a Η"C1>EO>Ϟ5x.Q O.> "32>mmSGnE{ y|׵tvzA':OBB@f?>]Bq~rN{bw׭ߪՕw;z)>@V`VO'X朋a1(8[qr"8|}UP>vt{l 2239,D#^o͕:Map]  HKPusXibVɑ:1'#.7o%4^z,F0`c-~~>2S5"8i1Wg.ѱ\ÍwzKmAxw6G+zikp|W1Gkܟz ׏~5/͍xM_ѓ;N ]*'|髙e:@21ks"xhc.%'2zRs^/|6Z?BA2STg;s>Ã1O|_ ˤa$M]5mǬ>vޓ& և9n5z6 r@;\~K#: uIz{??Yp~>v2agWh3/N}mi|?(?'cE޺DzLH.b };j{<CӐ],LSea̡V<G?0ǣ5؞їoöѿ6Gde _p ;q~7p 5ט@,]#Ӏ޵,O#hl YiK.cQ@~O{&ӵ)0ը]M9ݕy_S╫2k9?~fS_{u4}b(WeoE=ږB-bUvj/]PV.XceN_NNU~몮ӓ5%0Z0C6Rz+籭A3tf&Gi)MroQY(6ds@N9 fX{N3"1%M .f;mRp I;0mz-^u4.*upNNKg87AM"Cn5##só2 ^)mTf~I@We8Ug4r2JIyY*a<'dlbMSPg鳃;鋧<>k|3<_"p+؛uk&ed)l% @I6?^LV7!_&[w{TH mPM=~ФTw-.uOȽ ?V/{K78M0++8u?`(CfLU#xy(q]rRMq aClӉnߗ.s$`U" `U'r? ;1>v'tBŇUMX lVݓٜ[ ??^}QV cAM+N2EΧzsbE^+ʤG=!HNw699~t現)zG`Edh+[u;:uO*l'^foULU#l "=#+q{W_? jTƧ7X?4GӶ|x#l86%'HMH{9U DmlZ83ɗ-v@6g%9e.1ΥFڏKˍAȭxomW7ς|i}+;q_p:j4ڏ~Bb(@:EWU}*wuͯ3Ky9PڜƂKV;$Ԣ~6nn\9xV.7P ,-猅/±)+pG}`[㾲W`~ʫ %+f},YgiV3;@]utW ?_^|?xY/_5gҭ9wo8Oᦱy|9wz}X?_..J9F$A@]-hxs#zo﹡[=B>o'WtDӗ26h`nz͸]6#~<6>";Q/ʜ:@UAf,ؓ@teOx!}p0õCmhîkM C/ Q-\{𒬑W*>ԉ_wf֪Lso3Xw>Ն1k#npkk?"NC~p +ᾄ¦BN6E*v:aFU1gLAbwuTmE()Q>VƬ eRW/ 4'nJAZ-s1LFgtﲜH0a*zb!bZ;Ȣ[ŌhZu{羖6cc2V (0xiN`DSa׸OpƤka\Ϙw/'SL K7' e8ߡ:N ct׭ ͤ;!hT#FHD:|} *ჷEo;NjX 2-r7xE]n7sVmJ'Mosv:fk>c ~y4?NgU^QtnԁwK|?E `4iɨ`?w >%^EM H]tt)?l)Gp7Lv^g@z׻9nMhm<㤐]5r'>FўP`[$БЎunR e"ΛhY/pB{Hx;AV]Z@.Wp y {k'Wy=`IJ gK(ד!%|5:p{]ۓ61nOۣqrӝ< ]3Y+G\9g=W9dgr\JeeŽjXtxYѷJoeg;6 <AYN混6\.^Oyu߶V=ɐ|T{[>zeh< Gxuh߶[a;v^ %#2(+?+7_]c:+)^y!~D˥LpfUAݝr VjI\:7?ߛV+ S"y=uiƌ(rt:xy0dX36 ~~arO^Xf5jɘdl*oEX''HX[тYV:) A.ҏ>ٝp*% vԗE(|CdL^kl':EtKxm+bwx:2+uMV>t}1?_?X@\`X?+>|k'SGS*fdpAKзajYE|F•`Kc!׫Ǘf-y9i)2nD/a^u@gN v?Y.g5 J{_h]P*[G ACc?;vkymNn-AJ[lҮMo޺߼\%$gr7A %ΩWnpmdۅ3o=.H2j'\;&:!m_ "~3Pjνҵl}|;Yː~͖-MA% 9sǪ۰l-Ulz )$UC Yя_c\ ̮xI>W[Bs~ pՀNN_z>LmߙâE6Q{5е(Q9*g,ZAYA8DôL@W@sʒϐ'Pve'fM,cT8A;g5̫T@[xKA?{Fxm%bi1C^2)l`AT'Bs/Kd{EFE63Z~~<-0:I}5 @ɟ!B*J_fzFH(#^e,$%ΊD*LdH 5 IqUhꀯ fp#> eW/ MCkp^zxf4`ߟ]=FpJ2xT:/牡QQOi[!r9󦀅zV\ۊqNebD}]VVTE8AtG_,}>?Xk4PrK4)'}i:?TinuJƷR:࢔w)>-(pN99Wht5 NSVFf eme>kc 㰒9NWoף 'x" : qӖQ~6|Α}Ͽ2>i$/$/8"p&ȇht3jv:>bB4ssm=0s^gKʛ9s' Tz98X/e/~^]7% c+ ] ~s49ŗ m7,=Azj?DD 8}0gGJƏWMH*A~N2"w?l^Eoo pFȋhp =tg| f@8eP &0(dK=>kk÷-e^O? ͡_'NNG's@Pޯ I?׃] Sdԛdp~/FӶx# 9'nN]= d H 0@[e5t O з !vS8/CN9]6W'mМt5+7bav1Ϡ[˿>3Qqn=^;Wə8c$ѳ<}v;2GpϞ:%hD9r`D U܃>3AG$ؼMov iKI@ufm|\Vr VA|֩ ^OE6_~UyJH'{>Zp5'\nLzG ʽl=I|V=Hyҵ菿DpS1p'WvRN>A}!y[ۜnTjś2ӲI7tzszg2ltLÚ^G7]sخ j|>˘a⬿YhC\*GC0o'x9}gYWEZLFw)f'|7m<ng%n_`7ƚm1wm6TDOρr1/fC  bZ}3:WY;oI!pRMacg4^}ZDiL}D尩ۥ}B ̅G".BvN@ߧt?!&G;I`]'2ΫI\&optp^W0xʞl'EH'+{| '\q9;"~],˱}SulZe1#56 x^&ag,ɝꌕhfe?w`8⌢_~Ӟ.'? 7, (y#sk uC›Ѯ>I5w_}'O'ߖ6/bO_ d+<~Lo>fH\|$9 6ի8%y`ÇpF~|y<۪q{]c+zsXtnÏ| ed?|xPPp0_/ޞE|$u#> 1l!(00O Lr  !kN A5e- tҢ?1]^9 & |* |D y %/ECqh>_=m+' VؒMcQ(Z;2\Ӆy.cv;0>ݵ-jU >馅l0h/g&\,y~5Errb\e;e[vudU=-4Ox==.`PL%q~2=G[D~0~)ieWӧkh#V8o F+{T&(vn&9o]!r3;e2rg݃/2֛^&3 BʃIwMwL'%++^`ڴ9ܸUau;xJϰPѻ;tų8={4Nƶ 2 SPs-)ZU|z,hq?o 5b {U na=7A)תIG+/(eJ C^$ (@Ej`NQ_x*#c}m&;^f_Z" >*MK#c'P ioIQ76mÁ<(DJ;o9̷{9ZU+E hecثc};)5ko 偬5ɖ K2<q+01=rĝ:{ )#N8xU^ṽR:l8T2.6~>A@o;~:/[vesjyպz_78, uV W4&x͡v7;'?- /:Bf9 z:NjApր4^AɩP1W~ l> 7xs/#O~l}fKW82̾wO<zwñ@lU-prӤs+zs]En@r^Tٮ$(an8>]zANA]f{W`'}VcuG\4̆J)#cBՍwkң{Xr]/{5b|:YbPPVG~cx"gcԩx8!#gKD7\c՞A6֕OonX./Asc ;xKL{n֗reH7>`6n{erjIhh>6_\[llAik,cp*{ګ1H#,sO|hGS8 < d2jYv\]V>Y/[|x||G|_q}"Weykb4xŶ= v'&[NqCщ.ϳW>/~'Y~.s9pw<}[lxn]gno^Ip6`&Ymk~pᗎR׃or ٦tZxa,oaM0M'rCn:{tiGzhZ  Papw-! ೻`yt>^9E4݊|vJ 1k8H%鍧'%b{xݏЦ_p<{E`Mk-}YU7خkA2ߓ 8W?+/cpGq)S?AN{(G~AqCmaуfL`.s @Ia?LGHD@˚҇JyJ =ɲ0:u ]#bhA; Orh%WWvi^շW97Njr[tڪ]zR8}natqfa3Θ:$t#y H|aV 1v\mˑ@ߋcŌQ|T;; /!qgCf,[)'K'ʎ@;9Ot0i+-P"l/Y| Nۧm Go^QқT'MfxsAmx3ouw$x+/k3[20aY^m\`/hhFzfl~ҫge<)K~#+djroo7#4a~`W2^4V`t_It"9]~rYFoTOZvSgsIOm3oZltB;XjjlF{ΦGO_cL9i c*C/:̜/PD [*?i~΀KΥem:$Wȡß7xcIOrm뫎ǁ,97>L `6){TC}ox~֮MH75Et q3Wq()K|[ `>MnsL9lU:SAv~Ԁ:;W05l,B8kƂ9񸨪q~P}=#xV##O!VIA?ŭO Γ0_Xxt0i+Ʒtx[}x`rg7)Lg8OǼQ'G:GvFGFWIel %'\t -g#hL"5>ޚW݀\ߍG?}ֆ *vHw>Qg.zVCkKpuYFS@P_V0L4E?зmnլ&PLeŷ^@-h+eM7O)'k=ޢ0,J.4ާs{ZC=tVV/3S7/.? C%*ڮ~lu(k@bV\63DIC {ګMGC7mh;*EvU7~555dOsiU{_32[&o_ud0\5% Et]E ;'3qA{W)Jc]KZ!Luv+&l> hWg3"-8=pJMzS KNs`9AW֞`f:e\1{j 8E=eiZSaԈQD>i|3X?A1MD7^Yyg2ҭ^pJaWt8=~AX buUkx,j[ܓp7;m}mnF5TF`>ou+̒"UjN7#X_x`MQį>5E7s9y Zeb<ɰEAp"U&ýe1xx 3 تI=N0㥡ɉ2X!D}k%A5[}!VLo|Jb~ n9 4Q0{6Qe' )~|Y*gʅ?+sP xh5gO+S΢4K\&sW%A' J visvz*^X52#8٫8 <Gws@NUܸ^9?mArek:~b3GTYsr pdOi5 ǔl;^}8:oتm|$%-ѡzkw|Կ- }aYN耻( ۷(#Sů`E$_x{v!T>z,弁tFBA3m,X vNd㥆q 9 H!|WorO,g7yroMNMO_/-;tw髻n:nwn^&$>u~P=s젽6 6 @p.͕V?Rf9gp""Sp.Hl2Le%jȈpF-.8ytk*TfmxYfW7_u~Cd?LQw=Md~6kx((p ou3'C6Qڋ]>znEx't3Qw74C:Z֜I{dc_+x$NZnߵK`rfP7C@ t{\oL=tstuz b4u?~+}'~'x<ȩ^"l:~Ӭ_]|1=;]o0H~Mh x^EK H?ݥmW+ O3T8ħAh\NwБz fcaU@|W~z.cx>y1)wiX|[Aw^GoDfpEzhG>9\7kg_%"W3C#ceh`IVoqmФX1:0 }7$*ֿgӏ>܈O^76L[%bo9fێ!o~ q|}/[c+ʟԧu 6@ Xgs"œokHV68DDR(܃0kIؔfe1NĘnsԝ1\317Xg37CH`aR M}]d.}Y_ pl qF1Q;_VS9x )0[p<ܔvJ03з8Eˠ `t@y?˚г**%g+mXQ¡])Ε i:Zu8?W2q{]r ŶG{j1 鳭HSƽ]zr‚ozZɳs2ti͜):#I^|}{g'nb`ӂtH)tZͧjq 4A 2Ǿ6LTgNTx 8G(,Ϡ=|bh<=~P #7|t;O69rZo կvdȜy stZ `ȕq;l-6~K»-HTb 6.5`A?SqG .1.uS+C/AV0˺l!Ϛc#}'fԖʣE@T0'yNs15Z٫@({>Xkڞ㔮,^e0M4׽K/5rK߆~ I?M7GSs~ }rճYXVR0]^Μ䯹\k;ҝ}7_ Wޢa=az F #I݇JSYxMtd!1[ MEw>BOGܚZv4;%׾O[tPHw[~e+QO5a].zLROi>(0v3.:be<0K݊uu7 FX8j bO/xhG6 tl,<[a@:D+ctI%Vh2Y\Sٲ xyX7 5tb<{[Aev?~[^Cn|sw\lDsXTfqUCPSSB>E.q2#SCh"Azz ր8V A!ٯCLt@ʽszF!Fr{l f7!M!JRÓE0 } W+p]ggEU)x/7v$n{ORiՔ1" Ԗ7Qא _( :ѣͳ֪/#4:wd[RIQH#g^ w71Y4q0JW !6| RI +Y X.sJT‹VRw3Eu-"q]7p~TnϢ p7gP[&gL nSel_nҖe5+ $2xf+XwCxA6PƯ-,pe-X%3!jf;fSMZX=v9/[CWoC3C|kRM}J#3 E|a7 zݚ q7C*GaVwP<.͟.XEH A0?+?q]+=p(1z-+2 g/:`XҁmAaj|R})MH''&i%7Mnz6 թ:b{5qWhenDV`d0y 9szFe;[!wxۜS ah:.x=O?2vv{ ݕM?,ǏtI xZG-tQ a>սxeo۰7e_w@ߟ._,G0c |p |~G11گwv{׊?=cU^OE5b 5˘4v~tgW&qi3J8[au0 }'/jߖǝ @gyة?O\@94O~1jKtRhSO><.m{}?}\~Gy/wU[J70B9u)^'?,P Ws6{<)xѹ_4o~%_vyW/~qt 5vD].hf?gTi[<_t⫶s=x7~_VPcHݓx'^ֳ6`K~y|a^X5R_f:[xI:lsZp Q*/!>bj9öme2P(0WƧogh2u0t1vL`QPj`'|᠟X먋S/=@bWkmLW[jF א[=i9\XpȎbWH;Cz\[Okl^xޙ3(Tƾ'~'9?T~xlm=VLnԡp98:>㔺y"K5Pf.|Ž7vHrp6 ^}f] m6̙oGlYi4λgWosmUzʵv'_[2+.#+-ѓhkv5.h+V)R<T#-2 69E k }Zwi<9 '8_9Y+G_x~ʿ V@ A_</ۦMfs:lލg(6Bw3FC:ō]t[l0PY?;(Z %W?Ot<}F7ʪ|Jj1t)cM_[pjz 1^5.^Z=p{6Gs>ozaߕ}Et e[|6bQT} 7Mp>}ݾ ;P=&+ P=>FAS!y>ziV!qJLp)>RkbJbpw+*oJsU yᶲ01VR_ƨ7m  Ʒ$NǘR`8SGV[}x5g+ƘM=813pfD b[ ^x9:\^7IH}w}CY8絉ss$")PGp,% tg ޫ }:gJ14da$=wPDm"'7)6*c6šJ~xS`L{ܮ7qF&RyIw~9yY#IO.iRc;.`)f. [=~Sw0hdAw郗{=zazųt2 ̛UAq/:i{]_}ګ8\ wD~mtMpn )o8!\4W'e-`Gj]r"ĉ}۝`[!{H1/~Ƀ`:j#q~f+*A]rQtw[曶/,܏=o} M}g90̣ E79M-hNt* Wx:HE4z ь@GwdAls9 Q iY^o+DZ(x9[pCYp_󓝅DA8IiiAo`HvNĜt0G4y[A=-hǝYkuQy:✝  8ə^JU?:ӧ #`WfmClKIA$T9tyMu+sW->= .pJ8б +0"C-CEZiҍ?7)yOt]zJlTc+;ƣU5sϼ!Z Wg@'4܁\8ft+4o}jsm.wkUpx6+=;[j3فכqpC6^ / !vȁ۵yRFOar2)ŸkZ0s u}VP1>GI165$"7l *j݌=6OGɄ!k *[üiMD#AX&3ڵS]Bc()">., 3@kAݿP.dҬR3A\ʑNܦ(V鬲E"nQ}&ep2qN&afBpmn8'.Yscĝ 3m4{)Gr֨"RMKK4P -[-J{)90m LGq)_?Lb_D;ZgK.͔qʤqwޢFp=} ig2I.bSE/ hhѪ2VLYj/]We0j nGF} W9"Y24q6^{sp*d(8=/͎cﭞtc&A+Y뮻KsEq'?yΝSFDFf^¿,oQE[ e6¯ `F$Λ O m6lq/Y1Pxߒdr(CZhDr4S& hY] .4.iBC ؝n8F7~G&f$v`mcdpo;qF5Pv]^_ZU7Cgh!I~ <pMf&whZVs2s=޵jǩ/s.EiӋO?TfI P1"^lAܫ2IȳyϕM=ne'nu"̃wr>ˋዋo{3=0kmYB>,oz>ipxb<5{)fMnp-vA9 Uu>i)E$|\÷UYcCګv4B mv2 N@)lnmς/}#@,[Yj!pީo߱L$:^62N9Ȍ)y§~0;Ll?Ȉ1QW_mf㽻'(#+A0̠VޘInӱfm 伛N/s3+ 't/^ϝ]~1ܹ뽓/D}~l ]OQ5&]0D9g`e]L)N/R564f5py=,h.qnc\(e\|]#ű(fCp}{$96 Ocan bVEs d%5#!0BZpu0KCJ܃lDSFposiubCE'&ENH@PBO2Jrl1:9npMCu$ =6B $Dی]uT~NhֹSps/0`+'uٜf]0)mo5-- g1(mdq#๢o _j9ͪVqƫi 9}wG9H A@[P/A"w)XselF%NM:Ǜmk*<7ݡ[Wi`R׹BZ5N.uޞQlj:f`Y:xm~Xʰ#g |(qY%'IOeؒ9ss3ΪG}i̖lyT92w;#"VJum6>*˒3 {w{'-:GV[&8l3&A00',Q;d|sn=|/.~^H6pA6cIGa2; Wתy8w~GYqo$ᕤ>-bLn(2 * ߚ/tR`;Ũ4J舀 _}d9bgd llGX'pZ:G(N zG#oSEҽ}{w<,}?z#FUW^ BTӵk 2:X?/ Ce+X% "i\ < ztG&@|'=62ha(ftf)\!8m)j[ٛgt,%76I Un8 3 B;Sb#,%ckGSzwu,L.ϜznN |:Gx Ud8G:?Tqde.ݓM&ɕ =Dw$3a"t_H<{ {N@۳K=kgM45֖ ޮdܝ~ G^^Kw{|֦g_|Ս`CV6K> aQ }wñ}LR\78!4'Spw6j<O_jrs.];_ջ_%m>1~~n7=E޵KUn4zفheZ?.~Cv Mct&炑ML֥}}2!'~=9' <褣ɩgP=t<|͡MOn> ƒKt~h꿟 }7G!zN/Ԏ,Us8.5WپhG'|v_*¡J6X6n!\A{}Jf9oZߋէ4@_Mdkj6jk+kdTt|iiyXz̸&&\%?xU.ug/Ugj:? "Ж$`j(Q'2N*t2@p )q}71 BvoSQ7-ևny2$Yt_32MtW;}'gvISN s -Gc7; [kWwrÉCxD$VZ`<$[zRk#O:,A=p(pHpXA`m`iF]6FIwtu Rd곲ԩɈs{1x(4}qxt7R>y׆,m3%Տn 6È~WsypZ' >mў9 [TU9k>o =ճy-l`87{1۳3 W0F/p8uxlʞl-O+Z,n*DMhb UׁTiꞇ?5\PW&*ގQ^TxB ?=C1HR'໺m^N~q:ƞ3Vfdh&Ao\|oփ./[f^Ͷb3vcQlWݐoVkK@MM\wLVBHA5Y taژ +=ܸ35OΞ dy z{{!{v괺v|r/H/>! Fi|CK2rv4|;3Oa&ctmzk߼L|yncDc*<6nVMA꿢v#{T>yBteSt7L4գd|^uuIA`?^:M7fԞ0ZyP#=kL3PS-ϗ̉~ r[:r1搀9TQA1gOu[pjcpg0#EX7X]ZO|Q&r!z!^$cڇ@{>!AV}i4L0l8X &ˁ.,T3WͰCkAͽjݬuDxLG]K︙_7#\n.5xr`ݎef5&e~z$~ŸSXg` ~jl㲊U+ 2 ^tn-#O K2\c EZ/2_>^@`@nNK T8m/0Y5-}EU)h߬Oλz}3EfE"zm rȍ Jp;<|np_6 xRK>oŨ]Zfz1D'2Ï?f7 :`2LAf%l"hPus 8(8L_׃7Lp[MAbDhó *(&Y>_SkKex F'*zp<Nz~nErI\-E^i6纛LnpqZQr%7K'Lplfz`{lz J# "sKFhǙT:|_7HЌV }Aazĵ>_kƆ4oY]ivGNp}OӫͲFL{߆\S)o^_`-|?:^/'G#d;O߸`:hƮ O^x}߻W]<@דE)} aYT'XΫ>2}{PG2gbctĉZ3xvw6~c5wFJAt)Z V>rzU=Q'엎 A5^л{zY7\hnP}َ1T"wp@3Zp^e]U?;Lq5upR`dDjfepWWvÅS}W m"c]۰i4H\|~17=zw;7p `յ}g8vhhƹ=&)dhFxc O61v'wtO9%կ|X-F[8^U_;e3{2`6*z2ϲT +λƪ;ݭ}uZ䔿mvՓw}jBcB{dx' f0]xǕ}\WfS+4n{?wW_ƛUO+\&7Ṷ̈́@MtNcx[0LLNqNV!&{Cfc^'$dV}=[כ a՝m2Ƃ ,mܨoYUW.ό 7X$50a wNƤ1X h&HI`S+vX7#(2rZF Tfw1XHS;;8&ZY`:YG5`p ]A+x6yvJ91UpbXUv:͌Z;{Ck3/8FYt1xB lFB}5+>{-,/5pB9FL4 Od\3pL?[?u_SoP4pQ%`fc0GF zA@s/{#.K:ÝlnwK#݃O>2G1=ˤfpgP߽eW<Ѧ\f6=Ā盡}ьzvT[͐Gi9R8ok-;Q6Yj4ȿv̟IøߕfⲶܿmS<=;3ҋI|~NG ]wv~P_8v ;˲#>]' ЛtxLs8ޣ[bdPAgUPճ rUkO*X۳nWMJc+o|Nޣ긄toPU*7!pQ6M}U5p&`>:UH_=>.Q3ZlOd{eTq)昐)\ mf';#:/z *y;׸5cTWM:ތel g}zw2M=CPlIOMWt#[/,[q ݁ [ʣ;㵓Vs67̯>w4d z|kیۈl|9Kt}﯇hI|M>ؑۻԦ mL{{MT[SoD7pqo^-,=q]-䚌VaU'Y-^z_'*cSkTd˾n#eNKd7{ c˞سo(~U~ Qy=N:\ ^|_NV,oF{{iCˬ:~ ȼrkbs"E?x—3S؀\7{vl8K UlL\ݘ/z?fffD,$f 材"@LPc}Np@oA"N2Xqz4qzjvGBXFKB=&ϬTclP~+ف/.lϚƐB@ Vqf 'DxA0+ކW c eKce ?Dz~cNue;ޱ@g7F}zS:J'0wɜF} R|[Z mN6zh!sɇ6jrj , -Ou}\ : mǣI43~T%OXM^pr"K\8B-Nk`B(\`j[3:s tBA, N@Ufnø)0g0}pxer9#< >bxz3 r@+kݭ0{{e99vҌgi {v5NrA3\ 2j8.9ꇗmb_q_}AW:qPO푬N1G-OM>ə`u2/6__c=5 ::׿40 wZ}[w᭬ɯG3B1qd0hxGdn 2qƀqgއ?/pl.;Qv 3WaGw: ?i$kmQ~YA[:AI9_0!|یzNAF}JËo"|^6܍A'OE[ⳏ?*@Б/^z~ {m{މ =SNŃ~jP 1^`1r2 S|JLo$ )t[IY5)ާ#ޙZ3膜`|<;;!ၔ{MrGC2Rn`{$' uƵ7~3l;*ȆP>9$#q_O>O.9AFG#k z~1]Mv˞nLeuץ.{B/Cl@IDATc"j>(zڞwP6 ࠭:P[R+ȣLݯڦk"t]^~ɦerUZ?{uMz@wZ3Sh"'sjO0 9bc6^}3=Fpc O5yԏPi\]&艤\k_} fbC|r23NvGl2| ʤպ~Nmԩ165SPd)`ko cZJOx.'ޓͶ%XY>l'5 k>{pڬy,|̒llwySưcjTGw.z2=WxRt|K; WVxY&8_ῶ7\ @2 Տ'q6Ǐ:6 mQ[%k,چտM 3O6Ynfoog~K?|rbw()kevd1d Fi/^5NiR# .ǃױX5v-3۰R@)vޔ 7 D;Spwŀ{ܩA|c}.5◐Ǟ-儦eKlbkx8rwm~FmiȘ7ZgR..o:&E_5n-[exT&w72뎉8g3))6D^LY”k61WQ?IrkyD,؝, S$x (ُg61ƮU ˄#thSPa`8(L?Uvjr XqkLr}`Wlzx2>6d@Q™m#BXy!EEJ MeZq" S߱yNMm 3[[3y%n wQ1FHUڠحͶ5@.#%2*,/SmC8^xZsmPnV2>2^)2c kKR](O=gh?9*s231e 8m¬?݌h~QHNm3E }:3& #cmFt2s > M|˓7Gd}"3՝k6Ȏ zc1(R/|(Q{TSdCM)L2UNݨAW}YL%x;8t@:C,ʌ`jX/Ƀ tLzA!l F*=$NAݑahm p`{Px_\o :}F!8i֞\A5u.R1OؕJ}sޡj)k{)oYm~BN9.5^Gs'dx_Ό,c,Eà|Ѝ2 ?jpJlOhܼxY5нjfT֗6kvRwN7=^d٨Β^~ogwx{hqj!9/먾̹O>w-Gz]5jl}ɑ5f*sṇ͐W$/lYr(;ڟHx~ў*ls~~nx1xW?|,m1<,O4AK%lw˂wѣAxZz}'T e|c­{/]}{T\G2,e}>J޴/=jwaDQ4ѧXkOPCI=Wv2iO4AeP`%0Dz'bv\ ܚ1E)r;2yHAË $dedA d?1M*{AF,p ,z/9'8J)DxzTq|H_X{?K^\?mQ<t~d,/\jjV_eykXK_k-HE>M{#8'k8գ TeZoO6#ڳ-*o:J'E~܃]uX/^}1w*SMG?jÕ 7ֱl`hToAh`FL<[UgUU.ݞllzR[~#gd}F]NZ'+帱6*XNvy5>~}WО/h"M\Js0)U?!Xٽު`…䏀NWH ϼGLB xue7oz?ٟ6E;<{xl.{ddnm>/^{kϧ30GhqS x l\_ubux`a;dGeX[q;{?c9fkkz\v nuoydw^˿얥Cw*.Wty)?>vݲt:78o ,+;&-Etz~{f 4{84Ng6~UCե-τ>?(˲dN|nYî*QjDGo9~OoO.~_~{&o TFƇf 30g=ټ%=pr Oy,.FZ y5b Ys/Qu  E "\+fd0 ]WЀ?oaTQY;`!iF%4}ّ: |L TgMp(mb;ַaGO .fk=#ό 6H NvWe(~ό'3q׿d2mS(Zv"]C" j#o}^NaDXdw 46<?J8(\h} K*ӏm z+oh|gflFbrLքJ'5f߆7k [SW pxm+x.x&]*?c;ӡ.S 2s:sHM"(][8/ |x8.]EU I=&7\p2E+A^Nn -j{b|e 4Sf&\`CAz^YH>{3ν U6[( g2 dƀ^Z^ (F'ŗI52JoIۭRo<3S.W>?B12O[a&&s@떢gEj^"<f@ea1'{N/`c7R$ˆl=r(@D.ȞxkK<#32 7i2X,Xzx%-4]81^қc{u+[c_ōIQ6ַcIjAd1f0,s΃MLƷK橛lTA?5Ɠ魺 D~vK*g>Ƞ!@@~q+@!/<$n58TvH g{F9}g{ԴOBGm%8v^6]NgLcXPҞ);g#iuw~E Ƅ~:uQUmꙐ}dpc~/*e}}<߫ V}]`レ.+MeuR}?`k ژ Ns2:nƻչ _Ը|'m_鵛f\'3d8яᶷ_>?c̷K6*\ }ʃwP W؛xˠPȑiM[h;A^[pMk\ o8:)7rPZNKz~kuz՗l_e9T7ǥ5}`)_*F~i)Vƾ;~ q.]/-5c>lڟN7lL.c`D3v_n,V]ٛ%߉/ 47rV/TYKaq3} 1ϵ-kIܖ /9e0et|ad57LerN0S?u1pdk nH6_;#XDlv$OlXp葢B ƴz k~ϿO%sx`F8-*BnL-Q(~1loި&aFþrIFmWB~.O(ƨSw/NAT SUzET)d* 8pappn%"|`&whT/:| t (D(lf0P,{΀08_+ƙ=ROQ,W-‹$b'M_1}EY^X >nHPϺoWw6ڔUg0I#M8qs|[3U?(͛u'ة+x^GV m:CK}RQ}At.~0FX5Q5׺2#xV;FM }m˫7JiR2%8uhoL^$a;|)8뜺)IrhH~IO > ptsB'#[S}C4ɭѶf?~}ve.0p&Wz7 s Pu/tKH?pFa>ǰ£qANM ^ԗ$2B5W!xNvGϦs~ [V}qHN)A`?Vy}QX{6{iCp[j9_Q .KZGfIYe/ovL_AMi_}h[?~hB@齜UGߦwu&0*^ нoafyq';eD>?Th8:8L8H{~4s֟[zIG6oI"| G b::i_?8\xse OG(#sM8%DjJ'_AIN6ݍ1i~=!e#]ƞòȧ9JۂDcpXz1bƚOheC@Kl8}o(Ip,AutN/h Tr,eEf<:Tfr[tn"]@Ύ,92eru.~<3,]S~xM<(Dƃ~ѕI"NO!xtAÔqߪGk2MnJwv]`Zk^靺6s;,ʹ'+j[+_= BH?f\|.YcvmΨKf920`h`$;m(N\߇x;d\lL7= /oEKϛ9zB[V[ݝ! h5x&hq3ϧJN@lA;r]x|^n^,O=w?.u3 ,n%9hS aX#a}|tsGNPL,]gR}qܫ:vfKndq=DwNSf̫_AqHKD«KeWz$CK:/nӒ>~󼱼=pnk L{4'x<\諠6ĞlpDQ ?LNc6Co4fzujf-y?~Fl9?wmhz=V>ccKnX 14+b)о *}z9ZSxQNsl}έPm,xA076iAAλm#`kP^#Np aHtRmr(>B 6TPq,S\}N(:)0 K\T e`KdƤ 8W3 ?}UJ 9Im,#b/i|SC> 9~[jY63p4AGg`nGgX[,>xc<`InSD|`(i :u` &.i3dS](^lV`q)  vw3/EZ@T`4Ke_5i`rP&0P2֌0wE(΂u}瘠 *k,p_oqO&vbAeh{DZtWk q7n%z fE}Y7ؠݮv5%3g8s 4$ǂ'~,Cy]l2dYK+fDd8뽜XƫM zrtӋ\gvAZN54'?5՜߿n62̫џw߃ŧ(uGvp1$̌|2ͷߗz2]ݷ\mwfGExf{ݢe*p8ЯoZn`˿=Ιo= p(ntdAajϿ,Z.á*9@[6{*4;㝸E 8O'1Xj ή]ヘӍf/eYw 6oKuB[w4>;hb*52$^ԔJ>QCFTaea8kzϜB79z~ӗp2_<1S:4qًzÞܓ侗U8{+ߟ w.ao-ojO,2sz@Kr[Q/ |>VtGԡB-@[6;P#9kcd#iMe_ۋտ[x7͈9M#Y~h|샢 N{'C"ͳ}5gJgn=~AGaoS2[Tt38D(1r=@{<;rmڲOCu(Wj^ƋGc#g?l~*Mxw?x?pUx&Bƴ+e6R8Ϥۣ&Ga3:DdKw.[Jz8ڻ&Kda_#JpL8&nԛ>RƦ7Yя?Iِv[^<=߾-F~ZŽ$S@B>I.e4:&Q%SE/Ɏ.G]p&- H':퟾ӦbMyc(Ul?57m)Kw3E07d;xm3*t(sۺ:3}ʮw kSuWCRVE9 \OD uˬ'f.L+٬Im{L9M3T1c 1ݜꪓۈ:I0sD'' Ed4hDZN2bR9o)1SF[*&@kmBhxmV\ 6Ózl~"_z@#`'l'>! 3pg7FfH%tjA``ۢ])܊~f;N!a4q-eSVzOC,oo_q/C ˂}#a;Gi30A7r<_8WWF9E1`Û9%K>Å9֥X q(EX ~ ]z#H9)ڕU!z=h:V6ѯǝc4tcɡбx'mR 4Dn=vS`foK>?@GS,Ha0^ oG[ /)W_K`b_O@ŝOs?n3:GIYכe= e35O& GKu tݩlO?΁}kmm=dMn]4>meÏ1[VēkIf#n}˯:ݣfr2X[b{R 'K?oI6IȞS`@#{\.̘2f*n3 }lڷ5a *V,f<ķ>xĘKm>w]'_0p =:?G1 9Sƣ@)}?\E?(HU[Kx9!Yltt9C~=L~NzK }ʃ3:%Ҙ:ɜ'fe@X=1_(2yAAfxBpa|&hwÏ؎mL|`CQ# f j |G^9.$t٘4Cp%P,)(N9ݐ"oUwtx f-::/0uY=' 1G5X>O[[jP=KC5*:쀾5=|I{hԶw|MNя2Z-Wю&2:ƣ oҎz]PV v # }(1\@$}X1:uϿ) `~x/?v|'.;Jz-shUz>;Ot>bV>Y]Wk*ɣP62_i"PKz}C 8X9iZ抆tLӾeo/ck66N1 T|s\ssHէ2J 0^4Ρ_66+-#?@!@/o>gBi${w{;q>j$A/~\E8/dp tQOhzNvk+lw $[N]&OeԂ1T791b>{$J2/?_.dY~#O'dH'eQPRG:uER 8T^u,XoMS(2E\OzLZWEԼh36 Nn Jkne0C0j f3mă_p8 ߫5;~X'<@T]0Lxb/@q->7cPݯ×uCUh1i91N!f4qq)>nS; 5`%מ8D* vY|¹ֳjmK|2% VgS1UZ0gR8\pҁ1C8L+eI0qĺwslW9O/𫖍U GkO <6V쳏~{ʽ /N sbsg jd1lu / *w}_赘ntmK޵ 7x(8N`acZqlM/GǦ@*.AG'=?l''qO9fs33ad]E/63+8Qs8W|!D/r4l8O&i|0:(FZ E=*!kh7a6VKdAVƽ=1 lE.xF/cjD4=2pK?{2. ^[g|֏ { n}?ԭͪItK{=!pLO zXʝ_mK;A`_u6kxu򀾢jff78TW;Pkt5J'FJo<]tO/\}L P#E^CƛxІax/{acES6x y'Nf*[&mPWOͿ_,UJ)KQ1xe;NK7fQ 5y@F =;% ~Xsf乛<ؿ7|yjۃ)}vv rt 'E/Fe0qf!]~g+ DL>qvMA`_aornĜG{L6J?V? mmbWdzmLq<77TUc##T_rmςq1UT:ny@ø&]G_{jmNOQlyuުoѝLlYKVU- Xd<ؼz6況;1vlДv/8ʿ}.%߈d:5Ή|/!=nM\,R`ː9=<.tpZM)?~?e5^`P ڲiΛR)zbq&v);Zq ΅ʽlZdRFАjĪfwAm# ^'{Gx$a(|s1"d)B MK|JlpΘڧy3qs*H&}ʺjR<E @6K&!\T03`|"o"VzàL8uZh#gKnE 1V}%"| "|_#;jgtmW:7FMضBw̶Mުq3)^3[^9!g^+4&vSt[%)3;SVljn} N˨ytpGQXomBsy``3LMS"V#İAT&Z6@T)̌QAiO1@0>(%-?\eLHVw]+ؼO:FEfR'U@jeeo$,kɘQFoՑK:cB?8#K \<3MFz}ΔYmCAFI/!ofXu`q$_mƠT`0) vOpk5p2j0KHd r $t=8z 1яJ>Wp368|>kv˧q}/=ţ>_^ևw>̐9޹ Ӓ3z#gl:%!Aep䞗ed'Ifo7/j;cV H N0 fK{7Wm6ߩ~Ao/j?kttxCL`/;_Z~Ne@x;ed$wѳ~6 ^g<]'lfGgc` 5IߙY^4^ >O @XjM_-Q;ϒF-? ~;z&>g5ff qFOx,˂nx#(g.?P6FwpgSAhXz f>7? Vcbxn6Ӟ8܃ځg<=g-[E9@:3pQZ7a\W>v7X&7=N^o?6`N= 0w<4nOR*xI5EwJ~~0gq#ߡze#|{u5ә 46ih(ۘWd)vlMbO_?i,~QM~q!0qК.J":#IWFP(Ie5pBD_Nq\ %W1^ތw!ju{}o [N+\qьtiS?v-Z~\QWƋeN!np:'؀3|9T3o~[_^̞1F+!fL(R]68ϔ|C'Ν3`e/ fӳWY28WNP  DŽ,RZ j/7еlxPAZ+M 56@8]G=":3k5ֶR]xgJNQɌmP;|=yЏG7vIs5<·F%ϜPhkPZw XX#*.gYR@N/td,lI<ΨqXRz${F#` _$e;\.z5y6sF`D7-Cpg0ڝK+ z`L?I&/lY \q&W18oD{]̬ڸՆ}fd `-JIZ&Nyu_uhv9m7 D/˨/>ݒgsluX7҇?>~߇6@f.4"LK'#OIOߑe1Nw_<|7Q;�{?h/g/~"`PKt0ĘW~? n~?_r{iG=q{7`·ȼc=f=pO <<9j/52z8"BGe'LGtŷƸ]/'ºUFcܺ>N:rƹmN(8F$[Ҍo'fŗNȿ3CO:š3egNhОkߖeugP}pyq, e#>.MNo\r1D^tOult4w19 9tW^ۻC*'n,mxٻt (Y8^Ҩ}_F ͟ns2X܏< 7%ܻo3sAB}}ҙ^R-T>7 s*:K5[3azOe.Y-}SV<3"Н+X{ƲS!.+1h1~9N9HUZ}{G욞Cx;6M}dVwU-:n[1Q?Kt~V~i\)wwդC\kSp}Q_5puOݏK4v?՟%Zo v88b:"y<ia8mµ&+IX@7e{v0 }xc+Wagx)@IDAT~@tn,ҧE}{[amA .~$,UJFt\ϧ{5lQg ^VG`omލW6"96ƒ hW<֘0DBPe(,Us-6Xg&Ynu WJe]YV_eĪ.:\Ƥß'@ D1 w\h3`S%̪r]#ikϓ34*%ӳc @AZ}_gt$^{Lw kLX2M8Ghvkc?Gˀ1T}B+bc`a!Q9̳[/~/.//^&U ѼϺ׀c@Yru)S>h =XQStp"fkiDȉC.Naju?S i@!WN)+1)˶Z˰L.^Jhm]?aa~{5݇3ůK #).,BϘ(P׾٤OQSGbrt9)huCE<ڦYD箿ŦbS=`4K6(~ nF"SA%?^;0it} &cAl+e5C+D`}C+} |8z$z/0{Qw=^;*g9)GwB5xy, ZT]b_7meuV`Jbn@< [[1)S"d&$fvlgpL  7ucd 6oF>CR6vmѸ9=R?GJ ?mJ}?ʺLlowK Yp<;FO3ioj˘*}A [ñTk0U\:~sDg\ϛu~Q:?D׷\ѿfmqk9xL (Ʈp M"zH9qA x?mKL*ueifm0|n3v@ QBeVW~_S:w߽Z!<\L g_/B4߈0cp΃gluA_}]Fj%Ѡ?IpΊ[ ]#rGޘ`i$|fyvg˟'^4 ϾG鷷0]ʓ' } ٰ_0}UݖYtqK+&:T|N79{Dٌ MnVozi] hfj @u\0x"`ב׶F/ 2=n.&VSw֟T5Bg+6rZz=I vtL#(h039dL.-ɍ4γ8uN_~~-YӿPxclzO\6qoxQWNuzj#X#ؤ=C彨_3xcZDN1Sʮ/W|CIO6nS؍ JR=M]&jpS×rW'A_wtvtKtczqt/z:h5|6ۂ{ʦ#-P'%\ &o'~:ƭlxjK=E]P4GH>垺. [c}Dfkx7 6͙eQK?b/ǯȓR`a=BfrqT-+{aOLmp-̊o ˏ&g% K73plpglK]Ѯ=lT9gi%t[Zkf5jpL(zq V} q h3vYn曋o`^ OkWh)3܆~+Y4Ik?6%n/i%P6^_=:⒦>C3tx^!ۮm*p;Ӄde^1;G6 (t7jv1}&']дKP3 EN +#т$aMhG+G))֦^h 7P+nI}IhvuW\:+?Gި/@G~k4c4OF*xWh UP1rE1"m\N1E :kt\"&0:R9_9u>!~:߃cU~JF~$ diµX';* S[Eq͸ybWxp~qnzƯtTff=L*(H2$Wi/$9K{4#viyFv_M;{(V= }r!9D~Jt|bs{Ψ*Иt> ޓ5C{9R'Z`ay~tmp谇a3ӻimgmA9 0-L}[RA' {9OZ'M݌u=g3dy3r^ǠF"x ]Fmw/8i7~ғȓú}?:,ۢ<,@߷?5w/O~|&>Tii.>v ZF>4PW+^ڌErwZ6MzS? ^܍:A! ~);y335CONQPO y{D7_FPQY8#n)HnRq]hędF^)5G>j 9"H{I-zv%06j^:̮#M 77*mSR 96, E# EI(6~n$Z_ֈpȚÌغtOmp}?i,};*[BcZ 96it }e;Q/¹ @U1`K0n@y NJG^_Bt?]TtQz|C_y)87d4*ݜOW@efW0t"tF}v7@H:̩ 25R}V,NS)7чMHr8V9}PݽY^/DM<` !tpOKG,M2WVcwNfs[e640w-4'X|m5ym(2bB>#Dt58 4.+Nl>SU5-CL]fXFD(7'մ\nJMgӪ[M-mS&NOV^ rN-<;;NK4֡FqAA5r-۞ ]hQ.;cš#ִhC@؈Φ/ws9o^o'6̜F%aFyjsݹm)@88;Ħm6#޹.iN|Dotʽ_ЀߦSHFRޤ_tb >L({#εIg{v1f*8>G_?qΡQoή9g&<}W9ۇh~aQ=A3\_}w՟\/q|gxNwsTYp{p⣎N 7Vh}d|1E+< ,c^`F~7$,w_8aSYbG)&ft? sӯdA.>l?Ze4Osh_-~v5Ӗ&лtgքըÓ&c29vlX(p'Ky?XߑѴ#Βؽ)I%D_FA2lcnLV]֝bQ K0&h}ҟviԭ\;/A?rK:S:G ߿{ ȭR2nѭ_>*u<:wkqv19Q8_!N>->2^s,cV}*r{H4zo0FU4;|u/*dr/)D_eQv{_=KU8LxO `־ ltYt2W Fյ a %r_Wg1XXߠ M X\xN 쒗<>99xX]Vx( w >;uKr`>LƯHJvGG72襝 s9Q0]oh6Ip6\~f=Lcs NἇKk@}ٱo Ov p#oWn5콖ٟ)>CV3 x//UUk[[:XaJt pJ lY-Ĺ?dr7) ?}\'w;oi?ѕݾjGȘ+[Kf;7X۽aftF89> 3X+:]gIOo|W䣛u0xȓ]͚9mlQ֔)>;<*.{K1 :'FXP]'t`@N٪.jz=6 POP>*[FͿ_#Oܰܒ֗enOo}ӹғkO =4 WЦ஛R{ș?$'%}MYZesܦu7 y'Q#V<1x"Rktm1)6F' Ik@PQPk\&,淮t ^Ne U@F6ɇ8cvUrW#ף[%|BzFn luҼVOB=$vLオ&e9tF6p˿ͿEʰ5יo`zb }4 8HZg:̯cZT׾#LQz:8mTUN rd$-y3/1ϰexXfp|D]d=|-pT>kĘک[4_;r j%|1'y^}f^Y^'dTP_vE៝]yl օ9o7j4%vsڧd `QfsCrAF|qdlPe_pS͹pPh23ϰ3lvA{"${߷O V߽ﭯ2;H ʄ (qK<6@ 1R!7z+>6C=CǓ K2[v:qf 6L }O 4`Uo0FV]e!Sʓ<Wl1JD4_uci"8͠A 3 !0tΉ@XuΝ).t;-R'pxfof6 2~)|e>Sb8opX9SRK#l0E1~/)ZX=^;]_ hc_/Oq\:pqH6"EG`ܷڥKVʬ['BzOcO::׽WYxcIrgNj^~ 1)ihx ҲG{SDs|W[\sJ9'-] >Owqw%ŝpP?v}Jzl7q|A_p/t;N)2"X*Nsex‚Ub]JO>*r]:ƍ0=// >lt@ఽ#؂䠊}TjZ kN6>:xb 7= 'iƉ5vAR,%=)Re 7hՙ#گ[Q=w:U޻Jfo)lA4Ӵ`G*4|~ ܀ٯ5.}GvЯc M7Ց hsJ׀8+ ڥݍNA{MKPJ \/\YaUy0V8|iDS\dfӆt͟쭙2>G* _@0}1U~F~_o.oo"W>1:f,l8J}SW(ڬ>o "|b S=JA)@8ѼV7*ЅPknp+#@c)ʥvM@qÅY!gir9"aM16pXOg웦NK=saWuF֜Ee|:kms!µPlD4s"BclaRƣm06F1gYX)3 ЯZOj6A+&Qn(W(LsDY;ά _8v|eD{*fi0a= ]LJ6 X儙| xA}*;r:MgF^ 9Nb49Fptj {5c ¦x\w>ǘ&":h.A X6Ha3ioȇx aSo/~lE$4sWZx爣 kcḬ~2xݧݮ.ە,u9J[` ]e݃&cγ>\ڱ`c ]k赚D 7zhB@־hz9$WkGd`zv mxFͼws|a\9)0W/^+QM k=Po6G|.9w "gӁ >jTEoxOrf:M8;VX9rѴAξ]wm>gMN|h8bTrj6׹~Xiӂ|_|ŗ}uӿUp7!Aha#Gw-[_\|7sJ'+t4ZN]ovJao0}3 |f mF%WYne Ƀ$xs~Lf|IA  A:݋\xL]% +>n}>CNQ:a±vz 0hUL|3НW 9她p 4q|uf7CJ6gi4ܧ.>V|W0/}E9 &寠0N1 ]l|Y`Β6(.*(+)gU} nTD9RWt ?eZp_hQ7: S6"?0ϱL;'_ڶG38r X$V@:m `7  jl99&J;!dv-=c%M/pJXF{5ڜkkrA8M,\&,?*O~L9l9XBTs|61W[z0+Zx٭mVM϶2ko]i}µY m +ST@Љl*NC/,6vſns,K H-:qdF_a?&cl#x-e*A KU$;&(n9;/u?wDo~?m-zPਖ਼4E_"*nmNj*Ipx;v]P]9p7^7 潬OXӿ\^ZrrܛdOtzQ9bV~.01z)%d0N j+e[ kz  ht~(ݺJS85<Yأb .y`ӂ#PU<+]F4q-n|"a8k2NgA x*"SoTV s9GPpP$Lf۳=@%~P}JadlMge1<6PsbӁ G1`3+Ψ eu ?8t*#Iu1({IpH8P#Xd`1u~F]\od΅sY^ͷEp2P[4j*Du9x­;6Q# cxڦ_+_xcGOd2WHяM 7r8l*Ӳޕ3t禡 ID!(U"ʶ0ȳF% oCK| zx"+V 5pP9h^[Ѧ3E/9WvL~۟WVYL}NCdQ?fg iipi_qeCg@^㇔wCY˯2n9XA1O-8)~mg[>M rʇf>5KgzqFq C#(gT{<ΉWZTwm{YH6ˡ&/ss&w)[Cw+MA69trޝ`Wߤ#f ۩ ho`OZRKư95BMv-c1|=l>.@a^o3>~Sfk<-(udW: ŜydNt8.Gwף.lq< tG>\SM?#Jh|wA?}{xS28@YyWU_x6fS~Oajgy\[A"Oƕ7&eڨ=N>Wp0?O/~_|)4ҙ_4,kAT2n$nu^l[!iP'@7\Kw7G޾5B?yp⛂.XUmXW;/X6 6I,D5e29=/M[mCe z{A8B)`*O?Wn:~ 4\ ?p.mB{y*GW֜ل4~ ^V3:5*>jz4<"2<ÛuXû_sFh6noUo׿˶{Y?qPUIVՈ 6%~ǔ|t@3ధXEyIH7E}SKlں|Y`sTP G𬓦(5 cx=RPP& n@]ə戬s a,rWQ|1TF;5F̱یl*<ɳHYڎҜup`|)M g7$1t3S;1  &kr RQלٚxz|x,X .|s'XBF:wpX"(oWʴ 9sM/1ç`r:Lv΅4իN WM20c?h3;Ò5HM'S9=S- 3 (%v.=:B-!sV}x/DMwl0Sotb3]I^=Y}Vruσl߶T$e7#'֒T0ef9Ykϓ)?jøXmMz;W[6Sl gm_mz /om}A&tX+uu(dM?MmϟFAxxϾs6~gD4aچ _կ.~qTI%|}ƅQ7*z?G*Q#*mfEz 9Ϲ}Ҭ/_ݿLfmۃfV*>~/n99#Rt|F߃}!Z!p-+v((OK&Wp2K5cϾ<&}MWdWcJ(>GZLNMnPxLm$3ENl ,H62e){#\ 3O fm#P{}|sM֧l +ݰ55N/ 4N%!UFG× vƨy9%rSȞ>Qn6A ã~ 'SxӒ$[ ~Kic\UG!t!'1Łi =zAڤ򬰾^ NJG]9'XOgFT~:ʎ 1#\yl6җtM˲H.#cO-g2 y߻خK~4_6).]% Qs\.m8%k/ԫl6rl~<+yu6o܁YvkDrǟ;u*F()ҟiwv2or@Aзd ~I |;mUJIHL`lVk䜽ymǢh^Ja){ R-7Q3w\[H#']w{59&bl7 n료8nT图]E-VGyޣ I)Spɏ׼rp{3 2 <Ͻp=#='׮t#+(t!WFWH^i4] OR~[!xWߕU7y.ʟ/4zVtl_4#{ͽ. *lztة+IwNw?Q^[8oӤ%^w7aA_6[hTovfӴ,:xj!FU@F g&C(.E8%(gd#搭;=S1DPTo\u8Zh7=pLR0Sxʰ):Teh"R#bU8 Ս smnp;/*/%vvn Ƅ|Ar!/BӽnӒ xiZ!Վ *ڲؒiieĵO;9J@ELX€)Q?JTFmЉV)&UE$g UՖmDvFxj`lJ;{'hWi *oA6+,_Hr7q|ex|NNި[?8'Ҽw/q#9Z~GM3p/NF>w;gnOs^tAƷNG확V] o`d1O/hiwޏ $djg/M<:`̇>NO긟4ib^B 1~<=l> WrM}}+=L/~yg)z\ S)닟,Ͼţk)$gz}`4Y90 lUol *,93cF3oX6`iL{[K1OaCb_Z_y1>N0 "#j_[{D#{>g69EϲMaܖJwi1|@C% ^WSe)-k׾ 澢k'S#O[_z:k]"GdQ啿u.Y !#4~@OHl ^#pOé*xj0|a]u]~t^S ߰x>.]1ކ S.q$O%X.5UD\Tv[d1gGs*Mxpӵt6'N]4sÂ)pľ.2|J~zc좟\l;2詴oz"؉?ӟ_jڟi}4>4 Onw2Ny^6_e}N][i+iC4*7Ejۋ+nka#d$r9</Cyl_rg?mzCWAd{ޟ7˷odϥ׻ʹJcoJ4NVNF٬Xsy'Y/PeLG~z8|/sAA IX};a3!r@;@9{KT/]3۹lsWPl2g |Te^굲K N!J7U_J(b "۷L4w;S&3Ikσ틀ʊ > u*[}i⛄{%؊:L__gYtwf<׮*߾pg/]Ƴ]Do{ftC+kVjԡZ!G9B&n6,#wbiu>L-+gXlj@iSš+v1]pQ8BA.cjAy h69Cflۜ0pz2)V鵜fbeċAj:Z現=lj{Idq/!׎3} )&0[ʻStUh@IDAT(*okO V>x7r6OO*?|٭ݬS7s{RR2Hh-R1SSgq4Uދ"7㺝/m ''>wM`h W|C8 v}Sr96"^jn6ˈo=SPmDv ,QJ)aFF% VPu7Mf2_6ᔾj:A;vSDck/m8wx1Z? r_m_LK.9޶YU6'xYv!*^7k3wt~?!o[kh;C$IvYɪ7Ҥ1gd2z<-wQ>2(Rz7ܩPݾwAc2 ̝U/ա`&WNk7pٱ]ϣϽV{߳dĮwsdYhC)g63rDyHDySfqߏsT?_׹؛EϾⷿd?߾ >lz;wsȯ8`]Kvj-ٹ!Yte7ߎޱ6?c03θވ{(mBg?j.>٭=.s/=iZ2Ama4?_u ` Y#f'ooŷ9ƜhdFy3 Avxl?N =N:9;QË[+(<{ߎp閗;^/uOO_ n}-ڑs xH^:sV"F8;F;)6"> E9x71я՗DiҾnwS[ێ\]t:bt:IR{H3kϛ'_h0;5:0b#oZ9.x-h:E?x9ʜMmC-~i]+mz)t6'gC6U!6<--C'qc6u6Z[ J,NЦ"ϨZ[vԳќp,ae+W4}8^L/zx#Q/S_\VcI5Qq8JS])wu֡ЅȘ28Pmn41\-lQja7yPDžMunwHz&zlӹ|gDZy{^[0n)׏#L=</s{`GC\9kZmQ*^&#Qཏ?'q1Nj@Ƿ ֥38(y[0yrTԧ2BLvu|Q׮Mc0侀 =9>? YY&]tX#H2`Nj|H6Y#˃?:q_ Nax ;ʹA,>uu= ^pJa54_C_9LmIr:eH$x]t1[E(} )p/N Uĩ^7c.+6vqBnpl`wt,G~_+jYHJojx{^(G7'NE=`K?6| |LDg3 ^_VjP~vwNj?O(ڝ"vgc{T}ˇ`l߿>]NG^LD,Ga #U=2fd$8 4׫)EE2v1|SޤP 0_!Fd# OGD"vΕ] ňa?\ًs$M"y{>Ԏwr_^[T&`{~'<`)Lju YkԧPZM30Lv2ES=ϗ`ЈX[Q6G7:Rոro4WTR:S` ;]Ghz~3UX:1Qe7oT2"@|:#6Bj vUahkԭ/d}7ԑTkoCdm"aepWLO~z|v<éf;ǔ{ '+xBטec?;2g.? 5H{ajRAie SOM{<1K JDkL`>Y6 oA䑞!t_7JfZ$/kvD;Kh0l#צ?KRex|r\[2Axf0Vdz:Θ#H2M Ï%=O:^V%@\9DHj3lR0;p'Nٰ_ }+])Dz;KT~YUg7ݢi]^6}em>(q̢{6X %vqL&,}-t@ϔ`^1i7Y^ti..b$WmyItެ\}p8T LYN dx 6SogG+{-VaxKt7 :~>o^w~i#{A zWҾyj}SwڋB tTpwDdhRjejQ4@Deid.ZLU9iN:ti{zn>xL S55=5j8)=C)`$@ecZtjo*"'&@w0s^0nJzHMFUC6]ZDQUbU|TQΊ׵N m0ޙ~yڣґf(h-)+9~K*u;qmp'"b)HS-δ[~ՍwAFqv.λhs2xgnds_ . dV8KG|E hw hbZ[QF@S z3o'̨aMzcf~toȟ/]0ݨ.d.mئ+߷2p~_?jCɈMus0ӿ#] C቙5 p< ;A{,l=}0 !fZpAD<[g^=y嗢l ʨ}]0B2O@W_&͓ptr}h,<=kw{7]; G}~Ƈ8tOSFTW Cf݂ t)'zN+^Qr J0+C0d}'_* 8U+sp\Q~cT(GWWa}6>1'h=xG=-^w/@#JK7[_/!{f ;-s Ǯp K:坂Nq< X^=N(n5cwݯ;Ҹe ' z85Xm~)j Jֽ'sK'=bp[y3,_A!O_#['2*Y`'1`?$] Zr|t)}yBk{G/hw ]{#pygjv{O)BPN?ɺ9%oC٥j_jʹƷa-=sS Lu<#=42ٗ RXhm˕hjn7p sEl#!cN?B <&|u9R4|'Sʹf*H^7ewvFCe8qa~. Q8Dj605w.M,M,˵6EG7Ev{%2-ڔmhgd:᫴ u(04_QզNUM;n#@m6EĽ:sF6B3HV5eh߷4i^P53:KWrԵ`] ~geH/FzCNGjx:0(z# 3Y;0yJ|/NƌR#,ٲ$5zn-*2& U6k4oJGrA cdWWهwv(C7٨h{3mz`a67s"xmzQmJw6ʻQϥ}^PaH{ o6լuu~f`i9">d!0%׍X?k囜 6 ̀12mV'[sd:jvg>pk5:#HJb[e;CN0XNO8(0<&ww /^0K+C2̨"o6SB(x@-sU ?zF|Pzzi{屳Еɕ`:Ƈ9<;_.X1d]#F}ѱR= g$*_Db*] gvv#F^|ei&'/\|^zQ9Sv޷-zS}AY3^g8md?fj;ɮ-jP]ԨQCCIs7vTi_}@^W 7H)uƌRDH"Uz-#Fl:m(4?^gmXɽ\_KPc̆J>NwɶoϖTų4^,]L' ڔB2:- wpɇL˖>o^}͖f[T+ ×z?u.cmn6d 8(btg6CX1"!ĕP2視IU?аӡ K+? Ml:W>  l:{m N9!< ZR ӳhL+8Q WSYwp"c0f64# 4W>cJrf pn L#62.)#Z4㈯$b:GMLQ1ڙ.*_㹷EM!qK,|QA;)}Qڢ=FY)Dp:!A2ykO0nc׭ _N{zN^f8RykkpG^mK .cMW<{?k[ING@ TzK^ent]xאּJt#؟N'%dJY9X;a:I}hN֍f"b5[_>;8(3 yxax@.g:-ExSݺ(]wEM42}M{~xGgUOa.3MonoϪH/^QG(]8v#D/)s?mjY(6Mo[kWM%~oޏM`sG* r$9IK}rX/?[O>Ic?3f^mi=/_٣M:Zn{wս}Uڞ9n6d<<(X%2@X$l߇zp6.2zmo~vgq)\_~%uD/h ~gfpf݌N Nj*S5ߖ(O%Jz~ x*XmQTչxJ bU8盽 F8@AW0iJ CD)V d)CZJ2$Pk8!pmףu8%g3+Į6#fh/(`u{wnJQzWvoşDɏyr]3~NjϿkvZ^ %$ v"[jc\sO\rt_i;]UPf̟n.8PC&~Œq,'3ʷXEbƒcT+o=ߕK 7ʼn0 f%^62 1"8T#ۦ i3d#D1!aNE~GSf{ Fw`MM _FT l$̈́*S A!Pb42x:Če.;[V7ig?\hWA,o$FO3Gv{.XMŃ7hm甃ݠ\t^ҌҗzV8u<+hvF[V‘VakuЦ'& ,KPWfò)%j:qNޕ4*Ô?R$rmm7L}t) FL㬗NȖR@֢ݳ-OdSƣ X.t XUaX_8#<{/"[+x~Sg$N.ʖx]u'sE懲ꉰw86rV y\`iHN]y8|ZYfD^a> o~NYgnڭn܍-h$ N0_~yZ^NJ_oM1vxG+M(HvHOe|nng;O׎eןe0WG~h{N?t*c jZkɀ6~~12hr? l#.ީڸYvNSϓӛ%N3wۜ똯{z wguf|RJpO$/ZzԈ{ೂ{Orb0ƻ>j Ń/~f`ގf4p9?4`ג*|FV3@ܻO?o/ _;S UAU#}U=~P}bjzZoԦX& ?.5f=ک9H M魏f(oVPwlӻl;߇ sRք047j>Ҳ6GT^AMAU/ͺ#/;} NOzDZs~'_ǂ;_PU>E"^!gx*S~m"A?N%쪫 nj&(J'ݧnF{AӶ~s"u(v gt9JVQQB@+ H_Vzz3r=$4W6i+Ī+hB96Z7j%rkJ:"(Kկ]U<}kSyi4]Ƒ:]@/CsꁏҪYY:뼄MFFOT,;n; `z }ךX{k}`xkzo~BZF˓>4~ܧfm3it?n>fԏm)q_p/f̣ jE@6 quf]@CJSNN]1)0G.- }c*Xɣt~ׯɣjΠKNyGԏ3Kdo8fVxWf˽GU؟4qgԷr]M?-0W_Hpv^߅?4QkE T57a\&3tD?6 l/E=bEJl|<7|2|*I&{"Fh"epqӄ$$ủlR"GE):?x1aoSF )H'1MeX5"Q Bit*X2_wB'z8CTv Y1A8D2N$c)Iell"$Y W 57ӏ+cCȻ8la)h*~pmD&!ձV0K^T_4%d2;NcEHP] `^6UDRt5)jC ^buhqiʹBVLտQsrʧ7nJaŗ{ avyBAs:q |BNpלǥ]x=h >nڋX4XKp06:ޱK,c bЯvж[o+v$ Q^hp1.NI`#ɫY:a<䒚~_4Dfs.ܪ3ޯ dD0W?#EIh>eKe$ ΕRcdh2#H2/pr#]&k~,׍O *}2-,G\[P-?z^)&1è6 KoyegD=WFn?lCw@%OUO?y?Q[>~m@j:9~f-w;SkMV?ͰrY`= G/MG\IByy×= s^~1/O֠XYmtݦOK?r%ÕN"t{|YR6PwRAU7XZ^! qN}wmÿmy3 u L5wӆoo?|l>l`HmX_~f\l.h~^Klð?ӜAt]DD}_icCIqo~O)2yl>F9o{/֐ӽv GY[^1REw+$~#T!/gfCac3nhOF cN3Gy\NRn[{5eQQ[*gz2#+GtYoIg"p Ҙm @^*P K oAyvM}l}Fۚ*VI -K lxeeHQu̒$W-b\3F[3@;Feui]|/m *oFF8ڏW}^|\h@F+uW6b@7%Kc쒁?S.?..:ð偬xNByJ3{ZWz<"֦RJGVWB|CR3B+>xyyI0 Fʱle9K?Xݕ:{=?<6xԠo TI@./??9/λ7}ɾOI&y|h6},KRm:m%3*xFلWm{ lo 6, ?2j$SѮlS M;BhG ޲t  6)cB@j=GS/~9h~B|=\{n SОr '#mO!,%ق_qWSOS>:!3h|{"2\ߞ?d(zuS>Jf|㏮TKcXFlLV3.# qK{Lg5*ۥl_ .h~@4u{O:e ^̬ 8jóݎtݔt8rEi~9gG}ʛM p#)dn5jLn=γs^7ݦӭ;w ӣ7갶/6Eiezvz\-98=HsÏ%[OrlZ7׏MyQKf#${Plgi38HEGzA>ǀ|t.xNw-Gv-%ewcNӦ˩!,!ؗ8Ux6:?;jj3~O1Q3~ăw35R["Ηv+\xY`y=yc[yHd1c4yF-`—s}.%zLgojI$X}1昖޵;Fɘ fɆ1+PaGgد^162EG Ѿf#5{bVkIeoÐh-|>0Q}>SLfl JS,YǍ ɶZ?=|s^gz_ l!3D[: ++_4(l9?cAWzN{i!+f0?'Zà $ȳ Tڼ軺Br.!? zfM)@Y8s {]r ]hU쑮=+3ñ{g{֦9Kd@Cbq)=Ϋhx:Q䥺 >{+xW sZ wpG2}+Qs%wl.Ig¯m]'WS@M€n24f>3_e yxJ} gHڵW٣mVm톙okk2\{Ӊ,?~}g ]r0q;iq1&ly>; fzkY=xɪgSVB*I:C h<O?H 0oQnYZ`H^{VS*sv:CFҠ:jT"! d0 =|T JmU!}w#zzuW+R}䙯س}Dw{]`('wvy .mmTxJpǏhӅ^"ûfY6S3~ǯO_~wM3:Y[o }rd%-+d# ޳f]fiׇH6JR@ k(i )无 Ex} G! Naﳻǚp:omEb?:+lQ`E 3@4h\!hM#6u2mFa# -9-U2US(J 7wuQaӦ|z SD0nF1|(Ȣe#BQ -[E̐2z'"qvDLF=^p8 (2)kAwozhuC@+1zX/D|JƋRnIDhӮfl/J9kxL𐴗R{v]V[*st_z4lhsEVBrAe"7r(Ch&`{œJhL>YYGa6!4j S,Ex͜՜Փ\i 9r-D9L,htch+cq^{ @6zF&,zU54Sإk݈Ne9[ɕW$Z3U}ʙ[[2ANLKt EModw^o5ru5CBf ur^Sp/AhV{mlw#S7Z["|W_.om#?tD܋टX'ovǭzY3ML"ʷh.^@IDAT?X,N9xۛ7NpUo=m2YcpV&9c]w;Fh7؟W2Yw)^ l$mAj{gs:"ޕsN .fСrq M_ )]`~&i;FUɒb V@N1GML˱>xsg@4] Gzrq= je^~Te]v^kz* z?x.Lyd ȣ`!wnIXcx}8 5MS~@Bv~7b?.d^<-)@A?z ފ>T:br֏VFpB$|Ap4^ް%si#/bwYW>u#KR38t[$O G@>࿸V<'=Xcϔ5_1txdg8e> Lnk,gY`?a6Kģ*Is~l=+ͺ^vMuakߣ/wO/Ŝt<͚-&͒ٞq2Tk>jݳ#?q|{fLi8ʹ`*/{QQ1=Szό,$HРR{'*4&NˡiYyHUq4MA&kA0$PFI& I;gs4?u4#OdrBlG|t6 z-&5C {Jz9Ii .HPe@m̅HdeWUu3!Kװ]𭳧X`2ձ K TkˉSMdۍ<3:Zi6+L>FӔ0uy0:}>_Ǘ^Ckq>Ӕ~6b2MՎߴdIU~;l76hfm%G]iԱc[Qku{uI'wdq24brsy=GYƮ6۾qљ0-M=/ddsmwv6A/_}wsx2=yhGj략 1rkNZQ_G}ӱ7F1C+pl_~sr`ߗnoM;I&y%l/]I^g-2}&o`vѵ`֩G:lĸ7}Ësx/zsL{[q40?Ncv.85د 'T+g@% tSUS4,!fg!d8 Q{Ng[_ZO3wkz3(G"q=S[Ξo/`;J=I%ex5xG4?Vvy,-JO&A~z|zԵT>@ߞH (X!9fRоXAB EG+nuÿI+(:>s`f0ӡ'xt~VEL؆wuf=75l^WnڄFJ+ޣ6|ݛZO|/[ dQ9sbokA0NnhrHA_#,ɮǑAօf i($nRfI܉c*]VpzMn{^>ɶ.u*iLi6f4ㄑ,L-A  W"GUttHlF#z_O!age:tJS?Gڲs6j>!,-ccN2f`@te!oxSd|+CtjPjk Y &mN߷ Zݺ t_u9\wIN65kOHOf3{0Z.ضٗٞ< (@H.#+kf*hQ q>|!A' 9ڔx!+@΄~W1dJ;ÈFWnjjhw@c>ʭ`X::x.Gp8QE^7݈ss*%6ȚzL|9CIa?Lʫn\,OשM(L ,ws8Nh O80d{v))\ڐgÔJN)}k:@7c>+z3Gk:N +UߜHA Aj 6CYcH"]N,CSQzY}Cn1V2N)D<:G ף~lÙMܱVn˦^{Du_!ЀMȖTgDk_.H_9똦C5D238ub{u])N?گ[倃K0_ʗBcHN ^s={:ۭ3[^wt18B~N6 k\o8X5BblM⚾uح-;B㓆Jc[mrwIw߯ïytӏV" 7i!]AGۙ*g?0l`Fbr{Skl7mpN:OO?ovUu_[M=̷5Umct8>;]:S( ptl\Ta["Fi&1}3V(ή3- hgWflQs*m&{G^ȣ]JvMȲg;+\gw>]gLhXѫ\vHW7QϠCpbX $כ).qc"T5ahǵJHݫ3kskPj~[nȫݚ=`IVw>|͒o?w -a -h ,xMzlpȜtd n.v;]c_Iww9;ٳy>G_WVV퍒|6\[yE|뵉ɂܽ_I^MCz]a6ba$ӱ`ϡ灉 UZ;Xeg<=K6wuC0si c}|XHGwJKd,y/|d҅fGck ᴊ2Y??yfN?{˖5K[xv<+lJ6[*%dG2mrjk\fdP!ևҥkt*10!PvhBr KN KL Z:{UbƜ3qB:dIC&`FPyB}u4N1c ޢ)!uιKa(I;# D4g-Gf.87RMM1v}7ص Gu눿x-Tp8 3-IvH W4y@ 9qSHRh4&p('G'@t}ں#!;AP^oL+î/s`eCF 8fI^:Yk(QQ}ɣm^+!sMw~_ςْ*mW?L^i 1@w:!`+ L>r}W.O ) Sz\xݟ{ϸ37}p(%;C]h])QwRvZ>[|\v]RA>zg WAo0^#yӈ5[ wxn#fRdﴢ6Os$dLm_ܵ{οy}Nj',gٸA%Ygb?`nx@Pgagd%|~;4>ApMҟ-R:Ç<)kb"tQog]־C^K῁ C؇Yeh{,+,M>;np S{VyI.FgK r͢OM^r?>./1}ԭszQde{A/!l=,'7h=̔3b#>p"y9~M{T_{_fK^خ/_gP۰{l agk40`e\*:y;waz35,W@Vr6-3|s! $0Xy'3á]m. ":#ޡ9B>' @K :"ؓђִOuU_2ZFE]m:y{i#J Ox>>Ny_*/Ea9"Vgѱ9 Ȧ薃e =RuTW4]|MeMd-܉FA<ʊv $9r*w)hTfM\|gࢾNWjj|6; lY3*uA\:x\XTt1G qkSq9#m U>)yv '__SZCd'/45@lẅ́1B|$Ə׳I JYF?xu(8M^IۉDmt1wި|z;$Og];E7r7ϡ\0+l?kOlz3zchXp#Zlw$C>zdӺKuq)wY :zWeZ x/-Íʷ_Ez.}aF>k}Af,97s(Y}]{q?igO;/yqMdhNKС&7xY&9'[wg'K${MYxz'm8I5znϦ3eo؞{1a'eM0oz8l/óv>(SgA gP6< :~!VnVJ[A=3y.Q-c}C\i*p־2jwl0zۨ}y |}A(bbUZL׹/tΙ@62TAY+ȷц zqcit/O=p[`<;ruWɯ~Hw.7oQKG%mS)prNꪛҬل O / 6'_MNoZ^TkDŽ3/dSMw:S(1ic;u2=3\hZb_;|W=3ͬcjiŸ44}^L];?:y_oW|y:O*?fCMG.:0 ٟ]w\_n3 נ0]p]0,ʘܬcM?E,0p5Xq]d_ 䅍a ֗+c|( \J#M:unj'`E=xF.jFarԚSX 9 $}7Bٟy?>O?Tl%_!~=I~"[AO_B6t,{iP ao!N)cL 5њpV byvng 5ac%>k h[ݓ LitL=!zT0w9!|kaE MF'=VL~-w0ˆ)_wp aLF'J( $ÂM7"w[~LbѸFwWzҳ]°^$r,jkvF":<˃?@v}k< bhfW>a; _]P)|z(P@?|\>(|Lcsd'sӅ^2L$k @OM}EsXgm_5\qumzxMedL!6C֝+1gp\Ԩu֧Oo4)xzoχM!GH`e2oݻ;x6,e::;˲u5FI)h8㭥)ocdF])* vkyu_L#߾sO_gs¯e?h?~|kj}]M윹usb=9}#m9 ΁ u<"y#ˇhqյg?O Ֆﶱc6̣!}6zuL}Kt4VYvY4 ݖc #߻q&ǯ, GnϏْwB,"%*l2;RoڠkNV i+tafece6F*/WW3^ mr3ϵCU6;=+2+/qsylѡ ҐWS 2؅H g*e'_e >,xM4Xy,HoXq݃'r_(A.ygI"%\lϚbe^;X"r-:KbǰOыV'Ȏk/%)D-Y`v5^U/_k凣F$RDN.yUVdK ~hqt=͖: 9厯9b\*Gb>yoՃ6k7 zѡg@E~B80>.Ο~KkwJ;YЉ:XI_^}"xOT]"tJ7}yؠo UPл􍗂wF=Xoo 6[;6gulٛ:cL[yeYzOMMle8= EO7=J7 `;I2?BcţA7Ѓ>]T9 ſ6وٗgO|^W_S zUՅeJ?({uې }~ӯi,({um!p+| J]U=5߳ `yGi'j Qx*T,!G9bwe-@\L`AO+(B*d^m~RbtD5G`Dq]T&0 ш:u:ftѠ\sl0ֈKI͑)R3Qk8&%"1(͡,GO 7#.NyY+ՅYp.KyLoa opO | !Foθ5^;'8*d'r@ЧerxtאSxCdIO]p5-9T1TȮEI0@dl j/` 6*mU=Zbk : 5`Es*%fW5x`@yF6tWy!:-ӳJhUQ,R/,.NfpFC-*kHD<}TQp)2{8!j/ xg?Y䖳<}tet Y_G ̦Q$Aķ|uk~hvC=uB+Dmކ7sv&?{T,rZwtlYơG[ohcsA'&itrn8^Y}mt/>g@?h'uwaU{p8角dݑ_6bF{=9=,`]'\ww^gCGOO_[8|ɛZϫM3E#dɗ ujA7f>t<Fݣ:h9Rt6G7]m}{-S}c(( .Bƚ޺YڄklMcvznqU'\鍦èNq6c1y ݹ'eÍ P-o'}H Uh k9djPٲmK/U]9N3= 3ΝL@'T:qfp}9n ׋÷M Gz2G\+4r4)8 E4@3elyF |_$+WP/ϥ~l&J(˵rGɪ# wQ|LYҕ)<:l@PfO7%Xu\a,=5 M?X݁r"rmFʒem= rL%;GVunf}xgpxj% óU nES=weDA笭Qoſ9zFɖɪ<孰wϕg{OW`~e, LG>?v!O୤\V-TYfR:.W{jj@5 ʪnA_ \Lu3;8Z{t L]mI9ֆ[[Vi_cτ7i`M2N^0̡՗J.h~lڥe[:CP#mOfWM J̨< kH'7y*@PU m$neGy5 ܜUbs!E*{T2Dg&tjF=o6J[' "{u@e@(= < U=1B˨sTjSJǡ`5Bmʅ]z IFgrqstP4Y$PT2R5&xcH0?Cw "]eiT a#]mں9욺ion:X_G`M|f֛J.`Roᚁw:2:ͨA*Ə &1,ЛKu4.]lnc*LF( Tqt6GK$z x8햽t4F%.Pڽ_z#Md ߭(uܨ6j6 fjHx V#ND?8j' Xrd_.EgLGo26>Gؖ۟.–yĘ)HV8OIЉo_]:矄rǣlH3T>xZ^Z=%&myӦce(M=sk8CBlqA>v,w4.G"@!zxtT9@r,qesЇ27U喖HxZpTh fIU]ލϟ[>szX~ zx@aTnKod-YT&G:HoCsic?ġ#v0O*jSJH+=OX_omst&cgVfk m9r2H@Ά^ɉw-JͩHr=C,MFCgA<0MB Z ^x5yy"ֿqڂ>byld/um(=cTERWa!ybF4SLjkFwWPvY=F4r@'@q?=GZ7ZQ9|=p Q6ҽFROx06 p &K(O0dٲZD<}3 肑3p_R%#ㄋw< Aa8 ^ ^Ӝ(n L،]4U޳hԿ79'wQJ j z^獢O؆7:Y"5,m.r6$Pɪwۍο?Z6Gu1y"C6g~7/]?}0{ ˭ZdtWr>h裏>SGֺxYGZNxېOGMGkݩ#}_kB͆| bCqkܯ~~w{jDjlhڈfzD'BP^A"qX> $+9_64s^'Slrj E|Ͷ2Ka{N3Te,PY6. !8dݖTգOhK#{<]fY|D׹G"-,a)&`7zpt@3|&gptv|"ŕ6]2?z5_׋KfkqLKr't&ȥ%qc4`? Āh^4!epgQeDf٪$xL.֖ǟޭ}tA"|pv {"IS˾yK5OvzƗ":L d! d&x%IX4>`ϞKn'_ɾ/y3Շ.! A~'9='ɊV17m'\/]\u+[QhRMj3Szߟ}YOwUhLv>لNcFmɅ=/ >~>|8`=|ޭ6\͌`FmٚT[z=dF8v&$W2I⍐ ObR9FhhlJqY)Lg<"'Φm]d)al^`V09[yhUOþ91ƞRܼiwis(q~顸c,FM{\Q)|׀ ,\7 Y|hyEKؑpY] +IҠMxm` mׯto\e&skQc ;UR|5̐LgQ-ra>ٟC9鞬fƣI0+FJ9E8~Dce?7Bx9KYT~LXFp8CuLuz>m H"Nx 0X(2^!رݔr4ch֠Yu6v-`υMYO%w#_ c:EG)mRa*:lڈ9uvhQ7/rrD5NF"h~;iaPSI-_2q6ݾ)TG~.x`aJn2. +]gFS^#^< |84\tvNZUϣx) zzSA*uLCɳ:'d]'D0ex˓8w&jž22*Bcr)cѭEx 9?2obyP+o+Oc:% Y|@4"xZr1A#6z׼F{濴 '|Q#CջkEOsf.j|f0j  ޣa̙gݿNg4y%=,z5  Ƙqs%dS?ݑm&hu'[rтW~{zG;q3>m3Y ^MFuxɮ)r#﷑N8xbC<<={ypi'DW>kfj htCuAѽ߲"T$w-Qh/t0.}"7Mw阪+27mwl= Pȳ/썐LM.u3ޕ:I; 6]/v!$zZd_{ pYR`omQڂ{r3ٚ 4;Qm+y3g rm Mo)Ns@{2zi4)d)UëД1CQg|?KWvv(4JzZ[6tttA MYB/ӛ~tWV|0{ HgPif ÀuA3hu̬ Ӕ!2_휛9+'ZW/iV7D7bٽlv%Dc04x݀c^څ]|H&?7aוwTAfe? }R>+/܂.їe7I@ݑ+V7>qaeFgd'|+H9=:n_^R8|`9zxV}P 2/{h|~+i4'q4h/$7 |Wr.A3墧gru@O=`{~A_804F V[Շn"'c-/̊|?i?et0 PT{:K@]`|l6U%;Ѣ~wy/g|vYz2+hqn tk3 :uK:Rz4:}i mٞ>Hp9Z F2tE'OwN pT#sKmpe#N"#J`/Twȥv#$owr\=&xI?{t]?47g yS@)ìK''/UПP6_&pf]jQ11 2$?2o.5 !ri9r-a#e0ƴ%tWy wNNy{ Ҿ! Ƿamؠh?KH_|z=(~ Kܑ?<ͺq2@Q6K>>gʩnYggzml-8ꃹE{ m^٨{aHS^Xi4Fu~VR`f )<>ANfRẈ,`f`kyB9=AHh3QBm=nXi)qu"MÅ6!@$$G;-'LBM4qappGx]ͱL(acO[#ovV!0e41D[(rt/:FEre.Nua1 Lxt #3d"zx˸dD\ڡM3 bNh/+7:Sg4%*%Ѧ3Br(P[$Ot 5A d`\"3Q6t:)!X@jVeAΨͷ8WpI%0w'[tѻmGc| (^Ŕ&R~(o6n039c@]` 3fM];tU%mtΟ 8tKd'sdvQLTJ9@3͓/)c *Wx͙ٹlx{ГްC :ȬQFyFmdX =93W G1DGH;9M)s ޙm!!}~҄ko[;Дg3޼rG:ݨ}QG}ldqvm@}d#^ t\N_Y*L|]:?π#q Ni~6ȴa`m. o~'KV{uf0+-o‡uLteZ~#/܌٤Qaim ,7![$b>ཻΖ6(ɡaOyc4sG?t>M3}Ol|bhi lق(OWQ8f|6[6#^KPERVVS.117[bsٰ_ǜńYwd*]\g')=)ogXTS+nl3><:Ă}tU&pTXh/U?ůYfZ݂:[ۋaQʑB4 տr=dzxev+nڛʢXek?{^[RR0uF J~5۝0+w鲧v0߬+8]$lU]&c0D8ip?hK]~V(i͂ wûuDӿq/k?mjDN"bQ^9_u܎$9D Ɖ֎zG=Trúo۰qiٖ-||Ck/>:u6 jl>|N*nvTmCu g]#j~?UYw#MC]6}~[vFαd^niɓ͠P̎ ,~l ʤ:>T*.H㞘A6gufkzNE_AWƱNsZb|Q̅ jg(efS=KnRJKm=4d#UhCtl,~* V2,'AFG Bhmd&ǔc^/eud(΂åy拉7J_ݲnm^ߥ\G>y a6By~Шhe_ۣM]vv*y_L72K3Tg|NdK[]Gg̑'  >(v?5%Vf#hZWzevUY?:Gu-p.z ~vs5o +?WՓ`5 `.JjxFetm{^7;8AQtlkӞO_ѥ[^c`|;똕N;B='ɜYUu}wߜ LQst&xO5E11Eܒ,4UeeiWOϟ5kl$Uf5Y1۶m&=}XRtǻ?$lQgUC|]m/n^Wvw5Vfy۱-]7f[(NHgx2ή\dT$/8[y\Ky5pBnߪY29c;Y3ap6#'>4g[ lU( [ȼZwd²1!)1,xN p%tB8 d]\v)=_3ec0^N#c[ m>\Πσ'ڴ2.x9@F> f{G2'n<@w%l810w8K(N>"n;NM5FCQ]᎖$M_jϮSӽ3pœ7:ҳhv[}B:]eaFu(Wr:҈vo42R}k~նdɇ>: ~N@+,ZczB/sƂ/4Es]=zK`+W{xL~!>Gh1lV_7hdVxُ6{ٵy>㽖mV]{i"_`ob;wUAOth" ]`ecF~w] ?xu`mYڃRrAď=Ƶk6[߾h7-[ޕ4{ (?f̟__\?p2l~a~̽%݋_=`|?lt>>!J7pEYxl5~ڲ lo_6|(ހ3K<. [I~wK-ٗ-i|˞@`&ŧ mʽj־DZlw~Om䓖񼁼Y/:E>Wv[~Rd_4$G[Bl,;n{Gw \+ k6Oe%5 9H9UzMv}٠4uI'(ՑD5] NZf/>\'$5Z/YŦZb-{QA~FN+\;VgXyŧ}HA> ËY@&Wˍl+>|?0?'ur8]& s`: Vx/6!0j :W{#Kq㋟1 $&ۊhC<L>winPn ^\[]xo91~X$"鑴ګ&滕VZg3pI+Kxm_YR4p nMNzûT%٩N~@]?:@vXAO;}7BY;t "E- |&^[=iS3_o~ugaYm8fP~#8]=0]ae ݁h ޾ %I]D7Gv@r+ڒ_?INj_}ߙK//o U䑚mlxZ{uK^=O8/,Fl3.ȳrޘ/9::I&t/: Kߙ^Xh`l`;dK{w:&y ^a( 9t4{ +[;ݞ_B }r zs|x[M8@1~ F7Dn6i]g%& N> ѵY[rh' pwVƁs[[J%B(ZJBeP 2u$8m|v5?~=+:hP*;039%B,!c @DFja: B>67x3>cpϟ=p{!)K'LTlgen6I]U/!?#S]vr0N E `od>3{EeX?:])ANws/1k)_:;e:Ewr ? }))c8@Nղ?ucgY6%HM8u}Wp dStW{Ld@.ۍ7:ỉRrY˭YjFaKKqgV+̎^}} ޢ$Nq%}c)8:l2jr>)U6wES7tc "k ϦN U {ܹ (kDzg?-M>3CrYwn@xٞ|eVL<݌]<ϊV<ٹ%2hӃ탇%6.e^d)i e)D%9:o}ݝ 1 tŖ-qFe S*̵SH>cW3߅VdjHo G>X[{ ^IqHNJ7nlY{ٝ~U<á@_ %{6+!uB#*+,_eV|P_4(00~Jl~0Jj3?ă!}+j<|(r΄J޽ Od=O=G:q:&< hG f5¶2å;D8#Pn Y hN2^|0xha絏[ۥϋ/]P 2j/}_ ~t˲$k4%F<@v6l aGFN:}ĪSm/-¦C{m\f~ntĤF6Wz/8y};\<tז4^MMEKiK,f{Θźbw[Rdz@SlYVj/93iVūVo+^%P &~_;awZ?/nՄqbZ>ceWe*6ފ'v5!n a 'KjXLN2s D #V%sz g p+K}]SoܩLzLKԟ56+?zݛ K'7RpsݥVhCGE^@W0/z-9V!Da'bL<i^4r6!Aэ-:K82e{O>g6^:/ڬGM8MA\ o? ǭ90^SPVpU}0 xK6 f:vmU{^T? `ɶylw>Hw@_|_|}ܾu7Bk}=}Xl |JIXp>j9{{\;/?}4n_\|@T‚-lƓp5?m{K|7L?5vZe6]|/Ï{^ԯ9Za VosOJ^J0Hxǻ~}PM˦>,9rKnu^QlVL|ѣ,Wpzms'[QQ`9 Ve{q~ki'w нg [eURgԱYW/Ӟ]u$/K\lĚt?ӖĹ kޭa^^^_wJb]|ñEfmܡ W/D6$JWYmo`p^p p=xdl*gx \ 4[VC5'>#3_g˾Iٹ'~Lv1d$>Ms `{]wVj`<&#u.zEwn.'FK CW2Z U7ùh=9J T)[o X0Zu0!<| )#88+G>GoLx`'.'Տ>|#PRѹ\SyD>мUYI )X^xJ#tw[{m7I?0 ;},XK|'|)Vrz.:ɧsVZkg s=Θו5$ᝎH{V-—峝UϮՄϭ*[u>[A~.h'8E][scjxJl#ot:5|&RC2uuzx &Ѝ6B3ixۯ|J_ͮ޵má锕/$o x![E:9eKݫ8Ä!g ʱq~VkVG(4!:3+_04XJ:! s EGjw O{6ؕkTfoSI&ƒ3k()N)IoB HHK*Cz㙜\q _t /߾jv3:רqHٛm6,mhߊtk6OlĪȣI>|#R5A?P~I⾛ H5ph d:xctf, $1jl;k Xڍ@DZ(npXl0 p nR>eddUgfid)ϔ4E T?~n kcTݨf *%M'e`JVJkxƽ٩Rx" unƯܧNĈҤ{ò +@˘V3fJA2 m3W&~J8+oMN+}5s%2]aeP˼3 N_F~ W08 D kSN)N׆bD:2 9|Y'=ڥZyjEiU ?_L2}4y'l_7.n+^euQӑ:Eq̌Xm+[9,$GaM %^0Drm֛{BCJksNg|6eNMt9{촓e_ytdd9MJ{#8ſ}u*-;է͊`('l݉͹fpNIU?_|ŗ}@kmq(0{,v]kbz~PK \>قA79'^o98`l_?OQOjŽfpz]3sueϳ9K :{zw=:𛯿͈9 V=sЯG?t~٪?ۗfa27 OM)xegl%Oj~P <7`~+#<-s@I1ll/ɭ\xvvrcVr$d1/jO^5:<Fwd =C6lLk' c /\ 3m {f8Ć@f|p~  ~jKPK]_A ?tUi<#{/W_ewUD]~:[$ A OqAzsJw>>NE{_ڧ1opߪGpK4hh- ^}'EܧWQ4/pʯ~ŮmBuBcXW]% }k0=ЯXO?~8.ƬK~p _F*V&b:&xwC7G~woƇ({+r?!H^Xo1XddX9}4E[?W|=={76[y6GN닿|M'";4dzj95MGbѻMyߣfWo5PYF& 狃y%= ' *%b-|F{ M6Yկ;չ׵gENb ItɃxf4l2Ogɇ,%78n~c:jS\p ݣ-_|6JwT|IRXtyt3B'6 x37nUKq@IDATtpz9 ,ƀBOmK{ݘ$ᢲ/'^旳@1{Bnt\ŗ꣔?7 k22!M,M/vxTIhvj|?p36NjW-ѾG[l PM.Oc%K5 J>G@@qLd-u]~ta77WZјaM4h.(ܺ HF[euP'W3/syGE}CZr"Ġek@QACY𢬙fJYfHMJ =Y%ڔظr_j?;F Wm˕oVp@5 #x`)$eA߶;TF9/.p(  'wEV%3& (yƽtKHK0DY ~fѹ>f FA(> M,kɖꓢΠ;2kt3\B)+!pʾ}ztK fYCn d+0p3ɂZI'(*A6o[/vF-5̩.mɖI :J'He67}=rtQ8՘'o7k-]5juţ9<)9º-d8o~~(%Gg <ijma+2~ŷ%&[iVQ0&S'R/nYx8+zt(f, rX@D-}Qm)8{HL'P?]N~b=[*Ǘ%<M0B\tg .8SA_#FÅ#wU(&К /`V6wseq <:h VOõIË3L;m@rsZe-#S3N;7q0&8kq>E}]_tUnKDUAj$>wXp k#k/ [_7ɱ&N}>O gVMc` m@vH)ʟ!ۍķWSD'o 8LCiXiU~} .ٯ{z;1Aąe15_$|Ɠ ?mXNm؛NI$K$$10n'm'o |0ykRc9}4o+ζuݿmfbkoýeVw@뒈ɵUli?_1|Aau?^|]|^|%%T9^kOhG?pq!h}8JQ>&_*&t, ocW;Bﺬ.xo2K&lVB2"[4Xa9*FdWd()AN+V#b}F4uh˷hq.'h\dPx==pcx|/Ĵ</{lGtm7֡ϯԤh}k`ŗlD? 9|Gb?.$0 1m7i` cB4~})<[ 93d+۝UmJq€PN\`hu "8$9͖@Nu)dtmKW*YyD% :4r& nf7x*P"G"09q&+r9b_2݈e9|cGlu @FhuZ`T-fU< z)0՟Μ8`Pet<`nfEC? O*ߕ)zkpӘXf@nƻC$wٹGC4 >LnPx?0޾>, D/]{7~>Cݙk3D}&Ͻ'PG"{6OcX[Cmy?8'0>4 /v|[yN)h_ޫfF7XoD{{LNY}6þ {_P( |ڌ?mfUپ-3 SYg"f3cVWk{l/%l-8Yq%w ԗ|҇ң 8c`ZP1}4s:œKZOɄl9loKWѦ+]o-$t>f%7LZ?lj} ޜVqC^d j >ŋoSLPM3>5-8 Z 5ڰzo6@ZKO`zh-1ܝ%ʼ̘JmT}G#໾2 :bnNxʐ?׭d؀7 O /Kfkl0xNE 0zg} 51śU1\fA]t3?<,~m XcEA<Yt/*hK[-i>~kp<^o8r=t.SbË0;_va$Y0b@\|\Op [^=oS޻ t@gWI"ҭWMsUS!J&uʞ'%,=ݛ};Gƣp<#^9$;3]/ky_ӹ:r2CsA=֮bg1v"3wvJB+`53Dej,}x'-g`atUfPjhc|2ԏݑXfkvO<l~hY^#_5w\gp1Rt[y%0, ۣlcw%;%^z^|XTOZz}jtg( !qׇZUתV"k%'_@jE֖ [>_;ӏƎ]#x5 _xCeޢN+ rUev霎VVbhY<3sH."0e+8S ŋS%#F)´q$pbX O1xԥʶ[/{>C]OpÁ1:`p&PSndƽmU&,17^OrgNY:Ev ftV dF=LLJOZ!1C!M-4i`1Z#'KwU Ot>dgd}ӹU~@N{=6=#Gгꌄi ʩn\"Ò?|~ҽйK&.<ݱ>X[0aKQ+=}ieZq;w;`əx(eg{2@rN#w7N0j[ Aƻ_p!`;lUSi0<cՙ~v|3$Dvs1Ϭܫ OZIhgj)ɂ-kW?$mX_u[@jpSsZU^}3oVorhQ\LПՎÞCʶ×h荱#~OAd5[n)'Un}1/EǞk nƊl{@מO΋+f4r@(-eCɍKO#}'2fmuoT!{]7 w+>/c]{ғc>kC*Z?g, mYoj({54K@Zc.g<`2&AcϞWIR6P{ɟ]wbDA J\F,S !)0@6U(o`HC ໭ 4@je#{S b`/5X]!%e~xep'úla3WZAp"_΁ZZmN6Z]?@4 .5^4ݯZ{mYN%sɦ~'*lOG#r^k#)c#I/W~a]|I0 / כ]lP~W6~ʰ!,H ]ڡdV/Bl3b+d̗x#hvmσS`TC>v`t}L$}sYk׫jvp(>F{V\Ymn+w6j"̖:AxZ8َt&>a6R  ۧ VH]ۡ;ƒ~ L< WɜkM4l%& p#/zdYM0ă!|Ä` $H/d2s30ʼn:u= $*709P#e{AF }cF {`N1*cy+BU `*K3^5MP7s˚5872%*&2[&=ji&?X8yNb=^:^"վܒ%Sbm#P5 C"xwx5][;fgng+x?qJ4DVKϬ{^0C~,0\ n$m=r1hx%ZzVN&5d2n)|:YǯfAٵ&Jw`wG-< [ϰ m5@|`3YVf36P tvftp nͫj'P$wWd]{qؔE7cΖ95NM|1Y;=͘1[|2u-›) o9YoEDI({:`GXꌷ_7b~d3'j'GnH&Ϟ`A{+Y6>Qjjy]VP3|KOwroWF 2=ۮ `$jr};%mn b+) ɷm_ݭ{?yڞo_WJ1O۟'_kl!{3Cpl՝;toN8R"y)d)~7nIj/,w]defQ+윝\=5ݣ%9~0z" w%|pJ7\ " =<%<#!0CAS >l`2=߄Ao=^Gels+ I(glo~ `f7N@7v"4vnBYs#pѵ\gxےbwwhKc>>Kz >oԅٱksԏohͱ & [a3d˒1smwmx"O1dK)Cz0V;.?# A6. 5;d;ѻ ("`bdm {J@6"1nEk/ GъTOn`i_̦_Vic]&M~uG֐VhA_Fko[87 %!+>WVJꑓim鏕/x`$w>Ux;X:v//佋IewgF 6Y·y眛cjU; ^<;wt-~%b&1l6RFGݒ7~ szԚ"-o'eOhZuK _]!Pဿ"xH=O$HwLOGb"m$ٝʂc%mXyWrJɜbά*8G^7a˧TM h9ފ 20| ŚT΋d$8h/:: Wu|&ߋ(ZF tK:izO+!y?뒋U,|P?{IHnõ*ﲳ=fIUW"/?o ዶJ? @VmL:d!З 9Uxfcko$^8xk7~]4t3XR.kvW,`p}4 `*mPrMxK2fy%)o (:Vno{%۹% "^m:WNGui_+>'a"@SByɵ1weϖg[j\nl%b:_@N%>8섎,Kݵ+rs@tK@jc= FƐdKq%4*:X-x xw;03Ↄ k7}rڌ}:}~JIxdۖ$y eI{-33|'_ޣ1S됾GC~d~1.޶N+H1{I'4o/y5< 7/G@VAN_}M-=w~?AN\8ӝog=q;.>i-hV~/?$ՙRaQ[g ދ]-^]O<ۨ} 4p{2:=m -*~Q`Vdx|[Ŀ,^R H[z4dk|{%lhmVzn,(VIN(#9q~ '*&䳘2Kw}&%ylvn8ڂp e(hqE7GCb[5~H}u/Uڠ}>\gVg,[/ +W.&ٶSrd$$4$f[CZR0b2,$3  6_R 5I$5xZa0{~1E²:d vn g?genoAv=/uzٲ${'gǘG=}YEa_[dguޕ >mmc=4'I^Aȗ !M %Q> QEQ6\ooFo  8/xhO !<NZ @8ћ@ŻQk/D]x(xE\>pAwI[YhoPhȻgu__|'-/63:lPn9<ŃǧPov?ۣq т5ϱ-T҈o_<UoRt}b2c}yd 8M%ܵ3V[^~RGw%H؉ܸ!u&%)Ď# kc:6VC5d#ߟ/݉hJ2 r{,ʃ с ”tKc'l[{:AAem&:HPi Bef`T4a%2{cvO;a̰coD#YG=ڻ^3P:h*И?$Z7;.ܶ`TQ\`_{#ĕ[OaTW<7Wb^oɐf2Կ!(53`3ON?\پ[sJx,E;w#l $whdAg?X5wnz?^~dr'ًD`P^|G?}N[WAs!K@ ޭ! :CϷFy<huxe]fɣ; <.y:}h+neL4C}<=w/{ل.K +)Ntc!َ fj n:tּ>ټ[yvVql~ꋬ8Jo ٲ ă~Ql7[ڨm4nE{dk',@];/iuE[> X9?ٱ%I3`9K ڃ3ޥ?*_ ~9xYyO_&*?CsX|{OtO+pU∂{}wHm dg7r5(Ӏo xI"Q/`g-?|pt!w{hj;R}q1z5MiwT$W8G-5Fmj qK~s^eƛ|kkkx8`C,9ߣe/.LꔿN=mhVx{VUաVsڀ/Pf Q5j+sWE !] $~S^?ţ?}_\<Ѭ;HoL?=y/6{ 1i 8/޷#DoɁ׶nbz[1~eęWv;7C'؈BW^}~m⁸_CۆZ 01C5r[r$@^x窠~[q# Lh0p-ïCr>m8rb Rwq쨟ݻB~w b q~>Ũydvp9,%nn׷cB}c1&cCWx̀^cn~6Vw]YpqbaV m1H禫ǞFvˊj(̄Fc% M<ݪ˿uْ>(>aɭX9ɵ8Nc>Gm} os1֔]4:R=z2ucw_Ptˠҫ{hɗ9NK3e<121Tdټ]\IDE9P QTb,Bݫa-fʲR.( =fDc9 IIz)]~1Zʨ4jrM!ƤS0p_¹YY5¸~N6خA8+:4*1GS9%3H{ G΁ (go{4[kX}sЂ8r$(M]Sƫ T^B,4 ś{CƤ:>V%_:-67D(ݱd~1|v+xfjb/b fh_`]?%]5"rI0tG]QLppCl]cdhә VE/ { Kvrf|'lv,P[U~?7˾t˪ /;)ޣ_왻alV 8vv e]umC8L:U2B[|?lI7ׁzWxM|XP6U6䖀' Ƿ>lY|یą3E *O@+M¶ _z&?pg@S,xcwKl{mw e37b9򽶵8xϵou@g̣?xaY~n6R3Jd?6C*k[L` J^/{@8TqX]~l;d~] ϒ@҇o% r %Zt+~69IԾ?=mh0z.Kk|.a_Ty߲ <@j,/ ֭+,N|EW-!H?.I Ħ`&ZVUK&0OhM?ꚩ7&.v_WtIt˒Z\;^Mj_ A7hOxS%zҦl$?On`4h/&kݴ4V| 齂W%z0J=>[B#U_wz%U'ape*\Յ=p>lzܫO` p_r_8@z)A4.u_.ɮW̽=P}4V ZdP&7l7jg3]܀6C^-}<z|p cK+0KtaߙcS ˿M?>Ϟmzdq;+g!Fʔ wmG%ub}eZ|@[o?ol*6ОvVMĐw6[BFx;ท^K"dr=|u "m:~/ޕca?6<#vSBڡnej&:tI+/Nv ħb殩vㇵs3~w|NCo+X>6`t'޳^\ӵrphgR{/:I`1Eu`:ex =za,\Lf gov%o:꜐M-ɌpgV`$x(&*,0aG|:wΤ FydY}D{)BSta6YT@h78x{h Lf:660C]nXnVYQΡۖr]4md(&ɀ݄~og=a/qqxZc'âa]뺦=?>7'XD^50_d>8є Fqb&^tThLBRF} =& uF n0;'j_NGA3u}b|hxQ‘-k1Y+TMkՈ jx'3*߻g R=Tĕ_Gt,^39dҟ^`ٽmvĻƦ?M'mm넹' +T^}'pa{&u ~owSK)j320QCcOw@\9߻|S*򐐉qe[2-q2gBQЫWs]6c>I$9Akt6/ W6_Y 0}#׉>!ȒF A^ 84]Q2M.c$p!< v3{ͩ- /#s>_Ft)}||` v:ʗܼxr>{(yZ }'>lsKr$CL^D?۷Gl rgǮyщ=q>}TR6jpZ~Ch f zY +:lSÇ*VW |-8O' a_hX:O=Z s;}yS>{鬠^Tp 8&qGU.J')F^M7>O٤GtyY{->myӖ:znmgV-%ኼNZ"WpGӫ% aopicpC@O͏S@:ù duתhe"3%Q G 9cw<-#x;P^G×/Gfr"W`ՙ>{ g;`5\#׷ʒO^D{O$lXu}+%QME39,B#|zxF60?k{*"g22]TVxVH\AkXmm}j'Pƺ>m5q`FkUdqt vLyҳE^6#jjb ^ e7wK@WuHK  m7EKO~W oΦĺ>I|/z%,,:wV?g ]`S3WI?_pIaE*IԋCG~ɞ\8HF[,W=~'$Ej͞b+~*NMf[wSBk&4}+yc}<^aa%wQ#:$ϹIFH$:2 ?Z8EoW|ozOhXoÿ78G*"G?ONLDUO%z ٵ:t܂,d>YЄظ<; b`י ߘGfOPe.P:La1%n(d} BWbaܧ7pQ?$鳸sni}-'c Vm{^cOzRLH,-lwHmѪ %qon~_ZVRv8w?6);OflaΥ"I4@bgm,9x$E%Z]'f_vًO6WI~_9El{5y.Nj/tNp?u#Yd+IaS'(v3K?xëf>=U\gݟ_n%` > ZSdqeas!uOfIô`3w2B 5UQUԎ@CGʌIP&4vR  ,@xֿ}'K.fNR`g5 ǓaI'/xM .&}tN/@oNy;LBp~=3c4'UuzS{!g)Խc ќ W@v!y5; 8#Vqu 8ބ785[̘,;d@92ciA^,~E@Rٛo&sHd4D/^nŋXE|ֹk>/MJ`hos,t}{\vi[:$땭@LvCEY~6gy߯f 9t.iSyM_etCJu4[-euO{`덀wyG-Z ϰ&_~]YI 3lO7Q;+D^6Kv@%DȔ xg8'tdZ ~zgr7Iɰ/)Ͻ*I +1;g~][]N 6?3s*6Z>t:7jj*ߞg o}lgvdgrOjG{pЦu`ݏ(uJa`[lص^7Dl?\83/ۮZR|߅I9n{|E⫶O-xpXC1|j^+gr5,1_2_p& 6//B1(k }[yF_ъ#8"z|5s= QQ]"+~j*8nVubПNBd1QJK&SE4/x5Mk4U|"߮Wh ?$@w_2Vq>VQ&My;x~ke|e#ݵ* %'*pz 4gm4[vL(7Э&`\xt3nI[X|[ԚxtiZb`ID0GW.yM'tyiuBP]_%ӈs?)5Mv'^{Rm6@7;O-$P[4kV6~dX/ևX~+E=lwt~P G<3Y+q͖o{JrbUJ+݃1OC;B@|3:QkjNfe~Ÿ^WcB"Up^ZU7[ouHĒXt}Ohtx[OR*fϾͯk1f?{C…:WŬtΰ\`o_՟n{> ߶ R:ap2i 2ŽnY.uL8s7A-@ Μw8 %!no|N 2J7 Ԙ#u}N] f̀FA`rX dV8&U S(eUqn3s0ͤ/0JU`o_'\p m[Vn6@'(B* Ze~ Y:ˍ-7O64nOx\r Rq`O;s 0}_%8fR˫.α nd_iNSrUZ+Pv)ПSy \ nOMT]zeu8n!E/`,f3Xa/Nr0I)9 VTR,@g IW=Ee#0%" Y ID1^[A^b.uIH<Ez|>`\}wps`lpS[P 2a]JJxxcn\gєx`PO=Љr8:ǁc;KoYG\ԣKҽ3}Z[/ZsmVAʣsB̈́4 4+A=1SRǝ:'ne%lmlp]u2nIÝYvΝ?:4##L}oGk{gH4@zYjyI{WX/˿_z<ԙt6#% n%K}Gs3@CQ~h(z43Y_%E8|{b _"Ze|.K@:m?l;BEg~~z4ۂ g$Q? b>vB\ K9W&uK'O{NoϠ#0pީճdrz}~~ǰd.p:y\_LF|v0TQo~Q6:}5P߾CkLv!JCw`Bj+,T&?V%Y7IXS6SeȊgAW|bR0Dʡ]%c!OI]-%odWlj>y(u-=}~rl-͡< |a%Z?-Q '>]~"`_5~:x"ۀH7~u64K+&:]<*6ȫ(|ՉLy՝EUx+RғML`6'qtbpG>\>ӷgXopq+~_f͋<̌bUb; 8< $Ѳ"#YnRDs+r:V{o@TL6m0C Xµ}d̗EcIGCCkA2gy7PJOd۔|| cpte⃫:Ոޤ nH |E&azIN;V5zo~}_utoA/?Y ժa tƶ=Ͳ/פּhɚN׺ne;Pd~/9TgE>AW"`=tla`5O|g@ѿKo_6x^@HnqVa72g"e7nŞ*CH<Y%4?̏2^q t3&b4"= ]o|Ǚ>Gթ $¬tͷL k| tjYbj XϘrVg؄jF~3! Kz+H%38lv2( hq17ٽ~Tbfk`ð,sA|Ջ'okFAv ^ / F(Fo>q́c'GEj3]$| oN`j .pkߩ3 )lIe}C6h2Vw @$N\/A{V=+ @:&׃IԣOuK-7s(4EV4gk;cZԟd2/MųX=%(hJN8;zE%J b8We GuJd8s*"!eA,ŅV>Dk.$UëMK ڝpˈg$ouϡ89ήT(MA8տ) كǁW.Y>Y^T7݅9m j0$ A@j|pe[?UX~6l9ZC ۬4RqlX nA ;ۣOSNM3xY,Op`۳䍿K6WovAfbDiegI4n9Nq곫 olӑk7h"``  /K떬{f]Ljjⳏ_r՗O4ضc\g^bl {xWV5o&[z8xă4 ߁~כSs^O}97C9~3-]ՋgA}:&c `[\BNZG_\K9 ;2|oo~"??7@)㣵. ޖv/j3]񻫵A>"U9DUMo6xR@.n i %X8ylq2v)#jf+@U͵^}'O<L#1%'* 70k0E?˘;Vkg|(4cHl`eGŻF$\e$! 7ڷͻ骧T?Hm mr'Ϯ~1-2g+ubQ?ξN,~Ɵ+_g|l:M:1L:0C3^$K,Wb&+q*@^p_l>VV>u?pF<pr.]# C8 0HBDQ"r)=[bwx'yHc`OUߕDj='gyzM.XmIJ߸#ƍUV}ݷ?=* X2t`BKׯUëk&!#AoX]9~kvqM]`<pE ~u?|~?<.lFj" :CԯwwBdצ)w-~DNDΠ^o+ȁt{>>PǢNiuB.`0H>㸈Lr%_'`ʨ-΀++p§2f~ђ%}}N!ĩ-^DYsCw(QʳvD0s,} jjA>g|LXM6sJ$>黖7hY:9oprL*ck<`T֬b&uqh89ɪx{ 93 4yh&[DVzTA; K%Ws`Du}f;JeY:yWƏ|YğV}ٞ8n[2R3BGV^ft=lZ-[],#x,9>!BIL0oW5)~R_rI(n^~:, c3c?25չG puRSmk!>d9)zέ>F[қ^7t rij fJԋ~k@Xt=r2/ A2W(z;\N~ 7>zR:xbNMm<-;7oasw[l?֑kz~;D 찿 y؞5gX|/ş:֓~y\4h7OpM-6cY\۠}Ku<.A| .7XEаvu>, E}νWZ~Asl×!Ӗx/zfu>20%\jY~NQ9 ɟ^u`;?k;f%K 3xOzp~}S-L[YH[-(,*5qfGSu>y ܻ. ƂWH'brixnϯh/r`@/u5Wjt*ILXqk/Mm{&?}N(d^UWv85vRpudwϡiۂOgqɻnAؒFk:ǟ|rq&5Xiy0(3>RdҤx$-mUFfK6K~Uaςm:P**-w7;Ï׿Y%%nٶ c͐7:,!>࿕M8zdrmslԖLy6u黪_S>Lę;3 Nueb~߂Ӥf{.;ޫ`h '&V2^kb|>ڤŧ||ޣb+ǻ;c۪Nۀ8q $m|~VDa] ;>- Sp+MNf쫗~l %=\dUVcߌO[p0tf "˞tTCzCn vhlm up|Y2kL%W_]?&~QT"cgT3McMotjO'?;~aCP1: U.:&[,Oו=g/d =90)DU$ܠ ^-"PL9B,)._6%&0jJi)8Ha5 0r(`3{ ~Df 1#Da^c7"Rxv&tH2BEH,]ʃay g&SߠѾ=,ݗ2[_2Çsܖ}m/>Y7|%%,wNoZ!II3ן^}OIXS :%6J4p\fi`_#+'r'tωl`mɑB h}O%Jai%衭 Vr' o/ x:{p{֊rUr -_F$TuJ-AF.2ȣQvGNg%f Le}g$$YQc}բ%l;` 7%s=_} 2[ɑm6oT ^@UmmJCV<c>eI`Fӻlq?y]\Y !C%R} ~=Qo{VY>p %2kF?琵V $\j+.U ;ģ-ʸ3xL|X\sjhqY4Tn%㻁2 _Iк6oMcn n`LTdl~wB_wAX:ŶoIM _xN7"R2v]oL T7]D$*O*ȉ>_Ir:ix+Յ YhEG5tp#_kxMإ:9qC[;M ݘ/֔8d㔾c^!!W"K¬8/y9mKVݽm!p*1d+ |ǘv\@aM\(ً9:m o߶8/g^mM/_\_pVeHވ ?He\$^Qԝ&2?uxo'}9Na@\N 3-&$Ct)!p1c!7b:fG2n֚Gmq~~Paf!4#L98DSaK? *bd6et؁Sit(F0lSz˞]Ʊc~@)nGn@|)P c ',Y7 I[Y)q]Q})?dZ {3ҵhY')1o::VG@VQH 8 2̠(5{AQp7Z}=r4HY('iuHVǽd d2I+(姠I{ʘ~KF*|ƗN*Ȥ$d|2}HOQ3N.dOv@S0Ql3+Q@${lHdKfd*-^bkmdq3̅rNDу  o><,낲>/3ɆyŴ)Xt GSә}mHbå"pH|cU2*[p_ .:+!EgF`i;'x{+ f/[}-pWZ{- ;`zG%u>nC f~kpq޴wO;N99y.Ilf_CֱG8}QS}{f׿k[:xy,/y`I<Hz䝾ko$OFR`ly{hm-E'\å/ӡ{NϮt 4^Dd$=P Q?Wev)CT8U=P~uJ**ŗ dVhF+8tu_d[ŻF61"xHV&:= md/~to.6O{\~_hy.&=AɊlB(ވ3>o1(LW-Ӂ:MX>3ɷvX^jFWz:J'M\|9Ixh_?߿~zrhs=H#uYv203Efk+=ύڥ3 AOg,}] C~`+y8-bxНRt9c+lb\G~hE`?6'Vm߸[ kν?zDuC"Vj ;XMA(K mJ?to%TM$cVhӪ$ Uܖ,N}mPv +u= efcmUdro%%G N:w? -}gSɆm8Wx5JH&tp>^ohpqCFiđh;XȺ*`o+6);Ï|L(z^Ig&2j*u8肿%!=gz|簶`(Ԡ{2@W02"(ҙZOC5x ,CZऒ8ȿ+8d߻gIkC-֟u+qngfSPUgP#e[e[b>e(l2ym)mxzr-,QXyl%8ft۽&s[ ':s3b(kf<^(XJq)͖fbj'՗Nn _ Ƞk鏄]qL tG`U+M$Β"ΑzɞVYׁFY';Hlն;OzFM/$#N fu[nh`6jc%ї7H^#389Oe?9/E 7CTp2{. bYzf=s.H{,A ?%&Ǯ."T ##>X% rVm^C},HC"p ׂXOﻖ./tљɈ~%fU6'=C)ܺ.)_c7_\~s/'I/#߼-(Ta6G=|~r$%s ormZVf;VV88y"Q*p|Ҟ{?m6:DGw?^5#^~7bi?~Y;[uqe L}쿓PY:6_/q딟6|:XG%Voӂ7Hxw_V NWOHx#>*x,P^챀̥GZ>kag U.}Bc̃xݳuͬ- (~Oޗ|T ;zAMRT(? ?Yq`=Gk7<'^|n,3@Qz/}\CWІo1z vI|;8bOCqy; |esZ#ѡj;_?=P-\Z3 а .kg % T2I2Qfa9w Y VG蘿 r hIhb\f{w*S܌'P0] G7 w( mkTTG[zA|SRzN2W-np-y}q [!cYf81W o ow$S W pgr\Y' ]fU.z$"el2)9YT=SK;MkR9x9uIJl^0›IKw6 ڢߖ[HNf1w{LJY y*h2zhk%ԉ~}dJE:+ (=#wkgYD? ^h#lNe0zf2%q_M4M ]1v Oq-w:#ǗݰA?G0rßD1;膾~6y 8;À^l?sN6ؿzɮn3d;f"ҵg-oٷѶ[ Dm[0ښPRprt+26r eQ=ɬ9ְ.:9EmxHȮc0pͨH Wu׺ewf/ uE>>@p2ݫf ~W86~9< W^<xU]vuU0$[ql-IֲڸSR %I4^{8w?=zO?=1\+J pk+COޮ1>|ӘGuX8Ǖ.E#?ӠM>'z92s}0+@_mz UQ VVA)s&;׻uh ;eŎv4ZvNJ%.a[!D@BɴJYW58 ý>eK8&7ַW`83[xAG'ekovHN䒞%G!;Pqkxz]Kh7Sx[>bnWl ?Mfպf8Hpu&!fi1$@}PoﶪV h`׋ IՏb7EPӃW?^|Պ睹Ո(>jXfdQIģ ԇl\M?)U2|1&η̇jC$.i| hga jٿ4@N `T^6.ʎSL2`FIՓQ l!HBV5<:k'nС- Q;'`Ϡj~ c1ĄJoH6]3`PdU`,d\Q ǧh֖=GAOiB]mQd{u!㫭7)l6=2,/ޘݵIxj{9D?Kn5 ~#(U4+>|wԡޱɿm;ȏ9`lɪ3 m?S-pգ_ne{{]jŁG`Yq+!q@XV"<m7  "K=}ɝ%121g3x̢BV%})kfIxgkD޳d!g%ON؃>E\|3}h7 e=%#џ~0k3\*2ot_?d4_nG *w<\` 'l̮+*KHT4an Go% ]5#Mi %P@𷵵. %<;5Jf9>(5rO&tIPvO%{5{ȩG! ^gu2x^pC#;tPµ` V/z>:%oM6o:(rmWVe7pĹ/k)L.k~|Uc[[| l kY݊&I+ڠuS.o)<%Z1Ᲊȿ~닏ڗPͪ*8z4YZ5"|~i2JWĭ 7I dI4ᯯ̡'FO3 vm1tM,-znvwP曵[٬ʼm V<|U{YuE֭M|P:G() We.ju⟿VSJa糾&mv:m!3de KGn)|;R~VG{x?0ұKҭn]34ED6aԛiUVepuhI/ӥ41;^ 'vN-BQ򋤰9z4z"Nr1eooK#s<~N/ K1QΌ]˞ʳΣrH垠v>NɒQw8su" ig4`kŹwӉҖ7m_Z:)N$(P菒 +r|F]Ic͑還Ǵ rW1Lё.9(Va8r1fV cA/я}#iP$V]lN6#\7دsr{/+3*=:e-m_4KPm$_൬DYwҭD?T%+AuJ H>cI 2 Ԁ弢5~>~UW T :z]_lPbluOݮ=W8ᝎz6ْ%[]=O0rHnﭓY/+>8CnYL3< VÖSpaٙ ԗ~ӥf hwu{e7#k:t|/zk-:^+Ew`Aϫ8|7}밶{ĝ=">woxUblGzs  {bA:܉.^{J<)g=fş"_qG'mH} JBlX0U0N)OxI٧%xd/߻A-{03 Pئw߿. f~uv~t@zs*p-5odz݆X#SXmq8-?s$CN f)eD-:vo>~PVunƬVIrDz wN؄| `II}[ohw(BЗw\35Wt{},~j6у'm= E}%A7wkpoo3_?p海p+| t~xDi|tށԀm`>xKf~wM/zQI9Wt`%Gz ?UZlbtC㲕~җKu=It@$ f 34U~mj]3 aݷW }ȳ٨^Ճ;gpyx. Z F5TFY,iSJ|4vF+|>R.IoJC-=K1DeϬxnIGܛlmJJ f8=ϗkG>Ô V(7g˿}Պ;Zg{^ZBMVH<t64 CAP_󋯋Ac[ jި7[aqK9{,,SK9  .'5mqy?O yF}%5pUKkzD6gy1MӫX^cvI˦def;tU(~BĜӰx/unG_fs}7KbCxH_ުH7aHKe+5v7mq:Iݨ/5/SUH:\ٷ <:GB=&BV#g* xB>1oCo:^%lϖ/h|dngŷ˾CRjPS\--q6O%^:#^=&]dMN[~NhfP.'"É0ۖ4{?g "8iN)@xWKw 1Gy{ex?b*F3P2Z{^n3N.;)#OUWcHQy8:ǝ< @-DCI 4,YDs<'|| &DuUG*X.(4kbVGTE~k9wkk ]*| i{omYm=:<*גj_@f,IpLi*]fKolp}y0N^!6맳Rf3䙑:VV||X\q^_<ħdL{..fkln6=1|3kOfx^~ JOˁq3K}ү8fIc v\8@ c*J$C:Ky*-Uߢ@ ~9YcIYGcpi2Wpx/v&L#٬˖}&;{{́vG%:I@4$}l1xJHR= \\|3s~4Ö7 n~B}cq|Q.~(vh޳gHH`Q[~_[zQXVv7sZg=bsZů 2nEdɃ|]vSZ~pvlJ2լ;qvߛe+>XN6|Fa{gⰩY]|)X4O>PRr!0|00 dG~}_cc'vnGő LJvFic_TpY%bb^ol+w3yY9γ I7 %(-$-qoLNfThB8o/blﮮW\`iXYp#c`3xW5i{Cn%C(X~dO[2?̂~!_T-*YsⵟG6X "@%=-/ntLxx{u0,|"$=_ˋaIYA%`ˮ9)z5[)6YUfBǂw{֪7ϭ֢Ktr2ZJ\thG^6,C8: ۛ/7 ;2$gץDGW#^&P59Alw*.\㡍a0 &#ŮߕhB|lŗ3c~4lRiFfw:<ki Sf+g?% qf a}Hž 9OWMT\k J^WlG!oԷ~hC\8II=*sb[|8`ch]Mc'MF1ڤhNȖO^.px^K}wҝ$!n++Θ3YnmSXTllcn1 [H_c(ԢF ߁;ݳLj$qfC870Ea+Ԧ[>ctך9VBwƲތP @p,cZˣVB9P1B0Nõ w^ kCmNY,0\R,9g;C@"%ф#cԲ<M_U@E-?MLÞ ‘REASHyK1d>bgowt29v8LYc Ou<:$Iy;$t˓G2ѩ0јrhV?A#nȓ6p2?G2~~qtye?G1Txq} qO"{3{i e=3UJXvhFrB!) IbKX؎2*:AAjf1k*)|Nsɪڤ:Mwe=F9NVsd({1f[,ۢ=:Lߎ$y6g'QdWl$ V㫎BaJǑC'ed2m5]s 9ݽ`@vfٿ-:5؉3te0&ܯfbaeA7nGnuր?|$?8~Kw@c __zO/~zW__Gf?k6? ꯃ3_w߾lG@i[RpՀeΛH_r/j滒Փt֞}p~`RMw/Gub?̗VAAt~%G2(ӏJV9x7Hħ=~iROJl:HӪ#+ ;mp7%xվ';7G+:Fn%ţy;8dGd<*le\̀[Ymc kewlhwg@oA}Iku:Q" <{9* "/cV^<Х"y╝dm0c'[x5; hptuVTL>;̯bA:myE k"ܽ ~;Rb+ΝXY-\m1Q#1}w.2]f@%فotn%hGA-dO[h:Ck 6S MU* ]b{>is*xᆩ.&M~TXt"w7w +r M`}`+wl #TZ9~,}[xhZz)x1 le$Eg8uߓX'ڌ[-*ӭT#өp; zpW/.|Zt)[KX9px{d;o~g(kf;)4`}p~_&鱬^o·%>O'oYs-޸z-!}pmļBbu{nQh2;>Yjkm}$ 9DD.w<%,u=wO7MRS`^Z,>gf-G*7Vg%'n$DFx̮cDZ}Mœ 7tAxot)Ŝ<^{ުMX@4 N[l=|\rQփⰻ׺Oޣ&0JKiՐ&U=Njk[y§ozk}te2t)ߤߕYll+d\t#T70bOLb,;keHLx]zXN1\@AͪqQ) C6=+a?ooϣQq_{tI<:e"R9'`7kL Bj=sQ}V k `+)Ro@j.(Թ(hǢ@i|'۬w<< !/L[O I2 <c,#@<[ hɬL omAYl%}.}t7ɜfI_7pwKte#)8Hs^+^ է_WA@ 6,@1&c5x:[`d#[#+ ‰I&twg{`D&(?-}鸪tAxý\qfGܐN,8jpAߏY37|,1OXfhOs'ע%p(yo?C{so_w ;韾G5 ګvBxV֮|x|+0;73Wv->n_}GH,x^[W%=yzy#;2C~DoÛluLcw@٧|>}ހvo7xdQ oՍOV8&>Nbv=S$33N_&~ѣ&mï~Kx"ɿk@~ ^l&<Uar}x%e"h’'7.h0l >٣;_vԻ36C& a+'\ zӿ?(?An}V!A6Rv3c|%@ڝ{ ]4kQxUپe$_4+GoV΀ BYwAJù!꫽ >M8H:x#U X= ڐ8?|[8җ Ϙs(eID& 6 >DhI0bM._?=^QX<\tmxëkїŚp P|">OO9|7GKmp4{mE#3ur r{; zv;X뵷x3VʊNLbZk~~.Qnъ3x8v"ŭ'䨪+c#\)Oդ&{+ّ=_q# -~_^|篊U5[57yL\jVYu-glKHٝ7JU"$+Ŀ M,"LyVv݃8ٸ$@t<N/c;9Kc? yvӤRȡM̢>JU5bP+67ER]G bit6ۏ.JmWva\zCǐDJKzu= DȒghHVjK׭\V3τl߫/yq^^ UScsV41v7$KrNaj/SZSx5tq|7[A dGx:eueNvi%uw^<=ZÏ,ى [{,mB1UvI Dn(N!`3 f*Yk¦GKԁv,-w[kߜӲ1 dWI r=8h\5[p"r="#)d!Lm'ETq X&Ҍ "Kˈ"cx_𸊛d۝_;fd,:ja {/}yxN.#c%dS=/ ~sco`5]c \)bg%<ފ~dlt)..Ih8l6TBGK,ڮ2w+YuOc ˲ԇc]b:Z<2WV]'ͲV K`qfѝ3[`׮ciP2'P9%PӳY+/˴\i~k>x1>'=pLykgmG'7^倘0p8 '6>?> S,Yi9HddDf.zBfFfp|zNݎtq]lX=o7k+GF;ؠEA+QI8E~ʌr8pv;[536]~-8 \ŷU=uV>poT ux_o۾ Jm[AꍇpQF]艎xAzeڕUYUط)7w05z&Y|ק\0`:xhV ܠKTZ 0L/~PO_ .ǵm}g*j<%D %vm&^I5$z½"O&ƙ^ w/ꏁf^d:ꍯ^ч_.h_}T9O m{4.х퓝κ8dA/K& ?&){ӞV*\fgl5#ή%Q;V4=()Q[]ڲB@,LO,p=@jtI,LS 6y_ K\)`觋_~MgܸM[{)WU19$>Z:' ޻}p)9UJʛ=RųoKZ1yZa$-R7dP\'? hӃK'Kl O_A@IDAT՗ɜ]C]d]q 1vb-OMp]`(neْ^z.vm+* caKh]և5*h pA獯k0[S@g7algUƒN,j0耎-M;m!n6ȧΈ<&d7x5OOהּkЖA0ا2<7AƆɚWN0ۏn6/Am"5:O?N)K8_5yI*n|]L ُG>/~z[C5R^au^3@hجGY 9PL=:@->9S-|j#,Jfo$oyb"*Ꞅ@s6UAҠ;` D/0M YEHv،?<禬Y =t,@\Nqh,ފwp: -~VE|^˛>j,SV#f)1˚Řk_V&K',",%iwH-t}JΘ9ɕtU[1`^؇_/ Y F77>O1$4zOI0((,:T;ӷ$dw||o5ӴwvoU!3:15^}6ۈ(} wl]emd/8_R] z)Jz g`PRUđR;цh g#]'i盲`Ƴ9ik8jkKpY'R>0|^a7I"9+@uӢCgT"@j+H~_]E緟{]to~^˚*ErE4&xEe8лw.v<[LhuȜebNLE k2$'=[Ǐe~m9V[fhvן,oo5xޒ:eưd?|hܠ?mޭ,,;m `& )f3W-5(f^;]V6ٳ츕8Zo/{J_e+{j0?07/zC0cM3%PqȮeL0GÇ`m!Ye5 @m3zç6+3V^9 %%5TVUxL &<آ~V&O ә]%p ;-ä_\͚?] (9fuWU=0s;H 3=V'xV1U=fK%G V E0}%[AcQZP GdLY W\[ry*,e֧Tޕ?\0 ` b9U-=|R .\?4BOQ3n+̘A %{0F dV}V@uoO&^ǩpZ"V2J/`*\˯GO|1Գ Z_\e.*}v?n(u>jD z|D3^L#|!N+zx/}7XWG^r(v7YGŃ˞/?%ɴK;MJ{;w5z΁[#P&=8m5vk9 W6pf6':Ltw!zdz%|/J;7:'c3\c _,o菆[[*IJ$CvHx~αmG?_<t SV:HNxM q ]qSKFE})m{WXE@wɞJR>5?FW؉ eC:KF=\Ch]|[%FkvժݷWVaj2߹JdqU}dE¥{W4Y+UfŅzZBCwz.<0/1i65|QVG|ngܼـ8 ߂/oM&sS?z?3&ƟJVQC-19i^yv zÒ bA(ΗSHM8tS_*vzm>+&~פּƠر aq[%di앆h#cڲ$݋i`G=FAb!')1B0^6' 89'$ $}v(p3Bblf}rTZ 1s T'S"yn TR I5I+a#)l 8DjgDCk4H0oo٠z^'ǐSJ)<RgղO+0yEEY7#eG=Tdm:C @FO6f&Ӛ3$bf™-Y);};N3a8/Jށ,[?RYY N>fd . %>atEcEV> ɧՏNd1f:% jI7=A,^'ns2igѡ$xlxK 1ߖסl]:z H+etoS9} сO9fȍ=t'FxM7]! ùUcfR^?"hqN lSRct"(zι_ѧ.~Vh{y½h&-?,{{";iK+–-pGXUhFSړ ;S{m;:# zWv`C$ӿ~|:8/]<~_KK}{!F7cgo/~~y`m$ɬl{ٿl!;4~_RYG#ˇ={ޖxf98hdC?)tey5b\l^=ۮ_`_u- Hm}p~rQu$ɋ%߶A~ͤU֏KZܠe~7S06O|Jda]zjg׎ ػ e }fO|Ixpd`e ;mf[Lvo1luOQ`Kh~2TyÆCsەυL8i y|cG.(jб]GWx,a>w6F& !#9irK9x*# 6(y' YK݂s.p3j~ mŀჾ+[Y8`Sojkn& x6\mk+N600>үv7C? :| cl C']nʫ=}*]J0閭#mf!rR%Ioկ]P{ SAߖWmg,`^OtD VeUp$pg,/iŒ?zuYeXhmT.LJ/:=WJ.N'_o}zk %1mm xa9`=EF W<O}Z7*UvhXc(CG[Ν8ףqZR3!6!q`y׵!zQ/{}qR;(zYpm Jd8tb8L%!ɞH'`SMt!H_r i'P w T%賱-ileG2k,lS# ֛7@p#hP,L&e-hbg!iv#l!۲zٜJdi!47 m8=$?bzJPY[=ݹ]߾zRոAS;^蘭pp^f{,}y)ᚅݞ肠u +jsGEصF)f9ϬP6J&+CݒVpRr-0+fF7+svcQYN$=4_( }oy%lS[`q=g0)#pY oX MW|2s4=:Qoj- a'ctX楃3[1 ݶC쐙x`N}2`8zi}eH=7+ 9|Òi,uJ5^pE%oUdeN@ a_N; rH t>UX^3Wq$0{-`c;rg~]Ĝa07޳:jg#mc0MDGJ,2?כTV G?ĀYԫ? O'vN?cG'x7t8>M&kJk Lu؋cqr|H3Q]q(+w MUwAT$G'Ys[QQS=l+υU<$P6D Pm_yʳ]#_0os`qʞ^кcz'w _PgϞt/\ ENҍǏI5ٵŷrPh9?rs*>M跾$;6 4Kܙ?х?T;Zy\c3ɚȿm7,+Fq?)a %h}Ea1c!8F>5`Ů4]3 ̷u# '˜'ALy!~5: sNPf1ʊPuwƇ=KSޮÌ;)~q`nI㿜X80-W/-<_zؑ0;ŜѵsݜԞZ(<{t(w<,٠f`3ʿ-\3ԪJlИt:T=`|-}6kݶͬu&[:Cd|j)Y{Mэ*ψiy07,7Neh2hqm;.,9yxde$lŹlАθÉY4C5gĠʳSr{F mIC\{%_rwr*:Ly4g2=aQvfVwt%oKPk2V">$Go@$"-$KuJY%tkWT_$]t\N[]ݛ[F>R4GA;GH~ԖB|Sexcw/{+)+踗Q|E3م/wX@_,rAdSm A|\G79/~"/[7%۳=o>eNV|ߟE({XwaV¬`t;»e|uųf%x!y姞\0ɋtq[ tIGe Sm?7+M||O<1}KJܡ]HhHI/WԴb)D_ V:by< t.;74:#y?NtiZ:*a_<^kguOr`@Y|c'`l jgW8$w |?? ?]Ԭ\[zu~0U[|@ +D'R$N^~G?`*'W^'C:>kޫ[ t)Gؠ6fBP&X]>DjcˣM,(Αwn; -=xN١V".>吅q|b "jpz{ Z|vexRS$$t}߃߯*u%=+⾻S[1 b N--ΐ0q_JsnWc ~ AqR[Q!|:ܭzyTp@㇓t|]y 1K2,@uv{ָctұD?~`Euz,6Lժ-hGw=We=a~*'xw}ݡ+/4qlS0fYy EkФ=(st]:SL\ʥ&cv U 5uh2L;#'@]~N+>:P6=NgMP$Cl綖 @|*\V;0XHek4AbƜ;$:P61M:2aCemtmח@?dDoe#ƨ=C9f[U 8doxĖH3ň9q2zH pTu25C.Q/}* r:Mr,2#z7z:`>ZƗO`Fs`3.]Otg@dt\f^-sep'TAy) dfs:ǹ)+?%N1`7U,%g2[n.tڼ+XtP F mh\!^;D N$Ƨ moA.Fn^nkF՗`ሟ:= NߠÓ@Pd}:=2S[R\頁:3}x>}0{ҙs&Ő1("0UfLo]gnhIɔ*-#'9=9+\sIS߹p;}f=C8Qo_槢:lo_|q^0KD6*x=^cp'OD=~`^3/񷋿ҋ;KNiʈZbC X9 h'?oyft[W\?9^>O͇_[ ۪O=vœClX$ߠd`2i(Y}}97IeZrHP_㕶oYhNΐL<ȧ|7WY36YBjfG}J ;$^O]>$uL{Uvslqbl&cs'E6/}7Q6 `?H,5_8W% g2[{?> -~MTw)o3k:vU;SF> :)Jɂ߆[!K mV:?!A@`>L—%‚]GJ:߄l=F[|Ur|?]w&7:|J&=Ҁ~3s#&~O@v]S{`X{OdNnWILwWw_b.AlHf ^lnM'ƟrW`х^ʫ|?0c,z%ګJ*2" ƨ'O}@c Lw7b}6kꍿ-y+%S,θw?*:&xY"!)huV6 xB<:Vkt̫ffx'ungVlk]>CŚ> B꣡F̥}ݸNF x>]%FUņ*oRqWqcwMmr}Ej'C 5v_.Nڠz N+$HAVJL<7^v?<{qKȺR1tkOl@d cg7гɗ`)qIW'6;GåPo@~ݤڝ^@^ߣSJd[t0Jĉ[n5ILG'r8F'bbf/{d3 `haj&" .VLm)Jk{% <k˔Vds WA_0X~hf eC7؏ #1ѳf'̜u{0 +l1۫Znjҭ|d\g>ybG3*q 1*87W;%d;U~ #Y,ӛTb&e>k ضff/afb Zp NGbq8Hɾ jWO0L\:_W/a:l__hD%Nj%|EDp `~|tbٴ_e'cځ <&lϡ]˲-H eut3^!gy ظΆ?5_/r%z+ySѮo1bzdQvHz}4>ğc? \rT?^7)x7kYnMNP YԏgpޒJL}}8҅^xЗL3Ω? w{g'#ڦ9Rbc-bMap|+ljՏ<f{r$xkqgkð6J6Xm ç H%/Ћqcŏ9G# #1OwIؘ~Eh,Kul͏ qr]]g';ȣո:YIJ7.(TCSBg@:1Z{4v=HWΣ9曝r2 ua4{c-0`ؒqpR̊w>6H^KiG38meɦ/5Y. e`&h|Krƈcp ~גH,Ӯ(b ]>/*8,廖\R77X?2Ya"85 q@҅EV `. xl?:qGAeic;k1쏳Jņs+ڬ Vn˿ D#urz;oy{C=q) S]KRǣR.T64^}rHrpJyT{]o~{Y+yte޲o$ą\[; Z-kOmp fT+6P9WGy 0d&Ck'yK.O| !{ ׌Wfn%dv kLS`mvB.7!(QSE1KNC+Z/^~l=VGxр2:t.[9k0!65#=eW__nwůͪ "߾wlV|'{BhoRnmYAJ-ׯY}Ǔ{te+$^5P7/޾iV4[ƽtv/mY_~ImՍ[o<{[Jv/[ݷuf(3Oܗ^L^sx}%Po?(u8z4իlwxP~ixzK22W;Kf*^]A9+hL)>**vtvF{367m~gаal8 f6|<]` .P6A$uK ~2[=l`K%s`?%='CXŸD2m}zp鍘dINgፋPb_dC.98X NZ0a]0⳺nb°ϸvEjW;}|S>Np$%๡^c:ߪ3L)f~sR{ O8mh-5!n,l*PdM,}*~Zt?yyGݰ~wF6y Dtx/GGӱj$nxw&r-)a{SNnH*dRUed> %^Nt0??08@ZW'f>fe@ظ7:%u2) d#\]<3 w/d1uˊM#8?M.fk$f?)VFCLِ%$7{2ym3*)Rs2x/xrWED}5/C&XF9юƐC"@WsNpc&3bYZx#T843l]'@LT*Q8'7:DRzw[J9=~ӝpkk6F089xRhc)Z w8H+қ>rd /ZPlEF wYfLe9IEtS 8.ӣ~o@46)PhꈶڲnL7CoZFZB|ymn}Gkjf38OFTϩ4lnb֧:XČL}~YEK_5{H(&rLxcM<= ŷm.:;=* =IE;]zW~ez0N9l2'yfpX-Ӗ< _'=9v F3]B:Y]u&m9{x#Ci,']ڏ^t8V[2]N w Ӏ'F~Ko^g?:kzUs8 t1b+(+x`mL/+8 NkCpv2YTi+*{-Rmvlx|+JCl!?O>vɭ^B+=(#C;}'WB~vz wI&*JF@H8ҥ\v}}>o}}q^Tz 'Ǡ6$9@ZN@]_Յ3}>qVRßN`Rs`N/3d >7s@IDAT⑇f?7P0)'3xs#uhۖgNSW@j?޼o0Ld%Ypz|d{_D+cPhy-O^Ľ ?ǏMtz:}n5znYΖO Al/"'7%cy-ɬ{n͍ϒ;5@v.flݱmru&~i{@h=lmrdNϙt-^+U=+I%,4p1{q2Aݟ)h d}oy}rlK|Ic:t{_=~tv+f 0 h{ϯOkf疧'zO|um?6*69/rӝJ1dip):y3Oś~:. jV! ]sSOÍ _rtOKLx"N5d5Z`%ݞt0wbMI;%Kiϋ*= G_~)O=+ σ{Y+雋z:~䇿/_xIw!!-T%6C: IB.oO!1nc'/Hl/[fO _(KH,·Fw7v;lEWڮe=ĞObjH2@ca>EUq9tp]U |EUE^kgʂ} |Dqx ]^Ry}يQc]pRX |6t@:dپ|z|$?^OWN(V_NpZpx^ZMvУw [7mb ӇxQK V}v[7bujêN_ x֏r̿,%K8ᄎ/U|-dÍ0bfOnGʊ173FڠG\-?/?~鯿-.y\|{̏+"YrSi- \?pG߼cFn3Z)G~!E)0KM8=_*ï.~mIWfߋk Fq7w`5?5q++3ø a:%I`ŠaO{Ʉ%ldڔ#5)zbT~7S?gZ=dj̜'&|ߧdǦ|ϛ&5>g˪wK.TNOzp IPؽUplפ9sR-IpG{C$ &Fn| J;Q e+B? OrA3eebl5@Pkf@\M^\WE]Hqq/ #hGjS~J'fps3HuB]3GоLZᎽeun60)O*n+|!D(^@`f]SLD%!H̗{ۣ3ng:6yٌ*w)y`g؜t b9x;NFIyY TrYO@Cx|9 +C#ߜ/GL@mw%$ #iTzw얼ssVaWHc]uc0-F[–׆ t"aFx-K6eI5 CUl@гu~4ׁlVcf&yKO.(ġ3H.97[)nP*ʕS? Z06xeu,>+nc4E|W$hX N-Q{|-42})#XjD}|@7Amv\Lkf"mP]ɟ[?ɠyl廞Svud?hpQVd/5w90e*DwAӭflI>~_3/ 'w*۶ OI,qׁ[qko48EP<3O :38O'jy |$@~ /] `2KHYaIn^#fB~Q°dY}._>SY>%Z'},:!xtXcO1N0 reGJTA˒̄U,%l3/{:>y"Op}}4w"-hz]7`YtT45uER_yJt gM#t|VUDB/>a3z~@&6`HBOkmS3@ϼQ~K߸>7PpSJclJL9^X" 8_]$ÝM<۸T}'InXdɫDīO&e#q3ၙ/<xl }#tf[B/__MޙTCٝ7 1[+v6}_zdlD60XZq07CBG,%ѩў3tVOQOܷ ^::@@B>DpǂwgDȆ 1Xj;2Be׶5&x bbBY}k|bJTnZQD[כS]~LZNkG n?M8[npn<;U""E'\mE0Wf3X]#F%$6,>PodՔ\ӑ[2<6dsKXfywfo.e[PcႦteWg 9JWsdv$[ +hz)v-yX "nơQKA/g̗cVV{i\ )Z,/5>*\0US蚼n5hyҜx iNh3[nf]|d]fO0N Hɴ z]uuߕP!ǒ8XҿP$^o8. 9ht@N;tH`?1dYVtQ>ɯӞ3e^Gw$?`gkIiwO_4}q7W_^?kamF)toJO#l*U֖uߪ')լd֘U+K,f왼]k#uſ}6HY=@ 凋;/mr ;aub(@:'_׹] PT+!{'(pqWrߟG+TpNv w=-y˓,=Gl$ޔ/<zʓ:S|-K$xj#c{F<@Ͳl[ Onܾjm+VVC&tngH~u&oPk[ Ttf1FXW~~ogT~[Kٸ\s)i?>9l+}\d}>A[i^ WHEWTd0z,}U?/ qA]b|f/ wVupߪkQr}7Q&%;lV,:bG3 SjƋu=[w]`âGޠx/ݫM[:Ć?K*a&ߪƮާ8JlVy49Aӷ#G]{U{XÀ.\!]77x`.Ūo9OQgMqr_ |VYs]; ߭7b[DWһn=da+508PYmo >=^kE'[MrQ:ݷrT?~_(bpS *{Dq]kS+>f~snʰbX?u/±Vh $|_?zpA,gWBN9ܨ Y=v)Y,3% }Bt/#n ߏ%lߊTuj ]ࣶ5k_O'}4 21|A}l+NOnWpDkWR],7@IiuJw Ãŧcé$wA+5<)ßu|(j=Iǜ?2s+0{Ypw>Dd 0?t]|ɼOv79HPM݂$^P~rWt ZܔR/[lxۤ1ddCpLK C)\9KDNVoPa-.zO7x1.BT{fP^p20}Ԇf741Y> :, ɰ) 09w- n  D  Ǩ™ &۫kRRt7KtFl XVrz1!錖@Rh"cYuYMv!;)PC*#p`_к`ޗpPu&Xe hHSb{D<ާ_oU %r p-Ue ?T@ (!iW"68:  ZoJsYƅtC3`a NR,lGx>5%t= 2:&O!6V<3<,!]T**v &3g,O+&p&щ./ooɱYy:AҴiI"q䘶w>K;8}񍈂X}x0йHlVPi|H9% lk- 5F-GYw#<͆u^ɍ{qkz}5D#+=ٹd_av\|f9,}@@-ۯ-I,qܽ_Sāw[n6jA|h|mnLwmYwgU'Gv!2}ڻ.jɘ4`fa7I{S޲:}g΍3$r\!_Kk3/<]3wmK`uhf>{$uǽ{=MB錂mAwƊ2ч~[ wږkn6hEYzv/`lٕ$ -~6̮+6@?,F7h[P%P*a;Ga+$ 脙 ]ʚ+O̮7HC\+2~'T]?h'?.L>}iK1V]8{[|*÷ |1#fBPm6Ub;WvoDGnvGeG{w0vl揲 nvF]L}'ַ[/Is'bE8a!Xgb̼|`N~G׷ʪojkv6Ѷ_@Gj:^لY@_ykuw'*J4Jd{y:ס.}v4VɈBt֯i.Wv]#=vЅmpؖ`D@wlۋoKl\)N3}{7r6,-i*JR{^C(%Ua+GP֯*kpMY;J@WOb>:)z=Pp_nV([2wsӝ!tI>{#nƏc'F>A?lE\D4$fׁf[l7Sw{?=] tU&P~oUZ@_+M]Ed?6֬7~? ݶޏͮ3.FqDqboڊQDbC0NxpUxu c,'_eRd,h1Qr:]lKApyt*" @ʌn?zYJ /EeL 1-Lhmftƀ 0r=u%1?| c\*!3+:[QCg FP)>{h?~7l٣)eڀ328Dڧ(8w/yNݶ9r [ao DH=G{3xʡ0t6Հ);`tXuKly^tOEU.p "&RcPm7PyOR8֝.᝗iaoeZ{uP9w (e؅m_tsD :,>ŏ?7KK7EYfn0Ǽ@We)S^$-;gW]p^_+>н@X]ZFCedz>NF~3]u2^}+C'gڿoV ج/-*dZgG=_6` netlqx; *=-1 l갺-_{dVA"顕N#:NGjMxF~v3wxhg{ [qƨ=L:$|. km*fzz, @`/;e=а_o.^}lEٶp3[N%Wc8),XAy) o?6:*?}}HFHI܇lUG:Ko|j f+f*2ӷ9kSrcdۋ.XڞU }3]/i5;Nii0kLп-g?"W%Ngkn|}]/V6o6~T"x೭hQ*vt~X3 \F0nWaIll"&ֹٚU+tL1EWV6$CXJt?D@5X[Qh{|1F 09ؕ[ܾa]GGSķE.#t Kr: ;]>*ݽ.-wpwV,W^%0SydYt9+_UAHe 6xF\գ{ vuq4<3ŒnVsqEP`qS||I`S0#e<7[%C,Z wix̴@BWr=<}ߝ$B>{-.듞ӑZ: Hv=wG֝>U*[\?y$(d'Vxz=1hW1/=ZW9J59϶dU8a7I~][}-ddžmiM ._~(./ "+x&|<2!ٓKgP#hT3\H/xnuW/MpV}~B$7Õ~i-Ϛ, ;w{^0O `% }j&3 bJbfS61lR\4DwzN:3np 圠ϱJ0kKd׫^)Pl!^4Qd`_KZ*7\YvUIuXf<‘' .GN^N6CQ9f 1+. 7Y%:݌\;ˡd`ՋCt/c6Cu쟬g犆Q5K7?,#.ِo!%RLzsĖd :㍀ie[I [p_~H2:I6e@a)~d=8JplcH~Uc0/T#[5!:'< gbwdS@#BD:!3\L>>liST9^Iu}S,[hڪECaigٌÁGfD ^s~XB~baJ} pc'Lng}$'+\x ؐ+w/e.p_/R_:$/ 7/1['frGa z _/jynzp,:o̼߹஄C߿m5}aߴ][nةye*<ʡO;o o񝂘/}?l^ xD!cLcDp +ז90ңϞ|.g>8t^.xsI~h,6ґT+|6YW7ؿ^0?DO3ؒx(t)8uz+{|yt|?Scv9Fߌ {{5s1RA33mńDܒ`mwSȖ,hHmuXp}+.0TsL`*qQƪn{'Q;|Eޕ=u|YK~SN Ng?p2šx{ A 35Kpjd -dDd(NvY%׻nQKڮҐ^˵M! 2^xo!|$ V{Wo@tDܨ@tO/YyL8i7-*T7p~O<'͗kS#"tɛU{>ڳL?Dgd~x>Pv_;LRshù*W-Q Wp&z8z;|>~/k+ZՓj ~Ex6'P̾l;3zΝG;xמlAUc{?Mj_ 3w_5sCcOfV6% 3O | CiçC8% ~h?:Ae;W;U":o+|Zl1cm%X_w+g%MAQǕᡅQx꼡:ɊsNfq ;YYXgLX*]2FF7a E^jl&2 (9D t[\+jDIM#;Ix,U]7; ڋZIp=.X<7_%ܮhz\fb|q2yыMj'Yml.ߊ7hy}ltAP`WBq `{< ,DnBuͣ+eSpݳrY!e>*] ~Q>;]xONhϡgSցX*dBC1$6<lnJ 1wd2x~3DNіi0Lݪg6ڈgԏ)LmZ9`?qMn}tZP# dD(z< 1 D{rJ3$=x8%gsn@6P3AiX8|ݵ{D7X&;%x'h5{>!9̦y}ΏO/ n,yFӌSx9mY*ۛY?99c'=JϜ|藟zYx;PjM`qR/c`IHf\.8_2t[h e%d˒mj`wFO^w98$dl2K497NzZ2?U*C娑;4oygūlî@Sݩ>wMm%9T8JN|OVڟɦ&sAq>oU\%..~q|2/t'kMEd>Z0ܩW9ZrMu$9< $xϓS"ໂPz@|tt%/uL׋LO-h@wiGtUt@ |w YLU&;sUzw%=?~4HI'#8D'h?}O_ݭhu+7%蹕HVUm/g{.aTr E|K[Zx`#i >ڪeb_tk6]>i)H+jr<cl֊ bg$B<( 9-뫶J<|=p kw,Бazm i =\%eSiq1ˁ~knko0s4<_Pvn5 m% j~dGr8l6l8ܒi[p=ze>w%Oo]NtW=K_~ދ)8i+6Ol4HkAvIiq|"f&/q}5dMtz٬ӊ%=J7/u>FdR0%"^/߇{W$&:khF_-i׺c%[%;^h ^O:29ކ "Ԙh޽z dWҚ~m]±B;!mpo6mK̩c27g/jZjvC + 熫k'@ZxC$pKI% !?A,s'ur=^ab'N'4,A!ꉋAQ|GY}9x(M`Y oAs-'rhf=L댢̠&X19wC l{U0o;%[U/?D_ dͶz}[&2jF 3AQCq*7Yn{dRFh*DS1`'d6=Zoܫeꧫ>{\`T?^ q4˶CvG4zYw]FbXICuɖ{m@U+0md 9g}XW;6Уh]oY ԪzGe[¥Yi'pu7Mkco<*JWArSv]_͆wFN/8͂w}UJTbsٛ7;aL^πif_~v-?O#VϢ}=2jeУ~N9z}NҶm钘(ac!ٛW=&9lO*]σ֠3 ~߬_0/]zQ'woOv/[豙itg gl 6 6Еt0^䃷ls?y-~XRD;fԆSG>^vO;ɼ'0g[_H{\&G:٘IimP_{ѪjmuS0mbЌtu-B(_>A86 oOswkC"HVO%-||GRr8U\V+}Gep 8u?+Y"'Ʋѩ=A7C^.EUڙLa/Ϝ!{ej Mál׶OLd ܴ^qf u5\wzc`ANں!oYå:~gZ:lO;əK-~=1:ja}5Kv 8&V%rэmt|%ء38jV/^\?]w%N#,ϖ㨶-D6|7/%T>ЭV#OK*'wcB։= &پDﷵS|$ Qe9LF>F3{o7 DvիSوÿ Z'|?}nzvaDNnݣw:2-{B735|)Q/Y0 .%~wa\#/ٳݏ rC3 .݀Acp//7FB/Լ,6#[RN{Ԇ@hI f 3쁋}vRF+3_ 0.  WvN]{NL] lggc800zQ8g\[]ڽV.q$K 7ݻk՗D]H7wHPU0-XdY(QpbQ[-s P(q~ L)~3 V.4Z*SFF~)@w(CHcD/fm6g48hKGsNcz߬f3EV.-03;3#G3k,+J?1:fKnY׺uU3[,qz^`e=ֆ3zY߭֜BUWfsZM xwKJ8<Z3(<³GyכG%e dl`L0,=7Vqq_=% :9X ӷo(@IDAT GƒlivM[FZ NK[k9ȿ2%|e3[Ya8,G3O‹~]]0,`%tmK\Ph~^mgU*ʖewdgm)nI|Eʭ?޲ gLyǾ`(- s+Yo~V-5CL>`lOӹy!ɦm}*9>z`ruO.:eSQG WlqI5vA|v!I78#LK}y+/RMhw+_.?ES|k7_v}U}{^WzՇ$oVUی#{'#.Gƫ%KF O#ѵU]*dL4~bhƔѷ3KV2cr`_j{ǿllƨ>`ARrҫ.UZveT=ѦEM~ b9,CZB5dƝcȭ @`ˋ__w$8'ݛq'_8B߄.Mv7'&=凿Ld7՘60ů%{]o]+ ӡVGmw4RB(AE "6ߏplR{̛!~srtkW S݄uKv+)Oy":ki9ka'Vgvl A0dQ7ǧ}׊8FU^=faZRa&"pw3^NM"Z]#nlrݭpef}T4T P  ά Bk@IDƏN@}$L$N8  ݼ4k{Dg@Ňٛ;ַe7ex ɺ2G\cVr-5\+acbBwUr-tYW%y{Y>$Dd t)lclR]EJ' xǂwDsIJK۹8-z7dtr'iGÿWř^>$GP'?DXܙ՜<Lй?Dp  ¶>7}Yh <`vSV#Ju43+{g!ڑ?~j7󝜱V"ݷKT>6rQZHvsA1"NN•\X0>:7^v(Ƿ<_2}췮{<+"`A~(Jn$H]T6:ՉdbnwյO;ǽuwnow <>Nwh~ƿIT"IP: m7$őUu~-rc05EJ4X-/1B Ls8}]/D )vjMWuDJx.fzU?r:l(3/Ep=bȂ֧+Nv2}] O2IbL?Gf7SxRe,KD99U!Et9|&Z2 ~C23xQ{5g%QliZɊvAD-AݳDꝼKz<qpd3c okO65EkrE&᣽ ')]\:c!agןK*9]R@ljJ":#f߶Zf͖D;oCk+3[I ,NrfImÏ<ЌU,%8#ND z~+R ςxRӕu-9h>V+9AخO͢䢃cKA9xW mhkyƛ@*O%:3Zǭx\ D]қlewG~hG⑧d'B~l97=RA:ILҘĮ9}F{ʄ=S4cɫ-i}˯[mdǣ!Z#r``#Kѫ`񽷕c$A;Mꧺ{c| gx ['zyK]>g9t1XZ$uX9T~{|=?*y54cwNXK Ė~Z*9[ ZekyQ+2kp@F+C6C0.YpH&,ByTWOr񢶝h$BY%6|c_k,ZGING-c`"qcƺ`!od͉f cHϊ/zqKtյuЬY|;Mgw0'|h>!?D{ӊס)wOF'su 6OFp `BE㽺ڕ'O!n`.dPAleONyaw-+ANSFI1x%(AYjvt@?wQ/Y&cY3IGng$o ;Ʈz=O0\Ks>\}}H'鎤*ث7/=-y1;`knU>,<(VǸXQt1ɪz?{x7?9>(.Ja;7]?*d3'K R OrY{&}0 h}^( ł#Vu7[ECruvudOCP5ed9|/b_E>O.>KH"dc5B_bO;02;#D7r hfk9 |Z@٪k[{3͇WKRrc淝IG:x1[waRdLldBg!_KkjQ/ :vJk*軝 ę ?C\Wp PF |Dh# KmpK'`m71t`"ښE ȩ v 6f'S[Ũxs|(q26S̷A 'hݶ-Û*hfo=]h_.] YlK?nG9)=o:g#-'~,7-ɷQ(]o=gr6<+I{cߓ|;Sos0u|V<< `Fm`󤀝1C_ꮋȌ`.ZxfOi0;Zl;H6P(r%1+`zȶydއwd/D1 $Y9|U=NdTk $ oLq PQc&eGQ{Y!M&f]5io(;gk6YaDTڠ?zrMoarfYzjeM6ѻ ΝXUe9m'N:ɞچ%9+im'[;~.gckR5y XZzv +4g\7R4XCv#W S;g2"N$iDs]xTITCF`c4NR3G*ы37gm&P̮Anh<*C>r}U`-ʬ=:Wmaq}֮~Yh^㽿(F|^7 B>N}ùk1ukUg+k\tS?:Q=d3X4fݬh>5^f.Kj:u'kBU 7/=Oo1=gUC3Iec6QX;Ӎy.ØΧ hss*`V@ym[Pc]R(Etbf!i ھmӣvʿ> -yG2IVΒ Ws4[%:CTZ 3^ ï{KM8vndcnsN|W9<؛J*U~iß?[=KL~-Ii6 J\V`|m Ӽ-m ǵz#ZRlJlpV>C{@R /,cecɀL[2 ձ<5!"t\'73aY A9.6H5K*b,>5 Sgxt)nm68k~1{ROh z#|ZXplv-RD$(Qgn>>}*Qa, Q8`?֟eB;ztDavz5|K}ހK $b^~gG&'[!'T9M~$];?q %fn5cȄ\ŏxaF${fRǓh1yN%xCbRLVa+݊~z, ;[egԇ^ ɞG<ݬ}:`E-*!=\Nt?g#m>g]>[ 8U:m1(0_:]O=b xչ?t(}eYxV,p/J.ӫhfZ]--}iuU4Na4V?T01|r{:)AK%?=W=J&j׋W9xOmqHJNV6{=N2 lG9I8}< 4Łܵpdΰĉzaiq6 c@d?"ӟ^\{ m/`줠8l6;A׭6K}Gz,ͦMG.팆hHfm}r:2d8zjyL fiOmT6uCɍg!q2V]x}RAG*P'($p!YyCي.6ϼ-XuBzK;?a0N 72oI3DS4q4_t9sFw_s\l[@sB);ژPMI0X&i99D:!vv#ֽՈGf wj+dܧ뮃E_e7myTJj׽&7C.6ڻPWNvuIw͊`k#WgfLI <`&OSLq Zypy|?xP^H.;5HI`L],X|.|n$ əS5ވl!0ʉdQ|ͻmNϗr42l{_e62œAcYnI,V3 %dRᰃ,ϔ%Z{&RݫO)ٛzO?8[)QXUhozG ^I/;(ʁ`&[2g g3d oh%GKط[,Iv 7%%Y 0ql÷KPk3@VȜ,lY(02 eCIiKćpբ)=+0^:EW+g h=Zx퉎 nX=[RU< t]əI@U"-.XydAn~lU`SnD" f @3\u2  19Ah iẂxU>IuWlȶ=,-آbɣ`Ve} ynC͖ytܳT'=(XUC)B$/ 'p-8?.|VYhycGYb%|̦'/^ʁJ/s&JyEbnUxSa]Ow*|׺t.aADx=yS8_<# Vg_z1:KzLQ|0061:_lkBmY b >AXq`_~ --1;tANo%Yr N)VW/}|S?'1qt|푎9[~d}!V32Ǥk8x~2`G#Sn' N~%rQYORθ28ƶdkr8(Rjst7'Oo[IK_=Zp()ՙh~]1^or+d7t9yj>6T}Gp'+de{guOUck21Tc:4eA_yrT;lJh$A4:zE>{ƃϟTD[xcg0@K3vK}? y] JZm4X5s 1sM}ǓC'妷^be5j[c^}O>|,P 7YVG7WC +'[Bjn(YuOIv y7l5G1I< = vgwP)geSud+paUUʞ 6ghP}rgpOO7ŠigCSt2N6Ih[q׼,ww@ZD qP GXԺ΂HBS *v pB),k)rpE+AD4dН:ZFXU_2ChD39ƕm$ ̜Tα@ n O?7 +: ΩZ4^tAnmJ8X3Kh ϱ7C~O 9Ϯ};pTə n̄r9DD3˫瀛t/=Nf7Dhk[:Df}w,3r /I g0a{թ zރ##8Ye󞒀; Ϟ?9/J&j~7;аW{;CaSX@'aJ:eksT[wAa$<(Q{h[ Ʌ;iGg7 g#ޕ,GgT{`$Ž>׎е%"U3l ssჩbkgQ|Lv4$xP {#Ku.d YƊ!cI*k<Ζvb[cf*KU78oŞXhQuʐнޫuS`W~7{D]=y+j8g]IdSo,8zw>x+Hҧfc_g$5Aӭ6M<.L%*:U+2Y^ٜ,е*\o >~]pWbˢ:-R* /tKP5ƒ%}<D(.۵'ʺ_I?2{t=k`noJM$#U]m_?@R>T_d@0DK #rYjqߗ+M&5δV+$تTlI:\Vg6ҽ|l;ًZW :iQQ19Laz/=>?'gJ՝+@j˸gc@[SD1Yٰy߸$n_1 x'K$ek~z3no.޵mQIsLw&ϕj/pKd?0:{Fj/4Y>ɧd}iRb|핡@SM6Ux?.$WA^IL<}Z6[ĊR[vb>]G&3R z. Y7w'8GɞBeu4yZs짢>A/M,cwqh6:a)+̉;V&]N/mRlx,bm6x8t8_\ ~L2k|w#wN3hVԮ&$hQ' l΂V pl[,f;Đ ׫MӳH| O*cff3 ȃri,ƌ8QcGL08?ܣXۈU1"RW'AtSbfrQ-eƐL[s} 3gqhYYxdf}qى{y>#vߺۮNGBooP}`̑YYϟ 6*2;RThiʰ'уsD׹6G كe I!~NN[er]}ط5xL pN) e'ϗ}6x3r̈:FCG$Dk{^scG2N;6SPUZrPAhsǖ.!itL^ҏ>۸dK}-OҌXKrȠ$ `%XoAx w J%EN, |r[@͔ ;r:1tc\͕ z~7s\3D9/VStɄkp_[aZU_x(W:ї3p4.&eaӱ[;09b~n*YhEx$s1K$h v3{=㖯w8_K_f56k ]%q %(iy\YKD^iSϖ =55;"M>(2]?j<ۢj W8tR~DI cI0ߔ KI+qk%@ՒM.n| 2Q_߲iyNed%٪0.Jrl1wBh$8']εszBdm!#0u&?,]0WZ^C^gMш`YI&[lԋ.tdIl6O:.1ti;t@{B[@j,ܘ \)BhqhTk ώZ*1ScQ>3$՜7MOcvoJr4[W|0O&e x@OY.xI+fzythhd{IumO<]#?&u =. o 7Ic[$YYۇ_w,Mc?@&r3KvY=d @4^Dƺ}d˔ztlW3 [m\IIk'g"+, sV?mLH$Ve1j' (ǶFO}Bt6ۮju"C.̊YiVkr]۶Bݷ٣oV=>}M#z0 Ȧ{KD2j[;{ X֏4cJp(cTᩬdb9hwU8e\koYEp (x/^.ҞOG W@<` %Ρt zt6',%H2Jr|\7Mwiz@Y,Ba a`ǜQ&b_DK}?<::mx0ZlS_o ~Rd_X6:7PlI0:{ '2 $ y@z{l婗7]Z=Ƿ@aWSu|$c{L_m~іAνkXqdkBSg*ґʹ}/-د*#+e%BB>QQ2ɐ BC-8]@I~ U*0f;ly%W "-uZV}(k?g:X%G:]os.Ё ܺxy N/SB 5;<??|Mߚ?5 zЌ?h>9dgkWrY?~mw]mϷcwAo۫n޻Mz믿ݦ8K{km`. 버ǻV 8ΪIGۋYY8/ ivS+sA^U VnOrɾ  #;WOap1En HX+pYf7 =Ѿ$}M<Aݛw~GVd_ҍםg Y<$ C%S|k+0(ig`8r9EN%8*:l `%cM@6;x.,\qzhTlٚDm{g LN'm)xb([vПq=>Cvɪk$YUȒxjs,5.Q){2ʝF{ùKV3y 6VUh4?R>ĤGj蔩^hz^>%{x7+0a݌ʓ}zmei\?GJ[ FNteW2gCK_7!ɞL$9͟ˏ70:%d9y7Ysh$:/ ~ulL[(''ZFjK= r{6WLkk D1?wY2񶭗y&!3]}6Cϧ?._ZoUﱸF@0?]sm*;5Dop8c4X+0dTјq}z!p)[v{dOّ%JBrP<2vl|eLc&o$0}sݦ{ /(1}<" Ȝq|qYoeAƞq$c*Jګ.Nӛ%z,u<9 Nd1A4"L`aK˴K9fN38L'<"}(xMtʺT#*N7zA~> pYWSd e?8 KANv,/߼I -O޾iYœ'/^A,KP сZ5}ɣot3 sTt m>Ir^xo,Z[5<%A ;Q Mݻux[*Ç=eZ gft~NO͚˃xCcf8. Y?s>7/}ɞfr贙=>; ?E_xãpt1?Iۯ.@wXKR5漀-_)O:L҇h+* [ne~ ~%+۬6XMXw= KnQGrE?ǶnoQ/$[jF,6N\?FWlo+Ww*pY>1vXv\tF2,tl[-Wotʇ gofGǣk鹋f|G Gv~wdoO4:*B 4٬C,EclnKŒeMKp%7KԶsU:ZkVSj "=?Ձ`ߏ !3|6tA #䂆t+<| f\ ʩ5١$n(\{1b:Z4Jz&袉:A.Dx~p ~r7qB; H#"4ڣR +3%b[DlXe$`7: ֮s8%._ Mo[plWF mi~_;&O7ZN;/۾Ɵ)]| 0yo|-݇&~챶eC?ɯ ;ّƪQ=c)[QjTR(|*G?O}nۃ/.?xUIc6UmQ@ntANƇh?yݒlddo vcdo8ćdrO0UD]e&Q1ymVZDkڗ.״A=hAckkeK{FѢp{:mxnɽv`sLfN1 >'@ 6{,arC vߖ_Puc`fO+Dh^ړ^>4> *%1SZU6{ȃm)bGGl-OjE&96,s3NAY?u UP7[0Vaj%@+TRZ^#c6@\>l fSLG4?.3uP__xJR=:e/60կ ISyeNݭS@ ?hoWv)}}VS Dz]z"e3(usykfmvOz\6%v(!ڕ<Spc%=޽M#_%?"x5yo+ "ݵP tM ,ML5⠬x4JO'3S/äC-紣?zc{kR;%>IO)v%Y% l 6L%e &]컠Ԋ*@c8 5Ɂr|pN6F%ߎm9.7Oк uxƩIш./]MwUUQcWՎ =Dh_҃]&L-;8g2ƀmTh|~$/>_޻5tp%7C&0hWؑ+KFdKۓ>T§7FfӻrEY?.oK37/[qQ[3bzҞǧʮVP(:h,G۝CID VBG.B9 JvA>%f?'R,Hg?k_$.L\lJVvcw[uχb+/x앃{y%`s>{q>B wx//~Z6 v>Uo'—n?8uh^cIm[R#ZT 'x抋d{6}UUӘYsE+o/[ "JxhO&]ܯL~!_8QW5Xg2QV.ʗw63EwgU荏#=M48S[{P#V8U2~MNd7/\,ΠG`oOv٤򫫊^,FʼniE 9=Mjj'Z&迖T8bH` &C_tߏ/z fO~10 `ͺh{]spݛ-XZX 8"t# -@g%,hn1G Mn~L{Yn}V͈LG\,)P Y]rzP,չ',+> edx,@Lҹ|:5Kn'+7Sϡ nP,Ze~j/?e y [EںUzGy&gR]TF^_|Ɉ& fS1XGrForghuw EOb#098>xw] <*᤬7G o|{V1@l|g4qĨ"g||koM>aPd6`EGʟ3v%ßΫ$I~u1^EL($k Iݷn9$;{&(rq,\%2(hbv}_A뗷_#b,y5~ƬjFMn&CʦR^ߤ]siZjfU&='h/;c_ts}74:jX?Zƭi|\wK3F_7stIf_7c4N4TW D.'@W2HɳMB %΅ W >~>{ܸ_}__~j;YcկY7ưh(ޅ;`j@I1ucO}.}<.SuMv-Yz ({qo鞉14 _B J/" Ը=YW4[y 7Ox\<%0^ fd=z A@qs{V_~ۋ_ W/Uqp֖ }7{?:D TƻNϩvMy{ʚ:ƥQI ݌mrA n&K".u Fݮ<ʆR:-8IAN8-JL }hlQ$FK"]bX[-=Mf. LS`XhgqV.Rxk|fx5 q8;`m/qO[qngV+$*-% ^zoxUGLjf "TցxTj=}Vb!F/-YSHS:s8o3B|{mxI٢!ny%V=$U2oP?Tz6M'4DCpZq`AՖozU[{Hc~Vk9UuOW#c!t|/7*Οm4>;sv {%і}fMRU6iw]GC>`pya ڙ ;2Ly΄*SП%<% Н X2*fV2T!2(,>?KlQ5?|)-Y=-dO yx^Z?S C*of;E_,Pm .b_TACx2 [/b |ofwBǫ{<#=B?~7Wf{O?e͹Z^Ƶ]?eݣkەaړL+}Vn`ggx=Ԧl}zӗ܂P:]o[ 9@Ax A_ƸGj^b8yt-8)fANJ=Ŧ>>Njf>}1ͣ2v^B^ڡ^ħtf݋S' Kvaֶ3tlZѴ zD\,)ܙ5`BG%!dW[[1<~zwSB~ Ƿ~7o|*szIܝ~7@|bk2P8]i,O€5KtK[ n MWO޷6?lm_UE] ҋժfs&.{dfZI8˜lݒ|=2W{ӟP#pe/*5p(ھ_n>6YC&cbZLZ7x|Ő&}?x}gۋ?iSVHT!L?uiCP͂0vcp(F X)BrBDBw0=@3g fN^5²)6Q2[Q&v[m_Y$ps6}U&G/u9*-9% -i-1.V1,+g<Ul`RD_ @]?7l+k߬W(/UC{Sp[ǐC>ٷ#˟2fr[pT3N|mku/[j^08qΖGpq ʶRFcvP0oG 4әa$  j ` :Yw ˭O/Οb>e6y6ϒiySFq0,Zn]Hc:H w+ǩLeF_~'?Y}\ (D[3^SAc E,_ 'j[\x%b{޻xd5gb9H52= tC*}臟~ t;e!DfuLlfҐxd1U09[evLC:GoP^4CtVW=`ki֞}Vªg XI#U|Yl*by-z/i:/u;?Cb2Ǘ KV=luʧłVop_F6=nIl?'Chbr<OZJ/IҽceFm@j2{c \鏁.]\K4%[A?U ZF^]:&L ƥSI. fnӟK63Carx\+ H(IG}Ӄ 9[mǭC|]wILA {y&~t|>'uuW^$}ٙlO P8,bp$2haDás+*/z!kf`;kOD\3|TbpDmC7{ɛ?d>o ~R4UzV鋝4uc$\8(r#1Vd8pݏoؑh NÃ\d##8z_ԭ'>Dim~ytl5ԧ`?& t"4q}I0Nԁ̗ZFzfқ Ffxϒ4i?8C0ضC<6b=M)zj8iA5_JX&$08K 6x/ h+1S?KLkZiks:ͧYdŧeķ ᓴMۋwCwd}+Wm/޳+}R8H&vIoJC]6O|DHw6 [N Tt㍩m:]z$ kGoGa1⤒KEf:( d7Zi5۲>ǍIPȆ{;[F?^]T?c Ohz/&ǚۋOx%!]][yt1>>m8r:҃c?ݶd&@٩'}JIz*kB 6oK-6c>h}`JyOd3>{$Ac18`D㏪!ևm^#F((@:KƤ ?%[|ɥrs\k`UCs~t84 (SvKA):xlaPG W3[ WL7;xέp{ _mu6G챠~ 'ߘ֨:삲:e}7i0f?LSKv8ؼČnP { PMRJҬ(}ElmyĐ ?>h$Yb_W{%}NЎ_a?m3d`E^ez^+'9ңwi-m;> Z]V2~fwe|ɩc %>_(ΰ{{J7yfWJmal- Y\g~òʔOُi_e}+ÿvl'bƷ2 jmٿԝ|,vI&"  H'/ { t%"4|яSu9inrS{u~210wYl GX~O4rtxeS`/:׃u̪իo OpDү%?GzVo~m3v(d)/ tv[cdbK}A'Oҏ⧲VGdG[r\+l=|$v@m 'Ą;',+MUSXrM9rן7mp8~CnMz=+:&X#}{!᳹xo &|h*E}pX߃~|^U d8a;T4|U%7$zj{E2͒s-߭}\=r@Co&(OCbLH/VW[!jr}QV&Я"l #Dk}ʚ0X0ftivɼvTnsxtf}E?L+>Öta4} vh+jtsv1%'oq<]ͧyjSb詟#ǭ{߯%M/;Wjj5k.ŨIK~r,>YO0pnl׶ŕٕGZNE!V{1UK8 .~Dh?7 {J*3o=ل@kl!.VibdV%J}g;|eK8Gw 1}@kC;Xs+>[ߕx=7A}IYD?m3Y 5Lp[?yde+ eO3 rxu$ 4FŒ}n̍7ŗhLcWxOFMv]_xV_ϋyy毳@;e$dU_?0hp5N5N֘''&]lfIQ0%˖,_$1ة2")e:,J-yNl,USY2@#4˼͊5ztn5%k+'1Asxlq%-Q!Et8M1C4 o`YT#ޣk+Pj-<I .̨;Q.s˙<~0we^ n:E8o0)x@0s\g+%Yk[f6srϏq`GV``Oxts:GB}J~z`8Jp9Mr)ەD- 7ưIhK0=c K\\2Brm% =(/@G4R o^,6xWl5hf`ane|cDd>f6VT<~䢩6^3h2*]0wKySP}(YW,Xiq nf33?04`0+b&L7XcVC c~|N3vV~-ni6~ȹLxp@e|:vxs& o6AȎGK0s+/qm`uU7aF~+Xћ]ӫg5o|>sG<>iOH&I#xIHM++6GT7v[e| T?~Աk:Q*[2սڝڕx#H }~]Y"Ym)~@fK`Z-D~!rd{8u T>Q Vӏs@V~Ld3 |fv? ,1}X2m i azznuyI΁ܳMG/p:m(|Weg3ٟO2Tx&I~tzrҧVDկ\pY_D%nm["L2Rζj}gK>Q*AOg9 Udie/b&vӖ4OMzk]Ӌ?kwA͊7 3یylI'`Tō>ڎ7w}Cu‹~ [? _`|I!y9;}˱ ny2$~%peni.ES_c &O&X9yl7]'[CK 'x_92^kd{!}D. %^VtQiԘ9d@Wc\*u>27Qѵ3NҗĔvܯl^:f+|N_Ox'B{Co4Y"lJ!V}#/O?].Xb3%طmvL1g(@jm SŮS8#٘%ƄL4(LQ*H6Z; ?AuIx'f،fz[[}_ӝTUZ!#Rwk(ä|3^IA}r'm&ΖcqZq;%UwF9g{O$((_>X t:wj'$<6e D1r 4bFl'1%.qPC3 |c?  8ᬄ9+"=r%^X]aQ(y~h` 0 p F<A7i s*s͓]sP:ʃG=>2d$3$+8uN9˗wm9aVNRGH-L̟Р~bL w}q¬ۖpP:gG\YƁ'➭nP׭CnPAfό]ǔ<\2=a,'m(꧇c4. uIdtO Z /YN {ch0-^=vuK%R=%njy+w8":[QEC=mQ=QN.r xYov!R( '_b枉%рߞrKO"7*64kr=<5`8%0f)8{ =6TOFxO \aNLc;8`zT J8m#ߗ/_l=!]I{=.7)Fr8!o AlFƚD@~CM;J-ߕWEgo ?zѤ{htϠl~[wyv5=Ygm>4o_%a+%;$cf6I.m>ЋNC?YY:kax^;~zO[^2m&tGg($ cm&PֻLDlr f8c%I]Y 808s/>8Jp pVn}҂x=*GGby{,>࿶/ :teExhφQ0}tU/)|StxoR[vR` 8Zx v<8ɠ2tnN<ąS\yF ڔ-Of>O<=X <p:wFH.Π,Gu?M1{,"}2k1ܚ$%/;{'dINFqfcU3b$}|fvJ=h0Y;}N6{ހa/tjݷme_}Yr^R^1\wߏsz1W]R鬼`O +{BXp: ZVOTR=sH_R ~~OBժH :':,E^~sɖ|ƗSo.𻿺x?- Ƨ`,nĝn@͡2nT&|7o4To[3i4f؇}h7]ϫ@oj7%V-& ߓ/7gz\ Q[$~vptbbSm ƵZUxg+vvɣn?lj v!y*1qfS|Q_\~i1 o5gs8l2sVSbz>DыM_GhJL&TlM*SY1}lGʂe굲Xϻ` - 4"K``r8.K1b 3vde$,GYCh-3c`H0?J6%4&cC:!ikF9KXv[B@b8,Eq wʐ{ܟ E3^"`Qx0JE "2_Ӟ=w} MꚟgƐ9{'f@;JBBAVTB' 8pX3tli[= L6K%nx,*W&dLsNlɤ1tOr6s'yG/tq}$O<(n@IDAT޽c#n@0lB~ |U|r-Lm@P 6uP՝Roͤm)YS *f~b>%!uj}(Y4p\y!HGU7d3ts;}L&WvpCꋛɒW-SY$Ik0N_3aKJ ӝov62T3 sz')zM[&ub)IojK='I2xo[S۶`}t$YM6 2tM#wXEF2A]vUc>H=(FmVM8͞-Vj[qk|&^|M);`mzTY03ќ_(A*UTշ:W,>_$܊<<ј/*V}To*%e;<~ۥxU>_—M~JqYůw_JFvOt!+ t ;ZL;B1'c'XV1 +Z_XX S|Gv4/lg& 7 ' ֨IQ70ҙM PYM^'@HltϻKj*^!VQO;Eec*+/ V6 aﳻ"%'@;x5nne4lk)/ܣ7A~jS%ypaOQz׹?\u]Vַf?% |IõB:' g[ ȵ#TƐϒ)psJQ09EL3?E£#cP')>)͈N N/eEE QMkzIj^⁩>Ck>$toiIjWG +DoOedu20g gX'˹Ree7xz $t[f,hm p;;9pjž ʎj'\Ib6vN:C$q_OWUHˀBﺥme@ }􉃰jA5tI\-\ǷkB.Wq~s s~I^}hyܟpst?HԌG80BAkO}m [%}X'rd ]q\|Ɇ>JT}4Xs46"[pc8>p,[B.}f,Pe4kékYc'K.`78 ֎rᛗOGvad`оzr)_0G n[Ϫ{'~Ӳzp4uR>kɏ?5Xo}So%wV%g>dCO.*|3~>e#,7OfvA|t}|"pNf `,QeJ.8IxneEry5HwI4(MbFF< |łU?k Nn_ [To UO:!|]"cK8܃P'S -tO+V#J+ѽ0=2җk%T7tyy `Ֆ6[M#؁~1E +_aʳV8(BmOI>_ځl/f}2^,"u*%ۍ't4Ӎ^pvJ6f—ANMT+ޜ•] Sd3߼zp|ϛ,k`/lоzg*.)gYWlq/\:x t9C<$ܕLпκxwJLHGb/C2YUB(U*Gp)V1tzkȗ_R&b@mmzR-o?ĮU\O6HBoͶC"ObX$Da|SJ?ИOR H.Ei`np_Oã9X:Fp=zG{`zM}οxvgO{}7/Zmչ\VY.?!zY Huzy-3wmQ[)vϪ d'FT'87Z*cuU3yгX~kfq`&pu;z:~3,h{xjpnꊸb,X$zI^QQ?̾}іMu_ch/6==/^N c- Lծth_e$m F''st̎/}&C#>kil*\>IdD %a𜲺vͳm·;.r ">$crfd)@ B7{&l5ΰ& ܳߨz `Ť`j;fVbTp+k-߀2[n(Z>ps8!1eQbMQhP%{/[uk h7sbPA6PN%C-uZ̟EjLہV 'N 8$-0eub4sD'd)!Qh [/^8#|YRbEG{)A \VPqZ%>K*cx:zW39ql_lL2Zla,n6N h˥ *w/^q@t R5,ɢ% Vz&T8>wK3tzKS肁VIK '`k: ^@v$l.jw: q U}lrnA;N%_paEY$)׏sTtٹ9 QGNqeiUf/H^^ٻǣj jN2f_V "[#ohql=)x ;#![7_tXft_UˠA CE4"Ae7ZQ/}m@oW3/>ޛ!Y5DG?to>~(}C'̵V9*?V+]2d_cp0mYDL(ӁLmaxkiy7_{K>#0^G3HкrOCK`lN;S{AYùMQHqB+*v0% h*%X۬,F:I$_]gW]w>:*'pn |!mݣC|}t0Yg\o3KB>qecJ:`mĠ1t s}ϏG >OmV˗VDWi3] g1}ۥ:CDokV;[=zrşOz-NfMMv@q KztnbI$po+d> WjUq= D<=NȮʏbciy$}G/jV[%u],DIdL( nlu˜E*^u~._l:H$W:8ZE|ci$/9fxUv˗jx}|?r4xJ>#z 5Z@o&NNKW<#n%Ou&ywUV?rNqCϣ\ ks"ZnE?1Fm`V#s!a% #1ƻe(}\:.Is B12cdINO ~(?ʒsZBl( opfl(d q MP*7=Zpx6@c7Z( q <҄N 2e+À!,[AEcdCA7(U~UhzXyhIS`D{7fTSgFC2$}YRp&dFz:dHx{/) \!=X!ܻg{"}0$e{yLek0ߔɺ'^xDt}: nEE@]72t}|ǵqaUr_B2-u<@ txeO|АN[m˅]Aa֘{3*/~]IVHog`Yo_~ly-*G۟/}%Orř9c.H1z24Pxq cU]QR?`Ik&ny^Ǧ)l)5Y.εj:R!Ҟˇͻ^YeB'zyktk+B%%7iɷ{z˗?K‘z/Uyf#Q.9:]5ȴ:lG][lRo>_B|ʟl,U38aX+S)g kO¹sl^ - ACO]V}_ y>gh%<"WOmY? 5l{FUkgZUokO ߏ8zc88꿆_t=<g;b V"x:Z1F7/cÌ S9&:ৌ:N2?3h(Q_w:Lb' F6}ܒ`b#~h0E,Ny\]sHkOp1槐9bDySΌ:;_?یaH-cFz,$𾜽)mr[SdsQ0uppYjv fJC(g/'Y7p(G['ap.F9g}x{Ԛ9JK?ݴԭU30̾"k/u0$DhznApsaz f \,n@uzr=(Nh},]s$ϒ]% OrJc cLCt7ZxÖ()  FCՑ<ޣ%6]!G9IҘP&%\'58SB:\k/gts,o_f×O0nO-͗ ww+ħV8` cxy>ƁpV:*=1}5~;uyH_!۶ǭgg' {M1]㯶8T ퟔE@&l1IᕽW}A&x݋x.^5`!]0n VI*- 7:"Ȯ>'̇ ;(9[{9PY%iӯkgۆ]?T"{l:Seo2%өUai6ױoPx;A.' 6>foin>uh2cKxٻM8_<; gI9>_V&Oчo>#~I [`sbJOl0A`M dJ:ik8c^7{];KR|:etϑX͢x/40EϨD2:~љ/'x(=~fw~"Ʈ3wݒc+^pq9O4[)I7v:gh:$U;ɳ&I(aٙA>Z<O%Xg7 xX-o>pT/h.[Vx>5>$q:ZwS*k9Z wm$;F#2Hn/Vžޱ{NE1y*n_W/p˥Z9pOϣ^$7Ή@)̇YxYi ΔWhI De[9_h7ߏ9}!8HJ֮.C~>H"d%hc2'$p&w:S+.1A[m5Lg K)wV c>]WpV&^f۹QS@$.oe֏7aL_,Φ>f8nХ8mߋn{f]e'5:]弻6FN1K2}d8;5PbJz.NC彫I7Ŋr*|teXQIv ~&VXZ*BX)>A/]Ǭ.ì)2LptJpXS~mlƳLnl /13ڄeQ54R|OSD؉ l^P29u#KsbMl=ߥ?<L猻$1vmtXm2 jijWO>6#bWc=n CgJlYyRݪBFCAWP=Qv)}e9ɝvdˉ0/ q0< ^Lء)))Cp8[|T7j\0~Ds."? G{wPT``= bR w{% F_̱'x̷* 󢰔bgƔǞMbYMp$? p)#YwCANt yS9fz5{y:ERAeFFYsxU'p!FJ!V_~?/9P Sc7 L?6;]lů{87dMƋ\+q$׵DU~lۖΕts T^LBzw]V.@%֏ZI zߴG_2qɍo 隙,.NG֕gNKx{Pؠ)FVt1뒄 ߼}?wnvdH*(m x?mDw~v6@(xԁ71ҶZws?=B|Tқ~R뗲K7`)`)zѽ.]:Wy kKk<]IlrKop%]tm;/!8r( ݒz/m/݅txxgx!\Y? S `:nNﲤĮZ li|f_yIv(APVy6\vRvc Y~ѣgKWkr Y+B/ ~Q%z+7}w1O2g}~b;TYb@Tz%.eP%oX}g_nCyWx%jmб~'{MϽ允ڣV*=xJ\Q->AߒroTfwmQk#ew]x?JE[yJplmUI@Q]KŰޙLD+Y[}=ǖ^爜ƙ>Ehþ-/%Fw؟uԇM|!0}?ųūPT$ |cC8GXމKa6z2Z:!ad1>t(ZBArӑ۶jkI=I +r%­??&_4U|+·}]T%z[դ|Pq4 e/,"Zw.tINIVll_80UQh3JD|21I!IO=_,e0I|U $vK$ءtEJRrG>`|ƾWh,BlGm" #D0;`+B03 Et_A fGQUx(ggw7(DpdPR8JU˖ ĸgd yεGuIgUGk`|8M)fhfu)nE f|,dtSЬ 3b-X[cbxp\`)D@]|Yӡsh9(-S509RYـ)r߻~h膁)w~yˤR=x&)=r8bL_AٖLq诎Ek)]]duxI7U=-<=I 2@GhidVD7@4h~[% A7<{ڲi_ϩ7#}fO E|YfB1SN?Z&K~dum>VoCa>:{N0wlc~oU{" 8AKTN=ft^ IU;6Əylf`/DeutahbǪN .ymEVhnIu|G>N^[#ϻ׳6y3ZzfӕHN?vӺ k ^PIˋ<(Q 0`ۄ+ Vl| &=bowuSPU%Kbc`݉m]<{91KF懯<1n՛h严[N^,tbSv߻ 2 f*-ÃTkMWu˓A!%m|eM"oUpcN&Tij[hg/ZIՖ\q KWC#u-Txlb0@ QDg+}Ɠ,3 4Ŧw'z'<~\Bߟ>Wx~ój (+2 X]0zMx|G1[̷mCѲ͎J$LM/Rʵ/ Z*3<V2%衶4ՕԖ,W3 Wޫwgui-yVTM%oΗ >:_Ƴv hǗژnѣ/ևMmgl2FaDuPQ? al `Q\`Ğ 09HL`dY((}PJ80< |{؂h f2 LЃwv.qp(zn}[b2,2`fJ &d6 S^dbqpf/e&655fV jq{BÊ̿vWEG|#}ư`GڎV n@@{=E4,"U ~5P)shP::<ӿCzD^y٦4Щju C688}G 8H-O@Ѯ{4խlz{ p[lmur z7qk>VKsDm5`F)\zyߢ t0$޽ߓخng:D=}ԞhKzQcb4ZPGOzd7m+l:֠OxCKyJ:cU[cX$} _W8G§Q5Oy&o~u\Ňeg с☑!F>;/I7_9xǧCԄL\WM,)~q!8`x T> ATWr\X]:sqL]˿h9-[%{^!4&7n+wbd\y\51Fuw`%L20M| Tu%C.8fxɛ#tys0$8:EV'黰|ދST];=~t^=$yװ}s//YO9=!BO'}>vX3`Ǥy,p9y֏ odC]c!`{0@d3?c8!yк7'c, ndh6DaI`RkkfojkS8^͖[6RENj"_lZX-A-~C]QJ}JO]83Qex]5@?\!s?O0{ hF{l=!U=G=y3X3T; >ܴW4VBIjv2t"Sj^߳j$:BmuBFf7%vV~.+v.B0=fQcB$1v72g&!z7Ͷkj=9Hhׂw͆Y~.ݾ+,YRdIOo//~Q?Ι+'7LFR cfs7緦#;%b63!OًVI<`oYvrٲMl`D|kh!eisO(z׌6J2Hxz0R}/J$`{P?ƞ,\R4{ "F .}_kHN7pSx}"PZ:O%%F6NsfoEqr [s{M‡^O&—UmN]_\b6x!V_Ƌx؝%7cMG|S8Zw7Vh.Ó|VUIf.ڙ4흒!l/Xpgu{gY8bߴGKjaLpB,2elk5Fn`N͘'.nAg1 d,H-kku V=?;YYǿ/ׯ/.b^}׫3A٥2>o%X|d>jA0hraarD@IDATZrK`|y񻿸xj5|/ӽ>vqF4]mM? _ ^Idܨ-,V>UF>{>FFo%n,i"\}I:'SZdce^b[%х҉+ 3zZXx ^*o,}9b?'b<: i)9̚I}o{:9  eGtFc'P0W9&03`^kN>8 Cxdtw N)։Ԟԟ>|z`O_:Kϝ-={’:8p2vfd b{ٷdo/;ذ9E."|0vX̓pUPx`ޏG#u$y d+0L(!ٳ4 辟Ze Ԋέ^.;_'fA fZv1'I/`{]tb G/vޝWoƀA;QK2Z3ist}sAU{>rӡ4~ =3foÇxK7Vԥ7cmvx})|]*Ze/FoJD |T-Y',Ҹu`KtDӓdpz?IB;߼zsqFߝ@g#{ L(Yߚ]Ӹ}O?- ˶]y=7D$IHEU*r HB%N~{^kc5Lof/~[B[J@IA*v{v'fot"<PLGm (;M1idS?~4Kj#G.nnq -‡_A f=rB:D'xB)uu{&ۀ'xWeȡ8c|EkJ>AYȞ<&mDrj uܻNɶk#I\lՃlfi%pmrlY2pK Ii߹Wgd`u̇1+>NwPk#t[Kd7>9b%Dxmj9d7lm۬Kb1%>3>%VM>p^^=o,9ug"@cfKė¹1Ǔݣ>:pŏ?7vo M"6};?۟}d`N&Bsi3txs5ƥ2h4bVg\CllBo(yl{IKF^I'_u⑴GAK#J?sG%n]wdWa弼ob66\1z#cg4_5KD7'OMã h|@x}o*?i+:bI4لm t-G~ x+Ҷmߒ6;_Y6}z_5YV7LH+ޔ ?Gx#Ř۵ʁ |6DyD3[Vw)ƌ$ | 3|;g*or&'T3f.!j5؉ !X 7g8 O)*.1lP ۜ"*MCE`T"5"mIb2en 92qrz4bdLQfrK- z }GH:aUW.u`:%]F+|C fk/-r7&FUnD@h;z‹{T?0 0܎OQ3A0p❁RL(KU1Wsx cݲv"Ll/aͲpn$ǯ {NDܽ+iq/ӻP%I6![uz >UJ?#Bߛ񅽺ዎ/wplj5 ן&Uϼ}rlc%)e-0GA90u}H+e̊ |%ԣaPhh3e %zg ޶"oo/י/Z Pt:v/kxĪhZJg#_p$lJNo˂mtwS'a<'48DBK4~LC5jצl7<\‡\b5Y51삥ɯ+Q>aȞ1^v G,(̸1}vB$<*gE4vYiDu&09]Pt"j rI4mYvǷ|o*:4V ۋȩW/) Pe2)mPwiK !F/NS ::WU=ЄMd$}b_|!W/#fvFxubW5ʆig~fUeُd҅+xiW 81֘N!:<6vdnE{W&3ѥ>wg|5y (TO_ʓuVl%@FpFvM2%a/e4wyk{T:YMn[Ϥ>2WRc&>\$VkʋY#Msmrq4o)/ NY􈽧M[J^ljM>8K(y666෱";

N ۽[.4K.e1U؁ID cpdєM[)AcBp`rM)&R309vcDa{$MR¬Z@.؁a}rb㈽$q3fUPZRpG]3ɜ8H&sc D3;L%O ρbG"5c60gHZML>˯¯%IrЊc A'`yc`#}ןNޒoIǠJVo h@?&O ǐJof[M9:{|*0T&ÉtV:MQ> @!Ⱦh )?٣J\ݍ[]Ctֱ7^8<8mw9?= G:M6[g7LKy?؊v-5JҩښC˽%@,C3< !5[3Qe/j le *];i8[lY\HwI*Gzlsb$lg!&OřϞ/~cl׮ouEx޸=aV_>X͐sA{_ow4% /r$ dY3|6gg<;ig2XŽocѱ6-;`^RI qVmp@SU [=Ǯ&g"Õ -{/Z`8[<=۶џ }Y+eL!Ҥ.zM)Ou; vDŽ%tZᢌk]s\ R4U#ZUm'ί%^zg?ڑL3~,#IސڎۢlO[C_с= %ZvV6%Tgp|a|{l#%b2 1W/8DiT SwmȅaBA}j6k:{Ů4Wig_>x!Ceơ\.(c+<9>yS^Ejww DyN)jҭmKa8i/Xn[٢:$mŞ4_qykRvj+2KlMc t _k1*~RicoV68[Q3Tn xo P[䑟J*-xS0Mz?:m7{imB*mjjxFx8y0P&or=Ͼ<{x{8M{-'~ O5'o|O9Y1Lyf@%HeVfzOnIU{'l{2@sbcv/3j| PNIx@f"9~uO@^)XKV6LFd/U0}m9~/aڸyIM-O6]2u۰z8&}Vգѹ % \߉&p;r7oغ3O~W{Z9evess1)dwSՑNuxG$\b'Oz?Cœ]oCA_ZF~w3 !L':!;'TYuzHT0$ P¡v I(DHDY`@hu3tfGpBYs%*c'팉e{ G~[D|^;V$D;KP\ދphf}SjBmNUk208bt]fq| ڬ>yR9xl@D퓺;^nI&TC`8TUiJH ԧF2^ knKj3s; 2g2g۲Dv^>րi9򚬄#9B׺~+X\]|)瘏dȚbh6[ >IJ 6+x6W=nKsntp#2w*I /f1 }=Jc)]p't72^J$b(ПrWγX0[:y:#qB'/1~t}N홊kȖ2#Kn{]_t {Dk^dϓ`6㩼@laorFWe G:G^-60y X;Ȉ,_/YܖwWolYvhggې~`#7 [HUwXe+G? p >W3Tz+_ ;:Lɇ^m{ m3%rGEuArhosX!HԽg)~f"[+0Lq]'L6g[~'lx3WoÅ̓,%1kV9!56.=ABL1=ɡd6:Tg%l1֬ɓ$Kct !I<*b~muq mx_9X-?*txӅh}mI0`{>IkUHF>]} * n To`B[3wqq_nWz`O;h~l+kAśWxhRdp#As3gW/5Yd ٽ>;贱X}& TerGG@Uo 0-c\ו,cXF͒]cMc>ߩ 6Rb?DK\;}KnzfgkQ-X2W-xӮ Rux)VޒC>K}p4;3a:t~*!]1ZMɗچ=z=/y|U(®}TͳWmv߹]g6=o&AKūsc;å/853\1}1:~}&(=]4U0ѵm.m6eUo3U>xjNL࡟v%kpl|LKJtEUij.Wͻ1pb=>:5w<^$vqH[Um,uRbl6+7 5agQw5&_I22]R_ 7m[U;D zyi4*umkG"+KTc КDk)0ex .+q/8apΐmv*`̈v%xcc@1W{ Q?!2KՙQ0%g <̈9bTW0"pA0eo1&j3@0MwFvU,fgO. A֍48mA͑Y2A/`pկ3\U>fF¾gA)AAƒ)8%D#_I5<;o¹3| \z~G[92Z?J^00΀UB1i`"-uq vx 8ȓ]˘֖j@bDf~l]ݒlp;Np^?E 2Uپ'oOVl;!;xmkHQ[%c5sDL h,=:=Lu f> לŚ!#_ϐOIBNiIx hhlْ< >D$ۂmϪ Z`U|vkw 'OF':,l0zBc'=hԏk9 [7*l͚,#ǂWarU;b|2{l]88_ſ.\~~۬XpgGee볤_gg??Qvv %# צ/^k9l#>+926l<$תyy֙2^lr 9r0Hր]RF}/h X6I. 3sֹLG]LfSlA6bx̜*dIEp>OFO~,|YC'O51kd+բ\q+&n%wNz5*vs_6^[X}۟T"̧Odt<#Soym+)@Ms?9Ov]s}+?\_C`Ack{[j}vKAW Ouu^S,Jﯛ JNY}Vzkb-&S}/d=Vw .P@>♕Jy4.tǟ~qVbI ul8>xx3~Q}O7w,$Lz?>br=B,&~Y9 ]_KLn.L0J%FOƻ:.ڏy-`s[2^+$ED>^ ҁ vx::I 8r:"V0gw99ƃQYT;U۩WBCK$͈ 1@P.,$SMe0/\1Վ` #`Y #gxW} "jzrQ0ً}C#n5fjej6VPAIa K7\ `$-F*JCe_ a?f34y·>fε{S4r'4)]3*5eٳcy@z.W?zt v;Hr3ԭzY܊z<_YX>G߬@U`V OI n\ͪ3|!T((He֏p3Ep=6kYurngھ1C` dڪ/( k/2:J&8SV0><8ի?ABSW^r,;Cv%mg,JuYfh t%hC68նAx ~C^̳@E61Y^sꃀQ J} oЖGҋqvGطj̓IQ߉Xo0lsIxz=P,g0{xOO[B_VD!=b/^tX遱,yf+91YDlje>F08p9$t8.1)IU7{e_04}4wrvCv[<ʖ+iCސ]>oD,P}Go]:%WVVxir $%DjE<џ|HR΃ZFk0V&/k54U/X62TO.Pk%5V@;KU_>sX]\Cһ1dNoaw }\9k2o Е`xw_<$WXkX>'Zk*:P 3}Ϻ?~g䓏gȇELjhSRPvV׿cO|k'uAnc&/%Œ&\>?ۙ쯀nch2Vx=v;mrVˏ>|̺7eL0H:9ZrgvdFH\ƅo;|+%Q׀gKj"~r5|f$9Ej<]Wj`yZc~d o O7eCWoez=:donUdӀxMTk6=aG" k78j_ Ag25WX։ۓ}T$s̎å~z3,0@#HY̼ UC7ve[yOӣ;Ou#:.E.ʛ@5a8@c [+ A (m'c}^wb$FnP- ݯfY"$أ3ZzG=Xil[RA`)0xtL6Z l] Hf`)ϡrQ7\L'9Nl aBUHPkFR3X ';a|I-crʶ{ ctp!g 9OB`vhZxb_kEeРh+geNnǷf@u{盉͂F78;9]-}ғXl 6cxкovmOnp {6;Qjrx> 4~f dph_nVrG_'zV/WrVS[rMVKI槄CFP*zU^{dk꜆wݳt5ɋ rˉv#%ZWWjӱ 'v<#hdms͆lPHw<1w g2o{rC,H9vgJV||! cKYm֨^O2*q-cy|Qd;g?Ft̞dQKhOr)Ȏ<m4 ٤xG nxc|8;KZK~B͜7Jv_eNeS5nX9sgT`O 2Gezʁ^;>v6q>7[bڛK~7TCwЪ ̞HThAi*]ʇۜ9[}ge?/X}Y z vw7~irb*/@)9!%ub3 288J8-bBvQu3K·Y}^G9c]7CiNd F;X}W<^sku` hNh9/0fJ ˖E9{sϊ!6@uGt=18sL#2:Ty#dX+$$D6$%b#bTx@fL4\ClƚKnhLUqO^myNZ4w8R}ɖ׿ԓIniWdK^W]ֆs6J;mL}zL{&WbpRj}_Wg2*Ɩ^ o nOo0 B]~˟_>ˏG\q^TF>q: |Ufw]z|/yvV)(zgumY546 #~_GB&PkH..&yclgy,t33R'/Kwȱ没Howկ/GM4{bhg7l^Ƴ$YT0dU NPƾޡ>OV+=[} 9c{p9#2u 8qla4y I~hXhNRH`^͘QXvۮq6Y3|f4|^5G}ɭZt~5 MV&rXw_L11[.HRK0 V8=y'>3Vz"'@m=L!KQ0f$"N/xS_A~#O2c7VXoll+$a޽>#KRβM0h<>N=^S}\A \6 e0rO/ ;yOt27K8"yDq'V ho ɐq]*%i%V4u])=nspmj۰1Է*!:_lU 9ud p^Yf>\}g]P{_/ fv%OђMuvv$:0 2Z5+{LPYD8S/LŤwgMse, Erz&p#4bX{Q՞nՈU/ ٖCpX Z m/'/ %Uam] }r/C=+a5L@AZL>{g{2>,d%3L-\7>~'3dd>h:ZDH8%K&l9ݫfْegL]&!0"+CwݶB;?7ɠp1ӿ|_s^.%+ٗ9x2$< Ʒ[޵׳k+O_['٣/?h(L3Ίi@b?ddMA>)4$&_e<WRF(ʵI:~GiB%-z#v %ѣU`:'mGǗ+mI";zD9]ic;V_1>4ƺ_G~1ph(+.0DVU`!V'˘Aލdz"!Ftkjs|/3oijA]uBH>7NTo+hRA7y޽Xggirn2I^$"DuO9?xtLE6nG7r4Ɲn\'d`mF؝V&[P?Ttg!HK&k='ڈsYmqՐғ$/<-avHO/OOٸY&7]6)[NV 2g/# SıfK{m/8  F̤O9w="<:Fj_9}h#]$8XG 9! TQ@TTR=\Nipa~!S1+E)PJ`'gӸ#sԀK'ګsl'Hտ*ٌZ瘠@|{ijB.Y$": Ntp{Ė^pӛ!%3o,w'M@IDATW۲. Gqٻ|m7:«vE!@.Gr2)nkC R]8ŭsE;ppR,SfC7Rt_1%ږf#_;V("3HmF͈'nے03([ C-RjU0 )xlO A5v K{CL5|ϟ7٫z{\e^&H젡\Є~1jM E~dh%SjXpܖ9Tut۲ s3\0\}&H| }k+$"(yu_Tf?"I`X%ḥɄ elAh9Xs 4 {x4'J Apw2ΡÞgӒi }|A6HVŬ-9XVpR<ryN,=vLf,((neã7S-uo8F*I8fFm ldsZ`@b:zi\ξFIAwN*g`:WTt Ew}ʞu{R-֦Fƍz;FTf%;n6Ur{)lǩ<ҿxqXQbJ3VJxA/A*(A%C*BU7(q"',m!9t6,ɜ9WbKW#[!O|fKQJt9J SbmdkW0ښFgo,"Qgy aH(][]ɿ(78uzl݀~g%>R o~%|6,c|AW8$'] p`۫76?+{u"ǜ ~Wa+ /]FA|[7<*p"{KoN r%8΅okk\wF\A"YЃtm~GJ O)]FSg ~B 2$ȖNtl8\]r}U6$ݽ?:Ӂ;Oy:=?e+>;h4G?//_^c\ciVEgݾ:9]-idC{ GGG?_^k+RO)5J ~u\UB0S|AE72q_hr~8Fd8I~2$ς rU4 2IJB-lȑӒhZ2Ʀ[7>~O\I1}cĨ!{"y;> ^i{>o҄yTg|y/o1d|1Oلt!jcpc}wɋB2zX̱s+4ȯɻ1k^U*_]][#1@-MwO]0EhU;z"x6[F_v~cR_t>6Q_#nm8^׍EF?Y( vpE,d$4MfT>w`2q'vVU/\G#j 8B)򶊹~`sPb,y !`*%H =YR OFiNG{/#MP%3:e6ۨ ~e "tVs|>sR_De(,_&r?s^W91ޤXi0O 1@L_FKzN?%сWz~<<01L`RR3d]^+:4r^h/RJu%WNhS~'eղX:!j=wes ,)[dꁇG j^}~"į8A).۔Syˣo$1Q'yq7 Ou9d )[HE]J]_7 3=TV%q}_uT-`ˠDhѭQkoW֧\jmX ^+EeglU5z rPޖtxy58"\&@_]moVݞ` $ LI+3ov+D Kd2sv2"2G+MKژ&w[a <0o@tYRng{ Pwyƶ7zLu?e ғ7?pvyǖ!Y}Zp\%9q>q豍{ TmHpHz} A(J(G *Pm6$e \9-\8c3km[$gk&U-OpR"AKf%w٧l+|4k$$`6[KrhAOJ0(Y1 0$U\Ib#_썱c%HrMn|n\EqLbY {*{0W&׽Nݲ>x&[frr$E䏽+aTb ,eP]x FV<t%wYxU9Oy m:4l>K/n%h6ƼɄb{Halh2K2 LT.|lCN8Fw@(pNgTX}quw }Vx ׏P@?D%)tW_vn(Z]e Ρ_nW /M˟կ.?.w{s_||Oחft*3`u5۶зzd{ul;hg?']~{>$FلV8L~*k5V؂ϿLpߴ*U"7#se^}glZU L]X{痏?J[?rj bɩ~2l2f`ef{U:kVU_~j]@T+wIo\}n^dUeuע!Ԟ#'}$G?Wӿ/ՒkN-)N6#m/)k]6޵-L~eL*=brR4r8 # p½`џaYNȖԋ>_w%ز<"je(!V HA oZ]v"Ϲ;)Lló#j=6GktBesN9$ shWsơ@ ;s/㖉YGVt8܋. P9 q}?y͂CB`!-O1ÞZepԃܲ%%^+$FSU٭G `8>;G0i 343]z#q˒`Hkn^SEC9mH 5ͩ/` M,NTj}O`Bx{Ykc3q]1/aK1*17o-NgǏ1H%3ςbkj+"L8[{|dQsp\y7 l3M|Lk_) _壝_wwX0O*.#NCׯm %ʀfw=Zʘ ǫ68ɠxW#:ᝎrKJXxn&3%!t^vrusz4hlO5ݗ|˷-CVPæJY`e# R=J.ĒjҠp ?vw%ʪ?jP26&ϒm dnG-#,"Ifr0t0k~ar0(w-lAgN!.p;$2v4vH\ʆG=[ZYzZ+Kj%@ils7vA+i${#vx)sv)jwnRA&o*K88ed;]CL [?*#`A+JG"6v_Ռ_0'3"3tG2^|2/o^$sә{#K|3<ґLxO=џJ/+1",0_`:lLX=JFw/$թ=hI`$e &՗UjV(=s];J$lƜ TddhR;U9.5;[|vdr7VB/-xiqzD^~͈w3 1ܢ/J8mVW0'SSW]ތ[pfj^,7ǖ߂~S4pSp^l׫|ϾG_vOÏl*v0دb4 vi.X-ߊUI v3l_>ܣ{`aolmaJptg8E*ߍKQߘ' ^uxcY~,Z+ ANѨV3[ `*+g9q;[0ݷ3~/OɌ d^u!>9]|pV,qP^ W~(A MzӒ+&^<;"ݧ>תDz}rK4oEkژsio+Ak>>T{h2LpAW6Q$]"@hj| |~ċ>z$;\N c m2Ugmt; 868pиĶJGK|$غk| ~h@8Ο~*gǚ9 8dһqÄdJ!`צli_ n()3~nV`gsvQJ=E\~W"=WX ]:Og*Mp|g?/.[O/>x2CW|H98QB2Í1V `;=3Bۈ( !<7dhY;H'b+!A"Pƴ!cͲsF` WͶkkGza|_} b S>ZҖ`bJ1- E09ܺ6Lnne _Vw[P:g$kFUUI@9 pmfEwiȯ-3' sh&D;ϨpH:gu]H͞kR!tPS$&j JC5ao*bo-d s9a.,RA8ܲC4&N> S3* /'E!,܉;Z 3a4FF%NܧMюyg13͊nPȠmV81[APa}M ^uWd 0~hgK8$YKEQ czlR+-4鳙5s簒s^J}GT.5}rTُOy;HXAՑ[rDG^$ZFZp y~fkϸ}$ZD@?ZaqܠɆKZБx`sC\ Y"m^G{)HW+d}Cvp@! ㍥h>\Lrx K.{4?c; d*^ #M%P*hKV9IMIJ}.On6g" 6nSsM؈fS%/[_\9pv>6ưk=,^ :4D {Hm ۲W;Yz8q)@ƣ-1z\k# '{'xDm^ϸ7wBɝ-2 :#^P2 *`t7{Dk4 X6wC(Eͯ֐mj^ão0f1H)tGLƀ ^u4T=}@Sw_]/~y?оfMujnqV+_${ZvG)&*Y*f}ʣQva.aoy},q97ɏ9d SZ{v|nYlض}?k#mՑ@X#_]\|HNv!B tq\ ]c}X}*DzWτIB#⎯>K 2ݽzxݛ^nq`VȮϏ&E ~821~ۖ#%݃\1m5*vN|OJfu~[o!#Xk[u[Xɩ!.?Ш |Ťk; 6^|BR޷ gBCbvoo)"o6rA4Q <;^ _G&Oz?uٟDaeKlux=ϒ:2z*0'ReT7y;%Fl{M F$i 2\9}ŋS P{Rr[:2w9ַS\ʚ\6 fJ#׀b J_@ SY}`A_sյoYƂl*-01g8fS9Q OofIB$At_nw`Z@j>G']c 'Ndam`?VXVv;@$8c)cO4d;-ÿPG~D͵צOK;&蕃UC0n1\~vm JM ])AbIYl_9[f]eZo%/Hb>^oWؽӖ- ka+;,΅Kt8DjIxe8U.k6f`ƻzJV95![?Vxmp0K;2A)J!wpep̹}7y8}bmM{ M{{@;ݭm`0 񭾻5 ֚5iM%:J6-( c*M&;A;S[ *Cow87+x0dK0A8c] ,`wx]?Zb+GtN`tt6#Gr=2%'a-Y:+9+ 'PCYO(|p'Nzu5xlDVfe(hZw9?13G$=YG.P0$!ݑdW%*l;m u$x؛9hl<Ňg<)$='pAe@ ` A]V98@F^4w;}e- 1:wMߑ^dJ/*Qe+V2eʣ=䪯qB$w!_Nwqt8K9 9U֗ƴ`ţ%qb{o}>_9!(ʰW])ylIÞ 뿺eK?O^]iU|vD6w<;PldU}@^dMZw~A+gǾGo}k]ax'Þ@NlsV6*_v#6~sK уKn҅<$=;d)ˁeIA2}_Qn*^T{ Lx8޿^v>5³qҤٞ\V|lDɳ6I6 zV_~~%s*_%"fž^@nd=`Qrs˳{@"_0_K+5Ydz}, FK X=v%yOys[Em 5|CqpQЎ'0rl1e]_} K YvV(F'OJ!tSʘDs8hb3g[-R-7.15o2R}ә8p1"-L1ak_mp(P&gԛFob`#?/=@W0#c[b͞:.}~O_|mҼ![=ô}}3(8S6|vmAy@$`9..u17j2N›nTU"c?X(0=O xdR7R9D_43K?e3NUyx?z=)~2;W%Qt 0H|Fp ϒdnN6Ib]bi3R>7l$_ O8b֍U]'.WG/&yZ|7_>z>O{x#qƓ]x/vUq{)5slI_m}ϯ{違aw/Gvr;? Z'+^;_@ec`#iI2qƁ O ј\#1yzOx vʿ4BhB3.dop+Òɮ{?KXO.'5^4κ1,9wIf&icW/~.K´e3Rrͦ^'˃ƦȷqDĕd6M K6: ERΪg7 FP V{~}M %I|P1mdvwNL 7/M(ފn ٬jwZg|V XyIڿ'[8Xi<-~tӭOv =?uOYj'-_տٟq+C?ZYIr_v1?Ɠne0Wj /ȍU7?Nf 9Urg!P_F| ,G csrizɍّg0((rt¥Zt}iF դSV᱓Yɂx '~R\3Z#6_oQLzf<%h8G(v d][x1\N|mKv]%g[ADÄ:.]s`˖"P9Ҡ@ FNږTEbq$P1*yA9 qKHsF `!aI%f7d{:87} %ENLY"<M; 3w1*<1!pC%D|тf2pWkϛmPiɷozBFجo@9t=k+YYF08Tuaqy4Hf-˺sc+BɔtGhJצ=}@`Fwxo`㓈~J5E6%yoхͨiH"QaTd0T5ڱ >/qHEx^;pdɫYگoI;?hAAhrv9.f3EEf,w .bVC% +ЙYJur95WǦN l#l6Jۘ>%5tg?YwU>>:XM3|^p9cj٨mɮ?Lnzrwu0JIoEb%G!s\ T1zbU^=G;w5z@MJ'#Wz]:~#M3ٹm,huW9 jkJ#p1oJ̰C8$e~-=A'uU7-V?tƧ) NHYs7!K>HE_w!9?&D^03ڷeA}AmVkf yd|%#,vMEI,Aθ@82V6~aX }1k % _u|?O q?~B[9Y_ƓZ֑8l[`7X-~=o"? 9l~qO)!GڞUHgaç{#$Dp^x‡+mәAyzcK (vD {׿ʇ8;'ʛ@2M6E\ m~]x˳ƀz,}{A8"G䘈e" EOדF3C%t7|߾#)oee9,^<-g|/ZIr?g?}| ~>;ʫ0N~b]od9{, IΦয়AY!Z3)Pbk5gc|%oE퓴67bG`g @V@ikTm';{Gl3a~BD$6ўO7+lL]ܪU5g(w;.[l&۞})oڴaW[2F0uǑY(ߍ&Fur5V1q|]"96?Lm]|]wcNU:`|1_o[ȿ͒////%B8!Ɵ}&:} :Js1V Λm9z\VIĨgϝaHpR7G9ɳo3f6T YT EkU3xKRNg 貖9-쓠oUGhdާ ^4M 7FS`-,x"7Þ8\UF#8/<2⁠}K:,)~yËsb@YJ*`,+XۋVNte 7 JyGӾ ==.*wꓬʴ]'FK T׊!L`UH1`> ,{x2gjK!;A2iEƆMPt< GyLBDDsGWaF5MLN}^=oft*>< b^%6SvŹ.98⚎~,Bw2ڿ oATb_;._%ɥ:fI7HPJ(g!YV]sWԠ//oKp*2|mؿr;-,ma CڴQ2pPjvܳ >> {::ZHheSL$H Bޖ jzytbt nk9 7ڋ pu͡O[:>GwgA>҃7A60,|!alz0Z| 07-O(^fȌY7-n!rCk:ت qͤ{I27-O}^_.{/9D۠kۼlJj.y]gu9 g(wɄvBwxjƓCv)%$7 Gvslx+M3h3%䳇ـ%nkWE`IZO 1HA|Q詆UbIjI,! :7J̵}@)#ù>qG+(~c!__i EmVf8p(+~;>( _Kؿ?/_HHC#s>s"hxf9ys>ɽk392=򿶍lv-\Gjw{ۉk#MW(51VGM*r-s}ih /I{eϣC>EÏt>*:տ{^ύLjG(>ɾ)V&ٷËƮ`GCqkqk7_X-qlƼo?+|l?ޑ;tg\DA$q>|?_G/6UIO2O݊ϋ 5AOx{M(?r#qYO™@HؖcݹgVET76ӄRyl\@B v6#]ۡS gbiGkj\ a evQ!ù#>؂׵% h!LZ?ЕbҐ!1E)i{dpicDq,o%,6H`usrp7;ƨ:geJL > <߶okA{2x±mG У|9TfH )Ȇҝ\69)! Gf9-~2o7o'`p5['af,óoOZs|8j4[E^{c r,SWz~iO;Gw*dqtn;-lpj[)n@2)&Fpx7U\9}]yv׿`A ^l1T؉N#~iUhre׶v,ir TآbG>=ą뒜fo݀'߲W/ @IDATϋ?D8Cks+"c? _v3GQ#S5:8F/enmg䆞hSY[8sgff gf,{BO҉O:|po!lks;<@mq[e/GEoi~c=2%G^ʰlo+'_QE=f)^>u?xgY8p؃^~;ŅogYP{'!VvhV"tLӞ&jpnD䠛f}ؾNяL{l^Yْy鬸_'m֝d`L*xU) hQP w-::|&顤FF_%j`Il*z앳# _vizlo1ֿ Y᛺Nb#*W^갥{دW 6ŽgǪӽrm]_-oNrKEl{|a߽/s=GVyT6^Wl>UHoq}L;/\w>d"u-ooʱ/OX_NglN2,jbWMT69ޒ[/*jް HzCO.~N8:O2u&Ro+]V؞pm &tV (SS1OV_KV%ۄ-dTk+qꏽkh|lqNMg8H]ZbB־T4T/%ujiq̐[%3٫$zנDGMiՕ̝ ~&=C@O t٩Ɍ`RxS ?+ o5PIeƧ>iz_`ӷ*W_ˤlƮ[%_pw6v =߿<ә۞6w_^>/?_~ ϗ+򫶯$[=ö |xy. Ar(r0xr(Ҽn%Ɂ08%QSڪBY0Ѹ @41;y  Nj B1$pe[sj] ֳ1NkX}qglgB[N}˜D" b.J.D 8Y;-wa L7h30Ddz)\d1=3e7r=EE-gD{@ W;$(رMp{v63 xs)R$`J 9]A;$ I{!|4όČIp[XR1/KPYcY.xJQaK{U@#Pf-33켅 =ey-\kl//05[;9d6kۂʳ/ih5j%Ի6u;UC< m5hZyx ~xFf hBfdt Rg8~)+зإvtU:uZ$nIx4}8^uOIGN_ܣj{'xu6<,^I{34*}\a܊ iH+}k`wݧ%du#Hoٗkx fmYQƌ[{h3G_yUY (g Sܼ޷og=":7e"Gɽ`2شmzU2e2xA1=w]\ X "%lq(qN`d!,k@ljLgtBpb~0'>C}gݧϒnտ$t$3VZFrC WO) Q詸#v T m9"ZGp'(WSopAl'kBa5_&@=i7jܿ*@vz{]3ƫk~zv[fߪ@?Aeh6ۢ@/y-3(l[V]Y>1' dMr<%,T9$!k[TU_mebiIc6/zAW&љ_(on[,1]@ $Ƭ#k/1'71Zgl"'셶GgV~1v淺f@ R[ >ʵH.~"Y訋Y]EǕb'y]'}ك!,:I@Dx=(v^ ez>mnD+4=r6~}6\>]߿GXy8R,ؔ @ } z2Xxy|rXOoO_z?}ry.@}w#$cv%A f􌎶a3#(} 6?9>wn;¿O뉂,pqNկ|Wx.oҪz߸ӉkKG,YWtVm-%ˋ_D:{<#F~~8t\I 2t~KUvO%Oӥ½է-LtsڒMB~ksP']OԍKG`&a8j%7+ueŗ_ES=^˒b;.3,9kȻqA_m3F+؀V]U®qhk|SX뻻K:'`,;g7kϞ]t;wc+ȜwU(In^lقMWK~kŻ۵IV(%dXQp8{E7 lEJgO8HYm<@8}dky1K9%VY8\`Ib%DYV#уoraEoϒG's?,hfJKP&S=v1>q#* ~Mm=D8 Vzt?ðoOg;鐙UFܷMFL*ON:{vB~uB@)RsIQleeR?k+ #,n;ǻ1,̃Fln]D;I K?Ydڏ,$=-?R>6>>& Ih,x`bNf~V^VQkzx4(*欚ޛ_[_3%|{Vq@ufk\\X hj:dT ^xcKpe$2F+L@lx}o\ ɇO{lV?<")1`i>dIKK;>>hgpoOxm5ߋ {(|\ﱛ4.o/ѝCwӞwӖ jrbѸy4f`1bWr}es^,s}~+j:ӧ%jW7ɹR=cx.'}o^"nk'a8$@-gËw-ESOsVcIbBUnnwpx/0ސ_IXB~ADʰkh:DWXr[T%v*]GOFvVR~׊Q} =z. 0/}BM.q&>w DkSYϱAdb<{OyGO=n ˣ /{񗗟/?h/4k^5Y^Ͼ*84_&5w͢zA)Fƅ"or*ozmI i@ 8'8{NV^0 \ )w$:U0♹|2wY$`g! Wl#H(8G\HFRdY ƭ.ǻ h k'оyieIW`ҔG |-E 41ݵh`[?f*f%)k`ᵌ:m08کYwdp{.so3d[b һvxVwQU0LqDs;Izdm"xt }XbAі9Y|ddEQ[F]{f "JUN#0_,'%|,KGl?exf=w7 Pp|] &!<_x~ "|x዁dx*")5S͉ld6'f Ԡjv@&%sLwRsmSH%ק{_d\\hSI>أj G#= '?p»pٙ${0-]Yp@׾Aϻw+qΒԂ4y~llwwJ>!HAy{/2+_br.ێ dY:vbiVh3"9u4gÎ&IVҘBd1GsʳFOޢx=I#zr]dOW2b,6[pٮlZ^|0ϬX7t$x̘NB=Ye1 /BE'`h6Uvmx93GB^05i~0(Y^r܆UR϶76ڙ,٢+)X.!_O $I>tlOl:q-ZUgtȗE5^zMiCxUܫxųk^f }.1^ɀJkֹ(Cgi*8LqTu 18]`Ǐ( a^-w/ٟVHVhY.K7瀤 ?6sy<:V\gk/( 'D[M}]@&8=z&>JtY.]s&cA*_eggŭ8>~}ͱy>z8+wd4)A-䗏r}s'JOJNk\mr;ڗⶂI~lg#frLyl/O61ɫOqYormiNW!p{7cY4|x~Nܳ҇}=]]OV%^b+.u3db$`G]S{ŧ&l%3;:Ql2_l ț>K&l8۪n힁6*#x}V;aW9ze[4ݬS D{_,e?8oK+ZR/D8Ym)oqܣ|Yo/__Wx?/}Y1_$e"w]F]u*D >}%kDYHM*N3|w24(3Aɦm]p۹;?^у% zD!v0 ޶{NOo69v03p;wgKĞb[Oo ,t/=캙L}I48]`>Ͳ 0x^> <#L}2 q@~w4y= 629;u<*K^KBbfX mvUt7aU@]̳JOv%ౘϵmwZ5 mUȦ^]ѤK~_K]KκvW$z]{dd >[.UotVOq3`1ޅ3Nn*7]t_G{o|ן'i1 a{ٶ&{Rj$q)A჏w(_ϵẺmݽ-] H񫿻T2fYߴWmcoof#oeZH6cj- F}vE~ loiCgU=\}ӥ]l_}w'n?h,>X!Y{KW{Ƿʤb=t?gREg '|gB|GXzy7~$µU%VY9ԾL:LuLHvl}gJ{i.G#Zo[7x Ѭ|qK:s']=)|BX{vX04jV ?Hȿ~)^~ոk{Fgg=׷::~EO&U2 s8 ul)*&ajPęM gfSMz${{ r۶ X# ASq1!jS^hpF9,zq]YGЯѢ _=&e! -oG%8E`-GAFPif;Z!P"`,l C$fj5&\d1) R )6"wEe4UN{r~xnw'fȗ [*wϠ9Z&AYA2pOLɆ (2%5#G ւ-KLv闭J#}eڕ|}㞤 2,s/<0 ?y9Iė9Kvz+aѳ3 U"cOx~Z9{u4B6PDh3YXȍ}Y۶HlPb#YgYd5Y'% Y>}@[1u+R~dۇbhNƖd``b-lzqʧ~%kj_$QYjh jC77{zE՛-p@$E5)pWoB6rcAAd.pRFVg Uu&x,i$| o8U[Β%:$Gr&.lNDԣ3Lf'G]٧.KxKN#D7֎` -,y['{-Ef>Ѵc#*r߈vO])"#u+GUJ+l0o lb6{CqݔvtUȮ @ +"Sɲ/zb75f7{vRlFxn܁ݛ.<ꀬ?~AfvDZNV5_p_{T]+ѳdmΜBփpTB7SfѻCEÓs1 JLuɕJ=~|77?/n[ܳaKӔbo;+8{d%&|Dp(4!8qцxd 6no_~uy//{̧#&Q^3mK?߽-QLNqqlw7߇~7_VK::Wd#KǗjQӌkg'JPsn.e?2:GtGc=tkG%]4[IQڨ@eԶW Ye)>۞kIڨ_2cJ$VPJuxԃGD?_ Yk+٣,2mOb$l R4S?fз4/ܣ,,GX-r*t,B$Fm' f(ߕUZ뇖ڡg6 IN ܤYadzɖ>gvՏA- >U N[_[Y(&\?'Y*MϚ.g7N[iPm0~Vy8Y3\7d!}"OC'?d}n`H^\o)`u.\с=[w<#qj6KP[`~/;ploUi>D_~#(& 6O|8W(\]g6 ]' 'rЮkO僂rN"ܶK/bN} kTyT"70`nIŢKb ?W%\FH~W%DQ|Gc>V&~Ȁ s.,jp]{}ZH3%؀|j7J>O >^7`Z= >ɐ;~U p0Wdl(p6*ZVeIZ]K-4?\uW#/đ7 @G|vrk3?I,+(g7#k= K}1P1 Y-Fb]󹇧ve%]'7["tHf?|GϮ\v!Iծq# K\^]-4fjqabZk2e \+o(]ukd|a#[M` * ~ob)J]sO)[^~//HIrx=X{Lv1`İwH}< 7Wk}S"]mv\){yg_\g∶i+@;mp UKCatxՠMn:UcmAU@O˓?7/w%~"F׾{olڕ|uⅲpńszf̫1rkLI}"w`wt#_ncJ!̚vU|~&rqlAw71ȐlhqƉk,aI7%*m/\]ɚbFq&#kJ23 *,!MNNT?&8,oWN4 Yi[A[^kä\n#߼yv?l{6DTH?m:5Iz\vپ<[<͌>S.lG;*dⶠ~oCֳ7F: 3: }4X}!kSrIֈT(1X 21Fql%)oFsYV֛qWjL,`p|7XcK4?] MB$0aۡ1ՀZ{ƍ l`\ZXO 64x{-`vyYR,=9T*`0]o)Folikc.32fy)8sa-pf39 8e`yip uUvNy{NK6ڀ?'w=4&ɖ7{e$;_@S Z}N2^MM8%'NP>|=#9SJoz6652)Ȓ-qT#g*l ?_7ؕ T1{l#{\Їx>}63 3K5a>glȮ;`#d9d=#] gV|mo;@֗Cp6O}=^i<Ŝ O/a]&l$Cn?#/]t=zl{ԁ9RAf\n.٪W=ITvݽm3TmYPT}r4m#%{wz4-ټk_dCXr#3f$lDmOؓ-!ͮOfG O4tLY=:}̇ol;?(gm>dg7 f4>g0Qp#}=A T&O&mBjY'S@;&;T,qe2Ҟ * ݭv)fwrz_$5l&|fB~nePŽf'jQovHF?O7^]Pck3LJS{p^3i3?j7=@o7X?/A0'2,Qmib>eJ␹Ԣ$E߽_2͡^[M}c nDfV9:2 h7`aNi7t~Fp}=<ȰEs;u$G[ a%_6~3Ɂwe*kgKRn}?X[S8>׽>e`WO{jQ^ʝ?hOM{/y:>i2|,Lnp(YzV'=658l=]i6g'+χ`Z$)DÞSjګ,ܬyϓLG&zZrb%}˒њVݙ/iI0­f[,_{Ih'P{ׇ%?w:ܖ!‡x鲘KXU?7._A^t!K.l#ٮ0kQ2ɯrWXYmc2~1>^&$C{%ҫ&bNȘmUy8XoyNة~X9 &;L#eWP{f.'P \9M^%@v{ԩjɐL0OzC v-,H &|sVG3-3(dn4CPk3,w1S݁35<hq/'Fpon !-Eu,i,/{;TPѪ*{m G=jFR6"%I$؉ef;* b.d(`JcF,j=-@'o/,ڊdSb $n}"ÞxaKOׯd74 O4lJ0 1ZtoeϿ|rm7zat9W]^qF)ƞ1:닑ܒD\=>%n5ϳ MN'5uJ6ͶK £lV: %z 퇇c2g`@X`<PKP dq:S7Ue?;{\Yc]F>G.u=-HHPu̇gӼr2S]8mzihX]Rfw5OyTeqˍ;ЉMzGXU 19l$Ep=8uZR=RHC_o˔sc54!~~#`CV?plmU ~f5n/=0 w$HI< ٖx]K#r IW2%0[.P J_NJSNƇac+{^Ӭ'Qz9,iy oYkۡ26Yx| kC7N) lr?^KlՌA$9xKG=?i/`bwO?r^Hӳ~7ڽN GB$򝑒/m /o| |wtmM /=troȯ,ɐp`CVLRVe}C^G6W`K~2Vѹ9ƾKf6ZM=nI{$DmO-mx_pHwA}k!K8qNj.b!+gm <jZtM#ݟOEpl_IB}OUCGqN"PYZǓM tʉHo}JR=8lpݶǏ\ @IDAT{̗7+V䗿ly|}ߺ|>|4=~&A^ȁnv6U+hH!f|;:=dNbv" -\ ^v5= з[k:6V7|[۲O5HAp;7!qs~C`#o *Tj p~\\o"K>[56P#Ç l<m0-nv ZO^{˽لن 뇱f-EO0[<Ͻd\7_>ot;غv2{ |ϫ Ā:luS,t=߄le7 U?:Uh/N}LrL}j"%"*mz1U}-IO &q/1I}VQk8LtlB4xg猁9"w=ѕ#0Y;c-|]{78k߸~v)ٶo.y,ݫ?ok$'pۣ *vooֿf[eY׉?<|SWLt+9Ň=jzwe եwoR*(0c”sz~EIuls hv[>epw2)f80;πU2HYyT.݌Ih3N ಿp2x(f ~j/x;Ș'#ha0{u&TX㖲 y^*Q j \х#^e;yIX?*%)gqچ`=mgyGB*ko57 qNVWnA e!gHpNXS2n޶&rrlт+z,! h\moop$F&l/]'Vqc)32#Yl\u%A(=sݍxIT!=4{hTW 2$2_;t2#FPпD pѥ$* !COrj~d7'3@]MQπ6dܒrsBLL<T/= >|ǒur[qʢmf~KlI&.~-;~ׇ-doIλ m ,F@|l~hX[l6?]Ez"ڋzp$H?ߖHz8V9D3=c=y@Iϳ_}q h匾 ~qM3HVP кI*Wh?u@䢫su=0Q^;o2B7/{e0f_kg1#<̟ 4;d ׻`Ǜ_m`2o"La0()1pK`{;]''=Y `S6)xVt`c$X#f'ӡcy^5zd%};Wdzt0~,)zrJ="xȵKrl6ƬKKl]hPbI fkc᩟njypcKG]\FgƉ|`C!]-HG~MdX>[fgs#$Q_$ٷ#_Q *TmHQ7."X])8+4u-WKPKɂ균Ժ(|uk\_*ڵUf.R*WU69e̜m'}Y/ {_W%a%~҇$7͊qXzr.GO;<;?G{mIq.ܣ辟@.|_h*B~xl}8ũQ]`sVV?Y ngQ.9j,2#ɺx%61{a Lm'{Ot Y~K7'AWlA&߶#.V]ҽbf+n7H:,SM ǶWBhg%[7bivC otޗ!mm[ǭ:*{>liEّs=]t}'+ 6^C"ۿqwJ~0LOxѸOd/{BNlOф%4 1g ԖVB+' OssgvNkf@}jok  y3H14 ̀-HO '#X9lLIjiY |݂,FL`5q̣PLrYTipmqu45xfX{pϑ` \DRjN`S2"Aez;RpF^ >o j?0 Dxd]`J@j)*ѐ(8޽-Oef'8p?Ɩ_5m6Lh!g\4dۓ( $-L0H_DhrK%r62.r֟p x , Dm`ls8xl2Sg@Vd|4 p[^eՔZ! >_dh.guAqe-%$H$Pd.ꮟɗ*[K߿qxwF7xn]J_z+kp*V4jѡat~'(h_|vϾ$=(JךK^+:x]v[;jEݙd1d,dhNwGص. M# /0=;}L}KQee6ڤg_8ZoWҎ+k|@{|S|VH )x[+5Z]~Mxw Yi-{yl<5w$*{aZ"/flX>&=w6bWfqHOc'H}vCLN/ՋdXzK4n|oRG{ѧD 3q\'\.x{?""6 f#b =ԸXk⯘7%z8G;\ I7o|$3jyx/q^wޯ zHݎ/>xots@u&@>M1BeO[=UϬcB&e[X(oo/?\;85-pfLʉG`?s~w\HNebݘRϵ(d UeBXkb1KkWp}/@Nk;A' ǾU>ٹŹɖ4ytp`>V4իV+ >M ˛. v/9^=¸Xϋ|\"O<o# k3$n>5iw1W۞^ǝ?nV>*ӮΊt2=}t$M՟Ece6m{ l%oҚm0亲tGNdo)5F+)<#AHv؉AVf–\ñ섌!)S7S;_];+6G{ ۘ;8C#b&"J'9{WvMe3 RٍאԆ͐XIi >; 9 y٧ڰU߲C %1`ЀNEA,As3XopC˔ 3P A;|)f/g$sg͢b0 Std̠D&G!oЃfb L,ydJ5ttd"UIUFѪET24"TKcD,r2c9;٣o!pwn`Q;"/[oo4(qi 6{%O氣;=2p7g&YH{  $%& |9r:'P-!JDZ1Xs$,@ B̑9rg/in=nn`H>*ok,$ Y@ ;X\̿Uȯ1= -ڋ g hZ$=k_$Ƒ' pYu\F!#1mm!,G&<#Iz5 Vbӯ_+G%w%ʍv.״W9.Ɋ+o&q\n S?\ϲO~%/*iEQYIiIf|6H0f'ߵtg[JĦqraH:y}_Ž+MOtog҄fRZ!uYhY[aodo|[%J__]~_lكXt1 ^>v{V%upX%ieq T@yZ=.˃>) _2:9/3+߽aUbW}%r`[ԣ(A^{$Yo5׿*m+Lh9NhX]x·t(]S= ,w%FiuOrn|P'O|SGv'|^mbʉ%82XFӏ5KѤƓ?K|nuߍb+zyMg"bg+rDf[Zka`ԟ};5@+F1C%L[kd:Ϸgg~_\Jn`"XaǸ=ūVpݪ`ThYB6xؓmKE{ٓx-‹ +'x+l鑽! ISM[vJa\XpDG͎בYc- 9UƯUxIQV/RH܀>1,96 Q$Z¢'ə2Q2*fk4(4{ je-ʈ:H} 2]яaT]._' ^m +܅ɷؚAp9VA;fB7Pwe @eh}?gA7|nۣ790@i[D{j :=}ݟ>խga-)_ I{WJA_LF9b88D [u]Rg.HK%{/|M_$'csIw[@I6u悯%#UH:W3Zq$0dHvy?w-{ft~6#Z `5vHA=9" <.lw '^ϒ"A@pe+,|35R%\JGG/4;ͣoذ~'Oh %S0q Y=&}Vhd5-`FZ:[lA׶+>Df☒ Sregɦ v&I{{m '}/_u3߫Ks @ |d@D7MFཻd9+ ՒFYzf1Tu īԫ&{fbn;ӞfHreEyHC flg[Gտ".= ~W+ԫ-^8bвH/qxтm2/fA[yp ]ЇSXtI2RQv4!c4zuځN[m;˿t='~zspGrƴ?rQD]ߒo)iՄx[gX!tNw{&~pZ}8o6%OoOW;Hx۷ݻlUgxe^Ӏ<ڣ&;nb&jjJr\~/?„I//R9ހ(!Ui⼊Ж888k? BR73>;mn9@Q2(L 61IYN$G".QވSrA(7-  Nnm\ ?5cn4fS d^r%rcx.5۷2D0_ Pwd #4`ϣW؏,Yd%0>3P $yBRcqi j#d^K*]܆$1WmXd[$u j+׽ μ:Z_RW čz(@ܫt)Rt XU hddZ䙨0CY:y>}i2ݞ^7C3޿@y0ƂpQ~L5Gz@D?"٧hfpFD˞VxtcŘJB=ZglF:ZrR͑JnS\f rR#8ѝ#`BEf%:ze:\׳'=sGZAک? 'Ruo0%ʘ.Am8S_V<48M?|RɉgBjtX$urK?ȥ"M瀕L_nbI=d9K$q獎FP|jζ5Dy;%~Vj;_~7N?(Im=IBr,[ֆü~ۗd$;h ތ"$'awЭqYw'  jCd$Ɛ`(u$sޥ=.O(q +Mߓ ٯ?NϪm 4u D<}!hLD|(NFKbPwn;9dpHN; ^*`Lpm*dG`z~7,qY!A7;Ҙ|-pxsIԡYqm/HN$dg AfuH=ztG'p\Bip=~p&˵' <45޽4 9n\OwqY&[vОnl6[ηwӏ^|bޫ}t:ٙ*Wzy:%J[m`6;cMdY4CCL+3;Mz>t4o.b%q'!qj]Z7l[)ʈ1s{:<.>ǶWL f2-)z=yoomDh/~ \-/ /N!bK|&K#G"k}k]\$ Ґ ~|ƁɵvorǗ'?:}ronq#ųW0q>Wy|Ҷ|ŕ\+gb*~޹9F&f?<}O"{Xlx$rs1$xf#gi&9}sG7a8iAC WɘuVElouټcS8FCe,N{&ڋ5-ggLJK/ٮ%P2fOw?.٪7'OKe'xlEq\m?g1t@C:;.ҹV^M$&FM5o>{pA_ G'[5[q˿o|gʁ?m-qޤcmc}O1! f ʻοyZIdrNpݒ ! wQp8,_JaB> CH_[ѽSpF/H1coVJ{.Aƒ9u3=ϯtIKR~:Jh_pa~mXF-Pp g=xTNO_i}Of@[O'wg0+/V8Ɇc)hU.%~,v;߸0iބ qqӧ]"RBa%؂H z r'RF0ܯ#G3#eTϼ؂_8%=fh t Co| jֱg83eZN6ݭOr{(q3%(Tbp޾]:VD8:5B214(ʘ]8pUm2.~{Fj4 O0UK‚N'ga!Qc'# F_?Fsp#xE20#\PB-`û !n =zX_Am)Bgù 'rd2!d81yb@2_p?J{Oؘ={A$2.hoI:;<`r+M@ɳl Jk'J*Ɵ[%k=, A ؾcJyf (P۳݊|fƏԐl^7ɧ'\[֭ҕpwFӓ9r9ͳxk8b_Vm%_%nfP[n_ JFI>5w| 0svQT<Û!@$i[Z>,[vǶaBߴ4?!bS FWo-f2貳Qٛn)jߩA֭Zݭx䩯d{3"d7z/z/ NJ64Mt-][+p.O`[m`e4+(^^ m5-tͬ=inN鹽ٳ^J $e*kEmW&FRzC` H$1JAb|+ oܖ*"t0 nE"1GA(woLn ^)X) GýB. e2CaJnO& !ZzW8V}2<?dI$q'vs؆.LH*VhZAFḐU*{cƻh}]>p |6|ʻ9*IooےuS -E/l [񂭅` *42X?`F?.ef CAz#(qkq?rV3'rE(P~fZNCB?glDD&u@3sL#$CcR8_"x<bܒb F}"AC> zz|=`FL GPh93S0 gQyxSy%DFd4O!zq"+ffpΙԏJ+C>[C 5p~}R6nKY} (?/'.s@C¢V&ˮ1~5%>{^H%AqF{42Gd!N&—, ?}~,|жp( jI/:=uk;ZkfZ6Yy6rUa$@`ܣM[])}Fk@޽s'X#=c8h(4=IN'`_a-G$Z@>% Ѿ .7B97%躭U鄀|Byc[_ Oj2X}-ēF6Pkb~kə@VtҋK^ע+x|k7R(oh &0=,BgلzH$]N9*;`W,%N'7 8p`~ȪBV&S 3yh~tЂ0föx1\Bx^6\𬱃}(&C+(&oD#t:*ֺ.%X!2:XiS &O^t%H{>{ؓ3Rg7S@wr0i awcf|V{lhpVꐞ^hbJ8$؆;(Ů}fɺi*DE`tP\קs~ Er 8L)+f'i3PY Ȇy~~lЊ}@ 'a\6s)CGb#=?|=7vw_x)ٔd1V1kp_ͮr>XW$YyVxO߹[Ĵ!m0Y=t'+pcB!ނ(8z^ZǏ\}XF` w Wxc4=fJm4|wg+e>JZJleO1y?IÆ3]m96ϝ$s;tL'=O泷;=xTyo+V,`p%Cd&V?uxoʕ -2-n|N?meؐZo} |NX 邿=*vwaޥ7 cb[w;߻G} ٘ЍǮnuOПc[M5= <=.xV _7˱\P}ޛum{ݳb_9<]w֗Iǣx_'O{,g G&|w4{m=>o÷;`N6dKoHͷDLt#&P20`f@R!"nI=2f؉%)"L}_6 2V_ (GeET%AM}(.cYXvWYre_NO38>A~^=E8c#$t}UVeqXRڿFx80I[Y0Jg0ƕqbOě^̊GRJ`C(gcABჯ!*߄=JХ `ڻ.FW9+P!}3Ḷ UoY|M\^-LA8[g.e-E\{%䦔ѻ!fs}ˌ1c; tȟ~WuOrJ |%Ǔy׶_$WRrSjG0biBd]2]Vv9dI $If)S2Je\0c<ܑy:zCIG}򅬡wD.d3j_wwT'ix  \ b{&эWe2%?tthpw-NƬ+fٴciaO}j'+BbviQP[ͤ-SnfZ!/;}ٕg7/?/[Dyw0]TXq`)/{ /f +٩~1x@7B Hb=o5H>+be_#+sƥ;^Q 8g 47Ng@43Vl%?fƭx=bDSf6O nܵ Gq$hY!}W2=#kwvlyEgzI~U/@ᳵg4K~=y*{S=; А3mJl]75[;ńVɼc͂%ۊZg!OM9%NGcmT  008DʟIƐB n%$4)y}dz믡kc Su"^r֒drH&ogǾnUg_Q+ܾ8klv<4cg;=, ª_\3/B߶wyVS[ DWtŏz]ҏO7L·[?zSL1MWxKbΊ-Żz~ܓԫb ^[|pڷ>UdvI:7^ıho_{znkƮ6NZ#HUN;8hy;_N]I1-E:Wc{_!?dv Ѫ6cPutag!?:>=;0xHyK27v oZ}pCL8VQ]ndzXUuxV>]L$^[б.@IDAT'{ͼd Z.v!&n~˽^SоE;ˈGXsrUkC͌OxHs!aTlXwZxN1R:\R faoF?} C~Kj͠9z{4-XVߍŠ{{ArtͫpG@(V$=.px+jh§k5csFZ 'ctNrwи!x$fAJ96irӂ/MypVt1ݵnK9~虼-;оjϒq.f>TKgk_SDAϣGs9U)[D.M*clъj_c,у_0 'G>w9>N/!0/>rÄ==`巿?ݒӏqoڀѹ nas {= AE% x (+LXxkqU~kY> Nx92&d> wWgeFj%*~씳j_A_ p7[.vFG.QG>` > Z `+܊aQ_{vrKa6[--&em\Ǜp2)`.>#ZW \mo>gH') n=K\ۖ!Є9:k-eAO'M};܄ U%}׍>`Ĺ?:k+=˧!3&t~I x1zum6O;:}^rvTT6 tpA\?Qs׃A܃VFPF#[!M>K :X\ rc8] jE4 lLKi靕ӿř 2YGds$`}ήc]_vX` ɩH_,$[&-b$1OO/~ӭ/SQАjE=[Y&Y]4A?H¤Ѳ9͢gk_~ZWT JHM/2^! !cpeg 9HoLϺ2eIlfk;Va{q/3,Mz8, +(渇}6X>}?έ*񗘧p`Jz_D$s-fMtLUpXljr㒑.֯a> Vgxwݲ&4)%EaԞ:u͑pSښx+1 s!!t513f>ju= *d+Vq9c٩/ D^/'3z''6L$I@`1oʐX0K@+ف1e0ۺ]$ʑ*F5":M.Hxq\2 43~ ;%^fI0Kr U>8mXP0|k UY`Aq{nZ,fEyʻWH%gYX ǫde*vfL=ͬ}Wt]?wǝމEFQ3G:N>7&Xh=\OXЃxj{R}n)N W+8b,,7rpƧ|ߖֵC+z/`~wy;;+[^^g ҌY9z&[c.BCdhxd,כ]#Z{.9g (  $jt6YS})0'!Pan g ԟ`F|33xNf%[9mP‰S =>b+ (x=*8?أI9}IWh(Q&b_VAX6^%x|(ꬊ%mcKCύ,dDMtKTOMN2X$+rѡaF{rUTfjѿl Fu;6w$v ;.4}Bi45Oa8-2=xqޝ*uVcmGqZ&:_%:[~^4# <=OFÉm>IYŹ$0 {^ [D# ? d~vႺ|1Y0%lo`c&U_W5{:`ƒu aÆ::n ' FK2f.Ϯ%x ,["錦bc֥kie#vq6lCw[oaUt,e@b-}3ufg;/co 33@N]0N9[YF_3q Nvf'*C*E||d .O1CvyTt:XL=w͇cևζ4̤ESïj91xp{t' /ek~W>R{ٯz~7|W0Go=<}9׷4Gߌ0IT&zt%]ǧ G66&'[K>zA#c7clT!G i܁idfQ[!bONvz_|~~3_t&;j܉?`aaO"˄e6s6pljcR2˘ N1Rޞş|p⩖_nfMok)Φ3ɀbC-)tPmrmz+5qm}XwۧʐlUi בBBj%B[r:Aw۝::X/]DFOV,"8 ˼_~z=7~4[G5QWKQr20OGkbhLɤe+:0;3?{o{cim]Z3$^bdyV=D4 ǻMFW+Dӯ'"͟f鳿ᨐރNoo9}';bIŃ&49.66XmaC`<+M20caPqNQ}g01}{8Y `&a2Z?*L-W\6<8A ރaI|3{@}RLN|V 95> 1*Ux]:LܵdIp0KϮu}E{y{P(,}aV+Ic RV,m52K{ngagT,` R@ g.{7,(:ࢇGf+g\Gq>;ޭ)^YFK2vg7?G j[_!<:ׅ-,2 M*&4ةCR [Zrk$_| QM$=ǎ7qFHR'շg#hË݅l IWb}3l@1 34pMփ/;٘Avd+Kt,O7KwFo[c2!Hq=~"Ϸ! OɟOݬ0݊^+ڳgM=/>yjWϳݨM,dCs]mi{2,i;< -HnXK\NjKb=!XKv7fw-q*q]&S@6br0}ew~A{ON?v~ǧw޶^rՃϵ`})YVx#e]d=\|f郈9 B]s"[ߛ+nv8xN=|ـy"ӤT 8 Vn8y~SНڧ]S.|gy `KB䖺nwn?_;{'x{K$;.^2%;JÉb:&nh'ݭU,ѯ>Lpl|w*Z(_<}8+dC^Y( QƘ&5bV1Ɇdi^;H[|bd/x߼}m񥤵8;(O {.๓DPgod7N`{*qgDZ>^2[-p!aK6aY׽MW5S~;|/d3?v5l~h v+o>Vwx lJU >(}~✃:#&zCc^SUzzAߘ-e4 @Si `9XDHD { 0p(b!)d&j*i+X(>oűO, >N6#@0bˆ J`Ԉ*70ܞ4`.f2 x#7eDz j_̠)0hPf^%_3<3j6OBpf;N&͙jxږPXȗK+t tGxlנZea'G홖0ݬYA䏝[&GÑJ>!%c ^9׬ +M}ErRaCEY(@7iJd-Җə6S4 ? QQfAR92R m>l=O*'?I+p %%Sq1/f&o S`ho; N[Pڶ1<ŋAU~.[,eג`~1"~I%ك@h?lSǟUʩ+D_n[M?, D}42۝7~VKjsΖ nDXы}` t,&"-0u \0{:tܳ"` gh]vbW#z#oqםbۀÒzɝWQIl;)|fO"`ɿ HPP2EW}z/qX⽄6GmOlG"ZrmU@j_[G{l:?⹝m%οc++%֭ۓ٣G_̷ZIyk䫈x6يƱp!3+ 겡.O3z8ڱCuWb&n ]~{ mp9\ '}juF|$e ~E"x8nI}k u='󵽒@HRbd?y&O6jӒ~+dꀴw?Y[ b ́ { +Q.!k )[1o7vPc|%}1;/ LhI2|R3pB=18چt87U$#d]a7m%guÏ]QO?;}[1p`y ZG)@Vܿ3NO$^+Y~ tjf(GvӳcS<*Tdj+%o7x*uQL熪-^Fv].7 O2մAյZ?dNU}tx‹\e',Rԧ^ Ǿ}ξ pJa .UUy:}[~+wgh=VHYa6hfߴJ6[2.=}8y`}96]vN%ZYՍS$wU[գl7n5֏ӟǧϋƫïڶ>f+N0f3X菦tg )ӕC?{o}7~z`wA YT@G05quc b5p,DL]%ϣUGa3ĒdS l#-F)"l'nB@8l8=#pǼlf+7xBI)`kf_,22"%g8>Z NuAnip@FF[LhOF9"WJO;AR۞;+~򬄹r \q C{=%(k&Mc\{`<ǚfqD%*K',nvaw g! {\ I˙w 9G@"IqUI}0zHd_sI7~pJ@{`,G,0夬9A`n|@ۗ*yLH6vDo% ^b%$X_~M;$K fqM5H-Ȯ}s2)OA0muDylˊILeq[LU"qG|ŋ8 ~뎼=“H8ș=~I7F>W63lzmHo= Gd/TlQg,"^Ouj ɂ|3:ĒG3ӛBBH_N0(:0?xЛ-OȀE%܁. :[αb)%V**pK{z-0;">{ ʖe=K-{u-7O Ysv{XQp^ȲwMbW_7P.~Sd_4: y=z%*i% a`愽aޞ -gK-bfɼdu w-z7䢱`d;Օ3]$}>("m!ܳhyXHF_0xvA[田Y5o:_QEY4CFܤM4y=+X vr, 'Ƶr(ӽ~G)܊td(?4ݿpA[8L[wUļ6Uzg?[+/ k2}ĝ[u-AoJx)hCv.x$H2aSs ݛO]pY D=b V4G_ëm=WemQ=:y䑻`߸Ɔ7q[!Ȧe_8?齏~zɨVNƛ{}#]@Z<=K/YnK7zE}²\<;}O: _ r+u]@[ salѳ$vT aNrOmoVXLȪEdvuMeuᬀ ƸWD;B_*&`lO$O}D3RI N']1ؠ]U e7$Hnٺdb ڗ(s3k&ؖF?%}] @XUآZٕxES>(_>^[bNf-{>jxI#`Q'ŒvYEl}π!l-ф1dk zK6q=ùY`Q]ݜ@HrNՀ}5z!rdϲCIfV"@gr׸kJ\~\?ڣWKո}z߷4;03unăg>n:hz[lh}`*'vA#f(I@jgD@y 㜁J@;\x=Q o^ .ǬV_o"rOG }ZFlIp#a6;䃣njrN_QqltD968D w жb푐!AJ JǓox]>͞ j/vܜ"vg(n*3:ٚ~קbv+J*jg9lP$%Lwoþ/t~`ArzYtKA|;|Nt j `_›mvnB>|Ͼ5N ^e1xֿ6GW‚e7 )zI9r*Prg]_VzٕlvxvIgݪ]XF"^6qtϢ{&(|dfK&'ggTb$ FP>>990߳G]J';}kk6=7yt\Zn D!.Gb|篿~!p$t+kߨ@C/wV6ѣN/>t/eo>} 붛P#QE@*4|X=lEK+j[QO~F_ouHf#rl{qA^r: Wێ}49NzV3wn>hlޣVAwl1k͏xY㹴~7F7>O60ӑ/ԝd ]s1b`9|&~_}|у.AbzIVK|^yEY/]=k֊}aw"!\pX,|s!踼ѡV:,~ۧoԇg%%C]%;lR~6ҋ]=b7ڦ}3Knl0|g6db[$4󸾙 wq1#30@!@jR'oN 0 $U|f #JҮ9?2pT c 4CgX@JU7-j4*4!!f! 9O{N|b2rcbEJspS{+%›fk9,-aEsQfZzco۷KA|c˕ByTH{cs+ɒۖ+ ,<0Gn2D`Ӈ9}3[sV!Y[y4.~ 1<'g%{7J)ZI ށv]qƛ%9_FwV0 &~[V=n ^h[{`ᒒ92ܧDGj==y-Zq9=&ZQje(D].8UI,ACw}r'^>?+_Ak&.SAٝڳߞgQ#|M{k"3%IHq1} Kic5Ø';tΓ8r[K'u-2 YC8R6ցGZx]r ~QrޜC/XɀYxIY%6hi̠ f83u aM~8-zjnw&yN?ˢTv&^mn BŌFQ'?Hm}z?':68d{4m[KbM/^eCnW>xCf9|{F}POOp+z~ES@!H"$7 \xުZFtcmq?oCO r98GfWQv1_J4ϟIy P! [Psۭ$9Uy༇~Ԋ?fy9B5}ӗ~[OCoM^-mɽa&97!9ֶ(jH,b/hE[.>m7^ %N+Ӧc1m bC^/R[!p^:vU*ڲ9Štvh2,y1dGlhnqYIr!o]bjIʽ`4 =`#Y\r-@*h\}Dczv}$4)`'~Q_ſqzwJ8Kg&lpr־/;=ޑ=+G 7)uAś;N)pL ŏj<8+PRΖ1cS:]FyGJ.>J˼B0U {Gx- *,hk&+5(V Ąpr<,n2%xk`&yX L .yŝ)t `0Eï{3lQ}΀Kn0Bb~Ce^n 3"AmpyWн*wujx@ ^b̕x޸W nJFEEa͏d)G`_U#k08H nBK49ܾVJUpsf!La@>ľG2G*уTČ<2Vii׋ 4ިOˎ@)˂ЬAsCB&8*`PRM/8$1lFP]B%ufh?6alw)b^Er*!X9V1o:ϩ\Sz3eL1+O`$mHƣa0j0π ~={-85 g W ,Zz$0/>ؚ a.d,hQR88g>Q"uX+j_Ȍ404-Eщʇ4L,4hΛ% A.BA6 sl:7rx %g+}6`|: 염fF6:]=oyފkײe+Ltfs^$/q F;E79m6':G1w;5)`6߫Ff(;KG&)>FC>{\߈;Y|Xކ;؃ސ29h07h AvdAB7V /X> _+ ;C~״[k%_ 4mczaY3v$Grvte{NqKFm40 0>T &ǔan|I׷"|옭&*݈3QM6X$x -l0 K^/ӗCuw_tE[xI’o5!@^$}4 õ #Uzڌ')T~-}"H@=4k,g)َc:_xPK_x+2ݓo8lP=f(?;oY9ON^T$N0ݞW nKF``]G]`^S-O #_Ѿ^{?ӿzoB\Ֆ˄i`*F2Z:$v"OO2LJt9GPm\|vý׵<{{!Fb"u%ZU:o鳟~|Jd>6 4D\ чQ &/AL d}/-}*gO??=;oYK.߄M {sN}?9]IYTH0;C-s&ڭٛN 5ztLw7:=A:x>}էV$z֕[C;u=wzu0(P_~w{~t>ŧ+Sfŋsl!r}lr[ߊ/4[|V<*Rƻ]'S1.1)Cj`GgJnk@ƫjƞg+>vƷ&϶2e+%H~?qLW|:ohfq-g|TÇmfha1]iiY#%_J+~;>·~n<%;H`_X<.t>h\ڟ-ECƕVax]|M!w3m%d|,^|L'$Hu ýCWNR']B0Jllzw)oݽG#)"@fׂ\K aX*ZvO jM}W…A|lARʲyp?)@&;\t-?a3$d1Et8` 3T gs&1怐gY9UBѽ@IDATR„l[rġqN?^k *~DKI8Ky;y ̋Fbf^ OO%jJH b#x2dEUy fof _\91FTA" kǘw)BFEdxԑaWƪW*iUZX8[2j6_t@.i>#Y8{͖Mndƌ'zUib8%'xUU8ԛ `, P˒r,pe1nuDY?D b߁xX< fE$S3PV@\p`J~KNY$0CP>]1גtvO&>>fvrn1~jOת JϑhO"[c`E3ԢsN=fG?$S8b(ݷdAFl} ''(n6*;w^B[WK^:oK>5l>R  h䘰{ʥq` `:9aZ<| >Zb]{#)ڣϿu.`v"8<_&{oz#يkO7ϋlCp[<~N;}"[/+ؙ}%ecjw ϝ~7~NOϛ{t{CDjˎ'ьq0d]nߍG$&M޸UmHMT!1Bڜ`mQڶjglVd}9 Y+Z^6~͂d^Ay+*H=:!#W_W:G;OY1"n^g>OZ#c_عOez{T%;MXo1?}r$9l7~+mslu?klQ~@Gٝ΂>*r+ƾ\e ʅbo+al76BAÿV:FLߺ*#?q6W$AohfI)ꖙ`s2nG'=3p9TM]T'dHmYF&۠A_7,g~Up<lj᠃>{]4_ڨfqN0zŘ9p}mtTASUΠ-[A.dR =fபf4f6)IG ~06TӢG ̬b9!`Dcgï㵣JhVIzzx;=a0r\FVq AAf6c_Uֻ~ȐMH$`A$-6886S_UD66wgOoa6;KÑ[(yָ Ŭ8aH^pW3?+U0g/##eŽG[d@#(]~wfiKKRZQxت  ~@,#H2p&'N\}yh:dAsu%x1I\.2ș`!{FA.D7tS[2}Cn\J蛤jh80dBحmNg79zvK)WraGg =9H%-OrU/ߙGr_ Behߔ)٧Fe;.)xۃm^`R^+8ʶJr ǟ8J68slGq E40qȾ8--pv-އvA6Dm%uz +Z:`D+兖1fcR ACb*I, LV:HbmJ$ w賅})9,UڹzvmO~lzF,fx8܏>,ȹSpXzRLfD{xEIݣ #mWџ>_$W_+_M$GxEI&³K!S;f9ѩFcvb+Ñ1\ϲi|$Dܱhfpvcz^tyAa Et"8ƻeROfWzN򮱶j5['bYAA5!`\|}f,j6:2q`Urdݯv~++|OwwI~|mZ>U:`6Ύ7m#s^d6iRp*<\S+^i{i /Av=}N ^w+_!|>c_xڙ wZœf~ao(zd25Sy,;M& ir0Ibdr}`ke׾zfvp⽠7dwv=M$5pd~d?\ۛ'|sFfї|~wɮdK. эus #R9""!=C(B҃.Cd 3ؾ(*@ڨ;{g\~\yn1I,6 ؞׷Lv|HB ~m"gz BDhT31Q`0#kIYy3^X]`еxc6ZYvAuS6,釜*+bSH͓OOfDDT,Xi5R&ĉ3M\hc(el"\&?+5]+0p8c")SzTMH~Pf (!R 8cp2'<.>ȉaRw GH`'t6tk b?ZEvaW&988u؏0pn r /v0anTO7K[SYj `-tGLҬQ+H {jf()cV,lv.|]jE8?Am6Au{ r5>Iܬ ͖,rXE"Ќ _S;F< 0l9m 8oxC)O=dM}Kv$AVT=^%[\7EKr .ʪ^Oy$Xh@/\2q=!Yߦt߂z&9 &em'|wcM7Ȇ^ i% 8`%`=XoOY3g{J=){ltSL{^ɣ}K:Vbp'q L >J4fC|:eK)ܛ\!, B)\JJ/}Kj|y&٨YY(\pޮh4ruNY!dI 8e [2$g9N»JbKq*BPa#zmG' aH.dH{vGy2Y7Y SQ-toȆUM_tY[9Ы ={D.[Bp\RA}ڭFFCe>lbΦRƍ8: ,u׺;z^EaOݿzrDdu -EW\<pXVG$P^i VEkHBu];O[/'"4~}ay6~ LM`f PPmG=~gu f4)?ߟ-_~Qzd{qW{ˍ[V6}1ІGT1ȩaT}V =2 S\KߨsUK/ޮ`yhWy{ݖ'~F'{e oۯ5;O2kIdd.F1η fIi,_w)>G~HF1٩G׉Ҿcۓ'Wwᴊt?U/g;aU*~}cp{yR+Jls}fGn  Y,&ٌ'|wOt,xW˧~57φ1pMNF k.!򓳎IT)6*/{x`KyFIQ4z4VbìUAg6ƴFrgpҔ@>j*gpg9J iV䒣&>n2\BZo,feݔRΘueT=8Dߧ9{1!3خȮ 9Ogƚ,QVDw k;a$3ߞwoJ6% P#InCў]`]?wi`@gǨmnP(ՙ\a{Nd]{ YW36O3&:U7 v%;ܱ쯛 rN׺_S,8#K`f^﫞XeGgmz .ZG7#sīGwv'[62`FO n9qNpl=NdeOrOw,x,;2= &/]f>G;t ok@9GOO&2I5a=<,t)N'L86{ w & x[;WB^z'3KmT9UvtOC 78/ޫMՈ\Ӯ P݃n[V  IT'(vѢ~k*el'L0w>3N/NC?][<{mVUO68AN#Y}~>tq1]~?iiŖO(wFo)뷋*D?o7څ{A7BwӅ-Wsr_}|уIt̲po-= t_ Zϳgcd$7>#y τX(\_I/RjY_ 'da߽w >91(/F@.7<Г`v=RƦMt~`6ߜ$<ڞmIƳvp[M2a$mJA ֯?-ٽ8z Ap;=~ܻs3ZOԢ%ң*"$]_c@2Ұ AaG˻py7 FA~kv*%D|}K\|~&ҩ^yTY{~Cw65ApWd;V7|1agɥl* JKnSx&7pl(v:{w2yroKJ/)GƢ_T}FK_T>&P6>'ĊݏVoF{\z93|g%Xp9>Ϯ8'X|Ox_MO5vҕ`JUZ#6~k4y'I }/=m? lf|k)\d#ͬ&_jGPGա*U:B@i@vVE,~bC]=dosx ͪrҚ/ ~Lr+'+{##tK*PNfKqw"^!ʋItЌhhϛE޾[Lj@)L> ܌ؽڦfgaxE[ƉϼȭY#ʟ0aQ_+?-}ۖPS pJYIuֽw96ESNg} <fDLdRǵ sd6:+7.;OwN8&gѶSJ $P݁JiXX BMz` 8dOr," 73_?{)֞c3zP8߱b,`QlX3g54񚪦)h8mk{|\폮dtX V|w:яSqM.嘦iEflï57pX( prZ˾4 vv3cOFnৱi~1pN4hƃv5]Ć+>fQp4:Q J@1(8w]CdD+(&p^//cxSM;0]8bkXVg*و&fodex x50 qYk5%6&;O6sGd'T>zt*4AM`١K_(;Dvm1~FIEgp`::ϸ-OGeog6w?n~Р1B\ v'ccGZh'|ڈ;ky }F zx"/iD@ d} j;1He}t ~-^zf6n=#//fgIfw\{Fǒ{-77 Ϳw˟\>|w&+>vA|{kDtؽB<*>&E4_OzcXãV]4KH)}73_ÖYNƛHݍnI Xf{]'C8MҢCWGW[9|7@*& :36OOX9kƴ;UUR586іaL艹P~SYq\=W7=c) 2r6ټIz~VO{G|ܮJN{oL-uU[ϜHO禍gϙ'UpI%};oWS X)Nx},8I:Y,&Č6i{5{6 7>|P {f6~f- j0BdGѠB]@: e@20a#3m0@u)c0H^P(XSp`guWx 5$:S.asDM.d_>2|yU*UayV>Ngs.m"XM :$V.6g+R~Tpot!]N~-] 'j{9r[fCkS8rǭwݓ_֚0ZkǮCk о y4 XI^ YEG5fjf+CXOm|&RFo43 Or!%NiSjmyx2ƷEf56}39eznIdJfTW=i{Ј|q``5^ϫk bGxJp16LCF|~86=ycTO'>崘1đ%l)pg=A#ϞӜ< ^xtd=-[mm=Ƒ0=4]}fҏ[Jd]2ӌxSp9o;-@8*=1_Oݰ"\ 7Pf0?t>_w{ekfvx{3@%jm̿qtMK?H*K 8rIŒMP܌%F(lK)5s7xbtfx:ɚLq%Q 5/9_.Ewv_Owc/mЌxʋYjD΁8ف,jLSeY_c=<6£{6㘬~ 2R .36.>VU"=3Ia'{ɫ`q%f}j ߨU Qp'pƈAul؍YOI6 `8iF0?Uuwp){]H: C@OƳfdVʡkcr./eF:Argq_ucc~\c? ᔞz>2kYD}I@IV=keI跿!IF=ozmlw?I3N:e;dpJ% C |l* Ρh&Qod!qu@ [?rǿ}UW:`;$,?v/g; Wf$???[Oߛ N>(h=\~oQi'gO/8d | hDg?<ƃMF>fzz.I9y~4n r{wwۤ1ow,g\^.Wͼ>Z^.YT=u'qot}Fsj}za췯 j8lMH'#x3ԡ ]8owkݲ:%/Y;Ƙ{рu=ï2)v~GD'-1/çngK9)$%s{O7ec^K,{?սO5N;fDNhMx|Jo~myǷqʑNAt$؊P{Aʍx@ϹXJM,]@j79ڊljG6d@qR@~"_ :B 3ĚਠZ>_3kw (9s0F[Y.gGr> g`2}Vf \+;e& g;/Qxـm5:]{>GvmQajGacyMw eh"wρ@'ߵќ]}Ffhmhẅ́udÚ`IYnv>` Gz `~Lr!pPbc9+ᘎ1ag?Ih Np꠿AӼ^?)095#eV!Yk*-˸G>ypZ121tHIYU0JlgC?A%3̗QK$89 Lnڜ^Q H(=&8Oӹ"v6+KgTtS5Əkfvk yh}V;k%@N?'<m@?1Eh&H6Vʌ},,]ߵ=GBQ7 &0ꚾ&8ݬd-M܌q66)và |4$qg2΃':;5O4»m9<w>4{GO\꛿6i]+mФ#*Pǧ2&6m8$2aT`M;7gIi@ݝ6C:cmpـU+PΆ_%ـ N@_"IS_y5܂j5QPxG,JuT!ԨGڣ@֐ϑ5g@1Ec'Hȕ1&iX{d< {ᵷUW ;{G_VF.A'@~6EɶXv7@ggxDb-P'hdmvo<ɐּ$љL G OTGcqEI}rR Gd?ؑg˾Կ}$E{l>׺ (6}jMRo]p=cܿua6ttQ!G։ VnN3Uڗ;}AV&!!4MfbP|t0 ]1dGc)״ՃSQ> .Zk-سs&k9a VG OWC_K!e9fXwxl9`2e{/ɝK˹~?rRo7+;?|+c9WQݮ[?p/>ֆq'*E;\/$AA|Eϱh=o}oxY rKėYk6OO+܈|DhdhԍȱG'`y_kYEĥf' XċYuz71G9UqP 8"q&E6 t&|}=RU݉}^Z%ßo"yA3[ˮ ݩM-q_vz9,m,7=d:}~y.ok&2*#NK9_³3YtJ%VQ")~р Çw>u<:A"Ks\oDY o٪{~k\Vw. 8'Q2O1?6TH>Q-qzq n[{|#ępb]fG<>{5l ]7oF p~_z ټ}*ܜT׍l^g춗+lTrJFU{ɍ! #^ =ƿ]4Ν*Cm(z+73iӚ}Ôd3dA8= N[Γypr֌~rI!nSӫ2Wd5 ]RmetyF'M;"^2Vpy9 6G236uƌ9%;ƸS4KDWOdh ba`Yj|fspcMv߂f9պ f;r)qu`d}8NkP!}zD?m}3kU!3V6`[ygkzhNyΑ}|,dZ0rǩX]Ωi\W ynr4O=J_f]L>GTQ|M&qFaAHI'?=3!t|4 D, N S[/Ѫg8ɱ@Ҍ^Cƙ 2Qd "wf~Jԇ1QE643N}Քϧ8[`3|,ۄL wL/j%ms>e~O=?$v '{Y$''28[4Lpk0Rx }hh6 O' &@n<@58,h&MR{tq2rD)yjhS>}W(0.; =_FJ?1 nIéb %xm8!!{Swot,ڔK{i+1tЭ> ^ҙ># Tu`}N hnN'6~<%xTpmEfʹKpZNc]'G}b{K=ɾ|mVBaՎz xjjp*?vAmcvϑTIi{XZrCc|%ӗd _e4|+U Ftt?>t7pOygQk2Xy0l\Lܐ4d|oK]lC[h6 ɯȉ%E}W%uʍ2nt8Hj\0ΉF5F*>&ф.:4&b8ӣ<65 ZMdN"n\f]ɾ%@LM8T LJ!20XuLk263>1,1cx嫄h`*c#Ԏ*47&tؑn󾟀I_[ljd:멓jD\vѣ'_~'adlTdc&9 }j㪷ѶȏOvKD0~9sLAncj)Džd!*e}{࣏#??r{9 GϷWdrOtO*al5ixWhs%<M=`kye4[x̉+ :w;ȸl&}Zr,UsPn1Yڑّ@IDATa1 QI^FlEo@~sf9 ڣK˵/ Ns(x dCn2[m=Q]v8_$?>\哔t0>q輞)>{[˙ ;oƫej8vDe (v˺|XO>u,}8 *JSmL8{.*Vcd'sK5ylI%Ƌ4F4O@$ph w |R}{Ȑ7HƮouhC@Бo04ʻ{} L`ck`*k0@ -7+q&Ծ͎ooXcr)ݞ K)5/e8e]A83i3ӌ奔C*6ym)Q[92W`DNٌζ+u ,πhoxL]X83Asg~`8K0%=i.73k}fbĵo*K$g6hr]5 BkS(Y;pPwWwS!-߃Ǹ'p4ƹUbef`mi( h%c0p&t <+yG2g3#zQ?$'9nMU<>L O=rIZGi_G:pP>GYP8TėTɡQXKNyIG !pt86y+Swr\ϣ;ߔJ0K9pf܃tZHͿއz= c zkVNЇڣFw͡Stoc[mR|glֶl323Abtܿnn@/xkg'b1z7eřxU &}l[޸|zyuu`qs6-Pdsq=.03|vH$/ݽ M'J;[ͬ_l|G~L1QU;3ZpͷńMҟ޸|ͷ_]~7f֑!>}6^}^o-|͖F뜋S g04:]8;~.e"Oitґ|[NN&28Jf_̊U+Px3@B|,m%xIS%ߖRzJΑؐdom0OG7&`!_aYV8i{Zf Zz:TMi <'SM 2&6fkA TLL8m+<D$HZKz{`(0m\v!8!` -FT. =p{nJokDوĆp :./06)k>^t=^y괂?Z2]FXIqJSNlR둜/*Kw Z'wnv\OF8yq4άάaMPiFZԥܖn.7C!Yp8H'9JvmHR ^8!OsڃaJQGxN'qvjuN@9hYaYG˱naHGKGYD8ƳJz324~C\@ӏ8`hFof%{QtoR-~3xӺ_+`fU$m\uP4E_N=+?,N1RQ#w묉xD_'jl6ѤwERΩC)w=$BG(񲖙Kyy:/]0܂hFb-ݩJ6]֒NPStO#: hMgVUo? vI`6CيUWZP'7_8_855OcçFk'F%"xd`w<8Yh9aA?DhSm2;d^HCa\15npƯtR8Y('ZUo'/tiAnt1zJ욡;rfmalS #h@+YaR#ik$k[ApH8k۱?K¢4#Տ`#N /̀5hU (CtKz|:"5:?&m ksY1t5Dn>M%T-=]"!kvM^XTއvlANrq?v:z;~0y W^]}/?l۞=7nZ+`*ɝDxedDtj~a˫o6[5pfp q36;,\ѵ]ud\v np?֥GZbEZ0E䱽(.;QR_|X9=8.ə!G?E3SsK ?eJ/2xf܍/ ORyJǜoO:傷[fM{&)ƹ -_)ƂS-ɪ>ۺ+˳޻';=;n[~=lc{׶ 2VA[~rM+V~ ξ|x?]ﷇÃY 6BGrD﨨b͘mJ(xzؤ tcZp{7{Gߛfʓp<鷻mwʋ݉/I_vxt6{bS4a{o*3 R'I?(1_ҀoDF^wF3f?6vcQ"\`Z'@g(kvdccVRa~Eɑvfd`^R v-GYq=o3U:KGYA V'&x`bgnƆg9Y2j0V0dbo052B6)9R%X)~}ty8uwx#= PI^g ?`<`$o{%yzBDF]DХ1.Xzk*;PMLPYcOt_8<' `pu䣙Fjr5}NyDJ隍#!tXs4COQ'ngVDηq1^Up{0F}!ٟom4|cמc\&*$~ UJcfSj媕ЊS1>G.yB+/ Xoa#Yz>qlچ?/1MGWBد$+8]L%AlzC?>c]gIsMO^xM[l)2Ŧj ﵱ&j|MN8']~Ju{:*|//|?+ 2Sg!.OCjmW)h Xg<39s],3ٌK^ç%)*"_cot[}y7 W<?_~m8w.o|݉sU\yv9qfRdf˒%LIakpcZJO" "k=77DJ !0L FRjhr\֝wQ㳑F=nl9݈`~/vY0L` Zg>2sglq.㘵19}gkQMA诊#0JLifdN`'Ą_賡 '|2P)L&}tj c2Å'8LֺP tS9#,#'y*hu&_$~efc$ DN6&TA!ќ; O@L|FL ^5~~1Vp92Q;Gq`8iN)m?p0sh+=LBLvs ->Ȩ8 \YCYדŚ|L(Nk)7w{)}m̼ ,tBÖu. Ġc?<=|/wWQ_c~o p5/jy4^b PJGC7yk DtDz-?zʊ}%wКٍjutq^2-H78iYOp)>wNE2!Yf`@NzR"D3ZÙ:CL㨌jOn,F 'gb1ۋ]Ĕ7;23cyH 83Cx|y#/ ~_ΌJDKD1$ Ig"k#_p+k2.%'Ax'Xr֎Vͨ)LFukN딵5#GіTghn6;NFЋgFJG~zRp?H27Lʚu RUI)JW %#m;];b/3ѵƦ}fn0` tʫ/͉P?egځc+T= o+ YW/_ZfХ+'T[=%&}mH J <]a=g3;61 I/׿e#O{P_H:N #X/'u:Kk}:]XH5ko]HPkj>8S@v#^u?1OfXÛ>$WksR0~5:s6t ^bv> [i&!U6}eBlw_ GIWflu:ǑpKɛ@uʎۓZ1 ;`whV*Fp3۪/4kK v<&q}ЛE6~Z?v6>ƒ/mÚ`Ωa>skB#^~pl 7 3Lf'.;δsdE<@8t1<0^=.ϋ߁ u6P<w' Tڷ`ȿ ~r2㸹pd{@u_4OXy͏_~|7m\͒zRp,|?nKf2BKؽq;6 b[U \NL4'(et4F ?vDtәf2`ϖp{ x,;MnHVމ!}xs/ffn~~HJNB0˲c_gY׬ۮ`HTE[-xcf׿_7{u, \=K)7[賡dU-Ͳ ])mvc;ULR֣3|k8jo!j)ib0-;O3ڻ$ʣC42^1N #ε+˙ZN|Ū;OuV'o(>FM@Oߏ.NFڷ˝o-p/|qa~z>f?W#r0-e}2lqFz\rU[\ Gv"Y܀epQzїy`l_||Ӓ4&9e %ޛX9y`|c?nbf%&%b3,h4߾eۣrFb g{$LW0?7M;Y:i! LHlMu*k}Y X0'[p6ǩSYe1 Qc 9ŌqIPlr=8S9 !៲ٔ AlXʾHf9 IvĚB[H3 laL v)%Μ8gl#l <ct {8 JErYc>bGeuH8`v{c`VgqRƫ}wc]b,3fg8zlVJૡgG:)e-Ll8tbzNȎQ3>)p33Ƅimu.zE3K | dtXdwesXBVO4,ZXf<]]}ARX&kg2}op"w+?221Y]ɟH`2k0G?B>%6ko>)N0CC$SA;x4^@p f<+Sb;7k}=CpcG۔):$ܬ-?4kИ8s}%OPB a]/Xk&9_-:Lmt;#Y' ֆlxgkN_Ƃ˝ zО$I-iMT @r>Ok! A+mG-$C:Z0n=m$%3g@J= }(pvDs@(fp8OT ]?'l>i^&7e0O`W"'g_?BH2KJ@qz=5#/`ﻣFICo䞒 g^ߓ,'5mtexH2wf R8@p>|Wӭ1_kW[/K_`:*>/$'m }mL]–ghϜyVP}^+kU$F7h!1OyQ>*v!?+v̌Fcp%DФ&t~d(lk p谹38Q/8Ɵ Ʀ>aF5_} 3h@/~ >5*cO<ĂA7ׯ1 @`^|/rjl?[Vzm^ηEǯC#'|ѧ7_9gS%@W_osG=z]*[nȘ#mƗZ$Dx.Wuo,J|xim5~ퟲO|*k/-24!#5;N*;~ҵ>v~Ihh#8ikd<»zEiH!Wm6rn3˭/,DЃ?{* Je·U@h<j-2w4xΞo'}@<zsD>RUiH)vҩP-3sb/Th6ʀA/1lgp\\A T^pNv:%#׾ן,wZztl˳wo[R[vϒgIÍgM&LozJz姿~{wǟ,j@6yܼ덫58MO6h=qҋfwˊty-"^JǓqIxjL:ܼs4ƘNТ+MFӒ5 Gwǃ/׮7_<&HW7Fk&//~.=ٰ-Y"OcG؋-7%¤wTI.I؋,|@:i}Dիs3;A%Βgxi0o%S]3Gd|p$ S"zXCpALYG h8WA;VkWϫz {A8bLɉɬ隨#:"862FJBY8c3PICu8nv/AK͹aF #AcFp:S=58> P~!#Ҫp{NƄ'̦ya7`7ǺB6P{p2^n6ff*n3?IWr?h3t<  ]gc}妡6'i&m2gq;N r6%1TX40bYGK82M8F^ )2a(m7&B$q\~4ڢ,ǹ^9,Axo~N7F*Oԩ6-YR?%G5^<Ⴉ~+Dx–_נ66ڎ+fq<7Nml֌yf^p\WOh&jg`q fzd5S襯.CW 9|q4`䭸%on0 Ό[`!r^K0mHd م2lЦCxp,,;xd;=+434ihm&YE9ڐՅn h#NeI 9s1KG9S ||*w1~4Cn| hof܋M-@M:8'96_< 3݌X,Y dz_dM ]Ҩ⒞dlh)LmN^Oc |q~Y*_~T](W{%ZOM8Ж^OWrdOQF1+YMETk\&J5\sq[lf`GpjوՑOsg Xrp6(ۯbjMk>;(KqXv|Y guVzVUZҶ}lb#lyT XAH$48I{>UaliUcmNaJgΤ%Obw(,q{a2'V9r Aw.څ_VuC^JB O]S}(6]הNkFՁDҳ]A Lf]3H]W]@iiUδD=5Ww`$= _؅h:~ c ^IEn"">`t0o_ݻw>ȏ-u;M{g7JկYH`FAg[-`3vqnԝM'5W/W +Y=KN'OvO绵<})!aBa~`bݯo/?1˯]m~;UAIhJqY֬S$5sBh%f9S]CXմS@n6 a/qCeLt ]}$ ?gUN|ϗ}ք+g >%d+$fw$$U(> Ƃ|Rl~v:|.kGܔ$>lf^OO`[XDKtMv0P ˯wy*8n.pn߱v7dJ.>1YpkCol/#_+tw~|a{/..WfޫԹ^pE DuvJ N&;GzZQx;/vE{]lWŸ2#WOm.bJ}$Ixmf%d3mwf'^ ń*7p/1^ ~}M}~ -8_l]~UX(mD泧Ay ֝;>M>;Ӧt~Ј^dt\7K8Íqwž_v;&ݚhfbTp:%L~LH)Y̲ML?3S@̔kj_5G5mH0g3xv^5N-"rf~^[OC N~֙r 9sNzGP8A 8b31$=pR]u>uom׬{p%n;L&0pDpx<^23GC o\{_)Uল'9[O!@#SJsXDN'>#9'x8ylGƋfB૶CT}/kGs]eFE괋YK˘ǸHy1LGf Fqr:SRg-a"vbus34|/U:9&_LÀVͨg$8~p=ǯ?d/ȥW TNYs1}'{P(Ao$"n-=;q8yKL>1b$G-YRl6 .UPoB'Ps{}5Z>3Ќ@lFcó'k:SqeH?A,-|bt<@ÇLdޠ/~D2/!9|9 C,jۅUJ'w)x!r<0kc8'hXf¬ +οt: ,R2z/~*|bT u>xO2/ ( Mvvj _6KN6ĭD E*.FXuH-=y2r7+́ANP˦d&i G^rΞss=U hY X9߇=i攩GnR]:NW[绁7SR͝ZJ =EMb8n%M]g鐽C‘D+G6Zp@"5Hw' 3S-p٩JB5P)1y&(z 6J/ !@IDATt@m62V4tm}~:m] PR+\ 6y54+xN(1WԹvVA:E 'T_}wy9?YO3X?|wy窙jkm6g \q9G1:~'*6 L7rϝ~s_v%Z/9ەo&ZzrJ5T|wnU**Bͪ㯙zrҝ\_H5a[".,<8hx^p"tn[VI?m8-AW6q_lwa R+sq{^+G=}07~~|/9/ٔM7J  b9,":>cA,9G1C?U<;t՗޺G_>G : }Z.诪?='Uһ&G'G+pX,źT.7%{=;oGD۪벴٧t|]2уoϾp`o \>\scz41%gwz|*7YBoᑎ_q@n&"  *3oZjpOt$Cҵ /B,P$ބUӉ@RiG\n0JqmBX6KaA'lK<6YEc=VˀbX OT\ȬFcJC:s(> 7_1k" -#Lv+%' :IhJ#' !Jm\lzᡸ\X 5@׆k&$<X4Iy1 [Na&wh=wK|`1"s[)Џ!5} S>Ρ1f nm Z}qJ@P}#NJh, FD)JNJHn\ͼ694k &ѣ 3)|OqA8DAFY;%zOad6u5{^5&~7w:=ؘ ^ԛx=ymLqdnAY׸zc~|ѲH JrxɑDΔysoZtبj`WmtT쨬~egY?o V^k3ZrRbW_TG &3W%69v~y+{6(9|-?h=܆ܝNᴹSf܎de֫7AOɌ3ULk65|]rӘ/d\UdTUW0ZvaX3?`[W'ѩ߂ /;#(:kP/tx s:xxX$N?3wz>\^I@94֑x[Dsܢ!ٔمڣi~ȗWV=ʁ`xZŗRmёxx$L>fijl/75Jõ=Ume\ r$bNr.i5ndž6gqPx򊁥1 ߄fϻe닡mi8ݑ}A?VO}o9@$niKO:SR02At.?67Ơ^op .|7gQm\`zla0ӓgf5>Mbw]\v8#,AZ‘-}PtS?S\ѡt㽎|qW2C}ZTjoZs13C,4|W2NL~,)暄EzoC_:t{mtrPe\\D[ɢ "%찙8aOR/{eǖ1K򡓱x| |[`:I >2fx*36ޟI!]}٬{Wl!5/]-⟚A53JoXIr _jɟc^ݿrჷȷFCV6EPBdad3OP@UUV`ybvRóxM-3:jKkoW%@7?nϬ_z~gUޤ&]x=\n?-p%[i-;׹sz%->%iҍ?hd͛_/,_LniO?2 N cO,|L"ߜhO Y6*e0&8cK7S1 _zK \I]orheehuFu%rtDϖW.su;.g[oo/4o⁄,>*qgr;`"tE;~%Vؒmv=fWM<52W]#[?8Of~wś?%Zw,o Vo2xb`p٘h3n/Nٚ/#85['NKReLmas>DZW.GAe8 8] BYzș8/_k>_M{mPILKq c΃,_΃mqom{Q4]٣ SYd5F'˒؇/6\Dbl&OAX& >DV}6UA8pxjN3ؿX1YHt-(s0djvXVdp_3b}T6kAcoeddlDawOKEy4'r]@} 2DY0MS{FJ6$o,ʧ +OH(Y&?|2  G`?868U`Azn {ǠWEBZ`a"vZ2 ݃O2~a |c.oPˆa`g} IE_=X8 Mf}c$l|>܀x >k9}J" c84Ǘ0 uO=ob}@2LƊ1Йh3d؇pM-_AQN?-y % @K&{Vh6I[er_v̫7R5ۗt~`j)1gQ:Uw{%NnCtO+i{;I몗^ klkb7$‘%k rʸxB)6,@%&\\t>G'hQ~5-5i>$M Ώ-_7&_Ցt?[p r*Jw?YݹP촗?.>%/Cq},O\n_\/IVk۠勎f׼?\j p*CQz#ٜZuكΝ'GTQpe=C}|y/oY%Vf$b"^k4$ UU#syuG3ҲBYDb#6oGK%o6s*8~ɖl5pY5Q/~PqQP'ְ.&Addr Zr2kG8 a #0v8,)F&Rdf]* Q]@gN<=DDAQ?6P@9 AؚC/ Dv`bNpSDy˘#b8ֵW(^&C~s*ARJC>Txo]ٙNf@wr?3F‹o7s98V~Ry:9?VZY8gSN3^ ƈkDS_4[\ƫEg,Z# ڟ!,e,11)xPOZګnqxs0{FG '/?JI%]>#Շj ߳ )El6p ՎY 09=C73QgDa :ZS`L_KJ{!⊶C%=0ɖ[Uo"ZeQm/gFg'H".RHO1hk@*הǹn%絃oX [zzKXp*C}N6=I#u!,膷:H*؝)U6L2>A<{{Mmcu6,>+н|Rw:q.)-nǍS_ObD#)YgI 05q/5^h?A: 3NVOwʿ~{5I5d$c1F 7a{h5jAr헟1rj nAsMJHrN%!-i4!Oï~߹K%4VaVL7(-p_~k 00ϟQ%ɲ>?j•k%-mlqJ45<5&DZ|1x 7C:og 3)ԀWٷ&nO~Ӧ#|dpVvN|O[J[E?q9_~5{[٭/xZ_};˕6YV}$L P_l{[>N&/9d[M)탖z촌fM,mzσd=F){@y种M,&f }J=lF*N9ߩ/i2%W>y N9\d.ͽoKd/l,N.g.b2!  WM2 |f~S YH>Gj ^F&]FU&|_9 =*|^v_[  ctX,uvQ ./`Ȝ,d:وT'e*ٻa$5D_MΨpq: >>!mv1JN'* c? vLul &pRzAw0X:F6ĤLm`Sds )oGqؼ9Z5@CyqTllij1AN݌3f5EUbh5Kuzф`Iэ) #>3IRq̒_ࣁ1aIeT$7#Se+EsXV}5{ॳmc-[4 sn =†ajH@;]$ΰ1C=prQpoz°U=xPBjb\x8dlU3iB 2SN@S+OnN5elIY ^Bq4MS8Grtw씰%dFĩJJgxс#U WT V]9;rrUjp0 BQE+Qr#Wgl7kv!]P :AEةTM>jXon1:\$Ϻ-n=5[ 2%). Ѿ)i6 7:LqZ*?'sv#ւ=k n j"H`۵},8lYVڂ;]źg@P-Ѫ4m# 9<lcN~>k1 dY:)r+DgUE9JWⶑ[ye|7|o愦亘3sIRٴ֐jy=mxPJoJ˘::eiϨ.e7:L"hOR%gl٣A \l [5G6(y͚j?&6_TR{L|t]%V}>^;'q]h/0;Fץ>̒n+{{!CB{ >âI~:?wؑɞSZ?7AC^HKlI0Y{@~| Xi5Ssn%^A\n5⠲C`QŬ!H&cb l,TeADƲΐBA~$q0F.(\Ͼ4B 1r`;;6O<s#V%HiXb"}t Tq65KRlWe\%!YY_Ơ/Ц0TЗ)ތ˙hTYdN@}Mc+-H8xٌDH4>8fq=V%c]w 9eUkY{ISvfIk2g=EԬ~a Vc<#HFtUo0t9g\%%)>Ǜb 7#Ю VH>+lbIG8}R)^8hUjk#֗06,_Wa3xNIQB&2EkW8nKٛ˚f3 ( T(\))/YR"e)bS.k9t?x& 4ߏWZl,e&sǴ{+c9z~ Bz| %L,ИN~"A W F%W| {ŗ}u(p{,7_nv 0ø^+5/f7ǃs%LT g 8³kAT޴$݈~S55]VB w:lYS\t'ކ$;ln^^2;D2ْSXT ԙM\8jF/Ŝ0Km7o&k%~FV'9*C'jmn kdӦt vB ?ZJi<ѻU#?c:p82V}**zD:]6x&J!zWuG_IjڜYc}5"17H[($M{zF׍bCﮇPR?2>П78 !n&#)>19nOb.ܧLt4D>t&Uk_nݾ5Ĝ6XQ8bdj]/oYdmKL=cϚ}I>_g7,X-,^KlL5\Y;v/ݾY~흷^Mx|Z罼gˏ~YWfIc4p:̸ dk=xw/KA co.AtSB4UsYݗW2xuv縉Ha3ʖM^i#{闟O"R eS E,dϕ>?}Z;Xmدgȷ$ſ8ŭ|:1{-h;]t.بؾ.҅)M ő-^07l_0SVUv;wcvECkSQ)F4Pǿ;eTD?woNn~nk;xٵ'UVc=fkonޜI>e ~η]nr?O;ZffH⑻wg;No{h 7|H1ǺƄMΝO8}q 7fRa{~Ӝm *v.)s.Wߺ>ls6FOfw; BE K5}5`jR."n5"ō1` >FA"W9B~dFԹfdչ&%D !,))æM81s4B=y3.0)&3|w:u Jq06FGfC1D3v82jv#'f E$~]|?X.^Pmc2r } R@ S:Ye u%^;Eg7_p=fV< g8u 8g{FJ8TI^dĵwg*vG#R>3cLyxA 3я paaTPk=`yNA%0=0ڒ13ս`gnL so 4Mc\Od1m}¨Pb65#w(`ripS`l۫oo8=ô*q:U)w|O&=)/CJ:.oxn53nЅ <3y6 *#Y#.tnWPbXs0X+zȺ)q4߬G~ vkm:AsbekES_VRgWcǴ{1_R0ZQa,9[ M_j<'T/;8: -,Cd 2o.†YEֱ1rJm(&f<vbEv\; ^ Jnh:k!Q12,Q8V:%lFRJbwv8o4Ɓ)zY7꾗҇ $頥Kһ>0Df<kB]l|=Oi76# ~]ӄ1%?59rUlھSWVwYS~ѱ6Lv_u"fϖatD h| &I=>@xSu&){l*4+B?4OQ (vm]dwDu# /D]%uC񢟇+yrDz4_&s;7@dcƔ^}-Id 0s$ kM Uq6쳄mGnb^d9>8W|He6}Ym%ŗGm${'*1GkY臟AJ-_~2c{t;mtvmsVNiBO vqC^"g#Ⱦ0OT $mVqǕ'IJy~\N.+8sMd=4h-0)Hgߧ E|bd< Tdg;}f*=5 .g~Vm|7?q>Fq &h/)4zfXD'4C9 ,g6xc0LeP) vaLZgBx|˦}3C̣ƃFȖ ›Y;)֞bX|H:"Ǚ=N8P_S֓?0,s"CNx&+1lhfA8f<)bv^KUP&ej,10gO'/}xk(?h@=xƁٹ3)g]euj:J-S_qO?]3˯ FeQ&aEx%ifStVqZGP4$2|+ov|к6$T4FAܣtSL\ILRe%Ƈ}U)^F=,c]ۮp_kJx̬b&x+3 }8% 6RMfd}hϤ&y荃3/~?NWVwĊ5/u~}85UC?AW鳭 ǏUFKdTpG>_K ᅜR bKrIO$D)1SnIK|wGzn;f&2MB(=#tukpntU=Y]HzNY3Czl_P *}$]ƅߡqߍHrKrvv/ivկ kX6}p}zј8Ɉ;8vW\Jω<۾۳t VO c.Fzlm=C^fWLB;gck*ɽ̗_{lgo9f*U>ٍ^/Pԟ=[| PףK .{.4'lg6Ѩ[-ɦMz5r]N՛ƒ~ [!=ZϏA0,)c>OFw>X~T~<|h.y8OT|ξ_J>h 6ߛrw }ܬ|?}9+'=_[8]u $'7fz'tHm]<>>Ju }xÀrƲs1;WU|PbF>|ko}u=WϹW?eeahGX_8ӑ`Tok z~L{xLN]F3yL@ks]\vMs)KeDFF&j(qD≐<!`'KaH@IDAT'h;3ɍ1H*%u#JpIm-;/`_W+](J" KmpJ mVCc^ͦh!@"B`\ ɀ fYWX˺Mrb^6Nck,Q)dҐuH ep :bq8=9A]l*y}'J!zZ\O0dZQ$K{`Oj`+j?mtOv2CS^rǺ4;(G.bޏla*ND+m}knJM|BNvLS<=8CzbpIk*5[D$>:r&I2q|kNjN.q ?Ψ`Od/kb8zgWsmpL鰙|3vWk_"(3cIL)x GI_O8UHEsyMȬ _ H16dWIpGgqȄw:r`0_e0t͝;;Q3>> -<,8v8ntO闟ٿ[OtW_jyKHīޣ|:A7O6B,)(T\1 Ί{`*Hs /Kտ8wdY덗`֬iu xQ/+t.Tiuj#0T"K٘#'hawZ|yN6h z =21rԒ ' wCF5 ٢jwx \5}Vw{ˏe3*ӿխβok|]ƻחW.dٴxi KQ$ѷW`fkg@laJQ-p#-ho=mrQ;Y%[_%-hV}pP|\Wu{]cl& ~L-:\XNl$36#iYggGB>ą P&*gN ]m :v[wUq%{hux;c3l$T+6IiK udb}(+aSL0=+wѷo[د_~jJqnAcdj(Aiiid;0!rc^5QYB; q]q0F܈7Q ZG&[g IrY૥GX|';iLKIlՈF1c',ȆpA6qHt 0k8ˌmgdmM0P?JY4r@:s`8 Z[U ljӕ+ϣR)e}Oˊ5z?&^?B1P0k<L ^Ct"9r?ha3.{_S3G^;;9G+Yސ;Gw:_Fi׼Re9c,6U\$68kB36ӳ X,7Lz3Y6<]q6,ϸǩx>,e!3>}%fFmI9cxDAq\eDɨ`dpHk)0x  Z6s99#Cu֤T{kv;9NeMsA;}LP~, WԄSk\Z$ֽwN$ cBkƬy_?T1'T_F>axW28pm'$g Y϶GJ1HJpA_;iLSaRtYU[MVc` '#̧4lovAҶ)L?Pƹ`!\HNm^'(*T1=`hyXJUѡծ$,pN=')8$#5'1fl}3ni:LMU,,Gx,jYWx<_˨[s.qA v#-6I̺o AI0#Jtvf- s]:}.:Z2/7OYfK\Fdé@s𑎁IƋ=!J_F8lj.)W0}ofЁ'g3k(Fuvjj$pf3ևFo>UtV@Oy$tGu`~(L6R;7֍ W I\$/SRIF(DN:&t|039:f7Ku@$aA[x0h2=wL0ywo?E$hT'g6/jzH߲/x󚞃(l1}{x`Z^h+ꈼ6cS0~3/G61*=?7+㾸\}zh) icԚ)(-a&ygJ\( lv_(Ǐt} Nn߼lpX>˅{̿)x>k/tӌwu`H:xRxA\ ◓s}ϖ_|ョDg٥'66rEby]ŏ͆O[ڱ[rLލG=||rʳKLl`w˗ϣq8Lf6؋WumYɇ{Mv~ps c?'7k~7s~n?oJX+Z%uM J%kSє?}ΫÂ#sX@žȫdljd}\_$g1tTo/vJnJn 3.1$`.[ua!JȍjVģGO7n ޷~/eUזUO}pyݷڇr"^jo;;7sĖbv+/x]Id,jt8Fb:xmՉ}I3tN Z L{8$52 ~La%(s3 G 0Je^dnlvS*i=s!춈 8a yEmY Ar6< =q8&k?Y>ޅ\[/Uۜ6edL mP3[oyW##ZPLhzu{㥬>f6)A,d3#SGή 3EqHhGr)n8,YaFN?2)C%].JyʥOlrzrt޲w^\UWJHݫ7[>ޘ4=$QYØY,~fvAX뻛q4/|N B=Ε{&G ]pYJbs _K4stecSDf*p}w7 <˺Dc ?uY[9t=;cnJJs<_- 87'14GRhùQdrchX*`Ft}fv|F ̓{d7 oW{k,x!i7GN}{˧x=d\oG͘jjWɪ9[!q1Kgh>54j2Uο[qdlT ZũwmXLlY9/xG#txJP^yf!Bv8]r8dlS:'*5:s|!|`ck|F1H!4{hh0\Մu]0/_G섊Ն8XRҁW(IYk234b2_3鸵c/5%hTM?t^0w )AI 6ãf~#8IFL`@pKg6#3oبF 3]}O܀B+?sO?_~^{mtĩ#8V?'Qp42UtDAl*U7)_|wfwoZv<?%ߍyc^pO)4BuTwU}΄ܤ尉'O5..b?~o,~6N6Ff9:,zćqJD[gr믾^˧i;|t;J`s? ΆŨ lk3k?BF?q)uOe|t^?S\=Y7;V06F.#cbCA[Kr]Es6_tt&k,lM=[:sOFuы={Bb\4w_[鏾];X~1`6x=3NT򰊆5՘?flr߳3% bٞ۫nJT ޼@I''v*t7몆ӝZ^`%kSAѤfjJ .PTudʼ*Z&ACI˃X^.fkiD|^$wULgm5J.ѓG?YֽS$'-qBF >h6|͸;lp\;]xblGGz/68oh6`PfNoN&so%S+j/u폝' ]uWy9sp|Эs 1 E"e"[&@UeVyiWUY4`nn3J?v!K7w=XF;)mmhԏ!ɔ7ߨNFTq9:59@k?1| g}B*bX8=KYeAb Hd#  _qR\Am\i#eS>+BiNN m jڈ6k 1><:qOG3KiYdv 0ٓv|B9k4& S=(Tc8uȌt{AZ NzN=^#1a8A.F:3/!02\}{SΡX]ʰoG3NIq0)R`'qJKLd9L8aӑ7}6p-#)i we )\  $|Cm||lfO0u4B/لx(*XP?"|Kz/~̬! BkFr`L'{&ݐg_R#Mn캎_"2V~9yp=7%v/C6d+!m6TrޕLP⛍@O\0˗:kH=3tW69T kM3L/=A<wSCOd޺F\3% \xɢX9lZѨ+ɼ?ʞ CmMvk[ -NzDSt]g/Ou4,[`'?nIT6sެ3FztM#cV'6@p6qB ]Uнc#Jt9j@g4y1xֻ˾kw2z\~:52(y&?dlTA ܸ X~O?Á3zF"5X'HXɴqo30 Kxq9]"Ckآw6#xN._KIgx͚M=vvg8sâVIԳ. NڹTH0$f'|O䍴kw|ƺ; J@'Щ*.8[ri;Wۭ-~||. ɳ@f]:Qޙ[ nBikحle(;U 8?2z-W.]h]}w59aGJ<6]껯Vku,+]$hn i]Y]8z}!Ftyb)(@/.tVOpactdܿ}cO-۔y[/13S$gj4EkA;'سU^x7_.ky:z1ʧݩvx30rT{S8p69r~Vm[]7_#DBiIv;חn//[eooKP!e^zv۸jNeto@XB'V%LH;%8%ۃ׳_-LmL2-#x^6Oq$_]νumlEՅ6 rW_݌ktf6+SM bṉCSN*Rb'GbϖKڞArAHfSؐ{/kY}б&:ϬQW5SzJ\&뚰D1 ޔ7Ng!l‘`&jqaXMHO;k 8lGJO32! $1 Ht=9!( &ÂY@>J]%Sȉ S!va?}0k }Sv3 ƞg͊S~(Pp *%3N0f:cGʼqԱ. ,^y,%ʈ?'ނK{|)E0f7lnw5%l 6Sm,'y|m4 kTde!,y>𙤔,YƆ0㚿a5$t+GЀܳ9/rAk4R/U_ro)Va.d62n'2:ψB]A90o'΃otY$<ٓ !5jWc^Yp'2~͆$=3t!oF. T/RN,qCE3>0@FmrP5r _ .^.WAOt[cpi|s:')IY:x_3qbPt)8ACH 9#x2gǸ0~O&!$̏ -|t*}2\1'óS)"ߒ#0'kNGMRP㤛BzM1Dٯ#x9FlÛ =͊ا`dm>~M.Zamg0LYvNWd'X_`4/GexFXRÜ,8x_'أcY`|QI8niUq 2Q> /űExAr웤$cXi- r9y}t-Ɂ126M$@Uw$A7۸2k,2|Xjn'˗ ߽˃O3Q|/ܾ|qii>}}iVN*@Ƴgj>w rN>ljt6>x|_~1G4}Mm?-lIġp׳&G;}7Mh?|UG`Wɤ$R=f"q 2mO]>{XtQŖit4brzr1߲k|65꠾L\aBl|\=wcrO#w ;_oDR[xִ8CF&^Fi'Ql@tcז.GO.ob_IW㇞qBpZ2ګm["8iA 0qY-iU>OFU^xG˗_B(8׌-{v|d̋6{qG[w+B N 78{lF*Fo.UFV:FR2#M0G4VۚO>Nau7sln3Հ3JT9Îc @z%9]?mjkW|ǣ͎X&|;8c^xM>-)xjofC]B2wKJx)%. &Rpه:ӝ\#ڌu\R 8R1DPCmu1+k(#61 @-YX@}׍Ë ` z̶3D ĩf&K< 5q$ߙ[૿j 6Mw A7F!#bZ0vi]r7l&dN{P1U3ƺ50#qX(ct_ũ2q۸3xS4)S9DF)`9ܛe& u ? qgq4;IL}+&8[JAs2@ m9 =?I7CvCۙkfjlogMt|3^Y ]*װO2‚tMK]>44k(Z+L0 J{m\l1B%R'9 Pk_)Rs,aј#L2x0qloF~d,hO=؍Q~&"?*+`=VDɶVIJf|T3{HIp69y> kߕu뗵]kozᩓ|F ֍40IR#ۍ:}&#LYo둦=3|sjt=1_@Ф=};DḰ/ހ3򌞧 qw:0 ,l ~YӦ<cT7 eO hq>gNPO N/ȢK q$R ݞ}^!S_0\7ត{ukɱC 5GV9:OCd=3Ɯ9363&PNzd2ĝhGJnHM(NmfڸO()|%`&7 $- Ʀk+rՄ5fSV{GH,Rw*ԑlcn~&ֳ2ژD^T6D/p8##|tGSdN.\uS0J/uK~_݇q?omƃA͑_=%Yy|`p L޳.nٸV/; #'}\#}al9f=kFn_WI5! NG3W Dz#l՛q <G/ } mLIǕ9gb&QCY宪jc/zW^x>SnנURQYrw_0o>Cčw7j(8 >]8z0;Kk"d*TV1;ܭ냗Y^ q N?G .ht U?o)xK9*,GUN'NG ix/_6T_ȶT:Z?#"wj ?~vkSǏZYaPjԮbi4B=;Y^9{Rvd` ~ac^_FX&RZ'̘"ߜ5}n#|&}-gk3j>}<Ɉ]z6 b_;j/78U5-xJN) h'=39Qc/C_9?\m,WUOSwh~фLլ=~# 1v|z6anU3|6t(hiZU_G xWM+O6g!s[Eo;FRa_U I!%$]G2]@|DQPٿV`C<:*2jkefo9Bݿ|x,#Y'f eQR:-Ά-=-qL9!IFh ̹Wmq%22^fPAdYXgH,cy/OR بt&bfU_!['Px,ov/o}8Yדu+;)@|٫ Dh9i,Adm'v1c3&|Mddqo@CZK֌t9-!JѲ =^ɂN_=j3(sΩc 1kI۫bR9ڜsʦE4v" )Meϊj.إ8oExC[8 S(E'"Cs78t1RAu>D™Ԟq&գՠ so7ק;M<°ʘўqPKM׍)"HI:=sRKf8;tyg=sb8yKN,VF E`^c`Iv5 CňB[4y)+18q[On@7Cɀ5l&]cQK)>1Cq2>J)z%CO0ч+R{9.`鞋sNA\Xxq8z{X44۳(kQM tW`mh!Bءژ1jjOѪ!#7^|F5(7 eMnRgܾ}o9zYqԋּwofi}So}h<~}~,u@rUl^c\DG#/lu)<: u6pZ97[){9L3Of?; ;oΝᄇw/e?a;[t`ReE;wkB[XrIl᦭#]He<9R0kӃdPr.gwtT; \I\Zv1sIɎM"E 06R/>_S{a+'՞W’#n&w~Frpq, "gl'hdEă&pzg'e>Z>Nmhlq) }<Y8~ gDddEAv$R%w^İDoӳ}H(Lj}#hJ &]2 " [uaF>B^Oc$6Dfv(/BB:x5/ufzO #_[fF6㙄Q}Uxgm?BNF?IC@k_݇k`u[s>)W }D`6^c&|[Q;h"cy!\k;r9+̮7&/[ɂb 4}O<O,szdXޏGdhQB]dLf~Y"?`уUh-,* tl]j. if_ DR2rQ  䙻@FOLhj^G hDaHXoUsv#C.z%+te\Gɼj3-/VΧ"JU\.UFYd]t:;eq l<0ƕIG8Ov+ ydFÚhD@dUM,1Q7l<$ @ܝg0G&*8v q:U,Dsd3 +,z td3/8[ (>JWhKJ5 pA_8w4!%]i<*SkCZ}T_Q-C*`{Gza6>т*Yߗ>|z4{TwOЛ'\'ABG>M͜nW5@7N1ן7"S'}\@7A6553o=݁pîc 2j덮c=zy|rˣ nݸr*vߺa30Pيb ƙ֌&J m]a`wZF[?d.:fpM}́vLڡ>Vc<3^|ھ|:^[;U5}whVKz5]_ǑS߼ ,A)ާ`3E ,e\`~Nѝw9?x~^->cGA뵜z$7uop+:f`(80WaX,Ӹ|jƤ+CGr>ّ)m_>-)"^y-魀Ja\YyVh gDYԴM R m'~7D2Xz_V \:O߃`ևNُhdQ6쥻6^^^}Ҟz UȱS3qX ˯4Ώ./N'SM[M(l c*L^ɖxSs*у|啛ڑ<`kCGc{[vv"vyvO?6d>Fŏнj'Q{LY 'b@IDATj4lm963BW"3A’n=[;kYe~<`qޛp}Zt?8w]G?^||aO<,ꔣxooJ/GKXf:5 l:L,`^Ϝ՘5DhޑEX~Kχx-h"<ΧJlLC-}&gDMBԋf5g66O;GD Ѷú]^(X}HPM!r5+u iwMHe<,F@j_wZQc7Yjg*Iyww9A?WJg4MjoyI̳VьMʖOP4UpOa6B 1:[F{"x(,q^h"g׋h8p4ȭF4 Rcsʋ9bg??(Tc\Ԥzc5# [`@A5ke+cES PO뾾5yI0Z QŌS_ *J pf >q Qlg.53kV8yI_ϐ_+v Bg6ͣEճ P,-׋ E1D n'#kp3 /Mឳ:k\8 fD!q˸{FE/h)pR_{ݧǘ ѐTx(jN;!c5N(ft@t?f:{4ĻD Iq)2<}{ rK8Αߗl#@sR ;VP)QlCr:VmR"hV+,lN @PPpP7w Љ'z`tRoUy*^(~ϲ8dgq dI4/Pڹ^ze*\79ݚ;{ЂoN4W&3C81gdʼ,gtȘ鞣LsH -oƩib xٓ] F }ŭW]m~ !T{_CrdVϱ<=0 :AfJWe4DtM"d.%%w8J)`^ pBQQ0$zf6 UIW*&t[d ʹ3c7@WmwµG=e+zz F_?&gH`v|B4V\?Xv_ݏU0p^,k)i6&IYHH`jo{qeHߨ x+;l_/_3uЊ-Vس''Fv䓌L2n?[o\ ᴬ-~|cp _.Ȣc J|S?8,pD;Ui=2fdpgcUg'l|98cȲIf+A{`u0Fo, h[i䱎K>od>بEsZw@~|h/|gƐO~ğьmov{o zR??.ik,nX2I4yB?[eQMgZ*zcYe1ƕy"e} 2Keu"w}b[K8h 2F0b{_"IV[&Bb\mE`t N^Pl4NGpnlqvvoV◳#t&ԤeEn^`3jZY-؜d̑k "1pz\}G+ZE?W??|Qr!` )O>ĩċڀWa`7Fu#ɟ8efnٟnGLmcFhҤ)ұ@^n!ŋ~gRR ;ʁ`)5{A4u:)Ga4TY7 l!!\D~g߈6g-kEAPT .B%JPD4a{2PM@N)DA@QpH@oL=7R i\Pv^̀Ý>Đ+1`a}QsUs7 &gH%3_tsΝg(J f߬i'ػ:ohsVdO\>wحĜ]˨YfXHCA@V ^ cJkNÊZ4gvy]GLZ!0&&h P6VzΝ>7ոDQKasa*aG1d>5.@`It]ѕء) 9IV+%&;G݊+ |ƣߓ݌q:C<j>1\/M͈HyއЕ"2y{M9cZ4|_q̠z ~E=|OpjVL;n-\6Vi[ ߐEsd'äƣhTx o} wHYa0,S0V7J/Y?)VgYFXf{`&3xL94D 16U9|=+it/ONWoΖ~׸t`=ּ1JHGWkWSC 1i*>7}4ڊ)"Qr?ǐ4|; ˶ }vZ+49!"E.0'p>lԡ"a-:/3O|y.(]>#8z|з=V޻ͽqzf_]?ާ/PhC}nv]Z4P72 =A1p8Fp\4N8qu4k]OW0Pdcɋ{HὌ֓o|/dף>:>Rh < 7p0?<U p p¿ʼj)hgderRA*ǚ9͂y q,P(vtqv|)@o=xs/t~xa>}KSwGV݅ j[;7]C>uOnx># nG;#ł?}Z&RF{߹-n+dn $G[Cz{nsns5w%5ތY=|x|T|ZE綇yɮ@A!9g=ϱd/Ac=hů?-ࣱil,ҽ]}F7#HwL0q"y׶ 6#-!hdgZl?l 0}b@ \4͙I>&z1ڬ#ëV8δ{qسt@mYծGuM. xdMOPW4'Nδ*ִӎtW_^YE;\wbN{ j^`P b! *EfomQWɲupʽ[LH&e1u`(ջAz|\yq>jټ;p@oʭw+yOrj"O!leE8=Z{ԧ~|?MN6=xk4&,} f!S@o5ihMK2H*v' +& K櫋ESE33uEtwXzLo_h~%zZp$d".Ck&M}ҏڍn㶁3;r ڢgi?*.NN?O_,ӛサ;/deEc5\N;f >Y/Cl(eMݣYW |@ :r-qcFmNWf g8T!Jad*W2 kR Q8|]R†Ӑ唠 %JDa|X'cz"-;F ZHewLΊ' ui~ϕCB0c5ѽphjqXЯ( YV6B"åns0׏R  p9+VQ?7*7vS)tYs"x5Y"SsLsZ=MZ9Zs$?͠xYi(OH8O݃н@d^RGCJgs2Z\:S̯Y= ؖ}QHW[ V,N@wMGݍ{hPNY [|qT6CFZD俑8Vh$#.L%񽗚hP!a[L ޠ'hГ}=[譵فuqbʍ>pd`}|, 暜ozWyo9 = 7oO|IN]Vpr|jx~az!Z#]Ÿd(=f?xh`UOJW>܆dC}#H8>~QЬ4OQX6iCzx"9>d y^VH})pLVk` d8X9W_}sy/ϖ[0[3~VЛ s ߓȣoLfߧ9?yM{u|Q7U^z=FN,Qq q\@QܹZ;uTeo,w:o9 Rݷlmawvf؂tgᅜkc @&rH c[ KNNMUV8{k,%'OAdl3x] DqCǰ}4'."FSde ~k^{%椫}.py-zVTz4̶~9([˜IsP`jS`*C\lpNrI}|ʽ m ^AG?saoh|I@YbQf^YCd|zɇhK .IVˏMY7^\CC.A?I'+F\G-ga'ler w[؄^RVf8VYi NR%ߎzb+=<2Л2֔Q w(IOnh+m`\\rx8e^auIw46׶Z!'xP{VQj`pcIHq/dA( -ʚ cLq%*^-bI[B]V0e\Rb &35+%pk1):Gh 1p[)j !ɀqJ+葓2ܨ j/is|KCJw}2 C$cL Bg8Hi^""I#iFi/V4N=f(0) `޺x=aW;>#Nd'GA*QЪ6Z ~Q|O &(weZ|EPtJ@gE+V)8 >N<OL_^g)Z6E}eT;2| xϩ'RdsfT,96.6Ұ`/xBqO 61^gspݶ A }O$5f^}1^8RmtjZH%YoNsI>=wOG+#coQ{Mo$LźݗTA It [{ؖ3Ĉhl)/1!q C״ЅWߥ`+Me9̫q3E͂KS3̑ߪMFI/aF,t/O_Yz$0>Ч>̆p7轧cM\-Fr`'<9B0w{Q?MKNdsd/ Ռ|oK^W@'Suz4p]Gaj#Ա:úHϘS,l5ftٲwtgǟymaC[i??Ը/{92 w#eXN Yn'6]չY6j#[q)@y+0 g]Ezg N.XhDLۍH$4XzZ=&bm9ɯz[5ӵ.NAB_mrg'<nyo>ce8.ezv޲o%V7ږڝlQG}MG1?* 鰭COҹ t,2+yɦG=ypaw+{Q8_䬹/o{ha'Hke n7YE+ dbvkn`HIKx蓄Ì}{+)wCkv k,А~~Ȑ7^{}?fz?~oglc4g-[ ρ&ƑI;3g)om'&Xgp $$9:a0 XFO É67;=|]"JŔt/7=Xϖ~PqY0 Jςt:| 65gʟ)%zvNyo7IHrerٟ-?E.>_~v޳Y}lʇCr- Կ'wdeUvNW8:hN*Ͷ4bh%Lij5:7Aax@pm10BO0fWl76VxPm${:8FuBcNJT#qv^jW@eD~4_OFJc=,o.?xLyOnF E㋼۵'Ym_,|u6c&p ~جdgfqߺ_6ws04Al}0L&Y A9.:D)@hr>>c:87#n(Xf/b"$CwM8PoߎÐ*`~(vLn)at(b{o3`<\ ]>1=G"àE f$e}zVVj9cQH\0ens:8KY{.O[S:2ԯ!Y-ERhfj Pü)Qu{ fK/@P<z_s@Vȋbڏ/&Zֱ \,& RS7323M!XEc1p)[y 9iOJ4{8vV 3 *L8Q 3*FbטQ՘Y䜡| _3zd3Xϖ.{7х,LjOA8l`EQZ ˊt~w=قN<M]#SLq '0 )gbbV{N -6ַyNJ##-W`s g 䂽րo#gl_oxωٟqT0g?O]ɇy[ӌ$h{ ['*D ~Xc4ޗ2tT/j( ̈/3m6 (ut{d ]n._Yx}D 1Ek4}G >HQ 8xpp6CAWhR#p"@iQAw#/]ř/jSʷʣ&xɜh0ƿ^q^ ݇,y='{g `Awk$hxJVvI8M%Tw~ه[7O?3Km%NJ6eN/#q4'OǝfYV}xR/~+v 8Ъ:$ x̥W_}9Yn <&V_Vqir.ڌVSJB5ȊS@~%,],}-xe6`fNBZXmػ~Z1dF܄b Q3{^lZ~z~ޜ# R$yBbE[ ~9\ۢE 0ZIQJ{=e# `hЈaUem7!aN!*$TW(gGF9d5޾ȺkGy̾iK2+cɘjw=g^ @K:}ҠqqFKѬi}̀cĴ#;{jÁHy.Ǒtu`Xq鹆~@28ZkWk㴕V XGD) m0He1?TGI,aۥiЧ k67j".(;pHϘ*9 \JlT8ٌaz}8~z'Bc+ǑsswA)XORёYJS%.:#4E 4(߬lK":CࡴvPHxܽ{q2|"g(kCm$V'_b!A"aULFE/Qbڎ!z<|܄:?O+ f>Cg;UH=gzk2KQp"9F^:s/&fPNVEᑑ%U߶2`:)VXGªZ5ʼ}\`e ˑ9g[,tMhuAifZ9KN07x։84L׎} &XO:£~e ^Gȹh"'uRN߳"TaY'-@$dxͷ =353,q.Ӟ agh# ,q?`lf Wd}Naҳpv&k|^C[:6!lV{VUjg6F6s\s>|HcA+ _Gx^W'/ZJ^A|RdEXk@IIgzT@FC-#+34O 9cіS#eQ \c)30&kҟ,2+/lmN8)o([Tv-cl] >lfS># 1CӐLؽʯ}hrW?f q}ώF ]2滶&&[ F[O^ME3͗kpj4Or~[+`՞^el$܏z }9⫬iy\wON13$Op%1>Y -IWm~r 0W=c?(md"z]2S J6kG?)z+~y>ʔjL-%vAvϿ}D:7n:24پs&p]3rg焁8,]iS1Zmvz姝&qνV9` =M5|迶o>{}5!R}4uv`9C?:X^}4ȎĄs~{" 'ACg(ٸX7"Vӟ-bh_{k9ԏ.xsy}{ySlr*;MlAqR Er|[]&"W‹{kiG]|<{=ty{Uܺnmu{n+ƣ↑YY17g 86)#ɷh): і;&Sݔn<|us6wt7?6'nߕ~ڪxSj?'kGgѼw d&J㛝kߖq|ϗoW;OݻQAwH.GJO|-ö"]6/B*]h ȈGP.7?`{{MyOsD bƜ KQ J1{>GiVN{\83pCl36<=l BnU.IAO=߈@> a[ Ry4 C  ]xd2 LFq,Hp\z100AtF[FqBݗar285 8nǹsxW>iYo 0EMD0٬X@s7~i81g [zpp{5vv\0[[+`nca»7Fjg3!.Z9g2zV9*YHs[`EDS[vs(RotNNY]78 S񟹖գ-hțƨe4FHxr{G<釨fPvVtp%~z~|beK*qVa'+eF65&F-]a01D;,xj4~3)/yTQ}]ᾦ6(̖cXsC"tf6/YM_rsR"d9FɎÌ)@݂ڍp/gTy)&V3}A~WzL!sog8ݪz&|ҳV:FS1@bFGV{"v( ~Zg^gwxnKӲI 7cd`($6iTv z12 r PҀƝ0rskԶg2^cEk1NDI왽ڤc1@CVLJ;570LaBY}׬f\%{ւ gnhll; jEcpa6#)zֿ92E03эחy"8my'Mک~||bG\nLcgO{g~}F83>}E[qA/$kv!8uߧU9 ~ƞrxqFL~cg]ls`&C+G~"aEU(p 영5d -%CҾQ@Γeaޯwl8:9=)T $^f8jr~G GS|v ^N;|;MɳxhrkR'`:A}pCQ쉿wNFո9Bk Vmns4׾ޑtw슛K~?0{593\^&%#=6Wg8P9Nj9D8o>5a[={kez1{>#dl_W Ynbi= 8M3Ib|.;*j=TQ7ӓ[n`ѣtKL7;uƟӇ+P`98; "x>o$YV { :<;ɷ_~sُt{t3 l7t8F.w'z=KM珌?Vrcl؏6IIp I"ZJ+Ub6 mV jaU2aa6x3hPĦS>CV>}'Rl 415*a1n`L3ʡf6*?t`La$flI3/r2CFH!3i7jO#p|zW6T'm jlf=L$[Љ`?^;_+E:՘ʚ|27Z6t{aoݾQ*CK!Þ щͺUI%Ca;T}"}l`k U41^gL_㈎s6tp ϣjG z5CPHi='ؤ+9jA@& #|&W.I%ٿ:ލ9_` G5!S H׋쀑1(9 ?{zuSގfEr(Ŷa XAYGf U`,Ns@IDATSm]sϊ:^Zk$;KwS6x+m3 {#**6/}BW}A?:D뛫jd@q\촮YX4҇\2Ǖ1V{nf=?AVcZZiѺCA2YxW_XGO&{L5-"6ST;ҔY!?Yx CsW_u7,׳NW ޹_;˷<`kG;͂QY+p1 t[VKsM3#7%&E Rz 4+i%ӓ';[m!ͻ˽-7Y(B}: H?ۖ1СlgIG louǘ>wXiWԁ*k9]g7^|O;W_^זU`yo+F7h,(SQY%+?e׿\?_^}+gaY6Qk!Mg'NdIէۑƵGn'&wjnm(+M{n wy|n4e%_WZ#7ɨJ qm(i x@"{#XDMv8LI0o Dp9u4e,BfRqa˄=-糽Tm&OH,׭IA?ɂɱ  {+ʿHu#$uwGF2}.dD -̯z=|^xaCOb5D9.n3nC+,)_Eg|o=ܳ1d`bƜklx'ĸJr8paXuvD[TJq ,!91~m3qJljj\s|_/s(&\Ρ܆>x8O`X"Y o#a "{R_Y7.(`4[|ȩ nz6VK e긹G*JٳZ0l;K{VZ d>)3-MU1G Cd 2374g=oZE7G _iI X64tjۜ")[:ɇ_0(4n}^J)b3T 8V s1֯tu,k3| m r~߬"NePu,Kc`IEAI`c{όx{ uʘ_/bH|B+:JVX̭y]e0"ʓr kNL?5V8PNBjQSof".ctuVGÉ7T+@̙$Lɍ}>g͛T 5 Xde¸C#;!thqI4\(H8ۚ=HJda00κv~JjΗ|^?҅юAorTw Oql\'j+1dc0gHQ gug}CoNmrz" ?1% 1|d`YȂh)#7}&87u4m#GDC=ct#AN4/~/k/|6jm$dw1Ԣ f'jþRE;Ee>HR: 2Q& clG#ZJt1LxdK;>?w:2aVpFpFvhÖ}]dӠIx&j lS2ܬt2NְVdN>8pXz>0f<&dZ; ekq=.Z7E.Z'{_1\ 4u͹ao71s3CdGHb?;C7KA yђkCr/#>ȜjSqJjMq{ (<8c4 Z'=81̝cDfg/ɬ&ҧm؃p@qitt2S%Y+'Z{+:6"-;=96UO|ݮUuZ,}9OYCkX A,{K7x׾ +06G7O#zE5m䂧o㭭(tbjsqOp{Ώ9Zϊ`v_r=\0_kmE>@aη 2,a АCmmO?\^~'˃cVI`4/VQ0Yh8@m7`{v=w̸gm1Lyn|;I7yvvf6z9:9^t| ٨hf bw+Ty,$랣c[ Z g'շHFG|Z/ݾϽD/[笓o'XwMvp8nq2!#PWLl# ?NN*|&˩w͂-d+žcE?HY %-KY|fea3ׅ>e-Â1} vRxeR[W ^ˍ|~YFC&ӢU!dkQh7Y|\G]rZ^|<|V/A= sC e9fXah#8e󩣚N:r& g G߱K2+$M d$z6&{&vKE!:z!(#j4An{$Y < (ލQhK /tƠ빳`n myg}5ʣo~r8jiԺ.pzE$Cڧn&m`$8%ݛ(Y`_&}JbΐV8V2wv+o!|J)߉S85h8W .TC=7"j+p3#Qu6X [s"V9H7HFa4V"OrДYD`gû*ޝ`(xeݣu)\GE`oS> ׽@/|a PEf1JK!&hQ[ ̋LGx<'䆌Xp8:o|6VmqNfPU1M:B:{oNWh%Ԟ|Bc{Rp q"DDÓm5,!+l]MUk=%9J\Ab ryIެ6R]Etc([HUկ L3ˣ{}¼ >M@Mx$7)r:?\ ύZeiT6sIӶQe"}@mꀤs'QI mʖ 6frzƀnBެV'^C ~ v?M..l!'Żs@ѰD'+c>f^{wOÊ6t2њR?D,G_ w9HX FQ|ZAGשppvwv &',اpG JWA͚lzwm];n-˿oKg9b7H'tJλd*j'H25N2H;}|h@Y9q+Z5kS/aQ^WոY6'kpFpZ[ۭvckavx[LI=Mjk>mup#0>hQ*JiP ƞ9)HW/3VP5HQ+Y{o,wr?J+OC eqe @&F g٧!]Ϯ.'۪0EYEQȋ|øgܑk;yC8: 4,Q?ht INyN+=& , >엑, {dhN,jM<G!| -h3 /a$0׏߄L F5M6aW6oD0DFyA;LFY68G'JN"roވ֨OvmbIU+PuB `'%=$.X%O73]v&/8Y^QC8 n " 7,X_`"`D<$4q+ x؞sB4fD e*Hk 1j>[A̦}XƼH*ah֞G)4+[{Ӿ֪23'Qb`p(gA~-x #2P*sUt82afϳIU sCCVl"VG rԆ͙⛯W '^ ~w v}|06Z/ݨxl ޿~]VNxpBse䡳}'G t"Xp%Hn߹S!#t4'͉jQE)t'-Z )х7їqڛ(BcVmNZ98 8OX*+c2!]4W9qһ'jp;sVƑ/߹=XqbG}Jq=LCowe AK8sV&=<`DJQ5gfUX@""wT:'>=,P>^ =+[/z-4Fe,jsま t;6<gN1^<[OhF'Z A?Z`KiaREChWww!um'jM5[oo IHe#5v9.ŪiۇU7zssVDG/kYDWmh0GO?OF~=,jc)fQ+dc{o.?; L( fۇ237D&XDGrw 4SAM2 M:="04sHZM}w~6gP3Xlf6lhA mwk[v}۷uoXEH5ȶ˴c'0;$_#y@` ؖmY=EHVUuwƺ2qvչ{ךǘcO2D_Vq ߩfVc\OP `Ŭ:)M -]}Oo1(>xAa3G­t78Kt<˃d}W`dԻ~'AYG줂U+Nplmx<Nr{G 8Us(\ov;r ,|Itբ2+[n`8_edM֠ BJ>١nH*fcWn^ :=0rr aAt}%\Q!g9l Kp=C(0=C`WN'%iB(Te?J:BZ=*SdJDX{bΠ=+kmbOu1vR?*2F8EmYpc} G1&3] Gd6x@JqQ5soƄt} AʇyZp6u]!mtqf6vNGmsc-5x\AƯ0 !T*l 'J5)qFgPؿ݃8]**v6ptA;Bz^D(]_u45Af~V9E>ۥ1C3Z;SC^pNEOꍳ}9K-_ 1,cӇ 6 `/ a ]*QUU{ f?Z{^Q5+Y10seyڝ=^@Oj_1ثW7VD 6[u?W?o, y*7]sFY.'^i ps~jmN .0V 0B)5CE?Z0f3M1UЎ֧ ]N̪rf)il^ۖs[ .^0b=Op08UU94;"Hx9Z&.Vj8mk!@oYe934 q< #Qs/wڿlW'sefvޭ7'$xu㟱!?hM[P8׃1zÈ~/^>}$'<,Y|ָ~rLMA'Zh -0 811>,sᔁj!pTZ=gt:2o[ѡy%~7}IL;[(֞Y-M~?h[ևjwf듉:7ƹ.H𢏣y,"I6%?Cq0~7=y 5k؋Ȩ̥pD &ןUxZ~0?&_1?u >+=l,m8Q=+i#;@j[.WPbҍWPlK2K@A,u'3彻嗪GVv̜tk˛'X~+ۦhV'gZ?+4߸xDwU(NSN;=IoY+yW_˿w8]{E .~߿FGޮlBi!ʝs7QvDX- U29 m(?.\`lW*:ֻe_d ,gu2Zkؽ~ح&ҿQO1ed,[q(a+o/ov[ ;󯖯11d]$^"w^MoᮣiI}GG4 [LAaZ jCEɍY\kBUz\6Hj_Ě'Cq"Ber(q<"@ H7V.TLwW)Lεciw5l0uQ;Ho'X]wƪ+ziGT_mpj CrKpb3Wl7n}d]7k :ɮ9!}*@iƘUh0.;vHvԥc^q\>iYE~c Lɘ\i+/iQI=n~q@kg)ѽ9di\T柭]_ 84S4@rh)7W3d=o!?8&ckJߓ&j;$HMac4Qфʨ?A/7s TO`1CQ̸ 6S@.G [m R _m [4Tl@n埞ASCck\Joq[?OF!> '4^tP|MЅ7|ƫ}nrA)4Y~Y+PE$ҍ2ET`]Kolo]eR!,,)\ɐ]jnvas,%opNbYtxP\ɮkۚ7`##( X)9 ?"ؾhf`)L?p,sd}g3aVxqibLv`i{ֈ{!JcpiΞwY?(t{v Sr홿H6/5վl:ENVh ((vQ'齩5zY(k=x؞_ϠuG~>\ņ4rwhN02A_89سV(OOfvjE)@%Ǘ(Ff Fډ9|k}6VVg5^EV5aE k^A+}їoټ,?h%u]ID( g8fMFGN@GX[[pf D Aߟ3ӡkAjj&:-*)Ҭ-h|^8z#y'#7~my]$n{~w?{p#';Qڿ~+ɧ N҃A6q!m.pǩUhW{k'zg+#rY!Kl%UȉP}~]`~E[z/~[9#lX7oO?jw^+ l'oEWp5Ϻ8IDuD'ml$SۺY8ܐ<6[8)힃u1Xatq}/ßxw߼t'g-e'2> p%KwD5v-2<)O?ɧ\eꈕhdzEp/9o1V *([byDϷW~mϟ|.{^0Lw϶8䊕sgkX4¾l7Pغ/Z7 C K=N߶jbD2pDngRJtǐL 14(Ձp&0e|LekWTskN" ÑC9r564J?]}Ŗ=.e`1ub0 (>b)U~s fTx(F\1dηdNv~wp10&Hw YL ho-X"MDC̈́sx珥T T=+E7 Y;KshH-~ o˅>8Քb=G4fFk7Mk8t}% ɀ^$ᅦQԻD]쁞0$26Ǜ?nLӊ2 aM?]R;cL4>B}n7xߓ8c])*>$@C=!Sç1bk_EW:hk+X \bC0t$D}_)cQiFe ж * &p,h8D1eMr4Hw\X̵]e8&8ؼ_+sZs~k4K4;^=l\r5-VWhڪF| ?w" d^c{V/F-? ^sf۶ϜHNE(GlV 5[l)V}d^*U㶛tGitnYSM h3}GW͕<X"){mQJꗼs1n~SF;.5ᵯ,Y![Okg|lc倧7}穂Y=ӗU> ggQ^d80*ɜ(w20U q>hS٢CDvW,^՝tYHx߭d7` shyp ^iUp‰a}gn #\+< @7)}g]m#XC=_BKCo56Xp kX6QI^<ȓsM U$&#u3'&ϋ@=btu-I{P1Qgx K6-eds6'Ed,tAESQ65mL##dh4P-Öa"3n9}L@QwrL'.4.sjtF׃10GЅd?޿G*{b0Xm#W V+J,#RmaLJpQJs- U& 2€0#b7Rl0 6FY0` 816y}B)@g]&Nk  E),>Y^Q)aAsR=k7yplQA8P"gVnb?!{;HKƫ`Bymd\ ~OZϱܜ`*>3#eZnߙ[xxl_xgw@Us{VZu>ެ1jc\1'c̻<Xx+ 紱*hF51 Ob#3^FvW5XOP3B_{ O:-%l|ւ! 0mOEI^[at90-DhY7>"msN0rm0'h@5'V"+dX1>ܻڱ<+dPě<@cx͖h|eq(̀iQtx%0G[ge0{*w_ٍƍBtjKrf+/;Zø[E9t+~gD.A kpj9l[n7%E|;Y28l^ 3x-fzpV.s(]C8e;QԵYu  8PXB`ˠC̎om3/r =1~s7H8t`" V6~ YIOK3nԫgF "͵1g>Ϝ lS;S`= ZEذVZ4Ǹ0b'w',dxq?7)SskOm%5i>[g5fhm +@x͵p3vBc՝Lf=C~C3<7 l̿Fwp7Td 6w@U{ӾvTodV˙mkI,ju$%m"Ԟv z1kfAW3btmmVۧ\B,FK̥x`w|ȍd`7ZxrmQy|.qRpc O qxЊcP-1GAkxLݬ2c_vS;STyԞ/|/_0y?Xz'Pd#^+ƊU}GzpǎEV3O 0:6毈š{#cAl:^q4COCQ3ONӂa[ͽrg?K'sf~̧}6~Wkя~WRCy&|hye'g|TtJ%|m֏MfQ[9IQ-q$3Z9ɟa6yӼޘÜN h[y{%ikqۣ,UvRNlWey7;<{}~r׽M͎WTy/>ܮ^P'2ONu'0$qϖ'Z.z,2|`qRqmHY,e4 #ێyLUq-@pQ<NP66F@9q{j&!~!cBMu7kצwmmooSHMy'lj6«+tL LEvaIqz{^J=2(N@5J(_30< 癕#B΄҅AAzffT>3cn5_Gl+m]@5Ѥ:SLXWjBk'd2]1ZBι>6nmRlJmyX9K`Oޞy΍wń/ L)w¢(fD2[YaPES0r+4H Sdd4ؓ`r"Ÿ}*p"LKSV 'a<ùGdv 0~PNdts¤SEu@^=19Y3:TNZy0|T 1FSy3E!f@IDATNVh #(s=b_PXNGs'W[ +m^=-ZrA*/tá* <&s|6' 8z~"^<F@ќ [ZZ ~!H5a 5sjFw}~ 'EXÃ5Vt+7fi'.fB3d/5IVy`Q`C jk*[aoKf/o%O ~ Ëbs_g0x,}gU| W  4 6DJ"),ɔR{N%B(;긣;{-z~e%pm 4 F@ f4V,N;Cd ;@4{;##hK͛QNF8OmE p|RlսV tՐi040ƶ^f;I@jDh\k Ud4 SEhZ+1<͍ht^z~t%sI4"oOFYZdP?򭦇*:Wu_Զy :_??t?T[q5ZN>6izdP.f&b^injFF<ߘ碑sO7M' n$im rlp*nV@]^M_rsh]ќ(+{d#a9 42ß/}WhMjUh#jKLK2\V!fetdⷧ9 9=|gNؑ<'P|ClSOݨ{Wܑj^QfAk]&ܣű5ڋ`7:i訧d ^Z"F+'SzGxdqzn M&83u]CYäq{vNb! ~Yv٣b-hw1Ɔ>pm }eG# Jǫ~}<⫲ [U|q̲3z͊ g>q-%d|$8U3+ ׊>5e<.رzP%Skr߃c/] {5^|.'r6n/҉DAZ*,<ܟZV[0(c"oA6yƻ|V\U3b`}Ѯ)~>O*+!>+}5fk/w A 4 =^5W ;/wT/>X|;4z8jaR;$6( )89zwEΛέV&g-쵝f?ŭ"qGx{9:/}םd}ߴ~]붭{?SxY\K?z /CpFj!?8`L_=2_8NP >Rk[P5hCP3MR tsYܤ3ױT),f\|GL2ފF RڬROzx친ޅkSMsͪLC+ܢdqg LQYV7Re2%2 Bqzahs4D] 8$}iQa5rvae\fq".³b`YJ:6F1cJ G4}r2/G\`v9:)ލhpmL8]ySf4c\QL=?8)ݶ1 h=qơڹ(gsVuY_=wNtQE{zz1NìƷ:!2KaVk] ܵBH6FxMF 8r) |Sz[WhݡY0`7!ӼN`&(M{fgV=peP o["|{z=3&JsEb챋KiDZ{fU ^cH#oUEf\\mVmoGӏAqE.zc|{JNK}Lv*=~e|E)xOQI7!G[ ^8Ա1\? \upv +݃, YhgpcCzp#hf@ *w2 Dh t!U&I+_s 8dHN}ah[Oq$@lp#gX&gK[8R׆xpƞs]!h2҂II.M1M6x¸Қqmד^(9}L+`EOLEkqq[pGqɍEpw5^`96mmr8݅fc^5֍pBvqE0^Ϳwo}[fsERd ~۝N6"\>cOxdAScVȕM]ъ2=r3;߯'r%ԎNkfAs:-nϱyR'}P2xOͱd*\;4tXA?~Qع Z[aAVznN{r` M4Oڊ.+X̥#. wߠ ;jPps{uǽdn}>URۤ&RSn:tLLXGxa&c&x>N6C}7g`odvx0"oB[3|.}xo[9M?`xףۘ?N(O;x߽jY>*bWᅥM}HaȣQBv1sY2%Rk~i?lqdǫrfc, /jq2>4y+A2v^b@<(pr|6Zx˃ =EUCG>Z>>Xg/G[zom?vl67o.hClٺqo7;,OE8=L[+@`#CWd!x.x5 mȀhdݞB ;B= 0''k)M2wΆ)qO9cm֐~Ʃg "Y L@O ٓki/^PRr<3BgRFz zA0"T7} 5T }b5a]72_=Xz{[S?GE8wIx8xapR ka"ʸa\qE7 ')T0NЦ1x{1ؼ'Rkmᆷ7&+Ng1HQksB~M8 ބLi~ l4N>{+mt>傋h'rX0uB!$K!o؟v6Wiek%eMb$&=SJ |yP SJ}cl52_TM*g:b7% hC׌E~ЪX2!  ޢ%y,;J y\Sv66l379ȇ9\2+D-*|EɊ;M>=W{2[%s dWE_9^zWqj[[HGE2e# ׶n$%GɲB+"Oǜѻ1k,<'gȹھ(ba2xJ]!_!Fۮgl]<6oz{wg?_?YZ\6jw#SÕ )fRN8)>wܯ,8mb9l<{eUbK%smŻ #O,V޾Sm84_~? ]@>g`OVm\֟t7_]˷q:L8;;A/.AC>*ϞA7w+G7g?bg7g3'*xm'Eͤ|rח??;wkmU- ,s#I9kgs&eᳯ7o鵞o({0󂿻qj sy)yN9Qo1U-~,7Egڇ pOVc*{XI ™ _ w (bdAדlD[1;(YFMZ"WB,3)R9G"3&3<{`uuceg"nCyjO1'f0Cg@+DԜrF<0)qE1›vTo^S 8= ;+iO 9185Qg/__|9CO !ÛhUh/f |ܳu+x?i"ahV12M~x[x%\NHKp-gp_9V-{ [ŜCgޛ%4):nW~ z[ShD߬6V:a.G?pQ`A0`a4+kpl?Fy0Wzs2RH;xvthp"Mp>l_j\W^Y? GN]"c$)@NʡfUf=/Ax},grj'9zPAԼ|Tpx8`1 pya}ҿ( ZD`OoM서_%P{=/KB y0ΙvQ(9Ex*c+UjEz^\3[-4H} ܃e\-2} QN;}G~y%NY4 ϫ!rTGǑK|99ļѶHNj/mW |Ūe`u.[tQ5!8h󧍧`l[!`"<3@ͶST }q}QDGOǟEFէ #s+l؈"{uJid/z^D1L9?]CwY~/ekk〣eH{s˪Ժ@€kĤˈ4:+/q'FF3Ca}*835.jVݤ<8-gaֶ\ci1ű_ j}q$ʔY+b;Z} .h̞nLV9;ZȮxfoЎSfTl!*t;nFF*.6p}]=arIk3/yR XrFmTbrB 1Kdv̛)2; ńd PؚWT~)8X#R3/gyj4߮v `1"ӓP2ahNŚM`81n9I2}mPPKKhpt"J*Kx,*f! iԷ )xU,1c6Y 瑁@p=Zٜ }o? wy;t3P8?~}qdHӀV{^L4ڬ&<tD,Ojl!@XKnXsAS1~6[jض HOCR֯ #0g[ G& 1m&nvtSI43_>瀑"muc a($ey-^!!ӂLj#0d|BekA(?1kV y Y CK53phn~1'8 \wG)>]dF2vR9&5Fvq48k|W[1Gh!|PfH &ZLEҍ*jF^cTY=݌l22BQ>+s0q)ɲ&qYFF_~Uօ$ŠOa}n| ~VwKYɞ9*4< {z[ph!?X:z8PF^/G&<,Z]-Zkttpr7'QCߧW};Q[.9k@l<uc`BmSVڤ2  KÞEɎU/?i[ Wڗ*E\_4FI!^;_5|ӗjd@S)5uܸ>V8*揾w,oWg}ݞ*>tZqߞ/%R&Ɉcz_I~yaM]>P9&m ޶I=xbOo<0AYmq: ̀9u->2d^)pcmZ[tSӜɆ['s4| /8_[漏oxpCE2?^Yk9%lo۾LW mNiIގ68Y}P]/{)j``3N[Q'O;t?͎ R~ˎ}w_le 6;yf]~Nk|vT "s)0Q[}l*FOX)Ѣ`G.~<Iѣ{\_t[w|)EW BU|J?4ƚc:_,?Ӈ |;lK+;QDbk@n>/IۓO>jW_-oQF7Y9 ٯ`ol),\e=Goݎ,~c[ }tb]F,O۾rYl?OZ~wUW\?ʖR)ůk,>{|'Ty,y >9jst3C(L9+%`mDʱ43l(!L#i+,ETqD138RH W9g>4ʱ~ PXqUfAbG_aFcQN᭡aXmߺQ*Oc9`Ec melPU/mx G]=T=c3Fpw4ڤωZ-\a~ȞYaSmW?NE8wȀ"⵫-p5Ze4<}Va7 ],2I qЄUfS'3]fƱc.wNm@hbVKϝwf~7_oq})z@EO#|ӖYa ح^W3lGվROJtpgTLâN}Z9ːLq6j359]g =fh\;L+ X`~}J%ϤᾠAHs+18l,2ulYH^9^F/j.XP;qweh'=>Wquyޭ<o{ 0R"%s-4BZ㊮:"[3 978 KS5:tg ^ً|視3rŷu~M7=}>!\;ﱲ&x'07&+g+Ip ˰E`sf3>:$}737>}ڌ> xeӮ|&g/˫|s=~i+Qw"(GB|{"piSyL&drB^*ӣ3'' Gǭ]-΅ ɛ(lƬP8F+XL|vFq2yS 3١G:Ab3## GWvW8 <3W.gyhS[/Ϋ{ݿo-.W^t6S=knv67-?xvKLN ]<[y!Jyr\OHOnd /j|%,e܋>n.ճk;oPGRḪDyOi/ sLwD ,kUO] Fg292>ܼѺF˓ʝ8>d\n=O2: $v_ح#k,y.Ű_}N`y?_f=*_pZ/FDt>WPY:qjk2~T6W㤠Ƶ˭7.7yv,$;)wޏdzVewfv-;7|OyOǶà72BL+=Z?;! 5P {X iycέ>Ŵy Kq2ŧ&8䆴^}=8:b1PpsM [Z'a =yakd|MN4}jUbr(Ta^ͽb1.uΒ=dڣ$bLQ>N\DS$S~dSn̪\"gE@''z d#MP sUی7lwH[unʝW/eHYrv KJ z*؄%(>/"GV@Ei`zV߱!τmq.&x/x V:4aXa#8rS:t^ߜ̩kc9;FH?Cid*K*™NC+:\9}18v /m ^ t%;f`7[ &1b߹g P 6Uv}Ό  d4RM]'4={w2%2dsɁ9ǫ$)]w߯X1aV׌& ~'թ<+>LHNpJYn1ᳬs˛]mn~@gwrfs:*3 }0+e 00}Ny=$Ip4RwPnhHOiO= G1 NX7{dc}ԧOPI d3w44Jy'9Ӟ@> R.i~_7 6ヘ^,9 scΟNM6&Wmh/+\lbȈ8ǻO~g,\b%o<9{FAܲT Eh>t8yuNJzr e{[lE3XвyzL?_:q1II68dܥa a d'Of92NJ-9a`.Dp̭ />i: /qӯF b]jiE[MRӶpMηg/m!`' "F(ugsM.͂ZovT;|$E?' ؂'~G_{.7"uxggf8:+?o,oJt8\ڝ*ٿ񇟬vCl=È] ׅiOVlE]F X2[ @ΞibӗUtGHⱳvsh|XO:ךc`]6P]L F\=\^*Nb3 =lpfQǍ@{Rv Nmng7ol߫,7 _GՊK` %^?8mK9MZ(MQ2y\)dˣ/>ʼh "I|{N# %ӂMXs[4Ti[[Vt+dWLYvFF q~v 2>nx&f;ւJMw.)X@),aOd o{覱4L)4W2n | B8&ȼ8zTC5(p(IU`t^]W0W'toLjgVH{v T]|QVcsVt`VC@2$G9szUXM8~j)hU,ErcNs3LVS2r$T{vR"s\:2$q*'ĥgol렕'V\n cO3Z ~bDc/{}ͮ(qxRjfpX"(DH5ajt jϹ T웻CCd5/iMV&cn>ǟMGm4'QL14K(ت+jM|[ҥ5S͜ t)PpKI"nTޭc57in^WW|/ |+p=(e q\J3VV 唙d]M G(jDGDpo>M1s8<=2pvRM(žG#Qm1A@JG/O( /9pQ ckX1zpsCE;N-IAgQf _ ?B(JyVq qb +b fv"S$ rbjE ]FwT 5ood U}ONbMS0odAc,YTN'y/2݆22z<[@0,J1R.SFgHIR\˶=m8BQ]TƑ;[*}fЯm(1^{Ol`UUJr^n0[uM`;A1߮yv]g3;1?952#}՛W!:#8; 8[Wmy ,FF^ɱ lj$mvॲ NIVe!`$]lUx %^H"7o+IH%hMնr$%;j4p,y>)ɫaV%9 <ԟQ|¾/O/7yאi^/sv6 odNM?,V-X;Sn3ݪ'~w^??mYl>/X:qhEM< 4l 8kYjS>fɍҼ[~˃/e9j?ϿnNÿ[y;OOe8D˷yc~˥A~'_f-!hϜ|C*3$'ڻӍAUhV]4e6JW@IDAT?^]_~2ǑK$/|l`j;.pi {(]/g^* %>o~Ut5w/Ulsc~W? TmUniYj ~ߪ4O& L6`WlS8ҵwni@PhꕏK9)c"p8,["8x*8Рo@{cnf}sYc X؇#ƙ>,AFTpޑtj)?l"gIS4Y]k((%ڽRo'1z8Gpub20bRœP_Ox$j)i2(Tp"`j&liQ]"< 5p&XhF9Qnz92Ĭ6vJ]|t-P`_}ctRV~jkU.*M]vk,+d*pK'RU<xTULApKӬn̪t 1Fogp V`Oh ȼPIH̪6X?)R Kiq!#fD32r $ RW4ǣ9J%.oun ~FƖ[)@Ƅ'+94NP~]us{Jn5OmnԀtV}֊Qvϕ 6ɼ~5fjOTm/=zd^Q[ܺ\4`+ Zcç0f/O6ϞtuvYs ]]~/ÚqFy*E.\?u 2H g0J{6URttlLCT3/975 j~wz^"tlWYѷl=x.D'ŽkW+v v9<"3z58m739beN Jy COdD<12'c4xS):[n&KD2F*?lsNY!fd5ӎhlk 'd_FM4?GUĜlu]AoٗOn1Ax&PLM5C|asE'ACzFNĘ>*k1AzjQXgW a% Al r}gN6u\EO??Ny`B|]~\isU?Vk`걹G޽hM +'i߻9X¡ ut;x]PX풕x=2mE2~/#ߖq6N|u>xfLl}[YpmCQBZ9W#K%1]f"=5l; \U'ZD'2E ;l/J5-v|u&՜༕U?JnhӏؠVkcPݽh4U%qwsbys53#PH36|"~??n˿SC;3U/vz]_]߽|ˇ?2n(t9%;܎yh_ -xÝ9xa#'HAlx (t̙mhqgˇO{^^%+75|ows&Ni`Llof{:5J4Vt^}+VUsY]UPy%syvv9n"0 X g:rΣN- ` Q+7>qeYk.Wk}Q #ϡlLk5HэՑ,SBv#/ɲ:W w Mÿo,YQ) $Lݵ/~έA-[z}f<9y2|NIQtz2OS K|u|#I櫈訉aLbݱ7[bІѕ4ƣB{,(TM(@{ ŃA/)uz9(a |RAΎ#Ѷ_IYvY"uW%W-:>&}E7C W?WrI x>Jq'j)fb0~Ԏ{A[h7Z=)OH+'M(+O$ހ)Jk-ׂ0VfDDptGAw̔?cGhy&PKAw)-ef>$1 Qf̸v2d2 k\asCfv|JDVJ&/c~"Su<*p\nkϙNfF /^yuQq@8v|PZ]`@%ZajM"%92fig ˒cB*9DK7SG3CI>m6%m,GYH%El(J5#Gff=t*Ulx qΖ5kch r \oDGUK#3|<@:\4Fv8ƹH)(ϣu݋\N*!3?`mk^ِ|)GW|D6ᰃY=;)]fF6C ц3;gr ̸ \wxqs=v9`4ݝQg0cdm/lc?9dPO-"1iTgNߕ'ZݚK1d9ֻxTlC82 vNnpx%y;1Ć;pq|(G2xZ^(٦Xj\98GmO-mjqJq@0'X;.D4t|Nq޲}DC0l*u5+@`4m;k $*6u5?n6Yn@sG2Z?TZ~d뚛$@HiP8 19%'β7Jr=z&:=r=RoUN;]H{jh1Af:+Ke,d#$yإT,A֗Us|B˞6.U(dvU;7b7ûn92-fBgx}6o'wiʘ&K2Iw)|^{3]ϠRjtՇYMP?Rn~t?1~ @wǧ}V7.IqH}MwK/xƯ[xGSu𶁰]x4%M]mI,qL[W0,%?ĩя J=O/wY9 %?Hw׃y39>"o 3% exRhE^qge#w8햰 ~DoW{mXye)X}Iyz CBʞ!ϩ[] FG}W>`}m?7ˣdylvo6wY ?X^?|ٯ6i`y4=&m]D|&j6L'>E C+8C֥~`).'ڬoyg9zQ_?/G|w֯Fu ZԌo|~gQ v$k-قoF,_a`M=O4KmŷT:{-?M,?giA%[UP=?Au Tpa"͢riwZn˾D%ТOC7Y.#,[bDKC tB@7|]җe v=ao8z|"7á3>ev>ikkf_VHĊbYNŗ[ALJ/+Npo\4IQ%y0I @k_.MAic y=|^w]枑Tu&[~44 zxQF>I^9eGE\(sF9E6d%58 [gmfa80~Ys4[0J-$t{[j'RthfP1sT< q`Lpj!~b24vɌRO'ꗃsR }R#bf֓QSIPdSSh,}58 )vN8&l``NJRTGL~#`0fNycn4{ 8n0̊ldQ)U gk3ρS?32]PaK% COKE+pq <oY}t463 }^S v `8+ű:6jsw m;2Iq.gjxH ϣ@zF̔?2îSSCzlx1?JfI4_3'hLkg$~tm<9e~ڎƫ\a'a/h]G?f{4<Nٜ1{rNؠ ir%wټE?x@stq3<2sͥgKsmZ:Ui=5]o&W3''lO_כ$LYYcsvDiG{ Ww?ZǏ~OſX~&z,nܫ'lY#O62~ iG>sT:|^m/FC/-{eR~|;||0<}J^~갪_VQ[* E_Gw<4i8oF6яsLp7?Ʃ5Kv}z/7S ޽n.Oj|i &(lxq8H6^*%VN.8Xڰy#d2s^Uv_; K|d;*Y0eU g-0n `7ꧏFw6O.f0tgUl,9'O&0ɴ HFMLokW<7Z2_B|Ur$7՟__o)6kbI&0uoz+UyRU@goº4ripA8gċM35c_NZ A:0^T NF'͹^q蚙gJlQB䳁.G$C;c ϲ@'#MkR 4'mBbk YC3 } 122ݹr*5khUG@6 a-V*`(:I/~!:R&wdX'V{[s|9icNq2]ɗXX4ǹy((Q׽J@npx{;43X(r:ɕ8}{# fs$[/}5Ϟ*/ôS[ʔ1Uu_o2.r$b7ʬW% B86pZb1;rW+ bO?(5ӟ7+8_ tpق~r$[ ȒOfx _  J1N|==7{c`ƼKvձiJ8$ϕRH Nl6Uh慄gLLVgGWF1T8.ًST1>NxcWsYG "*\&l4 MŃObG/MTN^nb|!ienTBRI?z Z:avAkv&ч*Xov2J=7:" ɗMǔWѽ ̠ݕ(vϺt3]%!/& uffU;8;$fIg7YyZTkԃ>LD8i%X3^kqk̈́&pAV :6*(n`59qQ$5kGvحvM%\HZ@_y鍜"&lI~-x=Kؗj7Cb$$:J$:#4w'DGJWÞ ONV)ufxcڠbLuP~Uf#'>-<1p)p74WȐ ~2>3$kdkmS%k6ĬJOGڋ]o66Ǘ^bRJ?I6uNUo!'|6::)_`5ᵧތܲƴ&&q_ws?KiI#cCR_U7҅6xnɇDpG܈U33X83F FFz 觯!{|p f\<`ꎌ]מ$$ʯIhҌ.fW73>"}'#(f1m{k?2H}zgB'|&n ފo3>oM}oŇ+_0fL%[U%~uO'{@Yn F5쁶TMG.=Rk})_WM6@f/]M׾q^7@?~U3){+>\mUUO;-v%M.k<'Ճ$‘I8U*w7{ PhnHI] E˩d&Q$vfIAKMwڴ3O Ɲr"O* f;OߒZ<U|w?;7fL*H7, /J mi<ﳪ`8l"}~/MRf̽-'/axXjSwg;B;.!-KO$K|:q ?.糖)-} g[_|zA:-ڷ"؄ڕ"Mo L47d}k}9Ih37*=*g=߰R@MӍl$>OD yfl8&GȄaʍAĽ)Qd0O`Bm G9C^s(=pSfy eg.3wl ᙲY`K`6WF|/ ԺnjYYjwKO0K17Z=(hb<4`'*Gv4/ i {{I̙l|Jr.,~8ycRB+yc=Zu# c$י?HUV'|UK$0hyk20`',у#Qq/tQJ_:F~ɔ`PeDLFOվHhie$K$}<,e C>r! َ\n<gO_>B8xg ̈E,g!~dX:1HJyU(U!=tʡ1+IL5 ^dk (3rn~=g dI"FymGx`QVOL@Z]ף483ړ):W^2!YQţF=Ng풍O ٿUszVcUf}v9L^l~dwfg\92!ٜoZnX9U:;`VxcqK*]|ꤓM8FgСg>~̒<"0Y1lL;}EBxpϒ{ͮ5Yݤл$B UG,{A%iPƆ7:̦, /d:87޸oF__$6)ݭ~像< X^$%pڴ4V=xz{Hc⻫z᧿rl/!#Fn {Ro޲yAmWi2MJJ n96$i0W0@/*[׾(N8FmlN0J K?V1|X-{u#(>5V5E<qe2_rL-Gm}_ZQ| llT~Y}3]  6|h|'o,{]vx6؞3 ѳk+8Iwvwry|h2ud<${,@>lٛHB1M\${=^zV5fS coqz+u;lxeIO)u:]711M)<ϙ5AFBV apY9%e&rJJn Y {fLwWW;6a0N7R|.m7qruz_r ncfF6á\ v/ \IyAcjTϬ n,Xc˩7$qĦ001#B}D=Xtv,q8p^Y L.89(УUN0(g[ΜuOH枍Jpr&:ؕ;Wv_5#YSj`&,mx=I}102n|Wm~6Q1y %Kyd:,'I5ilv FS#6OϑfD g8XͬfU[uD&PXbx/eՒd`0Iଯ͌Xd,Au+d6=20]97;R"NԀ59 tTkfA'mAZ>}|MIkf=(5!>j]:4uJ2ģ?k‡,;Zs}ӳNpyM5$- 7zu%KR:@z2pɢ[Gab&NBe gU & atD^Ģd$Zɚ}# א`?Typ?籗 ltͱEHfe{"ƽE>$O7ZƊAn8d9 8+#> wScI.0Zv<~S=>I $qTC͆9Va`G$&$dltZpHP*Uz;3AB=#"ؚ}Q$C~Z`ߋ_gf4"7tÇ^ ̱꼒eϽXz瘢%8xpB[:̑p蔓pZz.| ck-sp&]+@՗w86IӏtTu̙m~kCj/]jACTݠe&Y` =CwI xAOC)&;2=מu&gm=ྺ=4~&xA1IgMώko{X- rT=OgtZU{̣E,-2Zw7?M/ϫ lg |҇ c[zE}˹pP[9_tDKNMKpj@GMKHp~W& S&u/N/}*gG>4/plЦo×g3!fOϚ6T%ﴜ7D_  .%I%bMXn/OOO/- 9OBC[uJv ~b߭%5ifώo|(o賍|۳&Ï `qeGU)iOقl*Bu%}L?Ws;ܔQ=Kp$Ӳx*"Ӳ ='_-yyL>Aam!EKKGb l'CϞ`b[2e qYxF7 4ws]SbpgcY*͆5 k2|o Scl"$v(~#'%G֥ h0ӣ{t5nO5(Q4;Cn\y,GhsʊӷGMU.S\u苑Q 7QGGj}x(qm~JAxS]#!d@ d1SԆKZ6OTKh5|e_UUPhWIIG|le}?eȡq/K,E#X '9uV9cTO 3v4&wA/0|9zYL0kˏ~ kKLZ*a/=WŊL6lLUID'c`׸^nJ!|Ƴ IjI|+h%|~KLɶm׾}^tF 5K? .$)jg#"mYj}l%g< }]OP^h_aCs\E-]Q0$bU d?@tJ3跾>ɜhȑ^ܮr~Rm~t~,W_ SLhl$O_5#~$b&3LTA>h{MY;v\0Wv8~jqjd7 ?kL?˪#Z'-HHSF㟙t r5HĕN`Rާ{߅bnvb %0UWT]P\GK舵0OhP2dSy)bae.u0c} J mu'5 Vd< szf62ɨC$r$(X>Rz jnm)#98G4ŝFquެ̄nwz6zU 5bA6N  lWo/虝:Sf(["k'hô@@&荙=ˑ7 dR XZ0 u՗8eE2"F|J9|-Y1x]fV gi01$:S*Ь{q<O4x邽{fƆ43̂&C[Ѐ][>liŚ nh<(rWr9Pvϡ]4ۧ*>r498e đJ%>9wc3{׍[{^ >wMpU[2ʂENopC8!C`)ާ ,9*C.\WIYHmII2 (, y |sR#c#!bG9 \ϙŚ5P5WC>nBSfGڟ$rz8 +YǑ F5` S&L R}`'br*uz3Ol؈vc*=C1?3$Viz?ۭJF,Y` @֦3KUꨓKKTTi/3*wQ W$3g)캠ۧ}i}&Pt6 t{#ǥo1SM6G3eOo,lȱF0ĕXӮ[o.4#YIlo&cF/>̿@Kggu9t~%3;97$ p˒4O\ 49 )Ď Ԇ\rWih imn~:I8`$QiVqk\7E1}fxfG}LeFbAb>x덻uz؋X/1 9ӸqsfCӇta$m,71/1`ZHSƂNtE$D&YTUw=6{,m|NKIX>0p֞D G зP ч2?g88IēqW22{2//]r#jHGzcA$0:xk WɍwcI6@1+sK46A~"($ -BAуnp߹ ޻]@JwI/.n_3=tEnG/4P̦uaF52 (15K.w/2DZ#ݫѯ# kz`q\d.<ܾpf+cҲnֶ̔_$]4W9|;i} oX"BtsOk޻O>_O`Wȓ^\Z~o[˿./N&_@IDATqݚg{/qvd۷+[9tU2=𫆜5ɲkU3']Gϧ1omtNf6.E3'=7o~~_.Qf#+c/'tD(D1$FK68uecJ4c ^I1ٟxnTBE6OxC0.gƆ=J?t0c!O o K53*8ƘXq8V!?@ ENmȞwbe0y۪ro)Eҡ$}b3gITo)@2v/K,$1~/6.>bFF t3|e)Jݎ=zЦBf[ȃJؤ}(#A:;K0W<Ho؃IdsE jnq,!OE`M<[^F3C;UWucScM೙kmhit rp'J W[ĉb_} |kw!MU AҺpg=n52:u8;vL&Hd}92<Kt =>鄉ml?gFPw|rPB-%8?>aw<+3X@Q4Xd={?bMEĺ o b/$oʜbY Ro)'f'eU`M[ٗa27_Y=3p6:*1E7EQv?t$ޣcmtYFxʞkw396) `_f ~k]jfcǬgCÚɕ[5$jĬP)1 8a,afӶ< ( #4>qzphoVfćbD)W dp0+x2LqL1+{OiflfqIJzU*Sm,$$ȄF>|Rb|-9N~Q>w-:W͘%k}Z =g)0eA`7v}wfillf9U0/~p(v=_"h>QYƅ5}UOj^)sAw\5穱ÏS)pU.r@h)4͌iz ^5;Au=v0{1n?7솟Hufg^;MƒA'_+hVJg -IoN|N7٭ AW_!=:wo$Hѷځ50x߻n^0SV#GtcZc} *gC$!6d߯+?kâfJG(ܿ{oy.ٱCm/rJ crf/ BT_njV{X5 GWg"K,cmnɫ(eg%zVɍl_ýJu|p"_kф0<[Ǔ{Y s_&w/.饣W{ټ}~h/KwW.Ǐ,OzMo+?ܞ>åɿtk|wYFߟ!~}p )KYi$Ag*H^Ks=B8l6Y6^Yx>%  I0{s$|mW<_]೜ 7Kxir6>t|A7B}f5G-oX{XNDe>Rm-d3D^6zƣ[& qCÑ$cƄKBi<w⡾]OkWV}51gUG*CVm2ٷV都{[ラF5aX'R89I'_> V'2A%'Upa%gXBz[nF+צb7 XZ9 f$gBC)z&zeX$.M$a e;;]Eod0[O I9ufAP{?nFD93tRŬŠ4q1'#lsj0~`F2*xXç<;}%ChnGgxD8~md d 3)~RYI 2A 86))}4-\K&V' Y"0P";mOYoͪQ)s>1;D7Z}앚%<{A3d)Ó^hR!ο'Î$a[f\-{NmfP"_6Ч͸L 7z_~`TD]sce6L;>s?co<$^OwJ36sݟ`̱;  6$AxҬx\/{Ic&D"@ã|tQN?0QCS=ɪlømNy (NZ!4z Uw\UkSyb}WץU@|ޕMOϵNdY0ocVܿ9 gt8@69{w?M>vnOGɅuĐ^=j.Z賒&ڵZwd?m 2PBeٔmm7K= >ǯˍ`KE>#s5;޸a9>~=zn$'~δw^KZwy y.x{:$d/;Cslg/G6qp)bdmKE߿l'OD[jeB"kug RHѩh,&eU]!̇Ma*tg+3 ,%0Cazoe4~cU%eNf~y[2$5Rn컙Pb^,꩛%\LzeO?69mMJ/bx vz3]̱}Nz)Bu}?o,h UӮ'srzrI%&m8;F?{/}$n0=-$jw;W.{KRskMigpGy>/9>Ɂ@Oxlouc(M~VyВ|><ғNaSn[ۿs@Aa _'_$ =7Ul{1x'y7aKE{=MT;Qe~&9(} 0Jyx5S!SXINb zgMoy z,' 29{ jj{+&s#VBS/W>G"o*q^ߌGf-itz>[IӓA8Acy ^cKJf3Hޭry65sZĒ];h-;RÁ(fѓBHr*v}I4Ft[+ҧ#P'/ CGd*c a Hs|W4wšU9ES('fUɿ.g*]T JȚ͙1T+4$'zkś7- ϡ(8xE0tfxG d{}ǵrf :`[fp0}jl $,rlQ:?>Ifڹl,?r1%,.c;9@a`odf*@~\!VqO{~:x]v%s}|ݟx+f/OqX]q)&v]R.3Bgw:J`9mK =cvP71P F)WO̞ɐU<dca~$3 p/sFgLt/{ 3.' @鴱:ړgw-Ɨ}h&$TÏ5 :< k 0^)M@/l?>YdUejWൂ1]TȱЉxߊK Ap}É\k7 o<\=z4ΫTԒCpup o7pRu7^z77߮ BK-i~Gh ٣贚28ڜ{>g}E%y$#^0|?AS^xR.Hwlfn/_^vxtQKVk hfO?彪wlL0)jݛ;E2,` V^I|zs'~t7KlV K0't4rPav~~˭dnYN3~YC(h8M1?[(\(^׽AO1~'I%|?^z#/G~w..n7g?"\4q'NcHN.wв*d7yl%_d/$ȎDPer&\f> /J\JyvAtĀXs*˶ dAV;-5V_@T2)68;DФBN2oE 1F G7_f*N.'_idkkF d j:,yi^KD=|[鷒 p |?ڻ/zwJd˝o~kڷ^/?7ЄGU|iyٗ˽':ga_"e4V!լ"q|_ J'Kg@*!z;"de`vGvdOPR2ɍ*"iBvlaN!frYYwNIY}|4< .xDN; V5pn)QpF#3y"=w2+x;΁cZ1@ϒfF0Xƽиۃ4ձbҗxSJ,wsH飷l6^|06#0IsȑY~gʺ{7ssFijd -JHұt0L4."\k訾T=DWeθ¬CrU``m59p^{񤆫2 Ui)FA~v+%qnzɑfs䤀F}cI-WI0:\Wh:e_ru-1VG\NG m@Y`V9/}ΦFN4^Qfyfc"ڣg}pޜALs-2,$1d<7C:wvpi]MM%n\pUA6>3d̘]c?#gɿD; 5O TF#dQAYt nfuML e֭/۷ʞ矘ˋEH u /sk#gs=4>gwYxPut 'XfO2H_wN%v 6> G.'a+Nvs^o?{Y | &&C7}"&vsb U651# чIFoO>,ӳ|xIzz&Y|aFr^p{U%)#^ݎBÌQdpf{huu?kcݘ(LG Ҕ[Z/b/b`$%rrWDAN5xHc lxbIvP1*d]蔿lvHT?tz IkzaݐЮ 3hvb` nMoM/jC|9D[ jTm&[lJ3 L_/,%ϔA= z%W _7dK ֙AOP5Rܠk+;-o'ix͆j}O9RqKL$.vƤxU}̌^L15dOSpk?M頠8%vZ ['[Dtil c>$b4R7wd}3e̽$(tcAM0`fkv5p, i:'5[JN~`C2\?=;bG29csEm*K3} ξL^9fuF8D8 8w+}Ϡq+=7Mݰv~n_3YY>i{{aP n 7q뛌IpvDUF 'fx$QlWtXVX@k~3;2޿8s n$iT"(h>SL$& 6~Tem*A:C d_z5:>3Zsƣ]^ y7[Pj_b 7NLF4SM}}/ص>VGzxEšdwfwZ;‡{,s(ވ`WhGgp}n,PH5V]K,%lI`q%O%S3f9@AH .|11';fU=+kdG?~ IP)@%2lv|k}7U)ԑٝhOI( d$oqͯD$i9N*ЏdLoC^I$\qEDr>Gfy<Ay.VbHgC<׀s߃1zaF웙1[GL2n/Nf~VR Z{h{8;=x+@ױk[m@,5'f'ch#7$ uȞu)UU_|(1 ^}N&7jWڒom`*p@Yu'8eĒo_&*>XCРkH[u]ta#Aj&]X3]zG%O_9K I%M48:ؒNrXFO׎-9}!TWlh*n"!YN'_d1Ȃnc #gJ=UFx6~+>SRdyރuwBNN$z"Yn&t#WoQI*>p,!06筣^sWkOQ_ofw7?hy]<||O_g|XPXF2H= ͚(>tiʹ0Ġt1@!<0[mwl<=;[@s2Yɶf.K%O 4yϑpHpی!ћEj$]<#Zs%bhV=A1z1&D6yfqcxuaj84Jn3t>)TRj_YjZڿZ=ifkvڧzO^_c4 NU 83ŒCYl7QTbW9Qg a̷ Vs5DGAMb~u cՌ,'ȡdo8]3Dk/#m9 ǂl>S,`X737NFSWP"1"1ԌnGR۾3.j4cH9k,B){2=q ۪T{?.GcL͹țs&`YddVǑY\w: oHH̼84#}lJi6d b=N GKŐug˪>lX4@^n빑`~>)-]sogh{P*K6KOfOVX]( T$,`f186u ydSIc) U2JPЦqFATvG†Lt|L8fksDZvh9]+(^ٌX!'my%CC_ob9>[Iҳ^S^\ -zF(Qr+ڄiM.O /#6na6L IOmڨMU5xV'Czn^3T%.s$m | ^R<Μ}3—$wp <$qmifɣOSx3:I MzW`B%MG}eOl$Xnw6sJ,eh56s@J l 慗T~V)[[+x哅k}cLxy=0R52s4$D@N2jt/z\Y}cJk} B>{$ |⭷/ɮ+Kyd,VWUR[rB~ßȯCC k zpWdgs& $psY{k׾}xyh, N[f{6{FRC. E NuzYɣ'hCѰ<45=?b 5i_{Zߏ={ޱ*?Ɇ/90ݕ.^? C ^3K@d5;}|>Z~ۏ.?mQ;.,WĒ̉3z=I%;vo`rxf].D{o]Q}-W_-|9uexjYo/Jhh۾ǹHئͦrɶd5q&mD*SӃknnS[ⵚW&~ep>WZُ>Xw|d9zh(֏JWE.eӮ|tr_d^Fתڬ`;- tD"[[̗kgw[e~'y?ٝ\ =,5ZapŞN:l|="h=Z,ʮdzQDU.p^ hY3ݝٷ)<]]Q戽u13P<[?O V͂5)OANz R @N+^ܸ줊Wgz`f+{?Z/k5B>m|Ʊkʍwi![,uA6^S66L;"={Q5VPo?]>;~؞ޯjÜnC8'J ;&a8'wqC QQs$XoAzՎYKaLʳ_9&j5 ʲXWwω}9s 4jJ+{82~=c5T" 5PMp~0]3~iCQR 'hVyϾރ5 s?)PjH8q[ǔPh|hIJ10vt;#*pSs'B冒Vr1d93L΅)LęRd}Ӹy GqrV4^+3'EWJC߹%9I>@(cq`pN"{aA7xMn fO `aj3#Ӣl](p>G%Κ1v*c{s^/+{qx1sr:VQKʢ-ǻ9Xho q{&I7m%{͙SU&7I`~2#g}dϖ8Fѱ2qeؿ^Vݹz#2o;IUwVdB7ݵjjPl6tS3op^2${v붚~P$%n<}_*'Ino5;25|^+#|}(Fvw sp&U|pG0_SZ;bX6$tcx0_i֨- ]l^j͜n%޺B=&=|X7Yr=ȾLuKzpz㾧VU64uJ4'ctܑ!qE`FV]fd>UeIH/5G[yrTlŲec[ |~@r .mP 0| -OX?d6C {o5Pܿ5 rn㯿jo۶" UOku3Ud9ARQzie˷|[Ua&1;1e5/z5|NEbC'+[k[ɛߙϵRSyB< /7Wth%9]/~Ob<)ܨ}y{0ɆddiOzo}* -arFt ?by\z$Oż0#(ΣyI =gcFO'6Q%JЂsC2:~I4Vz9Esxօ[˳kj9.Eԧ Q|1x?}3r +Ő;},п)\1 ֹ1Fq )@"'`MX|2*Wn8--+Ge=d+020huem5hʺg%q8D~+V睱S. N!&9ϵfU^؊EJӕPRsR7 HF/ (E^CiCJmەM?^L‹z`Zrdl0o\MU,0UUڀϥI7;G'/$v^֟'SkV#|Nbm3o ݟ;qTjziC2%ϓ=: ^ ycgZr,^k81\Xu{Ҝ᱔yg6ޜ_İy3jmYlI\=gxYד`ɪ<]B "ƹVLɰU8)xy&I 2@>ޣ CbV\/99Y\y )Fۡ.֝F ]POBKNt>@Ú7?mTw= P"rL%LnZ@p0Ymw8 胏+ 1lγLel,֏>(GZUB6[Co9[P,!@ͦl=9N ėdPxg'"kjYX1owka-vK ˻k*wk"7_,wnYndglQlȳ蠕4_/`pxPrmIgKGK%^.?2ܽ}eyplUls4kV4DIr}= }ook;0hӅזm]ϔ ZI"4pZ mW,OE3/  ZWg 1&4m1 4Uv{nd7T^?|^'VF׮[sB8@櫏Iw׆p9MyP?]ٱGKGd/f㦳&AG,l5m9sƭg˟.[t*t?@9ۂG(o͆;^|5Su93_a6ԝ>; hNგQ5ij:nL?i,Bi[ʵ˻w߫' hvT .~It.(I\}ٓ˯~|G-ogn\qs^:2m?-[ @@ 0(d8w8=m)pΝUq8\6bN.B4ytZWJOy-GgSix!ZEsD*A@` p467gIEQG r"U[ SR柫=)=4SIv@SwKvewws)Cǒ n9]ʥ[]bW 9=a&bS?@y1]ZF0<d Bֳ[Sfϳ='%g:BA)n.%}5zL硿4É/FȬKkwVv+Ͼ\(gUyu# Ǧ~j1NʀjXeQZK8zo }<1%P"0ng vdKƞm>g\ZG`7e.Ǒ1K?ِ O.Q~Cڍqrե@.-zs=עߚufX:8`dyZM%xhXx?+]?ɺn`'O} rtqksƓxAtmZM$Y\+Pom[Y|6rrzٯ:Ťx 3 *8pNGeU/zVem19Sp|)LG=~hJ\umV ƽQHV(pX8ĶȀiVcB%wB_j]3$$++AyrdRwݶpmeͥƃp&rÖ^d.h.dQyDw/Ԡ!Wk%1$~xTGѿJqilL_tl xM39N_?8JfJbǚ#F ^; %yk;)~64atY,>g)|lXp e'K~p.ΕTm]@׻83zx/ ]wׇiR("5&{'lS[{:,sJ^Ʋ݃O$$vrU#srkd^y?88V2iN:"-_ݿ8:ůMӜk̓F;*CcSs7hIJeF N4d{H,c.=U ||&Ip謩htzj-f wf ؐU6 zntYTħ^8 _V'F6Y?4vo>]}>ZX\xdtMO7<>{^Grd!œr~Vߍh[:g%a/CStY]OKBPCrFL#~Ӑx[ܳ]2Kv#Ġ+ÿA r$WQ7Wucy?\fnN=g`AB_g,ʭÂ<`lĵJ;7/'qodw?zk٢׮(Igm]b%{F7x飦eT5WyZ|tKRx=۽U_,O>h~]ܙLow0?'gǮA$5, EC2mwOZ@ԥuVׅ`8zv ,wqmN}{v{/߼Ϳw/}|vD|z6[zdc#$»m5OA+mlܛ*4.l©kA.F`q %)J|o4,f_{"a OXYqs;W{ςG4Fy|v 5dF?mG @U8ޑ`0⓭l75iL^UmdOb n| O/$q邇LF?&d F츽l|gr}+N@8l+5 W:_J~C tW>`J'LGn}9b^4?l!?[~_.~Yo;O}A&c\z_Te|`r)4$OM>F@O h#Hb{){#^N!ԱyV^VGIoYa)'Zs?G }hH+ܔSXghSgUTEԽ1\^81bvYAx]cHOf*!UmJ7\f CltPU8Fu 9a|4_VG!I*t8PHSa9_穂I00PJ۾) ^4u40N[4|0-Ȍ0`rm+͂JK,(ޯEG&e PoMEVST q39a7d9>#|æxN8QMC4J')UlFIPO${/RT * (yY$gqReV0M/m~v`JOU1'<5s4js`P5 y!JSnY kD{$X0ؽdI9t4*{N}r>WH,;glhtrbȐuKܪAN.%NPp1֞vӑh2Vw=&!10My T9s|4WNY 6 t\\giH!~S57hװ o;  _#x߫ {z1=8>'L7{05 ZTq4PcK§&ƌ<#G9s 'tG?Z?'~RǏ[?[*B=ohw*}=6рyqlsWS,P?dC"f笞Y,IMҘly}`{;hoIy?-)ᝆH_਌ A*ֱxOt%Ϸroױ{|(P/BK3O?%io<ߛ[=hyMz,;vms}"ٟ6v ;\~?\^3>$U9 ~'߯')=q)[p+UòMOa"@pa8+oNw+^= O`Ȟ]R2ނqAv~y&?eJU>34:/h=NnĠ겯<҃a,4$Ѱ1!T|!Bo _|~<{ko`%{t9g=^HOO D$!-3諪@Vmˑ'c)Sp4=vTtɁC[[m= *z$Fup_6G: *NWp9h״o$Sxh=z !gz^eNzI|M5@/ݺb޺|KH҅G)3>ëCJ]8gf[ 5<'Zׄ9R" ŊW;{,G?+- lX7dy˃|J-[+Wo|VkLDc8_ՂMJe'^$GfJf:#=VR6}]2Ihq&a+] S @̼b>5`Q@z7twָVɻd=?0cJ0/"R6_ jLi)Q΃Cc'mIv5dh:ȍtZ"[:PFnS\#4Vɦ>g,*[< zk~Ts>]rKJY|xdihsu g!2'b*hpj29Go*{I= tpq4r> =zh{Z0'3ɬR Ya ]r{ƚ6rD%^̞]Nłx+e9 $zt!XǃR9x6%_z@PBRGì$>GMӬ":OM#sS_ T#9)/)[8Z!,-|>8/G+/ZAQc2*T^UlWy$:nIJgpۚ cu`p)_Ms=V( lxu&ϼjw+J.mT8FaMd*!mzz:зlT$ڮ/U`=vpX-`@K:VE]2z8A款H_I g/@_f@7k~xbRO/j\-V>d5_ΛcC "gcq׾9lo)\?!Q&ފ9N/Nd hԳpH_f=O_o `H1%جEػ߫q܂!Um YbY{M/O<$[ޅ ƅܶ>,7l彟h໯|h NJ;i{Hyp2w!ނJ! /ĴSy㯝pHJ1zݼ{+^tIǏoF G_o _gHVH^jgIV-X> ֢eV4ZGt8/ 65#V`բj+%%.C'| R$FP;x8z)ex |8*ƓLoWŶVlcsluz~QG~mg5=tP{.wkvyo͟og!_V ,l#eZ3|7O& z/SZpC@XP(q`> x!/ʫ>d&P$oJ:p I NP >t&3FdMX-ƅ/j+!i`᱂Zޛ-2)21P]-#c(id!+$[AXZfa ̫iR#USѸe9SxarB8YzM62@+D KM8ǹUֲp16\1` 'xì29+p鳯u/%c=2 Eҡue8 :>'܇  yfaJ?hy8D/V! !::S6C䍳:.'ާIhuz#\s^ F8>νNOr2&^1b f&A#R=+9P>#tx`GccJ1 1];+:Ɉ<#keb:{ɡ!+ٷNEmu^q807!ٖ iز[^Sw6FYL0"CcO2`JY/w[$gNR@ѸbVp>T+Op\*gV'zup0w!&R_V'ODׁ!|qtG\{C)3MB$Yуu$CQ^؟|6ߜkFڂfyX0+/FJKf9cH4J& $vq"=Hٶ\ϽiECOMU]%;H82 %McvLt8`%nh{pAG7+Ӷ/z+ ZZe{|IeKYz&h>=kNtծVIy]J&҄_ADkInӟtU:^ʹ$d_l *CV$'Yvms/= X8g*GTu }W;ꛣ0tOp+:S5fD{󍺓 z}kHYKcZQs?3pvG6C8ja> n,@H>`췿.-rܴ?hƓ%4}drq1~T`M۬$y>&!ChX@6.;BI6Ƌ^|5$/tD]ސ2'Dtr|0>k w8(s%%J4_Ď﷽.]˧OG%FЮEU'.Qzj %_I S@|PE,zlK6VϪÇΏ_~g<( q[ǽY/`yeQO@ZzT{‡ʳW%26TӹSS`[rjvƻoݻ?G '!ߛ>,{LUe7%''UGg/ƧWݪ֐8-4^xi-nXx⓯Lw%Tt8uW)%{i=a+Yzĭ]sC0 > 3{.~b:ȼ!1>w4NHw9.v#'m)zݯQt)_Ts;o8m줫텣2ƈM拓db%x'Y$\ϒ_e8 >|~|Ϻr/Y[\0GɓV啿K9 49pя;) d@,=z 8~?dfVjKd_Tj*BB>"P1bxN5Aື1*A!K\_b8xD"AVC_~ѕlcA>tG5o؞86]7D 橼XtQQq)7'VJ4%yħf7 r`ˆ74^8t@SpTy'bby/S8aV{ӕ?y,]J:S#Q|!-iӐmYy3OglFbo<;^!WkV֛%M9:!K%>, Iv_hIw``#{${Ze,z)%p/Hqћb~/kPGFB?4 ?J兒􏬆lڌK4[ac*T^{Z "Y<:>||ΕmN9;;2 "=Af7ݳVc}x*p0O>olCf..q+@6'J5',ĵ9_cpgn*>7?;~77vׂ )?X>LUb.?;oR%^{ML[8XKtīGيEGxOjcd1:k2> 0aiN-\Ͷ<O/r{QlU6-$-;ԠXch 'nmgg$&n{6Kp&׼t]1FM6s*\ݽzbK|0[盞J*\udLҝ慿lx.+=#+NۧSKOcn\:ѩ~h46M`$-AmDDߍg+c'jJ{َ{wmӀ8[&鱁?G 2 B$l6԰ڳQix?G1j>O n4eB~p2{]c|crޝJޯѳz=KgW4)8;NJ)\2Qmst&NTrEY8W/ZW&NwneoyZS+G5i&d .\Щ}9Γ-ڃs+0s(6F rE j!Zp|-{p}NC^_;ntdo8  NexgO&2ڜny:Y@{ ը$pzl 4g\2D ;- 6}F/~GuEC78Yl 53s?A*29x"tM*EVf>'aaV`tGVyg1>P93NQЅtj_ @6DrN6Z԰OPy96k 1s<] _tج8j6hK wd/ %]8/jyn^_;w2Yu7C܌K֓=gZA'֭!u}Ϙa$<(晎=*j;6( r52o.r&ƌ;@@Z.E<9[&hH ]oLEcdxDEp9ЗZH[oJ[;5R-eq2Srmm{-|j1kzj+P@<4V2|N?/oyg{PӺ2nH-P n,e;Cڙ WX.h 8[w@#@ ^{P[`\Chԑ.:=7',utU)p]rkú\FxtXo"E2{j(1eӺKFlŋVi>_֭?}|R_}Z0D.IYU>.fK bbIq"xi~9DV9pC5$\=JGI|"*#.K s:cO`޷>_O<iwײmg-tmWl$t0v7"X[uRپ3< oοَ@$:ʹe[O?zR/~*v h~p%p֘ߛ) xshO%YRNФ˻n.?]{yj͒Ofrq rItxI?;r'|.|:uJ.o?JTIowJ X0=j_\&:Yɥƴ 7ae?wӄ&dk(@áХ=6}qKrQՑk=h>g8%sq&Q 8=H;bH(Ut=ʳUHN~Ĕw%]'(I̽ʗP}o$Υoq]zRǭމ?<~a#VKHAP[nN3Ud)gYY_U( :[&{97*si/ߖ}_]gX~-$c'̓Lb5`^[zk9\y2[T+=JltyI~ٸ|:{e {.}M-4a=IC-cv{'>sxžÑR(ý/|'r9D: ն+Iz]ԸgCzR. wNmZ C\M3(@eux \/T~ F8l,ޛ niI`gͩ)$ίd7a]U(/i5c'Y kSD5x+_m$}\.}#6r:P+;YD B$fNqK?HM5Ozh~LR3zI+9YN[zMԾ*>EdVל OxCD0ev*y32a?NMxނ1~UNHr)yoI;; NR[~'˻}PbƸxL|{gU>:!4g+`9yZn|J}I P5E#t]D9_ͥ1|vtz@ʥUayX΋rOgClxtEdqܴfӯei*5v0]*!qܱK1zR_%QZt!x}]|kIfMyQ7^7%$J9v|[4}\^yo}*%_,йrg]3/E6a+%v*0ZaSI;^::}Ip͆4V 4ل|q5mwmnKǏvGC]&~PII {aS,yO' nz 923GKS-UpJlGc~F*qOi{_//o.|tƥ;I\<>OvJXoG5L>dSLP]`Aj;dW"/AUyʧ>t3 ¾+Ib%*(*iZp [.efm(A}~yryI|tob>]_.'z)U~.:k@ = `~f[ā/\^I _Z}wssv=;mkt:׿*m/wywNDUE> |ټC@C8H !lYMGvAJa&t.` ΔkZH(cT7ά,[s'.PQ)f l@E͔h@r7F:!2[ b&\͵`(U̙Ƥܬ$A̎AI5V+lf,d1}cDi,Y$sݔygCDl[ lA 3 tno7pre %6dhQ1b9+yI?!y7(5Y XT^3A,&Rq8L1'( $@z<8m㙜\Og>]$5lro`Ʃ)++N B)E< ᴁ @8+- eD_zmyςcJFQ90e %y ]VGK B\քI\j. 4`9"0|8Qňq L(){^UhdgOnPC |?+>sxl  ,IƤAc3iVJIً;τVnxdaVL{6Pb60q̗m= ٚ5I;()!?i]j=vp\p(=ɓ3TlxMW2:xol@G|T )kq}WCtN(eu(J?nkoݸ17#7s^CՈ X"Q&#4;pt D> _g/?$@oU%ѶҢ@sp܍#Hx BɂO&o31`؇+9mI/7Ip" JU229YJ?MO'Ϟ}{,×S rqdbMRrNF~Sg/~D}r={l>MSu PlW]zQ3W~5>Bɜ)'^ؑ z6k07os!o34VWN[?_sބp x`V)1p ֏h1JJ _߹swd&4^|c~k咤әefCƖp%EC kd[拾YY3hG ]__XD-}?B~w~Lw]._4BJF߇}Zu3ԯx9c͖EM1H7泠ÒFExoG8MU- 'F;|ھVͶYWGJ:~5dMvEZ=Gէ#\}3Zt~o|6wop^z޻qJATF~r[BIh?B`NJYDIb3\I.J:pw_@nP!vj%[pf~v:^Uu:o^+:f:OKscש p JCh݂VR5\?0 .]6_~=n5n+Ƿ7O~Ot_Ba1S8:4Xg QG>[s_;z=jo}mZ|ő#T>m8.'קۚY͏oLO5|gl9as]ܥP9 ؖ 5G uV̷<}T'ϗj7`[˱!_j0  qarJV@~ܹ{soϗO_$p0ߓmCx/N$^ +XJRU$ TBy>6ɴ(MX;huT4אңuX獱OHbt`z`>% 8= ritQ ua0c4Ěes3ģ 8| fb$ݠ8dΞ̗`rHb 5k3B[&b]T: fΙF'˶SrOQci0ao-[H)5ﵱU4F3J =ssС)ʽZ5Ak{\@,3)5?6%9p>Ggv<<] oCO`9S&^BiJ"{0C5 c4sfW>{\N&Tg1"[9 db SxT0SR[^"hx7? =U wc%d}$ 5.UzFEϐ,r$ ;[i^g)ΗTq8PUȻљM56zad3<%YY>:iPNe+-]Mz yYtc6=uUFse4OJdu(9a!FLr[_<-`x'YVGVAzHt~oFuDP zS6z&Hl]vCT|':l~S0}sV ~mmbt2݀_d~]2*l >?Nb] ~kx<V=|9ћ#3Zv*c/_zakG->;ʻ:6;wc xWRƫ7WďS&KVmjx [˭kѲ'+{[ݼzfu( VX8u)JH~dψ5=`~ }W{VP[ Ih9KRrUlZAr1Go`9R{dv%Q=OXY_R ovUAV.%sJlnlSՂ+q'p@> O e,~}-<׍[芰]&ó$OF98L|<\9Z~p#u}B׾9 ܫ8pc2gNҩ1Ft>ROFAd𢧄l DSܦbAcs$k"-WV# zA%^5dH÷$$-؍\~d+ vcc[gkfB*V5=sΧ./~|oz~8`"b89}nָ8Z~O+U˯mFQr }索PyEbxbID/JD_`C/NJ O%.s- :1]rMvC|X4^r,K /gʖJЍ-ty~8h?,>U_jb6&fsV2ÖY>B/ϖ?Gzkͯ?[Kw6e#ʜijp"aq e<1wA8(h}.hZ\.XW\SbߏR! ,cEs\ #ND#2`* vVGf_޺B<'.tm.2h4SCuL}3W&L]Fcx[)L%0 \Mz>lػ2H$ Ygs.)?_D{yXMlhf@ 7Q $V?_djr\#.Y]>LOid]ɈKzrf2?r[)X5 2$>\2a ^㴇3$ +fD#|EdWe]ry=l}OpJ<5Z4)mYXWNp rEalp)#9K $|E-LD{ >1IG{j%8 ʔ@U%r9=^FYY((1Q95 I!gdV91Jl}ɧ|+y©]όU9>6] 8LƅN:C;ۂ6 &נ]Ii(;ئ9YAqgĐPl2/Q"#b^vG5먞4? IOR\Ղ *9eۻP\)tz~S ʠWDU4“*VsŁE-s8IN=__4Z^ڧ.NC?<Sgsʹ$ y;ͣ2[5"^hmH8[@ \]c'<ҷ]KSn\38ᡦ0䛊?xyFWzlUq!}%>ciۋGGV0h+wQTqȏvw|gЌLhp'WɅkY>,bӐ`SM}l X,Gebӫg% \8~[3敷&؋pn_IRǣ=|[%XF## zDϫPÆX\j7_\D?U:d |/zgmh>Lte[ Vmۭjg}k ieI%z/9'ulCݼ` 9i'Oʙl[QrV\?eϷ eg޾sgY ߿)W;?Ysnh=,xdswbPvokRcТ4%Lkd I E'%6O>㩋lw.'u8X N 4;#Og ӏΥhóꍧDCҦ+:+j5(<(1Xa%KNwK/x*M:*[(}j0&stro?[>_-?[M]^|ln.x|r&*J(]. Τg6Xuy "0.o9FFK& m #3.^Sg|81 y8HJvz؇YSɛ]Ywƒm?,xo矔*RzBFm^W=8bovw-?O*^z!xRf8U%J8H.JYSx2tOV폐I}3Xd^(cC9g RLKc2^[!a2ON)Sƍ/aclΘTv]nT$7RX0; PYKr^XSD94g1oN2C#˘?hJ)hb?s)lJ'Ў7f>>*4gI:R֞A}#Q-z'bivqx?=G_snX#g1g;\ռ2(xa$i=/3'>b=Y':4H`MlΕi %sሱϭԶ"۽[ΏC`LO11:+~7njb1þp8'*HC:|w*G>s4|7g 6<r'mED' vpk-ycZcVwjpnxi*!)s/,j%Jk8Fg5 LJgPJEFs|ȵ*c&p|aGQuy dNo(7d ( @傠JPGp2fkյ9V[&+9 ;phfeųnVSt4pוe<+|o-yY׷o-}#(1pz^5'3c^>}5y3iiE UVKbKÃ[q޻nM"D$ ?샣g y @nX&3+t^_S -O=ܰ'$1$%{Ӵ.un$6`faޔ[6DǦ8rx쮕+1U_1x trx~P {:Wc'y?5I`ˆIpFk'3(1SoYC#XЇAqBh=YbwkD#T~{v!.N5IhH.%k4 p8=-pwhA7HJr9qp zT] w+v8ƺ FgxX:Tǧ=5FeMFUuѮDȆAT.t9lc ׹,\nO}gt48WWˍVY;Q_b|J]w߫b%(|#^ fJ .6@kR&lK#(1}28.XU[+.T~ -;' ./2hb ]4KLqca6?ȳକVFH~+GglTN{V;9ipv</sO\}Z2wK$@]Ix_4m"߳Uq>^N`atB\ݞ'>;G>Ϊbz*ihn7ӏ>W>ώ* V6ɑ~φ_{qh,$M3 k elxmTDkn~xzzp~)*.{e~|}Bk>p1Yd1;* /wvU >ȱ_[xU \sӨ:Dھsw _n^(uV=- +k^gVNP 0WzA0dLG+ 1AZDtq/2 aPĐŏ ]@FCGhQFɛŷR 8^ݜG7L )"c!s ),E >iPs+a? `0PF7T"bha1Ξtm'H/ΜX1!,]Agod QM0=MW_]x縣wbD0gPBE |0SЙ2bʳ%r!HfT*w0pTPBC(jmhc?7")9=p4SPPdTxl7VpܷTDQ6}>R;=Oo^Gt||OVk N(h{+ t4CEsy53lEǡ0&,M)v.]C<9J5Zks7'q5m@(i:)< 9q)6'k?ȈUI3 ; >EM/۵;p9?3" j]VήbEd{>ZAKgF_}uΧ$wm/." uO9Z/#n=|vto_Ǐ391v9_Wj3ۅ(Y ^iA Vz74d_8qZ cg:+OTB{NŶ/(?;OyG(a)HSGqh2AD1~yApGV `h L[|UM Etmȡ}"HZl&`zTmG}@Cʀg#:TxW:; 5ߊQ]wӺjxf: ~|yak<-]5 H5==q]M}3xAخA9xڛZ}5Z-ex7>:褡pu=hP6T`O'E|seWCinh2[UAnN~8{DA0빓ALJltrN O πQV 4d`Ux]9ј`8.u!M]&0E\nnw4u4#L}yczBsd4~9gnz_x4GeBV`E'OϧA#r}p0ryӲoo&OܜʓJ/LT;t gгd/rB !Tֲɝ(1Ѽ#c'ޚͽٵ#ӺY'sr5?g8mlQQhrُ^&ر}r| %9b*8xTզx A&:|Y/Kv Ѻ2=n%6*iNCӏ${ l0%IH^rfw)O4D֫ZܦrxR)} i=Ohՠ$Fm!d%P%XTnL.u|@T!454?AKZC첼wVL >vU듛"(۷Z>r\%G4p;?|齒vj/<8϶wjE,;{FYpi~ :6k,ۄ PaMO+K Ax1z}Liv=#"1wWQ'-5P$8Q[ _̩_G1[U jNHXq?IoV/ xVZ^.KО]w?]?{|YzlHM}&Pe{H*t~~wzjㄳ$ I˵lDK>|ͽܗopzũ<~c84xv/l$7c+4_[M5|#'&K ~L7l}ϷUuvp98뤂ݣo}OXɿeGO/7F͵c)N4qBm5&{_z?{=~'fD9#ն{S1}A|1 Ƌ#THD2eלP6 `?<9:BG)<rgr6agkS / 5# aqQ>9exnu-~E08Q&sV h1L0DkS l.ٓO05rT#jG%dLd8ǡ0Cvʖ ΄ 7zfdrG-cA VÑbfLjQe $ kTnv1C0hRE yti&3O[I3xD?ea9pևs:@_o+f^31`aLfLCj*0FI:qyV&I{=W?\l/%{o=^'2rɦO?Ռ|E+@MwAi ΐ'fk9EC 83 3<#[]gW_Aft L8S/&39\XVqa}9 ;A$4= &*ѭ T.dsOU'=.fWs1))[lJ BUau{ȌTC'M.:[d3yYg=[`R̅;_V!4Ekl"[ӭpz9^d,=Qޡ Y>8';e\}:={As활$)]0Zw ^pӧ#@X" ~+CCAㄫMv_DX9ȶ*ө$l.V:sv9I /3sxu {Aj`%å jwrr`ܞ?khk^T}t7ȟ'WE#akcmA5[k#HONrGrv*K@wyyӋ֓l T7 '?aGfY28D&dki8ꜭUVD_*Hs a9>/NW@F r<dT9Խ,WcӶKɥ{L%6ap v;0`iW[bhs c^ng϶i,џ~O?c'k;O-YKB{]qv~;H‚.y#C{7%' zC]`DYftúŃ53.}"?3ImjFovٰo޹|ɧugͷ^/vtsڊlrI6E'pPYB6}lŪ+dH7(Å ){ ;$T4n$_y:bD ^lK$|q3~\?'r:'飳۩JF4ê=_3 ̭!9Qs|{%y7ۚeNd_l#9'`v]|=.-_u1'sT+VQlw/ 2UB8G!>s9:|Kolm 2=m ?h o{% ;c(|&m(>i'8aYʤzT6v5 m8{dy=j~;n\7ZOOO-{m?tvlףo& ї4m}Zf~{߮)(HZ?,pREKv)NPp0?Kj=2!ctι&w(g(!"<QY8c\cvQ7@ e\c"Rwsǡ;!{/q"1_OgqS 1 GM6`q30YN]cO߃b>"@p~L9f30}u

}\-˴ӸS + nNG?#A&[Fva |;{~/û#C\ٹZ@ -K}NP 3"ypMhlҘ|.ۑcNC[B|p Oᇂ⠘ H35 ps S3"iL#N@@ѷڕfZ )ôgJy3Ȱccʝz.d8$X5x.sLؚh_@Jaf"bk[cģd)KM /l, }Q.o?ݺ6@#p1x6X qIG7{Pk6m0u3Dv= >? Yg+/e4Dq߄ \Dz0Up^fn[.}0يc5ޚd-MgYQYUܣsmMŲŰcJ$Jo\,eل=mqYC|h6@IDAT`j<''qz˯ |,)eC=@W/0[ԃ}_U|OGW}$pU9+r||臃S ov Y\3tJJ7O,?.$Ql D7N>qдZN V*;ϒxזUrs4egl2z0Z0)gָT8 vȓ # d.v&юCo_Ur2՜ϐ\ҍ5 i'a'Ӊ~ec?u."J__w/ӣp:^29m\k,w={r`lӄ؏V ml= C@ d+Y:@ ٚOR?K`dG)V7с Vv5\X#U2xlvrG*r9 /:%@- $WxK[XM-C8DE!~/g]o}0{aA}'4ߨhMp!|(-gٿ7w$|?x"6~>mzl1a r|LŚb7u5|"dcAd@NDC[Ux]5Ui-U gEmUV !ss*_UpgL8=x~+[Cya~Ph{wRA>Jܬd![C_p-S;cx+@M5@^h<"A(62X7D7j1:b~cl)jM31N7i@8N{c ` ]7*&{<32l<]g7iiчєm$ժ}۫)R;{92`0yǀ0LsC' Sܛ}mB> -1s_YND 8=?v UzZYJ\ʢkCAÆ@d Ig'AE휞O^;$e76Y-0C}Uh&  >23rP֘3k{~e' Pr?тZKt۟x^O5=ugxvQѾ̶,gi)#њdDИMp散n^5n03<4kK2kRùn}z{~f-\*]{0oTRH^>W_߯ gjù| -J9s\d8W镯&x5y€G #y¹3|DGlj>^gsԬbSMN|?tHلkܥ I *gŃ*U(^s=lG 2j hR:HYxz,{s~qvf12(CU˾}Mhq5X!lna Op4-it èkp ^!x lyy21U=cU&{%z$f$ w/qTdBPzPs^6Sscx=s:@_yyE *VG-G*[GΑ IQocwZÊ` z~ځEPB+>YsRh6C^}<䚄~aGu}Iݹyٯ.3l$[&V'o$9. Az7Mtۺ]|jlvPd' >JvFgSh>rewVxS4$isg߭z[v,6%=uCWgK(s3ZytФnKB%gԱ>h'm *6SZ#>FA׭7/XԷ Gnܨ:f|h˜Bw{v{,ne֑ )ҩm1 4JV:w@x|ϗ?`gϬ! g,b!}./JZUp ~!Sdף'ϫ,ҧK¹+9JID;3x³+jY* "&颰1shNS7ھ|kyR煞ɹk%vAh*eۄK_yV;\J'Iצ:%~^N;NVr焨7[~g]~Z/~<ZӚyyS-^(DlΒ`KTO3Fa׬FL2M8:]+t" R>PMQrWr^P6Mr̒I6JDQ " YFj9ւ:5>'YЉ8iSVµUd|6u`(ph*>)Fݱ|EY>\@N;"Dz Lyz=7[b^TqfQ \uOix<ѧNȅiaXcqZd2p)ͳ࿛GU):ʡتK<*C/p=%)̳Ei0# 0#HR߫ل18ɗgLD;A+7v C,x!&3G_J#@Vj&z40͗ѦWO.TuAFo\N8`mԑ1Q{Vߌ& #_Ȁ`!GQU:c`K{Ϟe<@Og>؞˝:2;dDo%exsvs\v\Nf(gc)Gra^;SUFa5 PFoWf#E}QpŜ٧>lXT[Pة#šZ*>:#ܡ`=k͎!aa0ĝ9<3>FZcs-{~LzN/ oN]ѣ'TzYrr~JNCج "c9_~yբ""lP콩bJך~8dsA\QŜ^x0!tUbPdetIM0t #̼ap8G\B$Ls68 (>k6 aϵ/G9S" @,GQ9VE3uq1J)겉@&f`–F8I7qZ5:kM'9F,5z:6`1[E$/5Nz~蘹\ G/߮Ll2 0`Qxܭ1P"Q pb fL1&s!uĩ1o?w&uVX/s(.a1)|S/gl6}^z,i- Fڟi2hMhQf9AfJG3m`e5Tk, :Yc찇o݊8AaJ_XRTF{%2kK2&k^;;+|g> O8; jN0kMx#. k_vtҞ~Em"QJg9J&3zB73%)kgRv7!iNہ{7N#v"hr5ojB03Q8D2,^|M8uΈrh\xs"tPv̙}/7ʔ?{LqHZ3 ׋ bs};<ʄFFȌ{RfGVx%ï n|#/tVdKN{s^6u0y7;?sz{>!IQA1dGKG[ј,voދyՎetrCq-n)h~x/dJSS6OEv1=*x ?}ܤG5ߦ,wΩ09o}4W4O6Cֵsg]mCiͽ߶Xhl|5)dl32GǣwcW[Od};*T}d[Q=E%@ho1gNU")e%2}91`C^i#U 7)""38Q-m}hP _J$a|nMS%g9K`) 5N}:c2u\FfWc.7|GtXضR"^k+߅'znT]_l s|U w|[_>X}uM{ΎVNAs2A܍3m\<}Y?Ec7I=x5.m ݔ(y(ٵɑsTR_ҸȫyWqG!KnzJe$Ou ";vh^LDۖxnίW{U\x%9t|~oy~{%ڳFIj\gczӶ>U9{:o,ϒU!O+qcL04?Y2L=jllrG5vLz#^GU0?k[G$ygo|+s7 Z/NU?Υ/J+wfO2, x MGg ׍\|/ 05T-d1ECNNL/c˷SN1Q7*uS5 `q<-0 ۥx h$=A1D$ l㼑 H yh s [ݭ''SzuFJTAs9є2d$l-V*>֮Ǝ ۾b G}Zࠎ#5P ~kQ#0c\#%`>ÖsA:&dۘ *9Xz yU6NP6H20هMu#׷qO ƺȑ* =Y+* :ߪ1 a/2mt礃@?W"^ScMxM>62GοoNU|~InӜ[h:L$إCO=1}\P$%$<4k:ͩixf3~ 7t}BNLОL/:"f^Jэt "]A6f9[/˧5_~1y@_ghK]4:H.=/I_UY5z<=Ot٧[GV+@8ƦFBm,]]z CtϪtdW_A/);ćr^thn,rXE<1FAx(J0L>ϫj8PUEy]jP>կ˷*t|;gi;{we^T1Yϟ.~_7듨yژ_<я:~{^//|_Me{7XztV:MY3GK`8A>ARwm"\ @謃!B/h 0|]0tQٜE8i9L'İ/J]h:'HFhLs*c*@0e葌Әs+bBEPboF%96ȐqN#=Z#t)ٻ pq[g)e#ppncJnJgps}~㳌gH3ˀml4V2v_kI#ͱi iN׼O+"~E+*7k;gw$@Ȕe< K9Sؔ|r 3~9ӌ'8'6&Y8\Rsaư2FKPH]\2Crȭ9 Hc!A dGRNs*<. Akkqh6(x2i)s\mp6JVÅ8sia|4V}ѧ@D7Ec.% 0f V~Dٔ#p%~Ļ:oK{?<W(?Sb ĢNGJd\9Ń/3>{`mm9 JŢS'|ƙIm'v"R[iCV 674e.eKtޑ9yʘp /(#Λo^(]o?~P(@Wm+Ԃ3|Ɖߪg/`X*R$Z۳:w[4n~ՃˋOrRWxgmkwu6.f h^'X +p&hӟsGfb_j4ca0#l`ubLsr8tI gW2i=1&޿gDRv['MEs:(r99,Wm@z1>Zꘖa*CxɼZ`"@o!8S 3 9I'fKߎQ fe ӿ=9;@Dx}=z_8YyB*klK8XzMs㰪!npϱU07'ӕV\Bs&>|GN5gp ,L%Zp/x5f]:Ď{wFo@G'|LgϢ=#_a] xwsS%Vcq٥i\zet8]jrzUभ`KC\E2(EM Nrdlz:͸thx,M[pq A.8G/>8on}hQ۵p@`NRe@_x/߂G@Ëd`hWMb0Wu7ݹ-f-b'ݫ"PUFNc;/!sN޻ZGߜߏwk0a*RCܤ/}͂GJ:"bo/>|ӝִBU/yAf:b|3|M,5'ݯ޷ GۇqD[>H/\>pvyw߭rY~OgY6џʇg9o,N=~W\~ӟ4~vvZeztT]P}~`uv2Y oNEi9侄T39ДgxD`k18=B?` 4ύ£KC!f1O;lOf(&l=<5 Xyw+y aS`+ZlUȠfAZ\shf=%iS5`;b]3"FLmJ?*;k+cEŐZZvvʖ ۫i} 3,c!kg˘ZOFyYTNC#Dz }0]}z RƧ)+Bxs\a8` sc\)c95&%Iq)Ë #lNM43z HLXŀfI4Qlc3GM?j(ZW:ќd4icp)3XiuU+L샦 EΦtTFIl"u[Yw5N t{hһ؝)o6=c +3ʨ7e`V/Er{ZŰ[8-"nq ـ&{ZN @SJC[1L3@lN{ l8NIdXQdf#ɇ,fNix~WY+Sh~͡cwne@?`sy,_LD6_WwS,TZvP톫5_7`=.W7|Φl*wt!,hKৌdTpF=/ϟ,[! N_$N$sO&8?/N޷'H4Xw>L+qq&`5&&9m?P5ݲ]Q=q;ɭP޿ oDƳOyGE]o2Zpf% D5~jx\?ڞRi9SmRv\,$'|? $gW\f'/v-"9&@%~vNˣy55r,yYcMk 7H;4't/dj>3@Y* _[YUc;jݭgus4 d2@\jx2{_Az1UDQ!yt@u;$9\,KK>Q)C+hVױg,c6&Dy?ڑscsL}̹kPpyyf?ҩ !Vly(,_AĞn&USߍFOdiGͅssaI^@9 LD`< rfqj('!}z#R^p^پܖwjY9Sץ WZ&r0s1}>EȏUYl}>dο D k-=sdfQSdtjW ˻o3w2\Ql{M0αaSpk0kYcۺ'pڳm:w'| 8}.d@?|y1£_G_E{`޿ԿM5m7w;erP?UW'mtvl .t) :UzпїO9ia9Of Wcɑ hPMw3畃ksY܉ޘh#RF8=gxe{2zԳje8|= cpzS8!$sI OscD)Fhr )yNnܰr!w@辞10:gN"{o̭jYKJ|S^$r61  #5G.!psO 'SИ|&x!y%\%TI6"8JkUze?drXBgoe}}0BƔg6e$5"ЫjmhV4^P +Q410.l2C(]<-+oti?`2ۇP8Ƈ^׮z0kRьf@)L'zcgDlkF)$aN<[OTג^4V^P|7ѝm^HMb{?=:'TgFť WS8ιRqϲ3FgTN&4_Jq̶% vV}0[}-]LjW}6Z ZS`ȰFC/Dw8|7_Gd"_''ngȢI"\ZD1~㶓^c^CJw3f1`>mnI7S~y/n@~j#|W9tGD:$lk+gSa*Fv/,-u͎Sq_u"'Na`rHFcUJM&`u}#p{6o [KUp5ݒƔa{obE#Jdi0B5># eMn{leh|ȴȱq3u䧱 T4i(l}3fgcCY!Dd8O>dLJH &?"J _Hq1l M:J? <?=ی9L0f s)Eqt휤M↽rXS=LNJƌEJ=C5}3+?C!ErC* V1*FGmjPݒM+Tض~V0lNNqʩ3vp!~ ^7Rz;a컹sJwo~󃱓s ?ѽ^-zsNASM@I%3}oD3HɊgu棢n^bjhlIY[e}4jKǛ\"c^6Ax_WR=om,_wjO Ӆn5x>Ch鈼#Wn|Ch3bWc6 q xMa}|k7ɍ㿪WH8982!)XC_9&9[sԝ4bkl9h*nDu"]f+wd:m(ѩlY !'1I(2BTwMl.|in5Qu=TAv_,/|=iϦ2I:I o'تc?Yubş;?VY?~'G=[{C'7GKMɤ$)3Y:F3'yyg:Ԃ+]-Q!ீAC)ƈˠp:E=0#, {'لcx 1^!S2 ꔮt)}OȜ8Ԛ{wpq" ߌa op(>f4kA8lkͫ!G PQv9ͻ౑ U @q@f9SKǯUtPGWʮ*SZ,48,!x"$: ti46wkK!e7i+9Yï{f(sC[*l14B&[u&aʹ_|vjՌ (v<I1;g/~htvm95IApI }(U&znU@uU]uē_+D-4Q~f WG<̘kPG‘} ux# GvfJPB*L1(˞0r& C4_ƵR"^9uQz웴pΠK)k }*+ed*/[}eFw""Ͽp 6" :kx^>2E߾=r|>Ff^=/Ȩ"OUU@ NpSΈQZfϲONB/$f)ͥ W{>D)}j0(sP5r3 9ݏ'vIsT F{g'М7Vp ۚL~5]C40֤9۶{)~/<DsY6E0x2Osގ9϶fBe؀9M*a#ž[݋>7ɜWo܉ʲ8 Z^SXG?}XF훪̘M&Ap>ed}%Gi[άg'}ǖj͡76y` f5 ַH)VH/Y/ [}eٲ"W^hYEEu)iJrrFT'8|VfrՎ&HGD@zp ӷ2U8 DXukdӰ_?nуVh4{ǃV{Á(*o`kw;[>t\_-5 *m8Y<c h^Ʈ Wĕ#85 J` s$`WTi E/{.qUnF9URB}~wEgg5 s*Ӟ4[x-_|lݾ;'P45IFTտk+8^x6\[#Do=ߎGɆ_ċɷJ8aQLt`AUq.<.(`p6Ua8Y/N|F{ & _G[uC44؀giC<;AuHj\f ~r\AzTt̶nCk2Arwy6B VU;ǧ* {XjN5f۸/18!ST9F@,Ӕ׿VNCJϔLgJ6fb S 9{i¹Т4f" ٔyi~a[ Se!|Q!ڳpI2)a&4P}7Ÿ@n8ykC<=˜O#hQUڒ9g @0Qy>GxYyR51)` FN`&11|ec߸()PuU'tmKSQtH`7֛Fp:( tZu(h:epdӾً߳UүY91g;g+pyRA<2;)2w CLSg_zZPR_ 97{QD1]8k*e~{͉!9N5.N,sa9fzoqh6Zd w(uC6h cuW2gB8Z:Ngj`l/r\Kڳ>{}.63Ś3ӣN%Q:i`"FpnAW|zxzw䋹}ajс/X@ X̺l% ?ZAh6!V4^Y2w3Gg> 썂v =6 0#El`7LQJ#3\KkKzJ˂؊ r &`7xsUl:6`s>N:Nkmsuo~ְ?r`l;r [GΝS Vg{:UV޶աk9P>gh^c{_6A/{nd:@C4P~3zlˑ~g) aNJP F&EQEklhƎ{pC")R@;P ޻fYb9`luq a:Ĝ'e[|׫jD,XN:欽'iNdeH%,]\JC%e1Z7YUɟ)b]0xc ov9/"ց9e2Su\G?6&΀zyu2ыEa{NNӁ/.㔎hRYul-_c c#U l{gW͘,4 )[ȋC"MpJ[dIgHF @;Q>A ""׺@T薠(mNGTޥH%Rh}*cq,? C%اzv8aLEp c/sH(w$*^/' Z2pG8&,o56N 1m`CSn|j冣Ɂ.—- 9)ʺ҉N B<rN9#aV"[1LPr9Od1N4q4=ce^Y !ɰ|]Tr_,ؑ}a@B;Iz S9dY4~T+yc%wKcv|ˤ%0'{~JIshͤ?d,Vl % 꿔2^ ٘# ®3H UoOà =tSN #zM+ho8ʳo, $]̛R&0Zשt1n8ej=u3n/SpFq-SmhdM:hc/K(q##5@b지z4m;}}xJ+S\p=OZW8$I>*|x=pࠢRc 9yߒGEafpcQٓb*Ǎ{g",^OG?V{25󎋣Ѐ ALl賎{\qL`3ڙ IƪǰhR#ѾV:nVZ CVm;rPerx76Ar>tۧ7rZH3|IcAw\8Ai"Gpf>Nc}'X;#sR7?Or9aYK6@XC3wp9pB6ȵn3V!<b[)/%`+ 8cdr^IzXqtˌ4] y̚pOo7qhOP~ RG“͹x3tzg⃅4"q~}Y3>B)hCFn9NDSx^F:6_f@x%fT핲gԠ9F? 'ƨO0 -Iph0s“Ꞛ? $?;>{l*MO o  )(w@ub@MFauN_nKff.3\p^ Y+ϮM~ VH^W! 'O&m`h~ؔ5\oCho2~lܶaR?.f*&d_6 D>IG 8f]W?QG08<K.6~8tx$܈eV !,c %o䎗 AzZ fqD6 IU9U o]3&|;KmY[wϿm 719!yqpsyس 3-N(=LWw}1?(dv `-_m}L~D/d-g#`:AVo~~d?.qD+]ߊoepe#s`6=>gW\8.k> `sZ2LU0-6׸ʚyRўI-#$Y'/596p5N,$ycZd3hfa_7eg:1Nd~'WO-B[̷K9N%U;VG(J~G1wQm22[L8ٮ}4ʑV0dbN]Y˂ 6,٩y$[^u 4G2[XN s0gi0T dm:OiǍ`uc pєp&j-gYf~}Dᚭ89E!Mgx?<*<Cfǚ`³|fheEtcqZ_ɼщdN0P.ӞqT  yv`e{I@]*L0M`9NOAGy612ܘ)ӸtQܰH!ʁ h!7:hR۪A>@V^kf"6a,*S 'qk3^N3S oO8<+*1S^-e*gwb1cU6d3ErwVj~Vb y.\"!ic\ϔ 7kgV!aicz B"SIXZe C΍6QYX!>D\LTA4B3/m ]5FvBʞj([{ 3 F9ǂNd nmn Gs 8>u Dhǁ8Fڐ|cE앚2X[tM 88Y4πSw">+3|-|/#:'Z]!Gΰ'f-᭡5/eOXi @@r6Kp9iV'!E:.gB[m A/N?HRgdRbc8I83ߖ52',% N k;j~+ zbh­MUZ\zܳCR%{E4w. 7UmWTHOj>A'ۧw=M`>碇qkg'R;ѾEYO=?z3x q:7({7{7gtRA@7_K4׶dhg#iwJ]˶ɼ/D '2.8vCj#47mR 5ǫN6ޞ# ;jo֍oLX}GvEBp:/Ǔgp$KY̌%Sַ^f/e84E]+8Co sC%ܚˮiiZ BTca<]Y+ɓ) :9~:~wLYQ]Be`gLe9!`V[sDiJ Zڙc'D@WrMV'VHF 6=&ɘ-w?o )6=Nk2e2B,x\,w Z?Lf;rcd/Nm䏌^,yeEs IOML~C:/2݄N<4Go?t ɾJrNܹNa=8ȖlǨx@''_:5L) S>dP>{iDHfAB3Fdr(oY@sfpCG y 1t*LQ2zmu:lvߒ^0uL!_l0ND\,"9v^wk0 8nヸE:>xID*j%b3XF#Z(-藡WI8Mn7샢Fs@m N0%t%ݨAWU]ʯsc` W7rh\0p %3DQ}2%#{bCrPXmizNjE. M6~tvmqꊻxNtO9Z9aq&חHw p7gbW8 29 " d+::d2R2'#ظȰ3LwƬ/EW)>Oꭥ$sHJu2 L'K-Vͭs\=]XEy}Z8)⬠f@_|{H񿕪Ss\WwmC0ʽ" faQx J+S G)}G9{Cx_#5HZIDS3'9Fp4Qcbs{ǹ,=?wW] JG4$O -;UVf59Cﶼh^>}ڎB?^OsbU.`a'ZG?^sPh-]ù8)`J`,'G. (+ 4O7A u ƒSKqq0oaG/%l|r4mPS0[rVy1Ga.{q@՛O&3$YH эl3d)]R׍%TN}RЩuGOMԄ0(2huO_0N Yyߥ#85M[fК= hd9צͣ7C\wAmvf9w$kl+M%5̢ItqNP/{Ļ?E_^muy:-] ]iKX;H8}Z_zxAj̐~+2g:BcT\Nbo0uiXl7) ?*ʕFJ[ Tx2i bz)'BlG:Ң379RgvZ`SZo SE3Vl"?_}/WOa^l{i5 oQU$$GoO*'e:m^jH#a) _' }0ct= RH/S.6[hiXh9Qi&Wmm);UBhs ٍlj+Gɐ@ G+ y^# &Lh l̬SAh";NqU Z =_1rd J|T{z?Yab䫫{?F VO^AtR'=sZMSlb_fq6_ d-ݷk2@1t =nzz 7dY'#I.w؜QϒNHAL̛r68صmPB5k<6j]$jgag|4sg!ܖMGQ.٘N풧{-h[E72'ӯu(иC68B9v 0ݝ3r}H,RCiVT{l-Qt|W5Hx9Kh .L7& -#VpJ7 ޵$ _n YƘovV۳R1Jq@ S %C|;S:ɏ&xqȰ[դ8`xXLi gq~xE9A&ڹ&7IeDK1 aBLל)t:iyc(^:)B4, ibC~X/bv-\5h VDZb/ p>/CPFg}F.}DTd~&CdϜ:vo0ec6Wbڍ[x.yKq[q}4\FPAULK֮4|'"S;~!LMz-S GT93`[?ixVTdlmk9k.e1' JY! (n{.Ut,'99r7gP+8T~J_.QAR^goacKTzgJae`d"V,|\gɡ t}ؑzP g .:,)Uw` KFjңg[AK/ۺbz?|< \a]L[:\ӌ&7⪭"Q!m99`#:2鹚]h^h>A ,ŀq9Ch~KQsbvQt4g=V"IUEw(pda7lm=ӬMp%4dO`è1X <{qm|S:;d("F/JF';918qIAA5)`8 d͋`m+Z]10g^C_J>5>z 4ͣ[Vc_,.7D$v-<0V:+#%(8+Fi[_p.^^؅+ q8}+_Ur\Eh' 7;y2b8IcԶ j@6{.`x7xUm褆,~ Ny5Y>NHk:#;Dq䴮kc#h}=X=QG c͉AcƨֻYoύ^do/3yuTVh{qGOcz]?m oxw!QTρa߮wVWzndb]{U+Hf5*ٳV;'e3ϒq z%`/U0,V^B2J[5)90[=ro;3Lp,r28@G[**c h~d#Fgz /E3mx >kwҨ4$> .\$vnؿ޷/vD^ى?)xzU>tu;95_nW݊ս|1v WƏ>A:&\vۯ4-\jn<<[D{T:=#po> 4[W5eٍ i&ۍ>%3 4kR:cž,e'>c<7ׂx igGqMvӬj.z /}Xp~hz72wf)s/>_dnǻ%?*S5:A_.$0xF2 y pAQ;!V{nV5@ћVsH])^ Fp %z-"k"{RdIk,[9(V%mPZ(cgSgn"iW!L K0 !MdNt*Ag8," 'Fub7pRA+VJg/Hѷ':\gINKO usE8f ,YގnܚW9%hCݵjzg0r@E 3s4i|_b,a& (/ƛ d?4) G2eP JN4*ú_F>aqQ|ImmqJycԦ9"V ] &QII@8(mv1OA5F\G(~G0@?p\-y4/L0Gh(nN353Z9}sFݬ3zEMDQ;}Fx^Fs*|<:B3óEN"g3\N-|sd$"Oz ړz0/3zlQ' e"RO *:YipUȈ، +*{myU#'y^j"kpeSGȲw߶rV?OfXZu" xr35w4jZ9X hvoѣ'?]^ϭݽDo7|}{!曉|>aw xUՑIY9юsԃ;ؾjX&_֒}O2LbV|xV‹8W3֛3Y26SS9Jz Ѱ--@\@t2\ B{ ά36D זLetR={BSW'$7v}XHF'eCG"OʛBao|A{EEfb_}}_GGkm]/-8u 0%#2z'V9Ꞟ'j*.;s{<3X8ޱ{qC,E XQZ&&*E2] ʽZ.|E sT{f DGwŸE\v;9?}hwd0„R@IDATt|~<15]P'wW+RlV>qy"`O=lq&R sp1K9(]\wYf|8=N:զ䶸V-ް1U"# y:Qug=*p }N-\r:Zy`N5Vd8&;]V%jW6߱e-SMO&GO=N^y 丶صT:H6;̞GU'/Z,8n'%~'/BE^D+!P1۶^-P6b8Q=k5Q"V/;omj:|N'5}ouz#tNZvWO:WfOMǿwZ|rJ|Y͉d}܊/嗫_WGm@?'oo(~&2>.!SdbĐ[XekֲM/ێqǮ323iu()ޚ)d'7f5 OFݶr\-DK#FrBFY{[`\@J6GW~gy|DQ\ A쓑u}[Ztz R,[JV]u=Ny>L/6d.ض wnޖjz|hLkm սߖy:ζƽV><-'АGzOFX }~@Vټg9lҐ52.XlW9ӅA<`P?;g{`K~eQ25Zf+ٖDftKsR;ɺ҂.ΛA|FE5c۲G}OtOO>l韪po1|V~G!DKC-MDPkqfI,!p`p@6m5Ek0[MP9"bTGDNX}FūlݮwG?zVK8-MnO{.&!U8+C3x#SduΓx'"@^;lUC$X1dˆe`/ed =vv S M !7hVK眣~;UT`Ebf%vopcFF-w`A %fJ0 ݷ_ 4ƹW`4vG=<H~*f<4xH.]D7[pI۳rQʔf;޿θ̑ ~/LHGk)W3l5NpDRc칏6wgsX'WQ1`m_qSt n\wwYWBukf5)oSEcτl$<+w҂jWp2_jxLT2V ~i4m5l!h| t8pHFNPcR<1R<Ϟ+у X)@#͟1!u ^m!ۤ wNGM}὘^u58SVȷ3ά\2&cLz4XYAuYQnTD[(/qcy¯z 8l̦[鋯V~8##ar/'<,RsD:˯ E԰1=NkD'9Zכ7tkiu2W;[QQ|??y<+*qZ4j'?LVI9SkU]T߇)\>tʏAE_ۭ"z ԫ mL)^N&ֲFTzM.8cI{e+,Xjq2zk9C I37t" XzErk Lm}}i5烌S@eph>;^/լxb.O> nL o+ Ȑ6Y?Acݏo&*ɺf6ѓJs &.2w9%bG ;-M O%9({V@9ڔ`Nj!;WT#`x}+˖τ&cmSbcCKpy;Apj~FC㤌*V:TfZc @ &1"{p_\M4=+R+6D5Nuj4hb&5Y#սEg|juNV,A'1[qLYoS)P_zz_nɛ`9897>lgxGp˯V_}ɟU)V 6pR?WSe]&d>?z?Os>ds#||\94+PnwV?韯>-@@dAbƷr&HjtpۿR~u~_i<_!z7\ݍ :-\jU4=]%.ӗI@{z ٛlĜiGdeOWt" 6E kjF^T"qEr@qWe5GוEx?WP{?tǫ'm'\oa<@ Z¶9(g1ロ2n+D~޻w}\U8>w[ppx`6Ϟ;zBOabc!ak"[,d/4ÂNAK[yZmeL* eMy~\4i;=Ħs4lǂo2bޥa^ $6hdO0ϙ욭cDA$yWJwh,r7 :HXNx0;]࣑_kՠXz7ĕ|/zSFH#蔠bH Ġ"w/AzD2Txl:!>S6}!&5DcA `C13?c8 yF-,+_":MN K);t^]88C :tiNA( dl73@/m]0 @W$lmM,2 8Ď*F?*\mŴ-9]v3Na!Pfjd;~҅ZS$%@:}'SLGtgxy|Weqk|D :F,aۂfax)xӭha+dk?~TaE7P^ ŖXgӂ2&ˢfƊHc"" 1錐h{4:a2 ^j9S;A6{f~0ÑL#gYh 5ڰkw];t&\+25|60lPav 0V7YoэƣpXl;@zQ G,N"آ-46dU]_*1*:c]v^i7*(ҽGhFDW;}-kre%/8j *wYKY50s8 l:O`9OG9QN[av6}ŊRoWB$GZʹڷZϩjrNZh Oz62o^e\mP^\ƀ>vg~gcj̭9d'漐3UǭI q' ơYVZ-{6GN2.Wv˴ZK0>H'rJwN9Bhi hCoC1MttL۝Շ}MV_N9jVu]*,^|`+ҳfkUt9zm 8"԰a ^MἝɾ6gC$i'oV;׳az6ۭڶVT5'|$@& hRx|s;^~Y' A&p?6W/~7ʹuk|$U~1zktW2gleX"KVC߮^=V Q=lY|pWe(~ѱ}=>-x0U|SxU[0|fhEM `$VgD${PalcN+PwL:N27G!D՘Q0(GA #8䊈x{Ϲ@ j zma: $c^$|&F$jWYqZİgSy^^vJ2:~l7"8X .$D !}?S =!<] <2l7Y;OqTb"\ymn?ػ.Bw9ƹ;'zgz̡-l+&Hj@fz`Ro+';Ybz3 [-sLKq{ 恱rWL(OF rRhnWݧ_HS^O6s͛")EV+*-A j7Kq-x`^N{@4Vqv}co9`2?ZܡoK'`Bp>ARDpx ; fQ8='j ^!d sI?S)&瘡nbd53{zBBR='%@CN9 Þ\C_f/bSG@v _%?T*頫Շ=!,8T_:'%eeQ>;72>g)R"獷1e<:!#jg.ߔn}ڋVЉ, tKsja8$+yА4FL{<~Slg;yK~2@A49c' 8ԅ)K d} h<:k+Xdb1fТo2qwN.k;> eR8. [5%Fr.8pNlciw*ڀ3|֞wD1a q ]08#uWF\Mj|=EFY0Om$#dXt-=%^oف~tԲMK=3M$=)aN&{8cO?U}ㅏ<4 A..kҟif<|50{-<[p4'5t4o&30i .d&~5prde#v~=Vs-_DP鄛 Rx.AJvn7[=K_m/bꔜ $%S`@ЋA #̙‡p,<<g7^HJ)q~XLPىK$gւ}Z[wv&Sp PM imM%854 3V0ڸ%joZtv wޓ.zVƙD+Wjc9ɵӊ~Ç{O?]=x&0_dEt縹u첎t, aGtgIDgֲjꓭ5z)| qa)sgj6:Fte;sm{jnm[d7t vȹ./zt<1n')m]Mֶϼ UߠC_ ƅ1jj 8$i1)T(:o9$Db0/+&Xea'B\D(pOjJ< tbm b)M5UZj68/cۃЗfy,U]K9Oc.٦>d8\S_ ԉp%j-RWCu1×)eHJ1O|y*g˸!jI[E 4}@J)ppъ 䈾aZ%57jN8 k}ְ9þi3{_)!%dA# jK A ʭՕ a@'9@]P}?[ QKTHNdث$L7 j!jߥ7^vtCOsyg̯gա~+B5:+C+잉Fm+ -x!<+)f|;gn v?(Ua)pzX:❶ \a"zpA>̯ F>:1G홵3?9={uI4Vwq80I[hzu V@;*:bN>x8#xRoËtkiM!w ٧vf@YL,۠* hD鲢lB\)WƑnZ1KF1úb 醣OC)~J!)hy VxBOS ZٮL(Q)W@x\Gs"׻GP9X.Q8%}[ mRgXQ F;؆;crWʔ V_QEƫ6q.ix#i٣0u=^h%P! ^pNt Fo ratz#rT92!9mOjK+&gr22CO" %p;@:bO#zg~覿sܩoFGC}=[?'{؝MR/Ϸpu5g?hM4z6'h8 Xy[ п3]b4oLBhi"4y:8y^ 6Ko0}D"쫜9r.椀2{Pk Zn%˂1ь>ZWRO{'oV~}\# 85+ˊc=yd>ptZ;9'>o*w}U']v'yQ_2xd#G _{ɂgPќ!jkd؝tlkjOVN>je"{FW%vk},~^oW O~Tzbinj}Eu;Spbٽ{?nՇ?xlVWxQi<})W8#{'pknh<-3S@vOo[>#z<<*(@-&S_y#8~6=86lؼLƛhYz p]k<;7ew,r%|5MvXt&I7IVZI1cXdd&3'[WB]5<)G[շO/07qճ ]4&4 ÌLؘ~8g]2mљ7xQE?.F%}F djuо;]>kH컚7ڄlý5*eTw"VpZ3ktJo:6|D^vw)F/>WuL&/rTGQ'0wt(EL'_hQ߽7K 3cr_|`! ah h;H4)[^X-oHC c(y}`NޑJQ81Π ͧ'ztCk. >. ,ƧƴB ¸'d@0b2&8#B㐄Ej QE&Z^_)1''Q*s4J@իUg1 o,(C.^*dx|;8Ni굢h n.ow4[)/bZ16BȣI97ʛy$fO]SY"'s"iaD͂8CO)wx#g5f(q-X}(k*գbJMJ MvM-,i˂_Qd`N&0, LlF 3>^'2ĦؚN`gKWx PZp0JcX*KAC"sfk3¼Tة}pSE4SɌ`BMk(,Jɞz~N}A㗪nNj<~)M6b ,V_V(~ L14gi<˘Rk{8k2訾S\*f >}P1%Gg\61ED[~ҹƷpQw7Na{Q?wXf^*ZsO3 j~OaM {G5GO;N5|~!~o,y4QwϜgs.44dE:%%'O(đ5Met ΢ÌqyLrwa䬻A[*$s8*E/G_8K^Le@eƦ@jS 0`z#A[hcYХ:u<Rgkz/J9ctʜ՜)]P[ZuHԱSdխ[B@okj/_|3g^7rў6#u0+p1#Jj6H"AV@I 8  ߗ|^2"[uMgckZecN*E>,*ӣR__}>X]?Ѷ P~7oi~'{,ɉ>j2dS9pR{|!/(^8o_Ee8V]i`1gcNw2eY_篪˜-䷼L`hp DIgY ;S~[.Ī? ~,-?/5al9i{З_^~Np胻bQBtN" '\*8wÓFcF~js}Y]sF+whuɍh=.SiN±.WUx9- Ix㜾h\ hMH[NaHW[CA,!릠VE|6:6e!@ц^=VC-&Mxer>:a=>.'Nrz:+w~s2Nz{>vn>~R &^򗵗foN2)}e0sk9ɖhtXƸ5.:<{V<'mLQcqrqjyeɆkdkogBZg|4 ߬տ }_ty'p :n{ic1RY*U+]rnEet>jE zP3figتJfc{Wɗ筀<˘7;H9i+*`tû5J%-򈎬guKO^=m;ųV p ͌AaPr/Ϟr-hrYjjReR'u4d̄cp>Z^/^jr\#o A}^AG0JdL}}bcÍLlo0rU'7'ro)ǐk;~J#Y[[%Bs!щ#Ç1r(Y UYP*۷#+N"pɴ"z8k;qP2{Cjk@ jONUhl upeX WVRɆَ} ^;\Fׇ1{Kd }ucy@[Ss8c3 hzV[D!'T/xP5Z1gwɮڦ|@Ec9,9zw}SµBcE6GPMt/0xY`C5;-vo=A-)ȩ<݌뻕i70XvCq<~C`8 :Kxq79q֟Xmsv2mP-ԧxYGC# ̸}[ֿߺ7l.8^=xM _` 9gѓܣ =ytu m$tmFK [+~:{rƮ _IanB}Bl:NT d d}ߋ^UN'L2ִEN6 dGc/K/>ChWw>huT?jo7}aQ~G>Qbt_2“חc2ɭ  d]a}N1 ?-fHVX80e/ ypHFfFn 1 h楱)b<;B^e'.A>Z9F3hvU4Y׫2ɣ:^ceFE:zUM*4F!n9y6|-?p]Kv$E @v-\T<׍ijEԶZ[&rV_h 2s®mD#{}8 Dߚ YK ,'Ukfc|X ͚<`Ci&67mNKj<ɓ9(YO:j1j`1zβ+,Hi& ҳeO_U29'[y8&0,]V C F \Ya34Yn\e$i%`&P`SI%XVIA G!m?TN?MX.*ҳF0qRX΀D&FX0t&j"9^363e oB2#YYg dA(n&@ jhQ=ո'gDHI0{6ALȬa`>1Fs91FɅ7bQk_3Z&3V_ ]Gn/巳99+ oFӴW#kMAcMp.^RD MB0 ܜ8a IgEL 6u5NrQ *`J-Nh-߰cd-&Dg.G[cHAZRݓBGuqiL2T*E}h;舧/'_V3WyV/NJ-hvMCVӎP 5\(04 97)q=#W-2"Y)`2 &ψԖm Nğ]Z[ZGuot=y)iNUA e?+axm 8ӻɱqv q2g{0[DƙX,XYIjK6~&~r"f40c8½N:N EYg?o8:>3RX#'1%Xمh, $fCQ/z}aGhޑsLAV.G'YGucxސS4ozc24}sP]@/1nt&)Q|wV-#9?w֟猥߭$S}s}cs U- (BG=aFW)CS68|H=Ke3pGcڙR4JӁ7 `kЍM2Hd2ș]srA&˞jjjw(KIi_Eߙ:2,$ 9N9]4!. :x,Ef+Io<}V^QZznWyG?Ԁ-pn+ZVwBBݣ獂Ѷ翜~m] H7pZt2{ :^13z泹f,5oUNԚ[kQ+2zdd?oµ৿ 1[+x9DcdȜdOY&ZLjHF?NKP K`!\tZW OaG;Q>1wb#==ts(_j͂k1hw,4ɟ)^t5 [sXr5gvO/0Kͽ!k!zNP-zi۲bqa㽻ev Q2Ek7N= Y: >d0){$Ogd.Vș=oqcʩ;B3 S&>n)@oteP-H="`ln~ԜR'Ӡ#gLZˆ1,5\2>6{ ][79\LPqwv ؏wCȖL Y Nz/y'_]ί}sInD5;Q[G1HƠ>nԺw.7$cz%|&5JsevYgtu'wsz1=MSy1]Sjt=&]fee51 agKB+YCN]*/SZ J)XR2u0 L٥M8SiYf+P?2Q1+7n:#{gu ҿ5Vb#EQY +xIX8A0; 9Kd`4 LpSs@Xky9+hhAAJ|`ROQZ缛V}:1WhuJ?rJ3 Ӡ1/c:&=>bB%P0 d :ye%q1pqa ) ăY*@IDAT_Rbdc@A1pu"lnGX-c{WñIS o>o#4QL`\`DC5)ڪ{/^? n{Isߌ6S sN3u茮b D\3G/Q]+L6thHo>%t@Q, h2oVBdMq31v)oRR_oWPHeݎ3}J6ѽ9S?Hq~9e>?,)moC/(o>vŜ8C %k~g$5ދR{%3(E)l(Oڵlo>nl; aiҲ'};8-PY\U2ƨKųjջK*YN89j3mIACI6^6#p ơ V7g]jstouDݵv 夌3Tn452$bЖW Ms.7kgxI!ٙLGWRA9>CUKAhAIotR"` Zph!*UtY\)n=*ϡǸ vp:Aݜ-]Ὄu8 2 ,N;>EGXiGi>u(MFSiV$cgcw? }z/7.uE'7‘Kd`{mjBY}}KCd溻K͞k` %vzY(3埗AG>s0 lUmW3wKi7VEI>GDk&6[vg~btYΣAr=o%o,MxJlGǡ@0!ad6wvom$;o mԕv3Agu0`Q qd/ PЎ]GnEN6Uτ+e;djj~&{Y }ejAn7e3}XvuzE L8{WeR]` h|˃ߔ}ͧxysh?_ Ǐ 42fOҵF6|6X'>U7[{܂>8Άaϼq =``;;Z*ɺ:yVu~AD=ŲhU͞Q0pKvEl2Kf{ϢE3*YaKXk˴ mcS&x9 yEYdTgnlW!2N_u *oпt-ɴCCYqXAuXVnuQ` _i|. 3ף5]Rxt|/`zR vxmVGWBzluš-<ۙ$;1N 09m芞"F~E޴ՓWdX_@k ~&}po~Go7a+y_r^ +[`oG{X慗t?qCƈ>clP"1K[Կ Wn?()*6 #1)gc3/k"=`ԼW8k_M_]wsY $Σd+AT9)pp?ٸm6c1 R0WN0,Zl]SA[Ω(͐7 R.A^P,QH!쥟:eY5Ѭ~f ZZu)1X0Dgr{Dc{_3 _ZqId\pr*ޓ֤K9聭-MAmTeH^# !=3.:ut%xRy NINN8PFԘGpv]rv7qJ@N~/O|oG >nF=XO ^H5D h&;kׯ~ZҖk㩟~qwm`;0ì6,0/m=|#sȂSKG 4pmj,۽o[ڰ5àYfK/;}8adAgc*tQx@ؘ 8G j[j!~~{{RU#'ӷ*2o1 WrL:8%8veMP+\۫>c#j%}ExD瘐l5)O=F7t00:h}lf֕gO߼g>mUӚZ:sYO} &BOY>۽*]ZО?¥/}+8ԏ2<'~$6;QdAaSz"A 0衷!G>Ekgt:T-R!U֔A pm I# f& Д8 %Kǘ/{ӧ_i`}OO]]:Ҋ72T7tƃ7.!儵fO:zl3}obO;cY,!!/RGW}s>-P;» < A~&͞7?i)Y} ,is9} Dȁ.||>ѽ5 ^E7V=ez NoKWYtXD{/V'=`xК+%h@EoEGv1xݻ3'^y +m0$,]$ujSӾm ,(X-UgƝp>?]1l d,708h +T_u;{\ノ eo_'7[=x%ܤ91b6׮-/l&s|riZ?=DãeIɷ͜m\(itx?@yWx䕞< f[NjY# 68x'Ci9f4 VZSdlyY nh{ ]]/vƎ*a烲 ?ON_52} mtJ濫>ENc~St`\KW#^0&HcM9:~4/|t ~ +i7xE[;^;~۞ 0:ɞcR&נ݌ɖuc{8dld/M?ຎ/R=/`C m<`t<Άfx'muV>B8H+('1y+^]&\rrp}lU˪dCG|cRo8vlj7;ٍ깙sΑcp|udG:U{!=s'y^ms!&6| 2o 낝fϏ\KG_"1wa%G?*צ*JT\Ǝ;ל8v0`?DkWurZpE6 Rvxdiς \(`V~&×LW Sl}DS:xu=ujd}WgeGYկ Xț*q*?l%'p@,&$c=_]G  Xͼ'1?6>Of_*o !% &U2-J'8R )=u_c?} iO/9Ƹ ;^?Cӝe,IAڛ 0UJkm~Wg)}{n\r8Zz;B3Ϋ6 0''%)ک?$_> Wz'yςQKrQf}rM{V xot /ۍ'Cx^Țd=O-YpYk$ˇ8l=ҏl*W{`xVeƘL{jOx o&݇ ܕR[x *?wn*}]&@(7S}Zs 0?oH:| #&J Glpn \_7A`ni0-݃T_7|OrlIʥ}Dsћ{Fu~W쟞ξ_ێ|<%-2s v{XOƦg|"[D[4G>}Qga>6^>C@U}R8!\{`7pEbA7ғXK;F2w?lmqO#'P}  d_//Xd}'օJoS:C]>sOyn U9ybqkgLT)W #? 6pVxZ' '.\H1kzwa#H @{=7"ճ=?j+#JĄr0쯰OOGchNN,P\Mۇ1IBm&b֑%g0y=GGзyj ]n@KO:&J.UXĭ nNq\bpmԵt-T:7ZpZZAgr&9=SɰQ8u)o@bM^4i p̔_mӮW f:뭿V3h0htNa>нӷK.uA'>JIFr Ϊ"XFqXj@qe($g^jL^3x[ ` JI#Wi>_mpcE+˙,t8#| ^gus|E>O ɬ) WPl33,A4 ՙv b)"a+oFaq|&6:2M3VZ*:a:w; kQ|֠֌6:Gy٢#Ul dÖ 9Nn7~[eM4.Ahezk9F{E^ :.vgOS.fl0в^ AQݜr)9DZ_ V/Ālh/x8xk~St=JrU:{|)p!б0"ƅ^ZF6w:H/@#Z΀CD|76<; '[*OEsōRpo+85'c=f'qyku[K xuLԝYfkzƑ^xUiVڋG9޵ft?qܕ9\Py.gT}^ؓlhq y|)QBmgP!}fм;F?:Q2#=L҈ăsXTBr|ހ-)??jFOT~yL:XZ#:es0r`/ .{݋mz#6w9҅R >CN 6sw2^*۵( iYZ^=ג˗:*]>ޑP& P cN4wbE=yj,+tW?=mzQDŽr>-iG3@5lf\jGԭ %;Y`+q"'oÕQId2\R?d*Vet׾;#[࢒ ЭO9r\lRYr=i[xgZ⍲a0:Jߦ{&m0]Hnk`j]*97X> S(sz eY3p>zA캐@l#d^cyB lIUm@@8#;n6PvJ U៸ o7@-s~JW.{/Y:O :PhG&E {Nʲy RXO dJdÉ@X< \YZSG͛ǻP_Ws:Hv_%4,'_S7 gC |TƍY1fOwK6'PǸS~O $GpKlnݨ6&K7oᚏA7:^k|FwOj;o`JW?Yaۇ*̟G:&xmFLt y۾۸9Dki9䆼pټL=9;Gz3tzc=1{22rWLNqDmPmVVN$cG3hfz94îf I-s.z.##?GBl23k<\z|ρy7 Aw do,P sCdZ&c^35f^ϏcxZ@8`y8dQ?y2m ՚68˿No5`{M%[M!>{:8~pWS;3C> 0̬,2pN킆tSl7_Ksg9f̀[`^8ei~n| ~iǬM%t'_'cy/yIrsWh2I(((;ߦҍQ(o[lkppI 53@weѧON;w23`&UBy_0eMt) 6\[_vGϑ',%>?FDz7k%uu&EnL{jٿ KowP1 6IRv|(Zmx6Mt /]\x;S>Ʈu1/f8ϵQ`-5^ MHz 1|';{:^č,XpPlR0,LdC1fBb}DΦ'*.%;Cעݤ;G?hS9߿gs˳>ܡڿSo z>lO+î @٭'/?M/NHO?) }* f|gmY1h>ƯhFwcmEZb̷" $1BZGt,,ڍ ʣ\[?+ݟ M}Zlom d:ñǤquFK@]WtЧѹϕ?>Ve|d5EgC'rJnN$5R",cM(P ~d#;L7xs՛)tJ1$IԟH1? {7tQ=xjԇ>QTv\um[cbiR[;b]yI3~Ad-Aȑ~ݬB\HIo%jg#eqUW3`ݑ.14¢ "Vc Ra+)vDM 29B`lQWswu}ӳ,J9&F1vQgY:T >Eem&\f}aM.?&bQwPdQԌ9K>kmw)m \5DŽHQ R攄ǥz_I,rY͂G+i\RHDFg3XJ[rȓŬ|IPv> ҍ3{$9´SNo޽c]U8&xĬEJWVK\7+2'L> -'YfW8X"sC*E-U]p0xh\#)mF9 ÉP2'%:1"^W8N_}9 -6cr,lߴ4A;U3еOwK ^ n4x|IvAc+O???5ߞ~%;amko7 D?^AilSp)_<7Ovn/Y⏒$_#NFNMڿٲ 'ai'N8U&Xg57tጱH[s;47{ ]kҩ\1'>my@W96Qޜ[+^5_3w x< 8꺙 ڀnf;\]g߭ A]-qEzd4pjhb3}pJ|{KQ#}lCϒI],4ݞYXCr Il>H9Op6@xpG^3=N*7]:MX@ޯ>f@ u?eǥ6d:o ^1] c$ۤ]~ʛU,|m=Gg3YB#.Nv:[9[*bGZޜ} 3YS>yiQm~3jǟ@ ] lH^}#C7b߃/{@e?3'. W}Y:wx"h 8mY)|y tON~/ޖ3whxQ>7[ŗ+^thM4_h>Ie7pظg aippr;ri.uS ʮ2m/~|Yƞ'S5,\^;|/6s1u>]/Pm`4U+w'DoOzpR|kCw!d߁l_su֯G;=b1;V-JV(}ƕ"Bj\lHP޻e?31\=գ[]l*ޘ-xS fc_obԈuY,]pG*jIxn}O _{m;\Cf:RNNk<:Y`GK3~|+ZMQ̒nl5['}!T>d:gXY3Io `>/)+XQt5 ,!!z̴3/s0 39Y\_(mh o>Ή2ЅkM*R8`04T~ʉQ 2g&MO_MA8Zs` cζO /DX{}]^DpѮ}-^BM֬#66kـ[Ƭ7d>F MR P$ue I)7;PM:j{Nss~t9X{rK<^l)n_ k08jZ^s'"IMqUh~- 9W]Z$A[ V|` O' jG=k!J}:]Fљ,[*(ȝlVYͼs\ms*93X|l*k_9m* z1Xp?-V^W͢xA91AFV' PIwūͪKydNCNYv1Znh4CsC/Yko\7|kH7nz  <'~fAE8׿iY֢{v2N^}OZC'uu ovq߷Ӯ]ڥoxT],䴌ǥH~Nkf@H?~J fh ꙽3g[-#,2<~x=2nͬr نGs {uo+ׂٟ=gp"ãxѯf:^K{YAZo;^7#*B ]Ko;8h$d2+NV{f}zzxv,^c-&;9;!,MN9IxZ$%.=ho2(O7\4 m=oDz]N+1F4oPճw-\qx6 xS؊6 +_D=4z.ُ=R4 VVo'掇"t V N(<8ˮײ~+CKThы, R9~_R\^?NP_WgjsY\S " j|4kڳh~頃N6#hC&v}߼-~lE3Z_~eY;JnϘ܊Rl7߿{zǟq[mW`ir| B| {1~.S'ai߀_uzpHmyviR^]=Bؖ-Xk)h@-{|7t,;-98Z!EHpWēdd*W .<(^Z W~j sI5TkƵ|jyſ/e ? t*9\m>NV 0`rA=Ӗ샯7I*_}RA:a+X2r9tX-uj(['_euͿiz-0.n[o`Ӹ@ȴc%蜗OcXh9 *Kx]{J*s>ۜ ^Ʋ]ϟS8n]c<{|3F~NW-Y~y߬BNO-M6= JVi`N}/2l E5[}]PqTnm^5taf?m$)&@IDATt97û x7GZ)c əvw_9&?~ K &C0SɛE2otԷs/=I[7 ΟTw휢^Gf-(p^KULǯZrVahvgmUl\y/<9WJ_23XGnܛatŷu &s1 Z4,`?~pujpas,vsWߝB㧂_D8KБӌwl  @ʰPAp/lּz9ZP'zFu v$nO[->'l&_C 8oO6g-d?vd9eɚ` (c0j7D"ǣ16NvdG?n@^&u∾wѭ`a_rf i:\slp &d7]`ktO]\Upf@+KWnTJgDQpLVM`c64[̆V"oCAk:KN3h75> ͞&`[*X_ҡnE`zr݃:Z@h{?: ̷<~X$Ki>2 jF.9W?~O'7\0Om)i5 f.ծ_=]\:i&o/ɴ}Fdm۔!ߢ̈էke<˧@j ۯjOl3習KτHY$1{p ݏ?<=kګ&[~!;it2ydFFG%>~R^x/ɗN+ /{>_u>ּ?K]=}*/^nѷګx!`m},2)W?[4ywح^"Ëk|4i>yt-⫼ϖ]"JeΖzl?f_4/M/ړ~oNԫb0m_Q2!sisK?즱ҀY Ow$m|G9}>gfA{tO!k6Ӽ?N?:~i>9* Nՠi|=?oY)]<bHك\?;{L+Kj>hԳ)We/_=;o՞~ŗe:O~~ O,؏?GX`.srq^W/UYW#]aXw*=M8O xRAZڴ ҥ()uF7!]%f)@ʺm Օ(9[Ԇ3W;.Lp3=~4Bs T8Emc-; Uxk] q{n@J#7F.)@<)wk*98=/ ؇!iO7 J OTw@vD8*MS0jηt">\uIu9]!.Z?{ETi`,͑? R?h~S<61 x|zƮRʇ1yeD !^d[]zmM@zdh@N?k 8sGLN_rQ b}8_۱u)޷у^(2͘] .k)ē. L|م.ƻt=hV䲝Co rmsދY}C,*J1"fԍZηl]_տoF}3;HmDw pcc7@jw-h|^;#nʏ6 +'f(rG8ϭا#(alr¤_N͛go:7&Лl]n9SBW4 l.%kfpd352H-8oE疅?o3h 2y6 'klq87YQmtښ__ٱٗͬ,T}5 Q@- /2u̒ŵW''_ W"mN_6|tԞMw[% 33/qH͠=쉺6SB07 ޟ('yei- | ESpqPT(6 ; 6^^=x)iC?eCtz)LV|z#kuoiÀac^j@ Y?>"8xG&YD#(}ʻ6TOn8uV fd#>ɗn7JOH!0*z߼\KWQ&֕KD>CkrWpvy "I#7$3WDG2u#_ ?ʶf҂Σ$p9z/!}Me`~^/F65>v,rzVI:n $Wl1ƯzӲr_ `~18IʇYQ4/bٕ nܞ?M !?*XDÄS2g}3AI{]tkOK&Ar~ǬJi OYv58,B:ݸ~Y7'tjet-Kot/_@~C BЮ67eVAZgsFI 0X:=~)m1!x񸀋e7^.g·e9D?⇗ ܞ|t!B/68;po" ^ˏnewF՛]6 Vjx>2_Q/W`]$J=Jv1 zGK$OWdSw[sӛoꩢAhQwC1O/6nρZ=ED;(`tF`ff7*XPt9/=Ю#P6|1Ou 6_4h[FϚ yu֌D@@4- pAuxu/h V08әuf*EbG͆TZm[\xigi_Zo<ǘke8 L+M(YbG廷T.R4Gd/,aL83_ş`63%n=h6|A^kK{eK^]2MffITflF}\W9 GthILS~f>%s\[Q-RlEv$lEs44_{th"eූ{fMƹ IࢩYaR=eN1#1eRXbϢg Cb}~Y4 r̊9M8ɵ~v>??O>:FS3e|D6"Own`\m^ڮ[S]Q@~ T(kζ r6hJ~x-v7C#ݍ4X7ަy>CB]m|q9 4H`3JKEn0|NAϝ;2̹٨`A= ,vi D%xUQC zuqAKljQ xB롓G-?ު;P=y^xŋ ,}&2ɞv3 CѮ/`Jʴڎ|g]۳#gg[0Os?`장.(?w MWfty3O.pr-kCTmm@_~mgZP^ g=Oya#.6XfdZC7'@?Fە#0/a3p %5$3Wto>P?8>4Ku)wm`` :x젋#h B2 Sߢ.vI:A (_#=]On}2 >z~b`4=KٌNi}Uۈ[G-'os_ w~]O=lÂe'S 18!+hkl?~F_fr{]d7M[5d8cؓVj@1Q5V'}O>&مD? N1B~~ˆd94>HPo6jП2g~/0Ps-=W%!K} Iy4oΚ\O;{o V .Ʀѽ`W׷'~!MnψKϨW}. UK炿sLU&^`}[q]  w|7'ǁHcp,\/ez.Y÷@|'iD:Y>=JE$'}?f7^ ܆gd[^.Gs$&:_#|y\L|w { tg|>tt>"z.,,5m,'_]m 87,ta'pf 8T/Ny8mI*g`2ـ' mӃK)Q LSCCˁ`w@K6 ՉA9!Jr6=F1:.akB5.]e0b /'8TģOfМ^ pjߺCHq(E 0g,ߗeq@3LeO:O#:B%ǻ:@ҺJțbO2D;b$˃(s6' 'P /dx7s-7>.aٗ wvu:rV!v 0LԥQ}'\[JГ06#3_hSř `RB[9t{3JnL9h*8/߬mO`ǫB <ø(k8k1;|o8pae~̬SBchHG0v0鲫0yUX w|>^09Ƅt08:8$ @u[QPao)Xm |<} gx~(?0XDly_*/@gjIWwLpKdzsl vӽ%R](D\Pm>{]J6|1hp~h޲CIbH32xGZSX9ŎϓuGh҅ģ|?&4%w~3dz>Pet..skKǒs<{Z+fu&7j,O ELl^ajAcIFxG@FӋ-h@_1x>%.BxmtmNfvI2}X?eXIwA }F0|*;K=N۾!@&0î >֧uzޕT6KCw ~UP!x*t am]c1xuIw`+]'^MIƧ#Ih  ~beRpW[9x; vڞc]$<9,fWε}ӯΏ>gϛ?lb`} 6~d5X5m{Z&U& O'K[wT>C"Ylc#\ijFoadloLoeV}f!+oBCV??4SS C:O>dIVyeLYYs V=ʵvZ_fM.e-A8~sE`2vu wd }قM/xq'pt?J'g/B ִaL@F]o<4lҚ7Lu2PT$DŽXIuYVۀ@i'A KU)~Ru͛<ċ5`"ћ{3xߎWYZ^eA9(l9IAf߻`]N:kW94}lh)Hv;Iu2vfiʽW-' .&Ou@0X|a~y7d``8V/ 49VPxں`Nֳ۩?s[fM9"Ēw,FfT{cJ}W4ਣ25H.QīgFmA$Kn0# _Эseda=o=!X&ˌ[ހmX=Gc@_d~x7[[`e^|_`fFAm>;}q8CZ'{~uGQ`a6@ ?ɲ67~cld{ NNB[Ao0~1E #,ЙqɑaKN1؝ lO?b`mqM^#W{3>=nVeW73^ח d_Vi?Jo}%9ُA]9ݳte~ѻ?yf6ikR>`@}ɾvK~WH*8l?w?ehƧ~H۵/NvA{_?;}&[o_`}ax1jg-en.H -C^hP{y\PV`oFQwcc襫 VIB7GHG [ؾklA:Zlτ}ƴ}d W(|Au66fu!O5/lr]KٜN~:׍RUe"cv1o'ג\]u6K-/]devK binQ&r{w$B~ȯҷ:a=g8NX/4l lVp|+}/Z2h$9@z?nnLw#O}y|C_VUyl>ǫ{gbK]G[ΞֱyIgAM wͦUO0 ]|HE8ַjy&֭Z7*AsHEliS!=UIxxoiT7bC.皣FI3܅Rݯ? `bL}fa̩b4l:n61PݬU ]):0"tQ@ߣN}11S?jw4_$iu ;\x\nץ^}0`6sJ  &QolB7{O`̴r*vgX/X^сw5Y5kA3(2l=}nU:78K&Z*)Lily O^9/H@l߀gu1p=c H/ 2A5JHTPsx{[51knZ D3h&#~́ 4Cؠ/s,BF{<)zbQug|z+ڔLǤU\2 vQbp gT2ΉHIKl&(¸y@Y,qo?/ Q, Q{9ï97:j`9z2o& -Stղ#dvpF _P5 <^Y3K$6zw6[[N=| ߞ !{tďuNE߲jql"|`Q7ȵɏ kvՍ_'ɫL2At1X2.fI .elrrzA<+tӵB'ֵW8Ox.',MgN6.62Qh/"oYL3Ҽ&(l|JK(zXρ/Dɮʫx+ C_h֫~ rGy{&v6~}ě=sdTgc޾ɧԯ&zAnMf-v"F,Kscg~n3Һ`AKcՂ-Qh8V x3cd2em9 ,{SO-o2/~t?LgG"qʥI܄_4CC&nj97FB20ae+9Ԇ@<^^"8/PjV(QT68]?^ qᖎģ! gׁuH ׃Ю$ƀ\x'bxXgrjyt @d%Ҝ)mW_ok{΀P!8 .,s#G=ӷ#ʆ0v7en]RރaMf+\) "T)FY4/K"25 aH2& Zq4)ٞ[Q}/2&ӜJ* O+bQ@;glfa%I,oLvxԷdؾ5BڋyL2 ;5- >pU)@NÏ뭩s鷿5 {喝u=/6xfT˖,e9_PYRuuz8C@ӥwe \oчwr:O9hm}~ٝ'?vn.7!yR'A/ڐ-6 ǺahMmi|U]i @QCWxnN3;Xfdo&E9M'Up3^R?~xЬQ|PvM50!9q̕c1]H-kv#=pc@9.B:]b)XqKTAj9 y!{[C^2n6v2k84X9kFS/P;*dHU ruOPޡXz=8##&]e[΂8)ګw:r#uy֞5` c]Fe[}c5a)Uq2eG42?@a2ת <^2"v:E pLt= ߠU%E콹c7|}4(tUƣgתCsu_A{TG6xY]]GG uK+}nWAUϮ:bp9DxtM!';U3$.VP*n;_zRUpZ/ܥLľ4_AWv]jvvx:}r )fSы~fVO (*IJ:M:Ǧu5=)hufӔ \]J@p:PQk8;]奔[rÞG@u7_zlV HGp٫|'e.<|c~*haix~gY^`h2{^2' |NOE`~-̾c %& ?Ti_*ɴh7֛cK S\ zDۨMֽkKW6]PA?efh׽xo_'-e A<v[=SՓ:Li<)xŮcC?];؍^}jҁo-Uѿw=qkP5*:'Ғp/oCZz=? S"P;,[ȹݲ3{B}bf7wWtH+`EpncMJj8*K]C}lTOOXw^>,BP.4)ch<}ϢOђWKWo6k>fˆ<ǀÉ@tRr^1|GQ }>tfWmخ||ەkZ Sż>SSr1Weukٺ| I5G2fطck̈[#c6ƕ;[,9hH&t;I/FxAQ` U]]s?^e-g 04 \qZ 1k,{ۤRav3qA zBq/g$ ~pw- _0|GR'0ۅ셁!t`TDe͙PY^`TTݵ/qɢ'!lS}ɵ QiΓzlxCyـH>2b^ɑ.>J|1YRx `]i~̰'\߰$ݐ5|/_OOc|dHnGdvٮG:S4ڠ/=6$M6+4e ^v~Y> b ^ԍތIPmai ,) }u 1wNjG(9h Ys*NڐgY:tN.8oSqxܲɲ"Ȃ#$m񳂈c&Y}Y dLV n&#Yb }}Bf0e n >}&8}:,!2>u'-bl~ 5kB?0<9;ךmr /XXFBi+PB*>Xf$Ui{R&󁜾UfaH^K.U]YV6õEhуS>ku4}~,G%ZZpfݞ!Tj!,\4.:9=Ñ}qop'x8+$F;GRŵiZ&ava=@iz[~k7~Xzf: =;@_  -yP' .= xZ=s]>\U^Z}zTj~^ۍ[F}ޟaؽ<]>F}Ч0~?{$ILT7>4bXWtncE[+GqΔAN9:Cr?4iQ `gӽOWKǴme_/ rMm(l*QyoN:n3&Ws32 9lNb&ugtёWs;ozfLxv,2N6ᨚ(2xܓ 8~ ~{łezu}Y-$9u*q$B]q p.+5pn)H[h쑡oU=/d˴ȍ}KVX!ΥU۴5MLm\.reX|1ӭdp1^oM6z }R -!rt[|>O*'vj*Ƣ>/ǫ;6;.Xf›Nx>ݮh߰/a3i0dn߹^qO#7&/6l~LHg:͖gOk/^kc]nvk7C6fӑT=Џ}]+o/69u@fsOkj z0} ۔ʭh8UG~]υ6+Yz+nc]Mɑ>ڢyNz  "V!iTp_;m2n5q_H95%/! 1Q T,N;.?~1^1\o# d4t`YC A7(oP\t TP{73 ` >d O:=ttd o:fs/d6j'ۛDy'}e~=~ӿ$㫵c]~3:O'jGw}N797=ÉtEc|Ts~p!-ś3[_Y7 ţ Mk}C7ep;ܭ;P~|'n3֍~Ko?zăf q6_WaZP&bLV/ nMw8'T%#o |cOx^A:Y[cspq̤9>CC}Kɋb iNHG>ꔔIC" ]FԠ\'io룟q:=`WitT;& `W+`~6xFt.!ÖAѯvC9DžM¸tT$pZ|eݹ'U/5qo nllí`c98:j>T=} A!lR}/g}VaWOr;˜:97غ~k =0ßz8Na^vZqslD̚;?o߽G?Oy{~3[-QNȽ2PR>mQ+i-$@~鮷=4s! /86ie Qǿ`w^!p2xiWxfr8XAMO?eO|vlu]vxLM5p%H0?҉9Y9㤡.'[˜'S5|3cґEW Z?dK+!NI^ד{ 1? }v~Sa] /=}Si:X |JLơӇ|.ϦBCLx#ܳl QBс]l4Z5q[PUWfg9w; ,'Zs>.7˶u0Sݢr-f6[5b)ٯ+< ^ڤ\]qQ 6,C_@%Y~D]ց+w {G7.W- ߖ8=i:?FlfKglgض>ߩt/6z̆$ַ?===F(3 =xZ=>Dx'>Q ̗ LGߵp>~,}m/mQG>pWg$0=[utk/42`s^¡)# 0ub0 +$eU,b*7C+P!ik;ZڗfNs8deb c 1X$c3OoB Riٚ~E@}\6~oӱHg ;EןMl`w㤀w%qS,%)E`[(3Q)'<CŇ3HvvH|o-ҍj3v0eF)쌌kEjQkgp0K;׌t¸|mxI zY=G$m}&l[1LTH|We7^M*yz׶Og.egmL`b^?+3ڣA bTHtf)mH50J~/6s,{0_Jv 8;B /Mpn O0ﮏu7S?}B!gd&tYa?ok]ӗ_QA|חڻWm!Ψ0_;Tt5`~3/4PZ^ AǕd-5))B|S]RG9d}hͼefɥT7FK/FF#iDy ^5zN(rMpB!+!|n#}fn.*Sddp17(gzgZ 't'u <+%.>n;ފ˦gas94]:ctT+eDKxЉtƟ/Ha*Zތ͒Yd8!\uc0e깠um~ k`3EWOfǏՃ7p" eG6F3g#{ې cg؜QrE3NM*` 1<\{3l*堾nM`=G@g돓cfF6HuzЯ.C>j\;+3#k}8㱋3C*Oa^StPuB~kuioZ ]. fx_l x`|p9^ѪGƤg}RA6`o骭p@K$.`lݫw1ckNxJ}fԲ9)v, MۯL3DW9c`5tzP%-q^LݾMԎ~q&6۟h" y9,1QZвRNQojxԯ||η4Q"wk<7nSᓍSfSnm_-kV"}p%[ҋZq'l{VDRykrclԙYޠ}pvTO;:&6 :yr ou sA~KO G[w߳ 7| xBO6} &Ntр|xn &8V3th)KxY.2rt}$Sϖlc.pzmY/óIѶK_@ 90;x\fM0n'cSxQ0g 8|.RCŐ xIV>WQ~@>?^N߹u*.fI[w0RvY{EF {R5Ʋz@ ~yNZ`"^z[Vt2@z^>Jl,P 帹: W킧6^H<2>ib8Jz옹4t6pLQfx4kf pjT (_ dիӳ9;+;OkޢXTX%ȁa_ PCz7u͠ KlTU}byJ ?Lyh`Sz(UV ('"ϔe-cwVh2N8eg?m/҈>+noPS]/ad?9v!B Hb}3el36QX@qT(#N(Xp|1G=͂+}O;pFS*x7jyhMet[Cx/PтSwfڭ2E ~ԃV2.CM:ÌkJyl1N+xTN~Hヒ޳=5-Ǚ1hsaAO9=Ls?M5q уkݟ}~D'0'ACmg͛ [eD,]8U waK3@|?0ڪq5 x2N3p' S[Z HbStɿwpk+=޳>0=)>lW6~w:xAv/ɢ~ ,g@0sƜI?aL^#upN 9m{' R!k&KYk{g=č|rO^nן.7|"[ֵA _nJ'fl>(S?ॢ@s*6N?+lK:~w5PKh1WU?*^:O ^[';X~tM_~>9lmiN넳d%JY 3X)fh7=wk<A:!_i֞CN(#2M.}78W_ M٨?zP vϓ=P`pؘQQJ44^6 O: >Gg ߲DLnҜ>ը%8)f ǚT}?`P gXoWN`)v7U_s%).;6Z2;Rڣu>)MI쇃+8= s`,<ۖ Yte$l. 'd[l5R$a֖Qf6#}Z]}[ .t?У~^Nw//z]I7ʬO\v{?0` !x-h9z<=TN,>-<>@32%`Z,&~SfRƚH'FZwwW5j`7@0iJvfҝnpt?Nߴsɯ#U[hZ6v;RL3j2xTzxrN|2Fhg2ϸ >7Uv 4֟̎;-dmef$S<41^/2tޑID 0dIeרՎ,F_aӽf{gqL=&I)oQٵ5Ry~c}r Xg:UV[{{ c<+E@lԏ ~3S!8\ SՖ, ֏x]] ,d oIwұ>2_W\^@/^C >8B4iC{A4,nWC5 Vq6trGt? &#]g^ WxTﻖ ?Lї0+𑶿Cs,p7R`_AXL4w"ܑqlpMYEi..;%'q{[C=teκ=r8 MMŀm/7%}=+CU䷲cd5>|6:lԻc6J?3n}Q,o#8zf[LyUlY)~|+LK-H9;In+;큾zd$w{J-^YҜzoE >cDn QoS<1+{h곀{ޗe:hHfa)?ݐGٵP 5N[V JNhVN[4Sɱ7 4ӿ>VP2dj|;h&*To6W:`a vp{!+R?0Z,wD Ih|=sUV+,s1uV{0Sq͍^=ַr\pJu@4J(hvc?qq1Y)Y>y?`3ՑխFt]z(mud "`q\%r -9{Dor^8c BZ1Kh|"snQ@ҕ;o:}3t:fo򶿑͋NxH90LyB`V8a˘F[~4][+ge?Y%[Ap\G_̗&pVM>M)Yk@ '%kWNoGh'i}x@ tf6E4<WMJ]'^ XDȗXa3/F|yqU_b0D{?i =}uz4`6,%㻜4k^Jjռ/5=/WvUu)Nw"}up?Fr~1tg&I#R=g{^fZF~ KAPAjٲ*`}IQ/uةJ { x^=4>#e^f|-nlƧ6pR Ύٗ25J9\^\=M/wnܵvO_d=1O~< 5J~駧/fp:[ >ݬ,3?ٟvDΘנqNp 7H]+j!@g-sЀƿM7%ў C~{n׳ t};sYP*.IӜ,fuOTm5#?XlRzN}V|񌾯>yXaPIek%Zc=_>7 qOuD؃RاT /Of(?SfYҽ[vT9 :z1hܨqzZ0x Os m@Nq#RI*#ZZ7D_!!?^>26"*ix&:`ǴF&,mXF36¿{UEoNrƒkfB_ .ժxX zdnm!c z3AF/we8}2އ\E=kyҮ.ޕOCH@LVYOI[L7Ѷ~;1W ޘoJOo#`9.UoOj̸]p*R?'K{[[`Ucݠp JXd>6ƫڽwɠF2Y|x{c-[wv¿ADŽ;"%djjt2vFh*U>-%؊guO{u}{ ]y6tߓf?6{|6T٦5pA+u\΁[+,6adLkr?|ָt7IP6X}T 98|獳uA᳗oeI,иI eg:>szkR4tPWMMQ qYVe@4=9݉TׯC7<0x?Uk*DW?/ )Q 儧tEXCZ.`܂t*r3FDLwyYD0m SosAơwLں7Fכg+ &rv`PG;uI?e~kQ2gh& wT0e\:)E9aP (^ȭntQtǦ19H帓7jlU&^L ФݽKy]A q8-AG:pz^[3?fƓw$`52n' vj@ȵW7L {nOh (sg=j6S}38DqPxGLGFo)d9Ȅ-uS3@v'#4cehk}H+fd"ܚQuKzs2\}PfvA`Üqq[p^@gPnlVз﫜lF~+F]ᔎzsg5=Vzm육q4]~Ց m< N .b~|x2>E|xGQ;<:V(j疊ipxa#NrjC|I7N}M-Z!8vqNKdj(=E*̂7a5`gmU| 6oRɌ\x1+)#O=ԯa0tr/kxeTﶶki=,6~_ek{_Fe3y#Q?CZm8jWS3sX\,I`uRK %td~ԗo~@/zԘ: (֞-A׼L~t6AOG-Vd!G_ ^`LCOY{(DDڒӣHUÖ=tj:1u/=97{% :>ک+pfk}7 7uG_bXX鰮;e,|6{X?O%kV{Q+@bWA~?wqvoK!U&. .y)Z}73) LB {ܼ}7t{`4f^2IMNܨX;2Bk}s<Ӈ?8g_o R%3vUe]zMTI")t0//`H=noES|}î 㛰Kh۲.¨1SNyxN, ŧ HāHuLYBNZ~Փ~&т92 8hI ] [=-Be6+ɠk/gtR8ƿ\kJhw$g3&ؔ?=n|6׎1sSk}Xj\90I5fpg4 5twi su֔Ԙ ^I!zVMs)89dPmޔM[fOfc9 q1ja:qg(eֿ 0ŅJ0+c֝%{銌L8l~pV(2X޷֧mQ6aڬd ue ؍,YTYGA"\(Ppb2=$Ȯq1q)n =1N|k ˻k fl`utn 5AB Uc@1V 3.l؄iwGa=RcXOG (Bz =+2(ǩ R>)8ڏ AZ5 ?^,,||y2hG:MH}ʢYT?+(01| FBfS+eddsLfT QP(XL?eR7`Ek2>tm{|x0~G;7 fo:8AI3zvϷ_>e<.}/fN䝎g+0mJ'd =Iq?k;驪9x}L9-K ی{ x'C,XAtW+6/%vƑ*14y%*h+oT'^r  0kAe!b꼖c HO{4. SKw#W5Wj19;N:٦Ρ: nv6<)w#:;BPU3o E+GY Ue>.NUfbdzfe68eӅXaB9=j}z-.X0> Xҭ2#e/ \{Sm4MdAK1#]fs"dȁSTX?p9Q73dܣ덖m==Y^RU?Yt:یiJ&G':=[h:kn3=T3>w[ W^lÞOV,D}Nڤ/ xn0hxTg>HzP]>MY{oד>V5cWFJ=VWEV^Kr,shONLgY=~%!hb썵}ݯԖDt g )hc>Ǭͩ8k9%lczԬW7)L!N3r^.{|Wc8m_zQK]}6_ggsN85:&JG U]dLbϵXE cҹr:-Gi؋bU &|?NM|NHyMPGl9xe\M[ !{襋l9v ߠkC-nX_yղSkxuYG0g'a2nrV} *o<Ou$ ڻJ葙u* FFL~OQ5A\dNUrqyk=PAUf'9 [AK 3`G08C!4KpDgf Oisz pJ/:)źu,ۖ@4Ɛb0N~0Ar§_X<. #xipGsds,p^eP _[Yiƽ4LLu)"g"㛱#avΠ(쏀vTT"fP&<,2p6.̈`y.rҟU/` "["IBZ@=mS`3%ukP'I)>hPw^<~U6 EARV{qY32rofHk oM T|/;9YY}OrJWWOOoqF/K^یc"_6  Rj f_O.G&>x&P&q82Unp( rd8-gG35t)Qn!lġ=t@lcAЭ<<3B~rfFYvwbB s^Gt_ N qĜc2LJнuۑtfnj69GAaP $(>ܒ+;^_bB1G`Vz j+hYd<, eq@q`蠣CL˂dB ,z3pB^ڲ6E|UcOqIa/j;poG]{s CvsfC};:.8K?AShTOcXO^Ϻ\l'< 2L]RUP[}TR3CxA47viG+*V쫶=0W/~0#U[?Ku3nj98uɝӧΛ E/'DŽ`\eKܽsSN,?LKS{ɌeiYjv/Ye+,#gPl%A-]b#˝>q._3iir&|'D҂e9;  էjC>IY-CBoMS& __K'=>GcZE>2Yrf=9}^eW[{Ր̙od[Bvm;Mk[~JԵl`dypB(96.q BvIunzQpy11pQmZ>oSO! ~\S}tw}#g^;l].Mgc6߂? Vz`h# ]o+otxH67 #;&,\(>xэ+Tc_&6jIO7 *Ⱥ*{? , 6YLlCx"߽OmEc`&ݘe'-698Ҩ&S F3Is"p/a`yv/ xls@]-+k2jn 0=;%aX BWqM0Mvܓpl^޼Lp_qmLު v{]`uضDi$ȧ}Ovߥ;Aj}7tM!m:Y!ZkDʊ? D_ jZ'f^u|`0H# 6b,fЮ>`pg )avuJ"hjHT 29H`5[e&q%?:ғClêe3/%5>π !)YA"4)DY1@ܠrf)6[pzN㰲~sE΄70b8?>6e88ZU` #tw8q?i.M) nÄ́;^:&Cm#jzE'.c[4\e V8npf~T2lg9P ՛N00p;Ft Y` WSL_ R֋>M(ǟp yx19+pG#G3@^Fv48)Mn3U m&1z &2f|6cq_& ߕ )cןg/i6׉o~鋯\f O9Fk9x~)enfZuۥٱx  h˹`=sUA(n_9A:]3l͘˽r#0GmHvo42Ypp0Ph}cXa,ѣ3;5|Yd'_9(.#Ǒc8;]#r4v_p f@oάTAzcڔDhq9uRu  džfk.#~~G :?{1ًn.c&ODe2AڝC8ZXN&ݞ~2\ۣB0ʋ!Nc+>3lT|5NXXI[6.q,ԀKgOʬ1@lYuƚ7e?,7VgЩOܨ? |ߜoN?Yʖ'? oOz޲}R+vM5Ϋ (hCzmCk%C4WS1s~AKԷ~` 3hv^2b=|u7 {\ ?gp{m4ls7»R_Y\F+)_RNǣlW7f_;BJ26§ۿ/Msx/==o1:{S?NzW+!hTy7^}P[ѡ?k7M\Ɇ0\*[ϩl _+X+1Ld]ȾIK4|nE ez?zxϲ+헧/>@˘򋖞YPz܅ub> Q(|de[Esh1:"1Weǀ`eNG c3nDwm8D)= :ː Œ@eFh(#bջTK RJC{>g6H-י_1 )TN#IQ 7UD\Q)ި. d 8ӳQM;g!Xـ90zc͒To^.RRZiuLȢ\9U\y$m̄vv v;hE=8 ͡rmZ4Ƀ@8k!)k빣͘Rߪ@'j'(3zڲvN$:;ŬJ]^.bh/xV8GpS6Ko9U/sC%S)Ծ,#jt_^8<`|ٸBoOc 2NQn0'[o116e22>N̙#\gTe"tqN::{ei(U<0A@QrY#pN[F eYQ]Sc AϨ ƻZZqFݸWӛugs8~+7=]!+W=lJc>#ǫU/w\镮Jc] Gvdɛd埞>G/o9 T=\eME码MVoMΙas_m" .־b\<_K -qn s2막&&LoSPD}Xd8=,]'2:b|x[]5}3K:c@ߞ>J_}i:qc͚/j\?<Kx)NvO{1o61DG \X>B1;}W;4tz2 ]}ƒL\E}l[ic=^J=0d Kr}|%7/YZW,};z7ޖew\nIVCy]@3 $C'VszUC<L$#[XFhm&8}rϟ ?9=({8و Pj;پA=@7W=u4 [u۲୚h΃kѡ m>m .#R dIKj$MYrTcZ}{N7_gǟ"{hPV^]` U |RxBǹb Ôzg$1#w G1ƺ3(kD1:ʀ 7g#g 0) :;+[nc)JqQݞ2tJ]oMG|HPѦc O37@) Qf 3= IyZ'Hcl2b֥ρ36Ͱd׫ʀ'ȓҞ=0X[>\kGTB*&fK<̮[ ct(x# ķ "I/feZ;yrPx j 6,4L[@_6ơ:<pl/]~D`Y4it3 璿iS 0ozwx~_93#(_%arY %܇ GZiU'>H):io.yѡ^7Zsuf4ʓNn푵땮 c\׽Iݵ3}KvuY>D)^~we*ZJڤDch!@s^o^/0b0˜qJU˞Y[.9Yƌ~uA n+Β#Vf7QA0t''O=o tY. $}4,=f}^đoH>q_Sn6^I;O?q0ُh lSBux3+tG_Qևeإf9Oިf񠣁ė7&[pzWp,kIp8pAn)9f Q'D2Xpl2n#.~-?{mIS.h Ø4=SpimK@,gN^ ~4J֤/g>Ml#-бn0Ds5t36I>IKufNnznÛgTu鋪 )T.;  4qT~eve}퉪]->%XǛ&Pr@U.KsOe J-ć^ŠwՇŘA:ԆHu6:׿;ԧ?+LVun|Aٲxv-! P.+o[bΩ[P{h϶S^+Y>DI&(f]|[8&F9CtmcMn^l`o6_j6r7x7ژZp*{l9Or\^3lt^mK>$n6f_c'e5MZL1Y ^ËqD!/Fp'ac?Nո  2> O7֝2޵uD?jl5+7-,~e^o2*fxҏjOSA+o&I7\S~:հ YƝڡcD_y캽i`׿)_?#BGfu}p5ck'C]+D.?~8 .GPu}b$h}*u3I9f؏j3C>J]2>;6K5zǭS'tS:=D)#EgDpd}wSb#9 20n%>L1&Qw(Ms7n+sF;.w=Gne8gTsfȒ|)l_e<ܗ~Ť!JiXxxsƴ O4RݲA—[Nڛ(f#γ5+gv|ud:ppOJ}߮#)f 8wn'q̫xU?d`~7)On"]o0]2gFN p] 3Ad^W_S h0<\K(zQ#6d }ʁ{,['!HfVr]ק$ 3a7+K{V8~sQc~P[E~jq(ml EP挃kNGGcA $ҍ j+gfE݃gFؔ>}],Hv 3Ur]Z; <j2I1Y0M,-xw!9X '՝#QA ΍^'4uaCkzMu=CϪlNc' NOCu4^@~uTv:qb;H{s)OmE7OnqX풉*ApmWsy33{ͼ)~1+d'sI]k`sU;vȢac>>zh)o=vo,#0kĽ2 ?M0X=4E61e\:|o/PQP6;]c0jGmR q7 Hxthl' |ƿ!pj% { *"O NM[c7AsxNĹni6o~ww=>iG, Y׮mfՕk)+ڏMoWE=]6fe/k~t~NT;m^ۓ6F81"r._Sgt# `$3ml vYezѤ'xM.`ALBlm$=6W}AFOH_wTg]vo3.c꾚-Kþﲷp`I$"$Jz? >^A! 3=)ﯩ{ws9gܙ+W.+3my`2 i3oo.D?Q_&¡&Y&(xjWFVr >RZà vh j.Twk{r{]WrȾ:P&n*|2_n({tޣfdf)؃U3cSNwA?O}3a2I$'QYHƯW@;ћ7M{ՈH6Tv%3F/=z0쵳 DuY"PNT*3reU!`y1Fgf B A602: q4a$DdžWt #8C1t̢s8{leȶdl(QAոA&;fw?GhgK:F(dhNe1(WxE«>F٧8HC1񚵉oG FcAGg40Bq:CX"`\cN`9/ESi?h夻6.ud_vllMI=*Ff'JיөuW:xE2;'*!4d7fУN)b7K*}9)(\po4g qRS |/dD1T,uD9OS49j=Wky<\c`U(C Ju~_7#Ydp]|pAY2(CDC("&/#F lk|=pb=K^oArpAM`; +ij+I9Wr~H-5> 1gQZ7fGY 0ق?+M&a9ޥ'K ُW8 +y&}}r|^u00sgfHe3k=!GfTmX_w*0`^.@kƄ|br&*i1``@;бf|)C@ دO6Ǻ#w,:uFhC1dr}4r7zv9ᐱ)M?Nfm|)^Rɐ*ΟmƮc Z4Ǩ^j#=Ujo2dMM/fZMXha8Vk>y_2g.[J6l&R.JeH1(Aד5\Tp78`gMswb[i.:{='`z` t ~x8IF-8v,^ajn ebP'79B0FhʘGXhB1}D%m9qejsf|ueO4nA76Bu‹K`EƄN!['vQ^-|mlUȪ:#GMgowO]_/(L@Nxkl 'Vo0,)>|2r Ο =`](@{pظB̓w\#_[14Km O6g3S`# Z3ý^#hC儤9|q.tC5&M脥M:p௽  $,x}8o[~7~=~ ecc hNj2,#kPtg'?z(q) ÇWˮ5!{9JWe>s׾W/]6?A[yk"K~`f99Ж(`YnHvI9aiܟ 2s_v(z6p4gxp {QG>f4Z^{GXrc&Dח VI ^HppB ܕ:j5R -#"`lYe)6eG?xmdɈ hȴp ᬸֺmw/EC-+hv9VM]+[p]х:aw{ͼZ1;-kȺH| o@ko'\KPڌ~2.89ald#td>JotBzWw9Pg>u(XnAs9fg}S=n͉ tǩY`| 7@V6VhWC1N8<"06f; ֺto/v7£!E/^MXhZE%G>FY0xZvx ;E(xט4M>}|)?-Ͱ;^emOtxϾt;ps;RY@'j l$CA#Qk+o .,_ʫzL@KOxd 3 HTG+y=dl:uy٘O '[z_o~(p "~fcc>=o '2Nևi/yZIO *SY௢97u ?<񋿺|nL'G*wR=6Ji30Sh6q$S\.S bfQr;Rǀc{ 똾-*^Cկ? "B[S"&f;MI|!2 k-t@IDATlM* Ep+. 0 ipR7ⴃ갋e Nbnkl fk7P0˶\MF-m PH[!$[CSc%6T/@۳I`ك.e[n SldlV;fpz4n2@.R#}kg_%j6?l +GmHq:E?*Z7Rm;RTDn^5FXQg0\lVAq#*Zs-z(z|MW_.`5|IYB HEY\^'7>̞ d 20N4mds,C12ܡ8]EY}XtPi^") QxB q0׉VW=0GUKF4։ lw{ꆧ xd2]Nᢝ8X)5D ivf N^ ->>va6mW .a-gtAύ tZ2_g"gL$^az5:]~=)(K51Z^+FήRY3Z9,(cOGF}І9Hu]-*<%68-VfsMec 9 dpxN fȄyuzfI=_ƭLna4a]lUGS=EΕqtL|m4G)&ᛁvbhM`_2fxsFfC$ca)Gc?v X/$e`ɖd2=z T̴3y/t7+C-WNwcjNZtC.PPU碱I>e' rY4 ]Qp͓qE6]vH X_ūV .Nw2 K dC`뎪.ו] '/A~ 2~WP?gSk 2FeI>kbĚwq43XIyO }X9|j9ZYJַ?]<1>,S^sakUjXvFr}h Hƚh߬udloaڵkW ^^x:AΩn̲WkzrX1~Kz3@֎KC>`g#N6&&|m3 6|˪lT[/AJ@> xʅ)ߚH&<[,-B}i5ydK*]~zEE=cfɚuʔ4z5z^[nzK]ך}n{м HW'>,OK۾mw[уe,z`2LK;rr q%]w6(7!ᅔC23{wKxL]dd/~NCdx0 >g_JTm4sX C^'\'dx-ܛ2v c& XQpM㖘8.r>q^md'U9yJ{-|ozN(>ބw‡k.G;/[۟?_Wwھm6FuQe  _0[x2lhԻB3a\a.'߶7DxzzwME6fZ:昝2;uK#ֲKOlssrʽ|p?e}J1 ©z;j85zlnjcƠp2|=Pц7?s:5]wѕbSNdI5>U7>79C&V~1IJtv8 1w!Y=;&j|RpΫdº{Ul5k[:6EUG9#㠌 šu$'EU9^u3kl ~09 -Pr(J{er$fF6Y#XΖah LD"<1=$$KÖ Űg'IrsRouN R Y[_jfmwۧ}h?Y6Z`f\7oc]/nGkA;%'L̨zr,|2RlJX͚"s.?~ן֎4eܺqO#>\,cN-ڼǾ/m5S^?pfMip$9fL3q0m[K$2A,lpq'f3 ?㌨48ZlI 6KjX*u&8UၡyusΆ.vopNrq`<Зe3xj'foM䲶Klf+v L7vi {Ikx=sQT$+>2&C"f>Ǡ;Ek|{_+H!{!8}UN%#{=G?[TǰWiс_Ş:5h*T- ܐ OBjlaxn -k*iy[}Ѯ݇MYx_198k<,\kzN)VU4nj2q1 7;k^o `Idg]-ǂ A+I)ߝjg&"4sAe :l>'nc . :ebF7ɜc)E_7|K̞BUD`G#%kjC]Fx7l&%M4I~43}N^YOڿYoo?jAzqB&i&~ݾf> ۝+Y- m ms}۱ƿl;wmO$j=xhwo_~vmiɄ8Ttb;J]/rl?͖=)薌,nq쑂_m'wbO=>o`LXoU)|Xcf}'i522&>硷;`l eC#l=DMOAb9hJz+lw6{|`׽{pUf6>~o{q_m_=_\y'-!4|d/s߽&c|Y4ΓsPϿ.88vUQa1R'JB9rG@ 8KX8~mE&X@:{Yr?kC+ɥ+N|q(zھ'gz|N ؎<~f sFCv 29d5{ e[g;uĊN_Npe|83\0$1]t9^ģd^ g1r ^H il٧aIMZ?6¤*of:5q]> 쪢^`$Q)ʐ'F^\U50S1 F [V0#fxzܯSy0Th}Ѐm_!]&rI7:2rN7pttZ$޴.E5ng)n\ݹ}wzq`vە=gho'=w(3V `Nc ه'{U/8'k^N.Pd鐗񘓄*"ǐ#ZcmN#356-:pa} 'ap<{Ξ, mlU gɀ! w<YA,r\AGUp<<ȲĚ?lG}4k"j6!o7<7Үn׿*G̙w n-кiמM ;tY҆t *OQ-+V/{vMd;Q!sHO, /)+ŴkfC:Kv /KH%Cɫg0p{n&ç=#Zb;?y5f_ _wߵŎӗخiqЦy=yuaM^i. N8䐾j^o,;^?_Ec*Ϟ4e{'>mouKMj>agOmbz62-Np83|u6 ƮYGUUn<޸@ٯiٛ ][pcN hߘ8o/O':_^f,^1Do3~Oص|J0IO<[mҍCWJTqDSɴmxTv)GrcwJ!VO: vD E#)Ι%o@2H|"D"RC>&q_AcJc6fXAHdԫ۬r)~KͦBp߁ upS'GG謣G5%-Cẅ#KĜ! rcl}rm7 p🴖>)fp7;WGeFY8)X6 2[;`5ሱ>G`l1~(1s!2۰NLxia pFlOlS䋐{;04+Rq+@Ɍӕ*(0t`p'kip2cWƀMp!!`ؓ`𣛞- Ǵ.kkk<l&X6=v 貇E(эXf ɱ>kv/B4Y8Sx4蒊⋕;iwp cSǺk (~ Y!s4 lKWWZ+ku1@xԩpecT1kcͤW'f}wAgz<ɒd'0:OeP/"i?~Ez'B^uc%.YA1zZYjٝfSvRI!`co39:fy̮#˥}/=m?'P`#d~6Fngx]pӂЩ1:YȥC7"5we/>yegC)+Mm$"J:A%g@7|WEw|+PXߪl喢ڀipztb+>|%d3=G?}çf6GΗ%#,ȩksa+) tr> |q-8Gn1|t~ted8Q Z>pfJ},YؗU޽i/u{q%sWMG z>\cWSgOtYMbR #dp+0Z%)y"<=$*cd Ow?>-m?jy;8d<}h?پjFIxb0|0ۛng2|8x]mG`j,Oޗr`/AIԌ o&Eo<2tG"9')B?g݅0 !$~HSG?ziqaZ~2}:ʅN@ /g?M$fSgͤ}V@W׽? G⨥|+DN/3~6$>uy_G?}/>=U|rh^p^de[l8=gCImU'~cdk8 dbՔt+;凢Vt0 8>S+FSu H::ǹNfXG6B=$4 fGd|T@7q\i Xݵ()cw1B@g&ϺkVϦ~)L4>z`2-ŧY ƽp6e1R=)?G[3` 7R']?"淩3:Q Bi^Q\HNl<}GHB 7'!0|p`yҜ!gɸ #p5a2=LqHNOQe͖`q )|q8?Z;~ʛ-,R^]g ѵM5ڛ  ,([-\_̐0cIIv]}O9Η7Q"olTnaA&: cxԦbᨍY.+s AfC =B}[NKc E2 5ʼ~Uc O407r/1|KÉC^44W~O0c@;y2'=Cx) p=>_xgɃWݘt?N{s@ c} -c K"L4Kq'% zڱlvˆg\>ni8xq>9e- jۀnh~ >jY!kBA}V*fr햰xNI%]Bp wW)`& "=|dTę-. őRxe'; ɬzέ} 9\*ovZ0Boͮ3l}T\9xO xtx36# Ɛb70o0 'zѝhBg\ËW\4n3D`si#x_x2XYC[; $'841=j~eĔH 񾾡u~#]Y )c%גzU9|`<.;"Ss|L!{Sa)>_|%g:W L|7=70Qf=sS~ϽRfДuэ;"ܜSu*mUo xN:RU|"1m{޽G?_HW&tJ&=/m~WL&4 ^6%eK'MФ ]jϒ%GV%ou,7ڍCOd EW[4LZԳF^mg[tM6aE_X3PG%3)5*{O<>%CGR5uR/Fb7uE3 5m?"Z7:dp~{S?54䂹j7~?F>w{ޏJ_zho6M'[ɓ7f lmڮ_dkMi-ߘIKǸuGn2ag|:jvOΩ]i&,{XO2 153^b5 ?kH}3ː=UYO>Aw448+L~WdwdP6G+I޿4'/e޽':u^wlwѸڀ}=m-lMN؄Boݹ~OdX8(K>U=sL9m K3|/J?'<g[f8(mVSlMǃ=}ؿhz{s M|р\ 1 b6XeZ Y.d }VBSգ髫s;s~5z/?uB㦆VЌJF]̦&z̿?33|蛣6l♗~‡@ǜ%3p!^ҋ s1MGg2&k0fB:O`@m)nko `khà SEA=#=A .)I4d6u`&z6bKſC1~#h8HƄAhn G19ai)nz]h~xscjN;6RD_&mR/ +,n_3fs^yV/tXO7H,-PL~ E"v?]O]hH]`V:[5Vv6z o W~`k<]c8S~´PnRX| ʮZ]h_8%VeFf'G Yғal3 8ʏHzjaB-zrMS.0>U҇ӦxЬ*Zz\꙳؝Q~Mk첮 ~|1Y|sn-qTӺui͗/=A}^f{uM椊_~Em;-W]6{Pr|Y ab-YF>?@LhN6c;>.ߠ'k|P L&~߽ۚ G3?ރ`uSEcL+V4J{oO:ZF*d֍ѹo@E2ڠ*1iQe0=|Ԧd4y-V sъ`(&5f̣9 هNxaϰ˝ˍ 9Kڢ3+H!msC47}18KE|Lf}69aG $)x+ 8?7}Sd1qd+|1k${#Y: #j8I]{p@[/!+< &4 E=/@W9OJU7?V𥱙r7;jxF|Hf8K.o=|}O/>l6-a/y.bcƈ7CmrApL`Q "[ۍ^*p䎾y "1uţ,ƄMhC`n:%Z>1l:'8]1fa_v넞>f'l$4h MkchN31`(|է@Kx;3 %22&lrSSѽz6}t`,LL@? a Y 4kߩqy}BKAUsگo[5F o[gൖ9-ckYAN}=0PVv]x8m0jLFp#,6Fy/d (CekM;"/\t?dŲ+z=zζGLIɈ:L$o2G~`/θ46cW0rwJTB4etzvp.|YOTIҲ%Iw; LUtsxҫP  g?ra3j}̠W0Uq5kz:}t{X܀vk۲^\)2 @zw#YxXחNLg2xsҠq5XY"4^Lj>kƥt,FO;l"6^ޞtX ͚@6RYF«) 4 $ s.) 1+>;Zf7OI-#g'(ؿm.f# E"Myb\QvQ]Q2V@4bc۸UU|G ҩcSNaZ;V4 ͎a]}OGJ5Xyiq^aP`GpToSspN=;Tɜ@Ct]`pL2&U5xD^ )AC_3^[m &(2J-D(8qTU8$5=+=1ruiMG @>;uRө|\jR1cDA ]n!q^@75]C" kfusb)t4ܢKjiQ&6A}Py)~t>~;!: +B>m=CrIַ%^A@O0:E=O_^0%2RjLa6mxva6ݛR2d;֋zqhmՋrkbm}W~{۽;F~pЖSm)- T룧!ܕ|hVy^LO]Ǖ/`=R@kH^GKI,ޮ!ܿǝճh|pCx]NVnA˾KVWd#|g9C Os^umeAA?^ϔF/IPW+vJ9@WQgcL94wyڮo=XeץAaM#<^C=}WQ{hfkI՜N5S4gm ܣ|⋯g_E)*Jw[.prSNj-fk d)lNҙ/:n[ 1@| (z썌kedGfaN Fݓ We߾0;{AnC4N}uh/e"& fyMp҅xC>q-r"(c1}i^z tD 8~{W -hͯ?>;.éds3Eq]:rP,44m}d1{5K/u#ɘ}:ywNǮ"jebY "QV69==Ȕ{1L%}f!7x?T'NeErzjgBt9Q.UNvhyG& rX2NfQs'n)T:Y^?z}7.t og[ux;nۭ޶Ϸ nAiouM)9 +1݉ `u;~C${ty.sVWr0es:~Nv1"Tp𨥎sB><}G{n a=lөi;w_e=qd,tk(L }+zgZ|1$[wgz4:sג#1k4?n~>/H7+KGF茡@P }D0!=mL,D@2t b|%Z 'Q;3%EqzcGk*|vfC!Q;ڨuF0`v{q)x>ah>Aa}8U2ģoj:ǀpAl cR 1+fmn p8i W@MYy5QֆieOfyO(5c2<*[` dA}>8<Dž ,Y[xc 1S$1A2nW_k݃K9#We/i#\c_dC N=ז!̀K76&(fZ=8JXFlRJg2$(;>L `[ ̽ 9 "Ӯ܂N˃ hD"+Z/<$;a1+M`&6ҍ7`pfAhiN.>Hi~4~1R(IH2n3>$?C\_Fh M!3 1|5TtOІ!JO?pc:zдu k xc<3h7xCGS< , Z^g=Ƥ*|k j}wt7o݀p:+3Ob/R"+2mvq3vȑwgͺ}'_c( O~R/~:vۇ- xs nQ//^k{px~a3q\}ǵ߀5}e39|3?ƨ~ל{8kS5vPapta?zb\15{Gfbm ?E^kٍzG.4FQ1鄪'%+JeŃKg1$ƭ?fbv \kS?G/Mj0殔q?Wb,,s fò4IwLfr)n,c|O9{L|cr2c&H$WeYfѸb}ڙ=vm:Zogj6dh'j 5;/G];> 9KagzukUgEs>$@U(Xn$p ';Uߌo<9TwڇUhdWg dg-*LsBC3VqReei^=8ӌ5={\KqԵ`TuO^\9O8'c'} P&@㈫Ǐo<_}voN\;PYJГZV^C3Xj|#`A;˔`s ٱw4pT1칌|{:aZlcV!o2~NE$wdq؏*ءZ.%Mg75dž6gz3ܫ+082GR{fhl!c4r%8NQӟ0mQը__pVlj^seOprnlh1uثu^}  }^ a#:[bzlS{ޜoB{lܭMGduqlNɔ[<0`H%Wگ`7U9_3 w}Ny0ӷ21Xi~O{4^o<4- a[N̐>.ko2do&y]}gYoM|.n>߾{ޱ/No K#@IDATow/d>ݾk }^]m_}FNZ<g/vW|K @d {bXF<c>8Kw^:Q2>3 XYxnɰ`沱ﶧe=bilk89oO[v+Y-eVwcF'sʜy}-+#91$yu\wϨM "vyO'#'+h*4@ T B*̨סIֹLRAio$t(ed\ YN|(O i>F)q9އ3eȂ{XNl%rhVYta*M쮴Q&Q35l*4Hefl>,KF XdqF'XVàbfH嫏p>uH4bJd TP)dN[Xu tŜ5O/`=ZL:23gA.&c:ilsN<6}(Dͬ!0rB)C{>-.c2R63AxRm0mÂR0\U:TL0q&.k,_CCN(y^mЎfܤRGEcİo Pf~=eҵșhGBܩXm2:m9j ÅnBq5`s>FS!U"+e^hxOwƒpV4>BA/F}MX<_?ivfCZUB?Ax!J6wG:k 2kݮ@{b+m@GҫV!Xwy8AP:Tap1vPN6/>Cؑv xLf1 ˾Ԧ?Iߦ̖Hovfkwj}e{RڝQ{|rϞBy|r~k,M4J}G%f}E7Nv7S^ʶї }27K ]*+>Ԭ}rBmF1g2%_m"^$/g۸yÎ 4A±u) fV?&l_}(ʘin^334)XhO,Ga`c>}nA+\qW-,fD#g"{>NdP5&x-Uxfһhʦ{k"@1Dsz>+=ɖ08 c([>_6~7k]fmvtJc&X\TpZ­hld`arw {ےHQ +h5YFZԖԕ10 |IMMJԧ'37=݃.Vb=~F6w<'Y?ux^`I.>}vF@?Zs*ōfsߔhȰϻf<) lsl_`]kSIn:÷ 7\Yy:#>q2^sFJtEÜ3 ^y<&_l⳶8telF45 th/<8Ez>Z~51.qp xql m @`k9Vg QrF+s7S Lvl?s=]q֝? Ew3|X>ˡߝ W8,Rcdc٠]t1 \}#]BDʶ<{x=ˆpӄC+b ɥ}7'QTuPB.M]œtr|jKH$xIImÇMMD%JsbȾHO?}NN h(BfUHٜ^j067!eϦ_d 6;[قKȦJ8{9]'9?|V/lS W\l_Yx=X,ˆAt8oC{DxNh#y@ї[x|ت=X?w*_,{z.yqmaB6hn g`IN3d{6.}/[b! Y/9E.&qɃe>C `sų lY飾N9_zc=_ǗAd,}h_22dc2 2BƣQ1a'l@`1: :a HNe04P ϐCw*PBtn|adRo8.UqJQT z3 qZ ΁UH%;B}7ȞF"À(jʈSR#G n%lAW^a,X?: ś({ ԪNTpr3kbv%3f0gn/ o0/C9o44p{{mԹE }T"4v9Ge3t zx˦Vd@E_zZzQ-x7LVOseL]SG߻q ,YGSHfI2{txT+RO3NU{ 40r:|Rb'o~lJG̵xp`gAYJKt JPx IW xʈo6! _]}D r6'm%&2Xgk23{6bq^=XApSO8V[]3? } [GY meε5ڟ=b٥3&AHZ,#궮9aSCHo~4"α."睴τg`NXUvVA#Jg4AѴե"6sn:C|n%c 3IyÍ1 oL$o+|uή4d 8oC/J/3LBe488X?c\3F6v4+ gq}K_3ouҴ7gUX@ҾM}V=>(f*vz54}xʿ. _fm3R}2?yXU8e/Nu'"l.=~( X *gq/K gH(ɱyݻ2>lwkhuOY>53&5t-~KKi{sr)^.a8/iwc,#VA`e ο򎉒?3)BPwIOg/9]{!|eQV;$cc;P2R]ⴔPPBpQOםؕe~?AF#cL\T*ɒnlm/ ÀԀ1[ vp jr ` ։Hu ^{g^^{oT L0a`ki23lԶh(.8C6O^ʸ#kL2s=3^` @AK08KY }F7].G(xlHH^O0"EuZ&' Ɗc\ +14Y6 <^ l8hK==XBl:k,WwtM} N}5=wH3]8~_o}: H'*DKIw #Z?Wx=Nԡj^_nU}suyv@X{1^SgȔqEwd׃O4>ا{MZbl?ɟM?|vyf^qAΣ1?HI*XLE5r%[*Y&ZH?p2}r/2ElG|Y[a5或0t^@?θgB, b| W۞!dHmVGd?*gpw 0Ígg[|ׯhzkmgUG ؝gcqz}DY|}}[;3h>jgCNPvG P<_uDK0p|ddLCKï?4hvO6`ͫm^g+7~Q&gL\B͎L\6"3ڝTc:u c<9 ǹSVto#=6$nʞ饗L.>leǽXL/6z||r V- )|P4QVS1p~uDtשk~gry!ٲig33z?[1,(ap~T&QGgpviwQsZwk;-g xJ#U>_hZuK#gU**}h>3iŜ k.YFCMnC6<5s8$Xd jNGt=}x/:.׫?wB+Շֶn;^[f}T[ &ְIeX_ld$OCb.Eh0*hCQk\zt- kӓcL#65p~j|V_80jt5-8ĄB24U>Û9GΉ,ǃc>ot0InMNƤt/1wW= V8L2&I癓 o/܎poUy4kk)ѐ=+ם)M(4al9j0R8r[)J8(cm>wN/vI̘S0[M6B70"sӄ$Xz em WJ 1zmv(BՆYO0Nw=b,g!isP@A?(B8Ԗ\ˣp:'РlЅjIP服S}U|ɐ'vspS˙425xfBO[g7RWx$s!fQe^3\rꝍC@eh ҁ>gg2a_jTc /`:4Hezi}+8BG^E⑗~`7i<l w81f/oy_e/>"6- p$Qs M1惻{fx&oY_ݫ@ea4],9 NzWh1sdF22Tr5rjP\t+>}|hg5r觺BXWEG T^z)W&}:ob@w\> nE;+s>44 (*ːSֳh,۫%AKƶF–bЙ'S[蹿tVsPmqF){Rz)GeV`~_4Yk}9F#(*Zb/oak<SV u衺16E56Tng)[vEΞH3gI{=-hN8q<$Zz|q6L,hX7 /֭F G?>lHNO?UftVL 6wOBdGb863Gdo*kcUyY'c={c} Gl oFio>swtc4|ͱ;O '2ξ:{vighQw]LXkzp_G9h=d ׂ^d:k󔃒Ν'`•ӐSQ0>~y }xҽF-_Oc'8O Y:C-wL@W&Ș_P{03N63[,K<*3@6Уz~vG<إӷQΡɘl4v,b>L>mp}n{6O wGeW}L 9r3H{&0TdeaY7v;=.Ƀ϶o]ݰWbvLcyRϲ璘ZC_vyrݭN>U9cfxLSR-@,t2"mv x"0#~k}5u U:nɟ Hn>kNpXH.BhxQB1kZfq4;m6N܌ Kg5޸o& :H(U0N @iSJ[39KS)ើb5n1MEC; {) D54%ǓaHlNtBtLq(K5)*\[j FtR96nkz4ƾ,hf X2r Dq5 Y Rclp/x$np$l`#@`Z:>:q9`C1(!P!α |2RT2:0uUD IppdWq(nVGp9q`Q;++0I>#,nĞ?C n:=gֻ'k'~q p4n݂x s~Fqp'Q'`<?ǟ~5$ԇO׭ĿZq"1& Y͜)IC1t=яMOn~ܬ4\Nr嵎~R5[l/WS^@P=Ψ6#ܾwrv6ؿ_`i;~qt?L \kM{4V7~i=o.alnX>⫙q\]Wq;ڼNNq ~(2$6s썥}vZ6 Gu &qDDH_? ?/W =Ɓ᠓?/WwnxY7Q Q6tɈIa'%2KOJc ?aIV*S!C1qG2}9l!|d :VTREvN%cFm…] 4;wK7/8q.zǫՠhN/;_)^ޏ,ىyr-1nT{65}%en7ckE`s V/3P?ƀ Pƺ{1'f!ޮ/p9ٯ"<4Ѕiyuj:*WLW'*9Μ:wN|d7ј'gG&z^1)7Z6VsX"N&(~MZ_+D*[a5>,Y_ kGOD-ZL|xr-0=E?~ΰ<=bxfs+`K7Pm${Lv4j̍NeY@qf2#^pwSץşO_㱱'}9ٲ^#ףA5y_ D ?[c?9b#[pj1>[3u+OCka^osWd7~ѻg/v^|yMЎ_ bdfÄYZOHxx&mb,_ˮ'i=vNf--[ l4=QנM8xڦ>IK&.^\/3Nϭ,9)RD-/G/xR/CNFӂ 9s"C ha(g8vq/0s,NdKޭ^t`u՞I'fh83AAwLvY;r^Ԯ%^A&>Lͧ! k[ۺ);H<цgضpteT&oD7AV?;,ٵd}ԡ_*A(%׻^deqv7^v]u$`s%F'LP\_>ioq;U&d{M!$^V:f!ke>AH[C!(nS HC$q6ӡ]R8G ./EBqH1a~OYsܷv5[2;VI=H3h|fƅ2nj=Aو)Չb^03 64aÇfWW`q6k@0x*Z9>a& 2wW D^ogєP },ڛ\t!*Se]>Qa/ÿ 3F:r3 V m'hyctnw7*7ߘـ%(%E~{￵|k v9\}}hkmO?Yr#;oPOs9[_,jqZd'[X<\0#<#O5̍qA.~ Z}E_h)G%_d6Gg5G-&⨔Atk,.fýdto kv` \C՛LhLE:nmDq) Gy0$dhmri3σeN?Ơv%q):Q.`"advuZ:!ffQ>ُu?,lѻ#8'2Lx7z|Y]=)dP Vxpr'b"bY2ۘm,ߺ:Akf`@~;ŋ~?;tɉhgCg)85>  k@J6FdI% tl}@mt$( {غ}M3JorϪf%`z#\QA"?sj=2`Ȼ1@V[W?98Q~:kEGt~_-wJϷn^'tF^yNT]^4dC9N~S9fO  O#^$*X8BidWwGV䕊:nwo]?Yi|HZ".O +}N%Ol\i r-k4G1'죙b,Sha?nMKCH^Z|h&"z -ɘh5e0z |SP)*} fWᓯr9z&Q^ n{y=#6J(5 [1uLA+>̊یi'8oQxX0,gj+]5>I!,{tM& l ;ܱ&Ӱ{l&L|8WW}A/yN6d?lٹ[ˑu(˚> ݫ'3U:LF}//;ٔvcV`KJ \8 }0AZ?gR,8Rtu$|8ݞɠ`m1>{]>~rܺrkW/?l+6 yLhg`h65rDueμg30M[祆+ӵOPIDMdgWޡ mD4 qgQwx~Hs~%wM4׹]f]ԭ8ѰsfVfCm<}`"HA:ʍ$9FP20 u9_X2hBPϤqumU2R8 ] '`Q 6YPs4%NsENG() NY *`pVff8wh@ǔ7*ګ;ՋKx*$P'mG)3JO썮?ڞK;7>`J 3cO*ܳ+2oprm@l˧Q.@wČNy餳yA'VzR/+'}nd)ZSqtc3ec[7:B/\/UJVbUO;Mo'2]dk8b6=NpD@nG[W + pN TŬNu}s2GxYė-B+̭!n~?&wqjn)#,U` x4;eX[Ց?8{g'N^AP /پǡ4dylrOpj qxB"=A՝` qd2MO[ĸ?`l2mQC7{LA6س[ zB9hTN`/ʗz x=JNpd]> =s(f6f/ % hehvE\A j,M ?\h/ZЃ/]zam圾n`'KUc KQi;2kCt|g'|& l^rd^6 M(pD7o75+ ԐLߌ1 {=/@+YA1D`yd 4fbN|d@m`n Ȗ3SLCx}|{˟K '9:$hG*㠓Fk| 9M,6؁' 탧WKNJunw]߹luc{JJO4ix=䓯;|ON~H6e36yntdģ} pS6<)̻c8S]v/GCV<"Nx})8 ' +ӿ<{̽hǮe&CUu \_lócG/a.gk\Xɻ-} ?,ϲEvFhwC\Yie "v4FNG+]Y ﳏ3s_}k znb?I &U·WձRC&5P; @3!@5wx#]D*̦aeu#f)G6Tc# flfYփO s~(!foF%DĄOh`W9z҈"(! X6:U5o?ax"dZgy i͖(0a|WƣJ(2k*SdLĸ# @;|_jv }neCš`:kY͵O]%cY-<2ZG+}R#ms@?a̠Mץ;+Wjxs;k-o53jj ޺L}5>=“Щk}PԑjW/x0]F`\jsIIꨤfwf27^1y/^'c+|]Q9`_!~EѮ륽R\k9w87onGDT~߆w޾,|0p1nL [nlχlZu#!}fVGe0~#<&%4AH?5JWAgi e\iskɓyQ TE<9 fs dOE}4}JݺԵx;KqIFlNM2`ڬפ u +2fl&KPc5 G/w ([${ v|\p'@=sUHr<R9Z+sˤVrkx1q }xNCz?GO7Wq|#~2 BMOmQ;12]5};}t,:JRg Gێ:vK8qI|]r   0l'_NsfdeMώ㌾}x@IDAT+aw?=Ǯ_CK!goouD}^& 9 XZ+ pt A%(\uN81M:]]IuR}Hn=9֍זyVt/>h{ *kML_و Gҭb[ۗd5&m9 F;7;-N'Gʂy2' 25G7/PЈ&Ɯ@U8]f[SP|忾+zh|Ld< L`l[;y;˯QG9WG蜩 & | QkZ2g9rħ'? ?yϿɖ-ลo^Տ;;7 nfO^k7/-{w.-oŻ;r/XPC=l-FWd>]=<$\>eo"6Yߪ |m JU{S}_1F !4З F^#/7 ˖۾֜rp k1P؀44w\F>ԞzWcL:} WϷƒ@cߞ]8:CG p=duu=;Vm'h&5yRc"Dc* %S)xAT'8 BȔ7m|u8Mx1V'zQIs[k(˫ ֝TPJx%|g3#+'lֳWg d؀@HjtQTQL!}Ch ^?N<3L԰GA_D8vqrV;fahpNYݍ9G&YN|cPE ':؀ld gUG{wyu Vx}L"93`6]˲_fVu0̨0"&l="n| Eh(+<2 ~֩ÉsA(_5:8u{1QU͎̇Y pq2\9h^@m4NhscN05g/efO񧸧3^! 3r?hd.DF9/%89#,Rѳ]t_=kI d$5N{l: Y8h==hw8}OT؀SKsrpP6b%Խ>GU`eջnSe"ASjzɭhˌ0Š+*go_,^@361Lkn<n6o۩\e/xĹw~4ÿu_̓.p%42{\y}G͎OtyÎWN W=;?R[TVo9!)^<ў|fwKϿz;DTr ~6_2 x[!ka2\ilv4oi^|9O0L vX`5ӟʹx08Z#H˹އe5cxd?dʑ h2ek_qғ t{Vq'2W}@X?C8Ss[`ЌXahσp c5F".[287ffH ̭6to5:;Ē"k?zK {,x3Cջv\46[Ի6;ϱh~;G J/pxϖh۽{Ӗ]YZ`\Z:iV8yT_'~i']pʀ-[\coiagh=0/A5LU c ZxL ֢s ~mVnU率ӝRW tĩKg^B4abe!v.?qHzfYƁ9eh'4^'A ~KgIm+hm<9S]5p FAw[_Ug߆]o _zW{ n9acdv{V+Xiʺ0895P~f+s3-A&Һt>{嗁ay+Z=rd`ƼUvWmy} >9A~; k(O?[9NӰI]Kރ'#0^8jc$ǭ`V•ap+A0A ݮHYvAvs!V9C7Sx>R 2&8Jf,I@5 &?8΋-%;?;d86{%o`ۗJ{$WZ+gƯP_]O:`qĻ&{'-68*R ޓ:f;uጆ3Ð7#G>{:A+g%e_l=wcB&Ow]4{'ק=Fq;~+;"FGUlB+}j Ww= U:!A3Nܑ˳h3Dxw@?4N)x#b7{YPouLi2]'/NѵidUsQ9px.]/gf_ӡw~3/?(@,<x&jnNg*3@FEAX>(0 `g$hVۂUց{!nU&g,wtHu#i{3Q>'<],1^YB6~ |O6azL[w$7rss&V*].@]P=0DY# }~§2, ʆ݅>qQp:x'[.qs?hYb-.Sm#7tn)gn g<,25k)ɹ-|QBHuL<-[ò=41'𪽂6 .aeym]Nf;AڑAոY9:t63ؘ+7H <WgF#O< ӣLH\̴e@9>ospl7;7q)zT =`=Iq譗fgH*H)5')&? ^9|GBCbI% ֽTV 8Q ' >Q ]8^o8b"ypb'ifQ^(%XFւQJm=liOds/؊5 ]J{C a3-}P5t SDφ+0n;"264_9= &95u;*c%;4 Κ Þ_ o5JPYRW^`K[w̘v3v8cґ]q{գÎ}V*^?"QZ ^Hkw}7etDɍEc,P4O)s sSMFAᔁ6w=̽ڔ4}j8kիxB# Sەe3kѡd# @# Wh8SVLh<\yv\7;ɠ]=M&3O`~^9t#tn_,(6k'چ95+f`쪓ӋxːldIFnmTg2ge]ƚ·6_p&U;ͩ3_ :+Z3 _1ԃ00>WFeƶ2D#:P@`+MrutTgHBCu䟪rĔ:Q.xh1czrF[k 9}:@O8>}M0QX>`C_!dh" ^CH)S)ҭ/Sfgs=3ag }C33$шs63(1rXa0Icq{PlWYԺSM'ǹ7~d 6Яrԫ}aF6[O?nX38x~6E}zO/{_ԃnY[A|0{ڜZv-4Gbm(l坷ZzZ;*]o#d,3ȍ~ьw62mOښ]mMf^ XuV]zH۫[ ?Q6^٦&ݾڞ5Wʵ6s~wޏ6ԷM-[\wߩ}ӁO>QS卉I'nl:%F8j3M,ipY,h2ug}'odü<Vt2j6q aGe h5ʪ& 9ōsuwehc2 ֽp3uXUo`V2\cdQ x/JAk7]| wCAA_צf2!0{&+'K'Vv>LU}On"ǏF~L$UF (e#݂z8}Qy!h@2Ф#Co6}^Fl:될A R_ ^:Uu?5磸TBt !NJU 9L8 kW M6^>KWy[vgQBg v '1X8'=RGiz?֝3c3[^΁rVCWr {( 9ضɼگf}ߨ)?U=sLq U9-aH$gLc4$F"ʻ6 k)GFA^9ٻ3\)\ ~ƿ jJI'4֔~L;7UCW ȭ "s#Ue-Gg՚ԙ1D]2ByHQo#O`YS%^ +=N6ƣ^OW庲(ܫkؙ^A rUPp,p3)Y+ZgR00PEu |}L=h<ùLګwh28y*|7I I=R*c~Ag{3ǻxHG3nĆߏ}5gH孷of6fR[.b N wD+o gAӎx͑;O[hf|Sۗwˈt6|dYf?ci ;No3g{7-?y\w.%tl`,=k.oY._+]3>nax/e!0`:k'd3+m8Αa6_ݽ.qK f/^ڙ1<x>/xetzQm; ͂Hl)" zyXI1Nbh3ɇ[U볁l|q'?ڋ83PUs@}#[fB83nXO OL tOs1O vUt(ȭha_f8dU(7óz_&932]P1}77gtMx8yc M4Pd9it< x /FlxW#0P&BA28& 2arfoߣk%\Fސz舑hI p. 706F|Iφ{4c9ENʮyvW=֦G3k/x@~wr>̩ov';J^V2$fb,iˠwlؽt0oOY),2U{Xg쀗m{Nf}ղ+njaN}4b2xN<6=?}zZrѣϗ|%u&6EqI9FA>gȫ' $_ O #$ =cݺv2Rr)E#chqʹ#Ht\xcjoϮMzհwu5vBhWwU/MT[!qKE9|"v=h-WyjG=築0tkWгVy8ƣu},e42Ϊ]S 8B6e (҆u rW]X8f,L~->2 WgʢQ@I35Lr2Ⱍj͞`򅣀[ Ӝrxr~9V]f|lsFJMp[KQȴ'sX?' L:xd석/-^3ޘM<~1QJQ켌v_43q5LECey<]@;jB[m6lef=*PPr6ܣwC˨Fy&(u**94l3Z_tX vH3h9TYjG$GG\͈1p\`_6ɄGIV|(,:|^ {9,TYw/y- RcOY+#ФLuʺhC11] Cy V9| :Nӕvfij6Qk-Ugh_ |nfߒ-UTEV fg=8Ò}Kͦ2;5 NZ8lֿZ oެ՜~o )hmRA|,\ uù,Q#=)S{s[|!sP'zZ*A]?/G{%:7/㒹^3+~v#378<‰RGF pRxdl(p-5>oΜjVLKαhw8ɼRgN}&@Zõ(>mTvMpL"Y2ABr!;csW6"x3kꫮ~U:[ddtZVRf;q?84䃇_-7_Qc|w<}2l?Mޛo({g Zx9pdb|7yݿ!,[|̧ ۣ֒q=䖌5=u|f DŽP\}o\+[Z_ 'ڜ.ON_SNa06ſ|ި/o?K+NtZK!J-?X3b'GHr`3eDCG<04:nMg0lf;SUkԝWo @^OYZ8Y>)/kg2h׵{U|{MhfQNs x7募v' zw卝?^7_|i>wMe@@{~]:!n XsHct@-X~dcΒr Nݑh$Hs=w@l [Gw/=s9zz@_|+?:^_|RH5@`^t|ʝU7-7es]?:lĜ1AW`6P&`Ћ>|N CGd:`H,`#Ab;{թ4+?V*պF#"4ٔH=?LA@%xsNke Z3*/훡?>L 2uC3B(u6|H\A^Yq:lYMxN^-{ :)h bEge- D`587vM-QvfVoM6 (c_6j'S{>5 ڈ׀gcNĶvvQ<S}5r2'M$l=٘D 64Koi 6oN+ZFz3o~sfe8 M3&豈/vP1R~۲jazN ŗ_vݺ^'e\KѼ̭6eN{^Z̫/fKԇ-'[@a:D-sNk̾plN'Hےpu} ك3jOe 00.3c.'DN1ld8K8ha L EyA7S_<Ƈ\7sXF0ڑ'g^k58}4df̻7X$>T~添WξS.H׸2{7y^ ?3?{ 3(*uw.=Iɮ 4avYb9 7n=ܤ`Q7bJkC{~ rd)g vNsIg[cߝ|f%o ˸/xYt*h.Mp֌L =OBuب7XxyTG'd~\}~oF ,y``dq1qҿGwYu'\]?]?X^ogL/Ǟ%/>Sk'WQZ4Om`X`q1ه_9[6ѳR&B2hIKr[֑YjR<3cxVL0J"N`=h $2G4)≠! SBȰޜ19WmI |#\ tia q:K2mYzص4#@] )e4P4d`Br/o{58<ܧ&SW_6D2]%EW3xM2ڎHOUZ cèA$s@V`9֨")o6 k8ONv𝂩/J#ʕSc7GR#$'ؠ# W{a่fξn#}$@e={:ceIމc쇻p0x*Z.t<0dq2lγYdxvte+"+K(0e@4j PP?)14 &my C*2B9!kcfl, |.7p&yk kxJOֿn?؇{e  *;3^wwxGfЁho~7*up鑊kr:F>Tn`]5^e kg 5_Ce E [)F;lvyE4`Q~Tʿny4[76nwEFm/BHFxv۽ȝ_}x)(}GTxXf&3b"0$ӆO=% 7oΞEه!fvNWrέ+O&M[tx O)9>J7 Zg+gS$c5n]Tuϔ+m4xܹ|˲%iOwaD ehόQ_]hK͙x,2HY/YIH8#3?Os/L[-7Rս>mG3rM7u1;tG $ӷz ' li݃g?7u}Y?Q=Z-9r[cޯ.x%O^8k.@-NSJ~~ K>hG t텲vt[,G*:=&=nJo׻*#Y'7 GAK&{:Q 4EOPz4&Y2Q9Ȟh͞Nߍ8pZ|?9ٍ*qP` Ik@~Mg d#0Ix //}O~t_tDdAwc2 )%z8M94>p,Z@(3cvD] .Zu1kBvn^nt@: (܍Ru0e҇X*P0"܄,Ay!q1lҁEwڀx_=mhMipc0π^SfƠ <!n 48f6o-Q.tM{ o|UeDOu ch.)I'rUj;}ʞ#28-2f}&6Zbx Hfb LK9EQ-4J>Me.gCk].0Ԩ̬^Έ1Ul@X)%/7{[L^$a&RdLE~8rM.tMIk~~)vW3Pqˎe/NGyf#P2.[gҟ'l7Μ ̍ݞѾ%c/vd F͏sC c5+Dm dēx> mg[^:v[\p9"L 55ǿ/զ[1#湐a\4?Y@IDATft u dI&JZRd"?x/#A<RsdKt33ofnUhg`}H 4Hf. Be,wdvx+lhx# oխl8r8"ۚڤT fMl-=0n,ʞt_ݜIx 4faN9}?dy`Ȗ7 [zɍx^/x&?f5l3 u\3.*%\cuR[OPFZr7{k~lb:)oNۨ~cVs[ZП ~`=~}ip%Ol|Y؂ W?7|7ٟQ= ]˖8g~8r\P;`6ܶ)@-wy'e7c&ypǎb?_wn,^AkҌ7zzb#Y[ёY1jL>r0ZaԝKHpy;ll)WUv+޲P dtfy?N];k+I~$ľںͥIΐci3//} 42ӈKtuwu =<2f2Ž8][˅Qc >9'vOԶ,tzAֳӑϥۜE:U)6,g%J0g3xP_GO$On&to&(ܲ.^5ٰ h4m?o6/"Ub nOf_6XnfУN/:%gןl?^(o| rOTR}@Ul%,uV5)JxU# c3 ыn`B(YieP"Kd4ӟm&0g f~ұ~ݶ_nlzeGul#pNkǥU@1.%נw Qdtqrx[pǏ8??9GO4QsoC 甅 r:٬@r91 ȳiE38u _Dfү8v'Ѓfu8փ!bp̠Xa>3SFA9)s6GU R~]e^H-Utg$^lc1 4.L13 Rt잚b3CXmֱ38)_j45@?0RqT 𣔢 >gyUJqe3E1x8]}4{0{FV>vΤ/c̉׶Sm`T@9UY_9)9x=d`zWvhs)3x$zj6xeF ҪN`{*rڏoaԞf'sVQnSTSjnwbC?섅I)SO_cr&٧!hb. lUhc̦rVɦßl#Nd:4fӺxp#CF@r'mz60 ˄HA4(H,fr9[)κMynvAxk,К\Rly~3Fؽ_]mD*ufB9U癜h Ʀl?_n'[~s?知.Gë=zw m{% 9іo`_Kٸtkl*3OkM7z[Tz}jWKo\ڞ9:Z{ĴM2 h߸~=dvk_}fbrӗ )l胜Ĭ:(?Rخ!򽛣[g@AN/|w^Oq~Qv…ƶكlP,- 30|HJz {闘$;b(D@0zm#g`Mxa|xAtf80CY 0-ߏljw޾ (6AMr϶ Ů) ^$Go%G _ϧ`ZvY׻?F}SO2=r|88ƾNl+Zd>'49eY2k>/=:>ћ_}~Sꍮie lh28)&[t24~<W6 њjS?] c}`@J?‡D cjqdCH9*[11\~IYf#cdJCplIR=ڡC+m&y7G~sH1[ԜAXR`zɮq8<+0ouI Flv~(7!ׁQ۬7 ?ڰbһDqr2IYtCS\H|ZM8togό; ͆Cp~QX]uB]B@ Gnnѭ֏MjZm 쩙a*pfCލAhm%=گ [*99<7넫)x5)IgΡ‡rz5.n7p<~|Ǹ6K >D'38oc)Q,sXx> O(ܭ~ͭ .~nmLi%uutgOOݾc.yNͶ0xo~=o#)~ގ" 4xns{a[ff-(NVdgTIr"8@ ) aYmXh-eb?'*4&eƔgwԂ;[*8"h̲.=oisBd 2I gCc`びfbMnZj@>Id:{qF%V봫%=#CNh U= 𗮏//5;xkr . {/W->9҇Ejgg1kBגl>a s@TFc#4:uS}uG{LoL*T8Jh3/}hHNdRR`96]ńC1=f)ec63qCz BcQ,KF3o}3'?A]^ݑyQT*5z/7GW׾)LNu97N=OڌUa\w)CtJ~cbIGxqz_ݮ}ݱ坌O'eEXJ3tKb dK_-F#;3c%dl>'[;}B_}&},RQg;ԢGh3|8~(.6k^luf)@O]ʸ/ xn1O9yӭ{9u G 9%\nse(T7 Qo(pR0RH? j6# 0c#/s <3@b[|1@S2fM(<\i%9"zc7[zE]^7|]pOU 'lçrr `$Ch9}Ok~+:L <}q*Ƅ{l3~f8N1v7.@ M]ԣ]r?n䉷QSճ F2nN7n;ٱuws 81ȒOA͒;Zbd! ^Ɛ8=6{RJ'}}&/rfaCxn =c Yrt m,|%@2o}0B9Fhs-e68=35\n vY@E~=]G(/8r=fWΠkeTyMCmiY'}rEt,I(<=Fg'/YO֎2?硪ٕe~5N#>%'d!}څ}8rܽ;|'w G)D~֦PStZ^ s' ҸHDGr)e9pf#،=y?@OؑgS\:(h޲ *:zU kP:I55Lݷ4MT405PGז>\ <~雿=?|Ung]v__͠z%WtgYf&3uot{_m;,R9~=)&=KS?A9Z?/D7}>6HA3-ݠ߳g23:BLOp~0;@fL<Iwomo5׌/~&;"܌LޥWeSa8oȁ>DƋ9*TG9z7n~ߩޫam֒(L92+sZ}pA`Z_8ybNg/+ef>xhtgL .'hp!vbX&ulk6Ž[Ѹ=3&W'ݹglC6>8rr}6֤ \vnM(ޚm&d?^_#?IչitCΰ[ fR-><9c{|fvMKWe:+vȃـjv+x N*RYtbc&I mc:L_jkb,m;ϴQeY, [kN8(tР7 }.~ʤ\Sg蝪)4vX'9)I7;cbYA º{Zv@IIO0c&vlκ%'2%5z-jjQ Y^BP'2 O=T#b cOC9LN:Vxvc7 tJ\u\3~)e̠ E,+{$IQLGBPᡨ)XYjD~ؗz+D|c))/>Y `3,7#E*-#EOzwߎ="1F~콇5F>cRۀfyDt&Oq 'ps|Ѻh}fFtdW 38 6)k1Z?9 cMcX_ `zŸG'Z4C ;7R DmQ$ k`֯kϘg٥_t{/2U>BNhH Ⴏj:9ũ;Rɬ#V_ 81 wucזU~߫ԧrSRI\hc͒qMkGA'-uR~~]ea`A#3ˏYr@ǽrf. z ?UOi1g;kQUJ/gc'^|̀_~iELB^o/kmhh>Jj( =/hd %Ͽ'gk/ ًNtc} ѧO,6  a;I.-|1ףIx3dK읗~W+X[9k0GGd^֟sT["=J 8tkV؟|zw{Xy5NTTQ㤥SB6^e,17`W4Z ] oh03XPV x.=.^g&fə}&ۭ/L *6P{` 3a1h[?_vɞC>l<ꓮaOcTvo3cm i;H.\Jo _d9 K."hpeȔC6gI7)C_uzGr}s20qKwjq92(es7ًHt#$>'z:ԅ {mmCc)QQdž, ΂|z}ޣwbfpgHYxa"8~ ]h~f}S'9P~g\}Ѷ_mdV0bEkv' L08j5,i}3 0mRw})[*`&AzQmg[$zb%VZfx:ܵsIς4\+h`YRR/]Xi<>5>\85~Ak3Sx@~Yϲ3Fk~d\͞6xr2#Ei']2AH0EY4k x\UotM ,[3Ǐ1)2)o=2zX1Sql'RMx͂ 0%JNwMu*ʦ|G?0_#w5rE9xzV@+U0񅮆7<ϱpKV9pr21TMcA=V]?$Mu3~Y<ctch;|SvC +u(ı`}6,]C:<}@}pki_V'[|,`*0' `AP#N*s>I4KOZ wB@\(Mf.e0x6:Cðhf-FUH?^LV6'0%l>b}o;O:(&dIf636Gl˝ҝdL~WmOakΖ?wa`!;]l0={FԫwNl}~wy/;(]`xGKI0ey'}S{0emw)Ngש[dbUTVY8xxΓA{mWCvifƙg@A8"Y7 _11Y6YZP%\O9̼7 5D"5>?//sh Xڀ4O^2JVKʑGgtNꛂ:er{tIg;dT>)?F1+tV-M6l=vl_dn81NPbd4>έZA[![~'yeg/s{ ~+[mIm&LezxcOI6KjID1SvpUITo&:lxOu? F^2g^lxΙNS62Ge{ox{L4>=zVx~i\HXSft=>}΄O/S2Bd%9MJs Uk4"E2c?m%CcRjPĖr֥5vTy6bկwy?| XO4 (1d75p ?fyΖ2eY5;EDfmp=_eBq}~WƠ=!(DmZeB8PZc4Z>]!a240(SP3za&R$vR?S; ruk`X/1me (9oU`@: v@ڞ'~ F;}iP|%x&٬>C1I[3ڸT.pRKHTs{L❿P^LlX{B咁`;\wNee yL,Ȍ놈m͉OBOil҂g+IKOA0N&<]ꡗfn}_E/F'K pqNDGAULq^j^ݮ{DhQ`fpY÷#sïfs(l)):<02 |Aa"3:kZF2)l8lanHԧiOp8F͡O|Nײ] ?˟GY,hbç \d⸿G5kvw+Ծ* mu 5K^i]nbv{_nu 'Z{qͶEr"D&`)(Qw }QP{m QAz:\Eg c#GەW *EtȠC/닝p#0~ SKdAqdHKfVOeLٕqJL)2wd5EC{/OWC|ef0MO8uaơhow Vn!q`L7FLM̙pdRh<E/hʒه'A6|̈ /`$Ograǩ5xV]Npg6F?ZCM >5=Wf,X"@Oۿީ?-}) _줔VzHgC: .ky]R$Ls#}e?8sXL5( ]@W߁}W<9 UO\_u-''40N_#pZwoP ]QL֏=dr"M,ÙNzn(qq*86[-Y|1h8|}c}~#&K@;-;v#9(.`[dvQ7L cׂQ3$_3ks7pw) !η:[ۭ/>QkomW.p8\ }|ZGrT8i' %m4.h}۵~۵oE  0@b0WI h'kū9lHl%[KqVN]#Ʈ/ ^}qzxwz똿g{/zt*=RѾw}Nc/}@ḲZ( #tFiPZ*>_}X/a^Mem*tŃ-!p`{NQq 2`ɶ(X'c4_uun[x޼.}z>Z>_]CQ]ͺ~aW8#?չj2Z G/j{˿NUASa7.cs9z]zgIx^ы1wd;NIߙ47:6or:cah՘s>Ւ7.%^ ;B?# ZiK?x|xastQVoS,eǿ'_t ߽7»~@x]%';q4c#ݑ#+rTF1fkH)\ '#nP=jR^SsP?ywT>0%a6TNpRf ֨6>nMGaBCZǬŜ:_" M? # Z=aiV*+uQ|=i0̝.y9ff4t؋~ qY3 p9|6Za px1œ bi-bS:4SI\'LON-2k>mfjrp ҢI0l7I]D8 hDf) ɽ~ht;7p'TI_8FEÌJM~CxY; ůR'rz &3Uz5N޹E[VU8&E:~y$"^E-uj'0Xp'%p2^z\4= }E=)ESP$k?\ e{Zm ų)9Xs>1g3XUVKɎy{SL~s-|ÕpOtfmo)Rģ.DQ= #d<{d`?NҋJ?;A7髌Aۢ DkGIDs>t,s9W)Ϟ5_|U{ mQwreozlr+̹zaϳf-oD:)@0Oom}~gCKe\Aw? .]=]>ͩ3 șd['_Nvto\Mg2^8⸵3>0,git*)M`~,0ɍƏ{gN'|;*7 =bfd̲ gxnB@êe/ZL?1FMZa,f}3p9i"mn}sSߛ5$ ܃|jt2o4 $>OĄ jdd8a5\"Ɓ{-V|ƫPH7d&^:'rJ8gw&+g)uq&;fy=w"_3Cg\slʮ^\:bZ)?3(mP@!YU43+@HkHo}y횹4+ct W>z<yUqC@My/'뢲La:7|>xT7uT֦ށK pg†^uwuf7Nv8fO즿ooYJMWƦ/ӿA׻8,/2C˞~ YW;3.vm٪~0H"C UooN ϛO~Fǃ&YB iܚ{ N"Ɩs+'MTl]|&83ޱMDƬ-h2ڙ5+HzOn}Q'\?hrO ^$UN2ӻ;RQK >y 2S`n[2?,\F>j+aNSw~˸X8:$gOnEǰ图jvpw &h_եm*_##L*Urَ3i3Τ\?^f98_'3xm3h'fp1c!G3k150gbd)4zl43u_E8gS}:GL9;J| }G93^3՜j)pz+X0Jyl3{@NDCz#4h7h9ѥ1n;>ҝ7]B=3qnpi:1S}#6ۘy}w3otuoudcb_@IDAT>a/h{{v[0Ia9:5V 6yߣؼyc #=nM|lNk853/@F>_>^4Zt#Шd2QRzQ{ >{`C%jY@/jc\]֌`$OY`F7 ϹHޤ#946}R4vVL ٔS"YFqMP0zi<,!hXuexuMV(1hGL¥q9zH5TC\}W-D7Y]6K0s 5bBfYpxzR!ֵ)ԥہه鐿$ L,<{Ɔ T8^Eb^P%\U?E釂ʪ xgGުVaP<ՄN&# '~ Z UwBF ^p}-/uͻȢ>A7N0cWes (6u @QNoCR*M* Ps] updv;1ⅉ-QD5d?g`CaSk(Qz&C-&`Αv7ПA0$Dǟ/zmN 8u]mf90Q c p RS,@`œ^ty Ef?,@ֽ`!߄aR/zε8S}aFtoDSxf~4$t4Cc9^9ڪH 4p0K*k J i?R2>m>Sfmշ_ًf)75#펥ekdT˜y[F*(`$+1w"\Y:2ښec|(ڍ 1>,j?l£e6LOmuF5Б (!e(\pHI\]_k8Ggtn`>r0rՀRh`䙙.>6Hok=@ ]Fbt165h 9X/I]hw U ) #Wm6<52\@23(9.Ta6zKE)S}g! _?_L%;OxArhm&8Êr5{Or<Ɯ\1I|T[>n|s.͈ \x3ڇSYN {_̱~=3u6С>*%>\1ד2 n?f[~wޝnq/ A'`mo]n]f鄋љ 1;o^iN5FP6Û.O.|M/C^e@ ' %*Zf`~:/णz}5<$m(hNG# ݃d7!7(uwی  ",Y| g茓͈!3_FI7 *0&N{'H\09٦AZc t#xިcGV4R?rh0YȌ'=فl6Kppά|t.`6}83 1TB4؁o}v̞9ΐxgЍ\UN'jên LK8tǂUUѺٻQf ^EoWkm:?tT`^K{f M-C׊Pn(?LПk-XW)0[go[{6}suTNO H(xkw&jhtU /Ö֙aT 5eg!},:(YIlglX{ ,8Vx!,d"9@ՓnݑEr}FòeS7o/>|㿟e^Ivv%lMN6Y=?_b)w?`>p 5h (xf/>n~xvNQnǯz׿J8,yDc 2'/d(ؗ,'pfR-a.;-!<-ݱı웃S{vQ,F؈]&B}~y:[ju2 6TǏ쿭^~t7vq~cЩ6 g2v?jW ?>H_!d=7Ct__π20`rq:fpLWJ'1q \`lA0y{@fc@mmNkʃs͠pƒ`#l5B >,qNF 1`fiBEf&L}f{hmzkaKC5}Fi)$Pv`Fi/ ɵ A`nfݬ=<2ZP`Ey0v37𢈻޽t6S-袟c Cî{ԇ/=.',Y h@cN~֌q}ыҝ̄#:oX4-0f=M2a+6ZLu]ӚM_\-b)1d)z^_x8k?+ Pe Adȸ> Ws`'| "6F%\MSbQ>#'.P`p#;`]> L 览,ClqtJzznjJ"8=3o&j_A%/Oc[=%(F;go~pJF89vulAօ`ê1XuL8ـhCksn0o,G bdaiwZC/A5}ze:͠|Lƞ-_-}R9zinK K+M^=e 9eRr`%cϾ<wӿaE&qIz9z?;jKF/8z>Iv|UÆ[pHͮs3q44&`dsMeI/e8&_ G:_vVe:$?dm 6vyvf#N6 dM{M?!WcXx0U= |ɨQv g,?k2|ƍ =&s2iX8-wFtnM-uVzhS`l%p `hh܅}gUy]!׻8E_3ܪ:}B6}2@H =s} pj][5kM/Gʱt=tX}vd`53|Z#[^t)j愶3|B%i3%3#2xw$襖Dҵ@=@nZL]gM^!ϲMs>0 ]cLSp@T6fb ̻&GpUvG+hG}>3]͛w?Z٧nMfELer|r3.nulՇz}s'?~z0WgDg:Ƒs̘6kNiY~32{m&!tksmwG@/O,m~ tTy2ט9Oobm+]+kNw-T`0n0TWa0 }wq"P塍Qk Fx ^ yO.f=Uc3{t;&XGһh!UcMbMj̽ZF>dflx2mJW-0s Wn/^ pT lo};9짷_|h߈-[eɂop^z p{Ɯ#k WL\حsQwzN%Bיs`LWU߳9g MFNOڋ cS紭ou T{h=/>e*g/wOf,[+F䬌 R%j+e44$v +U9gu/ $b_łj~!KA ҅qrfYC!e HOVʌB\#mp_՛3Dj{cД=LtQ =q!P=ut5'&IU- 'N([@*K9X nуp͌η{ uvԦ*]D&׬kcδ`j PAm~xy )Q}=8? DRfbci1ɠx ֞Q# '`Ck7k.c(,Fw̢ [yHZI]'FUtM"٘٪ o oHCQHg" ] [8|>S} :B?׼dԖ,)'V¤<ϰrC>M1f`\` 1#z E1Y328sRK9_j}u՜d>ξnW{p)E/n͎Ze\X}N5ȩ=.-nM5H|s9o߼ZYo&B}],2{9vُ3g_@~zifPfɢc3҄cܤXv] *U1 ~$+LGQ{xz/_6Cex tO7YEx;*gF+!pq#pκ]W)Y0`Xj\U8UB룏AΩ2I"pq?qY ⥫zeڥSetyΑhE1tV{Lt̠?8u?:=6/z>ou%^]|Ẽ7}՗];uOS=w׵iuuU=M;PZqRvBz`}~+2E)7k+׼v\vGyϟi[7oLS]hxN[pDO 0ʩ!`ko` t,E'}w;Qt`Hx&+Io'0Ó4P[urM$XW#v5탟}#$ Ō6T*Y-3Xpʣ6~}ѯ+zOo%\MPXYudT\Ssu.[BZcȾ;>rkΣCt o 51X%봓I N5;[о,sɫ6XDno7SBMg dyN¶^;4D뛙 !:~!otJ7QV_5o>g|kҾ{~Da G/*ep)HNhUO}mXDOK}4:`'~̍';<3M| /o7,٘LNv}cFZF_97g6Kw=x'm?-no䙋F0F)= pPN җU4^QajtC<|m9{Ot_J @D׷o~I0OЌ8v*Xb^U;#Zw7ک %6]N 8DbyW_4{,Ï!z'GjK_Qu8҂|!yr3MfKß3hG+tGO /ԭ^ǬlE{$-W ψ7 +o`H{dA` f4VbsF.i9A0> Tc48SX#zjo6~cv+4,^37Ss!~І;ͣCE _mV>샏 `. Ҳ ,?y^Γ;eܭ+R?=.82 NK̃ģ{/?%Ѝ n-Ywq} w9ў>ώ)HbpO>f6}`# $`̛?'g4ae Ȳ,ߦXa@2:(عya,ۀ 6k]m, uxutz`YƛY8ԤCWXfB+_M2Uu# p;=L8atomfI3^Tfc.Nۄ2ffDmDƂh'")o<޽+gӛ^~f:6tgo:0g<+]o#seTN`!ik%}1hpUaehvw2Z߼̴'5z*\Cn={,*灠!åjt]3>wc=$"[ş:-eڛ)m(>p6/rQqǵ#[lLnDCrQ]O%ffml<:,Gʐn9^?{u@jν^վfoVM(˂ lŵ^L'xNgsxG e6 uŲ<~}WɶOිu[LkkazCNaÜ7f2v+6?4Ƙu2#mtV䧏w\.|"ۧj/>ԛ6>-S )m8YJg G;?W}N k&I$sf\f2vۋ- 1]ߏy`o9pfm8h+4DYvT~~  ث8hxo~Ww`t9CAsegU57!Lu?N؞9hHkpk Ĝd&z*ͦgwƳ|?`˖>8lS"_]x+M6<5fc@0}hm?m^vr,Sܕ YM6eB :f iwf09i\ux3%/>ij7/>Fi>ïbɱsFE9͛۷zۓm]fA636o,4_ŸnSض!=?ka gle2z PɦF~#vydwfcHѹlt3;,X0TD O8٭)E 9rekN7eSPF+3;1 sPN8ms:eTnpka6!NX7&!=C B/3QvpB_78zfe /f N(c>2&- f"`'6f]c O/2HM=6 O,XaP_3O{7< W ՝ @InFۧ5gr``ƼT_@~usj,:-' .*6Ҋ?@x6N6<_M<}=p`/k .6*DZ>^X&F~ˣec`\S!{c(E3{గ NJT.Y ldS]C?*n1fb|%k0eR;9 g@ @R%R@=:F{ $t"7$ S hbl|em}=ќL>Oǐ2C!A(F*_i$=ٮ:Kיѧ_cNof/zfg)-ovgr_~;ؤۗЮ{mީ6#n!fٿSZܟ~kmR۹;q>/E0 ɓ|ǿ3Q)EiW'ڇkiGANAYƌy MF*+/x_'Bn߇v;;|zg[m:cxD]' &H;z_ΰ (J5[tsl>A {]@3 g}CGԣ#׳+xp`rT3֫HV5FZat+3:UW{F#E Ω *Ǽ#^K󳢵T*2оG Ϯli k,Zmk)$ ~={E2GqC~cLו._H@969mJ1?gOɮtl)fd#2yj x sgvI,70Or`U Sr{8`FdN7tuUq5ֱM+}((*>'ˮ` oި_o~cC΅}QG.y h׸,0gJ얻wmWۯ?h;ߤ܏~~֚hv^v w2o)"[5f!>f5ΆGB3wgIp$8r #w_Hk0};Ï޾϶Ͼ]ԩtS`76-t9ҝqlqƣS8ąh#5AH'U Oᤓ.&3@?!q+0 'z=h}_|@ q^]:ˆv9WΘ#:WAWF(yY0u?͹N3nle\}7Ǐ#]/+x ۷d_C'UlK:}GqA>pixxy.2 71;}yI/low~Ng_LK }+ZϮmhx0E:vb`F$AEڦrvGxi^!xK|x.o=y?[1Y\D,frw+ەon?:Ǝ!ӭ1W %ѯ6^+6nek~-{W̾+0\Z-!p20#ri! "#Ej|yNxs$Eh*1K()̤Ef$΂A ^o)d:-lJ `Iщ^8d!3=&4*@Ubk EjAN3{x`Pv>9FROZMsk >?@znFupǧn3cU {g7A+\c!D\p܀$3)tcS*s G}Neˏ6Nogdg `bXE3O%~(l2 :;qn_d }}v8Hrj3l];ʟ̠9|O}>HgyHj5q2,yw흷zm `Ν26im7~l/;W8m 8J J0Ѣz-W ^?]J(c:/]Ӭ@cg' T[*2 @fwnŃ߱KMp:=* -)Xr;gLJt0kq1ekD jQ5M2Z^T'&/=fL^ZʈEdi:\|q2;f^‰/0\MY"R_|P-0X1KtD{A-cx ~Kl2ya] '$qtݿ0T0O(\YNWz .d[``h quxZ%0@կ@\ҧ>FA_xw֫BMVuBsqJD[ ќ^Z3g '+(_`fy|e򿻹|/n`rIegz>u6_L*D˞2qɎXwV*ȋBE7B؀R9k?&Q#PV-)Ksr?O0eOI[Ͳ>l __UGKCɦ=Lĝ)^гϓ[Ws̟Mg{to#f79M^<<3 k,F k6JSck9@l}wM{~$_տs:ӃhQ oQcѽNP7 zo'7߼6?{г6G5^`'&*0Qi,-_ ߔV?؛3 e<SdƠl+$4? a~ٲɓVtR {W7usLl홰6Ƣw鵰leIO_sgtt0ہS0a`>`x..vܝh0x# ׀H3Gj RD(E9̬J՟REfcRT`(DAWeuLT!Frf0t<V)b^FbӯY;GXҰ^'1%cs#uC*LdP ~i 5cŋqsC 6t`_ڭ/L_Jivݯs>n@am<j^91oSc)Ÿқ.x.ի9 j\(-N_L@fS攎(_4ћe'5z)_s\KDe#iD}`<vB32*^^2H*Jm+0nm)>r>d6hZ}dI9Q0CsWy::P_Ѕ[OQ z >8칧Ç%7v^>'c ꫪii$X1xOzO {do=6t,ǩ}9uVΣ_sSgL@1a^`T7qόs'm,@\ǐrqgݒkEk륕]op'2cv< @ 6A!la:LJ৒o{`4mc`L?=X>)UZsꗥg<&uL:eɨ ί OS}% cpU`[,]&3!ۡtgU+g ew-=83>U .³oa.cӳ=o\s {"hW`~Lxxtc>a ֮U ?}NѥSH2ϩGyv |-bSr۴ݞή9-pN6ە/=hMVap])vJ:2񻶀?66؛h(CzΘ2t\|r6rd Zɯ:% Vo㫁b15:U0WkdCIQQo\~σtm,2V'ggc>g,T.xO?x'm[ޟP~@|@*gu938qo9^< v+gW2߃<gzbYffӫo7?כ~GsKWod6%}PiZQ;@?Ik:l>cÚٯdρM<7ˆ`.I'ľne oj/ʖv4z{ `qqwR}__ 'ctc8ƴQt=Qw=d]i6vslYS]6#93߾{7;Ev,o w:\$H-S%(X nכ_fI@]t˄&L[m%@ QkMD(g _k#]3>FP Q{3s.!LJYs ԥ[7n߼ʾ:ʮ:j Lj%yK〙>t“'O}/2(R ^hy8&*:Tnѱ@i;s [tf0BIcʆ u8c`xU)"fćL/Cldef0:bյ/ebi;"c,]hTA )taQ_νGZzSHRK:choՄ xFy1ܫM x8 EeV9z(99SC ڢ 'W91(ǚ o_px5C窟 ZhP9sV^cz<hʕLeZmq#m_)RQ19ʨ5`h7|+>qa?9'-^1 z>Gn:(A0Y.`U;[ !(E9KiƑSFH]Z7|酿{;SnRyi Ne&QA8/e4x CY[U!u§,7&vz~r{sxbs \xaff]O9ne%u&w[Y &@IDATc( SUv>aeTmԟNjEpY ٍnF3jH7<|_ljcɳݣ1n_5dHo1mƕ4eAN>ocO('^Zc5s:'0)˯߷lYY{aK秬TﶉV8xF먙{X[D}?dç'k@9;ʨ| G^@dTc3uTSfr {1\]'({^p\{diIk:\$t!gg)tnE0073:D1YVCvŌ8`߫t3s?|zU׋Iُ 0c/2bo:LY5F>C2\7PrZnϭ X\d)Dl\j NJ`iHc.g,X2U*R~z/4-"t6gyccA<ܛ3t [jt%pL5,1 /e l?|eF4# <=hL} ܔ}`g,^Ev+Sl(ulq̚S]/~|o~}[Wҹ{mk|ll T(q/f^}q-(bo{JIg׃EvU޸u]O A&,t-x-Iu/0ZLШkuhcCxWzEk^.Wߣ3hU}o2AgF3Ec%&!M h;؟W4Jcfe ٿ/f8_,o&,\R/t{k`&/xks9| `[W ǜ5nu5Q];hԳ̴/W[O1NqMoT9b $1ߴ>iH;36Ȳv:`pO0cʽe6aZ'R_ _!&}AHvκ] 2h ]k#쿔~AsQK`KV^n+0H Dև1cܽpy)?Mޥ>/3f#[}ҽwf rhBdK7(5Q(_`ikDqSx2b;~'xx4o$K1ZRv0T94HY0R=BJڇJVYr;\F5w? Diw=w}YKw=vg15;2,?}8#3Vw61/&6#PnnWIOMU`m}_y gci;2U8,n Wko/*ˡ{qE W2d LJ8 v|Zg~26QUĐz :[A1N&dCٲ߅ _ו]+PNuν 's&sދ oF@K {ٽw5Kоwۛ@σspcː񷉐@'2.oel>|e6{ކ Q9wwjw9tX~]I sa>\L> \Ka3.'zW? Y!Tgjm/“_ E;zRiӥ1 n'gdO_c̤2>iƸ X8;s B0d3ǒk'C742Q3M}xj u$NrNJϒ^3jzf9ᡪ_sdd]-9`Sҹ R,c{ dJ5xdJ``ï0|jM5zht\弪"l2oxv=`yسe9&H`WʎAPz{>heJw)JG_*|1N番r=;kS Voqx>#5AԺway n:2}uE\n'xW?zFM 4ή`M]<>ѫ9g#os?T9[n=7>ɜ~s@N{.gKU#G=~q#`o"^} )qi5H˟o>&6N;WZ:NFJL lpx:j{] ӿ:PxnP! t om5#wa/,o7{rROjz{7_?u" [$&}֒<`~~sdx?d}Ssu<(y"34CmK7.m>?\k) ǖ3V>j!Z<tGGl^?[^c /ȁ!͖s|9 R؉!:cp;,<4"uqC"cq!N0DfzRor xn)'~Mcf0 #5t3{q~$x0 :$DvH3s)͜jg| fw›֖)V`;&aJҺ쇎9`` uzt1π-@e`x3|֌6LZz@0' l2 vdg pF)L}^"WA|8g(r4^'~MV-wfǶ)$psp&F LPIw1[ىz7 .˹~fg4|?͌|!-5HlH8*tz6Yqg^ξ͠? F6W ) ~Tۋ1΅AGcj 12jwaP2j 2}N#z c y6UIl}zn2;վp|F'Mu;NwlҷeЮvW:]{ƛZ;}Ϋm .U|\4 Zn1mRf7Sbp!V0N*~sl@Q`]kIQVTNcOs̀2n$9wr&5a;v?nv'?z/ԷX޹}kN {OͷZp7Zwڐߝ#5SY1}pE0}J2RcۙMf3W[{`YO yqBoYƋ/2"༚#=dIYW9ڳ@Ǩ n-}\vߚ͞;b F`ףdPȬpx:a:3rjӍf.4r\ b"Yɐp| WtBLO ݠif _qz"L)>t/GN:zyA5K݌>ZvQcJfa}иzW_mo㵗h;]ST%|wqj} 19TN}\VI)޵?||3Gzq(G'V 0wmwZu+~F34uEoO)lݙߓ _ϝOL? F׹Nq*U7LɖYMؑ64ā;\.;p,;޷Y~n K9G}3wUl/+K7U"4{ .e8\c(PÛeH )X,щu,𳇛l ir$ɴh.XjLFvsN FC4zL` !-#@N/nYXR`ll'de'M)rX{o6U6Dd3R1k:fĩ5 xPa7!bqe_3ߌL=$ u{e`7D8 Wg E&*')Ib TIa>1$%ׯ# !F1q|M fC1 ;1/R}u:_mIɴ!FF`kM ,1SZWcw9ֈy3D55} w/-x\7?GtC0>m2)#0) QuΧ(AGh,$ʅk4`G+*͢-,A/po9kv/(.¥Dl=GhFY4L9EpNPZcf 0SLI2`,(*#8t<2xTֆjudԋ 5`1K\zPܽuF7.h6LvNWg*#LfXӜi jLP%fo <ޜ35u t% 9ܘ5=L5֗>|Ak d$l5{/HټlQ2./7_1ϵ~:.rЎT7JuC6liǟ~[ͻ--SEsvg^jw)(/Ő]D ?qхpµvA_3V( VxFs5e'B +*#A6Jwuɝ 2 gJ7u׆0n3$q7cZF3Ed>C:&#~qS2:Vr|OG0p ]8VHg+qpYIc$$()Ro{=\*{> VȫL7zWqz n,^)*o1AOnjEky[3S_}ST~ ZT_p3vѢCƞS!8ޠx LNx=?W̅;m3lfæf7` {tw".̸  8fנ- "Ee_̭T&IJSrJ:xDXWvxi4F<=lp,<%8q|0뫿/~-ݿ~(}&3V/scY#>:dtxl/jvd7Aw7l|1kV x}T7Gqx&oYkʹx}׎%W&>6$+GAp\QvQ˵^.CLo߹o>Wn~Oڠڽy>y0x^Ԥ;&ZZ8]bgaxbtNF/4`3L~CNKp{l| q0йj_ucqd@0 @EQOb}Lz52|\d2Q觮M5҉٘N3H߷OZrjɚz?a N< eܸvc&O=ceٴ2)( z_y6}1ן2;E%K*e/:mm'?Z2µ;n4N>h)g,Zf}stO :Zظ@ !-E{p1L^/B weܺ3^Gڰs?=x3n4r!+*?۵ٿ^,~R׀Աk_mt?/ i"ܥy"j(lMlˀQk _ Աq@@!ZXaZ3[L(|M4ڶ'\Q -G3D ~3&jSL C'_7%.%T@ af3HI٦nؽmS?oIA w !(rY=+@19cKto,4,Iѽjq_۵&]1zIި|'5TjTqTj Coe"Wp}_r%Q.,3h#s>uҹx@e"V&>!1@M? #7i!"5 _EympFL3 b MԴcM:)E z/hB|X{.)_M Qy  L(;M$#A YiM0ȉ}/ t)D^UnrdWUWVA>RPɝ#ʖJؿA3]HWx8Փ3F~z!}__QQ|KWxeΚ,[Ч.<$+dLeo*2.uL p|$j=o0ؕƂTtg9}2ECg!۸oA1}`8.e&lLk~zD?-79W/=jCg}fafCgҎb*5X~͹.{c؅pZ{t ̰D5F =;/W} I#_KKGzl k~h3WԆ:n1ĸ2~O3y->ps%2I;Odf҅ 9~ 7w:LKtɜtz=&uU8&*r촅Y]:5fBWBfQDwc'[A2 2b,T@"^z+CoFlf^}z }S/K%a4SiK>G6?G߼, RݹFq, ^l7NqXRh\ŧ,dSQ ݁wZ9LOiYju-oܸ FwL0::g[N519%ټ5 m,6t IL)uz=0y lZ5uON}Ssˬ=ζ}p<PRoeU>^&&S.cf[_m{2c#| „Yw2o^Apƍ&ݑMR*o! 8dgݣn<|3',/l^9i1>(ݸe/m%+w8Soŵ\w)`/ =*9z_+)粭G6 m*S 2~ң|sw6lpQEw}A>mh[=7غq{MQ'2 'rFtO*4E !dv640Q/&z-MEm:=ngGzO3TS=@cۜRXsҦTw+s](u`ZE@Lr[fC"֕8N0X~8li:7 AT!gw1f3nA1o-yYb)rgC 7XZp\quD?Qc53)\0!YwU~N.*kxvr'`'KAs58 Y;ĸEmAk nϺhI/ \̌h3YNE钀buϡr9<;)X"hm x̞<;`O2ǷO &}h/[FɇBDcϞuah1bӝoBsE_ʽHٻm^}UVa7>^8q'%v+|)xmJ@<<A_'XJɀ8":d/od)?x]W.PK製4o; ʾ"OnN}^|71 0VB>,/tNο͖Z̜8#ӷwJjT{eȎ(rݏf"vx=LXpRa(D'8VcF T| _]cS}@HGXȨȠI  v}Dv9fc(Igl׶} ֲPf!S`EBح&rBwm!=q0QoJ ,նXKѹ?lSyi3pv]{}GTAW c8%W#8̂)t;׍αMÈYNA=.& U**1q^S8R3{;tsT 9a4OJ(#>NYVKXp (Wt?RA'XK:mul&eY ~EcAt.,/T4PgPhdic m2t-㜁bfhK0cQf}E̎w x_UOOFNlFvnc(fk^Bt%~]FN-`n\E?#AVZVwA68HC\>'L8^p?Km6Ng]SShAU)<.!b߲",í+336!]k3.կx'+@{/zGgwz6dvդC2x̓oSݞldўQ N1 C6L;N_;j+%ܦǂ-Tdt}(glUo\k1yr4ˣOn|Orszl=~﹖ )j б&w54TC%ep yȀnʈ0w0D1ہA=yʃpT23t pۛ&^/D9 2C̬iD&j[w> |SYhq@O(N?GlְӢb,c1 ^v#CSzvƘ Y+)oxIBcLn¥m3\ XϚk7js=J{=LX?3K!{vν4w#0чpIv$%X1DbYrhHZL6Gs&fѧÉь0' {JtqW3)mfFYoR'"sN֚r|zjU%jJ;K!M@ogf;g^`2cxg#~l!)R,92+%=nrMp`xkyg,U8r, w9.GtdRt ?@fCRW"!l_}]k>cfj7EqDGC0 3{JYZw:yI^I jmq<h)y\8?3Fҁ~VnM9, |:Kh:*hb|K^>F|g`Qb~+ yyOW{qWU 3jPyPNoc\[5yvݛ+܋U`^p^9=;Ff];-Ghs4xd7R`iBaVp&/=Juƥg-1-oЩ`T>xzJ˶ثa!W`݂tx`^MOa9=l8|\ %F.FT*=%La̴9( ݸlʄwj7-uh@[kBho^Ucgka삭a,&^(b+Pۉmlx.ŏ9~/x_G>=k  %όN?pp' (9aO_ErvŪrWKI&1\.^; \*>rC/tNt7U_勜/ z"lY6 }]*57/w m ics^nYÛ 4{s]I?d63s#䛫do~?xl,=}Yߵd!N:~Tgv$qF?0 7k8D`6 *\_f#`U\m6bs!Y<=[0֠mZZkOOO2Zz{H4 b#Mwl~O7߿'\lgL̆'=i]irF:9黛(sƟ~Yk(1sh2Q(+CHH=3޺~v4"t7_g47~(4BtOYPa7a&Pw$ٗ7mZ=33_&q)d;v JO>'ɱV1Iݍ9RČ! u A:|gת²/<5zDd1G-BeneNTZ'/3ۥ5um}8 - R_= FOuuvY-1A4$@[ hP1wձ6'g}#cYWnIk4C17;PpvAP)-3܂h* hl`?%{#~PdJߪmzy1hkǧd[}?1{6xl>Gu/=7rsv`ˎyNatD[t=>-]8Uqs3eљ Fw<7 g&<{AW}$M{?^md:Vk&\#_8x>pD.B{ v\Y6D備6㜞ƎFp3br3_ɼ0Y6 |ޞ'~eiW;Qz'ˤߒ9;`-;W3^aXK̵ {ɰ7LL4&lm:i2U5ݼL)o>{o)5+I~f s>mF!'snF'[*Ti@g S3| 9»f=c;lY`,:ЦMkϗ_EGYAIV+;-]]`Ghwlx8XC@^r:j6&x!2 w>NױT8a6QƞzdKo?Sz g:ͭ2m]l |o~߶Ĥ#|ύp6oωl@^nğo/7{Mf7}z##iүvz^7x{Xﹻ~S6Mtt|8l7$\ȧ V1Use@ܨk9 &vۂX2M;-dz\+ׇBGlWRAXn&?ro7xW?6ʉ޵]VD=|lE$R0Ehȉq)9C."8a96 m̎1Nrh0(:xd(NZGBa'u ~^]Ķ~^Vk&=:ttͱU$S?DeXcuetԂCKDMjxu)UPcp8C*f@`ݚq£9"ΜuԆWpFɶ+̺k5ePUFPPktǜvF@SU]3O @3WEr.Fv;D$aץHH{ρK( ?C}40QД(|>d1X>OrsJ}+ҀF턨iGhߥ9) |c*u=;]8w vQwN~3>gyC|58yn[%SάhmG&:tַ*Q3F@:l AN᦮;8<0ϘL]83)^6Vqx/eOٌƙeD xP+kПX I&ʐjŸK Ylm^8\_ڮgڦxAK}qln?uE5~4ˡA4Ć6)ߠi<]J_I03؇Kןՙir=>v$8>LН0/S0\tq[@<|l돿~Z:#o`E;;S&s]Ԗr~VdZJlg;KPY_&{ms(wdEal:78w(n`SIcok-/8q<"w *C~3njhe%7f=w),k97;MsTdZ5Ѷ 6$|X5D7N9(?5֛\)*6H Jg}qm i&-4xe3=kg$Y AL31>%5]G 訮uqY]#C='[Ke7jz=7:zfgg̚Iaw:ew 1HL@,!vLF mutkU,즲[uMS'ǃU~U5.\5nwum݇qx݅8.jm1nn"swg7INVN w1]wqh=I:ebvG>ϒAL872Zi(U1y~g+,y[hl .')Mc!^MujdFKen^vg#ӗ_Jw=j@Pc~|i~N߿5\ W۩Jti{NZL5ul=}x ,P^CLY28;M3ݻN63z |و{trY(c$S&cy+Afm~/> &ؽk`꠬<#unN˲m]=J}7&ƲOجH]<~9j/ÂYf{co;7o\mk|Q!w]Xbt=p1c#˦աO !rl7Ev-OيWA_~Bl+x:G׻ wG5q}R<J:~_+D@ ":3][G"$AJ6'p!R1K)(ݯ)KN9S[8Jї+1|z(<(ԌڱF e #P[3T8|6)2؇Wխ݉Vq(C z;GҎEx4^czA-.<:R]8h;s]hM9 Q Ğx삭]<럺X&z']8Qj2xu!8ManMgoH1X> Lh*BD6E|17uUeIWh9G/1MЊzmhh)Nϩpr =' grТ)::=-8`5N.dp2Qv5igO,@eެ$[m~J] "TI7ӲVNfuRtx.8I^uvfպ]'oǿ~5?Ϭ{p.LsjZkff>| q<+p}Ƹ(nh /Bu}[ntMyR ޽VYt/ٍ'Y{=OU11=sMGl>?\y3 &fpt-1B~ nE9v YkW^k>N9Ng7*?[:]S>2큝Mc319F|Tjq깝lATdK>[7j^JG)zI,;5WI:B 3~w3>QO?L߼'ٰ^NaMVV9籛ed~eОبW֐ ꠔ  ,I5c{\︸ϛ9cɥ49O{h@|#G%P5ǰEwQfISx =yLO0Q=1Ťwcmj ;RxŜ_ȄϱceNjݛtg$ke3t ^Fwˠ'm~{?ԟ;;9ܖYhG؉,54vA&O=$ɯr=%re3?/U8+mLmp8pt+\>KHB~L@'N=v}ڙRr 7 @3ۯ;m6/R8eݽLfvkH¶\̞etA(q6FYA:Է8w,ݛo1| ]df/46o8ҼOVyƘlU/ Ȥ6G'}1$[҆Y] }r-/9gj%9N{mV|f+NT+Տ:T (n Lz)eT;-}2|v 0.e$цwɜ@= |Zc];J` p*^ ~ !JzB)H5UN+|۰CYЬrox:9n=v[j!#xÙ&lmU $@q^YHҨ'8Y}fP h=c؞`Mȉ/8'#Wߣs4iԡB_n=Yb@4~䈁`)×~{8HxM9xB!>YCm02FV_:Ru-x`_䀲O/g~+0F^ک <+;`\SYe :A:xÃgxZ}*ծ4oz)$~Bmlt`fc\"SsPo!?H6x&l1/v)XյH_UIpߞ&Olod,X8uvO}VG%UҙH^[ymTf f8r#>wPuy^ll<}&#IJU e_2e>+cmr#~ɛhi~4=mN<3twҝĵ1.XN-"'Mh R{s4_9pN[6#KK/_)_5 -Iy{-9 r=$d:8ϞOxw> 5}%6Benf 23{TnS(гWˆ}<({e8KwRlɧ'8 aorlS9F9q͓?7^?hYvvvRܺ9yz}} }ͻ=u?ʯ|^Ӊu"[8̽~wy<ʀ{%#ɞ 3cיC_,9'v{a^&4>f+Κ:)S_n^c`hC # ER, K=ɢp' SaJ`i7ctJtA+neVz <3}A> C0QAk601=jF|G9P[6mp]w܂>ؼIB O(ڼ ,FT8;D$7(6Qcj4'iζlQT'FFpez0o$R|D51d$c2_ᡃVQ/A2Vg$^+-Z2~lP-xe:(a4xCr'sg}lvoQKW缆+?\݀ ,<b-/r޿޻go8dh8Ksճ=XغqV0'_^t@A!njx.qsN?&9̵iR66_lVnLln1W܌?|u;?g/NÉZOAyJ^f]`,SYɪc(>-Kl 3Dd5_=:!yXi3ń7!T1b~Cb"oh rɌ4oMi}F? c ݲFϮ>x^m&$g,x`v޾`_)_Pcv:T} /=c8C[x@;?<[;~n#[<]!*<tWp1_Ѝ_Ӎ)R@v4I/~Qnc~P_\| įoݿ2}x*|?GlΉͮ%ES6~d,׻^euِAt!%1)˄ʿMήiv;|ڭ싻)>R~?ڏwn!?2ooW&:%#D!Ce =VʫHRк8H)ďcvq2(4EM1q38ݡc4FfD9 J\1i,6|{۬C.Q B#J Nm_)4G)LMZ;#5YWu::T79Ϟ6cL9ZڄKL36, 2XTs$a>(}yv>}z`+@/rT][Vqkhw ޹Nlo92>;~Pmp1#"^kxxV}d(?/ Op_iq&,.&6;ghfmlfP7ąw +~18"`$/eolQ5l_x^ |I:rI3'9<.W]U>N $Wޘl|5՟ sS=I`◾z0mK3:32B]u&)ZY{$֐Oq-=9;YV7X9-tN/2D߹b$󴸓S 4 l:]#%~ ^ͦ#OIm|8v爾7{orw߬ ;^:9Aԋo[UaR2O_2$WO~5= 5PAzyK |R{K s51po>zd8oc ]'/O?n?ϻ/,q91d.<#'a7=Gpn,Y`|D-VBhxcD0ӏxt>K,^z’ʮ0X",fhAV IW5Xs e&ZFD_orN/A2f'2݀ŊkHEEl~dZam`r+ާz<]3ջv{|mw]# U6n]7kv՛t5[R6_sS}?uVj0Wrh- "+={uuU2C 28V]*{0ݵh5Ynnvo`W?=n<2nﺴ)S{ SǫXO-[ӕ_tP0I0d)cFύʊIl0\$^M7÷9~7zI{ WT/%Us@qWkewG2a7ݕ=.}6sDo=`Mc^)2G@dL~r7l`لE8Nh Rt9_/ѽ+NIA4Z _I 40W=`;-mxlۋo~Iv`.ubn҅{<: ׅ +yU!x{PymA~oUϜ f'gsq;zɿl؇×pwз[wQ9v.y A}v';|y2@o9Yǂ*9v-YWp[_H6+pzxTtP$*{lc =\I`kru|K[`y+^ңu_J{?nŭ˛w_QnOe}cE?,3ڸ.Zt_we8kPc4\ YQ҃>.;/Sf>DۥBE^8-dO0!E!M2kHK5S}(r)i T$ GRfµ]#V061cH_Y)w˜FzW}_jU H!)W( $p};#jE΁ REjK;G89JQ_ ş5^ɀnáx#@6G&E^1s>ӕgA 9O.>l(gGP|xoSm[no~T~%{7G6lp}YNۖ]pI &V خ.;n]Y_P}Q(±#8eNtJ 8kth;7Ӎ2{MbY'QOY nj%^ 21~|J Z{1{F);Bg2Zʞǀ}CozpFwtݑTOqct51:^EYƩddINu꜠FKa+q骥m#h~r8x8d굖ۋp;z^el6>XZǻд̠[b<v|3~Ó6چceGC왾tBCqwWJkUzw=W,:ݛWFqUF-^glXឩraA[3< m*ֆd-[ۨfI.&9{+Qnjr5o6B2$e@&)MtZ>k7y.c7qmڣL鼀8A|tOY*WyKy j%\gg L#SJ-(U|$O-}h2p{ūXLAt߂@]ׇ^cɊ$7X9_rP?}bxlǍecNQJ+wnveOF dw &:~+/}ߍO3E2@} " >pE8A0uA[?L)[8Y=yr9S>Q % !ݭ4@ V!_`_QfbR<&ج{Wk3L͑BCܠ}repv22vO} xRyaqѢhp6cY_׎f+61g,ujj8# 8t I~KUNqo2*ofך-"g~l\f}]3l&Jǟ̀yn D_wO/o~@=lKý>p%U"sI, X{zERorOP /S4ie50\Rt2 gp/K†!|:Gݓyf |cTL { kV`%R/K<'a/lxD|o`|W{ڱ[q CxN2&[izbjk0,s*еZG\yֈGx|ݯ``2f֐qcՋpdָkdeN0.Y;iH79CD\8N}vH+{|GhiD#s;-) &}Sgg ;DS|Ln{|Gmr_ƞ{mg3Z,O4aes:٭:G.7l|le80 ]/t_?*j4`Ox oIY$uOxO?Zu_Vى0_ L8lL[Bmhv{t^|l*AD&T5^$ַNWFw 1"/Gza,__u"qo$Y!,X5S&lk9rOW Eu7Mg3?` ~z|ϕmqtFc2p#>w; }g xޒ$r%6 7EӃsJ/} }VCYNDxՄ2(V?o bi8j LnV͈0 B):!k`\6CCuci#oCc~a)= Ϙg8=`ˑ*WrRRQDs]ňAϊ^Q:E`5L9HaZVҨ@gnp}E:)VDpP\?z48--P`I?=kb,3ߥ3(H nI< HfXNx: x@Ơ *>s1sE<_,Vq@IDATE q4g\5=#@aC|JTJ3D%<WmUUk}xd\/M s+pQY.r0b5V} =B^ch`o:G#n}|)A~rvlYwWƺ .7^9 t?htUϾ̨aGCM7E툏o{2 A7nVő26 TgA2 !!AϓC1˲zQ:G]wd&sk<嬽e1oVWR2q47޴ !)}f?^Mj^AKx7ީ6p%;rtE/z<>$4΀NëY$/r!~BSƌp]>6=<}еꪙq|ɷ1 m4;3ֻO =NnN&P|/hy;ϻ>zw]!g檙h6jչǻG|B*'}W'Uyz~:|{]R '3+5}ONRoVڞ[R;j?iga@)u^j{M2$Y4G6+ 8L/S/:U?7xXr7_4=S2n6gY_@Ӿh4Z^o(RnK_ 9wp58iMC4^z"q-p7$ys"LfQ4VN\qs6̭pYvx"h:6SK&4RM-h~'|i/ɛ=ͣ/Z|Un^\6E}i1͔.51g=`ݮھw ߺ:}Tߣ /cճ" ~eZ.`e;o ͪ:aƌӿ~?Rc7˪nO OD[ms'ѳpz8&" <<}U'SdfۋfǨw[s ƥ,Zw/X!Ϊv0c'^JP' Uo OACatyv?l—!C6{ÆH>o? }&~݄Ư>VDgI@|}pRUv# [v'\A;2{UԂ:^Y}N(p'uSlcG1n?͙]҉9dM)H~U)َE)7V37G(Z!%asE_Mdcʐџ2UOT0 1%2f0(J`S.rt՛qC[`D#pZ?8\ |sFM:Nw Rjݤ CrB[5R"KpsNvMnYEys3  fTrcP3.O &͸W@);9f8Z: "(3(mm[=g)N37_ST64F#MNH ,5,\AҞ/#G(SI{Ny=|A6Xj )/y{v4|U#9I%NhMx@1#{V+#G{S7jLؓWbuS ݻਣMA~n@pV^o 5TAfP|QXDwvZE7Vn_)տgf& 2ʽ+S=JuQ{kSGύEoE}`ij/еk>>kuz45ں mN G6/z8 6`O)Qy[o?Y'ྛXC 2VxyٌOb:&__NnmjY?3WFeѹm'{8Q~5_ڠM@fn]oC0] ~?_}m0`x!.BK&M6>s%>~dތb1ЫR@9ε!O?u pS3*o1Ng**0ݣd5ޭɦ]~_] }U`7#E}m_Pt>?}3{AiNb0*xuå? O=>J9Yz5rprvV<\״xJnB/u9l3A~O/閄rp2gjtHGlO$L`f3fO6-.J/9] ߄l66п^di3m /]]WnhcPE[".SclThҤϱxipF'vdW[^3*K$x`YW4ƴ(u6ذ='L2[|={x29'øLy*r~ݞۛrPeVȘdk5F ѶbB;5$Gw{< lQ׌p.Z2ll_*b[:MiilOvܳHgЅgM`{'[+ `N2x=9xuqr=|D~mςվ;kﶻdS0ZU[]7_eĶ 'x& OYmr;N\ܓ`fk˓'¥J"6ɻѕ 6|?i&y߿swO;+ խ8vdY' &.z;-uG^и߸v_f FN.(et,aѯّH9γܺs6|i7- 9MUGdgF3b& X:;'Y ɞ\և k(a^l|QwlT=tfVjրO=^{Mע)W<[EɅ8戣a񺪻~\Yۂ8h00?=ærp6H^ǫ1xpϷ팞l-98sUJ2 58fHU!utNF#9_vԞl-E. `;}}ǥ>wg$TA\]1eRe jL&3e*Zژ.LxEs>PaYfNl`(AT;9 "X1yyF= yl{2 fFt⩾oc^p&n@S}l*`?Q:*}>r`IdRƀq㍇9QMm?x4IF&o6sfkў(ވ3H`\U=q ~n wvSk<zDAxA_9m&h-tnM'^X]4 |Y7x*Zޅo̫7nxZoeWOHuc^]S/]c č2jX\Od4xM.Uk0ipu.k{8ゾm:Vr]ru /uOEx9g ?e Fr~e8cyM1&@ 'i 1aL | `ץ 4N_a sZ{l-G%' KXfuuWzb4ԯ 3\ol^`0 ,Ɵ|lh~sti2'6ڃrt^o=sיlv+u+>D3Pu 8S`Z&#v!~lk|wҙ!B퓏(53hV&WQhw>";.=w:"#lr73~c^HC06; il4s */mN&$\ICe3EHiqX2sNYx2 ^{ r@,;~w1pPB ,"זaH& Lќz](np&DN?, vv _0e+ϑxaΐF0 Ջ̂^*KQK-уxZFyހ) p@0|']@ t (&s&g6k6pz|gȍ99:1?o}twfYtq#ȳFX^f~;'s! ڷ"djAé=BY0?>gTƞtf\A3rӃ'0q.}I:-a ~_q{Yolag)F%:pN, *G^'O2_[)CN&Č>tqhdiB\Q ts hA\̾2%@ɴca#zpZƝZj<o }WmԞ`׆ %;(rLo2㞶F+:a-HPg8=ArMf'ݷGSI^up9q:w {8guz>\T v6*@f% gU6]R&ZK3꣱Dc{,6 ETY-_*5&\=yϳ|mϣޕKVe\knܺtG}XReo/։ OO<80O:v̘oeL?{܎轍ng~diIc)T>#oad 2Ql/a|0씍YɢʆsQw_U?;݋*2e/k37[3|e V[8hk] Q@YtƂEdC=+~g?(?>fuU6d]3YܜA_w =[~7[/8QD }boO6)p#^b= &pxDSl{O~ 4oLBk_f(gkOg>Vp1 Y?} wW8?zs\m_M& 艿*wbc ɞ lFc2)@~BY~~2QH`t$8p6g_tV)qt՛|ŝ~|ل`Ev)^DLϧoulJً _;2N[E~Hqʦ2VG3L8y˹FZ.&,Wˋ[5S?asq˄p6 )tNtH!qQquH*15q _+%ZBg9r/ŹTxF)ތ )cvYn8.dxQKсa1 #!F!Q_lY9RObg,E@iE;'RRiBGb,~z8~n#&KDfy91е TMŞ KmDd8'u ,XǝJ~f4׎ ֛V^{f(I$2bV^)dֲkws<ǥ֛bُJ)'7_=2 n&xu/|f%̲9RPgJN:-4nPzCe( "GE?צ2L:N/?h6C_fexM0I-h{foyY2EA9k_Y?΂Ɉ#-lnq #mFuv!IƂmfWlGw;0w4s߆d ł*N` e?ot}7 t `&8X{=1 JAzxIz±oxAm}`eY\E>V(x dji=tLh^`Uz+٠c8NQۗc{|36gxV&*́IO琷45[Y: d|. }-301 <jIl'Lm0ݿHG#I{l^?e֗zGozl=]K58X@,SYWG:pW|`au'{ryqMW]qZ^R p׽Km 5!euԐQmW{KOfr l2] *yS[NwZv2W->l<oϕ8!He81ÖsWKoRʘ^ԮўYg\l9e3歲^j~\ie 't]xܲWbt_0jKn^ORѧRh`JF\Pǎ=V@?kK[Ӿnßepm˹Oj8mR_zu2G`m}Rɘ` ?h~쓮ЁNDc2st#uk|7l~mUn$(ed.@Yn,0C&,W6>S5HFC%L=2oؼ9*+nLq4\ٍj> O~!/:sd+z ~l!OV{h헟~7|cHdx26z݄ w^/]L_` ? "B$>;AfA=&:,S?D)v90@[R2qm_>SHoo04.O4Xa;,ge#UK s*Bb (ϺL&sTQDuUIߌ)[p !=TdA,mtZzG:Lp6{۴ XmPŠ bubju5Rۼn3Hތ9s{OGZ 9EF37j@ P5?a0ev٭WF}"y>ktJRzM v] fR}$LGyNVRf3k1>CjSqxciC9Septl֦҂4#]֮EҥMh>%r.L^@1XLΚTGGc h/}l8 ,|D9W`>"63h`ZCڠJЉ0+7c@QoRC`9x*]{1 P`6K ی:'Zݽ]VG+xԷ_3tAl.p-8wKxmSS,_+G`]7P]8 }A)c)}ZDUD}ކWzoh*2Fck9MYI=a>eC{BL9FAdl>3{ޒ':9yxƈޕ;c '`չ ڒg{Y|`!c]cqy2 OWZarRo%c.my7yTYxVzfɾ>I| }_^k=|˾ȾhfcH*`feU=x/q'_#z@&=zzL(JGKr4.9E|u-6&vqdzmzh$&1f'{&|op b*3{ќ~0A™ rf~Pڟ%}4<S+tp @$e7FK7R;E'Y#^u%*ޝ&LyAaWt%8Kk_m @-I]oXfcI|sOڸXh}3//n$$;h6Fk鶷[o[Fbz_PH+SN |O &o~)cluӝ)p`\`=ĦBz˺ 6^7e_]zI>5snD*EMmD80€ @cvBÐJA4VH<%/wE2vb9U"N=`$ >Qб`ū Rd0eP"_Ԑ s>IEF8WM'je"w Qz~o5bҁ鼨'-,Cvs7A~!W J r lOk3JK }G)[/oX)Mf9Ėj! eV{{#?胋{hz/2uH@퐉;ccyv*u'@nF]9 Zc⤿w8xp8~NDi4(\' dڼ ?& riӳ~ˠqt2҉sk5=:pzNeC>c| wגWV_Z@K#LM?W =k;e oTgttz sb>pg7%>R~GcDK݋ 1e$ugt45o<']* !g,5dLtՎe2~3qBH f3;{Ր3Y9BjzgVoj4Yp&UF7nF_Kmoar87s͚K)iʑiوpn jmLkҘz ր,㴁ns`? Pc fHQշ]_gܫhmT^ۧH ~^;γwx4!lY<:]7k}Gn]&'o_'}q ݗϳzf#l}chv[wj]Sa{ccKRm 1<8=;=ѳ~^brmόyU_ekqWt&-ƈT}Kogh1tNXrz=(ٺ^?[v V֑kWvZh~c~{,|뫛fߑbCmg6ʯmuz=ɎUx+>tq+^ؿ\wwlj}iTz6`Ov:sH ֬,Q/#qE>+낓^I26o(eV8nOu8Ͷ@mr-wg3<'`}c~l/Ә6}xuu^B$~0 = iQtf2ohnT衮ӧ 3ߤahkGǐf#G5Zn<>7^(-{ 67W?<ُ_\|;a4za~떹,\Z~3J9Y3Fj|zFe굈cgf4gD #\ck G~Prgr>ExWPvnu Klҿgzrjp,gaBeYt Čˠ 0!cwP^:|;HEW N1ϑӠ`Qv&suތP$:P]Q>kICqͶ  .͖I?e}Z/%wJ毉y'jx&f} \(0+AY1e Me8œg`8lÂ֪aꯩ`l5(e%^խЏ_hNUB {^i7sz*Cmn H' Dm"-48eI~cB^fL _£D} "~vz/Zxߦ#= ekSg7(T2GY*$+]<<{>U/lf1pNR' 9vC&hLz. ktMpݶ)hx}^6Ovb.®U3w>o;\: |񧯶|{t}WJmnAlf$E }qEVNĨf? f/|x`>Vغh'O;5U^c!Y%(٬ o2Ѫ64vk Jܨ._3<ڰE7c{]&YnƾPi6nz)Ԅ_YꂱG/%< ] ?c$\ircU&S|]}._~{]Fz?W:3;/uK=xL|G 7@ 6f .c&@7ci_@9cЅ>G :%' ]Z稝nG#[lSݚ;]ľm<]"\!bQ G'9<'2,һ|wk7*ӳSwr}DX 4woSt8i ?/(܎Sx6?TJ/MOw57c!lt +`32̍&ʝz:'+!L7~WMA 35l5nL3itcQʆ[6t {XO5 dm]k{J???Т&mꏊq :op뤢w඿bWݖQ(8݃Sm{  #e7Vr0nw|7 ߑʌ~U] SVε /dvg@`ϿlɐDY1ҏw˔|}vĸ׳/n~H*I9ǿ/nW{\{vbZ Z_ſ|Nx_l\o9^AqZMw/=t#嚠M~\f'(xUt {.zε^NE'i˻Wzb/n2^4ޚW9O97R?UꐁY:ɻr=3cSXO %p! c{ /|#k$bs QzSacJ)8z7%? Z?җ_ MibqCa_dB[Ö́<0ĐZ2ϡy>/%u"%Wq{c.jlM $1dX8*ؓ t3 T?aCS6H֕3nڄ =o o,kPw\PF@\$4p+s-4Gz] p"x&xiN~I N &=.KPcklHMZ7GPIɉmʴ]mK,(9ʓs? l ߞP  pm27=#f=ᴔSgSo Dbk,!D 2:г͡vt0Euem >&LJEח9crw Mݫ&&_ӤMͻF p-8,*9<֡:~߅~M(|#3}RjRXq+xVTg_CTrF82ӳTu&9Z-pU}A ]knK] 4vA(y|E|O:=#&|: V=8KXɵac;3cξ_ i9@/[oI}{Rl X=_} ]/(aB n=.mNf͢|ov oH.`뇢Re=n޺&儛fQ8bMoWս&vtb0pɑ[̀O.ˎ4= &d{zZ^g"ڣW^{!X7{ &}$*YI.=3= Z;d<];uy=/'ˆ+=7<* _ |nSQYm@IDATIFwm&Yr5BpƣnÌp tFP#xx;Aߠ'v,wO)~+_oeԷ՝8JK]hr;S QGGik x wys(|_Z;ki\TmsC'PKV)y^ӃWl8z]Nﳊ6Sڨ8~ bt[p-+I0/Wt_+/*8:X ptdR+0o<ؤvBҥrrz9[Eu)vM IМ٢zVGtn}^ƎѫpT(?&otd4:˞ 5vѴ-ŭT_W/WG0kV6412;#x& ^|U a04syz:k`[ U>$79e~И`vot}`^VƓeI?糡}2O?ţ&<|ŧNO-QI??~w_|P=`ڛke)5n pC*f\X%\oZ|2qW4WSLhNݩ:vqfsll`1Ow4Y%,L0uHȡ`z0H3sҞ$a:C @.ٛEnJ9EASL]=.s dw&S18Jgm=jd}崽 c'@ρ1(kYKy@Gѫ nj/Sp{#LԦކʫų֏\2mor+0 / Ӟy^۔ɔl`&gVn+4D +йm9DLY m9#x=~sG|9ٸof)mhwH_!H)p47 ӟHWW\ĆfK/b)_M`m$Θ*Q`:h)27@vOIpV XD6edȕ28[Ἓ¡e8W-IQV')=)y)ƒ, \¢TljfhaPgΰ+[zeC} &wn̠Aջ ~N> YD19}2מ~q@]hq>c ofȜ&みvf|xm&7޲0R9|fQ[]?%} eKm .AG<mR4-'uIk;-I. ,>yӀ?g#L5݋=7?tTeۭkN`]Â_`;2n#رsNĻYxͰK>:Z [{(F6k`߻;go.'kB3z82x(i|f C<&6ӏ:~?~S<7>^4J0pl$@:il";~4< k 95*m]X]8xw_aD~o|wl)G$8ja΄?}rK}1!`'G{) e5 EN\ Pmi#,_3!{CRtPOⅵU#1o弨4ʾ4!] ko{-K&-CG}ŗ|Szx=ik'K>O{pt U_,yl'hWѨ }YgpvMP Uڊ h!K FtѱUUhl~D?{E(k**|8ܱY[&a,ؽQ1\hx𑃷2M <]M W.5ʎ{g+lؘaY&Wpx%dy#jyl/.~~†k)căMK?yË_ص-Y~77o6Q}MlB@v/1>L73>4*ZC&0ǜC#3MQ56\ ZgV|3hЍ_o*¾3d#u=ʙRd t>|/zUV`koMɆ΢rHnWMNo l] %7[;)8nad|J#hg D-8cFh٦2Zi&S9}uSh-'E<5gv+F2`uʾ~aS7Nܽ>:x3﷏ͽvݗ__\|q9vHw?ۇ})f W8?YwO0QAd,.m(R#{; ΐVprv<VtMXy+KpzA&z=>m4}ZnK[ Y%+-FYm G}/Ke}]~,0 lAI!1AIH fLϴ.)oee9,Zۜ^{dXK\Ue-:=Go#-JߪS$'umCXը으t*9Nro )c,v r4$IY7-osm$1IB1X>rF&[`O3;A'a1(}Ux F_ .X+YB zj{(A'%R#DAJXY GnC3~c/9cY3_(%8TtO$vG+E/ PO}9 ꑏqom38/%c^_=OXV~SAG;W^v^~6l1xjG]m~y+9l+g)>XeBpg]rx*F"Syz؃vŃJ>Pţ7ڶ|ýг(2FM6vj[3lݗ< ~l1ր4 gwAݪ]%E2S%+kt|=+4@\{}C * KG%5}32Nr#/t A*oяu݉`W>)' OkNM5ez!sh06zxM$}#;36OTԊ[u+O9B8:Gc/X_k6x y5=8-$^o{?NXt{X]l8"l}@v#,OܬPNml ~9/=Z|ZYS%v4WwD'ر,^_⧗Kx>߯{ݷ9q ~|qo[ D=q@/w_n|p[J|Ͼa']ohXl["T^á{t["O$g+4h,O0p|J{+y/}$%~?SAO)G/ڸFߧU.c|a/|=~޸>ubݸ\(t/T%6ozC{b;GI?:G n.3Cr7dK +tm_D+'tc:h]\Z}x@Htx+|Vk ,ppK]s'?/G4M\U} rkg3fk{FzBY;hvkL9IKv=7H:˫2Sb{\N4?`-X܉|=kŕrX-k_eo\~gaNx}>kfy?w/ ]l7YF Mrs +>r !94Տ!lX{7m}g >gϟT=a3}ƘqdxuLxo< PVdG/Z֏(HG62?#ME2tzO%tcC!{2tBMSUMo7[EҍN$;[ݘ~&<M$M}G3Ո^胮hR/vx:a&SC zqmΈC9:o2<ԧ?~偿{-[dlD=g&*(HQ# >m8wl{Dxvg+~l1I#<_^x%9d"o=O:'}^m4m_dd~QNSǗ7;_7ovKc_OzS47~XgFt-~\mv$2G2W &g^] +;}m|Ȗ̧˟q``8Ć 4]P١}N=-О|feuljN=ap}k Q{oGqu4( ! z@ R ڂfw82c@sf ܲ/ =L? >>ǣ_Y;FvAS̔x*!݈͐a|pG9 / Y|VZ01 ʔP-I2RenLt%f(8@9([9 Rz\4dGԶdm BN5{m0uvPVmj|<*5cH'ќݏLwP^C]`~D 8u3P.ۀS峦]] gm؛1]0+MaQ8VppGkn)u{0ZCC:Q` 9뛯mu5l;_pUGحPU`r{f/-f\XաY}_濜UT꘍&l+x lۨ+|\ j~V'-v]II@Arw?5aI~ȸ`vijYYO+흭p<0;ߕԥ)=Ƨ`p &۰5yj6eJ)bK׍ḧ~hODz/Ggd@Z`d565>k}di+ |cow >Q*q1 [*K>=kե]Igʶ?n$SOi0 .򋏽%~`89fѤ!di8d+)6TUl껱{uqh9kmF uxMr>N.˽} 9*ɗO8_?ŕ}\w$ۜ꠻%@ Lv/><|VWȝ#ٵ٪vA .^5sjѬow\ sf w$(1[ Nz^A]R4ǃ:׹vjw Bxԗ4Nr\+3U#9WZ@$&eσNEbp%z*[߱!XȞcȱ>YIV,ɩj{âF&7w F^͐{gq8rMxT\Nvvmfr~:FBsz6(Ǜ c YT.!xPY2wÿm੭-ߏ7y%is>-<,m8$s6}V0d`|< oo흵d`xFdxbЌoV4 O[/&!tڪ>'^1ц2X r.?8 At0L4A9 /AbPϙX]x!9KpO >xkI@Gv(LC +_c>Ԯ&5[өjMeݷl֖\It^oQk$rmTzԡv,3`L4ΫkZOmfCW[_}) ߖlЂl5K[֫9BpN;x?.aJ6x~l@G_9SƎ$dgEaJٓO7/h~凟~$W6IΞ.A)Bl2r$~s{2lӭPzsw__V@M!rZ"LőJ^ѵO:/SO,> 6=t8M(#9; ϏJta+jVdwO@$ؓ`a{Ί+nIh6o 1}~tzR"' 拏Y)/i߾zS+5ԻmIRG#_H91YrijjfvOq"s8ZC:?y=0uLF ͜ o?g34v5Z=/)P׮D-t3j,m " o>Ne%Sv[L/zY͝Ѯc]@jxե N,-+1. QlOr:6HFW~y?>=dA1q:h}t6UGzMx2UAH{6kUk`|FQ>Ue6\I^̂:OCvN痿Ʋ7 %?37<~u}w$ÙdϨL%r!5[~iybH ٩%]V+ko/<[IWC^Ο C<M3qeXçu(Ǵ{j<G+ulMc}Wx>k?lӧT|HgscF/ ۽[(uc*U<׼/t'xvDk ~h)=犭CoBJپ%AžxA4J: X/:KEO 5w71|$t 6.YYr{ƒCgY/ ggk{s$"LY&O^y ɛxӳZSNPpH:^eVh}2ғ^R``( ֳؕ?t I3/AdϭIft]BW98fݗLoew\22`sl}KKT&׎O'TƉ9}nU: @>ŗ4 l>eCɈCb+/@Eeo/jzmNȘf`{+]ssnD˂* f2%cRr[槟^+Sխ~u0U8rn} V8=F >2@."W2[Fn/_(eCAIA~7x H%a3#89iz<12NtPQm> Xa$^ {vt+_hQ}N}Z]mU-/[r0Of͜KrH40@t XE.62yD 374+1h}tZQx^=ND ZJ* jdw-] LDNn`ALƌ t&f]$gdcr)8QhV Hn$Mdnfbo1D-Dp2?7{2KsKF]_ʙC{OHf@&23=`+9;y?gL!I#]g7C[hcUfM ] ~E^L.btxuo._{jnq'Jiϖ(U$O]]ڊ+ ٖJG9v2fH֟Gysびo}_ޟeP?l 왨SOlKeC1$Rţl=ilpn%Dm88;!־ ~΀_!=;Km LLn7kL2G`鞁[B`Px]&-MTIA"¨^j rh3۾%@jbfH|dSIPV( %$q\K'q8*J x:NvМ5s;(X};'G[p/ :p1C[$U_GѶJ]Đ~hP93U` h@ًQӆdk?DlU~D{{y61E''qy'P"F4o}یM?mhfm.X/ӌV m`~)Hj7\f܊If׃Yϥݓq>IG\9[ їV )qg7iQoO6nQL@gם繿tVPEfK %0'SaziusJH5{LII-Ml)5Y#y&'f"88?רU/Jyҁ>lAq/ճd؞Tn_f#vKZA-+ WrU<#߄{CPrs䓃*k7DUvMO3nn3|lm3eOKm8agN/ tmuιd:rI[hzl Gz1a}DWLjDgC8y֜J +w+ QqhP^mЋ{Mj;eDl^6kAZ`e绒10lLVN6}w"h!buӴ]5 ]6[o28%#H3llA6;A//!R|G_%:_n[ѥURҵk:^| .vg`Dy0]QiqW۶$ˎαf&C،.<H{iۣ4Q3ē?Ιhy$G("p:]̇R&^\ _]Ȗ.؎heøbe|Y+f_ L͂1^fތK`n澬 xؔ.CPo#Qm%)XL,2zfόX_=KP-M |澳5ՔoQ=[4-w t++xkdӱ vÒk{+۵v8ok[x~W  F&*:H8Luc܍9[h(x6ݾk<ٳ[jxa;mfP2[jIe̗6H LXyոhCŁ>GVuħ答7^^^[ ({_vz&$nAoܗpV<}$ߧ_n|qOa4f?Bfݿ_/|yyrUgu~W_jI*so-l`= $E>Y_ ME1E{KŽC=EI֑/)_?{ߡkPFӌ*50T94XOeކYp-Df"Cξ=wYϨ)HXb42!r |BLx8T" э/P_(pm{f%EIO>kNtHd=4O 9Dp?'usvsMY$xdX `d/G$ٽ9u`|wU;nWˤ JC~v}ZzdV~B}~_'#Di~ в-M*. ^Ura'鷚%,4;ϿowG?io9vsf8FFGAcLo_ %Q|A]/Zje&ӷBZ(>.Ai=٪Dw"cpll;y[麃T4:s+m8{;Ʌ]@A&S~AY͛gC~N<V = ^K}{u,aTGd~MOK88Sw =܌4to3&xزWpt}c89DUYZ^A$G>u?`P$6oFkXpMjLWY@IDAT*~9Q8O/NRJn{f<1fqI&;#I۾%Dg{wx <.aR{@}pGzUȒk q6g.-%рMAOKGژ3dԏ{=hgg7~18iW6Eƿ/fJ m&. k ]׸f v k N@%Jgb\SӻnNI|/#|SHoHl˻ Vޒ_J.!Mt'_uBmI{=vc~a0|_]zYLW#OjIIoɇsVeK"4R0 :x˧p@Fx F[NӽG?OZXʼѴ,jKԉÓ?aerʌnk !L1ƣ 0LUp%5; 23j NkO)t.#mp%k(XNsr&wyy]FȀm,Vcƿ:yR)HւG±J:5C]6ig"&[^O Q$Y*xIM\/[_e≽Tf)ǮPPB֯hbDf N:AF|k]ǂGQjEjAv4b FW Adk}տ3ȅXO!|dkT yQl {E~9I+N#^OuU5R˶Mɀ>eL F\zE%99!`=5Z=} < EzkgÄ8tUu6`{Д{秹Dw0M[ &g+4z0#\O7V=X 5pI! qZ\"C4ī=yJ0K+0 O7 薆I2כEt N8CAGxK3A_`0g_d $?,vO5'k9N=:~٣ 'wǕuS2jw٫GxkFDF˂wf.RAqw,D -c'؞pH[BER/Y}rlĐ/$#PBڣS]8xN~ =O%zK"՞C.9%wlq}QwVY Y8ryf$ >hU%ۑcr*42vDʦCjzX~I hdQkL:Yvc<1~,5< pv/" +|62Z?&rlM*7;2G 8MʖD7ŇuIA $m{bEhpU OzCןqTi7&ؒ|ku%]5vO"6ܲmGVkvFz\ ڣy#"dCmm|P.Y\Q2dq%8跟w˓ V2v$0M7J@r3aN%/b@fBfu6%ąԸ^V|6tU Gm5u\Dwa{) l{Y`QsNe8/%Ɲsl2 Y˾07ڈuóDw' 1ّc?06; CM{R鷥0S(zN9i>I9$o~+|1#~Ee+gw?r[cH2&I +ԋ+( r{&Q(ě {uͳM׶l(z,7%k!sU} hCHS)"(g.VYKj(9&X/*oְp+D *jm^# e$vAcɳK4Hzs%k,m]GKS ޜ`fV( $䵯ltumo^<ٲ1fcuV4F hD^hc^&ɥjP:'Gf ?tJpyq}|7y2YBN,]P1Xlﻤ]61&ڱڀ~!Uݥӂ n 3K,kQyqMe9!gKD8mbt˶3Q*ƿX4l&B'W#s2M8ҫx0u-<"IcOnPI97Ph Y߮I;Ρ.}+LЇ1-Qd ߁rۡt|~34}GM {?kKd;ag˪7J@޻?x_#_^~Ԟqg\~zl~ H/pH}XFGv󯃡:74G'Sd'Y&%UR \)ّyr蒓lDK'kЙ%^D8 {a($}(㄀D%%48 A9 ^:AvSdA$S8O-Md<ۘ`cZ-=OߠF`X8umlH$w2^;+ǵ~;AfC +\NrfguJJ>vwt&`苚r"1F+W_}u퓽櫜xC BCqzя?'<WwmTv':m#0̮s7*{i#oh,ױy̖e*~/=<㙹g3L#ǟ 6h͟mRy׏vqN j_DURu^\K華}C3 ޽08+)јL:O`^e b[FW{x>/~wc")d]DL)GTn6udS{0_/hS{݃QbS$` o"U=$SOZEiI$o v[IIm[ؓ܄&a I}I& ʇٕQ6u9鞗8k_$ZdsoTO09OtTUħAt]mhMh|z<_0>y$5E1)JzK7u͍னtC7ql[;}3,n;`I[؏[䷬߶0?C wqO*?\~ J?~MG^)>9~/ж~N.e="r#1uZ$:JD`zAtksx߶zs~!v1r#nJ$Wqc\v&۬ĄYZ.9]rgd9e4kurK"[E3L9KBbg4c0DžɹیGC 8j];J4`p*&Z7o}6ň`4sƮbfe(eBYv6sZ጑2:S'2* kE-R4L8htz42/*YF}JQ9Sf;I zePx՟Sd K;$`4U4RќE Jxa7e!ieU,3OA/C/@/fI󤥺VJ`eWS؝62}% Ux_G?|Fѭ&!9E0CX'm`2~Ӆ$3ᚼv'Zf jWFyA#sOC@-NoOӟvЌ|Rq1x@? <-8іI"G50=;Yɵ|>'^W;uQw 0]bw.9hRWlȩ6zaۢ11d|9} ԭlD.wS2 xqƞ"VO]9G !}ܑES׬:>n Yy'dNG}>z䐘[6n7 KߵLE};e_?AL#~)u=P+zLaqg |l]{ oH?܌8GաM=<JHbz6?BG_sDdiAA"Y-\urɋ:l̈<<[ٹ{%lA:??O%u"!Eu6{>5NXvtV]xͮ5jsQw(u课nh㜱geӐ12~}ZPCK߂=ZQX@_ #tFO5u ~f1#0VCv>[ydu"YIϣr[Պ@w6ٸje oRI [Mtkkg䤰O(\,1~ t [84{X}lU]#;i˭~&@dWj\+` M!*j׆v̂n U!񌾃< 5VAd048Y@x'yk] MUez{t ;6%2$&MFі.Z,vda)Onc`GMV&"`vRaOn6ƍ4q8W VM`m+珍Ƨ C>:ߵI `͟Z2th?Dl7fۧ2{'爵U5rHX AT Lۧ=|h-g/u(&0me;%;Go8߁VɀUxOk?_?[ҩ6٢F3`o^_FCJ'%Чq꽂LF޵i\nZ1{^d蘬mAg| G٫ eLO)X7ᛕي1n.Bgz_>^-DO ]I}h֔S?w94m?F2Jɖjl_PR- Q&?Igݝo71?_RK%0܂j=!O\[Rhu~s.s,;dWp٨G`GB/=3~TLr lnmNY`P)MLALF'!@ b٤-! \çH1Z^k^}]@Ȱ[_ANa0c`8B̊)VFe6^g%'jqF!O2`}wm ˜fv92̴ /7Kطlm/{5x^j/cFB!zN`<=x׶K,1IHbMث)utڼǻHHM:DОľN3X/D2z@y3[/p1_"{gND1t3 &2dT*EНS3d0Пmn-aW(D~pTP?5R_9ȭIU7NN6xoy˺g){OMVK.w>fˈt _ПDk@/^h9+zn {Ew/jID{Ne] Vk'A'Fн,%׾hz^Lx~Ό`]2N%H|rEc7 7NDsɹ0pJ?BQ>%6NNph I6ÙZ:2nfBI^8xn ZsiۆwY\_Q`p8kLo7f4N˭0ٔ9pd8w\f^@3W3?:?]ώNAmhXۃ`k䈞}ﭜ' 6A?WiAg#)wcD {W67X}+Ruzߚ 6i:%(s0 nu6εEm~{i 9x>yD T1U|x[oqsʫm򋗳Ձ[4v %wwE.~C7O+jU9`ObrBAR l[k|.풸f}]*W[>7w+oS벓_7~xܩ ^6K_]V.tbč7z`X|E~ekӓeoy5{rV3:hx+@͸jq`ƛ^VOg:N:H`AtE~f}f8*TAZ6 fY]+qHWȶxڸcg_䋭]>L$#$ $~)1ٌ{. G^0i+cbbHl? S^? '7)^K#zmGmY1W_uw~KcwXn-lβЋ3Gq{^?GLY ި gwM`\az:{dMz:bo⊓VRnF*2aBǤՎ/ Beˣ9CRB S# .dgƱ.圗h!Q@gD`xʙrqW []dqkCVKe^+:86X,ތ쥔Q1Ccг˃Ң9d؂l'3 d` JCpV6LGW=z;x9o.v߫272$Y{k~7X?/cz)3%?l=ڻ;KԗCn!w[:^m]x^Ɖ8L\lTȓ-YvFDC7B=,x/SG O㹥/E"?J [4q@'XA[@d'o/3l?m0"h!7K,͎׆u|r;4S?u Fʫl3{ Oؕl)3)WV),oI@ni $L#yC5,Xؘ-O9vd,O3pHvqD{cOpuҧߔ\ qt ӣryI!:d8U䎭êt_[V+80Çӆ s82 Z T<lwl>\s&]`V}uضl+{,%ڬPlJRVӹo}/*h1ߣՅqEkޓx0z"m,U`/lYݭ'^᚞΋uP9D Tz5ǯ3p0kd<1~&?7=բf9 Rƴ#]iB+YZU[9LSoN& QcIM.::pB[+0}|'>MG%ν]tMBKqt(xJ]:dEll=j8"܌[Ze? ;R|| nuv֋h\OB_`6ϟ7H2$[=cV}9ʼnx-}Ցtƙ#ClGr Y}y*hLx>&K`Cg2gsl[VY){++m''3^3|XJp[pugvxv2``x#с`Z׫~SY[K淕Ė6uH3WM''>݊lf9P9r=Y_]TPW*DUODWf|Gy/op/ pd^sufɛTb%+ҽۂX +]5~ZxNkY+j&5 w=m]LF#DCckO3YbmnJan\Y$ &SZL%JG$<ٌq0 "4 yG!A (kI w 6޴/8R LLNDŽ>l0 J|#g\3e0uLhG\00SO0+&OkC]4x]&S9˘=DXK^43'-a`^

.pSy 0:DAqʚoy^qͫg004Ɩ$S{V첧)/6frsR v͊sc[e}11u|x9zѩr%_Qd$/Ё 6fZ3m9x%ΫQpSαJ^F^{a]8K ^<& J̭(n84ΠrZ|&h}Q:[3SI$6k#`_ ]_=aҶg Ug8C̊Ͽ܀Wq:^m3Sc$ēG=6в^?e+m]^>m <۲ONͶXdڙ=S?<"J ;-0/=͙ ;YXOt+[*hE.9ڂi$1evpA0-2LH IcNmLp [L5qj`m'<Wݟ' !ոB֏_{\P悩b|6q7d[ lWmH}!U q׿1?Cjv t Vm:`QgAWu%"d:'{;2|6Mpx[g,)q*h2kTi]s5w3]颌2q=c=Tߡ5xfc`t3J?L͎[}cVJp,=&jG %Rӕ<b=Tދk\o溊K [Y'4CVdWųV%RiN8]9;0W8\A2޹P108f4JoP[r<a> Zh'wGL#S]M# |Mqn쭉'|e6_wZ;݅= ! Gw5hJ{=QŗO.$K|s~y> xr|3?~s }n:$? gٕ9>V <}hO/>QRmwd$D2O[QX\ ?'/#6@l_Z. ,MoorɔiSvHBaPLGmoY()W[?KjֲgNx\P02} @0.KF˯$w8riuiY˦e>d볺[._, x,q%tmK;=;g -_&Nf,/rN 9o;ew?dg=V$3M ")bndne˲nz30wt>(x^HH+8Lo`v0oiQ8ݾWNI U_YAZS%.⟥r## 呅Je8fxlюG[3lW맶һ+e!^3% lj &/jxdz 4Ew+$G0n[6*ՎYL-IVxBޝQS/+(K^z/ķiRnߓ'y:=>Z$ڠz%|ڒ%jw/ \:8 5-ǾDS,{I#Q+~(RBrOl \{sHGpx˷!ܡxDyrevL KʆovkG*: UPt~ԴJb:PV+]v-pt$}ӧ:/֓=YW<4[64:2='o3y_#LJČe<4/D `lCk-Nc h7[#٬2#&Aho!jȕʡ5=;`|4Ğ̾>3W nO:Rav I*UE)YɫowD_徜 tMգc_}ژ= fB!@?$HI @@P6\kD%DoV%PXO.u?k<]jDz WRumБz/n򣺮?if0Ijc@-vlE l+k`ȝrK[ f#}= pO#ٗ_L R9  (?G=*~ePn{MׁL^@_ӿg7E(u>ull8.fh~mǷ_}S``4cK~A3GZ$ _09 (Zq#5JgM<|+SyO 8V;hbw2|4ࠇlz^8?zn) _O/g?/[uԤ7 mO|j\uV@XDM19c Kϓ%czTɧA=]{&$W ;{ź7#gk t @pv, xFi󔓣}'64GZ'$25A9 K1 %ePZc#$AW_!d3w1,9nm'P~fcf 8O L M0x  YRe !KȜʡ2>>Le7 D'7qs 0&{,(!V /gK?NVB5xbhv8Ok{%a"ץ)m/ ltii$ @RW=<"m+6c"Z?7fɀ%ҏ ~IBXnd߳ ՇzAZښWF`+vJY@ٶqzIFUgMl`:lz =ؠ_Ìw6 pYB7<-)0?0Cep覜΀4opp\\7u2Eqv?3h, n8Sƙ%eƜl gc/=5sd9Bgf%]+7Pd^g^~ț㠵V??G|qoTOM"}O~U`%Aϧ}xJ^72aE͕X4kw[`>vyzb\ͮkwc wecWAt_"m&[!9|tRg7/xؒݹ''hW<4hfx=6Y AILfW֌an.Nz]'E*sjCJ}ra"_\}_l'=n'M-;{qchYn /ƕn#̪@ס}SuR;%?\-|r[wRj1`?vAPWL~^{5vr P_r++5E>4 P* ZvD=0 n;qJ%aw_?L&~pp%U?;<$)f4Ʋ:K_%NWY}z˒ H?`uꩾ6Sw][5I;ІJߋ*e8[2Z}e[bJptNx|WI[2%pWbYߘ1^AVnzzoWWw?o%@e5s|k\BwPۻ23}z;l}x;D:o]W ^I=O3crx,0<`=õ`K0'5` Ӏ#tC͋J1@IDATVxJ~רsh!Q(F.:18PY6Ĕˇ` ll49k`[iAR>1{U}tһ琶'Н 5kޜa.p0:EYKj2VQ q'C÷vkȱI$]^6=*(<^{ohr6E}؀5pAK:2Q$zӷd*c&t3mNeEyF76LCz3#* WB)wzdE^x8!IMt67ҦGx` 'ph݌nf'ajv{r4/=߷r%)ǑfGoppm3i!?u ) \*<N/L;"xg0HbuW J-3Wg Ƈmɟl,NVպt=g+:vNxkPsRp8x PuP[q`^1%hWJR4w\5h{w*274@?Zbx~>O?Wc%Lrf4d\A|i`l_-3 xfK4fX{Min+ZözOGշmg ;keٰUO[Ni;jp?}Y" yY2MF?+#ɲm?$`idT toǀ \l%pnT7jʄk6/9{}f L-"0ZN,ʒIUgtq[>67˸pxU8wqMO?x\n [tsd#njL7X">8uhzܮ͞u R>מt |H>=J/&>P 1gLyl'] ՈC_eBG\DX Q=Qr|>kfuxYN5)j^>ϕ%$M@Er?Oý<7PD+4 n Lwͫk`].\+b1?`yB,Rys&D8߀BmU(t*[ o=/6 HIm!Fk~u˅M$aÔByM,tm/nÓξo646LORf91i&RCLxD ɑ;+QcC9h܋l3ה2ahݛt - $a7W46DcCѬAl7m 2G$e{hbl۩Ġk2ԇ&(pmb+m#`sn>Jh+=Vyv$h_d ?k[DXyݸ_8 4Ho16J S_f7 Uou?G.E }N?S_G.Q'; vپrt7cEoP]x =$YN{c͑1bzp e}:WL1_mWN ~K'PLK$d3x8ܧ~dV%a& Nmw_y+ \_?OӫGWpso5ɀ7OSzg_=0r>.}\!!mxGta&/ދS(Zq+Bf҄12Sҝ$o bHo'_),g|f!0&ÚnQuN3HjDflUFn~nJ-&AퟪGhU43o[MJdY6Ey_V]lsy|Qw=[yrڻ/Q;?qJJm43}SF8[&qIaXdiiqBQz mNuNЀ}ɘPfOƧT`pp(N:GL(XvXRaA3ok73H 9=렲w&xݣ̶g 9Nms:Z,hޚ6kLG0;&ЄnjvK-Spmï8nh%~>~A32>F#NHwWf`uAće`S>QcɄ213 !6w^^7Dz,umVv 4$I|{x72zK˯,60PaGxnshEYh*P2! ]wcfAksXb:=: Y_ZVvB̨`A'_5Gݭ&k/5{mW13V8=f> o [4|sݙ#}gΝwk빮=7ۼ$ r(WJvnVշ3Tů~Nu '%|xTfnf~'}̊I`Oghrڙ&ū?\[EXD*)_A`]X YY\8ĕdUY{|W|.R1_KУa$? zmcxR@e_R2%xl_/WI3Dh^w_9mQ8A Aٔ t]F{AMyV[9AռxɎ!Gvߍm/GkA7 V M5:4~{P-q4}&;8_mGRK仁9׌ 1 }ʘV&/V" %{<:|Ù0 h@`/x\|@VԽ52\Uw}ard _(G KXBwxT}SS>fI7x ^Īv<]urOջtDNpgo{W솎pN#J*'&Qo1 tɢY=>o8=z?}@e̬ KWh̋8t;/&YY ^Z {ݩNVϷ\| _~Ǎ~'OOWfv\VsǓ&ͷDƝxO4}gfCd.ڬ lP#FP[KBEah;;ǃ#J Tq?g̷IGW^|}^?kS]]J" zݗWwBVwO୸ŨGC"ۺvKB_>o lW$ۖ@~'(Ґ8B>pj@}/K6HXΡxYv)IFeY!!9^fCr?]K)_4wA>j?fc )1۞NC,h!ȠWޜp'pkʒ1MvRbt1 u=ِr"=\ǫ*`$$4|7 2PuA%c`Zp|BF]o  06աTd/pO'qdAY¨X r_I]rjtI09y=^xHz- g>J4?߶uĖxOȆc'Ooh3:]TG|JWBT3.N@kf!}޺lc5>iC&-?`ގ폞Y8=yϥmpgc,I尹en>x)۹C3 9 tV\GM"7:e1-dp=S9\^cـwlq>|Ih"`U9Iv_j4DكDPeoC+=8uq[`4ݵ-aoeJm=̾~:9 kHW-@{%l^3$(⇶hI׿2Xoj/cǭFW?VQ3]Ajo}:Ӈւy`]=꫞{^Wbz ҙo|D^ݻ["g-4l! b}UX%g%}/Ջ PPo}|Isʦ{vNKJ#Ggl֣ ׇTvI >"'1;yAH6z%{ЉxDr[虤G' ޳taO&Āc*->u%utNǖ5 j057e Y_Y2 ?7;;bxAm?0 j7l{>:ϿcϕÞ½BK!<8't]6e3G`b>88՟A[@ڪ+~j/];@rVk|5bm =?{V͚o=ҭ`x/f?qe2 9{S6}bdxCі|K:K*]7 e.. kQز`~*򵩿PSB0(>L&Bsx:﬷lE6,0B%hF,bpcgo_0Y? +d~nu $;J"v Gln_7a R(ur냢uCz`ާkAѽ&ʞ n6 W}k-6&(C}P?m^7=i3/5?w5 @Vߒo*+?S,Y13?!d,<d5DՁ+L,ȒV*fZ[ʽ%0>+oÃpځ)ܷ%ۆL|{h9d>?v,kή>|5{xl'n ybχnjCQX~tϿoLwc/ $3cB|ǩ>jrsQ1GC[zzVT)ۊt٭Vuw+52/vuS(ҙA} kC^:-3~,9Ezf1-x3`L+K^ <ޔPf fI؟,v.&@S[QǞ m0c֠@#8: *rn.)쿐Shp$:t-7Tcc0[{!YbCRPm'ٚ0) AiCrZڋ$u^pg_zKER8L9C3 t d72H3AYNnVVW8cj2ldf8%/a~eÂ;] bKe>N֓RcuAg$řu` *j]o0=)'i?e_~U'W寯oM+-K<,S[L adʰz/1p=K-nj"WGrd, ԊY{v;ܪq|fޗ9OoزSyy×Yf>N M+ t@$VIŇ_ϯ곇ϧoGW=V,p/z'%a u낚~Y1w!eqyxLG~AOKX|zO?M}<.kCt}.Vj@mې&פVմ&]gq7}wV[<o:.\rщfKN6ևdxοZB`P ή${aJ .N^|{xcU^v{zȒAnm gf'TVptFAз ,cSuV7~IʲSeoֿW ~/}GO혹226kW%г^[A+` 8V[F%+Yo|AhO|ZKd'9.K-* wxﮎ6Tt^u~~ð;żatM; ~:p,$]vLȀtډEɢR n&^Uim@OOGő;hW7wd9Ûni=ı[e;tb*tgÝS٤:q[lyƑp2+?y|mV5%xasb?k oJ:P_/qM2ΫG3WnՑ3w+ }drЯto߃M>^>n>sXΏcJ66)gPf}]N͗ίSYv֭mbaroY$J@YU_p t'LuxEbz$c8Lo< %]mٗf>^!?Bdž f|♗\E8-^d1^|1Ev}:/>qޓ~ʇVOzi^e[yĒģњOh_VP7$Yb>p+?&  3P j :r tl*2W=*!A;u f3@l),xn>dY.KMe e6lyfATNcZ6=z8k{}l7&xǖ~xjV[.3:+i[rc2X`O^&̷F!6t =(xћuTNhrѡhIIP!y?nD>~+Aa ȍ+G 񋂎g=J C+bAj3%߇7[ؠ͂ &U32`{AOz@D؃7O $v [q75o9G~UEbɱ3 Nז>y47w ݢܳ/jz xt |V+]E);@%^yCS %%N]2'ƫtAf[j@x"W,瓰ؗK Njۗ,x{-iߒbÃCSΠ>󑯻fW5\C7 ٹ O+ ~8^D]1q%n(Vh?g<%T;}}{|N&5gO`?+O9/`Z3?{3|4\Tr](<'a2*r\ЯhK,A?+:ǯjwߗLkG>z#:(u1؛2*37 \eNqBKy9o -Fl`qӮUWn+<?p%5Եs>tO#P A BAsKAzsgTOaRܽ=kxu? OJfWRa}J?v0)'O^Kv͈jqtV; ;@to$]m2wOjo޺g=FZ|MmZ.k:I8X] jO4OEx౧d=+'d7$ זhWd{L1hd3~hIМR~'k? Y>%I_ G܁@8*8@2e3myÛf>TCd4p-/|Q$ƚ7!-6>GB8 b]bBәCs85U༠}ل3UAr " ,_D)1p˂VdNrlx,{)?yqX8QGUg#&Y͌owFAʖWgSNlS|6[. %˫6[nKIjL:\n+d!1{ɕ-V?frXe?бcKkv %$^ZmdN#(I Թ0e_ƣ02 \*5LfRBVmoag(ԱصG vPedu2fYeg+LdfB"Ua:&Y uP2nq.E2;`7"$y/ {w 晻kGߴ@&hgj?5\B#,@Wdrq’pt2hhtE,ར1Sݵܖl w~&@͚tI=9it="L3Jrw=O VG 9X6YuWmGwڻߞFFꬅ;imW-YVΧ_t_{+7%Ӿi6{_݁4Ax#>k@) V_uW-՗ ?i,V*O;f͒1''C<%i(Yg 'ңP&)k@+L{΍w@7K 9sd^sn`U$vO2$kƃ<w[20 6XӺo\L*_?tpvLDV$9}`{K[MI"ҙ@+۶&`neB9ѠAY%7O +Oow+ EL37 6޺.9.5d5d(vab?y`stV QV }ũ _ : RrPƋ"9t`EѸ񋵦R/x[=?Id\(薾>@-*ѮOޢ١dHJ.w`=0!X]ۤNjJN,nI?o>nR6N}q[r֩dPXk}huW%+kX@^Mtw[ڭs,W< wƟtWm ᆒ^Y.pou}ėȩut[ۇꝭMz F;e( ,NI9l0pC/4ێbΟnRyu}VdLr&"뛬(nrf؆EG}7,NńaNLJ-I#=yKi{{J,z8?ƧS~ 7,ï>mɏ&$gXt | Z{s-|LM@M6wAdm_ز &ۗ_x,z7OWϿio/[/gUi_o>o/ Awl<119CtH#jX Ta @SȒ'tաfۛU!.Ӑ$&' 8uclppMnIm=J .>:!`T3΃g`Ζ|덧 Px@GTP0(-Ӛ\-wzsK`6w˞-aot4hn>+͌Zi0%(^;dr> ?8wȦKfKw޳@F'C d-6Y@"LZP~ʨ&MHXIW1/+əeEX0E᩶Bn˹3@AD ?tA~dHh0t`ݒ #{wzuLky[a8ޜAuh%icGx U`a,7{$rX3+:v7H85Z ZAbwo;D7>?.j%^x"z["ޓf ?*q3 9Jn36_]={fƋ=ӖGkoo}Rv4=j0[zhXw;?Q+Σ$|Ǐ23QErdmRn${Uf? 3:gٙ/?g7]M{zGd8y|XvgxSMUl6kv[?RX,*\fdׂh¿h>M̹Bj1~dKQߍދ/7٘p1TkK3'?plJz `+pzSbݠJ*+Ot_cxU bl_{\e}B?o} &0^x^iA ̬q*\#e!:T|֏W㽄_*V#Q1,$(lY`.ZSDf$v|K{ߖt]8O_wv ?ֶFI3$to'990 !&#xܢ~˕HuCً^R6xlډ9h߹)medO3DtÓ{1!, }~W<7Aa~|xa;u -wýwIDmdWU{c<ӏC[~e|T.yZwsN6M)zAZe'Jm x8t 0[W}qAW//C\>+C_=ŅQH[;HBOD${p_.jܟd)F?\>7=o䚸 NFNbM0TnqUNa M:Lf(h`o 8TE^_ǿWO//}cmōqNݮGv*fzw=)&%G)Z |Җ'<0]yǜKe%tlm&?/:k*u^nt˃rKF l\>+9zx:,IWpjW:UyU^WGDomڽΦ nOA0,XH&GP˙ v{ɠs{ȯ;OZtdOZPKPàs%^lmInW#?4~uN7Y`.:W%hNů=iی[%]/%~Ѿ {tG[9دipy_7*,ی2zxy/I6\[m 8`e`Y챿-ZGvRfwLc/lU9A03qi D`JڙvnW-f l2o'qQ5ݫm(~dw;Jw.v&pUlr8A}pZNL{|wu0eTҹSSj Qa@(l-ْ1ѡZEEp $,_|dG"}6z$X"yu˛>_࿺齾7.`|h~s3!nf Žx6_):w\T8\yL D.BNX+oA隸g}z҉ =lIVUEܫb=wmަaOr6\}V*+pҩx4Ok;{W;{go_#l:a|V{gw?;7(} ؕŊiqDג}{?zne/.LTPάz׬^wGU"W8W`ȹ'&:ΖEVSM9[A>47]tA /w9i~['Ϯ3a\0]2Sޫo~/EC[W'rW_.܂x|hH7[[&ؙ4x{P$Xq zJGW6SҨW ;Sބ%G3x:w 'QM죂>3`ܭ^J)ى]! T/#ݣ;h4+˨) f|)͇ҪN80NTN1<gcTg'2_ĩUPM) 3`7˸1ZdOS-1xS|+bۜNj,ʉs| {9epז6Ocaֻ?ߔtg;FVFLq$,x3Y) =`V7%/_)&Q1 %:s:H||ƷavIdG\GOOxma^:t '>E ϠU?ӑ1Rdy|F&[_4E6^cKܮc9<XY"=' 5cx㛞* H>3rxܒU]09N8u`Oiw[5 OߺA{uO %B*m<ϦU _s@il;`EU8![8pXR,#ق޺1lWvgāGmThK]i4r8A&'AZjV J n8F'9XE0ZYhk[w}zaG9:yK=ax-bw>{* .+^cTaOΟw8 h{ 0g S~^6e倥V9g{~}MVw[Jw+G%O{Cڒi;OC(&Vg|fl2,9(i\~'II_$xV8< :/vPti'Q{y.jJ>a ,0*?@ޯhOθEЦp_jcHx3vW懃<06RcV 5d>CAQ*gt)Z=Blp?N%-vߞPܮGG\_róv"9Psk]Ûy1 s/ eCp6^^:D}+9Y?Ti;نdGunzzU6N=FW1iM@H)󾶆A:v+]lM!|-Hs] v?$ƣ`-ѩ!Xga_.(U _^lۭ3D#9H:x ]jmcWIhk/_d˦·-&MFNG"z\HSY&x\omu]ڶoncydgΥhG`+9xpO4™kB'S#~A]BǑsʐepU 7aJ?r^14v.R l?&zF8S#slOmdF,]̰<ʪúK}#I+hs@+ vJ24Öbku'3| Cdף]A:."+\L `)S%{>h2JC9Y(QG^6uX竟%m{t(~X/A |n:}% ^t ee6&i9yPZ!e2fx%Ia@U-CVM^৫pgьfٔdӶmp$Rv;1kC<4{=\rn$HNjc3Uz ݏ'_fdZ@tQ-drbds2^_Y^\-="^'"$\d#@cGfɀǒYY3KUwOB5yq>]C:-{3ݖ"#zBm ~w8X//1el n/hSc_p~v]D/l%wݣ Tч ;^m5 v:PwY}8t!w򁛾M_`x=tjU4lpcjC6wNYp8x~_dc(7za Z-&d^~'Ē5[% _K9߀{SnK |ѳo/0yʯ4~KmہYO;=J7ߎ𴄞eө}TҎU@fuF΂#O>(Zvg+JF'<騺$ ]Dm䤬UځI0z<3zkJ IN̆P 6}w䒛p @6c3 kx1{ȏ'ќ/e0~yߒӮq,e'9qWqP?:KjGr*~v7:>P_=2 VMRןb ?6ͬU½.v`IX^. B`so߳ԛ^o8Ho,͐LdK)7`£ u8HTfǟ[J[ȸJ\4.|f_zM)}< @u&|j08ErߗW"bPʩR{/8cgf]XŁt*h# !O2JZZnx\vq0 GO7I4ft'U&؉-Cͭ`Y튤;tH,ghk#Bf` O?'=%Q, ŒO%Tv4]DMܽsJrU=ldBE oɑ"`%/$^ݢ 88ώ$R.N6ણ4{=τ1_[^=\ZYL槭 ] ս~/)Z\Ư.kk/۽Ya0Őhh9/<M?9|ܪyЀo0e#i3Z1Rtm{Y=:lva.tэڋ.fz7*\zsB#(tn^]Ê{cuh!gˇ1ePASl&uVP/՛/z|~;޾';,=>ǐ@aq-_1ڛ.f$Xh_;O/"xAB;C_4ѡ/B ]oFvk:^|[ȍ>F]֨gh J  .!-΁Yb58u 2\pJ 7(q4:4 g?b`Ppt0e#gtgl;[_3&o fk@h[2؅U'Rqu'mQEgr2N'W@B&.-& d.M>tesw ^c@W&iԜGIH쐒#+.)!p }ۃ7Oc1仯yi )F:e]?)3WL`;(H)J%80a]\C}8XKHp>C:?V*="moM"WY{P=l)MR׵yВi?4ϾOkSO[wϧ6Y%fG[=i%?'6pmh>K!}=OeKؖ?3i)eNW$LxvsT?.d EK{xXMq]Bnғg%>FK'af]*z!h'ty[A ?:|Tg٨X^mEW gG;y8K+*L' n|rlpa @<C *BsWߕLHUhdV~>Lmx̏ix8)O7IDg!kk&XtYx߾ñ+]O|xoG_fs>$ؚZ"6A&hTw*J7v; ~ޕWEѽI}N`{ЙwgV+NxW7aaG ,%a}%\RB}] נDl)|+> u_uQKz.Tm_?3A-좛Y]5 #,5m7k gpk A1OwUm%DzOrpψF H;(lE딘ϩİ15]F?j568cu+Kn~蕧üo{6[=@eX4{8M9[v?u/d0wĮ M>-v݀n\Ї{6ySvwᭃl-_;;+/O M8;qb`[de ȡ쇻rG ƻNߙ_ҚgO*YԄtMIIϘ2cq|H}6=5|[r2G/}i7>~VU֡\oUXտ)o箋<=H?(DWhx#h&{_?z$$gxyߪh40]yL$IW#t9Zf6U\Pw=qYn}3LhS ,o!XːRZےnVB lC`gt 20W\N _F4,Pg'K׉ږq;)qɛmdȽΒ!Ѳ};/xPa?r (]jFQ^ZY (:v-a,(,R2sXhK|e(ed[Rl]TNFҠ΁qo ${L.`3ftyK^p[6~0^6m[y:yY[8nP$:m0pf7N)^Mڷ M:pAڂ#zb^ct*GEKruV< 伏&"guɂ:Kw:3ژrB(~5wl$RɅ%0k|yvޑaeI)ǚ<1']89\QH)9z-,tx Ӥ0%5\_z9>,@!z[Um5t.4U?,3fQUt2k+}:.PZk 0Iku5;&p2L=9;go)>'~:S37cݭz,dz7p@%HŋW&tڣ$N'S'm?;gBe Ҫ/fKZ7UaS?n`\7NUvFvAx?7;.jkAo6f*؟Ѕﳷd66sL`v /}QI ]+[I6yѣlWAFmO;Q+wU/+ lx+b^We;Xk@V8rM;g'ԏ;[im~PlD}vmPLS]]Vx͢_uO?n`X*gfH_7#Zww/hX^yl"}uU}|V; @]%յ3W`lm`o<.D}?^}pOlpRӌOEfP}WJf;t{ϧ>D,|r][b]-38k:3|W(!?2qTy]Gd4+] t(~ :[O-Cnͯϝx9; $x8bv`oy%X7TaE.ϕS&C%;mǿOF*,,ۭ:DaML^GW%#z=.o}2{M!3xx<+.=F#zg2Wx-0ơ'đ##3p諠QG`i_e)h1d2qh90ûi>Zr ET ӈv<^0xĸ|<=#:(F. ~ЗL(=^/ ئzf,myCP e:Tr41]۬NlT-l)-NfG~mO=@I^7`~ƒQ{ShJPĐ$(u4ʎ|CN!yeW>䞏YPNfĢl ѭ:Sܲ l7.͠ߩY9%L\ Vת[J'\z:@|&Ge"ö{޶rE ײ<0ȹAw52SmB0S2@`zj'ཫc:ʰ]ѻ%MjN RfO?INz@ջ:QZ2}R vLN22pOy67`@|Ʒ~ٞ$Okkk2ξ 3[➒ `fٵ|_5#|v,!D$ϝv{z-oMXn:)~z5>ꚥܲ| >ɳGawuS-g_{'I.槢Az|6$,}b V*Dã=?]_2K}Ѫ~ :g\{gѷ=r=ʞ>M- ɶ^`wG ߙ5W#>y^o4UN"EVrwIX{=ߔ񍞶B&ǣăWӖ+菤bI~OW$ p /T쐍xdiKK t E"^Gɮ5m{sV~/(3U~3lMڪx}']ٓ{Ӕ 픖 <\ _5Op/$D;^lz ~Up#ق~ iק O[[ZvJ[vѧv dDn5ZٯP~S> !Z >.MDX~}yg,W$f` X!Fac0cZ|kpCUn6QYsE*צѫ0~1.?`by_Wmsk5ʹW!߃^4a5 |o8Ġ;-{L29Aׅ%!p1XrЩ\]9~܇ hJ}+]~ք^ևbN ZS@#-^g+0k[ȅ|Ζ^$ۘ Οn\d`s!=> L?|֔~wkg `B(km7he|wO$LL¢8U6` ݗƅbgzuL|YZz S=4n^htGGu+KD?vv>,p>_A/t{@!6nKٖٿ+6w^wWϾ_5z;WѬh6!<:as 7Ϯ|ӫZT# [{ Jt[+L BAB>|MNDva>1'S $ 3ǙEY.DpJgS9I&嵿PPfWWܟ.,);p3nO2S3f -fwsf׭u"Xa84C|' !ډs+hM:uVQpޙP>˘LƓ팀9ڴLbkrܕp2xїM5H\QbǨt9͡ZCy(2xfoߪɥ6v>cND1* ɜQusCOD ׁҩ;r LK ɑd$xgJ c|QPVl&2r^[]Azm%G fP!p~g.}Y afӿ}L`GD;:b|ਣ3g ^|=SDƐ>Xh5M82lrc, ;4G^6 >P߀,s\؁[N5F;ִr>{ydrD0|>!Ͷҷ%fO~^EǁK)[Y%[7ۣ'kGІx`ଣ[G/$ `tmx&~COYIÑ;+o>\}7u0{њL,k[@ e <]!~oچl0tڮ9(>/?&l*^Oݬ޶G+leN6'ǎZ||BAWmi_ Z1R*Ÿd-l|Y<.D.Pqݮ'(ٞtjZ[6J$6x4{#=޾#k6a~>=_3U ~g /J!2)1۷sݏ,Z#|Mp,vz821P}I2YXI $|Qi+czs}۽ 'SZ{Dzh./ީF^jH\4khZ{bmESxp.zɩ 8 pS`eOcT/9\ïݻ5,~g{?k V㇐V$Q4i>?=; #? [zQnIN:%ANy2]1Np v6[Y+X$?8 yzOΛ )$ET/1uY$NUfwnkejc1N]iSl2W@j?o~wh0O;ʅ㋺Ml%oJ4v%6Ů`o~?t,co8.r2+D/d[%6?q?}`IV[_=?f:|M_a'}b7oO 6|Ç[H 7߇_q|lK{kf}ROSa;[)rd“_7a8Mpkd ǧ>ms^p]Fv%J1H[m 3dSie+C]kkps4YŰy;:eN~"c aSRZFL HGR~W_շ_}{~Ӓ | GCK{!ow[^;7^.;c}UŃ)o?[6_/1-e\ ,v)7ϭ86p蘵h{BStDq,˒`tHg+[z!>FU &|>0BҙlX}/7%ׯ:4Ŭ-@3Z܃-H{K<RR F 6`[n%e0:Ks-@1(eo$d)V }WŻY}rd,S>^5SheEu,|!qfn5p=|ӥ~QVp/MV8c~O 𝲊{܌1q4TA4p] _:,^$ + >òa @jFx99QGlUG`5t Ut:^hH$ƿfF (jzP~%nsӫ44^C=HYߗr[VOR9?88}'_-_"SpM#][}c<)|Pp ̯C>,XhS ?kSm9y}“]*.9+ J(cS]f%l~[t99ApU\gkvW2I~f%,I`wߝͷϯw휤8`V"776OW_~/~emuH`|o!)צA=x~%h"Ȫ;k-@RЬCBr؟ _O#l((Ahx=YRSoU흹r͹rNVY8cyɡ$4J33ta[ˢ!b*|% Ъ̏E9& -@OO|V'﷒+ [ Ԥ%6D7Qmy*gf&d5_2$ӧg7'Mkյn}S·_eMrg@svcɣ>%Ap /@@4&׃gs(? ^;G>ܼ|@=+@]r5]QlWUnDcx|o.f(A=t w|*ݫzls&.iPO*7#>۠mect .?VyhrꝄAPѵ+=E.@ާXC}/a l/F󩣯\` %:aGKŔ`sdA!x~@<=INɾ5~_{Ϥ}Gkg#0e9/=`Hu^G3~~EGT(($o&kxs]-'Ũ ;`/Q$)$GJ>4<=JNj>X?\^*VA<7_%A H=}C++Τ\bc1`T\ 7QYᒛt*͟2O\7/*^EEvK+͒;k焩x&H0rOB b6-m3;mnJXWC>cWf3ƇgEACswXB7&%z]tE ?x(7YN(sLNQӅq|ݱ1(C,%tɯ #5tOg)'|KC/xے&ad,"U(>剝hO%ߌ{7g^;+X=c3rzsx w"8{8[Է{2;gMRhp݁͡r^'8'YF¡Y뺍Mաzf |Ăϱ%)Tuev%}zzĻ@%F K y~`sCKu9P&iVqʋpX5CzBt0uH%T5 o,@`}O?Nz%YզDyYы/˴B!N}6{ GG-'g[ 8UaE6ڒPďj] @Z/X! bpKDYə2{;Te/0Ɋ9=M[Nꇻk86cN#(l?VڵO} #t/[f?A>>Ury2|`>2M3~~U-k;tڿs ,ߓ{o>l/JOJTwZ*=ߌ`h@ޏ~ʂжD']} ~oyp|}γA[ۤ){㮬zgOxm-+?dfv-\`G7Gqk߿0t!?O_nz?WΜϹ)oC0=\-?z]6,*%GqXA}XtO];+ hOs7)Jd^'1E0gs]<=;=%4jrl3˴NW9\O^߇.<אL5gvKna8l@\i eO~x '0v)_qW_kb7_jGOnW7v(77uO=X2k0?KLdw/;hk΂H_O6fۭPfS%3꘰0!B6fpߖ|xQW' ?pX=YK ܲj,r&{' h9b\'3B3#ڵ ,X!4RR=r%/Yc1E2 2oǮq9 O;ų2>9;-S}X*F베/sJь4*gxRIf<~=T/;>!=iَâ(< #hw-GzpX0`YhmqJDa҂L)kxj `i/$Ag=}pj3A^3X%PHY3Y9-͹?0Yjdp`d\7Փz7qrg^tpR-T`/m7yf+ Tcv0*{]{UD2/?i׋ 8f?u /,9x Nl]I31NSYY,#=f)UYN!9莮krOfN>}=s}S>\ [Wd [ҽ 6t#n4Q ^w tEL¤Jd:$v- kʂ ntʧh(!R/}lDLuy8}'F|dzb$:ǩ޽Ln&n[qՏMlU~+jC7>u+d>T_ПUh  tullٓzDvvuU=]\ZtipWmONKGFx~)tb@}bSI*?\y_.0sRjʪ(;ɴӻWFZ,~d&rfd[^r>wf]Yx ZNQwvYQ,kƗ_|qEg]Z7l%;A+:OM2hiB];#fج {*V AĝNpFğ pn-X0mnN8ˁ}cNq$PM_=kңKgˊVVe_A3:_`[6H'yW٧[!2v$39&u lʷi[)eVERb}N6|zy4낔#1u%|%(d%^$C3'\A~ %2~ٟ<}/ Sz[3bë$@8j3Ɩ &G:.@>_ Џy^9x,ԶD*s`=ĉ-/rmiU;iTZv_޽зoVbrkfegAzubc8^&M +A1K#$kӵ R >1DR}~g5k`$]pvtrkc_<ё+I?0U#}[>Fs=+v:}`8_ѐ]xuv/;|t*ީy I2Pmeb:q8O!`,vVpYQ̹gU_!uئՏm"!=vNavp8۠˲bIQu¶VtJ̊MQUEeYStnAfxNFdcGɴ Tk4CdOƒ/Q`l]۷ue'?~jkwíLJ c4[=xjPud_bn Oo/'ӟMkz͇B:glƉ}+|pQ,խ9+V^N|l7qn=ҸF" O]ȮvIX ^+KVxu8ޠl<`]u,ѫlcGfϊ 9h`7h⁢[ctp1*2/SqU 5ⷳ޷nh€MGŴ\iàƏpJLR4:zkcPr.݋3y|r?g_-ֺn¤Bx& 3?6Ic>Qc|.w>\{Uś NGaU"ؔ_NArN )C޵w 6|Zf-\xCG `cDMf<鹛\}~AGc:e ,2z߀.LPrDSg #[kg`0% 2: ˖??3e8?ikϭ,<]/(M? B׏ĊBp:=G:J!loK([ -#mdLA@x Q~{Y {-kωIb(K'J A- ک#6Ů w\x0q.%Dl1' HY4H}.g?t33NCqRPoU׵~ *N. 3fC.U*tXS7['U9v9 \gT7sP6/-UTu,Qu(Tp9)89k`jv8q5|BtC"AZ 3eWzCgt5XLK裯u9~zgJu/}t=UMuU<àrl6 deY#ϪMc8l>jٖtiWTo><$/rFd`wwnN5~ ^dSd㒕[/~Ynj8{PPnuV3wR9t{?{i~/z$SKCc~"GƳȲRto W_/KXAV $lΠ*m=Hpk7tH~Ofm Y:d߾@GiKڷ9e]շ!IT%y ) ..3]+|l}4Pfhc񋟯̬5e+ g՝ke̶ 6OҚi&>?;cG`\߁Aћ{=ɟO|lCvVymre@NH.ego,nXÔyvrCjpkn^мWJq'B/t @+Oh! W7/~(:?Ns1ќ~VW]yǀ/v6*YV_pcE'1nU6u4Vku Ictmy}H3sN<[<?D$6 _TEm3r_]?J~kmP Ł&ctՀW}VHx"M01}ѝ~h? !}H xqYU(yrޮ|ǷhׯKֶ~BWI%]TjMᡜnۓ<#?]xԏw6 JMAV5W \r;C 9z{:W? hc/oi'N >) ڎj_+t!ipԵ%?}fCU{OxHH>]NLэ7BtJ#.#豐NZח8g[JK۪Ɍx&C9g5@rCsj[mL Ebw/˥A~0Vi*P=/O[`.JG18TK(TZaȜe ]-sE9-0:)~LQwVYʨB He@tQhw )gtX  @+:ma+ȏ5c)̾-Yh5a(Ke/@T`5N4!CŔ Uz]wYby{=ޡ%dG}fah)@yr)=u27bNaX)up>=с/ȵ~hѿ{w{=u̞ { 3OM(̶-f<-}yL}OqZw9{ra?Ɯ-_3X$uO~ONQt\p ' gcsݙsEv0NPe}f+UxJK#ǘ䒝lǨL|~sKxunuޖy˗W -]SʝЋN9ɻ?7XgtL#9)ƴ}_P_W*: Ћ8ftu OVT<}P`zY~!?/fmAQy ox،|.`М7thϾVՔl< :hF뒚Ϟv`OG~k܋Y37+RBz|2p~yO0pK Oǻ%7-i3@h+~l1>(٠\>G$wӼL4k9B*kN ] Z~;x%Mp "]z(2t!؀ M!y rU$9s9R3w 7=~hGcrxph_2ʺW];2' =^ӷ@Wr_a wp5`si ;PghӇ! ҥ!c߻w΢!+m ϒZs# ~g%s}7J=)ZM;D;ϛM1W_3^ts)`D%%BkU{t+?7o$nt\W5AKVnV>"&#$ sF_Ά\Fn6K9J.=p߫?%5'|gW[%(io0~%{rƕ"ŨD!SxԗnInny=eMT̕u f|:R)C݈sR6)dFqH rJbт_Ah21p6iuߣ#n;[nsQc0%icj-VR0f-oG+?i=L_ՉT6S[p,pIוTֳ۳V &&mPsZ/=#|^p;4䗳o7-HEYȌ7e@ ?qW8zC20Tlr A,( L|?lY> OتAvG'QEy0 fr܌LΥ ICOҙ OG=%N7$Zi^3ڠu8w*q8xVD5f p0co~Zz- '??܉K*|WX8+>(@4#ș-Mߒ&aرe3]<`GsZ鹖‰d^Ӂjcoqė>rpf caS'u]_ٔlN Nj?ݜHKw=#@W,(ԁp>{ 1~˱WDhVW6۾(0f |t[eRB//N0<6ujSR^m?|Z5w>G+ ]L_J'_AXa ֋%%K\lM ҝ7~͟\;_CU:/I%ij]H*pc`~'SK|/;l' By:PIIOIa%8Y~et Q]d-ڽxLnSz: q.א&63)tqfA/&ouEkzI ,^u($[ȜNa,ƿne6qQ>~pblbI"X̧^`ǧVtĻB j wo.q5V^%c3U: k[:1b3nޑ :0t`I*x~NR$>=-O7I>֟x v_[GxL. ҂&p}p ~QvE6GU˞V?yC'Nm?O5y]gЂ7[!M jr =8Kn|>>+j I_CVrm`]k0gDέOtF+ t}G=?^Fu&KeD?sמ1;_LVv`bdkqw*9;$%egss$g4kO=6F,@nӕ;bA8nLҩ՛oY|ÓUc&Mx2ܷSӹF[0XMe\̀o*_iArzӛg7wEUmEk5S`6f|dL7'sl%gq1/o>o~mb#c"Nwt-E{OQ=$I"կ͐B!u|Ll(Û+C` /86C@0f]004ۡM2ォHy(\Lr`sXn'= ~ 3ra+@m63k3T\(v s5+ID@α[4]#-Bx>V8A솷`#.u0'H^ЫD^_.Ou5Vx6Z&q2c3-bf p $U5.Ϡ'ǿW9ytX ]kCԭnwZou/á}}~n3aV} ,Uog%nOZ`LF)Ks .蒝A qxuto]9s9͞RJ4?|qi2VfGq?|ZA<A>~Hvǖl/|f7O;8>K@|N.m :4og |\"OQ2W^Yx}2!xdzU!.>Kxw?m^IQMxy!(ty*›^ҏteA3EH]C*6wx`nG[:CVp3KS.߱[mǯ7#蟭le"º9OR̸8v ~|bz%l\Ggݭc񕩴mfZ\+3v Y]>)21잽 \p& ћ̫GT=ߗ׺`olN?POm?B)\pu`Ł=XFYyMfpND7p֙|ÏM'%ǧ:S!_dI1>$)b Fz}–  ZE\\_@)k!x!wxj|t:ca}..Jzز?:IX?irಛ;]{s:ķ'Z|zF`awA>Z3G39Š>-|դ;o.bz[q%טA>deÁ^;G+Ćۡ2@=}. ܻG.HF/>|wMC ">M =~a1@VR^h6Qi,B?z;0Ȩ)Ue xh&k+凎w ~x4~Ow.yKӭK 2xhYƢwƚVxo<6ߘh6>;>>J̈́yY'O>h_;B&֡|gfآ?˛O?OӞ VN~|sǏEv̀͠હ]/iEq}c"O|:(d^&cc&ݵRuOp&UbQw%"/ד%QNP~lJc,ᨿLP#@6h&)PHA.lFb41pϭ?̆O[\@e8'@[V8 |Z\1@FO{yX,ͱ‹ܻV*~Ip rfXEpYѯa'xzƴԷ 234~>&9N3”AS-N!%!gl%c{4_pdme7dCn[/k` Z)fNҀ*9p` =vt'8 ^-ِ#wYWd@|h _::䟜&p 3؎ ard}$<, IO8U}}vz}x9T^9Ra3I݂+MْbE̸6K} -i:u8c<"9I^:;sDKH%ݬNr2 Ly]٠!0M>q \@t hA+x|J<_rf3BCEޚJ}EGj3MmOcn`K~x5 ݵ5/t5K6uجfk6K8Gߜ@PT,pM4M +%g|"'FCg`nfB$cۇ3򃒤/ӻmIW'iZA:^d:+%},?f2MO>nKS%)_e@@YG )u\l{W٠^MK ̇iw989S6G={-YUA[5%*݅Il~Q {I69 #= 7{m8ڪFOKeԎr~w=2&i>g~c+YY|4=to{z3h: ToQ J6Vѭ.'cs`Gh<pcGAl w)zl#x|>Zu&hqh\ڛ8c!|ꯪ\~/&;zR|:Y:}S" z&d?$O ϿjuST5~_(Y۵D<} 6C>1E9oa^DWɘ})46d9p/#6sgokW^a?l2zX\3jau2y 3M k94zB&ڷ%G擧ŝt^'Od䡴L. MK<"c{P),p:Ђ-5fCP)1(y(e(zeSpNuu^h0 *;e8YCxu<% FaxŠ : tCe.[ߎ`ޤo ^ FS{ a~J +<[% ˄L=|<0Z-w/Ul8lgx绂g8$~ r}&C=v`/ߚ]b[J[ų-U~T_GaOl<}mw{:}JD jϾB9 AVgᠽnѩk[w.,`Y`FѶdV70gC*<ΫMeE˨_4`ƉOYcvѫAcȁZYeZu^jȜ-۷ĞI8Td:-9~ǫ :):v'9nev(þ0xM[ 4ċ`A 1p_nϓvpPgsH9'6=:dglq  ϡ|gk1LF>6y}Ax4)v(2 ~'_ OYYO-EC Xbt,- jۡ'?A;WWgsNnUv ::d>k5]0\%$l;:hyp$8S `~̽'(BE$>E܂ʱU2}4ToJ4w>ZA4ՠͶuﺝdJgos^jO7*l\p8FQt{Em_d%ؕ2[?n?rQ;dkTeOXtJr܌7G !H:[Gv[KS *N =,ݷczOOxJHN"^g@YT\=MR*ac\u7Ʒ []tCz-b C7j )ݛ( tʝ ~ T%#JW/}8ߪ +Hƛ,vow7 HX gPK%o@%Jaj0D0_ɾA; F:}M4U&-_9 N"R0_0]57;n6cefMqvlez}<'z]]4\C|N.+N?}|̑dlt 8f!lu#t< [r ;Sae2yY5 /:jcg5ԘrOtǏ}LG7q?#}LL>}[$Ew7!r7.蟭g~~V>\_[ RzPn %֎l+#K4,N Xlx`K]bqJ̪㡶_wzLck0o9 ^4ϣT1V߭N_%fp6Y#!GwKN8&ر*pVNo.Ww/J6lg7_|%4iI'3G5_UYqE~p~_}u_rOo~S,|*A<1Ѷ:jȏ}XJ>uxY wwi)c3(9>5 "d8;<q;e(~;N]{Ӳi b6bOѩPFr \b6Ps^~egkKGY YK(8x>'ޣV9`08<MX`R(\xpTfS`d o{Fl '^$c>k[i9YPlWR ~kIǸu& jXDpVu1.m@xfľi|pttYˏ~f$8f>k?r6R&^MNfh' _>ZҳO'F!HjMF2S]H0xgNl p"7#58r5$8_Nk:u f=solg D`X/5`"I`V'h``{E˒_yt 8a޻tqcʲ=䣣slؠV|HiM ,QN_,WFu>=g67^c\BFcSjrWxg,hX\(_e0߻{]foId@/٤m@So0*KXY}uPf2ͼ+/ ):"~ 9 ^L=2N4xΪ`3̃6CI9' }A3c}9n偀t|79*rvU ovi~} od [_6cy9*gGpïՇbC"gCRR_Ү74?_WsXN ȦC{Uc}p=*Ʀ<^k3ȩ@]No9ԕj6~jɵo3P t ># F۵ukj PiՓAr3WF诊9p(pC`vh:,hȨ/g1VQk$Z,kͷ{|6=1"lBǛF{x*' kSb=G&MSՒbe+p3*)+N߳_W_Ng{vq"Q rlW\#tƣW= gm_q{&8,'(ӄ{T_(F{6/9EMH3<;=Nt A>3SLqsV0[^E_͟%|ArI8{sS̋!{7so?_ƒo>39I1ekp;ٚЋ7z1ܽ~rsG7w~kt)`I96gf7(f62P1(Xj2$Tc,.\jsFZ):J2D?!jjj^;~E#OuH$V kڌ3r{Z-%Gճu Υ}Kea8q1EN+_PL En}nDP zQueG%GV {VodIr:UN@Zpr8o@'PS݋cQd;~Lu(mW'mט4\PhQ[c1@87o+l(x`lK(AkwX:Pmv'7!zhoYZ \G-c;=mOXճ*~ZRUmE$Π*Go~"EKq7WF>{VLl>_UcMMqWOlA΀?aK7؅>ź|ڴm?Ϳ,q8*7xNs ]ij8Mqr:,F16<6F'V>FX=[ gLGukJtf֧M^t/|Oc:Sx%69?`H  ;sv%o׿JooZc-qͫyb1mc? ح.akғ ~LV&P^ŷW鱄|66яr-: U/š1qఫd9gm$VcW%R$t yFS #DvdX8f$jh4z`b[Q S-9:f [­-,s$%lYcrd--m@PEDc9F`Hjj7 _fdg ei$Oif"\w`R8f Jt|r:V8T ~]˕qwÀ朊C?j/'A3wr4TjpUt ƥ@m$6x}u||2fz:9ʡI˝]o;9b}RTuwQBd)NSy{d;ю} Fj9\;,d5=Z4֦} k|Kg6 NDb=Я/;ϿRi`::NлN=azk %(uh {p]YI3\*eb3ۼZ|{ᆷ[p%%gd"d!כ-O^u؃K_TnM}M^_mVgJ`{x%,9 o{jct5/G>79!+֗VcŇ3$iXP%'@Z8g]~eLKlݠ#C'.ǺتhB;hlmU[nhO`p9 =Z_}*Ղ?PM}Osqf >wt"TfdqtSt&9sŁՇvdpDU7-u)\߯I7={Nu;-^]|2b%ҟҗ#Poum&9o iڌ),Qڄ!LO^j/qٞՒLV }WNR X'}qGIfGU\^ژ\*_N_ޅg>@\Y`Ml}Gn%D׶ g8,Aו" σi$>We;,9;tV@7=DYT]?Ѹ$"XO 3G ?bg__rQ僧v ͝?ǿ5foZ04A+nفYehAp3f_p8r9N r>2SlmwJs\0`yf8zP>=PVX[OBQvBGvNmz2-STJgA%!p.3$NX(,gu(+)QA*YMJXsExSHOMA tTyh4xd1|ucఌr6Kśh,9+>Gӓ,sģޠtV#938sh`bӮ*SnE g+^=@P\!9h5Y`?Ȕ?Y--D8ui="fk ef+Kr>',ajI"7pf,݀34HM4hTL:`&]Pϡ A6hفMV"A3Ir2d:,^ӉiaE t@jc hzE|"ZGU&GIdet p9~Îlv54 `b&bn>7pT$>[FCUBwLxuᠮ,хN鐁?ݬDR@_?K` Բ#n]ma8Hj"r`gç= <~Gٽ|9!_6.ҫP?o| O>IyZ;@nUPֹ ӳ5gV/f *vzN6 ^؊.|۷"z[~Z2ZG:J2nkǟO:KMqOJt$AQ|)[!Om/xvgT}mzgg:Ϸf ѽ}@xGRch$l3o)5]M|Toi$MgOǷHaUn`֐H6+|-E3輺ҧUCو8VֻN/ A_{?-?J9;0o 3}Ƴ5_[ q[Ivq|V?U[. fGKT lRmZ]HOX\JU, g ɢz>/9x#x3^_B&\]ݫ Vj |/TPxFҒx(w^A8 >4: G&xB:F"~SkO,󲁭bx"ۅ&EJl]tBeJ~DU3MoAX]{1ƛV~ڌ?'dKۿyک;xB,A1Åg$DŧN3nr*:'w|.L 8.˖"@֌mddU0\ٔmo~ݛ}[6.fvx 8]{otB[ n }m,O'Fk#G 'CQ`>HIi 'D7TԎ޼_P#Sg?[[??"dB'do1'v. Y2ܘ+ʻȯ7lEcz_פz qfJнx/#C/:ŵ,'bjN8!hV'o .p:M~M՗9E I!WޟAŸr0\3f^oQ3pȬ}+~Oj}3vY)c6SxƧ(14>o(WG#zAفI2>' N|uWQ^Z( fgBtYϘ΀RT^@ 2sJ;낗+f?;2Kd8r44cw%'=#^!i-t #e'MZ3y~JG= D:/x搜 ;J 3K͜Ysfpr!镤DTެS|eVuɭVY+V 4 ={xZ=?)A4&1eOG| $HVx Vhː3T7[٣3mphůZԶCbK4jgZξB|5 Afg=kow"y gI8v9; itxd#X"T~^i>x]'"pk}^$ӧ8G`zAֶT%g3ֆrY9C>3h sdƣ]jα3 }`svPeFE Sy< +/&;bF\xixD?eWU#8mrr>LC 5muJ-a2X!yҢ<>t<#:\*]1ijChI d8jG/n0ç.Ah'>xkcOQ,j 5kqw~zXWf{ ~=, V/v_w]WwFQr+ٿP3/nR>-]R/ыC_ _{C[~^ =͂"1:@sܫבo:G+EU`z$"jN+х#CIlDיsیr3$'o 8q&y;}I_px+=RqG=>&``8ГY堈7L?W @8ԏ69V ,L<{ٓjуb=Ϥ64aO^W7?OoͿGȕz>pxW5RtӖ> \wX<|5:st[2Ip~\RbwɛA}^}Q|1e[Xm 3[َDViޝ&([e>|vs7m2fh/SWBz8ױ4}=џnu~Y&bG%C͏\#hhDrM;Hξkϝn@s; m-C NNn^ߣ]=4$ڌ9D 2EL&(c1z0pIE "*PfF|+ᬍWPtaN%8n_Sj-iXp P)uU~S9KgNm F01 bGb:.x |&sSgMey߹OdH*(JeauYQueI(AJ]ٞ<} =c6kƾoFv'v[3E>뢘~JꗿX{ ^4,#S; 8^TtQ`T~h,EtsFIVI=YOE,5e?H*f +>\E>sk KkTtNpq>{Y pU^`"&+[|S"gr]%ݖVz ֕2}`Cg&ڐ ݮ3yZδ]^S)=YqƏ8:b~_Q _{e (P)W= >z=7 H9soPlìG:( )N *e+^Z8 NK=p]hيDYEx%YyjXBI׆` _3?|$ <:jQM\Uu mv[_ /s_)^ B p=%Gr} `yyUɍ} deUNzMʯ@DŽ"|#G5?&!M:'&A6M􀬙hѦI>㗤>|g-'?q?GuUMV?{k3VSa#dɂ[}{_,=J knteg̦ŭ÷v6r[1tw}޶U7Hr}r;߹|W~xߒؼao2E vl|GBf/~c=sGbFƆSJ(P$:9bUj .`U18!̈$bE\ ȭ{=  >%|q~ymrVrvLuO"*O9Lc; 68pW>Pd`sx{u98Ge[ֈ1xҡcf|o9J*Nk=FGtę wqȤ<mA7 [ Mh \Zz!(E ?Ww'd"3 8JQz h>@m=>ei )?Q!TxzZr:.xV L d镃[n@ܠWL1  :W51s~%~tI-"/- І=q"D`kzfvPk߽(*lX[y6ߠ gW(.x(Y;:fL:&=SU3NTv[3%0{3_}"pBlPr=ѹ+m'aF3MlP9Pv2"&feQhmY'8<џ[lˋtV3dT߶kMNlXqٙr7jQ"IWWg=QU&Z(?͆юcc+흘nখ듔Yd=a@^ HGCR2kp;8" x[njuWߣAԐPazG)XtηL=2)M°[YV׷9&kÞWթPmǁ 04{v.W܎zfjvbOCӒ[CteU3r0:& 6-kwlC7/?z$_]l"3ޟ!H]{GHyuKv@krQR>uڄH9SuK7rzy>őZ>ç4 f{ժ_uy]A٤r=.k8%gKюsh'Oj3dCoߪW`yuy>npozFF'7xJߞg2ύ` MX&`T> 2(65A2E]c U)~0֍w1%`0g뫯oo9<+[N$wf$Jh<#:/4tsnB"Q\ҳ-9Lo]gC7%nڃM' M*Yѭ'hhNAT`vpT:yp^E[4dN6r:p:f"gK\ F,X}OF#d9xOg&7 D/^H.9_]vKh'h)-o"}w<'%v:q}퓽fw}Eg,S{m)]5N`ݬ9݌ϒ^9쩽7cw\g0Op2зJ~(%/^W*yDI]F%GAAsOrɱKӞ]?M}gpʿcU ta%G(^ 8V$o^"gī@`?GwŦ9>XZ4Q`!z^WA [Ivg^vppi:Jj57v$0S=Fhz=-Te3G9K?9#rfPKw%,_oǯMNU\&Ⴆ/X-*C-@udE^32lRl3S/MTmhomp#{{Ƞ l[̣d6l E|w E7oMf[j{o&Ppͩww7}p{܁._EJ; tf6) $|Qe K>Il0?/?7}#fl(}'V= <.~dgx.=?,x]F䅬{}]t{YVd}Pwow3}΍olp}qX {||yͳmC)!0jzlTW?w1:%eNq{towGt>O^MsI% `$pς!J `+gpkTB=J08f'>lgS(!ҩy.z½= ȉD:FQ S+xcnv?LM4 ^pfRNyeyM G`VLD1{Wp{b'f&\먂IegH&%3^98,أ Jxcsu%pf_[gv?ur 7 #OD5U㢮|_M8Uq:su p_e<$Ook΃iv݈g "A({I,߮`0|PNR5SM~AKmQ{—Az%AuFq i ׍Y(3p6،:gpd^YRؖ&9V0rtؼ^gm7Y\.kpπ܉on{AɗُY`1hܡ@2u`QN1e ; o %.Ad4@^^6еZ`2r y$wZRfy<'io#>(q Dέ 0XpU;j3~7Ouh2I~~WؐoUt= @(o6@~r<"D0ì>+a y{_,{oEw|:d2Vp$,z)>99s9wx8,| +`XUMe6KWQ89>vdLF/vUAnMW2Ko@ `MwVO--7ss"e,50SVa, Zwu٧7;~ʭtxm gЕm.{ڬ $~飇kplURVwCw`׎6$3A ̫k2ӵ.[ƞ/Hk/\WWL;% L@._~C&آn#]u2%p\ntLeWsa[#p8\ UѴvpQRk 'GN 9F W@`ܪ- pB*dJal`EKMC,+K_ӟ 6_q}GmLUqUAY6,9\vg`CRLzw!^wA>/^=ɶf1yMH@WZI  !XU9~ۀw$ W?&n;GM:|cD*%:`>8C([?rV%~RfcA J]twޓ苲XTқδstOV6/Cڒ~|G7 /8gmZnu ݿv&ޝ\7od#bE42b(BҢUK1ГnS;XbhK>Y)L,e [\ ;&t}=|^, 7 ɧGM57;{ Mh.|хܤVn:L˾{&oӅDF)JV@}M~oߣE~X69MB6B~eg7{ C~~:Z^/__vͿpO/MhI3AelJpnE]6.)5i4;cnYhuztLK@p!QA6SmN0nʖ}ѵAD)[5q"J`A)+kdBgavٖL /%FNNݫ2ƨW)psH <84S' pDTR;Aj Fz˓o_l4/-}cxWFVb3hI+|ݩ|3'i  Y'}ZrCfVs`(Nt.JMکZr g \C_=l*؜! bP^ū.#1E/@3Z5af ,]jq6zROk-U:mEo`FKWp^_}D{oȈćoE *=tv!7r!;,:+ P@Eʒ#{ !8&myL{'K= nf$&3SC[/7Nnvd"4|П,-# +Y}<v8<.E tcbo}wɯ*炠T$6X? 輺CX ʂ),WVp&sW܀t٣|mOwY3,V\P\E\%_|<G3@w5pwMUZv=^N5Z?y]*]]n쭾T=p5<]ҵy_w? dh -];k쫧V1 f߀Y9u7 Ӄ\Gh[ç^ASa+sife][`26$s0EQvŮWHo4X/=t:§7K8~hd⑿s~ƃ xGzl6-@zkkI~b'~zO@Goslcw: JMH~@|+:ɷ}82h gp_ vK÷M|v?lߊΟM[]Id~-X#NGnI|7Zk5nxKy7$h?{|yٷ_U| Z{)L6„pC W9JOg@8_=TAߋRzU&mV8 ;lӽ~wo~ V`W7voROo ^۶og$7{mVeqnŝVnb]WP4wh4[N?@̫9p mk3 H 4 #1`tx!"Y39ﵼc'hQN}?5\]a) slՕ0"̊|v8еk? E*Vh[c wu߀Vae 9\E߽O{h 7E8 ۖn8cog#Ƿu+V _^/$%߉m朗=p^W9&0~ootjeA5DQ'7?VF .Ѡ/-zw 6hͰJe&-"EVj$Oi*(t.v;nU%l$,5 ~ s&Gۖ&tG;Uo:Pö.oA;^ɼwɿV3P`&p6'=TFl  w2!$",哳 t.zh;bHo3 m -bm6ƑS<%V=I:%Fum_}+&2`tn5V`NtD60 V2 O$m\ga9H,5W]1#Z;<HȾپEy^xU]7|Ei-S4h@ނOdOZI]oM B@IDAT̝A 'lپW=ѥ.=OiWn|U@q8€hW,Q"ȃOlz0ShFN^mv{7R>W*UU"Ll_kM:Nq7`a6[\d*A^\ >p>4/2 _guysWʆ?^lT oQ8#=p89@<0Zx3~ ( >KbsF5l=6?ohW@ &;Nex!@UoCﵹ.+* hn4&hA.^6ӼI:NV1dv* |[x?;`<Cg44;0'wyN=d{X|D |<45&ц Ge[̖S+Ǟf`a+aTEVm3%m㇖7M$6x?x=3n3: 4ڔfzmyLw/mݪj~7l2VVG x-!T7dӭ|钍eu}}M>ƽޣ?^Mh⣉wӟ^έ>h_c}d Wy0vhNprnАz:RM$^>tz3jθq Ejl?14F`&  LxBc< t05"jsev* Վ)^q%E wڽ {t3'GaEQx ,ۖwHǩeԹmN` h9nU=XkBu2Vm.]'h,Lq|3|@n  tc`^tFkRa x):8N]N3,OJX=d tډS2}~m-U~$Йv:=J34o I˩q6ذD #^=4 9z5c#ލvpTdQDŽihWd"ܪljwRx~N Zd;Цv=-n @|ل8G`#TeJao4_긝ᢛvT0QA2ofFF%'Ovd]̲6{ӉFWX2WF6E3ǮV̧X8VګL$̡} ^4*g 27F ? `NjV0Ɵ*Fc$2ܩ.`u}}Y<#x~48вHxv'ebyVt8uښ1zxtqx,y^go=P qZIl8ysS+dodREMe!:s i:쨐hl9f:2>|Ag^ih-+>lV ^01V&jUMtv]zQ/z](6vGp> 6rF n=O' f}o ]cF 4HaAʾgs돌f%{Xmu-dqjwhD?6A! RYj_[ٌL$X)|>㠨9> F]c =/}35GSDekalT1+]b>3G䒲s3?𺁋4e`'ç 2g, *krJ&" XǥLfYZdv_Gn8oEl&Z-2Ylv^d^ʛSJԯҔa|핿5BOYGDAցLM`+}Eu56F'ڙ9̵kDbAP}ZOhgA%I˱z``@u>݀<){\P6@F;xGa}7)-.p /:( VcOʩN^0K\qPK 6m a INkly32ؚcZ1Qx?'Y&ڭYYNA_ P>ßuu8}&e4~iƬ2$(eUvaϺ+?J~'(7ַd-kfW' Oj2poIv{o>s}Uyģ6ѓ̡W=EGTi볻0**8+ k ;! [`ڏ~Eι @pgxm̰x}__7D }RB8 Ԡ 1/  Wu~\⿼|\~S?i:VGk.hZ`"< njڑI~Gm AWV@V >)(~;Y)ZyX-hjLs~aAѭ](=x//~Nq?ـ p7LWA 䞾4F/t?nR Z7鲲E>˓ ('||_d=^v73f01зF룏}IhBiR{*WdtkqPmKhh'*FwfN= b&/jփDmUȌ`0mTeEe (Fguݯ-L>.ڽVߜ< kL;y2iVkyfnzSRڌz;NsВWT٪e7ZF0E@ 3q"s\I+S%nuSG+Nl70 F0-* )N C\(A]\4>õĐŕ;fhݙ90s 9)Z>}H!$Q`7}X!  ]zܷIL.&×N>?|{X_f-]}l:4#o9͛m!i} s[X2J3ЀZ}l\Ս'x2HPc |-%Mt/%eRnNn^Ot:Kfe7YME]tqW%l_nI<*<ݧtVq.@N&nzf7nCtk:8ؕjGӍ3yj*{h*Y-@uSny隁W"ft~{{˛L6ީc|  D9[V7nmٱ=Zt6 z,?'Zp?GqԜfp֭,~BZ~qǑ ("V ݂l9"gX@#uc :u%xt+B?iyDh岇%i{rdF!^?ue3kYH~`k#р`4[;cčDsC#W`3!*Ċ7ѯy]gAPaz#wM4`3c8cҥdg*F1cX AkF6V{غup)-t$9q֙5ymtx9|o.oBrwYڀmh4|Fa\k—G5Z={gS]a[ʝ)`y4xW%ex`p322ҝRV)x=. 'Puk60{\BbqPuE_pp6QE]պW3@LٸI?W -B~^z}eWYU9w,NϺɃA1:f[z>^HȐl@??ߵfȵ6lpL@qyLHz=+? qi4LW̥ŋٚOOcj;8=?>SEyɁ[C(dJ%툹A1hg^өy@_"s/WFp׊'qd`x.tTϬ֊|:Cel-tNQp:L4>oF>SLq~Y+,>ĥՏHǗ:ts T .?t>9T'@/7a\N>h#힟fV 2|4k?\g_\o{Wѽ7U}(%teI')wb]߽k&;}ЩpC6YYk q =gsO:g퇏ZVV?1:{ml@0FktuZ ˾[.8W0ɭc{[gNY4'cF,6;0]֫)q}b_ʓAh9yZ|@Rj𼺪N]9aՕ 2G :8_s 7Q^n:Sûj]P AـU5 g=B^6ݞ8Oo|,\䎲 E*yr7Iɸ~02&:YOf'R>4"7V*+3G44ƇFzktml^pث٣t~rez25V >9Fq{h;ݪ7t k]Uwx7{h^'!$y:\};^bqazؖd,|}s nVͬw/ٺ> 'S)nnAKOӣ@`sW`xPP hWU}5L4 90AnI<ˊm7s ۏ ΆTȠE  10ѹVfIglHfb\1 &[u.}nݯCr+-0-H/TU`[Ѡ7S~-#IrG|۩΂c5'= H `% 9(㠋Q;} [A+>ғF8W%ƪrCkG?&5 L_\s+Ln-α X6RpI,.[잶w4Idg۔"Gӹڸ1k51~,P ~E6O9~WA̦dj5K `/-#\]jS%^Qg1]?ѿõo)'9JWf25ƺjW֠ F /ҷt<狜U5麯^f[HnׯЂ. |M]᰽s{N+U?10IIB@ъ t78ȶ9DѶZ3{Fgθ:ۯVOuI0p/׻vk|ӷȸ<מ=1w?Ƒ;$/>1ҙ^AW+ܝ`!tw,}G ;Nf0蟼Ɂ^;|j?D{o0Y5A^b];0oEw?~pV׫3gK&^~g?~RСjmt"9ع&Jl# ܇֧܂`: }b5d޾T.K ydTJt|۠_cWt`g\=~qyF[ k &7eLNodeSU1ڙԕǏ &@a+_x|@'GǗUW^v>o.я/'[ -3PdNƖ5OJ Wo)ے*RŢ٧}c&3Ao4sn#9Dcu)&)ÐR߬}˗g3|5Ol8@ Xp1(b0v杻}pTcr{NZR;LkbnC|{΁$3z2lfMRVDE^"[^^Цn 9սFx=cp:1&·QCxb|7Ŕv!X;!:{H`]5gh {$.+«cDh4>Ghc8cgA4b6-p oώZ4ë"CψTV: *`^ɅV8J>ѓ:oTN-*?!0fAL=F62KIj{S83#@@AlCש@Yq~Q%n_C3T7<./H'؞N!.(4YGϓV`޳j~UT"k{G'wUH 䱗lCbMK}EaXUί̽xypWGvѧ2V}}N}5fۇ>Ӂcy>Uf]?N:Gp<$knʵp)qXٞҵo \=r}wVOIx~S&{Ζ2kpjfBu-!z`Su5 [õEشT=Y>G]h߃WpzGp nWtDVM~ "uW GV#o4pd<WL?/:駟dS\~A{;U34O~<7przl [8Mhvt5U=j*lNnO(p>G^$$rf~hV > ?4hϞ-Fg|^qgI=f? MO@T,RV9xJ9X#8~'[8o(| ʠ]V&̩1#D~ÔF[T=ǃf?{޸_dT?r}dgq̿6(?ce}&=Ox<yZ?o2>^WfSU?qg GW ̱NR2Av6Gފ/o6*r }qgXU 2wٛVCƐ_6Ciorɻ7[M!&+%h{^}瞝o5w[|F# 3E)n&E}U>nosUT tM(y䋯/7qG[" w*}0nc+8DnRTg[ϽV8).Dc!.1e`xJȶ6c<!(햟Z~9ТrfZC)"5rж*LbS,Q%;6&p쎣f;$iCF#"aي,^#w#,$|(e~o= cm&C8&_ܳ2rEV޵3\ _0CTtʶXAtYϟ:J?C%56-YB ZU ׸s*л2gWr̓H0ؠZ+|3Q8x){_KZPDBNfH+}fp BelEE}_cQڄgI~3" ~5Q<uexw7 z" [zhh?:)1ZzDQhADR btHp38R80P::Ao ZvFKDHïȗoA5? Y8?:Tlkr۽?-:/@i?5A`۬х1:8fW'~O[YS'*ڧi~˱1{cݓ%N$`px D .E9S,q}+|O9XkPkŗdSp[2{D )>xkI_ÑzshȆ4lV4Y 9|7_xFȀ 4Q5Zs&f\Z,4co_)i)~7-Hv=Co;/T KtWcȖ{\r4&cTy)ɸ sgVxIm/2H>=><aф!a\ؽ6#p^<_27=vͦ:Kˆq;0XN/?P'08d[.+mKyKb\A9N vvv<)ph}+]ʪS{@| }! 01,Ւ_ uw@%\Kwǯ 2vw{U5RUtFҮgWj'wRZTt9>9x2їwg-k胗aO[KroKt_Vd7_oҿeտ>C!O^ۑw3\Oʓ--Q3U==d6e;+QL2uڝ ࡿPt/m xWpgRmp+h/7wduDķ~Mѥt>gY{y4ߏg7ɶ ٦Ć+mi~}f3}2o%OW9F:.z=1Fl~0,+)Gi$.o#@xYcׂE}m@~8:fmej`+ Df2@~߻wf?˿Wwwsg//{[_~Om} /2~T; k/(]۪yХ-1U'܆oN|p:D;$7'ߛO n;cwv-nl?޹Xdݝ@ۯ[IMgMNܿMOxt,Cdy <8h̦?o"*/~ߖ6I0Z`YE֥%;[a9e:M47yVS~;/.&Zf1/???_Xmû"BpvZ>PGo7w%L~R5`_|ˮSC*.'RȗسFr|E{pk24QXAGu^('>g&ճ3zb-Hrݰ|6q׀3]$('>L's@-.Gd@7zU@xWǤsf~y7Nj@ 1Yxc?RՇNÃ&UczӃ Z[3^ؾ?Cäd+R]Nؗ<,i#NNN3ԏI,OO"gɊ%ۿ<=838Yg?iӷ&{2IN]xo UU:YtJcэ x]*:t~^{Z{I7{}!Ooh;U%{ VY W x؅ߴ gvr~UZhvU Ƒei/ۡV^ӥN?F;}iD߁)QI<瀲OCnv"1ͭ RWv>Hc0DhrL9T[ \l{%c6 AOW'?hO xh-@OgteIc< >Ѩˀg#B_~%%ul׈ >ߒ8aХvoBe9f"(_=ujIWΗ u's>^7Z.кR+:2Б6(|i+{V>nWN_'p$owGntl98U җjKp=Up,o6Qjj)vd2lSIZ Wӆ!7'K,=Z:}K=M=$ Gg<~$[oDmLSV9jVd_,*ONwP\lMT_ ͒ lCK͊NiesOz/uԣ0[T?<=Vff]1Lm7Ɉj%mhR{gq#*c@U~cx(~I77Yԯ8m@Y_m?d,63~+3 gup0㝥?`fU~o,=~N3?\G?9VםjP22΀(:/oWlyhc$``H1Dnngo`-}OF{rvF!3Fk'Nˤ4.GvyPœТ5:wWv{֡]Wq@uq%]_KAP\_hC N3_X5$(tzr3f[EHxջEE3m|~!R&h_ރ  ^!yۆLp2r fe@:"a7Y  0B;?RtӂV"ltK-f PhmAFo[uV Du&e ``{}b7؃K]CC`_ӌ\9ǦdmZr lU=~CnK~r8 G.ỷx>OZpa\7LU>_Wyv7Ԑi-m7ít@nGFMWp.x# ʰ;4'o0ɢASɚ/jZ:U|^]dShbf\^HǮtys`Z@9n)s}(z_yh8@s:ih2 n3bo1tL^_t+uFV((UΗ>{鵠}3}+ QD)F> e6GL0UA;xsq@nstTiՇt-~ǁqtC4fx36P7Oj;X[9Hv}|Q VA7J@;T\}B%g鶤~GkGT[#zxu&ZBAĶ'G60%dک,;1xF-k U;L֦ ̒6cD&!'6[;qu)[nVm M&k]3DU}g+\%ΕLkO_Gi0)֗|~Fp:rdᠣ~P2*)a3sr*OZ 6wǟl1)RHT+FN?M?2V٣_AmVau|CR]{df6cI0%u,E0nE lrڪ@g78cإ'2w"zs |j0[E~p߂E}kdH?0mp|d>v|_}ԳRbf*L]UeQOVNx>> ݪv9[-lB͂Uq8Kbr['YM67h8*v6 ݖңK ;^//;$._ES_֗ci-JC "C3\H#2hclxǺir噠ϝͶ]r[9>nk?|ی4೿1dX $H>K5"2BzVFBNw?TernՉ@!!p_OLeTLFperN4Dv"yM10 UllF"b8w^x^~x)_QIџzrp(;uJden r[l{A&cX1HLVIշ8Gˎfzg:ݾ mgc}9Εፁ{5i^v>ez eG< bG\X!3i5׀L,~08ܡW=L~7*)$J͖/N7\ ^ѼY>myZ[JN;., Ӂ!2kO!\kg o>u+VKp'^ȯoLv|䓏:qKr_P^ȹ3bdM_{@ܗfdY~3Y4HzFÿ?nR[U'' %:kmXkSEܜcqz~:s!Y.~U,\*ԇ bq|fшI+F'Oeuezӫ>Ykm< +`OloyngYZ H|ҧIfhڱ٠݄##>8W0/_qn]-Mb8-38[85g>ih3j ^л\w˰?r2t8/o@a%V= /5qjc=e>I|m}#0и)x=@W_syھx]=f#Akf؋ILy=:csmJh8mkclVܒxöKd3yn;|py/xksz&BW;:yNk:cohBCtN']d:E/Չ76~ѣGsЄ& g?>Y嗿&>oc?O&>mevJ_.`ڀy.TY# .(2od3.$ ;$7& ]uWa795 {;^68)X fjX Aϱ/ H7:7-dW|ea#(=r"  pWΉ~t +%8|0</&#ӒN*-_?~uϽNϬx8oYb f6Ug##ptLu]9 N'VMt_orϧi0Nb\7Xj)ԒGg可5Sq|\ÛɭB~-ϋgֹg7HA.β!trL f_wљpoSWrV໋t/CIFb:Y&Pà1/r=|7-|bxv 4{7`R@|x VP':7&PD -@#< n$rPe`ť[}g|GoNt_ﳹu \>((uuz!"un*?\EqO`!%dA#C0+: V)szX\D& ̵È={ogBNUk?aєL΁OU4]'˧oy{|M3g3S9:~TpsOqT[&%7bV'CUhb6E|I-+ O{~HDZQ v G]ꡣb|r-_:s*?PX_̗3!,]WAqIZod?KLLrEzM+w1yoߪ/ՅVwov].})#/p+\W hzDϾ3$Uz:,Uӆ1&cJ= |2%U{G|(ɕn2zI,~)Vo~`GO_/M2>98x7+"@}ĉpCeW^0'`(p!p Z 6%5ObϘ٠x`88,jbgZqa)*[`1(xOv|}v4v:lQSD (;lFt:=v( 6l`a+S ҢsG<ı(QCsU mD1#Ҙy~lLYص|K@!)K)޹!|8C|q(|:'/=7`N6IfQLJ`#j7+R5,tl0p SXGGY@W2@HcPfzY''~pJqCpkƒK'XG ȾQz a݇5bgڕo}ݻkt<7ҹթ g~v;nF^~%ΪQl/073Vg$>m߂g!sY]_73YW9|2Lb7bጜO] gM1^2|({rvbtFѩ2:O=t_+hC;h]r铽GFγʒN{3Aeq & mlkA6 cmzc^{L}uNxFJ+=5}Y} ,&Lfkyd#f2iÍR.}Uxѧˣ/ubH7NGvenrUyOٕx18o[h,Oέ:ttXx%2H%/$4{#iBv1i1?ݧ/?u/{}UjMrV'ޑǢL'U]_?`9ӄC[ɭ|`Џh;Ֆ[G;_>|/{d8=~`/75x7=:phU_W|&UCz췿' fPS(@#P-1QV S M3Ff ֍O<*8! =TNL @-%\̮O,(A}c ':a18޿}QۍqZv,8R:{~ q>6v:h^7?Tzgn6*O4pN(oFEAk) >]wW:F;s#dYUqU,C u>q\/N#鬘ѩX2N_0(?^HTYVFEq檘*̩#D ^3Tvp7Ru-g֡7u: ،/FxDGr<nBnoe-/W=\&kM&qk(c Ѕ' yQ8˄ޫncgcˬ&3zdŏM}3ӭNA6o0{P3p`st4oF 2A7^L~{ڳd}D 0Ͽ5-3\}Gws< 't@ FE,WdfM~q5^I6ji}uXPc#q]\  :QFe6tO@9ඁ`|>"s^&@2B{I:36ECuPJSPo ,avG}$Y:^ߣ)rf!@5em}0.FhMW?,:p =7Ut^ot6ߣh8'07ʇtBr`2g쮥WiixʬtyݽzO@ӕ^w[Ѿw~g6DPJ !6ƣ:㮇M'Ov3#:QU@ru8+8x§/xПp#DkcGAxyfEvbWݒ,$dKS:ܿ/w`aVT<:L:;'<7AD%!`tPgu:WVW&YŐ#nZQAP#XqӈKd8;P%fi]Х;WΒO# ^lܠ;\2L1[uS,=b7V{lt~|*3/>w/?s;|CiWAugw ߒJ_ͯAj[#ȨT쪲J8HYڞBh(q^:mɣ faw3!GJ?&3mW唂qJ~֫gmL0V DdTdRE=g[:eHݐ"NNguDN`a{V48:F )-0o& Y9 @|7j@7.( ,U%y u\[@-J ʹVC'ϴw:2ֵD1&0c_$QJMsH 0p AuC6Sq4lNB\~Gf"gӨAܾH0Xm`l0IٹF-[)b@mYN5>ݭjg>mՓ?kGOX}\PXCu}m9ιo:ddh U4_u,1TGӻ!} R_ic&;*O#]@g/ |G@ުVYhQ"9U2=OiTl5?,\ȉU|X"."kF}fCyh!KտlRi+xݦbwe脝Ox̀M=y<62|Jw/q/_I14g:yt|@᫼C]^ޤ>>uNt]!6dA/no mm\geك}]9~:h紟MLm1@f /  Ӎ򌆥Q>틥TsX:sSA5m&k~>i!M V<!I 6#vq2:$^H?o?S.O?i"QϚk$?>nz]}xDeGxh^G<0lL#Vg#I:ѭL9ٲH  ⋟觗m kN~ؠv}j=o@- N7Gٕ_MOdÊ?ڱ} I+8~=Vn}[ńZy;_}~ǽ1ioݿkϾzIr~6ꐝ<Be(QKodcQC Pe~իBQ^FkvDDv,hg42:!oՉ\KRZNx"F@NP8tJ.\RKçG SYmo6 D\0=AXtNs6!;7g.dl[OuouPZME!T (N 6/J+& u7rƎ`|u;Vr&,])"7(mNԵ*jO}Dgft.>gʙmxVvUwJu\N M5Af cyB 4u0U%. - =,=&c@o7%hVUzhy{%Xݚl|P4tHLGj- {E;(;A]鰱u }{'ztq\V0ryPҽ MUm}'vQr|vN''{Ptˠ`& rJn4YSkXse!t6cstA>) ט|)2p.׀Ѝ6Ɲ^m{零eh|'_CPxs6br! I~t>\:ۦ מQdEA8jGѽ1pjScAEK-ӁNOܕ YAczÇLZ~7&C?-OhyQ#pe)OèX 8oA5]"|2S]Q%Qes}DKWڀ&b\@ef[[ V[whh٥Wn[,=C>:cn.X,?Bd5GN4 ӭӆVAuX}W1M@HtpI p'p,vJ kcdU 9qtA u5%<{ rSGGH N" &x 3,}8 ti\}# e^}dTzMqt7]6lXI&*o }]ہ|uEz1]ӣɵǏ'+v#Oԥ2 hb޵3I(!u{5P &ƻNxAt'3~Y$CWN*u|Лw|K,> ml;Ѡk爯} c62߄& =M̝7){φ; .29g/g'uQ<3,6ƈW>~CϬpUW2?I^dãa6}5YuZϛ° &y90 zC׭t +R|K04{FÍe}1vx굀|~vϽ?ty7?\fw7q~0Qq:;)6 (Tf1?R6WKMV, g9gMR:w#wҍ/_^{lz:z7y\9fD؀I&2]:l(G.YGu9ƠC-Xo}UF`ئRc{gۜZʂ-[b|6 ^JSZ888u:68|@(USEE1BؓΛ Tev/ۦsz1ķ#yJF*?,XC9/ɞXsѬXmSpd:uޟgh ݬlY{udHEމM.e:@޴Ti|KY Z?΋^>+Kn؀W:yA|~œظ}/\_ŏ1 ~m\hpzYuxm^1YhNVIW̋mV\>(sw!Li7vQ"*ձÛz'b٨#v(+˙_@c4/K||Jr~Szt5,8ҳqMƖ'/>\əY82iO+0pƯtIK#3\gV`o7N=W>+AwutJo5jA5;Om~*μj9h~Y+5уؚm skok^-0˥-(|NcV2rE!(XRO+2 8yc`Ђˌ9Yd+`;i^/MRU' jX^MYg68/Kf3&Uk k[ ^uVK7f} _mce2$ -{Sq$ǩCz \mT&=ep_6sX][p8u/4:hX7H.:NmU6c%3#GNooNc~s|(\6AޒM#C=jXcv&z+]h}[u/0|;T{ ZXmKGW d7X7S`/uKfR~k^4_xmu%𖴺thxcph9:.ήLث%+eH yh UT:e2DB, ]JK$Er$^ݹ .m W_>ޛpycWkJdW3r[L7ɴ?D~;te4C{fAI:iK^qt!YsE>Ãl7Jw=47tP7߅ q gqb.6Me0j7w6Ż3S~V^ns:o绪:nYNI]EbTrڄ+w?m{e0tW~FK/޻J ]Vhީ"woڀ1^ Nv Wt,\bTqV^+󇭬xS?|_/?sOܒ2*@2}kod:VNg_7\,lxdA{HŤz~Ag~2L^T{U zaWɺ~!9SUg&v=gyCe)e'GyPR(u~A! ',<ͷ|?jҰ/.?wN}w҉?gqч_msR08e*Ř]rC0@(N wzB\7[}1N {ŧD]W!,=5grfA2pD3҈g`Y^ϸJI7c*`%sDxt4ve3LCqe ޲gѫ۫&82C@i3)f:ZHۧ49< OqcXkF wcxAhn)/2֑r+G+=+n\Ap V 6C)w9"$]ůI~C+PUf&{_'3j26lĶ.H3U'uhkHol^yԖ#|t-ow|SogŨ,\5&OaŜ @r6 I#{,dR6[VK3>~\oҹOGϻ/nU X[ͳi|@23Y`1]YbSw}{˵|߮ ȳ6i?I!2EW=d`IgvA$y'zm%:\t#ӿ:}ji^3%qǟ!.z8 d0vKnyJ9xl61hz @*{_0[ 68by_haE@b3Ko ,?z=gū+{YdT˷x?8)&.V7[fcU&Q'Zyáo_Q͔:|U %'Y,FU镗 =Gu h* mlٲ-:9jxNmOnDat: )t@U&*!UgR(_W,vyǧ}c uo0#yp%kz#.O Y)_]OcFbe黕mDc~S"|-}Ủ7fO xy7̿= Ќtfm3xa3urG \)-m ?P$STixOi._xtRpaR0"+~ش2ozxS ֑Yկľ'D6k7]\1xTsKԙ Nk`Q'=Y|͙sL~Gi0q3ZQZlQ>! -eU#ܟȿ_}lC݇'6W36 qx`b׵o|K7J+g|떒۳~+>>?_~/k'mPg <VT!?cnU&OZ5Cֶ^*wiۭPY{2O7[&611\ {UI)>'GuVWbdL_Jezk%guty7Gē!wy?ikhgڤ}7i5/~7wt>U9-[}~_H8epo3vF4p -", FT4 ܌4'^vXҍ).#YCV:g[*[9G5N 2)_nv$Z<-O_ɾr9v< B:zY0%WfX悌P DN*pXBc'm~9D#?:~2 Ot&n<%`"`GP>AY;qQH>G125Rfl >Y]U?HQ8\\~1sfGb +%32٤qm>Vhx7vuyGa_Gn%D ;1hv cgANEYS'~:H/fgOqYp u5"mݠԫF/m4t6C7 9@KDy):}ÇPTφFxm^s rF.(8VY'ifpOEA13"t^A y;j '-'! RtYXT`rL"sywya>y*8:Vn9NVJGާ*U{3zA`-{'*AOW ,OF;(4`pοJ6|e*=ͪŻuLu|䓝9!xq,1>$eoeY4,GZp A (A{O\K3xd_;9ױ^ЁtC"yYGȁoP^V6aM+¥ҫΕvBx&iɳ)Xܶ*ZZnn 6\>*ٷA i#g?n :ܭ.8 s:1Ct3+fs3X0hMooGC'oۤ18뤲r Sw UBG|]7O|ի '6C3{ W&ɳ._8>+şo_]p-Mx뀆pOŢ~iS,7v JɩyL=9mݿB HʔU,@xcF yWl@ ( o7xFVgHT7# "A8[('L+dSʜ{YM,cn{]fW6<'Ӳ:{6>X0|KF#]A 95"k7 & `d3AO?B?Zjőh3#5Yk g;= 0T,QV]%͕bHi_ g8: 2#NA)MdѨ< &d5j~B_]{u!hM*BN2[h{#[NҰf(@2&Ys {nfɽo5xb6Zi Kel+c#kõ;5z:Oz:d+H X=rЃ/O{][cpġ`;^& Z4lu;]}JfF$I@QZWYxNZzu : ?c ckklmO9'&|^~Kgy&@[oذ+iBP0JW6;*U]ݸ)voF`Vy 5(>CYVul}J_=h_k'ٺ6$=Vq[}v,Б'~r|<o9&>}Hp|gƘI@dK^;w_{ SmHBrh eU4t~jn+n$[LڣW 26d=د2 ɳ{~Tat rtV'{ aΰUuG="KM8G|}z\2w[=~FM g?ѣn7iTNVg7|&9,x?P> `Cl6?: {9GO.rY`(y_Ru? )]@SogO%\~-?dwM8lie wd>'=2p2ZGx^x ES9I|'qw2GrXG 4mD'!{"` o+@Z[ܩm6kE(l@yGI?_Ћ|falW)`P{.PmF?@(/]C?r,S/vCEn' k`dqX0sb`;W:k7yXbS|&Ӄlffk+ceH)#~ViKjnĞӛ**G9 8̸E!~Eg ?> P 4{|s<;ק߂ExWuYCrI񶉩U@w}_&&{dtxY)_]ǿ~&#&nf_.ԙ|?_g|gɷNJ7mhN`a2=>hFbѲG:'w.NbJ"ϬH?=4ʿn!v߆iuS[GfLݧgtnnҡ~O }L*&%;) x_}M.ۯk*/Ôa_>ÿ^og4Оn)퓚)Zvu9A6h`wdi;2sZS.hVڷBjo5e*f<}M\EJ0r SHugaog:p6R?h9|.QV/PU7q`9WFVux9EpqnϞlc@0Y1x nGwoɼ3ecWxM̙w!gc.0 jgͮKS%ق˯ l.D5s! DS#AؙQMOb Nב%.7pOVkήOc<_Bcx3"q;?^R&Xzˀ #σ Ϡ"{|}K/#4x B_@Ku cj&Wf`:+/٥'Df`(Ѡ5>5>>ZOoyxCoeڐr)w2w=ߍ 8` 7@dxP- +lI"۬tz d<:Du,s."^l.SA >}zp!A3>bBв2't@B|h ,=+ֶ\+I6~D4n?9uџN+KvK>6M`bx *!(Sی<ɩ2frVvU B]7$&L4ǃmR x_u]H[:tkx8HvӇ~8D:.T[PQ.],_Vܜ= qLӳ|K7n6^:J6PН颛hA te8`r_ww oonvni ] ^0 V7ы{GTSl1?\G\6:7<HVӏ 7:緲v0n|6X#ĭx~o/ZB/f]G:X;m 9yOO|_WHQ޵TUzg%w:pI!mzM/Y~ח[q?ɷ˷MbUO{37g[ m}W@[ E,gp$d +P9. , !JXe{~V :O5E5W!9FMñFڄ76k! kj 5@)v.Qڷ6eJB#7RX<$<|Ν,#,I(G<LwN:֩`b&0$N0òќ3 :-@) JRcS@z42'<09-kѫt7wJNr#v\7-?t BD8_uUpX֨“ᬎ'3?z3ng9 Y']*׸F#c:ljٝ*mDb ҫ6kTvIY啞U+]^:/3az&6߀CxL0 QZͪ9X$$;^`Cyҧ8@ |A)ϣ6:A'WG?4>H 4 wK/p(i|Gt| Yo|/y -IMmDٮ`r5!TUt0z nӝ=sԆy^ݖVevGkpòHxKQe*YEG'@v]Ui۹4=ބ1X]rX:Y|, (ǣ#_%7媲WUm@.8>Aek{ʖ^Mne#J=[8];NtM z^|;'nY>?gg_!O}BJxćR<ﯛWg2?p+g G-p(mVhµu9MayT1*B[u]O}KVo`tWs<\{*/ސV}+L1Π&l.ū=^>Oi+Ujkz[|wTǭ_aLj:Fah :F)Xi ە~;?Ք kKCPO0;70obLf&Y~3NV,6Pн8ԗ2t+ӍdYGa$ ,;+t`qwxGO?i+=>N0t2Po,YZIp'PxzC/|O0:"Q,&[xXs,=goA\s]W6 6r/=k FP0@Q$uG}Nd@oC ϡx#=rI  6MҔ1lpgr3Ju*-|k+BI Fwջ _~vP~:m:ZU"7 $Nld&/o8)J'QЮ;CuMz=N;rp81ٕ[˯srll3!_T+%*zw7py3yOVO̩\h[Y`7:@MYX`L55s ?nvcRIg3~-t@)3:_G%6忮>RtF N[S}V:P_ mtËuغ?К#j*8I6рƧ993=Gݲxh+w0Whě+p+<2>ɉ-14vA-աO1qCQ[ʾ-[)[F*tSl,8lezN08ly&#xr5nv\W&Kε{yµ<~Uxq} \ǡ/ut:~)UCbҀy+I#1[S BtO;NSw0<8z_i1s ?-Ӂbh|rmJf>%-Fo]:r+u]9wpz'>SG7U ]{3 j||w;' Z^S+G}t_~fn=0>~Ld1>Ds߻zG ww~߿\yz˿\niG?w>ѱdɡn:C^Ñ/"6MGŷGrD1p1.@eLe lK)㕯 >x eG[m'AV>3)%%'0,E''Dl` X,P`d3Ι:'|+e: ).8G_n֭C8;NA#xwy\u[ZxsՑ"k坰Znq ]h}9.QkNtX2Cr L2ѱ8XUj9ղd`,-h8 gќv &lJKhJNF1k-Gg}\2#C48.#Vj@$3:~~X{dʓ¾&9@3Z=Um'Fqz:Ab1 :>u:ۓMˎdsѮ9vvέ,;]q"3w,geYieH]l2K%Og1[>K1N}k:ŬQcKYH#ݻ!96\g.tr_t7`iWM?/d1e۩bڤӃ3۬ t}pIzLx!rJԭsA꩖ڬL6&ԯN25Ҕ ?TH_J6\ɸ{a)p^6~Ao'km/@a:d][{:EQөӆC|o0!n˝{ Uf3{_..J{ >O/Oە^xk'ư>\]UdڹbƲųV]goWɺ:9y}6! !>}n$i6Xcdj,YP^?=p87`!_)]y#w޻ZQa|J''cO{Z9@!Rjj|P';_}y˃&~dbWiEQyd`&67EOz"=YvgQU7(qFf0kt͎z׏p1!;|Jȟc 6sdIO'~K@jOx;'p.Ӱӌ]@4dYU㱎op4488IY_j8yػYSa} ,M`ɲF^hտ,\ғeW? ZKc;;*؆?mk։FOO@_8:Ng>loADx].B3;T+Qu,U^ `J^t? /[ 1G!k0d8ї+ ^2;1Ϧ q6@n<hLْ۳4Ь˲7 T< l5CQIY< iWذξ N X{Ve~[Pb _CY[zIZf&Iy('.wV?2Lctc&qWKlm6Q70쵢f /p;^E`1]ɻO_+ɏquR r<^?_KNGA')ˇ'TѕXN?ZB d#u PW!G6N|P}),2٬c r"2^top_(U7r` ߡ\{Mv+MV L_ k/i܁Gm;jι2 %.]ɹA ڗct*3Y}ag0 x;ضc3Kpլ=#ki.5|(?n0׭q:fʃ5^8;^~o6n8 &fϩjɤx/O8EZ?Jh#|x+s7UUh<9̸K)˾xoohQp[zk̲X}G⤁H_qT$6s=g\[,iW{CI-bȻ^?hx'M[Ǖn$Kpmp, ;e ]rNlVsއWO>sqO{=Yo3DG _/V'f/T2[|: pmf}ɓc,VTo=GwcEѱp0dE{ZN~u҅~}}/_VX،[mq@!vNK_IO~o=o~~y^ͯ~qo-y>}`6/GLЁ9u9u2s6u,eaDʍ j0DU~w 0%-gO9W~)Xf⌆9Ԩߌ)Yb@F C7'v .4o5*%/' 89BNMz֠LF̻|u_N @W8G#g@^kU |"g< -*iF;;sOϞ==oO-׹;b;.xNfV~7`[] *挺=ɫ3=ҙ{f= 7:w9.Tttۜ f!dkk43 ?r I:SD{[ Sޱ2ykt]uÆXϽq:íΣ;4gmE>Ƶ;W~e':d>{6KfΛ vGV%lIh)WYa:Vtևur w|BH#ۮO'%C?nԍ: Ps7%W/OFwx:h%ǼJ7,[* 6[P} XYVN̯PmO] QcJܧ{' i: uvVO?<.ïst݈\q&XpiqUԀpcR3"وНJ#x&?_ bv*(>: Lcu R }GU7=ߧg]8xk0w݉]1_9`LGxuAh 7cua@:UJ9i즒nll_gN3@뼖tx'9Yե odʺV%r<9}>gݗٗ/\$[QG5r/g{ѱ3:uZt񴷘Ϛ+g z\#xɪ `=fr{!S._n^^s\ơ*LJy) @ Ӧa}*rv-uXsǖd}R/X$E`fz5 @j1wp8}9ê>M߶Eq>xe}wk.kj =Qr  mI3s$~}uDH l}Z dkUFa>Zz صGm#Tx+mX/ CZffpȄ\G^(꺾F~G⅖И^[6zkGbl0e t0gD@x]'k zHW'%a 7 eA1sAbA47MZRu 11Co Bjc]\7>}V:/exS{=ndԿЭ}F􆺈[k*}cѕ<3ޘ;Zt/%L:pfO]l?,ZQ0uހ?*f|G #M}&e%70䛾?XkmBRg7۟Zі:mu4^]d5\k#k NV!^^_15[!n(]+Ry\M5CQaK]b q VHՇPB2C$BbkњфÖEWpڽP %Cr@fpv; fi3K{_7+݋SNۜ[t1q]֭&Ρ)9}*! KtNԠ]ٚ >P f P 5yg~d&2eiP% 3JCPMPT۽EQF!geg rk8R%x9w[ d c+?<җ짯ό8r;Rͽڊ q9^죥Wק7'3̧T@42/Zݾ}<f%hS^%Zy>f@U7?܂ 26guL6r!Ï 0bh ̪>[2'K`,Ȝ> \Cы-n37`s^lQy~` < t8HȌsq,^M܄~4vNߊ$ ^N!Jl<%xz!N,/{|t_kT4|JXV䋄ໝ 9~V4 V曶?-팁hșM;gOE r-QϨZR艌`:YN+WS03Zdޭgtvs]κ(@p6d9​FYrD `g/ꔌ?8}c8k`{0N^% /+txol*ya[m_޳ջѾ!~uN0au^/[aV:!N5}Z'#M<]:T?]XRu%16=z*X6w:8Ȏ^yD3]AB. @/uBj7`Ǟꀁn:o+݌iO?ɾuݝ .eKL=}N,q69^|` 7}at _5]r-GH3=x6']{G1W}&,pZ}pBÓ>_&M'*DԽ\v?^:cJ,~^ Ё> Z.,: e/}kwCt5dw6w@_ŏ,F%Ew+W⧦N>wav͘ax=HmYE%Àx#Ii>$;H݋`M>쿕.pg{]`4Feф!U>goE r * >\U1r&6@g:T3߆_;6]'|jUz^xIk9$&Ű>읊ֺxbCJ1Af9GmbcCtJn@;elڌ_2٣ybJ5D 3Xޅ,\_"';eiy:;iKk ةĖa?Ƕ_e`}g+9nw:|1' *՞~h]&Bcs8,k ?ȺA|3Bj#frNěϩG3('Q xˌҒ-T~_9*RAtcY9`HбMW%\§\͓SJ(s[ j 9s:Հ1{CJi~Ϗ+-#mD9~0 3KEeڽiY>Ge [sx0aQe1~N^_{amπk:!T. N7~ng٘ӟ@,! qz+tkԬyj:VIg܍Eîm N5L"O&,w)dW?^`Ⓖ|-?| LzT/;B}G>/)1``Y@"6$Q=|D`]_N kfA9ZٰE\@IDATG,^̬oޗ𫼗zl,\) 5w!@_POP 3|G85G184:5|sM[Isƪ2t zjKе8^VȽXEW H_Jf~z6_K\#<>-Cק ;>I+낕b!\P yzuէuӋ*/0^N_x-P]lAxNRcpupvip^w:5*)<ҕdЋmݫ|}ɇMp`$wxI Hfk^VriIw爲q侤`{syɌegVyܯ ޷ 6>K@[]~p/^ ¬6᳃.h|`w[κ9Ymp*&t9J\++ ?>7Txs]eǝ& W^CnΉ!/;(*(~284 ^\M/]7սU{/:%Z$<PNjZ}׋0 9L^e QMϣ Z[оOxnۡ/?]zV[pC$1tfGi/7jCev^:/<zso?|˶!xػj611Xޟh'&08AnOp)NR `cefh:Bǹit<> } ~ҌmU RON-C@Hp/Xf<ǝSu56w h}y@q:Чh0i3 Veel;>90eD?U:g%뜒-iYVPEF_|JCIa SÃ"K&P#6QQ})|J< qY;g1G׾`]h x@C,' PBKKrdxJB:҂8O)HXERm/Z^@b==>n.<&$8y`?֖m;Ct~hwX8i4' 4#ldGBn":m]]2FT𧻓t|q0L</?A}" :SÏ,4bkdζ*mv}^CD>!4өF%Υ2ҋG?h+,EyF #+vfL˳ ) Xzf%)Z?6 #94xtNn}_ ^x^BDi x|Y);? "O5Z%mKųca^Dc:=y#r'/>?Mm'ܝWtxʆΌOr5j_Ev%-6h]6#*GI6H %jzOE;aw[| 7.^ftn@N𔝚雯K- >mXZQFK9[b;ڢP믂ϫ޻V:;O/H_?dl 7-xb$ Ua+\rem@:"VI[F5`*t7t3!+u! ҵ ͒|Y{ >#]xI.}G@&%7;/_} wHKA$*jieG1O h )hóF.Ѯ-͔F#W ?B T`񺱭h/WꆟX ^xwnUyWfm;QnS 8*M>X,j̞B13݊2u-Nb%T}=UEo}^QLA7[w+Nw|=VdHj7(濐|O_pM}58ʜ {1sz 4I'x?3k<޸*|^2_Gg7lN9Mtuŀ㡸3>н-%/ӘMKvz_!PۊekI de춘Ǔ/X%$kK,1G. 3Al}co?Q>a>"G7vm<}==7Y2O觟~3^c=_Za;=SJ4؅aOuY=.9pN0:T ', <Ǹ$7cU)5`s rd[ k7;;'8 ŸlWm*5Z[B!aj>R)NI9G1 X=l%^2vNBzBaxJE}$ SSq@X]H&9ݍW ?3޻r7ծvACkwiӧ"ANj^%1QH{֑Y}0^ם.,e!_N= mI}eg;gрlI?t8t>5+GD%Q75t~NK ?q] |ZVV!dw *ؓWH'%:Tb3.e7RVe^U ~`7lqn,c: Q {&ӭno|+$lgy.S;Kpdd^y>AtD:k W2Oe{h8i ~/aQoK$:E烹r\WhMIh|Q6}t>Awt{wG#XqfJ`r: 2^']aI{Fu[| %&|YM32KvO%{ Y;,t[mBYS}muy:qf´tKKB g^񹲟Iu١^,B^gO6{ ?Й ?v ?(2_Q6]K @9}+gtr8eE3ڝ{;ܦM{c>A%dt=xa ?hux]WY"*FtU=ttޭp.=y`h7@EIэu$#G_'>6Kixa"fyc+;UiH *KWl1prstt8z3Ѧ`o|\h嶚 &7(޵/ޓk#A?HF6"jI_wz}J\ުx¨\=ȡO@Wyϣx/>܄˶t|џtO7__:ÊKAj5[{aR|F@v%QΔmlln9B<徟0s 8&|CR)}{N OكEaq ؎O&,Ll?R;<ktlO գa#6jplk#Z9ǀe6hjAWA8 űVE|X)xOEGs&-8|JU) x'>Dex. LͲ@QY-_CN{A°4<ƍXFAs>/ݩ~Y0]:r2-igp1>§Kl`D vsVLTwE[d0CϿy6[{jg wat~i/G ]tm "EG=t1aΘoiq8 T`2. =pC#hxb)u5,'(]`hp4t{ ~ß](Pƻv>2 AWcNޚp@.w%A%mVX ۦ%Mt9Zf7p계ȯ|O9|OrIJ7O Geqc@։Q7;_O`/u_E"ýߞ6b&3ɴtm6ߤ?1}x|AB| T]eIouê}[5/"N}[dɥV6ɩyJQ3=B-0f+3`;I,T5xP G1~}:vn$s L'>^ⓢJIjXΙPvGYlеo2l]J2L/;p,隘>]/1>Q MSck} K`!? S7`/cu _ŵYebx3tա3wnY6sI>5-j>,!>``R%9I_wy;5eN&ǙbGH=2/эw%aϐpr]Nu`~Ӏܘ".E#Ѷז''+l]C@ ]1k1aMv]s_r~Y,^ҧsb TsI/&$+BoWoi|N/!}[_"Ը^l{=Y@<nw)mmY^`=0跲+#ו9}إ#甅p4#Ɋ&bކh9zs~}z 1u5$荻TsJ|[ &x?1W.}j?7|ɊoژW4ɑOzCVzdpvZzGu>˕;72EA_ 1va`ɌTz'9p.`Oʪ9[tu(; {)oU[2FgT5,lȽtAO۷֌h#`L5#fl$R+]}G'_2p/ՙ^,dz+Ι.AT%}~#]pu0۟OfS>x#HNGS›xR>=1Y4^׉lPFژVDI) iDĈÞ.O7iw?:R%ݢLS`fpl M2@)"2u:'HT /w@x j;-tc 76:]MA[]W!֣lkH]DKH`sKH?mUV,}?=D8GXfu<- WPUE?~*Z.+QUJ CCtx2,|U/|Ik>Cf |>0~8:u Le1zжTӹ&Wba~{ |ѶB,vuFw2q])uz[0BAXu}+yCfw0StC _QmIEkxZ x#Veqٵ\&`AtDOer{Y ^=7[. W/ܛ׾ƪ%SjScXd9Xn+aЋ^,1:_NN y@|vޓӽʲ%`'ދvìO~b th-q3C.ml..|?so[ o*=ϳ_«?lpʧQܿy tkp)+:mٓ7{ƇckP~ƒhbﶘoP]aɇ!X}P,!ޟze?P{hJkoEqp9^f3o];/= o>0]{lT]Z'O_dL✄04'03](6 $ kFH`ߒi9鹟@!.s(60ȹKmE؞ly(d0 IKJmCdiNXž֮ (W40aNNA=}R3c,D%|_`l ZRe u[UF aq'Det?c/ =Ͼ{m\E8{-Xxq¨@(ӜEt@cf$xj7+Q'`з2X`/K~;A7d(3%z2#kgs辮nzhux-?21v,={{up nAr ej~Z}9rV5nYj\';`W흿'UCL3ét?=k&¸7_%1 = >2H9v|x}[\CgD?5O{^ [Ʋ7XQے~-R}2Z8ps9ANn>@Stt;9>N{9?]ޫW}θl|Pd`Θe^,v%YN5U:OنU'a˱i?xT;IG\Ђ֭DHiI)N m\Ŀ}mHOswIM4/;K"Ǝ,SgK Qd~IO1YV!ݑlT/t0yega@ ; a5K{6]—zbM_nI_;q?GW!XBI͔~70>`4ڮDrf*ďcX~L, @Y@*Or~[W3~ēI-Ш@ U\nU}t<xnz T FsJ2;L=+f=tCFVZ_ Nmݪ?\A܏ߏ-I,f'էKU3C6ž}ã#s/laȁn][̸t l1Bm{]_?yӭkqvhʯ`0K p~V@f+2vSHwк;x~+ll3a3!M%htX!=lJpi3&mclmE HߑK8IJvU`p=wS>WR/8҉!˃O'g>gv{DXY.x;^ȳGFX- ~}n3 fWX^^l?xKvp'+NJVJ0=3W|-IJ];x$d6xտ>֍ތbk'q_uO8!^/m4~kOGa_594l$tɄ΀2YVb8$Zqw2d%ᴶC|b[%Q ]Gm[Wn_AoMN!}#|7Iv?K϶%@ `o{(㬵gtݪi/1~hh!֣N]9'6% 'ts^}U_ҏ_m1ݶrA£o曟zs[t`7/~Cy+{tOJgŠIÁfn;0aEf[3⻜i}ȫ`i,zly}J8K#[A>`tYP&fd ZxersaFfc1R:2.:L-hwi{ [?)jƩN^K}-,4|*gӢiO۷}KaƳD.cQK]Gw-i$*Fd (} r%K)>$EO$=+ jm\[l9\.'H-Q ;'GgqF|=Y/dǁ3渢I(ٶb25K8oZzG<{4^ k/`]ŖMqFYF}`qmv 6k[p!3`QFyT7茍k ql`v&dic_x}:;V wZbJgVӉ>n\Q8o{ h=y=tނL2N  ػpC`j:v'S-K t2x>!zRWשi.B45L=UνȢה _ewn@}Hvq-ޣ%x>\[VSV!k}<KOY >{>NK(W|ٶ`ITU"mg8_Ӂf<TCcO^Y|<)^5*[_-k . Ck=GΗ;HXcJ^pb}XğεelL ^ UCnx XQ0j m@%*YG}ͥHW7O7AT:|Nލ*$n|EB__z[>TC^zgѽyѓ||v[*')T1\FG -& ?=mUJ:=4MwA:>% (:H& ι&E6j7on g+LaIP ^Gvu)L>o=k>Ed[Ub>P5vDα 56?+x쇮iGJ_˒;\Q[-NQl-n{Dh #g\B9z2x&껋LR vF~]gЌշ%gv{H|B;qRr~][ܦ[S0XN?D*bJ_zG<οZzVѽWE.8@vydtu62&^[?ᄍ4}qco=kL,+ _ǜ>hlؐ% a$P1v1\d%6*C#{^ >yI-=l@eA`1"VH)%$ PVT+l )!ZFœ/Ϣ*Z< gTpm^C|8 X0x+4Lnߧf  NC9uez^gw[r7yN}"1&eàd%g2Np @ 6>,Z˃]x1McBoĖГTqm}ɓ0x%}mxDx@aPPEӷ}3Zle $TzEeܼjק`O{KwFR;9;> 8?yt!<''ڳ:9=*M߉N9~ɢaսzMtCZ2xfӑqK AOFE\v!+~sMi?o +r{ ,d,go$z#% }۞x`!oC$UzWl^"v9Dg$\*:\ ?^BC7%G>ԎC(*H`({g}ɿJdTd^V'y_%;/8ЩA0PtC_&GR~)`68UocAhČ_+#Ket+YlS#p:H|Ɋ+r(V)k?h-ǓluW eJ&k~}\ fPrʏgn`>KPզ>]Wgy[RKŏ ſz'1!> UsgPV3(~|0w7cwPU>IZԏJ'UȄ/X׃cPvPB$dIײ)> <ܒQ`K,)."DGbmOsr LzίlTL880+\ق~6gt[-YǦ~ge/A2\Y/1]5u TsH*6av .hӯՂR<&y^B8,T}l0,>Up]E jЅ_gFNN칕Z1kG,_etKG(W4(.mKc~c>'2% 5h|UY0vV8D@'}>&97|H!dTdQmeuhN$T"9r2D 3\X01ӕe$~m02cP;G[S2xE.ʺ >f|}=Gzs\M03mk&}~HZ=m n}{ & 3o:Rɓ6XCtD xВFp7پ@&=m0@QrNrNG'{+;O8-?tލZC|Igj'V3:ݞ G+foOz%{x/w,I9^J/LDQgSǏe%6нL,c~ҁp gV"+"YN8+}rH>H c?l f(l7Ņ`~ն&Y{Ȉ?tmp_|[r/;Oa7|}VG<:RQ@`Bg"+g[ JnnN ɖO%L毣ױ/^-ge nMG~ ǜ2Ae8=!JnW8!oI*'%s$be:ttz2 Fl쯯~y^|:z RU>*|V >lj5 )}E. Bث6grV[L!$UvZ 9ry,jCG4wKP׭t2NN_x~"JkC@Z_ӹL lѡqԓtI1&rjۡGTE$UǗቾ.UBĠ^=IPkIWgTj4MlnYߺ~Mz~:GIEj濒|&HlmxXaNMZi}.*t^Wڈh_/I PX+i)p z%9~}u2=Q?_oߛxQ ʀs7 Ꝙ^?0E8Tf[Ё C3 >q,#9ןcT?6<\}f?m/GzyKXbՁ@XyV`U>Ѣ2}cLTz4@"w֑ǿ ؒS8S^$ ԽBm׷5mYxa\P*hcK&+5 %G@K̀5,w͛7i_6\..Xj}/ƿzgM?\[7RηH(h__e?/π&Qu8~*DL|z3[؂4ffS *ONdld1>]Qd%d7rxN06ٽS04T>|RE}xwn06k-\-^{fԂvt|bo<$*Ɣѫ>`dkºeR]̘zi`BY|a?gu| qdח 7뀨$>׏GdBetl][›N?}zvɷFs ֿ `Mb'l}YwZN2(Ӿ% 7սɻM_Ae])1L?Soۏ}1}eP=%9Mg#Llz]󾕒ƐM~#ȁn]"/9{q(kg=j>ßZd:k?Ib*oӱ>o@]M8O2~ULu?g8?onЙ\O;C[Bi2w-Ӂ#Z\p%R9 (w̖ w1{xcK$f1Po|@ YDӳ ʮyh-(, ᅅ*N3Pҁ˲\Vu &OC*X]cDy^Pٌn9\Fa@s7Ш"wbY+ߟgb];S2|$Yu s:dy 6K }˾[l&-̈[Odou,eLG=8mp'$0Fg."bU M.?|$g KyͰ~ʠLÉPU t~'008$Ýrw:>}4`ܠqv3U{B8NS̥Dϒr7 5+,88Eǖ*۬$o[o\pֆ@K2 xt,-F^Q\?ϖo˗ӹ4d?;H*>׻-B]{ 8A| ^OJMn%Hեt]/@ -"38\w3le!JLc҇IbIåNI0UsK vm' `%A59}`rLɅړ86Idl^k"=f‰`mDkyxZh2/AbzKえofUΈ-HН 6K]#QE}fwOZOymU$QAag|ˆ5%B2(x #Uw xnTZxA )>'8"͏ ӥ q|;0]O/2 N׏u>vQps̺?}^^xn<bZ*^/׼ d4M"H-' ݏd{A#+G Y Wlej'{$VRV5gE_#01Ty-z6W2Qnb&g̟W)J:Hfπ\u|EW>/[?Q%!7(2yЇ`{W CJuV賬fqP|EG-mJ0նÅ)}xICW,EohCgbeχ{EF'٠V_{Pt7] B_7 '=tuٶ[ր p~+G^7a1t7<=:2@J~"y=GiXѨI>J nTnϥSAH +8ISed\4_}:o:

dw: V@sL^p\jK*$bFf|+ e7E&A!D*;/vXg{Յ ӛ]O{_׵\.xY_*K?+N#G[߶?_nϒ9޼=vMPѕ󰂣S 3Z f4z|_ΎQ5)bʨc-o"pkH0OKDY6Cf٠[S,`i &:s(9m0< 8 ֖DX Eqdz߇q֖~O7O$`}o>6Ȼm-L>a zx*P:M+Y+2056۟(SW uI4nwFYF,O6@u`eՁ3ʳl;Z'wΪILփ}@vRFn[7:TfFa霷 ,it~Y潖b?HhCwV@2}wt9V] QG[f5˞C^[M뿻] t:Cҫ^0\}[Y}\ΌO~rz<S4[@c "| 8Zl^컋c;?\ N /+@U?>,pqmptq33rB,z ~Sɏ>}WM]O +H$c6k?BumGCu8ߖN.-+_:x޻>XZ'O`^T_OlAH/EͦkOztOy[d]]8-t( ?+#h1>btc/tt[MʜxY\]q1m<|ԟBD^5 W<_ ~֌b4BC3w3 >ZI( g˄7YV%;̓wY8V(x  d?ClTAc[W@gfbyGFI]|vD,):xlt=')C8(E%-`̛\: l 0^-]ݔsD>9T GGZjֽjxz_c66 (w~~}η{3@CvNE׮G8y|d[Ȁ|S_M.՟KO:^댓8nQ{){r*޼oO?~pt~^9$d)m#i);xh{t»L߼(0 v"KB{<4[)VCMd͙8s)GޏڲqerV.}"*eh[" <5a+D onve%lX'4]J?&>jLB8/6KBA?";jfdYN_ oj0`cǂ(RfdlQ>Ʒ.Si͎mi5]wC ȟ;Ѹ{˾_?8?GuF|3=qYaoJ 0v]'򣯏تYr,4*O>K@/Od;엙].~EBoI.Ɵ3^`Hΐmr?{u Amj:l akG *oNX5LγI>!dsE0YYkpE߁7 mͨlGX%7~fmH-ogE/]*X8= Q4ӵpڀ&e ;ɕSb-t{LXl|IĔ |Lbt^P5lo:zghč%0~Un6^__'W?Շ'X#W##s>hln53`N+S]Ƈ<7>9G5R=3ЧSxMvߎ^A kKYX/i0|Cr#7@I /NY~R!8[U8(G< L8oF ~O_Џ'_iltg8mOwʓOR_^ ktb1ԸA=-|c_]Q=3@[q '5D;)tZf"\i_ rlln*q|OeӪ[(ODHvc}t\z5_e/m ȮŤU!U>^+-_,v1C^}rSm]|}5z<#{x3>C/+CsjDt{xm4`oUTbK"XƬ%UlIߐ'Cy㇚g*g$9 7k/S6w~Ϳo~?|㑇ь&giK[@2M<ǣ)Ɛ0 1O-]&ƭxAѩ1E7 4",Yb+uPte>29h"]f8HgymY{C3d NF1FM?oViKK|'U&K8 cǖTyBDѪw:Ryb"?x<;YpWEhz2sv%fGu5N Kp& 'mԿiP{ ^ nR~A:|X8J!?0 O{9>/Í@mDٝ1~KdDcc{DqV2{dbYyڒo $OE6#mG +OmFfXSû7=sfft?ֹ :p|yS{q|z(IAqj݋?;Uhf咣խ3afS^M&μ\5ԳݜIE׆ers>6.{ondȹ9:DǫǿT vjlP5ɠ逰O]%Ek;WjIy $+>m۠؅=m MgCq6wiՌm=Il@V(E^c ޶^(v zXmԛ:L6%!dɽY-i$綏 ^mgZ=^4Q>ݩ%DmAH4iN>W [K~dͲoKe@5C:PGIba~Eߏl͇|]9&P N8L) &'fK< NLY$ɵy 34J(f~tqЙ@tudk=<$t0o6EDTfhd>2?ӥ&9J;+!h7pձ>Ftଉ-U.7$!]cZ`5[[4g+@W5|.f/>oF ._9f#X[`!p<ӥ}]їt̒ԭ:] mlv}͎=NȾV_ăM|T%U|mLɃ(.O?]_ puU蛌t1:V`K郯\^2G{'|7ъ-9~ [9gxXȱ\6],HOSW,WΛOīͶ>!}$ oT?bf`< pcEk{T:tUNzn3ӿ4T`DN)7z c|8ľ9Q>C`g{KtTz V7ldgu`[Cw8-lٞ{'^f#hHN9hòϪGk'9S]c~Fu I['L/qI 86A%|Q>oT?e6Ym<} a&Ykz س]]i^^U? d3jOl^9=z@Y[P`N hC9352 T賁MD4:-c]c@9aW77:" $vt\[GC}Y~Lû[MV$|2%$1>&* ?gBMҨ9.n#|_\:WN/Ћ]p >#%g<׎~%FX/@g/v9]?HxFxv'qqh6YWl:x Y`ٮQWԧJVS(9|b!O;7Ț Mt]=eo u0Ԅ68Dno $U~ ~ ~h~-x HI껻G0{}<׿y9njzW#GPq~5A,mtث-w{I~edYmХ{G;GmAhBuw&o(?Ϗ\Ϡ\(^Ѹ!/k7uLc}-*|hN7ayL(c?ldytsZ~<~|G vevxSpxto`;A/߼syZRm}!(lyliҏz'Ņ= 7XЏO*{zK7(Tum/^x `x!M<ƚL||2R`߶GZ͐ۗ ,q-g* Ȏ7bΕͶSғWxY Jpjܮ 7`#A}Ȃz_%ob1ZXT6ՕWt//w|pq){ ?<43]J#Dߕ#eq(L#\qʁl0 P 5aQG%>$VT&&ܿJϙKfJEDMq+Vt N?o09%޼iPG,7}4edwkX9f\C/tXqtܮ80<#k:,8BS(d7_z-~&aEG*3HbAT7pu3(0㵼lT*AEefņAm$cл6ssnPڥhf<ݾ9|;'tiN7a7}-enV| #,ۻz5.VKԙdq;p%l+ua"/#< ٠dYYn@:f&p`P4C Sf% x>?fZcn>'?ttbMj|2~lO'oIH>LoN2+괎ۖϷ$_Nc(Sm'Xs7JhCuv>z`rZgmzd 7xc? jKQ%پd^#^ ӿ||Dgw=j)QwrDd6S'MNMXk? C ;4E. çUNxd3 's%2/Y?ka~xA<^^usC$8P`]`:Ӥ3Je"Xs~ũVGOZċ5 `8ty%ҿ-KF;ن ܘl4~fUC;Oy} 0 c>?D_y-64`XPbv~ˏ{co*:a+>!`KJ m3&obs^0 $ Ƥc_q}ϣ<՜{,^E81E/D++Zkٶ dwX+YPЀo#xlӏ?A+'ĀXd>g|&Ӫp`'=>&+465zsّNI.t]ڄ$!4Rûwf $Vb'_} 8u3gZP/*y-85';vv3FxN{+Jek*)yL 9_?dG47A[]Q&:s 7_EbS H?a Oo'$[P|uۯz$BRW_ }>vNE&N_}u,{AW3-?ƭL_?V!x~֯&Yo/ۿ|_x JX!F% p<9ka6Efi[*5HΠ^ zvK78 "CHc*r@{̌e,`Nu8glv%4CR"v.唩瞗1Kd%#zH3kT"SeS:KeSNBaIЖ#;%E7}W#3v05:tu} a5v@ڽyE\[Z uv5(_J2xoftAe7sMn3h_|0{ppV8|3DuQ3*||fﺕq:0U=';'?:9oe.rjXUfH|,3~c|W~3m bimxӠ~ã!}m"k@oY'˩ne?DtkFaA=îdaC0+XbQHGl!cA&>:6 +3ؖף@)0|u2"%JfK?w(Kf9dz3Cd~ qg_[1ûF-{-qy^k>8:g-Uקc]&6Geͷ.`gv=:21ӹvCVodܰCC]- E>8AlQ?ѿ;zWؒ-? 3ےQ|nwMpxi/Q\Py^GL~ݎh#Oӵ y/n:("g ,|d-PaåhڮШ*3fgL(m6N oC5e 9^joh0!V9lC.x6=TN`lz@ \I"͕խmf;fQDjF κ҇` NC˚ǔhuR-a§r}\<ŷdNQdbcgh߀4䳷̖O,݇uo W%8# X^-mD;1}CxK #ӱO; ]ŬM'n쯫q /׏L7 *6d=} ƎJGnӯ[,5|ŧHus۪~+Oq`:y/p8Loϫ856 =ėD<<<- WK4$p[< -xwGd| xS!<{Xu&g-i-<#1*s9MA|VT1o3BLX]Som4p ֲdߦmR|jehM&sЙx Yu;$^OЊIm"?<2= g|ݤdq6 ֖o {fZ< >qvzF׵EҊ> !櫏8G6kISYftdhfVEЉiҗPt^$8q^/xoYz ətѡ,&Iƾz˷lt>үFVoLtڮzzI%y*7k6\[ӕӇڧϣ `lb%=괲7b +UDtaǘ:KĠCBL fK|k&Kا ?դg/\ &I Ke/7Q?9B'yf~/Rj_>%U>\Nqh6ǯChU7J\/^o˫]~|~=k 9ʇ̕'>m.v̧1auc vt"jl6f$ć=pHX at^'l)X"))f7h71 <5Pb&yDv VtuuSPس[R[vHN4ZjAĞe,)@J0%;e fID;ꏏvfot`Cѽ|B0zme؎*ѠҝzAʻIngʪ/h'pFz5oo~1D;ʎ>Y 4t WC|foUt< ^1)^HG $>y]p:4LFw>jQ_+"g~=}I%a(ݩ $+hNzss⮯~/<Ao:4%shl5}O_G}V3ޘe/MV &p_~TQݍja/v-s|qIBܮ9u&5)zt.xf#Ug#+x':}#w%?_]hKԡ{fe4wx,hA iB͍ݞ_=L[Xqopoը++l>p|)kMYʼnmm֑Lk6y%^_yﭲ-G{|LF4  cv8+\'%"vS>oSIB.?r,.]Ml\>A܀|MP_wM|{eC:dZf+OniH5RnaO}IX8}34wš-\)|piP@wpr$MlM0EoI >>ZN7-|dʣ@O~$N+^t?Zfx /V%x'!$V˛ э78Q ?ʯWT.c̃!O-g`[+9$0>Y_mm{ ̌)xBh3'ݸbX4}<-] Y` |~EU# k|uBs_;GEgԥ+9Ƒú~'8@IDATJԒ6'EE6|eIGv8_oi?/'nmDnfCځe%E3aVJII2GXfM9; D2н/9F-mEН9ϧluwGϠ<,_ C1}3J P9)@qwԎ]yfb,`m0J6 FM6 p辀f&+ 7<5&qfK`@A"joL9.s,m-GZJpQ/7hx1QKG‘h)x;W?Z}li2/U/ cՅO-ϑܱ߃ ;Fe,ӞD먓Ya?6{XrrIn~ձJ β@5>NL%f8] O 6fGg*zi6d36z9N_%X$е3ëmҗDneCE v><Ξ aQY ,W_]np5hJ0_k%(F8,ni*ǻ}3%f2֣7,7KB=TqNo hWDr6Mu -h/q4[H6t:P;fCu]O=7>I vuf%h[[` W }GrksQa~h):dIu{]o1'7Ѻ{|R7AGpoNK_(7%O:A0V}3 +.e7g>o`l܍+!b6ٰĄNiGr#]_^xcFu'9\ЅO )MKf[yȎ"n.K]5_>G+?f`K@Ʒ X?N>owsWâo>1҆`>;sm_i;p] VeHzgAߵy\_AI/ 8#'Dw̾ipsUF?܁}70$'Vh2tqHG u?绁je 듾nS.I[=[<<-9_g g%$*ln6d#oیm~Qfւkت3~:4z ʘN;Ї ScCdS@&Ts2 񎬴Qsh2ބte:Ek{'MUu ^*N_l }.?Wv3Xwaŀo v&m4<ߍmOL(\b8zfXmwDm];G[V) 7KnW'(_$4zOپh^~ͯz:j(lh:ltGz19t9-x?VՃ4{1A֯`yr]|}mZM=|o^>/˿^r;eas#M~w|57zYN:EApg&%~scJY d)ƍS3Ojv(YF(*N*.$&dn3(!n% ?bG^eYЗJ{vz NP(# 7JtkMEu|µ5X9p=clڇeg3Ǯ7o"K6dID=C<%Uv>.;?՗j}srpʣ-VwA︱c;Q}w =aHt!B<7|r69W ]hAh)7Ny>Jv`yؠoM\zoT|pV#~'N!0;Nbfp0x(ߑC|l' W6W-mZl}}kkd?^:{gstihVw$/]%9?L5զCå_7&Ps O- UD&bZb F3H?8t^eVX8:QQ~9["-q`)73 8&8k޿`t\N?I^} L׎sh?lĴA}\~R2Ys^0R,X*&B_AYÕ``fPa]J$AZ&Ifxp*\ϧ$ 0.ejWෙL G:?޹>BМo+Y z Dmxv0}g Z,v*u6LI![3^2@Ɓ XYH75ə dQsu4o~v4_l845Y;p#L l`oa5;z!,Fi+yxɒɠcM45t57  P ݣ]&>8G:!Hg')i@^M>Xѧ w[bANnenoV"*JG ]66c5K_)[&a8(lCz:_#kgj.u2i,G1?k"|ݖGU\E0 oB$AMtODϹ+)Wb}ΧC׀5H;=cOJLڈc ^ "%>uf7mH3i[8>}isV4IzlRBC+;ƧfjȻKti~¦Oۏ[;k=Yqӿ剠[~+I]O͆wd h#p%Í}&pGn&;Y"w;LenA&bt[[<~jGT*IK: ~}4/>`_.;wLw+0ח7w]$#VRJbo6 ?+&\D.VoŅ$'ƛ_bnHe"aoE/~xvyۆϢW/%%t|}B7N1^aFMA| cHI%c( ;Qt9{q &#vK+iccy j#.Y fk /^mTT:~s2LC?^ gVCu Rk&F@3#AڳBk1zS J^P:QAx S2;xU9 xP$'mDl,y3R XtoA+g@s^_Wà  \Fc;=L Sҕ6˚18{$Qz}9̫Yǘj>N}O%"P;zO4}W )$XYڠ޷Y A_dÀ@q[*~CK[8Jy=!6 )` g !rfxz"2wJډ밒U^"ak]td]cV=S^HhjoKzIpȤPN j^yyXEtydurWv?}w6έ]2=ɹ6ӯ&aW75K,( tlP$-f_j}(f#Nm߫='HGfUZ_ Ǜ*{e"<]91HN 6nBoIkU`7t t{f_ Z{|\{\$tݞ" #`KΧx]߱ \k>3D =f?"~{ ç ?gnIu[ݑ)ʀ :Y,7ǰwsp$j$V( PӮ>,6DDC /)gfеn%V'c{u*nЯYN<\-[Hw)~WM`79M{ԧ[[*:|ȂE{Se8C{z"`ŘrtO򶖣lE6᧯8:͜hk͚sJwrC/£h6C2$59=g7k]/QhվU[ l5 z^IijKao*'=^;Ivr Gal  bM_ئ-#7FGgDƻ+]yc}Eo+Z*wqCwmKgr@m\Wl@P>A܄?sa}v-{{jOI8'&DԇY_~{?䧘$?$ۋ.L..lCOMn Z@^Bo<;}GZ"9׎G4;r^dw]E եM^Gaj+h#.11\*GĜw(wp6 mNJLJ8+%*nj ?- ۧzmsJ2}d(Ŷg2ݽՆ{E[޽}7߶DnCQ?{լf3GKec'w}b{!>kܣ72m#ʆ^LLL6v~$05 |Gjg$|΃]1{Bkul_ ~jϮn%qŜt@֡Oj $@lhM(= NMPkt'o_W/*t6xW-!~|}Z 8^>88/N.!!ӆvc;>JGɄm\o:9֩r0RL4s-@63%v\x Ϋ>]˚nT 1ZY :^&6`3'Iv :7\1;9WNpx税v,WfL7FPD$ CG2*_˨jTAF-M5\bwz*>qA%ā32cd^n2TA눧ɕ쾊=S"d& wY:sK B˧uO{fn {''}Yo#2Q&`O8Qu Px@Yd8W ϿӅtf"4=Lt,~]4}ZxB]@>s`cf1EN-3dŖ-ZKAI0}YEc9-d}KԐ avAo|l]Xrw=fy> z|8*oY!EX;:4!u>"o.1X+ɻVBU/ٛ^S=a 75/Sͯmӝ:'!ϴ\ݳth?/%jG3I$ F{7LOWĘʡ{? ='5?Xko'>}^JGvjժ< ЩKtm? WDe%A`G6 폏@w_Wƻm _u-}SUpmxoq/[~m5/ի9hk,ȏi{tm~Ah\w&yM$ڵ%맶: Pŋ˟~v7Z@oy8= ^5֬ftсf r OJp-n~˘ã=h7/ғ`P:\!j>uc-oj[A ؽ`$rtjU!E$Ҡut^cYT7vlwu9NNpAAtѧ IVuHM(qEP=:bǽoQ3?_ፕ!Ճ=նxw[t=Xldx]i7O[u ck&,dt? C_Seު|@@Nd!D[gO|/ک*c+4g5~΁> T/Zz,&;Ua:=7%ZkbǭQVUX/.|q_iV(鍄~c6S~ߋڙTOj}t5N\?tW?SnR|py]^VyJn ݠӿzWi+BZTQן+OL\Gʓ q`GMO? (UEA,N``/9 $%)؆)%zJ(UЌgT2Gxm?xAU[PC3*%0g=3N`cSA3 <: K -YoMxJ0l501[MjkN } 2Or[Q]uI)S:u)O[EtrGFQfɓ:P#Sk-%]ө=!sAYm0G|SaMR8\3:7:˼S3,9=Yy*Na|Ҟ68`mfSy,{&Hjb1vCw4W}zVԞ+57 o~ YGD&-:|Lh_7U|C'x0ey3ћtN4qЁ;b17$Ξc[Yx&6H57L'(o#VXL_/Y f̆t6elْFBbs6R^iNFO'6=?\fZ3ft%d1h4(6&9Vn 4" 18ף|u+q;|0jvM_{q#K"ͮM}5b61?.mj?$o耍u/;f_Mj;]~ u峲<fb:n뜏+/rh >D`L>.L-T>; 9 쐏@.l zEk/yfZ^' ̣ F%g:kcaslhPu}ɞXoQs[11:Awk(e;u})v p5`M]V^;p9;*ןvZ}}GjэdW&[n%uqOx)5rbp؆w`= ̯ |\`DZU֡kMV Yi.EvPNJ}_|n[{#'jjb6A*5n$2ӓm 3x-}7xݘa}矣+yC\8Yo~TAk6w~߹<O~7/~q]wKrߕBHXJbͱDS(\ vO[9=-& ӴK$XUG1 |ED\00tOo̳OS84O]$0Hn3S|t}h=xhITΪW-ѶrXJ8 S}m9wo#=fhB=KР=[^VVފ<,nC\j1ߠB&=O]q ^>+?኿qtpŸKoï/!TC2+k,Oe[[H]=&Xn$'gʮj\}M%Ϟt:{zĦ}_&L |&۾]J'zm Ou1GhCۨ8;hRK*+QZR] |/bj_ُ/o8*"OOV(HzT1et$]qT}ll߯8 BZ}o6fF?_ O'cֆqP|*,BJC+X-{`rsnC:Ng, R3[f`Sób:ʹfטR?.5{ƨ$||u@sNȞC4iZH(5[R+MSaCi|*()չU*^|1N*vCtJUWx-K/3+dYAO f^:+a<%)W)2U)(cD>E}E!hZĦyzO LfuQOp?㴎C-BC`3%8I捶]M^gst]i/9$1 wF^ qz‘O`~{n/~z{lIQ,|>p;~h:}?+z~_˳/i_ 6T) Y'2e&l؟ނ=OlN taO Wt&w"?3fW|Q͏-u\2(z78t`25]^>K%opK_+ Z/\7pW  o_nrȭSGŽ Sc0=C&8=k|(J(Y}хp6 [u~5{\0i :MbAPӕ٬Kq銾> y׬:_9Aчϟkta,߫>K,ۊ< +n4[cKIznzj%(i. :>˱D|u@7 Ҋ|>β#;ŏ! n`pcA%@PQY[]GKqY;0o:l5$b];tuk`xNFsFzͫ~>"!@}0+|mbpb}ҹ#80Lf&71A/ͧm[ƻvt?yfk5;7;4"sM{%lՊDpnGޘB7~gn$'6Qb׳zZAU!b`4},exu>ҥ;I5Thb_SXMbtƄF%)k}Az ={lVr4y?.v9}9LT:Îf_39'!P|0׷%|$Գ_xdr0a>>X-wo4ӟ^ ?6S_K [pᇓO_F_Զ-=~]+yׂ6̻a?6߶rɟn]~UVy8zMpL3!$I$b Wyeel&ϥxfuTsh :]y5Xhd1,ނ2PZavy4fin}*Df)،0Ç5g8#[e))2ұ@ϑ`*q/<5x?rrKM065 )n)3طXf~ϋDsQd :yR7{K/qb肃{/o#ep`zNSPH I$+G2JyAV<0/6D8nWHO!=ZP2P<[*;8NwVKu]gnNP;to jrusD,ԠI@ONDAnI@v;,RpfM$P! ?Ƒ`[bx_8UmO f _5SV2HOueY llt0yP>jY~#F,6hZbqI zg |7M[%l(Wnv,oC8IC 9@hu ~jחRSppxmf!ٞc@^ϭ1 V,yF5^\^`{Ke{*08W>;ŕEGKNa8vHWϱ="_|j罙gݎ¦w!*;c:Ϯv|#=\}z9Bc4O~;}۱el=􅌡kTu6du.Lk:1jp!!sϊc  O>o~ '[IT{`Yz zQ輆m:gXAfy-%QHO6t tu׫ԀޣqY /]V/W zyW5ɼ+cVftAl$0 oO-k5MmvoIh"o ccgd9KݴnmKv*8!J N}( \L]^KF哇6%~F̎УP/I uq'͸>)%7i.aлer>;}?~unix\׷L]|+Ʃŀ _zo>6KX|z,9qTG7ssJL]s{Ij*%TjI);~2l.~&;gEb_NRR]R|9?+tKVw|I|LcM5 g:IV .Aql/1>J+qGcb;W.')Zկ_z^T{hg|؆m~ی0wԮ%*^%ٍ;ևO_> #r8"ĪӯI,֩vn|<$ΕOz-4?oxۜ+ob^@*߬J}PpT4|Kt~Uc>V&^}7Kb{ϟ]?W/}OҌڟf'(X::9me/:Y"#lPx=+!η% 'Ol7wnbӻ?7@+_ozUG=}yPbx񰆞_/|gu(t@⼶͞ aWo"7;L0;"8U3wϞҦҨQ)EMl䗘[ACLЀN ")v6G;:Vҭe)_Nc2XA^r ݟd7yY~nm*芴WP)4 Q& hN w2De 㵃vG%-jc]XhϜRn͖4%9c7 )s gzNnGQg`T$VQp\  &5Z%w<NβЂ@.=IuOd9gMo Cy+ |ӅcZ >zH @}dVXWו)O/!@2dQ\@4'׵9XM-Y0M봚a:Zve,[O >^Sy`87Z|5Ne` plr={leChp߷+ *@}yhYtaşxWmـD3urs:B`x.}Yw::zu0~G;| 34@m$^wAL_1y/Xv|#}T$w9~|wgKRbWgr (=/o\rВ2PYbp@) ." 4fMϷFt .ȉ%¼G* bpC[}f/L+!Е&U9KLs>{ۚCb7ZqsMfJf;[A}+C`!o̱Ӂx!)M.noC?q)z͒1l3cÄ8^Q84>1#|kc3$l >֖!Z5ʧX~M7<=z4DL z$*b` W *#wcS@vů-{$u p_l/l( {.֞_ňݗ\X @IDATo@{s.y4=~Fk];\V6"lu f}v'.)ƅiJjq,+%~?A8z}F0v__NPy/{sؓsK7c;vh٤rG Z2͞Om/E%_6Pػ+s0~|/ue6~׀q}zNhqE]lsޯZή_^]W+2ȷOʸndOP/~+UV7 X~kĒJ(w#݊"'y `}-Vde瑹^R)xO G`:[oJp&:kxR>?7cn/k7ǽQ>K~d~呌{Zn.VK6+(HdުMڙCɑ6xˏ/ѷ ʕ?t_\kQ?[a+!mrOdCa:`,:~++4t2L6x/&f @fUnQ M]iP?gt# zg Sg;sw`3z._3ܔf椗! x4rNtϬ»>' lp5BD% t@G4D<-6FLx=0~m6fsr2khE!agy~ٳ9g'8\ L$﹪ђ=e~x7'R]@p3vryQ(4) FOj둽o0u2@3[ͩD>4dι?i;*sZ`B'xt@&^Wp,^d' >Q/$6뭁eu7E4kX9WP >7XO>5z}e8t3Py'g}-=~5]F?WX =m!Sn> ΢np6;[p#xxt u,:MOg5z5e\]:6 7>f X,^bM3$g+ vmYaVi1<{| )0 ?#Sn KENБk1Ҧkɺ"S{22챀`8sX׵#V>̨w`OKg1'}C#ӷ>pxEÇ =,{ Zega đ >{UoɪM(՞)4 5z#NJ ??a^Gnb8mfc[ِP>qs'jKr~W쵄ɲ h ۷^Nn >_g7O=y,1Ak m I/q1X-`:~x6o}yyv? ϓVR4NjW=xV Q7ϛ|ՆdmO{ɣo^ ڇG~Uߵ#/wy/#/~nRtK^nsmi|"NB>!4X,P#t.א!ҡ]rkC!xJ N_fxxB=xU(v5N&W[7`(co[34\yƝ$cϔmǔT5{?'H I6,3wRe}B9qG@FÑRifە:>eEf41>|E ׬,>#89jsYm0Ln|_˒qs U,nɎYMvs%{^^No%"lt*5ts"v9vu$:;\,#L+,;xu2<,dv6g'ؒtG[uG}:^k}XZ]gޑ1[} "ivgV2f no$nM%y\~Ռ?'p}}N7ǁjtA`Ag3^4:^-^g 6~3&'9gղ$'+U<26 oobёlؼLXG(ϹG]uC[1U;.;2+x·qu6Ε#Fzdz9||v#s;1Xxtjeީr, V2n@v `j8ANu/(7o^:3؉O6fwqGg-9}K, G̒g^/׭l|W_~աOt~'Ԭ)9}aծT,̢*­K/sID0&}T-)f}FWQ+m2I7/n߻{O]VIr#Iv)"еLާ?ñ> }g|#ZY&ǵi3XĈO~ǗO](v!?hC7ex9H FfϪ&myFlXȒ"t& Sar^+uEft]mv=h'&ƏVVH*~ u>ƿYxΡ'|,ـ; t ~xUvUJ /zP,Z-ߢ/D?ȏ>[$ l|l[ n݂: s6_9b3u3=Jnm%B E=430Z7K p$+$]8UAcx.=0l`*i*ttr|嚪*kJᨾp+MV x.< t ǫfr dn>ukdmУөn3lX+6K] fӵK61;BƋ T eEIQz[}Z u)LWƒ}'^ۂ\\#OE+UFbaRܑN]'7 .q=}DE~6ol guM Kj.iCt/[#xi6\\[ >:.ɅZEk+A=k[ʉ~ab'?˳uc_7a_1g:Ja~08K<]ۻ}'feYznڤR ]|\t`W‹ 'zeٙ x"+;';[Dg*'#ً'WRᯗLT`{C@XI|h`IKH䌙~lr{ڎzr|xg),9-$=O7AE0%Y6RP-^g_ѕf;oMSv?g3Ex2 6 84^n<`>bu1?K3@{fbW3"Ʉc#S6nFwb&#HNu~37YgwG _3)/ՇGXm5v: ٵ>pNoԷc[~-Wᣧ'b8ڊͮS== Ϟp/>Wz^~c/gyC>)db~hBdp3Z_bQ-J2,:![[Șn\43| $\p|J\֪d&k(bY-a®CzOjd_uoZ`h>%-]!t.Spt]k<ڂWg=ݚ j.*'ZL +h7$ F_L%VY}l1>}[PO 0%Ds茎M֞}ѺNDF/9|fcw14ǐ< ^v0LwvBRhC7 ]VwspSjK滇~ӧ̴o%`Ze[tѹFu 6筒V| KJeg""IMٯ#ߵʯ .;%1o|-=ztj԰߅)whc8݃ |!n?iCSCyS Pu|_v:Vsf6zk. ݻ&.+Aħ-ƯT:U%A o2l7_NO̴Ⴧ~{yA߬pmĖ vEO$3^ydopt'4Hz.O)hp:9lkX]ZW{ӽ1n[}Q|<S3] c19h u#t.v&IPvE%Q;Z|ں\\'4"(-_r/`m~/\[lp<oNd\qoDhw7Kd`+wFL2sn3n215?F|[*q׭ꓟy-6%2NcW-əpIo= & }Fz+!jLDJxYy? tJyQ>d4%ޔdCkb Bl]اA)'qƠW)Fqh#=O|&ΘU ⟵t?ЙoyCݧ</.t'Nx0zG}둢:\UFE7=0o \ ߥs /y_G~<5_}tV4,a£y˯\ /fNWlб igbNb㎙)AXzl 3 á'|=3o? NV+.QVJs8_Ï@Ȳd\FcXv stoBc`1 B4SpZ=9ՈNϬ&@0nN63:)f5 ޽66Clz)ߖL 縖RgԖt)6TerϬZ@b6__ek甁 *Lc2b&ܠYa1B/D5<ғ ׁsJ{"Zm_x0͊ڷ$c787:U 8\ :$cKÁBmtß^X ñk'ڲv(EЃ{^D,ON9JY| ,7|?͏KF荵 zs:c)ʒb[X3JaنBNV;Hz~^6%5V&Cx6znUNthoGGhgrCe+7Kd F{e >0-g+gi txiÎԀNGU=6g)LJAa\,m_{3Pxb=ߒ1: uÓ-oI>0nLOiekt'E|vOo%t mpƗFY=9<z((RnK(5}%K?+й 苎=9V2?WEG5|$fJ7&xP!(6=w?z>6 ѷZA^M^1r;&z7N]fѢk ~Lࣅ1MWn{hMG`kCcļ5.q[+?:w-?G' Bg_3kE~a?Yd_UăJfx$ `lG;Wfʭ|6@`=t_>\׿dMd1`jFԝMCVr6H}CZr mJF#kN@{}إa߹"Yl(zӪ?|/qGtL7Gg6"ڊHb >:śp|꣞>ҒsM J,XaSm޷]8^yxK6shY r0[a^'mS(.4{O @(Є ÎY:xNBї~xy?.E]?O|Y0 \?6f`^}-w4+m]*4)0hvf`t̖>M^׹xzxahvnZgPJ*/Ϫc 'ncd1}44C}~Aؽߕ+8أA_t /uc%A UҤK} 5;oE>&(*<]J:3C~h!}j`{D3{ y m=oC'^kVG߽{w./vyWv{bWAOxYߕ{ ^vne'__~[R3'=*/.3(+A>IjɀUEd'TV>r̠~ =O7ˆ ܖ#c@A+g%DAK>,gr} $lY=3NR!)fu9X{ " b؄=aed)eFeO]HGS3/<9;+QhQ_S!$"43@wdͦW2)_ =ި:VlAW5=Y%0AoPZ]ܔ6% 8/fgtJT=@O^?~,uPEg`-;U~jum:~Lh]]CEƳ9 ѿk2YXfU` 0xJ!|2"6A$k:#S2'i3L8춺,W__m[vscaq!J: MghQp:g<\oǩ'0{YZ(u:f8G7|8U  $?-6\N>:iv\˔Y EǴj2:z 2Łtfwoha-s:^V[;\GKW(YUV{BcYsՖGkF ?|Me6ѝΥ mz{--qv5wk2|}^z(ٳL<7Opwn>kІ-ai_a,6>E4Kɿʱp9`jI7,g#^>Og?ШzAR滶]'M,XWn^> ͇K2pCWf(P'8"'҃'^lNjn]kƤ[5Rs7hUSh̫&h8leKЎgc\ ~I =9H鬺9iz>J>[|N V{W4)WKh2۹"&b{Gkp4?os5Ǵ6i <7 V&O&Q[ 0k&4{xm~'!e2gZ}m|4M[lÓr[=tǻCINR)NF͝r>`2<Ȗtd 8d6,-57" 믾X (زp7v7/XFO"(ud n,Wg+Cl1gR8 ?8w[Ȇ $'htH@lFwRʽÎ%$FKIn002WWؘ^§NU^EӖZ's_@^N%u =Vom:7&Hb bpqXf,șciTJ.]᜿ nlU :(Ftg ŋhLWAEo 1/t=*`9 q@h2:~߀]\j #Ytɤ;5B3z`nIy+?DXF[]]{^_93Į[a|֞ Yd8!`եǓ)@'څ $#eͰ ?tIjlUY=% L7L783u 03v.kf\;Btk^UnMU 7u֒^]_1B iWt+D*̎Nk`0kk }CsҜCL*(q"OAϪc7VCߵ6n K\wd8weVꎡpD; 頁=d^lZ{~͌S)+?xMY_6>|] ݗ bHWlQP[U6VU:0WG "B:Htc礤{|~hO蛧?~S_pHBV [!m8K!g_x,Z^կ~yן_~#g7%V7N@f\1ovv~]A^ &`c!p[;LP?v_VZA$wAmE/NR(P\OɵkK$_.l_7+&KNtB{-h5Fw(Ocޕ}5zWd1꽶pe?]«>']{iyh)UAQ#)zT[m55}݀-qŜMe(kL)4TndxG鬂TUmMژ?O;;El6zw~Q c/62v58qO@Ns+.?87zkGffЧ u¯d%i220XW|dM$d2sΛ s^V%}ݙaƄ:DV?*N|֤K}1I_|vŷ_S~(a|x%#0se26y: P;LLgbHXòZ {aȞUi Ea0:s;e^Cʌr3񷸎c,Ŋ9)X!(Wɮ)|MF1Ѥ,l,+mEؔ}u)#ywO3I`U|x?\FsR\Hd/.#Q '(Ƃ ]j&i O g Zk7 9[$~HGS+<^Di{/k;\ܠ}7_ m Y4#` 9(pYp`hd1h? {@N"/6S ;} |kN?!qǬc@*Ë./ ͢ÂbxI<0 Ggw^&X\ =~:M cfYW 8(;3;dA79#9I7ao{D|!#m3@3ĉ{SȅP}x˝"SvJ5 ,#-\6X|ʤ̀gEG;ɛCcLKoym&5+R]?+#k z 0uZ>ILK\tniW8fGV8:O{ED rt=&Iu\{[5U>ݶCY\uҷ~|/T17ع=Pnw WZ sF>^U~p Io{Yiv1;QxS7Sa;~ +:5:yЉ~>G~P:vp&WO2بlLr >\Rï]Q2L'vn?_c}T`Bi)vIV^tmQۀPm fYL-`<xn'4M%QF?8}=mсU/S ѤVp6;4’0zlc9+$#8?*;pIh8qEzLQGjgtZptzÏMpkC<@'B-|1˨D1XM ?#6{D I8q͍>G'^ÛpGd_AگXVƛ& 6C/ئ"c} L!\6^&0`FϿoo[np {ho-xIdFqL-Yw;<__?skKo=Y_Ȭ>>q%k HTu7zxwI%*c5r8T?t}>o񃭦3ԋN5~׫-F*x40i)r}OK+qlg)0]ŧb9^E8KCgRz÷ɕcѫuZ)q>9F.;m@~d'l'C7>W?yhڸ/qOѾ`·V짖}nfr';-~Cwc*L4@Vmp;'caHw3DRB w߼іf-!;mI[;;;GAW>StmP$_|l @I[^\QTƶgϞ|ryq[՟\87].w7Р?&>I&ߧ -C M|=m{?] @ۿoPr@?}^!f[pr3(W[gB43]?PyvX7N#LBU'Ј2nǬ&@QVY 3njEɣ2SKԑY7k`h v_emmͲ*_% ƽQ#W@IDATUv'~|,D-XZ?zy ^qvJS x^Pr28Zy8pcI+Md䕂%pkP66 Q*(aa#Cm࿗߰m5!NGAR%q1qR`qmV4(+{},}YFLp,*Z+7zs >'tf|0%m=V!qA١9 0Oك{^[ʗ.C ګ,=nΙ=ydssH'8C|ҾZ5`%3k1uA 1xqOtZxlsurSs`Uɖ7- XI9'Z)PȀqA^8`y^(Mg _eS2V-RKHиN^t댯:}-L3uv8eIdk{zmCNr;c)8zUA>+۽. f! w_%o/-cCN2F¥[*ZTOX} urg{Hl$AZ~u<+ Σ slNI2e3ܯnB1eid\iIjL?=D@U {If<$<$gk:<+K)P_RzNvSͣ^w ()KpOdtt#•6IH[$N=<h ؿ3#.駶DGFUm je80V S8~ҙoj]_:цUϋm7L (g +Z`εGMlPH9|W W ] p֪d{H?v(g􎅓ochv= `~:.E"9͎7`$,$~2xj{P /nA&Ln8oLU]`TЭJކI&[xGqE0`!_moQYRwCW8$v/Tt' gAP𬬳lgp^Ye}md:I\{x{2hWzus=6?<' _V=%: ?>t2u˽߹Z; t5}~?!u3AwsЛ'g2&?M־X-#_[vO[U_}~NʿMesyo?;kiMZlH_p^z܁^4 ӿ=^_7\tx^#dY:f/s?x`ix-f#Pr&2ŧOH:3(OԊ>u1'Ņ&^/~2vsg~G;<3ĬU49zޟyeco}O?\n/ɿCG.(zByeex6l 5|c.or)B3 r!KSLY V݄l)K)̖Ӓja;;kW u9H%p5.')PIxgh[&pՁU!P輶 7/ެue(9E)Pf' sq3QTV9߾ z]^Z]qn]Z=[6 nϒW#TNm֑7땍-^+E#h+Vv{#6\Lo:AnijJɏZۜbsꕎWnAs*4w 㲋ɀ1Vo$m~Vc:&gVl[Gȏ=oEM k/#ςᇗ%Am`X.DZ*c{ߕhNx{ڶޔuj2h鉓 d|CO8)¸a[vK#ksd+;a#b *0AF:x̧(' fk;Y}_®2&.8IFUmq:6,t >W4 s%#/%f#^nƲON?9=P9ZRa>pz4&de[)/` l6}IL|[ѹw9 F#㳼eEoޥE\sd3Dmi m{'IW B^‚Ӌhs k,;s%iMug^E/3lx_዗r[⃳YP:d(KA$WI`TnoI*S 6W\lC4ndH&z <ޕ4= %Lɤr]8"- zA><4*`ZYn-OtG7\ Z]*|^_A_1w0hdWpgq`ŵ50Hk`/DlLCzϾ ![tu,?}÷5}d)Op;am>\P,& >X^`v_/#Q*A&WspZW+hgEG߶,O|3^<1b7+K%3[ 0}_{|ыbcIM^ٗV3fW =2ĵkS:>_f0LWF#D7xp$^/Wm. mSmk%{@vQ'Kl8yLFɵ"{|ȸvp_Ecgf"^A1<_tpglY`/5__F'ȡmozb +M?,l|Nߋ66,G  @%͆oO:gd)]zZ?`WM\Y\#%zŪī/SŶT8m/Kj˗Y7s;M?<=6iiG4OKg@Mk<>T{t':'Ckv15n9 M~O׭˟џ\~'ZzQ)x ?4v1i+n_x1CdsKVn))xru^$KB6&;nWo8DsZDQ`,YLń2M,FfMS9dmy jf Ž3a@fR(n(v+51:U!XVlҏ@m{Y'BSe̋JH`%^}ʌ{vY4Q>!ܢY`6X3olOIM #ỒmUF0G(d`mf3/QW'D#Ckm`+G!92L%÷`Ӂ90D9iq:ÀGkSLoS`3#Y(q8?ʼnoxU{fqׯ`:G~q^aQ סN@$$6Prrm;/\ڤƇ76(u>@ɐuݷnNxg$8LARVl?`]qqv2rv5TdKo|&9JA g /. ޣoN7#˙hI Fi[I'rm =((k-),vLg*g#Ъ3dO+_[hy5uٵIY2Ђ#>I}l@hyU8pT~xUF`fgnupϹ8?"9VW `9| OfͤH, kF =UBCr w On<XsU j[aQ<%5Au跶ҥ_G5?ZrF`"1m`|$dF? O`=hmD}!x} 6+x̐m+f3.$t2|taE?X;5l&dLwӊ3:>;|t%Vۧjp=-u]9ۏon"" w8Ӂ|J2@^/Wr+^o"6]Fs4ܭ m~_Z~pu5]D7UFg,^AޒL5b\n ~/IA:Y{`קo~#yyhm2KsIOz8hg`֡+9BhS{5X`׏Ыk~g+x|אpw<87>)gv\``_w^&ů7࿨3 60V7\w}r?m&5>lPK+sNdd3G䢭`y;a_Cq>t1z|~@c q3Մ{K\|Y5zvՍ\>$nظS_S^dB6NJY9=6z'cb}&1x|x@ӛUE{iݷ d2DV ] E /k&%}|09θ\ɍGl'w]/nuvY+ z|Y'v@ qUżd~KBĝ_~ *M*sCbXuw>oF'rz/n_ ^/ϻᄈ,>{ideŝG b1̤[xrڳq_4P7oپ jq>c]0߂x><{nǷ3>}PwZq숙edqBof 8bBW r1[+D9*[rUd)xŌ:0k~u(5mP{ũ.l/?eOu\3d  i%#hDD FƇώ%~u7({N "JeN 125L<<0f(vGiu-e hdL2e|hSI 8׾׌?~dPgj@jć *)/L2`xXY:^ &7mntqe`WaVݴ#0:u^loՒ zczF!ʗ?v(f .W[{U< αhA:-' (HN>e46 _TlfV hɶ ɥD/qm x.پ[*)zu8o<|Tt&S.2y&s_`dO?b/cJ+a;"SBǂ_uMOt8b4*XgA9E$WC^t욁=sl`+ roq&)2W= {NIe׫qSxW6>@LߘCx SUw'cG )õE7ь׸O.Z'U}.W}3됳͑^5x=r!:X)5!B UߒI<݊AF?lܶ M 6zY zmVO84Y'_I?_Fyq# gss9S^VFy& p!B2׼fˣ?v ]UquCK4B_G+|JArxC|A隢ҭagTNErx}[b.v_ ~?ξ?Qc|%N_cd#U F)@׫xz=7½Aٹ>1x7&5),NjPBP,OD.ϗd}Gd׬&ҋhvI=lcgfO%s=O|V]A?U3ۂ~η*t"z R] Kxذ[ll$%} Z7sfapl`u=k0^LmC|6Wr¯BkuV!߯ëz\'}-׃[7Zi!hk}b& E,I!^UBwo[3'*jp}E>O[y֧%ZczQV_5&:U3gO? kK&w0ΛĪMG;.wƀ8[GOvz٪c~&=g|l^G}W[%\~D[il?J_qݷHmOA: y?Uwz"WOےܸ7gN-_6pUy`lYϗ7A n{IaǟSAdqGXwiĻy_ZFfճRi_\JfD>$)0ߞEF`F B"Пct| 1$MJRd`V1): !0:73Ge_-0e.EopL6"]G#ZNa9 Qw2^ڮggpD'^ ־toNF[j]$2N-վe0f#1t{U2ׯ^l_`~6Ko>[)O'ބx.wڷN^'̮ bG5:ҞBW\p1*%瓜a0Н`1 'w]zBǣshgo,9? nLY`#ܢ8^+E*zz &:',QovT~e/ZC‹vN$AH52v@װ̀mN-##=_SGC|iAdzNauDz~yk81eت 3"} Gl |Y"Wx<kfYэڹC;8*`餗@WߠOLs <ì|{ߨ=r[ɭنt,Ȥ'[V4g/Dgae8tTj1^OpGj J4M>y6E|zÕ9dS}Jvreԡ)0Hw@ ^HDSvYy~Цt|EgSf?Jx/7Q#y$*@ȵ# J V*T~Yݯ|L$yic1Mׯ5ze8*nWO?;9@Sh"r4g?jSKbww'FLn}6;^u#)0;amw~gƯJlKh;C{Z՞x8o\Jݷң:WoEl+?<'r/>Ik0\.:pi|7O˗G?)u3{힯aL=]:}p~zwdufvӃǏݵCtAQbg׿?g5q~O{^lgJKt|y4=^~=o.%O[d=t`\Ʈ%_ONOa+r?n_ĂokFZ+18諶<}$;d,H!x'8 |iȣB`eu~$7uՉ)]ժpx1@Z0 ߲#O.w݉ =YS|P,2pf6#<{}WՇU~k}Hg:xȞ:Kv1Ys:qtR f+\G9Rlo/vs_NA"xlHg*+Oa9:R=]x'uTpUG묘=4[uC2l=6WkvN'L;W%y#W% :)ӷjN3[r 1h2<ʗ3:ɡӋɓmєb1]+OHw&~ d6|PfIAVT|G=j9&wt t xd^R f0g`{RDhC?8흽}Ɨe &}s_bx<8.(:1'B#6W(, v*=s L..y]ʣnH*+:G|J9<:_ZeU3>%yĦψ'h 6 ڡxWs4,3 WfAWnqa| kw:&:I^|範/ )O/g'ʷ^T@b]'O7(Y]"W|l$E[# oFg%a??'JG.&(kE_-xTxo5>}\`'CV^>mpa)?mPeUY⌃r⡏^GO?:ޅlPBvqP;9\Sᄑ@U93#woeዾOjfp>6`z7ar}JZ|l{F!&ZRr׬_4Fjy(ˢoo~lB(n?-fq<^>h5 {BxH,ݝdMF+؛Э >c y-6)Aw&D\˝ȶ/A`˧~ځӏ ",y{&9 *>}Wl/z*{%b6@ ~|uRҡ &ne_[ ?\zŤn˳4n<|_~g/<$ nwC)љLY3CcX[LuN# Ȣg-!x\GYAJ%Y+SޜHm$Ҋ3H>0 NAmf\96ӈ96n>8XoL1 'Ng375u1`NjڀǺSk, js0 O :Mw#8=)xldc·O-8D:ioxZ%@,hpxfgy^mU$knGÛ4 %̡r$ ?>2#A@%nᏞ;%IC3}@uP+,i|]FD-+z>uA\<'3`h:6@^N?~D2ynfc:@{ vjm5OnbNb[P( R«2><){mA1>>x_#ӯ'7>VXb͒-w= oH+P>mtd٧O?zԱoE*6Z{4W,`jlH*Cow cDG ZulbݐRFb@#>?Z mJDAs$$Kt`kOt| @LD@U.`I+isg[28~WNN. @|HH묖㳒-kTx%$78fųkp~^i)g@c5Nh I]zg 3hFgtӑSIzbMNL;  E,`:UD7PndNY}ׂxnkXn|S,=[d29BvŮkچ@C稫шxiIb:@I6^LJCsHX{;4F)xw|Si@!)p`Xwo-I4;@lЕs>t_{w9~ ~9ܯ*ler?֩ˏ7iof2T^ߖkVo}bp_;8?Gdw@p`]9ő;:4&flI.kt[dX9A;>5I 01z]T-Y~~fS%*0==pǘLi/;NyM˫B:րE& OR.ڞb0XxqV{Ǜ•/{ramo_;"Imá+xdD=SGm%c8d;}zu?W1ك}|֙8 fu]^/~ gq%3= ߒe!?'+3ZkwsjĻxtc8G1~>MXY7 PܽRٞx[]s A˿ |;6l_?DOjcG/Y]jg]7q=෽=wA.ᬢJHؤ^-fZl| znU%~L/:Ά~mxϟ<|>ϟBgK|gS/7h&ӥ!r?ҟ <$Iɾv&ٓGlhL._mBm9 G. <{}ϋ ˭٫QF띔5#cQA |K._GG2$%d BYR^& IqlV*)ul싧 LBr:'09[ =g^W `lP:I`6dne-u2ws3;mj* d&pCdxr( h716`͂,QkcA::XVII{C87Îrܠ(=2`-{#8͝;" rtz^r*~+>\br|z J:DzƗ] c[l/`ll#jzؓM&ݤ34K'Mg_KF9QVYěfd ;Ӎqij (=af *鰂c4hC1ʞZNf(ٵ Q}x[[pA|g+}6?Ɔt&!ov/=ѡ/Ht zxDn"vr h"Kl 8s}10bz (GMXtNpOEǟc}LE* x)X `[.'@;i[8  ER|8ŝ{Se iDI`r]g< 4C"j<:AD~#H}2tʇݒlh6ٻЀ8[q>4?Ww~y_exuVL# 2E%W1mZʤ볃V큮;*z6Y}uM _ǧkKF?}hKUP_O`| $)!.eؚ8Q?]q ]߷4vd/xGm ->, |~`τ:]xgv\C㍕9+\giZ8m:{S[l;#ˀμm2 yuOS5Yw~Z.] @L{H K^ ߌ7$8 hQե+Ef۶myuTgq<NǗ#Z#o6UaO?a ~4=Xb-|7sj5I4ǯ>{'2 ^.5=4Zvvb3tm~1=vb_4$1k|?sfd{dw ~omK? C%iko=p~|g >خCظ:743XA-ϒ&Ceq񌍡,I ka0LxU9Mäڣl[9Xʏ哟q[Nf/l}1HogH GfK\]_}WS,k,{+Gy.zmvcXuyλ'YOi9{{ww+[ Se^xW-{6[N)vۇ }Tϟl} g>aʈ/Fx;&`o5{HV)^F7>ח/ϛ~O?Y_U{pyƧ Gm7w3W9޻;|V'?J2Ͼ:D?}Ot!zO۫-⡏>lp~{gIʀo~V\ ߖtJ_lhTV{Dme~5yћxwRT.[xE3)n3(;g5vPWN3Sjr:y+r8<ΪYwM,SXψ,Jka 富EK$肥4mrUa e6/9wq+'iVN6l;xkXn󱡋cgAXg:@7oYrhx=g + 戄C`kLAM6gsH䚢wutZx`,Ko9#)ޒ8n(;u(C8y@b_/*q_+ &>>P;6ɟw>=5+sa}eX/`0/?)qfR"&^)g9i򆯍2頁:܏;6ŗIJ2ӻ Z^F24I7ɫ2{ыSovmz7u_pmtZnɺPwVOw$ctaIh T1~)#6S B "Fxn0 Bn`ԵlBm|#)v.wx6K ۴gb_*&JPMug:>|fsIJ x.0ZBӟogI&X);/Y 1'y^`zT{1Fm8{=x+;Q8>kǵphi ⃙/ ̔O_6.o:Dn5-{񜎜YQ_ 1a[_2FxˍP Hħd'aoExᑲ_#;|SQh;Yp(T3[W<_]@?5PY :3:/N$gPk 0xIq{~o+-}G1= OLu $4jĖ@F_=vjC;}:sDD>@IDAT/tx"fl#m+9 n||xOf6h`4aCUKqn'2xs 6`x7]ߌ _-;}|G#*| }U0 ~V \M1&89]aCp`iNYtX{#GҌNIମ#:U DO7 .ڏImh^ud6?In7m>yo{zdabg]ۆo?/'n2}aԛߕԿGo&:G=xQ<YھnPuKkf}%'%=ֹVTx'iFvxR"x/~Q^`e{1Wm 5Vc M?mIg_H:~b:Ioڢ'IJenܑ45<1'?ת {Aywp U56cQaAFOU9GTA+Ɂ!>q~nxes>.|3.Ȍn 9;h r1M%r DW :Z@^A@lLj44uT::NIA s)4 ].Ξp8m{2`u%_*:tuUMEꝯGnt$fQj=q4~seӨL3T3l0PE`(.@r 9VgW68s+Py"8: y6 '}W_22^g<-<7WΒozJTF ߂$4v+˻  ֫U^'IА hP#sy:hzޝ-LeUoY2^j'7=̣}<Х3'8vCDYߪ+L6~A`А HYtcG^O=v`{E@ G~qNp^e&gLx |UGџ8;?j . *yM%ek>$W~?du/ӹ%Ik!zrPpF&VT5׀ t@ѻjΧV4B)ܒwW!#`+HVJDɲri{=*dI РU4vAW #('a'Jt:& Roc{gC.`ɄW>)9zi npXB'tX3.U!W|8|k0NB/':r(͔r!BVơ3Jp$ ɀB-;N0 &[=g7 vz6˻gvpC7YE`n_?ܠ2 Z EΌKx 蒌MUJukQ\P60KxWZrAwxfL@"ŒQbfW (>:*EcA>z`VNtcv%xDUuN.19Z[}WY:Z5J~?mгI)VOKCu*tz;L2 1<~ʇ%nY'@npDdmwt >aU,\D@ƹM2_r NmRn`֌rABԦ'pyYbS}l9|I/Jndɘ~NcW5GA-uA6'>+?2KP.d2ezm(~l([w؁7~wMTV-`ADPhFH|)حt0 ;W+C7q f9ǖ~Ї78s.75Oo2n>-\~]IQ>?C[]@52A|+hZZե/qy!T0xE.v/)AZ4P%?U' U&fd kϕ2fx4gfѾ<ڂs]5 o>?4[?/?jCwiKӟ?KKԋM'A~y]ݾ|P_݌'Wr,$/1atO锯; U,AJ4ࣉ51~JhnOv])nX_XpҞOnp·Eis$ ?B c瑭ӯZVqK|VDnO-UƗ.1MZE0# bvcyK MlM"' n~+~a4 @O RK._?-V B[o_/cxhLgZ]x~+p( `)߲Ć1fxiףqzjb~OC&~2d$i_OO um1/WjzV?7?Vxn%ZF[ODGY.Kxut ~o>=Y_pU 3y^\h7>+M+Ls{WY2_gG_A~} zx}~ؾ}69ʔOf89)^TcZ: SzFlS1mhxZk3T7,hIGsxLSW7Y Kvf[@_Ai Pjy:$ ZYbzyd -8ˏ=^[PcKW_iavm)-I/-R> ɫˡ+7b>x.>63<y& _ N3[م= <8Dp{4zM;,g:Vhc_p:KNB^t`dSxJfp`,'5Hsq:mGgk'c<36 )iŠ<_jS0u& I^[u*{q@bpua-9ٔ{1-Le=gks"=`m=9Ö+yV +2 W{M~Mt 3~hPD=MKNg1!Yz\2{ӫڮ &9?4zBEr4>_vn=ps1o4:]vZcm*mvãQ8& HE;:Uڟï`rU@|_me6 v:wLkw3{_Zw \6g6#9V,^֎Ywx lu,|$$pduYy]NW/CnI7[ѫtGfJN^-tL 6]Ek<S[{}"D,o\7o=d3a~a.Tm{f*$-9gK`_1Fmr>.L+_Bs˓oC?sL88KA,2 u00ΚGKƍJ6B'2p*1rgpHT%(~@o<5|õ.tڣd&W;ZzQGpp|6jx؆^W|f`?ů./5=O{DYernw{ ?|he,`5\tq $ɵ^7P/S<=<66 3" Om_kl'?xL| V%2rK}V3֯Ia8 %_|=6NYn~=8^C0ץr·f#U=YW9W@ah<;{$%sV~-=d?muQidNStzGZ~^WbX/0ӄӇ9zpbt)~7E;nmϞ҇1.7CBPpi][S>j,vNCvI| &%g@YG%/x{O}ڼ?^r/8e7a=`1T5Dkf9<^[!YZ1NC0f#ND2-ۉ"K_ 턮5'`rt0A`$UFl`-iS̻W)31_ gx=WӁS̚W(ؒpe,ISd7ClYնct~iG2A 16꺀=. '/ IN񬂓OOX7fΠKhn伒9Á^ (P˾ 뚁 H/G)N_7B~< G^ҡm/NyLþ2 HjɿAn^f6Etl +섌n'=38O@8fÀƓ%6$j[G`).(痵gL-ut Í>W1:}ܮBhL:Py,5^|cN}5k|Y[:x j5!)-+Y~oۄ3^=î$ct::>hb+ o3| Ѧ/+N[EQw  'GU@kl]0t~ϣl0XBGx}g`+̺okWe(>f/59~o[m7%Tß?tUfd:ゃ߳sc|;m@Myeuݛj$i]x+Z.WxP?i)m\}/b1`yd2EŭZķMHVJ4W[vWJxkq QI/_[.)xOڱZ>b@xTk3PQ^m1AW+CN/cb;9Xvp>x(@YM|Y<kj8IpNp:<YmaZa-Nd )QuSK8T0&xu:qmuuܩ.g70Ԧx.@ͦ_ gAϏC<:=muϾTI_94!~.1#VpIr N6P 3qƋ9lWcv.QtYԹADk #-7[/ l3 WAO?t:r xo&3"tY%쭠oC%j-t8ӌ]g_ l3[d,5u_6:u2^ !Z3';ڠ/'xzum xW}*OkSk\C~jG;iޡ{@FඑA&}-/82χ^3LΆڊ1o2dkm`V] w*c{AX~#= wS'lм sWʹv%66[Ǘ+fEz^s)Gg5'+`Gqw5Qu𪯮/V[%{/Q,`do5QAÓ:*'>uqЩlN&~__>MCv1Nsɷm`=nvo.Q~ ǫx}sbVM@70Bl,ev1 &ƫNpx|I*  k΋ޙ| Ftd}}A!}ު2}B1caGO֡[_W[]}w{-|.6gt1wŴ%Z6'VIJo\ ͨzDRXrm}wHKh2 u&>oyg:6Oċ 7mv7ENjbV_GxRbɄNQ^_!J'#lEk^#ݷ:k}8cygo& I>ڋJA|xo'A4p-1ar55r'.]޽׿7o2Hb =j?\?,;^?|CvDw؇`L˙Q 1WtE_HSjK"J#j0`j.R@2퐼;BkI\E|>Smn]/p'.f M ƫjѲ`9a?0}u$;g f4H9n iC:,}hWV;H.=OjYzF0Kl;M:β2Ж:$^wg6䧻he7ə"vXHB|ᥤ5R.`B;镡kK!ki3pK5bRl-'^h+c M  ooxXgJ,I(7ɄNE|:MHcQ9ӲOÃ}71ϰM n.R=M`3zvtVh-6QsBv$`E6Mh_WM|SLPm``>8ZWCpZ=tI#/' vV8O˙&i?.{Ȟ T6}3\8 tJζj[uE;+[yBgzDX`y DAoM-m%uD2~I2+[{ڰF. WL&:fiDRE, 7 fKGͱnzzvXwteu a hdaz{<.}!%9St?Vn,ua9ht4E? pڛB)hS| T v*FuZ0^tozJ zFc; ~x^@6^m?ڤ34t4ZWCI@{|lҡtSԟN+$2_дIXcVy-}Бؽo;EoAQXK]pd\3zx;Vx_q//???J'zP6:CTY2V^j*MOl^+iw>|qWN+btc4>VHx+CqBM?~j?'o6DfW⟕O'/N~h\/M#cPnSPFvO_8D.9p5# TS1'GlӥB 3+'@*{F鳁%v3Yél E@і^>']$:J!a<.8p[Ux͎dIzGλf6c7e-$s5K:oƈ9S96:uL 9N7م'Ei'7\Ʋ+ j6PQx2yډfc~+Hl>s]xGFD~:L**#}%-7B`WԸSUgYkhě@,Cʧ*-?`N׬캺':n4{f'(TaEؒ0A u`oU7|Gyt q=: 6p1_[tv!"jEGL`m:W;uڒ%vu63?po|.0_ P>7_?qjZfo#uVœC]z@jߵ=: 4<tVɂxʾZς viE۠$'WyO~Tt3#@.lnxHUz\Y ^4_נW'/Ks鲹Enp뷢{A ne7{Bt۠@{IGoqS׿=n{|k;)3Pڍ !o[}poUrm+̍[ , `)ִ16umt`ZbCJ|ShtwqrRS? Ieֆ+@Wk&@sٽnl} 5/^+6WŮv7}ˎ \n WV0-iSq:᣽aJ5jwpͭ_ߴOS45BGC<` v@&8B]\L>ɩMCj6[_+X~LJ5*<]JHiCVp:Hr81=1۠ ^:KV݊wo3Z+oiEhO58> Hiػ_j UIg~_4y:F]wGV!Oӗ XfqkMlIxpQDz$2L%'ώ:}y-ĸW}լ{4(:މ?V0n:bA8;͍O X)|WO/%O/wۼqDWK MAwv:Axqe 3 ЯO?Oȹtk{FA|P}Z 6J_)^{,]XAy<)-[|ےDŽ$1` $cjE;"o @'6rʹdh\ {F`D-Dp g޼2Xy qO眬Y{S lw-ڙ#w沄\f|leDIU)8E"{Y3<#U\^rn`"e& .plhf8)*_(5U}xx"! z ZЮ.X[A~$`5q- 񀂉/"HH$[tۘN-_69O8"D: >Bm<$;N^N*}Ln-=^$7'9iIYVx%Qvҕچ(a`UpI a\^?#&x~M>n$M+rj(SG7doe^ O!MdO(r,}dWKd)%=h &dh93gaө]QW@u:azw-Lm[R}F76ٟ_Zv|?g`\Ҿ!0bBSm1+ʓ^&k[&K/KE1J Ǽi[!`H;rWe0,^V|=fue[Z=DHU_z)4{}Q ε9Y]O[V ǽx)>-H3FemINVd ڇCKAl^m,[q`>`T{>to_dSfl3fχ-uB(?:kڍ.|OKvޒO;W_p+{bY2D)Q%:>CöEju9rڍmx a1 Ѕ.n_VU$#,`!+ROr~ӊL4taxI;Gt?E f!\heRcwt_=1p/?ӮBZ}wv}哣cWqqSUk۪H ̕f| .,%xoE?h'׼=VF21~a$BR3+i'nKng?|^ov__~lfY'\h}ۗ'?___MJ&u$r ` aݎ#jt84`l:G`Ym_NeO~U]>t< |RWkv]࢙n\%C|=pfxS|5oeX 3{Q5bPn_f@ L{LȼQ/o]~kƿW6&mj|Iҏ/p=sߒՕx;^#dؤKǏA9|oՋwLoe˜^+KN5೥;>51wUWnXVIX9!nO.ou~]<^ V|,ծl*5އ I6RwOʂ{]{MKGcoWX+7z_;ͧKpKy{t8l;8$V~-$Wْ2xAxI'{^#-nǟ~zyq]>xGQe)iă8#On P fZ6ݐ)P^eaR"3ƽ.1gw4gdcBsmV&F2Bͮ$f`@.ေ’optxsT{m5zO9Ӗ|p@2:g{.rי% + z3H1]dW=Pej pGu(V6]ہ-eh.bH9c ~]l}ލӥlS!%u+3t-sytݢrvt͒3{/{𖁅ci\44,[yHy O,}r32X@IDAT5 ̡ Z"oeL'1=KcqA>ѱvK(}C}L=8)Bp9N+;Ho=5t-Ac]{d.[_"0JS%fi߇ٻ|ruC޼ss\#=ݩnx7u|؂ [!|E/\Ȇo.s(t{ ,ȳI]NPqu>2tnr.ByP#u_ xpGU 1 坧 p4Xj+|=~f> mv؅)%k^ӪpjYpDFlnBWRW!l7 :N븎frm/Ak %b3 tk7x 2/NѼK<9$S@j a]ൗlDٍmwmzVeV:9AL~8-}y y*Qt2=~ ;B'1 |W+8:sʋG:8w-8v=7{.]ppٿÿ^>n7Z=o1l1;[;x-ήzL:d""`޴l˯x vY%9t+?~umv} nǏl%I9s/]).\ `[UNxZYQŸz?۠UO1$fM쇫tdǚO<ƃl?MJv?8~S'~Vjg6UYL}ߵ2a[|ƪWޘN(^`i||v晈1yx2?F}kXm`J\_>+ \^SJXSll4ý/CQ vMwpxYЏ~7}*N4Ly'/Ŗn }+W36ң{rGm"44bpY 49@dȤT3xـ9(45LU zķ4yAe΁$ "jJF8(ʩ5 C ܀,pҶɃ̦{=$ÔFėF@ 8eÍK1Jr&Vh@B#̵qvK3IV4sŗ$53t:ĊK9cf|TgeVe(.EM .@C8SQ-7۠{ :l9-vZ~'/>I9G`u9MAPʧ# 62- z@ƛm:qoMCog|\# g7akrHVFt%ONBG(?CZ` Jzf3<,)6tYgf|`K7xdk{_~1㑤B B{tEmtfd?ŶxsF?Avqep%]Or霠Qo(`OcmdW6S~^qB4-rxp Q (9qD\UOӈ"{O;SV_~~E<3kQ<tv Tkr`u~ee+]wp& v_|SpMkAϱ/LX݈?NV:^9̧*+Hqc.ZZ>]v|:d<Ǜ4B/qeW}V6w]Fx~0ˡN`'Nկ?no>ww~˟v="A6~?]k%q8M([)vY"2P<˽G_iAɫ2M+F4sjBqcHw6YSYr ¯~|ybVMr͜eد5b vXgFl1]_7kzqN6]&>wŞjQ]}3GHů`+ 8o[qqe"vGy|MM앃Ѱ{&$yKN0уT$Y/xl1~{9*NN_^?|R'Wחd*?1ʒ(V6ٸttgvsM8v0[6/>ڻGxa=jr巰{(=N>֞k zx>Я+*;p5WL}U7xTW7v旾HW?`og6}';wE.U nڨ,8B%%@39#cǾ!C(c8!9EG&!-ё!Z?d`xoxq>p㣷ʄe({.q2:֙Q ^%czQŚ2-_Fe|wo#`sjyϣt_;zPo7084:`56य]ÃȅZcWoGs:&OOGl\⭓T豠GȼrLZ)q8 Y~60}x- `6 << /393Dcv}|$U^Ӈ|ou]W kgkG/Ian::*hn] #c7@f/h+7oGh F: J$2GC8k4'p Βͣ}+[y6 ;_];"ï[k8uc_5ϥD;3cp ay,G ?yUf>t12d_1:Gh*V3A+d5.)^8 eӵJV*ܯvR tz2{}XIgϝv>uY+y0frp9vIF6EEca|-vG߰Sz2=]P݄/zѵVއG+?Z 2_[ks _Wŗo1߇{Ȅm P鿲W2ݧ{pǟ*l4ۦ4ؖ$`QCnQyf)J2=^>xog<dݽ]h Jt㣔+f8o;կ9S? s? MT⿋I HುzPhUytݎN~鉀[ Ӷ`:0g5=ȳ5.H˯壖T_]~_]~ӟUUF^Oڤ׿^3cn^xIuRva77[r&/3BPmzNGPt>Iimҿw_/N:|_3uق' =b 8쟍+&XL̉~{ 5`3qwsd[U[<{}rYbY~[GOᇷՓd롙lq'gJ>??|j8yȴwJl0gd˽?u["y-nSVOwSu|[ʁ &^>+^} s~dJ'Qq½t'v96sYkB9R:T ze`Ϟrאq\q"[֌O·[oVGA`9S`é:d.'Z}kt,g- |P;.{I4 3bIx۽C߳^( ɰ9̙;^L7s<lr^{&vqYE)0QjDō0+ӛozZS{n5>< 4]&xF'lYkǢ3 h6m1#U'9c|۳Dbx,`b%nѿ]T:#ڂ|$}⁄]-lo`M`3TRzpem2` S[=lE8OGU7< ~l8؃>ו5:$RM +*Ӧj؈+Kء?n+kxT~NS6M3[ŝusZ밀y^FKΤI>1]{b㯖ڿȮSkh:V(YXׯ@ lL90x\ H_"!EWMD'4Q)*W?y;}A_?'_6Y6ɄG|[8.TşVɋ-#QޗhXb>gJkAҗI@xaE}]%W o$Ϻ&xHRxVKU@q2&ȭrx#G~3H%.%4 }׃{=?Nx`z< R\0VDz)(zU e_tD0=RA~@tP7q#ðUrgϾzփ'ʘ]*;<үk?\A<*;a>͏)z7F{>JN}ĭ3azxa47{XN(_}叿aSvA@9z>-_#َܳ'!*YaxVaR%7F,2Ӿ)7OTmPhiɕ\#z1vR{AO8w}2)ԙX}.AVN:mQY`Ki#A\0)|/1TpNFX(ôx|\eo{l9|=nA *`-1Y$ŮUs } \k# JsL6Ce3SV-g (pu% @<ǐ ;oY;r~ j33`09=Z>Y ٌ/U_GFi9tHl ]Ay<òq o ux^y_< >lV({D&oa 㘳cV:q? S*=[dw: RgӸ^K5E~R" P ZoW5DJ&_6!  k'0Ʋʼʭ!HatUtv7ptOe#O'~t\Bt@`  ^w8!t?Fe  m7?Y=Bo}6P~<|@f[(|8mtX*O_t(:'j6jKQ%]|=$?eݳʓ*VK¯{{rxYw8]b U'Y1ſV6I3?'j:kln&p틎 n c%GneK~{5&$a/F>̠$hF Z8曒ه% /̱lck8՟sC!n~tl Hp/WMZY j c)}BTOf;4+0d {) vPkϯѻ+1Aݗmz^mD*{ޑԬՊfgLfZʍv5ɽ_3 g3Nh\jgr D!\ܴȏF'"AS]CsɳWIO JF$PJ3$7:Nn #{q^4po liw aAFЎ/H xAwߠ{ ͒[}8TU6Aq#B|j`wMW^_իcZ( p9sZd ~]}6>Tn@~>/} -➽}tPOGvߙv_ML6(a.|V79Q ?WKƠ:)EMTX]ʾ뗦 1/CNt)!riΤ _rn~1^4լ^{y+O-ŤiNo5O l #A(ч]!gIV@kb+~fw|o.ъŔ6:{hmj63Fڃ!zI3o7P6|1»rwoq_4<5uz>ʑ~isڹcig:|㛃}{؎6v}\~EjSQ&rNl6ӳ谀iOJ|߻n'My-Jb%@\== \E@dtk:GS0SZ;d- )i<:hrUv+ rȭ ܊׆j2D TLʝ^S".#\JzYAכt4'0ml  '0&!WjmjVXRtvUsb0<."t(~ghmB|rfs\[sME79,Qʏͮ~~˗Me>s(9(L'Z=[`e-nƗS"Ǜㅙhmۑ2E3lJw-a S{2P5ewIzd#3tn]Meqhwaw׌[ z6m{ iWHo u|̠cK0h7~)Gq0[UqwW&zt ӹm1'Nkatvt `Yhl:AvKAwqynF[OiG\ieY1GfFfVVu =ld[fnlc$iBK2aڴcΈ{kgW5$V%ÿD` lg2H^؜Y1$ }k+ur|ɪ2rbQvUʺp-Xõnk=Wc-8(C)/dHV{i .cugD<^Aݼ]AQg8|mUN ΊCa!0#A8zdIu5,?^%O[?q.wIzX%BJ?{4%_l(݈ΞX*˛4`^_mDJ0'}cە`~WUKKfŴ% m6s_rՍfNKF~ulG%7coPPɖ\ӣu3~_D^ ӟ t$[+"',Y'5{t;yuN?^k+{]$rW&\_ޮqGʰr-rH;P$y 6f2UiL*' ~\Ĝ4zV!obymsBf۟|yv3NWsu3ƛHKoZ=u{_|I{Y6\+{o cO9t8N|e %6Ext|g y5WU w3(vT]:6T.A8oW=_?a>ꕠy렇!| pUYNq ^=W ;Yl F\,ɵz Ó#va3Gpmur3s-2(Hg~ 0CNJdmZFPWp󱫏l͔8Eun6uWe}n:hɃOK <ɏ}:ض JdX3wY4U#oN?i/}1Z_ >NC\ lEL{ e׶C:0eh#.ld|#!z$xU!81moG((GF`F#8ʛeҹWbQ;'KNI|#D.!4g_xdw;-ctPY$ϮӜ 'pfM͉tgDFaѕ +xtd08%J9@hدܵkf<W ~XRNgc|sQr!N=Z"Qy[( }HNبq@t 1i9uYɁgqDg"ǻeA$H:1x)Y" vu)xǭMg-Sd8 X&?%cKA8pmBp(2ao.h7ؗ!O %p#+}ONU]Oӥ>+{$[UPtzQN&F]׺îrz77T."3)Thu>XpkEp0)kpLV`i:NOWwqG'F=P#@#=^R@vh҆nh_Y4w|CvRw S`9=fߛ,O7퍺+?jҫ]cfSj Yj|͇ $n X$'C^oI4;cy{f GNtB~vkay×u_t/ d]àD\[χ 'H+k.ǚ: +FgDt_et*"u֭B6S'Ҁ"Gx4MPj[J&7_BfĠAtotXMdvVG;!qmrDl-Nz܀LgHGG??I`o{@5rx cb<<4V+sr&Vʱ^7_͸w%nkmE>]f3写8;e7I"0:"c5f\75dj0_j# ?ٚh_c\v>* FjIxۧwkd:BP9pD2x>)1!Ok8=.]|7 |_A} ݟO` s-n+;e䏾VG{(D)vGR^lud ? 'V.Dŀ|?pVr DzvJ-qȷ@X#6ۛŢnFw$2}GS?EbXyh:'^auI CIvY$rŜ~KcoS/Vr%ް z`A/Jm+~W kMuN^fGk^X#8iۛ6zwH֜c/M^6)kLr[h&gEam=V!ɕvqbf~"I%wzvuȤ]=M4'$!z=Q̵ISKz\_x$ߙ}p"& o/~&Dp^6YS ء%G M_C{Dj}dS !.85:EO&gɞ3|ʎN1dg(mg-О.&K2JVz`nSZr:ɤVR"#ڧ|'U׏c.hmfM{y֬[7_|ӣ~g|WM]t'dcmADs4X YDyh=||ҏ\ g:o8^w*gx{+'|ם矿n3ʟ>et"ws' ؘ6xdfDOE2wKFr4VFx!DeuE`hQ"fѵe8JQVfXlgwwt0́ddIR](1y } )W;5$Gϲ\*1}SQ4{X:ْ,Ǩ<{ۆzsj#u~Ps9W!)n zGvQ%3)%1f`R~W+Dy|/5.mZWE@>`oĴK^+m;ϗgkh/:GF>ާn| A?'UK8>u C63N:dvZA~Kb t԰W>:.׫:R #p =EEpww F=v6V4F_:lyLȿsu ڼ%xCZt.aT<ץ.TH4;[ ^Y2}$tCK9l<䨫:z9m֗)4в3AzlO'>/3G<]351??WB~[ҫMĻH ݏwّw88:@au={qʰIRiW-w[%9r%Ug&GIR~v)С^08Ɂ&@lj_:bb;+CNaӻ0+:sAr~M]x]\_0z-c\"^U)8/xV\ ÚEl?no5@0.+^>&y=a_rY7SA70/?+ԕ65R2f<7p5:@'͌dob?v8CUȃ/Q@ ߱%Ȧpґd|AlIo'u|ɚIq(.ޗT  疤Ȣ' 4+P=PJvZp4Y:YqZ#1 \~ɦ\to,N<臈7JJ:*i|'G=B=4:ĺMw[E|>7Ć=l<+Mg kzk1Heꮹf+:=6/~/kd)J/ R#  <6w<~'˯{ηCBt d;n>}Owq^uj+tf8-}+vCl#'{@IDAT@1W,m2_I>/ϫ'ׇh5 qԬEf4_B=_LnToч$ F -ǹR#j J@3:[;#=&C(Ԣ9xwOIUlYZGWļ-H\QųHL1sQ(p-% AT.8Y**Nt}s/ >eE$=K^?F2XY%NyW@}QAn3pKg(xsl`204BcK~ D5 uPuEޫX*oV`F;6h%:86Ÿ uql2۩U48k XF٣.=h(VuϠDðC N/_I JEب}jX #"qx"յNUd8N o)X}H@ϖ2 0u ӀΗ[? g ED-M.!n f/;  8~Y_[{$(+_o 8EG 05j IJ؅d%b}nx~:'k{?zC`Zv+{ baogkLj hvYKQޱ1:e#ڬ hOۺ%!#lP"+v͋dHИ*5 VH.lL۠V T 5]/3Hu,IK^Ȱ$2 NrCLj|8s]c:n#7JA: <@fF5U\ )_mlA|ӨK/>[2[ WVO:|\&R4Y;-9! [%ѽ2!ߡuO`o KPTWˎ_B'x ;p~}CN_!&S:[6سI Ym,&^t2~ϔۿl~6By\| j#mO;>0*-?h䒽/ CXdc<; {T K&[ac =M!߷i50#ODGuʭVu_PVw_/O:5ʕ;Ϋ6r]g U4esZtKh Y/lpS7yrսXETǣ1eÕ~(Cukx6 PY\kõFpc&t6*jmMkãOFu6#j򰼞wg88#T쫺dT &Bjs "`Mt+ wp#g 'Vo-x6Ǯy_y[~ٯǾM?^~G4}DGm&p|٢sĜ{J;?&܎ENiWyr໪InN?oZW:?IRpε+Ya f=ԓKPKĠkeQ<#Y5FfHz0[Ǥk:«&,j^ X[ vp!j2u<99ҹbU |:ӕi@_:=.ɓꇯcO1\7΁5P#9^7ِ%ߛ]x874L[̰GJu-}:>lY/d+K;81p`uOlzx46`,~bX&HXVZX>v+euMɎml,M[ s^|ϒ-*)W&9{A]qЏŸFqf }Ĕ޶X}VLOCh;$kʝ2])8s*!ꋺ[xnӈU;#q"@A:i F(0w*G&Ǯ{k/% :NC\_,s b:/vw'8 97cbQֱpDxJq(#gnoiJK$W֠nuD$hjW@ (doucx nLŃi}OE[Q}O{Dc.NZɱnz&bv^g h?r5h`g GĭU|+3*E@B!?[tFˡhJzMkae mP ]gct^,W 7u޾ n0FA7~cЃX} }x.Օ,vD[ҳ,|%v/1aYw* <^n;^ ]m7]r&hɌl'-N">9߬p,'}B^2 _ѦE#}[z~mNWb6vbUZԦ(uw4ʫ|04šp3`/laR&>"Gk%db0J{N,/aCPksn5 YdPUq#ߧiűNqT/9uF'#VT|rqW]|귿O&isn[! фJQ[ 2&{-H^2tfjKJNgKx+qkrpճ/^S %[,[b!wKeB m. F:U34oHX$4 POvMd{-܍՜l47t7A.<0Ӗ{0u3DXJ>]mdhYb-P]w} (6h2=Z~iN$RNo}kЛWa#3І7N#dHg')-) &G~ y2ţcҷ{oר*:'8Vx Prz@΅X/i}u>|ixm0'`@N.l]q[_t!c#RHܦuOUe ߧ13Xgycq%ܞ0F+}mDC^ً>Ц gd62 a>+. FlC ^{$iSߖ]X`]gv HRW-0}WGA46@\wke0w NmW^=Nq[m{UuX-7>18G1# ~r^Wڵ@QgG]L)> n/.w An4_ntABEOqVŽ*#OA߻rU| !gv|o% x%|j;fMvl['ݪ􋩃."9y Zh ģ cD?(q?jf&7VA2׷;&,drk&'v,<0wd`x8 8cJ?j`P7`w;: O6woܝ#c٬r?߽|HC nx[r j@ 6["`l3б]h 6[]N/k)w67_nJփ+1pט|U2fL õ.rO!ÛE nx.SF'k4O|Pf HA=ԵǧMlCPHv]`@4eϖ毠ϕ傃=rUj[!0ܔR5c?DP|%}uV^=@џ+uZ}2{Işx'$||˟O/?O/>w~ Fow?ȿ|]gSx W]G_^ſʞʖP藓d/[RYD3t! # STX"b(?``[ U{A}ձ4:lԡ[6XenS"e`P#Wf6Mk2%L d] Q ZxV9U'l• 5u̯dr?d{GE[":G62F^ h?W#Li WRK"ܶ_BI=E/ \v lj~::z9?\{mQ`ϲ!3^>h/-|3I&_ҜӖB]i=nafuB7_ȠU}bF?ld 5jqnY%QI8>&?A(wJ1g7ѷ+|v)UݳxÇl<{cp۬|?^)8-~!BY4С&/:Zb3ɡzc9W2W\}vU~9"{k5'3)sOg1߬UvYUz#pчArfÛٷ#^uN1Ky.#t%z^Z4"?do{sf;Gxw>%IƇxҨŕW+{p\6\| n3̨AcCY麊"l2m*X${u}P˃)h_0H"&M!&:'ok;?+T,7%NLG_;g$5K.m g:4 ۑŵ4088apY8!0p@ djoOy,mvsGs/TLm7M5c=d`ǷD擻%]'SvI_4yvt\b]]Ev$+1zƱiI#0BPtlku-:r i8''ވ h41ƣ8B矝1[FF|?3мL:\2@,g='K>_6{pLsu+}/.?߻?B~t+hg~@??|赸_=뱃&L[hnm } !/ǽނAEM\ˏxݑ6i`ldԋ&zk 4MWtECL&~ٳ=9񄉰YaFEc NbR)G$[%Ap6iόfnû#:7Z_`Uq<&% l4/SFq}~haW6mN1vFMIw)F=lF_]ٛ2I;q#ulDѱWb [ʔQu"GKx @^]4j Gܺ AƱoH0D̾2ҺЫ`uk,O$~#8 &>Wr:6Anj{䀣R Fv'pt1v4,"óp Py} ;h7Ho4~г/{wgN?FGI:l^u<&arNt6bD$u]* 4 ovݠ] |sx1AW{VI|o:&lH:Zu:dX!Gx4jyצ;u2NVAdڑC%t` %VHIݵq+6SIO&;:hcL*.$[ \5!CGl IOz{'G~xd%uq`-Q=pio~gϗ20>2_lFRV4~r)ljA鉏-uvpgWŞk2sM~jszg7^\>meē츞7ySgc|hsh17xyAԨI F6Fip7v{8ެaXs'S~4Mن~3  Ee8l^7 ~KPlߩdM39$ 8h&yOe6WD2ɀl(})lDJ:~2 zVxnL܄I Xhz?|*u)سJX([A4O188PgX2Xh sd Y\ʐ.gE ]-,@d`{:;S`TjvJ=Ѓ8OfuXo$׽:} rIf\O9U@^e46"G{ ݣH~^W_}ʀksR0 '9x xńcQzJDgY1n0heo;6#n좺t]<Y`wE_'u4_kp' Z+p<`:t<o쩀ynw|a'_K=?c%A7:j{h2BC`.ó_ǁm3,h]2-+ & MWotofuJ$E`jjmt/4ֱ q2- h 汇t^:Z7qm6; ?hᱞ%6iynk{4QvO>|Z1Y5SՋ|+:ѓo)I]% $%FMe-X sr7'bL~7ِс[]m19=m6NÖ"*ۋK\y/?ִO\Yup" =vQ$ U2yw`v <CGFDj|Nn'%x2JZ=4:.эA?m8? uL]9D)eG#؁2 0GqL6lLL]g'²(Y@=rD @ dJoA/]?ԑ(X#;Z9'vt?eOG(qbơ0 6f|Wrt=Z2OBOJQ]2OO٬%"NKg ]3=dvVstkwO4)Ckq]jX!joGuAMoӣ[K ^t^ -gY(Qi ڬԩe4jMP~|kۃIX^9^ձ2ˌ? ~{|W*(li2@h6Zc6O*Lng^|XH)w:Y9O+-w&La{SLe:'rm"k`QU1jW-|o,ԝ hI}nVNw\MV/|D;t8V7<1޵ :ke#[U΁sR_!tb[%E\梙qB;G6c$J^ {Y5 |9b*ɰrC-bXխ{^o'7P_~ǽ~|w~^E./=M;ig?$eDVg8ܷ3w6<29i(N_[_Z$YӤݳOD_qyV*/Vzΐ>w%`8"@͖g~omwZau(>9*)5NÞ#; heN%Eh̬W=ǃoI0t3j(ٟg3 7zmcg1*02tl8N$&uuT(Gm@,xn4pQzVln+a~P@f@}2zf( N7ڒuBq#6Lѷxk֨xۙ>kOor>vcO9,2"gO3bf9Udc{SrAIGJ:Z$>Yp-1INFUvC늂5>n( %l苀 }Mzfxc阐͆TW%6`Ykdzez/\!-K3 fp!Q[k+:W>] -:AėgO _>l")pc!Z}Oym 7ĕ >+ftyUge?bVːAzd#|K8Hf5Yozr.MɎ7x?Zu|YlX#E@mֳ^6)[,#`nʮM?4Nxa(2ZRY@g` K2΅ 3}^״eqv-wyni^nZ/I4A!}ng]Cfl̤Ou+'BYp%jDԸZ,})qxF \^wv B(1&nW/Aa3LFnj mKe Llv#ͦ_ w,pn6zbΡGV(;z !Md8n䲐uSyGEf7`]SvVh0OYt |&O8v.Uv,+y&rG#Ōjl 3q ܽs$\JvML'փS:1EW9JR(y@@]3u-2ᲢVl{W䘼EmBS̎jrfKF[s&R4=& ( TDiqf$M+'~;_?(x{ſ΃ocM9sFe\2iT8O@Wq~pD2˦}͖w$V u"A@cC`yvu,9;U;Z Dzt=o;)M}TMڃ rv9dW6!/#`Ft6 ,U_l#Be@nfOЋ$yKII+Zr=.Sy;l$ $]{g_-;LeϵNMz]I^d?|6*WqOS+ZEO;x.:7}v7zx`[|` z%d1ݦ-8WX}7aM:M[Ŵ`#@fd.>8#Yܫ.z VI~8@`!HFwZmBwtIan NӖ>!;WEn:tQ-{[2ʉ&?֜5PVUce˝g}{T!SDm97.V]a$ o՟N.{qh'#,ڜ`W!~l+!S=.`8R06wml`̳B1ڒxYCZr̺ ӹVY2d(%QeߓW\`wJΦwC=?Z^C@IW{Z4١ u Gr +3A rG]]GY,| u/oqC8汞r\٧0hwnWT?6Eە:'A=`m+]_cxwtb "f&"Pv<92> xH2raq}h~jx6H6X2u9]=.Twyϩߔa]:x=q.NVAl瞶0&i)]a YuWMxG]?^~ks<`EA@ P}&WLxlvDz){>õ~ GQhndWブlxgeyow>E{Mo+=W_:< 6uYE~m/ GJ^葀6^_E?o~uXcyK`ͻ Kt2^Fc1E_e.bىWWu7*E6Hw&w^\\Fn{IIsBnQjҡSpy]:}%#HO8 Q*Ϣ7!v ct́~pj l#9 p0'.NpTo6LN3u,ft7+-Ypd'03%pKwfsbك;cH pԀqQ5vAfzA>D'tsrx1+P>ã6':S$#f YdIxbYdܢfߣ-W)OCgRDpR5t)-&+>ECūcO3@a_Q}q?eᵡg 'Y]~0mF$Ekr+C#5\*ݧXdjsl%KW3+CNVYɓOo'{ 8͐:$t?- q&4őX0CS;ask+͂hܽ Wg ᰽ETشs⟸f8ȣ'}:BȄm0yW>B 7+o%cخEGq^+s`Q1 }Ow}1ɭcshEgÏC=XɑA7\+:]5:C4G_%7aX}h&4P=: 78gDLm9@?{{0xHIf*Y1lc*Y8}K y[1x ko7aYȻ".iHg^!a1+~$Zz5autp}y'c}=_$;ՃSyk`l?q{O/٣]6^Cfx/}iceR:=m2v!Zw_G7|ƥ2WdmRve#bA;2r#}ź\g4ekg~| pT4͎|<|"|5Bp"unws6MwRxGgÀ=XXti_jK87PoQ#"!-g [~ e9#z7f]| 1\}X $|d*$G}ʹ6QS]m# {6.K.|Ayk?tw~@IDAT6[W/;/|?W/˟m]6W+H udΖ7wkR$IN {xum}{՛8~tRQ:<_/_|K;]^e4ypϨF/Wsy$hXFV=_TH`iGgs(N9 g;Y&QG3E\]B9pZgw~~X+Xvupx%IGlXyCأ %_g'k5ZSDt|4%^n1Ī" KCZ@JgnK׫FZI9$xያ5U< 0ƟsE>:F Ȁ EHhd#~AfsB׫ηNiVި:ei^f*A'!`[%Gd&akf,[`+5u{XG0d4~I>-  `g Þ9`v#@B~, ؄C%,.˓$O:Ds#x۰$v[6)>S6 FtBȂm$*;۴>:UCNglxYpyݺ:\ a|p홅U?Z7H(ߎLP&h0? $@,h X4_ )N 0\s`MsYhF iHru١UMP!jL%[JLΣUB̆oX6#!9Pl }ُʮ#PS]b*#'rKHѾ[<^K;Y07y 78fs3/ӨU. l@bq5V36}2HsڪIh^~A~&e:-ަ#;5R1Z|$4Ikd]|j[u,DN jlcӕ/9A/ymL^\8W={&-QeMl %f:%+E;/˞ #L0u7(o{*mv/]&>O5V$,-]p`/Y2ڂP7 lB6}WnZ%8*1ޡFOb,Rʒ/!^g_A[T2ھ㺙he#KealD^Ƙ#pw﵂R]j %Xpv,Wi+U9ۿՏ&"CcÔ|hYNٽks |._*Zم㢪U2d}ʑddq`.4˟s  ׾)Lr/|o Ѕ&z6}u1U8`ؗN]..|*%~6LR#PVɷmFNt\1C` XHkF/j+5E,'o> (m__._W1Z F ^c^}NÜ e߳;7F,@sx$Zg?篮_/ [op)*]L=F;'#$bJyg䤣ћ'BQ$6ۊB1P{| ( W-|^e`ĮΣor~ r,MUg1gCq)nWՈҦk ׫lqq=EcgR}ocr#¨}K`Hp[_{\wyM~gsO+D^ѓVS4IR˓>> Dx{ӟm_|W/_xoq۔N ʁlF<]u'LGDI+H +`6`}xP߶`}ӟ\g|z@ ~2/`q:#oV7g#D8~m\O+Đtz6cXvF]=b&I%SރPʗtm4 9vU }|)K7pmץlEoI'@&u8jg0wJ^vn7 /8Iä3TF~-1 WNQ5-g݉(*D>kL65N'sd2%?4CMgwvzF&˛ @V{Kb36 $ !𽎾{f>㏅ʸ:0//dɥz/$C >]F"'1`ll`_2  Vld\RB-S#G"`PKŷ46*נL (l=DLcK:P!:UF_tk%eHFdƔt:gSw?B GCnKZfvPy#SѬNZCd},>=dIG6~% (XB7IE U~\ՃjhbE>-Ι3O|x>5fl6HY`Wp $ݛ̅=\ o~Y@ Lj%4Op-vB:$l;ٝ`p$b y.Kaq{M?5:sڄB{oOlczKi%~t[ɜ^_//8wM<YnV >t{t7dZxY=ڃT ėnl} F Ht [|uur^<_tݽe 2ffi䕎C==t~4p+f1RS  m+2d ΠeG7C]6Urd%p8{ѸwTiRturx%Yu'JivDJG}g./L3eZNNCU+2;8qOxn:\0Al {&(_ձ~'5Ą9[l̈-%2!eRܽŠ1Uvy&t( e}8#᛿ܴwrhX^Nѹ2dj_]Ej])Fs{F?ѰA;ZXOzzh.?u]/ןbڵֽFUxUxL&5wU8e|:1 ^NX6Q͏1:@~G9 VXU/5=vk'o~3U/ո_G/n?6oЛhVW=zcspb;ljadTYLx.Yq~2%HwߔQA0$Dy p6W[ِdf'rtn=6Y`d&Kmu:Hγ _\nUJѹAx~[RAz> Uo/I<ˏ>MX,>l_ # ~~7ȍ7Q,|巗]^~_߸|j/X7V⛧o^702xWt&>-iw^ >]N y͚*[uz^~[Dگ?G/g^~7_o2 Wp̨I߽^t gK!x IL"$89C:; @91ljeFzX/fsiJP˖rD7_y=2&>ѠS H.IևXz M-U/o9:s:•d*!JX!ZNS?F@fs?/ECE*e ̒ 0(-Xv]d1^8%]7H̑Y9.WW@xWi. ]dOaD\_J|{X Hػ;wfĊ5NJ x3c\ά J6/%k5x5N `u21dLOA86^Aѻ ˌ Q%<V^_l l9Y wGώ$0X4kWF%L E7xwׂMOOPno҇e<1Gdp}iJ$,*au^6jiϖiT\Ƹs L- /vu[;sTQl@k"!@V‹ Сl0SYze{׹Zzѕ%)+M)^i /W;^@JBj)pYQoc.C c|҂%orǡl<ݠLec7+,>WY|8ߒxI} $vl8\գ-񑾁}ut\0z2H.l~W!*U.EGS"y[gәO{\){'4eY6.`;]שiG6gJ'u~vߦO핛]Õ t 0(| G־L9+7R@5y?ˎcɬ7߯_?Bw, W\}[,iPeYJ70C\/I킾w &ueuCk|^κm5BXt^hE*m>`YQz5k7EBvY{p.h&4Ν%Vk5X}x~זFW7*K*c4 cõ!749kp$#<|/qƕ._pYxdW->A꛵Jumh2~NGtܵM<$?8~Wj=ޠ?5>Z%jg3+]:2 ٯmb`R ]'K hvR2೻^ӟV/ZQsH\%h?,F? ^r:bŤ 0j}ʝ;+a.0~~YP&9؁;BXM\I #S~*Mщ.۟}U?{rn촣=o0o+[ݍ82C]` JTzm \o\BFwMqפYdb%*+W**=⟝矻wAcf$^Mj:`mRrJ5DZl\y||$z`h2ERG?i, ~TЪ]_fCoGt4g`N vo ާh"ϋUAÏ}tW G?<}MOK |&"?i 5fyw}?olL*LoюX.N"__&F_tp,?OGO%(53_GI=Rf8{oY~*\zo{VNyM8e{VGe Gze3<2 :EZ_}ϟpF[%^6t;8o{Xs'cBu< pAicR#≁-xuya35f: B02e<THHtT|eҮ5m3cB؝AF)Hhz :6k~SC}qؑ= bА>m8X&ɵ#u]^>dp`odu&t|~l0߅%9/ɸǷ'U_>zC RT_ %j\PEcHx'Y^IAqǏݳ+_H6݉Fp,~ RDWDR ų9 FKTiQ{Ex_ӵK4hvE'yDɷ*i~>kz6p}*Qvo(hpdݜ/8گnkWW rT᦭׆CRX6sv$ԡ\E$=ث$#V1KnvޥxvD>`;Qh{8Ps:UWNM:TIk"CFpw:]覦&}>1"' lj\j̫bL~77^̨T8+'?sջŧJ;|d?ѣN/д)ˬ?^, r8K)_ۺE4|!Cj=\d}pxPf'-o? w/%oF^jL${9M_qx).;;+ e}s*g=_,Egᰤ簧{ ~S[wy _ 8Z?er]־BչKGKݿ;m-uW>;Jen)Z<+h<9w/.7Ψwo=TN#*ݏ77ǃ@l5oLQg1Sy$q hTYq/۰ے?VrO&kKvjRԏz},xķϿ|ח_[ˌ;5ݯ=+Y^v_>l%Rii5D7=RcmHׯۘ$i=fЍؘ6Yyo$xdG}t `u瘿gv hy@q3Vje@m SAdCɻI'Y Vy,9b/KLRcҢ f Z98eqD|H8ܷyܮpW|xA] Wݾ:_JΖ #a±Bi?<z;5=rk!lGdٳI]Cǂ|&C6M;UV:

Z%)Q[gqw7FXhɛXCxH8Q|ұpNڭ\=:3[~F(=Vn- FX:xN>8re3#<&\tApVL[=Okk]wOΑ>ΏuL6z JXx}mSgVee(է9k~V0 .>|K0]0߀rZs`Q jQUWrq[Um o::_Bd;f>ހ (x~C& p鯲^v=n.(LgZ(Z+֋]>C|BWQUvI WAMv J綺%&^\OtqcpJ&~O]t*Ok~RF`<+%VG=pN0yi# b$?{*ڭ "gRKK]Sg8\dׇn(xu}l>rxùbV$fWtN/qՠ\v?G76md˫=GkZ=d3h gmol2k{GZ7x¥kdͫzˏRWc}ϣxmQ^'OO?1(~hA;}rOU eArN#˂ 'M&dm"'fܕ5[ wj,)ˆ7q>8t\ӱWːɭs3ǮquN:RA Nv,`7ݽr]D9 h\̒ ȌwV2{w֌[U(Аݐ^'=L!>ʫ OH,p2qvB푍!y yef$>3PP/ݣ?EmoxYV->ܱ=;NÜzpu: FًKb_vA k^ >wzN.2PqToOE3082}a ߍl,U_}C`脇"%]>3:goy)ؾ־N;#'1 |,]۞g%EH~bI; |_ryȇudl}=JrZˑ#~&r1Oh/y,}jĽ->}3w^is Vk /K<&k}Tm _~tm+w9 ,lʟ+aKT..xhN-k^"'#c̏[ZЋ>~,%^VJdP)1p@^ӗ$x\?Ǒ#>mWR .jکƀ&O&OM4ipDX#ݎ6 t6mx-ɺ]#ٽ-u88w9Í跂 v ?9&O+p%fʇ!(?ͦ<:toj.Ё'Zov ġSN?qowO&lv^fz7>zr?m?{ipZ+'MǷ$ҒkaU>ѯ]j3GNs'dn0?V38<<:2 &A+~+WׅS$\ODIn^VנbDޚ-捷P!+Oyp29U!<^#5,mtNb%xƮx=X& H%ŝlY)_zi6oUof ! p͉ggq}6꾘O]\^XDRi?L]8ŷ:t+0dk7^mOVȻO!f,X%6:x"?"swWc^;LpηX9si؋灷ծ@]hg'I~6@=#g7߆$4" eɆ_wXきK-+7}{se|:beqO6So$zo+%~/h_gD@Ϫ{vKbl>?=&M^OR*;'l //_^7%W(;˖cA,^3-vov31Yy mǿ[R 59FB mwZ_78Z/(OuT>l?b4u%ǝR*Z`̻˅v YRH+$}0Gaߖtt<"kz4lyNT38Əa}rYr8H}~f.O.XgwЏNgN= \VrJvt@DyLF49 72xk{y޳san`*ɻ6(ԑdL8xR/:9Ɲٷd8m'P 8| N{emi35z3ls#Ή&'l/uʒQ%<Q}SDsI F: чÝlrx >ud'фfyK{e_هw%;hȆ ෙ2[v~6<' tȠӗT;ݫ:xgO^^u4|:դ>ۡ-( /_\H,R}} #L(9zoȷJ.We U5{U(ly) %(l4VT־2ѻ}l%W[\:ɳXWOlv)̧Oqt3x=o6Iw=*UaS%Kf-LUtj˒X>f+ŷFn}3Dd~`*Ug1ނCNrDYCFn6{wHUCvx#U8< nwydŜ_=>,q*^`3M!?z5-f'6{̨j8KxYa,oW{O4Fiw_}%?x[>pgm8OʇÏLogo0Ij1_}jVOX]c9dţ%?^ %N7,H0c=c&#HR4o]7Fo㕋w\z4 (AM\9p6=. %9kbvM.~_wy?,:m\^]{Jyw{ф`Ko7_pX*+aqYlz*9-&Kfވ!vAcom?-(&#>1[II)Q_,TQc6Xp]`2+I7M&yKz|W_O<GG_xo\=oo#g\q_&nzۥbti7 F m$wYf+[=T≽!{ڌ6yw~\o*` Y9e@ie &eKܵ#;u:@8Hĺ2u甽B0T];#/` Yh \qP.aVxƈ9gO˒l!@Snv* XhA%Iω9 d c|7:N #Aoar+ƀO] *C9E :grߠ!# tB^܉ B"nUo+Qjś*Npn*k S`Xg%:v{mp@ѼA% ,{_bN/.\ ̈.8.뎇B3^oۉ54jyg8x1. @vC'q6{ aX9f?g{?y=-S 4$-^GhщY{3gmZfxj6!Jtk͂5V<*(, X=:_y|қp k :>C6x)A̼<ݘm} A@rϖ{JYtO }lGƟxnU'rǩdK9YtMGKg%Nyzuzl$Z#֑mru}c *)Ԡmfyls`) wWEQ{ACHV,6H}YBGW^э|KqW;lZQ98?,7a3KfAn:iA<~ ,} z=6^/!xjv[@{f]#/zV7+9{V)QYdr5z5NDoR׈/'xJw@^D~\K{nAf6I"֎'-`wIblfϟ@[K&HaxpK|rm>'ǦKcG}TQ|^%\2:Xd|)@<\;tX;uSfZ>u-8*ڈdܒ ʍ!<>_168ڵ`鰞AꕕM$碒U%oU*l?˳/~u1[}Ә~&a.`<yTDaE/a5}$d!nV q-ѽ_Bwzn|]4|悒Oc%! }uy^w~r͗_GCsqQ) SmչNS>%,(N֌]0ѫ/B3F29M4wbk.kݦ^13R&$`Y$3 ozpyb6Ɍx/4,$egړ%F Eַ+`pEӵiKnWuX͊ Zᖩ! Ve7#of7n% dfPz(dGF:3Ϻgw1g̜m<;Ol+roJ@X =ǝ1+%\lOlb<3Xg 5Cy^'F$%\+n`fI N)X[^ v&oy=Ǜ}TɀC) +^R-YfI5u`cٲd=DjIQB_/0ռvUB[:ߵ޵;=__?.U`02ʖcV7x]G̶R!*s^Z(<ЭT"*{i3vi'tbqM z[U?0{fnkIU␾m^a UxT؅.>Crݩ;ߋ4ØDfsu%i1g|2MU_C3GxnK^5?@}AN'C8]g* >gT A 3 [gl}Fo5Nz\r]{4 ê%GSPַ(\%A]ǿ~'yy1GcK6(݋o.*ɺͤē?j%@$$n0˯ƶV$ӁpJ'<Ͽ 5K55$m;nL"Wد8'_{w L$׻v>L2yےϟ%^5׿o~}K|Y`t҄6#hz >f/>`e}|sJy97 8dZtur5"Á(h`%I:{ ifg9HϧERwR6Lbml]G_3ۙ4#lbXYu[.~ E(dMUJqTټ%bGѧ$oc` iWqS8Ͳ0ѝbQ [{v]A` Y ^J|9> h!vWwY.%CtT 4JZ.1Pmӻ)}]fc,oJ'0Z>Qo$$:[k߲9cF_\WY9i?q~]xGU␁f t2dw16*EP4͑i=gM<3Anf'_ ^H?wQ-#I2|Kmk ^{&GFM2[gZ'N_/Paf5'P8: ME}3]@52d_^2;vj3jOu5 dh撀_{'zʵW(8?$*f~#8Nj &ڱDUvR6Q K;r54t~6tVu<Ɇ^-tVl !@PAn;Am 7{٫=|ݺ-;lN$ tx?̄_MӮ{4 3}ћGO$>4G6k:]59vx݂ߓgN٨ĝV89 ,>ulɬfOoՉ`'ȼ8<ՋGc7)ծ 0᮶qxF~[7aTozM合af ;?8cX@m:OMW7 D7;G6k4d1tV*:?:=4VNlr\Z>mdm͉EV7xKZlNw>B O=yg@dqm>,h0 :.&q}Ą1%e)\Yp  x UZxgV3ys h5|;eMī~p>8h6vpO yWb>Ҡtw< QizUN2ݮncC|oB:8d __BCI}ůuLm6_4?g/ٟaW}W{^Yq*}@-Jӣ)tlBkE$?G~W׎׳545x }ԞWr<8rk>7x,OW̔#y2pIB&b`雀\Jfo昡?ʖNqACOWUhP5_uŎ[h1m|س3%35ap{xuU W^?%s>R:iljSEV ٍH^/Htଖ{4ic5DWg1~Nq~=g/._{k ?~ˇ?E.5 &cAŜZ1?pT4?:|߽nO! )HHnŗ̴מBf"dƶDS2KUޤp6-}޳: .6}2#N:fMי'@ɬY {^. }wL7UΑyAuT-LYl B#弚[`I'ΜGb_O~ I'U"Cts:gd' <7v2ub&p9+ 0;S6*JQ*\@Z}}>>&e32\+^(*w2;ʝW3@W;M#|لL_<DgIkh^Zwpՙr| ;2`ZJ,qVH.T@֒HtpG6\>vUIQ?AӍ[C,Kni}d.kz@򳸰wg{HJz;u'4Cpצ@+XV\8txc@0챎, >ĠwAFXOzpS0gDX4ayJGG`jm[}KItw: TBv (dHJI=dAPI>~$_<nq$,ŝvY OS.^i`~$k[ʭχ #*=XwZ`ff^AR'> x{*a:pV4zg+V=N%]d6zOD#m{'#m`&۱ᄄg| Z{UyU7 (g_[P={U_w&`9vcYD@?<~`=d*k5Ll=~xUA*L vk.)z. fJ}(7 GV =E=ek n554wgmV_6M1,`o_ȗnǑzWbKqb sh`[1]吰q՟GKۭ>xvռʉ4os3V=W=t Яn d0/[{dYxn?Qs9)_;=}ȪJ3fcJ1\Nם+ဏtfel !7I*ҵ &vdkP_!׎C6}<:@!dR-/2ю7fŷJ'aaUm!HV$ģcxJT73YA`[>L7O/}#FnJ-UN{;^mJo}wy,ǜ:>hڼ~>͊CHJ$N"Ʈu *fbmdZّHua|GgW??,j`ƭC cJ5]IW+r0aDWWY8f0 ̾LR)PjnЃz<8rBTgdՋ6 -KKlYNOmm{T)\!neؼeeѴWUnP7MS`sP|K3S&r(&^xt<<; #.g`xαnzCMME kt8Fr5COk*d+(u\>BmgdVv6ۿd@ }dH@2=اÜDJeu!舓b߂r~Y0eTV ?+ԜwC|mF$e:%E|Gǜd<3{{N j2I@?q5 5v:v8>5lX[8'"]NL5OA_*9?0>fwwZ]q |QČg}:-@AS/3 2SpO%񈁑P*3@f OWϾfq`É~2+|/:(A_g`~1ҩ{N|ξWF2ό :O3pJ1X5fws[: 9P%nl7^INfEzO&s{ijwHKwҝrW5xL™9^[/Ae>uɇ5܆O9q +fNq;D?X`@Xa зxݮ}~Z8}}jǂ : %C"-E`8*UK0A@mi[#%OOMT!S4 ko~7pT'(W03YťaLпU.d2~to+ j!>eSD_Eʯ%1ɠ_ՄI&-A%mR~ےm[l~7(Sx %2kF9J4L/X?\3ϾuIw$mW#M QgJe}tevb9ٰdFStiS$dәq7Ɖl>pliW+|(^'xt^?w@Ԇ&LkC4o[ 1yZqt oWniqe #:V7 EF?ܳ+յ%O]>2{mBx"DΣÊK~S^y'M&gãdͅOMC &G|$?mͽNOrtWidZ_mc]rӟ5$z8ןWn{_Ͼ+}+Jh Υ&Qw[o}!^.`k~qd#V"]o~}}'/.9%Ai8k1gc$UbrB m 9P4SMɠP6{{zCS/$p,"cfʚzߒ^hBDgbpB['oKI҈pȱTx zxǕ|֠]g[:( x|X5* ׫*DII%PnP̤R­ 3{-D:g-K{ k <(N1JˆNhFF# V7ʎcgH; pږ69$oxgo 7^3>_HP {\Tt7 88Fɒ>x}_N^O6t mC6W} v݀Ȕdt&}'GAJ}58l8,@ >2߀FG}i+w+:Co8joY5,xIِAcߥ.zXzXK>ߖ?ulu!\9 h1]9tz4u]pZZ/O}$C*"{AKĀn1dewNt|?SMZ+xJ=>VR$}hU~*aWADb_w>U5|F7/&cJ:#aŵ!^T.~i` bI,V6Sd9=_'mO$3gwd6M9W6זtfJ,{6/gWѦf/F_hh@]W]1BݯM#񑌻eIS 3^wymӦVu>cj w̜YEu#͋=(է,ԎhwNvٴ^ӁQ]m3_On(MOjI+$9^yDK!}O.>9ݾ:?UFN3'vz5J*|Qu7?4OmWDbЫ_ zNṉR҈<-O5|>{u՛> .J4UAYk]ОLH3(śSgq*Ђ Yt? V qD;mu{|+_mϰ64XYYiL>|ۂ/.?/<9C<@읏;53!ΊS#a %$03lA3@@F$#"L?8ʩCe AVwsRbWmE1;πcSA"%8t#J02igSYflZ‚ӊlD3"QtFOxӁSs] Sj X).gn#9g7'?+(0Ƞrw;xxˡۆ=Ѱ^9Glk d&W +p)e~ EiUuh .9^ڪ%" +ڏ-%d ǂ eUܳc1$xuGy`0Gus 9v.}&VLLA|@O/kzaɱУ!4{ hhI2xs2ηtOwp^Ec  j x=u'B:Q@އѥc׹*^YwjBgm8 .&W *$`ޣݗQڽJ flnL?T*ru3<ʰmGPzM{w 겍{% )| NKzFgf Fjl|F ٲzmtp1cq}>̑ۡVN)޵-EʾG1ϧE'?>lԓk3K٦7NFak¦ݓ3χE(zi~x[b'kW7*OJeG|Ju8̳ ӗj93O|ySީ ח%T 'Rħf@{c/^c!fCA|@-|jmJ6#<҄Ђ4>BCfe exxH^ B0µ`ЄMnϖ5|fv#?m.WV Ut8h>kA}M @2-Yhu 6^,^BVzWWpEnZ#ek:W>vR2lͫWTW&A,CT%cb4wZЏ>ұ*(^W[t2:v*#!_E_﹯]L tʊcV*+ZV;ItHF>}igzkr;thXh0ac@ qpMUG9G6#MM7:B*J psG_Q|&7mnd_߾,Z<Bv֗CKENlF',>ˏ32Z['+cq{jg鼫W64uU%O4=|^89ze: ;ׅ} *kfYͷ D&y\267$Ą-&6{gCK=S`PuQ~^c>45;ZCg*{k G:I@t!.>G5+(zF 6+#Y+ɢяBG Wm}Yl}&"*/E Sc' xdUrR}#8 W֜5b}bڟ O^[Ab3+Zw% $Y7_5_e X ٧v??xCLMz"^nrw/ȧřtս%强|I 5vzޭZ9^_vws䄨9N*qwUT`|@7 R9Rw,&^Y 1)]إRMy╫D@4.R;+8eS(ёfA$Hf]sHS@Cm1UfuftHPh-y ns[Ȋ9fs#;L&#>B>p0PW9$rP,= ѿ'ePk<Ϫbd uʫlP!:fvmW^{.N8iwp Wə*:MF`u\9-ϑ6g:u5Gԝ^[٤4,^G?aŅ^*[71XS`,fu)ȟh-:w/qL jduN#Zח~OF/H4`bg6mx?[2.:ɶI'r6qӞP(y fӮL'v` 2>ޜ^ܭto !O6A^^^ T`^UFCƧ9된WפQL\wߝ/]g HhV1矵])=˽p{5>b`oTʦst"2}!ɑܧL!:?Xn6)үd_.cWMiÌ~l[Dx#ygvce39%_yd=VߵO0Ptkޥ'tV 7ǝB(690n Fl蘁]w{.0H 4K[: iA-l{.}.ps<9[N[WI}lzɭ*꿶|Kk):ǎ<3?8Lq'gY8,C?Kw?xoRծ.G9vJ;vcvAI>5~#e/Sw{Ec~~jQ_M̮bf4[j$L`P  T|e$wxur]>Қy..`( aM6#{AA-#eY}?W;-Rv4s3`֯7X+KzGͬ~\\q=y3Ϛed֌u͎;~T'AnUS>iW[;T,tںUdE/uHVaD X̴N O1닅 -Axmg_w&vwk΄|m!>'{pN73y9:;դ!C?8雿%P^|6ؒjk{moK̇b}-AO^I#7ypKd+N v=9MjŇǽZloh2اqO@k0OȻ社8"x-P&1$<"2yZ `Ax>/< /_}F%|^~x?w"`7+=V= uGBAI/F|}غ:'>Eqc%|Gpo#]>˿7 蕆M<~y/~*ct3U^Qܵ:p8`$)zB2݁R20T $,U~ƑvVQSH;^&`$o:RF}zncǖɡP@0KO|—PKm ܌;Hs<c 1Ct{'zᔎqTcI 0*N&TtDޜN~d.XQu0 j.q_ǖ+^O>9mj, 6)YyV;aч<FigAuΈmgw%u0F |$A;;zmtݻ>O?:WB e9^Q?˞*TxEYnϖG֞]AןkHĎmnSy*߀edđqaZt"48Zր#V@wHX&rUGb*یt[ ܅܀*<ѩnf;DAAc|Kle{CdJ7 \{͓0IOY(hBiH)E7h2",gF2j ̯L*K|nWz9mV٪ M5>rk/#c>7g|xN 1?|eM:|n{U"d#Cϓ5^.)Z%0n4k:{$ RG\?, !]Ϗ-j#f%؁:8~<~ԪH:}YڟZ*nca,8 Blf:#VP-9%Btw?T򡉼+'a!ܒʓsm|=O*]膕G|_ևjx؈f:N+سk`ѿ2[ uં?5aڷ/gm FGH%WU\f|Cӎv-6Sl|;L+:闎;&/wMfc*zl7 `G݁]ʔx,y7^O!Z٘whKеH^KfRʌ+]qS2uv~XqdThLص~j~Sw@mhW&fX AR,ۣ 5ig9{#tu`Jl-駣Z:cErӽ;e4pE9)^J3lEi=Fm0[|`2Z ;bdfr!?-5K&1!݉"gEģ7L{ӿx$0+՗_ǯG?.6r{ =jCMG"@^Rq^t''mpśŌxŽSϘ;_m{c?xt/ŗ_~FZfl C$A4G[ Rdc. yGI؅e:+cvu3$#xp)3&L qr(9T7 >q2A>o,6(n y- +X0<`' 8mV&;f ?{ F dK 8X[*nԲB }*׳clap({~mp>h[i۴u3h Hhp_M2t]}]VaTFg%Pq%?gxlD bel7P..(z˷2inuqrIf`' ^}`.цkzl#h!F[@KCar,2%VgE8@p&#v7%kWf{0y ?g[=/?w-5E>#bu'+㾲vo~-^4^tH_@ \xйU qu$=Qey4uKttUfCf#Co[P'''=}AU7ٛ z8C9PDpMt; 0?m(%Ջ9~@Jq:_>ث~W4hW f2`釵.]wyt[ZK67ը  =:@ps tYێ>C_٬K<}ߡM3QQA1\ѡ;/?2mGFZffl |*XnvC`]ť߮k[CiV~_@6;F.x"]l7 |<4 F2pg30Z 0vz}S8kOɏfe/ Ё`{{|k&0WM]?)%fL:-lu䧕DG_~m}o};^%{w>'v5CfPHvg8}uո`XuoIM{81A<{*Ke_X~er9 3focṬpE B0%pQ=VUW\fc s6ɅɠVTk6Kk _Œ7Rh<8.w&׼4 />rU&O>ᇽGӒm|w%>{TOzp~͘ ‡O']-.u t"93r\ݿ_sϴ6CcM 7՛} McJ1\:`5m?K{|(o~zI6?%~z\*'>>E_?C[~9RN_czoK)0 لu>kuH݁Mρw{yV?g'wp~ص C6uf |R @"DCwn !dovvvw/&\5N±#cM# 5ap&N]oķr ScO[g/kgvtWܐBW8 o{Nӽ *Hl# ]|KJN`l/Oze3Ym.]HWj4ڊKjc ܳYOjf0Z <4Ҡ(6`6rL-×Je L(>uhS^mHy6ʐ;D}:"E'O0n0(2 Ҥ-B+l䲠GR^x_膣# |1xݭ{K[7ҟ|Al.fؐxu ]̼x2?l/x^VO,=8~+wfҮFgx@K*\yHNf5?T'_ l/Ȩʧ(5w e//W4Х)|ϕas7BvL+cs"a QnκK _9W%]g0$@ 88rװ>13CӋ9d޿'/!pBW8T ;]~\lVض׸znBA~l|ty}m+ƚR8;֞ގsVWWν #S"$m|Gv(գ?8vr6&}x`v6yT|ΑnM{a_}ƻ)Ka9s4}o.]V3Ɨ"F_G|ދd )Nv]x{:ߵyk {YT_ ND 1C/'Js1Z?tvVӯ*7܃__ͱ,~}>#|FUmck}' <| ''}pYz=ʊW+ W XaBmX6{U;xm_bS4f t^.D'ymh??h}2gi5M.<9n뗿Kl] Wo/]g=|?ѿ/6{SC_XL,=&vQ9|⚷emd4[{#%o]o9 ,=S3Hl`\0>>P^K^~|v[=52fQͳ9`,j|(-@#I' "C:^$\k t;`Eg4/oy͆eā~ėdKFm4x5#˜ |U+E\#0BHS/g,\|ngK\ =o9yFZMUH\+1+G<~$<|;Frx h gޣ3vOL aB~yʑV#n Ms؞"Y&s";>KC~'EXJ^ۜ6@+\6H±mp*k<{`ëqTCOxgل4p@ħm3v'[;_׈5jf%|t,Leŷ^g9HxR=g4滇x0Zd#~>N깽j/[&c(_~ne_>h\#v]$八o?}ys9q&c# 8OuZi1j+{Z92ڝ63{w|u}H0Qb12' Dy3Y&Ɩ +׉!8M>{wSGt8X['6C< š4$IɸD~pֆ^$O}.n" 3=ߗI]ʂ<}Ma|򃯊0AptU2~> Zq*Y#&.,f+I\ ՄOAb}&sZgZٯxtysy~>l'ck;^Ԯ' ;g5+تxmi,'3Qܠ|m {,8_x0߶ӽ*lאMVĽ{ފ˟Ambˇ=~lS#GWGJ,17z߮+Ę%ė2q}0*#N}[h 7s?M7 -5x}v-vg"fYH!@Pi"Ar 2z'|pfnaF3 cojѣt~H>[RyfF>FgJ!K`/_ճ5U䫆0Na6"1؈: U0?N[5d.#&GǑѿerU>AM]xG}[*Spe/Vgl<(lM.GP?,{_17Do4|uuC{3^#9+ 7@#4PY"f [uLчgѓ5l`Pr60}E/㺓> asVwj(esn5%pkr5Y Z*P@5{=ݕ+5ݦx *?{%%.6F؀N6 9:Jk00󾵋k#>\b &WzתlP{?-1iG k;s]\í~tt9a2k|B6}m5&69ouqj*A#eb($ ;X\3XX2)ϯ&SV{p8uN,PUsici yoX}=1ng|hX! 7^-kS$a%"fs=׆]p Y>!Ŧ{FxorF I<&Og`DqUYy8?D_+{Ԡ\ j=h^6}n3b=Z 4E l)`A6ϔ0؅[i3??kצ NU܊(8t%U^'r¢5]x'} ̵5v)t q#AN7%9:;^aFX}0-^CpĉC_̯1.zp҂ov } J[,;4t o~3'/ 0Xz'{pwpBѬMUM׋Wh lQyx~xekGOhȕf˷|a׋w:{V5q3X\إsF]:lx,_^7U(?~QӁ ]=SF:1{^n;}$ ~6Kl0[Hͦ Z>Gl@8_@|yalbs08,?vC zGO?q+~__dq rXY/xZk=+W\%)ћ` ?}IcRޮ_ǫ.OWlaB^M˾tvʂ 5|&1 ,g&"Trz)th .V )nS~?~߁io]v5QnW߱29AhBwM78T{x^ ?N{>ûSG~ ķh[|q'Yloڠu K28~I*qW//>z2o2_FL-WX-:6~%w޿s>_c!|WcU:3f z{|l.&ުwxk)u8mJs}JxX aDʑ~P.p:iFI=ʨP!yZfRѺήbO`JK=Т#i0tK)ՍAf0պ.C؜>/%#i DjNmAb,^oqFQ01C(ږ'3-{xq[J"-g3Frȧ˞)x&pY ;ZZ@'?_ Vef `9DQ;9[яc5b zj@{˽S/tӰg5wsC gDZ#z飊*2sgK($K!?2`[%,^F{{Qtώ?}6\6ؙy{%xOo3!W>o!w3!Tݲ8?ts};>S6A^25vmuDm̛VL q|d5bb4 JSR$h`kq~y  4- Ouo+nէݣh.lJ/CG*u'm>];Ceuۂ΃6{乕%"&Œv*ӹSNq3̈Ə.&5f|(Ye7WM"Bh4W_[::?ҜP'4yrx|ө/ؽ]|g: 6 qg+>LFтTOfw Q0vU<|#yWTlL%az@D xE;.tճv_Pn|R,Lw#x ; $1K`\qDp1f8WH^g\r[{v}y|~d0Xcp/G@؊ '(.$|)BmϷͼ~_]ccѫ5Otg6~q6~i[NA#_ f:Ngi^ ݮDd*1-o؋Ӧ7a`r\ץ4^m#fy+ ʙ$z9G=B>J7|Mt+ǧo 3[6bԚ^*@Dr$t G[xa QjsMu]t~ӬwxĽm X-/}Tq_}5xޫmE\{ƍp?q9֬Ozӄs}lT.żx)\Ӽ}6qV/~;_>;\ >1ڹo|Cuo)Gr᷽m!Om#YuJ_^?U{tԟM6V Lkַ YtN$|g9h=C !: b6"H?gD/61|s~}]!1At FkHK3$Φ[1ҔMQ뜣HSuTcSltEpMQ L  =0܀Tz ^p4wׯ|rru3 LQ)Mf$ꉟCuXU)Q TNnfl~N)h1iﴹ(:Iƀ)u ȓB4 nf45 RwD%/ n&bԈ/J7{?7 P{g@!dr#`u,ЪS֨;&H|Tz-Rgga~lNVxZ}ԑ"S4ky=s:[Rܞmߵ-句~;?rT (/iHyr6@ 9- {"p+Bn 쁏 .+FspXw#ʂ;" 0Vu},ux+q&,[UN9F#ѿt٣|d#CnY-S]FK{=;Nſ!Hg37oг+=f(NU2J݀CegZݪ&>Fɥ~̞k:d:h/!򟘫ާW,TBSR,z򨍺>zldnϑOz:-ʾU׉Q-^t>:r߇ dOw<03(C 7PV:~;~a<$';hemtgD_[W{;;OadueR>8l,ɕЇ7_t>${co^lQs^"L]- }>iZvk8l!aھ&ܳєګ<4h-* ڵ+fz{R6#n+sa⾠[}A{STjIo~m2yq?d'*NӃ`Zg<_lN;X}n3nމGu&*\e?^}Jԧ/~؊@퐃L60_:v <P/۾[}N^lyv+B?._5'^>n7#` F[6Q Sm D_u&ykD(@x1.OOU;~M?+z f~J/󷗧m7jef3ou|ye:u uA8udt<YB޸b^5i_ .p? <8 %k -5/ [.EEaH~'g{|n^g;/00B쨚P {k.X`vopd(yupz^#:Te<ѻ/ =Bk7G׺3}*_yiুYG',tt8YM>鋺mآecFco6W4:x6p166љcP 9lܱ*8|AEH\!WF;Us :|ݍ-Q3S|Wr2i ǒVhQMKN_s8-+5&<?5R^ YuUڲ}F-#=oʎTh^spA~ީyHO|%?_8,A~vyvb&x[>!-bq O4{6 v 6z 7UX6`.^ vGEљ4 Q7}Th$3Prh3謘^q:;S*@g0vyxKJ~%0)㸣MR7$:u}wH1|ȝ&Ws2 06Tzjpڭ;8n* G*^WnxXdb+E&"G@2cx W|#;*ƪpqP+ѵYhKt+woTF[O r.'TvjݽdL W{|U%'Ńk[ګV>68S>UÖ#+4n9>Me/|l€8J-X%3x8W_8,qy2/)-<:;nP~C&Fe4v pH43ȭx2|{lO>|ɇ.?|}mo~yЏ3t 'GWZ:N9˵Lqz++*ֵh'Y㟟?Srݐ9O|g4X!f*N?Ń[} ZɄ+^_OP@ js =߹*[-C`~( `ӗU}0%:?*8ΊI4H{fjS;}i^<=uǏmru[Bnb{{`lw7u.MjmO_i/( ?'Sӈgn0B_`&}O8x~yI'G}damóˠwfOo~._?ٿW˯~ep|߮OfN+ΌYaF@j0JQ_4$m̫յI@Q[~!ʨR`ak1k :upn7FEG&Fő[጖/0s~)%NiJ¾ &=A  }#UTfW#:MҔ2Z,C_9oЁ&Xҕy7ZV.rsB%/_VQTf>jI|N?ɭ? wZ:x.8aT2(zK~Z`{!gxjËN y}6`QdXcJw^<3jKN_ɡ"8&Smh҅O 4'qޡaV2%f26g mOpJ8LӇ{j:_WW΀[4g4_|vYK-x-iT]D@l\?u0Ggi/ .~L9o 6ClT,(KeOIFc53(M3Ϭ53< 5~au&].W;@~rAC.~.kxP[jbz:@m%0*QO\ o:cImJԝ"db\)Ծ\ z\N@`%ݲt-՟T;Y{5Dn>(C!9[I;fcn(ae=O, ʥx ܬck L=X렯fAvipcs]+1wf  <'ƗV5SgH^@ P"JJިVJT~krmQ',֟f/BW؍LeN*jɇфfCྃϕrb<}Pٍ:O.}nז=swW5{U5f_bL|9w|Y8C@9k:Sf`[\?m΃tMΎRg3u>HxUbKr[eJMZٌVԬ-.MNOuN0v5.gO߹t|y պuk\Q#\3L+iO91{.kCZM]щ7n#h2ܫS\zX|̫d-!~=n?zܧ菮?<|اM0l08o^Y;GZlW|Q)Ų|Ծ2ouM4AW/UmpJ;ɝf~sl(&oK錈1]=gG^[o/|_ug y|/.˗m0_"oe!9*Y!\ Jo$YȝQ 4S:Ĕ7 ,:jXUcVF=S71tQ9ńͰ%р"k8|t9uΠF pSyn,V#t1tƐ^ 2di;2$O>p8?2饀$0l@sc,lLv *W3!mQ#),b_"Q}ΒYx-gbg:b6t骊|Y|CBNlӢ)`|Kɯq>S^φ5(Q0;{kW9qݮ]̡:?{ؤ2([T2+R/F̖GGO8U8SVtaENjI5TIFHl4Fqia|#<[3d^qo97l6&'@meJ(F.8y?1b:S8c!$QIG?ٝ|$o bVrsި}ݧn!2܎ϙL|yx0\9tG~GQùABPU=` &`s7ۤ+h v::59c,%|\R>`^u+tY:sn. 5=o7p~|~Qb>| ;̖ᚯ׽jrW{3щk5UiV-%|o:KHWO@ % /YUB ߡ4Anܡt{bzZFot`O±=YlTEڏ3& $R\w 8 7b\4 ouY[bv4=[ps8$n+ BLuMi|/2kP̆uzfhX}6TwGɜ뭷jb6Kjg/kO{5e˝9ĄOUW? 1:S!'wx6sxpU7{vM^tjWI0r7'֨܏:-7!^twl_qjuN|y d@ݻhϷt/~,?uf}Uznm}Z{y>gȴd6$«5bv5v+`MF?(+&x,dx\fde[n4yG ɿ=8f^WLxLRFmj}&Yi +kO-';cDt 0`8:ց׋}ʃ!nLZDm.ŏ?5J>ocI :[mWzA~~__ ٟ~R_]oF9{hNlABl-!_&BР !zMc3iѻc:Ui :+ɫ nbVtԡ/VQ8owHZ,Pcؖ&,?.t[,:),^c'8dsp68Si)Q~ Xɰ >l$ B'Exep] Ie=s=)[(tU*N0N0&BYʓ6A<4F6B#W}{Я U>bѨڎLYyx: S=Mi;t%=,7,rdWF^^) T{QE S <dY>vY 0@؆Rê8:QE8n`ة\23Ӫ!M Sum۸LqUzɋk2L'hئ[ x:IAZ#YUO1{ eȰ<\@C#V^f znv_'Ysɣ{COU*txD;4Qx;t@Йfӽ}zWP 0X.^A5V,x}NC %"]]:Vi\uQUgG2<e|Y@ȕg*ul6M/К>gWۏ.X'V k|? V )%+l2~VбOfN!1>d_{k>B dZ9n7@*<a$'뾊o?g:XF>jtL=N'/<d}\uOql y NS\gBuyh:M:=KNVױ'M6 =c)u|6ZL׉hص*8CJ{ ?W;:61$ n%3$guDR5ڿӅlO(Z;9ˋ\mDnz"0'zz>N<#7 <t'Q:ekcimϴQKс5FЧNmO#\GJ}{Oшm7HveK[iW7_q84fj@tfG*!x%cx^Z%ƻI҃ uy$]y^͠Y}ݣśZƮH=<`Qnmk*oevoeѝ& ȓJ:|@A&S٣3%qdQJNx^{,B7ѻ=tA4N+R؟> |:mg`|njȕ=_E_8.?wM:~чͺtyQ;7Ú7=^*f_:]tshi,>My%pxxEw1 k6K]}"~Մ>py4 l(~IQIܞ^'x`>ɧ?k5{HoMz9K/dr΀t8շKHsߐccZb/_J<&ӶUGpr4]_x3AWZ.xY0jGyh[O h ('C)%+ڈO{S92u+}qFF*;ss<)(R@AZM_(_5%2~YFe и`4+|N#tu pRHp 8'[=?@IDATP:_[K $ef1#:)AJuv/<h (?' 0qKs N}]ps_>K.g09*tk7Pdb0hɡ^k=<ޝ/L#l,Gݰߣ joNwSz >:X/=>CvǃQmvEt wjPY8 ح1J|\88W|:V;C68L:FL4Gnz.ՔtV~k0509īa >kG lœ:y*VpS3O,V>9Ͱduwu8 :Xx 솞)DDJʕg= ֤~ϽK .z^(S'tWʞs9rU0o{b:y!3C>mmLO7Ж˓/Ƃt ߆Lo󉕙._K~_zN;"L;wz&uxk:zx /~9<*( h7ռ y?b:4zNzL-_ 84fPlms&8ʂyb]m f}lfPZ yFϧ}~ݷX'mcttZwi1ᰐWa%}6p6rA2k>1jк8>*+E/m|x(M4 8_8rq~}I+V:]8"[nO;Vkr}|MOu&4u<O{~VlbO&lQQ}G6{^4o͆O.OgfѤ~Ov{6𥝷Xm~l644.xEVj≶WlP^~W˿j [ddb,n}V7zmK>Y /7 p0YmAdnqHyL27-1a|a_!n5k@ڛ`x }B\.|c{/?!(vk:O N=)vh[E}NI^S#0,<ߴ]~/#;xR`6I{) 7&QUY0,qǂR7tBلyH)2Mf$t aPwc,`hiN,ՁQ5hX"ؚpA?l<VRԄFs3x_~U&֝ SRm@ λiN꒨aPO`UЉ#ՃpT|#{5E6Ѷ*a&! `ݪ-RDNfظrz=8oꍔo㹲ly~^oxd0aTidI!qƮGxyG5y <ƗtMtR`W@hh-6)7wtlw::Щ‡I ujry-"z3 t0٭)~We퐎>(EsuKA(X!:̗rf؝ltq`켆 %`O̱ Gn@"ɵ=C?!m1N| _W?+;LfW8 pQZ'_zX^/Q: x5AuCY_;t\πC%^R*Wˮ%}B(ڡ>/||rеy묭ޣx~4W< l=KR=X$7`SCo~6$ zpqe,Ikvf0{S]  u>xg|]G:d+ґ}ޓ˧~to/WU *3}8z3+R!=)=Ccg=.C'#~&:甾XYYο".[gI!Ya0!?c7{_=іM)C ?>4ݽV"nsܣ.4sn'Dmcw ?q9Lsp zX=l遘Ⴧ{ Mb5fgd 6^~/] WgϨ{;|*h2rF7dϞJgoO/OO(~j*|JqmC.AEqj!ǍkӰB_Af֒-` .Xp]i0x`iñ!N8B99R"[n? 햟P k## TfuNFDOwh_ &}4ߕ y 㿮:Xq|CEStVo3 pwHoK.^gVҘJtfsu8%ƮF#5|5] j34:e~^椼+34ۤ%7#kghʋ7 tױ%#YC8t*ǎ( Z|f u6ZF:{J!p[ {v%)w?Tɛ˻ 7E8pp|ވZ|6]=w"sحniw7i|'ey~T`b}mpV@H60fiSbUU5t`xtƒ Ijcd#y ,R蠗 $d;hMx>2.X0 .D@v/!\g&kXm&t8o*ť :Jbn\p_OP]-K6&k2Bb=REw)衫 "#\*-w C̕>ܻC6hʭp9FLpR; _qfנW?IF_֡6Fa2@5xֽzӽ{]S{ZBşꤏ|d|8M|G l½ӳpǓȋWҫ\}:/0^`#F-\ZVMJ$^T-#lm* w'3m%S[]qt|=ocѷVEVhj(+="kTZ6xMƱ3&X߃kf"&{<=~y2=љ|M_!YW֦Ǯ:[tّ9-%{A^Ei]|?7?UN@o&$|pt"h]Ј'COM|e\*rD<,^Wgl)z_u=,d[yV +VAv'ܴ7-. WQYUhUZ1?k2U,*&c?|է)lo<{myfmPחZ"~/\;Ҋj>x]JA_<{VV˜ G'4Ҕ+2|L.,;Z#YӑtLĈO }x>hþ6 9w['αU>'[ݡ]o3D*6m|o(Wr|M-[.^N~k{㏾CϪcHr$|ުO?g31KLH:7v^KtX%INfwE[gqs&a; >B6zIF^2Z»ju`Sl  8/Á1#fȧ{Sa vt ѩ3a:kѱTS<ÓQl]#E^]Jֹ@  FƻG vP 3cSL;ХQhvʚ3]R 5D . W LgiۘdDftgl肊ƖUih!q M P;6Qaoث` . OY|*l[S.1 HC?_g6.pϭvm;L+yns;e"z䨞`F|memTwaU<:g\+_O?=/A/=11'PݙXeXO NNmߪM}u}?/=EU6{@ },^>զd+K'Y&Y&Cr~7O_5nTg"ҪBʗWjE36Ň:R_-n~!#nmIh^#lo/ƓѦ(6{羚Vx tmΫ_}͸|V|' JR MAt>˫>9({mP˟ZI+j5绂M84zv+˧, =G|_pp e |4_Ogtl>Rcɛ Fm/FМ\]9 xgpg/{]^im>c|r"ƤxD/:'M/v>/81Sqq { TEʊ|8'U9?PQ i FF_zUߏ%Fwt4>晉d3\1;;s||i6{C_OAH>#b1k\t 2fwn߃Wx<;$Ip6*˜%cncr^e=CBPSf?0x +ezEVkt,)'CG9fOfYdcg#PCc3xC:Mu{/$Xnf嬚~Oѽ >/FxNJ*1Td8q=S)FZ@=zo5l"٨F6&֌u$g"*4=N`iT-[o:?f#vdEr G=f0(ڎ=AF-c>槦7q^CRy@Ds~;m^6^4D#l[J5KKVyZwi\ ^Kޤ5-2~Y;W2@OAFjico^PL0~~+HGt)G7Cu)k+/64c;֟ʵ`˻A#6~{kSȏC=~ފHpktA=}1z ͳgE%nxd:M>F iy4k;ᱼd# 9It^IuiLJlAx&>S:$,WK]pfok Ԟ՟p_ WȧsW>MVv˥9H= ʕr,H6.'Xeӗ<:٘{KWg9'töv J?K?z ~: S;|y=sm*U\V?^ ū3h{)jQ0 X%94V>FEOvP_y?Bs~`C ={}Ǧp@4[4y;6~+ސx{|?eҽqL; GjU Ǐ^~g݅ʭ[f}R%Xr:+ ~‡c * OiEJ+/=Az r)^@GcǞ$\>1Ngcpu)݇)-YfǻCܤNe.}[ ^nw)wҗ[²vul2\6if?.pAT9ٔ gUT ^ ۅyI~*b /aN镉>N?pv:;7}UjKMևTo}q^<*w.~Vk?곂?<}mbyyоP[GA8kë4tĽxU:ݗ_&/z٢hKmeLhOxnMqe+lntFZ/WB1Zy`ʴTdm$15X}zl) pgVN3:-WQpp)^ 8w:gӀ<sUH4]u` `ӕ.IOzxYЅA(aHȭ*qޓE pQWKW|ƈ!\!'gi υx!}MRpP/3:szdҏnr6L‘#Ӏ6LO^걄 m:lUcDt.4M׎O6Qcݫ%w7J80#snރv?2#zc(8ץOvӓ'x0YǻF#.N:>NRY:Lg;To?x WvU^=7n{608,,'Vk4tdvo"*`՚I=t,_x6Su$8oOFiSkXC `&`7iM;|kV=Zjy|߫MbuTj|ه/6_i?Qe[wtɑ繀B (:)$/48Ùn6TA9葙λ̌cL$L<_"q7|>tήw/&wsWPwy]ZnqQ snWqlIɏhy^DZ~V6M8x-$=^ؠXxKF}(~v_}P0A7#%}iA?kw=M d断a t28+OLz!O1YLBer%˾ucWq߆ 8e[^oŤ םȄYɶx +oHMo`7?0ϽQ]#?u;^u6)s픈DeU{6ƟKOoF>-?S AlGOֳWUq@.b1daǕ],jsDc{;$۞@ɤR]9EA_FasZ2lyUr&'U㣿B1%ݚk7'Mۊ{b!=!YGkG, 3>fFiH *]mUҵ6JNUi5(}Nc:dؤ%`a+딣a X8B%HL4vMֆ$ -+{hU O%LfD/L"liiF^qב`G'(IViM#m^[_$H _n+c5Aw96W)nvI3>V}l;gtE3m:Vٟwak0RːJ#rKWב{p݃tvP U; QcP'piľ7ν_ag4ePEW>:AGǎ|m W7h͖2 A GՖY,ʧ+,u|Ѽ@2D+n{XQ[s)d&(.Hӳ ᷕ'$U|)hrJp_/ /{߇z7V=dwl'FH0-V?!'<[(ƮUOMyi^cb ԇ ~`;:ilO΋ES 퇟%DzXa;GksaԬ>Mؙqېsx/ ` 4{w_I%N^-\䑮@tǶd6(YJz5?nkV=zPMZt,u;n8/"&& EwPn&?h~ɫzF!ѷB1#l, u1xa섯?@ywf7N,*yĶ:&ƖdMHpQ#F_n_ vM_*ݤhGwwBBx\`/7 pMyhV5V"fCT7F OF&gp \߀~ny+r0hF|߸~LU11 hNJsu=}F;޾Zx3l0OߑXfRbZ~10#=1&:TPhywx|VZ_.g Қ' `00kR]$Jv߼.NlUm*A[\]WLakV F]Ze-k FտǏ?~j+A"B`=-jm1S}1bclR)gc(9ڙIM#\ep۾I@W5 Lb LO=8(xZeIJ V߽snsUYMv9":o|L{u޷urmXמ}W y};~"ʧ 3lr"^ e<ɇڄا,C,|:C&~N6_*@;mןˉ#itScw[m ]D$?MP{sY}^?nI0)``NqW)3Dմ,,YY[ȆB}߇??2BMݜLcF"mpH-0-/o$cs[E|8)17^Tuঐ DCJua f)7m[krKZko06aEjAc*# ]Xx 6mۊ^yi~[ʎʣ$;ؒ٭+TpL~ݣ3Y;9ӝ V3RɂݙX]jZ'3SyV.1Xc Wu/L_DO =m"ՂDOm ,~vDufuP=}d`TS=]#&|tՅɜr?DvhCXQ5l=،;%V0W/21%t5v0Tm+dc vHق z7iqAt{c5y> ۵vfRF5²) aZ?ڶQ%Q^ r6}2 hxa {9ڭ0gtɆ6G~yůyx;qC&A6IH+CiJף{:a#]_"ڏ=zgvztdW{GpUkhola%V\bPsr>*3x#<~'`bĹn0Nt,m_7ʎaw@; @W1&]og}@lxgH%Sz(H&y̟Μwal,'@o*A^S0jg+!Ml{ B~&'D{GO1D}Eŵ_ ǒ·Ѡrv!&i\.Wh~?=`MZ@,a_.Nb'mO\`$yFITAދ a֫#|~Q"p@mN5vѧi.p*W +c..r|yh}튝bJN= .ą.oZ֭\ZO'2t*\\ɨx׫nomЊakۀɖo;pҎɮi?'cMJ;`1֢Ԓ`:.oB>ѱRuYra|ة޵RgEC^6>h5fͤ$77Z ceBvhf`}H/G7z?|nxՂ|ω9| 6&zMD`'CD#|ĭLe"S]GDm߇V}z1lЮn1%m0?{|=X[N7iwWlSVu'8vA +8F 3 nk# ~XBiök[푹epu]vMo uYgɾX]V0B_D.]t3ҟO&ɤO{hHa+/􅾯,ǏQ=y8Y^~C ߸ nEɅ޵n|Ʉ4nhSBuRLHP~X="W ŎM&sA,wWe >'q; E!%$k0`kg(๶uMNt *]3$, llvG,+:/KHk\ÈNrSvfl@(B~ԯtK(pPh1"M,Mq|qۭUz_&6 !'勩d I%d #Qz1K]w$p+՛ {x* KVˮ)IG/Qh?8V`j1Ӯ? [,g぀Lf+qh)Hmj;EJO>?pv4 C.Urnp&'>}> Y}dS鰊5HBw;_vVrŋkW-KpoꯒdkxMWXfsU;9Q@IDATv/m磇 nLpHFn+)o̺>.cȂdu S7J1'З5񗀶pcm .Hi}ax}70([4~GgVl[_ A3`;F;;O8 &Aw?Mlbr=眸ҷ9muHb6# 7 `'GmZmo% )${q$% .FX2=fpʺOkK _9(Ga@{@pf!]k[)ܛ1IO{h+l>3?|!X!0 ' ^OJKa[P@W9mvl-bQ~\mHTkk"ΫOaW-#e8y5!S]錠V)[GTkJ-y])V'<HA_57afz(,C]=v*<GoASRb N `S| Ap,Y6%[j'T};I>:Db'pn4 辤ڋmH'+=Cl!>?&SɄKF$$1^ };X|l80V%bxȐN0SWԑVJ9Yjĩ)iY;+isbFme'_ׁw-氥ѩ jC> o@/U&.$d~#䞖=Gmìٵ}C.S'%^g{֢ Þ0^%9>'p|6(>b&}>WkIL}k-i;oƶ|t&p81ZFf/ŏb%/Qql~&Qp7c%L bR wae࡚~o`Gx L$>j.c$ZyӾFG}&h~;\tIαOpFdVYJ9l|08؏Nl{'*wBoAd(iF_ul;/Aʠ7 '@6ѱo9|i0jPo5 nEM4M7Ys(*N1yoN!w4\A:¡϶.Y]ݪNɨrqimGݻrc,V&pˀs{_*א8oËUgaY!9U:O?-ޢO^]Ajl?70AD:!,u|oᴸ+q6I-vFѣ^*xYCGX"4P]A'LVQQtzeۉqqJ!$j,+wU1(H vlmǟK;_KSHc~/N3YNf7H]~|Fj~8~GgdƮ%?"xdTu1Wj sq=[V7:vyl"dfw[PL_6ٗ7ͼ|.^/@_ٳ1)Ϸ3!T~ =KAp1MIjgh@-׀ {UIc=|"}(z|tdCɈ_c{&,WVU]$ OFxu[`tR̔K(]^nb,tF< H0=6qk})I#+] L &"(w?LWFvurî]i%Y׹ xfpd`Vsҩ4AHe'h35}GARTƾ'UwxQd7d?p:LE7:D>OySi "-y: WL1UPiR <1ϸ F2U%)ɊU 2zK~t-:Vv=:(Zq-W݊}p2@VeI-czڻ't ÑPMujl1݄m沒#&p;Sng{YIu; 8t>8+_2=)u1yW =lʹ$e%vإ8~o3>|^R:~6X9`p&/fC|o^o5h`zwGOk$}>S%>6 $][=犓-#Tn?/~ /&^78>:g!A;f3?aNV7}lzEM%#~.A ;|y2~MU^WE_9Fr| iU̷J)s𴏫pY`vq67=tLt>QKD&+=f|rp46owaL>;:[O9(ic><u4mh{*w㠍Ăcs;+z vsίF} X?XVtudDr'z pM4%fѶ0d2 ;>{)u>rTd;K6X23i;׊#U)o-n*^/n<>7ܸބ/ ;՛&3|o=k /`N\J &k,xDtx gw[йk&dQrt-`vm—ҩe#+/D>Oe-{]UY@-ǃxyض2_b{=ND8_%PB"@ Đ (yt挖P}z̃l d\p52$x9I'u('E$4Hr}\UGW&5a3vFڮFF(ll&@\T㩺)KFU%@wIܢ%oVfFjM7W<&t=Y)੃b,{5EI,5\:m{^_fl3 'i>s f#/";^F79cvуm4Q9_%>(i39&Fx<ƝiO3VȖ 8oVwVJ#`HxVos@ɠ=&Ow;X4 J|6]x1l_>IVXtP|[`:Րfz҉n=cLo: m SM V`Wl0Rx,ЃYlDAÊ~5 V;XBP&W[rI}&FApn73.ÑuX2g9 ~>o,LC,W-l(갻M٩$X%Une!_=ms;N+3LV#:Ԏ&>I|3FdѓMw?y:o8v $-^Cɺg80[|, #h :yWѹkvv>!f gZZ`a˝go@OF[etMpC_ MOI۠Gk-n;zs1m#/EHsmyN#2vZ.]>]N lP u_: ;gGbnt4tQ ?-O"d_ktK"pKs6"*p7D$@Yz/@8R G?@pO._N/Г4#|%q$OqJhN4#)xCevp(^%-N/1lu+NXh1/;;og/!ܘM,M4ރ߲wYTqRQrdS?Ë?ܻȫC/틗G)T.js;]hmMxI@]N2@C x|"$7w R{g9:9& ςxsmNک@]sKJ\,?;]ų ݹ`GLmaYqm5k1!%vF 虾]G0cOЮiwoo/G|a~%>@ءGAX9Y\ګcTQ&?ROM$gx],mIvO\2o&e݋︺4ȶ{d&ېJ]ع>ELH[|XaSonQzFc֏cN4| KdrjYw{7eu;{_Ƣ.njǯ0јk?%FܭዯgUoB<_wfPOu)y!m`9ЇФ(׊=kjU7ї.ԫvptmF+_ N[De 73=Z3`zYo j s4{Ef>hQ % .B;Ptgw@ pj\6qY UŎJJm6q< ct`֎Uudio@1.-h3 ։B3ڞtC|9J2 `fy ]%j'#Т|9HY]O>FC~V]aWt.>8Z?|tK78O(OB~!%$Gxso>EN< H:ɮ4\ I`Yt}AEi SLu*C;{+nluaٳ;f5~v W`=Ub<. .pH++4'c?6iߚfH0ڽ!MV- R;jO|LxBt{ɻvϝ1O[]]g~ aX|&{eL!9M;8 &ESC_(>1ۀH6~:b7O<5v~D 6{\NWCI&7^Vet{tqnUѽJoutc|^= ^Gl,&LSꖛGw@tm(Mːb%{|NU[Y.&'v!?og/|v˸ b)c 1? 9>Uۡ=`OnsgO]x> O- Zpd{; Cw>eR=.mͰj2J#*)%VDj=8Dr5Sg@)*7<ۜ|&S7k2E0yAu ^=CG(a6O_I1kY(XdX%coXWsMV0Mrc| @sG5E_1r9_qJ^ K t_pĘk{fՑ*۬[EVtWlR!f gqJ0m׉~4bId0lq_~s .x+7[b}[}qb|CKOklڽt -ܐ}Nk@Rɶ:h:İFahEF'N~똬"m5xg [d{`!f䤫rb*\ dזQyAA8lkb`JNW7COZ6!mUMU[hMGlWIne)|&? m!ߖX.\z:Ya/ڵn*lԑmn)ʤ5YY~Eter muЩ;шOv|2Mhdo҅Z8=C=&N-~hQ2}&]DS2I&`ob4z%Űg?^ <}I8 K`'|#I|>} u#_LGD<տZ80ǒIVg6Q5ʵs ++KD1ѾxctK}eO'3}U/I:}&*|խ/^c@L Z}'|Ș bL)P 'skXr`qr99 gP"'~:`g~ySǽ$ďW>vDpַ}z?/~C`9}eo&\g/I윣g}zٳ~pO@c B~ J4<:w-[g앳4ű)r=w?pr|:x/5;X~}vӥ~zy#nPA(?*Wkb};ocٷɝ},x;ȆBWgD[|Mh<4c<xMZjGOo 3IEI>rűh՟dzziAnlbraAT_`lu Wɔ=>Aozjd D2Y>YKraC\^Xj9if[RV0!VԓhnKRu >c9A~./:p> >Z;~gEediPg0>Ze chr 9=_5bkx&BOO\lO&~axt9oߵ[1A`,_|z* SYu, $߳0t✧VN +b! בj:<'׊ix0qGM kG(|,׈ -hL*T:Nn|2qh~e'o/V&]+FW%63aeu>@Wux9wR1djqc{nr@W*dN>SH&bE'3@Y~j3p%N=v1l*h>g?$lJ<٩oxCC\iE[or]֛&2~?woL C]`}Z% liUwF.+K"]b_+ϙчo1enxWoz<ؗ*Uu~~#_![z-V\WRňdIv 1 9d+hRSO}j?;cw?n)4, XNĕ/7){ޫgS1~Sw.m0\b!]@g-rLzϻˊLtyf|*^~{uиOs2N6: 4lZnIU U IC?zA []D0 ,Bfi\L~nmYxpmP%AsSlƩ F;)m{ MZT٘*9 {BeljW:7Qcu]S]+eR '%2o4HiCGH cXC.V[F1 vKi(}ڃmm>C\ $Q~t ^XI 1d__ӹ6CеXLMDN$E*yǤIPt MR Mт==Qbu_}^L^F6۽U\N~?o`:JGgFH&ᛨH~d>ג?9^/e xR&qx]E|x1}kv|o5`kߢ'ƾLmYA%'ʇ"~lE_g_`py{OjWܢ[7ȱCaDgvԧ y^ǁzgӦ`]mU]bYڕs h'rbex2`3."%PP>oZ0h˛y?ğ-ɽ$79rv٤<Z03 ffUJ,#^7a<[b))y-X]1Tt~ٓCFZ^;"3xNzȚ ^g^~M~˳%U=`}]0irҟ첛/bW&ۢ]ۖ?{f7£i7q*η b_puJxbh+ 7z^igh6 1g"E0b]$$F\8dK/s?YJ+x1.- l$N7DjV|-&c}쐗C2ݖF[:_\x6캶Df(. >=&=}ɘtgQu E _JB`I@bFgВfٝA NkPbRfFTl'AtdM3N/un126: Vg `{'e(heQ >8@ EK ]!``)s ipə)r 0Ջڡh^(Φٞz[hII ZuqJW<|(]\Dv *ebI&ɠ3t3EL HNK+AlexvFCAƌ,.!O^ O([j,G4ԭ$rvAK#hR ́TU'w*LH>>~u&([)dN\LEv$?>0&6Q''y8!Uz:^I`l6GbTOpRm s[08K@`N~97{ ˟_E=&8긛e96 n' pW*,4(li<=D;OyˋL; $~`c[?~D-<`ƭ Kd+ćEN|A.\6)dkl&x,ZDp<+β'6 ǒ%fx^n瞣woҔt`$႒ 8X?PTHN.f¯/$|P<+K#fՏ?tǮ訒~O,*%Y'>\ Y> {&' U[):'M_:}O%K,'?'3w—.vt ?~ >dhǣܵL12*J[K``Jh8 t|]-O'tZa;*+MlGZk|{qb0~u2'ޗSav*'ŔڑcRuRUU7XsLIo }ӿ&?6P]ocD:Y?Ln7 ^9 uuFYr`גA[woO9;:#&>'V @6@Þ??Nƫt16@{2ۺ7Kn7-B>W>L|a|_7g_z\Hr'HoJ]B5{+gTgy*nu_Q~hhs`ۡX;0𹧺g'_}"&9N6IAقXoQ&|#p$dlvx8}z[+-WVuy`z11h%D!<7 ;IhD'GY ivŇKS_%%M& ϟ[ z@L7O/׿ˋ׽umNϸ̧_;o&_˅=̳~_l.\>cp!swknK\,g['79OnԧŨJg #/H m^#W} 8\vXX糊 ,/n?lHRJN/܊;f ڹPt:hpî[![}L,uͰp:9Ru6C'AӒhܽuDS*p"EWVؚ*gn7` ԥFI}bLe# I* VʴuMuV llǓ] ܻթc1fP[?-^ I:PtPcl9QL %4Y2p fSL2M\F ZX=Xǿ+4(v:^wƨp= bf_~F3e0S—/WLЉCWtaa߿{8ц+V{p}詋_ ݀+)_vN[{3l+W"[|8?V+4@lCY| ٧7ӽO6ڎ͞O%n`6e wa?< &S:(󺭂 b4vE _2q"dkr K*k_>mo-DӛX0|V~tͩ$h<}MFԁچb\**vt>p2@uj7TgKԯyV_"|n:qDIJ[J+g[}Cɑ|2FC [evHh&˭nP-[ayUאˮTgc08vQf򳒴yPPmEL HUJЕ0up6&9yI`}.bgGfJxk4//n,apᠭ>Yrd[;Xp.I?V?k#PZw 166Խbd!&/)dAPٗܭ,}z7F dN]*+:Xxst=?xܭTǁo}sn9>t\ 5JR& Uh^_ Y˃ׯr$zח7ڷӥZjN}~s{>{~WlxaVQmliDxL@WO6`.覆؀ O-諝XNo_?wrŊ b?虇[l; $/^OR :p#̀7NEqcnq 3< ^Y}ox_^1bvXvBM_U)Do"|EkrŐ`_Uх1 YL 6G ^ w!]bhUW -tWi[꼊޴Cf[ n'W$ޑr!<C jt=m:%­xGqK|G{gu6m6Q]1D?l⡚]-[6j. |b"n: ^qq25cAA/EW<5Zm~eS 0Gv]ldO{/_m?xs.\~g*?x RN5\ıvb 77ÅRL{2x[yǨXBC&ܡ/gsP~PJ!)D@Yh@5sTa3ЬHlF 1PK.I`[ed)J)r%{@2u$B ]:R Uӎ#:oB퉑pR xko@E+j\]t!UlwkeTt%p㵀Reס][ 4h[5!Ap!rF`g:!c[&T~jܤDQ8(D\ s'&.yO~B>D' ?gJͣ&?dG}6t/um Le'$wm|U§xؗK+s)k[ o?3t!җD셠R殏&_%K=V;W_Z[_Y`ϕpv5PȦb@[諍8|G;yLMte8Y8~U=gk&߄s$BvI@⻶ my4G]:x3z֪`6Epk>cfӷߵ+_ 9[zDtƘ<ߥ14Wv U{#B}D XI`[W} 5Ppvc6tI\DȸO~eR3y\ݾF?WV4%^Q11YlW᩽TONY~]vw]ՀE|>-_dvF̹պ <Ҁ%٭خ`:s[ܹ L Uݜlt^ǟ{PNtw4jV7_z.U:9?h@3K6(zvLk [ -WU=&A G. H &?*`>0ug㣖"7|j`V,덮PoU} ҶP 0(e $mr߼y/ %ɛߝ=:Y`F؄{f7[@GY`3C@f3CD:^U]7ME h<&Vl/yTmb'*DbdE=dOϋO!V~E Y)vU6zHٝzukes}+ k![7@6sϯu_gx >>d`#`[ >&>n] KJ%sr:ถG3~z$?g!!M7T\_g3|]A߄Hd #gQ.xl8*+x>#'L"3zl`>dqj8|1r*zL6mrF6fQqs7|]SeaZdA#/4?Nig7WpQ`%4 㜌>1qHxa W Ӂk;Ax\Bq}fHP6ƩT=tQrN)nA]:v<+Zw~Sulۆxn`V]Qf yyB6 ]Gdd}d6G?)|hE_g!/%!_ӻmx3ǵ7uǚ/0Bm'9-%z~ !|y;}ǧ; {=e0 yA8_;F1%~1.c͞v>`ur_,H3yW?Q2Vq8;5\~&o0E>n*1R w⾃aQ:nh]򯟿4W_}nA-_I&r̂}tKmkW>1Jݤxh|?!'ʍµc#|z)/$lVGZ\QE&߾}[^O ~OKGܬ5p/dt%pt slք5%#GGV$нe=*,NuنVx욘k^\mgDsmg;yb𕨭36>@|@A=QROAZQӽ-.ej4]/h{:>\m:ln/1#uVvigğ@gϭ(3i6VFdm팈=vu+Slza:HLh7 ~/CdOOQ'Uw&=얭GXsEL 4|(jkJf1M=VT}aMmU=jX&#>}WTyK :0F8!|l$m>įěnR%UD*fE8D:ubx>?$7Q |: ޙ˟~n'u[Ėy>] aU0$iI4obL5I+>G٧ ;S,Ҷ8iiolHeh'rL6[;0`Dbdb;pp*zmi2ڈl`rs.|,n2켼->i}n@qcs܁YDobSY.N߰0y8&\V;}x{DŽMq?^w_IzI~c<縉,w$}xя~xqjV|k㻸񎃝\֏U׫a/;(`Iڋ%DoYՉ`mɊ2Ia;'/<dYc`%6Oc:=Eo?<Tሧn?!LMp.U g_ \ܛDZ'P>`z?yu)7־>h ph^m}ބ8&*?yDWs 15gV؛%'8ޛ#XB_Zr  1S gX z`6偐}7UR9kŇev̯y|u ~nGdCV~ڢaD 3+I>{@\Pk#8ώ7pQ %!0IXckHO]l/5擛>0ڀd8ۭ_~Pe݃]?g".!zA9)Y-ܠ@2=,GMVdzVL_![2b3-; X'fT}Hv¡C1H"uڱ +V~N=qm+,`¬FzUnvulhg'K4W؋pl'|&j"V0 ^@sߒC`0X<M5#}x@El+>MUf;+~O2pf *VlGx;g V6}[0άj2]MHwYhW8fKc2vc'Xĩ rCl^ )6%)c ꋭ"FjзgW(`&uWގ$&9|+%`$e[b ڲex}cCw hft8\%1o(=s59ȈI"x# g'kvŅpiw%pĊ!F,G`#-6?hOWEWYm=kݢN/[;|Pi8!&AMcٺ+j,BlH Hz6*U_??h-U,f[NҨfDwm&v)0-(c7]m3SqmdГy&zEŀ{G[_Oԯ`eճ):39Ϥؗ|=lB/ &l! |Av7z[ ~m;??a~7SlO7?MpK#bqV]ox} mи,zWA~~kڢަM2-,Xx`V=gU޾np#9 J ,~8gFQ)\D|h9ZzvTۑmGP `ng3t58cZ% ѱ ޓwuhUNVl )2æGo1G y|gx%YAe>_H^4fO0Pg{U܌_<hDyv1ؗpc_=(23ժd8ɘN= U@ ņv@iz2ւSrza%{ޝήvƂw'(jv#]^–ҟ-,NV= jt]x^b~=P.Mhz*&/cON&/  N(:=f0LxvcWHvK(~oB2B&|gkȘ!POb }'p^EU9D޺~cПb2㱏G_"&Tƾtb6;̷q]'AQǎŖȦٰt>C g5@8ol=#rf!6#p^>b{]xǃd<@^J" zT\L%Gwutۡ-8׿ .Q4^Gw' mo4ro!|}\201"&IL}_` : og(dP=8Șp] (=8痧Hv|&Y79oGE6Xxo.BȆ$[ʟp8@XG}ma}pZwli4߀ËH>D۞`nm9ʼn ӆm sX6uק{ȫPx 13kR8Eն,҃=G{sN'{7h~ǒq[Zlի /HvW/|$C|opQ}]ie|}d;7ż>%%5c,@ 12e!'8 #^2d$)Nǖ]#`,w๖O3bWPLPlm0eSj`Fbp]Fƪ^]mW?(NŜN-!\CvoUp} R5+RtDq~MGrqS&ul!IN9RC V6"GU/]V|nlJIČ9IUi[/ L{iEprT L&L~y)9fYh:|Fy>qMj\'Ȗ ΀C{Ph͇J&K۾ӓIIE6Qעό'Z;ryuYL@_{LV B}L9Ԕ4ֳS`୿ڂ9^Wҋ $hզ˫+M.|F db8$]C$` 0qϐ#?8T|ف,ƪDE_|b:{!~U>Q'ѥ]p~atIMx)%$2aт/x>v@T6Lh,K_L&ᔛ{5GFcr*CFf/ڹ7TJ1I>CTf^]BTcrTolM,< b86k(eǛQ Ǒ& ;ߠ;vdÆꈮ÷صkKWyt Z3|2-ˮ}d(96n Ġ= «6o#/n;Uy0#sGnNBEу׵'jHЕ6nU[:\hӢn#ϗ4/|3Mm7[|/B( j8FbnJ_Þ{?Gk99!+h¥t($Ѯnb?ex8Pѣqu6/#_(?5$& x,.=~Ȁ_Gvv;vOpta`5|\}h0hqs8ZZ#v)U} *?xb>Vmu@P3}@=pLqZlO*[[n'Wţ @:7Δ_Qw,[lfU^gc ,w]ebN 3Nrf@9*e/ @گjJ?4-vyҪ#ɭ\voUgc!|^ zqB&O͉kSrh/G9DU6eͿ?sO7>}Sqd3hrCmb$D @OW;V"c%ҌB3`_PgHV &@w 1L~{ǣ :؞3">q&yF9VA&}msn|'Qb8;!e :#H]f`@>'( }.' t3C;mKp2%dm[gx3p x݌N|I#8HƯ'j67L02ҹд #`w)FvVpH6w5`D( Pr|8 u2̪U}5V7o>]% ~q Ngγ a\T4 4f%c|kF㾁:opivho(҇`t- +S!G*dj[fWRNAo[56xm=pَ,)}E|Ju lX"hm%r~+uևՏu\;?Yi:l=] Vҩm{&zӟ=3ڡ\5ઇmг"rVZf Nď~t :{ZRra _X\$b>fU%uc`+xhMFKk'Y-pр g];Irt#ETU+ԘMJt?EggqMTmd09Gdz/sԆՋ Gwf][_W}>>yH:UOw:~.K7HQ{:Jr]_ωq)9ler8t(N7"l)ٶ"&b!S,&;m'pUqU4!],?4Ed,4QZ>Zr~8OƻW]G3;llP_|Zq"Eݡo9٘ckf 3_a>sqHmx+|%|g2+> y8yb݁6fY2OAړ&BS Ŋ~w ڬ* h? ӯaYyq -S]^ ͦ61nM5gVś&x0ǻ^:a?4?|ͧv|W=bEtP~K{λo/l1[W_&-_~&c G4h K ;&\'ڄ QnI+"i@X 'w[l-p#}J2i[!u,ރ"-!{OKU dT_W-lE:8W=ȫR2$KDdBp!iLd }ҵWr= ~oWG~1* 5pQ=[6H%F\eT z.|\(`n5+:x0&]T~\h&W|[G/ᾔ]<8Pqv_'.=o/6_N>xG7w23败Wau'\чR;~BO_ }F 2$/ hn`ծU:[q&W®hbMT#M섓@Zy# l1|C\ZQXy(\.w+wd%cp8gp>%-Eӧp{+OO.x`IDю^GAw Nc|º+5GXyϡa|=H/#v]i|T7Ƿyu&z*7OFpᨺ|% 2߄ucsvu`q9|##;P[p1?֮kbN9]`$;QN/57)gU!cKeE.Lpwg3v{:l>.}K";:+GO}xZ0[Lc4Կe}`0wM!`dbVY7|utv*6Zz]n i{tҝ;D<]$AnmIDAyG`jO&;3WoB"j` !}m MJ<;9Áε9ϳ 实YpRیf&Bˋ+'S<퐡zbyT[_7vd[4 ޟ[v{;Uߋ>Ґ>)h$wBC}QM?}՟ܓwR(Ֆg=#=oa6Oك%͗n7SM>`_k!,WlϨdH=scWc50|~olw8xGbҏq8W.ǮG"n8)PڥX\ dÉR§01.+pI6$i?{Qp'TMVTL*ѵg+kMT>G7oN1M EI+'>7IS{͖ɞ݋ >^ |-ulH.`?{b$%w̌`;6tWYm Kٽ{.dH5s1 p.얊l|4ov+QדoS3X D9VwG}'u=I{Zp?LQ`ͺ,++8~Z)s}hK&nn_%Pľ#{&K*䈺oxH/|MGpaFf?5P%6B Astuɒvb{4 y[܎ 4@*+(n`H}kb屄^{qc@׏^K8$}o|ֲOTo"Hd ĵ>+&p'>U\2MX W:xB;@H^3a0-Kr <@{$3&XQ3T񸄇. {`mo2 5Zۊm I¿vvdy_݃Uϧ br|> Cd2.[\}?N{x5]=IM{ <Ѽmd`q|tX8M O*vla bD:N%{'5_R:k &Âݏ &I7ٕCc=ѭO/n$ٖk:tvp0kk /:N,#=sIh|R_-H44^J`8Alm\]g$^#ʇMޑwmMj|Gy`? Syfg;t[*7wT\` /oGV\>fЖM_]vbl:0M`ccЎW6jfZ*y ;( +dyg_nPvXUUT39ֹ-0ԘvW: -  \=^9\LvӗAF 辻mpm t)%Я{x%D3K-#>@_acpa(Ul06]Gj m)xg-V^ JZ1x;޼hUZբNʘ,NnV>kAD>՞߃L7ᒃŰ'B/Ie+'l6I̊uIoc;[MboM0v>+DZqJrP1osV 9΢%;Zh7p]1ZO+w.C*cKHWrW=O#w?6p6&3n63?? m.Md5r&76`"L^r1-$_=|y"E=o'ib unо- ɥ$۞֖w \]O۟n~mѳ܆$O=&tەpdcVqVwk7Dy#CGFĺ?&\a6[D̪$[,s$'~#ٳD[,-6|M3\ &"?@V h\Hm XҞrU =0u%ۺXtD 06ȏWbߞ<͎w֎Qp=0y9ŮRw| 0fjER`|cKJVbTTg| AyZ]ToLGMFL9ݛ uL9`Rp)+|i`6Xvpe~BS0=)zK? <䁀mtĉͼ6au"L$Rl^e guGѕ6~欑r`㈏삍 vHGl>:68u Гm 8$i[1Zݲ}:%dIm u') e:a.c%dO& VQt[:[g^NkjmVFcݪA CBl5Z_3Ǜ;|V)^6g"-I5Հm3g?UZzy4KǦZ2d?>tRvМܯx5[o7 ɶ* 5|-O@IDATW_Dh`&IؓlwÒl]ąZ22A'f쁯_XM}2)H7_Vxζ'woI{] Cx&\Ua 7L ZKHA|P^"a#C{jDxS_=?//|\(guS6LVIݛfu`zb(2Jnwh_<5[ x抡kJ<vkjt|n16amGO7@}AyGQ"pC~G&p.scwEr0^Б!n6B;@ɋ%k :LXx$Ru˧ul_cupT\S&4뉞DW2*[q-F:RNU.&VrbaWЅ%%VŪ.&%9aLLx]$y s۫)ZǬ~rx .e$-'1j@:%_9077{ZaL+V>X%v[nssX+:ͤ LoQ{׻eMpw]ɎKuVЛ9O^:Oqx?_D^1Tk8 Fn l&t[ҭ wʂOԑ[6")EVڼʓȧ3B=SSz8#; 9>]u2G ?xщ$2lN N$޷2 &. {{|~0  ^}gƀu6aGoo5ARuOcY l}4͋7&  QeB@̋c ]NwD ґV::ڪ^KV+~m%5_ >}T0[=Vw-R:VM;KdK=3I$-VhnNğhб87.{ٴI7>}":u.8H䛕vgy&Y+o`OM:!65,+Ad&ζ߶q}D}pd1oՋ˞tx_P/$>9?p[]Տ0-I8*.? iE^?>l(ħxu;@CmB~hn`$xAÒ}cM[y 2n=k,uY}|xLiI߭dO?D*$ Mt7usqOW%kGCtnRea鎌؏{oǓ4t15.wN"xCl,I3FM&ێ&{.ϑjjM*>g>jqϘݠ1}52zdL\@'=#yؽE$w <"_}ϏvQ$HkCTȮ^G؆p}rk付O>/aWhE3@>cMn.l7 4Zo ȐxDN .SE5A2 x%n}Uގ_n=h͞ )V|}Ɂ}?w;Ddۅ߼y]8VF{Wn::!C_c`<}?\lkL[,XR< R\A~|/˿#a&x6USo>'*D vx 肽\nK[@bE=[af ]vjj`aƦ 3 t1Q C\Xa G ._?<QpxŻ1MaySLC|xm;[ Z&^<0(3 {ܾ7c}ь>ǧ\8;7! ޶UyYs:iUw_L _.h8?7q|/:5E My}>5z~+O`ԎCd=M`ы݂O> <@?vljo; wwanB@\dc1nHƞ ".K:c 8Ꝝ)<Lp1Y24ay5X rPO'kS8mCdL@@; W9Ey0T=]8:uT VNLMf`g$Q13p= WtDB:Ff%iEɫٯ9H̹Ήeku븭89jՇ~n^϶ 9#FsV!f6(@R4:$Q lR^ؙY9MC^1)OUb858!Y)0`6xu4#-`Tulu* nw:;`*odk8J*{nQ/EC5 V!7"I: ?vjrXU=˔H;*%xE~1= Faj._׮1_lZudH $Cd,v)=T=erh j'x}f||wOl>wĨLAFvv70H硪vKd`λ( IFG蠁UՃlWo3JMg{Vl at T9|1Xt苵b{9S B+7G,15I-ߗ4v=CqO {Hߕ|j(^[d:h%Y91HW%bqBW!Gk腚ЪmdkU5Z9?9,<䲄YQPVa׹mQ@6I$EOO~|U)`[17g/1 '`¡OV ( $2Aq1!T[4 ]=m:N#&?jkZߗ'ߝѠ<#R߫3@&CUڍoZ]vX2U?|AHG?9KV';N꿪(.]sɮvk_}&C'8p]|NG%G>x*ӿ|q6oBrnW̗# U h8吏@eRa<0o Z=;%2]tlIW.ȧ; ; ~)Gmfr "{lNS];ؕou]VmJp={ }9g"I[MesR՟^'.J$En5/8W]ɜ/}hjC:$[LN[h w1D;=]7usq$WւCe{ "r&*?oC58Y=#?6 mɡ?> m3hؤ/[3x_~Yꖙ'Bu Vp$kN&?;n=l ȍ"F1H$4Ydli>$<opxlaqƺ:g8?f'C"j,HZ X.B4/8o{d@0:# #D#T:g@\ fc:!g$֋4pX~p8 Ew惁#蟰bvS1a68Niq!|YiR!t.D%,` ܀b9! AH^C3>NvIBy@rhR |*!wɢzC%9#A[I߹&|+OUEG:vC-Ma1W^V%(,>Q*$3-쵝F֑!S:jbud8f>WVbNwG"_$Oe]`f3 r]>uu훶gp[ :M>劮O_vMv?\v=1xZjvto1+/s |gbK< \[ UUΎln!8o±bKLl"|G]h8z ?iN9UR_!I1^bJUw<҆X5Lw87տ̩9HU? ı\3F{_ga4_m5h"xF+ ^cLhF6}4;ύy#A8!֋[=hU'5^1qJWe<'D_}ٗZ5j7jnD!x0~Ѥ||S"C9uפή:Jf7'AbAuחwq,H"~+&fLTA\Lj?4(H߃C+x Ƶl$ fz߳2?:;CgX>h$Ϯ&ǹ{b'竬>e޽}pAg:81z< >w$nx.#XFED+ٜz9T{߿ Dݻ`$_sne^}-GSɃu: | `@? *׎O7oiհx33X&ߨ|ܧ;AD0K":fKGRlL\>6L2N^p u]]bhf(1:~򞤉\:u0l;1%~AMpUGrghF@ЦQ.]qu (. V:`r ;-ϻ/)݀Z4 cZ`G OfOxK"/9"g.k##NjM>~4kÌfb[{!Ǵm:/=h Y ¶ag0/eaH_6H |$؄Wi9[@7ۄ)mۛU==ww//FߒN7)+W۞`t (WLy2la3գ?՜h:?Lsgs"Ю _RdZig6j=,Zn. V}h]lN0I*ӖGq;בoF|`vl[=T퀿vU?Ga!ۉրh.k`]5^G~^s}bAjxt {:lZ?ߢ#g*|1ۭ AE|T)BWN.*I Я&v(eI٘4p&Ȓc G7lU_ I,Q2{d*]'mt(d^mmjEHnw1ۡ 1 k3 oA3%AhN2>&hI 8r-|Kf .Mʒ[^V+3)w1ZISNAx꜅߀6\֯N 7T%('yG6\o_e"A@ZS4zylڎRm4}J#!E/ )IAVl{n{灖:GF%(h|[/b8!x-F-9.NO:zos#fk[X+n=7/f/]l=jˏ ZX̪.٦;1Ď:S>rV4mUWcVdS*v9ԉ:]6B) P=5Ra܇+2 :(hs23 )XvP3:\ bk/[q"2 DY؟ۂ `,.Q?8"j K^[0H}ٔ=KHaK'њ7b3PU,WM:g2 @صt $>Q;t"3ݛe;22 ZF#b$f!>v/o<$GΦۡb%l2a eIv;<]v1&L.*l|sjGzzyne :I jLe* sH; ~vD8! z˳>!;s[M>qCϔJC'Yh&\ mC<@ALW]Oӣ敁^6I+N0<,Il&l@X|[Ca,,SjLZ6{p E8՞RML4]B U1āC7/v/U]axoC;~|+Bvd&U h#z[?ګߗy}!x]WJ~&r6Ί-}iC+l((=蓉䄸c}|}s70Qw-ۣi_[D1$O;PqxUu?zC]9g5%:REv-|}6<]˹5lrAx2K^ XB#*ۧó[Zq;M+hDZo{x[Baܔm ;O/zQ7u nVb&i' f:JoR gώSY8:<$A4QL|GyVlYܶS.@\b3 "aMmW% k"|3dNj*>Se`pe\d Ș3I' -g m[Q 30JC{f~t?C,:/O&Z*J)=Yu:#9A[)X0 C+\ H9ޫQqpgWIzU#Ca95Ӟ/rl9%%ܒ 0:jˀ zϞX{ -GtQ]$X)ڽbթ^K5 ƜmM+d}SxK c+v4'G>4?[EI-M!1, `k+9*϶{.F2?\2@cC&ۉc> 7z8Nbwh-}~zd|X}!>wzFWD |ubd6!끮 ysp+#o%.  ޝ\MrD,ZA\›Xy~"} oH&5U3إ z0]n7jNDQąZQdg:7&, &ɫ)p^ 7`Bslךּ#n6Yݵ/I]'|t3ѫoawdUKo1\E8Xy%¤~>]赥oiZYLbg+Y?b۶B+'N.3X.=?u4qhs}/?%tMVÀ>e_K~|#쥺doU=ԋ%9^v|b: ;6ѺopzONMhڌTU!97[WitF4kw Ix]6:s&0!Floꋑ~EЛNBZ{9>B0__8*~gl{[IHbe]ҰA˵,9P~e6E\q }^0cK‡4{2>}eq _3?&Y7l|G({j@?ڒ3sI^%6 ߽5 ;?n4w2%;-CNl:q?b8&:7Bhץ[_lW"AUG/hO JC=2 䰣~zh W'"1dr&i_~A|W\/1#@0WOOs9xgzf7{-8-_WN49{؛m=K^&/]x+NJzpxP݄=Z ~p|>uU~ > ?o?}|wE#xn_0;v >>bؠ łҏs S1N:qq~M|g:Y.%n3f`*&i6y ٔfwAgaa6/q '|')'G{/cKIV-=JcjvR2MyyìI5")!3abNbFHxj|\i1<uG~j ~X x.^E9\(Nds|MNt) 1 ~K>C36t)&+䊦 /$Pu4$Nn#lRܗNpqN)hNUА CulH0<ܯXzfu.D.hq΂|8賑)%Vc5@a=:9*jVur$3mœqa4S mcp lo:a+=|vG۫[cYd1HّI^VK"'Y%0wc|*C \g!4מm#m%_k}&3Ǟ 'Ѹ::&Ij9~Oj5Xc_kb2\v&Y2mp5XR t Bjs0p/@;%NgoWKm%z#$43?H&RAp0BBEV9+6~6 | b,a`c"zLb<vm2^xK[{-3|M|PJn&#]l1M<tC&VÕ̇|=SӶT24J*tqCf7zbo*ūI{QgR>h clBty>u?[^6D1_#î5~TSDym={Ѱ6 ЮEgtowDG7azeT>ЀKt}F_uY$ :'VVO _6—l4ڮUq&Q6xX~LgCmi@nmdRM ar$cZ_~0On 1؂Ozՠwʧʫ*DI]]]̸i; P<;¯E ,yN̟HHFJ*_}+mrvʊXb V~Uו?>~MN#yvwM&Z8'ֲhOd:tܟ&|Y,ާ2x]c~ R~~_KNEB^15\H֛m H>gRw~Q~7|R_?NW;# %np{zr8>rdV#%b}l+kO?&repfz_1ȿ]8hHnEbdnUg 8QoR;?=V<"h`?ݖԷZ|J٫| 6CL +`IdN`dU.l^'g@3mF]\i|YNethE:KA)0O}gr2fG-LUʜ>VQV϶qU'FCdrhJq潮%ֻV >g`{`l©/3l!pu&඀5tBvU_dP]G )AFP]ڀ-"͞kJʆEP[aM<<ï=4F)0MEx`&G|k_ܐXLkqC0vd]@ߦ4;Htr폯UhS&,CusHAMhFu9mJWjC[?!/%Splʶua!q/&hFv2[5 18 9vү?p4Lh%tU\hTqONR _<$3 3TGwգ!844;YtYrlt}7>5VA;B}=&a?+ f&Dk3}[0b\q՟zUM|8\o[;ߡK2ۡ_U Vvf2K0ubD[Eñÿ6.xMٕ^`tny<-uF woj. fuşq ݚָ]ڵݮ/rr}k/'y5GW%9݁hʮ <䂘o1}}^Cr?;Dc 5x&k.+4 2lho*=pI%r/9 ʮ]}Im6IQx.VγoUOغlb, Wlk |o7}o*M;nu=<|b_Y r圃ߧbPj2lW|Wҫ|n߽hpԘe_^ػȱ׵hl(~dv6 LStDQ}U>"՚Fa؋OytMW4J=Cι<~hs^?1;4=4g|ɸs)'NMBP)D]w=yG w D-l#C.IeҺUN8(2B&(?lbت;hƻ^E39&Y `C- c^:ۏ?|?^;mO_Aw? cokRM"SG,9C7V $U|w~Xw M$IpN8M*OA:;:#Ōqe ɂd=vׅ\x6 ך8K?='M}ٌ%@S2aKF`@(N%'O@\"^VqYM2wF\CtX:0u-ZtPߣ7>f͸Zx9 ;ʊB>vT$S(󧴓ƴLx@Q0u9:C ֡UKtƑQP[Mvdx+d`MO.3Kgl % N^\I30. T |7>YVїtĝšy+dE>Ue݌!|Tsz9҃k4UL]8{׮͎ASك3 ?e6^ý09 =ٱ>v&j}0]+8bV[+ɨ:5 [;O0/IJ l]_ 6U v[ɼ+ӯq%h8l\^sv |atmO׭EV~6O%]$?F:-SX/MrF%^" Ō4΅9㹟ӷ`ݷսb+(d8Ǯ-!=&8:;eN37v5{WH3Pp:j~wJm2l{:.v+s% Wȓn%|>%'Gxթ ؝a=}r6L5 ~}8rT7w$7Hl¯xHxޥr&ц&Ɨ2߁Qt35|يƇA@IDAT|m+,$VCN+?ӮYWm 8L0\'_Hv8ukrA7y$ɏ6`oq4txM7(:ftQu8l`> 3:{5˷5j?4 :49sPN?nIf5<f?1^LJ:QL:Y𚉤vNߕQ [ZuhO|sD1 Ɋ]GF~K&qx'θOsNV--lf{wmNg/_|֤BvK'i`^|>l ;_=hc`Ѥd(,F:bg`S:]' g:߄N$e_N IlbhuOJVz ew袧|argޅ߳z7 G ^ ATﱇ;6;{'ym7>rÏ/?я׽{Ńg= 7ФуG.7(&, ,?L~Ħ,۠S xo1# >eGA=vc&Y-y[ Rx5[775՘::hbhGLr77O^Ng{"7h?7! emA2,>WcvS6q+Ļ#[k< ):ߴurnaYvޮՏV}=+ϮɕX)d8<7^8c{:IͽbB>Dr?4Idž_4:vozNpü_q~lO0NQ+Бt׋ii4]=.^^|ڤS@ΕVټcľT,k[CTJo~-od_?xfU]@!>7Ґ ;٬z7?Zb:fT&~bhH2]S#ܫ>Ԗ60t5{Yr&򛈽&:pc#ΦY!,ztXl5bċcNoy"1-me="|+uL.|&_~\_o?{g°.׿}zyy{^bG.7O7|׫]L{,s VCDfKݥ Y39i^oC\_?q;?ڝ /;3G3A9]y:[kԢSYe6~6GH@/59Z"꾸u{ӕ+Unڷ`]7w>:h<o٨ }G&Glq˓hGWR4R]ս- |wMc9e`6=yԍ 9ЙvwI}Skf=eHn^}AMM3yNVMϦ6ˇTD١fQD:d>T&YNMk|Y]O&_':ԞdWVh> N㧽ozK-_ O=Ycvfn z#JaK+>C{|C˄&:dmsiG+3l'7 av ה"-^fxJ,"zN]#1_z&pqoSvlvNTG͒{uEcˎ#*׻?iv/>ۦ_dQR>ˏg?qm~eSzTmOzAcH%=_6b-߽-Nb6cz+uk4;GP JE(ެ] 3wñ :UZ'Se嘪BOzc:v[0O`9xV6Kʈ7"|{GrQJLgI89ꜟέ:ilj3x3 pn dY!)[N" Qڲ)u!ަgkFP^OGoYCAÒA&qwܫJ2߽vȼfUi?u7rD3IW6qv d_t | yij.`gh&#[T r񛕌GnS',2NE̮٘-,9Mg5^ENy7ۧ2Ff:O>*fsof-LK>NRSYjXP9<R w{v8-l& D",},H Q35cѲ JH"'U-谳,vNg?յLXTLsߔWڹfD_m ؅ ߪ iy<~%8k `3|[ޭ/~(֡,݃;ꓑJO:Nێls . D4B"]ޭӭU\ ݞuKCʎDF4A[|]VB\5˼AjLkte'%+zCdVH3ę5FE=h76|ד9<ٳ**$,& qy 8saG>jĎ6A:3ùrt}^(FǝفϓUCȷkm"e ;|2, %<'\b|#)T=Hʱ5QP 7~)OY|ERo<ዾŷr#zM%V!l0(cfe$_ Š d 9kI *g-ŰXWG+;Rx6P+Xtގ`t!~?>)y.w4#1ў|sn|Dzٵsv]܏?@ul}-]UZ8x/s0Np#^/ZT&{ X7[˔ #to8[K%rPtM8%=ܥtίlax$NXLc'+}E[ԍev&hf_$^xW~w{hч.mǽ-:ʽ PGUaqS맗Qzz: G==W~TfbmU:O Z .F'cL\\ǒȀ)L b4"ݜ6[^t.u𮥊YG3m:16ǖ*32Sn d&tˇjCZgX}: ~'BL ؾ}‡# g<79~%=jzC* iۨ]QQ7op;.ųg쪋*#o}5էv3h(a1+2zͷ 4LhMDN3d͎ʩϾ#:&?& ~)zn]l6 lMCŀ߉cftJ,3+8XϠZEZ} M8P+; s8 €-^R)Pis trmiL-cyRgCP i(\94Ⱦx=Ό}6~Z+_HsFz@ҥdryk @݄ײnN;@y_W oFpldظR3y,KNPN'#4g|T6}iƓAaK㮆J+/@@* 8e9`ʷyB-ԼN%.<1l.wC<.O%3$άСGc%ٖOlb "\ѿn84Q(ˏ}1p= M|h"b3Nw{dr_ãzG(+%,.dSt4z"ʃ^'}r]$;eL.,Ct8WBq'd?h(>a|GO7*R_5णU6ހS_"@_]XKf6raC| r!H/g{x2q걠Yv8l@QLl i_8R96 +0>l] S[]_cT[/ۃ$a`ʛ^?saGmvY`ax"j Gi~=ſM\< P' 2dKN]>$򮁹>(E0Ӎ߫x=w;YaO'k5MtKq?Y3qXty(tD0:po3D9{u"# :*ẗb<GRM"վ~A񾕄dy7E}ȗyvL]VO<܊`h;u7EC 2e+seI f^[_o@;\}Ǘ/o}z;ڧO￾|Ow/?_m&ok#oj[L|_~rg Gh,C_0f#I=&"2 DD1^ <)pPqxBþM21@?r5ʖSBbh8 *B8P q ;?>4.F r^Z:Kin'u%D 'ݯ&4J'EJzr`h =>Xfy;*Kљ7"F{*Y5CS93ttz*(Igih2b{ ["{>OdYl%xLF:،(f:[FU 1st6w=C58w6R|3:T|Z=6l:FWX6f. xfh$ufʰ ?[Y޳qٞp5 ,SǓ4j&i# Nkm҃AzN7 | M'ߑŨ8Qc~mRT RFyšuv+s@9߸pQ[lItÛ\[`|sAK\NlNG-DXEJ6v6TlAr.${r|Y&O8O`x֠˯1ݗWuF据M ԥc@i+RvsH7,tVfÞNFmؖtH0~ǞnL%|[X:W_^N'' r!qo 89e2׃SF^{&=}Wx;S‡V flq6Ce7Q>9 5&0EzwǕ:|xF.q$|ϣeNv67^w}>!eh\Ŧ9[y2b2Cc6@5I>4@ϥ=ɠy8wf/,Ȁ:hV^R,g֥l0ԁ>Y>‰okgV9`K$~k|VT/uƣkFĒN /A_(ɃϤѭwo6& 9#NUtSlm]^u1&G77\B&!67GQxO1P sLzUcu)>%{zb¿!e>~GY38֖jVu?}plUZ>#/IA)̯=MUr2,^yVgCt |:H:^0Sw6Atqx|y;i+&rB[J!/xwgdP9Mn@%y8o辁y$oCsd¨^ыApKŤl\Q޽Z`B*=r'RxʮXGμb=D:l}0/?k1_?g?<9엗;='=U{T{ksZai?|}G^koHxn2$yމW<t!1etB]VO*4y#6GL= `r욽kelH*< VIJgX(+ ;YuPJAtbDG&@4քNٖ8]J ^Q2Z;gd(?B׀~6(:UzҼ3wj;y!>Y\ȳEߢb3 gFC%O6xЯAPy[D@TpUWlqv7K(s%^nN<8i7]LëkBG ::Do -Ld:cZ0֡%A &మJUՙ]ˬ @%H6~#o;{ ^Ɍ:7+!|0NT=o8Gpϟ7f!\޽s.5P| >fR\'O'o2+jx 5"A.}'x\-Xfw }twۛ ^l(76tpɐn_0vjp&{Yx'to] K;>m#~v\oRUFnʏ569ޠNUt}z; 0j[ bcfزn}_`;^ \Vmm`@܈3.`σ`$*dh~b%#a;d2<Wg5 )ۑ/_G Niw]lڷ AY0:u~lxKuI5`:w%oP%.Wn&iK+5a=#"٬:P:%g !~݃dDZ4ʯõʄ7ٙ6ѵUdwQ#m>Tx ,P9CL S ;/oy`KG#,~Axa+׶ɔ,F۫?]^^%?p<kWxA5\띒)Q8wWic}+]3t?m3(~ld2<ĭmJ/xlp̣e#*e+QBms8YaE`l}}MM7.}}-KAr~B[g ^M$9(>Bdox|tt Vt1_p$AbvV6W9A:fɎh,_hnl`XQ #HgYEĄVF_e (ko໽L ˰VnwңOVGLl_%nh:S]7~ y+QmU+:[ _ku{\|" DV.um$1 yy,tT]_/~u˓oݓo/.˷}~o= _?^._ձw ׷_}F=~Vv|V)f_QEԳV9a9ڕbUs+KboYBwAW &*;t^Ρrjo3hEZeغ N+= 9<O#>M]Έ,F cRpa"9>E"#:6 0>f0*1 ip/Xdp\!A2 Z>:>{:q!z'D1'3 `\'NiH.+P].8%Gjbpp:H/sDDՀ x,BUzyr?ړHdTz]pz}ԿU1[Ee#kJ7"lToTY:=]d{NxΣY *y'X{o&,_ǝ#Fj]EFi59BrxQ;z!+ O \!@3h l-۩ Bu|iN_ӊS‰da'#\t_`MjĹJLP?LHeyD[ld8v&3-x"'dʽ<&,Jd3<8rKF{iV n~|4Y( ƏJV.Z1(w:y|=~+APq-I} t|rȣjfl~<@ESAݏfïsǔ2etY;v蕈4'bd2B/4,Xy>2Gb9<3Ph0+{ ,~w|їL&& (# ҽ2qvY Ɲ>di/V;WuJ D|ljp#@mW2?u3vq DZz ;ٹbAw#[FeD}frJZ!n0x59z bxgGucCY^t+wX:8P<ҰsM:LB5n?<|/~lζO^]'v.|9[p&*L$FxݠYpm@z@Ƀ#L8e W$xAe32+5]7C]Y/8M]fĞd*׾CwSHV?*wM`ܨ-&_q^]ɷdW Z9bY,fu]&#JKzhmH\{ | 7eNQ2,OLǎt"EWXઃA;/y}QƈV" e[vv/:>stѹA?dzuC2(d7j_ZQtNfK0fy=.5WgR7:xܛaUJ(i6)hu⦶G3ަ>2MN$ =b6 {Lxʞ[sRwgdKW-B1w88W60[Frǐ@|=<tL7094sp~y0ۀ:[I4q¥ax:ܑpl\}aHHC+~;3:B=Sۙľ(8msF~!v43;f\EKb6:grQ|rH6?Ȝ t+{d+mx⣖@1;ou&ӬXϑ3Va?[QOJq`n$ L`^֘ )qi-9\\m2ٕ{Tͽ'Pqқhrəoy\ \̪[XeG|N/h :Tx⏑/>y]A6@IDATd3Js2 DÉFf7=h9:NnwyFo;b}sp<{NCy<Ke *#H l38}ؿߌ2'9= > B8'[ ueg n'ґ!z'3X[Z:/V],ඌSFb=P^;@d]{7u

+c@ |?Knj[N BL;T|&&tkP x)78ր4qr1o4צkTOgĠ:ZCs @s-G1nw~Q,l;Uw?dQ\{Z]iǀvbxMmx,;q=z"zi2WܽoPEʗH'td;J%oC`\Y6gb@gmI˟zD팰1g[ qm-$qŦ~O3<{,&啋쏌/%d7lWIh7fg19ڴՑ 8Ѫv&݉*Q=mPKp8X{ ^`lI積/>7c~lxClİ7jg_\]?iY?cy[I-~W{?ӵkl&E_&hY)C) ̫p&xW\ɘ:)/U! iȐݠ d">v]mbXFe[cW2QżQsnf(H l?Yc4/h:qQf<Á@Xʛxg k|eda]z_Z?W=Q>JuV 9^ 0sh`e!uȔ|_8-(KK iumrx蠤'ز_ TV^ykh`7lsV27lqf$<ݏnhY.˅=ְ f'x=G| ~:RceOW0%a;2|`Yq8m|ȨtD֑Wzm3U@Zdݖ=Gݳ$~/ל-S;"S3qopt =R1 3{x%$wCfg0sM LKJe:A.^Nؙfn@m;E\)vHn66>]vD蔾J؄d5_:|td^XM jNJ`{b;E_5?|aqJ,f¹yUm] [21nel{Y@lBʺj`#[Tvb|hCo#:肄-I ()w.[pq[6_,oVfLJLG3 Ex[[@0=,Vlx;`r+lVY4;@Kg&~P46]FyW 1b+^: ؀\% \Y_J;W;4D>hu_ll=‘ıDYvPw-׎u ڮ+/"@?]Soe_ڣ tE&Bl' bA`kK^r\m؀N&~8&♟ӽA%w4pO~fwy:^K^,ٓp&JT!o9zqY{/㓷St,1~I]0Amd߶rm3=4Kh휮=9FeJ D;JxP@^@ B+=~G¾gZz6ceS:={!*F'yG4_%"Z}kmUYQƣ_yunL3zqh `%etjbp5 pZ)h.{WFi.{K4d+z6Gr:xF):X;v($4jSHa%i(T lL8 U9fõwF-Npn#l~69xyjr,M7=WD $Ż\*%،Y*NrY`q`pHFf T>u9&dN| GS|D@D?-5*`GNS=p.uTPn{H,Q*g~:;p~la&oο{Mtv'l2'# E~.U -llA'pq)%GDP?NoqT7u^S=WӧuڜtiAQ+Bտvt\ 5pff l>ʯ ;ʜ9b5A~f^2d+}_<ٌN V^iB;7It}{E:,F{ۧg_=|ǟ]>k5m-hf}1Em|rUM+.D;2ag%mp:m;7jp2Ga9f "[]th:ٳ |uyw{՞߄o/O]Gv^~& :P;NP(F<wy/&*kzC)i>GdybUY7jNkB野L]tz^=Ffe0/ N!'SB :I<͘uzi^_~H i{ [hUL1kPh6P(?(MLxggDeƌ;:4rvK[s),i &JH}z023҉_Geb 'PIk8F||һ!|* []DW@{gJkZv]z]L7F0zt-Dp#~UdMr|eɁ?6*7pI93'ߋA|SY=*Y: W*BPG'l$=C7*eTwޣe`Yd ਼)/wW ixE)A%Jyv@&:l=.ƊM`V3O!b|[rѩJ`dmO%z*1"^dDCH-]̞IhʃQ8~8|Ν[Xp㋌k`4}IFvtm><->ff*ӽ?[5"Ye-bȖSia![Luv:9,ن'e[]59皼yvYǮ,$B;:s3<lE]d b1 U߯3S""iqpZ=re#]6htnJSV㐇 g-VpwS#^}h!gbgW\\~!Xr4#ڵ:T?dxَHE,b{bՐwSl%rv2Sl|mVv׳?E>mަϞ>kgof[iikvC]`T'| |6^]]ٴ|oI=UxHz$[kJ;co닝BVQQE?al5.M4J l7Sx*g/^޶?p7_ ߋ;f&VW=&mZwj+~=M,_}yVl0=)҆Y'gRg=EX/g =֑ɜ;Y9q!@qK!'䯁, ZY A*gr" L| l=3G _#[A)Dw P@yC5[ke~7u nWmSgnN tgm=8:>au1r>]>ׂڬXcFUku{DT8Iw{2+:dCbt ]oFud(2*t@噥%óY)`e)X-xh$X/ b蕵FQ/G`UC,[R̗~Z2$_m0bGF^Bn4 7/$Ǔ^YA|kC%|XY۰oyFF.6wy/݋>HOMD Wgv\KZͦBb}˻f 8(@}wYdfϭd(|4)Xvh6dtX Jͣc3ŕ#It2TZWM"2[Y dT*fSٯFfn:l@-;lҵL8ǩtV}qNJS:A7|{ȃUl 7 (g祱k2\*w|&~S&BA#q8Kϛr%/]t{06غqX'2z^خEv&]>˳\zl*/$o~ړ*?=F TYA ^K-+4we48h㢲{#R<'GK nffuŽdEyvd+;RuY=T>m nEUft:hu>8; J^h+-%{ XPPyvIԥp*Ϊ_t! 7#m~uwNٟV7kuTpE!Jӝ4&:y3(uh |M }͑n!csV~F?azN t[Gn^vO-qP@GXWҦxҝkI^O>ӯ|nRi]u~|649$һ.QOpGm r JIk}W#OVY~]ʱqGfz!}2`C]&\E=ه =,Ң uv؂ԧ,x]=־º睟qT}_g[w%`LXXjd^St0rVXnNaQ2dmiEstoCC$7hs_'-osH~Ǘ?鏫V@·ݠ|s㇌颬W Z-eӕo* mD}y^74lzzf1v?vGm\EFhz|m&^n ?b`M^3:I+?a} v3e'ɥR5(o{ںg V^g|=ԳמO7O/:߶E\ʷ=_V=iw#﷟7\Y4Xl5Ňx|[.}쑀6j9| 5cW t/>Cƃ_Oc7v|hO.sĠbonnOf,KyN,וCbz _ܖ̌7z %SK=BGLOzN;"`]K-jl;xgfn=-D"!.~ixQAitɠ=Xy[O(uzXzoh{o#aq"ZVro+-d VZ@rlu7nE|'-t9% lLs S=Wl7}Y_q8 Aug`v2O/OW>ޜ.6XFF;\=ůQ2k C'/f~Avo(9Lrtsƚ=,D&n@|Ľ{[%srȠBo_xew# UDॕsFAqG;*  ޖJ eCuF>!!N8V>B|F[p6|7S ,܋&' N:2@dycۍuuUu 2F[2rllaqwɔ>2VdWWL3CnDc 9|Fؖ^1 1SI2$0܈ڛ衼|f}d}+-9R+mJE8p!vFH=SVE hxU606n~v 鮣/&5zoz1~ؠ*/i(t=F'#.O8Y\M^юk--ۆT:SZԞ3k9XlV\ ߸-uFl:)n>LAzu鹣-'STG?Pس[|{lQ1N.BȃXh vykvcFt*Ct~K}[IbJl]m@hKRL\;ň L \5 K^1>v'7Tv7@HW5Ӥ04@2$@Pq:u~~sZs<3ߍG?i {t&]3waGtAv>U•TE^b}boK'3<^o#a/v.O%[,~6ٰ0将ޕ?yāSHfzį8lF|mS+ v}#,yruTNl_ow7ߍ F wϸE< $ta[|eeɇ'^+Խ K= ̄':^eO}q74Ǫ9@6t́)}1Ga'tS'φQlP~={:=vvOu?tZB [iB|_ 41tZ.=S9Wfߓ{*Ŝw+%˟6#9# @~ޭ]s5e+=ww?5=@%j8a8u}m NπEѡOe߄d{[G|stb_OmXހ@<˫0mť\{edQ9D{F8tg!X$@d81q? я#S̫>Y^@g9Dxbu+'ނʺJW٨*^o+o5 FQ]}ߠ@hJ]Bg##g٪ v>Ϣqا`b5;@ n.{1]ZWK0^ Z$ i=K-]1i 6TĬXCw+[YNGJGh$6zX͡eGit=Dr=wL*1R0M+}GBW5eیIOBW=W..QuBSvL(BoaEnW}f~~V'`TKa;9dG ut &~dK |DӞDԕOnHeA&ɂfK<"d~L#xef3ZșƇ f$F}/X=c7a Hx'kt3J^+uoIJP"xR‰,ntZGb]!]#:г-~4bytzvC16>= u'+M2·*v2M IrGlzil8cJV&ϱ޵:B/S2nI-nv:;2ꋛ >pD{_߬(슌}[ ~1A:EKpu8'gXX3ё?: %q:]GJFLBDV(5v$O>`@,7o M7Tw"9E,긃<_xk%n6fhw.\? Dyw z,7l7> y!O7(!/|qJe%gGNa6G{Gѥ^toi{_, վݷ7|~xU'J{/_ǡ/aXCnsdH#O}-7Яv06m`_"_r'Ͽ\G :::gMԶX/lbbL?6N깳EMWL⊄8t`3QQS9Jgh2Pe^7@QV64 ڷ c6g7OG^40ƊZ@v˃p|jSl ?-39lpX^4 LX*KCtyL}ǣGggq6:Xhq(L d028[-R݈a,Cw lf>)nD5C$bVR086ތ`~݈wMH'Ĝಷ52<M/E5:[NY)ꊶCa&v ;7b^e W819m:o&ˍ\W FTԯ1<ybˡsbÑG6&FF}u4k8UU(l|4RRcm5 iϚPx$u*ݖN%:Fvt"N[p ~U,'ȩN#  hP~:wZkx*VeSUu>_uGEUٮDijp#)$VL[؍>Q/ ]DzSLklK4_#1QfDhp['[: ՁsaSGg U^N?Yfrs,%|sFvaL:b,8M`d>N@o(%d:;ݵiAfT F%[ڇwxB&.yv{ń a@L?%Hq`=j+{sM4ӿ,-;ZPsϵŃ Ћ%Jo`3WH~ë*+ɖ+;l/axC{uٿPwhouA3_B4zhX nm.eLlaI H3vl+$ w˯|Vn)@+[]<'=VU: k~Nwùݳ\/^֮iwItephVevN]:2:*o4_O9t|2YTqb|D|@=Nop ؏]em@˓=FI`e73 |<7+k/ؓ4 Z^i^[Y[a[k0 OHnRaeG[9 l%D; mCAmwDmM $7 xHđN=qSv6^:o#X fG>||1 e`3>҇Awҁܡĉ! mD llsNY!6ʄa0 YTNk&1'**e-H{;&G@~?]oY-R DXzB46ոRJ=ҕ,X|HtnDL"bSWq]W\^vK K@O6쎞亥EzItm6̡1L٬>8Uk"yaM]VxԹz=e6sAKGM:uNzxH^v[L94YonmWy?'.hkf/OH&〄ruy6[h^[D#J&4.LCnahN b:ǘ#Jl=~L_IzLDƬ+@+!Lv>+!=q`Iܦ}AA&|,$xstGbLVКuEen]/"{c)3Y#Llbo>:ixl3ttw,.F FD[X 6>ّ+ݘEGh(%PktW2uH!z^1xm)&: t[ sJEsA|>ngFlu kxxTKu2qr2𦻦xJ3IvgޏlPb{%}:o4leBdDO'i'>"bWDS^ZY0?hG{Y=@IDATIs$W L}+bxgyΪ@ʅODG7O?S]j6 zB O7t[#;0QyUWϟ^>͂>͐%YXJ.eSśGYf(=ϒoOfE}[^w^6f/}7SaxK7PB|΂(ow=r$?Y| Wʆ"X}; F&Oc9U:/װŖE % Թ('׮; dCbT6*·ѿF"$Rm ɌM-OB|I-è* 0soHrF*2!FR\gPH)xIq`K6"E>2} #JNg2zcaBN#T' fj\N"1bVǬ eN>-FV&{Ug"FXΒ`LQ: pyKpY3Ǡ~f;y >v'd `̎ogI}6zrX2҃~egs莶uB8GE3 P67`gtZ3?4a ##mԙz6, vV {2 x3"2hsvFjKlѣ8*6lKH*uG%g9_ ӣA 9f%6mߐYBhݘag?~A1.<$vfkaՓ2[ a65DG/=Jlظ'=6ؖ a7#l#g֒dٜmaN7YO<ե_wn2sytΠ2P(dV= {2=nUm/4XoX0Xh>e30|dŸ6<h*N^W t`;!GQ͹l R%]ޏIqjk =5 q| C Qg|o]%}GXu@fPM@V<|GL7l}8rBNn0Rڕ d4G%aAlЧAM&`&kIRkch|lut6Ͼں|Ga@( 4"gL5ϧP;nѴ:J@u֨{ {*HZ5b$m` ^u%(\"b E8@zI&4P-@eGoټQ픲3Z+Ca5j;\K$=Szh G6FS'ލ0 X;(&| 1jD Hx$}K4,9ޮ gP %,Rzt1Q%u> o5&3p]t}QȧN1ֶ6|Ogy!G_2K7@G ?Yb7C7vulB%HIz%Pb#;H.: lbGWΉ_j r:A{}8;g96 QRV6],} :AiG` 9H)=k+Ѡh؈04V,F * ]"*3OT"s\YT':pw#3D:Z4l1zPͨ<Yk|ijN}-Bۮ[ \=mngʨ#~%+2&I:6 >mEܼ(L DҖUm)`EFWi.f%~1=Nm=BgtTG\sqtEfO$ŬN:[`#=9ڛze~{vnBQb$ XLr^$ 'm-)gl%}sV4dm~2A<ٝ}&/c`I;V T=&t" T0.*S:ŌL]Z"G0),د.|E͝ ܮG=&΀ՕwrMw"q{3٣, vyprK׶21Vn_gMȏ"}g/;!#=PcZ:~|Ыc"ݗMw% 2u<[BK{_K#QnJ]k/|͝ !nzp:Xln &W_> 2`{܀;~xMnjkzb+=x-Rtv|#: Z7 L`(kT$t& 5a~e0kCquB ݫBXO,Brw_ 0&%\l'OkfgSD e,&u;wɦ I/K?jUFk 8^פl6o,(ڀVs :!gx O1ś۾.-֓Oܾ .~ڴU0 ,mF_T8L,X Us>f0V(X[T > f|dz:xSr}O"8jW-_ct2!yЁFR%BHʊo$34 URh+kLڙʨNz`@#sg|T c7='80|to#І'iluPޅNZAӏk&QÚ76k731AC`U{'ynY ɡ6*_wkO8J4umvdI`:|Ac?}wFUYGT!})v Hj+_P߽΀T`/jOJN/?G =[Vy#l hi+=/,ۯ`=mVa~e+ е'@o'7D>oӞś6?_7xUxo}oMȁÇV4o,ZJ +;oLk= Gk{.D 9ԧ7̠t~WE:+G0w?[-/HNOYq g5A%o6lZMՉOz{Ϟ5oy6"m}!0kS;g#&qDWVVQN< ?HelL/ԶZćoXwb ]L*!4P.ǂO.]#F>VH&l}n wu#}_RPtHx3LC 댰t*v"|K@ Ӗ]!6!H@vtgϟ>;5fLp$zUמC/ DF ܒhKZ]M]e]A}G4qZiȘ4`p'k2dJV $w Kzvo, D-{VcE6?qrkRu@I5t8OavyV\*,/8(m]PXffG u{6 Ftpv"alW:=᪜U,ydVTǖ2cv ,4-Fക<1E`0YgFc5ͷϱ2z1odձ Y{"]m̘FQ-)\ձg>)dSc`HmǏUK%ad7smH1rx W?BGqjΏ`ZTb=)ٻA}hZBYc>?=W:5 l|j[&F6h5 bYUeI;{{I%P9;=VI-UA{FrWԅ٫X<`@ef%5^IvWw7u@\8gј+n7ml%d8]~YW=Vf0O1=՛@O,J:#S0cO<ޤ?_C4z$y:+ ObߵSOmc$8^q˻rtv> <%Wpy^[P5uNjE!9̫"(Uv) ʝ!W_-͔wL 'Cxp 5z[nPYpkO_ w<Ы}.ʩ/W9MP٭mqU:_5ntW݀/ۮX* /zsN;B?>2xx h?{&'q.d#ٴtomKU=׬2`uMfk?jBC00|3ϟ{\e_:::pm٧i_1ɒ\؀mڷ]<߾LA\pENvd }Y[_m ],DK0ŧ'3:}7~l_|y߻|g 7.=>hIgy?嫟}/\6uOuVS|k_y{&͏=>ˋײ-_^o_KOQPDa3>yR~/r=|CǾX^3ˋ8>Vr{ux~ȤN3o<~Њh9_zOadyNzCV=ڿFur ?XK+eln YZo{?5#>֞+K}ਧtmnLjK%/d}Ӏ̯C϶yczH_eа@?u<2ESiy L+~(i LtI<.:L\ǚXbr%xۿ@8Vy/JF>< 8 )00ġj;whֈ îX]\ JHYBKkH29ɅN"V&шXu6M#λd>u0+GhU}qx7RWͦlU#G2% -dobOWN\cg6(ruGON E=kdQ<ⶓոlㅀ=J7iUt@땭?fV*l9lٞCQ'td$bt\yW3XtCW:zk(C`*6?=Ë`~$ fa+m(z8.: nv!8sFSEj@L?{Uk4_T+zuvKnj;~eh#@ff6(Q=q2Ay!lm#9bdtQ2G6taw`g/ nfV9Ȫ9NbHQ?Xw7[?|rokU\ހW v?/xי$JcSAm7MG%K.%)ALdϿWCF9WT_Qwh ɮ}1jCslB!>Wex,] ƼʐVf0Era3jwJw{- -'^TV>KA0 nV|/fq'|4U\(N$b^mWYiު|gjDws޵Oyw[:[v8߅! ݑ c_ÊT]ewcv\Jwy!7 Z&c Yg'ꖬ-P{xghÜo6q[NsYL{aZ .ƿ z(ptɳ2&ZdǹJ/$&xS>cVfo:*=lq~#5dvQ:a6xa];`lSc$fFt/ wz |W &mV!2PM}D_O%? ׬ xx#=Kvr {W[1B?~Z)LBv7 ;4Ђ9ϊ @悾Dc]Iǡ:C<(*s"Dzaa3od7b0ןJ:z.8x`?`M]l{]C7O2xԑ jNC9aw]2Sr?Qn:"(=gȓ8J׈ { {c=.,nٟn$  s8Kp_{Ǎ1 DiV.|fQb:8.U*sF9OXdz V%xK\OAC.tK ]3z~l y,mRfrO|`u@nF4V xF:PfqiTg{I C`LpѺ0\F@{fk d 7G6 e0p[G6|ILYXӉޤ %Iv} Iȹ#_mQ9#ƯȫkhTn&:K܃M[Eؤ*O5 :DŽ'*W^#UM:8q:XBb$3kNJY`,uxFsէB.ck &{4&H*Y1#Sx 4Y ?=\aW|20jduW*< fzb>D{yI>~ikOFma&.uM^{=B+gc!e?f|y|Jt 8-F0y=ii % /K]~F`ф E`G5۠VkYU䣆rVш(U2[YbS_5#Fb:ݘsbFX;xd%<~31Kndz7DT\ ҩ6]YǶDڡ tm 4v}2lS5 ADVHiz:6xbˆ>96cd8x"oK[*#WLȴxl GR;;qL86R՟u6G&7??^@1r>G;「)pVx^f-b}ʇ}?x𬼯G*>=},~Ӡpgg_|ʀ/Bu҃nK?=+V%?{dGwojj}j@KMim*ҹWZЀvuq\nl0DX|1X-[oE[boO&XONVoß>@vΔ}7]* L6~NXX_|= /~ ^7:UWkC ' T["FD%[LJ] `g_3PO#U| "4nJxgp /uc82N|) j ^aq%}Γ(h;A l>a 9K:pmt"(I my-*Y)`$7$1yݐ]v gU}~x ouMڟk?P&{3|21ȷeHy,y)2&qLԫn׍fw>' ⫓H.I<]4e-YKbhK&t8b+ Dm]8{wzEgtdK"hݳ(K7Zp1"x+V߳F$=ۻu$jal;l;k3? ƙgj/o)KgF<$+[ t e,X|&XAY&K'& ƗlY'X Wý MǏ&UAt0D= H>ޣ6a%bvM6r|4Q2za3ZZ|?󍧒j.0#=g_gV>5J< jkJtr|`lT&g~{KQ=R5:J$lкclo)O>h'=kˬ8->:=vs/_#{e^s:]"m$&˯6hBקs~0b+)Ƴś8FL<ߠ\ht>DGgFYX Mw>|Da ܔ?ur[l\rx 0#푔16M*Ytu^,(ur~L?gսr>j9ۆR;3ڽc- :@TJcu spCǷKtי ߠ?* bxe'pW~;;t׾Ý"c:RWNine U:Y;L*U ̀Ķ+M:⁺@Ed:=oW|JFzlqځ?pt9F3Fg@gx-W 1ٓ Y_qe 2 ! ?<6[93;{gt1o Ov9zVD{b;&G|wrrP`K$G(wݵ#o(ȽiH%:o|yG zGVշ$yuq z+ѭx> E؟&^(.586ZT8mD>^\?酽bdA^h/}6VC*?)"=W6ɫ3DlCAk{}ϒ_ i [x=MvO?v~v7Q̹8./^Iu2?] rׯu:.^g~:_lGϟnHTFW[^NX'U1qf|d֮T~IH=&|!+C@via M( $p콭20ȃ.P VuZAz9gGIu<#z j$ @b0Ѩ4\hNa_7Pi7=1A`YGq%-?$R` :fH @3O.U:ɨnh8 IuRڴ0=mwY"1n=1=MGe84wwk/չa`~ѳhiXfCLd@ [7ɀ#Sy&ʉ^5=["RӅ7dٵ|de9CɹAw&sh{L1`fH2䙡Ɔ]3 [_vd!=4ktH^lL>Y;7Sp?t#Jo$ٲlV$[ÊKaedx`:=&VO0Nly ٝAryV,ib9@{K“tfs%>{1~sܸ 3Ɩ.O6w bE|6~؈k8"#:M/IGӹLf]l?ÇʷaW"וb !+j UgI`Ƈ/i`%f+(٣{+0󩄧? =#zO|8xb*UgR|]F21p,ȗֈmyDb3e` ŀ3Y )bk<˯8Lzа"gb b; b?{*KXx]l@eX1xJdBgx.#ܣC{&`߀w_ gLbo ؿ8l~j%WuSb;t/C㡲ԱWm摺3qH0 ~+W]g^lG<,&%0\ J<]ܱ"Y"mvnlCHuN5o:*b݋:yT`q.`nBv7-IM7,Q]V iڤd},^?c8QգgM;;rn|x2,}Keaޝ`(K2;oe|ؙROMfJ)9,~`w0A蘎WjU,q4ю~lo0?rKm=zlūV&(ѐ|/ݞΐ.@z8TqGa^Ra";:m}P'8> ~:xՋl6 Ow2MK'{oKE%&$_ĨWgFn0 4C)ᓾi^gOe6 ~c4P>J0g4v>,wkmsuM|*@w!~2XNlj#ᠵĻܚ?VK l}|&M۩MA*B'o՟.\UŨSxe?^~ߥɩQm>K|Nw\_gGuꟶ)}fI_>Xuꋉ|y$>/^o~ǗUv]ofc-WJ?܊x̟{` Jߏ7ϾڦOډykcpQ7 hgM$e;ޔ`c2s.M_OmaomyvhA`H>xӽL0Vnt_Zz;=֠{^wJ 7D~Y//}" (Bo| p'`vdQ'G?/%yT=>'h2$b}=BcČ䳯Sڌ8JL+q2MyfSp$Wg*@17j_} ][Т0HeƦaq#| 8i'q`x0x2 VFV`Ȓ5*C'H>KwftpJf6T2q_i]Ѯt_u_e`di<kc QmVp,;674t. Pt*nz-ʧn_)%lɖcCɊĎ^3wZ",VA@IDATu(ٗMdRrp*,uk|+S42jk6I>U8J ǾK i7g+/ 5å\ڌ|$Hl!6^=~63.)Tٍ n0*935vuZ*'NGH dNgĠnWĆv8l9q:Lq=>q= $퐟؏72%~I'thF4zF@_CT:Ddɳq>"Upj'Fyrgh 6q?cp򫌤W`a^5K ~qoWGը 7<13I CoՁ1.JV=<;`oL/I}&3y9&#s4[_Ͼ}ktFCtp 7:uVG/Je b~t-Yr9>&jyr?2Q΀FcuGjL/%䡝8@Ha(\0;n9b^ <25ut'6vs?RH5dmpZ{ue(,f?(˯:],kpcz:F1Gvvy-}Żr9oF#Ohy<$B4<O+ɬ{bZB:p=zؿ:-&7RaTఇlT\y`_>x>7v[L =Ev.YWX h`hgp^!)z#X'oFoh>Xᡑ~Eͳ ]oz&Qh"O(1d.&ӕIagSy:u5;|l@-61ťY뿽,l"W=x nha|~Y:[]Ⱦl\~Jtf)}|^l*'bSmb&owM6<_nxRN a{m@#Эh`2|2 q߾|{&Yݽ6C"xL5%7x#Zu^ }5"咒0"Sg $$®zƮ0 k"3{KBY⇎ ʠ nxwaz  s: +3^^lKԮ%%D*A^5_C@:A5&ɫzt5/Б}⪩Ot9+v-hdL~5'3\ݏQ].'.GtzdгO % h:nZ-q.wD Ud3_$*#Zmx# tA1 qt?'+'{C|r:tA^;KM4uKԱYq ~p :3O$ҸѪݣ=xrt|Y=P0ٵԶ#FrZ$JW ɒH6mk[1;BK;IБbs#eʲ 4 a?& Ծ,0}٬о(xM;x=~ n5AwbV)3&d?p Ρ |`͂A8Y<8t;v?"Q~kQS3}CDl6Q+&w(W IvQbs"vb'ny|vUPxV9U:h0/WxJ]r e ݈cʘcPn#>A>5xpd3r?.s-TEC/_6S ! ̯ĥdo%|ZM /zO{䢕=r}ۦZ9aPSO.(ېө>U<6l`W-S1>^/lN>9T+8@4ͧ6[bGڒs N E$giZE2?FY|!! 9qb1&V$ #U [:y8l /sn%k p4v4NhKit&v?OkW -4yW#s[s/x#'#fY=p36\?*]!'pbҪgψN?#v6⫑t!O2H8AG*/Ohf T *DgPRX j,6w=9KxK;GR8I\+U4[d9̃gs S18#tìD FQi: bdQ ttb A4FưYX!H{8ycճx<@?Rch%%)!GA$3oE ̱#}yБG#fQ wyX xxѧ?qo/O??o~}yO׿׿/ tt-Y7m g1){a2ߴr=@XBN70n+~ ŝLFqep'yGA;V&7+?l@AMoyOg:h%A9[a񘒓zVtbJ})D{ Lg)\-~uWr~6:5MnVE1pE=5E [̿>2uY|f.Fh$6vsgݚ(FE5ʎ<# 2tk 5eD!{gKՂ{NR9+*z>-bfD1Fr_-%z$:jg$6+W9f'730DIv ;OfB:l ?Vy1:J|_pr*YFm0d}6 {k^1xzeP#?Xj$X_G%Qi 1>7tsQ*}'vr?BPunYljH][2!;=Q*>fV?^>&u :SD 弲֮Im"?~N6CMozzShKÑW/4ޅs|2G\- Ju],"t*I}אMFWrL+8ت.W9a `%㮱VzN)gL^QX9r ћ v+gn~e!ѩ3V}*Hsז CMCB2&t/]T՗{G0ùJ{;6F'eldf6~B z!> vrC1]l6jٷi/[yIr$ J|Q|vlN_Bkb#=XD.;ѕmvHt̡N9-wy t%NWBCAW:+39I.cּ->a10o[}m0.cGv!*<$@f.45Yuڈ..I>C_}vy~OFR ?Y]igXܮ8q2 ={$.T 8(zww9tJY)(z˵T%aպ2~t5Jjj3֡OWFٱW=Nu*{ .)s3:P5G}e +ȿqu໯^7LC8ӥb L*y|??0ɔY\H*@9ə JH]z>q0Qe+"R)7ԉ#Œb1zg#P!/8;mrFVw˚#N>v{r(Xe5:N]1Lj yG7}L5:=zT۲:@Rhkk*Mq~ѦZ /es8p9lwGAPZ|2.=O Jk`:+GBhs/iUn Xo9G^~OGϻͧqoͳ7/n_o^~mo6Ko?s.̰ǖ㿪_'paN'_1}m㫝1ίu0/tI~UOlog믿Ad, LlG}h/z|CVƶC&`^wkg}V*9ƫ9ݍ}}Ͽw/6 =,*ĦD$QYqCmTqvnAey7NIWuNAG>=ɕ;WO)lG=H\93.qp,6?6 [L6( ^=o<[+> 0h]r=cp`!%״naҮmw~[ľ޼~sZOK[1o9~c;%#=5YgXM 6ަ;&-^Nj=av![D |Ft}x)v9$tNs0-.9I0粤E&q_޵ o,u7& kQ|h!Lh: s$b 6*R(IYb9Dh * K2D:"rII1a0'ڔg i3R:h{쿍,'1>}`I#G|F)g6ʀ,77g`iU9Yd@M4{^aA%2ʘ͖ˮ!$ƂHa-D GeÈ:FeLh]$gUǾOfxU^۹tpwΆ&&}lsC 'l/ N/ɳΘĞsm#]KS[TEAljf00Ӌʄ6!lࢯ_ r3:ڍujKDŝ4c|7|vtk^OP fa<ד;@Kd'ަ[Žh"\BU8D#–|'=?G+9\h{]d9U~3ȏ: {x߰ń˯%k-}iIElmSe&x"BtEΆENr4|o014y3`J:}v _ %Vx#1P`<3^<(6)ccՍjW뇌~ukx%}O񈷰/yDpl96t |ùDd h*i&a8Ϭ%Fx vH~} !F ,g; ɨ}/#GP[/0*r,7EvOj F(;/'&7#]A@%Xtr_<?H60 &_ 窊1s@Xd{?Tw.:^=f:|{lq;%gە&t{֋[fچŠOyKg|x7(7LA92r(N-{jɻTw { U stf4sT݂l}4srOuGC 39MbٲdYŏ=vDi7<Չ3ڡG.Q7lst6m?/#l+Z֡KrڏfTrLGT_سl䋬d~`|z&kBGmj>F8͐MݾlfŃ學Ѭt^?܄}n_+~l'}n}emU;{e]&c,}5.g}>ݼdXZqx~y h0h"-73mr=:Mjox Zo Aoj{}8+-cm-\,x@y1so}t(>WJ&|yskҽ̯~kR+!(bڜČAov4&L y%1i8!̚>UFDΧP/LѣVyONDf^.y#3e%D}?8ɮj㹫'V4Pf5kЂMtnWCuHBסס3Jj) 9/gRfej̦-) *FOEc@Duk$HP5 X JL2=dXB  J7=Gz2+ E|hȡ= F)*-AgY+鴎VT˛.x v4ѡגiُQ[-h}m]i| khh ʕ`Qݏ91dYwzӟOA4\L ː% 5.-?8sr|4J>*&& `׽BHH@*%*d(&H ^ 3?qnɉ.̀< x1MXo xYp4;*;,3y~Jdmχ Pe.OܳYܨ{k'sn;䫃5Mn@`G-w9˓ Nj3R'/c%7Ӭ_&a/ 4. {_MŏU+S(/蜩{bA+OadsFu%hq C\)8đ,q* K@-β8ߨ,ӻzɞo0H+ufD]m&U_mH5G( Zxc+2mf\m !]q<dP|+ :!2jUl %Qw5ԆLi '=͉*E0ɔ-7| Y5{5.jg4ICj'l#{$R@%]ڀEX3;hF “(xcKA'=ɀqfcx[۹0t4x+@# }E{qc]c=\'gúM%ә>"6=Ȁ$Ǖ%NTuD>O !uK,cxh66_ٍh$(98k9-UcV[pNo}74[m<;^nl+*egVY{|! N4SPWLҖӜ=*K<o!،|3uM",-dͨ&  `{cy-) Y,F1C\뱥fXkij~Ǩ'Zm?tQn2V(;:A6HK1~[~6WwvAE<~k/"5}Uk:d Yvgr`fw;p^Utjrr7_r`WX`f3V7 xN \G[}Ɇی!?C/c _ۦg2wl_$+xs1^gG噝);PzM}x W mU+=ބ=zvonUbu0=b md/<,Dp.,~'^2_.E޾.Y:ɹ-KL_, dh>K_k6ζ $Ѵ p}f̈g bSS>cnN#ǟb:Zh]Ⱦ:-xh6K+lʙ%Ƅ8;uw]3wo貴jɫ$':fgمv-H;T\cȧ%񣮑h*f `>KiE ZmAQ<GhƋ O<"y)nw$$w2Ɏ!Pč\9ApŞu.i%4Y2ZB7u>O$>>],:zF?"niTh|b m+}ݪ‹Ӡۀa1i> W¾7k$H<7,*vl5Ge<4 "J\4qv6;Wإ~"cdtfp&JG0a?}WkY{q:qdNP;DŽv1tXйD1H.IKovVҰ'chi`q pN9n%Y-GKr8ЊgڲyULh'hACE̎pNG?6;!3M.AU<8ʂG5zœ sWJ~PB|)ODLI)ۧ; !_l]G-T}uνS 1`@="i<>y xdfjy}cSfv˿毿uş*W| xꑉo_> S?dw{,C"I7M #0@|w106aO=m~yO?R0Jw|nRJV#e_^k/>/#L?;~eIgLDq{Pn&DBR±C!@5AZ NrOyo43xna%b+[m`XSsLB&Xv^p1 4LqCh;RABHaK0j #KD f R|%ea ffS3̌aA-v7H6/JMzoʞN9'a>|MSҺs+e ;5ZFK sZ F5Jh'PzLKx7Řs^gUƣeKJdCDqN z;g۠ˠLk83/u7[!tS@1h}𮝍 Թ`kh$f|$"Z9)so9d ?9AEoHh9kg(1&4G6Yn1 Tτ3o>0/Hg=JIr Uf|Zk<_+/tIf 璃|Â^_Do'[ru:YDoZ4)w}NT>n'C?l [8xWl:Lz?߀O~<~rς dOkE~*xlwSmؾ}"8g2 7;=~(G|Q yM^ܣd0<\ "7CR,HoɨkJ=+|zKK>) aB =h$Sĕ#|uGE&A4nmlnAJ>WΎ+^s:LoPʣi|-o# 5d Z6=ݨ5^Ꚏb 7nk.7L|j ,*bEP-e9.x҄Pk{һVk3?ꓨ*^ (8(F'o4%CkYk]sBH lr+CZ,FSfmݣSH*`kwvw+x!~`zCr6e&Pl!˷qp_is:Ӏ_;{n>>pBu!%seٴx'f}d@^jt6ۻ ˻HzqL\q{Y}TtfB: 7<2.l^̂uNV]Pؑy41#Kǟ]~cZwuٿV3 9W}i;7 VoDz2+d0}jЮH+Y^&~U56X>5^{DN0mZς`_u[U?Ǯ}q:ѻ=(7J0|ih 1ҐIu2F=FrV7$lL^M>;.kjus-oP,:ob2ݭ:~>j/qVˎȇ>AcAJZNS/ ]_xv! SF`Ha`r o4aD|.XhK`c0#')." mʠ㌜j\?|-W.lᛳh 9ױzv{􀸑prAwj/ Vnd.ltr]5$u$>(ђ0u~0,3#DLcDC"<0z'!Q;Al?ˢVZ} pKt 0K"t4G=٫Љ#]΃ɜ'O`%/"ZS~ MtnMo狑8mXPxuxt[&/2M,p2Caxf97_ ''FD\V[]tZn~7+x̎ g, t1!B~||x5 O=f!!ki WϚu^݁,>7\/k@W6|KCБlȌ h@g W:O?8/g%q+w}$_Km xhN~Kt\^=؈I>tag{PN7'Uu*]eޥ@@IDAT(iͼti(Ҵ^gP* YYt.^ Ks`!rʈ7]gN%.NW^LmDǃ}'xr!^ eL&;&lVĴ̐'i i\;$YO-ӆd~3^y2#Z| 9IY@l5r| 0hk#qNkk< c}5FfOMksy}avcWHlX[Fh7 ֖>3C%ɼݐtt]] ^?UOԇ?}6'P}%{Ql$x#FV-ܮ Õ>0`*y y~F݉1`Bb8QLr6'0w-yyvϝ#nUY_8yԠ.U T%:kބA : 9|͕N2q'87cDA  ^fXg (]w-#~ "{};6wI,;j<98` <:r 5׃?9! vٰSn+ Q1?Q/A %"hp]@kmnK/];{Mx"Sh>ǧcz}fAHIx{>M_HL_n8v\Jɭv~`O'*g}墇hwz3:f 0rѓ6FX_ 6C|:m1XЇ>ɗ{3#]$ș,A78~p̒`t^z̎<>M]Gɫ8^,[|x՞Kߏh1LWYM0TqZ-cˉjdSxq/ klґO7mЪ+Wo>=x{l?c)7yupl3l9Meq:=ױo%}:Z3xO<^ `I0=0Kww,1bʩ5^}tDU`/qՊfY`w:{WŚ5`ig$ ?6WpG]$e>}܁]a4W:T_*ڙQAd-Y:k]B[{p3jA'AV.-ZreAVdv['BviB^- 8eɆ;ROL FW&0V1HfҪGg*=p4W%PpHՙS}Fj48m\] Sbb ؽ혺P4=X*[*6͘wQܡ۹i =2<>-}$xb]cUvl Rȶlء(&""wv p?>j2lDR9L2]]=dL쪺dYZ:V]D_2>MwH6G6'Zuy|>&GRyu>Kt‡CebH@nVz}uA T; q;hEr7 \6u̮$k7h6>UPl,w+ c$=s`RKwݳ?aG!,oC;.U6> ] V?]%ꃃ ETkӑ{[s"' ? [xL+9%jl;h8l>۬9;,}8VO~e͏y:)ܭ nhY0<8>t0LRkHuDg3K4h?4 =]Z2!{ٴF^7^BXLX:*2y{6 Wnwlwxx#$=]ܘOvAaZ58Dsa}JF5MC6.&>Y1yFWPuG 秓}0g]J7BO|B&9&۳Ar&ŨAmco;OwΓydl@=df.[$cs5X̿ Ƅ5C5|T uMC1?Y/ߤZmʋ[qTY{eum^I> [{T+XFlwoyG,&cq p$ɅsDpy_kc֓|Mɐlu~ =q]|vfM޳:_&6&|܉ /{x2Eo4xI,l?z3Do/>2e(6']?rH1{d F/jA`[sKkk3H}l!_4P2=IKJ󔖭ζVK);>})+Yfp]6@po? {&jq}7I9?62nEJ npv=ob}mMY,<0CEBw-doދxM_NItOW ,Y_stYΗ'_< Z]7ܗͬquC7w4F1Vd`#8 @kL.Bv.N'Wkꅓ]1:cpO%8y+*P .ԙkt8cEhŸFhr&If% Ӗܬaψ"D%;xp^GT5@x9:tQrT.)#%匬U's>$IFH$L#xY5z-o/mNTt"B]4n1慇-i-aKX<؎JYJ n2^Ҷ-s]Ʉ㮲4Cd3wp[M&諌Qh- Weϫo~S9\#au+JdN)xfw`#/RADi3`܊+ 1N4O%?m|JzIySBFG60"yvB$xqj }Othz;fkl?IH]77=Ed)^T9"s%SDþlpCaqNLڬZ 7:l(8Qw7=Vo"vk4IW/h} pB,/:U=$$bb>z&*w7wm#} pDk0iy0-=#cl<0E['~'Į=U d_ 1l !uVIS",U=r_6L&Ư<9WqtsW'}#^xE| ㉸0O.=?N^t);zN!;NO؊|>]ngs)"TSNڄ2ɣG&ʊrZN@:s*ll;` ^gre|j˾o9e+(?.:U{-<:|ymRJ^f@kU{x\^@OfW^RYElO'PI?tlMREΧzv<0[gp-"o7!H {)/$ b w{(}TwtmxHn~o-O#_C P\'i[ ɶm6?*^ؼϷ*]<,j6`?e!UQ{|ׄOme]n]H/fd=| ϸ$de͖|:ӿW1*HrM `<~M-On(>+хUN6A/π7 z{D Dz- 7&_UctCo.BM^k&>J[Bы=ޘYtMoDH x+mm년Y2 pF08_{凵 dW$nv~:ᜲsY)4Z+xU`CbvsYNJ5z·%)I]P˜&f vg H#~@ %"KYLvrdC".!n,ٝ|'J0gE*3b挫Ss! uje8F`g ?-o"`$Fb5-_ !8|dvk/GNY%(}^F97G:2D`_lXc'O2,842L· gL2WZ%%{S.峌,ouW3f0`K9wALe>z@!ҹL;xyO d 2Jg]L_,ܥS' `3I};ǑDDx=;KJѰ*0SSɡCgnƱM7nKHbmShõk^@M, O.Uc׃<694{X;`1)Z H|0яNfw2mѥ ~Į- (m~|<ˆh/`s[_|w@x,6f0].z;fC'lK2 Q/;OuP\12"gϠZ܂Abs)GHq!jI?t?8L+ `DaHL^vlWGڀS9\bgHlEW8U,F\n:8_>Yx/$G`b-|0=}鉇ݤDPZ͘W\nEphK]g|Ba":Cp &}c$K9Iixl_^&ŭI*)La/m |~&*ikv?` n |q5S0sy0H~ć|;>eoi=(wPDlЯsvy_LRO˅'/,NafѩHYe,08]6uA阌%ތ m#syb*#ެK#_hp쫳dCׯHW.]w&k#~J=ӝMj Y ,:{'EyEmKdZ=;\i}[^R SOx&_mZr:VC ڥN?f٫?e`I9ڶ玲W9~9ї<`n=6r:w/U3܏_zd7BALjk)$hV{@_ )+\cm86HC=fML\G`e#1b&u5X9f}w!~r`{|z>~kclR 8D0nv( HP./ey n ?flz VG v4YtFx$#u>!Dt0J9fi"_ sE)(8j;lY%<_ob7Ù9zP!w܏< z:h7:c[IVnD3QPhOM::ggRY,:a:vBV%$/ȓj(FG<]-k =R]6-]26sOSd!I:Ȇw !IqK|.p?HP"᳔>_qCK(Y[ fl10 Ӊ56ﳛ5wf<`G:eXM6_hY]~|tzm|jIVɳm`zk +y2{'bW8~ %cЅU}17 5(}̇l }fvyuIU?>wɫ˕P{РP?f|Dd7\쪺l=ghDQxZ}Ca5ފvZdž3V Gְ[:4vTwtq+ 6>:bĊ/p|nr19}:f-Ku6(|v$k6J;ew7>,?4_[M=+s%Mh8рIt(A6:ޕ۵ʧo/&Uo0% ; Ĕd.1JL"9gמlŇetLo%S2^'6O?9Ξ\p vp V* 1\pɣRtֵ1C>רvO>~r82)qjgFӆF;.4~kz'pr4g+_l$2 1v,/G\SO.w&Ť ,hTkBK/$Or QZjFO<ċk;OMٵ.[{6Qq\A8Rrg}“D̎mx~;߰ ]x뇛͈AY]L39%cmHnpVl ]vXXRY|&k{=  W_+߲~HX&/e-X!o& Ygh"-aqǹ*WБܳ %VRӽT o-܈3P@x @qc?cV+`:{, 4H.›L2sGnԨȰ>%D]Y'#>ƷNhX'|8}bz|d@_]Gpb:&F,TNBh`7u`:@/ >EީK55ѽ%`󗪐|,X^,`ǯOB@gF5gu rv9 筺i1\]MϞv2tZ}~m0}=R\f%(1 fan~W,?OQP8\~ GG Y8 ʀ1˫$|4 xK vr^$+1x3ZږR =?BέnpxLAݮW]c[BWJi^!3aKl|97VEbCgbvplF7k oI/f@{LH}w%w/ԗ3wo3za\ x"o~I/ԋꡯ!챫(y[<ſ3uQ'yKъ/om:LIՆtV<+EN94@˙vc|νّ2Z̭~6<,΀ T9v8y0!a TC琤"*p aJס٥Ք.P`83ƾYۮ1H9D)zWlFO ;Cz@P; _AlPrs;'hE^} {uͩ(݅kr>d|H$ׄ %3x=˲XVÛ`O6F $Q}zpKj= ;Xā+bV4 a+- 0ye?M}={x`wcQ+3{4]"9z!+g 5Tm=ma# x<%::|"uPY*six(LUv7>p+0?hTc3TK|)|_pww\J璞-Z+gct5~:ԃl]2\rY"| ɝ-gsݣ`-!Q<#g}[|V d9{.>Rex5[̙,ٲUSe68C)Ƚ:y_m!=zO m4Hw}dg?c^Lpi˟K RAGW.`HFt}qNꢣ3X^':"]!G#dٳ3gWywl ބH1t?_Vsq_0n~?Xt>UBty.3~+@mԳ]D-fsƂM~YxٷK\@xf\С{G\}6w^6yÃWڝavw'ԅUQr +tsHW4&eg::%V1:#'?.Z'bZpw#DJUIX8GO| d(F1ɻ7T\ 2q`TܜzGa0FpXlgNg8:)zNk ۀ{EBplʻw{Kr;|D9_l[܈rEվdnMcB)0ϣ0{\__&bOсtdb\S;CYMFb@@K\:qKva댩Ob9f#몆P c|2C<{>=0:Pd:}d]47sr6_j 4d䃌#rVT(\q>gXl"}zB XI> B7C~xxlߵ#:ˡmdpI&p6Kl6٤XBmLN~aGAu'd.kvN}+,4oZH6kyy)C2IzvzU}gtYv6۲|Ak(# &'DuG[mihmzdk*O*+j Ldd$Z,b6;4i|^˟yp~n W˖ ?o{o}Sz '|{%mHIeS?Bdm+?s,F 𼘿< Ut߲'(rܮʳ0@Vug%Rtp8& PzV2)ѱ/WP 5#QW:0N єD2.(XmrC`di.Dܣvq>+0*A^ `|⯟(ՀH9x 62>>Gf`7'#x owe֫_UɀH_BX=T;WHsptkٽ+^vŋ|~iZ2\,$swگ[y YS[S7$1xmdhEmo>1metE͒எ8JOJڠ!ff^G'=<|xȧV_˿k7lշ3O?7o7^"c+#B +URo7{U8 m&?ٛ/*܏,+Y9 7hG߰7 v?C bU h.i]{N ,vQ !)Kbwb$pI[@QG~1D$UKvj:q,*kDbIݲ=m lSZ;J.1c ex3Fne) ktq"0+~$>^4\:t|-:Hg9~ ps }XoBK3ȕNaL[˰OЎbhAᘥe?d0*C0c5BF-Iߵû=9QF#:0܌v;CAD\d6GˉlrWCvCT$ZGS(tO/*ӕ'I#?4FWDsW9qX+KxLD#WkȃP9ѸC@evC7|l/+|Ɏ|4ᲇ%XnQ Gb{q' O%?_E{`c2$ZIr[4iC=ZlLχ͞GO!@*E^5饻)pr:\6~F%|k4cē.jt>љ{چ~{S'6D)bMb ړɁ|*imyTQ&?m6v#+.m̦/ QgZyp xLSs]`K8ALa *iP %ӝPsa0{|{ϵ2:JاY` ĊX~=rޮe,urM`)}08Drʱ4smpchI;E2N?>Lo"[zF4hAO-<^6v3+CMxk;lPQٵM}x=eoz9ՓV2{ ,G`4ڰAZ\D*Ovl`xQUپvx :cPX0f~d4y|Jr/NirG+Ov+Ȟ}D~t d<"ۥmW|_i]N~ t+cXŌxjT&oĻ.ˁP[12ew/'')7^(W?xyifkCjA`ua.>oSyZg[E!ҹnu6T3VVFS%_nFخl_R~VOo_lEݞbl6wx ~4#P-12N/_ '|bmYm6]|J&# nA/hO?g s` _,"'3lׇVۯ~?7?hzn5}p?޴y/?펿 ǀS/ǫ l߶Y MLz}c~w +ߠl 7yJ,MsD8,9 $;UxMVUpZRgy/F^ ?9D5\'oz@WwT>H0Za# At?3s61w5>IO::0:Ӹ*ѧQPsowˤ58ڳU]҃ H9b@9wxsfm\u KeUm^b50D hk1;Åߏ>[S=lDz x}h[m3W:%/&!*2I,>:s9Cz|]hC1;U('d^M>^^%J}, ;(oU=,C`}:̟Getv]5o p7 zhFLڠ~}9z>ISpv,x'ŀm7 sqPeDF{74rpG?[ص}BDݟ}(#B;y!xَOrySA4$s&[<](kvK1 U^<[[+-66V*}.?ϣ}6.ZxǗ/>4],,w:oھTYKugtZӫJt6n)7T r(f*䖪,6J/uӤm;Nt X*TW:7UGXLPz@ z ~p'o>Fպ3Pqݚ9Z"Ϥ5菟/^P X[,ń.vt#Yx>4B97d! #|hTЃ$3H#c1LehHo_t] ܱK LpQ1;:x疘So>&֗N tU; p qQW; = 8'llWlcUeh>:b8:uUUZ2W;>j?: ؕ6܇HvG@dk~sh9/@ޖ7ce pͦ;3:arKC'^ggaoꃕ]|kp&}YlӠmN>.2 '>;v@nWMT\P7L~ G"" [p$cIz8Q@M̎X^IW=I:O+Cn"foO>~po"+`*ʮ0)&6q4_ }g2%H~r6ɳ 1a}Gtyꮲ9xW.؏/8;! ˞i<oO2] 8YfݮS]R@ߴ_y JϙS 89gFwP3=EܡvP<_ (A~}z|eqU]ѯ@yYE |i>p=ɓi<)Ya0C*UqWA˖gZXݵ (ѵoóO˯;,  O,w:GWlqǑ@Y>A{5Z!vocrr$' E+ZEutCk[ ^5_2P|1v+Z9qH`][ taFk ^z+RMVv&xN'wMDW)/ژXDrpwϒOƨ؃%Gwg|<::7ɽx= ?>-Ϻug5nd VPGx#xcnhE.$ǫӏ h^tUq1oNŽi65 hψHz9=+;Mws{F!b ymĄ A6.Fr*Nz#fhvȌP hR|fξϙ3]_Ȭf˧69 DDMTR&]?&:[ZiٽϜb#KF$ƏAܽ8aXЄwJ3}J2+eλ+29؛S`pj؀&IhHNFW0eS9D:h1KF,1ʨnkn"JĦ np({y {K!>[U{rc: 76ϊ.\z2AHOx֯ϰ3 wj4Qڐc0fm2sU~;7X'#3LIX&A ~BxhIɃ,*VwN诸7Ѧ~889Ɣ&Ƶ# Cy#֒Nth7tkȲoҬ'\63kk׶Cр/H o5^ W^jW?Ïs 9-EmЉqk:d)w`&ޥv|TɊ]|_Ĵ"q# g6؏V6H6o0o#؅K$Mh[[)hͶ#(mz@ n)"ZZ%Zi^)?~8ɦOvG2X̽g6>;nxepݭ_b}1( nQ.{ )O>5hdF m? y,>}(g*]>kO> v&K/jE#S *,$zh >%I_&^\ܸBxפ5 *$ 3'wLoٽgV6I@~Cc$r$[/B<Y#7)+5:7õ>^yg-IC=p+\kG$c ͊JDiGvsYzf 6ɨzr6O{pn@\S稄Av[/ـFF AqzWJ_z qŻ`m,(<@1T0P2Ym=F뾏R1r}\zj@s }h/߽[շtH۲Sgh:%Fw7fDtlU?s mvŏm~Xt_{Ru8)g&7-?Zp=j1) Hmd.h;\lĹ姟B # R@waJLd,*vd[اҌJ6wGO?F;Zc7/2%Q*Ľݚb$KlII !~NBֲV28VF'W`D܌Y;e[կ'ׂ@g@=hRbfmClItIr%L&@zf68 5qz9d.$C-cРz, #s'6 aT~Z-2iҁMvMMyЪBUfx:<#3cj6 Nd0?>4yHgp+c.1z]⪏q<1ҖS %' |VV!x('af!o?m:&КLWȮ | @giPzJG7<NǷ 6[Q0JgBů/59⨺tOO5N?9;QO'$,|e&\ϰ=\eQ _x<$SWI?#;4'#:Lhmeg2d{D\pyB4)I \/Nlmt~r>T#We;L~.;c=2%GzJ_n rAi7/FqKu%Q}7NH]U}{+ʖc?}|+Д<ʈ_g7}9]qkח{ӧv!y}P*|o]E|o x/t|~%gI x}Sh>{yVJt|[]:t|uL^&8@ח$HB /K&!e hIl9ؘ|m 4U!W8Juddc:#r~n  % {UD0R ~dLjI,'`M 5p>Muqz%w4=[](lwe*`ó @g]pUROI8`$tq٥lWr^e;萳[R59+ U㱍x 2Sᇽ3I]$t9wSsէ17Wׁ{mW.QQ5i,+v`PFW~p2rќ62`W^N "i;;j&o04zfsw&>E~e6I)ȇ>?fvV+`Jǩj;&ѹ˶A+Z`W%5UFcOѩKDt`N/vg`slr3?~E#%mwE%<(E{={Z2Ζ;NU*ƳBXYuWQM!7`ذM^LjlMUɣZGzD|0?7y\68eU `E4T`hCYoIZgg:N슑 s8 L>5^g!.NwءxŽ0rv{6@GCZ7zعgol> v>؝~*p=}L0kj|_>͎%pgްd[ebX=hpѲ{XZ=lҧG>c1iO1+e 3ĴtlʷXA̭[II >D, [vbω%%KHGW+/Jǣh٠]'y~8#fc.wĘt+w  ;Cww]a[x`&/LZ`v`Xԉ3q1_3L.~gld/Ń26}l~Nk]@ޤ4/똯 &0s Ֆnwq S;aT/j}Z܃+FC/b_gLnGQrףצX$D_Y0rl^~Ԇ]>ՊvF+_")W@w0,ΨWDUr%li/!D k|JFr'n xh.w/v!8ϧWګa8V'bN^v1ۇ}MD6~`$P/>Y@hʯJ}ک7񓧗'?+Q\mV~;0?4=}OEa|Sɣ;]^|lpktbX5xd0{]]m_m{\;f/ڃ:=w-]7I8>]_:ˎ^_JH#Sǎ>EQ<˭ C'{OV0H˟'sxZk,3xWi-c|7V 96^w=ko_&5hsb8bj>ui1VRNvxm\HF+IwFYl. ĤgtVl-V_@s7])xs[ "w6٪1%-]S-k tCmK,_zYlɒjNV̲j_lsfߕȜufkoEFt$ }K~qlt?6J Q+FxHO:21ᡲO 57oδ:{dr¨Z\t1xdd**H< Ghmj1,"91r!*a:2H]t1O'7 b d֎@9R-.A6TL>dUW q^őLGukw~IW6"4ގ/-@;9 5"nvvJl h?I~%B8K@C`-1.<<4, Tt% &%=ߛZ.|(+b'js}ڝ+ړlwHGtb~7Vv߉ym-h:GA|O9Z]]eUy+}x\~Pľpn0ނ%"dB+~g@>F9x*V:q28{m:d3;lħ>ɶ ߌJ<x)V;]nR|=t4&T𾰅) :@=9r{WU_WƲz|K*<<=#{U_YtMb-x~t.[2ny@wߔ<ك >NIp?&J]P*oW%ɹX ;=Q$ yō!o/ CqlR*v^76'<5󟺨G]p{_W!>^y~|xRTUZ]H/g~o*^coJ(˝P`2aɆޏyOS*/[4ju华ɉ~ح[d{p􈃃d.F (E<cWb!;x582<oO Jsz%66^t~Bپn,D;Zt#Eq7?KL9qcKME^=%hdz[9G)&oW-y&z[z%ɓ 8N:q|k]!U!7aa x/٪ hy3[x.vVFLÇ?kNrL6q_:4. Fipg EƗr8&ryf[m<DCWN||p,g 9ebqhg]Hp('9[qV:np[c'3WGk<>Zhp7>-o0y!GOW=Ult;B{g~9suy Km|n+S?noOrWGvю>j 䚣گ@?M}\_ī"ٛ(؉?xO@-#/4p_{FjG5U~e}mAnzAq p*Q'|99dq<ݖbCZq_ Vj*˳Ě|“Cz 5#ҕVJg@8*{`C"n-c0Pwśdhӗ6ȳb#Tx} mC}F~7s6x<\ 4vF4/ճSϻe&nöwt grtKB"+\)YOFArCP$~䶹+9=nKtRod·=#{(wWԳp)֒hb.c2U ٝWxw(&O|vWA^.Sї/_^ޗ4p۳) npO7=p(7M}y4:wJ:aqke_(yЗ7-Fm!>NUN<2dcfVՕ>ڛ\1{g]o 7c /i4mv+8';tNg دLXgNu9$$"=JmڽّtTl鬯XM?Acg7;c  9[)һ`:%ѓwo_mj^+Ŗ@?6(q_6N' mbqr.94V6S" `us}w;Hn'1t>>;zS6|d\ &;g]|hKmp`;8dWvk'˓bQO l!6o\ :Lh&Ɗ< G zӪ#V`d?2=b'w&؂^BaYX1I6)&^n8Mbڡa91g|9UҟD*,;*ّ쾸s1,>ułJ(#c+QlC[|qЙ $ŭ t] t8>3NVvOxտᒇPleS]_ȼdh{\^W8<7[Rɳ{w?-aVN'OÓ،չ3sWѢݮ´܅ܢ(US~ޙacKmtYlTWg\U]rtM~xMn`y;X2 6 ikqcW͍-ōPu5`(QlD[ůIs^D~:U~q+wh)v?X]qV kO-89ll%_D`𹩱MGtzÜOln͸ =.>S*LW?g4}QmдM&Gv;l"h iB[@:`z+ am/wX 55ɿ_b M_hϯuz/݋n FC}-/~|#?$mTIvS_cz<필ό}.~-ǯ*IXL/C [$ =ηZ6^&WE ,ԃՅ ؀ 'Є B2.tJ=;!|Wd81fɉ`3Ί35}hPpH$E1sڡpWOEP;F~f u< q,^gC'O>:%0O2U`)J걞puܟ #KVT?Dq5U9|{GDS\t hU8ܮjъ΀s!s]a=ÏrÒ[Y yjWKZs&/ J6Aӌ$x k4\#0GK(ioYYW418ʒeY<j˃ndp16脶9wz wp$ s/l{ X ]$hk"M+HK{n 7^vx3M._ ɵ#kӮf'i7z C6w&'ݻZ~wlY+Jә%1o L$ E!xE,fO)Äpos`$xi;}3g %uZr}(qT1p4oz[~Oy 2ySgEr ;y0% i&`ۻ"{`5#;u{HjyvllosbҰA0>?[S[>Eb`R,c닂5%CV:&ku_w.6Llmb:mI,5|ր"ez%U:DG:+..c4;V;vR'm ><O:vşҵ|_e,+zײ2٣x$IHD#}T*xe.  1vƎO, 7'j%aN5Ĉo~' :w}C+*llg.s<ڈU"8߆f'f I'WC8xRruL߀pߝr>GxM.!`!M4_C,}2}+? =28عC;<9qlu +,MGxhS?opg瑻5#C~tS,>C'pE4+8";.&C6;r1HfGV$z3-ֆhw!o-Oh/Wu>&{S^ ωl 4$W>t nU#Wʆnm;0*#:i"vUU;*#zd4h =TG> <$Wr99v&*ҝ@IDATB]@۽9Uγ/_[lH/#mvT'EhtE*G]VwCVDc66A [m>y6{-q߸29pC^M[[6t2XvEW:gC!n .&Wc>lE=ҭѰ\ Fuo>Ğ" ?o~ūs Wv=0jަR<8ou/W"xփ"S?j'^^?ɗOO~.cSB@dwv[љ ģ &.r"dmRp9b;'d||r`:4huM:X"#aK[Pth]7,ғKl*|sR^ɳ^Ll@jѰ62 nӹQtuH2 >DHxdF (2ٸzP$QvuMKnv̓$xGZM)dZաpR%0G6)`(fk:mO{RT4oEq̠WRjNˠldgW^w i6J*;O 2*;; T>گpZa-ؓfpH*VUDo ͂-}VCwTD.MDǮn;W銭'ږ¢9Xg Z26 zĖY%pP*XFܧdkuMt{>5" X:1qɠȿGcG;| ɵ/peOhmK-&lgtb68Y^A<&rfz }dR6kP9[ Y:#xhUvq:>\O_/lm1.5\(X<-+.$GKnCba>3|kzїH׮3{!c,s~4H\.p%.{۠?=DK(G.*F'O_S6L2o;+$&%}mg?{kML>6)R}SYpՉd_lsɃ+qbʾb:d>z*=.l~L"NqaL|U6CVk<5TSٲdpL8LiW.D?=r_YJ-_^n:S 7dqyWz1&a(ggˑq=ݙxLv Gi|E u g:>?-w vኙ :Tն d$Wѫo}{#L 7wQ!\RPr7Бgմ;wO7W7I~=}MaUo."<ªy6>,D>棥xT?73/GbYt=ýp߲cy(rAk@O/z og_^8_K=3cxcKr=CjZŴ(c?ՈONT!kƳACCV /wo/gOy+t6#N~w?v~f>Wo_]~?zs>}=֣h*f-±EQ4[n3*qDQ'is!'Ҿlz ׇxm:&G([<_ǩhP$A=g W VğqNYWѵOpn.9A7 V8,:˷=b nmО%>52A P@J;d(G1o{݅N=GS -8b3dA2DI\ _`'×5@ Ltvp¿ h1Ĝ2<: '+8 F 6 ʓsNQ~ܫŌ[:bX}$%ux$V)G˞ 8 Cπm ⑗ټO@e\,ɣ e(db{t6Y\"}>udtY3/ K|i[tߕHjI9Fbf^ mrcl 5;IPR2$5qrDLZ RuDR{l=ʋ 5 %VaF Q6^9$'~9l6 Taccd̨g2ѽN/zI&|4T%_$śL B ;F|~ϖ)EBp^zBŋ3/Hd0+I #] fK,_mjP܋9QX$eIzcO5/XUO{g:TN x)]G2:r5axW_fhMF1]"=3r]F=^\tn|ȹvw.vբ; ٯT ,Ucjx|J q&>0j}li|r},;('кsY4DQ (8khcp__ix Om/:1>[[!YP,~n9X7y+?y(ONF;8(~g/VkEWm,4ԋnUȇ L\я&4/G=Rd9GwblmVK3"ܦ =}GM~|@at9&Kq_-Av;;W ~FBmT*awٳ[hl%x:y̑NAyr ΠsͶ)ip:d.LLаVc܋sW:o3ɂ,] %VC-O$ӳ_:f+HfU{;}57iYq`ؠӖ ͞-R1LhC2 MQX:Ec%~ * ]:vt=PչҰ#5`m5IW&va 1Ч4of:d0mu{ۇ 8MLYأ.Rm& mH>*]&&7{Ć9!˷D5^DW!il1%i^kϖﶌ#N&c4bJNGoz@֛}syE9|QO6ni Qqb?ƛ;q}w[W >6^=]xtߵrO;LgXb@Շ-nmi􃴾q_0&x+a6hM$Hq<#(wNpƧ:&pLلL5L\܀#gb*3xWkeVQ  0ufTukWӄ_ctWFc|xV19`%fSLlߺ2L.|LF:+𛸘A(P=J5Q!_O-I#8:w:|:ЉlԱݾzW?48,^l>~I`UP>lv=(Xbifؔ|qɀ 99WX”I&!9 <qKC4;ࢭmt.ğf"}v6j=<\1 '+:z^e7N#;cewsT]Wɳ ։ 8in>P`7apxݧtO΃L:%f ڴǶ3 ɄhXeQm~"#>}Gu0MfRuEphy&!}tHKτ[1}:O@w( YʁWٙī!glװU(^XRrxd[428<*Jgtd3YnƂyɛAjى j$yI`rpu瘊۱qGG(~4͈C>2WcXz;wE8ܝsAiI<%wb|bz 6j"$y8#Qg[\:pܮXO6:h|>cV|՞@L%?Z8fS?>] GEA t\ө t3`;fK.so -M;EXAA9Ԥsbj} P}TI3ɵuL#Ag~d^y6b9h:u^]&vG_)طE8ۉ*i6v3Ԇ.}FG٫~P{} :(!)`qa]hm꒩#e+`&`+?y'Py` qq#>m[fE5VFHF8ڊo\ tm]y| *IE<`vn8v¯?04c}@6?AkLN=l+czD$t03W7$]=}ۑɳ}{V{?;WsnV~7*r̫ɀ݇5MqN,jeJPNxsRLtz-v[UefprT(` }*}(Cqx: W6@.\Ox҅'-e+d!#>Ew>Euᜃ\9;?c.4y'_r5߫ m=̯A\,w(v0_yVUAyblX_O_>P.%:V&g&υt[`^m6'S6.J˟}Kdr7p~s/wdpɔM.6}o/_}@vs~~-ynxy񇯓}m*7N̙'QA#!-'v' XOO?ubLEX՞pwm/!jVd/">F68!mVe9ݳ@IA4ܮA,CK%oYQ8oUm[2h?49aL:G]1zk穏x8" +fA8002&' )7|oȵCo\u0?/_QK'TI1N* jC@wADV:olihL*Ɏ-l6vbJ#(_ﭓRh^$wK^9VwL{fm\ulJnMI999b4 ar'B?6oGcJe: \e2۹YymٴQ{iMT$#TS'!f%n51~cR}8>Dr&=Tx xI3F`<܎7V<&"B$pI7ɝ&|?2ckSL%' ڤ_uq+^yot~'iyH)X0yWwfɦw*OChPp @OD?UpE PJzm2MciսsMMrD%Flزpp-_q&wN|"!I~G_%qbpuI83TVqzeq}{ؾ uL;HY)ȋvӮ$'q&lDK-ҘoP=מ]y1JqG ݇ H^BAyXzr}X4gU@䵉U s\U^4+FnXa |LLG?XWOv0F3'fKF/fU@Xgd^vՌV/vO&jɋIW9:ڲϐ&#dAd['&W!m'2sR>OBGtΉ]w.ֶXp-̏b2G_O||srP>«;;(Wҁe~J~sy_>\vK-ָA+;g:N~ފ/5.kSl[52 V'F-V3=8/+v=>JTONP?y.;[n!U$듂h[~_>{{u>6}HxuÃow}3SDT5kd&=}ʚ"1lD [l1Iy4n!<<7saza|ICH9KVD{E`'_#ՇQ X.z'|^Ct~!~˨9ځ2&OĜsJuf"YZ]20; ( O+L8SaF Pc'124OZpa+Ȏ#&#~Ky83ʁ#!dK=KPhL/zT+AN {??^ksy"Є_\#!QVozLth4[Qtc@AGĎz(ql:t tA'h|лEtFy9ULP_26~?m`ġN 3Y%`pDf M!v/k"\@NUS|c+o\97VH, o:Qf l:Tv/X"1Q`me cz[΃3n@CUDk$G+'vkC5" Ή#Adg}R[6p=io3 x$ب-cL'f;^nusهXvף(ͯ'!<~ccf][l, %r-V@UX[]J: µD<k]2mǤ)4ϐ Gp,wO~ώ(Q_dv ?D;'L/rhiPx[5k=|k@NDNjoUfWt9;lw0lvY- _<ı S)lp@/ .T.H'tagi߄'N֘U 6\)IJAmtfs&;wrN0L≇ӻ>2R\a[/F0fKe񩋳S>ն# R45 c>L:4BNMO Iݍؤ4y&NG7 N7MGD 0M[JOVr zx'9" NPhvLw" ydUմ\W?y&Е99W3mchm^RA.Q˙*g8ԏIDQ#!L#hh\Ԡ7P]9[^_@ <vkoMt=o?e/+!$JqGń!TDw|N޷H-ڃsȧs썾/U܃[ XO^[N} %Og#o>+p!'| }ΤLwZ5!ލ ]p$1AB`8c-*.Ƿ-jIy:$E_^~/GLѿ<+/?vU7|/_~wpy4~$~ShVߓ.{k%&lL.3-U8KZ5╍1Ѣ% h|"$%=ĴqT0+3{Mn(Ysc^Î #Z2JXGC`&̨tXkcIKHu*e!b COg7ŀ}'TU\jemuޤ4՜ߕu*JӈhNW-4J@tnS1$}DW'A=:(C?X%כmO">ål?\u-::j25ob!9}!$aOvL:Ј^06jJn:527DA"2ࣽ+g^@/ Z:1RgX\g,rWzbK`7$I0 Y>[Nw̎'or Ikݟ~t57Ju%/f]3pr&gOzwy'In`5&L@'G؄vx<;W*-\ݕS7j->cU\gIuj0DAl0WA>]pYձX9Z6ԗfbԣf]'ġ7ےsr 6Ug^]Q(rIɽLg{?.8li5<"oBp'bJ}VE"g ;+}5t|TstL4R+ϊ̳< rbx>d$V- 4MEtm; Ƥ-ATMHĎ{=G7tbMB蠢;uٚ&6UgWڲH OԾIl._'_Hǘ3Ȕ`ͿpYm|U!qU[zۄ=}REP5-:H2R̷؁;izxtVTh}7MlnvH J ٠ *DY~F|V``E~l=|`NGǾgx ~/pU'܃ffIDAh5CMMg*AV&t?&SmՔO3xcK~>zT ߊ$?7ΣvYx [|d?.{ *cˋd(>$bixs$m%PE(nu1ƕ}Bsԭ]UϷvz xg ls:Ɇ.ϱMĂ45 [raē ld@1Drl~3U89VF=R m㉣5^45ޘE>LEg3ݲDb9xD@> ,aO=); w/f<p]?L>!.>/{ ں_܊ⱒamxu=Ў#ƥ{'\}[v5g~{h^ۦŁNbۘCk?}YehOuɪ?>)BXqU7@^P?P\_DxL1ƅ\*Sew=ᄉ'GzҜr§tNz$Vk7?t\?/~פ=Ϙm._6nspK=}=`2+3a9݊j9;_'G,fc B ,*k106n[N5!}KcK3x[ً-i eUiȕai"+`Oa+M01:>5Wk_frV=pgA G .m! 0XG?8ՉN|#!b ukË@b~sقu lIP0q Q4p3|a'\ 5y4C:"l\i΀6]1(sS[W#JT{νёwHGF*zɛ} RX72i?kw b` Ŗ8@_.GnB$>:xo /"n2vx.ב2\V ; T-:T>/8Aș[₎xbu!̉`Wtmca$[|G|oq$zU.۶1u1434x{1qR :\PĿikS|"H1&OyKG'.eR60;謾tAnkܘ?;r4G; ˵o%ǀ@;xX[G@VERP"y PGF泘y"lWBI Ufrr՟s2E)bbx~Y}Fwz39xʜb/'}f#$﫹dk K㺳أpO8d6]Si t`B& 2%WZrKI/IS{ƪfKJ26 oP퐫8 7ya7& *d`=0L˫po~?oǽ9{/۰k;w5%Іx4bjܱW77ٙ19;Vg7k~Jʀr2 a3οNj9ʞ#a挋m5zA ssB4Qqܠ`v\NS>uxVG' ԁGgg@q{ǴR1*WF |3B3خu|{)ZlbATBf>Z49g:yd\ DDfe` Sң-\馂:*ц/ btXuO r9Pxdc:kVgϟMGVmG^Ph=z q%Gz L5^{' zVc#=*f*_r9݂vRiD^{w"܏~ x_c'&¤!T#=͵zB9k(2yB$s]㯓H? h C'b>>\(׌t.hL17L|tW2u$M/)-DQ"K{!iNv:l7ٟrVid|ngx<֘)]پ%v?RLgǝƿcN!u+R:FcVYrDŘa4-f62J#dƪp~N`u?FOkpnt[Or'>dF+ WruNW`C=F[֮4g ^[ b]J:cXdt5Ô~ׁ)?# vQյ&=|dqj;1a)Z~:4CϑγD7SvN+rb:NgkDoڴӖ7IJ^Ngn/Cj^ Q&C`&^tL 7<*L1g|CvW"T2dK@K Q_FgVJgCMZy6Qv&QwD6h:[YeZ{'Zl F?vcH q#~ SpVk] t}@7X8 ɦD譿b၄vA%mIӏ~y%nlV -:>uqq3fJ)ktt<*-~i?V=l"ԹE{b{巃9ϧJG8 )w. +\K]Q쵸݋nG/;B(ӝvMb1Z1dQ1S Hbql\M˯oI#ե u֮H@ܒf&ݚZMFD=ۉ[<]~PߗJڵunlbA d{>@篚~We;Ԛﱓb۩[y9h,歘S{X^:揋o[dƒ: wڙ[/FV\{_S_P>hdjw^S&K$6 )2#)"iV9#!,(PT1 ?NlDJqfqG䌄"}+ÕMl5HQTtb;/_kxzKF M*&"0Bć@0+['Npt<$X[z^:9Y}JƂ #e[;v{`VsiLgv )zx՞/95oJ:V=->sGl􄩁X {Lӷ@Df_ ;/5Y8*f? VN=ؕ'ZuL YrJQ?B>q$9LvQM"E[4m` bp=t">a z  biWuĕV|4^٫A4Nr YqفƲ&`bro\=ix椯SN6/=@6‘ME!~=kq d K+[U*y_&H`)ؾ4~WHk+O&IcDXm/2l8ECd:Y{~<|%/z P􅹲W|ğI>:%BO۲J@}&jf K4-}p^Ў;=v]4@䆣)/-9b9u?To6/٠~kL~2 3vqGtxX:`9(l v]I~?ꃽ"&U1(Ne)sN]4YYq&+3O~>%݄LܲMJt=owF< XbTxgwcJ)(u3JuL狄ru~+Y=Q .zֺ䖶@&=`@+䰁׮K hu ALv$7+|o_>ix|z>n7ח{FJ8OȂ=o,cHZ hċ;MJ&EDn<[ZzNur qG7B3bf"jkw;8V GVDdIx~7lp0r%`ɐsqR1x۬c> Rsa@gyp n?(YM Ê;W1?)+OP֓.X$ iqZZm,5 Lk0,MSGXw!p;hy+T5Bօ-+Vu~B\FX`:x _A2F ₾_EM*l^@>>[ǛX*&'ȉtХWt</: BW+m2~T'4f-$:y'64>1#h^@J}^6R#3XSx&;|N{8y5]r ׳IdW=#=p}]?_-ksY<@B/~s:U{BIpdʐU1{YЂbp!`*ŦV. sE6:CA``tfYl0{?̞ bvSMY<r&C ZLn ; nOM%XT[P]fڴShc#RR!X#=5h T:P{Vc{y(s:c{Z8;lǻvdWN`6X cN {Q0䱧mwMW[ 1HەTMt]5UY6'@V:Wv{@u:=M򃆒 K7bi&"'bLV)lwM 4grnpP`hs>"oe;NWV gW_`mm62pv` @9t 4Y$Cї{]9pu)8v:Ys]vy<;c U>bȳ_W;]_l:eG|~/3H-sA[_נDhIp0G5OΟl.h˗\ʻcŸίt״Q8?1JaNюdBő˲b'N۠1(T~|82}>)+BAT>喟+IiLQ уbmď$[:R#/X"r Gڡ,~%TW_;3SBA_nw}{_kѨ>՝&,Nplh gɀi[ue ~o;q%j?6I&S_§یQr Y)O[(2 GBP>Cdz./bߴB!tM8!hO},۞j`;5 ׹ xXNA-dgfA}Vd `}YˬVQY|=pta==jUƿmpcj<%7$y+TS N1:WP?2 ]ޏp1y(J|9YW:>Q£zمVjM{+ݖbmNwsG0ɱ;'/!4knxU#YV—qҀ $*b'xىN*XL1!Zղ(mU> -Wq@K2;fc\`YB4݂{qfu$9D?M{KEFv~/kb[OaAM?ǯZ5t?1o3}k4کb2m4\X8lsP71'^ݭ..3/ڽo=Xd9}`'q+w u h;Tk׀o/tI)Ч|V7?>m;smc8{hϭn'`x&#BNtBC#jgKۊbKMfVHd | RNUF5{*Cvl@o&#;`vSc0`r29duP9).; |Ԓ D id0_>]m^6?LWiKxy(ڻ|C?ĒR ~GU Nos'صS/Mt +5γs6jh7)O *?4v7txMUsh3#cEp'lϥkQU&6[(^몿Y3xV{AnThm ]kol|Q;_6iePMsI{8WiksO,=lm$$@:g2fu~Q?k5|rԇz}ғϞ]~\|? |do7 OFGh`WY￾?(O/ovqV(q3?$w|l",Lg$F_Ϥߐ6^K $MhUvlQ^ZӬgu9:6cPicF! 3}̪l :A^T|aڤQ+s3_9D񓶀Do̫pz>'%`Q&~ 'RJ誌'Yl5$t:`våt9}^D&wm,:rsN4J97[< jt|` Ur;A$lNJE-_w˶WB۠–nx'f%^rl谱5\m|(0AEǽ!9׽̚;⍝!}2Iwx2; kʨqϗ>=[ʾa4gt%xS@uʃ}O8N&{O.*YT/}͢]S9>9_Q:3E'IZ;Tf\ $;!r"yǻ;)훆*<*4Fs|J#x oOo% $p諏'`NN-zM6@u~=W/Γő5|U`A̵Ց}aAAzUr)˸M^t,n~)z|my?dFtʦTyKbevb }fyCgP!* #4nd:c=h)o7hX,$0h׀y哟cX J%ADG6Pjw\^T1|TI&%J!7~v=69.<`k>TaO|(rAo+nrLsIޛ>| )2w]Ԯ=!t'_RnyS\ +/;j3~G+%t\yb!ݑ!˵#Vp@mB1$_J:0T_$:<dn֊Wv:(4qLj_990 7{/[$l]]xe_ ͫLБʌf;7VRk!E(fhlqBVX\oW'T_0o?l#;zkC]i U;wkcVB<-Ŝqɱ[[K{y| G/~Czl7kzN;۟'ኩZ"$Iү|G]> ]ZIQ}9}pM1|= Z}^?0|dvcMNjE&m#pJ(Կum?qV3i!WϿl0?|}?l"@ܸ |LzqrրޯnxxAc)N-τET:ďP :'k&h0|ē 0` 5vɃf).B(0cbiWeKP;̖B N z7yIWΫK19::xAxX4([g<ěI553L()Y?{A<0MZdH15 ok4 q!$:J%DFu!*):@]g4LIQpuI~<ۅuf=^[mC:jK؜;6ac.a_tׁE6sFo[c_ƳrEb fU{q6f ɀ_wwCo\%+"g\e,+V1X z:Yl? !YNzwx5VaW=dvd{1DQ{s+0k6u p;a|ë~^΀闾;{^ωpYd2e-;jC'?+>L`(, \4'.Ivt~& NV쐧s/kll.rMR.fiwB~X=^ֱw1[g4) dϽ~1⨧]tly:0]OpGʣpyv2x\Ct`51gaN/ޡer&R<'}l"{l*b[=8-gO?٫u`K1x@:CoP"Q`Y~ c6ʞMH.ffE=+&%$w|3'n%{yC>͎jf峛8ZL±7ƨ$?5%EJ, ;7I`yr3HMV4{`&g(䀕W%3e3M?F;OI֩7SI$+Mj 2"~pp]]^ccti{vAĵc 7]wVUY+W%M31!V\79G?fpH6ꊇ<7xNdNֳK`G>JR Lg) ]W?1j|5DD@&BbncпWfSaǒ%كFB8G(#aqayVd ^>G,P[5.-Ac<1Bۄ~e^t[p8|G l|Lpb=]o9R* o1F *O'?o' L2~Lzd}?B(6 W+DǃxG~T?^z~}: og&*}ݯ<,MtW[oo[_W7߹=X6A/NtnLr_$;@rs jתJa6LEңmW}?xΊM_.?}.>j炇Aۍ}͎A>dW=@&7A^ \tS~`- WYx?_zMN$Do .s&m|yx!=U__;@^$m5]_ӧ { y>{4T?0 [`Fzvg/_ﲯw?|[=18jC,b>JF&n_|ht;{MH5xA}ۤYv/8o`[.ŬKC-Di7ɥ[ ]@?'I'gMarx 1W6fk `(@)ogI0LJQ5HΖ8>H`KRd2\wt洋% ֹ`;8׈ XP fK lRR3h4|* qOkbYߧ:b1mbB-`_rW !O'ua|4MfhNM'AлQt|u4٪=<#qC9e$?ĭvgƌx|w 4"bK<N  THmec7#}#c.KIn[=緎˂02-Ѳ*Z%Aoǁ5Ѽ\$6 Lm/d^ ?/_;blʓ ` @ Ehw UKkБ& X(0Qkl7sf_0<,ö|fe6s޽""@ lvM-e*>5jo+w6\AxR#N9~y6{F‡S?YMS1{bPC (0pxuV5m5D:ѳNY)H]X(>is@eoVzѪ-e58y'[r:-79Ul&s/dWirBtΛM.} 8dvD>uf Y0F*0a\+W=.^}J:㛁dhHJ47"VvTdiayAh=l-0OB5;Edma%eHIK'vC ʦ4nGcՆ59#ȫho㉪oT)t]`v8.g҉ ~abbR  G;C72am⴩d`IG;xWX[ŀ94>&n|οkߕ6h"`GЙl|lr*O`O gnJ-"{onq򾅑k39{y=GiWAo金B1'K*;W sHS~:axmBʖVt%7Sy9<6ģm.b2ϐ`j7"v-+4v1=[ b>᏷dYž7ܽʍT1D Zii3XԩX0QNAgm7$ tԙ6ߛЮlIG]%wv3FFly*+jPtAN$8sE mTZZw+p,uظ~Aȗ^:Oz>Oν(.>[\5砗?xfn3=a^ q=۪zy~"N^ЛLۃ4[ڭu.4X<#𜳽I*ZxjVwxX~LIkſ㺼RuMnF'Yx$;y՗wO/zVȃ}&d~sD_}o|ٷ./].zD 4{Kv%3{֟ŒqwedNoFkZo#+ k[.'9q=E3|s)'XQQ-}*_ai2ro:]ڰop&(uتUc- $+}oUv{IZZx^ 'gcw"Gj*MaH̒[J-Pp"J< hxer?@ Yn۶76ᑡQi(piF7M&  FONDg$BKrӑn, 9Dva%dAض@@54bqrLV@|ʙ,<:CGߓ@皭Zg4g2،i20N^3yTױA@)>_%|4c"k0_[EƓ)쨯`wu)7R#V^I4WF-?6`f?B!\ ')ΗfXo(+hLFP/}2փoc@\Cu'!NZg6=_&Iߠ\芆ʟ)BHm+xC?WΫT|3u!uA95: #`6 &YΦu]YYXΖ`O_o1lgt`peȉd/O*btHwloppo/?{R}M C`Vfv7ir-~0 Đ!?[%؜>?/&XN*2G|(-t֮Kϵy:W][x`o vMd *eK^y96t_kr휘;\8vo4T1dj7#:\b8y:xx=4$hX6C?PNe6:f&!Rܵ;fx[P_dt+#U;^uz}h+wztB}r.2lT8~&od앨#x)ATi# @yx>d|7D .|}ȌW>4Yddkxv{fU&F+0G'ĘF!Z_|6?!M$>C&7{/_ttᓵv.K.h{-2Lo7ė-֓?ɧ^>w{Ko/O翾6-FHTޛ_-bd2~^n6ح[&_?$C2H.yXv>,6ʪm aT6+Q;zJ>fQD?lk-X) # b0%~}"d)5D) N(rsl3Tⲟo:3fVl8e*XM!:ZT:W :!Xq9W[5^eAMJd ֌&xG'tF*`7m#zJj+V5Y%cl*(+߻e'<+up*3wBFgpg^ucd$PGϓJwbN79mQl>˟Nf`G>CE;- z"|颺|¡F _*=S78tF/`h r 6Q>5Ou]?l=u6}㡋F( Doh*}%t`meϮx K>uç|"eQfFZ^hP19!Mԋe[#Ta\\` 0ŋY@#~6mɝdk?4\S)7؂;&4~l}xxn tzK]9 B%/p1=DO unPu.?H0t̞&4_5%|fɋ?B譜<7qpvz!͹Vv%َMDax/L969;`Cj"LPO1:br)|e萸p.=m^4M&{V&{<#8{~२~Iav6rn竭Kl.8OOգ p,nxމK{;,t25u6p_S2t@GW'U79%dc$sӁCnN`H^$C~v#xop!r9gOpt-'+'Ctut0\aLnC}Ӟϰ~籤;Zmlضʋj;=:MKe)U} 4ZBt{;韦+ =dTڑAptT׶_w16r! L$G6B9O;ұUx-՛M [odvӭzhĤo ## 'pb]t,O3ŨK;7D? ⸶Ţ~7zxDÁRNyl~aQ)/nvnUއ0yȭNO\7a)U3m@ zސGpVD[SgzzO. 6'X/_"-.(D G- U>SvY䂤;& UG,URB"Du{1\%+$1cxŁ_.~fʢ)~qVJQӌӼP^6Ɩ|$9H/UvWz1?^[? CǗo}J{o2r8}ᡊn?^>?˳|_O??^^6'p<?M"{h<NY&@494 sJM9H'` Rx{++d?.{'4 v;;4p&_ԫ|j?HW=0VaFFߴUyOm`̂O?n 4lE5D2_&mD*Qc"yv{o;>i:?f+ϲ\({,`<~v|)Bnx Ec VOS[ |_'}2I3XpN gu(<(H:F+@6yvpumѯ2 [7h&`.Ml`3I`5[E[o|1nDYfJ;!2)9V'r^AU>CF%GoyxlRSN_&̼Wz%LޙlY9vV=jUDhv{c[9U7b^(;.Nǂ| Fdn28S,KJbb7,Y==g H'#btu^p~^&Ko3.=Zvx;szMEM$m|q&* J{s  m8L4]| - m6ǝQЦ)/vFǾ&11g\cnD'OX9@di<غ˟Ez/~x]~/N|KF8'aE m% ܾz[GM'O/.6~壞<>_bL|pѶgwh޶@Rvl'@2?Ѻ^[c&!R*ު lIXc^u`2u~"V͞[kAOAſN䓿#-1<:6/km[Ig0v#-Lh? Zpŗ'=N.iS$ Yv_Z?b;WॅWtVH Haѓ$I |lmkOTėXeJK* FO{J  rb2 W0DNT:wU1]6uvЍO~zS%W$1seC=$/F(QacEPA/<}B6X*nWzNU^ۿLlfyJ32~\&hV']Y 4 }!LP=={6rʏ~8$gVNjsh;![E$露RlAl(cx0:k~Ryhk#~'?ffty|tOtT:Z?zJA3)N2hP&¯DMg7ͨL^zCQqNQ1sbØ~Er?oVy!51Iӑ4?&S_K:7!Ō 졻Z}2vx6EׯN;ES J{lhM^^ֹۿ,L^?B[߷àD{='(Vgഋ bg?}]|:!@IDAT(ľg!37m¦I&0A}vB?~ҭ^\; t\LC}{?޷w\cHCAQ Pg4 7@/!>@!~sKðRLDQ{ٳ_.} aDmrӓ"1); 8x^՟ .FHŸ\gTi%H T`[3T(w ,39K_ ٻWd~sQVͶTk:ѶN{W VFqlw:zW>f4 \Ll%q2 'Z"Xtu.ۓ^ƽ!lhdޖ DBIݎԣs簏 `fխ7{d&4ZxXu pq`Te p2^nHblm~,fWPNw5`|2ZlNQDe2Om{!8'WM V۠n1]Wo=-El`=Y ȃ)t©1VlryXGgT!;w-q`u\@tG8^ `L>iwĉS|n G+qŃvpWu?ـ|+e6Iᝯ1.ـ/9n2^quhQgƴoѡ*T];}~uЕ27O=>J?ωw_`<ۢ7N&qJ^fvؚ,Η6B:6 ^d8&l$ ynrJ:OM:-&@@bxL^eׁ._~SJ|z"N)#z4G;Tr+ ~1M,M/?RޖkV;/hOe{>n߮O8]??];4d[R?*.?}ZLכh30__tM|;Ά{xC9Bdۊcxw2+{ȮMra=ԡ}~t=>p {ۊ`)oO~WMyL7c2 Xg,[^oOjV4۫-!׿W/e#nKg :scȎڴ02W>/z?gQᏗ;_Ͼ?L]|~z6/W|g_|d}?f$F˖KGr` 6ˀC l!-eo C~8 5 R:׬EP&cqOcG`wlSNv4Rl2j):ۉSBB6q*Ӊ%R@hzӀujqu5DHM Nk 0Pq:̂뵳9"Kyaf9F$.sĄkvJN [ Ǫ,бwU̐jIh]3rir|M&xh5Qj5x9^cCqY`eUN6KbhߜY^8ryѫ=d,>48 Iv|:ޯG#+.7в)pY:&TAuCx*n@=ۖN@+VRpAYvlJdRسt qcu*rz_:g\# &tw^/Wfj`<=z0Ox_P&GkElQ޶y]~b64۫m#QJl{:Xr5D V`77pM:>ht'{=;[zCG\3[ͪxgl4X6 k 6JniLIxl *rt$T5`B1vův ZgSjm^ꕖv5..VnBfàgrd%D1zl6|īt[ :tFJR*G1LAdRh1ğX(,9|)`@ Nv9P7nm1_>Pʏ;ч-:%M$9]ھ*1EZ{h ]!6A[͂em3h@~ NjvJ="䆣{uڡ\<:*[!8P,tr% 6v R'8=ÑɁF.Jj8Sل( |@4Q:+]bV4LD꣝#\vtVB=`w'桁܏:PMTV\mx`j&~ouПpĆ|HEG[̡X2WhMҗX{U wUʷBM-ZQRy0X*8_3Y}6xfbG4M_fq*7\߶[!~5ml6K&tz#+h$D@Dlz:oĊ0ĐO/*7>CsmT|W= @{kbD~o;?mZm!&n>'.9f >[_ 烇Ja)qW/w{S>`_/;5f)rO6B_) ^z֫]^{HJΉMJgg|_p2;&?χ_xN?>{vys&?_@嫯_>6vĚ*U[GI7}dݻoqǽ)@ľą!ϒ@i'_/Z0d2u1X0w(F_`|pyړ3],ugDh_zdk$c3Ig+[t pVsonf$)8;qAF@1!bEDoc%S<ΖjCL\v:vO[gأ0Ok5[]}묓WdX#$3`&; $?:@1k;TSIlNmnKotq ʲ?rPMQk~V9 z,V~'^u$5uf;8*%g<>c/ b/SơL.+W:+#VAP>:o:&Dm#g|(Geloݚ#kFXb?-Ei-op|W 4[U퐧Nhn1{2gq=9 i9!}_<~}&iZ)Fvs}b'-* ƚ؞V8~&o~n-O.?zGG=KгwK.[P!-s)f[J9ͫ!5 3oaJ|czn9m=]wJ|>iœ8ڛo<|`=$`HpפtS &V퓲q&쁅'dַ(:/EMF7;Ҿe/[6ڿ#N5/%~V{?m[Op^?L^tmO.i\ٷ?|/OOFsFπvڂ,*`>['~}=7^+)g't[&s<⏯mdz @bN!A:&A;b#̘JсEQ}`' ek`/p UGf8pʖr{0Bv5WnDn V#fn/kYmS,#\1SL-7C2kPUCf%w#=Iw4J.'CEgєc{됏`O*F|̺G0>`Z ᒎ::M3pmgѠD77Z9<`yuN+Z H['me Mgl2ډQC?LH])Q@_]5]4Z{CQ4h*#}}0TJ V2eP0ꐘ3F.1]aX4o}8rtXPu ɀɟ-V<2? Tp|A]6AH(~f.jwt톇0r&cNoY{sۃ$5e@&S^u~` ` K%$uKg>{V\Z2+ ]U2 O bOn@$?0<T|g:Bjunv%:lr:p|aM%•-.E;[URS:?PJ$Y:%Y l&et%&Lvo"&]d+&ofd]Nj#Vm2w qbr&6WBS"'AiW=kJW9*J[[3;hKyZjJ}cPf h {|U6 Wg5/X[7]L` J [?# ʕ.g6sd4{'q[9ZhDXgǩ׫\猻z<[z٨wSy*矣. -n Rw[7&VqcN}]H|ӿ:}/盗wc}/ySC^BLg:s:3TLm6atVe&n1Zc-w³vV`4mr2|-5y9x =x&ƻϺj=.Zѽ τU䲝x!$1FNz?Ͼ*oV8Wo·/7?|ǬO>d疾\F:N P|?U^>ӟ\\/~|_v [\0F[M@q@EiڞIip{pe6Y({q3Y6v{H1pSkhB9qˮ #خr>Rgce(ś-x1VՅ`FK;$$bp`ԞEj1jeNo:95!k,9'9dfr NttYvDؤ 'Ԫ`?oLK"M$ǖm sRX m*IɃM -$z^ZAJ\ɩ_O5_G| _"`/G骣р-=蛿>6W<]=\'c)-°bpjvqU>lahIΆ'NVlY+NeL\U&XɂEc `cP1_m0k[Wn\8/^TKߛSoQ'ٝId3(mvs}<}xb" BPتƼ/?ZꈑfZw~Xnqc`4Bb8%Kyd:wD= A88wrL;/TANSP?uO3n էZ:&\~̕[u֒w^;q.l 2/LhOMU8}(\hOx&h6-^h~a+ц"|q[>!Ao=3r$EjTϹ~kX)y2t5ZV%~仜ձ+x}J 2$Fl}iF3Wg/ggg/FW6|.}:_O#]u<҇=GtԻ]! #'I}+A]x+A837_oиǗ>zzN딋 qyf 9F3GzX&dQR/{3o^/o$iMz-  Vj|ьq$Jv[ ,ggKbqrҹ6XagyӉuɎD9O9uAL: I _x=;[PM/=$pd $H/%~K 1d>i&P"$@vln7thH&B@%_K$;{xh""ܮx5l9`["%ya OWu ̐ẽD8VJO^ m{_8tqN0-Ip6wU.!7"]%̼L6L`>1`䩿L{-cGίvVDbl;MޛB t ;ͻ5 H0Mg_VP#M]=x9;?Ak`G=h9|9;U;ꏲ=k$`3B?/щZ_}{`T:.n[>GT IbجQ֞R~UR7[݉=5Ťߌ"jkב: VOYaO;zYjpE([ ;r+7e6@JLJڱѤ(Cb);G0b#x$Rw0Nv  VpAwc7y@l(SQDVLmPO*VF׶(bR^ :xs췜6P5!GdR:hi)ÍS*WtV#%h%+{}nЃGgyKŶlMm営|jO:91xg ?g}7㉰ r˯/g̃'{Ý@";Kfb^tߪ:ysyk1[&.?/.VvAFm]>mq5ʁ;ݺq?nLL{O3=7fַoqePl@Ibxe@KH).Er]֘;9=N-Ah`%4KV]%_,-8-}୳ٰŇrut(ES've&' v)NN^s_E4dJweԋQ)0^B&}8Sw}sx*s1۠kvnoz0GQ= /F  G0>*o6pDm& ^xn)V.d -x"4L +<r=[\>w[6YE{nO Lx] !22WNb)0Spd5ٟ<5[O6bηv@E;cZ[)zfsxM'CR:q{x^m݂6% H6Mv{bRȩ9 X r? =ih ;2FA$ddƀM Dpv6󰪟.+?`w=_nS=d @䧳՜J$6@vM"c?Y )<\u,gGf5eM:ƣQQMXɣ3;Dg=!רbANuY~_tuK&WEJ,NTs|Ώsj6GqEh1:[_Iѣ`_5c[%9Mgwv3FXQ\[z}Msfb7\EobNA>S˜;:1Ox܉h3*^u+S-x*]hM?d%VrLd4fWWCőem?ixd_3!s`hOC^ã#3a|]uRv`SVCI'FW n2YAV8{Ҭ>k41 m;,\pvk0Xy!IOlf˫DsO{q6kW+L}O>ˉҔ'xV&|-ήȩ:}R ش ZZQGCWbdwmůNgpH>z<ݛDWܒj.śg>}Z&A7α&dbCcwoN(ΝZEĆb[?S_4^tQ#PG"~ÿ_{;=՟M1OP%w&UoBvֈ.d ,Z^^Z6oODq6yN9Y Û8W9VeD MV)?!.(<ׅQ{8wk.t򄨎ѡx#19m 0%h-P(O\LjV@"!ߖIX%Rv^6*Li5YD K;6Шjr: G"9 Vy%+];*R~@K:R*|U FKI%a9o5"_- A:P??It{ѡ`ufX F%KPȕ>96a2@LBǾ:QraxM|A®(u?ӂh/AtVuP /meBs?ZrB.} mJ9'rI#]rucukIl$l.@H XHV̆"k /JI5%6ѰN<7ppnnKJI wbe>nBmzR39~3bxx!심ITuu":bHS+X;gB|azA:}p{Rg6ͼ,Z`uϨD:6>磓7&<ɊN5o%C|}r7Eo6|XW,X'DklC"5}GW%BV7 >vTxx՝!*kioӭس)mv#YXu53}&ȡX'@|ptItV\E`өpv'~)=+* GPz*'?CŋlN| 'F_pբH`Ӯ7) 8g`rf?dfY,@~ڎڼժ1c}lXrAI }9 (UMJڎ#.ȱ ! |.F 6U"|rv›~uމ9ڇ1{;~gM"U4l}[HܖG[`ZᚭUBDx\JJuZۤf$Lw9Tu|^glfĉφilgqxGϑ'~ .j4AxݾW9O lH(Vb2ع'9әXxC|)3%-ܑ:txV+W:&GrY_3CrT$+mU;7x&wK*rn;~Eb2-'ؓ~1y te1r'Y7pN G^-,qd_ vfQw=ӌ$?d Fë<+;IPF:=7 i !#wI1qm3I͸jsW Si~mu&;M t=G~Σ}edi階,/\muD/0_3)1w2JIٻp(wMwpWV : f-qr/mC2>yWykUD{ml N6Dv1#y٭_ɓ vGIF*'F_|Oў#dz|=ݲGTu ftt@קvmdj6q |L0+#4-9WN*TKl__k9m$q&nhv#ʼn8h1@~r'rяC;=nۭoe[½dZ\`l~WlK 6vBXǫ=dQ?#"U>oWˍgt-gɯ&9n躃]fOm[L?9,pD8iIm#Sd|ϡIL>F0G ~m8:_bN4|jSK2x7'`<鯽='Gw*ݭLb;EtekLQnxEe/4| w|UM,ۥ{<$թ>ɬr|8o&U7N;v*=kgO'3*1n@*/}WvPtKJpe>\M;GGuٗ` UxK-\< &[@.Pkc朁:CQБ=mVի*89GAyL~+ 4 z4L6i$5sܫW 1:͓۫<[u|eW ~# |(}C%)wU&Ȩ+z&@N0Mp8:Y ѹŖFKm`G.uዞn .%ʒj;S'ٱ.6uR\{&F\gp7P!pak2 >!N٦0$u1W$%q-3 3Ƞzo#'''+Cځ5R C w<>V1ݧk]Q/_\.R ~7Y Ws)F2-&/ M ՕV KD' 60H Wvf(kc2tv$yr w'N^W[qr:U]Ex\jҩF/ msf:05қ Kn'_^}@j׈2촯Y-\ci|Wo}6W:Ŕ1mb`j3[ce+niLo`Oǖ0N3ܸnl-oBYzzكdUS]jEw |/9;}ewFJxvy.?/ݿHߩ-q{mdM#l%O.fLꐥqN *fG_5y6<0e >Qr6b4pzq 1e>I cFgB浆.TmWs3F }- <%ތ!7Q eKbn t519NxG ̈^mm Tr#dS_`p|Sxj3<*= &R$ /YދrZmGZ`҇UNLnr CP.6<ڛC}JիL[[R/ɮjnM}ʈI`--@#duȬpA&k`68Ln-7uo6[M…V<,}d\E`f vp_`ɮdsKC%BN(_|!$F޶`F&Ӏɹ:vI\O;^2^@2Y<(aI^l՞t# `mI`$z&; bl vjIl@G w|8U⬝uĂTry>5՛sjΖu\Nt@^UʎB8Z=!y6cDl&;^6U^5YmR jlp&M"x-+l8r^Bt{hk>B_h=ݒBx GU]&[ kk LL fs98+׿^GvQ͚$[4|?C4~فmV^0Ԋr5OLGb#[>Wٮ6FS&R'0:I&; AXc/Gt:lk%&n4_運):ܕ 5vupOITW:ڎ>);;4H%Q1G?gWɬs0V5Z:ogt(lŻb_n9 %`#=бxj_IF~/(k!| wmjt>:@y3 b`7ٸrw®ь-kf'A^ʗ*)W΍3aƕH C{X=n?muk-H <NUBG X;+7Z}]ݪ vԓSn A݆=\w>qBg'r;= ?~˟7 ,JU|B(Ex[#N± `*7^$d<`\*>ɍyеs8V=,O3NڲNߪ;g/5q+}A0ʻ[xcdM/W)`9h?9T7?=U``l00a1==yp& һ=5z8?߾]l^^g࿇=Y1a={>_Vܫq.Y6mM[WGrXt!JtfNWOz7zpӯ6qz_ X:Ѯ9:}/gh] |-l@<(,G T=cu KTmDa@䃈a2o*+;#ԛO=n+hG`XuTtK/[K36!yx-S}}yf˼/Sh6'& NCCnNle{@ ._ .&\@α9'TŃ ܃fqOK?fYα*v>\# Dg^Awp&Kى%nk" S)֨Sbc 4}h 9i8Dm1[_; ; m@,!6J(["nUGM8lvgScەWo JdU^>#f"h4> lYdpbd4v, ȃ }X?&՗}O~<~wVu"06p䕌wwSweG 7lScyɦS"â͠e`@BG=OfE"aaE sxgk:t  Ol ZD5j nFr_^.wmFʭ蕀 =C`v+}& :{㻗o.~_08_||DgٺX7+Cvvxc:g='7 u 2۾_.y_YCDΞZO6=j;|_GړsH{:Hq;_7?UW_6O̓>k4pҽ5>;>mfM d՛.|COm9|I^z;R-@r"}{V.n~-Q *c9_ s&4*^Ir  Ap`n˨6X'`,!v> %~!WKg?q:AO[G?4kk6*Z{% g&J6ts"lW3tք?iD^v,X:m?YIf͘!V^U| y\1 l{P'<|`i ǭI#W^6ȫ'[@~&" b|zGp-T ^LMt89~;j |T&/:Ag7mǮ${%[cDJm+CAqnĠ% Iբ:N c:3*mR R$|?W~٫zux/yvIXD?ŵd]߮FA a1; %FtU_6f[F$W &?vaԓ5{XO|dϗa"3{M FYx#7T?>0eb 8 6@^wk?R_- _܅(KT@b>qm7pV,pv⣷)ua'޽yMMf n`d|xXbgk]~G9o^ww~_{rvA?sg#αݞmb42̭*&KZ -|=Q[YVY/1f/Vr7~_]>zb\,IWp'B"ec[G>ӭzz[򷭌xk^-]?~ |gV~;9E8$ek%Pr&N%LUQs(+%|fcw.es5;e2Fz@r H~'3Gopr*lkVshhK/lmc<a LĤHfWі O 9z{Фʞ2-/N39ܮj &5gֽ目z{ok|l +-<f/{PN\]拉l)9|G_\#LLoKs}ougǁ[quHJK:B5ng#Hɑtaqm&wdWyo#7wpOGGo3x`!1Dve4v~7߂劑z B/>D9Pvۊvf*^MPL&[݃"fDRpf:H<v^-Ng䰘 &&4j)fmeG5')I,59W"5 RKɺ% Z1shWYrܠ Z`kWiV؈ѦNg?^)፠L?X}lj2ɴJcAKu\ח~sV>N=bהCfJ-G}ē>IO]Єh !l'ϭפ6t m9A;d֧P tw/\ Adzu{ su/GգQ,ojyEReO>Jk'n = J.㾝G^pGdn"IL5p3㗰ƑZϤFOۖ@5pZO~4_gaT{`AFo Q' sUL2rɇ\`W`WSx"]݄}Wi2}{2{Dl=lH3 >j7˷4"r Ӏ6( UlntjD+|M4YKJl+:;O'p ]Ml2.#wpy~2yn"r$0p L}ԠʹmI+:^~i[C>ٚ@TK![X}M8[t ^ ^ _ S} uնcDjy#hu/ۗ]<~rf>x]Ǘu &>.ڴ~W=sу;f|Q.f q= bU II.yn\vkBx ϻxbo VRgɨFdgg҅]u~6a| Y=ʗfN]~|}aNUNv{^}$>(|׾};_k%>GG_^>n.u<b 쓣K0TLq*[-scϥTy_ k]fAs:I!6ӗQ\; VPnL`x,zxEhnʣxLA5N4C"- \`88cȁ`["f7:\m !h#Р~fЕ Fp# ^'.د88͑(x@%Itei\FwKF FfnYs.y%Gl`cOY.E&KW' '"\IK>Y%S3%- ];h]!nye>%suunWYr x2_E8_]Le^iAU8 JsTKtRk9 0VI&[2rx7pyn >u96æk%jl\7aI{M4txLƸ`d)[LέI@CHӉ)Z/mAIB&2cJ `3pAAL/}XԖLu.`o&L}?H道먓 :xdݙfѽ&@Hdɔ3t1Y#ŴD; H6_lK.ʓ| :d_Ty&SgQ|g՝T+;c|'lis= n~:Nm0-EXɖɈ8ɮ;!>,d6pl)g$}TJO`̯%6G-7\f>2pfY謺$G?MKal'%.Lv"סtnC:#~M.pb=wOy}ndBdB m#Vڟ &[[bm_ oz^%I4 #Y~5$%i׆eg#U67ȥAu|YF-*R퇵&(~EgmQy~dl@3|'O|ͳbj>_+Jt,(.Qp^A)TeTɽgΤwv8!?Xy2{Q>L}DY"OBw4q*wÐ,' C߹(ݨ=׎<[j,6]ۑ>$Ynp}C(W.WހLbā⁾=C*# #gQ lC }Dg霜'ej=UUڹO3>UH2 [W_۝vv?>%G]7<ҙC*gJ;V-[r@8Ny'}߾|ïWwK曀]_?O{eewsy&?~6y wnVx1V@Y?ugdOBbW5Rl7Y]{^^/]'ڊ1Z'WVt +xzZMˆ:Y^"0/d=89fyu96|>,>5v^}01#g}ҷ//\H;.*u^xnk v x5| ~ ş]/~|~č"-ud"~H|b4Zlբj%˝k`-F*r ,7Gd +㪇 |G t"FHN#WW@?е?v\Igfp#q"@` huƙsNW Gu<5^bVUgHhQ`lfp4Yb%-wh<s3l7EAp='] Ä6}"%,]Hpx!Xg1nع%]'گ,G˖l&N$A~.ܞ /e Llg03F#6}u_>ˀy[hg&3jW_Rܓ _r: 6cܙ(L4H\xMRF܂Co>ןQrDaK:G+:Q UܬNeUW&G-z7*d oi%1bx˿?@7>l-HBd |p$# zJZk|Фkی2g]zיT6͎-@^87''Ȣs>BIY8@)< -7ҷ2Җ$ŋ  {w||h*_lp3(]/b>*!4dC&omgKfS7bj} QAb{x鉼t l@ }VJч8!G (z~d6bm.Ɇ,ɹJzB{HmRxJe@qH:jp*b7;ug 3ZQp_ۇÕ STӵb1`b6L6c*ْt><%q<WK/Y 1VA4Ux;Ibb=R¬mFێ_vp&+bQzGΤOtF 3X$bu}U dx?hX{E{[-o?`?sEyE4Gr!_p\~2XxbgɄ|I+6>ۭY6x:49&wk)>+uf[;|Ǯ<~G!@R|E\V-&FA@Ժ NW8fo9&K0r 5Rr&=-VE~91D%5N>di*[vanp)rW5ZA8tqM)rVk YT|k¯r4Ll 5d > EňVr+z KzȢz|r{<^+K<m`Y cV*6V6hד 9KLd~b+8s\SQ^@a6f@G'ηH;.[5+l'-1uD7 }9F؄>T?:x=\˿od{·_k9{=\e^nx;_Bj%4?C LoR _*u"Y?Ix~K_5amohUAalRdؗ]ax#ĽgI/-~ lIZ+ c㡼&aդy0xeS>^X%ɋ=)~s~g-"&K_!߾^wg$ t&"ݵΗ=\wg5k_nwQWGʛǦCts 1]w|V(l 9WUO*Y'cME{4š\9U3 HXSHVLmf5Q5G[yrllAppr))u] x:9dn6[6§T ܟa&Ψk sn:o8ђ+?=t!{ZuT0P:j:_R1DgfqO`/q8Ґ_ƽ24<z;y hvt7W`4>f _ v/Qal27f1PlhbpǚfߒmSهi^uncn+8lSCG<u*l:9,YC;n 4%#1g'xx^=dҫ9z?[O`DJ&4:6 e5'MoKn]ŏV̤?;'`1HN]܄W]Օ"PW1!>']=9%C'Oaw}j |Ȩ6/&h&_qbl>r[҂i9,&+~Y6J۠-evm*S5ŋf˞fl`[%@փQ44"96_[})&\ax' -&vE  +XJ$DH}h>ɄF Q M&na*Yb#xuVĉ[ B~1vd A^ō󹊾duНǤ#ri[ }lR}1M;|׷Գz]'{_^-@;:vh.t xsh> ts!yLӌdHU9 !m rU6@NƔUS ؁N*b9kٰFz|* K^e5}`V}OT&: N#WuB}4LxB0]U4ShPXir-)czQ@&aM\;phUi5)u xR*?[mIsH/NL"ox::wnC׸1[_҆]F2y} ͖UU$34Iog}NL]xk[QNƁ8F-FwlePF3Nw;}="G jv[(f~O';q_"==S`>Y'{/_~\G?.^?{ۃK7۽_/^oo\<~Mxm=ɐO˼0/OvuM~ѠOٕ=ww><'xyy{[ zby A V=3ΕK0GUVS%?N'-Wt6d㕙'ޛhCY=J᫳34\M;˗YQDJ@_'zʄO>_< //^^Ow?_]O/ɚ6W)7gɱ|⊂[$w#}v=UZp՟#[bLjSeqI_m:p(+k$31sMջ&< (v0f -aqp%=@42 GpJ PBu!w%"笖,Ҿdh VEPB=8//v >V`Z2D vh1P@KϽ> l]|SPd돦mWYW+=aOG^`smI-/)/[k,C-䄛߰W<gMׄwGx`–n/ 趩g֐`df3{]۔l6L]gfh&M֌Mn_T-3a&&{Iv+q$8r8A2Ji-5yrk~6~ԯ0 [F3aa@ cܞXLn)T5'k~+9$5PCF3:x`7VG!g\[W!G;~ .7ڪCN#?\!]N.SF'__X[UG`t'9.n =27$hPNW!z(ۊW?dv@t{&]`fdtL2[}CqW W;,5EX%h]lw2 5CG7 xUp}eV?Ein$ma2,8?hnx?S'd^`8߈'dLL5H7YhY" !۩M .uѸs{.aϒgݫZOSY{ݢqNwʾIX&&OxW]~ܺxo~;~ .<$' Dd={}>ou)򵷗y{q6(!a65G>tq|r^.(ɕ>M/_71y'Nv\>p+7biAf6}V^d YޗV˵"^i~W|1[ ^'>8ĕl/=?Ni{Չl XgT=}}O?|k_߸yor]wd|@IDAT&~[V҂n#_3`\aq/Hؗ@N:Ml-Szgp-^B3z$cڦN;i-;~ndRJ)%eɒ*v 0e! 66T宪TjRR[fZOWKϨ>ᷫVxW){Fˁqs>rYeVLB[L '^4Ϡ;6ÓP.t0{Nc l٠Od]Me: kQU2;|࢘t긻 { &8ǕPQNPr%*\c^+alRiXe3G0XlQ e|8t#B`/zpSLhn7Kdžd̒Q _QΦ7[V^4]W`Dͤ#4ؖKw(DEq׈K۩zu\,+{LZAgnj ^H^>[ Jƛ੸RF2/Φom" G`&c'(m'8XqwtȾk'L'%NmAҀ)7e"kW9?]y& ^fr])z0&96qZY)K# -z>'c1Jm^UYm2rOO'b{4yvyxP`H dc/Qa3S<02wl'YyIȮ!mv1/[7n׬?譼wlRʞ:J߮X[rĴAs8iu f[kkTǦ{1|a+>bY[}2Nf & u׀{ċUQ M4n|j\>__oq{Jվ.P)&ڬS/~u>O??|w?auHx[Q󥭨kك{O[~\^~lx g_h o&gO^]͞lz?Qݎ, 6J\M4AAG8 GF^gIv~3Gd7Tkį12?Ggg  칢6]}2}ҥk ]p&Re#|ȫ)$ϲ@![X_W^\G=zXTZ{ 3ËCK 9~_C Kiog҃jwi'/vٕ7P],c<|w?2KZ8!Ge\8=xlaȍ,`VHvK8gܯ̟Lp/ذWD!/O>>K욮چL<A+8"c|H [DlR ;Չ}|[`X_e 9>em.+) =a1=~ڋg_VAq/hטoՙIQo\g?'4*^G-;eMo2Wj*,kRp= މ. @!ח/x|l|#g;~=g0^ a``sU*^FZoIէdc}c+\`ȓҺ,aF1}zO~w.sO=!tif5J1Ν^{|Na@7Uc!q1}{o\~z7_wKY}JjųM GE\GKv}7x8̌knF6P0ԁԘIO/Hn12UAt8 H"8'Fd_ -* QU+cAƠ%Y xoF‚ܗ5qAAEx,ѺЉ?^+Amgދ(F\K>f@ph?ޱGC4*zG4 sU:z.8zrE!sF{>}J4t| ģUfrMdcW QN*wUF|x;O˳"f[%Y| >F K$D-rqU" gzN49sftd:E`$uR.#9Ql纼x]:&-~9H0j '}|/ fvxJ4I\--YqrNje{%,kԖ_@:n$ 9d`G[C?<>d\*<1t+Ir$4SC Q9 &#RB i3>+C:gOE\$=!|lfR2&O2o-˱c|D7gh*Ma׫d Sv7;nwGR]tIfɠ6D/"78qz ;BO6 ]9|r*tlW>oQput0RSJzGdϺP`'@R~#8yx]3DzCv"Y(p}VT|nצZm*X_oAV4ϲ"O+oz˖4svV ح(}Ho_b8KOh;_~g[^]=m%leM=m`Ig{1"˓ȤWHȫmDŋ_ /},?^D3:gsEOL0+]$va5m3Efx A7\ B(} pl`$C6xg9X::l~hLU(7+˰e:x bREl?~ѩ>?/Ow~xH1t OtexwV=:%:hB f<[IWpPKPʾ"P~9ǻJK@55TDN&fKCCO"#:n `wAY[@c6%?8|GdуMy;_xVG/`u 95`_:GHitD`F3g/XѸYUE4, t_1"KJ<욝@ųc_b6W|T8| Jyc1| 6&u3<0v}qFC.cgY=ePxZl 㸬YJtcNz_Q!HD@G jӹئ ZU͎Ao8|$?vf9-؉%89eH.}NsqO+Ϡ#{wRg(񬒪Xdq%k<-*G3~= }7[[nq8 :*Pb]xo[>?gPXeG89ٿWSuU]ChJz:gm E@`zr蚿թ@%L=CLgs< V-oJ(1p"< lT1k9+:AYQfft26%7Gfv?'#6C3<`5YfW%(zp}p8sL<'͎Vbz'm\8_:'Ejo@Dy֤ἳv+jap{a߫SFpQ*t_`Tz!wokEQЪ܆ _Yf묓fUnsoYii%t $|uZ+^6ms@^O[=ޛN + 2eM$03gѴWәDJ^9~} BY$9 + {!HI j;w}m}fϤ"b_'ۣ_@6,wZ>o}˟~M/ʟ ia{#C%\e _a7SP mip ,pVodrAwQ S8 5zfϩed ^WgJ0h Xi`dC>`o OۨUkawi%*JH; Ĥ=;;:R{atc7TvA/ w7",f|Vkgco8 oTtԏ{KVzW16G;( TEnhxK)BlB;mq|GvnAYҧ hS+ TsHMLӍ<YP lrBJ)`nͯdp n{'\=]FBh xwPmxG-̀ Oɱ0<×rprp١Δl8*ڌep`lO=~Xp9 vַHi!*-qS&F5kW8Ik5,?rWAQP&kʓ80v;{qzܢMz-ZLv,b:zږgA|; @Lu tΞ-3R'$_6O!v$X_Zkֱ!"=S̡5\u.l(7w؈#?d7 2ǭU`31XPRltaGسzW+3ċWCE銝Vo2@L԰ ST^c*cpE#b߃h=yاx| #|6  ux@]=Ӯ|uD(P=$^u/`)*i_2X|NV`z||͠0tNqPК@3"{Oq|Dg0ʮb@ہ7xdJKhS N ї#Uݓ v: x]B0u'7 ^܉gk6=^6͂ oC/;]d`J_;OƶxaʰC`WBJ9L5-Ojy&6=.%#%2*_P "K `a68++֦nNa/ wbbk7!:slggPM.>zAekbYGJ 5 JTbH&1zAۑ_cJ_,"Ckan&q})Q1⽬9`%\`)\!]'x~9|+Z9,2N⑋\8F҇vQ//-6>ׁ¿g:?lS6Gj/V^ c4W /ګ=#A3??h.ח??/.?o]ě Au©)Ǐ6p[yY2>/h:8{DXp^#`9q3]zST,s oqFD08k^:A[ Yrε}fAu1+MmNotpdۑC|w0slRZPa+0>WцWLA;2\ƄSKM7Qˑ { 6:Qx{0V:ҙ)hA\qGKM*ˎ*hRO9~4T ү BtڪMYŻsjO9g(}{*ybh:1OQJ A.lN&&9(^{GN5B'Ň4 I.-HUFr6@B bؽF2gP0p4Бu< YM 3F63߳DV:Of͘7Y80%8uV2ERd~ =xE쵋2/şFWr}s@4 TB5`"d4&yBvc$];#S.hedA4sdLw~КDCRĥlK ΀2ۏxvQw`r$)?U_ 8Z貸uVk$=?\58jky4&wWimo}~.GnAMv,G[G?: @ή)8KjYx,&s1x6mx"SB8yhkoe*:v8VؔYYCmkIwmpiCn !{C&mL]%)Y}3iPyܞ#uj'Oo$-HVgk%u4/ o+/kX!}h{aqs NAd=8Yn+$e]|pL~U Hڈ@/W)lܵkM.nEŧWS*fԉ3]t}h3<'\,6ѾmJ Dꢤ_4iH=)==+"vֽ}bA S~08]oT=W- n 3| ?|~Nv{_L`mgu]|g L/JG{oww>?/_I߷$w}u&ǭ;muK4^ t[> :eVYڲgXgI=GP`4'her2B3St'/eqbgkJSO&śtYmG@mN Ύ& d9*4W` ޭ@wE= I3ة-gWC^*P)Xv1z[<HɎ|DlOtJT9.qO7K.DT `npD'QRePi`OhDY6=J,^*2xgutp^ 5,'rN݄[C{Z~~^Ђ 6 ݗѮ7oftG>Uvl0# ni_>dԃSqCsZzJ\L "Џ^&u[q~1-i ]Ȏ3X֑xx:]YtbjU!mY1SшƟlZ\*{^'ȏϮ.zj+"'C)m`sMu->:`+!YӕgO,dh0ZWq; փڻ xUX֧߆}[!V'?/u6 e6>VU17Sgv.iPUd@c^| T4y_9;?\ȓ9Ÿ:V-i_z٫j |.wD:Guf4nȲ@,q6Hv=?>ut]~2A8AK%W_sM itՠ&t%;-V)9 We* 4뼤#h>zH74Yfpm0&,{C8EFݭ̢>w+ SwJ|֩MPАYtҗ|(% *Gt9u(!"5ʧX4ek^߹@?{%<]+Qɰ"+gN!O8FU4 v-m nv'WEOz * J;11||#ӨL3_W21 g䟀*>r>)Gtnݷ \s(OWYڑ*~ďoleD(1x9Bx(M=љ(6{-`(UC:kJG|2.*Sw9g;lqWFV 3<*Moub<]YX2'Z{X,eN+GWdqwɫr&Չfd`  fWI'hPtYϓX;m:6`ޅ4[]l0skԻMَdxlNg{2쨏h25λЌ?醼Ev+spUW76+ۆ͕5oNjOwj:=~KQ{^_W˴G{Ugg`7xY է_^~:kZߦo4xP^W &LD Q.%ݯ󪇴Fp7s>DG\~O.UY}Bf7/zʂ//iLW(վwS*շ/xW˟]Ov?~kbh†{L,}cyysmi0sHv2* s-#P'Qq,Tnz?ҶSuzR?Eϧ4t~nYSP#-lrs-GyP@YWkUD`gH w[ػgrlx%#ZYᛜ7O[V(@\g/tWBq5jGA0&N*ʭ=k s4XO:lUͲ'?cؓo2%; A:Wx7@U_r,RZ%.xm2WP/KY:|a֖#}wEG,7@j|5 .~rپ]GK}i Sנq.,3 _E>ꞥQ̀JƠrdMtJlHkLuf )uk=se4-v FF4nlk<]lUzRmI[xs`^p6@Aﲐ`F Y6^SI)#lN>@z ݔmΓbh*t ~t?Y,'/ A!"g?Vଣ\8mP܃tز`ʁ{|_ցWN<?rpO~ʀ`ar=? 6_ R rv[`ɻQp`=<@'_{&F`˲+=2F/{pECEi[_=itxӞq:In57PPdzpisjI;9Ml@:Ⅿ7Iˏ!tGz?܃{5$Jdis>H͏:%ɤ2+\Fd=ۑG'y퉠B_ cK]B=}4 ׿0~(A9A*%)ebqt*,8t-d] ~C@4+:#9x (7vdc8K\E;inGJqNrg%ߊvG艴dςC~n i$]iVTu:nJp kKrZřY2-/C;<?0N;h$1yL)tNteKNW[-R1{DmzkSW[y`=:O>򍋮ٞ@9GtɭsIcz_uu䘽P"FK:k8ٓNޘ@^Qf 0*͸I6 vŘ9I0] ,ffQ pڂGxl1zU f{ |b[_7"::Vq޷Y`_`tli5/{Yp[Sʂ|}[{ބދE>a9#[y&0@IDAT;=j~}/k[πbʝ>ȱkhѽς'W2>|W^oxꁯbn8w[q6"ƇeǗ{7 |\q}֧ Z9Mxv6cd+~L2(5eu"m> |yNn$eg^Ea`Ke0 VQ ᆳгw`b+8FQ_Kt|lHò-yR*W= .] +%ꄎvڏ}7 * (|Ru=єId 4r9L.0WX ]Y`~3l]T丆ie.z"ܳ^9mn+`^g;FdgYxmczFA/7z>o^A^=9LÌ^`#"ؤ-."PeDkpM? Wj ERi3I6B-ړ@nM#|r[^k ȭfla; gGa$ʪx=2[:WZY~`C^wܭn _c@'5>tl/yuɦrlAq@(ql7~i@aO{^9^LuA 9t mS{][]ԩs| (W9''nZPg~奌G eGt~\6#Mץ{hWX=Lt} )- C|Hx{D c^=9rW8e--@V'($#|.t/vn 融rg/a419ΞKJkd;^P.4-[uJHpNir3\k:Z#'-,#Z[[xemon1jq|P,aHѫCG?2J-*:Sۗ#rM(w2wh7h˯zGwʴ( 7qL&uƻ_Nў(MV`f5~xV~Kڭ"fw0j_my>7ϣEցs҉glYY!^KKpe#ɂ7Zw^hAc sL[ /^ @W59'{y^YGܽgw s PPYү aژT(6yvU`l8.CS\/"ANKe~#;RQ\5ί X]YwJf\b?;d2Z-HXE: ms3A+3UVݗ8䏡uz﹥Yc Q!S@b{ 4aIOG`F GL= a)K$HϖBs4nT9n$l2-(~DVFǨdC8Y1لCGfURp4Dkgf\Τr:@qȘnoFumx2vA7mvruth,j}tpFf{E[l.wEjam֬@(jUSE#|_0WmtE*qz3"Uxk0 V- RʉykNˢ>Bp]No"Aؕqkd3(-+-7{"~6@,ьʲHH7lHdKy8=zbGW@F9[C7UPyl 4]@F~*VgZ^X|Wq6:f qmp{:CL dٳOȴF+'Jܯ/LR"-h ,U!*0;ɔ.1NK;>ntVľբ]БJS|fl 8Oʦ zζ5NUBQE:|z%n d8.f(P2j*i+D.n7$dQ!Yyr&[B'YQhӳm@=3:L퉻gL{gYx| ă 3>SGɭNa9rk۠HcmeoZs6u~ 0k-3>LS#Q3Ul}l#{^лe)_f XډZqȕ@Up%a-F=N|!:00py݂7sbWa*o:$ʥ@(_K%/L핱m҈0g]5Ӧ O&* ;*o6gC!q諳q8+6g 9= 9Beɏ$l'M⡢݅2LhJDYi]V^49 ? 3Q Ͼ{2" {t׻S6o cySlt!'g:eъbX`3e4G}n=3鄇9SֆBba"'W;K1i|?w-~S' eWg)+t5 ¶dˋ7+S(!APBثN0vlfU'lEn.^{Ħ{w[r֠A2ڇ;3WZi7sVf;ng8ݧ|2LPhu+/lf[B@ JL<9>W 6Y^~S}u_|mUP)iiuoj~/k7{mr9_GӲ(}q`:Mm<1wy3>Ϗ|&gnZ$\G* m%/q*y?__:c|;Doole^>/_]l7ն|ִ'ɏ~6VDPL<ǮBMxY{e҈Qѱ^t82{]!H^[P0dή5.tu ԞxQu:=33@V|f5\3`1> 0GRSG̖zV4aN223@'`7KAp&IcdrÝ` L~rO1x$S*F`dzoZ#3owi"ְct U)@ 9 la1UDmLgz3? 3(H^_k+\[_K:ZKH(R{y e(vT54WtRgɵ{-5S['#p&#w4ҟd Ba+ n0I ncL9]g;ڏbJR2>e:Y+-b ENfYhˮTzш(v L4M_oO WV8RJ Gn1֠a.s K.q5K/XΒ,ѿO]' ~ٶ% EF'Wy$|!r4&FQ@3Q=qnJE5[G%/ :UcىOzDV½)@g%(XnTkrtw *-/M>3͠cgo󗳑& E[ \ β8rW ʎ>k9>r}T2kg0*ٽx vtj{WU =K_p;Br`\ck׳g@hJ:xr,,YDÙ }'S0 %vOfd=6|Kc84MuoiN0cߥ{G<_2l69dw-c5$s6vuJ's2tn ObgY66o7{2~OYvF '+>u1#&};I=_Ѻ;w/+/ѰK4פ?R>VҫwӖ/ڵwk(|s-dC)o] EJ|wve*x/fF˃GV̮{xG6Aler*Ď FI"dҔC/:44 Mh*㭭@PL;Ze<z@ƃ*}6 *Ǧ찿?Z4*اG'69D_ΚtUmuZxđ&NL)FZ؏AdRgI__,%?^R8-!\sv"_UM' tWYݟGqot4oGډ6hΕв6ó+UV߬B|Qiy^'^%/ـ˛'ͦp$^[![ILNr09yk MU^ 1NSE :BL<xx m)s~'>qS]jBl ka`N:"Vx\hd0Y +:{' Gj'f7ykB`сc #{ls捂/6͏w~C'߽\mVX)CoZqu:Yٟ>__>ixꛣOوL [| ݒmC;9WщpIA4ΈH?r5:=bu1[:f3Yc۩0b0 :ݸ2Ftu9'WĨFP[C67/7t rѿܱ ( NZ@Cg&?Ŵ :h@!sQ5up4.}$| H2ɲѪwCʬQܛ8٭FB=ߣ*\ĉɈy u@1SB-T+B8 hWO;w6{Jfi=]x,/OC44Px+my+pÐmYi ca+Zb ߠmaT*qz:rtx44ӓlyZ}xT~ Lir^~p^``̜.eoi0?ʢWOM6|tFGAr;lENZdxs2@Stر8r7yoڝ d'M/MG3%sxjfV?<}?aad=@73Y0;w3ǯT;~O*^*K@g+1=Mq̎0-jqRrbzNC٥^vs6x#8Gs4ʷnnNU:h.uO;98'Mw`rfGGWapRbx1HbQx0Х#}N<_g)!L!C ##mC_7V`_rfgBhcSeG:@ `Su1[r#\1[ğ d}DGG].f{`@L{]HGwnYc5]8|dd>3or7axMGY!V? VpOw%ϓVR%lǀ)Y t683k</GBlHљ^[_Սd8,D c&k %P|39sVH^1gu'Γ%ſׁQY&>7ջ}m87?^U>_~L~`NgѸpnDžxBlHs+{?~V_ȏn=o:rbor|+E)іkGV~׽hǴ?ds*`U|0 37mVh2ϟInw`yj/^#.??O_iLUw1:+}瀼iIBO?|jU{e6rRBf=(蜍w!}Y硻?ܳ)-Q05=fx)#qтJAFjKR&tZF`tsq@'c*ceP f`ˀ9r4`hUe΀{)8Al.QG9ܠ2#,HUHy8T rg_ӕl8FK!*(\Ѡb(xcFp?t0k4Uf3>A]Gp-Ykdlѷ?5XuL~aD,eguFs=27&ײ/+w=d}X؃;(:0[I`8Ucl;8a9,Pt/`Ϯ]Z}) {Iɏ,˳11`U>bc6^' 0[! :W`o4%! fz.JAD>+j):: ld86qn]iTfM˫آ.,&rS9>uJeOpP6Ń|̾+:{0Ѐ#9J\*P"Lt'򕍜NvAT S{y;~~x,r=>R;f^ u6Q7 iB?I(MkWwS ќmeR"*Ʉ?^^84鰱e( c3$t h\E ,:'c畕7yM^USXUqt6:0FxB3W:M=⋎י-/. 4=pKpI X\vb]U#x Nv?bf )sّYT?!:XI&y#Wչe[Ŗʓ]`;@| WW5lC;uN;މ/dIJMb#Ѵ:uly^Bԕr'^HGMZ| r (4++;e=DD1}zPnibp N@WSzmpf,|ا,sO@S؄Aա eZX|M(O]M9ds+N&mJrѩNJm!Pщ ) S{,ݙ])3X?+ :? :8kz;Y2K+5dJbVOF3%ѯI{-O!^]E6Y{ A;Z_ :pGS_ñkQ:?Ǘo}왣z=4ž?&rϵ|-$Ly.h ],Wf!CFVC\{^'T&bm<l!sTK}-1:..:^=#k>o%~-c(XE?~=/^X9lp Xd+bX Ζ3 o/~}|]klwYG?w/./4n$WVUm 1 tK6K&޹ן_/Oџ`)="j9}w[Y 9 3/q,kλzxhJߠ >j@lpb]b;z+PO%eq5آY$'I1r?~EdtX)P餋4"2ԉ_5*L?'I+]LXF3HNH@89NG Eg7NTѓ l4Vgtѭ ĭz$KU@•ߣ˻AFS\CO#".< 4(]CK@ZB9 ʑ=_Z]^v`8ќ|Vf8pOmOgXL;a\܎=+9:>qz:Om濥-%#d@Rdа$=rtMWofܿʱ8>H]Q.3/Q5V<@y{MJAFg(Cqh V( TipgB!A<#X~dɦ#*-؀ÝNtQ,9YR=PGq3Y ʞNF٪g/I黥rnp@eמHoO_miN(]å!s'0dŘ@q>9I3ho.9̰ ,< qЁR'\"Ta?.՗FKO֞-z?#;) :ȷql!Gi\Gk mJ'\bQugͳmY}s9AʅHHp /|aa#MQ Ts8ũ;ךkя1lZx  fdAɖ= aX^fLJ0o c&o ڶY0Y^#Ea5g n޷؁իN!&+ðɱ8ŶDޢ&GwƂEQlw}= V1x~7Z;eM! ⍕ v'&NzuNƵYjZ0PФV;`xwKpk2kjr6 Kmw#Zyt;Ag;d߾&@س)tUޮ1Q{ث?^.qTU%#:;>دuig&"Dg$'XW}Ai0]Lwh>yqĄ.rפvL}eG; /mC\֗=03P[h[_TٖT۟C~z3;InRA a_ 7 <>WZ184a 3?;u.8.alWC]sJc*9C2]=E?Ķn1yk7VfkV:P`nz!$`NuwZ; w|A+/9| kؚ?{gܛqUXbpk0{~Mm N㞴wH;C8Mpy~|gŘ{d-LxǛ1iK7Q\Kɓ&eg?Kh|?O>|4A2喝$! /7g/oWM\<~jAۢA>n=MN:;._.w?/|#/wM37^q\:&jBFN=3,%aAntV ͵jK[v=Go8M4Nv"UcjuAlRC<8VSt7#Gӹ$W^I﷭ZgpM&_xS>92ɘ zYqU"bt!Om=έHn>1/7f)G`{6 Vxv?:E{ hcDve+sl1QV(sI{2w yoal{<|}Q&.6gՎ.:a`Id]V T\q}+4jh^h^k ]3Y)NsEwg?p΅@lMҫfzSmG(`ڽ`O> t:Ú](d_ilT`oP\{Qg>MrYqB_SLߩns>x%h$`9}~2r:Yla+)&LgklDqft؟_ɔY/^љ7 וHgpQx[Q0znn^.ďxpLGr!`%&MvS ש?A{v.>_]:V71;/Zl5v]3.N&ts:+Zm8MUoˮIqd3O+;?B4/&o9pCHȄ>SMoRt8ŗ Ԛʻ_9 ~ &?8;<:R߭<\ ;l[N#?}NCuMyMW.Wb&*dGi>;`/n щEr|u6_$7 ew:btل|_i@z<%1 6~~gZIjL x7)P&843X}LǡzZ8B&o}Pp5kS gHY%^qn'7LĴSYv3Mv"I9-X.vx“z0G1Ըe}Rj2s}NPr~fW.__c:-?Q .xrRB2whz͈QErbdsfjAbE㶳 8ꗔX=\W6]Hg$oZDtBħس'6tDddJ/ggòmINp'`EM#;48BV0e 5V5=O{YSzI;J,Lfnn3FƬlsȎc4Z;BP/۪ ;J<;?N:gl foN ulLDI5 UG0#*@iIW SxJMZoꨮ.ObG`-!IDIL(Mn44wdzo}g᫞FA'a}q͇m[fҵfdl'GLN 7ƜCa޵ۅx֏BOQ笂Ua>}[W`lL嗒G郿ɰ"~–Ц,),c' $ce@O/:I:x:e򕜀VLt} `K9b!PM?~Ϫ}TmGFK]A_ r0F|6NIJ:<7ǗMm3^%r @6d yɦTOwqVН\΄t=; ]c[싲 <=ةӓ'Y^-[0 jUh9 fƏe[Mn<z p1%{6]p3@h0IjB^~sdex1! 9Xuu]Z1^}dj 9* OD&uP4f V)1_J#O,6,v|# |Ȇ-rX\= PuѐѽDټ~m,3ȇ{}vlr9mv}wuB;[d;]8T2>^M[_3U\wuWBp٧C9UFuDס<\C5zGt" Ū[j7LOUWM߼G ࠃCj3r6RȲR!Xt%%GwzAxn[]#.VX1Dy8*JZ&]VLKW/M-Zl V}ЂאjA?CSd]r)R;~࣯~Uj=O+B.U%]ӿ ^ǮT-R- ӧ|9=Cwmgt/@xv9pT5g- k^uhח{P珀{{5_ɫ`??e1ˤVhyQNY}zoT{ryG C<8L>{2D=[NvryW~r{,w4g_xkޏ>}29D t~Ǐ³5@IDAT-f:A/N̳r8l'OMz6vtVFb@~ xsuauL0dG??Yy49x66?e{yyU؄ 8<Ӳc8_|/gu[ W)~8@IodC|uE-^ژfKQ~|Uws׽q>y{.̓0P 7ڂ@PAqs'x :dLwDAHuF3P6C.x/gUhNQ\{OhN[MP  ? ]xh4#xj2?驕/J7:NiBnuX>A piڐ_jZĸ&N^S::FhѩEEPȢ/ʐ<5e Bڱ͢ k-n.:2I4tt{[Æ9[\nIqjrǛ^TĆ*+\OpwrHlG,IʟpQc^rGCxV=X|:Sn5mt?:@@C.fFaŹ`uir2[ Dn=?Pn'Y?xM:x.Ѡvy@ֱ8vṉ:Wyl"")܎k~Mm݀$"_uK fO`NU:@v[:8&Hݫ1i?S_ +SkILŲ%>ӗ9z0"fZ#E[q-KOvC">+L~FV]g:sfPCf#UgCVln=wSW|+Ȫ* <:Fm-ۤNPL'YC7@ ߝޙ2 =:Oc:Ǿ]q?@=5#zPFXjBL|.;; W#+\dS#xN*@.u\ɽqP;DFU j0Ec4VG!Y[!wk4r:]_q &.Wz)GD\8NﮑAeo, xC A3;%W:ٱ;vtZwwh';ƄK8wpk 쳸eaE:@Uc$#j7'Eʆ \v?6X^j.#>?۬ڽr4ӹC#,;Y=,ܡ&/^iSl@Xe'z^w`Y}@ d^] >̵Kn 8kza<~ѭj>P;>r઻ Lr]/.E? uo3 XKPp/:|,-&zQr+bR䃻MsX1 {>L ;,‡ɚ;FO?dȎvtwp1* ?|.7{ɯ}bK&}1&sWg)<"!eG}j4sӴ}'3`~۪ bc5* H7Ä(Ё &16q28+7琁p/1cb)1 @K K 9Y7}BOYK_ vm6_3vqvüLAuIVR?Q[k!CRs zԽL¬v<m5ә@C%ayh*xD:(C{V5#faH[a[`%|,rfxMl@,ȅ_9 ~o:ot\m?.؇_ldO'1Hg 0VuXyXek:k9_&NNMvpBO֜5ڶo? 6&֎,@V>缓ϢοL.r*Nю%1[QGp$D{y&jD:/^6iU7e8bu. *;ƷN׎R>t[ķ2kKvVBѥŊ%x=2آlc?h"LjϤBv:x*gwӋ|tN]NGBS#2$,`lXX!9;6st7~vp|>uf.nF/OZX⍆le*ȭ,4?Dn ?F*}r[g/u mЇd`~o~N?@&]'Qש;W39]=ؤpV$~VکjNw1~vN)vD:BЃI;/N9s=-DU+%Nd)yg{09nYm7{LgGYť;-8ߕWxH7E,Щŭl7h/[3!}_ԗ?nh-@bC:3EǞ˶H1<$Z#"࣎_,Xt] ݬwm1 "?ߍB^;FڹԼKV-qר>rdZs CU~ĒCm&!:GɓoR;ƭ0[=!юb)[[|\V 9avV)5V̭|ZWDAڪ{_ājtGQv+w|Ssbwq'!p}PRX#Mӭf\=,YGW 3XI}VE t+NhuVL/QdHktxCz/G9g*v]0fY!cL% ^Dw3k}' faA,Vt:,#hPoiLNWc-Z>N Z8mʃL!F# @Lw͆eМq7&NDJWhVl;Bo^)D Lp0jMV6KF蛎Ge &hrggCw&ӓe]theb2]g Ce"'Xt@$QAV;[/I )VSΕUָk7 ׶VǎPrP`ylkG(WiyP< ,uNcwFݤj:|oZiIF b_ȴۮFb7a\ceQE_puxԱ˪ϧ&p [+hbOq0= S_ص pM^vQh!;(c-bA(?>g25$>닻L1Q&m`|plC{N;L[M[qp"+]o[g k nঙOW߲y4oBMtί~;*[;84nԃښ9M 繆.xti8p0@w8U}Y]{pNVS$W{۝K5ڄ<ݒ bVP-F6]*Kw]4>`(W>fN`IM\QEG~gJUwL9L3Eb\EgP^Đi>^F/KX(181JpS; ZUpqV#YV#ĹڞNe3Jׂ LC_nGVft-w MFkع]l'`*agih΂YϖfvkOǯݪde;Ait]u3 ,~b5!]NdSkf_O~t䬿*&JfF~ݎ]]t'D0Vڐ-) Fjur A_kj*׿уh-6z W݄$ {>k0yqc˻7q0FVͫS'7?b`fݞGrDoČ\. tc"j;Ӄ`?Qj`^ޡ/hpp] έ)jh6{/bmDsQux; -vG\-Pv(JL@/y'_-no"^j |.yo/c~@o ˫;&:1}1,\evӏ髗O?^? ?ϓ&7x%YˋyR}$fǻJ sjVv?Bh0b^I!KJRH'lg}rI1߻óJh݌ ]`_: 綜&VA߭3 ? 1RP l`hΌQ+?Wf(Xh҂*@KYɕF11sp١_Ag (KD=Z8)yI. k3>ד_Uf0o2ytz=DUNpe^ˠzv/%*yIQ ݃vxl6{ D阴IS_ U\{I;.!jE3ҝv&u.xxSJ%aCcļI%tYCE"h\xlF̂aŁD]6|DoP&K4;U4-X*r>UI$tN[|v6(>K>"=pEo' &B&v_T:'4ԄOEs.jJ*wslV~*:f#VF^B11n]>t2XSG0VS2AhtpڨtM8M끧S:_W^L'UVIL`~4h ڳgFz*ћ6T8) jAV[NQ׻ DŚupOU˭;{VBekt"h;p\ $ABb ;V7D0ϭ&?Ձ59%>YHs>nN.#Wj~dC~n].A]w*vi2T1m<[7R㎏9a,ћLpo:p3Ȼ7WquRH(Nhv=/oID-T&Bckx9גLwJak>~R1v]{L љ?dle{-W슈OLCn~zo.?^t5,.3>wE {nz#Pl9n#8'K?xry._&`mޖ:($ 8>@fǏ]>{?|~_'~$;jNH:ܵʳ;7*Iu*`(ripa\Sيi7vLp 2 rOǓ9RQfAYзuvѽ}@J^6Lb[ӕ 7;Vu<S,2&As$A 6Y,Ta$T) |Lٻ˳]sp&ƙ[ERfqI 11K4h4Vaz[˷\Dl~JϯȚݶQsl{t99rvW'A1ڪ=z7$'m٭%좉h0@B(;5LoO- N]g&B|^]asŗx/z. }yIKX3۵?fKBAi2͠.x#&! V73pЁP<_!sImӋNtL[`}4?'^S;ȔukDy+ D' \ScT^:ll\ZjB:Ӆ#Ox߃JVhl~D,tGtEC ~1Ixv{t"'ݗy0,=C^%ov}jDK<UʄR Z-3XU$-ZѱTj@֣+XK*Jf&؀evI/+O=+2`e;I?m"[`D:F}xIZ\wz t$MѢ*r$Ntuɹ͖Au!+,}2 ~G4dP c+ԇT} pˉѱO{z[6x?f &m8qWus?GE8U7zԅ#ng3u,^iJg/w}wK='\r И-.~ÅN:Fd2p_'s}:y˃6y]n!x[?s_[!ijffiǷvU, ~P۹ACY b*ެOrkw_bIبyQ%Fm=@*i-0*I$쯭 J䵮~Gd*m„'ɡjebس}vkO.Ѓ;V  ^5Ywnno7$&|޵`.:ˎ Hh}m$,O|7@$Ô_]4Nۓ8*W>, >HxV4[:=Ǿhvׂ&Cyqk ;u*f#`DwwZ{$|<Ͷrjv vNF6u,'k/ϗ68GzUrM-4#'>7C5o.?C4~JV/|M8_' y2=|t??_M s_Z!Θ- DNc1%xH>N~}lEV_!T#o넹ēDn֏ :f G%.!k bCNڙiahBrVGC<8_p3nLԶ]F˜ RH%T~1pί1>XI|բ~$%U)(hS9y@ٕ $hLdhӾu-&:hAx zz?*p5hjAE -*#| $M:6zjD0X"G1zޖCy;;y ̗8[pȮ7h'۲g يNGtd|/ ݃^SX@((IHDM?6ζL|T\P Lw45g+#<0 |bd4e>pOzOeɷ]Q&F%^~c|Jʇ%\&Fv}l;AчFGG\޶mM$0 f]% {l]`8i>Ix3GC%>!ǞbTfPYEf2{оC=CX*$gl~7zwķV{;w` 6炷+&RsXJ߉;xUdiBz[d=Lʧr:"7oM>B9|ҷVޮ: ~m:;󟎷ꨥIlu/}kQ }l$K2ο`{6/Ck?!bf J</&Pח񻮁V-"tڱ]r Z,m1@WKpp_vXY<5_m1~H5$ M.tpfOقAp1` ]:.BE{[)fsU6dbw&GGM?|b.إϻ>w?GF$79f7&w{X eH!߹߸?+ .W3$ď1<O'?_&j;5>_  C X>ې[u\&znurZ!(TibEV4 >}O0&Ê.-@ O(t;jH IVC+ɖ |qyv g@f E SCunf]j[hp kPp$ ypKL][epm3$6UHu>i:2ɞ'G5,Y3v3~ԙUkLhsTqZmkYgB W=ryMWb`f&%`$_R\#69Wufx=`o!Hg3qlh6jJd{MI=< ;KF*G%ׯORB{{ ;^p>& xϟou6fStv@2 "(zbӤd~Ѭnʤn+֗j_d4`@ėEIz{@8ňrEӠMO}]2v,TbS.$';^ЊGAm2ɬd R$&f:]6?f3ҳDcVgSX[ޙ8SCEdCۅ*+2yc]_>=dp>6by yIɇ,={+>]se='7L᠆;sr&9![䢝˺/ylr|йBSa2;݅G% [^'2n'l2vyj;rXbU=?ETs4U#!![@~"&[ 'jzdl9&]ibȶ[F0ZjWiL:d3 wz .Db]ҾrvI| xё~O3vu}$őgRmqY/_@v@2crMXToGD: i &%e-Tfw'`D+lX7hsH:[=h ܅ ї*/z'= OvML'VeM@'!-=hp>\ &ȗv/xt>|l6U!65{ڻ+_j"iz9ΑB1Lɪ3DߕGg8LMב6:^쨜>WOn+;_.?j׾'v^SDv"l `qv`T~"Nٗw?xt~K=ϒW2AMb 8|R9V {nڋɟ{ /Ɋ|$=#܋b+o!b<^"*ZMZ"6$B`D 3W`hƐO13Mbb32\4Ϛ'`3[a!Ќr a΀qt2ҍF6Fc];m֦2x,$f ^# ÏG=ꀓpcr1*XRyX>vj1i^A `tjPY<4 (ʽhP-EӒ2xә-FVt3vKpC>LI?jgضt 8gv[CYcd$>i^ U(k#2ہ|ڹ>!‰9X.!19D􉃑v웽t-S- KWnl-]'50⍍3-:9]Hx۹UQzH6ۭTUOub}@Y4j8nP.'7|S7A@ӭ_Ȗ|Pq9;-$Q}yK/&ЈvjrAȼVN!M:5&Rs7$3G ftr?Jpv:6˥"piqJvm[9I& N 聉&Q5?LWdٕʏNxZ!)A/d7h@Z'mFL|!zG~nNN3?@ b I`(cv;?' 1gn^oS+b:!ـ#ՋWnEۘ2[>p>﹟} pֶM k4OlN} :6iA4,U`30<0?nPn>o E9ogF^q-] zG= |iذIv ̂pZB8 yjko'w;#ʃ=6ZF:nlD.v{ߎ&:D 0:˴j[ޔ胞uے}vUvl2ʎu|u}}noiB {Etw&S3C=$^ߺ{#{lZMf}oŶ{MDdL≒śfO$^G3 w>]].0WGGL5"h,@_ 4ŀ&anY oCb ֕3v`WŠڶ++{_mn^}D.f=*5K l&z*mg D,yN'pMV%{eztoV݊'G15Ùr[ fCvmx˧O&* fp_]zL[ ﮛV-{;NI:.i.|dakI%M嚀譞-#*5:rB0K3Iu~þ=INء -{mo`l[s ZyQ WGv- 7c8\]?'?ni@+6Ն.vks$2OP^ԉd.lo`%3t&W@a ȑoӡ::Nkq5&[Ȁt={5lA8?WU ^Kx68Hl?xścbX 0fջم!3XJ Y? 0-vwl+7f[O:xqbկ;*sk;d p8~:gΩ0ɄCsxD~l7.q'gYӛO.bgd-/R>r1(diOl 5\qmolbZ׭/6F ޯr"}GcΉ$|-rFǑ#z2jDq*w=hjW8<SxRRx:"jF,ok!8F7㙬S~bbZab[L>`}N± ^ג-}yFlG*G$V!o~]+rH.?yU_/_҇6~O2*bNK ]'I&ɉ U`xU7}oqقލm^ {L|ȯ.3.&36-yۂzm'Nw nOUػgaɉrby_<|ח?\s6.h1Xy2#~qC&M|p[.כIۭ_7^xӢ,?&7n /g߽|}9A(DGElDkYɁg0JqB r=N}8nu$r C@ 686@IDAT N!^4qmGCFXp҂^8m,$|M ж?x|!dh\|{B.0Z0 mWA,DoՖ=!0=Yi@N{͌EP282Zq@GmwneP1*}%A}Pp^ka$B ojǸ'nuPwBY4+ _8ɏnV1{4{<ϊS#$ʧsu IjيyƤk:fudd2}B- Qg]ؗpW8g ?a^6.Y%'^7g=l:jO)$p`ؙ~-Ӽh ⫾)xY^d$9XQt݃ȁ|,7CX}f+ɲJ])~9g`Y# ɸۿ6ぃQ *4۩(f#Nt23eP,>%p\5|8uO%TwBT`+x'y ẃU7 kr2Z'ݯ?r?_wFH [ ''9)õyzU<Ʉ$VtXd$Uʖ$W}G8`;rL" $U(.`MI*0hAZCP_uVĊ6yKJ϶& ţ"nU|ī&ؘyvmD6r^ʊ]8Kakܓ0*> 5!w@~cx"h<#y3TdL%d7]9փN<3C\#0# RMEK4lv סcq]y%?WS$!{66$ T XLx ѠVV_AF[%71Fw8\̬"MѥەMml%(Z7D8vfǪcʮU&Ce6h/ ]5 z*f]3 A ]69 Anek ;?m>WJ,WHuTG}wm~ثߖˢb|W2,xnB}J9lΓ2ʏarJ~;|ÍarN~U-=kZpyZH-_΅'_rK/oz85l~'?inFN\6,/'=TA%Vy?wc<^^?|)`UnѢVo^~?}d@cǝMc>:ΎNηCx3 >~/߹ܿ=[$бZTl<qtTn+Q:*f3Au,XzJaq&8d阾Cz`ݍ5=r]@OQYC 8.t$ 橒h i0Ӕx:cxAI )BY4(Qi@w?xzl>X}}@c FB39AӁ\~_*7A2<`BTlmK`cc1uMB w ղ9Kt:N஍-M&4L[f(2R&dԂ{P@SY_^_\vY֧-V(jrDFr:`^dA>]RJהl-WV?~5 &\6[*ag{8[~ٍGQg!AJl|ud[| %[^<(q|Iؙ[p|å zlxT&I4Y<bDr9|wLw7J6 cɿ _9od1>#s}胰xN Yh #rbio.Z:"Wl ۛUF&6hƛs{0>;FA ޹g=/%yԤ6xӖ}V +WX[h!'NJys <||/O]~ۿx7x2Hg.Jw΢m< vvxlij+?`rwIn8Z6hO^..`ҷ\YlFv3[] K mav/=To ]mQXu̞MeR:'\4/_m_߾|+ 98&\ٿ}UhF >qW);".O^Oso$;Jn[Mч~ v^.?,| o~IrvEcnbdz؍:>zw/DrTe "@N``nZVMZ̀7؁,F\ |6@aȶ]qyuL::&[4X0B9,:"x]Dt@ kA6uRo2 3VBXP{+P(U6hAڐȫ%ӝ`{ k MĀ-><\\ZGm|GgunO0<5uAҹR(Y[PH kEC7K?}@O[y~A8^p EʓAݽ3 _Ɋ{ߋ/~m6TYe[*xLDgDL\ܸ3ǭsNAn;gGdU/a W >w!"KIfyL} 1]M/%Zptģ_,N.apIM.Ԓmv-u0Eͷ]yVc3{m<'FOL=$a|a;261WÌspkGA@'~w0Bg`aOH>0YѨ+dw9혘q~DCA7sMVR`d5t\|bI:M66_xϞ;ZO@}AjjC::Y9nҵx:z-K`dx21~ :KuQ+BZ!;gk8>Wl`U `u|u5>0oml׹?yǪy@e6_%/6ZǬ%^0N;rڮv 2Xf$ D*2r (ECWG#EY›<:ON2b:VQl]s~ NW!)f{ 뷺߻Ɂ6 يݲ6dqq}o'ttM%/fr &T?^$cFw<~JbnSa'}mH&3'oև b obLxuY0CW2o- u*}& fS:\iqnj'`[hC}w`).;>Jɭ::g]KVh }]e6cq\7G}AW؂̫W+)?4YF*`EZ|sl8Q<0[鿡0>L_<7$}k_+yqT4O#Pg6ƨZ?zmJͪ΃-l93LWF+[Y,;oUOoܢ}p6X\+s{"TX9~&Ȋ>^ъm9.hҡێ{zR:Z8N}W9+M,/~ך8_~O>pyjlnx- ]v'tixЄ.W<fAb6<.חF:&w͌RĕSZt0:9U=^ d_NGAhrKïVxrsȮnen Nux,cIþ` PhHt9Z"h`xx:. ZBϮ",5x KVgKd:bޏ8Hŭ~=:ydNUmhG,He_;Hl8ś~,څc n$:U靳66w~{7;Nl" 4at$pH'~7D)Y EOQ7DxB]]I'˱}|4}UB[_5\]WwC"4JR`NLs'Wr*`؀zcM|3Ǹ7Ư":JS #/C3 _eߺ^n&}a:|}mx To7`o:6NG(%)Rşp?"qu_<#^UA‚ulcWNQ FgiTwG ޸ty9;uݷK.>;v _ FN RstE]\̆`|MTLtMn3tIs/}ew*c}"YUfƀ:`U:Z#aYI/?\kE[(|RlfCd5=[xux5Cߕ?v^#h$-?[k876Y!n;7C;zG< jM +e pJ9"Q^}1!qovKc+ZYf個{>b-lʛ}>?2ҿv~}ayOwq[A_?cD?wg;р٥G._?tpMٖm34\cȮ_xvrɔ="_6b_mf)[5Z^8<}.{ٮZEX!o}3`Qވ҃KkY0cNV?o #}~~o?Wқ=17=i%_+#*^PmI t撅Ne4e}_ FޔnbB 쁎#D `k‹^ivjdui MNݐQ)s: ^}lыd}A $s6qKpm_Q/U2Q:tqK|I~ُj hH9>DhF+U]15 ^EcPя'8g}b<<س|GW%ze' g]!կ-Nd82@k IѤX}7axNNN{5̕n62{r:ܘsJL̻-(;QV"l4Yڥ3B}W;AV@dj!bxTlW xѡXL?8ޱAsKA/0BFer%c2eQ=;7Xv/ہ\3j s-g:^FWХ$lt>jbu2&wz+:gCѩ?V}Lf9UnM-{U'g{|9M 'Y~[uK'a. 6g8Ǝ=NV2Y'?ocV}Qn0V'4xlj!cѮ6_z`bhHP |曽}`8PtxrGNNuy۳>}n}q(Aq9riUW*+[gNyt@AGyڸ`8YL,xEp#2όq$)z\V$pqA= )4~G0g9[z;+SmO >QPB* NO9a3X4QB/;$l7 a)H 7#"x-hp0(cU-m&u%߭n5 C592fQ^J(>f=h:v` ]Sc[w ۤ֓r $9햭)DkP֡Msم2|GTYRtwh.XwGUm:Z UYNٜBz/:]c"h``7w/ȳ:kQ(4']Ғo?'0{ägʦ# jŔ(Rrf':IN첢m))&B_ixaR[/_S(;63_*]= 8GKlB DxNbq\4T|*C\XLhEsĤz%1VpW,oD4eE7|yvi=n3ՍM֞:A+RqvopL_|M"c܈CKA#<YL [BI_%OBr^A.kHxV:\a61 :맜Boقt(>DG3)#h|J }tlU0sP6 ڶ OvV6C\& IbYE̘M i꧳PT|T?XV3۽y%CpdJŜrryу Q?D]/PFVki!b5 x36nxN?~uOVv@^lwʃ"X<MNO&1Klom&l8O{M|ث+v>`mK;ux(p@k4 -HdtTA_ڕvz_6o5e/؄X}~1Ѳmq; l7?9n(qc/aKu P@#HfNeQykVjXl,FM<[P?*Co?͏V>P> 9ʈWٻ><|}+?|?/>MmMۋ/bA{΄,vYUz|Woݷ ?D뿿 6gm,%o" F*~ 8$ߩut+{S;1_yvQvT?"DhM.p9}*Bv ёU04++@;#49[ ׬)[ZrzݯN!нwzJSz# Wj. voNG$~>괥OuuG&+ݪ`b^z$;yLn|q6l-t0OewicKxH wKw,[˞saF[.2D8׫|h:cO-_+5dk+`rlr,`48|h PN+4 ]2ɱ|XKvpn{JsT+h9ic{F ›'[듮V2C6+v-&<ɎAp,ِ;pe!~fB루vh$&E+v0ѵ݊iµ$&La_e I c1ߙ?{|\U~SyK˶c7.V:LY]b%/ݳxQvE.v>ޒ!{8Pc1>IO;4.4GiG)|XW1ǓzeMv^єV^)weM4'ewwq*hd5}"՛ϊs;C~&*$MI3\Rl_r(ee8tW`3PQh@ MF>u7j 96X䁈>YY-Ve GA܏QNkkjU)R\FM0L ]N羳˛3%zJ72㱭:c z6~RCݷwhipmRKR:L],6Wi`_h"̡R}e_bw|r(?*:9NV/{z蓧sIl"Qу ikHDoNWvvcJH;ˆJ0(x4 N:n|RqM:qTj~GC,j/¤j~t`3ܵ,y-ghʟBu5%tUq]FJnA FfwaK[wՒC;pݠgo=xm)1 #|0dcoylɥrǵ|25zp {2 BeJ:6 eCi@b=k/m8@>"O!~G4L&Jt8Yt6dk|zr`8Vg#Tr#WjW跴_@Z,rlLٻR7}vLdhO&t,PLF0ev;M3=֭Վa;aʵhs$ngW'Vܤ@?4*tW:'|dj7))Hw_thdMvȠr ܢ uvuQNBmuݔݞ\G#U?cFl"f9tÉ G88ZrQIz [D䳘MJ=vV ׇi|gn'Ym}O~C޿N>1QR~㉜Lf<?փn$ܷ䃌0"HxaSH眀g;x>,\Db5l+;+L&뫨rDF.z@<Oi~^S5@՛vKyqɃDG[Zz1꯱2b# 47=N+?umt}d5JO>MlmHuqg_}[O?_>y.3v5;9EQ87o~HnB^=1ИdA%G-ODqvL׃&{td2$ c'O 7P K6܌q# MCP`oq2~ yOSG*F҃A\H9mGzV'Auw3VswTM`0؂ⶴ0_@~l%ݞgM1o#)yU`$kid3*t~ V@e8}}KKw5@}Z }92d+2ft4X#{+{,fjn˓hr>9ҟNLI $ሄAbGL1NU󶠾``32dHVB4&td&x@Nq5%AU:B1ϣũ ]>`Uq()= /TAv?0轿Fa cQ"؞QV&$5#d՗2aM.fѬ!DØ2{0|h]{Pl6075ʟ\ݖWF!m+h>BEOUFE7i0I&E8:zj(&bʉˢx=# wI4Tc`Oju~=y'GMv,k9;׫ΤHOab{&ؼ^#Nv(ρyV~OV;ɩ+r@IDATOk'p*֎ z*ZP} nAI%{vR~|\ ruN#L J o4t~?L< _Jϐ\2xs$+b5PydD:p`^IhބLyu"0(ε` <~tDq>YU 3F+m#{H: mT[5G64lrUCֳ⮣d|ׅx =?cu/g;t=*'3v=O~7r]]6;L_qd: ,z\ F(tME n-jsGJJ gxҹ&tgN𠕏[|T4f?Yhw_WDr,|1 t93Ԯ !)I#>WW%|.@?xVݳ+`<ȼtOYqhmC>FNܚ4ۙC8Wq|X.,ٳx,+Bbz(SuPz聿g( ;gbnk ~QiB3qW_2OQ!<<{NϻT@;>3FHhp1itԳ("@Xf뛟U:.mZp,=y_{Z,JvV.XWMr.{G=Л>V(AYFJSBj3 IUh*oG{J$[x3G̎n,Y&ܛʊ;;No$-t~y}˾`f(ݧ>In; hi|n8ak׆4m!Ы  0ŚWٙjC (-m3)Vv}#??OuY2>xȈmQtDѮ?Oܾ~~2vчl6g㏒[La%y)r@ !M0Lu+T0K(v@*V7f9ga4JyĄQR8D?!ye%ă'4-F |=&g8UVbr(JX8uY 66[s8NofL{dN'oh2Z4ND\7ZRl{Zcs2 g/ 1uD7P_|l;PѽZPн4x=xu^ŋ/2 Dn8^h[ "y<268=uڃϤ`-+Z3T1=zħnA(< [7V@OgM'kguF:1`g׵ NW mA`<ٗ~ _#J!m]p6jsJKӳgNUu"A#:4o4`tC+ X, dH_^$ 㶓%4[%B4&B HScM(yumpv$dfoiX##W6\g0 |G4Voh%#>ɕ/FRaloƈe:/{׋$G+7UMM?xuN)ɖrVt t>ROp# pYav-ǭUW5(?t{~%")lK07 h]U;+lPDgvOh;E{,S9&X \uXٓxڽc`ьxqUxNhK  < 젬 tbJitmLA-p7I&+Uxq'kEdRq U e8~R>EYCGNəf[1yᓊKTM.:N+8R<܃(oZ)nyuV]UΎPz2ä;'b/U*6-26YS`3&w/dIaѰ6DF]WT,DZ;4)zկ[&`w,[& 8FbkK< ):r!R‰O8&닰3|V0]ڲT3kGRO96 G|+ -%qէ6Uo_wwgmv7ᛌnS;hvgbhea:z _p$Ӟt}P~w#V|5oK_U|O/Eϗ[ m_?Pk gg:DIO6Mdg.ۥ>,hQ?o7x`_AxK.[WB^ Ы!Żw mӍsxNQˣyrkvdaeySA߶euD6E⊟g lV\N`E,:c7! /$xk,) 0ϩ׉Y'<Uw&gK0e+tbkɜu*pdhṛ<Ȧ=pnm1<2۝^cdAvq#ϳx5$r&vN.zίŀ+<PCFHRV*Y0OUw$~1A/'ࣰH2S|TM%^.)곷b]Vk0}&,oC# T&6}fߪAp3{;;;B@~Qz\T:~bq)C%^xwTx2%ʓɢ/7 TШ^ЙaID v pIKdff'+VHXӱRhl1!FO*cWPs6V:k)&pgC{䛡)=ZbЀ._%.5kȃtIv|i͗Ǜ^unb"iS 'hE3V2/qVl7BG~*$&TSvnDbG6ϟԡd|?Y4+Do ɿN $mBx$I6596i|2DxcgR s0UIDEĜ&WOǁckx_G;Zoe3G޳x0!BbBW}j#;/l{Yh F3_Xz1аFwG+Wĥ4(g ^G|+Tg*>{?zp$ w>`bD16\d0Owv/N__g-^l`R'cNr?q":*3+T>] ℴ> <\ĤU'B!G&#!w||w9]h]]~JX\~sw`{h#dc-/,\=<[MC( =bILToŦ{e(J!0!M$ٞ_a[#*: ?q\%=X(.1ٺ^v-.n^uHH#h!ߤ \wR/|=mq^\qULd#7Pd6.x16&lw[/źaq}bmב@xy)[N~8LWSoMre'Gs-8t}qUKoLx++ۯ_5Ƿő>5T5vh}+Oknno|w;vAƒD}'v̙'!qXCxe\h#,bl/1?3+Ƨ PG>* ?>ac#O9&ܩo[-מZ?C*EU;+.r/gx[V؟hG dzua(/'Rσt޶$Cƣ`E>L:#:$~m]n?_#`-@I^mx[H>lF{9ts4k=UvG\"I>z9җ,e_.8$wS_4ڞ=J>*_D~^~ U7e/&Q4JlmjH22 o]OXǟ#L'>Tf\M.7װB}쀑.Ux[wr]LQ.S' l\՘b/ujaյ2gtp*6Q2 j0+ ΖkY ~:1`(.ZfN']q?>'sr GOlUŨ|vE28g~ş=-&h!_8Xu[yJv܃YGt;k#h+tїl&ݴg0Ō Ą,\Qǎ P+BS5] ~5uK |+'XixώZH葩3V@W˺ɱr÷Dr)cBb.{x7V0maƮa}~jכKYرYPx\ŷ̊yoR.+Yv}QCL N6&\&<:҃28~ڇ:g#AAlxEi6=umg z_PM`|"s^!{ʓ^~*aoQ)b4`m?~v &P+=\2Qe|%dqUc'r NLڇWt?/ifK1ߩ*R19?ʨ?c;#ʟ|h]/zU<v=< J1(ސ>Y<e1!b`EvMnL8q&GGc|P_[WB^Ď4|:bYCF[>lz9?M+(Q;C?_>my[Л(AB^uu[-lVr7,l̂b_ߧEz{$8?.{KXx -#d@f^K#vSRo %- Mfڅo=d('j1LD3Jn]%-fu8+~cK$C{nͨ?|qw_gY$6YZ[URӛ!}o{eL/|OƉ+t tx/=u_xVBcf9oBMNhoq3Pe|EqG6|vihwLJؑC( QtR93GQt*y44_ћ-W1”ap{c@ZJOLm?A;>}v{qN@41I8$`A4j 0D$ yeoH2PCДŰ*Cy:p+Ir28f`OxWAP=i40o3X:5k4zٳ'6\.myhޮph9Y%8wRǓ_`Mg?vo2ӌN(._Pڑ] Ɩ xC3^l:<ج le rپI.xM>? cxx.&Y؈Y:F:Π;RkS.f|-Z8ZPC2V ;g= T 7*MMjכ А*HWfLhK6|ˋJ&* Wʘl*s'keC^fpj:ggK3LtlTZHݧ\pm?, p?ql,:gT/u=9Une Xb "@~F@ >p8KԞ*$M!Lx[o‰ /VyJ6qK# jkf |h.ΔxA2l&#Fϡr1Yۆڜ :g'l riIi:LI@nR:rNpdD&iro;*dŦ/pxn%_LMLu<]_ϒSu= g1YW~N"1pOუ x{Er6܅i(Ə_=X cwx[/ʇ;_x)2t3MHt A hVVmZZ)x<14z<ꛀa}2|HpH}0m"x){1;nw;`1c.G_p/\ecoO6KT.Z]gp8u̯ .=N 3`Y}#rGȖm>捥׷/ۇϟէOUs t6!blJ#[/Fcz\/V!eU߹GA,37(~ ΫK&lҴ'afӉ/>owduݶx  WڽjfՁjvv69h9};ǩ` "v d?Vn7~CEKjdZevPzfn ٻ8[=,@`>?я~w-z .zұ ?RMoM'?!s{vف?G_6)OȠLX`2,=*.2zR)GA}:h{ΦI̬%Uja5 4x #T3xьQƉiZ QI6Pf$&+OfH a*M9=,eKbOrGi@GHp{:bgĞK׻W9N6SZ=ׂ\6+H#Y쳮3"uEl|2N0+zj7}Ж".-`b=[_x&X7JH8237ц/< 5@!dz{kGΤY]J6wGP؎(-* hH>|GG#3y=vijjLŪYlWM!370Lx8zk4{rD")Hn[Rq[M ]e@I.{l +#݃l&행աVHdO蟊IhT0ϭ6᤿):b2miT5>rT39X#W 󗢇kgdSJtNF4<[Ѻ'0}"4os2f:C6;ݱ}|)in,W`(݂ceJ kt};K\K' zV.cbS A/^7aRNCqH/}qL'I=pRt2x6[9n76x}/Vץ!r=Q6YP GLApWE,,^Sb\BeHP#h*-%ovpvE[Ƶ=|TR΃d6_MvBۡX\\R;uiVo4-,gHӖ,vR EG]\#<4,F^G'Q}cABpK1\!\d w,FЬz'cmܓU5H IS,xJWC"y/T.F`<κ^1 :n>mL- 'o5' llB_9 ~J`R 2g"Ƀ~6<ٲqL|6O 竘>yh _ XOgm u ~жx8n..tV9\Y}c0qn:dnPJg ֺC|)/cܢ w{]+|&FO ϗ&χ abc Ǐ X]SA_L"ȼ#MDN"FDe}z yA\~h%ғ[h Z'g(WUk}M"BΪl<*cɋ])aQKN KӺj>V*o?QUE+r[ip{; ʎҵ/pfMVbwL7,ח"OlZWqd I>h/acc߶ `hWR[kn&ɑ"pp,io[NJ|-M:3DG: 7v^yHbl7/x .vݿ`/x{<~*ե;}=۠~O~?~d}8vDߣ`'9j^5Q~?{?ܞ4{!זkmk/_1dBHZ]l0ȸx?0NXzOLep|ʛcEjv ^9t$m6*A|/0m:95jm8"(jz3~^\pٖ=ƭ@'Oo/P||ՀmM[@W.b(?_q:t km?YЋbL}dOr SDffDF9`/}.8M`Y7le?4hOf;ln dK9uOV4V6uT6eϢx :HM봏@DH]Vӣ ú%3 X@4]b ^ Z*c. vwf##LTZɮ*矕ta{m;w/5v‣#`Yu8@viˎ>I_CCu-,KA]eg@}>fqVɭfrv h Vgvn$21No&NNd.ț;/$vлS) X(:< d(;73Rb2I&!c֡&!B_C/ /xb #6D+/`G]N.:W?[r wU>n[xizMѻXuq@`ۂHI]ɵiH*N7z}}eF[%':Nуu67اs["ǽDGT-t| m ԩhzUdѴvJ(Bg "%_PDN5;o_6΋/&׷tݯңeQ~.$@P]6-Uλc)qC &ranF ɾ{y|*O_Vu w' R_n[zY^݄M֎s4BD81b&u*ZN܃vñAcp5Z{|Vϋ埽Zy[&N}t w2N~ȄŇ=DUvN,V; "~M41]}YvuZĵCՄ "gWkۣ+ QM]O|RzdQ.sΈ'GgnE(捽.<&d 9M&?goo폿~x{U J~ an |_}~ŝG:; {vv^ۖ`kCp8 r\/q̊ձ +s(9$C;33L5×1LP2E0P[]?v sTJ$M D;1"4cWCpF@! ^n +)Vso]O]'k<-c',Z(cwR賭ŋnS#@l;^J[uW!^ǜ 7oit&7u;'[t6i3YSQ*8iGWK?BǂWl; N@UN@gYXӞfVE=ϋ/:O|0irnV87?[bwV3wmg >*nt{xMNvAUJ &L/AMRF0 I|C3jX`W&4lXH_M4:uX_tlr#9E{sh6 \Ln[Иyꩩ!c3Վ} y4AT.Pht_!%T*=(q?wLː/`ŞS9?Koқr&=êٴrXHdeW *˺K/0ҫ>脯NMN ی(p$M_}XVR1KB+WU ܋a+l@۱K.!Ё&y+RykCÂ+~ EVj+slኗ9E٣S<9UbYGz Vv# U/Z~r>@bxNy6L-@iGW,u[\8'vйcK>H.cLnAe)lMAv ONytsnFWǧzغ@/ WZW)2-تSr%7}=:7 //{vTa:xgN?MGϑҊ%AxJ>=:Wd+]OY_ >@.hTkdWu;?8"o0,hmJ4ƓHZŘ@kkVW */JFd_f_О^յ:~ ·Ctx8>8hc|EL_6+xQW:mx+d^6YJX[Pe*W^HΕBBv}A3sⅽTȯ/_zןSilHf#m5ʀL m~ׯ)CZ|yZ`Go׻<{E۪u~8S(SmUw[-_].Dfg~ׁs9} ٶ#5d=xt]mH<:t╙۸,-Dz}dCɉ-~]:Ա`6v mq+vALi 6݀DW ?e~A1YU+ᎆ`N]px S jwc+poݾ׍" ^|%0- ݜ3֫!??9oo+}kPc;1JI2  8N'D,NCq}m`ub 8[h*Al)7~i{7'})S͉3&PӺwtpKYi*ѻEk, =YTSVY Q:u:8NI2M^'e'hV|5`0ӛa3ƨN㠑@MLI8}G<3_&­!nj\ꫜsIKv<޽MrjO0(0,Uf)D$}'@؜b:$l;}lq/ {':YGp+xp :[)XyYs9OXrNfGhd& wl2QWu6/BR[ܶ4Հpՠ`PNZ>fwg> l>-݄M*~Jܸl21fO IK_LA@ʣ~N6/O_Euc-^||8SMb^E D1lrD>ɈGiʮP]6~0M0;M*:"3=b4fp l2 a< jҏNi5Tl$`htDPKn _OoK/ɹ |pz3x vVQj38=8י&6ŽOסxɳouUlshNGM/NK.hBI2;+o7b!yM ?4F;L й*>܎wDܯ_A`а12V:lAe\";=(>,>2g5[YGjݟ/t̞}]u }?O8N#Q rHwVL$kh&F{mà ֌g+mtE;lšIk&Cx qGtt~/C"eE_2'#|ȡe5u&V P_i}O*LЋGx92lN1A8"+rSRˎ~r[Oo+XX E2'lܗCgGu~H>w% Wbc&V&vmK^ݞLK& F 2%bYWmW&%jM>xF[NU[>±92|C}GH_> aMۏvOY"G>TbO]v!φn"=KttN9ى{~jхh3p;}v^8jqPm]?_?wkz{-6nF0C۱1<{hr7qzHCEHVf{') f0" Nĉ 6ˌc90A@*Kr0рAYm25E18{4ÝʚR v5xICYc։7 7],кm0Y^(tJY<朵>=ѽ @HG+ Sy*A,Ci 4LtI2k=X"Lz{)KȊ?;݅Cr*tnG<|v,ܠbɘqtl2.AN|?}x GsÄ^<4:8;?&Mࣟ(eOeë13bF emVg؊γd!<~blա@?c~8Md'b`}A' O욬ehq8WT' g66gR@|^2dJLbzZtU=ěWL_ O2U>:ڛo:#8)D9zUe [:#ˏd><ZA|rE~~OvѢB"S+Nۯ]+>˿|owEɽ=ݯL]c%{7^%'WwOߤlU䈦~ڗj+^@׬\P&ImAʜS~h%zF缎-Ƃn6kT{J+"FDͲAFl`{1i4m3< {1!c섘èȖRG4c^ȐTe)*NI%*2:y_T6Hfn*ӭ:; f Jgl6H@ VAafB`^$pɬh:򍂬kD, F^9(Cdoy[CɎ XLȩ2 <"OgYdC?쵻E:`6"}l>TZgF5pUdYp{㖩NS^e*ѐ<8}2U: Kf2^ʑأ m:qp#>aV9cJ<|ۀv2g3:aVϲp/YyF)qU|K S QS!nu:uʌʲy+YLcg j K/sN@ت5/f#tKڮ&~ݫ5[G(duЛb! 5LAP6C>H|?OW^'7NBl8|x@φCe|ɓNb7֭W!%;@?zi҃{f^X9BC[Ų3 dOO[I,c򊕮3l NdʆF50"NiTś>@:U1%+G6yAif0mrrB?YD p Vp1<R(M@zbɡ//uyi3d"wfmč~fŝ'5Sy[jaAbegH^Y]U׺Tj ' ʋ6p5>pJOA,^{T̊p@%R6κ A2{pĄkDm&/`G^!WQֶ~;,Xx{ 8hpxO=*]w%ᴧ@KT]}qL\]SuТ0__? Ԯ~fO^{:ћox/?m/;뿽Z6Uˏ> וdXMFb29v낚J5TYEX3#SA `q;OgYq:`h8x 匽A/ n#kL+e0XESQPeg j ar,-9z'toP48@[|](]tF/;Rf`FfrC':o1 OGla>YstL,`œnࡼ~O3*nj7ŝx* lʲ"8@𯒊g8T ě:Fc>Zg푃ũJߧ }6G3uN<3?o{. vsyH> # r#BU!nF')YRJ;m u [YLF@s :?e=qO=@/9JJSD:=΢ -A.9?huI y|kr?W3үiI iHwD7{FQ4:E[TdN'h3*nxE{$yj[.ћv8^Vep8BK"1>^KGhSZÞM⃃=2X {Zpe[' m-W][4@75foȉ%#qD)#$l`Asr:g`v! 6bWv70٣h̎-.L g+s&E[FQd籦#ţ5cwwa~RDɯ| nY2֡=n)b#?=2E^)ŊQڦQ0Xw2[r>u L8:wv.98H d\cӈ3P=_*gLw\rԡPGvT4u.\ <Ԡ,K;$yS{(cM6g ׫ZXBVsa- S <{=UWL8h)S[3$%壍'w3,HYi3/,u{+6b2=ZĘ;Z>U=;_<& ؟6Eo`K9u ylߚ,/I'hA S8{~}#b :Qj fҵqMHh7 L| O?|rgUkk%)0ٰ7i×.6Z&;J? ^,o|tuL |B# j7npwݟ_~_kW?EO2 tI9jsQL$1v5  lc9teB -++xzѳwW#f4D^cH(\:0E$<ƠќOa$8(U ꬼ έ4s> @ιFp@ Y{FxCV8:< ڞ6+oָ`|3"jG smΤVl#(qPEh6RyAʒuU=2:NGB2lK5%v|ڦ`C3s7]khUNeo'l,T)Ǚij*eK@>0`;Nj a<ȑ^ nrUS_5 VEr3:> j.O|@XԲ<ɛid#PN3F/Z,o%n ;h_ J%d?y= ;s:& `"=k3U0N mZX|8#'5]c{Uël*:WrM+`U~zn~xC~`O_oe@CFVigӃ l-GG2W[A$z4uvS GS9vʍgiw[D(8O؄&&ufxŖSM7u-(bt ԸȸrE<8 ~&HcRK=b* .|'wQn616 :dɤ8e%w# `y`5m@]<8<ݨ 1G̲Áޒ? Eە+L*<+_p?rq9uf]e?}r;_,( {{Q>sz:66^礡\6neǝt?\_\tL<@t|2lzydzdc>ͳ*:쉿Ш,vu9:p끮pSZ彥$@˛ja:pvsFӉkټRt 0ڂRy2ׁã1Mf=lIG;{L𿸲|(?ͩkñxd;NG^)["CD,:.R@:<乺{!߲ VC1. f^ J+"sqx5HOB7^xl6z14S,:x `AN8sP*{very~W?g= ew2ܠtk|YzS{?_7߾o|P { 7&ņ!t(#X%LK5BO̖FO txf!7j8R>g!>XRpJ?"d\(7*s}ZX̨Fr "vuKϲs`K1U qh+_p +OGنs%Sz^h: MU:f}RxAq.er|?yײzrZAS̫0qďFpÏv5b_#XI`HZF^gµ"`2ѻþFG$n3tC@Iг5c~~6ul#/]@_ypltHe]2peF<Ï/?}ٳA3{ a6ݢ6F(&r'Y4(+Ci%ix h76qw4Goc`2]1S/bq51;gKx%;1Dlv#dn~],[RfN d}-(2vr 젟| })Jb`G[7+zf} 0.;+OihY];*o%e1wKW;hs3+~[_#Ja^"z܊ g 59u6~ypEX6˫z`g+C:IorDu~+Z?s܎:\[~?O0wǦb}`‰r1𵕴,?#fs4k2j7£(:] { ͧw6|pptgÖ,w^،sTk/ܧO{9>gw?v2p&\se *E2J-VV~>* 6 &~UGd]%kNjbA:3II}UXC1atZ}2^6gZ1xb"Z zFKX_U~(\o(|MD{߷Ɨ/p?_=*۽ݼQ!H'yu6볝Gω+w!AK*0ۜc#aQm - fݕ) E ~0Y4)!8 Hm0?i Ce-- d{~5]3Fgg&4#ۍ Hk;8RsBfрy@tBo`W-@J>eu,{D^J򻱛}׌əN/~m,޻ 7m=d" I.o4|/jʮ.ƍS<> t0 w65h3v"/(7 D9xUᙎvv'㊎X&/\dFiɡ/چmC dgX9ڂyzZOef-t=b\`[̬GYuR 1ֈBQ%V&\K3܀խ 0rCJ)FLʣ߯NOKUV Ppq?-#gO+ps6yB'Lmxg?p/DO%L:#c!n]=rXU|&ջU.+Q\i tnW^\/-}އɕF *9}ǑLxziՙ`l#2o"֊n=no4zmo{(n`!¢9J }cn_.ѿ[&z)VN(p7&st,Unөx~gnd4oɡu@6#7}]m 튧U']d׫Ӎ4z&َU>˷Gʷd8VĀ`DV6nbV~ܳ?{Of慓'xwtVM kW d`K={`=v_o_?rz/t m=m ޿>_?:MPEcwc}͎\D0pD6*5Vth 1*y2hӊ퀩YMP"DC܌e۳:Q4xG\2xH"Wt$(Am(:u;`\eZ*Q}PV[!rA޸g}8Y^ uvPEǻJu:kA4t.줈eF?kin,o4wVJndA/U3--%1gU_qoW/Z5-hei"R8;?v&#ZL:j: E 7W^rr#\p-VM18跙#"iUCl> vjS눣/vE}DrYC?:' l[㙭QǕO{r. ctVTa}m%=aNT4䕚Wic"p"xO̶Zb[!1m/pk̏5:ne7/Ɏ Lӥ'h|8~=gV_:_$+ FJlt =o"&k.~4π0=Lb:x5PtŔi0|& *z7{q[&JQ@Ϗ7p9!l[^'韆(Fg죿G~Ul *:'ktG#2Yz+=OJAկjh\o鏾 bh=jVS_ϙؕtDv`6*wkˠ5vX5&M<>(-f!m []qwzQ4>cLCc!#lDDΘ͂e:w Es=N:xNWVO-M.:"}}<oMAة6?7u{u/^ _  ,x}Gl,^}z7+uMPv+b<_]}h3)>h}/jv)?*8z8xiSoxGgOf?E?Q1B%U=&0`m<]"U4(@lw}%_C狚_cDcR3G*' _vV7?D}eU!ey0!5ѦT2VǂICoNj2*n6nJ4Q䠐9~](qwbKsfRY*?^%'a*hC^rU zO2/g* o@Sr{6hha˶zJxujίVɜt/zDe%{Ɂ8bD2΂e/h@1Ak4? D)葑r`Ɔ5lK(,63ӝ:{F F'2_2AlS8௱ Xg dSZ$N6LH{_&|5d p{|[3<2QQ~sWaJKfeՇb<;`dLE3ʈq*n C#}>BH`d6+'>,OpA}mpfuFt*k%PUn_n k5?8@LgA+X9nsNl9%Kb[덓3hOZ0|v3J N|G`-^5C\d綢Nps{k[/{SN#td>,p:(9 Htva7l;k Owq%Bom8B pћ+fqnK\Gd|udEikci1B裛=R@V>f{pխvξgxt %G QJ;NGFG d;H̑Ȇ JE,SrKl&<_Fb">ًs;k^cb!͇A![tKz/d­Gqz? lB I0ԙ{T=#$p:}#7>LNopŮi1q}3FqģN׿g`F;N %vomhtaSo+;k_j4k{ tY鿠`5;uz$0 !ȊMh{J1qEY OQ,J6|e6xSU8&6IF0UX/P M27H|<7EhbX(#Wi0x0,mΜ"$6u W-)l(jX@'YjzU=hȫH2ċ+*t"KVTҭ.Ё `ˊd&/*aal{ՅYT J`ӓ+W:~8Ks.Od- zU7ׁ7G05X^2#o4X'y3ptH30,Y/wfu ^PJ:7:+׋{"Au%65\.:sR-o''{yO6:w-< tl w9SLɿ4FhfV"A9e.H%{@Fxtķ/(;߽z䁰.<X`vfÀQ"MQ*`_;`t b|[cd[A^A&S{tyğÉPwIL0`z*Dquĩ]tG b@!mrA[|9N OV+g_g:;OIYJtibN'T4|:ʒP:2,c.,%6^DnB0Gfr'aM.L<͗ԉQHE]GϨk<'39|;^~6-A$ @nֆ߬h`Ŏ[;\>2B|@w:MTsƱQm{3ly,ayzDwI͐!)8f|W9i74x- 3@x5Xzo/_~O)2~6tY  f'֎~byq9UBK(+)POg`2 Oׁ'/aSl84 )x}1K=C90e;L"A3GrdBAfqO tpmTL;fƢRGQ&_ Fe)9r| gIK@~sЌ'O;edl{ 2 H &@A9\O7C<0H- FuTX.5-!o,1ڌf bg Waen\rѰWѲ/tR@ ӹWzimNU& hQU~:6.e d!0؂c2[#~K'˿WT~T+)PSV;X:q3]Z<|7v}^&>dtY_BQE6>;*7{O1av18g[pFT1w∆q5&^u0xp(@W+D?{aOg#(-jTV\B<-I(ǎf+^*}+Į}DzW?6 dt pTt?&[*@glzP4(7 $>*6:SB&` y|!VFcѢ-_Z:h0ˑ Nw/M_<=V;vObCdO%D__-mLN],.ć/֨O*%HLarȖ^Y:jQ_|yíly^N?C+0:elOEei q!Qy~ZM"kg{&Ā_Kp,zSY`8\uڕ``MSY6 WL( @IDATK) k3t-z͎mmT8i,8=^ņgu)IN@F>G{/3ҹ^2X]' Jc!̮4N Bң(| PGr]-9ye^iFA+44-#^9 qxîs2EeFs t}S"˖LUPޗ7 7mTgyN(uƒAk_9Hӈ`r*y_)س%A"NVJ1˲:JQɰ;Fp$ 8t(-?c(E@3MWQEF>xſt]CWAK mQ3gC4lZeLP6@|y;=2?u:F.S8Y 盧 3и::6+~X@#:d .(8PPC[L|1hZ-Y:P6Ʃiv8+,F!(:6rc?%^Yjd;C4.,Or;)Ot&p \ſEQH?TJ;tAeWP5>lD:y& C8@;`^5CJ>@æ͒% Mݕ$fBԘݧiğe|a$gk  t4wVO?]]%T&K.' ǯ ýH7 bu#/@hxu6І7AO nPp f\n>\'7گ3\#NQW0+@5ģF7&0=~3NJCXnoҢgB敖e"6B9,߱Y烤Q~Z9Gz 7>83Q[]8DM'щe7u|ы]b~wwô4ڒ# <`@-q^]@.[-?O㇗w.=S/smU5 w#,QLrs?A?bX#҉}س x̡?-C}+^) ƃ[hZ<οou|DO\- ?S6@ifClsz_ׯs3{̡ xվ=m7wmlߟ (ˏMGer|{]@/IfW~˗?\.ﴲ΃ 7U ·ou<=wpڀ"{Dѧ!Wuݒ5z)t <b?Pd" XDl 7$d ֹ%u/$ [ ΃%{4ߵĆt0aK/DQiY2edI:t/;N8+mdSN•Mv ̔PJ#rw˰萹bH> YEXzpuAOѬft+$&:6yl2H>dW&OJ{ģv4e62܀Jf3ٷ֕LjHS|ē rWH6@4Bi\O<ͦi#}xG]>W[xfBЈg'u yWf+rAۤ>7.__~x2b|vlht+pǏ޻,\JG&`Jf7X$W5{fҪwpf액\EDmimELq8ftuB2fF6' 7JNl2:4BLѦk(8J_ʸU喦㝏+GA)?e Ftvie,Zj-o@B9 3η!έtiO s"ӫ}L/vE.#XNɜ~k.9Jjm#h0 h¤a`C]ù0fb\mXWgmI*\&7]з];-:0prd@Hx5nٽ붦 obZcr8c%}l^UȽľ}zqtr52hR?\#0+ 7Q-ZgQ:<]nXy,Vkc M#gC>vVX̶i+m^~aL'v<q'NbƝIDݡ*U:xo]/T86R84eMACʠmnTGaaX;J}tPy(SBb{@ <+>R~psGu٢k4|PIUhO'6DT.A:fHEq@9:qمxl~t/(oRktY FS Y>#&xѹ:dymHXb{ ::kg,fG|?EV&#r0Bs}i T3UmBZ#&ircAovo-Lq~%u]~*)A:|~I%:tOݠDeWn's\T~ ڰbp,8A-= g\)GWcGi B"1)e7Msw:fЛj3&ͮl4T E[Zɓ$+^V2ѵN؈?xn]9~#kq**Zvs-o^~_˓>LgފXl-66aK6&c]VihgYi%YV' nٷO_b.CNYM&D>J]s!\3ӎQW')0$xqU:h]x0%L( Vrx6yl1WiJf-~E|>0X{"/Y>cắ.u$x׋\JGt:~=GOu vLCg Ҙ "uVOHcs3Hѧ8ItF+ɘ ΈSOY0D#uPLy:pF`%X{fkzZg1\TJd~1ع.{{nym X8]J 6tf!Xb4!2N]z n| <{ΣS{r%zpb|n2"]ӎy/7nc h"\)rŷ(J) ,i]lǘv{,B<@vH.J*>rH_?W[ vBqNMl;( a;|\"!f!"󗃟G,m{6Fp$uq)ݩ-DEm;3FJ^` 4hr+}h4tJ0Ggx=='z0KtxUlsY+|jxZ;裼cïjOk=*WqjcBNOi.q].=DF:knSPSG~G.3&n"8v?W]}_>ȃnZ37h1mf齅AdV71/k>_;۩1J{8|wjc$: SKp,βMzaKA А>&ҋ={Ico,%&O4})<( E/-(|6X@x+3ϼ{ GQʚ?_+w7qx@^}3;O?j&6a|[PݟӌG#$̮P aΤb%-, U [4jvac@rA`zN +6^]EyC7 LT"efk_?#S䑿JKAUEHLɅBOY &]F EI`!n#`eL\~Z_|~ρA `p SA,pAVi A^bHt舓~/r:>xRI=UΫ9ѭK3]>9Gv,99=:yXO'/30^]VN F*KOUlc0^8xYZ_}]7A,<ӬT'JEGOBC[aN0r >Q~5pl~GͶaq㍯Z9~V3WIF$NVa*Әt*.[Yu1AXmmUVvUlQ Fgd>E@~t#el)gVcG̃ u= Cɀ.[jx=~A?*}QbLџ <{tkDuqm$`kv6 s3Hԁb}%'=n𲌨G#ӻڀ_xLe ~"5Ae:=u>$1н66|̇zh10 -10aQQg OSv x$7uFX{ _!C:PILV`ۍ=}oiki:?ܐm(6M;6#4 2H~u8m~*×p~:: 3Un($9=~;'Ųu뼎 pv??(Ͻdҵ;]|nY"Î/{9EZLl0B t`6H+=Kfr+9O|<,E»O߀ /̂=[ntew z#/ozm:u! w32Ѫ_sV@Qbel)Eo_109rkgQo\]Y[:m1 8QP'pafNKIؽ7k|| efRH<f8Խ--9@jԎb'D 37F׹9c㌫H]ѽL94ܵA' +jmȮ q6k=8m~2f[g"P9қ]BNg傻VfL:0"NcF`[`TI T,k\uGEFif|ՙ7g}g"`t}j  Lr,7ʮ#o xe ~NIy VX @͕mʰsPﵹ!D7]mHj*&J[KAU94V5>yEX`Dds:$Բ  X 7w9;2{yI볆d v 0̐lƥRLNplA``[f؟JEZC,:"u|>t9mvNL6H:\6X ?ES$(C:#Dή6PZ cxWgt A/9#$]x<דФq;4jUhɪ5œ7z |/^q!ZLdl}p~$ Jv4O&}bc?vwBI/++i{VF4|M*4zuJrٱY٘CvýoP,W +6l5K~ш;9ǝ-ݫ ]}l>"Kë|9(шg{((b#-Ni%uߐu>7?ܥ*{dg5WW'\aS ~, DlyIe#e @iD'.$tޖ18i7GA|MV/I]t }FfӔNQ> rC\q|W)ZC.ro0A>[Ulѯ|9i`OxVZ~7:?Ҷp7 kg_8Y\3xqf2}Tp'4\OHN h(/C%\E~Wz)(1yprH. jՉT.&/kFy|C=b5#++ dGsZc3dcMu٨*|W&[Hk2l0H,tVNTTpFp'69+2|οU鮯~ZQ=IW Fpc7Y}=JN#3k_寿:WO("". Nh >=l~tqD?,@p/]KpyW߫՞VU?>)ngZu!:cC<{VR_I^+<9#03RǞ-XIrHEb@+9E՝Ldy3oޡnUuWjQ؂&ZiC@6qEk Mz;<}~Eȿ/"lǎ n“g `@}RpS2`Zٛ|Yb:[ݡ7c7PMA}u: >?NW>]Ts *K*'2GVyNN&Tg<o6ک Qb9F d稗oTn`qf|0Oxb- վh:t}63k:}|x\ʮod*c'ܤvLEO,;L'w( 1kK,aKqmvðt< : LPH.oe }L0L)z>]5t;%UV+= J"5\չ/0'C tHBz"9hd[K/ x3jNCOJ,0^-5ݽ0'C֐Nrw=3%|]u'[S%3sɒ} |87P7;qˍ>dRi^>:Aguܮ'gypc~1>~n'txZC1j/Q1itta3c7X8ސ;'n~+O&6۟?݄sl}z5̐V|m[1C04M){Wv#Z04+K3y^qOv`8}怃>VI㡿 Rd=18ᩃʎeY snHx;C[U!ⴃSYX·vv$Vva+˺WR+*4Sb6ڨܴO.1)Tˇ3! uQ[xzUБS$);J@<\+q65|΢3p( N` F/g_+~vsvS/|8[[n| @v`[0}׳T్ؕe/t'{|L[,;YNY 9@; rnM^giWI" s63`amzyңe6tcXF>4';d6Efozid&+Чo^_b& VhX9<=~O?\W`י҉B >ұeIR0(M0kc eڲW:B2B;:d0Xٳy7(7 7-+Δ$uξ.:^Ei7K mHUKG=)M![ؽ@ G,1=+wރ\, * PTYit9cj$r33H"0_}#چ(3~Xq8{۲#i۴GI@ilSHP3(d^6F+R_:'佁d`ܗ~ʲes8;Fg's{-|~p+m')NG> F8?:8x |XVT&XŨ첢 4*W~HW/v%3v~.]%5Oy A[2Ncpf9yWNkl#_~Q]ч+xEio\f%KI҇wA_ǚ'}PtX$ߝ o WX?|M8znedEi'Nգ]C_ eYy[S6)Е1ACi|G& 쁞w7.cu (u.=BY*V.8[Z d'w!oyBRn~`Q礐5avzi\yG27>Mt~kkxάv~2][ 5o6Іj4@<^w]22hYOGl7[8@{lLqpGw׷7ٜ`:bgҞR6 suYzw,:*gٻC,ݒQ 7[" 1xfALNCgLn͊,%}I'ߘDd4Uɨ4b6 ,W/62K;~'xy"< ǵ`o.\V^эέVۡ~ODlFKc'gyp$ :?m ʋ T@ѽcTbaGj|Õހor3j#6ܬ =vNl 8eK:0mGCb^W`UȘ ;r:/>80pC N/ܮ,b7#rW^/xA_n]>q dH~{:cۦ:px܊?X}t(62WM)|#<ݽ^ ! 0累KZA>#:tWҩz˅## { Ch/7p|?sCV]p5eMf*v6b}ȧ3Aƭ~FiyK ]}ww3aPH@kEt%>L@IDATԞXMW~\g}*|ea !&0^'OBE^o~`}u6|7]#c|OG.?y|݇WA0lUNPF#mᓁv*:r w<ʚ,~؄3ϣ~Mgb$v5iDz2N$[dRQ{kCzkCB_Wĝ?ފ[R_V+\fQ8um*;tm8+?m}e)d9=co{4(93>P:&*}lL+yo]|c">5:J*[)MVѓc|wLT-. w8x>gMj[̦U?{gc!_?4"6X_R _93 ܘوD$ 16Lv8d$O͉'8.K0T`4`tƓ3Q 8MEyyzwR ȡȃ>8ˋN:l ]wa˗pr;sڈҜ' 9$uRי#N#G=B5~#xc^ EfF_{%86A/T)hHԛו{LzJ`^'6PĆѵ#] -(engNhBǓb /uׅ8v:j|Q`YgFi5A& l@]9zb ]=~ j|)ģ\e3-p:3䯞U'1' =h\@׀zڽ=i d`-ߩ{q^t l Yה⁑DftmэVx=ijuÏtLOhvH}Xdy(#.%/r' s<',$ob#va@R\E&g\_uuio)|: <ْ}{5 +mosNI2Ϧ/-j=[1e@ t%+X`nꑿ2hUtRvr[K^]v(S  j!EN&g4>>n"Lsx^:VWS~|PtsVj8U`6{3xß9Z]];/}4޺*Mʍ#&02[Akغ L$XѭMQ_ G2wT-UIwkAO D2r6.`C g^>+O{yyՙ}:wB\y׎οP!:tLe *ns^54s? V4A+#S^ow֡lvXyhG7cAdҪbun7Uqj!cE>ods,orӁ+w&y8w_n|/-c6w?AOxp X`ȩ<=pvF=޵$E[aOJˮ>F'# R`D=˷7_lJJp E8`7@7bmCPi5#8~qVjk&ɛAO<{Lg7{JKw?跂{ {MVP됟MO(݀^*tե dCV:t)x؀~c.ya]^Svrr-wՇlgN)O[Abt1@|aN˗|^^_uzMߧ{ۿg)Ԡ7ş1_v+w <ܫϣ#_8gѭbi#h(e[#z8Y@3Q I5#i8ykihFu˴2eNdh!secFK_޽aX1'h?U( &%xT@T Avs>*+(cm! #,ǖj{Auȇvx$u7$;8Dr؜sǂLQ6KN:Cʨӥՙ]=dC,Y||/Egƭ*Q{3E}*AF9hL:6>gqo9Iuى @,`:":5 _t[#w@dbP q]W+ftƼ !ڻKnϤArJ. ;sQ\=/v/[W="xVwltvv؞G5+i:y%vM<:\R~,;ތ8 1G\>Vܖn5Xk$xcTGuL^ʖǛͣe/'"|hGdܒ']- zA#@ӽoyƓY}4_!(Y lS `9e $]!GU|h_%!tH}diH'Y)bhu|CSRϕy%!O6/2>m3 0GoW>]Σ?Yv3= /C rhHp , 3̥U`>e,YYq~ie,Ȩ* nVj̵֦E̖nER=yiG'C UP:g'ig濂CvIE$h|jK{W=ڽ%XY). nz'_M:fɇVxi1W 0XkyfVWO8C7@Ͼuu0ޜ`Kϥm#O`G +>$~]U 37~8[CXMWt |%c7^6ه~7ܶ"I!e3gbbuX:7S@ȶCG$՟)b1pJ^%V+79;[W#7XQ,FުX`AM7lݣ1 wp)݀h`^)5Y\/^٬@g͵B,+|{040Zwu^ JEcr[&0,F?}|*\]F}wIA>Fx|ЬOZUfTΤ;;6WP#sYPt~%PZ| Ą\5zwY'SrۜKu+/t1Æ)8H5Ja*Jc0uq+{ڬ_ z9phdu:-_p\&x' ǷKWԣdwJ^)ypSOz W<[P?Y"G߇&8j.+NӨ &9e7U_v&xl33WyOΕg:@^ҹsn<1{?$CQ]qƱL$!Y>T"3N/,ɥnL<(!,AGL5b7 ێ=F9Ҏ $#̣S96η\J·'wtD\#F ҔgA_+rZ&M?hOʀ댡MqG-2~6yj]kщ|'ɛhd״(c`.V3 q6jac ާoS(S t~s:t?%1৤ LRv >78 p+%X%lo/`{v dH ăYgtm RgcJH𓑜p;6ŲںP3? Z yhC\`|b>8T|ZZv$-P2b|;ۦ%q>-aNYP:z<9g^X e5JVod ~Pg0GWݩL xk2<_zWT:3uy` h>gXrS?w?|˷_LNwfA&~2DQF_^8[Hǜs2+OQݟO%X[Y̫ uǍTJ3NC,/ꈥxdY!3S.gDÌ¥FX0Ln6ܻ96P D18-NY?зg?7F,#(Nb2D@4k*)_GyF2;dvðM)|ˤ_6eWMN݈d#M4̒lZ {ÕVd|V)>r' i4 ,T7 5sD:*;u*Jusc%܂IeEf9:U3+=s}QwO`}9Yi /_} υi ʂx`5`{ 2$vb9,o;bzS-2fѡ1]Ԝo[G9+M%$)][wgcm<;Iw?LؓvCw>W#cV!^P? O +,oy&و*gT HP!O+]Or u&lL/HRUf_SD0lHţ9xɢUw/NQx35|F>tӤlʠ}C_sJ6~+[GO}uuhV3it>lO,!sӱb/ ϵ)!J;J~wk'3z`6h \k+s{JA]-'lhNtEPdl]6];M\&_SYk#gesqyP¡x@NIPWDM }c xS*D2tls1?rQWcZGp\=3@>pKy,Y/]ȉH>bRV#lld$]t >Oa/?KI0+⋮e<-e:C|(WX\dtXpk-_BfK/sO_Gߡv~Y2\;ԵR*SVk@׃E4w8W'+K֡d+t{ XpQSN+Y =|0!9brhme[^ɀ؇IEq6]s&-v4oIPI h{fSzd_|FS\J X~HUN(-y, +֮y@̱u}2#{c}Wg+ѣ|s |h@7u_6`W)ΠKo_&:Uu^[\ Lwh[ wMV{0Ӏi2ǓѷGVڡndG[2W##;[{xPWr+/c.␖j=/N̑o}?|ӆwop~V|%r3hLy:~W&Z`6b^Lԝ)$ǖ-5El24ׄD1- L Jq-&f6"CٵA]9] , 6ZuV4Fx;'?hFe9EQJrV lrT>Zr^*|C3ic qno 1ң r8Ȅl.=sөӇvK<6\;$3u4TaOSdfT}r!gcmNGlW1j܂c4:'XbOB\5ǎ@f?qK\MۑW޶g>Gp6+෤GZ*S/-Y,E6N= f&:zG?GZ3 N+DPc^*#GVyHaDli~.9V/S4c Rأk-ɃgZ'Ev6#ay:/lF mBrlIXA<.K4t$h,FQH&he4_< *6!xYm(+f; ,h,w48m9&YwgpKme߈`+C)KrY{H'tP1.= /XB$@EMVy4tԊY08 1^FҳO2tIok7$ć66:>B^0`Ag;6kuJ?EK*5$gТ72NNYh֟z|-`{壏B-hJ-w`7Vcʤ/~:@!Y{'abtN_tolF |k`Zz{̒ӇY]$SGfYTKч92 O>aw 3#枼|k< Z]4*]|`km{A&KnH iIET=* Y+D&u4|C3LiqSzK6 _pB@0xkK )؂Cv-;=]^Yc2XRv'_=4KG kr-W@'Q|k}8<o_9D>/=5:'u.Mۮ^DnN$^*H(olO9Ҳzt@Y eR}K{EiCB&L|u.!K{%jؓb _]p,mgwj&qJ3\hOaS,O_>~z73ϖ=*f8ڸ`>ȩDYlRƂ6'g+C6=V1+[za<Vy&`u=38&Ng'gtVnH(ѽk]$_O}uOʩWN7@گz }2 ɖQN7#J0x +;G\kP ˲IB/`Fwb{u"S}"͡%֑HA@Mn(E~|o{#˧ (?CJ}չc`'z֩䠺CA'r6iE7(gv|jwN j9?Nv+$.%;yx.:ƫaWupY_pbd/3;X;󰤣$*7eWٳ v`kY4tVuEj'G%I[pC13?(9ynFN6 D*Ch6-`9rVOp.?Lg.z=E4J>rg)Lw6ES껎~?:P3YleyԉQkY0ݛ(WOyS>2,bNQ!PȪ<)Ïŵ{3gg,LºX!aw?i`Xtӑ8mt@f 7,vO wAW?Gg6!>{ vtj C2C>8pFdvjP>'H>G vH٥|m9o0n6ݪ`A -/Y_Fs\q(Ί/ENw|ZWArZcmy /g0<&|z"`+kuSld3R Nݨ[l^xO{6ȷ޿|m;Ǩr_^>{s/h} C/|wK^\|6+= 7ӝG3Yg{k>B'K-FKUSR .ј`Y@%Gu`A/flG9 !&T~6畹dM 0 m_6{W8+<͕gtD}ٳتeP^?=togl:11(=#՘ nH/], On#6F >`͢ mVm1Hu:FjG䖠x)mKF#S8<p L~ngJ:2=j(3V䟃,ʿdAٱR'ӳE:^tvQkpA/с7lCLx=ȝ{c#Yhk Tlӗʍme9#YdlzOpPu4R gT! t`(pJRL_1Nv Idwx6(ͰwTuJ$vz[X,?Z**{eFjdͼWgJ)Ь|?yc<:C.]G4[޵m((yks{`t+U ؇_KGI';x0PW`$􃋉W7|[]yAݖ0d3}?9%\x uBr7<K: hP;9;HNI4OeCx߮2CO: =k?:tx{p |.x&/mʔ)ce}sd?&XmFQud"m2Щƅ67ߩx`%Гx`˸K3 4@E6,C$:Ko>tbI>s:hx;׾c[EP<(e]^aeʯUA٪gurtfz1y o_+?BG^}/5| Dw_ýͅ >_sL{ 󓋃&k=T6GSmϷ~ 0wO?mm5_}w-/Wg?~~/O~wy˳ _߭A?=S3ȊS/ط`H,?Hdi|<[.0sr/{Nz| 4I+9Su&i_|Nk+Mـz(^7R/_W?>W}hVd't J$b`b_/;Pv2ckP- [3\!3Ù9'y Kd{c瓶+*3:`H{g-_Y/#8v~0,9)rQ~D3\a^dNO >Q6CQ܂<6X4 < HGcE *v:/:",FAXZ#lOj49vN.рGuT+|t@)cfߴAʣq4z}٠ A2:,ldS1K/OXe0I.H:s6nU{d>n'CdoM&윾?1AZ68\0B?N]4l:[xOemCpXrx'յA397eHӯs0}A[r;rXs`ww'89Vzt 9!qUwV^GD+* j 9\iw#awP`tvj;: cC{TeAZ?9y&Fnh_ ȵBY 4sġ=^@gLޣT3p(.& 2sbm(! 15O>Lv[:*F/y9mP&+;͵ :hhr|]+HM*ڣNsf*G?W`^CJ`n>!zPVy4g_+Q@uYC>nنǝ:S1%Oc!أ_#mg,M!pWl'oӿlgS0TuDwGz0Ki?yzٽҦǮYS>_:U+xLn rQ)~mѪa~0]M/`b,'3K3{U[M o2O\㽺|QPhN:Qu4Y@u +>mQBouS§Dg7B[4K>xg6*,ugGޢQ) ʂڽq G7xI'x/CmePcL-Cg]*|u9ҵtS=*;ǛzѩO㭤ȫ^P`'.cg DGp-'/nw!oY=4:hXT]j7D }OFotݣ|3Vb?Kx š~':-o9W@:Np,*{`m:`1yױSy^r P%1xlӄNj5t\1YI:lE~6~۟>AMM.IgLMT^fo+b>i{ClmUn.ziCɡ+nm D*ZV_痯><{OaVj/.?pooUTrW^Y ,@cWTd v >êRAG;Q8X|e,'\*sr2EmSf7ѥiq:[i3o_zZc29+k@NNkQ(:A#r+g? *{~OA/[!gyq'FO${ v|OL qMF֐qVrxKt&/I& qTײKil+"ӃeMmĀ^wu`UV3z+A&[>)~J^Mit^ٜWu<ȡ8p>NO}X*.JArH0'p6E g܂R8\ǾF_Zr ;˓DCʂ@6`m4EaHWhKQ+6rMgb2eVEhspTgɫ0$[@35{q:-j&GYW2z9u]!`dlz 6T4'[EgƃL>7"yeJ$fn4ұUHdjO vrK<ġd~7?[Cؓuld%C]_W&bL.VS$oykK|C=`h h*k uO ͕{홂a_~|p<;/}ogtz}Nv(<َx &u,=ߜ>lu1?߲{Qb&Oڗ<Py&*Sɜ6>-7zYN{*)[9Y|[}:';RMv2tnR{{5bg-d@@ƃ)VV_0&/jPț=|xՄ:S:~AOG`* c5jJ`U`M/=v?\*9̺YZz\ŶѢbVO!^m8n»6JH6p|*.ɝ,%? TYq@IDATۛ+?y0._(᭓?1xGGqmp2|dg'>8ӣ._~li 5p_n*!RC/:2PpdUd+h-"9AW8a:֭o#T92Lqp zmm@m9<(/=m7H}O'hhU~~cJpq&wq91z"7j{a%vf(qjc$~@2$3|FHVu9+t)x( Pዠ~u٥NH9ʈh&2] F: FuvfҲl1.IOɐP r4{/h}hdO\wGDKo47,1yH.55d{^%V9;VGu oauy|~m5Y!^;cV(؉~#,* u/)~mKw"2h" 1P]O1]ka.G~ˋ<C ъvTO`C\ B3wq?)GP 進쌈:;^wEPWnȑxYY<_.ܧڍ2 Hd{+|^6GΧݔZSw & wg28S=q:қQ"R n3˯D߯S(^8[_'N%'fdTɁ^"k0C( [mXG˧G閼vqJNv;|ES8=ܣ:\7Kc<X tpȸTY+/fەGПw+wem5]*#ݐ{_٢ty':| )vs#S64Go'UGn}?m`NGtL[զ0> *[d XʡMfWq qI2p3qW#{#ٽ{N|Q;wWwY}?V ܜLzzxӻ_2w#?5/>~.x~0W_$bF~='~]L? _(\*x]SQ2KUGe?jP OlaƮ|W!|ˈgH갓A#42HGq~feJjF*|8_Pj{' eM7x{Ksds]dAރxo#Ѧ.LFzJ0 V!F?4.|'&?ޏ ;تqȮe^>5.-Rw,ԍl Lxe{'.#j:U4mf+ۭxu%*hsԁ$Y9%wk-8l/UWȤ'xV>78 O7]<ɐl =ymN0?.k_LUGy yfp3<I JgV{ȟ |:e]5qJ*YNU{?νAdLer(c#}ء|lk}Ҝ"L]A"M&|&`c1SViE,Sݳ#ExY]*i~68,6Zw WFUyhޒ&KU޵0I *dž>>dbr"Mr|hbر!ş@آC3hēd jBg A=Q}RAt,tX{6'MbZ'XYo%IgD/)u:Ɠzǹ Z \V~'_\y?s?}߷ MfœfqѕU;{vq>Z ̓S}'zSh*౾JtpMM2PDŽD PHMa&Ac}hĭ<ˏЙ`&͚חi4#]^xI;σiW6~_]~zr/{ކPw(T)V99BrqEg{IWd[g,9- &F0%Gwϱ#9PϘs`}#-GfF[ i3 YXF7Cgy}`mYKjdm\gBZMsJ00>g*/1ZΒMnge)1Tv =׵etѵ|Zi959E;]hƞ9!LuS7Ǧ^pw#vVfËZguCoaq}al97stYX?Q) zd5 M#'h_Wq`r,%kƭG!xop'euɖ"{Rm@#}Nӥ@0=]_e4xXt>[7fiF)Lb_Lq3iO6w3a,Ʒ)N ɟ!EO.gƟaɾψbg~yᘜ&0`=]E<=.}3yyrHw(W{ 4t}NG(@f 3ȯ=j@\u^WP"~ZiC0#v[禓Aέp_(DږUj}U*Nـmu1]'[]hs XgC @xVS;kuNȞFv>|kƒs|U}9${>4Ӵ.=L$–bhL`|cM>0Ma>9։)ۮFRxulHY )hG{t?uuVj XO.VQy\HO|6xH{ʇ3PFͧCF|:\g6J|zIl Yl,3v|]䊟=\Nv]U+QlYpD 9g~LOǎt]v#v!3嗶&JϦ-gy[R_S %yA%cejn"_C_KE̖^6DLDwߒnz}kHFrg4|6L]e2OW췒6\|O2t@3YrƎ{FjTɨ)v@RS>s_jJ(`HBWm~)* 7L~iQ,ќ=qHe1w {jAH*^z^<^X=8hw)ه{ 6 `=0iWASE3)pQ+l8gYyhi(:>aPG|mxɦ&l0&}%MWw{=CTlg}hc q QGna/EL|nO_ovR*=虁'xf?|vw/W󟞷:G~vg>8%σg㫒_1J%H&:CxD.?*濧݊Fu"9W%g|~6d:~l5p߭VmX]N䭈`NU -@}-X93|K9-'|$;sNjK 14)F3]ۉTdh ox7\0=WNe\/,ѧ5d2,L:R] @N8K\%$tlXhag`Sof -f⫻hcYzkIK:hph_P^>|T ec{t*GL/)嬕Th넙m .0ؐ6jqǑOtUusl;3ףt[<*K$? d&2(4LiᅰV6DEIp#N3D\򶌯~uupC`GO ⽼]twA?d2EE=@30lV^D!g3Lv_GtY.C&{9e$[KΖVvφ<#>Ool_}p y-h L;];60RJSYJl;3d+#F,fk +3ɜO,XȽâP j~gd7ɜބCn1*]3דX^[|gWW& lUb~wXWh0_.\nH66*!fv=6Nw9{ī'ow<2x~4a-lBN_uM7832 Ru'BxX0O2٪rtÉ%p!4*-}WSwjh*Q]UkڑH{]IZd%hhiu W%~p7/_M5щ׋bMhnb ^#(ܵkQhD:hVybˀ']x z8Hev{/Ku12>G~e._<<=YUv>v xkRzQ0`?}1vrO ?}1] hWT|n%FAKVdl0~]MYЬ'֟tkxn *˅nT]zm `3\w~}w~$՚toF89dI ˎFrk ]WHvzo-|Xpl9ymKj9u<;XA4P{\ .ʆxVe> 8j>>ȵ19xEu؇ 'C}"Y̔)('=|?_OFWG~{h> [ot|:}\g>/~~P᣽2XVݠ;x3n~Sir(y5R{p\7_zܫ88{|cevt7<~ǧ.6W(oo__??/l<wTc OG  4;&\wM풥E BdZ~]~/>O/opx8.Ϟ9MBɮܿ8as2`|da1G_krW=v~+"b򴕟ƁtW+ 24}ŧW^| c{S`~Ο_BS4z8j?ߞhzldI# ^(ߦz>yrX|.RvLh1 ^?r\w #dv3xW˗JMؤ1,`7Q- }<) XGBלW\XX9DULǹvaϷʑ]1ӌO {k6M(o+>fBWpT_;_*6 .:zplWg EQH q,щSK<6mnՙRO8O̪tAPkzB{P&%rbf-n"cIt 9 a~cJy{fC_j77Oq0_xSVBOtLv(1{. '8/IPz\xSܟzbo8?f/lƝ35N|FF P}&ɛ, F{F0v.p;j/%ecsHNBKuBD`9񸂭v&(6f#^f79B#`w8~%[V BmcRx`k2"KO#1|I;xK|6_,@5"\78;v€7|K/;Q>H!/wo:LdE lmoϯn2y՟X1ET4CwlvY+(\gG4n/LM"Stnd^]JEdyϤЮTe袣@hw;_\HM4M `3þd g8%MΟrw!cqCTpU+Թ < |R禍уc~_.tk,WY>qoշЛApj> l'l[ʄrv}V:bO%9 Ia8%05_~y?`6$B򆳪?96Ўb8#GS bVRxHVW\P׏9S>+@v돺9klMn h c26Y\f1zl9B4|#ԝW'Gm8H/-LnE䜭QU#we>d]5мO`B.Ik{t~GP"7 n=wp07aSW6-n烎ՁiSS!ik2 z x.ܭ.Y?g(u<17PЕiI%kN_<ڲ |޹<#i[M[NO?&?ʊt>>6S3ԱvqqL {b _y^bl1εrͯgPxo0d"Gg;nqD+v6v 6QťG#΋EgF~I1xb L˜^lxGv?z/vN}ioኬX8uUTf"lq/+ߠNJs$\1}![A4^SFOrïʇvW}5*%Lk.t2l룳8p̂Ȩ `߳cXB`r& :ܟ |#*B{g #'c–`BqJ=gI$>`Pv <~xMgs\K/r+L7{Y N$9:SIKXwf2 g jeNA xgެb~? FeLֳ:Bot>[A q12|lf}3h{,yGۇ~ D`|'W&A~%is?x!'vɃ>nx 7Ȁ-̆)xv I$Z}j' fpf7G [ SCcnP"6]MUt&hT m0MP`Gb6xȏ?կ$ӿƟޟLn] 7M =[ݠzpCz-L6dϯH4vUxpŘUeJ I*ov22䡷ɷS GыWT2sqy&P񰆀Oq~RPx ff`yS'!ݒ{TgWg|_`ҍL ~_] =,xB޽1qV زJ6lf:{?z7|tE:ngNvAdIմϪ(CQ8U)cQWCrUfVkmU#B菇CYxqW73ܪ8[^9r!!m{|qk4p>m2l߮`zihm JM뇬VƇF;btVjyQ}l $KR0v?lG'm6,CYQ׽ nG#PM|5j~( MiW]׷e:LM7?-7^vXs7w?9/\MNh?w7wp!`>Ϗ`lp }4 E-a~E y`~v$#{^%T&2/yݶlIKq]YXNA)h}\u%q/G x;g${ӀG |hr0*#(򻳵c+ Q+g([o_lo?4&}݄w9Y ?%!?O{kG ~MzLtVGuvdɥҝ~U.mmx)么&nqz 4 $lIMp.Zh{xɸvi@r C|j͕Qm<MߝW S6b2 7ǟ_ s%%`==*Szb dJOz)Rj$4qFa:Htl‚`֕dD|Y#V `jI  C`KmukI+X{F3G3 {`ON0e-y0 tFbkj {^l*W扅ANߖ۾gm^w?iA;K^}IF<{iLX]Ћ`ₔ{KW&Uoڤ{fVFO:|^3xOt[J/l \.*g :/}ǽk f3O?hKt`!4 ZŞCmџN( ՋP]/ Fa%&`tN~%l يAgja3Zc=Mو t|:z]mZu(UId8+u#~:== uƁ mj,d0rG~2ٱc\﹤MĀgfEg'پ ( t|K^ݏ`( UpMvd3t#{ p?At;73؆7Q%|biBu><>:eG?O8ޮ:^OƟKxN|+42]V&n&MK!|pDy;eeU3G_-Wd1i 8J}{H7 ҩBbN< _,Y1Q&VL<#o}t!* ov-é>IV'nmtO ?­&5 HFw/CވG|nLj0?fMB(̿*7o9:(<9!;i4[O E/5$opɋէK]'p 7vUk:]BNd@/-U7{愥,h}0.ǩV{/Yfs'ݧu0>\gbrnYU4,HG#gQj;}WtX 5 Z~Y~nTdY=~|wrHn Vf|];|wb-W9ExѲ=e>ӛ!2ٱ主t 7I*LX7Ķ'؉)>AW|Ttvbz&|L>Wo ;]U- Ov\L'b,3Nt^LV9o]}Wuf/ebR< yr@e*ځ61lra`g>_B": 3O@L|*,'QHl*NvYtN:8:|xɖOD >HŦ#&`#kW62lSr܋uA&)%#lHb@v)㘸f+QO\B`TKD%Ručļl$On;`b89ξE0LVte;TgnopHzsh PسGlȃnaM|Lz7"CA Ψ.H,滒'>o=Qߤl2v7}B^l{xZQsA VI*%&|ϓFE L"@[K\`T_ubwYzl x⩠-w$茦hg[ْW 9w$#SMV2ghv,6]o*<cB9syռ|f5:gN?%L \X2"L=-md}Ud>7}UZ BA$kcz# rFXm0joH8o:c[$oTsIg 4<>^,9]e1xxnxdq"m*xf!'[ggtwtĎ}\=$|c-[&,Z}Ļ߽o~UՊu"2tlv/1ij=})/m䴉dSm`Gǭ7W7OU&RbD>rگz|0El-N|Oc8MD`>/Ox ѳ3ĎǿmhewD5fAVî++E)ͽ xG]t{‰"rKjl?k]b@IDATֻ(oL_Mv[PAXec `BqvyYTmzo+5gSzfIm;+RI 9 %6ꇓ-yއP3{f>0%ϰ8$7 r''0 (S'g;#G]!{:#ߓ _}^Ͱ6!mݑEl..έlTWyt<6`=:%$1p"Go:x@>腎u ڒ HfA^72?6g}0g^9WZSuxT^CiIU\`le>=KI+3Û,6)(:Y}Jڀ *ىlgѹKщu.4HXg,ߣ,d,4hԡsb?_mmdt՛ K:szYK{fգK/4jອN 4K66߁fuVo4D#8^6ٮPqxM 16X @W@qŠ!V}ݣU]LĻq)듯a;]\V?7ȁ`o{u|kgaU*Q~)?;{ ! {&2*OivOcɧ VB(>]U>4sʳۃ`#7An'y^U=~l@o&:_O9,V1˫MTfD!_uUK}9e %IAlcnWտF[]Dv8"/-S$}Obc~dg!Z,NpHLJ At٢ .@jqy &^Q4v-T*6Ozy[d&7`Q}F.w29>6A%R lns:X>ɇOsxh-=ݠn0CJ 5H k8{Ӓ9y3z'p뗪oamwAWz;2YZ[uL$MHU:Ѿb,q}nѵݸڋ=2o`帚!+rRW`ƿ؃-:w_{}]`UWF)6Ľv 5k/{܏}_3Uޠ! JdxJ!K?;C^ce,] emx쎭%.ĸ~ V2^*d~=]c1cWm2d)g3ɃǶ=Va kdKtY93\OD\{LJ&) |jpbG~ 4&6Wo_?Kjׯ.H9FyyR%fop76Aqvq:Զ!eCig/%iCCSܔ, *TCFw3TaNAfF3 /PwpPa3]l/9(xo(@1Ӹ`G%hׄj'8[% gd{`|/gP%7mb!26N`g)Y ȚAi5]{|*A,iC%xgqD.v<iyrD٥g|l9P[55J.Y!T3wO[{i%5fLlh鱈6xY g/4;Ɵ6?lӇ!:fvWGR5U*9&;Ctzlqg+z>v1ןKahV[1mmհ395ۘ\ℽIcq*0)M*إC[I{}WgYOjwt-fq yvTrs1 $ N4o6:Ylդ |swUȮj\7rQ.k 28& 5!OY 7'(ΠFڒ&<[ׇv_½ǺT0@k64iig+K P{WSX)0 { ^u&5ڱXN3Ԇ"A|><(7IpI(qa(d{d51=U~&$BU>jmS}&}f2'YΖ8V'&$V\"O>ӝ _&ks1!V\nN@]ףoV)7/<v! 68$#l&ڴ'=D?`=?Ezceo.u0QcD |՘ōDK7́ K~܄tH݉>>t2Ϧ*tp`/y.jζLnEd-<8c%3gk׹x?8OPfGw*)SUu; ^*4Q 旝7?+]~G4Fr$]e4glz VQS, t{ou}wG EgܝӍ-:ݹ`8;^֍Gd6M$'U7'Ex@0U6Pl]6?dջq@/x!<Ԡ|Bٟy`+`uJ᷅6)p}`͍f/sg>7kţ|jm=gk$`=0gtW_ YE3|:]U9ِHIf5ϋ@9e CӉj rT),?$R@b`&P tst/m`|mgrN $A,,aw6|[ac6}D / Xu rf p[d.cFoL@4豚 B fMɖs/, ~r%X\V5#qU S‡t!.c߇y`9cxy܏_VF;xcG m5jzɆZ3R@G/I'2 ?qwmT'v^K3v:U|ej='v]z >$C F-xlЖ&i'&*7ݷvd eut7V+*qbz7&B8\%X&[)wwPa7$/ هfwk2ls㋶KhΙ@ ;Y8e3 w+~& OGy%|3IsLLv.l 'qI=5 ;hK&I_b-]]%wKL l/-])խ^@k2ɂ $taȦ%Q tr~#FF1tVu堎NWCjcb[9g\ \L⻋m 'Ib3ɰ Еoz!f~=lx7)o^D~Ϳbcz MsÅ?qo1]̑v&xr,`x?{Q "s t8'[sڌpWtI uW<!*=XL}:Vaԗ䋵>X~u ?ސ :?@A ¿\zLk9WL;hkoA=KnVZ7<*Mcs-hQh>=04*ͤN}Vgk~41\?SP|6 9 loлkfLp_U"*M + O{2xæʶWM }m!,nws_2iVbO&dmWoFTUfWg~Buη۷oGI+ݗD %vG*Dw߽~_ş-]&#DW7fx,ZQKXA*,$:H=y?*_-m/j1Y<7Gav4F:s瀅BnvdЪˎA%NFy%~vh ?:,pj[|Gc<,wmy2#ē"AQl-*9FOAKx ,Ƙg9Dq[t6H~֖^;3Џ Oɭ> 8uDVA:[p*3 I Z :^>OX+BERzg\?@2`$ss`,[eij)$|Gd2\`kK >poD0L:O•)(걿q~|~[fgh ւن!h)*fGf=1u̫CGgS7 !l fF6l4*gɷ$#NV("6Hz/7zض ~Y#1o_l˰/&=\M%'Bo⃾y ;l|N IL.ɀпɐma|gx`L#5f35g>|J,l2f֖hėcUy Nb/Y]Rd 7D|Εx01U cI&dECSl M0._Щxe'9͗9Jl¹p͎fhOt?.n=Dn2+BX΢ KIםN?xty/1n?4\8ݡ$Z*}tϿHrz G: 2MRgc4$Tt*oulsat9n}l3!pЗ3k|G y Vew?P v=K"^(`M/nwa_xU;wȈz~؄x&k鵗0Ѭ,xQVyv?VgSA6n{}/w`>'&byųO\6,⼢iԫS/MS1d |bn~C)]~ J \q+bt*`%2I+p:\Ggt!d @s@MNm`:w/:/UZDd;F GWi0g_!DImToN&r^q3_qwFћܵ Xh@dn>_Ӑ=];FLOO^Etb\!-?Gk!^Y[_dU_>;"\I'.\Vߎ?ËO\~gَI};HN޾hw59na(WLњ١\xgT|k~モwߋ#a׾+[g?pʄ&g o 6*PueW u}WӉ/+_W F~o[Ll׃mv&JbH<֎]gq87go\m)$ Y:-. #a8qDED5IW8,Ρ#A5wqJ>?dI|^Hf H<­zDSrL}{\UǠD1!葑kײly@vL먖VxN>&!J 2|%l>cGP c5[mҙ/L/z%E hU"c&q 'H.Y(NM3h Mక2@;ϱABT%=dЬH/!.Uk4PJ1"^5&:H/3aG]u#jz: N,'3JMt{soN?txN/{Ɲ.8z 8붮Kux̎u j~2?7U>mjݶ 2t5؂)C+&2=bK 4aa*y{Mddf_%16'%?Zxv&6K.xbɪ:0T?:(} y_.31^0]3mϋ.7$/fzNKtx2HFEso/#ōil?s.Z?5Ӛ@33-xdf2N6ط{q^6=W&3Klȯ?y0IF;(O G>}jm4Ɇӑ&:gW7o^lֈٟ't=]Q|Qlq(S>'h'8m>S6_܎2zs:1>"gAgdsy 鯓6[wT|Kp7͟Y0]$gNܙ腐'TZ'^XgQkFMQ6x6j(ѻ _M\-GQUGyw58LM6E:tb$mՎ>_ 74ۅ$ֿ#sXlzۄF7cX1?<}O_t1Fߊ6 "0eAGoJhښ"{bEs8aņA;#_vqDYOӭ8B*ܛPzN?>t_5Śg8ɯ+ 4rEt77ۊ-7bx00# ›JRy_--_b:y/l TS Z+mw6_=3-i)>A~w] <ʛCЗޮ-xhrnE`)C7+_7aT'J,poD|奃Yy]:[ZtW_rc~NQ7u'(ٷy,mW> 0PL`䘬[%Xm.p>@d(l@^`&`Ē%E!ũ̊-DZ‹3:Fψq߁*#TR2Cf6b.y>a:$ 7ͥ L_2qZA# Ǵ\+"W:cɠ(Р "O6#~2Ke]Gr+O-/>xfol;i}}_[ѤdcXp%;aϸvrJyv@iwoM=_Pq jY?i&7 ,8m_rls2YAve6(6Z̔9Lx2ۄO&7tAV6Gx]H<6#SakАS 8*Ó6.F(WH:=#QBk3{g\QtP.IHQA4r.0f.NJW}3g2ctɇhϥk$76ὁO?d&RwN]{`]mR+_&؝-<c8l+:k? &/ApW&Vc5f|BDmR%tW U sgQɇ,.`j_Yf@3z} Ѭ6DLј#UŤJNs1&n@rPaF6o5 @}XuلM_x0[]2qA&LѠK\8 [NYtpLoM^`z!cP@'n ȣWIDUWI.#;0S*L ^%Y=˸C^l^p_`ώ\+ o}rxtƢ{bG֮ڝ\ .nN&Gf !bln)Y/7bt_= W&֕Ԃ-X/WA9x3=xV^-߷wtN~g!aN&Mu@W>)vWѦOY9.t'㷁,0r B |o_p8YhYffK[q 89Pp/w42IA$:ΕE@}cۑx7SmXV&ϲvbQ6{^cWYx6nym|gߋXI|A_nShPk 2Ϟ6Tg :ipu'_3=룪FKOg0=]`b d~pDd~? K+[B|W*!;Uil J\i'/~l:d4rfM;.}m<\Ed05}ddXd,EzN0E?A %E"AX9&s5B2Dk|pj׽ "ùd={ܻ%Dr1]]-39Uؠ]T9&Ӈ,i$rS9I!o_5:A2f'uҀtM.b z`O8@m:^AR#%LJ`\3RV;D'G:fr>' `dCc3>U[>`ͽo%Cp/jN_+&*;v @j3*lw,NP[cʪ ξN0l8fRkmhl"BW=xTEA 2w|>=iL璂dB~=(E፾ɥ"+r6KFO:lÕ'z"c~v>:ufY#nξ_z e_I d3סP>V%[I~?'dF{?]TGl$8^@@!]9b+Gatj7~ҝ:Thp?ɉ䳵s }]Rϣp^CfVg&+yе$Mn_b?:_֮X]*=({t*c ώNJ'Σmdq#~m& BEo]4EF>yhƓݹ1 [{7裯ܵM_)%E"̲@J+ pufr#xJO_=?©pl凉y?v&{'z)!K9Otw& ;6̟{ v=O~/PZntpVR; ҂Xnap@s:qZ^b_Y__y@<%v{2]8(}ghY6xT!+:ͺ\Z4xiz>-ڂ3 *v~z?9Ld1ͺNVQG-h?Q4;>YU=.?ҟm2(}/xWDO?6п ~l 7mx kȪ#?|vM o5/Kes3}Ua6UCcS# oe7|t+cA vwg{̰!d({ӽj@킬6 48 <ɒ+׈ B mR#9e=&d~YAN87y|3aN.VhqlV1&fh3\OC <0—F>ʹ`΍8W 3|Ad3O`O&:`r9M ՠe56"0zlFeӏo H8 龗2& \; |)hd&7V[AU֘'KG4&.&a4. ks4G RӍ0]Bُu(`̬GFK/}M$J_,_ / fo-v7x Jgp~K"jOd{3 %^"$eк?>^[=I$f;N.d=ٍ y^M/ȟē%;`AnPǵU͘O}x@;xM'Ź d7y f1&dXr  =& V7 ĎmչToEZUݣ7 bɀ3x/ȴsd>{UZJ/pcx3"pm@e E𑓉\8Ra 9;yWp:]! eЕ㫋rɩ$EsL7)H-g #.UڀRTA} o+[L~,$ZM&p1} [sϻ L~mu$~~oP]/>9~A]b,4ɩid ƱM)Uz`zB$UAQò}[&K}vZ,cw-,6KSuءz.no?6>־ j`HXۧ킰AhS &fdZAKw.A{6zpwta:nqduC'_Aۛ,Lt.1>N^/M/ыAѷ9<Vj?'B&d=6եtST[,i +' jm3 =s2%w gP֤'xD;dTYYghC)}qϪYʧoM6Xg{|7f< N!8|>ւf7݂}W/E Nuxԏ}vuӋ^?&c˩ɅQDM7JOkL{/6 EJܪYx\Nt~/|_zW˾ݭhx<ǍW!;hE],,M399 \IRK(uNyA'%5={GvF >(:j>H@밢!AO^;zQ@IDATc~K\iB#/&Ixۤ ZƞRI@f$Zcm`blOԒ%*N3I8Oq0smUtN?rE5_\f ÐݠafDO0yT@L Ѣnb;?\bڝDEVtmU\[A9(M=xV?Hdo]'ZK>FOUç#|Z@Am|Dw?\rX~}5xv\KvCo@&ָZym􉁩b+#5eF0F_~'[/V0l_J><۶o'YbĪɬ"1Mo![+:%]o`ZC/&d4{ЁQ#zɌ_ȵ3ZraCF5:E#ߔ+ldx,h NGWX|Sn/rIF@5Mx`oz*p$Zr4TH(d;֗s^?~A]kU6 \8rV#*.:=Q잹͉5B?MŁBOy5~55؊GdX|c`xw4ї@2_S%3c:;wz8BORfx, A8=ao7x^ǿ|?|sN-Ź={Z^/xęmGN8f;y[ =I%Һ- R/?_??_>f/{bL zѱ1D9Z:[|/J~ Hߍ+sKtdիr%pn&^ v2xMX R =G1>nـ-Jfi9 ~ƅ(\0upXnCvնj3e!wcGX~ٽ:~jj۠P-$~ d=,@{Œ(ψ"J{F_r{(G68OMS%merJ1 H[E8.r-6DHtG]DA43{y ңMx@`KG:P٢k;^ǃm@:i]pR|KVCnjn`8[' < t} vDsu\pM ~$O ImUqh֡"%g%p/w?&Lw4ڱK3Yv[i"x-Lɨ/F0F'pz7/<-* źΣp imrz|nw3RՏ9f h웍+z Gzpiq[C;NkRH"D6E_ev( /fk#I1 EM0 `ûŠ tԑ0o=t+f%5K\YeaJOfm%41f'1 |2Q{EY٧AȒ規%M7#>C"tvh? f6=.U0K.cL&l`Y&[ h]ed73pi>%0Jd,X}3)v(.Ds$xI綕O)V=tH%W]q}|| G2C56ټݹ*67*Z10.={#-ZɇM \CѐwI6x]mYx[LӲ`~2!I%ywljZt5[tLb>騁,8.>ZG=+R1{bZvߝtg;'>jr`Џ.ЅMflíoG}NvoL=pwO!ς~dx+bp]  v Z;e V|-/.kuO:fHur`{sOeh_>l7OguC /abO Ϫޛ,t1g&_hs/g]/+7yKal+6pzZnUO>k u]I_>LG.|O|[pNqN?o^q}DDr :[@!EapدtmCq}^ӯ/mlhd|lH튟r% :Qqx"S j $FT{f1P}OE%*3(W hw\)W?ie9ga6 )jrģ<0O>yzO^\=ጫ=շcEjop/V7-d|XDƼ.g]_%'ݘ)O6Nl[>+D/x~P0!& nAb+˵2HE>;(W'!x8޷%-+tp<:H{ ݄m >o3v ޓ(G_}(AkU (<3u9yvy5q2Sɥr'I&U4:ݷ3X4^k \'j=ͺB$dv>H%jxQ7xyڪOK4171 nF4y餐])M/v/M}13]\O|N }LGf`m*70tiXӮz}㤁FK"d:+}hJnKP:vA@͡Ss$l 2YT`Kk{#kkU;ZЉ1IO=ɟS%$gz{@~8opE?vㅌrY&dSL-P:*QH<9,*'Hۥ~6vEʦ|c2DA Qbe@ړd o;#c*:F'dOw/O<̉LgoT/z0Qӭ;lÄx@ة]lSF&leaNvX4îPuvW_G[N7L,%Ϟzg2| XuvJ: Eb>5,dr\ھԶHn|? V09j_J{lmkX6 fWGJ (lsOWWF JT w"&NXj/L?7Qڀz2n06W=DTA^ f්o7^hM9f/cpj[E_}$7ËG78CiD {q~_{ fC'&#KrFS$ŒnB2h{΃Hc:I]&*.Kb/y3h.\ĀZgzHrA 7!ԞLѿ #njDE΃1GʦӚ ɱM] q.O\!֮):PkyxyoTeC7 ч]w ov]Ed/]~ {} ^5pk ZG=fNy$mٹIY0֌Qy %U5!7s;&o_iT1 >o揝&hEWDvc2W6mwxYF''"RJ<#[|<-ŮXd\}?:cT}8\_?/.^eO/F,o7/e_hA6.uGw2T蹞jˣQm'yV)O3-6ȓxpj\ǖ^օMTA C\]wč` Nd 0`̹~PHx1s \qX+'JYی@Gg8^q4Y%<NC)8-݌kR06cJ"X=8%S]>n,=dVO·$Gj^s}3Wo 1`>tF<$1,w a}߄Q^{P@> {pD22t@;X%d79}2hU϶ V3{yxOǺ}T] Dw?V5{>'3(x'rcc+iztAFl3&{N-K Tf3h~L'9:Q'z~3ȑ_%J&d c.zĞYdO^ѸԘ{ی=a&~Aze"ohϠX|$X{MUIr}!T1K4Y:LO[6M$hAP߹llU+ԀIqWj?3SAk[}8suvFscݾ6)r|t>72١=5|Le}_7r+{jAlnx ^q&Fpm'î'i$Q8^{fÏLg>ar< D6 .ܦhaiǴ5'kΡk7 ]vWN"8h%xK9:!V\^t#:QO&ep$/cQIBZ[}`_`b'ْO0==OS:gh/KNb^1d6w A {dLB͓xqV_^b2 }e#mhq?v|'UtVN70ȪToI)΃vFB}Qt3r<`ãz&@W"Iv'b,oƶVVb5mV/ x Ⱥ_BN-q˞kGz2U<ԩqzk=|4? b_8Fqpҵ Mَ:y,h=jGbtU޷gmnarbmUg%^hMNPXpzv" i?Z:#m!8_7;,:& W❳{C൫pJ^Iс*BZ;[;֦o]s1fZ3w$?og\I}Xc -?7ٗ= oPΣ!X3 V~`w{6M==KR֣ |P e*k@E)a41i /k0IaǰFlp!Nƨ#0: L;?D7CuY |c? D2,f6H9YÞ1n0Nv59r%H$5%8b Lb׸1%gJ,1ϱ\eѫ`ADy \՝O8`P#a:hY@.QX7ʰ (~l[_)*$Vķ ]{-LA,6^4I(O XQ>?,]`rzub)J77f'sMɑsMB jm %/t"7TpwҠSz@:i;Aөd[g-> OrTY"!]^ PkH&+@+/ |dO3;чjt&OD]>xAIZf*JفvW|:\ok9 * UixPO5}-F8Uv5\#WG!k])A0]l*t?>uP|!kN+D88rpaqBmn9p~Pţ&Q0LZс _`vFDIߑՑwN|a"@iArOk>дrH [||:nʼn5_x1!Ϊp[ޫ{]`bM 6X'/(66z$O"pCt#]:IYG-L t@f.ߴ[ݣA]⣞dw io&kl/D=V^灘. FE[e3_6k~^Mc9[>w.&6q||(hO[=}pU|ɒ;Og\_n]p][V*83П2aAt}ab|՝a}q7g_{[oBM{l<~&C4ºOI'(bqlg6˧_;պ3?r\U ~iײdcJeQȡlkҬC0] >"<+rQ=lJW⊇DBf  !Z [_܀)Pmm6e DOQ02f:Yx**(H)GT2 |΅I:̷О٩U1ıjGf# EfXWA]Et[:7dؙR 㼕!y[ l%$L>K@o[:w,aW*ol3 #>[vyO>xr/h?⦆Wcֺhx"tIc-N:l^]=|Luѷ`_'k4z:^TN n<&+s$ةPqt:TF c `u:(!Ɉm4t/KVDAnS 'UϞS <҉ؗaĵFc|h)d[}aۍ4d㫴oMIAm7pήAIzom\W]621'o: #d3GG[K6B7M}%{Fb>WL6/=ʬ~uSog~l)ѵx{fy@"%[qpu'onzɇre|"R N0ѕcj-o#;tĊK50kgDNś?R r(zX jFv_4Zfa hH!|WRB̉A?mQ\sշ _g_$` %A}ϮQ#OST. $lfr$`#tkRFBwql%-hu>Cb.5v^zB6Dх\d#r9<nǨW']Ӟ{v1NfOYp[0zC(] hBjV |D':zj/q(($& '%X_53QqDpv"qJ:ѢS)N A!R _Hyfbʤk|Ɔ=_]&:{:!yKu0d/; "D6S)CD%QIR;%`}EBypsn Wٞj'ھ n4F~uz{&/7˛3d؃4QaE|ĉA`nS;49w ߀$& 臥`Cvp:ڎWP\b K0Mx 좇N^Mߞ`l~͌A fc.: ΂\5$ٓ[&=8Cɤ4WϤ#XҰ-X4Dǻj5E;iqɇo:6TV_ m6t : ̐LM.b& ĹOt՗MXuQznQ㏇#HmhdgL]&*'ba,tR&ovYa N~w,tB4W|;v@%gx#CG8OV6a3R溉 utTVzljm:Oe&ΠG~;p$p`I $D;ds O.Wa1+)nǣ5vıd;^qF-Eg!Ivl6[?Vmdz{1塻o~r3Q HG_um&Kѐ|?@Ţ-$-'+ĽcUJ"*-40k.u^n:*b`積J-#*Πo ]f?+R0 Q4SxҙC^){m;{OWgo# Cz[\~M_U> 9&oŖkQ@Ï~ڑ*9?`cr~_j1]OI g{GO\'3қ<2>ћ{X6,['*UšM*/~-Eɹ>{ӽvZw^?=ZՋ3'-[-p[{U?[AxX^m?!H2IV+BG*2sb7zqQp%D >s[jt6cnT~Zܶagy!әAtKÓ%c ߽Js1=sΜЭ0/8՛"=Bk#H8lݪGF> ;e&x<[bS1 naAkj'33 Ȅn!g  f>XEcٖN~n8?8SiBɧ$ԏg1yA;~U`|>z6 ˟`k &]g#:蘱0 }xKHtS2נx$XMs+:>I *Zۮ%чP8#Ce|wCe2 m8]vfx!wWѥsY @12̂M,vu YJjtU/>d~e<3"$#JHLZ|>|Vׄeph=u}?n㵗gk#dO8"dTXDt%%Ř 1{γ }gĥ3~ F\;;wYu"~UNCX)j1th#x(I{}k x|.Y IDqdm%EL|}tLDx(I(*Nҥfd^9{E?p5kW욿MVٶq&?z-߷9- ~ D߾t:}?MہGÚuw_~_y.\dnC\~=k^ىE x-FL\շd}y6ae|KSǞu< t̤Щq 1kGa[uԒ,cjjht }stPx`KWG0ur I@UYPx}exбZ]ɖua#-}Lu8:׫ .2@Iddoc@4>|^tQDę pz֟UAIr&Ozdn=?<^G;HnzmisN/:%86`' ڪjS@|,XG>grܹ-_LqOĭɥ7lV4Z rv['MtvD AY`3ppb7J 'f48OWCCǁMeH>+._=x9 ч'c.`8(AZe)Oz-т0: Gl^ds&4d'lo­e +I|$l82 VUV*\ßB;yCÕɕ _cBHܢ&WNOWE2N)y %nXKuk)@~𘔫rls_9&ԥllcJ6K*e/ * @IDAT #컘Wyu0~*ۑGNE1uS5c ÷WM:=D~Nf?`?tCygN9HkPK$Pv)6/ǔkv2Z眼4p1$͏b109w}nF3|.M6&x=8HrhbOؗcE,$P}c7ؽΣȮ%tW+R'LOq?զ୾أ'PXń;<|Pƛ8H7U!/Ad ݘ9$v 3Јnl0f`>w:H ?DUd5_;Њ"q r1z]  Mx#;7s0*һ[Rg xA,&۽CVMZwEr ;~)s p.r$ЭG^UBl1>λ4-vzʰ E4]dmSY=}ſmU\ ~I$?]Nudoͻ$4Q~u,"v"٠NgG={Q8іnn'x9pI&zM'w^<Ȫ܄ny kŏWpN7k6J]?޾/i`ɮo ֮Xl!uNrpBwt~ec9r,rBoՄmbH.`OdV'$(X;[Fg_ءfrxI&# .M=FW'4|XF@|/:(Ү2 ,0يp2=o'ĤXwr #)e8bڨ 8պ=t@[֑G'Xe(mЦ&3H]}lc0Š5`4׆i5koN4;aN<j{]8e{|Y2!۩F&Ѓ{9}}5-N'O4`$ח?M$ik+{m▸Xy޵#`U:~9U|ёTp;1WߩDd&ho|4 N'JbmP'z#HT` ,rʵ`oW |pjMc^O&j.>È.As-$dOe;}l-ϵ˶@ lbkld5~~3KDJ&$uhuTBTɇ3cz9_;h2Wq]$J~kѮ*)[=~Ec$Sɚ$!rϤ+:+/^̨x[^ՅNv`8a^Ιح [aJ*xGm%^At6ؓ#[|Ku~&+ثMS}3Vϳp`b: e]7ؐ2[ﶒo\SG?IK&IJm>ߎo#qɛd8ˌ&6UA͎'(ˮ&+|M Wǭ;`WӇxzv o0_sE^n#>2Mp}]sXobJWZLCu}˿Dk9)*fwN]k_/?>0@6܏A쎐=m㷶vgcb_ӎQD2~/6 3yd?q?h'hx|c,q++}*Xfq&Pk|9[3y鏒x`烚0u0h](1 vh*ϭlie+dI1Pb㽺 m%ʰTi[o;öa={4GaXV41Ѐ*$soP2܊~ Ȃ+u28\/@=jZN'[%7~YA&2zڒ=E'>73^Hb(TǫzDMN0= ]1wFg>k ¢jundAWdJ}] <6+Γ'pIzԄPD7O1j|qǽV$Us*}z G'QA^rqm7@LnB[B`xg^dlh0aepۺ|rtvDU}k|YRxwOm ,/:] /j3q'{6OP"ae;W_jZʗ+FW{SBxw{Lut)8{(%?خ=.- oƟqkV;d%f}mP,tG 1Pr% <\ mCZ#xqiqo /!0͊4_5jgcî9&k$P b_w < PrU X#^)b_$^~Hk>©H 6wCBs*:%|bd[L *ƃ]QkLWB⡠U{O La4K:"'uTwi#"vt>%׉I B&C7jBF~.~I!]*.%b.|{rKZ8qb6eڃų2խj^$'opc,Q 6_qnLjyr{GCjő@Hr9K$g!#y|@t*5u6o]_ 8ܞ3a3xoeg7uXD1U! @ܿ2HpEځ}KVv0p6}߈ ՗s 5 ,s ѝx|wۏʟ>8=Yհt}=$N>wBx#+,Cʧ-l u}W&cS1`MVqtE?Yk !SCKq>#O8S_?Vmt'Ahb'GWP Zނ NuL>c0UK`4\ ># 2X t5Hl" vPF39W^; ɴ6P}<޻|띇O*Yg"z9ʾz./:KEA{֏bUb6Þ$k7R'?%@d ?f{(x:)7>G/w1-#<1fL?< R[tΎd& ۹~}lH|^jAk' 'Gvp*]|ͫ"mfdK>tya葛Xj=g),kOOI;[TV__n#B')؟ސ0[9X2N$ũ3._ЖJa{gp;IRL'8@.1c)qG % SWODLL9F@DW"Y/ mfXA`6)_7V-6S@n[ =t&&pҶB;92B8f[z+{S#ZM(~:NkDV+^}Y: mF遃ɐhG2qt6pnR;C@и0L'Xfg]7A_s}Ɛr|@/D;JKm|Ht]Y3&t_ d`ݒ;4ѷ+!6膣wl,?|~, N &oI( xtc˷b9- ܢ47E DKa'ـ' &tSr9O?Cx$I ݞp]SNtO'1yl#;`dqFl`' N$,N?Vi*Owd7'>Օ$`cy{h LE@y?9ix)VC$>z7{#G0k$}$8gRW{Ɏ5:S#X“ 5':BՋvrE H= AZ\Nr`<`jJ|~ K LGj<}ox]~ASV^F{L=68/̆/{ggO'U<4Vתh$*)QI%? ϊC[W .HsWͳxrV֭2w.. rhrM>(N!F;!cgg{4FSzs+Dlԧ'Vxkf}ƒ%]\'ԑ2NjJv?}ξo>fe_|"3wئAd6ɚT@ex4k9UsOGKoQcuF :+'aG'K?U|HWO2$W|g͟fKrh%pjr+w;\#uл"j3\͈\]s~ꌞ9^s!f׶}˩ġ%Aʎ,оxH׫m{tݟ\99)?(ח}Y[|'v]RliBn )1!v1֚ӕZNVýM;i1,){0ݿF)[8puuu:}| utȉ?jDyA[m7nC޿H3>-|[%WxDmѦ1-?Q'{5}<-w"?b6˓kfQՕ/fX şe<__> ݳo(x}Xa pU|faغ_g-x:|@gꋲO{f;76n/un6&1xX.ӬGʄf?/AS#R,Q7O1n:Yf,^1.qƳ6fg~}ӆ*~OBpUB@Aڳae|K&+1?pZaNLHve z߃+Ŋ{wѭcdչ-gdVp=3@tlf,ZȂ3r&}Gp!GWꁙC7\@{٪LEƇmz !_v@ }ȍ) IϹ%%Ϟy{M _> F dW zlo2=0 H*c. aBƎVru':fٿu3_C%eFWݮ (oziJl邾(0Yl#~6IwVő}-@QK #2,jDGP٠Kb]+6g' LkcEGQ;"!7gK5\k^eg"v"jFdt>>8GRI +;su~Aho|~o }px]ѯ%ɉxbg‰.:/{;){m`5٬$AU~|ens3bȷАY$~.:Q⸌g_cOpi K4V)fQlʓЗvm: 1z'1Pt볇E㤿,+w%7 tu|؊ 6&̀zѓ˗_~u^>+}0_v;5s@i}az7i}.//7oRтl9;?Ϟ 6Cҵjb g;)Z?0uF1ʮgAdP I|#zmfV=] rՄm2"{Bum1}O1KhhL)]V߽mtvw&_v~t *WӚA_:&.`^ 9n'fHR.eSaV&J6!Q=?v]Wf#ˬ&֔6ʝ^ Yd?Z%0WlqptBSVx !`bF XؗQu\=:?"x Etx<¹1ܠx8: Il$aq "h (%cȹ4cqТh޵} 9뻟p\ V9 j3d7pUEk:"/qnmum] 죓(LXHXoK>{'o7םwuNU{`$q`Oh A}/?@ 38pR߽ Pg3M4 O=f:! [_$N76ꆤn>OcwNV>)+Ѣ_{֊N.IO0:Ō;'?v&cI_R#JЍZoq~F MP~ˣ'_oRU1VѺ-' lF.|qFi<O<ѯeAqu7z zűx&0Ƈ\$&49Ht yS ^q *gsko^l9m1yΞ׌O'⬅ }+KTvxvbέDՁ-XI, mXh 4+)YN;s?YNh[JƷզVRu irn)7Q6WڜAL~?!F50NVmUF3v7ۢ svb \%XY s>0c^)%>||枔lu2-u}8’a\W ΌYQ9F$)Hxbx"8`0A0QF= AΙƶPgnV 2#OGÞ 5 Dhu8 qMs1@/rymtpvzglA[φbrdۦ"aj.<16U7B=nyvv5\/ywޜO1b ASٵ SQ_mIN[V?j`f!W3 : %BKTvd_elx:Lo0gJ8~: Xߌj@xYOG h70+x[kk&u ? dci3J5-*U2`68+xuÃA0]~~I̤){%퉓:"f7iQmdO&k[%)-U[Mޟ~C1:ɋAX7>K5CH8ԯp4zpcO|?ӗcO[2;o['>bgA;49CbzsEy[)&jITO~SiQ=Ao}7L:a>%oŤ!R.oCJΏ)ZJ#.qg3ͺS>n"7Yw{hgt9rqZ"@+3"=aD}^6cʓq_ΐ8>BGG/[_, H hC<կLWZہ% >o~3gza2=vīsyawծk 7Dcgҍh 3SdJ. GˬDh[ɗ"$&0tG&cNt=fc아&Yb⎘8-)p"N(G!?I,|b y+ 9I)f.hMEG^t /եk.{W!9,bUC9Xp1'vտ>jkⅼ36Q}ԧ̀=BFu`-mTn+"ˇ~[\mxG7llQ36HaA=ԭYys(2ЀG~|߷q-$I DAgv|͈=y=F:X&}mtE-d¿kVak%W_0<(Fe0 M4Ձ[w& F' -=)ļ9RDE?pݒ M>"z׵!n@sr|lxt;Mb5pBf? ^9x{rJj?A~O? A٦qi xxvOﳥ+g<'_\n @oz"^صn7.8 ߱[;SwfǗH'{^|oey+Ǚ)Ctg:DQqeس Y}u<!4Fw?z'[a)u8t@ae`fGflcf ӑ(k߳"! S\4 |q!87N@R"њCfؑNl1][7D~ىIM؜OjA#ڧ[r'SDf'|QaԋIGW~ Y+e2MW^ϣ[rJȝm&dX$kt@tY׀N5#aOl6~"<<:4s_x60T7Z/m!7tG!Q,pVN4\. 6x 'mO :פnYLG#T`.? Њ+%QjFh 6G chzxɉʠ?@|K?*νoT2ʝvxH]2>68OFb|*L6fKq~y+.cmVwzXMP##e(pz)9JەZIƥ3N5苻b롹`F'Y8wj 4L'8(J_kz7餭KL1ǷZ/KE'wt*N> [s߷iA4{{׀TR0p q_OV:w Oot(vN U/~a.q0pGDC6-&پljΤ-nkg#%x^#Y?֏>zs\>m-}  YݮgןQ1 mW|1Wq]$W9tr$^S`|{i˝&f}ʖEeYcodzXyoN ۹m8uAxP3Z_ F} 7UM }Yh=;.? Z3ٍGKO|3cYw($v:WbOO%Wf;.?~{E =d[Ge_!O$у ߕn\>O;M77s{1IE} \ g|c5qxPm/9ȚB;l(cjNNOToUDŦX ; Y eVxy9ZhYuX|=ȫSo.ցW <7&4n[[\FAΨfPS`Fp"| V|QwkY jg6{3Ю0<,u \*+ ?btz݆' L d y%E"ݣ=[D]َOn覇&pxTIl\6"1>[ퟞTLT2ȌPF:8g`Xǿ}Jٙ`k{redxN?AƓ0fMC tҏ={9[ hv%˶GN 1,N+5]GJWE˶KGy?vmAi,u@p|ou3e ` 8d:eclzq?@ܭZRpl^_y'Krzry:lJX^"w#kK@RSjci:bdgWDoL _FXZEi |F_>eCt³8_i/*@:A3~De`爏}7ITx>S|CƉI"8o[?ϦE3@^+PWr"fńJ'{yvguރ:5n|cQxlp3Δ]G& rbrpr]ZQhB VK>>yMuɶ&o~l{Ƈ޲Fң+4hѩ_vug>z`Q1җe;mfc"kocـJ=s|oa>j /q[ )Y_}pþ6X![Ɏ͞UvϺ*D MrN޵qףǿpauOwMh; Ƴ{n=THjH;\?mo˯.a  STD[_[/W{!BYߘv+7gdS@H]]"m`#kOm20 l4TK%J*A'm[Uj|٬ 2nvU >%5<'k#)ȠFFFe9:#>Swy0zs ̛=1Sh hoeϊ:MVoAѕGϟc,xzV.[9jÁǷm 霝49G' $ Vw0utma$ G;fh݇M0G ؏LXƓy&e(LPم͚]K^db}tAxӧ3B3~2}Ѝ MeHc'P&R:qcY nqXz tξ8m 2<}̊!lr`p=mW cʘ6a f{:4Q:{{Hz3'MPv`څ!ei3>*>7aSu`ԁҦhb@IDATZ3!<<4e&%fEUft|f'`a?3\%ߖ͓`́UH;&FĊY/9u+Ė5<?g"L{en3Tp=<eeA[@{F<./5+A܀]$|Dd;]\t"d fE*}ϱ?~ FbhǗXApNĆ2fjbώ+L%OFVG`Ty"?|{qo*gG#Y[8r5]UJ'.?zSgd VlϚK@rCn"ܶƧϥX[[]^cqq(?r.K}x=lpD h`O7A"6'B%͙JuJ*c6I+Vi ƭm @JՂ6(O[} TL_hݫ8J#34A(3 yYmۤ{6{y->^FHˣ9dt,=ڍys3ouHdwGE0wkMVna{#o{b1.ďQtb.ogA/p*?Гfftnx0pu"*u:x<&ʱ38,M?_G~A'uY $/*7cL{ A41JjaͮĞ$D8t: o6{ UBnt'8 G&ѓVٚU55WyE3*^If#n&B9|,:mfW> txMbD7?A$u<Ꮭ$9 KRV&4<{ٵf/.9CgAX%l@ňp:6]kl7%O  h 4m Mzh*m]g':'+[pG[2@M`k|u!6rpl/} V\v/-N_a)PN? Dt(Cs><8dVcq B!DrGf:ŏo+- +o"@:ۍ¿spQ+$-rg&~1= |,`mȏ_^]DjF&Mnuoڵ]H~b>}zcn#b Zթz+G*d!  \[~oNt޸\@U7@~pC &~W}-P7TJo}dNjN9_eJ$oR\a%_ѝ~&zc?bz:W: ^ i?m\L3I#0(99CJg4QȢ%EodB +@|*hl+t[A7r&yEE3Sް1FxŜ`e܇Oyf;3ion{ዿjfOtt z%Yi}0-tGaˢ| zeW?OrWB{vz힫5xݞav7=ٜLDE6m%ꀎR\|ĢT/ ğڳMJ#x.z4Jj=hiǞ4x[<-r3 ^_kmE~o{2/ַk1#"~|#;8Sp4c4k ;LW>bx&ϙt~T @,@[_:BrڭdVm˴¦tvaX@(QFN]5W{[ct e[(f:19 "@J(7k»YζFQׯ9o.ŽtJS|@'*?Tnh0v^!u2\J"N#7x'tVu5&l4؅B84t\j2 uj*$K6GDh6N`NBV {ѵIsّ#ktUQrlN|#]{AR.ߊ&e"q*2YYWYϖmgS]D& d0bsfK%d2ye~wk O*8fc:( J VbSb;rsČF~u!ks(^0iCb7ӕz ޳'|,0>5:zme5VY̠g tχd {i%"u*Ϩ81nv.zU2ox*ob#8~;u~O(w0 >IY`_\wZfr)VJ$2ZmGEhB^[pʟMetΖœMno/xxMeDqzZwҗF^mgQo~:qPoiVdKpxe&gP%D+e k(2)~+dlqX6~'tFMgp}I6+ʣIlb5.'yӨ|how1҃$__~O?_En]'WiA 3HY M6ׂ^pƃ21.})Wei0O8'DzJXP̜隓p=Y[L̂&D Pm;w ы39 (xfŏBJi0TgVgk;  ,o;T4Ar{^G#[щ?AϨQ"!Cw$ot]@»+Ѷs+Aŗ3ZlXzlF*Ca{mPiQ ˄F<{6B&h8Qɫr@22gVe}Bi+ҹSf.'tc9D@M[Eyћvm],Z7XX$&; O<|h yz6.[40Nx^O ع_ W`OGBv>OΎ~mV5@[APS`uJjLHf2a W '`L25 0Yg"pM^Ͻ5٢U3K\},5rx4Wx7Cn`)@2쭣 z @U~^ (%iG_ɓE,,Ȧ`O? hgsS@XR@8-`P{k:e/U`#)VNZr7*4$f5#haUQgV=yc%DYYpauqJ@p,y6X!/rhd:G\~6yYm|Nk[΀ЄtʯUYǒ Iv̧+>#x0t-:"&OCOE3؀P;v+9F3~jv/S^ා*TE\JsIt. P$%_R rEk/v ׋7 UV[am)ﵓwڜ2 ?n;p፭?<$6;$WeT\Z&SMFW?3(: J\M ^rM8Jc7L ox]]6RlʠjqMelIX|Aj$,[H}x3IDh#:Op}@#t *UF9 D;v&=禫2hѫLS:_=̙nDx|Nh Ifxg0_E]EcpQ9!dڅAөz.ѹzF>ϊo6<7O:v}bJArAb> [h|, ʎ"TcM F<ݑ,^BD?\Y{vMTm7$q뻋; 0Tzd_XlYwwS@V%".*Cb j*&],^&<4MP3@>x-)=قxMxrw=MϽ21nghjaVj;"e|o^e4tslJ qe⷗g_|m1==vˏ痟w/UɇW]v ha&^&d κ_o2aw}ءf3Nv%u^Ill#77ݚʟJnoIcQRf\ 䁰V}؉ȺS̘a)8o (r3Fn{D9Gh] NoruVZͩ=G 쫻Y 6=nAftvj4̣|'Ų xTu+Mp={`:Ac%'GmB&&%h++l^c“C7Q]ņ~w˥VAa&UL~9]4+S0׆ E _tvUoCI%kI\-#wW0w)f=L{βڌbcp;7Qv| ͥf\~&?62;F*YG,o:GmIpR Cp.V?7/n.\>Vn]qSUm{4mI+bI+~&BX6nu0AnkȨ#)-ЇX.kO_R6%'~~_\s5:Tӟt t/ry {B&,/{A}o4>tˤau '@NfuՎxL3u Y}YU6 jI(;+PR^>7tE]33dN>-d|}o?A//sh K+y>fXev\^zD4HvWga8I^mea '6lA_]V=ƍHE/JҖ8k6H@{Dy|.PZ"u*W a0<˯ao|r(sg__]~zߊ趚>N4ᱪ}[ѷB|1ާ0%3Y๚UŋoS:P; v%%CH}t@:2̤-`U,ac' i3b*QJgȹW]Hиk$P3}8+`яm?-_ .hkl?p1n` !:gZP-hmG'ߠ3V =K:Aj =/O=pJ2Lkn0&q+W;C j}(RkЌUR Zlrdໍ6k)x]g+Y*L ܄Euw^,( dAm/Ѽkfz}ffS: "3l+z J};~;60,ѢFڶ8_¤R*U:;$7+oe; ;pԄ!LgSUP!8QjY vB?wo=IKgB"zo!'C&gk&MԀtJ>{ri)1xaԵī#G#[aD:+f{_A>( İ䍞5:]+ly+mL20`GMѹƠʱN%|pݍ rK@W,o|miBd-3"^d?]!O+<1ʷsg9IW% ^p۫|'h-{?Qvy\, ?|"MGb>W{6]_ ˡIbFA39DJee[*n2r60EF%]i+7w+7DZPMWlsZpU6!Vukfh ]0mVhD OYJYOWYfbqءxhR-g~lAꔅSt*%&ش(&U2Ǡ-b٭  6βć#kNdMx6T@ڡS^oiğ6ɃO mGt70yGiHNUIO eZ2t>ż| ky--"C-"-Jеw=v_h7@ΐM&Gb l)O;]=Ry(cnbyVS \7?ECHg?m).' a:Ɏ),${It։ʿu2>&yb2:C&p[,|ڂ_ ~7arBRm[dF,ݿ/,~\5zѤ}~^_9d) dg=HZ'U[,@͏fN JrLUb8Iy[< h3dDo.V gu'CWyy& awe՛?% H(8Ff&6o>'`ѶvO{Mrxt~?]]<:v>[+bBFw\W kk2>X~?{=T= i 2-9',m[#~-Cռ8udxoID,F{>$l瘟$h ]>!f!(ОNq9Z_bQza_f'AO 5>9ɉ05h5uc謭<ŶgXث382Q3Bs 09p YYI9!~jƈ' @bp 'J 6ac ,cfP:>7XxfvQ=}=̂‹{NQ:e&0U[/->'ƑO`#g!zX)j+MU{DTdtDG׳pЯyng`~&^נPh"e%5,xJR̕R}]V9t n#ِ{7(P<4U>,L^%M`KN/ W46R9mP11Qt4;vEҕq,1:HUZ.PupĆi@KF$lt>Ǧr's;(.qeCbIlpOX"J vvKGKmYñ\7bP<; @tmv+ptIq.9=)oŐp1ɉk5YVB8dt&BvvF-3z0E:e!&Yl0$G/N!otuMNVEKfn밖s-qP{de}釔-}y/kCց\tB&+MNɾ}鶡s6Rb(F+RjZ+mgVtXdM+3&.0ä?YEiWo|ћ^(=p:Ldu쓿9SM-"Lz>`q\}NkL i|WZRvRxtV @M;;Iq;\lJ Y8@*ů+mZdx>6x1Չn""} tTڑi F|7&?xWGG}Ы;>pi,p#}AOoГ_e^3:=)Ydt#݀}gH7,s`qq^;>ܞdd-e[A_>|sf~fGdç#e T ox[],3-Svh446Q ܥy Ehtd gq ʼnVr};p^,=-\ڕ-\⧃'#eB=vxNܹ"Qԟ?pdn6dwqCAէ_]~_?^/.w|| =9 Ѷhޭx< O|?1|1z\T &=#G`8=1ʫ 097i`~'ܥ^yuF535̺c~ hDJ0>D[/P%>o::.ã]<aD (9@~[ Ѝpe#R™>V O)=8Lj1b?SҴd->'O"Ѿ 4>4maƪWf1~86 Qp}񔬢y|%j3[yěXȎpMSƱAn\%ܑai^'̮g3b&͞Y'7QdC |lWrwṉI!Eg~~"g?vʫ<4tҴtNA%ҙrDJbxe*Or.)lmI MX$GlW']>,&M-]lgR'4+S*;IGFIM>HN T1z/ YW^m!+ӹxe~X~T_[O#m27a+` -"&xdm2M"nirXF\EdžN,L~Q#DYV}[ طE8}#}e 5/#}ont]dIsKf褱#JyAMoIT5n.$UE1N>tMkQpFIH VF Jh_gUyv_*{m[7\<{:M7b>?/^l6ޔ9# \vZ=q*^W>_T(wsϾ(~zeñH64r":fm2#آ^9/MVn ]=U}E.=m#x6QWsnU i3/~!ٹ vLl⌑LЅ&9H7dfMNsM}mol]/\g_$ڽG*~6k11:_~q??~CG=&E8!=e$T$ &KL6) d[>c: ºvk˶:o"t X i О`jo\ tt~вQ7:ćѯ<>!M^s6=Y`Ty6k ^YtE wevQ͂VmVn*Lh)MRѼ*WY#]|X$zG|ߟmuke%$eYڱ֯c(vO.pL. ]<*^)7(ҮJ,F/?AZ᰺ȺgRU&B =>dqgrX-k,9^鮀ytrx$B5ݏ1kiu0;m9B!4DJη:W7V71|:eC62* ]%6wYOk1z^RutocP޶%=G&i+c|DxǨIz2M 'o*!ihheHG|8釮g$UaMW_YM[]uܓz`h*̖k *>._k"d,@Mp|X`\ajWÞOV&m=rwJ'd-^$:[=Ï"joyڻJec+( 6ڄrqbŻ˷ziu4ocpր"=Ebbf&?=囜_RX69aNܼ-G2:qϘжikdzɻlX?># 9;|O37p=7ت=YE_mJCHv_}ի?Ȣ| jV<6@׿˿@A?5Wj:tG5у/fbܴd`[8)mkhTzd-nd_+/_/F^CI0H8 mDPif AnJH(^&o*Π4c1[u54Q5@1֑۠LNa1HrpR, іթyGodO/e- !T Is22FvpOt$x"k}v8eC EщV_ӱ KA!yn\Eon{zÇuLPQ!k%Ο?-C`npn IwZ]L ghnˌ&sL3= [Jsf' $[&*lqIr`Y587NlX_PxA"G1h)׭n aF$r*Oꅝs| Kh`O/Fx>hvX-^LC708ߍv9D?Y]CF;L'k364_~Wmy q$AʓWGpT?㕄P"'82udոWml:vNzЦsW/VrTv%Nl =L#% R)B ױD:Ѐ/噱%OdBto ,qXCa߶*[Ya9|8Vozr4"h0+uvSNVfk١Dn@^jV(XbEs""fWe9_2e'u:Z^/v~%=hUN'$ph뭌1^#RLqc]]Govq#s: Iy:7jᇟ쏍5`c_Rs˗E`{ ENشb/y-ơH@E[w tAg>6ʇ &Vţ,F/F*38Pdv3h_I(~uR+9֯"D(N=sd SF]n|A{NQI.^uũQ[]nvş`Ym|EV*;u ٽI2>[ǎʖc0Ρʦ/Yl%Pwשes/B&YW=W)Z,/e_^)Vw=G1Q$o:XaG#C0 exоlg"hWVڤugi@)0щG{3F@IDATix4;S~2;G0=K*ZY`Xv8<-̷x'_CvMJǞ7&YTRy`JG4`Ao<|m^z^УVtg5=[_֮Ͽr2{ԃɎ,8&=G5ٵx?8Ӊ 3D'[J~݌i>G=usO/ps܎?Wh`qw;.ӎ(Nֵ?/ )aFAڻts:VC3Hi`}<δ`8;1'Z쾞׽&g~bGۘfmLP߸%M 7<˯~k??}Vx} cIGVь^_M$$zTZS+6CɄq7`ZFp5$byGAIq_j|M8DBYl)Y1u%]$G>tOao>(hW)t6` CNit0hA:@G{n Ss#ӿYpП~fonѹ*h/b+Sg1:rRxk7IIK5Ulp0j&PX;M%]ʷmWDZzմ= HaAmU m2[fuI\H=mr?2s*2_S(6A[.>d[\g gkdናW=b p\IŒĝ]d5:JϹ6&8,-{ 7\((6WS7[$VVifP"NST A Mh~=8]k>L+ BuO3V3_M#C'/|}2a@]M 8U~ =_JCDl\T~+`Ǡ[*N3n`lv oKjE9xe {exN=Ӯ_=,sLLHe|[;\vVy dO|m *ԇ]kP9,Y]\<6@~T|VR=9~Cnqmd'>v-Г*[b.ɢ6oI~g ;klC9mP YO#w_$qn 0&wZJveɟ]6O.Naxxmm8 ZysF6=aA6C((ɂOpKJX}Ŷ<;Uq{`Up(@ x6.^#k{Kva'>v rtͽW]7$Kj,dՄ!q^?6h鳶 t~/*SnAoXy>a te\3& J`$9.-TR :YcD#`~u)΁9F0j\Qv]^X(!̃UxfԫN|Ns4Y㠔OPm1XY'1:;*q;m&UMx5ێֵA+OQauF*B@fgԯRNл-W4fAztc=l牞Ul\v6k$ T0wR(4ho|M-5d읇AT?Oa[sdϛQ~(!ڬfIJ(gʹ%L]7i'G|]k?)2S6o oԭ#UYcו'2`J)]D8oz$XR}_G>E7Zp9 x߹Bg_fҏ?b?hd+`4%-wwdML=h3b;RN1@PV|(H=%Nm#"Iʮm< + UO̜kv$ZUٙ5&Nn}KQl#1mNUn#Ph*/T`hёCe` anU|z*vBOR>g;)L104 :q5o,R&{Ķ`V{׃I_M(䆼{yꕻR@GIg=ū:y>/O) $_"쪒v4aSUnr<̄eQz~GߘLMh#7,`h }WGEӅ6s]xϚvx觗|uϜmx~ܰ]|KsWBlGCR16*W!I{iT_nEl}xUc! &emI@c a[I)I>A;~:5Q[ >[" 1ܥaB@qh̨Rzufl&ǛBpm!XV'Kppm3f0 a n3.RgYfFxX54zhxQ߀b]~ inI$3`z C ީRv{n+Pa3vh.Ӥ֦f #ݶ &U~308tn6a[ CQ^'/uMX{I|JM^oD`2t<{*Ve_+=t9V2gu:º'U,h8hm'JijRf(DiOPZGm۔ ;G|k\w7G"Vut^ɒfU߄ Gh1b̳fr`WWwO\6*kazTKjg&N;BTR{}頕4dbLWtxH?+oҩx+LG ł#boGz0&LFZD;B9FËl^&tmu'wtL:7qV{s/7͎;^@XxǻV9jCcBj)cbU<C~ {[AVL؝d`VF;:$T)։kK%zՅ92 = **=o2EAgiFZH]85 G:hOY>^R3el“O7cb)M_[Lo B?[]0]#oJ[@2oIpF2Gv$rܦT9F⁥A}|#q#>1#iWMpUhp&j+,1*^XtyXmGߙHgkq,+.utGU~O'V7-`AM_XK☍іPJct'٧Ltr)La#ed2+ܲ⢸W Ɏ/(b:ѿ~C?~x `@_ovR^6ߩbeN6՛zJq5^ $Mi:68%VZ5n GbhyI^ 6 D-DTX>@;r-p@|+W)_ɀRUqMjvB}YH_vkLH%3R<3e\u61N,>푓Ñlm j(H2d&$Z[[h Z*4ol>ͤ}-*Lu p YC>fOI|Ki? &?j#d[-`)1ٶ7,|€L~Vـ_| X?p}C48(<9kӏvNvn)n#jI?p?rWeCV؃H'$gMZ: z%l@42yWD(̗o[]^4K[[~7&-;RBw3Do, E_[1c?̣d}oύC^}:(_y_}y[<÷Y=~qo?.u//?.UN c(c>9u_sc-|u,n$W_=vgɠ>'C n✞;`Y$q@#@LoKuWiAOeGeL'$m4qc&)ۂ5 nFtF*xZ96XqRV^edv@ج,WU+k)e[|n0?m/Ng08F[l? ,B|,{:%P6%Vvzt9dW=CǪk?C!_F&;ȕRtCjĊםUsl]6ugd]ǟ~v ĉ͔ \GHp pq Lp NwwCU{kw"/^9%Mgq ' =\8 fyCS{];Gg/?̈ն78S~t&ulh8egû7Xxl|ݱ% )G,'[y29UNɂnf;g/7b*Tu|SY'HUa@M7eS-zInx^جm.(Ͼ3):++s%>spP@3pV%Վ| Vy t|ޕ1էsA+'MF} $_Mf ov[u lp |>6(I?dYe"^Pś5iA̓3 .u6ȗ9aBa8&2FYl ^|V:Ͼ@άAw AttFtw7<ҥڋ].oR]_Re;_:#Æh/Ņ$kW O^wJ\w6p:I'#j`h[F[:aI;~׏مG:wWƆFL y' L;Hkm|JA3y |frpo)-Q8$O6Bc;;]4I>9a,r$ POCĠ׽AGUY9U`ɒ73g,WNT l1!U_"JF(ktm`UUnV~pJudJ績-LO0g/7pNٞ.OVFjlPת:Nn `r=z`=?fF2߀̧>?y2 z֍7tfK={V5B+KV[޾q{{OήMؿh2<1k f[M Ѩ-B`#U+#Mߺ˟Dbo>=h|6l@ DSBU>"ώjyp^.ϴ <9dLvs%:п$bGW*w=M]k^lygM }ފlk4ShDr`еM ٝd ug.ϗ^=~Ͼ?'<ElʊwX /ӏZSD,FGͱ8;u9OVI+ݍ@6cu_xdħ?bB׋M? )Qap@G7ҋ% eTFy^s}n31Wv:DvL6Trm$ߔHvݠ@\BV#pTg"޻BpT| L10՗pG XRd!^\ V: Ja Ve ыsw#:yX܍Xbe*s>JK,y i{?lar,53sr7 N/$ l:ږ(G+}Kl8 _3tcV8ނ ek-p("?C/t4]GLWc7v>^F"@7T-$:r{}2'cmgNY` $|b0lV;=U`62a~laG~ں<ٟ}%zN6GG\s|Fg't|õG| Đtˑ[_TjlqG-To|~}Iu9`Ar .OΧ(Ttu7R[lf|lb\# g4-݃#+X։ba.n~1Z:]߹GMv l)t=1^Ө>/x.r^w b^*yrLW?QO%9;ծ2_ߺoz2Y4f_-LfIHѣ(ϷsV:Nw wwC zwmݴٝh+/@/c54on}a7W}n x&K.i uϯe`jYGe7/?}qGW^w]]~?׸ɵsc 54!3ɇ֮6|>Xm=cя2Y- >t ~+6R7ګ:[aYg(/2}.4H Ksfq~KB( E0o#b;1,oC˨C6k#Dd] *Za!Űt5as+j~~l_K@v.]JsaѼ;)2]d{UvsGi^34qxU8$q|ņ/[60)1(=:(:R&,z.,_DDfk@lW*FޛMނIfepAT ;n7 =(雝E`g&اd~Wj?uJ?O.^g?'{mw&GE>(=+gC#8yu\x \g_lUt>ә).bfs%|DD}LzVuϨrtFtOwRe0*?;*j $A ;f-z |I5iEw^/ nKf76 86uLJJmqx3)Mr4jb E/M3֩T;%9v, 0 ~/]0'hzk@: 9aB 8/#XS\Qf]tV:%  - z_^w$3:ypxo TU^9+ͤz hK^s.{љ$8a`uXAqV8fs98~,dT@|('vD$I*U8#&|z=Y s][7-gk>7` lB[µx5f?hc>NS3AF$xU@m97&\nW41;-ɰg7[&\LsS'O\~GGSfIexn8{EK}XL҅d2 8ݑy:?>蹗P_uw VF5^vfwK:Ʒ:!,?D/.;6-?ƿ 8T"M': 0I$9&xc]`3ŵR2 ë.aiGO O}3Li&2٘'xё{BݣS/=#{+9W .&i#4y&ф(>1Ms:='7Ȥpn1du&/u|;l| ^X'אO 1;ƧR֎o9XٵQXu&G:SF$JMlmϖ&ѯ8ETw_&cHJ Vt1 g$Mk^WpŤem!Qw꬟ͱ}HB[Wc1=dP0t><_,T>ړ{/㕸ᒿL՟oT}Ģc6 90}U;ӥrAZU^Iw &,1 :#nbNtc]9["X]V9;!VFZ^$/_8|&m~L?UůڋpΧ*V[LuMllcPAvl>]صdx:^}-+]0=;!W *^8)M룝\>vIuJ_JZ'ٳw7;A|c3{m@xTĢ[rs9J5ge le9_={?Ȃpœl>e:g7ȽH!S0&E?:xm}Yr ?G=<}Hp8HU/Ns A᱋M-zޥ$an{N KP&g"/tft*oYlxx>叿g'͗/zg+6-h :I?~w@}\umuha2<O{lG?~{g{|wFBg%#-0@UaYxٟ38t:ƪhG Xj) L.F=Fƒ'^³Nh$ĔTWb|+Ax7 {m*:H[=H%5X,疠4c}:i3'>|fBrL-jnr'`sƆX NrwhE^r^*~}9OfkE}jHLx^򈀫8V oSE-d&Zl;c@]5%&r kVEx‡XB[Zβ2{ٶzst-dvdBKpS,xu{^7ե,#qر"Qm L(`7y"#{C}@a@񛋭l4-X| Hc5ԫk;sbFN݄Cٚkc~ؑ XC! KS0~a]-U/It]'ݰ9}ue 'd9v *Z[QѨJ'ڂ5_2q4cteI6QṈ 7oUi7L|F77^/ CBR@Xj}xr.m2%*[gQͭM5o\ß<?-/nVzHPӁńb6%>*=q?ڳ=%Fzû^+ת,7yV~ȗzk٦_N|d άy$Y:h>`2ʓP$X]vJXE7bȏ?VT?|yr^qD˞}ЎRjsv[ahWo,%A7rg/?w/._hq <7JN2$S D sz'j3󬝁O oq`vp3/NGFlFk3vR_0e aP UY D¤>\jKXJ=0NI :\oЀfg^t_hv6eeOzs;<&F;(tif`cokRjjO X&Σ٦cc0uxE pow3 L6aVNCeMGϾtEt h63&w9|u~'>:|Jo.^J7m5@4OГ+ɋ4|xn?]O1:=[eݦ=ΒĤ&[egb_ۭ\yq?NVo@I٫ ~O1ōkVt` epJ q|B $5H%Dѿu!=ZT3.b0}dˁAQ%Z;v; )cgN8YnkbxFbul&Г4-a F!b}Y/:*A5P1nQ`V%*sll#P-9!a^uΆL D'xJv[]E:1,!S[wW>Yw8Fp2D/%~\?|VGo+dCth64!L1ҟU8l A] ]мM[}2ݬU<jID6[:k{ƃtswGAs^'Ifm& tPT;}V[eD-h`$뺮C#{+`,6 ezA/{Ñ.Nƛg#͖eděgUȅ/'AďAD,g_c cpLp1v H#0'{ gneg B|!,MW'F׆04L1L,# 2 Ð Vd$?{5$<U'Tŕ8 (\/:]^q>ۤ[ߑbac'Wzp2d;1X6"R>׬tg˓őrɟI62SOxE>Tg3%rËW6pFeċe B|w"hwIp67$(A!+B3OrlBv>A)a9Cw5*ؽA>Iܟ8 &Ҽ}:`9Ø0Oo'>>NKFy&nvq㵭iq/aE_[So=eWM&-?]>'gH1ĆãJep!TpZtS뮮}T,.S4;N]eayx"re]c6"q9Fm@E7HNrޯ̩Fgr(kW}n"m mC7/>?[`#M(Y\u]-v1# ǀrtN@UV(*R~*>;XɑT jKU?Llv0#!=bŤ:9WޅO7HwI 4)ɓVvP={H+2xIq&Ql ]eWVi(nx5@~Xڴ@JX{bۡ5";1.y}o_~?;w'76}b;JWڊG;DCt&ч1ىΎ.ʹ߫nSt9G߯^sݱZ~LUg.k1M Vrv8Qr$1 "wEًH9f3&lybm0AϺO?@_^H)xm)M.m# ,h${)lbdtD{dhyde׾׾o/_EfZ'<՟u B17Kqߝ: a" %sK&_j":oQ;.AW0)RAwp8V#raٌPuU_`mr1+ L9AI ' Ygo: -e5B `~9]j%g]3S: mzuJKRHj74Æ4Uir(j7l7ݙP(;7՞=^ɉ\=~3фy[1ם +}6@^3Y5~O$SNy i2D#sXD1 ̾3ÒMoe׶% +`?tB~*UЖOٍU Z86NN]x%7XJ: >_:[g/6 sWYH=w.|\+;a Z#C9L,£.rWOP +͎wm'hO1)Fr$V?},g||d34)q3+&Uiy6S8b=+5=68۔IQ9HWHiz`͝XS}. FbjW*B@wZ73j{˹zH -Hu×C]5\ pg?F5#jE/py_zT:~G{|/7[l9:f9Z AFk9d"5y ˫=:q}4.;zQ (ѷ#<:;N]0:K2il*k) dmy;Sd+Fmvje履3 q!7̂;Q\YAP:_-5lsf+3^LNp/"uGxl]g6e$5bŇ}wk-X>Ayt_jUew}xrq̂#O/`Dȍi\$.C&Xء:>^>=nbwZN㻛f-ЂJ)SEFBe:P^Fo28`^&#߿|+_]yO,g9 To4bBq#裦re7^˚ x[QZEWt<b},?/nB&e]B_f^xfGd'tө4`x˻^ I93cYTn,&߻/?gGwQ}j/>۱ec!9'AwƻWLy:*{m3{T˯R+޾|7~˗VW/Jb!#M$ɭx0$,:H)ll .@VQR3p.:ߓD&@QgOU9X-E* uw`S;]@PZ X*7"% ԫds|$y0fs ܼy}/Nj(Sv9{|G ӯCGIm:}S{KtUh`$Dr7$هrgt.XAaP:ɥiI`ZO:i}6|rұغ;WZn˹#A5;?U]'@H5CX.pMRɉ`B/y0_rcO(8Aх{ww=yAem&43LY;%zO4wtK2/﬚*)nUS6/eKW}& &<ٖi(3x^է-k&x3Y\ &+i69v~^{o9{Uݩ~4)Z<{޵9݄RYă‹WpZܣKx<[~7y\l[7FAp\K'Jby;/>}sYOp=m +<6/ŅdXV'ume,hMѷ}Є^z<f˯}/_._zzܥd\|q܅۬2jX#fm9\l4 , V nHw4Ox0>6<9,R jUsZS#D:nř#>ɡI d#U2} qKy)@ p%|3p󇽡q^6J w@EtBݕ."Ix =c^tR$]{8J\yl}FkNuptqtWI:rY:yk~P;2y[M{+79:_ܬ{ /w׸$kPZT0M'#2tS;+-'[pkJu5P?YؔIv-7VN_i-F6 ުF4 cW: nۄVؚ_&''_Þ V6K{5 V}t5a]%*[*,& 뷞|?$?{.y;~..Yۖ{l$1͆v$GqvCϞ=<!pEM|ǿD-=>?aߵ"ݧY7ھ`&=/hW-xm7r7AN^l2x^>V;=g!翁$ctPDqǗ/O~w/nT}/wbվy?X7^nܶV,mp3T.b7 nNCvWLc;ANMx!e-2Ũpaq;[n9W~'p$>5^boke1^gzd/rd/?LuKPOz[jAw$3=6s1l6+h^]zTqymVXߧ2cE[vZ^ }Lw y %;"3Z9ya#I/o\+_}?}r7u?g'h3r$ HIENDB`ic13l6PNG  IHDR\rf$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs%%IR$@IDATx> jA PEL2=i/cq{y۵?aZNɴ|XO|i6_Linًiyt4mwMgGaf6Oaftlt<-NfǮ{rt2Ml-~?M\gttz4~Za晇q}Gbt89tX{4=~t|v5m>\fi,ic GGn:xQsn}ylo56q؛4ϟa:ZM~qq4lޤ^Z[W/Ջxtf>],hYa|4=hO '3_fa8hVkZ|>u;TiZ(uzoNc5N/~:y5-ONώKL1R2ٸlhsڞ嚜gzGnfiEG=O䑼ێߑɇG4!󛱆ô/qp^ezAֈyr:?O?tOv76w'4dqtOa4_N-sK)t{4EtOidV"~Iy`@(<ʗϗ fFw;?b9߮|+1V|?Äqzbʙ'E|v\ݷZfZv5[ #% 14Ng烨i{sc8$ݴ{cyaZ"vZS)4)Cl{azj_樂׮ \CSv#Ȇ34m%7Gρ!|A90`,&D7 aaM#n-vOPX" %?v`SޅiEIbFS)Diگ<%._g ) i:+ 9Z[@ A=!)Atwi@`g:L҂@gӂaL>B`s}Ҵ%l8<'9E__8}?_Oo7_N0/.Gt8yzV3 -^! rzc8?nn>O7X?xzGGָWW鈰xh`19?ޞ# AXC ƺ^#?YȲg?jO|DBn3 XZ׹~뾀}L =C{7f?e><+<9:쌱NG3cu|ra\Φ)8C|~zk{wSrk94f>I*e6=\[W@Ҁ'QWËZ9zF:Ew5]Ϧ~|57C˛,FS\XnYc7Ǎ[Xa@9ac,Ą; AٝEN|1 A(ԜKI2OY)OʵG5̵ dLpR:,-H˓Nө_{Hk8^}vZx bV8~x7 ׬ᘇrȢ#qJHF/aR3izyuBi?d~/9>;Dy\闞0/Q7((Khzz="+* 8,(+xuq1]Q^זh1g/N('hyF3!G!ԑeRq P ay+] ܓ "wyf [~O ^,7ufx0P`( 1ˀlM p:<5zm%e8-X߸V,9CJ$Sj+ S:Q;b.G\]5⯃&gC0 30}= ~Hƙ禵hmнq#>>Vo=ۚ(`+t/nqm0,gW0w{`Nl 2c0OQOX@θ{t٢ǃr~b~ӗ_ ?Kbu_੬bqg/ 0wRK;k~u[ !Y *ͺ]M?0|k2-/,(Ŝ^,]y1_F@Нu8pEьLQާ,d2H8 JLJ߾zF2'<3缃~qsO}X#X WYhx,ǒ7qG֜< Ŗܣ〡1O✧ ]=8`ϼ`ƣj9L c|/CRNrl;r5[C߀?Wӗg?ǟAzs+He<< ޅEY3V,(d¸Ijȭ39E |i,k`<(Ql_0LnL[J&? ABBm/=b:p"y+k΄/A{Dԏ7mp1nytE k5˘e UHrvyDH#XM8-zB?F<a$Rs|=kkM8@g;XPx ~2xpO`8y}G(%KJl&[sӳY4N3Zx/}Ě,[.hus2c($<oy!B [Lt&O֌,4rib$ ݛ40ywr eљs{GhxtYTyGCq9+[BŲk_\("@") 2,Wl "+(|Z- >7\ !rW}aPDbqtɹ JHO`Ybgm̈́:w Bkqͽ`)K2 r%5*M_/z%Dt-<?~BۋkYV>?\wg)ЈG`|+O%`Yp?} h%3nn9%(;XH2ƒ( rqe*>?mpOce~+CpbeSPa5}AsGc^ŧs+TaiYR$鶖Q=.yr,VnυV}}ffraD"G=綒C[KKkMz)?J.Fcc /^^o1}9C{bywgwL_ㅤd' bEć&1=($T RM$&G ,=J n-+Xx`MsI<1I%,2#dۓe㚯K`r^C!HaO|*+>̋_s+)r6@=|)zl)(/XԴ1@!@oݵAN$!H)G پg+weW')~ :$Cepiߐ9U?+# yVųr)v̳(XQ2|=?(l=y=CYµ۠y +_^>>Kom_?O^|S aX^0nqIO5p~,y *269YxJjˢڒ\D(藔Xgt7+U(XǼGD헧p |'pk h2%/T~6BK>W/„*K"Ⱥ ; MY~Ja6d=P ;^S$2d@==FS<[YfΠgVtjesߣIs*ˁ|$|;.ZoW\)^<)NvJt8/YO'bkfJ\.!ghms2X /0QFߘˉ^xCI3n&cF/^ՆEa*Omv+^ib Dj!lâW,/CAbV_`:4&>3b@c,X&:2s HȇyD[2DVk lt)g4 Tx"[u7D)c]?GbK)oK:{5[UI^ 3;4;м$ZOpZ{N9]s۰dk@˫K`(sjD߽nTV+s8ZIa@r ^Zs 92g>z4X$X!x^2_RuVmA.,#JO>G攒)Q2  (t|D؋F /Cc{ m%wV.ÌYo@akqhg(Ok-b N0<OM?~~Gӛ+/t##p݇Oٴ>[/y{|74i9,Q.6V)dW ;/e}oRY nx`&&r$dC*‘p!d%mu%M~#/t`J4B|a?EÕ!g\|ApIj ݆)^YeUw͕Ojȅ~KT#X4Y?F=S{sdw$'N}!V|&^f֕o$?KɽƸpPI-m{ = Ck1!rF2v=~ˈ6q]rTX09tDWHE?~oo毦M_oV@[WlnuMGt, [EiVV^cAOato9մq3'cx;G,Œ?3TbBDM%Ã.,фPB{6iez2 m,P}t|~IfzY+\M{n~>=tky_|4#rz?N~]vB V %wJVTYyL#K_6J2ҧD;*׌Rr讄4D5,$ utJĞbxB*\n%}.P\€m`{zâ ?}kO0$!<Dy As!'@Q`eYǐ<&KGl< %kc =TN[T<'-*Vn)3*A ޯ:ORG45˹>)E+~^l H\Pe$Tx-~Uw FJ%#w5ϜVS,=J/Ѽ6&ru汮TC&c$ͣk'0Q¼,wo<{xamu }df"ɖnl<#*)45ĵn9-%c[GU(o;ת=k@dy>ݴzO_"7/Ӳ' oƞ>+Xr5왽\*!@egຣjYs {Z a>fJXxLjR',PvQzQn;X @(bq Ӯ~k#an^.pVԵ;xbxc PKe ;ʿ*kwIl-$z0$ǕAyGG΄; =&f} t R[%!p\i3xPr,ÆrR0"|%wYS̳k׏sI2~Bf] ẏIdlJDd~ CbU* Sdx KxBJRzB>s]^o^P@d% <[k4B p˸?w R^0%lv\'>U17/*Zܑnj}mn|~O<@h9EowZ]qINОo~9C [H+s'GetǛYWpɣW߿ܶZYWGnH |Rc(^Rax_~|}"|в9|^_^TN~wnG0dNirk";%^זkʔ>[o—⍪JoY~ @YN@ p Vj$>S`[ pʖysg~К06SF|l4jxԸToѷ"ݢaiƯ=c` G|h~+#U twǟ֑k}K-y64]5ڔ2h'ƬRNIХݶxb43nl\3re)C&;^b=f%nVN{#{b(5cÇ;/@,AZ憒>_soX`pC3cf)gu-*g I ]UYl)qW*]s׷c3ӽ[q>ܣQ*8=/{% N$BD嵟Kϑ]ry)q%JlԞ+qb|Y UldU/.\W(N b$ ;+nL5f3Wg29"B@};c?x31$vL KE8jIhWf2TnX#r1#K*->=!HP,-boI_+;0GQuo$Vo>)(]WѹR(,E”{|xcLoތJ#<(r!xkѩB0+U63ǏGOO2ʋuFΠ 漧O 0 ͳ(xwqh[(vOu$+ (PW{jS8gW \݅h\u6?\=s^uevN2\{<ouˊ݆]ܜžfN׍qn}1}7w][ßQƿ٬=5w 2÷r#YoxMBy^_8 Ծ gl ,9ンϦSyy%L䮌lNxS6YajaDSԧƓ:1yؕ#O+eDG>3VDQ:5gRmL 𹤋BW" :ߎfKHQ/_2 "yQ|} ' *8 AHa c,Xku?NuB ^UX>]C#vʺ0aOY¸ G=].d Mks=̿y4Ϟ(EJ] q}MmeD ]~VeNΪ EZBdJ+vm4Ya\mXz歰f\{͇CU 7е_N/syg4o<*5hSD-cqY/5CNE3 {|K-f,LZE߿V.> W:*)Yl6(Q s-kPJYJO3U终ުYW\MLE%!4O]edz& Beb۬_i}-S*nYLUpb.XNOXj?bW=yGF9&Jh=)f-xm>zawbwo~~qyB`k/NeZH ޱx_Ju- ,q LR;"Y?}FmV KKp,rGO+0=,TIQ/"ߔҏZ@:,{_`|rgx4'^W1xo$dIg`!p?QL=SKsf\AN9.Od)gw m >_<7MJvMahz"'{}>1g:a垲/PwaN Å+ qQfX,L[wk5^1 v|Xyky9u-vOqM2ֱ6ɁmѨQE PxK$DL9}Z^0dk$:{JS[?C+~euT]mkc~C>B,!N@[L7N>:ƵB.լ׹.xЏUM9*, %Ԅ)Km9, IMo=>]u%d ET{.ШKd_4,gV`aNm"{Gzޒ'ǟwr&TrDaBaLFp?d4ž÷o=HX  Gc-׌| ~v:yʚ<!Dq1j{FMHjcrg§'_Wt #Dc1ScҲ{RrאPm+⨃ZP9zGV L(pVDݘ xKhZEEce0hgJy9, ٶZO? p b@☐5fJy䈫Wxg_Nz Sߎ""U2Џe)m{Yg.@Pw9Xt/1 #R ROw|&X脎sڑB^ey~9/!dvrS{^ WH%{%v">Z$ iOGK͓{?WH|q(8)0t}{jAaHQk( /FAEk&B6oS(gC&2+gdvi=KKBRyE-<]BYXyHy!Ë3+ߒuG4fݕvbF#\5tx*C/;4_Dqoldh1tCO|٦יd'.e?d{(.-$KQ`!gAێ976`Qy(ɘKE/'fUŗԒJX@ #@ZkFeQ;pvQ7zF3j[ۙld;'#&aT2Z:{7`Id?b#c>Ԏ(5/=ՁgEJV% as#}P6w;$8KW۳_?>߿~ w8$bEwHbs{;T!eΟXG2yYj78_Ιu Av&jjCI]C3 ?7a2P|"7 sg2eCqm <i.ϓJty#%FvNҠTκ]>2z$@֝YڌV>Sx\k,!1dnA#^BȪy~PRW +JDxXWݚw<XǂTE \;.9Ap;lrny6Vр!A<\.g9ꃯ+˥:\`xWt3|~ū֚*k?  ՜v >\cp@cJ.Y:TXK7QF>3Fs'ʓ+gظjϛML!->8&2z#4$X5mEٽ)[U\]):wy42b\=jּ& [IN ڻ$3<ZOv@yJҌe=cn>ʲ<U?/,v5YܘC6^f|ƹmU]uXvy۟$[QtV"_^W jd{IՑJ}_^O y(Gܝ ˣc@NdXCFF=iMC@*-4Y4il1DQ ! wXC⸋0BU(TeE5AMNf?S%4^l[wkmmnX0Dnhq lfFpI4sڎzl3Tga&~1UxBOσ6qn2o7јdfsy/0/>}*sO\A׿ fGb<%I$q7qܼM@0`#n2y7'mrb=)x$ShM,W`#@ې)-A"Ëyu>b^CjY9{Ux5Ьr(2`(DThQ*D+/=YTP6kW[u蒇’/_#@RXY}4v`yl8ÓDO䦍g+tXUk`f1q۰TI\Y?tDѳfnMfS\ͫhs]ymם?AsFm( Ovub~i]Bv=X@:9Wp=C5iƠs4_(vVj&Տś'Q{ptf`0W Ǥ+ Uݕ$CCm4ntӋ7#T)B2hKRtĂ֠Q,`8I d 븤yΣ{ŏ2ֹmiV%S5 9ks18Pb+K` _62za۝{/帷 }v QOA6NwV?W>N;hu /s ?_L_˽Nf}>;p$TTjq . Fx;$UI::{VyyxR!g%ݟK cl]x!W{36;*HK.TrR(ZnZm[F9Y8>2 a3e4ʹ$OTg`$d#+x|VUC R٨YO)@0^P#:;#k=nj5S!ϯЕR(ӇuܹwE!<: TfP]&}z(A)^eȎS, W)ze ? %Df4P{`S`^AaYjF_{,v*>G@{b܆N5]:ֻ푄ts̕tOVm3%FՁ 7bZi<_vN G $6(^=7}/ 5* s˼C37x|GGM!l)eavs=뼤'VWNBa@)Ӽ^t{wF\?~0?3kk1> Zd'90B 5꥗}'D!!ktk 6N4cϿYߝTBT}T`]J gvZYa/>(5P >؍4~-ygz"ʝ<GdọZSf*OgZW{wpp*-8;e8OΔ%(cy#WRkcJjJ eMx8^c=[y=O(^tv% eSbag~R2~άg QF2%QݚLkVI7m"΂0Φ5gF^Qf|?όIC.݌bJ#37.fS\׋T ũ eҩ~Ujڗ;'ȶ5eOcګpXc+&p)k9/qQs1Iݶ_cl3NY 1ux; ܃T2+i^DF{+:XSM įՠ;i.PpEXÕ7^U%VN2P}rhue64uS9.gQX,J>ѾrKLjZXaG[ovVKx@k |t\g,T@fą@I6-HhS.3,7׸l4.?o2P) ez`2mmB>]zUIr(sy/mmܛa}ԡŁ}?ťGakcoxK< 􍝀R-Ř~+ʳHWUe阵SD>qٝ7ZïZk]vUބ ,0AҎ&U:xWy&SV+n۝I$Vpf"ҲUάs?LcW"'?JX{mL,tBNԇϿI}GuJ% y?#1뼃[`q ƶtWU$ֶ՛;,BFڪPނut7_ZwPJ= S%*:!eJg"%^ 5 ?p0T%\%yG:`xu6x Q XDOB|\uzno x<'p +_Hг\j GpИL}ߐ^Q[{8w~Ϡ9r;HԞ Uf% fTȑ5G"T H֡XD8xЀ4crA+fgcXhT FXKjd&Gx< K BRm# %(yqG|1El3nG=vt{=Rh:tw~o)!fB.: <>b3{!u[;vR&;X*$-ە!̏<3Sq!<@3?Z:tr\n ÜuT9z? ˁa=J5mNb[}_"S WFo dX|^as/^Rӯةל .]!;ҩ\a'D;:y^\C$oP<g U&{UɒUKƋh{{}i\v⼧i3[Ü2RuED'BJwbLsW vZRi{-![?ʶWvJI vVJ֓C4젙<5)vӢ7 upTUȓ|ZSsְhT{l4'|!pNGkzfIN!^*eBbt#IZ(]Ee{c@ftv(RL܁ ~~\< #R;.Iguw ڧ됖vu|1X&eD$/2| RgVDyѦJ>FG;+b%'!,1wOz$/'d^jRD]zHc Mrيky[J^ ${fiUK[B_ljuE*G1U4W/_6+5WT\QeqE/Fҽy.&KF"ssP#J;:<Ȩ bQR^r86XY^X>NY{cPH9 \j|G(\K3I`SƼ]UekcCDi%(oFA2gZ%Hr}v2=g@ K̭W {f?~?:~ F'5}x4cGՌg%Չ8gQx9[Tg KrVk6yP~p н&ģMv;ڕ~r@d@A}N:@t^o|iY  똰dЂbqOybR *>$C7݌ ^<H\ڂKi;haDlTӑM6Fcs @QVFJH}恈]p7ƸfĊ*y"YJu=Rw6f}'Êx?qǙE|W:+4(5/7 K?_3w,Ss+7G45uD6/P|-/Κr׆U~R~lKB_(6Bքc>wQZ{jInۙkGg&zL7|$V^˳9w Pkx,d4/uٰu}w н,oƿ>:&U0h7㝰Z}o>3>{v`ƑwyQjR]uLڤ7۰ eҼ䬷+dˢը691p ^2"y?B];K|//=ʖFtT~•ͱ*+`; <Չ}!z^z,1Zǿ>2qbyVI5e;F] \ܚj O'fB {RAl]{}>O0eclXIZf[Z>*\&n,,M^ٴqաˋ.54BwWёH1V?t;Bg,Vq.bynv4XZko#w%4btZ\X_7.(ޥxu'g bludp3l Z.5ƦS}Vv\y|?xz_Nd<cIV*偵#AXޠWuF@^zuYo=f"^8>g Ju0ް3\s2#W([K&/p3Z9<HJ? #;a1c\Qj1%q@s^Ȥz3Lej!sȚ\dHڔVUG_!JQ|܆rXkUeԒӎK`_~; ٚaqMg;s'E \"GPא]R%7XLAajIQ ,1q˚ard'8W yL$pktՕ=%hK=\vLtWx bbڸSsRսVͲqZ/scgh}v+A„Lz[¥=d<ҙ &Y`[(@0J%+u8p}H" ?IQq1KclPo6Bǂ:N5@ h.Pi^:6喏|̫']v%+u6[?s[eS#SS$xŠ>OٻOto%1:ASt.mw48̗)}M&odZI T n-6^ݜK2f{;Ȗ,ތs1 _qpR#%ɕ]G$AEkԚ#zfg ,XZ+v܈A+5v=͖3LY7( "mpf˰ph@!f.U \$g \|Vؒ5զr[i1Z)|GLu*}xoZ/_9dQK]~98{5[B3o((I<ƒ iJ=v|4dJҒ[kV h؅{M; +ֽVZ;kq>~ڛ@Y0\$0h2|#_z(|G r` ?oWɆb32cva;5QV4W[D//(EKX*cgz-\'[7ٛyrַJ@{T@#ʿOt|EQFaTf1ģT`#t< :tʀ~liT'\f#j5cͭ5Whxuʇu+ndшr(V{ G  wy+{{ @,\f/(J+Av[3M</Bd/uԺ/5^kc3P#)w 5RuOdFg$eT2;_2}k@"[`*S]_5+\Whii} s1xKoXr.yٽfሶj&/4svmsD Q: N 9ϟ1~,>Jz/ u0N(Z{,Td=mkKnx́}TGHÓM>*iwzSV<=,ޛ1]g^B%)I>uZSjQ' %:< _ȫBmwy&CǢYUp!4g.Bha  t B>NՠY+7II>Z\35˗82v4?Ϊw1N733B?gIkQ{;K A |Kl Ljea9.+< 8 [wN]K{:}998!xYG jn!z?y#*Wէ_u8 {NyR=cѶ}r.jvdՕJ/wJL)LnYju &k5J>{G(ɃV{~_CX¶AB7Wyo@gOޙ;{!JNo(+u*N;u"QHᅮ|#//5oUCgÛ $jBPFp){ xL/${R J"gH.a!S'%ٮQ!6$5 1:o|L-;.$G΁9v x`Z:oxD5 tNp|7WgFeJ Ac3\urE^θf?AO)7n&/*pݫA*Љ0:%(Sh3^Vdx;9$0'N.lݑ)R Z\zBBvᅸaX&G3AöG\(6C8(EcO ,v'#ږխ`_jبagɕDxU&*z;O5f':ଣ-QP05"d-&ͭhIDP<yDžKB#1wz,ʀA%ڀu'LP>ųvwk)Yumj?#]|`Q??s o򖅺2)}y"H*%//6ONA)/d$So֮N }YNogA%++џa{3ow,l4pƭ9%yKe]{]Z{&ی\ tϗYUt22 @&HF2&Β v3`=c,{75k N!:2Bp j2:qQ/FYŷŃXh‡Эbz+UmZgG:xf(ܝP$2ѾjIB kvfa=T&<7>xmNؿT$ JRZws1[ 0n:ׇxrf?S:(!7+oš31mhC:PԮs"{ B DXV#pn^aWjI٤($HbC)ƪjG |Ex.KSCn*,rFT_9S -1UB:?[d\s,_ZsYfbN.!m_@4IkZm)uu `]ɶJ }:֒zv|6!g7le~|L[A4Mᴁ͈H^R݇Y zHbw WC3f5@X'W ^z0X45K["+ʹM|55Igmw0Zߙ;P?`XYmP/ƿMxvf ¦ 9ɽn*]{+K'OǏdzٷ0ܽ5\s6K㿭G0b~~u#.!"s}Td^WgܥG% j,NG$s˨u"7. sc7/ai1GiXK[ͪ/P{ >Swu ?oY7~0@@(A%焍kGM, 傤pIiTW+kJ^"i !Sh{'<ήG=#3٫w Ň 3kƹO(9 V ~C#^*u:7dciL[!T2uJ =s/ˏf(wd$(n>X^{,RFCtZ/c9f9O I#4NSYzj+`2vATS2dsYnfW-&8/^M&r>yQ&BKMRlLl W5݊EʸV3q<6}'HqE,ЗR:h'hFνjȤgň 2ڨ (5ڦQH ՉB+unF[o3Q׿?x"ڔ[Eд'2o$E+~26 7_{C)]7k3gI|,Tsn"E`hl0sZ7=\VgWEZX'Ouip+¯%NHʣKmRY[1h8E{Xw6|$xub F1~;@9Z%{9-ELϜK&\4o*b]|q/TV^ǘT 1s42=*d\bru U[W֩kX[oxvӶr<$soB:R,+Fs9t fVhaIe&IVl>@(uPF3z[4Ũ6Bx:gar-Q[>6c^uBFx6NȦQ@bUadC2f\Ipǜs{cK?kb[Vf!3Ҋ%?e٤\ ډI8<+ZfM3l#TXYAQr)ڌ CbEN^t ۄ2H1\gF+.|KH%͗1v}񪢬Z~(RvͷXut sAnqCSݹ@OϞ+*=T#jO{z+6.buْ"++ LFmtX^]E6{qNrC^áz3N⁓*LDpDFdkz$ʚӴ# Pfƴh2Rr1NٞYaOuKލ%L|c47RpWy_G2%9q^0La c{68;1d+Mt,e4.&^AX "t6#DΡpMQ=WDC/5@-20$w͔ρ=6_if 6wѥR~7F)-͙D? (iHfu+T]㣎9J@kD.gⳏn5Ҁ3 .(sћGhm)!8`k֖IItaœD"F oXJ&N@ É9_^>_HjJ^+ #3כ-3ɇVm)!鎂kQا۟k vM`vkN泏O>~`ʏ`2FGt~=t, C|sRwLAs=> [tg]="۞>}JNBC iUYO-xTKeZ$Z*|L/J?0@1S/ Bn7~8"jD޳حwn._i-?` p)"_!ݻ!06S~}4}=2sj(N"$Ra/.>bNhFR zU&KExtCY=#K 5a]ԕ39cVc^54?k~\ ޴ uR tǗI9;w)'`^ߕKa:\N  `;j5|A&~67FX7H2ZWZgrEBY1n)kKKo$>q&b.-E]sΘ@ EXJ@ ]sJMn:˒TنK6 8$鳬Rg &blrQ{M2 E9՘^cs2VkGӳWip $}x|]g/^67Ǟ n/+@+i-p>wo=w *\<&Vv_EQok O1{j7OWz^Zh$BeQYDE({:2gf:eפ,.ٰ)|!F- Ӯ?/%aq&Թ j)Ac"S"R6A2ݰǿeFp=2[{H/&XF{͍{bY8T?Zbͼ£E;ꎧM.g} tY{WMgAy,ϒdٖn3 Im+ԫ pށΒ&W2{TEE$ 7H|UuvIf+pI}jwh &sBabvy숹2! >wAm5 rfx_O9hIOBO%Yv77#v?-zx?n܁Y6 _6}?sp?Jxc/ ߀18aa_.kh5Ӷ[EV_JK˵'CB,2ܓɗ;UpĢN7?,od {t.H!|x%PSRbtSrJj.rz87}s2>"$jqT ÇrD X\-GHS532Sb\"ő{WSt,ΰ C+{euy0E3wl: 1C/oP"׍# z,>q'+ 9v~ˡ`qrIкz q>_~G¥!Gd9&t#eqL,5zX4ft 0(la)#3s@hu^YC7ľ hBp,T\9ʜ'{7rH b+B?UUI5Oo<*Gt< <tĚFZ]"XC6#Y/ $\CC!0Io9Қ$^bu@= סnEQ H8@sMŜ5ϼ>֏n@αF2EMҭk7!,C9g'`@Rkޖ=Af$ 8a7v @)MMS5 ˷;Kaȱ'w;䒭kpg(1gp\cw5*yy{慽cz֫O"#'}hU[)B[ٶ.F#Z&X?!_spgc Fލpf֭f!Z  H$ wa 4phqToо7?$XX/Z\]POF%Z"(YFnU-Du~i42/DXM@u!>\ey ) ߔJ;’ٳyHAGr)]_38Ğ+%K# 0 \Jp9wƄNrIR(q.rH\_p:5+/RV8aYC64 b&u ˏ0jdhDUr2ꂤ>&kf6`YRj찬)u霙ķ??yX&B"*g>g 1Q6Jhe^J쌥ӏ$a2*)"}W5VA +z 5xse4^4Lp{_2o  {{S&fB͇!@T,taÇ.L;,f Usm`Kh y Q*j"R-X(҃6+s>SYUɧ/^@IDAT,z>tc̷ ks璵0zs-D9ӊ6 $ZPkH8ES:ۍndD@+x)odt>OΝ`jOߊ՗Xvg4!a2&n흇_N>޿Н9V cN<A0ٗڡ{V=<о +F{M{3DH4tFrݮEiO\/w0Kl>~yLx̲VK2̓LŸ>Mi&ɥv-UAȋ7wh.'0y`3< <=@a)Nba}uy6slg:j;,=ԅ6xtjmyQ}/Q5?mMɄuuy}<#|JRz.5c 7nk] sb/y SۘHK.\\KH[5fi!%|Z}ƅјl+ yY%R[5)/?{E(hlߖ#pw̘Q0a$# ɞ#5~.j V֬ \  {,u.+T;Gd8<]~OL}m4~9+>$Oscxg$qFGK ^(XYZWdku_H9Y]L5͢%˘zzg7L'n?>uӪ7ldqs%'J IƥлcNvsfj`a A!b&yhO:0\ܓ@Z<\904ă3Pڤw5Wg$8,icUK6(ㄯ;eli_˪ U@9 h*xB3fʓvpndb %"/[/-{j]u٪ށ׀k>sHSh;jh,_TO(jX\a(n5+'sQ`(YHo}ʢiw`n|֛7`|?|L}bqTVqad*zpL8]lf!G% zVՕ moKUiØQg ^J(ŏ8"liڒ@Tv `{{#%Vgw@ۈ{;Pص}:k+5)Wѷ=wO,D0KJ`'G+>N'YukHQY]>w' `OHw1Bu|Za M#?_L[_>~sgv;_~[x 1[%nuـ| ̹7TwW7x#(Rrcf/ &n$=sѿ nv2T.>D/~2"Aq fq3u@+@Y(4l5]`V9uAU)(̻CH*З1?M1?G HȬ?Gsmg#btuaI\擟l.C;R(iy£̵[NZC]I5-Wbk^#Ge&%̂IzK{6b ݿ h:ktºerpY;{5 [ߔa[ϩ.#s`Lvm M&[WN֔*G:YQ_ƽ̊cJ umҞ҆1*uȰ b.%eY~Kη9Bh?ų, `)Py2 !|>zϞysݷ3~Wb_~n=(wVMS?"Կp1=sf[cah&xT6<`XE~ x?di+Ae6zE0u8 N 2 zc!]|on# 2{|ܺ+iU TvY{$Ik :ؘwgB+JYN2yDh5\dND۬m4hȟρuHP71y󒀄3ux}aRaܦթe( =}h0ET=º %J@RO0C~E{ eE%%]~+t߸o 3[Gݯ=U iZ ƞ3N暉DYKmLKBz[q&ҿ˒,߳IoXپbXgGG6ܿ,qPnWLz+=Nhԛ"\#<0/Y, EY,LgcbktOG€v _cQn CE{QaH|-,IE,"b%}%xJ'C_!ck>3<<AYT-p 9uݟ47~KpkwBʌ+U_?}I,R)FHb^L;`,an|mcxD4tt -RGFK|j.>#U`gc3״3U?7ignw (l3i" Gw?宱Zd_1./Y1\ H29yCgfDg\ Vs%v]8j(y:oj/X?x7B-9]&膴ޔjYcV2,'~n\QE3v`ֳ~bN4>*X{bS 5a#e]IljFB漼gl{`@-\@b^3== ,QO} `^k23@XwڧXVvP >6ѲL5cǙAOw|sVd`_-w!>Қ/+uI.*2«h?CטwvK|]nabϷ((# N(EgBuu8C Stqhl㝑j_+K "%2}8[\2ϡː\0[OHm 0tir~-4ӡ.bYҷ"*1diqϵ(B kWvVZSN eA`+x.a%ˢ#̑T p)5ӨZ悔#x^q1OBTvhr񎉗'xiD5I5 g-/Әz]&[s {]^@Z X-H8;{s >G˗}9[K<[9_՚7a!۞:6LHANN_1c » MK]  Amak7VY5Vps* 2v61VhUBy<<:: BxUeg mgE!1@h`$mN@xnV`EMN)Bn5nHƊ$`&LnO#~?7b^MJxM\Hl4}ߚ6E-ɓ!,B𛣲vAƣVDܑ߬XV4཯Nsc{F͍+׭))8ȶӷ?M؜vIJ/Ss._VEZXa3Cl806ep] %͓@k半1&pH15gtLLj7I#UXCA%iW1\sFF?\N?kF,V#@0 ?ZAk" '[o#}Cԏe>VbXL@uc':%!Y'\ؙ,;0fIsӤ%}$._MUu׳'^r150vtԅH !H?ɛYO_pdVtȮ_cF`ssg/mNޒ|!<9c&L,?KU}X 6<Dw ŕS;lc#&,\]ݹvQlv"c|,`T;5K0HzUz{2㎸kYS Tzm9 3YDVXSvf 鮤=I1 ?0fBGg}4GRKs?B*~|{hҌ"bB3΃LϏv[HܐIg%};a=m},>o{PcQ\-VÝansҜKˊ`q*J՜z[w\R5BlGX}e(7>y *BBLIJPpݯt`35vuRo= .*S|a,b4 |,:^̗fOGd(քkSSJwE?ijưw#FOӿ+( r6SaD?/3hR> 0jVK++ftѶ֬c=Kϒ%Zd9.+;2_G7 "FΒ u <6:I ƒֈv@HԮoZ8~?RZ{8hEvu1sUV YxOWJ\z|`6*qdm3I8s6QŏTB|ZsWJ9<</_R*B lyk2ƒKez>-WP87-pwM}|CM,tLU@7p!D07W I8+bLHخk!+{oun_wo|i^މ|f {BSf{`tR+*XN(a,vX`1W="/8 !LCd_fY5 l`BPXYf*$ >:t7(j6#mVQI]k(n ޟb5 (6,SB)f Y?ea GÊCoqK0g"3vDZΧa?5 ח+#Q{4"*>IA{%i z,4Hy󲜎h1z0%Dڇ֛uQ'#/z~}a?~_bŸޛL eT}W=պkp jB sc2oȕoA@>]tŕx<*}*+. 9p-@z֣ {9C ΑEa6Kv ;={vnN z:.AO`ύ|y!5^eoZ~=@G3{"ȊQ>/ =:ٓwhU>))|<ə=橠efW } `<5C{I90VMTJWaBK.>#:y%U5&Ժi>v2ilNvgO]ڒx]߭x<`L#/K!Ks DyρB\>\!}c=5:@TLrq]cSFb//k&aۃ r0E?Icj r,"#4>cϋ攚{˫?y1sKك9Qhomud*i>T?-XEUvun^BFiJ`##x~T6'ApF.}F9 0?{N&G/H>~c40.FM_y k S2,>SQ1C3L$\a'0{ptmp+r<!=$ \BuaلaZҟ¾+{ou@6:42BcSPg]x:ZLvO`W,=X@hS-3Ҍkck%t>ˁOGK$üQfYT\26p1miwĊ8,94Z5#jGF!tR^5k>hyOZ<\u: \BgfXNdK\ 7 wH,H (Bh4nS}X0?8DKr꿗~kւ3ȼW {/`(j|T~ƍpdχc59"&A ŹN;i-GeƗ>G_h\k{/8CK'D<[Ikh$`182dBl=ӡxL_~}g0Ok7l!0X$ib%]7av?CVG?1(( OT<(f$rI8Gl|YU_= <]93ʩ_GfxH/ 6]I«%v}"W{Vߜ %U@;t9+t^Ѯ% &NWbɷn,H.0`+\U `L1Մa:fm223˓U?1f®¦&I^_ۄ#ÊP o`'6-{/h;Jro-JyS3<)J.,Gda AJ&WZ;-N_RPWP"ʼn5MnhƆ_vnGXsB+ q.oTQyM!,F]= fB^}vez¸`~{3ߞo~io>Ϲ*z$,M.$|Ylh}P/9_BKdWLx/sӞos|3k0Ǐ1}ie ~1K:i+BLX#d0A,]BFcDIYjJzbMe7f. :]U`r> og$E8[Roqv%)ѵ2+PH؜_<ߝ^<ߛ/omʏ=< 2)swo~˞􎁧E bZm"tVrb7z{/YEKjHqu*,rA iBb_W),CWI=M"4s 9̍hF#*-a%Q+^O!:%Λ1%<$d}ﮓC'=:㈽rV!Ҟf˦eIY?@/0 ZkoRC`$|WZo)ׁ{EˏηzX'|(}m//~?䙉>R oϷ#{8g4'C[>z>&{oKHPBUtDB D>&|͍UfώhkἴFėV?lBmna*4ƜӀ9Z-9vZaQn 7L het~11!?d!wMh3&=b%+ űS Pɟ&*}>z= "%0@[O3F^̍r 7HCםMXY?l*3nGNR6h{4or<~\锂/Eaͳx}O<1jևVF7rѹN$p)G I61|u?iC M\**ZR[ s?A߱1՗j|s-{C[O eh= B8*jKFE ]w1tLfR{1!/|Z2UodgyM_zZg $\x\/~ktҩ?׾i 50kw^M>xhZnZ%Y[ ֧15k<. _2"t?+BQ 92SWzN[y3-T= :ϝYO\[W;A9sLUMh "lM@>qfijUs% )1Yclߵѵ_cwԘ<6~ 'щ '-&ĦPi3+(lluH9aug\D|L{F'/&ⳀߛabUN/ ihQ0zY,ĸ!W;ŬCTfF<ϺO%,Ax;c;V,y4i mmRARMx=%eˈ/Dsv4BmMÝbKsTZ[/P$w}7T'WZmm2Ǒ6Pv0sZ]+~!ן=[{q& WNC:= g> 0U[wF; by MD=\/{ca(Z" }[C:OY\,M\H0l! -\{/YPm:v^`L8WOvxl}a`pM+9m&"g`/F>I4^Z}mz0+u#K]ju/%8 1WtO* BvscVH~Y^#9NnAW=|O\EW H0Q\Uʎުtٜ#!<_#\%lf{yS ]Mr -9fnmܑS%#K0qorӭ;/`ksXғ E<ƹ.sDTDp}){/ R߽UXDcʵ62ɼhV3a,jҜ?_ɴ|qZTzAs=|<'|]َlo%ud nS}CMZߗJcW6 _`u Eh@HF%\\ lڒ5>7H&lkdET+Q&[P ,,S0ׇyLy_fӊ0d$&DƢJ HfGa ?vGGϚ޶эɵ0h Gl p|eoԢ~(͍<   / 2Hi灗uÞuQ֫Ђڍ], ,6\`|ʙ޵Σ;w.>S9._u0-eR[6%9G#1%NRyIN 4TO͇)_f1xY4 G0|J)#qpF(KhBL9ygt_VEfSsR99 &Np֛';~to++\kїyz}Ra-[ko_z DAcIx͋_  }s$T[3rbL¤y3XRĶ\ #W` }][# )5aT6E(KG⽽;o/dl5rS);be-7SU.L4j߼خvg Х `t1{MwZ>n| Q-f5}@8jnRZJ̕ظ;p̭RCiğצ}&DY*,wn"5'sw]Laۏ3L"h%<{g-`4]،xX& WXl&oTQݍz>5`0JR-yYYB䏲W We&cKu+< 8uhdA Ḱ|1Ѧלw_k^fs[_,u;ܴrQ"\f9YnWݯ}؍^ݸm'|ʒZاY94nEG;:,>ba<)a1;Fòb꩐溋5+2\782v z_xwvKW)|3o?G( ȷ=po]? fvY Kb@ =TCR[WfaEaRXlO"si~z_u;IU妥ɖj):֝|<˜jnzl;aNan툛K5N-zȻ\j_g;ou_UN`t$qu%JDs x0/X,ۯ_ٯǯ# =?c_d.B N`|Y珯ur-䏓{m)0"B>ݓ_zK$* Y]u>#`ymRk BjRxn.á2]Ϟ bB@2"3y1a6BSvc\f#Ēh5k}{7N%J̉s3x3z$>$eNY|1k#YB?'"}fg ,o6^hm;p),"΅:sX(59r χaE"v#7P}n^ G3+6JaE.Vu[t o|HX"뇏{ zsνIj%l &Hknxh&X7cC={V^[̔<;ϷӇ|>}Q~giʰ?3\7 WҪsϜ(B@5w(V=Z60ey%)jg_]Im/4(N`@n\81Lj֜>#2Su kg,٫Uq djݕ|mG3"CxA:?"1:d% ,$ Ok9s|g+_w@} ecf^:͈|jߔ=@{nYY>~: &\&Z[>~[=ҁᣕV:aeXcg0ͪÏPC@.Vo[g[Ab.T( hC%-==M$p/6ׅݒgw+BpScAcH-ש$=5J|Ht8L;%OÙ=eVgKҗd2S Iۧ"y6疑Kӛ(JT+saNVySh@+z!aC@ Jj17М<š5\LÞDbՙ: ¼#kT=GՀ{IȒ8*Fjm1f/aMk/W,4}bڌ{"4y`qGkw̧/#<ȸVY@hX2FG7r|n^_{dkq  [rW>7Ex6?7U4u @M)“=G Oܰ/gdTyYI="`{o6=*hx]ڸ!؞Gsz g|[olI>3_ULHan:~/4N;;+<8BL;B[{">(i)@}~b/Xܞ'd.I[4>j=ϔ0 rHRM^,df^1a ]J1 ֳu .xښ-Dm~>A 1'sڅ5kɯW DWx9zk̽TTa^:yf) 7L1'KL8zp6 zJ+)6 {L- % D͇~0[u&.qp-ЖOߠE4Ҝ˪Hs:vA 3ӊή3Rg~jӻ?0)Ĝ9t ?ѣXz6(:$}ͯ|eAj<`olkS cOʤ\r"~&` S<:3ɯ:r1p5n/NCVqc6oyXglD}עN2V`Җ E٨b #XnC-eBظ&@t/$ld1d9sr_ӱ4ԋQV_S#)#ynutXqKiHfAڳU3ga LǡrYxu9rͦmVY֗^DSMfOC&4vYhuP^a-p _ZvVosq/BB/^cif" 9շt7}]Bh.3VsMPvFU1F8<=خć54{)8=s*)_ G@hFDK9@}m 9\պ}Y#:}k t˲u 1uQ*ZY&[V阇V@I> OG>?OZV{Ne4ݨĞǢ^x&ii%_oO;˄w¬j Kq@嗴:4x|…N!›2 ˀC/EjC SRpG #p<+M!ojjA+,?}iY%Pg..43iW]9 uyTh*m׬h [T5u=iV u}ܣ;gs9Ҫ R~Wy3{q$(. KP:.+얐~C>/CpXNFU-A t _٥JF0E(-I0}e+eJx?g'ڔWhٛ{,A8$_ͪ펽XrD_p:ED~$P,<%S9 0,Y[g0ont"gR|MΡK!eP~1 akZIrfvBBxYӗsӎr{ܬ %6>&(c`?gs{/LCe6j K@P4qQ?}.)#) F D#S#a6mN *t#=EDz޵`;Թ2ʪG{ x\dȖ ߅.ʂ%, cs&0"A>}%%F\<`iMN؄ V:I vDCnmav퐵*w2Wn$Ha6p(6Xb^_6zICo/pv|+Wp I9OCrp+*B$mLQp#D_<)CBR <B?#>TbSed2u)[OшSwˤ)e` ],/wW^CYu`bܼG˄ EK_V gT/DgK=??f5kT9o_`~q-!{bD) <9!~gI kV-ܓ:6k6Y~:KyָpCڲd >'6G#,O!;l%I=b /cYpE>1L #?$L2sF ߾58d  [k 1c>l3݇m7%.>\$o[,kGʰ;Φ~ΟϢ ?|vQ0_dZ<}NkLZ*u>Gf$|$8]N{mQ1J ίKʶ7PMoJZϓľIIwoO 1\6YOt~%7 lEgUOHsOK$P;7S=_\qhyx(u9 yhk&"sؽ Y,xIc˝iD\X\Dfp[Fl_u_<4[H>DBS`ʈӧiw1)uD;QY b臗IE7.cP&gBPBd@4H"YF_V#f9ak)Iյ"ktsy+WZ<:^9W,#{Üdy۽B,]Տg,Xg[@m^_Qj &LplJX=gJGЬbjCNz`3ٙuEh0TH;ȓv+M̿bMg򫓿1qs3Cc bC&$ts&~_ hOKٲg3xg"}60[Rוs _ []~R h@uyl^mꆛ < 1aЈA飶aoI/"sBB!rcsS!ŀ/[$^jcCXGDi=bXgMsܻGLche5<_L>uB7dQDYVYk%|n$m8%t9.ٗ?o7pƻ{-%ioo Ϛmٗ.9pV}aߺۈJeעLPgZuѣ6☐hxG5 Sۻl;Lԩa[7gOdJHp(oj?R$>ľLxG9.0g%ɓ9+-#Y*>m-ܻ[=wʉКn­Vhmy1F0zWpc(;+셶>)Dcd͹ѫK43G& a&!r /Me_Mλ2~~0!&;`'ktsOP=IXMgঋ@ ǨWǷ_Pib[<Ӡů8fd'vh}_&n<2Zo3+1]$͍_ z1Q2>+H(gɗ|54 뷧Ǐt 5MXc[0 .ِ `;[ B2Xa>BIi"N\ssڃ"&Ԡf u;:=ָTyESχ#HB^+vJ:v`&/ NTF#TptM9du/z{og|CI>YI}OP$Mo­|SZ$ 0n}܎gD絇0 _^)+~1QZ 2Po4MǯnZ̺@)~yu hlrs55,qX8q#sQhƵƕ/Fd@feֿiHdiWµ)RHcT=`kge8#fweЧ#gC֎gj8ވ+ܧ٭1Ec{`㌵Uvr䮰~g6yJ0zwLeGx>T0YEM+s%1mUɧrfÍG{/+6!Rݫs-fGO>႖NHX(.MW9/ǜʼnG%Y{VKk4Qզ׫9 Պ7 iHđ6FU ֌_|^zhTg T|ʟlSuݽ\^<9!Sb-a'kvzܳ 菐mwMi{-ZIV<ַ?Ѽ33U|rhS=iz2l{ΤLɕD+yz6CUJ\ #ڥuyo1<#h^:F(8c8p` q֦IL.F.fx i:O.åEwU'CIoGYg0t1ry;k1,v"oN?{~fc{}8}[ߟzk4uUtMѮC~ʹ8V1tI{@O?>Mg((Q~.cLY=I//TeT6,,?X߸@#0ߙ1 楓'fr0͞q;kWS3hg8CY|z@Rݗ[:$9 xxMtӊ<Lz~גPJ3j7D[oB J]yIPTPD/TUb6Xx:eެm.<,ª@DfUWPI=]2|73Oխֽ]ݭԻݒ%yAeKBf0xa MxBf`g$,@ 66ƖeIZ[[}}[- `tX4y¿W19*Qm=]x╫p`4 [n,e 2ro ͙*PMURS[vF}D`Oٯ&B#+DYʨ@w^?σ;Mɂu͔2'n& H vFՕ%-Aap)ѬXgY$[/YsO/8ʙoEl‚N௑oOVxlZ0XTi !ųs\Z#n \ar .E3V'Hq6ߓ6X?tI 3[*n{h, 7h ߉%A;^P"CcL<2 `";m|nP&(-Eq*/A-!e8(|c"8'>=7U~Z5g|!ٿUwR x,m-tM&4%Lfi1PmWpm#-^Gk2k,YHo6Sp})&lg֐+*~\Wk&b~wĐ%tu9&4o=1YKۇs0 x,\c iP/WPk̹Ru160ޫ5"/hR6~ ?ӿNJȒ{ <|ް MvM!wECZ61PDUZ{_PkߙͤUֵuh]&֪ϸ6Ja[Neaaq`e ZkB[y R]X,J!W{.-1@xZhQ=)omie CE"1-qq5SqNO4]Y9xұe` &{|L@jHk'@!נBg TcLnbK0kӫU ꍝɺmɾ6\3v6KFpP Du5mlvMJlG=g 7C:uozd$keLܬ\{-ܚIg#E\ɵw͑Q.W@0@FR#P *@E&{18DK(!*?ů3ųkmg 7-O_.z Ȓ1㶨M?r;M=bݕ5 g5QdRc 9J5F`TQRGHXϻqmy2\0繑ReeNg3$Cy=bkW|_rt ſ?>o]>neAbUWiF--5VF^vX_%B-mu:ӯ,NyM'qBQ@[d3fpS_]wH+]HM d!wHky {! 3\z`N]#2%¨kfk%$Q"O]VnQҌJqqFlAZr.hob}( g0 gMy:DMxpxn>Q҄VߤMʨIVFP7UY)%o\KO݇%-h"*)y<y`E4x3/5޼u ƈsFj@XvQ6Gu|dlU䪆\Noh,!cak\/´,&D*zsrIyO*%L\G{z{\|M Bh|rd>VOt*u 燹9Jܣ$'AzF M='[b4eAXڛEm׊B{ZzY,!w̴ RL޷Lxfbq)UC<5_lMaHދAҎV'69G#'h<@C(!-(CH7dx 5U!|Y\S^Vm֐Ru &=tv=ng|,lqi:&F%t=y;[>xo:8tZļbif)~X!7B_ehs CAzE}ˮK9&^y~ѻP5]:NZe$=0rER^E nlf݈S1| 7]w亲X*@t5q'mEګPAl35lh;B`>D"&9}l*Ϣ{'kӝڲʝƱYy23уfj9eΙRFDl6#۫To7KwF2ev3^U$P@V{b.^: ϾmqU  ]S(bm]DŽAު56ߺk hs= \A<;ƀGNaTh9mֵ*6 9Y'Vp$d؇~Vxah\',u%@07m7%&-Rxh(_[VNuK-鶩&vef^ݐkXdz9)wvMrBEE0juXYE˭&a mCHJEt! \LwQ(_5+)2v4@}X^SmX*Qj!P3F2(vލYSD7Ѧn9v!ch9N9?Gf|`5V^f ut̘YRSolSV=S~;/O%n Oj"DZIm{,>'?/c}+G='Œ,K?q<>=?}'RDoHVfW',$ϡn%Ʊ_T/tluC|gez.;oC6J o|5Gc7GY/X\ Ow7hD<6d]T_݊ץ A@6j( 'ѴۻV6WϾt}4ma"4`NzOc@Zv SO 4֊PǍoе6hMgGQ Ĥ,L% 2-F3n0{eQ*%O$8Hym4)H׺ 6z"Us36Z옛I5mgG,ѻQudCj;x?oE OD薪SErJ*bX=y&sdFȵҤD cM.q79il<%5Vqlƶ,徸NeރTT}]4zjTxkŝlZOa>WQB&gogAMnc :Oh3d :aW[=xEʌB·M pI^kUFlZBBdb~ XLMKJZ2~K~L8 g,Is  ]942r<_"1ş_mxh,,0{2AF}qP|)c<%)sEILvxuBfCh@sz}qhJi5{' sKw^ >]zlNѲ%\Z##x_= T]Hs&Ǝ]{B?}}nmڝ}[5*!סFN:NQ}ߌquסV#:V L=Ii_Q017`s^ Aq<ݦDeEcm˒k4"23ɜ}3_FsO۩ng+简!qR?6vA%]ŴY a{_zbT r2ĈhW"}Ȇ!ҙ2B`א)YaC4BюVPzӽ( bMj*A׌O2(PSbNZ7znGű` _)M xk,MO~{!i! +x_z<-*VXe{-I vPԤb5N[XDdr)xfk%ֆ#|¼}7/w^v𪺸 mc/;O ?Xa}z),}q#ړqp]e9e~2BX›eݏ<.^ Lq83 hs'< zb(7qIÌo O/ijoM a E#ezQp4~O|_7C8ɳ]c~{)Fy?Mn|Tt4va龜w- D1lWzkDqeFhOҫ?<$x ޞ m :8xQP$7bc~˗מoė?f5' KW"wS_#/(Jkq*LYYw I<ŋo7f/|x$dXt:wg=xlj:qi9x}[MaC!UqYV_u|Of#KbQ"aʫvlEwo#|d\#4pZ[cTC{$D%!A=OW#=UoO>s A,?eq=ƆI]v[c_+KN؈4MTPöRoiƋn+"sP85u9 򃂗U(mM19UkKz.5iǽ#ʕ>F>}(͸6=QMh#*Ǣ SJcO{Rd2. @_;+oISk<(4W;']A?_F)ik\V7 &$W怤F)63\'b:ĎAX͛W(i'SPqi)a!CPb ]ɺ嫋Y6AZ9۶YB@=08To({AՃX˄2X>љIؗq˗]a!P{i뿎ϓط2d,a\Ϊ4vJ1spѻ1?aVblrT<;ٸ"[p >le,38QjY >vn+5-lk(~AZ/l|O/=gk|/2Ƕ5 ȵ42%gY97GX H5gX✝9s-{$e:>!;JX!Дv<}԰Ps4@Uc߉z;idki9M:~، ac&@*5[: iӁДVdزhU Bkğρwq,=رSkt:8Hu7< فP^;IWoso:,O ގE'Y%^ *W B.Ip (!Lw t}u֐(#kyN:HО,19f6]~y:DҒC`+b@Po@ABUo &<`y8|mqǽDؾ}x ^ujc5sT<X}=1ew{9.X|^Pa3(i:sP<}zG<{ ˓g3Kuii ,8F|+/ț׹ b۶-q/>u˖؂w(*b>Fd͛,>K2$3gN؄?\t +19vES@y'k嘵\pk]P ӇG0՞iVn@56Al![5*_ZZDȀ 8 qI\1*^ޜ\e&@HK;X6J"zM بĚh3XfPF#+VbuĻY c=]lVdқѳ!e tC3p2jV#nc [kF#s2d+jN0`meV"iʩ9!1MWbf ԉۯЅf xvonWڋU1 $C}X#Fݥv,vjFi`yO0nl"h]NU=87d)f9b x Z:&. x1Lߺi%_9 ]73Q[R??s'LOY=I*Gl򪒰 Ƈc5$d`g8{Wս RDزW>&'i y<x /oz?xԵ ٥9bx񩧢{ez:{v0`&g/_ Xg; Ǡ#?4o/Ʃ;W4 y;S;[W,iJ2u{*TqM)=i_O tq=zi^!YDt&= VRQ({=b߿v4ނ$֥%AK^ql+@E'DݸQЄ력mtvpVļrG(w4:/ϤT%2<|xn5[@/~fPsC4 #XLA NR.bU5<{v_p?5ppsZ6vK,X:9c= 4I[xϝ ,[#(ځaRH{٧Yr(-7$E'DB=;Y7- v7+·}q=1sSsWoZ(?ݱhe?9\=C\LqX"a~ 3f42ǔeK\,7dzFFUY..5bv3܃R|A+Ӧ!tr6-`[VpaG)D)}`up @zl`a*.h&ׇK{&J0:-l 8@WllHj!a{g;i׆Qx-:)TX,:b "3$uR+Js@yi)LO!u);VBXlXi CNQplb¡Lhf'ۡI'YNnY!_!jڮvН Ed5!mac-]Yj^mD"v´ɡ\:1@ 5>‚s;iG,=6,!iTop"ӟYkˌO;  Vиr.GY; )șH]iQ+n`&2 uT)&NSs[Bs[_|_sarxnin[n;">#Lk0$̴p MkC~1SG#kMj]oăE|a7qz)؏|>q8w(MKqn?}45)wc wGg՝*\`0[{JL7")4jH8s1r+έqY2-38~D_J1ȷ<찳2(EiEq h}# ߤŬ w#ղX )?&9mhGVk6Y(e0+Z vpVdÍ =̧d6^ F hQ, >]]Q Iji!cS^Zq3e$xV_y@,[؆'"| Ɋ1^VЙ,'_%!F!W JLoN0C쫐Q+9D {(SgndK1-! `vfȟT.L؞h>_=ewO.j48 &`ۣ43Ï08ȼQ/`YSs-v m <ֶQl c7ͽqr;:x{X艱FPkh8xCGcgwo>7žҥ/㉯Nu F~XgOKtZY^].KF5<< :E+6%P]9Vs2&Ej:nxh~=t$~=o>{Ѱ=]k0_k{dzPzzX֭=J| cϼz|?KQ6%40p9#N~Xgίč`+eޣg$T'@/?o|0Se\9ߟEEDž\Y^Wz01ո_]f xY) v3=>@B%mL#f!._d!עFUB8ZIr37 ) ]$-V ݏCǶ .dahgHf !'<3?n~+0rt|s88z$ZN)G?[Kزeu-ĉ{Qi:H-9RIdPZʋ øZ/Oe,f#khМVc49W"Kp(0wګit8=xVM;1@1^`øY چHr:ϮP0zy^-zq.,eXAФ8Pf:bdA׫{W^M"{11'Vg`aIDoCOwTɉuePhOC)B3ߜdv<` Pg?vmu灸ok|DyzWC xR}xz;Gs!^x9fU,]=Lݹ5ޚ-W>ѯm=os޽AH#l}p㧐5GG/g7sSF&Ÿzixϒ8J+_&4amP^!jqUB)cnyȝ3'eo&1 ngQX'),mp*FnN">4wQe$v `P$['GX<]SMDqrP+ hVnZCz''?K(嫩 oZPH\-P 鈭P/]USD;; kK$k5GyoPJKA&<: ~fj칁2 *i`O44 ="KS?>{ R pɆ6Cr0l!-Mq >uj̟d4"d! &eV\T`e)Q׼Lq +f@+nngO堈> x y-ݲL ~SljьnzE*L`-m*EѬV+fF;Xa0fI" 3y9U#_%|Y#?PȃAT85nR #v]M,م$@m[k84c1ߣ4)*vb^ӏT0>mr4t5V5[e"npR/y+sYb&k+fLPTSbߜ.E@B0gooEӴ?Y& LV ^IB(ƩCU R(0cX ~E].[:=? Y'8Jkx0G8q?} 9Gi]3Ժ- id Mۋя<p%niX#GhK]52 NM3xsA Q"IcN*Ak?^]_L߮G<Gvn@Z2ч`@qejZkAqKHAZPn"k(*XUAM وªB[1K Y=\[E/s8 R bHbua0:5Z9젛l*n^tU`y9Oγ5* u,""5瞘ǯA읓~=ȾOJ6!m!ECEX`*V(&gx; a*u=F]Q QUӠ`²a 26Yp-ʬ0?M8~ ?Ƞ=tZEnc І/M ҷDWbgFlN7-Ga(d.6o]L42Fo>=;cں=P}wg`DYU͚pt?fAyh[6kXfQ0Uq@`y*pf=Tfrstk"j7y D)N@jݐi-+kɏq^6.)<4+\X!X-+">آJipeg?bB v~duUbyb*CERd>O޼4L,6q#z'SrLTg:Eҡ+pNa;^UY S!ֵjTRMM\~]j_0kE۽(U_=c 96l{<iE;N쭰"5})XK3 LIYViǕsBML]ξllӧF߽N hΦ34x8Ykc!3ѓz0v0aX \wÙm~l$ IVe O{ %L^Ծx,k􅇱B!Lj.jqJ iT{!ebxkwBF8xFI$>H2)V7eX='هVeNM,AB}t)xcR|I~E(LkI_\5r耋qY.ܴ,:E(A6OaH Q*L>^ {4 fH@V ؒ\"NNYll%ŌဓgJfb 7hX0Ɂ(WfހT~ ` *@U8xÝ!X|_PJˆ#&x>6Bc<"J¡|ܷmX@]a[;kv9)hSwizmieDb灡`Mh{o-{ʃ7X}mv5@ʄWZĔM,ѿ%mπ @:ءraT &aQ j(M#' wޅɠ-lJU^j]I32p#-Ҁb e$op %lS0"kN $xt!oD(P[!Tr$I{<ۨyiKL2Op'=wyWEڍh)Hʚba7L tV;6-5z&6+Ȥ~^v.^zxξC$ )U`TXTbK%va0 ܉WpK‰,cq'f;bOMm7["B̻(mٮ]퇟'ӽT܎ [C 2hVu`y9Q䨔7zJ{^`spo@uN3T~5{\^;J{O.xtBKqiJXd 70CZ嵈;wo"؛lgi+Ӭξ,DܹGcn?d$ﭝ#YgqDK!7Ë|W 9#Uilw0.O9!!1 WIvޘgɯĎ- vpy.N~ .Z;2X3 cSSu<uO?y>vrr8E< cxtaa6֌E@ ՈUb w\f_%>u"qȬaٴ8`^sMh>㕖vX2;!etֱ\SzZƚgT.\cU@(mc) #_gmjB̽qf:# [ veZ6<z4f*Kd0^Mp mxGe Bqv&>e#NT -"op؎3T. |;&O=ۇvE?o?/a4{N _SN`ّ:`q!z:^EN ^Bԗb^t_Koa02>pD-nLQ%NU*ltI]Ag5*URr)HqifTEmPp악4SWצ Y#ˆV JXnyBP\1 K1Ԓ_~',7il!2}y*Uْw3 \uk3D% sh1 N/W9^œ:-ֱc`P8hЎD,9T@ikAނl24u+k~3GK21 NKq L @Z 3V;§fC8VY4T9s(h:`lN1KюⰈ&M%%>d( ]c6s?36Ia9S`uXhC" <|IP.q *#ùuC%6䟺EPNk/XAI ՠ-x+ 6e[Y =+5E(emZiVU܈}*JJDLG3To9_$x߻资@Z]zGѱ۱;e;&PNJQ=phy\{%_8e{=zxٓQ? ėWխlȌx6k8cgacIlw8N@zQlҗA8vJUcY QKad0)Xygy'9e>\@fzjUC=eqK$׵N%MD7Hi`c=4f54ˮ+1 3d:R)WpAxbKPX>K! dZChHY9:\1jd$$LBҍ_/z4u@r)9iv<2asJN!Rg=@'@ҺL-fUswScRRѹ-%G)!#6M# E;z19\+Ve NʎEָN"BA jq -hb0D ZMU]yO˼vog_.66䝮.@;>EB/)j7(fTsQ Z%gzfB65:-F 9އ3ƻuKk^o"+%l _ĴK3l;kɗ^{ivnd i2~!}1&(aQf.8 }01cl|dtTk!!xj4}p`87w[ ? (PVw!9r/n09Ѵ0Im"z JxkX`7جR8B}(M[ׇ 9==Lb97^J2ZfF' DO6SrPSz6Z~ii<j$޾K,+[2iAHvhYqoi_\dܑ[M,*[yW2n .=@8ϵR&(2Hnzf8 pi,aȷ yh_!)hi9rx6Xa#R ~NJCM=Z.W:GEZB.@|Q=VE#ۑ˳S:iMq9FQ"ȔH4o#ZOJ%gHf˖/ ^ 2d] V?|UMv X %7:]}Ya! s=Μ>MH;"!]6)6 9d8dQm#T{d>`J\WXc.fHMf 70bNL:iųuॕ5,fnkkLzccy)YYJfQ`(P>íӟv<"wNWx13y-_LyEH=!ӡ]?{J̄RuyjZ Ee ZC"ƑE`J;B wp .+f@E7qW%pH}iNeViy[N=,/VI$9qHWz ht\d,8Jb&5j=l- )7REk'j9McU]Ljf8*s{ <*UPxxTz$q`Zлi]>̢Ϙ~EXֱdR< xz(kV:H|a?e<@="[wMa=me #h90U\K%=5~KyUW.uє,'y3T$vl;_w;zWw틕O=! Xo-j8M,[ ;$}vz6q?,`Ky&~gu*x;`l{9碈'֡ $d ]#?@Eik![DJ!Wv ecW_g(z H|M\ BD/F:AiiΟUƈ)Y,9[ȨC̣<& a+'VVX@Xt 0^EǞx;231zM3u*$q,IX =:))&tT9|大lҀZ jaR]_ ְf,d,b=[#KGMalG-&_$ ?Qv\ݕ&87!s`h+tS^5U3U %xox8tQ:/ Ab zwƻ85FQz=PxOW^Dcxl#VU#z6ƴ_/34q@l:$kF{uyըiPf<7ٻ 8Xo8I9=AP ,rO}\"ެT;I\R٤I6 Ƹ; 0V}(}ǏUߔɚq < ^|71_O"y%050tf@Y=! {P; UA9w4,b(pC:qsCVb#ji@xh3jSxc,2xbOrqFWrO#hzK+{k߻wͭIq'HH{FѢ$!R}V"xm?^)d˄4{`%♖fGHVD8U}JʻjR{Bg2Q@޹sp{dW~˫8;7C]/ QHڢ6_4ijݰoET֥o"7p 82O|}7fbwhсcM,pAT:*b"=ا4NYHKK5M5ӪJPW Oއwq:kp jjXri:#w?.BZ*v1 vWdk;&[װxb8 :UMpcrϼx9+;=~x97HGf 4fJ3e|@%ץ~T9E&T`T4|@A4+ɽ<|!ʼG^t&"7`p > If[%3#7mʩhrC@IDAT@Ëċ ap% @0(/3@ ǗMՉF46?Bn$݊@NElz? ˰jX1*(XHNE0F\ g X[5l52,@Oh), *ͬkk/5SS lbQ4&Th\̀sQ#=eyսS4G84]:?1BoLCB5>쇣-'s }߿qz(Ι4WdXcNӵ5qJim<c:B" g hes|tk3G$eE [d _K{x؝Jz;D nk+#@4.A8@@guLg='I޸Yo@7h<B$7WVʍ\@uRyɯjNK /`k`3V,d}1|,r+3u %ViixKm &Q@0~M䐂9^Gxُ Y|~}hs6_CG!ʳ- T ]ʴ~?o{_~=ocKGmhfK4<揞 ~E:HCħOyJ p }b& ~Sӷo9ڿrxG]CHJM/[o\~ d*Aunj=P7W*_zfn뮞~tn7AoT&4 xmqlt݋Ư_Es|a^a.7Hnߎ_z>,M{sJ~a1EtY7IZ0`2܀s|Ϛ;X1AIZh, ICX8. , FV(p"6vWzL@1ʂ0DAAw/lHt1fY&D hbd~7E3>),hk>,-4GTg 888L Z[:BڎF)\gK u̹ZyE`uiWulzWp g45P vi>yj9]JzOͦ‹(>>I>mg˱\BmaIMk0yp]-mY3+(NWׂ .Xf|q}Ng|TK'm$"xQ*h+Ȁ&Kwd*F:c@/MY IK}N?οK[7?yQ ˜ޫl=CK/.Cs!Rxg$<ھ^@Fc'Φo# 3,g 0sVFfZR3Q{]owNxzN=Ȱ_ON<fr^gN2g :{syT)ܠAJ/YZYxH-MҪLɽ6 `Xae~sT.i/46 Z9$0p DsE##臍Zmb]Pq"h"׳ZMTMXH6֌QWjPDfT>i)6G⷏/KDִKbFbפ#X!O0jm{ P J.q[h1N 0 13(i5~T#tL31C0U4_loOĚ|Z[N5ku>XOq{Xl`!Orp pY {ﲼ}TL$| bDJԪO'$2 _,q_bEP灴 H8 xAlAgԘ RSѨ D N?K+-nonNCP4ErtHC'P hmU( ޽I6fLׯc º=.vwqBX4n.9P:_7͕tx~)4UkrV06kբKZ!*~ <{lz9[ :Ό Cu6J(a[;F_kc3ƣ0;BfQks7F.q]},~GTuDS]lʩ'ӯ_Q;x=pdрQOX.՝0g c8;3Zre4TP-h6݂hƂE̓p h1XZ*of}pSi3e+5Eh XS ۣ;g˹S t%b1DT"PwI- شuٹ4 -b9OCeqh֒hQZF~i){c%'^jsfTsA(7YZoEL2U[t9Աfػ/ǵ1R( ͝!~z@TWtGS xo+A7I79|#rYaB#)=JGEVE_¦b@mlfƄP5p F`uT -oV=+OXrU&OtAX`A8B(3B"U &II\*@?UG|FM"t75 *t\]ώO?t?30qAsc 4$1C^ j@Inj%*6'⦗>兙0T ߥnpb$C։u;]t)tֻMS:,#KMH7Fcr ig}Xnڠp*఩X‡' #p!g@;6 P4s7M.֐n`&?Z*MS`yrΓ,՜`Nm2!䢝UG޲]cQ컁!.:F3ʀy@d3/"#\L)lkEPh~'F Z} 4p| I'nD-ޔ4``66m UK9m{tl7A퓇Y;Xj(_HFeg{bi4ye QtMTSt)ѦȤ')#C(L&l#ox\oJ8|_Hdi>F} W[1af;`O6HP_VSB}}yV{81A~*"t`5#벎,y?6Hl{}`5k5 - Bqn u#lL2Re`{&BUJX1ुT,Q x.K!{;}N]{ߦAqcq-M70Y̆ܽI@E=6ҳL6# 0pLIkoSgȧ*WOᅥA&%q3Kl؀'&ƞI_LgȾ:OnM% "AI?vsng`L|EGƞoou0(&#L!ws !iGь2[B]]f.Fe W0TaE&F G+]&7 Va2~?X~gkCKD4""?a:iŀ *[$a-{QMr$:jN3vF* x FXrjn(p_H'OMS3uLʵ4?O!Lv\r'ɜ;Y.;X]Dpavp lw4XF)cI/!;h IV abpV8s@C\gqABSsXw6J=wuOju2J}QCx^ݦgU!l8 [3B,g Lӗw1Z>i9K Y aH/^'X|ҋϪ[͹Gޯ5_ݴԝۗ^'W/0W "tV? 2:Jgg sw}<+!z.ѵh|,|Z= յr;; h}fjw(? ԳϥSSP"v|Ztǭf-#<=6t 'S3wܡK-An)Biה+ΞT'JL2&#F<&H#7AK)r` Ic8#e0r -chm@B{YU0*R!@ΐ1WYGfW`cc><3yFϼ4׍Q("(0F_mcWIp R~EǡZ`*H apz3ԧHȾ]:֌bDzf A1HKvyХCQ.j9ogl R E1Ϧ'T:~Q,0\d6m C$w JOx5ĴZXYh,SZ:49Eڞ(4$_qZo)ΖLR@-dGSkS#,xttfG#g$4e{Ks(x_ =8\E Rgߤr,;j ɁLp GλM=^<)E:x2[ 5H slzFݠl7Qx|V;kΞz 5ehr1GևQ_] "ʣ2lFT4A#l:b&߮U329JAp\2ѿ Lq줳)WR5D[3Gm"T4rL `~(ea*Bht1E=hP = C[ >̨`rsԲB&#(6ks=ˠ rኜ1 cmƏiז/ T:wWNNAc?K@e5[XJ{?tpK Ia__{K=%`?L7:"F tEEq n*]loQ']gYRe|-=72-Te hrZ5mtg1w/ ޤtK$kugDzT  {0`V.kФu Ͳ榈rA0J(kki+j4%!ӖA- Wӓе&2FSEO34ȠTg{\?CjO8M{Xkj )1XsAKVFYuC,ihkh 2h`VY>/È}` :Uۗ("8ybvf3S AS8\t$y& A7cĞJ8Q7`jSlHo~HV[>7_}:qXf ֛A`z4`T^ =H#} 遳g /!d+u?O?B7S E1}{0k I6i2vƔN Gb˜K0)_`玟B 8!}AxlS- g04QD vM;R9$Ӡ`ь6g=!)6*.9@)H: B/x;Pd]A3 1 $h%!.Qu|Z ګu 4b?C4^R+/ܸ &涤^N)* Df_!M q뤧q jELt$LVy"FY0HA9Ie>X8R">0j0BiRl܇ݮ#816P0!rCuDeSF3! /yR@r} 2z+z)a, >DPfk x crNr>p[!Q2gLl `՚ꮌ3yjT啛Qy*v郸>4{7`stAY<ɎPLأ3O_8b:F{N`P2O:y6*ƺB>HuZD ذEpj)XK/`Ѱ@M^}3F6Tc0L񏬹眃rlш$fgAflr"-h>Rt"V"5AkRV",n= *:l^㿻 =ޚYmA & u{-1K aa4+, Pc*#z23ԇf 1It!X'Q(e@LQ(1Fw!TzD9WjiȽ ,N|M z<ywIdUC)Q`N=t c khkT4n i[KX7I /:p|>ҨCai$xV2nww%O:sv4rOmc_B{hX,b\ { =y~+}ꁅtbi*:ub+{ ?]}MEO`=afRb g5Dkc ΐ,.--'հG^K}\_c& /|;վHg,K 읨^(w؞};Bz~:JkoK*{wϞsi8v:qfsˬv&F` `yq YBu%p @Z칟a#J\EYiBwj聎ՏL,I&M'0|8*F7$JmZ1^V%߃ӟy# O&cf ҀgW(0 8EP=M[CUn3$oM3s~3- 7֕Ӑ3fjѸ@Hd 32%>JopVNFcgV!OBpT0<{v!ؽBȈB^!d1e"x0l2dXL"0 =$2fReK}X( uh$f p z~0nWӃ$EbCЎƦJ*?K570C5phډz*n?o.4; J8g}pate,j 7/߹ vQ7Ʌ[p@1WL_r゙po̰[ Vjq H"|9[~)]yܳ/fs\|*hLm>"EB#Q6(Դ~qg-gFˤz<y`D;]om|(tK4'& ,y"6NaZ\@LW|GtשӠlӑT(>s\50'9&"LG1);X Mn;{g iӕ 2w㕏ca=ҝn8<[c?!*' >A 4syF(A#&1u,u'*;N+%͢6-ʳG`ϠP=+5CxZGMuߵfQ9 |i,rvi"?!wn*t0#Pla Bt?A;#Y#bp]tF  Х.7Kl^xFʶvVj 8h108nHҷm28 eHAP( 1 V"+ io TfYdr=Ж_ /Ӻ[?O/~`TдX_M,Fzv6/N V#ۧ2̿Bj)h.]h$*VdEUJk SF>U=Yk!ᅰZjxG$Gi,Gjm9 aQ  >sjVgs˰:<mwRHF=s,GkN;ꞅoȇh%'ȱ@ |At>)%903%_q` x674p#jͼ*Iȿq-Dc H̿Y3fAJD2g۠( U&ҬUpoьmC\|&'i*^5-6[eI̩"Z4WDI 4DGYED;ڽ8( B@\ LI lb)Aw-#z2s!QKԔ![4e԰d\`_[0?x6BVgT_JoDiQw#v"~Uzhtɧ<7#0嶵Eȭ-" VVǗs(o͍ln:ԘtaEd(^A\<.h?;c6wi@ͥ}9 Gm;{A|Gl7ŸCE:z_sMޅ \;P A`5$j7?r:ؙ&}t.nH`(`p+)G<)R")؞k9|#l^ NVdv(ȓs݇J|lfe0?k7UMH{&֍n,߶hVbu&81blv n.@ )͠Je`]A1d'1JA VƉs^ RžQHS"|ti6p5m4CGjhy[P#RhQԌJwM 5PY0޳b7||:=={ĒC8A  ߫d6}hoY!*B,ct-wta?>Dx֢Pqj rljc&:9,b^n?m/?gԸGq ot_|V{*C3|Ex쬭c;=ǩ㋩0ݸ=J7!(",.)>#`}SܙO+[Ȑ%zC!͋lPs1<38MTYPQH>ON=#:pڠedncUG$Z"͖| iŜJ5w֕OA !56(ǚts.cj э;k2D 5eæRd 6S%JkH|(~0deVڀ#㽯"Ws?z@Z`zlb"n]_!p <ϯ ӰY s*Pm+{ၙer" 'tݑsWRzڻ'wzK6܇&Ύ=:<;c4 EPij & ! B8?"IJp >qhhӦc7 X)l9}hu82Ԕ.nM[GY'AP4s2QTSU4ӥ2д,$"oz{ZTX_|gX a^o_A+Ro8:AQ>u81]! jM<F\Itb3jC 6氻xQ|\D!J*\:j& S~\ , ufp̳ qP0=ѢٽnsI$7{7GV0jR9.S(}|ZJڐD"cOf\#Б.o.er뱆EDjN1~F)řPu:8wp=˂9yN;WhSS'B{fx:ydZYAJp]GC*xg`9@2@@&w|!Jwy k/0+U]q -8Ezp廱>J>ZQOΦ3jdDRΜCkyq[mH]FTa|d\E x,tB)cE~FKnu"mۼIky|Dv)"H69Ie(93AE Jۤ~f*X+`a{xEpw;M<aׁCU*hK1vU&6:\P M)X gBGo-"3%_2\W1VɗDT9X$KE>z'!jcJѨ $!0E)l9=Zv⓱BRo15?_~a @FNܽxnGB lD# ;#61;UU:A >Jl3ZLB./ <@VNq2NC\HcEh4Is@xf!fa0˂;TXfq-l-卢=iܰь 9ƈP c;rSTRY C`jI T Bd_\_2@ M96c@0xtAJE=gЭ,,0RY@Ru׸5@S_`9~5ߎytr>+D@9S0#KQEA*<֎Š"RRDIq0I@ᜰulm{^Sqc̃˜k1*fZ1fjDevAm@>;{:#-H1Pܖ2ŠG*s@]Sce\r]K0Vm]Lf'P2ѲI7j&ǤҲx8!fXdYͨ1d@49f i"x,'A/fq1}vftDk4{BS "LF;mv[QD@H|Z`U xa֒atm,ϭ&mM),>o]R.rP_ޜ di: JUF̴_<'l^"N6 + p"gdtoK5&. ; e](h&""n΀s7y K VqcmMff­W.[Wrv5`$1 Kg t"L= lb]j ֚~q!a|SaFrsFʏ+tg|׳E`׵ -(dc A  .2Q}2V<0ҺNa݇\!AkeN$tu&1f 5b}_EÒXglhT ] Ț `Y.0{OH]n1jxH?أ!5nLD1{t9^/B!)fDM[LIh]"ZiR#E2PnlsuL40>H"59 htGju4F`{&fӑiɑK@یz7E6\ ceX1cf:uY!5=$~Yi)b:K-fAu֦ 307Nn>!C<A*8!ehVkAGL $jyl$M`r0\"Ɛ`ꘖX %ASj?XputأSଁqVm0Ҥ:ߴ΁`.ۆO)<+jn",,ցγi A]q9EibX65*s?+K?8Ib=.v^1OG5;]g0_osTe@IDATPxmQ=z5ӁN K  ŁDuwm2U2 и h|@#,,F:e 2vc҅1@U&njiY2nTЌm(}(OyyHˌ72P?@cu|;/~A*]&kC*9el/RC4Xmn ]g1y5k%oS7ĮbEa$#)$"h?pH;]^}AB=4M3 f@N g˲b`=jOi}v08VX*5>=0i|1g=8  8RkJ`-O!6H@Xx{a15**94[+)(!m% yFc%r1a.ZU `>@Æ0>?T?-[!2/d]h(8%Fyc"X.yez'P/Q# E pO%ґ5]彚jZ+m}fDC6yG,v҇#f9qip;i8Un0m-CS}RȹCr0q&tfM]; #@V'3QC(!dpuخ,FNL hp!q`DRYJ;ęiwӟ{Ϥe})>| ){|nsJ#x8&⧚No}aLC f@J >@NUhV9#Zj3V5/R?L \CX* `ెb BB`"5z; 5~owm^ktŚ~Xc)9c߳b!ӑ"1`g|8PDщ,c=ۻBL#qD# N `ı2gMwl7VG)K)5In=rt:~#dZ\I?y˿OZug:"eMŌ y]`r%/ub jQ6CF 3@Ю95F 8m]Ցơ]mi@ tKh+Tl p:}n^%,K\C/<چUZJט+> 9yDOE <#CmƆ\Иލ[Zwn/jL"9HhE8u>iX"IjǠIۓ;YKE ۚCpXh2r fȅfLe69ˆ,g8fi1&8A G-o6Ɩuva1SE={-}uԨrzQw@0Ր@F(&vIԪe%3[ےxC g!X}g$r Q SŸ64= ˢCAVvZUZ&se ~AZA Hf 6/7'ggӘu\Ot|w5R7LL3V 0Y#RypyxuHpЅko#OHWӓ{Qw[C ht(`:nRM0(*V:B?1CĔ `g| x6ڀA{v(@Lpb7Kd60J0c$>E DJL -ol ka 6.m`o^qv[~]AEP,XY,DFI3y|F,@%dHr4b0\Рm ďQb5tj3w s]{ٜxE+y9<`@ pM\d Ds^ ejiʺd bϭxsGCkv Z .c/8 u:ІW*1`W+mCgyޜ)B|[kAIaILBdLI)c_'6 C(PG X~K ŧc1s'~g2hzHkCWu~ޯ{c|q=pRY`F9>Cp az7?ji`Wٸҍ cK-^je33ӿ<,.گn J*ZfV̾s'}]e: ^xPNȂ8 N(E#jhI;4_/%Ȼ K-sVo y]Cwso3fv A.$H|h.C0HsLZfo`3uњ;Dm,& BiVa)Pm]8 vYY5oncp|TQs&kZٚqY܄fҗG,?fj=`Oyj Yl~5砕T8z:]ѪX`Tl>P}a0ڐ͋3*0g@i^n Z,12P̯Q#`Js]9uLC_X*9,Eu5DŽF5YB63US05H);F 6շpꠒ Ћ~G,٩B/2tIR:rx /PJ6ܽcrj`̜">unD htU3 GlS`kL4;E\i-kH( jkCӁq&V Sd݉ UؓW!XE#0F)]RP:q,Y4 _R Io0EmXsjOf?%u`H %\78/ጻ•/36LZa6a_нH7̲`F5㰯[A_o6^?,d^ T ,bgLgec+bCx,KlMnc U!pY8訅0R5ΧѺ}\3xR\IJӕ/Qπji.1M}͑R2$Bi? Lw3B@cm͜vp{eZϺzQ[ {#>3RX@&ف-,>.HJ[IyJ(r}>&ÛF A6в7`tCZd( 3}JTYqIю9Z'N7YߡueG~~)$fQa-4UteI©)Sa v;0ᖉ@ "uK 0.|WWO 9Nm׬al=4Ƶ8 g<,/"xncSPU(=[AŲ (LÕ?KKװr7^ +t]}#]bJqPateZ2X+ve:#!5\T^j!'aOy}>0,<Vث FEZ) fdZI<'мCyEbuo-TX0y]__`[ Ua_a+טx 3 &ըĊGƩPc#_)CZW%fF@Ie^NJ;o)@+~9|6@NZ @0uUW 〢.ǭE֓:1>~r"HKY%_k̉ JǘcP?t!{t4FIZ '0q?օ(D˱1}6uU_%F^끅`^YlCʮpT*Vucrc-yJcK1{(AFU|fj>!h(ƒ!"Z:|NBs/eOY(.d1r݀ DrF! hxt#N怃C=? hnRp#ca'h2i'`q2hHy^/[E5GBSa.ìLMQžmVpO^@"i2`+W.ƽ ~fڤq}5F~6AlS_ v- H 11,IġOEh-ȸhfn(9[uKG0׈%(`GIdM5MӔogw*MВ9< S;Eas=tqۭs,.8Fn%3aː 9jIzU$Sv^&Y1P&G`gHj MgE0V`3o~ v2J ;XSDJe3G* "Wi`` h~z0X?Yg>gV&!M!JXm]TA=MN}}W{7yц%(b߄';PZBrмkA%ԦqApF , 7"u㛩h=1jm@3pS|T\n,/IGБy,r~0Ռ}A&xŁK,7@Y ~Yn313ܫO4^ W'Em*1 V"AQOfESDY>4EyE)7kFBDp>*ŕI?lKy*Rg{^7ŤdPˡتWcF mMOTBy 8z4&HghRNd Ңl¿*2~yl]nV۸ʭ;hT"(ݠ]"L`&-"].:sn$&݄P7C {qdDoBY?׌"g+kgq1/ӝ;v)ƋL/~ymAQ̳B@\u"8,A؟тv_+;8}_ΰ<Mw)`\_Y{x6 ݛ@Њ[QMe%6grG 4RRG2H"*$R1C;@6VTȞH,,.A* lPyaɅAJ2~Y[=cXbfCo4Dͽ6N\7"њN`F gwhs(a6% Pdw͕nHĩ_hD2V( M&h[g22=&6p!;dCdNk!>s`s  km  "aR TmKX)w@8qZ֮:O!@3( b&]g,5K6c=0=҂h7aDoJK, Yk+cC 5kwp{\LLY#]dp*'Uu>#+0-Rwqe*@؇nab"˳j--=֥YkȀ\ɴ7 ֣ NdciZ-8Ƨ~zg(MW? Mwebu @%hG: B 2>9AzAs|zToμ{ctTcquW)ZdhQ灷f(-PZ0F(k2YрưnSi͌$w+Yd|a*Źv '; ~(:@|w@w%I)1)γi t[da-ئ,&WY74jB(%;P|RVFS }a#XzZbPӜuFbI18Çث`pޘ"hiPfӱ-hXWu9X ;Va8xd>> i2+16Q C9<؇d|GNLA&e!Z5* ki:\l,k$ MAD[A!/uMDa2U |IJ#P-k nD蝖v Ɏ曹%$Ն2®`1{L"M)Y:Ī[-%} 䝰$v, :ILњ(f׉L\3ʌƅt-O3 opyge9X%]9C[t9`òFN2X+%<<0x1u>=6Ӽŧ8rv g3yg- '/U -y(QϾZCu(:#Ga̤~2D!h*jrU9bWM^._/js?{G|hoex P>}#r㋳;|TF=' ^oӒVsѯG /0iKMo^wh}4)پy}y'\&c5y':u}Wzb!.GR1S?qrkfΊԈ6CAC%"JL("ᲅz旈pJ8;O N&wHXR4&tk{~/]6k؀Bxs$=M=/ ;8%D\z_ucBȃ`sUӉ@*4TsS&FdMNwP 0TVak֎TTմ"<,pH{<1,{I]Zh;4.`{z)tX{͜ӟ&YHߪL΃Y ?f_iZK%ݑs5|O3!-I2Vޛ\!XTyhkib%ϖ~xH({ ̅~i_h=s  8n37Q9]タ5*f#1MO|Ir]*Oh1vf=-s=Pk2+}l:tO=,//|]03jL7Zߺ|N~\v+9%e`b9}C5@4=gZNy5۸pQ jAm]ҋ~%,_uَGXuHs WP`1s*dH#Ÿu?9osQ_nTQgڼcЌz c%ۥDB~@?V] l0M6r yܢWQ Hi2B{~OfQ#kzm_ &\).hEn& =@hC1:Q#7A\^0 &4cv0k̍\+_C <i_dޖbڦ g֤ `:%^+8"6iVبe+v|4a?dO>ڔl\7>l+ 8(Kؓ9Ss:h<ˈn5-r)´j\}dclNℒ5e3mcuNi7`yOG0şڗW?ˤP\}|Uc_y`/tjqNE} 8[3(O?ǜ:u٬wI%ć6H=6%$i-'I3+UL׀!$ո0*([ip*jE|TseJrI=qc:< nE-%R4mȒ@q˸kn_V:fBBUPBYk!d,u: ^:mv[< 5I"Ås@C # jQӆ 0O.Ta˪k M{KʮvuR/R2%ͦdzͱ$L{8P^>r֕9KSr8S3N̤gk "3곞*oH&@(NߟjN\2dH{)f#i>b` ;a,7~ы߱s@(}[ffBMLk)˴lpt=ˢVg$P8Fp&iW5 ?Dqb^j)75?^rNr;\ %}\X;=e_~-חǍL{[_˿*~Oto/)F,_|\˰_LkW_7Czɠg'O8f3&ĤWyۇ4``( Ѫ3RĦ) X9Ϙ=#Z_ )AaM>E0kO//Pf^=)&ۋxH֛"W|%Q/S滻|wFI&1yU9@,Yug>,!I??幏}|Z}0J,d[8GK 3[=' rVeV  ţ7WU <補29ƣhaw/_<в3_ML)t ocH]8׉D|jZq`}/bi8z@HmG^n] s5uܩTp/C9 Hpcs_Uv{Ҕ \)xB4D{`rB4#pwDr z(cgQ]^eG*dv\k- IZ.5WHvS(1 r8ƅKв?a-}aI17t;>FpSv O]{6d[*HUawr@I26eU?~C﫸xܩ+BD3$@N ti'EviW~LrX~S,o GcF{K;l5 ē.>k=w&z> Uj'b"XcgnDGH4bTb.b;l3)$}ܤ G S8~|UB7q-p!r} {MIFdӕLnbtQ4iaՇ4 ʇ+5OV/ v#UuFpjYIwLTƔK"^gȨ>/VQ=E~bװ= Ar>ࢮ/*ѯ JDۯZ7O^۹1U90,$*\jD$Ksyd^5^Ior=➴RV/fXD}NghNKeA△n^AQv ffh`#M+߿3ut..(o_J0\Ǘϖ瞖kP%#83(YXu;m_o}C?[X1{=HiOH;zhYuƟ4.Ypp@8-uR|r-&g^jGXiu &#'PVg &UT CzD R?q*GN!($I$KMC ٯ"L5W5-g $M7f f 9k~?ݚv+Ns;Mi ~Ԙqw͑L L5U_q|+>+A!$s4=%tuyE1Jb_z_e~?%^yky_2+缝ٖ^ N>W3-|Ϟ~by//C_)N/1F9I]ck-Szg-ٻ%w7]edC.}cm?KFu'VLӴM5# %Gaw3+IBbMנߢk:d^018T./ۥ䩺y?` @ VU G[CmI|jaV1K0Hҵ#E1R~-.Uw: eqe D\zqcӌZfykvv(fƭ[m޾ځT L}BwG'Nʿ:Fd6$FfZhW`vؾ`9ƚ!hlxHy8s?;RI~꾘V2=b@80rn {(kѽWHj:9ΛYV\[_C#ݗX iivӼ[oJi2ڑ}9qvz|.Y{8;-˭m>TGlfS^4巹 =3^lŏ~˵'Z~>\wr o``9\q2!/|h&n`RFe OQOUɦukmmC*&{}1`_;Ԫ?vͬB_8| ƺ ۤݶ9aN0g\sI 8h߁֏p.rņBA\&zϖC \%TAqrRYkH{xΨACI] GHU jc^aQ2``TJ|ӻ?)~}ˇ_:p^sté#Y89C߇'X[Rc\*ջ 4o.${C #y/O4a2a6 SujR#6@Y6x6WǩJ'ϪE3!ⵇ=T5Up8!CnrcS*#_ 9i)AKoٞln@igf%"z1R3pBdB*S&Rsv^CjaX:Sp/I$i}s{S:p  GԊ|Uib_Gr 3g}i1.dx3jM5BJ,<b){lbt9!q#9b$Z(/)4دɌBI/7bŔk簏^S,Y,Š'?3˵ˏ󶿽|?onCu@K40 D9Tt4gpL>;}+Ö-nsf1U,?n43ソ|鏩^6U6&&wG/<58_7H/wwdo\Xv2"-c9u~;$ځNAjR;V8YHu&-}j}P '9 cLQ[8`9N$@eg߮(OhUS8s"Ou(wSsڥIVPc'>:xa0iڭ:yՈoyiJSM!, 74̱2rq)"R8ԩs,~};fQWiczdKm{"Ks:Eץc*]Om7`틾 eo![ P^v}y?|,c;P50pGAH{'SIK?g__x+T||&> e*A3M9'62Ǯ5o!QtpJjؑٳrQ}A ;k. ::eNn2] nq]j(sKҩClF?6+'qDG]YbϒU'NZZIiE*jHJC|X(a]d!rRgcxbY:]6_e$G"?án7HR_/9.ɇ]ѨOmw fP-RWQxxZe C+`F&? "¯P/f}ΤEV77F!{w(ss?q_~ȇp\Fo"}mL?-ƻ94xբ=ӣ7ל:ߘ^ chFfЁ"`S/zNp  c8& Ltۦ2O~ &N&|+;'X=3:_X^>˫?z}yf;.#]&"QGXs OCm\!1$?wb{n"\Y j*r Sղ5B7Y-fXsCbD長yI -@IE^͕ \F;vybQ^z(8y2't% "20J1 j9ZAZ=V(y4OJ17 I=QNCmPز{xE'CO`wMM7e71Ĵ eˮOJn뽈ZR85~ԙ>hPir1`c]`C# ;2 f3LKCpe4CvEkv 98%{֛fSPĵ;;+ !}u+Gb]yO #Ӝs~ @cne}ƴΩQw jbIޝv ([o#K-{~4̮F,\j/Z4GHw?N̝c_ם=XerE0Go_?ey+ےCn_71QFLγ1zԔ8RH"E7qc4uvA)(yr :3*\@>@-lSw Cy_Oqj_=wMeF'}ZkRD<ٛ4cI||z ,_8Wk)< 01/J/VW1MMK=FS@F+LZ1EyWMB 4I&|̪Gk_|څهe YVC\k-̄29wkukgSáuhmA~).buvsLJZwt`'"yf7'_n.w5S%=!!M'ȧm_>˟}/<;/ms~}ׯ4W# ^i)&huu{OVʞS6 _ RlxIhL~3[o,o+C0|"28j5CG!MF-Jsp@㸲 g̃gmplݗa\2FZcĞSC7hʈL%]blk13.w%" abw]]GS(|kkc/_Z՘nj&puduh0Q楟TԴ* &^|ZZULF&IIЎ^G K_͉ ߁31HF5?piNMgbVjbԭ8~E/_rUXQp^_8]HcziYV^|p* AmHSGտtkfX?ܬӶw%X]/#W;]ZBm '=myɯqx*0%g.ZN)tg3ǜ/[늓Tǻ$˴WJ]hmflʛ$ﺰՄ ߩPbХZYWrH6t]yIYe!n 2=Gq1&E98h?PwwC?[8zɔǟ-1*1P.4 mczVkXN3 u(2897?*o!SeTfJj{{IJ9䪃-nV!L-˭ӊla8b4#$|Չ>>ܙ6c>DR~<(ه˗ A6.V}~M|Xx9E2So0p  3QUݯp[ַ&E!NNjh$Řc,u5*gt.tvZuakёQ{3_ʹ->yYi_"'= qV壸Θ d.T nv-X:ۼ`7D .y!D G %50ڶH=xJ\Hj˝ۙAuvGCT҂t=P@i3qעz!fG92gRyC1HbI7rH9 v B>5*dr,ܓhpvɼ$g'J1>y%U in&bQV.y"?ּeio> #8pCfHHYմ:CHtEĖL` {N}+-7r{vM@T-Fy;9!Hd0'FUFϖXeZ}/;/oӐn/|6e> XghfYT5⵨Ɗ!ܲO(\kn{>͗ieXG#T:~p2aؘh@\/x@ٛNy 9Rv!djӴw A0%ODv~>\.Q RkԗH;rJ{CI=bbŷvT' _FIxuuN 4T{4$֑OIMm~1( bxwӈ8Ѐ 9eX~UrOR %MJ}QI aO8l3`8$W^sl݉p*Vo!i&9[w~NO>Iƶ{Ι#XGZqs}j~4_LLBKҁnMȝ8R0ayMN5JfſKЯ&R#jU>L9k ʳ~Ȧ =ZK($̆ϷJ9r4eM>J4U1wɹ B;iDzЙ62_0rvXTΝB*A@H XCw?h{'ĐxSxO~FY^c{A],CVktxn9D=e3$7 ̇Na凧"̒Rֲ)'Ig4hx{X:o:Ģq-t3ӊQ8;R= P!;Fy2K&`X_ӪC;"gua8MDa7>I\8V1Nm6~}WKٴ{~i9ݴYkΥTkW,}83ۘ!O9G{=.6ru=m_:\IĺJHW*1rY3_yi箇öܓ9gDx3¢:頾iۼC[9C~qҒ3E mԕ =g}9}@sۘT/hSIg}`0w$JkMlvH|Ĉ8I#ڤv Y |t >ĸ 2!gӾ\ě=2O;UHuD}sѓ=,VYz#H+kUIiKDpFޗZJ%oj*""=)i>}h^-Hߘ=C45pu'+VR>0kbPii^ڙGv՛B%j|w%<ш"K?甽O!&7j9]+iw31j0Zj9V#;79Nǝ̺sI>9:lB=>u26!zobMh`y qHVg+Wj' q䲝$mZzPSQ :[d衺ySGBuUm2zk9j+4xW>%\mMک0$:  uAY*L0xH <\w^} ԅ#cҵfC'%KmnaH3DTy1p&9PSa7ggH朢{Fpa][Q$tHeVfrgѺFcvZ< Acz`G@V=%TKnJEp% eiVO]~/b՝'d=OAP36ХB3*}*]y)ฉўʸmj+0̼ZAe,ȷ7sݸ#_S~ḏ2m0dg- A({[dž^P0u|yC>/~vyGf[7tT>:+ޟ&h:!xt 4B=ymy?Z~-/|"ZLֶÁL&}^ c7Ydsl7rsPwhq1 XNC~6L9[U1uLl,q>ς,ґ9Iˤ _JPtʡ!L51<:t4~8u12!h%`> 3?pEHyyz5ŠMӼo\KK۠`iu1ȌAiǭ= `*V"x0Cۻu)j- F8\p vIH81l{oWo& Yf eL qCUYǧFUCp\p'Rc~MZU&n%x> cwpI~2q'L^nvSOg[>SCwJ+XտWrώFu|zGo,_-w31?{z8כ !P1-Ho[㏫/4SM,> bCDʴ .좗 IR` 0@{Ixl6Uea-jRcMRd [WKޛ^W͛~8CkTZW2B5 /){7"A.du6Vcq߮ H4`cS*]5ٙ NnYkT7YUk;74@Tץ_U\WWV7;o)b;8w*O?{>Gδ~ygy1u3`_Zנv۽Wt(qNKp#kC+wo%љW[IF&ܿl;=kk?pC Xp=>ˎ K\3 Wİ)}٬XkПvr=ҧ.!MN <᝼ Y&`SλYC:9y#7۔i,WfJZ/o3ٳěFHMY$'R/=bOs`L —[>6y$ k~.ȍ CN#9Ӕ\e C)fSXՁ)DL߾[RўS=bXJ*0iO) ]S`U=)?ƹd5P{b.?g^LV37&ǙdIqM>=M$ϓ3W_}SeM> jTbL6ltёO-Vu9Or"z*{1~smwI|/;6X!T{W}G⏗2 Ny/T=9.ŵ+_ :-Od2{d wmrn/k`l0xުlOm6>|r^}o^6`x#srڴ-p'֬'I,b;?挓ى&{ahktBY)t1p%, 0TrHPE;_HI[WLk5$S S&juZiqL`f~X_: -?`rΉ8#Ԧ U,es CkTDߓd!>I3'TСZCs咺2ēW{0X|3vbY`Ao^HlYui)'c0i39$^),6n=r̨IumI"jq``cK&>/)ꐭ]>-Uϛ\ Ls !_}g1u{1t.!]1b`# H?yU5nJ0H?>gg=0vE|g^Xy`K%=|@~5owΟZ\oˋE}իSsi<زo%n5|m,'|c_3>8QTJ~ՙ,N7|+jUuױ6V.t ,]rCZaո] 6PuRnT`A]XU+Z!tF2!P~qUT!'^SMp9p@S#-hu}¤cьh<Pʪk1"ěF?gOBvK U|% " :̦ ƌV~ b01-8goa̳8m`S7x9vh~=egoF=~EBs$*.3T 97(B셭?w,B.ˏ(#\k̑5p>`DLia!1lCһ!Ѿ܀z;HG'k';+x޳%%F#׮, XSQF[gZ^|2(B8}qc/}ry])׾gtϗW)'OIC},1`_2gsyo.>uzE`vN7lKcFڡt9$T0$둶|@-T)AE kLȻaXoz>U'[#"0+Ztc952T$S\KI@Op]O㔙.IHaA`4f y١fWD lc0J<I치Pj%I$=Zv[oI}Ow7u0eazwh{ǘPժ'UؤjǐbN$S[=\RcYet(h=cBty)Gk$DKNgZ2JIRw죳pΏ*Z:t^u5+yg0kcp _ I(rxu; \ K𳏣^糙hg_lk0kӟfimý2\ǖ7%,/~'<NF3KOLJ/~{o>q|KGo}s?ysWu߾_[tfH-v/̌ΧZ34W_^>W?A8%H}^Z` >w)p|s;P;-4qg0cdiBfy^f 4 O4|'\ ib:ܮru -#š QV78X*֭a[l}3I ڧP̦hFjN~ # va#ʻGQ Y$v5:ŸvR0A"^s@ DL!"͍o.! `E0cDnw|P+\|WȁƏ9t.!I1U'2VI7`0F\`Y-Vınpۗ<-)F{2"tN j>s ~YONɻΠCsA =?miF|K",DyhsYI#άfcO^Iel7yGh4SKkRGِ=yFbRhR:pz9:v| .?= ʂoskٶْroy瞾{C^nbJѻ2NBc `kvQ̑ nT妺<=Rs E~#2βݒHg$Yji/qy4Eu4$i$yq @$A\~zz<$nTg07)' 4*G9X.-KM$K|Z < +xKZ| !HğVCQe =m0x5HN@\ݘs;R :Ó&fV N#R> y+Dֹ[g571{&u20ˆF.l\P,M!-.=>$L'-ZsDh퓗߄';9ńnҒ|C!s}L98&Z&ՙ.{G0L Wf^xg݇\42wk[/3 $$=t19_D+?ܧ]~ dy8 }UfOA\ >w04P3u6 P%ti5- ;DˇkŕzT떊4YʦZif. f>RYW]{Fq̹e@IDATWzUH/>_ LM;B dg'̈>}9քƱ2Sh:I"X` ŐD&Da^"8yǜ%GZLߔJ}`_l[ˍߧqXNO`S~qd9}߆Nɹ[e&bB2V@^`3t1.A\-7b춤Dvj|XV,i8A9c8kS$Y"\䮛ZO8Cz)$.Ef˓O>LE"iXps$_kB0v⻐#^|WNletXU@ W~<imՕi4U'S" tz@IX~z9FU\n\n; u1(ka/v^?5~ِ9)oYT㴏`YVd'ĊҚ+-#H{Hh0gm9GLSI Qx綾%VX8Ѿr~4nEֲI*71 |$nb$1d"n&=\XZQ5.@GNnt+E>[mp݃wC9ԆfI8E o^Iz$/|ij9 ,zSЄ}Zɯ6hCwݥf)jw-~}7^Әw&o6 yIkybx1F2Z,Bcr F}nl#ٜa5zWg_PO/G86P/@PSR1{yKAX)+M? I|w]kkm*Dߎ}Rh2DNNALOP}=*{6i#1:T8䫾ob8u JU,h`QF)|dZ{x`'~DF~e0}Q&{Y}_\-,"OKU4yζ^ (ΡA0Mqkpy^>@CU_W sD=k2c}YZ*=G-1AIo81NlsnQ/\|Q*F䂼ˣBig٩: @, R_H[QH*}ܲF:09U8AKKع]ب^g*_ஶGSߗ@Q%^DZ93L !]Dg7NLUM>*{$%O82XGUe" sD k ׶u`pRMqTv*%9yhH2C:&]݇󇀻OM/+FA;;Pi HѮ> w H?몳L-~'Z:\D+hH˘ $Yɞ yfl[;G\~;ᩘ\Rs&%A)ؿ'Q|+[:`နo2#3<^:= g3?_⦕>J;}.m ^U6cV5$D>|i@3,BN0]y$tvc t;=}&mގup/umO0V'o/yA[|C>7|cgY^@ͺǩJFQcag8Vsgj7I Kv:G(AڨJݧ7mC5jlvRZf_ShK8DÝH&l*عB pԕ{W+ܘ>Uޡ8B[97%U˝kQH:YbM5)"gX}s J!i#Ds%&Qe+/M,M题sڰR >~n7ro}?'ynCuY_Oriè6?I,ȖȵeRzn1#u6bxg({$[t&&pߥ{$0B:o$ c,^6&ENF}S+$b9K-aisǹK,)m1⿅!3:t(TW`*i9GUTD9Œ: 1C2G9UyDa[=f`^ aҺrF/b3Ru1#4&u؉S|k5]&sM#B iUbkAė2AX̡lrkQz$sfxanǞyjծc9?Ћu8\B@; $d-aRkogK?61~#믽<>.+snΥ=7_ݩ֥ $cG\|j :9-JuqIZHnm`q46'JTK]ߴng0:~GXtH*ބ#R @}%VLJIڅD85ɳ-6a8&_q-|Ld%= d̃;*?IY3gcW/:C)1$ӚJMAc H]Ýko>I$~nKR.6<4'a-[TmLwhVNzBCv]̅24}Q Tͥ9uQ\C &g䝊&e6Q(MiGa*xws* f8̕sCp&F83G\  ύZ\ 9}`ʑB DBuS(9J8,~0L-drl\0Wm+uxrן0t%hUsメlp兏?^<;1vy&^a?[gS9h=5Xh1wҺ¯j07ח?e+ >sm]>P.:?sVhnm xj އ3.ȠukPUc)XGu ~@ 0!VJv@紆=r힖 \Rkw9WvMOu+3N~lOG[gI?3<Ƣuu(m,xAI hdo8 NN븥x-&WsH- ;I:vrtkIRs)$N7Rʍ .szQ{u}4S`tA0TL7uo$=0݀-?psq!,ڵr0\R9=gӞ=cΏO;";o1_OwkvY{znLl^$^C I9( E,CD"HɑEH !$Eqlxl3ӳ}luj_wuNS{/}=]"<_vC`2GH1|Z=EZ!3D75^l732&i;6gT?> sHeD`F1GPDM!S% fVl91mE? ]ϔ˰k0\b4pxVjk=sS38{٘Wx!3$wvSK9wVc#)%y$Ľ麷/2C?!:nwVɎ[*\ _ז\jI>jڕ'O\5DIl$P&R|r5iXGw9c>c5FU9BpSI/@9WܔFE?'cSB\a8&з$$WSjKh}>E=HIt H|^z3^;{MgQEVs+MŞy1vQtUZ&/jI!"Gi^^/ #wjSGn a38h%d%sm"Pc#)بEK̎!fJ;}rИpn>߁HOO1^Rsi3hi7uPZGb&QLofmi @r81|֘,DLg1bZ5Yh~ Y yҜҰn tC*s_ j4'7-ou{_<-{./tw { _6i=<8Dx[:'^Z>2+翼oʉ!=D%\:(6zwIO.շ"pWSVנzHʭd-;oqVmyb1_!u`E 07NLfŕBy >Nzy}Sq.]K(E@qD߫u_.a԰HhG*c US4fNB Ϟw#p'A{&~E}{FqD/ FU4zǡ[3QЃDL t) 'Mj)筧ux\Mf: ?!֮BasĜuKʄˇ󷚘b ViM6pcb> ڋ.]~?}y__~~ח_.v IJWgЍNohLr.yiJqKbⵖҔBC X1cG`O<N[ZSu9b y${C_kE|OStr95ӗAo6IZ4> O*ݐ=31 ki$<[1r5 bH!OVhr;Y 1ږ%|l#9xEӝ:K߹E:]8pDkiȭKz`e>*..ߗȵZ7{wo_]\>g>˝峟+_^n\=bO+7rE?/./ůxLs3]tnWj+ RU4 ԩ9/$e:L 1ɌDS&K!":sd|֪6=3f-bռtEɕXO{I=okV)͙ټ }^9ZW}fgyG؞zk^f"5^} t3R=k8>1̌ ~9-c_2fk#r0 š_kw`앴Ρ ^%I.sDҐ3E*oeuvfT fE*0=!x~y6"aݭ#rk)>n.C0Żq-_wkJ~+ц=3Kw?_g˗}}@ ֹA$>yKa.CseEX88(9 Q\9Jɖ;BM5oʥ osR!\b]I@$; թݏXF^e.9)nHAmI-RL:Y*T/\}vΙ%2pGqk 3U6%s5B>7 'ۀcF!,*bWgԤIȿB|9%rdm)&f4J)cF0`$O[W, aAv"\dH+57p7u/ YhGE -'4qg)g;O">O#Иz:Kتz8I?jI1h!4߽1!z)SoHda'J3-~Y(u_g- h1-zҖϚפ3-@g<@ݤjc+~1TgܙvML#Nvpt#֮7|c:݉y 3y'D,Ŏ5=r*"<x=f65iKX:\ڬ3/O=~>c^^9#<>xiu#w >ӊo=ݯkXuU=A?; tw[Y~'~zYS[3F2`v;)SÂS!t,dvb.מ8<]8t!hjw޿ǡR~3U/1*0tgWaF#8aC R5Gq:j29σ9N9+N'Rc(jэI *EJI}YO? (.@$EΧFĨ!aw4NcT595g)  A0ynK gM18,]~daBn-izlu36\tf'1GfeJf5D5VkȌj#}-rDOD]FAD 9MD%YWL2Եa"O1A0%[6\5] seǵk/Y Q$k#șaĻ~Y8Gru_83f>prܕԽ9 װ{Zμuk&ߥeGCc9U=yk#ğ?;v؃p>Xs #B{C5YH_O3 VT*\61ٯcpcmP`F إT#Ikhɡ'j:ذT_ϽNջu{?P(됏?}\xi9)۹)wY7y92M<Ґf=3"4z &ǎ BN(:EĚB$qL9XC4BBBPw%I##RU{&fobU@CU@MgښnL1*n&+Tf&Aek| Udꃑ$%V:Zy͗P)G1cxsU{OR^lO%bp5d1gLQfͼ#恿>O44 Xf`2XC"6{guil >o)5 [^7S KEbjy zH  {v2{ ai9dkg`9um /3KKBL2q'uF_L &f9v&ɽje lŽ콛46*޼<~j]ˇ6ZKh)ۑ,Л呧Ob7SG\6;+<ĸ FY+_nh,"˕4.vrmr叼2ZI΃8)ܫ C$JrKLK=OK ƗխU 1%e:Nr:fw/O.vwyrGҿ13#"09Nqk3"lO҃B El1=E 3lfDL kymNk=vMM⭦6/d;TqQ!]IԜV!ja:<^:eH)KouԻ}@j{ϥW$広 K G I ٩gRce D 8lB3T_"dΰO^L$#5`0OEapA̽+qzentl ≈*∡!2s'Ԝ&7K|q+7-hRw}̿U#3Vb;EǾj.ͺ8~0N,IXH1T6:3?>V bv0T*Ċ8+3w7KC<3PDJ6Y|uH\RJ*Bh@wE{cvֶ\ w<Q*oL5̠W[- crnjk<_Z"T=D5>|OIRuVw}gvϟ1 WF]p&<ⴐZT}V~ oɤʷL `JaIʗ$ qc&Zwږj?> @I@YG+cm>~1L~pgY7 劳avrUJyZřC FW: id}TwÖ A9U%BF%rNjM托3p*P#({T*)Y>–t Isv ٛ!3 %h. .' kIDEKή`A4VukZ];Ne3N4P'QbIQB#n[O[ +>Qzȗ497{glmۅ9&˯- ϩSԯ~[#@kT$ r0Ť+]E> OIF.[[V3_Hmk p1$dFX~ Gp8S.yVkz{NBZ+2"L~ _gC 륪#U|qNBE5^zLژ4!]{ LS YG81t*ގc'@lai+dQ+;g oơ49Fc/ 5i."f(F =Dg` [kݍYiщ*!{ͼ|59vMv]G14u7@&7|ԩd91{s}einw?;Jj;>O<uI^WI8xxs qn <<^ְg?:k}[DM|W/S㰻]_U w:3)9hLj~ j-voIzN)Qլ侵芳NGq~fUP[o cF\ַ o"aj \X3׫5J)^"(0D \("׀C)3h3[lk* RHlY:9ѝΉY*_b*i蒴&ed_#1Hڽh ˾reWS%baf;_~~$_ `@H!?%%|=TMLܘ9믜v) yn?-^ˏ???&eVMkԛ!z趞 Ч/=pNxMGOby֯WQvalD̩c,7~#ƅN-.6bOa\_‘{|zx+.Sð64(TI3qD<3HHk g R/ ŀ'PB;Yie (YutBS+y t{$=Zgy!{jx㸠yTEB;Q\3IKdE!Z 3!!|'@cfN:f<+33Xx؂o0m% tD33F5 q"pU3_.:h* ^u[^ec(10ZU9 ~BTGc;R, u͞ N.i8Z995"LXvgJL7ڤ+q5sa%.&Q<0xѶMMN!Ƕ̆;n3巒$UJ&~J@*I1j7P :Ճ='if[CQIDWœ kXl*wp{9Z,*(Yeb.y3T"biYBX:`G~r;>b< K).ZAAs glBbYKzE>=>LS]H E""π{ 7PL8hUuW2!1v~bפ>nhSޟf=l/Jsx9.D١!Vٽ>ۍH\\ҙ!d1AgܸA~-:.քyR[WzPGSoL3{"ȝWxvm>ip!{Dbժ{iuqӔ)'/xOwÃ{w_[ x[a}t K0$>,ż`i>G?| w8r*^&ƫoy& 9E16XU~B/UJ̻5ڏU_C$UqHY4~#'9f%v˱kOe:l6XE /sJr٠ԙu $=޽xvjE޻<əPx"Ļ$Yw|Ϸ-|_Zr$(3491kr0` Hn?+u5F ]t ˿e MF`* H[ԏn3G('b F$Um0^RmP2!r<~'vj:|z6$CC&!4 AoXӔ!}l)wjGQ[7M(6FpW*eN|%.enl[d JwN HtMbl" M^㞵*NBJ$|`d"5_H@hص5!;<LV^#a,[o)$˘}ĸWjj->>6٩?ɚ={DPƗ`i\:K\_{jLO2f7+aN#6=3>نFGcVE79+M}F")].uroKG+|\CȆMw^=kr~O keg7% omDQV+j']}|C?w/on3984cѫ=mMi{y!v$-9w4z盾c6Bx|&kf] #W ;|^…t)Yyop^./JpJg?v.Ɍ L|t/>痐XR\bK*b{:yhR@qW/#ʲ; 9Z1-!=HT.Ӻ:<^#h ԲȵsSs!1՞Rֵ,Yzmtz?OZ0Ch ~GR,@RebYIR>Gm؏)!Ӑ>GIíTC@!^cpweMKo|P'Z\bJcg]TcvrEi+Q !/GU)1꣙w;L(xdpCq+0a:w;a>:[aౖ/n2E0bƸ( y|@{\lGc4tgp啗yy~𻉖8ynW4η"XyN+Cp06ybˆ/9 بzjDI_!!HyL"OD!SVƺ&2'ߙqcxD1OpG0>z"˫^Yo!֘|ٲa< mؽ{ )S,3u}:"{>k\f@IpE18b u_h*L+B d<[17ZHi2>O~S̼zo4ʝH 469u't. a\]8ۊ`!*FM84uHe:`~>`d}Le^ <)Ug`4n7_61d4<5㬣hcOXyZi䈮0Mwn. +g? t~ݦ,u>'rRBdx/y}7@q,0:<"o$sg/Cw1I0-@Rz* Av#]B@/u?| RlrdN8 `CW¼ě2wC"pg_ h!FWkvjMi=+r+晐N_RCD,9R$~Lr+tej<7 AJYRG 7Hrb~O\l`8'4f_e!U,/\Mc##kiG_s݆P` C0r#veYQ|I I 3))8 fє/pN =>\ڝǼo׃W$4+~VڳuԫĀ!tׄ=xުOHAwjXb!r*oš&HbҾ"O~1.лwވK-Nr1ap3ȼEKB=ē(m]y@q@u;I})'PHb812 d3fXiَ>=FP9zcVB z;(dX4>j skJk7l1g)rʈ=XgfTgp^W5(vXt^o~Er|* ^g5@vtZK/~8_滤IIG:P~\COW;Q z-%&й_{4gxiE'" nj+mǹ,&W(9~zIODTR%5c)'b5<~p5繶JGܵ'ogDӸڈRRC#L%9vNp6HU)/b8Gyi! OhYo*G{v qdhcL.<ǘ}|Y &WBPps_)ĸyӴvXɿ,O:@ ByVk=j`YM6{{˘e'H 9cu[r0&%&TKLBtC!QYGRXlN(L ^qэ=`Yu-';W-\{ 3{ %euE=*#_a[ji:-Gλ]Rm;T`S,D=3ԃr]WYlB˶>i=F'~cpO#=w$qM?`Dx hU{uYV9*h T1:LD^Nآ^S"%(F>1bc RR=>ѶJis&}szD(9IBijƆ=gG';cO羖9TYh'bu1!&w~&'5H*1f@2^iv ۊ3.%]Վ,p3b[zRvmE>N|l2c>KWRÁ7mΔ*#ˣUu!;c"v1m&ʔt[Dkզ'b?ܜ`J%Nmk*MBH2<鵘=8piDTi7}+LN+f_ نg1̼KA>0w 暘aTο~q|^ \dsL,ƟDǸb~}~['8+8@>=ӓAr#XșXj9ʲɡ?VZ]'6J΃. )кS'Ɔ,h&.zNo06bQ*H.8P&9R5+( eKĉy0'U~mHMwH>-0r %`Lw$"ѥqHєA"60,ȋ^NLK3)VzۺkH2z``tgjHpjITBe%B.`NoclӤؘ@e~e'3S^kix;֖ /k,ʾmU1aLU3 `cΪ%`r7n~JN뉨}`TB[mҰb"IV:S˞0w!Bs8: 0bǤ<]\B̿@djPu5gFxu\<*7R5F_WIcY4y͟Ip2 3J c bIO?i@r=$K2 ^rV|A[XmzCL+hl;k ڸc&0p9SKnKSz }-ɔZ[a~>b1DkċJ@يyq^cV6Y(үM/'/֓[q>y::@GIɒ`rwy1gD* >"F3.XGu0(kF.|ȝ£yR[QF1( WEw<3W@]ZgqCqv-6Pnٻ*k I+Q8=ZWx2ϖ0QݭJ[{|tG6vMJgAQ}?6Bp>kMxډsB8]|@&7gQNʐ$*2/kArC0u"eeyxw D00)$܆T$o}yRecF(fCˎVxՖг*-VsI>m1=4Xl (dh]I+^s2Bs|o`',Nb>q p "4^N8܏^~DԻpcϷ]_8Te!?]30JZ+<֜U-ފHRA'dO[@>OQ09UxQMpX"<аHWm|h*J5eoshG8^阇28![T"isssKS~ӹֆRz`Z\rХlX㇥42Q^(F580VMVALtҜ{WA%) 9 :MÈO75֒"?^N7\;NLFCq؁X܁K0mŠp8J̸!0={^èO/PۣDr2Y 1H ?u9s Wڃ##mc!& 8ELϖe6"<捁W9gνgiS[K%d7qfK5 uɓvF 9o0b2Z#"7쭍|5bf[ V طLH"xc$qӼJ6xBG 罽%u$ vWIa}| M3M]P)q=ϱ\>ôU{(l]4{|5-orzk'PdBl'-ZTz{N궠<ӇB 9_Ȅg2].OܾApEn"I 'ɓ<1GZpG: Dp`nSՆk>{xܚ~9qZ9xRY ,䛢B|6$ |;\bf9kL`dogo<}U4jj ;^K~lLk>ҍOaiD9m/⼳-12P]%,AhsưcvWh cѾ# ƛ0hZ;Lb5TbLig_שc,ͬh@8sм,M0Y9¿J0^9*|w"bVTg7lyue_Ŭ#:zͷɁaԓXI۝h#%XҥO}ϳ7Dj (4㨞Tn=?’qZ>wj-%i LW#~krn:6ҺVhQЅ&׌!hm%t$ 9Ak23 us'G1n9V{E$GL̥@dH!*V( X_|U G>̿}gP \ci+.aȑ]@z9u3>&a(cחZ6pS`ScEX{tFe9,?"c\(u~e$Tر˃-\:oNѱ.UF qwYw`æ.*>g D޶df5tas -){&UkCs]=Bר={1= {Щ* SX\A[ˑ9 ğʞwҫ˗sMvMAzwo`Ux"jEup$P蔖B`bWA99_-4+%c[54vyˤ[OLבP)xᜍXs<fZ[gNJ{,4{ &K{1i`\07хEy>7_ 5ݩ=Υg˧֪&{Wa m W}.]}US° p(c3<Y1:)}ݻhF\oGۈ֗>Z-.3^u>_~臾s_ v9K2^H;pS̽/@>7U\ 0{@qxK^r.HBIkt2?&s^d>d.9cFb<6H --S]l73Sv6'{k]_xEjbC6q˳~Ӏ_QkOYE?$ ^D˼׾b{sy _^,E*`0~;oÁ'H/,'M4]܊IENDB`ic09aPNG  IHDRx$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs  @IDATxD,Ir^=2#NB $A!zAog_"(pVrs_"S|QEʌp7=XR:ҭRURur<JK彪)aW^94Ц*C)4m~rnJ+^zñy@ceR=W~(G>W}ztѮ[zq)= v^)_a4zC]9@߁1`K8=׶[<4]mൢM1 .5cr} w]K/+MAYwx8M=mA\96Yn]ex~^;]M>w@B0XvͱH&x!<;Zv` FXΔB+vnٰ{)Ԡ OFò^3NW1~- 0nVr8P޽GrQ>;k=o<<>˓>| yqr-/NʖU|)SB 2(kXX}\(. âLOЬeWQ~){qW ǃ`s>)P=CoSu:UG>W7ȕwc {e;n&ow;\w+h/l#`螽!M ^=m9S=LwK3쑡#ͶYƳ4^8eNu:j}yOatCWc/ޔtXCdx|\eG>f Xzwz[V]ض@U̱?g:]sr=V}t.l ; n>g,I͘J r J+w:<E{ :e_ 4[7j]?)>=O3zv<@;8KYmEʻڣ~7o9ך_h?__U|˯~U]VNB-64FS2V._˫Wߖ?,??2e]е#W~>2DZɣL+/bUk3gSy09UZCj4`%+;eCmc3q `-T j?L"ةh*HxEH)abR2[`9a'֣Om@GsG"Nc9;SK$"K 9tab~g@t`D !< AYUg:>T Л8:btKcet|:n5B~5R0tv=@@Q8DuɾYapEApMG` SmH(_Yf8DycY'TFaaCU>g9Q݉b) ZH[6e %<r+?r+# lY5e'rr:elKّ7_).?hz:"/kWc6vcyv}C#NeW*htQq2Ml)U8r]p[xXWҁG&ͧkpAc6t|H͖G"gN]5R>Q?pET4nWkC8BacT~:G:C]Gd.sw8k!=@K#>;XGjTe`rtȅM48;"C~_AWe؛T:a)o{F R5NzYnT/k4AB'ucC5nbdPiBu*`WӪCa AͳPH}oGg:ӟ^@w6@W'ęy**.@<Гqpʷ@?0_m"yExxOPخuTpzkQfv.ezap> xM/˫_Wߔߗei\ѷ\ٍz8 rG-;iۅw1!WC@)p N`ih #B,l`ժZ= `0(V\1ҊQP@28j 5ǾAa7ʞ(:zG Jۇ9W5X(jzB0^TI,|zangn`&\uoE"N`9A.[\41WeHj @N; BAT{1? x%%H*&#M aBp ]Tn}< 47-޵Qr>/5Ѩ +p𤣥(G" zE@wD !v8qNap^h dV*lxv ό&=4QC>MbGKYe8Ř<`D5771Fcf SN2V[=RQ^LK5؋MwD8=x&+cׅux2!VM'3 |(dpcy>d"ߩ{gM9r}//厶Cx-/^iϟ?%z0l :Ͽ( cc8[3mOm0J_Q*RZ43*"4UEShLht0[#b#WE~?c) 6r"+z@wmH{b gje~I2 U:͘q 8h/YQVujV}`;hK8_C6 M=ۃ_PyVghc [<#8Pϱg၌O~՟ RlЦ]cg\SUPF&nYF}Ƒqh6Iʬ$Oq:sM98:"Fgl{LEw{s3 oEE3Y7xgb;CD!?]L/ʛo~I_=  eVoLO@D@+*t\F=ݢ DC0R={' ӫxN]/JlŎ9YD0U)i h\n7JaL2hM{+Ƥg2iXMQ\!lPG2`"RABaOfVH1PXd4b@$ +i!#b\iap"R94I'ŦBы.V7e0Ar)T@T]LexZ:N2Q6qIk!|ԡ zxc (4 ?3JWk: ,],0fzKcRI ;`uTha}18q8t55@A7ɔz6K-`]8*/6Gv RgF8 kS!`ޯ^ lM,41<[gNyRpjTh2Yp9N%t;\T(OsPGc84QeޢeeDCa"'ad9 p4\hVR j@]YAWK-UGXgYtbU~Jx`T|38q22Ag>kU!Kzs 'Kf8k2m:{S1N@H~Aƥ;eJԀ]5ӣ><np,a|iTK'I6;Su]C?np̕o%]*=f$]*dtt{l;wk'C#'eFH9め>؎v,6mӜv8f7xrɩ<"|*2ƻG j#՝ ۡ[QHHp!ڨKvqtvܽ*o^.˯#AkzNTJh(2wheVnIGLQ~V%cL':&ז50`Cjz,udZG$QAЃk x0)^D1'L;̥T pmG4O]н8A$ק3 2" m/!84qC;"PA") `hJW;w؋Tss3Ľ"A:MG ;=IGWixƒ0]u'#nS=ƥ 3/ Ę0ĠAGd{'c0qVP$8Y^$9bEd&`v]䉧q㐸$"!=:~w@_, mD0uT/hEcكl;etBp2_!QQ.D\ Q\LlBl<#+u1{Pon1 |>q)F5^=5 2!߁ϓ9󀈰|78H-sб.𐐬5DG-küZ\6凟>Ri,q.POU.P5 :"5Ore\/H/ezXJ k{2J-(IJ%tUP+s~ p.8%i(Gx]qeǥ_gv>0twe`&&˄"(Jg%4ɵrX GxLkMe$ѡ7']%FSptCeSwti YQ8~}k_}!V.3ުsCz}O6OrsƄyz#h ck\uR#/!BYaNՅ" |^Ηqu]>ҹQ#,U'Z5mI/J~.-i>β`i`LGt<{@2 !WYdrQjf:8:+bS6Ht[]&t!A|q|0/w3^}5kW7t+:N/Ykz1`|;cFI~C4*cjjrά)zF8" zEF(2`1 r$=de~# |ă1DgG/7 ړ׋)P3amHرM0⤈ 4mJaЯԨ 1bANDeK#xm*όVyٕ0DIA2.BcTi3cgt!`&ߎ9gIxSy;R_W5vQ)͂ OH-l2(05@ne-JCFgzWx Cc:f ѧީBC%=jҾ"%N̈=X(4p4knbPB3 X^6'5AX;b\WT#/R#肀F x0(~P8hk+8W|+_$R˚bGtdyA#a jtZO4`A|;[ihu@c$1Eޯ˫ ɮg3pՍ2Ogq`dߐBӤgΌؖBTѪh#8#:B=Ai|%7YN\amQ8Ѫ:+uqQ$쌜Z xɺ$3٥Y`5%._NOyO_c>`V D2M]&nMti>gA>qVi8RNlh}?p Lf ^ahN{2Lx.c}|Hz񌎥s-:_L)_QTZhLDJvEo 8Q;-ps@`:!N8:e~JuىFGh8 w_8* l 4 mA:"a8$ŨdҡCC+TWZc`*xvZ7֘V:O"ٌAz?<ϲh}Kֶ.ߔ՟My2%ԍdѺ wRg&[K̔C|K2!?qz֞TGnZ !k<^Ħ09f090o5({#<@DA`Q$Z'b2 ӿ 1H[RKJϿu@2y' e'#(&/Dk x)[8` &Ѐx%T=8o`6ŭḣKM{ 4YVayhC~%V`"pF,x]^aң}cTLiRWR+ X)(3X/sV+/Iaxj!%8a)CcmdZlȌŇ0ak>?:m*;*| Q%x}H=vM9/2KBkhK*u__2j#땋" Jny$f]jaG|:"ۖo^G ڒT#d, vC*$Lv lճD N21f0Aٿ9h/fDƁvs>KpȳV=@'MĢtt ͝D39^e8 ǚ3J-0HHSpi"5l<sgi&10c#+ ӣAd974}I/ B6!S͂eߖïJ%‹r۲tF ,#5"J6_(C"]5->Ғ:–5{ѸAE>bxj|VHU:0Eʘzg21ƒ1hdAx,]v}f.B߱T DBN5o/a#ǝՓb `|%i1:;WKD?#AIi$-P8zkFg ;qp)\3W.o4adJK&I,f1+Ʊq""xiPo>@tXD*MT:Kp*w퓢xT xq=:JHff͢׆b;3 LVQ],gJ(Eʠr 嫐>IU>W)t<(CSDlj33Pi !$Ch}BjO+4+tqɵ)k3JhʨrD "7D0nd{kIGapӻ b۠W2.W2ṵCG?%4DNOěQEOֈQ˒pݲa3em  pR.O ՌkF8H IH*AYXs}]@hqGK_mVe ]1B.BDk#m+ )CdK".(稜G^ŇmMQ 8׷OEN=|^WD˻܎5Su :\hh2;.`͕2NB/Q*Kf$Iמ781k1\lD!X+a:97u8Ѐa/uG* Tka543i4EM%@dেD%H+]BbqհlC= L0`-c* CEaJƚD]ZK(BY8X˼ud*& %<}ѯ5WkP"m fw2b)s C0H d{S6P[`i5 l3P|@f$:zTpda=m޳e&5 U Hn\cr_#;O?eC@piAd<#`.q`tlEEhx](mۄtrz>0jqC3l{* ($(# C޴2} 2 2%co7: 2@i2,h'9F'>ϛ%ghҚYncc`I榃"IB`cv c0RJyt<Vܗݢ92C= |RT/,ЁO>hs 7fޓ!8N# aled*<.C6qU[ f[LLXwaI/}>s)k?Q7c]4HW^DZP>1DCL~0$`n( /) q3<,3`=!+jqdJ`@>2LȂ#'Rf*jS*[y04ulxroA o['*d"J;j QpHL܍ҝH䢆aLVS9&l d]GOk4^=qGW0͝@3ۣm)jqY0!fhGgDg# ]g3fp_,u?>āCOZhhKdz3 4fU4h[xZtkw̴ 3\qgsQr RE 88Z{Ϡ،q1f̵.tӑi1^B4( "[Ra+F3J0EP!S<J>@tGP؛moa˔^{q3ģޫۼ>aLP|H_B`_OhѳJbR ׀D&(́n&m WQ[#Tи}@HJv+e dNSY%'sU&f&VA+ ]3# Ff#Ly3J=3+mx2vr`NH,4(Gt}I12Y4lD!Pm>^#v<Gvҳ++l _fyyI[[R:"14 0l `%ۮ:W_<#;zG.p䒈{O=)#!؎eۏ7Y*xYQo2&g5C*8wd 9Hez3Ά{ATC ƪ8c#uc8'.p.u:(w.Yp5q`73WpƝFGA)p452MmLYUJ[J 2% Աp\yǣw4F4ꠤ bnFYSHc &"bvkU&1r0 ۱jlVƱ#GPq+;3"\YkHNjWp+ltz !̓bD`6deIQ^WL O5kpI7o:;tFId1F,sgAd,+ѽ[&q\ddo氂>P> .&4.[q> фl_ơLijzzYKCEHW3 ?>J׽Ɋc;fHVCedG1rkCԻp>@2̋PT* +4Wd:_UoYx]̇cdAC34A<<^#s*V(;23a>: ̵sa0"Ƕ/)p%VeFÇ욈{~&K, .UxcܙVys ̴>Φ'J2緯.X(_yI>d=NL؁0H$X]*Ɨ_Sah dC zn50\RO1'8&=0SaӔZ~RpcL Ux}Qv(9F)c:gQș2H_qxkTxJi4cy"ѵ $g>')cO!/|yuq,tV݋1OW8v=חN=EVY޺p69 ~yx s˸f >D2A9yyE''{OnXϸV\d+GNO YHl? dJMTg>K85A$-@=':E:t׶HdTLh*8Ss#;pzr ԞHHn'J&'%'1e)D>? Kp≯`0 ]gxnbSxִ5\ԺvKW}W A0Ca'% 2'&A{+9L %qUF ~ڏM <̬0³ ё-`3"uޕ)POq1].{őX؍x$bqف[RԥtW!_Yp'A9Izdid[0hUq¡ThvDCiI}ݠjo͂>p0f$QItG?؏QD+˦,Q!ch1s79jsgu'%E-Awoge,.e2]ӡ0l^vH/bv7Lc~AFYdxVCH/Dj79B3rUDZ5j|N~щѽ/78uk yyRX,4h 2Es1RoӸ@%,ۇLj7}'Qi 2FQj̍gj F4pȜ\s>c@<+ùq#L2[ʡO&Խ|ѿeÕ)2_q2OM/Kw] ťͰ]>uu;Wdp 5#w%(M9^|E|!̕n6edeŜYrmsY˃8㊇(8u0 dF}ֳS2S)39 o$$8%Sg1=Φt' :7v2kNLINAs19J= SBH+ Q~Ѣ\w $MOlvc#SD  =aA ~ftE;axMej psqKȮh¸"dj؁j ѝy)<nA*eMa*w[|6ש0ɟ6Z؁uqEېoshN6'=(ӽP8kK FH[l\ӗ)Ep{]pf*vلB8k "%.8b>M\"8}uf rd_2SzV})o߾ȒA#+%_~񲜍ND;CJo|;Bt(]g_ p,83|:{"M9(5FA_b!pļ?}d)@z}= l;(ܚ\ʂ'Q 4f{\(EOyӒ#}U7eIzp w],2^X8E 9㙊AᏴ!Àp&)Jt<[9Ք:=ރAInÍb3| i` 'TtI|+萀\FfH@GN>oZ~- ?ni0w` u%kH1/]v6hNPɷMwl9d y+:_@m<ԲT-|Śp8kʴ6Od.BfsQu*ͽ1'EznN ۔}7AAZ-Z%̳VRϯY\N<3s>SWѯsiј޿ɦPfmvHFg`,1W B5=t 5 ]cxDYplqRo d|Y{ՌGI(D_ܑqu]ڴQwe RVS1*$ȠM'>.ɲ0p/N\a:?! j,=ehđN>#x8--W}\ll6Qo36oOeQNȹ<ϯ\CN{=9kAQwm _p{Δ?pb]ERRd0<^u`8ݘxHhG;~3i~VKkL҅vƳ1e.ϩXiC_<ìP\zQ)FƊ2ikӡ3r Wpb}hh'?h:?{?~/w5]r}x0.7:8%GdX#,@IDATdEYA.YQ{q.hG Y{Qt \Nu7HK$:>mfDgGPbP|mA"ʈb V~'W)`̐{9[{)c@D& elyTB`m+@"VbúAGi`#kuPCsR)F:xGy5V͏S6T?_s=#k![=/bk]0N;S”;xTwdn+Jw{x=NHS'= ]@ġ+#;)' 9[6^goQV(J ĽKy<ǡKXaW[t) !' c0kUT*5iU&}iCY"B A=4-KU> zs t$oV=Qݥ!T ;e hׁ֝v֡hݢFmK÷qXƒ։4uD\LÛI`Pӏj^剎 Lxrs2>W֊ؐ-64K=EaDq :O#gs\3<>`J'C0AѣS2*cJ0F嚝ɋj@=lwuX]Fqdl-fPmp@g%4%~tZݹ+} 8M`>Ʈ0_z)P+=o~WN8ej"Y?U3h%Q $x`F"XÔ"%v[tJ/\j_b Q~TE q"653C\>kihO4h+ [6!d0=oџMQrFPH<Oȭ5Fqh`)/{d G&Y~{`O1Xe( >>jA-7¬*q1ɚ@zhB'ET{EKQu.`5X0\j[BX!q{ĉ uF *YAUuI;6Jj%a W$YMPóŸCmP'0 7T'W!c l#tVۉщ{[j :%uߧ.܊bSp&uW9>C!=޿<33`伬fO2\QvٵpqzZ>0\LTm Di݋AdVT5>v=})(.X/[/V5Q(9Hg~q -8S%TtZu|Urrd 14?=tz3.x!>i_7I \4{tie; OurUEYQU2xdh C>xǃEJw'In',MOGTM`1d̊2t\=dbz[P`$t |bFxй ㏁-CFUEx;5Տ-J\jFd87txm(w &c2|aओ3v ̝C ,t~-=~bZ['sI17"0J+ akycui(7lDWS/08M_tX^fA B Ƈ7@LםhzxW,;-vU~pR ͩnf.h '<|#Ar.hu2F2PGUN"K3xD<TZةd/L =KPR׳ `*g'*=~7#.4 ᤎѫ/ɺ: ?wXJUB#LY=3Y`X e5B YTtCczIJ$!셾C\eWhBzU ,qEڻ8L|DwLODxCk{@G7KS8 RFC;DN1!K oȩ\U =$ *t5f>4, шzڞrXXR0XW o"T87DPQXrz %2>ݷ!cfZȚggFVU! n_; !9u'azD`:.k5{F֜-=Y#}OQ_rxp[k|@^:/w] t`.<*e?uFg/C(:GgD#zDN/x#>ń7lC1v3 3-[', X5Sv([rp,Y%ŅȋS?͜shq:*qZǐ~t:5%$ r,WK LLznQS */i%KAċ# *;liLoL@>86/t􇣯>tq~9$tw iZY SӷCzYYĪk0|T3H_mfg=E#\$4gg( "i6M-| <J~r q |RSD g~, X-].rFo m9 )S)>/0_O""24'@>KB q& TG`6E#mZ'w\:+o_77%ZôUy^L@aw!`w*=vTaPaLum˂ghr< u۟D8Ue4+t}7|8؄KD{Ԥs<:=VCRcz;ۋ}g( <ڛsnS?Y_X VXЌ†v (HX&~ K%@5{Rܞ' eQp)]e%MT'*VSn4"ׄK:"?;φhL;6x3%%yѪ?S-f=.p{Dwlc."dr>R\gD8DA&kdܭxEt*30WF  A;Ҕ=hȦqІd~G?Y/(dъk.##63c?qYCK۷/P(tfd|x42PP>s[ND`PڂGDv|m&H;u߼[#BGswqСx8>L7aT*:Y0 \G/}c:Ì-5QԸ3#ϹZϑ6Wp/[9[c`e>4!pVuYAnX cqN:om ͱIөۀW [ jyFVǨ!n-~`[qD.l}Ǭp QD;"*_Y^WSظ5EgN"aGbjJ]Z0á2#@fJ5mXa=>_RoX4Agy2S]#qO bw68wn)?ߗ/GtyL iMr5ǾiښqdA%u_ 4;:3V&UVG@ zk+?%ƴJ'[º2) j1\.sϵƴ7c\_є"Z"XE-&ZV{` |jQz0AwFFY@521bx:T|F.˒>lI. d2AhY ,TBVv42$5xnd@:( _#>,E`-rE4xB@R<>tvMhe^Y?#Fnl+_''8 A*8#;aF4]9ш&1kZ#iUYL@mW?.piN[`8a4 :ň]? }6pܜg[_^QP;O  ag.1QOߗf7 C7C, /E]#7w9okY{58g*D.§ YD2yQGK,aޭ00%K7`+⤜٩ĜǸIdP_Oĭ>s(E 14шQ5l2_ϵ5(K@\xP!HG F0c䤡UT!(a~Huv!$O)v`R F"µ0L:A YԦ~Hf)øַT 3I塇7reVҋ.d=A3 qڜ!Vϧ3SM%(?@Ox! _`E0:hzVxahQ. \eLGW=.Qj^…;~D k2 q*C`:sͰH8{j`Q/#2_.*EQѸdyy0|Ug.{GU @Y9.pfY,CR\T* ۊbB$1#/(luӺG=9h?§- Ζ:@'?RV.5ѢGx#[VdWVu8Pg4}PYNK QRp@Ҕ)t\ L`@c-V25s r˜)*tc}Qv_`y3>rIPA8z@}pL!0 W2ţ!/}tR:Z@dI]%6pW 4-.V)ϩ{AY31B'XęGu `ap!7\J֙ɈrEڝ-yw";<7W,>z_ 0 »~-9":[dxڎA7N-+& ^\q r࠱C`}8-˳Ҽ6_;#;/ڠ:Gtv| azd/meڤ-5Ew8 h\BfC Ja%1s@JHhF\!2bޢi*]#JԎS ; jW\+ Fws+8Q=5 ׂ-1aD= J&۩p0RgUL*!5f⨤g=+0JQ&EF$LͤxNbfe? lBpkw>Tv]w݄f4Vxj 2e,S֗(#ѵFNzFqn+ŝ o]ZiHaGegYy0jFPݿ;Qc?tIsqs΄P6+7ps+n\ 8Khsa<Np|*l{h/2U@"-l]Qs T;&2W2ǙZGp˶< 0MܴA𗼊tcqG[͟!: 8'q/77^$+&:_|_H(n:N,"X҂Cam T0X_ڰZMQP;33w!8~L C+ )~UZw-J3A?P<`D}*FUR:G+J$SWft0z`=SZZcǼDl0P1nIPo Uo02aJgVI;.i JӔapEf~2|/W=byz53tНn[\qXbºl-π3!~êZV62e NTݧ>70e!8t{! YE_̒Y ΏэP'\t؟u9DsbŹNT l vhh5.ڷ~(8Jwyf8qhٱfrieL,5ҏ0~9ɒ,IqWiÃR2:g8dP5pGѩˇNC< X| =\x:br :Ⱦ3Yi~EY^p?2{̯l u>?gPRĊe6s?g )EmIdҊ0rJU+a1KNbL ;an?z1OX"riZt_"^1p_fڀ4x߁tE+_UhԬ1QuSflL*}QXΙqɟV@U⮫O7M-#55*=1Qx{0'~;/8H}ݵmނnCH",gЪ&o/Ow4`s N3GJb@1'T'~' ~|FwJ1ኈM!&jHOE3cvp4p9@}#V!j*ܷ)O$,ҷn0n#R?VT9uHhk$Y!4MDp< DU^PPD޳.!J-ߒg}=s0n 1rM߿.1xuKr c8JNq ~r* Ϸ2Wsp:s`SK1<#@-;8Dk?\JOe0?2<)Q"SwdRjQ862sf͑K4vKsf ba,8+ʎ !ڈkf=KAT6:ʲ p~AgHGYB<ÆDj4ky'lY/S(}[|l#Mj8f2{/r 0L27X5gwF";cܲ{fG8{_Y dd`jd2Kޝ[U}c ņCQ{<-~V>3`Ϙt'|z/ g{bǏۗǬWlrV,s΀A)c+\LT#8 -\5d0Jw@p85Qzw-b%^4ʓ: J/MyֳS u$42P /b: x }4(#5>AWDU0LI4BM CGw& Z*ԃ (^\/5?v#(œ@s([Oq3;Evy~{Q/hsf k Ƶс#$PRF&s(PfUe%.- T99 Ddt( F#aʞ/൩ wç:2A&oBUhj@%`t_3gE=e*v7| g >ËB<8PYޑG&Xn:}5Wey>.,=P3^7?םApDMuWUz$/B8;,gJ.Rp=p+`o lxڝW?rI[,HT  jxby=˨Te]&z 'xy d@tCw/.QðFDCfHPps 2 Mko=/zPcԴQL"Iyg~NU=ptj 1G9]|~d9qS[)o/ .q>bv Aa~o+ɞ׵Ơy.Sun9\fDQ)v#ﻜJ4O:r!:mԨ-(4p9\Z΅_̀}ʖ>Y0&5$mS`:Z5.@0b)fVDIг_:":Ssu[h7$ǸS`7s4Z3Io+|@5)d4ڪ>i㾗?[KUz4&dYEpG%w>Jҗ*ڮeMYSN0~GEX2,c DwP^(wpPy n\B:EQ.X,9^1b\B=)&*Q8ʤRLVu6vcgrorl)fB $eǒ%AQ\@ OgN +Bdb/>-7z_>ք;[+1dߔၹ4`uƂm p6=ɘ31" @S .ѢsT歴0[%z-8w_5P t  _ô_n9"j.$bxEnpÑyЊR zGx _Yyuvry=:]]5:GE]Õ*0$|4)>v2OD>D_B5g`<0_y%Zs+u@ WikBNH7)u P 92Q^bL1'|?syTaFim>ȴ`0 7w b7Fu0wycMoH(.3S~)hbWKP3ƸwQ`a/r?y&{}:~#|#_)#_ _+A}eD-w.3vfO}pd#VROϋ%-QaB0Ր\!&9M~/{Y'Z=̩h@ ߯Uhgt$dP{ЦSlGDт: 1۸}{%n{}S< p}+kEa+?tsms6Amsεvt,V/-0=@3)bChڏNh ĦDS !P ;_Nꗈ#"q0d-GC|@\ݏ!n `gYfj Xc5oBU"_oJ b&qb!\P!C6Zq`^'4)_cȫ Kc! W@M^H_LSLIƦE$4 **jQ Ksah` wB^Z[#W1yXAc;u=sU]>gi"}U/_E7 }Eymp|Io 5148Ob1"lKy. ?7OZú9n'',(YOt/e*~#y﫶9m?:E?Rן3l6_wSxI遣Ì?V VP: W{`} R<ۮ}'y){kN2 >^VbѢTPрN|5{E(2 <mna=Е0`8aA{E@x{×L,@_`u[ "y[Bh}Ed"|#jOш%zT#_fL,n)Yk0z׼ך!/v~G (_6+lY8к ĝhIkQɃ@1pF5'i(^3{(`2>PLald"y)@.k cCf?eh sm%_4Ld 'Sg/=N)I1%|4Ƃdғ98HB>`F}Eno>~cOTq@ !r~J [=Ə 3р.2}gx_ۭc'\ݶyqu4 KۃEp)W⽵e {0Zbh\ӹI^wg,)3͖2(֢gMҺ:nM\7G霝e^6 `u/( AOh slD 魣Oν umCRz,5`k]}0dkUɊTMOWz6 dcJѲ0KP%8gף\ #lC-޵Ϸ<*_nb;'jg-iķ&C+1uޥ|n`F (DRw0P0]&bjpN{X,j(G<;Ì‘փ,<H@\|꾦KPL~yyZXxp- VcQStAx<骢ͼVArQF9ִ13XSTXc$N=9ӤPBa΄cphR//h4EQ;)G&h2Py6b<'4yTڎL8֡ :_~i$Kw/* DWo c}Z}ݑQ!ʃ U޲+hoCġydN蠺[5 ,-Ӌ Fsn^} EOs;B1FEǝ18\#޶Ǐ!,l l]L!"xڒ^aNpzeRRR4ܜ'Jy#JOC!b@p,RCEO]sB0O^_E-it#:V4N2sh-dQrE?-:YSіl$'GŻ䕨etXLsŒ1" >7=:rdRd B@&9֗3tKݖdոI1؃'(2Aq,//sD}r6C{V4-AxAN-P@+.;F1Ke~~K.?#a(tZ))(1FTFKmu Ʉ#bOg,+8*&TU/`U<_yw Ђ}b#Y#DG,JEd=yZmL0Vn@q-̄KKB9v!E A)J3Fan;.6EM) ߥ&"`u-u"01f H]ģx< Lg)mٶgkX~R $:6[t1!Ӂf5U_0qSgn=)\ٸ϶s-މ62t$|@UDe_=Q3gfNqg7i̹M̈́5"{)oZ^e{oem7Juer%ssbdCW6Oe|TKק_^9k"^3p.'x@NU@C1ZȐ0wMLp0TWxHbg b.#^CR;aףPh9GP9Z Zh2,l=xџ~$D}E:C$ 5c1oQ_K,I!֘Cg%\0Eꍢ-/^|y"&&u"[I ֒-FA`lmC1v#utNIs+ԃ[lg1ȋ5اM 1l3`l-\0>U+O&.`Jփ7dSΥR&u sj64#8V=6԰yϒaN1atu":\79oi! ww(7H=h: m3t/8\}\Wm |k 9.ve|sʄϙMФCx7!/nʺYt)i"ߞ̻1cF,|!dxc$'(#0@Au:A9d M@ -c\ TcSYA*0utU&/$-sctw!p1 ẓ;޳)KO-s|2Y ܿ@zpo'Z'`}5jZU #J.0(ҰUȌ)aeJBvQNNRHhc;ןNy"HUW jYA Or ߃` W]?U3r}7Yy5ukOaA:rTBw@),L#_w3/G⧥o6W`9ZզWK]|po!H?Q5Ȃc\IZ}ۼ}}[i]ES+sFNJ\d%sAv hcQQ_碢Ga9!-X@礧Kl!+/ӷpa ~iUF(Ƽd??NCSf aŒ 5x+X&DsYBV^lnkښeqzdhM,9SkIC"~鋌qʱR敚R۸ߖ}0H<)0IGcl{SXXOƻ.K3OI`Kqu^GP F(|:Tr4@IDATE2}? Hv4*#͘RWwk3ϺbNK7\l`:ytQR`c>Ia ̖OwBWu8/ޮjCwB ZM M!3Ki2fHJ3mĊO< `+L#7iBxE Z)άhpgRN[c͇o[8Ŀa ~MLaK[e,\&gS#Lx9 uѬͷMD̬Y7B SDPSvh[ƝBC\P ϢBA "䄄"p_y7 ű OkJl *&bՍ5(<0f/13iIѧiyg[ITwS(&ds?n4()&k!b*\O\&]#AgXڼ ?/ۀQ>::\+"W2*D|F1 ]wC;'U'yuZu軺Rn'W:ɓ9Av uV/cyB4j jh9 iϣH]f>A. ~c bI"ʈ^Ego+WQ?xq£9yBVV7u®uu O51-PBMzHP0Fd3xK848yEGg9e&vt !Ia,-uQxO>և|<٣RN#)}B ^^Oэ3/#P)1yS3A ~0{I#u=ךyvB elF9e at E&``X5'l7J W^>x 2㲂AEs-3#!1lY|KqP3/Ĭ]go=I+>2om-F_62ϒ/co@WN7䓓W8uhzL\'S@Z4wr2N)X.z:9KH3 Xz/ zcדx-qC餭_UOEwJ[׶trYP1_C>S?΋4w9@MS!vuyq s P\(tk 9BRPE@0,^rGYH1^DAmHVE7ݏc [YSV!!O+!>˚1^=(&u8yBcp] $Kv7RL,y@2fH!%ԃZk2/ydSJ7!_d}bpslDфx֋l[SL@%/`H脽iL{MN7⻛*a((`"Ÿ"#[E|HQPmy(?Mla<+a1=F56 Si1ucT>T.긯Xji"ۿ钧NgݩUZD/뙽ק[Eht?<~''B<.j4aMsaGjhc|E)ºju.zQ-EI~=~n L~^4 {x8X3ϝgEBN;΅VjW.w\4 RxnoqTG(th;J-d(@$_8qr *Fxy߲ ZEp\X~Sts~235B do&I>MhѦ=YcX|M/Gݴv|gE `Rrv2v^&zoHs0w݉gwpS *BEVRƋgUSBHz'CMƑsCԕ΀#2G`ԩxssIK@iSTrzQr 0$EiK^i`4vf XyDnk$g / 2@)1d,I+]_G55.YDօ`pl,>'CDI0.mfiícE)`7ɶ3y(*wٓ ;&z_3=okxG٤)9Ul.~tZE( BIe%GGFy E .@# ajL /H.m[a,Ü3svL|pxJ~|BА o#-5vǾk0V# i ZC]kL %#{gD7@@[~h+`D{G|!3l7L RRotYh3ff!vۑ !v%5x"dsNp(_tΞ :F\.Md_;!tA̼.{ZKHU?VJJbn%cFSPWK(jh) 7Mt>D|5 ̋%< {2!W8hRQ`a1 k:"[8$Hѡ|7@1bE<~U?X'hjcuNGy]q\u{5]&tzROm 7)r yYB׳T.iFDxb뗯Vo^eG4FC;sQv'js|tѭn^)xRpɳ'ORƕ+4qkZ?y\(Փx Ԇ@*F{v]3x= O&k ߽hIS^cA昡h;뿌F&?Bƚ% ) fCs3vXьzٹ/s(6EDQ=D[C OHvaIpz'9]-r/,Ѝ9a%$(ksG_RRluy{S:#[ܫ>{ұ8Ҙ -pQRK9ɑxqJ_v. _Rz!A/"rSԘP E.J8QxyNb8$^9ATӾ 2>fq{)50~a5Dj%SN#$mZwssx惇gO::v^uIɱ\x(h1<./y~qꯞo^zS#Q"i]p7Uί'`;/?wp!y7|ډ_kB~Wg*A-OuEmv1@s`579 ~uQP-5J7Hp'bى(a,&n5l3Û"gq&z=Q!H9#P1v񾈕yȁFRmW:%:O1=Ba4SIKql L9g|4e$8Nq z8D7ƴ9M\.B4K1iN=y93ޫb}'TX349<3݋؃`GӍx)m2SB5'P@ ˝P:54OL7HS-6X*YɩɗXHkS./g6j1 8^7A ˳\giăpz0t2%ϟ̱Izmw2VF^Ko(QEG tSp6 JȄFHr% -_Ţ=)A%O~[oul{v) R}svz&έwirx3t^,Sa:ܼ[1#^e37 I:85 朣B)n%dĽ KQQ̓gv4Fd[BPo_n(j/yH=QŨg)apL # yOu&ao7G05UFg<98ozE8Lqg-=Q~w:'[`g`٩:c4.[h\7MpSp+C Jw P^V1)xSߐZS>]0Yvk}Xc?n~7Un;.繬Dd𽔋N|7OW/^ @NϞvo꿽1%_W2ѷh<~ G+F?v7D\{uw8/ݸsI|MG_ORxN6^#198dVpHN&@ڧ#"tHCDZO~3Jxlj8-xȤclGwnj韐qQ4GGmauB6vy%``/3<uhc5LwH Jn' 'M9ӏ-z <<񕌹DcfљA(dB1"2D1B͉x qXz!KQ oP2V=oo}l'# ,AGj= 1 $10 mS11Li䀜 )Lw a0YfVVB&)y%N ZvQ!.}~5mE< GW2.[zOXY_q- TnAAJ xf:zAEmeQ^h2n~ƌŨO/릆Bǫ9W5?8N?e$VՓuz8] WQ0?v;mjW3^q'nӫ׫dlkg>(ݻ}PD&>?Xǟ?n< 3tIV2+tΒ;)aw=}dvM{C`vgoó4t8?H^:(lE7ᩰO}(%d?9ЋywÝ J Rχp<ѕ'Y\Wh%Al-,XfAdCa4!oKdZ64"ò p7llT A[3Q 3vg|ͽ}lЉP tE/CLMB< )Li鸀Bz3~0La^Et!u)>m^stq )&*d.gUv0]0 R 8g1B6ku-YR"ׅjqBnIPuJMM -&DOkV0vSLpCfT߹ ^~(oid4R4xgW)<~%3GEeJJq@z)vܲ$U%uY:͹&ǣMEP=i qOy2hn:tc>Ń\bQ2r ޓccoҫ{F-ɘz0䒜16ѽxፐG5Bd Bc7-qτKmT{KŒ0˜#B30G[N%sѨ\/;e(9בI!6%NW1ϋ(iţSsJ|pqKt?Fa)gŭ"X[^ttm4M3JL ᇝh G`}NFO.{VN#p9!~bEIg CM6V%D`Ez5ʾXO)ѡ|a&N(g0́ ɷeQ7|e!#79M4%~Dbf,".m4}gq~zN c[I ei}Leys?9rg Z4=]sp^5S6Ga/49[| Hd,{f@9E>1nڷ-cDR'}t fjopagBRxJޥp[$QuJE ӄN. ɁbW l+70ClJP:dX.SZǯmap^RqjS^ɰx$/J`{ZUyբ|c) 4N&ٞ2E.!C7 k75%\w8B4r2#i -)62EP#HSJ!8w~xÉL׭:Q[MJ7anTػy8 %d\P3pOӞфۆb{_D=w#i'u|F+$˸U.t1Дt C"䶿;)Gvul\q7+WWw'y_T߭9Qq^(䪟{6;Z7!Р3k(f>_@Sc,X }3F)rpE#!gpeU^f\]i|}֋懨q )@-so=6K•/U:ZFb}E U]>C]ٳd-v㯃G}n0Ѻ[Ͳ~_F\1Yo3ErYm|:)Fhp=h ]w/Nv=p)͎4$ ͑f6S3vGS?_td_ J&<IPy^Hi SxnsT01km92 Z:|(5B nZL\\DĄ(>\@vK=;љuX Kyn6؉5Lz v•U.Q9 '+U7A ;R4DEVZ&ϿX)գoW?&ř|n!٣NiQsӔ&@?T©tC]Uq1Osٱ؍{&:bL?+#=C'c;: AR>ևѤh x_i_\a탫CơOOJp%fk ON$inkj3pbO r|uE_-{^7'S<)zF1ak_SCлd2&h9ހ=2Ϗ\5lMU|k-Xk f$\ ;+ꆣsqhzx]S娠=oN^k\Rkk^v7؛krÉV.&B~/ۼpy`@{3F}T[Z# Kuϸȵ߉4v[BBk՟g2k{x;'oϦ*sE{}xrzжCZx6oYǺ=.ﯤ![P9򅁦 c  $jj f^ %1vn &F5"S2nZUD V:ɂ X1uT <'SӜÒc8 ,ֿ9ZRX[ufMC>Eq5կOK f|.1xR5p1ܵHh=Mj#Ab~f%ńT QU~#6M\D"ݢ*;."@mBJd1Q+ X,8wnr{ qKFk$x/{-N7 [ZwHШhFs4ӜgI5>8J>nmg)gbvܚ~w߯_Wg)6zz=jk Wg.*31Mz@*JZwa{WxKÃ/TPbsjkCG&7[g՝:":%FUԊt tn˗+,-xR!N#Ug:б6)ҷ..4< $:S 5Ddtd.N~س?"r*xNlgr6bD*)h!.3_[ŭ'ڕFG"IM:w+{U~lyȠPj!/^a3"_ }hl2<]0F: |#OlOmTʥQ-Ր-6z@>adx0jevh1Zm1j7c0/rc "4쯊䓫0F;Z-x%s\h9%Y=ED^r@+04^duzp%U:Xd}_%7fE ټga1b]Òrx9X*[p CAߎ=Qdi٢XC! )x :Qά:Bt@uMV{wa ] 3xCTA* yHhv"XD`46`S^=O"J!Ms eZb(O{ l%$0::u m[訽\NeM,xxFg r7{V#}FKP6m]$8~&—'~-4ڬ6'LA:B]^}G50B{yZ݌~[~Qؗ2`tǛMED4d4y_3/5zރ0pv̊ m˔epBOx"WsO+cC)qWjiA$2uǽ{^甗bNyLnËvjkdN<.ձR*>F6<o!N^bܠ@1UEQNf-xzPi|>c~^<ݿO kzLD+p`mjuo x bMPMUP% Vsh` 50Kk !Akn߸>1\S Xxø2ԄZ4Ρ" ݻ4he?)2y*tRKa0{}b=[I9^D5熝V(;ykXΜh^dGhb ZZfJ3;ca,퐎z6>X~.gg_kJnU01ChWg,kKh@nvE5ĎBޓɥ^' }!Jj"MB񊜆pvL{8婵pVLG?v$fR(<4@ԩ}J4VA/ѝs]=˘2f>Y65aT-F#O 17X*'sܡ:^>:|1$1΀o= - aQݦ]C$2@fźG-zzb2e=Jgy~1|Qxr"Ն`Һ3g+X02&`fMx LZ|ps*!ECm7xރRtLVNrRHg5ԅ(j@f 2sVkْKjҩ 2~r>*en(^}+*iO &^0lX46>];)Г|;Mٱnpȼ֯nAgux{RA~y6xpy"W ݥM{O")6D): #{4ǂrv }xp~blBӮ>TBnv ;V# }K20ϹE{"Zo%`0FS dHe& j(scoG"$SNC(#OLۧ᷇Gp{ #`c>J)^/ft`s73MQ\qra~qj_zc"Fp$:VTc^/kszw#޼0|CJ{ #>}}~o bQsTi_^2T6Þ\j/~dp{\K7\ގoz?oKTâB?|h>%U${ ytUAzpѰs&g@ZkShp V$5ۻmΝ`^1IxرɽuTUN$.> Vڳ.ythS, xt?v8{~>wϫj&+P|aaZW7vшo= CI?d5`XsǨuCp:i5SDR~X4x2/O8'gGl9WԔĴ ^^!`u.O% { g=7CX l2};afFR̩mC@gd|Q}Ɲ|k蓞q\.g$4x3x=ܞgH|C`!O`慂I5K []j<ᴙ<螌'-7&&WtZι4Z8sh< 8a!l|1z% 6z9o;Ax~+P.G,^d`]EݞӦ3nS~A0l_8 6FV%МaޫqkXnxc@NOĨO[Sέ1ZUn}E@甊#%ʟC .dp#Lg1XO72( juH(,7țfj{=C %! x|)3&}@WLĨ Zq=_bx1)UAKr6[5\2Vyr=ADc֎6H(t!`7}fr'9&B(1zK9wWQa*\R.O!;iai &NZ>."W.QG޶[tǛ ,&zë)ۍU͐iC[hNDn<q0:qL5M@aG##06)jl,r|Q=OK|Inr>`Rޗ>DIA1MrPfJuLc}NVLҾu {:'yk0}= DsUpnRh\Սw.RBuԨ+l(\?s"iI7c{ K$9 Ց!jZ8K֣2,n}/ EPOxbNtI{Aa6F(΃Rnߗ(3F)ǖy ~{b5D)^} I~jVﲟ'$Jxj'zG[97C|&jj.z b:z#"V9"(a@ LIཅD=-R",q7фrgaVs^k) }U$cSٚ=f3/?9|cI)MzWe$UՎ y )m&$ⴚU>Q6X}1(̂d.:BsXr˾,[(JYMgw,o7 ^̱r>JUlի}pVB(#z?<:ZM:翬Pe}w])կ͇ۜQk"e|>o,"ȃq՞qh>8wIF~ )g?nCe7MϟJohwVxX􊦤&nZp5hN(1/yq7Du|U谵f2 afRt92L'S<>27Jb^"(gKm1(iE;gylU/nljN|O'L&}Y f0?kj-ͼ}(#Y藇ݖJ]L %8Z J)m o޹49S2 - i׸޳Y X>7a[IO[D8a4qGNC2/odڼى.ﱁz^GhX ~gyPeNy@?#ɴt6kr< ӀD-C]8<~ZmO4̝#Y›)1'i +O#rv`0V͇ @[Bg?!*4a-iN[s3&B.%i)Tќ CwgKuHuuubKt9"h<7X|YPXIbfb_ nah;nb,闆y8+[La Q}0$H>wV6O;G'k) C?2iρG/"?qs:ky5F[5!GaVG*~Б[[IG;7 C.ficfO zqX`vbD5 oL̋D-Su|`<퉤'0wUdE N`F9'$Aqf@v cU{_X$yX UGA3gYKsk1)E$#"\Bݜߗy W{P] w}bnXyKV8Ky\TeTzB}X/ qγ D9WSOV_wJ )ZpyԵ(ʵQA31qM>ըH'O>땫GmD2®(2"wzI 눸^y"}( .t8d} Z#' E &"ԛ0=j5w=(BCDZxŠn#3Z\5a'uOkIٸ-)uD뭆wХCG(H\ \;^t-[?asqnJK^VZy!7)|1wQju'2ժOѰ^Sc(F_ҳ6Пc[0gGf8uq8$z=y Fx'NR F-GF䕧Ͱ(LϒWˣ噌]k?}FtXQmi0{ 91Dy r5vr;l)+ڕh[/_Z /jf9iA!X$bv: -7![mӪ—H ;_xbVMFIEҰS= 蘭ck :P-*5 vX>d; yO:m/1"N [aJ(#0`Ք*{A=={QH&zO>А0+)Ӕ\].!Êe\7&*7a| 1 b>ҷVv@)HL$"cPPx"K 8vHX~!3 WIc,5Y#pf#6Bb"Xt yVN:Рݎq 8`/小 ]pr+ޣ 6=7 v^}_=JI1dy2VWpsыv[(Ǔ]^s{f\ lG7!*v姣~//_yOA ~_VĀcjD梨xFG߂OWO֏KWdpu8O+@~@<@BNmi^H6-{_`h;ONxW :HP t,csxz|"gBatz#BBƃtfқx9:'zo؈)ٷi Ո!9g29m[=O,[|P^j/xhz&ixL9c.T3E9ւ9S,\Db?cj/)ԣ&V{z|Қ@鄠5 fqLov 1g0B)q25Dy}Gs ˯th 㽃X0tEh,ClѓEsLFNGȮg(3P mqg !6{ꙑ;P5s- .9D d~n#3CeQpnkNK4=pa7 tjd}rnA~c1xY/Bd}a@.oֹ5N+oఴ`Pљgzt{Sҵc˜)lf2! }Lw|Jk1iB){/Kޱe[kMg56G- V! ºPK vZj]MC8ν =}Sڮc :@`0TY-qyPr~oT\)h~H*zqF )"`E=1OeqXх<4(ie#J#=aY+轖!D~w $!JrP(Ȋnrw9ݧt7<=g3;w5ӈ=(-ᆵ_ӕyYӷ_t{pwVo*|zbs*~p &LAp%];FxI%o;ӯ߽ß _~7Mw4OCJu}䟃|;+.sR)Opi[3: ^w, |לi.[T7kXb" Oڭg 6H cSXռM0/Puf{|H oj!EJ%9XccZH?s>/j Rp52~јODF>hEˢ6Ϩ >Cb0V6r\̨4$Y뭇7*-T;Ct2f;a 49_WQxbHy4;b;d-$Yoy&YSmyyֺ}-==gDk\!fk"AIAN*0>v>X,!k$ch Mj;S9'SXWOV%*F7L:n#Zʜ<&mf@?=I.t`C<Wili&O:)qhcHp ]O1/X8VP~@So&99kPz#ȋ Q6,V0h 0-Lr2h B1S 8A&`D}EW5t"8tȒs)k.H7VZD9<"ͻXKg9cǁF@ CpfψZv#.HlhYQ?%C;%G1Mm) 6r[?O$Wx>RkR]-Cp366|//FqgdR(d"/0dfč{ak0vHlS ؁~ (8O:XC5|̧&E(gH$mp/>(Oa!)Ljظ0G zT衦5B 8 soJ.[,eS^Oia="(v+q\"XYj%mz[ݯ~ij>ļޗu%){Vom)@lPJ G*T`8I;x]cL%Uշy.BEg|Z-\50^w?W'twU^WkNԡ}uZ`5UY}?TUB ߟއۜ,v`hq,HT#3Ŋs=;B5cDh: fU[=14/,aPLv#0ady)᱂ָkWOyV(ݭ8%`RsohK׆D')b$p;KnrgLqu(JT1N*=+̢_iRܫj>CES."DѶ91xK+h\(< =+lL+x':.!.T?6#6wc5<&?c6Ġg,i#a~ѯ|*Kq=k ^G5f6Ϻ/SaQt\b2ĭ=c,zi\ն![ |?\\ `|aY9o];ƨٖ g0M_~_c|# vuD.D X_~fZK8.kծ&4qyܯh6.A|c4&/GӉ{Cn-Jd'[YX`ģ!ͭ][ !dOMSPsAhI17LHǢT޺uZ6v;D#j]ݵv )hy4 @D,+D՗|X%z*F>-9n?- ]//W/#>Yd7?f9._t_"Vh1w*}#8˃ xZgma} at{qZpî,M[n7<=W~:VY8 UY6}})*ZEA6_&;k1k=4!&0| R^JD3' Hԣ|:@Nj=bAC8[Orw#6f|)u2D&Jt"Mqs-٭bcXi݊G7|{?0rH ّ[x%a#|Nl;L[0j]ZYIY 7%! &?@kgVgy1ݧ` Ȁ%t)7e{B/\F\cŭxVvK-@ hl? Ñgx[%}8Z 7q xϫ5ݐ;!-|NId&$|U]=oޔ;ZpQOYmt/V~y9}']I?/P}}n`xN(,~/V?տY[Ĝ䪜%uaJfڛGߋZZ'-%xX=c67߭|M=z ᐇ*a9-2Cbnx_>DgS.~ۢ1Kxr{jDUN*Nxm;^ψWCv`4MiU Nn3;{Cp;ZPZ>ƃoR< [8h,]zjv>x \kз5ZVe?HYiNڵ-zMZűpQH\)q OJ;L |Մ;kK5J'myxvW1?e0\Tbܠp+7VѨQxs|8sW HKBw-Nió L^Ǜ<) / /Q#>c[`>lw'ԽoX,?K@:0N#F77Y,Er"ձ~9`6>J Ĥ/&!+k0Ba4B5eR$B%8e CCc1ke@E5pCBn)9`?n B6ow'(ᄝ/Jj+il_q/Vq1G9ׅCM>]k 1l?We+rVuL:I{=Snw&øَI 㖒[1<])$ϾxQ(or8[VWF _ }S$Qj$p4w * dDJ})Yn}Hou}ͫBy$ 6IYbE]^Q1esv(Wh9l01y .ͫoI*v[vO6'̋3I [Y n!SNbM-ƌtj̄à V".=-25c]^a1S)>rWGR<?$$G3!WdD)Ro nM@ ߦfLϓ9r8f}nS,| v1<&*Ar+tfC}RN(c5?^XF $x@%lN#9ŎȆ[~}?r%59!o G70'ai`׈yZPTAvkur b\3 لֱq9=ԄLʹE6uB7\$g!ATX,\1ĺbYOr᪼P64|dEx#ٳb\=zfĬr[׆#&P79!gn!ʞ  lщ]cYĞ %e%fFV,iƭ +E0Ae$:(0,qyІ,d#ngwYk vlh 'nIPK@"7$zv7k/*58M=@MJQPGl~?k5!ul4 'e!Jp6揄ʒGB[``PXf0HQbY>d lwuō} 4Ag#"G$#(!+6.TlUA{ K%\ ɶof~ͫp/71죶e$]\ի\Bk~pqܭ޾zzYa(nnw擢qP7+nyp[1MTUST(N>O;DK {9zǵFj bpi#h jO3m'٬͡bRqvޮ75+ WZj.07aڅۡЂo}iۉ@)tgeM¢|}t@(S_xjnD}9B5yu2[Y5\47c2aq7) ?Z@gbp;Z 0'gOy𲖶ǰeLLnD x{>/(ٮOE,`4 MA0\H>Ve7ljuS;7 7`VΗ nxbP<ƒ=e|Wk}c x<,xry+^<RH>Dp}A`PƗ5Nn=Ȼ7Y!m<,\'1GJ]x7oH U#Dlx_Noxg4G \!GEC S+N;n~ ؁)I@j0Bdմxq fދLe6N3Ř$6BK!VO5!FMܶ@h70kY;=$Ũ!CiK qmނ[Ob J[RXE٩5 Tʴbg0Wf7ݜ\ LL̹fdDI賤N0ַɅ$g;ullv5n2j%*ĿkCn!_C3KZ{K-^Ȃ"&j0U eJLwCF&qR;\ܴ"О]Lц){uՏ;'۷% XǛ\t.7MϫWW𷿈wN΋@P$~|}M '6rq]ՙN ޿/ ,`LU;lK/ 5 O8 1ЇޜMC_nKPJt;~Q=9n`!plZ o^$4i VxRxz$xŔF={.0ᔬ ?O(؋-ns m::3e.\;xhD):n m >Ñ.m1OZFxń'G=SІQߚ.t4<н,g֖{’nrvs$ 첢 zF|9 2 b]sdz|b] C{ R<ZJ9!s&G} np#2oXm)ubK^dXueaBU |ey*$[ӍV%1 ۀ ^s;xӓX r=7 O fLnxmYQ!It0_~4CwIq{|,<4;HDhyXN64:ɋo.26aRaߞmˁAjP i܋hhs؍LԊSV=m.M(YuM3{kڄ%W&ԥ,FY,@ Qh6-h=b¦zm}-&=UGnU๡]G`\a -LM”897ZɌ1Nmz:.`80ˉH< …xg2]zt/TRJ{z8M.œ",Ib-'ʚPOLo}bHSk}nj$[1qc53#MNBƄŲMLoX1^E ~X(Hn͍3K8g˔PݮgC+*g+e 7ObB[ iDd׬e<n"6r~iԽӳ]YGOO<_X%nbװV^_EI"&x\ۗj8y@1BB:7яFY律L2J zV-1/8 &zHTq`Η#[wJk7oU0g8Ӯ݁ $ Fʴh %hdEՠP5/ec~v(F]A|3(F鄋}ox N3k<.}Vhq`wvwjճ4<) P^˲@36&|[l2h^3yAA!"Bh~u\1nf5@:) \9 V4\ګ&iscC {`Ss1oecLƛ! D g] hiDg;̥X@J7ƹ%nm*wڿ)bDc|}!2\ oNq4(N-!gYGĘm7#˕(\X3un+暺FZL G iμgvElƴ!X,G bTE5cpLx$ܝ{|ʤ.\xz?~;^/~˟%2ppaJu#cRH \MUj7p!3~3T08#T Qw=eIԮ+'^xdc'|Ȼus,77~JXe&?@jTx$7x5Ie[-x뮦<]\gPGw|OF!Q~7ųg +nrR,GQux@l{22rȄ׿KN [?57kȚ6;xorBM;fs1"ѯ~DqY1L j $lGywvc:l4}^v҅'gHn #.<.#Úv]ԇ(MdߚCm !A&vSLrWĜwdW@,3v! bm&gBn{EN}{8(GW_o\z GA{?4^Id@$кYZhIJ-.` &IB`n{o/bo TpcC1u(_8BnHI_k.Ƣ%PKqyKyHH >w%C XK3]q^ ᱌5Ws2oQzF,I| 6\LɊi+rq3S"k3\! DhMT3$NτF09 {12ܟcD ؃Q$8}T"q{6Oۛ^$7R2{-/9lOjy.z (JZo_laogifsC?O*>Z%s ;LіAyQҸ%ZEj)v燮6Ы}c" kTiE$,]K0WׂYM?~ PLmH0&װ2$TfJ\%38OX`FAc%R%^l^"4V<!"3҄t2jx@ǤAy WR陏 2JxRwгmmxjG*\S`01>ިx+Sνȶ>GF1䌯t Sԝ~3\ƓZ #^㆓‡dC%sȄlr IJi Z)y{3ZK[ns.F^y@4Onv?߸*3׹,\E&u/hp!&}8Vf0WgB;K|P߮͞@ݓ Q;qF$.h/!k+x."'z+stM}}Ʌ]c]X*{> kaRtTw&R. <k1̉J# ym1E,U'`GiA=0aCs;c}0mG9_e_ s`@IDATsB aT8֯jCf귟)uM4ܤtl$v/XPz#iQgx:0PDFoS*:u] kBNqQyW.DV?dYASv7OpMY|ڮX9p}, ΂ƨߖXw15:zK޴/Wo@aڿ:kѓ\|}k/߬o|7Sj~v2&(Seŋm<$W|J{h /b"1emdʜi(B, ϙ?n{B^$j>. ^10(& # mLd'HȪD} D Jr'@?/e Y[8 WBƣ>DŽ!踯i!3 }! NnUx@ kxd7EdsmN/d=&7WI{YӚe>b UԽ1B/NFBnP΋:d47c qn VJgv>.CZ[Ыn+H{Eڵ[? ^WͰv=)aQn,8{ëy4ʅÙ(h9٦{*XYxci@{d |wFP2E~g۠1w/{7 2q#d(GF=dzGF1M hc:'00Aq3A71ֻYRf [Yg,Ѣk ,&{UT߰H*R,CBbKSfpTj„(|PoIzyMiiݯs6eq̓POnM~!q $Ӣ!VsXMz1Z6xvO&/#JY;YȍoҴ,AH4½ E^jAGmJ5*6{"0ٕKl7G‡[ 5$/4(lsdE 퍙?js kE87ܼ$9!$CFCD1J 5:Gl$pЪen>>lu|:g? .<av^(!wbqo~9v [S4цĐ (#;In7֫\ m-܅p>"'F`&L}@-R\v aXB{zf) ~9 - âFXԃEQ8~l@8pC}# dJ€ yNfAXؗ%bfYC!d: y".Ez5L! ᔗj!iÂpuqph$|V681K#,:UxQFncF!{,!Ν=At!͸/'r!cS'6ډ}yQ[0+#B. - <^vP7o{PED} ꛿Pxi4W)f ~L]0Hwfg%FQ^OϱW G x|Qg!+zcy GYwѐ4ۿ6yoޜ& 6#(Im򯭍r.ErwS؇O09( cձ1"5 Ѝ .,q F JĦ=y?xZSi[_WHmбg9g"l?fQ,^X!oc6emag+Ƭ%}/khû)?b Cc89N=Dw#aq `ɴ$`ZCJRns{Iv 8Bݙ'e$ :o!1h&$_Pk B91n3KN4Ӷ>v5Zf탙p1p < 7.'=5j\FVDPN0,; !-=gH?to# b-^.\BwSq0[ op^U~j_YlXme)Ȟק,pjg'Ãx1? :'ך`^b]O@_…)N{pRBw>{V" ߦDN!/fY)_|{VK[7BI$ߩAsOPXqM"%yc}mkҤ:. 0h4^h0CYMPA~L[qVg0%Gۅ̲2/ yy#4Z3ɾ^7t-š{&\ImwG8` /|579y<- ࿖F~ Y4hL&f'\Z@wILE B*ʕ ^†swpSʷDz({i2ͤěmI"7J!B cTjOn06&uāvPGфHiSHۍ9U}Y0h4aE[VKni"=4L =qr%Rソl,N܀rM)/MmvhhC7KcAuw%VzKFi Z#GDCNLgBѽ ] U3:76Y߱*jk߉MX+CA^4Ӱ\&'beZ熙WGx<1.CvvuCKktOFysg&t/s/(nŘZV]sp;LYv~(G~SX? th ͳ-j $NX^4ם)@|W 8.#8B[jigW(`=W;`?Xn=jh^V86V?  _x 8(ggecR>^"DB]" 'W.^;|2% 欔-"!{ G3+Q'=ހWrcB'5W^vw=o\4 gݟ)}<$Hɿc 碬7fw7yF6 nb!hiY ZEeȬ9fߴzh\t"[(8m.ܬ"\Š"ruV{Y~ D P :0\b&j ~˾j4RD$58|z麄%ȼ/hwP XB`=  w{Krt 'dM즱Nl=΃0BgDk= eb LB$d\!Ӛ6RIYY 68^x1(*eTqPs1#DDw['<4yXU3haܸtLceU<,*ڰeRFAY넪8T3+!񗑜%/CoS섭g @fbE $xfL2Oʑ\;'VG熳 mD1'OW7#?n]I")A ~E_`PJnkc 9]:qzI0sOoet?R:=ZR&>k+AUY2B_9@ _1%C~Q}V ~+jjYO#ѤJP,tҙ }d\{+8Q=߂hhuڣ:4L/$`e*HぢdHcj2< QNonr:O³8 mGh7ݠJ(AR3ZٮCܛĨi:R9;Za,l6'a_tG1WD"@;G9½VgFMuj",GXn#~<k$r (, I1p(Őטߵ摵vLF-z٘֠gR3g7/503gixzkSR|wA"BpIv?ƘɒUP./ <ƚ=op]B[st0|PnQ1 *o%:1,?xxĜHX;딁O/B6h밟`Q=n1Tfyn؜lyb)JliΨsLJ4|g9-u;q#j>&@Cr3=LF }m 4/1F#ԷkO2C j`M!L vy 0\r#xY҄0mթsC#,҈X0q)6%uq۷zϢ"d^7ol<)2Ĺ1x,GȻ&fzǝ$aKLe ~lP5fJ`a!gZ'11N liz?^0p>M巓v֎^.m:6f57Ea+W=Eu$ (1(KY"iN<=F_k-u_L]?]PAnsk՟pk}jQLAߎ5O(}R]2#fߖW!bO=eI&XsbK6t`(!5[ǃ?Fy}3M~.7x<]~ntK|.}}(/>V[!Qs VG 81$J2P;8ayTi.>"ޫ&WK<;ÇJ{>~7x%AGuk8Xfc~f!jc7f}W/'ko2 % "$cٶ7ı,{V!9#U\A$h!؞ iK Λβ|II@A!RK1fc6y5V T0MQ]+)/&ڑn/tN3b씔QG ixӄyxu4E9}AbaAb hW u^M_ޞ` B}?88߽ c"+TM*fл*:.!b7)V< vNLf蕷\ yO'ItM8?Qw5Jpnk,̄F%͂kE!X0wsL ݔ}^=;XGO {m+&vi1Y mj]. q ;ވUJ 0J8R$6uOO3x*~:{ᎉNNk5w߷dgrφ~Y+ًf޼o En.xV9.'+Tg'wz O~jG*tF1O-PG剁4dsx_;k=Շa<+, 7O84`W c E]轭A*˄ZѡZ@.bd]M,n=oĈbSUz^ bx[s,:e Xq[t8'7Ir]7w4ص=aԤ 4}EXPH(wŠؘ?"1V& 1VPh 2C\ l,/Ĵxݔ&ED8>F;67]>7AE qHMc`[Äz.M[!ctY6 #WuZd*ii)a1 6V=VMx$ La†mk16A~żUB3\s여s^wYBgr٘d7x1v s^fY?&3'EHr`I5P"90ƪ&46[9N|w0 ~.wYk\z*Gp|60B?xbb0(\1/>d`HJ{''@]wꤊ1۞r`ќxl:ADsSt3ś3k9ٳλeǔ0n3UpLO|LLn'9b6vg=NOR Gq`Y cƮ.kH8rBF6JwU.j^uK==w53#X\C_E6<<1i`(I . k["ğ9Cp¼;Ro]J. Vᔸlm.q_B8QsA_ލqO%Kgm*zf'_¤v~wF>X_+X/Oe57k7ޏ2xG8 ծ ]Rv7ZOYƴE>̓펩h>?s=_w\_-TH]`7x~*c5Mt $#wo&qzw,Tq4~:Tύ違_vǻy$/B r.v{v8"m;<=Õpg02:M 2ƦtcG4lPQ&Y#X^[y.٩bYgwa|uZ˼Q=O_ⲋo or4fе,]  _9~])dky(SV Oa*W xJsBY MhKh*6l۽̓$>q|\Z_Dr$ڨhGiw-*%ϛ^J%6B><4g۸ÛAׄ6 ƙ y90S#wwk7b euhR0VFЂp㲭zaSV ]`g~3H6(Km<r+ 7Cg3{e, l=d7Rl뽻F 6&=9yR'5QDyU+X`oLH15GF(ck:I)&WMhÿ`saLqc\( t&2b,iw<-?5>.Zb͚y'\2%blkYTfaju2%e OW7LW$dKp" &u4 cdƪF>7s[ٱomLDM1.ax֊ SvX\iC $hz&OF박_3aMy,\ʳ 3NLGR4(NMh axw$Mx9VxU9ߥML'یڎz֣55qy4ItpymO4Ȓ4N;^ek3`_XrJzvې90\; ["S_O]WSj}LۍC /՗w1@ !GQ2dj-SZ08=h톄?G ǯw?ٹ.pֻ/?}zWF (ApR}[dJ&J!/;/ZLUNsn9f$0p%Gv\3;k[Uޞ紧yJ)8`',XY$8. 6aL #U%BjݸEhs lT3WV72Βn~8~5m5FŬ୵1!Jcm;0Ia"keji/sN mܸꀝa~x͛Q@ۗ@ |9YQ҆q]yK =q4..wތI ={U1gqka"6BDEE[6Z`mSte7%!ӺRbL>C˻NNwza{y'7`s2.̀eKh׹(MAx[z?]'zonw,^2NX*ajkܜAeP,6D5-ʹA:hc_ >FB&hTn/Ba| x9rc#=?'ྞFG-umEH[rQޔѰR$ y ZCO_Y7͵e.&ĹlIج~snHQ[ځ' ɕ^pϋ|R%42wyg.KhWm+lV_|霪3#vK`߾jnR8|bn _˖D1۬dl)QHY^뫈zm@x?+7݂HQ)"K.#\dx: YէW;i8~^ [ |UFVFFm,,>ћ !Hi|W9aOspqh `k4qƃ[sJpD@M;D+3g5F`/t-TSvtK, |/!#ۖf<%mf~OJb>3',# ֺgm~ncQ SbfC-qW5͎R-KBhc:cѣ~z)-y5VIywy=hlT6P 9Y0{a9H$݀tjU~+戇b+A!4T7V* 'BoMewR6o& 7 Wfnqd3'*{JYq$L!F NM`x]!ي>.V uR ߾TCQ<,~kڎ\=߾^H<Q<Л^43?7IYr(6`!Y8bmef.aj1]lw'o:' jbopWx T%s1 8/S8zX|1=5v^&n^# "4+Aho>%kMPx,%lP!AXㄒQ[;"~`_ O]^635nlfupuGw} ),}ha:' OuPOQp~nsbdtQeObb`kQ{.emw+VnQur.XDf [.PR(j:5Uu 艕OXėdzTD_fKu od8&^# ~ȩ}ھʳQC\cy+joR0 g"#5 hAU3@d$EGܿ4Qf/ozfJx$H1%A{$y E_ٸɣXFgh/`w퀵{:MD7猑ANDJ_8x2'dӭQl>a=",XZmBs4ȃWSsnAѬź \{ef!Ц,bu~z mu#FV?a\4(b2>GpJjSs*rjCIFo}B6S`aZ  QFiP%fSߏN^}rV-ZwOHBjgrF7BN ʊ>VӒr Bib27&:n %C7olBEDE W'%IĨit ֶ+3 ^EԘsaO"a<Dlu?[x}8!FxU/7uŗO0>Is h\;gp/w,[@vA|$1v%Pꓪ} j/}u+ۑ9o\UʏܳFa)A*x 2rph~*t ]%v !ŃPQVdy0~"cͧ~Ď Xo|5X%79a峧R^N 7{6 U=p܇%kc}o(]ܣ?T!'mA4ևZmY=CG1 ;V3>JV8 fzD`C93Yv:ͫ ]SCcx\N&CO(ZCGEAp O̞hb)Z#],̈́Á6Ȣ8T1AO52f\46]UmuaX=ѧ"%jC>2rW B۹Y &L"$x?Q+M˔Jh!j~Jnt#~]>Hah  5UܴYhSb"bg%Lc iP}sJyhȭ/o\nz%Ȱx0յ%gA]FiQBTYnL I9Yc ey5IЬ̫^E4usI8#U(h5EfvޘmENnp ?P?%wuzU*~딲|]`8u`0ϣ=M"u91KթvX{g)8[ zVZ{)o_hvϧ|ʰ 5\&vpGRa"a E?; s^;G PXhƩJ~)C`so}: qEG ͅۊGi&?8F6_ܝ|+@/OįZ+x UrԶ9 ${u A! < /$bTYϖq#7rIƱk xBX:pGACycl%7C ?:bzdH](+߉Wbv<;n}wG]x$W`{v*erOræc .Z P̧{úKסhʉx+.p6N33~uhu}~m%b`>ԏPlo"uA2`.iLe1WIFN.VpmVN8%$JąUY](a:{j;1cf6/7Edzɮ!w:BA7u#`г6`3FhKkAHe W'MPIթ ݈o.?&XG(tVfA>7^[,x1nӂSco cli[+^P!}%y}#2 gǺ59p?][_{,ҶGMcē-5[jc܃аaN(DlETl4v'&x`Ϫ4z 1%ֈ7/BދJ`C{Gm!U fR춫U.m?m+4/}eS*(+J7&~ֶS[s88||faR1gO~:>)u{?/GD݄M4v%)[U(#2`g+FEN8 3"w>6s\IYMpUV_~SG`>MZ+4tO(4ZT]-j,h>>='`_;(s+{?i~뺰x \ 43^nhgï9N{aE!X:c&[ GspMΘjl<=?F{ok3#í7/(duv0 ɝ❙-!9cVfH[kMǗFӫbU0XUh\T൛&omj l(nG⋬VP#X1hHZ,7< Z{"I+lXZ[1\"= Pr">,댲¹; r[L77Yʋ[cX4#ЃcY$NƝsGp7 d݈O?kYfY(H)>Rqr;(!ܞ!ew4e^|D 0s^59(Y@XW3mLc}p_V0*SKt쁗QNa9^;V ׋Qh =+γ۟kw֋W/>)þmmhxR^T7 E,r}Y ;6"w/XsG!8e㧓߬~ڽ@u vTe#nKyռ?}8/V΋" v‰w;_%u ~ߜTpKy`㴭hW;l+ll-70E}޾B.'GOƫ$ $60.mqQ@v{V]E†6B6k  d\b:ƗKɣ^K-kC;֑EoxoSMG` =bGmĠaMΔ"2 70“&5 M1rJt {6@EQ!;vrQun8IpФ?0/P[39D Ԧ{ N rM,(qq&ͫ_ M $v9z1rC־nI]d0=pԐ@==okط =dzj_֫`u'6.j IEI yħ5)q@8"u 0u)g,C?BpxxBӚo7O9ϓmLx3`{~ 㷧SiQ Y  M1c]۸*ԅhBIfd{1(ȗ좈×MŤ##Dݾ0L-a=F&SX?, :Ɖb(O2k bS`)֙JKq9σ'3 M[d)S6;m+xKqF^ލaϯs/W|Cܧ-o᱓WRМ?)WQq=̶{Ԥ#Q!&߻0zM4UR10 Xz5"7wȊ&lh&^}2'~ 8ey]^{4L02E<<|n6>B(f׃',Ý9cf ] 5\SagypssaxƧ74r-r[sU+,)4 ؆Sѫz` Mh)a.d_̀z7Ÿ,aL Zc{V BAyLnIJص=ʼADΛrOż!P>3!b#e:ӋhUĔPtpj Äv(C8 <45V\?% Jǯl/XzZ /5$E8B~ss\eNxm1L!j=7EͲ/L.@w7ł`'^GU%#_Y7c,[+p}`yqZ]skmG`ҜhE9]aj2v # z 'PSLD \ F=qjPbFba!sV_>Tyy(zєMZ<Рˉ Q32B8_Zw,itwFQX)v=6.MXO\ǿ]OQ.lU>L^ufYCEP=6AuʹQ@ÂE8PIs|1oi^%fJ`gV$Op֫T3y\v i/'![+N%F/@3ֿBg1{s@'Ps 5^} DP@q0ʓ`yius ;){R`}1⸖7B1rzS[]ݷ=I6+Oqdt!7iOjĻ; ukp)u'Q"m9`@@eq佼W_F/6[~]/ճVoc7Ճ{VQR _UE!>j 9l;u\[֩U5~it~ы4#X*"w blVm12[X4n7QF7J5A{M7<%"!,T'=Ǥ+g5>bzh`A<暙s,xxݏ7FN~'-x ]`"F'[r)4$E'z!&|ꮛvaL!f2al4R4=O7~ri_* bgSg#?sP6( oteuo$[һl &jNcFu^t- ~zB_ņhs.I4:h ZDevspgSFti~E\\g:-IH1|Z؝'qvD^M?6 9á6jn]6횛WUrZ亨 N^O?Nk_ 81g@0aa7,:|Te"p \䁅B^$`lx[UEz#zӄbْS _6zs:H67BbYSg"SOyk<=@ϾP aGۃ+Z3|;%-V컐5!Fzo'Ąn_}4Ey|TK_E=p7{>݊ x~W'+;Z5qP{WB ZWO?n.2&uQ4ރ*<Cg?Y >s7FG48ŏrcziTq*)E漦:cSx<װaLhMHo􌥫-?8MJQ#38G~G;J4z Bn^ꅱacd~KڤkW#>n"]/F6q{Oa'axׅ9Xxlۍ P3~9)k#d'%`bK132moeuEn]q\ ioB,(B71u[Fu&$ }okî 4 P } l۩C k- CS*B5g[jtR}B*WX.;oп z0OAަt>((liF1>)MG`p+w d5~<{=/&\*kEȌ„[|A}!P1 RY a0AFk4CŸ D&B!7CLbM)[HWC8(|YtEE ]N˹˜my#®'*#GHL;*Xѥ.|~}Uaz%\>MÜևic_<f u{gQq~ ꅳW؞]UP;NCP1?( pRA5YSlu0QvN!s$i) _/\}~ݶৡνm;AQeT| ;_}~aH/W?~h_"rp#Bh: i+r-m=j6%;FSE_gx8X'p%Ï뾓ñ]iHuC*m(r/ I |vNvI5O(BmԐBe¹L0~6`xgܡ)1,h(ɿ&l;vM;oBq=ޠ{c5k苨&kZe=>17a_M^#~ ˰!X>" mϚpi6k)ֹk8'eH0^Q-eG6'4 g<#+N.;4G~in=ыP70Ā"@H3MF(.6`p2R(%>* ^VfguVA>}y?len^z2FŏmC~gܯqg~l {ExsᆱH/;|<|19؈o+AFeD/AIQ O{wqw)p$X;^N8'>͘v) %ghl#yw7>{,yj M4De|]S7-#yR32ތV ".jL[4#~p0co @{vɆh=8+.M$ J  Bϋ/^fO C7-7)6tק E Z8sw; Eo8#MLݘvFؤZ;%Ivyk[nQq]p3U?1al Baq]sƛ(M$5W˺^Lnʨ uLy_%+SĆS L..󽃇됙^6zXHEJUAyJVeHu}lztl~cZ,VXsE]c-&]3DGje>%͆|E@B+u[|#ӥEْSօixB֬z@7/;/K4u!PDh=f]%؄:~C-um;`J넽EN-DB*qny<}s:<A"N(&54RQMIjPe.C *6\U{<4lxhńē'a\Q%vNLJWq^n{Ƌ]dn^dW~w~RoWwt\nNj@?i/>+t67SUⷾR坚xu / +wqrϣ%!|ҵc!ڹlsNQWHMuY)P N#h-4Ў"])E64’fdJG~  MiSYTC_|06ڑC"DZz?hE(:ac׈vY< ]z;QfrqH4>ݓ0E=!ggPng_t+1R,#4~HqdLJ gh<0"U ;}6&Oj$MO{& "'1Lj%ru83/{[rY,M24\hh"BqG#(tX6iq nΜ`8c #Gj|p5LgE>FnM`imup:N;!9 .t&Ucܣ- ]ySj@a/ ߿z~Gӊ] 6;FDOWW_>'=<y4Cͯ[{^yƆ6? qL^y?~q"X'E5ȁz6ŏ*ty9/}pV\%B# wa?޽`baʇ>+f螯 Wױ֛WGAHzQĢt]xr:x3vؑCPtL[5{!7y ` *JIhah6)iZF *#LF~'j4s JhK2 zQPFaaiOJi|`f d_ͼkDWo9G!2]~Q&6cbaaiɊ҉n-E~*{Dst %F[M``T|lܬh@ꥑht%]cݯ*}^v_2:IT`h _pg4p33~ϠH/Nr;}Q+j':@a(Skl&2]vl-ͰLO֒٢| 2)c@8&;SO+V020R39'_&'3GaHi.; ⁨6=YGn=~Z\:V|+帑 :vs~rCWeX/ ׈!eTxJP'/|sLi4`JD7~ kKg^)/9즃ZK/Ә ;Y xY ^b(FHv;x!:ȄJH/?V>}8ȉ|scbTiaKD׳Z2"(MZ0va9\ Ϫ& Qya l8q&> M̺i!gAH׳]7DM~0u-};1dD}7.&o^T~':G(L;]Bl6Ѧ*fج'D0>/筐P+ 3g |Nrwlk?{Swx}6w %$жmN o?'CFG5?<߿q~Si ۿ.|v|+Ӽ"V/ۂA /9]EUpwC+จ;6W*wOK!h3 =$7jc/_<Myw.J3=/c4p /Ohdƃ<#xNr腀 m#qQ:1#wm2"0E{x~@߫~/?SVt'a4$ydTYC;coh.eqolJ&L`yáN"u;hFur^lCx|v$'Q(ͧ%ߤa2>)E۷9aN2'l?7Մ˺8&8d`F{ռ k펠tU JN$ Toj Fɧ؜ (G4bh4:S63\/jImshꉳ=]CaƠ"^ rnBD:15>~FB6VsP{ D M2S:{ И}V=ꪮ? ʌ5]Iɱ$AD}. iBP WL߰PR͸)鍈bK(\"aIh&*UT#B5pptfC(ЃA2$҈l.X`P4`QŽ.*،@8pf|~B0Ǟ^LT F@y}%2`R`%.Y*PutPG}q-h ":U;;[q?%An 1nkKPYpf[kYYip,21T\Q5(80 -[;hjڙ7),ƃµY^";!,| ZM~WudvTGcd:nR)Zn{zQ1'M/}Pƻ'x=|㷨 -?OV,O[4A6Sٻճ7;$|/WfWO~xr_cQs^m%L2,D7 oVV0E[W'ۺeP`?RqW_}zmpkA|tZ}~P!Nf,8:xz\4e6;84ήB툄a:(H(5ی>*4lhUψ"[)psB*2 -# <[#)Уp2GÄ95>^ﯣqQ߂Oa呙q!'9-&/ xg'NwxHvݑȇ 7Gc$/3PI Nz$CRGB7Q7E&Oq\3R XP3PsH瑵/]S,Bk] DK= 6#8k=5Fʨ!fdj3E܌5$9ٿA_H)QHZq8+SB/scj'8*5 ]Mǂ(?]s,W݀49Ȁw#gA6/G3$EׂKut@#C!v7Nd3=3roƸWNˑ!Xa ` mѳEgj.pTgUQ]~KuKmȾHť E>qPc_M 8.,׉j ănI%4!И z\/7Ntv#XD^|4!?a@mLN4U32E6E0fc[3'f_`70?W9&ҚV J!뤱9ZI8Ab֗-咍hk;_7Wq#^*wSA(dȃDU}&MaqƧ0̏gq{7 fI'ԾnAQ zr?=etfq-wRlJ ghmϘ>9>B9?u|ݑ^Y+j7CV@1c59 y:5@DVkYqBws5#6 Fc,sC.v>,!<QD@S2 4V hr/WԵO4wml{jarKz A2Z f1P%)?a~ )(b1y[YZ4AfG8yVrL) V 9#XBmmCEBmƑS wv^ %Yޅl$k /5Ǣpv24ڳW0a'OPSR04AIZ=9]G(oj|;\Xhͪ}V?Sh7-Z~w/:mٞ띊VFyRI'N]с e7V|g8J'R' R|~Pm IšO|rx >9P!O"`Óos8yu]Wuf(2 SoɰD#Ud⫉B1NOF.ȣx,9ir#-r䌃ٓh~]?)vR8&Ze)i_퐘PI+k—pz%U'O_(^% Ļh\Nr^í䍌Y>0}xJ_8<^`p"F?nO.t#O۪hUQ{j|Iy?sbUVok1z0[Ӛ<]OC덖<{!99nu 58^EU9 6Uas~M);3,x}_;(Ο5 dn =m %2 2~#>ʰc~xb &xJ8mu8$iPmA{'&( xk$D-rN5Va+d$l㡻hXTa9hf Ʉv'GsLy@Q)pW5? x&n er&Fa|[? XK>GONNx?o}e1ԫ$ ׳(BuXֱs\ᠬZʷ{n'>QYc$/Sd")it3㒌XRIzθ O.l߬ӼfOU&ȳ4@Pv-5Ȥp@cfcNf| ;v#x9[ԆMB23ٝ1:d-/9*5Fo=;8kyAg1w/xR|4>(X.0E 569kIe=)H=>B#<ӔE7 JR U{ [MӜ!ْA2bMoRMFɢ0e^%0&Znv*_F9lG@JN˄ypXۧOUN5~mV!voNܻz;v:^}ŀO^%sm(y{~wV#.(.$ݿN13:BBpNQ 2g>P@zP z_lV\e5f9bû'MRhFߑJ;Mwn[mx_׽jmpt|U4#/kfwOXp(rx{wp,3֫@k50ЈxZep-"1FBxNGcɔeg\Djw(h E,µ ,)%B<3OŠ<T]sm`Xs*H0'8)p*dzc#|T3cYR+qf7bk?VywF>pJ69&*Hhr=}ƓD_$Mͷ5XNf )9hAwQ)ɘ),`@G#Bb 0ԕ2"ʢ}/RF1Gwu7!ed&bx5y4(~`ƋHn8 8QP1$1"uF/"&^ƘwlDֳ0[/ދ;P@кcA腿S z~4%ܯTh Dlbo:BLUt)^Ț(D@ah:`m:K.hn)`4QU  %L:mό3481'vI\*@AN>;fpjm+Xf8dkcF?a=ŗ> 9'=&nR2$uNZS:S:#Q,vV2}7!ѮA~ a-%g%bC>jdCrFЎmD4yR1 9@Yxy|!ȋ8+8 L|-{IyFIg^DNƎhQ֞ ]}`>2ۃբ(33O_zn\|n+ŵ]s⠀2|Wblaq2$4F2M%)>p69sz?}\4wF9܂7GF9vMQDs BC a ܍eB@yrӳ# c յ9R^02AM`PAjttCV&V+Fyψ2ro"W rE CZ ^˧s7 7|Imr-3 5g=D2Z?&ެ$t7X N7n䭂z3G];UZ.X ˇPA7^ِ:wQ7_̟R;w3&`˫{%`^yyg4P3n[͹Ð{`7/u1@XLQXf6$"!S ݋8tD$ V%3 T'k!}Rn]/˅ nǫ:"wԺ&ϣ<g:y߉ݓәǏW<42zv/e{V)N#w%xN |.{5Wduyj2|k(ë~ v$ȏ} ~թ= cėI"jEќkvI/2Hj{FEN+Nn_N3ؚ;|3z&w)N5&KV*lv@#x5O=fvqv;?3IAIQ E(vh0 y zwxMs)tȔrK9EEq{ʧ@TViQIBޮ7:s;D^Y0hO\Q-/ܚ}x) ̬R$K >O p&дv;k5#&׳8AlO4xXF_{B=!f'g#%=n=9ͩψL^S\Yس!#D$UsY D8esS;Nʺgi~ޣiuD* :]0lXSǤy7ցF'`6"jL̀ _脡ۮ3zx EqɒRsRE.Ö[/}vuds!8;~j~8G9Y[hm,Vx;}wGL, TRl͊R%>o*l]b^I?+ XDXų2Z4 (`s7zn1YS> ,'xh=R)+@/i&)1bֈ(&Yn=p1M̳D'<ѪU7ވabK-1BGhn(j`Hg݃u?,ZF0"; }{ERP1WZ3-qa)3^xQ.~Flci*/Fty CvKSVD+'1eeвqSJPn%ZڃtVkP/|?)w0ŝhN]^graŇ DD>(RL)8:G>_/Fxՙ GoDOVO`WqTݪGzGx$tnf8_oTG+}Hw) ]hfioOk߽>9>fN5ht:E>G7ȱhz07(a2|!M:ڔh8q) .AuP"1ɪhyD s=uG0KEQ5`pk l;YIF3QF@#-RSG0ohj&oϳ']pb2.vC=(yuD?Lȸި/M^$kk9;*rrSp>%D/65Fi Lx)/ mBnQAgH&r-0zp歅21mǀb>Y:j<9lb,4,$P1hLb B0HA(UpBy WCVG i;B\Vq'\ 0m /t=+{x EE/ ݷQ ay,z3#ɺm~;,;*0fRHUl0*#X{0@̸6fos4ág. !6]EK k)O]bJgy4^ ' €". ^8` .NEľ^†-ܸN)q dX7/>*c=͹Ϝ7+-&6+닔8fh{X g"e1ҳ1foW0!`Q#ћ+߀Ӥy_%Ai,x)QB)ͼl'saݩ7vlh?tPjFyvIՒb,5ھ*bKgAzܢńaD<`ZG=~ɓ'QbNT{??Pu0o;fGE-7?}2~-_.;>pbɣN(4*MSXDɈ#2aM!x̠b>2.OWBb'c/G@cAPn:}t_t_(p&pdN!aћ7~ C11ClL~ާP,=x,ʎ!f],̛TeJ}gj>g(ab)ʊᠸ{j8ip%qլz$wrSmZ[O =Z YF tc1/|8/J4ktqsysHpr,A0-Fg.6]O~50&B+&2j^htwc>0#ԓfXGtL,<ԥS|Bw B vpiֱza{^D $Zi2ܢ[f_c]"MsjG1C_hgE{oNtB rd^\ς#/V0H s,hmk z4cB gD=G8%-B˷;*tKJ؊ᄳֿ~#TQn#kgZ[= pIgQp)x~zwbhW݊nz.Aa7mi^W@'Nּ^>ɤJ8fjvnOSEc"VzCk,Ƅo_?L4d/uSJxBR2p_uK3tB[ky㐪Q-Ra((l~_ߣn5XZ9705: ʷG%3ʺs;9^Ւ9#Ȯ󾡒6%Ť,M,Z lDg,2,2>' f@`M hI}HS ng'e>Z$k̻kä 3XM}rIfYWd6L(8(욮l`% u'u|ERm>mmE~Cu#Lu[/ӣgYof|J~ )`8ݫn4:7h "d4ge1i/*sl3;/2դrsҵێGo)::0"nz[ڪ@ciMBXrk*?jjĺL)ߕgf= Wx8ۧf}?I1ߩQ}TKUcݯ&u{fRI)ӭ@_>Zc.'/W'/߬_j gѝS/_Md:䳪_`_~os|Z^>}Qw/;m^:7Qk?0uy}ۦ ~ :A{8g7'|7vtpQEәB\^wm{c6q*}39ս*h<_|9'-O;/~./P8BM4=uHS3T=?v7Lq%S7JZSMG;tcD!ʗOո@?;Y|xn~HS~rRQ0?%CK.ˋ%6*P0?\Q*QTDeҺ/gBY";0Ms㭚lkhsý] <ʙ&=ݧC((/ C/NԔg/<52RT[&h}Y W !{K'uҪc-{G2u +%.=L y g甉7[hjIQ&IM76HLY8 SI /r4E:z&pM!J9i9o\!:m *@T7ʜņ1ڔP<|!!ҀQf,+FFL}hG}mU*^sQ 2oLt ~hW) <M,簠h p`gBhJ8޿pp^m[=ho:mٟ~TAyfiJnB?rQ;@v"W C"6?߯6OoF1j/nWk1Y4@>0M~՛Nm=/j_WC@qr >eQ' n2.aX/ɀft`7G]l} ҖHI!./IL`4Fy]_?gCφN3\+=x butR7mG~Ɖst>]츹ۼe ]hބȮgo맜(N[Iw2lQ`HsOMD6oQ7|$/(QE37Xfv$d(IxSDF8/䐔9A-p4F}Zۢ7&yq\;BnMd=n3nm[t9XF[&TƣҋAQ@kD#Y:N+y*[=ua)V!4{0Ϗe-׊.31Qk ,~YȇlL8$' m#UC}$0Os&h S8@7VVQLA "Qy׶4E-W ᨮ03P0fU+{"8+^tW=Pfz 3uS?uU'5ҨȼC(2n_em"'!֚[Ћ"R0[JoS*~By;A^=7ý<^lՌmvc|С4y/E.2\4V3j""w[|t8 P0z ^E3ᩧ&LNJ (gwy;w,:P.mtfDdlqݖU}O>/Zv?V:E"p?pmT7/ėvQ_>]7Ce{Ч}KQcd·HWw?{hxY$^퀸a0%/<̘z̅r ?`KAu'heWeɳIžǠ%piōѱk d8o~E[~FCȇ.h[UTqVϝ(j7|h s]42hnL:-a!~ _nFyӕGKdC,RV;?ZDdŢ{!Gi)Y%H7َ}^$0E4(Ӕud,ŗrYH\r!kkbٶap7۷B##N;_eWDE׫]1^vN:A^[;p2]^tF|Ô-OvEч)t}~1ЮD k [w:ת;"TJ8bmI?\tHSjrɠOu3qjk`5QcΏ>)E?9aeo~' |6AÑ\$EsvM]KOL3pmiM 0DZr[R̩{~ZѳÜƼ)L30t )$|E>u HG(c44PÚ׉~{)9β, `+7ete꽜4d ~kh.u t\;Kl/↱b:2$ӹK M)ps6EBهyճ6'!*zz=Z{w^B`)0(2=)>j4  9&%B5@mIs3 n ҚYžDR%R')˷Ұ2arV%wmp/+ۿ2;.p)PP~MhATtVw;ySNaqdi8Q4v( J-6se*u;ݽZO|Z8WMv_GK54A2= zE:DVxIRQ%ID><?~Q껇5Q^Q:F ۍ! t>:Z,kA*p:?oWO;܈Q~oGED @Wp罓@K1GG` =qO %bo}vi+^jcƅGM*^s]ޥ5 cLu=M%˻B]U]DF%+|2=4 9bٍ8R*82 !5Ƞ01:NϘ휑?/τ ;|Of!I9)hV }ֽS{gd]&ۃZ_'D #n+Պ&a0$@3/f>pJZzS~ |VZZAƫl6gjW sKe!`H'֖Co6]4F~c -B&Xm1gI%j7 mtpy@dNK`uA3;Bl1yrp rځP t,@@-=S`Šdqkݳsi 1r (KAdG 9YyA!x ZI)FТ(0 A 2 )ԙ23E;J#5hB1&ݛ>&dޗ7MU`h,N-C^}U_@ '1ug?ibODdƚVYvW/3nz02- q+ .0AHl-a1c{lx==SݵffU[ls,"+*"wyg^:_Oj" ̕e<•11ۼC @5uύ¾0hD%mAQy"g5mw'FP֕ekz|kms[7[+%=`xpB9"̬ Hw,۷WVWF/.!;qW&wI\y0Jxp+E8%`,?/WkV0^^\>mvu}tU-S~x޹ssF:n$^ՃI(RӬMpW;oV2gy%(a!i |w,'#*F ;u{~@ zcA))hb<,^=%XsF[sl}&ٷWz!z [bl|3tn>T2%N'(?:Cn|QUtFZr:#~ kk[YNg d #(q^97B}MkT8}(UۋmAL'I1 . ZiBiƒሡ%qB\^<_tHjW/`'IOG ,qPGz'ڎW;Њ{smLym=pp!6bJ~q'( F}SF1!$vtҕ4AJ))7FM2Ծ qPqAsyfw1yx'>IʙQĽw>rҡp+SJT=H\M: ZA& b%?5a) b❭#jhF@o+3 Xw΍oVҚܞW@!{ZAo^>ώPJ =y`{;LؽJKǐ.~ܳ[՘oy{:#v-am Oݫ}Y(ůۃ & yvrt8@IDATog~ՃFNt[V7U2Ya3DpKv.G ѭb5R2EQ7/Rx|CuIك;:U]YBl}pVA'psY3VV1Fu~P e嬵h)OpÅ)sKZuh)iB BPTY@^4In|sQi%w$`)7D0TLt!PE_xк\\ oɯӔU]*i~}VkFOX1C0:O4ob΂`A?LY2Y콾<{Kmyg0o Oޥ2J4&L^LH*L o uO ӞU g3,6?a8Џ`x #F4Kjܺz'!ꩬfףSXE:zkSd8'6^CuUKg7CKABot܌ s+qX/i׺hEo{qSf X ?[m`VR0|Ő2WpS9u`(`ĈVg߸Юi&gVJ@!iITAX?۰:uVLb&9YG12q0f͜)O/ZejW}3oִS(8DjL`4ZtLD":<&?44 ;4`X59qPTQ4qZZ}1~ RP4` =aй4p}wha+ˮZCp }"_H9ȧ ́ѸdB.DgX\ھ(>ಖ:ȝ9d`#S ³@|0ZAx_.sbpxNF ÃG5P|VrϽtۃp^M1y0u?e2wK+jq[n=Gahq=Y˲ \ ۅy._,d㏲NWn@os?%㫇>+uN9=(TBs`5 v 0lj%dz)Lhh2x/ANuDȔk@hYg~a\Kd+3ЌNMRsWedk3^$9PcV~{;/|*1#,c697H'^zGd`(#xd:Le!(#VKcj/ ggN|3fYu`gvbr3Sn>Vysa{> }#%*[u"͆9Nry{0(`K۷KF~Ӎ=pkVJRP>9"J!}V6dp7Zl̈ S0=lx IIOVh  ]h\7 ް$sR6 EYkV}<+ߊXV~BR̸]ۢG0 f޸U-g۷?/?[X`IR]UǛW!4㧋o\N(Y2᧋~pµ']# (eq!z߾ϳB8#Y& 1Lm'8h=G7,>uY YZ® W"&? 2\"V X¡8Ygzk/e%RXn=T8A\TɲT̈5wէ@Sȅ!@V A.͛O\&ߡ`o9aK@{gc!T *k֯N]f5aN9Վ&g:)pHk dw\֭Bxṗ<(0,[M1`y$фYFkۦtϗcI!?S3Y׀eeav"1B~§ (c=/ ܌1 N dŇo4ߌ x)ph &5 B@ A Z iijЌz"<{3g8!6\׋[[CsoLțbkјA~FyuF/?hۃ3p쁃GqAagtbl8Mڗh)oܱ^wXKyonr;it| a: GVxP-!p.vr:Z1;V c/FH !-7\9 iNA8$< Kqx#X gA;%>~ϝ#Lu@j5nm4C1\t84|ҺxN'c NH {K>ںrǤ&A8Kˠw'Id_`dMӠ(b2Ȭ_rltr>tTθϝbj?BFz,z2Y퇧a8䋓'Y| Hu\jYNVmB',VIX8ܕVf醙.ԏ\sGLO~սF>]s2~v7~m|RL^>l,O>xn=M0ֿ*K<9 ?ˬL\d?KY/j|a]잀/;ɣ%BrJ:XϪ;y!F aF}\5O*pU ={Vg[!ڦT8(T ZKaԝȥ+UO<׻(EOufvtk7񒄰}-.:W4C`#$䚗% X83‹XH*εG"a蘶JQX h Ixy!xY;Y q F[Ͱ4JTszxAcr%41vB#53:2 G[f^Гp*c~G1ƻVuG~"AMR{[/؀'?khh%L!.HLzP5zV^7=FWO|TEZKrevׇ\(dD㼇۔Vl"EAQDrrrs4L= \£)oӾà>)!p𧷀V))?ܤU9$i2TϪ?Nɣb⾭ K$ fΌBb.6`cJ,)PBMAd]9{QK~JFzOkmEC^V>UD zS^77wߎPt{i-~Ounk)(B%mwp]ljxQ\17m0wk;#w+%*SV_2㇍~Ӕ/zV#2/%U}x7IxTOe}#|}zY["qPKb.|"˭sq2 JRJLh+NnuFxuPA~ '1=x̋I+]RtS*HUy [>l-޸zu՗?\}N x 1͋)Oo?ni.9CR =.e??EhYr^åp7g83B#&G8<퓧Ux6!f9 1iO`xX;qW.F -pC"' Nh/Gi06 ^%|);#AHIkђf?=EOI MoY5蜥d++ėWJaGO_/>Nnv/>$$ף\gy*7X@e8LEf½M_Oqԡ 1Nx=S̸yy :`k,ӟz3y K0%!QBdTHG.>PjxB#0Wk}PrjnaOswi49;mtforq)NY xyF@x/ 6  !$v42"seE0q>DFh܌dL"bgEfq9=-^nqp]OE4`w9f}30@CftK>L90 JFaAp=w7MVR@B7 N{€4M5bZ`0~1B؝Z$eR$C#ڹ%`Zc0.9tzL+Wj¾h$8P.VW+ -#!bJ.XX`JX-As)!.J҅?ŏi\?+wZw*q)7獛Wn\|?ɧ/>I𷾍kk/xGF!P)!**A.AvVy<yCn%Oe>^1ǣ/Et^G..„w nKqorXF )Zm)k.H89v3[u<6}+t( irR!Iǘ:ngM(Дki"mb Pi*7SݫLjr.MR&4Տv=gµ59KyYMXާ4^G(z1NGU΅ mmf44geK>#hHaKn }v:/*6/-.>_Vbx\Ŀ{~s3@Co\F<9CQZ-X{| =j4I=GIɔ%Z{vKv*#4ȶT=7nzgWR{ͬ˸-z&dn u~`RKg|>|o xn%\zZ2Swb=$F,Ft@sB&w4E4k<A4ikw>F -:)A}!@0W3(C\D3)r1Ό31ރ‘NWg=DP@-N$g1@I3w"A+ 2RA}s\1D Oyo/zF\ӐʞFEo{6C$"o,VOquk#ֺYhW"&<ǬxlGö)@Mp!) *UJ[fI Q4Q=1:9J%;>jJb!s\Mzqp.g"b nNU1ܸq#E-9\:cu޳4zg}BU~u&|9~2]t*ab _"޹$'Uq.:l$ IQW;->89W B +ޗOcp\gØn0(Ljyh_nI|EK냣#/:$pM./b.< Ͽjz5n ~}2ܙc:ufr;se.sY;4C™0b^.%tWh]Q-C++7Ȁ/P"0W7l} o⨡e'0ikW_H䓙N$&m!g3΂h(> `ֳ;8ֹ496AbU5'C[x¦OLU76.6aaAh0eHGԾ^fSK!6KQp ,S%Xjt/6Q(kbcF^Km' ̍Dl)+Dv3S[@HƂ$G g E'"Ddߢ!MP͔l&ZBd-$5 JXm*CwΜ a˹'6B7 7p΍V?˔^,g⠽(Vw1j2,e ]r܉wrSnߡ~GBVkݛB y $B,/MR'-&)uJ°(=I&+~wD<|/Hlo)!fV\fgބz E~p?Ëb^.Zz^}TG1`kƆ_ΕV-ąսw3n|O`?y7(%`D z.񑭮ӞDP{ î J9}V7^rׅRW {"',4  sJa;{y<.T/W12^<<=VPq۠>Q?x=}2Y㇭ pVA lQ0 g"oy|5׮WXm9ٵ25;JyREGWꨳ_ކWKG7QR[$sYî w>|K:c86%$`0< i)NX?8/cus}qcNϚ? c Qz?_ *o!<2펂DE "ncJ ur(@ig^Ŝl"s ޤO1Gx>OTZUFhx(sXپtiewC~z0WVK7ſRW*p^[=ahD<=3x*ɲD&'?i+a|z q92 #0[;r/nJph9Y+ '4ePN'SV9a,:Ϋ+<"vcJZkJ ?*/wl=$,ndZ THQ b,0{RL`M |#^FgvOY܄:vrYexz)^Wks5w:8)b=Xܹ]7`w8wIjoRL4uJ1< Y̓1k?0g)XS yj Eezy2uc%:=܋օ) gwߜLu3|{T*)Vnއ>}DP:|Ӭ+SYbpeb"'I儒 ),/O+}VJi쾂(dV!)3mAڸWj-UCGy0#aΕ~W_'. +PI[䅬*mYm%D"EĒƎSh&HaWpu{럽8y&z `j@}Yxx(K^:Gx})C(|g t\4'j8B}\3Xcxz4]bqwI<L[u:}oŸ_}Oy%h5~w>Fi^h0;?{g?RTl{6 t̃ncF1CC]a~8 —A"xU<Ihn,_ _pm5] >JPؙw9DBEjA.R\RVp(T#>, un1 jek/yu0u%j,*~}mЮQ9 o3x.&׋7{w5ivB{E%/UR}b~qwޝ?6v=;£=bi/3/:eHT= ?Kdf?lexECuO3 a׀K:? G^ŀ&ј\lMiPrcZzg` ㎞(s18bA"58!|9Η(y=YpgXZk622xM8lS Ge)5`:/UɆw#WYk`=lny'}ɂz&e;ƻR)њ61Lh 2AHN!ipk7BOg=]DB)w'Lce)b{wt0I5\--}MXVFN{(qttsR9`tkm 9; ]ȕrx6@<))mshZKr.iVq.^Nc eB흵,!7K̗uAV8'usa +d Q`R^uYp<yaU"RA8ZoSgՄb/| ?:׽GR@ᡰ5`8} +_$ϫ")hkdər]_]{S,$6PͥJ ?)J)puTji5^ツ"Kw,nk zkr{ 1HJudwW@͚"xVogM},9Oly0^?{0~=}k }KjߊIv9pO0Ч X]`3t^Y1ڭ[|81}&05oK^x G1"Ш4GǛZMU X\>]C@.=%W/Og/.P,Ns+)?M9gXa Z <{sM*k]GVt_+fvϞ~@_|[[?fy |_eϓa-\×pkg?.^6 1&J;*Dktˆ[\Py|?,\oɳh!NL5=3z׾]>^2F? p 淖T&>ιGQM2Dn=J sHcbv!f?Ɵy,l@Zn!8밖ww೯`']lTU}GK(e!.Yʹۉ[*k!11ڱ@8K#e$i̾to!>.DĪrhfusٻ^9-*8QtvVc$ %W1(J c\W)וB_0,OŸ:ˈU7RjL/8M9:[\۹RX()8 .=^n@/j7aĩfT⣓,rNrs$)iW};pv\龼U8~?{lxָľӺs;1|#EeIpqeG/k==\Ɂ}Zhdm ros{TtiwR:Zv_RVዹ!(W+( 2e7uVj1g!5 zQegtpg>OzYYO0](yJ|!?_tHnnj!A1L)#64Ӹ&.{ =65E .y)Σ{/yN,1>bL _4mfm-)ЙLG."t`n'Si{}~}&"ٺΧ[4,)ʼnSf 5|(r DFSj KyJk_~xcqvpV^b1gXZOORju~g9wKp(gͣx4&NxN(T lttc1j#~ bVʰFf4u1zMH e/Xa<0w<X r7sÕN9sXBK66(aJޜ9mJUM%BɆ* p H :|调ָUDӰZT,M iX#z9bTϋi#}J:ؕtKй8kFN&3YZ`3NE`MFq!inXrLck. .MejbJm1aFn1\?j0~ *WVa!`t**YE$JMz^,.Leb77 Ԟ&/1e/_;+{={߹Ŗ;Ax H{5=zb&U@`9&RRt7ę)`{C62S/tRƈ(v/)=ێ@jx#*GdqEȗ]ʃ^G̯Vŭ6KII~ v¥,t _գ9.s]xxGe%z)RZ9=TF^]f:xq\nKRoחBoi:[|fm?+'D/ wy/5ZKb=|pSX|;.~[Rny$Qis$7(h;歫G ^RDjQ|)-[^2$(z̒ r %Ss.G>>Gr/Fq%^ /+?t󠪈k+:پP_S-7B$L$fG^Mt7(rjj}y"vS il}]p!yBv!}/~33M&2p2? AsNļ7ܕ[0y,M IIP ^C>'#Lk øYx$ZL!}5g<i5{dJ>-o ީqY˒! ý9*geBgL KsxnC~wNqs߳#/`$̚7]`V 6ӢP#v c|~D˽3 )oeE޳xW7\cU` W}LZ^BpXsRވl67@7œ>$8 | o iBw^,u!h\5/V~7FN 4 Tg0R."`K pW*p]=ì+))>furM>Oq>/o wo߾Q~󍛅V깟7qrNZσQV7Es?^{_N?} K rDvn/ WY -) k{'BHutrD͍1/VYe8k%>OIiبqGn xm¥[ _Ec*L8Cc\=M~x(cw/w| 7.r+}p QP  ebk.e k< #H,^;sACM4jxy*av`ggz{ͽ"^5 qBMmou-cN/;rOBct#%~4His*B^?~Aqw~닗%.?MRt"'PYb(Oxmn<:8#7ࣀ|9*}8}e0ֆg3n\]`y oF.'wjU'>08K1e™4fhA)Z3WȓqG<ԟxJ}B,/.8ztWy2:œ gyǎ8N@NңJ v)2^crxRE4뿹(Z,=zrGÌdZH.;q⹱.j]:x@IDAT2dY T ̗ /:1>/BN̔PwphG2䵕mhPp֒ѐ^OzrB|V@Y)ph Ah kY^1Pw!'n2_aȧ1 ZEsP50K.Hj HiV<.t.;˘bYÚq/̞ .*0L^]ܽK\}dR:Fh~)iL~8n0]vA] xmLb5_5O'G8٘uk=S)@]Y|)s"-fCcpk:IJȴy1 ¯ጻ]sYui0?D^O{7KSLG7b.BTl5Vi+||Ä_-b|9enJaۍȊGx_4+bx.:SYra Ok ~Q2?.z$䤤pGTx1o*[vIJUq3]6:,O>gTWnJqUyF,pN.Wz|c`#񰵪p+$F[ʩyybÃsDG`}1>#7e5s!]L3cQoKp@\VqO}jؠVxJZB|s?p 'gmT l0%VOʕku.c9l̑/7>&\jg5ă434to1< Xȸd95pt̲FhL .^6ǝaS/"ѣ`r4k WIlO`deD=(g>X|G?Z"[e#I[ic&Kض(XAOx|ţ{\**+{*Zsm\7صN]υBQZ\w;>&a^=Bӓx@Y_lOSB(g%С%:gɲQ=lzM1Q0PWm0TlFT u)Y0<~}kZ!̫W‰5۞5JYHRv"hĽ :EW?h Gl-k?,ɔ鯯cBJb0Iғ8jy&qGMf#1A;ϯCk .Bf)?hABϩPWٖԴX*ȧ.Ԇ"VuufxN'J;.&5B/nukR3w/.f ֲT^KF-e\$M"^u`t fu΄-/f(BI]IJyxep~q=qo;:wO0Mb_½!hZk. )r]8GYrKR ֜sDڔ Jd ~s?juJj>^Lعn|tRBGh@xf .4KU]Bˣ_鞁|w߽lӰgr{OY{22#T|末΋Qg?^|wjRRҶbO$I*O|p/!`]߳ Kye..Ow޸04Y vKVxb2jpO 2(oUҭ]I~lE;峜(Y7--/ 8iYQ$F4[.!HA0!#0yx '&y/gGQ\AmܳQ[wi<+9/%RG4iW96' F6 wƷ\{O&q\p'64&Ԟ50XKz;^l=S %|Jdp@aEO4ni?MSi|/w6@Gq_G7aLj40k}ԘqWkbgt p`Zz %w@j1K=KƈV/J `uPLZF})"HbpmL ppE-nc^G}6kz sV镀gCV<Kjn.9M>\Ӻ4 "ttoaczK$HӇ;D8p " J"euBc%('(v%jqʗ}璜'IIS &ݳXM*U2n}+1(n6^Z粟"@dr->Ϳn{DXWm)bK:Zo뽔߻-wZwFcVYbQdrͪP2%tgkz.u/A?xQN z|ͩYV!Ia>;ݽu⶞g pV,e5sx/8KE^YP_BQH6NpsZ{`ݗ34?d{_>vs`tRlwEW$c$q0ϔ+ uE<[N/+8E7H¤>.`L ݹ 9oB]xxnsHlpKV†OH5kg N%2?&LS۟QÙz$*6ɺ@1-YR_JZ;.gt/B¥p=#D{eɿsyq}V;!Sa~sG̘8L_ύsH)o6{ }ǻu'p)0I=gt;}\㹕%ͽ 3G1jHu-ɞ'W++;kyJW >y ٦:cQчWͬj>cGr|觿Ʃu5=''l4h۬ϺQ1j H <ժx+w|J[qngv,, ?tzW,߿pl)2h=疱\cMmHؠMjmƁXPYkrlV}ksm5\I(%H#}nn] C ?w9'eN\ )V(0EcOZv7 d2jEfWN0" c1K{t 7| .uAL#?d)-W2ԕNrAXLg,GŌO6ڭ@2r5ĜhY2!mKm#tɥ՚J%701L*s(Ys b*q}AlH51FD;8G-H''OGJBA= p0ٳxw a^yP Ğk;g;roFx^Rύ=9~xzb\rfvQ)"G_.~~6yN]˒31Mƭ߯/>|^yﭼR$nU#/fyO~ҰNkS`)_؇xeߨn\9 Q~w; WW[]۷{Տr3O>O{)An|nƵ̞=!;$$\Vbg4,:޺\,nğR^m\hW'=$ q{!ď<Gt|u @P2ڣkL!`(Q$Xqm+bG&_ ҅ϱv^E"h/S!v{'V>=|_F} G^dT^xx%sug{D))N$Z))&(Pzͱd̬)6 R,^J@oXpR=G) K>1Iz,&<,ތvE4'e 8== P{zh&%XkMX=F3shsq76~fi>L {3 yC5ì_ ~uvxRO.>-~?+D~1*B صk!QtM О=t'.4GՄ$9/g9w{΃LM9Cp!%5 ˛b3WP- / v0 X(py=u𝐦i6oA<=I2RNfe5aN?IYR %s{Zk/ǿXo,O?_\v fģs5ГOt`QC6 b:M,Q.4!Op 39VȀ ? .܏GdJ9ׅHl&lv|o6m/Q`dT|K'%xcp{/@=10 w˫nցhSҋh'_R c:5Ii,!;c3>1BO"Szs$3 Is_;16a|zMҥ JSg.\υ~_N,R[-vK_u|RIߥL .?B o3>qOɅW.t-o{WQj?/x RB“W+Xrw:^ycDN*aWrPzR-C0\ߏ6 0UB%3< [ Wd Iry!۰0\ȼ(KCFAFK5Sz$^;X}YN1~}<#e)i5%10G^8t4]=A!PJn|/?SxD\%AFJph;e]x֘1kn~&7uEdp9e!_SzݯxOH6|]vaǃe9!s3_ 5^ICIB>dp~4sY`[(sI/wSyӇ[ C}/^99I,_.ۿ.~v*w1. gYbf/MQ+RG6IDshaʡbʴ Sh qA~%U@fsO@ϲVX{yRdOː'9frBJC\b?[!dAg(c!gT٣5rVSuU׏i,Kl'نXצscVw{L}4F=).1;y|1#=h5 = ys`|0g*31J, e\cW!_`S7}i3 "9 r@S>C&`սGu*?/xjqiBJ'éWY B=~Y<ۅ>|VnN)*o5vQ dku_.Fҥƥ-.{)޷+d /=+_e@㸃Krm|Y/ۙ_×~jpR /˝4RfWpya//yH_辄ݔgu<GH0I3ͺ⽺->.EQ@ ;Q& 4bP&"j獎c 48]F{H,v8s7z:\^sp?q3?xYc[^l;nLެ[kA-Lnq}uXdR3@H7օW1ǀ=wAG<@8q$Kb: =a՞hC=̓ik/Q+"0/Dm\0blĈ/#`+KbD,u`ZҊ'iXMy|cbx|-p5J; 0YL\`eS.%0GdŵV#9&f)> n)9ա 1>뮄1;2 DfoOͦ:ŮB3;+bZޛ`T[fVVs8Vk'=eFbud6&_ {uʒ*a[BeMv\\X2[Rr"Wn}}_)sF(g; >wߕ4'N߅95u^-Y(B'%"sIm!!뻦9+;^ ooߪ+oY<}[p]f"wn}#&uz#}E?'do\A]ju\*p}|U>AG}p.^Ȋ!REB)B Bnwn,VIRfm˜ߏQ )Xvy.SIԁ>%XgMIO؈}@Y o|p8p𒣠B2 [x< ѕpB#n\l.yߦ6fАψaMj!ƸB;M1M)?DWx6B`Gdܿp's& #a<Yl,4v|MKV݋%\>Ip$Gi-L:mDeن~zcx=回d>/cɝC0OH1 2^IxCa[:oxg\fK(*IOJlXlޢ-Ug8d?m=5cNZ6Y~: 9Њx(] hlymɺ`ňA#Ċ*^+!BF6O{'8YW^Nivkƞ@ vdI"?I:!Q,b/>/J~/->t'vL,(pwY :6YpރVsnQf;+പ4&qV)|i-tLC 4mkŦQv2m!)=X;5@LuR.S.{e8_|o(Jj|{Ua!jm/\~uk:!&\ L'XUX`w:u׫^]NT54ܽ]p.\Ly~dXӝuye}P@p&=%Kn[Mr|6\e97Nq8Ҷ,YXę@̨ KU3a=}4y!s8|#;qXj”g`\Qqn)[{nEJ>0&/ߎkb)"gRf79D!A)T2^'`'dU۔þ㍼uTSzsɵs/xcxd(2GD۞%2Sf9f!S,g$;`Kv'Eb>\Sz6O<:9 HH-Q:G` BT- i# Ak/.o}{Sj+^H (<)9Zh]^h:+AM K֎"r1pp}F0'\h0(E֔>&oڢlVp섡 \}c߮ׯqhuR™|o2 xNxl3`o KE j!!vգ?[+˒ nW!- Jg]xZ9SbU:.  *_kYqݼh' rn!= nj RKo ;@f1R[y !m++[W1GF:Tedv$m j|~Eu쭌nyEcӮk"zm>ps\㶂cGi)Ir~c)$VQ4II'XAi,:ȒOi sQȷ2jb0km4OfI9<%{Rtnx؍J P.S^f֧\#>Ŵj+܏+h## Ia VQj1ئ6.G:t-"D`RvG}^^I{ĽW0aSU+APz/0 qyzlk%&>#,|Iݺ>|.lPر):ンx?ZCTnş쑷EW+d7]Ѭ w*ٕϥ,SqI 1Xe* >*mc),o*蓢s0Х秝|HeOfy: @3N<φ]=޺k[f/qoeQ3)`VXV̏LjGγ%KxU[>GMd` 7Gs-Ew M ne}qfB#6;4|z;Aӵڤ<5AFQܽ?xؗ5YU)BpÜ])p"e 08 "sD4 boӓy받 K>9b] [/s|yrOBB AzP u5 Ri=WUd*H[R1Wﳼ݊AN V[u/z"S55kwڑ-SQ6PQɖڼ(O?/?4#۲ 1{p>j4&-wR%kSz,n 1ص4#w`?ꐑuZ 喠Ղ$BʉdiX[01ڟI}tirX2_µ,O \[G-pD JuЎ$E̳9MJvY#l"!m`>c/-bUL]?^ymJ; w-2?i1~ʿahwR$.Uy+R"Ci)M'L>a1nbCmg 147Ixkt{1[ʀ6'5|R22_6 -t&)xM0PDFʙKT0h1fA25cU7uhoSATʧ!0yYg;3Ҝ09_пxʅOn,^RnƧwnk,JlOI nws-ֹgk3Ϟk6?ǰV/+Z\8n dq'ڵ& kNig!~A/u<]+>ɘ/>%ˣ%uߨ'y;up|5rbo4&Ьk-*O =<Iq/rIsPt 9 H>CL Vb\Wn/.i (;Eէ܈J"A\c 8dvC!P!$#ԛ[;YvU"h-0D0DC:Wp u8j?Wa~`ynwpQYYO%%;0qX5 sŀlv8(E)60h-\ʋ>(}`gɒ%!`qO2uṕwU_ J<3PK)d=L4 qR[` )װmb̓1?ϥ'9JP|ʒGC͕F[Jq 9'̜2ڳ|(M1dMϥ<% ^ػ<>J)[̙b(G6elk5:[ VGn%DOX(+]HM2IVq}fefd`qcJGkɳ)#s$TV;!;m5xtW=:t>{j}he"+rVOxo<)((:00dfwX;{yR*s`2*\Bjɹ0qHVΤv5QTV3gI>Ǧ>aGX[k'm\mg3%igX %n^8˿ogO;x1}66P&3GtKe)ڗR54`lhc'hL4B1|\Sz{|{?^v'`'%:l kT?~%N͈%u2:L)%8C (,niц wZ[CR+ ax+ zѦ\}'S*d'HROZH1iBoUM w 4ޏz!wV",򦖣\#0˦T\>ʄ'90B:l"wo2[*%5~Glnԣ-BrK)!DJ3.vF,Ų1-:T$D@KsJ9 =0QLq!(ۙ;ẔRhGA;4bKi 0+M6iz#h C ,ܮ̾,ᮅ «'(  QA`^@]R%Ͳe`_ϊ'xZa tJ(${,|GIB@IDAT4Obd{!~~w>}V|"`Y^y~i>-oZ,O*[_i^)'ծ0^ZOs|_+Ae̕~LU|W ~oym\8(4[r툈+%t0 -+o*=#9>({ՋI^=ȅEG.ږR=4 l̪y>5w<жP4$`Ŵ;&X('<B{[f7Nk<y Ѓ {Yq1*y<'v%Rh''<{ }g8ʎ 91Z3)&߿üaaOF8i"lƢ4iP~c0S wcԃ\jnKCt5eEy&(KKQ3@aS4]gʛh~^̯uiÕzJo m֔@34٘W0cBuCGp<Ƀ8sC*P^^8.Y<_ӄ0[k~)g9uUUTOpS5/w%S4>;bl`plNa T+bb^<p@S'௏S(52cj-F:F7sqXM_Db㰨}eZc/q'I( 'EH 5']xfbop/Qu\jBq\,ɫ\ޝ3*τP5YU49&MnMԜpfpWh)˞ϋJZOcf`Ϟ] ~ f7\58$vN?.y6۲FcJLãà$S) ~րe٧ҢB`@kͅр+P\]qbaOP΁B=%= _ Оyu_O|U/4Hb& .#Ɠ6cp}KdꟌf,+FgkIڍALlqTT*me8 [ln,s%G-vݨ{c[VL1knU^S1kJk$F")pcKH$lYܯhòiGQ Ą$%I ;)ov`_v lvPf _Je*tk˿,'_~X 巿Q-gXr]b=xA*)MOrʗ+z nߺ$uNwik/n<'AZ|Dgm1exzL\ 6\BgNdO ־И|iBG%F{s meyOmWP3爑)݋9Rk=qk~6=[vδ΂Dc  ?=U-R-zL0tAi&v؛u>߼^l4yi>Z?A6d{.29u@C"&0aoN ye* GSvwzD$q>PIm &'Ɂ/,߫j`[`b CUO? [<|[ u> }iޘģN[|%YVk"N᧳[-?X듊|]غZ˭Y6BBS!ANc _†EЦ Ya9'[0ftD g@EP0$ɋ  mLrXn  Ǹ9/i?>4s!O!|4oN9)Cq:Ɇ2shpcD_͗N{Kx>Ek۵|X =S(u^ FAH y^2:x$W0~7:)1R\[ĬnƇ2v4klwU|=IaS }?eoVrjKeBFa>P ts>cp`b` 0IrqP#;'US{ XY2'y3ҝxwxV*%w'nt _)yٸxwlU_LN u8{A?;j-{|wÝDbe\pAk) =!jzǡ;S/!B2eHO|6.C( @ Sήzq`_a>b,&dP;IڬX1fm.!8%~Rk vXQ6fuK*^[ܭsHp`# Rڗw ^ 2FvJ~z[ſw˃nygO:"4{ ס-џvtgk%ܽ~݄/޺oN6)1L))Uˡ7l| u|ѧ0F-~zsoW$,*dk:EZĞ* lꍄäDF W<-߁W谘bʌ;Ce{o+YxפuF`<;\%KQi)ZBf4Zhw$a{+ -B'p7@P?#O=]VWj+kmBԌCt+֊@vjJȞvS 0XZ:Q )]ۮ[KGƂv)>)=5@C{Us<, fVqi։hغFsMg<<y^SQi~UZkTs+&JׄufgIy/ W/QqATO?l tC.Y|}3P|nR{޺wgG3gz4y_ro+cyZU%Wú8]] #I<9LnYG^oT=ZPQm~_-޲uFrRk |- 1A)O٬yˀ3^RO+{)y갹\~igV_G)nN䝸ҍk +OkXۃ/<; h: A&WcXTXz[!~Ȁ:KnVIOe;@580C9 gq]c9h1($v̲>8]Y: I~ 8Z % ,DsE R퀳,qSqY%Akv( 5s5K0n?`3pOKcABLcVK/MhrDŽ8!,!pgA6MJX@|GZ\tPrW%',-b5gWCIL녤`"!1>G+/ VaEfYP!`+:DsTsi2"(n4-|IZ{'8g]sG}|V_y%pwWT4<ud/fy\a+U֎WK߁>v vƄ4GS4R[O"\|koN/˷2k˳%@]^~_]nެ,ooLs3q/dyWW^U|~inP {eاg7^ ZumWTybǨsEjo'Йw I6zܦcUZZmwVk)T*-Kѓ?IMn^$Sa``Kq<4qNa_A R^ 5ӝydEv~ 5Gۅ)6xY>  <8ֹG or =דCi- },g-YdfVFٕ=_gO?Y.٪` :;W= s GQlͨiEy sȭ~> X|@Skj`~|Y#HB <~b~j{Ӂ{uaiJ&1hM&w`'cCXm2l)4!;K9[c8a=*n=PL$L8*Ífh‡7}`6u">\(<:AYۘNOkJZsFB1RYUc&~ޞ b{,nudgJAv#j½{,*8Z_h[/by70*'[{ki/x0;Cj?+ԍưf1K~۲bCtg>8ֵWwζ( 3x8! 7.wr# bypj'}RYwLPeNJ&;3֗wxe߾U2: ڶ#F^띄}V=N X]o;޿'s[k`OTb]g~9"kVhe~yd/w?\Yah5Wr,^i0Ao G]cW`EVl) xLq7[wϔLviҘǜhh4{m(-+}:f5dZۘf)`Yf Bՠm+fqnXn.}C|sYQ0XޜނRic cICNccQS4;˿%f[~[o$>JK7Antbe$Qhl% yw!-vk7xuZ{'Fjc"_r3Sdڪ8eHhއI f1Dm +G:8CzqGѤC8'SJ i_ƙ]Z@7KIS0+'Ov*`˶ze1z[忣嗕O~?b._||b”5StUIY[_}{rW[9>Ò*z{ur JS6#»S>.~{~\{Z?o~=&Ӊ'jمOHx9%+A^o kчJw^PSOO;wbem;MVe[b Z[ `leLGobOKìQP(ܭU[W^ wͫJ# 8BW*{!QB9PdPc?zg\yx \um!!egFJ"E 6a9el;CƗL${ 5dD+gQ=/}xCj U52m|N3Abq Eͳ!Jm pBO tx;`xO,3ޕ[TU 6cMKylxpE]9ۨn|\ gFd N٘5?1}E xPOʬȇM 8pupEX]vT`©sNVI=e| i9Bv 튛O(=A nž.Ȯ`V0՟e5K/dR8+oX cE`t p0B+HefNrcHQ,Lg 2.8a¼~ Й|%՝pX)10@`< ,Lik m pN7Y0 ?&IP5.=ih%=Z[>6SqsIxSn^`yuNRQl ̬I3g.VmQ Ÿy5p3EK 0'7fY$T=k}gh}`SM-jF^ 2ckM'C^bBIL30n^AQ. Y+JS.W+jnoOour_}T^ab}Rr[q;%]U$jIR J(4[?CWqü,;y5T±7_Ѓw@c9n+f"Dkp7Nj=/zBEDAK}R0^̛pW O 0p>-*E+2<|^]o]z 8OI8nd7ج&Ww.褷y$o\Ȉ)$Qv|9/&GxpKy9`Rꏊ[*W̼v&0MYkN۪=lKL֨rX^Y_i|dXzB'`AslJ}0tf3(4-< &pp]\?{1f jib{).J*IIvFU1C(kCX \i1(cdMѓ{7p% 1pZcqtQ^ʍ )"ÔKyX:.YߘɍYU#ĮU ?Us-)_ m& y唼 kLqpiv!.ᙪ *&"C$NyGڲkc(c )V m?ѐVg%qqcqa=f;-`}灢:1R ^=y0y{dg@6RH:4{{.r 3g h}PĵXkx։y%zF;sWϛVC#,!&긫B@8/[/ʷwUn-wB\oW?p jAhkwt4E<K;OK0J؁kkn:e^\μ ;/1uQ0lUc]_:(˂^m^ c#YZ 6D%{&c{h`jhLR1Ì?,OuN ={gPԼS 8fv]5C78][C4/̠{v 5Q@ln׮GO+ (cJR "VJrIYA37h1rLb&11eA~Ӻco? N|)AfE(w\\y1̤X@V4(VBlY.sLsh5WJڣb7-MVBRS_}OzY!z#v)Iۼ_}|仒򪜶y.nKyy)rp|zy_.^ynmu^̌se>l:q0F1nUm|X*\rqµ3ڟ B9ay k4)6[&ё`P0r.=oQhf%)(hu G@dI,cp2¨/# SH#/=^QV5EĭT&7k3t٘ _{'\h}3[ ϸ5DW~O-fJxڴL{e{=Dc2E vفafNςe5Ƅ+.weds# ygwR*\{ ϊ{('3Wz*:O<+k_xi(ɺ5$zg 80g)ۭmrl|\9!4ufvfLʲSzb!Ex.e)]3]76k;UgL[ '}h&vTYwax,w1HbNN}P'nm< (a=>XõwΣ TV*hͨv).`AB# Im(idHuXAR` oI˚xFUX.AD& uϗ17̤FMpk= Y{Η$tRʍv;\QL% j caM;&'2v^X"!QsLa0L>myo>b®(AI*s%2ںaAfl1k͐>xBr.y Ŷ)"Ě{^se,Ϭ#UBe*3w/:ړ=.vGbHY^[3 bb?UBO Acu4ޅSfjTv)Qk~-8 }.Agw=\nu[%*ggd14DD) /bP ,`" zXh~ƌ(u!&0'\"vvvڼ=̍^phwN)f%۳޽}WJ>ᇅX3ao,>+1uG?Vf-:-oA8\U.UWz'P>,yɏK89D_Ģ%}#$n=cGM^pZ F=; bB5>38("g7®B9j[v  im,|bU$ZQP]5O턧܍TI FrF\dNsQ_ƺS^91\kz$Fi=)&%l%/{문~hs-6 ZyJ)]CzpoWxrKxA>m?knM״vzS//Oz@+UJN%Lf2cS&|:#_zS ˿uu N88whM>Ap4) ߋIm|[ç]$l>l(SQAyIF ϐbi53v^qsx6p;ñzzM.O.GZ5,O2?@Ɠ>,Ԁl <_d?`89WsCUxh&1(i5Q@ ES DGa?0AyjBCVܸk16Y3(Y.Vۣv+1<뙛BCS:y[|Lk1J*f*T<C@sm9Dhudtf܍`%'651`gѦ9K%;+eQ_F$dVfCuHqѹ }`iWsO01ܾؐsPLYl ,n1nZ1B5 fE\ͥ,bl] j8_e|)S]wGf]'"~c ̶Vpbo>JaLQ9*rNNpЅ(&B`=kS-q1B`@I˧>_,S ՞ݒ9*/R%J~we?b!2N|B/۝EP`^ ^Kl+Cvr?}vo;*m\=޼ݼ}PRXEKls*A W^B=G^sp Syobb֭c"^E2J\)v?[| nmMWc)KSK8%p0ZaSo Irȵ }(_LFN1*V!tHx}yӊ <]bY3=Қɿ[/ֿ߬~62p#RYItܠa o879ӵ,}V59($^5q@ W#J HjsG# eyôsZڦI+Ǵԝ*2 0GrOƊ&_{Z/H*>QҺ!#h x9hy)I6X YӎjmO0ix+,hA ͛Rq Z>qZ!FIo=+|ֳg79ܭOvsgD "镾WD߸%]mKEk.@ ̋_uջ!LcsQ0؎a'uZ`\qb_`gܳP6Yu]0*XNz0܈%ŵ/Wȕ.S ( N%+˻o/ ~n􃔜/5@^>{vewg7η p.A[$q'W^ܾqI-?79;@^~m׹f/UO>7 _znQYΝ"WRjB!O\Sb?Y3}vu\`~bt!Z wY:9lmo9RMR$T!#_i C܎ms:sU[NcއU`\T445Irb<faX^=lg?$h,4IcWzYuKF7|?Bڽ|em,評*u$c͈(lɠ>VpqBneY,E V)64#X1B< $ 5_P-ĬEլݝ+Mx GIe_=￙{Qd,4I:VYF'pibyXvKkw7^y [rOaᏐ%{a֑5^X0Z1h,YAסTvӱT4' "F 7#xg}̮=<ĸg X4f/; ~]31N_-͚zL9fP\N)Q5!eV# \2ƌe~n aW<ۓII7s NPN+) 'R}hqՖQ',7`1gD!2jpۢ7g-;\h^ы[˯ nMs >#RVci5D_cS ‘09(|<&| .Px'/ppּq=ٹp5DI]OV/x^}jVVN^GQ.LJz9)B9) /R2?X~I9_+8Ǡ43i>c8IdۢPg2V%+.9u^ 1'?x +-9m Yfm-+VsЙXc ͕X?mYu.sn2`i,pe}OfjɃ<͙dq6/ %}.71+ٰJSu]Qϳh8N5F5:yzڟ;K EiqKDD4^`U`.bBAjUSDjSyVN1Z[gńح>JPoM d J.EUp)I9 )OVLyU/BbbtzvzsKI~rwyvw~cA,IgO;{1;E̞+RS747pA?%N l4잯R{_<]~nl+^~Ã`|זu9h |/mj@n7t)3"}UI9(<[v?<[Ϟ|XJk“ԗٵp=F`jQd#Ia'qtrH1)Jh?s4,P17x+V>܎פ獧N&1OF%4m6_ň?5`DÝHqN uz}՛>j﫱 a4|~cٹ~k̈́`5}S23Y}ݻi띰nser;&e_yɲڅgߧǒb.+u#87a1&cvQUaBY,`ZxKk6{1 b}0.-vDϋ F2e7# ]% [)Tpb\ (%xRT,#bRSR% )ߏlIB) ;qF `8ZIM:l:ڶW\,.qP̡iFi{bC Fcn<g4+G Y907%P$~D|&3>w*͎6LYo|܂'(̓h-^N cdvZεEh4(BXTځ^l7't-sgn2\\I՘'f҉q}w'£k+O`fx 3틍İrS玂Sѝo<הK&ry a X<H[B 3.9VI~jlHEB2 u;J"P ݧ_l{3QgazWpϗ럎~k+7_ߖ{^ހJǿ\u8Q[y,~m[oUѯ{z_-w]~8yqJyb%ZC籟f&Hc|PϊE`tnA~|\Db Hs룻(_;;)'NbKNo^ U1LVTcD':M\_WxBJLVBR n=! &Ìr3)@ϣѩx ="' 'ރc; 0?"-5OtY" UW ^ڦh]_ h } Ҡ 7C9g;@$]0^Yy٧O@?%p(KGLyD m#Y=@:lo~u:Al5d#\ MŜRϟ?^~w?nxis ͌vfޱ{t ֳhIȭYK7ψ,H!Lj4xpY_*z:x Be^1/ 4غ>­.2R{,\5WcaA.(!v+84~;ȹ]][ywN~͈ۼ84$ߌ}Z&4FijmW]o$LN C,'ɏUjduh S >wmz1An Cb0@&g1q#܈g:q\=/Y!KN2DhS/8hݑ%XtbaV!zgbpʵ3 .vK6ΕH ,ZOyOAs> )7`1E Vɭ,{+_^*mAф -Rf'ccgqχt\v Ѕ*Bi'>,~5,AuYVI%E1g^<0 a(_ {0q)ZϘIZ1k NR|(>59K~%4{1`tU_¤ĽJV0Fu:x-y/+lEO|OlvO3{w^|t/0s͋pfiH_nu&W|8^|*Ą+cOwNk)q>-9X5{?I ~՛PNÄ$:5&59M{OsʨGW|HM9˩okD7JpFWc5s~tW†;7vwmBD4'y!I}aٷ;_,o]zWeҨ02;CF[>{˭#)t$G+QI;YWm;C8:ZPKMn݌M?\W ?>(wI/-˝ K˓t|arr;#֧w]R@gc $dGk4^ʓ-؍FD>7؍lUc'`-޾˦Le}:^Ԅ:I<+0QYB6DxЊ$k cZ&`l;zBxY?G:ᝆɩ$u(׻k*5R0=[ܓ24G.2 aҺ-J ɁۋOiaZ+9΂Sbݣ? emyxֵ˷߹ܿ]ȍw46{[eWzM۝g zzV^@G""~uwU /Ǐ< c. UoM/UGBV޺GR6wV$p0\% Ry~dsbٹ_Sq40O υЬg]lhy +u*ޅ's=;kR'5&SFbP":H o-#'AqpZ4/,kp=+ 3T aڃ{ _hׂ4F`sKs ^Knp+?!"oq 8Nd7UwxrI:lmǥ~>I=\ оغKROX<kȮ[ysp. G)/S5ᔽ` ٫Ez2ܕ I)7Sޑ`IsDlo}CZhjN<Saxe\Hٷp+> 4!;teC&/?3ޭ}sñ^kcl|y⇓y _INnW!t!rW0+Y{`rGgTca-pq%FvJ(#Gh;nr&iH:?ڠ]Q0.JP/ eNg+1MZ^gYi!y `;!V6T )X⃳эy넫"0&.n->4 J8pMcϟ&Y]Բڽws1r/9Bc V"LNc>vBt2ɭվ˽6vM DxRB030[n^1<l0!8=~k P1L.r zE)B2i\J8)V JՎkPJ:  DB}cNpnc^as|}lp`Ǻ0Q B| 7 lBXf_|,Ԑ$y"l->|Y3 Ϟ3WM~w?P{u'S1Ie>\<)\Y,1y %\ "\b)V}Csp Vxc5N?caMUl}vnʃB ?}dz0~gLJX^"(vg3S(d+bBEW_btYfe,,[b6H-]b\܆*GVWw G 6$7À(BOqӝX_}f 5"( +)k%PxPR`O)u-a,chv20eDbXкuww~c]KO^l 9Ii<1hq&ս握y*8=Ϙ=.s/iJ7RS8I{(iў{^|_{ҫ]>bi!ƯNuZ|685̌%Zu?(ǝR"*ހgߖ@Fp_ dnZSyA=v9G`F9my~πfr'sxKNWܧ]vk}B+]d+Cq}[e|ox7[͵+t2u|٩lUJx}YOg.ՌK4О-^fI.EYO|70sW1_ Ie{LZT>&bM?L HHqSj 1L;&ibh d3&Y<;٠ӄBz-)Y-ZH7\^% N>J%*dCl&PWGoU pE gQfr7eRLZzs*`3I} JdBy{uuuD'/{ {>e"WmlJ(>.BeUJJ2c'2%kA}/z z0vP >`{IkJӽ9vSn$$`P09Jkz{ @Uu:%3 5UW Dpsx{i}K$@Ie9J׃kb=#=xPlت7jQcLis9߉y5}*Zox8~=6#ÔNK\+ BF\t~xt\GߛU<7_|bv x/OɅ}1p}=|5::*52+^wmh6j.[<:1@~T5AGV`/g$ƀW6]o4G]60^/—§tfɱƶ̉:5F Ϭ50g4^OiŸY:ˣ&̵ >s/:Y ᶾ in ! O{l .MO'Xn]9 ܵxt׵7_TgsB9h˦z4A%,fSn9˓clZ9\6 O^IĿ;n\6{91z@-e1,Y YAi1 v.JjGc+k1^Eŋj9mkgNÜBtYdSl`MAu dUMSZpEL y:Xq2'Mx.k]Vi}768ɂ+1;հk)"%A"&',CkJ.`[` s= |<]rBvc}#ӭ3o \@+ŷkD|̽:&qbN[ڶop?RgCm G(Ws &N1{W䣒t'{ckW:O#E(N}Z Sl=\CR˓zV}teIu_~*~ML?iV 0<@s ྱŏ?tesd/\sjCw5JX=-~믶>gI ie Lcg1#i>P4&lb~X,KĥX^̦Oa3OBJ륤 (B^MŔN |0F,#*.Q %STڿ µeN2ΧfCh*&2w>Ç+ q4j22Y_?Cbڛ!:~C/h{m fJ_O }3Xc[9Y^dx, kֻOwjC.b57 LkR%:xRxZVd)E<)euYRK,?+s<3inоT\MzVgT!۶sP1'NDoO&d+$hrT.sVױ¯7ֲ'Q#@B=K)&+G{l&p-tru)j;atB$JQh,Q$+%IڄL';n,`=sNɇŒ1.NVBX1yV&({^L~=-BmCY Jغ8hÔ&W/ct$-ۦ5͝˓+Ij 77QkXTE84͘Xs asb!`|Ә% bZ_Tx"A F8jŽ*CB!1exO f xrk*cƹ"Esam4%kʓ%1z^ i"@6`  S[LB vs4k?ŭYKu)z\em_f< sYsWcub},>ǽU&/M)Bbn9M>/靁5u[EC!?:̛/0SaJS8u} 7 73%xNS]ëʞ|O>Y|V^<+ 45rL\pm,bFWP=sy00@_8^4X3|'te2dq[/c\sga sq[eW&$FIb4!H΁哛]I km-\p$`ܐұC0դ%M1rDA55\zr;D^o ?q1r%^Vf$T?T޳_TDO60 xTo[~_̎ rYkKiurM*/a:{}uɧ_.w>juӽѯg/0oRt:5jYjC|Tዔ I#=Ko{7U8ѐzcƒA-@!cBB*CX0Ģ`zz&4Ib]ߒ:f l q+>|̝pALM)Y0k}!%[i]H98vt-G]>nDJq(1x>H\~'\d:.r\ԧ$N=h`Q̧b0(8㤊%~o%lJavg<̏61N0%R(;#a~6i&ܦy,Iy;%]j :6(=1`t):$O(C%d5e3< jڔ'LggHMHM( XmzXT裩As0NH+}Jn $0m;/H+ kL/{JHUG, Jq|p7)S qqa_E!d',o[Y1sY qSў_xO3!k@[7ar4Зk 80RDc`\tƂChq9ͣs{vB{~МSZvvK&*?gO߯ލ~%8z ~&A1A 7Lkh k޻p({.!AUU=OHKx.@tXg5+[sAMS*l_h\z(V6ib$c{% (N<*+‰#GЪ&QoYsD{C)C0'f[A3d,:^$Y %*E{l) <zcgᯌ͡9XH>qN FwBI/"+2R|[Cj$<Qfuڜ;ZՏ]PrTG+Ly|3Qz0sel^wqOj0B#L{)zE My63$ӑhgu԰8ա0^X43.2xCgx}Ks?|n巰$e[񟔤4/O ^8/uufL9נJI?-W&$H?;/'տ۷ur'0b{]T!6npReTlS@jBol"/1CsvĪ*A< xb㑾]V})ߴBVO`/(ascO8`=i)xaJS4c#2N|Ўٺh;NLjXL0R 6@gU0M>n`!n lń#k4,fo(Mc^R"iR FOlZ]VMø `B͑Q 9kk [36MHeZ{?Y[1p4PjtV+-%2 ^ rV 5LZGDeV{ci }΁kZ6}%YZ7E)<2$QoxoI&b17ϸ$$eke䳔`㧵^"n`m/ %K!jA{tC(1)Iop1bfn x:@Oyq{ jg(ݯA.|}cD&rV;,o>9}c޷?Údy*O[ژ-^u"ibl_@ z8ݼ> q)g ?rQaNݬ QExY;)/ 3L<pZ_wSEyT\*:A} by$D[غj4T.gqe8,}X mrCR60t|~躎V!yA'Iti%W֮ 04AyS ؼj-dy%:hݬ`#Z|#ʙ$'⇧%7 J| Ygkx\ <2Jߚ0H0}Eo ϙEza_8.{|=>KcRg݄VS'weiL4w7Nj߮QOp5.[d{T#oq\E+Uu- )-y//S0|F+)M9Ș:S9,e2EzQ dk 'CVփKϡ? IS胠ܜ~YkGTxXc~y(yi*FnLܠlQW~{yy=O=WDi\![]_2߳L 6QVrSɚu-ȂdQ ڪ)P3|VcSx$&9Ls4ޛQlXB JZzU .K)_y^n ~sa^k͙Ea;`t^r,&e?n)8Eq0hW^(BHhL ؆a,fkt-]1%wS=wA7~JY"T0Pj,֢#_jm\$pR'WF#Au i:1GLP|u{< r[0_9IcGRhiDYt|/,L0䎎閡)NF G.CKxa1kNZgouOp BB;Owy` YM/.w#JH(~ 7Ń7`%zӏ?gH4<F/k\xm̍R*ÇJ۪kX_4W[y߄2܌B G /9%tMcxzO<ܶp{l6k%Cָ9?OP{l~ >4zk|'TzCPgBr &{O~N̸|Cd`o`bM<ID- C>)`J%)ȱ/&ae{It0e?|ЮVԱX F`yz|۬j84j'D hzc2^Jofxv=aess ЄAd{_Nt7rSܝbȲOW'ՙNcp}H kn, JR83!++IP %(f<en˓wfyjG1d}:&buXPŃR{Z^eOz6Ga 4kuUL2d1^,V0 qJ4nF[zLIj!p?3%vg`K {Ԩ4^uN\۪N0Guz?Ywso޽;Y1F f/AnKje=N"tJ<`q5~02xQp,5K -}uU~9wk^i%lu순UYu@IDATýūBB"a(%Z׹xw5 Oq}/8ǟ>nYlL";U!>;Ryps}\p]FMl|81Sܔ?-9<'MlxBv=2yVI Hsz#zB,FQ)Ug)ͶgL!!FJt‘6p֘ҫo#X`^D,b uJp>xӒV ʚV+k0 ׫`٠}eHwM8gA c㍋/(O C+ B[2/ӷsՔ MRHi3>{gp)dm»`ڌQ|($Xx<5<1;58xLئxEHn#`e¥ N;HY7Hc7eOp1Zf8 >#;`2&ؘxLll)Tp+~:'qw -τ+Ǟh8k7zXdF?CbZt{* 2O,LV{f܀̘غwqZ\[/f0;AuEhOo'G/?^6щ67d/KH[|)lR.XyDgYIg H&osUg6W& ]z{ <` Vu6J5ϲu@dN0ڄjy5de4>z[34=QB6sFA}q]s̽*^ϳN*<7,))kv5 3q*`P ^<\P&O =N-Zxh+/>YJ:I{ߐsF; nYEvn,R2tVkMl`sM8Bx8IS9].P]\=%G`ʑB u^sҝx$Lۑ=rZr'IhOW<ע|MLg{>ml @os?G!|x4f,jA'q ;(5#9Lȟtj)Teq'ܕV9VM9*’(u#x6b֜SkNk$ُXx!`8uZ+DlpG wb 4˟(Mt"`~<7Y◻ ɧO3 #[k^޴gOeW{- b 'yx.qiۚ6fcP//Ym7CwAx# . t*0vV@|F;B޽epu?s μ;ݣMFWO4Ϻ.%8 t檎FyX_BW>j{3x:4 OgN*)0Y_W3?w%~s~/hq뿽OfX d{/ $i/NFRL4j9By^wG:^ka`~&>쏯qξ'+;c2 :Z|٧%;ˊsb`0[sGEcۇ&#aۗw[²}ҳd`ɺ{3UBpn׋?(y ~/|Yc,γ/}ح=[YksS~gӦ~-yD( s h!< w}'M:˒k&u^us$K&xL:Nfݡwpם`gђ*i?+0:J\%U c%l7__Cyhhܾ-(-bb;1! 1p-]tAܵ޶=K}Y[ֻx*\T{||.%5X@IATuH${r—҃!3y?7GsͻF9s wy8LbcB *E<ɻ.FxsgsbyÇ𻎧k^r(C&( }Kx`];`b>Ђձ6>MiÔF¡a*;|>>~\l?Sç%r|z坃O僯J*|q#ŢTۡXeѾӑ3K1Tt[6SbUtI,p&`E_u1끅wJJdw姪^en?pz[ayTYJY .q zz`,2qQ{Y1 f/Zimq?{//F0@\zzm塓uJQm^婨˧^,J <Q(%]XG/GY$QyPҟ*`ؖlC&lq;6>b[ ~ 44Z.r΢pkL}^`wpx fGϋ LXo9,|.z_e HXo(H')q5jZ|Y29Ѿ#x{eҿ8*׺xe!d 8C 2E6o:uAQ\)!fXyo=8)S+S 2Y]^Cq~SP"X;w=\^8Ɩ4)CqZԁ78t,fj}UV7׳tj09*#ZX > w^{u>𦏿gP:iN^4kt4oW@/z{ ѽ}Ta/׃qV66KjҹN$纖g.g@?͏5c . \,Zxz gX×LYc:f8+9Ï`KITѰgGØp[v1݃G1c^r'$bQ®O Si!>Y|jp,gB9QpVgp2_$0KӨ6ûNXz`$PMIW*f,,V<9tt]߅&4<)`Dxzy1ۧޓ Um`=܂ڋe󕻅5-` 8A'=nCB77Ryz'Kp'y!A{67 uNL pƀW(R^ia;ዲHn w_-ybͱ#cfċ6\Llb]w1jG^-{+Z'|< MX_l$]5N8IʏC#|8 ڶ5d(8:}7;\"Fx!@b,nvw: LyD.g)koƖ}V6h"冲}@YMY˛y~|7v,c'M}eUOGvvR 7b30kI_!9{#z;J_:BhloMPkHv"哏?nGcuF4V:'_'X981gUuSÌU˿^lEET|#wZ=ğ-YiFҽ}>fK L%aZP 6h_q}V;>&{f x$BbzYʧdxxK#<i y0x`뵹,t\jQ]hg{l9#L|ӟ.5=&FҦ/`B q4W]?\a F3;񞧀㦝)ZI~ϋklnO&YQ!ov=Q #hc\ w<7NW͋f3gG}bb1M\KO0k:w2`6W) $*sIJpd0JEIXo5,&ԟ"k o:p2kSRMEBL|0 t_xUrnN+$%9Mg+B7Zs6!/^.M@${FBO!q6n4.nn))'R~ӘO^.ޝ#y ՌvCO׈#$BIW,kxcMxEAQRBseߩMOp&l?%q $aZ:b\ԡk偽t%Sg!*@gḻLQ=$B9adk|R1Wy&N{ n/cYB㝃S 峲FUH12/:xV0 o.c+)sO GWu|yr"PN6O ^m9 0xnj)=]eĉYNRYfS^!1t:Ol5h{% 1ҩs,h))icԄf;e(w_Gv{WYs^ [y;4 PP'!S|U5[=sd:%k{su frnlfIS(] 9C!'1]g>~ ,9 ;\ǥEӼ{~K^ 2vFBl)h*)#71hӬ<J>xSU.y|w^_'Sn+6࡯@nr61#49ds{YCA n]|;VU)|eҌy~@c:kix"뚃`05xJ([;)Ynĕ=r?˫҆>g.) mF5i^q r+$ģF/5Q2X؃q `şhRQ(9_F[ki?/ 7?Lx.v.] 6v$y -We?x 1W\$"lGm7Gi`X|1O)N8bd:K|HDbˮqp6HWަRd|-{ H~{@nƛ/3(KiާlJ| <7g`0|WǓZӎ.y3d'&Z,9߷ \ͅZRJ C]{OjxJ/(9){[$2kyVwoNau?Xm;&li5Q4{m6v|ۛ6yZpo/ɲMv6 ќXXF6~ T98k :6@va2|KJmr:@#E8 _"6~a1im& D)=# j<1~7ք{k4G%c^#  LcJ$YvJ ރ[Y;;oB(m>E#PYtڊ8cSM+(:$}KeDEn;&6w/ǹ&K;&̺紊AeM]4j;ysk,PX.YWӈ(33ׄ/&{ yDGaWOqpxDNsS {/>$Y\V1.ҐOyykqs`hj75v9) gG#ԾzG59 U3op~z4V7s*<K)ǧz?x(')*=AVK4zr/W#Af^ܰ|޹HXd̠c 4J TuGSLB.Giymns'1N<- 7ʦ{"qd O(`ycZ)Fp[} yx! M4h':<FʋC?H[ #q)YMVM9K 8Qz4ūGLlhݳcg*u*K\uy1KJv X !PXg6^Q [7m 2'c^?)=(ȥ!|w%ַWL?A57Ab%{RmJ^K7=2̳Z_=9IK4$;K OmƯ/|Ϫm/[_mqxbnx|a%1o!Y%2ʸSJʵFa6^|C;v-;{n~rIU♝c7pLݵ<#_g%E4ˮfae;(\3gd@32Mm]-!@/C>x6>e2Rf{izIn^.<BY A6=Qc1h'=p Y=brd#q7꡾`JzweNL"KxK6$>Ǹ"Y*Z}5d#$$fNa-ˤy)&P kheLbq͟t^yl&y'L(<Yw+TB@{ʐ]8dP0ԎKbWX#eJ8YUW)*\`]_'p{d$^.x~Imb zJzSP\i{WYƒNr{|ٓEໃC_|U¹G4!=SR/?!|Pv߿E^&uPj*B4ۇQ{SXq)[E Q/| w+=S""waAkmoz E+ {?*xT5O( ((e?3#~։|QT/eG;mۚ:""aSxɳ^yłGKiMo+l}+;a l|y0>cO^; mjfԾtJp{$ Sh_)!<5d/RbXZ>s4+ߦrD-wnBm-~cwP.40Û#&(PBq_xqڅz`?oכ,rTWdۯJ8 !lܦD;5tuh՚|y~CkNqn, =FXIu~׫c'$w[ɠ!hy qr뙹s.]|GNxML4Iޣ1..at] ϧnߞN`ku5kn}5n'b$P(X%}27p~S޴OelA9_|a%v紀ZQb-> _ UmOZ5O7O?Oohh?`c'#zoW; ¥wvnO9EnPG +$tU։  MJLpd@$nL_(M<`Kz3)Lm9vzCsUn># "Grx6g kbO `b M趄t6 9} \4xnA =\$ulP( gΧ|[=QL r͞m-K&NNPNΊ+[ȯiQ(F\GM`K.ܯ\ƹ95l&zx(>@q!A9)h+J4.nMe.mDk.O86 $ܻYf{C'"!x ϟWv;Nyﳟ}ŋK`˕`wǝ5^,屄'!f,~<(|$Ɲ)** j"n?k|%nj+|N wLYϞ:Bh;z|}H*[-ósX >K1;kj<2BX-y Tpe3 1߱MumFjBkc!bȲ'? t!K~5fYTX^$^6tUw^w@œ"/;o:sx ͅbo7"kK #`5YSn&[LBpy_5kxE{=r6ɧ%ao* ]ϟsX{"ݞA0sC >S>\AiEY߷FMP6ꩰ^G5 D Hyn`uM3r%/O+Lv( avSiʁh>+Nʸ1^| 픉y&`=ʈ]x 4ޭ\yocyztrKۏ w|x //>S1F>OK\8FS9 zC485nb:gv=w_!|4ptl>>]^dɸ j~N'lbݘ*:}X{_ XJp:UuX}BAq/ncY`ZjI3lBJf)IʪUH)Q.Z+F֘ʓNLE]uY,wxWhĉ\f9GQxL_Ak^ZwtQ7h̷5G(ʵ\rxz٫t<['bC%^$NHWQMh_nW~xi_(&1 Qk1}!׷A"c`Jn4.ȹO+?Z|7i܍`,Wiv˦1y?(1)njݪ8=-ǟ\/\A 2e+] p/}ynKX(45Ҿʒ9ݽ g*@dW!Iqfw;@(AXsdeqZhm%.C'y\e.u]emKv "q벨כO~x2vZ&T/xgp>aBLK6fiL4CK;߭Ӊ>$0XpuIwkJ2&0M[hO#\0HeM{'$Mnp6Lϕ\BYZeoak3d5+KApj bsRkMw.B xP_]l gH-y`ouY~̼+K3^Yos =%J' ۖg<:U<{ /kyNͽ>7)OWUDOۏfBuZ\3nj%ӺI{;_<(pc|X{mKJއ<}{pTGӟٟfe=> TH_"9)6P(ipB[5A[KAOBMUpWь7;ynnW`M@e9XHr9 f1VVHQDZq#]nf}-f Y 3V77iV1 :u!lRdZL 1ބcl-:F[d:Llc| M"T Cr N&X M5hiQ#g) ѦeS Oe?|?ZԴ NnoUyFUX),i̓5qm=A˒Dv+ꨖ%u2ƙkǡB46[_w5Ȏr .,$,ϗyA^џ׺voCˊn$t?==,0m\dQ"NYQnS Z{vPJ{pވƸ.`Sħ٪EI(M=y99mbu5t g_dQ?r{YkF];AS0p]OrhvEz ׃9w6w,aܗYB!޹n (wjWRh^D eE?"+vns[޶')pܒ;Ux vr>܏Umyp7eP ]x4Cq=>s%$iԎS>KAcbokD$vX]/XGP(GU?XSrLmFc;ѰG)~Kh%GRNT7~C.Ff~觩Lٚ%i^{15qz3J| ^#h{g,FYhe͝ 68. ,IE#xL^}A״)~>7'p$8nek=pOU4)pwj;jG[yjufEgHHRsWRM [g->z%_UמŸ;sCy!/{5sGз?_O׵6ZG$ Kn6rPu{wڜfHFoה`u1i V_?yRq{W)Zޖ x1>oc HMXy1ÚQרVȑ&s2 f},'*+`f'5_^>E uMcB\zYH^)H]C0Doa6DLl>:vHw$0/߅cn^"omd<kYmL @B0AҷEwqr#'4B gcS#?N[Dbw (㢼 vk8rHhO.=gq;L= p28n.STL~@siO.c3*<ܛ@J5To>'W}, pXvfT*!; ^=.ۛ櫋8=: X`ܕvVf8)?CL~'˅zR\)J) +1 o6Vfpֺ$Q6S` ݳT>bH=w#'a}n\]4" ^G2Occ_͉oΚHgr3X4G<'cfBpBC=qJi؞=/ŗ|hN`1|k}ƭ6`Qмճ={ſŏ~퇋{%:ĆLU7×_|/X}^-2 $ qr73b|'%^#p`/|9BGWpk]*]vyЮvRb75h>?0i;XZxq?Fajۛijƀ?hcj N }0:kB®r>[&%+Go!T&LH[iSg&LRp(GY#|7|@> J<%N$BaXm760koXL tT,Ɛ"I5<&y4w5W>_$w!~BJYJV4v8CYF{}+ݙ }OJ&^)ˁ )w ԃgY>/MwYSsO#(5)}Lx3׹FgD7%R(Jdt#_}n˗gSνST^Ecq*m>X*-v nVX$H1{%4zs_LnT4 m[ $5B(I Ns~\Hׄ^7vbjXX=ρQz3 8l!ML /;ތy=ӝf`eec9RRۘ*ϣn#,7?ˬszeϙuNë[Hyxhyca;p|ҹ^o-w>|'lqXwOd,_iޝd->,য়-OgPWif_'oCxZg=!4&'hu}0 w~cT`L_U-R҃ZA|`J~\k y'99 |xor" S'͜1ƭߌtCnSҥ=QX\\ANiɕ(yzFwEdHq~x^85yF8xhLahg͘7FMCSYc?{z0vcT6H"{sY(n2Q2wDc"7Ym1!%YeqqlvOu1RK+N?;=ޞnFk* mKkսu&Kᦘ?eeOyIճfqbQbip+ *AF $ V?4I!ؘkYkmm]?|]Og%L^T9O{=o7|Z*+E; i tל[~3qk0^V' OkĮ`Ua`;<h0vE>*IaWOL\ Yɀ4m\  `j1MFs+Skk2J ?=,ЩX\Xq|-JS:/ ڳWyR8X ):,,iܡ>[8`'E57g42^WU29} ٭o/~EplSbAI͜CBi?I51%H)26ab*!%{wɌ7 58ѓO@$6X][ZUS(4XZF݋YGXh?](܉%n񚃼mp,zj[O@p~LbZ`JMe'"lzfn=kW59jC vG1dRfZ3'\`=x0js6WcW`oѹ[\[ɿvWg =^_\g$\W.^+íx|3qxZ$o];&VSIƥ3} 0ZcZVjKޕhH:ä5l+? ZSCBB{',.h>e7UMx/ 8 7$ p Pavcql$-*%2ųCH'L}Cp`ҋyۂOK3" +g!&K*1P(U=9N:^gx[ǿ?/Lqi8𭫽_VGͩyXYg0!mۈ ( rX O{fzfX A8Id,%*%']rR?GrtRR)*[.:[% )&AA `/9;sv+|f8HNmBԼeWҦ䊅C<})䘱;s&:"lp%YkaЊ@&S誦YshՙP{ڋZ3mV i,/1FZ5xg|:`ԹNh Ǫ75)">s`IY$(@PxG@+Sr8=9${ciR2t19)XT:]7(F52xl#ա0Xw&Ⱥ i ?[zJm2#>g V`Bb7F5a0#apj"~(X+VJzcIJKqpF`H&V<"t/cT Zduoe<pk?)^z@W~fſW36o \p[+9=pRNl˧g,/]ʹH0kkyjfmyQd~'+}0z93`wlyEfW㳱r}_?\({4%z6wVj. ]a#L}ËuѥqCUm #D5,bQ tyrw\=rn} %10G_E]NؿͻI"OZɤ#z3(kO_qi /-YUT(>r^ ?_BPʸ\{_[) )AEBtBHYk"Oxn;@5ƔQS7@gXCYX( qozN˃8JT5\?ȇCO'nQoli59"kk+kLORG \>Jg p⽬R1PW=p,`?ԝ`4H{)uR`?V[EBR%#0iB]S,׫v孆ݨ-lmyGau!rŘSuU&t)6Rx/FTJ.KQ(S"E)ۅp35hUSp ɐsPiympe,h;Rpނ^|yMT8ڎO%낸qFӞ G;J-_J s(@žt=p8=7j2r9wBB<"U O7|w9 :x{|VtEsoUp4SۍnJqFB{9Nx4б](0xp-Źw2Kq _?CW/ʷ}1 Ƥ g[BєX^y#zEWH9@ {s)$K .^ON2턻MF}LS$w)p)Jg(OњzQku PkS`lܮ8__nfWMM;. \t²Zv,} *2 _顫 [%#Ͱ"!Sr[8CQO+/{A"K 6pU0DsQտ<ȻCǯQ"gGN2RJMJ`BA׿GA8}K·HF0G12g֬moX XhA6S5*qW݂?xT@h:׉;a&Fqvp 8{GG E97cWj?Y8uK+y=j`|\>'K?o:ڊy^<*?|:,@aw}vm-\*Ykt]0f^ "t3`!{EݟNiWH(%O~-\&DTn#0mehB8b%h]4|j6sEwE4cZ~җy$_\*Tyhy,>D]ukɶt lQ,9l#@ PL+s|靼,C̑riY!G'aY* S; A 8Fx.D!}$,}A,>zQ Qen &g 1:֛-?mzf#t'o?A;k6fJVEKU۔ŋ&0^ HCvJ**st=}&eU Scc -8*a( YBԣ^dǑVzhD3Bgs-S`~a/Őd+$}MW.-ڲ:5ĈA'϶~&|~!v1 Ƨ ֱS-vS1)|^Vh>?!x( Ţʕ 쵞y1耧"Q55!)#nͷ60A83k+X:e? uh㭫`<; Ȓkk7" 0I;Ne)VnS?QjZAW9Qdś_+Hh*]!SVܹxss l塡hC)Ztta/JѡF_*W/]Hn4*REI:|C{{xd\/z>Ѭg?"o~Br׻ɾC\пO ٖ+=:#Wl,xblK=tiK#Oej1Q(ƭO"y%vS0_?mmFC 'Y_H'Z\x{+Āx3{ dE4-O?M=Z6gGECױ^cm4;tܸ=W3\M+ 3ptBNX7wg>k3(n`go)oo53孩;Qo-/U"T= Y'~pNSl33aE e;S 9Y)#mL)ϛY@%,~4FBHɍ>a#}~p촰1(~/o MنɉRǒPϪ!'2Ž7OʝOxً}¨YQ WwH%(uq5r6G[sқTN.cM94yK.xK񴷛#` sʷ=H]` Gg h k#P) b8f#s&)aH{! T n߄4 B}A8eۛ_9)J̴YoQ A{; to~Fyiz8ܪȖ.BaHPfpssj3Ʒ=oxpў#Ic~5'DslF8/' | 낿w^cfVFD˭o C߽`Ժ'9PnﵦK>}G?|/nc~~mmcc3TךV(/{F= D+MMZyc/l &SEO\Al7_Bd}·fdKs(vrL'?f s܍(,>)GtQ 1:Mi96 JmTi[ 8`@ЊCØT:EG$]x+")]=RpHAr[vyԞ2&uصrjܴ r 1ө#~f[s.~ɹ[tXϸ~x>uJ-:Ƽn^^.]l8 Hb}0IpcwBm݊)gBb>$l^!+59PyJոǾh:B VI8mֿ+}LfrɄ̰ ( Tlˉ?}EՈ+ 餣2#VD ҝַ !@9_/VbPTuvJ4+H' G6 O-K9dHP#^CrzǁH|pt<2tG*@et#qEPVKVn*{)i g#c b {StF`][vy^SP՟TG nj:S~6,̀G 卷Z{ѢK0w(Z)>Au_D0gHQcudV,}7tMTr~wtxwƛgRcj{=MGt:ݺ٫4/S#ps 7?ZNg5oe?k`Z[WI}`hq: "R G {ϕq5yUK$i(\}`:5žvm3l]%idψ5\{r}uIK'X]Գ4Ṽ{t=0V̻/O=}GpI͐ti jlymLRG;ɢ,e)Zc 1' hm+pTU|0A,Dx$02T4 PS݀#v1+?oq5`o>O6eQࠐ9Z~)ռi=7l3Asb wU5Zj\l; ?mw 3%wBHCmlۗ+/W)Oiif d D.V Kgz,'D*PxkS{a04bvWd[<"4\!Wh"d"1zpR(e,8EN$\&zx=x.?(e@d0$63H<TJK=2193$+'M7\0tv)$Sa뵧Yq>9t &fc ֋>\B79/3eд7ו zm堾j_Q&=EnK س}앳 J;~ZS _ (a> WB„btl+"8a 6L[[42 %#Ak{_)h?ɝ񜺉 gH^',?\~3E^v9m߲n$1/BÑ#[ Z:!QTҚq c-^atX5Y+]8'ncXY!jGQ֌hRPպmN?ɚ.+n|`تlg0l={ ;Wf}ݑGCC9t':Oę&qN\GhnCf 姅 (;rQdVs ȁc[#BZfQiN2o<8R.f2#YGSkS9}b<-+)6 W3`ĔBQÄ܍Iav<2#onvvL<95V8Km\Bd  <ֺ'(L9AF^ϻRbܽZx7h x#%On @7h5=KcLD4TJo9=-oɡ,6@q}n`0o>gzR4wŽԁ p+U3c{?0hcёw`Vsn_=h+U~ @މV<%t9>۵"mҢV tVUtŋIy}ﻖ1Ǘ_~sq7YT&'+4ErAy$"򨩧6y;m:]U@aǧG//yIZ1~6!GB"gxdULˌ_%(❎ ]Am]La 旯,.̐I{Gq$3 0+'ß1;Nﲁ*+qEkmW!ũ:81#?~*۞[:W xGo4͛o7Z<%AqEm/g?[o<<ށB>:zɕ"M9Ѕkt"şW CY""Ba?Iȃ9LBύN4V;έii 8SHGӅz⋤3̊`Ki3Us]CFkP/ɛ/ȭ)TVsn>y]N#zݽ:v6Eov G<<]ԧ{ur^29'0ni p S{9oGӐcCDLS\y{$Z&$#<P)Ҧ\Q0^itPxI x)9VX, y kV 3%aT-PH#WTHك iy“HUԔH"| bfHXU&,ckndacFUu!C*X<Ɯ dxelמy{pryG O_N,}ꥵcƨvqH{0!(hU嗎D3 =^5ݬ"ж^0G1z-3-{6FBۊiYSߣt# è!9cUNCb~ω=Hq— Zv{f٪s]/O{.u]w[obǚ!~V c_+J q{U!~Z7\6::<_<4aD3w3@ja03=!ֆ{Jl)z3ZQ팕$XF:'L w<ٍ l8`h>hA" ^h1qxǶ?BO386`oMFAڷ6NCy̢mfx;W~;D^ u:Zk·w^zﰢOfpbY wơ[ |!Z˥Ͽs  -1!-e6s j#(4#sꚉjF E} xbQ뱈y'S@]5Xvm~syǚxł5YbmZ|Q^H4gX0SX.>hc>Z5V}d+!`b'. ƒp>x'́+%f´εơB{Egv_~n|߅ X5b $ *Ar-EFyL'Nc?Z?(% M'JfB+㭟c(_ 9/̨%(sBb//56ȥow o24Āj'?)@\! A|5#Mk>m]b87t$!YAo+k_):)_18_"X' 5dS(Sk:펼}fivf$kȑ^>RHI 8BόFO4jxp ^JNewLY1#^+OCŴ0B#)3'lhD6.,vE, 2V./Vw^qQEXԛ G@h1``mJdÍ̛Lav@Ug7{E)Xv 'b(A$2Fo^5 _%0/F L$EiNϛ_.ltky{ݚ9OgZCBRW{w#)d޶W"B43ʗracxd{01o+<܄?u;Ϸꁟ s40~f\g0Лo8Y R=vV1W?-dBR=E1WPx|D 8ǯ:7jXt%F{-HkD4o{&vť(cB8C#J(kӍcP*>hPTE r WsM¦=TsY?Gs k\"<`f~[gQ#{}Q&3JR;->YOhžoJ%kퟓ[tt{8 N~%;>=}Fcd:UA\ҽ-*%,q;Y<^Dt4rHe+: ҝ7C:/z ]}5`@=QLk)ȊA /gyo2Z[oLƵ֦-DLz#CʬyslûSBXfJpsbgj˕K_3Vڷ}gޫx]DWeۤs|VjQ^K3X^a2]QE7PT [s4e],3=[Hh,Ro^23{giZ~cͭjzh֙Ա"u]_^xGw:H{8,&{k:Y$oL$~fܮB;D'H(O4OG3t2 q]kAqg_ vYaS- cuv_Wv<erBOR}PLA `STY˃NK>y8Oty=5/\TBt0=<76"$,"7[8}ʥ;!QU2/y'#c=Q Q)O@4xEKEKy[m7qo  l|f&Z1g xh[yhyo (J)¬YV>QL]@{v*C4.3@IDATaasń%b"Z|$ Kup :yhi={ZN1oeRE/=^*7]- eYŬ#|R=#)ds3 ՛Ɔ|]`(U$N,]*p3Oe|09<a"\s=7S5nD5 vv"\ zc7v§I!Qn8)WA᭝ooE`npбs;r:O ]C9'( ˹ZCîv ύ1`ohNky&@ I1Њi7^76X8<xb4hV8KY1l3Z0B,?z:bCyM{t/eo1C2Q1>sfĈO$lc±>6F+#=VAG>.NWK{2'D;4 2SQQb}~sZ{у\DaڋO7~"x@4 }QӺǤ" hL'đ'#m1sg[^sW^4'x#>i] @)@ILb/"qN?{aO9S&zی;wRXaʖ7ुb8@vps]xk} x/,Ͽuj˯]^QN +-)gfzhUE1|&B0 8qȐ8K8k2l}K* !| /rF3|$#rhg8WɆ(-h}6< a oAox^*bކ jsZ,0NO$V!3\ ju<~<$:X_: :I/ZU(]o cVB7l)rÆYi|_5G:Z;Ʀ/g=%7p1Ɗzj?ձZ[o㽝Z?o$c7jmC_Yq8֛gIܨEfyD#t*LhM=2pv} Ex)v^[l ݳ@za <L]:G6^M* xH.ϜH&BHns 0A%S%|3OTvfz ܰB,gxj1.!xE`.l{puaKS ׫6`f%OSU z?R00e`y S(D*@=u<"đ;,[F\7VȥuQb?t0J  <1Zw[ >CXmY3gm9.ۍYm* ]z#ĐV=u _;R D!~g>AJJ<7E}S_u OwJ O$IR2o!HydE(k)SìH3L^D1^K[w1ڭ/mP/g|z9V '\,wRHk JG:֋ô+Ў!FaӺ.k6 񜃇Evw]Xj?o&wɓvf =iDcRB+Ad`UDu!fQC2BGS#m i X}Cm…('". zE[uF֔ OEg7WB3a>h#(ݼcͦ_yi7yg0535! ER~ J[%}|z.0fVf{gtxIj ˖+ u (!8QWa$S򼍓=nA2oዯx8BQyCNLwwȇp He2<) q]k@Ӣm"F_hCg<ط [A @clD Ivib0ĊI`/7?o2j R/mx[?QwH%S֖or aߺo}G>6{:=Ǘxt -ڦ?熈 wU'|n"dpd7#xzHgX M}ZJAVmGN>WA2^hSqn} Gvj)L!6RH<8{,jC[քU C)r ʹ([.]1Ka$L$" 45`hcIs|"3{=, >(;2clE˥FqRkZ&#DأD;c5U ABLD L84H`hk2 QA,1:V}$؇CJMut$&g&,X9-) v)-ތMS=[N4| nsA޷y,BFSof7u+C>ғ acFNM޹ZN`nS)VJAiy8(iJ8Zޚ¶/rNo >A9m1|wFB`g!}iU Nuv¶P?w&2VGh= qh5$sWNA\h͔ T KOVPCUK2H)[Rzߦ^a"ja^x-Q0)5 {c`` ndO@gFד??- F3FF}~m܄jC()4Dwn]]~Ͽ,* ڊu1h'C!8ގuo,hoy}.zZ>/_]~)0#q[_|s'yPx6 9u4>öML >=JHȚDEYJ10O~˟;/\.JbfǣEsC!7O 8QZt?qA &&_sixRZxܓjl2u//.—gN-ηGF׾|3OfH| /ƒQ"p+VRq1jMYawƅ\x}^KvJٱ &wHJX9(e]7Ŵcv)Guuxwz[BξS탢U&G;QY 2`L(rBXiv(F<~"0}d O/g R7a; (^}cy/| , +w G҆d,P~ɤ6~_W;DQo=Ͼo7,o/- /. #ķc|졽~Nd-#c1Tv{)w;zt᭽ZP{RuSG?1f3j0'\R(`2(Vc-6U=xPƙǗO7_y}O}c:=؝ʙ*:\8ē˧>ϾXZm{>bXX7C7o˭v:n])TFˡcɢ9Ya'Y^KlmVtK Z~ww0cKF]ʩp|&c{y^~>|Ki76 F|d(u{9~Be}8 S8eȰq "烪H(brq[7_16dc)Z3>6w1v(r૜"f{]NR+A D ȄQz#9Gw(v |lSh ɠPİs9h򶪇%w;~NwΧvEBcH^YGbY!v7<02M:̚|O[˃b5_MǺ6 2ɅNϭ:16׉QA~y".;njlai]~ Ύ~'̯"~OA\!.'dG8O%Y ~.z_A>T/hwWHJpc;\M_xB13V䌼`.ڃN5hxx#G* ûs.I)l4᫠ڷsEf(?VDG!ÄۃJc~ ZtaH4/r64>?^e=#Qk_u `~'>q3ԩ`t@i'VCf'D^O00yeuP Z6~ʃ ANIcl$]! f•ݯܔnxFɀ~ZB?m'B?yM]]ɢ8^\^*?`<4\Qnh綇j!wI31w 39A#ݟ1 2nOƳ췿ͼOd\|[o,kpR`߼tm ೧.ݨ/_E!`buVH29K0>5PFalV\fUp?e9g_{IW39U9^HF{4 (J^mͭ__a驢 H-꽗r{\I)po^M_~g7[7|g...]~_SrY!N^58~~Epw5?Xv.>HCIZ+rZ7YzEN޿Rtg<ɏÎ2wsY&}"RKp2@ʵ5*^w{ZdoNʅc!jኽ.DLF^x]Q}=EDNM-_P>A7 `QM A2sfw7P㟢+f(l&lS@1b$V6=n oe3Y:'#nQ RnBTza-h<~]Y^' Ĥ{E5kcԯVFJ>?Ld?uUVÙh#{]>g"]N=fKY9&p!]~ ?*My>w<XO^Y#'R jIٛDAL)k mPt}dr=N]BU ~^0$K>^Sjp)LrnTi@M09C? F1F׼*5t5/ENjx~݈N:$iw!?A 2pDIaKs!5a {(K8V7 g';kt7 6靭I%v_|9؉ooOʛ+~C..Ͼc{r=B?XxUWL-ں>p>9;ɝ3m~aVɐjS)D]i n Uv]O,VE0QS7#Pl -X o,yT}C܀z,ۊwGfȻ kW+t;JM*8PO/_?Z~'EK骍ܻN._]>.gy$:@n֠^h5sw9qs g,׾嵋|(.oUݿ\xq~&pyS-g9<3uzx< |-Oʥa(39]s2z='Uݯ~y}r[N̿A:\K^Dxta%+[ _.lcy~›K_k_ΠWBxc~e? ڔh3;i6UGQ <[.'EN.ϤcSwr%tV gw\ۑ˥rR7+f+bBwdiqGKf 73^gp&d7cP9?XזW_ykCs66i?3ldTt<ܪg]mĸk$PF*gDk,2qt)JVS%0w5 ?ĢQIl"vncamx{T]/?9a$ůo WY3XUq e9$TQH8nM(؀{8Ʃ"yq$*K|ۭw~!ƝF"7F:PZГ9/Eg}Vղ1j#a(DpMU|rp NA`N&"){isS ԩ{h0z1Un*caْhK2}[Rp$#5d?)eKm3;/3 4-*3+ѓ8FXu(s4.bmiC1Gù\t<·S"["1WS S cA6vXEZGag%%fT٫2ji.I(*R|{TQ.[o6R@?au'z`߈1{y\;GCN7.G8a2&F.dQ4>͏\렬QA@6ҚDT([Q@kH óOc+!޳"Gpb~7~_]^t{A՟[o./(͇孟qG2OTl& oQPLEROW7*ܳO&c;0\_2_k[ˉ=DJyrDb΅i *oG;{ 'orKWuQ%BfH'{p2z9]ǒ97^)r#A5wKQT'n1i౱2 SMOˏų՗gXFM=)?o翷7pP5F N?}'屧Z^*R<ym<-rßI{ЩGvx˫..|>'[ǹdoO,VSuHHaTϕ7ko.o ' >|[ꌃw-y3!Qtc(-Jz?W`p/Kur1^#ƅ}3D0ر¾A-ߙ:!Xͱ㼝B@Mnw(›*Z{8(cxB v(SI0( x.7]kbD!jk \g1<&b2ȂQ?D9#ؔ^VHda&L?nx377gcO׭7RH7@r3U{[xJ^gEA;YJܽQU>ic`;)q+47)PJvO ? \t!|fjXi|!c2En\hKzhHOs `*[Iqߙ: .YSopԐO}˥ TnBhMɰ0/u^T4$o |oʓSc|ͤ>zC73* Il 'E(^u,~i#2Dm0֮je2yY1k|CT 8 gLHJ0U) "eI`C"wuR.'ktSf^AYa _-xBD#O~W $K݄Y2C_Ek8Osj%O^= 1_2"DH ]xV`2S3VK#k>-~Ѧƽc_OC\w䑄j8v5[o r,[r.^nySuH;(LliS'b8;]TVKŦ\.O|[-(1_t̡q9+44re OOϧ3%-dK֓ܳ9"?znIO+(npʧNU,B:ƍ:9ZW}R?26W_Ut PO =ftU4"Lg- 3J9_|py{\񇿳|T7*h0݌_~S#ɋ{hJ@J$eǧ ʻK1b{yCG2*ܣ) #Qc(Ll"AgP`y&j0L%䱆i[ ÷y^,`: #(Ĩ" @)ilPtR#j`J\kΓl05Ǹ Aڡ_"9KY"8? @ֻ iC=:xʬo'A}W/Z3DZybyo^ɂZi O5 l$ QX.E ѽ-z)o3Fb^hUQy3}o}Fa|^Lkrی#F+ ?`2 )Y{G=-cdM> N?WDD *&J7_QG_+Az3#b/cV y+` +;ɫ*}g *aL1+es]|/z=YT$#.=s9̈́,VnIMXYnk8R~Q E4Ub{h(' ?{V2RC<J!x .~2uMh 3ЕX˝o׫-9.AK<#<HELISG]1*݁gA•NBmgHGCE>U4Zb9Qqz &v83GY=@=2}^0euZJ{I?wy_u>*Hɳd:oG4~^s<|0Fn)Q2==x?pnG^yUg2 C7+a~~"|ZWb .3n Yn\|X\|]ݻ '?`vi9#>?o_~q oEG7y僅[7rE>G+ CHߴD|̈tb3LLj}/e|x|RθӝO\X'?Ɍ2[q*_ ' '|)?28HM}Ffg$A|x4EB˷G@yTd ʱ&LYB!e= HS!Zp1#zTUȰwD4ȕ^Kuʁwyߩ;^;^EPl%68b!@(ÉV` U۲UH ERz۾;3=s ?q3|>ӫDb"2="M`tx =Q\Bȭ1Lv %5AMX0٭ŨC9e@Dy u0C8Ub_4F<êY"PWvU4- *X-e۝p2D'6$q~֩L2*ABeld6B1DBqw *ɏEb]G FMj[X)p">ʹ'AMXK|N]1kqb9Aшs!A\dDSʮ*\ʞY37Q!CHqJ<`i35W:RITyBC©g7ld'Z7 4XKdZ QW 8dBK}$4X81\< %0׽sVQE TfKmsdTt;CPF)0׎㥰<3 , o`ƲPHU*xدV~A?=ZyOIoZ$nBҼB2y=Tz3M8W^x‚;6<:X~g5mY\QC9A2߁un"MVr>67E\S^Xm=wYrX  p0ad{I0:y`#Kh߫F[dXI[ӷQ5p*>_d<]F![y&XwwWr{fӡ}X%߃fMbo2 iCiD]BeΞR5` vلP1 kC{nڕߴ']86Kٯt܅?,jwaعciOBkiޒ~0&iF{z}D^Mm}(sQ7މD{LRT`\5s"k-}s_z-sUhLs p}7K==1:wTpڝX2,aNA[:]m5 p jy `\m@Iwj)CP!IF P3++ODyf'dQũ)S'J;W<@v[-!.TdYHB}H/ }d:371֡i~cilt^e@d6k$B{=UK^gcӧ{B7cN $(Ĝ]󫊬c_jZP~47G+(#dƒgΝ"7BxTcⷾg}tt葴{{7{Y[k5\HIOI}0:@nx@?9U!Е3;ߪ2KS&a{02Fxk/|t}{J񠈿T(S< p-r³Q;@U*L<\^e95Ï]esHN.+Du닄0^׮g *}]Y -}ݺetëQZ3]Xt yZ!e w([&֔eD;QPjI̺auh\9NKBH*0`V _ ,^ꀃ)X\X a:uWn&_dophdL=TcLUKFFχv'oa%q0SR3G:uJ@МHbW-*`5Q&vP$x )hdi_ uOV&KXW"|1̳e eXX6~ I4YP:Oo<+0m2A0nw֩A{xA(Nìw N#!|y:p5 /[֒*ZKILee7I'0@Wzu2F[51C{O \!Q 2L2 OvR [} w{lE]>D'ΐz|U"g%A$V)؃WN8wdžm s2nKoW?,MoepQ Cd%:88a!]l5**ZP=t'F3=g?e~IpĜ5|Lw9AğO>&5Z! ;LeǾi~.z v|dp&1 ON1kK.'p1ͪ:4`kW/KsW 'sҙ`H?@-~  >\?JaF2iY\^|!<=29 ~J\FGl#@S cKE7CG:LltJ.um\ABѓwm |z:^H _~o^Jeh@i-di8aagl]X=p_P؀RNjS!$ t adPQ A>3av,:>ȴϡf0ZID~YLMӆb8[){A[i|& ,cs`eЀ5۔<հX+1cȤ!4 =BP{ȓ\UJ ,b&B<;(DF#qj6nmM&Õc+X@=Eh!h7^Pw;t_G)q`2(U%vJ &zD$xvFf*d&(CC+\p~U Z2Bh nЂX8= +TQ/fj9 ,8X6N'TT6Ra{iqɃ B8h<KC@"Τ:;was'nv C>VqUq7M"115"Dq0VL.5?}{L%Ív@%WefFgŞ;ҏøQKXw^|>K釯0[i5-k_i}i̭Pa9aЮ<Jٿ sX<$7Fv44ezzL.ߴ{~iI;vLw`pDs(.{zMwIk^D4U@ifH+5Q{iG? 4He?@߄^޳̋YI4#Zyjks..\KܹwD*hΔHќ:SI+8w& 3֧rr*ó@t AN۾W9 da&/[jxOˊd< ]y"2(Pb&)uzt9%/6 n|fb4Ρ@jMES(6k s쭣P ~CXى5**C_B>2=Cy  f39pKulIꆍ4Zi5_k-І`mTaΉi!P"d~,()Ld-QI&⌱6s5h;o¢BbS&f2c `(6)38/fn&yƻ,'KyZ^ gRp> 3*_(* ;m9'@h*fa+DFpro6޾S3 H30%PJR* ]U3c0 PQ,Q!ғhq }:pPj PBBPT*X60I(ݒ{ XnƂپݻMŅP⯑hȰl !/4 {#czW;JL,X6I*H$u+ίvȰNJFsV  ʁ ='Ę#< L8y2[d]džKlp^󲃧O38KTqd*5>=deܬKܷhP߽ܟxA -&Nxtmno<".Sbx$untHZ᱉2LHϯybf®8o"Ehj% +"d&z0b F,Hg,nD# xuq,-"ɰ WB@7GZݷ84P؁9V4e,$ ۨEGeJCx8&آ񏖲Xna[--WrT0ka~3ݝfǀsD eXcE!Ln³Ke:h l$0?z>_R)r$|YB>vj3e0]9m>7YLf[=2w`0LZ2AKТFJb1ss08^Q[^2Fn@~ZǬsŋ(-"΋7@T̼qvq^x_aZFJ"Y ;ƨvni7|z΢ZIJ{ y.`\cIޔ6 ,MCFOM(<+(Zw63Bҟ7!~ ztS$fSii}P53( P"t./Bi}vo>{Qe<T_XN}οoH^,Z~anBӋY 15׻#ڗ-rУT;TtF|a'.qÒԤ]8 ^?b;3#\s 8TVˬeUCѴO'Ǟh> _"$R}wy1ϵz!| &aD}@2`9!P; TVSBPPhvR+o' @aYjzbP,J3cuK\jg582jO@jJ)xS7Zi:yRфM7Q"؏-hC6qjƬe )<(4I^0MB$uX|0Aija37W0&@\F+$إ8^MR9BvgEWxwS#_5qKƜS׸?1PX!~m̂I3^ܡqLؘrM&Zܤ`"M£cDO+ZR!sMٳ_2~Y]UwʓZUOvm y;۰HZU,4&sqw'`fԫ(Z͢0= (N,f:bu2 YzJ L M4Iڃ ZwN06saynhPVWB7Lٌg ^ I]LD,BƮ޳=8؏D/-nKT; ̨R%n Դ^4D2ri`VՁ?PV`hiUD cv$^iqx8-4;99 ݃/prMݘ -1-K\>nS XC8[ 3#y) Ĺܰ~RyM{1ܤB/)DtxH~U[,WӇa s앉zXv*)ί^Hl,%at;w*]ƒP>}nVoC&?*{YX:vわE&.oր*}^*OG!A953;P ^:q6"=A1;p(&c"6v`'4ccf`CC`.Nu? t. pPHvk=xuriԻΣ7N\K]b|ighre\Hgsa[tt-d2G~.-zO?_O^D)' vˀ2 Yȓ<8{B|\d8ޘ:0$rܷX="J_+_?CLf'_INrXǨC9Bx,'GYY/.j7^XN~R'=ģ?/Wt=d*piwHV@Y8ɗdaIDX>)L.y51Aם%Y2Ա0n ^3n8U4`.<g&B w|=\Z# Rchcݸe,0u~*+)}zax?ʓvmc{ PjE\jp5[P08V #`7PR@Z/tk;ٮ͞#Vrn0D=5Qɳ}|¢nYFDbLN"zqWp/gα N/q?ӂ4 C1]QI oʆ 0ʅCpp''ڏkQ믻l[Orڛ]N V3i%SGVf^ބOG n[$nGl>fg+WN!;+( dQS]o`&Et1P["TeB&} LwNDt#/>׆@8ez{/=>?}2`z8(m^Tej睖Avd 8HeR!*\iwIkcoOccnAhfK*@jc3)FIYwpW^TNhjQzҕE2O-P0D>eQ'`66a0rbtYPS^S17}h}q^:l{Eޒ!`Xàg>8΁eM38!R,˅PUݧVgmpg-E. K|6)ȌbrHdؚ`b傧Wgk}f[(Πa"0,Lݽd%uX#0WZzThyV+"CGS?Fi kyTOOh~BC5:Rq&,ϭ5TU-\S Ǻ[нߦUZ١# A+UG~ -7r?sB)tl*$2{39$NJ 4Odb &dz8lnY4ĵШ M3I {BtK鎻H{nWyNJ{v35|e%*6XN(Xwuָ*};ރу^];HTݽc1KLz7GlҴm!"9VG03 86`:QYN_L?rЪke.;(8HT9ݧӝ モ:E+7UsxoM܄,"!I[5댦TY:N3<Ztea3]Σ73mܽ5_M@Ϡff B(\$n1 ^3ghxS 8OlxPyM63CAD&Zsr$L8 ǀѼmB5EH̨W3.4d[+{m[`1U UEh.UaðJ,QH..FOae !--Y(5LpOvn3861Ȧ.C6q8;d"Of}lmB6q,WYA-JV"ֲ2,9 P25p*8|~uoꎪSDgom5m3f=9T-UjL<|mdz6&uoyHȈ V:Hx@@eIY87RSfFh:b 6d  %^\U$+:=_$Dm.]#Y=)e*cXey N(J 5ľ)(e^e @9I eiB!]1uR>>w/,mQFvkE89B 9paXzaqaEøpdc1d΅]egM[؆]fʫHϾJĉgY@b |D&aן˞^cI6ER] k924GG1 F~b x+]'6Xֺe!aCM2n p^G'q GU0xOL5t怖~;TG2U|:3CZx@8B]b0pBћ1gb鉒Y9==gWaI2qj (ڎt,i[andLppQuP ə?CL 18U$;ǻWaMРq$b"z2ױo>{;7R #P2;:ɒqvx4ިUN<{f9In6Ś[<ʕٴwt`'!g z0!;ZǭG#ܰMŠudcM3ŅKv؍\!^r(,Y&IWˊ S]6#zU@&eMCT8~Ї;1JN Fg?`KNG(=hhΡ~9"z t>j{0ɳyIT;V( MlL}Wޘ BE: N HL`6bbߊ6J@!mMW')l{k %uMBۯ2J.s!q›($zJo&fʝB8,\]WZ,v!*88D7(] BS}X$<C=.od}*/Z(ex~@H6Sԓ*sEYXEg{ow(~Z T(9,`SC) Uj`%HO{6W Ġ13;x;xP@Vc%e ʨ^BruTl|%/*zcJ8;}دveO<ܗ,>C)8b&ёTmg+]y^͹Fc)sA74Q\M { mǁ5%>? ipo 8sim Eثtגs!ɳ$r.!Z_O-d;$IVe|vbQr42\z+酓tm\!80J3W> $$wHϯx@eI41a5Ety ,OӼ9@J$t]e(eB?C#nDn 3qyh;H3jґIOe]XFEE<Ȍ~Vw V56gh`eϊ|VkRw(p=2"[ō#3jgf#8.1w;'%e DkE+ˀmV/ZK},0U =j_Z?E l Kmb^-Y90Wbeh_J 8"6ˬheJbt/ ɐļ< NdQGnp?WzdI&1ZB',9ؓIWxfAM/w]B -r]Mm@|/I6X㥁ѵཻgQ$`^ukn^gŖݙbe.Gyɯm(0<vQH+ 3t;cN7T e}.l-(hsm:xmP<5) xs":w@?DB1*!ȴT<}n=c0J49af X{.TZiBaVK7HR,H2eU0#gjLdž4ZVTM t(K EP κ9u ſe(&qTlk~I%!A۠˄ cs#T;А-ϳ_GBH&)  272lV5soDZr1&w&oHSlRhP].3Aﮔ%ui9-7ݤL<ޘ$$̝=PQ!P;2 2[n{u/|Z7K_%j?Qp;<ȿ\Lj/ώs(/=wǒP No%Z_>.ðp76;Rw (mʏ3c(\#;S~!l<942u}̷_h3r1BT iiL%{oentiϦSl"`bsPk pNKW1}@װ NxrZ!P|4br=~ǧ&;*2I=Ә&152#3$|n[bL۞.yf%y $ta֦ބ;$,Lg|&.lֲu[7Ff%hvr Tπ;@DԙK8OΛ.C5@ca9 y\$Hqeɜr/{6gh(5_W[Rg١VYd*(7!s 0 ,@[@&gaDV6e]G:A\@%~gG<߳qx#coT6dUdsdZl, J_%pg!'._U(t9ӠׄGm<<#XqF1@p!ƶJ\I1ݤU:)6 pV|Ь&BP<0OdVX,BD$r{׺SJ0r*ؕ{ #ЫtZICN;pז`}ML`NPER1ASlp@H*/ӭ:l}mZU#*+ u(A|46q@BŞy@qҖY12ͥXoNt$hXxqnqCkj ݡpIN?^ , u=&:)] Lm2+3R;s; g"`*^R|l܃[Ґ(."tt5JC|@[0ILOw~o|(iĤ:B\\G_\_#T(O^=Jn.el!ˑ4b&سi|{'^nܑ<ط{dHp-}4z)֎2Im=~iC^1nP8kab6ޙs}Ga𰂇[oNOYptWz;Rs2*lXlJR49u\І=QƷ5*v L7s7]Ljt:94߹x~>9{hP vԻ16K~f.:8Eszސ#07#Q,!h<5YJ|H_|0/ .Bg6x5 "_ONMבE0t9ji8;>-67Qê]6@ -9G82$Fƍ `>a5EpQ-QF3lSpάI7߭EW=F f@IDATP`1ݗT]Z `Z?v}Ɉ-,P0IbQ7 !7C@(`LqTX(y $>k\~~~)}o |רKWgwVapǹ1U!L0vC"dڇGTD)X(1(R"/xH'D1 Wb`*"Y`]}ȂAZĘ&Rk"xXDO1S"GԳ;yz}ꞿBЊXZ&պ֍-_䜣#q eR3s'pzd~Z:fr[30I{/2giSqŮQi8<0 =gbx'^ PFOZe;`ehJ֕>uoRd ޓPYDEcu1AS%2OD+:p\~PAr_&FNzfx]-ǎo7 \RqG"\C-ݥtTF4M!'5g}{!{n# }ө7Ns.g.Kg/:ɫ(w}ɂ*EHǁC!\Ͻ'ӽw>hD?dXJ/ W8N/t.]qY9 CSnh ^fB8~t.!g+1&Wnu*SD -2!8+f$|@wYfic!,zjvbg PqMDX֑jq2.;@!4"v)1dajeLbgL F .뭁d@&<.:qj<!ƶD ݻF;zhe-,D6g_2PGInZluW46y4@'Usjȅ=)Iie }>P~`NqHOt1G y*%` lLX'serhyay9M(& =P&y E2kt#qSrZv+}na)-SkG}wS/N_*ћBщVFnR]m'|!lx$DXw\&pI"ͩ=0L]! J3D2B둰MFu*4W\"]ْ:e"pH=''-qNHbCWH3SjH >z%%Z|0xK~`7 OXW0ZD!2'Ү{ҭwÿhP!O;V,IjM>yyn~z J:OZB_-HɞU / yUɃbb ˤ}S~ϤfgF)Y 4t/۶\@mTD {@bjys)/<?w:-ãϤ{t/~1NL<&ie)ݯgN+,-]+Iº fD|վzɀPa!T/́p6D23Y~ZZæ(R*'PE !qXVEkf]-Jؼg v-g-7,w.s!G eiT ɽ̟ͫ&YA`ɵ U9 m_.ZLjDbzXzFm\p`lRk.DT] R)@^ "&xFy`ZE>倂qMA nCTS/=q$\Kjs{Q0_'!$Z~,7@K i?V P޼5*]d7MC.K31*­͵^PX@EC W{UAa/h(T.Iv˂m!7rY9/_$ytɢ|5G`#bJoe5WC}/{壮ݟ킇ח"@N/QwM5M'Mo]LYZ'2+-_'4cĈS[s.J4e* M;3n<$߶il*]"Y}dzLz_H1dS+zl5ū'cДxHYsih?kT`hީ!RsjgoI%^iRD)as_fi=8¿7=xQZLgrgbz _{4QbRiZ"=*VWBJL&Uȱ"=jkJ<R'RG-dRx2J҅y]/Ey* 9 N:0¶m :r=˫mmzKfLB؍Mt'.=ݛ#mj<&լ X9"1,2i94]Et|37``9Ek范ұ, af:QN?j 'g&qQrNu(3A?gp ">y kf&:yBu{]f-.vUԉCcUJ< /7f0P:cCKA,}8h0ecגK5Zfh}iP$U[A]ku8 ]_N 4?! \%h^Cf;Lֹ2lO 84G*Cord0VHأ@+G T+=!4Pf;w97{.xĽsoaAk|l8h?*wת$^AOmބ`]h 1ye lÍLT \P*ܧq3P-AVqz.{݃FzpWɔ/#gZgL]00jeh(PBwB&GĬ~&<|0,p%i/&-f 5*zhK zMƤ<]e<,=!Iy)]^|YAr꺌^`9c Fc``x 1yLӍɃe1^LW?S{\Ef_ E]q6t!*b4+AlCQ>[~eW"O01~U2eJϚ6<6*)|Vϊs,xb|9$5<\.C79ّѠ8[_PʃskNù֩TX-dt{nMOk/*TPhꔺvnRY]oN%6eGp}ږ'KA75<0% -q֠VZ AmJpvdtC'^DPZ+gpKU45DX=l\[q*kǗیwiG<q͍(:E!@}ތ!71C JqƯS~1 ];7+ǰw{w_!<<"CMZrAiӘ24QT;5Gb)MhܥiLwAGC24x108jr-àt;̧1Hn9p/MTƷf3I 7XXNҳ^YwBL؜8hrFVuRy{LFM8CCpU #PңU!3@x79"'n0ڌs;c|K`$E\+POoI V {VRE7iq|j %.`jUiC0nb] Ͱ6Q-)1 VF@\We8(58RSƵ :]GhPaPI0C-G ٟ #Oe`j`wFOV2 0q1ɺ?ؿ[ V^8֠W&57WsK`r[4P`(dFW$``| ,F󞖔Y 8ϲQs ]h**[[-o{B ]&VډQ0dݼewՀwfLq$-#S!G mCW.m3=3^6CiVLd4;oKR*,[Z6QeH+nLP'2XlzO]|@3v2׸^241Zzք%[ %22ڄvY iL:3~0dGܛ(*"91-˷h\nM@Bo,W@SRA l!D[m}6ksN$Jr+QZ-#5d93U0bElQve" [0[pٯ}ޝ!آ;Ua*P` bd*N  3CgɉzJP]rFH7_euyy :y IN=Cd|N^M5X3}*yt~h˫׹pf^?5l>p.(<34<㜸P=սG&I@(ЫYzrP~%QABIgFZxV1u鞄V@3O5ƺ斤9ײ!ʽĨ؋ poǪxC1[eE`U_).J22;[9Ac*36opX ^5m{77أel6 ?G_E,Ɓ7 i:xFu(幇tI~~`53Z \X|dJgP'D7 J@t&i`jDF6cHJ|֣̓nSxX*Iyh PFW=CbS|0m uWbU-Hr`C[w,rZ?Ej?mޢuFը;$kA! mR=d^" g:H14װھZ7xO "a"EFPTik?}]ۺb,.{5yx_nHlnkN&F8 tVkrx4Yd`^q}VQF^keS;hZ#x1WFWUeiV06Av .7^>T z:( Ӛ[\-vdY|6ۄP+#zIE ! F132&Z7}1:~AC3ݠk(gS%W%`M2+Vn`v7L9 *JUw rkMr`d ({X%e}x9J)j&#FG9:N2l|k Rt#u"oa]/ 0MgEA"bi xp6,wtʈ<RJgES*\J;QAAI~M3zv|wp_y g|JOޣmj'<;&jDłanKK-4>D< \'WWd ev3_ 쒧Ofү~X-'2RR7,eBL5Is0ٴA7Wo$y=3=W}.> $MJPDI%%Q$[*WUSȶT,rX鈎(R$q¹vwfع{< $Up9}~}>ӗ.!'r$g2^y~210@6iU þ bDu |qy&Sh F 1BCMWmd+̕ܫ'NԮ3́۩!1zģ^޼(Z1M `r9F+g4%*_xv3:!%"2ҹ>h{EGX>%%0x6Hsg/Ҳ !pf?XO7߻{my oX!5 ;(`lޢV_PW8R4lGa7MחS8eyH^jqPH 4^|,BkY.Qm,mOp&2py͍UЋkӢD/j%z7J6<9B>{ 3Yؕ&U'4_sR1%s֯񡲲<Ԅ%RY1!XS0lxa,egzvĖLvx*S0-D-rPLeoMSQp x@-hK~$Ҁ$ZB+ 1qM'7_,bT-1[ QU @i.Ȃ`3SZy cN}ҩҝ6LO RM7kgHDx] #iMC `VXo[IMu^QƼ?l#F|t"zv4g) ?21OsF"B?*׌F'j# GeQ -j9wƉlxMk-y^L噧ɴT)p(Z===gLIR6=u!t_63Y,O:GwMF JC98{NhU~nuOc>s.Ʈt~#o%~]>jp:%7>hLh MY6g"{ce@w;ޑڝ=C~lE=R&#Τw_ө J~Xd^forDgNݠ:ftQt˵={|PX]% 刐T5\*sba,-Y๳ra@![co(BN GWrWtKi&5IYBַaCl-x2 Jx0QƘ'Y#33|Z}eNO3&5A^h<@{`9ߧ}^%ob(R~DEOأO:t5KyM O_zz'tt!g}k`{HWvFbQq ,w bt zD^$U ?un t+ٚg(Э3R7 .&]e/*_*1"썯5"JI*p}Yĭ2s;%POFHixÛu[_O ~0IT9zy0P2>eK2w eS4EmN4E 8kmAVRpgZֺ/+*ȍu)T&z+*[. k^ giX}! ַ"RQ6؜q`dNm>떫X!aa$y|,4q}f5n~X%m+^q>9Hw*/^{tk e\OSTI`lVe`UErӤbp7'Xc4a.iԣߊ'`GowP(4%1еaR|m4Dh_?*XT(p@r@:J1:ctsCaB@[Z`Osi's&M+:E"fv 4%Ɓ6%+'Kx`*J@TE7h艨"֯rVVXyjwmgqm [SuOJT'Q(#cizߝss70⟥O?@"z3!& h:ڗ*)Au!/%2 ~@Ix\ž3223>gҭ7Nj.Œe A4H:FW|fT{IU 4S#L|43Qt,%mug~8g^ G^vpN7ӹ 3QA;cG5`ප4cS>KN27_HNw^=4NtGҙ+-") zDquq-}/~@å[i|*Nbt:#afPr\0Ji78,/HDa<:H=¢="T'}hцiJ+ӘN>2!#UZGN+fK,2nE9,\` P'~PKh7$) Ļ;X:xtookf} QN3‚rhݦ-cweK"7#$!RĝWnNX R[ro"Na&Ӎ2ȠxNxz$zw ML5p sA: #^'5:/k<oCpzkl#{8 KL D*˵PD~ЩQ !%jQ.`𨌠oaxӮwx`>j 7iz"x_QekIJHȑW*aA)N(O(* >lUFl Ӎrhu!ڡys*G iĺNYVV{s1%oieCa:g#A鏍1Du ׳\6zY`(`0X{1RcE %}fQ*20]iJ5(8,6O8#ߋH쵟hJt,ؑ*Dl=@6+@* zhbơõ0c;Ɯ 6bׯ 4aRStdc:Y8i p.e^-{;?G?ny `-O`A_ <,a,1&q@pj {s?,bf^OFtk~ms<:9fU:=PWR?ЍFteE\0tqKrK`mJZ**(FIF˜R1AOF7ӷJ},w**t(bW֗y?NO 5cIg[Z=uڥQBVAѰn#^Fq*_şOw~OFjΐfP"A@7CP@ʥq-]K ~ .SAKK\ՉqD< * 6t, &<шotcG6C.;9}prC" a$`HJ5͹K&bM³<3I%?KN_4H'No=g\{e@d7/lX TVCy+^!F^{5h4DAzA#<6A'^0uk^p\'^~vfӺ}m>ZًM5ke5G@R+u(\a ]4~`I1uckuThUR̉#\hÒa0<|;,S=Bt4f6}E_Jr*#4F5H5=z (Q#OۧݴM(TSĐQ@KX^pF%i*\='gT|. UQ-R@~`ZjDP4V>/A{7FZ@6x#g\}o&&&x&"M*YaDu`BBcR`WJӛƈv]{MAQ5K81tG؝-xOf t=`rK}1G|S<'ubg#9>Q\&(Fpw'GgQ^!L Êi+"<w8 $4{(mw0? 7Qrv4zwpD-0$_v:Ϡ(e|FMJ:4@ia`0x10#=ry|wqS1O+Gj'!9vBk-@۷ +S1?~ʏ8q+ y/9kba}6L~ =j쵽H D# Qvj.cÆt@ =" I6gCÞL)]|5`@}\}ހQthScbfv*L}ލwns!>1=@JhD9};g~^{aǞ~ ϤnL/w1Bo_Y$V4xcϝ2pln NCE ]$%b/tV 6Bk=R8laU52`249G0DB׃Z40 {R-Wʧ4b0X."` z (ޫ!XQ$,\QB4p8" Ճ %+cM(D%$e_ Ubrԯ3i|]bhC Ш rS Y#-!ju7lRdi Q7^G * kmWxVG@35$#"J3|OcDcOx@k@|LƗ'@䱶F*1 3+TTc^*P-ik!`~y~($ί3 @dU߬E)oП ѻ/BFٚ?tawa>G0XлS%,fޮ%-*sNЈ0 (AA,vVhx[x mi>w]JGCs2g?``LlGɥP#fAlSM4tE#ߔhUΠzDd8WvU`-"fݔ5١(tSOisk%m@lbKbB }$05e";r\{6?.WOO|Xz"׀sQK1RYDEy@6r>\Cx8ñ)rO\̋('4GPgt{F"BjPqh]ڡ1-d Ka J ks=.1!i0&yډ)ZMOwrTBc -iU#xK5΄:^O_aoz?HoH]N}ɳ/ͫp@̿t!55 yA(&3R<."i o讅ЩnCU#l@%q<3O6Դp-A ʑU9hz]l`G~Q5Ɯwoh[`,PZP%sZ>gr&l5OzG%Le(1@z+Y6D DS'`>rAtt0z(4=wM D*gطb_-L+B0~`<`bCV`D^=wWA֠"U.ʗHd$Q[a zz6D^߳"!j 691 tJh{-!^D x DkGZf%V83 E hhG;>48)h &>:i@"@4W px;Fj=5G58cN.*9LuJƚC HK<QیvD]-V05x=h@IDAT>} yDƻӫLP#t!^D2mPU&i"ZnZ>T9?17; MVd剹Z7atFLF',GAPs,Nk]eAYJW*}Ne{\l?hC#Ҷ3!K]E:Ge27ѝt]GPxRmDd?`.?hcȥՏ  _+P6ĤyײɁ>$%$eG; @=2Y C EF ގ"DP<ӳ5eZ&0p3ϲ$Q#Axŵx*cHy!Ax<]{Qrٓ1e@]0  IvB!xVSb 5L#zv4 x(2fxıLr7<šU~ۗo܂x.C ^ ֠h!%`;İcBgY: ^Nw)]&54 4Dz~a H >G7.)`=:@3maDx5iȂs[^EQ0Mơ%s EL4[b*b#j,CHq1g#M#7@JG5,;2~R6D'̏nҞse[)0Yb`p\CIn(9zCB 쫍tN?h5 :sOz07SCdT8~E ɶ F̗ڝvuh<`g7!]4ZqPe=\w @F-y 2U2)лuO= x9/B7I~>tnӤ=Qn7r͎0F(9sjzSC';J%UX4 T&6t*T4eHax5ٰ:4! ]ik&2x-b:- 4n :C`IF.kF }lCs q/_Kc˯<5"#˵?: F`;/3wOk+ W: N4R }3/Ԇ"oL6c`REJ+@p4Y@"IL= CGxVUG pEJ uhqpm~PJщn8~E v$p{k#K QE;_@eeWĕj4 # bh79tEXuq=HP0 },< =='DM2h]rbnbsoO˖3?^3 V@6!7Ǧ/cy US{bY V)P8/Q! :YXl/ "d k) ϰ/ u{F}F~eyfD4wkEŽ1;-w @E*X\; ܚ[g5fCņ?z_g.#X3i K΅ђ!@ L܍;D^7 *h =I҈[xޖ(D@G$lU /8kBAy YGz1= %#2~1\}N-IM `T+#m]gca[C#F]#y ƾ cnpeɐAQ8Ҩ Tgdzl4|L\p5Ϻ( ϗQC!E4^ucx]N>w}woBLQbQT}ih(;nGjwByfF8]iGy/t3|Z̰?FHjP6v$m"Sv#BQ%P@vmՍsBi}_{岈aCD.]>ϳ,(GB5HFsȲx\Ψ(%乿dH+[ ,7!hS*sj~!u#z {>kH6 YctӍ~*29Gk{DoYcU%x=]tvL6*ig1}1c(of=8v)KSzh(4zh{LnDMzBnoYR]+w =ɂw}t/{{_It}uMwW_(J@e@Y=v֬e>F*P-rjWhrzzd>B|Q.@gch ׊F\yZ,l11c;`s$n(EKa"!E4 (XPuoNCp!Y3{Hyݏ5HX!dS95_ Kp!ĩ7+MOL(K"Bxi5gaSp )LGIJ/ZNQt # LLx@%b,GQ|\sCT> 8- Ry%H!vg2~BlD(z"dW {Qj>1)|GLh zQ\zzDx[>=7A WN hG<0=Ca9!ns AQ>vh%ZL >HI`(bݏ4·WCP6Ľ^ *s g&$Iϻ5haL(Mp\Zq-d-7s^D*3ow!Pd;Q qBJKK,eP!as((QZBXs\^ gnX.CVK6k\0d[Gb8[ey~>6,o ss1/Y92!j;n!{ghmÑPN>}HãYֿHs[2F GOsO<8*Q>*?o#[YZ48hٓ]KSz tVB)aP8 #0 mM QS l\B1.gԀV#l܈0i=aOUތF P"X\< <6ug꣍mwtDžboT5xa3z^Q t!=W! C3bblI1Тێ:OZU<&O R ~\"؇U%bwHʿoh{yvwbe+*J#4$vS.w'?G>KH70dh M'L9y}Q*PmI=-T ui?pƉwa2Zl=ŬG? !roޏIǷ颸X s-ymGahn5wIcPʳ%()k:0[Q'vLΝBdcu/-$ՕPC69OSC7$r謉Ƴ6JdļƙlXLa+j kc \{iׯMg #}ЉQ#қ1*fM{FLZ0˗2 RR|{7,̅'#ж}&Pte`@+FJN g&x ݨvz3=F#L s:-)\1gC1FtW?|{'9Wp<j#(9%#DL>qݾM8m 3;8 Chqp#BDBk aۺp"U8@ f,D=9H{n#-si~c@(}a,gODB2±JѲ6e:4$H0oKJBiñhW(`*q8:\@b.y[sIQKg:&qH p fdм뵄Jm4 c,@6nQQCg~Q+F P|^7~3lrc҈LxC/#5'x-UA}RtFކ-u; :߷zF< > 9< 25Bj_ҸĦW'W &>"u<{A[OJsӣDhǍBvaV6[V8=;W@ fAp}'[MҢq"Ħ,TD)Efҳ~JNm+]ft4uI,yrHղv#d 13qt*{څxK_Nӧ>䎑^1eg׈*A) M;r֛3XuZil:P3X$F0u+q]j1ԋ` F=C)4BN2"*GkݛĄJ}D`(S>Ot,rp뱯>wm_3o9T6OE:~\)]Bha̋9+YM^rprTC2 0P4lު̤>D-&t?ſ{󑔣">2累&=2mtZ H}DGa6>zb4:PTk<3z$`Gi"*:Z(A61Ao^`QT;iRђc2B˽iYiCK/۲4?"FfbFS϶IgMHmqBu>X*,I}V`,2\Ë#a:VSc)("{;b*oC{(`SNiy2e1~}{7\4Ğ2q~|x=oH*`T . z 5^c{r:rV<q( phPrs?MzلT +Ҥ0,3hPtVÔHyb" #[(y :V\cNmuN:~r*u0VYVA Ngu:Ng KǧF`x^=3XcTB Ag?iɿQmtahOu]ao,h_#Hi C+9e@ʉgF:_*Zq\oS&xfh+9{R vJ8Rf\5|%yt@eDikGH]j(D9wB8X|OQqgrOÀo hrfz1J{5CY!CEdr(T/J ~_!\f>kg@vQSp -t/z.+ d3xn[_]I+[wCY[Cq ޮEOLĿ[Q:*0OBQI*D@ejag-ĽR9ì5R@\ϴ:J;q'R|A (p !Tǀ*<o'@Yn*Sb0F8p}h0k^/ӹgk/SM>{=]xar#ɟ(}xLVpr7]hF‡`"vZlPhaOc [4 %Tshq! 29$>O$P5π-mz s Z(PBߝvh:A8+|8 AJ͜"LT97@aɲ 밟Yt=3Tu^-"gF}؏4"eW` dzsP\;=9 5 80ߢa Y(*}J Jc6[Hf :UТ;yeCӅɦWbz+:@q 8KDDž#1$c$X('FU )篧gyx+J eXYDfo >A0|#nɔv,R #ZC{jm7(U 䞞ez{>'N'NNuw"=8pȰpQl=ft+{tcprdxM# qGzߩȍ=0f:VQXGC]; s6x>0z!!aK2_B^BW?J1֨6AJAn^?OUGDBkD3Kbn#$>wBh{UnQFeFjT* k ji5:~GE_taF_#o3 a-ڽOv8\hŨRcؠGPYe *{"M+B=͐neMSG5OkWi$d ?~h)ִJkԏi`BBy,ʨM50+dl u䴞ՙf8\t42RӒgGyQeY ^aF0N,;`LcϮu ?/`6y~ٗBxm afKX0gI"G ﱯ{7Vp1(#v4!G:qCUN?fc##iagnhʯNm9-xE{UQDJVFa)h2=nپU6:h PV6n6@jC&s#Ά!!}u=U0 wo_Lje)mLu=׏, n2Qr @m!TO"L9>YcV96euV4V9^֡OpE5LӟM;K?g# FksHE\ѓw({þ(w~؊cd|I=bMUܠ<;!vsDgύPx!?# zjb*p~-c+th77TGGG#de*s,!;()Z\?z` .6Au A(Φgw{~^T}pj4MYDf NK'mEk-G&!F &8UԻy09g䠟<} w&:WLH0!YJQF^mm=]xyɽo#{ 0.F{gA6]yڸ{X]M(33lCgYw_'BPLd3 +riB 1`ְ`"'[fWD":l)tM[ #PjbkaWLwWנY>5HQps#Ox1x֠tÏFo ;@Тa< F"P !G{<>&("9 A_bfޜC{1a6йηֈ1T)gؙUծi<P?eZ ek@hMѨT<"JVؐ Qʤsi nz((BK{{"\SAh.&2.\LccV1P4<4٧LӂӓC,r9" <Meۚ6/r[ȓ'?d ָ>mYjGF>iը { RDVD6>fO]ٚ?}3Y_cݻ\a?z h;{Q}E5h:0v;Q5=mS[[dr #2Ký5OAXE)kATd!%pF]!bNk F+ (' F}< 4W)L%iE$WoϯѥGi:` 6Y3ʱ7O X4WOkK|̏X O7e~RD A"ܐ2aw}n @k;DhnQ{x*`Em\ A&aqJ%o4 y*F[Nt* aTk Zpb3+0=ZV#Bs4"@M^::9!A8 o=o.D;OZiaBTvNohv~!ni FL eEdk3wo pz}:uPPžK">;k6gx_V լ@IDAT/5V5T͌s܇)4֠#h'kȠ&>쪗VIm nX86fτ1~~C!`ag]9*gR#Tnaj Ϝ1VcMuπ!abxꏾG co[bCRpvѵ6紉 %u';վF0PBS'Pkw;_N|gWbX#9$eg{(U%zA0^>3HSihQ}BsE{?˳؀S;u4z yµU9V4<7DPm'Rj!nsY 3":P 9DB*$*T/M;< $VpDmTViSg9Y|>󭿙׷^3gk#2U'f&i(gӺGy<6:Mʂ?:)z:c:!tkg ݷCO E]e´JIg? Az#jZC! (A/M`IC 2j16b Ɨ 3*Zh$Q6Lh)6cKϰTx$6ZѪr 0 5Rt "eYr&طzM9MDoKc90X-8qzQЪ[f!"CD:OZ<>kĈb]e}:L-,R;A0gQmitG&MX~`,7b#4v°amߠqZ3#ʺ iB\ b= 4۹ nDK h58=(c- SsÂh  p;'$:A9P+fH#6`㱜gД}DQBC' C1 { ]e遣;櫓4?96,-u주^ߥ HN1`ZCٌ?9*Ĺc F8^&fjˊlgj 2$)U<@Qcxnp Y0@ו{;iJ9Vw|otBy^c0 aszT" Q1aҠKsXlx$׷&*pF GqYvڻA֕Wʜco':>HׅЇ+'s̏Ӌ 7֎J%\}F?<9dTD PbH W4y΄NAH2? C<G5yx7 STqm{sD30Ot, %ԃt'ˈKhh9@G蓆BxNf ggduf;=ӟz2]}QyM7~'s;޽i4!=#yFu9ٲJٟ> *Ux8agM,4^ao>x<Ã)K:aT8-w;GCj4}K mtD4/`a)FG'z}2H}Q^^YJs4?z*݃k% ,G^'ZKߖGTvc{^O?ٟ>4&@.=re>[8_ /h/3;+mRHiҟ-7hŋ4-F_/`'lq"FWlͰJMBs )`)F_]]$ Ӹ|'K7~rF=" @oQrD~ %vQӘhfLޤH[eQ\8/sKf-=8* F/dLê 8s k%*}tJGSC*ʳ³j>wFi?SC(CZ1 k聙hx1J7DN`X.Fb۔En2084 pJ l( jcWX!KA ;ɫZ`x' hA]CqƆm}݃?k9P GWHIT Oj ÚvV4B%}XS o\YJS(\4x|NyJ&y $La|rOA**Ct Gz0@?F|5T>Q㮑+|c\#jyߜlո6&0.)ɷ6ax q#| w|3 Bp;U#Vt3x57svu: jgW.:xgsiy񃴲x 2@;h˦a6cS`;ܗpri06|Y(B d~>_HY'# gzeMBe`/G15;4X!OnއU&`Z]^&uq N.zac՟=NOgg< <6BRv(s-\P`,qe"TIK7APH3,8*7GwDޜ(ֹ'{bDH솴$n&a#82A g#^ctd_ ]iCi7Sl^yGs_h$ VzkO>/E3!rGeCw!{YmIݏG?MttbP?!YNm9t;ezvգofU9dX 4t,QyB!,̒A1i@ "b־:JX=X6kş#`=2b!:I:%N`'6Ae}?(``#l0|GOH.HL{QNGj;:V   { V5}'hsvBbWjCT0l{ 4bLTCLװxPcư?BƊ33j GPD*8y)@#f0dF!y/0p :b0k1'6ZPZI/%,#"FoBFXËsMiafճŴ>RjfGk Lꢹ{7SL/U}Bqh?~xyh{4qf]XDz|.8JW~{Pz_=Dh@"BVXG;-p$~ch}Fv5><=q@JwW!p*V߷B1d/0B(>+ϤPָ7OapK<\/K[ʜg̤$1%q1"5r MHQZ1 S 3 g HF7@?=1^{YƥS"U9%S׀ ygNL@z}S6}>BMWeEJssJsRY>G+L\s,C{,z_6+3pyuTP 1tقN9zGHO~iHG<#bC[ţ|6%Gnvg!N' ҨjҸoqGAa^Lϧ\jzgQRWXmʁTQCTD1ΕΉ/,ɐ1'_P5ֆlK|<4J:aܻTLf;M!@Z&y1>;〘 g݈K܆0x&}t1h'&${{>-/PU˿ԥa{?Xӄ߹#)]/\YYzȺFH|26BPiu_-F'ؠuF 6Y H׃]LlxZw层gAf0j=%zهw*R]cӼ*a*ۚxԁ|C-`p;&z?f.T2Z R))A`fx[>fiA|(wb>G^;&{z޽pt!(Q+$LE}ýTŰy$$t(vh=,&q{,TҲ]*jʈ!>)X>$Pƿ%)(D;Wϗs)%5!Ofxv3>(I)c0g},r?M1Uk'` 5gW]^WikP+ M`yM x}\_ Sl|Q<\=raW|z-%?[~r#u:MQC*+nU50x_%͚e1\'<_g,t7l o.SYn^̘mn:)ϏyC}S5kCYo7n/S!zgocc;|:<.uIPvsgcblmjrm(xMZ:Zw~/s)tTxEOB%ׇֿ{<1aY4F5Id*b`E'>;Ә< GyOm')J,V޲/2+%C TYkuO;|"$CxI^|[?˂zGă|vŊ*Vy')Z ,V((7Ř&S;/oSeսz>KPLZo~DXgItnVJܖJH!䍼v} 9f1ٰj f vSt#2)9fq?nd];0) hiҀ܋ITnZ4= 6`+ӃON9'of9fltpAZgc) -i,ih !'d0;뙒IV %y&%ō9<SFS B[ưx9L};%e7 N#'Xں<7k#X?͔~KK+LJ-O?r $IxZ'Edy7+a\I5OQ"d_+ӗc~e$/JxUˮ;^W.3=8iSJT0")ck:`;.^q>SމR")qp꺄]KQwu^㍻[ZBtM3aw8[k@rE% + ZDkKw\S#и*n:\ "ɝJ4Vh<Lb#n_rtAHYVܡ}@>K_ʄŅoՓֵ+LCdy?H}_zmG.΂ɓk^!xt5$;F-ioҌA'fgsݔu*,|(jY'_)soKӽ `0%P ^%[U1B?B睠nZ, Y) J:;dh(20 cwK~\@i )c|Ƌѵ. 9Ř<޸4x\S Q:X+sSZvTYXh$Cqq_VK1!x,i9)YXBYw̏GN <"#^H:A  ?FJitrD=%1o` H uL0W<&| +^hk|f*>WAG1WQE_1[q[KQK³.гFz}vO1B&"܀s6=paJ6ڟ!y@Ƙ1ù#0}dYpۅ): h31o;фS05muJ=*ϐ T8K)j=ϗ:X)Y?%jǻ;vR4*8_;$wxfgtQ]@ @lPZI~rqFQ΅ZHI?h=Vu41I.'x혫0ضɈe|+O_OeCBQ8%.ӟ8%p/kV U[?%ƹW2z T}Oei+~gy衟k/$W-T,ę fq8A7ffˊuu2bVnŒYܗ*&FI&'l\$<VqQM2P(OBǀ Pi]%쀕qUF8w:M!hE8cZzA,|F%LY0 1 vJ)ƥneqw%H FwQ ,D* ʕ1j>Hrh,2."rGa\^ΞGH221VxD(j)WabA` n*^ ne7CZ/F) O$C=k ;Ie? jO͹i.g?Qs ?ۮ/u;g~7rP6ICk? 툂7sPL0(Mց(}(Zӵy)b ̠`—UvIм3g/V^v }Z䵰 -KkxAsvևOODo=Gx-Y,wA8^DIp'&ǂBl5WwU Vѝ(Ekݹ&w0 'Di3Y>X`Z,GtmẀ 8ʬˆd#{^~]GۭzuMg;J!u3{\!CxkX_X&a{i=tjܯo^gk~pUO=F]{ďQF᷿/s?p 3'gFY11Z שM$8ghj1vH-HNbb*` / J )bL03ʏe,yNCau$m\x:nZܨ Y.>5iCUp[ooM)&=<{vws5Nj;3$K!qx1\2Ř z&"~VIm"qmj;K p\ƔBh.H>1;x t_A5pk};Eͽ#ΝURZS¤m&HDֹv3\bF~a ILVV*Uc8 "5V#H>zڀk_|MqhvϤ,(mwu1yNA4Q'HSRxS9lRE/~+Bguj{I05L\%%X(`OnHֈPTog};]ɭmtdw+1 g`% ccot߼8% e_U0|Ffx&FqW_wzmP(THESG%ŞG  6FQ$QZ;$Y5hktn[+6>'Yft{做$^q'^cs :{Y)zt`Z׵O})9făhh{h}l?!@Spzg8rfT9 e'./ o,59t 15F6 )Z uzJo 'pLᤄ>  g aό@9\nIs(6a$'oez%/~LX{oEww`yFy <F{ɛ~l*2F3#!XNTy+ֹ @IuJgo^<ׄYzh WXr#) \>n |s-p;oJ8yn V4<go}  Tcov/q˲@2fڟt:LUVʝֶ 9Pa3o 0xu8ژL^76Ve:u[s?'LLLs_j4H@8ݹ方V3sqAq*+0 k1T}'!32"z}gedOCD@Ĝa>ҺU8`ƶN翀~5\QɲQ~CBL-nkF|qqqkp潼bN}`=XT!vT=߳OLyt"ݸcS '筼 < W0;P)7tn-_cF,ʰ"^ӵ}/W' kZIrϝ9\(fCLӖ{nXw2Ua߬ݻz֥:a[YE!̟bY\N[[һrʁ9;KOB br"ޥy6nkB#:cJH[! cMA*R m힣E5%usdP -~1m %a2]3Gѝ>h8Lvc,shG#ʇ_[)%pMz#xʓWͬwĭ@:Z(G,o]*~S78Xd{9Wf}S<@=;X82¾k ;|ºkd scbB\/ $ }nΕWr'e- ?Gbf9Ycvc1@ˌ9628=C}'re5=pmjOfMxpҤ:X݇_WLOM=p4_kmab`u-9|Y#3); `!HY 7O$EV8 7ϊzUrakm,sǕ̓ӥ!4iZ質x!G؏icŠa?B`;=E a0S^bMc==w]F4Aq\uĤَCiW ygh6!&%mlr^ϝ*$ r=NÜXm,!3~U"ɭc㉒@ %7tx"h[܁-4bsv LoW,ˌ༘v$M!WKXO)u7:gX艵L)ŪtH\UhHctejocL<7VױwqW.1jZLl~q`uMwzs%Ժ@P^xzKtAWLZeP<ÒngɟO {ii뼀߹,oQX+7PO=uz~XnMgmOR%Ҏg@r_dXm5lw!Vww*WtЋ0^y($ h<~Qz6MOb1Y[jOzoZ.hNw0?Q񑱂{#|ÃXD_ #F:ϘN<^y5Oj4T<,:Jz1mμ=¡;ߌ~7<^'_yEbŨyKJ f CpZ, :%YokD?LW:#*k:)Ga<% D ݷc'< r)f'?U凡&O9V}Q7e}9XGܡ*5X #iPx~XpuSL+N~`S;ŮQbά]#TƎ3n\zPZ݃eʓ+2̾Rp3hk; -c¸[+FS(ajPpj8ڞD\ _At7_<-~Bz1FRR%A'q~b'U)@1 \e */_c3T1Vǃ>.;;$ڶ6e J Nxn/[P@\I;㿔2me տpm'VEE09_#bt0+d%hp,oux̙ڢ7Dǿ,/#u;XVw_9dq"odާ=Nik K[rXo}XI-|{Gv`kَ%7ɪyZJ輦Q_'LJ}2Zh@A h;@ˣQ%z=%- Z?2f%ź}<:w3}ŤɎv*w6htI zOjŲEghv4rKd{.tF,тaYZuGE`Zmô϶K(!u0Ey 1dJY0$n ͓h yyßǖgj9uV#ѣUDwp3]Ov-7R2"/Q3JD2}Dni)tjO<*b^ me( ) 1{.> ]rѻ.,S רkI}91j=VJ9Cn4[  Ug?)4iQYVx9G/k 1u!n+!+~Oq[wOvb{S"VL[f;]Ⱥ-:mͬ֠fq]X=OΡ`N.zG7-xDlg%Ԋ*X4E!lW} -6@ⳑ!N>]|pg)'nbD!u.V/|{ DYShy2)FCYUP7{gJu ߬Rj:5w3Tia6L?Z`~`prG51w(DIM*h0< C)NhX^y/- N^M"%Ra)ʵRׇxHy%V.еy\nq!R5SiM(4K'X=Zm_4x,H^#;`]}#c^|}o: yȾ|r<ڟ𧃘xOfDz't RvQ;:k8AIp7=;'\qBXW%Kxb_ܙاqA]; t[1&ԛ?B \Y.BYq߸փu? 2xi%1_mZ'v@՞i2""Jxms8ձÇ s-'MV2ZFCW,]v;{3Gã fR-UÝ:k'k&4MwD0ivzÉy+RT=p}db5!-{Qݠr]8>nZX+TқtKЇ i^#FV"wV.aXaGɖ+[JCP\KEixXs%3L~waՈr/mCl;*gU&tN'KҰRY]"_8t6>Ih ptcy\ys}?ge W>?=u:$fd$|ofUlշ};Aio4cD&1lw^$~(7Gc=unJ]yX?cݫnΡBl)B,]OKy;w>G<_x.+;9]:A= >l"V&:]ں|;":~3=2^rqù}'Sy(M,l$0ED. Ľ?Ƅݭx偩5u?;k]-a(#Tb>I Nl%R|;Vt<ֶs/܊;w)_jr'V{y?y^w$yBpsCah@nO¿wB!ƣB:B`2׿[zY"]0%dЂ /[p"V4-c0X2MoT !N ‘.{a% f+ 2C4K);?r!{#p($D;1*\jpk%=ԇ 'ں[@KL†0Q Ůe@=V41js|NL"9n2} XnfyC\8փ+>N,eu:1M ΟOgNMss:Wf 2ifڈ5lwF'b#`E0-wEA9/ HWIP'Aᙛ)0mr ^ $Q`A`ƭ Oɞy 9+M^#nq(b@@r/n^nJNmy#RrWuIHvOd*up]D0N@쭞'qqf63&4q~S97 o2ᏵPE(]:WLس+V{|O`y> Tk{ww>?vUvͯ}n_)U); w(O<{TR^ \m"u=;1SbC֣ `f ]0AD›)?~__/ϟwe@FTv/~y\eA\I8yhNjxVyy;JW/,7ξ7@ӠI5d~v|҈kbU~R U0;xafkrJtXY!h:_8]xQxk^zx3e'/WmEΕE6gx?voΗ_L 7@,X`,ӃS(rf팁ۂY{hkI C^3Ѷhy\Bh-BCX ugVk3Ta& +Mb*1)p'w GJ_YS\ Xŭ,aPf?!s^ lׇݗ 3n0[-oBhDB$ +Wg$$(HLu+$%;ꭏrH?"}!} %$i{>떃᧽pg0x2fB2И%*b.`Dx:8B[!ҜNgu(G@;\bKͿv]+wN-jז~哕Ւ3Ez.CHDz]uE/P.{g`B;y$mp?%}@AD\,Wr̒rΒc3pY8HkǒF'#xntȽ/gak 9 ip\„ϰ*4Dڮ=鉒' Rs E(t8){)1 Ef/PW*b#O%YɝA(axjܳZNR7 ‡0+A{/}J-Xt_bw#LXk;e(]z|.Zleu,~sooϲo-1Մ[>„Z$F#{R̖9X7O_^?$4ᚼ<O a;_Jֳ?z0aC 9PJY>盶x{ @hz\&O CP%E#lN!wMOJC.CXzQ^=-yϧȳ~Ÿ'8O*?>o7C*P.Κ oy> WQMӑN\@+1Xn\R!¸V!)9͞j`A^:>Is>ަ4%Ȭ EyF7 lݬ@syP f,јNi>ӔډSē|k7+1!2ͯ,K;>Wüp&MohGlĭظ K+3p{m\nWq _aʷb ួ_pWg/g0GRëOCyX{v<΃`awb%b#; @ i/5lXFÙ!PD?U(ȦU&@Y0(\)IޞAh}&)sǖ壧Ou1C /~zyVDIsK $1fxyp-TҔH7b>Q4bQTR(\d_O!yӓ҆/ 4eMjKOwAu %h 5JD1m_%O c@4g!aM w)bFJ 5 mҭQs(F,w˔naw#;#Nx\L|{SfdwoB.IW/ݞ:_y0%X\~CɽR:V'6䋡ZHҬsè%iNZZǃ}'7 )ߍ._\-ΫR X{WhZ0Kو.U9qV7LC)7X#I_@%o/ wZ<)~f_Zv$cO{ܟRyH9bx=q 3{ϖMIv/'7||?9HF#Jڷ_ Xf/ \yCwsN e$VDHTQ;LH Bx ʄ&Dicv ER7π0$Y 揩DS=1k01ŗ0Һ8&džxAԽY%L&{ZfO@ez {Ƶs/+QV ]ux}XѴWpV'z׋}3/,oBbQ{Bmw_Ӻ)6x8{vJvEop/$/ Xyw:_/+ɷ0nԸhsy y K̦r[|iy鋟XgVpv2@F kP?jm|)m%KD77M џh2~zs=np]L~rx!g(K=aIo}!R0!4 xI ac k5J{f \^it!Z C%!$MĨ:hq<= թƄ|At !t!N7=4ҷl+v6|C@F ״ѐho:9a>30B(Qˌf>:b>{#ؼ=iTԹvpeo^ }BF1a[!͡B#yF G`0F0n֐8бFnI!st1#U X; I 6}v>ߚi0]saڼV`59`|h+YaB]`(J(woFXOr '1q)6Q)46+1=zoUB:AiX?k50i ?~h(gօ׎?'a= ϓgg>yepaRG_6d{ttnȏ7%z:yb_ R|JK+AS.4ˣ)Y勭7㡇u)+]];ڐørt׳i|?Y >J'z-_|˓+LJF\|h"c.{4)zlt&B],9pW>S]~/~x~Hbx^syAՀgB K(3>ۯ>Y_uj3?` .31K~_/@dCS4@.J0Pޟf1-ף06rZLXJIIe-U]gpfe%$=ǗK).O:޾{ ˗>~bo|n?YEUy)BQ4s8U'`,x@˃U^<{[{XY>dܗ_TtBʐi \e\Ix 6x,COfA 1z]@<<+E7/]__f FBƽsc1$u_)#+V35̈́2w\@$6C+MlWV&a?}_-sw0z)\11k5q&ddH'FR7 Q[)Ez?WYjCָK`9~)=%MwFʫOp4Y"bٛR  2Ϸ";)f}n Ll1aKJPg-rzP#G1`1r}?${ 1w /a{[~Yp7*ӣNh)({w*}:5H@%Ynz#:%nj%oeC!u$HSNj^F.)޺k󷖿/rҍem v͎xǯ]Xnԩ4wGZw_yJ픑~OBhX>NhmCg{k`: a4q/9poEMiܹ}k˙KNt( 44_`_R+O m%+ǫq^ W+%~,)?2W0#»8kA7\ %n -t#Ԕ{S)]N6ﴦL0mi +nz!";jm@evlb $ w$Ԥ[~-hLoޘ nQ#Ⱥ|lvv{M[{s`/CMJOzoF4F6Z*FZ;X^Y`#F%!nrP%k Akl hr]o"vH)`9:5BÒs5,F a1( kq>+kHpLB ֞v繮|ۃ2/4nWNQk=BZC3B2z\ytvn\hw߻}|/=lz\t~\z9jdn;F| °?;Y( J:rx`Ǎb'K*Tw]:ErY}ĻC/pK(2<ꃕ E \4pԉ,!/dWCw%gͪz%% v2fn)xpka9v<1&Bv :#Yލ> hd99SֺHHt$JDJ^CV<#Z3:XǍ4HO^>Rq c1`>^#w{p&_޵[x\( {1sUlfY^U˵wk+Aʭ`0h/~칲 >v cJ KK1è^e:q<£Dl|>wgoB.qay1K 2z]l֙spgR 3>PV5)OZ9XNyłO#INMػU.~@F?pC)R_^Ȏ0%Q*}rgn\4 הN(+e~8w[Kr4"-s5v?]7c`R(dh_v4kUNNBow|\,r**>坟zL쪛rM ݿ>MͪFwsa8un3PDZ Ͽa cV4QK<%Y^])& tNjꍿ'fH'|bˊ$u3ȂZ2 w #FJV¿to}g MS<(CoqĽ C5E]ދIsTp ]r3S[ߛg NuBA{_ä!F'ԧRm\pƹc 1LVv숪Ӊu˛ Z+ρ8aqJ VY7" 0\ 1&ϥ˃_Uyh.{Jlm(sŒ%w;\' oݴCP@LJa۾(%8پJQ(|*W?{kEW>Yσ7fk'^x% uONjzj_VPͷfsh=nYlޮTd_DV1ӹwYv<GFᄸP]I?0A.C~ ;}I&LpRVASR<`< QxN=b2c[$v7/AJܱ&Ib~JiEGYƎO܄ۭ̀Å'3f,d_ϝC,N-_p5F5gB zP+4p[ܽzr/-oԝrtU5Yao';<:S( «2+) YsJx{b񍀻ZAC< Mj˜{JH! phs\m|+^HUl@ޚ aw4GMlW:fZ>d#Ha!8UZ}ҾQ}"v OÞNfKBbbp\ܟ7#uUz+y5c)-R0rO˜JCdE^rrgSҵ1/Đ}!j"*F )11A֡/ e!B]a_Wm} O?o>ߵQb33J뾓sYu.(H"=GcO_F;=TG|-CS}NY{?8o?Z)`^سIKdWph7;[1Hy,lITj+@5Rzs{=ߝKq`%B7,(.zM8!`^癫ޙhB&a7|ntMZ;D?4m᪕5Qi:3 vG:vZ _*k”+]p1/W|c_^q[vvziFQ|=Fm)OS{%XT2zwvAa2?118޿0sxڇ?K(s_0Y!xv,s{י *;NpI `~,I:8}/=bX=JYrյ*! zg"Q1jt#/^&ٕ? X!G7\t^a)J?ZMu䀜{ۮ62˜kø[`/ˁi%KxfkR#ĺo rqr;zU*0=20:Bɧ^#ݾ_^`I~FbH:R6bA ϸGyDl<\,O(~O+#ZPb{Np퐇>ǻհXKɈׂg.Oe9ZXȎ68ϼ,CHUsIڪz~7_ȡte(&7l;n.$;$@J5lO{jbxMhǨ3B߭ZU?ߔ.9= }X%܂r!fb{:hʇ\Ij=P絸Y.+zS*$(tpAcҝ0:h= w:uӞ!wp q0]vMAZY"iy-0ɖ-\0"4iֳ Ϫ2ݝfVۣdKk$H aMzI,at?IbÍi}ݘSxk_ u֊ Xnu ߱ G ڈʢ=Tӟ*9>' ?LB|D; .,}f,by9~Z$l%ĕoj5nVޡC+=odwVQ<쥋yvas$aRǾ4(\gL1Z))GJX"$ѹ XRƀnެydS h͋v1]7) `S30⑞s"OLYK "=N`l$V Hi#G)jj=sMo <!G^dZw}8~gvͷ.;ZswJo$wm!"k!O0;]p9``ȔD pv&y#ׂ/<x[TNǃ)# )QE2BjuB95)ֆfdϽU0 .0b 6H=!_CJLQrab[h2#e0JBZ^?7x@S d*[hfs<.yco%;SR,A6ԀPCP7t(oHWhݒ(-DK;7]Ј0L18HC51pj0"7%Yq. j]޷ĖP6 =h]CH)NQc4B$)351\ׄ q܍i\jipp٫ ż6ŏRr{ 㶦\'=yY؀A<beﱘ =fEtw}dMXDˊ 0<+)gwO<<|8i\&]|c)NjWJZ2[B+:*7_ziyj/.?%TX/~k \pT[k+K\:t< z M0i  -3B4K߽r_x}y}q9> ;uiێ('H!ڴM@qw*vW/&/2Y̗fqđM%Dݣ)<vLlOElV! g+M00P vpa&Yƒ`6&cp["#Tx=q>'ܟB7 zs;okoĤI {dN%Y e.}Yٯy>&tuM$L~3/$ B=X+wϝaָk/HpJL!z3fs%4'?GWcZj@%RJֵ408c ayꌄXzMzcN@pt yQ87z='#vp,BMwY"2\z_ 3dS6p\Әtu L7\O=@,-pmr  u u;:unD `s۝;X3$(;ƭA$Fj#`{9{wև'{ ||Fpd_3 AZԶv\_ ¦&ݎg-q0<^Qg+x(巡noV{n6> ?|Y7EHH'5AUj7k:²D(eV{&8A·='%!Xc>3 WNe1-16=[)|uCXRyrs?.io8b<uL 8 1EF0;ߦƛ7`'`gu ǖ_F½c z$NkD8`J꺾00D}KzYģI|W+r$$'2"[ŀ,UAjr+f(Ke[MS &=bÒhkw#*HV+&u^h>v\iB0'k1{1QwSs2[ϸl"ڱD ԬԬ'>Z㤒r('Rb2ҽ\Q,?L];Y Rz@X\XsWiJ>w\U'1au/@\, 2_%GF}1_b, ]4sZCivp,^h1ԉAm\CA ?4LgZF탐}?%fWvfbј1`~c˧?u2wϖxr31DMj3x\ë$ Xwoq̵@O];ZƩopoݛaK8HQ=}@ ,wF.qGRoB[aY!0G IaD4_ 3:7[v)McG1WJmX{ B*/#e= Ǽp1gp;%G?Z7lx'[}vw4!3W޷;Mn7o}$QW&!6xgߚWfݾ #\;Ok aS^Y1>畢sɣ-6 zx 8zh_S"o9x lz\d:C{N;5rf`LΌ;SFJeý 0Y+^or0~✱C!R+;̓{rY^]{{U.;_BCZSE1će@m Crx`k'or:\LY.lpdrؾcǗ#G\^x˗k˧?ȉ]GKi] s̍m~AIdqǃԉSo~xiMk?'0o貤~ ōu '[K7Yyg_o/_x;¼MMeB1S@msrG yחwUmϝ Aa@)𗇸 '9.(aޫO}j}2 |g =rC~'…V d>fw+W<+kk0o7xd>f_3Rb4S\lGg8}e$%fX݌H05B#zG ɶ}иM74"jsgj4w⩄˜M@"SX4cFc@e5']=&0p6=$~jO%H6^Y~ !  bf3C:[ՔRa00G(s\'aXsmRoZՠrtx"|~~!JbSO-'+[=RIJБۙ -=;tdռ y[SU"4HK.ʣ?^<{vrUT&i}$/1SuHi \9`My15Xaŝk[|e3;ѿY~~a>) yx4jYKD"x͏9YO/,w?x21[B/r5 ];\q\0ckWж6l[^jfix<ۭ;\<&x`7: rJHϿ8)poG1ּdRtzII_8%xY<%wOOÇN5J DSg.ü\!Y:^U'?\-v 6ס~5wځzsSc68W0H&Hmdh'7$|ʀ1/<ŮgQ)ّC Ja9ͼğ دGc7VVn2!lo347u1wIr m7t5LL5ajyE'мMvkjޠje_ kFUuFxEIJ?m14IÚ?! O QfJHuR'^V$g;V,Ar(*_tc1(ssɌ79wd[_D#T eyon _o8kJks fp3N<Z.~<3P b߭Z Mͅ4vcItC3e& %%0SPJ{4q<1Deh#@q=]5, < R|waC0M .Uc}Vxrh/lXS}es+'u M#Z8QzmX_o( ܶQ5D }ɊOk84hitleLW 9%P&k;Õ y{&fF{弸e:KWw@ДIՁ| Be6)ꠗnSo!/O}m :g`Cy>ؙ7"@qsR@1h-,Cx-b|x.P#D {?-<6^k30' %;/iOٴogSO볔ۈJu鳵BH``_0fy!Ε !K/@;+UW>ʅ<,)k)a51!JM)\ =cW(h}ssSU4QR C#hWjcӋ<^xS "9 {/(ה•G+ۼSkJs8<6WS #st57U[C#-aN-?;)1(V/.> @3!MpkN=z|0&hu)( 18%6(xr)ߌ<(eܞSPݩLKL//_ؿ,[>ab}DtRߥ#lz+ nޞ3|lK@M ~p{Q{ >:E7/4$Dpop߄̌M9I+g}M?ƪ/=n*}KJvCkCk GNgAGh뫛fiImkrܿ?r*-$cM{R"R^)-XeJZ&[3.8&ay]YVT\X152; 0V{-ҳ]&<~m|7.ob\yX>$8_jU@҄lcdڒu.to4<#F^l̅$Xq` æ0WH_)OWDTkە⯘WM1G<%ZK{st[L.FKK[ˉ}9̹2ub@}9BV.(>̈́2{.o=[oaCڲ_Hj,4T ӝxF4*Yh~E'~BtyxWxI6@ :pH~`v 7D@{Ɠe. )+]7s[?>@ZP;^FpI1~Ûy/1G RХ2١4ӟ"!*,_ v.% lp]}?SH{\NLn-жciygo/'Z Jѿy>+Lϸ֚x?ƋᡞPTZ*%`'z_׎7  ƣ㘭|f˃#y:~%>SXobR6v &QFvo}Ky[w,H^{"^ %ʏ<2]W{DM H]xa;/o,7~ڲ`wyƃx]r%D_U\ 2~ EzKkh[;dl]Q_ +#6=2]yv7çɓk&`4$ftDҩoS BLݙ!$T,j.DX|N ij2,|iZ<cȝN"E1焩ݜb,[p~f $z-[67QȏQn&l$dHD1F(bp tn^ϐk#=gD02?@YwkWDL;JP;(hs-<7Ia oeiI^'0?(9dذŒ Inzk8]Yp9}߶717u.27"cd!F9Ij]8H#E q ,{J;=.mz>K,qr_sфdLy\m\5f6DWm@PrlmׯBTn7Û='ˣQڭĺhBmys(W/[~}'EzOoO)";"~!H!j~V7z|wbH輹/_^,da?Jtվ 呈GmaPUWϓ3Ծ8x'*aVS΢ vEO38*)%ԑDxOZ(~APr(Wsy]}v[.ۇxm~r*]jBrnk{ sQߍor %(}0L6_`$\7ȑxr$ SyF!4s$Ihc63=LjM&S_|# ?VDB?MzP@]3=icB[(BAA&tyq{y >wgj@ZPre(Qnp)+,Xo kxX;Fx@[CDdq=s#PP 7{tYPlA-oo|k|̏A+rr^ ׺)#W}K1ʗeEnNnVhH>Kg|-[_9,t[V4wy޽g*|=^ʌYxTwmΠp&f8rRysO"Ah< nlj/S,ɄhD)=OmoeR'p͌ck_-ARR%!3o]G!n%^.F'Է3?卿w벾}jM頮hb}*i#C]B#awPV¦3l˩N~֓g xfgbH:_K/W-ߗdwBƸ)d \bմ% "= o(BR0qr99-m\8@D@iEJNjB], qxRΐ#|"KEu=Wa吝ơ.v茞:P+B, u%N!n=Clᑭtn)\8n4ƍnlo9 *t˃nԏ4!y )9N7A#v Sj&}G "J:%H~-k cVX b{GL/ ^%s=Z_,X) #L`1$c{fni'ޑz)r u/xwyzٹ"b|_Yxr|{5\`Kl8ʃ.wv9|'4W?-_5z~OY|3!N~,$օ9p`W,eNp+yvDɚpS*a10po.l\(Vn4%|~1p{xƻ:gbSo< ϋre_LaU":OuKU^ل4 )%8c]J:sx ɮ^Z>ka[+~w+|yDݿBYPIiif*fvOfd!zbhao< />e*Hr\C#0HЩz? _zmd|u9/Z<}Sn^?X> ٔ;Ւlt˨hFAʔK0Zƕ//`CÇ/_Y^ɳu+7`%E]0%ەXWđSů|mW^˙z\?s dAs!`y>2GTyO i/o/o-32ɗ[[3:bx3)f+N$ϚWٶXߊ>Xξ֖72g-|V^yb9o7~ ]*X JC3bI}Je6h#M݃'A-5NװдͭqvҷȞ/qZF sֲU&%!KYLa Z~/;ܮZAfM":Fx-5-<{ƭܶQRr= QWq7A ^Ns9CrwuļX37Sz(3biz[PuCe :]鈒p-&'5fy#1ӧSKCMXؗQZ/fi_(\m3MLdF!n:ޚ;ň'TF;3 S):`P~F5\q߾z{eg TmGjy5ۗ"%Q{yy3˯~3%bM6d_L@{͈F=#OO8NM~^z:މeBϚSbÜCwgwZL{O < }-$i8jޗUJi%[fc)eb?(c WCq❣H*CBK ڏ(edV̀ҞSXڜ89*=f~VmÁj7 )BK.L { ~%l=084WE5:s(t=ʙM͇X]׿|#|<s*ag#緕iލqs/]=3T h|eހXyȦvXTJ#DkmeԴ[:ztgxjf~ڷ? \FclMQC;=zܐˡq:V(G og]{~~\/F26Ewj.`Gc.Bw`!e1r֪hL|je_[Y)5f>JH )Qו!ȗrxGvhRt N=?=-zg'OϾ,AICKNSzjZQJ–14;YZJb9hn|N7N"S l')UMIt߲uwwI^\dcq!rYs[&A[j2X k0z`&yEXeroZҟNuIHPcELǀR5GL\FUmHԳKkKD{W%UmB_a< !-mao&X0[37J Ϫ,rgrrRlx,\eiS U ^ cxWM`Fy O(e@Xm ~ q!a0l-e:)cko9{#x7<]Z~\y(, jxj|x/z_< ~k~:zԹqٵ9Mh4N yvVp.GӣGecV1%ns>~*#)ĸ{%07.,IaU`yp)JWk|B? c1,Spܟ1#2}o҉Sé؂07O)a nZ4RZǩwHE(}/?Q^\Jx&7J.7ָ|z-&8 o!"%w\]%ϼؕBZt+Z Ij8uJn -&Mf`NHS5Jqɇ;<̉зE]I)ЏDiάegO=T.˩7^fD<6MQߩҺz u@rm}r;c^^e

CfU٦JH۔p'VdQ;U$ƭ#6?[fbVe$ӆQ@\A5hTlʋgxMZneo*ѡV ۶z H[Ƥ=[n{ɀ\l+\-҆6~11^̌ dC1凜2DB>N/}Fq'>ܼ4Yȣ)8_Iwwz wü:9,o}+нj{>)Lx哹')?ϞY& .ؕd:{n2(1js! ȚυonRd쫻kJQYAw y0-XE[`Ac

kNJVʛKk&,i( .-Xʣ>z%E9[a5|۫x$S{JQk?txm#vǣ^|~ѿRl܉zgy_]_~ۗoVAJdu\@Hv=U4|h+'K<|5Lдx!l!;mJQ^M |4u0Ӝ|<~QPhdy<#~ұ{-GB}٥ǔ={of鰡}≺*~7'8µLRHo{!bYZNy gƋNa<W,&ֹ2V|'tЌrJ=B9(r;ǰY/G@ਃWs^tV +ƐrЇ:-Mw 0 JkoXܻ{7?ly-q\jD$#d.kYy*SB8,4KMQ@ϑÏK&Ky(Y:S9lc\$:|JZERqK |Ԙ<,+&_A_mXFQg m^2b .-1hP nlK%n\?@%:pZwZr Z:Ay7 S\Np Y@W24 NF ̐"!c0k([ĥw5Gs7xGJF`Q389r;Kڜ6Ũҭ<)=$^e/3}H}50\߸<јΣ4)NVҷ{IxlM[kGxN5oMc;R2LG; f? ɭB8r"BLj$ʆKz^uVJM(F vgJr&m.}^Ƙq?LJּ-xz{ 8]~ILXtymG~e0B %/.Jufg\x<]GW,}{V'd?ZYxc߫.kIjc,xc9#UJ<@{71/"0k`Sݻ—]gs !݄<9gt^M1۲x*TI<Ӄ•*5!6?i4+H9=O!rFx@6VN׼ޣM˟[ɢ9 aDu=5NABp#>]z9C}`Ň]O@ܚ_Bd427T* Ϧ4 DQ%*&/lK֤c`wp Ϊs k]Ivls}!sΖOǼʭe[syGpC;}I-!9)Lm3|B̕3 {RCC; ׻=y@pe]k__XDͮL"bܒd-Lu%Rq6ؐ53T栂6~-]kK | C&u^ݸZ0u5\2 "r+nҧu.ԟVz3c\mX԰7#d%KQ"6羓TMVw?%c+-+1A*IYcAvZôGyQn⾍}+O{ :Q/M}-kA=B .$0( MnPhW9=l,?0RL߈ڕrz%G+F4Ǹ( Y"}/j {Bm3nBJIb愃\G0@l} +6x !xHG^JEsGhpC0m=m4TLx' `[ vU$ß7Elw;|7ԕr6OfԗA*`WƺsM?ћ%ʘdBGp!Ogƻ$GИz.SR@IDATP A=8O{Y` l>}, ))N4AkwSƚC/8b~rx%?|dYVy1(s}3t\.nz΢n>!=,@zJhF?WC:!=rdy3_Zx35^2!f~y-Yp,!0ް}o.L4Mux FW6VYó] DB'#ٵxk?/<}D0c7(Na{~2j3j y^dkټ*=g|@S(`2C $fV\ohn­?W 'XSRZO BUNUMWJCQ~'k&h/ pij};狟T<ӟ>T\^r0Ν< KNOx-162:Ԭ屎>󟿻x/upFad$/chP[Gn8|;Z"n^Wkw.wת2J~vkJ t-f+DPAks )5AbZcJ8ܞLo.!9zǎrdBF@A8+kSZb󗰰9?I{\tCysu.G`̒@<%3RvE(JXƬ [y D,쮧ٳXZw"9Q">Xwy)Kʠ1M");?[˺G VCߤm)2bJc-ZBO~CTrd8[~-x[3kynD x$ntc:8t| ,<3CڎBR8x`xNW|>/x3G °W\fod^{#7EywnaIܐBQ09q3]`}^~元ǧdduan!2gF`N,(Om:sf_//^e%דg<)h:@_<2|UvNe 2 C'g{tk &mQs-^i}LkhCN2&H髲#-[w:>3"`Clgd nb g>MG!%(5, Nu}DlC,u `9+u+⽚yFGLѹqO-t,v0HO!+A|l &gVRM'xvצnh)[,׬)z&5Bf.(گ :_~_ypZx"+Oe^#Lzb66xD`mq[eӘ,qyGH@&2F yGšR#D7Vx(T~1\[)xbuX .JT3uy DޏujU;/>^V]^ov`c=Ug_$gڳ5%RUp0P3/LHdu$r!")偲#9.wℂVO!+_9ͧqЎ*8N; @B K?2 ۱!a!Ч8UqIBlrR$zo<9nacGX*i>֏! ˭}/O rMN]$|wlT4 FQHOiCC.W K jhqvFC31CSdӾxMnQ^G`%;RX[nw-GNQ@[/ɶQSHkjׅ{sr}:Y8*o}Wq6<"1 HͲXP$dD最 m> 7[|/g]mnwY<\ޣ8TlL6ƶCZRs9ܼ\i`ރ{1{"œXj]Nb%.i(J5POKJ|߷¬!DQjX^i 6$Ł򹙐o:w#DaOېd,&C iPTE%"`w͟`1CR!׷ҚL 1Dr62ͳ_AjYՈE ^ =wSi_$Al0AϠPr[O}n<]BR:_'1iل7U*aJ.4[$==ς_2\h~|?[22ogdj8h˚L緘Ԍ{^5m_Đe4WQL&Bc5+OZ4dşxهϏՆPЧA\eO=UXsykRHw=T~(4úW: MTd92I +mU}s)6|Ǘg}t:K> #7mfu iw価@ES\ʊJ H`"Lϓǿޡ'SJTڷrHJsRMz @O'Wot@GDqFRrr$J`(h& %[|ldiaR< "$5+sS f(jYliKYK9I6 _-soe`7Mh>cw}ĮQ.ǠM:ꨆ;bG,\iG2)]#)&^鸦lZfVF,CXb cebY9~ bMq"~go4n>s@rӎ/6!,eyD5|z9dKjY ߋsΩe [l9"!yK,6Ip u{?*O g",Mx#>L%=)4XݦzD$m/gM\?de>=z*uSZ.fARɔ,%)N cJskk):T^S7"sgGtHPVa$f$!!?<{TMyN׸ 3+\W.3鼺eMC)ф?|uɝ9Eyl5f0eYbDAi04՚s빷~B+^l:`4S\_6㪺Bb8dh\k 0'5'QXcF ΖeW1:5ENcI_L\+/~̲dlM}?-K;a7K!,kH; n3X67g˝P~UB@$QH]/BZN[Ac:}3)I4rxTRB(ﻆ.!1Qx*Bơi< ,2o{X!Vgnn{1Lek1[.i%jK(ލsHPe^o9bx7q]ßUG\{n2+0=վ;!;'_JW'c>`ܮydM߾"wO屿؇%PiVe֙5*j^NPeS⊛c wzInjsÛ֮]3Z@Y)-jy)P|^y` k1D{F+ۮ$@{2L=UAOX󡼏`8_Qbk<EI,wssX]K8SvS!ŔY.f܏xsvVuy׻mD?=ɷћ{_N8Zպȡ7yG];TMZVR}aQOyz{7Q/p"c ^ 8a~RbsRm.d88,z0./!侂o2MQ-w#:x ݵ>ƛ˞Ԩ^%?GU.KOj~Νwj`iO=srzź*f n͗!S,V+3z^Fh\?ʶ}%?fx#kuZ o9m'5;>9>URu[k˩d2akl*DH-G ܾ CdlF)%7~{9ZŗMV%slAcԄ3dii2Su; ^=XxψQZ@4,0=فd+ 5,u4x!_ ?B^Laܰ0U5#zyyK5N6'4 j$ 썁XKVkIׯ=h ;ءOvh- ؼ:6n("n_J ?c|ԜTJh~CY"/@ fIU0Y|ndѨxZsՕ,tǎ·+7GC[}R&LYLPHT΢i?- }.;:]PmpƩ<904# G)(,_BiJoy&:1ӽa0BB֥>UȩpgYOͧYxvW dZl3RTf _` Q7W~34uǬr rTFfI H6>'ZJ?^g(8 ]t!~m9z  :դ[)DUw=jۚnOG>Yܕиsok˩K G "W+}ؒ qtڕ( Y njt):Ӝ:~ބ&`'hJaYB!{iN?&(0>кZS>3A>3ّ(Vzqniv^9ƈt{j Bƽh ]a}=vƈ+} `y&L$GĿR1n{d~aݯGfB·sY:j#gu$=P:r+J<нٻm<*7JUot^BX mNu-w䲼b$Dpt_:CȲՌa%f{Kxe̲wt'/J3}Aqq{54ͮso`ga3樂JbY9AN8U$ę[V3M]G(7i5L9鮝YBe1~" #!^~=Ox暾]0|'|]}3a~:fS3kg7?򹔀uᇰ}կί~ЕgZG{Ժ\ 0;1m*9`P+Y? :rb8`'Z~R"qHwe(uMP>%4B+^`= eؤ1RX~oMxW__NV{>&Y=? gX۟E b,O1{Idy7h6ݞ(S49H!?/#>kn! %kG xu:ALT&eՔAuҽ,/m6{8N|L'Uͨׄy~er9ڂ#ᓁ,>akXAn6z8#7p'A,&.^ڪUL\@Tj]noH1 QsKz2qSXrtEa\wCG-vO'8m1mYWehUZbD1WJ$_ 1B#74IjB;-'aA,C|}d4Dc300s#ރ4C*B ř:s;M^C!L9f w_qr|[>I, X/d-nLZ"w^g PXoF0WDL: -oiBP5Wڿ}PK{ ?Ԡv0oÜYΘD͸c"7d0Rwb(j##wzrbO(C]5h0C #}F>>U_ {`Cj(Da03np͎w`WTl6HT0NJ|JxmXQn;0R<:ϴ7{lM sQ7w]:։j(;Xo^UnM릱ͥHJXp]HjBz5J9N>~MP=dai ;|KkBr9SJpJ&,(RPxˊ,[-cbz+yUnݨS]Mάߗb-~Hq`*kgMJfrZׄG-.-/t;Yepd`gm DZ ~_$lyx9%m<q<זO7E =LjqܐG'6\ϞOP:&0|$c4.9s3u+i;-^IwbjTzzFj+1u|x^WZ^x<~Ra=]]>}?xnO?e]!gic)<=2& zG9 %4 o >8 rQ . Ł84 0UpEPH_[2Ve:f~w̓% d^ <Wn$xXayTB[XpvO7a<qF軏u(׊r0wcd=̺]$a^}o*>ჱ]?I{ø{O$5X0uN 2SZ;`b/~9Rr~lhW@=10 }b}L0GώҴ[ Cxw-!"IcW/,{*YQ%GsQ&}+krxly3)j;:x~3>Si!A)? ]7h#M>po^流]kw!tdy xG)䈷w:^e`WFrOghȩ1{k)ZpkKQh)@\6k1Ĕ'2h'Ę i]£b}G5_֭rFm3)W|;)&7/孋.=ͪd>59#)YjzH2wѩK9|4]LHؔ s,0D#J`K|Ry%hGyIfI +) f(A8G;[WS4O(Xѭqƕڼ1_diq,hc Ae0T`T7wMc $vD<{eKY bR托o{]Yw{YVސ+qִRlh%fr_GՉ ƞnh}#]5"Ŀ0(w-xu3U{8MDYd@҂waGyasyXN2jU\*i5A"ɇOtDO!S?൲f8X@fVB4F9ח=B zR\ M2p2›5INf;0BVM`NQ^Evtڞ"b,IH.J}IAo6){qJ۔Vn={(>~TZݳx)R7<SN+㩡R[:jas|=8¥k >Hn]~x]xWx|YWSz/zDME#,Ğ΄&O\k!&͟R"'ڹzL4%sryLuVbOPv!I2| LW!q8ak;u \>{< /M[lDyuuR!_ ѳJ*&>|nHs ٩4NBq?TP1ᩛnmazZt KنMXA]hgŪ%헀thz=-\*j&6nH|I4 0a::#,š!{-aT7 _l2b`ˋ 3ʉ|悉tycT]rxgCQqL zu(1ã{w%(OX\j6Bw9 Gyxnɝ?]/}tD{P'xL.噢ȚAß<m*}U vLT'[r Ӛt P"6dv`.^ʧ,p |Y0.=z ו~ m? >T^ތ5lGP%3ĕr 5mik&$ !N?_) w|䙲~ngqU(F9 Nj#H|8~Q|Y}=%`M6 !c(+1G{wW~xd(@lF@]LqPQ؜` U"O>h-Oh#=%Es֬du@g:ap]?07Ib@6<`6g뺖1 $<>hUC`v4(}yf#iQ#$8k8g\N1?c3o_R~o']H36%{Ds"}ZVӏc_=+a{Cb<,wt<Օ:Uտ]}Q[ )D/62t[9LCLV v6{z9~!hq,>:= ۱< VR_Qo0%JI/letIf2F!P/`bR"ymFWjG9amT8B^L^/rEhmkXZ6X4` Weq4~)D+9 m\3_Iԉ( VO6F49=-$tsogc \lAiI!͓ٔQ is1^=7VӇh{cC_xm܏9K LfsHb?b07&y+pQX;.Mgte}@o\,w(S xK$iJ~~DYő͉*eA(J OE x+SFW̌'#goG@qpV\rA(<=2z>Dk2sԱ`J^t$4' % [ fk99B jb1p=!ÍۧNPEsAB왍f{9Z9&f޻v;7ڐ_{a2ɳ'= ԭSvA= b壅.Gm8PnܐfSjE7Q&Z > qht4d|`x)/VwY+ &H%{3#iKߴ1mO; _ydxWm%l8c0|&ܲ+/{ó) >ձ|V?^94 (7U> Y$Ngu֎36._/Tľ޽WY헕=V?O}$gtC=L!yќƏ?#R^O@ɤR6$t,xRY/US<)z6D[:z ~] <"{P9ZD[Bߌ`ڋ|'p%fk+ ?y^_u/.տ^8]ߍ}m<pۛo )!>{?V7gcML  VȽf; iC',҄[Jb.Ydz G=e5Y56!+AeogChZou9i8_|ef;1NܓvD6wE8u&[aִ8d+TN(pZ!Tz!ݖM["օqru3;o'i O&kGvN Ƙ>Γ:M` p&U/s:fB} H<#}R'„%gPn1ZI?VC9 re_}1Xzy6@zC 6BZHŽl{K(79;/#p5mpVNGZnGߪ¹ YN[˥H2n`?aTZ};1;1ORJ:m3p[8'E}hI}!4:'S߄5?%NC/W[1B '%܆^ V`%O9$|L@< рgY(Q|(O(aj/+bt[=lIkwԜڰ L-ox(`1e}?^?yy5f /fFå萁ȽW)Z0;쮮K@X G|>@IDAT&BM IP[ZAS ]'滛?<)0 /wt*<@/H gnh@}59X_aWk—݇Ny1.5GfHf y7O S: H H\/Ɏ8^OC ܎a 0F>dC,L#`@cv (&p&6!(fyXqZ__J Zd/]MpP,M-[W,m t_C,i`AwWp4}l)hK+Y.ytFTr>bbiךlYhe \5ޑL|f8ʨΔ1ǝB:Ɋ;C@!@*X`GRL'l."p\w\cž  ؒ[QTp3QG)txm9qOu5m.WFh}q]SZJ] JޚxiE%9^rC(IOfnڪR@1 k''RU,m1~ WkpV 1ŧ(@ )yq3d2RwS>yVx۟Ar I>:u,0Ԋ#ss1^Ō4!7{w&D(W Wx0$_485J|BjHx ObdC}DXFZ|)6V]'S-eY0 Gq-Q _7 ѓճj]{B뎢vr Z1Bf% ̒kZ z7! i`6N=,ew~ƴ!Fk+ +w߅gVMI8U ʭB+|Y_%(od5],)EJL"{:FڣzW7Ƣ_ `xW`ӈɆJqN*9}).,͑ Z6uBh I^t7.Pr '*SDdS:}luچ9Eb QNTݤ^,/3qn1hT}ǚ9%0FAЄ:ꢱBf>r=,9#}:NDGG`=dIj}6J<m"‰co٭Ÿ35nʐ0g5@?,ܣȩpX{zS myQL^X}C߹|.^h]ak[iGޣ2CuڋEzONF4НN3<ʐ0@MR i{]X(q sٳmw\ O^v|XU^emW^x:z\Ϙ r3G̴U]qfIxO~D Y|~uxH޺nZzɃU3|kRd~bu!ǃ̤#nG~A+Yɣ,MyJImysH?v4'7$xVcQ##[<]JhuoS+@_},㒢P& <>wF"\GwmXx~@y;Q)]Oçt%@X^ AFYX* m+^Kq 60_ƈ1mqܥɏI4 7ɳʎ l$[k$4 Q|z,X J6B[qMc_Q/IxnCjU@Än_͋kģE8Z̏Mbp/n9ONh= }OxZXٍ x^b+ad&Rۼv6ۉ9DokvՁșGUrĜ ӞPӳj٬)4R)  v}36<.~Mw"s@`[gjt(^c[S2E8iB %Ǡ mo^H4tM</jc!Ҿg$JW7J?nm__|꿩"_m^knҮBE<;}yIfے/ >م4=b h䍧q{ܸ̕I:8qqqW1Pz9Hj?A$B+V*&WkH La<7$,\O>J1ȊJ&zb߭S\!!sqs9$c1[|i~h `zi^عXlG66Y |n)얖ұx=.$ M&En] Eljt2K7! .kU ac/z9ZxJ gfs2XruI rdmx^ \"fjC~0wdXXO ̋ea> y{0^LU ?%mBTPUpЇDc,@^HX$PO<-IoFab^3a 'n5IsprO./%KC$N> JfkMpQMwHR9Yg#Rz,$Is Æ6P-|grϱDswoF'ڔ* `wP;g]Z#Y3) u%H=3Zs#x)P/2((BQ­6l^wgX쿲l^ T*QEpo<$hwCAQEXe[;{ٱN(-IGbbhU1(5a/xlΞهafU6//A~\{JfrnBmטH@L/~hZC+ B'hGGHoC njZS)(KU Q-* .pEȁ O, vo#>8.]\<CY v-ƨ4LE86`O1" ]3?ipi?L<Ӣ3q7*Y,޳Osx8iwRft=;N^Zsn/ބo1{RΣ<=l" p)?JEDe+6W )[:$,#m9~[B,fðwyPL~Of{'l X&0rȗ <*tk}'!g4m^ɍqp;{:ʢwZMu˜QM 2kkp~ɺU}>l]eoc۠Oz/t|,O-{}uG3:{fnHL i/$ p\}S<'D D6׳ Le^ ~`{aWr1ۄq߱$ܷ_-klOXH`Yz8e_FA:~>i0rM8ݍ \%ծ¸OxkY%N[l1N)jڪfӱtBSH{ )T({X 6\kB}%Q'3{i_~^6fފ5='՚rjƫW׵-Ge\)#K GC,Ɣȅc1~\|s ji6!АlؙbVLgCH7x{1ÝΫEZIhcmpL~sj.dcu[6(9Y wGH_ꄓ\.~.9$ο{M.^/: :n*WHBx7'.Pķcfj7`{0k0u('}v%ݒ<ݰn<$aL&z\2 r 66Kipퟲ9_!p)<,/(=u\_!0x 3R{nL1To<[ )iys[ %7`9um e9/ut=fݚekp]K$ܺ%s6f8PțA]o0"+v=_8[h?HGgռ>*qO~%'>|$<;uy Edbᏹ "Yޔ3yi(x;L-Pp4gcȏnY0T-iLA慫ͫJz-q^AgDv6wW_Ky)o_ˡπ'l/;{תZz"Tn5ơIZw>R6VVj-*Fs17%\H^\m. }wpP "&s8!wZcguZ+,mH[Ss9U rM61sxNxQW)Ko gS>mG¹4ά~y%РFr!e,%6˕H_<eh\m<}-yC)[Łp?i 9z\d>0U',iRTt;Q&3' P a%ϨEM~H!KŒ X>I릮?m%,!0ő &ֽm-xLӎ>\e$X-}K; ]p%P**fXFU6 p yfĮUZ#ŸR[\ Q!RR(˞R!FKPU% |B`Z6[w))=++f0sa<$<VY%zu<>ϣuY HbR%s)AmIRJJ&5܇;NYL`7L8`=>|5A38AtYrcwiNjЗ,'s~נI߹ЍFj yV< kVׂ_Ϣ7_6$GFcĮ vE0`;OϺ% '&{.YZ2B\G:i]L1t$eqxtֻ("=2On6 8X/ψ ~ ی`Y Fp7a)^sYVDk\>ܜ)KAYJ@d:ךe^~ sRX7%Y֓`e_jH'ZZm^Iyc΃m887 rBr9̋sX3~/}ٱ5р0 0^f GSCW?/'Ys0SNz"}lEJz>%!J1x:䇤v%TFR܆ַ @ f&\ϭ4**ͥjY4rmhdyl=4YB1=ҴB}F] L-BeHG#qvl(A֭6 m]X)F%{V)/3sEX$@*='V ?K$xuqU!s <[<=d+I[H8̈́a$=Yc(6zk% ?C/'̲ { ]NYw]ӶQ0y30 h˽>0ƛ$mܽj[G%3J/.X\XKɉ4x4KWW>6Jh[KLRJI +ل hSǫ: 7$biboUj{@hͩsVch넼$2ˋs_5s*GBY Os , CXH {{k)Y8 0Q p2XQOc}2tSsacA%\e o _`,Gv{Q}: ~#};h"qaTCGє/B`Я|tjbHcSz!O'~BZ=Quj#WJq,ux<( YY$~P竵 3hl0Dm 9 X<V(+C{/٣../?稌G&t죬}W5҄%Iග*!T\[ƌ ^hᕱoݺ5`/(@b^=ųlKֹz)ǃP@F 5?<[.do 8Lo;  Rt᜹f]J< Gon~  «㼇/pfA‰ NI @۬R普f!Rq]egq#+<O<6X/[vŕc1e_9YF/Z[octֈ !Lfr;0Egy,dO2(5AQ@Vq4epnl |)gb (eNwyS !2 eS< Sv^Wvl6q9 kTiAN0- :5.΃pfǏ~=-\&"ͺ$ObSjֽZq;jΓ |= cK6Bk==&MI;TvF tij@0b\&XP,oINY_b445>WfdHߺk]gUwumsBN -Ew<$Do߫K¾_-VIam,l'0 = M8 \aP ,1sv#|}3՜^"2qೖa NcG~Y#@)еs 2 -%D/:eqߩ6m/Q)hfRmВ*8kp)ܲz*!8&}^R[֛+LXB>𑘷>x(t8n0 PX(3F/yꢸ7VF?~6c[r5/BÉ3[7F}Np=Îzg4훑'nڻ 40BBݣvhC~G3e[G ]Q// 3n? ^^%UXEVÄX6+Dᓔ''45 &F A@úijʙ/.I!iKbkFg F)0iY7}4y3'[50*D'|> BLڙߺXQ=u˟.4/ʂ[}ۭM OM)`{/(آ|@'){;Yt{BwzHY{1 mge2ދ^(و(0xj>&ƓT䌀\A{\@[gҤE4y5Sç e0DjoiF1BB\YC.7fA}Ьk^&;tEcK!lvnBy%[yۗ14䐤4sv"hCctN5&>\=Sw[~%;(Os=_|ھQ<&5&wH"+!F NBv x] 3tTh-bުR0"n5p\A!x aJyULSLT=CY煊5@l9X fr*lm]&_֍˟t΂ ex7wqa WV^BEIUZޯ_82VCҰ SwnDgUYhH+RXܦoUЯiW<mѓ5KGǖ7 %^?{^!}nx(p rFG;N[Y^U'Bٮ9\n쁽/*uJH_,[~ѮK1o]pǪ K:vsDŽZbx}t 3("g5`ܡo8<#yauGHB WgW|@>ix>C (=q3WK PZp0[/;kq^Vh_qxe_1@>) MwO7`},% F nqxO{XG4p. 2^6'oHl8 ˏT뫫Uli?+x(}RS6uքz2!$1)MaK)ƥA  ֭<\r&؛wNPRs+B|VŎ~[>h6pFRՕ泓מּOWx6o}0|埬v&z5JO"n),SشMM 1Vu)@S!j> ?X&USvS'O1_JŶ-[(w01[1Ml2V*~Ko!TBr LW~]#zY֎=殉~\7Y6<ܵS6}Qb0;Ža=rs2Fx=$`Q o Ar+DfьcăSCqSxIauʗ4Fg \"gP!djᔄƀT 4j~̭%e*>G;@B<0:|❁㒯YHcB$U/뜸{^/@N3xxzk||]~O ]NcŬg&Oq` tel<k!yPr =} `-Ocx;K? Y$%dؕQު97܄nfB_;7<<ܵ`xw} GO.HJ%ǶG/4zsh0û\՜,ey^zA=ۢ[Xy]C<*iӘ>ʮwL{ɵT4'PF_Z.y KT@;{+-w5@y]l)y?z[h?Q3?p`-yn^>'2?+-: !5'UM<2Jl4~Ae7e O 4Kx5ݪs, ̌>_Oio\< 4KIڎ-ݘz~w+;hQC:H  UpX[՗y,  C&ۃoK&خC]w@A7.9=aD^BXgr !n$i99Zܹ9[J8,#X IJ %˚)VݘBlzڜp UH:{9~o RFCP1GIЖW?{ %8ԕs_>*y|^:{vy*`^JԪ. *[0u: eg*H*z^EnZu|7;;GK wRJQL,KE6kX9&IH  NέIѹG%&uJII+6L:Λ7B# 1ZT V1OUlџy`hX% 6'g P^%JmKO8eO0iWݳσҜpy lj 42O-Iu {ޟHuK/xW;&|o'Hb߅=^|܂- 2WR^ Ky41OA\}IK,gjBXhBa'M^Km6%`}OSp(uHx)n8d}oo^D'x JBS}` 8F>69U5d׬^7X!rڞW Ni?1po#L)$;Y Ю9:XJI̲=lo5&P ܃zsdxMѺw1\QH30+XI^i辒Wq=ޒѺ]щ7۔3]N$io(KJ|;y'7[Fی)[(!֏Yԛ$V \7ՋJg&8}/n&ri(U񉣕fxQle- PAi] W0J 0q&N~=7rsN̺ӂX)"^qڑfʂ! .g"5w}saYM j,< \!MR ra/b40 y&|thbsx DJRuJ7HZ=FYy='F4XBm!%vJPS&ֈ_;=/qٴK_ %~Y]dz+wPt*|eoL 4yːGl>_ gN ,3fw'F}GL&#fzG1Vi8_=@FrEĒά#g!!lsW yv~$&vU,,ּ^Ȓ^<eFh:n3-M{j ċ$9,KASB0gyQylƺ qt=4r" %Ow7,=萔U7? O%ۿTp3m,?Sg7{ y;H  @wty Ga_whjmڇ:3j~nvL cQge@3~SL7gb;8tJŭgzRGǞ^>P||Lkonj~"l\ aaORfOND\Gc}-?pPhssY+J(16i@IDATGB]ky IY;U?1e&\xM3:갚\m\pP̊zβrx<gΰ%:VWy4܊~+MlulX_[g?|rxRu QF64&7hwsջ5KQUP\^r$U]{^Wfk#W{T.S x~p9/aÁ'O?^}Dž~dԄc` +䕺'<|Wogf L-+}C6U\_T}BB>F@)M:-{R+Y3ٮ+Fq{4qBi YYVnw9`JfbJ)a:\8Y΄@g en6jmt=wr罷);66O晋%][b)aJA%llp%׹NT{8K#W^ɂy&{9U_=>O= |#C=ױk.468Oh2#҈'͕9۸3KD%ϬCC4Cyu\'P Jh$rO~ؚT{=f1%s$STcJ99ERoj|o[ѳ#pwW(RK T|[,Lel}F:J;{ĬYR_ 7;;۝:@2Be.Z3>V(SOp>I› =S 0'ک76r5tn-xГ~6 #8kɌ'Sm>Bx9z^Q\$: Gvmv64v/Mk&<1::|x/gQq\3±5zc%v$O·': );x~0` Sxd?AƣmӵS抯7 Sp,WIebJ{xor.3>Ja{w]w?Kqڼ<ģB/Nsj_04o D }0|Ϋ<1$==c$ՅZKc=J塔%O9b ,Rc?F@' zgq'޳;~tc`P #%i_ݱx&;?ScfKoBP|Ĝq!6FBK;cb9mFiS?~2n^ |Z,j񦍄tJ:`A~aPy"^@/ڤov=N,N̄[k}A9!m@X{Θ* g\ =:3%q۱ܷ~Q/ qPPTi?LT.cYWrI<<3KbJ)hS(KE"|ẽ ĉ} !;`LI?<w1ı}~`~hAaณx¦)KPWBw^sɲ{=k>zCk$}Ów-qg8LOӞw>:~[Gr?-|pJ`~<`(a ?Xpq/g81y#"fK}ybѿ5Axpa*>PXOuތ06X0VN bLJ,*YgPt1G( @ۯaC\ypV99Il(\K'1=FS^$/)d]>t\՜[_zw]X {OH-?|*8Xa$g}jc OÓpc d<1L()}[BI ok#5ѩ7J؍'ҩ/WZQ?v2oxXJ7g0ŭx0c0@kEӫyrJ[+Nm^YD\*-cuA}d^`^ïεog?iow{Ͽ-X*(MhVX&+{ǚz~\7BmcN㞕-CY]βtj$@zL&>E'撐΅Q5#RrLއvk/ QOkGy_lZGh̲9k3{N@Au#|g͙T >q aT ^։ )!:yUֲ9 `P!GXA()\7maU-<_i^w"g0]KtB 79`;ej^B/lNgk/D5nL+$P&(%|T,.XxEh4Mke0V S5;'%BW% ^e$u~DN0,ܧBp`6pջ[2~~\a2OrѳeY:?j'G0}ljAG&-y!)~1K8T,I_L1QV4\?(cgkS-t="?3m}lk lYK`2r(_=o-x OJ W.Z/hmxJM^h(/O|4-ʤڳ͕>J csl W%gEܰ Oi=<¯[xІ@Z|4Wcعz/SיHlㆯvxS?g{c#"|iMu ֓kMQʘpZ'm~ ݚ`oK7/xk/";bsB0ݙnmBL(3oxm|g; &#QAKukë 69!BE@'1?9PڐSB%E<^?w'M޽{5#:Yѿ.[>]n9}oRS5dOJ{?tJJj)փu0 [H:Vvl6d[^d]6[ӟ}YYnfz#9.h.6Y9R8WV?OWoWwzpF݃JދXWr{q̍T2XٗȞ%/s^"7a,yyr3Gp=Q}2{8^;xD`pg;wݮS' Vv9~Wexk%`lGEP:eB09!F';G ,˜ @ {xoѭou¹7s!3gcmg!??jmR~=bn|7X.LsǞ\s%[~pphhp>%0Yi':w,OZu!Bz\rB+} <+MhEH-m<up$ D ^R.<{N'ưh)ifNFE K^Ԭ=XC^{sANB/{pto5qŋy>]o`'{G~W?tꫯ.MJ,U2crFo{1a“[e~ag` GW%nǯ_uɿvԵ 0gS0l>˾Hl远Q;{ɷ)?|;~߭'8(sW6Gi<к=}!P:6k8Dp!R܎[qVI~K;Dհ6;1{wnmk>cyPSy\q')* qZ< 9u mآqePb=uEFCT az$b/@]?IGk)hB$9"3pҰ5-6s#R=lb;!`/(GVcR$oI\,:&GZ7;JhQMgsPlAqM;aŴQƲ7e X 6b+Yӯ>m!9X 81O^aLko us)8ȉ [o_\ȷl\C1}h! 4b&L%U2de0CЖ?i y!{>$|Ax!4i0}!CQzОstP_[ W^aBE{ GHS G |ip{!/p|Z/IMxWKN@pKO \ dy`E56w#GzAFRhH3l*ͭq/x9cDg!3Ϯey u$l9g4~E?rX9^cB'uo߹n<67.wvA,f]Μzy-xJSK4ܲ_ uvox+^à}O^=޽XhJy09#~(îŋCٵqLJ$K|JZ6+x%ؕI%~tÌ^'Y G t,^.c/׸@SObH)<]dv D},V/ʪadDF!frq^t=xV7ډi=12v.+[0w P>C}Ih*kmjRƂ݁C[mZ%%Z(Di]%BLfhcMy!*. !qw4bB &Lab"Č(  `[Fz 3h2{BJ%^ z&LZ׫=]o 3 6bWɠ'>t%Zʥ3'y9:%PGsGxC(7d0RpiPEmFNbpq]OޙI<=Jr|: Q@J1~莲-i4Ֆ]͂b:aB( wnf 'YŒ:Y_иO>}?fXα$Mo<_O+e=7=$f.O d`OU1AIU.r,j]RnyF3<|CX[o}pf*`k) ޾l-pf,h>nln oѥ XNk3ؚ'A/vkh}q C,7>ucѶ {Eo7hOhrxԍn3z݉'$۳,yn7~m! Q\j[Δvk+f0U`#9Յ nx$9uK n!](r[򍜿q=ȋK=l{ ,{ E@LpKU^;r3G eAmx?hd΋ }-Pi\?G avyWٗV;W>ty%#bkMߦ<bO3~puNkdScQ/_P(<xHyΚ|]}bQo{}vo~>\ſ3 3 5Z'gv0}IZɽ)"'Ԓ5l 1;&` {OB`BfcC% Jҟ긚;fIe5N/ dOk2s6a4ғHSRZc{0 $d*%Z\GL]cp#&ŸztFbĺ7JQCBR^*髰Eh叙@VZ/4\?M,Q0!9yi9?1 B!~*S:d-i1)9 KUFCQ 2QhS׸;9z]Cّ5P~P߃75 M`Xᑅ4/se6|9D!<]V 9zncP8˒rp9^M9uLU yBpqxJ}/ A)`+4ݮO1 w)+mP%2Fj=gCA|y˂BL(eGޡJJ냧 =+9桠Ϛm.{e"ox:O[E? [sԞflY6kVQ>|Dz^m-k`ko󾎥FI9H˛"x`>H..7Q᫒씽z0@X´=3)'7I/ {;Mf/{cΚ,˲p!9.ꢨ6h`&d&$<} 3dzA((5M)*Ȍ}vNFz{g5O{ kE"ڕXv'}GAA1F4q8 y4%1I0t{=/9n©}F&bXk$oFVi\B=5EQ4 g!/2Z;op9}⽉<Gӛi8S<aod׶!EIcX/^ XkFo]Ëzbe0wNQw fhovsUm^쵔c h S5cF0EuD??H\z8["FR1njރyaG/{C(h3rlT pHGwSc>0gl_bjF/ؚE9d ^E" E@;>9/of|}˛oY~'@ǃ7??Ak32"V*@IEh.ŌPEݓSH!tiJ=@Hwfd$ I K!) N$7"O?,ePꠉo'ABwT GuoVi!5*"߂}/q }/jk Aw@sfS"0tׯ)ǘ0NadȖ?$|k߱ͳv#@>t9s~0Ykٻ|їKw^Dn!WBq]ZC0 6* W8J Bic-\e]O)/ D40)"E@ )"Acn !4dF+#odi'|[ 3C. o(n'(W&c0 WфÑ(!U||균ѣwyT7D n=cRIY?y VOm{(^\eO^`rhHFGe݋9ze0o=MDZbKT < 9M,z0'e`P cf;Mnq1XN 0= R6G{TPưn u2bRc|tFOƛp5N޷ <K&4Z3UEu(/X͹w2{qțX&0ot 0q~%l)nj myBN#nkEp3RI0cSaxgJy Q8}C%'DԨH\C~C ̞%W'U2Z dX!x[93}%ljɛy5~oh6f|`̰(is8u}F7 s ^ơ5c;4:2pN/вt<2Mc>1ݙiZ^W6c>ƙJ^r}/g5Z >vw AO;<~¿^Rd#ozUz3 N`Rtjk5$jDRJJMH^㽭 -AsM:#n*]Yɾo~c' 5vuF 0><ш(J 22'+84hŸ{,εw;|z2]/WOT9+ lgzAUzE* |\ςI[-'?zk(|hj4ryI!x&מqޅxHp_~BR@da,2M(GY"g}/| !g2K?`^$QU`AC[DFs:WaIq@"';Q鸟`4]ڸnf 2ݩz&0;?DM {#XEhe @!GSڽ^ x08+uWXű眤= ~< "/gqc+4׽,-4^e+!p=K8d23J>Ɇ[!3a ;byuR~ϜHnj|!K<]Ԍ䙌hZ+J%&zP$hR)4Wr1`\Q a#aY:>i-)c g NFI O#saؓJ!ي8n7+Ob1 fqy~;cy\wwV6JBoģ&-&IBZyON[3>kY4.+=0AI4Χ8+Z ~'&Il8ϣу5 7׈xaRx9C^EmOy-yЍ?`.јþc30 48;q(O!|xkx18u |cHzߚ{/Nh$م/{@p-s#X>FڥnK{6tk >G(SmuIx{BY"ew}ѱNޯc1ѾLÕRJFB3_ q=Z`!4Q#gHIeMhvD}ERuVfI'ӗyVwݘmr=} (078㒹@󺥒mG&uSsfhT?yzW8uoisO>Y??Gp+{(]#k" %k9@ 暣T9o^]?|A*;9`8NJ'AOSw3놔nFJ޻||ytrw;mcH ꛑ0t*arHQlM@\ ABIH82*c Rd%L?[P,?";-Qc& / <ʒґS"..nb9' /Q7_R!TO*V(Lk"#D XUs!1y7_9z(klz׋ JCI c03k@ⷧxsy9 j㎨==OA\*cTkW_~)"-qu tSz-D{=kbOl  bΪ-m qRD b6eXoU~!aO"ȒCz[ZBb1v~1Gm ̀ঌz ?srְ4ƹƋha̮yB"3<3^s369զ}I^Of0[ᕄǙCpPt2.x;/CEF$a1EyzQ\/\k?-N [u {L8j:"sVv*w)u6/G&Z(4RgRFM]0kr4_tI+Dk-##ҍ"<FN6$.R ƥx^p@\uKHdXb_)@{)cXʧ5n_3H[# fx;H kA׹E&Bi!UaN)W07E<$dyԌ;|k&V٢Vebuo>c54af<ǀF+#goB3\.1.<#~"qBZQ?d( [iuVq#򪎉g ͊D'l𿶟sB'OE"L?h<-64v9̶`I aG2\^Lk@MPE߭8os^ˤq#Rlk̞Z8;vax˽wV>7=բ= ;}I6=o"+0h(n_ַ$Xlvźku1lv V:*-OD<+ؿ^q\bZU>2iZaE202s^-fnMSS8`XMhioϡ! #Rq< `:>j}lxb%W=j͍[6zbxƐ}=Ox=n:L9mȄhCϠ]D]a[WPpL P`usqb#t1]79QgMjy H71T3 sA<*瞥<9D䉼 v'<˻)E?]-4[V0K@G<%Q7E{B!qrEjY~N/*8y4#z8W y1pE%EGxl5 U>z0V7&,Q<. 2({ #]ʐdp j({GA9t`w Hq5WQXDɫI99>Sg|_u-qAbؚ\'5HG[XQ9do_b;>-Au\yóp%cȌ\ЫډO40Fҙv9VxQEg]Dn0G-o;u |9O(|[KӟiN8j2& TPJm _j%[h "Fkܣ xt}@6[{*̡1EEtM!j;ȊftNs1pf*ifyA2e;B?e^mϿ*bUyvd4YӁs ]Gth!d&=:T&'iޡξxϳx~C#b ƥTN#)X `'d)jQ c׾S6xr嫝,\>%bj,0 ⇮B] Ƅ>s1N)ioE\ ӄu0fnABOG_)"t3Gܦ~G)Fo xQL&zY懱zuL|N@IDAT5.tK$GϬfp6FjhLJ=Ω uJvWe7ht\YHu t |$2 QaSn>kR]ouQqOrBHv1*QBߌjb;)$zA0P3j#] ՞* " póQ4Y,'|ֳ-ՠ3i#wYV #4Du#K爈IM~k"t='_ӚN~?*a `3t wYD=8ᤇ[tgnϏ0ґ5ZCc<јWz>\^{֞1w[ism|^|E!{g^}b-7_{% ͷ%d)JDЦ @ɵeQ40 *9EA^_0]߳.NLujuN5~&쑐tb>J%f(cmD%&3AɶZO i&P@֙3$ZWBwAMLJK+RRZSw+Ho~-V[CnQcȫ͖Gi)So>MzC<ۚ ;ףgg26qc7ykKՎ8Cp x屛PBUj@('EuKܱv!(ӍC= uފ6MUM7(0u 7m‹Qh~gH%<܍Ww`$ 9c{Īڼ*w:j-r4?DQ1 h}J7;.=k=,E6a)I<}Q`@[FH{uȜ(K=U:"lYhu&ܡB:A1:H0U+{[j BR}մ\cVy3xdx-a4OܽJœ`TQ"P󋊐 SRC荾OF±y2KG=ǤDE4̠O2~ї ]x~(iMx .d(Jgq`^No%zSDJo~[u{ܱp^H[ʯ92&̫U(6N^tEzW+t=J 遃v%6p6WƭN7>l^?< _fdɓG_%??\֍R5^O .=X8HhUqfB7{AVIIOsbr(>  rĘ"~={%d|Zk  _w.mө:_CvŒZviσQOMEK{ۅ۞>im/ൗD&LU8uuyr_>sl ow%zϲkb)T%\n^XFFR8[ԄŤ6nlO;\zp$(~sJثkPsIT}dz(C$z; jmԯ8cD8S'Opml͘Y%Nf{r A&A-bdCxʓ30gXHx M@O`BcaRp=>޵ |G8 Ԃn`Ƹ _ CCx9|m[}fGDHo To6p7m3cJz ŜIu5;!c8*]Uo&>ʀbhҸ=]F;4nC=!7> L /|sx(xt}D lJ"E{5yuvlANj$E:8|ܘa(,KIY] 4yd 4 ۓLNth5ʟ5YAk*~ 2vҪZ̦Ui1 *a)y zn@'m#E6d~I3Ҁ8]uv94/F?q h|CGpo׷!XD' F|hI EnǰjƏ׍k8VqI`0lgO^7./Tѣ}ᷗ_rhƝ75?3D*B,\lQwӏU{)!<g];MC+B@8@g8qH:l[Un(mn|Fы>a_U zތx:1|D"V-d0x OaIS42AfU@uBg UDI(MHQ"rfJL7A g~q+f\PQijQ*pŃ'5VRѯ'n9{O<n{)*3hrr{\RfPV-U[as/>P6C-ƜW#wGFh-`rK!ZJ"OV(Lﲿ1ԇdcH[ڠK 3xP ]O8ϫ`a#8a2t5L Zd9P8h3녖<1ł}q>Ys_^*iVJA΢,/ah* E+`VsRNݺru[ S=]#۶>WbNqaB;'bm 'B]P`$7i1uhGƀC.DǙ$,C⸰T»o=X7^H/f,O3t沥usL:30 h+|yem84/(=  <͑ʝ"B$_˔4 AQ}7BȻPT." 5w^VֻmՃ3p{P߷^qRE>ښSHIeXFˇmۼy]ʼn^9 y#ͫVܩ,jBo,S4]jsBP4N:ZF X|j99D}R&`0?F]54fpw= yNʥϐu5x(C3Wo'6O9)r>W.R mBaaz5vs~흎= `kYNlm¯Sxu/F^fwh#m벆<\I/4 c`}kmQE~_2'S[ɫ㏣"~#Ob_s#zV^\Xs`To(B8;2’tEs7+sZ.eӍE.v EV8ȟHٿni6JS">oEKW\{_˺O qh734sJ.stZ9?7ǟwۜ[ë9PϜ \#C@t"ko &ޠնƜd6h4!xg_^/2Һ\ӞE>4_zc?rk_Ak pKf = бEuL<`+SS aDHϞ>r:Z#P2õMBF4+볷}p}Ѣ,AZsdnQ,~Bm* yNS*  N Gn<%lcx1/wD1EE}Fo/@"xN\6rJa]ts1+UУ WD$g4wbUٿr}1v;?uYpmjU? ua~u ,Z%[|JNKޮ{VjH!Y8L F4{Y}O.'Yk3l=@4T/֐w7b >c.O2HmjOJq5ܧC#EQ%)ִ&%Y߶(^@ӯEaNڭPFou^nnZVZYbmy"L~q*>,Si>G1tC >>iQ I^) )NM- &i|'PTty*^y4?_3t#*ASj-ѝ?3lۄWsZoxAEqD/z5, VSTGbh9$gl#Sުj(E)ߍVguӁv7?i["9 a `=(]6Fc8pLP֊ C]g2?ƢGD/=12<1^1kwϑf"H}MxD2<ICa*CWC@|gx wNFpةe(%؜c}<8keZ1# ^'a\PVDz( KxpP{V<3 Y{߈>%f8lS*l{̥E&yLĒ _ŕX¿zrQ Q`ȫe:x=SzYky V0g-2d (}^SK]Kk+˝>+|.8D XkM'1Gݬ"wy7Xe5%1 oͥD޽j>R%t}=Fe“ (@( 4 YQ_Q rENDNx)dL?XF.pn}Oqp׮ z Eie4bI [ݬG |eg!S =Qm  7QQ B#JejO$yrjy׭9 kVp[i5GI%gdfI5F3!9i|"p!6'dБzdtI( ֳи;k'*1N(fl|\ۂK_8qzלz_"("m~9h0Pî }9aavGN)׌LᰈcdN!^ϚFcTRXpD`p`߈!ZHO5MlIIC7x1ZP.zjlaهnځk_&#;,iHQ7 ~tt yLm 9MD 9 jD26APe##rժ!#~{?=ȈHr>]Ko]4Ġq%EYOmS!$վu:˃>ÿ{goܬ$8 ;B(:}(6,I$bF=4@X]6LB@cO#~7!V3b) -28jªW.e-/帟=j;lmfku#9XZ²՗ZX@S @t-.m}%d_h \? HCNj&(,Bk_.G۳-$ ~I擗<ۜNCTksC&>WG T3@h:6oPp=v2vzf} imef= R=̻kC_, :pBh͛:7[gp+͊"({g<8o)rw )׃۶mǓ06e \F21ש﹤5Ab:)`^$\bɻ?c\Ix_CO~~FD˶ S2IJ-({㫷0W_OgI1Sϐ^塒<0!0W;?t)CBl Wk]-i3Zmg >+E%3v')myǠ!fLf\D@rY%Wxh0'|;]v=L}y7_~F(hhc3nb^Gz05h#(~b"R42|24\?oS2߶R 7?= Rf4<~ƛuI;vǨfkdGၑmaeqZ^ߗw.|_A=t̻K(|wzYd9NO3{q3>ɠЮZ#uB+ܮ#зwpi{swsOV-fgy_try =2 +m+os +#pclKj߄ai.*!SXǿ Z y|),FRe1.2^$Fem ryb‚~>%t#S3d& 9 Y}jz$ ;U&T#9 11Ÿbኮ8NxgBLH}O ~cm+pvد.EqP]iێ<@*OxZ|M/ ^&Cl"-}3t uXKEBs3]x2Q@ɂ)k!ePWn5k n~V#I$e]Bp0&ݏ X'Y4*JQLƧŔUhLf}xUgb5@;o,7lC(XjkB'g%!<^vPQ)*=<'5'n׿='ySsح/a2?nu >9^#. >gvnųkj`Asy¹+~ßԇ\J\T &ZJA tQ)vO]a;&g#_D`(?xɉpsbV7+^JPQ~Xl _wħ". oϽ_\yҷ_!Mc@{2Dတm[Jx#7!JG!> :T;ST7 Sh[豼%=+!)+st0XF@?O8-N E(.[;a ,?Jf[J><]Rڋ)r¡i<'>C(K(gQYؽTCz=U6GGdӠ"!uaa4Q7: N)eJP3znBq] hF=(22 PL*|֜5 9Bt36y4Xf h`^%stY;M!<@PUb7H! Ϛl&2[kИh51кOX\GdRj @{-=xJt*z^FzT|smc0x3". (Eny? [ [_љ\%06] P_a "!"c<&{T8/ѝgY%sD,h޶<`f OjpMAu uM±pj~fiw %|`3|3@~v/|זEt#^E;jwR"\`0s&m'DW0٪X, CkzG%JY:Td+pRMd h{WoR>p{aZHVV&U4O0X]>N|Yx9&9ՔsQL:gY9!p-8e8oecyd@-CT ['0mOK*ث5"j}/FuRѬ0c<̠8 ُ5[Y^ Zu=DAr~A;D4 ('B }PPAT@Bޮn|f!QTfљ`)a>dx誩LAQIPn1yʍhKr#E[_^-Q!2ϻ}W)<9Pp;ݛ>?ex-a},Zx h%:Ђ3,m<yRLs`^Lf'(z8TNod.G >p^I`QTy뷻1PԈ%SyƟuCy΋{EiZ׮X^ގjS a;W0wpZ9Tヌ / FV-z>y z^x~n[s奢xC0Cv[ l\K}2fZ8uo,:1QiC`CЯѬmFxT&ЊWh޶M4 ~,LjjlmV+ !|=?;hp XE7Ec+oۖ/I5G]#Vp@i&(2Q/<5Þ(Fp %=[u~ޚ==%tMY3]CyC9fu>l;r<%+GEoo.??]T{uM>#_fb=,y+C9O޾Ձtj5'{&5FhMs24YXĂ|uhɝtMc'g{kE3C>+şfk&)'Վ[|v-j*F=}_Tw23s(> F'X 8Z>\/˷:ueyY9 yĨJN9ڋXU.l uG+p;+~V.ub9|RobȁhP@1RL1C#$[]4]?J0?ЁppzE瀗e NX Q9 ޹2VFW$ݳd120M%E ~j{9![S8O;tF|m>rߺ9:*>{V(CBna*빾 -DH.h6ARxP =&vBĔӍsr'lDf_~7EHZIGfB.@9 Q0˫uFc if/_uE 3Aӽj6NCִQu@4UVSXiݷ< fZ3V.Xn:lnx n<2V gҍtz,8d|#&T [gF;/4B fB[Qׄ[1zQ42ۺ^)GSP憌s~;ÊlO![Nj[-n/!1R(ge'LYHW*|.Ǹ!wLJx!#y2ѿ0}rC|/ bs-93k t) Y#J6'qj fVFǼ&ߒYdpXw+:3M?#JU=x}1n^+ZY:^'^^]Γ;Ɠ"cZmdLiyMT(GPGI}I%ǃUX;.έK 4HvvDClS/w;~rd#~$D\cTʈy?5v<?ۯɽϭ,m,_FC n܈祿E~GҌdjf/FBRZө 6xш(UG $ZA>>bDogSRƔ:X3^C'+ęns [ lRBihٵ,1[y"v  ؊021Q հĄT@Y= ?W8!)/B Eusk +a}pyvc-ʻ~u 4lQ zV/l֗ubܷG[8j̑Ob`:Oט ,n,w'G6aD.E6XgD׳mBw uLR=;km3/ow@ zRV,篲Kju3/#U 7'g̃Ep0 wb6 :^D#y\RbFCCrp$IwjX7"f{!p )#mU WZFx)9Ϣ"\>m5R(hM>.m=*߉y;o)ʷN8,-_}/_##u2{CΣ[ nc0^Q[_a} D_߮m|)8w(lQ m3G|c˭S<׭B8W^ D ~ףiV>?e.OIn#!T?i~I)Kgl&G*ZV̳y}ObpǐjQ'5L#-LH3 {xCqaAG]$L ֙|joUu=m5Qkp&xKy<2[[Љ48J1a&x=]"o-D7+9 fSݳ ,vs1neUClü7gƓܹH!gS㐱s|gy{lyiGkL`݄ȝ7o,_~y]5S.cRH 16Nx'$d)hG4H Ta n5+"Z.tWQWY4K({)Z Lw,pyg2םEfWL5a>4'iWEG8ll9!A.)Oؖ&G!)[?]b1yR"? z3pNWQ=ro_-DxM|p xLr;_^DmSo3]ܢe2mv<49HFGL@)+zW?`Asv_A3;FaFW %E極nGEܮ] zYё"UlRs'G͙خy=A.\z5gdb=[7`}"@IDATۻg68p(֓Fdv'kmzVr/=^dgzwliXPŹ2?ty5ONFhӃh2ыcLŏ !5Uk ?e >8f'k>q\=\E]6iCs"w߼5[> w"w|_r9.M'g7~IIنo}k-foE{[ެxJM嬔 !– UHo:}#Dd!DOi؅ݙӕ"O?ˣ۹^AZD!g<[4Zony{yUqaRM~y 7{DUa,nاU=ڒ1E[3bҾp#W鳝A:яN)4@s*`APd*Өyll,?vS) D!ExUoEJZd TO!G `&BKs仾~J ~M ܾy#ųAx>?Ef/J~_YI,;`!<ܣ]t=,&{NbH iZCky6} C#ELE 'ӓ"0h0HxBg۾qk;^xY1uXdD0ۍq5~`uRюyzE?x=XoKhܩ ^ׇmsnSD͉U +vI4PPgJ4lWJUb GWtCA~] ޯtBXnR0}4a% `O@B‡#x \j"pbNB~~v_X&6(Ш s]#9❮Q&^Nē) HkjB It?n2^Ak#G0DVjFҘUMCGOX܇F].E{DdfǧΖnO_ux7lvpW_ߟTv==O^)%?X_ /4 "yqx~ty+M1z\@z5FjvЌޗ3VౚbzvB1~`Jsaؒcyp:UTG@y|ihrTm=pN:19Ѐwj32wݤJk1axBF߄,ǰΥa() [Fk8Y>҄-*(oNrChiࡑFх!LԢFqVpjD!LX=a>״LEQ9{_MV֜-χC"0ː&rW䓩H;WVTKӼS?Fq N߷-j-4psk*bx1#MȾaU󶈓,SfYsZV)ݞ̓["=EO3E_xn`K}j<ō}uF(5""{[47D$f.gtt{s"t8B)s6îKR!zy/[ Oh&Nd²铅^is#L_ͽRAQ7(f54xhL{Vs pEy+hE8gޥ0gNRRj&OcيCF8Aފ\"3@3!wD>dȮѭhhnP#Ity, VCkF[e낟R~Mº3u5|ߩA[7*MOjr yxL1]<{+hv y5.-}Ȳgx/YS,r_q*7C+/qo힧ҫd]#5fMfRsZ(m{8D'F#cM XϸagZc*ޝ2js ebŠmC]vt6Rs݋w(,;OK ݮWaX°۳E`@HB ec|* t >I愈i.g&Bu.nL/Jq'^_E_{NnP~'5R.΄ f$[aTْ}0V.1sǛS+$b8Xg(^e3fl]R5*{+k$!hXZ6eakSVmN4Fa.AFq욘HH'(J /x^NCw+MQ"WQ;j o^ AzR; J> a[X(wA^+":=xgQ2'S/к{'Gbvt}6LC͠}dO%PE[3g2Q /^uKUf[[vTPoo0j;ip.rj*%&1WA":#CNOD(:'/<e:4>3sVm64 Mjß1^r;0Z&ͨ6Ǥ2h84Sbȹ}RYG"olv*߸ͳW-~}XjɲpP7/ t8yivPZA.GU.cr-&O - AlȺ g"zl_y䊅8v3h&0\̼6s)Yܬ&a\,^EUL ROZscδ.@'<{Xypk_rC˅3jCѪSXn/g[7h` ?'BkdZ*>n >-MhmWMe>cJ4]"*!tO2T&C`KzZ0I{lYHED$~x"cϰ5;%w+WL"Ϣ_[g.Y._`}8l 3>81#Aŧ_9|i0c~/wVĹws=/Ю_'Ҭ+~rþ5ۨʼnSw/JAr uKv&qHɼȻٹќ{=W;,ӽ%̡A%{K(s]l/Pb4 !޲Zo$OXF%ex֐KBD"2k'BIoEuug-&NUf80;.<CڟgȾYg.~ k/p>W9˲lj<8͎I/ ÞSyiS(Xn:D9t|!I-1oF7P T[X3!=kAўPx)I'E#\]o {- q+cB 4#!C#|`df٨IɸI rf4Z{}*VjleAY nㆇّXHE_փǨO^f} tߍRL֮ӿ.{ 'Dș{}eU)jڧ8a1FpAۺ ~r!}$L)Zȍ65eiW)&Zzwdڹ1}9# f-(Fq %{=pw:==?'I~)Z{'z opkk\ >I˕vPq eU3 59˟{% slŀ WdZv6EW@1Tr0Q={Ɲy}?uw9F*l;f q,[]sO _#۲!$>Ze\צ+[j[ft͍egceV'2T=_0kgFkS41_%"VۛjB{O =ݳ,%g8B ^(XhG(ToES1%;8#3_V=:bZA8Dʦvߢ5g!@ϑ$4I$ kEFFO[a0PlTNpxFVx!֝*(3K c8s!fSk~ڠ<"ג*68EY 6:C^ctn+ay&E2.Ɖã1[Z|/CUK2P'$` 캍/ĵ5T O'<~gl^/ }֪ inZL~B40j|"d PFn?8fʑ x3!y)5Q=Vmk /" qUnFO>bJTpyzַ\ru^W{ٛggk_ oQd%$~'ꤿ?xI߸qctvNݔZgjNawOd6ާ^RP8Gݽ"4*dd2 9)' \D%/IvKOWa1~y0ˋgP#%#fLdɄEI"^!gWS3ExGvj=2t# R gdLm77@V9\E˜"RN1^̷`0pS%|!~:z<{BUCp*S11#ETr~({. !™PWݎ'G*5sȨ`(d%˶͓ beAΓL;GLn% %׷RsG5`(Q ?:SZ ,"9`gnR}rD}ы93?0dzG@On8v{Nߢ 'N/ ԗ<j9i4NFJ1_:&@dƄ`{v5D<0ri>r(u4SG:mxgvcgLmpU14'C[4Bb4Ɖ~rTC]_ZwWJߎvfW Ē p6OS`ݞX,2i(q tI;Q,ټI ~pyg 2xqRFR˫/їVѧk0]4a{w=2Vnj^ F[mQ9cŽ`⣨0geL߯eu{*yvlxJ#FqOJtDeڣ%2` & gRghҞ y鳌ݭ+yo</qDWNݽJd[ԕRUlҟȹP%w:o ` ?//y*EeǯVk6/-Rfӎj+t34fo?/]ix3@'r%IJ<}7W_zKRґG2w&&3i^SMhBNN` "8$2;mӟ o$0uw7rKÜ8Zdv۾м}BB̔Tb~+"BS$"CPnXAp% %OtFCaJ83عq4ORfq4Ǜ_vX'&(7ljtEc8L!Ve0@iK )tڳ<Khm ;OfxyW^R,hQXg12$:'m;xtؙ;V^#\º]QrBgB𵰿;CQeަKhcCqgxshL?)҃#1X}qJ_۾īh j޺nc 9joop2pp#26Fu Ms]w:-Zjޜ/c w/*\$VzFKS]~Ā |򱃹W^|nWG)dG2j($qL~'I7ϒja@'^bWh4Oz Lu`9$`<;?]S)&d /,/-lH<ȉXg[>ڏ-7^_n^xOߪ}y$.N*R;2+>Yh\|v.x|QۇK&gVGP[;.}_Tߍpa ևt@e$|ҝ \3ǟh [^r}/>JHdْ\GAI{SxW#^8޳F{ׄpyP/Lrzj2}8F8ut$Ag%"RNeE ?! JDU= `x)2plīzJ&',pvd$1Ұ(F4qj;;2LpBp*ðr(K@qfJ3<«z0Bv=c5[<@bxaˈ8q%mk[3cxՈD'!(v&Q$DRa>Pc C ^G0`KuH ؔ̔څp7k ]EBp&2js'~?X#?M=0cw2ЇpJ?)*x"E4ad 2F+ރSTJ6e8RZDk- <g13BЋ|Iꢰ=Z7oeL!!+y=}rm)†S1Ƅ{V(y֤֦ܺ{0q,t'F/ư_C Opz?Qz:dQk8]FIg~mqOPYV\a@]c^䌙p7Mԡ{.dRxk=;M[\lh׽,‰PၮTq+>9,U8x6nϫ/P8q(tP0_{}O6*[ixћ%WZ;*}`NL/4s:r}㜶js[asF{'S 񐏌TyT׶9 }z>|m<=V]?˵ʡ_m_ Kח;o_}gZNwG_4Ƹ"'s,E`ȵep7PH( |Q d&W\͐?w_-o.=Ȗ5yc)N^E<<}ᒰ3P{e[ɶ5';퍗I CWb+Cxʀf;W" GN# PfIPfYѻ).Bjb!E^rY'Bz+PUQ:BĊ ilzSm 08{ Mzk2PG#b Br2eJD!5"Fn|9HL/2e/ioU|mTƀ+M82yso^?d%cyzD5ɒD%MV'VDJg:SFN{խKıMG"xeY:=Ϡ3f?e8ecyojqj$Ho)<PB<&HE8Wrg5GH[p,yBrID='cp&8mka>v]QF%4Bsf)RF|21Z_R3/;..Ͼ5/q#/Ӂ*|!OaJ o-8/QV=s야Ff0e9޴ iN|_hcS:0%JPgi' 6p90?2[ L.c[C:E"9;_"Jim$ Q(C΍d)#2#wذC~O6e [ +DB\h6YnE=Xϛ_%ڲ+M3!pX-m["H;05ڭ/$At挒I6OF=3&RDv fg(ZCY*p^e:@tpʸvZNgJ@g0P&jI?`Zsf{aϨA:n|>1pQvZ%lh[&Hpvd5JBdsF0x;D iȜxzJ&jLhwӾY yͅw} ^&l}x)pSE2~6x /86AMGkh|Ul7lR #|b[k/l[l]hjv Qk_h+ԄJ7=9Pn=U}g7Q{|y53g(>9;NvD%}okR# ]zY[µqr-8Qx~hFrg aЍ}a2n(20nhz`4VuFF尨H^pZ$Fo8};*9 ?WH./?*Z?(,fٜ%_dhɢΰU,@$pB I OYCLo|fJ]xT7anddDjgĺݘRc"TXxG%1͞Qɰqk(+Dj FJq;"g]z0l_e#mlv(Z~m[Ɇ>rsvGgEg[-U>̿[_Z\ L^]X|k&zT=2tzm`%]S3|6_|3'W͟'߲Lo|ͼޝEoP1q&=%Dr/ -R0ᦌcڹ[hV0H*mVJF[)mB@sDIs`O=* TR dxavk_7N1x:qSJ!5Z}f {[){rINivu#B:GHb{ĤXe^mnPw-[#io qw@ |CLjACݕZɣ)8hhZקTm6Ē2Л3 !0EYD5GQ. YsV\$S < =ȳx `fo,c%lnt͟y=Atk^foq];0xQ}}sM27F x y#16e8;8$.g(Ш9yVe$~2vrshD}. F+˱ӯ|m?^Zlg~hvdB(!/ȣjT,vgX#/̼5&.) ׎2C/krQ3)_|my1/^]+_]II6 Gw [Lsd$yLwXW;%Zy/WfX.9S3 l:ΤREQ)wjUuzAA[̬4R"h-r><{ tK?r֟|cZ}[ΩB2! c,8[=# B$<0xe a~[7xtF'mW"Y2|5&Ҁ'EXS .9@)1#$e 'E(/A1qCN q뾖 dF '-[7VHW[P)'eo{eM9!tN)s 5}_BTEFS]镶t'@gS|ޭ]X%Uȋqq1%|p> ݴAy05:i# i&nG8ԟ/7%!=b3Pg#x;?[G׵1QEy$MbZ/>I.S~KU@80>ƌ扐mHlr^錿1}<:O><76ĺ? 2Rt?ݏ%3 WI&k}U nɴ^#KsQ!Ҹl}dM@IDAT̐bE}_E0 ? 90|^oߗ˿?X?w_|;#s-hxx.ۓU*CEaI>Mq.V]gG!E@gu !_JNK)(5`{揗{dƿ9 ̢50 /՛d 't,,d/y#J07[%&-3$pw + HntQ"0vrזO%`촬Lx8 m=?,3x߂gsz,}aѶ>\b/q־(>p2]pyީ++3_x-}EaR)<ڿ2%+> ,)p4GmHqP-cMf~@71TlW0!%mo^sD##Zk0Q@H :H`&VwMHLԀ0u05 C͊EXjz]48ºqGyB] ѝo%"m, ?&24M77#-;z?kդ^T< $eIJ|P7+%AcMv4 CI<ڋp *"P-+0յM />Ryа6lBlxQqx4ڇfnjuye\I(=x&R րWCc4زa9JvV@P"<&= (d`| ٳWiR8 tWP@QMH0fnO~џd)^As͋d)-n5kT+ KZ鷦/d?qc!<Ế_X$fDɟY)ZxIw\]﫯X}84trЖglSs g݇KjkDr(Z+<@ 2pU`h.jjp/.&AX?tc Lk(UpJaJhs"E u"!x}\>0F3@ ɓyuy1}'f\'൩2Hk^^;rz\{` n>Mfg@tLN:xGFx^9 <8O$4yLH+1ʼ!cԜjcu}Lm h\lkg7\xgNo.~nr7gi[ޗ±"w&",^DGcѵ>鸙IXa$p`K*O>]%[~'d$?(;sRvw -ڤH5ByLW\e<:{tZf~4'S؛BO0m4#Up`!"Eq'^p~Bv}iQ_7܊P.B (ë!9I; 1a1fЫ"(?R"_=ߵ>FS] a6#T7)ޫNHTuIH:~3QrkfrC6YO|^%!>MrA XxDh] }l#3DcKN&^N/CK_å%&=7ع#@nD'Y6yv)ID7Z誈m9~gzf73j|莟&B 3 搡/Qpash'揶sD%Dr*wn/^(x2xGF #cJ!ya*KXu"MR/7xpLd Q}JCИ-sX%2l2 cz% EiumNues!~˻Wnv SePlmVx0eC7B}W #F[5 >/8MW "HOfmo _xK^# t(9Ѯyx'48)t“ND: WKq }?-tko4^<3 ZrKskHdd<}E4]B%k!ݷ_B {SPAHbo9Ŭ~ٰT!"DM 3<fh z)9}d"Rv@^}׳_A+Tߝ~R`cNEYNJl֊nnk+L#^~8%B?qkȭ{OH [v1?O4 GbYB?^*iV6d!x50/0Ɏq:h+̣%X& SFfh{~3s_BbRE'p=o o&Ļ.`0h/n$C]&'Ԁpf]^ONN< 8W7[(L`u8CͅqȔGuM#0X?{gI)>BQ% zusJdzd|%kTh5aM `͂<0 vd%d!Gz,stj0<oaǴmxBc IN1"Sp(9rb zB_xx2LC+xd'r}ʌg%eySOXTv9V;=z3Zr܄= GUbi1LŹޛtb&X2]7Yϱ$ %Sh7Bܽ%xkG(+(&к=o-r\OE5{5$JW6d^[7D(& W$~A5װ61Fv}k-m %yUSvop<ǤBYvGv0,KU|@dmDGY S\ *l+YGևb@{cH1$<5˰΋KJ{Vk]fߍEP)Ѷ<[7SK "xȸJSH n.Uܿlɋc (B?6XYpmܓ6+zmZ?2)3< b3`)wX+6) M?r@V>_ͣ©2|SE#} qWKe1 (T%D ߿Gƙg|ͬU(4rjsyzw׎hFH~ogi\o3-ӰUzv溄!촹P=/ޞ̘-oBH ?o/G_vѶ,#Glc#1z>yZ95BޓDn˃꼓nH1U׃;t\ [6:_s3Qn$sɡ PE=ω*YN,.Wdkhr,O323KiM}A(xczW>^?|c'~gc[:!:9rv(9DΞ9_} $Ûk?]^hɻK>}ZP@DUwg"*B; ޭa6/@J5&#ˆ?"p""voXX{Dyrx {g;NaKF<5ovs"?wڒ)WPPYn<"[؊8i(aX>30e M!!ALGFF (NHa7wř(Qe{tTX=z2ZݎTG Lf]N %!6.Hcu8J@t=!QT5`@ z07I^[ݳߘ>(,(k콱Q/01" 'A*Iuj&;Li23[A8hBE$za3' &<qfcP:kpz ] cp'L<2Єw3$q*XW <:Bv $ ; EfZO \ O06D j@e.9]C<%@UgB!pc;9;Rw\h\`}M}}M3,dEMIK;}O! Q? "HHl7 a)]C!LV8zi+ڭ?8X \i<=l+3 )Oj6g1hZG%R81_l}~l|A4f U$aw=Q'(fP(2<9p_B橫?*vF{3$Y)yflCUT&o^@6[tPy5;Hyc.;zh5?iyrn7 ݻsIi;38\1vXp?g 208=^AX5Q'f~ny|39]paOor壒!/vkW u"%Zm{CUY_K//|_\BE¹ljsB 2Ze=ZdΉ6wO?:S@f T,Wkgٺ` : S .6jB(c!vR`Ĕ7AYAa'i;Eoݠ ;!k'dƌ^2 H lXddP1\ K$sMݻ9qҬacY:Ms;kQ;`NW.)̋=PbH< [?+#, uGhaK/LMK{("M)GЧjYyGzPpݻVGdIQ ^\PƘ۹h):BPC,# pM)RSq *4d5ژ1tpy ٦HZe/ow;v,;vᔷ nd w><3Lr?!)A2vnwF{K@h 7;w(>h FYS0:t2Kt[1v( CS*@ =׸ cWyT?ágWg(RCS e ]p,aDӂLGw  N^;^A[~7&MA_c}'%\KÅVЛne]Ƌl}<|&,e`L%da=^1t1_j Q :GC%=V7 D%+FX)[~ O,FW%xEmA6( Qa8`=_]C#shk +rcWD&=E3> g-׽5=2Ghܒb%涜1cF_E+E8 Ӄa^uf\9jM>e$QS!xV-]-,??}=(EY}o~}~l/}S_\Z޻~mعs#qODs;xY9|rq?t?GrmK?@\,. DOk`^L # NPN:d.%PV4؈'`)f:}]ƣ dZa*\aY 7FL{SH0$}-KJ F s06x'CXD:0VaoDuu๗!MI E8t'G1c!+nb\SD'GѺϲ{^NfTTt|vH~ 6ndosx1mzH1-/ /џ*:.M 1ГY$lGY{ж7==5iR1|<)(J W'Jܹ\޹ݲ/<YE|GLmm <`s;]~cIXHwn0^Un vGtk`kX2.UzVך9̇XpB’pO Xv /˳ 3a<kuֆYZ]Y,ljyp>=5.wϔsLΝ]TsQ -Y*4Ʈ9D5(QhCƛBirO7_pro+-.tF 3 k/Vd{(وvv$ Q#n^$r/!fD 'p /&{mԘO%vffu21d?ct?e8>:jNIvbϡ+[ ]$,hL#i*[+8ve 9)#cv>*^$#Ct+@<1 fw86Mۻ*-I58j g583FEj{KhWH?N_ͽ 2^)-0Mv- Ƈ6ΐME 5h.Ј)CxeRC蕂@.ZF@ѼVO6y½ə9ΐGCN(f|ʪ̏4N)dRc$g1Ġ5sFA7wF߉'S m YtC8/x"Җ+)r8#e 5$' m '=hs 鈈-q3PgdC|ЙDKھ_DkdqSa"(Akxujc8W4x fq Ї%7YE9eOF|Z\9`S\l̓mzё> !wȅES,Fzq[A#mSҺ  E1Y?.Sb=SR6ȏ=̣dcƚ=|,i*ӳÜOMU)8*(tۍSwNUN% O8Z_.L}D7_v➼&KJ[?wm 49~I4.Wyd?WU7Ǘ"Nh,,\R>[RƗhc<ݻsr3934Odw{HSxOpƠ=ڃ9GaL4c<YyT=L-2-{Ƽ=zfHd96%{jUe -/Z^.,_Uv.nAvvCEI`Dl5.(Hu&]2 bv$h\Z<cZe1l[V+[]At u03E-l4GBZ'Z +U ll CbcTeԍ]I6$[3^k8ڵiǢ蠥%{Ë J%0 {tAaUQ Zuʻx;jYT8<<$DJImGZ|`)tJZSC׍`bP=jOPY4{=sED'#US uGqZo?c̷[9I$R13fȳ +GW3}%Ihփፂݦ.}~!]LwBUb/׿1$anT '\gaž*\CGYw'h86(?>JQ3ƾvK׌1 yXv6/@ѯ>Ƙ}yRdl YQgnoq^ܦ{V9yF*.5Ǿ'd^On\(\a;?~a $ڭ}U1:8ux[M['_/pOȌ F '33;y6O % 1$41=?Y-vHBFb]GOz2>n۫U=ߟ7E¯]V A< 'Ϯ^ty/^~/.kNUzN'^~￷+q4}Y[t  DiSjuNeȜo~73t~קDG\uWW>ϗre!ǚlG.+Qxrk,d~(Ăg90h#\!+]D(p*'jcga Ylm9'?LAГqDp/L^t|CPv!IFkA0mZdpviw=$M|!, ;׹| =trX݊9 `g?dخ4)#8)>&Ogc#ȃYn1ivJ=lMRIbl9Qd6A,lNO /qPX'BKO )Uʘq`Uj}WFr ucEp!НA7_)`s{$LrF0,pn}5 6WԐ(*: 1[hBin)[jtZ0&QIK*I|.d7FBG'W펰 헳!͈3NfMמqClCJTє6@Fn&F88_vTZ<PH[]#4-5=\}mfC1k]K)4 gd ff SnqE/P0UtnE5069BY8k,50]G%ƪyG0xcg2dtO(>t7+cax<(̰5pZjlhU1I,UˌIyA^gV>k,|xP0:}5ǟ.W+V@i$$^7P(~'\q$SQjEh6(NQF[u,\CJvX7B3NQ7~CT k>#Wuیqcxux:av׼EsRȎmklq-]GJ?ӱ=+aK_H#IIF~F98%2<t%r.}rz(ͭƿ_{7~뷗?WMSOTҮh|zA;揁|\BPT+rd>=i~Q_H˝K,/Ͼq-ˀdlXG"L0;ıS!~ @B&ezb.%gOu{ 0zB3I<$a"V,;QW v?޴58K4vFe|8d'ۥ4B7NH(B.s' MP|xxԘ~(fspڂg97I0JC"c!=k߽BVx䁉[ uauUe͂I-~FNIAMgқ@,cC4LBꛘ-nUtg3LDf;fύ%A28v[S܍ftzjĉwjm (2׸x-`3 4=_dB?;>/ml]&ʰA1j8? R2NijsG8{}؄wxF!ز!aOڨ'7T̑(^VFh>Ϝy ڱ\~8lmX#D}^:D{o'&h}ZqCt 1cx,lnVi%[xw݌IxVWŬQ O l`}ueM ٸ8~ ƍOvDҷ$(JG1 n"M1-7;ݱ,~b2rY$ & Y[Ԃ-v G/`0 lveu%RHQ8,5d1dD['C{=g׼^{o36xpx[8T@Ǎvdqv˶Znz}>Q0X*g-L124{Y||oSw}5-t@IDATfvuC8]G͸ѳh2;i; {ONsF=oƜjv`FQZm,ʾjw! 5$|ծe Y_KR{7y:#EE=K8EÙ+DD<(zPZ8x6/a<cq֗)F O"WwfQ@c[UQ`H:$ d*v;Ӣu>´a{-Qc|jgK:UO*ְ1>XITx3HCe6d9x`7b^ T\?;HxNڜ8r8 /մWa/Z:9&.Z^Jp).["QLWf`;pJ(b CTL(Ë |{3R˞ZKG=W[,m[FIxH(}=DI?~+-)l#吩g) %ͷTۧxtu i pBX`C':MxG]?MxWF6]:re5# v9Woӎgj.=Yjig I0O}j)=OcxGƮ_ݜ]AYR#%[OmVdU>vS"N/r-nh:Fcٻ3=1Ʃo5Gȯy n)b阮)^25B,Q@B'!s I헣jPJmW|;u)l+ v4ƃ~R2[Q󋇭~dH(4u7Mˎf[ _\~>5` (3WeEydAk9kc;йyĞ%Yx2*c(;\ZO[Z@iO,^ɼȰ 0VJF+s\sxc@t,G}?\;]~4Dly󍷪 ګ"[۴\L5FğM+~ d4'&wO#=[m*6kte??X>nyFY)WmH6K\3͈s_6}x*z;^Кv^+66J3 !hv8! 5s"N *))ʛ^JO"HKݦ)^ѢTjRp-/K{o T[6Ids>UGT4 58/יOۺq|l4`}8aˋTC@-RV.%s?ϟG|,1sz/*;)-1$i)l(}̯P} QEu⛘B(8<3:V\=Kp0lĨ Tt0T.pdb́0-\&R0<j<GX(z٧blKndsE ԋg2E^T;"yx@7@B͗Di1Ãu 䣚r۷3iKlWÜT8#GO1Q`bQzD(ZR51Ip|I>SVqB{yK¯\ ,TEQSH=ȡLԷ |' œ8 n"NQp됰ޣ :7>qu+lbCZM+^b'Ea s1z2t0H…$;&m8^`t1y`ante/wo׼fJ꼨4Cr H.mf*m:3]m]ߦC8h_]_l}W_㝼H 7iy ^>Kyi#D|HD7W.cW)`prk'@fk'a^4 G@ߠg;yaڣN%u?ܡE:r&kglvh?X/ݻX߭C3q5FP["~9tm}/>Zp ڟld>z$*^N]b,-rjr, .)wb`΃!%g_^& sItit`1u\´=9sTle θ^`4xQ&g#l?)_|3,r~=wQZkᄍ콇w[y~D&ۇm9?lStS'+5-}ANEyy˿<ۗ_cg7 糴qg3BtQ:^kbh`G!GO;R, m j7bGC @_Pʅ!~b8 P C&s ,~2jKA`,1*e2/xb, iQ=|pO. .YΦ:1~ @"Nb9/ D~kxz~GY 6y2C8R~ͦqWBKyHOz/eV"Tm0F{5F>S(cMY-ػ'O5:+f*:6ÓuJ,9a9'qYUkiis}sR6&=)ՉÍ);RQ'g61\" Q;nz*("Oՙ2hݜ̓;ꝽVȳ-}9dcb!EKÇ$}8)'߮3qƵ֞z^Vb]k ϾV~|Xot*tkko'/xyR(ŝ6O֕Y _go|헚+SQzXο{i n{2!smA%#޽3{kl$&˔nc+24, vc.³t{T= +ϥ#WⒹ2Pd1Iwi O^n-ӳCto%}Ӡ7 :Qs6LrNte*C蚿 )yog/_GG>.8.cJw~ gFj_^I_.wn_xȱl$_skV?DJ&o?yD+":X!7c^VzĜ-QcUTU~(t>Q)֢ޓO'2NIcƼ7&MSn. Pbԥ0Ef!! -6ۇ٫ GvYt;!WH))8s ~c fj _RH)cPD|eS'ZRH2(`U8CY F8LY\<= rLߘߖ-Io< 괆])n@b6ϮJ=\C^{]Y=@U;3eb_KB4!sM { ~ S@k`4tҒb+0x^n?/3gzXyT q첶]M]Դܧg%yq ju@reFmh), ra(OAS6johIp&;%1Sg#h;w!aO鄾?Pg9sp15860Gpqf$M1h]n1:Cq9~yD׿1=w! U?07dyl"<GNsשUM :j8x:dtHַ즱8y?gЃ_mu_|W(ZX׿G< Z8#W91z8da~W7}F|~rr|lR徟zLq,QN6 흁Lo6]Jeo) ɜp)e@?NEݹ{+rTg]cpswIM=ͼG/~1wףGyG-~ݶUQ׍ B 8?}1\ꓰ3+'w Þw1O?YXL HQF$L)Dh PoHI+̈o}`GԖ0 v2Xp>^;#.cvy6EERS"5U}njn m~(uʀHebZIa\vV)|k{2I8‘9dV"t߽͞,hZ/S3]zY΀EVVru1<,wt )'N&ވ~]LXǮ}89 ]Lajut^kY}F_\/6j/!;Z_{q],4u@'eڤlbd򷶥K|8ɴ];C8pU?)`7PFAk k.__ 鶬"gˇg:`4 E4}BA/3+9V&$+6|j^8 (3z~eDݎ@c]ߓU3O c~Ɇߩ@7,oJof5wk[t->x}ynh7=Gٍhb%Wwn7 x_~sq^q8s6zTYWޡ?FGn/hauU+S^:L}?/%Zk([Omw[M%Pۑ3]:1|7gj%#"-kKӾ>Tav@y@K` %6FJ[j fLN)D S fѵX$e!`lxj25x=8 TVі]( q0%/:(ss.f#/~@Ha2@7o"}u~j??[6v hP|$G,10 a-BIKZF=hTj+̺qƈGzaV4fLR6"YU{1=D p.[{  UxK/ lM[bYьxh #Lz 8% [9L*9-wR 7 ףykm1{=}Ƴ"I<' 5;q #Ex|]kZ,5OT*,w2v#$T)e`8ET,RkJI'lOK lpJ[ 7]kU kgCb6|jigDQT+ۇ/@so-]暶fNwO1o6'kԇW"=9!5>`Ψ ~]s+<ك7:@J8W75]qq#ށf=z465K ͉P)wl~m:o|7~K+?|(i+cSH n/U^Ҋcepx1lk~6:Mx=&p8ӢGr#OnL9!o# 6l >`8&P<Y 2z.(i-?UM Pw -XnU;;/gjuڶ-_.{gȊZ2ျ?y`%|,}섩߮Ȝ/ W[]U;X}pqSퟑ1^xfN:gq"_z-kmd_(`%ޟ[1-DS#[lPGcڪ$i1젨 ^T <żsHg.2/Jg% $ ~P~{ڕ-`D5Sڨ"'`4F ӳ*alLv2Ʀu+KK ̵KaB<+ bQ'Qk.՝`@D:m1sQɆ׍XQ[w! |V'C*86Rh9h1I9]ۖe32p~(sXO=i< @g R*O7F32)$LzKnRp?sX.vV3.}aNNݔLwP̲nUm?vb"fpx9+F㔽qތ_Z=S#NJ|t}? 7 ֔H=Hm ᦩԅq'ˊg3r΃`C^ ;Oj,|móOK(yKKs]#ꡙlor4 "&("]0"SVkqJ6v @, 8 8hO /JaR5ѽ2iu1*et$>}<H/t286@|ɉ`iPw ĥ0w>${~x9]|Z#lyywjv^~~S#\ nZ0Uеt[v3O=Goqt[d;EA'h5g8&?{Vj0igF!뉆EareϻwBr^)PGh#iZxюKxj/;`I#FPFi 8!gE)64 2댁̼=X+ D* Ypщ,8V߈o$k ^M3rb"Uw\ihx435Cx:|H8()(* '9TPJ"۬j11%]ՏթBUZ/528m#qJ[;0hDoK2ouvVcӌqfx_*D2=S'EO9O@IBД;+2B 4:?D zl R`e0+t}ݘ <~.SB$4M̀NnQHa|k{;4:B4JҼ(|ڦq?mG^K|ki‰7fmֿkSg,S]FȫIi^1Oo(z9:]tXyP7-iKn;1d[rvޭo-?߫פj5P6}n17VύeqYbøpl\4etYzoNHBoǭ{^yS` c sNY Ə9tLᅙ'^u%:(^kلAA}BLms9d7{gY<~ϖ*/4kM HQ?pfȎ]V` @;'ӚB>m`&r[vMN W Nu*Sم.anL(U_)4(Sς0[E=MV(l*9)O|+oMm0 gnzTĚ?7CeBk۸lՉbnUE/ %bMi,im 3'_=a,83HR|e8Z@;t 9ejly{Z)ǫfW㶪Q'QmP Sٻˣ%xO(!aZŌXu@WS"eGFPG흲o-@ D*ݳnN6kx@ȃ{ Y*ѽ{YUER:Ϛ # \<> $&mVŢZn;Ţ sS`/gis<І A8 - LTbvDg.˩>mEO.Ti?Қ 9lH!W#39DNn0*MO-UvChkʻQZ"'_J)8` DH}a(H}Jyv}xlH-YK`w}ϛ xmƋUod«q3,=ņm]ڶNy x;y]f4UFD0IHMO};#y66_70MLS~W?A_0بGg2=CV2q (g}Cu׾0vMwʹSmL+ڋ朗\S2 <ͺF*aN3J7}p\}}1}A&9벹 C*C|dπofDOǭ*o &eI5 ?I*Jjdv ϤOUsnþg .hh<;2yvtq9&!xRZ5;?:/ Iwr ؐh4cl(+:EH=F$ڑ>G}'8N_7#xx]Ϋkk3)볐b&G$ 1=|H7sv(>_xx*kLS,+C^KF~=Xv;x:U˖4=űTT7^ :x >w7HM:ȺRg >3,ѿqrX]8Xcio5>_ : >^;{$`}e:?NL8úEK dδGʎC^x[9).O&O&ٖwvq. |.~2 釳pX7g{\&h|Ʃh|2X0)61}KλaGxkĿB'[<+zF"κ#ZXvŃIɳ~`lQ)!`0/KR/~B*(-:uE~ O#"w^z#%d@i˘b") s`%~ xrD? 3mA!]RVڢuՊ@:k!Qt;(}wW +ǧ1󤘃F*/U#9/(Л:#OpBH &5 :FWk0KiҐ@gA<T"j^s2'>Fvw0A*€6TK>CE8Ϝwfx[jƖ̵ř2}. )YMWx#8f ^D7}UfЊԿΪe};sAP夨(M?ZNY,T|fG}ou:(QfmRZv'v;kVD{٢9j>n6&΍.袾v+zPGLw.<e`SKM(퀙\  |6:>&T$BoNVv'C?BMOݥW ({ :y\^zcZiˌ"'Yכu5qhk]2ƈy"p 8x|YΛ~$s4N8 qCEշ{N`}-oG?G9P~: RKYƸVTM"ڠW#Le׃Rdj}=AfAJ]w:Ψx]&/Uυٸ&22wj8]{VSeQ =7 wjdkE|9lQ?}Y{Z@n|cDn\[EQ#l-˯~+˟fAQfqdc] r8bt\xaY0'1Ƿp7`]-3Y|w]`$x3/B$L x(vM{318![ETp9Y=:S7ytqEm%\ra`&ADD""% ~W*^ʘQsw*.y>  D v^±t ~&1ܘN#$9N*9D0)phMe7ETO3Ųz9j㧟*;6.+JSD30B"FkLh O0c_y2@+zVۄp"ZFPl')MRՉ{ ]7vA_ ~#x9HfycB;l(י`Ie,R"Lh7m||ֳٰ$xjAkcf*^`Po>+3e~Sw=~ތDМX.!gCl"W!Iq]eA̹ɌPˁSmqLR}w[J!_/TA+m\O6lrFuF|=Dx-Xϊ"qHdM'L!|gbĭ~|F{ǮDM޽בA;f {5"peYuO|甫MN1<9dƻ>> \!E[j k)Lz(~i?k*Wn/_xRϫG2~ڪgTqGl~u~pXywT8 Hn,OW@4\Wjl--#Q_y8S]T׭.r жmEjs8Dq[˜hڹ6 : ;Y#z8pB2M^n|f0ha(Il"ʂv qSr'bd8S z+Oq<6P}|,l2qZ m*L'J^ˮkzsf XȞ}܋ ")rT5bIWcDYnī"+t/bs.!d3!buQ&l*?En)LX jt(ډ<ţ׌`m;%iI$Ev-W{"g)JܲN0Qev0C zl2>bdm CJֳh̦2=;cJOjaC6Y:rfG!ӓHjt'{^Y_J;MZ߭U91|E,*MµԳ(Di`|"6vƑX#%yGD$@sTB3=(4\1<5 2P|^dNQ 3~]*17|=:7E6@ ?2xHqk"b7Du:ǰuo7 良oz/hat$ \Q1fv'U<-"t)':A!b d $b>>[_N9RT.̨?~#/%"+7byv5I/WG֫ ? Z1=o1|y|xei]esVHY+v?r:c*E7!Fe(A'{<цLg9]#.A} #o7?hoq 88ȱcy !ɭqIS@OέUBO+3kǽT_j%+R*1@`)N#"so1E˕b:Je۰igLryyRXB:kw3)"ʞ±pM)%&ehyU~m"JR 2cNZ2^nvSLP?aM2seC^rN]Jk1f Q)<"=+'@46  y=C ^ZIF6?0JtB4$33i4ŏR;A8 !ٜ dG?>mIT}z\ˬ{]i]1`R2iy0GKBW0l43#dxR[( }c+:]d!NPy4Q5gϓ^t.A~ee>K!ؕ]6}ppd8|𦘈AA27`$C:2!>i;pvk|:Uџw/qS\}'DLތeU`j?E8ٴj)v)g$/n=sЁCOS8dϣ ^'8 f脉~YdXA+f5?DߍqY?B6̾sxdyxQNJf (+86 O|2VVU}Ӳ  gF9W#Dqj=YGV^d{p1e,Z:Mќ%k8y4Mow9/kS0X&p)R?kYixNO l{A| ~ >GO ǡ'<ȉ[pmt]F6ĂS5\Yfv}rƉ.27rShX%7Y}K6;|vd h zY`yɄaޓgg9 =[ "_ےxQ<q1OXRex4n vX71{t `et1@dq069kk;e<()^75Z]N FǁɁ:SDY@#x((߳QJ!i8J(# x#j8*rf'EH/jV<|ID=cZ?33NC(G?wh΃,7RNs~w68#U;79 2?ibARvu GQ$' ʯo^]V&|G݃ C|XX\53+SԐU! 50m5b=Z7)Re@IDATm *QqQHzG9q{)W+;0wqg8l^cNtf2^mH30SUsǘ9pn cnEyp#g*7J;b~wLZ\0FNȴwZkRQAtRlP;27kh훢5QuIotyXo`-[^ ~F^n7)^niRC ־G__deu/,xtNЩ>3;@^RɻX dvNy=/ʒYӔLS HeG8c4ӎQ6=b|Y jE>L'tq6ܐh&o8OSEȟ_@g5^&HNָ\h0ΕskQcpI,N\gdq"#3ј-lshjI"LjHccB3HJ*tf!f,d+L-T mv [4F̣q Vᄫ[cAAg}n AXdk]nKP=ي 7*ݟ7/XN}" I .U9 6ep(*%%;0^|a'OyI6v$\2 U) 7 ,W'NN#F kIYG!7N2oz2s$DjѶ( %= >"q\,~0k38k}=T5_po#NhчM(THO_Aa|ux1Nr6^`pki 91kum+32׳E7^&<ș,sZfّFϙ>zXnf9߼~Qm;No*槿kYݘkɣtaId7 ڞt}N eg/NkM)6ЫgQ@ClѨxq!:w@Q|8Nk:l=Y"%'`9ox7{'9ϷLtO<*P:+| tqtemo5X_WmNd#^vcF'1^y12y#*C:dZL+]iõ e#1RDؐEL!9FX wEl;l)D kg{K O0u"DHJb32<#<}'jR-d6ƀ'dYfqBN!q<N!YjE>/5DQ1rbl0gbsNQBLjLmx3KiO #nD'mv' T\ߖw؆ sX .ssW0_D qO^6ͯAa}^hW+`q]B:NJ˳"4GCTO.nG1xQDW;\9@hήqCg<3]*vы2/z`mUgԩåfCLR+ZFG0ll o#/zq7V;32IchC_pPe<$ٍdq&';I#K;J[~i ]U8g5/ &@iY4-=GC.#Lx0436#qtqXDx xk a!~cj'Dht?:֠w+W1>kAy*n,7ͤkˣzJ^@~=GR02$ )8|p0 7̒1|䠥/܎G*hRz㄰LOP (rdh/w@.c71otK0kοgcc6G&6 #X/Sl*b'f=x|niw  `T5)^v dDe6x/aK1R}mD_~I58%:)|q6XQ8 " E,dPAA^J@Wtܒ8=Q (v`ȹqs~QetwpMa¹h(4p"2mY<;q8]>,hPGFsKXO軺x$udO|*LLV?͵/Hi! ȳ,|D>_(鏣b]L]Tt_U5T[hspLΐw,?W-i҃d0ZWa=JZвW?Xj;)E%;?{8O?mD Sԯ]30 k g|ٞ6PɆIε,*ѩR؄aLP@oL[.-n$2h+we%hyT'b%t6t&ZVg#{D˃7_@Gp'[fGf r+n^iS2tFFXreEps6$L]ւE#c#Xo(b)6&y; Z1颫Tz6².”<7@ HQu0%Q1Ѥg3w/h Kc=̰@']<$ d]EVuW#0I%ոEoJ[&8+"UFY_YޜUk,<{vz\>?j*ck~E'[iOZrC;ő;e(ӟ V`YQ1MX$Bv TCa_m)@Έ2Ҝ{F)NJ1xM;h1k$zߢpqBehA?n5u1}00 fu;p(: AÃ4n#!şE-;slQa*'hKT Xd#ڣ냃S3]v95>Vy|U#ʙʔҳ>` {VEha0$n령Ńx|V$g0YQ?U0wWNA y IМpvSM:sc2rC䬇ux&`B+ (r.s]#@uuxf2$ݠ=B==7zB/ME1?1udqB\[YtRDgLW{/s8_Y7ŧ!#3#0v-%ƦSgiz-?BN@$N2gײ$S~@?=?SɘL@t-|jw̙k>{($hh) =}i ad#J7Ѓ;oCpN ^rdy@2:۱9!ͧ\Xa ʣ\IV3p0qa[ d ] .|V`K#S"ōnTdG2 /gpW \S[aЄN8ms~"ӘN*cy-9,\!I@F[hܴW`LʂQ."] PJlp@o(FQ[iY ZOjzvv1yf2}Vm BLZ"eMZ֑b6c#hT|0~x |&l@5k|[=7ǝ{#DBLg~* Zs4b`mE*{Wt(d'B~&(*>v6x㓸 GDdBc̞imw͙-(8\2Ds2^8Zh/ M䏹FWt5_Dpa8)jplkk 67K͢1+>,P3Uu5<Ůo݂ 'O"$eBb6 GSG1zSqYtrq>{tw9./Z+JwuqWvv3\#4(Yzk TDRⲖ$ˎФd Lu| w=c"lcISĨj[\e.@V# T2E+1Ch^?鳋`Leޓ<qZ-;c@%/`d,I7֎neΐ-3E 3 #H vo9 0̏ 9 j"HMthvҢUM߃cphjGkۇΦH}/sa"VaQsxiOWFL_Ȇ؝Q{ M=Fr5hiQ iO~zRO_dwC̋AKFNY2~^ Q݇ Z7N"dx}'#:<{(-+?wCnH7Ì5E tn!Nᜧ0 3ؔO),i e{MBG䬅:Jn 5j!w'lO 0$x4Rwa9$*n-5(TN_MDn2RLOU~#; (b޺T%j`wS"Rb'$p|ouOp+1.Q0f0JD˾!|17ϟ?ʳc#C hcM{\tsZfy[[黮vȮ߼8鍭l_Ev o6hgX6RҎUųjw 06,0Z9PpnЗB9>\ց*L~޼HC%9ĥD&ԲJP@<>HPI9Uj)3Dhr9I LPo(Lel 7F)lsC pJ$Zein`pBket1!)6m]+^UK{"<'|+ l%܌yR\Szvj{ NB`8LKa8cqvઍ X6&URフII0Gi oC{C?jehD"l \xb*hK !{3o-AYra*Ep"* 8I;K1_X2?K]S$pa"<\CVFJ-9)`l)ȄmՄDDϼNEFZcyѕ| aZ >ҕwҭqpI5C2co4=x|3=g$דO!ǗVx1MZ6ɯ k|3nAN ۵Ǿ{c2zjm?,>#lڊ Oq>yPT/zy1 kp39<ѻGG=Zlƽ;o[e|xpˣv[uRՙlq7((w^Y?^>jCjR"ϸ^ 1}Gп%Y*ӳTu.Ed\/3N>wXO 4&Ы>^*qƜ9; 9yrNϏ8>@yԢ,Av)tww>׿*{k:4sgޮN_GHG +`+ލʾL~-aM!g1+5bVnL"$E4"Q_g0\B B4_\=\0n<٥i &x}ƾ c27{Pj((5vuM`ݸi- poh7,t6Ry[y{`1@q~E69lNYXlH9>S ᗢBOi&j+@]iک蘶P=5MH#щIl.1UhSEhʀ"D#K9~IaYҤJ)^ \y$/:h=FQwsM{\c1t=ɞ (ULh ɴN˔/2:@66E(|iND'G$5i'23Z5i'!vQdNMa1V1K38'v'pQ'Y+eb W6ɚUiGㄬ)& .js*l4x2<, 9~PaitEcĞsڵ~a! 55pL=7nhRǰhii]_7 _52#=&B@|?cǗh%c)k%p3G= 8)y& X|8 nSvYm>Dv/DH3B q_߸;ӆMe9o;?_~ X8TW2J{w$3moI+9%fn>q*!lXިO KŽ2dإn!n-{{e*Mr~&;4AJpÔCva;6aOR #bE6]R}5D% "gtn+a| ͛o_[6ߢ7-_ח>LO>x/E klUͮMr) ^uZ\9c|AZ l% K yR)K=JSwR a)ȃ l1)7?/NFw׽%vaݝ*g#3P_0(<& Pv@to-1:mlY⢫Έ8as|OStvg4:-82+|DԢǟFoh3Gj)%.tPZ΍K;EFǾs`Rƾg)ZF|an65Oc#_up_s2-%B%1M{&:5.8jaԜr2|»0GM K -jڡUU+G_,eQԏt!rt-QyƞR8Yi)A?~l4}<]ƛa8k3s:`R_$?1#M6۶zV[PR%L=LdF,e`z[ɀ+hsj N|ZQƇQ΍Vt #uS]_9^.pLkapB<ѫ7ohj@}3X?hj :gZ2Hl3R{n0©0~'@?oc"/3: "xGL 6d8oe_w2诶koC+GG77;oRtyɇ8KcC[;"2'Z5>߻WϮ<5U3dp<Gݔ1gaOE+_pɢX !PTמ|UfMܸ}kٹ2-ѲqDMqZ|ƞ/mdc 5[; ~& ),O?doo?Y&|tpyݷOFy\*,8 ؆F5Q-m:5ݐЇt( _aN-e$t<\>lp3(-+b?T0Z 4XgfyP\, tOuS[?SR;Z[~2\iPSt5/BwBLS!m N` J5^6a؄y[*3ש!$RG4)gS;kS!^Dl؛}U h? Fi_qb81'FƝ[3c~m&Lp+FGwgq =m}>&2=#֋k ~<UU8-d<\A.5/CTTV ޗQql[TwdڶZm*!.%Kv)cgl c0mR6ލf.2Ql9ps,0tFL݆9`XӭhMٷeNrNF0=TgBcL (kM\iYv'籲R&ap >w8 ƀ#A-jKN'3;_pN繇^Z{sȎ 5NV9@VEPXs2WEDHnKVJw)[ض6lK1e!;>µ:]TvF,~:[9A^W_Y1åej햲Xe_,@`Qq$'# [\[+uQ>:># *|pBy@WS*]HY@ߦ;4gf{ MglQ$"jyc j0Q{A6iq6x:7̅"poTygi򴻿RNUךQ5SOq|oc V*^spJ15tt ȳT Fx񰕐={!p@[9 WRvD +eml8rf1&,*eGr(I2Ϩ6vpr#A&oR yEZ8dCs›$Wtɋ^FQ1/fʀdn@U7s 8J|vɋn% k?+"@8ik۲`ЏIpu}4UjiEK4vD8x\dI#e]9%W3b6TR$6gu9fXnw/=z'`ϝqQwx?a,]1܀8Vā>kz x\b=w?1bYxdy-ɈٲB{RE U@>o 0jhڠ0R~Tg[zshy؄F~}3QO2}8G)ᾁ)w䄕;ۙj8i\_o"kG*Zu&&U.ˆ>0ϊj9]W;1zJ76F?܈XGE Oc4O+_яjuD((DS35Q,xCi~igtS+A,(@DZtJp'TV.";%2]cCYFŐ([J8ۄfYdO?k]q zp\>PV<c :踆D{>s +s8qpLIpd0){Ү7+{Ȭ9"[/TAWr ?O\1qMb;E*(Dmiu<G2,nm,~9<_d`zI=m$8b_tԵtvt OY+pLE/sea)Ǧ8_S?[ L31gG__3a}yX{s{{zצ!X[,!N8SWQ fTkQ͉Dz-?GqV{MdAL É6<|}rkt^ܸ>Gㅀtr ;3;O,Ȫ#N䃻d6ze(ޭkG9m?ط6xI|B|G nk{tӟONuEK/Js:;<(Z%dR&(!Q@x-a2|~YaDzV( Q)&EH/^d2("5-28'#XME̅_㠐.Fh*2Y^ROY P篗U*l8u)yg9ѹ ;f CP*Nѵqr.,a9&l:e{zsfC- E[ }AS7+2Y! wmßi,}FJz=ۏ 㽽5GTR09ڍw|p6Y# P3df,g5,RG;1X^պ9q͘.w͊ CZ)'G;ԫ8Hchxm^6Ynj~ϬFzŻa?ϻ3z]?&/ɢkK/6rދKeoNV֭gW>\?KWT eH7wW-m<ɿ, 5/O?o -?qxwh5FN}ZVzw n[ 8ܖ 0쿩C\ɓwFPVq U 5OJxMJu<|] K;޷&I{޺]<$^і p8r {L i[ඵ]*2vz12,d5P a@c_#&qtgac8{(&϶w6ټ}ރe3Qz]$J#4ooEdc w֪Ksan)WMuWo~e/@҃!$([ S2w [}8ήh3q9'gEpy*F_HJ6836W1T8S "%K/)4h]iqRdy]9/F˜辔v| G)Y[AwGG 8] 0Jo#s2GN Lt Ll`2C?,B 3&bֿ[S2[~X=1;vS%1j{YcPB<X(_:5?/eʓx(՘ /_rQ'-bJ̈DZ1q |6eʬuc>+^vhR !<<]}:5#s]IGCGvP L~%62 j <}lf|_X$ƪEƠJO6Ntx^@WX ğGޔ'C᥁*R?v24{m`3s^6wNhg ѱ#1ͧ`E@T/@dLA02|"c-o(q,O7~[?nӯH1SÙz;VwOlAOGtَ|;>|;gSw8Y)*΢i4/p\m˳˶n7'u/Qgmp6g{cLIw}~Ϳuz]'__lxȖu]F.͓T8YQ6W c& r;!zBb*pkNjQqxEZfdD217 p]Rr>k64/ET fWyA "Nc@kf vY$%; w$WnDDJ~! G팃QThgHZ۲O,n]föWF] 9g`\hjb{@IDAT'meZ&11`@R&˾`L] j4 @t7;A$P(Qu.oqhsM R}8(1q0+sV}.J̎y)\(ڣW5qQ` \31Z1)5JU` d}KrK^{Z瀄K4z ƭgj#h9ܽQLdDmݶ3:g$ݖan{'uٙG݉o5ssF4m R.l=p2 -~,8ؒ+gÊ橢xphP8_-MꄬKY.?njarUwk$_?õU'AyuK&G&NUk?#¸pA7%P^ѵ9lqT1o5s;zI&&}nԋ㋷>LO7u&'2cPK{F{aTZFps!ӿ<}YΰJ7eeҲI(w ݦB?v͇}AេDA.sۭv_=O95ͲUV.1`ӓOۮ>x9飬:K e?<] m$Yx҇GnU'q8u{no6ÔоX%|ZP~,^$GO^U+T?񑯘qqPRN8/x*XF4dɦh-ҊI[ L"QC"Vk"L̀Q+Ō>hxb-b4ILhdm}eWm!V=bXSyX" Bwvs I#>6!=Ky\a )|K(2" 'ȸS;QRq7_h/ĭ C[w(%řplc̪"Ig)9H+`@ ׮b=OHߟ0?VCy<ZzLS(mΩ) |x8ԟddvv sdPFa='VROw{^!*{κT-m;w[sfӫ2~_p6^{sȯY6ht͏YzVƀǖ秷z xP-WNQhNcUS"sdEߣYNuuFw[z>ɳz9)evXnw7~%vC:_K!m댳N!L3:;m^9Rwz'(,bqyp7P?z8f)fsd2Ͻ6ivU)aqR$][7FN3 `Ђڳ-Uyas#-M{lnY>Ɋ )1Gta9&qsRTQ)+ߴ#C$ӠމgKPo1.D{+Cj$>)`@ǥ$n@ps.|_30"y,y)-\X/(Dv˝ؠD)AUݮ[C~MTӳJn/"5?栐7Uy;\6.+W@WMm$1\rm2vhÐ>ްO ͙e3)}o͹D7-Ɗ 9Nv;hW2αd0\3ÃHrOu%^9]6ڮ$|}]qf 獑#t:jτԦ/KϙI]*9ry~oN??9NL]G56Rd7)tU`5 ѲAFq=w>Bu[rwmςePkJw~?{MwKn/skv/GpڪC‹mvWsZzgcOua=o lu^N,,P@yӪ?|v άg`)Zg>y >8}k46xG@;P SOE^iy5CǚJ@8UtF>>^  }Ǣ jY|v+G`UJ6 6Jn~ >;G^F EV vQt>NэhaWlzƸdLkؖ՚qtF"?},rsP.u\78<\*Co{炗hBoogƾ?a98uHDǘ#. 9)*cM߻_`3Y\i~oJJǧ?ދfHE$otjfbj@g83x,][ע_vW#'[y~+?xzvt]ί}?>V[,;x;xY lW_|~zǧOӲ?>}Nh~ӥ5ݠvyRowrF[yw.wz;Eh@n8/;T齶C?k-`er:egM x7FWzܒhn˩ˊ9ǽ(z:CAz53InGG˚PXGa232>0C=kϺS ]sjQbVmeܷjshIq;W3p0[TH~xG"%'ڱҾmsM!WɅks04umA6lamc'#g6z-ZnXgm>-!mnR4Fp˾23*oSNڍVr[1ݳ~(4՝X|z&kE(%F*>!HyG(5F~F8b@ulS} yK 1F^!]܁NwLt4!#@9S Q_Gy]2Lw(EPk5' +|CX &4ceƳ5w GHH~O;!J^xjMq7oUB̯jbH9ϒ: Ni Ց&A[+#H03Hh>8e,vBg̓-+9{ ApX2ƏVwSu5/=Х~8.Kv]{]}M /7ȁH_!{`;H7Y֧Txz O ˊ!x>l@8%Zn<E'I1FVx-noί%~W㣧4D_3]V@2TJܬ/-`;"`zj>o?m+\m/N{?hZeo~{v|`{tw2>?/~p?u?A:"==x7p /AVA­r3)|ǧo+MKUw%gr!;ѓ+SyjNÃ6=NvW_~6y뭷WtVzF҄cN.oTӗƈ~.pUR #FZo94FIR"FG-" #( f-гE]L!$2D84W[?R=2KbRx{Bchbsҹ!B9ĐƬ '5uweN҆'[[/`~fٶzIEz6!,gș?)B8r2%qCFPD.j81"-FٺVє(5,ޑ!Eaį[M6'b9ms+06wۣ͐W}2F pCttȵ`d9g;ǕzUE'g$^Gzߡwi Oa?\z/=3>%zU_?}ġ3d՞Cfw1v~ѭp@i~KA E{.0NC[᳟>(a1LR[ikKUs&p4gr#]u%L(;x}/'}Oqjn?;v(ϿJo:qO[䰝eSM%9=~z-{pѧ??=Y'?=}?8ʖn[ڞ,di>! wOGIf g}S﷤AWa5g?2oU _YUX-H +VgL%p#_sOEs<:RAn.gE4BaE K̤ o~&!=MB A nΣQ4k2bTYό5tcw]޵eD"Us@4w>5븻d*~(<#3R0ĉ`@?!_@5[P 3,:q\%/88P? .']Z#!,]L{s޶xXCȠ0#t7? ^Ny4y˛S eQ1ǻq@g1#mGȞzEx)).;g6odL ыe ãNT!vX !6\QMp WA:i)rOOIH3jl^_.oeJց>X*:*Teƭd f!#C0 qdиkwHFI^aeKuN!SbLx*\Ny>G8bjvެg0 ]11O?yx%!اɰL^r.Ë>?{캟7CϿirt{a+t'逞ӧ`7r] Zok^C[fo'TS|vc_|FSFq?Nksy >qz톭Kۃjkt~AqՁeѺ.멪uw{z8}vqf>xݿ;[xO?GG_$wۗtS{ 8`wWǟzpӻ鴶Ipb;L,Éd^5tpӕ|}(Y\ )po\Xy. jd= k77lc6IP`PR:p3K?@_7ǐ ml袮@Aoz!ᱜJڒ4MQdu?Ͱ MAEy0_  E22Ho+N(NJdjzQ3"8 wsp5ih8-FEo%W"6HɟOX:΋ #K% L[ܱ U@1iu՞"C`$l) 馧M!v/N2wH"5p)cԨ'5)Ee0Ezwi ZO~ak[#O<9L HQ4uTehxSpågyzV`tugGԱe88m- 8.VY<96?0g{K~1D_iP'x+՟eUkM.«O)t8kL[  E _ކu8 瀔mpunu:ovHcp)Y$܋V{"W42p1q '\xOJzNK0sfM志}cY}i~ m:Ѿ2M)+d<*mel-/^E_PHt=׳="|lSˉoW] cUz[ h?[ݫ<tp̹qZh>Hßq1^țϜ8NsیFGqe+`Z*Z" [8"nBqcfBfm2:x 0(b/ tZ AoY@Hxk"歷uUQ<=E Yn9[}ԉ酸-?#n*"EAS×5)2 R3p1/*ʻ)P䌝 ([nD>}N ȝx􄚇8AEchf΁[d')ˮ997@a.m`'Pb)~P)ėZ6W.\c[[OWMU[oi?dr?Z2ię3~#_'| - gNi#iFͻ"o|s⌤20uDyJr-;q9v"=huyKe<޻В[At ϗ Z' |tdWOV}!enP6[zu~:}η?_~R>}YõON_6)y/'zmMMA\p a14@Cw`*B#>L  C6{(1m 0pjӉq#!s@jܥp4"biR -SbBP=Mͺ͓ e]m3u+*%$RܢY`YZ>SLɐ^gȂIXs!tkc{1iyK(ն9LweUL(+B(q<*5ǗG)E{壘[QkYI[_GQq $@EuBw.jIasʦt‡,Qt>=^CiFͼv8!B~SM- ϖ^Z`Jvֆ.JF7FaQpezF!!zx h5|৷V1M_ElC|xٵ㠦UG-9$[^h0/z$s9|:Ϣ'Cy6IV~ONdCn}zyʰ?N>ÚKZ^cs_EO Nmr~K.m<2! = _ NY\ꥻY0OYPLb|J;gW/ ߖҎ\+kIf(ѣe iD^DOk?bUC^VkgaZ0@Gv-P*qc8.xm>>*u-~kx tm?K,kx.315я}*@ NuYΎAWa{;Q%a jS&ELz8[Rj&@ЛK١V2Rmvj'7g-hN&}Xg (=dԉhENDύo,)XJrf[fςZ oOYXA~݋/g)(w8s8__)D?{Bj<+ҊkP TCFdtxi9uA/6"pkJdt0`6vbkk=8ekv/eK堰Qz;=)Nol_ ~{B]S^2=-;^m;}w{{|{,+!ŦL(9.(f Rjpگ:,}SR-ZIa깆@ JDg{&$ y=GW:<6/T U;9Nj4^I5RL1"=Q/KPVG8<E*mizC*@Kۃyx;/: +cJk)Ĺ'jϢ"޹ݼm>wN]ld\ Ɨo0΄ʃF0^ GZ_cb>AE_GH#m~Kޭ;x}H3dWȴB> 1~?ꡠC}otOtDqc/E~ FQhEP# )p!bwf6#NcRz)غy=VK#J)NfЛr -|0UædY*w?c"[-x⮚?b#3[c89I1u,xW"3Mnю>@)GC1ceD"A=0(JB#[L=5Ũ S~k,X@x. ݗyL}Ya ` :Ed){ZAR3zEfcn: j8A%(:RGc,o8*;Oo/9I5>P% H(:OTwA-#77>Y di X)dr:mXFSe`sx'~ RTqt\88 /F'0HݦlJe- BS VF||)[!dJ%mohY>)z3w^=qϮ>.}ueN7N$dW~_QC.ΟY_u~+Э6>ȸ{鳟U Pako2ec%QI]aنC}qaccJY.0l@JanSӅAbh[JB1PL̗*HV8 x<0d b@Fxho1B{+ ɇ~|ק5ш da;Oȩh{.04E̥EDKD0| v1XwGVS6(ÓbmqIoszu%ȱAV9!mփvYrTujC z&ü`UI=,_D/u`N-PD M:0`}NXʭm$cv d,d`/Isp=ZraN&5? 32BP9 e Jf@>WsFOj'=OrY F9)8/5(5ULXwgeP3x<L0+9;'@o] $j~Fn=g8^ %B H7K2j *>X\f@xBPÍwZrڗE T'`S̔=: آse hhfSU9| re^pibirly]M&H28^sKr` fK> 12~!g]ENS3Ӛ9(:LDslkX 0p8J4D{s>֬/$[Th8)Z@L{05=UPtF p!k񑈿Ǎ xC+v,4޹LȲ L7J^o7WIFL$AͩɎ:A>/ޱ*‘yeгer/ڧY)ƭK bd[QsS ev&|ٗ{[ttν۶O~mT FF'T] sU&<<.Ə-o #Cj? XTP<ϑzfUO$^Vg^2X~ɫ%%}YV܋ݣ&YU>[S 9Rm7?oJxy)(5 %9Adcf I["g'<3bMg?aBJ`"ߊQWr3/ 3XY۴N}ՈӴoUksC̛^Ympv@ WD'M7\xFϣgMsk"zev-8UdQUg6E2+mB>Ԙ\QJyvϾ{U6C )Zbbښm|QhqxJ Ny DeSS4B47=)Q2ݟrwGP6P±=ïu6;xP51\ 7VITNPmhُ1.`cѿQ}x67>޽ pl/qdD2 l4߯L jөD;%\W#9@x8h/ M'4cdB|S;~Pǁܽ״D5^ʿ[vʐ.8m\n[ȰE5Jr2Ѣ7j42FxB^[.e뷖߮wVF{pfs;Gd56]@ϥ].:xZn#*aUεitdzW/EǕ N-Oќ c:$َ7M\՗Վ=jK_׾=H.+VU=~?={WtTq5Pʊ p%|_vuG%! &o1ۨeժf 8mو TN;Ԕ{)&^^=ys΢XSWlh`8[aX&"gȋIL;Ŏd dv{|챵U^خH ,]]C3T Qb#E}ޅ罟] p4f/PG2&y1Ν!?Tq~NJ5&^U[k0ٷA!tu5\R㋎x ӭ'j(`p, 2qj3;Ⓩ[Ed@jԕ (ME"hhޔ_Qxԅ$ b/dSb@d)+y6.a1؆% +u@Fr31g<0YmxsDb=N3bn;`e̍Zm_)&|Yo`V@WaeP@zhFL1.?$-Mr*1"Tea#>!Þ[UV%q=65Ǧóˤ)ۊ??c=38rbAJsUтST0E›}e'^Jĵs@ݫ6%=: /!1Et; ƥzJull(: ?2%X!\nS1/y=_$ZsΞKN[?jؔɘԟh?E\V`ثw`JT1E득*E zJS(ܙl? S\*ϐ5$o:A!&7\ 2ZRdZ@4p~}#z4cֆ0)%8?gH!gCF96zsS gjSM)$ksJWQ e.AJM9E;8'N4AA2"0-E~ǻ)fs ZFv4g;[F;:Xj3w6^{,K'R/ ?;AUJ}tabj8S|@ĿO 8d4<\;px o ':@lLfûܻ[I.e W=cg&CaN )5] RXsշ͉kف<A4[{ߪNnVGs/@ :i놬(te/y]eS^-Lܗ9>@@IDATkrr~yU6"c_>+4G9+s$/n]==L<)u-yOZ7lJٮ}L1 XC:Oa(>dE5>F3ײRRg ?Fhמn.\*{bЛqƎ|פYP7H"b/o~]BcloYhq'9t4[z@>Q4`΂Ǵ96OrL;6˨`VwМ-xaPcF> |Q?uE]1YcL_Hh@r/Gt"JbRrчKNd-9ˁpG6A8)6g${=/ ax;xӵJSSQOqƶ|"/N 8s&p s\;1g`Ѹݚgv0,tV:"; O 7=fF輨w]M'N'$p@x}cK#zF5+gzFF?Ϧ{Y+ ?`&5&%n29`s~^pH&. |g{0$E/lɒM@%(#Ǣ -W;~vу$>Krw$pJ q ܃Lյh_xhl\Cp8$b/U)%~l.)OсhnGQFYi"lmRj~';Ez[ڵc3:| K6~b`&2ekjxJH"Dľ Ǐ²tFzetp|lq Q69Xdqԗ3~Lobư颰D9vNC.RjSp˷DϨpB1y#Dz3\$Xd -]iH ТEc@>K"[)MsE#~81/<{'W"@8.UK,'Eé |:/AwQRMHZ] 9Sl8p&E˹Cxl[L!)nu2d 7 NGdNLYUXc4KEyx(- [<\ •K⋮>hglB٭3{tba,EmUBE=V4[J=Mo k:^4k&BH 'A+m9u`[oi>Ds xu0_-J'/s؂yտ]I%[44n,ݑ6͡kKRba2ikP4|SLx/zdϋ 9 C4)I\ϋf-ǗSXFds<$a)3EJ,Dudd[/F=3/Oirj]0ӓL9({SFK`2Z-Y3pMjS(Ë,줄Q߯U_|qp1"#3OZ +:-qF#j7:AjD!\s72lO7hi4Sg+)@C/eabNK?yL%xdeRK]]2Ywm : 2M;\.ښ!Ly#2xjo\im-نrђ<˼"Rtl-CL7Z|^8ʡHXӥ; Ӧ~WNЎεxeݸo4nJ)}&ou,Hj$D /C z}JLWnDޱf|zVØ4{0Эg0AD~)M$u쾹$ m+1E.|34gi(K:!fh}ԛpP)*HIo.dAAHņqr,ux8|E׏*-cp`RbxVN!ohx@ݱ.8jc|,!Wg<,m ܽp/ e#8lqUMS "_ů/'c %PvЊQt Ofl>!Kϕ(w,) -\E|$9`R*{s$zSZ7V_H;Me4ZO_sBȲ sb{'BYFƶozg23 t6FfYfW1:[qe\qt+<%@67 Ox Y^ 쌑ap3Ƿy<̣k ~t{-˞ïj䛣҃ 292spC0qO` M gYO?;o~/~qoҝכ7>n2YP{8&ZT[=ک/㿌aّ+eݜꎚ _P)Hz1!LȄxHR;%brkQ͙Vz5K*-"4Z&ђ&i< UnԬ4sUߋ H'Nm6IҀ%s30e1R?ݵD"e:PZi;!>Q"w* \l+>d*<$f0cy=kw 9#~+B*kkJ BݎNIpw^_Կ4RHpjq&v"'& <xhF s2 v_Q\o^~uޑ^ȑYyRiL%iYF6~Xe7˜4唿76gj q":rE ^M!26PqGm5A gH2>8ϟ7|Vf4.̐%2wKM?8h䫌}_4%ay$2!yS ےF nX;aaBx$͙vm+?F j3Yna{8ѰΑXqxNM[΢E)pgLhL{,tJVzsTaӴ * x3eF} 8Vi7E/ 4(q !T=7. pm|)c8|t=9DQa8"jY*92 qz j}6Pn&pb?:Eq2yxI˲F~84YftK\i^_!n T `_+bM ^;qWlO[}n0辬ӛ3dj$9(7vN&c(јO?b ֦0MOOP7t$ֵ;'læ% 㹦9EɈ TQrrBpLGK(e1{SKyr6*Ne$ki%8WK];?<˺%CRWx ~bJ3KمhQO*hUi- Nq֙S) c YKq</!.Fd`[ci:"~'sWp}ѡGJͩҘ@ sePzL>UeSM>{Nw^h ?5C9F2EB NXQ(*k%:{رit3ae)8d)> Vz/QfLqE)$pQ. M[D9Z90ڣ JTzf@oa#|uS6) r\r .RZ" b噾Z4=+rQFK֗eQn=n~9\Rh3=0pyt E^ ogG#^FSLq_/(ɩ,etc[^R$f$7fTz~d|ȱn–WZw&YNQREvYo1j4*Nul3q6h ,(L&@}5[Et͍ Mz+"iC]{ǿ,(B|?П:X 0>FT\T#BKW{}YNd;zZ?1=3UsFQRm i}^66Ȳ4ý)Z0g 1O@C}cEz]m.c\ 8k팯sʠM=FB}0w>h%*#"yA N)^{tiЮh<EWZeN!EF`?etþ~-.K؛)o֯Y͡8g?lN2OO.ookz ܦ )z/[-a4Hb<^╌ڕ 3o ߬g7 iMED7v~C01NDߞ eb!ljn 3Ǿb^`ǘTNO/Q#W_s$/c kg-Qt`dKjۼRRV ȩڀ"SG,G6|.]=|̀^HũIrkAaў?oyW S7^ǖy'„;Hb(|Ó|dT }9;8iz8>1eI)1ƓZN9L?9V7Zmpy{EØmqQUHuLOpntQpRE)yc>{:Z7l|i1c|4SƩQ}-80)N#`5㊋@ e%V0s <3&#ѧ-VPCOLFf)uWL =O΋dtHy0(D m|1s d|hӴDՙ^05r:lq&ǭH(R {c(P/ea`-rje|nGoVtKar>hɡ6e^/R33Sz! = џ"Hq d{EW᧯3Q6ߠa(K/?FGPF 30h] {XpajI 23#_eu䞞<&=z-@A}>ƶiD Xb.4% "{n d0i磒˳ӯƷ wjG^7}3U?2*k &>awBR-GY2z:6v'|zw~e_k|]91MwiT&y;KY N! M'8ͩnNMNpC"tT ?sEA! GKyR|qW1 F[ZEUm^4zSw;ϪdLhB֝31Qjs'ec>P| R%C wc˚# J%y,DkkFlmȔ\pe=()08&;>Hp(1ͩy!%5뮵cN̗|'[2ⶸF1uP1*[fnxrzԖa;,E<8+f\G8oP3KQcXRTႈ{bR& qxǮ-΀idZ3{uo[YLA%F!\ÃSг E cΗ]2Ə_)6}ޤ{&&jܟx Y9dOEs6eVET*e8(3z=돒7k[D&Bd8IG(* \s5_pKG 닣^"E/twrAoћ`$rMߞ !S.hug?fa߮!DR%plY@CF.v\E"U $l9X!)2E-D93ު<[T{o- Z6Zwr8X3d'ЛJ+O'=;Ж g|_ Sg.ESbGZ]ә5+cE]KcPk{L^١nzC'lT}Շq{ш\q,&oS4ZA".\|]_qVz!Q=?1IOr⓵Kv9ִ~dNm菪c"CWV{y8c:Z2 _!Hԏ6=mFiys` =.fAS,җIh80@ƛI^8Jޘ|?E(y*O!`62c!U+Z8Wy{cHQJS om 7N+lΨB^„dv֞S`W;Ò숢Gi5/G¹`s(?g ,ejӎQR Yv g L&2<>V)V aⰱ-"LNJy?ɿd&bϓa^3PClVxkckl"8C34 ۵P[a}&zvG@&kE@E[= GonX-ro|/_kY|䙾k yr{n͞sEAzѩM`m~]]JIᵾ7ϐY/9ŝd@ٍ@|Pܮ?C@E3P'-|z/xp5-H*N"6x,or*X?1|-FW*2Aj׼Fv|/ 4nǧO>zЮedS2f@CE8E{p|K==~'ƫ7xv[^YnCΆw_;jv$ֽj!h5;A~ɦ:N%\\?R} ٤O-*.cB3I GL蠒dkug ip7"MkcfP3:˨(ABH:,sa51O݁=?Q2st 1CvR+-!0}?|ՅHq,;t[KLA #dv닗{Ѻq*H\~ G`%)㹖1| ޞ !o}*d9' .iЅߍoNd`+ݸ.V5A>Y@jt0EF^ƞ/El>F YbrqL2EݐqV~MȈl2x"Cb3z|GٙKG8=nSs`9TXvQA#/(+WhmexNŧ7O&-c#l+(f@'{6Ej~Yd_a|>4.G]88(߁Ao/lGogvn[-zB7nm~^@p 8wxee?-6(J(D <д(Ȃ =F愍󿇤r&y"-_ ! aA=1``PHe*&`?"YSn.GNn͇Mlt|rUl'%^jeaF^-&!{FX6trQm t|}og>sL' XFTq)R1ӈ2@-Y m cN$P;QZPxڥ9)q] nygZN f6R77fϢ#B'ZHV4 Gԉ{Pj7)F*]UkdžHSh,)ΌĵBZtG1eVD_ʦ!0 vk7EsU,nK/"jjkS= Ѥn"5Y)xv'(jUςi@(YeՈr fҪg9v(asx]tVȞ(@`Wt̥=?S{㍦afM_1kM{@aC_wgd/Gz֘k1S_䶈r{E`q}:? jcеG!c" olN o2b0@7ViPlpkwڪ7g&3n:sjLwzO%;Av[&g]7³Sn۴ 8Ϻ/;ӡ/ ڈ]1cum'LV,Ó7;>p+g}[ w/o|s¯hz쯍Z9ݛۻl5Eµ`Za)h U>_}wp*%; nGϜ1-؝=U3=g>つ2Qyᗗ+RkDQXu(.sFt1|*'=9HvQ)~)P=8ݩu V;:CT*+Hoͧqݪ1p"u`99qyVt͒80FJJ@Ыm{0̂Bƻg#! K@NkޟZYK u1'2+m,Hݩ𪀊"R,/J%9@88G)ԳA̽gJ+|6-YJn?oTAQ={m!jq&™wkr ksE.'S2v;r3֗:E+ q};.LM9Ƨ?nr~8)H0#*#ԳV*0 gHG'jn1^}87>c|vkRr*i،+vu>sӧb]]iNoﮚ_wn:^| 1K-D_r}7h*@wNF яӯW <-m>Ўa=أouq#XQx3z[E':ݒ腦=pPߵ9ڟk3Τy4rDbϪɎ״Y ւ:nѩꜣ[ /Ð- ](v6y{#2|7\o_mk_ƶinvkwZm9-|u' DL:f^b3r9\8nQey{Q^+s DD+ 8bkXr6-=b/xm;r>(ґPD60Js\l [[@} h6-J銚n(j ruQQUOvZc.^<l f`yV#@7H 5QOBmt]ѯoES0ix!MhɊhYB6FJ[dY.AL fpIe9gz6c#0kA$dc3` BX 2Ju#CɈclkG/JGM]JB|"vo `q\tyA/{1׆qNF#X9LQژkӮ_d#/pH<@A^$O?wk+l{έV+gPbhڰ'jvjx&CKl5EYjhio9 sT NMMY-i5UVvK2t7O:[&ir?0g-?hG g|rrxx_b8{=>}~n?y~7=V3r;z[?2Mp}Xl:>`7MJr Su3 gـ&E\Μ-U6 ьfż<خyQKqa{g| 0m 51^wE7I}+9M l&BLdZT%ϋB&;Ԁ㨪N 85T' k|iGLGlx,RG!{7G17AE,w$tY۲4l3T*}g صZP# r> ywF Bݳ'}|/rC+0Dg9J`HыDHߏcVIi (E2qypG9*R I@7Iy{O;A 㼌QS= w(Yߔ2.9d^TFie^eEݧGWO-#3Ϗ4)/wTYrNp/|O߄p7N1&sxOEए%ZeH(|pJ+ZӖ:zfX0RuܐOcTaGz ai| lx' 7ժLaߴI8)wּ4ƮwP?dLϣ;|w~U=M>fWqŃ][`h{{Mf½hcdLa_?|9}fut"n$Y$2 66is[s,V&3$5~{8ptDo4#S;,^ps׶O|,h?ΆڨjE_⼹ErM 7X|ۓEJ}CՏU^3}0?{ mhn5qSDKn~/~sjR(ИL wmo|.qQrc%ZRnǨtgnL㏅'d0(j6P>|H$CHB+ Spvm~RqTIM1Q(/G?V82=IIs>ڞ`(暨pHY?-xx-ybyE0>IО=TŀYR٦7tc9:N: 8Q&㦸d^fpF~'4"#84_B}\s6~9,xP jRS w+~E#xhp,BvDL[ŢT .'2McsLpc(ZFiXI3OKl^Q#`IQd~`QR:"tsk~K}D 3B11Kv }{7B_^.RηWw HRl0WqR1ʫHC02YS;>9iX|IxdBN0^2ʻouHQʮv0Q: WCޑfoe[Ϟa/oFκ@{ဎKC'{N PQP(R*Yy]A}0Hﷶjx]Tp,x #CpBL@mi[ |ao|&gn۳Deo}?֍g&0}uuz^@?^c"\Ih/= d}~l+Sv$izɆaon%C%ѓ:=>7er0P Q=0t59}Za==sr4#~.۲2n6":X:'-LG^` zdЊ^-~NS5K_m>.#upueYn>/n_߾}ޮZ IkA-;Ͷ<>$'t$}_WXRdcΙ!!u'dYd=3 5aoJi- B#3m8G(U܏T1x.|(fٞ RZ6:gA!T 7DG} Z0~2 3{V0yܾ{}+xfӦL9("}aJKRH=ϝAĔ ڵ6NV ^ pڿts#B`}1TOVpLh0ZWNsbUbe!|' YMi+Ϫa nAioڻzM^{N6Inu&u e!,<ʴpeJl{3G\,[R `0@Y<^G'y8@*s Xb.07q(iIu|U&sx}S9 t ƙ)So NKQ.=)Xa xGxv1m[P}z/rFZ_ɦ6cٰX:ɨgϤǠ7:.ڜ #sճ><1?xkJ[7]Cw]7*>l޼c6ĺ.y8zrqpwt]v_x0j@IDATc;bN~ZM8ow>pɆk=GwH_51pߵL0`22&q(֑{h]/ [PMDa,D_iGQ 8R}R,={mKJk%IᒯxV cfF悃@]tyU(2.f2 ̽cnŴ؍e*GG0,=;bz`47y 3X i# O1"` H c>D`{xn5/ޣ)<(Qo;64= ~F3bN_rp=Y~{ irܽ(מBDrmoi6z/fݎZ٩.l.2T[OE=hhY` `WC?~,7 :VG?QO }iYO4 z~S{ٴbɝ X{@:;K_NQ'zjd '̍Dx-}?oT(Up¿7 WZUR9 6xV4 :x'|E+S,LGNpѰZŸ|۔z?|}9Ȇ~+l3]+3ѶWW-GL~FrT'|n'GGq={ՠYp1ɢ? >,zv`P3%b6@|Ŭ)I8DQpU01h{M5MxRaR0)fڹ*j6˰L;0a'~):SgΠޏw-RK  qiVHYSg "h#0EﲴqD&s"Wydmlbf (BF6E8QYk&*a h>8֡5)m[rh|D_ԂEc'>hNu#d~g7#N| >H"dA#.|#;HĴU8F-h%XE:NPT!XƯ,PcCRSNʈwTrނF],p,''h^c/Pc`(# MmaBY͔dDGH^%h{b㘭KdKn{8Ƌf䐢F E4Z pջ4"D)̕,\R41DnVc41=g*Q{ٜ=(iœ3YT4yhF{FߐE*J,@OF/ HRdbwfja .8s*4#}"grwDo3L5Q/ABDq5'4im=ּw]mL !r4z:.{`~Az[87YǾkr4 9qV' ֫R.iS6v^w2{w'h>?xnw:o}F;w:ӮsP)K-J 0t \@Ϛekg4$ }Uys#7Rrhox`Nj;O׺AzhfxKѢk g>Ac8&l#ԟ näddmsdkrefoCҮk4@s_\+ xP[pFJהï `0L\t ~Yьdd>q{FĔ <ٸ擀h|]07=kp]ġg'9x9}vI}l"Ȋ#TdmXv|=o -O䘽W:eHPg .;9Bˁ3OtqLIou͝;E|`x*qp*5+8̯~/m%wtGiinAIKѵNaNW{ Ey.ew,{<2㏪WxR6|އ68HN7()i1n\^Rl?#~hhGBQHWi{->q>l'T~Go/ɎFhupp\WA~f $>\zS\{>ra C@;- Ϥܤ1('ðQp힗zf&ƃIgx`{ǚfSz!b)$a ,sMiMZfeΑ0c:Q Hs 8 j0\{T#DJij`?k "]xw8c23bzAp@vT7WΘgg(A,2X֚y!A9`s購Ѵ ϞH3l2*iNa2Gy 贉~C¤OP4m>f8q>ǽgdg"G}#/pG 13 #"Rgh@A[ Ç1-ՑÞHTßT!Ml)Fκ4@?&5lPӣ­5R@q{bD5ڦ)c1"%a"DS~s0>y--%dD㔦?rFpRkV^كbkO21`x7ټ`h#xP;ketE04Dš-2D=uxLЀ?&&8(wߍў[;r1xח:w2wQ[x,4C V^M VmukoG2;G|gIm_m'7xwgp_GۋGGU 2joY&#hq8EVQ LnzSGTâ5cy#l0k^c/OG6W-ReQbqy"Vafhu yS['R\4{37W/#(EIPfy$O-܌ܢcl`u )@%NqG#R"ùԖnXpܒX׮gB*zzZ:8eLl qR6ν;*G)< cgz8DhSTsyR=V*mݟcq7 TƃO'Ѱ^&B 1f}6h%aihQڠxgy`EnS3ÁR-Z$lGiL'g9>Vړ2~o(軷 s3z | q> Oج o?'^?vgh0-t0 Jg/md@wL6H"O,TtO/7^1Υ/xbp e lx.Di>X`2ޭF 'BW#3n+@[d~µw.OU?.\\T#S68Wkoowu?_}_ؾ{ѽ Got|Q힗?}?*='nO:dIͮGwNm<ZyxK/Zr^L]=ð]`UmD&1IX٢ێ矍߫wxq-5Yw?`;Wħۋ"ڛ(sk gx$8WeZWG8 1GRR= 0-C/b27x >s3mYs++2[ vew/׈77Ӟ8ǠhI+,vy^~;y"OO_ir[6>פmS s7\9?$ѯj)l2(W͋F]r&wrxrb2Rf"Se lˡx^9H9-Rd( &Jّ"3TH`ǡheL91d4'ޕRُT pdyQP9ObR6ydj oό#<f;h/#&s<ñ| x(z\x=][E62DqCp۫} qEiqtGx|@Q6S 'pyGznv ~;FN=`gb9>5:*YFM yrkc gL8=Q#q5LҥaDIcY@DZ:kqd{8zf,hpD!ç×}L'Hvɛ!z`m "70w}VFo<ҭHgn:vnzq3,>(Y8~qqW^23uԉLKiO,5„F)Q1t6yWxGVo,ⵉx*JD"Og1B\jxFbkmحє@"D6 XXZ n[=nwhjI׋)zʨQkE&e\q %/f> 0@i]Džy#̫΍hid2vR aPjB?|8LEEZg{cTdc8,,C1Q6XC;k+~C3x!ZS<"YWq4fL9h7L0NGy3Ѵ (|`D9a%AF5L}Fc_ơ??SAa8؇y%(eZ~ӽ[ 8]2A;(- 4lz~[4kw\'7k?ˢ&F0W)rmuyhщcC\sNFpjj?Jm>D5;,Chb Ie%jJ1k\e(_0{ E@%cM`fK0oil##ø5\t X9`P9wrr0dlsҴgA|D˄هW]?GVR=)oo7_&&'O}vNncP9OR틟~﷾𭜼ۭ;O됞 .[݄ L9<0y >M=n?~0 ZP޾BtÍa~~ϗ v_)t\e+^nzJ㫺%/` g/D⢥=UE/)fxΒ0y%ʌPE@3sx agRDҤPxVϪsD͵Z7A}u"tى)4q3RՐN; 贐gv{`ƥГ Qo >U?z4cu/B2 0ߐAHs ,G3Whds&aA^7G'30'v`łPwEVXHy#: GTv9&3IKvo5(Ik!PPqh8yyنhjemQszo )ǫa'bt]XՐpը8']4P4 L S<XƉp Am^)ޛH>E+C> hp{cAuJ~6j0U^ %BVØ`c[mx_Z(@Oe3_40S}T5ynқǧ@Xzt2+2G5p4xmfZ 8PDQTwp=Yq-xF;Q~СQW3 Z2r”FI4RO%c g,K4e <:fNO4\  ؇1GbI\#hOnoLVv'קyۦ7sRTzl\.['0mpOnkkcLgpnG/hzTpUFnVFveيooo m~y;OK'߾'уmNبM]>*9,wܧ]Nѵ`䰌ny2ȣHaι5?_@+Ϋ78uk;w_ߞ~pD_~+oo?o}a{QN 9M4t όzP-C;BD9{X&@@`d"׻d@ۜ:s3=(J~&R*^"cl/'EsH/57=_5z1% -73;ʙ`}r)q*[1&ʇc(-83zyW{eIh40c`cY0r 8Q cS;e>av);2sҍBS?O8k[=pڜYw/NIFWB6S'1f/jR&i|]4؀RCƮv(^_J&%ڧ";5Gtԡ$FXkȱGK1*m:|>kS4yun(_)u&xc˗(F.wԻ?N0Sߥ9BS&'6Vc0_׃11^ =08Ҧh{7xysg 8Ruk QSA9)(Hr0X_b_w³9-ղ\oo-Gvck1ze jJzY:p6` M^t# { 24ƅpGcNV`tX8 y|f3ݜ1 4ڝMcq:a,~]:,0T.`M{@r6}_eСN}MTdYTP}QSZ-u)ju>)YSROlxç?k>53F<@ ?}~)]u)9>iZq9˧eFez*pr#cvrԘ7eNvw6Q;waM yupo;|}{gsLǏ*%h?mbcQij=O'&C͂XyvOle8|6گk5U~W^SCCV-F9+|`}If1v0\c|G#lm^B7}^]Qc[՝AܢOg$sbA8@%*v&Kƨsܵ@oqVP2m:@ZIJw2LOs*o{'ml&bu$׽C!1<][⼕V +7g~{ْۛonaeB ジǺ8s696Q֏_{&BS_'ۍ2 \o>o>{g—~omc{hY'zOL M0 L7'܍#e?5F$7/0X7 01 NC'ҭ6c$axEfѵC(kI%cbtr͖CWE/]Q!q(voJD_ 81MNવ}Hg,-#Q׮b9Pi/-5H &{7#Gr.(jqyz I?MƠ(FշojGa/:PT ^|LгΜ&P4;mylc DYٚ%3wcš8|1Fg>^U^鞱S1qz"cv b߆po |YQQ؃ }) m)sYOqLoIG[{Ɵ=cps*urh˚.]i<2AƱ٧ q1%<dd2/WqRUv^{exLil+C)`+ ]xd@6bv} Nkxx&>1N-˸1*3!7@4e@рD,_Y@^kĴ3 Ch/q-N8Lq~{fe-{z ~doX;Eljqbh9SNZ)(=.Ddiz::N6{kw }W89N{xB=gKQ}W\w./Z{A&ûE|"M~8 Oƶ=?97ddKsGrן ,>-V=έp[ 9-whGѻqT_!;s@# >UOc3q2GpF5=|d W?6?5!n^,' WX4Qf8_7z*Kԕ3 g!, jZܶŤD`]c(JEp/"{ (WY,s!C59PPnQ!G'S:%od*[j yqD3VS5efIX]xd-$3=SՃ-gvËOf'_p /Q­ UI{_/yYd1g 'D9EA{M(80SI9(b y\И{-ܭqμOh} w*<}>"|N=6)fOxB͌&+=`dt8+hmETJ0&Hnp$&#SJt)c26f0E}m0 G( v ็91:SU _]F37%t;-pxTЅ?%B}[! xGz;ΎSTEg"$D6VNК&2=8bl{"p;E8 p;UFPРX6ڂn>}<4# LME12x.dL ~]dFU#0AX2Wb˙I<5UOzLQ[%C'MZwaO (>n^JKM]^erS_P0s1;z?m8Zvm2 Sx?/责wvEpczExw!j`:mFߎs. 4ѭaN~  ̂ n6'i 3'r?^G د:_٫oNϲ-ln+XˬlђuRtܜGZ{R3 Y^Ц7#}1FCk^xÈHyHQasKN[8{'yC<[WO?ߘ}Y'V$JӌY}Y&#DD3xݢ .F-=S<7<{ůHO9zQ[ |at9i50{o^xX%2Tks17=ѧ4Qs-8׵՟"(ov뎂u+̚`߯oGZ&4XOE[ajKi3ueh-Sa~v#T~ 1xvcQLq^%ˊ K-7LoGcz{h,X 9xqO)wXbԚ^um E j  `qNR듙pmd)QȜ]i,;3fNėL%ovw` k.޼ζ%q5)$Cl<|W Gv+I X0TPב/.:156-$.*?oS 1f<. (C2L3XkqWa$OϬt/a6ݍ΃<~ȓcc;#l0?Վ{h40a ?E3mi?G|C=!ȌW;Mc9gwOBԌwN[5n kx R佄f2C3dژvuYhf Aqۍ48[CcW`wv˜%l㽂x먳d8.sp['T8Z2llؕ# P'p?~8^ySx͂7Rwoݞm6t^O^29!2J{3X>xJ6ex>IiuKM}/oMϞ~pnNrv9 Tx=~W* L^m&p͝F@y'}ަm TDyP|VԦw"^9Xĥ *SthJrYe@DC 4ŒtS- jc O2b*ooߏVnFz.(h fƀcDP #yœ*H)Õ1U,S#C (ʁ?͏V)Q~y ܽM1Q$}}?b''uy rm2d1Zc35!7c뿧%˰W 5!9~8 XƓ}j7 &k:bA7_ً9"Y/ F1>HQw^ kK|2++ٵ`e)VMIYq:{5ȥktgYOb:N h9KQSſx՟ɓܩC:\ն!ֈka䂇qѽL_}{e%E%]2AC0tU[S Z[Qcn<|(њ[pn5\{vj.wnUɑ)yLQp':^L^gIbT"v0=p̀9 ]8GǷ+*dׯqǟdцD6X) 5uےî;3 ,"07+{__t'~B#]w`3[?UW gDk_S,x1lUS3*[GBN /[Pqß*жϞhY`ϧ׾=_ 61ruH⶞@N*X_#RbPYϜ"87{%ke=B.Y΃cgw=#K[cq1Wd6fN3gzOwp_ M?"iXd:egN%,D30_ټ{}q֡-E)+<{ԹS9-..{.+cz_@%!/z!nL;S\:甈DmS р&Yo̱K>ߵx p߂)3c,d^: D/F$~υ3nL21O~^xl{ۃ{?z7]k`DpZϔyZ{`RuS_WF/7܅wc>KcJypKߞ}:=qZFovjz8mY^Amˎmb*L9F4;ÏηOv#X莙Jn.k{Nw3.u 2 D7z@*¯S^QSs "+H8;u6{=Oi4wUhy)/B'Po?e3T]8#'Rj$ p 2!i:"븟OSO$@H>C᳜ =Z(7uԳHQ_]b3U;2"p&,yjmf2Hao+;u}1FQ=|`+c/UY`%Lv ׹m9cQbBL3]bA|I0}5*-ʅ@UC`$r?~$z8^U ѤhlD(y ōl2e" N[4IXq?R[ɘ^zc݉ng-w f##BInQ^b` r9/+&3#hR0v4+zWN6p0cOg1~vܒxpحt \id}ꂠ >&һ9:hʴ}@hZb}v1sI5@zr}Yx)&`}&=OGDyz[MAYEl頷@1){Ҋ[0c%rrBoMNGّ? C>OَҴ!*qhʿ]vV Ydl\5?+GozЦh8m$:Ј6"iU -ͻjX$y!fTYHWZFǍ!2vxT Dg6mdNscRч:/my)ݜ>IFtt9Q[ ġzy06A(d ݶ>,-\#+2  n0Ơ2f/<%H)oCSt#ErQ5yy B}UA89#g HўqmIWFof6 :ئst2(ΣB ]gsv]N1Ûexh&ܹ5p!'fa %eZaiRtg5 ,0`x_(-~"_ DvoCJXAX zhFF7m{Yh3Z_ ~kc8'CoIi*+v  l(-d@ dx}7e&ƩW[l0 i%3'q،M .BL0Ơedb(`xjȽnw9U;@& M>(eʹq==gʑ3,h'1\/1~녾Kz۱ EMu cj[Fꓘv7aep@dgym8ˈ@CVVõ6:S3Y[pi?&cWѡ3nO2zoa]\+Ģ3'_qTu8pg\'̞LXfǸ}ν}& |qx?ԏMWkyL>`vYY<r$0t,oWO3}¬ ،wA՗Fydط]qXkϻr-21o斏a&a?PRi'xoY<٪6b@k.x".e1p^ DZiEߍe".򙥒1`ܚ?K.R^{[ˤ_ݎ^]>jRCp p%8/M,Q6Apb6 pqOzfEag?9õgHLe1 `ݰxk/x2j@y<) wXN+t{ޣҔ3Ξ^}3 b@㺞'P[ =# ғYFۅKW2)>6'a2;}7m"H=1~d|{W5`#;n*dSSEɖ3˫qHN wa)d\IX) M(~pG}w/= J?钘 Y}_g8w@~.I,i:_ѿq܊"^./(/c3檖&M)Rbƈ 0"tDT+1/w,é!,uջjgu?f21i mUJj>f>ыeL`@w8Dy-^N]7Ĥ67썾_79= *FT $ƌyཥ_#u[0|՞66q(L,U|rpQ@/齻e*V<I 剆{=UgEp(teh1cCc$QFJ qe4unB6J;*''QO8Ę }7#Mi }޶rtxS.nʫ{.-zn^d`][MEO/ wpj@S S 9mI:̛Icj;o);M}w?8}(X[yCDE ]Z<͑pmtVya7tA,0˜l3uO)*S֠ed!nA ^NMWh<pu@ϧ?.[4pݒE|t ?Հ* 6Uli@1d Bq {]'\JIU;|#eQ6SۭU~Y-6iC9.XbHֈޯ_a}`CQV D*qPHr 2P"}ۊޔ(^dG*WhcQ +:Q '~2 SIyY}UZYm֑Dmw&v/8gBdϘUh"9Mf uLV(7 r\W9[vUeLEi;m'yjZHI١t s2EM(pQ1lmRnXsTCД.m#Y[42!FO>*A;} >۴bd^.Ȏ=)r G⫩ݫڦL.;X =S3vx.z<ڈtH䊅X2vAh(Uǯh#m,ӳ5_mw${gD>}׿$pXwF`s>?ӧ~k=pz˴ȍ"G_zo>6D,4(?so 8  kIy6YF<S7ƝTr ڡv\Rc q/aby=83$D"C[IK.jzA*.L-ד2L*Eu ,py#|pPgti)_XcNK0r8g7~^}8~=NLUmp<{}G1uz pPm5 {kN[hxyƶrx<i<`y?BpU aûhwyy)N2P.=Msf(s'wΖao2zqyxz_jr^{wE?&%}o z...*d|ds.q74kٟƝshxWV_Gc߁s@N/jGj.?֮ /9 Xy?=|"i+`w_*$㙇1'l𜾆2% 0{slbX~G!*}*eY} ʼ򄢣[ ys ?23r8m3^8=o߉?Cz=7ؘ~b*t Ƽ\6WI@/}&A%=iՇO=}䓏Ih*mf >ӟ|!@+)VQ;j_HH&[vhR+.[Mv>@FVv~8)MmIB5ÈH<oŠ"7ݾj*Gۯ4 &ZT]WhKkA4H`9ҠM"``>> ) EkMSE,вmg9P΃F`el4fv{,Jm>cb7 ; !p㷖xpγ>|^gie_(yx~/5 Pf];AQSK:M6YZ*6mByԔ"N/Y c`T"8`t".ިhy;mО#.D\xflHl߁gĖ厝ܲ6q&چWKe~i4M\H5^p>0f.ԑҫ.쳧96q,7&8] 1"zQ_♪pу)e1nUQx;Ct'EEXNDD8ťO Lq`ID?slu*p–xz}W㡄W/QDy%#ʒP8#Yp]x'1" F%ܽn2΢`=pb~%_L,E-oxB)Αy#ԯmewm2vjAJ휃zi Arg`F8,V\WkG/FAmo^|wE߷v8/]xR7[aQ?Z5&nUR0&")kzO9QK[5zhv_8+2 go-=dP[sT5y32@Y')es=4#)us*`9V:(6x_;Jz4GeV!J0}^-Nǁ>k]=G O Ͼ~?mJpۏr\Exȹ }pe_[@ l`]G;kOo]=~*]#o>32i6@"px( ~#,clXr˂R[z5,icM1}&eX8'y- $87F!؛?N?~[ eLxt?2eh4zW"AR)Ӽws01D h #6;TYU%<'J!#\Ǽ6(YCTBw]5 *#xs0(pZλ&z@EK3Q8}ںQi%N9 P‹PƭBtgY6^+,|@AiE8~0WW#ڂom s[wVFDΔl lE U1TtfBI(;mHID iu SzE7TMlj!Ј QUO\!iw3 DYdBGlH{ЈgADVh/i-4kT!'2g;㎇11c WqP8 qw!2:!'u0>i_#{sm0 >z>K@m&)Y=/2Vc O4mdFUka=FWn)VeWa%u6n2ȁ+axl3E+W9tvBpSGw!"b0&w˴|t6pWzRsλt?}*~8 25>ړ]Nhr0P;o¯,3?ΰ<T'XklOX 7>fZF+,lz*jg krp 2x+rƫUhC&YXɠg8+ذIvT%iVCʏ/0*Tx.|Bm `;}YPOǖ[[\U+mMgJ?SXRoou Ĥm[dXL xb,qm F8)A  wx؄MQ.R ^{^~_fEfwp05M1k| ̷d/^?2 vxvޑJ͜brg,܅Ϥ2 M#37 7 3Κ c4)j*"}ۦi[D19Sgt1RAeu#D7[z=R۽QNRu.~kjJ+7j6lIXϱ { {5e NیV3srFy*I`JV{Jρ xR4a|qnѣ{1 wX>I/R.c_۹1> XiHF@6pHNt7>C8w-oT=v%$S\ Mc? 2 +}+.^ܔU1"EtC44^UtKtow-EMCP*(jU(3 .P1=~bl7j n<[z?9!#vWl}ՁOco>{|c`Z#>sZ OmBd-'lW3}C>`.y`h`UpHb#p1%^:>( >N-@ѻ-44Bp7Yޖ׋Z"CRV3L 6[ j m|mF13ҾꠑpҘ[4}gDS{ nQupvp%.^^[^׏څ8Ds&*iH~*T`3ҢeZV7B?7mo?L)chCJ-[ٴeh2,8' ؚ5=L0JS2<^삩CrR&XfZkvQ*>85<^r\qV+xT)"2&͵  Y-s>z45#@)+>cU}P'(;PW![8x1/k1F}0~)Cm{dSj^‘UvdfŸ:9ݚZ"w~ݜM7jzÖRj ͦ9({#oXXD`ߏvGeٱI9\>٧AފHFCtCǹ15o^+o8 [߮X.l ˱Cd-N#>Y %,_9p )h5ǧGէ vN}% ~Yum zei\lc.8n*~.G]B/VU34x5a1]s ^gszGfk:oΎ7/|?~ч&o7U:`6f<)7p)ҍu,L){D߷,- c1Ct *|9R7Rl"b)[cn=z`ߎx9WsMP.rNƑ9;F|6yF\yH,pD4>7ڡR2<~Czc֕we0 uOB$&l"JM4\WN{؈mqܾ+ʳYgXvY $o)y-0>1\|W>3_XY]<8Ȇ`|ڲJKi3%('KA@9<+R 8}C Jڦ(9 P[ o쌃j-Wcsphˁ]dڝQ] U ol8N÷fͦʬR`ln2:.c-5߬ ]Po5/3%}o]AmixxXrQe0\uϿ/E@q%b\ 8ԐƻFwSz)-\BaOj1vi;n Cy1'jLQQs9*,`]Px\]r`?z.hk#WƳCF 6`,!txkmWyzG9Ce2> hDץ}NG8i3NT?{gg%/yA#&_T;E8id̐voʞXj\k?BbV9HC.~_g7#LA>ׇ˸ <诞j[] [?}^#ct]bsC^cAԥ`a<{oDMلdqZ(A?_;ډ/6O/t3(%3l,EuFiwu ˏcpbeT ClӶ'K;/f">U)?RbMf8ѻz`8Z1s}dp,b{)n`JAFmBQ9-?9#DyzA)yNp AKۿz ҕ) IҔ7.XS^6Y/q,8@ 4ed`ZBӘX\mI^)ҘQ4Et "Úޔ;%a8~IrH>G1]Ď! KW 1 &8mJxelqEbif<4`"ۑ厇ώ0z6!o+lNԜ;.Sspj-q>=CR~j9r*9~LSov͑}dkug1lr w [RI[~3@ݏ$&NhqcPCMk/_@ ?.ݳvS=~MrF[]ȶz977DR+GtD8#4*/#e#׆M+*edasoi`@%eƏiB?FHqw.k4O婻ʝi'g`0YnyF(^ I쵅6۴zݻ 7)>+~f#811e'iᠽHGZFDs+pǮ4t萍 6s@ڨQLN?=h>jeA]z195.Y2:.EH?ke$BmY# 6?{z񇧗9Wm~lj!vz9wEy_Bgbw)Ҙ# 1 hoi_ڂ7"N&~Fb{c}nzWO KKY#]Ԉl )#J" E3 CS cG2TD7k`"{7W1:R|᥌S4E2# B%߾4CJ #TSq'gUJe=/v=l?g(\|R֝ptzg4n0c+hw'bϝ5#rӝ́ɲ7 $(x}3|VPFYȄ)uKhP96Hl-N$.{6b )lӋ i;edӇŃQML7g$AϑIj,8yE=yG'ɭ0,$F,ĵ>ު:LZ|/ڢrzsR8;ߤ~i%?@ S {17"'mk,w!_+ӕȦQN7,N١# BE I N7mjoN1fъns̩xA? {ij ]<6#܌֍/i%mϓ؜4y{ez&DQp_ɶm\=yeBj߁i>UH)ݮ SmC 2l|E΃8zr"#W΀xbnn9==!ʽ.$^gmtz{˥ 9=l?ڽ>1cdP;XPؔa}'UwϒÀ upxU3e{#;ipvb6 ~tS 1GĸvYpɈ>YlWyE9l ?иmF*nvvmxu"u)[s !=uxF=څ?1emEӚU}pi$X,h_ړwg'G({c- !<{Y&(*(-=X$WylD`PLsMʉ `Еy]1pFێ}YuYA'0%Xb˖+ShzH4g}6oy/K֤?k'%{38"SXUc4\H7~@ Y1~ծOCnmp=O]^~ډ|UK2^暮\o_|9giscOsVLc!6=mcvs0ӳmᆃej1_& @IDAT2p^m`QD1߉(m7Eѱe/08慪uUe҂9Êѱ(,[jNaߨ ?g/qDw=oiV ]UZs@Gg Of,>Dj5Qx/k iz,V\ȱg(]lEKߡ4'6b]ub2V}wSa(eC1M ȚqJ՞0p-Wws: kXoY<͉^{hba!`!W=Ѓ,HZ?[ۖ0%6IE=웂~ r5`m>?Y 8|y|ٵ.[Mq0Ҹ` [3l4Ydu&P=Uyqp`n7s_|Spz2ת92n^B!s=h(w\Rc;E~?1O]I6sd6͕q7miYC_:,\%>^7g'Mt:=|~GU'`=#OAUmUOk}[ lEjٶ <;ξ,S,Wً Dݽ/ cwx5?8{ɫ'48'59 h4~ͽ)/k?~9ǖ+r?kqNoڞRLd|"ĞfKrmbXx:@B$oHJ1v2lQ /:ijwk[a6Ů V,X1z~6 TE막(d) .n2кzYUcf`)q`x٘"@TV S`v:?l"D`chbzñe|( Lﳼ˗r ԁ37Ifࣗ޽^u*EH<4QCRr9r924n^0ʙC#z+<1.\)jiqTeZ-m)mXZ3Q_d:rF =OiV>2$9FZ;1qtP", 'tp<ɀ B JR|Xkt"-Mr)yQ7T$9ӵuz+i"JXbe_Lٝ0*/ (WԫW2)ov=/ɖs3%k vq!FǘfߖAA 2xڝLxq-c[v~Ǣ)j[sRv"މez ohY&v;x8/bsDӶYsB$:ݪ z xБ#msMiPH# I9Z꙳q ѹ`W0F{"#N*xZݻDg(P1`RzsɌh15UƂc;gن%'?B@o.Hb ;#@)lGo6%P|υGmi$ؐwe^w26)xƳ<_}J{'#񷇂 wk˶ڽ.fK.;i_~^dU*+#)r)0}cLV=8¾1$h"Vct ^Z xetV GIF`gm[S@w_ſϸ}|>;Qu$ 0y(˻ xDR ՖR Ù!2 V2 wDZT-Jqc|ri>(`V ,:SgJ>~)o]Oɻ= (7"b! JvJgMZyܢIt,T1 p->3ͨlXk5"gO`uX{Ln CL=惆}Qf{7.7IhކSWznJR؞6V"wY)u/b^~ Ȣ.Z w}%nj|d7]#ol]\ 3[( p 0m92HZ57r<7-0+{C_ȔV/Nbh86[#_Ct eeXid™BC\cNSOz՞U&r$(L.zewŞ]Q'6S>RyzP69Ʒ1 Iދ=ɘ>!P1BlZz:S?eÞ}9;OA[مhݷʳ數C̜U ])%ۛ]X ^62*q~ _UD+{̱_dަZ;޼ۊV@t?]s3[En- lV4q2`K 8_cCwbG zҲ9++\Y@1J,PVU/q B;r3ǁˤ+>m\fcőwb=f+="x[Fcbj䭜=-T|g}W ۠_A~Eņ5~APx;XD~LڲGx#;҃9G饠aq1C],lҔK:ۓ:}MAqSƑǒ݅tg.jFMɀuMqdP!N-! 8 ;, վ?}?㧫 Twycc{3U/>&ݿ} >i:$;8Оe^xR&!gj@ 72_<ˀUkB=M¦Z3~饼^h|T>owO=H7 ѻڋΨyWѷRBJ|ÖSzD_HZwH.BINh+#8p͡-=Hyi}s!7 H4"(T!к~vxB10k1h@>/~޼=] >Z Xo#+bQ74gFP QhYkXN5:wo/$2L$9gm^?V{<}et- ׆=?|:9&7>~;`ߍM;>m?^N($lM~l)Y6q$ptw;+wW7ijz?>zKM۝;U%`cW.7EWO_R?O6lWA@ŊW\|ud  S w۳7ٖ˚# =ĈLU>n~x O6rَ/គo| xD]+x8/C&CܫKNYj^rXJ>g mh5j=67`3)9Ĝ j''x]B"-v13Gtb('WUFj²=ќ¸YՐHNBQtqqDLtA`~xY!EwXS9B-_W0r[/[i{p9(/N9*s/3[ 9;z`\bI y-&^U}ࠌ x-Ruչoh)X(؋lģA#ljb-(<cspPt[=Kf7l@S{.ezg^bCP҆,•ȜL XՐ ,3Q)ml@`ɕgM3J3@8dIb%k\mmG)mS[胬#姮GFA:wcſWxvF|y)w}i?>#uPkoRt@2l 'I&)f(#+M{*pXh9ۻ05MEp)F}񼖌!1j5Nj.{gBk4-?q!N Q;RVomE x/\gz!Cb̋Y>^`/UsF? 'mƗrĪc.XUhaki͑O&E*ݥ&wDEv&vsAᬶi)C1 ޮ2 mYϞ!'MNMe8 %ʡ{ޖOg-3Ipd<x隳) VLodGPA[^]_)jg<lֲQ{ٛVNu CޫOgj6* M)8X[6\˟~h;g^_~&b7?s}ˆ_Vx:m?o#L^dXKuR_S(iޭHA='&^R R\3EܷۄgYy=98(L]@wiE!0yU0F%W&](}}ts|yUz?΃jxFE3,q-SZӇPEפ9'[Ϟ-u&bcTF&pe<|N/N~QR GgGAK9h{K=xBC p+䳜} Dz+K9e'3c4cd:w&0- V=@%ST=7*Yջ9gh NRS__Z"1i3r,c!p#K X: d *E䊓!8k;:q~L8K!(GBl {[E4Ag's.ZCvtsmypPFVaieQ~T4F |JhEa7<$n/\Ugb`0c2dM\YќcD ܇e a=ą-;ڡ_V6p45wOrT7}3ӟ5 Uz!w88ق0EN  -_Jر>lNN,0 gK7g>y-!CMU30Om4_| .ۍ6عy4nfګ{㟆.Ӹ.>h %# ,W[VDO?~+#WHoזL Cjҟ;/j\3^|K+zg{qn;qz1^`&Bq5Om {:k=n<,L(C2}_pNE~~h"ݣxyLo+F'ED(.jt 8e*ʘNgḬB^ 蝛gUɖ78Y(`8-NVlh>.`zB&P p7Ͽ_Tg{Kcŀ kA[7"b[]D/KퟥlK=!k?׬hkO7+$^F܋pz#ʃާRֳqK=Y˲(YicQrpMxb sA\]UE:"]#~|^1 !GO](‚#=WS#Զ&102C6#BXWWP;u5C;/-"a(r4b՛9Y 8$uu[)K,!vkͭj4?sh92ceǗEys.} 41EtOR fl4{pR ZL`)<`zF聤1uæ.SoeldfWE# lP3Y_ǫP>YSf86+"8喝W`P㲴$#; GlŃ&@NlmF̓u-8^+)(JomE9^ Ԙ8YT?Bm8) "l aT`S3J)4`j_F k HA~3jNW1}2RcyCcpY=t5zFo\g'4^G6]59tysѥ.4UtNfKsn$n s`H7FY/d6d$y-=EHf$1%tdUWC~|Gx F4ÅglnlNV~8[sb0c7&Y3cx [rm1I`z!!S!Gx{Aw)8!^n틆mA+vc{%9D]Mzv웥͝hC[O~Go~W7~!݃24P'>utuMv 4GhUGYv?G"elY<Է4n\& orx~gODx o^Tc<>}qJ`  A*,mc$׉`f4U#j%>KD)oOl* "m}:n# agyZ J_uҰayqt{م +*zk6!/J=k"H{:a7%$=hg*Ѝ}{SDqX[$B{ d/GMh\Uzyz`ofDR۝(zpЪ㟲h>C%gMM("}U2WDXq Q<& 5-9{\@6]iFV) m$*Bj~sFMMy9 jtKp-%v٦`sH}>t! W] L;uA B `'0+_DNu~638LVs\M8D~]"uV|c0e!NSNxūoKmޭv>fOo81%@&)NsU۵p5yvȚQއE%C&ǀx>̴W8L7%ÛZxһ=Tw{\E2gb g564aHW\\%yq1n}09K뎗Jh<6 uDQ )$;Ǧ π.e'B\6n@#oc]>]EZGDɆhhM-w1⡶_ BO+qG߃ zo23OK/ TͲWp~a2ij[jxWO_xO?|sYDNߦ %P'3flx1RN- yz U3|JiY 0 ?rz}iKS7+w$-ED:o'qYx 1ǎĊFtQT)slByPm1TW [jvF\Ahf=^'%&g`ŒR*E+{ϫ:S6!tvi3o/&0'&\<d5z{ǰv!4 AHh(}&!1K*oo N%tauBxuc>: ^<\j>IDB0фbt_oV9#)Uox -R;ONHpg{+VYsY֛;Rg۳ˑ|ٙUc"Eһ %r/]Z=`F# k"khuLBy~$`U38SCEX(;# =JC=_S.ahG20f,5|5dXf0IP+f=Ϋ@G8\/@kO Lͧ8 !qW{ @e+}1f:c8Ç~a` YAWvu6y0tirb&wAhu~Kt1BpH)i PtKC~uXj~o5wduqp o/: xRg*\BSw-<7AKtd8|ϛܳyga6Ơ:(gGsLYߢ_F(㟮a6 ҳS"]:ǛM67$8;}ǣY@smks87؂Kӄ!ytu?_ß'qHmE5-Qnلmseu?Fmٍ  ur~їc?Mfocxuy&6/xnk9]j?6+l[҆W;OgGӈf~^AG兀M>N{gٸ)jO\p*Ph2dHͼoפJcq-:W2{VjfTVWt[!uAK[_#NO%19P T^(k ּKLKS?|FEO"ݲ"RKYa E񊥋_|hU H.kݜODSxQҾY olmLf (\a)&  % kr MweQaxX(hX7xE Q/ 8ٸn%Nm WBd-dFߜ08kuqR׾Qp/y憻F qd.cuL_1m jxzk#Ͷ׻s6~nM{12j>.pK;ьAsv~&̽&x32!ەt¦_+dw2Ŗb'=`H[^=]Z/" Оh<)jmgЗ0(EG297:G#'ˮYE9Mdӛk ~ ,-ldFxh .C4z﫤*<7]?ڨ ~(y.~L;]+u%ZEae.}Jw'+x"2W9|?ڳ _Wf齞އ蟝>ӧ?NO~P|xh3ҸM^#^!_LS!tZZ9p]vx/~׾QQM]D@lu'~ æ+1&ǭscuz)FՍ "J4Cf@cK077 G}sQ_#\PSLd̬"K;n~TൻSq) .}»D~=MwL4P/ؤq>m%E&*~ؼ~Fs )SW[ n!n ZZo pդJf9҉ &XxeX41cL`#jL+N;Oe"‰,"g+gHygM'>W0d#ʃd>}23Y_ڴ"/^,e<}l<Gl.B-KdswE*Mקt#Y>02g*f9,v~㔶[{XD8*x+eN^%ꉢl)},a8s"n^N0܅"?xm#$r)G<'U$X19:::kA1X@Li0o CmSZx#L. wj20&F%x=Wcծ^},;#$q({7_^)[*FYr fYed p/Sbo"^+8D~Jq?>zS>wLLιϘ?Rpe#CMdYcLIգDekIQo#FAgSo(F xY畨 O8&ktW!M8ƽEK3e4b:Kלg`SI@+ƍt>˧mBt >ݛ"F,؛Y/o`FwL9V "oK`-C,c.'y2Lz8w;FQ~-F2_vv=jD@Ӆ }3}XSGN?_:zY'U`i{J͎x cb6OuF`lgkv6q::ç1Ԙ &/)žUr+8D[..J^mUSb2s>80ۺl{X_RV܋ab 1"U(Arޝ E]_m`Rf~a> eTxi_ȼ=WƂhyy;@@n^p;RuM^s޼mCjp_6 cÙ]yH:MLb/9E2"J Kmì,a鳱*1 /XQv|kd "`rx]5C%WԺF/vr\,ŧjIu1 F6 #5IB}%|& 샩[.} \H9S-TZ?A9~. =LE=\l8"KSJp@H9n mc󃺵v)w.Xo>`+ؒ|Z&R/%O/76d'̰6㇨ / isŕy'79G2P5Eٯ[z_USnwMgrD\DH\ !q.CA\%2QDIHL8mvO5~}UɮZzYZ:u5sJS׼^Џ5ޱ_8zF3O|eOmXϦ\J`:ϛx3ZÿbAKq95?EߵhzED1^hG.O4W"ĝ,Z `4kq+dmjNn  N}M%5 ea Ȳ+ѡ疑 n?0>;4ۭ86m*- ^؟JgsE1i_u^7Y)lfrnzbOFĖ7>/?|͛+b@HG(`ܚx$]=\*Ҵ:Yy@ZHgegj$g 8RHݯykl J=0D>:X _)Y˙+*%f om>oD-6 |:)0}F9vwYZ>vUF%w!f\.s~xto`?շ4bԭn~ӳOd=`^_P$2幬^pEoމ|n]~+[F=ƿڅ`b_.\Եj^-3-q`=`ΨǂÓ@Ui@ֱ͍/v+fw2ԕ Ȗ4.4긨yzgm.!(Wps>4qnҬx[C XVXB׀z|,Pdɔ`-u!eFBEES &_dVvC$mQ.CP1w9'JB=u0e].Ǐ| *Ͽ;gwUDzUROS0L)o7 S6' b1i]KҊ)yN"<{<܄wi"4(_F+p=N|rHtRcv"L ι ̓F0uS)(ڐ>h L͐^2o\rcp2t=~Q_?}xi%Ru2"4wl ˼̨0&=ru01cBNf/5a4EX&a;]*m/Hqm寇OfE17g疍@3qhԌ˦n ]{ D՞M@}ctH)dlV'93q*Su'9cf(( #(tpAB'8t^iWM_r7o<Z'2eVLV"(Me8"rN+^f́")g#`.#V]/G7AݜuިkMKۀC]Gsr4R\"C[{1JsJ?Q|OÞYZ~ˠv>5%phm.Ngǽ ~/|168eF6]6+2Frg4j9OBq@⑭w8 %^_~( əz~ͷeqcsW-s8Ny`#ΊO|PiUEᶺ?'~^vcj|wd+7SPaGz0uP6 L481%bNJtAHQP@lx{cש^K@t-YMT}Cx0'\4)QZRWĒdxE/3xNvCT(mJ&쓎k!w f]4'cLCIN/PvR2ډcc6:*"E4aewQriW=䯪o jvƶ.:*=6ZV?G I+*cn9ؠ o{ge瞜!1F<3@+5AqmmmU(2Ǚ x$t^"x6: e8dD?gNPc&XظqA*xpY8N>O7U~'!#ϑt߲hMK}Y'oS{,ew_ZAj2sS#N}k5)є4.ڛCtOWz 1xuMl~}Nmˊ$ʪYEu]/Vs w4ۭn6[Bx]|2پ,0c; w-wdCEey:D_ИCR!7U+2 y7\Ȫ+G@Ehг< C{$e%@2KَlxnPtKp1v1=O|#)Bz:}igE. hfjY1CȣV藠؛s @п*M"|JVP$L}jvM{ݎW/ZN~< vgR߈-B}Bj'<Ԇ{=OQ}20@tfl5j>N<ٞ؜,[ _Uq)h,G8θ8#c(OR* ul38.8ƣJ1`G7rԃDPp(`Mb?mUq@R!QaЋz39-}Y4E|cMmxYk,[=P kX3* 'dlu > ksY;ooqQ~ܥW2Ksh4fwwO t) Y#:VE^C/諴&ʁ$2d:)5 [YœG*qTabD$Anj`BpӻUb8 ZsA.`궳 UOmG3>T6^[EОn~b }XRV$ġ9"eMCʵȝ3@&<*#0a1-M̈́>s]Na yVkڠG1= M_$7e'2$2ed mlĜ~x+/Nvj`J9۸ȊuomQG("(DDY NMFrI9"}_V kzyB}]79;ZChQі)p}ԦH} ])%J@/%1#:u 0;kH?<1tୢ 2+r0cT{Mr>hA'H8[8?cԯnIsc=EzD[;B/yѷ>a,/8¨tLd)4hzhNMA~%ga/CS"?KP"@ʘ.0$S/SR{ m[m 3wS?dzFzjw2U xbP )*I5LحO|h0pq`%7]pzƷu)+j:gS*g`6;xU}E壎rП6_}?@UP'ȋNWS:e./>$U(s_yLBx7'+ cw]&iKdqģd^-лe,ӆrwPYf w~P^`7NwAfeu&{}O,=~j>O >z#,O|0^?ZXC}|Ļ"1SLKs@1 eˆA b8$Тl.zG*6/"znmy:vHn4ы Ȁдƒ9g1@ae/8I|s»0*81^d(fK?U֟{MKpAQ)EG'D;~.g$9h2s)"F'Nfq+&Vji"hqĎs8ʐpOxA!0f ޕ , 1yt048 ^pZ,ZP8xKFHto{70K +(#M8**4pt]t8=V e0ᜩ8pmE?o7{dVJ8pD/蹸m>2{5x/Q֛hwce6'9O t1ɠSȑƒ2%0+;7xO$ϊڗU cNaO7}}9ӐoJ>}-IoY2UȠϔ+gTO_KoJJ d7i;,68hr!S [ڋz/1L$võ"?8_~:G 癱r{N,N7 S s˖kg ab##"exN{37@Pǫ!{1#r,7!sJ lEY3L^ݛE^( I +DwvZ貥ہd#ѭ/S:^}1Q3ivsn{S*oW=Yt qC?-Ev@]s&9{6 M(h1^lҥ^ٰ>+{8xc,HG;vnj$z=l2|nk^Ykfmp0g ܻW&W~잚ۈ" -9:Tʧ^~?2~^dJ` GuSda=1r/ 魛6*8OcEQNwDqYa3¥0;CB*w_ d)EzY"|ߺ^"2ԔR1+7d\jE.ahD= ?\i/C/] KVS:22{#;7G{!r'䘉Ycq;\YS!t(-qP8Z}TD4+m[,[!S# mO J|s*~ u֟hBY67'mibN i,wka;+A_$d`S(İZ+tBxR$FƼ;oVĠFߡϹ]TUFjV|$Av"h1r+2LO`kzX_[>z&`~$FxESa$nF}qكF6''xZc@~dYy5\뿽`Њ!["[)tL~ڕ7ߗQ{w⹲ݣ̈ȷD~GC2{W9Њਝpď9>'d*STV·Kc+h;o|DJqoh k!WV9%|_y[w{~,3rG1OnejhQMvh3L(o99)6'(Jޒvm P\ᶫ^4h\RB(tL5&{Nj"SWãMX}Ƣ!?šMل?8#ٖm|FWCx_ǎkYoiҥ @Ȏ8T` 6A ` pԘ}OԖԘYيh6>kg/"nDEM6%_ƪښ&^W1"$+t@M}y?c'~23|  :,}Ԏ1G!3l$ޜgT]81 y;2'z8\2Tϑs㧃 0 glaoM!3 ;4=-"iyt~ik[HS h4[c1 ӥ W,1"VO j |qw3^m&#;k550yWa&F~ӝw?;颔Po{|c mf ~_B%5 ن9q؜?)zog I²S4[,ٍЧ^Lq'_"<\o7N-yJ.[ai#!: 5:Sp0eJ^XSt2:ާVJF&)6u ۵W1n#~]pp4ƿue 6x0Yo|&6M֢( =}Aɞڒo|*|Ƈ;S(DW쉂14eR"ܧں":p(E>܋ɮɊs"5xOsN̕ߋXԤqlALap׵dN\[5[K;oy?'XeB2JxG9)<ƊΌz&AJ_oJw,Q_Ik wq`me:hsK祋ҕg=?\YC:G1-DdƂu߷eĸ{[BؽQM;{3Y<֝dGzAnӅ2ſ+h\:^cl7lXDxer( `woX ԏor'_d2(X{ J$kE?AN:$4G9Prn},]mtrK4M ߚ{يu ᬬ?=oǭ4<2L쬮7 /g1R@. 8Qr]Lp_(A8 e|{Ř* 8R7]WMV[["K oUƇJX˳n~w`kTvxN)|%kLſ PۛÄ}R4LE30(kK޻O_/w\d3L\Weo;9-eA[>N^Ev0==Op(VjlbIQ4@(hLi 6hfQG37 "F@+=mO j0gGB3,1ǃj1dlR`j^(Ac$2ea;E&82t޻h[SVʝ敱Irr}œPØa'("1ni\> lZ>ÒA: ypMqq1G VG/K,u®aN)DPRxDnK곱* \`ᕊ Fĝ2f2m:hQGAWj܆Hqł˜`3'<`)cE1húk0Q(4dU\3(@_6nY[ʲ)mMi2#v"t9(*1a_T])ts$l\pN+zT$eƈmJ4G8;#"𓎪)oZm&>G« ѝ7Z8c*){mq*etںiẈ[\cј]pŐGn=K,r`c_wO~uZdIZ*NaOY!wl5PfS"f-/Q%iVg1ݍtJ.aaC 3a #}^]< >'GQ[@M!$M7uleFg27x)U^ v:!g*Z]C$y)jn[z!9x1-;+Sa)˓S{LkP=$Nu=M)YElNP燁JDB I<}m+<z9y"Eyy OgD)9+9*1ig4d8d j0;JgE~gVExdRj2t}&A;==sdٰ+/}GȾm.E E*!cً߻[$Μ:g0Y bMqBSYN"9iC7\p5PyKO~Lt乭n"y4B ~~ :c沆/X&޲>Fy j$H>U_6@cTV"udIB9Ʋqzcv)XpZ=sޣ6's> V .0os瘥X߿NgR!6qth L0eJ8Yd8u82ǸgP\uIpQF G/_OӠ×ڠ{][]#!pV<@hy0[_5pLhY0 Q?AY> })E|wq=Iv(NiҜޕf20K?}>>d7fb*RK 4(38[@^>M=WH:;oVz6"\қju#^igCN"` ? WI,WL`F6G΀kv;DH6wvsʃgػ LHSΨP֝!ؒZI#)!#1bi6][CYFnMMcj,{^<+9-mvf/e7%9&7<,oUJ]{v?zBEQD[Ŵ)0;zi[5*m  &Ύ) ^~CqӐ!" *9~eGQkHy{Qt{8cQ cwگt-RѥV 44+õojqIuR`$EKSS y5~LL8=0߻q@}7FlcE^d@edˌٶ* 6Iż^F;N(D1aڵ>Y fM|M@tMeȿZ9\Ɛ5oe|c_g~ Sg"E1WSp<>#dXY,c$^ANQwd«W#?\v!= dz/>$}4ӈ0Q;ov8 v|@}9oBS4wtϦ em}6 $ $G|̵zFWH;qӻ*a Nǔx΁GC뽸gt×F&adN9q8Ӛ|GsPO%jA[Z@m7~Yp -Yol-S? k_o4xnj߯Se#9u;]z $W+x0^ PݷgK+MMLJpRѰ ̮/CqU|xb*]7N 0ad-WmK[E_AT>wUqüR?4EF9DY){4tx^mCS#&>"cST3}i;6PgY8+JֶOxQ 3N^d|)'c&C%[)Uy;Tvg F)QE^ \TqTe+Fok RRs; kuEmrJzlFF!9/ᝋ(~%pIUr\{tϣ+Ň3zMT쇱!/Ad, ǜD΂bp}\i|kQtm_ـa)jsȂU)Vl7LD Z[?##J䣰`i}/;k\[CXdj{2qh,T0So3d8ߜЀsA_C/ fxmznoCF+}=xh2F|7ݚ ޕM pj梷LP|(6y%U=:hwе xMjȉ}#FnOx: \{p<n}j- Y$Ѝ` 7= gqp>MAg l: RYo9K,W~\$>Brݏ~?92޸As$_)5x;Lٗ%Rt ki콳\lH#4%p'냿^ֵđ#p6ܕ5p~~z/zXjZAѯ_ۧ-u/\Hѱ6[:G>sxʞ0S1$O4gyK onԳ6xyƠt {SyNy[w\IUjbpOZϣw3ֵ@"/Ӝ"4 A?)1G~)e*,|KɈ !p+$@a[BJfE>^*7!vo,MDZ֮> ebD  m׺_V#W0k({S*}5KDvܒcP^j: :)-,6: =byu= ,y)[Czs3e vd۳ڨ^[_23AiE0//#/|jS[Ծ1KB,ü|k=Gvu~^ gtMu|pL]$Fs)hڈ  8,t6 Of4Gv TҖQj213U,9;]ZPn %bߖHx=1(_r _vJ'ُ%Qh_t;/ kՃeZ~-CC<{'[5/8X_ ?1h5qa 3Q>'>~) XEOklFM;c65g:-ʲ2գӯwKp?ג_A߇Dʢs8ْPhȳ M\PV-ؚJ{2Y4Wn›#1Bϐ"FZ5 )Vk"xƘS6 !}5*$CIDAT-xz97v3_jC ƙ/~><<'iˌ;jxR}^ܷGAli^Zԃ颁r_׃͠r40qam*[䘓b}'܋3=Q\/j,o(B F(hhU}Ι:xb{us߾G޾@ڎzB;.ybK7J9\T[fZƢSs E͢]`qz8rnNG}BhPn/n9^#A?; NȳqqV4Zg9"5ǟyV u WӗўcXfwH,`Ep[xTp=R`s6V$q?K_ͱ 4) Ox&zLOwkGm92)ϗً钇B_V#PטnmSR;zkmgAi.jNy{-zcә}k2jn>lڹ$K_g 1/4~p8C~Ce3rF4OL*Jf^%d^hc,wdSR$l-YY}A}Qfw a ([G`T#w,w}ByB{M~ҼH7Fp!}py`ow}P@1_|xQg7,T<:vۋ{~)zdJξ/ʤs*!0Ͳ02 KLN9Uƀj1/D[떼@Fq ( ˢ#8c?} `\FiY0)3 -TF8Ho8’/?{Ef{ERس)l|-3U mJss6C4DzAa"][S'2e3p}OD"@J | VO,b~b`^R|kګpxXʷƈf !p_ Nd7Mo7Ꞩ[R3=m K9Z}MF+FNc ll=DZPAy6'MD#X;ݟtY:0 q_S`R9R8⺨jsϬYmHWSӴ1Ue ݑ _2s Z]$1\]vӹz.L?osՏs 8h i=M.}5SW}-YU1\MhNx ouaHxV.pGe[akaAP}Qq@Xr^jEfeWEw{&I<5m)jCnYvp}c_>O~僦9th BvՊ;{ђM_%C5fZ[-~o9*..R FµhMT?V}g|i[Gs-'踩u(pBilKTݖaJQ(aITccSwWE4!B`Y:%[$DŌT`5[}i]̯oGT)UHJXj7bj?jhҖdPJWB{K>R2ND!BTLJn9j {ly0A.D*m.ݽ](9)eyNm߶aŃ``i 6vCmOc˙ v͒;J:`Neyc5mIϚ߉Qsu- ֥pخ/ ȪHy^Z*0 &Ni b'.FX MQ;y]viuw^4E,o@de^ߌo4 l3`Ls8r$G%\6z ·uRdާȱ_J)jNp/cix ~)o`B/¢á 95_($~Ȱ7ƨC۰Kll`ET4 g }F7A͍b:p 8zNNhNρR(&߹w9yQYCn):E7[V[7w|"AҶ{ZW$ YNJ#1i~y'eaf)(Hm}8 +&h74-/t/6xOU,H+'1&W_|0D԰³Z~:D9q}ˋpvd :*&5wF;r ;!\m3cy`_!+>0tن;Xx2*{-:3 gVҮ";g)i7i}-_{>L2`TmiCO7 t}LYAwp9; K=we}Vv;G_}bte#f33$j8b_dM) 47\@}eW*opU4v~WwMG'їxQa"6xYӟTP)cnt̸b0 {y*G7Ya>") Y!`)_ DCAZO,C@%T!2^f^e^Ɵy'[/?éh:%T'Pj>?k3;)yǧ?S[fx7fM/=x py[|wg=h2F9797^=o9T^ue>ZFjI=ft?;}[hVO ج \ vݭhlǂtUh|-[T_1tJq-J3^yN [Đ!޶u pIٖ!^|P[1х⹔5Xh]nj*0Ys'W1ϓy %(NL5aҭx۔E{6daFTA"{A^&0 <~/[SW툱0\,NaC D4G[ouI&h ]7zod>0aɚ<*Cn6\wS%8op5_ ]rj3 VGxe(E3nY_ ?F_ˌcat8<u3܃ᏣzB?u#|3Rx2 p`{}NBV˵ΫOϐ4~ջ_[)w54m#k ~R|r<ϣ!C׿8zh87\`!a\X_ 6Q0|r,\(.ޘqRE v@ܑ'p9‚H􃠀c&Ӏ ( L%ޏd>~S(|x %С\vؕlg߯(az&:ծ7noQ-Le)Ew{/Kzܽ9!Smo)H﷜ρ: W.r$,A2xf.j폱يh r΋dF\ {x"P'1TO?޻l\w !?^jѺpiקG(E|JY6眠Ixn<[n =e>V#Qw"y%[ֆp)g)3`pgnUcpj@)2j/0zRtSA_E7_(kG.2?qPxQ0 pS4$8 sQU gBQ|r|e9X [P쐑E$]? z4ڏ|aV 1A] H/Z IF@Q &X]ɆvlrVl~ .|yeb:'Bݦ(Nt dߖH.w c`mI^qXT%Qa7Ǻ*l-vV5;%㣞s6CQ|3}L "RiQ7Zb;:uӋsA>m (榢z&6֘0/8kAۑ´:iwi綿R)K7ѥ"j*lM7=;K#t8j8sj[=g']NN'><~gZaӘ^tdy}Ӄv}X oj0pǓD@~9_=@W(ۍj8!g9!9ȌPR 9JO(|խ9 +q<;#+̠˵/g]1 k|)/ '~'oˎa7y}ϟW6A9V&BER01ݘwQX%E{/lkvsM8HI_xЇ@س<1׭5QSl ˔(zgx&$7o;EZV$J2(˖00G*2lDR,EMX9SV2 2ȑRp\rL[Ѫ4F 1 Rb)pʜ奷!󐝉 «vfx-/T36Y6! Ѥ4E-I^4&b|o]$<?_U,))|p(X;dKCPGdbCmC# FQI8L4!f`eQi3YVD8zo1ۡ2GtKÒ)}cOHgf$el\,\0ֲ@dX58SpQ#2#iioJesB xsSsX6258&Xki^6FobBw2Fxr0=>{ eUCw|Y荞# %Su<Ua%ܢ:ΦQ|S *[$";Ր_|p(+@$gk Cݽy~cF{Mpg-&4RnOwBs#.b?j>'ʨc t0i2vU_MTcKGRɍCrdcREkYMc1a4&_T}8p'~i hWxSN AšqQ4p{&Fd٭.o|QTt:06m%wR4.)S䐜],7FD/ڰɉGEa <]~SrS7G'1'`Q0*է) x__c뙗15#)k ͥ+-Z`&;v|T_o}7#ֵF3G/Rd𠺙%{G` zC2. #0kL(|'%clZpM;KH ,Ga6qlkԭ^q>î >C 8&C+>woNGO'X'?ӟ3=11xiIENDB`ic12/0PNG  IHDR@@iq$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs%%IR$*IDATx5wynWjV,˽5,`{w_{/$ KN kYmbCq$ D~A/gaIS/й&I],$3.hpZC1FhvU7\ U5b[ 7 byuw+;:$1o:gO% _Zk٧ϨՊyuZ}Zwٟ+Ή!C'4ut,:dӑ:ݶ@A:Bb5\GznU^.)ĵ z-ʹkezjՋ8JxxdP  I6c6 +`- AAQV85ժ(H 46n(hrmQBCHDBYO x˘,2!JxiCg2Y6İj;ǻX) cd2" hXpiP7 c?q?UuJd"6 1詏AZJ 8 zڝ/BE0<:At.06AXOS)–Valk[cJ zc<Pl==q,&Gt".ezNm>9U;)%2Lb}Őx2V{=uYЉ-HQ {queVꪃ#T\ChC<-,bH0wM~@YȌϹ#LgR&Zfӑ-rTU'huԭ6Mܠn7DRh$Hg1(\%?=a" Vz"6Īh@T[L Ig/\X^1'x M ~! ;v`Cr-̠##Jg@B]@?~F(2>7mމZvI^ւ Vn B# hOfY\T|Va vGKDi3Mߙ"FEka1XMFb~6k3~gN;=*\"&Z=-.WUƬ1|0(c Dofe5Ȯ 38 J0e; Yr>E%SPbFAmVn1g3`@NG97 Hb_%hS),G,Z1Q 4ddq<3Iw{mіa>]Lpa57rYk(aAb@MwU59(c^cs۸d@t Y&f)>1#\A.ϴq9G\b =r:">P6>ͦ:sv&wXn 8kWo\`DzH.\ !8œO@i$aj()54l%,̂J dFUux=T"](ɛ&?DpY"K4c$ng1HXP6@xL?C-8C2,&5U*2IIZR&*ҭ&jLwkRH)OalYv3h P c3<#imR1#M3kl͖]t@|XnMe_)GJ4&s!\x Cu[h{h 0Ilс^͵uRHS }@UX"2hΕamǛl[6 d^wy9 X=,ʮa, Qn?sȮNh"7M"R.^P~ ,tJ}S&s{T3"vӣ60Q;PO3>(j26KPOKK-Ǚ ˁ૆ D#ichٚXlǀծ>%]H.[yD}`R͡ ˌaQs.P9=DT=1b{@hq7JUAg$<L`Z4~Ak4dðY]Ŵ ~vq3fg۽p( 1R j,5 !!n!c'2z83_9zui%n|j/Ă0s80f-㓠 )%MRYDUa&&=0gq=3!% XL`%2l50&d4ALiNR;y !5[=V΀%Li#b=kvDCڸcXxLT]g-ֶt:za}(1+ƦJ wrc'RlT AU"splj| 4V~FB>k8:3jFRb5W2chE,.~*XҵQI=kRZjõZ),~1}2[B=5ƞ_>S֩ K7gM +Ѡ}Z*A`ukٔ6a&YSǵM5uby4nՇ{qAoBJcH' ])jD>i2NL~cݱw% :%dx0| +B NRw\F Ε::J߱]iU!6ܓISHh2VLM赻bWG@Լj}_/=ٕyW>̓1JzIvj*TiG2O|Š ;ht8`k:K6I*(_Tmg=UHy ~9) _7+ J3bR"T) jޗ'(ⷷnΩG|6( Hx> 'VZi;?:9О?ST|kܧyEpv3n wg}C 43} ƅZ#FFh"d G>A.6HS/H:a)%|QlaPxjjt+m]>Y`[c?B g00MhA|'IimR/;ưƖ&G?cmF"U["% }}VrF_{|MٯݦR{I_Rx`N_N_#~]DkP!q";pv4l,hF Ѽ K}G)" 144׌uڸvڳ^g!Tְ220ڨVU%3VoɣG8d)a)A45?+:s;qϻƔWH3;3;}}+uҿ6eG Z`t>']Y0# tbZm0Vٱp#g4+ĕn>|M7i|L kI@ȃ1,,EmoY[ToC?J^cOoV7 ڝA}:1}繃*.-RPt<39lYa43kjm+*܅ybvoy$^!bHv'L9B'嚚Җw+XڨNס/>WԹ :qjFfV߼9=ͺ^X}զ@j)^ Sl3jAhɈ=`a3 넄;,.:ڐ wX 6j$ 6}(q}j:C$_q ӕJb0uj~߃pG5}.>`.Cj ;X'#MɆ֟^.eU)n ܠLer*,CvKޟ&gn.f(rs .N ^(*%69D1kam!ش.}؜V4\" L'B oXD2bY#E=:cuMsg5zhMWv7}h*`')İ MJ[$JU8sxpk48š[/i౐]yBj쒷=TsbE橕 P-1k ' .Jsul輮 h.PUixN̋O?9(\7|n}Q_[?Z!5P%(D泿~8f&rxu4'O9\3>&I}N4@'9s:#.#D*jp}|Xc(XLJLkf6id M{Zc)]'^kjzFK0ftoZA>mUjh//>nU'ŋl,c Pu[L5n(\#bZ[k\1s$pQr!0`ffӀzzFCSWKvNf?' MF*0EٸE'~] W ͞yUc%Er )W_wOh`j՚ΐ]D#/<<'-zӾ!HA362b-V*K}D *HHӸE68}lݹw`7'5ʩM Mrj:ce^ScLiXyqY>gp^*Y(G"i2sP]E3̅eʾ(,_w®ȳ] &O|[%*5:( ̯8z+:W No C"jRr#s?[u\ `rswMf̘.s ]Д=P4 oR{Q5zn0 PsjP06{= q P+}W \c\N;Le4;R'c݄} J4eFyS sU4ZWd>c]\6,áK2q:#j^*a8O4@GI]?0eD ,jhBjڋK544'ODa6E h5u7?V؈8k +4H#&#sDL,|}JF 0р:Cg+>4E-=7K`  XPhpq(d QI:gp"BVGG x_y;7SQV"f*"%]Ɖ( lrBW.EGS& dg.8[Z\y\ᐉ]qiՠ9 2jQChE&P| f+/":R t,%JibmLkv;]fݠeЀ }%>M[7 [5HzdH[ LGǶyӖ}2P#Z!Tt5GQ#@YRbdʆ;\b"c-̏"E6CQM6g.['@w]22ێ# .d)hu †[>{'lo6qCnھ`L6@A ѺİU uL<ֆktQkBpPƊW;Ɲ&M J] 9lz#ZP!(<1u.0dhLl[S{?ˇ.ߧmkި#R u+ ):Y2{훞%|Īy.2(_o#{^k D Y52$"'=nNw Tx·%N\n6(y."Z>/> >z:j,ZyyYg]rɭ~`fa| )idr-'ZbEbtc)J߽TN1.QJK d`\6TRh 5XXZ{*wtz-u1ݹӉF?oC~| ín\A"t!1k R/ S@uD"QM3n]~յz-џsg5%x벾* <"S=fN XFʑ8rGC^e}9;>vUyyϘ_0GCnoqO=8utA@v7n]Ś0Y-8Suk{"4KTytϝ{-ޜ˪hm*2.p=|&76HNxyw|?>Uvya27l/ꚭ#:Ht5z*K b Q&CRwN궫aҚK;ϙǧT81"aIP\ݭx8 y,SZ1Cej/v s'>2_m2^n8\#5l].WpPc]'L}1tL_cXM5xNQ ޽~?K:T"1șe۵kݖ#Y:ŨmUNp< .`H|99ɾ|fMne&l!Y[Aw:wvZ=+sk]K'k <2` s\gbm&I|i{` #89)yI ƫ(~eg2knjRY9Mń.\8MW .z &ۉiO/z獰*/V9_O.52 1!*Bpq;%6M<}&*2`?< ~[p+=zXZ2M/?NԹ~-1WCߋlSg|$,/WЗ ܪNi {.ς;tX4/,Lu##H $/RD@.o<&{uu ԱȂN[:mJ_;o~i{}\K4U ルs`RIgSp!Ƥ>&1FnBcI~Ww/\"0a{Kb[\ Wp= "0'JZI2Z ֏A՝})gڤ}Z()tKkmI-E̞K\FXd$ʹ^Ƣ$XIx,0_2s m:eS@vW[d$A~ŵ >hoJaJ|f$/Q9Ա?]'[Yh-N"Ĕl. &DH910Ys#,"]c?}kshkHxTL!"v_@ ,2m3l6 yIm?E:;sCQ oT+%mw(Msdղ5Ru_4tET׳Ű 6=&+a>OѸo:! 9?fyuô+=n- Pu\6)yut pQӆw}Iχ8>o}oZ$ eYBCǝU$q4FG1V&`4Rg㚣 =fo7K>̳] " YMuZKŲi\91k>3[h,Ӭ U](ugN\ȍ xnQHhO^ah@3 \ *pixnK_ &_(kbyB\vEb9)͵KVb!a$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs  @IDATxlydYsN[ݳJh[Ͳ1c 6x!|;@rɍMn?I 1F`llݖ,i2F3٧NY6_hzyϳ߳oy?orłid@g6'VL$XT2o2,Yfa23}/|Լ$tɒhl3`qY>, ,yV(,pX/4/- ύ͋G6Xu桌oxD`92Lhh+7Ky<!GȂl;\~Q #ԊU;oѢ ^&+e~Oxob.u-/խUYZ6Vc鬭 {4l#U0 )=¼Ջ5KWbdW=>Di3(H5(?Ë>71CyY2d\Gj@d!;`Ckjms?$7>GCVRd 6]}0dy?dädhhC7}  Aky[S&ja o^n#мBF<1u PDxb L^/]g6w03CLV f_dvL˲GXjL@L-[D@|2t+d(6ٶJ jEW* C/%THCWPI7nC#z}YM" wG<1!}Ԁ8N&op/CF1÷fI{Sf hhh ;wq.@]# 2D0*%xaTĈQ X|`\֞111P,aJ- UHc"֏&x`p ! 0 r=x #V\!/E } %U2k@rC U06b> 6Fr 6DQWcw| bV)c=⩸5a/d4NcKR8Oz=ɣ ^aOJz8"~[+R(Hq\?9t <{H "z as=k1p"?.9KNV BJw,IV fYl١U{7 @E"Ju>"y4ZFNJ(;3Ef Oy9ȕrF|ŦXo |!C89vlWZC :K@i 'U6US뤑9i!csQFa@s)'V!.=~BRS#*ݑjR0 3; Uطp&EvHsH1a)m#S/ȗa{ʀ{ q 3%JJmL슃W`B2<1t+o8p\B0pynWA|B(C)D1oDAlQd ϋ]!lx! ys 4yd m%c@f,M#c(Ȫ.9ؕvDS/жJ9LKc1`-ѕFC0ʳq]E,Fr^…;ʑx24hcHOyfRFс8_|#d1=?e{:m4*mr,j=s%,S@@[bVa0a>0E],axE3V, *"@لJaX*uz@]!Um^T/Q<ח2*;E=Qp?&ם);`lje *اS7!4.:eJglyW!_?'xqL*j_5'|CfxdJ+tۂLsc%礽ɂ\qV:.LcmJyԸN*j.B֤ !^/jR s>HJ SiW/zS9bHW1(*2?`c`=cHc ۥrvL(iJUX=@ No`Ce Qt @/<5'0=cj<re֠;r$.A0yGvLS4P%PKIUH`c&Ej2 5%/M#- "e"f5bzPŹ.#y~FY;X"8l[!J/(Q Gͧ*$1rޛ`,}) /T `0JdQ `X |xFgV~ qDMcY|5P>pȧ\weYlSy|DU !w R=Wy2HP wC ()9f\ d^%}^Ip8ؚYA1d{JYLX@A(Ę]w T} ֚!Ȁ:*2KTwPS!Nd\C;BGj:ls=H!F7fjFuvQ Xa*f璾2`镵{O .I[-- y*{͛a'%5W7Ԧ5rwRDhVyhK>P*"XƸ@GK4"̈́" WwP(HZmH~/5+6;#YJEUfH>:ش#|x^=ՠ틾 xKj\@N%M'> STei.oYg4H1"K hr2(PjH  IɊ&"l1 #^ŪɈH H#ɭW]I<;"U,{4пO\Ox A8JUHS@qv"d8 LE1z%c*rWNC<£?Z%)RA.χe2H_V+7FC"Th܌  ϗ)ш8ĝEBs@́ xUK(E*zC*ne )(z@|& BX~54T|gU_f=&oJ[dQI5 Hc{Kxx3pmqkրec̟lijasz"dg_&M8a$:7— gp DD2}֐bpұ_$LQLI+!@XC=A9eR(F^&eMV=85 εLƄ84aT9ƛR9h:*r)}K!~ʘ ަՌ2W?DRTz9)Y ƹ @/=bOqMRo_0n0 r9YCɏZʍfT~Ě֘PM&E@s t(HK$@$OJ\Ub ) ZJ\D_X2b€f Qϐ?|ꆌ 5.:r#~B=%DJ%'(R=X360&QTl̰0+F=m#BjEqku%0C,8rT4lRn2a~D$ja[,ekH?t =02\S`SJȌ!1׽HL01G%W$.CR0ONPpl4I)$ = .9p"y}_!_k$1?䕄 Lg毌&⪴vL+Ɛ2QxqڗdeAɻ߼VɁcU9nOPX*us^@V=TzL"L 8jNrE!S{NSL5L]Ik ǒP$W(r-yi=ܽ\@:,2Vm)"3#X`v@s&d А V"|kYpU$䩜doJ Z^~*ymP c1ZZ{0uG(2PGp\ 1L"1"K'.# <7[ʣH7("=@#c_P^2VCCy9ny01(꨿ G|enńLaBx<|A Ǹ l'!# ,TcWc6 vӸx0m1AaC]JARSK3JVOq"Eu7 )PR5=C@sUF7V@:vX!z:|pX?} uB0)  t+4 tCU?<&Oez8čL0Ljz.=F#є b WsJƔcj BP0Y^V`DZ(yl $B)TM(FzJR{AUgLJ5 !'} }_N{`uH[K&^*jz 5'D!<6* "%)%e <9 s3~D>א\(C!dQ&k(`\)@}q#@ rNgB ?eA9/؍B21JZ<GVlqk5r ^@v ^(u8L BtH9|ט9<2EaXx2b>XG5w15+DcFLwLچ$*+l } = (fHu-zM00\Ed2-X(rDX䯦p9QysR(32!Tq@ 29S! 66a%u?Oq>CDT1ia.Cct)Vj9=GgD2$ڼ8+Eg, W,Ae=,GfLL@;U.ƿIidbL 5fURR1H LP$$\ ac|rYb!<,"eHbWA^<)Kj~4a~Hju۴Cc(S$kL(%* u1r"HsL> _ @n"k(K׍X OR0$n)pٌLqb'd}-˾pЁk`CN*+f}|U0n`_1Q0ھm9 #qqNa`p*S#z2BdP a;4citGW#-$([Ю]b8He8!5gvbm7Tv;&O:1xBryC)*HMYb ck0!rJ`JF*MjcfWsO]vtpƑ#FFZζ:POP֘u%cjPam9•c 2&ts1J$k}Kl⠉r<[p] W.Ri>A)%ȓgbRT3v16q^LPp#U LXɥ@5HVDPU@),/o uyNV{fإi9TS:8[ۅƠP)'c,rCRD#`~ 2.)RDFà 1mWAJQhTPAʑA! Ϟo5l7q}udD]8jh;x/p- kڼ"x茨 ?ҿ~˷o~Ӿ\ۦX:F&U +:K6Pȟ[xFb|irSn^nP(y.ʎ'OM{ a 50nv>{rqNJ0 #8@iH3{2e,1k9i$ms5G oO $ #BK`,HeJO0X15Cu;]?_DX l'^@u/7Cȥm/gf]X]%{@4la8tQ`tnnrN~۸m۽!rm u]V>SSzuC)RkCg$ET%pyLFrn N f 5a!+.i_|؂bZB(2 4֮<^Xc2E9ZBWMm{;H,GBX\E ()w+$l[L%oVxɐN{C8}RI-8(RIJX*ŹL+L'qcÍ.N\t9%q !nLDC-{:MkTQϽf `=mGӃAkBai̜YOo@if}fzijxL۴Z#$0a4L]0]˕2}˰k$}j- *ctoAF'h/j, jzàFAqoN Lbd΢QrД{v@Ff&Xm:fK\j-@g06 ÒVЊOšKs\ވA|Z_KIJ5v;l6r# @ѶsG#O;)y4Be_]8Ui?;X}jƘ0ˌ0+TKSn`#6/U(4\QE :ې?/2 T6 B XB #c]gŵu )Y6?U.Dv %jxy?xUD- (&~ S( bRUbb`D[[Y]>\Wzh ( a,v҈WF@bдӑ;WשS,ѵw*sm~NKkֿ{<ƛUy t@ѳ? 2SdG5:d۟~.Ecpy@AEۋ6aj s)m!nJ%x5G͐OK3Q2%G}$ZeļbD|7 W]"L<,?cu%C֤&!zERq5n #Ph,ԧX*ceZ`]ds{M#(U@!R/SvL(]K2Ne9ukG&xDD4rWꉷ2]M,kNk(XWٶ8 ]P*J7W.\akV, rcd_/ڊĕuZG@!1vS@޵K5*TUjncL /-@K?&q3N{|kk/"6`M֎]WdO@EL7$'yLA{ظbENGUFжo(W.C$3M*Q6^kM^pzgԥv:ɻYֺ33bB5 0%dFzJ Fxˈyu<.1j&2 5 3#vʳlj {ww]{h/Rp t ~r;RRvBn#Ƽ$2)\sj1+<̘(bOվt5DdCbjJ[ cx.:Ag=s1#($j3WW6U; o53q@"P=`_!v]X[`t{~eYlAP?:삨@TBBN~|@1蟻++(0\quy%/YCGvboLkzWMȬ<4\P BD Ze+gA K{:r+ ڼʂUҦs/q PT֐9!a+s}\:Gs;.)[8T8;d2Kv);u;-a+dD |Tv-C_tFle4(jR . 5E͟G!5?yhυ [zG0U|~2Je(〦1Q/WbBjnBQ XVBKTf]'Lu Fp1aQH2ynx4vr2ɓqDLD@>h+ :WemW"ܸx@')k>Q4R儬= c)Glhʈ8ٻ~v!oI]!v dݪH$Uʫ3'Mx28ajwsL=DmaB]v bٶ yTү:l>/ȸf?VTWM'-ysx3Қko}EGxN8P($4&yr᫡0A݇3.`oT&,HUOepIx. h<9 wuTn>ỮgOEpW/(A(pߴօ,dνyߺ,H'@l&[#dé}'[A"k[nН m{'BzҊXNy[g29EEYR5&DBhkp%W'^) `=R ('.͑sprq=n7`= @44(]z$ߤӅT ( y։A1Ad,RMcް;C*v<oVAkX J72)p'Y}VtO~ A1k5>aTtR]GhT SQz5T͆TMQrQ5 XvCt6bPV/Yw}{酳sa!ڋcW[ֽ|f-ڶ*|O-, E`5b.<>Nk!ު.ttNQ-Aܼ֝ QQ9 +\M뮰7`(oW 8뢨>Ӄ 9W'SOo mҽ;Ⱥg7 FN5 0D>JE9 B a:NL~]jOC1\҇ >Ќ&=yvρ>g!{vA? F6:[&]'Ѿ'{z|{^0rl+'ʚqE[-2-rt7p7>\Ǝڱh0LDqbPjQ9N6ȫL(iCOѧc{N:aۛ egkoB"6ܘf7]?95: Z}bՇ gw28{J-NLi7 * m.5h1Za}BʞN%hUL Q>dV9o`v͡X<v]Q c1)g9 cY`I%=CPvOhS:$WhT1bЧ8!qvai0RΜ?c<-vc_[S]]]#-c=%❷Q!^xRyߍ,u}>-_b3<.ґe?!t+ϜNvpAKǞ bu8w׏hSOڱ=oQSxΝla4 q7O C߰SC; -GTZRcFs:&kQ.+3nn=^ h}—N:Šj.SE# !:fa"c j T9>|Bg !uJmM[xArNM |=qqФ?CLo5񪶠 'e3Uj-6e<_`q/2?4щ(:$z ]đP!RtݝOm5A^P>>8EщƮ׃&q@N;6MQڻRcZ4.)^L[q?8tҖD"iFҪ%RX ";[  F3$ޣyWRn8Zet;|=s'k-#!_ ܯ'=~m|=-ؽOalˇOYZiCoi> /{~nq̫kŎrҮZdN`=_V"udqTQAL%ūFvۺA@`,\IOB Ӏ+07Wd>6wټj ɺK3FyG}V{~ $ nzX^hP(X \ޅ@(^)v2 nhez"MgI!Öh݂I3,!,w"*FP HG`;IcX"/h>vo'<瘹|:7gr%[R{W7mU!^x f%ϕK/پE g_w;1ˮ9rخy nfamB0B#@ ݵ! TvE Cp" &ASS2MR ="sUj^S'g-fȱ9N&P:Zu[WtӳA |hTtm9/sV$#_9eP΃dw>}-pHЂw0^?p [oh/>{ͯ{ۛeٓzڷ_ۀ6ܞ֎>:[vZe+>k?ߢض¸YvU{}lqWً/Be6ϜްkOj؈%dz`u:_C,E-S&n0(5^3aPuò6 :{N9' b'}TNTuJ۵d |2sC([@SThNWRɵ73ĩ v f?fŚ,aD:rFb3]-1r8S 1{w?`?!IHxlOyISڢ<3u\ .)^/tG+l_bʠ)ȟ'ͤ- FYJj"xc f8i|kIWvmsV<$16t,dʥi 2 .D>KFBL˔g;8BUǰYcڄa˶dkokPonGO%n?q.=k/=UH5tko_/J _ܲMjԓ߳O-5ÖuB+{7 :M2HduǬy>enhTl{((DӬ>fz$fI_~mO,QDvB)-E!RW\-x5W_mȾt{Pe? _lgoEz ɪxzmN|c ;12arA ؉5nݿڣ}c|c;+bq`j "<^_dW>l~XmHU?mЩ>˗>:R#RQQMrQ#RB*5;Xka}4 1~O!*HTT&Rڀ?:EGUiG6\BI#|AUű U !qDhTrhcA)jhq e[*H$a]xY2M'؛zV'tR䗿[r-^Z{ Ng(o@/ݳV&Ɯ~~l=nlϟ7qF@`[Ony5>rY %Gcͷ?~em>Ir:kk(iziLsBjPu_{VPッ tlZmJimN(ž!FQ6fF'l8P>G:jjJSԋJj <^)3bh\fӟ]PfHm![61-t:BᶆqUXt\}bvMV: JWDiRBm}Wcm;>{):5M%id+Y![ll”=#n:cD9҂gdOHP ;v %B_`$t/l`0V\79ci")4ޫ3] D@ cWUM=y9d쭼&159Bzdv R{(l0Nք qt>SESiFI:cWgiHsAn),>0y3 E:6F[!= -C4p֌ 8I5xғ_sg!8RAΝWCTud C>a̘X :|LpPUk8`\ƧmGT)uV ikJ-xv=W{͞9++ҽq~iw?paw4x0eY)H# 3A 'F5\eG` ,j5Qh8Y3P pvϝYzT{8z$:B8UAU#,YۖIdsp*iVȵvV_$UU ( 8Atwꝱ3I+GLv(H+u]4Y9,b@{d^xup۝V.wr)f;넬>LAR)4)^Vu/ xRP8ǫ"th)d֧RfGЮP)Zx933blѭu m:&u3Atp.p3:ltߪ_-mRW}Xn#_IQ#LSH>204,؉vw٫3O.bF_c\Fg9cqY{;OrS dpE%5Ȅl~˻K^y{ؠ0g Qng?qzCy(,H#W/ajҡ&&IӨ؄扪]s yPc8HѧKVxmR%6&`2Q'A*,D|()TՂo@],II4C` b%mUaFAJDtVas$ܛ!ڏ9Â+ 5}| mU=pÅBw"XB=;y Kv515]vS `ۃ ~{Y{忷"-͎ݩoa|F꼵]w -Nەq_g5'G1᛽Wړi^Oq]fc^B+na)u47 $WNdDW:z5C* }AJxЯ /UkPԇ:*`̉C#KJHr @>>LݻEvEBhpLjYXV3:jfZ@NoT;NrH5oo݇7݄pnC!eSJQvmjW2cgW9 .n s+^! ߰b' E(vQL0ߖQ8{44AR'>c6]kmMOGw $ ?,Ds3qt<^ozXtE/À^[CHvmUVʤ; 9+;PD@EOV Nj P8?3 {|]&u4A x]MBĄTl(\{}0M"uxʻ7\7\^*<"ݶf"#b6 5yzk2'B SN+hM*|ƛdj}XV@^$M~1g+S톛輪Qdʑ| f$.t_8Ojۏ~׶KvOUF߳Wx" p5db뎟{K7zeFuU v]%Jt F,k;\gu6 \cn|I.(`29 -8ESBHS̵7Aqkg)n\d/ PA,_` ɡާ7]߬o@x;mW! ;rӭւ^7^3;=]-f(+jo_`٧ t>Aλ~8WAbFE.1>x?LۓS)`-O~~>+5"! 9ٳyX$@*S:dDMߑЮ:0YZ(b*I5Hׇ\;5FXPY>\J:EmU:"Ƴ]L9) d2! }JD:AU4H6~ Nn<{*d8A '߷NvWjvɮ`бgٖ S6=]0 (`Erfٍoɶ=Ն+@/|]_pb+O {CӦ 7g[uB4r`##WQ;S8ca(P@QVBju |,_:AB-ݮtH<mYrB~G>~w? 7Ȧiy}}^bQ4>q*0)ݍ&5u_|4e_t Hrp'Q&c݁xhc${ZxDEF:iX`uS`j#;| ]_`>~YwfP#;RUͻIn-SןCކR$a4 \EI#WrU)Ͷ)](wwOMJk5 \1]F ʨQm1`0HM8jhie!/XԽmU/@V^bv =ru9I6ɣ3zSɴq)DXZ-˗.gɿFLoCJ[Rg1EƩ46Fnb+_{E#f }_دJO4kA/qcqOtf#: ՗6JKC3M^9?%Wǥ%Lmwݱv*zv0 _K#C$!HDnP9:J!rݨ u첹J}رP,"Q7j^I\"vei+KgY1WydM",ܾ$i"(oZ< Vo?!LE,SMd(P5EPfASG0A>KP'Pa\B/0~9 "/BSG~[u YOzt,V Ҕڻ?~si YS=x6 L?M6qJӯBH `s;MaS(;AWc>K(o%RedhSgdvg 73կ%['hEl vCM5[ TuaRnh Zo پw8J~(.lYٵLvأ$0(ίsP:ؘrd5g6 {R:Um i jI@} a;FN{P^p+5>_AF;k3mi|{Pj™k^I/%][((:ps^ ژK \ "J|aϲ'ӟ)G",HP`y5M"ySiݰ "Us/WUfʭwomA($ݺyHX vd oI}(O*,)޹Vy`j`?V!-Ciuی =4z( ٛy}QDwWJ]o;gr(H:Ip!˾Bz?w&++!"Ci*$nQ!6-;fU viJ nS08b5a}'ZE^N,_.\̈́z5` YF6aW<@i<)ZAa܂֓W8VpH*P)N)H6YZFpbCsʁ RaMRIt߀rUK(WŤSl"Rm |Ybl╚ d$㻽[o%f+!:u0,{lG2EBpMXܢf5.QXbC-"$=Hn}ic:cxb 1 4$ D\Qj(uҝ6aS 8鲄z{siP$Y M qCiK 1N@5wXdhUc7}gf&ZsEtL HaQIV%t=i}9YB#כiH\7}fYml.C!6<ۈ+t4̺SxaML~6:<>N}G:áMtZyv(?zG*@h>>'%l[RWUBNL!X1K1HB;E$@P+;jhpӻN29UғEFBpڞS:I2qIp(RTlYc&*v"RT2l[wlpl.r!\j.Pw o(=ulR 8"&LY]޼t7AD?zhb iFY_hT|B6[M:gnF2qt W,1ICc(>U"1O 50KAlz.>vj ϓXcMiD`:|"JkTCşͤڥjR`ĵ(,lGa)9U.6vlRw}ld_Y+I~XGڿ=]RmdPI|mL'+P6\AQ.V ͰiŚTk 6 3 œ;ѩsH}$;dYNۛHf! VWyk7(xt^܅$^&@eZ뤚u h>I~![&ۂ8N:Bàl_<{Աqgtn}MT2vP5+{.uh&5{e:} 1[Ԟ8 ݾPHf5=tQC>=9$]BGw{w! 2kP"?{ME4,r!d" ^̏|wg$39C+4ȇ=+4:t)# xsT#b!&SN`\Z? ݝ Ya2GYPPN+`]nE}d:ap"J^kV1 usPKGL(p@r3MX-ʮoҫS'2lSuߑc8| Mϐ;0.Qݳ\b S.8~?5Cpt~udۘT6M ɱtwoej8&@XHAA'iΛu('j{t6Hfm+d,4nv+,reoG% $NNpk V&`ֆRiz,>},hjUo0sѤ 9 %ZΟ Pآ2ؖn\F%Y4Ss1p+GE9'd)!&PdlW;ZIWOPu-=s xoOU)WQRՑ`;v%/w[ib|=/G󴃧Tu ̟8^LηHI_gRz }{ҩ^3:5t0dm(Z'P rY ̵s o9%CϤ-֘ Q,,UGy y {υhZ|4~m!RAY`}ze5;G].L^پGlùS C0WX@sT|Z'N0\ˆ7W.Vwgj/<{cE*/lUbBKz_AD?q[ &.bځ}#)ӅhYͫW"ʦ|_:u׃Qʞ7Q72mZ>Oש@VCyRsLÆƨuӡ6ф8hMJx')+աQÝL +Bs3.C7wZuiiLFIiwWd8ds-Mnr F8@dM9|/4A )`r-+01r'E~n lD'"Q($2a]`3)("ŵ5%tpK;!2GF3fw|MC{_0O]z~q pghk@uSd;#|e#-fQ$Bh ݙڥ`%UK-l =r ${簯ҩ2"En'8H~EOąAFNp\ml|[Yn"P&i9рVFwQ ԴVK@JS y!uV(Do1 Cj{C$/b e-ҋ\DQ'X@66ʹL7*䭏t=1RTZGଇOOw}O:gITƀ GS+ 2iǀKF88kx>, e āPp`PW7dpN<4,A$hsR aPd٤;R-9 ᛏ'5Ö>aUE;TCv#lUxEy2sn ;&m& 4Gx_ `Cqxbg}q8?_Ԅ@Dr63ay~4a}`SdH𞇷E4Ghz 4˨%WSZ:bR(t΃r|'1uýihʿ{|}鏤2\;+=fPkـ ؔPsI\{0"l{–E7drg<_.rV`0 (VZ},@g7tTt8J'K 0[Ėr>$uwf~a}ws p_XCpkq8"kvlM)ǁ t? x?G>r(+æ õ%_׸"p~F ƺba_kF#{ҾGL^~5R rn{N#V|!,fQ؂|iN4"n^|U0%=|&\ݺyay6h1C5xQCUrelf=sPeeFdP`j} (O.Zq=xP3֯9*DcjCngPc\A֜]1mZ?O9׋"k&N=g_*Ck7w/!( p.S8(t$EZoD6( +jػ; Jm)YXcl @fxf#\ԮԷLwh\sĚ0G2J%+`,l +^ rV A8l"IDATތxpOB dZ8{G >pAm)$euʑ&q9l z(M9gʍ*,09O!&T$PՀETqB oA> (|Ik) D~7b/R<>Ȟi wI7rs OY)N'[}ät0b *V; ώ' ݏ rN[]jɶi[ NW\t=y\\VLFelVsx^<:mRj0ڂ8;ER"BW3fnP Ovn lи[ڶlww[1pga&/fS7I0Vn{1NʬI.֪Zfq\x4g Ib)':枺[5&16AY]MnA"7 f-y@޻h+܎[[8ӹ.RlOwN*4𧝢 B.FQ{AYkc4@bch֙L~1Mݨxe%6*ebh-h!Q.Ma+dLe.Q9 ,R(zަ@"n`̆r ض\)b --ŲEcWA4lw <6 *8yHhC$oZvwV^q@<#H߷}Ȇ2ꉇNY՛4"*%HM:hS7LDӸmF/`ڳwvNȹ@8?G9z:ǿRzw\9Rag[ ol`AI5jz}=d%^w&t`N/d" %f@6lt̪uBYfE6MԆe61FWEд("8ID Xb4P :a}!v ]iڦXɷO(GK%h,@ RFЇU6cB Vyw-,X]dkĿ~KogL&>N+C!df09CDCRElgD{T/.*é:-LҬ%<>Ʈ^C mKlC5K@9w{"֭Πæ챈9ii`#Ty+ X>`ڿ^;kFOo&`aW="dk>㶾8#Es=o3ڬnJ5iczd~K$ Lױ_,@Fug2RITr"eK4A\i,GzLrKL l ʂd}"3Pv[-YWI z[<~t|g}(IT><0οc`L,EPޯs= |czh6ú@>UE!&&UGγ TdVаhQVF_TI6[,Qٳ8rP V@D3:2(b ?E^j G Ucf \eR,߁+@6RږHQ$;b*r.bw9*e:B6F=(k[`C σH/~3=pa++jny6Ptګ F`HQd١y rBspl!G2> "Qݒ9~Jc)8{xΑm<f'Y/߇ڔӦykSkWKȧ$U(}-ZB_XA@^8B@\ȠWTFa$ҷt#0i}S\jTZUMkb%=HrC +Y&o#tku>o6 .'cqœ6UEr\8'<w"`J L۬V[!YK *< ;oU6 Jt$tVfL$p46jd# 'Ŋ Wb$3<{to>NpC1R5y,zatG&.22t0Bȡ}Yvb01Yo"8:ٻ<`E%7hs!YCQ6f?z#G٪EpD k"Q8B7gN &Vޤ{nb|2=ߤK !qy;8ml |62`@56[ luCFt.4s oς3MY(JeYƬg r25XR{Y:"D$\ D>FƱ SI #&z<)ݘ,VMuW# r65ߺ|ML|ʳQuUw}"^=Bn X>@#~b7RytʈF@t β.2VקC'Ƹ9Fܺul5~o@t3w~]:>V/G""('ʍ5RF3͒p;2܂,ѣnw @] fX7Y颇 kb~-\0i?O="A4J#<0)616b&051Ӈ8X :p5EXjS5p~y2mnʃPWv ➅`&'%$5*Azd~S%ʶX'B8:w7եttm~wzyA ؽ}:@٠??s_MS/Nho~3ȧ %=?Ni9 )ɵmƸE5`ö}gۉ9KW=w,*(.V?,cI%mP(PЂWs* Yc$Q=@ո!€`+oKY;#  ^!aNcK=iqi\"Y>%jYoYSq?4.!J;?ҩ9jrIJPIipOaezph6M;."Ը|&9p,{?ѳϤs/M̑eMS 0ģ;_ؘwp}B^G:}4SBshط&vUJpO #6`~ ض&la~<,2tr JHa=#X@uQjld*~WAQbnP.S JefW9FUvk֓)tn|Ax[#DŹyfQopM܃FQL9 E}L~|%DqOFȜ͖Nm~fߢWLٛ79x*t ~t|uixRC1@.%`*TLTC]uX ,RKD0ɒhj꒭5 6]gQȹ" V]BERhx RUо># kMl9+8t 3geuMJLq<*8P9"-/ЁXR=xy\ .HicMZ'00q{+gO" "W)ItN(}{Y^̀X^:Wz]ba@WiH1Az>mʵ9{1X|ۯ ŢȳR\MA DT2D)Ow%[^E,GxՎӺ7eܠ*(8 d\>&wc-@}}T%p8| 9|$ { 04A* /b?uYX# +1nfbH%پg<4TL3ȁ#? gN8/g'- rNՔ""/fvgy"5ٕ ps7aB't荃ZhLP3Q Ȇ;(j年Y?@I] V"ϰ6LB)I,BA!,"߁JWD'u`E~?.Iک4UuĴTъļdCEHD 4tDfS]~ p g+`hDxkf]á}XPzJ&WkTk {(_ Q[5;=E%yX` ,zHOCjB_~ 1!;di+X*ɖE܌5L;  ۙEH, _;W"U*V󯙅c3FMS50)pDx.,Ms8-jqh cs;RXvtNP#;d PY:5v;\D[ƙ76_O=ޘsp,ͦ4y*,p uS٘XbKat:itV^J_e V ,Y q$,(p;`k*W-ܰF P  t#\Q6AT<˚{4m=**T!ETTq :Zȣ"*VQDIUe׊ viJ&ŵF.b|5"*,Ws/~X"]*K}@.LuFt^?QB?s* }fk6-L\M7.4ݼ*4j#%/`8WP8{-oLÅ$(C\I X$)^Z -eՠr5~ U̪|BvdIöӕ@AziÑ:CIRgƯ,9^ v\Y|s"%*_wcZV2ޑʖ,7R"ޛ,ik]R@] N  $h­Bz1S{ƫ<= urSnK &I='7_ O o0o{58 6N+=ȇo2]Zt Q(C)MWiB:vpm1cVuYł̲]Xn!T !JXPڤAP.uڌ9kshDnTJrN+J aQ7\vK)` `q+PQ e6^s&*=,ϼF(^==yi9>BgT=jiY"+ڙr_*À,ۺ#ٔ5E itt~v7dmK($1/n\IGM?{!{ V&W S萲~xc籙Fv'ɧE ϓ` k"v =/Rң(GCn#&ǝr&x 疣 Xe""A~ChxbgG[k-a( \r[+_&ᥳhQRmvAvx%a!p_0:|[}DZ)2s#q_ 6T.s5P ¢[nZ EyetSaj_E694T2{AM*f49ul-jHa&?zhEpoW?|ƴ%k?d Z^:5tաd6YdBkڠ× <+t:B'5Fв"zϼN6&+Q.Y]X32k>׈dp{`婢)g⩘fWdY 3 S9=[8UnE<j(! %K7|RZ#\TX%kH`dtZBҫ秀^='}U)<\M&,v8E0Vv!R&T>俈 AA 1L4RFC /`|R%'|kZ7"'P)Dj_K\6E.c "l"d,w(k,;?](W ,]Mµu);yza8OMKD;*)cOa@C=sig !ig ~1/P6i$o#*hd\8BX#Q,Sk6 0P{*Ɏw胞>tUrD *(ρWPԠ\_,_JBiSӡ9sX- txꡪshh{f-D 9VjZ0'å!J'EՄU N@*_dix.d*Z}7˜cK<~D2c5EЮw=1M[~~6FR亨"awr=me9>}A'gء+rxʹA*%FwR:%[`GY&"03ȱ.:Q/,pb3 DQ(F{p9A5"R0B"νuX.Mb8 80jlH.U` Md>Hl6/Oq\5"Ia%T35a|\URH|ό''iK rQ.֔i 5mj<ܗ GA6hgq-/r?Z @clg͛.m]YDK@XS8 ?if&-alE lݯVMSWQ"@R5]%A1(.%kNI2zoȆiU"dzMj60H*2Wrnۑ\6[z3RlHV7o'"|OXʾD`& hmn}[ n\z ӴgLo/FȾI&6tZ`.D_'o8Q4I|OCTJ :(B2IENDB`il32 eflkpwxzzfFĥqG;:5yl!|Y>*eipts{{}{UQԴR;74nqwϺiituuz~~xAbռU:71\}uiousw~s1jһ\:1-Fcppuwsw}Z3o̰gC,(2NXQ"ovvxsx_4mè~U*(-?AyLosu{zvi5oY*));4oA'mvsyxqV4nM($%148'qtuyxg@-ý]>$ &`P9(Fo}rs{X>*ɔPU)@%991.hIrumtP5'~`bF3f-F3$/B)rsr}J0 o]`AtG~`"(!5/Iuu}pO%"[h}YLqV@W)Aᩞt}qC1/FbWq\BT~7IG=/)d-ȫ*24:@>7:?=?@L-*13>C_bi?`6z,057<:9>?@IJG?>dI455C0%+Rl?d-.46;@=C?FOGID>7?E@AR4$8T\ =k3ȵ.8;=A@EIJNGII?=I^QUa;0?]R}82ׅ95>=CCFGOJGSH?@Cj]ijED;kC!5Ny98B?ACHLOOLNHEBDjmxqMOE|7)Mh.ijonqw{}W,WumD-'(!u~~fRSS&lntwvB2n}U3('"gkSnoyvw{/@}`6(&"Szotӹsw{u}q!G}^;(# =dl|vX%N{yZD- ,ObO||S*P|vbT9 &ALpMW*Qmf@" #??kAyz~lA*O}s\9" 4H1~~}a,'Wv`dC.!&/N{zxN+%Wz}_6@&. ?#iO~wJ%$V}jyGF7-CjVH,|E"!RsFDv.L:[?#~NQuC BJT>x3gPl?(s+ҁԪx9(*;PIX@^d/FŸ_k k;57Sp{hNuc4C巤RM>`m:6<^fj~_lj<^vAK}l2#$>z{L_Z*+jGJN xl84~u|I]P! h|hX ~|mr8-h|q}ESG!bY\dM+IbFo^Q]q;&!g{f}#J?&(;2;Q& 70_~{K?@^B3'\s]H+CB*"$';<,q.k"isbBI;OD6,"KgqP;3@)'+.?@+7#L4Q (kjK:M;H=4/(A]lg281"#)6'H(B'-]3"MQAPoX-(&)!&*Bg Qg.1-08:94[3740E8,,)."%CS9v7{/326;9>66747640372/6%,FH7A-668<;>@:748732:E:w7488<=?676;7346MCGD142W5xAbl85=;;7:8667LKNJ8<:d*\[/HLMMTbe8(?KJA4#N[TQ@6:oIIKMKU\a\%2TNNH:%CYZV>0=TIKOGJO]^S!9QLJJ<(5NXdBMoPTNLOY]`C$;LFHD;(*50#&'7#VXSSQafH(&/JGLA7* "7ߢZVUVM_`9 %0DAFF;*0ήETYLMQ^d-"",E?@?*%+[GX[PTY^_/ "-B6<@'(&" d>A&TbRV`WU*-9% -!#/Z ˝KY]\^]ZB"&'-#1+$6&P"vxY__[V[E"-95.! *ɸϪخ [a[W[ND!$.OjXEP,/M@.8͉rKbYbVTWNJ#%2NcG9>;-)L~\{EXSTVLYJE&IL76!+%&^˫:M\ WJVS[DD"6>68 *  QmIYg NTjOXGG (:1:&pP4IgL&P9^IXc93?H(9(8' 1?S &!@DNO&'.5$%5($!'' "-<.u.a &>E.*,)2&" 00(# $ #(**0+8"L3]*9<$&'&0&"#,..$0!:"A&0U8"-)#$('!" ".''6$!)$00toR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs%%IR$ IDATX %k]wu9}=3~%xbS'n "T!A U ?TP(j3ZF&H'1=gCBNii4s[ƃJՊ*9N4[S}ᄧK> Eڢ\;6(eJ@XzQ,Oel$]+ HeĘ25us{\ȟ'/-{J^A[AɎvT`b*t($oo5jq8,՞Cr~Xw[ +{meqRP)E0hss Lg.[1qhlDH@oY\Ӄ{d+@|oV1$^&LD]S(PPQ`Ô}Os>jsH01 0jNXY KJMAdM۩"׼@Љrt,8}MCZC&sˎ|(('!iMDBxʇ3OH]l0RƐ+֗w"uCc:\4!6:k3S"j^8Js㫿T39ms-Qdӿ~r,Md3ОN!dSk*J5}KY4U"Yabt~H;i'1>%,_[XxXb̸Mp5琰l|,"+F^f)*ӮV\mm' G\zAzO{&m4FLQ͂y _|J9KϪ Pߩ{N6{Ig(uF[ ]yk'Ծ*2:Hu`Igz/Ek D6OayzcqȻO2GHv ] pK@\׻^Wk%wF;Cfg1f'NuhoMO>|ڒ顣ڳȽ#?eR'a`G fC*W'8aPA"n*@-ƓSH;"F9"(\ߩ7^}MGO{vipM эs (擐a7)q=A!Jqnzm.gi§c/ii])g 0cLpBb %,"|&iy?hbk[ CkpõA"6'ζ8MPhV,|2+"/)1ginJZM5xHz{$l#/7/dL >}k^6l:(lF*]p8&~A rҶ*iY7##Pԓ}:S[@juN VD)Bͮm86ϴ|cܛjnNjވ5k>A+CKo)gB}wzgo} EIENDB`is32enu}jiה>2Y08B7A<>*9O">E.3<;EGNz-7)B.0^I2!.+2&PC24?1./ci0"-A7U-08433;U()7/Vd06;>7641;9"?"uJ6:NO='hWOXK9E;% XZR`C6,)#$loN\^^/*0--*/xδw_WU2(eK>6%KՉ&QST0/A*% 1j82RYE36)#*/S*%tH1(.1#%!$%0?I3 '( ,%($+&S?% 36!"/.X! !&.")Bmr" && #%$%,\[y"&&*%#&&($&9qORs8mkic14aPNG  IHDRx$iCCPICC Profile8UoT>oR? XGůUS[IJ*$:7鶪O{7@Hkk?<kktq݋m6nƶد-mR;`zv x#=\% oYRڱ#&?>ҹЪn_;j;$}*}+(}'}/LtY"$].9⦅%{_a݊]hk5'SN{<_ t jM{-4%TńtY۟R6#v\喊x:'HO3^&0::m,L%3:qVE t]~Iv6Wٯ) |ʸ2]G4(6w‹$"AEv m[D;Vh[}چN|3HS:KtxU'D;77;_"e?Yqxl+ pHYs%%IR$@IDATxD,Ir^=2#NB $A!zAog_"(pVrs_"S|QEʌp7=XR:ҭRURur<JK彪)aW^94Ц*C)4m~rnJ+^zñy@ceR=W~(G>W}ztѮ[zq)= v^)_a4zC]9@߁1`K8=׶[<4]mൢM1 .5cr} w]K/+MAYwx8M=mA\96Yn]ex~^;]M>w@B0XvͱH&x!<;Zv` FXΔB+vnٰ{)Ԡ OFò^3NW1~- 0nVr8P޽GrQ>;k=o<<>˓>| yqr-/NʖU|)SB 2(kXX}\(. âLOЬeWQ~){qW ǃ`s>)P=CoSu:UG>W7ȕwc {e;n&ow;\w+h/l#`螽!M ^=m9S=LwK3쑡#ͶYƳ4^8eNu:j}yOatCWc/ޔtXCdx|\eG>f Xzwz[V]ض@U̱?g:]sr=V}t.l ; n>g,I͘J r J+w:<E{ :e_ 4[7j]?)>=O3zv<@;8KYmEʻڣ~7o9ך_h?__U|˯~U]VNB-64FS2V._˫Wߖ?,??2e]е#W~>2DZɣL+/bUk3gSy09UZCj4`%+;eCmc3q `-T j?L"ةh*HxEH)abR2[`9a'֣Om@GsG"Nc9;SK$"K 9tab~g@t`D !< AYUg:>T Л8:btKcet|:n5B~5R0tv=@@Q8DuɾYapEApMG` SmH(_Yf8DycY'TFaaCU>g9Q݉b) ZH[6e %<r+?r+# lY5e'rr:elKّ7_).?hz:"/kWc6vcyv}C#NeW*htQq2Ml)U8r]p[xXWҁG&ͧkpAc6t|H͖G"gN]5R>Q?pET4nWkC8BacT~:G:C]Gd.sw8k!=@K#>;XGjTe`rtȅM48;"C~_AWe؛T:a)o{F R5NzYnT/k4AB'ucC5nbdPiBu*`WӪCa AͳPH}oGg:ӟ^@w6@W'ęy**.@<Гqpʷ@?0_m"yExxOPخuTpzkQfv.ezap> xM/˫_Wߔߗei\ѷ\ٍz8 rG-;iۅw1!WC@)p N`ih #B,l`ժZ= `0(V\1ҊQP@28j 5ǾAa7ʞ(:zG Jۇ9W5X(jzB0^TI,|zangn`&\uoE"N`9A.[\41WeHj @N; BAT{1? x%%H*&#M aBp ]Tn}< 47-޵Qr>/5Ѩ +p𤣥(G" zE@wD !v8qNap^h dV*lxv ό&=4QC>MbGKYe8Ř<`D5771Fcf SN2V[=RQ^LK5؋MwD8=x&+cׅux2!VM'3 |(dpcy>d"ߩ{gM9r}//厶Cx-/^iϟ?%z0l :Ͽ( cc8[3mOm0J_Q*RZ43*"4UEShLht0[#b#WE~?c) 6r"+z@wmH{b gje~I2 U:͘q 8h/YQVujV}`;hK8_C6 M=ۃ_PyVghc [<#8Pϱg၌O~՟ RlЦ]cg\SUPF&nYF}Ƒqh6Iʬ$Oq:sM98:"Fgl{LEw{s3 oEE3Y7xgb;CD!?]L/ʛo~I_=  eVoLO@D@+*t\F=ݢ DC0R={' ӫxN]/JlŎ9YD0U)i h\n7JaL2hM{+Ƥg2iXMQ\!lPG2`"RABaOfVH1PXd4b@$ +i!#b\iap"R94I'ŦBы.V7e0Ar)T@T]LexZ:N2Q6qIk!|ԡ zxc (4 ?3JWk: ,],0fzKcRI ;`uTha}18q8t55@A7ɔz6K-`]8*/6Gv RgF8 kS!`ޯ^ lM,41<[gNyRpjTh2Yp9N%t;\T(OsPGc84QeޢeeDCa"'ad9 p4\hVR j@]YAWK-UGXgYtbU~Jx`T|38q22Ag>kU!Kzs 'Kf8k2m:{S1N@H~Aƥ;eJԀ]5ӣ><np,a|iTK'I6;Su]C?np̕o%]*=f$]*dtt{l;wk'C#'eFH9め>؎v,6mӜv8f7xrɩ<"|*2ƻG j#՝ ۡ[QHHp!ڨKvqtvܽ*o^.˯#AkzNTJh(2wheVnIGLQ~V%cL':&ז50`Cjz,udZG$QAЃk x0)^D1'L;̥T pmG4O]н8A$ק3 2" m/!84qC;"PA") `hJW;w؋Tss3Ľ"A:MG ;=IGWixƒ0]u'#nS=ƥ 3/ Ę0ĠAGd{'c0qVP$8Y^$9bEd&`v]䉧q㐸$"!=:~w@_, mD0uT/hEcكl;etBp2_!QQ.D\ Q\LlBl<#+u1{Pon1 |>q)F5^=5 2!߁ϓ9󀈰|78H-sб.𐐬5DG-küZ\6凟>Ri,q.POU.P5 :"5Ore\/H/ezXJ k{2J-(IJ%tUP+s~ p.8%i(Gx]qeǥ_gv>0twe`&&˄"(Jg%4ɵrX GxLkMe$ѡ7']%FSptCeSwti YQ8~}k_}!V.3ުsCz}O6OrsƄyz#h ck\uR#/!BYaNՅ" |^Ηqu]>ҹQ#,U'Z5mI/J~.-i>β`i`LGt<{@2 !WYdrQjf:8:+bS6Ht[]&t!A|q|0/w3^}5kW7t+:N/Ykz1`|;cFI~C4*cjjrά)zF8" zEF(2`1 r$=de~# |ă1DgG/7 ړ׋)P3amHرM0⤈ 4mJaЯԨ 1bANDeK#xm*όVyٕ0DIA2.BcTi3cgt!`&ߎ9gIxSy;R_W5vQ)͂ OH-l2(05@ne-JCFgzWx Cc:f ѧީBC%=jҾ"%N̈=X(4p4knbPB3 X^6'5AX;b\WT#/R#肀F x0(~P8hk+8W|+_$R˚bGtdyA#a jtZO4`A|;[ihu@c$1Eޯ˫ ɮg3pՍ2Ogq`dߐBӤgΌؖBTѪh#8#:B=Ai|%7YN\amQ8Ѫ:+uqQ$쌜Z xɺ$3٥Y`5%._NOyO_c>`V D2M]&nMti>gA>qVi8RNlh}?p Lf ^ahN{2Lx.c}|Hz񌎥s-:_L)_QTZhLDJvEo 8Q;-ps@`:!N8:e~JuىFGh8 w_8* l 4 mA:"a8$ŨdҡCC+TWZc`*xvZ7֘V:O"ٌAz?<ϲh}Kֶ.ߔ՟My2%ԍdѺ wRg&[K̔C|K2!?qz֞TGnZ !k<^Ħ09f090o5({#<@DA`Q$Z'b2 ӿ 1H[RKJϿu@2y' e'#(&/Dk x)[8` &Ѐx%T=8o`6ŭḣKM{ 4YVayhC~%V`"pF,x]^aң}cTLiRWR+ X)(3X/sV+/Iaxj!%8a)CcmdZlȌŇ0ak>?:m*;*| Q%x}H=vM9/2KBkhK*u__2j#땋" Jny$f]jaG|:"ۖo^G ڒT#d, vC*$Lv lճD N21f0Aٿ9h/fDƁvs>KpȳV=@'MĢtt ͝D39^e8 ǚ3J-0HHSpi"5l<sgi&10c#+ ӣAd974}I/ B6!S͂eߖïJ%‹r۲tF ,#5"J6_(C"]5->Ғ:–5{ѸAE>bxj|VHU:0Eʘzg21ƒ1hdAx,]v}f.B߱T DBN5o/a#ǝՓb `|%i1:;WKD?#AIi$-P8zkFg ;qp)\3W.o4adJK&I,f1+Ʊq""xiPo>@tXD*MT:Kp*w퓢xT xq=:JHff͢׆b;3 LVQ],gJ(Eʠr 嫐>IU>W)t<(CSDlj33Pi !$Ch}BjO+4+tqɵ)k3JhʨrD "7D0nd{kIGapӻ b۠W2.W2ṵCG?%4DNOěQEOֈQ˒pݲa3em  pR.O ՌkF8H IH*AYXs}]@hqGK_mVe ]1B.BDk#m+ )CdK".(稜G^ŇmMQ 8׷OEN=|^WD˻܎5Su :\hh2;.`͕2NB/Q*Kf$Iמ781k1\lD!X+a:97u8Ѐa/uG* Tka543i4EM%@dেD%H+]BbqհlC= L0`-c* CEaJƚD]ZK(BY8X˼ud*& %<}ѯ5WkP"m fw2b)s C0H d{S6P[`i5 l3P|@f$:zTpda=m޳e&5 U Hn\cr_#;O?eC@piAd<#`.q`tlEEhx](mۄtrz>0jqC3l{* ($(# C޴2} 2 2%co7: 2@i2,h'9F'>ϛ%ghҚYncc`I榃"IB`cv c0RJyt<Vܗݢ92C= |RT/,ЁO>hs 7fޓ!8N# aled*<.C6qU[ f[LLXwaI/}>s)k?Q7c]4HW^DZP>1DCL~0$`n( /) q3<,3`=!+jqdJ`@>2LȂ#'Rf*jS*[y04ulxroA o['*d"J;j QpHL܍ҝH䢆aLVS9&l d]GOk4^=qGW0͝@3ۣm)jqY0!fhGgDg# ]g3fp_,u?>āCOZhhKdz3 4fU4h[xZtkw̴ 3\qgsQr RE 88Z{Ϡ،q1f̵.tӑi1^B4( "[Ra+F3J0EP!S<J>@tGP؛moa˔^{q3ģޫۼ>aLP|H_B`_OhѳJbR ׀D&(́n&m WQ[#Tи}@HJv+e dNSY%'sU&f&VA+ ]3# Ff#Ly3J=3+mx2vr`NH,4(Gt}I12Y4lD!Pm>^#v<Gvҳ++l _fyyI[[R:"14 0l `%ۮ:W_<#;zG.p䒈{O=)#!؎eۏ7Y*xYQo2&g5C*8wd 9Hez3Ά{ATC ƪ8c#uc8'.p.u:(w.Yp5q`73WpƝFGA)p452MmLYUJ[J 2% Աp\yǣw4F4ꠤ bnFYSHc &"bvkU&1r0 ۱jlVƱ#GPq+;3"\YkHNjWp+ltz !̓bD`6deIQ^WL O5kpI7o:;tFId1F,sgAd,+ѽ[&q\ddo氂>P> .&4.[q> фl_ơLijzzYKCEHW3 ?>J׽Ɋc;fHVCedG1rkCԻp>@2̋PT* +4Wd:_UoYx]̇cdAC34A<<^#s*V(;23a>: ̵sa0"Ƕ/)p%VeFÇ욈{~&K, .UxcܙVys ̴>Φ'J2緯.X(_yI>d=NL؁0H$X]*Ɨ_Sah dC zn50\RO1'8&=0SaӔZ~RpcL Ux}Qv(9F)c:gQș2H_qxkTxJi4cy"ѵ $g>')cO!/|yuq,tV݋1OW8v=חN=EVY޺p69 ~yx s˸f >D2A9yyE''{OnXϸV\d+GNO YHl? dJMTg>K85A$-@=':E:t׶HdTLh*8Ss#;pzr ԞHHn'J&'%'1e)D>? Kp≯`0 ]gxnbSxִ5\ԺvKW}W A0Ca'% 2'&A{+9L %qUF ~ڏM <̬0³ ё-`3"uޕ)POq1].{őX؍x$bqف[RԥtW!_Yp'A9Izdid[0hUq¡ThvDCiI}ݠjo͂>p0f$QItG?؏QD+˦,Q!ch1s79jsgu'%E-Awoge,.e2]ӡ0l^vH/bv7Lc~AFYdxVCH/Dj79B3rUDZ5j|N~щѽ/78uk yyRX,4h 2Es1RoӸ@%,ۇLj7}'Qi 2FQj̍gj F4pȜ\s>c@<+ùq#L2[ʡO&Խ|ѿeÕ)2_q2OM/Kw] ťͰ]>uu;Wdp 5#w%(M9^|E|!̕n6edeŜYrmsY˃8㊇(8u0 dF}ֳS2S)39 o$$8%Sg1=Φt' :7v2kNLINAs19J= SBH+ Q~Ѣ\w $MOlvc#SD  =aA ~ftE;axMej psqKȮh¸"dj؁j ѝy)<nA*eMa*w[|6ש0ɟ6Z؁uqEېoshN6'=(ӽP8kK FH[l\ӗ)Ep{]pf*vلB8k "%.8b>M\"8}uf rd_2SzV})o߾ȒA#+%_~񲜍ND;CJo|;Bt(]g_ p,83|:{"M9(5FA_b!pļ?}d)@z}= l;(ܚ\ʂ'Q 4f{\(EOyӒ#}U7eIzp w],2^X8E 9㙊AᏴ!Àp&)Jt<[9Ք:=ރAInÍb3| i` 'TtI|+萀\FfH@GN>oZ~- ?ni0w` u%kH1/]v6hNPɷMwl9d y+:_@m<ԲT-|Śp8kʴ6Od.BfsQu*ͽ1'EznN ۔}7AAZ-Z%̳VRϯY\N<3s>SWѯsiј޿ɦPfmvHFg`,1W B5=t 5 ]cxDYplqRo d|Y{ՌGI(D_ܑqu]ڴQwe RVS1*$ȠM'>.ɲ0p/N\a:?! j,=ehđN>#x8--W}\ll6Qo36oOeQNȹ<ϯ\CN{=9kAQwm _p{Δ?pb]ERRd0<^u`8ݘxHhG;~3i~VKkL҅vƳ1e.ϩXiC_<ìP\zQ)FƊ2ikӡ3r Wpb}hh'?h:?{?~/w5]r}x0.7:8%GdX#,@IDATdEYA.YQ{q.hG Y{Qt \Nu7HK$:>mfDgGPbP|mA"ʈb V~'W)`̐{9[{)c@D& elyTB`m+@"VbúAGi`#kuPCsR)F:xGy5V͏S6T?_s=#k![=/bk]0N;S”;xTwdn+Jw{x=NHS'= ]@ġ+#;)' 9[6^goQV(J ĽKy<ǡKXaW[t) !' c0kUT*5iU&}iCY"B A=4-KU> zs t$oV=Qݥ!T ;e hׁ֝v֡hݢFmK÷qXƒ։4uD\LÛI`Pӏj^剎 Lxrs2>W֊ؐ-64K=EaDq :O#gs\3<>`J'C0AѣS2*cJ0F嚝ɋj@=lwuX]Fqdl-fPmp@g%4%~tZݹ+} 8M`>Ʈ0_z)P+=o~WN8ej"Y?U3h%Q $x`F"XÔ"%v[tJ/\j_b Q~TE q"653C\>kihO4h+ [6!d0=oџMQrFPH<Oȭ5Fqh`)/{d G&Y~{`O1Xe( >>jA-7¬*q1ɚ@zhB'ET{EKQu.`5X0\j[BX!q{ĉ uF *YAUuI;6Jj%a W$YMPóŸCmP'0 7T'W!c l#tVۉщ{[j :%uߧ.܊bSp&uW9>C!=޿<33`伬fO2\QvٵpqzZ>0\LTm Di݋AdVT5>v=})(.X/[/V5Q(9Hg~q -8S%TtZu|Urrd 14?=tz3.x!>i_7I \4{tie; OurUEYQU2xdh C>xǃEJw'In',MOGTM`1d̊2t\=dbz[P`$t |bFxй ㏁-CFUEx;5Տ-J\jFd87txm(w &c2|aओ3v ̝C ,t~-=~bZ['sI17"0J+ akycui(7lDWS/08M_tX^fA B Ƈ7@LםhzxW,;-vU~pR ͩnf.h '<|#Ar.hu2F2PGUN"K3xD<TZةd/L =KPR׳ `*g'*=~7#.4 ᤎѫ/ɺ: ?wXJUB#LY=3Y`X e5B YTtCczIJ$!셾C\eWhBzU ,qEڻ8L|DwLODxCk{@G7KS8 RFC;DN1!K oȩ\U =$ *t5f>4, шzڞrXXR0XW o"T87DPQXrz %2>ݷ!cfZȚggFVU! n_; !9u'azD`:.k5{F֜-=Y#}OQ_rxp[k|@^:/w] t`.<*e?uFg/C(:GgD#zDN/x#>ń7lC1v3 3-[', X5Sv([rp,Y%ŅȋS?͜shq:*qZǐ~t:5%$ r,WK LLznQS */i%KAċ# *;liLoL@>86/t􇣯>tq~9$tw iZY SӷCzYYĪk0|T3H_mfg=E#\$4gg( "i6M-| <J~r q |RSD g~, X-].rFo m9 )S)>/0_O""24'@>KB q& TG`6E#mZ'w\:+o_77%ZôUy^L@aw!`w*=vTaPaLum˂ghr< u۟D8Ue4+t}7|8؄KD{Ԥs<:=VCRcz;ۋ}g( <ڛsnS?Y_X VXЌ†v (HX&~ K%@5{Rܞ' eQp)]e%MT'*VSn4"ׄK:"?;φhL;6x3%%yѪ?S-f=.p{Dwlc."dr>R\gD8DA&kdܭxEt*30WF  A;Ҕ=hȦqІd~G?Y/(dъk.##63c?qYCK۷/P(tfd|x42PP>s[ND`PڂGDv|m&H;u߼[#BGswqСx8>L7aT*:Y0 \G/}c:Ì-5QԸ3#ϹZϑ6Wp/[9[c`e>4!pVuYAnX cqN:om ͱIөۀW [ jyFVǨ!n-~`[qD.l}Ǭp QD;"*_Y^WSظ5EgN"aGbjJ]Z0á2#@fJ5mXa=>_RoX4Agy2S]#qO bw68wn)?ߗ/GtyL iMr5ǾiښqdA%u_ 4;:3V&UVG@ zk+?%ƴJ'[º2) j1\.sϵƴ7c\_є"Z"XE-&ZV{` |jQz0AwFFY@521bx:T|F.˒>lI. d2AhY ,TBVv42$5xnd@:( _#>,E`-rE4xB@R<>tvMhe^Y?#Fnl+_''8 A*8#;aF4]9ш&1kZ#iUYL@mW?.piN[`8a4 :ň]? }6pܜg[_^QP;O  ag.1QOߗf7 C7C, /E]#7w9okY{58g*D.§ YD2yQGK,aޭ00%K7`+⤜٩ĜǸIdP_Oĭ>s(E 14шQ5l2_ϵ5(K@\xP!HG F0c䤡UT!(a~Huv!$O)v`R F"µ0L:A YԦ~Hf)øַT 3I塇7reVҋ.d=A3 qڜ!Vϧ3SM%(?@Ox! _`E0:hzVxahQ. \eLGW=.Qj^…;~D k2 q*C`:sͰH8{j`Q/#2_.*EQѸdyy0|Ug.{GU @Y9.pfY,CR\T* ۊbB$1#/(luӺG=9h?§- Ζ:@'?RV.5ѢGx#[VdWVu8Pg4}PYNK QRp@Ҕ)t\ L`@c-V25s r˜)*tc}Qv_`y3>rIPA8z@}pL!0 W2ţ!/}tR:Z@dI]%6pW 4-.V)ϩ{AY31B'XęGu `ap!7\J֙ɈrEڝ-yw";<7W,>z_ 0 »~-9":[dxڎA7N-+& ^\q r࠱C`}8-˳Ҽ6_;#;/ڠ:Gtv| azd/meڤ-5Ew8 h\BfC Ja%1s@JHhF\!2bޢi*]#JԎS ; jW\+ Fws+8Q=5 ׂ-1aD= J&۩p0RgUL*!5f⨤g=+0JQ&EF$LͤxNbfe? lBpkw>Tv]w݄f4Vxj 2e,S֗(#ѵFNzFqn+ŝ o]ZiHaGegYy0jFPݿ;Qc?tIsqs΄P6+7ps+n\ 8Khsa<Np|*l{h/2U@"-l]Qs T;&2W2ǙZGp˶< 0MܴA𗼊tcqG[͟!: 8'q/77^$+&:_|_H(n:N,"X҂Cam T0X_ڰZMQP;33w!8~L C+ )~UZw-J3A?P<`D}*FUR:G+J$SWft0z`=SZZcǼDl0P1nIPo Uo02aJgVI;.i JӔapEf~2|/W=byz53tНn[\qXbºl-π3!~êZV62e NTݧ>70e!8t{! YE_̒Y ΏэP'\t؟u9DsbŹNT l vhh5.ڷ~(8Jwyf8qhٱfrieL,5ҏ0~9ɒ,IqWiÃR2:g8dP5pGѩˇNC< X| =\x:br :Ⱦ3Yi~EY^p?2{̯l u>?gPRĊe6s?g )EmIdҊ0rJU+a1KNbL ;an?z1OX"riZt_"^1p_fڀ4x߁tE+_UhԬ1QuSflL*}QXΙqɟV@U⮫O7M-#55*=1Qx{0'~;/8H}ݵmނnCH",gЪ&o/Ow4`s N3GJb@1'T'~' ~|FwJ1ኈM!&jHOE3cvp4p9@}#V!j*ܷ)O$,ҷn0n#R?VT9uHhk$Y!4MDp< DU^PPD޳.!J-ߒg}=s0n 1rM߿.1xuKr c8JNq ~r* Ϸ2Wsp:s`SK1<#@-;8Dk?\JOe0?2<)Q"SwdRjQ862sf͑K4vKsf ba,8+ʎ !ڈkf=KAT6:ʲ p~AgHGYB<ÆDj4ky'lY/S(}[|l#Mj8f2{/r 0L27X5gwF";cܲ{fG8{_Y dd`jd2Kޝ[U}c ņCQ{<-~V>3`Ϙt'|z/ g{bǏۗǬWlrV,s΀A)c+\LT#8 -\5d0Jw@p85Qzw-b%^4ʓ: J/MyֳS u$42P /b: x }4(#5>AWDU0LI4BM CGw& Z*ԃ (^\/5?v#(œ@s([Oq3;Evy~{Q/hsf k Ƶс#$PRF&s(PfUe%.- T99 Ddt( F#aʞ/൩ wç:2A&oBUhj@%`t_3gE=e*v7| g >ËB<8PYޑG&Xn:}5Wey>.,=P3^7?םApDMuWUz$/B8;,gJ.Rp=p+`o lxڝW?rI[,HT  jxby=˨Te]&z 'xy d@tCw/.QðFDCfHPps 2 Mko=/zPcԴQL"Iyg~NU=ptj 1G9]|~d9qS[)o/ .q>bv Aa~o+ɞ׵Ơy.Sun9\fDQ)v#ﻜJ4O:r!:mԨ-(4p9\Z΅_̀}ʖ>Y0&5$mS`:Z5.@0b)fVDIг_:":Ssu[h7$ǸS`7s4Z3Io+|@5)d4ڪ>i㾗?[KUz4&dYEpG%w>Jҗ*ڮeMYSN0~GEX2,c DwP^(wpPy n\B:EQ.X,9^1b\B=)&*Q8ʤRLVu6vcgrorl)fB $eǒ%AQ\@ OgN +Bdb/>-7z_>ք;[+1dߔၹ4`uƂm p6=ɘ31" @S .ѢsT歴0[%z-8w_5P t  _ô_n9"j.$bxEnpÑyЊR zGx _Yyuvry=:]]5:GE]Õ*0$|4)>v2OD>D_B5g`<0_y%Zs+u@ WikBNH7)u P 92Q^bL1'|?syTaFim>ȴ`0 7w b7Fu0wycMoH(.3S~)hbWKP3ƸwQ`a/r?y&{}:~#|#_)#_ _+A}eD-w.3vfO}pd#VROϋ%-QaB0Ր\!&9M~/{Y'Z=̩h@ ߯Uhgt$dP{ЦSlGDт: 1۸}{%n{}S< p}+kEa+?tsms6Amsεvt,V/-0=@3)bChڏNh ĦDS !P ;_Nꗈ#"q0d-GC|@\ݏ!n `gYfj Xc5oBU"_oJ b&qb!\P!C6Zq`^'4)_cȫ Kc! W@M^H_LSLIƦE$4 **jQ Ksah` wB^Z[#W1yXAc;u=sU]>gi"}U/_E7 }Eymp|Io 5148Ob1"lKy. ?7OZú9n'',(YOt/e*~#y﫶9m?:E?Rן3l6_wSxI遣Ì?V VP: W{`} R<ۮ}'y){kN2 >^VbѢTPрN|5{E(2 <mna=Е0`8aA{E@x{×L,@_`u[ "y[Bh}Ed"|#jOш%zT#_fL,n)Yk0z׼ך!/v~G (_6+lY8к ĝhIkQɃ@1pF5'i(^3{(`2>PLald"y)@.k cCf?eh sm%_4Ld 'Sg/=N)I1%|4Ƃdғ98HB>`F}Eno>~cOTq@ !r~J [=Ə 3р.2}gx_ۭc'\ݶyqu4 KۃEp)W⽵e {0Zbh\ӹI^wg,)3͖2(֢gMҺ:nM\7G霝e^6 `u/( AOh slD 魣Oν umCRz,5`k]}0dkUɊTMOWz6 dcJѲ0KP%8gף\ #lC-޵Ϸ<*_nb;'jg-iķ&C+1uޥ|n`F (DRw0P0]&bjpN{X,j(G<;Ì‘փ,<H@\|꾦KPL~yyZXxp- VcQStAx<骢ͼVArQF9ִ13XSTXc$N=9ӤPBa΄cphR//h4EQ;)G&h2Py6b<'4yTڎL8֡ :_~i$Kw/* DWo c}Z}ݑQ!ʃ U޲+hoCġydN蠺[5 ,-Ӌ Fsn^} EOs;B1FEǝ18\#޶Ǐ!,l l]L!"xڒ^aNpzeRRR4ܜ'Jy#JOC!b@p,RCEO]sB0O^_E-it#:V4N2sh-dQrE?-:YSіl$'GŻ䕨etXLsŒ1" >7=:rdRd B@&9֗3tKݖdոI1؃'(2Aq,//sD}r6C{V4-AxAN-P@+.;F1Ke~~K.?#a(tZ))(1FTFKmu Ʉ#bOg,+8*&TU/`U<_yw Ђ}b#Y#DG,JEd=yZmL0Vn@q-̄KKB9v!E A)J3Fan;.6EM) ߥ&"`u-u"01f H]ģx< Lg)mٶgkX~R $:6[t1!Ӂf5U_0qSgn=)\ٸ϶s-މ62t$|@UDe_=Q3gfNqg7i̹M̈́5"{)oZ^e{oem7Juer%ssbdCW6Oe|TKק_^9k"^3p.'x@NU@C1ZȐ0wMLp0TWxHbg b.#^CR;aףPh9GP9Z Zh2,l=xџ~$D}E:C$ 5c1oQ_K,I!֘Cg%\0Eꍢ-/^|y"&&u"[I ֒-FA`lmC1v#utNIs+ԃ[lg1ȋ5اM 1l3`l-\0>U+O&.`Jփ7dSΥR&u sj64#8V=6԰yϒaN1atu":\79oi! ww(7H=h: m3t/8\}\Wm |k 9.ve|sʄϙMФCx7!/nʺYt)i"ߞ̻1cF,|!dxc$'(#0@Au:A9d M@ -c\ TcSYA*0utU&/$-sctw!p1 ẓ;޳)KO-s|2Y ܿ@zpo'Z'`}5jZU #J.0(ҰUȌ)aeJBvQNNRHhc;ןNy"HUW jYA Or ߃` W]?U3r}7Yy5ukOaA:rTBw@),L#_w3/G⧥o6W`9ZզWK]|po!H?Q5Ȃc\IZ}ۼ}}[i]ES+sFNJ\d%sAv hcQQ_碢Ga9!-X@礧Kl!+/ӷpa ~iUF(Ƽd??NCSf aŒ 5x+X&DsYBV^lnkښeqzdhM,9SkIC"~鋌qʱR敚R۸ߖ}0H<)0IGcl{SXXOƻ.K3OI`Kqu^GP F(|:Tr4@IDATE2}? Hv4*#͘RWwk3ϺbNK7\l`:ytQR`c>Ia ̖OwBWu8/ޮjCwB ZM M!3Ki2fHJ3mĊO< `+L#7iBxE Z)άhpgRN[c͇o[8Ŀa ~MLaK[e,\&gS#Lx9 uѬͷMD̬Y7B SDPSvh[ƝBC\P ϢBA "䄄"p_y7 ű OkJl *&bՍ5(<0f/13iIѧiyg[ITwS(&ds?n4()&k!b*\O\&]#AgXڼ ?/ۀQ>::\+"W2*D|F1 ]wC;'U'yuZu軺Rn'W:ɓ9Av uV/cyB4j jh9 iϣH]f>A. ~c bI"ʈ^Ego+WQ?xq£9yBVV7u®uu O51-PBMzHP0Fd3xK848yEGg9e&vt !Ia,-uQxO>և|<٣RN#)}B ^^Oэ3/#P)1yS3A ~0{I#u=ךyvB elF9e at E&``X5'l7J W^>x 2㲂AEs-3#!1lY|KqP3/Ĭ]go=I+>2om-F_62ϒ/co@WN7䓓W8uhzL\'S@Z4wr2N)X.z:9KH3 Xz/ zcדx-qC餭_UOEwJ[׶trYP1_C>S?΋4w9@MS!vuyq s P\(tk 9BRPE@0,^rGYH1^DAmHVE7ݏc [YSV!!O+!>˚1^=(&u8yBcp] $Kv7RL,y@2fH!%ԃZk2/ydSJ7!_d}bpslDфx֋l[SL@%/`H脽iL{MN7⻛*a((`"Ÿ"#[E|HQPmy(?Mla<+a1=F56 Si1ucT>T.긯Xji"ۿ钧NgݩUZD/뙽ק[Eht?<~''B<.j4aMsaGjhc|E)ºju.zQ-EI~=~n L~^4 {x8X3ϝgEBN;΅VjW.w\4 RxnoqTG(th;J-d(@$_8qr *Fxy߲ ZEp\X~Sts~235B do&I>MhѦ=YcX|M/Gݴv|gE `Rrv2v^&zoHs0w݉gwpS *BEVRƋgUSBHz'CMƑsCԕ΀#2G`ԩxssIK@iSTrzQr 0$EiK^i`4vf XyDnk$g / 2@)1d,I+]_G55.YDօ`pl,>'CDI0.mfiícE)`7ɶ3y(*wٓ ;&z_3=okxG٤)9Ul.~tZE( BIe%GGFy E .@# ajL /H.m[a,Ü3svL|pxJ~|BА o#-5vǾk0V# i ZC]kL %#{gD7@@[~h+`D{G|!3l7L RRotYh3ff!vۑ !v%5x"dsNp(_tΞ :F\.Md_;!tA̼.{ZKHU?VJJbn%cFSPWK(jh) 7Mt>D|5 ̋%< {2!W8hRQ`a1 k:"[8$Hѡ|7@1bE<~U?X'hjcuNGy]q\u{5]&tzROm 7)r yYB׳T.iFDxb뗯Vo^eG4FC;sQv'js|tѭn^)xRpɳ'ORƕ+4qkZ?y\(Փx Ԇ@*F{v]3x= O&k ߽hIS^cA昡h;뿌F&?Bƚ% ) fCs3vXьzٹ/s(6EDQ=D[C OHvaIpz'9]-r/,Ѝ9a%$(ksG_RRluy{S:#[ܫ>{ұ8Ҙ -pQRK9ɑxqJ_v. _Rz!A/"rSԘP E.J8QxyNb8$^9ATӾ 2>fq{)50~a5Dj%SN#$mZwssx惇gO::v^uIɱ\x(h1<./y~qꯞo^zS#Q"i]p7Uί'`;/?wp!y7|ډ_kB~Wg*A-OuEmv1@s`579 ~uQP-5J7Hp'bى(a,&n5l3Û"gq&z=Q!H9#P1v񾈕yȁFRmW:%:O1=Ba4SIKql L9g|4e$8Nq z8D7ƴ9M\.B4K1iN=y93ޫb}'TX349<3݋؃`GӍx)m2SB5'P@ ˝P:54OL7HS-6X*YɩɗXHkS./g6j1 8^7A ˳\giăpz0t2%ϟ̱Izmw2VF^Ko(QEG tSp6 JȄFHr% -_Ţ=)A%O~[oul{v) R}svz&έwirx3t^,Sa:ܼ[1#^e37 I:85 朣B)n%dĽ KQQ̓gv4Fd[BPo_n(j/yH=QŨg)apL # yOu&ao7G05UFg<98ozE8Lqg-=Q~w:'[`g`٩:c4.[h\7MpSp+C Jw P^V1)xSߐZS>]0Yvk}Xc?n~7Un;.繬Dd𽔋N|7OW/^ @NϞvo꿽1%_W2ѷh<~ G+F?v7D\{uw8/ݸsI|MG_ORxN6^#198dVpHN&@ڧ#"tHCDZO~3Jxlj8-xȤclGwnj韐qQ4GGmauB6vy%``/3<uhc5LwH Jn' 'M9ӏ-z <<񕌹DcfљA(dB1"2D1B͉x qXz!KQ oP2V=oo}l'# ,AGj= 1 $10 mS11Li䀜 )Lw a0YfVVB&)y%N ZvQ!.}~5mE< GW2.[zOXY_q- TnAAJ xf:zAEmeQ^h2n~ƌŨO/릆Bǫ9W5?8N?e$VՓuz8] WQ0?v;mjW3^q'nӫ׫dlkg>(ݻ}PD&>?Xǟ?n< 3tIV2+tΒ;)aw=}dvM{C`vgoó4t8?H^:(lE7ᩰO}(%d?9ЋywÝ J Rχp<ѕ'Y\Wh%Al-,XfAdCa4!oKdZ64"ò p7llT A[3Q 3vg|ͽ}lЉP tE/CLMB< )Li鸀Bz3~0La^Et!u)>m^stq )&*d.gUv0]0 R 8g1B6ku-YR"ׅjqBnIPuJMM -&DOkV0vSLpCfT߹ ^~(oid4R4xgW)<~%3GEeJJq@z)vܲ$U%uY:͹&ǣMEP=i qOy2hn:tc>Ń\bQ2r ޓccoҫ{F-ɘz0䒜16ѽxፐG5Bd Bc7-qτKmT{KŒ0˜#B30G[N%sѨ\/;e(9בI!6%NW1ϋ(iţSsJ|pqKt?Fa)gŭ"X[^ttm4M3JL ᇝh G`}NFO.{VN#p9!~bEIg CM6V%D`Ez5ʾXO)ѡ|a&N(g0́ ɷeQ7|e!#79M4%~Dbf,".m4}gq~zN c[I ei}Leys?9rg Z4=]sp^5S6Ga/49[| Hd,{f@9E>1nڷ-cDR'}t fjopagBRxJޥp[$QuJE ӄN. ɁbW l+70ClJP:dX.SZǯmap^RqjS^ɰx$/J`{ZUyբ|c) 4N&ٞ2E.!C7 k75%\w8B4r2#i -)62EP#HSJ!8w~xÉL׭:Q[MJ7anTػy8 %d\P3pOӞфۆb{_D=w#i'u|F+$˸U.t1Дt C"䶿;)Gvul\q7+WWw'y_T߭9Qq^(䪟{6;Z7!Р3k(f>_@Sc,X }3F)rpE#!gpeU^f\]i|}֋懨q )@-so=6K•/U:ZFb}E U]>C]ٳd-v㯃G}n0Ѻ[Ͳ~_F\1Yo3ErYm|:)Fhp=h ]w/Nv=p)͎4$ ͑f6S3vGS?_td_ J&<IPy^Hi SxnsT01km92 Z:|(5B nZL\\DĄ(>\@vK=;љuX Kyn6؉5Lz v•U.Q9 '+U7A ;R4DEVZ&ϿX)գoW?&ř|n!٣NiQsӔ&@?T©tC]Uq1Osٱ؍{&:bL?+#=C'c;: AR>ևѤh x_i_\a탫CơOOJp%fk ON$inkj3pbO r|uE_-{^7'S<)zF1ak_SCлd2&h9ހ=2Ϗ\5lMU|k-Xk f$\ ;+ꆣsqhzx]S娠=oN^k\Rkk^v7؛krÉV.&B~/ۼpy`@{3F}T[Z# Kuϸȵ߉4v[BBk՟g2k{x;'oϦ*sE{}xrzжCZx6oYǺ=.ﯤ![P9򅁦 c  $jj f^ %1vn &F5"S2nZUD V:ɂ X1uT <'SӜÒc8 ,ֿ9ZRX[ufMC>Eq5կOK f|.1xR5p1ܵHh=Mj#Ab~f%ńT QU~#6M\D"ݢ*;."@mBJd1Q+ X,8wnr{ qKFk$x/{-N7 [ZwHШhFs4ӜgI5>8J>nmg)gbvܚ~w߯_Wg)6zz=jk Wg.*31Mz@*JZwa{WxKÃ/TPbsjkCG&7[g՝:":%FUԊt tn˗+,-xR!N#Ug:б6)ҷ..4< $:S 5Ddtd.N~س?"r*xNlgr6bD*)h!.3_[ŭ'ڕFG"IM:w+{U~lyȠPj!/^a3"_ }hl2<]0F: |#OlOmTʥQ-Ր-6z@>adx0jevh1Zm1j7c0/rc "4쯊䓫0F;Z-x%s\h9%Y=ED^r@+04^duzp%U:Xd}_%7fE ټga1b]Òrx9X*[p CAߎ=Qdi٢XC! )x :Qά:Bt@uMV{wa ] 3xCTA* yHhv"XD`46`S^=O"J!Ms eZb(O{ l%$0::u m[訽\NeM,xxFg r7{V#}FKP6m]$8~&—'~-4ڬ6'LA:B]^}G50B{yZ݌~[~Qؗ2`tǛMED4d4y_3/5zރ0pv̊ m˔epBOx"WsO+cC)qWjiA$2uǽ{^甗bNyLnËvjkdN<.ձR*>F6<o!N^bܠ@1UEQNf-xzPi|>c~^<ݿO kzLD+p`mjuo x bMPMUP% Vsh` 50Kk !Akn߸>1\S Xxø2ԄZ4Ρ" ݻ4he?)2y*tRKa0{}b=[I9^D5熝V(;ykXΜh^dGhb ZZfJ3;ca,퐎z6>X~.gg_kJnU01ChWg,kKh@nvE5ĎBޓɥ^' }!Jj"MB񊜆pvL{8婵pVLG?v$fR(<4@ԩ}J4VA/ѝs]=˘2f>Y65aT-F#O 17X*'sܡ:^>:|1$1΀o= - aQݦ]C$2@fźG-zzb2e=Jgy~1|Qxr"Ն`Һ3g+X02&`fMx LZ|ps*!ECm7xރRtLVNrRHg5ԅ(j@f 2sVkْKjҩ 2~r>*en(^}+*iO &^0lX46>];)Г|;Mٱnpȼ֯nAgux{RA~y6xpy"W ݥM{O")6D): #{4ǂrv }xp~blBӮ>TBnv ;V# }K20ϹE{"Zo%`0FS dHe& j(scoG"$SNC(#OLۧ᷇Gp{ #`c>J)^/ft`s73MQ\qra~qj_zc"Fp$:VTc^/kszw#޼0|CJ{ #>}}~o bQsTi_^2T6Þ\j/~dp{\K7\ގoz?oKTâB?|h>%U${ ytUAzpѰs&g@ZkShp V$5ۻmΝ`^1IxرɽuTUN$.> Vڳ.ythS, xt?v8{~>wϫj&+P|aaZW7vшo= CI?d5`XsǨuCp:i5SDR~X4x2/O8'gGl9WԔĴ ^^!`u.O% { g=7CX l2};afFR̩mC@gd|Q}Ɲ|k蓞q\.g$4x3x=ܞgH|C`!O`慂I5K []j<ᴙ<螌'-7&&WtZι4Z8sh< 8a!l|1z% 6z9o;Ax~+P.G,^d`]EݞӦ3nS~A0l_8 6FV%МaޫqkXnxc@NOĨO[Sέ1ZUn}E@甊#%ʟC .dp#Lg1XO72( juH(,7țfj{=C %! x|)3&}@WLĨ Zq=_bx1)UAKr6[5\2Vyr=ADc֎6H(t!`7}fr'9&B(1zK9wWQa*\R.O!;iai &NZ>."W.QG޶[tǛ ,&zë)ۍU͐iC[hNDn<q0:qL5M@aG##06)jl,r|Q=OK|Inr>`Rޗ>DIA1MrPfJuLc}NVLҾu {:'yk0}= DsUpnRh\Սw.RBuԨ+l(\?s"iI7c{ K$9 Ց!jZ8K֣2,n}/ EPOxbNtI{Aa6F(΃Rnߗ(3F)ǖy ~{b5D)^} I~jVﲟ'$Jxj'zG[97C|&jj.z b:z#"V9"(a@ LIཅD=-R",q7фrgaVs^k) }U$cSٚ=f3/?9|cI)MzWe$UՎ y )m&$ⴚU>Q6X}1(̂d.:BsXr˾,[(JYMgw,o7 ^̱r>JUlի}pVB(#z?<:ZM:翬Pe}w])կ͇ۜQk"e|>o,"ȃq՞qh>8wIF~ )g?nCe7MϟJohwVxX􊦤&nZp5hN(1/yq7Du|U谵f2 afRt92L'S<>27Jb^"(gKm1(iE;gylU/nljN|O'L&}Y f0?kj-ͼ}(#Y藇ݖJ]L %8Z J)m o޹49S2 - i׸޳Y X>7a[IO[D8a4qGNC2/odڼى.ﱁz^GhX ~gyPeNy@?#ɴt6kr< ӀD-C]8<~ZmO4̝#Y›)1'i +O#rv`0V͇ @[Bg?!*4a-iN[s3&B.%i)Tќ CwgKuHuuubKt9"h<7X|YPXIbfb_ nah;nb,闆y8+[La Q}0$H>wV6O;G'k) C?2iρG/"?qs:ky5F[5!GaVG*~Б[[IG;7 C.ficfO zqX`vbD5 oL̋D-Su|`<퉤'0wUdE N`F9'$Aqf@v cU{_X$yX UGA3gYKsk1)E$#"\Bݜߗy W{P] w}bnXyKV8Ky\TeTzB}X/ qγ D9WSOV_wJ )ZpyԵ(ʵQA31qM>ըH'O>땫GmD2®(2"wzI 눸^y"}( .t8d} Z#' E &"ԛ0=j5w=(BCDZxŠn#3Z\5a'uOkIٸ-)uD뭆wХCG(H\ \;^t-[?asqnJK^VZy!7)|1wQju'2ժOѰ^Sc(F_ҳ6Пc[0gGf8uq8$z=y Fx'NR F-GF䕧Ͱ(LϒWˣ噌]k?}FtXQmi0{ 91Dy r5vr;l)+ڕh[/_Z /jf9iA!X$bv: -7![mӪ—H ;_xbVMFIEҰS= 蘭ck :P-*5 vX>d; yO:m/1"N [aJ(#0`Ք*{A=={QH&zO>А0+)Ӕ\].!Êe\7&*7a| 1 b>ҷVv@)HL$"cPPx"K 8vHX~!3 WIc,5Y#pf#6Bb"Xt yVN:Рݎq 8`/小 ]pr+ޣ 6=7 v^}_=JI1dy2VWpsыv[(Ǔ]^s{f\ lG7!*v姣~//_yOA ~_VĀcjD梨xFG߂OWO֏KWdpu8O+@~@<@BNmi^H6-{_`h;ONxW :HP t,csxz|"gBatz#BBƃtfқx9:'zo؈)ٷi Ո!9g29m[=O,[|P^j/xhz&ixL9c.T3E9ւ9S,\Db?cj/)ԣ&V{z|Қ@鄠5 fqLov 1g0B)q25Dy}Gs ˯th 㽃X0tEh,ClѓEsLFNGȮg(3P mqg !6{ꙑ;P5s- .9D d~n#3CeQpnkNK4=pa7 tjd}rnA~c1xY/Bd}a@.oֹ5N+oఴ`Pљgzt{Sҵc˜)lf2! }Lw|Jk1iB){/Kޱe[kMg56G- V! ºPK vZj]MC8ν =}Sڮc :@`0TY-qyPr~oT\)h~H*zqF )"`E=1OeqXх<4(ie#J#=aY+轖!D~w $!JrP(Ȋnrw9ݧt7<=g3;w5ӈ=(-ᆵ_ӕyYӷ_t{pwVo*|zbs*~p &LAp%];FxI%o;ӯ߽ß _~7Mw4OCJu}䟃|;+.sR)Opi[3: ^w, |לi.[T7kXb" Oڭg 6H cSXռM0/Puf{|H oj!EJ%9XccZH?s>/j Rp52~јODF>hEˢ6Ϩ >Cb0V6r\̨4$Y뭇7*-T;Ct2f;a 49_WQxbHy4;b;d-$Yoy&YSmyyֺ}-==gDk\!fk"AIAN*0>v>X,!k$ch Mj;S9'SXWOV%*F7L:n#Zʜ<&mf@?=I.t`C<Wili&O:)qhcHp ]O1/X8VP~@So&99kPz#ȋ Q6,V0h 0-Lr2h B1S 8A&`D}EW5t"8tȒs)k.H7VZD9<"ͻXKg9cǁF@ CpfψZv#.HlhYQ?%C;%G1Mm) 6r[?O$Wx>RkR]-Cp366|//FqgdR(d"/0dfč{ak0vHlS ؁~ (8O:XC5|̧&E(gH$mp/>(Oa!)Ljظ0G zT衦5B 8 soJ.[,eS^Oia="(v+q\"XYj%mz[ݯ~ij>ļޗu%){Vom)@lPJ G*T`8I;x]cL%Uշy.BEg|Z-\50^w?W'twU^WkNԡ}uZ`5UY}?TUB ߟއۜ,v`hq,HT#3Ŋs=;B5cDh: fU[=14/,aPLv#0ady)᱂ָkWOyV(ݭ8%`RsohK׆D')b$p;KnrgLqu(JT1N*=+̢_iRܫj>CES."DѶ91xK+h\(< =+lL+x':.!.T?6#6wc5<&?c6Ġg,i#a~ѯ|*Kq=k ^G5f6Ϻ/SaQt\b2ĭ=c,zi\ն![ |?\\ `|aY9o];ƨٖ g0M_~_c|# vuD.D X_~fZK8.kծ&4qyܯh6.A|c4&/GӉ{Cn-Jd'[YX`ģ!ͭ][ !dOMSPsAhI17LHǢT޺uZ6v;D#j]ݵv )hy4 @D,+D՗|X%z*F>-9n?- ]//W/#>Yd7?f9._t_"Vh1w*}#8˃ xZgma} at{qZpî,M[n7<=W~:VY8 UY6}})*ZEA6_&;k1k=4!&0| R^JD3' Hԣ|:@Nj=bAC8[Orw#6f|)u2D&Jt"Mqs-٭bcXi݊G7|{?0rH ّ[x%a#|Nl;L[0j]ZYIY 7%! &?@kgVgy1ݧ` Ȁ%t)7e{B/\F\cŭxVvK-@ hl? Ñgx[%}8Z 7q xϫ5ݐ;!-|NId&$|U]=oޔ;ZpQOYmt/V~y9}']I?/P}}n`xN(,~/V?տY[Ĝ䪜%uaJfڛGߋZZ'-%xX=c67߭|M=z ᐇ*a9-2Cbnx_>DgS.~ۢ1Kxr{jDUN*Nxm;^ψWCv`4MiU Nn3;{Cp;ZPZ>ƃoR< [8h,]zjv>x \kз5ZVe?HYiNڵ-zMZűpQH\)q OJ;L |Մ;kK5J'myxvW1?e0\Tbܠp+7VѨQxs|8sW HKBw-Nió L^Ǜ<) / /Q#>c[`>lw'ԽoX,?K@:0N#F77Y,Er"ձ~9`6>J Ĥ/&!+k0Ba4B5eR$B%8e CCc1ke@E5pCBn)9`?n B6ow'(ᄝ/Jj+il_q/Vq1G9ׅCM>]k 1l?We+rVuL:I{=Snw&øَI 㖒[1<])$ϾxQ(or8[VWF _ }S$Qj$p4w * dDJ})Yn}Hou}ͫBy$ 6IYbE]^Q1esv(Wh9l01y .ͫoI*v[vO6'̋3I [Y n!SNbM-ƌtj̄à V".=-25c]^a1S)>rWGR<?$$G3!WdD)Ro nM@ ߦfLϓ9r8f}nS,| v1<&*Ar+tfC}RN(c5?^XF $x@%lN#9ŎȆ[~}?r%59!o G70'ai`׈yZPTAvkur b\3 لֱq9=ԄLʹE6uB7\$g!ATX,\1ĺbYOr᪼P64|dEx#ٳb\=zfĬr[׆#&P79!gn!ʞ  lщ]cYĞ %e%fFV,iƭ +E0Ae$:(0,qyІ,d#ngwYk vlh 'nIPK@"7$zv7k/*58M=@MJQPGl~?k5!ul4 'e!Jp6揄ʒGB[``PXf0HQbY>d lwuō} 4Ag#"G$#(!+6.TlUA{ K%\ ɶof~ͫp/71죶e$]\ի\Bk~pqܭ޾zzYa(nnw擢qP7+nyp[1MTUST(N>O;DK {9zǵFj bpi#h jO3m'٬͡bRqvޮ75+ WZj.07aڅۡЂo}iۉ@)tgeM¢|}t@(S_xjnD}9B5yu2[Y5\47c2aq7) ?Z@gbp;Z 0'gOy𲖶ǰeLLnD x{>/(ٮOE,`4 MA0\H>Ve7ljuS;7 7`VΗ nxbP<ƒ=e|Wk}c x<,xry+^<RH>Dp}A`PƗ5Nn=Ȼ7Y!m<,\'1GJ]x7oH U#Dlx_Noxg4G \!GEC S+N;n~ ؁)I@j0Bdմxq fދLe6N3Ř$6BK!VO5!FMܶ@h70kY;=$Ũ!CiK qmނ[Ob J[RXE٩5 Tʴbg0Wf7ݜ\ LL̹fdDI賤N0ַɅ$g;ullv5n2j%*ĿkCn!_C3KZ{K-^Ȃ"&j0U eJLwCF&qR;\ܴ"О]Lц){uՏ;'۷% XǛ\t.7MϫWW𷿈wN΋@P$~|}M '6rq]ՙN ޿/ ,`LU;lK/ 5 O8 1ЇޜMC_nKPJt;~Q=9n`!plZ o^$4i VxRxz$xŔF={.0ᔬ ?O(؋-ns m::3e.\;xhD):n m >Ñ.m1OZFxń'G=SІQߚ.t4<н,g֖{’nrvs$ 첢 zF|9 2 b]sdz|b] C{ R<ZJ9!s&G} np#2oXm)ubK^dXueaBU |ey*$[ӍV%1 ۀ ^s;xӓX r=7 O fLnxmYQ!It0_~4CwIq{|,<4;HDhyXN64:ɋo.26aRaߞmˁAjP i܋hhs؍LԊSV=m.M(YuM3{kڄ%W&ԥ,FY,@ Qh6-h=b¦zm}-&=UGnU๡]G`\a -LM”897ZɌ1Nmz:.`80ˉH< …xg2]zt/TRJ{z8M.œ",Ib-'ʚPOLo}bHSk}nj$[1qc53#MNBƄŲMLoX1^E ~X(Hn͍3K8g˔PݮgC+*g+e 7ObB[ iDd׬e<n"6r~iԽӳ]YGOO<_X%nbװV^_EI"&x\ۗj8y@1BB:7яFY律L2J zV-1/8 &zHTq`Η#[wJk7oU0g8Ӯ݁ $ Fʴh %hdEՠP5/ec~v(F]A|3(F鄋}ox N3k<.}Vhq`wvwjճ4<) P^˲@36&|[l2h^3yAA!"Bh~u\1nf5@:) \9 V4\ګ&iscC {`Ss1oecLƛ! D g] hiDg;̥X@J7ƹ%nm*wڿ)bDc|}!2\ oNq4(N-!gYGĘm7#˕(\X3un+暺FZL G iμgvElƴ!X,G bTE5cpLx$ܝ{|ʤ.\xz?~;^/~˟%2ppaJu#cRH \MUj7p!3~3T08#T Qw=eIԮ+'^xdc'|Ȼus,77~JXe&?@jTx$7x5Ie[-x뮦<]\gPGw|OF!Q~7ųg +nrR,GQux@l{22rȄ׿KN [?57kȚ6;xorBM;fs1"ѯ~DqY1L j $lGywvc:l4}^v҅'gHn #.<.#Úv]ԇ(MdߚCm !A&vSLrWĜwdW@,3v! bm&gBn{EN}{8(GW_o\z GA{?4^Id@$кYZhIJ-.` &IB`n{o/bo TpcC1u(_8BnHI_k.Ƣ%PKqyKyHH >w%C XK3]q^ ᱌5Ws2oQzF,I| 6\LɊi+rq3S"k3\! DhMT3$NτF09 {12ܟcD ؃Q$8}T"q{6Oۛ^$7R2{-/9lOjy.z (JZo_laogifsC?O*>Z%s ;LіAyQҸ%ZEj)v燮6Ы}c" kTiE$,]K0WׂYM?~ PLmH0&װ2$TfJ\%38OX`FAc%R%^l^"4V<!"3҄t2jx@ǤAy WR陏 2JxRwгmmxjG*\S`01>ިx+Sνȶ>GF1䌯t Sԝ~3\ƓZ #^㆓‡dC%sȄlr IJi Z)y{3ZK[ns.F^y@4Onv?߸*3׹,\E&u/hp!&}8Vf0WgB;K|P߮͞@ݓ Q;qF$.h/!k+x."'z+stM}}Ʌ]c]X*{> kaRtTw&R. <k1̉J# ym1E,U'`GiA=0aCs;c}0mG9_e_ s`@IDATsB aT8֯jCf귟)uM4ܤtl$v/XPz#iQgx:0PDFoS*:u] kBNqQyW.DV?dYASv7OpMY|ڮX9p}, ΂ƨߖXw15:zK޴/Wo@aڿ:kѓ\|}k/߬o|7Sj~v2&(Seŋm<$W|J{h /b"1emdʜi(B, ϙ?n{B^$j>. ^10(& # mLd'HȪD} D Jr'@?/e Y[8 WBƣ>DŽ!踯i!3 }! NnUx@ kxd7EdsmN/d=&7WI{YӚe>b UԽ1B/NFBnP΋:d47c qn VJgv>.CZ[Ыn+H{Eڵ[? ^WͰv=)aQn,8{ëy4ʅÙ(h9٦{*XYxci@{d |wFP2E~g۠1w/{7 2q#d(GF=dzGF1M hc:'00Aq3A71ֻYRf [Yg,Ѣk ,&{UT߰H*R,CBbKSfpTj„(|PoIzyMiiݯs6eq̓POnM~!q $Ӣ!VsXMz1Z6xvO&/#JY;YȍoҴ,AH4½ E^jAGmJ5*6{"0ٕKl7G‡[ 5$/4(lsdE 퍙?js kE87ܼ$9!$CFCD1J 5:Gl$pЪen>>lu|:g? .<av^(!wbqo~9v [S4цĐ (#;In7֫\ m-܅p>"'F`&L}@-R\v aXB{zf) ~9 - âFXԃEQ8~l@8pC}# dJ€ yNfAXؗ%bfYC!d: y".Ez5L! ᔗj!iÂpuqph$|V681K#,:UxQFncF!{,!Ν=At!͸/'r!cS'6ډ}yQ[0+#B. - <^vP7o{PED} ꛿Pxi4W)f ~L]0Hwfg%FQ^OϱW G x|Qg!+zcy GYwѐ4ۿ6yoޜ& 6#(Im򯭍r.ErwS؇O09( cձ1"5 Ѝ .,q F JĦ=y?xZSi[_WHmбg9g"l?fQ,^X!oc6emag+Ƭ%}/khû)?b Cc89N=Dw#aq `ɴ$`ZCJRns{Iv 8Bݙ'e$ :o!1h&$_Pk B91n3KN4Ӷ>v5Zf탙p1p < 7.'=5j\FVDPN0,; !-=gH?to# b-^.\BwSq0[ op^U~j_YlXme)Ȟק,pjg'Ãx1? :'ך`^b]O@_…)N{pRBw>{V" ߦDN!/fY)_|{VK[7BI$ߩAsOPXqM"%yc}mkҤ:. 0h4^h0CYMPA~L[qVg0%Gۅ̲2/ yy#4Z3ɾ^7t-š{&\ImwG8` /|579y<- ࿖F~ Y4hL&f'\Z@wILE B*ʕ ^†swpSʷDz({i2ͤěmI"7J!B cTjOn06&uāvPGфHiSHۍ9U}Y0h4aE[VKni"=4L =qr%Rソl,N܀rM)/MmvhhC7KcAuw%VzKFi Z#GDCNLgBѽ ] U3:76Y߱*jk߉MX+CA^4Ӱ\&'beZ熙WGx<1.CvvuCKktOFysg&t/s/(nŘZV]sp;LYv~(G~SX? th ͳ-j $NX^4ם)@|W 8.#8B[jigW(`=W;`?Xn=jh^V86V?  _x 8(ggecR>^"DB]" 'W.^;|2% 欔-"!{ G3+Q'=ހWrcB'5W^vw=o\4 gݟ)}<$Hɿc 碬7fw7yF6 nb!hiY ZEeȬ9fߴzh\t"[(8m.ܬ"\Š"ruV{Y~ D P :0\b&j ~˾j4RD$58|z麄%ȼ/hwP XB`=  w{Krt 'dM즱Nl=΃0BgDk= eb LB$d\!Ӛ6RIYY 68^x1(*eTqPs1#DDw['<4yXU3haܸtLceU<,*ڰeRFAY넪8T3+!񗑜%/CoS섭g @fbE $xfL2Oʑ\;'VG熳 mD1'OW7#?n]I")A ~E_`PJnkc 9]:qzI0sOoet?R:=ZR&>k+AUY2B_9@ _1%C~Q}V ~+jjYO#ѤJP,tҙ }d\{+8Q=߂hhuڣ:4L/$`e*HぢdHcj2< QNonr:O³8 mGh7ݠJ(AR3ZٮCܛĨi:R9;Za,l6'a_tG1WD"@;G9½VgFMuj",GXn#~<k$r (, I1p(Őטߵ摵vLF-z٘֠gR3g7/503gixzkSR|wA"BpIv?ƘɒUP./ <ƚ=op]B[st0|PnQ1 *o%:1,?xxĜHX;딁O/B6h밟`Q=n1Tfyn؜lyb)JliΨsLJ4|g9-u;q#j>&@Cr3=LF }m 4/1F#ԷkO2C j`M!L vy 0\r#xY҄0mթsC#,҈X0q)6%uq۷zϢ"d^7ol<)2Ĺ1x,GȻ&fzǝ$aKLe ~lP5fJ`a!gZ'11N liz?^0p>M巓v֎^.m:6f57Ea+W=Eu$ (1(KY"iN<=F_k-u_L]?]PAnsk՟pk}jQLAߎ5O(}R]2#fߖW!bO=eI&XsbK6t`(!5[ǃ?Fy}3M~.7x<]~ntK|.}}(/>V[!Qs VG 81$J2P;8ayTi.>"ޫ&WK<;ÇJ{>~7x%AGuk8Xfc~f!jc7f}W/'ko2 % "$cٶ7ı,{V!9#U\A$h!؞ iK Λβ|II@A!RK1fc6y5V T0MQ]+)/&ڑn/tN3b씔QG ixӄyxu4E9}AbaAb hW u^M_ޞ` B}?88߽ c"+TM*fл*:.!b7)V< vNLf蕷\ yO'ItM8?Qw5Jpnk,̄F%͂kE!X0wsL ݔ}^=;XGO {m+&vi1Y mj]. q ;ވUJ 0J8R$6uOO3x*~:{ᎉNNk5w߷dgrφ~Y+ًf޼o En.xV9.'+Tg'wz O~jG*tF1O-PG剁4dsx_;k=Շa<+, 7O84`W c E]轭A*˄ZѡZ@.bd]M,n=oĈbSUz^ bx[s,:e Xq[t8'7Ir]7w4ص=aԤ 4}EXPH(wŠؘ?"1V& 1VPh 2C\ l,/Ĵxݔ&ED8>F;67]>7AE qHMc`[Äz.M[!ctY6 #WuZd*ii)a1 6V=VMx$ La†mk16A~żUB3\s여s^wYBgr٘d7x1v s^fY?&3'EHr`I5P"90ƪ&46[9N|w0 ~.wYk\z*Gp|60B?xbb0(\1/>d`HJ{''@]wꤊ1۞r`ќxl:ADsSt3ś3k9ٳλeǔ0n3UpLO|LLn'9b6vg=NOR Gq`Y cƮ.kH8rBF6JwU.j^uK==w53#X\C_E6<<1i`(I . k["ğ9Cp¼;Ro]J. Vᔸlm.q_B8QsA_ލqO%Kgm*zf'_¤v~wF>X_+X/Oe57k7ޏ2xG8 ծ ]Rv7ZOYƴE>̓펩h>?s=_w\_-TH]`7x~*c5Mt $#wo&qzw,Tq4~:Tύ違_vǻy$/B r.v{v8"m;<=Õpg02:M 2ƦtcG4lPQ&Y#X^[y.٩bYgwa|uZ˼Q=O_ⲋo or4fе,]  _9~])dky(SV Oa*W xJsBY MhKh*6l۽̓$>q|\Z_Dr$ڨhGiw-*%ϛ^J%6B><4g۸ÛAׄ6 ƙ y90S#wwk7b euhR0VFЂp㲭zaSV ]`g~3H6(Km<r+ 7Cg3{e, l=d7Rl뽻F 6&=9yR'5QDyU+X`oLH15GF(ck:I)&WMhÿ`saLqc\( t&2b,iw<-?5>.Zb͚y'\2%blkYTfaju2%e OW7LW$dKp" &u4 cdƪF>7s[ٱomLDM1.ax֊ SvX\iC $hz&OF박_3aMy,\ʳ 3NLGR4(NMh axw$Mx9VxU9ߥML'یڎz֣55qy4ItpymO4Ȓ4N;^ek3`_XrJzvې90\; ["S_O]WSj}LۍC /՗w1@ !GQ2dj-SZ08=h톄?G ǯw?ٹ.pֻ/?}zWF (ApR}[dJ&J!/;/ZLUNsn9f$0p%Gv\3;k[Uޞ紧yJ)8`',XY$8. 6aL #U%BjݸEhs lT3WV72Βn~8~5m5FŬ୵1!Jcm;0Ia"keji/sN mܸꀝa~x͛Q@ۗ@ |9YQ҆q]yK =q4..wތI ={U1gqka"6BDEE[6Z`mSte7%!ӺRbL>C˻NNwza{y'7`s2.̀eKh׹(MAx[z?]'zonw,^2NX*ajkܜAeP,6D5-ʹA:hc_ >FB&hTn/Ba| x9rc#=?'ྞFG-umEH[rQޔѰR$ y ZCO_Y7͵e.&ĹlIج~snHQ[ځ' ɕ^pϋ|R%42wyg.KhWm+lV_|霪3#vK`߾jnR8|bn _˖D1۬dl)QHY^뫈zm@x?+7݂HQ)"K.#\dx: YէW;i8~^ [ |UFVFFm,,>ћ !Hi|W9aOspqh `k4qƃ[sJpD@M;D+3g5F`/t-TSvtK, |/!#ۖf<%mf~OJb>3',# ֺgm~ncQ SbfC-qW5͎R-KBhc:cѣ~z)-y5VIywy=hlT6P 9Y0{a9H$݀tjU~+戇b+A!4T7V* 'BoMewR6o& 7 Wfnqd3'*{JYq$L!F NM`x]!ي>.V uR ߾TCQ<,~kڎ\=߾^H<Q<Л^43?7IYr(6`!Y8bmef.aj1]lw'o:' jbopWx T%s1 8/S8zX|1=5v^&n^# "4+Aho>%kMPx,%lP!AXㄒQ[;"~`_ O]^635nlfupuGw} ),}ha:' OuPOQp~nsbdtQeObb`kQ{.emw+VnQur.XDf [.PR(j:5Uu 艕OXėdzTD_fKu od8&^# ~ȩ}ھʳQC\cy+joR0 g"#5 hAU3@d$EGܿ4Qf/ozfJx$H1%A{$y E_ٸɣXFgh/`w퀵{:MD7猑ANDJ_8x2'dӭQl>a=",XZmBs4ȃWSsnAѬź \{ef!Ц,bu~z mu#FV?a\4(b2>GpJjSs*rjCIFo}B6S`aZ  QFiP%fSߏN^}rV-ZwOHBjgrF7BN ʊ>VӒr Bib27&:n %C7olBEDE W'%IĨit ֶ+3 ^EԘsaO"a<Dlu?[x}8!FxU/7uŗO0>Is h\;gp/w,[@vA|$1v%Pꓪ} j/}u+ۑ9o\UʏܳFa)A*x 2rph~*t ]%v !ŃPQVdy0~"cͧ~Ď Xo|5X%79a峧R^N 7{6 U=p܇%kc}o(]ܣ?T!'mA4ևZmY=CG1 ;V3>JV8 fzD`C93Yv:ͫ ]SCcx\N&CO(ZCGEAp O̞hb)Z#],̈́Á6Ȣ8T1AO52f\46]UmuaX=ѧ"%jC>2rW B۹Y &L"$x?Q+M˔Jh!j~Jnt#~]>Hah  5UܴYhSb"bg%Lc iP}sJyhȭ/o\nz%Ȱx0յ%gA]FiQBTYnL I9Yc ey5IЬ̫^E4usI8#U(h5EfvޘmENnp ?P?%wuzU*~딲|]`8u`0ϣ=M"u91KթvX{g)8[ zVZ{)o_hvϧ|ʰ 5\&vpGRa"a E?; s^;G PXhƩJ~)C`so}: qEG ͅۊGi&?8F6_ܝ|+@/OįZ+x UrԶ9 ${u A! < /$bTYϖq#7rIƱk xBX:pGACycl%7C ?:bzdH](+߉Wbv<;n}wG]x$W`{v*erOræc .Z P̧{úKסhʉx+.p6N33~uhu}~m%b`>ԏPlo"uA2`.iLe1WIFN.VpmVN8%$JąUY](a:{j;1cf6/7Edzɮ!w:BA7u#`г6`3FhKkAHe W'MPIթ ݈o.?&XG(tVfA>7^[,x1nӂSco cli[+^P!}%y}#2 gǺ59p?][_{,ҶGMcē-5[jc܃аaN(DlETl4v'&x`Ϫ4z 1%ֈ7/BދJ`C{Gm!U fR춫U.m?m+4/}eS*(+J7&~ֶS[s88||faR1gO~:>)u{?/GD݄M4v%)[U(#2`g+FEN8 3"w>6s\IYMpUV_~SG`>MZ+4tO(4ZT]-j,h>>='`_;(s+{?i~뺰x \ 43^nhgï9N{aE!X:c&[ GspMΘjl<=?F{ok3#í7/(duv0 ɝ❙-!9cVfH[kMǗFӫbU0XUh\T൛&omj l(nG⋬VP#X1hHZ,7< Z{"I+lXZ[1\"= Pr">,댲¹; r[L77Yʋ[cX4#ЃcY$NƝsGp7 d݈O?kYfY(H)>Rqr;(!ܞ!ew4e^|D 0s^59(Y@XW3mLc}p_V0*SKt쁗QNa9^;V ׋Qh =+γ۟kw֋W/>)þmmhxR^T7 E,r}Y ;6"w/XsG!8e㧓߬~ڽ@u vTe#nKyռ?}8/V΋" v‰w;_%u ~ߜTpKy`㴭hW;l+ll-70E}޾B.'GOƫ$ $60.mqQ@v{V]E†6B6k  d\b:ƗKɣ^K-kC;֑EoxoSMG` =bGmĠaMΔ"2 70“&5 M1rJt {6@EQ!;vrQun8IpФ?0/P[39D Ԧ{ N rM,(qq&ͫ_ M $v9z1rC־nI]d0=pԐ@==okط =dzj_֫`u'6.j IEI yħ5)q@8"u 0u)g,C?BpxxBӚo7O9ϓmLx3`{~ 㷧SiQ Y  M1c]۸*ԅhBIfd{1(ȗ좈×MŤ##Dݾ0L-a=F&SX?, :Ɖb(O2k bS`)֙JKq9σ'3 M[d)S6;m+xKqF^ލaϯs/W|Cܧ-o᱓WRМ?)WQq=̶{Ԥ#Q!&߻0zM4UR10 Xz5"7wȊ&lh&^}2'~ 8ey]^{4L02E<<|n6>B(f׃',Ý9cf ] 5\SagypssaxƧ74r-r[sU+,)4 ؆Sѫz` Mh)a.d_̀z7Ÿ,aL Zc{V BAyLnIJص=ʼADΛrOż!P>3!b#e:ӋhUĔPtpj Äv(C8 <45V\?% Jǯl/XzZ /5$E8B~ss\eNxm1L!j=7EͲ/L.@w7ł`'^GU%#_Y7c,[+p}`yqZ]skmG`ҜhE9]aj2v # z 'PSLD \ F=qjPbFba!sV_>Tyy(zєMZ<Рˉ Q32B8_Zw,itwFQX)v=6.MXO\ǿ]OQ.lU>L^ufYCEP=6AuʹQ@ÂE8PIs|1oi^%fJ`gV$Op֫T3y\v i/'![+N%F/@3ֿBg1{s@'Ps 5^} DP@q0ʓ`yius ;){R`}1⸖7B1rzS[]ݷ=I6+Oqdt!7iOjĻ; ukp)u'Q"m9`@@eq佼W_F/6[~]/ճVoc7Ճ{VQR _UE!>j 9l;u\[֩U5~it~ы4#X*"w blVm12[X4n7QF7J5A{M7<%"!,T'=Ǥ+g5>bzh`A<暙s,xxݏ7FN~'-x ]`"F'[r)4$E'z!&|ꮛvaL!f2al4R4=O7~ri_* bgSg#?sP6( oteuo$[һl &jNcFu^t- ~zB_ņhs.I4:h ZDevspgSFti~E\\g:-IH1|Z؝'qvD^M?6 9á6jn]6횛WUrZ亨 N^O?Nk_ 81g@0aa7,:|Te"p \䁅B^$`lx[UEz#zӄbْS _6zs:H67BbYSg"SOyk<=@ϾP aGۃ+Z3|;%-V컐5!Fzo'Ąn_}4Ey|TK_E=p7{>݊ x~W'+;Z5qP{WB ZWO?n.2&uQ4ރ*<Cg?Y >s7FG48ŏrcziTq*)E漦:cSx<װaLhMHo􌥫-?8MJQ#38G~G;J4z Bn^ꅱacd~KڤkW#>n"]/F6q{Oa'axׅ9Xxlۍ P3~9)k#d'%`bK132moeuEn]q\ ioB,(B71u[Fu&$ }okî 4 P } l۩C k- CS*B5g[jtR}B*WX.;oп z0OAަt>((liF1>)MG`p+w d5~<{=/&\*kEȌ„[|A}!P1 RY a0AFk4CŸ D&B!7CLbM)[HWC8(|YtEE ]N˹˜my#®'*#GHL;*Xѥ.|~}Uaz%\>MÜևic_<f u{gQq~ ꅳW؞]UP;NCP1?( pRA5YSlu0QvN!s$i) _/\}~ݶৡνm;AQeT| ;_}~aH/W?~h_"rp#Bh: i+r-m=j6%;FSE_gx8X'p%Ï뾓ñ]iHuC*m(r/ I |vNvI5O(BmԐBe¹L0~6`xgܡ)1,h(ɿ&l;vM;oBq=ޠ{c5k苨&kZe=>17a_M^#~ ˰!X>" mϚpi6k)ֹk8'eH0^Q-eG6'4 g<#+N.;4G~in=ыP70Ā"@H3MF(.6`p2R(%>* ^VfguVA>}y?len^z2FŏmC~gܯqg~l {ExsᆱH/;|<|19؈o+AFeD/AIQ O{wqw)p$X;^N8'>͘v) %ghl#yw7>{,yj M4De|]S7-#yR32ތV ".jL[4#~p0co @{vɆh=8+.M$ J  Bϋ/^fO C7-7)6tק E Z8sw; Eo8#MLݘvFؤZ;%Ivyk[nQq]p3U?1al Baq]sƛ(M$5W˺^Lnʨ uLy_%+SĆS L..󽃇됙^6zXHEJUAyJVeHu}lztl~cZ,VXsE]c-&]3DGje>%͆|E@B+u[|#ӥEْSօixB֬z@7/;/K4u!PDh=f]%؄:~C-um;`J넽EN-DB*qny<}s:<A"N(&54RQMIjPe.C *6\U{<4lxhńē'a\Q%vNLJWq^n{Ƌ]dn^dW~w~RoWwt\nNj@?i/>+t67SUⷾR坚xu / +wqrϣ%!|ҵc!ڹlsNQWHMuY)P N#h-4Ў"])E64’fdJG~  MiSYTC_|06ڑC"DZz?hE(:ac׈vY< ]z;QfrqH4>ݓ0E=!ggPng_t+1R,#4~HqdLJ gh<0"U ;}6&Oj$MO{& "'1Lj%ru83/{[rY,M24\hh"BqG#(tX6iq nΜ`8c #Gj|p5LgE>FnM`imup:N;!9 .t&Ucܣ- ]ySj@a/ ߿z~Gӊ] 6;FDOWW_>'=<y4Cͯ[{^yƆ6? qL^y?~q"X'E5ȁz6ŏ*ty9/}pV\%B# wa?޽`baʇ>+f螯 Wױ֛WGAHzQĢt]xr:x3vؑCPtL[5{!7y ` *JIhah6)iZF *#LF~'j4s JhK2 zQPFaaiOJi|`f d_ͼkDWo9G!2]~Q&6cbaaiɊ҉n-E~*{Dst %F[M``T|lܬh@ꥑht%]cݯ*}^v_2:IT`h _pg4p33~ϠH/Nr;}Q+j':@a(Skl&2]vl-ͰLO֒٢| 2)c@8&;SO+V020R39'_&'3GaHi.; ⁨6=YGn=~Z\:V|+帑 :vs~rCWeX/ ׈!eTxJP'/|sLi4`JD7~ kKg^)/9즃ZK/Ә ;Y xY ^b(FHv;x!:ȄJH/?V>}8ȉ|scbTiaKD׳Z2"(MZ0va9\ Ϫ& Qya l8q&> M̺i!gAH׳]7DM~0u-};1dD}7.&o^T~':G(L;]Bl6Ѧ*fج'D0>/筐P+ 3g |Nrwlk?{Swx}6w %$жmN o?'CFG5?<߿q~Si ۿ.|v|+Ӽ"V/ۂA /9]EUpwC+จ;6W*wOK!h3 =$7jc/_<Myw.J3=/c4p /Ohdƃ<#xNr腀 m#qQ:1#wm2"0E{x~@߫~/?SVt'a4$ydTYC;coh.eqolJ&L`yáN"u;hFur^lCx|v$'Q(ͧ%ߤa2>)E۷9aN2'l?7Մ˺8&8d`F{ռ k펠tU JN$ Toj Fɧ؜ (G4bh4:S63\/jImshꉳ=]CaƠ"^ rnBD:15>~FB6VsP{ D M2S:{ И}V=ꪮ? ʌ5]Iɱ$AD}. iBP WL߰PR͸)鍈bK(\"aIh&*UT#B5pptfC(ЃA2$҈l.X`P4`QŽ.*،@8pf|~B0Ǟ^LT F@y}%2`R`%.Y*PutPG}q-h ":U;;[q?%An 1nkKPYpf[kYYip,21T\Q5(80 -[;hjڙ7),ƃµY^";!,| ZM~WudvTGcd:nR)Zn{zQ1'M/}Pƻ'x=|㷨 -?OV,O[4A6Sٻճ7;$|/WfWO~xr_cQs^m%L2,D7 oVV0E[W'ۺeP`?RqW_}zmpkA|tZ}~P!Nf,8:xz\4e6;84ήB툄a:(H(5ی>*4lhUψ"[)psB*2 -# <[#)Уp2GÄ95>^ﯣqQ߂Oa呙q!'9-&/ xg'NwxHvݑȇ 7Gc$/3PI Nz$CRGB7Q7E&Oq\3R XP3PsH瑵/]S,Bk] DK= 6#8k=5Fʨ!fdj3E܌5$9ٿA_H)QHZq8+SB/scj'8*5 ]Mǂ(?]s,W݀49Ȁw#gA6/G3$EׂKut@#C!v7Nd3=3roƸWNˑ!Xa ` mѳEgj.pTgUQ]~KuKmȾHť E>qPc_M 8.,׉j ănI%4!И z\/7Ntv#XD^|4!?a@mLN4U32E6E0fc[3'f_`70?W9&ҚV J!뤱9ZI8Ab֗-咍hk;_7Wq#^*wSA(dȃDU}&MaqƧ0̏gq{7 fI'ԾnAQ zr?=etfq-wRlJ ghmϘ>9>B9?u|ݑ^Y+j7CV@1c59 y:5@DVkYqBws5#6 Fc,sC.v>,!<QD@S2 4V hr/WԵO4wml{jarKz A2Z f1P%)?a~ )(b1y[YZ4AfG8yVrL) V 9#XBmmCEBmƑS wv^ %Yޅl$k /5Ǣpv24ڳW0a'OPSR04AIZ=9]G(oj|;\Xhͪ}V?Sh7-Z~w/:mٞ띊VFyRI'N]с e7V|g8J'R' R|~Pm IšO|rx >9P!O"`Óos8yu]Wuf(2 SoɰD#Ud⫉B1NOF.ȣx,9ir#-r䌃ٓh~]?)vR8&Ze)i_퐘PI+k—pz%U'O_(^% Ļh\Nr^í䍌Y>0}xJ_8<^`p"F?nO.t#O۪hUQ{j|Iy?sbUVok1z0[Ӛ<]OC덖<{!99nu 58^EU9 6Uas~M);3,x}_;(Ο5 dn =m %2 2~#>ʰc~xb &xJ8mu8$iPmA{'&( xk$D-rN5Va+d$l㡻hXTa9hf Ʉv'GsLy@Q)pW5? x&n er&Fa|[? XK>GONNx?o}e1ԫ$ ׳(BuXֱs\ᠬZʷ{n'>QYc$/Sd")it3㒌XRIzθ O.l߬ӼfOU&ȳ4@Pv-5Ȥp@cfcNf| ;v#x9[ԆMB23ٝ1:d-/9*5Fo=;8kyAg1w/xR|4>(X.0E 569kIe=)H=>B#<ӔE7 JR U{ [MӜ!ْA2bMoRMFɢ0e^%0&Znv*_F9lG@JN˄ypXۧOUN5~mV!voNܻz;v:^}ŀO^%sm(y{~wV#.(.$ݿN13:BBpNQ 2g>P@zP z_lV\e5f9bû'MRhFߑJ;Mwn[mx_׽jmpt|U4#/kfwOXp(rx{wp,3֫@k50ЈxZep-"1FBxNGcɔeg\Djw(h E,µ ,)%B<3OŠ<T]sm`Xs*H0'8)p*dzc#|T3cYR+qf7bk?VywF>pJ69&*Hhr=}ƓD_$Mͷ5XNf )9hAwQ)ɘ),`@G#Bb 0ԕ2"ʢ}/RF1Gwu7!ed&bx5y4(~`ƋHn8 8QP1$1"uF/"&^ƘwlDֳ0[/ދ;P@кcA腿S z~4%ܯTh Dlbo:BLUt)^Ț(D@ah:`m:K.hn)`4QU  %L:mό3481'vI\*@AN>;fpjm+Xf8dkcF?a=ŗ> 9'=&nR2$uNZS:S:#Q,vV2}7!ѮA~ a-%g%bC>jdCrFЎmD4yR1 9@Yxy|!ȋ8+8 L|-{IyFIg^DNƎhQ֞ ]}`>2ۃբ(33O_zn\|n+ŵ]s⠀2|Wblaq2$4F2M%)>p69sz?}\4wF9܂7GF9vMQDs BC a ܍eB@yrӳ# c յ9R^02AM`PAjttCV&V+Fyψ2ro"W rE CZ ^˧s7 7|Imr-3 5g=D2Z?&ެ$t7X N7n䭂z3G];UZ.X ˇPA7^ِ:wQ7_̟R;w3&`˫{%`^yyg4P3n[͹Ð{`7/u1@XLQXf6$"!S ݋8tD$ V%3 T'k!}Rn]/˅ nǫ:"wԺ&ϣ<g:y߉ݓәǏW<42zv/e{V)N#w%xN |.{5Wduyj2|k(ë~ v$ȏ} ~թ= cėI"jEќkvI/2Hj{FEN+Nn_N3ؚ;|3z&w)N5&KV*lv@#x5O=fvqv;?3IAIQ E(vh0 y zwxMs)tȔrK9EEq{ʧ@TViQIBޮ7:s;D^Y0hO\Q-/ܚ}x) ̬R$K >O p&дv;k5#&׳8AlO4xXF_{B=!f'g#%=n=9ͩψL^S\Yس!#D$UsY D8esS;Nʺgi~ޣiuD* :]0lXSǤy7ցF'`6"jL̀ _脡ۮ3zx EqɒRsRE.Ö[/}vuds!8;~j~8G9Y[hm,Vx;}wGL, TRl͊R%>o*l]b^I?+ XDXų2Z4 (`s7zn1YS> ,'xh=R)+@/i&)1bֈ(&Yn=p1M̳D'<ѪU7ވabK-1BGhn(j`Hg݃u?,ZF0"; }{ERP1WZ3-qa)3^xQ.~Flci*/Fty CvKSVD+'1eeвqSJPn%ZڃtVkP/|?)w0ŝhN]^graŇ DD>(RL)8:G>_/Fxՙ GoDOVO`WqTݪGzGx$tnf8_oTG+}Hw) ]hfioOk߽>9>fN5ht:E>G7ȱhz07(a2|!M:ڔh8q) .AuP"1ɪhyD s=uG0KEQ5`pk l;YIF3QF@#-RSG0ohj&oϳ']pb2.vC=(yuD?Lȸި/M^$kk9;*rrSp>%D/65Fi Lx)/ mBnQAgH&r-0zp歅21mǀb>Y:j<9lb,4,$P1hLb B0HA(UpBy WCVG i;B\Vq'\ 0m /t=+{x EE/ ݷQ ay,z3#ɺm~;,;*0fRHUl0*#X{0@̸6fos4ág. !6]EK k)O]bJgy4^ ' €". ^8` .NEľ^†-ܸN)q dX7/>*c=͹Ϝ7+-&6+닔8fh{X g"e1ҳ1foW0!`Q#ћ+߀Ӥy_%Ai,x)QB)ͼl'saݩ7vlh?tPjFyvIՒb,5ھ*bKgAzܢńaD<`ZG=~ɓ'QbNT{??Pu0o;fGE-7?}2~-_.;>pbɣN(4*MSXDɈ#2aM!x̠b>2.OWBb'c/G@cAPn:}t_t_(p&pdN!aћ7~ C11ClL~ާP,=x,ʎ!f],̛TeJ}gj>g(ab)ʊᠸ{j8ip%qլz$wrSmZ[O =Z YF tc1/|8/J4ktqsysHpr,A0-Fg.6]O~50&B+&2j^htwc>0#ԓfXGtL,<ԥS|Bw B vpiֱza{^D $Zi2ܢ[f_c]"MsjG1C_hgE{oNtB rd^\ς#/V0H s,hmk z4cB gD=G8%-B˷;*tKJ؊ᄳֿ~#TQn#kgZ[= pIgQp)x~zwbhW݊nz.Aa7mi^W@'Nּ^>ɤJ8fjvnOSEc"VzCk,Ƅo_?L4d/uSJxBR2p_uK3tB[ky㐪Q-Ra((l~_ߣn5XZ9705: ʷG%3ʺs;9^Ւ9#Ȯ󾡒6%Ť,M,Z lDg,2,2>' f@`M hI}HS ng'e>Z$k̻kä 3XM}rIfYWd6L(8(욮l`% u'u|ERm>mmE~Cu#Lu[/ӣgYof|J~ )`8ݫn4:7h "d4ge1i/*sl3;/2դrsҵێGo)::0"nz[ڪ@ciMBXrk*?jjĺL)ߕgf= Wx8ۧf}?I1ߩQ}TKUcݯ&u{fRI)ӭ@_>Zc.'/W'/߬_j gѝS/_Md:䳪_`_~os|Z^>}Qw/;m^:7Qk?0uy}ۦ ~ :A{8g7'|7vtpQEәB\^wm{c6q*}39ս*h<_|9'-O;/~./P8BM4=uHS3T=?v7Lq%S7JZSMG;tcD!ʗOո@?;Y|xn~HS~rRQ0?%CK.ˋ%6*P0?\Q*QTDeҺ/gBY";0Ms㭚lkhsý] <ʙ&=ݧC((/ C/NԔg/<52RT[&h}Y W !{K'uҪc-{G2u +%.=L y g甉7[hjIQ&IM76HLY8 SI /r4E:z&pM!J9i9o\!:m *@T7ʜņ1ڔP<|!!ҀQf,+FFL}hG}mU*^sQ 2oLt ~hW) <M,簠h p`gBhJ8޿pp^m[=ho:mٟ~TAyfiJnB?rQ;@v"W C"6?߯6OoF1j/nWk1Y4@>0M~՛Nm=/j_WC@qr >eQ' n2.aX/ɀft`7G]l} ҖHI!./IL`4Fy]_?gCφN3\+=x butR7mG~Ɖst>]츹ۼe ]hބȮgo맜(N[Iw2lQ`HsOMD6oQ7|$/(QE37Xfv$d(IxSDF8/䐔9A-p4F}Zۢ7&yq\;BnMd=n3nm[t9XF[&TƣҋAQ@kD#Y:N+y*[=ua)V!4{0Ϗe-׊.31Qk ,~YȇlL8$' m#UC}$0Os&h S8@7VVQLA "Qy׶4E-W ᨮ03P0fU+{"8+^tW=Pfz 3uS?uU'5ҨȼC(2n_em"'!֚[Ћ"R0[JoS*~By;A^=7ý<^lՌmvc|С4y/E.2\4V3j""w[|t8 P0z ^E3ᩧ&LNJ (gwy;w,:P.mtfDdlqݖU}O>/Zv?V:E"p?pmT7/ėvQ_>]7Ce{Ч}KQcd·HWw?{hxY$^퀸a0%/<̘z̅r ?`KAu'heWeɳIžǠ%piōѱk d8o~E[~FCȇ.h[UTqVϝ(j7|h s]42hnL:-a!~ _nFyӕGKdC,RV;?ZDdŢ{!Gi)Y%H7َ}^$0E4(Ӕud,ŗrYH\r!kkbٶap7۷B##N;_eWDE׫]1^vN:A^[;p2]^tF|Ô-OvEч)t}~1ЮD k [w:ת;"TJ8bmI?\tHSjrɠOu3qjk`5QcΏ>)E?9aeo~' |6AÑ\$EsvM]KOL3pmiM 0DZr[R̩{~ZѳÜƼ)L30t )$|E>u HG(c44PÚ׉~{)9β, `+7ete꽜4d ~kh.u t\;Kl/↱b:2$ӹK M)ps6EBهyճ6'!*zz=Z{w^B`)0(2=)>j4  9&%B5@mIs3 n ҚYžDR%R')˷Ұ2arV%wmp/+ۿ2;.p)PP~MhATtVw;ySNaqdi8Q4v( J-6se*u;ݽZO|Z8WMv_GK54A2= zE:DVxIRQ%ID><?~Q껇5Q^Q:F ۍ! t>:Z,kA*p:?oWO;܈Q~oGED @Wp罓@K1GG` =qO %bo}vi+^jcƅGM*^s]ޥ5 cLu=M%˻B]U]DF%+|2=4 9bٍ8R*82 !5Ƞ01:NϘ휑?/τ ;|Of!I9)hV }ֽS{gd]&ۃZ_'D #n+Պ&a0$@3/f>pJZzS~ |VZZAƫl6gjW sKe!`H'֖Co6]4F~c -B&Xm1gI%j7 mtpy@dNK`uA3;Bl1yrp rځP t,@@-=S`Šdqkݳsi 1r (KAdG 9YyA!x ZI)FТ(0 A 2 )ԙ23E;J#5hB1&ݛ>&dޗ7MU`h,N-C^}U_@ '1ug?ibODdƚVYvW/3nz02- q+ .0AHl-a1c{lx==SݵffU[ls,"+*"wyg^:_Oj" ̕e<•11ۼC @5uύ¾0hD%mAQy"g5mw'FP֕ekz|kms[7[+%=`xpB9"̬ Hw,۷WVWF/.!;qW&wI\y0Jxp+E8%`,?/WkV0^^\>mvu}tU-S~x޹ssF:n$^ՃI(RӬMpW;oV2gy%(a!i |w,'#*F ;u{~@ zcA))hb<,^=%XsF[sl}&ٷWz!z [bl|3tn>T2%N'(?:Cn|QUtFZr:#~ kk[YNg d #(q^97B}MkT8}(UۋmAL'I1 . ZiBiƒሡ%qB\^<_tHjW/`'IOG ,qPGz'ڎW;Њ{smLym=pp!6bJ~q'( F}SF1!$vtҕ4AJ))7FM2Ծ qPqAsyfw1yx'>IʙQĽw>rҡp+SJT=H\M: ZA& b%?5a) b❭#jhF@o+3 Xw΍oVҚܞW@!{ZAo^>ώPJ =y`{;LؽJKǐ.~ܳ[՘oy{:#v-am Oݫ}Y(ůۃ & yvrt8@IDATog~ՃFNt[V7U2Ya3DpKv.G ѭb5R2EQ7/Rx|CuIك;:U]YBl}pVA'psY3VV1Fu~P e嬵h)OpÅ)sKZuh)iB BPTY@^4In|sQi%w$`)7D0TLt!PE_xк\\ oɯӔU]*i~}VkFOX1C0:O4ob΂`A?LY2Y콾<{Kmyg0o Oޥ2J4&L^LH*L o uO ӞU g3,6?a8Џ`x #F4Kjܺz'!ꩬfףSXE:zkSd8'6^CuUKg7CKABot܌ s+qX/i׺hEo{qSf X ?[m`VR0|Ő2WpS9u`(`ĈVg߸Юi&gVJ@!iITAX?۰:uVLb&9YG12q0f͜)O/ZejW}3oִS(8DjL`4ZtLD":<&?44 ;4`X59qPTQ4qZZ}1~ RP4` =aй4p}wha+ˮZCp }"_H9ȧ ́ѸdB.DgX\ھ(>ಖ:ȝ9d`#S ³@|0ZAx_.sbpxNF ÃG5P|VrϽtۃp^M1y0u?e2wK+jq[n=Gahq=Y˲ \ ۅy._,d㏲NWn@os?%㫇>+uN9=(TBs`5 v 0lj%dz)Lhh2x/ANuDȔk@hYg~a\Kd+3ЌNMRsWedk3^$9PcV~{;/|*1#,c697H'^zGd`(#xd:Le!(#VKcj/ ggN|3fYu`gvbr3Sn>Vysa{> }#%*[u"͆9Nry{0(`K۷KF~Ӎ=pkVJRP>9"J!}V6dp7Zl̈ S0=lx IIOVh  ]h\7 ް$sR6 EYkV}<+ߊXV~BR̸]ۢG0 f޸U-g۷?/?[X`IR]UǛW!4㧋o\N(Y2᧋~pµ']# (eq!z߾ϳB8#Y& 1Lm'8h=G7,>uY YZ® W"&? 2\"V X¡8Ygzk/e%RXn=T8A\TɲT̈5wէ@Sȅ!@V A.͛O\&ߡ`o9aK@{gc!T *k֯N]f5aN9Վ&g:)pHk dw\֭Bxṗ<(0,[M1`y$фYFkۦtϗcI!?S3Y׀eeav"1B~§ (c=/ ܌1 N dŇo4ߌ x)ph &5 B@ A Z iijЌz"<{3g8!6\׋[[CsoLțbkјA~FyuF/?hۃ3p쁃GqAagtbl8Mڗh)oܱ^wXKyonr;it| a: GVxP-!p.vr:Z1;V c/FH !-7\9 iNA8$< Kqx#X gA;%>~ϝ#Lu@j5nm4C1\t84|ҺxN'c NH {K>ںrǤ&A8Kˠw'Id_`dMӠ(b2Ȭ_rltr>tTθϝbj?BFz,z2Y퇧a8䋓'Y| Hu\jYNVmB',VIX8ܕVf醙.ԏ\sGLO~սF>]s2~v7~m|RL^>l,O>xn=M0ֿ*K<9 ?ˬL\d?KY/j|a]잀/;ɣ%BrJ:XϪ;y!F aF}\5O*pU ={Vg[!ڦT8(T ZKaԝȥ+UO<׻(EOufvtk7񒄰}-.:W4C`#$䚗% X83‹XH*εG"a蘶JQX h Ixy!xY;Y q F[Ͱ4JTszxAcr%41vB#53:2 G[f^Гp*c~G1ƻVuG~"AMR{[/؀'?khh%L!.HLzP5zV^7=FWO|TEZKrevׇ\(dD㼇۔Vl"EAQDrrrs4L= \£)oӾà>)!p𧷀V))?ܤU9$i2TϪ?Nɣb⾭ K$ fΌBb.6`cJ,)PBMAd]9{QK~JFzOkmEC^V>UD zS^77wߎPt{i-~Ounk)(B%mwp]ljxQ\17m0wk;#w+%*SV_2㇍~Ӕ/zV#2/%U}x7IxTOe}#|}zY["qPKb.|"˭sq2 JRJLh+NnuFxuPA~ '1=x̋I+]RtS*HUy [>l-޸zu՗?\}N x 1͋)Oo?ni.9CR =.e??EhYr^åp7g83B#&G8<퓧Ux6!f9 1iO`xX;qW.F -pC"' Nh/Gi06 ^%|);#AHIkђf?=EOI MoY5蜥d++ėWJaGO_/>Nnv/>$$ף\gy*7X@e8LEf½M_Oqԡ 1Nx=S̸yy :`k,ӟz3y K0%!QBdTHG.>PjxB#0Wk}PrjnaOswi49;mtforq)NY xyF@x/ 6  !$v42"seE0q>DFh܌dL"bgEfq9=-^nqp]OE4`w9f}30@CftK>L90 JFaAp=w7MVR@B7 N{€4M5bZ`0~1B؝Z$eR$C#ڹ%`Zc0.9tzL+Wj¾h$8P.VW+ -#!bJ.XX`JX-As)!.J҅?ŏi\?+wZw*q)7獛Wn\|?ɧ/>I𷾍kk/xGF!P)!**A.AvVy<yCn%Oe>^1ǣ/Et^G..„w nKqorXF )Zm)k.H89v3[u<6}+t( irR!Iǘ:ngM(Дki"mb Pi*7SݫLjr.MR&4Տv=gµ59KyYMXާ4^G(z1NGU΅ mmf44geK>#hHaKn }v:/*6/-.>_Vbx\Ŀ{~s3@Co\F<9CQZ-X{| =j4I=GIɔ%Z{vKv*#4ȶT=7nzgWR{ͬ˸-z&dn u~`RKg|>|o xn%\zZ2Swb=$F,Ft@sB&w4E4k<A4ikw>F -:)A}!@0W3(C\D3)r1Ό31ރ‘NWg=DP@-N$g1@I3w"A+ 2RA}s\1D Oyo/zF\ӐʞFEo{6C$"o,VOquk#ֺYhW"&<ǬxlGö)@Mp!) *UJ[fI Q4Q=1:9J%;>jJb!s\Mzqp.g"b nNU1ܸq#E-9\:cu޳4zg}BU~u&|9~2]t*ab _"޹$'Uq.:l$ IQW;->89W B +ޗOcp\gØn0(Ljyh_nI|EK냣#/:$pM./b.< Ͽjz5n ~}2ܙc:ufr;se.sY;4C™0b^.%tWh]Q-C++7Ȁ/P"0W7l} o⨡e'0ikW_H䓙N$&m!g3΂h(> `ֳ;8ֹ496AbU5'C[x¦OLU76.6aaAh0eHGԾ^fSK!6KQp ,S%Xjt/6Q(kbcF^Km' ̍Dl)+Dv3S[@HƂ$G g E'"Ddߢ!MP͔l&ZBd-$5 JXm*CwΜ a˹'6B7 7p΍V?˔^,g⠽(Vw1j2,e ]r܉wrSnߡ~GBVkݛB y $B,/MR'-&)uJ°(=I&+~wD<|/Hlo)!fV\fgބz E~p?Ëb^.Zz^}TG1`kƆ_ΕV-ąսw3n|O`?y7(%`D z.񑭮ӞDP{ î J9}V7^rׅRW {"',4  sJa;{y<.T/W12^<<=VPq۠>Q?x=}2Y㇭ pVA lQ0 g"oy|5׮WXm9ٵ25;JyREGWꨳ_ކWKG7QR[$sYî w>|K:c86%$`0< i)NX?8/cus}qcNϚ? c Qz?_ *o!<2펂DE "ncJ ur(@ig^Ŝl"s ޤO1Gx>OTZUFhx(sXپtiewC~z0WVK7ſRW*p^[=ahD<=3x*ɲD&'?i+a|z q92 #0[;r/nJph9Y+ '4ePN'SV9a,:Ϋ+<"vcJZkJ ?*/wl=$,ndZ THQ b,0{RL`M |#^FgvOY܄:vrYexz)^Wks5w:8)b=Xܹ]7`w8wIjoRL4uJ1< Y̓1k?0g)XS yj Eezy2uc%:=܋օ) gwߜLu3|{T*)Vnއ>}DP:|Ӭ+SYbpeb"'I儒 ),/O+}VJi쾂(dV!)3mAڸWj-UCGy0#aΕ~W_'. +PI[䅬*mYm%D"EĒƎSh&HaWpu{럽8y&z `j@}Yxx(K^:Gx})C(|g t\4'j8B}\3Xcxz4]bqwI<L[u:}oŸ_}Oy%h5~w>Fi^h0;?{g?RTl{6 t̃ncF1CC]a~8 —A"xU<Ihn,_ _pm5] >JPؙw9DBEjA.R\RVp(T#>, un1 jek/yu0u%j,*~}mЮQ9 o3x.&׋7{w5ivB{E%/UR}b~qwޝ?6v=;£=bi/3/:eHT= ?Kdf?lexECuO3 a׀K:? G^ŀ&ј\lMiPrcZzg` ㎞(s18bA"58!|9Η(y=YpgXZk622xM8lS Ge)5`:/UɆw#WYk`=lny'}ɂz&e;ƻR)њ61Lh 2AHN!ipk7BOg=]DB)w'Lce)b{wt0I5\--}MXVFN{(qttsR9`tkm 9; ]ȕrx6@<))mshZKr.iVq.^Nc eB흵,!7K̗uAV8'usa +d Q`R^uYp<yaU"RA8ZoSgՄb/| ?:׽GR@ᡰ5`8} +_$ϫ")hkdər]_]{S,$6PͥJ ?)J)puTji5^ツ"Kw,nk zkr{ 1HJudwW@͚"xVogM},9Oly0^?{0~=}k }KjߊIv9pO0Ч X]`3t^Y1ڭ[|81}&05oK^x G1"Ш4GǛZMU X\>]C@.=%W/Og/.P,Ns+)?M9gXa Z <{sM*k]GVt_+fvϞ~@_|[[?fy |_eϓa-\×pkg?.^6 1&J;*Dktˆ[\Py|?,\oɳh!NL5=3z׾]>^2F? p 淖T&>ιGQM2Dn=J sHcbv!f?Ɵy,l@Zn!8밖ww೯`']lTU}GK(e!.Yʹۉ[*k!11ڱ@8K#e$i̾to!>.DĪrhfusٻ^9-*8QtvVc$ %W1(J c\W)וB_0,OŸ:ˈU7RjL/8M9:[\۹RX()8 .=^n@/j7aĩfT⣓,rNrs$)iW};pv\龼U8~?{lxָľӺs;1|#EeIpqeG/k==\Ɂ}Zhdm ros{TtiwR:Zv_RVዹ!(W+( 2e7uVj1g!5 zQegtpg>OzYYO0](yJ|!?_tHnnj!A1L)#64Ӹ&.{ =65E .y)Σ{/yN,1>bL _4mfm-)ЙLG."t`n'Si{}~}&"ٺΧ[4,)ʼnSf 5|(r DFSj KyJk_~xcqvpV^b1gXZOORju~g9wKp(gͣx4&NxN(T lttc1j#~ bVʰFf4u1zMH e/Xa<0w<X r7sÕN9sXBK66(aJޜ9mJUM%BɆ* p H :|调ָUDӰZT,M iX#z9bTϋi#}J:ؕtKй8kFN&3YZ`3NE`MFq!inXrLck. .MejbJm1aFn1\?j0~ *WVa!`t**YE$JMz^,.Leb77 Ԟ&/1e/_;+{={߹Ŗ;Ax H{5=zb&U@`9&RRt7ę)`{C62S/tRƈ(v/)=ێ@jx#*GdqEȗ]ʃ^G̯Vŭ6KII~ v¥,t _գ9.s]xxGe%z)RZ9=TF^]f:xq\nKRoחBoi:[|fm?+'D/ wy/5ZKb=|pSX|;.~[Rny$Qis$7(h;歫G ^RDjQ|)-[^2$(z̒ r %Ss.G>>Gr/Fq%^ /+?t󠪈k+:پP_S-7B$L$fG^Mt7(rjj}y"vS il}]p!yBv!}/~33M&2p2? AsNļ7ܕ[0y,M IIP ^C>'#Lk øYx$ZL!}5g<i5{dJ>-o ީqY˒! ý9*geBgL KsxnC~wNqs߳#/`$̚7]`V 6ӢP#v c|~D˽3 )oeE޳xW7\cU` W}LZ^BpXsRވl67@7œ>$8 | o iBw^,u!h\5/V~7FN 4 Tg0R."`K pW*p]=ì+))>furM>Oq>/o wo߾Q~󍛅V깟7qrNZσQV7Es?^{_N?} K rDvn/ WY -) k{'BHutrD͍1/VYe8k%>OIiبqGn xm¥[ _Ec*L8Cc\=M~x(cw/w| 7.r+}p QP  ebk.e k< #H,^;sACM4jxy*av`ggz{ͽ"^5 qBMmou-cN/;rOBct#%~4His*B^?~Aqw~닗%.?MRt"'PYb(Oxmn<:8#7ࣀ|9*}8}e0ֆg3n\]`y oF.'wjU'>08K1e™4fhA)Z3WȓqG<ԟxJ}B,/.8ztWy2:œ gyǎ8N@NңJ v)2^crxRE4뿹(Z,=zrGÌdZH.;q⹱.j]:x@IDAT2dY T ̗ /:1>/BN̔PwphG2䵕mhPp֒ѐ^OzrB|V@Y)ph Ah kY^1Pw!'n2_aȧ1 ZEsP50K.Hj HiV<.t.;˘bYÚq/̞ .*0L^]ܽK\}dR:Fh~)iL~8n0]vA] xmLb5_5O'G8٘uk=S)@]Y|)s"-fCcpk:IJȴy1 ¯ጻ]sYui0?D^O{7KSLG7b.BTl5Vi+||Ä_-b|9enJaۍȊGx_4+bx.:SYra Ok ~Q2?.z$䤤pGTx1o*[vIJUq3]6:,O>gTWnJqUyF,pN.Wz|c`#񰵪p+$F[ʩyybÃsDG`}1>#7e5s!]L3cQoKp@\VqO}jؠVxJZB|s?p 'gmT l0%VOʕku.c9l̑/7>&\jg5ă434to1< Xȸd95pt̲FhL .^6ǝaS/"ѣ`r4k WIlO`deD=(g>X|G?Z"[e#I[ic&Kض(XAOx|ţ{\**+{*Zsm\7صN]υBQZ\w;>&a^=Bӓx@Y_lOSB(g%С%:gɲQ=lzM1Q0PWm0TlFT u)Y0<~}kZ!̫W‰5۞5JYHRv"hĽ :EW?h Gl-k?,ɔ鯯cBJb0Iғ8jy&qGMf#1A;ϯCk .Bf)?hABϩPWٖԴX*ȧ.Ԇ"VuufxN'J;.&5B/nukR3w/.f ֲT^KF-e\$M"^u`t fu΄-/f(BI]IJyxep~q=qo;:wO0Mb_½!hZk. )r]8GYrKR ֜sDڔ Jd ~s?juJj>^Lعn|tRBGh@xf .4KU]Bˣ_鞁|w߽lӰgr{OY{22#T|末΋Qg?^|wjRRҶbO$I*O|p/!`]߳ Kye..Ow޸04Y vKVxb2jpO 2(oUҭ]I~lE;峜(Y7--/ 8iYQ$F4[.!HA0!#0yx '&y/gGQ\AmܳQ[wi<+9/%RG4iW96' F6 wƷ\{O&q\p'64&Ԟ50XKz;^l=S %|Jdp@aEO4ni?MSi|/w6@Gq_G7aLj40k}ԘqWkbgt p`Zz %w@j1K=KƈV/J `uPLZF})"HbpmL ppE-nc^G}6kz sV镀gCV<Kjn.9M>\Ӻ4 "ttoaczK$HӇ;D8p " J"euBc%('(v%jqʗ}璜'IIS &ݳXM*U2n}+1(n6^Z粟"@dr->Ϳn{DXWm)bK:Zo뽔߻-wZwFcVYbQdrͪP2%tgkz.u/A?xQN z|ͩYV!Ia>;ݽu⶞g pV,e5sx/8KE^YP_BQH6NpsZ{`ݗ34?d{_>vs`tRlwEW$c$q0ϔ+ uE<[N/+8E7H¤>.`L ݹ 9oB]xxnsHlpKV†OH5kg N%2?&LS۟QÙz$*6ɺ@1-YR_JZ;.gt/B¥p=#D{eɿsyq}V;!Sa~sG̘8L_ύsH)o6{ }ǻu'p)0I=gt;}\㹕%ͽ 3G1jHu-ɞ'W++;kyJW >y ٦:cQчWͬj>cGr|觿Ʃu5=''l4h۬ϺQ1j H <ժx+w|J[qngv,, ?tzW,߿pl)2h=疱\cMmHؠMjmƁXPYkrlV}ksm5\I(%H#}nn] C ?w9'eN\ )V(0EcOZv7 d2jEfWN0" c1K{t 7| .uAL#?d)-W2ԕNrAXLg,GŌO6ڭ@2r5ĜhY2!mKm#tɥ՚J%701L*s(Ys b*q}AlH51FD;8G-H''OGJBA= p0ٳxw a^yP Ğk;g;roFx^Rύ=9~xzb\rfvQ)"G_.~~6yN]˒31Mƭ߯/>|^yﭼR$nU#/fyO~ҰNkS`)_؇xeߨn\9 Q~w; WW[]۷{Տr3O>O{)An|nƵ̞=!;$$\Vbg4,:޺\,nğR^m\hW'=$ q{!ď<Gt|u @P2ڣkL!`(Q$Xqm+bG&_ ҅ϱv^E"h/S!v{'V>=|_F} G^dT^xx%sug{D))N$Z))&(Pzͱd̬)6 R,^J@oXpR=G) K>1Iz,&<,ތvE4'e 8== P{zh&%XkMX=F3shsq76~fi>L {3 yC5ì_ ~uvxRO.>-~?+D~1*B صk!QtM О=t'.4GՄ$9/g9w{΃LM9Cp!%5 ˛b3WP- / v0 X(py=u𝐦i6oA<=I2RNfe5aN?IYR %s{Zk/ǿXo,O?_\v fģs5ГOt`QC6 b:M,Q.4!Op 39VȀ ? .܏GdJ9ׅHl&lv|o6m/Q`dT|K'%xcp{/@=10 w˫nցhSҋh'_R c:5Ii,!;c3>1BO"Szs$3 Is_;16a|zMҥ JSg.\υ~_N,R[-vK_u|RIߥL .?B o3>qOɅW.t-o{WQj?/x RB“W+Xrw:^ycDN*aWrPzR-C0\ߏ6 0UB%3< [ Wd Iry!۰0\ȼ(KCFAFK5Sz$^;X}YN1~}<#e)i5%10G^8t4]=A!PJn|/?SxD\%AFJph;e]x֘1kn~&7uEdp9e!_SzݯxOH6|]vaǃe9!s3_ 5^ICIB>dp~4sY`[(sI/wSyӇ[ C}/^99I,_.ۿ.~v*w1. gYbf/MQ+RG6IDshaʡbʴ Sh qA~%U@fsO@ϲVX{yRdOː'9frBJC\b?[!dAg(c!gT٣5rVSuU׏i,Kl'نXצscVw{L}4F=).1;y|1#=h5 = ys`|0g*31J, e\cW!_`S7}i3 "9 r@S>C&`սGu*?/xjqiBJ'éWY B=~Y<ۅ>|VnN)*o5vQ dku_.Fҥƥ-.{)޷+d /=+_e@㸃Krm|Y/ۙ_×~jpR /˝4RfWpya//yH_辄ݔgu<GH0I3ͺ⽺->.EQ@ ;Q& 4bP&"j獎c 48]F{H,v8s7z:\^sp?q3?xYc[^l;nLެ[kA-Lnq}uXdR3@H7օW1ǀ=wAG<@8q$Kb: =a՞hC=̓ik/Q+"0/Dm\0blĈ/#`+KbD,u`ZҊ'iXMy|cbx|-p5J; 0YL\`eS.%0GdŵV#9&f)> n)9ա 1>뮄1;2 DfoOͦ:ŮB3;+bZޛ`T[fVVs8Vk'=eFbud6&_ {uʒ*a[BeMv\\X2[Rr"Wn}}_)sF(g; >wߕ4'N߅95u^-Y(B'%"sIm!!뻦9+;^ ooߪ+oY<}[p]f"wn}#&uz#}E?'do\A]ju\*p}|U>AG}p.^Ȋ!REB)B Bnwn,VIRfm˜ߏQ )Xvy.SIԁ>%XgMIO؈}@Y o|p8p𒣠B2 [x< ѕpB#n\l.yߦ6fАψaMj!ƸB;M1M)?DWx6B`Gdܿp's& #a<Yl,4v|MKV݋%\>Ip$Gi-L:mDeن~zcx=回d>/cɝC0OH1 2^IxCa[:oxg\fK(*IOJlXlޢ-Ug8d?m=5cNZ6Y~: 9Њx(] hlymɺ`ňA#Ċ*^+!BF6O{'8YW^Nivkƞ@ vdI"?I:!Q,b/>/J~/->t'vL,(pwY :6YpރVsnQf;+പ4&qV)|i-tLC 4mkŦQv2m!)=X;5@LuR.S.{e8_|o(Jj|{Ua!jm/\~uk:!&\ L'XUX`w:u׫^]NT54ܽ]p.\Ly~dXӝuye}P@p&=%Kn[Mr|6\e97Nq8Ҷ,YXę@̨ KU3a=}4y!s8|#;qXj”g`\Qqn)[{nEJ>0&/ߎkb)"gRf79D!A)T2^'`'dU۔þ㍼uTSzsɵs/xcxd(2GD۞%2Sf9f!S,g$;`Kv'Eb>\Sz6O<:9 HH-Q:G` BT- i# Ak/.o}{Sj+^H (<)9Zh]^h:+AM K֎"r1pp}F0'\h0(E֔>&oڢlVp섡 \}c߮ׯqhuR™|o2 xNxl3`o KE j!!vգ?[+˒ nW!- Jg]xZ9SbU:.  *_kYqݼh' rn!= nj RKo ;@f1R[y !m++[W1GF:Tedv$m j|~Eu쭌nyEcӮk"zm>ps\㶂cGi)Ir~c)$VQ4II'XAi,:ȒOi sQȷ2jb0km4OfI9<%{Rtnx؍J P.S^f֧\#>Ŵj+܏+h## Ia VQj1ئ6.G:t-"D`RvG}^^I{ĽW0aSU+APz/0 qyzlk%&>#,|Iݺ>|.lPر):ンx?ZCTnş쑷EW+d7]Ѭ w*ٕϥ,SqI 1Xe* >*mc),o*蓢s0Х秝|HeOfy: @3N<φ]=޺k[f/qoeQ3)`VXV̏LjGγ%KxU[>GMd` 7Gs-Ew M ne}qfB#6;4|z;Aӵڤ<5AFQܽ?xؗ5YU)BpÜ])p"e 08 "sD4 boӓy받 K>9b] [/s|yrOBB AzP u5 Ri=WUd*H[R1Wﳼ݊AN V[u/z"S55kwڑ-SQ6PQɖڼ(O?/?4#۲ 1{p>j4&-wR%kSz,n 1ص4#w`?ꐑuZ 喠Ղ$BʉdiX[01ڟI}tirX2_µ,O \[G-pD JuЎ$E̳9MJvY#l"!m`>c/-bUL]?^ymJ; w-2?i1~ʿahwR$.Uy+R"Ci)M'L>a1nbCmg 147Ixkt{1[ʀ6'5|R22_6 -t&)xM0PDFʙKT0h1fA25cU7uhoSATʧ!0yYg;3Ҝ09_пxʅOn,^RnƧwnk,JlOI nws-ֹgk3Ϟk6?ǰV/+Z\8n dq'ڵ& kNig!~A/u<]+>ɘ/>%ˣ%uߨ'y;up|5rbo4&Ьk-*O =<Iq/rIsPt 9 H>CL Vb\Wn/.i (;Eէ܈J"A\c 8dvC!P!$#ԛ[;YvU"h-0D0DC:Wp u8j?Wa~`ynwpQYYO%%;0qX5 sŀlv8(E)60h-\ʋ>(}`gɒ%!`qO2uṕwU_ J<3PK)d=L4 qR[` )װmb̓1?ϥ'9JP|ʒGC͕F[Jq 9'̜2ڳ|(M1dMϥ<% ^ػ<>J)[̙b(G6elk5:[ VGn%DOX(+]HM2IVq}fefd`qcJGkɳ)#s$TV;!;m5xtW=:t>{j}he"+rVOxo<)((:00dfwX;{yR*s`2*\Bjɹ0qHVΤv5QTV3gI>Ǧ>aGX[k'm\mg3%igX %n^8˿ogO;x1}66P&3GtKe)ڗR54`lhc'hL4B1|\Sz{|{?^v'`'%:l kT?~%N͈%u2:L)%8C (,niц wZ[CR+ ax+ zѦ\}'S*d'HROZH1iBoUM w 4ޏz!wV",򦖣\#0˦T\>ʄ'90B:l"wo2[*%5~Glnԣ-BrK)!DJ3.vF,Ų1-:T$D@KsJ9 =0QLq!(ۙ;ẔRhGA;4bKi 0+M6iz#h C ,ܮ̾,ᮅ «'(  QA`^@]R%Ͳe`_ϊ'xZa tJ(${,|GIB@IDAT4Obd{!~~w>}V|"`Y^y~i>-oZ,O*[_i^)'ծ0^ZOs|_+Ae̕~LU|W ~oym\8(4[r툈+%t0 -+o*=#9>({ՋI^=ȅEG.ږR=4 l̪y>5w<жP4$`Ŵ;&X('<B{[f7Nk<y Ѓ {Yq1*y<'v%Rh''<{ }g8ʎ 91Z3)&߿üaaOF8i"lƢ4iP~c0S wcԃ\jnKCt5eEy&(KKQ3@aS4]gʛh~^̯uiÕzJo m֔@34٘W0cBuCGp<Ƀ8sC*P^^8.Y<_ӄ0[k~)g9uUUTOpS5/w%S4>;bl`plNa T+bb^<p@S'௏S(52cj-F:F7sqXM_Db㰨}eZc/q'I( 'EH 5']xfbop/Qu\jBq\,ɫ\ޝ3*τP5YU49&MnMԜpfpWh)˞ϋJZOcf`Ϟ] ~ f7\58$vN?.y6۲FcJLãà$S) ~րe٧ҢB`@kͅр+P\]qbaOP΁B=%= _ Оyu_O|U/4Hb& .#Ɠ6cp}KdꟌf,+FgkIڍALlqTT*me8 [ln,s%G-vݨ{c[VL1knU^S1kJk$F")pcKH$lYܯhòiGQ Ą$%I ;)ov`_v lvPf _Je*tk˿,'_~X 巿Q-gXr]b=xA*)MOrʗ+z nߺ$uNwik/n<'AZ|Dgm1exzL\ 6\BgNdO ־И|iBG%F{s meyOmWP3爑)݋9Rk=qk~6=[vδ΂Dc  ?=U-R-zL0tAi&v؛u>߼^l4yi>Z?A6d{.29u@C"&0aoN ye* GSvwzD$q>PIm &'Ɂ/,߫j`[`b CUO? [<|[ u> }iޘģN[|%YVk"N᧳[-?X듊|]غZ˭Y6BBS!ANc _†EЦ Ya9'[0ftD g@EP0$ɋ  mLrXn  Ǹ9/i?>4s!O!|4oN9)Cq:Ɇ2shpcD_͗N{Kx>Ek۵|X =S(u^ FAH y^2:x$W0~7:)1R\[ĬnƇ2v4klwU|=IaS }?eoVrjKeBFa>P ts>cp`b` 0IrqP#;'US{ XY2'y3ҝxwxV*%w'nt _)yٸxwlU_LN u8{A?;j-{|wÝDbe\pAk) =!jzǡ;S/!B2eHO|6.C( @ Sήzq`_a>b,&dP;IڬX1fm.!8%~Rk vXQ6fuK*^[ܭsHp`# Rڗw ^ 2FvJ~z[ſw˃nygO:"4{ ס-џvtgk%ܽ~݄/޺oN6)1L))Uˡ7l| u|ѧ0F-~zsoW$,*dk:EZĞ* lꍄäDF W<-߁W谘bʌ;Ce{o+YxפuF`<;\%KQi)ZBf4Zhw$a{+ -B'p7@P?#O=]VWj+kmBԌCt+֊@vjJȞvS 0XZ:Q )]ۮ[KGƂv)>)=5@C{Us<, fVqi։hغFsMg<<y^SQi~UZkTs+&JׄufgIy/ W/QqATO?l tC.Y|}3P|nR{޺wgG3gz4y_ro+cyZU%Wú8]] #I<9LnYG^oT=ZPQm~_-޲uFrRk |- 1A)O٬yˀ3^RO+{)y갹\~igV_G)nN䝸ҍk +OkXۃ/<; h: A&WcXTXz[!~Ȁ:KnVIOe;@580C9 gq]c9h1($v̲>8]Y: I~ 8Z % ,DsE R퀳,qSqY%Akv( 5s5K0n?`3pOKcABLcVK/MhrDŽ8!,!pgA6MJX@|GZ\tPrW%',-b5gWCIL녤`"!1>G+/ VaEfYP!`+:DsTsi2"(n4-|IZ{'8g]sG}|V_y%pwWT4<ud/fy\a+U֎WK߁>v vƄ4GS4R[O"\|koN/˷2k˳%@]^~_]nެ,ooLs3q/dyWW^U|~inP {eاg7^ ZumWTybǨsEjo'Йw I6zܦcUZZmwVk)T*-Kѓ?IMn^$Sa``Kq<4qNa_A R^ 5ӝydEv~ 5Gۅ)6xY>  <8ֹG or =דCi- },g-YdfVFٕ=_gO?Y.٪` :;W= s GQlͨiEy sȭ~> X|@Skj`~|Y#HB <~b~j{Ӂ{uaiJ&1hM&w`'cCXm2l)4!;K9[c8a=*n=PL$L8*Ífh‡7}`6u">\(<:AYۘNOkJZsFB1RYUc&~ޞ b{,nudgJAv#j½{,*8Z_h[/by70*'[{ki/x0;Cj?+ԍưf1K~۲bCtg>8ֵWwζ( 3x8! 7.wr# bypj'}RYwLPeNJ&;3֗wxe߾U2: ڶ#F^띄}V=N X]o;޿'s[k`OTb]g~9"kVhe~yd/w?\Yah5Wr,^i0Ao G]cW`EVl) xLq7[wϔLviҘǜhh4{m(-+}:f5dZۘf)`Yf Bՠm+fqnXn.}C|sYQ0XޜނRic cICNccQS4;˿%f[~[o$>JK7Antbe$Qhl% yw!-vk7xuZ{'Fjc"_r3Sdڪ8eHhއI f1Dm +G:8CzqGѤC8'SJ i_ƙ]Z@7KIS0+'Ov*`˶ze1z[忣嗕O~?b._||b”5StUIY[_}{rW[9>Ò*z{ur JS6#»S>.~{~\{Z?o~=&Ӊ'jمOHx9%+A^o kчJw^PSOO;wbem;MVe[b Z[ `leLGobOKìQP(ܭU[W^ wͫJ# 8BW*{!QB9PdPc?zg\yx \um!!egFJ"E 6a9el;CƗL${ 5dD+gQ=/}xCj U52m|N3Abq Eͳ!Jm pBO tx;`xO,3ޕ[TU 6cMKylxpE]9ۨn|\ gFd N٘5?1}E xPOʬȇM 8pupEX]vT`©sNVI=e| i9Bv 튛O(=A nž.Ȯ`V0՟e5K/dR8+oX cE`t p0B+HefNrcHQ,Lg 2.8a¼~ Й|%՝pX)10@`< ,Lik m pN7Y0 ?&IP5.=ih%=Z[>6SqsIxSn^`yuNRQl ̬I3g.VmQ Ÿy5p3EK 0'7fY$T=k}gh}`SM-jF^ 2ckM'C^bBIL30n^AQ. Y+JS.W+jnoOour_}T^ab}Rr[q;%]U$jIR J(4[?CWqü,;y5T±7_Ѓw@c9n+f"Dkp7Nj=/zBEDAK}R0^̛pW O 0p>-*E+2<|^]o]z 8OI8nd7ج&Ww.褷y$o\Ȉ)$Qv|9/&GxpKy9`Rꏊ[*W̼v&0MYkN۪=lKL֨rX^Y_i|dXzB'`AslJ}0tf3(4-< &pp]\?{1f jib{).J*IIvFU1C(kCX \i1(cdMѓ{7p% 1pZcqtQ^ʍ )"ÔKyX:.YߘɍYU#ĮU ?Us-)_ m& y唼 kLqpiv!.ᙪ *&"C$NyGڲkc(c )V m?ѐVg%qqcqa=f;-`}灢:1R ^=y0y{dg@6RH:4{{.r 3g h}PĵXkx։y%zF;sWϛVC#,!&긫B@8/[/ʷwUn-wB\oW?p jAhkwt4E<K;OK0J؁kkn:e^\μ ;/1uQ0lUc]_:(˂^m^ c#YZ 6D%{&c{h`jhLR1Ì?,OuN ={gPԼS 8fv]5C78][C4/̠{v 5Q@ln׮GO+ (cJR "VJrIYA37h1rLb&11eA~Ӻco? N|)AfE(w\\y1̤X@V4(VBlY.sLsh5WJڣb7-MVBRS_}OzY!z#v)Iۼ_}|仒򪜶y.nKyy)rp|zy_.^ynmu^̌se>l:q0F1nUm|X*\rqµ3ڟ B9ay k4)6[&ё`P0r.=oQhf%)(hu G@dI,cp2¨/# SH#/=^QV5EĭT&7k3t٘ _{'\h}3[ ϸ5DW~O-fJxڴL{e{=Dc2E vفafNςe5Ƅ+.weds# ygwR*\{ ϊ{('3Wz*:O<+k_xi(ɺ5$zg 80g)ۭmrl|\9!4ufvfLʲSzb!Ex.e)]3]76k;UgL[ '}h&vTYwax,w1HbNN}P'nm< (a=>XõwΣ TV*hͨv).`AB# Im(idHuXAR` oI˚xFUX.AD& uϗ17̤FMpk= Y{Η$tRʍv;\QL% j caM;&'2v^X"!QsLa0L>myo>b®(AI*s%2ںaAfl1k͐>xBr.y Ŷ)"Ě{^se,Ϭ#UBe*3w/:ړ=.vGbHY^[3 bb?UBO Acu4ޅSfjTv)Qk~-8 }.Agw=\nu[%*ggd14DD) /bP ,`" zXh~ƌ(u!&0'\"vvvڼ=̍^phwN)f%۳޽}WJ>ᇅX3ao,>+1uG?Vf-:-oA8\U.UWz'P>,yɏK89D_Ģ%}#$n=cGM^pZ F=; bB5>38("g7®B9j[v  im,|bU$ZQP]5O턧܍TI FrF\dNsQ_ƺS^91\kz$Fi=)&%l%/{문~hs-6 ZyJ)]CzpoWxrKxA>m?knM״vzS//Oz@+UJN%Lf2cS&|:#_zS ˿uu N88whM>Ap4) ߋIm|[ç]$l>l(SQAyIF ϐbi53v^qsx6p;ñzzM.O.GZ5,O2?@Ɠ>,Ԁl <_d?`89WsCUxh&1(i5Q@ ES DGa?0AyjBCVܸk16Y3(Y.Vۣv+1<뙛BCS:y[|Lk1J*f*T<C@sm9Dhudtf܍`%'651`gѦ9K%;+eQ_F$dVfCuHqѹ }`iWsO01ܾؐsPLYl ,n1nZ1B5 fE\ͥ,bl] j8_e|)S]wGf]'"~c ̶Vpbo>JaLQ9*rNNpЅ(&B`=kS-q1B`@I˧>_,S ՞ݒ9*/R%J~we?b!2N|B/۝EP`^ ^Kl+Cvr?}vo;*m\=޼ݼ}PRXEKls*A W^B=G^sp Syobb֭c"^E2J\)v?[| nmMWc)KSK8%p0ZaSo Irȵ }(_LFN1*V!tHx}yӊ <]bY3=Қɿ[/ֿ߬~62p#RYItܠa o879ӵ,}V59($^5q@ W#J HjsG# eyôsZڦI+Ǵԝ*2 0GrOƊ&_{Z/H*>QҺ!#h x9hy)I6X YӎjmO0ix+,hA ͛Rq Z>qZ!FIo=+|ֳg79ܭOvsgD "镾WD߸%]mKEk.@ ̋_uջ!LcsQ0؎a'uZ`\qb_`gܳP6Yu]0*XNz0܈%ŵ/Wȕ.S ( N%+˻o/ ~n􃔜/5@^>{vewg7η p.A[$q'W^ܾqI-?79;@^~m׹f/UO>7 _znQYΝ"WRjB!O\Sb?Y3}vu\`~bt!Z wY:9lmo9RMR$T!#_i C܎ms:sU[NcއU`\T445Irb<faX^=lg?$h,4IcWzYuKF7|?Bڽ|em,評*u$c͈(lɠ>VpqBneY,E V)64#X1B< $ 5_P-ĬEլݝ+Mx GIe_=￙{Qd,4I:VYF'pibyXvKkw7^y [rOaᏐ%{a֑5^X0Z1h,YAסTvӱT4' "F 7#xg}̮=<ĸg X4f/; ~]31N_-͚zL9fP\N)Q5!eV# \2ƌe~n aW<ۓII7s NPN+) 'R}hqՖQ',7`1gD!2jpۢ7g-;\h^ы[˯ nMs >#RVci5D_cS ‘09(|<&| .Px'/ppּq=ٹp5DI]OV/x^}jVVN^GQ.LJz9)B9) /R2?X~I9_+8Ǡ43i>c8IdۢPg2V%+.9u^ 1'?x +-9m Yfm-+VsЙXc ͕X?mYu.sn2`i,pe}OfjɃ<͙dq6/ %}.71+ٰJSu]Qϳh8N5F5:yzڟ;K EiqKDD4^`U`.bBAjUSDjSyVN1Z[gńح>JPoM d J.EUp)I9 )OVLyU/BbbtzvzsKI~rwyvw~cA,IgO;{1;E̞+RS747pA?%N l4잯R{_<]~nl+^~Ã`|זu9h |/mj@n7t)3"}UI9(<[v?<[Ϟ|XJk“ԗٵp=F`jQd#Ia'qtrH1)Jh?s4,P17x+V>܎פ獧N&1OF%4m6_ň?5`DÝHqN uz}՛>j﫱 a4|~cٹ~k̈́`5}S23Y}ݻi띰nser;&e_yɲڅgߧǒb.+u#87a1&cvQUaBY,`ZxKk6{1 b}0.-vDϋ F2e7# ]% [)Tpb\ (%xRT,#bRSR% )ߏlIB) ;qF `8ZIM:l:ڶW\,.qP̡iFi{bC Fcn<g4+G Y907%P$~D|&3>w*͎6LYo|܂'(̓h-^N cdvZεEh4(BXTځ^l7't-sgn2\\I՘'f҉q}w'£k+O`fx 3틍İrS玂Sѝo<הK&ry a X<H[B 3.9VI~jlHEB2 u;J"P ݧ_l{3QgazWpϗ럎~k+7_ߖ{^ހJǿ\u8Q[y,~m[oUѯ{z_-w]~8yqJyb%ZC籟f&Hc|PϊE`tnA~|\Db Hs룻(_;;)'NbKNo^ U1LVTcD':M\_WxBJLVBR n=! &Ìr3)@ϣѩx ="' 'ރc; 0?"-5OtY" UW ^ڦh]_ h } Ҡ 7C9g;@$]0^Yy٧O@?%p(KGLyD m#Y=@:lo~u:Al5d#\ MŜRϟ?^~w?nxis ͌vfޱ{t ֳhIȭYK7ψ,H!Lj4xpY_*z:x Be^1/ 4غ>­.2R{,\5WcaA.(!v+84~;ȹ]][ywN~͈ۼ84$ߌ}Z&4FijmW]o$LN C,'ɏUjduh S >wmz1An Cb0@&g1q#܈g:q\=/Y!KN2DhS/8hݑ%XtbaV!zgbpʵ3 .vK6ΕH ,ZOyOAs> )7`1E Vɭ,{+_^*mAф -Rf'ccgqχt\v Ѕ*Bi'>,~5,AuYVI%E1g^<0 a(_ {0q)ZϘIZ1k NR|(>59K~%4{1`tU_¤ĽJV0Fu:x-y/+lEO|OlvO3{w^|t/0s͋pfiH_nu&W|8^|*Ą+cOwNk)q>-9X5{?I ~՛PNÄ$:5&59M{OsʨGW|HM9˩okD7JpFWc5s~tW†;7vwmBD4'y!I}aٷ;_,o]zWeҨ02;CF[>{˭#)t$G+QI;YWm;C8:ZPKMn݌M?\W ?>(wI/-˝ K˓t|arr;#֧w]R@gc $dGk4^ʓ-؍FD>7؍lUc'`-޾˦Le}:^Ԅ:I<+0QYB6DxЊ$k cZ&`l;zBxY?G:ᝆɩ$u(׻k*5R0=[ܓ24G.2 aҺ-J ɁۋOiaZ+9΂Sbݣ? emyxֵ˷߹ܿ]ȍw46{[eWzM۝g zzV^@G""~uwU /Ǐ< c. UoM/UGBV޺GR6wV$p0\% Ry~dsbٹ_Sq40O υЬg]lhy +u*ޅ's=;kR'5&SFbP":H o-#'AqpZ4/,kp=+ 3T aڃ{ _hׂ4F`sKs ^Knp+?!"oq 8Nd7UwxrI:lmǥ~>I=\ оغKROX<kȮ[ysp. G)/S5ᔽ` ٫Ez2ܕ I)7Sޑ`IsDlo}CZhjN<Saxe\Hٷp+> 4!;teC&/?3ޭ}sñ^kcl|y⇓y _INnW!t!rW0+Y{`rGgTca-pq%FvJ(#Gh;nr&iH:?ڠ]Q0.JP/ eNg+1MZ^gYi!y `;!V6T )X⃳эy넫"0&.n->4 J8pMcϟ&Y]Բڽws1r/9Bc V"LNc>vBt2ɭվ˽6vM DxRB030[n^1<l0!8=~k P1L.r zE)B2i\J8)V JՎkPJ:  DB}cNpnc^as|}lp`Ǻ0Q B| 7 lBXf_|,Ԑ$y"l->|Y3 Ϟ3WM~w?P{u'S1Ie>\<)\Y,1y %\ "\b)V}Csp Vxc5N?caMUl}vnʃB ?}dz0~gLJX^"(vg3S(d+bBEW_btYfe,,[b6H-]b\܆*GVWw G 6$7À(BOqӝX_}f 5"( +)k%PxPR`O)u-a,chv20eDbXкuww~c]KO^l 9Ii<1hq&ս握y*8=Ϙ=.s/iJ7RS8I{(iў{^|_{ҫ]>bi!ƯNuZ|685̌%Zu?(ǝR"*ހgߖ@Fp_ dnZSyA=v9G`F9my~πfr'sxKNWܧ]vk}B+]d+Cq}[e|ox7[͵+t2u|٩lUJx}YOg.ՌK4О-^fI.EYO|70sW1_ Ie{LZT>&bM?L HHqSj 1L;&ibh d3&Y<;٠ӄBz-)Y-ZH7\^% N>J%*dCl&PWGoU pE gQfr7eRLZzs*`3I} JdBy{uuuD'/{ {>e"WmlJ(>.BeUJJ2c'2%kA}/z z0vP >`{IkJӽ9vSn$$`P09Jkz{ @Uu:%3 5UW Dpsx{i}K$@Ie9J׃kb=#=xPlت7jQcLis9߉y5}*Zox8~=6#ÔNK\+ BF\t~xt\GߛU<7_|bv x/OɅ}1p}=|5::*52+^wmh6j.[<:1@~T5AGV`/g$ƀW6]o4G]60^/—§tfɱƶ̉:5F Ϭ50g4^OiŸY:ˣ&̵ >s/:Y ᶾ in ! O{l .MO'Xn]9 ܵxt׵7_TgsB9h˦z4A%,fSn9˓clZ9\6 O^IĿ;n\6{91z@-e1,Y YAi1 v.JjGc+k1^Eŋj9mkgNÜBtYdSl`MAu dUMSZpEL y:Xq2'Mx.k]Vi}768ɂ+1;հk)"%A"&',CkJ.`[` s= |<]rBvc}#ӭ3o \@+ŷkD|̽:&qbN[ڶop?RgCm G(Ws &N1{W䣒t'{ckW:O#E(N}Z Sl=\CR˓zV}teIu_~*~ML?iV 0<@s ྱŏ?tesd/\sjCw5JX=-~믶>gI ie Lcg1#i>P4&lb~X,KĥX^̦Oa3OBJ륤 (B^MŔN |0F,#*.Q %STڿ µeN2ΧfCh*&2w>Ç+ q4j22Y_?Cbڛ!:~C/h{m fJ_O }3Xc[9Y^dx, kֻOwjC.b57 LkR%:xRxZVd)E<)euYRK,?+s<3inоT\MzVgT!۶sP1'NDoO&d+$hrT.sVױ¯7ֲ'Q#@B=K)&+G{l&p-tru)j;atB$JQh,Q$+%IڄL';n,`=sNɇŒ1.NVBX1yV&({^L~=-BmCY Jغ8hÔ&W/ct$-ۦ5͝˓+Ij 77QkXTE84͘Xs asb!`|Ә% bZ_Tx"A F8jŽ*CB!1exO f xrk*cƹ"Esam4%kʓ%1z^ i"@6`  S[LB vs4k?ŭYKu)z\em_f< sYsWcub},>ǽU&/M)Bbn9M>/靁5u[EC!?:̛/0SaJS8u} 7 73%xNS]ëʞ|O>Y|V^<+ 45rL\pm,bFWP=sy00@_8^4X3|'te2dq[/c\sga sq[eW&$FIb4!H΁哛]I km-\p$`ܐұC0դ%M1rDA55\zr;D^o ?q1r%^Vf$T?T޳_TDO60 xTo[~_̎ rYkKiurM*/a:{}uɧ_.w>juӽѯg/0oRt:5jYjC|Tዔ I#=Ko{7U8ѐzcƒA-@!cBB*CX0Ģ`zz&4Ib]ߒ:f l q+>|̝pALM)Y0k}!%[i]H98vt-G]>nDJq(1x>H\~'\d:.r\ԧ$N=h`Q̧b0(8㤊%~o%lJavg<̏61N0%R(;#a~6i&ܦy,Iy;%]j :6(=1`t):$O(C%d5e3< jڔ'LggHMHM( XmzXT裩As0NH+}Jn $0m;/H+ kL/{JHUG, Jq|p7)S qqa_E!d',o[Y1sY qSў_xO3!k@[7ar4Зk 80RDc`\tƂChq9ͣs{vB{~МSZvvK&*?gO߯ލ~%8z ~&A1A 7Lkh k޻p({.!AUU=OHKx.@tXg5+[sAMS*l_h\z(V6ib$c{% (N<*+‰#GЪ&QoYsD{C)C0'f[A3d,:^$Y %*E{l) <zcgᯌ͡9XH>qN FwBI/"+2R|[Cj$<Qfuڜ;ZՏ]PrTG+Ly|3Qz0sel^wqOj0B#L{)zE My63$ӑhgu԰8ա0^X43.2xCgx}Ks?|n巰$e[񟔤4/O ^8/uufL9נJI?-W&$H?;/'տ۷ur'0b{]T!6npReTlS@jBol"/1CsvĪ*A< xb㑾]V})ߴBVO`/(ascO8`=i)xaJS4c#2N|Ўٺh;NLjXL0R 6@gU0M>n`!n lń#k4,fo(Mc^R"iR FOlZ]VMø `B͑Q 9kk [36MHeZ{?Y[1p4PjtV+-%2 ^ rV 5LZGDeV{ci }΁kZ6}%YZ7E)<2$QoxoI&b17ϸ$$eke䳔`㧵^"n`m/ %K!jA{tC(1)Iop1bfn x:@Oyq{ jg(ݯA.|}cD&rV;,o>9}c޷?Údy*O[ژ-^u"ibl_@ z8ݼ> q)g ?rQaNݬ QExY;)/ 3L<pZ_wSEyT\*:A} by$D[غj4T.gqe8,}X mrCR60t|~躎V!yA'Iti%W֮ 04AyS ؼj-dy%:hݬ`#Z|#ʙ$'⇧%7 J| Ygkx\ <2Jߚ0H0}Eo ϙEza_8.{|=>KcRg݄VS'weiL4w7Nj߮QOp5.[d{T#oq\E+Uu- )-y//S0|F+)M9Ș:S9,e2EzQ dk 'CVփKϡ? IS胠ܜ~YkGTxXc~y(yi*FnLܠlQW~{yy=O=WDi\![]_2߳L 6QVrSɚu-ȂdQ ڪ)P3|VcSx$&9Ls4ޛQlXB JZzU .K)_y^n ~sa^k͙Ea;`t^r,&e?n)8Eq0hW^(BHhL ؆a,fkt-]1%wS=wA7~JY"T0Pj,֢#_jm\$pR'WF#Au i:1GLP|u{< r[0_9IcGRhiDYt|/,L0䎎閡)NF G.CKxa1kNZgouOp BB;Owy` YM/.w#JH(~ 7Ń7`%zӏ?gH4<F/k\xm̍R*ÇJ۪kX_4W[y߄2܌B G /9%tMcxzO<ܶp{l6k%Cָ9?OP{l~ >4zk|'TzCPgBr &{O~N̸|Cd`o`bM<ID- C>)`J%)ȱ/&ae{It0e?|ЮVԱX F`yz|۬j84j'D hzc2^Jofxv=aess ЄAd{_Nt7rSܝbȲOW'ՙNcp}H kn, JR83!++IP %(f<en˓wfyjG1d}:&buXPŃR{Z^eOz6Ga 4kuUL2d1^,V0 qJ4nF[zLIj!p?3%vg`K {Ԩ4^uN\۪N0Guz?Ywso޽;Y1F f/AnKje=N"tJ<`q5~02xQp,5K -}uU~9wk^i%lu순UYu@IDATýūBB"a(%Z׹xw5 Oq}/8ǟ>nYlL";U!>;Ryps}\p]FMl|81Sܔ?-9<'MlxBv=2yVI Hsz#zB,FQ)Ug)ͶgL!!FJt‘6p֘ҫo#X`^D,b uJp>xӒV ʚV+k0 ׫`٠}eHwM8gA c㍋/(O C+ B[2/ӷsՔ MRHi3>{gp)dm»`ڌQ|($Xx<5<1;58xLئxEHn#`e¥ N;HY7Hc7eOp1Zf8 >#;`2&ؘxLll)Tp+~:'qw -τ+Ǟh8k7zXdF?CbZt{* 2O,LV{f܀̘غwqZ\[/f0;AuEhOo'G/?^6щ67d/KH[|)lR.XyDgYIg H&osUg6W& ]z{ <` Vu6J5ϲu@dN0ڄjy5de4>z[34=QB6sFA}q]s̽*^ϳN*<7,))kv5 3q*`P ^<\P&O =N-Zxh+/>YJ:I{ߐsF; nYEvn,R2tVkMl`sM8Bx8IS9].P]\=%G`ʑB u^sҝx$Lۑ=rZr'IhOW<ע|MLg{>ml @os?G!|x4f,jA'q ;(5#9Lȟtj)Teq'ܕV9VM9*’(u#x6b֜SkNk$ُXx!`8uZ+DlpG wb 4˟(Mt"`~<7Y◻ ɧO3 #[k^޴gOeW{- b 'yx.qiۚ6fcP//Ym7CwAx# . t*0vV@|F;B޽epu?s μ;ݣMFWO4Ϻ.%8 t檎FyX_BW>j{3x:4 OgN*)0Y_W3?w%~s~/hq뿽OfX d{/ $i/NFRL4j9By^wG:^ka`~&>쏯qξ'+;c2 :Z|٧%;ˊsb`0[sGEcۇ&#aۗw[²}ҳd`ɺ{3UBpn׋?(y ~/|Yc,γ/}ح=[YksS~gӦ~-yD( s h!< w}'M:˒k&u^us$K&xL:Nfݡwpם`gђ*i?+0:J\%U c%l7__Cyhhܾ-(-bb;1! 1p-]tAܵ޶=K}Y[ֻx*\T{||.%5X@IATuH${r—҃!3y?7GsͻF9s wy8LbcB *E<ɻ.FxsgsbyÇ𻎧k^r(C&( }Kx`];`b>Ђձ6>MiÔF¡a*;|>>~\l?Sç%r|z坃O僯J*|q#ŢTۡXeѾӑ3K1Tt[6SbUtI,p&`E_u1끅wJJdw姪^en?pz[ayTYJY .q zz`,2qQ{Y1 f/Zimq?{//F0@\zzm塓uJQm^婨˧^,J <Q(%]XG/GY$QyPҟ*`ؖlC&lq;6>b[ ~ 44Z.r΢pkL}^`wpx fGϋ LXo9,|.z_e HXo(H')q5jZ|Y29Ѿ#x{eҿ8*׺xe!d 8C 2E6o:uAQ\)!fXyo=8)S+S 2Y]^Cq~SP"X;w=\^8Ɩ4)CqZԁ78t,fj}UV7׳tj09*#ZX > w^{u>𦏿gP:iN^4kt4oW@/z{ ѽ}Ta/׃qV66KjҹN$纖g.g@?͏5c . \,Zxz gX×LYc:f8+9Ï`KITѰgGØp[v1݃G1c^r'$bQ®O Si!>Y|jp,gB9QpVgp2_$0KӨ6ûNXz`$PMIW*f,,V<9tt]߅&4<)`Dxzy1ۧޓ Um`=܂ڋe󕻅5-` 8A'=nCB77Ryz'Kp'y!A{67 uNL pƀW(R^ia;ዲHn w_-ybͱ#cfċ6\Llb]w1jG^-{+Z'|< MX_l$]5N8IʏC#|8 ڶ5d(8:}7;\"Fx!@b,nvw: LyD.g)koƖ}V6h"冲}@YMY˛y~|7v,c'M}eUOGvvR 7b30kI_!9{#z;J_:BhloMPkHv"哏?nGcuF4V:'_'X981gUuSÌU˿^lEET|#wZ=ğ-YiFҽ}>fK L%aZP 6h_q}V;>&{f x$BbzYʧdxxK#<i y0x`뵹,t\jQ]hg{l9#L|ӟ.5=&FҦ/`B q4W]?\a F3;񞧀㦝)ZI~ϋklnO&YQ!ov=Q #hc\ w<7NW͋f3gG}bb1M\KO0k:w2`6W) $*sIJpd0JEIXo5,&ԟ"k o:p2kSRMEBL|0 t_xUrnN+$%9Mg+B7Zs6!/^.M@${FBO!q6n4.nn))'R~ӘO^.ޝ#y ՌvCO׈#$BIW,kxcMxEAQRBseߩMOp&l?%q $aZ:b\ԡk偽t%Sg!*@gḻLQ=$B9adk|R1Wy&N{ n/cYB㝃S 峲FUH12/:xV0 o.c+)sO GWu|yr"PN6O ^m9 0xnj)=]eĉYNRYfS^!1t:Ol5h{% 1ҩs,h))icԄf;e(w_Gv{WYs^ [y;4 PP'!S|U5[=sd:%k{su frnlfIS(] 9C!'1]g>~ ,9 ;\ǥEӼ{~K^ 2vFBl)h*)#71hӬ<J>xSU.y|w^_'Sn+6࡯@nr61#49ds{YCA n]|;VU)|eҌy~@c:kix"뚃`05xJ([;)Ynĕ=r?˫҆>g.) mF5i^q r+$ģF/5Q2X؃q `şhRQ(9_F[ki?/ 7?Lx.v.] 6v$y -We?x 1W\$"lGm7Gi`X|1O)N8bd:K|HDbˮqp6HWަRd|-{ H~{@nƛ/3(KiާlJ| <7g`0|WǓZӎ.y3d'&Z,9߷ \ͅZRJ C]{OjxJ/(9){[$2kyVwoNau?Xm;&li5Q4{m6v|ۛ6yZpo/ɲMv6 ќXXF6~ T98k :6@va2|KJmr:@#E8 _"6~a1im& D)=# j<1~7ք{k4G%c^#  LcJ$YvJ ރ[Y;;oB(m>E#PYtڊ8cSM+(:$}KeDEn;&6w/ǹ&K;&̺紊AeM]4j;ysk,PX.YWӈ(33ׄ/&{ yDGaWOqpxDNsS {/>$Y\V1.ҐOyykqs`hj75v9) gG#ԾzG59 U3op~z4V7s*<K)ǧz?x(')*=AVK4zr/W#Af^ܰ|޹HXd̠c 4J TuGSLB.Giymns'1N<- 7ʦ{"qd O(`ycZ)Fp[} yx! M4h':<FʋC?H[ #q)YMVM9K 8Qz4ūGLlhݳcg*u*K\uy1KJv X !PXg6^Q [7m 2'c^?)=(ȥ!|w%ַWL?A57Ab%{RmJ^K7=2̳Z_=9IK4$;K OmƯ/|Ϫm/[_mqxbnx|a%1o!Y%2ʸSJʵFa6^|C;v-;{n~rIU♝c7pLݵ<#_g%E4ˮfae;(\3gd@32Mm]-!@/C>x6>e2Rf{izIn^.<BY A6=Qc1h'=p Y=brd#q7꡾`JzweNL"KxK6$>Ǹ"Y*Z}5d#$$fNa-ˤy)&P kheLbq͟t^yl&y'L(<Yw+TB@{ʐ]8dP0ԎKbWX#eJ8YUW)*\`]_'p{d$^.x~Imb zJzSP\i{WYƒNr{|ٓEໃC_|U¹G4!=SR/?!|Pv߿E^&uPj*B4ۇQ{SXq)[E Q/| w+=S""waAkmoz E+ {?*xT5O( ((e?3#~։|QT/eG;mۚ:""aSxɳ^yłGKiMo+l}+;a l|y0>cO^; mjfԾtJp{$ Sh_)!<5d/RbXZ>s4+ߦrD-wnBm-~cwP.40Û#&(PBq_xqڅz`?oכ,rTWdۯJ8 !lܦD;5tuh՚|y~CkNqn, =FXIu~׫c'$w[ɠ!hy qr뙹s.]|GNxML4Iޣ1..at] ϧnߞN`ku5kn}5n'b$P(X%}27p~S޴OelA9_|a%v紀ZQb-> _ UmOZ5O7O?Oohh?`c'#zoW; ¥wvnO9EnPG +$tU։  MJLpd@$nL_(M<`Kz3)Lm9vzCsUn># "Grx6g kbO `b M趄t6 9} \4xnA =\$ulP( gΧ|[=QL r͞m-K&NNPNΊ+[ȯiQ(F\GM`K.ܯ\ƹ95l&zx(>@q!A9)h+J4.nMe.mDk.O86 $ܻYf{C'"!x ϟWv;Nyﳟ}ŋK`˕`wǝ5^,屄'!f,~<(|$Ɲ)** j"n?k|%nj+|N wLYϞ:Bh;z|}H*[-ósX >K1;kj<2BX-y Tpe3 1߱MumFjBkc!bȲ'? t!K~5fYTX^$^6tUw^w@œ"/;o:sx ͅbo7"kK #`5YSn&[LBpy_5kxE{=r6ɧ%ao* ]ϟsX{"ݞA0sC >S>\AiEY߷FMP6ꩰ^G5 D Hyn`uM3r%/O+Lv( avSiʁh>+Nʸ1^| 픉y&`=ʈ]x 4ޭ\yocyztrKۏ w|x //>S1F>OK\8FS9 zC485nb:gv=w_!|4ptl>>]^dɸ j~N'lbݘ*:}X{_ XJp:UuX}BAq/ncY`ZjI3lBJf)IʪUH)Q.Z+F֘ʓNLE]uY,wxWhĉ\f9GQxL_Ak^ZwtQ7h̷5G(ʵ\rxz٫t<['bC%^$NHWQMh_nW~xi_(&1 Qk1}!׷A"c`Jn4.ȹO+?Z|7i܍`,Wiv˦1y?(1)njݪ8=-ǟ\/\A 2e+] p/}ynKX(45Ҿʒ9ݽ g*@dW!Iqfw;@(AXsdeqZhm%.C'y\e.u]emKv "q벨כO~x2vZ&T/xgp>aBLK6fiL4CK;߭Ӊ>$0XpuIwkJ2&0M[hO#\0HeM{'$Mnp6Lϕ\BYZeoak3d5+KApj bsRkMw.B xP_]l gH-y`ouY~̼+K3^Yos =%J' ۖg<:U<{ /kyNͽ>7)OWUDOۏfBuZ\3nj%ӺI{;_<(pc|X{mKJއ<}{pTGӟٟfe=> TH_"9)6P(ipB[5A[KAOBMUpWь7;ynnW`M@e9XHr9 f1VVHQDZq#]nf}-f Y 3V77iV1 :u!lRdZL 1ބcl-:F[d:Llc| M"T Cr N&X M5hiQ#g) ѦeS Oe?|?ZԴ NnoUyFUX),i̓5qm=A˒Dv+ꨖ%u2ƙkǡB46[_w5Ȏr .,$,ϗyA^џ׺voCˊn$t?==,0m\dQ"NYQnS Z{vPJ{pވƸ.`Sħ٪EI(M=y99mbu5t g_dQ?r{YkF];AS0p]OrhvEz ׃9w6w,aܗYB!޹n (wjWRh^D eE?"+vns[޶')pܒ;Ux vr>܏Umyp7eP ]x4Cq=>s%$iԎS>KAcbokD$vX]/XGP(GU?XSrLmFc;ѰG)~Kh%GRNT7~C.Ff~觩Lٚ%i^{15qz3J| ^#h{g,FYhe͝ 68. ,IE#xL^}A״)~>7'p$8nek=pOU4)pwj;jG[yjufEgHHRsWRM [g->z%_UמŸ;sCy!/{5sGз?_O׵6ZG$ Kn6rPu{wڜfHFoה`u1i V_?yRq{W)Zޖ x1>oc HMXy1ÚQרVȑ&s2 f},'*+`f'5_^>E uMcB\zYH^)H]C0Doa6DLl>:vHw$0/߅cn^"omd<kYmL @B0AҷEwqr#'4B gcS#?N[Dbw (㢼 vk8rHhO.=gq;L= p28n.STL~@siO.c3*<ܛ@J5To>'W}, pXvfT*!; ^=.ۛ櫋8=: X`ܕvVf8)?CL~'˅zR\)J) +1 o6Vfpֺ$Q6S` ݳT>bH=w#'a}n\]4" ^G2Occ_͉oΚHgr3X4G<'cfBpBC=qJi؞=/ŗ|hN`1|k}ƭ6`Qмճ={ſŏ~퇋{%:ĆLU7×_|/X}^-2 $ qr73b|'%^#p`/|9BGWpk]*]vyЮvRb75h>?0i;XZxq?Fajۛijƀ?hcj N }0:kB®r>[&%+Go!T&LH[iSg&LRp(GY#|7|@> J<%N$BaXm760koXL tT,Ɛ"I5<&y4w5W>_$w!~BJYJV4v8CYF{}+ݙ }OJ&^)ˁ )w ԃgY>/MwYSsO#(5)}Lx3׹FgD7%R(Jdt#_}n˗gSνST^Ecq*m>X*-v nVX$H1{%4zs_LnT4 m[ $5B(I Ns~\Hׄ^7vbjXX=ρQz3 8l!ML /;ތy=ӝf`eec9RRۘ*ϣn#,7?ˬszeϙuNë[Hyxhyca;p|ҹ^o-w>|'lqXwOd,_iޝd->,য়-OgPWif_'oCxZg=!4&'hu}0 w~cT`L_U-R҃ZA|`J~\k y'99 |xor" S'͜1ƭߌtCnSҥ=QX\\ANiɕ(yzFwEdHq~x^85yF8xhLahg͘7FMCSYc?{z0vcT6H"{sY(n2Q2wDc"7Ym1!%YeqqlvOu1RK+N?;=ޞnFk* mKkսu&Kᦘ?eeOyIճfqbQbip+ *AF $ V?4I!ؘkYkmm]?|]Og%L^T9O{=o7|Z*+E; i tל[~3qk0^V' OkĮ`Ua`;<h0vE>*IaWOL\ Yɀ4m\  `j1MFs+Skk2J ?=,ЩX\Xq|-JS:/ ڳWyR8X ):,,iܡ>[8`'E57g42^WU29} ٭o/~EplSbAI͜CBi?I51%H)26ab*!%{wɌ7 58ѓO@$6X][ZUS(4XZF݋YGXh?](܉%n񚃼mp,zj[O@p~LbZ`JMe'"lzfn=kW59jC vG1dRfZ3'\`=x0js6WcW`oѹ[\[ɿvWg =^_\g$\W.^+íx|3qxZ$o];&VSIƥ3} 0ZcZVjKޕhH:ä5l+? ZSCBB{',.h>e7UMx/ 8 7$ p Pavcql$-*%2ųCH'L}Cp`ҋyۂOK3" +g!&K*1P(U=9N:^gx[ǿ?/Lqi8𭫽_VGͩyXYg0!mۈ ( rX O{fzfX A8Id,%*%']rR?GrtRR)*[.:[% )&AA `/9;sv+|f8HNmBԼeWҦ䊅C<})䘱;s&:"lp%YkaЊ@&S誦YshՙP{ڋZ3mV i,/1FZ5xg|:`ԹNh Ǫ75)">s`IY$(@PxG@+Sr8=9${ciR2t19)XT:]7(F52xl#ա0Xw&Ⱥ i ?[zJm2#>g V`Bb7F5a0#apj"~(X+VJzcIJKqpF`H&V<"t/cT Zduoe<pk?)^z@W~fſW36o \p[+9=pRNl˧g,/]ʹH0kkyjfmyQd~'+}0z93`wlyEfW㳱r}_?\({4%z6wVj. ]a#L}ËuѥqCUm #D5,bQ tyrw\=rn} %10G_E]NؿͻI"OZɤ#z3(kO_qi /-YUT(>r^ ?_BPʸ\{_[) )AEBtBHYk"Oxn;@5ƔQS7@gXCYX( qozN˃8JT5\?ȇCO'nQoli59"kk+kLORG \>Jg p⽬R1PW=p,`?ԝ`4H{)uR`?V[EBR%#0iB]S,׫v孆ݨ-lmyGau!rŘSuU&t)6Rx/FTJ.KQ(S"E)ۅp35hUSp ɐsPiympe,h;Rpނ^|yMT8ڎO%낸qFӞ G;J-_J s(@žt=p8=7j2r9wBB<"U O7|w9 :x{|VtEsoUp4SۍnJqFB{9Nx4б](0xp-Źw2Kq _?CW/ʷ}1 Ƥ g[BєX^y#zEWH9@ {s)$K .^ON2턻MF}LS$w)p)Jg(OњzQku PkS`lܮ8__nfWMM;. \t²Zv,} *2 _顫 [%#Ͱ"!Sr[8CQO+/{A"K 6pU0DsQտ<ȻCǯQ"gGN2RJMJ`BA׿GA8}K·HF0G12g֬moX XhA6S5*qW݂?xT@h:׉;a&Fqvp 8{GG E97cWj?Y8uK+y=j`|\>'K?o:ڊy^<*?|:,@aw}vm-\*Ykt]0f^ "t3`!{EݟNiWH(%O~-\&DTn#0mehB8b%h]4|j6sEwE4cZ~җy$_\*Tyhy,>D]ukɶt lQ,9l#@ PL+s|靼,C̑riY!G'aY* S; A 8Fx.D!}$,}A,>zQ Qen &g 1:֛-?mzf#t'o?A;k6fJVEKU۔ŋ&0^ HCvJ**st=}&eU Scc -8*a( YBԣ^dǑVzhD3Bgs-S`~a/Őd+$}MW.-ڲ:5ĈA'϶~&|~!v1 Ƨ ֱS-vS1)|^Vh>?!x( Ţʕ 쵞y1耧"Q55!)#nͷ60A83k+X:e? uh㭫`<; Ȓkk7" 0I;Ne)VnS?QjZAW9Qdś_+Hh*]!SVܹxss l塡hC)Ztta/JѡF_*W/]Hn4*REI:|C{{xd\/z>Ѭg?"o~Br׻ɾC\пO ٖ+=:#Wl,xblK=tiK#Oej1Q(ƭO"y%vS0_?mmFC 'Y_H'Z\x{+Āx3{ dE4-O?M=Z6gGECױ^cm4;tܸ=W3\M+ 3ptBNX7wg>k3(n`go)oo53孩;Qo-/U"T= Y'~pNSl33aE e;S 9Y)#mL)ϛY@%,~4FBHɍ>a#}~p촰1(~/o MنɉRǒPϪ!'2Ž7OʝOxً}¨YQ WwH%(uq5r6G[sқTN.cM94yK.xK񴷛#` sʷ=H]` Gg h k#P) b8f#s&)aH{! T n߄4 B}A8eۛ_9)J̴YoQ A{; to~Fyiz8ܪȖ.BaHPfpssj3Ʒ=oxpў#Ic~5'DslF8/' | 낿w^cfVFD˭o C߽`Ժ'9PnﵦK>}G?|/nc~~mmcc3TךV(/{F= D+MMZyc/l &SEO\Al7_Bd}·fdKs(vrL'?f s܍(,>)GtQ 1:Mi96 JmTi[ 8`@ЊCØT:EG$]x+")]=RpHAr[vyԞ2&uصrjܴ r 1ө#~f[s.~ɹ[tXϸ~x>uJ-:Ƽn^^.]l8 Hb}0IpcwBm݊)gBb>$l^!+59PyJոǾh:B VI8mֿ+}LfrɄ̰ ( Tlˉ?}EՈ+ 餣2#VD ҝַ !@9_/VbPTuvJ4+H' G6 O-K9dHP#^CrzǁH|pt<2tG*@et#qEPVKVn*{)i g#c b {StF`][vy^SP՟TG nj:S~6,̀G 卷Z{ѢK0w(Z)>Au_D0gHQcudV,}7tMTr~wtxwƛgRcj{=MGt:ݺ٫4/S#ps 7?ZNg5oe?k`Z[WI}`hq: "R G {ϕq5yUK$i(\}`:5žvm3l]%idψ5\{r}uIK'X]Գ4Ṽ{t=0V̻/O=}GpI͐ti jlymLRG;ɢ,e)Zc 1' hm+pTU|0A,Dx$02T4 PS݀#v1+?oq5`o>O6eQࠐ9Z~)ռi=7l3Asb wU5Zj\l; ?mw 3%wBHCmlۗ+/W)Oiif d D.V Kgz,'D*PxkS{a04bvWd[<"4\!Wh"d"1zpR(e,8EN$\&zx=x.?(e@d0$63H<TJK=2193$+'M7\0tv)$Sa뵧Yq>9t &fc ֋>\B79/3eд7ו zm堾j_Q&=EnK س}앳 J;~ZS _ (a> WB„btl+"8a 6L[[42 %#Ak{_)h?ɝ񜺉 gH^',?\~3E^v9m߲n$1/BÑ#[ Z:!QTҚq c-^atX5Y+]8'ncXY!jGQ֌hRPպmN?ɚ.+n|`تlg0l={ ;Wf}ݑGCC9t':Oę&qN\GhnCf 姅 (;rQdVs ȁc[#BZfQiN2o<8R.f2#YGSkS9}b<-+)6 W3`ĔBQÄ܍Iav<2#onvvL<95V8Km\Bd  <ֺ'(L9AF^ϻRbܽZx7h x#%On @7h5=KcLD4TJo9=-oɡ,6@q}n`0o>gzR4wŽԁ p+U3c{?0hcёw`Vsn_=h+U~ @މV<%t9>۵"mҢV tVUtŋIy}ﻖ1Ǘ_~sq7YT&'+4ErAy$"򨩧6y;m:]U@aǧG//yIZ1~6!GB"gxdULˌ_%(❎ ]Am]La 旯,.̐I{Gq$3 0+'ß1;Nﲁ*+qEkmW!ũ:81#?~*۞[:W xGo4͛o7Z<%AqEm/g?[o<<ށB>:zɕ"M9Ѕkt"şW CY""Ba?Iȃ9LBύN4V;έii 8SHGӅz⋤3̊`Ki3Us]CFkP/ɛ/ȭ)TVsn>y]N#zݽ:v6Eov G<<]ԧ{ur^29'0ni p S{9oGӐcCDLS\y{$Z&$#<P)Ҧ\Q0^itPxI x)9VX, y kV 3%aT-PH#WTHك iy“HUԔH"| bfHXU&,ckndacFUu!C*X<Ɯ dxelמy{pryG O_N,}ꥵcƨvqH{0!(hU嗎D3 =^5ݬ"ж^0G1z-3-{6FBۊiYSߣt# è!9cUNCb~ω=Hq— Zv{f٪s]/O{.u]w[obǚ!~V c_+J q{U!~Z7\6::<_<4aD3w3@ja03=!ֆ{Jl)z3ZQ팕$XF:'L w<ٍ l8`h>hA" ^h1qxǶ?BO386`oMFAڷ6NCy̢mfx;W~;D^ u:Zk·w^zﰢOfpbY wơ[ |!Z˥Ͽs  -1!-e6s j#(4#sꚉjF E} xbQ뱈y'S@]5Xvm~syǚxł5YbmZ|Q^H4gX0SX.>hc>Z5V}d+!`b'. ƒp>x'́+%f´εơB{Egv_~n|߅ X5b $ *Ar-EFyL'Nc?Z?(% M'JfB+㭟c(_ 9/̨%(sBb//56ȥow o24Āj'?)@\! A|5#Mk>m]b87t$!YAo+k_):)_18_"X' 5dS(Sk:펼}fivf$kȑ^>RHI 8BόFO4jxp ^JNewLY1#^+OCŴ0B#)3'lhD6.,vE, 2V./Vw^qQEXԛ G@h1``mJdÍ̛Lav@Ug7{E)Xv 'b(A$2Fo^5 _%0/F L$EiNϛ_.ltky{ݚ9OgZCBRW{w#)d޶W"B43ʗracxd{01o+<܄?u;Ϸꁟ s40~f\g0Лo8Y R=vV1W?-dBR=E1WPx|D 8ǯ:7jXt%F{-HkD4o{&vť(cB8C#J(kӍcP*>hPTE r WsM¦=TsY?Gs k\"<`f~[gQ#{}Q&3JR;->YOhžoJ%kퟓ[tt{8 N~%;>=}Fcd:UA\ҽ-*%,q;Y<^Dt4rHe+: ҝ7C:/z ]}5`@=QLk)ȊA /gyo2Z[oLƵ֦-DLz#CʬyslûSBXfJpsbgj˕K_3Vڷ}gޫx]DWeۤs|VjQ^K3X^a2]QE7PT [s4e],3=[Hh,Ro^23{giZ~cͭjzh֙Ա"u]_^xGw:H{8,&{k:Y$oL$~fܮB;D'H(O4OG3t2 q]kAqg_ vYaS- cuv_Wv<erBOR}PLA `STY˃NK>y8Oty=5/\TBt0=<76"$,"7[8}ʥ;!QU2/y'#c=Q Q)O@4xEKEKy[m7qo  l|f&Z1g xh[yhyo (J)¬YV>QL]@{v*C4.3@IDATaasń%b"Z|$ Kup :yhi={ZN1oeRE/=^*7]- eYŬ#|R=#)ds3 ՛Ɔ|]`(U$N,]*p3Oe|09<a"\s=7S5nD5 vv"\ zc7v§I!Qn8)WA᭝ooE`npбs;r:O ]C9'( ˹ZCîv ύ1`ohNky&@ I1Њi7^76X8<xb4hV8KY1l3Z0B,?z:bCyM{t/eo1C2Q1>sfĈO$lc±>6F+#=VAG>.NWK{2'D;4 2SQQb}~sZ{у\DaڋO7~"x@4 }QӺǤ" hL'đ'#m1sg[^sW^4'x#>i] @)@ILb/"qN?{aO9S&zی;wRXaʖ7ुb8@vps]xk} x/,Ͽuj˯]^QN +-)gfzhUE1|&B0 8qȐ8K8k2l}K* !| /rF3|$#rhg8WɆ(-h}6< a oAox^*bކ jsZ,0NO$V!3\ ju<~<$:X_: :I/ZU(]o cVB7l)rÆYi|_5G:Z;Ʀ/g=%7p1Ɗzj?ձZ[o㽝Z?o$c7jmC_Yq8֛gIܨEfyD#t*LhM=2pv} Ex)v^[l ݳ@za <L]:G6^M* xH.ϜH&BHns 0A%S%|3OTvfz ܰB,gxj1.!xE`.l{puaKS ׫6`f%OSU z?R00e`y S(D*@=u<"đ;,[F\7VȥuQb?t0J  <1Zw[ >CXmY3gm9.ۍYm* ]z#ĐV=u _;R D!~g>AJJ<7E}S_u OwJ O$IR2o!HydE(k)SìH3L^D1^K[w1ڭ/mP/g|z9V '\,wRHk JG:֋ô+Ў!FaӺ.k6 񜃇Evw]Xj?o&wɓvf =iDcRB+Ad`UDu!fQC2BGS#m i X}Cm…('". zE[uF֔ OEg7WB3a>h#(ݼcͦ_yi7yg0535! ER~ J[%}|z.0fVf{gtxIj ˖+ u (!8QWa$S򼍓=nA2oዯx8BQyCNLwwȇp He2<) q]k@Ӣm"F_hCg<ط [A @clD Ivib0ĊI`/7?o2j R/mx[?QwH%S֖or aߺo}G>6{:=Ǘxt -ڦ?熈 wU'|n"dpd7#xzHgX M}ZJAVmGN>WA2^hSqn} Gvj)L!6RH<8{,jC[քU C)r ʹ([.]1Ka$L$" 45`hcIs|"3{=, >(;2clE˥FqRkZ&#DأD;c5U ABLD L84H`hk2 QA,1:V}$؇CJMut$&g&,X9-) v)-ތMS=[N4| nsA޷y,BFSof7u+C>ғ acFNM޹ZN`nS)VJAiy8(iJ8Zޚ¶/rNo >A9m1|wFB`g!}iU Nuv¶P?w&2VGh= qh5$sWNA\h͔ T KOVPCUK2H)[Rzߦ^a"ja^x-Q0)5 {c`` ndO@gFד??- F3FF}~m܄jC()4Dwn]]~Ͽ,* ڊu1h'C!8ގuo,hoy}.zZ>/_]~)0#q[_|s'yPx6 9u4>öML >=JHȚDEYJ10O~˟;/\.JbfǣEsC!7O 8QZt?qA &&_sixRZxܓjl2u//.—gN-ηGF׾|3OfH| /ƒQ"p+VRq1jMYawƅ\x}^KvJٱ &wHJX9(e]7Ŵcv)Guuxwz[BξS탢U&G;QY 2`L(rBXiv(F<~"0}d O/g R7a; (^}cy/| , +w G҆d,P~ɤ6~_W;DQo=Ͼo7,o/- /. #ķc|졽~Nd-#c1Tv{)w;zt᭽ZP{RuSG?1f3j0'\R(`2(Vc-6U=xPƙǗO7_y}O}c:=؝ʙ*:\8ē˧>ϾXZm{>bXX7C7o˭v:n])TFˡcɢ9Ya'Y^KlmVtK Z~ww0cKF]ʩp|&c{y^~>|Ki76 F|d(u{9~Be}8 S8eȰq "烪H(brq[7_16dc)Z3>6w1v(r૜"f{]NR+A D ȄQz#9Gw(v |lSh ɠPİs9h򶪇%w;~NwΧvEBcH^YGbY!v7<02M:̚|O[˃b5_MǺ6 2ɅNϭ:16׉QA~y".;njlai]~ Ύ~'̯"~OA\!.'dG8O%Y ~.z_A>T/hwWHJpc;\M_xB13V䌼`.ڃN5hxx#G* ûs.I)l4᫠ڷsEf(?VDG!ÄۃJc~ ZtaH4/r64>?^e=#Qk_u `~'>q3ԩ`t@i'VCf'D^O00yeuP Z6~ʃ ANIcl$]! f•ݯܔnxFɀ~ZB?m'B?yM]]ɢ8^\^*?`<4\Qnh綇j!wI31w 39A#ݟ1 2nOƳ췿ͼOd\|[o,kpR`߼tm ೧.ݨ/_E!`buVH29K0>5PFalV\fUp?e9g_{IW39U9^HF{4 (J^mͭ__a驢 H-꽗r{\I)po^M_~g7[7|g...]~_SrY!N^58~~Epw5?Xv.>HCIZ+rZ7YzEN޿Rtg<ɏÎ2wsY&}"RKp2@ʵ5*^w{ZdoNʅc!jኽ.DLF^x]Q}=EDNM-_P>A7 `QM A2sfw7P㟢+f(l&lS@1b$V6=n oe3Y:'#nQ RnBTza-h<~]Y^' Ĥ{E5kcԯVFJ>?Ld?uUVÙh#{]>g"]N=fKY9&p!]~ ?*My>w<XO^Y#'R jIٛDAL)k mPt}dr=N]BU ~^0$K>^Sjp)LrnTi@M09C? F1F׼*5t5/ENjx~݈N:$iw!?A 2pDIaKs!5a {(K8V7 g';kt7 6靭I%v_|9؉ooOʛ+~C..Ͼc{r=B?XxUWL-ں>p>9;ɝ3m~aVɐjS)D]i n Uv]O,VE0QS7#Pl -X o,yT}C܀z,ۊwGfȻ kW+t;JM*8PO/_?Z~'EK骍ܻN._]>.gy$:@n֠^h5sw9qs g,׾嵋|(.oUݿ\xq~&pyS-g9<3uzx< |-Oʥa(39]s2z='Uݯ~y}r[N̿A:\K^Dxta%+[ _.lcy~›K_k_ΠWBxc~e? ڔh3;i6UGQ <[.'EN.ϤcSwr%tV gw\ۑ˥rR7+f+bBwdiqGKf 73^gp&d7cP9?XזW_ykCs66i?3ldTt<ܪg]mĸk$PF*gDk,2qt)JVS%0w5 ?ĢQIl"vncamx{T]/?9a$ůo WY3XUq e9$TQH8nM(؀{8Ʃ"yq$*K|ۭw~!ƝF"7F:PZГ9/Eg}Vղ1j#a(DpMU|rp NA`N&"){isS ԩ{h0z1Un*caْhK2}[Rp$#5d?)eKm3;/3 4-*3+ѓ8FXu(s4.bmiC1Gù\t<·S"["1WS S cA6vXEZGag%%fT٫2ji.I(*R|{TQ.[o6R@?au'z`߈1{y\;GCN7.G8a2&F.dQ4>͏\렬QA@6ҚDT([Q@kH óOc+!޳"Gpb~7~_]^t{A՟[o./(͇孟qG2OTl& oQPLEROW7*ܳO&c;0\_2_k[ˉ=DJyrDb΅i *oG;{ 'orKWuQ%BfH'{p2z9]ǒ97^)r#A5wKQT'n1i౱2 SMOˏų՗gXFM=)?o翷7pP5F N?}'屧Z^*R<ym<-rßI{ЩGvx˫..|>'[ǹdoO,VSuHHaTϕ7ko.o ' >|[ꌃw-y3!Qtc(-Jz?W`p/Kur1^#ƅ}3D0ر¾A-ߙ:!Xͱ㼝B@Mnw(›*Z{8(cxB v(SI0( x.7]kbD!jk \g1<&b2ȂQ?D9#ؔ^VHda&L?nx377gcO׭7RH7@r3U{[xJ^gEA;YJܽQU>ic`;)q+47)PJvO ? \t!|fjXi|!c2En\hKzhHOs `*[Iqߙ: .YSopԐO}˥ TnBhMɰ0/u^T4$o |oʓSc|ͤ>zC73* Il 'E(^u,~i#2Dm0֮je2yY1k|CT 8 gLHJ0U) "eI`C"wuR.'ktSf^AYa _-xBD#O~W $K݄Y2C_Ek8Osj%O^= 1_2"DH ]xV`2S3VK#k>-~Ѧƽc_OC\w䑄j8v5[o r,[r.^nySuH;(LliS'b8;]TVKŦ\.O|[-(1_t̡q9+44re OOϧ3%-dK֓ܳ9"?znIO+(npʧNU,B:ƍ:9ZW}R?26W_Ut PO =ftU4"Lg- 3J9_|py{\񇿳|T7*h0݌_~S#ɋ{hJ@J$eǧ ʻK1b{yCG2*ܣ) #Qc(Ll"AgP`y&j0L%䱆i[ ÷y^,`: #(Ĩ" @)ilPtR#j`J\kΓl05Ǹ Aڡ_"9KY"8? @ֻ iC=:xʬo'A}W/Z3DZybyo^ɂZi O5 l$ QX.E ѽ-z)o3Fb^hUQy3}o}Fa|^Lkrی#F+ ?`2 )Y{G=-cdM> N?WDD *&J7_QG_+Az3#b/cV y+` +;ɫ*}g *aL1+es]|/z=YT$#.=s9̈́,VnIMXYnk8R~Q E4Ub{h(' ?{V2RC<J!x .~2uMh 3ЕX˝o׫-9.AK<#<HELISG]1*݁gA•NBmgHGCE>U4Zb9Qqz &v83GY=@=2}^0euZJ{I?wy_u>*Hɳd:oG4~^s<|0Fn)Q2==x?pnG^yUg2 C7+a~~"|ZWb .3n Yn\|X\|]ݻ '?`vi9#>?o_~q oEG7y僅[7rE>G+ CHߴD|̈tb3LLj}/e|x|RθӝO\X'?Ɍ2[q*_ ' '|)?28HM}Ffg$A|x4EB˷G@yTd ʱ&LYB!e= HS!Zp1#zTUȰwD4ȕ^Kuʁwyߩ;^;^EPl%68b!@(ÉV` U۲UH ERz۾;3=s ?q3|>ӫDb"2="M`tx =Q\Bȭ1Lv %5AMX0٭ŨC9e@Dy u0C8Ub_4F<êY"PWvU4- *X-e۝p2D'6$q~֩L2*ABeld6B1DBqw *ɏEb]G FMj[X)p">ʹ'AMXK|N]1kqb9Aшs!A\dDSʮ*\ʞY37Q!CHqJ<`i35W:RITyBC©g7ld'Z7 4XKdZ QW 8dBK}$4X81\< %0׽sVQE TfKmsdTt;CPF)0׎㥰<3 , o`ƲPHU*xدV~A?=ZyOIoZ$nBҼB2y=Tz3M8W^x‚;6<:X~g5mY\QC9A2߁un"MVr>67E\S^Xm=wYrX  p0ad{I0:y`#Kh߫F[dXI[ӷQ5p*>_d<]F![y&XwwWr{fӡ}X%߃fMbo2 iCiD]BeΞR5` vلP1 kC{nڕߴ']86Kٯt܅?,jwaعciOBkiޒ~0&iF{z}D^Mm}(sQ7މD{LRT`\5s"k-}s_z-sUhLs p}7K==1:wTpڝX2,aNA[:]m5 p jy `\m@Iwj)CP!IF P3++ODyf'dQũ)S'J;W<@v[-!.TdYHB}H/ }d:371֡i~cilt^e@d6k$B{=UK^gcӧ{B7cN $(Ĝ]󫊬c_jZP~47G+(#dƒgΝ"7BxTcⷾg}tt葴{{7{Y[k5\HIOI}0:@nx@?9U!Е3;ߪ2KS&a{02Fxk/|t}{J񠈿T(S< p-r³Q;@U*L<\^e95Ï]esHN.+Du닄0^׮g *}]Y -}ݺetëQZ3]Xt yZ!e w([&֔eD;QPjI̺auh\9NKBH*0`V _ ,^ꀃ)X\X a:uWn&_dophdL=TcLUKFFχv'oa%q0SR3G:uJ@МHbW-*`5Q&vP$x )hdi_ uOV&KXW"|1̳e eXX6~ I4YP:Oo<+0m2A0nw֩A{xA(Nìw N#!|y:p5 /[֒*ZKILee7I'0@Wzu2F[51C{O \!Q 2L2 OvR [} w{lE]>D'ΐz|U"g%A$V)؃WN8wdžm s2nKoW?,MoepQ Cd%:88a!]l5**ZP=t'F3=g?e~IpĜ5|Lw9AğO>&5Z! ;LeǾi~.z v|dp&1 ON1kK.'p1ͪ:4`kW/KsW 'sҙ`H?@-~  >\?JaF2iY\^|!<=29 ~J\FGl#@S cKE7CG:LltJ.um\ABѓwm |z:^H _~o^Jeh@i-di8aagl]X=p_P؀RNjS!$ t adPQ A>3av,:>ȴϡf0ZID~YLMӆb8[){A[i|& ,cs`eЀ5۔<հX+1cȤ!4 =BP{ȓ\UJ ,b&B<;(DF#qj6nmM&Õc+X@=Eh!h7^Pw;t_G)q`2(U%vJ &zD$xvFf*d&(CC+\p~U Z2Bh nЂX8= +TQ/fj9 ,8X6N'TT6Ra{iqɃ B8h<KC@"Τ:;was'nv C>VqUq7M"115"Dq0VL.5?}{L%Ív@%WefFgŞ;ҏøQKXw^|>K釯0[i5-k_i}i̭Pa9aЮ<Jٿ sX<$7Fv44ezzL.ߴ{~iI;vLw`pDs(.{zMwIk^D4U@ifH+5Q{iG? 4He?@߄^޳̋YI4#Zyjks..\KܹwD*hΔHќ:SI+8w& 3֧rr*ó@t AN۾W9 da&/[jxOˊd< ]y"2(Pb&)uzt9%/6 n|fb4Ρ@jMES(6k s쭣P ~CXى5**C_B>2=Cy  f39pKulIꆍ4Zi5_k-І`mTaΉi!P"d~,()Ld-QI&⌱6s5h;o¢BbS&f2c `(6)38/fn&yƻ,'KyZ^ gRp> 3*_(* ;m9'@h*fa+DFpro6޾S3 H30%PJR* ]U3c0 PQ,Q!ғhq }:pPj PBBPT*X60I(ݒ{ XnƂپݻMŅP⯑hȰl !/4 {#czW;JL,X6I*H$u+ίvȰNJFsV  ʁ ='Ę#< L8y2[d]džKlp^󲃧O38KTqd*5>=deܬKܷhP߽ܟxA -&Nxtmno<".Sbx$untHZ᱉2LHϯybf®8o"Ehj% +"d&z0b F,Hg,nD# xuq,-"ɰ WB@7GZݷ84P؁9V4e,$ ۨEGeJCx8&آ񏖲Xna[--WrT0ka~3ݝfǀsD eXcE!Ln³Ke:h l$0?z>_R)r$|YB>vj3e0]9m>7YLf[=2w`0LZ2AKТFJb1ss08^Q[^2Fn@~ZǬsŋ(-"΋7@T̼qvq^x_aZFJ"Y ;ƨvni7|z΢ZIJ{ y.`\cIޔ6 ,MCFOM(<+(Zw63Bҟ7!~ ztS$fSii}P53( P"t./Bi}vo>{Qe<T_XN}οoH^,Z~anBӋY 15׻#ڗ-rУT;TtF|a'.qÒԤ]8 ^?b;3#\s 8TVˬeUCѴO'Ǟh> _"$R}wy1ϵz!| &aD}@2`9!P; TVSBPPhvR+o' @aYjzbP,J3cuK\jg582jO@jJ)xS7Zi:yRфM7Q"؏-hC6qjƬe )<(4I^0MB$uX|0Aija37W0&@\F+$إ8^MR9BvgEWxwS#_5qKƜS׸?1PX!~m̂I3^ܡqLؘrM&Zܤ`"M£cDO+ZR!sMٳ_2~Y]UwʓZUOvm y;۰HZU,4&sqw'`fԫ(Z͢0= (N,f:bu2 YzJ L M4Iڃ ZwN06saynhPVWB7Lٌg ^ I]LD,BƮ޳=8؏D/-nKT; ̨R%n Դ^4D2ri`VՁ?PV`hiUD cv$^iqx8-4;99 ݃/prMݘ -1-K\>nS XC8[ 3#y) Ĺܰ~RyM{1ܤB/)DtxH~U[,WӇa s앉zXv*)ί^Hl,%at;w*]ƒP>}nVoC&?*{YX:vわE&.oր*}^*OG!A953;P ^:q6"=A1;p(&c"6v`'4ccf`CC`.Nu? t. pPHvk=xuriԻΣ7N\K]b|ighre\Hgsa[tt-d2G~.-zO?_O^D)' vˀ2 Yȓ<8{B|\d8ޘ:0$rܷX="J_+_?CLf'_INrXǨC9Bx,'GYY/.j7^XN~R'=ģ?/Wt=d*piwHV@Y8ɗdaIDX>)L.y51Aם%Y2Ա0n ^3n8U4`.<g&B w|=\Z# Rchcݸe,0u~*+)}zax?ʓvmc{ PjE\jp5[P08V #`7PR@Z/tk;ٮ͞#Vrn0D=5Qɳ}|¢nYFDbLN"zqWp/gα N/q?ӂ4 C1]QI oʆ 0ʅCpp''ڏkQ믻l[Orڛ]N V3i%SGVf^ބOG n[$nGl>fg+WN!;+( dQS]o`&Et1P["TeB&} LwNDt#/>׆@8ez{/=>?}2`z8(m^Tej睖Avd 8HeR!*\iwIkcoOccnAhfK*@jc3)FIYwpW^TNhjQzҕE2O-P0D>eQ'`66a0rbtYPS^S17}h}q^:l{Eޒ!`Xàg>8΁eM38!R,˅PUݧVgmpg-E. K|6)ȌbrHdؚ`b傧Wgk}f[(Πa"0,Lݽd%uX#0WZzThyV+"CGS?Fi kyTOOh~BC5:Rq&,ϭ5TU-\S Ǻ[нߦUZ١# A+UG~ -7r?sB)tl*$2{39$NJ 4Odb &dz8lnY4ĵШ M3I {BtK鎻H{nWyNJ{v35|e%*6XN(Xwuָ*};ރу^];HTݽc1KLz7GlҴm!"9VG03 86`:QYN_L?rЪke.;(8HT9ݧӝ モ:E+7UsxoM܄,"!I[5댦TY:N3<Ztea3]Σ73mܽ5_M@Ϡff B(\$n1 ^3ghxS 8OlxPyM63CAD&Zsr$L8 ǀѼmB5EH̨W3.4d[+{m[`1U UEh.UaðJ,QH..FOae !--Y(5LpOvn3861Ȧ.C6q8;d"Of}lmB6q,WYA-JV"ֲ2,9 P25p*8|~uoꎪSDgom5m3f=9T-UjL<|mdz6&uoyHȈ V:Hx@@eIY87RSfFh:b 6d  %^\U$+:=_$Dm.]#Y=)e*cXey N(J 5ľ)(e^e @9I eiB!]1uR>>w/,mQFvkE89B 9paXzaqaEøpdc1d΅]egM[؆]fʫHϾJĉgY@b |D&aן˞^cI6ER] k924GG1 F~b x+]'6Xֺe!aCM2n p^G'q GU0xOL5t怖~;TG2U|:3CZx@8B]b0pBћ1gb鉒Y9==gWaI2qj (ڎt,i[andLppQuP ə?CL 18U$;ǻWaMРq$b"z2ױo>{;7R #P2;:ɒqvx4ިUN<{f9In6Ś[<ʕٴwt`'!g z0!;ZǭG#ܰMŠudcM3ŅKv؍\!^r(,Y&IWˊ S]6#zU@&eMCT8~Ї;1JN Fg?`KNG(=hhΡ~9"z t>j{0ɳyIT;V( MlL}Wޘ BE: N HL`6bbߊ6J@!mMW')l{k %uMBۯ2J.s!q›($zJo&fʝB8,\]WZ,v!*88D7(] BS}X$<C=.od}*/Z(ex~@H6Sԓ*sEYXEg{ow(~Z T(9,`SC) Uj`%HO{6W Ġ13;x;xP@Vc%e ʨ^BruTl|%/*zcJ8;}دveO<ܗ,>C)8b&ёTmg+]y^͹Fc)sA74Q\M { mǁ5%>? ipo 8sim Eثtגs!ɳ$r.!Z_O-d;$IVe|vbQr42\z+酓tm\!80J3W> $$wHϯx@eI41a5Ety ,OӼ9@J$t]e(eB?C#nDn 3qyh;H3jґIOe]XFEE<Ȍ~Vw V56gh`eϊ|VkRw(p=2"[ō#3jgf#8.1w;'%e DkE+ˀmV/ZK},0U =j_Z?E l Kmb^-Y90Wbeh_J 8"6ˬheJbt/ ɐļ< NdQGnp?WzdI&1ZB',9ؓIWxfAM/w]B -r]Mm@|/I6X㥁ѵཻgQ$`^ukn^gŖݙbe.Gyɯm(0<vQH+ 3t;cN7T e}.l-(hsm:xmP<5) xs":w@?DB1*!ȴT<}n=c0J49af X{.TZiBaVK7HR,H2eU0#gjLdž4ZVTM t(K EP κ9u ſe(&qTlk~I%!A۠˄ cs#T;А-ϳ_GBH&)  272lV5soDZr1&w&oHSlRhP].3Aﮔ%ui9-7ݤL<ޘ$$̝=PQ!P;2 2[n{u/|Z7K_%j?Qp;<ȿ\Lj/ώs(/=wǒP No%Z_>.ðp76;Rw (mʏ3c(\#;S~!l<942u}̷_h3r1BT iiL%{oentiϦSl"`bsPk pNKW1}@װ NxrZ!P|4br=~ǧ&;*2I=Ә&152#3$|n[bL۞.yf%y $ta֦ބ;$,Lg|&.lֲu[7Ff%hvr Tπ;@DԙK8OΛ.C5@ca9 y\$Hqeɜr/{6gh(5_W[Rg١VYd*(7!s 0 ,@[@&gaDV6e]G:A\@%~gG<߳qx#coT6dUdsdZl, J_%pg!'._U(t9ӠׄGm<<#XqF1@p!ƶJ\I1ݤU:)6 pV|Ь&BP<0OdVX,BD$r{׺SJ0r*ؕ{ #ЫtZICN;pז`}ML`NPER1ASlp@H*/ӭ:l}mZU#*+ u(A|46q@BŞy@qҖY12ͥXoNt$hXxqnqCkj ݡpIN?^ , u=&:)] Lm2+3R;s; g"`*^R|l܃[Ґ(."tt5JC|@[0ILOw~o|(iĤ:B\\G_\_#T(O^=Jn.el!ˑ4b&سi|{'^nܑ<ط{dHp-}4z)֎2Im=~iC^1nP8kab6ޙs}Ga𰂇[oNOYptWz;Rs2*lXlJR49u\І=QƷ5*v L7s7]Ljt:94߹x~>9{hP vԻ16K~f.:8Eszސ#07#Q,!h<5YJ|H_|0/ .Bg6x5 "_ONMבE0t9ji8;>-67Qê]6@ -9G82$Fƍ `>a5EpQ-QF3lSpάI7߭EW=F f@IDATP`1ݗT]Z `Z?v}Ɉ-,P0IbQ7 !7C@(`LqTX(y $>k\~~~)}o |רKWgwVapǹ1U!L0vC"dڇGTD)X(1(R"/xH'D1 Wb`*"Y`]}ȂAZĘ&Rk"xXDO1S"GԳ;yz}ꞿBЊXZ&պ֍-_䜣#q eR3s'pzd~Z:fr[30I{/2giSqŮQi8<0 =gbx'^ PFOZe;`ehJ֕>uoRd ޓPYDEcu1AS%2OD+:p\~PAr_&FNzfx]-ǎo7 \RqG"\C-ݥtTF4M!'5g}{!{n# }ө7Ns.g.Kg/:ɫ(w}ɂ*EHǁC!\Ͻ'ӽw>hD?dXJ/ W8N/t.]qY9 CSnh ^fB8~t.!g+1&Wnu*SD -2!8+f$|@wYfic!,zjvbg PqMDX֑jq2.;@!4"v)1dajeLbgL F .뭁d@&<.:qj<!ƶD ݻF;zhe-,D6g_2PGInZluW46y4@'Usjȅ=)Iie }>P~`NqHOt1G y*%` lLX'serhyay9M(& =P&y E2kt#qSrZv+}na)-SkG}wS/N_*ћBщVFnR]m'|!lx$DXw\&pI"ͩ=0L]! J3D2B둰MFu*4W\"]ْ:e"pH=''-qNHbCWH3SjH >z%%Z|0xK~`7 OXW0ZD!2'Ү{ҭwÿhP!O;V,IjM>yyn~z J:OZB_-HɞU / yUɃbb ˤ}S~ϤfgF)Y 4t/۶\@mTD {@bjys)/<?w:-ãϤ{t/~1NL<&ie)ݯgN+,-]+Iº fD|վzɀPa!T/́p6D23Y~ZZæ(R*'PE !qXVEkf]-Jؼg v-g-7,w.s!G eiT ɽ̟ͫ&YA`ɵ U9 m_.ZLjDbzXzFm\p`lRk.DT] R)@^ "&xFy`ZE>倂qMA nCTS/=q$\Kjs{Q0_'!$Z~,7@K i?V P޼5*]d7MC.K31*­͵^PX@EC W{UAa/h(T.Iv˂m!7rY9/_$ytɢ|5G`#bJoe5WC}/{壮ݟ킇ח"@N/QwM5M'Mo]LYZ'2+-_'4cĈS[s.J4e* M;3n<$߶il*]"Y}dzLz_H1dS+zl5ū'cДxHYsih?kT`hީ!RsjgoI%^iRD)as_fi=8¿7=xQZLgrgbz _{4QbRiZ"=*VWBJL&Uȱ"=jkJ<R'RG-dRx2J҅y]/Ey* 9 N:0¶m :r=˫mmzKfLB؍Mt'.=ݛ#mj<&լ X9"1,2i94]Et|37``9Ek范ұ, af:QN?j 'g&qQrNu(3A?gp ">y kf&:yBu{]f-.vUԉCcUJ< /7f0P:cCKA,}8h0ecגK5Zfh}iP$U[A]ku8 ]_N 4?! \%h^Cf;Lֹ2lO 84G*Cord0VHأ@+G T+=!4Pf;w97{.xĽsoaAk|l8h?*wת$^AOmބ`]h 1ye lÍLT \P*ܧq3P-AVqz.{݃FzpWɔ/#gZgL]00jeh(PBwB&GĬ~&<|0,p%i/&-f 5*zhK zMƤ<]e<,=!Iy)]^|YAr꺌^`9c Fc``x 1yLӍɃe1^LW?S{\Ef_ E]q6t!*b4+AlCQ>[~eW"O01~U2eJϚ6<6*)|Vϊs,xb|9$5<\.C79ّѠ8[_PʃskNù֩TX-dt{nMOk/*TPhꔺvnRY]oN%6eGp}ږ'KA75<0% -q֠VZ AmJpvdtC'^DPZ+gpKU45DX=l\[q*kǗیwiG<q͍(:E!@}ތ!71C JqƯS~1 ];7+ǰw{w_!<<"CMZrAiӘ24QT;5Gb)MhܥiLwAGC24x108jr-àt;̧1Hn9p/MTƷf3I 7XXNҳ^YwBL؜8hrFVuRy{LFM8CCpU #PңU!3@x79"'n0ڌs;c|K`$E\+POoI V {VRE7iq|j %.`jUiC0nb] Ͱ6Q-)1 VF@\We8(58RSƵ :]GhPaPI0C-G ٟ #Oe`j`wFOV2 0q1ɺ?ؿ[ V^8֠W&57WsK`r[4P`(dFW$``| ,F󞖔Y 8ϲQs ]h**[[-o{B ]&VډQ0dݼewՀwfLq$-#S!G mCW.m3=3^6CiVLd4;oKR*,[Z6QeH+nLP'2XlzO]|@3v2׸^241Zzք%[ %22ڄvY iL:3~0dGܛ(*"91-˷h\nM@Bo,W@SRA l!D[m}6ksN$Jr+QZ-#5d93U0bElQve" [0[pٯ}ޝ!آ;Ua*P` bd*N  3CgɉzJP]rFH7_euyy :y IN=Cd|N^M5X3}*yt~h˫׹pf^?5l>p.(<34<㜸P=սG&I@(ЫYzrP~%QABIgFZxV1u鞄V@3O5ƺ斤9ײ!ʽĨ؋ poǪxC1[eE`U_).J22;[9Ac*36opX ^5m{77أel6 ?G_E,Ɓ7 i:xFu(幇tI~~`53Z \X|dJgP'D7 J@t&i`jDF6cHJ|֣̓nSxX*Iyh PFW=CbS|0m uWbU-Hr`C[w,rZ?Ej?mޢuFը;$kA! mR=d^" g:H14װھZ7xO "a"EFPTik?}]ۺb,.{5yx_nHlnkN&F8 tVkrx4Yd`^q}VQF^keS;hZ#x1WFWUeiV06Av .7^>T z:( Ӛ[\-vdY|6ۄP+#zIE ! F132&Z7}1:~AC3ݠk(gS%W%`M2+Vn`v7L9 *JUw rkMr`d ({X%e}x9J)j&#FG9:N2l|k Rt#u"oa]/ 0MgEA"bi xp6,wtʈ<RJgES*\J;QAAI~M3zv|wp_y g|JOޣmj'<;&jDłanKK-4>D< \'WWd ev3_ 쒧Ofү~X-'2RR7,eBL5Is0ٴA7Wo$y=3=W}.> $MJPDI%%Q$[*WUSȶT,rX鈎(R$q¹vwfع{< $Up9}~}>ӗ.!'r$g2^y~210@6iU þ bDu |qy&Sh F 1BCMWmd+̕ܫ'NԮ3́۩!1zģ^޼(Z1M `r9F+g4%*_xv3:!%"2ҹ>h{EGX>%%0x6Hsg/Ҳ !pf?XO7߻{my oX!5 ;(`lޢV_PW8R4lGa7MחS8eyH^jqPH 4^|,BkY.Qm,mOp&2py͍UЋkӢD/j%z7J6<9B>{ 3Yؕ&U'4_sR1%s֯񡲲<Ԅ%RY1!XS0lxa,egzvĖLvx*S0-D-rPLeoMSQp x@-hK~$Ҁ$ZB+ 1qM'7_,bT-1[ QU @i.Ȃ`3SZy cN}ҩҝ6LO RM7kgHDx] #iMC `VXo[IMu^QƼ?l#F|t"zv4g) ?21OsF"B?*׌F'j# GeQ -j9wƉlxMk-y^L噧ɴT)p(Z===gLIR6=u!t_63Y,O:GwMF JC98{NhU~nuOc>s.Ʈt~#o%~]>jp:%7>hLh MY6g"{ce@w;ޑڝ=C~lE=R&#Τw_ө J~Xd^forDgNݠ:ftQt˵={|PX]% 刐T5\*sba,-Y๳ra@![co(BN GWrWtKi&5IYBַaCl-x2 Jx0QƘ'Y#33|Z}eNO3&5A^h<@{`9ߧ}^%ob(R~DEOأO:t5KyM O_zz'tt!g}k`{HWvFbQq ,w bt zD^$U ?un t+ٚg(Э3R7 .&]e/*_*1"썯5"JI*p}Yĭ2s;%POFHixÛu[_O ~0IT9zy0P2>eK2w eS4EmN4E 8kmAVRpgZֺ/+*ȍu)T&z+*[. k^ giX}! ַ"RQ6؜q`dNm>떫X!aa$y|,4q}f5n~X%m+^q>9Hw*/^{tk e\OSTI`lVe`UErӤbp7'Xc4a.iԣߊ'`GowP(4%1еaR|m4Dh_?*XT(p@r@:J1:ctsCaB@[Z`Osi's&M+:E"fv 4%Ɓ6%+'Kx`*J@TE7h艨"֯rVVXyjwmgqm [SuOJT'Q(#cizߝss70⟥O?@"z3!& h:ڗ*)Au!/%2 ~@Ix\ž3223>gҭ7Nj.Œe A4H:FW|fT{IU 4S#L|43Qt,%mug~8g^ G^vpN7ӹ 3QA;cG5`ප4cS>KN27_HNw^=4NtGҙ+-") zDquq-}/~@å[i|*Nbt:#afPr\0Ji78,/HDa<:H=¢="T'}hцiJ+ӘN>2!#UZGN+fK,2nE9,\` P'~PKh7$) Ļ;X:xtookf} QN3‚rhݦ-cweK"7#$!RĝWnNX R[ro"Na&Ӎ2ȠxNxz$zw ML5p sA: #^'5:/k<oCpzkl#{8 KL D*˵PD~ЩQ !%jQ.`𨌠oaxӮwx`>j 7iz"x_QekIJHȑW*aA)N(O(* >lUFl Ӎrhu!ڡys*G iĺNYVV{s1%oieCa:g#A鏍1Du ׳\6zY`(`0X{1RcE %}fQ*20]iJ5(8,6O8#ߋH쵟hJt,ؑ*Dl=@6+@* zhbơõ0c;Ɯ 6bׯ 4aRStdc:Y8i p.e^-{;?G?ny `-O`A_ <,a,1&q@pj {s?,bf^OFtk~ms<:9fU:=PWR?ЍFteE\0tqKrK`mJZ**(FIF˜R1AOF7ӷJ},w**t(bW֗y?NO 5cIg[Z=uڥQBVAѰn#^Fq*_şOw~OFjΐfP"A@7CP@ʥq-]K ~ .SAKK\ՉqD< * 6t, &<шotcG6C.;9}prC" a$`HJ5͹K&bM³<3I%?KN_4H'No=g\{e@d7/lX TVCy+^!F^{5h4DAzA#<6A'^0uk^p\'^~vfӺ}m>ZًM5ke5G@R+u(\a ]4~`I1uckuThUR̉#\hÒa0<|;,S=Bt4f6}E_Jr*#4F5H5=z (Q#OۧݴM(TSĐQ@KX^pF%i*\='gT|. UQ-R@~`ZjDP4V>/A{7FZ@6x#g\}o&&&x&"M*YaDu`BBcR`WJӛƈv]{MAQ5K81tG؝-xOf t=`rK}1G|S<'ubg#9>Q\&(Fpw'GgQ^!L Êi+"<w8 $4{(mw0? 7Qrv4zwpD-0$_v:Ϡ(e|FMJ:4@ia`0x10#=ry|wqS1O+Gj'!9vBk-@۷ +S1?~ʏ8q+ y/9kba}6L~ =j쵽H D# Qvj.cÆt@ =" I6gCÞL)]|5`@}\}ހQthScbfv*L}ލwns!>1=@JhD9};g~^{aǞ~ ϤnL/w1Bo_Y$V4xcϝ2pln NCE ]$%b/tV 6Bk=R8laU52`249G0DB׃Z40 {R-Wʧ4b0X."` z (ޫ!XQ$,\QB4p8" Ճ %+cM(D%$e_ Ubrԯ3i|]bhC Ш rS Y#-!ju7lRdi Q7^G * kmWxVG@35$#"J3|OcDcOx@k@|LƗ'@䱶F*1 3+TTc^*P-ik!`~y~($ί3 @dU߬E)oП ѻ/BFٚ?tawa>G0XлS%,fޮ%-*sNЈ0 (AA,vVhx[x mi>w]JGCs2g?``LlGɥP#fAlSM4tE#ߔhUΠzDd8WvU`-"fݔ5١(tSOisk%m@lbKbB }$05e";r\{6?.WOO|Xz"׀sQK1RYDEy@6r>\Cx8ñ)rO\̋('4GPgt{F"BjPqh]ڡ1-d Ka J ks=.1!i0&yډ)ZMOwrTBc -iU#xK5΄:^O_aoz?HoH]N}ɳ/ͫp@̿t!55 yA(&3R<."i o讅ЩnCU#l@%q<3O6Դp-A ʑU9hz]l`G~Q5Ɯwoh[`,PZP%sZ>gr&l5OzG%Le(1@z+Y6D DS'`>rAtt0z(4=wM D*gطb_-L+B0~`<`bCV`D^=wWA֠"U.ʗHd$Q[a zz6D^߳"!j 691 tJh{-!^D x DkGZf%V83 E hhG;>48)h &>:i@"@4W px;Fj=5G58cN.*9LuJƚC HK<QیvD]-V05x=h@IDAT>} yDƻӫLP#t!^D2mPU&i"ZnZ>T9?17; MVd剹Z7atFLF',GAPs,Nk]eAYJW*}Ne{\l?hC#Ҷ3!K]E:Ge27ѝt]GPxRmDd?`.?hcȥՏ  _+P6ĤyײɁ>$%$eG; @=2Y C EF ގ"DP<ӳ5eZ&0p3ϲ$Q#Axŵx*cHy!Ax<]{Qrٓ1e@]0  IvB!xVSb 5L#zv4 x(2fxıLr7<šU~ۗo܂x.C ^ ֠h!%`;İcBgY: ^Nw)]&54 4Dz~a H >G7.)`=:@3maDx5iȂs[^EQ0Mơ%s EL4[b*b#j,CHq1g#M#7@JG5,;2~R6D'̏nҞse[)0Yb`p\CIn(9zCB 쫍tN?h5 :sOz07SCdT8~E ɶ F̗ڝvuh<`g7!]4ZqPe=\w @F-y 2U2)лuO= x9/B7I~>tnӤ=Qn7r͎0F(9sjzSC';J%UX4 T&6t*T4eHax5ٰ:4! ]ik&2x-b:- 4n :C`IF.kF }lCs q/_Kc˯<5"#˵?: F`;/3wOk+ W: N4R }3/Ԇ"oL6c`REJ+@p4Y@"IL= CGxVUG pEJ uhqpm~PJщn8~E v$p{k#K QE;_@eeWĕj4 # bh79tEXuq=HP0 },< =='DM2h]rbnbsoO˖3?^3 V@6!7Ǧ/cy US{bY V)P8/Q! :YXl/ "d k) ϰ/ u{F}F~eyfD4wkEŽ1;-w @E*X\; ܚ[g5fCņ?z_g.#X3i K΅ђ!@ L܍;D^7 *h =I҈[xޖ(D@G$lU /8kBAy YGz1= %#2~1\}N-IM `T+#m]gca[C#F]#y ƾ cnpeɐAQ8Ҩ Tgdzl4|L\p5Ϻ( ϗQC!E4^ucx]N>w}woBLQbQT}ih(;nGjwByfF8]iGy/t3|Z̰?FHjP6v$m"Sv#BQ%P@vmՍsBi}_{岈aCD.]>ϳ,(GB5HFsȲx\Ψ(%乿dH+[ ,7!hS*sj~!u#z {>kH6 YctӍ~*29Gk{DoYcU%x=]tvL6*ig1}1c(of=8v)KSzh(4zh{LnDMzBnoYR]+w =ɂw}t/{{_It}uMwW_(J@e@Y=v֬e>F*P-rjWhrzzd>B|Q.@gch ׊F\yZ,l11c;`s$n(EKa"!E4 (XPuoNCp!Y3{Hyݏ5HX!dS95_ Kp!ĩ7+MOL(K"Bxi5gaSp )LGIJ/ZNQt # LLx@%b,GQ|\sCT> 8- Ry%H!vg2~BlD(z"dW {Qj>1)|GLh zQ\zzDx[>=7A WN hG<0=Ca9!ns AQ>vh%ZL >HI`(bݏ4·WCP6Ľ^ *s g&$Iϻ5haL(Mp\Zq-d-7s^D*3ow!Pd;Q qBJKK,eP!as((QZBXs\^ gnX.CVK6k\0d[Gb8[ey~>6,o ss1/Y92!j;n!{ghmÑPN>}HãYֿHs[2F GOsO<8*Q>*?o#[YZ48hٓ]KSz tVB)aP8 #0 mM QS l\B1.gԀV#l܈0i=aOUތF P"X\< <6ug꣍mwtDžboT5xa3z^Q t!=W! C3bblI1Тێ:OZU<&O R ~\"؇U%bwHʿoh{yvwbe+*J#4$vS.w'?G>KH70dh M'L9y}Q*PmI=-T ui?pƉwa2Zl=ŬG? !roޏIǷ颸X s-ymGahn5wIcPʳ%()k:0[Q'vLΝBdcu/-$ՕPC69OSC7$r謉Ƴ6JdļƙlXLa+j kc \{iׯMg #}ЉQ#қ1*fM{FLZ0˗2 RR|{7,̅'#ж}&Pte`@+FJN g&x ݨvz3=F#L s:-)\1gC1FtW?|{'9Wp<j#(9%#DL>qݾM8m 3;8 Chqp#BDBk aۺp"U8@ f,D=9H{n#-si~c@(}a,gODB2±JѲ6e:4$H0oKJBiñhW(`*q8:\@b.y[sIQKg:&qH p fdм뵄Jm4 c,@6nQQCg~Q+F P|^7~3lrc҈LxC/#5'x-UA}RtFކ-u; :߷zF< > 9< 25Bj_ҸĦW'W &>"u<{A[OJsӣDhǍBvaV6[V8=;W@ fAp}'[MҢq"Ħ,TD)Efҳ~JNm+]ft4uI,yrHղv#d 13qt*{څxK_Nӧ>䎑^1eg׈*A) M;r֛3XuZil:P3X$F0u+q]j1ԋ` F=C)4BN2"*GkݛĄJ}D`(S>Ot,rp뱯>wm_3o9T6OE:~\)]Bha̋9+YM^rprTC2 0P4lު̤>D-&t?ſ{󑔣">2累&=2mtZ H}DGa6>zb4:PTk<3z$`Gi"*:Z(A61Ao^`QT;iRђc2B˽iYiCK/۲4?"FfbFS϶IgMHmqBu>X*,I}V`,2\Ë#a:VSc)("{;b*oC{(`SNiy2e1~}{7\4Ğ2q~|x=oH*`T . z 5^c{r:rV<q( phPrs?MzلT +Ҥ0,3hPtVÔHyb" #[(y :V\cNmuN:~r*u0VYVA Ngu:Ng KǧF`x^=3XcTB Ag?iɿQmtahOu]ao,h_#Hi C+9e@ʉgF:_*Zq\oS&xfh+9{R vJ8Rf\5|%yt@eDikGH]j(D9wB8X|OQqgrOÀo hrfz1J{5CY!CEdr(T/J ~_!\f>kg@vQSp -t/z.+ d3xn[_]I+[wCY[Cq ޮEOLĿ[Q:*0OBQI*D@ejag-ĽR9ì5R@\ϴ:J;q'R|A (p !Tǀ*<o'@Yn*Sb0F8p}h0k^/ӹgk/SM>{=]xar#ɟ(}xLVpr7]hF‡`"vZlPhaOc [4 %Tshq! 29$>O$P5π-mz s Z(PBߝvh:A8+|8 AJ͜"LT97@aɲ 밟Yt=3Tu^-"gF}؏4"eW` dzsP\;=9 5 80ߢa Y(*}J Jc6[Hf :UТ;yeCӅɦWbz+:@q 8KDDž#1$c$X('FU )篧gyx+J eXYDfo >A0|#nɔv,R #ZC{jm7(U 䞞ez{>'N'NNuw"=8pȰpQl=ft+{tcprdxM# qGzߩȍ=0f:VQXGC]; s6x>0z!!aK2_B^BW?J1֨6AJAn^?OUGDBkD3Kbn#$>wBh{UnQFeFjT* k ji5:~GE_taF_#o3 a-ڽOv8\hŨRcؠGPYe *{"M+B=͐neMSG5OkWi$d ?~h)ִJkԏi`BBy,ʨM50+dl u䴞ՙf8\t42RӒgGyQeY ^aF0N,;`LcϮu ?/`6y~ٗBxm afKX0gI"G ﱯ{7Vp1(#v4!G:qCUN?fc##iagnhʯNm9-xE{UQDJVFa)h2=nپU6:h PV6n6@jC&s#Ά!!}u=U0 wo_Lje)mLu=׏, n2Qr @m!TO"L9>YcV96euV4V9^֡OpE5LӟM;K?g# FksHE\ѓw({þ(w~؊cd|I=bMUܠ<;!vsDgύPx!?# zjb*p~-c+th77TGGG#de*s,!;()Z\?z` .6Au A(Φgw{~^T}pj4MYDf NK'mEk-G&!F &8UԻy09g䠟<} w&:WLH0!YJQF^mm=]xyɽo#{ 0.F{gA6]yڸ{X]M(33lCgYw_'BPLd3 +riB 1`ְ`"'[fWD":l)tM[ #PjbkaWLwWנY>5HQps#Ox1x֠tÏFo ;@Тa< F"P !G{<>&("9 A_bfޜC{1a6йηֈ1T)gؙUծi<P?eZ ek@hMѨT<"JVؐ Qʤsi nz((BK{{"\SAh.&2.\LccV1P4<4٧LӂӓC,r9" <Meۚ6/r[ȓ'?d ָ>mYjGF>iը { RDVD6>fO]ٚ?}3Y_cݻ\a?z h;{Q}E5h:0v;Q5=mS[[dr #2Ký5OAXE)kATd!%pF]!bNk F+ (' F}< 4W)L%iE$WoϯѥGi:` 6Y3ʱ7O X4WOkK|̏X O7e~RD A"ܐ2aw}n @k;DhnQ{x*`Em\ A&aqJ%o4 y*F[Nt* aTk Zpb3+0=ZV#Bs4"@M^::9!A8 o=o.D;OZiaBTvNohv~!ni FL eEdk3wo pz}:uPPžK">;k6gx_V լ@IDAT/5V5T͌s܇)4֠#h'kȠ&>쪗VIm nX86fτ1~~C!`ag]9*gR#Tnaj Ϝ1VcMuπ!abxꏾG co[bCRpvѵ6紉 %u';վF0PBS'Pkw;_N|gWbX#9$eg{(U%zA0^>3HSihQ}BsE{?˳؀S;u4z yµU9V4<7DPm'Rj!nsY 3":P 9DB*$*T/M;< $VpDmTViSg9Y|>󭿙׷^3gk#2U'f&i(gӺGy<6:Mʂ?:)z:c:!tkg ݷCO E]e´JIg? Az#jZC! (A/M`IC 2j16b Ɨ 3*Zh$Q6Lh)6cKϰTx$6ZѪr 0 5Rt "eYr&طzM9MDoKc90X-8qzQЪ[f!"CD:OZ<>kĈb]e}:L-,R;A0gQmitG&MX~`,7b#4v°amߠqZ3#ʺ iB\ b= 4۹ nDK h58=(c- SsÂh  p;'$:A9P+fH#6`㱜gД}DQBC' C1 { ]e遣;櫓4?96,-u주^ߥ HN1`ZCٌ?9*Ĺc F8^&fjˊlgj 2$)U<@Qcxnp Y0@ו{;iJ9Vw|otBy^c0 aszT" Q1aҠKsXlx$׷&*pF GqYvڻA֕Wʜco':>HׅЇ+'s̏Ӌ 7֎J%\}F?<9dTD PbH W4y΄NAH2? C<G5yx7 STqm{sD30Ot, %ԃt'ˈKhh9@G蓆BxNf ggduf;=ӟz2]}QyM7~'s;޽i4!=#yFu9ٲJٟ> *Ux8agM,4^ao>x<Ã)K:aT8-w;GCj4}K mtD4/`a)FG'z}2H}Q^^YJs4?z*݃k% ,G^'ZKߖGTvc{^O?ٟ>4&@.=re>[8_ /h/3;+mRHiҟ-7hŋ4-F_/`'lq"FWlͰJMBs )`)F_]]$ Ӹ|'K7~rF=" @oQrD~ %vQӘhfLޤH[eQ\8/sKf-=8* F/dLê 8s k%*}tJGSC*ʳ³j>wFi?SC(CZ1 k聙hx1J7DN`X.Fb۔En2084 pJ l( jcWX!KA ;ɫZ`x' hA]CqƆm}݃?k9P GWHIT Oj ÚvV4B%}XS o\YJS(\4x|NyJ&y $La|rOA**Ct Gz0@?F|5T>Q㮑+|c\#jyߜlո6&0.)ɷ6ax q#| w|3 Bp;U#Vt3x57svu: jgW.:xgsiy񃴲x 2@;h˦a6cS`;ܗpri06|Y(B d~>_HY'# gzeMBe`/G15;4X!OnއU&`Z]^&uq N.zac՟=NOgg< <6BRv(s-\P`,qe"TIK7APH3,8*7GwDޜ(ֹ'{bDH솴$n&a#82A g#^ctd_ ]iCi7Sl^yGs_h$ VzkO>/E3!rGeCw!{YmIݏG?MttbP?!YNm9t;ezvգofU9dX 4t,QyB!,̒A1i@ "b־:JX=X6kş#`=2b!:I:%N`'6Ae}?(``#l0|GOH.HL{QNGj;:V   { V5}'hsvBbWjCT0l{ 4bLTCLװxPcư?BƊ33j GPD*8y)@#f0dF!y/0p :b0k1'6ZPZI/%,#"FoBFXËsMiafճŴ>RjfGk Lꢹ{7SL/U}Bqh?~xyh{4qf]XDz|.8JW~{Pz_=Dh@"BVXG;-p$~ch}Fv5><=q@JwW!p*V߷B1d/0B(>+ϤPָ7OapK<\/K[ʜg̤$1%q1"5r MHQZ1 S 3 g HF7@?=1^{YƥS"U9%S׀ ygNL@z}S6}>BMWeEJssJsRY>G+L\s,C{,z_6+3pyuTP 1tقN9zGHO~iHG<#bC[ţ|6%Gnvg!N' ҨjҸoqGAa^Lϧ\jzgQRWXmʁTQCTD1ΕΉ/,ɐ1'_P5ֆlK|<4J:aܻTLf;M!@Z&y1>;〘 g݈K܆0x&}t1h'&${{>-/PU˿ԥa{?Xӄ߹#)]/\YYzȺFH|26BPiu_-F'ؠuF 6Y H׃]LlxZw层gAf0j=%zهw*R]cӼ*a*ۚxԁ|C-`p;&z?f.T2Z R))A`fx[>fiA|(wb>G^;&{z޽pt!(Q+$LE}ýTŰy$$t(vh=,&q{,TҲ]*jʈ!>)X>$Pƿ%)(D;Wϗs)%5!Ofxv3>(I)c0g},r?M1Uk'` 5gW]^WikP+ M`yM x}\_ Sl|Q<\=raW|z-%?[~r#u:MQC*+nU50x_%͚e1\'<_g,t7l o.SYn^̘mn:)ϏyC}S5kCYo7n/S!zgocc;|:<.uIPvsgcblmjrm(xMZ:Zw~/s)tTxEOB%ׇֿ{<1aY4F5Id*b`E'>;Ә< GyOm')J,V޲/2+%C TYkuO;|"$CxI^|[?˂zGă|vŊ*Vy')Z ,V((7Ř&S;/oSeսz>KPLZo~DXgItnVJܖJH!䍼v} 9f1ٰj f vSt#2)9fq?nd];0) hiҀ܋ITnZ4= 6`+ӃON9'of9fltpAZgc) -i,ih !'d0;뙒IV %y&%ō9<SFS B[ưx9L};%e7 N#'Xں<7k#X?͔~KK+LJ-O?r $IxZ'Edy7+a\I5OQ"d_+ӗc~e$/JxUˮ;^W.3=8iSJT0")ck:`;.^q>SމR")qp꺄]KQwu^㍻[ZBtM3aw8[k@rE% + ZDkKw\S#и*n:\ "ɝJ4Vh<Lb#n_rtAHYVܡ}@>K_ʄŅoՓֵ+LCdy?H}_zmG.΂ɓk^!xt5$;F-ioҌA'fgsݔu*,|(jY'_)soKӽ `0%P ^%[U1B?B睠nZ, Y) J:;dh(20 cwK~\@i )c|Ƌѵ. 9Ř<޸4x\S Q:X+sSZvTYXh$Cqq_VK1!x,i9)YXBYw̏GN <"#^H:A  ?FJitrD=%1o` H uL0W<&| +^hk|f*>WAG1WQE_1[q[KQK³.гFz}vO1B&"܀s6=paJ6ڟ!y@Ƙ1ù#0}dYpۅ): h31o;фS05muJ=*ϐ T8K)j=ϗ:X)Y?%jǻ;vR4*8_;$wxfgtQ]@ @lPZI~rqFQ΅ZHI?h=Vu41I.'x혫0ضɈe|+O_OeCBQ8%.ӟ8%p/kV U[?%ƹW2z T}Oei+~gy衟k/$W-T,ę fq8A7ffˊuu2bVnŒYܗ*&FI&'l\$<VqQM2P(OBǀ Pi]%쀕qUF8w:M!hE8cZzA,|F%LY0 1 vJ)ƥneqw%H FwQ ,D* ʕ1j>Hrh,2."rGa\^ΞGH221VxD(j)WabA` n*^ ne7CZ/F) O$C=k ;Ie? jO͹i.g?Qs ?ۮ/u;g~7rP6ICk? 툂7sPL0(Mց(}(Zӵy)b ̠`—UvIм3g/V^v }Z䵰 -KkxAsvևOODo=Gx-Y,wA8^DIp'&ǂBl5WwU Vѝ(Ekݹ&w0 'Di3Y>X`Z,GtmẀ 8ʬˆd#{^~]GۭzuMg;J!u3{\!CxkX_X&a{i=tjܯo^gk~pUO=F]{ďQF᷿/s?p 3'gFY11Z שM$8ghj1vH-HNbb*` / J )bL03ʏe,yNCau$m\x:nZܨ Y.>5iCUp[ooM)&=<{vws5Nj;3$K!qx1\2Ř z&"~VIm"qmj;K p\ƔBh.H>1;x t_A5pk};Eͽ#ΝURZS¤m&HDֹv3\bF~a ILVV*Uc8 "5V#H>zڀk_|MqhvϤ,(mwu1yNA4Q'HSRxS9lRE/~+Bguj{I05L\%%X(`OnHֈPTog};]ɭmtdw+1 g`% ccot߼8% e_U0|Ffx&FqW_wzmP(THESG%ŞG  6FQ$QZ;$Y5hktn[+6>'Yft{做$^q'^cs :{Y)zt`Z׵O})9făhh{h}l?!@Spzg8rfT9 e'./ o,59t 15F6 )Z uzJo 'pLᤄ>  g aό@9\nIs(6a$'oez%/~LX{oEww`yFy <F{ɛ~l*2F3#!XNTy+ֹ @IuJgo^<ׄYzh WXr#) \>n |s-p;oJ8yn V4<go}  Tcov/q˲@2fڟt:LUVʝֶ 9Pa3o 0xu8ژL^76Ve:u[s?'LLLs_j4H@8ݹ方V3sqAq*+0 k1T}'!32"z}gedOCD@Ĝa>ҺU8`ƶN翀~5\QɲQ~CBL-nkF|qqqkp潼bN}`=XT!vT=߳OLyt"ݸcS '筼 < W0;P)7tn-_cF,ʰ"^ӵ}/W' kZIrϝ9\(fCLӖ{nXw2Ua߬ݻz֥:a[YE!̟bY\N[[һrʁ9;KOB br"ޥy6nkB#:cJH[! cMA*R m힣E5%usdP -~1m %a2]3Gѝ>h8Lvc,shG#ʇ_[)%pMz#xʓWͬwĭ@:Z(G,o]*~S78Xd{9Wf}S<@=;X82¾k ;|ºkd scbB\/ $ }nΕWr'e- ?Gbf9Ycvc1@ˌ9628=C}'re5=pmjOfMxpҤ:X݇_WLOM=p4_kmab`u-9|Y#3); `!HY 7O$EV8 7ϊzUrakm,sǕ̓ӥ!4iZ質x!G؏icŠa?B`;=E a0S^bMc==w]F4Aq\uĤَCiW ygh6!&%mlr^ϝ*$ r=NÜXm,!3~U"ɭc㉒@ %7tx"h[܁-4bsv LoW,ˌ༘v$M!WKXO)u7:gX艵L)ŪtH\UhHctejocL<7VױwqW.1jZLl~q`uMwzs%Ժ@P^xzKtAWLZeP<ÒngɟO {ii뼀߹,oQX+7PO=uz~XnMgmOR%Ҏg@r_dXm5lw!Vww*WtЋ0^y($ h<~Qz6MOb1Y[jOzoZ.hNw0?Q񑱂{#|ÃXD_ #F:ϘN<^y5Oj4T<,:Jz1mμ=¡;ߌ~7<^'_yEbŨyKJ f CpZ, :%YokD?LW:#*k:)Ga<% D ݷc'< r)f'?U凡&O9V}Q7e}9XGܡ*5X #iPx~XpuSL+N~`S;ŮQbά]#TƎ3n\zPZ݃eʓ+2̾Rp3hk; -c¸[+FS(ajPpj8ڞD\ _At7_<-~Bz1FRR%A'q~b'U)@1 \e */_c3T1Vǃ>.;;$ڶ6e J Nxn/[P@\I;㿔2me տpm'VEE09_#bt0+d%hp,oux̙ڢ7Dǿ,/#u;XVw_9dq"odާ=Nik K[rXo}XI-|{Gv`kَ%7ɪyZJ輦Q_'LJ}2Zh@A h;@ˣQ%z=%- Z?2f%ź}<:w3}ŤɎv*w6htI zOjŲEghv4rKd{.tF,тaYZuGE`Zmô϶K(!u0Ey 1dJY0$n ͓h yyßǖgj9uV#ѣUDwp3]Ov-7R2"/Q3JD2}Dni)tjO<*b^ me( ) 1{.> ]rѻ.,S רkI}91j=VJ9Cn4[  Ug?)4iQYVx9G/k 1u!n+!+~Oq[wOvb{S"VL[f;]Ⱥ-:mͬ֠fq]X=OΡ`N.zG7-xDlg%Ԋ*X4E!lW} -6@ⳑ!N>]|pg)'nbD!u.V/|{ DYShy2)FCYUP7{gJu ߬Rj:5w3Tia6L?Z`~`prG51w(DIM*h0< C)NhX^y/- N^M"%Ra)ʵRׇxHy%V.еy\nq!R5SiM(4K'X=Zm_4x,H^#;`]}#c^|}o: yȾ|r<ڟ𧃘xOfDz't RvQ;:k8AIp7=;'\qBXW%Kxb_ܙاqA]; t[1&ԛ?B \Y.BYq߸փu? 2xi%1_mZ'v@՞i2""Jxms8ձÇ s-'MV2ZFCW,]v;{3Gã fR-UÝ:k'k&4MwD0ivzÉy+RT=p}db5!-{Qݠr]8>nZX+TқtKЇ i^#FV"wV.aXaGɖ+[JCP\KEixXs%3L~waՈr/mCl;*gU&tN'KҰRY]"_8t6>Ih ptcy\ys}?ge W>?=u:$fd$|ofUlշ};Aio4cD&1lw^$~(7Gc=unJ]yX?cݫnΡBl)B,]OKy;w>G<_x.+;9]:A= >l"V&:]ں|;":~3=2^rqù}'Sy(M,l$0ED. Ľ?Ƅݭx偩5u?;k]-a(#Tb>I Nl%R|;Vt<ֶs/܊;w)_jr'V{y?y^w$yBpsCah@nO¿wB!ƣB:B`2׿[zY"]0%dЂ /[p"V4-c0X2MoT !N ‘.{a% f+ 2C4K);?r!{#p($D;1*\jpk%=ԇ 'ں[@KL†0Q Ůe@=V41js|NL"9n2} XnfyC\8փ+>N,eu:1M ΟOgNMss:Wf 2ifڈ5lwF'b#`E0-wEA9/ HWIP'Aᙛ)0mr ^ $Q`A`ƭ Oɞy 9+M^#nq(b@@r/n^nJNmy#RrWuIHvOd*up]D0N@쭞'qqf63&4q~S97 o2ᏵPE(]:WLس+V{|O`y> Tk{ww>?vUvͯ}n_)U); w(O<{TR^ \m"u=;1SbC֣ `f ]0AD›)?~__/ϟwe@FTv/~y\eA\I8yhNjxVyy;JW/,7ξ7@ӠI5d~v|҈kbU~R U0;xafkrJtXY!h:_8]xQxk^zx3e'/WmEΕE6gx?voΗ_L 7@,X`,ӃS(rf팁ۂY{hkI C^3Ѷhy\Bh-BCX ugVk3Ta& +Mb*1)p'w GJ_YS\ Xŭ,aPf?!s^ lׇݗ 3n0[-oBhDB$ +Wg$$(HLu+$%;ꭏrH?"}!} %$i{>떃᧽pg0x2fB2И%*b.`Dx:8B[!ҜNgu(G@;\bKͿv]+wN-jז~哕Ւ3Ez.CHDz]uE/P.{g`B;y$mp?%}@AD\,Wr̒rΒc3pY8HkǒF'#xntȽ/gak 9 ip\„ϰ*4Dڮ=鉒' Rs E(t8){)1 Ef/PW*b#O%YɝA(axjܳZNR7 ‡0+A{/}J-Xt_bw#LXk;e(]z|.Zleu,~sooϲo-1Մ[>„Z$F#{R̖9X7O_^?$4ᚼ<O a;_Jֳ?z0aC 9PJY>盶x{ @hz\&O CP%E#lN!wMOJC.CXzQ^=-yϧȳ~Ÿ'8O*?>o7C*P.Κ oy> WQMӑN\@+1Xn\R!¸V!)9͞j`A^:>Is>ަ4%Ȭ EyF7 lݬ@syP f,јNi>ӔډSē|k7+1!2ͯ,K;>Wüp&MohGlĭظ K+3p{m\nWq _aʷb ួ_pWg/g0GRëOCyX{v<΃`awb%b#; @ i/5lXFÙ!PD?U(ȦU&@Y0(\)IޞAh}&)sǖ壧Ou1C /~zyVDIsK $1fxyp-TҔH7b>Q4bQTR(\d_O!yӓ҆/ 4eMjKOwAu %h 5JD1m_%O c@4g!aM w)bFJ 5 mҭQs(F,w˔naw#;#Nx\L|{SfdwoB.IW/ݞ:_y0%X\~CɽR:V'6䋡ZHҬsè%iNZZǃ}'7 )ߍ._\-ΫR X{WhZ0Kو.U9qV7LC)7X#I_@%o/ wZ<)~f_Zv$cO{ܟRyH9bx=q 3{ϖMIv/'7||?9HF#Jڷ_ Xf/ \yCwsN e$VDHTQ;LH Bx ʄ&Dicv ER7π0$Y 揩DS=1k01ŗ0Һ8&džxAԽY%L&{ZfO@ez {Ƶs/+QV ]ux}XѴWpV'z׋}3/,oBbQ{Bmw_Ӻ)6x8{vJvEop/$/ Xyw:_/+ɷ0nԸhsy y K̦r[|iy鋟XgVpv2@F kP?jm|)m%KD77M џh2~zs=np]L~rx!g(K=aIo}!R0!4 xI ac k5J{f \^it!Z C%!$MĨ:hq<= թƄ|At !t!N7=4ҷl+v6|C@F ״ѐho:9a>30B(Qˌf>:b>{#ؼ=iTԹvpeo^ }BF1a[!͡B#yF G`0F0n֐8бFnI!st1#U X; I 6}v>ߚi0]saڼV`59`|h+YaB]`(J(woFXOr '1q)6Q)46+1=zoUB:AiX?k50i ?~h(gօ׎?'a= ϓgg>yepaRG_6d{ttnȏ7%z:yb_ R|JK+AS.4ˣ)Y勭7㡇u)+]];ڐørt׳i|?Y >J'z-_|˓+LJF\|h"c.{4)zlt&B],9pW>S]~/~x~Hbx^syAՀgB K(3>ۯ>Y_uj3?` .31K~_/@dCS4@.J0Pޟf1-ף06rZLXJIIe-U]gpfe%$=ǗK).O:޾{ ˗>~bo|n?YEUy)BQ4s8U'`,x@˃U^<{[{XY>dܗ_TtBʐi \e\Ix 6x,COfA 1z]@<<+E7/]__f FBƽsc1$u_)#+V35̈́2w\@$6C+MlWV&a?}_-sw0z)\11k5q&ddH'FR7 Q[)Ez?WYjCָK`9~)=%MwFʫOp4Y"bٛR  2Ϸ";)f}n Ll1aKJPg-rzP#G1`1r}?${ 1w /a{[~Yp7*ӣNh)({w*}:5H@%Ynz#:%nj%oeC!u$HSNj^F.)޺k󷖿/rҍem v͎xǯ]Xnԩ4wGZw_yJ픑~OBhX>NhmCg{k`: a4q/9poEMiܹ}k˙KNt( 44_`_R+O m%+ǫq^ W+%~,)?2W0#»8kA7\ %n -t#Ԕ{S)]N6ﴦL0mi +nz!";jm@evlb $ w$Ԥ[~-hLoޘ nQ#Ⱥ|lvv{M[{s`/CMJOzoF4F6Z*FZ;X^Y`#F%!nrP%k Akl hr]o"vH)`9:5BÒs5,F a1( kq>+kHpLB ֞v繮|ۃ2/4nWNQk=BZC3B2z\ytvn\hw߻}|/=lz\t~\z9jdn;F| °?;Y( J:rx`Ǎb'K*Tw]:ErY}ĻC/pK(2<ꃕ E \4pԉ,!/dWCw%gͪz%% v2fn)xpka9v<1&Bv :#Yލ> hd99SֺHHt$JDJ^CV<#Z3:XǍ4HO^>Rq c1`>^#w{p&_޵[x\( {1sUlfY^U˵wk+Aʭ`0h/~칲 >v cJ KK1è^e:q<£Dl|>wgoB.qay1K 2z]l֙spgR 3>PV5)OZ9XNyłO#INMػU.~@F?pC)R_^Ȏ0%Q*}rgn\4 הN(+e~8w[Kr4"-s5v?]7c`R(dh_v4kUNNBow|\,r**>坟zL쪛rM ݿ>MͪFwsa8un3PDZ Ͽa cV4QK<%Y^])& tNjꍿ'fH'|bˊ$u3ȂZ2 w #FJV¿to}g MS<(CoqĽ C5E]ދIsTp ]r3S[ߛg NuBA{_ä!F'ԧRm\pƹc 1LVv숪Ӊu˛ Z+ρ8aqJ VY7" 0\ 1&ϥ˃_Uyh.{Jlm(sŒ%w;\' oݴCP@LJa۾(%8پJQ(|*W?{kEW>Yσ7fk'^x% uONjzj_VPͷfsh=nYlޮTd_DV1ӹwYv<GFᄸP]I?0A.C~ ;}I&LpRVASR<`< QxN=b2c[$v7/AJܱ&Ib~JiEGYƎO܄ۭ̀Å'3f,d_ϝC,N-_p5F5gB zP+4p[ܽzr/-oԝrtU5Yao';<:S( «2+) YsJx{b񍀻ZAC< Mj˜{JH! phs\m|+^HUl@ޚ aw4GMlW:fZ>d#Ha!8UZ}ҾQ}"v OÞNfKBbbp\ܟ7#uUz+y5c)-R0rO˜JCdE^rrgSҵ1/Đ}!j"*F )11A֡/ e!B]a_Wm} O?o>ߵQb33J뾓sYu.(H"=GcO_F;=TG|-CS}NY{?8o?Z)`^سIKdWph7;[1Hy,lITj+@5Rzs{=ߝKq`%B7,(.zM8!`^癫ޙhB&a7|ntMZ;D?4m᪕5Qi:3 vG:vZ _*k”+]p1/W|c_^q[vvziFQ|=Fm)OS{%XT2zwvAa2?118޿0sxڇ?K(s_0Y!xv,s{י *;NpI `~,I:8}/=bX=JYrյ*! zg"Q1jt#/^&ٕ? X!G7\t^a)J?ZMu䀜{ۮ62˜kø[`/ˁi%KxfkR#ĺo rqr;zU*0=20:Bɧ^#ݾ_^`I~FbH:R6bA ϸGyDl<\,O(~O+#ZPb{Np퐇>ǻհXKɈׂg.Oe9ZXȎ68ϼ,CHUsIڪz~7_ȡte(&7l;n.$;$@J5lO{jbxMhǨ3B߭ZU?ߔ.9= }X%܂r!fb{:hʇ\Ij=P絸Y.+zS*$(tpAcҝ0:h= w:uӞ!wp q0]vMAZY"iy-0ɖ-\0"4iֳ Ϫ2ݝfVۣdKk$H aMzI,at?IbÍi}ݘSxk_ u֊ Xnu ߱ G ڈʢ=Tӟ*9>' ?LB|D; .,}f,by9~Z$l%ĕoj5nVޡC+=odwVQ<쥋yvas$aRǾ4(\gL1Z))GJX"$ѹ XRƀnެydS h͋v1]7) `S30⑞s"OLYK "=N`l$V Hi#G)jj=sMo <!G^dZw}8~gvͷ.;ZswJo$wm!"k!O0;]p9``ȔD pv&y#ׂ/<x[TNǃ)# )QE2BjuB95)ֆfdϽU0 .0b 6H=!_CJLQrab[h2#e0JBZ^?7x@S d*[hfs<.yco%;SR,A6ԀPCP7t(oHWhݒ(-DK;7]Ј0L18HC51pj0"7%Yq. j]޷ĖP6 =h]CH)NQc4B$)351\ׄ q܍i\jipp٫ ż6ŏRr{ 㶦\'=yY؀A<beﱘ =fEtw}dMXDˊ 0<+)gwO<<|8i\&]|c)NjWJZ2[B+:*7_ziyj/.?%TX/~k \pT[k+K\:t< z M0i  -3B4K߽r_x}y}q9> ;uiێ('H!ڴM@qw*vW/&/2Y̗fqđM%Dݣ)<vLlOElV! g+M00P vpa&Yƒ`6&cp["#Tx=q>'ܟB7 zs;okoĤI {dN%Y e.}Yٯy>&tuM$L~3/$ B=X+wϝaָk/HpJL!z3fs%4'?GWcZj@%RJֵ408c ayꌄXzMzcN@pt yQ87z='#vp,BMwY"2\z_ 3dS6p\Әtu L7\O=@,-pmr  u u;:unD `s۝;X3$(;ƭA$Fj#`{9{wև'{ ||Fpd_3 AZԶv\_ ¦&ݎg-q0<^Qg+x(巡noV{n6> ?|Y7EHH'5AUj7k:²D(eV{&8A·='%!Xc>3 WNe1-16=[)|uCXRyrs?.io8b<uL 8 1EF0;ߦƛ7`'`gu ǖ_F½c z$NkD8`J꺾00D}KzYģI|W+r$$'2"[ŀ,UAjr+f(Ke[MS &=bÒhkw#*HV+&u^h>v\iB0'k1{1QwSs2[ϸl"ڱD ԬԬ'>Z㤒r('Rb2ҽ\Q,?L];Y Rz@X\XsWiJ>w\U'1au/@\, 2_%GF}1_b, ]4sZCivp,^h1ԉAm\CA ?4LgZF탐}?%fWvfbј1`~c˧?u2wϖxr31DMj3x\ë$ Xwoq̵@O];ZƩopoݛaK8HQ=}@ ,wF.qGRoB[aY!0G IaD4_ 3:7[v)McG1WJmX{ B*/#e= Ǽp1gp;%G?Z7lx'[}vw4!3W޷;Mn7o}$QW&!6xgߚWfݾ #\;Ok aS^Y1>畢sɣ-6 zx 8zh_S"o9x lz\d:C{N;5rf`LΌ;SFJeý 0Y+^or0~✱C!R+;̓{rY^]{{U.;_BCZSE1će@m Crx`k'or:\LY.lpdrؾcǗ#G\^x˗k˧?ȉ]GKi] s̍m~AIdqǃԉSo~xiMk?'0o貤~ ōu '[K7Yyg_o/_x;¼MMeB1S@msrG yחwUmϝ Aa@)𗇸 '9.(aޫO}j}2 |g =rC~'…V d>fw+W<+kk0o7xd>f_3Rb4S\lGg8}e$%fX݌H05B#zG ɶ}иM74"jsgj4w⩄˜M@"SX4cFc@e5']=&0p6=$~jO%H6^Y~ !  bf3C:[ՔRa00G(s\'aXsmRoZՠrtx"|~~!JbSO-'+[=RIJБۙ -=;tdռ y[SU"4HK.ʣ?^<{vrUT&i}$/1SuHi \9`My15Xaŝk[|e3;ѿY~~a>) yx4jYKD"x͏9YO/,w?x21[B/r5 ];\q\0ckWж6l[^jfix<ۭ;\<&x`7: rJHϿ8)poG1ּdRtzII_8%xY<%wOOÇN5J DSg.ü\!Y:^U'?\-v 6ס~5wځzsSc68W0H&Hmdh'7$|ʀ1/<ŮgQ)ّC Ja9ͼğ دGc7VVn2!lo347u1wIr m7t5LL5ajyE'мMvkjޠje_ kFUuFxEIJ?m14IÚ?! O QfJHuR'^V$g;V,Ar(*_tc1(ssɌ79wd[_D#T eyon _o8kJks fp3N<Z.~<3P b߭Z Mͅ4vcItC3e& %%0SPJ{4q<1Deh#@q=]5, < R|waC0M .Uc}Vxrh/lXS}es+'u M#Z8QzmX_o( ܶQ5D }ɊOk84hitleLW 9%P&k;Õ y{&fF{弸e:KWw@ДIՁ| Be6)ꠗnSo!/O}m :g`Cy>ؙ7"@qsR@1h-,Cx-b|x.P#D {?-<6^k30' %;/iOٴogSO볔ۈJu鳵BH``_0fy!Ε !K/@;+UW>ʅ<,)k)a51!JM)\ =cW(h}ssSU4QR C#hWjcӋ<^xS "9 {/(ה•G+ۼSkJs8<6WS #st57U[C#-aN-?;)1(V/.> @3!MpkN=z|0&hu)( 18%6(xr)ߌ<(eܞSPݩLKL//_ؿ,[>ab}DtRߥ#lz+ nޞ3|lK@M ~p{Q{ >:E7/4$Dpop߄̌M9I+g}M?ƪ/=n*}KJvCkCk GNgAGh뫛fiImkrܿ?r*-$cM{R"R^)-XeJZ&[3.8&ay]YVT\X152; 0V{-ҳ]&<~m|7.ob\yX>$8_jU@҄lcdڒu.to4<#F^l̅$Xq` æ0WH_)OWDTkە⯘WM1G<%ZK{st[L.FKK[ˉ}9̹2ub@}9BV.(>̈́2{.o=[oaCڲ_Hj,4T ӝxF4*Yh~E'~BtyxWxI6@ :pH~`v 7D@{Ɠe. )+]7s[?>@ZP;^FpI1~Ûy/1G RХ2١4ӟ"!*,_ v.% lp]}?SH{\NLn-жciygo/'Z Jѿy>+Lϸ֚x?ƋᡞPTZ*%`'z_׎7  ƣ㘭|f˃#y:~%>SXobR6v &QFvo}Ky[w,H^{"^ %ʏ<2]W{DM H]xa;/o,7~ڲ`wyƃx]r%D_U\ 2~ EzKkh[;dl]Q_ +#6=2]yv7çɓk&`4$ftDҩoS BLݙ!$T,j.DX|N ij2,|iZ<cȝN"E1焩ݜb,[p~f $z-[67QȏQn&l$dHD1F(bp tn^ϐk#=gD02?@YwkWDL;JP;(hs-<7Ia oeiI^'0?(9dذŒ Inzk8]Yp9}߶717u.27"cd!F9Ij]8H#E q ,{J;=.mz>K,qr_sфdLy\m\5f6DWm@PrlmׯBTn7Û='ˣQڭĺhBmys(W/[~}'EzOoO)";"~!H!j~V7z|wbH輹/_^,da?Jtվ 呈GmaPUWϓ3Ծ8x'*aVS΢ vEO38*)%ԑDxOZ(~APr(Wsy]}v[.ۇxm~r*]jBrnk{ sQߍor %(}0L6_`$\7ȑxr$ SyF!4s$Ihc63=LjM&S_|# ?VDB?MzP@]3=icB[(BAA&tyq{y >wgj@ZPre(Qnp)+,Xo kxX;Fx@[CDdq=s#PP 7{tYPlA-oo|k|̏A+rr^ ׺)#W}K1ʗeEnNnVhH>Kg|-[_9,t[V4wy޽g*|=^ʌYxTwmΠp&f8rRysO"Ah< nlj/S,ɄhD)=OmoeR'p͌ck_-ARR%!3o]G!n%^.F'Է3?卿w벾}jM頮hb}*i#C]B#awPV¦3l˩N~֓g xfgbH:_K/W-ߗdwBƸ)d \bմ% "= o(BR0qr99-m\8@D@iEJNjB], qxRΐ#|"KEu=Wa吝ơ.v茞:P+B, u%N!n=Clᑭtn)\8n4ƍnlo9 *t˃nԏ4!y )9N7A#v Sj&}G "J:%H~-k cVX b{GL/ ^%s=Z_,X) #L`1$c{fni'ޑz)r u/xwyzٹ"b|_Yxr|{5\`Kl8ʃ.wv9|'4W?-_5z~OY|3!N~,$օ9p`W,eNp+yvDɚpS*a10po.l\(Vn4%|~1p{xƻ:gbSo< ϋre_LaU":OuKU^ل4 )%8c]J:sx ɮ^Z>ka[+~w+|yDݿBYPIiif*fvOfd!zbhao< />e*Hr\C#0HЩz? _zmd|u9/Z<}Sn^?X> ٔ;Ւlt˨hFAʔK0Zƕ//`CÇ/_Y^ɳu+7`%E]0%ەXWđSů|mW^˙z\?s dAs!`y>2GTyO i/o/o-32ɗ[[3:bx3)f+N$ϚWٶXߊ>Xξ֖72g-|V^yb9o7~ ]*X JC3bI}Je6h#M݃'A-5NװдͭqvҷȞ/qZF sֲU&%!KYLa Z~/;ܮZAfM":Fx-5-<{ƭܶQRr= QWq7A ^Ns9CrwuļX37Sz(3biz[PuCe :]鈒p-&'5fy#1ӧSKCMXؗQZ/fi_(\m3MLdF!n:ޚ;ň'TF;3 S):`P~F5\q߾z{eg TmGjy5ۗ"%Q{yy3˯~3%bM6d_L@{͈F=#OO8NM~^z:މeBϚSbÜCwgwZL{O < }-$i8jޗUJi%[fc)eb?(c WCq❣H*CBK ڏ(edV̀ҞSXڜ89*=f~VmÁj7 )BK.L { ~%l=084WE5:s(t=ʙM͇X]׿|#|<s*ag#緕iލqs/]=3T h|eހXyȦvXTJ#DkmeԴ[:ztgxjf~ڷ? \FclMQC;=zܐˡq:V(G og]{~~\/F26Ewj.`Gc.Bw`!e1r֪hL|je_[Y)5f>JH )Qו!ȗrxGvhRt N=?=-zg'OϾ,AICKNSzjZQJ–14;YZJb9hn|N7N"S l')UMIt߲uwwI^\dcq!rYs[&A[j2X k0z`&yEXeroZҟNuIHPcELǀR5GL\FUmHԳKkKD{W%UmB_a< !-mao&X0[37J Ϫ,rgrrRlx,\eiS U ^ cxWM`Fy O(e@Xm ~ q!a0l-e:)cko9{#x7<]Z~\y(, jxj|x/z_< ~k~:zԹqٵ9Mh4N yvVp.GӣGecV1%ns>~*#)ĸ{%07.,IaU`yp)JWk|B? c1,Spܟ1#2}o҉Sé؂07O)a nZ4RZǩwHE(}/?Q^\Jx&7J.7ָ|z-&8 o!"%w\]%ϼؕBZt+Z Ij8uJn -&Mf`NHS5Jqɇ;<̉зE]I)ЏDiάegO=T.˩7^fD<6MQߩҺz u@rm}r;c^^e

CfU٦JH۔p'VdQ;U$ƭ#6?[fbVe$ӆQ@\A5hTlʋgxMZneo*ѡV ۶z H[Ƥ=[n{ɀ\l+\-҆6~11^̌ dC1凜2DB>N/}Fq'>ܼ4Yȣ)8_Iwwz wü:9,o}+нj{>)Lx哹')?ϞY& .ؕd:{n2(1js! ȚυonRd쫻kJQYAw y0-XE[`Ac

kNJVʛKk&,i( .-Xʣ>z%E9[a5|۫x$S{JQk?txm#vǣ^|~ѿRl܉zgy_]_~ۗoVAJdu\@Hv=U4|h+'K<|5Lдx!l!;mJQ^M |4u0Ӝ|<~QPhdy<#~ұ{-GB}٥ǔ={of鰡}≺*~7'8µLRHo{!bYZNy gƋNa<W,&ֹ2V|'tЌrJ=B9(r;ǰY/G@ਃWs^tV +ƐrЇ:-Mw 0 JkoXܻ{7?ly-q\jD$#d.kYy*SB8,4KMQ@ϑÏK&Ky(Y:S9lc\$:|JZERqK |Ԙ<,+&_A_mXFQg m^2b .-1hP nlK%n\?@%:pZwZr Z:Ay7 S\Np Y@W24 NF ̐"!c0k([ĥw5Gs7xGJF`Q389r;Kڜ6Ũҭ<)=$^e/3}H}50\߸<јΣ4)NVҷ{IxlM[kGxN5oMc;R2LG; f? ɭB8r"BLj$ʆKz^uVJM(F vgJr&m.}^Ƙq?LJּ-xz{ 8]~ILXtymG~e0B %/.Jufg\x<]GW,}{V'd?ZYxc߫.kIjc,xc9#UJ<@{71/"0k`Sݻ—]gs !݄<9gt^M1۲x*TI<Ӄ•*5!6?i4+H9=O!rFx@6VN׼ޣM˟[ɢ9 aDu=5NABp#>]z9C}`Ň]O@ܚ_Bd427T* Ϧ4 DQ%*&/lK֤c`wp Ϊs k]Ivls}!sΖOǼʭe[syGpC;}I-!9)Lm3|B̕3 {RCC; ׻=y@pe]k__XDͮL"bܒd-Lu%Rq6ؐ53T栂6~-]kK | C&u^ݸZ0u5\2 "r+nҧu.ԟVz3c\mX԰7#d%KQ"6羓TMVw?%c+-+1A*IYcAvZôGyQn⾍}+O{ :Q/M}-kA=B .$0( MnPhW9=l,?0RL߈ڕrz%G+F4Ǹ( Y"}/j {Bm3nBJIb愃\G0@l} +6x !xHG^JEsGhpC0m=m4TLx' `[ vU$ß7Elw;|7ԕr6OfԗA*`WƺsM?ћ%ʘdBGp!Ogƻ$GИz.SR@IDATP A=8O{Y` l>}, ))N4AkwSƚC/8b~rx%?|dYVy1(s}3t\.nz΢n>!=,@zJhF?WC:!=rdy3_Zx35^2!f~y-Yp,!0ް}o.L4Mux FW6VYó] DB'#ٵxk?/<}D0c7(Na{~2j3j y^dkټ*=g|@S(`2C $fV\ohn­?W 'XSRZO BUNUMWJCQ~'k&h/ pij};狟T<ӟ>T\^r0Ν< KNOx-162:Ԭ屎>󟿻x/upFad$/chP[Gn8|;Z"n^Wkw.wת2J~vkJ t-f+DPAks )5AbZcJ8ܞLo.!9zǎrdBF@A8+kSZb󗰰9?I{\tCysu.G`̒@<%3RvE(JXƬ [y D,쮧ٳXZw"9Q">Xwy)Kʠ1M");?[˺G VCߤm)2bJc-ZBO~CTrd8[~-x[3kynD x$ntc:8t| ,<3CڎBR8x`xNW|>/x3G °W\fod^{#7EywnaIܐBQ09q3]`}^~元ǧdduan!2gF`N,(Om:sf_//^e%דg<)h:@_<2|UvNe 2 C'g{tk &mQs-^i}LkhCN2&H髲#-[w:>3"`Clgd nb g>MG!%(5, Nu}DlC,u `9+u+⽚yFGLѹqO-t,v0HO!+A|l &gVRM'xvצnh)[,׬)z&5Bf.(گ :_~_ypZx"+Oe^#Lzb66xD`mq[eӘ,qyGH@&2F yGšR#D7Vx(T~1\[)xbuX .JT3uy DޏujU;/>^V]^ov`c=Ug_$gڳ5%RUp0P3/LHdu$r!")偲#9.wℂVO!+_9ͧqЎ*8N; @B K?2 ۱!a!Ч8UqIBlrR$zo<9nacGX*i>֏! ˭}/O rMN]$|wlT4 FQHOiCC.W K jhqvFC31CSdӾxMnQ^G`%;RX[nw-GNQ@[/ɶQSHkjׅ{sr}:Y8*o}Wq6<"1 HͲXP$dD最 m> 7[|/g]mnwY<\ޣ8TlL6ƶCZRs9ܼ\i`ރ{1{"œXj]Nb%.i(J5POKJ|߷¬!DQjX^i 6$Ł򹙐o:w#DaOېd,&C iPTE%"`w͟`1CR!׷ҚL 1Dr62ͳ_AjYՈE ^ =wSi_$Al0AϠPr[O}n<]BR:_'1iل7U*aJ.4[$==ς_2\h~|?[22ogdj8h˚L緘Ԍ{^5m_Đe4WQL&Bc5+OZ4dşxهϏՆPЧA\eO=UXsykRHw=T~(4úW: MTd92I +mU}s)6|Ǘg}t:K> #7mfu iw価@ES\ʊJ H`"Lϓǿޡ'SJTڷrHJsRMz @O'Wot@GDqFRrr$J`(h& %[|ldiaR< "$5+sS f(jYliKYK9I6 _-soe`7Mh>cw}ĮQ.ǠM:ꨆ;bG,\iG2)]#)&^鸦lZfVF,CXb cebY9~ bMq"~go4n>s@rӎ/6!,eyD5|z9dKjY ߋsΩe [l9"!yK,6Ip u{?*O g",Mx#>L%=)4XݦzD$m/gM\?de>=z*uSZ.fARɔ,%)N cJskk):T^S7"sgGtHPVa$f$!!?<{TMyN׸ 3+\W.3鼺eMC)ф?|uɝ9Eyl5f0eYbDAi04՚s빷~B+^l:`4S\_6㪺Bb8dh\k 0'5'QXcF ΖeW1:5ENcI_L\+/~̲dlM}?-K;a7K!,kH; n3X67g˝P~UB@$QH]/BZN[Ac:}3)I4rxTRB(ﻆ.!1Qx*Bơi< ,2o{X!Vgnn{1Lek1[.i%jK(ލsHPe^o9bx7q]ßUG\{n2+0=վ;!;'_JW'c>`ܮydM߾"wO屿؇%PiVe֙5*j^NPeS⊛c wzInjsÛ֮]3Z@Y)-jy)P|^y` k1D{F+ۮ$@{2L=UAOX󡼏`8_Qbk<EI,wssX]K8SvS!ŔY.f܏xsvVuy׻mD?=ɷћ{_N8Zպȡ7yG];TMZVR}aQOyz{7Q/p"c ^ 8a~RbsRm.d88,z0./!侂o2MQ-w#:x ݵ>ƛ˞Ԩ^%?GU.KOj~Νwj`iO=srzź*f n͗!S,V+3z^Fh\?ʶ}%?fx#kuZ o9m'5;>9>URu[k˩d2akl*DH-G ܾ CdlF)%7~{9ZŗMV%slAcԄ3dii2Su; ^=XxψQZ@4,0=فd+ 5,u4x!_ ?B^Laܰ0U5#zyyK5N6'4 j$ 썁XKVkIׯ=h ;ءOvh- ؼ:6n("n_J ?c|ԜTJh~CY"/@ fIU0Y|ndѨxZsՕ,tǎ·+7GC[}R&LYLPHT΢i?- }.;:]PmpƩ<904# G)(,_BiJoy&:1ӽa0BB֥>UȩpgYOͧYxvW dZl3RTf _` Q7W~34uǬr rTFfI H6>'ZJ?^g(8 ]t!~m9z  :դ[)DUw=jۚnOG>Yܕиsok˩K G "W+}ؒ qtڕ( Y njt):Ӝ:~ބ&`'hJaYB!{iN?&(0>кZS>3A>3ّ(Vzqniv^9ƈt{j Bƽh ]a}=vƈ+} `y&L$GĿR1n{d~aݯGfB·sY:j#gu$=P:r+J<нٻm<*7JUot^BX mNu-w䲼b$Dpt_:CȲՌa%f{Kxe̲wt'/J3}Aqq{54ͮso`ga3樂JbY9AN8U$ę[V3M]G(7i5L9鮝YBe1~" #!^~=Ox暾]0|'|]}3a~:fS3kg7?򹔀uᇰ}կί~ЕgZG{Ժ\ 0;1m*9`P+Y? :rb8`'Z~R"qHwe(uMP>%4B+^`= eؤ1RX~oMxW__NV{>&Y=? gX۟E b,O1{Idy7h6ݞ(S49H!?/#>kn! %kG xu:ALT&eՔAuҽ,/m6{8N|L'Uͨׄy~er9ڂ#ᓁ,>akXAn6z8#7p'A,&.^ڪUL\@Tj]noH1 QsKz2qSXrtEa\wCG-vO'8m1mYWehUZbD1WJ$_ 1B#74IjB;-'aA,C|}d4Dc300s#ރ4C*B ř:s;M^C!L9f w_qr|[>I, X/d-nLZ"w^g PXoF0WDL: -oiBP5Wڿ}PK{ ?Ԡv0oÜYΘD͸c"7d0Rwb(j##wzrbO(C]5h0C #}F>>U_ {`Cj(Da03np͎w`WTl6HT0NJ|JxmXQn;0R<:ϴ7{lM sQ7w]:։j(;Xo^UnM릱ͥHJXp]HjBz5J9N>~MP=dai ;|KkBr9SJpJ&,(RPxˊ,[-cbz+yUnݨS]Mάߗb-~Hq`*kgMJfrZׄG-.-/t;Yepd`gm DZ ~_$lyx9%m<q<זO7E =LjqܐG'6\ϞOP:&0|$c4.9s3u+i;-^IwbjTzzFj+1u|x^WZ^x<~Ra=]]>}?xnO?e]!gic)<=2& zG9 %4 o >8 rQ . Ł84 0UpEPH_[2Ve:f~w̓% d^ <Wn$xXayTB[XpvO7a<qF軏u(׊r0wcd=̺]$a^}o*>ჱ]?I{ø{O$5X0uN 2SZ;`b/~9Rr~lhW@=10 }b}L0GώҴ[ Cxw-!"IcW/,{*YQ%GsQ&}+krxly3)j;:x~3>Si!A)? ]7h#M>po^流]kw!tdy xG)䈷w:^e`WFrOghȩ1{k)ZpkKQh)@\6k1Ĕ'2h'Ę i]£b}G5_֭rFm3)W|;)&7/孋.=ͪd>59#)YjzH2wѩK9|4]LHؔ s,0D#J`K|Ry%hGyIfI +) f(A8G;[WS4O(Xѭqƕڼ1_diq,hc Ae0T`T7wMc $vD<{eKY bR托o{]Yw{YVސ+qִRlh%fr_GՉ ƞnh}#]5"Ŀ0(w-xu3U{8MDYd@҂waGyasyXN2jU\*i5A"ɇOtDO!S?൲f8X@fVB4F9ח=B zR\ M2p2›5INf;0BVM`NQ^Evtڞ"b,IH.J}IAo6){qJ۔Vn={(>~TZݳx)R7<SN+㩡R[:jas|=8¥k >Hn]~x]xWx|YWSz/zDME#,Ğ΄&O\k!&͟R"'ڹzL4%sryLuVbOPv!I2| LW!q8ak;u \>{< /M[lDyuuR!_ ѳJ*&>|nHs ٩4NBq?TP1ᩛnmazZt KنMXA]hgŪ%헀thz=-\*j&6nH|I4 0a::#,š!{-aT7 _l2b`ˋ 3ʉ|悉tycT]rxgCQqL zu(1ã{w%(OX\j6Bw9 Gyxnɝ?]/}tD{P'xL.噢ȚAß<m*}U vLT'[r Ӛt P"6dv`.^ʧ,p |Y0.=z ו~ m? >T^ތ5lGP%3ĕr 5mik&$ !N?_) w|䙲~ngqU(F9 Nj#H|8~Q|Y}=%`M6 !c(+1G{wW~xd(@lF@]LqPQ؜` U"O>h-Oh#=%Es֬du@g:ap]?07Ib@6<`6g뺖1 $<>hUC`v4(}yf#iQ#$8k8g\N1?c3o_R~o']H36%{Ds"}ZVӏc_=+a{Cb<,wt<Օ:Uտ]}Q[ )D/62t[9LCLV v6{z9~!hq,>:= ۱< VR_Qo0%JI/letIf2F!P/`bR"ymFWjG9amT8B^L^/rEhmkXZ6X4` Weq4~)D+9 m\3_Iԉ( VO6F49=-$tsogc \lAiI!͓ٔQ is1^=7VӇh{cC_xm܏9K LfsHb?b07&y+pQX;.Mgte}@o\,w(S xK$iJ~~DYő͉*eA(J OE x+SFW̌'#goG@qpV\rA(<=2z>Dk2sԱ`J^t$4' % [ fk99B jb1p=!ÍۧNPEsAB왍f{9Z9&f޻v;7ڐ_{a2ɳ'= ԭSvA= b壅.Gm8PnܐfSjE7Q&Z > qht4d|`x)/VwY+ &H%{3#iKߴ1mO; _ydxWm%l8c0|&ܲ+/{ó) >ձ|V?^94 (7U> Y$Ngu֎36._/Tľ޽WY헕=V?O}$gtC=L!yќƏ?#R^O@ɤR6$t,xRY/US<)z6D[:z ~] <"{P9ZD[Bߌ`ڋ|'p%fk+ ?y^_u/.տ^8]ߍ}m<pۛo )!>{?V7gcML  VȽf; iC',҄[Jb.Ydz G=e5Y56!+AeogChZou9i8_|ef;1NܓvD6wE8u&[aִ8d+TN(pZ!Tz!ݖM["օqru3;o'i O&kGvN Ƙ>Γ:M` p&U/s:fB} H<#}R'„%gPn1ZI?VC9 re_}1Xzy6@zC 6BZHŽl{K(79;/#p5mpVNGZnGߪ¹ YN[˥H2n`?aTZ};1;1ORJ:m3p[8'E}hI}!4:'S߄5?%NC/W[1B '%܆^ V`%O9$|L@< рgY(Q|(O(aj/+bt[=lIkwԜڰ L-ox(`1e}?^?yy5f /fFå萁ȽW)Z0;쮮K@X G|>@IDAT&BM IP[ZAS ]'滛?<)0 /wt*<@/H gnh@}59X_aWk—݇Ny1.5GfHf y7O S: H H\/Ɏ8^OC ܎a 0F>dC,L#`@cv (&p&6!(fyXqZ__J Zd/]MpP,M-[W,m t_C,i`AwWp4}l)hK+Y.ytFTr>bbiךlYhe \5ޑL|f8ʨΔ1ǝB:Ɋ;C@!@*X`GRL'l."p\w\cž  ؒ[QTp3QG)txm9qOu5m.WFh}q]SZJ] JޚxiE%9^rC(IOfnڪR@1 k''RU,m1~ WkpV 1ŧ(@ )yq3d2RwS>yVx۟Ar I>:u,0Ԋ#ss1^Ō4!7{w&D(W Wx0$_485J|BjHx ObdC}DXFZ|)6V]'S-eY0 Gq-Q _7 ѓճj]{B뎢vr Z1Bf% ̒kZ z7! i`6N=,ew~ƴ!Fk+ +w߅gVMI8U ʭB+|Y_%(od5],)EJL"{:FڣzW7Ƣ_ `xW`ӈɆJqN*9}).,͑ Z6uBh I^t7.Pr '*SDdS:}luچ9Eb QNTݤ^,/3qn1hT}ǚ9%0FAЄ:ꢱBf>r=,9#}:NDGG`=dIj}6J<m"‰co٭Ÿ35nʐ0g5@?,ܣȩpX{zS myQL^X}C߹|.^h]ak[iGޣ2CuڋEzONF4НN3<ʐ0@MR i{]X(q sٳmw\ O^v|XU^emW^x:z\Ϙ r3G̴U]qfIxO~D Y|~uxH޺nZzɃU3|kRd~bu!ǃ̤#nG~A+Yɣ,MyJImysH?v4'7$xVcQ##[<]JhuoS+@_},㒢P& <>wF"\GwmXx~@y;Q)]Oçt%@X^ AFYX* m+^Kq 60_ƈ1mqܥɏI4 7ɳʎ l$[k$4 Q|z,X J6B[qMc_Q/IxnCjU@Än_͋kģE8Z̏Mbp/n9ONh= }OxZXٍ x^b+ad&Rۼv6ۉ9DokvՁșGUrĜ ӞPӳj٬)4R)  v}36<.~Mw"s@`[gjt(^c[S2E8iB %Ǡ mo^H4tM</jc!Ҿg$JW7J?nm__|꿩"_m^knҮBE<;}yIfے/ >م4=b h䍧q{ܸ̕I:8qqqW1Pz9Hj?A$B+V*&WkH La<7$,\O>J1ȊJ&zb߭S\!!sqs9$c1[|i~h `zi^عXlG66Y |n)얖ұx=.$ M&En] Eljt2K7! .kU ac/z9ZxJ gfs2XruI rdmx^ \"fjC~0wdXXO ̋ea> y{0^LU ?%mBTPUpЇDc,@^HX$PO<-IoFab^3a 'n5IsprO./%KC$N> JfkMpQMwHR9Yg#Rz,$Is Æ6P-|grϱDswoF'ڔ* `wP;g]Z#Y3) u%H=3Zs#x)P/2((BQ­6l^wgX쿲l^ T*QEpo<$hwCAQEXe[;{ٱN(-IGbbhU1(5a/xlΞهafU6//A~\{JfrnBmטH@L/~hZC+ B'hGGHoC njZS)(KU Q-* .pEȁ O, vo#>8.]\<CY v-ƨ4LE86`O1" ]3?ipi?L<Ӣ3q7*Y,޳Osx8iwRft=;N^Zsn/ބo1{RΣ<=l" p)?JEDe+6W )[:$,#m9~[B,fðwyPL~Of{'l X&0rȗ <*tk}'!g4m^ɍqp;{:ʢwZMu˜QM 2kkp~ɺU}>l]eoc۠Oz/t|,O-{}uG3:{fnHL i/$ p\}S<'D D6׳ Le^ ~`{aWr1ۄq߱$ܷ_-klOXH`Yz8e_FA:~>i0rM8ݍ \%ծ¸OxkY%N[l1N)jڪfӱtBSH{ )T({X 6\kB}%Q'3{i_~^6fފ5='՚rjƫW׵-Ge\)#K GC,Ɣȅc1~\|s ji6!АlؙbVLgCH7x{1ÝΫEZIhcmpL~sj.dcu[6(9Y wGH_ꄓ\.~.9$ο{M.^/: :n*WHBx7'.Pķcfj7`{0k0u('}v%ݒ<ݰn<$aL&z\2 r 66Kipퟲ9_!p)<,/(=u\_!0x 3R{nL1To<[ )iys[ %7`9um e9/ut=fݚekp]K$ܺ%s6f8PțA]o0"+v=_8[h?HGgռ>*qO~%'>|$<;uy Edbᏹ "Yޔ3yi(x;L-Pp4gcȏnY0T-iLA慫ͫJz-q^AgDv6wW_Ky)o_ˡπ'l/;{תZz"Tn5ơIZw>R6VVj-*Fs17%\H^\m. }wpP "&s8!wZcguZ+,mH[Ss9U rM61sxNxQW)Ko gS>mG¹4ά~y%РFr!e,%6˕H_<eh\m<}-yC)[Łp?i 9z\d>0U',iRTt;Q&3' P a%ϨEM~H!KŒ X>I릮?m%,!0ő &ֽm-xLӎ>\e$X-}K; ]p%P**fXFU6 p yfĮUZ#ŸR[\ Q!RR(˞R!FKPU% |B`Z6[w))=++f0sa<$<VY%zu<>ϣuY HbR%s)AmIRJJ&5܇;NYL`7L8`=>|5A38AtYrcwiNjЗ,'s~נI߹ЍFj yV< kVׂ_Ϣ7_6$GFcĮ vE0`;OϺ% '&{.YZ2B\G:i]L1t$eqxtֻ("=2On6 8X/ψ ~ ی`Y Fp7a)^sYVDk\>ܜ)KAYJ@d:ךe^~ sRX7%Y֓`e_jH'ZZm^Iyc΃m887 rBr9̋sX3~/}ٱ5р0 0^f GSCW?/'Ys0SNz"}lEJz>%!J1x:䇤v%TFR܆ַ @ f&\ϭ4**ͥjY4rmhdyl=4YB1=ҴB}F] L-BeHG#qvl(A֭6 m]X)F%{V)/3sEX$@*='V ?K$xuqU!s <[<=d+I[H8̈́a$=Yc(6zk% ?C/'̲ { ]NYw]ӶQ0y30 h˽>0ƛ$mܽj[G%3J/.X\XKɉ4x4KWW>6Jh[KLRJI +ل hSǫ: 7$biboUj{@hͩsVch넼$2ˋs_5s*GBY Os , CXH {{k)Y8 0Q p2XQOc}2tSsacA%\e o _`,Gv{Q}: ~#};h"qaTCGє/B`Я|tjbHcSz!O'~BZ=Quj#WJq,ux<( YY$~P竵 3hl0Dm 9 X<V(+C{/٣../?稌G&t죬}W5҄%Iග*!T\[ƌ ^hᕱoݺ5`/(@b^=ųlKֹz)ǃP@F 5?<[.do 8Lo;  Rt᜹f]J< Gon~  «㼇/pfA‰ NI @۬R普f!Rq]egq#+<O<6X/[vŕc1e_9YF/Z[octֈ !Lfr;0Egy,dO2(5AQ@Vq4epnl |)gb (eNwyS !2 eS< Sv^Wvl6q9 kTiAN0- :5.΃pfǏ~=-\&"ͺ$ObSjֽZq;jΓ |= cK6Bk==&MI;TvF tij@0b\&XP,oINY_b445>WfdHߺk]gUwumsBN -Ew<$Do߫K¾_-VIam,l'0 = M8 \aP ,1sv#|}3՜^"2qೖa NcG~Y#@)еs 2 -%D/:eqߩ6m/Q)hfRmВ*8kp)ܲz*!8&}^R[֛+LXB>𑘷>x(t8n0 PX(3F/yꢸ7VF?~6c[r5/BÉ3[7F}Np=Îzg4훑'nڻ 40BBݣvhC~G3e[G ]Q// 3n? ^^%UXEVÄX6+Dᓔ''45 &F A@úijʙ/.I!iKbkFg F)0iY7}4y3'[50*D'|> BLڙߺXQ=u˟.4/ʂ[}ۭM OM)`{/(آ|@'){;Yt{BwzHY{1 mge2ދ^(و(0xj>&ƓT䌀\A{\@[gҤE4y5Sç e0DjoiF1BB\YC.7fA}Ьk^&;tEcK!lvnBy%[yۗ14䐤4sv"hCctN5&>\=Sw[~%;(Os=_|ھQ<&5&wH"+!F NBv x] 3tTh-bުR0"n5p\A!x aJyULSLT=CY煊5@l9X fr*lm]&_֍˟t΂ ex7wqa WV^BEIUZޯ_82VCҰ SwnDgUYhH+RXܦoUЯiW<mѓ5KGǖ7 %^?{^!}nx(p rFG;N[Y^U'Bٮ9\n쁽/*uJH_,[~ѮK1o]pǪ K:vsDŽZbx}t 3("g5`ܡo8<#yauGHB WgW|@>ix>C (=q3WK PZp0[/;kq^Vh_qxe_1@>) MwO7`},% F nqxO{XG4p. 2^6'oHl8 ˏT뫫Uli?+x(}RS6uքz2!$1)MaK)ƥA  ֭<\r&؛wNPRs+B|VŎ~[>h6pFRՕ泓מּOWx6o}0|埬v&z5JO"n),SشMM 1Vu)@S!j> ?X&USvS'O1_JŶ-[(w01[1Ml2V*~Ko!TBr LW~]#zY֎=殉~\7Y6<ܵS6}Qb0;Ža=rs2Fx=$`Q o Ar+DfьcăSCqSxIauʗ4Fg \"gP!djᔄƀT 4j~̭%e*>G;@B<0:|❁㒯YHcB$U/뜸{^/@N3xxzk||]~O ]NcŬg&Oq` tel<k!yPr =} `-Ocx;K? Y$%dؕQު97܄nfB_;7<<ܵ`xw} GO.HJ%ǶG/4zsh0û\՜,ey^zA=ۢ[Xy]C<*iӘ>ʮwL{ɵT4'PF_Z.y KT@;{+-w5@y]l)y?z[h?Q3?p`-yn^>'2?+-: !5'UM<2Jl4~Ae7e O 4Kx5ݪs, ̌>_Oio\< 4KIڎ-ݘz~w+;hQC:H  UpX[՗y,  C&ۃoK&خC]w@A7.9=aD^BXgr !n$i99Zܹ9[J8,#X IJ %˚)VݘBlzڜp UH:{9~o RFCP1GIЖW?{ %8ԕs_>*y|^:{vy*`^JԪ. *[0u: eg*H*z^EnZu|7;;GK wRJQL,KE6kX9&IH  NέIѹG%&uJII+6L:Λ7B# 1ZT V1OUlџy`hX% 6'g P^%JmKO8eO0iWݳσҜpy lj 42O-Iu {ޟHuK/xW;&|o'Hb߅=^|܂- 2WR^ Ky41OA\}IK,gjBXhBa'M^Km6%`}OSp(uHx)n8d}oo^D'x JBS}` 8F>69U5d׬^7X!rڞW Ni?1po#L)$;Y Ю9:XJI̲=lo5&P ܃zsdxMѺw1\QH30+XI^i辒Wq=ޒѺ]щ7۔3]N$io(KJ|;y'7[Fی)[(!֏Yԛ$V \7ՋJg&8}/n&ri(U񉣕fxQle- PAi] W0J 0q&N~=7rsN̺ӂX)"^qڑfʂ! .g"5w}saYM j,< \!MR ra/b40 y&|thbsx DJRuJ7HZ=FYy='F4XBm!%vJPS&ֈ_;=/qٴK_ %~Y]dz+wPt*|eoL 4yːGl>_ gN ,3fw'F}GL&#fzG1Vi8_=@FrEĒά#g!!lsW yv~$&vU,,ּ^Ȓ^<eFh:n3-M{j ċ$9,KASB0gyQylƺ qt=4r" %Ow7,=萔U7? O%ۿTp3m,?Sg7{ y;H  @wty Ga_whjmڇ:3j~nvL cQge@3~SL7gb;8tJŭgzRGǞ^>P||Lkonj~"l\ aaORfOND\Gc}-?pPhssY+J(16i@IDATGB]ky IY;U?1e&\xM3:갚\m\pP̊zβrx<gΰ%:VWy4܊~+MlulX_[g?|rxRu QF64&7hwsջ5KQUP\^r$U]{^Wfk#W{T.S x~p9/aÁ'O?^}Dž~dԄc` +䕺'<|Wogf L-+}C6U\_T}BB>F@)M:-{R+Y3ٮ+Fq{4qBi YYVnw9`JfbJ)a:\8Y΄@g en6jmt=wr罷);66O晋%][b)aJA%llp%׹NT{8K#W^ɂy&{9U_=>O= |#C=ױk.468Oh2#҈'͕9۸3KD%ϬCC4Cyu\'P Jh$rO~ؚT{=f1%s$STcJ99ERoj|o[ѳ#pwW(RK T|[,Lel}F:J;{ĬYR_ 7;;۝:@2Be.Z3>V(SOp>I› =S 0'ک76r5tn-xГ~6 #8kɌ'Sm>Bx9z^Q\$: Gvmv64v/Mk&<1::|x/gQq\3±5zc%v$O·': );x~0` Sxd?AƣmӵS抯7 Sp,WIebJ{xor.3>Ja{w]w?Kqڼ<ģB/Nsj_04o D }0|Ϋ<1$==c$ՅZKc=J塔%O9b ,Rc?F@' zgq'޳;~tc`P #%i_ݱx&;?ScfKoBP|Ĝq!6FBK;cb9mFiS?~2n^ |Z,j񦍄tJ:`A~aPy"^@/ڤov=N,N̄[k}A9!m@X{Θ* g\ =:3%q۱ܷ~Q/ qPPTi?LT.cYWrI<<3KbJ)hS(KE"|ẽ ĉ} !;`LI?<w1ı}~`~hAaณx¦)KPWBw^sɲ{=k>zCk$}Ów-qg8LOӞw>:~[Gr?-|pJ`~<`(a ?Xpq/g81y#"fK}ybѿ5Axpa*>PXOuތ06X0VN bLJ,*YgPt1G( @ۯaC\ypV99Il(\K'1=FS^$/)d]>t\՜[_zw]X {OH-?|*8Xa$g}jc OÓpc d<1L()}[BI ok#5ѩ7J؍'ҩ/WZQ?v2oxXJ7g0ŭx0c0@kEӫyrJ[+Nm^YD\*-cuA}d^`^ïεog?iow{Ͽ-X*(MhVX&+{ǚz~\7BmcN㞕-CY]βtj$@zL&>E'撐΅Q5#RrLއvk/ QOkGy_lZGh̲9k3{N@Au#|g͙T >q aT ^։ )!:yUֲ9 `P!GXA()\7maU-<_i^w"g0]KtB 79`;ej^B/lNgk/D5nL+$P&(%|T,.XxEh4Mke0V S5;'%BW% ^e$u~DN0,ܧBp`6pջ[2~~\a2OrѳeY:?j'G0}ljAG&-y!)~1K8T,I_L1QV4\?(cgkS-t="?3m}lk lYK`2r(_=o-x OJ W.Z/hmxJM^h(/O|4-ʤڳ͕>J csl W%gEܰ Oi=<¯[xІ@Z|4Wcعz/SיHlㆯvxS?g{c#"|iMu ֓kMQʘpZ'm~ ݚ`oK7/xk/";bsB0ݙnmBL(3oxm|g; &#QAKukë 69!BE@'1?9PڐSB%E<^?w'M޽{5#:Yѿ.[>]n9}oRS5dOJ{?tJJj)փu0 [H:Vvl6d[^d]6[ӟ}YYnfz#9.h.6Y9R8WV?OWoWwzpF݃JދXWr{q̍T2XٗȞ%/s^"7a,yyr3Gp=Q}2{8^;xD`pg;wݮS' Vv9~Wexk%`lGEP:eB09!F';G ,˜ @ {xoѭou¹7s!3gcmg!??jmR~=bn|7X.LsǞ\s%[~pphhp>%0Yi':w,OZu!Bz\rB+} <+MhEH-m<up$ D ^R.<{N'ưh)ifNFE K^Ԭ=XC^{sANB/{pto5qŋy>]o`'{G~W?tꫯ.MJ,U2crFo{1a“[e~ag` GW%nǯ_uɿvԵ 0gS0l>˾Hl远Q;{ɷ)?|;~߭'8(sW6Gi<к=}!P:6k8Dp!R܎[qVI~K;Dհ6;1{wnmk>cyPSy\q')* qZ< 9u mآqePb=uEFCT az$b/@]?IGk)hB$9"3pҰ5-6s#R=lb;!`/(GVcR$oI\,:&GZ7;JhQMgsPlAqM;aŴQƲ7e X 6b+Yӯ>m!9X 81O^aLko us)8ȉ [o_\ȷl\C1}h! 4b&L%U2de0CЖ?i y!{>$|Ax!4i0}!CQzОstP_[ W^aBE{ GHS G |ip{!/p|Z/IMxWKN@pKO \ dy`E56w#GzAFRhH3l*ͭq/x9cDg!3Ϯey u$l9g4~E?rX9^cB'uo߹n<67.wvA,f]Μzy-xJSK4ܲ_ uvox+^à}O^=޽XhJy09#~(îŋCٵqLJ$K|JZ6+x%ؕI%~tÌ^'Y G t,^.c/׸@SObH)<]dv D},V/ʪadDF!frq^t=xV7ډi=12v.+[0w P>C}Ih*kmjRƂ݁C[mZ%%Z(Di]%BLfhcMy!*. !qw4bB &Lab"Č(  `[Fz 3h2{BJ%^ z&LZ׫=]o 3 6bWɠ'>t%Zʥ3'y9:%PGsGxC(7d0RpiPEmFNbpq]OޙI<=Jr|: Q@J1~莲-i4Ֆ]͂b:aB( wnf 'YŒ:Y_иO>}?fXα$Mo<_O+e=7=$f.O d`OU1AIU.r,j]RnyF3<|CX[o}pf*`k) ޾l-pf,h>nln oѥ XNk3ؚ'A/vkh}q C,7>ucѶ {Eo7hOhrxԍn3z݉'$۳,yn7~m! Q\j[Δvk+f0U`#9Յ nx$9uK n!](r[򍜿q=ȋK=l{ ,{ E@LpKU^;r3G eAmx?hd΋ }-Pi\?G avyWٗV;W>ty%#bkMߦ<bO3~puNkdScQ/_P(<xHyΚ|]}bQo{}vo~>\ſ3 3 5Z'gv0}IZɽ)"'Ԓ5l 1;&` {OB`BfcC% Jҟ긚;fIe5N/ dOk2s6a4ғHSRZc{0 $d*%Z\GL]cp#&ŸztFbĺ7JQCBR^*髰Eh叙@VZ/4\?M,Q0!9yi9?1 B!~*S:d-i1)9 KUFCQ 2QhS׸;9z]Cّ5P~P߃75 M`Xᑅ4/se6|9D!<]V 9zncP8˒rp9^M9uLU yBpqxJ}/ A)`+4ݮO1 w)+mP%2Fj=gCA|y˂BL(eGޡJJ냧 =+9桠Ϛm.{e"ox:O[E? [sԞflY6kVQ>|Dz^m-k`ko󾎥FI9H˛"x`>H..7Q᫒씽z0@X´=3)'7I/ {;Mf/{cΚ,˲p!9.ꢨ6h`&d&$<} 3dzA((5M)*Ȍ}vNFz{g5O{ kE"ڕXv'}GAA1F4q8 y4%1I0t{=/9n©}F&bXk$oFVi\B=5EQ4 g!/2Z;op9}⽉<Gӛi8S<aod׶!EIcX/^ XkFo]Ëzbe0wNQw fhovsUm^쵔c h S5cF0EuD??H\z8["FR1njރyaG/{C(h3rlT pHGwSc>0gl_bjF/ؚE9d ^E" E@;>9/of|}˛oY~'@ǃ7??Ak32"V*@IEh.ŌPEݓSH!tiJ=@Hwfd$ I K!) N$7"O?,ePꠉo'ABwT GuoVi!5*"߂}/q }/jk Aw@sfS"0tׯ)ǘ0NadȖ?$|k߱ͳv#@>t9s~0Ykٻ|їKw^Dn!WBq]ZC0 6* W8J Bic-\e]O)/ D40)"E@ )"Acn !4dF+#odi'|[ 3C. o(n'(W&c0 WфÑ(!U||균ѣwyT7D n=cRIY?y VOm{(^\eO^`rhHFGe݋9ze0o=MDZbKT < 9M,z0'e`P cf;Mnq1XN 0= R6G{TPưn u2bRc|tFOƛp5N޷ <K&4Z3UEu(/X͹w2{qțX&0ot 0q~%l)nj myBN#nkEp3RI0cSaxgJy Q8}C%'DԨH\C~C ̞%W'U2Z dX!x[93}%ljɛy5~oh6f|`̰(is8u}F7 s ^ơ5c;4:2pN/вt<2Mc>1ݙiZ^W6c>ƙJ^r}/g5Z >vw AO;<~¿^Rd#ozUz3 N`Rtjk5$jDRJJMH^㽭 -AsM:#n*]Yɾo~c' 5vuF 0><ш(J 22'+84hŸ{,εw;|z2]/WOT9+ lgzAUzE* |\ςI[-'?zk(|hj4ryI!x&מqޅxHp_~BR@da,2M(GY"g}/| !g2K?`^$QU`AC[DFs:WaIq@"';Q鸟`4]ڸnf 2ݩz&0;?DM {#XEhe @!GSڽ^ x08+uWXű眤= ~< "/gqc+4׽,-4^e+!p=K8d23J>Ɇ[!3a ;byuR~ϜHnj|!K<]Ԍ䙌hZ+J%&zP$hR)4Wr1`\Q a#aY:>i-)c g NFI O#saؓJ!ي8n7+Ob1 fqy~;cy\wwV6JBoģ&-&IBZyON[3>kY4.+=0AI4Χ8+Z ~'&Il8ϣу5 7׈xaRx9C^EmOy-yЍ?`.јþc30 48;q(O!|xkx18u |cHzߚ{/Nh$م/{@p-s#X>FڥnK{6tk >G(SmuIx{BY"ew}ѱNޯc1ѾLÕRJFB3_ q=Z`!4Q#gHIeMhvD}ERuVfI'ӗyVwݘmr=} (078㒹@󺥒mG&uSsfhT?yzW8uoisO>Y??Gp+{(]#k" %k9@ 暣T9o^]?|A*;9`8NJ'AOSw3놔nFJ޻||ytrw;mcH ꛑ0t*arHQlM@\ ABIH82*c Rd%L?[P,?";-Qc& / <ʒґS"..nb9' /Q7_R!TO*V(Lk"#D XUs!1y7_9z(klz׋ JCI c03k@ⷧxsy9 j㎨==OA\*cTkW_~)"-qu tSz-D{=kbOl  bΪ-m qRD b6eXoU~!aO"ȒCz[ZBb1v~1Gm ̀ঌz ?srְ4ƹƋha̮yB"3<3^s369զ}I^Of0[ᕄǙCpPt2.x;/CEF$a1EyzQ\/\k?-N [u {L8j:"sVv*w)u6/G&Z(4RgRFM]0kr4_tI+Dk-##ҍ"<FN6$.R ƥx^p@\uKHdXb_)@{)cXʧ5n_3H[# fx;H kA׹E&Bi!UaN)W07E<$dyԌ;|k&V٢Vebuo>c54af<ǀF+#goB3\.1.<#~"qBZQ?d( [iuVq#򪎉g ͊D'l𿶟sB'OE"L?h<-64v9̶`I aG2\^Lk@MPE߭8os^ˤq#Rlk̞Z8;vax˽wV>7=բ= ;}I6=o"+0h(n_ַ$Xlvźku1lv V:*-OD<+ؿ^q\bZU>2iZaE202s^-fnMSS8`XMhioϡ! #Rq< `:>j}lxb%W=j͍[6zbxƐ}=Ox=n:L9mȄhCϠ]D]a[WPpL P`usqb#t1]79QgMjy H71T3 sA<*瞥<9D䉼 v'<˻)E?]-4[V0K@G<%Q7E{B!qrEjY~N/*8y4#z8W y1pE%EGxl5 U>z0V7&,Q<. 2({ #]ʐdp j({GA9t`w Hq5WQXDɫI99>Sg|_u-qAbؚ\'5HG[XQ9do_b;>-Au\yóp%cȌ\ЫډO40Fҙv9VxQEg]Dn0G-o;u |9O(|[KӟiN8j2& TPJm _j%[h "Fkܣ xt}@6[{*̡1EEtM!j;ȊftNs1pf*ifyA2e;B?e^mϿ*bUyvd4YӁs ]Gth!d&=:T&'iޡξxϳx~C#b ƥTN#)X `'d)jQ c׾S6xr嫝,\>%bj,0 ⇮B] Ƅ>s1N)ioE\ ӄu0fnABOG_)"t3Gܦ~G)Fo xQL&zY懱zuL|N@IDAT5.tK$GϬfp6FjhLJ=Ω uJvWe7ht\YHu t |$2 QaSn>kR]ouQqOrBHv1*QBߌjb;)$zA0P3j#] ՞* " póQ4Y,'|ֳ-ՠ3i#wYV #4Du#K爈IM~k"t='_ӚN~?*a `3t wYD=8ᤇ[tgnϏ0ґ5ZCc<јWz>\^{֞1w[ism|^|E!{g^}b-7_{% ͷ%d)JDЦ @ɵeQ40 *9EA^_0]߳.NLujuN5~&쑐tb>J%f(cmD%&3AɶZO i&P@֙3$ZWBwAMLJK+RRZSw+Ho~-V[CnQcȫ͖Gi)So>MzC<ۚ ;ףgg26qc7ykKՎ8Cp x屛PBUj@('EuKܱv!(ӍC= uފ6MUM7(0u 7m‹Qh~gH%<܍Ww`$ 9c{Īڼ*w:j-r4?DQ1 h}J7;.=k=,E6a)I<}Q`@[FH{uȜ(K=U:"lYhu&ܡB:A1:H0U+{[j BR}մ\cVy3xdx-a4OܽJœ`TQ"P󋊐 SRC荾OF±y2KG=ǤDE4̠O2~ї ]x~(iMx .d(Jgq`^No%zSDJo~[u{ܱp^H[ʯ92&̫U(6N^tEzW+t=J 遃v%6p6WƭN7>l^?< _fdɓG_%??\֍R5^O .=X8HhUqfB7{AVIIOsbr(>  rĘ"~={%d|Zk  _w.mө:_CvŒZviσQOMEK{ۅ۞>im/ൗD&LU8uuyr_>sl ow%zϲkb)T%\n^XFFR8[ԄŤ6nlO;\zp$(~sJثkPsIT}dz(C$z; jmԯ8cD8S'Opml͘Y%Nf{r A&A-bdCxʓ30gXHx M@O`BcaRp=>޵ |G8 Ԃn`Ƹ _ CCx9|m[}fGDHo To6p7m3cJz ŜIu5;!c8*]Uo&>ʀbhҸ=]F;4nC=!7> L /|sx(xt}D lJ"E{5yuvlANj$E:8|ܘa(,KIY] 4yd 4 ۓLNth5ʟ5YAk*~ 2vҪZ̦Ui1 *a)y zn@'m#E6d~I3Ҁ8]uv94/F?q h|CGpo׷!XD' F|hI EnǰjƏ׍k8VqI`0lgO^7./Tѣ}ᷗ_rhƝ75?3D*B,\lQwӏU{)!<g];MC+B@8@g8qH:l[Un(mn|Fы>a_U zތx:1|D"V-d0x OaIS42AfU@uBg UDI(MHQ"rfJL7A g~q+f\PQijQ*pŃ'5VRѯ'n9{O<n{)*3hrr{\RfPV-U[as/>P6C-ƜW#wGFh-`rK!ZJ"OV(Lﲿ1ԇdcH[ڠK 3xP ]O8ϫ`a#8a2t5L Zd9P8h3녖<1ł}q>Ys_^*iVJA΢,/ah* E+`VsRNݺru[ S=]#۶>WbNqaB;'bm 'B]P`$7i1uhGƀC.DǙ$,C⸰T»o=X7^H/f,O3t沥usL:30 h+|yem84/(=  <͑ʝ"B$_˔4 AQ}7BȻPT." 5w^VֻmՃ3p{P߷^qRE>ښSHIeXFˇmۼy]ʼn^9 y#ͫVܩ,jBo,S4]jsBP4N:ZF X|j99D}R&`0?F]54fpw= yNʥϐu5x(C3Wo'6O9)r>W.R mBaaz5vs~흎= `kYNlm¯Sxu/F^fwh#m벆<\I/4 c`}kmQE~_2'S[ɫ㏣"~#Ob_s#zV^\Xs`To(B8;2’tEs7+sZ.eӍE.v EV8ȟHٿni6JS">oEKW\{_˺O qh734sJ.stZ9?7ǟwۜ[ë9PϜ \#C@t"ko &ޠնƜd6h4!xg_^/2Һ\ӞE>4_zc?rk_Ak pKf = бEuL<`+SS aDHϞ>r:Z#P2õMBF4+볷}p}Ѣ,AZsdnQ,~Bm* yNS*  N Gn<%lcx1/wD1EE}Fo/@"xN\6rJa]ts1+UУ WD$g4wbUٿr}1v;?uYpmjU? ua~u ,Z%[|JNKޮ{VjH!Y8L F4{Y}O.'Yk3l=@4T/֐w7b >c.O2HmjOJq5ܧC#EQ%)ִ&%Y߶(^@ӯEaNڭPFou^nnZVZYbmy"L~q*>,Si>G1tC >>iQ I^) )NM- &i|'PTty*^y4?_3t#*ASj-ѝ?3lۄWsZoxAEqD/z5, VSTGbh9$gl#Sުj(E)ߍVguӁv7?i["9 a `=(]6Fc8pLP֊ C]g2?ƢGD/=12<1^1kwϑf"H}MxD2<ICa*CWC@|gx wNFpةe(%؜c}<8keZ1# ^'a\PVDz( KxpP{V<3 Y{߈>%f8lS*l{̥E&yLĒ _ŕX¿zrQ Q`ȫe:x=SzYky V0g-2d (}^SK]Kk+˝>+|.8D XkM'1Gݬ"wy7Xe5%1 oͥD޽j>R%t}=Fe“ (@( 4 YQ_Q rENDNx)dL?XF.pn}Oqp׮ z Eie4bI [ݬG |eg!S =Qm  7QQ B#JejO$yrjy׭9 kVp[i5GI%gdfI5F3!9i|"p!6'dБzdtI( ֳи;k'*1N(fl|\ۂK_8qzלz_"("m~9h0Pî }9aavGN)׌LᰈcdN!^ϚFcTRXpD`p`߈!ZHO5MlIIC7x1ZP.zjlaهnځk_&#;,iHQ7 ~tt yLm 9MD 9 jD26APe##rժ!#~{?=ȈHr>]Ko]4Ġq%EYOmS!$վu:˃>ÿ{goܬ$8 ;B(:}(6,I$bF=4@X]6LB@cO#~7!V3b) -28jªW.e-/帟=j;lmfku#9XZ²՗ZX@S @t-.m}%d_h \? HCNj&(,Bk_.G۳-$ ~I擗<ۜNCTksC&>WG T3@h:6oPp=v2vzf} imef= R=̻kC_, :pBh͛:7[gp+͊"({g<8o)rw )׃۶mǓ06e \F21ש﹤5Ab:)`^$\bɻ?c\Ix_CO~~FD˶ S2IJ-({㫷0W_OgI1Sϐ^塒<0!0W;?t)CBl Wk]-i3Zmg >+E%3v')myǠ!fLf\D@rY%Wxh0'|;]v=L}y7_~F(hhc3nb^Gz05h#(~b"R42|24\?oS2߶R 7?= Rf4<~ƛuI;vǨfkdGၑmaeqZ^ߗw.|_A=t̻K(|wzYd9NO3{q3>ɠЮZ#uB+ܮ#зwpi{swsOV-fgy_try =2 +m+os +#pclKj߄ai.*!SXǿ Z y|),FRe1.2^$Fem ryb‚~>%t#S3d& 9 Y}jz$ ;U&T#9 11Ÿbኮ8NxgBLH}O ~cm+pvد.EqP]iێ<@*OxZ|M/ ^&Cl"-}3t uXKEBs3]x2Q@ɂ)k!ePWn5k n~V#I$e]Bp0&ݏ X'Y4*JQLƧŔUhLf}xUgb5@;o,7lC(XjkB'g%!<^vPQ)*=<'5'n׿='ySsح/a2?nu >9^#. >gvnųkj`Asy¹+~ßԇ\J\T &ZJA tQ)vO]a;&g#_D`(?xɉpsbV7+^JPQ~Xl _wħ". oϽ_\yҷ_!Mc@{2Dတm[Jx#7!JG!> :T;ST7 Sh[豼%=+!)+st0XF@?O8-N E(.[;a ,?Jf[J><]Rڋ)r¡i<'>C(K(gQYؽTCz=U6GGdӠ"!uaa4Q7: N)eJP3znBq] hF=(22 PL*|֜5 9Bt36y4Xf h`^%stY;M!<@PUb7H! Ϛl&2[kИh51кOX\GdRj @{-=xJt*z^FzT|smc0x3". (Eny? [ [_љ\%06] P_a "!"c<&{T8/ѝgY%sD,h޶<`f OjpMAu uM±pj~fiw %|`3|3@~v/|זEt#^E;jwR"\`0s&m'DW0٪X, CkzG%JY:Td+pRMd h{WoR>p{aZHVV&U4O0X]>N|Yx9&9ՔsQL:gY9!p-8e8oecyd@-CT ['0mOK*ث5"j}/FuRѬ0c<̠8 ُ5[Y^ Zu=DAr~A;D4 ('B }PPAT@Bޮn|f!QTfљ`)a>dx誩LAQIPn1yʍhKr#E[_^-Q!2ϻ}W)<9Pp;ݛ>?ex-a},Zx h%:Ђ3,m<yRLs`^Lf'(z8TNod.G >p^I`QTy뷻1PԈ%SyƟuCy΋{EiZ׮X^ގjS a;W0wpZ9Tヌ / FV-z>y z^x~n[s奢xC0Cv[ l\K}2fZ8uo,:1QiC`CЯѬmFxT&ЊWh޶M4 ~,LjjlmV+ !|=?;hp XE7Ec+oۖ/I5G]#Vp@i&(2Q/<5Þ(Fp %=[u~ޚ==%tMY3]CyC9fu>l;r<%+GEoo.??]T{uM>#_fb=,y+C9O޾Ձtj5'{&5FhMs24YXĂ|uhɝtMc'g{kE3C>+şfk&)'Վ[|v-j*F=}_Tw23s(> F'X 8Z>\/˷:ueyY9 yĨJN9ڋXU.l uG+p;+~V.ub9|RobȁhP@1RL1C#$[]4]?J0?ЁppzE瀗e NX Q9 ޹2VFW$ݳd120M%E ~j{9![S8O;tF|m>rߺ9:*>{V(CBna*빾 -DH.h6ARxP =&vBĔӍsr'lDf_~7EHZIGfB.@9 Q0˫uFc if/_uE 3Aӽj6NCִQu@4UVSXiݷ< fZ3V.Xn:lnx n<2V gҍtz,8d|#&T [gF;/4B fB[Qׄ[1zQ42ۺ^)GSP憌s~;ÊlO![Nj[-n/!1R(ge'LYHW*|.Ǹ!wLJx!#y2ѿ0}rC|/ bs-93k t) Y#J6'qj fVFǼ&ߒYdpXw+:3M?#JU=x}1n^+ZY:^'^^]Γ;Ɠ"cZmdLiyMT(GPGI}I%ǃUX;.έK 4HvvDClS/w;~rd#~$D\cTʈy?5v<?ۯɽϭ,m,_FC n܈祿E~GҌdjf/FBRZө 6xш(UG $ZA>>bDogSRƔ:X3^C'+ęns [ lRBihٵ,1[y"v  ؊021Q հĄT@Y= ?W8!)/B Eusk +a}pyvc-ʻ~u 4lQ zV/l֗ubܷG[8j̑Ob`:Oט ,n,w'G6aD.E6XgD׳mBw uLR=;km3/ow@ zRV,篲Kju3/#U 7'g̃Ep0 wb6 :^D#y\RbFCCrp$IwjX7"f{!p )#mU WZFx)9Ϣ"\>m5R(hM>.m=*߉y;o)ʷN8,-_}/_##u2{CΣ[ nc0^Q[_a} D_߮m|)8w(lQ m3G|c˭S<׭B8W^ D ~ףiV>?e.OIn#!T?i~I)Kgl&G*ZV̳y}ObpǐjQ'5L#-LH3 {xCqaAG]$L ֙|joUu=m5Qkp&xKy<2[[Љ48J1a&x=]"o-D7+9 fSݳ ,vs1neUClü7gƓܹH!gS㐱s|gy{lyiGkL`݄ȝ7o,_~y]5S.cRH 16Nx'$d)hG4H Ta n5+"Z.tWQWY4K({)Z Lw,pyg2םEfWL5a>4'iWEG8ll9!A.)Oؖ&G!)[?]b1yR"? z3pNWQ=ro_-DxM|p xLr;_^DmSo3]ܢe2mv<49HFGL@)+zW?`Asv_A3;FaFW %E極nGEܮ] zYё"UlRs'G͙خy=A.\z5gdb=[7`}"@IDATۻg68p(֓Fdv'kmzVr/=^dgzwliXPŹ2?ty5ONFhӃh2ыcLŏ !5Uk ?e >8f'k>q\=\E]6iCs"w߼5[> w"w|_r9.M'g7~IIنo}k-foE{[ެxJM嬔 !– UHo:}#Dd!DOi؅ݙӕ"O?ˣ۹^AZD!g<[4Zony{yUqaRM~y 7{DUa,nاU=ڒ1E[3bҾp#W鳝A:яN)4@s*`APd*Өyll,?vS) D!ExUoEJZd TO!G `&BKs仾~J ~M ܾy#ųAx>?Ef/J~_YI,;`!<ܣ]t=,&{NbH iZCky6} C#ELE 'ӓ"0h0HxBg۾qk;^xY1uXdD0ۍq5~`uRюyzE?x=XoKhܩ ^ׇmsnSD͉U +vI4PPgJ4lWJUb GWtCA~] ޯtBXnR0}4a% `O@B‡#x \j"pbNB~~v_X&6(Ш s]#9❮Q&^Nē) HkjB It?n2^Ak#G0DVjFҘUMCGOX܇F].E{DdfǧΖnO_ux7lvpW_ߟTv==O^)%?X_ /4 "yqx~ty+M1z\@z5FjvЌޗ3VౚbzvB1~`Jsaؒcyp:UTG@y|ihrTm=pN:19Ѐwj32wݤJk1axBF߄,ǰΥa() [Fk8Y>҄-*(oNrChiࡑFх!LԢFqVpjD!LX=a>״LEQ9{_MV֜-χC"0ː&rW䓩H;WVTKӼS?Fq N߷-j-4psk*bx1#MȾaU󶈓,SfYsZV)ݞ̓["=EO3E_xn`K}j<ō}uF(5""{[47D$f.gtt{s"t8B)s6îKR!zy/[ Oh&Nd²铅^is#L_ͽRAQ7(f54xhL{Vs pEy+hE8gޥ0gNRRj&OcيCF8Aފ\"3@3!wD>dȮѭhhnP#Ity, VCkF[e낟R~Mº3u5|ߩA[7*MOjr yxL1]<{+hv y5.-}Ȳgx/YS,r_q*7C+/qo힧ҫd]#5fMfRsZ(m{8D'F#cM XϸagZc*ޝ2js ebŠmC]vt6Rs݋w(,;OK ݮWaX°۳E`@HB ec|* t >I愈i.g&Bu.nL/Jq'^_E_{NnP~'5R.΄ f$[aTْ}0V.1sǛS+$b8Xg(^e3fl]R5*{+k$!hXZ6eakSVmN4Fa.AFq욘HH'(J /x^NCw+MQ"WQ;j o^ AzR; J> a[X(wA^+":=xgQ2'S/к{'Gbvt}6LC͠}dO%PE[3g2Q /^uKUf[[vTPoo0j;ip.rj*%&1WA":#CNOD(:'/<e:4>3sVm64 Mjß1^r;0Z&ͨ6Ǥ2h84Sbȹ}RYG"olv*߸ͳW-~}XjɲpP7/ t8yivPZA.GU.cr-&O - AlȺ g"zl_y䊅8v3h&0\̼6s)Yܬ&a\,^EUL ROZscδ.@'<{Xypk_rC˅3jCѪSXn/g[7h` ?'BkdZ*>n >-MhmWMe>cJ4]"*!tO2T&C`KzZ0I{lYHED$~x"cϰ5;%w+WL"Ϣ_[g.Y._`}8l 3>81#Aŧ_9|i0c~/wVĹws=/Ю_'Ҭ+~rþ5ۨʼnSw/JAr uKv&qHɼȻٹќ{=W;,ӽ%̡A%{K(s]l/Pb4 !޲Zo$OXF%ex֐KBD"2k'BIoEuug-&NUf80;.<CڟgȾYg.~ k/p>W9˲lj<8͎I/ ÞSyiS(Xn:D9t|!I-1oF7P T[X3!=kAўPx)I'E#\]o {- q+cB 4#!C#|`df٨IɸI rf4Z{}*VjleAY nㆇّXHE_փǨO^f} tߍRL֮ӿ.{ 'Dș{}eU)jڧ8a1FpAۺ ~r!}$L)Zȍ65eiW)&Zzwdڹ1}9# f-(Fq %{=pw:==?'I~)Z{'z opkk\ >I˕vPq eU3 59˟{% slŀ WdZv6EW@1Tr0Q={Ɲy}?uw9F*l;f q,[]sO _#۲!$>Ze\צ+[j[ft͍egceV'2T=_0kgFkS41_%"VۛjB{O =ݳ,%g8B ^(XhG(ToES1%;8#3_V=:bZA8Dʦvߢ5g!@ϑ$4I$ kEFFO[a0PlTNpxFVx!֝*(3K c8s!fSk~ڠ<"ג*68EY 6:C^ctn+ay&E2.Ɖã1[Z|/CUK2P'$` 캍/ĵ5T O'<~gl^/ }֪ inZL~B40j|"d PFn?8fʑ x3!y)5Q=Vmk /" qUnFO>bJTpyzַ\ru^W{ٛggk_ oQd%$~'ꤿ?xI߸qctvNݔZgjNawOd6ާ^RP8Gݽ"4*dd2 9)' \D%/IvKOWa1~y0ˋgP#%#fLdɄEI"^!gWS3ExGvj=2t# R gdLm77@V9\E˜"RN1^̷`0pS%|!~:z<{BUCp*S11#ETr~({. !™PWݎ'G*5sȨ`(d%˶͓ beAΓL;GLn% %׷RsG5`(Q ?:SZ ,"9`gnR}rD}ы93?0dzG@On8v{Nߢ 'N/ ԗ<j9i4NFJ1_:&@dƄ`{v5D<0ri>r(u4SG:mxgvcgLmpU14'C[4Bb4Ɖ~rTC]_ZwWJߎvfW Ē p6OS`ݞX,2i(q tI;Q,ټI ~pyg 2xqRFR˫/їVѧk0]4a{w=2Vnj^ F[mQ9cŽ`⣨0geL߯eu{*yvlxJ#FqOJtDeڣ%2` & gRghҞ y鳌ݭ+yo</qDWNݽJd[ԕRUlҟȹP%w:o ` ?//y*EeǯVk6/-Rfӎj+t34fo?/]ix3@'r%IJ<}7W_zKRґG2w&&3i^SMhBNN` "8$2;mӟ o$0uw7rKÜ8Zdv۾м}BB̔Tb~+"BS$"CPnXAp% %OtFCaJ83عq4ORfq4Ǜ_vX'&(7ljtEc8L!Ve0@iK )tڳ<Khm ;OfxyW^R,hQXg12$:'m;xtؙ;V^#\º]QrBgB𵰿;CQeަKhcCqgxshL?)҃#1X}qJ_۾īh j޺nc 9joop2pp#26Fu Ms]w:-Zjޜ/c w/*\$VzFKS]~Ā |򱃹W^|nWG)dG2j($qL~'I7ϒja@'^bWh4Oz Lu`9$`<;?]S)&d /,/-lH<ȉXg[>ڏ-7^_n^xOߪ}y$.N*R;2+>Yh\|v.x|QۇK&gVGP[;.}_Tߍpa ևt@e$|ҝ \3ǟh [^r}/>JHdْ\GAI{SxW#^8޳F{ׄpyP/Lrzj2}8F8ut$Ag%"RNeE ?! JDU= `x)2plīzJ&',pvd$1Ұ(F4qj;;2LpBp*ðr(K@qfJ3<«z0Bv=c5[<@bxaˈ8q%mk[3cxՈD'!(v&Q$DRa>Pc C ^G0`KuH ؔ̔څp7k ]EBp&2js'~?X#?M=0cw2ЇpJ?)*x"E4ad 2F+ރSTJ6e8RZDk- <g13BЋ|Iꢰ=Z7oeL!!+y=}rm)†S1Ƅ{V(y֤֦ܺ{0q,t'F/ư_C Opz?Qz:dQk8]FIg~mqOPYV\a@]c^䌙p7Mԡ{.dRxk=;M[\lh׽,‰PၮTq+>9,U8x6nϫ/P8q(tP0_{}O6*[ixћ%WZ;*}`NL/4s:r}㜶js[asF{'S 񐏌TyT׶9 }z>|m<=V]?˵ʡ_m_ Kח;o_}gZNwG_4Ƹ"'s,E`ȵep7PH( |Q d&W\͐?w_-o.=Ȗ5yc)N^E<<}ᒰ3P{e[ɶ5';퍗I CWb+Cxʀf;W" GN# PfIPfYѻ).Bjb!E^rY'Bz+PUQ:BĊ ilzSm 08{ Mzk2PG#b Br2eJD!5"Fn|9HL/2e/ioU|mTƀ+M82yso^?d%cyzD5ɒD%MV'VDJg:SFN{խKıMG"xeY:=Ϡ3f?e8ecyojqj$Ho)<PB<&HE8Wrg5GH[p,yBrID='cp&8mka>v]QF%4Bsf)RF|21Z_R3/;..Ͼ5/q#/Ӂ*|!OaJ o-8/QV=s야Ff0e9޴ iN|_hcS:0%JPgi' 6p90?2[ L.c[C:E"9;_"Jim$ Q(C΍d)#2#wذC~O6e [ +DB\h6YnE=Xϛ_%ڲ+M3!pX-m["H;05ڭ/$At挒I6OF=3&RDv fg(ZCY*p^e:@tpʸvZNgJ@g0P&jI?`Zsf{aϨA:n|>1pQvZ%lh[&Hpvd5JBdsF0x;D iȜxzJ&jLhwӾY yͅw} ^&l}x)pSE2~6x /86AMGkh|Ul7lR #|b[k/l[l]hjv Qk_h+ԄJ7=9Pn=U}g7Q{|y53g(>9;NvD%}okR# ]zY[µqr-8Qx~hFrg aЍ}a2n(20nhz`4VuFF尨H^pZ$Fo8};*9 ?WH./?*Z?(,fٜ%_dhɢΰU,@$pB I OYCLo|fJ]xT7anddDjgĺݘRc"TXxG%1͞Qɰqk(+Dj FJq;"g]z0l_e#mlv(Z~m[Ɇ>rsvGgEg[-U>̿[_Z\ L^]X|k&zT=2tzm`%]S3|6_|3'W͟'߲Lo|ͼޝEoP1q&=%Dr/ -R0ᦌcڹ[hV0H*mVJF[)mB@sDIs`O=* TR dxavk_7N1x:qSJ!5Z}f {[){rINivu#B:GHb{ĤXe^mnPw-[#io qw@ |CLjACݕZɣ)8hhZקTm6Ē2Л3 !0EYD5GQ. YsV\$S < =ȳx `fo,c%lnt͟y=Atk^foq];0xQ}}sM27F x y#16e8;8$.g(Ш9yVe$~2vrshD}. F+˱ӯ|m?^Zlg~hvdB(!/ȣjT,vgX#/̼5&.) ׎2C/krQ3)_|my1/^]+_]II6 Gw [Lsd$yLwXW;%Zy/WfX.9S3 l:ΤREQ)wjUuzAA[̬4R"h-r><{ tK?r֟|cZ}[ΩB2! c,8[=# B$<0xe a~[7xtF'mW"Y2|5&Ҁ'EXS .9@)1#$e 'E(/A1qCN q뾖 dF '-[7VHW[P)'eo{eM9!tN)s 5}_BTEFS]镶t'@gS|ޭ]X%Uȋqq1%|p> ݴAy05:i# i&nG8ԟ/7%!=b3Pg#x;?[G׵1QEy$MbZ/>I.S~KU@80>ƌ扐mHlr^錿1}<:O><76ĺ? 2Rt?ݏ%3 WI&k}U nɴ^#KsQ!Ҹl}dM@IDAT̐bE}_E0 ? 90|^oߗ˿?X?w_|;#s-hxx.ۓU*CEaI>Mq.V]gG!E@gu !_JNK)(5`{揗{dƿ9 ̢50 /՛d 't,,d/y#J07[%&-3$pw + HntQ"0vrזO%`촬Lx8 m=?,3x߂gsz,}aѶ>\b/q־(>p2]pyީ++3_x-}EaR)<ڿ2%+> ,)p4GmHqP-cMf~@71TlW0!%mo^sD##Zk0Q@H :H`&VwMHLԀ0u05 C͊EXjz]48ºqGyB] ѝo%"m, ?&24M77#-;z?kդ^T< $eIJ|P7+%AcMv4 CI<ڋp *"P-+0յM />Ryа6lBlxQqx4ڇfnjuye\I(=x&R րWCc4زa9JvV@P"<&= (d`| ٳWiR8 tWP@QMH0fnO~џd)^As͋d)-n5kT+ KZ鷦/d?qc!<Ế_X$fDɟY)ZxIw\]﫯X}84trЖglSs g݇KjkDr(Z+<@ 2pU`h.jjp/.&AX?tc Lk(UpJaJhs"E u"!x}\>0F3@ ɓyuy1}'f\'൩2Hk^^;rz\{` n>Mfg@tLN:xGFx^9 <8O$4yLH+1ʼ!cԜjcu}Lm h\lkg7\xgNo.~nr7gi[ޗ±"w&",^DGcѵ>鸙IXa$p`K*O>]%[~'d$?(;sRvw -ڤH5ByLW\e<:{tZf~4'S؛BO0m4#Up`!"Eq'^p~Bv}iQ_7܊P.B (ë!9I; 1a1fЫ"(?R"_=ߵ>FS] a6#T7)ޫNHTuIH:~3QrkfrC6YO|^%!>MrA XxDh] }l#3DcKN&^N/CK_å%&=7ع#@nD'Y6yv)ID7Z誈m9~gzf73j|莟&B 3 搡/Qpash'揶sD%Dr*wn/^(x2xGF #cJ!ya*KXu"MR/7xpLd Q}JCИ-sX%2l2 cz% EiumNues!~˻Wnv SePlmVx0eC7B}W #F[5 >/8MW "HOfmo _xK^# t(9Ѯyx'48)t“ND: WKq }?-tko4^<3 ZrKskHdd<}E4]B%k!ݷ_B {SPAHbo9Ŭ~ٰT!"DM 3<fh z)9}d"Rv@^}׳_A+Tߝ~R`cNEYNJl֊nnk+L#^~8%B?qkȭ{OH [v1?O4 GbYB?^*iV6d!x50/0Ɏq:h+̣%X& SFfh{~3s_BbRE'p=o o&Ļ.`0h/n$C]&'Ԁpf]^ONN< 8W7[(L`u8CͅqȔGuM#0X?{gI)>BQ% zusJdzd|%kTh5aM `͂<0 vd%d!Gz,stj0<oaǴmxBc IN1"Sp(9rb zB_xx2LC+xd'r}ʌg%eySOXTv9V;=z3Zr܄= GUbi1LŹޛtb&X2]7Yϱ$ %Sh7Bܽ%xkG(+(&к=o-r\OE5{5$JW6d^[7D(& W$~A5װ61Fv}k-m %yUSvop<ǤBYvGv0,KU|@dmDGY S\ *l+YGևb@{cH1$<5˰΋KJ{Vk]fߍEP)Ѷ<[7SK "xȸJSH n.Uܿlɋc (B?6XYpmܓ6+zmZ?2)3< b3`)wX+6) M?r@V>_ͣ©2|SE#} qWKe1 (T%D ߿Gƙg|ͬU(4rjsyzw׎hFH~ogi\o3-ӰUzv溄!촹P=/ޞ̘-oBH ?o/G_vѶ,#Glc#1z>yZ95BޓDn˃꼓nH1U׃;t\ [6:_s3Qn$sɡ PE=ω*YN,.Wdkhr,O323KiM}A(xczW>^?|c'~gc[:!:9rv(9DΞ9_} $Ûk?]^hɻK>}ZP@DUwg"*B; ޭa6/@J5&#ˆ?"p""voXX{Dyrx {g;NaKF<5ovs"?wڒ)WPPYn<"[؊8i(aX>30e M!!ALGFF (NHa7wř(Qe{tTX=z2ZݎTG Lf]N %!6.Hcu8J@t=!QT5`@ z07I^[ݳߘ>(,(k콱Q/01" 'A*Iuj&;Li23[A8hBE$za3' &<qfcP:kpz ] cp'L<2Єw3$q*XW <:Bv $ ; EfZO \ O06D j@e.9]C<%@UgB!pc;9;Rw\h\`}M}}M3,dEMIK;}O! Q? "HHl7 a)]C!LV8zi+ڭ?8X \i<=l+3 )Oj6g1hZG%R81_l}~l|A4f U$aw=Q'(fP(2<9p_B橫?*vF{3$Y)yflCUT&o^@6[tPy5;Hyc.;zh5?iyrn7 ݻsIi;38\1vXp?g 208=^AX5Q'f~ny|39]paOor壒!/vkW u"%Zm{CUY_K//|_\BE¹ljsB 2Ze=ZdΉ6wO?:S@f T,Wkgٺ` : S .6jB(c!vR`Ĕ7AYAa'i;Eoݠ ;!k'dƌ^2 H lXddP1\ K$sMݻ9qҬacY:Ms;kQ;`NW.)̋=PbH< [?+#, uGhaK/LMK{("M)GЧjYyGzPpݻVGdIQ ^\PƘ۹h):BPC,# pM)RSq *4d5ژ1tpy ٦HZe/ow;v,;vᔷ nd w><3Lr?!)A2vnwF{K@h 7;w(>h FYS0:t2Kt[1v( CS*@ =׸ cWyT?ágWg(RCS e ]p,aDӂLGw  N^;^A[~7&MA_c}'%\KÅVЛne]Ƌl}<|&,e`L%da=^1t1_j Q :GC%=V7 D%+FX)[~ O,FW%xEmA6( Qa8`=_]C#shk +rcWD&=E3> g-׽5=2Ghܒb%涜1cF_E+E8 Ӄa^uf\9jM>e$QS!xV-]-,??}=(EY}o~}~l/}S_\Z޻~mعs#qODs;xY9|rq?t?GrmK?@\,. DOk`^L # NPN:d.%PV4؈'`)f:}]ƣ dZa*\aY 7FL{SH0$}-KJ F s06x'CXD:0VaoDuu๗!MI E8t'G1c!+nb\SD'GѺϲ{^NfTTt|vH~ 6ndosx1mzH1-/ /џ*:.M 1ГY$lGY{ж7==5iR1|<)(J W'Jܹ\޹ݲ/<YE|GLmm <`s;]~cIXHwn0^Un vGtk`kX2.UzVך9̇XpB’pO Xv /˳ 3a<kuֆYZ]Y,ljyp>=5.wϔsLΝ]TsQ -Y*4Ʈ9D5(QhCƛBirO7_pro+-.tF 3 k/Vd{(وvv$ Q#n^$r/!fD 'p /&{mԘO%vffu21d?ct?e8>:jNIvbϡ+[ ]$,hL#i*[+8ve 9)#cv>*^$#Ct+@<1 fw86Mۻ*-I58j g583FEj{KhWH?N_ͽ 2^)-0Mv- Ƈ6ΐME 5h.Ј)CxeRC蕂@.ZF@ѼVO6y½ə9ΐGCN(f|ʪ̏4N)dRc$g1Ġ5sFA7wF߉'S m YtC8/x"Җ+)r8#e 5$' m '=hs 鈈-q3PgdC|ЙDKھ_DkdqSa"(Akxujc8W4x fq Ї%7YE9eOF|Z\9`S\l̓mzё> !wȅES,Fzq[A#mSҺ  E1Y?.Sb=SR6ȏ=̣dcƚ=|,i*ӳÜOMU)8*(tۍSwNUN% O8Z_.L}D7_v➼&KJ[?wm 49~I4.Wyd?WU7Ǘ"Nh,,\R>[RƗhc<ݻsr3934Odw{HSxOpƠ=ڃ9GaL4c<YyT=L-2-{Ƽ=zfHd96%{jUe -/Z^.,_Uv.nAvvCEI`Dl5.(Hu&]2 bv$h\Z<cZe1l[V+[]At u03E-l4GBZ'Z +U ll CbcTeԍ]I6$[3^k8ڵiǢ蠥%{Ë J%0 {tAaUQ Zuʻx;jYT8<<$DJImGZ|`)tJZSC׍`bP=jOPY4{=sED'#US uGqZo?c̷[9I$R13fȳ +GW3}%Ihփፂݦ.}~!]LwBUb/׿1$anT '\gaž*\CGYw'h86(?>JQ3ƾvK׌1 yXv6/@ѯ>Ƙ}yRdl YQgnoq^ܦ{V9yF*.5Ǿ'd^On\(\a;?~a $ڭ}U1:8ux[M['_/pOȌ F '33;y6O % 1$41=?Y-vHBFb]GOz2>n۫U=ߟ7E¯]V A< 'Ϯ^ty/^~/.kNUzN'^~￷+q4}Y[t  DiSjuNeȜo~73t~קDG\uWW>ϗre!ǚlG.+Qxrk,d~(Ăg90h#\!+]D(p*'jcga Ylm9'?LAГqDp/L^t|CPv!IFkA0mZdpviw=$M|!, ;׹| =trX݊9 `g?dخ4)#8)>&Ogc#ȃYn1ivJ=lMRIbl9Qd6A,lNO /qPX'BKO )Uʘq`Uj}WFr ucEp!НA7_)`s{$LrF0,pn}5 6WԐ(*: 1[hBin)[jtZ0&QIK*I|.d7FBG'W펰 헳!͈3NfMמqClCJTє6@Fn&F88_vTZ<PH[]#4-5=\}mfC1k]K)4 gd ff SnqE/P0UtnE5069BY8k,50]G%ƪyG0xcg2dtO(>t7+cax<(̰5pZjlhU1I,UˌIyA^gV>k,|xP0:}5ǟ.W+V@i$$^7P(~'\q$SQjEh6(NQF[u,\CJvX7B3NQ7~CT k>#Wuیqcxux:av׼EsRȎmklq-]GJ?ӱ=+aK_H#IIF~F98%2<t%r.}rz(ͭƿ_{7~뷗?WMSOTҮh|zA;揁|\BPT+rd>=i~Q_H˝K,/Ͼq-ˀdlXG"L0;ıS!~ @B&ezb.%gOu{ 0zB3I<$a"V,;QW v?޴58K4vFe|8d'ۥ4B7NH(B.s' MP|xxԘ~(fspڂg97I0JC"c!=k߽BVx䁉[ uauUe͂I-~FNIAMgқ@,cC4LBꛘ-nUtg3LDf;fύ%A28v[S܍ftzjĉwjm (2׸x-`3 4=_dB?;>/ml]&ʰA1j8? R2NijsG8{}؄wxF!ز!aOڨ'7T̑(^VFh>Ϝy ڱ\~8lmX#D}^:D{o'&h}ZqCt 1cx,lnVi%[xw݌IxVWŬQ O l`}ueM ٸ8~ ƍOvDҷ$(JG1 n"M1-7;ݱ,~b2rY$ & Y[Ԃ-v G/`0 lveu%RHQ8,5d1dD['C{=g׼^{o36xpx[8T@Ǎvdqv˶Znz}>Q0X*g-L124{Y||oSw}5-t@IDATfvuC8]G͸ѳh2;i; {ONsF=oƜjv`FQZm,ʾjw! 5$|ծe Y_KR{7y:#EE=K8EÙ+DD<(zPZ8x6/a<cq֗)F O"WwfQ@c[UQ`H:$ d*v;Ӣu>´a{-Qc|jgK:UO*ְ1>XITx3HCe6d9x`7b^ T\?;HxNڜ8r8 /մWa/Z:9&.Z^Jp).["QLWf`;pJ(b CTL(Ë |{3R˞ZKG=W[,m[FIxH(}=DI?~+-)l#吩g) %ͷTۧxtu i pBX`C':MxG]?MxWF6]:re5# v9Woӎgj.=Yjig I0O}j)=OcxGƮ_ݜ]AYR#%[OmVdU>vS"N/r-nh:Fcٻ3=1Ʃo5Gȯy n)b阮)^25B,Q@B'!s I헣jPJmW|;u)l+ v4ƃ~R2[Q󋇭~dH(4u7Mˎf[ _\~>5` (3WeEydAk9kc;йyĞ%Yx2*c(;\ZO[Z@iO,^ɼȰ 0VJF+s\sxc@t,G}?\;]~4Dly󍷪 ګ"[۴\L5FğM+~ d4'&wO#=[m*6kte??X>nyFY)WmH6K\3͈s_6}x*z;^Кv^+66J3 !hv8! 5s"N *))ʛ^JO"HKݦ)^ѢTjRp-/K{o T[6Ids>UGT4 58/יOۺq|l4`}8aˋTC@-RV.%s?ϟG|,1sz/*;)-1$i)l(}̯P} QEu⛘B(8<3:V\=Kp0lĨ Tt0T.pdb́0-\&R0<j<GX(z٧blKndsE ԋg2E^T;"yx@7@B͗Di1Ãu 䣚r۷3iKlWÜT8#GO1Q`bQzD(ZR51Ip|I>SVqB{yK¯\ ,TEQSH=ȡLԷ |' œ8 n"NQp됰ޣ :7>qu+lbCZM+^b'Ea s1z2t0H…$;&m8^`t1y`ante/wo׼fJ꼨4Cr H.mf*m:3]m]ߦC8h_]_l}W_㝼H 7iy ^>Kyi#D|HD7W.cW)`prk'@fk'a^4 G@ߠg;yaڣN%u?ܡE:r&kglvh?X/ݻX߭C3q5FP["~9tm}/>Zp ڟld>z$*^N]b,-rjr, .)wb`΃!%g_^& sItit`1u\´=9sTle θ^`4xQ&g#l?)_|3,r~=wQZkᄍ콇w[y~D&ۇm9?lStS'+5-}ANEyy˿<ۗ_cg7 糴qg3BtQ:^kbh`G!GO;R, m j7bGC @_Pʅ!~b8 P C&s ,~2jKA`,1*e2/xb, iQ=|pO. .YΦ:1~ @"Nb9/ D~kxz~GY 6y2C8R~ͦqWBKyHOz/eV"Tm0F{5F>S(cMY-ػ'O5:+f*:6ÓuJ,9a9'qYUkiis}sR6&=)ՉÍ);RQ'g61\" Q;nz*("Oՙ2hݜ̓;ꝽVȳ-}9dcb!EKÇ$}8)'߮3qƵ֞z^Vb]k ϾV~|Xot*tkko'/xyR(ŝ6O֕Y _go|헚+SQzXο{i n{2!smA%#޽3{kl$&˔nc+24, vc.³t{T= +ϥ#WⒹ2Pd1Iwi O^n-ӳCto%}Ӡ7 :Qs6LrNte*C蚿 )yog/_GG>.8.cJw~ gFj_^I_.wn_xȱl$_skV?DJ&o?yD+":X!7c^VzĜ-QcUTU~(t>Q)֢ޓO'2NIcƼ7&MSn. Pbԥ0Ef!! -6ۇ٫ GvYt;!WH))8s ~c fj _RH)cPD|eS'ZRH2(`U8CY F8LY\<= rLߘߖ-Io< 괆])n@b6ϮJ=\C^{]Y=@U;3eb_KB4!sM { ~ S@k`4tҒb+0x^n?/3gzXyT q첶]M]Դܧg%yq ju@reFmh), ra(OAS6johIp&;%1Sg#h;w!aO鄾?Pg9sp15860Gpqf$M1h]n1:Cq9~yD׿1=w! U?07dyl"<GNsשUM :j8x:dtHַ즱8y?gЃ_mu_|W(ZX׿G< Z8#W91z8da~W7}F|~rr|lR徟zLq,QN6 흁Lo6]Jeo) ɜp)e@?NEݹ{+rTg]cpswIM=ͼG/~1wףGyG-~ݶUQ׍ B 8?}1\ꓰ3+'w Þw1O?YXL HQF$L)Dh PoHI+̈o}`GԖ0 v2Xp>^;#.cvy6EERS"5U}njn m~(uʀHebZIa\vV)|k{2I8‘9dV"t߽͞,hZ/S3]zY΀EVVru1<,wt )'N&ވ~]LXǮ}89 ]Lajut^kY}F_\/6j/!;Z_{q],4u@'eڤlbd򷶥K|8ɴ];C8pU?)`7PFAk k.__ 鶬"gˇg:`4 E4}BA/3+9V&$+6|j^8 (3z~eDݎ@c]ߓU3O c~Ɇߩ@7,oJof5wk[t->x}ynh7=Gٍhb%Wwn7 x_~sq^q8s6zTYWޡ?FGn/hauU+S^:L}?/%Zk([Omw[M%Pۑ3]:1|7gj%#"-kKӾ>Tav@y@K` %6FJ[j fLN)D S fѵX$e!`lxj25x=8 TVі]( q0%/:(ss.f#/~@Ha2@7o"}u~j??[6v hP|$G,10 a-BIKZF=hTj+̺qƈGzaV4fLR6"YU{1=D p.[{  UxK/ lM[bYьxh #Lz 8% [9L*9-wR 7 ףykm1{=}Ƴ"I<' 5;q #Ex|]kZ,5OT*,w2v#$T)e`8ET,RkJI'lOK lpJ[ 7]kU kgCb6|jigDQT+ۇ/@so-]暶fNwO1o6'kԇW"=9!5>`Ψ ~]s+<ك7:@J8W75]qq#ށf=z465K ͉P)wl~m:o|7~K+?|(i+cSH n/U^Ҋcepx1lk~6:Mx=&p8ӢGr#OnL9!o# 6l >`8&P<Y 2z.(i-?UM Pw -XnU;;/gjuڶ-_.{gȊZ2ျ?y`%|,}섩߮Ȝ/ W[]U;X}pqSퟑ1^xfN:gq"_z-kmd_(`%ޟ[1-DS#[lPGcڪ$i1젨 ^T <żsHg.2/Jg% $ ~P~{ڕ-`D5Sڨ"'`4F ӳ*alLv2Ʀu+KK ̵KaB<+ bQ'Qk.՝`@D:m1sQɆ׍XQ[w! |V'C*86Rh9h1I9]ۖe32p~(sXO=i< @g R*O7F32)$LzKnRp?sX.vV3.}aNNݔLwP̲nUm?vb"fpx9+F㔽qތ_Z=S#NJ|t}? 7 ֔H=Hm ᦩԅq'ˊg3r΃`C^ ;Oj,|móOK(yKKs]#ꡙlor4 "&("]0"SVkqJ6v @, 8 8hO /JaR5ѽ2iu1*et$>}<H/t286@|ɉ`iPw ĥ0w>${~x9]|Z#lyywjv^~~S#\ nZ0Uеt[v3O=Goqt[d;EA'h5g8&?{Vj0igF!뉆EareϻwBr^)PGh#iZxюKxj/;`I#FPFi 8!gE)64 2댁̼=X+ D* Ypщ,8V߈o$k ^M3rb"Uw\ihx435Cx:|H8()(* '9TPJ"۬j11%]ՏթBUZ/528m#qJ[;0hDoK2ouvVcӌqfx_*D2=S'EO9O@IBД;+2B 4:?D zl R`e0+t}ݘ <~.SB$4M̀NnQHa|k{;4:B4JҼ(|ڦq?mG^K|ki‰7fmֿkSg,S]FȫIi^1Oo(z9:]tXyP7-iKn;1d[rvޭo-?߫פj5P6}n17VύeqYbøpl\4etYzoNHBoǭ{^yS` c sNY Ə9tLᅙ'^u%:(^kلAA}BLms9d7{gY<~ϖ*/4kM HQ?pfȎ]V` @;'ӚB>m`&r[vMN W Nu*Sم.anL(U_)4(Sς0[E=MV(l*9)O|+oMm0 gnzTĚ?7CeBk۸lՉbnUE/ %bMi,im 3'_=a,83HR|e8Z@;t 9ejly{Z)ǫfW㶪Q'QmP Sٻˣ%xO(!aZŌXu@WS"eGFPG흲o-@ D*ݳnN6kx@ȃ{ Y*ѽ{YUER:Ϛ # \<> $&mVŢZn;Ţ sS`/gis<І A8 - LTbvDg.˩>mEO.Ti?Қ 9lH!W#39DNn0*MO-UvChkʻQZ"'_J)8` DH}a(H}Jyv}xlH-YK`w}ϛ xmƋUod«q3,=ņm]ڶNy x;y]f4UFD0IHMO};#y66_70MLS~W?A_0بGg2=CV2q (g}Cu׾0vMwʹSmL+ڋ朗\S2 <ͺF*aN3J7}p\}}1}A&9벹 C*C|dπofDOǭ*o &eI5 ?I*Jjdv ϤOUsnþg .hh<;2yvtq9&!xRZ5;?:/ Iwr ؐh4cl(+:EH=F$ڑ>G}'8N_7#xx]Ϋkk3)볐b&G$ 1=|H7sv(>_xx*kLS,+C^KF~=Xv;x:U˖4=űTT7^ :x >w7HM:ȺRg >3,ѿqrX]8Xcio5>_ : >^;{$`}e:?NL8úEK dδGʎC^x[9).O&O&ٖwvq. |.~2 釳pX7g{\&h|Ʃh|2X0)61}KλaGxkĿB'[<+zF"κ#ZXvŃIɳ~`lQ)!`0/KR/~B*(-:uE~ O#"w^z#%d@i˘b") s`%~ xrD? 3mA!]RVڢuՊ@:k!Qt;(}wW +ǧ1󤘃F*/U#9/(Л:#OpBH &5 :FWk0KiҐ@gA<T"j^s2'>Fvw0A*€6TK>CE8Ϝwfx[jƖ̵ř2}. )YMWx#8f ^D7}UfЊԿΪe};sAP夨(M?ZNY,T|fG}ou:(QfmRZv'v;kVD{٢9j>n6&΍.袾v+zPGLw.<e`SKM(퀙\  |6:>&T$BoNVv'C?BMOݥW ({ :y\^zcZiˌ"'Yכu5qhk]2ƈy"p 8x|YΛ~$s4N8 qCEշ{N`}-oG?G9P~: RKYƸVTM"ڠW#Le׃Rdj}=AfAJ]w:Ψx]&/Uυٸ&22wj8]{VSeQ =7 wjdkE|9lQ?}Y{Z@n|cDn\[EQ#l-˯~+˟fAQfqdc] r8bt\xaY0'1Ƿp7`]-3Y|w]`$x3/B$L x(vM{318![ETp9Y=:S7ytqEm%\ra`&ADD""% ~W*^ʘQsw*.y>  D v^±t ~&1ܘN#$9N*9D0)phMe7ETO3Ųz9j㧟*;6.+JSD30B"FkLh O0c_y2@+zVۄp"ZFPl')MRՉ{ ]7vA_ ~#x9HfycB;l(י`Ie,R"Lh7m||ֳٰ$xjAkcf*^`Po>+3e~Sw=~ތDМX.!gCl"W!Iq]eA̹ɌPˁSmqLR}w[J!_/TA+m\O6lrFuF|=Dx-Xϊ"qHdM'L!|gbĭ~|F{ǮDM޽בA;f {5"peYuO|甫MN1<9dƻ>> \!E[j k)Lz(~i?k*Wn/_xRϫG2~ڪgTqGl~u~pXywT8 Hn,OW@4\Wjl--#Q_y8S]T׭.r жmEjs8Dq[˜hڹ6 : ;Y#z8pB2M^n|f0ha(Il"ʂv qSr'bd8S z+Oq<6P}|,l2qZ m*L'J^ˮkzsf XȞ}܋ ")rT5bIWcDYnī"+t/bs.!d3!buQ&l*?En)LX jt(ډ<ţ׌`m;%iI$Ev-W{"g)JܲN0Qev0C zl2>bdm CJֳh̦2=;cJOjaC6Y:rfG!ӓHjt'{^Y_J;MZ߭U91|E,*MµԳ(Di`|"6vƑX#%yGD$@sTB3=(4\1<5 2P|^dNQ 3~]*17|=:7E6@ ?2xHqk"b7Du:ǰuo7 良oz/hat$ \Q1fv'U<-"t)':A!b d $b>>[_N9RT.̨?~#/%"+7byv5I/WG֫ ? Z1=o1|y|xei]esVHY+v?r:c*E7!Fe(A'{<цLg9]#.A} #o7?hoq 88ȱcy !ɭqIS@OέUBO+3kǽT_j%+R*1@`)N#"so1E˕b:Je۰igLryyRXB:kw3)"ʞ±pM)%&ehyU~m"JR 2cNZ2^nvSLP?aM2seC^rN]Jk1f Q)<"=+'@46  y=C ^ZIF6?0JtB4$33i4ŏR;A8 !ٜ dG?>mIT}z\ˬ{]i]1`R2iy0GKBW0l43#dxR[( }c+:]d!NPy4Q5gϓ^t.A~ee>K!ؕ]6}ppd8|𦘈AA27`$C:2!>i;pvk|:Uџw/qS\}'DLތeU`j?E8ٴj)v)g$/n=sЁCOS8dϣ ^'8 f脉~YdXA+f5?DߍqY?B6̾sxdyxQNJf (+86 O|2VVU}Ӳ  gF9W#Dqj=YGV^d{p1e,Z:Mќ%k8y4Mow9/kS0X&p)R?kYixNO l{A| ~ >GO ǡ'<ȉ[pmt]F6ĂS5\Yfv}rƉ.27rShX%7Y}K6;|vd h zY`yɄaޓgg9 =[ "_ےxQ<q1OXRex4n vX71{t `et1@dq069kk;e<()^75Z]N FǁɁ:SDY@#x((߳QJ!i8J(# x#j8*rf'EH/jV<|ID=cZ?33NC(G?wh΃,7RNs~w68#U;79 2?ibARvu GQ$' ʯo^]V&|G݃ C|XX\53+SԐU! 50m5b=Z7)Re@IDATm *QqQHzG9q{)W+;0wqg8l^cNtf2^mH30SUsǘ9pn cnEyp#g*7J;b~wLZ\0FNȴwZkRQAtRlP;27kh훢5QuIotyXo`-[^ ~F^n7)^niRC ־G__deu/,xtNЩ>3;@^RɻX dvNy=/ʒYӔLS HeG8c4ӎQ6=b|Y jE>L'tq6ܐh&o8OSEȟ_@g5^&HNָ\h0ΕskQcpI,N\gdq"#3ј-lshjI"LjHccB3HJ*tf!f,d+L-T mv [4F̣q Vᄫ[cAAg}n AXdk]nKP=ي 7*ݟ7/XN}" I .U9 6ep(*%%;0^|a'OyI6v$\2 U) 7 ,W'NN#F kIYG!7N2oz2s$DjѶ( %= >"q\,~0k38k}=T5_po#NhчM(THO_Aa|ux1Nr6^`pki 91kum+32׳E7^&<ș,sZfّFϙ>zXnf9߼~Qm;No*槿kYݘkɣtaId7 ڞt}N eg/NkM)6ЫgQ@ClѨxq!:w@Q|8Nk:l=Y"%'`9ox7{'9ϷLtO<*P:+| tqtemo5X_WmNd#^vcF'1^y12y#*C:dZL+]iõ e#1RDؐEL!9FX wEl;l)D kg{K O0u"DHJb32<#<}'jR-d6ƀ'dYfqBN!q<N!YjE>/5DQ1rbl0gbsNQBLjLmx3KiO #nD'mv' T\ߖw؆ sX .ssW0_D qO^6ͯAa}^hW+`q]B:NJ˳"4GCTO.nG1xQDW;\9@hήqCg<3]*vы2/z`mUgԩåfCLR+ZFG0ll o#/zq7V;32IchC_pPe<$ٍdq&';I#K;J[~i ]U8g5/ &@iY4-=GC.#Lx0436#qtqXDx xk a!~cj'Dht?:֠w+W1>kAy*n,7ͤkˣzJ^@~=GR02$ )8|p0 7̒1|䠥/܎G*hRz㄰LOP (rdh/w@.c71otK0kοgcc6G&6 #X/Sl*b'f=x|niw  `T5)^v dDe6x/aK1R}mD_~I58%:)|q6XQ8 " E,dPAA^J@Wtܒ8=Q (v`ȹqs~QetwpMa¹h(4p"2mY<;q8]>,hPGFsKXO軺x$udO|*LLV?͵/Hi! ȳ,|D>_(鏣b]L]Tt_U5T[hspLΐw,?W-i҃d0ZWa=JZвW?Xj;)E%;?{8O?mD Sԯ]30 k g|ٞ6PɆIε,*ѩR؄aLP@oL[.-n$2h+we%hyT'b%t6t&ZVg#{D˃7_@Gp'[fGf r+n^iS2tFFXreEps6$L]ւE#c#Xo(b)6&y; Z1颫Tz6².”<7@ HQu0%Q1Ѥg3w/h Kc=̰@']<$ d]EVuW#0I%ոEoJ[&8+"UFY_YޜUk,<{vz\>?j*ck~E'[iOZrC;ő;e(ӟ V`YQ1MX$Bv TCa_m)@Έ2Ҝ{F)NJ1xM;h1k$zߢpqBehA?n5u1}00 fu;p(: AÃ4n#!şE-;slQa*'hKT Xd#ڣ냃S3]v95>Vy|U#ʙʔҳ>` {VEha0$n령Ńx|V$g0YQ?U0wWNA y IМpvSM:sc2rC䬇ux&`B+ (r.s]#@uuxf2$ݠ=B==7zB/ME1?1udqB\[YtRDgLW{/s8_Y7ŧ!#3#0v-%ƦSgiz-?BN@$N2gײ$S~@?=?SɘL@t-|jw̙k>{($hh) =}i ad#J7Ѓ;oCpN ^rdy@2:۱9!ͧ\Xa ʣ\IV3p0qa[ d ] .|V`K#S"ōnTdG2 /gpW \S[aЄN8ms~"ӘN*cy-9,\!I@F[hܴW`LʂQ."] PJlp@o(FQ[iY ZOjzvv1yf2}Vm BLZ"eMZ֑b6c#hT|0~x |&l@5k|[=7ǝ{#DBLg~* Zs4b`mE*{Wt(d'B~&(*>v6x㓸 GDdBc̞imw͙-(8\2Ds2^8Zh/ M䏹FWt5_Dpa8)jplkk 67K͢1+>,P3Uu5<Ůo݂ 'O"$eBb6 GSG1zSqYtrq>{tw9./Z+JwuqWvv3\#4(Yzk TDRⲖ$ˎФd Lu| w=c"lcISĨj[\e.@V# T2E+1Ch^?鳋`Leޓ<qZ-;c@%/`d,I7֎neΐ-3E 3 #H vo9 0̏ 9 j"HMthvҢUM߃cphjGkۇΦH}/sa"VaQsxiOWFL_Ȇ؝Q{ M=Fr5hiQ iO~zRO_dwC̋AKFNY2~^ Q݇ Z7N"dx}'#:<{(-+?wCnH7Ì5E tn!Nᜧ0 3ؔO),i e{MBG䬅:Jn 5j!w'lO 0$x4Rwa9$*n-5(TN_MDn2RLOU~#; (b޺T%j`wS"Rb'$p|ouOp+1.Q0f0JD˾!|17ϟ?ʳc#C hcM{\tsZfy[[黮vȮ߼8鍭l_Ev o6hgX6RҎUųjw 06,0Z9PpnЗB9>\ց*L~޼HC%9ĥD&ԲJP@<>HPI9Uj)3Dhr9I LPo(Lel 7F)lsC pJ$Zein`pBket1!)6m]+^UK{"<'|+ l%܌yR\Szvj{ NB`8LKa8cqvઍ X6&URフII0Gi oC{C?jehD"l \xb*hK !{3o-AYra*Ep"* 8I;K1_X2?K]S$pa"<\CVFJ-9)`l)ȄmՄDDϼNEFZcyѕ| aZ >ҕwҭqpI5C2co4=x|3=g$דO!ǗVx1MZ6ɯ k|3nAN ۵Ǿ{c2zjm?,>#lڊ Oq>yPT/zy1 kp39<ѻGG=Zlƽ;o[e|xpˣv[uRՙlq7((w^Y?^>jCjR"ϸ^ 1}Gп%Y*ӳTu.Ed\/3N>wXO 4&Ы>^*qƜ9; 9yrNϏ8>@yԢ,Av)tww>׿*{k:4sgޮN_GHG +`+ލʾL~-aM!g1+5bVnL"$E4"Q_g0\B B4_\=\0n<٥i &x}ƾ c27{Pj((5vuM`ݸi- poh7,t6Ry[y{`1@q~E69lNYXlH9>S ᗢBOi&j+@]iک蘶P=5MH#щIl.1UhSEhʀ"D#K9~IaYҤJ)^ \y$/:h=FQwsM{\c1t=ɞ (ULh ɴN˔/2:@66E(|iND'G$5i'23Z5i'!vQdNMa1V1K38'v'pQ'Y+eb W6ɚUiGㄬ)& .js*l4x2<, 9~PaitEcĞsڵ~a! 55pL=7nhRǰhii]_7 _52#=&B@|?cǗh%c)k%p3G= 8)y& X|8 nSvYm>Dv/DH3B q_߸;ӆMe9o;?_~ X8TW2J{w$3moI+9%fn>q*!lXިO KŽ2dإn!n-{{e*Mr~&;4AJpÔCva;6aOR #bE6]R}5D% "gtn+a| ͛o_[6ߢ7-_ח>LO>x/E klUͮMr) ^uZ\9c|AZ l% K yR)K=JSwR a)ȃ l1)7?/NFw׽%vaݝ*g#3P_0(<& Pv@to-1:mlY⢫Έ8as|OStvg4:-82+|DԢǟFoh3Gj)%.tPZ΍K;EFǾs`Rƾg)ZF|an65Oc#_up_s2-%B%1M{&:5.8jaԜr2|»0GM K -jڡUU+G_,eQԏt!rt-QyƞR8Yi)A?~l4}<]ƛa8k3s:`R_$?1#M6۶zV[PR%L=LdF,e`z[ɀ+hsj N|ZQƇQ΍Vt #uS]_9^.pLkapB<ѫ7ohj@}3X?hj :gZ2Hl3R{n0©0~'@?oc"/3: "xGL 6d8oe_w2诶koC+GG77;oRtyɇ8KcC[;"2'Z5>߻WϮ<5U3dp<Gݔ1gaOE+_pɢX !PTמ|UfMܸ}kٹ2-ѲqDMqZ|ƞ/mdc 5[; ~& ),O?doo?Y&|tpyݷOFy\*,8 ؆F5Q-m:5ݐЇt( _aN-e$t<\>lp3(-+b?T0Z 4XgfyP\, tOuS[?SR;Z[~2\iPSt5/BwBLS!m N` J5^6a؄y[*3ש!$RG4)gS;kS!^Dl؛}U h? Fi_qb81'FƝ[3c~m&Lp+FGwgq =m}>&2=#֋k ~<UU8-d<\A.5/CTTV ޗQql[TwdڶZm*!.%Kv)cgl c0mR6ލf.2Ql9ps,0tFL݆9`XӭhMٷeNrNF0=TgBcL (kM\iYv'籲R&ap >w8 ƀ#A-jKN'3;_pN繇^Z{sȎ 5NV9@VEPXs2WEDHnKVJw)[ض6lK1e!;>µ:]TvF,~:[9A^W_Y1åej햲Xe_,@`Qq$'# [\[+uQ>:># *|pBy@WS*]HY@ߦ;4gf{ MglQ$"jyc j0Q{A6iq6x:7̅"poTygi򴻿RNUךQ5SOq|oc V*^spJ15tt ȳT Fx񰕐={!p@[9 WRvD +eml8rf1&,*eGr(I2Ϩ6vpr#A&oR yEZ8dCs›$Wtɋ^FQ1/fʀdn@U7s 8J|vɋn% k?+"@8ik۲`ЏIpu}4UjiEK4vD8x\dI#e]9%W3b6TR$6gu9fXnw/=z'`ϝqQwx?a,]1܀8Vā>kz x\b=w?1bYxdy-ɈٲB{RE U@>o 0jhڠ0R~Tg[zshy؄F~}3QO2}8G)ᾁ)w䄕;ۙj8i\_o"kG*Zu&&U.ˆ>0ϊj9]W;1zJ76F?܈XGE Oc4O+_яjuD((DS35Q,xCi~igtS+A,(@DZtJp'TV.";%2]cCYFŐ([J8ۄfYdO?k]q zp\>PV<c :踆D{>s +s8qpLIpd0){Ү7+{Ȭ9"[/TAWr ?O\1qMb;E*(Dmiu<G2,nm,~9<_d`zI=m$8b_tԵtvt OY+pLE/sea)Ǧ8_S?[ L31gG__3a}yX{s{{zצ!X[,!N8SWQ fTkQ͉Dz-?GqV{MdAL É6<|}rkt^ܸ>Gㅀtr ;3;O,Ȫ#N䃻d6ze(ޭkG9m?ط6xI|B|G nk{tӟONuEK/Js:;<(Z%dR&(!Q@x-a2|~YaDzV( Q)&EH/^d2("5-28'#XME̅_㠐.Fh*2Y^ROY P篗U*l8u)yg9ѹ ;f CP*Nѵqr.,a9&l:e{zsfC- E[ }AS7+2Y! wmßi,}FJz=ۏ 㽽5GTR09ڍw|p6Y# P3df,g5,RG;1X^պ9q͘.w͊ CZ)'G;ԫ8Hchxm^6Ynj~ϬFzŻa?ϻ3z]?&/ɢkK/6rދKeoNV֭gW>\?KWT eH7wW-m<ɿ, 5/O?o -?qxwh5FN}ZVzw n[ 8ܖ 0쿩C\ɓwFPVq U 5OJxMJu<|] K;޷&I{޺]<$^і p8r {L i[ඵ]*2vz12,d5P a@c_#&qtgac8{(&϶w6ټ}ރe3Qz]$J#4ooEdc w֪Ksan)WMuWo~e/@҃!$([ S2w [}8ήh3q9'gEpy*F_HJ6836W1T8S "%K/)4h]iqRdy]9/F˜辔v| G)Y[AwGG 8] 0Jo#s2GN Lt Ll`2C?,B 3&bֿ[S2[~X=1;vS%1j{YcPB<X(_:5?/eʓx(՘ /_rQ'-bJ̈DZ1q |6eʬuc>+^vhR !<<]}:5#s]IGCGvP L~%62 j <}lf|_X$ƪEƠJO6Ntx^@WX ğGޔ'C᥁*R?v24{m`3s^6wNhg ѱ#1ͧ`E@T/@dLA02|"c-o(q,O7~[?nӯH1SÙz;VwOlAOGtَ|;>|;gSw8Y)*΢i4/p\m˳˶n7'u/Qgmp6g{cLIw}~Ϳuz]'__lxȖu]F.͓T8YQ6W c& r;!zBb*pkNjQqxEZfdD217 p]Rr>k64/ET fWyA "Nc@kf vY$%; w$WnDDJ~! G팃QThgHZ۲O,n]föWF] 9g`\hjb{@IDAT'meZ&11`@R&˾`L] j4 @t7;A$P(Qu.oqhsM R}8(1q0+sV}.J̎y)\(ڣW5qQ` \31Z1)5JU` d}KrK^{Z瀄K4z ƭgj#h9ܽQLdDmݶ3:g$ݖan{'uٙG݉o5ssF4m R.l=p2 -~,8ؒ+gÊ橢xphP8_-MꄬKY.?njarUwk$_?õU'AyuK&G&NUk?#¸pA7%P^ѵ9lqT1o5s;zI&&}nԋ㋷>LO7u&'2cPK{F{aTZFps!ӿ<}YΰJ7eeҲI(w ݦB?v͇}AេDA.sۭv_=O95ͲUV.1`ӓOۮ>x9飬:K e?<] m$Yx҇GnU'q8u{no6ÔоX%|ZP~,^$GO^U+T?񑯘qqPRN8/x*XF4dɦh-ҊI[ L"QC"Vk"L̀Q+Ō>hxb-b4ILhdm}eWm!V=bXSyX" Bwvs I#>6!=Ky\a )|K(2" 'ȸS;QRq7_h/ĭ C[w(%řplc̪"Ig)9H+`@ ׮b=OHߟ0?VCy<ZzLS(mΩ) |x8ԟddvv sdPFa='VROw{^!*{κT-m;w[sfӫ2~_p6^{sȯY6ht͏YzVƀǖ秷z xP-WNQhNcUS"sdEߣYNuuFw[z>ɳz9)evXnw7~%vC:_K!m댳N!L3:;m^9Rwz'(,bqyp7P?z8f)fsd2Ͻ6ivU)aqR$][7FN3 `Ђڳ-Uyas#-M{lnY>Ɋ )1Gta9&qsRTQ)+ߴ#C$ӠމgKPo1.D{+Cj$>)`@ǥ$n@ps.|_30"y,y)-\X/(Dv˝ؠD)AUݮ[C~MTӳJn/"5?栐7Uy;\6.+W@WMm$1\rm2vhÐ>ްO ͙e3)}o͹D7-Ɗ 9Nv;hW2αd0\3ÃHrOu%^9]6ڮ$|}]qf 獑#t:jτԦ/KϙI]*9ry~oN??9NL]G56Rd7)tU`5 ѲAFq=w>Bu[rwmςePkJw~?{MwKn/skv/GpڪC‹mvWsZzgcOua=o lu^N,,P@yӪ?|v άg`)Zg>y >8}k46xG@;P SOE^iy5CǚJ@8UtF>>^  }Ǣ jY|v+G`UJ6 6Jn~ >;G^F EV vQt>NэhaWlzƸdLkؖ՚qtF"?},rsP.u\78<\*Co{炗hBoogƾ?a98uHDǘ#. 9)*cM߻_`3Y\i~oJJǧ?ދfHE$otjfbj@g83x,][ע_vW#'[y~+?xzvt]ί}?>V[,;x;xY lW_|~zǧOӲ?>}Nh~ӥ5ݠvyRowrF[yw.wz;Eh@n8/;T齶C?k-`er:egM x7FWzܒhn˩ˊ9ǽ(z:CAz53InGG˚PXGa232>0C=kϺS ]sjQbVmeܷjshIq;W3p0[TH~xG"%'ڱҾmsM!WɅks04umA6lamc'#g6z-ZnXgm>-!mnR4Fp˾23*oSNڍVr[1ݳ~(4՝X|z&kE(%F*>!HyG(5F~F8b@ulS} yK 1F^!]܁NwLt4!#@9S Q_Gy]2Lw(EPk5' +|CX &4ceƳ5w GHH~O;!J^xjMq7oUB̯jbH9ϒ: Ni Ց&A[+#H03Hh>8e,vBg̓-+9{ ApX2ƏVwSu5/=Х~8.Kv]{]}M /7ȁH_!{`;H7Y֧Txz O ˊ!x>l@8%Zn<E'I1FVx-noί%~W㣧4D_3]V@2TJܬ/-`;"`zj>o?m+\m/N{?hZeo~{v|`{tw2>?/~p?u?A:"==x7p /AVA­r3)|ǧo+MKUw%gr!;ѓ+SyjNÃ6=NvW_~6y뭷WtVzF҄cN.oTӗƈ~.pUR #FZo94FIR"FG-" #( f-гE]L!$2D84W[?R=2KbRx{Bchbsҹ!B9ĐƬ '5uweN҆'[[/`~fٶzIEz6!,gș?)B8r2%qCFPD.j81"-FٺVє(5,ޑ!Eaį[M6'b9ms+06wۣ͐W}2F pCttȵ`d9g;ǕzUE'g$^Gzߡwi Oa?\z/=3>%zU_?}ġ3d՞Cfw1v~ѭp@i~KA E{.0NC[᳟>(a1LR[ikKUs&p4gr#]u%L(;x}/'}Oqjn?;v(ϿJo:qO[䰝eSM%9=~z-{pѧ??=Y'?=}?8ʖn[ڞ,di>! wOGIf g}S﷤AWa5g?2oU _YUX-H +VgL%p#_sOEs<:RAn.gE4BaE K̤ o~&!=MB A nΣQ4k2bTYό5tcw]޵eD"Us@4w>5븻d*~(<#3R0ĉ`@?!_@5[P 3,:q\%/88P? .']Z#!,]L{s޶xXCȠ0#t7? ^Ny4y˛S eQ1ǻq@g1#mGȞzEx)).;g6odL ыe ãNT!vX !6\QMp WA:i)rOOIH3jl^_.oeJց>X*:*Teƭd f!#C0 qdиkwHFI^aeKuN!SbLx*\Ny>G8bjvެg0 ]11O?yx%!اɰL^r.Ë>?{캟7CϿirt{a+t'逞ӧ`7r] Zok^C[fo'TS|vc_|FSFq?Nksy >qz톭Kۃjkt~AqՁeѺ.멪uw{z8}vqf>xݿ;[xO?GG_$wۗtS{ 8`wWǟzpӻ鴶Ipb;L,Éd^5tpӕ|}(Y\ )po\Xy. jd= k77lc6IP`PR:p3K?@_7ǐ ml袮@Aoz!ᱜJڒ4MQdu?Ͱ MAEy0_  E22Ho+N(NJdjzQ3"8 wsp5ih8-FEo%W"6HɟOX:΋ #K% L[ܱ U@1iu՞"C`$l) 馧M!v/N2wH"5p)cԨ'5)Ee0Ezwi ZO~ak[#O<9L HQ4uTehxSpågyzV`tugGԱe88m- 8.VY<96?0g{K~1D_iP'x+՟eUkM.«O)t8kL[  E _ކu8 瀔mpunu:ovHcp)Y$܋V{"W42p1q '\xOJzNK0sfM志}cY}i~ m:Ѿ2M)+d<*mel-/^E_PHt=׳="|lSˉoW] cUz[ h?[ݫ<tp̹qZh>Hßq1^țϜ8NsیFGqe+`Z*Z" [8"nBqcfBfm2:x 0(b/ tZ AoY@Hxk"歷uUQ<=E Yn9[}ԉ酸-?#n*"EAS×5)2 R3p1/*ʻ)P䌝 ([nD>}N ȝx􄚇8AEchf΁[d')ˮ997@a.m`'Pb)~P)ėZ6W.\c[[OWMU[oi?dr?Z2ię3~#_'| - gNi#iFͻ"o|s⌤20uDyJr-;q9v"=huyKe<޻В[At ϗ Z' |tdWOV}!enP6[zu~:}η?_~R>}YõON_6)y/'zmMMA\p a14@Cw`*B#>L  C6{(1m 0pjӉq#!s@jܥp4"biR -SbBP=Mͺ͓ e]m3u+*%$RܢY`YZ>SLɐ^gȂIXs!tkc{1iyK(ն9LweUL(+B(q<*5ǗG)E{壘[QkYI[_GQq $@EuBw.jIasʦt‡,Qt>=^CiFͼv8!B~SM- ϖ^Z`Jvֆ.JF7FaQpezF!!zx h5|৷V1M_ElC|xٵ㠦UG-9$[^h0/z$s9|:Ϣ'Cy6IV~ONdCn}zyʰ?N>ÚKZ^cs_EO Nmr~K.m<2! = _ NY\ꥻY0OYPLb|J;gW/ ߖҎ\+kIf(ѣe iD^DOk?bUC^VkgaZ0@Gv-P*qc8.xm>>*u-~kx tm?K,kx.315я}*@ NuYΎAWa{;Q%a jS&ELz8[Rj&@ЛK١V2Rmvj'7g-hN&}Xg (=dԉhENDύo,)XJrf[fςZ oOYXA~݋/g)(w8s8__)D?{Bj<+ҊkP TCFdtxi9uA/6"pkJdt0`6vbkk=8ekv/eK堰Qz;=)Nol_ ~{B]S^2=-;^m;}w{{|{,+!ŦL(9.(f Rjpگ:,}SR-ZIa깆@ JDg{&$ y=GW:<6/T U;9Nj4^I5RL1"=Q/KPVG8<E*mizC*@Kۃyx;/: +cJk)Ĺ'jϢ"޹ݼm>wN]ld\ Ɨo0΄ʃF0^ GZ_cb>AE_GH#m~Kޭ;x}H3dWȴB> 1~?ꡠC}otOtDqc/E~ FQhEP# )p!bwf6#NcRz)غy=VK#J)NfЛr -|0UædY*w?c"[-x⮚?b#3[c89I1u,xW"3Mnю>@)GC1ceD"A=0(JB#[L=5Ũ S~k,X@x. ݗyL}Ya ` :Ed){ZAR3zEfcn: j8A%(:RGc,o8*;Oo/9I5>P% H(:OTwA-#77>Y di X)dr:mXFSe`sx'~ RTqt\88 /F'0HݦlJe- BS VF||)[!dJ%mohY>)z3w^=qϮ>.}ueN7N$dW~_QC.ΟY_u~+Э6>ȸ{鳟U Pako2ec%QI]aنC}qaccJY.0l@JanSӅAbh[JB1PL̗*HV8 x<0d b@Fxho1B{+ ɇ~|ק5ш da;Oȩh{.04E̥EDKD0| v1XwGVS6(ÓbmqIoszu%ȱAV9!mփvYrTujC z&ü`UI=,_D/u`N-PD M:0`}NXʭm$cv d,d`/Isp=ZraN&5? 32BP9 e Jf@>WsFOj'=OrY F9)8/5(5ULXwgeP3x<L0+9;'@o] $j~Fn=g8^ %B H7K2j *>X\f@xBPÍwZrڗE T'`S̔=: آse hhfSU9| re^pibirly]M&H28^sKr` fK> 12~!g]ENS3Ӛ9(:LDslkX 0p8J4D{s>֬/$[Th8)Z@L{05=UPtF p!k񑈿Ǎ xC+v,4޹LȲ L7J^o7WIFL$AͩɎ:A>/ޱ*‘yeгer/ڧY)ƭK bd[QsS ev&|ٗ{[ttν۶O~mT FF'T] sU&<<.Ə-o #Cj? XTP<ϑzfUO$^Vg^2X~ɫ%%}YV܋ݣ&YU>[S 9Rm7?oJxy)(5 %9Adcf I["g'<3bMg?aBJ`"ߊQWr3/ 3XY۴N}ՈӴoUksC̛^Ympv@ WD'M7\xFϣgMsk"zev-8UdQUg6E2+mB>Ԙ\QJyvϾ{U6C )Zbbښm|QhqxJ Ny DeSS4B47=)Q2ݟrwGP6P±=ïu6;xP51\ 7VITNPmhُ1.`cѿQ}x67>޽ pl/qdD2 l4߯L jөD;%\W#9@x8h/ M'4cdB|S;~Pǁܽ״D5^ʿ[vʐ.8m\n[ȰE5Jr2Ѣ7j42FxB^[.e뷖߮wVF{pfs;Gd56]@ϥ].:xZn#*aUεitdzW/EǕ N-Oќ c:$َ7M\՗Վ=jK_׾=H.+VU=~?={WtTq5Pʊ p%|_vuG%! &o1ۨeժf 8mو TN;Ԕ{)&^^=ys΢XSWlh`8[aX&"gȋIL;Ŏd dv{|챵U^خH ,]]C3T Qb#E}ޅ罟] p4f/PG2&y1Ν!?Tq~NJ5&^U[k0ٷA!tu5\R㋎x ӭ'j(`p, 2qj3;Ⓩ[Ed@jԕ (ME"hhޔ_Qxԅ$ b/dSb@d)+y6.a1؆% +u@Fr31g<0YmxsDb=N3bn;`e̍Zm_)&|Yo`V@WaeP@zhFL1.?$-Mr*1"Tea#>!Þ[UV%q=65Ǧóˤ)ۊ??c=38rbAJsUтST0E›}e'^Jĵs@ݫ6%=: /!1Et; ƥzJull(: ?2%X!\nS1/y=_$ZsΞKN[?jؔɘԟh?E\V`ثw`JT1E득*E zJS(ܙl? S\*ϐ5$o:A!&7\ 2ZRdZ@4p~}#z4cֆ0)%8?gH!gCF96zsS gjSM)$ksJWQ e.AJM9E;8'N4AA2"0-E~ǻ)fs ZFv4g;[F;:Xj3w6^{,K'R/ ?;AUJ}tabj8S|@ĿO 8d4<\;px o ':@lLfûܻ[I.e W=cg&CaN )5] RXsշ͉kف<A4[{ߪNnVGs/@ :i놬(te/y]eS^-Lܗ9>@@IDATkrr~yU6"c_>+4G9+s$/n]==L<)u-yOZ7lJٮ}L1 XC:Oa(>dE5>F3ײRRg ?Fhמn.\*{bЛqƎ|פYP7H"b/o~]BcloYhq'9t4[z@>Q4`΂Ǵ96OrL;6˨`VwМ-xaPcF> |Q?uE]1YcL_Hh@r/Gt"JbRrчKNd-9ˁpG6A8)6g${=/ ax;xӵJSSQOqƶ|"/N 8s&p s\;1g`Ѹݚgv0,tV:"; O 7=fF輨w]M'N'$p@x}cK#zF5+gzFF?Ϧ{Y+ ?`&5&%n29`s~^pH&. |g{0$E/lɒM@%(#Ǣ -W;~vу$>Krw$pJ q ܃Lյh_xhl\Cp8$b/U)%~l.)OсhnGQFYi"lmRj~';Ez[ڵc3:| K6~b`&2ekjxJH"Dľ Ǐ²tFzetp|lq Q69Xdqԗ3~Lobư颰D9vNC.RjSp˷DϨpB1y#Dz3\$Xd -]iH ТEc@>K"[)MsE#~81/<{'W"@8.UK,'Eé |:/AwQRMHZ] 9Sl8p&E˹Cxl[L!)nu2d 7 NGdNLYUXc4KEyx(- [<\ •K⋮>hglB٭3{tba,EmUBE=V4[J=Mo k:^4k&BH 'A+m9u`[oi>Ds xu0_-J'/s؂yտ]I%[44n,ݑ6͡kKRba2ikP4|SLx/zdϋ 9 C4)I\ϋf-ǗSXFds<$a)3EJ,Dudd[/F=3/Oirj]0ӓL9({SFK`2Z-Y3pMjS(Ë,줄Q߯U_|qp1"#3OZ +:-qF#j7:AjD!\s72lO7hi4Sg+)@C/eabNK?yL%xdeRK]]2Ywm : 2M;\.ښ!Ly#2xjo\im-نrђ<˼"Rtl-CL7Z|^8ʡHXӥ; Ӧ~WNЎεxeݸo4nJ)}&ou,Hj$D /C z}JLWnDޱf|zVØ4{0Эg0AD~)M$u쾹$ m+1E.|34gi(K:!fh}ԛpP)*HIo.dAAHņqr,ux8|E׏*-cp`RbxVN!ohx@ݱ.8jc|,!Wg<,m ܽp/ e#8lqUMS "_ů/'c %PvЊQt Ofl>!Kϕ(w,) -\E|$9`R*{s$zSZ7V_H;Me4ZO_sBȲ sb{'BYFƶozg23 t6FfYfW1:[qe\qt+<%@67 Ox Y^ 쌑ap3Ƿy<̣k ~t{-˞ïj䛣҃ 292spC0qO` M gYO?;o~/~qoҝכ7>n2YP{8&ZT[=ک/㿌aّ+eݜꎚ _P)Hz1!LȄxHR;%brkQ͙Vz5K*-"4Z&ђ&i< UnԬ4sUߋ H'Nm6IҀ%s30e1R?ݵD"e:PZi;!>Q"w* \l+>d*<$f0cy=kw 9#~+B*kkJ BݎNIpw^_Կ4RHpjq&v"'& <xhF s2 v_Q\o^~uޑ^ȑYyRiL%iYF6~Xe7˜4唿76gj q":rE ^M!26PqGm5A gH2>8ϟ7|Vf4.̐%2wKM?8h䫌}_4%ay$2!yS ےF nX;aaBx$͙vm+?F j3Yna{8ѰΑXqxNM[΢E)pgLhL{,tJVzsTaӴ * x3eF} 8Vi7E/ 4(q !T=7. pm|)c8|t=9DQa8"jY*92 qz j}6Pn&pb?:Eq2yxI˲F~84YftK\i^_!n T `_+bM ^;qWlO[}n0辬ӛ3dj$9(7vN&c(јO?b ֦0MOOP7t$ֵ;'læ% 㹦9EɈ TQrrBpLGK(e1{SKyr6*Ne$ki%8WK];?<˺%CRWx ~bJ3KمhQO*hUi- Nq֙S) c YKq</!.Fd`[ci:"~'sWp}ѡGJͩҘ@ sePzL>UeSM>{Nw^h ?5C9F2EB NXQ(*k%:{رit3ae)8d)> Vz/QfLqE)$pQ. M[D9Z90ڣ JTzf@oa#|uS6) r\r .RZ" b噾Z4=+rQFK֗eQn=n~9\Rh3=0pyt E^ ogG#^FSLq_/(ɩ,etc[^R$f$7fTz~d|ȱn–WZw&YNQREvYo1j4*Nul3q6h ,(L&@}5[Et͍ Mz+"iC]{ǿ,(B|?П:X 0>FT\T#BKW{}YNd;zZ?1=3UsFQRm i}^66Ȳ4ý)Z0g 1O@C}cEz]m.c\ 8k팯sʠM=FB}0w>h%*#"yA N)^{tiЮh<EWZeN!EF`?etþ~-.K؛)o֯Y͡8g?lN2OO.ookz ܦ )z/[-a4Hb<^╌ڕ 3o ߬g7 iMED7v~C01NDߞ eb!ljn 3Ǿb^`ǘTNO/Q#W_s$/c kg-Qt`dKjۼRRV ȩڀ"SG,G6|.]=|̀^HũIrkAaў?oyW S7^ǖy'„;Hb(|Ó|dT }9;8iz8>1eI)1ƓZN9L?9V7Zmpy{EØmqQUHuLOpntQpRE)yc>{:Z7l|i1c|4SƩQ}-80)N#`5㊋@ e%V0s <3&#ѧ-VPCOLFf)uWL =O΋dtHy0(D m|1s d|hӴDՙ^05r:lq&ǭH(R {c(P/ea`-rje|nGoVtKar>hɡ6e^/R33Sz! = џ"Hq d{EW᧯3Q6ߠa(K/?FGPF 30h] {XpajI 23#_eu䞞<&=z-@A}>ƶiD Xb.4% "{n d0i磒˳ӯƷ wjG^7}3U?2*k &>awBR-GY2z:6v'|zw~e_k|]91MwiT&y;KY N! M'8ͩnNMNpC"tT ?sEA! GKyR|qW1 F[ZEUm^4zSw;ϪdLhB֝31Qjs'ec>P| R%C wc˚# J%y,DkkFlmȔ\pe=()08&;>Hp(1ͩy!%5뮵cN̗|'[2ⶸF1uP1*[fnxrzԖa;,E<8+f\G8oP3KQcXRTႈ{bR& qxǮ-΀idZ3{uo[YLA%F!\ÃSг E cΗ]2Ə_)6}ޤ{&&jܟx Y9dOEs6eVET*e8(3z=돒7k[D&Bd8IG(* \s5_pKG 닣^"E/twrAoћ`$rMߞ !S.hug?fa߮!DR%plY@CF.v\E"U $l9X!)2E-D93ު<[T{o- Z6Zwr8X3d'ЛJ+O'=;Ж g|_ Sg.ESbGZ]ә5+cE]KcPk{L^١nzC'lT}Շq{ш\q,&oS4ZA".\|]_qVz!Q=?1IOr⓵Kv9ִ~dNm菪c"CWV{y8c:Z2 _!Hԏ6=mFiys` =.fAS,җIh80@ƛI^8Jޘ|?E(y*O!`62c!U+Z8Wy{cHQJS om 7N+lΨB^„dv֞S`W;Ò숢Gi5/G¹`s(?g ,ejӎQR Yv g L&2<>V)V aⰱ-"LNJy?ɿd&bϓa^3PClVxkckl"8C34 ۵P[a}&zvG@&kE@E[= GonX-ro|/_kY|䙾k yr{n͞sEAzѩM`m~]]JIᵾ7ϐY/9ŝd@ٍ@|Pܮ?C@E3P'-|z/xp5-H*N"6x,or*X?1|-FW*2Aj׼Fv|/ 4nǧO>zЮedS2f@CE8E{p|K==~'ƫ7xv[^YnCΆw_;jv$ֽj!h5;A~ɦ:N%\\?R} ٤O-*.cB3I GL蠒dkug ip7"MkcfP3:˨(ABH:,sa51O݁=?Q2st 1CvR+-!0}?|ՅHq,;t[KLA #dv닗{Ѻq*H\~ G`%)㹖1| ޞ !o}*d9' .iЅߍoNd`+ݸ.V5A>Y@jt0EF^ƞ/El>F YbrqL2EݐqV~MȈl2x"Cb3z|GٙKG8=nSs`9TXvQA#/(+WhmexNŧ7O&-c#l+(f@'{6Ej~Yd_a|>4.G]88(߁Ao/lGogvn[-zB7nm~^@p 8wxee?-6(J(D <д(Ȃ =F愍󿇤r&y"-_ ! aA=1``PHe*&`?"YSn.GNn͇Mlt|rUl'%^jeaF^-&!{FX6trQm t|}og>sL' XFTq)R1ӈ2@-Y m cN$P;QZPxڥ9)q] nygZN f6R77fϢ#B'ZHV4 Gԉ{Pj7)F*]UkdžHSh,)ΌĵBZtG1eVD_ʦ!0 vk7EsU,nK/"jjkS= Ѥn"5Y)xv'(jUςi@(YeՈr fҪg9v(asx]tVȞ(@`Wt̥=?S{㍦afM_1kM{@aC_wgd/Gz֘k1S_䶈r{E`q}:? jcеG!c" olN o2b0@7ViPlpkwڪ7g&3n:sjLwzO%;Av[&g]7³Sn۴ 8Ϻ/;ӡ/ ڈ]1cum'LV,Ó7;>p+g}[ w/o|s¯hz쯍Z9ݛۻl5Eµ`Za)h U>_}wp*%; nGϜ1-؝=U3=g>つ2Qyᗗ+RkDQXu(.sFt1|*'=9HvQ)~)P=8ݩu V;:CT*+Hoͧqݪ1p"u`99qyVt͒80FJJ@Ыm{0̂Bƻg#! K@NkޟZYK u1'2+m,Hݩ𪀊"R,/J%9@88G)ԳA̽gJ+|6-YJn?oTAQ={m!jq&™wkr ksE.'S2v;r3֗:E+ q};.LM9Ƨ?nr~8)H0#*#ԳV*0 gHG'jn1^}87>c|vkRr*i،+vu>sӧb]]iNoﮚ_wn:^| 1K-D_r}7h*@wNF яӯW <-m>Ўa=أouq#XQx3z[E':ݒ腦=pPߵ9ڟk3Τy4rDbϪɎ״Y ւ:nѩꜣ[ /Ð- ](v6y{#2|7\o_mk_ƶinvkwZm9-|u' DL:f^b3r9\8nQey{Q^+s DD+ 8bkXr6-=b/xm;r>(ґPD60Js\l [[@} h6-J銚n(j ruQQUOvZc.^<l f`yV#@7H 5QOBmt]ѯoES0ix!MhɊhYB6FJ[dY.AL fpIe9gz6c#0kA$dc3` BX 2Ju#CɈclkG/JGM]JB|"vo `q\tyA/{1׆qNF#X9LQژkӮ_d#/pH<@A^$O?wk+l{έV+gPbhڰ'jvjx&CKl5EYjhio9 sT NMMY-i5UVvK2t7O:[&ir?0g-?hG g|rrxx_b8{=>}~n?y~7=V3r;z[?2Mp}Xl:>`7MJr Su3 gـ&E\Μ-U6 ьfż<خyQKqa{g| 0m 51^wE7I}+9M l&BLdZT%ϋB&;Ԁ㨪N 85T' k|iGLGlx,RG!{7G17AE,w$tY۲4l3T*}g صZP# r> ywF Bݳ'}|/rC+0Dg9J`HыDHߏcVIi (E2qypG9*R I@7Iy{O;A 㼌QS= w(Yߔ2.9d^TFie^eEݧGWO-#3Ϗ4)/wTYrNp/|O߄p7N1&sxOEए%ZeH(|pJ+ZӖ:zfX0RuܐOcTaGz ai| lx' 7ժLaߴI8)wּ4ƮwP?dLϣ;|w~U=M>fWqŃ][`h{{Mf½hcdLa_?|9}fut"n$Y$2 66is[s,V&3$5~{8ptDo4#S;,^ps׶O|,h?ΆڨjE_⼹ErM 7X|ۓEJ}CՏU^3}0?{ mhn5qSDKn~/~sjR(ИL wmo|.qQrc%ZRnǨtgnL㏅'d0(j6P>|H$CHB+ Spvm~RqTIM1Q(/G?V82=IIs>ڞ`(暨pHY?-xx-ybyE0>IО=TŀYR٦7tc9:N: 8Q&㦸d^fpF~'4"#84_B}\s6~9,xP jRS w+~E#xhp,BvDL[ŢT .'2McsLpc(ZFiXI3OKl^Q#`IQd~`QR:"tsk~K}D 3B11Kv }{7B_^.RηWw HRl0WqR1ʫHC02YS;>9iX|IxdBN0^2ʻouHQʮv0Q: WCޑfoe[Ϟa/oFκ@{ဎKC'{N PQP(R*Yy]A}0Hﷶjx]Tp,x #CpBL@mi[ |ao|&gn۳Deo}?֍g&0}uuz^@?^c"\Ih/= d}~l+Sv$izɆaon%C%ѓ:=>7er0P Q=0t59}Za==sr4#~.۲2n6":X:'-LG^` zdЊ^-~NS5K_m>.#upueYn>/n_߾}ޮZ IkA-;Ͷ<>$'t$}_WXRdcΙ!!u'dYd=3 5aoJi- B#3m8G(U܏T1x.|(fٞ RZ6:gA!T 7DG} Z0~2 3{V0yܾ{}+xfӦL9("}aJKRH=ϝAĔ ڵ6NV ^ pڿts#B`}1TOVpLh0ZWNsbUbe!|' YMi+Ϫa nAioڻzM^{N6Inu&u e!,<ʴpeJl{3G\,[R `0@Y<^G'y8@*s Xb.07q(iIu|U&sx}S9 t ƙ)So NKQ.=)Xa xGxv1m[P}z/rFZ_ɦ6cٰX:ɨgϤǠ7:.ڜ #sճ><1?xkJ[7]Cw]7*>l޼c6ĺ.y8zrqpwt]v_x0j@IDATc;bN~ZM8ow>pɆk=GwH_51pߵL0`22&q(֑{h]/ [PMDa,D_iGQ 8R}R,={mKJk%IᒯxV cfF悃@]tyU(2.f2 ̽cnŴ؍e*GG0,=;bz`47y 3X i# O1"` H c>D`{xn5/ޣ)<(Qo;64= ~F3bN_rp=Y~{ irܽ(מBDrmoi6z/fݎZ٩.l.2T[OE=hhY` `WC?~,7 :VG?QO }iYO4 z~S{ٴbɝ X{@:;K_NQ'zjd '̍Dx-}?oT(Up¿7 WZUR9 6xV4 :x'|E+S,LGNpѰZŸ|۔z?|}9Ȇ~+l3]+3ѶWW-GL~FrT'|n'GGq={ՠYp1ɢ? >,zv`P3%b6@|Ŭ)I8DQpU01h{M5MxRaR0)fڹ*j6˰L;0a'~):SgΠޏw-RK  qiVHYSg "h#0EﲴqD&s"Wydmlbf (BF6E8QYk&*a h>8֡5)m[rh|D_ԂEc'>hNu#d~g7#N| >H"dA#.|#;HĴU8F-h%XE:NPT!XƯ,PcCRSNʈwTrނF],p,''h^c/Pc`(# MmaBY͔dDGH^%h{b㘭KdKn{8Ƌf䐢F E4Z pջ4"D)̕,\R41DnVc41=g*Q{ٜ=(iœ3YT4yhF{FߐE*J,@OF/ HRdbwfja .8s*4#}"grwDo3L5Q/ABDq5'4im=ּw]mL !r4z:.{`~Az[87YǾkr4 9qV' ֫R.iS6v^w2{w'h>?xnw:o}F;w:ӮsP)K-J 0t \@Ϛekg4$ }Uys#7Rrhox`Nj;O׺AzhfxKѢk g>Ac8&l#ԟ näddmsdkrefoCҮk4@s_\+ xP[pFJהï `0L\t ~Yьdd>q{FĔ <ٸ擀h|]07=kp]ġg'9x9}vI}l"Ȋ#TdmXv|=o -O䘽W:eHPg .;9Bˁ3OtqLIou͝;E|`x*qp*5+8̯~/m%wtGiinAIKѵNaNW{ Ey.ew,{<2㏪WxR6|އ68HN7()i1n\^Rl?#~hhGBQHWi{->q>l'T~Go/ɎFhupp\WA~f $>\zS\{>ra C@;- Ϥܤ1('ðQp힗zf&ƃIgx`{ǚfSz!b)$a ,sMiMZfeΑ0c:Q Hs 8 j0\{T#DJij`?k "]xw8c23bzAp@vT7WΘgg(A,2X֚y!A9`s購Ѵ ϞH3l2*iNa2Gy 贉~C¤OP4m>f8q>ǽgdg"G}#/pG 13 #"Rgh@A[ Ç1-ՑÞHTßT!Ml)Fκ4@?&5lPӣ­5R@q{bD5ڦ)c1"%a"DS~s0>y--%dD㔦?rFpRkV^كbkO21`x7ټ`h#xP;ketE04Dš-2D=uxLЀ?&&8(wߍў[;r1xח:w2wQ[x,4C V^M VmukoG2;G|gIm_m'7xwgp_GۋGGU 2joY&#hq8EVQ LnzSGTâ5cy#l0k^c/OG6W-ReQbqy"Vafhu yS['R\4{37W/#(EIPfy$O-܌ܢcl`u )@%NqG#R"ùԖnXpܒX׮gB*zzZ:8eLl qR6ν;*G)< cgz8DhSTsyR=V*mݟcq7 TƃO'Ѱ^&B 1f}6h%aihQڠxgy`EnS3ÁR-Z$lGiL'g9>Vړ2~o(軷 s3z | q> Oج o?'^?vgh0-t0 Jg/md@wL6H"O,TtO/7^1Υ/xbp e lx.Di>X`2ޭF 'BW#3n+@[d~µw.OU?.\\T#S68Wkoowu?_}_ؾ{ѽ Got|Q힗?}?*='nO:dIͮGwNm<ZyxK/Zr^L]=ð]`UmD&1IX٢ێ矍߫wxq-5Yw?`;Wħۋ"ڛ(sk gx$8WeZWG8 1GRR= 0-C/b27x >s3mYs++2[ vew/׈77Ӟ8ǠhI+,vy^~;y"OO_ir[6>פmS s7\9?$ѯj)l2(W͋F]r&wrxrb2Rf"Se lˡx^9H9-Rd( &Jّ"3TH`ǡheL91d4'ޕRُT pdyQP9ObR6ydj oό#<f;h/#&s<ñ| x(z\x=][E62DqCp۫} qEiqtGx|@Q6S 'pyGznv ~;FN=`gb9>5:*YFM yrkc gL8=Q#q5LҥaDIcY@DZ:kqd{8zf,hpD!ç×}L'Hvɛ!z`m "70w}VFo<ҭHgn:vnzq3,>(Y8~qqW^23uԉLKiO,5„F)Q1t6yWxGVo,ⵉx*JD"Og1B\jxFbkmحє@"D6 XXZ n[=nwhjI׋)zʨQkE&e\q %/f> 0@i]Džy#̫΍hid2vR aPjB?|8LEEZg{cTdc8,,C1Q6XC;k+~C3x!ZS<"YWq4fL9h7L0NGy3Ѵ (|`D9a%AF5L}Fc_ơ??SAa8؇y%(eZ~ӽ[ 8]2A;(- 4lz~[4kw\'7k?ˢ&F0W)rmuyhщcC\sNFpjj?Jm>D5;,Chb Ie%jJ1k\e(_0{ E@%cM`fK0oil##ø5\t X9`P9wrr0dlsҴgA|D˄هW]?GVR=)oo7_&&'O}vNncP9OR틟~﷾𭜼ۭ;O됞 .[݄ L9<0y >M=n?~0 ZP޾BtÍa~~ϗ v_)t\e+^nzJ㫺%/` g/D⢥=UE/)fxΒ0y%ʌPE@3sx agRDҤPxVϪsD͵Z7A}u"tى)4q3RՐN; 贐gv{`ƥГ Qo >U?z4cu/B2 0ߐAHs ,G3Whds&aA^7G'30'v`łPwEVXHy#: GTv9&3IKvo5(Ik!PPqh8yyنhjemQszo )ǫa'bt]XՐpը8']4P4 L S<XƉp Am^)ޛH>E+C> hp{cAuJ~6j0U^ %BVØ`c[mx_Z(@Oe3_40S}T5ynқǧ@Xzt2+2G5p4xmfZ 8PDQTwp=Yq-xF;Q~СQW3 Z2r”FI4RO%c g,K4e <:fNO4\  ؇1GbI\#hOnoLVv'קyۦ7sRTzl\.['0mpOnkkcLgpnG/hzTpUFnVFveيooo m~y;OK'߾'уmNبM]>*9,wܧ]Nѵ`䰌ny2ȣHaι5?_@+Ϋ78uk;w_ߞ~pD_~+oo?o}a{QN 9M4t όzP-C;BD9{X&@@`d"׻d@ۜ:s3=(J~&R*^"cl/'EsH/57=_5z1% -73;ʙ`}r)q*[1&ʇc(-83zyW{eIh40c`cY0r 8Q cS;e>av);2sҍBS?O8k[=pڜYw/NIFWB6S'1f/jR&i|]4؀RCƮv(^_J&%ڧ";5Gtԡ$FXkȱGK1*m:|>kS4yun(_)u&xc˗(F.wԻ?N0Sߥ9BS&'6Vc0_׃11^ =08Ҧh{7xysg 8Ruk QSA9)(Hr0X_b_w³9-ղ\oo-Gvck1ze jJzY:p6` M^t# { 24ƅpGcNV`tX8 y|f3ݜ1 4ڝMcq:a,~]:,0T.`M{@r6}_eСN}MTdYTP}QSZ-u)ju>)YSROlxç?k>53F<@ ?}~)]u)9>iZq9˧eFez*pr#cvrԘ7eNvw6Q;waM yupo;|}{gsLǏ*%h?mbcQij=O'&C͂XyvOle8|6گk5U~W^SCCV-F9+|`}If1v0\c|G#lm^B7}^]Qc[՝AܢOg$sbA8@%*v&Kƨsܵ@oqVP2m:@ZIJw2LOs*o{'ml&bu$׽C!1<][⼕V +7g~{ْۛonaeB ジǺ8s696Q֏_{&BS_'ۍ2 \o>o>{g—~omc{hY'zOL M0 L7'܍#e?5F$7/0X7 01 NC'ҭ6c$axEfѵC(kI%cbtr͖CWE/]Q!q(voJD_ 81MNવ}Hg,-#Q׮b9Pi/-5H &{7#Gr.(jqyz I?MƠ(FշojGa/:PT ^|LгΜ&P4;mylc DYٚ%3wcš8|1Fg>^U^鞱S1qz"cv b߆po |YQQ؃ }) m)sYOqLoIG[{Ɵ=cps*urh˚.]i<2AƱ٧ q1%<dd2/WqRUv^{exLil+C)`+ ]xd@6bv} Nkxx&>1N-˸1*3!7@4e@рD,_Y@^kĴ3 Ch/q-N8Lq~{fe-{z ~doX;Eljqbh9SNZ)(=.Ddiz::N6{kw }W89N{xB=gKQ}W\w./Z{A&ûE|"M~8 Oƶ=?97ddKsGrן ,>-V=έp[ 9-whGѻqT_!;s@# >UOc3q2GpF5=|d W?6?5!n^,' WX4Qf8_7z*Kԕ3 g!, jZܶŤD`]c(JEp/"{ (WY,s!C59PPnQ!G'S:%od*[j yqD3VS5efIX]xd-$3=SՃ-gvËOf'_p /Q­ UI{_/yYd1g 'D9EA{M(80SI9(b y\И{-ܭqμOh} w*<}>"|N=6)fOxB͌&+=`dt8+hmETJ0&Hnp$&#SJt)c26f0E}m0 G( v ็91:SU _]F37%t;-pxTЅ?%B}[! xGz;ΎSTEg"$D6VNК&2=8bl{"p;E8 p;UFPРX6ڂn>}<4# LME12x.dL ~]dFU#0AX2Wb˙I<5UOzLQ[%C'MZwaO (>n^JKM]^erS_P0s1;z?m8Zvm2 Sx?/责wvEpczExw!j`:mFߎs. 4ѭaN~  ̂ n6'i 3'r?^G د:_٫oNϲ-ln+XˬlђuRtܜGZ{R3 Y^Ц7#}1FCk^xÈHyHQasKN[8{'yC<[WO?ߘ}Y'V$JӌY}Y&#DD3xݢ .F-=S<7<{ůHO9zQ[ |at9i50{o^xX%2Tks17=ѧ4Qs-8׵՟"(ov뎂u+̚`߯oGZ&4XOE[ajKi3ueh-Sa~v#T~ 1xvcQLq^%ˊ K-7LoGcz{h,X 9xqO)wXbԚ^um E j  `qNR듙pmd)QȜ]i,;3fNėL%ovw` k.޼ζ%q5)$Cl<|W Gv+I X0TPב/.:156-$.*?oS 1f<. (C2L3XkqWa$OϬt/a6ݍ΃<~ȓcc;#l0?Վ{h40a ?E3mi?G|C=!ȌW;Mc9gwOBԌwN[5n kx R佄f2C3dژvuYhf Aqۍ48[CcW`wv˜%l㽂x먳d8.sp['T8Z2llؕ# P'p?~8^ySx͂7Rwoݞm6t^O^29!2J{3X>xJ6ex>IiuKM}/oMϞ~pnNrv9 Tx=~W* L^m&p͝F@y'}ަm TDyP|VԦw"^9Xĥ *SthJrYe@DC 4ŒtS- jc O2b*ooߏVnFz.(h fƀcDP #yœ*H)Õ1U,S#C (ʁ?͏V)Q~y ܽM1Q$}}?b''uy rm2d1Zc35!7c뿧%˰W 5!9~8 XƓ}j7 &k:bA7_ً9"Y/ F1>HQw^ kK|2++ٵ`e)VMIYq:{5ȥktgYOb:N h9KQSſx՟ɓܩC:\ն!ֈka䂇qѽL_}{e%E%]2AC0tU[S Z[Qcn<|(њ[pn5\{vj.wnUɑ)yLQp':^L^gIbT"v0=p̀9 ]8GǷ+*dׯqǟdцD6X) 5uےî;3 ,"07+{__t'~B#]w`3[?UW gDk_S,x1lUS3*[GBN /[Pqß*жϞhY`ϧ׾=_ 61ruH⶞@N*X_#RbPYϜ"87{%ke=B.Y΃cgw=#K[cq1Wd6fN3gzOwp_ M?"iXd:egN%,D30_ټ{}q֡-E)+<{ԹS9-..{.+cz_@%!/z!nL;S\:甈DmS р&Yo̱K>ߵx p߂)3c,d^: D/F$~υ3nL21O~^xl{ۃ{?z7]k`DpZϔyZ{`RuS_WF/7܅wc>KcJypKߞ}:=qZFovjz8mY^Amˎmb*L9F4;ÏηOv#X莙Jn.k{Nw3.u 2 D7z@*¯S^QSs "+H8;u6{=Oi4wUhy)/B'Po?e3T]8#'Rj$ p 2!i:"븟OSO$@H>C᳜ =Z(7uԳHQ_]b3U;2"p&,yjmf2Hao+;u}1FQ=|`+c/UY`%Lv ׹m9cQbBL3]bA|I0}5*-ʅ@UC`$r?~$z8^U ѤhlD(y ōl2e" N[4IXq?R[ɘ^zc݉ng-w f##BInQ^b` r9/+&3#hR0v4+zWN6p0cOg1~vܒxpحt \id}ꂠ >&һ9:hʴ}@hZb}v1sI5@zr}Yx)&`}&=OGDyz[MAYEl頷@1){Ҋ[0c%rrBoMNGّ? C>OَҴ!*qhʿ]vV Ydl\5?+GozЦh8m$:Ј6"iU -ͻjX$y!fTYHWZFǍ!2vxT Dg6mdNscRч:/my)ݜ>IFtt9Q[ ġzy06A(d ݶ>,-\#+2  n0Ơ2f/<%H)oCSt#ErQ5yy B}UA89#g HўqmIWFof6 :ئst2(ΣB ]gsv]N1Ûexh&ܹ5p!'fa %eZaiRtg5 ,0`x_(-~"_ DvoCJXAX zhFF7m{Yh3Z_ ~kc8'CoIi*+v  l(-d@ dx}7e&ƩW[l0 i%3'q،M .BL0Ơedb(`xjȽnw9U;@& M>(eʹq==gʑ3,h'1\/1~녾Kz۱ EMu cj[Fꓘv7aep@dgym8ˈ@CVVõ6:S3Y[pi?&cWѡ3nO2zoa]\+Ģ3'_qTu8pg\'̞LXfǸ}ν}& |qx?ԏMWkyL>`vYY<r$0t,oWO3}¬ ،wA՗Fydط]qXkϻr-21o斏a&a?PRi'xoY<٪6b@k.x".e1p^ DZiEߍe".򙥒1`ܚ?K.R^{[ˤ_ݎ^]>jRCp p%8/M,Q6Apb6 pqOzfEag?9õgHLe1 `ݰxk/x2j@y<) wXN+t{ޣҔ3Ξ^}3 b@㺞'P[ =# ғYFۅKW2)>6'a2;}7m"H=1~d|{W5`#;n*dSSEɖ3˫qHN wa)d\IX) M(~pG}w/= J?钘 Y}_g8w@~.I,i:_ѿq܊"^./(/c3檖&M)Rbƈ 0"tDT+1/w,é!,uջjgu?f21i mUJj>f>ыeL`@w8Dy-^N]7Ĥ67썾_79= *FT $ƌyཥ_#u[0|՞66q(L,U|rpQ@/齻e*V<I 剆{=UgEp(teh1cCc$QFJ qe4unB6J;*''QO8Ę }7#Mi }޶rtxS.nʫ{.-zn^d`][MEO/ wpj@S S 9mI:̛Icj;o);M}w?8}(X[yCDE ]Z<͑pmtVya7tA,0˜l3uO)*S֠ed!nA ^NMWh<pu@ϧ?.[4pݒE|t ?Հ* 6Uli@1d Bq {]'\JIU;|#eQ6SۭU~Y-6iC9.XbHֈޯ_a}`CQV D*qPHr 2P"}ۊޔ(^dG*WhcQ +:Q '~2 SIyY}UZYm֑Dmw&v/8gBdϘUh"9Mf uLV(7 r\W9[vUeLEi;m'yjZHI١t s2EM(pQ1lmRnXsTCД.m#Y[42!FO>*A;} >۴bd^.Ȏ=)r G⫩ݫڦL.;X =S3vx.z<ڈtH䊅X2vAh(Uǯh#m,ӳ5_mw${gD>}׿$pXwF`s>?ӧ~k=pz˴ȍ"G_zo>6D,4(?so 8  kIy6YF<S7ƝTr ڡv\Rc q/aby=83$D"C[IK.jzA*.L-ד2L*Eu ,py#|pPgti)_XcNK0r8g7~^}8~=NLUmp<{}G1uz pPm5 {kN[hxyƶrx<i<`y?BpU aûhwyy)N2P.=Msf(s'wΖao2zqyxz_jr^{wE?&%}o z...*d|ds.q74kٟƝshxWV_Gc߁s@N/jGj.?֮ /9 Xy?=|"i+`w_*$㙇1'l𜾆2% 0{slbX~G!*}*eY} ʼ򄢣[ ys ?23r8m3^8=o߉?Cz=7ؘ~b*t Ƽ\6WI@/}&A%=iՇO=}䓏Ih*mf >ӟ|!@+)VQ;j_HH&[vhR+.[Mv>@FVv~8)MmIB5ÈH<oŠ"7ݾj*Gۯ4 &ZT]WhKkA4H`9ҠM"``>> ) EkMSE,вmg9P΃F`el4fv{,Jm>cb7 ; !p㷖xpγ>|^gie_(yx~/5 Pf];AQSK:M6YZ*6mByԔ"N/Y c`T"8`t".ިhy;mО#.D\xflHl߁gĖ厝ܲ6q&چWKe~i4M\H5^p>0f.ԑҫ.쳧96q,7&8] 1"zQ_♪pу)e1nUQx;Ct'EEXNDD8ťO Lq`ID?slu*p–xz}W㡄W/QDy%#ʒP8#Yp]x'1" F%ܽn2΢`=pb~%_L,E-oxB)Αy#ԯmewm2vjAJ휃zi Arg`F8,V\WkG/FAmo^|wE߷v8/]xR7[aQ?Z5&nUR0&")kzO9QK[5zhv_8+2 go-=dP[sT5y32@Y')es=4#)us*`9V:(6x_;Jz4GeV!J0}^-Nǁ>k]=G O Ͼ~?mJpۏr\Exȹ }pe_[@ l`]G;kOo]=~*]#o>32i6@"px( ~#,clXr˂R[z5,icM1}&eX8'y- $87F!؛?N?~[ eLxt?2eh4zW"AR)Ӽws01D h #6;TYU%<'J!#\Ǽ6(YCTBw]5 *#xs0(pZλ&z@EK3Q8}ںQi%N9 P‹PƭBtgY6^+,|@AiE8~0WW#ڂom s[wVFDΔl lE U1TtfBI(;mHID iu SzE7TMlj!Ј QUO\!iw3 DYdBGlH{ЈgADVh/i-4kT!'2g;㎇11c WqP8 qw!2:!'u0>i_#{sm0 >z>K@m&)Y=/2Vc O4mdFUka=FWn)VeWa%u6n2ȁ+axl3E+W9tvBpSGw!"b0&w˴|t6pWzRsλt?}*~8 25>ړ]Nhr0P;o¯,3?ΰ<T'XklOX 7>fZF+,lz*jg krp 2x+rƫUhC&YXɠg8+ذIvT%iVCʏ/0*Tx.|Bm `;}YPOǖ[[\U+mMgJ?SXRoou Ĥm[dXL xb,qm F8)A  wx؄MQ.R ^{^~_fEfwp05M1k| ̷d/^?2 vxvޑJ͜brg,܅Ϥ2 M#37 7 3Κ c4)j*"}ۦi[D19Sgt1RAeu#D7[z=R۽QNRu.~kjJ+7j6lIXϱ { {5e NیV3srFy*I`JV{Jρ xR4a|qnѣ{1 wX>I/R.c_۹1> XiHF@6pHNt7>C8w-oT=v%$S\ Mc? 2 +}+.^ܔU1"EtC44^UtKtow-EMCP*(jU(3 .P1=~bl7j n<[z?9!#vWl}ՁOco>{|c`Z#>sZ OmBd-'lW3}C>`.y`h`UpHb#p1%^:>( >N-@ѻ-44Bp7Yޖ׋Z"CRV3L 6[ j m|mF13ҾꠑpҘ[4}gDS{ nQupvp%.^^[^׏څ8Ds&*iH~*T`3ҢeZV7B?7mo?L)chCJ-[ٴeh2,8' ؚ5=L0JS2<^삩CrR&XfZkvQ*>85<^r\qV+xT)"2&͵  Y-s>z45#@)+>cU}P'(;PW![8x1/k1F}0~)Cm{dSj^‘UvdfŸ:9ݚZ"w~ݜM7jzÖRj ͦ9({#oXXD`ߏvGeٱI9\>٧AފHFCtCǹ15o^+o8 [߮X.l ˱Cd-N#>Y %,_9p )h5ǧGէ vN}% ~Yum zei\lc.8n*~.G]B/VU34x5a1]s ^gszGfk:oΎ7/|?~ч&o7U:`6f<)7p)ҍu,L){D߷,- c1Ct *|9R7Rl"b)[cn=z`ߎx9WsMP.rNƑ9;F|6yF\yH,pD4>7ڡR2<~Czc֕we0 uOB$&l"JM4\WN{؈mqܾ+ʳYgXvY $o)y-0>1\|W>3_XY]<8Ȇ`|ڲJKi3%('KA@9<+R 8}C Jڦ(9 P[ o쌃j-Wcsphˁ]dڝQ] U ol8N÷fͦʬR`ln2:.c-5߬ ]Po5/3%}o]AmixxXrQe0\uϿ/E@q%b\ 8ԐƻFwSz)-\BaOj1vi;n Cy1'jLQQs9*,`]Px\]r`?z.hk#WƳCF 6`,!txkmWyzG9Ce2> hDץ}NG8i3NT?{gg%/yA#&_T;E8id̐voʞXj\k?BbV9HC.~_g7#LA>ׇ˸ <诞j[] [?}^#ct]bsC^cAԥ`a<{oDMلdqZ(A?_;ډ/6O/t3(%3l,EuFiwu ˏcpbeT ClӶ'K;/f">U)?RbMf8ѻz`8Z1s}dp,b{)n`JAFmBQ9-?9#DyzA)yNp AKۿz ҕ) IҔ7.XS^6Y/q,8@ 4ed`ZBӘX\mI^)ҘQ4Et "Úޔ;%a8~IrH>G1]Ď! KW 1 &8mJxelqEbif<4`"ۑ厇ώ0z6!o+lNԜ;.Sspj-q>=CR~j9r*9~LSov͑}dkug1lr w [RI[~3@ݏ$&NhqcPCMk/_@ ?.ݳvS=~MrF[]ȶz977DR+GtD8#4*/#e#׆M+*edasoi`@%eƏiB?FHqw.k4O婻ʝi'g`0YnyF(^ I쵅6۴zݻ 7)>+~f#811e'iᠽHGZFDs+pǮ4t萍 6s@ڨQLN?=h>jeA]z195.Y2:.EH?ke$BmY# 6?{z񇧗9Wm~lj!vz9wEy_Bgbw)Ҙ# 1 hoi_ڂ7"N&~Fb{c}nzWO KKY#]Ԉl )#J" E3 CS cG2TD7k`"{7W1:R|᥌S4E2# B%߾4CJ #TSq'gUJe=/v=l?g(\|R֝ptzg4n0c+hw'bϝ5#rӝ́ɲ7 $(x}3|VPFYȄ)uKhP96Hl-N$.{6b )lӋ i;edӇŃQML7g$AϑIj,8yE=yG'ɭ0,$F,ĵ>ު:LZ|/ڢrzsR8;ߤ~i%?@ S {17"'mk,w!_+ӕȦQN7,N١# BE I N7mjoN1fъns̩xA? {ij ]<6#܌֍/i%mϓ؜4y{ez&DQp_ɶm\=yeBj߁i>UH)ݮ SmC 2l|E΃8zr"#W΀xbnn9==!ʽ.$^gmtz{˥ 9=l?ڽ>1cdP;XPؔa}'UwϒÀ upxU3e{#;ipvb6 ~tS 1GĸvYpɈ>YlWyE9l ?иmF*nvvmxu"u)[s !=uxF=څ?1emEӚU}pi$X,h_ړwg'G({c- !<{Y&(*(-=X$WylD`PLsMʉ `Еy]1pFێ}YuYA'0%Xb˖+ShzH4g}6oy/K֤?k'%{38"SXUc4\H7~@ Y1~ծOCnmp=O]^~ډ|UK2^暮\o_|9giscOsVLc!6=mcvs0ӳmᆃej1_& @IDAT2p^m`QD1߉(m7Eѱe/08慪uUe҂9Êѱ(,[jNaߨ ?g/qDw=oiV ]UZs@Gg Of,>Dj5Qx/k iz,V\ȱg(]lEKߡ4'6b]ub2V}wSa(eC1M ȚqJ՞0p-Wws: kXoY<͉^{hba!`!W=Ѓ,HZ?[ۖ0%6IE=웂~ r5`m>?Y 8|y|ٵ.[Mq0Ҹ` [3l4Ydu&P=Uyqp`n7s_|Spz2ת92n^B!s=h(w\Rc;E~?1O]I6sd6͕q7miYC_:,\%>^7g'Mt:=|~GU'`=#OAUmUOk}[ lEjٶ <;ξ,S,Wً Dݽ/ cwx5?8{ɫ'48'59 h4~ͽ)/k?~9ǖ+r?kqNoڞRLd|"ĞfKrmbXx:@B$oHJ1v2lQ /:ijwk[a6Ů V,X1z~6 TE막(d) .n2кzYUcf`)q`x٘"@TV S`v:?l"D`chbzñe|( Lﳼ˗r ԁ37Ifࣗ޽^u*EH<4QCRr9r924n^0ʙC#z+<1.\)jiqTeZ-m)mXZ3Q_d:rF =OiV>2$9FZ;1qtP", 'tp<ɀ B JR|Xkt"-Mr)yQ7T$9ӵuz+i"JXbe_Lٝ0*/ (WԫW2)ov=/ɖs3%k vq!FǘfߖAA 2xڝLxq-c[v~Ǣ)j[sRv"މez ohY&v;x8/bsDӶYsB$:ݪ z xБ#msMiPH# I9Z꙳q ѹ`W0F{"#N*xZݻDg(P1`RzsɌh15UƂc;gن%'?B@o.Hb ;#@)lGo6%P|υGmi$ؐwe^w26)xƳ<_}J{'#񷇂 wk˶ڽ.fK.;i_~^dU*+#)r)0}cLV=8¾1$h"Vct ^Z xetV GIF`gm[S@w_ſϸ}|>;Qu$ 0y(˻ xDR ՖR Ù!2 V2 wDZT-Jqc|ri>(`V ,:SgJ>~)o]Oɻ= (7"b! JvJgMZyܢIt,T1 p->3ͨlXk5"gO`uX{Ln CL=惆}Qf{7.7IhކSWznJR؞6V"wY)u/b^~ Ȣ.Z w}%nj|d7]#ol]\ 3[( p 0m92HZ57r<7-0+{C_ȔV/Nbh86[#_Ct eeXid™BC\cNSOz՞U&r$(L.zewŞ]Q'6S>RyzP69Ʒ1 Iދ=ɘ>!P1BlZz:S?eÞ}9;OA[مhݷʳ數C̜U ])%ۛ]X ^62*q~ _UD+{̱_dަZ;޼ۊV@t?]s3[En- lV4q2`K 8_cCwbG zҲ9++\Y@1J,PVU/q B;r3ǁˤ+>m\fcőwb=f+="x[Fcbj䭜=-T|g}W ۠_A~Eņ5~APx;XD~LڲGx#;҃9G饠aq1C],lҔK:ۓ:}MAqSƑǒ݅tg.jFMɀuMqdP!N-! 8 ;, վ?}?㧫 Twycc{3U/>&ݿ} >i:$;8Оe^xR&!gj@ 72_<ˀUkB=M¦Z3~饼^h|T>owO=H7 ѻڋΨyWѷRBJ|ÖSzD_HZwH.BINh+#8p͡-=Hyi}s!7 H4"(T!к~vxB10k1h@>/~޼=] >Z Xo#+bQ74gFP QhYkXN5:wo/$2L$9gm^?V{<}et- ׆=?|:9&7>~;`ߍM;>m?^N($lM~l)Y6q$ptw;+wW7ijz?>zKM۝;U%`cW.7EWO_R?O6lWA@ŊW\|ud  S w۳7ٖ˚# =ĈLU>n~x O6rَ/គo| xD]+x8/C&CܫKNYj^rXJ>g mh5j=67`3)9Ĝ j''x]B"-v13Gtb('WUFj²=ќ¸YՐHNBQtqqDLtA`~xY!EwXS9B-_W0r[/[i{p9(/N9*s/3[ 9;z`\bI y-&^U}ࠌ x-Ruչoh)X(؋lģA#ljb-(<cspPt[=Kf7l@S{.ezg^bCP҆,•ȜL XՐ ,3Q)ml@`ɕgM3J3@8dIb%k\mmG)mS[胬#姮GFA:wcſWxvF|y)w}i?>#uPkoRt@2l 'I&)f(#+M{*pXh9ۻ05MEp)F}񼖌!1j5Nj.{gBk4-?q!N Q;RVomE x/\gz!Cb̋Y>^`/UsF? 'mƗrĪc.XUhaki͑O&E*ݥ&wDEv&vsAᬶi)C1 ޮ2 mYϞ!'MNMe8 %ʡ{ޖOg-3Ipd<x隳) VLodGPA[^]_)jg<lֲQ{ٛVNu CޫOgj6* M)8X[6\˟~h;g^_~&b7?s}ˆ_Vx:m?o#L^dXKuR_S(iޭHA='&^R R\3EܷۄgYy=98(L]@wiE!0yU0F%W&](}}ts|yUz?΃jxFE3,q-SZӇPEפ9'[Ϟ-u&bcTF&pe<|N/N~QR GgGAK9h{K=xBC p+䳜} Dz+K9e'3c4cd:w&0- V=@%ST=7*Yջ9gh NRS__Z"1i3r,c!p#K X: d *E䊓!8k;:q~L8K!(GBl {[E4Ag's.ZCvtsmypPFVaieQ~T4F |JhEa7<$n/\Ugb`0c2dM\YќcD ܇e a=ą-;ڡ_V6p45wOrT7}3ӟ5 Uz!w88ق0EN  -_Jر>lNN,0 gK7g>y-!CMU30Om4_| .ۍ6عy4nfګ{㟆.Ӹ.>h %# ,W[VDO?~+#WHoזL Cjҟ;/j\3^|K+zg{qn;qz1^`&Bq5Om {:k=n<,L(C2}_pNE~~h"ݣxyLo+F'ED(.jt 8e*ʘNgḬB^ 蝛gUɖ78Y(`8-NVlh>.`zB&P p7Ͽ_Tg{Kcŀ kA[7"b[]D/KퟥlK=!k?׬hkO7+$^F܋pz#ʃާRֳqK=Y˲(YicQrpMxb sA\]UE:"]#~|^1 !GO](‚#=WS#Զ&102C6#BXWWP;u5C;/-"a(r4b՛9Y 8$uu[)K,!vkͭj4?sh92ceǗEys.} 41EtOR fl4{pR ZL`)<`zF聤1uæ.SoeldfWE# lP3Y_ǫP>YSf86+"8喝W`P㲴$#; GlŃ&@NlmF̓u-8^+)(JomE9^ Ԙ8YT?Bm8) "l aT`S3J)4`j_F k HA~3jNW1}2RcyCcpY=t5zFo\g'4^G6]59tysѥ.4UtNfKsn$n s`H7FY/d6d$y-=EHf$1%tdUWC~|Gx F4ÅglnlNV~8[sb0c7&Y3cx [rm1I`z!!S!Gx{Aw)8!^n틆mA+vc{%9D]Mzv웥͝hC[O~Go~W7~!݃24P'>utuMv 4GhUGYv?G"elY<Է4n\& orx~gODx o^Tc<>}qJ`  A*,mc$׉`f4U#j%>KD)oOl* "m}:n# agyZ J_uҰayqt{م +*zk6!/J=k"H{:a7%$=hg*Ѝ}{SDqX[$B{ d/GMh\Uzyz`ofDR۝(zpЪ㟲h>C%gMM("}U2WDXq Q<& 5-9{\@6]iFV) m$*Bj~sFMMy9 jtKp-%v٦`sH}>t! W] L;uA B `'0+_DNu~638LVs\M8D~]"uV|c0e!NSNxūoKmޭv>fOo81%@&)NsU۵p5yvȚQއE%C&ǀx>̴W8L7%ÛZxһ=Tw{\E2gb g564aHW\\%yq1n}09K뎗Jh<6 uDQ )$;Ǧ π.e'B\6n@#oc]>]EZGDɆhhM-w1⡶_ BO+qG߃ zo23OK/ TͲWp~a2ij[jxWO_xO?|sYDNߦ %P'3flx1RN- yz U3|JiY 0 ?rz}iKS7+w$-ED:o'qYx 1ǎĊFtQT)slByPm1TW [jvF\Ahf=^'%&g`ŒR*E+{ϫ:S6!tvi3o/&0'&\<d5z{ǰv!4 AHh(}&!1K*oo N%tauBxuc>: ^<\j>IDB0фbt_oV9#)Uox -R;ONHpg{+VYsY֛;Rg۳ˑ|ٙUc"Eһ %r/]Z=`F# k"khuLBy~$`U38SCEX(;# =JC=_S.ahG20f,5|5dXf0IP+f=Ϋ@G8\/@kO Lͧ8 !qW{ @e+}1f:c8Ç~a` YAWvu6y0tirb&wAhu~Kt1BpH)i PtKC~uXj~o5wduqp o/: xRg*\BSw-<7AKtd8|ϛܳyga6Ơ:(gGsLYߢ_F(㟮a6 ҳS"]:ǛM67$8;}ǣY@smks87؂Kӄ!ytu?_ß'qHmE5-Qnلmseu?Fmٍ  ur~їc?Mfocxuy&6/xnk9]j?6+l[҆W;OgGӈf~^AG兀M>N{gٸ)jO\p*Ph2dHͼoפJcq-:W2{VjfTVWt[!uAK[_#NO%19P T^(k ּKLKS?|FEO"ݲ"RKYa E񊥋_|hU H.kݜODSxQҾY olmLf (\a)&  % kr MweQaxX(hX7xE Q/ 8ٸn%Nm WBd-dFߜ08kuqR׾Qp/y憻F qd.cuL_1m jxzk#Ͷ׻s6~nM{12j>.pK;ьAsv~&̽&x32!ەt¦_+dw2Ŗb'=`H[^=]Z/" Оh<)jmgЗ0(EG297:G#'ˮYE9Mdӛk ~ ,-ldFxh .C4z﫤*<7]?ڨ ~(y.~L;]+u%ZEae.}Jw'+x"2W9|?ڳ _Wf齞އ蟝>ӧ?NO~P|xh3ҸM^#^!_LS!tZZ9p]vx/~׾QQM]D@lu'~ æ+1&ǭscuz)FՍ "J4Cf@cK077 G}sQ_#\PSLd̬"K;n~TൻSq) .}»D~=MwL4P/ؤq>m%E&*~ؼ~Fs )SW[ n!n ZZo pդJf9҉ &XxeX41cL`#jL+N;Oe"‰,"g+gHygM'>W0d#ʃd>}23Y_ڴ"/^,e<}l<Gl.B-KdswE*Mקt#Y>02g*f9,v~㔶[{XD8*x+eN^%ꉢl)},a8s"n^N0܅"?xm#$r)G<'U$X19:::kA1X@Li0o CmSZx#L. wj20&F%x=Wcծ^},;#$q({7_^)[*FYr fYed p/Sbo"^+8D~Jq?>zS>wLLιϘ?Rpe#CMdYcLIգDekIQo#FAgSo(F xY畨 O8&ktW!M8ƽEK3e4b:Kלg`SI@+ƍt>˧mBt >ݛ"F,؛Y/o`FwL9V "oK`-C,c.'y2Lz8w;FQ~-F2_vv=jD@Ӆ }3}XSGN?_:zY'U`i{J͎x cb6OuF`lgkv6q::ç1Ԙ &/)žUr+8D[..J^mUSb2s>80ۺl{X_RV܋ab 1"U(Arޝ E]_m`Rf~a> eTxi_ȼ=WƂhyy;@@n^p;RuM^s޼mCjp_6 cÙ]yH:MLb/9E2"J Kmì,a鳱*1 /XQv|kd "`rx]5C%WԺF/vr\,ŧjIu1 F6 #5IB}%|& 샩[.} \H9S-TZ?A9~. =LE=\l8"KSJp@H9n mc󃺵v)w.Xo>`+ؒ|Z&R/%O/76d'̰6㇨ / isŕy'79G2P5Eٯ[z_USnwMgrD\DH\ !q.CA\%2QDIHL8mvO5~}UɮZzYZ:u5sJS׼^Џ5ޱ_8zF3O|eOmXϦ\J`:ϛx3ZÿbAKq95?EߵhzED1^hG.O4W"ĝ,Z `4kq+dmjNn  N}M%5 ea Ȳ+ѡ疑 n?0>;4ۭ86m*- ^؟JgsE1i_u^7Y)lfrnzbOFĖ7>/?|͛+b@HG(`ܚx$]=\*Ҵ:Yy@ZHgegj$g 8RHݯykl J=0D>:X _)Y˙+*%f om>oD-6 |:)0}F9vwYZ>vUF%w!f\.s~xto`?շ4bԭn~ӳOd=`^_P$2幬^pEoމ|n]~+[F=ƿڅ`b_.\Եj^-3-q`=`ΨǂÓ@Ui@ֱ͍/v+fw2ԕ Ȗ4.4긨yzgm.!(Wps>4qnҬx[C XVXB׀z|,Pdɔ`-u!eFBEES &_dVvC$mQ.CP1w9'JB=u0e].Ǐ| *Ͽ;gwUDzUROS0L)o7 S6' b1i]KҊ)yN"<{<܄wi"4(_F+p=N|rHtRcv"L ι ̓F0uS)(ڐ>h L͐^2o\rcp2t=~Q_?}xi%Ru2"4wl ˼̨0&=ru01cBNf/5a4EX&a;]*m/Hqm寇OfE17g疍@3qhԌ˦n ]{ D՞M@}ctH)dlV'93q*Su'9cf(( #(tpAB'8t^iWM_r7o<Z'2eVLV"(Me8"rN+^f́")g#`.#V]/G7AݜuިkMKۀC]Gsr4R\"C[{1JsJ?Q|OÞYZ~ˠv>5%phm.Ngǽ ~/|168eF6]6+2Frg4j9OBq@⑭w8 %^_~( əz~ͷeqcsW-s8Ny`#ΊO|PiUEᶺ?'~^vcj|wd+7SPaGz0uP6 L481%bNJtAHQP@lx{cש^K@t-YMT}Cx0'\4)QZRWĒdxE/3xNvCT(mJ&쓎k!w f]4'cLCIN/PvR2ډcc6:*"E4aewQriW=䯪o jvƶ.:*=6ZV?G I+*cn9ؠ o{ge瞜!1F<3@+5AqmmmU(2Ǚ x$t^"x6: e8dD?gNPc&XظqA*xpY8N>O7U~'!#ϑt߲hMK}Y'oS{,ew_ZAj2sS#N}k5)є4.ڛCtOWz 1xuMl~}Nmˊ$ʪYEu]/Vs w4ۭn6[Bx]|2پ,0c; w-wdCEey:D_ИCR!7U+2 y7\Ȫ+G@Ehг< C{$e%@2KَlxnPtKp1v1=O|#)Bz:}igE. hfjY1CȣV藠؛s @п*M"|JVP$L}jvM{ݎW/ZN~< vgR߈-B}Bj'<Ԇ{=OQ}20@tfl5j>N<ٞ؜,[ _Uq)h,G8θ8#c(OR* ul38.8ƣJ1`G7rԃDPp(`Mb?mUq@R!QaЋz39-}Y4E|cMmxYk,[=P kX3* 'dlu > ksY;ooqQ~ܥW2Ksh4fwwO t) Y#:VE^C/諴&ʁ$2d:)5 [YœG*qTabD$Anj`BpӻUb8 ZsA.`궳 UOmG3>T6^[EОn~b }XRV$ġ9"eMCʵȝ3@&<*#0a1-M̈́>s]Na yVkڠG1= M_$7e'2$2ed mlĜ~x+/Nvj`J9۸ȊuomQG("(DDY NMFrI9"}_V kzyB}]79;ZChQі)p}ԦH} ])%J@/%1#:u 0;kH?<1tୢ 2+r0cT{Mr>hA'H8[8?cԯnIsc=EzD[;B/yѷ>a,/8¨tLd)4hzhNMA~%ga/CS"?KP"@ʘ.0$S/SR{ m[m 3wS?dzFzjw2U xbP )*I5LحO|h0pq`%7]pzƷu)+j:gS*g`6;xU}E壎rП6_}?@UP'ȋNWS:e./>$U(s_yLBx7'+ cw]&iKdqģd^-лe,ӆrwPYf w~P^`7NwAfeu&{}O,=~j>O >z#,O|0^?ZXC}|Ļ"1SLKs@1 eˆA b8$Тl.zG*6/"znmy:vHn4ы Ȁдƒ9g1@ae/8I|s»0*81^d(fK?U֟{MKpAQ)EG'D;~.g$9h2s)"F'Nfq+&Vji"hqĎs8ʐpOxA!0f ޕ , 1yt048 ^pZ,ZP8xKFHto{70K +(#M8**4pt]t8=V e0ᜩ8pmE?o7{dVJ8pD/蹸m>2{5x/Q֛hwce6'9O t1ɠSȑƒ2%0+;7xO$ϊڗU cNaO7}}9ӐoJ>}-IoY2UȠϔ+gTO_KoJJ d7i;,68hr!S [ڋz/1L$võ"?8_~:G 癱r{N,N7 S s˖kg ab##"exN{37@Pǫ!{1#r,7!sJ lEY3L^ݛE^( I +DwvZ貥ہd#ѭ/S:^}1Q3ivsn{S*oW=Yt qC?-Ev@]s&9{6 M(h1^lҥ^ٰ>+{8xc,HG;vnj$z=l2|nk^Ykfmp0g ܻW&W~잚ۈ" -9:Tʧ^~?2~^dJ` GuSda=1r/ 魛6*8OcEQNwDqYa3¥0;CB*w_ d)EzY"|ߺ^"2ԔR1+7d\jE.ahD= ?\i/C/] KVS:22{#;7G{!r'䘉Ycq;\YS!t(-qP8Z}TD4+m[,[!S# mO J|s*~ u֟hBY67'mibN i,wka;+A_$d`S(İZ+tBxR$FƼ;oVĠFߡϹ]TUFjV|$Av"h1r+2LO`kzX_[>z&`~$FxESa$nF}qكF6''xZc@~dYy5\뿽`Њ!["[)tL~ڕ7ߗQ{w⹲ݣ̈ȷD~GC2{W9Њਝpď9>'d*STV·Kc+h;o|DJqoh k!WV9%|_y[w{~,3rG1OnejhQMvh3L(o99)6'(Jޒvm P\ᶫ^4h\RB(tL5&{Nj"SWãMX}Ƣ!?šMل?8#ٖm|FWCx_ǎkYoiҥ @Ȏ8T` 6A ` pԘ}OԖԘYيh6>kg/"nDEM6%_ƪښ&^W1"$+t@M}y?c'~23|  :,}Ԏ1G!3l$ޜgT]81 y;2'z8\2Tϑs㧃 0 glaoM!3 ;4=-"iyt~ik[HS h4[c1 ӥ W,1"VO j |qw3^m&#;k550yWa&F~ӝw?;颔Po{|c mf ~_B%5 ن9q؜?)zog I²S4[,ٍЧ^Lq'_"<\o7N-yJ.[ai#!: 5:Sp0eJ^XSt2:ާVJF&)6u ۵W1n#~]pp4ƿue 6x0Yo|&6M֢( =}Aɞڒo|*|Ƈ;S(DW쉂14eR"ܧں":p(E>܋ɮɊs"5xOsN̕ߋXԤqlALap׵dN\[5[K;oy?'XeB2JxG9)<ƊΌz&AJ_oJw,Q_Ik wq`me:hsK祋ҕg=?\YC:G1-DdƂu߷eĸ{[BؽQM;{3Y<֝dGzAnӅ2ſ+h\:^cl7lXDxer( `woX ԏor'_d2(X{ J$kE?AN:$4G9Prn},]mtrK4M ߚ{يu ᬬ?=oǭ4<2L쬮7 /g1R@. 8Qr]Lp_(A8 e|{Ř* 8R7]WMV[["K oUƇJX˳n~w`kTvxN)|%kLſ PۛÄ}R4LE30(kK޻O_/w\d3L\Weo;9-eA[>N^Ev0==Op(VjlbIQ4@(hLi 6hfQG37 "F@+=mO j0gGB3,1ǃj1dlR`j^(Ac$2ea;E&82t޻h[SVʝ敱Irr}œPØa'("1ni\> lZ>ÒA: ypMqq1G VG/K,u®aN)DPRxDnK곱* \`ᕊ Fĝ2f2m:hQGAWj܆Hqł˜`3'<`)cE1húk0Q(4dU\3(@_6nY[ʲ)mMi2#v"t9(*1a_T])ts$l\pN+zT$eƈmJ4G8;#"𓎪)oZm&>G« ѝ7Z8c*){mq*etںiẈ[\cј]pŐGn=K,r`c_wO~uZdIZ*NaOY!wl5PfS"f-/Q%iVg1ݍtJ.aaC 3a #}^]< >'GQ[@M!$M7uleFg27x)U^ v:!g*Z]C$y)jn[z!9x1-;+Sa)˓S{LkP=$Nu=M)YElNP燁JDB I<}m+<z9y"Eyy OgD)9+9*1ig4d8d j0;JgE~gVExdRj2t}&A;==sdٰ+/}GȾm.E E*!cً߻[$Μ:g0Y bMqBSYN"9iC7\p5PyKO~Lt乭n"y4B ~~ :c沆/X&޲>Fy j$H>U_6@cTV"udIB9Ʋqzcv)XpZ=sޣ6's> V .0os瘥X߿NgR!6qth L0eJ8Yd8u82ǸgP\uIpQF G/_OӠ×ڠ{][]#!pV<@hy0[_5pLhY0 Q?AY> })E|wq=Iv(NiҜޕf20K?}>>d7fb*RK 4(38[@^>M=WH:;oVz6"\қju#^igCN"` ? WI,WL`F6G΀kv;DH6wvsʃgػ LHSΨP֝!ؒZI#)!#1bi6][CYFnMMcj,{^<+9-mvf/e7%9&7<,oUJ]{v?zBEQD[Ŵ)0;zi[5*m  &Ύ) ^~CqӐ!" *9~eGQkHy{Qt{8cQ cwگt-RѥV 44+õojqIuR`$EKSS y5~LL8=0߻q@}7FlcE^d@edˌٶ* 6Iż^F;N(D1aڵ>Y fM|M@tMeȿZ9\Ɛ5oe|c_g~ Sg"E1WSp<>#dXY,c$^ANQwd«W#?\v!= dz/>$}4ӈ0Q;ov8 v|@}9oBS4wtϦ em}6 $ $G|̵zFWH;qӻ*a Nǔx΁GC뽸gt×F&adN9q8Ӛ|GsPO%jA[Z@m7~Yp -Yol-S? k_o4xnj߯Se#9u;]z $W+x0^ PݷgK+MMLJpRѰ ̮/CqU|xb*]7N 0ad-WmK[E_AT>wUqüR?4EF9DY){4tx^mCS#&>"cST3}i;6PgY8+JֶOxQ 3N^d|)'c&C%[)Uy;Tvg F)QE^ \TqTe+Fok RRs; kuEmrJzlFF!9/ᝋ(~%pIUr\{tϣ+Ň3zMT쇱!/Ad, ǜD΂bp}\i|kQtm_ـa)jsȂU)Vl7LD Z[?##J䣰`i}/;k\[CXdj{2qh,T0So3d8ߜЀsA_C/ fxmznoCF+}=xh2F|7ݚ ޕM pj梷LP|(6y%U=:hwе xMjȉ}#FnOx: \{p<n}j- Y$Ѝ` 7= gqp>MAg l: RYo9K,W~\$>Brݏ~?92޸As$_)5x;Lٗ%Rt ki콳\lH#4%p'냿^ֵđ#p6ܕ5p~~z/zXjZAѯ_ۧ-u/\Hѱ6[:G>sxʞ0S1$O4gyK onԳ6xyƠt {SyNy[w\IUjbpOZϣw3ֵ@"/Ӝ"4 A?)1G~)e*,|KɈ !p+$@a[BJfE>^*7!vo,MDZ֮> ebD  m׺_V#W0k({S*}5KDvܒcP^j: :)-,6: =byu= ,y)[Czs3e vd۳ڨ^[_23AiE0//#/|jS[Ծ1KB,ü|k=Gvu~^ gtMu|pL]$Fs)hڈ  8,t6 Of4Gv TҖQj213U,9;]ZPn %bߖHx=1(_r _vJ'ُ%Qh_t;/ kՃeZ~-CC<{'[5/8X_ ?1h5qa 3Q>'>~) XEOklFM;c65g:-ʲ2գӯwKp?ג_A߇Dʢs8ْPhȳ M\PV-ؚJ{2Y4Wn›#1Bϐ"FZ5 )Vk"xƘS6 !}5*$CIDAT-xz97v3_jC ƙ/~><<'iˌ;jxR}^ܷGAli^Zԃ颁r_׃͠r40qam*[䘓b}'܋3=Q\/j,o(B F(hhU}Ι:xb{us߾G޾@ڎzB;.ybK7J9\T[fZƢSs E͢]`qz8rnNG}BhPn/n9^#A?; NȳqqV4Zg9"5ǟyV u WӗўcXfwH,`Ep[xTp=R`s6V$q?K_ͱ 4) Ox&zLOwkGm92)ϗً钇B_V#PטnmSR;zkmgAi.jNy{-zcә}k2jn>lڹ$K_g 1/4~p8C~Ce3rF4OL*Jf^%d^hc,wdSR$l-YY}A}Qfw a ([G`T#w,w}ByB{M~ҼH7Fp!}py`ow}P@1_|xQg7,T<:vۋ{~)zdJξ/ʤs*!0Ͳ02 KLN9Uƀj1/D[떼@Fq ( ˢ#8c?} `\FiY0)3 -TF8Ho8’/?{Ef{ERس)l|-3U mJss6C4DzAa"][S'2e3p}OD"@J | VO,b~b`^R|kګpxXʷƈf !p_ Nd7Mo7Ꞩ[R3=m K9Z}MF+FNc ll=DZPAy6'MD#X;ݟtY:0 q_S`R9R8⺨jsϬYmHWSӴ1Ue ݑ _2s Z]$1\]vӹz.L?osՏs 8h i=M.}5SW}-YU1\MhNx ouaHxV.pGe[akaAP}Qq@Xr^jEfeWEw{&I<5m)jCnYvp}c_>O~僦9th BvՊ;{ђM_%C5fZ[-~o9*..R FµhMT?V}g|i[Gs-'踩u(pBilKTݖaJQ(aITccSwWE4!B`Y:%[$DŌT`5[}i]̯oGT)UHJXj7bj?jhҖdPJWB{K>R2ND!BTLJn9j {ly0A.D*m.ݽ](9)eyNm߶aŃ``i 6vCmOc˙ v͒;J:`Neyc5mIϚ߉Qsu- ֥pخ/ ȪHy^Z*0 &Ni b'.FX MQ;y]viuw^4E,o@de^ߌo4 l3`Ls8r$G%\6z ·uRdާȱ_J)jNp/cix ~)o`B/¢á 95_($~Ȱ7ƨC۰Kll`ET4 g }F7A͍b:p 8zNNhNρR(&߹w9yQYCn):E7[V[7w|"AҶ{ZW$ YNJ#1i~y'eaf)(Hm}8 +&h74-/t/6xOU,H+'1&W_|0D԰³Z~:D9q}ˋpvd :*&5wF;r ;!\m3cy`_!+>0tن;Xx2*{-:3 gVҮ";g)i7i}-_{>L2`TmiCO7 t}LYAwp9; K=we}Vv;G_}bte#f33$j8b_dM) 47\@}eW*opU4v~WwMG'їxQa"6xYӟTP)cnt̸b0 {y*G7Ya>") Y!`)_ DCAZO,C@%T!2^f^e^Ɵy'[/?éh:%T'Pj>?k3;)yǧ?S[fx7fM/=x py[|wg=h2F9797^=o9T^ue>ZFjI=ft?;}[hVO ج \ vݭhlǂtUh|-[T_1tJq-J3^yN [Đ!޶u pIٖ!^|P[1х⹔5Xh]nj*0Ys'W1ϓy %(NL5aҭx۔E{6daFTA"{A^&0 <~/[SW툱0\,NaC D4G[ouI&h ]7zod>0aɚ<*Cn6\wS%8op5_ ]rj3 VGxe(E3nY_ ?F_ˌcat8<u3܃ᏣzB?u#|3Rx2 p`{}NBV˵ΫOϐ4~ջ_[)w54m#k ~R|r<ϣ!C׿8zh87\`!a\X_ 6Q0|r,\(.ޘqRE v@ܑ'p9‚H􃠀c&Ӏ ( L%ޏd>~S(|x %С\vؕlg߯(az&:ծ7noQ-Le)Ew{/Kzܽ9!Smo)H﷜ρ: W.r$,A2xf.j폱يh r΋dF\ {x"P'1TO?޻l\w !?^jѺpiקG(E|JY6眠Ixn<[n =e>V#Qw"y%[ֆp)g)3`pgnUcpj@)2j/0zRtSA_E7_(kG.2?qPxQ0 pS4$8 sQU gBQ|r|e9X [P쐑E$]? z4ڏ|aV 1A] H/Z IF@Q &X]ɆvlrVl~ .|yeb:'Bݦ(Nt dߖH.w c`mI^qXT%Qa7Ǻ*l-vV5;%㣞s6CQ|3}L "RiQ7Zb;:uӋsA>m (榢z&6֘0/8kAۑ´:iwi綿R)K7ѥ"j*lM7=;K#t8j8sj[=g']NN'><~gZaӘ^tdy}Ӄv}X oj0pǓD@~9_=@W(ۍj8!g9!9ȌPR 9JO(|խ9 +q<;#+̠˵/g]1 k|)/ '~'oˎa7y}ϟW6A9V&BER01ݘwQX%E{/lkvsM8HI_xЇ@س<1׭5QSl ˔(zgx&$7o;EZV$J2(˖00G*2lDR,EMX9SV2 2ȑRp\rL[Ѫ4F 1 Rb)pʜ奷!󐝉 «vfx-/T36Y6! Ѥ4E-I^4&b|o]$<?_U,))|p(X;dKCPGdbCmC# FQI8L4!f`eQi3YVD8zo1ۡ2GtKÒ)}cOHgf$el\,\0ֲ@dX58SpQ#2#iioJesB xsSsX6258&Xki^6FobBw2Fxr0=>{ eUCw|Y荞# %Su<Ua%ܢ:ΦQ|S *[$";Ր_|p(+@$gk Cݽy~cF{Mpg-&4RnOwBs#.b?j>'ʨc t0i2vU_MTcKGRɍCrdcREkYMc1a4&_T}8p'~i hWxSN AšqQ4p{&Fd٭.o|QTt:06m%wR4.)S䐜],7FD/ڰɉGEa <]~SrS7G'1'`Q0*է) x__c뙗15#)k ͥ+-Z`&;v|T_o}7#ֵF3G/Rd𠺙%{G` zC2. #0kL(|'%clZpM;KH ,Ga6qlkԭ^q>î >C 8&C+>woNGO'X'?ӟ3=11xiIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/icons/PyMca.ico0000644000000000000000000055507714741736366014351 0ustar00rootroot (~00 Nh )~^!00 %  / h( @w777sw77swswsww4571q%53Sw7wrSC50qsSqwgp452S0p1aG0wwx406C70wwx4!p41pss!Cpwwx5!a%!q775043pwxp2RSCssRp56wxsS1aassPp4wws2Rq!csq5!C446u%wsRsqssPq4'w765'71sRpt7GwssspsqsRq%awwss7771sw0vvwwwv77770xv~gwwsssw73wwwgAwwwu!w7771g`www3wwsw58fwwwww0Sss77xwwwww3sqssqxvwxwwww!ss770wvsxwwws77s1gvgwwwww1s{w5%0wwwwws47{s71 Rx%wwww577wsu0gswwww5771Rw0wwww53w8777qwwww37w710ww1wwwwu3x73wsw77ws77ww3xwwwww71A7wq7xwwwww7xsqswwsww( sw77sw7x0q5%1awwpp53a!'wp1%7qaxw%1sp0pgs37ppqww70sugws71wvvwsqxgwssswwwwwsq'gws7714wwwsx7sww7{qsww3{sswwwswwx(0`  (#$#('6%)+4/#)0%52-#,7(4;786@?:f<&:U#-@?6A:GE;QE>XT;`N*dP/Wd5re2!D+A2E6['/@2/E(7G2;G'V\]VduhqfvjvkuIUFXO[gyiynstGQLVNYe[h\o̦ƇøYAJOKOOOOSPTSSSNNSNNJNKSSNTPS N;eZ[\]J&%')*&+)++...*(..))))")4443.).)J0!T eHW<&%&%)))+)++..("..))))).442333( ")0SNNT7?<%%%*'*'*+*.).(.)."&"&.4/./31! (;SNTJ:H8<%%%%)))+)*(-.((.))(&))..(---! )NNT EEھ<%%%%%*')))((-(-)))&&"))"%!(( )J6T e=ڰ+%%%%*%)%((((-()").."% !! )J T7eZ=<%%*%%)!(((-()).40" ! "J B\+ %%%%)%%%%((((()0)   )N4T8ZP]< %%%*%%%%!!(!%()0 "&+N0JXZE=,%%%%*')%%%!!!!".4"  ")I)" ! EH=O%'%*%*')'%%!!!!%.44(  & S  8Z?WQ%,***+*&'(%(!! !02.- & 7Z:EݼhAQ/**+*'++)("!%421- &; );7 Z8=[IQU5*+,+&<0*((!!---- ;) P ;; 8@8:7LhQQ,+++',+0((!!32-21! &"; 77 ?E= ih5,+''A+*)( #"2222( &. 7  X7E:MkkkQ,'',Q,*( 1-(22( ;!7= :Z78$;kAAAOU5* ·!31!  !I");?7  hhRRhA% ·-1NNJ4KB]:  qkkhVQ·1[\YW 7WDgcuhRQķ—I\W7 G}mvrhVA% (Ź#IKB:onyr h,% .—1 IߢXEaqz h,)));K"\ϼEuzH  ϲh,*))<[·N"\{vzy`F=?,)();K[ȥ0"&Twyzt^b>>ZϮ5) ;NSŤ4<\~~xdf 5* )0603) <Ԅ~]Ϯ5* .4/( (@U+ 0/(46( %Bp| SYV+ 4”-/. .-j{@x JW=]V0 ĵ4/**- }j_IYBB5" Ē///!  Cs| +YWN( ŗ3*!! 'Ӌ))\lS. "6ę6-% i+ "lV0"&4Ź4! 9, "Ϯ6.&4ǹ* ''j5 !ϮS0&4ȹ- +'5U5 U.&4ǹ(  %+<55U)%4ǹ1! ++AU6 V)!4ę-! ,5RU.%2ħ3#%OU&k0!2Ʒ1(!))khS(1ķ1#0+hh--ę1!!N+4Ŀʬhhh.-—1!!T+4ϬϲNȺNIIIIIP;Wc;PIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII( @("+&3 '+04/#,7'2:996G?'7I'3E>DC;YX:l^?Wk2*@1N3T$.B(7F2۸>2NYfezwsc}αCĪQҬRd,X2]+^8c5i:p/h6l9v;{@dCgJmMpYuEnKrBtW~atg}jxd|l}p~}evCxQ}F?\[evrxqhqftkvl~G\GUOTmhsu|{opHPLWPZda^[{l\·ĕdLTTXXX^]]R]RNNXSaaJJ@s<##)),,!,%""&2211%"$\%7k9###&,+%&%",.,,/"M'ä?F9###!!!%%""&"!M,Yqi9"!+!%"&.,J.Oqh9!!!%.".S`:h9#,,"M,,@q@B(,0$5kFZ3(()!+0/ i=ضZ3() )&!1//%$44754IuZ)) *(!/+/''477=Pvu*)6U(!+00"4 ?5 IvZVVZ(+0'&:=  ee#ɫl= =o}ue+ɫ@ tzx eQlFC{e)"$bHx~p4ܸg("$Y˜%8}|n>iu#8]`&ذ遊r=(.21,'݃E)S-.-vAwCNm溴Mɐ1&!+DDy 'lh\˞1.6$mf%ɕ- ָu."ѿ+G9ٴ\"ѿ- u)\"ν+ *c3^!ν13cUg!ɔ-'gcu,1˔/WguM/ɑ+ffٲٛSQIJJģ;( @!,2$/:"/>&3:&2?,>>6D=@B=FF?LT80@0J -A&2A%5E)3D-;F)6I-:H/O.>M5;@08D2;H3>H(?R)AE*GK,EJ-AM,FN6AO2LN+@S*CV/KP.CX*EY-EZ-F\6DR1EU6GU1KQ3LS6HU1LV4FX7K[0I_4RS`a@BBGHCCKNPQDJJYBUVFWYET]D\[CX]_]Sf^UgcLvj@|sH~Ici\ct_DSeJUfIYfI_dC_kK\lL^mBVpI^q@a`CffKbiMfnEmjCknWem[eiSyoDeqIbrMasIjq^htVixWnyKuuPtu_qsUzvc{aqpfttikn{zztb8[CC^l-T,Y3]7e=i5h9n=m0e8k>q:qX1qQqw_ghooabds^}P,/((**291zO#'@H.*k{R$(% + Lzx53-":8T|i46=F<)JMN~mI Ê plK Xeő ]ۺVWմf.CrނUԵjEHQքӾvA;[YZѾ0Ĉ&Pپ?GyS澩B̡D!u>篣nΓ7q`ҹc\tPNG  IHDR\rfIDATx+NfSk.p|mٞP9 mZY-8yWb3kTӏv}c2wuVzcIf}x"gUrY a/v.^7Z%qmEcw*FVAn:/Z~Vbb]}-޹\$5XOS,#}+Sx;wf=??{bs2m|wŗǾoSWw؛Ui|s\{s%Tkq ~PO! / ՀwP_h6~ET\:[-!M]proo]l ^ ҁ6KBPNUbP><{F08>:|q\4E霠[yaT(cN%q]!^4"a,#S4^yթa0pE,̣T);]`a ;orcEkP Y< 6ؤ8AMcWȍol4q襰f#[j_ fcvxdȳva0"Tad*v3; h+`-?U(o(9* ^g곶r|\nl|~現lXˑ[c,/;{>eEa_ɍR0֧n[)%MaP&->\l+IҾAB <*<[2 [ܗ(Pz6`X,(AAq4&Rh%45v@f@8[` \ش4>v5]—/Cix`0♱9ɱ9PCY**g32l;J5>mUWE}(%X yP6&/@ pPzѠsI5( 1CCو" d1xo9I 8/c D*2~[8x(~ P:7"`\ }_}5֋&[Tg29L>[PރD8^#0ܛnZQ?X/$;7/CMN}6ܳ;?olA&2B@Nd<C._0^9O|Y,T T 2>0eRv'=X5x*'d+ Qؐ>A➅K&h4 V1g04:Oy !Aؕ.4'8 RGD8CA%eQZn+|a]}^Xl5xn(`0ׂ'A6r>cZZ~֛sa=XӖk虐2.iYҾ[ﱂlϰz֥˿UL;F<,yS PV"Ed[UKO0ҫ'}lZx>(  /@@Yฎb0.F A zh-,<-(-C ".Z^q{`p g2Xi o:VqYš@uÅQvVkΟ~  b"0x{Wϒ=<_뷁b-F0P0 B{vX؍!< eҮ_jQf<\>;w_F Ƀ~q$<Dުz}Ɂ+m:ۇëlgx9c%9Qm#f|wݒ; tY{Cm͙S"|2в+}ǵ!w#a~<{/[`ZDDD GO 'n S#>Ɯr<2!5?a8@CĐ ahhz {Cd4'`rA#uph |si/۟T9N÷ё%ksiٞ0BXOq=`<4B/}⧺Y ^mhyq.0 ^1X4>UeCXø &!gą$|j6{ؙC a`^0 `=clg&hrT\՟ әPHD sLTLswhaf/F&!K +^LE[lFUrRJ⅝Bߙ}(n(D!Nb[`,HlF\?>Rr_:6Ɔ`&RiO+p i a3C + sAzW+M#CR[YS| FBX֓/t&e IRڋ>gÃ'}xlipaDPƗrYS5(O)H m ("L$ňy!0uNKK 0| J0ii_h>2 %@c+1=s+eR]| axe߶/?vTWN_nq}>fo߷3PJ!JS{B LbR3udWwϱL kexT9p6BgMͅ'UB{5 O BQAcxP!{6g[F9 5b*V:{c[ 6,z3Iai4=lp2y{wGˆ@pd ݕz\@}|.qJ>3x>1@g''(haPMXP|1cN{YP˰]^xۿo!!AJq&"RJ Ԫ&)y]*$pCh#`PL!&2ō0,^bXg !ǩWU@CI~apIdKwfu[dve>l7sNVi -¢u<٪fvVhn ý2(0'~TfcX[xx)\/qe\C9YΣBF ɢu2>^8TQX3RWa!tV*q/=+U»F3@a2*yTB55UbǻVxgVPk@|˶= \3BQjBT_,{Am{Pȳχ[_#@\;ܷS`6R}YÞ *IF@vBC` PM^BJ3|~AxX-z B]d?bC c^N^wo셸fVrQ)}ciT'١ጂN9 l؍{ҫo/XA5m.g!D~x;`dL l#ڝdO]X 7s0"DMMy@$Kn2*( *(>ٯX vʜ!|;R}֒Ë>џן52C]dKVF@>]ݶ/ek3ߢ Q6Xc/w(': ?S⮶H +YN` a|XS+k$ƿC&X(W`Ylj}m.Y0`"UDCK#J&x?%%nJ^4t}4(Px+S+r5 IJjeDj Nћbްq`>~ PԬЮ?X`Cl8p0wo$ȸ?ŀx F} K9 yu.]V<❠\\=z@=cA: `9{Jo|{zlS^".⺲.)ȕPh(k\9!~+OԃMi\S" fJ sC+P1֎bk0(uyҞdWrVߪ,XQ1к0P_# Kkw.,1gx?]P`Å} GL ɥnpD- __ 䈤л%Zb2|1ʄ9$](ߌkWn ?{>?=B@4<;,lgOWgX \nd@%Q۷CVFEܜ|g^xپ9ovl8~FqS `mvS5a{[,f_U]6L{cX;Xs R.WwU"Z:W;,UFѷpޡ<!̈P|T^jd$/ )=IƝPZJ1YYgkJ뱐-qsղ755{,ɩm7tkeɁ /Lq&9D ɞ`ż%死3Fup޻wзg!9;{lǷtnӃ=~ݸv*kyO/mzC ;+:A#tJLyfSVBXxeLU$/R D`-+v0WW4e_</<=~+0J= -6փtm揭۝([o|g{z-~~vPǸ$:Lݬ@v0zN!֖_cr4ČR&1vb D?"N/xhX蔤 +[uS"L^!=<>_;=Gbr}eWgOX1 5hc`ePga" &K"B֕h^קa5?!KnX7fJȰJJ"@=6xXHۛ#&3E&f)>d J iC[.L5ó\a`3ę21OS@HّO8L-kcaYcRQ~P `J3a>2Mԕ +=G~IQC< ~ƞJ,cxo[8ٱJEq)0'Y@#cf`e?ދE*o5ĞQH3!kY^0\m.Zoscq} oI?$dK|v:C&'M @hN.ӓGnܼm?jO-z㿶i ?ed̮_ C~?P1WVJAɘTJ# (Kxmnss-bPʕzUָ6`؜t&$Yα+cL]S]Sb 0T,qiz4>$@s AvRh#^3%ޡ!?~ CtXp$+Q\3$M 2Bqz4 ToNyI qSfV7v `J #Kքk2|.or~qC xU*-1EArv0N,3QA1HMdYiVGuLIMkTdY'C#6ڶ!Ѫ0k99ؑ_@HwA6t0?܁2tJ3\s{{0&,^|=;|u1e"TN@5=Fǐ(k὘S$3n-|*=3e0_dXͲ.d#c-o$싟 l<+ D0}C8y F|h/sbbﰅ\",^}mhov}v&V-oT9[O-,wfGמ|ּ_տ/cՍMi§ılXhUV,Mn D cXJѪtN:<џN¬PzTϖ3la?b#'b< 2~L➼nڸ U]=F#|6 ő 2AdhD{pσIc{>bHa~[wl9׮!^GS9`EMON;z"OGv AC\XR1\h{`5Vw&F׵~ܖ?ci*1 $@((LyzIvHeQ ueir6^$5WU捘ڼKq,_e^h!gY %j1L:Tk>PPu`$y UE'!`mQ ZO+_~ۮ Y@r+8rn|cǏQO[}r]0"TÃ0$9󰁕T;erd{j{?Z^Їp tY$n pz@(!9{(t0e!;bP&W3FŦ& Q%ҊFmh{'[/ !~j> 0 xn< ݽ^).K]0Ǧq5R20AX[7W>E_Rΰ``xb/4R@ /jU٨7PL#%S{p:%t3T-Wfcd f5ևI.:&2xW#`x! WdYKڞk2~TZDFlOב%D4H#X@ FJ F<$Aahg){6zB#!d2 ]J_7# W^MCt9Xm|[_EC2UIeȍ{1ʼ6hC0~mtF$dpDbJaJCbӮ` GӶvɿ|&p<>;wk3# Z/~t~Og'^ȋU%lГz4̦p5JpS*N-,KLQ4Z. Dľn 5YY }G;b 15vFr~N MV"ޡbٌ6h9mշ]!>r7+=*s!17-;CrV'6KcCC2}%6^xsDWp!J}2{4*}K!)e Yڃ \Nɻx!8p}BZq,f0pnM{- YLQ"=mh d2Fh<#̘c# @C|GIFk* +~Z{F!nlVI<x@uƱ]6eٳє;cQB@G",)m :˝1ϘؑPD+w$ 5RnT+dmW-kƺK,{;C lZ q٤C#T d5dka%~bW})pPTV $V&Kp =P$T/֤wYPq; Mw[={?>p30ާ\F'^k/y^2JJ>H 4X&5\>`o[6ƻa?KOv J?FN2Z^Jr!2KC9?R/k䬗Edu %cqC6m[zӱ*\ '}zv R{ax2bƂLXV4rC=%Yk2VR HT Vi`h/:Y]Exu1ol aM',3Gט T`oo$* c7qa`m[̞<}h\-E,S2 4E$I 0& _zv~jn=^wWvU\F%a-hxUƎ ^!iWR.ؖߥ# 9ۚ cRQOj4CdL), pƌ]ZYS*dЈr}*̀| ]~ǰȁЙ7 8^ \57%C*"`Xl!B7RaE`RߕD=zf=f0om/?/r9*m컾}oϭ(*]Ʈ&1gB͜vwu{k7->gw'ȺހU[5z>+?҅^Qa*#ďQ98]\R|[ƽ%|"|dE{,pʺ2#EnF:LI IYd##c,°/°cЏi4πe?5RYra|.6Ӗ\֚t_zRش/Nmwvn(1(,ۿ[m68 ]Ιh!Tln%wlb_yI?軩DC"Pܐ4j|.j<ۖCRHm ![0Jg؟_ȰԟCR'[M$"r7u!:*0W0ԩ{A[M_a_)|!`8; Ci:>#l EuV0W |HeЕ" Q>qCy M1Zsvخ  #l(KSz&0BV BRw%ȦK1N$ Z T,4/vpd2r[,/UDkGśpZ!p]ob}xP;*̔8/@ۑx$!%>׈:zJ(7Ԓ6^?=[w[vj9‚CU XB>.S'.[Xd6Lj"4Ě(Nq' *Yy hkJyrޔJUhRJ 6.璕n )J]yP}ŸG'#S ZR@LGDu?=z cN1bݯ7)vx356\#]6%6dݓж{o>{wo`- چ=Ŗvpt`˭;g0 CGvu+6 fX/OTopV?s6Bl2"`dWUR CυWĴsh /~.Ə-Y~DcUQ{6B(>uPyDoý4EO-#!E&C.a8~$)ۧ .Ea7rўJ=G^A<;#{ N56?v||H'ֹ$=xT"&\ D_O?cϏ~{v Yaw,ݑl#Qð{. ˊPP#WX8L0'|bY}iFτ' 8;ԫ.ư'*/j%Nd,k;ϱ!dg c26rsMjF>HX`j0ej+CPe oJIapoSzY, ;X㚧(adԇHNMxd̎f=;;[i>="drt6OB43כD`~>܇wB4܃C16S`n2#i$$:3^ .S[6DJYFek+==צ pBFyjn f9.n8/*Ds!g^ܷ/߷?ZTH^gZ6cSNԖH͔ i,Eyx2`xS2׀vyr.Xy%cp|6ޘF#CfݣܱB4rr~gصr.!Ds=αHu l7ifѿNWӖ|ɗhrh?JͿsf}YYR(<%b] V"{UB9z8z_~(E!`WƥK]WAc<.RT2$!bbAf9f4 ,BP0qN\$`8dӫx,3 ?VY0BQ2f+ =F|rZARS5A$A T[p@h`w G7N4)a;/ + #)5+k{cGP䕠qajٍGvF-WsKn`fˋ*M@0 LTaIƊfs&N.NO3 j4?/12XAT8m@x~r|1a,XbdXIG]IL0QL8axkQ{n iM`(G4äi@D U4 ơ5 cT°'B,!p@.>:7],/ 3@ ʎ??:8YpҌߞڳ4CE~c?Fzi?yT 歕*;>ayiy-{cyt[X*:ftp )SSOC2u%Q,;_9G 6NB zpL2o|#!qeRI&(F b8du a>T]^*^ z/C&|jZpHi8K.`CN(5!}A&ΓkbYT`6BBHF*l=}ۢb\!$`TN cݎ'lE-}ɨl$@&g{G}sGL! Kx=[ ߟؗ%xƽTaAOUAkյp,s}2rl~1 |Pc\EC2 ͹Lm׍d0:-W;ŪUcaTƣ!?ҡS49N}${W4Alvo}J|v51N"D&6HKpbS␹(=66M-7eh9Ys& ީ>,@8Lcs 3_Q:Qhu HqKH@~=eAg䧰قk)zVYB3Ǵd.}7үc.` 8d O6|6@4>*@S,'Y1)erk`G!' Ȼ[N|9։M3%+FS1 [KZ2 $LTC9r,^챀3ҒI/qn;0_瀺d5p)krCEfnlNZBK~YkыxsҬ8i֞ + hhFd<1e3qYL2k`C>UgrgvƱN%b4UBbyڡ:x8بL5ĵRF, 8Tk%[IJ-xX (a499r@ g'3f+ůip; L 4T0:8z "0;'|VJɱ527-׾u5X- `Ըο ְЃžFgUa)4& S%CH96W.Rs1@atS<<[הg$#ё&jy0#nPk@1.s4c˶_Pi.W¡E՟Y:ݳ W s0 E_ďuq2 (<2^ZiQQ9k $&H|Q: ^:d%*vCYtƕl4} `q_L[XRC\[25hݒ6'`C7E3(UAI:x@Fw5q&\V~xQ/!C*91q$_[G6$waX+֔XSE$@Qk3S&Xuo29N HfP܃k"J8ڷoEskAg/P(]*1+QIT9GD G>­4|ŻsT,A>ұ͟s8 _/FkWB!1qm"UL3Gv'}xk*1G/uܴ`4VMrDV5*AUgNޯ8 pt xWmvG1ų^JaO ^@J̫FfH5 hUFtD.7ar J:fn"d$0L = yd(oP#!%Vu&Р ƃdo7Hv);*"6A؝ V?mHM6NWN mi+(1_(:ܹJt~fɔ-&_h ?c }yAbBa ,-rly0 ?OXfO G##lbG}l*A ~O}:D;X%LGg ip<t/:go^ƲN$kY$L _"Gpsi=, l[q O"wx_)JXBiU?Hz, Thh$OD!Y.:3d5gP@S}ɡ6LZM(Ha&I c΄lF/6 )Җ+m..$RhFt4sO9Wo}lH;8"po:%kG ۻv6'/o'O\⎛]^<=rCp0;V^ތs0xےNKg.JBcK0"'sK׏&+I!b +e )~^}r]mͩ%#Yfj4`ULcdzsAdW)50*g󵚏Ȯ}pT^Ciu_}ƐLM[ݯvUjZ7*18#Hkh ^{?se-4_krfI=23 y*BZYV$*fIJU t `7VWcYX’& tF5!!,עStⴞ:=!P|,6,?2?}D6\x q'!օ?'sRq/8j8{OS_}NxC͐'@ah"APrnw#2=vIo1_S(D,S e9901 I `s\ɲ5| {s8 P/Gt6CB􌍓@|]?i_VjD(Tpd#Fk*U0e57z0DG:Ȗ+'?O;y؟=ϕ~YaƘ[zWGTӸ QęPBY.C1)[y]a`F %B>Ff2i?*bEpNAUf$I@Ne(YQj; <Nolw&b ōb75 B2u,;\uOZ,1xBF&Yǃ<#=Y ?Hm؈BNP]_e}a c{ޝ3'\lu'Dn,LG'OFę7cH9;AmvR⚃4s-ݹtWx$ՍHnc vyIvʁ3?"pJn!ddVLbbeO.2;ݰ=;]8ԕϼxBf}Ϩ!]`VG}q5HP.O*|.c7yǒ=q*5]{npd?4D9ք9 gʁ:6T:B8pxZ+a֍5VD1#=5p,[M'bƺ`Cʐ xӓxCF\cP=Ai<-"=y>h<Uu 6lSy(sqAK6l:R\<DЎb_<=rG5;B,JwB2ZD@:dw>ُaęT^`e,a#=+ K;ᗹB*]w_U^^t́\}oܾgO)'Xu*+ ؟KaG&:^pr[vPo=y<і{EuތuFՁ.FM juɪnA`&:NSyQkԅgҳ ո—ZC\"Dj 5vwߴ5 IY=8Vk6t 89 >;/8ЋŰA Tl=bnfQϝWM55!y EDtyvi [`͘7N::%? Dimُgvm ۮ4w#B*v+ƟgǶn)tf-ORaKo @by<id qzѨ$l\Xoyf T[ ǪVsT6GX4$[*j!F5߃rwnBuc[ qDKGwMBU訲"ﰺ5f[@d;&VA"8ףG'l "U#Tec XtsR=١M z,{w[fdKh+Z\JQX{gu0TO' Pp9dxFeYD;C(RP^˨ǢcwX;5zB Yc΄>$\UAI< l!&yՀW54EWC? ,z`WUfE}5DZ; r.ȓ}DS.5nLؖs@CLJU"8=ʋ۸ϰ5AXZ.ag؅`-ZJe|IQVs -XSx2{6\}sE?.e ; Z`%KP;OƯH [Rv2GT)?,okE2g'@ArrӮEu$d+ickDty5XJpaqV[ v cID^#YbVuހJ$N )[(IP=BW'muaSSgl+%Ww&> :<=9)µd`oˋ3{ qa<~CZ`g阍E sE}$]XC#nN!<C2YI(8)ŸM;ԑs*4D yw:Ǐ9d <ݙb4т04d )ckΥ T`z=MefOtYΉPQa pb3vrh“jx#W=>GXX0/#*;uPפg#a270供Y$,sJn1()"p 9<@ONKB׀ڃjBM}L' 0T-첂=rpj:f1:Yؐe/+!:]0kF;c$eݚ5W7ԴV`,' Ѫ1^’ï7{ MN|ͷkf*܅a`v:-ΡbF 72ICKAGp,=B|:"[)yH? şgv|HCz$x0,zxh<(݃׏CĦ^ =xDDFⱼ> ~_X ec UAؓ@x&!0diLj|B3[&(+ ̶ "QUiݔ!=5(ؙ@/@ aQO\ѪS\7"!L(ĘsSgc^Н0l:m -kAnf褟N1ޮᱯ۳4NT||drn{,z^ N9,f'0d0$táX^J\G P*#@NzᨯI "M'$&R1%FӉ=={lo?k=|GƆj)BhB-ԛK}Own2Klr*)bA@ MK$$4Fb\1)I*C*;X`$Eˬ̷ܵt'ȁ4}>{?O'֛ KNz} @ߝcw5JRw" 5k,^%q4Ȉc45]/6A><d>QB'f{ <) w%7!9~[Op%YjzR PhTm:ͫ~+b Ű} gMv4CMpt߹6wFKzqtNx<woWO|2aa֖a*d4-v+U,!篰vfaT hg?C`dHYT^J ^ԁPnaVeױ:U˂S-%v\|Cr@%/\xB?@_N6 1Z%U=PIES࣮1.ܮ/uK~6˩h1/ EPH6DAZ)2;z$ڠj[֩mX֡cWz~*EZd*QH-&A5UXSrVzǃZpk+wX7A<3p~No*!;-hWzs6:/hxgF%3r|%'%%A 4\/t N],q6Eoq.o'd$>-i+|(=/ N|/(O*t"A(aȇKFU_HmA.J;b.pT,j`2!,zB`݃B@V[-K@vJUlw@z2{֙jdP?kfyX ^holPsg0~@X܃rkiy{f̓*`[ϘL{MB+)$D(o4+(jj%"!ŐXje0-re/B/U^Ieց.4?.s>W!PK弢YP痒Jnxp~2[X˗ɾ ggC2aFȃbK_S3foDkXat3l@XJP.~!(V KKG_t~z&?%#V93{^i鹸FSx"5IkC'q`oVP=٭mA? E8i0Q6lr9gN;}b2SzUn`KH`\ {65NR,U^֌Xz])Y@R><Ԑ8#6dz e:Pm7R2Q XZ+sx~uj+P\3/'ڑWYz-s{xy{~ ׾4HUUJ}\_*yϔm`.o>3 u:i9ap8,$H]VD/%D4l. N\VpsA Jo+EP&.5zze݃Vz9vI|G~iZtc)F >zo\jt;)SB)؆W/5)mu3h ~1c]S$|l)BkN-}NrGt)w"zԼ7BAvuuEj Ss@/y#ǫBDb<Tb]\-<=)NH<h>^}Z4N\nG` ^msKt?%bu6Nu`=\wOc!S/c;gHVq0Sv`=C6t~cdL?`EV;6dL>OQb.>ens FrHNy+y犼 =. $KgfnԂa ѿQ M ?O2 -BZ̓d<<6L%xLjw5&ߍl+L oz/QoF4}^j%fkК4jhZKG~Ɠv'Eo}G2F^fT*~ƨH\. v2-+җ*XU惻@FuvZ"@J듗sdi) L)S/˞j*OoJۦ`c^EJVH=z(֓Q _xh5Q^x$>j}ZxxVXݙJW0ʍf3~SV K{tKw׎=+MSgÛjeD@vBK|wRf7#XWXU!dQyH{(F> =w9P=m"Wّ1WeL݉vϩ=e\h!栢7$E4Fؑ~AQ^z @ۮXg˿ޓY`q9[S_:& L @џo7;M7_xVGʾ[nEB[LĽiFi^N6B_@=<)]P:b 3/ +&<0q"$!z0e/sEEibQHR0H%%8jɛm$LjI,Sjqj%ao+_yaŌ(yۼ\+= wL BJ1864MyJAjHP Tigc WfIkĜ5Ĩ?=`º䗻%:c#hƋLnx1ћ]Y3=D+ F'Y<' i3ޞ0hÝA€"xj`\?wdd!lkAbi=1mPyR1%eH]LaİÊo`D,2 Hr ?sÜ&-mgri_] #e/\䇠6d=g:J$TD\x[kl\h -dj!<7>jZmVJV|TgyÃϿ&ozf̈́]t2R`WRٕ.&Vo]jbKƪg2K7L5K5o$hDlƚ&@I}A"]~ˏx}2&IoX-ց/{n?; $GUxa6\ؤ7ȅֆ!y0K+.3.YP*Dؿ~# ?j*)֥upեk9{ӭH}H|/[ڍNS)u4$8N@GU2^LG ,֣z.& =&Sg/Hi,ȳQ6' 60O [r@^ ܥEH3^94$^M5(^q'*"aw 'zJ"Jk]0d_$,*#Η/yXv̟2`;?0H>l_h۠Qi" 3lK;S 0&[{߇8͕"uI:ȇr7^V%K$eŦ! ,.值JU5rTR.-e덖P<奵GBYmpb C"BcY;f=@fV)xm<;na+ n&f'K fgz#K4j ުDjT B߀]^*RAn{[Rζ;M~A̼|2^%zq[x@S% $:]spFWC;>yHҮ]?6ȏiݷaA nlR`Q~,URyՐIX;0˯1 z\W -s2=ǩD,|lMJ ^ːF|PM)Mn~뉃֪$:ɕ;7 6hn_?ςQc 7z _x`\) -ҳNR0 Q*W3Com;L7bXVg>?ߥo ?fܕdw`o*3,NU=h#xf'͐8>& J#n.#Uz1|s $/LØL?Xc"v&ت\WXANDM{`u|XH\ mF# xd<TW$!"'W k .66l 6@$Zvlj^7\5S۞f9kF^ʠ~Zؑ^ ŨJfSA-xJpx*01PP4W}y^Uy`Ru<T!x6RPFm*GŘδs`Vܩ-^A$47+ |a&'%HT^7ig|̙8R$-FEVDfzE>ԃqgfWdl`̙X"oqLpo QJ^ 8􄃈1ou#oor@ vzwbwՔY}Wh4 aU >y90] <{H  %z2)G_{{khB4 ~?)RTEb&j~-?J `,K`_\kv~z>&!-CBf؅ȿ_I-;댕}ϖx0i/YkRb`UlQRܔ4 L3VgC~hR⋈S_lAg홗0ن=mm5naAS>B55=4-"eUf: Mƞn3 2旗PK INO Qn먅*2[A^8K[UyVCPDyԦ'eFw<H=qރZ;vv* TI] cH ğ/ǒ˔D &~М/ӽ9LP:YQ^fN.!SwBe(f$x y7ny?\s#ZJ ^%FI =HRUPv+҆Inm,=Fsm3fNr_NuBPYCgZOF,Dʣk?':Oc?nI{j[PQ6t>d5_zw_Sz2,~뼯\B79VJ.]-C^8TB ?nY 'ˎ2|5("ݪn>Y:S\S֙ϵ Z-c/|aKEþlZ n7OD?Eܑ_+ tFئ,0L)=)qL*m$*ei;́]U(1%`+:Fvs8EoS TEfMŒţx9\y tiϥRۖI<5@;ە?ˋRsg Rw.#lB oM m8^TB sVX@2;"#W˭2.ȆQjV]! $ :wr&mB.?˃n g!7:퐬̐vpKC۱'zvn)F[vMCI߼D@x tK՟<Ӡ o_ ͟x9Y,kC%x'ޕ-{b zH%!CGf8ܒfKhQ*֑W~bc9\j:HEVô^`]U0'GK~]PkMװ6*L*6I7/B-@ ѥK4U)]主x9fQlu^L7tޠ{ENjA#~Uo b1!Yh:&5r:$^M~\R« Q@/6=w'0fM4@vO9hEXW_'QGm-iVmAhY~K]Sg6*]_FoˑlrOX٨7DdmP̶\*rM <4[/lRж$B"N4Ø-csa>M glKF~L[^ shsBep CeO?ڢG9N eq8ms2U^U2U8((& l^l /RB?#`&GnSKSr1oG(ޥ<3A"ss%H8TOKz[28%:d^ UB()_\1gs! /ť"L$ވ_rC,z vKW 5e+τ"[}@g/z.=Rf ^ή.T=KN0aezuŕ8 ѳ Ķ\ ٮlavDyAXD3P΅[D;.⢤&_]S[ XZ06ໃZ*!gAJ!#^Rd ڋwV PхgJ`w1 -qor:Q+E5 R(k%YE3}S ]k}%0X}?mjewDb*NEi8^1U[+2oV !Paza%&" TWeV^lPߏ|yAaS&W:! ‚rs+i1OBÆ//T /n%#/^s(˻m6"j=.6:+ЈrID @10;of7}L` ]ԵsHK#ߒZ.H޻Edy)LO<pҰBC~͙xU<LAa.Y@8g=ib0iÎL -./xȄ XՅgFUvĢFEZ/˳lʯz~PFo =x$/o=Ч:NɳO%*&v4Jk%hRZYh֠XmV Oa#Xtx3?&<C@vҚo"dd\oV+S.}/j2 9-n<jZfW[Q {*9T.?\^{j GO_v* >͢|lt8OO%MjhkgU&4?ۼw E&ȸ3rz* &`+(L}~*k-= 7U*v_hm~yw4yd cے}{`k4UoW[N( ͹e!."Kk@ e+t^쯅3Eܬ$6CEz3(P![ցb "`! .=G48A4T[3 BbE }I?%Ғ}q%vRɕ$0Ãtxqdg/bߧJ ^@Jk 6<a8aP~%ZUjnQY4izI Z/[zVv/ץ``5̛Xӊ)Y_d֫&bZ/6t5+ʬXyz)Q$uZ14eoYp ~(׽ǎ^Ul(GCHㅿcK?;态[Bߙ0\T ꡿9[uNe$B%j٤ (~$bŶD0,F~^9`:/l)eeU;ǀUtd"6Ȧk~6AG&4*:?XzeQ\Msg#K'‡3#P\kh؍T|OWҷQI7HDKa]n#߈څ4NjԾ2lqlʙ LzAn f~#Dr^Bj T.^.;hU&1fViy}PĚHR{ ,MzKIfg:h0ւ7%՚D&؈&`zZ6^ϵIw_xAEQ>"@/V+/mٷ)I pRϞi5E*)E hyYgZxd`VGGvquώsε ml ^4|&G;H`+{q:K`/"qX|`2|Oߜ/Pdwe3*a(8r'Rj尗{oYu"Ć'L)1 k:>M߻ Z"])񵛪F$)sel2i7@5?8U=bM,c٩=gMGLWzBkBY]Al UUMI/^֕Eo6_Nپ°/3 &}@,kG7B]jXv0@" ^ Xx\G+;>fߧר[/6RXFOJHzM3hp54\ RyUX[<1,,zØem b$U^AOTkȱt(8I$!υ43(I.]bJK'+@ ƻKRO(>KTx~mEafKF7~"?#](qcu!]?q;eD:̩h[Vժ[=arlÃ^ \-s{Ͽ^o\DndoWܓ}T$M^xE}!| }{)NۏNeʒJ]"˻?r;3L$P.uu]@G4i*FB]NG20P*YgSgyf4LE)j&bۗ.`vxmSnvYbq$/`(HzF?Ll?c-RD(]S/he,U6feY Et׶IlE_.N '׎]?#]7=y`z co3!;=h!.sU ;|,Ţ4K`W&{AbϞm¼AP;9u> iN  !APG-[|&e&YLXMڵ/^i{t8! l=!/ا>Qo<~o7ԨbrR?ZO5ݖ4?zȗ4^]7ZQ_| mk3F*^,+_qHܢR,RjEsN^+qAҫZ u쓿G'&nŔZU*KvŖJ7r|XAQBgTׯJV/PVEN 8uU^P,~?M{c)+|*#Lh#9G)wNGcq:J:q,x'cH*ۥ6Z?`Xٲ*(灴 N=xo#* 8ruh7DLbJ/ 5p& R L|#mI | p 蛣viRyyi ko+j]5ڑ Fdϡ' pLz-MWv[xJ"+`k~>wX]؞{MZx?,D۽$g=9݊/yvRg&d?GHoޟگoZ3_fc=t.J-[ D+3O)w KVc_J=󃣮 oVslɱ!E*k-()Q%[ Tx (J?z8_;{\[VS:k[v>IՂ0G^hJjuݪ&<*-7wwHZ6#d"򪿈J5:0O# k԰}0oۋwꠦ7Յu<00Ϥk Pk8g!crKB$d&xk׏[&4xH=]lNح!%J&6$ =@ .xG& G-p0Y;BR؈%8=$On\Sgї,T4 lV( ΍ٽS߾vfp3wzΰZg-fy(AnФ,xٙWWzcETqf\K--죟5/_fmCH'U .!{l{RUXۀc_b3o U+~?U~PXշʲɕ5rQ&r꽁E J%;.~'Re$`^KBj޳wbtYQ9Vl/39m;JՅɀ {vL)u=pj$UC es9PH '!ݙjcJ O` <[W֛0nVskj闣Xň4M59%A=88EvhR_W^Vw-o] PfH2t ^[ pp$l))2<+7ڵ5,Gѹuc \c+QA7A$T: 0 `Dž0G$1P V!My˳W ;6NzI'~.y˃ng3``v"B R7[ycH_}c׼ξpx"w&^5n ;~U(KOz5)%xwVn ]5<_ē~Q0} ,vr_[4tSGcOKITO={ 4p%*d۲Rk$^2cy9-WŠS[5WDŊr3A;x! (01^ӫ `֡(;n+*/GV=DzO4N(ƼtٔÀ X dܨ l&irp֑.=ch GVKa #TwB;r:M#x[oTGջ~9=+S$Bu DPӟ_{ \,+yH}Õ_r0 cWC^b7K'sojRB3wޕb>uNjC)>f3bB&i/v(FIO` 0zzuXosW;eUEbD0 pL vU; "dߩ&ﳙ/Uåۉ'o:sT'=!\)[GB1A6+H<>cܹ¤հ'bguO(]+~'w1֙NFVAV85^G-&+G>Zy GX޽+ 2gCW>O>vωr+Xk{NQ{7Z B$H92RGL5C$I#`T?5C;_^U91a[:O (gPٽstz%Mg.k*Orq YD3^ܕ?P[W53B%|Qlu~`f<#%EgD &*l6̏c<}gNf^gG}=~-u5 .ѵc{ϩ/,X'?8Cr\O妃:Uplȍ|%y5AMCKʪd-g$l,<ѣ( f Hgȇad3!. [Kt(qwRSstT'AÙ*#[=yp쾑MΎO4;P֗N"k 1,lKоo_(gWCRܶ{cYЍf?Vﷃ0-Iq yb9KblBIx!2&&v;u_3 Ŋ|IP9?|YDeZjx4ח{߷'Ʊڧ|Eaܢ{oŏKe^k>(+KLEhA w<%S&ZN"ȿ N_Y wYc}YD/t%QRѪ;6z0H/W1s/-;UEv4h C yX-V{j3b qIXude'cAhJ3Q brzC3=;Vōօh^^r# ol6DtIO<V=/ F2$2%Z'V&BɁ]^ki&:H  L+AS}G5obAҍD51wB@x`A1t+;=7&23oŠHutݾڪP%"n%]#N ۋ@ .sK+hUQlm?rK>X cj8g M{>?={ſ^X=״K탒}tfG,o쨹yHXnktbIKRv,J 'V q{ۻnE=|P DUo:p|'ݳWbxdxb~?e۩s82ptq2+--\&@a58{z䁀mMGW?ɗk z*҂\n^‚]SU)D $eh4Y'K=fTz{_1_3D* Aeq.gW[LʯqPk~FDA4f F:u1K*C޷G0i6?v< 79 7矻oxg}+O+^3fݶUU qp<"16HwJM6D:0F7 ?w#L[lH#m Sdيb* *H있\`ͫ}cYV!(pa9MVd-1CW J6U#A׷5 )$ZXֳTZj؇ٝ];/OsW[n57_9M?O?_{֭l/х7OcQCkW9N\w?7]^FTT""oĐ-P{`빫h7:ϡ1z~Cmq䅠 H'! ٞJ;ӿ>Fo1^  فMl2w/vd:Vi:ȬL΂.b2ՊΗՅuܛy`4d ߟ %C%PkBMzou~<YrĄZҜTJ c@jv/Mxϥ٭['R9޷nysv{93;B-& -$wV,0f1#A30a/RII]ako?zGx)mLB!R2?4\CT%΋K:k@vR2߻$L9gJS9=U?* f8 ifv'_ˋVHN򪈴>(Iro'3ϴBEd+ww?v5>=/PZy:_-U<1;*vla~_Z{Zy~/CXbF-3Pq*[8 ڰ[p5Zݳz[~i?>p^qM2ydi'R?_Ya6U]V䛳ITlJe7rO;Q9STZ#Vu2\Vżo"Yh+ޛOnhbr4?YKPxr`r.[=jF/ԥ՘NSSL >D (]^IbQ]d]_ŽKG|-΂!DR/L=*:vKǭ]6>섁b"hs~QP4; GSQu[ixIssQ({o_*ӠPJnי=6ϭ0|R%zLRûrVr`g-?`!DX3s'm0fΟaoN; osۧ}{bٰnӴ-܃?}{y%3o֪p}>wW%H;.$XEacj6쀛g8z7krBC3<(1ցsaU7q $na9{I3Ju>^>RfB% aqR(c2z)8yF_Da_l,, c0hʉSފY8u6~ @!o ͭle">mY&6K5r4Jf(__GvOdzjR{uZ {"K^[JʕW|3?Mn\Vlҽ/ށVfI$xT; ~l'`Rm- p¨Bpdb3$*#k #PIB[B &vx)7x8s+̒Z~xH8TO^eNd?Z/Zh3 e^~xӟMv:Ϭ)x 5 ꡁjجs3oyo|߱-CO=/7*eP{XJr۝@L.#i* e . Y/sU^'hV-•v܃Z؏s2ou|1PuH{R_28Pxuy:ZѬFw5f^]?u AWw`efY^&vdy vL=j>l z^4 vxj'NͿvTGUYx@u R+B0'v|@j0]̨+m=KU䜻'ºۑհK6D+^{E4 I@~gJ,1L7;oE/Q?6IUBYϹ?egȻJ| 2*WV,,): iPB"%{pm_{jSbɇ-kU&o7k$>$aw:)/=/Cf7z継\O=K4{USXI@%Q I@5WVAW- RCԿ⒒z$"1MOrMSZ젋30QHM!Z٩7PWUԻU%^W-. dp l5l!GӐrio>-,\x}gO(呹AVH7%!6f,#{Nn% k {J%="* wvyzl\Z|^@tK6 %R)u\gXNm8^ʺ*BW}9Uv >=^LrAض_2*3x%{9.] l0Ф{UD@Ja0x4FrUpJfh1hE06dv;`D ~o*oar {NU+i*㣁﹂es'U h?+xTqAW+ŦjoIK7KZ?_|zb~v#ͼbl_-b|+"CuZF6_ukȎu'{On1٭Dlp1C#"6PSckW`'4j/[Nxf 6D( C J@U9]".P`{uS9$z @֬f`R=?̣zۀĩ=uC<y30$^pS˫+vxr!D`!&P?aἡ,:=wj3di^zp *{?~9vz^wM 3o7ֈ*/U{ν@ױ|R]m=άP/R`28c K@Z_zkWj|KM"{p15f38U ]TJh, P<: :9gab]7 JSe$iϹcT2-O >c7 Q;mln:#kEJ7|g_soS֚_xG-}7[Ӱoyf#o Xui0]xθ!%yFKIdjyٟy;ˬ6/p< Yh0]l\k[/Wo恵Cܓr {_3ߦp~`U(TTP- d♶>~3Do<] -ay6*g膆wbkw:6ԨTuluϰ%HTiODA#, <]ف?]pWd? (>fS+kEqӠDeD-x a+:zTU vrvgY.j#?w잝W@=9xd^˦CPN0H^ZoXz(NT{|#c>n;]nl6nmm 9 9j '.8kJ4SBGB(YÕty=h,P]0T.swo֚kwp8t{ӔPϟ?+EⶴZHndHl=hR _Ao|Q&tTSwZUˣL{R%J4.}]2#7vƀ\aD?1G^inc3lH>erJufifngj3 ёKB?PIN 43a)(;3@mƎ6s೦Tpc_91ue(<-Mo]WY3,G tZ}[̢|:<!X!W}635pn" Bm DUgc4V ~ͧVLe /[qfgnXr猀q5hvo`a;%m[5MZ<4 %+" &H(`w[EWԁ4"`u =J7` \D dk|)dt) ,.Vd aMx+(1!9d29[CMeܲ"~w)t d-ƥcJ5Ǭ=AphG6Z)+M z4Hw$ ZAG|d?]io` Ɲ\r$L.Y[tb| (IBf V` O ;Giܖ6 !O۶>fLjC[xEI .4!IvKI[K8tAwX LTWM_d)Z-Y88*aP إ٘xdGmnJ&FSfN$ |LD$kP.Ч_$[ejX|x چ'Soh \ڵoٞS?ٯG*mDA2أ@֘EhB ]YaItMEy^[@#zӜF3%vepJ;n~ #YBB1\'hIq J%;qާcZ@l2l7`d͎KnJ=\5iY[ F])xgqxvQD"4N7 <|Q8y|vv ע鰢9F4S'AaljjMGtwmrb26 QnL6A8^2!%J }MfcOB Ӓ8K6_ȩ%Gϴ2@iBPp+~Yٓ4&VtMƬAaz+} _Rё&4[x[bÊ}K" .u hk97!̨aԩ8I --lHߓ\6M>"`&\+ds. W._[Yዟ#!E>PBv#R{]Kz1;vz(]f#lҰ^lE;]Ǻ3Q9Yl'cqamLɢ 7ptiؕSgF~);7& ;7.o >7DB)~ADVKD5ה L`DqIG2#R➣&-tp@;!xF`KpX nfbI YoءPE!ĢtEM=#+ArJ&n!^! )Ж\{4E KP!8OǼ+'\ pa߾8(`Bn+B4udN\pl3,Ώp9IR"Ɖt.̏hC)!D4NŔґ[75;[Sƻ^rlPkyd&Nil5kȘk+r&fgPGAY]/l>6%izI'+Yoc7&:B(xB @>jqiqUOne4u[m~lSX#`*>rQ=#D rzگIA8&2Y" JEQ(mơDA^TeO6ilT= 4JN-8B|Dm "&U[!=OT5Gca[L,/tu&]wѢCaT_:TX>6lZȂB A5j%s"S^){ Gi\r}I:cgƹcӝD*3ֱh9 )Mԉm:) cS_a)@p2a+=^57ֺ輪/p%,H%LN>Q2ϗ2x6A5ڶ:OZVnD"+GK1Hړbx4j3bYS&N EzӛnF&/yITǙ,Gl382>-XGp;v-ĸ Cig%LAJsVlXT؉#R !YOSdpa|^f-LJsD$rn8`J'%v-hK Y6w3@QIف$^cD mtk2m2Q|]d Pvc ;i65Yϙz!h1}s +m VJ٩\@.^fkuzYsQ A LRج>m$\*.MeF79n;;kdK)s"k=;-Zj? ̼3mn/oBs>Ȓ=߱)gXC@_;0YοyFh@☇sip( A 5o~=ՀUS.r՛*jWlMI=B/9z߾Օ q# 'w']{泟a^H4UXb44p& @A.Xc)$vM sK3-58@ @%-Y8,.o 2^=`n(#F(#FL裧qNӳ{vCߜvC"Dfn͋$Jy4"!wJHK1]9(Vx,ud2GR)_Y٫>IZttRB76[<Pj eSTvi6A DIgQ`CjQr1zp*-FzP$FZeVysJ9kWvhk`!ޟ}te+~"j9O$Au!7t$iJ] OEvrX2!b}jbxJjhm(Q6ڤ?LʧU  F\^yO 3LȸkIߪF*=5A"HёK^abBQ%%sq{?dz۵?9Pp{< jC$l$2SD ~T`dnxs.>zgN r= i{%[('lxyɼ  d#\/~B,wZ wr9!` s=GL&.'yOзUd5EB[ۮY[Y\n]4e 5.Q:HmmK[KI oQPג ABH)θ,"|ٓGhÐGդ9?|¨IePJE,YGclIr#Y9Ŝ]̱RTX[r@ m N,m!uAhڤ<&o`(سQVX YG\0\2% m5kRN<\IgbvZ];^XY6jRI+Sr(fjyҾ 1mqn?Dsc/$m<$5Ȼ@D,pl伦jtݾhXc_ ),y>J#G+ޞ.Ğv6Ւ25' WA7f\TLT5QkCbfQv)B \p57@"|Ep w< h>rI AmɌqV:\$Au-8e3%uuF]*%=꿸K84I|N<;E%pL@UV*%6:6(:!-iG<4&'2J}g\%OG=E3liQ+I.Y\j wnMCnqY?A6!:};Q;YK \m=N, x!ѵ8UFɵXB}Z#5mOLD& c$dL}z `NP19R8$YKC[BeTGxO}_ s*wN ptAhyy-|Vc3k߉3G &#~³{ӬZ:<+lRĞ ١Gԕ,q;Dj|/qgj5fwӛlP#m%x"[D2Gekrv\nT :')?eNsFˢ!.О[}_=@-M];; r+.\JN q!)f>M5y*n 5dkN`YӴv;C:I&HfZS} K5zYxr3(_ή3%7,66" z{'M-SxAe+*,# .Y^AqgT.EdWu/:mE{ vD$$4w0 iTVo "D\3\x e`$U;c vW@ GnLM(UVIw=&̥ǙFݐߗ!rUȽ\N[i ֮G3a"9 )'q^sgg0J8b̩N09Q>eo{)Ml ӏ=Z1/UFrZ `Oo}]f5Llzlΐ/^iQ|TS-wUBCs:]f$ЄG2?zRB5mWx% bn,NپQw45I ?ZX(j[VljZCpװޛU/![?x} [R!UGMz-zS1Ė?@pzF-dAhЙ vLlAnn۾rKh@GlJp-<Npxr.l7kd ^x"P̋ZebǷl~eڕmCJi%qHUntȅulPXjq w _MFNslEN:1̸|O'4-0N/^]<)@7Y;<QS WG|Z IrʑK8Xz..ʟaۍ)DF٩uaZ٢ZmBLlj%%9j<Fi8k־Gm*,Յ4gp@RZ((iR@0.DF`BICVuYVQD~uPЍ3eRx^|N##dw}O,̀A.9e mֻ;XkAtxw!&xTR N}H._5Ϫ~Y=0˖bv.:bkmO`;ߋ:n!Kxj Qd'i 7 h-;s'X +> m;g?NޅE?_Y(1&9N2ĉcijJ%msO?ǪHT =!N؜S(֝:lJCQ7[qEy8T-S#G~͕GH,t*Yg>ٵmcnOEhFP R[VwT.[G 2Gѭ&Sa7j~k y #uNZRa\5޳iD4Bp僨9ۮ;\./dZIR(&[HiE ߪV;ZU%@ \l%R@ 1xxP{tsQ{73Qy4$Zx(b# 4V;e%G><״%ϑ ;lIMk82@ ټ냦 /][&0TiM^n; *CAݸFߝE"9T6.<9mo=TIL9N.ߜH Y:rN!u]Y;H ҾvKmny/aed7ډ=,4J-HDR ŌdyO.鰁tBTx۝Hׂз쓟{IF ;?Q ?x]˴Eo{o>){v[{OG.ϋէeESa@" .Xu4.^j׶^m[nAw6mqib(ڍ Kq''vz.K޸~@RW}zҨmg=2tTJ n(#w`[3uxe!-Az*[}K&l>M[0[w*C"-/yQ}yԨ|kN@Op}\$jzT$n$WO*E?[^YBױL&)ΜH!/$;Z?lQ 'd pl@R\̩Rbq>XW&JFu6guQK hE⒑F%Qy2$^vgZMk}9am2PKU֗@P J;m8*R1`nK+^p+@h fN;E\zXLsNeq)u A]OAa2(_3cf"b;m.=bȬX#2sB9GIzL65r;S1czh2þtHx|NS{J EXM^ۿb^D6V/, #eɮex^B]69Mo:'`\'!:mɅmiiAZ(1E?7Y*X(peFZ%5a7xeF0vW p%W)X7K_9e6ST:s26GX*]rc tF)cg"Mj^7>9݉tY>fdatU{Aiolm`Gs)jy\®v6-OF`= Rq'iMc+W`PU@YAmt<@D;MmXPb(*Zgجц%r ,;!D sO*<8,Jj Gd%zX]KQؓseҸ$֘yg% *B y)ur5plL*;PsRNYHRu5l( |ջ *,)dpyq]Yle>qp$[* /s,& l$u=g~ $|1҄gM)Qci5( ;:56F0.(L٣HGpFȮ#J|u͖>$D"SiLv91Bq2%,j-[6Wt4(0H(Lؓ<ϵܞSJH劅Y׾Wع$9r!#h>ڕ/~S_*RLcxGth+uy+fv~moⰥs[?.[;Nj]}ʗ̆ݡFch.0#9"SiaB V u#1FJYrW6tkMQKv) F^Z[.[GN ד E[>M+{Vm{cZXp@C՟zi/˅h6yja4@u g[ͮD?x PopD<&v+dH} l5js<G8`(1fJ x-|@*-BE}lWm$W\Hd t0fk(;I.⸴R^0x5fd_"Y07:;tZWVzcӏDR?Up)öo_;)Mĩ( {᫞g~SrBRJx,% vZifdv쳟}oXX*)?~ghwHV, N,6o+CV-1^{\~KV_\!W:\ BEk 3kN<+d]!Qf6V K2-rbz9* sw/CG"MHEj2eJ-ިJie\/~d_{ XKk~T<O[-ő*;?e̓"TB~vrfN(CWz.\X9alsT; 3 D&6%qnW U⪄V9ax_X+ ,i v*UdEimm!;tc|/! 等z/hT縀z/X_t dMdl7Хd Ǒ~ni/n DplBV-ы^r^\=^&@1lIM:6[L5v4Ŝj8CqU{0ڵVY8^ 9|qd[>V. 8܅WYϭup=bKKL}*u}XCV¥=u52$ǡa#ٙYm^lR3@V @%D0 I:I%xڭ;, :LH)[.Wc4g8<ⴣEp o4:Lݓ[}133/2sz]uhOtZ.Zj< #p{O~ھຽ??eÒ(Xs:$>5FQ

}{,1 i$.xڄ K᳟nt]e6-MLfI' )?- >t8m <=u%)Ϸx,?TܙVTҝhfuj!n dF:IYn˦\Cji[*ﴍڽ) VJ?#d5&bȚq-8 Qzݩ[apm`6_D}No9$4쵚tp:}ٻqMa>P" PΝ#7ow,Gyyx٨hg)о '-V.&Ѽ?Cڛ7hgfGzHCM`r6LǥGAq㏒i,:I̸GB|:` ^ϗ'* 5ɱ}bc;o_y <#l!Zr6bk q|ϤԐzbo՚};|r`$|cApH K|ԴqvɊ$nj0DpMG& Jc8]\N-Ynw])FY &ՉfNR_͖5PD H%";FB.D G>d7ً~*?dws#\ l,:+ >1$,KR~@ ƙk>8 '\ƢX MSެYuNֱ|-(|`[xh+K\m ii*-@M񳷫}ysmvfmd.D 6c^b|@ @@7 \fa՝s6U〯fUh".`@wTzӧn/# X{8%U+2%[ OZm6,GeA4 )cVi#KK8q1(0sݷy eb2Q+ELvj5Aؑjư\\Ws5CsTew߃B51|'2Swto.Ѿs$ͽR\J7ӝ! VϲUKu ʯ1CKx'Rv%Ӟ h H~oŪ݋tb6z6A}E+~;@Kk)+g3H-ڽ/晶T|# -;6&C\piglR\88SE7}-#%"+-|?qGVv}w#Z‹YN=yϷx{g?022Ot\f 8j\<83IXoW( 4u+u+# gzE9wuEpsV4HPsIò3Fkiw;;Eƴ?G .*28Nᇎ9-\Y0 KXcs2Gƾ@D-)+rՐۀĒ!GK(kX1%K Yx6rFO ZG,~b?nY\`=a?^iΦVPډ-,Ib6!rz(۠Yd6veZ:Ujc5jKw$ t2FX \@ETlOZ);N&Fv(Le5B1̗!*dDX|CVLJ;iYNdFX'z(MiS"Wx73;Z췮}ʦ%oDױyՇIkֳ{pφŐ&T<M~i6H !E}[Zbp !h*,Ka;M':dvϹʾ񵯫瞅 _G}x{'41:j7lX |qeSO##܅>E'%DC˱"GZ79~|:ݵģ}Eu+i@paCD.m$#65$/[:;"̌4R3H!Jk Dv١0H)&KgޱdB2t\#3;+gkDJ";@#QbHs0G{YΥ U:NO$ +"e3f7zlƥ]u@n{ps ,C*э;ʄ ׻ ^xgPҋl8iBѲ`2$Ip׎-^thH.>,%^_x(3J#xm.a0`ek%\eO]z l[ N~[_!GqpׯdI@߅jx^P2Id3ʓݤ-)j8" ,~UvNaW?Y(Yg_|[XY[2' x[`g Ȥ4ڿIDATloYMjb'vNX! 4F$O\*u q/AV.nkpK<df.dzYL >Lq8koMArHiXM Izm&k~ :0D[4߫[2}Vn LBpAs%9#?,AOOeX MHƕp|c*!q9š +ñ)Gcq QB㞀:1ٛq@C _#Lf^(IA @XM0CIWSLŒƎNҠT܋ɡfmRr4iOQsy޹ 2Azf dDUY8U +P\qNrhe:Hti)rGi8Uri=쫁:ݡhΓRpCI."F{@\$"牪\(Sx⊧O{-rsRݪZSʱ,K`ПY^-ص׽^&;l e'l;{=tiَyAOz de .Oۏ2RhdyKH`C6eIj_퀭rRCrF.l_!م?W-ٝwn˶a.jy x ep$^U0DBS2͝o|~ӟXi~ls(~DDIK/Roc/ƙK|y~u&~PP%@8y-JjwKK?2R s쑃vԎ4wC^hă(p|8IMYgXna:]dfC422y.]4,ڱv#>8Yd+ iaC',Z:-MQYz̚d捤D|s@Avҁbgu~߆ A2R&$ZmߧYYq 2tV,9\ [G9Բ+%OT;eԎ[߬Kه27I἟u[ɀ—ac]6= PbH+nK˫rq)zCJ܀],='۰ /6B**[En;_ZHiㅧ.,,jWwlq[H 11|+UWKv+v>e_CvOF{5oȀm- <"yȓw=2#S[m۩Cv S/ ,^|˥.p`P.TsxGvz(&}+_,QC=ǂHRmSI4.z>y{IjZExQb@t xH[W_}XY!$EKZ7~rL߾AE;/JGs‰YwҶ'.P}7L#7',4$o߱{2/ĿF~_8c d]i) x[lQOͷ5oV8M%[}ܩvce^DaE}Q!6H-G9p:pRB{3EpH62B,-LX&CCEr"s )!T+9%(aƩr <*F78Dmv?Wk$Oِ.uC.DQgL=؃x@>xp!;{OW#k"-e4HJ ދ[)$rh`t,Zvmə6UHS ,6 -e 2Xٳ~v*tātI&@BN61P'!aL Y1:$'e@5茤LG_~ x4 (Q .JTu&hQ+ҳԉk teo~'S ?@\w~U9z~ԑD9SA|˻D}^+KZp;j8r;~>oG[^d |tۗE]~}7jpYEO;i-A)/_fp+$k?/.o5d6%rf/% ﱒU.uhtf~<~@8wu;ԙmB4-:=WGo% 812YB:̄T>6 dU^h]\ ˀ1[C&7)'j)цp5hAlٮ kFY8nPjDC]Fb۷l)g+Pw߁F4U5]"}@eW*MS|0!nFLP_% ˆY0.͂~j2uRLl鶥ʒNyz6fKj9)$'͟ˑa\ƓV_"tN+#{6BQmk۷J}(IPB嘒[037y TJ#@QkhFa4U#!6(vw鿣Ti5_c?m5=Xo_bNcE,~Ѯ0.O Ϧ+E7z_]].[\M!@NH(C y$/$$i$B `2m 1ے,ɪ{{3kz3-K;gs;07yիKLsͥB+`ev^XGل17vJmoux̃/ ^|[Mo|unb3;Y2/0ůgeYf",5gS1g`| wb`˧ W:d\向XỌèm8f@XefXb.Ov ؄!4KhU_=C=:#U耤ϵ=sYՈ 侣~/|4?wܦRǓߡc7/~96Kkv͜HU/}0ӏ}  >r 4S9EfT8)wOgã 6#CWxk9&QOq4}ʏ[yҪe`D2n&ū_8{}\$ݾqi :uB} ^ tɡCLE?vZ !`^bUVCY &a~at :ƑadjMר#N$whPp{Vl3O0/q/4~[YCjPf:d7: 6R?H&|#^`}%BiM% {d,d2dg`Bu_xA3 -%J_ji$B)>T@mS.2NjS<~K#Ѽ11U=r^ۘwc߼`!"CLhW@ Cr `)sԐK4*5ԉlViXMaO!nfYM\M&N~ܦF mf'ǭ܅4u>7˘_n?<Gwǰq^d ~0Qw e`&g@Aǃ,CK5}/d!,;SAs?l>̲oʿ5<)UBh=WM5\|a+'.1W\b-8cߣ,:b>M`8l V-HO`*`2ѩÚ^ ?5dfLB Vf8: k=ݮ#ʛOUGeVAޠF\}{^&y5ϖV Cڣ5%ujm%;@cP5Y1H(4jr>cмzQӀrͱrG>)3SŅN]q V7Rq'ӤG#Y޴$-4Bl̲uɨjwY>_:YɟmmwB^9f9`B&0R$e=s矸vGAh:Ԕ|eD'sϒucmP6O'v{wjPLLn\CqWphl-n/lkQHתuu?%|!2[`O!Ƴf};%Z&j2d!OָGH1a8`U7h+bq6o;Ry K:b;d2<$wJ'fY bu`s"{eU:e4St!>v,bussKg 8u"]d J*uH⧛k|sR/D+"kɢ|l,@6:|F; :Rn2H;މo~_G'%$+4Ϥ&**[ cBF֎EUݫgcw|ҙH&2J-_ݫލi*GP2gWʝ@cjtg!f3gbY;N,V"\LcH%s]LpoI㟽+L_=cL>8f=-VOca `5z,[/#kzi;jM|l1sN5W0ۈ2&1; HΜu~ch}ؚN޲n2sg"QT%['2_>M~6]0&WfK TX"x5%^*=mIfKTd#h1ȌRL3jjUD @QIC6/#fr3JFi*3]uq0n4;hԻ`AfPVͯPo]{Ma R Tml֒!` ۱Ϩ񪂜\4:kv*iT1MUQׂzc+;"dŃ m `Rz_C65eh`3Ёh Ye:B/|+JWO|Nwb~磟6{,is"Rkڲ[MJh9MCǤ0E*7TbA VN㶛nBq*k ܑ 8&gdx{Q<{?|s-,/3>C4_y;|Ínw=/<+W`ߡ밲l:f@>4b= ff֒v,CccٞJ kg>ʆ(kݺD%֗.?e6L"YAp3@1>FcqFPHs:M3%rD¯ /jW I/OϰdqYA H_¥vm|L!. `(f^>RjC"lm'qTy=x DK9~\ر4R+ 2hf MQLG1;-JHkϨ]&]Z:M+zy5ըUQ)WN$v-^>˙:}EߠPhlEo-͢ &.F:9qep,EqOPL#*2D} 5iLk:^Z<G]xe\k+xcvyvvw7)&I\rc`)šX* C F)>O``uPS>-Юz?^—>#%,5UFyՋX}[|WS 0J%8VTDÞ .vW,E33iLY<;JUGQӵVm39}bi|!|J5f G.<lq5ye 2Kfl aIg5saS]yI6j:]ֹ|Qp>^EL})|&h~.!RT'4d$0BJuHӼ lZ ۋX<|XkLb&5;4TZTYC2l&?gKePN:|Rϩ6XͺG6t,jMQK3v+=_7a[ܰE<{ckE?1MWPGV.I[Kuyؔ[ٔ" bL^$'C5|/'Et~ ~^~8w(oo={"Fz~z@us SDKnKx/oi<v|;2Ƕ,<CkU&kNށt44GI؞z>x*g|E)i9vL38_byi|_h'i g̤@Ĥe"@4IZPN3,+Oq<-ؼ8_{?Ss~k(-7Xށ3ă_տAy݆o}a,|KgNa}cY'`b`'4l<,6"nuiÌ*Vaݯ;[ٳ/r0BK#%- o=\b#!&5ͶOԫ2i[߶XGfY6EpѴ($Оٱ:<}\{ZT6yW:)۱WFk plF!kxo: J>߾#B\) Ĝg2GR2EkMčdcD Mk:ڝߪ&BF1EB.a4A*6Щoѣؖ#M <+)ݾ-%$"* KkvZ(4}^Ib(o@xb^N=17Sf1`TXၫVX4Er!~ljl9yTJYB3 oC0k7i4h>G&UwЪ)^}1?(;^T+&3#8pN;VWqq} f<>RvtJAW&s?*޹DsQ?nKj΃|7qlXM`q 8}Ȕj7'l,;iK_63c~gpش]y `{ui~hx3hɐ1$MV,-Bػ\`u&|ZxBfnǏN@T^H2jtmNıxыbM/ڔKFJ$o6p;Vplg^*BDޏfO؂FUIqyA]㾙QhaU" Ƨ/>wY< Hcț1ggg׽ɠ؆+A)5d 5u,8DԷ?gfN/P ҩ= NO8r]X)ųU>^#a?vqkznx/*>m*5$ɖfœb$AD3 b__a1q^rx|^ix/5^˻ڲ˿>B$qYk>{ꌹ7x,8 Mo5x>׿TBL5/OȞL!$>n M=T{1fT3*|Ϟ)NKdtgk ,VїdPhbV Jgmuߐ|]%4UH4 =>Ck fA쾡h`֠C0>QUib"`~*чgY;uf*ņ\ƮcRZc!VҲڪ4 Ȼnz&l:3eٵo{p^!=v7z+^Y l#3ݺ~Ϩ9j@/|U'=O5#bXf*Htj"(֠g2ҩNUv ,},:9\)R, >/@66+29,G8y4 தӬ#SC}"Qv*^}6\*/~-7pĹ|őVeeDLN/+%@'ڬFjj<<"^tFeH+bu͛O5|v{CjǓo jCx>I 򂉆R K.AW'Y*> ˵mXpMi?k1. 0{ڷkD$OͯJ&DAE,b:ůWnk1mm#ħӯlR5cLTj ,ZY}~=goLclToqlxrlfq]q'Z#ň0Z}ʝ/5&G1gbJ< _8t^[v UWI& pԵ[.="o`{#VqƶEzuuUWk-m}.aֵucю"uND.tRsB[,3x ٬eC9Bĸc"MA ܓb9[@xOz̒?4Jz Ǐ]˗|5)LO_ Lv-l^9e:tE46Z8`[2fgI!Xh&el3M5{ `‹iլ1hL[C.xtUñ@KAGZ,fmih*7KOA0;k"ZդSwbKgpC[R aC5c/% RG!c _xaR#Ϧ23kk0So2!rLqYHD(ހk#6:g<< RT71`&z(Z L CS 2_EFTjm4WdC_h͞y40Mi-"܏Ξ wރT@+XX1i۟bj\#Ry<Ҥh³gyyDCHd-\`&Rtu2bТ#8CZ%.llk ÕR?-s;r 8pԅJ$D[p^2z Y2PF<3BYN=+sqCk+Iٔ}¥.] 9"h/O)"+x}bbk'%oEW9p(IB]~c. |IAgm0Q{_kPk^KtCaF*xfgvNLl@ ^>a2jgOxf5sD\{S8rp͉;n{.oXSZ&=*]Q,-Mg҈$2a|gtbaf Hٕ'8Oy'|g&OgQHo(.b=WVlAr"t)lgI}9Go?!lREam3tZ>aSv~i~JI&խ6c&1a| Ohzcvj3i+J==QGIm#N`gCڊ{<)1*dR)ۜl=]wK1w8^F;dswAۋBbE|*!L&.F4nn  v\#c[È Q&yuu+0X҉5vh;y 6g F%M }}=L>1"xa~?*zLl՝u۸K2Iz\bQp}Z}x7b.AhDKJ@52453kt"f `4k~m0 `ǻ?K-l A[Z,$y@BA~&l `Ա%'`4Vs6ugɨcZU ҏmoeL(Wx.E.zYePFeS&4 dFl1F5cA>Ay?q ~mo[S-Mȱv-8P++1UbI<DVSz p^y-,bnj{G ~8P4(<vAsH<_#+*IkMlW[ LBc੧C`B Uٌq`AA @hFb;#~݌i#y)9*qRk ߰DuEٶ_,B1t׃x 9a- ]Bi=g+ыoM蚙*2^2 laK+[82bU+|p-@K]? =g9pH#U4䤒_'#*idPfed﮴$n.,Yc, d 5{>s$V2D&m=:+`ܘbϰzt!s-K^Blwwb V^VdX.M1IΓ3OS½1`*Ԉ͑ߕ$==ׄi^\fwRe5"kWX' ~kj1y ƵW K,ZUv< F*],'u{rjT`e+[H?" =?p ; ;iD2[کmlr3UQnW%#5V]@%S -e͵71bt*7B4C>gl k!XaXRmɛ@Znɴ" u,-]x4Ld۰l&`d#T6nAZjFUf|}ֱaWO&WK5 ;Fw FTR\j>0X^/ȺjuV'DVxdxNz,>駰;HKbRe/V9f/}q*v`>CrLk2"à ]915h|%n_gx!e\Z^"tTq/RyԛmA@:j|ʊM x&9^vmxD)fIWCaܸg xbo6#! ؇IyqmċM~(.>ÞTv?]7bPdjVQ? :PSR]QP+* 0!^3Aan&mc^{uqUXԙ3Q-oYO(.‘Qe^Z$l6y7zdlt1NjԴCZdͺ%=$9 oe@@t蓺]f@̶lly"qeT~0Ybh$ 6-Z9޺[5.82Ώ avyf؂aoFkz1+9=Ԑ$!yuY&DVZev",Džgːe>67qU\-" :y+,<ьJUTDTMXc ʻghsl{,\IwanʞΟkМDϚ/q)?NTLS!?|{O!jI\AN(YϻNĂϗ$PS7~o&Ťk:r)1Nm-X0U0>3k36S_Nc3mA,N¹dmŠ-.j{5W/?i`kZy^#65*eE38eх{"%seY~dcV \uhY# `ǵ:o'7Q_a_G63]EnܟHe6S]hi" Xw 3!ȚTXVDXu?c:ꖭ}-5%%>& OImtjZ%(LfٟA@&^jʯȸݞJ1'(>gNCKmM&FN@6Fy-#sx8~|u{u r=xA)&<*`و.e:4cS>ɝD yM] Y?GMT6Ms4Qk6+UtެoY;CDd.p t/ Z<7&*`}-%w BȥgvԵy ى$ D&F\D+_?ZC[áPHUm4lfH Jƥ]xh3$E7H'4H1r(?t`!YSh\>B*2D"8x!ڨM/U6m6!] foj5~$ɇ'Bu~>7lYEUJ8^&TejVQKieȾhjyG6E{8~*H 1Bx!3A!,Yke̾laM{&±Sb3)۩FS]'޺ԗ5K\| ^>M NLfqˀ1~h2gh@BD`d|(8H~!əx9jv'TA 5]vUPm, @>rAܙ ȝ8|G5 !읝QOE.&ZgRئ :|X'kJjB%C-] J SG/Ml?"Gmj&,[V@+|Ws:mn= 5Czj#yt= T/A{dt3zS8|h] fPn{HPHLm'FS>p˼;"1$!QZ3]m"_-#H+8C'Đ"L6LU8$->im MF5Z4a9}|X."6^B~2:'w]fuGϭӊXn7m GX_`ӂCnv/3%#AZJ*1' 1բM Y$crt .P5lh`k#-KBKʰC/{ χqrJ5!,a20v7l?ŃFZI׺FfXۘOQ+ޭ-;D\s4/RӈeV`f "- K`єe B Uh.&c2X 0e4"ؙ\Јi}C0Xf4FvU-߉kџIe| T֏t39uf!,H,/?ܝ²( ^3ti3%^`E~?F7xI8Oq)|Y@wRNőbIP$Ʈ^z/IdX쉩27(%?fz0i6GEI1"dfh‡r.Cll GhS8/sPe !f_O,8ψU5JOXNx@F3RUT%Hj8()ՉO bB ^y ̗Ү_Cyf9HtZNP_ʎ?Skje2Ji( Rb`!N /N.F53;c3i>DoaubqzY}:5d[-T2Κe@M8իl2R 3u)()05}YقE=e ŐeպTilUCPXDsi y"!l%GU0%պjtN<+pϐ^ Ϩx/4Rm* 3Uxvp Ζ43;59?P wN8gyeV8gyį} JY U9s*yKg +ё?-\edmj-dig|؋.?7ڳ|/r6qzދnn=w Ч>0P,O ̰aJ u(h0|_gdb 02(OjHbc Π3ى]X]|51ކ;*QtMj * B j0Axُ R?7Fؑ T|E{=Xϻ$ ˶qob[Ġ]e@؞YN2ť*wgւ63`׈65hW[f\"+$ xЯ2aga̲tݟGxݾu(>{"y/Q'Ke|!=C$pB2|<~;8_d& '5KQۢਮ1`P!L&lLL0Tn/%b<Afl Ywp(``ăWVg6ZYX63 z&C (lV0/}X̰r-aKΠ1(uTgTW?\/N(8Q; 2dg#%I ^7/V`ih6`ʦpo@"M\3P]l+jS] y]&:d䕁8j]fˮe0cI1σ$UJUSMd@u(u0%4\W7e-m]a'WW$؇#'C4%!ٖQKEhV} %U7=tȳó^0ix_ H {nFEwG1w7=hHY?)E.\c7=~?cwmVM<4_oN =ߓUY t"y,D53nJ卿̛yKfZYӴΨ% ::¬Viyvwv!7䥊Λ/ ~/'ahl"Kٶ߄XҖƆj!I\/l^165P=mRmgdJ?l8JwnjN&uJ&0Rs7`^66V -8x,נucuZ*RJgQ't4ܒHDP7jf"h尽q0;3gpŒg4YGklhHNOE.UB*Z 㟓ߘMtYiwE֒PCzxc~^å#CT=p<(BVIF JͮC䮓2SJoc(aBJaM$^~m5cnl7:-^v=~ĉkqϾ4 t}nI#N 0H+nRcT |Y4|8)Wڜ3:4z&N/)hQW/J&$t}wwm7qlQdᤇ.DB#w5s-.36D|X#3\?Y$!w4/K@`l(=f e̼%m\uh~S VRQ\0Qͥ'LWb1m =B ZٕfK/'e,ַʐcw7=T*e?Q𕡇f}~MiP)m]/#/Vň;\>f#A:3pMڼRFtslG7tǤ-m04IV^d)ktUH+,(`TlEjPJ2Ѹ:\m{-Dk7[.(bA)@P@BD%(-Iۖ O}݊ҭ/mhihEPP RB **|is\{c|Qr9g1s \.Mim&L7e.{фUO$kzMezu{iWχAjC$ntO hϙ3-k"{7r?n~cX_jG}6]K MbYVBT2;R#c0.!!(Itp" V$FRbsKE4UsBAUJ‘K(O+4ʷ {wƨSTD?2fGBvIM7#Ie;\ cA+\"C5T8t4Je^xG|Iq 醮ш)NxpJsJ@l*DTqB?"t:;mgמ0 ښ$9˘Β[,ѵ;H*% [_ߞzi\|ߕI6hV}Ry %0ϐv32ИFÿA[]Yf];3\.rF:ȑ"sՂ[^^tJ-!@+Aφ"m~}^R8k 7p7>ޒ)ZzVB!Ygv6&"looZMը`7G:VWK0Қ<^Ԏ%1dLe0g::#Dz8jeQf덴Sn2,IT{,si:Ɲ/bZ<.]:JI%,åx~W>$"ƾEA? [\'&<, Մ]kt,# 4OG> Q+PR9|ζv+e@]ʻ@MMJŪPVB4 eIas:WЂQM.WЖYiya9n5W`;;b3cB$X8Eg^,EyCE {]<ԯ!4hӰK$njB҂ga "0uuA@:0LZi{ nVگ|ϔ ޹fk~WU30Q {8@*lgb5lvxb8.E!I&4]Mڅ]$" '%bTrA")go{}oٓo+r- ը&2@ hwFE5&uZ% `yRTfҨ&ʂtA`@B{qԀ겱98D[e"2iԷ{;A5IRZ BhXI3Z9酴h EFGdP)҂W/X?j;5&P\dw1K,Yk4# 孮?shʲ*a6jpB6P: ߕȀ5߷Xr5fE2M(; ( ߽s0d׳ Iװ<#ۯGG)?dN*`S7뙰'0:[S[Rboxq{r[RpA;Kߞ|8Հ îUJZ%!-%LX2 VkӘ|b nR: ":J,5VRG-*IA'~XgL>_Q2r5Ej7hϚ<0HS##2BDu?v&22A8zk9?Z t&-. 4 *Wٱ\g]zl SץBP,\fɑDS[Q߽8W͠`iYihQ>:t!s5jCx'$j& Ɣ3wC*Nj{/0y@F[pN/K*.U,qr2.W8jqA&[ T>DWHsC0ek \|x[ii!: EVg ٸ unԴ?EdB-=FWt`\izTVDIP2ћxO]>D(:SqKUj=K88 y%uJ2LQOl beP3" " LsEuvIqL!ÀYrG2VKb젳Åf.o`l>g]l^(ɐ#-W.ަ[K5vw6BryA>KN,13;M4I?e]˽{*rDZݰ%>5ΨćRHmgDzTidLˀc>bmν}X(tѴC%K.W_MeJMJDmڵG/Yߟ !/;#b:^R.hT7Zf0_`Dd ڈ*\l^`ew-(͆XC~9?&Qc"\pZJ3 ^?[PukT#`°$ i~ƟRU\{R?;kLÝ1:i4a |>۞$$I`4톻DCHRt3JGm 3@Au(Fq-dI<ȞI @x,ŸI[$y;c7I(ZMtb'c du)LJ.#۝.@MeT\2GrQtiiQ[W٥I£.UhM6ѩK|D??T9I ~s>8\H##;h6Ve.;xI.n>r-a__|/Z3mȅ"A.D[sey{^'R#zFY,z"ŝu+!p<\q ]3"R*f PyS\KY<@HX13nǏ9xaL6DrRxS*m_>ljnKuCCY$U(L-EF߷~*x\f/L7 WQȣGfz{CY8x%1 vqp]Xf O :44} ~SLS0P*#$p !HM)Dr鑘AaYf}[R5ci]؇kMpٓ" @(lO F0˳&@Hb,ֺ3RgZ@ЙLJߥЈ稜G 2oNh5\+X-и,K0=niCNfjjr%kQ.^6lr#Y@z XV}{Q Mأ;;!H#_+5= ô)d\\dG,*2cO%3:GldЋ2rˡ K4,5=/~aY627f([)FҨYq TFg D?56Ώ+ S_ ' tdbݟ/[oMPZP )z#Q)>s&;3u[GBD< K ~Tf1ÉǠOHN>UiP@[QK?2gO>`vv3}nEyur -#@8x˂S˞zOX@BI],h(ı/dYSZuQ=Us2^`=V2Mŋ}QR."I7%ʕˍ;2WT>O~ɩ?`~˧x\…KM]e".jk{6?_e|5t-Rbd4I̦32";?AT]7⹇$ѡ$@pkAU&R;*-k30' jw$UF:1$ RoY*[VXD.9Dv6ٚ}bwiu6ىšK\Yv#4/ŔXkG2_>De4 B R3k)-~(h9Ԕ C"⸄@5R%`4#7.)n!q1l m7 ?L-{(٨sE|$E !g+D#0`AݜDi $QH3B QEc>_ Q~qcPVd?1ahFω*yA  X#_<Ż<Ϝ2-riun}S%w>~[$Y⶗Y\Mi'"vHEK8$H rLȈ {! 8C\:qL)vNʶ8m[fd&'gx(!{Uڕo7HJbqhK5BiZ$'TkC&3^ 깣Yd`{ h&/Hp\=-CBnC&P~2l\9,`1eؗ7ߔI $(cՕ$|B!+jxd93M6\uf a!G>dAzց=%/cwPP'"^G ncju"'JkP /dL*,Uvte++x^ld_ c51uEj8+KWf0\ @R66U* FρإD$'P2N:ѰW5]䉄?(U%1[ߵ^gNV2H?v3v_IEc˃UB-N(8Y#J@WG@i565fB2gkmxG>\cyƲ"NK-\Y $ш#IJd_Cd.p*]؞hoe?Ǯ ȷ,kO{]I|/>-[;D%:/xՋ8HDc.Q$Cm1`iAl Uw@ -@L*c44ұͫqцzY`Y+At8J¡,Uv؂ Q'5e:5^=}ݬRgSEg&rz!EJf}2ԉ# {f+G/tSti><;W}$2`$Oa 98agond  lE4CŘH)-4KlF6iyH)g\3R(V)kِԃ9i9 J8RU Gk;;"LDAr8^FS]twfή;w#܏1ݧ* Up!!N#[([=42hֲOA꾵/×sir{_3쉋)6ghF2c~UQkWA áD e'l@|#\~te]`)ϟr9'_vG[1P:y"b)a[12^T2Zl7\-] 4%EMev ȔEM<¥h BS;~6w~|lmF]?գ.[+A &:c;@pjB QYd!m0ʠшzsla.iǸ}\8$$!t_E,LKrd &̠>/7ډW ͕KB/^c=>^l' QiGʌz/cc3_IMGNX2930?2y Q $ʉĭR)Ln6,eeңGR*&L,LV,8Yl覥DTbsrL|XP@IP]iXeKBʙi(Jbn%Ȁgʀvi;vza ቞xv- Il?4 ݧ>F+ =ݷ -6<8G{@b+ FLogB)c_wVs•[֗%sdNcrў;R՚ZzT٤IG|1ZȒTNez6jv7P+ۥud|mSnpO+m\4Jiyλ6_Nv98Y\>"Z`I$^-SluQ gqt~Q}0igO&`\jZ*`$ېiأ30 jڈC<3CN:l`jri(yÉ-ϣ^g8|vEBE.gCfDh!b:vvw\z{8ߖ#d׶wl95zQ5\Hsxt-ebZ\P'(D$v'Ohd IWҊ< 5d$ߞMC 0pLKјʮ+B`CN>&3')f|::ܜ{\gl\But#y{@ʴĎ od|Y^߉^cR5*穠9Co7lwg:SS#L`${2K Zf*SOCw(Dʗ O'? OݔF&iD48@nVvn-k3ytu{v{dgoV+kK >  k^S(evݍG_-ڢ%,S;&O8|@"%YYCcwO:ʞJ΀Q?Tf*qd$8;Tr67z0̚> X>Ygc!jm v@A=x!I㙠ҖI/ bQ|k"J]=>w18 G\&%dEJ7hI"PBߴ Ta&i<6S)'@1{[kvgU>ydQ'q:XLg;A/p!kڜ {;,LXu@ZvA,r*wX3AοK 3}}vNj^.Qҍ*mnl.믷\kWWl{ߎ.[y{'O|]~͋-? 5@)yN'jb,3UvXq'V.#o4"./^NǼ126P&o d\GLكj$(tfHw+(82ɖKؓf"8k˸]k6vWEԳbW1AE1d1w 2jQ~*;TepKR0O\ αS\ u[/[6ޱxKX:*. D1spI2oj`id2 \ Aβ$9 1Nep݃"|SLl -&{=&Y *S됈?)2GʳG=8E&&(p5B,1pȆ/4Ѫi w<tϑ/C\p$de%wٗbSR]N:iݙu,87m&J4%"4%hjTĥ ]员A NïgEk`πO ʽ$@:g5\~xIgݤVܳ%]|~IWv?dKwin'oZG}Y~ VgIV%pÏY5<yog{8QJLtY#\.f!cp(~Tg1[FSMv]=9GpT2eB{GvMԃ>nO)7tPn8h 'Ia.7t>q-$٬9Y Y >PO+v |1]PНFm|>OK=u}ب [H|MHrI@ʕ5::Y82?sϪ""Y c"ù:ٍWLMÞ4LcM ݙP0"A},!7SB_c36.{'TΡ0q{ gF&_6 ׸qZ۫v ǟTSv\d1e|{Sy5r.+c /M NHUMMf2cG'z"v \eZ4]a-kFd5j˰dR cֿh>M;Gr٥W*vmuu(!ʀMO>|Պx8q|g2ȩS9+Vb.$E&?XF;xXI8\Q➉tfAeM+ ёgh:*%jcO:g-) +3 W8Ŏ(΁l ٵy[^8xd54d[ԭ0-E=[&dpBT|Ѵ+,#+<Tb,S`ё"5]k\ʋRNb@44t !MR)* ||- !$A_jF\7h"%EKr(-Z+a؃k8{[]{Ͽ~86ڽBr%X2k9vùlǯ=u[Y2l<Ճf+U/]Kwm{O'jkvޞw؇k@Ƨs_tKŴ]`"KZP,HDƭM Z%qcdlSY{ف8Ypo&cQ&N'dxqC҅B`a :\BG=[\"{-_;D Ipw{\vԹlFuk頶'}ڜmQ?j$˗in*X}`I_\MU糌juite#H ߛdN QD'եu9ߏ f{F$~VϮf8d_D.* q8k*'I˨ /jA B ^vξFԶ㑇dA/;iWZ:T%( Ԑ3AK5&=듞t# V; gl+. )>ֹjk%m_[.DwgscsӮ^E'Cc<nKvd>2mcs+P䐋9 ;~"/֨Y R$k; ֮e4cw :S㏆! M3(9O}֝b*eNYK1"wO oNҖPY8)"][=o+WΎ}' /\^wo?]wÛo|eidyOPL.{)+Dۚ~=W0S'# 2U|T늓ޞ79#˭U_Ã[G jaGwv2f4t !pzɷ`"i{!=ӔΊm#?ߎ/,xM!)IFNBL$I$hN:ʌ#d_׈N]<h{cdAk4CSLGˀT5*2`K'$eIE{Y,C|=LhwG!rP1Ձ hfk~ YTb,lǢ4ggJd5,H@q3FVQ$pτ]^Y?{QjBS+d2c ਩yhY,Ѡ#Gq1-水f@*y˛oyom$NBn OK dBGT<8 Ux'q߱K"@!}) uQFT+Z*]+4R68hF蕨TfF{ k?xJå0ATJEY|.^xk\2A\YY B2ZvěSkr>o[?HiTȚ׾2it6\)|!n'aQsć?kLXJd2#hI.I5WinII1k[unvv7@iڱ!l qKEVW"Ө^)6Cw^D\N@̄'"K5f^Kx2z] K}eRܹKNIY~) hf||YW ֙8g=hQfY G5D8IpHh*[FƩ#vUJ:<=XWi<3mb4ej&~ `L7蒰MDԜRF|Qͅ$z0 eD SO62#i&`,ܠ$!4 ;n YE|18#Qj D|vؘdLsJsve{&OM)H.͏qPpp gh, xxƟ d<iJA 1ǴO؞#>דhYrm Τ!Lw5_]yk'@qsSwQj+~y.a'*A-/0zPb8z~LAJ $md1`ju\!im\D3d(.Ԛc7;Cja"&)n-XFsKCwibT&%&@Ҫk/.$=}fv2zK 9,O!Z/2ȱGGYXQ&fЋG2vBrPeD12RTۈFni)|XwBI(nQz,F"ˀKa]9q$t ]"5:Ȏ{U}~u',YQOHx$sTQ 쏤/T!fǟ$cuNoA=8rM|-0Qm @,ktفf_Bp7 Hy 8=Rmc[ kpqGn]m\|}dvoAM| )R+e,84. B7;֜e`9\z\f:eGi*( 9-U<]b~+6+r-.gQs2t*Rh%C?zv),ypx^8ٟtgm_z-~VTR P@$o Ҽ5N*`,wgs /f"2LVW6}=: b(f8aF<@TTav+hdErdK0eCzp9'Jc-V j^zT.(OjHQq; 5ֈ(Ԏ' l֐h+SA&dg3 PN_@V-"g=+d#F'qa]|*-ԟs"$`4M1vIgY%ldN*|dȮnv&vI#'^-6_,K{;nXg:'mO1+1uCƘNAZdׄ; ^(DAe(g"JuPg*e՘ ~(1FGtYmXS3Rc?i[ڱFGg2GB& w$:Ǔp& ?\Y$3V<t'j!5<Ѕ&%(jnĮ;{ց)`ZXny5[W @)%SqebK$|:u{lcx#;qp9g>1W$s^M\{S7ٳo~[_Ə+tg Z1@~jbUJYGgn\Kj"beymN% 9-DpZ$I<㚗Ψh(J3 DT2k48wÆq@ߵǽM^J [__agf%בpN\&QXJj xfT[$xHlmbsOv~í3^4pz.MQ?*tړK9NCA;sOLNF q]3#`IG Z-ۨuqS򕙋ȏ7iM*j;?48PU&*5SHOO D78!W-GrP&rZ Vㅦҙ?  }*!@qQ٣`)>cxK?6څQLM<p5~,iNT ?d#[x3! S$>f &3>c',K]:u vY-=bq*2Ed2$S]5Sx@qBc^ 2K{҈{Ӏf(G\"EEƀC_oX]<nXYB&dne )ӈ@ڭYҨ[pe.> )g:c;x]Y٣TIQls KSmND؀w .20;t %ID p$&"%zf??=F/b We9A$]%9М?eU4/T /kŐwEƟp3B0h:ʞ?G,ȸ\S$ \, 0?KVPU` gjc$ XTϿn|eE %d dZ*o?xbǺ;~$?9 + qbϕ)d[2 Nxg'ưӶ^^'E'NvmiF~h}8)+*lز%)C"L'W{= ۂϸtq$]oM{^gxͽy۞(Kc>}Z~?[j|oo 0e_Le ;4gk5߻qZ4!^ Ylb! gc=.bOJ 3MՆ@or""*.ttU@޽Fߎx6t Ep3֜8Br_-+rH{rC+::{ 3O.dpjyDtC^zv^`MlړQ=8gXʕbl2SC,"LlRF|sg@ JY=v!oI;E;VIq-䝩lܲ6\%OA!3ЙvdF3:/y4Bu R>.#EDK>hKgd` p ҁ$"B˗.hyY]ۮ[n\ęmmspMXwq2ɢЇ.d&[ PǴ_,]醅M+>>Ǐke'l"L?~ Q>7{(Ҳ{cTlrsH'NLQiYij+m~su?C$]6.W}gٚݱ͓]gBޞڶ! _#'=rR 2y \A,[$G.϶_NWɹЫ[Mk6F..(zR>-E+!ţ)ȡd2xʙ*6xtkYDyOvsl\r%@9u^==>oշ9rЍ2aKy߷|df'\:zyDT kCtŧ:`M& iȹ=g5 R.PSTR+0^6-s4)xոv<.PTDsG܂$9ۣ@@vC.~F ;,φq=xljP##9CH-Uwq 7'@i(ʿչLE@x<;$qG`Jh{N@0kO@+BLD%ₑ{3E>pYͿ+"IuHx|ųsҧ`3sڂJɉ#+Bz fQ_. Ptm;uz17j"/KqYR}'VcfՅՖ,9)N! ǭ޷l}GY5STҾGZVmSp:JS,{1jίڳYyiiuXUZ매aHnGߔ jo)J j/ׁmo(&8y#@a$AX>Ђ wi8ji F$2F;5W ,䭷G#i3LOhuIXИ4YM#U2!i'dHa$yXNsm TŃC2k(Tj&ܤp (i&ά!Ï?T>Kj z=jmsg-][ >O2Jfn^2}ȶVskov{?d{Gg_q/W {Ӫ~[} jonMڿ7jο}ꙣMKBT BMd)@ɾ;mԹ;-GCmbf%fDoB T>ooY2?( ȗHtgR]l??zPŽyz%}DJRT6&[/ԝg %p{nR=&}/1{ҫ(欃L9~feN;K 8?C4lŜ >4ZlܢJ;γD֙Fy&5:ۡIR,3i6QϟUo:$c!Y)xAg`gԺTpܶ܂\uiq3t;36q4 B3=Q'kl^`{#:F ْ!;4̛do[N}?Ztm$mk|_yBtp8ya&Cd,$sO!&93<BPg+ZsB\<Zh#ۀyVM,fO}ϞwifcGN[wel~7{-wSUz}o+(}[h{oƧjXA}((;fu;&r UNd5!Qj6־wӜ%@eK />\*=^a_[KW>n^tӟ ;w){KcMhw~|"63k9[&N 뽈&}\QCKkzx}k쓖 [`j(8]\aJLZ3|"HFϙq(G%6*"PgAeQ05Z٤7&-KA B^';|2.8c6lNİM/|%`Wdq &i6 deܰ"֑EOFd)h*T lqqŗMrfkuPrᑜwf=:(I^"ѐz3'$ym(wP*5]jU@rfo"C{7.MvXvzMܲ|c >rPШh?vI\vr$4ln~e}H9&Yv8%l/[23}1k=3ǬzꨭȂ'VQrYz܎v%w%n~7?j~'t8"#sfb@鷭✽ůO~^%-yFڟ| ?cJ>c@Ge 9r0DFl^olF}2N Gֆ=gSv8Ђmnُwq_eDXeUpL!6l3+U*@]33__!h/cq, ;jkV24a<,-z?;~ sZy'qZ[[M<ؘX~3\j5i)ơjKsg(#۱ck +yXB}Cp$ m;,;3kV/~NIDH' M)RlQ  6DEBD/zEWAE!^<<<)ggg2j۲sDVVZDTί Wr m}-Ąɭ0꙽E]vb'~Ȏl, fRǀ/jdmmDϲ>6\E`"s4S! s)EaٹED_tXes5ɇRiJ)(V\"W=χG z@$UTH0ؙCުMp:zZ@DNՂLkh.4Щb)` ?%=Ѱ+? HHhQPdJbpb~.@F[<#XZX- q$\A!z@>IJ~Bgo^?G?ގC1,P%Y6,̽"Dn[cOHB'?l=' 6y!X#d[4nf%dԇ6ٮ$zuz~yͳl~ORi~g~NJ<L!XȎ^JSnbWoKe;cpK/n7q8&Q4[: vc ^1;jDZ2+N@"h'F\ Hup=4{TD3<@/Ev#Q󹺱) \hu$|ɜlܰr6O30Б 06Jac_N1$Y0ˆ%y򐡹%4[C4 V)HߠLYoQ4UƉ)-p&U,˅}?8Nx~fC/G= ו,)hԣGԟoq__̗dUVPcȦ; ̆R TYTd6XO wS6@r$7'~OmmVG>Z̞WY7ޞӬ(i:m }`͵u+GwUͳɎ>h*c<&.k/ -H=cMztz kr&;6eT9;(2-I[vŤF1p8߶mڸ㕌 l./P޲=v 6 :eeI9` tRT579L%ĒgϥZ1dGq$Vj-56LÄ`8$I\Pj-ޱ(ɝ#|H!j9s$6M_com:UC`d,+S6F.|> /`9Aq7 xiS'3ki A$UԉKRbFME59H%E MQƌ5m#큾+gV~Uv>$]ky) >B툷}S_|8r_yp-`|GD {{,fYK8TU\ 3ϢRR UkDYY^v{{Y[ww6'~Ԛؒyeh#4 \g6#ѵ5l|x*`(p7J@ "֒}ԩEpXqT%3c{k^r}w=[m4UGBzz6+M~1 ) 6/hؗJtA4X% HZaeO5_[;_u h׳~{C[Hh<;욛nko.$)^[Z͂=H+î 1k@r .(r! V1y6pyX&5Ҽ@o^,/1 4M4@KciP$,8#$3KK2aS1_[$!M@@Mp0@1`]+ޭe8 9%[[ ׼[oUkw^;r#4%x ,/~V'=/Rt>6O@0 ߅Tvj|Qbq~g/s6Q#{^촭׵+o~Ukc|o7`sھv{g??I'7w~^a'^ιG]4-bM;C][iFҌ K4g~Z  <ۄ?'*J-bL. k*9acNo/HtT8b.~&C#ٽ'N{ ?r/;jY۱} ;v`C->vxex}h}PjK/Gh$ǻ[tnmP,ƵW恹j+KuQSEٵ;{ `EC~O}Uf/7+xڛDbXK{3m5 O߳iܸgIzyٶ&Ƞ/JRJ_XK<[<TIKk3&O]^FH!qsŶ_8i˛"Ejd䙆H e,@v}s/J\=P]Xxɖΐ׮hW)cf5KjTBEwӪ/4]f22)4 5o \xB /m~츁-> S("Kzmtט{ޝH|ph&Ò{ӛY޿Z(̄%JU{v,z͂h@*DmL* |pJ9 >FiZBő>{bпgAs?rl 4$J w`62X#&۩M+Zv=},=8=5gt;{B>G-jYnwϙf\<>P1k"< q#ѠP!ʊ_u{grBY{R',6lIJJKfa'ϜChX) -\gd=%~ L77oYƢ: 3zEˏU/AXS(YQ.6Y.ԈpLVE(RG2)1TvDtY1VϰmR?}%aMӚ&B w`Ɇ!O{5:BԀul^/{wg"DΑfDXCu=Z$kE%5A^`a{BﵙCbԖڊQG13`dOÐi)K5g9S}7!AMXK=ڪ赥K۪zg$ rf3SNmē@iynWd;; PBQ LfT/~:Z# k_ޮ?pSGBu%k`;G贍'! 82ȁժD^QBcIzg.؃%P] g9VKhPvcV-l@?\`"+ě?.ȤK8fGJnK^mIKmp4DuKT:p=01"#)i@ `4 B!69˾|*WA̔ h@̄R7Γ`Бv"%$PP~T 8^*)t4#B>ẻCg|wleGUK#zv˵ǭ:گG7WieH]et}ucuxޭw"6Y;q׽KET %l׊a`iYmVHiAk2۞grvHfKa_K_v5u1]{U?nw\spUPfTT.p e嵖g%xoX1I 䬖3[xgj0e=dzuA .5WD,|s+J.I+!%5ZM>m/pݶ1pO^z/% I5u6jZV{&ѫN U1L۹/y1pݱ*p>KBx~V"a̡懿\"U2xL[HDIcj) -{ٟYۇxtvMy[9YˑNS )"OU"qvU|/4aa=Th[+`)HQ?>8`3La㏊5D6 ^j$)Daj%Omv+]eeNl_>WR,+ihvI ]~-{6lg_jKlpxZi^BԸ=5hvU}V=D;-ێgv0(]n]~?momx]6$|Ԟﱗkm^K;OڅJ:KP :˙c\7m}_Hmw;K# aK_PN"$h r]8Dp&ӱ?d KcM{A J3uj)@bMU?Ly42()d{g:h Gxz2MRAd&vp"W=L=5Q۽fwβDyd%p,9`CA#~sOU@bm$PAV{г@K(s a(+U.{ڣ)!I\Yl)D"}y졅 I{y[]^;7= dm>/O{blhW3B͍rch!+n^PTKKu;t`U,d?LsfJؠ@T6$,%(׋vu23MVc23ۙgUL?!*B,ad`%hƙzA)Q2.>ѹsQnE iߢ{5ԣv1*H`!QȄ &`8ՓVƁ_[-ث_\h_00D%A6Xr*Sb1&/М]4$ޟ'Lk6V[v} $jV'Z7z>!ph#\ v^moK|诬VW;sY{ݞt~#W8*P6P9--z-/ۦ OvH.n mQoK5kE@ZsG?P dXouw[DT_Zؖ=~XIʪmg+NBKJM,,x bсcU]0.: ([!E1|C .5yޖP2n{taNӰ@f֏=ke295 &@CEXFBt:PLPC L>}L=K;)`IC?L+oy&b@FS1 E5C5_" <|c6G o-Jꀋ9T-G.v",}VWy4 RL9NCt??v[v?*]~1yk>Oٻ?9U^SO\[! }Qz7ԝ4+bNE à9#~W5/s[{~ lG*!U"C+q\_8;lO{6x qmfs˗m988*B- m/(zGUԙgɂEbRZk:b,gr`:ϋrr1БIڻXܴKWSW|{SN"<H^֠^;.$kv>\?]տo6p Ssj{_(W!/>{Y_f.gp ԖdVAP4jM85ڹzTϦ^dDQ^1Uz0W-wԕT8(#+*G\eJNp{x+LϼB VZz|v懭,;h12$]H~z^V! =@4閃 !YA~cG t+ɕqWG[@G ?KAkb (%%ņY}^\$q>UYMlx8x3lĖ(raݮm H2-H=\kj"]'j/l2@iR Iep,Π5:{ܶ뮺ؖ4#P?3.X@#WTU(3 z3/%h4בDU ޷( Z " b ڂ:Yp;fgp]ޣU*h2׻MfO瘙D}$Fh*$qK@v#.N;ڒT\*/E[vl5|mKrfxYk64"S WjMk.լ;+hƣo|k7*OV}`Kc|ﵿ WV>R$%H.O2?v0R+;{ `RT d. ze(( R7ҠdYkB]`\Vd=CPv#R*tZ65 + (I31 C k (W%z*"Ji0 Y3Air|\w2b1K@FK^ :x>D&AX>,E]ޠ;KSr3L$E@䙦 PE*rKL*^2 2|7VK>85 b3/#<)H=̔Qk%~^оǖl<%JPK2cjpC\XAvbź RIg ;Se~TYɖ T\ |&yT  lW̤ j0/I: %Imi]*~YN9g{H8aW_p6u+RoX~gDs?Km%#q,\V>;mzsk ֚U%ͲaPbv`˳>{;mױF3W앿;W]v@FΞܵ|īǁM8/%!R"݆yHͷ]oYiO<2Ad8뇫@Q_~ɦY PJGҞ}}`LTVjKҕ0^HB$59vrIE3.?X%;]M!fxwK" enq ǜ((T*IPd!XdDI$Y6BÔ GOCreX~50cz*蹵VNԛϧC+bu,H:$gl$X]OF=bw (a_GP*7dt9_u fs0"R<\eb$)3m(P6S9@լU@.JToY[ W=WUV% ^(Oض-ocz"뇪cӯ~g|1mmo[۴ m*ؕ,obw%y{UL&w?mum*cLl+1y{N,X_W-?L}+K:/տi?VϦ(>jnixNGQ}^} G#{>eTla\[k ۄ42d8lA@MCF—'pbUP%A &y3dҠTI5<\_pV=1 ްD%e5۬j5*v}xc@HSoA j<.c0NzplgAT `Gj+h&Nѱg/8k 3EՀy!/iLD:N<ٕVFFv QJ< 2R@%B(G\+vռ*Wbvb tW׷|q;YCwe+e583y`-.?nU.fcn OBeq d5W \a $+8E(xU +QFgڌVRQ[bi\u?$Jej<ŞSZ7D*Ab fv\˩ !0glژ3dKEt\4! &eB]Rqq zz`8_Ep|b L,-EBQHlaɹ!/Ɂ%BZ*{PRTu(x F LH`#Rk3w~i¶˵۷s;֑??J~AھjΟs'v_{@n||!tK3Ul>ғ\i򮿵iy[Kk"-3@hFs,TGyۡ x;zOvv'[gO~3 .[Ɠ I@s_o5E5eA']ERiB=s)' .(f^T2`Y5c#0z.y@iUE#}*08x\i%)V%lk^zKqo3ANQGazɇڒ~IabEx!\ JQV,KMp$AH,D=DW]Vo4 藛W TAJ-PU89Z2 ŷN"<I.$`*WX[=qg54H4%45tfN83L 0֮ ZMGE`+Iz*kAY o an~8pޙl' ̴n#S *B I?LY1u =c6;[k,m{eH"aR}$M؏\ٿZ3"=ˌpRZt =&^'+$˽îMS)R5t4.e.A7 (덂84A0 xv8R?cBWHH=dwPFhq}D)P<(HdD4ʒ 70 MyԇEQ$!"Q9 Pw6lP⑥^QSZ~@)У(S)YHUZ@1۷}m  dw>c'OiUH;cW}?:{۝/ڤj_g>J]gJI 4D|3$\/ 5Q?*O"U0l($ HYőV+&|,\&X)I8ՍVJ-yTo i2J$uG/~9Qc! E?w< }u(1oؓ+L&i{[Fx,5&Y{>@mc%FCmҤȃ)6bZ팡)%iy0!o"D"91ZU^.&ᆦ`S") ( v2T ԒR*U-mYt&u}{/m=LGZ6.>8B_噉Xͅ<},!#I9_ `.*AT. ~`D-z׆_jvTWJ-<8.]Sq@Ti7@M@ؔ rw  P=dU̍`. !BQAkNP!i-Cͮx@6~>{׮'|(ư#D&ȏAXSEp@.\HL'-x]6{p^nnivWb,Ϟ9a׾/=wv5kXTGN, 'jhvo6Mkv5Wٝ? ɿ{l~ہ̦'Hep-dکk>4R?*j:VLz娳^CHAdR0$ ʱ $THJp1 QW]I?s{˭X4@aʹv{޼F:*PZ*Pi{a g@nzPӠ+\A1<ޝ2I\rCpU" /:E E`s.oLj Jhwr[$Bڢ@p`z{W)iO-hcqO*܉Z c\ nR Ni)AX:"NOA358WPa26!+lt-zEj} aW>v }WK}veK/ГUnVˊȾ_~oh`3ﵬjԏŇza/"; wޜGHc~P`I|}sc{HT$`*8,.fwN_vzҙ^vw %(Gd " # EVQfFvg%_V3E4d Kgz\oDp_aIU uoB! + !d?/=!$ Xы 2 ܞY;Oɵx`|bB՞pTK(s RX5JҪ4콕6\*яgP38D(g&~(k  Z+oXo8|cxfgH)Ae̦Ҙ+ReЋ#^10Gk"D̵. ]4Yy4Clf!jr 2LYE *\YDaUCi22I@HUx!0X{\{}៿%)FM5B vlQ8XyvmOO|fռ/W%Pk41'泾]l?Ň~_}:#+^t]y﷼^?l_7Y_d^ANpX,i+=j+bM- <ʯct5Lr,+jT(IPd w0$#)8vc ʒUtO8Fp&# zġZ^&Dh)c ]#aEEHְ4ے0J)iRR%_pT* h ,H3(d$% QZeooU fMX#k_>;ԚN4rR@Y {o/M{w=ˎX}V PDW@Z۰ՍC穪`O%}O&^,i2ʄ0.+r/UO[}hwvfdϿf'2cTTie>xn b _&`( ۥ@t '; TjY@@0HWfNq2 MXO A7Y?h>jެzy̪,,Br]-EGڊօ;*y)XQJ8b 04MK~7mgg{ޚ~%#/Va1cn.90} &rhK3zpio(,@$MxcĪ,`B0fN[E!Ʌ`^pw! %0j=udNĬ?DI /$O < Szka<@D|XaƁˬCUTJ>BY}844l "JҎL(@HA$W_FūTEac%~Oo#Kg"-_{|"U =o$b$GctU~r$28ͥwSgp&D{wJqJHB,Xx#rY 2|1 2dT"Ir )0oeTo)G/Abn$vdd[=pj>ۆgΪο_=[K.>mBI;e{䣏w?|E{+z|83p)Ύ|8' 9u}ou7u ?j_.J{ݏ^ǃ@\,CvHp%9 :-4`%댃Yy4kc}I.!D"EI9 y)Yj2̔$釨&B7lR*<ۻ};v!Xv=(Ԋ(lz]Ua >lh\fPDyy ))d/kҝ =/㙸 qiTW6+m8-SȪ,"U kI>gR ho԰L$p.cH&'0 N%&et{ZX "l@EE?t&G."+b+՟\K=1|2 +2> \LLI$fQ3wPS,'M3 q3%0@k2"UE`-Tkpp^1F̓ONW%,Ƚn2obV/zӬcZK!߃Cl}eUT?Î'/]]#8+ ׇ }n{,F[goy[썯{OSU~mHlQm1E^_S^ *]e*ԴfMVYcϸ xq<4Ȫ2s3ihg~Lޣ9JLa[oN(ߩGͳv`=蟱0G+~X `IQ$}nS덃:Y !pJ@g첁cX +OI|c8j@lD;i tʺFIხ[/WuƳKS\.4TLsN7k[3:ҿ7;JMx sl$zъ*D *;~Qe "ƘL)_ ʵrF H(LrZbIa\6S)ʑ9"D|e=y) ^'G,SWkOՏ7-{*jQI.xݶOt졳]2=?։- MQOetQ㇛z$›w=iOrE<ϢL8UҒU[v؅iFX|익ΎΖ {69%ɮIkWdOnS 0 fF7ti\9״rGbqA|Q")[L?Ze9B+q<pE ù-q-(H(9d- }Giy鶻^J%*Zk83qcUs s_1^(Z/aZ~?RNUʰ߃*S,k$">rxUF~>Wvמ =&"bh J`]I NJQ ǞP=TˡOW_m@ۛF3Ȥ.̫Q- *&f4g0 HQkve LOAbQb|U\w@ϧ) "U s3;Ҍ _NA>mYZ `?}OTBvOݱIaD`6M KY{ڴ-=3o=yՑvmMi#5,5#vŶ=( P= ncvG@BFH"l{svؓ/ymVҁ?vd5G^tXCV Qo8'\8 %'/TO'gQTkoٛ$MiSTf$♬⇟ u (@udw:*mDeў֠ '^=v>iwضͽR zTFg>wrKח쇞*;!iV%w p *V۶g]< zmn/o-}ƮE~^ao?}W큻v׃[m,_xErI'\x2 {Z?C 0Ԇ Ib Nl6L`BE$j)l+%ED8՚` "@@)8$E#%CFj綄j^2.=:vԏ׼>_ i@(I:`٧ k svJ]%>WzX!5pQd3Š:T*شF%Y0Ъ+ufHHR9Z6Dk٢LU (=I1{ P'<e|K0D Vџ򠃐dAav /)䲾yV\RL*zD4ДCs4TR1D[*m$+cAbWS6Sq %澒 ';]$  SqB19љs]m=PNEo$(X= ̞ܧMW?Z경wگU8DH[ƶec^*A˶Z{i<2nσYkAao h =~.f۷fwVmg7;i&LD7tcl $S]^r%'D}1X(ēοAKyĴ3vYv2za3POwgq |zL: g/ڙOH fkI@ BJ×?QfcS!@YStC9f2Nr8 Vej Q0XH)Ipam6 =sZA/$aQK" T:|O֍1Q+b6tz&O  Eг񤠉dlc;]S.U&Vև!oAi8f_XO.A^p_ A 'Z|VLe{q iW5KkXvRD0Qbl?uh962`YoeA^^[Dlٽ'{c! 2iKvX*,p͎PHga>B1͊|~ c#G%akDžvi}:ro:PUN/޶6a=LCmwOߦo9%WM0ޗ?p 1}EM;=Z8- xU9gr^8vᱸ̥D:/Jyep$D@"10ssX'eB(\wPMc ?C >[zsW5xBY˙yo_AsݝV.tU#sCP\Nd&K: AsVefw b^%𒂫x(Q$(F3ɀ͔EG%pʹT^6 s鷧NQXDȥ3U [ |rAW0N|k3Xτ9Jdh**2%l>ꐗ+(sZ]m)k$yp7,f!g G_h\\n{d&YpAXI}קE\l/ 4(i1Qf3?ciTfGQJY>~,XDRZQבĈ_Kk_T\*b> XL;H &a@Z[4%7c°jF|POh{84<V7^.x#.ذf&G<Hk9(P[+e_OZKLZNM֕>ۼq?x;z[9b?^V[_K% =!v}HZ^<^׿x1.$+IA2`eIb1{TI,&޲,}^{|*I%@ Ȕ0%@34`CDZQTEQQ@[Tz[Qv ""2iRI:ÞǵޝV*&U3Qg ʎu=Ł%(ߵ[KmQpaǽ̮|eB/baУiCс5F k &`6鉵dSMb9[4}}K88\B| 4BCδZ7ӊmKϠLʹ+3j!tK"dg 3a BՂL|a/^x?R^z"=7 ]"]\#!ع~&]~Q]Hᗼ2!a^_l^Q+l+2??n'nqe7y0h@(<!pS9ܳaP e%TlX,s ^")lYi:뗌rX}TјM\՟F@Ehb]?p"?:{8I` LFM[9dVDb{f]/ox P ` "q<9Y®&Yt̙`x,, HbNq?Ws`]H= ` +s=zҖ=-{e+7>Ξcx쪓FsطKv׿`_gv쑭: i6K|s6#{=ǡ9f_gm'1o9~{^x-0w>!_zR*RETy4")kc"I@y)֋ŪH dceH9^ntyV< 9=Ndp la4{oсw9fAejVOz^BL iЫ%}}^JEtȑ (˲爼b`˷i&G]m" .躅,_J^J1(s^!".l."VC\l Xfr =lcY L]r.VVnPɒ`&u& FAZҸPX$(K|k8#E-pEr :PJjDv䅰Q!+v/*RA>_R!HIyK0`ԟx`tilϝB x 5M@v?Ix>U7NڶrPݾZ@mmr#lYfWloߣ=?o?>nc+JuhU vw~ꇟcw9.\ر6[~׼So0bJŃp 3 X ϵg~]i4zvI LA'DZ] ֛/ |xеxߝ㗿jF sM%`'=lqm}إ5v7I.;q՟}#/ ~3H2i8N7@ pXu{گ2q%ObŒ2/zS<5{îU;BνlKȁcE@'pP C6 G ]7_ CcZg:C#w|@$ j#y*L]r}6.+ĉ;EUgY\"'"pd$Qͼq1ڊ<0XpcJM@"bWò,I܉X{k̕SYu%svxq xbB}~Kj9U8 =S\*!:L)VՊ gDQz=rfТ!^^^?Ds;틶cdk{0TT(lP6;Ue"_:yJ{^@ؗ_o0޿T/]%g|a@diI8dW-%CuVO" / ɠǂ 3!+sM6W߽X N4(be0k2* NsVmbȯQh&LĄG̼% $zvzrXxUI"kl7J:YT;J{3YVy< `.$bKF*hAe9:(a1Pk1PgKv\O?zKn semMvӵktZ 6JZ諏H &"56Wmmㄭluc֎S,Ʊ/\ ;w g;{|}_fWȒ>__ns6}>四~?j `h%;9ē^f!I0@\[|׶Q+y4! ~gBP%`_jp-} SzY,@Yr@:JdNcJpQLU["QfmbǗ*i{h^֫8~`s&cȨbEJsz2DB~8ihj(s⥄S0_=HsݳBb5 _b3log`=Ե#󦊒x s K7[9N('M8ٶkN]a/y L}Dq묯bm{%|u:bU_`Ň`;Je՟|=YwXΚP!$٩g.`p4'\7{˫l>USzk|0~Y,*mbKcD&1 Fj;=Jh!daw. z}DfL=b"7Ap^wx&z) O:GG}Üц<NC^2id/KP(el!)z@ǑLJja(sQ |`i`yj$}<,^[ fiUT%B3d9.=&l+R-X*ϋ鄟W(2a# sUzR $TLLEXG {0WQKsNT`()iG'qIK&/H((l!<h! E8 af$Xj r9dJeМDe(mxƫUåѫ~wd8{ӳ|<j@Y3 ݺy='jMdƥ+oV\mXY*[mO`k\uO.jY^%p΅toGYv UԆ=oǾ}g񳯵kp> 7 zî㚍2hj~9vR/8&{Pc/iKw bKxždn΀%1Nf4T_z=wRf>Hh"#3T$'3xC`68ܷvylfݞ4!PZ1TM|6heBΡoJP^oSԊai&*C4!B^ `tzP ^b>Ҁ B~S@>@Cvw9vgK^ jE@n 'Q!s1@߀?Q M> upL$f+< quzrZZe.&|+I>F-=7.Ndwf1߬(M a_={v\lO6#-qjJ+o{?(+z}oWV%@eՎm&vkTo/ǁlv~׺;lw!&a_TwЎm Bkhr={swcATRTO9{}9zxx. 9R5$1W^ HV*h~.7ZEN9 ]z6*Zps%hۆ\Ӛ{hG6m`k5eaL~%K~<"2 Lǡ֮7ڪ4tKLN_6&KLh\-N2jBN+E-V-!!Fc]a'+iUNH3_k8P?ӳUk.T/[R=5<(|XéuFoU+%sHƧْ/Ȋ*, 0Qs 1C`a PCLhB%3DnD^xI] "*q #$$-Ԧ"RsJ!QX@*1 Dc_K²Lc๾0%2Is2++Mۮ53>dUMO7~kr]Sagϖ۞b.S(yuY_ڊ;f6X~2>Lu v{z^A6s=:w`%L~I3<&\>w&Y pdw~{Pۥ<<V TZ}vງ] v? Mƕ< Y{G*:MQEwܸg=RݾZ5DVk-?~N{~ 50LQxQ/ N)jj v"4uVbE^hǔ,+A l$RJi@bBPZWQöBat{!ep4*$^^GN%_̓ޖX|0-HN8aTgk \VRV; xk `DPUC,Аz :RB1L-\œ!=*jR P}}CZӌKNՒ֗j{ œށ};}F bA!ȉ5f͵m 7-t<DRaێ]wA?~'զml m'7)+ v. vȆ{n7՚𞲇9k)7?˒GnΟ=g{~ډmO./**T6/Y*G9#@+8_Y߾X}!dgsf0<ڱ_ԚgYAcp`AMY".6Zy(8om:"a&xz~'E9x1ym.ɔJ"ktnxA^°V dI =@Ԃ ,8#nR\r hR\bǜ ^T+REF܁əKɐ/4g˂F' -G 0bU1 S*zXC0͗h&I/4k<0SA.j4'& .)+.D3([z8дlXj=,weÈB( >2pѮAmW5*zgĶm*T2={:3}" & 5R9@Ӱ+/~Ւu6wnُmvKVs]ݰ\r? P.Hךvo˽ 8n yVzPOP;>lݷ pvmkKz E-'-?bOO~{^(=<> ,:B ޑ'heQvcFI4 V%1zL|2԰/sRT/gBW5_\hv0r TuU%Rhn zjÎ.yд2^>Azy?T z,ah5( WU%tH`+Z,ĝG*.b~90(Y'l➇`Qm$o DyIh6Ď-:/7y]@pdE:-g"If{ 4 AMR`~If>_d_?=Ǟ7x_O'CP:ϛ+4*)at¨S+8"<~6 &5m4g 6qZMC`=b8[BCb]@d]y[yA"̳vLi]ƴx&T#/j5 hJnf!K+U/~_Fz2[\lee/THʽHILk#غ+ӵ;- ]Ι D:*xeSԳ+^ ^K.>QW9vU"88d?i5Q`-y(6l-*Vz.d Psr!lUQ[Մvʁ: &,ʒ4x25$pYY5Zpr}ydEյ] 70X ͮZDI7sm,la,(u!T/@_DļEm7{O9|*,gE!0*¬*#!*ՀJ_rgzntIX*b<+^E_ifzhW ++ T}4<::_ޑ{l *Kl@`PZ+}G3۾*G~])g?\س#m68 6&aMAO\~Wɍ*nVXd;jz۲ 6{/ߣhfǾ컭IW?c㟷|w'_'YEbJxPhjkEH#r-4KffnFZ-1D*꺄~_+Sui3J%hV{Z%MDa{)723zTnA#}+b?Δ͠N#9ǜJ)h$9ZRƱPe'2-Au)x0 r*ʩ,'ڬgJ|I_d:5U3cMS1*Sģ|Ζ2VTsp p1̦*:VǟYizΤ1e1u"T$)p8H[6"$_Э"lDR 'qVE[Dn?w2RK#$ 2hkVl08$E "dKT[CJ5 ߈(,o/Oa^#{CwsCօ`Vӎ5Ρ>ug֞o% k3@؆gΎZVZ}-!%B; =V8:|`~=Sj3€aW#GW?ﳍ%Onʁ@)$ly]pVKK/G")XfN#{Ú_bdmuC֟3=I:$ee3/04dE #׷vpYAp&5y!C\D0 TN+BYx/Z-AǖdyfD-^7*/UOFU@Y@LƬܦ1G9 x <˖"$KoV@Dk;XL.X%%~^EsU0T*e /V#qءYOzz`=k?s$۰Ň#Ken?gSp%yR g ٔ_$ȦA`p~8{rpaQԀK/MP +zy{~N=.ً5{_ϫK.5Ik<z0?"*iJ@陱t``4xcfúiJȼEypAݳdjͦ 0!4; Xc7/o0Ō)ga+2OX:q)&CMk ?ǰ\ 0#?G;ve`i.q6djɵ7u /U^iw?vjR@dA/Ghq{OۗŶ/vc?W^e]w]}kQWOUҴN%3}ӯwlk!W_n'oK'|%](@^9U !fnj@$z?#oC3;}nΜ`0;e4lvծj¼/Yٓ2ܴюԈִ+V -k"נ*`̓£6% @;8ص/~2 ]Қvdzo;a?ll;ΆvӋmqMvbJVC;ShӺpG{2I&9 \ʆ d:]L?;=B1+Nz-ƃþtk?5M$ޑeedz`3ҮX:ԯ&υH*UrPy_V_Xv![*fK?竺qQPwҨO.$T - T 1/be{iBeU$؋x-$]7x۵'44as/UKWEՎ_mzvw2oM.:R*ڛl=?3֐ꘄloةkm[츭m upxΜ.=c{wܒ_xM \|U`Muش|}5?f^w}k<2B)Qro{i2-ijJ0 bW K<ϴ@C{ʫs ՖgUɫ?+7vuecw 8:6;0:g.MF\%jR]R-fxUT3H{)/dÞL t0B @X!f]+ .a( ز-7P%QzgAU;D<p[t0vG$,GgDz2U :/(Ap4S(%~$1|[ %*1$TxWDX* M`K}ۙ|ɖ9dj7Ȋ"CŇDձ!gQ`EW׫_ ^=@_KDA{5?Z !fsҡ=pxH.k>&Rh5[mXHz3O'o[N?NUsa=暛{J'`b=5 y⸭ln+\ԑpdڷzݱ|p`{<\f?sHCNwt3uo|cn͍Z4V;<71*wON{iG 1*EJ6,dPfڒOhφGb#$v aEB:V1μPz@h7=p$:Qh2R  o4fC V\:3gtzب6wdK@ypT\$`'SK(LSeIЎ՝8<6$%$K< R ^ˬɮR~XHV^"'s%kWpUʖV]D1f~iiR)"εOC f!}1h 1)B{0)e<"8Y#B,3ow"T YT QWKI+JjPf~e:_%xA3x,p2Ѕ/Пkb֗<>*H NA2S `+zҬ֯/"`ZA=zma3sv%]pЗ !ZeiAl[-;ZHn㏰7<Ϋ=zO gCA%-̮E6L_"2W7WtdRF}E3x=W絹]h?f|͸ *W O=е ~Ate.lùV`]F  ~= /'CRNlovB7꽾xWW^fKA{}ٍϽD&PC1{V/j +' @³`*("i`DJ{ Er*VP Z:ݾQ㠤zS%]۶TahA7@Pb?lʀ d®_s <.HyDp˘Hp3l)K ]BhJ7h/'L -oV<yp.f*_i)x/> bO’ '(m\~DZ qYuJnWɫ.3@l~BVbռm-3- ,ra!ޝT\Q5@Vu)]C%DFGޚ>g9~j7#W ymZ wѫo}=yoџz]G[(dKag[UwQ`pj6ڶ榭nY+fCHDhh?[cG{~U??̫tBd=(W7kߴj]oC'Oyʍ9r K$f% -V?mXxKTuK"԰?)9>D,,0映ϧ-Kūuy0ZQBN d ̸Qx7!6pQL:0XYۙ켋h"46BfE8 0&Ud4DFTs>'lq.aN)ePIF6-b].y5=T&N/sU0#:;fK hFP Yw`)e&1]EU k;<B1vA+? m*hF2".q"4 \`<]AT˩8d %CbUt ٳB .XLd@M󶯄ӕ|03?^Ѫm vIz}=o["]MYm؛_pU/|e/msn|} g! ׅhYض[^y, T*w*|vZpi!IJքE,>g~'n ߅erPk-Pbu/LP[Uw<#- &EvI[d˵gve eJ"p%/W'xCg݄ƱUMKT|Ep\xu/)Wj4|z5\})Q lVЃc12;t>VGbQ"")9)HcU5J*B9$yYGJah>0,˖#\UFyOu\!< S0*Le0ŝzf*Sm$/,[ =./df!ZH}PcP<&K1 S}Zk`!Pv.q!-*f0 az쬸L كՄhQVDLe1a~w}}lQgEB 9Y_ڴ*Gv{,/ۯJ~ BEC<-O[Voi P3Z_Yǽܟi/S3 l`³ؿp?}]şx}SoyA`;W]rnV] Zg*>2ÖGîGcav)dGՖ/J2Ӆ2Jno3m#"_^ :+"]ܵM„u`qL=hb/ T&yWVGnG uOUY0Y`Ω@Ǖ &[RL9PM"x0/`gs2&A fe& 0ݳȄY8~Dk…nj}jK† <#*._|Ol`Ukh*LD(LM6e c ZYQ,`?W$ub,/XzK=$| iY DœC]汵j*OU4I$?VRKY&kn!d' hHUgXAGS.6^TZ[^}z5 T'АNUWX9XP+撈zP_X*2\,93z¡}[/g0(vZ/oh]SI?u/z򥯳%{O>QFzD?[_G,:Vx$cӲm{J`X(KmU 6/?L,GѰOl w!EFk+nə0/qeFtLcL':8dv 3J2fKjS'"kFA{#`KnCQAp黚+/Vd`z܂Zj 6~FTOطsXdmcD<g&~f%$2@E5h̶. t4}3 (z}VџC?*UnP#P{iQt-l0:sdqK%d BC:rxR,.b@T#PԞ>J\Xܝ%yP\5ԤmC8_Z~C] x@Tf|b J6F~EX'^vwl`05 ce_/ EA^7-z= n׫Y0PYUAޮ56%6?ǞMO~}o :?*$x^RSrwRe[r k5;^%W#zրO ldd4lQ4pSm}ԪԔ)Wd.'$ʦx}qO{vѕJDLdzzM_ p{"5 Sz؅2,U8KK(*sN (xeW,W^"9sDhN¨(5jeI 4QpU)VkQ S2n@j#VL0]z-nB猬xFeRa&Ti"IO-IJ48LCҕ5FagQM'#˪'hC[f69)J)YC))+~BP M’XT1g`!< 6Fa֡Ԋ E OP,6<"/ӱ(eT)16$Au:@6Ug{tݮt擙 ό}qݴ+7qjګ_B{Si?WIwҫy} ٘ iLT msxNhnVM$,쫛۶zuNLW<勵8 };;mWm֩֎f30 Oj.[nȹJ)nHZP|v{%N]e\S5;;D=Tsi PїCuBX\捕;QVo~$Ϡx Ȓ 8+ -ꬵ, !w{~<$GMմV-ho`0 0HxJ\gV>A(4tb}y!wuP pi}-{_yx%>$>"aa %, 2 /"4XJB^}i>Ґ4+-),{K.\0&"@zBo1s!.ɼ'$cpK5ąFZ?5ҙ.R1s9 1K:d ?YSU?szdDQ1א7;+vbOݞͷ}_q[x6J -NC(&}eЀj񊐤SCʓ^R!{KZh\~\$JE :]Ao9le\dLNF-)S| j spji'](kRUr=bvtA$2nJ(,.;)}{=|ֲAYs-$hpUXR=Haw|,Hτ7Ck6Ҍ"+EtVMcH7ہ8LB@­LԠ&K-yyM*m9| ;Ķ"{L?L9"C*,|A5ly Š(#~9sA-b˳(DŀR WO\UH?Y2\)Pv.so\DеT i j[}^e]Mvo|/Q~6쵯{影M&%|)=ob상s[ll[fF8 1#a,Iz:L2:O}.^ɕwӨ{Ƽϰ}K$y]2B 2vAkeCn亼 tӱmn갂d' =#2yņ~W& otGG6G$; zVJcDCvD;x 7c7eIi.፵mIXke!]uԛX)/4` /vxnxo{"s/Xf%s?<#u{Ж\mΕ$9a-Bkr Xz|YwRpWՏ[hП\DQ%Pd.ȹ\L LX"89bho9hZ9EX?%&@߹q"'HǎE ?s<(㳥Ľ_j)@C\cL]żKna(k~wkآ r:= `ņފ\-{^cǯUG?6n~TIkV0`aHH%_ FP0 U+ju.St{ qD-!^}q-ruKZvk{|̷|PB^ғIENDB`(0` %/FG.HI0EJ3KR3KQ1JP2LS2KT2LT5QY9U\6T`0M^2Pc1La.H^0Jb0I^1H[2HZ2EU2ET3ET3K]4Zv4^4]3`0].X}1Jf5Ka9K^;KYE\mQq6La%3H]dߜ{011qh[h]SRZ]X^hKKJ-HJ.IN/EI0IP1IO1JP1JR3LU3MU5QY6SY4Q\1O`0Ma0J^.G\/Je0Jb2H[2GW2DT3ET3ET2J\4Zu4Zy2Xz2\/\.Uz.Hc3EY5I]8GTBVfLl:Si&+>SQkzb|993}l|qamSSS-CD.EH.DF/GM/FM1IO1KS2LU2MU4OW5QY4P[1N_/L`.G]/FY0I_0Jb1H]2EU2CR3DQ2DR4L_7\x2Wt1Tp/Uv.W|,Qu,D^/=N1CU4DQ>P]Jg|>Xm'#2FJ_nSixJG@ve^Rs[hp+=>.AC0FH/GK.GM0IO1KQ2LS2LS4OX5PY4O[/K].J_-G`.E[0G\0H]1G]2EU2CP2CO2CP4Mb6Xr2Qk/Mf.Nj,Qr*Mo(>X+5C-;I0BR:KXGcvA]r!+ *:RiuJYcRNEvm_UPGzi~*<=+?@/EG,CH,DK-GM/KQ1KQ3LR3NV3NW0JW-HZ-G^,Gb-E\.FZ/G[0GY2EU1DP1AN0BO3J]3Nc0J`-F[+E\*He'Gh%8O'/<(2<,=M6HXC]oA_t%/#0Umw;@CgbT|e`Vy*<=*>?,BD)@E)CJ*EK.IO0JO2KP2KS1KS,DQ,FV+EZ+F`,E],FZ/GZ1FV2ES1CO0BN1BO1CR1EU/BS-@Q+>Q(@W%B_#6K$,7$-5)6B4FU@ZkDbx)5&Unz=>=zjwTVPv(:<(>>(@A'=A'>D(AF,GL-HN0JO0IP/HP+CQ+CR,EW*E]+D\-E[/GX1ET1DS0CS3Ld4Oi1DU/>K.?'>?'=A'=@)AG+HM-GL.GM.GL+EM)BP*BS+DV*C\*C`-DZ0FW1FW3Lc5Ur=h;i3Qk/?N-9B,7A*5B(7G%8L"0B"*5&/9)3;2BO?YjGk"3D!'Hg}d;;5}{]c]^pv%99(==(>?)AE*CF*FJ+GM+FK-GL,FK*AJ)@O*CT*CV)AV)AZ,CY1EW4Qj:`=iFxF~;d1FY.:E+5>)4>'3A%5F$0@&0<+7D.;G5FT?ZnKs%7G )>]uNiwPND|}xg[edp{{$;:&>='?A(@C*GK*HL.KQ.IN/IN+DJ)@I)?L)AQ(@S(>P)?R,BV0G[8^@nBtG{JAr4Pi.;I)5='2:&1>&4C&3B+8F0?N4DR9M\D^rFg *4'5PiCWclmc|zijgWQVT)EC(B@(EF%?C)CE,GL/QW0LP2KO-FJ)>H*?K(>O'=R&=P(>P,AS1Ja:e@qD{Cw?p@q5Wu,>P(4?&09&1<'4B)6E.;J3BQ5FUnAv6\7[{3Vv+AZ(4B'0<&0<(3B*6E.;I3AO2?JK`p#,3$% )&2B).1ONDutc]\Qfhaº9aX3OG3_`+S[+NT0NQ1U[2PR4LM4MN,FN-DQ,AU)=W(&/=(1A*5C/:H5@M/7>8FN # ##*05>G19?,.-KLDwtcZVKdbWytCpe@i_>op/[a-PW2QT2X]3QS4LK;TR3MT1IT.DT+?S)O1Tx9g8k8r4h0W-Px*Hi)Df&9T&0B'/>)0@,4C2;I9CN;DO'/5$-5:ISCIPCFI021**(HE={vgMJB\YNolr-3E25KLzLzoHvr7fj3UY5QR5]^6WW4KJ>YW5RZ2MY.FX*AX)=Q)8F)?T1\9o8r?=|0[)Dg)Gk*Io)@`'3I)1C,2B06F7=J\cGNOAUPMDCF"$42mL|qY|O~x@uu:]]8TU8YW:VS6MJA^[6V]5T`.G[(>W&:R&5C'?X0c;t9v?=w/Sy-Ko*De-Ow-Hm*8R-4H.4D38F7I+?UXn9HR046HIIDFC9:5??9a_WIL=hdSXSV>@F(-:>$A`1k?}>|8s/Y+A`0Kn0Mr0Mu1Ox,=Z-5G-3A05B29C08C7ES9L]#-69;>HGF>=8,-)451qnbIICgbSTNF !D83^Spbd`dM{x7[Z5SP=VP?[UHrk8\`/P[)CR$7H"2A!.:%Jo6u?@4o7n,Gi-A_4V~1Ow0Pw*=\'/@',8(.6+19-8E:IY*Ui2 -(`,*:Y|qein_@ec?^XHg]MlcR{r>bb,LV%9J"1@,6+8'T7zBB7xC.Y'9S1Tz1Y,Ls&:X!)8 &-!&,%,5->O>L].AU3DYKLO[Z[KJH31-992EC<==:,0*;Z &0 2/EE9\{fjsmTyXxY}nSwkVuEjh&CN/C,='2.>)^8zED;}F4n%Fh-S}1d(Lu"7V%5 &!&+8F@UmM_tBUc:\xQZc__`xxuTRM-.+341664575:P'=G@`N*dbhstchc}WtWuHoj#:E)@'=%/2E-i:~GGAG:u+X0`3m&P~ 4V$4# &_jxxbxizV}dhqvoqngic>A@CFFmmg`fNd&qVͦ$ʩ6i`bhnhieSzT|sFmh%;E)A'=&0 6M3sCJJEH:w,\3h3n&V6[#5#">HimwhuuijdFE@>8.oxV@ײ%11)icgfccmdX|V~sDid(@G-@-C!,5(@V?yUZQEF:x.`5j6o*^_\)AI$5F'7I.9B8K\MxYYNFF:w3f7r5u-g!Ft)C&#*2?Piŷlo{qlbi`StM/8ì\4/#lgrlfhicb]u>\\0KS.CS3DU@KRP]hdgZ~JuJKF~BpTYYIF9nrqmmllee\;^`-JT.DP2CT@ISS[admrm|cVvW\L8e:}M]O{9Ss7@P8@GXix¸{έ3޹99Ն!T"eSfQEeTHidRlprqomhlj]<`c+IS)G>LWH[hPi{Mh}IauQzYG|1[6sCP@y6Y~)9J&,DS`dw~^ʲO^޸:OՊKyX~if<&%$krpsnnlph[9ci,MX'7@'18,5<4GX9Wn=`}Ah>Xm@eJ=q-Ss3i3jjn0P[&2=&/7)161K`:i7_8`6_0Y|<}3h)Kl4m7t4e=p:i*CY#+0&05'@[eˤzRZFjc1ٺD~fotjelpnkgJrt5PX)2?)2=,374SjCx@u5`-Pm.^9.g$B^+W1b3Zs;e6i&B\ *0")-+=L|ҬȢSdS8B6.H59CH_rksnimojcimnmoSwv9QY,5C,5?/7?8[wI}L@wphPZjJY`9Ѵ:\Y?'-:@Vg`jeQYU^fcikjedgilsrUzz=Xa/:K/6D09E7\G}PGFMMF3Vt1Oj6^1I\.]h0>Q09I0:I7^G}SOMPNI2b,Ml/Rp0Mb,;C&8F%=S"-6!).%'&('63Zr\?S/AC&-;8I\~foiQZUiihdebckqs[?bn0BV/:J1K<_I{WSVWUTI=~@zThsnikieldeitumOs|:Xk1AV4@O;[yMzZWYXX[VOKA~7n/Zy)AT&1:$,3 (/(.+<:1F@G\JmƇ@]Z(1:/]TAjfI~>jl*7=,6Hvfholie`broj^Mrv0GX.?P5ZvBzS_^Z[ZUK>{5o.a)Qu%>W"/>!,; *6"/83QR8YWCh`KvuT?jp*8=+7Hkfhife`abmpm_T|{0GV,=P2Vv?wQ[\YZXSJ<|1k*Y%Gf$8O".>"-< +8%4><[^?fdNvpYcIt{-1j(Tz%A_$5K#0B$/?"-<,>KIkkLst\jsU2EL*6K\|[zdaaa\`biopla;_m';O,Op}/c(Ko&;WvCGnsQ\|x[}z\~{_]a`aejpqo_4Rg*Db0]?yV^^][SJ=w-Z)Gk':V'5L&4J'6K'8LMnxijifeQ|9QW'.>=Vuq}vYzw[|ya~z_~]}^_``eottg>\p(?[3X:nHW\[WOE8m-P}(?a(7Q'4M'4K'5M*;OSv~iigd`Qx;QY&,;8NoEkGUQz`H/7:)26( @ /GJ.FJ2JQ1JP2KS3LU5QY6T]1Na1La.H`0Ja1H[2EV3ET3J[4Zx4\~2^.X~1Jd8J^P*:Km߂JIDsi\erzVX\-EH.EH/GM1IO1LT3MU4PX4P[0N_/I^/G\0Jb2G[2DS3DR4J\5Yv1Vt0W{-Sx-C[2CU7HUGbu1EV!-@/DF.FK/HN1KR2LS4OW3NZ.J]-G`.E[0H\1GZ2DQ2BO3I[5Sl/Le-Mi*Lm(:P,7E1CRB[l5K]%1ph~e_SjeZx*==,AC*BG+EK/JP2KP2LT.HS,FX+F_,E\/GZ1FV1DP1BO1DS1GW-BT*@V&B_$4G&.8-Vf7Pb *r_gmzipoe|(<<(?@'=A(AF,GM/IN/IO+DP+DT*D[+D]/FX1EU2H[6Uq3Lb/>K-:F)8H&;Q"0A$,6+7@=Td:Vk"+g}V_b~nhiap&:;(>?(@D*DH+GM-FL,EK)AN*CT)BX*B[0EX4Qk;bCv)3?._v&0Ih}OUSwgjcv%=<'@A(BE+GK.KQ/IN+CJ)?K(@Q'>Q)@S/G\;cBtF{Bu2Ld*6A'1;&3A(5D0>M5FU?Vi6Lb",4K`[^Ym]^V-LH*HH)GK-IM0QW2LO/FK*@L)>T&O0Ja;g?p>o9a1Qn(7G&0<'2@+7F1?M9IU2@L"0",&2@JJC{wgfe\:^T5^],T[/OS2SY4NN3LO-FQ,AU)F%.3'.45]_KQNG@@C*+KQ|qSzBrp8YY8XU9QN=[\4S^-EZ&:R%6G.[;v<|5d-Kn,Hm.Kq+8R.4E38E5DDA783WUMTUF]XR.0654eX{n`Y~O=M^4H^PRVYXV;95==76747I'07/XH$cgsecXsS{r-KR+@&4"@]6xFBC-\0b*V1N((.8ar_rTsaworpVWS<>=YZRWk2sA$ebihiZ~Qyp/JO*A(6(KjCNGC0e4j+^3T(#)7evg}^_ZIB4|B&,H<eggci^Rxn.IN#4F)5B:VpUWIC4j6p/hKUZjym\NNDu<|9y.S$.B)3JjxuP(۸>rR=:5-,(nrmkjcT}u2PW1ES>IU[dko~cW~X@o?RGn5CWCM[Ʃ=2Ɔ-`KeSJ^ZKmrpnkjS/OX):E0:D?O\JcwIdzKnQ6b7sG@s1F])3;t·ĕYǪPҬRdwhEA9lqnnokT1T]&3=)294Qi9a:a6]=z-Ux4l6k?q1Nh'058K]jftrC«Rjqiioka;X_*4A,5=:_{Dy7c3c9{)Pn.Y}2Ul8b*Nk!*0(4J%;M"-5&) *+H]NsN0?C6DV]fakigfdonKqy2EX2>M>eRTVTJP$.5 '+!+-3E>ec4JM1?Pp~|kkhgfqsW~9Th4BS@dWZYYYOD7k,I`&1:!*1#/30E@`qQ}?US/;Lnpljkrn]Ads4EV@dZb]]^PD;q-Ok%1>"+6$282MI=[PU~v6UX-9Jjonieok_Dfq0DU;cTa^]ZJX"/>!+9+>F=aaMvq[@ch,8Hb}db`bipmRx|,AU2[~I[ZZUI5p'Nr$8P#1B#/?7OYOvwbpMsz,:K{\|_~`\]eoo]/L`0W{H^^[YJ5p'Jm%7P$4G$4FCbl_joOv~-:H\[~y\|^__emrh9Yl,NqB}]_]XH2h(Fh&7O%4I'8LPqzhjfKs{,8FCg\iZ|x]}z^~^`birnFeu+Hi9kQ[[RC1[)@`(5N&4K*;PVyjfbLpx,8EB]}]ysphEW^(  @/FI0IN2LT4QZ0L^0I^2EX3HY3Xt.Uy1F\>Te0BQjhhaq+@B,EJ1KQ1LV-G\.F\1EU2FV0I_*F`(7H7K[/@Ngyppg~(=>)AE-GM,EO*CV-EZ5Rj9\z.>M'7G&2?5HW0DTWemtti*ED*GK/KP,CL(?R-F[l.CX'2?-:H6GU&2ACKNsqe=hc2W[4RS3LS+@S-G`8k3]*Ca)3D2;H3>H5;@@B=_]SVZiVxEmjO+Mn;w1W.Jo+6K08D6DR@BBFF?PQD11BdbSyo>`a0@,YA5h-T -A6AOMas[eiGHCLT8j`.ehb@a`$4D?jM>c{aCX]jhhf=[hEu\YA+Qq"/>2LNKuu=Waa`dlDeq>q[X?~&Db%5FIjqfC_k\~z]bmSr|8dYX\*;PZ|e@ZfUzo&&&&&&&&&&&&&&&&././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/icons/PyMca_256x256.png0000644000000000000000000046544414741736366015402 0ustar00rootrootPNG  IHDR\rfsRGBgAMA a pHYs+tEXtSourceCanon PowerShot A60 tIME  "(=6 tEXtCreationTime2005:09:06 13:17:34!tEXtCreation Time2005:09:06 13:17:340D+IDATx^Li[xb8;1ofefUeuuM]=]-cSml0_,XB-b%B @|@ldA0lՂjrweVUVfp{1ߊ,yΉxy^{޻cGhᰏZu]ݨVGTج]è7ۯlF/U.o#8Q1ʨ۱pJuk.[ERz!"<6^=*nq 9ݑuFTݨhkeDzZώ|iwlv S^حVnU+\WJFw@<qutVkc,я 2{xN.W[E&;w_Φ?0m\ޡ"<5E櫱@@;},~/|#N:uYСyUt ߌ?[#џ~`l Ey>> /~mƚ{2@OXc+4I~#\b Bo):vdac< Vp 7?@{EU&`aQ4ŠÜgbך(xge z @*ZGHrSy(2`j'l=`W%G a4bf bTqɀι:Zu1x[M)MY6YDYTתFT1V@;{D(f<>&n?EjF5Dz@N/&4}q9TPf1lg%EtN8wSHlpmS6U ۈ6FMG.hK-CơS/ͫS6y.ƋTW\O+`*@PG'p80nE xTJ@*h C!!$ >RJqW|kFf[CjMЩ1 ;eіh`2 &Jcw0& T.arNy^"luXPE 0*BY51>~z_|e\v{o޿hCyv1ObvóTx5: QfԀeb1FjtȮ(veϘ#좯B61Nc 8m3w+\qY_12^U`hZ@*dqR?"2_m`(Y倗}ÿŸv\S:mhT@8~Vbu7[n[BpϽe [XҷN*:/ǀn~U,*, ƺ He{OE>u?#԰gG_h ߧ=evG,S8j)xjщz0e(sj/ Qj )U+% uaTe #&mz/iM0!dttxh$ /ǫ2n>(FUZEAQKuk}c~;E/ÏnF</^*@_0*jvqYbY|4@Hc:#m) pxe@>]>t4`E-Lpf-Z 6l7tG)&r?~=C!wLM!gPp7AGC A6d:2j@+!3ڡ'ꭌ m8ʫE)cK,U՘4Շ p\-m~gk#\TYA6O ,n*GglQNt:x )= 62cy?'¿?kq|!Mpɠx+3lWv̄QEꌷxtZ *qx;AFAh8YT1#7Fנ ScubH Nuy #7{x2Ɠ3F\ͫ]tg2hGAttј_/fN`IXF@:Z?G^/o!u/Q(c;j},nnWPx˸'Ytd,t2n3}щK' ?8nIX 8])'WLhƵzlws5??=AKֆAI7<, /  v n@O_*z!㪪ݩ؆ `FN6N#JiI1?3mL5>nQPɌ3^#c}9(CڂOxx=c fT0fu†WE@Sv`_,+y1S lvm<~a;&24GR GhKX)lO~m^yij߉7^eS |d.#e]ȌjUK~~d+&NgG7i(\ପ\pLO5 x Z)-^KF(;PA$FkRPw!Ρ^al.6ÿێ8byٛa;LLm& +5Y%8~7;^-썣N&Cݣ_7p !D`/6Ckxz_MLznDŬj~;M&/1%܃wO#Wgi ŀW 'lg /:Zh{_c⦢vAYHg'%mpMk1&?Xǁ$״CT 4O }3)6ma*: + m+謁td Y:1n4&hF ]CFAx&}V-8uS9p= P_hJn2T(5pIo^) g-1Z ]*їHSONxss P#V]/aؑwC{~[_Wo3 jZoLߋ_ >? zxV2{x0_@ӍG=h& DY+ kPV 5 `"ttڰM^lp:O6;6*(K%&(v0Ԕ16f`,7Zzqn"fS(uԉy"80UF)g"Ie%VM_*n{\w &3@26\2_Ww@`,z_'q=`Y(㔢W#e{ʼRMPs|2:i'!*!<[OFgqsfp֜IgБa<͟ggܗ硇k/^ѽ1 gD vq;y;hNX#r]\&kAlPWTfSO|$i(n|W4(-qv V9P@Cy`@./Y%<My42iU4^LgͼOU'kk ]*ͽ)iOv˩y"dOa|x .GS'꜃KЄxc9|6Jxy9pWd$/q~K#B.[ Ч;|`>Tgxc|r^&ccL;L:]&86P=?eRE=4TfVHܴƹ$ks b9p*<3(z|X*:mT9 Y{u^@{l)`P8~+d&rڤc(xӼ&V-֣2k!td k 2 ;딳Z!s N #17,(|sk\/ⓏdagEFɆm_ Qr3^ 4N۫Շ~T[WQxv,jxwwWߌ|-^7~gM\x7(H+mKF!ST-ΐg>,Dp$C=2KUE64\=)U*B Yl0pffK#TB*HlG52 dwaݜz,HlG;vD"6v=Š^}7..`gWHф 3! KfaN{Y<[Bxvb&G[q#,`0Yگk fu,5朻Ǭ^.6='9ECZ [FL{ޫd:2J L$W/( ϣ}[`M 2*;@M36StiOVK(S ([xY%yFם6k}d(,qBy<+a`Ft(:7 0> 75.1/ -𶎴 .,t5}i:~nR &PtKoL.ZqFiy4oxh߆PXN<{"NAݘЎ󫘎gц]|Q\N`&OP~d`2w XId22W{q[(搉A -:y$[02Lٓ![5ЗdcNq9FegN%jt:YtEciLn8 F[GQ?e|~ j} }XZUtS=9k:`u"1apj8YE-9(g۫|爜6P-om/`_mѾ6:j2 qo ǜbhX֮4&xG1$~?Oa|??Q[270^_~7o~}t>byDDZ7A~ʷ8P$_Nx79(|朻(_E5jcx@=^oOb 0HR@D`&2m1 t4ٳ<] qo.b5t@e3c3+c&kUonA_Ԑ;܂v|z ((0_I+$xfUfаvx4l#+*P2^D.50[bn?xnIPn, s:zb?d)T覅`ULNp-F`rM`"l{ȩ=}1lIloOBVSё>H4bxG>Zh ?-j9@'4 Cuƨass\]V:e;m1al]r* %Cf\]) a[`XnF6J6i&`e:˄-2l(AP=f2#3d#i0n6h"֬WD{=&QvggsgaLX('ӘP23,J(lӦ)jz{C͟]\D9R0Au,Pp({RLo!UO[P=,&jҺ)H!#<`2eޫW;NͬTJ@A:u^]0 t6"^;y.1V\!3iC? JȂAhƔN[8\EhܪJ3x_VrN2 "Z^%d}$zځr1 %.͛OhXUY0dN0P)5*SjKk&p(\ꍉU04eBW,~XLw7o%Kp4G_^QHS3I.]Ɨ8s߃'F|>GΌA=A's02N {AEB2&8?$뜼NߣP9|Ӝ.6R#Civ\GcY#e-lRi ~Jg4cpя &l<<ή.b0*3MOZϣyҾ^/HpCcߖ¹9S}8hyR= 0X 7Hh6x{b6JZuΠAi^DHRʫA5z 082]|+)@]T!FfҬU"t{:.!|m'90h|'sGr>:+kOQt,e6!'z#k-zJt(W Y&RL #X4w>Evwc7q6"ܵ\ 1g nd(k ] 5?O 6Ǝ<,L2gfY1oQQ%৺@ {rə^& M9Y@.vI#Rz/aOAWguCn#:otǂD > "B mLd$z-0OT`謸s>V\'_ ^zp0cw$\ji"ICW6czśho tn8}tq TހPpp\@pNo<J7Aa` 4: 90,cCN%,sEpt܌f2kneaE{7S ;{\T`+]Ŝg=ƚ纯K' MH\ld ^ _=Ad Y . 88aI#1Hl^VVZ:/`x.Zl |Ey:A.)6m̽k1^\CퟒVEXJOe{x y'K]+oJ=71Ӑ[w9_g\Wosؠ8r%ЄFbC ^3~@zd -7jae FЋx}ðy!%0e $8$(OP,c{S'eJc@T*nNVn,-7*rOEN*+E>"!Sܻv=gtn\ E2b*N#WD> |GvjЩ .g[9t1RvohyCF/}apԾِ#\-_pgѹxgoR$| #v{RFll o{lZCyrc: er_2ǘ2 zj#x$"8s88%Aƞ-UkEz4'`v;/'?q<..egXNCFN֢\s~P.;A6ҹJv˚U8ha Pּ7*r9F .hUy+@y &혙^ZQQ(@g ׊ F%1XI3fn~#gܸ];26:miθ HvL:`gu~ \LEh6[k@%K{7؍If\H/lm-V6sְ 9г;\lRքӧ]٩OUfօT ] ߋFPh?xs(˯ IXf azKpckWW"܊ӀƗ.>]|}>eb #gTk Q-c2(6 B.s 9PAƾ7e\ (Y} r"cF˜%m}2sRу:6jWw Z@?D' Nʔ#hU9mAd0MWq9.ƏO&ob/rФtGUj)}dll<quqmB (wQ[{mwSi'@$4i,]ӜN1gVQ\CAwiwT8Y6㾇Zzt<9W9q$pfwg)6e&ͤڊze\` b#sxm/xo'[!sӉ;~ ޹9+"wCs1.8Z`[A43?=g|]k>NTWÝ{  )fQ[`]{ggd;-lW4wгҐdA=$ afnmGou@p}/*3^?ֺVQm {Ӏkk w2k GtŇg n.xGxopFn%7~#ZV @¸2kLnL5N s@H",FWmeg \gm\X!vrDoV̨&/#5ъ?+ ӏ HA`@S@)},Dϰ…AoGkUeU/x>s7Y;Psb^HPų⋛~#=3+; Sz)`/gjo1 hÐ6 âک} }^̑\OO]\sH}茗sLmFLifk+u;=(^59~&]lP cq|f0@} _tL 1Է9zGCNXaXjl2b2ax@^*/;AX} %-+Qd0\UGOݥķaS%LĻc@ps[cl;hddV`UK:~X- V0]قE$tIkf,eϟ6Y4yg$zi#REa4n1Qbd,qo#iyU2T'_{1C EiCՋw ['S(MAw*9+t!cx${@ї.;YJe#I4c-8/=t{*I\-،xa'x!4p1u`y痗Ϋx}t*&0yw9o^gl3]/a W*л +n ^:T mM9YHa Qf^Ne[Ĩͅ`YCG%0=Y#Ph4k,n&JuHL)C@Z,fm߬8qǡYQg,&,GV),=Yb Q}#d_A1,΂g`M֜|ﵹ)rS}^o B+] g3N bA~0APvƤ [ - kn b(kpx殼6aùK.l} c)HAұf Ln7I*.Z.]Dޒ{_cD44 hb5U׬WzVâ#Wa bS'*n/xG]Ŵ 4 %Y]Z6иو6 @cыɹ9lg /ix9[rB̉ly4N7ȥiۛÏ$怛@mOіV=!$n>qĜƍl2cx$opz~r5351Lj3+bjv^ciΰ\ 0]^)=kFzo;Jf#ؓ1]EX,h^{B%>Zt sQϖ8L nn>/Ks_^&y| .77} g.Ę'11f!P&Bw 9}LҖ M5X]r+u_񌟃dfר*> 0W<&ޭ] <@V¬kbu &:`ub ?҉BV@O!SYD#FjvEyo"*jڞG{ߍFQ\ 1FG<^aw  n!ܭWJH:oQӮ!@9-l1`oQMfxio@pa$ɍ=s =rW D" bH0h{i*Zbo vb>MG `OvK, H[}/3&"xh[N _8C)1;pk\gozCQs]Jm҄lA0GQ,=q{;T*΂ڢ;#F 1"W OI1przVA)ͻ|g]!w AW`g\0LސXV+<khG÷Kne]%0hQ24|!9'e8?T+^1d )@+CjW83ɣȥ5oh:.tkCH|x4Eɗi_{ص.7W;ژvz׺Q/|Bfj|$zMxFw Nq8ߊV`$B *MYH] 熇 @a )yVN25D46"0n4vp{|M p5b@b])}Z G\p䶌@!#0r_,6 p2e2;nVXxR;bj=h-h^-3 t{״A:4K_q9hī.ߢX3A 8JƂ8xPnV%&,UE%f|0c=- @J09RYIOKs71n!Ebb rCi?r,Fkd &ڃ~ 5*.sud u$N257\V^:%(U{Sv'Vr9P4KQSb%G=$h2Kʂ6| ͽYNXY/l-L֑eۙJ!D ,<2b\%J]垕ݍF)lf8'qZtZy77+ :WA~!(oM{?n.2sSl;4.#ڂr9 d01F;W6d BnY <˰f`P}ޟ! &MbۯQwc<}rW旃W&K )8œ%VhvVYEh7ng-ʚCYrI r! [z!c\ IoFh" r5Uxy)a$.GF&nTzoZ{@t)sT:*7GIDHFKk7X͖, `cfoW)D;o0[+cKupMGO`XU%9;wpl؁\((F/eCl|`E?_soόd,!̍ }K(zJNqMikgpCjn5+܈B WRHVK9m2T[-۸]V (Gnګ"@F! F.A]N>>i4]GaKG0]^{W[{=L7 "*v[.(CaD=q9̊ %y% L) 4&jpuV.t9SYrXO}82nno2nk/X:NdTd+GvFWX45(9ceeqþY˂Rw236 T|@`ya r0Ө:"JU_e.-^Fn 0: Ʃ0ϐ=k5} nNW/l8}iع=[˚LE DNvSm:a|([ʡ0pU+q/z7yt&APrlLV`:j>ϣ8 ~$#0SC넁nn jh`չSbJ[j 06s{户u&gg =ԏyT]#'uK)[B J nAPDPU|Iƫzo㳝qe϶f!iݤeiv-NMbCn`(6m[\%;zF'4TAl iTw+gXf.ńTxr3fzY:ba5|!<%)@9)2sSSnތ yh'מ`ak lBRlpDJcNS C7Yy%coqu&ĠuZ -6A˦B+uWA+ƿky}o< Վwo6tW/ƀk 8vӱ}y o 0]*2& zjx^ȕZhϑاBJ4*bݢI~ysZaBvgTCvY$&G49 _5KM*6 I&\ÏTjĪ* `Ro5g8xlJ`Wcˠ n\'FZ奇ʊx9?Eub?|Ч21v4$@xO5p`\0~6D{[OWW(>sl<7@4{gQt3Ls =_Puks׻[i*Nw^2]5GFEٚ@gzr'cQH{8IOL4@,dAϢMu*c): ^8e\,)Ks5knҬgH^96;CsM%>w!&wl{֖{zT θ}=tV Zi ~^i0#4CD0\04.jj?ͥ Ճ*;㛍D%Jv9 g8<|ps gr'o|orM){ gl?[JVrR7FDj{<9=@WԥV}30J|fixJu%}ACxbC,x/c"7>t!{fsڞ+Otwt(.fE }g;\>NV< (Ya6y"wRK@&war)/( e StR3Yp\p6L:̩(|,ʨ ƇU4<ƻ9*3F\[Xyfvlͷyu &{l Y1S1 2Te45 }!Bf@VN@4!iDGxhetvʼ㼺$t5>;Xd/{8Λ60˪MYL) ctSc8T0(bZT>1T<?71(PE/ GFIl#zCQ ({H.w{^ڌCT|Ń-'|0>mvv[Zt^r6"l_&B:*" Db--sXu׬=1>C2[:Ԗ{A~|@*1U+Ĥ0Ӕ^N͹nExSRuz&2K8:ʢ*%ƄUZnp/S7MpC<9 q?F`yqk0zՂ@Zӳe^ǝjKixQPw!8}YOK.[:ђq='NԷl&O6׃ =!ޗ:Dw譫%ƗEa0=|PvZ5TC9gě:El?,? [0ٗ`0v4XzZb;( ݁X:}@22H^gocV3' <7˃Md4[ftWiBeO(f@ϬZQGArw^Ke5i$38[2op?<7j;5S+}h}0F:awf[Q,O.eh] (zh`3C{*˚E=@+5A<}FG\ ҋ? `jBv[%m5[QCW( \I09"SBV,Ƹ/KVy)f6gh_2Qr8P4q<+&=^!4'~n4>i9!JOw~yUB)\,Qi$W?C!J]Bs]WNu ٔKl7sI $4L?yJH; Wь`|*nU*"001?ckucalPi ps !;!y﹟cs8-FYIfq eDODvYx`ȇii/m2p/~~'Џt\@t/m;.JYvab q#K;`uj& 8YݒEKN#@ wG~7n2+gϱ^Zw(=9*-F>={Ⴃ-b .Wfr־k;G b#`1(4x2WoӸLXx7qU^BzK \jKB-WuxmXqSV5Z} o"Fn0Eh}kh;8VYeݚ1(zxyF Y@/0r<0M@fJXrKXXjt;)YsOX>zНga10yfi5qnxl<4ܖ5 g3ƻ ka-ƢSG5U ܁ٙTv5 䉮%0 ơFއzc.K׀U[>SUx2tB(2z`[opp]$J3+נV 62a.+m2061c8Ð ,amw6_;@;7N՟ӸUPOvJ]V0~.mtBEP\bָ!'[Aob&6KiST4Kq,DGc4v3:P$:]TYheb\>;?\>m M [WY `ElM] C=̄~o D+"hGߡ0L";Db͢Y /1Ar/&=7@n.utsǟML&q>nr:qu2 lbk(:JW3uc |x~/_H&4;;8\"* ]g0΢"?MZ1̖8B6zmt-K̓[~rqC7`X'F Cڕy&z_•*ޝÒ]m$'oC7å݀ Σk&@EG@iU6C<ELg+@e%:Ո{ opnLnyPM2;xFݣ = k)fhր־)8*Aqh&$bs4l@IchG?E?/^Fk8؊z~^g|<h]th*cIt@tBZ7f(Oya`S@[~ti0 muS5Cpg_ԊzC#ts = b0f_V_cͶ/.#NIRl0>=Ϯ Ma!T#tXYPy" {4svr|6'P煷J7"t1X(QK:vC, 8(=s92qK ͓ϧS0 tk%;sC=' 顧/F4YUgsbWݎ.1rV,ݐՌ%;[4wr]TF8W*φ&A*r l9չ&>y;|ylv zc G'pf)Sbs kR4JuODS1RUtL nX_I_\@Ʀy&# k1nU. IܨSPpýHw/nB.W\LjSV}_刷@?/J-u)O xέd 2_A{f2e[tG}:@ :r,7vVfAy;W ^AvN(' 8ng`lNOMu=((&츏En,Xi931/^d ]]1Q4t?QYgGúx4g mNja )ЌQ{ӸRQ=ǙW97n븚G :2Έsm~x\k-<vhHDe|[?o>ey[Df$#g*BxrK L ZMwsdc-J6蟙rL; pk V37j76Q*njT ?J>8ՃRsKiDDPsbY9ƙ T1 䁱x!{Vzø|I /d1Na;m8AA #<[s:p ĵ =7T~oQ@[6K4H7/fInY0%Er z6qV˄{ȴ|ekλM7 pZ7p$3A7u G~7F0LG ưY$5&8`vu 'v܆ЄЌ/t/ۃOw|YYoE/#? {xm<+e^gi_ZwPst RqeN[sWtC4 9*)CA8Mˠ3++&ٹG;߰`5 Pc (n~~فNP ŨKO72 v(sre $%=_;8rs nVY& ghPV#XCnָi9}t83CA<֎q;M^hs>-bUTVfbxᴐy,W79{@߇x"'C[ݭ瞮2fӥbtNG)!sdM30q*pRZFX ]ls֋~pC~tUs*Im>[#I EE$\iѩ]^\r?wJ8VP2 4VrT.Q׌#:賹^]\aꍍa=@ĄozZˬ `0"BJxlmAU(8nȤWύdx9}>NGl|ύb]rc z8" q팸`X|9U1=eI'(R,34NLkj,)zi8AIVhϠi(SfMF7nz8}\%BԴ&` *b@⚻ffy@6* ݬuh-\l BbZ \m !~rpkYGS^Uw 2f*(2ٗFrݬ ^r&`2ť ]mܹ A";; %xI s˱6b:ӞiV=tԞDvh%z -*:#11ba 0Р<i J 5\ԣk"Le*)Lc^N]-!òWi%rT`c$+2gU.$K{t0\ggLJ/LYP ,Um STv9xS>E;2~7x/q>fLB)kx)4pv DN-Cda ;fFsy 6[OerAyH}obi"7]>O"àIlyEރt=`Qv4a""eCG241%rFXksO#'9踤wD}*,lGVQ۵CL*xJ ?}+:FSk01a!|:k)υ{^H /jӁ^.~q:cZHQc`p6 wYYb ;8>bww&..i6Jj]hwqgf{g ӣV0üzKSgmƩ zW :ϽK `s6j&^m 9_f2)A v y%vjd6lք ; J/I3;6Nh5NuЗӾ\2}F9CWdc &8mӮ<@f<ڳݪn>'/Ylg`tK"cɰb, ^ "Br&!@X>n(L L./<ƕ-{o:;{cFbnȓv =\rQ5Oq咢88|2]EGp ͹Mf02J QZg rӛmFc> <P{ ƒ <! m=Ց!N b9l;Zpش0lpcEi'Mοx ZOn._rN#6Wr\)F<;L"h=fT/⼏g~~%ƣ+O3eX~:jʄ}1SotmĞ\MVr?^GCqol2GD+:+,<.nW(%uC8Bmvr90m 2^`%Mt¤!J/XõĴp@Eq@)sWWNnByKn$akQN4{%FҴxx蘶. d\#;ެ7RoV(]ra942 K(,^|=WQ_b :~+5s@j2#zvOG+\T_.;f'bPR <ͣlؠ8| }e<.(|n)52|8x ~.azۆ߿e3 좟ӂ&7&q%\s~~B˪|XMSyH#B3pv|B6ʝ{1nF00[+]m\3``cvIl IwQ9ƶج9CM~">J|+`5;dоm4PeNq7v_c&:#.Qe]Pmɝn]b, q1@lɖ#!q' <T8Xr 8,(\dj5\ǜcul RgWx%15MoD3 09&8M>%6FcSM`zI@,pM/Ƀ3Aەz !Щ1$ơoQU=HD߽DscW \Z N ڑWFNz5c.屨$.(/ `i_ͩA1ӈnDYyzvhhɜzRri8i/9+bٸw-XZIN<Lvfzs:#==wPg-P[z Oov ;Bv*G1A\cV-L֑~LĥYNh4/ /4XFF*5-!]4zz L kRadD ^#IX@L׻|'sDHRvy_B*xA Il^h^|Yoql#ȀNLGkM%Nn1KX !ޒOYPXh LXZ\L`0~k,`:+< 0c>e "_6_/B{*^\TJs;A:oYEW:+vC|joV-30Йd 0qXo>ZlfznFx\cyZоfY8%JycfIq隁51:m7*1e13 3r(Į\(֣2Xߐ[c4=o407W2$s8hα+ڋ`<9.rre.Fs_#3i[|xkϺq?he:̇=!`X٨*Y)ꛏ>qzN?b6 %8 weaE2ؕ:voxxKSN/[Dj6Jg]x8k=fɕERVW&NLb5ZP%P S0̈wf2K7b'X!GC袓t3J Qhх[cD,@>w+j,r7F ryvl[Pnv@R3Xht9n#snJbOci~[X[ bo~ׁGK_;jzݾnBQ8 Koo9 ^J1,Bޣ]NKݏ@`ZbXDAB QF!H}=ZW)0<o2VYb[f .7qB\<*+oi(! KAc(d1fhkRG ( xrqTpS=Qs;{`}q i!zڿⴙ\MW#<4V>}E#KL2&Ӿ3I+އi,hzcso{`u^ܠ%v؍~}Ct&j0Q5b`7 1,D_sF,>Wgާ_6vʭ9b.auqGozDXevz1r9w`b赉<{0h)Dѭ V bNiMR }[3޷oc>5OkΆ| ˫g42؄/ o^Guqpv“{ܯAf} ,ZjȾRXzLƇzUz e=}Vxo<&;g -8"Fu$2kH`uN}"yƀd $tPߖAZSi%X)5u`KWn4c Vz諫,EFDWcied͋9taK/,+9;TOfC0y` q!XUb<\p $eJ[ug 0 ; ܭwiNx#,`ۻgkst.o_A֌oo}l R >󓆁,wc@VjJ=EVkh(R< OZ~vSw_3^bmnr ^tZJnubg! G/Dx<[a1nG~;6lP`qeD[jJ94 s.h+%A2gz U繾aС]'b4XDݯq$ᡍ!Q b9\N{.^^_'$P0 0-H=3Hf%5([|<n*B{D9{Y3Nuf  `BՑ_2grrK km:  x[3q#BwXxr#(>g5q6ѷb:[`zJd(!`r|}F?$?szsλݚ< J#!fLv)K~ r NG' FAnb >1Ze-k2n| pg3!#seXUもRS.4ӏr Z| CPV)?hEGr_.FWq2 uz\z2R|sx[u@\Z ڶ]^sR?m()IcV"##[UkiDT݀~w*'_>O& ;o%ϲŠy<;7FOhیOG(^k[WWގ /2DwY:K!OK "%2`j#lD?Hv2ovjI/"\n{sd0}(/*@Q* PVţa;=5A)CP]G7Bx8F2< iL%6x^v8ǫh`鮊E7Um1 h!g#q4k0KbX%ƿE| CY@l;i2A)ocGXz*5P,*6PsQ*ћϳ@gɬ}5]{vKGkPn YG(>rSg9}I`D~r/k\ jz{d1 4ʗz:N'w>Ž&1ZŤ7 8KQƒf¯]3!Ui+>vfy-P'X `&h2[L61t'2c E\Ѫ&55~堻voC9OU1w^Ãgr_YG+[he;+ju݇ϣr#XǘGQR=܃P.:o\dA9\w|5Bh7قReZ߅`OAWgca!i64 HJVb&K ?3N^ȫށAu# oJaW{|@c(+cQ~jY^!)Z~\]]sX0MtQ> `@3n}=A|R|Fq^"Ml&c+ sPhz> SzZ–SM=E3E;˴ ,նx|buƄmΜ0(諷@@& [@y^DR<I5n@wL|8< 59m PnkU} Gge;,/+k9Y.>7b:_K/c$C*=4$>i>:d T)y,Ȝrgl4`+.M싰U66^9ݩk~]` %0=|A^%Jo`^\AJ! LyL kf Sy6Qv^?qT2 7t! |nĹ \ £Fp׉#-݃O}{ 0yXAjbQ.xqq\@oM4P OqR bc5y"eb[!.FIic433Tfe/ `tV1ygw;X%V"a s_>O>z]#z71ܗ7b<Οq+[{yڏănZ<5eV]nIKߠ)Fx-TG6}ES= Ds1lsNsj݈zz,_>U|ف;lX=o ;L6[Eg.#:n>yyޠ 3%7" SPzrzgɬ 1PD=hXO26f|{6,y"9;VЏ4{g&0~d>=luZUJ?ݿa@r:Cͤ&iq\snB\NnF_Q3i:]^[Зm6ۉHy wiVk]Mgw<]ha l.pNCo<=7DoMŭT=i {( "OFitN8hZ]lט0_IN82T?3|a icKe x>VX &;`0xsC^mS0t 0V8خǣz>skZ|ŗƋ}U<>=]ٔE๴e|?KzZL-hܵ7c]NU q:9+1O 37է3{+?'B#e~sa%-Cʸժl,3@4]"Ε{N ֘ؐ`i61 GZZoEQvY ҁ; L y@/_/hY^Wܯ@`JڠI=/㑌|IĄk9Ru#jŸ49a{ME?u ~z>XQ)d$(傝pOg8&kO]}6$Dk 2خ0d(3 #Mq}ɖ`Ÿɇt!U|xc~7ug#\a/5&{=7`@kI*׶r&H 6A Ne^缸{EN{XqtI.M$wAz\`2SBVyyv} tNڝag1C 2œg7܌ċxW/@O>"~'ߏ7(;o]eoCM.i&FifsoEEb,vg=0JZ B fS%sbn@kc^tӄ OO~ ʤ!`<%ځޮ4@WqLAG 1COG; TY2 oe"_ݏ*3jh!8^ *ArIf-spZ cلp~%R+zm.3lpZ7~w6B0lc4љr=\%C)! map&6t?Vh Wϕr03Еwz0a4[ S(=&zm &==E4FuePK:6I&E+Ov$_Oc[1Jya";!Rxߠ(l=E5qq,Bm6(ێmR[Z &(97sP~*hĜEp6 %(`ɸ7¯{_{'C77yZj:m7⽷lt4p1<;W<*G^nu 71#8zCɑQgbg? y P›.! #, b`H( Pw fd>^li1BvnpU tXc̿Nh3miૡ[g3 ВpzZʩ.A|FrYVkn\m` _EƄ F:J o\í߉o]([1&[ 95~lf'Nz2(g#L9#K8ʏ1 ji]w>Ϲc Du@sչ؁0,ou9 8R33O=\10X5K+;PE:/VzruqN-[37,s3` .2TԜ/ي=,|侀ɨ؂r_+ hX|~N t{.hRt LVS< uX2| tk9:3۰@ФYj%bZmفoNtξ%R2*~|_fHxӶ:FDő6k4e3AV'7<ݒ!3CLN܉Irr-R <8B[p?[w1twﻣ}s{q!>B9OnD;"; +rܵB#\iRqZq4DC 1jg0s-mT&PRxs0{!b+b؊^YtŔ{]ȳM` | F2نосf4b H待ux- O@feiqF_tr*_ߗ {c-VzC_2 ÑpX2*Sϓ( L 3MVFc0A0pp(k,U Ft[Ryݏ5b<ꀖ;EFzސ L2/+cg~;Чu-zܢmtL]Y7#lc9Af_´q;KttvVdwMBe;h7S1"X屃Y/~g; Ip5Yej#d3+o5]V{&̸0AjicG@fv ȧ:ť.r2vxWFJqr@}eLr[pi^Apll(ɂn(5F2ucW4VGG90n|-YgϡMvVmdBQ.m˜݋I߭Cw)#ʘ?$l?Ўjًɾ^w&o2N3m3BҪJq|x<7pI=ŕPF6ʩGbe, }P7>" H`@Ҁ\Ab 2qm^ ub,>2)ڸo+~^w! !cNx3䊃pF;9­Xx'o q:U,=tǐ盔uaDqr-^//?ѽEϐa6۸{\Ǜi|z&>7?>wGw=ԗRdW03P'p \ 4Hv!qQ:M,y͝XeFfSݱ]N@]WEf^urop1źK և+.ٝDֶ03fI1#*y.u7x;]j3 }v,0 EmI+\ϰJ+jB|!DɐCa<)T~Ai͸@JfU་ͣۿMe1oexe-Y ~m=t\D(_ߎ^xd~ .O^͗{(P˜} 1r?s1v")?5 ^<*( Y6[n4o5eͽSubW鴢:: Mף]$4֛M*jBV $9}0cfwv6@.&svo}#٪yb'/5<6r߻%A[~d+ ͯd =dyǽ ;Zt*y9{e@t~գ[A=8J\f<s募=Y[o\TVFQY.:¾N8umO:K[ (5h:_09>7Dd)~hv=Q Q5-@\)6sUnrFIu0 Ú ?{4B?UOz bCx<3,*YX w ƒRT=qtRaע .Ft?q|{^k|/ ȉ1b.FoM}qiIdg˛;X.YW¦_ 0#b>x&eQ* PrLS M6<{ɋT6b.l 1zc}A*@~Зh.xaW*ׄH|5(0}r2p_q7zp63̉zAޘhxv[WE!|3Ϙm&l0=a8ss](3Ga2q!@Ye}|0Xys +vP2>kz^?聦,F;Wƈ[c[}صyh_A;sK̩ܿOGt<KM(W2* DQg`p.:dm^R :ozb̎|+_|߳'d^h^i L=p'^}c[m@ks n.U<#0ϝu!JT^w'Ms٨M3I|@U8܍M c/CljR_m(< 4/A&>2q"0]VX|n{^\܊/#҈\ c4a ^F]:\ 3nLփ41w,l8 gd2O&10d_fAof*jۗ}BAKн *7}NFNKiLNQQ*ƶz kLeS7lƽ殮e&[ VV_)&0ۏϯ?9~lbA3&avc.ڙ pB&ie#U**ǘjb7&qF Ϛ" +ެOq ?5=^o_qѯ [,  xa!ɤnTsWP &]Q{Y?O蕀l b?XAgQg#]ׄ Iˍ2aNw%ܷ0uW ;^ybqkbb1Z h?9{AEYȄC=̻i?qc >_Giմ %EB6ƹRwsnsj ]|ܗ5gLJ`L[[賏qd8>LyWqhƌ;u;- 8r؊ `ˍyl'xSB8uV3#leTڍ<\J=&&\Ǽny(0.3l&x^i8| ox")vc 1֮ RB,+@;s3!fƛ&w~Mnr2Zg8>Gh]sjȠBkנ0z?+ y>!Tn7q(n2;Q]@$>v祻7SDِjkMCv$ڒ~ˁ{nn#779\+W2}Ս]hY.ܖ|褈kԮE(|zs:θm3\NZ?/V&22 ^֡Z ~D:G' sY8W?ͧ-Bu}y| Uj/gF~%{7+w0V'C B\$2¡uTp^}inB% =:HfJOIsxZ;?7FuK{r"+k@|7ۇL[*I#+<[/2[>s e񨭶i kp?ZGyo=0cvםe&4;!ٰ51ЀQ2 "C~zdtعԚ q{ VĨ|IǓ\#̡kbd)Z`"/J,N,U z2nO2ct3<..C]['WL<>̶1>,x~=Q)4z!Ėt0z ~h\LnR_;o)PpqȕղShJ0!"{Dbx_F\:H"Ao5`4gf̜;Cꁌ_#I`bSpnUm#k.$I#ίC9Ir0VJvp>q>k)+Hmc2o5*kt浙y}Cg\_9ӂ1`CGB:E@>:d",dMdE79d1~iTp&r75᷂=*|Y! f|E֒@xn;+Ruxĸ]ol[s>3 w/2n )2$U~R#BA&+> 5r6Zm!օ ̞bK x Yfנ6LämrkY&7]5D+ PQku)̩` ;Bѷ XzKeZA L%gUzūwbTZ~ ?WI0\82q&S瀞JrS(jWxe%^` nOz /=npNk1.28w~gN!Mf#:7jу (D51,pICza Ad?G;7,͐k/Ll'(0x$j2;5 >g>B,g8'SXcoGKvь;㛏+Ce4:Nn,= D_d9&J4%`Lpsژt.Xi,0M:cB_|,1xeevdPa )s` xOf񟝝EU%@.U)dxElC;NN.d4nt(>8x3.< C,74dE HOoF nXeُ[#=@Y(Y(D9?q˫-FYbc7CVhD) \/`!xnʾ..{{l>n1/>T;&_u\K؂!,~<>]:9AqlVdz湛T>zˣ= ߒj8[9}vc 6Np`Ya$flo<$PCןG^}z*@}_dlݤ(R%K8;v|2qr$3m&38>sb'e9eIDQŝ&ݍjz|bNAP,~>f(He*>]6g~,5q?Ѩ"W2O1{eǟ>Jg%w"QjQoqgtkۡ#+:Yo22юgh*Ͽ\/Nn:&쐽g!V 0>E :>GYRa] dWn',ץU,7l~tCsx7rJQzVӬd$+o;)no5ME,q#/x27hgu z4E`Se|u7Z,b2A/k6(|Vβ@N5hJ|6Ae _Z†bgZLo e%>H ^l֣4Kϧq iU{6 b?]Ś#4Z}`P6a0꣖m[ ƍ/By ثM3=,16z3^WFqN.Vw޳9(:k=)1A@,&~0,xS *$31ϙ[,ˍb!|'H#Z`Da|VY=h&_˸7ۣΨxs }C UϖuůFbq#m+1 5Pû}.__) bkC\i޽HM@Ǫ A*݈Tk<`Cb =0NW+\5vvDZGNuۋt-y;i0+RdExCP! L26zu.yl!T~{}ߓ1yBRda듵|,19׵s2:x6qu .'+>2o2>¤ 9>OC/i9 ](yOx*6XS > Zv=&ۀn)A8 P)#'B&1dM 2~;1_:g"yl.e1`r9TR(>0/Xla6:Cosт&}vqEܸaxB#`e*SQN369y?n]`*υ]_߉mvEf}FƂgcM# ;td*=DT 1X30N`ynl#EzS/]_et ZGFt5jO^11GpZzR[Xu{0=`ǣ7SQFf$u[3ip='2=q*lRFKy/$DNI>'0>9k[ 9F,j(QHki.O<1P(-(hfo F3XkW>dxx&"@fz6dfܺV?^{{ L[,$Ĝ?VbG/d[GX*:1h.g۪>LƢCp,L,=ws҆=F$`HϫkkP2Da<Ƃ1lAAh3?{XElĹrJ9T؃a{VO[[ʎrh,|%7[-Ha|yˡ (=z\_ߎ.t驘[ l zV2ǵn"su=/EhWan':f9JXZU"JeRO<ߤ @g&uJp/|bzU`-7Рu@o`ɳ/(?ZB)v>]iI"B{S 4{WH ,Y+ yi3c?^Ca>VtۑZ5&QaGyG|u]'kVњ;bjeްX%?qvY'I sk4%\٘Rz~Jfb}lc?Dt7ƘWv1ȺDE8*`ϾtaDNx 2ECA(縹Va1 bʑaˑo,^C 3H7,e4\g{ʛ9l77πٌ<~kmfpd"ƛEHj4"k,{̩?"L,̟>*.VV}B5XBn\ (9Q0%|  ;#Esj&*j:^]̷:{&^ߊ"gYinQvlif3'K;O\Rtz4c0w]E+q܍?e KIP̋^&@iخG٩{?~M4aªB@[+VZ"Gy&bc Dp3XzPfġ foN CnFLiT6[ E`$L#K\ޣGXB@X`C۷ףW fkX5JP(9(?Bvu&aǚ=KTk΍۷;1UUs:zyv`cK2" XòZ4ֱjxGѩ7`~37[PZ,FS <{up%X#¾{qL>|/7 k^bT}Les:Vby}]dB2Dݱ '9R6KeCܓǟH5$55٨Ņ8٨,L¹#_x!~/}4ffYD,Tؾu5(eQAŵ~ +`W]뀩7O3ϣ/ҷG<\a|/Pt)enZJ^ykKKt cxٌV^^6d""57#f_ٟYX~7(~%ג]]lDN70%YPc=o q&23ndQB𸇏JkE.ls/i] Q}JǢɚO`X.~v6w0r6 7`ZRX}xv E!4Hb1/Xit鵖|B39HFQrxDqnGge(F|W0h'СM~I>%:LYOΤ] Gf~w/6)2iCMh6t:Gig 7J ٰìX+l0X^'[nlLj X(@S)؃\Єr}Z{K+M|$ÿ@Nq:V*(كm-S!nmQFBk)L)N},yA ޤ+4lNƱ6U|!۸mlc hzm M0ʚQVc}f;Zm@j#fNy@l@ϞJd(TwvdX81_E ?BROObi xEȖqʸ 68H[9Fu= xCb pdP)AKO37t Z]D%2sƈ7bК{aNǂPgsS ϝ3.cguIU`x :z_zTؾ)ee%O)a{>*~"e֦C~1\'!DY]Gt˓Ty% $;,nyZn9 <,wd}85` OOTtƯz܇,?/7#Osij.\1u.@4/bo~Z^Uu"?*vy-4dJ@^ #W ^3-ᑢkRn4Vq U-&e(l [8m$g,>j_2˫& Iz<eAgknL;c,7rAV~ІNC%fu*r> FVJzB6{frE6ж>?[,`z96 A!Se!&%5{a.^Q|NgF%TZK4TGƝu\I,˓t0 #D>eXq*Ę<t+vU#44_ʑ3+|^wADŹZb#wVoƩ'/^k+?{xUw;qɥغs'>bȺ]pb+鄆v9o|}yg\\QE5Q@3r/RͶeV:xg8X5I=?.G;;}~qzb{/yt豓qșXZ:x[oǟh|'^ q|å֕2z|TˀSQV|LƪԱDW_7, ^zV)U0x_Nf(92bGb]Y?Հ.2ρʸV[I\X4D+Ed=(f~D3݊njJ5v 1/S{Sŵ`"Ar[Y#0]'ǔf z 4VFv 6PK^AX[vchv/JWdyK, "34pv!5@oT.CH<@=v2iʹ׫0YY<΁W yΫqPfu3# W#3㋛#0w̤ >-RߞY,OLU38ydW~מZPRږQnolWo"[Dnuq4a3P)'RY^ؔ*ˋc#7Bߵ $\geØ.eFks;6{[*N983] `*c-z:S?f4KVx2og/7wPz^ĕ'7 ,;ی^{ 7l0AL7Tg."VX?S'.O_n^1h y5\჋{^|v-fkgYqXy/AXlGAlt574`_RDf)=3]@jfgQ~~eh6X J^T.MH(Tf5(nnQmMc~HYB8S)dZHljFS kϳiC ޵Q5s@`/eQl4L& σTW72 Cb[P.U6jJAxX^ljPn<S#@#uIj1#v03_E{ZJ G9\)<.`?c =6S c d*03L?ڈExN1 `zT Ya^E\q<{h.s;i5`ݞ`LJ3R&qi2|րGܾXZَ9ǚ蚚+ӲMWiyl#cs`Y\(߀V^֙`wVZP|x2p~ e5`cLcSj*pc>?tc4Z7 `g=]ȰgNrKr(fu87%}\Mq,I5UPų2'^z삑N?`4]dZDކhcb:c zyzJZ:.{T~SŠ[2.%~[A(ܑFnΔ$L'K)e3N^@@*˷QAϐέ[ ~*׆[W!6=gpR0|a7b9U ? Xt}͘"%a/7|t=E B1̗|olN-׼o{ez֣eNT+u^NB~ e5}( }j1*iR:tWumWCbA8O*@QDv,Eja ЫʣdcI6^Iw0 2 {x1ՊԑXd/'G8.Bwo-߈xcF,fii[IaM"dȰ>z|-)`*'ǿYzZkSl2êhEPP-y7 ?(|BǨ1ϋ珉hVeSJp F+)"?4}knA6eNA8}iWL fgI0ĕXkh& ǗWl۾~5NXX>mG2J]E,lǚ,T܊?wx`:kp)u`hxPm,Y(AYMTvka|],BqLz@uΕv'cO$ˮ ?wOûD3嘙86SOe^̑{jkRD<hMal*vO6ZFfaJPV/zMmMAW Qs]x)c k}pLWʓ se1ϼ򭫌bvwysg?vOcy`~)>v4NNa0ӼQg\b/Ű..Pg;JrCdeM2u6ƖE; ٬NDLg?O__g4{Nq䙈m<ܸV=%2OT@tp0GOqQtAWF= kSyBK=A;,=A {|잵ŊJKQDbDl;@tmlNEL͟>ox\dg6d ӄ:)iNx=b9@91idjv&[0Igi`^T׫Qީ3M 0^ۛ1`aPоA'{%5H(m!b>U="/ 썭.uı*n` zOᾔa(L2^80H>iRvV)p{.+SYc8F09b#>k.WiN0ˣ>iwVs^y/8 lg3[=1!j,T(@?ѫS+jn i2oQw>_iWv<w/_s8* $Ϛf|vh+]{Hݯ}nZ>Fd(;@7OVb~4pRCU%s[4/5w=Ӎi!z1fN|;рu}'?噳iOq< 3 ָF#ߏ7>xs\_>'S x9bNa ڰއgP,,ΞJ;B(>4Tja=£ v06 ZʆɢLӉ;4ǔWOSkX=mvRa (UYQ\}8NRvޘ󃞵` EK@ک_cn\v?K[ t(|/Z;|7ǂvID@ϲQC ԰w;߾3M<NZ˦ڤ4tD!q<SGJ ]ǪNaXS5!"y,(Eݛ*'KEz0N/HXJƗόbz$O%x&`|Ɩ`xJ !?70zNUp(?Qc3 !l60ͦ2R< 5"v'Ge/R-e|}+g04G{QWOӟ}@Qw3ɕA3/~!n7__ѠMp L1<|(؄q}@$nl;?~+:KA|w[xF/bZ@Hk1޾k7ߋwW?Wbsoŭ6@?f۬8>ŏ=z8{ҊܵdR t\of=b\̐=K G3/| jWɱYŴ?-Њfe6h"~%XmO;P<IU77YQE:ݝնo&ĪͤfDEfĝB!6W>-jZth1Lf5F O]FT{0 ASy,>@ k5TV9le֠T6E gr{pxk twP-i*TY#ѳgcIJ1QfQMgjXnU^9[$ltތF3ͫ_1ݸJ4<7E}f6f;*{;ךo?|8[<'N;qǭĻoV|x͸~CXh;._OG LW1~ V'I)xF=*A+vI-H,YKWk\Ѐ~vr(zEaTXF jxl%W|fD߻vZL{V( lxJV- ʞ c tcw7bky%J@1۔r* &!F^F@ce 9BSDxq;\0 6Q.XIgj3fX =@;f¾]\I,gb %,8sFl4݋ Pjn{ d]R XL~Mm a;LgR(O Wb`3k_=![kf`8KqUřbՊK|y8uvY#<$nrņzT(z])d 2̫ʟ.c 豧7a׾7ng[8uXZ>=xGZjsk0=dӸ͖sqꁇFZ:{BLa kM*''ql{Q=ߊߎ?qc-9wo71λΟ?,b2qng=Fq h؋c'3?ڌw pò>~xGfsVt`W.f赯a^Սe१/},\ 7~-I~u>|TUir ;*vBB3ks7$ 5K٠Šj%Ka@IHablGnˀ$ 2SעҀvE>vi3RENjgia;Xd@1ggȃ4C$'i [mg7:9mN{7VqtP*cZCS=>>V0>J ޴"fe03|R=N5e- VN쳱DƙdpS@:A:sScad]\toŕ5a)aXj' ~+2_;F9֌T1.܎j#8x_WbĉX^Yv'cK¨ylFk󇌲BqhmՕx% 'كˬ1:%<[{hg7ycU)D4ER-1h{nŅ8QѥS*ޓrCG`Ο|9xXoq_S2+;3ɚ1jAB{9eV&Q=:~Na``Qq=xxȜ y y;[{A132iMyE+2X#yG#g^JQ'tP}rN :[46J<a( טd} % XPgcRv4zq>5 &`yvHs2R:- VYCn,D[W QR~ .{깰 <6>ʔ6`4O>VxGWƲ%u+ Xv=Tlh1Vi{8{FӊO|pUe6d΁J{e|ζh>lS%&lf:by-Pw@|i35ĽA>=' D-?}l? QG!_3aFܙ/?4>`}]6%6 -`͈Jc p0☝_K.xqśo}Aܸ~=6W(r{lnlcpXg/ r9{t6:Oē}0'O7޸ZʪKu֋{+ګq_')t7ފO{wX_]N|ܙ8y(h)g{N:I?`3XAb _?Wv́ MAzU\̳BqjE6~z<ߘ0$E:8" mUlL" & ǭdqγY\+NJ"<6tR-u:zM"UǴY,yam@n˖T8[{fw0jXN',Lq1Ig-]Jf^aRMǂ(S|pO >{Qwz^D(%<kG7 5~>Uzd$6W')Jt%YfЗ70؆Κֽocy ֪l9!]p@oHUk' 1;]Gw°Xyd|g]/ Oϝ|XX<>ljqr~wk;Z=B} [2M=7Ě\cĉ3w ]LZ{~ؿ_\_O~5=aGC4ߋQA{ pyw>g7ƒ%\.`W`fv:~x+/}9{xo}%V|pc%61ğy1! C\:IDAT90 $5>t-MU(ZT Hb o݊c܇*q,D:Ș`m`aw"ԝAv!`Q'u2W/pMj5oV%̡?t}R|@~|[ц-RLRQj\E`JٖqjU,A;n/ߎhܼu-Wף_&Q1͙=O|6\~pVڌy4{_=x쑻㮳'^@JX+e)bҜWX* \tSo~I RbQ9Pe" ,\a{X=g;t?88؛:uycuu waB&/uTa;d&X0q5 y{^õ/(N͛0\밳+G?!7hu'daEdze%B;) A@|3Pp2'Kbpgq(Bc!Sv&Aw֣ssX:>,~PpeZykP:cmnp/ijOw2ǘ't,=`V=‚I祡ְ3w6ŶbBYGQVf]X0gILCU%d#|)uq55La}s|VWXU Z oQ{;jubQD K3K'g8(<lۻ,2"h[gL-g!I=p\aY\j93~њ $*Y{my=:|CظdM>m~7bQ~/ (gm)?Fя<19` 46<}h\vjb}+w=7f^_ď?#qؔpڱĝ yS(pZx͋ŇM<+ŗ~w⇷'!YF[7,ëˠ3n=6'ԙq7?xt{=zs:^w_ai1] 1 {\ddۆ5}z3B`. Gwƕo&@rYd4mzt?h'%LAmƓ,P*D0dw6%UH 5یLyE6{8Dv6Vъ_30IF3EC "Zkomn6 ,)ʊV<2lo-ƳˊA"zjDmNJ>RY s 8aHa)6cO@Q">Q#I$ʥU/URیd4ʭ.bYgo?v8폙z)'PTe,{TPn;"U=1| v{%ˤ؁R- ,f᮱ޙ3N6!fSY aw(2;q[qXU^s".2 M V;-y玔X_&Xe| # 5ʦnLm˟H:و޳l\v|d|ߎ^ލ|{}L^XȰu|'.k5,d= <υ7|( Pxܢx)bIFloEŻ w.1`ۮ8r( cֵ@3:a wE5,*3Hn'n3 vP^l&db:c.s2]EHl1/ۘoʺtVR pdB Կdhe贡)Z_zyªf#NX(WLz ߿APj@cn ^mh", 3f R ?vrR,!M.$@cR_{1uQ|ug{SM)g;(U`;⻣Ь}jIwL#kl. 8Ѹ.lqASӜ[#iRLax .YV# Z}4n50lXtv>XXx81e`aQet,VMR\[)5{7vdy2oWv]/~Ͽm\j+V^I1 qwji6֯_lۍ~ hVb~~!~D]<;nV2/@͢.AiMYc؍l❫5h|)SwZtbhqzq#n27z|$^,/},=yS[0uF&ɾ< d+g^~ |&@;S+0ɏ K()ʁVMVckNL[ЊaYЖ'mm7pqFw6ҥ}Xo0Wh?Ϣy`ڭ-vFQ.WDEψzm&lfq:zؼǏ^`' @Y-uG?&a=;JZn'!t9F5|iӎ(.EMW hL5JXnt:C(2|hzi[Wq%i8?+BAV/ev;x@lQeE]ͣ,ϮyE 4F_ؤ!3ʪi@ B45).c(0O/،{c0N #}Wp?$tR߇zQ1%bi `TɗS@n`:9 ntpnF>ahXbV} ?=xi#+!WkScG?\#8`)\ ߎYm,S'>vOݼCƩ+%w'0R{wv*q4m՘LI Ƴǭh_@n\_ۋLu*k7Bwa~X]y+by #vg 'L}~#i+a):Fwmcи3Ng2 ut!"TjMn ~q9&9j׵fZ,E OREN1`Q)L+:qK: n45UK.vmJ?V8 ns& ΄}&d=Ow%l><dܒj}>Ԟ:(R%oZOegx[VYlLUqE9{Wyl;p?Յ\l0A8_ُrǙ3q vތuuywaa~dSM 0grZ>{ Vg?@>LJVY(^gFvnE7;bb2FMV8~(^9/w#6 .c9tlBb2gvY"…!Գ %@'TA&BDB&h*0wvy>PP r"lJloXx[|QX]Ʀ|vlPt0;RˉBq&3(Ft]Hh4k7WcCHHuymY$%V'6;="Þ2 vEeK<  EXJ/YL>HeMwYߵ S)x*KsTJ$6Ƿ?>R%=dy~/ĔyԻs3`rV//t%o.5c'"_0ɸg⣟LoKZ 0eXLߗ?A\|ע:gga4Goފ e1og$ ?p'ϖwbNX|$#7jyn"A\{}泾evXڍ5dN {el76ڵCg1<۠`e_N+YyEf~[Fܹ}ZC$7X%X{aWoߌKWbn(!/Ay=4c,XbD;1܎qťЗ5ZRRB o fc2[xBEߎhn@#,wbwS;bJYf-EӐ{ɏ]wKGO#(Kx铟}",`-)_"+//Oqߎ3Qe'OEß\Wފf6SA}X+<`P";f6~_jjbIxwχSn/fafLЬ4уR iBJ0lT<37OFyAb>x#{OgoFu"*}h/AmZDҗ\)ى!?I@J v,9Cg@E^lmN(t9sST>_þLE d#\2%Ixa6^Qמ( b32(GxX>y- > TtU;6]C7KRBL7fPr`?V-3ViYZSX~*G T#SXW=o?5y}`{(/Jjd'F@pX3/1G@#ŶGN'D ^^!pvfo-5>0xS3q@b4` f7q)`M3Ѷӽ}`V/#Cw墇;Ƹ@۝^|~dq<.$ɼ3ǹ{'`d(y{@Jdb'ڥwڵjH001_oF|BSƴ\bʻsP!fm"<(gc o>X|[f[,2{J|ȩ}Պk qٛlns`t ~Gk_z,޳øq魷 Gg d<ԙ ֥(h%ؠf} Z#(D Ưt !=>di뇔8GR5"lXuZ bo(C8Q6y/0}~!)XCPDS`+SY2QdC3<EE2:}*ǏCrX;A[RR8nO|ﲛ)f(q~*˼'Bֆ[-Cܴ;;M G0<7%KcYZ[^ B0'v_ cd)_XyS,q/^uSpm{}'yi`O6r ) ΤAJ9L_8ڃ a 2۫杛G^u,FM?@@-HVa}rj5<o"NJÀ[Xfk#6Wn csZwZ?~ C?b%bb/a*7 e-q5;\Zl:)Ĺ{x=K Ã-s'ƙowݼ޻@si't{8nr[bw?Ꮲ62V?zG175\ntF=~ H[zP,\;}m{},zR9B9io&ZHeWn_LN!6(DLZҁV mxdXS7rs96ɦoqV]g2*M g٩ nRJ޼odQ ()s3 GLGG^Hl`ӱB ]m9fZi y~]j{av[*?] =1߈?zXčqڇK;[1WE拿҅ tBpv?3Am%/@xJб6(FN2uX6:$Z)6nrpS{U6N,xeVK6W yk|"~kk+L ;-(ɄHhgsc=q嘙1֦VSF5&`# {:Ŀ560_;nHTr,0ق(E6!>erW%h6apCNDgc%*п_@(02†,#\XJZ#R}OvSS4Åx߻\)E~+be4,n_Hz=Wm<Ӵ^O2lG|}E`|| y/1JՉ.2߆*,t*NjgN1%qy֊uH`?;oę`n\}/MD/t8 eO<0 @Eys{#VW+[_k\As66ӟ?V^NL V\;FcqW+T 0jB-ff;f86Rb]w2O-E_[]fҀq- G?}=rÍl}7zG[_Vj4{}2rkZGTۋ'_oO>hxɸqb~z6@ؿ| &67w㟉G~&޻|Ex9|a|'.x ,SQ(dܾGNzDd{4k'dҏ!6n`Ro-gp Ga&M|l:}}9_Mئ[(d l>/* q+[q3{Q;lil}S(BL4Fd \߈񦵺(WE+Pmalң<ј5brKSVzP/8vDLb eI;Alu`G+4`?*%^ඥ_\{9*s(סWW6Zr]lM|2#@A* c̍`&ty/!s }XQzZ{pbԬe Y uV}):-b^g/WOjk9V0._]ؖ"=|eHGR>겵cܻ\[cθ W,bmm܉CN(g詟AR?xU'D=y W+u ʥKĥo7;ҕTnyN߃jO5U@7eԞZXk[\y=v4޻x;6޾w3pyz867N5Ӷ3 t;&z{+ڭA\_3vcqcvd6e?{<GɼnƱy1ק' ]c2꿇Ph4Ô7Xc(:ۛ1(F&lLנڭm4Us9Jr¹AkQYL{,d;WoD̀r 3aa2g``AO׼ }ppjcd:4sl^:;e">S$FT8s|gc 1ug,Z;fVn3״\o`om\A7 7'=Ѐ= r| Knxc"pumb-9U`65xE0l!+մgMd` }zC3Xo ZC[azec}ѯkq|`% :$Fh1g>qШǺ4w7],t۱z;wbֵxg㱏!GgiN[7*N ywvJY[k~+qqËoō++Cy1عKvaV!8,l,1 JX{lTwucϼd|_}; EzsPS<'o߉Z45^E\b\v5n]bMܤ_#V<O_0w7eui^0pNQ'B{bN*{δ]KVAID,e,櫩8.SxwqS O|4:?z! jiRPfMiSpZL=5b5(Gzo^b[\t2Ly'1sʍMEN&)#6CT|Zs`)fQZf ĺ=O{wـu 3!Y3 hBx0týNqNyF_^J1ly &_Nk>߷ұ-&&<3 {(9*w#n*[kf#2ڀ;&Ym~5\ȔP(gf#@װ֫_~CϚ-;_/d޹C`=x򓑭6\[ &ȚlzEފ(wعǟ{~({Zxt)l[:̵E7exOJĆ Ѹw8{k<+03b<wD9۷?7\j?0(`-(Eb|]SNA!'y*^cֶpe'`|ZAęlg/ff?6q7fQ"L9 wY.fa!j9zx`BdRM瘯mVYOcZ"3lL4 _Y-Ǟ'Y6VFuC ]k]a'k;_7ka/O.$&a9~pȀ&|aH"[ǃ7f/}u5H2Bnӵ?]_\C9@J&#t2J5Zehl=@~qPw@9֢f@3rEdy k36fYQkjo%j?i}t&z(=|lBlϹ Y& ;L 2!e!ȕ*5(  L7b{zN}*|}F_KoW76VR.ƒބ:"nNn/fSNTRGbc"Q'Q?+9mZè3@ڶ fqgt9xU x?3*%-|)3n t80`LF:tz#}؄ś|*uul" &Vy.{d+ cJ[ؤGʱ^=L_>a , Sdi 汵,67c\cc}(ձoY[`:XIPP-ƣy^ tYk xOsPvv{ͺ˜]PD&4ދ5d=]q4̧ ufxFv~2mu e^G.d{ߢGv$ ufFnnrt6=R e¯v2 d_yndz-bOTpd08(3-Ve`A5frI!%CT`Qҵ]'760LtZa7 ZT)Lo xB 6y8jl)N2֣4u'tr3',>9;?o~DX؂4YTx'%5no1߽%(9,~w:1cp1|)pƳھGP$[hyg,Fl:ϒm~YhBivw+1DAD?bMنv+Izf)eE`|/#\TFe`4n=ZUYbf*j~sOJ4L~x罷\;w/ &2vgmW=O[|:Hnjc\u/dyԘYCJw\G ajWF,x҃tƀ2SX] ϻއĜúƩF̝Q۫Ø%Fʕc.NuSYrzܸz):iǀC1'[z'>r8]1EL-$J?vQ͝j%*SiɗZ. ϞF^߃.*vPV:.4nw#!X6ʻHj!y| VS "{"a\ + q@aĂ#jRJΎ3Y3oĪD@FXf~7!V…|1)0b>zzw]c@f7ZxS%J,z6VɄKԾTʤ;{ݔRZlO+ 5XBG %nCVZ4c&%UOG0ʯb^<MڇEW̥7cβZװ(&ߺ&rÿ1i80OY/+7c 7Sa,Jev|| ok8{?ŦRX/EǼd{;?9򍰵 轉.gl[.t+a;t)8p,f٧*͘g<פk.r³0-'NŏbdXtjl$8麙qi@z, FO| fNyIgB!֨ }@.~=]2(3vMѓg0;)š-E,u K9 ړh3u42vh0#( "ړl8&k{PR*YvZb,>/6KG`S &#GKIxZL l($1]U4?~ia.ll2\LW#yĦ)Xn :P.Z؄M\b+(q5mAP|:]|mmF{X2(68jM,]h.z;=s(=C4O `e>,oti4 ^![Va-[e?&1&f(1^}x?z@yoP0i>r 7F朵֢װo>`#3QԗWPL3V>B5ǐ=BٟGy: qB<sπ?q`,0*;m@nG{c9*G<8oo9/Ru67s4ƙh}[ؙx廯"LOyE~{^z Y)O-=vPkLB@.Bҋt#:6ff?w![C?hZZOf H¬pe.; >8`q"omb*"ZiAPڬ05hKZ=:(WkSsVͳΝD-{J('شi /|`Ǡ`ҋ}")[r;?"^Bf+eolu⽋7RsO9NXl^ϝC _!0\am$+ZTD'YJοM|B%ꏡZy@ !w`խRCi2=׵ Ш,;lB`X j.W+jRv b3gfXG!x% 6< S_7܈Za=y#QkԑztLX.sG MIWav,߸X׀0/K{rBb,0 5 ea0!l.5o}7x zv7S,gsS.c%j&fVn־i=kaS]Q|OWqK0>>9S8y_Xk~=A1iXkC7SɟEtlY*9!2_.xۇ60Yg A"pYI?gZ[,# iL%:A?ZJRTIK ȱΦk5X6)48sxklJ`B@HTX@x= GT1C k6 {~/`yؤt&Ux& <('Iޛw]MVw¬`ϟ n3T#a?qFP˗/%Ƣ5Nfm5^L[OyVWbu x%LCd7,@dW㹏ozlm^LQml͍ڊΠ˳>ޓMǧl՝> Dq&7Gٷ!$Z|[O"G<]K?ءb̒+^v W*=j8>slT6l_wM*pvw?# 1쑯8%&?oKU'+/GDz)y5\{4(zpx`qJiTlm,E2lA{z+0^m4.:#\#Ӊ4ΰkÝ10A7 )#H<4 #l]*Qz(B?}6A|ʷ}O=y@)"ò9Ͽ{ƻ ,gJފ~^e؉`s{?غhªFdDŊ+a Tұ$&adjsq}q}*+}p1ſt?}N1c𘎹 0S箻Ё_28 %cCdV_4(g4z0̋/?~s;;B&+fǦ` \L%z\&KbCϢ{w0(z?&aG\L4sG X}r d]$C qP=B_ؤ@-&M\ `hksc%]@JT2,E@{ >k :MD.tLN;8`F-2e]o)܉|m9dMeF]XRZG|E:Z{owdF!%*O<70j>;l[Ⱥ04s;k`lvr_Syi,\!Q~#OS\ܖy̢ӊ,42 kP튮:C_^LAIQ>ϗm8}}Tw$ Pqu(E!Qp#';[iq,).P63@FP,֬ 0Fq@6R{WPZJɣsOay=_, s9dMo 5~;Cޓc'Nm܁7lםP,ram+1[ 6V9˯Z]vY=pfC&;Fjlb+((3ȧxTMZQet=R^d18X}mPX1`ٳѨi3m\#{!OP*Ax^׿'):?xXϟ:`aeK@1l#喚g ـ*|51>w&w0/hގ[wKWbms#N,GV2vq1kUZ;;."c5WMtXdtP|2; E#Rf>.`R2Ј(je._:+'@0d‹!(lFCW'K{}@aVmv@ y1aFk䞹 '(: ]5_FN< }ĕ%|`itک 4[4G@&`ÖQC'{C׫,V6 F `) tmYk\F Ζ%ϙ*J[eLMU7]m@\&7a Ӫۄd2ǚW: X`#5㚩J@6ڦnB9oVʠցoH=UjZZÊ52)N3TXVwzvdFbi~]%x".*~LKp\$?X,WX>dLbUͭۊ&XR8p>Df=;ib,Jjt{) r'@e2n?Ql݉cTD9txߏw_#]M\AǞ@Fp?/~U;2F4rsҴ}W_pz}'LK.G1Peх2~{e^NS7~ ހg6OR0]7`.[e^O\0b*IJ brSXQ/yVB=VST,H?s\KNs U{ĉ@F^ta ea̫b1Y^#Pd~kLk2:&B[M̈́Aڈ\އb<Ѭ=b.dˣ O<2Ń|NIE̤V±ү@i| ӍJʙhB.Ο׾'[߈G+>93iVC>'i11A#`5!6զ>XfYGXs܏a|sxy)&?6{KNϟfc 7kec a& Ḻ#s1 ? 2BLUeBtJ~>TgNOҚiB}@PRE4BBo;X; 2Aڝi Z<.pdiY$cTRfLEIrkͱ/OF{R XT0P!kF `$>YPa<]5 fKހÎ<1x·e?H_8q]?zX?52(Uh\ܸq;fgn-6V IDw2v:l52gxfu~^,>n^閥^ i:Ж2vrM<@GMaM1_,wĨ.Ger0h3/u̺%VeK.xIb^aFi 2tۭ$/ XWE VOGkb]#n|[/sŗ_z.HOeG=O?`<УGb D^ڌ bu+0WYntzr FSx2}NJʥ"cd5=ݣ̬\ot1x q0JU %:zy\?@_Ydk̋_xBW1Yۀ{}bӱ^*_`I izt:<$?d<J|^L.7X .VkbVR) ֩G:k2-=A(0ZAOVk0CcMMqD[dᙏmzi@%byoF7‚Obj.YxV(V轴ĦZrUR')G۱hpP~=檠kŦ2oYwKQte 6wI': vZ/_;,#nzln=SCR[a,:⹡PM~\p`jrZTVP덞KG=Z)/9a( v5ӧǑ_ϦS~e7mc@#u$dp*,8|gF>2LיŸr ܫ'tgk026/2{q ? 3x$:{cGTKM Xb tenm SG?~Mjo߄oGE^MSƃ'w7~w";`6=2u=e]OݳSOŵ/}&:NGfȦ(>+k,c~ (~ k}r_^siZ@(%V3 h G͕(V6ǣ#.h*JO"96@El$P/ `^<ʮ*xw>F?4 gkɷI`?^!Ǟ 閂G\dP7!.Bi Ǹ=L~"#@9kG)8{eoZLլw3d`(OEYZح曗ƑcQob*t9Yseٯ,=I<ۭ*a?TrfjmM)fLknA(ǪDFab_=Ǘ=́ Fz dM-zwL=)I݆?#3=x?|*ͷLw)I|{*E_W3O=cgJrd|_S0?ۺ=eoX؋QP`o{'õhWwҋް CUƨl;wbs.)(=T=GHL8сmν(GW1tq>cS|6L[.meMqZq}Ǣ@|ߋ<)}*ۙOԓ<яXolXvo &m,@Z)=tZ{ʻ" D:zh"; g`ͭ;ɂJQ2lxԂilnR5>, ڙF<ظ/XKUŮ2l7`Rce-^[/ʉ*&;j&yDV[^_CS Y'3 ciZ%BXt{+ZˤBor(Y fSk)v`7*@jyit^6_R]sڇ#=g:q1è8V/\"T9uc[ȰYǫDaKjc7qE S0z%x'heTCU^%G̤nFĬl&97oع֝CuG1u"8wwwيPٰ.0o>`[\ڥnߎ"7@`B\ӊ_5OxU0.RQ~gC?ڭpp藫L4z%M|J֙ *e=^|{ P~$?YMJbyzdC ,}Ӽgiַq؟-\,7/zߞ&uMQl,B^n_ X[۱şݡ'Knkniw|=Vn_  6[aymۆE,/9>弈u-6ދcQO</}x's/1NfcŅz<ϜFvllٗ>e*,36>Bs(MB(k~;`̧rma`<4s,og,i3z?Â4# i[L*o~dXG3fN(v וd~{u+jC˳2ʜ9,N:k6Py,YXNo&nKB ^ l9U꠷s>BfCuNʢCf$4^^d:7-YJ+ WB¼=?"Z|#IVq7E;1 9k ]ke(u\LM21(>EL<+Bis-e3pJf:K|C7# `-Qu1D83GUTmuiGRg)[(D{'?he͎ϲ gI=1#K0v&x3}O>ӵd)${k'.Y6wӬaioc@FK gYxZs4gu8?ۏ3>/?aRWϸYI-?c~p8=m♅:B+q;qL%vYx&y؋]/]oWgIj1NSc:_s s*~bܺ?cgڙ9\tWTL|/Gk~ֈcu{9޼x%"4mhnm=G0:[0?g?o/ zwqc1.v{xutq{4{gxxO~ȅP@A0PM~5P vv\KZYL~b%dc,`m5 3|{X mA*߾y;5CamА"eu`)UA,*֭gs$,mu im+P2-WDXvh|*j5Lm[f.3td~OTS: [w`5i!Ii^OTcͨ6P,FZU Tݯ1_3eH.9N623{!' x*-ҏ~I1gXiSvJNuW[{Hd'{!Ex[oP%@ⲡ)j1hX >k(}1JGQ6]D-=d` oǤm:>XieŅܼv-^Eӱ~t:1%[l{dlP^ŷAfS@7+ȸKߍiC?cMZ%u~ 6.#܎Wo6c0AIt wґ÷SLL*'}>)+& biї~1^[_ wv,[d"eW-B,Two.jPϸk |:Ec؅OJ?QvktF(.XɈ.TR1~*4+ָKJ`NۇBwc}҃me{ J k8L[;%!@K] DAkm7Ehb^T|ry!##jn#qI LN+1eeC+mT  ?U{ЫVg:~ (_nb7=ߵK[C{[E׬6e uOlaj4u@|YAS},Z㸾wM H%[eCH\FjK]QlCla9Aj1 0ŔZ\}ƫ7vu!d\˅u@7`KannN/ᓲA~ dunj e:L[f{YV֚Mi5L$?8<QBJxO 4>sq|%2 ?(< O}e^LLsS*<(*Q8&Khx {[+_g>y O ߅Y3yנh2@zgRpjvՑC$=nVN͖V?޿0>3Fm7AuktM2Wܙqd~>:UkXfm9 pD;_Ô`al{?,e?DGNMYɪ;ݭ_GoF߉gx.~8ݱ;u r%7`$!G`}yrL΀:P!EoT h)Hc2K% >V@SAASlN&vV@ٌ!Xh/Ns|`n;Z{Yx=p @i~;*b@U+ػpf0/ ÷ 2)Q EEz0&{&e?He/ -QxϚ6]Ȍ_nykzr0[NjPw9uE& tprlRds T}@Q2EQml݌Թ%XYajL5Ь`dkIα/9  2&`5*3wG >"T$] d1).d=QDBY7D)p+ӟtL͝/Ŕ<8w4Z~w9՛q|d1?&7|_rcgo.(5 2?"ϟ@-%-l-.bcce3+;[sUEB-n5$- C9d5-׬kot3:aC> ظ}+`cOߌq=={PxF+@%\:GwͱGB1""c9c"LE&Ǚr ٻPAi-d)+Ȃm|h,"=+vb䬶^T _ ΠQD#}ĈC!AR/`K %nw-pU9}"Tbj~! ߘ]L~^7]"x E fi-f%wĒ[ajgbiT5*$N?z*5!wϨ>) }ַ7v⺥s|֋3&5ڞ@J]'O. 0IX?3ǎ7>&-NNtoa`3},(;Y rF҂.b<"AKcѼ'#OğEl,Q!2L㱉îF}!;aߘA.8n>JBiT:ۅdcB,;j Flݼ(}ϬG?UAHxeg/i&6ŏ3Js,5Ba:s L"sˢ*6܎:@cc:U|3zNajԗhQfTiXzf&:m̙@qPxiGz}4bSTa9؆h fM[[3f$wTM=[S~ α^CR<ؤ-v0ڋ=v)fK9BW' ~0O- )G2<0Tv쒝3ʔHeƨ).DA֟J˜zPFm֑{ШY9޶FO?Lٺ6=5i5 @5rOfp[Y)>b"Nl_a%A ş{.[ۊǙqkqiVp5̇c,jax;)X[^v쬭Z9_e?u4?o"SP'z> dR<~(~w~/ [C79ԉeŷG~q*sU|^3l`P3JqN#r쳎kSgTgO¶[*X]cge@y+ؠq :$~Ik@]6ݖCuQavH_+VҵYggcƼȽcFh4nn,eE8혛 Œ4^FHC8f=cc|ϧ JX>nO ɔdgk35@ !A-T_1V?RyG_o}`,>"m̛Rz/DhP,Yzb'iKW{Z?e~ O|fz,Y]bDex`Od1xptL#xAyB;XrY_^ ?{3HYkp1 ۿ\ɸ YR5Oicii>՚yF_xSսeUIǽ-X<)ՉQ8_ |:`MTMsk Ps+[ 6#30hjY$37SF:QD|;5S/SwO0}Z?v((뚎 +je3 uNV0Y"8C`9c*s@gd))9˺2>.&?8h3'+/ɾRLL[2V s@LZ/Œutbǰ:HӮo._NĔC96Do2'Q=1V>Ɲ|#7y@`.FYÄnL ss55}cwM|?sMWwbInF[V0lַÇh>{¸+= )زz0+m}~TJ%Fjb'hIDc:u+jUZ$&Qc3Y, "\nw| r搗6ϳS=vanYwp^!64RnKm&!LAzFk@rp̣30H43&'G,m9USA,ojm cv,S:TF*fǻߦ*ZmϺیMm$Ōmj>"{y"'iS4ڪqbRV5GY;`5Ce&.-5տH mtTD@3jTfbf$nju٬dp30+g(7r܊XcY;[eȴހFXcA mW>[We&'p*sb$NIsg>"h'd}Q_MpK`lxqX}dx֠(=ً0;XǍ07;x/rWGr1g8}*xieNwBS,2 eA!FF&5ɣVܰa7`R,f+6ܸ &V zb#65o^8jBiԠ)V,^9UduLcaҕB=Xtc6Vnc1!Zktegb[> S =݅=xK F6^K(Qͱ$Ϣ.~bL},:%1/P{j]}nn0'0ˀjZ(5{ffzx7GH1UtigJ\Vb}U|/QlkzwbkO>7 舌IDRa$H֌ .}p%Uc{eYP )`:|;oF>}<+zֳ؅/ :csaj8 \%PݫW>'֛o;o j)Pߕfhv N3u{@{ dA~E W$w:p|˽FF{ѻÇyvx.;-z>}"C1'{{J;VPy9e%+ KfK(:<tgɡlFf﹂8S@ϖXW_?KM6x ^m?",aTlYt>BfgEx5U1eGE[glwOFqi2˝7#0wcM-5<{­W\3&iI>ױ?(ƞC_o% ,>B61tF?L֡ 1vha]B`Y7gswF zj-f 5 UhX}ܐpǼ8#6 KA&'1c~pb}BiU[u) @C) , JQoQFVxk M{: tJg& dmHs+7e`4ƟCT,nmĮ"mߏwn>Mt Tnldp?(=m{'"„KX,հeH/oC{#<4%ugףX L,*qӿsqzvܾ{7Wn4V黗D=o2s@J,D OU >wTx7CWZQngucqzA{abPcˉϙv(Cb1w5ĤE8'x^ﶳCxic91TYaύ0e)w/ĵǟ_mŭoD+V3yAhmykc[Svp.o9qxO_ ,C 7/~)j8:N+V)9顚3,*y*o؈1Zfp~x,P(vv&(~?ZP8sd`,VH: YG$* JR1ѮC'x`eA'{>h;X?[^Og t^&Ax(KSeƃI4ڭ߶a#A uf̽W%l!<_63V|(.B;\=?:koݎ/ɟ{ۜϯߊW~-ZȢ % >#^]4&ޤ\``ျĚx].6cwofqɍ!c"d57^C]V,E]{<'i}-:t2Zݻ>B L\ q\lX1σ)GS Iцx9؃#?s+V2f"z6^1u;7Ȯ[uALA"6575cr!>&lu%O*Cd4φK.brR+<,Knn$* "0Xe0(X0G"X345>e|s 34Hk%<‚׵b tZ/ S-1*ڄ sm; "$_~$BĊ%n8G疪*s)d]1qK{`m/.ǂb4N(sK='Oe8jecGֆ'Aj#9,qiG'~dPJp_ V/h?'M>t)Rݰ~ܼ6r;rm{p|/4z?9R=0%}'_z=^-c_hɯ2v_9DBe I;]Yfg 0 -=9.;sVۍZ?#*@_/&X=0󷘻LtOc< uܪsFăf1S)ĞɾlG/7{;[NՖk FlLlK; -7[bG,s&0E<}J04h3[  ^, bL.7b5fD:>*|#~Oπ7~+~eh\:\zN bՉYS mlZ GKc=9D?a~øw,b?l<ł}`JԂZZzz7zr{uc%6Ûw0v)g YVϚdYf$v˄2[=v!x}|4v֟1Jvl\DИJ vwW]}fkr;(* ISc\1dڸc fK,m '{HC8zZ>_Ŗe\?B7V"[`O\BP13=D҈yvOis&y'/QEAt "@X=7u\(bT$QuZ܀Cp 77!z*a˿bNH %D !5`Ao9÷UVfĮ1Nw N岱|;M r ㉒Kh>ww#סQĕ|(2~/a3τ.%C(!R#.^C1ڈ{a/Giou:\$SK;wN?o^|!Gv0zvNv rڞG.cuL0A݇.CbM[@,k(iL{'l"9^xCo}ghwUi*mTC8pe-Cbs']c\L.V͍z͎:&^@ҚHM$*{tXr\ ^hon9A˟ TԴيה_qČn(Ѯ[bS&t2ibDifl tYO[~7'cv}$z=.=d|j >O(4.(o;J0B0 6L^._!#o%(vx8Qғ7)p WD]l55Bz eO,l5jܯt^d /p#[OK^CxZt/ =(zq2ZZjiB%)y6bsS|&fE_ANOcCj C34*6ag͚a&qC6Pzgۆg_730׃GXf4Q:|zG IFjc@+((B$`dh!1xCA mLZ&]%x][1'(bF|sn;U>!~< n*c@f35ag<*ᆱmN4aVF^{p`ːoPÈ/ NMmdU<(]AenjjJkJYG0TE=@D!@uRm{`{ HEİ?i87O 1Q:(&.IUꙔk›΅O91Qphm|ptg}ga-VW:Qg_j<ӈd|.!vsxN+[_ŗ^ KUdTcv| ߻ *7W~#q);{xWqd,Xd2({L8B0|:0fݘPj Mcnk V.'D Ƅv^[DI\r 52!f߉lIVl5DCxX@aj8VZ ^g $co! s~+]G(g*φvj .RHКk)La j<ӧDq5*2'槷4Km`iaKmKza؞ )Fn<,9> o0J@ e֝eCPa|-eAm M:N(aK: `DaI溸K\sІ[0 :Ií-#1T\3~ r2;`uKi]A|$JZF3K̏b2)Qjy9!9G}/*HfCch-^nt?z>xpTM[ b;F–[OLV'QF :42C+p VkQ`v'@{0ȰS VF/*c$?\TR0,vU%tt|58#MX!bazN_#=d` dA=^7j KSj `Ybo J]rpkw%z0z^|K_?tp&bF ;0HcC^`"-&,jcZ&Us77g@QKƻ0^_YY5~Q䠽,3er'X ϹW 71 ݡL)s:L /V|E/0肭Ⱦ<_Gc;)O /?h6Pb"B1#0" <BI V4_f!e \n.VDx_CWHftrØ9Q8++dڡa ~Gw@v 2Ez{o3NB`t+}.HWf0ô5ȳC*/tqy[oy>[jvyħ{4z 5Z/xsv\1ó!g.F2@,kRU&/BN(`xd"%l`sm4I+LkX+y\7E,hdkXiעqilngtmUmo ,}#.½vNc)ıaͻEDf[LekPB,Wmbm*)fy 1Iu^25%tVClA< .v4R=^UX-S't&!8z D:qx5P #0*Wzj E׻Q!5dCk n9POJ]J%fx0Qn B!󖠍1&1k o< eR]$Q;Oc2HD5޹y#`I@Ḩm6%-3tWZc٫q:@En@Ǒ{1ve+$lҤsbT@,Fq2bkr!!{m 3 m+c{9]ϐ-^kabf"SӸ> ^CJ4+<6B&Z^O-cGf1{MvfϾ@84bo\TMA'Ĭ{$QV3 &34^FZ|WL+c} B%X aHER-VJf[ ܚ#vuI wѿ2]gdiaȬUnuE cXiW\hV}WgsJq$1̋q1n wYL,֌w͝qn q]9sDӈuh$:0^%P[so9fi!w(E0 [w.Ә/eK ^`)*&yO7$\d PWEԑXRYC7hJ@𒡡wZn4:*bؐ:vt5c#ƙKmx}Be"N:#3Pճ#(-Ql`]jڤM+ ĵn̸ݺ+>wC_k>/Ƌ{RL*|ñir:y0o#ƤZx+{qp :7#Wb& Ta6[Bbg6;AZ,:CmF1Tt!Dh M:;ߔP`q&9W6OX5CDzM:sk1ЬFQVǔٚL} cCTUJI1g0 oww&AËfS =k$Ezo>3zj$dtv ^rX PrEfDP:79_`|,Ҳ>=;ǚMBUX7*Ʋ'QhTVk7tW7.(ƣ7TK] /E94&*Әi@D9߮ۯ*Z5ǪIͳR_K3 XVP]uNT\nC*Z bLZ #`݃0 7ue6`[K-wW({1j .U7x(^|U!>v|G a"9 LLeZ<ӟ|3tA6T|C/^*ϟ)?iKƾp(=c"Jpף(DHC:MZ/^ـtohqtF?ZVC7Ki6TU{"8ϓqn* 'n'3_ GgGq۩b0U7.Ml:"{|Ͼ&rR`L»et]~787R<5@:⪌ |2VLVTlPgՁyK.tP/ ; Ub^ bY]SB\7fA:bb6DiMt h4! cr }9~hCUxZPC)vaH)@el!0kT[["';nq0L֚as+0<\* 2!xJ1ˣ.4FXrլtPaMWeOvk40dAco3@V Bp+ 2Nuk˅%ò<{؏o;f(Yp{fn3Oy,M*Kk~\ 8&C繁K5Ȯ@̿ c8ჳo?:j2U ;Fِ( |Ӌ3T̰s[QAyq,/%J{M>N7\${c\kB=wal'oѵ9Gl # %.\~xq ܓyN <?P;M]YPaE%BHC0!L5C_ v;KĖ]­AsVL_t8'1B{}xN˻ߊoqͷnP 2$}Ά")!L:dԥ2A_O}Qp(CO<r#Sb< h܋}(v%v`a^͌&BK:JO0n.e,#QOQRLK܉kXP$2^Rm3r Q.BT%#-[/ZO_QFA,zf`MAW oލ,NRD E>ds(1fh: 0n"B1]lAp3AmW 0уѴ2!lv2ﺸz .]CҬn!t2q) ,rGKm\ IUt<EH[=0l@"GU~ eAv1͵dMqPxQOcήZ&"pͱdpI n]UB[ilT`;6P-"WO\j}P# w~_Շą qxaZ7?/xl7 |rk+mbr,#V1Hsҹ551+L@TP(.q?I<8 gVO 0NZ.~x!7qق߽c =6}wo Ͻ/oj%ճ ^+6. 5}8dC- +ôr3G I4u+^[أovTWɂ%rg²ي1ay>vLqʖJ*࡫Q1Wոs߹zrZ" ~?o̧<^"N?8n~٭.˱)'Ao <(J$ ֘8˙IafN(#a\;MJ7PcCqr3BH[iWH0 N(U,O63 V -¼J>F%D5%d8P xG;,f z~4x<Pp{=2)i,FVݮ?۞Ye6UëABwXaf Kb7EC Uip͍M3ĭ?(uR>'EzB6wLxHuٽ 6 q,4sN*:$ahC`Fx[TҪTJ{9 sre]nyyw^(# AzY-0ċ[3B;x߷q|iuc|lb>PoN9ivosK92f ,T!adAL&[>CGlL\t9nLe&W^\˄2/~>Ӹ'߈/eEdű?X8u _?/f#W?~*3e~ِ/|".^8׾Z҉?_bb4}Z(VLS{1={x*I*<| nXӻw]0%20S\괲9 #L $ava S Pki˘>M0`a,^0&ܻt!([fՓޭz[xZ+:R8<۰w0g7`|f;fw`iPlh3cTi{dcy1Szf kWe XҺB0g<  y^d #1=Ci4Ag蔇XA5nz"_#^xs} geQX-72EAPى;v|n1q܍?B8` 0xW Όq1!:N`83\o9>ascr0˪Owe]>M`/#-|(NR}CwY_;WC>Ӌ [f[v4Xg}__Kc/?;€R7R_Yi{qC1{KP-ydZ-Xʓt0"(XZ-5fyLUKlcbk]7ji)c>q[R7aJ͜S8\P3y]#;Aʎ< q̲y݌ysz,$ficegNz4AbHTPp2*.50ɥBS.!(Fƛ] Yru4,TsyQ!2⍀!PKQJN5rw+0ϕ“h]+wo?!h[JIX<#Zj K` )<6fXp )߮B>戶x,M1OkA<_sof?t`R\,7 \Y/jӟ$al-0~G>j`P DQш"Q35~7pqen]d흸u&dFWWػܢ?8& ݂woCыwL`3t=ğ'_Jq|_GABhd9{'eƒq<Ϋ{ݾ| GH8Vg0ϞƑ@xe=@6aƝlhvQc~Qg(hZE+JU(KR= =IdBVRW,i,3cIU6p_ي٘u ^ b14ee7a~C9__ח'KW3waABkV>?{zV\(Fǃ^٩֤_YQh`f\ c#yf?9- VDOfǀ!᪝qΠD[* : z͙y stc?3J* jws# kpeIXwi2%H@'@!d/lXĿI ouE`G@~^ܹoVD<#q)˜Ch &|_Ud{1f޵:(Yt]-P!bȵAo[?x5ݽٷaSWWZۯzL%[}[ݽ==$\ɺ++݈7o{ ]Y☸;@K UE1\1?,^(v:e&Ģ3RMag{p3hf;wtEŠ6sԓWmZgN(=Mh5A͛G3skja5&nU]7c^?A\^FVCy u9s敹a4 ~UupPy7v.b[pub;wbzv׎= KBoev'lD| ֎6vNl#ʚ< CoH~oby~ ޗƌ?U~ITz|=wLD69=aoDv8$@J1߈o?#'Tj[m~j-Ă/( tS`D㟂G~+/.,f@ ƸĎ@ 0w# +_زր{OLv'׮\/}Kp4)]Эsxd~qf1`,b.:3Q>=ȍ&=FDZ7a c(V3 &Nb6zL$Ϟpnd@<Ɓms?ZL[Ӻ@Y_ 3VEA=u6&J䩶ps#MxakZwGe%N㺳'e;Uk(a,F/e/2mU9yg8546/aXp #=qe?J|h] f6 ^Ԛ<7\uQ4,07(Xè1Px>1@](zQcpj[yFvwjoznPp)>S6[eȹBisBp goݺ 1h>2w_=ԝ6V:ޭ= L*O]2xAgHjnkb?][C{`mseH_Af -1Qy+> У;7쨏$o0dkwFc)@@;?!`4Ċ6kz2`daA>1*x9DP0?[ ,G=''x2.jM½\3sx%1rAswEދ*(ƥƍBXc^cqad̨QVUzN JeNK,v=@jF*24>wuǂBݾ"@@*6*x`~c:O/hZ bzEW 1>]<Ӊz@\&&٨UrLke \,QF>=MF.b4!Wcv¹xz[#xjH"^CAqT-;!#Kr, 晶S&s"]u@xZ׽Ϟ %gq@m?_aٸȌ+ϞOfQө="ytYops[;K)%kUBHEmyc6 T#vۈ%o[{*}ޝx1yo^|1se/Pf] ]bxW^~n:1#E[hEՁPJ櫘~A9\@]^(| TѭO_Y#6MCE/;*zO4FA}0z5}bdC~܄[dU&h(sk,s #j;hH0g*"`w'O_Ҩ٘r{+̽W>r."H6a" H#mu7Q)˹CPVbۅv{ `:4wuw^_Xd=n>WOƅ=QTN9=004kp` ~l1'gY ?Rw+բ[/P?|)XUVCtL҈4H9niLZXTO*@p5 w>al6C (\Yq,A ,qk g?Z|?+$0;xPe<^Z,G|4?h@Ʈ{/W] 46c Dk*n0O!M5.608;woӔ ^Iۊ-B/E\c7giAy;՞<ǸqFg")y78ʯ|F |*;4іp7!lsN(嘐%7@TZf⸏G_XحQ2B*N{}o\;;xpz7ƅx/! OY`I%;gJx|XT|^7ky[:۹c{[n> nTbG:܍/⑇z%~ҏ3WSO?>'W.J;M[tp,>#~'PS॥0Xb,ى(5#'A"h%ۅQj{ۇ]ڶhknbVMaxyt|!z]'F(ݤbO<[x,&Н e CD̘z^@// 8P&JfߓhF(M6[^ӿ9<b A-lK8uոઇGBt˦(54,ݦhh @m&VWw%ó7!C0 ˵o m\ҳ*'GfY_Y!RhtnPzz,^3URlk+=1qA G҉`tJ[1?\\w#o``n[wĽ^x9y'Y7ۄR[EfaOr$`#Ƒ?8W3M3 Z:[QَvBc5΁ٔop5d?{)/o#ٰw?R\hu≋'|g~$_yxg >||z΀Q>b%@Hs2䚱돻ۍhn5>P 2` e%BK< EU=\fY 3G' I7(3U<%k"Y?3 Bƒ +!}lx?X#3۔clbOp&26dtY%]gF.JVzF[o#k*1wڒ@-֙"}.!qۣs* 5nfxSNn2_خB\oDΐ` >Z$N1~SOb\p ʐAghV|t~]D9B.BE@ 9hc|7i|Ne枉|4ff 9<Ls%j1>e|bh6zUa7NONaEix{[??W~џƶXs'd#KYpW<6xw #y~pn;!|Yb.z|Hۋ}36[śog8Nw#j1aK];(CW_h?!#q`,NSKmƳ*z57lb#nL"T}L#L3dU{|NgCF= 2ԙƃWe'uf ` ƃ7r7|d1>Czfu2SL%O0WH|ےZ/g(FEbr`;wA<>{|R#?ЗiTn^7 oI/L&^we$CJC$)9Xd(fKlEvy;wh5ϵ>#{ 1몉щ"5D.ENR;"!ե'an$&zdE)ưa qٞKߍ~[qwpb"(tbUF{(mŕK!qWs-N[]rჇhOw篿nрhll P&q%<J7=TKV<&& /VLLWDlg&F8f1a21XcvSC<{>Щ4!*PB.b.3|fχW`#vxV\FѰ peW{bTcy=46T7񋕋~YoͿ+$ >|$ p¢ i,wFGTHv!S :^Ci*l9fK-X,-Z1V ߹w/cW&п^/N+^yw6V<"q=Aj]H> QDŽV g?sJssWY٨ W{Zlu\IFkoG\z) f{Eh(xعP|~2z|xx!vv@<ߍ^. Yq;.ORJ[⻌7=ߋҳ`L##*^Gܪ[ixow 9nJzd %BIx"*`9GH#B!Yqԅ*E*"(=?;DLnA5C1A L ! ) 2ѭN7 bAGB+Ubmweu㒖"f}xX&C3SV`X\s 0^{ƦZp۱L^j4wZqK 1sbKiXA5 =FsY> k'rhU\cFI 3ha"Xf:epG)'(.qNW|F5K佒F(Jl-˝xyoҙox D-~ %¡1qA\gw2>l|gC݊7p`5MPXV 6ՌUCxy|nf7Y[.F8QdW9NN1F1kp]j j~U<>vucO?_%g_EN)``^k;~w]<~}m21N]}x9[v 08Xb<X 3mt,@m:--1^wd dV>;,58ݍiԱYe ;[aC zhԍ%B4aH:Fk_kla^ó*(䒒M16fes!fzg~sz^)r>5y텷.N6ٮ]ky 1@ʢ#Mc[k4Xk&{gv*qiwNy`0 4N׹p~R0PK$bI |+Ur#7$\ SdFf~#B4J8!`nW,Nov"MiliP sW"1qwnߍ9!< }4vvi97 מLg# |b\(ly<].W_2ig'@ēxͼg(:8p^x!3?&ADWUl>a/^;:3NS^FG) *B=ϚjL,[#9q+3- o㡧BdЅD.m=/9>DU#``JAs?JZ1R~4`(NVQ3`@s Y@'<}M$zEc_WaqCT&L횋G!gZugf }&SnJIw CC@DHd;z&]l[}vukWGvqeG8==ѹ~RSjcYcu2?sfoݹ)ֽ{6ش֣Yf` \̇ pR8 N(ojVfݒEeҀG89Gxl֖6d.f#V#\j2&$d͵9 \62LXdnA!֣1TxNJkzNIWTxZXax]N9&3=fB=*Z>DBMg𻡇+, PU)Á(!vеĜ< Yc7s HgC,3AK^qE"'2y52,YeVM䛉>XWK\^NV,fkQZsyԪã{G' z:!hXgd˜2K65PfeXnB Oa*Y< %3( Or0e6ɥ>PQj t֭ xS&ԄX aN Ki0C@zV1"T/XPЬK@LR(d @n`+qR} {c~p1.o鮖<`sC 4,D ']pZmW \/n!4J6Xx 2`5}Vfpl~"۔Dfɦʎ 14,Үd$H Uwx]tQs=h3ĸZsD]pI pdldo%0x0ÁugnJ~(\rR__V|շƃH{)be&޻sM:a(B W%1`H\0%W0%UhX7t"&P5WXP@@IE8n-2Pj~6~zN+~ϵnW3?9$8+W)ad(s"\e *0 P̽;3s*L #aPc,&x޽!E7^D6Pl Ml25!G].`BB: @`RƲq7"z5ψg[<^~ÍF`uDAs6v7C{v:]<E<'T (PĔimfYϮFQɽZ@*0&x9ĊK4+=qT5ǝB)^*d QeIK [ے_ DŢ!$B!rl/Hu]KM`{jM+ve'.l[=/i'\sqxO=|!&8/g%e3]&JCPNOy.njT܀xiwxFFQTc2zР0nܹoK/8Eϩ;caik<CĘX$]uS.=t&PՓbV{'ׅ0YDL=ܮଅwEh]fǭ:uG?g_9׮]iB1 3OۋF!,Ai^ ߄cFX ZGlffCM\{1u&@L0mv!P(喫fa\Z,D;^;R18Xm+ɠ+] |P*Zloy&VX?Ii c%ddD`\.luq7^{ [\lm5XU͘ݗGdE1n3M Sx` *oͱ(SNU1`Ȅ=c5>, aX"rRoe.wr7s1kd}Deai2#kJ;461P&s}d8^[(cr j(if7F3ӌaSWz,EiQv<ފvofA[yב+Mru/t2.g24lo0= o|%|D }TAհgƳL؍y:Ig'"͊Cӕϒ0(lkՔr+N~3&&x}Ĭ LڭPLm2|mSŔp)  v`0vytX3alhxaL4x]bdxp6 34 N#/˜m(g7Y&P$+{J=˞vr!x<K=|>ӛ"XZ[> []_D`6jc<[a۶ hUe:kԋq ;˭ L pƁ1%_.3`J}MVL./aˠġMP(AsQp[Oҏ;S26|ҫclq>G1O:|3ڨ:$I6"_?W%+7y%B{6"r$>уuLCgD[&-`"̳񪃷'O|SFfÍE*Ge ;Ե~\g'!n+( YNbύ!dFA\[np6n{{;v.z6`\9\ī\f,Ln ֿHY3"snZdhn@,˂glfq (A»̤c0U(דM(Ŵf7dMh%T[e3hd՝q֒7 Rxb\> Ö&L"H0وp@d^ nAn@. xsP#̔ s$/3W7cQ@q ft+G/Zc3=e4mA/Ja11<7]~{e}gH\}z,qݷ$)?O3PeOFqDheMG;7/*F3?xGI!Jـg7# t*P..3 aFIuU-յ0Dkj}`H~]O3O( oּLmg9O?Zk5=һwڋAhndNE'~)Ty[8y(1+!O {1&^*alYy=E~aӑbd^d,6tW% sP6ĘWD=!IeOԐVF=. Qgx<^ &3g=5չi >4@*B,5ea߃j 5yFꉉ׀P6 F]7am 9N*<jT\`M^6A_r?žc KFЁۍ0.fY<"z[ ?2i=27qd7[x??ޫM_?,Ta I1H'$Jr]O?0 0ݰfEFFM>8,T( qiyJz @ofo幍r'^yJ7·:/懓1 &IFOYva-"`Xlݾp&h{ie#*UDyP#Io7W!Fją`RKV {xPD(3˯~p~ Qqv֋ng+a Aln:P~!^ȱI<~gӑʍm~ns % s[Bܯ2$[SN}{,Ama2؄pxS>X'k M/DCIF ,#6aNgy{qa?\JX I#c{ˡJ"tfЎ)3_n˗KP6o&Dh̯jCDazR2_4QVe6k>*`dCRC ^ĿY)YA <ʼn9̄|V"ޝЇ{ ?i Ne3SBYI0:! N o7Q֊qx/;q/7P~dQ A'gƅލ1Zܼy3[Qt:`~Ѽ, ;mVbB~~+.{g f+KlK  t_mϿ = Ӓl Վ9Blh`߄64zy=P;$Q1?#tb0#s nz@n2`Nʫp yMl!*H&0l(D.ZfZf23};u-> aQ3U&EO6#'k$i?;TxNw=k-A-K[3歭z6 n~'OhONCy6~~g/Ň?8L KKߎ < f8= ʽk<^3Z'>1>W3 #Z&.b:A,5. i-[DPgQ?[}JzI5B93Pi"(v.쵖K{.EF5)-B"h49utxB8c.Lw{d. FT0g۲fBa혐So"t/pba gnz%o&Z^=PӰ P&xx PƮpO JV駤۠ G,څGrvwq7e6La,\5ez*ݛ3^A\ChfBK;B_V6A>r]PBj}lq(Φ1sރ?ҝMAyQX5, 5\gg_g pwp0,0ve>НefX]B658.(ԝr~n4kal׮~W;xCÏwŨ^oşKqt-c#wxmp#n޻"PjU;=i؍1<0C֕g!e!b UO˝dt0 ,>] p0 =njZڼ 4zѣP*a9G8da|w;'=4¡#QaDf(Js2md(B.\"BBL!RxiEư={!|&dD'0vVVatį^yxV!H  yqEȥLגsUbziX6IL 1ySEG9j" , #vω6ʭP{96â\YHAcOԸNNwIYilw }<7aels7'Kj>n;%nćL>XǷ9Sdv48=wݎǧٺi#S8G?Z+QD:nQ̈g+u=_xk*&/1|+{Er aXóMjxl iŰ)ùpW_K$5rX5]u 3ae +@3V &\kEFU ȳ`؂gi r7 `\^mƫxhde7XM B:Fg=y(@V5%:>gBU<lYU@iזh&N5$UfW/AҘW<5ڃx}5@KфȭrWwiX=<cIj@2(_J-Fj h'Do3"ULd~9װF#hSf9z6v+v$|3~ŧ?øqܽ3Zc\-*}_Qx,`|SL"W&ӆf5}[u6YcB [va`.3F2YUu"&O{.Lc'D.`f-(􀄲V !4̶EBө, kIDATa$L5f>7bR())Jc]]4*B7@X=%Jsר BvBgaAh3E,rL]@sdS {CܟcX5=u\Xe^xOZa{̹>(i4t0"H 6tQT t1> ˊӱ茹+/QF;K !hqJ>R\r3NOEDLBi03@; 29SZQ)* ֠ɷIOУ]i{%up" QOIxzvwo H%.c4vcg.6c"sqN/^ubv|=8Ny<ømʛW4} @NӚ&օ!Xh\a'Ϻ]"[fU+epƺUGg)`4AϞP{Jw^"f1=puEg!ty$!k:P!$^_q!nE##  @1@ \V0@&"FB+36{(tpW!@/ Kaқ Lq)8]'̵t>vsz<1n4 O:{k@2V gېCM f|0bC0=;Z!<ɍ7]YRW𘪩^TĔ# pUjQAA:I l_g4XIl (q_en$ws1ѓ-a\Bزc0/3vwFx.3Ƚ] 9h\S"[wj]ωqeo)Z|&#˼ Y c>LWb5#ƍ>dǠV'{ {fd P/!h9e,xg ne~[q;a^c#H7+ v(R,_װ;q3tO*̂yzqS^z7Ťv]y9bL1$`׶B>Ȧ#%lb^/RlB<`*ް݂(G3QVNiѭ|j78{ys2VGD˺{{ pW4\*g[s  AvY 쪣 ͍*u5b\Cj]ňp/W1P5(hi,wuWc` =^ eɞ<+"XYa-M#VYm`_n%|- K~w!f==OQyUl tzL Ő2 =w M|>IJcl& Cd,{j<B^j5v͵;J #jq\g5~5)2-004Y AZ T7A$G\j%t0fWϬj\=3*{k\x#b [MP`btXR' ݊訑77_z)b{{"n|+JYS4%ռt6L&PdwH–vڶu]„^Ɛ0B@mU54l^_^h,Zt$qxޏB/6F<ag$x\y(>ƘCKkR|*^$aBOO4MVɿTPoDE/MLnl؏.YZ T`Bx!pԆQ-JT6Aj05/&70/ f\1s=~ [iY5 |;rcCv&vn 4ٳk~J gҐch8 QeBjQvf S䗽$S ZtX~\o*wٹtͧ+t5#29Os .;O qsI5䂱Xd762kDXB?Y-FIP&O82+ Hn,X_s̵}?K@!{Bc͌ k-^/ǟ+eQ:N!JA&dPcnY4@؋=0n ^LchP Dar<ٹot!%Wsm]Ji 66f1Zu4[KFr$q *:*1>b=ްfJN8wk6(c"1z fJi0dcyKM0|s+6ȍ?B` {% J1pϬWL5 Hû QpWjpM" 3We{gj.0pŸԹt_ֆ`RV2.fCUi3P`K*rGcs YS1f xufb.c| ^ZTÉıhȍ]P^OíIn[Ma^e5~4D8ǵ%!f"ήc3`s>E<12t[q…{Gϯu癘Ub .x.A?RaRxR/Y݄17qv$1xS , REh~feL8Rݒ=yhiP2o!![]nncjnwxƍ(/ 1V4lqzPXoT%$##kLR|Dd$~BaN#mS8;}9Fȳ,2&CЙP+m6b9!>=a ` J7eM0LA+ |p2!$r0fA(l e"_vS'Ww0NEWFfƏX y ΃Oϰ6W|un(.AC*UŮr}+6<ƒ-ǡ[Y:5}Yҩ^"MƺrG,:_磠ʐd]C/W Um]Ǡ-Ȯhc,3(Y c1y /VXZ67 ++=0 ~*}̉sQ8"Ӭdc{WݻxxV:<v)0űcDYn;&nkn#LՎ6@0I$Dg+1#x@ <,jr&s2-b \#YFFh$A&/5 ]6썲ҮLYo`!;{x88@XE{MoAOu ~ʕ̓FXt_y/upfv/j"ck0kPs+k$6'e j}&06Qd՗O6@2c0T)? t³*ʥDxf7Ý Qܹw7>S5~Ž8ي\=<~!*A %] 56p_; uiJR⣠êdCF@ѹNxwz 4.)xgrdx5ӆ*!e/~6=,iBnLKXc20{T㒘fkDǮEHEf,؟h 헀sE(ؠÚ1C s&MSIM(ʨ-'4Eyl/Y. <>iw΁ ?}3fej!|)+ 9V&M7F^6Q{A+v+-Oc6<׶m}nM,øT6ƫ6HQq*h-f0㤧,s٪š[}wZT$̖pBr] WV1<@pC(%ܧEdVZ7R jEs+ ; i$&V EJ OESo8O)'$Л.1-_]۹ Q\{Vrt|;{7oƽqtWrj4=; S)Ns7Muƃw5d Qo^\Os8:4j{WҨǥGƅk߉<0^BVE^p&[fU-{LJCxNرTht(™p*Ṵ^1@j4?a;6=&x(O- f-砯xݳ1L :aL6WXRf)Opa bebfU6ۺYeA R+L[ri1TD`lɯ 2)f&I7E9Ra )bQ}Py6VXn=5- Rǘ)bÚ(L|\=! 穒a5kJixr}=}0l|c(iGb]A֐ˬBdFM:%(1.m:ck, YL&;C♧> WVYu~r_D41g?l<ոz - "k> iGmYx8€LA ~Dbo8U{aď~G~g~c9|8;qpׯPAn=R 3VvaAH-`jlagdFbC"@P5u] Y p@DžJkMg&I=θcN ALFbov=LCgre`'-Wn49+Aױ*s߀NƉkM [U56UQ͔`SjKi Oy7k U,x#%9UlɅ5BELHvd{fP`{oM6G}<镡-%l : 4wn~w ,<^ǯ\ʐ;G!eat.޹?Eٷu.Yjm>e2S)*}bA}ҋ3xJ{~ԉK^\}__}J|f|+/D|㟌,Ɲ7_w^3^L c?M8e|׮ӓʋDXByxl]h*͡+p#_X?.#  \\Z3M`qe7F7iSY&=n +ڱD߼[c E&yTF^_` Vu yN0SW.MH{}1HfO'^jބ|S, fwCla|R)-*:qvx?jq G1'PSi1~%Z~vM" 5*ϑp~.e"g._fs|6^qp vݍJn7?L ܍''J~3Gr{sF$eQ[-KxrusA,o0i?ڋW__gjnGkIWϿM۽q4%Sx ć3OǸ4q1ؿn$ď<7Ϣ˥;nHӽ&Duj"yB-jݽ ܪ2}DQ>ÌKJ"7M`@!ӖZoX\7 >BP4n@Sˆs2i?Lƒ7q91OQ[iqY4x~!lұX31ߌ'/ݻߍ7ckl]??w7>vVڍWf믺8@n7Ǯm|_x=c5ۄ!u Le/?rɦ vICI\ (k,HFoH#ڸn*NQ'Y( 7lo>u/^ݖzًcV^@)+Bv8zp,On!9 *l*4b>BqA"P84!AnʱρK9M]\" 4.5o=qטy¬' L fi6ɯb7QlWkőЮT lśmM6X4,X3X~{<𞄚"flJ :Xȸ?kaݍ2c!:<oQ!ޗ0Ex4a="|<_-T`Ԙ!hJ%xBh9wH%`<1qMz~35g~f˥/ Bwkz-rs #3X(ޛb\Q ]VFq2 e#1Hå! daV0M>-V'A(Ќ<´%7^P$4 `pY2h 1Wk–wדYb)P\Tθg0 Yb*jn.Fh=(#HXnV}UhQƳzampԀ$ 촌3߹̝ ' 窉s3a 陈5#fd ±a5wˮE٣rӆ~W7]^+@i\6+7/b7V݈-Ŷ" h{N>AD48'9PG疄h ._43A.j5Z߂1HՍ[oq/tJV3Al#RpMfbrXtX$c_>/1{~f0T dtA2{x*-o B L«bTD M zg7h͢G(>="v+h`Ɗc[X`憱[]B=qFAw7 CI+c~}gN[yz%-b*MS*aHzh㒍$D@鐄ư)Th*.?J:Ǩg)Zi0| z c ՙՓq5Ve2[Z+O*Th ?`luAg!( ,ʌK!Ky6!Sy.hJri@{ m"W 'LRjdD!>(wvn羅a8## jaftdNMlidKՈmЄƢkB ܼ ~p:brgT2~t^<3OOu *.s0>- jJM3. w (LIq`?qE$!rpԫd5ܓ@{seLTJ+-Dy*v؍hbgYavϔ@wUMwZz+ '̪:E؋n7J FvSMSl>Y-a{#i-\OFơVsX92ąߎ@鹡bړr赆אr7 QHJ(S7&@`=KbzHwk*Gh?8_G]r5֥LLmOm`&J\Wq,rNil{W1">n,sѺBz(v칈NسovpOnG8:G=5ECAQ :"W=b 0<;n81*1m&T=vWZf/&+|zq=p$.}cxPl{W._[t ( Mč1y&>\N2KM_M `UZ6IsU `p8&(d( 46~k/0>4taB\rwh<53͐v<ęɄ%/r*0EI=„xnką"EaeH&ό46[kV«s"3Oq`[#e^O`$fkL=D*!]!Fh6qc0ZR\YH4YE|BA4Y {MH7à͗ N\c9&)5.+هr-hpՙy(3L݃du:X/ A#Xᇆul|#TKO_s~vwUg0ͤYb3֒NADVA֚%w%1D/L Q0 Pq)d [i!巡B~7]ҋ0 7B`"|zˤQc ce(J⹷ڃG+D1RILU5XSP [}U&vszƺI@ qv8kxE;<9Ӹo@|`9 0$JoÎ<^ VQ~60-uW\`V$^X@Z"@ `ڀ@C-z jcSo#/6 g-}RUxs_d= ^K~a HiQOgm8|͛I_"@#BME /%FBi(B ʙf\.n=m5|ov"3Ыƃld0[8'HYxޓ:AWz5y,mՅ焭Ʊ1ꕰ# hLLJ~KC`~ʱg"d?׮sïJ24ض"}4l e4^-]2BmBپɃА^o {nUk*j1zG3S%ƁmƷc4hP(` bۀ![|-s<Dqۦ x#t,(ҎmGb^{ +=8>3Z}/DžP{5 v?TCi&7LvɎ'l2fbX",:t7Vd)7 wẳ`y\֜q}rƷۏ]X#0g.Yc$\!h(rQ{Odž+\f.f&= Ku"doC˃ *71j)EfXlP=4ɤ0 r]\^v'Y 1$@6 C=sތtLB[1g<4Nب`(9Ei q4p+fYx^<$lG+),S5uIx9t~Z y4-,*b@çz<0fzjqg(&2h@*18DJ5PXEeUEX~[[ݧ+Q%5V{7vW(Wfx(ulā"@v3v?9pE?YDoyhR0ėSAPE7V!ř8`tckvp"W^VEZ"* cxP *+< m`Ò4*|^O扽+njG ˙tⶔgvq(X)Aok)Lh2 6s2Z1HF&; - ٩67“E2E&+ 7^:9ϛ0 l 8[Y<Ȧ60Gk:.?iZ!7'n1!]m";w;ﭒDL(\o6O|Ho\y/퟊owr!<3-{#gxe>v; +5J:,b:rD&҃pf0L6wa Ɓx\/{T4O +y !y/^,Wl0“g‘1h ̪B CP4)po_bdu Kgct`Cgīff]R/5 R#@܎f[X] ; l$6NǨhK9B`2ap&Y- Ӳto[Yl< TL+<ڍgҗ2ED%YJcuZzWh!#&wy)ơq-),Y"6AW9?M {KZRZ2s1Mfa|{uK+5Fl?+bY{NdL!J:+cRVU5CL&Uh[GMPJl :8AzQx~8[>o^Hd>_O2ghaU ó)b6j{q{^;J<73'WtT<G L#2(1AA?ѿZ&F&\VXL[Ǫy&ZS V g@q]bB$(_\7OaDPnG&2UGRommqM%X:1˯}<[1n쵀q]K[s|2 R&1:q =ck1*L  c gg3wuӇyңzv BglkrSa\sXvex-nLE’q3g$xa-B208Gyn ׳hzU[dQͪ͞aih\Qd {)ѶE݉&_(%Vޘt\`8]QШi}hhrDEyÅiҒ8a(cU@5h+'g?M4`a&-lWl5)#?K̺B# ii# sJk!W>k~J|C-}a X8zǽ@pHqO1$݋{! -SAsf>#`ŊCgG@7qt>`r;).׉ml .^_yjǀ*%{e,7LIF1 VÓFҁ4=@h7vLv5>$e~Ag^sۼm>%;z+ѻq?l<|v:23&1Ϸn܃5-1D" {tЁq@{MnL)^%1 w(֜ a<0 ]!ymDCI s>ijų yOMLCru`{'*`D,0kD"1[,oTM7gⓟ{>._ qnqpbI)RʗW_{癌Wy >V _á,aJ:~^~w8 sʙ4bt  TG)aqc "]x{ 5L>V}*ЍBV12a **B,.i' K7*VQېjۓ- 7mL~92 Ǽyx\?7"Yia?h/(i5եo%b5je)KFk-^SQ}tZlyWJr^*qa<9ԺfeN1zz\m[q|B/o|w+_tOgQM?9k[N<}zI`/|Mx֒{ŽEփGx_~(3Y&L@4Z C0X/(zƷ&6:i+|:>ߊ/g1s76ELVH[}S-1`GQ(]4f wyĭIcL VN&*Ѫ+}u(, &r[;C n2B#YýY^L.g"!aU(M%cO>Ѷ}fB`JUEybv 8%ge*#|LJ-`.DVs>uOzG1.RphSŢ)\T =^r^AlD8@*Y%JhF?` z0Rh vHdռRr. ¡6Ŕi n 7ޚ{W# d3jvB[k3>FIQhGF"DME#Z6s6)(Ts GBL7֬іp;\C@O_ko %O<`⫣Cg MZ@ĞٙĄgKσC 3E]y6'0Fk}%s>**r:x `]n7a{'z|Y-q[kҝ{ܝW38kK?5mAHAG/LA$(s܂1bu:A~^!|.,ڱ`0[EWMK Ђhd 1 Zpy8 "|F,8>=v̟bºc|!μ{#0AP6$yK썶ׇA ф-̽K'NJ 5t;mE;=llA ' (}0O{O+ϭ"l3~X c[XCsU ]|AW1'ݶnT-m2[+dpЂx Km 0Kq15ͤ _,A\gpf c0G떟12qGUmB  `cnw? E!(<~y6Ч/KToA%?w$:uW)Ț6TL:B8Vq[ۄ(DTf-S`FN0$TuJ!JɏXKQwA0#Wx#K{* kAyܾ{e p d~ w]Nf1LU\DAVe}2Y)f#j?|I]'RFStG[Q -2LJCj9;^V~5ZLWj?0dNZfV[2$6ޱu{*kVдZ ^7-4,w6 d>8(mC $.LL / !LP h$3b *5♲)r2)$yN~JB@ M;t׶] \РW2TvH&x'QB֝9O}uѡ5̫rvg6 {u;IˌI !bA+iǴ%)SМ[,rB9es2ԃBֹP1+ҝ()9hDEU)VI܎ X \qkoYݻyϸ;8UE\3lrUgel熵N-n% {ߡ,E9O#kVEC&s%r쥐*^`Eb-` 4N58-&k4=~q.f _ %r݁U22']3~2)H$"8k)<5^>"&W3ΐoGyDyYXy(D#fy]*2e;n}jb0XvAQ7@Fo/lA %Ri!蔾TqY|E?NC?1W; xyDٛ _OeMM^|'-i70m< Cx'hWlT")RM!=EQ\^MMV9Pg-/$]TbmZ٠8u*taJdoxC4em>34jV9i\lL%e$dҕT4CM4wW yN3ch @l,S7b'oP"9b{AcŜqHVx.Ng aAYѥ sgC{P2G$";c#sj3ru6~kE= nFԻI 1ddfqdJ,$;FS(TGp<9PbdۭAEEc"P<|.D(2*16hqax[qN ~a)G_[ 1k]e ʓ e>7I䵼۟2Dۺ\XYh`҆(cAwMrG}dZc;HJ.UbUvʩPh3haIM QRFyt[ -a"(!];PȕRx^ss\clь{Rty]|3G]J~v1}k* +ːa(7 [ҳY0 u:X)-Xy?",Zahx \<Ӡ|+6|s1ՖF 8 \K膰6"W) M ]zO~,(]LiCҞ Fn}BKQ^I6sa´1on}kx) Ji|FF&Jw'Q@N5у?_{JQ߱N f߳b('?v7ё;*nungIkƠw31kKl AVBpHo쥏"Ƭ!t`d-B -:Ơ%g-2-RyE@afh?" Y*+UKׂ3Fc Sg PCa2x`Ş"-_B"+]`\#-7mJ˼f^AԖ>}3&AG~4֭p~1 q-P{Y(ءEaf "6s3POʋ:eo=KՠnwrHSb`)|J }ng<=kӔUVf9_9 XCcGƵDqUɚ JЪ&K^{V7$c9B0~Oyi"j̔WݭX£XѢHݷƼgJ'"M{#~[ƕrC(H~7썡 PcLJ|\,l?LR!\l7h(hbsh#vu/%>awGYqiǀ mY&,> /{/I!h?]xxL[2^0Zl昨ǘ[NFDto_. #X 0OSdhg`}h ,E.C֑i38-9 icn`4*ܺAc2;ߩ >>Uc `Sf&MZ/,5qtS5jjT0_ X4ZRvGaHƀyig*2xT > `j%_埜fT$<& `B(Pլ/}Tt7VO&/Y2fѻBƌWKZN2A X~Z:c\ԏxwK܁ƳO@2:k,SotGPd5&9y9\%Yv5%=yHiε<^3J;&'Y7"AE2gݻ뜯7: Wu:YX\n f,(č~4"89=+Lvtr SO?;#|~~F{~X!; `>h[-AV|x>8~*k`Q +FWhXN Z_l ~V QZ^ ,iD8KGvSBh<._ {H*ybiӪ<<SPp,_R e.s5NMJ!yɈ,rЗ7BƼЙ|dUծ7Ȝ YұTCX꙽8tgE'F÷%f%HW#p3iV$J6+c&vm5x;:yfd_?CHfS^s"wmChs2j\c]'xXƒ b\јngF*AQiPgqF4, ==u1XN3e^"K;8>eURXkta! 9ۃ[kX+kLrvQ(,zBR*(k}wT 1k'e+/jzzb StMQwu% CӿV^5A4s+dLdx/:p],w y0J=HΩlf$- VG(.ЕUz*b>VgB&mpoANA#NQ҉=]߻(|Q+:uaeMם_xGl~e,g9yxD z㘽8淣y9'dוGh3dZ/0q^ty. 7=^̯h:ָ֍-:hbEyfOMs@Xytnq-#g]-$[ ,tyM E=, LýPyduEM:bŸMd6~s7He雹%}pG ѽbm>V-FnS YdvV ̅I^NݖYftu~e42L "حm i2~RW}` Zѵo%a-yb%wtL6#@YƭA(؂b`0lۃ]%җ0v shu+ z@l!Hl)"6t@H&)ψ`~R(nV%S!c4AHX"̭ט/TL 4Hf.$z\`EnOon'-V-76({~dxFycxh(] QMU,V^h9Vt*ڵ]k mxV R1X(s>@l>A DJ@k&fIe~o΄Xg(0VCnCCdi</OX5w>9{?G9nEY^8o[׎o~[DŽy0 PK%>B7yRX{IENDB`././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6277657 pymca5-5.9.4/package/0000755000000000000000000000000014741736404013072 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6757658 pymca5-5.9.4/package/cxfreeze/0000755000000000000000000000000014741736404014705 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/cxfreeze/cx_setup.py0000644000000000000000000005022614741736366017125 0ustar00rootroot# coding: utf-8 # /*######################################################################### # Copyright (C) 2019-2023 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __authors__ = ["V.A. Sole"] import sys import time import os import glob import shutil from cx_Freeze import setup, Executable, hooks try: from cx_Freeze import version as cxVersion except ImportError: import cx_Freeze cxVersion = cx_Freeze.__version__ if not sys.platform.startswith("win"): print("Warning: Only windows usage tested!") tested_versions = ["6.11.1", "6.14.3", "6.14.4", "6.14.7"] if ("%s" % cxVersion) not in tested_versions: print("Warning: cx_Freeze version %s not tested" % cxVersion) if "build_exe" not in sys.argv: print("Usage:") print("python setup_cx.py build_exe") sys.exit() # SPECPATH = os.path.abspath(__file__) PROJECT_PATH = SPECPATH while not os.path.exists(os.path.join(PROJECT_PATH, "icons")): PROJECT_PATH = os.path.dirname(PROJECT_PATH) if sys.platform.startswith('darwin'): exe_icon = os.path.join(PROJECT_PATH, "icons", "PyMca.icns") else: exe_icon = os.path.join(PROJECT_PATH, "icons", "PyMca.ico") # special modules are included completely, with their data files, by scripts # run after the actual cx_Freeze operation. You may try to add them as packages # adding the module name as string in packages. If you add a module as special # module, you should consider to add that module to the excludes list packages = [] special_modules = [] excludes = [] includes = [] # This module basically does not work with frozen versions #excludes.append("multiprocessing") #some standard encodings #includes.append('encodings.ascii') #includes.append('encodings.utf_8') #includes.append('encodings.latin_1') # needed by numpy.random includes.append('secrets') # exec_dict is a dictionnary whose keys are the name of the .exe files to be # generated and the values are the paths to the scripts to be frozen. exec_dict = {} # Program and version are used for the eventual NSIS installer program = "" version = "" # a hook to bypass cx_Freeze hooks if needed def dummy_hook(*var, **kw): return # what follows is the customization for PyMca USE_QT = True if USE_QT: # If Qt is used, there is no reason to pack tkinter hooks.load_tkinter = dummy_hook excludes.append("tcl") excludes.append("tk") excludes.append("tkinter") # Mandatory modules to be integrally included in the frozen version. # One can add other modules here if not properly detected by cx_Freeze # (PyQt5 and matplotlib seem to be properly handled, if not, add them # to special_modules) import PyMca5 import fisx import h5py import numpy import matplotlib import ctypes import hdf5plugin packages = ["PyMca5"] # is this line needed having PyMca5 as special module? program = "PyMca" version = PyMca5.version() special_modules = [os.path.dirname(PyMca5.__file__), os.path.dirname(fisx.__file__), os.path.dirname(h5py.__file__), os.path.dirname(numpy.__file__), os.path.dirname(matplotlib.__file__), os.path.dirname(ctypes.__file__), os.path.dirname(hdf5plugin.__file__)] try: import OpenGL special_modules += [os.path.dirname(OpenGL.__file__)] except ImportError: print("OpenGL not available, not added to the frozen executables") # This adds the interactive console but probably I should aim at an older # version to reduce binary size. Tested with IPython 7.4.0 try: import IPython import pygments import qtconsole import asyncio import ipykernel import zmq includes.append("colorsys") special_modules += [os.path.dirname(IPython.__file__)] special_modules += [os.path.dirname(pygments.__file__)] special_modules += [os.path.dirname(qtconsole.__file__)] special_modules += [os.path.dirname(asyncio.__file__)] special_modules += [os.path.dirname(ipykernel.__file__)] special_modules += [os.path.dirname(zmq.__file__)] except ImportError: print("qtconsole not available, not added to the frozen executables") try: import silx import fabio special_modules += [os.path.dirname(silx.__file__), os.path.dirname(fabio.__file__)] except ImportError: print("silx not available, not added to the frozen executables") try: import bcflight special_modules += [os.path.dirname(bcflight.__file__)] except ImportError: print("bcflight not available, not added to the frozen executables") # package used by silx and probably others that is not always added properly # always add it because it is small try: import pkg_resources special_modules += [os.path.dirname(pkg_resources.__file__)] excludes += ["pkg_resources"] except ImportError: print("pkg_resources could not be imported") try: import importlib special_modules += [os.path.dirname(importlib.__file__)] except ImportError: print("importlib could not be imported") # pyopencl needs special treatment try: import pyopencl import mako import cffi import pytools OPENCL = True except: OPENCL = False if sys.platform.lower().startswith("linux"): # no sense to freeze OPENCL = False if OPENCL: special_modules.append(os.path.dirname(pyopencl.__file__)) special_modules.append(os.path.dirname(mako.__file__)) special_modules.append(os.path.dirname(cffi.__file__)) special_modules.append(os.path.dirname(pytools.__file__)) includes.append("decorator") else: excludes.append("pyopencl") # other generic packages not always properly detected but that are small and # desirable to have import collections special_modules += [os.path.dirname(collections.__file__)] # no scipy (huge package not used by PyMca) #excludes += ["scipy"] # community requested modules try: import scipy special_modules.append(os.path.dirname(scipy.__file__)) except ImportError: print("scipy not available, not added to the frozen executables") try: import sklearn import threadpoolctl import joblib import prompt_toolkit #special_modules.append(os.path.dirname(sklearn.__file__)) includes.append("sklearn") special_modules.append(os.path.dirname(joblib.__file__)) special_modules.append(threadpoolctl.__file__) special_modules.append(os.path.dirname(prompt_toolkit.__file__)) except ImportError: print("scikit-learn not available, not added to the frozen executables") sklearn = None try: import umap import pynndescent includes.append("umap") special_modules.append(os.path.dirname(pynndescent.__file__)) except ImportError: print("umap-learn not available, not added to the frozen executables") # give some time to read the output time.sleep(2) # executable scripts to be generated for PyMca PyMcaDir = os.path.dirname(PyMca5.__file__) exec_dict = {"PyMcaMain": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaMain.py"), "PyMcaBatch": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaBatch.py"), "QStackWidget":os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "QStackWidget.py"), "PeakIdentifier":os.path.join(PyMcaDir, "PyMcaGui", \ "physics", "xrf", "PeakIdentifier.py"), "EdfFileSimpleViewer": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "EdfFileSimpleViewer.py"), "PyMcaPostBatch": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaPostBatch.py"), "Mca2Edf": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "Mca2Edf.py"), "ElementsInfo":os.path.join(PyMcaDir, "PyMcaGui", \ "physics", "xrf", "ElementsInfo.py"), } include_files = [] for f in special_modules: include_files.append((f, os.path.basename(f))) build_options = { "packages": packages, "includes": includes, "include_files": include_files, "excludes": excludes, "zip_exclude_packages":["*"]} #"compressed": True, } if sklearn: build_options["include_msvcr"] = True if sys.platform.startswith("darwin") and cxVersion not in ["6.11.1"]: # something got wrong starting with cx_Freeze 6.12.0 # see https://github.com/marcelotduarte/cx_Freeze/issues/1671 build_options["bin_excludes"] = ["libiodbc", "libiodbc.2.dylib", "libpq.5.dylib"] install_options = {} # attempt to cleanup build directory if os.path.exists("build"): try: shutil.rmtree("build") except: print("WARNING: Cannot cleanup build directory") time.sleep(0.1) # generate intermediate scripts to deal with the path during execution tmpDir = os.path.join("build", "tmp") if os.path.exists(tmpDir): shutil.rmtree(tmpDir) if not os.path.exists("build"): os.mkdir("build") print("Creating temporary directory <%s>" % tmpDir) os.mkdir(tmpDir) for f in list(exec_dict.keys()): infile = open(exec_dict[f], "r") outname = os.path.join(tmpDir, os.path.basename(exec_dict[f])) outfile = open(outname, "w") outfile.write("import os\n") outfile.write("import ctypes\n") # weird, somehow writing something solves startup crashes that # do not occur when running in debug mode outfile.write("print('')\n") magic = 'os.environ["PATH"] += os.path.dirname(os.path.dirname(ctypes.__file__))\n' outfile.write(magic) for line in infile: outfile.write(line) outfile.close() infile.close() exec_dict[f] = outname executables = [] for key in exec_dict: icon = None # this allows to map a different icon to each executable if sys.platform.startswith('win'): if key in ["PyMcaMain", "QStackWidget"]: icon = exe_icon executables.append(Executable(exec_dict[key], base="Console" if sys.platform == 'win32' else None, icon=icon)) # the actual call to cx_Freeze setup(name='pymca', version=PyMca5.version(), description="PyMca %s" % PyMca5.version(), options=dict(build_exe=build_options, install_exe=install_options), executables=executables) # cleanup if sys.version.startswith("3.7"): filesToRemove = ["MSVCP140.dll", "python37.dll"] elif sys.version.startswith("3.6"): filesToRemove = ["MSVCP140.dll", "python36.dll"] else: filesToRemove = [] print("Your list of files to remove needs to be updated") if sys.platform.startswith("win"): exe_win_dir = os.path.join("build", "exe.win-amd64-%d.%d" % (sys.version_info[0], sys.version_info[1])) REPLACE_BIG_FILES = True REMOVE_DUPLICATED_MODULES = True REMOVE_REPEATED_DLL = True RENAME_EXECUTABLES = False QTDIR = False else: exe_win_dir = os.path.join("build", "exe.%s-x86_64-%d.%d" % (sys.platform, sys.version_info[0], sys.version_info[1])) if not os.path.exists(exe_win_dir) and sys.platform.startswith("darwin"): exe_win_dir = os.path.join("build", "exe.%s-%d.%d" % ("macosx-10.9-universal2", #TODO how to get this information? sys.version_info[0], sys.version_info[1])) REPLACE_BIG_FILES = True REMOVE_DUPLICATED_MODULES = True REMOVE_REPEATED_DLL = False RENAME_EXECUTABLES = True QTDIR = os.getenv("QTDIR") if REPLACE_BIG_FILES: # replace excessively big files # somehow some modules are bigger in the installation than just # copying them manually. destinationDir = exe_win_dir safe_replacement = [os.path.dirname(mod.__file__) \ for mod in [PyMca5, fisx, h5py, numpy, hdf5plugin] \ if mod is not None] for dirname in safe_replacement: destination = os.path.join(destinationDir, os.path.basename(dirname)) if os.path.exists(destination): print("Deleting %s" % destination) shutil.rmtree(destination) print("Deleted") for dirname in safe_replacement: destination = os.path.join(destinationDir, os.path.basename(dirname)) print("Copying %s" % destination) shutil.copytree(dirname, destination) if REMOVE_DUPLICATED_MODULES: # remove duplicated modules import shutil destinationDir = os.path.join(exe_win_dir, "lib") for dirname in special_modules: destination = os.path.join(destinationDir, os.path.basename(dirname)) if os.path.exists(destination): print("Deleting %s" % destination) shutil.rmtree(destination) print("Deleted") else: print("Not existing %s" % destination) time.sleep(0.1) # the directories were already copied as include_files print("moving %s" % destination) shutil.move(os.path.join(exe_win_dir, os.path.basename(dirname)), destination) if REMOVE_REPEATED_DLL: work0 = [] work1 = [] for root, directory, files in os.walk("build"): for fname in files: if fname in filesToRemove: work0.append(os.path.join(root, fname)) for dire in directory: if dire == "__pycache__": work1.append(os.path.join(root, dire)) for item in work0[2:]: os.remove(item) work1.reverse() for item in work1: shutil.rmtree(item) if RENAME_EXECUTABLES: #rename the executables to .exe for easier handling by the start scripts for f in list(exec_dict.keys()): executable = os.path.join(exe_win_dir, f) if os.path.exists(executable): os.rename(executable, executable+".exe") #create the start script text = "#!/bin/bash\n" text += 'if test -e "./%s.exe"; then\n' % f if QTDIR: text += ' export LD_LIBRARY_PATH=./:./Qt/lib:${LD_LIBRARY_PATH}\n' else: text += ' export LD_LIBRARY_PATH=./:${LD_LIBRARY_PATH}\n' text += ' exec ./%s.exe $*\n' % f text += 'else\n' text += ' if test -z "${PYMCAHOME}" ; then\n' text += ' thisdir=`dirname $0` \n' text += ' export PYMCAHOME=${thisdir}\n' text += ' fi\n' if QTDIR: text += ' export LD_LIBRARY_PATH=${PYMCAHOME}:${PYMCAHOME}/Qt/lib:${LD_LIBRARY_PATH}\n' else: text += ' export LD_LIBRARY_PATH=${PYMCAHOME}:${LD_LIBRARY_PATH}\n' text += ' exec ${PYMCAHOME}/%s.exe $*\n' % f text += 'fi\n' nfile = open(executable, 'w') nfile.write(text) nfile.close() os.system("chmod 775 %s" % executable) #generate the lowercase commands if f == "PyMcaMain": os.system("cp -f %s %s" % (executable, os.path.join(exe_win_dir, 'pymca'))) elif f == "QStackWidget": os.system("cp -f %s %s" % (executable, os.path.join(exe_win_dir, 'pymcaroitool'))) elif f == "EdfFileSimpleViewer": os.system("cp -f %s %s" % (executable, os.path.join(exe_win_dir, 'edfviewer'))) else: os.system("cp -f %s %s" % (executable, os.path.join(exe_win_dir, f.lower()))) if f == "PyMcaPostBatch": os.system("cp -f %s %s" % (executable, os.path.join(exe_win_dir, 'rgbcorrelator'))) if QTDIR: # copy the Qt library directory and create the qt.conf file destinationDir = exe_win_dir if not os.path.exists(os.path.join(QTDIR, "lib")): print("Cannot find lib folder. Invalid QTDIR <%s>" % QTDIR) os.system("cp -R -f %s %s" % (QTDIR, os.path.join(destinationDir, "Qt"))) for d in ["mkspecs", "doc", "include"]: target = os.path.join(destinationDir, "Qt", d) if os.path.exists(target): os.system("rm -rf %s" % target) # generate qt.conf file qtconf = os.path.join(destinationDir, "qt.conf") if os.path.exists(qtconf): os.remove(qtconf) text = b"[Paths]\n" text += b"Prefix = ./Qt\n" f = open(qtconf, "wb") f.write(text) f.close() if OPENCL: # pyopencl __init__.py needs to be patched initFile = os.path.join(exe_win_dir, "pyopencl", "__init__.py") print("###################################################################") print("Patching pyopencl file") print(initFile) print("###################################################################") f = open(initFile, "r") content = f.readlines() f.close() i = 0 i0 = 0 for line in content: if "def _find_pyopencl_include_path():" in line: i0 = i - 1 elif (i0 != 0) and ("}}}" in line): i1 = i break i += 1 f = open(initFile, "w") for i in range(0, i0): f.write(content[i]) txt ='\n' txt +='def _find_pyopencl_include_path():\n' txt +=' from os.path import dirname, join, realpath\n' txt +=" return '\"%s\"' % join(realpath(dirname(__file__)), \"cl\")" txt +="\n" txt +="\n" f.write(txt) for line in content[i1:]: f.write(line) f.close() if not sys.platform.startswith("win"): # rename final folder txt = "PyMca%s" % PyMca5.__version__ os.system("mv %s %s" % (exe_win_dir, os.path.join("build", txt))) os.chdir("build") if sys.platform.startswith("darwin"): platform = "macosx" elif sys.platform.startswith("linux"): platform = "linux" else: platform = sys.platform os.system("tar -cvzf pymca%s-%s.tgz ./%s" % (PyMca5.__version__, platform, txt)) os.system("mv *.tgz ../") os.chdir("../") # generation of the NSIS executable nsis = os.path.join(r"\Program Files (x86)", "NSIS", "makensis.exe") if sys.platform.startswith("win") and os.path.exists(nsis): # check if we can perform the packaging outFile = "nsisscript.nsi" f = open("nsisscript.nsi.in", "r") content = f.readlines() f.close() if os.path.exists(outFile): os.remove(outFile) pymcaexe = "%s%s-win64.exe" % (program.lower(), version) if os.path.exists(pymcaexe): os.remove(pymcaexe) frozenDir = os.path.join(".", exe_win_dir) f = open(outFile, "w") for line in content: if "__VERSION__" in line: line = line.replace("__VERSION__", version) if "__PROGRAM__" in line: line = line.replace("__PROGRAM__", program) if "__OUTFILE__" in line: line = line.replace("__OUTFILE__", pymcaexe) if "__SOURCE_DIRECTORY__" in line: line = line.replace("__SOURCE_DIRECTORY__", frozenDir) if "__ICON__" in line: line = line.replace("__ICON__", exe_icon) f.write(line) f.close() cmd = '"%s" %s' % (nsis, outFile) print(cmd) os.system(cmd) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/cxfreeze/nsisscript.nsi.in0000644000000000000000000001425414741736366020243 0ustar00rootroot;-------------------------------- ;Product Info Name "__PROGRAM__ __VERSION__" ;Define your own software name here !define PRODUCT "__PROGRAM__" ;Define your own software name here !define VERSION "__VERSION__" ;Define your own software version here CRCCheck On ; Script create for version 2.0b4 1.40 (from 09.sep.03) with GUI NSIS (c) by Dirk Paehl. Thank you for use my program !include "MUI.nsh" !include "x64.nsh" Function .onInit ${If} ${RunningX64} ${EnableX64FSRedirection} ${else} MessageBox MB_OK "Sorry this version only runs on windows 64 bit. Download the 32bit version" Abort ${EndIf} FunctionEnd ; For icon association !define SHCNE_ASSOCCHANGED 0x08000000 !define SHCNF_IDLIST 0 Function RefreshShellIcons ; By jerome tremblay - april 2003 System::Call 'shell32.dll::SHChangeNotify(i, i, i, i) v \ (${SHCNE_ASSOCCHANGED}, ${SHCNF_IDLIST}, 0, 0)' FunctionEnd ;-------------------------------- ;Configuration OutFile "__OUTFILE__" ;Folder selection page InstallDir "$PROGRAMFILES64\${PRODUCT} ${VERSION}" ;Remember install folder InstallDirRegKey HKCU "Software\${PRODUCT} ${VERSION}" "" ;-------------------------------- ;Pages !insertmacro MUI_PAGE_LICENSE "..\pyinstaller\PyMca.txt" !insertmacro MUI_PAGE_DIRECTORY !insertmacro MUI_PAGE_INSTFILES !insertmacro MUI_PAGE_FINISH !insertmacro MUI_UNPAGE_CONFIRM !insertmacro MUI_UNPAGE_INSTFILES !define MUI_ABORTWARNING ;-------------------------------- ;Language !insertmacro MUI_LANGUAGE "English" ;-------------------------------- ;Icon "${NSISDIR}\Contrib\Graphics\Icons\win-install.ico" Icon "__ICON__" UninstallIcon "${NSISDIR}\Contrib\Graphics\Icons\win-uninstall.ico" ;Installer Sections Section "section_1" section_1 SetOutPath "$INSTDIR" FILE /r "__SOURCE_DIRECTORY__\*.*" SectionEnd Section Shortcuts SetOutPath "$PROFILE" Call RefreshShellIcons CreateDirectory "$SMPROGRAMS\${PRODUCT} ${VERSION}" WriteIniStr "$INSTDIR\PyMca.url" "InternetShortcut" "URL" "http://pymca.sourceforge.net/" CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca Home page.lnk" "$INSTDIR\PyMca.url" "" "$INSTDIR\PyMca.url" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca.lnk" "$INSTDIR\PyMcaMain.exe" "" "$INSTDIR\PyMcaMain.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca Fresh Start.lnk" "$INSTDIR\PyMcaMain.exe" "-f" "$INSTDIR\PyMcaMain.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Identify Peak.lnk" "$INSTDIR\PeakIdentifier.exe" "" "$INSTDIR\PeakIdentifier.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Elements.lnk" "$INSTDIR\ElementsInfo.exe" "" "$INSTDIR\ElementsInfo.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMcaBatch.lnk" "$INSTDIR\PyMcaBatch.exe" "" "$INSTDIR\PyMcaBatch.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\EDF Viewer.lnk" "$INSTDIR\EdfFileSimpleViewer.exe" "" "$INSTDIR\EdfFileSimpleViewer.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Fit to Spec Converter.lnk" "$INSTDIR\Fit2Spec.exe" "" "$INSTDIR\Fit2Spec.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Mca to Edf Converter.lnk" "$INSTDIR\Mca2Edf.exe" "" "$INSTDIR\Mca2Edf.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\RGB Correlator.lnk" "$INSTDIR\PyMcaPostBatch.exe" "" "$INSTDIR\PyMcaPostBatch.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\ROI Imaging Tool.lnk" "$INSTDIR\QStackWidget.exe" "" "$INSTDIR\QStackWidget.exe" 0 #CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\ROI Imaging Tool (OLD).lnk" "$INSTDIR\QStackWidget.exe" "--old" "$INSTDIR\QStackWidget.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT}${VERSION}\EDF Binning Tool.lnk" "$INSTDIR\EdfBinWidget.exe" "" "$INSTDIR\EdfBinWidget.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Xia Correction Tool.lnk" "$INSTDIR\XiaCorrect.exe" "" "$INSTDIR\XiaCorrect.exe" 0 SectionEnd Section Uninstaller CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Uninstall.lnk" "$INSTDIR\uninst.exe" "" "$INSTDIR\uninst.exe" 0 WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "DisplayName" "${PRODUCT} ${VERSION}" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "DisplayVersion" "${VERSION}" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "URLInfoAbout" "http://pymca.sourceforge.net" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "Publisher" "V.A. Sol - ESRF" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "UninstallString" "$INSTDIR\Uninst.exe" WriteRegStr HKCU "Software\${PRODUCT} ${VERSION}" "" $INSTDIR WriteUninstaller "$INSTDIR\Uninst.exe" SectionEnd ;-------------------------------- ;Descriptions ;-------------------------------- ;Uninstaller Section Section "Uninstall" ;Add your stuff here ;Delete Files Delete "$INSTDIR\mpl-data\*.*" Delete "$INSTDIR\.matplotlib\*.*" Delete "$INSTDIR\attdata\*.*" Delete "$INSTDIR\HTML\IMAGES\*.*" Delete "$INSTDIR\HTML\PyMCA_files\*.*" Delete "$INSTDIR\HTML\*.*" Delete "$INSTDIR\*.*" ;Delete Start Menu Shortcuts Delete "$SMPROGRAMS\PyMca ${VERSION}\*.*" RmDir "$SMPROGRAMS\PyMca ${VERSION}" SetShellVarContext all Delete "$SMPROGRAMS\PyMca ${VERSION}\*.*" RmDir "$SMPROGRAMS\PyMca ${VERSION}" ;Delete Uninstaller And Unistall Registry Entries DeleteRegKey HKEY_CLASSES_ROOT "Applications\PyMcaPostBatch.exe" DeleteRegKey HKEY_CLASSES_ROOT "Applications\QEDFStackWidget.exe" DeleteRegKey HKEY_CLASSES_ROOT "Applications\EdfFileSimpleViewer.exe" DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\PyMca ${VERSION}" DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\PyMca ${VERSION}" DeleteRegKey HKEY_CURRENT_USER "SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start Menu\Programs\PyMca ${VERSION}" DeleteRegKey HKEY_CURRENT_USER "SOFTWARE\PyMca ${VERSION}" RMDir "$INSTDIR\mpl-data" RMDir "$INSTDIR\.matplotlib" RMDir "$INSTDIR\attdata" RMDir "$INSTDIR\HTML\IMAGES" RMDir "$INSTDIR\HTML\PyMCA_files" RMDir "$INSTDIR\HTML" RMDir /r "$INSTDIR" SectionEnd ;eof ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6757658 pymca5-5.9.4/package/debian11/0000755000000000000000000000000014741736404014456 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/debian11/control0000644000000000000000000000741414741736366016076 0ustar00rootrootSource: pymca Maintainer: Debian Science Maintainers Uploaders: Picca Frédéric-Emmanuel Section: science Priority: optional Rules-Requires-Root: no Build-Depends: cython3, cython3-dbg, dbus, debhelper-compat (= 12), dh-python, python3-all-dev, python3-fisx (>= 1.1.6) , python3-h5py , python3-ipython, python3-matplotlib , python3-numpy, python3-opengl, python3-pyqt5 , python3-pyqt5.qtopengl , python3-qtconsole, python3-setuptools, python3-sphinx, xauth, xvfb Standards-Version: 4.4.0 Vcs-Browser: https://salsa.debian.org/science-team/pymca Vcs-Git: https://salsa.debian.org/science-team/pymca.git Homepage: https://github.com/vasole/pymca Package: pymca Architecture: all Depends: python3-pymca5 (>= ${source:Version}), ${misc:Depends}, ${python3:Depends}, ${shlibs:Depends} Description: Applications and toolkit for X-ray fluorescence analysis -- scripts PyMca is set of applications and Python libraries for analysis of X-ray fluorescence spectra. . The applications included in this package are: . * edfviewer - Display and inspection of data files in ESRF Data Format * elementsinfo - Displays element specific X-ray data * mca2edf - Converts files from SPEC MCA format to EDF * peakidentifier - Displays X-ray fluorescence peaks in a given energy range * pymcabatch - Batch fitting of spectra * pymcapostbatch - Post-processing of batch fitting results * pymca - Interactive data-analysis * pymcaroitool - Region-of-interest (ROI) imaging tool . The PyMca toolkit can read data files in SPEC, ESRF data file (EDF), OMNIC, HDF5, AIFIRA and SupaVisio formats. . This are the scripts of the package. Package: python3-pymca5 Architecture: any Section: python Depends: pymca-data (= ${source:Version}), ${misc:Depends}, ${python3:Depends}, ${shlibs:Depends} Recommends: python3-mdp, python3-silx Description: Applications and toolkit for X-ray fluorescence analysis -- Python 3 PyMca is set of applications and Python libraries for analysis of X-ray fluorescence spectra. . The applications included in this package are: . * edfviewer - Display and inspection of data files in ESRF Data Format * elementsinfo - Displays element specific X-ray data * mca2edf - Converts files from SPEC MCA format to EDF * peakidentifier - Displays X-ray fluorescence peaks in a given energy range * pymcabatch - Batch fitting of spectra * pymcapostbatch - Post-processing of batch fitting results * pymca - Interactive data-analysis * pymcaroitool - Region-of-interest (ROI) imaging tool . The PyMca toolkit can read data files in SPEC, ESRF data file (EDF), OMNIC, HDF5, AIFIRA and SupaVisio formats. . This is the Python 3 version of the package. Package: pymca-data Architecture: all Multi-Arch: foreign Depends: ${misc:Depends} Description: Architecture independent data files for PyMca PyMca is set of applications and Python libraries for analysis of X-ray fluorescence spectra. . This package contains the architecture independent data files for PyMca. Package: pymca-doc Architecture: all Multi-Arch: foreign Section: doc Depends: libjs-mathjax, ${misc:Depends}, ${sphinxdoc:Depends} Breaks: pymca (<< 5.1.2+dfsg) Replaces: pymca (<< 5.1.2+dfsg) Description: Documentation files for PyMca PyMca is set of applications and Python libraries for analysis of X-ray fluorescence spectra. . This package contains the documentation files for PyMca. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/debian11/rules0000644000000000000000000000605214741736366015545 0ustar00rootroot#!/usr/bin/make -f export DH_VERBOSE=1 export DEB_BUILD_MAINT_OPTIONS=hardening=+all export HOME=/tmp export SPECFILE_USE_GNU_SOURCE=1 export WITH_CYTHON=1 export WITH_GUI=1 export PYMCA_DATA_DIR=/usr/share/pymca export PYMCA_DOC_DIR=$(PYMCA_DATA_DIR)/doc export PYMCA_DATA_DIR_TEST=$(CURDIR)/PyMca5/PyMcaData/ export PYMCA_DOC_DIR_TEST=$(PYMCA_DATA_DIR_TEST) export PYBUILD_NAME=pymca5 export PYBUILD_AFTER_INSTALL=rm -rf {destdir}/usr/bin/ {destdir}/usr/share/man {destdir}$(PYMCA_DATA_DIR) # get the default python3 interpreter version PY3VER := $(shell py3versions -dv) # Make does not offer a recursive wildcard function, so here's one: rwildcard=$(wildcard $1$2) $(foreach d,$(wildcard $1*),$(call rwildcard,$d/,$2)) # How to recursively find all files with the same name in a given folder ALL_PYX := $(call rwildcard,PyMca5/,*.pyx) #NOTA: No space before * # skip OpenGL tests on these architectures # - OpenGL is not available on armhf ARCH_SKIP_OPENGL_TEST_LIST = armhf empty := space := $(empty)$(empty) ifneq (,$(findstring $(space)$(DEB_HOST_ARCH)$(space), $(space)$(ARCH_SKIP_OPENGL_TEST_LIST)$(space))) export WITH_OPENGL_TEST=False endif %: dh $@ --with python3,sphinxdoc --buildsystem=pybuild override_dh_clean: dh_clean # remove the cython generated file to force rebuild rm -f $(patsubst %.pyx,%.cpp,${ALL_PYX}) rm -f $(patsubst %.pyx,%.c,${ALL_PYX}) rm -f $(patsubst %.pyx,%.html,${ALL_PYX}) rm -rf *.egg-info # remove the built documentation rm -rf doc/build override_dh_installchangelogs: dh_installchangelogs changelog.txt override_dh_install: dh_install -O--buildsystem=pybuild # pymca python3 setup.py install_scripts -d debian/pymca/usr/bin python3 setup.py install_man -d debian/pymca/usr/share/man dh_install -p pymca package/desktop/*.desktop usr/share/applications dh_install -p pymca package/desktop/PyMca.png usr/share/icons/hicolor/256x256/apps dh_install -p pymca package/desktop/pymca.xml usr/share/mime/packages # pymca-data python3 setup.py install_data --root debian/pymca-data/ rm -f debian/pymca-data/usr/share/pymca/EPDL97/LICENSE rm -f debian/pymca-data/usr/share/pymca/LICENSE rm -f debian/pymca-data/usr/share/pymca/LICENSE.GPL rm -f debian/pymca-data/usr/share/pymca/LICENSE.LGPL rm -f debian/pymca-data/usr/share/pymca/LICENSE.MIT rm -rf debian/pymca-data/usr/share/pymca/doc/HTML/PyMCA_files/ dh_numpy3 override_dh_auto_test: ifeq (,$(findstring nocheck, $(DEB_BUILD_OPTIONS))) pybuild --test -s custom -p $(PY3VER) --test-args="cd {build_dir} && PYMCA_DATA_DIR=$(PYMCA_DATA_DIR_TEST) PYMCA_DOC_DIR=$(PYMCA_DOC_DIR_TEST) xvfb-run -a --server-args=\"-screen 0 1024x768x24\" {interpreter} PyMca5/tests/TestAll.py" endif override_dh_sphinxdoc: ifeq (,$(findstring nodoc, $(DEB_BUILD_OPTIONS))) pybuild --build -s custom -p $(PY3VER) --build-args="cd doc && PYTHONPATH={build_dir} PYMCA_DATA_DIR=$(PYMCA_DATA_DIR_TEST) PYMCA_DOC_DIR=$(PYMCA_DOC_DIR_TEST) http_proxy='127.0.0.1:9' {interpreter} -m sphinx -N -bhtml source build/html" dh_installdocs "doc/build/html" -p pymca-doc dh_sphinxdoc -O--buildsystem=pybuild endif ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.679766 pymca5-5.9.4/package/desktop/0000755000000000000000000000000014741736404014543 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/desktop/PyMca.png0000644000000000000000000043553414741736366016307 0ustar00rootrootPNG  IHDR\rfbKGD pHYs+tIME * IDATx<ٮtKr5T9}j&)Q2-^/C6gҝ$04-4A4qZ+3#듯7j*Wd%/ԂՕǴ1r` e>8M:xёbd$3v:LELˌDBhLr4̌dߩ:!'3%{9Eq:`jLcz#{ ؂TCD0- Zط y2mʋq9 #"Tyb 3 j`:jK_ \ Iۍ} 퉗/_q ;>1n" 1-éܮϜN6LF\\]x~S. LS}\3 0{([Iz@bƎbTZ4EjxBDx.Ӳ0ZG2 C TDhk L/TE3OON_A($QD&VZwd$jHn1;#v!C*¥ܶNģO7K.;oG#2)h &/m'ѝ%c7?oYE .ל?_%/%|S숀r!q(;%P .~|dvbPVL+aJABDK)L1Vމ1PI zt*2 $Ȍ`ˉLlDDA$b&X U+-$Ƞ0z zw&4םDzPl~(z}}H%"0F6 U+X0W~UJufHeDumu\wә?{d 'o;:ULQ$(}@UӇ /_2%IBgF se}rql1^M1fNҠ6dl-4\ dIh>ۍ7reߒ Oشg Ad?:j9$)=www%aKү\F_o~[|/yˬؔT v^h #;"ƕMn|o6!h,8 gΎJ*<>ӕ_|w(aE\wt\Y折B Սwx~Ow3"& xtT8ڰZlT+κt*ȔR Ǖ[ۘrP$KRfrLBIFȠǠG2bXvJ"TRwGIU4&6d)%9k QB +& k$'2o!WD9@ P]aLH+DGYdh G-#%h4.5)ՐPw:U(eF0Bp1ZB`~@ECoW2XJ8Q FbBfnH9%O) RAdQrry0NC{SŨDqb]WZ_p2i"`N jj .0HgWFvV,A19:OdX֙d ո=]m #{G7ohBG S\'Y ^Ymm~z6 _',N)Dt<(29緬R ٯ̥Ӈ, p}  WJ)@+ϼ{=/9Zy҂֯TB :3dpJfԊ$h (A0BfG3Sh& 4aLzڤqK`.h(T*,vP<~ΘP)TE6rz\jA4(2UCc*9sfAM& heH3I!@ZaAndX [0D"RHo~|Gyd'\Qvݎ&Ly{6)u7 1 BF7;}cّtJQ$ڂ8 CzEh~ a$L TH,$TjRyAJA<ԕ*';iS uydKǹ2FO5T+UJl\{LAQCnBFȠJ0%qA)wr:U>=?ƛW+`ُw)Sal;:1/'}Zy%߲D+5_9?D5JL+IׁXO~tϹW[g:wH5Z &z(3c qFqJ&>v" 8fTP)]AEr0$J@Czp2;E 3y"xOrEF F"Uy‘H :ϴLD Q4$@yKPTHvl $vLLDPC f*Lkܿūׯ+yw\~ ^O翏@jD8 FK BueD,Cx~&nW$+2RW< ._锜r@AWv𬖄0UR0,nL R B*Q L qP9)U߯(rINFp~HƾݘBĢ[0ƆTz0 qLCPcp)TFPu }*o߽CYw =8W.Oyn;>o!WD.DU~OЄ1vn>P$pvr(  8>[^hn )R(Yp=!qCU(\{GPJ U/ o"-N'G$w$wѶ:L4)~X:=DiOg`oW:#9vc=q۟=aBVaB$lL ~ߡZ9߭ݿdw+=ix 6AځT 7O/x C SL>(&Ds233Kr@cs&", IwwVb9+O+ijSg,4Mֱ9 O|8ˤ}LVfhf%}" 2H2^@gZ-cv_ܣV@b杏!iYI*?_@@oqG7z @-_OOկ<tsS^)Bbd*3(NT0h2S`|3_#Кc)9V;c?aKsWE,v'd>OV@[g:|:r D}ۙQH%vh<@G kHI&)b::/;qs-Ng]xD9HOA5wmrϸ\9-3QW;si8_/\wJ}`)3|Ckq.\ 266;u*WPx*O3:ߣ˄pƷmR Ib4Ҝ4{CՈ,:pܮWЀtr\Q]Y XBMA$~s@BƠlmGz|$58RWZ  m:I4!<K-%9"(BȤ"3CZ%=qԊA_0=J~x->^͝@)\_;t -%o8?$aQ"َ#f ˗B6\4Uk;d1&:Qp$q`m(T 5Zi였m >(Z\+,I(AG݈Y< Pz4j3)+ =EkN =_lhdBN &NΛs՛25Nl+/xCmȻ3CѨ~׿x"#8~n-?g4=Q03BT9/O牐ݓtErZf3Zd^~s߮p&@峯/|*ՙ0Tpwqn8pqHC5(Dki0jV-C Tҝ(t鳭wJ)I;q8 N2YE^`-.9 DǠ徂uф#SA0Ir*@P1/緿1Y%]6L`^ n7eS&љBw(#Ui7wjI#QHd:3Alj}'Trɺa9pT`c2tGsZ3`7?ma܄Oʸ4neC۰ӊ;~wk\{+O?|CI11:u., N@7*()`(m:SI 2!tfICitucNC 9*0aid^qoC<ю4UB+]Y 2ىO<}t@Jt~S2C6Tgt 獇[Z>0/2Yvr>,xڐ!zĉIU=J Bdy_ 0nSc3|ovr8ׁN+9B;;y.<|WTb:;IW2o,6p1&<!_aK=,o"yҸ;2q2/ Ivl^F0j9</`h:Rmq `N$ !Vd:} F˂?/GPɨň, z9j0:6q$FBNU7ngut{Q#kiGƶg2ݲ⼰Zp*J--7zs︍~rww{Q)}L&>.\ca7ox|Թ_ȸ0{POF=ӎgL;9J,>mDU n@cYER<TMB d4'8BhqMEV"QG#J#?E+γa"W(N64 SUZxktbbuevr[:S9j3$Ȫ)GH̐b*Аq&8}29-}X`:0T: ~GH¨ Ak:偔_S\YF?TInAL)N~(%zgH$g@J0  eDSR IDATu,$}\ޱ&$F:YgpEMq,.%GȇHJg;}qd )z'b84 i6nxBˌљka>"M=!ebX蛲 Y H:yAf;̥PtŖ)yѩ}g\i:ce{b^}cV+%{Sd3$Rޜ-]d2jwP&" '}.|D큧j̅7=VIifnLyR+wg{\*BĻ@ԩ 8 oW"0Qpx')vDgddmcPsM#&[ <͜hvJ!Ѓ\BҒLn?Ƕ+ē,j䘨cljvI6[Q7z%):mP1qTX<@dFSf :1DeJlO A;,ToXPl'-+n*Dn-JFrۙ)#JH(cz3u}Fۮnr#ԡX:ߑcZy?3OBiU_9*Zrԕzz$Keu<ۍLVC;ߘӇg<<moDVk; L췝Lgt) PL+oæ|;l,*¦&pp!"XFG +cjJɊ.q. 2vG*t, HENBJT42Έ<#xD2jlݏG 9 P8Az"T<.aHIVq&~C<3f#t5I +yPPdfE#m>V O`J'J(РwT܄7$m\ BvgJyC B`CH<*v1QS$aY">xEH_o*av}:ꟳF <1,ZEmgi=xaG/dȎgccP Eo_|v)3|pwz{Ƕ\ p^O<=?e?{X1ii#cJA* -p^X2*ʧgjGpmj;- qn3)3BI)4J-\{PUX(\F+=XA`pb;Ɍ#!N:/UyX7k$I3?U[c73kF @yGȀ z\wEu4XPYf9ak\TѢɉYFN$zw G#8E{1Y4,A2 w!0wr$ }Ƕ:MhtS/w-mPHe}.6;'qu$ˆQ" S&PȄ1xKf!@m2)("" EX{1QIq?W;o;J~Uˌ _^=n<xrBSrʎb |tO6HSsx)NLUޛ'İ B ~w82VvCgD V0k*@k̓&%J,#e3t+IWT9IuAs51͂ \ w-4A·Ro@Da~4ܰqԣE6!syj3oƛOW=%c{I$آZJJۣdG'yb=qЋ R1H {$gyX*$t’>qtL:cq:V&yy 0MHcؿqX4|ODKfwt0}C9Lj%J7&ط7d,+͔+lIw!%1*Rq=L;>~xdY++svT>| Jŏ#/Ǐd?8\Y·y/_8;*D&""%&'a3;^ ̍9:slԲ}n֕$kTH>œ-/ሂ!aQmcmY0FxEB!PK /wg4E0Y`$](9İu=ZVNZI'ADp8r} )bw1"a$ʜP :ؼö<&6jmkHҎx Dg&>Rc~z,sT\|*Y} fLFMyZkze %YEҌ>P3RblScRcALTp MFCl# DHtᔫ#9'+eRasc,V%mR>QWj`2\s e l䲐t}?8vpvҏ UNmV5Pg5> ^_V޿s]r}λO>~z7?xB {@MӅms,l3[}zi@BYՕ} kAQ>%m,Bsa2f ^c'Ӕص0&Ls"#C_?JNqqZkZ31;i&[g DX*mPhJQŎF>l#K i cF3&0<,f=FZ5 ~࣓Ր1O{1%%j|zy!pNCm!}]9^(傫 ʲPS,\lʆ?g#R1r;pArHCT\ aAEXc TE 'ǻ!Ky&3܀ m f9CvW 0qC™k[ R:rv b"Hd@8]O3mǟ/m^+NЕ;qRǭ1S>֔(n8hf=W(H)$Ty!-J^uDۃ+,!mO^7^ 9/xa!w?q=tc;6lcҤ`x wvoi)li=:ބ^S)0k&c َE3,+cy{YOl\sEZJ|C㸳@T8 ˜Wٱ>)p-DlV)yaJg `AtT/%5$Ub` :ڃ65UN k OR^9G|s.t.$4\0hLC.` |\,ۄJY_P(n T a9!Lp"iexzjb19ܩ%0 ]1]CG=* ׌rZƍS=J~ReA}cV|l<D_`g %Z$R 5c'ie<'fiYOuJDrߠ1(ZG d91QTaLsrR2of{²^8pA7(}ηooylۍ]PϜ/o ˃3 d]r:Z+Θ牭'$JʌmJa,J#plkc&ة}ts\A@HT4 3y:O'Ýif1Kru όу'00&ezT(lI+m:T͂bqp7H(-܃%8kΨf$VT#b=J6'9W3-$0lS5ƃY!d4dhMcz!]|;r~a_ Ʌ -祱Z4nP3H82dlwC_ڥơM渇!ur9c2IsEEH@ϜJX<@椦b.ONIK\Ğp-Y0[}Si)B{oBINKFSRN豱J7jAS60Wq̄5 7+yhz0PJ^&kz$N3+ض߽~Ʌ_řz @t{a(Aq{?Giy|3ݝ$ڃ~lf\29%y'p .iYQ&fB=-$救~̸ nTT!d;.48@sAO+No_y+)WL:DOgӟ>}2/Wvqn?QTzf;:}ORp=Y/ǍG{{(9%9HAÕ)@8~gr٤G5 1%1%=bO3lIp=#,", ?0rѓ%W B'FPGf kc*Y%PgIgIR*Mmu2d +G I?FWAsi8IEqL'l8(q!t9a>mG{IRIkFjrhS=6;nˤI(0-aS=|b뙞bRrmmPO-Nr:C.t|d0o|'EsEœ8QRrR2)賳'MD'rvX\pIa,yI;Ommg{S=q=2Z#YŸ?!j-R:R0s:}—|xY1Ϝ뙼\p-f;>#2}2ɨ}p)X(3^cr$&4w8 ہ,FVtq;X̑}kL͐6 H>M8ugAόoZt**>*I!%h) :xz4Ti`n#ϴ;3T4v'EE29%Dc{ v@e 5g=D?*';eܿ0_"|0g'Lb$2TKl D9H)ҋwp6R0gQRWe()OqNJ=Sj,TcY*F=ʒ^FӝǏ~wt:Ǿ۾Q_N4~>.6Ç_O1y^ol[wq 8ɝpZV49 b'/3'bSa$R)kʤ{uAua:L(1!hBNt@+X-XzXQwĜ>v ̶Hߘyp2}=eѱٰ9cQ+9v&1^kn NcaK:5C{$Ì9 -T9#eCM@V\g< ܍dDjl${ >g$KLdL% *Yu@R[Tfxub Ě_$rP\ YrXGt_IJL Mon!mp>RB=Oe!--gRrjs!`]/\׊O.kyON?||jGT`v3A-BT~0r.̒aR`~Q?L_Y˙q4DVM&NN,$Jq 6IJ!ƉkP܃>]ɢOv@?nہ֡5.>0۳pmH6cs}=w"8C0JM(ti ͙amlBU*f 3L ѐ>B\49 n#BPJ<υ@qw^Θ1o$gD$XSՔ`mvəxg?:>f6TO|}<hFHɲRg30<u > b䘌3݌1Qsn2qbH=A.-X1.we&  ?`쓥h %֎(yǂL>|`s]O c+o\xp^*/ m6ЂB5i^lPzz=x|NZNdi8Z.#zcNg۱qX$9};兽XN {ktRMxf00:= >.3H) ؍ p!C= R }bڶcfl$;ӌ""}Z07n}0Iٝॄjg2ScɪsصRܘ:CВH[)>G o0M!U<}T<<]0$>09!hΊ#1vB*%Qf#0:H3'A Cj—k{8&9)9h%U1j=J0-&1p!ieuaޏN9>LƲdGT&>` IDATc)1SYiw`xGlP mb1fp钘 &Ƙtd6s&gW/ uرh ɚǏ?4pWflM$fOт`ȓNv< n𱅒M XG )=چsTTX,\5B^V4pa=%2M, ,,WV|zƒ*J^2\z&33+%2Hi0jVN+ϱ}챦s\Ѵ8Bqp\n qc8Na0Xs`Ug`=K͙jxbLeDy?v޿7}s??_؎1'oc q~Ͽ^V)vϗJIτ\Kzdy쓷o5SN!5al[tσ+y+Lv #3!4ۙI9]^!& \&z $e-WPHe=a0a뙎>Wq0 Jb tx9xlaI85"pwn?16~8F8.B3d*UKXs:ݍ>; };8 cloze#O|AT|h{PHBRA-/P~o R~B<nIJv#y=3r:JNA\*eYqL#2dsa6jXwk߰ ʅsg] tfg,c2sBU&Lq|f4/AiAel_{7.b~jJJJEIPJIL^Sr>s^|~@%h>κx}yo`eY| ?=Ý~ ,%#3)kE&Rðqz~0#ma;÷`ˆO {,eƹV? 订у3ψw"B*BΕ98/;> %akZr&7?eC.31(uew}\i1d>ҏ3CbXg~}ŀ8nK 5 j*i&b:;(u Ru'j *vCt  v=#Sk&oڕ[mP r#^AѬᜊa$Wޛ 95;e\>~q5M|f9U }+>wN4˹-JؿPP+\zm>H'kv7/0:;6X<7.DŽBMJo0pZ-UMDAwueDpDC ., 'h=xT8OeH,&>C&>Jv= k*fۣEIp ۽sn4kuvG-֛6`?\5 򨰏[gHzz>/XdYPa(EIkH<$.sMx+mxK_B@<ܐs /J@ ,i r"FY3CQ +uaJ&q䆏3, cGhp؜g r>3ۃ}C[jc68rRt:UkXn>HaIi,*cE[6:9øY>  ΐ.{{R {Bb/Lɑ:.$=)K.Beͼ9L7oz!eG o_o<7/`}PiH~|ptVbK=QOW&tao7^ʯo$I\օ{?pmd1EW-1xփc3s(cúU#cD,ַ;14| ƘDí"G/0: P0cugcG]c#X/e|9ܡƜ[lL?slf̌uǫƺ&~DQ#=HwR<"GZ fH5$KL*x8 8"+*5Oq#h uuJLVr9 P3&a RD]FFXJ}篤isE)6%KNR8O3 ܘ$D%yIXkz%y|%Ȧ{g%'q$3qhr&Most7Xk#VnwWNg/N>ۆ'__˃;zck߾E[Ӄw֓2ƶ#Othv}qT(9o9&EO+/94j $̌R4A:"7Icg`JnaD!l\ Ў9 :+L'##r3$-{SWnWGe{ΜЇrfg4-=VZ$+F-i!1fc)j}ȜILc.+S՘YP*VVOB;>AŚ3R\k,Lk;률ѶNLrN+]#QȀ7ˊHb؅pR I%Sw7T%)ʆD3(0$ĝ1{;C UÎ.%8jX/ 7)EA-#s#@8H^hbqxr\I?Tu’5©\cgɕJ^ sY# 7R/'7&"|}cYrxm4({w??+VƜԜi}O#IgNPB;{S_.$zmʒ z)hCp.Ot u_̱ckv<a֌4Ey ɣBe#cK}>XLݣ7v!p5nR[m>%+*:95 S-*w;cv zY݄؀9R(L8,P+9/Hv|\O9C.xݨ@MEO9@ 6"UalC2" t%3肖ؾIt4RkAO JfՓ{UMlFk/>R)z+K9L/-xO}<(cPD=3L|.$*;< q񌠻W Xsdہ2))Q_dP] iv\_N,kFĆIЈH)TjbM?ğ{>dgΧmXi8M|X.0 cDL[`<6:'Qb|yÕ_1[3G#?}P `USBci3UqD0p\Rfω>cn%(+Z2Ki3Tfa9W;..GԛږeiZߘ*vqkfAAH)% @ZhG٧A}ހ' У$nnfbՠ1+չ眽֜ci1#ӑ9x?=;ӟs>0_x`|0OH8 3'rE#.+.M3ysu·#a97n;[9L3yHUGHJ̨0MBnj/Dv%|PRolQ=oګmq`2kfd4tjD5oxIbt*(=[uuGs;((htLőkUpbZ;RV={ @+#!GuR@8DŽo14ò^6Z)8}1b gzINiʢ|~HYs7{H< ]wOܘ-!2<NC 5Z^*UOS*:D)quœ~ԖZ_)UIJ(q-]we!)q-;qt8uSj%~v>_}|2__9_7m~6{Ɖ!̶_Qi3?'qDm$DqH|ZCbJUV偡r.xZ7mv6+hLJs6!5(fD띜s!i<] ҨբVӿ^<-W3O j&W% d*}5шsT0{qUa//ҌHPې4tuczGJE\@ãw(8m\!hu#4d; D`8u Cp4W{J Dq)m>&|cK7 ?=Ɖp iȽcHJia )g;.j)\o i ^5% t ׋㾭Wd}iiD5[xl *7|S6'47b MgOP1USja <3R _h<|UD7beܮ2uCixyǭ.xdyz:x5#sM_RDAi&w0k:eo}8quNOGjq{bܛ2cgB'GSjfRz'¶]j%`UN t_ ]wJ3Ą03Sp_3$;i7 %F/Lbt<ӛ#q O,?qq|[~'j_~'A:e]y:'O/OF $6Ri1Jn<>s_v|uBepf{0i'B1vK6GNಯxߍ:)N_Fsۚ>B"X.7zj-,) TofF1n|g w;MYJJoڊffj^I U<5&6@h(*CI|qyZtfm_@xB.'C]P+o ڑ)T=+1>gnjW\vopƷhuTv@w: {ߑͤ7 8z:MUם!Ԩ!QJY ZQ:`;_YWjqS?y:Z2jMAszֻ@$r~%>Bҳ;[0NCq6'T\ ΍亳4q1 tfLA v! u_x=~gu!:|8qy>-;x`ۿ~cTW\1Y*I֝-Bmmk)3tJwB'O)w|vo87r_VQVbmT PҜt#;|hnx5zfI6UJoq WmBx WeD=^JeZqP_VƊ{sw$zGg˝>1G3nc'WNHλHBDȘi vaki8pb#|0Gbb&M+;~< χuqr_?-9k Z϶7\޸~~0IٷLW!Ķ7x67hŦufMBL-rDpiR)X>Fm@jq^jw1?=}]X/Pw^ۿKR*{>fkm¿nZ#1qO_/8K'.48<&O;v+%stǑi>Q뎌{GJA-gr0$rsz}X^;f]vsD2`jJIhgq|ߵY+=ngb&8$FJVVz݋9 =N Uͣ)j`}?ʈݣ=g$%.q1aQԡu@ niG0/!>Pނd}}zgo'fs7!3??3 HMKrw#=̌*E ڂ@3皬 IDAT_fm'U;Qk{ 4hܘPk#慲+A>B%W:Ⱦ}tu4zΞt+Lrg\W'|ugTcBTFA YB/):D">x.^Sx~"NO3uW+ -H|D50Ϭ7g~SN8 r_x7|_3χm[h5V;N㞨4qɵr{Քd ϯNnVw))R{N B*`:!VXK _,ڣFtȣR=]@| W5G[ # xhoD7B,$Mn9!Ql!,Á}#3(v3amHdr֔N!NhBS1"bPosAeQ@W\]Rv3SA1Ϧ6hE뎵8Né>@!KE b'Vht8dL^pN@nQ87U ,oxyƋ=BEr'\:VK'8ō!#.Z ;L@ƙ8 1h$Ara=]xX/ɟp~8zuc#C[6 aW**V8kYtvg<=3+c548&Rxn ݄9ʝc۷ 5oql?@:\HX9ԍU+uތ)j&-:Bq!L@S8j>#aZc=8+esH_wgew;6*16%ޕQ?~:oj3NlƜ2oQ XjM7''8!Tg.vv:lz&OQ+B-;˚IfV/;Z.3˺rza˅%ViIÁv5za~#*cb}<E=$rW&8NFYސwʶq8,;Hvo'-_N4 FĂz1UgsزD+k!Jp<,=Ȋ×g+N< j'}C aqLt7 nBdV\At¯ qd(^4\4z(`˂w>j) DƑ0FZkx~e' @B cQS-sWhjz"kA=ZW+ߖ}׉CfG<̈HYد}QZA??QK}Rrzֳ $W(a&:Rt4&+Y;?e&phFΟ|8p]jpC6%u4 CN X%[Mwa)1$ޔ.W*C7L- 4@½ds4%AD޺zc4`녭d֒)l-WUbR:bPm0םZ(q"^[{H+kǥ qmWr:<hK̇rƞr}p|+={Ϥq4/-|e/O\n OOJ FZ9 Lmbe#t/˫/^0NwysGV(3(= \;Kmijo& DHf qX:xT&:t#v'#GGՅBi0XEv<G;Ư]Q-卍HҰ>jh5%|y& 3JBH&#)^3q8Nv #nKf=D /p@zH%FO 2 nx -%"m&Vخ+ hUh+Z;Et'baƍ;+~7p|Ɛ<@#+84Ex7{-ۂ/c )y(ʅ08#{"C&Ku%M'GB3/Hv}`}% UѲpGZ۠UjQVU!C0pu%%ǶrM/=3ta_ۿx4\и獲G~Go/\Ri:2ĺm۝98] :9t%3krSKcwt?%<"RǙDyldҸn ܗ*Rpdjg[ЦVChkC{ t2>^ġ Acٯ+ VM PhR("6\My$4@/ucwJoͮ 6s4, i*yJ~5 D=[0/bT%/Ufu#= gz× $!ÈiSo;!! T90#pie|&BiR D}ǹ`li](S"6#,z\RqBhu #}Q3O2|D{g8D۲{m6dLڍpͪ1D Uu#-'}23DB;KtUۍ `JrwBpx}a8pLKΗ/'O'{^K;a)wjeI#yo~O@sxz9sr'&_m}A'F3ì\6`uaiN $Wيq}4C{8b={'3Y+.5cdG Sؽ{jT%nu;M1Vl j6s0҈!"ߥNq h6ĥi÷͆!~HDz1P̈́!`u&EHEbQNH2KF0|p-9ӒPbJHmLF:ud{G׏wN OMؗFn˕qȝ͒bCBێ1ZDXWzNˆMZ`U_9 cd 9_kɌH^-gN%S@ ^_+̲qmew(.Pw4r>xxQwC%͑kVÈu'}ڄyZ@t|ѮxcF'5?G^_mdޯ ZL3ԍiBvz|.Vh]Dj~@8:^#υ+#<;|TL݅^:Q'GhieŰFWbW_]WFҲzƘ>i!=@B =`:'^F`fΓvZ8{O ?&B[ׄ # {"{[eL3=T0UHPsË OHHx h^ c]o>‘a4dNyQDZvˍ^܈knlJ07zo uBʕ}EۑgZm)3¶\&SQ|U c0qL)V^! ZG.8GܨfH׊Vc/V?Uo~?a'm0o<'J+,w,Uq_n<8L](kK@(i>ܮTPv~hu?ٲ0M/p?ڶ7 JwHYkv@OQKL:4C[p-Ft/=(zugon'\zw_|hE`:|wp PR1h+\5ӼC`NDԶt>>wy`N Qr CLuVv-="' "0?%\wp>НX~8w R*ҌoO4tp~m1\Zc W\85)an=n;m`_x;FQ>4">2 V\9 2}+Ḓ4T$8a 1ANjnwAO &l>}]5|?Cq R ifP[c}i-7U:1g쪅Ҋ¾WRE(T$(;wCeVFɶD a2?%JF;~pRW>>}Ͽ. ?<,?Gp. &MfMLZ:{*\pmfzzE'\ݿq[+(gB@=Rí@ݑj%!~!(NrQ)UqX@ xmʎB_+H.d8֝ᦄ6P~;ND/\NJUdi.;N.֙^^h-RD} ]SBb!lp]e&LJ3@ضzѝI$ $ W1%rU>cw031DN8==ׯxヂ:˶ 1˙˶Rk}89,++j#~$<%NMN1AsJ4$zȷĠ _77_x:Oy1<I!;>a88- eJaebm E[@P[;J2X$JE Iq],}kGxtiX{C"H7t#mGH媜(pg?K{;gG M*^NeJ$eV{7ft<DJ1Wc 4녘"ALcsSbL2˙Ɛ?}}{$0e|8 R(ˍZ3UBemph{)rɚ;/i-q7C` q!mɌ~O?}#OD/~Gt7-7r;É]qlՎ_vƶ]Xs#v۲mj<Mw|Cv1Cn=I>DJ7~WvNku5 @eNVӑu[=Fn#'R+v_R+qb{!0K+>n/xZ ^24s&vI$H}#o`)E#"Ką y -㕮–W8;$>a@[aH{y+D'pQ ^.^pR"ʈ%B va7+&1Czb"O\Wd)ީkju!ɷr~ E-x}t>QT@s#MWu%xDzm@wן|Zʾw yTMwa{s;CJF0SFO48d y%W3o_ɥrux: Gku=Гg<r#Α?WgԬq"1FB\;ׯL8fm}3|Zkwg:U\!vCUH!7/DhR9V0`щR.USuݬk朣}1vomm}sc~DŽ%/۞4H5?sƏ#8f K&ւpJlŌt:3/?|M,/>E?l|OQdvxG1s6-'28ئ6W⼀3LJ+9E[ QCṄ -=fʀX,+kYHjR\(baθV^re5hY]D͕_<gIvH +|| f۷~/_g>| N%9. . ^+z=2=)p>$X=@~k:. %EBN Kt֡:M !70"&V|9/\a,UrRHT`YFw\[UAJWZTWa :D TFmvN, 1"FHVc,aitErh7:kyT5jZQJ hbz]C>RK2STOG?ǿzsz.*Xӭ8i3T(t-zQ`8pγ{!5jIغ?{FK!27gh*AL E|KuO΢QJ41X?S&/gbhtsH5 Qz!.)t)TFXftZXs"nRg,ۓh0 \FS&CzJɆsEqj}K!*60-VzTXhS9tP2n s$ψڠ!ϔ[TJ3R$cJ{p<ź^J~Pxq&'Mx:ڰ9wK?u^eq\B펔H XZی275Z]t˛?QJkTgXN'JX™@5&T#Z \Hlh68Kއ$%4O8m3Kɭ~)[o1k#4e:h1H ZQ D/`믭y5:@b(PZ#G|ʸnW.k h[bCS"]PK!̤yBF_m֢%s0ŀvIrEJN9>B#7TYU%P%ejP"Owo}GM8/Xcde!̢"Q v*Ȃڏ-T(Tح-j #N;?|#+ MԚ?9&xϘGvя6YΑe9eD7ԭX6^z%TʙZGCVysYLyшv,1`q31yJ2Ģ+_'F͵ unl/0_ |c_ȿT4MG*-R[S5:L* Ց!UE*gYFAH]WW8?0s(UƍΖ Oh K-t-WXw=Y<Ђ"Ղ .Tĺ_nȅݧ/%j P/߅0kbїKRC ZmS׮OYp~лӷݥLxzPYD5fv;LF5DUCC#;'!!/0%NK$CP"L/_^8-(%xNq:2@Q0`J\Jmqۜr (/mT:4ͨn[N54Xu($mddI˲Mii f.ufKyOH)XUx<9Df.5bD$ZXIzqtPJG̀xDLe/w3TD\4 '*,ufJ n*8!z͟ߥۿM .yC`6`J!Lja>Rm EPƮ,7O8\]L;j/Ī.=!M蚰S%VlvV3nv(]x'vJ#EpxĪ 5-X cs'RJ*1_`; n-P(I(*b}f-JEfOk 0͆OO<^7la<w>fy>xw`y~W/y<} :nOx5aJnNǷfV]v[bNske"s8_uĪ9O>&LEvS@K_)B޵ڬ*Xk8KwpeX+ִ+AC 8$_1EhGM@2ZRs9(0Y|wF~2wo;#%9#Β5@NЩÒ/xC%$ 9/h T -YV#[Q 9l?6;Q=ħ[Jd^&9ݽG{e}Ə j ,Ee>.-Z9r H=7أg̩m6kI(Ҟ`g% Ź&х V0U**z_0Y3} Sxr>2lnxwoxsb|CtFXO?pv|翍5tlQx<Y~E\N,Őy!eñ6Y::q]3G޲,3P3)N1p^2j3p"b+X!\䜎ib꨹(l %7md۱?"۾ Bi"٪h jD+KUF˝k5[T:D7!N;a:?| $%GpcznL"Sӕcn=^I[ێ+P0k(QBeقҗ0^_"_>hmZ(ԑG5QZ!`5P(h4:7E %9KKiZfwXjQ *ReV.62l '\YF#Hզˁui:-ءcÙՆxA#+ڸ6U54?qӁiyv4vt}qz"9XhH&%@1ҪJ4>W L&&A3;z͞ky޼'ϏtѩʷoS{ TD&*%Ll&H[Z&1SB bB& ,ZJSTaZ1eIk-mzj"K-Ÿ|_;1/|h^=a{@a; ǧG?ԙ jtv5c[g9 qJHI]2œ Uw,U0R Tm cBIB 4B5RRs$,RsbY.qBShJlڢ] NtbjpN[VueTYbUڐ R$4$6-iƿi>Qjd"j\j-dz:;RXt_SHԬ0&&Kx,8Ea()Z܂?ƵP\5Ot!V@cB{/eU , h `*n+ -h k*?lо#]yK.gbFa=J+W2!&}KN,'ZUf"nĒRtktH`/thw6+3U,n Up~ B:1"o-k=:tqa`/=4Ha78-3W^B)Ϟx'H5=l0qĩRwMs[ |JۑyR'Yu=Vj%,3ظvKݑ4/2N_ JmJB%Zu4"J!G-Xc!haauEeCgFsIh޷^6!&6RHhcXDVQF&%ІҲ+5DJ*h Hƌ[~W~آ1ӈvJ*Fa7F'jTݠ)%bQx[W`f+Fe5C$xxc̀5Wh;MVCRL@K*5+rϰRۿ۲et6VY%7(/l퇁z10PjAF'=XO|k/v0cf{Xi"wMPr=1Ù\$1HI~#. Z9!M'>$RŹZΧq ûWdMof)%3',Tip*t94Β!+螔 3د=si˗ ]W3W7Ϡti oÙLtHTh1lv{$@|%fD-m^/h2 (&c.kW$)ͨ($Vb陨)$0 Rl/׭[6zdNqgr|^pxI8e$t jcVkلT?bYOJ,b~PSy}"ƅopDo7 T64SMx LV3{־[ClqF-xB5y>nQ|b5Un|598fO߱߬yj=U~l: 3|: UU4$aFwq|'v,%S3ұa,TU3"inn? :䢹k4][mf|7qL`) B U\N8bn0 N5}8مbJ)jJK8e;_5LVQ6_FŰ;l8rK+>zzw㺖אKB2H%Sms2((iE')8JU͆뛯L3%&d`B~D/N$x+;OYkQE"Ԍ"!),62~@!3ݕ۞bWʂtF IBu9Me߭9=5ڰ! 4э=6cq5UH@jJ3LJċ>ΣRF1HGQ|bt凟;$&WܿcN`&PFI;,@k4 JIxY gBpyCKTB)Ie} o?ʅW{^^QSfJ3 ;ȋ#Ó >׾i:0=sc IDAT՜ZۮYzj:tHT Bn`Qت+QuhAR;UrhajG-TT3dbX)7ct$:FS҇i>HU1Q͉(Me5F;vU6U* iŸ˿]Y]lC7Nv+0p? eDz3°Y 1^mW2taO=Pc.JFt95 (2E)mV##ۿFE$#bA )QCHD?B{VS?:4֯~8,9 2jЦi 0^U2(!3|ّ̰%|Џ=ݰbsBO*pvu)D$ux`5c[-1G$ru)NT=U D8PuÐKR ɸlՈ78kVI!NKB}0/ȳ募e;o|nq=?3k7 _EӾ3\XRI(tΉݳ!0lzFK 5 y!gT9^D*Y2&cbMsz!sT9Ε94o*P/AUgqVM+,(gsϣѢȹ}y 1.PY]BJ1 ft)56`!/_< ƪRaSc:] _ՆW~K6{rL`,9(@t̊p_vڐTBb"Wk:khE OF?TT H5H1]w'v} 4\CY*hȑOs\oxtEt+-) Nj!ʰ]s8/ޑgl^-WNq^8.7~U\ɹRdfِ"ŅQN )e].֫KSgae+4(x(B)D1 ԤXv7DCMsIh[XI0UJQTi^;bނcAqr`W?$w;+GshO;8s GsjBiC8d/^遐zv̆s-s*';ҍ嗌Np>-%fI UEb! o:"yYgnXBa^b\4}U:*bں[FBY%6GbzΪAZqHJY 7\ӆTJn,-_yNc['8cO>gn^`AAFB|?4V?=L\sF;q 8qHT"UڒRST頖WP %m"ET)m6ĉk^s=Úb=6~zeMor$JjOUBHD*Y$HK Թ7R~k?}S,.  E6 ӯɲth9p$9=?q~cZ6J$rRHa0ց(]?bV@օ1H$ 0 R rpGD"cF6+ZՂe1Ri639[P+^]v$~R1iKLfhp&9)r}hIL Dr5S@AV&@)XKUQR~ADZP)"rwȂ>&"Sii_e鮟2ȗ"xwI惸;uEwTٰ]p)}ŝ;XrbzpD )X:GATf@D W o| lq:wE<tCu`z6-Rw[T3*l6LD7k , ?efK-lf=jj^DD)j,yRfGɚ%jmDqw{ -)nh[ c׸^ z{ )'ڮE2 IFW.Dbgp5DM%ׄZ. |^XWێ֢(kDn_tBqiFk_bKdזdc0-VTU8B9G՝݈/e "UMɔ'H1V8f K .65«G]jh=ܔEd Fz3vJr)otfmCQhF'HDW/9MZUW^Pd@%m/5YeEYJJUo3Gb'UMk~mQRGDW{Wxa\tLR9el;x# *A Rep,DRdɢ Kf"Y^|Y`JH+b?jJXS,O{$cn d[D v J^x0Lʾ9 EDuC?4CGI(<430Li`4~$ɳ6lv O*״C1Ma{>Y"?nhYnKjK&i#3x XnK9 gk"iJ33R g9m` >'VJ`j8Om BbG֤ܣrK='e(ae;hNE!-Hiϴx)Vnj /r5X3K(d>ooT-I#V7+cKKᝤXj>`SPlW s D ln*Oj8REfI.SuRd.diDL 5 *ޒȮ3' f>e 3yhHJd=`d}$A4^DFHJߒY%/0a0S"a0J Oy?m%siG SE͋ګs{gڢ;˜~#`!iriځ,%i${ֻqvѓ`^֛Ԗr*yP+-dQd-I!^)鐲2NtZrs}i֗L̻GJ0 ib;-l.p|7BdTДB~.beRT= u&ܻZn\.~˯6| ,xQuZ"C ª+PcO;Rj;e`JSܡ)atJX( jxwǯ^ 2橲iÖ ]j]7QVrz0vؐEd8T-"Lr!NtmpuKDeAk2Z[0MK Y˼|$dC4Y 79embnRDOصe3G#a%-VVe4dY1ϐ[|IYs{R@HO=~7ljww[N11r|3 bznq#VM鈤hsLDSx/Yc04S!Dl6hi1< o<_31,D T]):ȩGy @ Մ*2rj;VKdH0+Hs|N.̵(Iam|iRɪOƢFuPJCI%I[>ct}WK!m C ]dKl/}w08IH!%9|BJMH0/vuKM54S-;( šI V[EQuo&-{7g >9BL Ep1%"GT'Ю6ܼ#fYD$+"U»T&$3UkF gzxIJ8B&{qvs_.薊Jq80Dx#~ NR"O#c ܝjOHKpX.S19Fě7#/cc F ̵* YJSjYKK+x+y=qJMXqY !P3PS{; AXŒIXBy B Sz5QȬ TXn#U062pGvw纎>I*[dQ "YI\mhKd9R'xrJ߬!$vZWި%$qtQui) YӾ HJVW!\9mzHM#S@ {x{Y0Lzr-J"J7M3qդʭ Uf;rfw#L' s+En>B`VyܑCFEEg79O>B+]vՑ MhkCBv n< JhbgŎw_0F-(0fdgp$xXB 2ځ,4TqT@J: 3>z_ȥ n߶hKeRD66nNKŃ5XrIh2Qg:m1(4~#< DGu0N#1u­DgM@+SYdRR9g EsJs ƙ/eAN F8FjZّTEoM!#K{Uid+-|_I<ҙX'rݢk#?I._z|xwm)9B-ZDά\%d1hq$ ry?cœТ҉`*- ZzZ Dt3)jGB.L<})V[_@N"BD-㦅O|?GхdB Yk8=愱]t+?ţ(+:M”+nha8s%= SfUb#+D*xRt(cO#nH]ns ToycbE;R,w4,tA* 1ү:#dE!2ˈg4jGl萦0-Vg߿bY -~k0>'җ^Vy37j{O:T))`-/P^z4G^\|hPWB @MjNDAJnCY6=YRlvXNiA)Te y$4F(/?3\e+]SyhP ǺӬni.VhHˈX<9zO[┐>FDXH"^auu4mǣWxm؟Ni 4AD 'Ϝ  8?Tۢzx[A. E<ve86clW+&LFJJLH Yj +G&c+ G5Gi)d&ئU8q856ϬpD12eϒ&W.e!N\SL%_yEP 8dML9VzK)L$/7܎w,a&@ ?;|;^g[x%҅@ĩƂq1O "&o3ӑӲIiμ.顫Ry""IANuQ`;xUbI3"yBc3%[j8( b>(2p{5*N{jnɏd1BdUh-U%%'* >V"$em-8b'{a#6k^>Zr=&S洟hߒe݄LLs"uKq"=Kz{Afqc#y *_{s 5*G<_G%]󉧡F}ge'$ȄfK@ITy%6%6]gƪ9E"A+WÕ|R}'g04\\NkW4ZC>O )o{oǓwAu}t{PK$PE#Y32L7HVY[۞= BH(Tܼi9o8:^~ZQ(#80ti12|۞,kOj8^JCV99ZIҒh guH]#RX4l@)LNT5LNKZro= +. %V]-hnO &J܀C %"Ơ9,G(5>;F`! 9%]XBD-i2#E[\Hi!ՆИ'Bix+H'V̅+|=W=xXRi. .icX%" Jd3̄\;nvM A ]JVO~?w^̳O̥ )KDXSӑEbc9v=?/2ŅʮHAee `o6?~͓+Ev/#/?0|G??WqB#A%\jhD&rW<}#gTY5ۊks["2)t"2G iKV>y:w .HjDv4RDуs J --KIVYJ~AEb;z" iOPxҗBq .+VޅG+kULȒ(4,T.+,>\ΐUŨ4d5 8Š, |9\o|wşW>rCqȥFsv5 BGVW2w8UXyTy9tM_'o8. dޙ .AkKh!PQq )-YH/ %$ȱn Jr($E&RԲ [+33iT/{__bM֊"g9|?3džP6Fھ]oA(x'+KxFD4m-ꢒ]gԠMYrkZPHڮ#̺_W]np\frvsB+á6UXcwHlznб$O x{l4"b LvӀRPdMD&P0 GT9rɳPÅ6<♧Nq<(Y(Z( tc!kMzS{A$0eȌ!PiOg;/|Bxx-< 5%)R M!KW392& Ӵt ,G_w~WQ) qfI!P*y[>_)\nD$BRg "Տ|l[~wx~o?an@<~vψ 9JYXox?ȇ^0YZ=F^89;lȴFrxO^f2*H΄EGj(9QôB =Ӂ+<丿&z])'} gnF N, j*( i]]2\3HՓ"aCFsCe9L0PF)#TMΡh 1xZFUKC`-FHuãG\xa2/2{Yc ѳ‹<4N!S`7t Cjרr6m4J(COئvS090FGv}O)SzLpbml ڒsH ;1:IwYqwT%B Vi1 -v+2KI,KArJ%&d!j Ђ@*@|u^X8d`Y4;o''~7kc?)H3s9"0<||_p䈐4Zt\=v2a,U<_g_[?>.?c'e{a/?F4+D 1G-WWfW_淾mkhL?Qܿ#ή֍gjG,>=ŭR*L'~?6=Y)J@v#X#7 uMWdR\(Dn" F[Ӊw|;C DuoHndܟ'3j0bΘ*Tg; H. |%ߴ>ӵs(׾L\Hqp77UgϺg}kz=OϓԚhIcJ@\Pv9Pq]N8؄) l(m&IFHHB-{|5=S>-yZs߿ue4"(T!AeF4bh_1*bX-؞DP@e#N`6"Fg &ebk4aT֓D [<21s*3BƁj<7D.(B}k8M . y-WU4'Qj6%!@_7}J8Qл@=! ӀM VL~ą,\zc͆1  w'95W헹6TbO~ G7 c"@.o=~r*ւɀV'rK) 2( 4Ipaޜo\ ϳ-yrgk~l~M;Kg|{53^TsyɸrgutG<̝αnLfchbU CJgseR27v0*:GLdxXhzFYo;طȬM)n (AkEu{1rsLa%)eHkʼdQAq aHkoV}2S9㜍@@|4(ƒ A ~u%EP Ġ184@a&djFBlDFYy| _!/f!/=ǭ7x۸kxcZu5wܬztA*ZAж b{[x>{ yˢշySFh$,gkoRĚx7^'?]sMΜ9ˍkWgA+nnrkJL#m=]:ЗǸԹ[ȊM*͊&ZDbtMeV|y^~O_o̍=Rľ%ku>%11g8FEvW TYdh`CqkXolv2[R[5Lf#zɐXIǔ &^DTc5!RFK&aլag3㭋7cAٌ,ZgDKdE@w(YnCDȌ LA` C;&4}KvtQdxӸwOO-Ip)q|7GkshAl#EH2ҧUqfeGEmCi9Q*J29Q .%钠s=}` Uאd؞UlGh"wE?GOE90tnhE8vUNGB1etsD^dl3*LJ8ޘ}ٸ^i="^xyxQ޹t> LtoȘExzhSS E}y^m%MY1%. Vrf:;?Q6*S?W/-N;g>Nr W`^n IDAT d6 D$ÎwP/Y|K|:=C$""f({ ))& $Hm]C;}OoRŀ9(Pq0:Wq]$|\͐jV-e^QMFG RYQp|G^$2NP6QY!$K cb2}Mp:9:FFtqGߝLB>5 Ā^7KB*<'"=*՜٠]/hn4>q>pzfܘfNREYu7,{%\h]!%H=,gTlOCtkQtи f;|XmHAg=(GES9zA O$%q ;5ƘbJF&MQ 0u۞DRV IA :>?O|G?8ȓL3:}U}h`cd)7Kt{>yq6O…3gC?/2wA}Q(|R D MHup5ҵ eJNθ=}+_?tRet*I}ϗeGȳ޲捷3|+o[.\sxr\;i`H9>45tFp;Qj:qpSH0j` "E= `Q>SГ QzvH1(Q5D2M1FYC"*&) vT;pEFUN+0yI4#ʢ%7k=2$FER5s*~=蓓]-zJ$.Gv@['tc21߿FdV +4#Ꜫ̈nQ.\NYM ӆ-i{#_hc"E.8RZH|jbG1U?T|"ơG%A .s7W]]DV!#E6+K%>izh\dcُV0dVS(W&,cFl`[6I0mG$עB,#V tA1Y6$!'tP%F 6gO^2#%$b9X7 s·;CM_o:G`G)-RI.Yʝx'6w4&i -ebΩ]B8D:GHb._1~S7QYRT%Id>S- R'ƒ$I%JCUZK\ASꞶW 9]C>(z^ƹ8 Ɉd uVEFr!hD!Y' ^҇ UUp8&FCKF[gh5-mkDh0Cdrj2MBf9U\ĹhT": 1YAY=GGGkHh%) ɩIFZzbq";t&PJjRjFՔ",,+IJ3Y nřMB DPR]k Vj6'DJPU m%E%a iLx,E /IOJ<"Ipg^@ߵQ^zrhD"M@iix޺;a9+)[P*o0.vA,Ry,44L+dH "I*e&)'r޹[czww[/L Yr-^_XoI/g_}%n}l m! I}>]kl9Ͳ**5jBpCb5 L9:I5.Ũ2-gΞ%螾κ.ɲOD#в[5=` ("wtmOFeA44gOI[FNѴ*qO.A˜a0t>QyB3#ᡳ"-x4W8#W< Ǎe?#hkۆ@i˻(2L^) Ř{g;g'_l>Ǘ/qy>O?{paKk{WESt>owM{v>}? *BX4҂h6%MPeDAD1>uzX5}sL%DP |׍k7"\}6wΡ ٮˈf;qQw&&jtibd4})nad)Q!y!Sb=_Q-+oftG_{Ɠ1 t "Jk$!uLc2xG$ahQX7+;f2&BC$n :P̶5nE 9THh&YA$B%HŚ*$lrNVkjX[4)3+a,O%)61dT%ӱEɄ k+Q/)LCP#15(%HVYAQ8d (N|CG EUN"+O{vɰ#+2 S!zbL<&$)L%Q.Qءt]w󏊿οB\(eĕ55e1 NJ^#bG|W1˗^U) E1#Kk޽Y2>ſWi\ 6xWl?rnr;O7xy9"Y-[Œo^D? 7Oy]%:Y\XkQ k$S"ყ׃f9)ck4!D쉴t9a`א݂$:ʑn[N2nu`y5>OoFMqmKp`1ͺjI1e852Uч嚪S:oP/9vw<(@aGxP(P @ 0ZLB(g{DΦ5-6&kF+x\1 bX+TFDR;-)!Drkp}FkC!xmO $C(6D8S!r:߳9;ECȨڠi=Rg䙦-;P~GIwt>}`մ1zMp׃($QZO)2<'`7Ll$%- mFc$(KD6vg|~.e,y] ;'c>Y~NoH_rFJb=G<ͧM#U^ H Z*.NkWVV4sP*[5˥Y{βp{(淹qys,^ebe#d%RK:ߢLV"<` T&%mVf}:GĨMdgZb`:"545(I5h09{zF#zIV&t~$\E|#eOAdD,S'P^tu5boHޓ,&uзƨt *}bB|P=µdOu1:9q:AdD),GiAV8<,*7·KQNsljxʜ$אSZF G \S1&+cR/WiD^,f +vNUUN'h#c ĔcYQ[Ny1G1uC[WK6a"GTAq ŒD(18DԊ<9ƣm2Ct 3W1-!"#zya2≅ߑs/o ߯y%??w>2 .LX.OzI?7RU ז$?ɧ2#/y~q^d o_ixRH e$"$!Y^E]];9b\QhG<{GhZpm#cOu]KYNQE[ lvQNӧ&O{t<쎳^JА}D [lLi5F),9RY&n1vzȳV!&ґB!<-N;_ſ7xȽŝ[l|ˤdA ;ܥ[ط_>`x _=Gc}"2[&nRlir\|w9Ȉ9A*'xYaN]vS;%'(O3}#|rH/:dp hֈi%&7\7=KE*i5+ڃ##Z EA夾*jLJ?kj5g}k3hB2YL2#FK4+2H =]RcrFjz46j% HhD9x$<1%wMb97+F!$"%piKyK:k! !Fnl"c; <'?œs4!Ih\Ƀ.Oyq΄q6n_].<] i:\^~rGX,hO<n_6 93+#cmbEW B(n\SK_j(h <&3lK?0ey.yCO~n9}>sds'TUD"5d!gYM劢ѥ B["51n]:>f<-(678:Y"xIZB] *&̀{v[VCW ք)nBB~*UieN/!f٨&EA0R،&ƔԝII9"e&_14EJЯփxn=3Dĺ,#DhPt2(2Cf$]=leM 2\:T{TUvvvr:e9j:f~p#>@t?w[z~}>A4B%V5@HMZ2[1u7w{?BV(Ge9~%~e,Tሃ IDATGW Rx_-X|'!Caxk/q*:BSTjn6;{ԇ5m&)uF \߾zaGa|"䜙X$T$vݏނ .u U7_yvpmgs|3_Խx+?:g7~__̩ = m`NVL"|O#^@^a&k*#A8dc2]Lg?:*a $Ñ!XuV%+D{58U<'[|:6B Dbs]3<ͷ/btN@bUk)OP(yA$6 S?{) uO5 YT%kZ1+dt I&]JILc[6C'ϩ1CŨwA, 1S{Xw=%uOyR4 =BJ&)2*+Ɠ`2tk2hj4‡ sP8$+uG$! 6ReM҆fʍ7t|cbgb)knM)BRj:QGڦmszYuߓgD(,F{Vk/3ݳrVΐ2$j1%RH r Y #Pb#҅Xw6]I 8e' ;HEۈ윥{o9ۻuQB=UU}oI@9vd*$zgR bZfZd`"B̋ `RoqެجOʚ CO3*ӴkMCsm۱d=&ȧĤPJL&"΢"@Ko#>y> k<ϱӺFK#3 H1O[7t'{=pY)&bj:ck{{ܧ2Gg9y6G霢 y9c6-9{t q[ "%d[pB¬(8"S<4\:id~ ѯS= 'F_L4*/8KmL>6U.]{{>7~Wy]"@^ uY%ZB>n3PnostK"G G6ЬGv3PrZ|,US*낼*0M`"BHB+i3t5#K#FM;o Гe\1OrQ=*LfM?1"zW$o=BEMZ1Y֢B9Ǭ,9 ̑$:&ڜ ؙy!Ã3tQē8{lVR9F:/=zku;^;4)Vins)̦dvO{a6 (UF$io:"II׷d /Bd8vvxg9;۰5[`ŚήֆYaDY@Jx1}`[N9=:fZ =TNk=C?1v}.2)kxK ˦aY\`ӷ8kpvC;|b2v-1&h" [\ٽ8G`Gg_Ĭ{uƧˊos"gi`sSBT4q׉>ym IVd o#RCo>/1Hz]УmFEQJcB ;\!2OJBoCY+]z/Qa}}rtrH]DUeߟѶ7n o xoFX5 O}|2+ՔI5c书k>xeI] ?AU z|G>D>BoǤ,ɋ]s0Zut6cAKEx]⁝n=I I>𜳐Oq1Co5՗Ƿ ;  ;RxtP>ܣ>G˟d߸ɭ5+R_۟wo1O_]hV7x~r,蕠.{¬w΄A\pttL%|NώO/^L>|ӑ9)&2)'3H M͚ټ4L$$'@^NC&9nX%JEY.ʊ"hgh] G63ٹ"6$NnܸErГ9"A XcГrR2)'$,"yloYILb}z=+Iw@GG_|J طLF4<>Xڮ&h; r,.2o9L>EIiY&lڎ, ܀ULHlsMn))<'ZB&/f fH%.$B tkz|#-,Og4SOhklzdQ]3wҒMO(H:8^_'P(7z77Sv>3Oȗlгl8kƫʟpG9<=x_9[qH dt9!<ٹoph-}"%5QlX~1>0c|V0Yn"!4ŤB5wȴ帾cZ.X) h&)tA'MkJ5B5ST$~Lj : Hf΢dgw8k%ggdZqvv@'Ν$JtPdS3с")E"28.6'hYbd0!vD"W1dC% ؞|~$1lNHsMh)esQc<.2@o< 88 uC`p@J ^؈2`%ldMcӓ#z;ϫ#%û5~n׾(|S?.h"(J򪤞T|p!<Γ'?,c^{-l|"urulBQV$À 4 K?˅ %ۛrxI3NL2 WDgR{R=C7i-y[Ag|b:{/~$wަ(K^NO~}EF&Nin퀐h یf)Ddجȳ|Nt62u[;T)qCK)*SWY.OBP5U^dÏ~;C˦t!L;I*r6]#Ҝ(x)$;d5B > b6)!( c .96!͒%EQBPc4 ׯmOGptlMcgwڰY1TjѬ:uI[d1wڎLLd2ɳV&lL \"˴NTаK,2GzsFYtRbܳ'@H#`メzFD{q6&L10f/(pJ`D@5Y>u~2w7ٜ݅R(tUcgyK'>POBIe6>~ٽ FZ{ܳ$+ )azækh6%Z70tzp.Ad8Wgt^AEBh) L@$4%S9KL}5#ԋ$W|Oz o xL$R2FiIzN¯mn߸ɫ&f1"$ʯ|Eq ޒ%!tg(; yqz4{pЙbnQcq2CzC5i3Y3ޒdIE "'MΠ Jfkܺ!2IʼYYic\%pA3(YL;dX(1.^(=i9΁4*FLfV9ؓ&mk' t.8;;fX:ov`h,.87k3e,*7-EHaRjk|AػtnjجO ႺCwkIsޜB" }l^#bȬ✧Hzo )7z3"`aD@pXƄ FW?|O^ݹ0cH9:8jd*0BSV3~b7*7y<&V|"Y^%zld:c(g%ZKQ軆 h/('9J(rB CD!HS HD3\0x( E b!kO^=Ud9?#)$$UU>>k RcX H@Hȥ&Q6zdxgй"##I1ޔ7Y5!ElC x{;ڕ=&P2Xٴf"e;ӌdZfyAZ&9.&N=JImЙd1[p\ba^UXXȀ`#zBP34 (!PI! HzMQt@rQJH0ւ n>D:Dp.EV)r)˜L$ bѻw1TFɶ`wzOx㱧?Ï~ /]NQjD#:8qÚZ(uF8ki!ƂMh)D]=98[R8,*ڐ.G&Br3xl 6[B &nSDH[wx"B Y DG%C;p烛l4V/}/$;t(ߏHz:6sݥ].fSjZDdvJ5H۞WddƻXt B)6 Rs|lb$Ƭq~Bft2ꌲ.0]{Uf%jpӵfK' b4VsEA[bčTk= C^fw|e&SBfX; m#nm[lFJdeQv~C%$ n$O ߡw28'TJL&SZCDk 6'N0gaRJdŚR niG(] Ju2BJ,Ħ9!l&<qxĥ@T,AH*^2)uy$ti٠~94lGH<;HӳCb k_Oڞ1nCӭɋAhsϾ%B vVK%C ,9;]R`>0'Re $l,Air.4!vlΖ kﲵ=mOg 1یrEueB  xr IDAT/{# FHLlQy8t lȥe4DFb.K\7c&ф,2|gG2q-؞h&eNp~xr4\DdFah@D3fudkL†2/&3B{8o*;|hVkf5ٌ:i.uz"x.l5..p}$sO̦ۜ|&aDBy4GltAc@'I$1@baB *5*i7g<џS?|{ٚ.r2+W i-{|p%;w L*XwB2#S"[Y1FAL u/&Tubwz{K;ydb_ nl,) BKɽ~?軁fxԘю\H$u )2*h>jʵG?"W cf6(P$ktN'Ƿ \۞0 5hYCKKR@}RTdHI!$R9rm)ʌX< 5JE>; Ol-]OLdoB0\eLZ"5#VTc2-UkF RQnʥ=yQMzeA]yDomSeIlͦf{u-XrB{0Oqѳ\oƗ̙T33aR43+E~lOXM,0f}Y-xL %3\}7!*a &28?l$ ^H#>@JI"")HZSh4H)J)b LwП2l>"I]Rdގۇ2Apܼf=Bi\$J e~e=-Iw{ F7%EkV%1mlNszB>kl]"RdXPf9CG:&:tQKy rqƘcGDA Ge cw͡5-VGGUW0sƌܽŔBK&1vdDkUf^#fȒlV 0-pǺ]#:K00%]ߠTE ƴlJLUV"1Ƒ B% FIH0!@ 㢤s'LH I@JXABJHpbD 7(`',!#7k uU"1L'2Ηܽ!.Xh!eB;cvid5dYIsB>*9Zo|W^~;mNiV-G|fyM !BB AJcĥO $Lz1;GG\Y`Qal)ELK?G8<>F_dUNQY#p0o32g Drtr퓎bZZT&E%q;TY\:?/0Dϕk#OX\qp8!( a)9p dk% )@X=᭡.*, ՊF錪1֑dA0c~0Xr21?wB0X Cg) f3mwLb})ELg .YFD7A2zQ1D L8#EpHX.e"#%9B4D@'O/=9=l'K2xϠ(9nt1)qvz)F2.܍B?%U(YN]"31}_s8YuD',|1BDtx~) 6ÚDH E9O>>ŵOa`.#\7Om~lB!V(`̊-yG{yˆ3K"/b45Y3~|&ʲ&.gD$=$ KPmC&+si̦Cꌢ.pm)1JTVS^EBe%ލېD55SDδ8oNϙg%90xfmNO/OrM#CErLב zb WC MJcG˄REƻc$)bC$M)5"JLQh. m3Orr~ȺzJf9tΦƒKlmB朜EdI]qrBDAY Q*qٴ{r-MW8oQ |Ry:a!V]C8"G1C¸u2qoĻD.FT! @$IG*Iy+ #єӊo/~;w~af~!*8?]bg?Ʉ$FouRJH/9[xE!H1\b@HE֜~Kl'|op~|1'sld2Y|%I\k{kb6+SF;w?O8㰗Ɯo4@9gx マ*dR1M5ɡBآaG'\/ua;IAp!LkyY|b.f5ݭ-U5, 6 `׈IIMe0T1͈*G$b^ZYkT1ۿĦ9C9Cf.I]4Y$e(ٺ)B&͚l Vn?H8LPEORV?mo1tqjk4o^"fɳ&რ5%O"?pV"$ /)(,Ix 9y/yOj@T5WRV;d=t솋TPL~̚Z i 7/-yP#Ŝ ?gG,L4:>s=~|wgL#bSG?{9=jC* ~ŽG?R3<\ۻ:|.E4Js%3ۀy˟}T0=VMP_O_}yCQ+TzRH#n70Mj`tRQGlb,Ԙ1([f֧ 6c7Y⮣PU7Nİ?PFV rb>Ϥr؏yvWpgkMGFOBI?Eϔ<.dٖsSlaaQM%n]hJ1n,nbmZ6cB!(#FE<-\B6$8[Itۏ,bN7Y6$G^܁aBEH]UD!-) G74wAh! npC[^0$8"އNpq@H5A b!HÖu['sf+Rx;W @)*aD|r|~D D@?LDQ2WH;e%W.=ɏ7O u~5cޖJ=9f{v1܄ ŊW1=^ϣe ?B%G=Nؠ9yG,z[<ɧwjT=~UE"ёPBR \`8!{;_9e5uSÈ"CdDb%!i9ꕗ_|-0Y]* v; z1. RJ<'bx3_쓂%78?~)ڀLiB0R-KK.PKcܮ4Y !@BnY=zP{ȃED8cO=%Y;Ls'JrObCB )P D)><}`ob>wJW\7<}g3>XQ%(`sAĢ8:~̥>vرޝVX"em)[D>Qm&)K% huIȩa&A*OdFl;X1n<{\r{l70/uׯ_Ɠ )ifsq֌Әb.j4mA#(8_PdDSѢ` BK#4g1\B1L @aXRX ?9+R )dxEH)D" (F̔fO=ukWpF2Bn(R-))1Ge36"+i{WxGum2o$U"'noG|OqEus-d'Rac'(=ݱ{|#r3nKùygs@>G9SdsGģ^)(cWO~;/ $BnGjjb]{=lAVa,V+ԫju;oK?YHyxJ.@jY0 m(떐$8"cFj$$$Q׈wh)IN0]yGM8d)B- nDGrz!EH/>CTr:܄4e1DA pꂶ*񾩐1:X&<:b5op!qeA ,MU[+w}kWoX9۞YKY늲h!4ME'Lf4B 6L1 %UShkVJB HQi\$Rbw8tV{%I>X"AdAI% lJB1jA !BjlJH+]pKja/Jl&_τTx2J;kmPJM[5Kt{73~w' _d8=BX##9OSӖsRԼ|'Gl@`駎vt 绉{pv> Գ\{iE{TčՓ'~^VX}Id1J Jl}b \3~+W>Dc@6ϔm4ai4n jB1fs%Pe}CtP95#Raď#U]fs)qtR!MM)~ hVDD |QR6z5R1ǚeͬMyj0s5JNO(&:yEHh%T * )1ǎEbr1Q`m^W$ HfjAUYoz9׮@۶?Bkj`ǁׯ<>~ȼ^1k vidyӄh#q.P:s#!LNrE\<ԣ&DOR") N16<̋"$H\Ĝ%AdujRrYq㹧 #IFg*ȒQrpVrh TԆ~En\m{NѝmU)mU׿K0ωv9gir2Ylc9{GݜzbLk|1珎NGsP+E,ο/lO֜>:dͮ.*ܮC_=2۴/ e0Ld'n0NQHǿ/ϼ|_5~)~7,p@`9v])IC%?(˖=N,sԗ~ג^tIi ̬" kbA{PԌ9`:qS  vݖ8`7ƍk82+lKjYIN( iZ,ՌiYpRt)!mlPA%Ӏ;B`8=W4}f}y9H)Č W$Q0.&.(FɈҧ2/*=D\vݖaxgx.y?Sq%Z5(HŊSUuE9z1yjYd5{68Dt&g-ޓT" SBň34,RO$HYHV0:`#0(+?!Rn^⟔]< PyNw#I,$+U=/ߣ5]Fד'ĈƜ7ur Oep{I>ҋ<-_>4M!xo?jAuy#߾̇!B@/hBD g/)~cxkd7ڐQp樯^tMj{R@ )QiJ 1( Z86\eJU"ʚ0TdF\'tv>B6+&h3n%эIJ ?l1  D;cȈ%I4QU3*o|97HcA*E9K@cDșH]R (tXg`*b,V\Y# 7o$JcdXEȫ*.msgg5~T͂",Yc X,$!|BĎ"?Ȇn6#%%1\!A\[RJZcl; )E&?a}$S` >h]B *>kH}HE)$en RViMgO'xO,HRZda6%!}$DI"[83tdG\pxkܸ;vۑvFiюo}CG1 T}P-*Vsg=2X},T(A0O]Q|3O>S\_dBjV99ٱgy]N/)+ O|_g3H),x$  DS;"+?_ۍi$D--D9B)@4߭IGJd\6NOU#taPI avȘzJ7Hↁg$@gRmC(Ã{LM&FB%BdJR"u7KD 6 -UmGXVMd0JPU%88,-8\a}?bǬh{ٌwlM])W:V{+2Qۍuk ~$lP%H?%>h0UK#;ʰQ?8GhCtctC) 2k ,EF VLRLs"PJ_/@ϯQ45Za\UrC>& 0_EN~Tpw;>3&HIey^jBIB$/: foq~E`X@]ZS(ŗ{z:f1_rM%w7Ѧc}~ƒXkq?a'/H~ο|>ٷ>‹H#JI z؋}^ 2ѧ^6R*C R)Spv"9K5_a2NJ3H%bΧ< /|ou%HЏk܅*QljK}%w> NH9=z>G\nPJadB_ݵ ys:%HRhifȳ?/ ¸#)h>p9Z&V w8'셢l1 =C?2 g 욞pOڛq/w :3zКul,?)ۨ˯ Ä3n$FAia{F{ H]ۂ="M,q `g6uPuK2u؁*&n`jq]`dJ0İbL b0o UeѠAM;,2JJDA\P"dI!qIRb! B,RKՌ$!D8x ]ajŕجQ[x۳\[p㇏_2-fvNL>;˖Hiib'|(v_e|R9.HzhJ`#MQ\x{zHy#ь)t  %|DH2ċҎj~Os? _ 'tQ dZ+(떢9y$jI$:GhJ~qw-B3)ZS/1/}kO<ɷ-.;?c>e{9V% >*vCMt?x"g""IbG29׮-[gM6΢)F5SfJ%X:@t9J"dA)10(*[`*QyAbd!x[gn=wc~rQqDֆqR`m`̚LNd$Bk凸Dw1d⏐R1SPed0O#Jٜ4d_|nTJ!Re{"2@ZbŃ 'g'Zr}j,$OZ~uw୻Y'VTDl9N芢2B1[s瞾ŵKdzSl>Xlp!#4E9L87b ?9adw9r. 9)ʂjҒKџ~7O>[D,!yԌH2_{>I=IA9_bu*I&EzȵkWD +s8H;COTW ~#M9$OP73"&E46݈@F(L"puILxR1d}Iҍb>B)GwyeFk l5Fs|ny& 4fF $!QZ#BC]chW^jos~z|pei*LUcD% J$Y-? 3md%5(9wo+~.oP\G>Ow[@ 1xKT!4[ ԧ>kUh* |6H-:2u#)q@iCsysy"햺jA]lקD멪1hlϱ-JDpJ*DqH"ewxQ#2F&0_]%bV`FSLYu9*Z-/?iѥ^|=(# =.GUD%5EBJHWL^DL@RGE-Öf 3߿u<Џ4ujdu;g7vJ'`ڍ,FNSVu`m`pKXov,xf#HCk;(@@[vc^Ǎ* kRdĘ MLg=3)CH!e8?Y!sczr]7ׂB Ds Q̚56tԮ-qoάs?EL1dXMnM 'jbQeene$;TOYBD@hbL$1&b$L_/g ~rVR3N;G"EERU =Ƴ3 n FIH )zpQzL2\-,tcOV$a(i"% ?m2[hɲZ`iJ9RĬ+秴͊~a#{|Ո.w6׊CL GH7e7b9Cv'gq|i b]slC 5 G=o=^BTK6ggT1PVT uʺw 2$ٌ,eDZBbf5Hba84mY\+1٘uMGTQO{G$AjS8n*P:mlhFR(XV|x7SXA| ^%$ZO1\ is9'BjH *fEa,rrvii7QU BhƯݸКk vbִL)`y&T&( yE=kHD)k4㳇tݎ>fbAcm%Wf2K# V @tP!NEBI).PI*IW#גm q$ J(r*E?9jSIop.<~H7. h* (-0FssIċL D b/7U`L2rK7|!>{f7LD!9=>tG/".qBŪ\E'D G%ZKTT2$ >~M}}Iy{G'|)0@/zO6I޸瘦fx 6-J۱lL{n{u?%~dM,ڀ  7O)Jf"bMpJ[1'jHoٜT-DmNxͷ9\(bm^-G$2 05$L@h $>2I2!"1yQ\n5`m^Ysh)KhL}pSWzKYQ %{s/4dq`=Z: !1d'&+2qeٰ7( E%.G8o~pQS>NG/Ƙix=2eBm2ߩUk@ BE Z_F*$zOH !b~ FmOQ'=eհuC8T8?ZR(ycH)^5<"7vmx/p1cd 1 *%%&a#}m8*aPD(}uR73I(I;ԭ'.1! yp>v|睿L={fv x POk˹U~Zcpγ}t,eR„@i$Q""9nIݴD%5!*BUaу#y6mQQ-V6c'+V]Ef-R3-Z7T W[-EDݶцɆc74B\hR"!D1dbD+ #%{d *e OQJ, QB%)--Q`}zB5{ ݆Zl?l6'@f $](, LYbg8[R7Φn+q"&O B֚IX50+ $OιFEb )$.@HO"DP)?ݧHB2" q(:nmGFcCNH1bD N; 3JJYD(MK$Jo(tJ!ӅCBm)Q3y''DTs:hJ\s?z$tzFQDUTT@e|9ukrkғׯzy9u*U6U) &Tl' $`D;`!A/ LH!HL"m;&n]SW6OYe֧o<ߢYA퐹qHɁbӬ9svM?qưy>:Ohu .:9MaސnWE3/c4+|"'j.lN2JeqTa7hR)~1dPEX_b|Ov;tWH!"E \ZH"Z7J ,!0[rj9+R 1@! 40c;m/kbRbAswq?͸nY'UZv^]0譧Nx9pcvH5!\5Cm`~BsM)7% IDATL-dRHUP9Q@t4hi@FTNlʐUf;6 QRrQ",5|>rr㓏?3wӞyt8̧[wva#* kŨZJ'ME< /_c?atT7{k~'ɿ;x")RWܠbwqdfRhkM/ NGNw u VVPQBL'ܾ$!zR=2N!\n5![*3,DHqoy,(%TQ+gw͸< MNNXD7 y9` %,a@X[^C=Z~`ݲ.+>xRN3+'K)Ü!PjfㄇW#Tu}7{my)n#R$Uvj҂1e]Y#Sܦ @}xIxg-r'P?_VR*CpHV*擧틯XIq0#'i6T2F2N֯NpxF~5ףbW8osXxb^UEՅ#1+>~mF> [tHב3ZJ %/n_PJDbG^^]_=hK+*eT *JrOV_ɶEТXšbJg\QtV;(n3a l T*CMX#au=ujn2"kʗ?ᄡof1B)1*pe0m,^c;P&Mgd^:Y{Ew=DJITS~$X FkhTV(Z:)CEp"HiO3DumM*KȜւK7HӊaBTmH(1KAI$VNK͢9(,Xۡ*͝`[گ|eO^߳LBJ)EqP:xxLpP4Se9!Ոi/8a ϟOڴT!gP?/, kb>5d LWcs vJ !<'#CG{CXt毒U?}?sl6jR-m2݋?b_Frl%ZRmC*SN[WM$Zo0n i!׀x f;LGuZi6*iC¢F6Xb\XO{R8͙hYcO.rdN2bia0m_?/3k^=41'檸;{}oIJz1fNi%/)1m:1hټRA4Ķ2h鎾T12f*5H1ơuĢQhSad:2hS*cEHޣba"]P,QG[CW%F9œtADHJɑVWRtP]5XjEXATtNت\0fh{%hBmZ3]OVyoZj6, %%lP5k%kFTWR<Ԫ2V~Tj~5]n'Q88.Gų_b` 9.ƞ5Нg2ÛL=r:-XUٍlI)Rӏ>2l7T*.o77l~ړTeMgC>|w_k-?Gl<i;D5\#(\ˑ">XJ iŋO0]qOț/)5#)#D "x%wUB=upْޣC_[Yf=WL4aWpy}MTstO,o.0iFt %fΡͨEa78jaΔL7\`6 ˚+eI)fzmrJ-ReN,Z[ʘZpJcV -`6jQbp&CH% )*I"FM~io!%PqhTv`pVG.[گhE텚T' cLs~cD}:.mrwFzH__j0}6"`Ec)77G7< mpus~;x] y_K{[6 |(YJ8"Qfdj5bKX378 cG3n?YVdIZbZcS=@pFP bÊJ vD9ͷpf`3uEnxG8aw t-,Kl몸,S[)(s(e>sbT }gХh@ c^Ü(toXDָ/*8l9 %Zx9#X9RqZ0nDWG tFq5IYJ BH[¬ u>O:kmgtmZH HJ(^MhhҬ_ 4:c$#Ruj[phqX:]ĠLOWu#Eo9D%ߊ|⨪c%Ĝ=KYCo!k~Z)Ǝ,uAJ6BMLJN4_ٟȧ?>H 0DKDe~ Ht-hQ8)CzźPqq ⤢r*XRb#=[z\Da04/`FPm mȊ$-vP5$HZXDH0g@J,5gO-Ls&'y񔨈R:²p l'׏\?4JV6tq7sąW_sbtg 97:[0š"$Z +~ ߬_"$R1&J-\x/_<)ԉ?C~g~9\B$^NR KuWTu*e ĥ?J Xa~:c+u!wrDŽr7 OL S*sa*G3sJ6.qh-~ (cGL.TyOG<| X<7#0 x'T }*M1MDD&ZQWa](JİP"Ƣjα %'{gКnт!+|X&)a^njtآ u^jUZTT|Tv(.rDj|cʵYɅ6NWB"xŚREYb9\tª؊8K5k*P+9 5)nry1bFKR ߕs$QUS%ągR)26OBw[x&6\]?lU9޽IÞi=sY"zW:-X4ݸ#fs_'<|nTeTZ,pKQFUEun!`Ex $/|>_S"%4&@* n qPg8oXo_Pc3*dcdsY 5 k8e7=%WCBbP9T+7aef_ҫvxa/3Ezah?тl/r8*M}r3\0jDg2#VJ4<)DRK+> *kKeYo ) 1)o|ĔVfzhgx}мkSdECc+ݧ)^OЂ5Bʐ!D/jQlV %ᦊ&S֞Q_n-Xc(1Zn2֠šQhkAWjRYJhnΒΑ5U*gt kQ$E,m\j[OV~u86@t103)G0X-Q%L+Wa[_sڿ`\=O=w=N_)Ɗz@`-,|XI*SJnPK_~[ Bvߊ?C~;W:CrKAۢ%&ia8F@Z'j~ܢq# k\!#L+5OI*t(m*+H J@j*EVkuW_\#5r(Rb{.>x<}x_)Ѝ;{0arw,stf5sRX:Ds^kRB g[Dv~l ƌHs׆eZv!LTG477)Xۯae81-J T99@3h4D" KhSxa]1XrXSPG*$(!L)``pfuыBKBӒ™hF`u[ f-*PESG]kZC*M?v{سXvvЌnr%#%opeFr(1s)B\PщƆWZQOXV_ ֆ~Z]}U8WLN3nGCDiE6qK j+ƹGj3Θwmڏ~Akho??£sVP5C{8Pk$ KXn.YI:K+=99ퟳh ox/i''rR(H,,F΢mSt)Q} l.,ol y1$1KƺHdTZIRuM>cԀTkd1"!4s=aŷ.~b^' g|YрLiu0d62 IDAT:Sr+1)jĘ0FZ+/~ktʣwE&Casyd*9MN\ˏ$.Ys$ bau,o^N[^:ҹIL kmdZc{D UsÛ?ҕ~EtO93+9 ! LAiaK )B4l NΤɾ`7 XK$L+}|E_ YoY,k`(Bf jgt, m^cx8‚gPwdt3Da'kZDHS,8Rc4U))BNj1c o(*2^ g%kNKdtIi\]`6h9cp LUm.PJ!xp\#*3B”fy(bL R2CZU{&k ^dˏּ+jm&aaL+[1ú,C}9O>9[:vW̧#mPeLW(1Pj (9-yqe/ۛPHL蚈(qD뱛1&®x/>R =џQh#8g !ўNJHQkvW HϾ`Z'կ3=/~8S=dǿ=nGbZW3ݎ.>kQ~;v1zj>ՆI U f5}KϕBQf,Y 0AvB(}f[}=ҬƔӍbJ$?3\n$|8&Z9p`s탎`;f4Ua*n]7`hKʕ" [m{cRHRB9GQdk&XrX~:WlTJ 1PچW޳u >lf1puoyg NkfPlMETiX,K$BTb8R+9_Ro/^a0ݑKf7^pJ|˼S3QH13àyw40YN IP}iv iOo<6HA8nwV*LkgSaYffƒS3RhOj6R"[Ӊ/1\\CsNc\Yn]bs׷3E5TW'crtl;8J iy*$^92ZaCg\,,qAs(1VSBYM H⅔tSWH`^*(5LaFA _K\Z=.<7lYB}?`hTm`AQ1g҈[=Riݶ JQtLV5XTRhQh4Z׍ `=?fqo"юR*9RɤTqZX Z3]G ErGF`O~ذë{ڀ"fPV>CVPy,p:k-_⯽cPypu7#{ՋDN~l |}%5E t-,:G T!2/dN8iXq̱Ԅ +2zqp9N/0BDPj2BĨjǿSjS>`]X*o=%LZW03E wܥw͍ߺEpqu΃ǼwHc"k&xaL#&R2* G$Uzֶ>[Px}+_1W_{Oҝ?䓯~>nYX-[alf޵ņ%[]A"-O;1K4n<H)5k:F +fڼû3N#>^1)ueoG(Jo>SD MsGW?zH3wpI,ogΟSƉiI\uqJe&v`slaLMRE1'6йqB$ŗSO!gX2f"Mz[۔Rj CUVj^Z{vƒKGKHG&2RqPx}NO{wV<{qf{~׸]y[ϜXv f*nL j" U֒3PiGKCFF,68Hc@fS^z%\x8zΧ̰ƻQlmNZ 2GLHW&+00L!*BBs>X>O_+X-llnxw@~?j#cO0q-)3Xvk Xơz|I df>%eՀ@hpg{q2\(RT UY HٓRR!BGRN\oVbe :nGՊO\8*c zwذ/ަGz;cbJ|>|7$7c/`G_yYT׻ؖa:2`\˴ݡi›Hh0 y?Ѻ~"FŹDXv$g3MhXtW׸zCMK\!NB&Tn#q&rI,W+ 6]s|rg_$4!bqsXn0c%4VC6$$z(K(k4 i c}Y6 c*&`\?ҶmYC \s_~fU>p|9ln0Α'z%?w/7ovޣ~s3Nq[|S~ /O1[Ya֎,-S3\]1__0]~)a(z_3-3CϘ3vF\@B}df(t)JC;<Δ_#KW5ܸ .&,pxZYPi U:&ZF.X"Lg,ƜQ+4!@,,񎶩#V*ڪ$EE%GC\`M4 ,edђ#c̹*cC!(n }_?djɈDkèl,u쒒A|kpP܌2BL$ńʁsc`!l3]4J,EKh*IRi= Ed@Xr퓐ZS*Zժd4QTo? 8]g׸wvuA|SG#Elݯ纱xDluH"T> EĐrWduOWڮsrÍ[b<oO '2qry{c/m;#.%'r9&;lʯ2˿Kx׿b-g7?{\ 3OYsM Uך[ԐLri 8XP 9+kXu-Zb-$xT#*R (H-pգwd-xI!j-WW[C3,X 4ZҡL8S܀X2T*[ZeuWP9Ba ̄R;xcUS[BqTxb\'Oq .{w#ABk|K~~+ruB6 +*\DU RJf%Djd7#Xu-Ղ[NOxw7&zuίן~=n?Aoy[䨜ݼŃf} ?—..@vnn@ ݀zy15_ 9ѝnkhL^]*ƲRQ.`]C&ڶF*lɸR= Ks- }UwʔŦ_ҲZ5x0Aq7a8Z,\_, si‚ k-Cf4Ji I`ߏ#xv އ1$!Z uxk (ƚw5֚\Ui c۪Rvo*UlGJtPBTcfܳ4qg3fBZQlWXb]*TENtU9* `.J*JL #Pd$ xh0U֠( 9b=s?+uj7\v<C=ߠ3/"w;77Y-N\-kT( 7J&ǙS~W}\]{θ+o0{gu{/=֣r칾_lNo9we8ox//o[aDYGh;^z%.^Kk=ղ̭{ny@LœaZ 2U7U?s=.{gj5d0&ὣjH[G>1̪ +t54!Gp=Rk0{K!_{rQoVrRO5)8qgXtFbԠZ߭CTg`3) yW".ReR[V9H9h´C *\ ^N Yzc@%VÛYVǼ>6ZU }/2=x uP5zszPo gTS(9j˃G)& xC|ko_ O <ƤfXY޸S]KbJq!Giwk=՚~</sQ}P͜_\ӎ̮9ֱ9;?s_2>bwat+#gg ~Q}O-g3dGԷ8둀Tt@Q-Vś"KJC\;%w`<9!3:WsR&j,ۋt`bCKJ\6l U%d**eN)9+_}YJ?nGD eȞڪno?ξXT g8v+bXu<՟_9+)*8ֿyGʇJ}Hϑ7:?yPAD|4mG,N9:M-JƑ4@fx'#ny~~BIc'rAeiyҼ?O`"wpdK n$4 RLם)1ȸK7Zut]!=6 sړs"wOGTŷ [ǁqʜܺ~PvsL6 s-HՌ-5G+R{D[ضZ"3N-\ȥbYd0u\vPzG(Z5K+Ĩ< JGk6%Zʡ}3C.D-L v ـ I4B)azz&W 4&P!M38V QYm5:%4G1L5dQ8RGhxbRWw"W$4mE$(--R/01a|# dXZ](25Q>KO\ղ&;%'[ zq16Ϥa2UYnXv-b$_09]:j* 3Ngj IDAT5:rq8떴zI5gpZ*i:On wٜpկ{ŦAuWGk,x=}?EZx7-aGyj6(%g}O쯞ҸeW%$ʴ%zd+Sd.#MSRBEQT c\L%AtbkvCC0 q%IưXlxtGb=O.7pfWE::.Zb?/UT,m)0Α#ףqJ+:ϔ(Q<x'82!IK,9e91H4 RN)"A),\;y&1'\ϞmN40%nzN7C\zX&l̥Nm2bL-ZWBEl1C^C#4.5uBM e,,95XI"4X$Xudj */$ ړ͚Th.,uL2KFl =?S~!aPLƐ;.>vRvczwB? )"Xvo:: [ZZ㌫Wևxc,7~6 biy +/kcg-W֡>9 Lq/:1㜫J 8F`i`4LX^xV2ldN6X#:b\C)ZenrTVYaoW7x!Gn';'iGŎxXWVsRiAS"t-iNklZc U.Ljc *5eMF9#16HNu[V}Ã;b*i1ge;Cq69n!3GTLjۀQKʹB1%SLFMweذ!GJTC  -}:(J]a51godajEEyH9Z}J+dGHL O1ZKkj12~ӣ3|AkJR|X7MG4K/CYKkk+GݚvfZs98p&i"#4\yER|UnݻMH y?Wi<Ӂrd}h.h~Opm!Γ>Ǖ@ĸびDXl/ >"IG(9]SȔjexE%"Hz/#,iܡDJ%ՒH42hc8p mkV9bLk[4C | t wT8r=201LL8ŔZE(ue H $-`!~͒9&FYRQ ~ Z j;Q5mœKv3cY޺Z2vLJR趸uU P12)C뇳 js hU2QʔXcFXD_c5zy I9Gd0̫<"FhMG͒zfOqO8;lq|ci܊{攺~ҿ4֐idxwAH8xCtE6-E|+ >} <:}ΣG^9>'\ \6x<b?;( 83ĉx=I)nAzP:æ=[B)lQlхG1rƙ7J?_sHsD0~Gn3u0""-zܹXr *pՏͤ93]g΃+D)>y)J<) A'Lha`HD!ɒ10Za̙mcƉ[Yӌ FB-Ua7:CJO8 &  uu)EǞl7guD)~&Tr, EU)a7t`&L6L>DX, 4`>ub:3 %'JmiBo,1HMl@ZA' 7o=ϣ"6k>Opv,OwodG?]^0.˧> x*o}p$`5Cy)\F-O,7 ny{96Nf2Y4F[ cLbL3b4ǙX'DJ`نHzP> , vO5%$W"fG?c^3n Y4إEK׳+8:,=000a&OrI}ϐg8i)zf DYtQb.Xӣst1DZa0msL쮯iWWXK;2R3JmNq`Y.L%޳핱7x r4rgerfX 9E|TVLJqp`ev8/䒩0'[! wsj9)lm`lb'c$0 Z.}, C\}9=YrS>e1)}lT'a6l=F,L{DZS~kk(%%r@:Wkhh6zRY(>lցP,. 9WK+և!b VBfoGۉpB-q&Ҏӎ(RæPkFU02EnfkϪ=&35i  19dM[ijJ2S3o*ETV؞_sdג٦Юg2y-4%5w_0.l]n VaI.5'SUyg~'GW~/.;fwg\!~S9w2ntĨ!O?ED{(ĄBF8Y1Tߊ)QV'0цj2E yƱ- M:"Ei\waE@-ThCðй@As`,3bLkk PϚfȉbS=9 &@: ]ۑsw^@.1 ZJШJMڏINVWn™g Gǔ c~`Շ텧S&G^+7Xk7j/RrUR2QT*-JCmF*ոcڪQ$C`Hq,RvAr* VȈXs>5#)NQZ>Y׿-+XT a ͎eC3Aa9tr .zl 4gKOւ3i7ͷ| pNOгLa"=O/{'w'~gi+nz5x798Ɉp8*Y:ӛo0ޓ;OF(q’YF"iRwXL+L(i4 E)c'ԑR% ˋwe0$#NAk摒#.v sY\ \v8 (iL,Z{2xoI)oqq ̣}|C&x*<8 V`9]rI"NK=b1hDBLE㾗 9pBbkX+x"ZA/wW>EISb}~㬻)m 4cBL-<1.x0_|qmt >Z_~ 8>M\ cyb*#W͖套_du|B? l/2O?Cȋi$Í1+/܀9,bXԭBp^}dq\(WKYT 4Þ<~\E#iLAN 5ca}`F\î$+ΰtdsQJQ>#My ~ q)11ja\üp=jP tb;tVR($i`a`x0lYIvo& JfdŨ\n/9"IP&5fCevxXpr<|JqRaN\f..Tc gPƚUSsi@d!Z9) PO\ր(ڏìDO'MTΨb4Wu`wCIv}_k-g7Z-qć_gsQ| 4MP-d![N׵Dei|7qwmcX-ܺqkq }='Yřc YX67os+,~9L=~+& j1*S$ 0;pQO 'VOG8c'@ m4G X0.0N3Z`EHI2gaqro"u_/S؈OvL6z[47'4[yb7%nLRnƒbbs]TU')Pk ֢byQEpA)*u;@9iFۙ(& O/5s"֌mh`gꊶp ZUZĘ9o2SCƺuC YfmX݈0h,wGo*u(G%^CR+|`k. qB発]8΁]*Qr`de;wJ\ضr@+H骥"bwkǘw(yvxH,Xmmb&I H^rѯÑo( Io7c5eH~ߵν 䎬TXG=rJ2 7 %RQn^Ykv~E6)_c6 ej.\{] V^>qٳ9J回lZ %b@'7c0ASt뱠H3tC$?MΪ,D_7o+ޜ Y"b kJ0'O3uoܜx _=>Ǡwx@E)Aܕާgƀ8!e<Ĝfa"ϑÓ[ϷL;Jud9 Ïηޟ:o18˶9G2LPk^dn ؒH鄆ѫsJĆ1v- SrLWaI>*#WE$pIYh3]3Ϟ?Ro.+%8:*P S0ϟr\nHDbTj;c]!J2ai#m0v7?$Yr3C)w>@E}׏4B<6Wf>0j̘+q\t SR[rr<,4 w83@etq:Yh}"i8/Tsdṟ! #*#IcCVަ!Jb.n #EoqGi&ÃOa8Ɔ"e=rmC%!36}C ̎Da_f3@ȻoOOʸb8/ɹFZfwr IƇ l\|@NA$ک)s9L R,DIԭq!s$͐||1=~{q1Nӧl{&Fp̹Vmksy@v(Tc"dRڙʠr 4r褒.{\ԇ[o tt |xO8.N?}eWؕQ9<Qz`U8fEq& #qH32aL)=({k+&e\i7ƈ?Ա`+i {)%r> 12FuQIne1 S `J ;9 S0J ̧ibá`GcLc0Id)Ge!RN4Zw cd!ĄH#1*DeN7Zs խӥ`%0 AIq0~^$PqҒ@&I(#hPSd |{+:OoDULws_».gFH)\jbDvD} ?rO8=ӵ31Ϥrbe&LGt># ,L逆"Ma/=}|%F~u5FM/ M̒=!FaFB W3)Ӂ>:F@43DD*M>n}CIPK :XyX߰JAǽA^n UBTN8>{N;ap{MA&ɧW[ IDAT&:lwݵ+" Ȕ'tGix2@$p2 f5V]6y>ʄq.HP\!r <8!о1lNpY뵡 9̱| .³)aчp$ݿ=[>")EeaglېC@4m"XFBf0]:ܡq#H$ IJ"q̕ .5h.հ6TSbGhplVy2M7Y/n12QWasJ{Fkm_g[W9jH.ȥ'F?Jʮ)S3HjnDqt>kF|(]" l@=6z#D #RTHIHA]q7ӈZ²KK88MGFN#mbq%BTOIj@i6rx'~"t)IGێLa"KW<>L&Br.$~'Wۉ:$8iE\_y)o?9Օ;ݿmgਹCiEўiu0J'%er +@r&XAŠwFS,%,9ʹ>"GgF . RvBlW>؇Ǧ;7h631q._vz휎-F](LFPLL!cuTr,: +3F+q9\{ppK>,u/ƨuES9$Lͳꪈ *%B$8~Ս;#\r"Ǡ,ɸ[_EeszQ+T* DKI/\׀jN!^'<^Mt5$~\9['/V]K xIѓ^'B,).   Q[`JZΎK;OGyR"a92尰ny9UٷJ m1~)tZ2G|_F)`sASL 2J%!ÐZV(}HN׆хf 꺓ihE"J6AYjxېtx쪴$7 '}D]xuJ|07`1mwjM0;s\.{Lˑ6s$ Ѝ)F.'Bh[g* 0P˟ D *J ۮ}'Bo^ZDfPRf늪b4B5#8L7x m8GD3jGC, w&l m:0 0<9(Ag~[\V׵[sɷʵJjфuXs.‚>K zź41ub7:-z϶}xrTPJHFC</JᏵѧp`gnpss3|¤[)߰#dJ|bZc76=Ʈ֯P $zJg'1a]Ci}wE 37o Qky^я K :!$`H Fc . |ڍ5&O5 R"xPѫ{-L7$ Sdp̙xն8~? :C8:6>#>ô`1o)s鐙a0=޿AioG^ $W*frJ;)`TcJ(v_슙kzp/[.+.밣. 94}0'cү :%sJ#Dߌ2(hC9@(m&#~xSAi} j5撡7Fk$T`8_vcW|(V)}Hev~SCsu !dF#J#s ZSv<3H !_ucoJT&9ENsnEkFT֝Zĩ9N\X(o#WsN NS$`h~2mc A`N? h/Ss 4ܱPtzj"Yn@ AEYCg> f4pPABfN>"P䏿 t2lsR[賀xL`>,>z%R2z5rA,r[8795o_qW=ؕo=_!9?{_x6~t 2{P_, oDE1&hμL|܄xBZ̩ \K"0CȖ94c,hcqyWa:2B]vtc3Fe>q'q=֓ÅH>t8,z0)R9e3,$FyJbCN挪ÔDcW<WXg72N D{*Ӕh])9 V̨ۙʔuc3]bYIaƈE Au¹M`:څm82_u]6xշbX0g,r68\uHGT.@.$nABf&O4dj({(ow]uf:%AW1tZo_?՟b a^\OUaޜ}xɔRo牿ï_Oswm|7 ?9 =cG=WB<}G}m_"ڌOy|A׫((rVI9& Yn~=qm!ĺR:ص2O:Uo1Gd4Ӛ獛0ìpyɇ,8'4H7bf^ .wjEԯAA]ޔI>^C ?#˫,ҥ~b潔Ԫ*_CBpظFzxJ:/()0Le-1/jD1f$O3/N1&˿xկ,*>?{}όy[7ğ#b_!773/<_x~#"Q#ڻX UGFL>l*I ۅ#m5~].隘SY4 ή)E%zuO#D7e@=e\.Lrd=0i(8?^g~a`8ٹ-D:j"S]iݘJ%euppD8 NFθG4N8BJ͘EРIPz]+{,0c:Q6i죣SȄ!%%OٻCەVPU2F`jn & L݈f?PDcFS*JJ>m2$Vɿh@DC&+TA?;;x" 2bfFu4z'Ax %h@'8+}o}w¼1Y|u{薨T̐?L֏yo 7'x?`_c||o/=oOiKW{a_Gw7_"ğ@D104gDHS*t:mE2VD̓{vWnE{f.#C&}tGK`e9}JIzybA3L>~K"mhzPQ+ Jzxx\֙}GD H %w¨*)x kA&$@.l1 Ny A&.͈10tGJqfl(0AgePĽ*Fڭq!FDo۾6"*)N6r" Et[ő!6ueA2z]WrJ;sE=tByτ#!R|~:9jN-g!HU kuiWhj~ O(!84 Kuc„F/YL4:6. |'+&  " dr+Đ)s0h$1AF0iZXR&/݇G?1oYʳ'7|˷>sc__)k ZǷ@ ׳#UpbxH#&4.)zА8 {Fkn4RTMA <$RR Z7Z @I e*3I&0)2TQ`!]+EhUІwL m׶*6`UET#y񧏎pU1WǙFT}$j|魧L9J/|NmQqێdr1菼/2p]zoR7n)ӗטz]2qyK|tG;Ǐ7_:#})GMZ_S3ۊ9F;U0s唌| `DZ&޼X md\ߚFF q I,uR6\={Gs[rNL0z{[ϡn\zfʳaɳ[F۰z""P2CQ1O`tbL[+!xYB 3iqR5mܤnm%s*$␕+i7x5+VdF,>CjQi%0=se*4AJv]N""N>DzuTͶE νC*$U:PÊ/ja;R0R /\֯6F6㙣O:A7vz6asXє ~4:T ^b >+FЄA"H& C7Z߉#18|\ j&,F E)DKTS)/eO >c0ʾ>ps$rtsb_y})murydhWeqp{˷'ΉO>m+_j F8;SPtAn$b$ [kk;ӷ U7c0d("àx<^u]Cw y:iGx^H*!/,Gox[mLǙF83=4fœSґXPޡJLI#O3ݜ)ngӓ,DA\Όhi&Hz Geo;^zc*)~c' 6DO"n +tQԻkɐ6}a\}5&"9/$yQh$8PSbYǂk>Ae1PN2Bv$5#5"C]w?EPة:ʺh=\6!u 6u`Flt۹& F7_H/;,R;'=*yCp4KUqkd7,w9ݼ$HDžpX!՟ ~C^V֍u=]c%x]ۆzTsWut#"ݟ 7at>lΥkffp+[vJPzը tdz. h%Pwd^m¾Zu_{eh(nG0i^U#LkO1t@F'w3 IDATe  WF_ igE aAW>6RדE;aQ5y푮qXnJ5w q8t+fu*&QjSz|߭#h( \N`WPR0F}zcԽUB ąaXb)D9)yb) 4K>ۅ)O޼A437EPT6Fx0%Ix]|V1WRE2X7gͅuo9_yH%QהTPXqרKg\u1ZFc #Vj[}Kq,8 z&ۄu\zUiLyb3TIkj/&W L=2Ph~8.~)R⍷' % 7“/ۙ1:W|ryr(CG# HRpO!ӑӔ ).e1չWs]٭cLWIt/lfXo)F"9A6,F1r~ɁeZ02Khxv:ocr̔Rםl y¤piƹ'$xJIu)GrT%"xUd nXI'{%D/lP ]x悒yPG;26P_[0=Fk#r 6DG_و6iwFTI\u~%ן#h,1ܤb/ˆ' %98Lɡzf x#t%us:NN hA7J @#``!,PVү&f9K1v"jRbFǁP'T#ҁ/|Xc'%WmYg?9W`asNyo??;|+<}z Fse0W24 !RDHZ-f$QrC @JZ&H-owJəgGbHMlB u'?O[g=c|9vA'8 D  @"!Eq8\$7HA`d-G8>jWuծ{N11yD Z+kϸ9N,)pzuOhF;_c.Jp=L҅gwQԭH BL,ֹX:zf>=lr uceƍ%j4 a)BU纡ppY96eluzZ Rkzǒ=:q4D!S{Ahh} cǀYK%!D]? d:!㤝'F Rm 3cތ:mTQws .$jy'[5L&эބ62k,T'"B3`cBT6i c 6TZ*[BJ- i: QA1ZdJ37:q C/wX5-8}iw~;a1H7:빲 kR͑խ 2ћV\7I`-B/BY76:Rx+QF6-<<" "O8IM(:Jɝhlc;?N ^ 3mQ ە:`#1@.Wp~qXL DH[3ZAz:h}B}Rݷ9bnVDLߺȈ3qI q)w c =u\3o,iXKFRcb~(?'~yuf]yg§=Pםmȶ ʵ]+-9$킨FcX@'>$Oki"Z9go1}%BhP oqC3=}D8)n& )syq@F́:^;AӄICgNXP[B@iƹcVK8 AmZ=*m#΢m32X` YzH,mK-s.97x8:7`Z%© 'N8ZlD/-Xؚ8y שD@%Z :82Cm<A( ?ĄZr Ɯauv6ZJDSc83A0,s@fӆD*mU2Ct fLxR"#-vO -2zWGg73jkptZwZɳ:H_~zA };a֍r E+S\KKckbj+L3}}OEמƳ'|oCg ƕ 62DဈrKau#M uER<.݁:(zFҀaOlMxu^ !c1OhPZYˋ Ng5 i_ftkNW5kkDS }7p#bz`o1a֕Cnka^D n)NHSOô8R:Db)pc컷5@jM>21tRꠖu:ump)u kԦqo ʰ:tXui8ܻ68t}:ü ё.\Է:v&`$21 q!I萚 I.P9W<0hTmNnVa>@F -VbQ>*}܌KD[R*Ryᄆ E Rx!ؒ rJg157]׍]xx/>{* hLaL5#~Ю7{GN||20M3?͗KȀ(NW'BB)ި{u>d٘4rq$FQI}+ VF^f]BF D?s<xӯJaT+2&F64;{>Vx.X_5Y)(7:1V)1fdqxlB [+51hm)C>:Sδ5Smdp-1狇dGibbLa[Fehyw.kaتR|-f\ׂ!h]\5PVع~ NJ6qGD!f *JW11^"Ȑ0$r e ζD.Puh0Y'F "8BVd ,]e0 ʓzAׇap֔fN1ݯƊ2lj^/W>>VOgڧH}F[y{P9jl JJ+ܖBk:-IS$i10S#Oav}}tY>5s3|0g~"|s#1-uP# H_ #~P ĐriIab'se!\}QEAGzZ ۔}ӌv!Mz8q-iY$.@@k6 4Mqu}0'J]ٞtxCBs 9SFg w8R{Q]e[SW)w[p +'R kՈJ&A;iRd X?{pǕRÖL!<}AcfzEҟtCDxo_@cĵ zt>sV9ݿWڶ^lG\z=S.W+?d1yKWbz3eY||?_jxzL.1|Lߟ9{ګ4ИhJE-kǹyBi'z.X \[caF9=cFێ202Bi1- 0`qRUKPoؼ\ıqgφދ-Nmʂ7& T)L}e1藍@+Z:#O[R*[s='*^I}u&0i a?[LB;xeVNw,htp0'C!H50om-|vp 9= t# رy@<1hI@$*qWB쌊?̚=]j;"|sO3x(*FOT˕o;~~/<9Rªq:ݳ /_~,@ [YQ}7?/qy)I?O*Zx8(s9 2e|eRYa~nyBBS eo Qǧ#ߞXDže2?з?~]?,w۟s>xo-_ϫMʷA͛7x20.\|WW~/g6|_O_ϿſoA'@Ffl֑4s T 7D h urx<m}T}ȸ6Id9\ lj||T曉+#S2- "::-%+sE:y$L#wo8֕(?b7˙g,*kPZgY&d4%m޺FGQ8]qBԳ}ᦗ-",V =BsE=vkXc2?ɩdS Y"[4iԦTpV}t 1Eὀ mP|+JrL!0$EM ih߷59OON M}\@}4Fz iE<bUculJ5G0< C<1V{y9%#l8maט#QaX@Jp.gN;x~[?/]?w|W7qaYyJ|x=g_"?צ__3o?x^J3*  7j-ugic9(aNxAk^X ܘ2-)S^u1x NX7ϟM6j\>u99Z;YӺ2B>fdꌾm9;Ҁ Oum9EւeRJALt&RqE%ĥDň:FKMd_P˄]~2i?TY{ DW07lq Li!>AFPGډi0t ߗGq>!&@{ɾN.J%^; qׇE14){9bzeUQ|(hM')gdxұicFPCe!"aIg3s±l>A/BsoGX1IGyr</O_Vb*T8oxr}% o~}wŋ9,>$~8_~_޿/~ ҄pD"&tkhJ Vcxz M;s!8.?Icv)DÂLD[cOb+P"mB T9>yBTeJm)/4ԗf)a0z@B^\ƺ'$4(V_GoFVrDBfQ8o{q=Xݴ0#J5k52cZu썄dsϥO#rEn+eۄ5AZ2-l zى!]ݻY n=E;DBY@*Q?}y;Q+A 1DIx+:=ZAȢ$ ݦL@zNB=dd5AUeG};~ԠD̜0 Gwe%xAA96n7q3!}ϼ:\2ZcrJ9R/,ϟ)os3'ϸ{MtCow z7k@:#<~P=Vmv\sg@(9zp2"ȋ.DmV7,t4 +[gyRibJv_ؚ"j(ˏY2O0B+n$2)cBs%+O1-$٥^m@ } @U9L7D2@>U8]7$E#tIL8@H#nÎOPkIُc0^AȘ}oݦWWQ#IQQY1S%|d4cD 2 jfHo܅iYbzD @c,B#J~:[pCC OCzߣ GA"jFJgK.hFu] Ӭcj8@u$уP(Աb֩?:ĝ}BiVj IDAT :84}HytBmPam2q9.lĺ^8}+.23q8>o0oxSN:og>Ыg7=/%o!ݿl=4{p*(0qnHݨ놆H5l\J^nYk%bJ3b} 4a9xr3RXno8>lL9S.gJI仧HsPF r%HL_6/kVx%t?蠧LfJ#F5Dq|8*6")Z]U %N &z[0(NP|#ahbfQ%?. }^ˡʍ*9n 9MdQZl:-4, Fb:A9@B" ut&4;HԈu#uF` $:OgT!i>S__DRH̲07tcH>ГF٭`9srdY+奰MDu榬#$'Xw}-D/ bB|Wָ<>[8Y׹a=pA#qDXw"O܏p@kȄ2Qq^SQ=HG>a !L:И| 3E!pLSA2G!Nn\^ṁD:F/,1].><ʓ%*0~5_6#, kxM`sK:xǛ|fVW^F3Ǜ#w }uzi&Fz]ySosS>3DdR{e y"D&3IbF )QwN]9$ }0h$`zTnI>A CU2b$n];MWT(+A`(`]"CwuPGFVX,*8H!gGxE 쎝:#A{Q N({l79M`8gBHhF^YB(I'Z9\]cW>0Jf#;lXAnf{xN'c_6T`li9].\+[\7 MBZ4R D\L0X+}5>6킊5DR]ht[ʆu@|Zڶ@kZzX#/|[RD|V`=5B7>7d iRJX0? ۧBkeR #n!R"5RXzx;Q+:+V˞##N6*[a^&_Z62ð{ɇA;ϦOu"GO.lvK ᭼1Xtq2, g2nj! y:gb[9=ՐB`@sAl`57)4dtP 9 ul~TĽÈcCj#%מEDg/ч9%A'& A? %8ACPߨ ōţ+O#\6;ct)3f93 Mh!|^o7D8EZϤ\k%te{ar$"C~"WU4<|*-^b݌ޕr>2PWcuP/) 쩰h ně breoӄ8waX_siQAĈ}ۓflH ӷEB%ԜF#nA{F#TZg @ۂ& !>%ͶaqmGmtUsH*d12Y3i$!F2k! )1C0k" ,[~YJnE$MItU`8@ AZ܋+s Y}34e/`✔$ͽnDrc; 7&e> `)sz|3ѽñ?p8Hツ~aաZaBA1x{˯|7!gM?~)=&ܼ~g KTC%Ǝh#@*yGMA(}%ny<8_7! \N'$$z&Np NL';9Tw\4ߔ~=a$>ume:쮵aĭT5T/>݇5O!)!!_bnT]NOqs\S~o^3e 09GZ//<~pa4c2ctۊ.='ztsY;òKe9@:pw(XZ\62#LtݨR6v˴x0G3)L aA3'4{X1v Ec+QϞBдCE[n;l#Ifm(`,Y&Db,"j!BYWWAd51 "[3 $42Q#L(qov64\Uf֫+Mvb ?] "q}!h͡6X;O(ys[ VnDzkzzp$Ye9}0Zu1شF6Q1M^Gƙí?tA9)5pyq^I*f~\6ePt2t#>hE;7hdDE#D?|Rbw:S-e39Z4tɌ0Va}EHb݂;5Te0,TϰM2B`14BT+ Y)BЈ*3Uf99.](ۀ(XHs(Ns LSQ=cv.@C֩tQ1"k.@ltnt'(ݟV BB-[K] /l \X/xo}Wxxs=iH! K_118=[wȯ7L;TQV3efaʸL2S>}~G)W׏Lj7!2Olu%ΐKX}5ornlVQh+Ηz!&EzfΉIR XQ\LWWz^ºd8eL6DH\7);"Z"Qu(k4KfN[MmS,%V4wbD H{Ip5Plô2Y ?hvMW~)HieJV}F0L  #2,6&ZX(~ Tu4[4GkHw)5z?Hc1#SDB uDcÃ:ǿ0V w0Jg>@nc;{p";dfzzu+f MQn~s$ 07ٍ>~R>IX̟ ~PϔZ#Gl+9s>}чr~>Wzz:0MXTr8?|VkXĆGӼՙ~ a{z_˶,?c9{s"n{* …T* @B 7@2=-4Dȝ a(0iW*Uy뜳k4ƺًNH{5| n2eΗ3[ˍq IiBhP+e=cɸ>ݘm˻3mq=$(Y?\H;|DZ=*种5Vu˅b_i3l2q8(*u!w,,p;НmsaEY+^dqh T2&H%b Y&t XиF0jg`\ae,1NEc=9FI8J }_AƊ SVjއKl=J5x2+0ٶDF#,mI4fcX$Pg Yvvf@g=o90]!0A"_<[׺/!DQ4ɶSpƿ+C4ѐ$cJa9r/)G%JFè2µFJ3Ho:X}tinF핛lcQuN6(Qwӌh >=?V hdAǽ]i=PveW,s??sHkKXەuP!B8hHMP ʿK޼a7x mT3h$䇙buyBScP^>Ljufl-pln;huD) G y~tT+=fkh G/^' xI'e\NG|(e rR&KAMBw'[1Rb̬9SA:hLAe b1I@=*rjg;6j`K%ňs6\^GC,w#͸7{}oQU dXmde~ N,+ eb*lܩ{4VFd'&ȜfTLcU6v*20kX Fgu6HNt^(H )M$scޣA$P% ))ex$Z_x6 zØHaʙ2'^9ʑ#ÿ{+~cZO?[r#.I:t?1pGpY3ϸ^p$`te a*3Y: k/'- yk'p+v4Ft{N/N¸. &Q:hrN(o?xuw'M^7Wza~fG/<=R2Y*@ u4 2FdjdDyZ@,oݣS4Pw1RٰdԥzÇTB,U$ lfFM"< .wZ޴#B;*wInHToOtޒrtLTyD~%Vgtk2mJ=2 փS O||ߤwQl 1*o!t<1l_׿m~_~-?G*n *%uL|{DF0ޜk7m3=T&@O3dc4!*k$`Kf]w/^rv_}8̅Dr0R1FtCc6IB/fٸlFɉmYkJ+` %wpI ᗲ"lSh6kuh"\I2M $Vh}e!%;&z,x$ĴE7jk`M0zpniwo^9kDo@RQaN?{rFaA$\Cׁxـ W6wO3sVرs$mtGNJ!ylwtFo&1Ӗc ʔ $ ?g|[H 5~{TPׅ)n2=2Z [e}xqwFspp<7Ӗur[ >ẝ^LvGw~׾ï|Lwx|\8?=kYEqKbU"$|#3h/%p&<Ϭaΰ<1ETv*䔱Zrlg^z`-={w0G9 IDAT9d%D6;rBtҀte0gn[BFa.v#^CR>7ibhP;Hթ7ToyHPe}IV+*Wy zs =|&e ΤIce Gtzlztd $AIV*Jd=L4[@٪- ,h$ Jޣ$7$@ }cՙ әօm'&uadC-g:8FW#Q 26{mscP%՗af]V#? # ۉN§xI[8 -Dm`?Vz]Ը[N%+˶5ҋӑq7/>:q[޳Օ\f{Ѓ𼞩 |i!g1Hҁ3:Fziܽ;Fclr˕Mb5x,R[#go,?붱HA3j̇h1(G6>:01HD<%\b7tu6 ٓ+9 }=g}09. VQv@P]ƕk@e`Q?ǝwOdt`V)Yfh_1,d&0vZR:O JVTQ|*ecy7y[]m!"0Szp,1F%2L9B]R9PK{ӝ"S 8g~/|J\og~9~|h7D%7)F2s1sW>o\ ˕lB߂t I;C"<4wlBZi{UHf ˉ&f#rkARG{4Gѩ KI` k !E@v( ,^ۿ|h ~xnGMȱ _5 Xl\O<_j>[[8ɑ$[ ݈·h|NhpORc,7 EZ)@7\W|̶^6Cu|V&ppeyj>c5c5?]铗.Yn;938h2K`S"Mzo+iFrwGg>Qa6Rj%nl`>&bBS)L=x1oaB=^*%Zg65cC iS y/V)9 Ng(8%}$Gs=$^sLJ'B].X k2  ژҗi]"lͩ F@U43ԍe3Ǽ4;3)ŢX6,h ;ELd-zk~IQK9^$1k~5~Xzuߘ5*Jy{&q+_nc׊g[-ޓ^8Ծ WF3HPbB۵X}Lt ss.Lw3%ơٰNf*k<#3=vY;TXKh0\ ~S .ڝ)932M47޻q-B,]ČɌ8/dPXo+>6xaUNY٨f4ک}eBFr2Lc7j౶լXxvּ \tT'e'ن%~3OP .߯Ctt׾]1՘SXN6htR:LdGY>{O@3R/ |L2me-/h2- &MlR1*1L"</Lۙ-œ"Vyē+9v翠Ecfްdl'4e)M|ݨk|D_ȼ<1db qu/dflS9mD)^}cU1OLR0IiF%1i`@qwzĄs "Î SIO1"NNUF]$ sCFFAJ{G#XQdS 29VcH"uDE%YF\wȸ9MȈ;;>!ID}fsz/7({Q0zHHBulfBW-lL뺑-_j#?.2[*ɔީ9V,N^z8!岐O/<'J)W˂ %1m7޾}d)|ȤG1M仉گH_9ߑo~A9}lύׯ=ɇDq]o,F֙ÜʧuP+(YXKxMv xO+3Ƃk4U %w4JdRD7\b c{mP0I9HY%7+& 4Ck Fۑ9$-t)Ժr+|G?W=)OO,ׅ2<#Cx~2褼k/dL;ƲB-+̧#ڹvW8?hWg:HMրeܮqvEu b4abc%%8oòtTwB%fni"o8lc#ZFĹxA3P(]b/xc8$؞Wr},oD8.خ߮8C0Ȇ%ax4 g;@ VH Ip3Y!ޙaR]#pms+:2{dUKԄFQ+FkSy` LA$rh17J@%9i۫|I#JA HP;% F\C=mFGin /;mtb:=ga Jv.}$8qOt.² LSh5QEz 23qYF41Ĥ۠9Q9W[bUvdqd+ʠb͔uut4Tcȧ>֣Qy @<}&vjhD+u\A5$I! H"TaL$&hJوpV\jn3)%nͻ'A htL}5pP( qR'}15E,GhtFyPaTu-g\#hZ1 mw6_ٸ?@>5L9=|?X5E? x1ͯ0z{kCmXmmelnl庰<-ƛw+?=6n+L1šu|FI'K=!7ֺٕqp+m]~LAy~D:xz~L~a?9B-b))#ޠӅ o(weJ8z#L),ze9 r#NN9޶:&M^'Ю45l >X{%OsvfWR$zaʉvP,x|6 R."_ێ2ہ! l8ilaX-MdŌn.H(!`nш;$LEdIFɣQWЍ=#DdPBℎNڵ_")؍?)ޤC1deX 1vHM]Ahd),T}ַp ͘ځ%$Y$$FBX 'B8Aoo/a'=T:2 CtpzO~lvu?<='o" 6FkBg߾>VZpݞ9_s}|~ O'?wH_yVq&e]R~x^2'5dsZd}G `]|x&r;dG_%_n|H~ fVn +JrF,7h\Sx5a&rc4&/=uFу(Ho6X]n1EaѝPޏȶQPw^Wń,7޼y !e&b8o|0оl!*98I{eX. ޽yJm7o 7 H$цѶAoJʿoI +u$B9;M34^tkW%bp*<_xp,eJGNA /U>rE< ۆhA]5u dd Copyright (C) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, Boston, MA 02110-1301, USA. Also add information on how to contact you by electronic and paper mail. If the program is interactive, make it output a short notice like this when it starts in an interactive mode: Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License. ------------------------------------------------------------------------- ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/pyinstaller/background.pdf0000644000000000000000000004216314741736366020267 0ustar00rootroot%PDF-1.7 % 3 0 obj <> stream xڝwTTϽwz0z.0. Qf Ml@DEHb!(`HPb0dFJ|yyǽgs{.$O./ 'z8WGбx0Y驾A@$/7z HeOOҬT_lN:K"N3"$F/JPrb[䥟}Qd[Sl1x{#bG\NoX3I[ql2$ 8xtrp/8 pCfq.Knjm͠{r28?.)ɩL^6g,qm"[Z[Z~Q7%" 3R`̊j[~: w!$E}kyhyRm333: }=#vʉe tqX)I)B>== <8Xȉ9yP:8p΍Lg kk Ѐ$t!0V87`ɀ2A. @JPA#h'@8 .: ``a!2D!UH 2 dA>P ECqB**Z:]B=h~L2  5pN:|ó@ QC !H,G6 H9R ]H/r Aw( Q(OTJCm@*QGQ-(j MF+ 6h/*t:].G7Зw7 Xa<1:L1s3bXyeb~19 vGĩp+5qy^ oó|= ?'Htv`Ba3BDxHxE$Չ"XAP44077&9$An0;T2421t.54ld+s;# V]=iY9FgM֚k&=%Ō:nc1gcbcfX.}lGv{c)LŖN퉛w/p+/<j$.$%&㒣OdxTԂԑ4i3|o~C:&S@L u[Uo3C3OfIgwdO|;W-wsz 17jl8c͉̈́3+{%lKWr[ $ llGmnacOkE&EEY׾2⫅;K,KhtiN=e²{^-_V^Oo§s]?TWީrjVQ=w}`嚢zԶiו8>k׍ E  [ly邟~_Y53rW򯎼^{7so}x>|쇊z>yz endstream endobj 2 0 obj 2594 endobj 6 0 obj <> stream xڕSMo@ M%N+aSi]]n7hnBBaW-pI#A $oMxzPQ;ќ8O_"\ SZ]\ߠ~xV m>uDNBNrE!AIuRYzu`y5-ҾO "tAU=9"u: A}SWzyeECtOBeV%0 1(-onTёE~Y׫ݒEW7n&-"7BFP` ):1! !GNRf$E߃6]> RM g)ѓރpG5wRt?i7nxnN%*l~lY(c+n2s:ņT%z;m|c۳ˢvgNJǿzM endstream endobj 5 0 obj 462 endobj 11 0 obj <>/ColorSpace<>/ExtGState<>>> endobj 12 0 obj <> endobj 9 0 obj <> endobj 14 0 obj <> stream x]Kn0=2YDIVBH)i${g.j 'xxݜ=wlA`oNa&)SZzل/}&'5k[`͹]Sc,G][7oNf܄-oo~}UQZ`)v\gFH}8Uy JENY :cٱB#r8āP ( G=(("%jZl*ҚpB`c#5|,&o΅UKkgBV|* endstream endobj 16 0 obj 296 endobj 15 0 obj <>/FontDescriptor 17 0 R/DW 532 /W[36[591] 45[497] 49[478] 55[560] 59[528] 93[520] 95[558] 98[240] 109[558] 111[567] 117[364 433] 124[359] 311[227] 314[236] 1140[236] ]>> endobj 17 0 obj <> endobj 13 0 obj <> stream x|Tǵϭ@ ĮV] i%E Zt$alp v<\8vp/W`,ĉ[bIlR~3X p'%Ք{33g;(DgmMK;9?]7?&.$ zڳ O4~"ѸVvu/uEDOB`%22A!r{K&ehD ]ms}Wmfz7tDWH?@?gvnZ" - -Rn?S#/\+}6tOJrrmB!~[Èk+Flv/XyJ.G9m-llSzMmli4۶ka&&=`%+ut8v<H ʥ Nviik䔖iBfAkalZ'ަXc0:4d)î0mĮ6E] d+{=O&dz<<&9mx܆ )fMqTi hץNePګlQ8)ޚMʰ#meۅg(hfoC|OÃ͸efqg P;4[:Pd4*_v{V0o5yD #h#\ZD' x ududa"B$ԑɨ# SPG,LCYtJPs9QlFxݼ;0}le95WL 'mEfƾSCɥ weg (BTM3k͜|9i 9B0NY8˧{BR](Т<>u}1ۊ\Z3+ԥ|(a %l˲ղ UڵQ ] Q(V&q-ٵ+a³O\ed<R6{惢MS8OVXSvsJ^f c/MrunGl{P%f %@RS0 +PIOYy%r'BOc:!GI1u(jJxff8jYaJXLRSsk#icu\MFjktԩF36}]e&e1̀a.d d Ӈ+FJRҩeUN8s f=YݒeA=<|eˁIb<F6ǪK&į5L`;Lnr-eLNYZς"#|Z!z6KOOl8jqAd."sxN"AdaF&"MLE2JD1YdXɰɸia2,dXd aLf"˘ ,g2,e2,dig2,dXɰHS6n[c[Hrj%ҫYK1&ǘ:V:,%h1^c}NlXtKp3xn1&z`,LڥII }kH&ƒO|*2"IDI%Ay= Q"ŠUV:( @vԓji]VȘ8)3\ FE!#5\Kq$ԈR)=^-5}ŬWAC;g*̱*N/J;<':mRXؤJ~.2)QZTPĩiYҦGG;]6]-%@ߐ+&'J$K:aaarLfϷۆreG/gT,ye @{}%1B]\BUQ-J/)(M(Ml%Q\JZeA:!&-,g{*"RSB3`)*2A[. k ,1?U*8uS\e5nzd͋hLݴ|Z9+~ww{2;&<.@xF[6-9,")&o(ܳXorqjgQ<דּ`&SY!'t 1%B3L$$^6$q=kja HKq98C`fejd?eL͍ZCCo1g]ueSarx\{S7WO?{5KAbb;4/maRg\y} XF9 5+% $GjڛNTE骇05UDSD;m']c{$18$$$9$9-))%)dƂyv_+${ƙ$Vy˚wXZy˺{: J{w/(O=ߚ0K?Ӌ)mmG+,zRHYUz-Z r$yUQsE#w-kѺH"gFj}rlLxeMFe y'UˈcCu$oclU%z W \0m}O*cJMgfdEWO¡䴒K۱甝qڌ=˳''MC| }YŜvR"$ zQ:AT$tj, ŀf*R;VO^sW2q"XBIOŤ$IK[=œ,[BtdL)@|jaeɩoGDEц5U#XP%p`l/XP4oھIE MV-u\W7süCg$w^v-{zK*e}P{jCz뗺 y%q9URPwHWLRr<κ#ԝ0kDfS9cEQZEra0_|V`GTɰQ 㪲 2U~Eօ΃̻d]{?W茭+GPhr#"fc?E^FQlvwB׈ DVP[DnEEFE=[d}W^ov_}UR͏5kc7Ywlz.{5S|k^CU0=b]|={ksd3%D3wP9dƝwbQ6tPTbAcQI[si$f:! 1$;`hYXyfpE&;M": _%SJ%XL'b݉UʲϘO+JMN&љʚ%%ИkS]R}E|s\lHJ<̩e\{4 xAYܼXWu%?YixlSR&Jش8z|ĉYl孕ϙ^heRxfE`)l~4 X<_7[hbL-* mB(&O dVS%1%y`eBaDP"aEF{" %] k,21=!='[ĵQBqH PQ0s ڶfa)~kLEd@d*z,zAaT&'\mvNūEʫ,HȚ;eS˸K4.dWENMp-oIa?Ve6'pZ+pxM6ffO=+..Y1#ĈD+V؊h63LkI4B!)M_\< ĺn;N>o]ǿV_ =Wo(=3_DJLR,5xTh9T1E4YkhUshR4&(.\bYhWj%-cX/"<yrOQ ?H.Q:YchN;$RTPZR5I&, qhN aʶ$QvuLE|2WQ|6Ml>EhQw3a\JS,(˃^B:yPD|&C}LxcCxG@xWP*^+uh:W_A؆4_=fENJDylث"TTQRA^Dʂ]] o&&̏_b̬R,=J lzMJ?Uˋ/}wr[<~S6eEw XGyմD ݦ| yt%ބzݍ:Y uP.|~ʰVSt洍 Hz+L.MZZ>?]Q?E g,^/?p~9d _?i?{|b򤥘?X߆}+?})?|}QBf"-?_@Wul .vvyVN%`GI"/#~ ֜uC]2z?Q5 񣟳*PK+iΘ)Y)F|x[a`mP)VC{D]B9ғħ(k8z>wz3|>K$h:D=J_x2`CH N=hft1EQ{+okԌd؃}t|H^?obE=5.Oa=(__XOR+/}r0?RAy̠4)}CQ\x~Q$ 4a\po>Q-䏇@4~SlՔ-^k @)cy6=Y~H䀏ZFRx)&bӅkE4Eʁ-zW_EX#QY1sΥTxMSPm7[X x.ͅ(baO79|M9b~Ϋ ?eOLB>(¸!~-ŸF2^<x |ip3 @?U=k9~ r@B)\< oq ͽߣGs9C,`w)ٽE1Xi%̇nC;Kا\$rw#(}AqJ&m'Wc|ʅ/Vi_R (T yxYtJB ZaC_lu5k=P|`)-Wm;x HCé/nQd0X̕}Ԅ0܇2߯ >9:dOj;nlMR`;E9d/5P35`'sEΤp///-]'z ԉaW\qSuT`f{&*/l?33 G@pd hA,̽H%1RP|,s/luF}W <lB^V~ݛO6V fc7Яn9f;L8ic ꄭȠ5bl&:ov-.:ƚ[*l܇lsh-!S4 J.!d ۷b_*އ}2a{wD@? Lڌ{-oa 9(w'Qon?}_4uY7a_}"*QHJc%/h`d (.a ރp/Xﭰ{>whL/kޭ-{C{߇w.67țo?3gw2?{&ސ3G?a4ч~x tï>Pʍ=nQg\AQ&m+Բ@x2FV;-`? 8B5XZbZV21\'aOl@f0?sgղW'ZQ;/W)үW+5r?ۧß:Ml%~yJ|g>1(yf iS|@5 ??_W1ڃEpgeϚg<{($g9`@ˎo6Ǿ6`uzǍ/ExoGx_$ߊ$߇Tq:+8-0Xz\0!vp1.vc~{ќSuȜlx<J086 vai{l\3Ea\;WK֛՟e#ˀ G ŠDTe~=f=7W[{e$u8n|]6\Jf&Q j| ;P&þ̤QkGN}*r,ij|ߕOY9o|5Y`K WCd.1"|-e@x/7Ͱ܊А?71bP "mCt+cDaL#?bhFZxO81Ch<>p{Gjbge>џ5^Kw~545U"Gn BN8%~gnN퐝mkc?Nc߫)wq]&9o<_}/5b猞'x2#Řy29/Pp|t}H',5&nJNx5`a}'7mpwʜksS`|XHP 6?obg/y-:ji1~f+Z-v^<% Jy#kQXG6~fbؙ-d~V?.^Aߦ6 \ NW<'sWg~S`p]3nj"# p}%{dKň? ;ç*5ڿ7vmĹ7 y6;ήkۨsL<6@gceϝNA7*uZy/GSi[+H"~A+?c ?/4v~h]nȀC#\7!Vg?EX=鳤IˤXJbgAv~wvmy6ew1ؙC]><"xRpe3~N3sj b4Fqw9?ξ= ٻtr(ƹyBB3@[#P"we`ǽ?l4(Stc8c1c1c1qc1c1c1c1c1c1c1? >ҥH M_&$\Y< {<`}VݷeFAB,Q1:Z[c,Z.Vk䩪MYAUL-d[6HV=BxY=$߬UlzкbgGb\uui(24@g endstream endobj 19 0 obj 10093 endobj 18 0 obj 31096 endobj 7 0 obj <> endobj 8 0 obj <> endobj 10 0 obj <> endobj 4 0 obj <>/MediaBox[0 0 508.553 297.52]>> endobj 1 0 obj <> endobj 22 0 obj <> stream uuid:E62646E6-AE79-6255-B771-765572E246BF uuid:58D8C5EF-EB99-3ACF-D4B3-C2E40296B310 2018-03-26T17:48:10+02:00 2018-03-26T17:48:10+02:00 Serif Affinity 2018-03-26T17:48:10+02:00 PDFlib+PDI 9.0.5-i (Mac OS X-10.9 64) false background.pdf endstream endobj 21 0 obj 1491 endobj 23 0 obj <> endobj 20 0 obj [/ICCBased 3 0 R] endobj xref 0 24 0000000000 65535 f 0000015154 00000 n 0000002703 00000 n 0000000015 00000 n 0000015015 00000 n 0000003255 00000 n 0000002723 00000 n 0000014877 00000 n 0000014927 00000 n 0000003616 00000 n 0000014972 00000 n 0000003274 00000 n 0000003401 00000 n 0000004652 00000 n 0000003751 00000 n 0000004139 00000 n 0000004119 00000 n 0000004453 00000 n 0000014854 00000 n 0000014832 00000 n 0000016859 00000 n 0000016776 00000 n 0000015206 00000 n 0000016797 00000 n trailer <]>> startxref 16893 %%EOF ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/pyinstaller/create-dmg.sh.in0000644000000000000000000000517414741736366020427 0ustar00rootroot#!/usr/bin/env bash set -e # Get the root folder. ROOT="${PWD}" # Path to the built application. APP1=__DISTDIR__/PyMca__VERSION__.app #APP2="${ROOT}"/dist/PyMcaBatch.app #APP3="${ROOT}"/dist/PyMcaPostBatch.app #APP4="${ROOT}"/dist/QStackWidget.app # Path to resources (volume icon, background, ...). RESOURCES="${ROOT}" # Other paths. ARTIFACTS="${ROOT}"/artifacts TEMPLATE="${ARTIFACTS}"/template TEMPLATE_DMG="${ARTIFACTS}"/template.dmg DMG="${ARTIFACTS}"/PyMca__VERSION__.dmg # Create the artifacts folder if if doesn't exits [ ! -d "$ARTIFACTS" ] && mkdir -p "$ARTIFACTS" echo "Removing previous images." if [[ -e "${DMG}" ]]; then rm -rf "${DMG}"; fi echo "Copying required files." mkdir -p "${TEMPLATE}"/.background cp -a "${RESOURCES}"/background.pdf "${TEMPLATE}"/.background/background.pdf cp -a "${RESOURCES}"/../../icons/PyMca.icns "${TEMPLATE}"/.VolumeIcon.icns cp -a "${RESOURCES}"/DS_Store "${TEMPLATE}"/.DS_Store cp -a "${APP1}" "${TEMPLATE}"/PyMca__VERSION__.app #cp -a "${APP2}" "${TEMPLATE}"/PyMcaBatch.app #cp -a "${APP3}" "${TEMPLATE}"/PyMcaPostBatch.app #cp -a "${APP4}" "${TEMPLATE}"/QStackWidget.app ln -s /Applications/ "${TEMPLATE}"/Applications # Create a regular .fseventsd/no_log file # (see http://hostilefork.com/2009/12/02/trashes-fseventsd-and-spotlight-v100/ ) mkdir "${TEMPLATE}"/.fseventsd touch "${TEMPLATE}"/.fseventsd/no_log echo "Creating the temporary disk image." hdiutil create -format UDRW -volname PyMca__VERSION__ -fs HFS+ \ -fsargs '-c c=64,a=16,e=16' \ -srcfolder "${TEMPLATE}" \ "${TEMPLATE_DMG}" hdiutil detach /Volumes/PyMca__VERSION__ -force || true echo 'Attaching the temporary disk image in read/write mode.' MOUNT_OUTPUT=$(hdiutil attach -readwrite -noverify -noautoopen "${TEMPLATE_DMG}" | grep '^/dev/') DEV_NAME=$(echo -n "${MOUNT_OUTPUT}" | head -n 1 | awk '{print $1}') MOUNT_POINT=$(echo -n "${MOUNT_OUTPUT}" | tail -n 1 | awk '{print $3}') echo 'Fixing permissions.' chmod -Rf go-w "${TEMPLATE}" || true # Makes the disk image window open automatically when mounted. #/usr/sbin/bless -openfolder "${MOUNT_POINT}" # -openfolder not supported on Ventura Apple Silicon # Hides background directory even more. SetFile -a V "${MOUNT_POINT}"/.background # Sets the custom icon volume flag so that volume has nice icon. SetFile -a C "${MOUNT_POINT}" echo "Detaching the temporary disk image" hdiutil detach "${DEV_NAME}" -force if [[ -e "${DMG}" ]]; then rm -rf "${DMG}"; fi echo 'Converting the temporary image to a compressed image.' hdiutil convert "${TEMPLATE_DMG}" -format UDZO -imagekey zlib-level=9 -o "${DMG}" echo 'Cleaning up.' rm -rf "${TEMPLATE}" rm -rf "${TEMPLATE_DMG}" ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/pyinstaller/nsisscript.nsi.in0000644000000000000000000001427014741736366020774 0ustar00rootroot;-------------------------------- ;Product Info Name "__PROGRAM__ __VERSION__" ;Define your own software name here !define PRODUCT "__PROGRAM__" ;Define your own software name here !define VERSION "__VERSION__" ;Define your own software version here CRCCheck On ; Script create for version 2.0b4 1.40 (from 09.sep.03) with GUI NSIS (c) by Dirk Paehl. Thank you for use my program !include "MUI.nsh" !include "x64.nsh" Function .onInit ${If} ${RunningX64} ${EnableX64FSRedirection} ${else} MessageBox MB_OK "Sorry this version only runs on windows 64 bit. Download the 32bit version" Abort ${EndIf} FunctionEnd ; For icon association !define SHCNE_ASSOCCHANGED 0x08000000 !define SHCNF_IDLIST 0 Function RefreshShellIcons ; By jerome tremblay - april 2003 System::Call 'shell32.dll::SHChangeNotify(i, i, i, i) v \ (${SHCNE_ASSOCCHANGED}, ${SHCNF_IDLIST}, 0, 0)' FunctionEnd ;-------------------------------- ;Configuration OutFile "__OUTFILE__" ;Folder selection page InstallDir "$PROGRAMFILES64\${PRODUCT} ${VERSION}" ;Remember install folder InstallDirRegKey HKCU "Software\${PRODUCT} ${VERSION}" "" ;-------------------------------- ;Pages !insertmacro MUI_PAGE_LICENSE "__LICENSE_FILE__" !insertmacro MUI_PAGE_DIRECTORY !insertmacro MUI_PAGE_INSTFILES !insertmacro MUI_PAGE_FINISH !insertmacro MUI_UNPAGE_CONFIRM !insertmacro MUI_UNPAGE_INSTFILES !define MUI_ABORTWARNING ;-------------------------------- ;Language !insertmacro MUI_LANGUAGE "English" ;-------------------------------- ;Icon "${NSISDIR}\Contrib\Graphics\Icons\win-install.ico" Icon "__ICON_PATH__" UninstallIcon "${NSISDIR}\Contrib\Graphics\Icons\win-uninstall.ico" ;Installer Sections Section "section_1" section_1 SetOutPath "$INSTDIR" FILE /r "__SOURCE_DIRECTORY__\*.*" SectionEnd Section Shortcuts SetOutPath "$PROFILE" Call RefreshShellIcons CreateDirectory "$SMPROGRAMS\${PRODUCT} ${VERSION}" WriteIniStr "$INSTDIR\PyMca.url" "InternetShortcut" "URL" "http://pymca.sourceforge.net/" CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca Home page.lnk" "$INSTDIR\PyMca.url" "" "$INSTDIR\PyMca.url" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca.lnk" "$INSTDIR\PyMcaMain.exe" "" "$INSTDIR\PyMcaMain.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMca Fresh Start.lnk" "$INSTDIR\PyMcaMain.exe" "-f" "$INSTDIR\PyMcaMain.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Identify Peak.lnk" "$INSTDIR\PeakIdentifier.exe" "" "$INSTDIR\PeakIdentifier.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Elements.lnk" "$INSTDIR\ElementsInfo.exe" "" "$INSTDIR\ElementsInfo.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\PyMcaBatch.lnk" "$INSTDIR\PyMcaBatch.exe" "" "$INSTDIR\PyMcaBatch.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\EDF Viewer.lnk" "$INSTDIR\EdfFileSimpleViewer.exe" "" "$INSTDIR\EdfFileSimpleViewer.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Fit to Spec Converter.lnk" "$INSTDIR\Fit2Spec.exe" "" "$INSTDIR\Fit2Spec.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Mca to Edf Converter.lnk" "$INSTDIR\Mca2Edf.exe" "" "$INSTDIR\Mca2Edf.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\RGB Correlator.lnk" "$INSTDIR\PyMcaPostBatch.exe" "" "$INSTDIR\PyMcaPostBatch.exe" 0 CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\ROI Imaging Tool.lnk" "$INSTDIR\QStackWidget.exe" "" "$INSTDIR\QStackWidget.exe" 0 #CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\ROI Imaging Tool (OLD).lnk" "$INSTDIR\QStackWidget.exe" "--old" "$INSTDIR\QStackWidget.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT}${VERSION}\EDF Binning Tool.lnk" "$INSTDIR\EdfBinWidget.exe" "" "$INSTDIR\EdfBinWidget.exe" 0 ;CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Xia Correction Tool.lnk" "$INSTDIR\XiaCorrect.exe" "" "$INSTDIR\XiaCorrect.exe" 0 SectionEnd Section Uninstaller CreateShortCut "$SMPROGRAMS\${PRODUCT} ${VERSION}\Uninstall.lnk" "$INSTDIR\uninst.exe" "" "$INSTDIR\uninst.exe" 0 WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "DisplayName" "${PRODUCT} ${VERSION}" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "DisplayVersion" "${VERSION}" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "URLInfoAbout" "http://pymca.sourceforge.net" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "Publisher" "V.A. Sol - ESRF Software Group" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\${PRODUCT} ${VERSION}" "UninstallString" "$INSTDIR\Uninst.exe" WriteRegStr HKCU "Software\${PRODUCT} ${VERSION}" "" $INSTDIR WriteUninstaller "$INSTDIR\Uninst.exe" SectionEnd ;-------------------------------- ;Descriptions ;-------------------------------- ;Uninstaller Section Section "Uninstall" ;Add your stuff here ;Delete Files Delete "$INSTDIR\mpl-data\*.*" Delete "$INSTDIR\.matplotlib\*.*" Delete "$INSTDIR\attdata\*.*" Delete "$INSTDIR\HTML\IMAGES\*.*" Delete "$INSTDIR\HTML\PyMCA_files\*.*" Delete "$INSTDIR\HTML\*.*" Delete "$INSTDIR\*.*" ;Delete Start Menu Shortcuts Delete "$SMPROGRAMS\PyMca ${VERSION}\*.*" RmDir "$SMPROGRAMS\PyMca ${VERSION}" SetShellVarContext all Delete "$SMPROGRAMS\PyMca ${VERSION}\*.*" RmDir "$SMPROGRAMS\PyMca ${VERSION}" ;Delete Uninstaller And Unistall Registry Entries DeleteRegKey HKEY_CLASSES_ROOT "Applications\PyMcaPostBatch.exe" DeleteRegKey HKEY_CLASSES_ROOT "Applications\QEDFStackWidget.exe" DeleteRegKey HKEY_CLASSES_ROOT "Applications\EdfFileSimpleViewer.exe" DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\PyMca ${VERSION}" DeleteRegKey HKEY_LOCAL_MACHINE "SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\PyMca ${VERSION}" DeleteRegKey HKEY_CURRENT_USER "SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MenuOrder\Start Menu\Programs\PyMca ${VERSION}" DeleteRegKey HKEY_CURRENT_USER "SOFTWARE\PyMca ${VERSION}" RMDir "$INSTDIR\mpl-data" RMDir "$INSTDIR\.matplotlib" RMDir "$INSTDIR\attdata" RMDir "$INSTDIR\HTML\IMAGES" RMDir "$INSTDIR\HTML\PyMCA_files" RMDir "$INSTDIR\HTML" RMDir /r "$INSTDIR" SectionEnd ;eof ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/package/pyinstaller/pyinstaller.spec0000644000000000000000000006171114741736366020677 0ustar00rootroot# -*- mode: python -*- import sys import os from pathlib import Path import shutil import subprocess import time import logging import PyInstaller from PyInstaller.utils.hooks import collect_data_files, collect_submodules from PyInstaller.config import CONF logger = logging.getLogger("pyinstaller") DISTDIR = os.path.abspath(CONF["distpath"]) BUILDDIR = os.path.abspath(CONF["workpath"]) logger.info("Using temporary build dir <%s>" % BUILDDIR) logger.info("Using temporary dist dir <%s>" % DISTDIR) datas = [] PROJECT_PATH = os.path.abspath(os.path.join(SPECPATH, "..", "..")) datas.append((os.path.join(PROJECT_PATH, "README.rst"), ".")) datas.append((os.path.join(PROJECT_PATH, "LICENSE"), ".")) datas.append((os.path.join(PROJECT_PATH, "copyright"), ".")) #datas += collect_data_files("silx.resources") if sys.platform.startswith('darwin'): icon = os.path.join(PROJECT_PATH, "icons", "PyMca.icns") else: icon = os.path.join(PROJECT_PATH, "icons", "PyMca.ico") logger.info("Using icon <%s>" % icon) hiddenimports = ["secrets"] # needed by numpy 1.23.2 hiddenimports += collect_submodules('encodings.ascii') hiddenimports += collect_submodules('encodings.utf_8') hiddenimports += collect_submodules('encodings.latin_1') #hiddenimports += collect_submodules('fabio') #hiddenimports += collect_submodules('PyQt5.uic') #hiddenimports += collect_submodules('hdf5plugin') #hiddenimports += collect_submodules('fisx') #hiddenimports += collect_submodules('PyMca5.PyMcaGui.PyMcaQt') #hiddenimports += collect_submodules('PyMca5.PyMcaGui.pymca') # they will be added in full excludes = ["fabio", "hdf5plugin", "silx"] # if this module is included, the interactive console does not work excludes.append("debugpy") # This module basically does not work with frozen versions excludes.append("multiprocessing") # get the script list import PyMca5 version = PyMca5.version() PyMcaDir = os.path.abspath(os.path.dirname(PyMca5.__file__)) exec_dict = {"PyMcaMain": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaMain.py"), "PyMcaBatch": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaBatch.py"), "QStackWidget":os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "QStackWidget.py"), "PyMcaPostBatch": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "PyMcaPostBatch.py"), "EdfFileSimpleViewer": os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "EdfFileSimpleViewer.py"), } if not sys.platform.startswith("darwin"): exec_dict["PeakIdentifier"] = os.path.join(PyMcaDir, "PyMcaGui", \ "physics", "xrf", "PeakIdentifier.py") exec_dict["Mca2Edf"] = os.path.join(PyMcaDir, "PyMcaGui", \ "pymca", "Mca2Edf.py") exec_dict["ElementsInfo"] = os.path.join(PyMcaDir, "PyMcaGui", \ "physics", "xrf", "ElementsInfo.py") # for fast testing uncomment the following two lines #exec_dict = {"PyMcaMain": os.path.join(PyMcaDir, "PyMcaGui", \ # "pymca", "PyMcaMain.py")} script_n = [] script_l = [] for key in exec_dict: script_l.append(exec_dict[key]) script_n.append(key) block_cipher = None script_a = [] for i in range(len(script_l)): script = script_l[i] cwd = Path(SPECPATH) print("Copying %s to %s" % (script, script_n[i])) if os.path.exists(script_n[i]): os.remove(script_n[i]) shutil.copy2( src = script, dst = os.path.join(cwd, script_n[i]), ) script_a.append(Analysis( [script_n[i]], pathex=[], binaries=[], datas=datas, hiddenimports=hiddenimports, hookspath=[], runtime_hooks=[], excludes=excludes, win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False)) #script_a[-1].pure = [x for x in script_a[-1].pure if not x[0].startswith("PyMca5.")] if 0: # avoid merge if len(script_a) == 2: MERGE( (script_a[0], script_n[0], os.path.join(script_n[0], script_n[0])), (script_a[1], script_n[1], os.path.join(script_n[1], script_n[1])), ) elif len(script_a) == 3: MERGE( (script_a[0], script_n[0], os.path.join(script_n[0], script_n[0])), (script_a[1], script_n[1], os.path.join(script_n[1], script_n[1])), (script_a[2], script_n[2], os.path.join(script_n[2], script_n[2])), ) elif len(script_a) == 4: MERGE( (script_a[0], script_n[0], os.path.join(script_n[0], script_n[0])), (script_a[1], script_n[1], os.path.join(script_n[1], script_n[1])), (script_a[2], script_n[2], os.path.join(script_n[2], script_n[2])), (script_a[3], script_n[3], os.path.join(script_n[3], script_n[3])), ) elif len(script_a) >= 5: MERGE( (script_a[0], script_n[0], os.path.join(script_n[0], script_n[0])), (script_a[1], script_n[1], os.path.join(script_n[1], script_n[1])), (script_a[2], script_n[2], os.path.join(script_n[2], script_n[2])), (script_a[3], script_n[3], os.path.join(script_n[3], script_n[3])), (script_a[4], script_n[4], os.path.join(script_n[4], script_n[4])), ) script_pyz = [] script_exe = [] script_col = [] for i in range(len(script_a)): script_pyz.append(PYZ(script_a[i].pure, script_a[i].zipped_data, cipher=block_cipher)) arch = os.getenv("PYMCA_PYINSTALLER_TARGET_ARCH") if arch: script_exe.append( EXE( script_pyz[i], script_a[i].scripts, script_a[i].dependencies, [], exclude_binaries=True, name=script_n[i], debug=False, bootloader_ignore_signals=False, strip=False, upx=False, console=True, icon=icon, target_arch=arch) ) else: script_exe.append( EXE( script_pyz[i], script_a[i].scripts, script_a[i].dependencies, [], exclude_binaries=True, name=script_n[i], debug=False, bootloader_ignore_signals=False, strip=False, upx=False, console=True, icon=icon) ) script_col.append( COLLECT( script_exe[i], script_a[i].binaries, script_a[i].zipfiles, script_a[i].datas, strip=False, upx=False, name=script_n[i]) ) def move_exe(name): dist = DISTDIR if sys.platform.startswith("darwin"): shutil.copy2( src=os.path.join(dist, name, name), dst=os.path.join(dist, script_n[0]) ) else: shutil.copy2( src=os.path.join(dist, name, name + ".exe"), dst=os.path.join(dist, script_n[0]) ) shutil.rmtree(os.path.join(dist, name)) if len(script_a) > 1: for n in script_n[1:]: move_exe(n) # Mandatory modules to be integrally included in the frozen version. # One can add other modules here if not properly detected # (PyQt5 and PySide6 seem to be properly handled, if not, add to special_modules) import PyMca5 import fisx import h5py import numpy import matplotlib import ctypes import hdf5plugin program = "PyMca" version = PyMca5.version() special_modules = [os.path.dirname(PyMca5.__file__), os.path.dirname(fisx.__file__), os.path.dirname(h5py.__file__), #os.path.dirname(numpy.__file__), #os.path.dirname(ctypes.__file__), os.path.dirname(hdf5plugin.__file__), ] # this block can be needed for matplotlib MATPLOTLIB_FROM_PYINSTALLER = True if not MATPLOTLIB_FROM_PYINSTALLER: special_modules.append(os.path.dirname(matplotlib.__file__)) # recent versions of matplotlib need packaging, PIL and pyparsing try: import packaging special_modules.append(os.path.dirname(packaging.__file__)) except: pass try: import PIL special_modules.append(os.path.dirname(PIL.__file__)) except: pass try: import pyparsing special_modules.append(os.path.dirname(pyparsing.__file__)) except: pass try: import dateutil special_modules.append(os.path.dirname(dateutil.__file__)) except: pass try: import mpl_toolkits.mplot3d.axes3d as axes3d special_modules.append(os.path.dirname(os.path.dirname(axes3d.__file__))) except: pass try: import six special_modules.append(six.__file__) except: pass try: import cycler special_modules.append(cycler.__file__) except: pass try: import uuid special_modules.append(uuid.__file__) except: pass excludes = [] try: import OpenGL special_modules += [os.path.dirname(OpenGL.__file__)] except ImportError: logger.info("OpenGL not available, not added to the frozen executables") # This adds the interactive console but probably I should aim at an older # version to reduce binary size. Tested with IPython 7.4.0 try: import IPython import pygments import qtconsole import asyncio import ipykernel import zmq #includes.append("colorsys") special_modules += [os.path.dirname(IPython.__file__)] special_modules += [os.path.dirname(pygments.__file__)] special_modules += [os.path.dirname(qtconsole.__file__)] special_modules += [os.path.dirname(asyncio.__file__)] special_modules += [os.path.dirname(ipykernel.__file__)] special_modules += [os.path.dirname(zmq.__file__)] try: import ipython_genutils special_modules += [os.path.dirname(ipython_genutils.__file__)] except: pass try: import qtpy special_modules += [os.path.dirname(qtpy.__file__)] except: pass except ImportError: logger.info("qtconsole not available, not added to the frozen executables") try: import silx import fabio import xml # needed by fabio special_modules += [os.path.dirname(silx.__file__), os.path.dirname(fabio.__file__), os.path.dirname(xml.__file__),] SILX = True except ImportError: logger.info("silx not available, not added to the frozen executables") SILX = False try: import freeart import tomogui special_modules += [os.path.dirname(freeart.__file__), os.path.dirname(tomogui.__file__)] except ImportError: logger.info("tomogui not available, not added to the frozen executables") # package used by silx and probably others that is not always added properly # always add it because it is small try: import pkg_resources special_modules += [os.path.dirname(pkg_resources.__file__)] excludes += ["pkg_resources"] except ImportError: logger.info("pkg_resources could not be imported") # pyopencl needs special treatment try: import pyopencl import mako import cffi import pytools OPENCL = True except: OPENCL = False if sys.platform.lower().startswith("linux"): # no sense to freeze OPENCL = False if OPENCL: special_modules.append(os.path.dirname(pyopencl.__file__)) special_modules.append(os.path.dirname(mako.__file__)) special_modules.append(os.path.dirname(cffi.__file__)) special_modules.append(os.path.dirname(pytools.__file__)) #includes.append("decorator") else: excludes.append("pyopencl") # other generic packages not always properly detected but that are small and # desirable to have import collections special_modules += [os.path.dirname(collections.__file__)] # no scipy (huge package not used by PyMca) excludes += ["scipy"] # give some time to read the output time.sleep(2) def cleanup_cache(topdir): # cleanup __pycache__ for root, dirs, files in os.walk(topdir): for dirname in dirs: if dirname == "__pycache__": print("deleting ",os.path.join(topdir, dirname)) shutil.rmtree(os.path.join(topdir, dirname)) else: cleanup_cache(os.path.join(topdir, dirname)) def replace_module(name): dest = os.path.join(DISTDIR, script_n[0]) if PyInstaller.__version__ >= '6.0.0': if sys.platform.startswith("darwin"): target = os.path.join(dest, "special_modules") else: target = os.path.join(dest, "_internal") if not os.path.exists(target): os.mkdir(target) target = os.path.join(target, os.path.basename(name)) else: target = os.path.join(dest, os.path.basename(name)) print("source = ", name) print("dest = ", target) if os.path.exists(target): if os.path.isdir(target): shutil.rmtree(target) else: os.remove(target) if os.path.isdir(name): shutil.copytree(name, target) else: shutil.copy2(src=name, dst=target) cleanup_cache(target) for name in special_modules: replace_module(name) # cleanup copied files for fname in script_n: os.remove(fname) # cleanup copied files for fname in script_n: if os.path.exists(fname): os.remove(fname) # patch silx if SILX: if PyInstaller.__version__ >= '6.0.0': if sys.platform.startswith("darwin"): fname_dir = os.path.join(DISTDIR, script_n[0], "special_modules", "silx", "gui","qt") else: fname_dir = os.path.join(DISTDIR, script_n[0], "_internal", "silx", "gui","qt") else: fname_dir = os.path.join(DISTDIR, script_n[0], "silx", "gui","qt") for name in ["_qt.py", "__init__.py"]: fname = os.path.join(fname_dir, name) if os.path.exists(fname): logger.info("###################################################################") logger.info("Patching silx") logger.info(fname) logger.info("###################################################################") f = open(fname, "r") content = f.readlines() f.close() f = open(fname, "w") for line in content: #f.write(line.replace("from PyQt5.uic import loadUi", "pass")) #f.write(line.replace("from PyQt6.uic import loadUi", "pass")) if "import loadUi" in line: f.write(line.replace("from ", "pass #")) else: f.write(line) f.close() else: logger.info("###################################################################") logger.info("Cannot patch silx. File not found") logger.info(fname) logger.info("###################################################################") # patch OpenCL if OPENCL: # pyopencl __init__.py needs to be patched if PyInstaller.__version__ >= '6.0.0': exe_win_dir = os.path.join(DISTDIR, script_n[0], "_internal") else: exe_win_dir = os.path.join(DISTDIR, script_n[0]) initFile = os.path.join(exe_win_dir, "pyopencl", "__init__.py") logger.info("###################################################################") logger.info("Patching pyopencl file") logger.info(initFile) logger.info("###################################################################") f = open(initFile, "r") content = f.readlines() f.close() i = 0 i0 = 0 for line in content: if "def _find_pyopencl_include_path():" in line: i0 = i - 1 elif (i0 != 0) and ("}}}" in line): i1 = i break i += 1 f = open(initFile, "w") for i in range(0, i0): f.write(content[i]) txt ='\n' txt +='def _find_pyopencl_include_path():\n' txt +=' from os.path import dirname, join, realpath\n' txt +=" return '\"%s\"' % join(realpath(dirname(__file__)), \"cl\")" txt +="\n" txt +="\n" f.write(txt) for line in content[i1:]: f.write(line) f.close() time.sleep(2) for i in range(len(script_col)): app = BUNDLE( script_col[i], name=script_n[i] + ".app", icon=icon, bundle_identifier="com.esrf.pymca.mac", info_plist={ "CFBundleIdentifier": "com.github.vasole.pymca", "CFBundleShortVersionString": version, "CFBundleVersion": "PyMca " + version, "LSBackgroundOnly": False, "LSTypeIsPackage": True, "LSMinimumSystemVersion": "10.9.0", "NSHumanReadableCopyright": "MIT", "NSHighResolutionCapable": True, "NSPrincipalClass": "NSApplication", "NSAppleScriptEnabled": False, }, ) # make all the .app share the same resources if sys.platform.startswith("darwin"): source = os.path.join(DISTDIR, script_n[0],"") destination = os.path.join(DISTDIR, script_n[0] + ".app", "Contents", "MacOS") cmd = "cp -Rf %s %s" % (source, destination) result = os.system(cmd) if result: raise IOError("Unsuccessful copy command <%s>" % cmd) subprocess.call( [ "codesign", "--remove-signature", os.path.join(DISTDIR, script_n[0] + ".app", "Contents", "MacOS", "Python"), ] ) if len(script_n) > 1: cwd = os.getcwd() for script in script_n[1:]: source = os.path.join(DISTDIR, script + ".app" ,"Contents", "MacOS") os.chdir(os.path.dirname(source)) cmd = "rm -Rf MacOS" result = os.system(cmd) if result: os.chdir(cwd) raise IOError("Unsuccessful command <%s>" % cmd) target = os.path.join("..", "..", script_n[0] + ".app", "Contents", "MacOS") cmd = "ln -s %s %s" % (target, "MacOS") result = os.system(cmd) if result: os.chdir(cwd) raise IOError("Unsuccessful %s" % cmd) os.chdir(cwd) # rename the application version = PyMca5.version() source = os.path.join(DISTDIR, script_n[0] + ".app") dest = os.path.join(DISTDIR, "PyMca%s.app" % version) if os.path.exists(dest): shutil.rmtree(dest) os.rename(source, dest) # relocate the special modules special_modules_dir = os.path.join(dest, "Contents", "MacOS", "special_modules") if os.path.exists(special_modules_dir): source = os.path.join(special_modules_dir, "*") dest = os.path.join(dest, "Contents", "Frameworks") cmd = "cp -Rf %s %s" % (source, dest) print(cmd) os.system(cmd) source = source[:-1] print("deleting %s" % source) shutil.rmtree(source) # remove the duplicated _internal directory internal_modules_dir = os.path.join( \ DISTDIR, "PyMca%s.app" % version, "Contents", "MacOS", "_internal") if os.path.exists(internal_modules_dir): print("deleting %s" % internal_modules_dir) shutil.rmtree(internal_modules_dir) # Pack the application destination = os.path.join(SPECPATH, "artifacts") if os.path.exists(destination): shutil.rmtree(destination) outFile = os.path.join(SPECPATH, "create-dmg.sh") f = open(os.path.join(SPECPATH, "create-dmg.sh.in"), "r") content = f.readlines() f.close() if os.path.exists(outFile): os.remove(outFile) f = open(outFile, "w") for line in content: if "__VERSION__" in line: line = line.replace("__VERSION__", version) if "__DISTDIR__" in line: line = line.replace("__DISTDIR__", DISTDIR) f.write(line) f.close() subprocess.call(["bash", "create-dmg.sh"]) if os.path.exists(outFile): os.remove(outFile) # move the image to the top level dist directory dist = os.path.join(PROJECT_PATH, "dist") if not os.path.exists(dist): os.mkdir(dist) source = os.path.join(SPECPATH, "artifacts", "PyMca%s.dmg" % version) destination = os.path.join(PROJECT_PATH, "dist", "PyMca%s.dmg" % version) if os.path.exists(destination): os.remove(destination) os.rename(source, destination) # get rid of the artifacts directory shutil.rmtree(os.path.dirname(source)) program = "PyMca" version = PyMca5.version() source = os.path.join(DISTDIR, "PyMca%s.app" % version) # create intermediate directory for packaging tmpdir = os.path.join(os.path.dirname(source), "ROOT") if os.path.exists(tmpdir): shutil.rmtree(tmpdir) scriptsdir = os.path.join(os.path.dirname(source), "scripts") if os.path.exists(scriptsdir): shutil.rmtree(scriptsdir) os.mkdir(tmpdir) os.mkdir(scriptsdir) postinstall = os.path.join(scriptsdir, "postinstall") with open(postinstall, "w") as f: f.write("#!/bin/sh\n") f.write("\n") #f.write('echo $0 "$1" "$2" "$3" > /Users/sole/called.txt\n') f.write('/usr/bin/xattr -cr "$2"/Applications/PyMca%s.app\n' % version) os.system("chmod +x %s" % postinstall) os.system("cat %s" % postinstall) tmpdir = os.path.join(tmpdir, "Applications") os.mkdir(tmpdir) tmpsource = os.path.join(tmpdir, os.path.basename(source)) shutil.move(source, tmpsource) cmd = "pkgbuild --root %s --scripts %s %s" % \ (os.path.dirname(tmpdir), scriptsdir, os.path.join(PROJECT_PATH, "dist", "PyMca%s.pkg" % version) ) os.system(cmd) shutil.move(tmpsource, source) shutil.rmtree(os.path.dirname(tmpdir)) shutil.rmtree(scriptsdir) # end of generation of .pkg # move the generated .app to top level dist for debugging purposes target = os.path.join(PROJECT_PATH, "dist", "%s%s.app" % (program, version)) if os.path.exists(target): shutil.rmtree(target) shutil.move(source, target) else: # move generated directory to top level dist program = "PyMca" version = PyMca5.version() source = os.path.join(DISTDIR, script_n[0]) dist = os.path.join(PROJECT_PATH, "dist",) if not os.path.exists(dist): os.mkdir(dist) target = os.path.join(dist, "%s%s" % (program, version)) if os.path.exists(target): print("Removing target") shutil.rmtree(target) shutil.move(source, target) frozenDir = target # generation of the NSIS executable nsis = os.path.join(r"\Program Files (x86)", "NSIS", "makensis.exe") if sys.platform.startswith("win") and os.path.exists(nsis): # check if we can perform the packaging outFile = os.path.join(SPECPATH, "nsisscript.nsi") f = open(os.path.join(SPECPATH,"nsisscript.nsi.in"), "r") content = f.readlines() f.close() if os.path.exists(outFile): os.remove(outFile) pymcaexe = os.path.join(PROJECT_PATH, "dist", "%s%s-win64.exe" % (program.lower(), version)) if os.path.exists(pymcaexe): os.remove(pymcaexe) pymcalicense = os.path.join(SPECPATH, "PyMca.txt") f = open(outFile, "w") for line in content: if "__LICENSE_FILE__" in line: line = line.replace("__LICENSE_FILE__", pymcalicense) if "__VERSION__" in line: line = line.replace("__VERSION__", version) if "__PROGRAM__" in line: line = line.replace("__PROGRAM__", program) if "__OUTFILE__" in line: line = line.replace("__OUTFILE__", pymcaexe) if "__SOURCE_DIRECTORY__" in line: line = line.replace("__SOURCE_DIRECTORY__", frozenDir) if "__ICON_PATH__" in line: line = line.replace("__ICON_PATH__", icon) f.write(line) f.close() cmd = '"%s" %s' % (nsis, outFile) logger.info("Issuing NSIS command <%s>" % cmd) os.system(cmd) # cleanup intermediate files for dname in ["build", "dist", "__pycache__"]: ddir = os.path.join(SPECPATH, dname) if os.path.exists(ddir): shutil.rmtree(ddir) for ddir in [DISTDIR, BUILDDIR]: if os.path.exists(ddir): shutil.rmtree(ddir) if os.path.basename(ddir) == "pyinstaller": if os.path.basename(os.path.dirname(ddir)).startswith("build"): if os.path.isdir(os.path.dirname(ddir)): shutil.rmtree(os.path.dirname(ddir)) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/pyproject.toml0000644000000000000000000000032614741736366014423 0ustar00rootroot[build-system] requires = [ "setuptools", "wheel", "oldest-supported-numpy; python_version< '3.9'", "numpy >= 2.0.0; python_version >= '3.9'", "Cython" ] build-backend = "setuptools.build_meta" ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/qtconffile0000644000000000000000000000003614741736366013562 0ustar00rootroot[Paths] Prefix = Binaries = . ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/requirements.txt0000644000000000000000000000136514741736366014777 0ustar00rootroot# List all dependencies of PyMca for GUI functionality and not just # command line XRF analysis # Requires pip >= 8.0 --trusted-host www.silx.org --find-links http://www.silx.org/pub/wheelhouse/ --only-binary numpy,h5py,PyQt5,PySide2 numpy >= 1.8 fisx >= 1.1.6 PyOpenGL # For PyMca5.Object3D module h5py # For HDF5 file format support matplotlib > 1.0 # For visualization qtconsole # For interactive console plugin # PyQt5 or PySide2 or PySide6 # For PyMca5.PyMcaGui # Try to install a Qt binding from a wheel # This is no available for all configurations # Require PyQt when wheel is available PyQt5; python_version >= '3.5' PySide2; sys_platform == 'darwin' and python_version == '2.7' ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.679766 pymca5-5.9.4/scripts/0000755000000000000000000000000014741736404013166 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/edfviewer.bat0000644000000000000000000000003714741736366015645 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/elementsinfo.bat0000644000000000000000000000003714741736366016355 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/mca2edf.bat0000644000000000000000000000003714741736366015166 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/peakidentifier.bat0000644000000000000000000000003714741736366016650 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/pymca.bat0000644000000000000000000000003714741736366014776 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/pymca_win_post_install.py0000644000000000000000000001072114741736366020331 0ustar00rootroot#!python # # Copyright (C) 2004-2013 V. Armando Sole - ESRF # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # __license__ = "MIT" """Windows-specific part of the installation""" import os, sys, shutil def mkshortcut(target,description,link_file,*args,**kw): """make a shortcut if it doesn't exist, and register its creation""" create_shortcut(target, description, link_file,*args,**kw) file_created(link_file) def install(): """Routine to be run by the win32 installer with the -install switch.""" # Get some system constants prefix = sys.prefix # This does not show the console ... python = prefix + r'\pythonw.exe' # This shows it python_console = prefix + r'\python.exe' # Lookup path to common startmenu ... ip_dir = get_special_folder_path('CSIDL_COMMON_PROGRAMS') + r'\PyMca5' lib_dir = prefix+'\Lib\site-packages\PyMca5' if not os.path.isdir(ip_dir): os.mkdir(ip_dir) directory_created(ip_dir) # Create program shortcuts ... name = 'PyMcaMain' script = '"'+lib_dir+r'\%s.py"'%name fname = 'PyMca' f = ip_dir + r'\%s.lnk' % fname mkshortcut(python_console,name,f,script, "%HOMEDRIVE%%HOMEPATH%") name = 'PyMcaMain' script = '"'+lib_dir+r'\%s.py" -f'%name fname = 'PyMca Fresh Start' f = ip_dir + r'\%s.lnk' % fname mkshortcut(python_console,name,f,script, "%HOMEDRIVE%%HOMEPATH%") name = 'EdfFileSimpleViewer' script = '"'+lib_dir+r'\%s.py"'%name fname = 'EDF Viewer' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python,name,f,script, "%HOMEDRIVE%%HOMEPATH%") name = 'ElementsInfo' script = '"'+lib_dir+r'\%s.py"'%name f = ip_dir + r'\%s.lnk'%name mkshortcut(python,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'Mca2Edf' script = '"'+lib_dir+r'\%s.py"'%name fname = 'Mca to Edf Converter' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'PeakIdentifier' script = '"'+lib_dir+r'\%s.py"'%name f = ip_dir + r'\%s.lnk'%name mkshortcut(python,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'PyMcaBatch' script = '"'+lib_dir+r'\%s.py"'%name f = ip_dir + r'\%s.lnk'%name mkshortcut(python_console,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'PyMcaPostBatch' script = '"'+lib_dir+r'\%s.py"'%name fname = 'RGB Correlator' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'QStackWidget' script = '"'+lib_dir+r'\%s.py"'%name fname = 'ROI Imaging Tool' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python_console,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'QEDFStackWidget' script = '"'+lib_dir+r'\%s.py"'%name fname = 'ROI Imaging Tool(OLD)' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python_console,name,f,script,"%HOMEDRIVE%%HOMEPATH%") name = 'ChangeLog' script = '"'+lib_dir+r'\%s.py" LICENSE.GPL'%name fname = 'License' f = ip_dir + r'\%s.lnk'%fname mkshortcut(python,name,f,script,"%HOMEDRIVE%%HOMEPATH%") # Create documentation shortcuts ... def remove(): """Routine to be run by the win32 installer with the -remove switch.""" pass # main() if len(sys.argv) > 1: if sys.argv[1] in ['-install', 'install']: install() elif sys.argv[1] in ['-remove', 'remove']: remove() else: print("Script was called with option %s" % sys.argv[1]) print("It has to be called with option -install or -remove") ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/pymcabatch.bat0000644000000000000000000000003714741736366016000 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/pymcapostbatch.bat0000644000000000000000000000003714741736366016706 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/pymcaroitool.bat0000644000000000000000000000003714741736366016406 0ustar00rootroot@echo off python "%~dpn0" %* ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/scripts/rgbcorrelator.bat0000644000000000000000000000003614741736366016533 0ustar00rootroot@echo off pymcapostbatch %* ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.8597665 pymca5-5.9.4/setup.cfg0000644000000000000000000000004614741736404013320 0ustar00rootroot[egg_info] tag_build = tag_date = 0 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/setup.py0000644000000000000000000011052014741736366013217 0ustar00rootroot# # This Python module has been developed by V.A. Sole, from the European # Synchrotron Radiation Facility (ESRF) to build PyMca. # Given the nature of this work, these module can be considered public domain. # Therefore redistribution and use in source and binary forms, with or without # modification, are permitted provided the following disclaimer is accepted: # # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND THE ESRF ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) AND/OR THE ESRF BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import sys import os import glob import platform import numpy USING_SETUPTOOLS = True # wheels require setuptools from setuptools import setup from setuptools.command.install import install as dftinstall from setuptools import Command from setuptools.extension import Extension from setuptools.command.build_py import build_py from setuptools.command.install_scripts import install_scripts from setuptools.command.sdist import sdist try: from Cython.Distutils import build_ext import Cython.Compiler.Version cython_version = Cython.Compiler.Version.version if (sys.version_info >= (3, 7)) and (cython_version < "0.28.3"): build_ext = None elif cython_version < '0.18': build_ext = None except ImportError: build_ext = None PYMCA_INSTALL_DIR = None PYMCA_SCRIPTS_DIR = None # package maintainers customization # Dear (Debian, RedHat, ...) package makers, please feel free to customize the # following paths to the directory containing module's data relative to the # directory containing the python modules (aka. installation directory). # The sift module implements a patented algorithm. The algorithm can be used # for non-commercial research purposes. If you do not want to distribute it # with the PyMca sources you just need to delete the PyMca5/PyMcaMath/sift directory. PYMCA_DATA_DIR = os.getenv("PYMCA_DATA_DIR") PYMCA_DOC_DIR = os.getenv("PYMCA_DOC_DIR") assert (PYMCA_DATA_DIR is None) == (PYMCA_DOC_DIR is None), \ "error: PYMCA_DATA_DIR and PYMCA_DOC_DIR must be both set (debian " + \ "packaging) or both be unset (pip install or frozen binary)." setupDirectory = os.path.dirname(os.path.relpath(__file__)) or "." srcDirectory = os.path.join(setupDirectory, 'src') srcPyMca5Directory = os.path.join(srcDirectory, 'PyMca5') def pymca5_path(*args): return os.path.join(srcPyMca5Directory, *args) def glob_pymca5(*args): return glob.glob(pymca5_path(*args)) defaultDataPath = pymca5_path('PyMcaData') if PYMCA_DATA_DIR is None and PYMCA_DOC_DIR is None: PYMCA_DATA_DIR = PYMCA_DOC_DIR = defaultDataPath DISTUTILS = False else: # debian likes to put data files somewhere else than into the package # but that needs install_data from distutils.command.install_data import install_data DISTUTILS = True USE_SMART_INSTALL_SCRIPTS = "--install-scripts" in sys.argv # check if cython is not to be used despite being present def use_cython(): """ Check if cython is disabled from the command line or the environment. """ if "WITH_CYTHON" in os.environ: if os.environ["WITH_CYTHON"] in ["False", "0", 0]: print("No Cython requested by environment") return False if "--no-cython" in sys.argv: sys.argv.remove("--no-cython") os.environ["WITH_CYTHON"] = "False" print("No Cython requested by command line") return False return True # check if GUI dependencies are to be considered install_requires def use_gui(): """ Check if GUI dependencies are requested. """ if "WITH_GUI" in os.environ: if os.environ["WITH_GUI"] not in ["False", "0", 0]: print("GUI requirements requested by environment") return True if "--gui" in sys.argv: sys.argv.remove("--gui") os.environ["WITH_GUI"] = "True" print("GUI requrements requested by command line") return True return False if build_ext is not None: # we can use cython, but it may have been explicitely disabled if not use_cython(): build_ext = None fid = open(pymca5_path('__init__.py'), 'r') ffile = fid.readlines() fid.close() __version__ = None for line in ffile: if line.startswith('__version__'): # remove spaces and split __version__ = "%s" % line.replace(' ', '').split("=")[-1][:-1] # remove " or ' present __version__ = __version__[1:-1] break assert __version__ is not None print("PyMca X-Ray Fluorescence Toolkit %s\n" % __version__) packages = ['PyMca5', 'PyMca5.PyMcaPlugins', 'PyMca5.tests', 'PyMca5.PyMca', 'PyMca5.PyMcaCore', 'PyMca5.PyMcaPhysics', 'PyMca5.PyMcaPhysics.xrf', 'PyMca5.PyMcaPhysics.xrf.XRFMC', 'PyMca5.PyMcaPhysics.xas', 'PyMca5.PyMcaIO', 'PyMca5.PyMcaMisc', 'PyMca5.PyMcaMath', 'PyMca5.PyMcaMath.fitting', 'PyMca5.PyMcaMath.mva', 'PyMca5.PyMcaMath.mva.py_nnma', 'PyMca5.PyMcaGraph', 'PyMca5.PyMcaGraph.backends', 'PyMca5.PyMcaGui', 'PyMca5.PyMcaGui.plotting', 'PyMca5.PyMcaGui.physics', 'PyMca5.PyMcaGui.physics.xas', 'PyMca5.PyMcaGui.physics.xrf', 'PyMca5.PyMcaGui.pymca', 'PyMca5.PyMcaGui.misc', 'PyMca5.PyMcaGui.io', 'PyMca5.PyMcaGui.io.hdf5', 'PyMca5.PyMcaGui.math', 'PyMca5.PyMcaGui.math.fitting', 'PyMca5.EPDL97'] # more packages are appended later, when building extensions if PYMCA_DATA_DIR == defaultDataPath and PYMCA_DOC_DIR == defaultDataPath: # general case: pip install or "setup.py install" without parameters use_smart_install_data_class = True else: # used by debian packaging (PYMCA_DATA_DIR & PYMCA_DOC_DIR set by the packager) use_smart_install_data_class = False package_data = {} data_files = [ ( PYMCA_DATA_DIR, [ "LICENSE", "LICENSE.GPL", "LICENSE.LGPL", "LICENSE.MIT", "changelog.txt", "copyright", os.path.join("PyMca5", "PyMcaData", "Scofield1973.dict"), os.path.join("PyMca5", "PyMcaData", "McaTheory.cfg"), os.path.join("PyMca5", "PyMcaData", "PyMcaSplashImage.png"), os.path.join("PyMca5", "PyMcaData", "KShellRatesScofieldHS.dat"), os.path.join("PyMca5", "PyMcaData", "LShellRatesCampbell.dat"), os.path.join("PyMca5", "PyMcaData", "LShellRatesScofieldHS.dat"), os.path.join("PyMca5", "PyMcaData", "EXAFS_Cu.dat"), os.path.join("PyMca5", "PyMcaData", "EXAFS_Ge.dat"), os.path.join("PyMca5", "PyMcaData", "Steel.cfg"), os.path.join("PyMca5", "PyMcaData", "Steel.spe"), os.path.join("PyMca5", "PyMcaData", "XRFSpectrum.mca"), ], ), ( os.path.join(PYMCA_DATA_DIR, "attdata"), glob_pymca5("attdata", "*"), ), ( os.path.join(PYMCA_DOC_DIR, "HTML"), glob_pymca5("PyMcaData", "HTML", "*.*"), ), ( os.path.join(PYMCA_DOC_DIR, "HTML", "IMAGES"), glob_pymca5("PyMcaData", "HTML", "IMAGES", "*"), ), ( os.path.join(PYMCA_DOC_DIR, "HTML", "PyMCA_files"), glob_pymca5("PyMcaData", "HTML", "PyMCA_files", "*"), ), ( os.path.join(PYMCA_DATA_DIR, "EPDL97"), glob_pymca5("EPDL97", "*.DAT"), ), ( os.path.join(PYMCA_DATA_DIR, "EPDL97"), glob_pymca5("EPDL97", "LICENSE"), ), ] if not DISTUTILS: package_data["PyMca5"] = [os.path.join('PyMcaData', 'Scofield1973.dict'), os.path.join('PyMcaData', 'McaTheory.cfg'), os.path.join('PyMcaData', 'PyMcaSplashImage.png'), os.path.join('PyMcaData', 'KShellRatesScofieldHS.dat'), os.path.join('PyMcaData', 'LShellRatesCampbell.dat'), os.path.join('PyMcaData', 'LShellRatesScofieldHS.dat'), os.path.join('PyMcaData', 'EXAFS_Cu.dat'), os.path.join('PyMcaData', 'EXAFS_Ge.dat'), os.path.join('PyMcaData', 'Steel.cfg'), os.path.join('PyMcaData', 'Steel.spe'), os.path.join('PyMcaData', 'XRFSpectrum.mca'), os.path.join('PyMcaData', 'attdata', '*'), os.path.join('PyMcaData', 'HTML', '*.*'), os.path.join('PyMcaData', 'HTML', 'IMAGES', '*'), os.path.join('PyMcaData', 'HTML', 'PyMca_files', '*'), ] # missing files added derived class data_files = None SIFT_OPENCL_FILES = [] if os.path.exists(pymca5_path("PyMcaMath", "sift")): packages.append('PyMca5.PyMcaMath.sift') if 'PyMca5' in package_data: package_data['PyMca5'].append( os.path.join('PyMcaMath', 'sift', '*.cl') ) else: package_data['PyMca5'] = [os.path.join('PyMcaMath', 'sift', '*.cl')] sources = glob.glob('*.c') script_files = glob_pymca5('scripts', '*') if sys.platform == "win32": define_macros = [('WIN32', None)] script_files += glob.glob(os.path.join('scripts', '*.bat')) script_files.append(os.path.join('scripts', 'pymca_win_post_install.py')) else: define_macros = [] def build_FastEdf(ext_modules): module = Extension(name='PyMca5.FastEdf', sources=glob_pymca5('PyMcaIO', 'edf', '*.c'), define_macros=define_macros, include_dirs=[numpy.get_include()]) ext_modules.append(module) def build_specfile(ext_modules): if sys.platform == "win32": specfile_define_macros = [('WIN32', None)] elif os.name.lower().startswith('posix'): # in case of not using the GNU library use the locale handling specfile_define_macros = [('SPECFILE_POSIX', None)] else: specfile_define_macros = define_macros srcfiles = ['sfheader', 'sfinit', 'sflists', 'sfdata', 'sfindex', 'sflabel', 'sfmca', 'sftools', 'locale_management', 'specfile_py'] if sys.version >= '3.0': srcfiles[-1] += '3' sources = [] specfile_source_dir = pymca5_path('PyMcaIO', 'specfile', 'src') specfile_include_dir = pymca5_path('PyMcaIO', 'specfile', 'include') for ffile in srcfiles: sources.append(os.path.join(specfile_source_dir, ffile+'.c')) module = Extension(name='PyMca5.PyMcaIO.specfile', sources=sources, define_macros=specfile_define_macros, include_dirs=[specfile_include_dir, numpy.get_include()]) ext_modules.append(module) def build_specfit(ext_modules): module = Extension(name='PyMca5.PyMcaMath.fitting.SpecfitFuns', sources=glob_pymca5('PyMcaMath', 'fitting', 'specfit', '*.c'), define_macros=define_macros, include_dirs=[pymca5_path('PyMcaMath', 'fitting', 'specfit'), numpy.get_include()]) ext_modules.append(module) def build_sps(ext_modules): if platform.system() == 'Linux': extra_compile_args = ['-pthread'] # extra_compile_args = [] elif platform.system() == 'SunOS': # extra_compile_args = ['-pthreads'] extra_compile_args = [] else: extra_compile_args = [] module = Extension(name='PyMca5.spslut', sources=[pymca5_path('PyMcaIO', 'sps', 'Src', 'sps_lut.c'), pymca5_path('PyMcaIO', 'sps', 'Src', 'spslut_py.c')], define_macros=define_macros, extra_compile_args=extra_compile_args, include_dirs=[pymca5_path('PyMcaIO', 'sps', 'Include'), numpy.get_include()]) ext_modules.append(module) if sys.platform != "win32": module = Extension(name='PyMca5.PyMcaIO.sps', sources=[pymca5_path('PyMcaIO', 'sps', 'Src', 'sps.c'), pymca5_path('PyMcaIO', 'sps', 'Src', 'sps_py.c')], define_macros=define_macros, extra_compile_args=extra_compile_args, include_dirs=[pymca5_path('PyMcaIO', 'sps', 'Include'), numpy.get_include()]) ext_modules.append(module) def build_PyMcaIOHelper(ext_modules): module = Extension(name='PyMca5.PyMcaIO.PyMcaIOHelper', sources=glob_pymca5('PyMcaIO', 'PyMcaIOHelper', '*.c'), define_macros=define_macros, include_dirs=[pymca5_path('PyMcaIO', 'PyMcaIOHelper'), numpy.get_include()]) ext_modules.append(module) def build__cython_kmeans(ext_modules): if sys.platform.startswith("win"): extra_compile_args = ["/openmp"] extra_link_args= [] else: extra_compile_args = ["-fopenmp"] extra_link_args=['-fopenmp'] # aim at maximal compatibility instead of performance extra_compile_args = [] extra_link_args= [] if build_ext: sources = [pymca5_path('PyMcaMath', 'mva', '_cython_kmeans', 'kmeans.pyx')] else: sources = [pymca5_path('PyMcaMath', 'mva', '_cython_kmeans', 'default', 'kmeans.c')] module = Extension(name='PyMca5.PyMcaMath.mva._cython_kmeans', sources=sources, define_macros=[], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, include_dirs=[numpy.get_include()]) ext_modules.append(module) def build_PyMcaSciPy(ext_modules): packages.append('PyMca5.PyMcaMath.PyMcaSciPy') packages.append('PyMca5.PyMcaMath.PyMcaSciPy.signal') module = Extension(name='PyMca5.PyMcaMath.PyMcaSciPy.signal.mediantools', sources=glob_pymca5('PyMcaMath', 'PyMcaSciPy', 'signal', '*.c'), define_macros=[], include_dirs=[numpy.get_include()]) ext_modules.append(module) def build_plotting_ctools(ext_modules): packages.append('PyMca5.PyMcaGraph.ctools') basedir = pymca5_path('PyMcaGraph', 'ctools', '_ctools') c_files = [os.path.join(basedir, 'src', 'InsidePolygonWithBounds.c'), os.path.join(basedir, 'src', 'MinMaxImpl.c'), os.path.join(basedir, 'src', 'Colormap.c')] cython_dir = os.path.join(basedir, 'cython') if build_ext: # delete previously generated code (if any) for fname in glob.glob(os.path.join(cython_dir, '*.c')): try: os.remove(fname) except Exception: print("Cannot delete previously generated code <%s>" % fname) raise src = [os.path.join(basedir, 'cython', '_ctools.pyx')] else: inSrc = os.path.join(cython_dir, 'default', '_ctools.c') outSrc = os.path.join(cython_dir, '_ctools.c') inFile = open(inSrc, 'rb') inLines = inFile.readlines() inFile.close() if os.path.exists(outSrc): outFile = open(outSrc, 'rb') outLines = outFile.readlines() outFile.close() if outLines != inLines: os.remove(outSrc) if not os.path.exists(outSrc): outFile = open(outSrc, 'wb') outFile.writelines(inLines) outFile.close() src = [outSrc] src += c_files if sys.platform == 'win32': extra_compile_args = [] extra_link_args = [] else: extra_compile_args = [] extra_link_args = [] module = Extension(name="PyMca5.PyMcaGraph.ctools._ctools", sources=src, include_dirs=[numpy.get_include(), os.path.join(basedir, "include")], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, language="c",) ext_modules.append(module) def build_xas_xas(ext_modules): basedir = pymca5_path('PyMcaPhysics', 'xas', '_xas') c_files = [os.path.join(basedir, 'src', 'polspl.c'), os.path.join(basedir, 'src', 'bessel0.c')] cython_dir = os.path.join(basedir, 'cython') if build_ext: # delete previously generated code (if any) for fname in glob.glob(os.path.join(cython_dir, '*.c')): try: os.remove(fname) except Exception: print("Cannot delete previously generated code <%s>" % fname) raise src = [os.path.join(basedir, 'cython', '_xas.pyx')] else: inSrc = os.path.join(cython_dir, 'default', '_xas.c') inFile = open(inSrc, 'rb') inLines = inFile.readlines() inFile.close() outSrc = os.path.join(cython_dir, '_xas.c') if os.path.exists(outSrc): outFile = open(outSrc, 'rb') outLines = outFile.readlines() outFile.close() if outLines != inLines: os.remove(outSrc) if not os.path.exists(outSrc): outFile = open(outSrc, 'wb') outFile.writelines(inLines) outFile.close() src = [outSrc] src += c_files if sys.platform == 'win32': extra_compile_args = [] extra_link_args = [] else: extra_compile_args = [] extra_link_args = [] module = Extension(name="PyMca5.PyMcaPhysics.xas._xas", sources=src, include_dirs=[numpy.get_include(), os.path.join(basedir, "include")], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, language="c",) ext_modules.append(module) ext_modules = [] if sys.version < '3.0': build_FastEdf(ext_modules) build_specfile(ext_modules) build_specfit(ext_modules) build_sps(ext_modules) build_PyMcaIOHelper(ext_modules) build__cython_kmeans(ext_modules) build_PyMcaSciPy(ext_modules) build_plotting_ctools(ext_modules) build_xas_xas(ext_modules) class smart_build_py(build_py): """Subclass 'build' to patch 'PyMcaDataDir.py' """ def run(self): toReturn = build_py.run(self) global PYMCA_DATA_DIR global PYMCA_DOC_DIR global PYMCA_INSTALL_DIR install_cmd = self.get_finalized_command('install') if (PYMCA_DATA_DIR == defaultDataPath) or (PYMCA_DOC_DIR == defaultDataPath): #default, just make sure the complete path is there PYMCA_INSTALL_DIR = getattr(install_cmd, 'install_lib') if use_smart_install_data_class: global INSTALL_DIR INSTALL_DIR = getattr(install_cmd, 'install_lib') # pip install or generic build/install: prepend lib path elif PYMCA_DATA_DIR == defaultDataPath or PYMCA_DOC_DIR == defaultDataPath: if PYMCA_DATA_DIR == defaultDataPath: PYMCA_DATA_DIR = os.path.join(PYMCA_INSTALL_DIR, PYMCA_DATA_DIR) if PYMCA_DOC_DIR == defaultDataPath: PYMCA_DOC_DIR = os.path.join(PYMCA_INSTALL_DIR, PYMCA_DOC_DIR) # packager should have provided the complete path as an environment # variable in other cases. target = os.path.join(self.build_lib, "PyMca5", "PyMcaDataDir.py") fid = open(target, 'r') content = fid.readlines() fid.close() fid = open(target, 'w') for line in content: lineToBeWritten = line txt = 'DATA_DIR_FROM_SETUP' if txt in line: lineToBeWritten = line.replace(txt, PYMCA_DATA_DIR) txt = 'DOC_DIR_FROM_SETUP' if txt in line: lineToBeWritten = line.replace(txt, PYMCA_DOC_DIR) fid.write(lineToBeWritten) fid.close() if not DISTUTILS: # package_data cannot deal with data files outside the package target = os.path.join(self.build_lib, "PyMca5", "PyMcaData") for fname in ["LICENSE", "LICENSE.GPL", "LICENSE.LGPL", "LICENSE.MIT", "copyright", "changelog.txt"]: src = os.path.join(setupDirectory, fname) dest = os.path.join(target, fname) print("copying %s to %s" % (src, dest)) self.copy_file(src, dest) target = os.path.join(self.build_lib, "PyMca5", "PyMcaData", "EPDL97") if not os.path.exists(target): os.mkdir(target) for fname in ["EADL.DAT", "EPDL97.DAT", "LICENSE"]: src = pymca5_path("EPDL97", fname) dest = os.path.join(target, fname) print("copying %s to %s" % (src, dest)) self.copy_file(src, dest) return toReturn # smart_install_scripts class smart_install_scripts(install_scripts): if USING_SETUPTOOLS: def initialize_options(self): self.outfiles = [] def finalize_options(self): pass def get_outputs(self): return self.outfiles def run(self): global PYMCA_SCRIPTS_DIR global PYMCA_INSTALL_DIR # I prefer not to translate the python used during the build # process for the case of having an installation on a disk shared # by different machines and starting python from a shell script # that positions the environment from distutils import log from stat import ST_MODE install_cmd = self.get_finalized_command('install') # This is to ignore the --install-scripts keyword # I do not know if to leave it optional ... if False: self.install_dir = os.path.join(getattr(install_cmd, 'install_lib'), 'PyMca5') self.install_dir = os.path.join(self.install_dir, 'bin') else: self.install_dir = getattr(install_cmd, 'install_scripts') self.install_data = getattr(install_cmd, 'install_data') if "." in self.install_dir: self.install_dir = os.path.abspath(self.install_dir) if "." in self.install_data: self.install_data = os.path.abspath(self.install_data) if PYMCA_INSTALL_DIR is not None and "." in PYMCA_INSTALL_DIR: PYMCA_INSTALL_DIR = os.path.abspath(PYMCA_INSTALL_DIR) PYMCA_SCRIPTS_DIR = self.install_dir if sys.platform != "win32": print("PyMca scripts to be installed in %s" % self.install_dir) self.outfiles = self.copy_tree(self.build_dir, self.install_dir) self.outfiles = [] for filein in glob_pymca5('scripts', '*'): filedest = os.path.join(self.install_dir, os.path.basename(filein)) if os.path.exists(filedest): os.remove(filedest) moddir = os.path.join(PYMCA_INSTALL_DIR, "PyMca5", "PyMcaGui") basename = os.path.basename(filein) if basename.startswith('pymcabatch'): modfile = os.path.join("pymca", 'PyMcaBatch.py') elif basename.startswith('pymcapostbatch') or\ basename.startswith('rgbcorrelator'): modfile = os.path.join("pymca", 'PyMcaPostBatch.py') elif basename.startswith('pymcaroitool'): modfile = os.path.join("pymca", 'QStackWidget.py') elif basename.startswith('mca2edf'): modfile = os.path.join("pymca", 'Mca2Edf.py') elif basename.startswith('edfviewer'): modfile = os.path.join("pymca", 'EdfFileSimpleViewer.py') elif basename.startswith('peakidentifier'): modfile = os.path.join("physics", "xrf", 'PeakIdentifier.py') elif basename.startswith('elementsinfo'): modfile = os.path.join("physics", "xrf", 'ElementsInfo.py') elif basename.startswith('pymca'): modfile = os.path.join("pymca", 'PyMcaMain.py') else: print("ignored %s" % filein) continue text = "#!/bin/bash\n" text += "export PYTHONPATH=%s:${PYTHONPATH}\n" % PYMCA_INSTALL_DIR # deal with sys.executables not named python text += "exec %s %s $*\n" % (sys.executable, os.path.join(moddir, modfile)) f = open(filedest, 'w') f.write(text) f.close() # self.copy_file(filein, filedest) self.outfiles.append(filedest) if os.name == 'posix': # Set the executable bits (owner, group, and world) on # all the scripts we just installed. for ffile in self.get_outputs(): if self.dry_run: log.info("changing mode of %s", ffile) else: # python 2.5 does not accept next line # mode = ((os.stat(ffile)[ST_MODE]) | 0o555) & 0o7777 mode = ((os.stat(ffile)[ST_MODE]) | 365) & 4095 log.info("changing mode of %s to %o", ffile, mode) os.chmod(ffile, mode) # man pages handling def abspath(*path): """A method to determine absolute path for a given relative path to the directory where this setup.py script is located""" setup_dir = os.path.dirname(os.path.abspath(__file__)) return os.path.join(setup_dir, *path) class install_man(Command): user_options = [ ('install-dir=', 'd', 'base directory for installing man page files')] def initialize_options(self): self.install_dir = None if USING_SETUPTOOLS: self.outfiles = [] def finalize_options(self): self.set_undefined_options('install', ('install_man', 'install_dir')) if USING_SETUPTOOLS: def get_outputs(self): return self.outfiles def run(self): if self.install_dir is None: return src_man_dir = abspath('doc', 'man') man_elems = os.listdir(src_man_dir) man_pages = [] for f in man_elems: f = os.path.join(src_man_dir, f) if not os.path.isfile(f): continue if not f.endswith(".1"): continue man_pages.append(f) install_dir = os.path.join(self.install_dir, 'man1') if not os.path.isdir(install_dir): os.makedirs(install_dir) for man_page in man_pages: self.copy_file(man_page, install_dir) class install(dftinstall): user_options = list(dftinstall.user_options) user_options.extend([ ('install-man=', None, 'installation directory for Unix man pages')]) def initialize_options(self): self.install_man = None dftinstall.initialize_options(self) def finalize_options(self): # We do a hack here. We cannot trust the 'install_base' value because it # is not always the final target. For example, in unix, the install_base # is '/usr' and all other install_* are directly relative to it. However, # in unix-local (like ubuntu) install_base is still '/usr' but, for # example, install_data, is '$install_base/local' which breaks everything. # # The hack consists in using install_data instead of install_base since # install_data seems to be, in practice, the proper install_base on all # different systems. dftinstall.finalize_options(self) if os.name != "posix": if self.install_man is not None: self.warn("install-man option ignored on this platform") self.install_man = None else: if self.install_man is None: if not USE_SMART_INSTALL_SCRIPTS: # if one is installing the scripts somewhere else # he can be smart enough to pass install_man self.install_man = os.path.join(self.install_data, 'share', 'man') if self.install_man is not None: if not os.path.exists(self.install_man): try: os.makedirs(self.install_man) except Exception: # we'll get the error in the next check pass # check if we can write if not os.access(self.install_man, os.W_OK): print("********************************") print("") print("No permission to write man pages") print("") print("********************************") self.install_man = None self.dump_dirs("Installation directories") def expand_dirs(self): dftinstall.expand_dirs(self) self._expand_attrs(['install_man']) def has_man(self): return os.name == "posix" sub_commands = list(dftinstall.sub_commands) sub_commands.append(('install_man', has_man)) class sdist_debian(sdist): """ Tailor made sdist for debian * remove auto-generated doc * remove cython generated .c files * remove cython generated .cpp files * remove .bat files * include .l man files """ @staticmethod def get_debian_name(): import version name = "%s_%s" % ("PyMca5", version.debianversion) return name def prune_file_list(self): sdist.prune_file_list(self) to_remove = [ os.path.join("doc", "build"), os.path.join("doc", "pdf"), os.path.join("doc", "html"), "pylint", "epydoc" ] print("Removing files for debian") for rm in to_remove: self.filelist.exclude_pattern(pattern="*", anchor=False, prefix=rm) # this is for Cython files specifically: remove C & html files search_root = os.path.dirname(os.path.abspath(__file__)) for root, _, files in os.walk(search_root): for afile in files: if os.path.splitext(afile)[1].lower() == ".pyx": base_file = os.path.join(root, afile)[len(search_root) + 1:-4] self.filelist.exclude_pattern(pattern=base_file + ".c") self.filelist.exclude_pattern(pattern=base_file + ".cpp") self.filelist.exclude_pattern(pattern=base_file + ".html") def make_distribution(self): self.prune_file_list() sdist.make_distribution(self) dest = self.archive_files[0] dirname, basename = os.path.split(dest) base, ext = os.path.splitext(basename) while ext in [".zip", ".tar", ".bz2", ".gz", ".Z", ".lz", ".orig"]: base, ext = os.path.splitext(base) debian_arch = os.path.join(dirname, self.get_debian_name() + ".orig.tar.gz") os.rename(self.archive_files[0], debian_arch) self.archive_files = [debian_arch] print("Building debian .orig.tar.gz in %s" % self.archive_files[0]) if DISTUTILS: class smart_install_data(install_data): def run(self): global INSTALL_DIR # need to change self.install_dir to the library dir install_cmd = self.get_finalized_command('install') self.install_dir = getattr(install_cmd, 'install_lib') INSTALL_DIR = self.install_dir return install_data.run(self) # end of man pages handling cmdclass = {'build_py': smart_build_py} if DISTUTILS: if use_smart_install_data_class: cmdclass['install_data'] = smart_install_data else: cmdclass['install_data'] = install_data if build_ext is not None: cmdclass['build_ext'] = build_ext if USE_SMART_INSTALL_SCRIPTS: # typical use of user without superuser privileges cmdclass['install_scripts'] = smart_install_scripts if os.name == "posix": cmdclass['install'] = install cmdclass['install_man'] = install_man cmdclass['debian_src'] = sdist_debian description = "Mapping and X-Ray Fluorescence Analysis" long_description = """Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided """ ####################### # build_doc commands # ####################### try: import sphinx import sphinx.util.console sphinx.util.console.color_terminal = lambda: False from sphinx.setup_command import BuildDoc except ImportError: sphinx = None if sphinx: class build_doc(BuildDoc): def run(self): # make sure the python path is pointing to the newly built # code so that the documentation is built on this and not a # previously installed version build = self.get_finalized_command('build') sys.path.insert(0, os.path.abspath(build.build_lib)) # Build the Users Guide in HTML and TeX format for builder in ('html', 'latex'): self.builder = builder self.builder_target_dir = os.path.join(self.build_dir, builder) self.mkpath(self.builder_target_dir) BuildDoc.run(self) sys.path.pop(0) cmdclass['build_doc'] = build_doc classifiers = ["Development Status :: 5 - Production/Stable", "Programming Language :: Python :: 3", "Intended Audience :: Developers", "Intended Audience :: End Users/Desktop", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Topic :: Software Development :: Libraries :: Python Modules", "Operating System :: Microsoft :: Windows", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Visualization", ] # install requires for non-GUI usage install_requires = ["numpy", "matplotlib>1.0", "fisx>=1.1.6", "h5py"] if use_gui(): # install requires with easy-to-provide modules for GUI functionality # Please take a look at requirements.txt for detailed explanation # and additonal optional dependencies. install_requires += ["PyOpenGL", "qtconsole", "PyQt5", # either PySide6 or PySide2 supported too ] setup_requires = ["numpy"] distrib = setup(name="PyMca5", version=__version__, description=description, author="V. Armando Sole", author_email="sole@esrf.fr", license="MIT", url="http://pymca.sourceforge.net", download_url="https://github.com/vasole/pymca/archive/v%s.tar.gz" % __version__, long_description=long_description, packages=packages, package_dir={'': 'src'}, platforms='any', ext_modules=ext_modules, data_files=data_files, package_data=package_data, cmdclass=cmdclass, scripts=script_files, classifiers=classifiers, install_requires=install_requires, setup_requires=setup_requires, ) try: print("PyMca is installed in %s " % PYMCA_INSTALL_DIR) print("PyMca data files are installed in %s " % PYMCA_DATA_DIR) print("HTML help files are installed in %s " % PYMCA_DOC_DIR) except BaseException: #I really do not see how this may happen but ... pass ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.6277657 pymca5-5.9.4/src/0000755000000000000000000000000014741736404012266 5ustar00rootroot././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.683766 pymca5-5.9.4/src/PyMca5/0000755000000000000000000000000014741736404013364 5ustar00rootroot././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.707766 pymca5-5.9.4/src/PyMca5/EPDL97/0000755000000000000000000000000014741736404014270 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/EADL.DAT0000644000000000000000002503023414741736366015347 0ustar00rootroot 1000 0 0 1.00790+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00000+ 0 1 1000 0 0 1.00790+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.36100- 5 1 1000 0 0 1.00790+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.36100- 5 1 1000 0 0 1.00790+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.93560- 9 1 1000 0 0 1.00790+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.36100- 5 1 2000 0 0 4.00260+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 1 2000 0 0 4.00260+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.34200- 5 1 2000 0 0 4.00260+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.93600- 5 1 2000 0 0 4.00260+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.97370- 9 1 2000 0 0 4.00260+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.34200- 5 1 3000 0 0 6.94100+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 1.00000+ 0 1 3000 0 0 6.94100+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.98500- 5 3.00000+ 0 5.50000- 6 1 3000 0 0 6.94100+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04250- 4 3.00000+ 0 6.61000- 6 1 3000 0 0 6.94100+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.94990- 9 3.00000+ 0 1.98640- 8 1 3000 0 0 6.94100+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.98500- 5 3.00000+ 0 5.50000- 6 1 4000 0 0 9.01218+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 1 4000 0 0 9.01218+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.18360- 4 3.00000+ 0 8.18000- 6 1 4000 0 0 9.01218+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.92040- 4 3.00000+ 0 1.55500- 5 1 4000 0 0 9.01218+ 0 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.15790- 9 3.00000+ 0 1.38130- 8 1 4000 0 0 9.01218+ 0 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.18360- 4 3.00000+ 0 8.18000- 6 1 5000 0 0 1.08100+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 3.30000- 1 6.00000+ 0 6.70000- 1 1 5000 0 0 1.08100+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.95610- 4 3.00000+ 0 1.25800- 5 5.00000+ 0 6.67000- 6 6.00000+ 0 6.66000- 6 1 5000 0 0 1.08100+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.06230- 4 3.00000+ 0 3.05300- 5 5.00000+ 0 2.17300- 5 6.00000+ 0 2.17100- 5 1 5000 0 0 1.08100+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.70330- 9 3.00000+ 0 1.00860- 8 5.00000+ 0 1.19360- 8 6.00000+ 0 1.19440- 8 1 5000 0 0 1.08100+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.95610- 4 3.00000+ 0 1.25800- 5 5.00000+ 0 6.67000- 6 6.00000+ 0 6.66000- 6 1 6000 0 0 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 6.70000- 1 6.00000+ 0 1.33000+ 0 1 6000 0 0 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.91010- 4 3.00000+ 0 1.75600- 5 5.00000+ 0 8.99000- 6 6.00000+ 0 8.98000- 6 1 6000 0 0 1.20110+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.47020- 4 3.00000+ 0 4.83600- 5 5.00000+ 0 3.69600- 5 6.00000+ 0 3.69000- 5 1 6000 0 0 1.20110+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.40680- 9 3.00000+ 0 8.07840- 9 5.00000+ 0 9.13650- 9 6.00000+ 0 9.14420- 9 1 6000 0 0 1.20110+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03350-10 1 6000 0 0 1.20110+ 1 910426 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.13360- 8 1 6000 0 0 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.85395- 5 3.00000+ 0 1.75600- 5 5.00000+ 0 8.99000- 6 6.00000+ 0 8.98000- 6 1 6000 0 7 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.68208- 3 1 6000 0 7 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.74393- 7 1 6000 0 9 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.98318- 1 1 6000 0 9 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.61996- 4 1 6000 0 7 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 5.61488- 4 2.82020- 4 6.00000+ 0 1.12060- 3 2.82030- 4 1 6000 0 9 1.20110+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.13609- 1 2.55890- 4 3.00000+ 0 5.00000+ 0 1.36190- 1 2.64460- 4 3.00000+ 0 6.00000+ 0 2.71099- 1 2.64470- 4 5.00000+ 0 5.00000+ 0 4.20748- 3 2.73030- 4 5.00000+ 0 6.00000+ 0 1.10012- 1 2.73040- 4 6.00000+ 0 6.00000+ 0 6.32008- 2 2.73050- 4 1 7000 0 0 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 1.00000+ 0 6.00000+ 0 2.00000+ 0 1 7000 0 0 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.04850- 4 3.00000+ 0 2.31000- 5 5.00000+ 0 1.15000- 5 6.00000+ 0 1.14800- 5 1 7000 0 0 1.40067+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.14570- 4 3.00000+ 0 6.92400- 5 5.00000+ 0 5.51700- 5 6.00000+ 0 5.50300- 5 1 7000 0 0 1.40067+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19830- 9 3.00000+ 0 6.78480- 9 5.00000+ 0 7.47220- 9 6.00000+ 0 7.47990- 9 1 7000 0 0 1.40067+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.30490-10 1 7000 0 0 1.40067+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.24050- 8 1 7000 0 0 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.36090- 5 3.00000+ 0 2.31000- 5 5.00000+ 0 1.15000- 5 6.00000+ 0 1.14800- 5 1 7000 0 7 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.27601- 3 1 7000 0 7 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.28866- 6 1 7000 0 9 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.96724- 1 1 7000 0 9 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.69952- 4 1 7000 0 7 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.09420- 3 3.93350- 4 6.00000+ 0 2.18181- 3 3.93370- 4 1 7000 0 9 1.40067+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.65388- 1 3.58650- 4 3.00000+ 0 5.00000+ 0 1.29999- 1 3.70250- 4 3.00000+ 0 6.00000+ 0 2.58276- 1 3.70270- 4 5.00000+ 0 5.00000+ 0 8.15943- 3 3.81850- 4 5.00000+ 0 6.00000+ 0 2.12711- 1 3.81870- 4 6.00000+ 0 6.00000+ 0 1.22190- 1 3.81890- 4 1 8000 0 0 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 1.33000+ 0 6.00000+ 0 2.67000+ 0 1 8000 0 0 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.37280- 4 3.00000+ 0 2.92300- 5 5.00000+ 0 1.41900- 5 6.00000+ 0 1.41500- 5 1 8000 0 0 1.59994+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.09010- 4 3.00000+ 0 9.32800- 5 5.00000+ 0 7.63900- 5 6.00000+ 0 7.61200- 5 1 8000 0 0 1.59994+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04300- 9 3.00000+ 0 5.86580- 9 5.00000+ 0 6.35620- 9 6.00000+ 0 6.36390- 9 1 8000 0 0 1.59994+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.23230-10 1 8000 0 0 1.59994+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32560- 7 1 8000 0 0 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.88517- 5 3.00000+ 0 2.92300- 5 5.00000+ 0 1.41900- 5 6.00000+ 0 1.41500- 5 1 8000 0 7 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.70795- 3 1 8000 0 7 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.98593- 6 1 8000 0 9 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.94292- 1 1 8000 0 9 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.95442- 4 1 8000 0 7 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90768- 3 5.23090- 4 6.00000+ 0 3.80027- 3 5.23130- 4 1 8000 0 9 1.59994+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.78644- 1 4.78820- 4 3.00000+ 0 5.00000+ 0 1.16224- 1 4.93860- 4 3.00000+ 0 6.00000+ 0 2.30418- 1 4.93900- 4 5.00000+ 0 5.00000+ 0 1.10822- 2 5.08900- 4 5.00000+ 0 6.00000+ 0 2.91115- 1 5.08940- 4 6.00000+ 0 6.00000+ 0 1.66809- 1 5.08980- 4 1 9000 0 0 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 1.67000+ 0 6.00000+ 0 3.33000+ 0 1 9000 0 0 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.88370- 4 3.00000+ 0 3.59300- 5 5.00000+ 0 1.70500- 5 6.00000+ 0 1.69800- 5 1 9000 0 0 1.89984+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03040- 3 3.00000+ 0 1.20510- 4 5.00000+ 0 1.00660- 4 6.00000+ 0 1.00200- 4 1 9000 0 0 1.89984+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.23690-10 3.00000+ 0 5.17450- 9 5.00000+ 0 5.54140- 9 6.00000+ 0 5.55680- 9 1 9000 0 0 1.89984+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.75740- 9 1 9000 0 0 1.89984+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.81870- 7 1 9000 0 0 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.44231- 5 3.00000+ 0 3.59300- 5 5.00000+ 0 1.70500- 5 6.00000+ 0 1.69800- 5 1 9000 0 7 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.17584- 3 1 9000 0 7 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.16035- 6 1 9000 0 9 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.90824- 1 1 9000 0 9 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.37787- 4 1 9000 0 7 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 3.06841- 3 6.71320- 4 6.00000+ 0 6.10743- 3 6.71390- 4 1 9000 0 9 1.89984+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.25970- 1 6.16510- 4 3.00000+ 0 5.00000+ 0 1.03000- 1 6.35390- 4 3.00000+ 0 6.00000+ 0 2.03651- 1 6.35460- 4 5.00000+ 0 5.00000+ 0 1.30903- 2 6.54270- 4 5.00000+ 0 6.00000+ 0 3.46901- 1 6.54340- 4 6.00000+ 0 6.00000+ 0 1.98211- 1 6.54410- 4 1 10000 0 0 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 1 10000 0 0 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.58180- 4 3.00000+ 0 4.32300- 5 5.00000+ 0 2.00800- 5 6.00000+ 0 1.99600- 5 1 10000 0 0 2.01790+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.27900- 3 3.00000+ 0 1.50970- 4 5.00000+ 0 1.28010- 4 6.00000+ 0 1.27250- 4 1 10000 0 0 2.01790+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.28310-10 3.00000+ 0 4.63000- 9 5.00000+ 0 4.92350- 9 6.00000+ 0 4.93900- 9 1 10000 0 0 2.01790+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.36870- 9 1 10000 0 0 2.01790+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.39450- 7 1 10000 0 0 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.04039- 5 3.00000+ 0 4.32300- 5 5.00000+ 0 2.00800- 5 6.00000+ 0 1.99600- 5 1 10000 0 7 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.38730- 2 1 10000 0 7 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16280- 5 1 10000 0 9 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.86127- 1 1 10000 0 9 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.96148- 4 1 10000 0 7 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 4.64329- 3 8.38100- 4 6.00000+ 0 9.22967- 3 8.38220- 4 1 10000 0 9 2.01790+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 9.30584- 2 7.71720- 4 3.00000+ 0 5.00000+ 0 9.21024- 2 7.94870- 4 3.00000+ 0 6.00000+ 0 1.81578- 1 7.94990- 4 5.00000+ 0 5.00000+ 0 1.45681- 2 8.18020- 4 5.00000+ 0 6.00000+ 0 3.85131- 1 8.18140- 4 6.00000+ 0 6.00000+ 0 2.19689- 1 8.18260- 4 1 11000 0 0 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 1.00000+ 0 1 11000 0 0 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06400- 3 3.00000+ 0 6.44800- 5 5.00000+ 0 3.64200- 5 6.00000+ 0 3.62200- 5 8.00000+ 0 5.15000- 6 1 11000 0 0 2.29898+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.55510- 3 3.00000+ 0 1.96170- 4 5.00000+ 0 1.75990- 4 6.00000+ 0 1.74890- 4 8.00000+ 0 9.50000- 6 1 11000 0 0 2.29898+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.50690-10 3.00000+ 0 4.04690- 9 5.00000+ 0 4.03540- 9 6.00000+ 0 4.04310- 9 8.00000+ 0 2.13160- 8 1 11000 0 0 2.29898+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.75340- 9 3.00000+ 0 8.83460-12 1 11000 0 0 2.29898+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.82540- 7 3.00000+ 0 5.15280- 7 1 11000 0 0 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.37067- 5 3.00000+ 0 4.14364- 5 5.00000+ 0 3.64200- 5 6.00000+ 0 3.62200- 5 8.00000+ 0 5.15000- 6 1 11000 0 7 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00374- 2 3.00000+ 0 1.16019- 4 1 11000 0 7 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.05412- 5 3.00000+ 0 3.27110- 9 1 11000 0 9 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42387+ 0 3.00000+ 0 9.99884- 1 1 11000 0 9 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.69752- 4 3.00000+ 0 2.30403- 5 1 11000 0 7 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 6.68996- 3 1.02758- 3 6.00000+ 0 1.32959- 2 1.02778- 3 1 11000 0 9 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 8.70552- 2 9.35040- 4 3.00000+ 0 5.00000+ 0 8.90021- 2 9.63100- 4 3.00000+ 0 6.00000+ 0 1.75052- 1 9.63300- 4 3.00000+ 0 8.00000+ 0 5.73825- 3 9.94370- 4 5.00000+ 0 5.00000+ 0 1.46296- 2 9.91160- 4 5.00000+ 0 6.00000+ 0 3.82369- 1 9.91360- 4 5.00000+ 0 8.00000+ 0 2.69932- 3 1.02243- 3 6.00000+ 0 6.00000+ 0 2.18165- 1 9.91560- 4 6.00000+ 0 8.00000+ 0 5.30407- 3 1.02263- 3 1 11000 0 7 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 3.80328- 5 2.80600- 5 6.00000+ 0 7.79865- 5 2.82600- 5 1 11000 0 9 2.29898+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 3.34898- 1 2.29100- 5 6.00000+ 0 8.00000+ 0 6.64986- 1 2.31100- 5 1 12000 0 0 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1 12000 0 0 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.29450- 3 3.00000+ 0 8.94600- 5 5.00000+ 0 5.65500- 5 6.00000+ 0 5.62400- 5 8.00000+ 0 6.89000- 6 1 12000 0 0 2.43050+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.85910- 3 3.00000+ 0 2.48340- 4 5.00000+ 0 2.28850- 4 6.00000+ 0 2.27220- 4 8.00000+ 0 1.90600- 5 1 12000 0 0 2.43050+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.86200-10 3.00000+ 0 3.60050- 9 5.00000+ 0 3.48120- 9 6.00000+ 0 3.49240- 9 8.00000+ 0 1.65310- 8 1 12000 0 0 2.43050+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.11440- 9 3.00000+ 0 1.10270-11 5.00000+ 0 1.14600-12 6.00000+ 0 1.15120-12 1 12000 0 0 2.43050+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.24460- 7 3.00000+ 0 1.12490- 6 5.00000+ 0 4.43530-10 6.00000+ 0 4.16320-10 1 12000 0 0 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.99038- 5 3.00000+ 0 2.05860- 5 5.00000+ 0 1.37800- 5 6.00000+ 0 1.37800- 5 8.00000+ 0 6.89000- 6 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.77756- 2 3.00000+ 0 1.81564- 4 5.00000+ 0 3.41139- 6 6.00000+ 0 3.17959- 6 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.42901- 5 3.00000+ 0 6.06587- 9 5.00000+ 0 1.69410-10 6.00000+ 0 1.56913-10 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.34017+ 0 3.00000+ 0 1.98781+ 0 5.00000+ 0 9.99997- 1 6.00000+ 0 9.99997- 1 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23031- 3 3.00000+ 0 6.88679- 5 5.00000+ 0 4.27699- 5 6.00000+ 0 4.24599- 5 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 9.27327- 3 1.23795- 3 6.00000+ 0 1.84189- 2 1.23826- 3 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 8.23145- 2 1.11558- 3 3.00000+ 0 5.00000+ 0 8.60821- 2 1.14849- 3 3.00000+ 0 6.00000+ 0 1.68838- 1 1.14880- 3 3.00000+ 0 8.00000+ 0 1.26143- 2 1.19815- 3 5.00000+ 0 5.00000+ 0 1.44975- 2 1.18140- 3 5.00000+ 0 6.00000+ 0 3.75508- 1 1.18171- 3 5.00000+ 0 8.00000+ 0 5.99323- 3 1.23106- 3 6.00000+ 0 6.00000+ 0 2.14213- 1 1.18202- 3 6.00000+ 0 8.00000+ 0 1.17657- 2 1.23137- 3 8.00000+ 0 8.00000+ 0 4.81078- 4 1.28072- 3 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 5.79260- 5 3.29100- 5 6.00000+ 0 1.20420- 4 3.32200- 5 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 3.31220- 1 2.60200- 5 6.00000+ 0 8.00000+ 0 6.56590- 1 2.63300- 5 8.00000+ 0 8.00000+ 0 1.20110- 2 7.56800- 5 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.45278-16 3.10000- 7 8.00000+ 0 3.41139- 6 4.96600- 5 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.99997- 1 4.27700- 5 1 12000 0 7 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 3.17959- 6 4.93500- 5 1 12000 0 9 2.43050+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.99997- 1 4.24600- 5 1 13000 0 0 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 3.30000- 1 1.10000+ 1 6.70000- 1 1 13000 0 0 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.54990- 3 3.00000+ 0 1.19050- 4 5.00000+ 0 8.12000- 5 6.00000+ 0 8.07300- 5 8.00000+ 0 1.01600- 5 1.00000+ 1 4.88000- 6 1.10000+ 1 4.87000- 6 1 13000 0 0 2.69815+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.19100- 3 3.00000+ 0 3.07380- 4 5.00000+ 0 2.88300- 4 6.00000+ 0 2.85960- 4 8.00000+ 0 3.35300- 5 1.00000+ 1 1.83800- 5 1.10000+ 1 1.82400- 5 1 13000 0 0 2.69815+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.31760-10 3.00000+ 0 3.24100- 9 5.00000+ 0 3.06880- 9 6.00000+ 0 3.07960- 9 8.00000+ 0 1.29290- 8 1.00000+ 1 1.81770- 8 1.10000+ 1 1.82340- 8 1 13000 0 0 2.69815+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.38230- 8 3.00000+ 0 1.48830-11 5.00000+ 0 2.69150-12 6.00000+ 0 2.70920-12 1 13000 0 0 2.69815+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.65180- 7 3.00000+ 0 1.38950- 6 5.00000+ 0 5.71690- 9 6.00000+ 0 5.71420- 9 1 13000 0 0 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.46619- 5 3.00000+ 0 2.53270- 5 5.00000+ 0 1.58336- 5 6.00000+ 0 1.57959- 5 8.00000+ 0 1.01600- 5 1.00000+ 1 4.88000- 6 1.10000+ 1 4.87000- 6 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.72847- 2 3.00000+ 0 2.70704- 4 5.00000+ 0 1.60532- 5 6.00000+ 0 1.50001- 5 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.45949- 5 3.00000+ 0 1.12877- 8 5.00000+ 0 1.14042- 9 6.00000+ 0 1.05856- 9 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.28748+ 0 3.00000+ 0 1.98063+ 0 5.00000+ 0 9.99984- 1 6.00000+ 0 9.99985- 1 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.46064- 3 3.00000+ 0 9.37117- 5 5.00000+ 0 6.53653- 5 6.00000+ 0 6.49330- 5 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.23699- 2 1.46870- 3 6.00000+ 0 2.45528- 2 1.46917- 3 1.00000+ 1 7.55854- 5 1.54502- 3 1.10000+ 1 1.50039- 4 1.54503- 3 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.83944- 2 1.31180- 3 3.00000+ 0 5.00000+ 0 8.32180- 2 1.34965- 3 3.00000+ 0 6.00000+ 0 1.62725- 1 1.35012- 3 3.00000+ 0 8.00000+ 0 1.35884- 2 1.42069- 3 3.00000+ 0 1.00000+ 1 8.96794- 4 1.42597- 3 3.00000+ 0 1.10000+ 1 1.76485- 3 1.42598- 3 5.00000+ 0 5.00000+ 0 1.42920- 2 1.38750- 3 5.00000+ 0 6.00000+ 0 3.66942- 1 1.38797- 3 5.00000+ 0 8.00000+ 0 6.49294- 3 1.45854- 3 5.00000+ 0 1.00000+ 1 3.01318- 4 1.46382- 3 5.00000+ 0 1.10000+ 1 3.65883- 3 1.46383- 3 6.00000+ 0 6.00000+ 0 2.09226- 1 1.38844- 3 6.00000+ 0 8.00000+ 0 1.27063- 2 1.45901- 3 6.00000+ 0 1.00000+ 1 3.65189- 3 1.46429- 3 6.00000+ 0 1.10000+ 1 4.20421- 3 1.46430- 3 8.00000+ 0 8.00000+ 0 5.81139- 4 1.52958- 3 8.00000+ 0 1.00000+ 1 7.17440- 5 1.53486- 3 8.00000+ 0 1.10000+ 1 1.36311- 4 1.53487- 3 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 7.90053- 5 3.78500- 5 6.00000+ 0 1.70531- 4 3.83200- 5 1.00000+ 1 2.07691- 6 1.14170- 4 1.10000+ 1 4.02982- 6 1.14180- 4 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 2.98134- 1 2.76900- 5 5.00000+ 0 1.00000+ 1 1.67498- 2 3.29700- 5 5.00000+ 0 1.10000+ 1 1.46673- 2 3.29800- 5 6.00000+ 0 8.00000+ 0 5.89896- 1 2.81600- 5 6.00000+ 0 1.00000+ 1 1.45284- 2 3.34400- 5 6.00000+ 0 1.10000+ 1 4.66786- 2 3.34500- 5 8.00000+ 0 8.00000+ 0 1.12532- 2 9.87300- 5 8.00000+ 0 1.00000+ 1 2.61944- 3 1.04010- 4 8.00000+ 0 1.10000+ 1 5.21749- 3 1.04020- 4 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.83922-15 4.70000- 7 8.00000+ 0 1.60531- 5 7.10400- 5 1.10000+ 1 1.75611-10 7.63300- 5 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.50408- 1 6.08800- 5 8.00000+ 0 1.00000+ 1 8.00076- 1 6.61600- 5 8.00000+ 0 1.10000+ 1 4.94996- 2 6.61700- 5 1 13000 0 7 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.49999- 5 7.05700- 5 1.00000+ 1 8.20316-11 7.58500- 5 1.10000+ 1 8.10126-11 7.58600- 5 1 13000 0 9 2.69815+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.44757- 1 6.04100- 5 8.00000+ 0 1.00000+ 1 2.47625- 2 6.56900- 5 8.00000+ 0 1.10000+ 1 8.30465- 1 6.57000- 5 1 14000 0 0 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 6.70000- 1 1.10000+ 1 1.33000+ 0 1 14000 0 0 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.82850- 3 3.00000+ 0 1.51550- 4 5.00000+ 0 1.08670- 4 6.00000+ 0 1.07980- 4 8.00000+ 0 1.36300- 5 1.00000+ 1 6.55000- 6 1.10000+ 1 6.52000- 6 1 14000 0 0 2.80855+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.55100- 3 3.00000+ 0 3.73080- 4 5.00000+ 0 3.54240- 4 6.00000+ 0 3.50990- 4 8.00000+ 0 4.82100- 5 1.00000+ 1 3.05900- 5 1.10000+ 1 3.03300- 5 1 14000 0 0 2.80855+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.85420-10 3.00000+ 0 2.94680- 9 5.00000+ 0 2.74710- 9 6.00000+ 0 2.75790- 9 8.00000+ 0 1.09790- 8 1.00000+ 1 1.43150- 8 1.10000+ 1 1.43690- 8 1 14000 0 0 2.80855+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.02370- 8 3.00000+ 0 2.36950-11 5.00000+ 0 4.90260-12 6.00000+ 0 4.94600-12 1 14000 0 0 2.80855+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.05080- 7 3.00000+ 0 1.68360- 6 5.00000+ 0 1.75020- 8 6.00000+ 0 1.75640- 8 1 14000 0 0 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.98430- 5 3.00000+ 0 3.02367- 5 5.00000+ 0 1.82253- 5 6.00000+ 0 1.81806- 5 8.00000+ 0 1.36300- 5 1.00000+ 1 6.55000- 6 1.10000+ 1 6.52000- 6 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.87212- 2 3.00000+ 0 3.87578- 4 5.00000+ 0 4.72019- 5 6.00000+ 0 4.42085- 5 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.35266- 5 3.00000+ 0 2.07464- 8 5.00000+ 0 4.48608- 9 6.00000+ 0 4.17109- 9 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.22911+ 0 3.00000+ 0 1.97422+ 0 5.00000+ 0 9.99953- 1 6.00000+ 0 9.99956- 1 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.70513- 3 3.00000+ 0 1.21293- 4 5.00000+ 0 9.04402- 5 6.00000+ 0 8.97952- 5 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.59791- 2 1.71983- 3 6.00000+ 0 3.17052- 2 1.72052- 3 1.00000+ 1 2.72402- 4 1.82195- 3 1.10000+ 1 5.40444- 4 1.82198- 3 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.47954- 2 1.52540- 3 3.00000+ 0 5.00000+ 0 8.01214- 2 1.56828- 3 3.00000+ 0 6.00000+ 0 1.56131- 1 1.56897- 3 3.00000+ 0 8.00000+ 0 1.41124- 2 1.66332- 3 3.00000+ 0 1.00000+ 1 1.95584- 3 1.67040- 3 3.00000+ 0 1.10000+ 1 3.81585- 3 1.67043- 3 5.00000+ 0 5.00000+ 0 1.39905- 2 1.61116- 3 5.00000+ 0 6.00000+ 0 3.56408- 1 1.61185- 3 5.00000+ 0 8.00000+ 0 6.76231- 3 1.70620- 3 5.00000+ 0 1.00000+ 1 6.64732- 4 1.71328- 3 5.00000+ 0 1.10000+ 1 7.97675- 3 1.71331- 3 6.00000+ 0 6.00000+ 0 2.03104- 1 1.61254- 3 6.00000+ 0 8.00000+ 0 1.31982- 2 1.70689- 3 6.00000+ 0 1.00000+ 1 7.96407- 3 1.71397- 3 6.00000+ 0 1.10000+ 1 9.16547- 3 1.71400- 3 8.00000+ 0 8.00000+ 0 6.64748- 4 1.80124- 3 8.00000+ 0 1.00000+ 1 1.66185- 4 1.80832- 3 8.00000+ 0 1.10000+ 1 3.25975- 4 1.80835- 3 1.00000+ 1 1.00000+ 1 6.39199- 6 1.81540- 3 1.00000+ 1 1.10000+ 1 1.08669- 4 1.81543- 3 1.10000+ 1 1.10000+ 1 6.39185- 5 1.81546- 3 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00920- 4 4.28800- 5 6.00000+ 0 2.26020- 4 4.35700- 5 1.00000+ 1 5.83271- 6 1.45000- 4 1.10000+ 1 1.07340- 5 1.45030- 4 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 2.63384- 1 2.92500- 5 5.00000+ 0 1.00000+ 1 3.36590- 2 3.63300- 5 5.00000+ 0 1.10000+ 1 3.17976- 2 3.63600- 5 6.00000+ 0 8.00000+ 0 5.19248- 1 2.99400- 5 6.00000+ 0 1.00000+ 1 3.13467- 2 3.70200- 5 6.00000+ 0 1.10000+ 1 9.48457- 2 3.70500- 5 8.00000+ 0 8.00000+ 0 1.03158- 2 1.24290- 4 8.00000+ 0 1.00000+ 1 5.00684- 3 1.31370- 4 8.00000+ 0 1.10000+ 1 9.95440- 3 1.31400- 4 1.00000+ 1 1.00000+ 1 3.23120- 5 1.38450- 4 1.10000+ 1 1.10000+ 1 6.62381- 5 1.38510- 4 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.92390-14 6.90000- 7 8.00000+ 0 4.72000- 5 9.50400- 5 1.10000+ 1 1.82830- 9 1.02150- 4 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.76285- 2 8.14100- 5 8.00000+ 0 1.00000+ 1 5.54847- 1 8.84900- 5 8.00000+ 0 1.10000+ 1 3.51351- 2 8.85200- 5 1.00000+ 1 1.00000+ 1 7.24466- 2 9.55700- 5 1.00000+ 1 1.10000+ 1 2.62434- 1 9.56000- 5 1.10000+ 1 1.10000+ 1 7.46220- 3 9.56300- 5 1 14000 0 7 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.42068- 5 9.43500- 5 1.00000+ 1 8.54246-10 1.01430- 4 1.10000+ 1 8.43116-10 1.01460- 4 1 14000 0 9 2.80855+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.56816- 2 8.07200- 5 8.00000+ 0 1.00000+ 1 1.73500- 2 8.78000- 5 8.00000+ 0 1.10000+ 1 5.73636- 1 8.78300- 5 1.00000+ 1 1.00000+ 1 1.08438- 3 9.48800- 5 1.00000+ 1 1.10000+ 1 1.37565- 1 9.49100- 5 1.10000+ 1 1.10000+ 1 2.04639- 1 9.49400- 5 1 15000 0 0 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 1.00000+ 0 1.10000+ 1 2.00000+ 0 1 15000 0 0 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.13040- 3 3.00000+ 0 1.87150- 4 5.00000+ 0 1.39140- 4 6.00000+ 0 1.38180- 4 8.00000+ 0 1.72100- 5 1.00000+ 1 8.38000- 6 1.10000+ 1 8.33000- 6 1 15000 0 0 3.09738+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.93920- 3 3.00000+ 0 4.45410- 4 5.00000+ 0 4.26720- 4 6.00000+ 0 4.22300- 4 8.00000+ 0 6.40100- 5 1.00000+ 1 4.39600- 5 1.10000+ 1 4.35200- 5 1 15000 0 0 3.09738+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.45260-10 3.00000+ 0 2.70120- 9 5.00000+ 0 2.48840- 9 6.00000+ 0 2.49960- 9 8.00000+ 0 9.65400- 9 1.00000+ 1 1.20130- 8 1.10000+ 1 1.20670- 8 1 15000 0 0 3.09738+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.87500- 8 3.00000+ 0 4.23120-11 5.00000+ 0 7.97830-12 6.00000+ 0 8.06390-12 1 15000 0 0 3.09738+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.44060- 7 3.00000+ 0 2.03040- 6 5.00000+ 0 3.72490- 8 6.00000+ 0 3.74050- 8 1 15000 0 0 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.59667- 5 3.00000+ 0 3.56244- 5 5.00000+ 0 2.12705- 5 6.00000+ 0 2.12157- 5 8.00000+ 0 1.72100- 5 1.00000+ 1 8.38000- 6 1.10000+ 1 8.33000- 6 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.22110- 2 3.00000+ 0 5.36878- 4 5.00000+ 0 1.07320- 4 6.00000+ 0 1.00729- 4 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23474- 4 3.00000+ 0 3.85092- 8 5.00000+ 0 1.30856- 8 6.00000+ 0 1.21852- 8 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.16644+ 0 3.00000+ 0 1.96938+ 0 5.00000+ 0 9.99893- 1 6.00000+ 0 9.99899- 1 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.96096- 3 3.00000+ 0 1.51487- 4 5.00000+ 0 1.17856- 4 6.00000+ 0 1.16952- 4 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.01220- 2 1.99126- 3 6.00000+ 0 3.98749- 2 1.99222- 3 1.00000+ 1 6.21469- 4 2.12202- 3 1.10000+ 1 1.23210- 3 2.12207- 3 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.12845- 2 1.75610- 3 3.00000+ 0 5.00000+ 0 7.70090- 2 1.80411- 3 3.00000+ 0 6.00000+ 0 1.49534- 1 1.80507- 3 3.00000+ 0 8.00000+ 0 1.42971- 2 1.92604- 3 3.00000+ 0 1.00000+ 1 3.09277- 3 1.93487- 3 3.00000+ 0 1.10000+ 1 6.00170- 3 1.93492- 3 5.00000+ 0 5.00000+ 0 1.35789- 2 1.85212- 3 5.00000+ 0 6.00000+ 0 3.44468- 1 1.85308- 3 5.00000+ 0 8.00000+ 0 6.87552- 3 1.97405- 3 5.00000+ 0 1.00000+ 1 1.05204- 3 1.98288- 3 5.00000+ 0 1.10000+ 1 1.25152- 2 1.98293- 3 6.00000+ 0 6.00000+ 0 1.96055- 1 1.85404- 3 6.00000+ 0 8.00000+ 0 1.33713- 2 1.97501- 3 6.00000+ 0 1.00000+ 1 1.25043- 2 1.98384- 3 6.00000+ 0 1.10000+ 1 1.43892- 2 1.98389- 3 8.00000+ 0 8.00000+ 0 7.12833- 4 2.09598- 3 8.00000+ 0 1.00000+ 1 2.75938- 4 2.10481- 3 8.00000+ 0 1.10000+ 1 5.34626- 4 2.10486- 3 1.00000+ 1 1.00000+ 1 1.72459- 5 2.11364- 3 1.00000+ 1 1.10000+ 1 3.67923- 4 2.11369- 3 1.10000+ 1 1.10000+ 1 2.12700- 4 2.11374- 3 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.18800- 4 4.80100- 5 6.00000+ 0 2.78870- 4 4.89700- 5 1.00000+ 1 1.42970- 5 1.78770- 4 1.10000+ 1 2.50490- 5 1.78820- 4 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 2.31157- 1 3.08000- 5 5.00000+ 0 1.00000+ 1 4.82015- 2 3.96300- 5 5.00000+ 0 1.10000+ 1 4.87713- 2 3.96800- 5 6.00000+ 0 8.00000+ 0 4.55856- 1 3.17600- 5 6.00000+ 0 1.00000+ 1 4.78317- 2 4.05900- 5 6.00000+ 0 1.10000+ 1 1.37702- 1 4.06400- 5 8.00000+ 0 8.00000+ 0 9.19772- 3 1.52730- 4 8.00000+ 0 1.00000+ 1 6.89081- 3 1.61560- 4 8.00000+ 0 1.10000+ 1 1.36935- 2 1.61610- 4 1.00000+ 1 1.00000+ 1 8.43928- 5 1.70390- 4 1.00000+ 1 1.10000+ 1 2.67913- 6 1.70440- 4 1.10000+ 1 1.10000+ 1 1.74150- 4 1.70490- 4 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.54471-14 9.60000- 7 8.00000+ 0 1.07310- 4 1.21930- 4 1.10000+ 1 9.51832- 9 1.30810- 4 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.84224- 2 1.04720- 4 8.00000+ 0 1.00000+ 1 4.09857- 1 1.13550- 4 8.00000+ 0 1.10000+ 1 2.66610- 2 1.13600- 4 1.00000+ 1 1.00000+ 1 1.11541- 1 1.22380- 4 1.00000+ 1 1.10000+ 1 4.01870- 1 1.22430- 4 1.10000+ 1 1.10000+ 1 1.15410- 2 1.22480- 4 1 15000 0 7 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.00720- 4 1.20970- 4 1.00000+ 1 4.44840- 9 1.29800- 4 1.10000+ 1 4.38500- 9 1.29850- 4 1 15000 0 9 3.09738+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.74626- 2 1.03760- 4 8.00000+ 0 1.00000+ 1 1.31656- 2 1.12590- 4 8.00000+ 0 1.10000+ 1 4.23652- 1 1.12640- 4 1.00000+ 1 1.00000+ 1 1.74570- 3 1.21420- 4 1.00000+ 1 1.10000+ 1 2.10574- 1 1.21470- 4 1.10000+ 1 1.10000+ 1 3.13300- 1 1.21520- 4 1 16000 0 0 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 1.33000+ 0 1.10000+ 1 2.67000+ 0 1 16000 0 0 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.45590- 3 3.00000+ 0 2.25970- 4 5.00000+ 0 1.72730- 4 6.00000+ 0 1.71400- 4 8.00000+ 0 2.09500- 5 1.00000+ 1 1.03400- 5 1.10000+ 1 1.02500- 5 1 16000 0 0 3.20600+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.35600- 3 3.00000+ 0 5.24390- 4 5.00000+ 0 5.05780- 4 6.00000+ 0 4.99890- 4 8.00000+ 0 8.12000- 5 1.00000+ 1 5.86000- 5 1.10000+ 1 5.79400- 5 1 16000 0 0 3.20600+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.10120-10 3.00000+ 0 2.49340- 9 5.00000+ 0 2.27520- 9 6.00000+ 0 2.28680- 9 8.00000+ 0 8.65770- 9 1.00000+ 1 1.04460- 8 1.10000+ 1 1.05000- 8 1 16000 0 0 3.20600+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.98060- 8 3.00000+ 0 7.76290-11 5.00000+ 0 1.21070-11 6.00000+ 0 1.22710-11 1 16000 0 0 3.20600+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.82240- 7 3.00000+ 0 2.39470- 6 5.00000+ 0 6.58520- 8 6.00000+ 0 6.61570- 8 1 16000 0 0 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.26280- 5 3.00000+ 0 4.13511- 5 5.00000+ 0 2.47781- 5 6.00000+ 0 2.46935- 5 8.00000+ 0 2.09500- 5 1.00000+ 1 1.03400- 5 1.10000+ 1 1.02500- 5 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.78515- 2 3.00000+ 0 7.23821- 4 5.00000+ 0 2.07464- 4 6.00000+ 0 1.95111- 4 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.77165- 4 3.00000+ 0 7.11029- 8 5.00000+ 0 3.14893- 8 6.00000+ 0 2.93548- 8 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.09992+ 0 3.00000+ 0 1.96551+ 0 5.00000+ 0 9.99793- 1 6.00000+ 0 9.99805- 1 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.22611- 3 3.00000+ 0 1.84548- 4 5.00000+ 0 1.47920- 4 6.00000+ 0 1.46677- 4 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.47822- 2 2.28317- 3 6.00000+ 0 4.90644- 2 2.28450- 3 1.00000+ 1 1.15591- 3 2.44556- 3 1.10000+ 1 2.28902- 3 2.44565- 3 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.79961- 2 2.00396- 3 3.00000+ 0 5.00000+ 0 7.39684- 2 2.05720- 3 3.00000+ 0 6.00000+ 0 1.43069- 1 2.05853- 3 3.00000+ 0 8.00000+ 0 1.42819- 2 2.20898- 3 3.00000+ 0 1.00000+ 1 4.23283- 3 2.21959- 3 3.00000+ 0 1.10000+ 1 8.17425- 3 2.21968- 3 5.00000+ 0 5.00000+ 0 1.31472- 2 2.11044- 3 5.00000+ 0 6.00000+ 0 3.31099- 1 2.11177- 3 5.00000+ 0 8.00000+ 0 6.86216- 3 2.26222- 3 5.00000+ 0 1.00000+ 1 1.45266- 3 2.27283- 3 5.00000+ 0 1.10000+ 1 1.70618- 2 2.27292- 3 6.00000+ 0 6.00000+ 0 1.88236- 1 2.11310- 3 6.00000+ 0 8.00000+ 0 1.32869- 2 2.26355- 3 6.00000+ 0 1.00000+ 1 1.70457- 2 2.27416- 3 6.00000+ 0 1.10000+ 1 1.96027- 2 2.27425- 3 8.00000+ 0 8.00000+ 0 7.44545- 4 2.41400- 3 8.00000+ 0 1.00000+ 1 3.95703- 4 2.42461- 3 8.00000+ 0 1.10000+ 1 7.60167- 4 2.42470- 3 1.00000+ 1 1.00000+ 1 3.64445- 5 2.43522- 3 1.00000+ 1 1.10000+ 1 7.96592- 4 2.43531- 3 1.10000+ 1 1.10000+ 1 4.58163- 4 2.43540- 3 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30089- 4 5.32400- 5 6.00000+ 0 3.19088- 4 5.45700- 5 1.00000+ 1 3.05768- 5 2.15630- 4 1.10000+ 1 5.14767- 5 2.15720- 4 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 2.03001- 1 3.22900- 5 5.00000+ 0 1.00000+ 1 6.10351- 2 4.29000- 5 5.00000+ 0 1.10000+ 1 6.51221- 2 4.29900- 5 6.00000+ 0 8.00000+ 0 3.96791- 1 3.36200- 5 6.00000+ 0 1.00000+ 1 6.33933- 2 4.42300- 5 6.00000+ 0 1.10000+ 1 1.76441- 1 4.43200- 5 8.00000+ 0 8.00000+ 0 8.19136- 3 1.84070- 4 8.00000+ 0 1.00000+ 1 8.39006- 3 1.94680- 4 8.00000+ 0 1.10000+ 1 1.66434- 2 1.94770- 4 1.00000+ 1 1.00000+ 1 1.45352- 4 2.05290- 4 1.00000+ 1 1.10000+ 1 1.13569- 5 2.05380- 4 1.10000+ 1 1.10000+ 1 3.03228- 4 2.05470- 4 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.48030-13 1.33000- 6 8.00000+ 0 2.07430- 4 1.51780- 4 1.10000+ 1 3.45370- 8 1.62480- 4 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.44984- 2 1.30830- 4 8.00000+ 0 1.00000+ 1 3.20372- 1 1.41440- 4 8.00000+ 0 1.10000+ 1 2.13995- 2 1.41530- 4 1.00000+ 1 1.00000+ 1 1.35178- 1 1.52050- 4 1.00000+ 1 1.10000+ 1 4.84421- 1 1.52140- 4 1.10000+ 1 1.10000+ 1 1.39230- 2 1.52230- 4 1 16000 0 7 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.95079- 4 1.50450- 4 1.00000+ 1 1.61379- 8 1.61060- 4 1.10000+ 1 1.58869- 8 1.61150- 4 1 16000 0 9 3.20600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.39739- 2 1.29500- 4 8.00000+ 0 1.00000+ 1 1.05269- 2 1.40110- 4 8.00000+ 0 1.10000+ 1 3.31167- 1 1.40200- 4 1.00000+ 1 1.00000+ 1 2.17960- 3 1.50720- 4 1.00000+ 1 1.10000+ 1 2.53969- 1 1.50810- 4 1.10000+ 1 1.10000+ 1 3.77988- 1 1.50900- 4 1 17000 0 0 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 1.67000+ 0 1.10000+ 1 3.33000+ 0 1 17000 0 0 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.80490- 3 3.00000+ 0 2.68050- 4 5.00000+ 0 2.09480- 4 6.00000+ 0 2.07700- 4 8.00000+ 0 2.48400- 5 1.00000+ 1 1.24200- 5 1.10000+ 1 1.22900- 5 1 17000 0 0 3.54530+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.80140- 3 3.00000+ 0 6.10050- 4 5.00000+ 0 5.91510- 4 6.00000+ 0 5.83810- 4 8.00000+ 0 9.98800- 5 1.00000+ 1 7.46200- 5 1.10000+ 1 7.36700- 5 1 17000 0 0 3.54530+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.78840-10 3.00000+ 0 2.31540- 9 5.00000+ 0 2.09650- 9 6.00000+ 0 2.10840- 9 8.00000+ 0 7.86990- 9 1.00000+ 1 9.28710- 9 1.10000+ 1 9.33730- 9 1 17000 0 0 3.54530+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.39210- 8 3.00000+ 0 1.38910-10 5.00000+ 0 1.74940-11 6.00000+ 0 1.77770-11 1 17000 0 0 3.54530+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.20280- 7 3.00000+ 0 2.80320- 6 5.00000+ 0 1.03350- 7 6.00000+ 0 1.03860- 7 1 17000 0 0 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.96273- 5 3.00000+ 0 4.74207- 5 5.00000+ 0 2.86479- 5 6.00000+ 0 2.85332- 5 8.00000+ 0 2.48400- 5 1.00000+ 1 1.24200- 5 1.10000+ 1 1.22900- 5 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.57035- 2 3.00000+ 0 9.54710- 4 5.00000+ 0 3.58667- 4 6.00000+ 0 3.37933- 4 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.47588- 4 3.00000+ 0 1.27876- 7 5.00000+ 0 6.62256- 8 6.00000+ 0 6.17956- 8 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.02876+ 0 3.00000+ 0 1.96292+ 0 5.00000+ 0 9.99641- 1 6.00000+ 0 9.99662- 1 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.49769- 3 3.00000+ 0 2.20501- 4 5.00000+ 0 1.80766- 4 6.00000+ 0 1.79105- 4 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.99473- 2 2.59542- 3 6.00000+ 0 5.92357- 2 2.59720- 3 1.00000+ 1 1.90852- 3 2.79248- 3 1.10000+ 1 3.77764- 3 2.79261- 3 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.47454- 2 2.26880- 3 3.00000+ 0 5.00000+ 0 7.07430- 2 2.32737- 3 3.00000+ 0 6.00000+ 0 1.36245- 1 2.32915- 3 3.00000+ 0 8.00000+ 0 1.40930- 2 2.51201- 3 3.00000+ 0 1.00000+ 1 5.34453- 3 2.52443- 3 3.00000+ 0 1.10000+ 1 1.02721- 2 2.52456- 3 5.00000+ 0 5.00000+ 0 1.26685- 2 2.38594- 3 5.00000+ 0 6.00000+ 0 3.17212- 1 2.38772- 3 5.00000+ 0 8.00000+ 0 6.76930- 3 2.57058- 3 5.00000+ 0 1.00000+ 1 1.84144- 3 2.58300- 3 5.00000+ 0 1.10000+ 1 2.14432- 2 2.58313- 3 6.00000+ 0 6.00000+ 0 1.80107- 1 2.38950- 3 6.00000+ 0 8.00000+ 0 1.30550- 2 2.57236- 3 6.00000+ 0 1.00000+ 1 2.14401- 2 2.58478- 3 6.00000+ 0 1.10000+ 1 2.46207- 2 2.58491- 3 8.00000+ 0 8.00000+ 0 7.57429- 4 2.75522- 3 8.00000+ 0 1.00000+ 1 5.11276- 4 2.76764- 3 8.00000+ 0 1.10000+ 1 9.89421- 4 2.76777- 3 1.00000+ 1 1.00000+ 1 6.15382- 5 2.78006- 3 1.00000+ 1 1.10000+ 1 1.40118- 3 2.78019- 3 1.10000+ 1 1.10000+ 1 8.09499- 4 2.78032- 3 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.32240- 4 5.85700- 5 6.00000+ 0 3.38699- 4 6.03500- 5 1.00000+ 1 5.77589- 5 2.55630- 4 1.10000+ 1 9.34599- 5 2.55760- 4 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 1.77436- 1 3.37300- 5 5.00000+ 0 1.00000+ 1 7.17001- 2 4.61500- 5 5.00000+ 0 1.10000+ 1 7.98935- 2 4.62800- 5 6.00000+ 0 8.00000+ 0 3.48444- 1 3.55100- 5 6.00000+ 0 1.00000+ 1 7.75632- 2 4.79300- 5 6.00000+ 0 1.10000+ 1 2.08372- 1 4.80600- 5 8.00000+ 0 8.00000+ 0 7.21657- 3 2.18370- 4 8.00000+ 0 1.00000+ 1 9.41985- 3 2.30790- 4 8.00000+ 0 1.10000+ 1 1.86655- 2 2.30920- 4 1.00000+ 1 1.00000+ 1 2.03716- 4 2.43210- 4 1.00000+ 1 1.10000+ 1 3.00734- 5 2.43340- 4 1.10000+ 1 1.10000+ 1 4.33629- 4 2.43470- 4 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.13665-13 1.78000- 6 8.00000+ 0 3.58568- 4 1.84640- 4 1.10000+ 1 9.97973- 8 1.97190- 4 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.68707- 2 1.59800- 4 8.00000+ 0 1.00000+ 1 2.61091- 1 1.72220- 4 8.00000+ 0 1.10000+ 1 1.78966- 2 1.72350- 4 1.00000+ 1 1.00000+ 1 1.50680- 1 1.84640- 4 1.00000+ 1 1.10000+ 1 5.37786- 1 1.84770- 4 1.10000+ 1 1.10000+ 1 1.53179- 2 1.84900- 4 1 17000 0 7 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 3.37841- 4 1.82860- 4 1.00000+ 1 4.66351- 8 1.95280- 4 1.10000+ 1 4.58471- 8 1.95410- 4 1 17000 0 9 3.54530+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.66045- 2 1.58020- 4 8.00000+ 0 1.00000+ 1 8.74747- 3 1.70440- 4 8.00000+ 0 1.10000+ 1 2.69969- 1 1.70570- 4 1.00000+ 1 1.00000+ 1 2.48799- 3 1.82860- 4 1.00000+ 1 1.10000+ 1 2.81903- 1 1.82990- 4 1.10000+ 1 1.10000+ 1 4.19951- 1 1.83120- 4 1 18000 0 0 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1 18000 0 0 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.17760- 3 3.00000+ 0 3.13430- 4 5.00000+ 0 2.49430- 4 6.00000+ 0 2.47090- 4 8.00000+ 0 2.89200- 5 1.00000+ 1 1.46200- 5 1.10000+ 1 1.44300- 5 1 18000 0 0 3.99480+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.27570- 3 3.00000+ 0 7.02450- 4 5.00000+ 0 6.83960- 4 6.00000+ 0 6.74060- 4 8.00000+ 0 1.20070- 4 1.00000+ 1 9.20800- 5 1.10000+ 1 9.07500- 5 1 18000 0 0 3.99480+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.51420-10 3.00000+ 0 2.16090- 9 5.00000+ 0 1.94390- 9 6.00000+ 0 1.95630- 9 8.00000+ 0 7.22500- 9 1.00000+ 1 8.38350- 9 1.10000+ 1 8.43760- 9 1 18000 0 0 3.99480+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.16570- 8 3.00000+ 0 2.37950-10 5.00000+ 0 2.43510-11 6.00000+ 0 2.48120-11 1 18000 0 0 3.99480+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.57640- 7 3.00000+ 0 3.24230- 6 5.00000+ 0 1.50480- 7 6.00000+ 0 1.51270- 7 1 18000 0 0 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.68089- 5 3.00000+ 0 5.37544- 5 5.00000+ 0 3.28227- 5 6.00000+ 0 3.26609- 5 8.00000+ 0 2.89200- 5 1.00000+ 1 1.46200- 5 1.10000+ 1 1.44300- 5 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.15783- 1 3.00000+ 0 1.23350- 3 5.00000+ 0 5.71595- 4 6.00000+ 0 5.39408- 4 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.37982- 4 3.00000+ 0 2.19959- 7 5.00000+ 0 1.26046- 7 6.00000+ 0 1.17686- 7 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.95218+ 0 3.00000+ 0 1.95524+ 0 5.00000+ 0 9.99428- 1 6.00000+ 0 9.99461- 1 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.77281- 3 3.00000+ 0 2.59456- 4 5.00000+ 0 2.16481- 4 6.00000+ 0 2.14311- 4 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 3.55868- 2 2.92817- 3 6.00000+ 0 7.03336- 2 2.93051- 3 1.00000+ 1 2.91258- 3 3.16298- 3 1.10000+ 1 5.75646- 3 3.16317- 3 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.16844- 2 2.55074- 3 3.00000+ 0 5.00000+ 0 6.75987- 2 2.61474- 3 3.00000+ 0 6.00000+ 0 1.29586- 1 2.61708- 3 3.00000+ 0 8.00000+ 0 1.37829- 2 2.83525- 3 3.00000+ 0 1.00000+ 1 6.39436- 3 2.84955- 3 3.00000+ 0 1.10000+ 1 1.22222- 2 2.84974- 3 5.00000+ 0 5.00000+ 0 1.21489- 2 2.67874- 3 5.00000+ 0 6.00000+ 0 3.02561- 1 2.68108- 3 5.00000+ 0 8.00000+ 0 6.61466- 3 2.89925- 3 5.00000+ 0 1.00000+ 1 2.20338- 3 2.91355- 3 5.00000+ 0 1.10000+ 1 2.55000- 2 2.91374- 3 6.00000+ 0 6.00000+ 0 1.71563- 1 2.68342- 3 6.00000+ 0 8.00000+ 0 1.27069- 2 2.90159- 3 6.00000+ 0 1.00000+ 1 2.55026- 2 2.91589- 3 6.00000+ 0 1.10000+ 1 2.92457- 2 2.91608- 3 8.00000+ 0 8.00000+ 0 7.64713- 4 3.11976- 3 8.00000+ 0 1.00000+ 1 6.26469- 4 3.13406- 3 8.00000+ 0 1.10000+ 1 1.20100- 3 3.13425- 3 1.00000+ 1 1.00000+ 1 9.93685- 5 3.14836- 3 1.00000+ 1 1.10000+ 1 2.16012- 3 3.14855- 3 1.10000+ 1 1.10000+ 1 1.24429- 3 3.14874- 3 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.23859- 4 6.40000- 5 6.00000+ 0 3.33608- 4 6.63400- 5 1.00000+ 1 9.68363- 5 2.98810- 4 1.10000+ 1 1.52699- 4 2.99000- 4 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 1.55105- 1 3.50800- 5 5.00000+ 0 1.00000+ 1 8.00244- 2 4.93800- 5 5.00000+ 0 1.10000+ 1 9.30786- 2 4.95700- 5 6.00000+ 0 8.00000+ 0 3.04564- 1 3.74200- 5 6.00000+ 0 1.00000+ 1 8.98110- 2 5.17200- 5 6.00000+ 0 1.10000+ 1 2.33431- 1 5.19100- 5 8.00000+ 0 8.00000+ 0 7.34583- 3 2.55590- 4 8.00000+ 0 1.00000+ 1 1.17252- 2 2.69890- 4 8.00000+ 0 1.10000+ 1 2.31926- 2 2.70080- 4 1.00000+ 1 1.00000+ 1 2.96096- 4 2.84190- 4 1.00000+ 1 1.10000+ 1 7.11414- 5 2.84380- 4 1.10000+ 1 1.10000+ 1 6.48915- 4 2.84570- 4 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.84940-12 2.34000- 6 8.00000+ 0 5.71349- 4 2.20510- 4 1.10000+ 1 2.45970- 7 2.35000- 4 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.21988- 2 1.91590- 4 8.00000+ 0 1.00000+ 1 2.19087- 1 2.05890- 4 8.00000+ 0 1.10000+ 1 1.53435- 2 2.06080- 4 1.00000+ 1 1.00000+ 1 1.61746- 1 2.20190- 4 1.00000+ 1 1.10000+ 1 5.74753- 1 2.20380- 4 1.10000+ 1 1.10000+ 1 1.63000- 2 2.20570- 4 1 18000 0 7 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.39180- 4 2.18170- 4 1.00000+ 1 1.14890- 7 2.32470- 4 1.10000+ 1 1.12760- 7 2.32660- 4 1 18000 0 9 3.99480+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.20275- 2 1.89250- 4 8.00000+ 0 1.00000+ 1 7.49704- 3 2.03550- 4 8.00000+ 0 1.10000+ 1 2.26636- 1 2.03740- 4 1.00000+ 1 1.00000+ 1 2.71477- 3 2.17850- 4 1.00000+ 1 1.10000+ 1 3.01615- 1 2.18040- 4 1.10000+ 1 1.10000+ 1 4.48970- 1 2.18230- 4 1 19000 0 0 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.60000+ 1 1.00000+ 0 1 19000 0 0 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.58330- 3 3.00000+ 0 3.71160- 4 5.00000+ 0 3.01650- 4 6.00000+ 0 2.98640- 4 8.00000+ 0 4.05000- 5 1.00000+ 1 2.37500- 5 1.10000+ 1 2.34700- 5 1.60000+ 1 4.22000- 6 1 19000 0 0 3.90983+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.77930- 3 3.00000+ 0 8.02120- 4 5.00000+ 0 7.83710- 4 6.00000+ 0 7.71170- 4 8.00000+ 0 1.48920- 4 1.00000+ 1 1.22390- 4 1.10000+ 1 1.20670- 4 1.60000+ 1 9.97000- 6 1 19000 0 0 3.90983+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.27090-10 3.00000+ 0 2.02460- 9 5.00000+ 0 1.81110- 9 6.00000+ 0 1.82380- 9 8.00000+ 0 6.52220- 9 1.00000+ 1 7.20190- 9 1.10000+ 1 7.24430- 9 1.60000+ 1 2.61890- 8 1 19000 0 0 3.90983+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.32900- 8 3.00000+ 0 3.75130-10 5.00000+ 0 3.54600-11 6.00000+ 0 3.62410-11 1 19000 0 0 3.90983+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.92180- 7 3.00000+ 0 3.67500- 6 5.00000+ 0 1.78830- 7 6.00000+ 0 1.79890- 7 1 19000 0 0 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01166- 4 3.00000+ 0 8.07106- 5 5.00000+ 0 5.12118- 5 6.00000+ 0 5.09516- 5 8.00000+ 0 4.05000- 5 1.00000+ 1 2.37500- 5 1.10000+ 1 2.34700- 5 1.60000+ 1 4.22000- 6 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.38069- 1 3.00000+ 0 1.56490- 3 5.00000+ 0 8.56287- 4 6.00000+ 0 8.09167- 4 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.51653- 4 3.00000+ 0 3.59521- 7 5.00000+ 0 2.24367- 7 6.00000+ 0 2.09584- 7 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.87234+ 0 3.00000+ 0 1.92757+ 0 5.00000+ 0 9.99144- 1 6.00000+ 0 9.99191- 1 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.03048- 3 3.00000+ 0 2.90090- 4 5.00000+ 0 2.50214- 4 6.00000+ 0 2.47479- 4 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 4.18599- 2 3.28165- 3 6.00000+ 0 8.26518- 2 3.28466- 3 1.00000+ 1 3.99739- 3 3.55955- 3 1.10000+ 1 7.91008- 3 3.55983- 3 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.89630- 2 2.84098- 3 3.00000+ 0 5.00000+ 0 6.48009- 2 2.91049- 3 3.00000+ 0 6.00000+ 0 1.23626- 1 2.91350- 3 3.00000+ 0 8.00000+ 0 1.41070- 2 3.17164- 3 3.00000+ 0 1.00000+ 1 6.89276- 3 3.18839- 3 3.00000+ 0 1.10000+ 1 1.31233- 2 3.18867- 3 3.00000+ 0 1.60000+ 1 6.86507- 4 3.20792- 3 5.00000+ 0 5.00000+ 0 1.16788- 2 2.98000- 3 5.00000+ 0 6.00000+ 0 2.89645- 1 2.98301- 3 5.00000+ 0 8.00000+ 0 6.75386- 3 3.24115- 3 5.00000+ 0 1.00000+ 1 2.38084- 3 3.25790- 3 5.00000+ 0 1.10000+ 1 2.72851- 2 3.25818- 3 5.00000+ 0 1.60000+ 1 3.25392- 4 3.27743- 3 6.00000+ 0 6.00000+ 0 1.63935- 1 2.98602- 3 6.00000+ 0 8.00000+ 0 1.29199- 2 3.24416- 3 6.00000+ 0 1.00000+ 1 2.72613- 2 3.26091- 3 6.00000+ 0 1.10000+ 1 3.12637- 2 3.26119- 3 6.00000+ 0 1.60000+ 1 6.19017- 4 3.28044- 3 8.00000+ 0 8.00000+ 0 8.33295- 4 3.50230- 3 8.00000+ 0 1.00000+ 1 7.22188- 4 3.51905- 3 8.00000+ 0 1.10000+ 1 1.37698- 3 3.51933- 3 8.00000+ 0 1.60000+ 1 8.33295- 5 3.53858- 3 1.00000+ 1 1.00000+ 1 1.19046- 4 3.53580- 3 1.00000+ 1 1.10000+ 1 2.58323- 3 3.53608- 3 1.00000+ 1 1.60000+ 1 3.57137- 5 3.55533- 3 1.10000+ 1 1.10000+ 1 1.49204- 3 3.53636- 3 1.10000+ 1 1.60000+ 1 6.74576- 5 3.55561- 3 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.11190- 4 6.95100- 5 6.00000+ 0 3.14070- 4 7.25200- 5 1.00000+ 1 1.47230- 4 3.47410- 4 1.10000+ 1 2.25400- 4 3.47690- 4 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 1.44822- 1 2.90100- 5 5.00000+ 0 1.00000+ 1 7.77653- 2 4.57600- 5 5.00000+ 0 1.10000+ 1 9.33226- 2 4.60400- 5 5.00000+ 0 1.60000+ 1 6.32995- 3 6.52900- 5 6.00000+ 0 8.00000+ 0 2.78789- 1 3.20200- 5 6.00000+ 0 1.00000+ 1 8.90327- 2 4.87700- 5 6.00000+ 0 1.10000+ 1 2.26394- 1 4.90500- 5 6.00000+ 0 1.60000+ 1 1.22536- 2 6.83000- 5 8.00000+ 0 8.00000+ 0 1.09421- 2 2.90160- 4 8.00000+ 0 1.00000+ 1 1.84072- 2 3.06910- 4 8.00000+ 0 1.10000+ 1 3.64059- 2 3.07190- 4 8.00000+ 0 1.60000+ 1 9.71733- 4 3.26440- 4 1.00000+ 1 1.00000+ 1 4.43715- 4 3.23660- 4 1.00000+ 1 1.10000+ 1 1.62172- 4 3.23940- 4 1.00000+ 1 1.60000+ 1 7.22612- 4 3.43190- 4 1.10000+ 1 1.10000+ 1 1.00934- 3 3.24220- 4 1.10000+ 1 1.60000+ 1 1.42836- 3 3.43470- 4 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.09442-12 3.01000- 6 8.00000+ 0 8.35413- 4 2.61150- 4 1.10000+ 1 4.81412- 7 2.78180- 4 1.60000+ 1 2.03921- 5 2.97430- 4 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.14174- 2 2.20650- 4 8.00000+ 0 1.00000+ 1 2.07641- 1 2.37400- 4 8.00000+ 0 1.10000+ 1 1.48840- 2 2.37680- 4 8.00000+ 0 1.60000+ 1 9.88199- 4 2.56930- 4 1.00000+ 1 1.00000+ 1 1.62162- 1 2.54150- 4 1.00000+ 1 1.10000+ 1 5.74928- 1 2.54430- 4 1.00000+ 1 1.60000+ 1 1.03231- 2 2.73680- 4 1.10000+ 1 1.10000+ 1 1.61615- 2 2.54710- 4 1.10000+ 1 1.60000+ 1 6.38519- 4 2.73960- 4 1 19000 0 7 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.89471- 4 2.58140- 4 1.00000+ 1 2.24120- 7 2.74890- 4 1.10000+ 1 2.20150- 7 2.75170- 4 1.60000+ 1 1.92520- 5 2.94420- 4 1 19000 0 9 3.90983+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.12219- 2 2.17640- 4 8.00000+ 0 1.00000+ 1 7.18101- 3 2.34390- 4 8.00000+ 0 1.10000+ 1 2.13721- 1 2.34670- 4 8.00000+ 0 1.60000+ 1 9.76484- 4 2.53920- 4 1.00000+ 1 1.00000+ 1 2.71897- 3 2.51140- 4 1.00000+ 1 1.10000+ 1 2.99761- 1 2.51420- 4 1.00000+ 1 1.60000+ 1 3.00446- 4 2.70670- 4 1.10000+ 1 1.10000+ 1 4.52595- 1 2.51700- 4 1.10000+ 1 1.60000+ 1 1.07157- 2 2.70950- 4 1 20000 0 0 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.60000+ 1 2.00000+ 0 1 20000 0 0 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.01500- 3 3.00000+ 0 4.34110- 4 5.00000+ 0 3.59040- 4 6.00000+ 0 3.55200- 4 8.00000+ 0 5.31600- 5 1.00000+ 1 3.40100- 5 1.10000+ 1 3.36000- 5 1.60000+ 1 5.45000- 6 1 20000 0 0 4.00800+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.31230- 3 3.00000+ 0 9.09210- 4 5.00000+ 0 8.90860- 4 6.00000+ 0 8.75170- 4 8.00000+ 0 1.80980- 4 1.00000+ 1 1.54070- 4 1.10000+ 1 1.51790- 4 1.60000+ 1 1.85800- 5 1 20000 0 0 4.00800+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.05080-10 3.00000+ 0 1.90420- 9 5.00000+ 0 1.69490- 9 6.00000+ 0 1.70800- 9 8.00000+ 0 5.95840- 9 1.00000+ 1 6.42570- 9 1.10000+ 1 6.46430- 9 1.60000+ 1 2.10150- 8 1 20000 0 0 4.00800+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19400- 7 3.00000+ 0 5.57900-10 5.00000+ 0 5.14910-11 6.00000+ 0 5.27840-11 1 20000 0 0 4.00800+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.25560- 7 3.00000+ 0 3.94670- 6 5.00000+ 0 2.06310- 7 6.00000+ 0 2.07690- 7 1 20000 0 0 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.37408- 4 3.00000+ 0 1.09353- 4 5.00000+ 0 7.15356- 5 6.00000+ 0 7.11217- 5 8.00000+ 0 5.31600- 5 1.00000+ 1 3.40100- 5 1.10000+ 1 3.36000- 5 1.60000+ 1 5.45000- 6 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.62486- 1 3.00000+ 0 1.95248- 3 5.00000+ 0 1.22195- 3 6.00000+ 0 1.15608- 3 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.92020- 4 3.00000+ 0 5.58876- 7 5.00000+ 0 3.74996- 7 6.00000+ 0 3.50340- 7 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.79327+ 0 3.00000+ 0 1.90552+ 0 5.00000+ 0 9.98778- 1 6.00000+ 0 9.98844- 1 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.28557- 3 3.00000+ 0 3.24198- 4 5.00000+ 0 2.87129- 4 6.00000+ 0 2.83728- 4 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 4.87196- 2 3.65596- 3 6.00000+ 0 9.61323- 2 3.65980- 3 1.00000+ 1 5.17776- 3 3.98099- 3 1.10000+ 1 1.02489- 2 3.98140- 3 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.63485- 2 3.14678- 3 3.00000+ 0 5.00000+ 0 6.20531- 2 3.22185- 3 3.00000+ 0 6.00000+ 0 1.17762- 1 3.22569- 3 3.00000+ 0 8.00000+ 0 1.42824- 2 3.52773- 3 3.00000+ 0 1.00000+ 1 7.23290- 3 3.54688- 3 3.00000+ 0 1.10000+ 1 1.37034- 2 3.54729- 3 3.00000+ 0 1.60000+ 1 1.62556- 3 3.57544- 3 5.00000+ 0 5.00000+ 0 1.12223- 2 3.29692- 3 5.00000+ 0 6.00000+ 0 2.76841- 1 3.30076- 3 5.00000+ 0 8.00000+ 0 6.82757- 3 3.60280- 3 5.00000+ 0 1.00000+ 1 2.49498- 3 3.62195- 3 5.00000+ 0 1.10000+ 1 2.84282- 2 3.62236- 3 5.00000+ 0 1.60000+ 1 7.63476- 4 3.65051- 3 6.00000+ 0 6.00000+ 0 1.56416- 1 3.30460- 3 6.00000+ 0 8.00000+ 0 1.29934- 2 3.60664- 3 6.00000+ 0 1.00000+ 1 2.83839- 2 3.62579- 3 6.00000+ 0 1.10000+ 1 3.25412- 2 3.62620- 3 6.00000+ 0 1.60000+ 1 1.45385- 3 3.65435- 3 8.00000+ 0 8.00000+ 0 8.72175- 4 3.90868- 3 8.00000+ 0 1.00000+ 1 7.79616- 4 3.92783- 3 8.00000+ 0 1.10000+ 1 1.47733- 3 3.92824- 3 8.00000+ 0 1.60000+ 1 1.99359- 4 3.95639- 3 1.00000+ 1 1.00000+ 1 1.35157- 4 3.94698- 3 1.00000+ 1 1.10000+ 1 2.93344- 3 3.94739- 3 1.00000+ 1 1.60000+ 1 8.76773- 5 3.97554- 3 1.10000+ 1 1.10000+ 1 1.69495- 3 3.94780- 3 1.10000+ 1 1.60000+ 1 1.68035- 4 3.97595- 3 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 9.42443- 5 7.50700- 5 6.00000+ 0 2.78501- 4 7.89100- 5 1.00000+ 1 2.04061- 4 4.00100- 4 1.10000+ 1 3.06021- 4 4.00510- 4 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 1.26937- 1 2.19100- 5 5.00000+ 0 1.00000+ 1 7.72997- 2 4.10600- 5 5.00000+ 0 1.10000+ 1 9.32978- 2 4.14700- 5 5.00000+ 0 1.60000+ 1 1.42567- 2 6.96200- 5 6.00000+ 0 8.00000+ 0 2.53693- 1 2.57500- 5 6.00000+ 0 1.00000+ 1 8.92701- 2 4.49000- 5 6.00000+ 0 1.10000+ 1 2.24979- 1 4.53100- 5 6.00000+ 0 1.60000+ 1 2.73691- 2 7.34600- 5 8.00000+ 0 8.00000+ 0 1.31208- 2 3.27790- 4 8.00000+ 0 1.00000+ 1 2.28754- 2 3.46940- 4 8.00000+ 0 1.10000+ 1 4.52192- 2 3.47350- 4 8.00000+ 0 1.60000+ 1 2.68682- 3 3.75500- 4 1.00000+ 1 1.00000+ 1 5.21721- 4 3.66090- 4 1.00000+ 1 1.10000+ 1 2.67985- 4 3.66500- 4 1.00000+ 1 1.60000+ 1 2.04550- 3 3.94650- 4 1.10000+ 1 1.10000+ 1 1.23299- 3 3.66910- 4 1.10000+ 1 1.60000+ 1 4.04393- 3 3.95060- 4 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.73376-12 3.84000- 6 8.00000+ 0 1.19571- 3 3.05880- 4 1.10000+ 1 8.74676- 7 3.25440- 4 1.60000+ 1 2.53632- 5 3.53590- 4 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.08556- 2 2.52720- 4 8.00000+ 0 1.00000+ 1 1.98917- 1 2.71870- 4 8.00000+ 0 1.10000+ 1 1.45844- 2 2.72280- 4 8.00000+ 0 1.60000+ 1 2.13424- 3 3.00430- 4 1.00000+ 1 1.00000+ 1 1.61409- 1 2.91020- 4 1.00000+ 1 1.10000+ 1 5.70643- 1 2.91430- 4 1.00000+ 1 1.60000+ 1 2.29240- 2 3.19580- 4 1.10000+ 1 1.10000+ 1 1.58751- 2 2.91840- 4 1.10000+ 1 1.60000+ 1 1.43604- 3 3.19990- 4 1 20000 0 7 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.13130- 3 3.02040- 4 1.00000+ 1 4.05972- 7 3.21190- 4 1.10000+ 1 3.98812- 7 3.21600- 4 1.60000+ 1 2.39671- 5 3.49750- 4 1 20000 0 9 4.00800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.06175- 2 2.48880- 4 8.00000+ 0 1.00000+ 1 6.94101- 3 2.68030- 4 8.00000+ 0 1.10000+ 1 2.03179- 1 2.68440- 4 8.00000+ 0 1.60000+ 1 2.10301- 3 2.96590- 4 1.00000+ 1 1.00000+ 1 2.69658- 3 2.87180- 4 1.00000+ 1 1.10000+ 1 2.95034- 1 2.87590- 4 1.00000+ 1 1.60000+ 1 6.70949- 4 3.15740- 4 1.10000+ 1 1.10000+ 1 4.53602- 1 2.88000- 4 1.10000+ 1 1.60000+ 1 2.39998- 2 3.16150- 4 1 21000 0 0 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000- 1 1.40000+ 1 6.00000- 1 1.60000+ 1 2.00000+ 0 1 21000 0 0 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.46580- 3 3.00000+ 0 4.94290- 4 5.00000+ 0 4.13680- 4 6.00000+ 0 4.08860- 4 8.00000+ 0 6.09100- 5 1.00000+ 1 3.96000- 5 1.10000+ 1 3.90600- 5 1.30000+ 1 7.08000- 6 1.40000+ 1 7.04000- 6 1.60000+ 1 5.90000- 6 1 21000 0 0 4.49559+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.87560- 3 3.00000+ 0 1.02380- 3 5.00000+ 0 1.00580- 3 6.00000+ 0 9.86380- 4 8.00000+ 0 2.09550- 4 1.00000+ 1 1.80600- 4 1.10000+ 1 1.77630- 4 1.30000+ 1 9.93900- 5 1.40000+ 1 9.89200- 5 1.60000+ 1 2.15500- 5 1 21000 0 0 4.49559+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.84960-10 3.00000+ 0 1.79680- 9 5.00000+ 0 1.59210- 9 6.00000+ 0 1.60560- 9 8.00000+ 0 5.56460- 9 1.00000+ 1 5.95070- 9 1.10000+ 1 5.98930- 9 1.30000+ 1 8.24450- 9 1.40000+ 1 8.26380- 9 1.60000+ 1 1.96210- 8 1 21000 0 0 4.49559+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.49980- 7 3.00000+ 0 7.61260-10 5.00000+ 0 1.37620-10 6.00000+ 0 1.38860-10 8.00000+ 0 8.28690-12 1.00000+ 1 3.30950-12 1.10000+ 1 3.24870-12 1 21000 0 0 4.49559+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.50220- 7 3.00000+ 0 4.58610- 6 5.00000+ 0 2.26040- 7 6.00000+ 0 2.27840- 7 8.00000+ 0 1.48260- 6 1.00000+ 1 5.88600- 8 1.10000+ 1 4.99310- 8 1 21000 0 0 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.24121- 5 3.00000+ 0 4.14759- 5 5.00000+ 0 2.79163- 5 6.00000+ 0 2.77999- 5 8.00000+ 0 1.98528- 5 1.00000+ 1 1.36335- 5 1.10000+ 1 1.35121- 5 1.30000+ 1 7.08000- 6 1.40000+ 1 7.04000- 6 1.60000+ 1 5.90000- 6 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.88933- 1 3.00000+ 0 2.41277- 3 5.00000+ 0 1.67739- 3 6.00000+ 0 1.58869- 3 8.00000+ 0 2.30629- 6 1.00000+ 1 3.31330- 9 1.10000+ 1 2.74909- 9 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.62353- 4 3.00000+ 0 8.32824- 7 5.00000+ 0 5.98258- 7 6.00000+ 0 5.58760- 7 8.00000+ 0 5.00310-11 1.00000+ 1 1.09124-13 1.10000+ 1 8.91530-14 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.75919+ 0 3.00000+ 0 5.14994+ 0 5.00000+ 0 3.12042+ 0 6.00000+ 0 3.11724+ 0 8.00000+ 0 1.97439+ 0 1.00000+ 1 1.00000+ 0 1.10000+ 1 1.00000+ 0 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.65104- 3 3.00000+ 0 4.51981- 4 5.00000+ 0 3.85165- 4 6.00000+ 0 3.80501- 4 8.00000+ 0 4.10571- 5 1.00000+ 1 2.59665- 5 1.10000+ 1 2.55479- 5 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 5.63841- 2 4.05212- 3 6.00000+ 0 1.11130- 1 4.05694- 3 1.00000+ 1 6.22301- 3 4.42620- 3 1.10000+ 1 1.23040- 2 4.42674- 3 1.30000+ 1 1.96120- 7 4.45872- 3 1.40000+ 1 2.89041- 7 4.45876- 3 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.44637- 2 3.47722- 3 3.00000+ 0 5.00000+ 0 6.00783- 2 3.55783- 3 3.00000+ 0 6.00000+ 0 1.13385- 1 3.56265- 3 3.00000+ 0 8.00000+ 0 1.40482- 2 3.91060- 3 3.00000+ 0 1.00000+ 1 7.19748- 3 3.93191- 3 3.00000+ 0 1.10000+ 1 1.35473- 2 3.93245- 3 3.00000+ 0 1.30000+ 1 2.38431- 5 3.96443- 3 3.00000+ 0 1.40000+ 1 3.40637- 5 3.96447- 3 3.00000+ 0 1.60000+ 1 1.53284- 3 3.96561- 3 5.00000+ 0 5.00000+ 0 1.08769- 2 3.63844- 3 5.00000+ 0 6.00000+ 0 2.67036- 1 3.64326- 3 5.00000+ 0 8.00000+ 0 6.70028- 3 3.99121- 3 5.00000+ 0 1.00000+ 1 2.47982- 3 4.01252- 3 5.00000+ 0 1.10000+ 1 2.80789- 2 4.01306- 3 5.00000+ 0 1.30000+ 1 3.40644- 5 4.04504- 3 5.00000+ 0 1.40000+ 1 1.29436- 4 4.04508- 3 5.00000+ 0 1.60000+ 1 7.15337- 4 4.04622- 3 6.00000+ 0 6.00000+ 0 1.50576- 1 3.64808- 3 6.00000+ 0 8.00000+ 0 1.26825- 2 3.99603- 3 6.00000+ 0 1.00000+ 1 2.80366- 2 4.01734- 3 6.00000+ 0 1.10000+ 1 3.20895- 2 4.01788- 3 6.00000+ 0 1.30000+ 1 1.63498- 4 4.04986- 3 6.00000+ 0 1.40000+ 1 1.63498- 4 4.04990- 3 6.00000+ 0 1.60000+ 1 1.35901- 3 4.05104- 3 8.00000+ 0 8.00000+ 0 8.95876- 4 4.34398- 3 8.00000+ 0 1.00000+ 1 8.07310- 4 4.36529- 3 8.00000+ 0 1.10000+ 1 1.51925- 3 4.36583- 3 8.00000+ 0 1.30000+ 1 3.40645- 6 4.39781- 3 8.00000+ 0 1.40000+ 1 3.40645- 6 4.39785- 3 8.00000+ 0 1.60000+ 1 1.94159- 4 4.39899- 3 1.00000+ 1 1.00000+ 1 1.36257- 4 4.38660- 3 1.00000+ 1 1.10000+ 1 2.96706- 3 4.38714- 3 1.00000+ 1 1.30000+ 1 3.40644- 6 4.41912- 3 1.00000+ 1 1.40000+ 1 1.02198- 5 4.41916- 3 1.00000+ 1 1.60000+ 1 8.51593- 5 4.42030- 3 1.10000+ 1 1.10000+ 1 1.70995- 3 4.38768- 3 1.10000+ 1 1.30000+ 1 1.36255- 5 4.41966- 3 1.10000+ 1 1.40000+ 1 1.36255- 5 4.41970- 3 1.10000+ 1 1.60000+ 1 1.63502- 4 4.42084- 3 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 7.81037- 5 8.06100- 5 6.00000+ 0 2.40919- 4 8.54300- 5 1.00000+ 1 2.62569- 4 4.54690- 4 1.10000+ 1 3.88779- 4 4.55230- 4 1.30000+ 1 1.37519- 7 4.87210- 4 1.40000+ 1 2.05159- 7 4.87250- 4 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 1.06879- 1 1.97000- 5 5.00000+ 0 1.00000+ 1 6.92471- 2 4.10100- 5 5.00000+ 0 1.10000+ 1 8.61788- 2 4.15500- 5 5.00000+ 0 1.30000+ 1 1.23062- 2 7.35300- 5 5.00000+ 0 1.40000+ 1 2.05685- 2 7.35700- 5 5.00000+ 0 1.60000+ 1 1.17590- 2 7.47100- 5 6.00000+ 0 8.00000+ 0 2.10562- 1 2.45200- 5 6.00000+ 0 1.00000+ 1 8.17994- 2 4.58300- 5 6.00000+ 0 1.10000+ 1 2.00993- 1 4.63700- 5 6.00000+ 0 1.30000+ 1 2.77421- 2 7.83500- 5 6.00000+ 0 1.40000+ 1 3.91714- 2 7.83900- 5 6.00000+ 0 1.60000+ 1 2.24097- 2 7.95300- 5 8.00000+ 0 8.00000+ 0 1.43325- 2 3.72470- 4 8.00000+ 0 1.00000+ 1 2.52717- 2 3.93780- 4 8.00000+ 0 1.10000+ 1 4.98762- 2 3.94320- 4 8.00000+ 0 1.30000+ 1 2.24442- 3 4.26300- 4 8.00000+ 0 1.40000+ 1 3.33368- 3 4.26340- 4 8.00000+ 0 1.60000+ 1 2.81112- 3 4.27480- 4 1.00000+ 1 1.00000+ 1 5.37809- 4 4.15090- 4 1.00000+ 1 1.10000+ 1 3.62109- 4 4.15630- 4 1.00000+ 1 1.30000+ 1 3.36123- 5 4.47610- 4 1.00000+ 1 1.40000+ 1 5.25574- 4 4.47650- 4 1.00000+ 1 1.60000+ 1 2.16038- 3 4.48790- 4 1.10000+ 1 1.10000+ 1 1.49569- 3 4.16170- 4 1.10000+ 1 1.30000+ 1 6.62433- 4 4.48150- 4 1.10000+ 1 1.40000+ 1 4.96826- 4 4.48190- 4 1.10000+ 1 1.60000+ 1 4.81792- 3 4.49330- 4 1.30000+ 1 1.60000+ 1 1.81819- 4 4.81310- 4 1.40000+ 1 1.60000+ 1 2.68909- 4 4.81350- 4 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.65549-11 4.82000- 6 8.00000+ 0 1.55229- 3 3.52770- 4 1.10000+ 1 1.42119- 6 3.74620- 4 1.30000+ 1 9.27695- 5 4.06600- 4 1.60000+ 1 3.03898- 5 4.07780- 4 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.00960- 2 2.91860- 4 8.00000+ 0 1.00000+ 1 1.83509- 1 3.13170- 4 8.00000+ 0 1.10000+ 1 1.37264- 2 3.13710- 4 8.00000+ 0 1.30000+ 1 1.39422- 3 3.45690- 4 8.00000+ 0 1.40000+ 1 1.57445- 3 3.45730- 4 8.00000+ 0 1.60000+ 1 1.89902- 3 3.46870- 4 1.00000+ 1 1.00000+ 1 1.50851- 1 3.34480- 4 1.00000+ 1 1.10000+ 1 5.31502- 1 3.35020- 4 1.00000+ 1 1.30000+ 1 1.57803- 2 3.67000- 4 1.00000+ 1 1.40000+ 1 3.17545- 2 3.67040- 4 1.00000+ 1 1.60000+ 1 2.02290- 2 3.68180- 4 1.10000+ 1 1.10000+ 1 1.47351- 2 3.35560- 4 1.10000+ 1 1.30000+ 1 1.68501- 2 3.67540- 4 1.10000+ 1 1.40000+ 1 2.81247- 3 3.67580- 4 1.10000+ 1 1.60000+ 1 1.29809- 3 3.68720- 4 1.30000+ 1 1.60000+ 1 1.44229- 4 4.00700- 4 1.40000+ 1 1.60000+ 1 1.68269- 4 4.00740- 4 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.47392- 3 3.47950- 4 1.00000+ 1 6.61778- 7 3.69260- 4 1.10000+ 1 6.49648- 7 3.69800- 4 1.30000+ 1 6.52158- 6 4.01780- 4 1.40000+ 1 7.76419- 5 4.01820- 4 1.60000+ 1 2.87763- 5 4.02960- 4 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.97238- 3 2.87040- 4 8.00000+ 0 1.00000+ 1 6.53747- 3 3.08350- 4 8.00000+ 0 1.10000+ 1 1.88760- 1 3.08890- 4 8.00000+ 0 1.30000+ 1 1.12514- 3 3.40870- 4 8.00000+ 0 1.40000+ 1 1.96599- 3 3.40910- 4 8.00000+ 0 1.60000+ 1 1.87132- 3 3.42050- 4 1.00000+ 1 1.00000+ 1 2.54640- 3 3.29660- 4 1.00000+ 1 1.10000+ 1 2.76957- 1 3.30200- 4 1.00000+ 1 1.30000+ 1 8.52748- 4 3.62180- 4 1.00000+ 1 1.40000+ 1 8.94196- 3 3.62220- 4 1.00000+ 1 1.60000+ 1 6.15890- 4 3.63360- 4 1.10000+ 1 1.10000+ 1 4.18488- 1 3.30740- 4 1.10000+ 1 1.30000+ 1 2.38249- 2 3.62720- 4 1.10000+ 1 1.40000+ 1 3.46554- 2 3.62760- 4 1.10000+ 1 1.60000+ 1 2.09778- 2 3.63900- 4 1.30000+ 1 1.60000+ 1 1.18441- 4 3.95880- 4 1.40000+ 1 1.60000+ 1 2.01342- 4 3.95920- 4 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 7.26321- 7 2.13100- 5 1.10000+ 1 1.57710- 6 2.18500- 5 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 4.27884- 2 1.42300- 5 1.00000+ 1 1.40000+ 1 1.17811- 1 1.42700- 5 1.00000+ 1 1.60000+ 1 1.65321- 1 1.54100- 5 1.10000+ 1 1.30000+ 1 1.51515- 1 1.47700- 5 1.10000+ 1 1.40000+ 1 1.75993- 1 1.48100- 5 1.10000+ 1 1.60000+ 1 3.20963- 1 1.59500- 5 1.30000+ 1 1.40000+ 1 1.93316- 3 4.67900- 5 1.30000+ 1 1.60000+ 1 9.49786- 3 4.79300- 5 1.40000+ 1 1.60000+ 1 1.41750- 2 4.79700- 5 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.14750- 9 3.25200- 5 1.60000+ 1 1.16580- 9 3.37000- 5 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.40000+ 1 5.75791- 1 2.54800- 5 1.30000+ 1 1.60000+ 1 3.52630- 1 2.66200- 5 1.40000+ 1 1.60000+ 1 7.15791- 2 2.66600- 5 1 21000 0 7 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74670-10 3.19800- 5 1.40000+ 1 1.57960- 9 3.20200- 5 1.60000+ 1 9.94820-10 3.31600- 5 1 21000 0 9 4.49559+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.40000+ 1 4.81534- 1 2.49400- 5 1.30000+ 1 1.60000+ 1 9.69755- 2 2.60800- 5 1.40000+ 1 1.60000+ 1 4.21490- 1 2.61200- 5 1 22000 0 0 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 8.00000- 1 1.40000+ 1 1.20000+ 0 1.60000+ 1 2.00000+ 0 1 22000 0 0 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.94060- 3 3.00000+ 0 5.57440- 4 5.00000+ 0 4.71220- 4 6.00000+ 0 4.65240- 4 8.00000+ 0 6.86100- 5 1.00000+ 1 4.51000- 5 1.10000+ 1 4.44200- 5 1.30000+ 1 8.39000- 6 1.40000+ 1 8.34000- 6 1.60000+ 1 6.28000- 6 1 22000 0 0 4.79000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.46900- 3 3.00000+ 0 1.14560- 3 5.00000+ 0 1.12800- 3 6.00000+ 0 1.10420- 3 8.00000+ 0 2.39280- 4 1.00000+ 1 2.08200- 4 1.10000+ 1 2.04400- 4 1.30000+ 1 1.20870- 4 1.40000+ 1 1.20220- 4 1.60000+ 1 2.41400- 5 1 22000 0 0 4.79000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.66850-10 3.00000+ 0 1.70060- 9 5.00000+ 0 1.50100- 9 6.00000+ 0 1.51490- 9 8.00000+ 0 5.22860- 9 1.00000+ 1 5.54910- 9 1.10000+ 1 5.59160- 9 1.30000+ 1 7.41430- 9 1.40000+ 1 7.43360- 9 1.60000+ 1 1.85670- 8 1 22000 0 0 4.79000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.85950- 7 3.00000+ 0 1.01000- 9 5.00000+ 0 2.87030-10 6.00000+ 0 2.87550-10 8.00000+ 0 9.85290-12 1.00000+ 1 6.82580-12 1.10000+ 1 6.63690-12 1 22000 0 0 4.79000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.72950- 7 3.00000+ 0 5.26480- 6 5.00000+ 0 2.50340- 7 6.00000+ 0 2.52730- 7 8.00000+ 0 2.11740- 6 1.00000+ 1 1.91780- 7 1.10000+ 1 1.64800- 7 1 22000 0 0 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.92344- 5 3.00000+ 0 4.71208- 5 5.00000+ 0 3.22034- 5 6.00000+ 0 3.20649- 5 8.00000+ 0 2.33025- 5 1.00000+ 1 1.61946- 5 1.10000+ 1 1.59688- 5 1.30000+ 1 8.39000- 6 1.40000+ 1 8.34000- 6 1.60000+ 1 6.28000- 6 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.17231- 1 3.00000+ 0 2.93959- 3 5.00000+ 0 2.22970- 3 6.00000+ 0 2.11314- 3 8.00000+ 0 3.73207- 6 1.00000+ 1 5.29609- 8 1.10000+ 1 4.42175- 8 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.65952- 4 3.00000+ 0 1.18992- 6 5.00000+ 0 9.09960- 7 6.00000+ 0 8.49665- 7 8.00000+ 0 9.00511-11 1.00000+ 1 1.95693-12 1.10000+ 1 1.60207-12 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.40701+ 0 3.00000+ 0 4.90332+ 0 5.00000+ 0 3.00888+ 0 6.00000+ 0 3.01309+ 0 8.00000+ 0 1.95873+ 0 1.00000+ 1 1.00000+ 0 1.10000+ 1 1.00000+ 0 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.91541- 3 3.00000+ 0 5.09129- 4 5.00000+ 0 4.38107- 4 6.00000+ 0 4.32325- 4 8.00000+ 0 4.53074- 5 1.00000+ 1 2.89054- 5 1.10000+ 1 2.84512- 5 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 6.45982- 2 4.46938- 3 6.00000+ 0 1.27140- 1 4.47536- 3 1.00000+ 1 7.32672- 3 4.89550- 3 1.10000+ 1 1.44750- 2 4.89618- 3 1.30000+ 1 5.90112- 7 4.93221- 3 1.40000+ 1 8.68503- 7 4.93226- 3 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.25664- 2 3.82572- 3 3.00000+ 0 5.00000+ 0 5.80942- 2 3.91194- 3 3.00000+ 0 6.00000+ 0 1.08980- 1 3.91792- 3 3.00000+ 0 8.00000+ 0 1.37318- 2 4.31455- 3 3.00000+ 0 1.00000+ 1 7.10433- 3 4.33806- 3 3.00000+ 0 1.10000+ 1 1.32891- 2 4.33874- 3 3.00000+ 0 1.30000+ 1 5.40610- 5 4.37477- 3 3.00000+ 0 1.40000+ 1 7.63221- 5 4.37482- 3 3.00000+ 0 1.60000+ 1 1.43421- 3 4.37688- 3 5.00000+ 0 5.00000+ 0 1.05137- 2 3.99816- 3 5.00000+ 0 6.00000+ 0 2.56940- 1 4.00414- 3 5.00000+ 0 8.00000+ 0 6.54144- 3 4.40077- 3 5.00000+ 0 1.00000+ 1 2.44544- 3 4.42428- 3 5.00000+ 0 1.10000+ 1 2.74697- 2 4.42496- 3 5.00000+ 0 1.30000+ 1 7.63225- 5 4.46099- 3 5.00000+ 0 1.40000+ 1 2.83040- 4 4.46104- 3 5.00000+ 0 1.60000+ 1 6.71007- 4 4.46310- 3 6.00000+ 0 6.00000+ 0 1.44597- 1 4.01012- 3 6.00000+ 0 8.00000+ 0 1.23096- 2 4.40675- 3 6.00000+ 0 1.00000+ 1 2.74360- 2 4.43026- 3 6.00000+ 0 1.10000+ 1 3.13528- 2 4.43094- 3 6.00000+ 0 1.30000+ 1 3.52997- 4 4.46697- 3 6.00000+ 0 1.40000+ 1 3.49815- 4 4.46702- 3 6.00000+ 0 1.60000+ 1 1.26258- 3 4.46908- 3 8.00000+ 0 8.00000+ 0 8.87223- 4 4.80338- 3 8.00000+ 0 1.00000+ 1 8.04561- 4 4.82689- 3 8.00000+ 0 1.10000+ 1 1.50738- 3 4.82757- 3 8.00000+ 0 1.30000+ 1 6.36014- 6 4.86360- 3 8.00000+ 0 1.40000+ 1 9.53986- 6 4.86365- 3 8.00000+ 0 1.60000+ 1 1.84445- 4 4.86571- 3 1.00000+ 1 1.00000+ 1 1.36747- 4 4.85040- 3 1.00000+ 1 1.10000+ 1 2.95428- 3 4.85108- 3 1.00000+ 1 1.30000+ 1 6.36020- 6 4.88711- 3 1.00000+ 1 1.40000+ 1 2.54413- 5 4.88716- 3 1.00000+ 1 1.60000+ 1 8.26823- 5 4.88922- 3 1.10000+ 1 1.10000+ 1 1.70129- 3 4.85176- 3 1.10000+ 1 1.30000+ 1 3.18004- 5 4.88779- 3 1.10000+ 1 1.40000+ 1 3.18004- 5 4.88784- 3 1.10000+ 1 1.60000+ 1 1.55815- 4 4.88990- 3 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 6.36048- 5 8.62200- 5 6.00000+ 0 2.04399- 4 9.22000- 5 1.00000+ 1 3.22289- 4 5.12340- 4 1.10000+ 1 4.71549- 4 5.13020- 4 1.30000+ 1 3.05709- 7 5.49050- 4 1.40000+ 1 4.55949- 7 5.49100- 4 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 8.92384- 2 1.76100- 5 5.00000+ 0 1.00000+ 1 6.24746- 2 4.11200- 5 5.00000+ 0 1.10000+ 1 7.98402- 2 4.18000- 5 5.00000+ 0 1.30000+ 1 2.12067- 2 7.78300- 5 5.00000+ 0 1.40000+ 1 3.52342- 2 7.78800- 5 5.00000+ 0 1.60000+ 1 9.79495- 3 7.99400- 5 6.00000+ 0 8.00000+ 0 1.82735- 1 2.35900- 5 6.00000+ 0 1.00000+ 1 7.49562- 2 4.71000- 5 6.00000+ 0 1.10000+ 1 1.80856- 1 4.77800- 5 6.00000+ 0 1.30000+ 1 4.80906- 2 8.38100- 5 6.00000+ 0 1.40000+ 1 6.78584- 2 8.38600- 5 6.00000+ 0 1.60000+ 1 1.85422- 2 8.59200- 5 8.00000+ 0 8.00000+ 0 1.55150- 2 4.20220- 4 8.00000+ 0 1.00000+ 1 2.75747- 2 4.43730- 4 8.00000+ 0 1.10000+ 1 5.43486- 2 4.44410- 4 8.00000+ 0 1.30000+ 1 5.10217- 3 4.80440- 4 8.00000+ 0 1.40000+ 1 7.56993- 3 4.80490- 4 8.00000+ 0 1.60000+ 1 2.90923- 3 4.82550- 4 1.00000+ 1 1.00000+ 1 5.19751- 4 4.67240- 4 1.00000+ 1 1.10000+ 1 4.39794- 4 4.67920- 4 1.00000+ 1 1.30000+ 1 7.07345- 5 5.03950- 4 1.00000+ 1 1.40000+ 1 1.17018- 3 5.04000- 4 1.00000+ 1 1.60000+ 1 2.12513- 3 5.06060- 4 1.10000+ 1 1.10000+ 1 1.51055- 3 4.68600- 4 1.10000+ 1 1.30000+ 1 1.46878- 3 5.04630- 4 1.10000+ 1 1.40000+ 1 1.09240- 3 5.04680- 4 1.10000+ 1 1.60000+ 1 4.74755- 3 5.06740- 4 1.30000+ 1 1.30000+ 1 1.30245- 5 5.40660- 4 1.30000+ 1 1.40000+ 1 7.48871- 4 5.40710- 4 1.30000+ 1 1.60000+ 1 3.94001- 4 5.42770- 4 1.40000+ 1 1.40000+ 1 2.05119- 4 5.40760- 4 1.40000+ 1 1.60000+ 1 5.84429- 4 5.42820- 4 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.05500-11 5.98000- 6 8.00000+ 0 2.01990- 3 4.02610- 4 1.10000+ 1 2.27320- 6 4.26800- 4 1.30000+ 1 1.68880- 4 4.62830- 4 1.60000+ 1 3.77960- 5 4.64940- 4 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.19714- 3 3.34000- 4 8.00000+ 0 1.00000+ 1 1.66747- 1 3.57510- 4 8.00000+ 0 1.10000+ 1 1.26998- 2 3.58190- 4 8.00000+ 0 1.30000+ 1 2.37523- 3 3.94220- 4 8.00000+ 0 1.40000+ 1 2.97171- 3 3.94270- 4 8.00000+ 0 1.60000+ 1 1.65938- 3 3.96330- 4 1.00000+ 1 1.00000+ 1 1.38651- 1 3.81020- 4 1.00000+ 1 1.10000+ 1 4.87082- 1 3.81700- 4 1.00000+ 1 1.30000+ 1 3.03146- 2 4.17730- 4 1.00000+ 1 1.40000+ 1 6.04784- 2 4.17780- 4 1.00000+ 1 1.60000+ 1 1.76254- 2 4.19840- 4 1.10000+ 1 1.10000+ 1 1.34814- 2 3.82380- 4 1.10000+ 1 1.30000+ 1 3.30905- 2 4.18410- 4 1.10000+ 1 1.40000+ 1 5.36858- 3 4.18460- 4 1.10000+ 1 1.60000+ 1 1.16053- 3 4.20520- 4 1.30000+ 1 1.30000+ 1 2.45116- 3 4.54440- 4 1.30000+ 1 1.40000+ 1 1.13332- 2 4.54490- 4 1.30000+ 1 1.60000+ 1 2.38612- 4 4.56550- 4 1.40000+ 1 1.40000+ 1 5.53118- 4 4.54540- 4 1.40000+ 1 1.60000+ 1 2.92833- 4 4.56600- 4 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.91569- 3 3.96630- 4 1.00000+ 1 1.07660- 6 4.20140- 4 1.10000+ 1 1.05590- 6 4.20820- 4 1.30000+ 1 1.24250- 5 4.56850- 4 1.40000+ 1 1.45989- 4 4.56900- 4 1.60000+ 1 3.60539- 5 4.58960- 4 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.20824- 3 3.28020- 4 8.00000+ 0 1.00000+ 1 6.08138- 3 3.51530- 4 8.00000+ 0 1.10000+ 1 1.73192- 1 3.52210- 4 8.00000+ 0 1.30000+ 1 2.11332- 3 3.88240- 4 8.00000+ 0 1.40000+ 1 3.49352- 3 3.88290- 4 8.00000+ 0 1.60000+ 1 1.66044- 3 3.90350- 4 1.00000+ 1 1.00000+ 1 2.36133- 3 3.75040- 4 1.00000+ 1 1.10000+ 1 2.56375- 1 3.75720- 4 1.00000+ 1 1.30000+ 1 1.72508- 3 4.11750- 4 1.00000+ 1 1.40000+ 1 1.76177- 2 4.11800- 4 1.00000+ 1 1.60000+ 1 5.49876- 4 4.13860- 4 1.10000+ 1 1.10000+ 1 3.81701- 1 3.76400- 4 1.10000+ 1 1.30000+ 1 4.53387- 2 4.12430- 4 1.10000+ 1 1.40000+ 1 6.64192- 2 4.12480- 4 1.10000+ 1 1.60000+ 1 1.81892- 2 4.14540- 4 1.30000+ 1 1.30000+ 1 4.20504- 4 4.48460- 4 1.30000+ 1 1.40000+ 1 8.58282- 3 4.48510- 4 1.30000+ 1 1.60000+ 1 2.15641- 4 4.50570- 4 1.40000+ 1 1.40000+ 1 2.49432- 3 4.48560- 4 1.40000+ 1 1.60000+ 1 1.48366- 4 4.50620- 4 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.15240- 6 2.35100- 5 1.10000+ 1 2.53450- 6 2.41900- 5 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 5.57137- 2 1.51200- 5 1.00000+ 1 1.40000+ 1 1.44675- 1 1.51700- 5 1.00000+ 1 1.60000+ 1 1.16861- 1 1.72300- 5 1.10000+ 1 1.30000+ 1 1.95816- 1 1.58000- 5 1.10000+ 1 1.40000+ 1 2.21073- 1 1.58500- 5 1.10000+ 1 1.60000+ 1 2.24592- 1 1.79100- 5 1.30000+ 1 1.40000+ 1 5.39645- 3 5.18800- 5 1.30000+ 1 1.60000+ 1 1.42666- 2 5.39400- 5 1.40000+ 1 1.40000+ 1 3.15686- 4 5.19300- 5 1.40000+ 1 1.60000+ 1 2.12863- 2 5.39900- 5 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.69270- 8 3.67100- 5 1.60000+ 1 6.03399- 9 3.88200- 5 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.40000+ 1 7.37420- 1 2.83700- 5 1.30000+ 1 1.60000+ 1 2.16949- 1 3.04300- 5 1.40000+ 1 1.40000+ 1 3.78843- 3 2.84200- 5 1.40000+ 1 1.60000+ 1 4.18425- 2 3.04800- 5 1 22000 0 7 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.06340- 9 3.60300- 5 1.40000+ 1 3.68000- 8 3.60800- 5 1.60000+ 1 3.35410- 9 3.81400- 5 1 22000 0 9 4.79000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.40000+ 1 5.42755- 1 2.76900- 5 1.30000+ 1 1.60000+ 1 5.12654- 2 2.97500- 5 1.40000+ 1 1.40000+ 1 9.75821- 2 2.77400- 5 1.40000+ 1 1.60000+ 1 3.08398- 1 2.98000- 5 1 23000 0 0 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 1.20000+ 0 1.40000+ 1 1.80000+ 0 1.60000+ 1 2.00000+ 0 1 23000 0 0 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.43960- 3 3.00000+ 0 6.23790- 4 5.00000+ 0 5.31880- 4 6.00000+ 0 5.24540- 4 8.00000+ 0 7.64200- 5 1.00000+ 1 5.06500- 5 1.10000+ 1 4.97900- 5 1.30000+ 1 9.61000- 6 1.40000+ 1 9.53000- 6 1.60000+ 1 6.63000- 6 1 23000 0 0 5.09415+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.09290- 3 3.00000+ 0 1.27450- 3 5.00000+ 0 1.25760- 3 6.00000+ 0 1.22860- 3 8.00000+ 0 2.70370- 4 1.00000+ 1 2.37100- 4 1.10000+ 1 2.32310- 4 1.30000+ 1 1.43060- 4 1.40000+ 1 1.42190- 4 1.60000+ 1 2.65400- 5 1 23000 0 0 5.09415+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.50280-10 3.00000+ 0 1.61410- 9 5.00000+ 0 1.41950- 9 6.00000+ 0 1.43420- 9 8.00000+ 0 4.93130- 9 1.00000+ 1 5.20930- 9 1.10000+ 1 5.25180- 9 1.30000+ 1 6.78480- 9 1.40000+ 1 6.80800- 9 1.60000+ 1 1.77050- 8 1 23000 0 0 5.09415+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.27880- 7 3.00000+ 0 1.31060- 9 5.00000+ 0 5.20450-10 6.00000+ 0 5.19140-10 8.00000+ 0 1.16130-11 1.00000+ 1 1.16400-11 1.10000+ 1 1.12390-11 1 23000 0 0 5.09415+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.94030- 7 3.00000+ 0 5.91610- 6 5.00000+ 0 2.79730- 7 6.00000+ 0 2.83070- 7 8.00000+ 0 2.63680- 6 1.00000+ 1 4.07120- 7 1.10000+ 1 3.81270- 7 1 23000 0 0 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.50208- 5 3.00000+ 0 5.22564- 5 5.00000+ 0 3.61350- 5 6.00000+ 0 3.58406- 5 8.00000+ 0 2.66968- 5 1.00000+ 1 1.86230- 5 1.10000+ 1 1.85136- 5 1.30000+ 1 9.61000- 6 1.40000+ 1 9.53000- 6 1.60000+ 1 6.63000- 6 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.47174- 1 3.00000+ 0 3.54672- 3 5.00000+ 0 2.88585- 3 6.00000+ 0 2.73654- 3 8.00000+ 0 5.78423- 6 1.00000+ 1 2.67808- 7 1.10000+ 1 2.24972- 7 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.20578- 3 3.00000+ 0 1.65208- 6 5.00000+ 0 1.33722- 6 6.00000+ 0 1.24812- 6 8.00000+ 0 1.55732-10 1.00000+ 1 1.10556-11 1.10000+ 1 9.08099-12 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.03586+ 0 3.00000+ 0 4.66888+ 0 5.00000+ 0 2.90006+ 0 6.00000+ 0 2.87624+ 0 8.00000+ 0 1.94474+ 0 1.00000+ 1 1.00000+ 0 1.10000+ 1 1.00000+ 0 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.16880- 3 3.00000+ 0 5.69882- 4 5.00000+ 0 4.94408- 4 6.00000+ 0 4.87451- 4 8.00000+ 0 4.97230- 5 1.00000+ 1 3.20270- 5 1.10000+ 1 3.12764- 5 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 7.32827- 2 4.90772- 3 6.00000+ 0 1.44051- 1 4.91506- 3 1.00000+ 1 8.48408- 3 5.38895- 3 1.10000+ 1 1.67441- 2 5.38981- 3 1.30000+ 1 1.26461- 6 5.42999- 3 1.40000+ 1 1.85722- 6 5.43007- 3 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.06652- 2 4.19202- 3 3.00000+ 0 5.00000+ 0 5.60441- 2 4.28393- 3 3.00000+ 0 6.00000+ 0 1.04478- 1 4.29127- 3 3.00000+ 0 8.00000+ 0 1.33606- 2 4.73939- 3 3.00000+ 0 1.00000+ 1 6.96391- 3 4.76516- 3 3.00000+ 0 1.10000+ 1 1.29360- 2 4.76602- 3 3.00000+ 0 1.30000+ 1 8.61211- 5 4.80620- 3 3.00000+ 0 1.40000+ 1 1.21752- 4 4.80628- 3 3.00000+ 0 1.60000+ 1 1.33636- 3 4.80918- 3 5.00000+ 0 5.00000+ 0 1.01377- 2 4.37584- 3 5.00000+ 0 6.00000+ 0 2.46529- 1 4.38318- 3 5.00000+ 0 8.00000+ 0 6.34891- 3 4.83130- 3 5.00000+ 0 1.00000+ 1 2.39054- 3 4.85707- 3 5.00000+ 0 1.10000+ 1 2.67023- 2 4.85793- 3 5.00000+ 0 1.30000+ 1 1.18782- 4 4.89811- 3 5.00000+ 0 1.40000+ 1 4.51375- 4 4.89819- 3 5.00000+ 0 1.60000+ 1 6.23612- 4 4.90109- 3 6.00000+ 0 6.00000+ 0 1.38452- 1 4.39052- 3 6.00000+ 0 8.00000+ 0 1.18782- 2 4.83864- 3 6.00000+ 0 1.00000+ 1 2.66752- 2 4.86441- 3 6.00000+ 0 1.10000+ 1 3.04260- 2 4.86527- 3 6.00000+ 0 1.30000+ 1 5.58286- 4 4.90545- 3 6.00000+ 0 1.40000+ 1 5.55318- 4 4.90553- 3 6.00000+ 0 1.60000+ 1 1.16710- 3 4.90843- 3 8.00000+ 0 8.00000+ 0 8.70167- 4 5.28676- 3 8.00000+ 0 1.00000+ 1 7.92912- 4 5.31253- 3 8.00000+ 0 1.10000+ 1 1.47595- 3 5.31339- 3 8.00000+ 0 1.30000+ 1 8.90924- 6 5.35357- 3 8.00000+ 0 1.40000+ 1 1.18788- 5 5.35365- 3 8.00000+ 0 1.60000+ 1 1.75214- 4 5.35655- 3 1.00000+ 1 1.00000+ 1 1.36607- 4 5.33830- 3 1.00000+ 1 1.10000+ 1 2.91032- 3 5.33916- 3 1.00000+ 1 1.30000+ 1 8.90920- 6 5.37934- 3 1.00000+ 1 1.40000+ 1 4.15756- 5 5.37942- 3 1.00000+ 1 1.60000+ 1 7.72150- 5 5.38232- 3 1.10000+ 1 1.10000+ 1 1.67195- 3 5.34002- 3 1.10000+ 1 1.30000+ 1 5.04825- 5 5.38020- 3 1.10000+ 1 1.40000+ 1 5.04825- 5 5.38028- 3 1.10000+ 1 1.60000+ 1 1.45503- 4 5.38318- 3 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 5.14719- 5 9.19100- 5 6.00000+ 0 1.72900- 4 9.92500- 5 1.00000+ 1 3.78930- 4 5.73140- 4 1.10000+ 1 5.53899- 4 5.74000- 4 1.30000+ 1 5.66349- 7 6.14180- 4 1.40000+ 1 8.29699- 7 6.14260- 4 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 6.92685- 2 1.54900- 5 5.00000+ 0 1.00000+ 1 5.76641- 2 4.12600- 5 5.00000+ 0 1.10000+ 1 7.55563- 2 4.21200- 5 5.00000+ 0 1.30000+ 1 2.77886- 2 8.23000- 5 5.00000+ 0 1.40000+ 1 4.59216- 2 8.23800- 5 5.00000+ 0 1.60000+ 1 8.42067- 3 8.52800- 5 6.00000+ 0 8.00000+ 0 1.66366- 1 2.28300- 5 6.00000+ 0 1.00000+ 1 7.00676- 2 4.86000- 5 6.00000+ 0 1.10000+ 1 1.65786- 1 4.94600- 5 6.00000+ 0 1.30000+ 1 6.36193- 2 8.96400- 5 6.00000+ 0 1.40000+ 1 8.97964- 2 8.97200- 5 6.00000+ 0 1.60000+ 1 1.58339- 2 9.26200- 5 8.00000+ 0 8.00000+ 0 1.58894- 2 4.70950- 4 8.00000+ 0 1.00000+ 1 2.83859- 2 4.96720- 4 8.00000+ 0 1.10000+ 1 5.58558- 2 4.97580- 4 8.00000+ 0 1.30000+ 1 8.14935- 3 5.37760- 4 8.00000+ 0 1.40000+ 1 1.20761- 2 5.37840- 4 8.00000+ 0 1.60000+ 1 2.85333- 3 5.40740- 4 1.00000+ 1 1.00000+ 1 4.99188- 4 5.22490- 4 1.00000+ 1 1.10000+ 1 5.13101- 4 5.23350- 4 1.00000+ 1 1.30000+ 1 1.11271- 4 5.63530- 4 1.00000+ 1 1.40000+ 1 1.92563- 3 5.63610- 4 1.00000+ 1 1.60000+ 1 2.08020- 3 5.66510- 4 1.10000+ 1 1.10000+ 1 1.42664- 3 5.24210- 4 1.10000+ 1 1.30000+ 1 2.25627- 3 5.64390- 4 1.10000+ 1 1.40000+ 1 1.66420- 3 5.64470- 4 1.10000+ 1 1.60000+ 1 4.37048- 3 5.67370- 4 1.30000+ 1 1.30000+ 1 4.45303- 5 6.04570- 4 1.30000+ 1 1.40000+ 1 2.47075- 3 6.04650- 4 1.30000+ 1 1.60000+ 1 6.05312- 4 6.07550- 4 1.40000+ 1 1.40000+ 1 6.77884- 4 6.04730- 4 1.40000+ 1 1.60000+ 1 8.97214- 4 6.07630- 4 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.32070-11 7.34000- 6 8.00000+ 0 2.53310- 3 4.55460- 4 1.10000+ 1 3.47480- 6 4.82090- 4 1.30000+ 1 3.00970- 4 5.22270- 4 1.60000+ 1 4.68090- 5 5.25250- 4 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.39973- 3 3.79040- 4 8.00000+ 0 1.00000+ 1 1.52279- 1 4.04810- 4 8.00000+ 0 1.10000+ 1 1.17958- 2 4.05670- 4 8.00000+ 0 1.30000+ 1 3.04273- 3 4.45850- 4 8.00000+ 0 1.40000+ 1 4.19494- 3 4.45930- 4 8.00000+ 0 1.60000+ 1 1.44753- 3 4.48830- 4 1.00000+ 1 1.00000+ 1 1.26692- 1 4.30580- 4 1.00000+ 1 1.10000+ 1 4.43666- 1 4.31440- 4 1.00000+ 1 1.30000+ 1 4.29092- 2 4.71620- 4 1.00000+ 1 1.40000+ 1 8.49087- 2 4.71700- 4 1.00000+ 1 1.60000+ 1 1.52740- 2 4.74600- 4 1.10000+ 1 1.10000+ 1 1.23480- 2 4.32300- 4 1.10000+ 1 1.30000+ 1 4.81142- 2 4.72480- 4 1.10000+ 1 1.40000+ 1 7.64178- 3 4.72560- 4 1.10000+ 1 1.60000+ 1 1.03398- 3 4.75460- 4 1.30000+ 1 1.30000+ 1 5.55548- 3 5.12660- 4 1.30000+ 1 1.40000+ 1 2.55577- 2 5.12740- 4 1.30000+ 1 1.60000+ 1 2.25843- 4 5.15640- 4 1.40000+ 1 1.40000+ 1 1.62487- 3 5.12820- 4 1.40000+ 1 1.60000+ 1 4.03728- 4 5.15720- 4 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.39979- 3 4.48120- 4 1.00000+ 1 1.65889- 6 4.73890- 4 1.10000+ 1 1.62499- 6 4.74750- 4 1.30000+ 1 2.28229- 5 5.14930- 4 1.40000+ 1 2.64839- 4 5.15010- 4 1.60000+ 1 4.43688- 5 5.17910- 4 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.27379- 3 3.71700- 4 8.00000+ 0 1.00000+ 1 5.51893- 3 3.97470- 4 8.00000+ 0 1.10000+ 1 1.55178- 1 3.98330- 4 8.00000+ 0 1.30000+ 1 2.90832- 3 4.38510- 4 8.00000+ 0 1.40000+ 1 4.54963- 3 4.38590- 4 8.00000+ 0 1.60000+ 1 1.43014- 3 4.41490- 4 1.00000+ 1 1.00000+ 1 2.13094- 3 4.23240- 4 1.00000+ 1 1.10000+ 1 2.30124- 1 4.24100- 4 1.00000+ 1 1.30000+ 1 2.47482- 3 4.64280- 4 1.00000+ 1 1.40000+ 1 2.49214- 2 4.64360- 4 1.00000+ 1 1.60000+ 1 4.77765- 4 4.67260- 4 1.10000+ 1 1.10000+ 1 3.43666- 1 4.24960- 4 1.10000+ 1 1.30000+ 1 6.31643- 2 4.65140- 4 1.10000+ 1 1.40000+ 1 9.31504- 2 4.65220- 4 1.10000+ 1 1.60000+ 1 1.55968- 2 4.68120- 4 1.30000+ 1 1.30000+ 1 1.20935- 3 5.05320- 4 1.30000+ 1 1.40000+ 1 2.49162- 2 5.05400- 4 1.30000+ 1 1.60000+ 1 2.78341- 4 5.08300- 4 1.40000+ 1 1.40000+ 1 1.68544- 2 5.05480- 4 1.40000+ 1 1.60000+ 1 4.41522- 4 5.08380- 4 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.72110- 6 2.57700- 5 1.10000+ 1 3.83729- 6 2.66300- 5 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 6.02030- 2 1.61600- 5 1.00000+ 1 1.40000+ 1 1.58506- 1 1.62400- 5 1.00000+ 1 1.60000+ 1 9.16407- 2 1.91400- 5 1.10000+ 1 1.30000+ 1 2.10190- 1 1.70200- 5 1.10000+ 1 1.40000+ 1 2.46924- 1 1.71000- 5 1.10000+ 1 1.60000+ 1 1.77275- 1 2.00000- 5 1.30000+ 1 1.30000+ 1 7.54832- 5 5.72000- 5 1.30000+ 1 1.40000+ 1 9.42816- 3 5.72800- 5 1.30000+ 1 1.60000+ 1 1.77643- 2 6.01800- 5 1.40000+ 1 1.40000+ 1 1.51894- 3 5.73600- 5 1.40000+ 1 1.60000+ 1 2.64690- 2 6.02600- 5 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.46080- 7 4.10400- 5 1.60000+ 1 2.17280- 8 4.40200- 5 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 3.31371- 2 3.14300- 5 1.30000+ 1 1.40000+ 1 7.78117- 1 3.15100- 5 1.30000+ 1 1.60000+ 1 1.50135- 1 3.44100- 5 1.40000+ 1 1.40000+ 1 1.06073- 2 3.15900- 5 1.40000+ 1 1.60000+ 1 2.80037- 2 3.44900- 5 1 23000 0 7 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.14820- 8 4.01800- 5 1.40000+ 1 1.94750- 7 4.02600- 5 1.60000+ 1 8.73990- 9 4.31600- 5 1 23000 0 9 5.09415+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 5.08330- 3 3.05700- 5 1.30000+ 1 1.40000+ 1 5.68924- 1 3.06500- 5 1.30000+ 1 1.60000+ 1 3.46728- 2 3.35500- 5 1.40000+ 1 1.40000+ 1 2.20661- 1 3.07300- 5 1.40000+ 1 1.60000+ 1 1.70659- 1 3.36300- 5 1 24000 0 0 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 2.00000+ 0 1.40000+ 1 3.00000+ 0 1.60000+ 1 1.00000+ 0 1 24000 0 0 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.95760- 3 3.00000+ 0 6.87340- 4 5.00000+ 0 5.89740- 4 6.00000+ 0 5.80810- 4 8.00000+ 0 7.91900- 5 1.00000+ 1 5.12500- 5 1.10000+ 1 5.02000- 5 1.30000+ 1 6.46000- 6 1.40000+ 1 6.37000- 6 1.60000+ 1 5.96000- 6 1 24000 0 0 5.19960+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.74790- 3 3.00000+ 0 1.41110- 3 5.00000+ 0 1.39490- 3 6.00000+ 0 1.36000- 3 8.00000+ 0 2.98420- 4 1.00000+ 1 2.61760- 4 1.10000+ 1 2.55780- 4 1.30000+ 1 1.48590- 4 1.40000+ 1 1.47330- 4 1.60000+ 1 2.17100- 5 1 24000 0 0 5.19960+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.35110-10 3.00000+ 0 1.53610- 9 5.00000+ 0 1.34620- 9 6.00000+ 0 1.36120- 9 8.00000+ 0 4.70730- 9 1.00000+ 1 4.96990- 9 1.10000+ 1 5.01230- 9 1.30000+ 1 7.05900- 9 1.40000+ 1 7.10150- 9 1.60000+ 1 1.88520- 8 1 24000 0 0 5.19960+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.76010- 7 3.00000+ 0 1.63180- 9 5.00000+ 0 9.24200-10 6.00000+ 0 9.16560-10 8.00000+ 0 1.35740-11 1.00000+ 1 1.99020-11 1.10000+ 1 1.90080-11 1 24000 0 0 5.19960+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.09300- 7 3.00000+ 0 6.82540- 6 5.00000+ 0 3.16760- 7 6.00000+ 0 3.21690- 7 8.00000+ 0 3.26010- 6 1.00000+ 1 9.25850- 7 1.10000+ 1 8.90570- 7 1 24000 0 0 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.21367- 5 3.00000+ 0 3.45340- 5 5.00000+ 0 2.39725- 5 6.00000+ 0 2.34394- 5 8.00000+ 0 1.87002- 5 1.00000+ 1 1.28142- 5 1.10000+ 1 1.27733- 5 1.30000+ 1 6.46000- 6 1.40000+ 1 6.37000- 6 1.60000+ 1 5.96000- 6 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.78529- 1 3.00000+ 0 4.23361- 3 5.00000+ 0 3.65246- 3 6.00000+ 0 3.46416- 3 8.00000+ 0 8.66770- 6 1.00000+ 1 8.45349- 7 1.10000+ 1 7.14376- 7 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.48430- 3 3.00000+ 0 2.23451- 6 5.00000+ 0 1.90605- 6 6.00000+ 0 1.77792- 6 8.00000+ 0 2.59433-10 1.00000+ 1 3.78933-11 1.10000+ 1 3.13130-11 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.59263+ 0 3.00000+ 0 4.40466+ 0 5.00000+ 0 2.74684+ 0 6.00000+ 0 2.66851+ 0 8.00000+ 0 1.93171+ 0 1.00000+ 1 9.99999- 1 1.10000+ 1 9.99999- 1 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.43116- 3 3.00000+ 0 6.50571- 4 5.00000+ 0 5.63861- 4 6.00000+ 0 5.55593- 4 8.00000+ 0 6.04896- 5 1.00000+ 1 3.84358- 5 1.10000+ 1 3.74267- 5 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.25759- 2 5.36786- 3 6.00000+ 0 1.62090- 1 5.37679- 3 1.00000+ 1 9.49389- 3 5.90635- 3 1.10000+ 1 1.87010- 2 5.90740- 3 1.30000+ 1 2.52540- 6 5.95114- 3 1.40000+ 1 3.69550- 6 5.95123- 3 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.89637- 2 4.58292- 3 3.00000+ 0 5.00000+ 0 5.42769- 2 4.68052- 3 3.00000+ 0 6.00000+ 0 1.00496- 1 4.68945- 3 3.00000+ 0 8.00000+ 0 1.27805- 2 5.19107- 3 3.00000+ 0 1.00000+ 1 6.65910- 3 5.21901- 3 3.00000+ 0 1.10000+ 1 1.22647- 2 5.22006- 3 3.00000+ 0 1.30000+ 1 1.31005- 4 5.26380- 3 3.00000+ 0 1.40000+ 1 1.83964- 4 5.26389- 3 3.00000+ 0 1.60000+ 1 5.24035- 4 5.26430- 3 5.00000+ 0 5.00000+ 0 9.81425- 3 4.77812- 3 5.00000+ 0 6.00000+ 0 2.37473- 1 4.78705- 3 5.00000+ 0 8.00000+ 0 6.07386- 3 5.28867- 3 5.00000+ 0 1.00000+ 1 2.27732- 3 5.31661- 3 5.00000+ 0 1.10000+ 1 2.52704- 2 5.31766- 3 5.00000+ 0 1.30000+ 1 1.83966- 4 5.36140- 3 5.00000+ 0 1.40000+ 1 6.91293- 4 5.36149- 3 5.00000+ 0 1.60000+ 1 2.45286- 4 5.36190- 3 6.00000+ 0 6.00000+ 0 1.33078- 1 4.79598- 3 6.00000+ 0 8.00000+ 0 1.12890- 2 5.29760- 3 6.00000+ 0 1.00000+ 1 2.52740- 2 5.32554- 3 6.00000+ 0 1.10000+ 1 2.87383- 2 5.32659- 3 6.00000+ 0 1.30000+ 1 8.58576- 4 5.37033- 3 6.00000+ 0 1.40000+ 1 8.47392- 4 5.37042- 3 6.00000+ 0 1.60000+ 1 4.54356- 4 5.37083- 3 8.00000+ 0 8.00000+ 0 8.75710- 4 5.79922- 3 8.00000+ 0 1.00000+ 1 7.92885- 4 5.82716- 3 8.00000+ 0 1.10000+ 1 1.46749- 3 5.82821- 3 8.00000+ 0 1.30000+ 1 1.47928- 5 5.87195- 3 8.00000+ 0 1.40000+ 1 2.07097- 5 5.87204- 3 8.00000+ 0 1.60000+ 1 7.10061- 5 5.87245- 3 1.00000+ 1 1.00000+ 1 1.35594- 4 5.85510- 3 1.00000+ 1 1.10000+ 1 2.86524- 3 5.85615- 3 1.00000+ 1 1.30000+ 1 1.76859- 5 5.89989- 3 1.00000+ 1 1.40000+ 1 6.48504- 5 5.89998- 3 1.00000+ 1 1.60000+ 1 3.24257- 5 5.90039- 3 1.10000+ 1 1.10000+ 1 1.69746- 3 5.85720- 3 1.10000+ 1 1.30000+ 1 8.22897- 5 5.90094- 3 1.10000+ 1 1.40000+ 1 8.22897- 5 5.90103- 3 1.10000+ 1 1.60000+ 1 6.09548- 5 5.90144- 3 1.30000+ 1 1.40000+ 1 2.78750- 6 5.94477- 3 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 4.18737- 5 9.76000- 5 6.00000+ 0 1.48369- 4 1.06530- 4 1.00000+ 1 4.33407- 4 6.36090- 4 1.10000+ 1 6.32756- 4 6.37140- 4 1.30000+ 1 9.01435- 7 6.80880- 4 1.40000+ 1 1.28349- 6 6.80970- 4 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 8.00000+ 0 7.11327- 2 1.84100- 5 5.00000+ 0 1.00000+ 1 5.17715- 2 4.63500- 5 5.00000+ 0 1.10000+ 1 7.04740- 2 4.74000- 5 5.00000+ 0 1.30000+ 1 3.48094- 2 9.11400- 5 5.00000+ 0 1.40000+ 1 5.71581- 2 9.12300- 5 5.00000+ 0 1.60000+ 1 2.94252- 3 9.16400- 5 6.00000+ 0 8.00000+ 0 1.43218- 1 2.73400- 5 6.00000+ 0 1.00000+ 1 6.41046- 2 5.52800- 5 6.00000+ 0 1.10000+ 1 1.46970- 1 5.63300- 5 6.00000+ 0 1.30000+ 1 8.02910- 2 1.00070- 4 6.00000+ 0 1.40000+ 1 1.13541- 1 1.00160- 4 6.00000+ 0 1.60000+ 1 5.52176- 3 1.00570- 4 8.00000+ 0 8.00000+ 0 1.58591- 2 5.28960- 4 8.00000+ 0 1.00000+ 1 2.81218- 2 5.56900- 4 8.00000+ 0 1.10000+ 1 5.52047- 2 5.57950- 4 8.00000+ 0 1.30000+ 1 1.26572- 2 6.01690- 4 8.00000+ 0 1.40000+ 1 1.87070- 2 6.01780- 4 8.00000+ 0 1.60000+ 1 1.15939- 3 6.02190- 4 1.00000+ 1 1.00000+ 1 5.42863- 4 5.84840- 4 1.00000+ 1 1.10000+ 1 6.59238- 4 5.85890- 4 1.00000+ 1 1.30000+ 1 2.01268- 4 6.29630- 4 1.00000+ 1 1.40000+ 1 3.63756- 3 6.29720- 4 1.00000+ 1 1.60000+ 1 9.91538- 4 6.30130- 4 1.10000+ 1 1.10000+ 1 1.53759- 3 5.86940- 4 1.10000+ 1 1.30000+ 1 4.03198- 3 6.30680- 4 1.10000+ 1 1.40000+ 1 2.94930- 3 6.30770- 4 1.10000+ 1 1.60000+ 1 1.98307- 3 6.31180- 4 1.30000+ 1 1.30000+ 1 1.01624- 4 6.74420- 4 1.30000+ 1 1.40000+ 1 5.59607- 3 6.74510- 4 1.30000+ 1 1.60000+ 1 3.02273- 4 6.74920- 4 1.40000+ 1 1.40000+ 1 1.98500- 3 6.74600- 4 1.40000+ 1 1.60000+ 1 5.77984- 4 6.75010- 4 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.77607-11 8.93000- 6 8.00000+ 0 3.06272- 3 5.10550- 4 1.10000+ 1 5.01634- 6 5.39540- 4 1.30000+ 1 5.24554- 4 5.83280- 4 1.60000+ 1 5.75784- 5 5.83780- 4 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 7.19812- 3 4.31360- 4 8.00000+ 0 1.00000+ 1 1.29803- 1 4.59300- 4 8.00000+ 0 1.10000+ 1 1.01967- 2 4.60350- 4 8.00000+ 0 1.30000+ 1 3.76468- 3 5.04090- 4 8.00000+ 0 1.40000+ 1 5.66444- 3 5.04180- 4 8.00000+ 0 1.60000+ 1 5.14137- 4 5.04590- 4 1.00000+ 1 1.00000+ 1 1.12344- 1 4.87240- 4 1.00000+ 1 1.10000+ 1 3.91850- 1 4.88290- 4 1.00000+ 1 1.30000+ 1 5.95615- 2 5.32030- 4 1.00000+ 1 1.40000+ 1 1.16969- 1 5.32120- 4 1.00000+ 1 1.60000+ 1 5.51139- 3 5.32530- 4 1.10000+ 1 1.10000+ 1 1.04751- 2 4.89340- 4 1.10000+ 1 1.30000+ 1 6.51357- 2 5.33080- 4 1.10000+ 1 1.40000+ 1 1.02318- 2 5.33170- 4 1.10000+ 1 1.60000+ 1 3.66011- 4 5.33580- 4 1.30000+ 1 1.30000+ 1 1.11616- 2 5.76820- 4 1.30000+ 1 1.40000+ 1 5.12258- 2 5.76910- 4 1.30000+ 1 1.60000+ 1 9.00498- 5 5.77320- 4 1.40000+ 1 1.40000+ 1 4.06976- 3 5.77000- 4 1.40000+ 1 1.60000+ 1 2.17875- 4 5.77410- 4 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.89130- 3 5.01620- 4 1.00000+ 1 2.43310- 6 5.29560- 4 1.10000+ 1 2.37970- 6 5.30610- 4 1.30000+ 1 4.10181- 5 5.74350- 4 1.40000+ 1 4.70291- 4 5.74440- 4 1.60000+ 1 5.43441- 5 5.74850- 4 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.92712- 3 4.22430- 4 8.00000+ 0 1.00000+ 1 4.63469- 3 4.50370- 4 8.00000+ 0 1.10000+ 1 1.28814- 1 4.51420- 4 8.00000+ 0 1.30000+ 1 3.79888- 3 4.95160- 4 8.00000+ 0 1.40000+ 1 5.66920- 3 4.95250- 4 8.00000+ 0 1.60000+ 1 4.96566- 4 4.95660- 4 1.00000+ 1 1.00000+ 1 1.84285- 3 4.78310- 4 1.00000+ 1 1.10000+ 1 1.99140- 1 4.79360- 4 1.00000+ 1 1.30000+ 1 3.45295- 3 5.23100- 4 1.00000+ 1 1.40000+ 1 3.43324- 2 5.23190- 4 1.00000+ 1 1.60000+ 1 1.72218- 4 5.23600- 4 1.10000+ 1 1.10000+ 1 2.88700- 1 4.80410- 4 1.10000+ 1 1.30000+ 1 8.33075- 2 5.24150- 4 1.10000+ 1 1.40000+ 1 1.23152- 1 5.24240- 4 1.10000+ 1 1.60000+ 1 5.36074- 3 5.24650- 4 1.30000+ 1 1.30000+ 1 2.99602- 3 5.67890- 4 1.30000+ 1 1.40000+ 1 6.13951- 2 5.67980- 4 1.30000+ 1 1.60000+ 1 1.48972- 4 5.68390- 4 1.40000+ 1 1.40000+ 1 4.19708- 2 5.68070- 4 1.40000+ 1 1.60000+ 1 2.26225- 4 5.68480- 4 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.44510- 6 2.79400- 5 1.10000+ 1 5.51726- 6 2.89900- 5 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 7.66473- 2 2.14800- 5 1.00000+ 1 1.40000+ 1 1.95939- 1 2.15700- 5 1.00000+ 1 1.60000+ 1 3.08446- 2 2.19800- 5 1.10000+ 1 1.30000+ 1 2.63204- 1 2.25300- 5 1.10000+ 1 1.40000+ 1 3.06203- 1 2.26200- 5 1.10000+ 1 1.60000+ 1 5.88740- 2 2.30300- 5 1.30000+ 1 1.30000+ 1 4.91707- 4 6.62700- 5 1.30000+ 1 1.40000+ 1 2.26380- 2 6.63600- 5 1.30000+ 1 1.60000+ 1 1.14514- 2 6.67700- 5 1.40000+ 1 1.40000+ 1 8.08526- 3 6.64500- 5 1.40000+ 1 1.60000+ 1 2.56138- 2 6.68600- 5 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.85171- 7 4.47900- 5 1.60000+ 1 6.01781- 8 4.52900- 5 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.03735- 1 3.83300- 5 1.30000+ 1 1.40000+ 1 8.19106- 1 3.84200- 5 1.30000+ 1 1.60000+ 1 4.22197- 2 3.88300- 5 1.40000+ 1 1.40000+ 1 2.34317- 2 3.85100- 5 1.40000+ 1 1.60000+ 1 1.15063- 2 3.89200- 5 1 24000 0 7 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.89930- 8 4.37400- 5 1.40000+ 1 6.25550- 7 4.38300- 5 1.60000+ 1 1.98340- 8 4.42400- 5 1 24000 0 9 5.19960+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.58199- 2 3.72800- 5 1.30000+ 1 1.40000+ 1 5.88261- 1 3.73700- 5 1.30000+ 1 1.60000+ 1 9.85839- 3 3.77800- 5 1.40000+ 1 1.40000+ 1 3.38876- 1 3.74600- 5 1.40000+ 1 1.60000+ 1 4.71834- 2 3.78700- 5 1 25000 0 0 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 2.00000+ 0 1.40000+ 1 3.00000+ 0 1.60000+ 1 2.00000+ 0 1 25000 0 0 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.51090- 3 3.00000+ 0 7.66470- 4 5.00000+ 0 6.62970- 4 6.00000+ 0 6.52220- 4 8.00000+ 0 9.25800- 5 1.00000+ 1 6.20900- 5 1.10000+ 1 6.07800- 5 1.30000+ 1 1.18500- 5 1.40000+ 1 1.17200- 5 1.60000+ 1 7.25000- 6 1 25000 0 0 5.49380+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.43340- 3 3.00000+ 0 1.55450- 3 5.00000+ 0 1.53890- 3 6.00000+ 0 1.49720- 3 8.00000+ 0 3.36950- 4 1.00000+ 1 2.99200- 4 1.10000+ 1 2.91910- 4 1.30000+ 1 1.90380- 4 1.40000+ 1 1.88920- 4 1.60000+ 1 3.10200- 5 1 25000 0 0 5.49380+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.21170-10 3.00000+ 0 1.46510- 9 5.00000+ 0 1.28050- 9 6.00000+ 0 1.29590- 9 8.00000+ 0 4.44080- 9 1.00000+ 1 4.64550- 9 1.10000+ 1 4.69180- 9 1.30000+ 1 5.86580- 9 1.40000+ 1 5.88890- 9 1.60000+ 1 1.63310- 8 1 25000 0 0 5.49380+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.32480- 7 3.00000+ 0 2.09610- 9 5.00000+ 0 1.34290- 9 6.00000+ 0 1.33190- 9 8.00000+ 0 1.57990-11 1.00000+ 1 2.62810-11 1.10000+ 1 2.50540-11 1 25000 0 0 5.49380+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.32580- 7 3.00000+ 0 6.72290- 6 5.00000+ 0 3.54980- 7 6.00000+ 0 3.61290- 7 8.00000+ 0 3.38840- 6 1.00000+ 1 1.07910- 6 1.10000+ 1 1.03640- 6 1 25000 0 0 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.13810- 5 3.00000+ 0 5.89069- 5 5.00000+ 0 4.18756- 5 6.00000+ 0 4.05607- 5 8.00000+ 0 3.27110- 5 1.00000+ 1 2.31062- 5 1.10000+ 1 2.30171- 5 1.30000+ 1 1.18500- 5 1.40000+ 1 1.17200- 5 1.60000+ 1 7.25000- 6 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.10992- 1 3.00000+ 0 5.01156- 3 5.00000+ 0 4.53515- 3 6.00000+ 0 4.30138- 3 8.00000+ 0 1.26165- 5 1.00000+ 1 2.06096- 6 1.10000+ 1 1.75191- 6 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.80432- 3 3.00000+ 0 2.97750- 6 5.00000+ 0 2.66141- 6 6.00000+ 0 2.48114- 6 8.00000+ 0 4.27273-10 1.00000+ 1 1.04310-10 1.10000+ 1 8.61571-11 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.21227+ 0 3.00000+ 0 4.14170+ 0 5.00000+ 0 2.63713+ 0 6.00000+ 0 2.52559+ 0 8.00000+ 0 1.91772+ 0 1.00000+ 1 9.99998- 1 1.10000+ 1 9.99998- 1 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.63520- 3 3.00000+ 0 7.04586- 4 5.00000+ 0 6.18433- 4 6.00000+ 0 6.09178- 4 8.00000+ 0 5.98686- 5 1.00000+ 1 3.89837- 5 1.10000+ 1 3.77628- 5 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 9.17726- 2 5.84793- 3 6.00000+ 0 1.79949- 1 5.85868- 3 1.00000+ 1 1.09360- 2 6.44881- 3 1.10000+ 1 2.15229- 2 6.45012- 3 1.30000+ 1 3.85518- 6 6.49905- 3 1.40000+ 1 5.64148- 6 6.49918- 3 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.67138- 2 4.97796- 3 3.00000+ 0 5.00000+ 0 5.17916- 2 5.08146- 3 3.00000+ 0 6.00000+ 0 9.52207- 2 5.09221- 3 3.00000+ 0 8.00000+ 0 1.24821- 2 5.65185- 3 3.00000+ 0 1.00000+ 1 6.59506- 3 5.68234- 3 3.00000+ 0 1.10000+ 1 1.20614- 2 5.68365- 3 3.00000+ 0 1.30000+ 1 1.52466- 4 5.73258- 3 3.00000+ 0 1.40000+ 1 2.11912- 4 5.73271- 3 3.00000+ 0 1.60000+ 1 1.14999- 3 5.73718- 3 5.00000+ 0 5.00000+ 0 9.33686- 3 5.18496- 3 5.00000+ 0 6.00000+ 0 2.24948- 1 5.19571- 3 5.00000+ 0 8.00000+ 0 5.91526- 3 5.75535- 3 5.00000+ 0 1.00000+ 1 2.24573- 3 5.78584- 3 5.00000+ 0 1.10000+ 1 2.47828- 2 5.78715- 3 5.00000+ 0 1.30000+ 1 2.11909- 4 5.83608- 3 5.00000+ 0 1.40000+ 1 7.93352- 4 5.83621- 3 5.00000+ 0 1.60000+ 1 5.34934- 4 5.84068- 3 6.00000+ 0 6.00000+ 0 1.25736- 1 5.20646- 3 6.00000+ 0 8.00000+ 0 1.09189- 2 5.76610- 3 6.00000+ 0 1.00000+ 1 2.47718- 2 5.79659- 3 6.00000+ 0 1.10000+ 1 2.81289- 2 5.79790- 3 6.00000+ 0 1.30000+ 1 9.84510- 4 5.84683- 3 6.00000+ 0 1.40000+ 1 9.71635- 4 5.84696- 3 6.00000+ 0 1.60000+ 1 9.87080- 4 5.85143- 3 8.00000+ 0 8.00000+ 0 8.24386- 4 6.32574- 3 8.00000+ 0 1.00000+ 1 7.57183- 4 6.35623- 3 8.00000+ 0 1.10000+ 1 1.38769- 3 6.35754- 3 8.00000+ 0 1.30000+ 1 1.55054- 5 6.40647- 3 8.00000+ 0 1.40000+ 1 2.32585- 5 6.40660- 3 8.00000+ 0 1.60000+ 1 1.52465- 4 6.41107- 3 1.00000+ 1 1.00000+ 1 1.30400- 4 6.38672- 3 1.00000+ 1 1.10000+ 1 2.77500- 3 6.38803- 3 1.00000+ 1 1.30000+ 1 1.82564- 5 6.43696- 3 1.00000+ 1 1.40000+ 1 7.30232- 5 6.43709- 3 1.00000+ 1 1.60000+ 1 6.78099- 5 6.44156- 3 1.10000+ 1 1.10000+ 1 1.61665- 3 6.38934- 3 1.10000+ 1 1.30000+ 1 9.29085- 5 6.43827- 3 1.10000+ 1 1.40000+ 1 9.02568- 5 6.43840- 3 1.10000+ 1 1.60000+ 1 1.30078- 4 6.44287- 3 1.30000+ 1 1.40000+ 1 2.58429- 6 6.48733- 3 1.30000+ 1 1.60000+ 1 2.58429- 6 6.49180- 3 1.40000+ 1 1.60000+ 1 2.58419- 6 6.49193- 3 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 3.44712- 5 1.03500- 4 6.00000+ 0 1.28601- 4 1.14250- 4 1.00000+ 1 4.87964- 4 7.04380- 4 1.10000+ 1 7.08545- 4 7.05690- 4 1.30000+ 1 1.26141- 6 7.54620- 4 1.40000+ 1 1.76201- 6 7.54750- 4 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 5.50062- 2 4.14100- 5 5.00000+ 0 1.10000+ 1 7.48938- 2 4.27200- 5 5.00000+ 0 1.30000+ 1 3.86253- 2 9.16500- 5 5.00000+ 0 1.40000+ 1 6.34333- 2 9.17800- 5 5.00000+ 0 1.60000+ 1 6.97311- 3 9.62500- 5 6.00000+ 0 8.00000+ 0 1.41142- 1 2.16700- 5 6.00000+ 0 1.00000+ 1 6.79573- 2 5.21600- 5 6.00000+ 0 1.10000+ 1 1.55173- 1 5.34700- 5 6.00000+ 0 1.30000+ 1 9.02735- 2 1.02400- 4 6.00000+ 0 1.40000+ 1 1.27740- 1 1.02530- 4 6.00000+ 0 1.60000+ 1 1.29083- 2 1.07000- 4 8.00000+ 0 8.00000+ 0 1.51766- 2 5.81310- 4 8.00000+ 0 1.00000+ 1 2.72907- 2 6.11800- 4 8.00000+ 0 1.10000+ 1 5.35293- 2 6.13110- 4 8.00000+ 0 1.30000+ 1 1.37094- 2 6.62040- 4 8.00000+ 0 1.40000+ 1 2.02584- 2 6.62170- 4 8.00000+ 0 1.60000+ 1 2.49655- 3 6.66640- 4 1.00000+ 1 1.00000+ 1 4.48180- 4 6.42290- 4 1.00000+ 1 1.10000+ 1 6.36606- 4 6.43600- 4 1.00000+ 1 1.30000+ 1 1.95994- 4 6.92530- 4 1.00000+ 1 1.40000+ 1 3.62961- 3 6.92660- 4 1.00000+ 1 1.60000+ 1 1.91586- 3 6.97130- 4 1.10000+ 1 1.10000+ 1 1.25022- 3 6.44910- 4 1.10000+ 1 1.30000+ 1 3.74630- 3 6.93840- 4 1.10000+ 1 1.40000+ 1 2.72895- 3 6.93970- 4 1.10000+ 1 1.60000+ 1 3.60061- 3 6.98440- 4 1.30000+ 1 1.30000+ 1 1.68704- 4 7.42770- 4 1.30000+ 1 1.40000+ 1 8.95871- 3 7.42900- 4 1.30000+ 1 1.60000+ 1 9.67657- 4 7.47370- 4 1.40000+ 1 1.40000+ 1 2.40642- 3 7.43030- 4 1.40000+ 1 1.60000+ 1 1.39661- 3 7.47500- 4 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.37650-10 1.07500- 5 8.00000+ 0 3.57611- 3 5.70390- 4 1.10000+ 1 7.00762- 6 6.02190- 4 1.30000+ 1 8.77713- 4 6.51120- 4 1.60000+ 1 6.97162- 5 6.55720- 4 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.61693- 3 4.77810- 4 8.00000+ 0 1.00000+ 1 1.20709- 1 5.08300- 4 8.00000+ 0 1.10000+ 1 9.64520- 3 5.09610- 4 8.00000+ 0 1.30000+ 1 3.57326- 3 5.58540- 4 8.00000+ 0 1.40000+ 1 5.88520- 3 5.58670- 4 8.00000+ 0 1.60000+ 1 1.05091- 3 5.63140- 4 1.00000+ 1 1.00000+ 1 1.02396- 1 5.38790- 4 1.00000+ 1 1.10000+ 1 3.56396- 1 5.40100- 4 1.00000+ 1 1.30000+ 1 6.06602- 2 5.89030- 4 1.00000+ 1 1.40000+ 1 1.18320- 1 5.89160- 4 1.00000+ 1 1.60000+ 1 1.11894- 2 5.93630- 4 1.10000+ 1 1.10000+ 1 9.88714- 3 5.41410- 4 1.10000+ 1 1.30000+ 1 6.98718- 2 5.90340- 4 1.10000+ 1 1.40000+ 1 1.07431- 2 5.90470- 4 1.10000+ 1 1.60000+ 1 7.86291- 4 5.94940- 4 1.30000+ 1 1.30000+ 1 1.83293- 2 6.39270- 4 1.30000+ 1 1.40000+ 1 8.38539- 2 6.39400- 4 1.30000+ 1 1.60000+ 1 2.77108- 4 6.43870- 4 1.40000+ 1 1.40000+ 1 4.76450- 3 6.39530- 4 1.40000+ 1 1.60000+ 1 5.13814- 4 6.44000- 4 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 3.35628- 3 5.59640- 4 1.00000+ 1 3.41908- 6 5.90130- 4 1.10000+ 1 3.33848- 6 5.91440- 4 1.30000+ 1 7.06575- 5 6.40370- 4 1.40000+ 1 7.98014- 4 6.40500- 4 1.60000+ 1 6.55745- 5 6.44970- 4 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.20886- 3 4.67060- 4 8.00000+ 0 1.00000+ 1 4.22301- 3 4.97550- 4 8.00000+ 0 1.10000+ 1 1.16349- 1 4.98860- 4 8.00000+ 0 1.30000+ 1 3.79266- 3 5.47790- 4 8.00000+ 0 1.40000+ 1 5.40607- 3 5.47920- 4 8.00000+ 0 1.60000+ 1 9.89484- 4 5.52390- 4 1.00000+ 1 1.00000+ 1 1.62236- 3 5.28040- 4 1.00000+ 1 1.10000+ 1 1.74618- 1 5.29350- 4 1.00000+ 1 1.30000+ 1 3.48065- 3 5.78280- 4 1.00000+ 1 1.40000+ 1 3.40844- 2 5.78410- 4 1.00000+ 1 1.60000+ 1 3.43045- 4 5.82880- 4 1.10000+ 1 1.10000+ 1 2.59646- 1 5.30660- 4 1.10000+ 1 1.30000+ 1 8.35044- 2 5.79590- 4 1.10000+ 1 1.40000+ 1 1.24363- 1 5.79720- 4 1.10000+ 1 1.60000+ 1 1.07536- 2 5.84190- 4 1.30000+ 1 1.30000+ 1 4.87347- 3 6.28520- 4 1.30000+ 1 1.40000+ 1 9.92986- 2 6.28650- 4 1.30000+ 1 1.60000+ 1 4.77198- 4 6.33120- 4 1.40000+ 1 1.40000+ 1 6.10517- 2 6.28780- 4 1.40000+ 1 1.60000+ 1 6.17804- 4 6.33250- 4 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 3.31252- 6 3.04900- 5 1.10000+ 1 7.60455- 6 3.18000- 5 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 6.62752- 2 1.86400- 5 1.00000+ 1 1.40000+ 1 1.60217- 1 1.87700- 5 1.00000+ 1 1.60000+ 1 6.98991- 2 2.32400- 5 1.10000+ 1 1.30000+ 1 2.21821- 1 1.99500- 5 1.10000+ 1 1.40000+ 1 2.66813- 1 2.00800- 5 1.10000+ 1 1.60000+ 1 1.32700- 1 2.45500- 5 1.30000+ 1 1.30000+ 1 6.32082- 4 6.88800- 5 1.30000+ 1 1.40000+ 1 1.85482- 2 6.90100- 5 1.30000+ 1 1.60000+ 1 2.34369- 2 7.34800- 5 1.40000+ 1 1.40000+ 1 4.80240- 3 6.91400- 5 1.40000+ 1 1.60000+ 1 3.48438- 2 7.36100- 5 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.89409- 6 5.02400- 5 1.60000+ 1 1.66869- 7 5.48400- 5 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 9.94216- 2 3.83900- 5 1.30000+ 1 1.40000+ 1 7.79078- 1 3.85200- 5 1.30000+ 1 1.60000+ 1 8.97663- 2 4.29900- 5 1.40000+ 1 1.40000+ 1 1.57839- 2 3.86500- 5 1.40000+ 1 1.60000+ 1 1.59479- 2 4.31200- 5 1 25000 0 7 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.68410- 7 4.89300- 5 1.40000+ 1 1.53200- 6 4.90600- 5 1.60000+ 1 5.15039- 8 5.35300- 5 1 25000 0 9 5.49380+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.56920- 2 3.70800- 5 1.30000+ 1 1.40000+ 1 5.73839- 1 3.72100- 5 1.30000+ 1 1.60000+ 1 2.08180- 2 4.16800- 5 1.40000+ 1 1.40000+ 1 2.97650- 1 3.73400- 5 1.40000+ 1 1.60000+ 1 9.19995- 2 4.18100- 5 1 26000 0 0 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 2.40000+ 0 1.40000+ 1 3.60000+ 0 1.60000+ 1 2.00000+ 0 1 26000 0 0 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.08340- 3 3.00000+ 0 8.42960- 4 5.00000+ 0 7.33550- 4 6.00000+ 0 7.20690- 4 8.00000+ 0 1.01010- 4 1.00000+ 1 6.80400- 5 1.10000+ 1 6.64500- 5 1.30000+ 1 1.29100- 5 1.40000+ 1 1.27400- 5 1.60000+ 1 7.53000- 6 1 26000 0 0 5.58470+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.15070- 3 3.00000+ 0 1.70570- 3 5.00000+ 0 1.69090- 3 6.00000+ 0 1.64150- 3 8.00000+ 0 3.72570- 4 1.00000+ 1 3.32540- 4 1.10000+ 1 3.23690- 4 1.30000+ 1 2.15690- 4 1.40000+ 1 2.13850- 4 1.60000+ 1 3.31800- 5 1 26000 0 0 5.58470+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.08310-10 3.00000+ 0 1.39980- 9 5.00000+ 0 1.22060- 9 6.00000+ 0 1.23650- 9 8.00000+ 0 4.23230- 9 1.00000+ 1 4.41380- 9 1.10000+ 1 4.46010- 9 1.30000+ 1 5.50660- 9 1.40000+ 1 5.53370- 9 1.60000+ 1 1.57590- 8 1 26000 0 0 5.58470+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.96370- 7 3.00000+ 0 2.59540- 9 5.00000+ 0 1.99400- 9 6.00000+ 0 1.97300- 9 8.00000+ 0 1.82730-11 1.00000+ 1 3.67650-11 1.10000+ 1 3.48290-11 1 26000 0 0 5.58470+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.50160- 7 3.00000+ 0 7.37780- 6 5.00000+ 0 4.01500- 7 6.00000+ 0 4.10100- 7 8.00000+ 0 3.69580- 6 1.00000+ 1 1.51340- 6 1.10000+ 1 1.45590- 6 1 26000 0 0 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.35207- 5 3.00000+ 0 6.20762- 5 5.00000+ 0 4.36646- 5 6.00000+ 0 4.26693- 5 8.00000+ 0 3.54677- 5 1.00000+ 1 2.52078- 5 1.10000+ 1 2.50982- 5 1.30000+ 1 1.29100- 5 1.40000+ 1 1.27400- 5 1.60000+ 1 7.53000- 6 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.44316- 1 3.00000+ 0 5.89259- 3 5.00000+ 0 5.53901- 3 6.00000+ 0 5.25239- 3 8.00000+ 0 1.78989- 5 1.00000+ 1 4.26719- 6 1.10000+ 1 3.64781- 6 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.16705- 3 3.00000+ 0 3.90725- 6 5.00000+ 0 3.63089- 6 6.00000+ 0 3.38206- 6 8.00000+ 0 6.81047-10 1.00000+ 1 2.37267-10 1.10000+ 1 1.96468-10 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.86442+ 0 3.00000+ 0 3.96766+ 0 5.00000+ 0 2.47406+ 0 6.00000+ 0 2.39951+ 0 8.00000+ 0 1.90472+ 0 1.00000+ 1 9.99996- 1 1.10000+ 1 9.99996- 1 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.84283- 3 3.00000+ 0 7.76977- 4 5.00000+ 0 6.86255- 4 6.00000+ 0 6.74639- 4 8.00000+ 0 6.55416- 5 1.00000+ 1 4.28320- 5 1.10000+ 1 4.13516- 5 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.01391- 1 6.34985- 3 6.00000+ 0 1.98621- 1 6.36271- 3 1.00000+ 1 1.22111- 2 7.01536- 3 1.10000+ 1 2.40042- 2 7.01695- 3 1.30000+ 1 6.00794- 6 7.07049- 3 1.40000+ 1 8.77226- 6 7.07066- 3 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.47039- 2 5.39748- 3 3.00000+ 0 5.00000+ 0 4.96309- 2 5.50689- 3 3.00000+ 0 6.00000+ 0 9.05528- 2 5.51975- 3 3.00000+ 0 8.00000+ 0 1.20010- 2 6.13943- 3 3.00000+ 0 1.00000+ 1 6.37861- 3 6.17240- 3 3.00000+ 0 1.10000+ 1 1.15700- 2 6.17399- 3 3.00000+ 0 1.30000+ 1 1.85335- 4 6.22753- 3 3.00000+ 0 1.40000+ 1 2.57546- 4 6.22770- 3 3.00000+ 0 1.60000+ 1 1.06145- 3 6.23291- 3 5.00000+ 0 5.00000+ 0 8.91045- 3 5.61630- 3 5.00000+ 0 6.00000+ 0 2.13819- 1 5.62916- 3 5.00000+ 0 8.00000+ 0 5.68040- 3 6.24884- 3 5.00000+ 0 1.00000+ 1 2.15909- 3 6.28181- 3 5.00000+ 0 1.10000+ 1 2.36911- 2 6.28340- 3 5.00000+ 0 1.30000+ 1 2.57540- 4 6.33694- 3 5.00000+ 0 1.40000+ 1 9.60385- 4 6.33711- 3 5.00000+ 0 1.60000+ 1 4.93427- 4 6.34232- 3 6.00000+ 0 6.00000+ 0 1.19207- 1 5.64202- 3 6.00000+ 0 8.00000+ 0 1.04085- 2 6.26170- 3 6.00000+ 0 1.00000+ 1 2.36893- 2 6.29467- 3 6.00000+ 0 1.10000+ 1 2.68353- 2 6.29626- 3 6.00000+ 0 1.30000+ 1 1.19389- 3 6.34980- 3 6.00000+ 0 1.40000+ 1 1.17463- 3 6.34997- 3 6.00000+ 0 1.60000+ 1 9.02593- 4 6.35518- 3 8.00000+ 0 8.00000+ 0 8.02277- 4 6.88138- 3 8.00000+ 0 1.00000+ 1 7.39263- 4 6.91435- 3 8.00000+ 0 1.10000+ 1 1.34525- 3 6.91594- 3 8.00000+ 0 1.30000+ 1 1.93914- 5 6.96948- 3 8.00000+ 0 1.40000+ 1 2.66629- 5 6.96965- 3 8.00000+ 0 1.60000+ 1 1.40581- 4 6.97486- 3 1.00000+ 1 1.00000+ 1 1.28144- 4 6.94732- 3 1.00000+ 1 1.10000+ 1 2.71062- 3 6.94891- 3 1.00000+ 1 1.30000+ 1 2.21776- 5 7.00245- 3 1.00000+ 1 1.40000+ 1 8.87081- 5 7.00262- 3 1.00000+ 1 1.60000+ 1 6.40678- 5 7.00783- 3 1.10000+ 1 1.10000+ 1 1.58655- 3 6.95050- 3 1.10000+ 1 1.30000+ 1 1.16223- 4 7.00404- 3 1.10000+ 1 1.40000+ 1 1.11167- 4 7.00421- 3 1.10000+ 1 1.60000+ 1 1.21269- 4 7.00942- 3 1.30000+ 1 1.40000+ 1 3.85858- 6 7.05775- 3 1.30000+ 1 1.60000+ 1 3.85858- 6 7.06296- 3 1.40000+ 1 1.60000+ 1 3.51272- 6 7.06313- 3 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.87212- 5 1.09410- 4 6.00000+ 0 1.12411- 4 1.22270- 4 1.00000+ 1 5.33553- 4 7.74920- 4 1.10000+ 1 7.92105- 4 7.76510- 4 1.30000+ 1 1.62101- 6 8.30050- 4 1.40000+ 1 2.20171- 6 8.30220- 4 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 5.21984- 2 4.13700- 5 5.00000+ 0 1.10000+ 1 7.21802- 2 4.29600- 5 5.00000+ 0 1.30000+ 1 4.09703- 2 9.65000- 5 5.00000+ 0 1.40000+ 1 6.68427- 2 9.66700- 5 5.00000+ 0 1.60000+ 1 6.19976- 3 1.01880- 4 6.00000+ 0 8.00000+ 0 1.33635- 1 2.12600- 5 6.00000+ 0 1.00000+ 1 6.47652- 2 5.42300- 5 6.00000+ 0 1.10000+ 1 1.45310- 1 5.58200- 5 6.00000+ 0 1.30000+ 1 9.68238- 2 1.09360- 4 6.00000+ 0 1.40000+ 1 1.37175- 1 1.09530- 4 6.00000+ 0 1.60000+ 1 1.13749- 2 1.14740- 4 8.00000+ 0 8.00000+ 0 1.42253- 2 6.40940- 4 8.00000+ 0 1.00000+ 1 2.56412- 2 6.73910- 4 8.00000+ 0 1.10000+ 1 5.02067- 2 6.75500- 4 8.00000+ 0 1.30000+ 1 1.57957- 2 7.29040- 4 8.00000+ 0 1.40000+ 1 2.33060- 2 7.29210- 4 8.00000+ 0 1.60000+ 1 2.24577- 3 7.34420- 4 1.00000+ 1 1.00000+ 1 4.09652- 4 7.06880- 4 1.00000+ 1 1.10000+ 1 6.68243- 4 7.08470- 4 1.00000+ 1 1.30000+ 1 2.32428- 4 7.62010- 4 1.00000+ 1 1.40000+ 1 4.40741- 3 7.62180- 4 1.00000+ 1 1.60000+ 1 1.77081- 3 7.67390- 4 1.10000+ 1 1.10000+ 1 1.17810- 3 7.10060- 4 1.10000+ 1 1.30000+ 1 4.46042- 3 7.63600- 4 1.10000+ 1 1.40000+ 1 3.23254- 3 7.63770- 4 1.10000+ 1 1.60000+ 1 3.28901- 3 7.68980- 4 1.30000+ 1 1.30000+ 1 2.58444- 4 8.17140- 4 1.30000+ 1 1.40000+ 1 1.35249- 2 8.17310- 4 1.30000+ 1 1.60000+ 1 1.10876- 3 8.22520- 4 1.40000+ 1 1.40000+ 1 3.53869- 3 8.17480- 4 1.40000+ 1 1.60000+ 1 1.55434- 3 8.22690- 4 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.04719-10 1.28600- 5 8.00000+ 0 4.03768- 3 6.32540- 4 1.10000+ 1 9.18115- 6 6.67100- 4 1.30000+ 1 1.40199- 3 7.20640- 4 1.60000+ 1 8.27386- 5 7.26020- 4 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.72017- 3 5.31530- 4 8.00000+ 0 1.00000+ 1 1.04744- 1 5.64500- 4 8.00000+ 0 1.10000+ 1 8.48542- 3 5.66090- 4 8.00000+ 0 1.30000+ 1 3.52272- 3 6.19630- 4 8.00000+ 0 1.40000+ 1 6.29489- 3 6.19800- 4 8.00000+ 0 1.60000+ 1 8.72234- 4 6.25010- 4 1.00000+ 1 1.00000+ 1 8.91640- 2 5.97470- 4 1.00000+ 1 1.10000+ 1 3.09321- 1 5.99060- 4 1.00000+ 1 1.30000+ 1 6.45901- 2 6.52600- 4 1.00000+ 1 1.40000+ 1 1.25120- 1 6.52770- 4 1.00000+ 1 1.60000+ 1 9.30123- 3 6.57980- 4 1.10000+ 1 1.10000+ 1 8.61400- 3 6.00650- 4 1.10000+ 1 1.30000+ 1 7.55051- 2 6.54190- 4 1.10000+ 1 1.40000+ 1 1.14600- 2 6.54360- 4 1.10000+ 1 1.60000+ 1 6.69397- 4 6.59570- 4 1.30000+ 1 1.30000+ 1 2.94353- 2 7.07730- 4 1.30000+ 1 1.40000+ 1 1.34354- 1 7.07900- 4 1.30000+ 1 1.60000+ 1 3.10265- 4 7.13110- 4 1.40000+ 1 1.40000+ 1 6.45717- 3 7.08070- 4 1.40000+ 1 1.60000+ 1 5.27395- 4 7.13280- 4 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 3.75953- 3 6.19680- 4 1.00000+ 1 4.56623- 6 6.52650- 4 1.10000+ 1 4.45063- 6 6.54240- 4 1.30000+ 1 1.14991- 4 7.07780- 4 1.40000+ 1 1.28521- 3 7.07950- 4 1.60000+ 1 7.69576- 5 7.13160- 4 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.47610- 3 5.18670- 4 8.00000+ 0 1.00000+ 1 3.75614- 3 5.51640- 4 8.00000+ 0 1.10000+ 1 1.02560- 1 5.53230- 4 8.00000+ 0 1.30000+ 1 4.09120- 3 6.06770- 4 8.00000+ 0 1.40000+ 1 5.60270- 3 6.06940- 4 8.00000+ 0 1.60000+ 1 8.34691- 4 6.12150- 4 1.00000+ 1 1.00000+ 1 1.43545- 3 5.84610- 4 1.00000+ 1 1.10000+ 1 1.55075- 1 5.86200- 4 1.00000+ 1 1.30000+ 1 3.86376- 3 6.39740- 4 1.00000+ 1 1.40000+ 1 3.74865- 2 6.39910- 4 1.00000+ 1 1.60000+ 1 2.90883- 4 6.45120- 4 1.10000+ 1 1.10000+ 1 2.29412- 1 5.87790- 4 1.10000+ 1 1.30000+ 1 9.02988- 2 6.41330- 4 1.10000+ 1 1.40000+ 1 1.34973- 1 6.41500- 4 1.10000+ 1 1.60000+ 1 9.09931- 3 6.46710- 4 1.30000+ 1 1.30000+ 1 5.93307- 3 6.94870- 4 1.30000+ 1 1.40000+ 1 1.20726- 1 6.95040- 4 1.30000+ 1 1.60000+ 1 4.31648- 4 7.00250- 4 1.40000+ 1 1.40000+ 1 8.28033- 2 6.95210- 4 1.40000+ 1 1.60000+ 1 6.04329- 4 7.00420- 4 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 4.32722- 6 3.29700- 5 1.10000+ 1 1.00911- 5 3.45600- 5 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 6.74478- 2 2.00600- 5 1.00000+ 1 1.40000+ 1 1.60843- 1 2.02300- 5 1.00000+ 1 1.60000+ 1 6.28807- 2 2.54400- 5 1.10000+ 1 1.30000+ 1 2.24301- 1 2.16500- 5 1.10000+ 1 1.40000+ 1 2.69824- 1 2.18200- 5 1.10000+ 1 1.60000+ 1 1.19429- 1 2.70300- 5 1.30000+ 1 1.30000+ 1 1.07986- 3 7.51900- 5 1.30000+ 1 1.40000+ 1 2.33924- 2 7.53600- 5 1.30000+ 1 1.60000+ 1 2.57210- 2 8.05700- 5 1.40000+ 1 1.40000+ 1 6.79262- 3 7.55300- 5 1.40000+ 1 1.60000+ 1 3.82746- 2 8.07400- 5 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.89240- 6 5.51300- 5 1.60000+ 1 3.74790- 7 6.05100- 5 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.15554- 1 4.22200- 5 1.30000+ 1 1.40000+ 1 7.79704- 1 4.23900- 5 1.30000+ 1 1.60000+ 1 7.46132- 2 4.76000- 5 1.40000+ 1 1.40000+ 1 1.70815- 2 4.25600- 5 1.40000+ 1 1.60000+ 1 1.30435- 2 4.77700- 5 1 26000 0 7 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.49259- 7 5.35400- 5 1.40000+ 1 3.18269- 6 5.37100- 5 1.60000+ 1 1.15860- 7 5.89200- 5 1 26000 0 9 5.58470+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.83619- 2 4.06300- 5 1.30000+ 1 1.40000+ 1 5.68347- 1 4.08000- 5 1.30000+ 1 1.60000+ 1 1.72185- 2 4.60100- 5 1.40000+ 1 1.40000+ 1 3.19708- 1 4.09700- 5 1.40000+ 1 1.60000+ 1 7.63603- 2 4.61800- 5 1 27000 0 0 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 2.80000+ 0 1.40000+ 1 4.20000+ 0 1.60000+ 1 2.00000+ 0 1 27000 0 0 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.68070- 3 3.00000+ 0 9.22950- 4 5.00000+ 0 8.07540- 4 6.00000+ 0 7.92290- 4 8.00000+ 0 1.09690- 4 1.00000+ 1 7.41700- 5 1.10000+ 1 7.22600- 5 1.30000+ 1 1.39300- 5 1.40000+ 1 1.37200- 5 1.60000+ 1 7.81000- 6 1 27000 0 0 5.89332+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.89980- 3 3.00000+ 0 1.86440- 3 5.00000+ 0 1.85060- 3 6.00000+ 0 1.79240- 3 8.00000+ 0 4.09810- 4 1.00000+ 1 3.67480- 4 1.10000+ 1 3.56840- 4 1.30000+ 1 2.42170- 4 1.40000+ 1 2.39860- 4 1.60000+ 1 3.53200- 5 1 27000 0 0 5.89332+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.96420-10 3.00000+ 0 1.34040- 9 5.00000+ 0 1.16580- 9 6.00000+ 0 1.18200- 9 8.00000+ 0 4.04310- 9 1.00000+ 1 4.20140- 9 1.10000+ 1 4.25160- 9 1.30000+ 1 5.20160- 9 1.40000+ 1 5.22860- 9 1.60000+ 1 1.52460- 8 1 27000 0 0 5.89332+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.68950- 7 3.00000+ 0 3.17610- 9 5.00000+ 0 2.85430- 9 6.00000+ 0 2.81750- 9 8.00000+ 0 2.10460-11 1.00000+ 1 4.98740-11 1.10000+ 1 4.69480-11 1 27000 0 0 5.89332+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.66860- 7 3.00000+ 0 7.96820- 6 5.00000+ 0 4.54350- 7 6.00000+ 0 4.65880- 7 8.00000+ 0 3.97330- 6 1.00000+ 1 2.00080- 6 1.10000+ 1 1.92730- 6 1 27000 0 0 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.48996- 5 3.00000+ 0 6.47781- 5 5.00000+ 0 4.49591- 5 6.00000+ 0 4.44660- 5 8.00000+ 0 3.80901- 5 1.00000+ 1 2.72279- 5 1.10000+ 1 2.70961- 5 1.30000+ 1 1.39300- 5 1.40000+ 1 1.37200- 5 1.60000+ 1 7.81000- 6 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.78184- 1 3.00000+ 0 6.86704- 3 5.00000+ 0 6.66893- 3 6.00000+ 0 6.32120- 3 8.00000+ 0 2.48179- 5 1.00000+ 1 7.89252- 6 1.10000+ 1 6.78428- 6 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.57389- 3 3.00000+ 0 5.05166- 6 5.00000+ 0 4.86457- 6 6.00000+ 0 4.52323- 6 8.00000+ 0 1.05882- 9 1.00000+ 1 4.80096-10 1.10000+ 1 3.98490-10 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.53018+ 0 3.00000+ 0 3.79962+ 0 5.00000+ 0 2.30910+ 0 6.00000+ 0 2.27965+ 0 8.00000+ 0 1.89193+ 0 1.00000+ 1 9.99992- 1 1.10000+ 1 9.99993- 1 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.03191- 3 3.00000+ 0 8.53120- 4 5.00000+ 0 7.57716- 4 6.00000+ 0 7.43301- 4 8.00000+ 0 7.15989- 5 1.00000+ 1 4.69416- 5 1.10000+ 1 4.51635- 5 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.11220- 1 6.87316- 3 6.00000+ 0 2.17470- 1 6.88841- 3 1.00000+ 1 1.35020- 2 7.60653- 3 1.10000+ 1 2.65130- 2 7.60844- 3 1.30000+ 1 8.90651- 6 7.66677- 3 1.40000+ 1 1.29740- 5 7.66698- 3 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.27124- 2 5.83480- 3 3.00000+ 0 5.00000+ 0 4.74273- 2 5.95021- 3 3.00000+ 0 6.00000+ 0 8.58406- 2 5.96546- 3 3.00000+ 0 8.00000+ 0 1.15070- 2 6.64806- 3 3.00000+ 0 1.00000+ 1 6.14326- 3 6.68358- 3 3.00000+ 0 1.10000+ 1 1.10443- 2 6.68549- 3 3.00000+ 0 1.30000+ 1 2.17156- 4 6.74382- 3 3.00000+ 0 1.40000+ 1 2.97768- 4 6.74403- 3 3.00000+ 0 1.60000+ 1 9.80551- 4 6.74994- 3 5.00000+ 0 5.00000+ 0 8.48061- 3 6.06562- 3 5.00000+ 0 6.00000+ 0 2.02598- 1 6.08087- 3 5.00000+ 0 8.00000+ 0 5.43591- 3 6.76347- 3 5.00000+ 0 1.00000+ 1 2.06868- 3 6.79899- 3 5.00000+ 0 1.10000+ 1 2.25659- 2 6.80090- 3 5.00000+ 0 1.30000+ 1 2.99997- 4 6.85923- 3 5.00000+ 0 1.40000+ 1 1.11715- 3 6.85944- 3 5.00000+ 0 1.60000+ 1 4.54490- 4 6.86535- 3 6.00000+ 0 6.00000+ 0 1.12642- 1 6.09612- 3 6.00000+ 0 8.00000+ 0 9.88021- 3 6.77872- 3 6.00000+ 0 1.00000+ 1 2.25721- 2 6.81424- 3 6.00000+ 0 1.10000+ 1 2.55006- 2 6.81615- 3 6.00000+ 0 1.30000+ 1 1.38815- 3 6.87448- 3 6.00000+ 0 1.40000+ 1 1.36120- 3 6.87469- 3 6.00000+ 0 1.60000+ 1 8.26176- 4 6.88060- 3 8.00000+ 0 8.00000+ 0 7.81035- 4 7.46132- 3 8.00000+ 0 1.00000+ 1 7.21697- 4 7.49684- 3 8.00000+ 0 1.10000+ 1 1.30171- 3 7.49875- 3 8.00000+ 0 1.30000+ 1 2.28386- 5 7.55708- 3 8.00000+ 0 1.40000+ 1 3.19734- 5 7.55729- 3 8.00000+ 0 1.60000+ 1 1.32453- 4 7.56320- 3 1.00000+ 1 1.00000+ 1 1.26087- 4 7.53236- 3 1.00000+ 1 1.10000+ 1 2.64319- 3 7.53427- 3 1.00000+ 1 1.30000+ 1 2.80194- 5 7.59260- 3 1.00000+ 1 1.40000+ 1 1.07403- 4 7.59281- 3 1.00000+ 1 1.60000+ 1 6.07090- 5 7.59872- 3 1.10000+ 1 1.10000+ 1 1.55442- 3 7.53618- 3 1.10000+ 1 1.30000+ 1 1.37361- 4 7.59451- 3 1.10000+ 1 1.40000+ 1 1.32545- 4 7.59472- 3 1.10000+ 1 1.60000+ 1 1.15679- 4 7.60063- 3 1.30000+ 1 1.40000+ 1 6.55484- 6 7.65305- 3 1.30000+ 1 1.60000+ 1 3.27757- 6 7.65896- 3 1.40000+ 1 1.40000+ 1 2.35960- 6 7.65326- 3 1.40000+ 1 1.60000+ 1 2.35960- 6 7.65917- 3 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.45119- 5 1.15410- 4 6.00000+ 0 1.01089- 4 1.30660- 4 1.00000+ 1 5.82787- 4 8.48780- 4 1.10000+ 1 8.69745- 4 8.50690- 4 1.30000+ 1 1.95629- 6 9.09020- 4 1.40000+ 1 2.59669- 6 9.09230- 4 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 5.01273- 2 4.12400- 5 5.00000+ 0 1.10000+ 1 7.04496- 2 4.31500- 5 5.00000+ 0 1.30000+ 1 4.27372- 2 1.01480- 4 5.00000+ 0 1.40000+ 1 6.95699- 2 1.01690- 4 5.00000+ 0 1.60000+ 1 5.61458- 3 1.07600- 4 6.00000+ 0 8.00000+ 0 1.24181- 1 2.09700- 5 6.00000+ 0 1.00000+ 1 6.24053- 2 5.64900- 5 6.00000+ 0 1.10000+ 1 1.38101- 1 5.84000- 5 6.00000+ 0 1.30000+ 1 1.02472- 1 1.16730- 4 6.00000+ 0 1.40000+ 1 1.45350- 1 1.16940- 4 6.00000+ 0 1.60000+ 1 1.01972- 2 1.22850- 4 8.00000+ 0 8.00000+ 0 1.32692- 2 7.03570- 4 8.00000+ 0 1.00000+ 1 2.39817- 2 7.39090- 4 8.00000+ 0 1.10000+ 1 4.68622- 2 7.41000- 4 8.00000+ 0 1.30000+ 1 1.75944- 2 7.99330- 4 8.00000+ 0 1.40000+ 1 2.59166- 2 7.99540- 4 8.00000+ 0 1.60000+ 1 2.01521- 3 8.05450- 4 1.00000+ 1 1.00000+ 1 3.65458- 4 7.74610- 4 1.00000+ 1 1.10000+ 1 6.76548- 4 7.76520- 4 1.00000+ 1 1.30000+ 1 2.62206- 4 8.34850- 4 1.00000+ 1 1.40000+ 1 5.05292- 3 8.35060- 4 1.00000+ 1 1.60000+ 1 1.60312- 3 8.40970- 4 1.10000+ 1 1.10000+ 1 1.11982- 3 7.78430- 4 1.10000+ 1 1.30000+ 1 5.15567- 3 8.36760- 4 1.10000+ 1 1.40000+ 1 3.71915- 3 8.36970- 4 1.10000+ 1 1.60000+ 1 3.02729- 3 8.42880- 4 1.30000+ 1 1.30000+ 1 3.59587- 4 8.95090- 4 1.30000+ 1 1.40000+ 1 1.85429- 2 8.95300- 4 1.30000+ 1 1.60000+ 1 1.20539- 3 9.01210- 4 1.40000+ 1 1.40000+ 1 4.81015- 3 8.95510- 4 1.40000+ 1 1.60000+ 1 1.67242- 3 9.01420- 4 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.93070-10 1.52500- 5 8.00000+ 0 4.38210- 3 6.97850- 4 1.10000+ 1 1.16510- 5 7.35280- 4 1.30000+ 1 2.16770- 3 7.93610- 4 1.60000+ 1 9.63101- 5 7.99730- 4 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.85394- 3 5.88160- 4 8.00000+ 0 1.00000+ 1 8.93125- 2 6.23680- 4 8.00000+ 0 1.10000+ 1 7.33292- 3 6.25590- 4 8.00000+ 0 1.30000+ 1 3.33425- 3 6.83920- 4 8.00000+ 0 1.40000+ 1 6.41994- 3 6.84130- 4 8.00000+ 0 1.60000+ 1 7.16532- 4 6.90040- 4 1.00000+ 1 1.00000+ 1 7.67698- 2 6.59200- 4 1.00000+ 1 1.10000+ 1 2.65459- 1 6.61110- 4 1.00000+ 1 1.30000+ 1 6.59929- 2 7.19440- 4 1.00000+ 1 1.40000+ 1 1.27088- 1 7.19650- 4 1.00000+ 1 1.60000+ 1 7.65047- 3 7.25560- 4 1.10000+ 1 1.10000+ 1 7.37342- 3 6.63020- 4 1.10000+ 1 1.30000+ 1 7.76461- 2 7.21350- 4 1.10000+ 1 1.40000+ 1 1.16618- 2 7.21560- 4 1.10000+ 1 1.60000+ 1 5.54730- 4 7.27470- 4 1.30000+ 1 1.30000+ 1 4.18305- 2 7.79680- 4 1.30000+ 1 1.40000+ 1 1.90517- 1 7.79890- 4 1.30000+ 1 1.60000+ 1 3.22715- 4 7.85800- 4 1.40000+ 1 1.40000+ 1 7.98565- 3 7.80100- 4 1.40000+ 1 1.60000+ 1 5.20056- 4 7.86010- 4 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.06980- 3 6.82600- 4 1.00000+ 1 5.77370- 6 7.18120- 4 1.10000+ 1 5.61670- 6 7.20030- 4 1.30000+ 1 1.78750- 4 7.78360- 4 1.40000+ 1 1.96340- 3 7.78570- 4 1.60000+ 1 8.75179- 5 7.84480- 4 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.81604- 3 5.72910- 4 8.00000+ 0 1.00000+ 1 3.33324- 3 6.08430- 4 8.00000+ 0 1.10000+ 1 9.02499- 2 6.10340- 4 8.00000+ 0 1.30000+ 1 4.28644- 3 6.68670- 4 8.00000+ 0 1.40000+ 1 5.64635- 3 6.68880- 4 8.00000+ 0 1.60000+ 1 7.07913- 4 6.74790- 4 1.00000+ 1 1.00000+ 1 1.27101- 3 6.43950- 4 1.00000+ 1 1.10000+ 1 1.36981- 1 6.45860- 4 1.00000+ 1 1.30000+ 1 4.12509- 3 7.04190- 4 1.00000+ 1 1.40000+ 1 3.97415- 2 7.04400- 4 1.00000+ 1 1.60000+ 1 2.50860- 4 7.10310- 4 1.10000+ 1 1.10000+ 1 2.02253- 1 6.47770- 4 1.10000+ 1 1.30000+ 1 9.46195- 2 7.06100- 4 1.10000+ 1 1.40000+ 1 1.41819- 1 7.06310- 4 1.10000+ 1 1.60000+ 1 7.69827- 3 7.12220- 4 1.30000+ 1 1.30000+ 1 7.02719- 3 7.64430- 4 1.30000+ 1 1.40000+ 1 1.42632- 1 7.64640- 4 1.30000+ 1 1.60000+ 1 4.00653- 4 7.70550- 4 1.40000+ 1 1.40000+ 1 1.05247- 1 7.64850- 4 1.40000+ 1 1.60000+ 1 5.82667- 4 7.70760- 4 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 5.47361- 6 3.55200- 5 1.10000+ 1 1.29780- 5 3.74300- 5 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 6.93936- 2 2.15900- 5 1.00000+ 1 1.40000+ 1 1.57018- 1 2.18000- 5 1.00000+ 1 1.60000+ 1 5.78490- 2 2.77100- 5 1.10000+ 1 1.30000+ 1 2.22978- 1 2.35000- 5 1.10000+ 1 1.40000+ 1 2.76072- 1 2.37100- 5 1.10000+ 1 1.60000+ 1 1.08621- 1 2.96200- 5 1.30000+ 1 1.30000+ 1 1.64740- 3 8.18300- 5 1.30000+ 1 1.40000+ 1 2.83762- 2 8.20400- 5 1.30000+ 1 1.60000+ 1 2.77636- 2 8.79500- 5 1.40000+ 1 1.40000+ 1 8.98900- 3 8.22500- 5 1.40000+ 1 1.60000+ 1 4.12731- 2 8.81600- 5 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.13272- 6 6.02400- 5 1.60000+ 1 7.59802- 7 6.63600- 5 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.27723- 1 4.63100- 5 1.30000+ 1 1.40000+ 1 7.79331- 1 4.65200- 5 1.30000+ 1 1.60000+ 1 6.38787- 2 5.24300- 5 1.40000+ 1 1.40000+ 1 1.80280- 2 4.67300- 5 1.40000+ 1 1.60000+ 1 1.10311- 2 5.26400- 5 1 27000 0 7 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.45152- 7 5.83300- 5 1.40000+ 1 5.88982- 6 5.85400- 5 1.60000+ 1 2.49311- 7 6.44500- 5 1 27000 0 9 5.89332+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.03579- 2 4.44000- 5 1.30000+ 1 1.40000+ 1 5.64172- 1 4.46100- 5 1.30000+ 1 1.60000+ 1 1.46916- 2 5.05200- 5 1.40000+ 1 1.40000+ 1 3.35276- 1 4.48200- 5 1.40000+ 1 1.60000+ 1 6.54957- 2 5.07300- 5 1 28000 0 0 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 3.20000+ 0 1.40000+ 1 4.80000+ 0 1.60000+ 1 2.00000+ 0 1 28000 0 0 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.30280- 3 3.00000+ 0 1.00650- 3 5.00000+ 0 8.84980- 4 6.00000+ 0 8.67020- 4 8.00000+ 0 1.18640- 4 1.00000+ 1 8.04800- 5 1.10000+ 1 7.82100- 5 1.30000+ 1 1.49200- 5 1.40000+ 1 1.46600- 5 1.60000+ 1 8.09000- 6 1 28000 0 0 5.87000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06810- 2 3.00000+ 0 2.03100- 3 5.00000+ 0 2.01820- 3 6.00000+ 0 1.95000- 3 8.00000+ 0 4.48710- 4 1.00000+ 1 4.04060- 4 1.10000+ 1 3.91360- 4 1.30000+ 1 2.69820- 4 1.40000+ 1 2.66980- 4 1.60000+ 1 3.74400- 5 1 28000 0 0 5.87000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.85330-10 3.00000+ 0 1.28550- 9 5.00000+ 0 1.11560- 9 6.00000+ 0 1.13220- 9 8.00000+ 0 3.86930- 9 1.00000+ 1 4.00830- 9 1.10000+ 1 4.06240- 9 1.30000+ 1 4.93130- 9 1.40000+ 1 4.96210- 9 1.60000+ 1 1.47740- 8 1 28000 0 0 5.87000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.50990- 7 3.00000+ 0 3.84670- 9 5.00000+ 0 3.96690- 9 6.00000+ 0 3.90640- 9 8.00000+ 0 2.41440-11 1.00000+ 1 6.60560-11 1.10000+ 1 6.17790-11 1 28000 0 0 5.87000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.83170- 7 3.00000+ 0 8.51080- 6 5.00000+ 0 5.21230- 7 6.00000+ 0 5.28900- 7 8.00000+ 0 4.24750- 6 1.00000+ 1 2.54090- 6 1.10000+ 1 2.44740- 6 1 28000 0 0 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.60371- 5 3.00000+ 0 6.73273- 5 5.00000+ 0 4.63814- 5 6.00000+ 0 4.61345- 5 8.00000+ 0 4.06058- 5 1.00000+ 1 2.91789- 5 1.10000+ 1 2.90180- 5 1.30000+ 1 1.49200- 5 1.40000+ 1 1.46600- 5 1.60000+ 1 8.09000- 6 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.12292- 1 3.00000+ 0 7.95692- 3 5.00000+ 0 7.92148- 3 6.00000+ 0 7.51092- 3 8.00000+ 0 3.37965- 5 1.00000+ 1 1.34402- 5 1.10000+ 1 1.16162- 5 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.02547- 3 3.00000+ 0 6.46285- 6 5.00000+ 0 6.39843- 6 6.00000+ 0 5.94645- 6 8.00000+ 0 1.61118- 9 1.00000+ 1 8.90788-10 1.10000+ 1 7.41283-10 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.24147+ 0 3.00000+ 0 3.65702+ 0 5.00000+ 0 2.19004+ 0 6.00000+ 0 2.17558+ 0 8.00000+ 0 1.87983+ 0 1.00000+ 1 9.99987- 1 1.10000+ 1 9.99988- 1 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.20130- 3 3.00000+ 0 9.32710- 4 5.00000+ 0 8.32200- 4 6.00000+ 0 8.14939- 4 8.00000+ 0 7.80326- 5 1.00000+ 1 5.13002- 5 1.10000+ 1 4.91913- 5 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.21060- 1 7.41782- 3 6.00000+ 0 2.36419- 1 7.43578- 3 1.00000+ 1 1.48050- 2 8.22232- 3 1.10000+ 1 2.90299- 2 8.22459- 3 1.30000+ 1 1.26910- 5 8.28788- 3 1.40000+ 1 1.84450- 5 8.28814- 3 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.06788- 2 6.28980- 3 3.00000+ 0 5.00000+ 0 4.51818- 2 6.41132- 3 3.00000+ 0 6.00000+ 0 8.10999- 2 6.42928- 3 3.00000+ 0 8.00000+ 0 1.09920- 2 7.17766- 3 3.00000+ 0 1.00000+ 1 5.89415- 3 7.21582- 3 3.00000+ 0 1.10000+ 1 1.04968- 2 7.21809- 3 3.00000+ 0 1.30000+ 1 2.45244- 4 7.28138- 3 3.00000+ 0 1.40000+ 1 3.36680- 4 7.28164- 3 3.00000+ 0 1.60000+ 1 9.04076- 4 7.28821- 3 5.00000+ 0 5.00000+ 0 8.05326- 3 6.53284- 3 5.00000+ 0 6.00000+ 0 1.91464- 1 6.55080- 3 5.00000+ 0 8.00000+ 0 5.18552- 3 7.29918- 3 5.00000+ 0 1.00000+ 1 1.97028- 3 7.33734- 3 5.00000+ 0 1.10000+ 1 2.14086- 2 7.33961- 3 5.00000+ 0 1.30000+ 1 3.40843- 4 7.40290- 3 5.00000+ 0 1.40000+ 1 1.25951- 3 7.40316- 3 5.00000+ 0 1.60000+ 1 4.17749- 4 7.40973- 3 6.00000+ 0 6.00000+ 0 1.06181- 1 6.56876- 3 6.00000+ 0 8.00000+ 0 9.34647- 3 7.31714- 3 6.00000+ 0 1.00000+ 1 2.14238- 2 7.35530- 3 6.00000+ 0 1.10000+ 1 2.41334- 2 7.35757- 3 6.00000+ 0 1.30000+ 1 1.56286- 3 7.42086- 3 6.00000+ 0 1.40000+ 1 1.52965- 3 7.42112- 3 6.00000+ 0 1.60000+ 1 7.52322- 4 7.42769- 3 8.00000+ 0 8.00000+ 0 7.61029- 4 8.06552- 3 8.00000+ 0 1.00000+ 1 7.04933- 4 8.10368- 3 8.00000+ 0 1.10000+ 1 1.25902- 3 8.10595- 3 8.00000+ 0 1.30000+ 1 2.80260- 5 8.16924- 3 8.00000+ 0 1.40000+ 1 3.66493- 5 8.16950- 3 8.00000+ 0 1.60000+ 1 1.25036- 4 8.17607- 3 1.00000+ 1 1.00000+ 1 1.24412- 4 8.14184- 3 1.00000+ 1 1.10000+ 1 2.58160- 3 8.14411- 3 1.00000+ 1 1.30000+ 1 3.11038- 5 8.20740- 3 1.00000+ 1 1.40000+ 1 1.24412- 4 8.20766- 3 1.00000+ 1 1.60000+ 1 5.77652- 5 8.21423- 3 1.10000+ 1 1.10000+ 1 1.52067- 3 8.14638- 3 1.10000+ 1 1.30000+ 1 1.61274- 4 8.20967- 3 1.10000+ 1 1.40000+ 1 1.54360- 4 8.20993- 3 1.10000+ 1 1.60000+ 1 1.08291- 4 8.21650- 3 1.30000+ 1 1.40000+ 1 8.63385- 6 8.27322- 3 1.30000+ 1 1.60000+ 1 2.87812- 6 8.27979- 3 1.40000+ 1 1.40000+ 1 3.13604- 6 8.27348- 3 1.40000+ 1 1.60000+ 1 3.13604- 6 8.28005- 3 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.14808- 5 1.21520- 4 6.00000+ 0 9.31647- 5 1.39480- 4 1.00000+ 1 6.32143- 4 9.26020- 4 1.10000+ 1 9.67704- 4 9.28290- 4 1.30000+ 1 2.27301- 6 9.91580- 4 1.40000+ 1 2.97943- 6 9.91840- 4 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 4.87391- 2 4.10400- 5 5.00000+ 0 1.10000+ 1 6.93105- 2 4.33100- 5 5.00000+ 0 1.30000+ 1 4.41388- 2 1.06600- 4 5.00000+ 0 1.40000+ 1 7.15333- 2 1.06860- 4 5.00000+ 0 1.60000+ 1 5.14809- 3 1.13430- 4 6.00000+ 0 8.00000+ 0 1.14861- 1 2.08400- 5 6.00000+ 0 1.00000+ 1 6.04399- 2 5.90000- 5 6.00000+ 0 1.10000+ 1 1.32102- 1 6.12700- 5 6.00000+ 0 1.30000+ 1 1.07403- 1 1.24560- 4 6.00000+ 0 1.40000+ 1 1.52509- 1 1.24820- 4 6.00000+ 0 1.60000+ 1 9.25467- 3 1.31390- 4 8.00000+ 0 8.00000+ 0 1.23365- 2 7.69220- 4 8.00000+ 0 1.00000+ 1 2.23644- 2 8.07380- 4 8.00000+ 0 1.10000+ 1 4.36083- 2 8.09650- 4 8.00000+ 0 1.30000+ 1 1.91210- 2 8.72940- 4 8.00000+ 0 1.40000+ 1 2.81122- 2 8.73200- 4 8.00000+ 0 1.60000+ 1 1.80752- 3 8.79770- 4 1.00000+ 1 1.00000+ 1 3.26025- 4 8.45540- 4 1.00000+ 1 1.10000+ 1 6.74812- 4 8.47810- 4 1.00000+ 1 1.30000+ 1 2.86845- 4 9.11100- 4 1.00000+ 1 1.40000+ 1 5.60458- 3 9.11360- 4 1.00000+ 1 1.60000+ 1 1.44563- 3 9.17930- 4 1.10000+ 1 1.10000+ 1 1.07183- 3 8.50080- 4 1.10000+ 1 1.30000+ 1 5.83763- 3 9.13370- 4 1.10000+ 1 1.40000+ 1 4.19256- 3 9.13630- 4 1.10000+ 1 1.60000+ 1 2.80996- 3 9.20200- 4 1.30000+ 1 1.30000+ 1 4.63433- 4 9.76660- 4 1.30000+ 1 1.40000+ 1 2.35853- 2 9.76920- 4 1.30000+ 1 1.60000+ 1 1.25527- 3 9.83490- 4 1.40000+ 1 1.40000+ 1 6.18041- 3 9.77180- 4 1.40000+ 1 1.60000+ 1 1.75708- 3 9.83750- 4 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.92551-10 1.79600- 5 8.00000+ 0 4.55671- 3 7.66340- 4 1.10000+ 1 1.39400- 5 8.06770- 4 1.30000+ 1 3.12391- 3 8.70060- 4 1.60000+ 1 1.08300- 4 8.76890- 4 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.36660- 2 9.87000- 6 8.00000+ 0 8.00000+ 0 4.12943- 3 6.47700- 4 8.00000+ 0 1.00000+ 1 7.62945- 2 6.85860- 4 8.00000+ 0 1.10000+ 1 6.34256- 3 6.88130- 4 8.00000+ 0 1.30000+ 1 3.11451- 3 7.51420- 4 8.00000+ 0 1.40000+ 1 6.41691- 3 7.51680- 4 8.00000+ 0 1.60000+ 1 5.84255- 4 7.58250- 4 1.00000+ 1 1.00000+ 1 6.59229- 2 7.24020- 4 1.00000+ 1 1.10000+ 1 2.27127- 1 7.26290- 4 1.00000+ 1 1.30000+ 1 6.57901- 2 7.89580- 4 1.00000+ 1 1.40000+ 1 1.25998- 1 7.89840- 4 1.00000+ 1 1.60000+ 1 6.29326- 3 7.96410- 4 1.10000+ 1 1.10000+ 1 6.31775- 3 7.28560- 4 1.10000+ 1 1.30000+ 1 7.81152- 2 7.91850- 4 1.10000+ 1 1.40000+ 1 1.16208- 2 7.92110- 4 1.10000+ 1 1.60000+ 1 4.65414- 4 7.98680- 4 1.30000+ 1 1.30000+ 1 5.11766- 2 8.55140- 4 1.30000+ 1 1.40000+ 1 2.32640- 1 8.55400- 4 1.30000+ 1 1.60000+ 1 3.04350- 4 8.61970- 4 1.40000+ 1 1.40000+ 1 9.37841- 3 8.55660- 4 1.40000+ 1 1.60000+ 1 5.00110- 4 8.62230- 4 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.26136- 3 7.48380- 4 1.00000+ 1 7.03973- 6 7.86540- 4 1.10000+ 1 6.83503- 6 7.88810- 4 1.30000+ 1 2.62697- 4 8.52100- 4 1.40000+ 1 2.85977- 3 8.52360- 4 1.60000+ 1 9.78831- 5 8.58930- 4 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.25752- 3 6.29740- 4 8.00000+ 0 1.00000+ 1 2.97197- 3 6.67900- 4 8.00000+ 0 1.10000+ 1 7.98570- 2 6.70170- 4 8.00000+ 0 1.30000+ 1 4.42077- 3 7.33460- 4 8.00000+ 0 1.40000+ 1 5.62247- 3 7.33720- 4 8.00000+ 0 1.60000+ 1 6.03281- 4 7.40290- 4 1.00000+ 1 1.00000+ 1 1.12741- 3 7.06060- 4 1.00000+ 1 1.10000+ 1 1.21639- 1 7.08330- 4 1.00000+ 1 1.30000+ 1 4.32169- 3 7.71620- 4 1.00000+ 1 1.40000+ 1 4.13628- 2 7.71880- 4 1.00000+ 1 1.60000+ 1 2.17581- 4 7.78450- 4 1.10000+ 1 1.10000+ 1 1.79207- 1 7.10600- 4 1.10000+ 1 1.30000+ 1 9.75631- 2 7.73890- 4 1.10000+ 1 1.40000+ 1 1.46538- 1 7.74150- 4 1.10000+ 1 1.60000+ 1 6.55703- 3 7.80720- 4 1.30000+ 1 1.30000+ 1 8.31042- 3 8.37180- 4 1.30000+ 1 1.40000+ 1 1.68447- 1 8.37440- 4 1.30000+ 1 1.60000+ 1 3.80946- 4 8.44010- 4 1.40000+ 1 1.40000+ 1 1.18583- 1 8.37700- 4 1.40000+ 1 1.60000+ 1 5.15735- 4 8.44270- 4 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 6.76023- 6 3.81600- 5 1.10000+ 1 1.63071- 5 4.04300- 5 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 7.01871- 2 2.32400- 5 1.00000+ 1 1.40000+ 1 1.55305- 1 2.35000- 5 1.00000+ 1 1.60000+ 1 5.32894- 2 3.00700- 5 1.10000+ 1 1.30000+ 1 2.22739- 1 2.55100- 5 1.10000+ 1 1.40000+ 1 2.78669- 1 2.57700- 5 1.10000+ 1 1.60000+ 1 9.96551- 2 3.23400- 5 1.30000+ 1 1.30000+ 1 2.32308- 3 8.88000- 5 1.30000+ 1 1.40000+ 1 3.33218- 2 8.90600- 5 1.30000+ 1 1.60000+ 1 2.94384- 2 9.56300- 5 1.40000+ 1 1.40000+ 1 1.13271- 2 8.93200- 5 1.40000+ 1 1.60000+ 1 4.37231- 2 9.58900- 5 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.20271- 5 6.55600- 5 1.60000+ 1 1.41311- 6 7.23900- 5 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.37024- 1 5.06400- 5 1.30000+ 1 1.40000+ 1 7.78847- 1 5.09000- 5 1.30000+ 1 1.60000+ 1 5.57833- 2 5.74700- 5 1.40000+ 1 1.40000+ 1 1.87946- 2 5.11600- 5 1.40000+ 1 1.60000+ 1 9.53758- 3 5.77300- 5 1 28000 0 7 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.09460- 6 6.32900- 5 1.40000+ 1 1.00110- 5 6.35500- 5 1.60000+ 1 5.10659- 7 7.01200- 5 1 28000 0 9 5.87000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.18808- 2 4.83700- 5 1.30000+ 1 1.40000+ 1 5.58801- 1 4.86300- 5 1.30000+ 1 1.60000+ 1 1.27870- 2 5.52000- 5 1.40000+ 1 1.40000+ 1 3.49009- 1 4.88900- 5 1.40000+ 1 1.60000+ 1 5.75100- 2 5.54600- 5 1 29000 0 0 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 1.00000+ 0 1 29000 0 0 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.94320- 3 3.00000+ 0 1.08610- 3 5.00000+ 0 9.58530- 4 6.00000+ 0 9.37490- 4 8.00000+ 0 1.21260- 4 1.00000+ 1 8.05000- 5 1.10000+ 1 7.78600- 5 1.30000+ 1 1.00900- 5 1.40000+ 1 9.80000- 6 1.60000+ 1 7.11000- 6 1 29000 0 0 6.35460+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.14950- 2 3.00000+ 0 2.20560- 3 5.00000+ 0 2.19420- 3 6.00000+ 0 2.11470- 3 8.00000+ 0 4.84390- 4 1.00000+ 1 4.36150- 4 1.10000+ 1 4.21020- 4 1.30000+ 1 2.78950- 4 1.40000+ 1 2.75130- 4 1.60000+ 1 2.99700- 5 1 29000 0 0 6.35460+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.75060-10 3.00000+ 0 1.23460- 9 5.00000+ 0 1.06930- 9 6.00000+ 0 1.08670- 9 8.00000+ 0 3.72990- 9 1.00000+ 1 3.86550- 9 1.10000+ 1 3.91950- 9 1.30000+ 1 5.05870- 9 1.40000+ 1 5.10500- 9 1.60000+ 1 1.59410- 8 1 29000 0 0 6.35460+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.42420- 7 3.00000+ 0 4.54580- 9 5.00000+ 0 5.49630- 9 6.00000+ 0 5.38770- 9 8.00000+ 0 2.76390-11 1.00000+ 1 9.09690-11 1.10000+ 1 8.42870-11 1 29000 0 0 6.35460+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.94610- 7 3.00000+ 0 9.12660- 6 5.00000+ 0 5.93150- 7 6.00000+ 0 6.08090- 7 8.00000+ 0 4.72620- 6 1.00000+ 1 3.56150- 6 1.10000+ 1 3.45790- 6 1 29000 0 0 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.90358- 5 3.00000+ 0 4.45953- 5 5.00000+ 0 3.04874- 5 6.00000+ 0 3.02564- 5 8.00000+ 0 2.80509- 5 1.00000+ 1 1.98636- 5 1.10000+ 1 1.97080- 5 1.30000+ 1 1.00900- 5 1.40000+ 1 9.80000- 6 1.60000+ 1 7.11000- 6 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.46389- 1 3.00000+ 0 9.17367- 3 5.00000+ 0 9.32467- 3 6.00000+ 0 8.82502- 3 8.00000+ 0 4.51499- 5 1.00000+ 1 2.14880- 5 1.10000+ 1 1.86681- 5 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.52166- 3 3.00000+ 0 8.17916- 6 5.00000+ 0 8.29947- 6 6.00000+ 0 7.68388- 6 8.00000+ 0 2.37199- 9 1.00000+ 1 1.51994- 9 1.10000+ 1 1.27261- 9 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.96616+ 0 3.00000+ 0 3.52113+ 0 5.00000+ 0 2.07917+ 0 6.00000+ 0 2.06636+ 0 8.00000+ 0 1.86503+ 0 1.00000+ 1 9.99979- 1 1.10000+ 1 9.99981- 1 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.37250- 3 3.00000+ 0 1.03333- 3 5.00000+ 0 9.19743- 4 6.00000+ 0 8.99550- 4 8.00000+ 0 9.32067- 5 1.00000+ 1 6.06349- 5 1.10000+ 1 5.81507- 5 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.31119- 1 7.98467- 3 6.00000+ 0 2.55668- 1 8.00571- 3 1.00000+ 1 1.58899- 2 8.86270- 3 1.10000+ 1 3.10908- 2 8.86534- 3 1.30000+ 1 1.79389- 5 8.93311- 3 1.40000+ 1 2.59348- 5 8.93340- 3 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.88567- 2 6.77100- 3 3.00000+ 0 5.00000+ 0 4.31908- 2 6.89857- 3 3.00000+ 0 6.00000+ 0 7.68383- 2 6.91961- 3 3.00000+ 0 8.00000+ 0 1.04073- 2 7.73584- 3 3.00000+ 0 1.00000+ 1 5.57458- 3 7.77660- 3 3.00000+ 0 1.10000+ 1 9.82486- 3 7.77924- 3 3.00000+ 0 1.30000+ 1 2.80672- 4 7.84701- 3 3.00000+ 0 1.40000+ 1 3.81309- 4 7.84730- 3 3.00000+ 0 1.60000+ 1 3.54221- 4 7.84999- 3 5.00000+ 0 5.00000+ 0 7.65781- 3 7.02614- 3 5.00000+ 0 6.00000+ 0 1.81191- 1 7.04718- 3 5.00000+ 0 8.00000+ 0 4.90291- 3 7.86341- 3 5.00000+ 0 1.00000+ 1 1.85044- 3 7.90417- 3 5.00000+ 0 1.10000+ 1 1.99826- 2 7.90681- 3 5.00000+ 0 1.30000+ 1 3.89071- 4 7.97458- 3 5.00000+ 0 1.40000+ 1 1.43235- 3 7.97487- 3 5.00000+ 0 1.60000+ 1 1.62596- 4 7.97756- 3 6.00000+ 0 6.00000+ 0 1.00194- 1 7.06822- 3 6.00000+ 0 8.00000+ 0 8.76108- 3 7.88445- 3 6.00000+ 0 1.00000+ 1 2.00201- 2 7.92521- 3 6.00000+ 0 1.10000+ 1 2.24684- 2 7.92785- 3 6.00000+ 0 1.30000+ 1 1.77886- 3 7.99562- 3 6.00000+ 0 1.40000+ 1 1.73429- 3 7.99591- 3 6.00000+ 0 1.60000+ 1 2.92272- 4 7.99860- 3 8.00000+ 0 8.00000+ 0 7.62703- 4 8.70068- 3 8.00000+ 0 1.00000+ 1 7.04830- 4 8.74144- 3 8.00000+ 0 1.10000+ 1 1.24470- 3 8.74408- 3 8.00000+ 0 1.30000+ 1 3.21362- 5 8.81185- 3 8.00000+ 0 1.40000+ 1 4.49905- 5 8.81214- 3 8.00000+ 0 1.60000+ 1 5.14183- 5 8.81483- 3 1.00000+ 1 1.00000+ 1 1.20557- 4 8.78220- 3 1.00000+ 1 1.10000+ 1 2.52309- 3 8.78484- 3 1.00000+ 1 1.30000+ 1 3.72645- 5 8.85261- 3 1.00000+ 1 1.40000+ 1 1.46859- 4 8.85290- 3 1.00000+ 1 1.60000+ 1 2.41126- 5 8.85559- 3 1.10000+ 1 1.10000+ 1 1.52046- 3 8.78748- 3 1.10000+ 1 1.30000+ 1 1.96192- 4 8.85525- 3 1.10000+ 1 1.40000+ 1 1.86855- 4 8.85554- 3 1.10000+ 1 1.60000+ 1 4.43756- 5 8.85823- 3 1.30000+ 1 1.40000+ 1 1.10707- 5 8.92331- 3 1.30000+ 1 1.60000+ 1 2.21424- 6 8.92600- 3 1.40000+ 1 1.40000+ 1 4.12417- 6 8.92360- 3 1.40000+ 1 1.60000+ 1 4.12417- 6 8.92629- 3 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.91460- 5 1.27570- 4 6.00000+ 0 8.71820- 5 1.48610- 4 1.00000+ 1 6.88360- 4 1.00560- 3 1.10000+ 1 1.06520- 3 1.00824- 3 1.30000+ 1 2.60100- 6 1.07601- 3 1.40000+ 1 3.42210- 6 1.07630- 3 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 4.78361- 2 4.70700- 5 5.00000+ 0 1.10000+ 1 6.92207- 2 4.97100- 5 5.00000+ 0 1.30000+ 1 4.64820- 2 1.17480- 4 5.00000+ 0 1.40000+ 1 7.46387- 2 1.17770- 4 5.00000+ 0 1.60000+ 1 1.99240- 3 1.20460- 4 6.00000+ 0 8.00000+ 0 1.07359- 1 2.73500- 5 6.00000+ 0 1.00000+ 1 5.88771- 2 6.81100- 5 6.00000+ 0 1.10000+ 1 1.25939- 1 7.07500- 5 6.00000+ 0 1.30000+ 1 1.14171- 1 1.38520- 4 6.00000+ 0 1.40000+ 1 1.62177- 1 1.38810- 4 6.00000+ 0 1.60000+ 1 3.56746- 3 1.41500- 4 8.00000+ 0 8.00000+ 0 1.12747- 2 8.43580- 4 8.00000+ 0 1.00000+ 1 2.04284- 2 8.84340- 4 8.00000+ 0 1.10000+ 1 3.97086- 2 8.86980- 4 8.00000+ 0 1.30000+ 1 2.10300- 2 9.54750- 4 8.00000+ 0 1.40000+ 1 3.08047- 2 9.55040- 4 8.00000+ 0 1.60000+ 1 6.83622- 4 9.57730- 4 1.00000+ 1 1.00000+ 1 3.03846- 4 9.25100- 4 1.00000+ 1 1.10000+ 1 6.94692- 4 9.27740- 4 1.00000+ 1 1.30000+ 1 3.37886- 4 9.95510- 4 1.00000+ 1 1.40000+ 1 6.64782- 3 9.95800- 4 1.00000+ 1 1.60000+ 1 5.86257- 4 9.98490- 4 1.10000+ 1 1.10000+ 1 1.07698- 3 9.30380- 4 1.10000+ 1 1.30000+ 1 7.13355- 3 9.98150- 4 1.10000+ 1 1.40000+ 1 5.09460- 3 9.98440- 4 1.10000+ 1 1.60000+ 1 1.18286- 3 1.00113- 3 1.30000+ 1 1.30000+ 1 5.63180- 4 1.06592- 3 1.30000+ 1 1.40000+ 1 2.86944- 2 1.06621- 3 1.30000+ 1 1.60000+ 1 5.17393- 4 1.06890- 3 1.40000+ 1 1.40000+ 1 8.31045- 3 1.06650- 3 1.40000+ 1 1.60000+ 1 8.00352- 4 1.06919- 3 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.18584-10 2.10400- 5 8.00000+ 0 4.65603- 3 8.37270- 4 1.10000+ 1 1.62541- 5 8.80670- 4 1.30000+ 1 4.42993- 3 9.48440- 4 1.60000+ 1 1.20891- 4 9.51420- 4 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 8.94776- 3 1.39300- 5 8.00000+ 0 8.00000+ 0 3.62933- 3 7.16010- 4 8.00000+ 0 1.00000+ 1 6.68802- 2 7.56770- 4 8.00000+ 0 1.10000+ 1 5.61858- 3 7.59410- 4 8.00000+ 0 1.30000+ 1 3.11852- 3 8.27180- 4 8.00000+ 0 1.40000+ 1 6.83737- 3 8.27470- 4 8.00000+ 0 1.60000+ 1 2.10585- 4 8.30160- 4 1.00000+ 1 1.00000+ 1 5.77499- 2 7.97530- 4 1.00000+ 1 1.10000+ 1 1.98084- 1 8.00170- 4 1.00000+ 1 1.30000+ 1 6.92466- 2 8.67940- 4 1.00000+ 1 1.40000+ 1 1.31715- 1 8.68230- 4 1.00000+ 1 1.60000+ 1 2.26721- 3 8.70920- 4 1.10000+ 1 1.10000+ 1 5.52451- 3 8.02810- 4 1.10000+ 1 1.30000+ 1 8.26916- 2 8.70580- 4 1.10000+ 1 1.40000+ 1 1.22043- 2 8.70870- 4 1.10000+ 1 1.60000+ 1 1.70255- 4 8.73560- 4 1.30000+ 1 1.30000+ 1 5.84943- 2 9.38350- 4 1.30000+ 1 1.40000+ 1 2.65016- 1 9.38640- 4 1.30000+ 1 1.60000+ 1 1.12427- 4 9.41330- 4 1.40000+ 1 1.40000+ 1 1.20386- 2 9.38930- 4 1.40000+ 1 1.60000+ 1 2.19538- 4 9.41620- 4 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.33818- 3 8.16230- 4 1.00000+ 1 8.20307- 6 8.56990- 4 1.10000+ 1 7.94827- 6 8.59630- 4 1.30000+ 1 3.70919- 4 9.27400- 4 1.40000+ 1 3.97209- 3 9.27690- 4 1.60000+ 1 1.06190- 4 9.30380- 4 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.73446- 3 6.94970- 4 8.00000+ 0 1.00000+ 1 2.60360- 3 7.35730- 4 8.00000+ 0 1.10000+ 1 6.94080- 2 7.38370- 4 8.00000+ 0 1.30000+ 1 4.66601- 3 8.06140- 4 8.00000+ 0 1.40000+ 1 5.73035- 3 8.06430- 4 8.00000+ 0 1.60000+ 1 2.17322- 4 8.09120- 4 1.00000+ 1 1.00000+ 1 9.75756- 4 7.76490- 4 1.00000+ 1 1.10000+ 1 1.05475- 1 7.79130- 4 1.00000+ 1 1.30000+ 1 4.55055- 3 8.46900- 4 1.00000+ 1 1.40000+ 1 4.33586- 2 8.47190- 4 1.00000+ 1 1.60000+ 1 7.98344- 5 8.49880- 4 1.10000+ 1 1.10000+ 1 1.54845- 1 7.81770- 4 1.10000+ 1 1.30000+ 1 1.01637- 1 8.49540- 4 1.10000+ 1 1.40000+ 1 1.52475- 1 8.49830- 4 1.10000+ 1 1.60000+ 1 2.34172- 3 8.52520- 4 1.30000+ 1 1.30000+ 1 9.71767- 3 9.17310- 4 1.30000+ 1 1.40000+ 1 1.96561- 1 9.17600- 4 1.30000+ 1 1.60000+ 1 1.50793- 4 9.20290- 4 1.40000+ 1 1.40000+ 1 1.32479- 1 9.17890- 4 1.40000+ 1 1.60000+ 1 1.90728- 4 9.20580- 4 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 8.17583- 6 4.07600- 5 1.10000+ 1 2.00565- 5 4.34000- 5 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 7.90941- 2 3.06700- 5 1.00000+ 1 1.40000+ 1 1.74485- 1 3.09600- 5 1.00000+ 1 1.60000+ 1 1.88508- 2 3.36500- 5 1.10000+ 1 1.30000+ 1 2.48773- 1 3.33100- 5 1.10000+ 1 1.40000+ 1 3.08941- 1 3.36000- 5 1.10000+ 1 1.60000+ 1 3.49061- 2 3.62900- 5 1.30000+ 1 1.30000+ 1 3.64835- 3 1.01080- 4 1.30000+ 1 1.40000+ 1 5.39118- 2 1.01370- 4 1.30000+ 1 1.60000+ 1 1.58988- 2 1.04060- 4 1.40000+ 1 1.40000+ 1 2.70922- 2 1.01660- 4 1.40000+ 1 1.60000+ 1 3.43707- 2 1.04350- 4 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.91500- 5 7.04100- 5 1.60000+ 1 2.33800- 6 7.33900- 5 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.53632- 1 6.03200- 5 1.30000+ 1 1.40000+ 1 7.98786- 1 6.06100- 5 1.30000+ 1 1.60000+ 1 1.91501- 2 6.33000- 5 1.40000+ 1 1.40000+ 1 2.43355- 2 6.09000- 5 1.40000+ 1 1.60000+ 1 4.07449- 3 6.35900- 5 1 29000 0 7 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74600- 6 6.77700- 5 1.40000+ 1 1.59670- 5 6.80600- 5 1.60000+ 1 9.55071- 7 7.07500- 5 1 29000 0 9 6.35460+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.35524- 2 5.76800- 5 1.30000+ 1 1.40000+ 1 5.54813- 1 5.79700- 5 1.30000+ 1 1.60000+ 1 4.32518- 3 6.06600- 5 1.40000+ 1 1.40000+ 1 3.96490- 1 5.82600- 5 1.40000+ 1 1.60000+ 1 2.08001- 2 6.09500- 5 1 30000 0 0 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1 30000 0 0 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.62240- 3 3.00000+ 0 1.18440- 3 5.00000+ 0 1.05050- 3 6.00000+ 0 1.02600- 3 8.00000+ 0 1.37430- 4 1.00000+ 1 9.37400- 5 1.10000+ 1 9.05900- 5 1.30000+ 1 1.68500- 5 1.40000+ 1 1.64600- 5 1.60000+ 1 8.61000- 6 1 30000 0 0 6.53800+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23420- 2 3.00000+ 0 2.38770- 3 5.00000+ 0 2.37730- 3 6.00000+ 0 2.28530- 3 8.00000+ 0 5.31680- 4 1.00000+ 1 4.82310- 4 1.10000+ 1 4.64630- 4 1.30000+ 1 3.28830- 4 1.40000+ 1 3.24630- 4 1.60000+ 1 4.16900- 5 1 30000 0 0 6.53800+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.65450-10 3.00000+ 0 1.18780- 9 5.00000+ 0 1.02640- 9 6.00000+ 0 1.04460- 9 8.00000+ 0 3.56580- 9 1.00000+ 1 3.67550- 9 1.10000+ 1 3.73030- 9 1.30000+ 1 4.47560- 9 1.40000+ 1 4.51030- 9 1.60000+ 1 1.39440- 8 1 30000 0 0 6.53800+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.46650- 7 3.00000+ 0 5.49400- 9 5.00000+ 0 7.14980- 9 6.00000+ 0 7.00640- 9 8.00000+ 0 3.14430-11 1.00000+ 1 1.09700-10 1.10000+ 1 1.01270-10 1 30000 0 0 6.53800+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.13220- 7 3.00000+ 0 9.49630- 6 5.00000+ 0 6.65200- 7 6.00000+ 0 6.77430- 7 8.00000+ 0 4.75790- 6 1.00000+ 1 3.77030- 6 1.10000+ 1 3.61870- 6 1 30000 0 0 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.80660- 5 3.00000+ 0 7.23480- 5 5.00000+ 0 4.98579- 5 6.00000+ 0 4.93269- 5 8.00000+ 0 4.51779- 5 1.00000+ 1 3.29445- 5 1.10000+ 1 3.26991- 5 1.30000+ 1 1.68500- 5 1.40000+ 1 1.64600- 5 1.60000+ 1 8.61000- 6 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.80132- 1 3.00000+ 0 1.05090- 2 5.00000+ 0 1.08624- 2 6.00000+ 0 1.02674- 2 8.00000+ 0 5.94232- 5 1.00000+ 1 3.26841- 5 1.10000+ 1 2.85414- 5 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.06321- 3 3.00000+ 0 1.02616- 5 5.00000+ 0 1.06257- 5 6.00000+ 0 9.81007- 6 8.00000+ 0 3.48233- 9 1.00000+ 1 2.54502- 9 1.10000+ 1 2.12906- 9 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.77063+ 0 3.00000+ 0 3.43641+ 0 5.00000+ 0 2.04035+ 0 6.00000+ 0 2.00997+ 0 8.00000+ 0 1.84673+ 0 1.00000+ 1 9.99967- 1 1.10000+ 1 9.99971- 1 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.48112- 3 3.00000+ 0 1.10179- 3 5.00000+ 0 9.90016- 4 6.00000+ 0 9.66863- 4 8.00000+ 0 9.22486- 5 1.00000+ 1 6.07930- 5 1.10000+ 1 5.78887- 5 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.40620- 1 8.57190- 3 6.00000+ 0 2.73809- 1 8.59640- 3 1.00000+ 1 1.73890- 2 9.52866- 3 1.10000+ 1 3.39969- 2 9.53181- 3 1.30000+ 1 2.35079- 5 9.60555- 3 1.40000+ 1 3.39889- 5 9.60594- 3 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.67202- 2 7.25360- 3 3.00000+ 0 5.00000+ 0 4.08263- 2 7.38750- 3 3.00000+ 0 6.00000+ 0 7.19520- 2 7.41200- 3 3.00000+ 0 8.00000+ 0 9.96991- 3 8.30057- 3 3.00000+ 0 1.00000+ 1 5.38738- 3 8.34426- 3 3.00000+ 0 1.10000+ 1 9.40412- 3 8.34741- 3 3.00000+ 0 1.30000+ 1 2.96221- 4 8.42115- 3 3.00000+ 0 1.40000+ 1 3.99711- 4 8.42154- 3 3.00000+ 0 1.60000+ 1 7.63732- 4 8.42939- 3 5.00000+ 0 5.00000+ 0 7.18740- 3 7.52140- 3 5.00000+ 0 6.00000+ 0 1.69423- 1 7.54590- 3 5.00000+ 0 8.00000+ 0 4.68792- 3 8.43447- 3 5.00000+ 0 1.00000+ 1 1.77372- 3 8.47816- 3 5.00000+ 0 1.10000+ 1 1.90649- 2 8.48131- 3 5.00000+ 0 1.30000+ 1 4.08651- 4 8.55505- 3 5.00000+ 0 1.40000+ 1 1.50252- 3 8.55544- 3 5.00000+ 0 1.60000+ 1 3.51539- 4 8.56329- 3 6.00000+ 0 6.00000+ 0 9.33923- 2 7.57040- 3 6.00000+ 0 8.00000+ 0 8.29767- 3 8.45897- 3 6.00000+ 0 1.00000+ 1 1.90934- 2 8.50266- 3 6.00000+ 0 1.10000+ 1 2.13838- 2 8.50581- 3 6.00000+ 0 1.30000+ 1 1.86474- 3 8.57955- 3 6.00000+ 0 1.40000+ 1 1.81482- 3 8.57994- 3 6.00000+ 0 1.60000+ 1 6.22793- 4 8.58779- 3 8.00000+ 0 8.00000+ 0 7.23926- 4 9.34754- 3 8.00000+ 0 1.00000+ 1 6.75507- 4 9.39123- 3 8.00000+ 0 1.10000+ 1 1.18265- 3 9.39438- 3 8.00000+ 0 1.30000+ 1 3.48394- 5 9.46812- 3 8.00000+ 0 1.40000+ 1 4.64528- 5 9.46851- 3 8.00000+ 0 1.60000+ 1 1.10321- 4 9.47636- 3 1.00000+ 1 1.00000+ 1 1.17498- 4 9.43492- 3 1.00000+ 1 1.10000+ 1 2.41974- 3 9.43807- 3 1.00000+ 1 1.30000+ 1 3.98312- 5 9.51181- 3 1.00000+ 1 1.40000+ 1 1.53346- 4 9.51220- 3 1.00000+ 1 1.60000+ 1 5.17798- 5 9.52005- 3 1.10000+ 1 1.10000+ 1 1.45467- 3 9.44122- 3 1.10000+ 1 1.30000+ 1 2.05688- 4 9.51496- 3 1.10000+ 1 1.40000+ 1 1.95088- 4 9.51535- 3 1.10000+ 1 1.60000+ 1 9.75440- 5 9.52320- 3 1.30000+ 1 1.40000+ 1 1.34903- 5 9.58909- 3 1.30000+ 1 1.60000+ 1 2.24862- 6 9.59694- 3 1.40000+ 1 1.40000+ 1 5.37849- 6 9.58948- 3 1.40000+ 1 1.60000+ 1 5.37849- 6 9.59733- 3 1.60000+ 1 1.60000+ 1 3.56899- 6 9.60518- 3 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.74001- 5 1.33900- 4 6.00000+ 0 8.30426- 5 1.58400- 4 1.00000+ 1 7.38615- 4 1.09066- 3 1.10000+ 1 1.17501- 3 1.09381- 3 1.30000+ 1 2.89562- 6 1.16755- 3 1.40000+ 1 3.91643- 6 1.16794- 3 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 4.72680- 2 4.01600- 5 5.00000+ 0 1.10000+ 1 6.80998- 2 4.33100- 5 5.00000+ 0 1.30000+ 1 4.63817- 2 1.17050- 4 5.00000+ 0 1.40000+ 1 7.44682- 2 1.17440- 4 5.00000+ 0 1.60000+ 1 4.45393- 3 1.25290- 4 6.00000+ 0 8.00000+ 0 9.85971- 2 2.09700- 5 6.00000+ 0 1.00000+ 1 5.79122- 2 6.46600- 5 6.00000+ 0 1.10000+ 1 1.23579- 1 6.78100- 5 6.00000+ 0 1.30000+ 1 1.16279- 1 1.41550- 4 6.00000+ 0 1.40000+ 1 1.65355- 1 1.41940- 4 6.00000+ 0 1.60000+ 1 7.83086- 3 1.49790- 4 8.00000+ 0 8.00000+ 0 1.04028- 2 9.09540- 4 8.00000+ 0 1.00000+ 1 1.90072- 2 9.53230- 4 8.00000+ 0 1.10000+ 1 3.68897- 2 9.56380- 4 8.00000+ 0 1.30000+ 1 2.10136- 2 1.03012- 3 8.00000+ 0 1.40000+ 1 3.07792- 2 1.03051- 3 8.00000+ 0 1.60000+ 1 1.42819- 3 1.03836- 3 1.00000+ 1 1.00000+ 1 2.57527- 4 9.96920- 4 1.00000+ 1 1.10000+ 1 6.47584- 4 1.00007- 3 1.00000+ 1 1.30000+ 1 3.24333- 4 1.07381- 3 1.00000+ 1 1.40000+ 1 6.39833- 3 1.07420- 3 1.00000+ 1 1.60000+ 1 1.16589- 3 1.08205- 3 1.10000+ 1 1.10000+ 1 9.60655- 4 1.00322- 3 1.10000+ 1 1.30000+ 1 6.84507- 3 1.07696- 3 1.10000+ 1 1.40000+ 1 4.87849- 3 1.07735- 3 1.10000+ 1 1.60000+ 1 2.36888- 3 1.08520- 3 1.30000+ 1 1.30000+ 1 6.36840- 4 1.15070- 3 1.30000+ 1 1.40000+ 1 3.17905- 2 1.15109- 3 1.30000+ 1 1.60000+ 1 1.20887- 3 1.15894- 3 1.40000+ 1 1.40000+ 1 8.89946- 3 1.15148- 3 1.40000+ 1 1.60000+ 1 1.80261- 3 1.15933- 3 1.60000+ 1 1.60000+ 1 4.78573- 5 1.16718- 3 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.48668-10 2.45000- 5 8.00000+ 0 4.61199- 3 9.13070- 4 1.10000+ 1 1.80819- 5 9.59910- 4 1.30000+ 1 5.87348- 3 1.03365- 3 1.60000+ 1 1.30420- 4 1.04189- 3 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.91549- 2 1.58900- 5 8.00000+ 0 8.00000+ 0 3.29825- 3 7.75640- 4 8.00000+ 0 1.00000+ 1 6.14430- 2 8.19330- 4 8.00000+ 0 1.10000+ 1 5.22423- 3 8.22480- 4 8.00000+ 0 1.30000+ 1 2.91704- 3 8.96220- 4 8.00000+ 0 1.40000+ 1 6.72092- 3 8.96610- 4 8.00000+ 0 1.60000+ 1 4.37367- 4 9.04460- 4 1.00000+ 1 1.00000+ 1 5.36229- 2 8.63020- 4 1.00000+ 1 1.10000+ 1 1.83350- 1 8.66170- 4 1.00000+ 1 1.30000+ 1 6.88269- 2 9.39910- 4 1.00000+ 1 1.40000+ 1 1.30427- 1 9.40300- 4 1.00000+ 1 1.60000+ 1 4.72271- 3 9.48150- 4 1.10000+ 1 1.10000+ 1 5.11146- 3 8.69320- 4 1.10000+ 1 1.30000+ 1 8.27844- 2 9.43060- 4 1.10000+ 1 1.40000+ 1 1.21167- 2 9.43450- 4 1.10000+ 1 1.60000+ 1 3.57096- 4 9.51300- 4 1.30000+ 1 1.30000+ 1 6.07200- 2 1.01680- 3 1.30000+ 1 1.40000+ 1 2.74684- 1 1.01719- 3 1.30000+ 1 1.60000+ 1 2.34621- 4 1.02504- 3 1.40000+ 1 1.40000+ 1 1.27114- 2 1.01758- 3 1.40000+ 1 1.60000+ 1 4.85515- 4 1.02543- 3 1.60000+ 1 1.60000+ 1 1.60500- 5 1.03328- 3 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.34963- 3 8.88570- 4 1.00000+ 1 9.21506- 6 9.32260- 4 1.10000+ 1 8.90995- 6 9.35410- 4 1.30000+ 1 4.96303- 4 1.00915- 3 1.40000+ 1 5.25973- 3 1.00954- 3 1.60000+ 1 1.13281- 4 1.01739- 3 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.41111- 3 7.51140- 4 8.00000+ 0 1.00000+ 1 2.40931- 3 7.94830- 4 8.00000+ 0 1.10000+ 1 6.38932- 2 7.97980- 4 8.00000+ 0 1.30000+ 1 4.57611- 3 8.71720- 4 8.00000+ 0 1.40000+ 1 5.48252- 3 8.72110- 4 8.00000+ 0 1.60000+ 1 4.49251- 4 8.79960- 4 1.00000+ 1 1.00000+ 1 9.06422- 4 8.38520- 4 1.00000+ 1 1.10000+ 1 9.79730- 2 8.41670- 4 1.00000+ 1 1.30000+ 1 4.58386- 3 9.15410- 4 1.00000+ 1 1.40000+ 1 4.34646- 2 9.15800- 4 1.00000+ 1 1.60000+ 1 1.62995- 4 9.23650- 4 1.10000+ 1 1.10000+ 1 1.43650- 1 8.44820- 4 1.10000+ 1 1.30000+ 1 1.01080- 1 9.18560- 4 1.10000+ 1 1.40000+ 1 1.52200- 1 9.18950- 4 1.10000+ 1 1.60000+ 1 4.88211- 3 9.26800- 4 1.30000+ 1 1.30000+ 1 1.03408- 2 9.92300- 4 1.30000+ 1 1.40000+ 1 2.08677- 1 9.92690- 4 1.30000+ 1 1.60000+ 1 3.33954- 4 1.00054- 3 1.40000+ 1 1.40000+ 1 1.40861- 1 9.93080- 4 1.40000+ 1 1.60000+ 1 4.09504- 4 1.00093- 3 1.60000+ 1 1.60000+ 1 1.59031- 5 1.00878- 3 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.74547- 6 4.36900- 5 1.10000+ 1 2.44108- 5 4.68400- 5 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 7.17935- 2 2.68400- 5 1.00000+ 1 1.40000+ 1 1.47584- 1 2.72300- 5 1.00000+ 1 1.60000+ 1 4.57220- 2 3.50800- 5 1.10000+ 1 1.30000+ 1 2.16658- 1 2.99900- 5 1.10000+ 1 1.40000+ 1 2.80618- 1 3.03800- 5 1.10000+ 1 1.60000+ 1 8.43840- 2 3.82300- 5 1.30000+ 1 1.30000+ 1 4.12596- 3 1.03730- 4 1.30000+ 1 1.40000+ 1 4.48130- 2 1.04120- 4 1.30000+ 1 1.60000+ 1 3.32219- 2 1.11970- 4 1.40000+ 1 1.40000+ 1 1.80365- 2 1.04510- 4 1.40000+ 1 1.60000+ 1 5.22844- 2 1.12360- 4 1.60000+ 1 1.60000+ 1 7.24709- 4 1.20210- 4 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.88079- 5 7.68900- 5 1.60000+ 1 3.87618- 6 8.51300- 5 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.49923- 1 6.00400- 5 1.30000+ 1 1.40000+ 1 7.74954- 1 6.04300- 5 1.30000+ 1 1.60000+ 1 4.38691- 2 6.82800- 5 1.40000+ 1 1.40000+ 1 2.27158- 2 6.08200- 5 1.40000+ 1 1.60000+ 1 8.49506- 3 6.86700- 5 1.60000+ 1 1.60000+ 1 1.08770- 5 7.65200- 5 1 30000 0 7 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.62310- 6 7.37400- 5 1.40000+ 1 2.40950- 5 7.41300- 5 1.60000+ 1 1.82330- 6 8.19800- 5 1 30000 0 9 6.53800+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.36088- 2 5.68900- 5 1.30000+ 1 1.40000+ 1 5.37047- 1 5.72800- 5 1.30000+ 1 1.60000+ 1 9.89369- 3 6.51300- 5 1.40000+ 1 1.40000+ 1 3.81722- 1 5.76700- 5 1.40000+ 1 1.60000+ 1 4.76979- 2 6.55200- 5 1.60000+ 1 1.60000+ 1 1.48540- 6 7.33700- 5 1 31000 0 0 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 3.30000- 1 1.90000+ 1 6.70000- 1 1 31000 0 0 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03310- 2 3.00000+ 0 1.29070- 3 5.00000+ 0 1.15040- 3 6.00000+ 0 1.12200- 3 8.00000+ 0 1.57750- 4 1.00000+ 1 1.11010- 4 1.10000+ 1 1.07280- 4 1.30000+ 1 2.73700- 5 1.40000+ 1 2.68700- 5 1.60000+ 1 1.16900- 5 1.80000+ 1 5.00000- 6 1.90000+ 1 4.88000- 6 1 31000 0 0 6.97200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32220- 2 3.00000+ 0 2.57790- 3 5.00000+ 0 2.56850- 3 6.00000+ 0 2.46250- 3 8.00000+ 0 5.82900- 4 1.00000+ 1 5.32720- 4 1.10000+ 1 5.12190- 4 1.30000+ 1 3.82070- 4 1.40000+ 1 3.77320- 4 1.60000+ 1 5.97300- 5 1.80000+ 1 2.74800- 5 1.90000+ 1 2.59100- 5 1 31000 0 0 6.97200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.56450-10 3.00000+ 0 1.14420- 9 5.00000+ 0 9.87020-10 6.00000+ 0 1.00560- 9 8.00000+ 0 3.41060- 9 1.00000+ 1 3.49590- 9 1.10000+ 1 3.55030- 9 1.30000+ 1 4.03920- 9 1.40000+ 1 4.06630- 9 1.60000+ 1 1.19210- 8 1.80000+ 1 1.77400- 8 1.90000+ 1 1.81610- 8 1 31000 0 0 6.97200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.63840- 7 3.00000+ 0 6.64890- 9 5.00000+ 0 9.11830- 9 6.00000+ 0 8.93490- 9 8.00000+ 0 3.69570-11 1.00000+ 1 1.28640-10 1.10000+ 1 1.18000-10 1.30000+ 1 7.64460-14 1 31000 0 0 6.97200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.31930- 7 3.00000+ 0 8.69970- 6 5.00000+ 0 7.46030- 7 6.00000+ 0 7.52560- 7 8.00000+ 0 4.45700- 6 1.00000+ 1 3.92590- 6 1.10000+ 1 3.71490- 6 1.30000+ 1 1.29660- 8 1 31000 0 0 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.95174- 5 3.00000+ 0 9.21847- 5 5.00000+ 0 6.23345- 5 6.00000+ 0 6.64171- 5 8.00000+ 0 5.85229- 5 1.00000+ 1 3.98540- 5 1.10000+ 1 4.55762- 5 1.30000+ 1 1.56691- 5 1.40000+ 1 2.68700- 5 1.60000+ 1 1.16900- 5 1.80000+ 1 5.00000- 6 1.90000+ 1 4.88000- 6 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.13321- 1 3.00000+ 0 1.19851- 2 5.00000+ 0 1.25450- 2 6.00000+ 0 1.18408- 2 8.00000+ 0 7.71864- 5 1.00000+ 1 4.77458- 5 1.10000+ 1 4.19019- 5 1.30000+ 1 6.07457- 9 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.64927- 3 3.00000+ 0 1.27845- 5 5.00000+ 0 1.34359- 5 6.00000+ 0 1.23619- 5 8.00000+ 0 5.17171- 9 1.00000+ 1 4.08783- 9 1.10000+ 1 3.41765- 9 1.30000+ 1 1.36004-13 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.30151+ 0 3.00000+ 0 4.84384+ 0 5.00000+ 0 3.43851+ 0 6.00000+ 0 2.94334+ 0 8.00000+ 0 2.77514+ 0 1.00000+ 1 2.10805+ 0 1.10000+ 1 1.58132+ 0 1.30000+ 1 1.00000+ 0 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.58221- 3 3.00000+ 0 1.18573- 3 5.00000+ 0 1.07463- 3 6.00000+ 0 1.04322- 3 8.00000+ 0 9.92220- 5 1.00000+ 1 7.11520- 5 1.10000+ 1 6.17004- 5 1.30000+ 1 1.17009- 5 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.49780- 1 9.18060- 3 6.00000+ 0 2.91200- 1 9.20900- 3 1.00000+ 1 1.89300- 2 1.02200- 2 1.10000+ 1 3.69890- 2 1.02237- 2 1.30000+ 1 3.00890- 5 1.03036- 2 1.40000+ 1 4.34600- 5 1.03041- 2 1.80000+ 1 1.07990- 4 1.03260- 2 1.90000+ 1 2.05980- 4 1.03261- 2 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.45979- 2 7.74960- 3 3.00000+ 0 5.00000+ 0 3.85221- 2 7.88990- 3 3.00000+ 0 6.00000+ 0 6.72279- 2 7.91830- 3 3.00000+ 0 8.00000+ 0 9.53455- 3 8.88255- 3 3.00000+ 0 1.00000+ 1 5.20323- 3 8.92929- 3 3.00000+ 0 1.10000+ 1 8.99641- 3 8.93302- 3 3.00000+ 0 1.30000+ 1 3.08691- 4 9.01293- 3 3.00000+ 0 1.40000+ 1 4.13770- 4 9.01343- 3 3.00000+ 0 1.60000+ 1 8.40701- 4 9.02861- 3 3.00000+ 0 1.80000+ 1 4.92582- 5 9.03530- 3 3.00000+ 0 1.90000+ 1 8.53860- 5 9.03542- 3 5.00000+ 0 5.00000+ 0 6.72597- 3 8.03020- 3 5.00000+ 0 6.00000+ 0 1.57964- 1 8.05860- 3 5.00000+ 0 8.00000+ 0 4.48097- 3 9.02285- 3 5.00000+ 0 1.00000+ 1 1.69620- 3 9.06959- 3 5.00000+ 0 1.10000+ 1 1.81510- 2 9.07332- 3 5.00000+ 0 1.30000+ 1 4.23630- 4 9.15323- 3 5.00000+ 0 1.40000+ 1 1.55499- 3 9.15373- 3 5.00000+ 0 1.60000+ 1 3.87498- 4 9.16891- 3 5.00000+ 0 1.80000+ 1 1.64196- 5 9.17560- 3 5.00000+ 0 1.90000+ 1 1.69118- 4 9.17572- 3 6.00000+ 0 6.00000+ 0 8.67940- 2 8.08700- 3 6.00000+ 0 8.00000+ 0 7.85312- 3 9.05125- 3 6.00000+ 0 1.00000+ 1 1.81636- 2 9.09799- 3 6.00000+ 0 1.10000+ 1 2.03022- 2 9.10172- 3 6.00000+ 0 1.30000+ 1 1.92595- 3 9.18163- 3 6.00000+ 0 1.40000+ 1 1.87335- 3 9.18213- 3 6.00000+ 0 1.60000+ 1 6.78086- 4 9.19731- 3 6.00000+ 0 1.80000+ 1 1.69112- 4 9.20400- 3 6.00000+ 0 1.90000+ 1 1.90457- 4 9.20412- 3 8.00000+ 0 8.00000+ 0 6.95906- 4 1.00155- 2 8.00000+ 0 1.00000+ 1 6.53621- 4 1.00622- 2 8.00000+ 0 1.10000+ 1 1.13292- 3 1.00660- 2 8.00000+ 0 1.30000+ 1 3.52373- 5 1.01459- 2 8.00000+ 0 1.40000+ 1 4.75700- 5 1.01464- 2 8.00000+ 0 1.60000+ 1 1.23327- 4 1.01616- 2 8.00000+ 0 1.80000+ 1 7.04734- 6 1.01682- 2 8.00000+ 0 1.90000+ 1 1.05709- 5 1.01684- 2 1.00000+ 1 1.00000+ 1 1.12059- 4 1.01090- 2 1.00000+ 1 1.10000+ 1 2.32068- 3 1.01127- 2 1.00000+ 1 1.30000+ 1 4.15702- 5 1.01926- 2 1.00000+ 1 1.40000+ 1 1.60858- 4 1.01931- 2 1.00000+ 1 1.60000+ 1 5.78341- 5 1.02083- 2 1.00000+ 1 1.80000+ 1 1.80739- 6 1.02150- 2 1.00000+ 1 1.90000+ 1 2.16884- 5 1.02151- 2 1.10000+ 1 1.10000+ 1 1.38171- 3 1.01164- 2 1.10000+ 1 1.30000+ 1 2.11823- 4 1.01963- 2 1.10000+ 1 1.40000+ 1 2.02285- 4 1.01968- 2 1.10000+ 1 1.60000+ 1 1.06865- 4 1.02120- 2 1.10000+ 1 1.80000+ 1 2.28996- 5 1.02187- 2 1.10000+ 1 1.90000+ 1 2.67161- 5 1.02188- 2 1.30000+ 1 1.40000+ 1 1.38924- 5 1.02768- 2 1.30000+ 1 1.60000+ 1 3.47307- 6 1.02919- 2 1.30000+ 1 1.90000+ 1 1.73653- 6 1.02987- 2 1.40000+ 1 1.40000+ 1 4.62367- 6 1.02773- 2 1.40000+ 1 1.60000+ 1 4.62367- 6 1.02924- 2 1.40000+ 1 1.80000+ 1 2.31183- 6 1.02991- 2 1.40000+ 1 1.90000+ 1 2.31183- 6 1.02992- 2 1.60000+ 1 1.60000+ 1 4.92585- 6 1.03076- 2 1.60000+ 1 1.90000+ 1 1.64195- 6 1.03144- 2 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60641- 5 1.40300- 4 6.00000+ 0 8.07564- 5 1.68700- 4 1.00000+ 1 7.96764- 4 1.17969- 3 1.10000+ 1 1.28631- 3 1.18342- 3 1.30000+ 1 3.25052- 6 1.26333- 3 1.40000+ 1 4.51872- 6 1.26383- 3 1.80000+ 1 4.92423- 6 1.28570- 3 1.90000+ 1 8.79855- 6 1.28582- 3 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 5.29575- 2 2.92900- 5 5.00000+ 0 1.10000+ 1 7.55439- 2 3.30200- 5 5.00000+ 0 1.30000+ 1 5.20910- 2 1.12930- 4 5.00000+ 0 1.40000+ 1 8.36099- 2 1.13430- 4 5.00000+ 0 1.60000+ 1 5.72834- 3 1.28610- 4 5.00000+ 0 1.80000+ 1 4.37764- 4 1.35300- 4 5.00000+ 0 1.90000+ 1 6.13082- 4 1.35420- 4 6.00000+ 0 1.00000+ 1 6.50676- 2 5.76900- 5 6.00000+ 0 1.10000+ 1 1.38564- 1 6.14200- 5 6.00000+ 0 1.30000+ 1 1.32628- 1 1.41330- 4 6.00000+ 0 1.40000+ 1 1.88749- 1 1.41830- 4 6.00000+ 0 1.60000+ 1 1.00441- 2 1.57010- 4 6.00000+ 0 1.80000+ 1 5.23006- 4 1.63700- 4 6.00000+ 0 1.90000+ 1 1.13803- 3 1.63820- 4 8.00000+ 0 8.00000+ 0 9.82353- 3 9.75200- 4 8.00000+ 0 1.00000+ 1 1.81042- 2 1.02194- 3 8.00000+ 0 1.10000+ 1 3.50905- 2 1.02567- 3 8.00000+ 0 1.30000+ 1 2.12129- 2 1.10558- 3 8.00000+ 0 1.40000+ 1 3.10622- 2 1.10608- 3 8.00000+ 0 1.60000+ 1 1.55445- 3 1.12126- 3 8.00000+ 0 1.80000+ 1 1.71192- 4 1.12795- 3 8.00000+ 0 1.90000+ 1 3.31623- 4 1.12807- 3 1.00000+ 1 1.00000+ 1 2.31240- 4 1.06868- 3 1.00000+ 1 1.10000+ 1 6.35426- 4 1.07241- 3 1.00000+ 1 1.30000+ 1 3.27444- 4 1.15232- 3 1.00000+ 1 1.40000+ 1 6.41829- 3 1.15282- 3 1.00000+ 1 1.60000+ 1 1.24753- 3 1.16800- 3 1.00000+ 1 1.80000+ 1 3.88624- 6 1.17469- 3 1.00000+ 1 1.90000+ 1 5.82952- 6 1.17481- 3 1.10000+ 1 1.10000+ 1 9.18776- 4 1.07614- 3 1.10000+ 1 1.30000+ 1 6.93340- 3 1.15605- 3 1.10000+ 1 1.40000+ 1 4.93408- 3 1.15655- 3 1.10000+ 1 1.60000+ 1 2.58799- 3 1.17173- 3 1.10000+ 1 1.80000+ 1 6.23605- 6 1.17842- 3 1.10000+ 1 1.90000+ 1 1.55904- 5 1.17854- 3 1.30000+ 1 1.30000+ 1 7.04343- 4 1.23596- 3 1.30000+ 1 1.40000+ 1 3.44989- 2 1.23646- 3 1.30000+ 1 1.60000+ 1 1.42136- 3 1.25164- 3 1.30000+ 1 1.80000+ 1 3.91282- 6 1.25833- 3 1.30000+ 1 1.90000+ 1 6.06532- 5 1.25845- 3 1.40000+ 1 1.40000+ 1 9.51777- 3 1.23696- 3 1.40000+ 1 1.60000+ 1 2.08258- 3 1.25214- 3 1.40000+ 1 1.80000+ 1 5.86905- 5 1.25883- 3 1.40000+ 1 1.90000+ 1 4.40177- 5 1.25895- 3 1.60000+ 1 1.60000+ 1 6.06529- 5 1.26732- 3 1.60000+ 1 1.80000+ 1 1.17390- 5 1.27401- 3 1.60000+ 1 1.90000+ 1 2.34777- 5 1.27413- 3 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.85884-10 2.84000- 5 8.00000+ 0 4.43283- 3 9.92650- 4 1.10000+ 1 1.96281- 5 1.04312- 3 1.30000+ 1 7.53404- 3 1.12303- 3 1.60000+ 1 1.37591- 4 1.13871- 3 1.90000+ 1 1.43451- 8 1.14552- 3 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.11572- 2 1.67100- 5 6.00000+ 0 1.80000+ 1 7.57044- 3 2.34000- 5 6.00000+ 0 1.90000+ 1 3.13849- 3 2.35200- 5 8.00000+ 0 8.00000+ 0 3.00867- 3 8.34900- 4 8.00000+ 0 1.00000+ 1 5.67226- 2 8.81640- 4 8.00000+ 0 1.10000+ 1 4.88239- 3 8.85370- 4 8.00000+ 0 1.30000+ 1 2.73488- 3 9.65280- 4 8.00000+ 0 1.40000+ 1 6.56503- 3 9.65780- 4 8.00000+ 0 1.60000+ 1 4.57621- 4 9.80960- 4 8.00000+ 0 1.80000+ 1 4.35992- 4 9.87650- 4 8.00000+ 0 1.90000+ 1 4.32382- 5 9.87770- 4 1.00000+ 1 1.00000+ 1 5.00844- 2 9.28380- 4 1.00000+ 1 1.10000+ 1 1.70741- 1 9.32110- 4 1.00000+ 1 1.30000+ 1 6.80965- 2 1.01202- 3 1.00000+ 1 1.40000+ 1 1.28493- 1 1.01252- 3 1.00000+ 1 1.60000+ 1 5.04804- 3 1.02770- 3 1.00000+ 1 1.80000+ 1 8.64766- 4 1.03439- 3 1.00000+ 1 1.90000+ 1 1.58542- 3 1.03451- 3 1.10000+ 1 1.10000+ 1 4.75256- 3 9.35840- 4 1.10000+ 1 1.30000+ 1 8.24038- 2 1.01575- 3 1.10000+ 1 1.40000+ 1 1.19591- 2 1.01625- 3 1.10000+ 1 1.60000+ 1 3.85531- 4 1.03143- 3 1.10000+ 1 1.80000+ 1 1.34030- 3 1.03812- 3 1.10000+ 1 1.90000+ 1 7.92691- 5 1.03824- 3 1.30000+ 1 1.30000+ 1 6.14695- 2 1.09566- 3 1.30000+ 1 1.40000+ 1 2.77498- 1 1.09616- 3 1.30000+ 1 1.60000+ 1 2.48619- 4 1.11134- 3 1.30000+ 1 1.80000+ 1 5.29668- 4 1.11803- 3 1.30000+ 1 1.90000+ 1 7.45859- 4 1.11815- 3 1.40000+ 1 1.40000+ 1 1.31733- 2 1.09666- 3 1.40000+ 1 1.60000+ 1 5.44082- 4 1.11184- 3 1.40000+ 1 1.80000+ 1 9.54843- 4 1.11853- 3 1.40000+ 1 1.90000+ 1 1.00895- 4 1.11865- 3 1.60000+ 1 1.60000+ 1 1.80161- 5 1.12702- 3 1.60000+ 1 1.80000+ 1 3.96350- 5 1.13371- 3 1.60000+ 1 1.90000+ 1 3.60322- 6 1.13383- 3 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.30092- 3 9.64250- 4 1.00000+ 1 1.00801- 5 1.01099- 3 1.10000+ 1 9.72506- 6 1.01472- 3 1.30000+ 1 6.45924- 4 1.09463- 3 1.40000+ 1 6.71294- 3 1.09513- 3 1.60000+ 1 1.19511- 4 1.11031- 3 1.80000+ 1 6.63504- 9 1.11700- 3 1.90000+ 1 6.24584- 9 1.11712- 3 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.12642- 3 8.06500- 4 8.00000+ 0 1.00000+ 1 2.23328- 3 8.53240- 4 8.00000+ 0 1.10000+ 1 5.90606- 2 8.56970- 4 8.00000+ 0 1.30000+ 1 4.46295- 3 9.36880- 4 8.00000+ 0 1.40000+ 1 5.23470- 3 9.37380- 4 8.00000+ 0 1.60000+ 1 4.75223- 4 9.52560- 4 8.00000+ 0 1.80000+ 1 1.78650- 5 9.59250- 4 8.00000+ 0 1.90000+ 1 4.57364- 4 9.59370- 4 1.00000+ 1 1.00000+ 1 8.39666- 4 8.99980- 4 1.00000+ 1 1.10000+ 1 9.14940- 2 9.03710- 4 1.00000+ 1 1.30000+ 1 4.58789- 3 9.83620- 4 1.00000+ 1 1.40000+ 1 4.32982- 2 9.84120- 4 1.00000+ 1 1.60000+ 1 1.75075- 4 9.99300- 4 1.00000+ 1 1.80000+ 1 1.42917- 5 1.00599- 3 1.00000+ 1 1.90000+ 1 7.21766- 4 1.00611- 3 1.10000+ 1 1.10000+ 1 1.33961- 1 9.07440- 4 1.10000+ 1 1.30000+ 1 1.00073- 1 9.87350- 4 1.10000+ 1 1.40000+ 1 1.51140- 1 9.87850- 4 1.10000+ 1 1.60000+ 1 5.22743- 3 1.00303- 3 1.10000+ 1 1.80000+ 1 8.43252- 4 1.00972- 3 1.10000+ 1 1.90000+ 1 2.29744- 3 1.00984- 3 1.30000+ 1 1.30000+ 1 1.08092- 2 1.06726- 3 1.30000+ 1 1.40000+ 1 2.17383- 1 1.06776- 3 1.30000+ 1 1.60000+ 1 3.75170- 4 1.08294- 3 1.30000+ 1 1.80000+ 1 4.28766- 5 1.08963- 3 1.30000+ 1 1.90000+ 1 7.61070- 4 1.08975- 3 1.40000+ 1 1.40000+ 1 1.46983- 1 1.06826- 3 1.40000+ 1 1.60000+ 1 4.53808- 4 1.08344- 3 1.40000+ 1 1.80000+ 1 3.85912- 4 1.09013- 3 1.40000+ 1 1.90000+ 1 1.20775- 3 1.09025- 3 1.60000+ 1 1.60000+ 1 1.78649- 5 1.09862- 3 1.60000+ 1 1.90000+ 1 3.93054- 5 1.10543- 3 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.11790- 5 4.67400- 5 1.10000+ 1 2.86411- 5 5.04700- 5 1.80000+ 1 5.87312- 7 1.52750- 4 1.90000+ 1 9.11763- 7 1.52870- 4 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 6.56603- 2 1.93700- 5 1.00000+ 1 1.40000+ 1 1.13065- 1 1.98700- 5 1.00000+ 1 1.60000+ 1 6.27744- 2 3.50500- 5 1.00000+ 1 1.80000+ 1 3.61775- 3 4.17400- 5 1.00000+ 1 1.90000+ 1 9.47375- 3 4.18600- 5 1.10000+ 1 1.30000+ 1 1.78973- 1 2.31000- 5 1.10000+ 1 1.40000+ 1 2.47560- 1 2.36000- 5 1.10000+ 1 1.60000+ 1 1.15105- 1 3.87800- 5 1.10000+ 1 1.80000+ 1 9.42309- 3 4.54700- 5 1.10000+ 1 1.90000+ 1 1.47304- 2 4.55900- 5 1.30000+ 1 1.30000+ 1 5.46870- 3 1.03010- 4 1.30000+ 1 1.40000+ 1 4.37354- 2 1.03510- 4 1.30000+ 1 1.60000+ 1 4.34554- 2 1.18690- 4 1.30000+ 1 1.80000+ 1 4.89002- 4 1.25380- 4 1.30000+ 1 1.90000+ 1 4.73753- 4 1.25500- 4 1.40000+ 1 1.40000+ 1 1.86055- 2 1.04010- 4 1.40000+ 1 1.60000+ 1 6.44490- 2 1.19190- 4 1.40000+ 1 1.80000+ 1 2.63131- 4 1.25880- 4 1.40000+ 1 1.90000+ 1 1.08666- 3 1.26000- 4 1.60000+ 1 1.60000+ 1 1.16667- 3 1.34370- 4 1.60000+ 1 1.80000+ 1 1.31257- 4 1.41060- 4 1.60000+ 1 1.90000+ 1 2.48483- 4 1.41180- 4 1.80000+ 1 1.90000+ 1 3.05241- 6 1.47870- 4 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.16940- 5 8.36400- 5 1.60000+ 1 6.04500- 6 9.93200- 5 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.47369- 1 5.62700- 5 1.30000+ 1 1.40000+ 1 7.46795- 1 5.67700- 5 1.30000+ 1 1.60000+ 1 5.26607- 2 7.19500- 5 1.30000+ 1 1.80000+ 1 5.62777- 3 7.86400- 5 1.30000+ 1 1.90000+ 1 8.23794- 3 7.87600- 5 1.40000+ 1 1.40000+ 1 1.99171- 2 5.72700- 5 1.40000+ 1 1.60000+ 1 8.79234- 3 7.24500- 5 1.40000+ 1 1.80000+ 1 9.37463- 3 7.91400- 5 1.40000+ 1 1.90000+ 1 8.55954- 4 7.92600- 5 1.60000+ 1 1.60000+ 1 2.77222- 5 8.76300- 5 1.60000+ 1 1.80000+ 1 2.34952- 4 9.43200- 5 1.60000+ 1 1.90000+ 1 1.94062- 5 9.44400- 5 1.80000+ 1 1.90000+ 1 3.95060- 5 1.01130- 4 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.77370- 6 7.99100- 5 1.40000+ 1 3.48040- 5 8.04100- 5 1.60000+ 1 3.32070- 6 9.55900- 5 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.38055- 2 5.25400- 5 1.30000+ 1 1.40000+ 1 5.13626- 1 5.30400- 5 1.30000+ 1 1.60000+ 1 1.19938- 2 6.82200- 5 1.30000+ 1 1.80000+ 1 6.97769- 4 7.49100- 5 1.30000+ 1 1.90000+ 1 7.42673- 3 7.50300- 5 1.40000+ 1 1.40000+ 1 3.66160- 1 5.35400- 5 1.40000+ 1 1.60000+ 1 5.73632- 2 6.87200- 5 1.40000+ 1 1.80000+ 1 5.01262- 3 7.54100- 5 1.40000+ 1 1.90000+ 1 1.35645- 2 7.55300- 5 1.60000+ 1 1.60000+ 1 1.02079- 5 8.39000- 5 1.60000+ 1 1.80000+ 1 1.09365- 5 9.05900- 5 1.60000+ 1 1.90000+ 1 2.63206- 4 9.07100- 5 1.80000+ 1 1.90000+ 1 2.33310- 5 9.74000- 5 1 31000 0 7 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 5.10640- 9 2.23700- 5 1.90000+ 1 9.68170-10 2.24900- 5 1 31000 0 9 6.97200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 5.30530- 1 1.06800- 5 1.60000+ 1 1.90000+ 1 3.25290- 1 1.08000- 5 1.80000+ 1 1.90000+ 1 1.44180- 1 1.74900- 5 1 32000 0 0 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 6.70000- 1 1.90000+ 1 1.33000+ 0 1 32000 0 0 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10670- 2 3.00000+ 0 1.40230- 3 5.00000+ 0 1.25540- 3 6.00000+ 0 1.22280- 3 8.00000+ 0 1.79250- 4 1.00000+ 1 1.29380- 4 1.10000+ 1 1.24980- 4 1.30000+ 1 3.88200- 5 1.40000+ 1 3.81900- 5 1.60000+ 1 1.47800- 5 1.80000+ 1 6.50000- 6 1.90000+ 1 6.29000- 6 1 32000 0 0 7.25900+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.41370- 2 3.00000+ 0 2.77640- 3 5.00000+ 0 2.76810- 3 6.00000+ 0 2.64650- 3 8.00000+ 0 6.38180- 4 1.00000+ 1 5.87320- 4 1.10000+ 1 5.63600- 4 1.30000+ 1 4.37550- 4 1.40000+ 1 4.32100- 4 1.60000+ 1 7.60700- 5 1.80000+ 1 4.21700- 5 1.90000+ 1 3.98800- 5 1 32000 0 0 7.25900+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.48030-10 3.00000+ 0 1.10330- 9 5.00000+ 0 9.50340-10 6.00000+ 0 9.69260-10 8.00000+ 0 3.26540- 9 1.00000+ 1 3.32870- 9 1.10000+ 1 3.38280- 9 1.30000+ 1 3.70440- 9 1.40000+ 1 3.72880- 9 1.60000+ 1 1.07310- 8 1.80000+ 1 1.46430- 8 1.90000+ 1 1.49950- 8 1 32000 0 0 7.25900+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.95330- 7 3.00000+ 0 8.04600- 9 5.00000+ 0 1.14250- 8 6.00000+ 0 1.11860- 8 8.00000+ 0 4.54730-11 1.00000+ 1 1.48390-10 1.10000+ 1 1.35130-10 1.30000+ 1 3.63030-13 1.40000+ 1 3.41350-13 1 32000 0 0 7.25900+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.50970- 7 3.00000+ 0 8.70320- 6 5.00000+ 0 8.30200- 7 6.00000+ 0 8.29020- 7 8.00000+ 0 4.13430- 6 1.00000+ 1 3.99070- 6 1.10000+ 1 3.71400- 6 1.30000+ 1 4.51940- 8 1.40000+ 1 4.35610- 8 1 32000 0 0 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02661- 4 3.00000+ 0 9.71962- 5 5.00000+ 0 6.93365- 5 6.00000+ 0 6.84544- 5 8.00000+ 0 6.03428- 5 1.00000+ 1 4.65544- 5 1.10000+ 1 4.65738- 5 1.30000+ 1 2.39791- 5 1.40000+ 1 2.45092- 5 1.60000+ 1 1.47800- 5 1.80000+ 1 6.50000- 6 1.90000+ 1 6.29000- 6 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.45730- 1 3.00000+ 0 1.35897- 2 5.00000+ 0 1.43784- 2 6.00000+ 0 1.35472- 2 8.00000+ 0 9.90083- 5 1.00000+ 1 6.74466- 5 1.10000+ 1 5.95045- 5 1.30000+ 1 9.84901- 8 1.40000+ 1 7.94543- 8 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.27916- 3 3.00000+ 0 1.57534- 5 5.00000+ 0 1.67878- 5 6.00000+ 0 1.53917- 5 8.00000+ 0 7.76916- 9 1.00000+ 1 6.31309- 9 1.10000+ 1 5.28567- 9 1.30000+ 1 3.18649-12 1.40000+ 1 2.53459-12 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.48060+ 0 3.00000+ 0 7.02063+ 0 5.00000+ 0 4.74465+ 0 6.00000+ 0 4.64737+ 0 8.00000+ 0 3.95996+ 0 1.00000+ 1 2.86260+ 0 1.10000+ 1 2.84381+ 0 1.30000+ 1 1.00000+ 0 1.40000+ 1 1.00000+ 0 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.68518- 3 3.00000+ 0 1.28935- 3 5.00000+ 0 1.16928- 3 6.00000+ 0 1.13895- 3 8.00000+ 0 1.18899- 4 1.00000+ 1 8.28193- 5 1.10000+ 1 7.84009- 5 1.30000+ 1 1.48409- 5 1.40000+ 1 1.36808- 5 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.58539- 1 9.81160- 3 6.00000+ 0 3.07699- 1 9.84420- 3 1.00000+ 1 2.04929- 2 1.09376- 2 1.10000+ 1 4.00378- 2 1.09420- 2 1.30000+ 1 3.76288- 5 1.10282- 2 1.40000+ 1 5.42778- 5 1.10288- 2 1.80000+ 1 3.34229- 4 1.10605- 2 1.90000+ 1 6.40897- 4 1.10607- 2 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.25471- 2 8.26240- 3 3.00000+ 0 5.00000+ 0 3.62601- 2 8.40930- 3 3.00000+ 0 6.00000+ 0 6.26273- 2 8.44190- 3 3.00000+ 0 8.00000+ 0 9.10971- 3 9.48545- 3 3.00000+ 0 1.00000+ 1 5.01396- 3 9.53532- 3 3.00000+ 0 1.10000+ 1 8.58195- 3 9.53972- 3 3.00000+ 0 1.30000+ 1 3.16672- 4 9.62588- 3 3.00000+ 0 1.40000+ 1 4.20718- 4 9.62651- 3 3.00000+ 0 1.60000+ 1 8.97199- 4 9.64992- 3 3.00000+ 0 1.80000+ 1 1.13101- 4 9.65820- 3 3.00000+ 0 1.90000+ 1 1.91507- 4 9.65841- 3 5.00000+ 0 5.00000+ 0 6.28049- 3 8.55620- 3 5.00000+ 0 6.00000+ 0 1.46842- 1 8.58880- 3 5.00000+ 0 8.00000+ 0 4.27491- 3 9.63235- 3 5.00000+ 0 1.00000+ 1 1.61954- 3 9.68222- 3 5.00000+ 0 1.10000+ 1 1.72482- 2 9.68662- 3 5.00000+ 0 1.30000+ 1 4.32771- 4 9.77278- 3 5.00000+ 0 1.40000+ 1 1.58332- 3 9.77341- 3 5.00000+ 0 1.60000+ 1 4.11663- 4 9.79682- 3 5.00000+ 0 1.80000+ 1 3.61908- 5 9.80510- 3 5.00000+ 0 1.90000+ 1 3.79997- 4 9.80531- 3 6.00000+ 0 6.00000+ 0 8.04323- 2 8.62140- 3 6.00000+ 0 8.00000+ 0 7.41318- 3 9.66495- 3 6.00000+ 0 1.00000+ 1 1.72491- 2 9.71482- 3 6.00000+ 0 1.10000+ 1 1.92391- 2 9.71922- 3 6.00000+ 0 1.30000+ 1 1.95727- 3 9.80538- 3 6.00000+ 0 1.40000+ 1 1.89997- 3 9.80601- 3 6.00000+ 0 1.60000+ 1 7.14768- 4 9.82942- 3 6.00000+ 0 1.80000+ 1 3.79995- 4 9.83770- 3 6.00000+ 0 1.90000+ 1 4.23724- 4 9.83791- 3 8.00000+ 0 8.00000+ 0 6.64256- 4 1.07085- 2 8.00000+ 0 1.00000+ 1 6.27637- 4 1.07584- 2 8.00000+ 0 1.10000+ 1 1.07842- 3 1.07628- 2 8.00000+ 0 1.30000+ 1 3.66379- 5 1.08489- 2 8.00000+ 0 1.40000+ 1 4.77878- 5 1.08496- 2 8.00000+ 0 1.60000+ 1 1.30617- 4 1.08730- 2 8.00000+ 0 1.80000+ 1 1.43361- 5 1.08812- 2 8.00000+ 0 1.90000+ 1 2.38939- 5 1.08815- 2 1.00000+ 1 1.00000+ 1 1.08143- 4 1.08082- 2 1.00000+ 1 1.10000+ 1 2.22355- 3 1.08126- 2 1.00000+ 1 1.30000+ 1 4.26022- 5 1.08988- 2 1.00000+ 1 1.40000+ 1 1.63854- 4 1.08994- 2 1.00000+ 1 1.60000+ 1 6.22650- 5 1.09228- 2 1.00000+ 1 1.80000+ 1 4.91562- 6 1.09311- 2 1.00000+ 1 1.90000+ 1 4.91562- 5 1.09313- 2 1.10000+ 1 1.10000+ 1 1.30262- 3 1.08170- 2 1.10000+ 1 1.30000+ 1 2.13129- 4 1.09032- 2 1.10000+ 1 1.40000+ 1 2.02891- 4 1.09038- 2 1.10000+ 1 1.60000+ 1 1.10828- 4 1.09272- 2 1.10000+ 1 1.80000+ 1 5.11497- 5 1.09355- 2 1.10000+ 1 1.90000+ 1 5.79706- 5 1.09357- 2 1.30000+ 1 1.40000+ 1 1.38250- 5 1.09900- 2 1.30000+ 1 1.60000+ 1 3.07229- 6 1.10134- 2 1.30000+ 1 1.80000+ 1 1.53614- 6 1.10217- 2 1.30000+ 1 1.90000+ 1 4.60843- 6 1.10219- 2 1.40000+ 1 1.40000+ 1 3.51519- 6 1.09906- 2 1.40000+ 1 1.60000+ 1 5.27277- 6 1.10140- 2 1.40000+ 1 1.80000+ 1 3.51519- 6 1.10223- 2 1.40000+ 1 1.90000+ 1 5.27277- 6 1.10225- 2 1.60000+ 1 1.60000+ 1 6.03137- 6 1.10374- 2 1.60000+ 1 1.80000+ 1 1.50789- 6 1.10457- 2 1.60000+ 1 1.90000+ 1 1.50789- 6 1.10459- 2 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.51430- 5 1.46900- 4 6.00000+ 0 7.96502- 5 1.79500- 4 1.00000+ 1 8.45872- 4 1.27292- 3 1.10000+ 1 1.42280- 3 1.27732- 3 1.30000+ 1 3.68421- 6 1.36348- 3 1.40000+ 1 5.30451- 6 1.36411- 3 1.80000+ 1 1.48270- 5 1.39580- 3 1.90000+ 1 2.65231- 5 1.39601- 3 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.00000+ 1 2.93906- 2 1.75200- 5 5.00000+ 0 1.10000+ 1 7.66285- 2 2.19200- 5 5.00000+ 0 1.30000+ 1 5.23468- 2 1.08080- 4 5.00000+ 0 1.40000+ 1 8.41045- 2 1.08710- 4 5.00000+ 0 1.60000+ 1 6.56453- 3 1.32120- 4 5.00000+ 0 1.80000+ 1 1.07022- 3 1.40400- 4 5.00000+ 0 1.90000+ 1 1.49538- 3 1.40610- 4 6.00000+ 0 1.00000+ 1 6.62188- 2 5.01200- 5 6.00000+ 0 1.10000+ 1 1.40867- 1 5.45200- 5 6.00000+ 0 1.30000+ 1 1.37184- 1 1.40680- 4 6.00000+ 0 1.40000+ 1 1.95406- 1 1.41310- 4 6.00000+ 0 1.60000+ 1 1.14422- 2 1.64720- 4 6.00000+ 0 1.80000+ 1 1.26724- 3 1.73000- 4 6.00000+ 0 1.90000+ 1 2.73520- 3 1.73210- 4 8.00000+ 0 8.00000+ 0 9.30105- 3 1.04380- 3 8.00000+ 0 1.00000+ 1 1.73140- 2 1.09367- 3 8.00000+ 0 1.10000+ 1 3.35117- 2 1.09807- 3 8.00000+ 0 1.30000+ 1 2.12224- 2 1.18423- 3 8.00000+ 0 1.40000+ 1 3.10544- 2 1.18486- 3 8.00000+ 0 1.60000+ 1 1.64237- 3 1.20827- 3 8.00000+ 0 1.80000+ 1 3.87441- 4 1.21655- 3 8.00000+ 0 1.90000+ 1 7.46872- 4 1.21676- 3 1.00000+ 1 1.00000+ 1 2.10803- 4 1.14354- 3 1.00000+ 1 1.10000+ 1 6.27118- 4 1.14794- 3 1.00000+ 1 1.30000+ 1 3.31250- 4 1.23410- 3 1.00000+ 1 1.40000+ 1 6.42174- 3 1.23473- 3 1.00000+ 1 1.60000+ 1 1.30644- 3 1.25814- 3 1.00000+ 1 1.80000+ 1 7.08612- 6 1.26642- 3 1.00000+ 1 1.90000+ 1 1.32861- 5 1.26663- 3 1.10000+ 1 1.10000+ 1 8.84258- 4 1.15234- 3 1.10000+ 1 1.30000+ 1 6.95861- 3 1.23850- 3 1.10000+ 1 1.40000+ 1 4.94497- 3 1.23913- 3 1.10000+ 1 1.60000+ 1 2.74808- 3 1.26254- 3 1.10000+ 1 1.80000+ 1 1.44332- 5 1.27082- 3 1.10000+ 1 1.90000+ 1 3.36779- 5 1.27103- 3 1.30000+ 1 1.30000+ 1 7.49570- 4 1.32466- 3 1.30000+ 1 1.40000+ 1 3.60391- 2 1.32529- 3 1.30000+ 1 1.60000+ 1 1.57125- 3 1.34870- 3 1.30000+ 1 1.80000+ 1 9.91045- 6 1.35698- 3 1.30000+ 1 1.90000+ 1 1.43252- 4 1.35719- 3 1.40000+ 1 1.40000+ 1 9.96323- 3 1.32592- 3 1.40000+ 1 1.60000+ 1 2.30184- 3 1.34933- 3 1.40000+ 1 1.80000+ 1 1.41448- 4 1.35761- 3 1.40000+ 1 1.90000+ 1 1.04504- 4 1.35782- 3 1.60000+ 1 1.60000+ 1 7.11711- 5 1.37274- 3 1.60000+ 1 1.80000+ 1 2.97275- 5 1.38102- 3 1.60000+ 1 1.90000+ 1 5.76616- 5 1.38123- 3 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 9.43262-10 3.26000- 5 8.00000+ 0 4.21451- 3 1.07615- 3 1.10000+ 1 2.07200- 5 1.13042- 3 1.30000+ 1 9.33232- 3 1.21658- 3 1.60000+ 1 1.44440- 4 1.24062- 3 1.90000+ 1 4.58571- 8 1.24911- 3 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.12506- 2 1.78200- 5 6.00000+ 0 1.80000+ 1 1.68144- 2 2.61000- 5 6.00000+ 0 1.90000+ 1 6.82712- 3 2.63100- 5 8.00000+ 0 8.00000+ 0 2.76386- 3 8.96900- 4 8.00000+ 0 1.00000+ 1 5.25910- 2 9.46770- 4 8.00000+ 0 1.10000+ 1 4.57629- 3 9.51170- 4 8.00000+ 0 1.30000+ 1 2.56586- 3 1.03733- 3 8.00000+ 0 1.40000+ 1 6.38209- 3 1.03796- 3 8.00000+ 0 1.60000+ 1 4.67685- 4 1.06137- 3 8.00000+ 0 1.80000+ 1 9.45124- 4 1.06965- 3 8.00000+ 0 1.90000+ 1 9.41889- 5 1.06986- 3 1.00000+ 1 1.00000+ 1 4.69479- 2 9.96640- 4 1.00000+ 1 1.10000+ 1 1.59553- 1 1.00104- 3 1.00000+ 1 1.30000+ 1 6.70130- 2 1.08720- 3 1.00000+ 1 1.40000+ 1 1.25891- 1 1.08783- 3 1.00000+ 1 1.60000+ 1 5.26147- 3 1.11124- 3 1.00000+ 1 1.80000+ 1 1.91298- 3 1.11952- 3 1.00000+ 1 1.90000+ 1 3.51092- 3 1.11973- 3 1.10000+ 1 1.10000+ 1 4.43617- 3 1.00544- 3 1.10000+ 1 1.30000+ 1 8.14962- 2 1.09160- 3 1.10000+ 1 1.40000+ 1 1.17142- 2 1.09223- 3 1.10000+ 1 1.60000+ 1 4.05949- 4 1.11564- 3 1.10000+ 1 1.80000+ 1 2.94231- 3 1.12392- 3 1.10000+ 1 1.90000+ 1 1.75372- 4 1.12413- 3 1.30000+ 1 1.30000+ 1 6.17886- 2 1.17776- 3 1.30000+ 1 1.40000+ 1 2.78216- 1 1.17839- 3 1.30000+ 1 1.60000+ 1 2.59582- 4 1.20180- 3 1.30000+ 1 1.80000+ 1 1.20498- 3 1.21008- 3 1.30000+ 1 1.90000+ 1 1.71128- 3 1.21029- 3 1.40000+ 1 1.40000+ 1 1.33952- 2 1.17902- 3 1.40000+ 1 1.60000+ 1 5.87874- 4 1.20243- 3 1.40000+ 1 1.80000+ 1 2.17613- 3 1.21071- 3 1.40000+ 1 1.90000+ 1 2.33858- 4 1.21092- 3 1.60000+ 1 1.60000+ 1 1.94867- 5 1.22584- 3 1.60000+ 1 1.80000+ 1 9.41898- 5 1.23412- 3 1.60000+ 1 1.90000+ 1 9.74367- 6 1.23433- 3 1.80000+ 1 1.80000+ 1 1.29907- 5 1.24240- 3 1.80000+ 1 1.90000+ 1 3.89743- 5 1.24261- 3 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.22021- 3 1.04355- 3 1.00000+ 1 1.09060- 5 1.09342- 3 1.10000+ 1 1.05000- 5 1.09782- 3 1.30000+ 1 8.05681- 4 1.18398- 3 1.40000+ 1 8.31881- 3 1.18461- 3 1.60000+ 1 1.24860- 4 1.20802- 3 1.80000+ 1 2.10710- 8 1.21630- 3 1.90000+ 1 1.99380- 8 1.21651- 3 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.90445- 3 8.64300- 4 8.00000+ 0 1.00000+ 1 2.09171- 3 9.14170- 4 8.00000+ 0 1.10000+ 1 5.51338- 2 9.18570- 4 8.00000+ 0 1.30000+ 1 4.35499- 3 1.00473- 3 8.00000+ 0 1.40000+ 1 5.00277- 3 1.00536- 3 8.00000+ 0 1.60000+ 1 4.92179- 4 1.02877- 3 8.00000+ 0 1.80000+ 1 4.20942- 5 1.03705- 3 8.00000+ 0 1.90000+ 1 9.94104- 4 1.03726- 3 1.00000+ 1 1.00000+ 1 7.86833- 4 9.64040- 4 1.00000+ 1 1.10000+ 1 8.61179- 2 9.68440- 4 1.00000+ 1 1.30000+ 1 4.58175- 3 1.05460- 3 1.00000+ 1 1.40000+ 1 4.30070- 2 1.05523- 3 1.00000+ 1 1.60000+ 1 1.84567- 4 1.07864- 3 1.00000+ 1 1.80000+ 1 3.23799- 5 1.08692- 3 1.00000+ 1 1.90000+ 1 1.58981- 3 1.08713- 3 1.10000+ 1 1.10000+ 1 1.25938- 1 9.72840- 4 1.10000+ 1 1.30000+ 1 9.89277- 2 1.05900- 3 1.10000+ 1 1.40000+ 1 1.49834- 1 1.05963- 3 1.10000+ 1 1.60000+ 1 5.47885- 3 1.08304- 3 1.10000+ 1 1.80000+ 1 1.88458- 3 1.09132- 3 1.10000+ 1 1.90000+ 1 5.09672- 3 1.09153- 3 1.30000+ 1 1.30000+ 1 1.11390- 2 1.14516- 3 1.30000+ 1 1.40000+ 1 2.23168- 1 1.14579- 3 1.30000+ 1 1.60000+ 1 4.07973- 4 1.16920- 3 1.30000+ 1 1.80000+ 1 1.00382- 4 1.17748- 3 1.30000+ 1 1.90000+ 1 1.75497- 3 1.17769- 3 1.40000+ 1 1.40000+ 1 1.51100- 1 1.14642- 3 1.40000+ 1 1.60000+ 1 4.85692- 4 1.16983- 3 1.40000+ 1 1.80000+ 1 9.03387- 4 1.17811- 3 1.40000+ 1 1.90000+ 1 2.80083- 3 1.17832- 3 1.60000+ 1 1.60000+ 1 1.94278- 5 1.19324- 3 1.60000+ 1 1.80000+ 1 3.23807- 6 1.20152- 3 1.60000+ 1 1.90000+ 1 1.00384- 4 1.20173- 3 1.80000+ 1 1.90000+ 1 1.94270- 5 1.21001- 3 1.90000+ 1 1.90000+ 1 2.91430- 5 1.21022- 3 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.23020- 5 4.98700- 5 1.10000+ 1 3.23001- 5 5.42700- 5 1.80000+ 1 2.29881- 6 1.72750- 4 1.90000+ 1 3.59621- 6 1.72960- 4 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 5.71461- 2 1.10500- 5 1.00000+ 1 1.40000+ 1 6.63447- 2 1.16800- 5 1.00000+ 1 1.60000+ 1 7.86054- 2 3.50900- 5 1.00000+ 1 1.80000+ 1 1.14915- 2 4.33700- 5 1.00000+ 1 1.90000+ 1 2.89331- 2 4.35800- 5 1.10000+ 1 1.30000+ 1 1.23544- 1 1.54500- 5 1.10000+ 1 1.40000+ 1 1.98970- 1 1.60800- 5 1.10000+ 1 1.60000+ 1 1.42663- 1 3.94900- 5 1.10000+ 1 1.80000+ 1 2.87247- 2 4.77700- 5 1.10000+ 1 1.90000+ 1 4.53399- 2 4.79800- 5 1.30000+ 1 1.30000+ 1 7.38109- 3 1.01610- 4 1.30000+ 1 1.40000+ 1 4.25322- 2 1.02240- 4 1.30000+ 1 1.60000+ 1 5.52666- 2 1.25650- 4 1.30000+ 1 1.80000+ 1 1.52754- 3 1.33930- 4 1.30000+ 1 1.90000+ 1 1.42294- 3 1.34140- 4 1.40000+ 1 1.40000+ 1 2.09853- 2 1.02870- 4 1.40000+ 1 1.60000+ 1 8.20047- 2 1.26280- 4 1.40000+ 1 1.80000+ 1 7.68680- 4 1.34560- 4 1.40000+ 1 1.90000+ 1 3.35173- 3 1.34770- 4 1.60000+ 1 1.60000+ 1 1.62565- 3 1.49690- 4 1.60000+ 1 1.80000+ 1 4.45565- 4 1.57970- 4 1.60000+ 1 1.90000+ 1 8.44393- 4 1.58180- 4 1.80000+ 1 1.90000+ 1 2.23771- 5 1.66460- 4 1.90000+ 1 1.90000+ 1 7.89763- 6 1.66670- 4 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.83360- 5 9.05600- 5 1.60000+ 1 8.94200- 6 1.14600- 4 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.41527- 1 5.17400- 5 1.30000+ 1 1.40000+ 1 7.02595- 1 5.23700- 5 1.30000+ 1 1.60000+ 1 6.04028- 2 7.57800- 5 1.30000+ 1 1.80000+ 1 1.51817- 2 8.40600- 5 1.30000+ 1 1.90000+ 1 2.23935- 2 8.42700- 5 1.40000+ 1 1.40000+ 1 1.96458- 2 5.30000- 5 1.40000+ 1 1.60000+ 1 9.92268- 3 7.64100- 5 1.40000+ 1 1.80000+ 1 2.48507- 2 8.46900- 5 1.40000+ 1 1.90000+ 1 2.32087- 3 8.49000- 5 1.60000+ 1 1.60000+ 1 5.45470- 5 9.98200- 5 1.60000+ 1 1.80000+ 1 6.92048- 4 1.08100- 4 1.60000+ 1 1.90000+ 1 6.13650- 5 1.08310- 4 1.80000+ 1 1.90000+ 1 2.82270- 4 1.16590- 4 1.90000+ 1 1.90000+ 1 2.72720- 6 1.16800- 4 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.23161- 6 8.61600- 5 1.40000+ 1 4.84271- 5 8.67900- 5 1.60000+ 1 5.68871- 6 1.10200- 4 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.36681- 2 4.73400- 5 1.30000+ 1 1.40000+ 1 4.74545- 1 4.79700- 5 1.30000+ 1 1.60000+ 1 1.38392- 2 7.13800- 5 1.30000+ 1 1.80000+ 1 1.97076- 3 7.96600- 5 1.30000+ 1 1.90000+ 1 2.00678- 2 7.98700- 5 1.40000+ 1 1.40000+ 1 3.46765- 1 4.86000- 5 1.40000+ 1 1.60000+ 1 6.68604- 2 7.20100- 5 1.40000+ 1 1.80000+ 1 1.39276- 2 8.02900- 5 1.40000+ 1 1.90000+ 1 3.71975- 2 8.05000- 5 1.60000+ 1 1.60000+ 1 2.76955- 5 9.54200- 5 1.60000+ 1 1.80000+ 1 3.27980- 5 1.03700- 4 1.60000+ 1 1.90000+ 1 7.87878- 4 1.03910- 4 1.80000+ 1 1.90000+ 1 1.69820- 4 1.12190- 4 1.90000+ 1 1.90000+ 1 8.09011- 5 1.12400- 4 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 8.28221- 8 3.23200- 5 1.90000+ 1 1.56680- 8 3.25300- 5 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.84616- 1 9.26000- 6 1.60000+ 1 1.80000+ 1 2.01976- 1 1.75400- 5 1.60000+ 1 1.90000+ 1 1.62879- 1 1.77500- 5 1.80000+ 1 1.90000+ 1 1.44100- 1 2.60300- 5 1.90000+ 1 1.90000+ 1 6.42920- 3 2.62400- 5 1 32000 0 7 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 7.94543- 8 3.19000- 5 1 32000 0 9 7.25900+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.99340- 1 8.63000- 6 1.60000+ 1 1.80000+ 1 8.22640- 2 1.69100- 5 1.60000+ 1 1.90000+ 1 3.20700- 1 1.71200- 5 1.80000+ 1 1.90000+ 1 5.68432- 2 2.54000- 5 1.90000+ 1 1.90000+ 1 4.08532- 2 2.56100- 5 1 33000 0 0 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 1.00000+ 0 1.90000+ 1 2.00000+ 0 1 33000 0 0 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.18290- 2 3.00000+ 0 1.51920- 3 5.00000+ 0 1.36570- 3 6.00000+ 0 1.32830- 3 8.00000+ 0 2.02020- 4 1.00000+ 1 1.48950- 4 1.10000+ 1 1.43780- 4 1.30000+ 1 5.13200- 5 1.40000+ 1 5.05500- 5 1.60000+ 1 1.78600- 5 1.80000+ 1 8.12000- 6 1.90000+ 1 7.81000- 6 1 33000 0 0 7.49216+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.50850- 2 3.00000+ 0 2.98340- 3 5.00000+ 0 2.97620- 3 6.00000+ 0 2.83720- 3 8.00000+ 0 6.97300- 4 1.00000+ 1 6.45800- 4 1.10000+ 1 6.18500- 4 1.30000+ 1 4.95470- 4 1.40000+ 1 4.89190- 4 1.60000+ 1 9.27000- 5 1.80000+ 1 5.68900- 5 1.90000+ 1 5.38400- 5 1 33000 0 0 7.49216+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.40110-10 3.00000+ 0 1.06500- 9 5.00000+ 0 9.16360-10 6.00000+ 0 9.35660-10 8.00000+ 0 3.12940- 9 1.00000+ 1 3.17420- 9 1.10000+ 1 3.22830- 9 1.30000+ 1 3.43410- 9 1.40000+ 1 3.45610- 9 1.60000+ 1 9.85480- 9 1.80000+ 1 1.27700- 8 1.90000+ 1 1.30750- 8 1 33000 0 0 7.49216+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.14180- 6 3.00000+ 0 9.71680- 9 5.00000+ 0 1.40990- 8 6.00000+ 0 1.37880- 8 8.00000+ 0 5.84730-11 1.00000+ 1 1.69380-10 1.10000+ 1 1.53240-10 1.30000+ 1 1.01770-12 1.40000+ 1 9.57710-13 1 33000 0 0 7.49216+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.70710- 7 3.00000+ 0 7.84130- 6 5.00000+ 0 9.20340- 7 6.00000+ 0 9.07310- 7 8.00000+ 0 3.96010- 6 1.00000+ 1 3.94890- 6 1.10000+ 1 3.62750- 6 1.30000+ 1 5.78550- 8 1.40000+ 1 5.95160- 8 1 33000 0 0 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.14210- 4 3.00000+ 0 1.09156- 4 5.00000+ 0 7.94772- 5 6.00000+ 0 7.82334- 5 8.00000+ 0 6.62938- 5 1.00000+ 1 5.36482- 5 1.10000+ 1 5.34429- 5 1.30000+ 1 2.82698- 5 1.40000+ 1 2.88947- 5 1.60000+ 1 1.78600- 5 1.80000+ 1 8.12000- 6 1.90000+ 1 7.81000- 6 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.77207- 1 3.00000+ 0 1.53220- 2 5.00000+ 0 1.63812- 2 6.00000+ 0 1.53914- 2 8.00000+ 0 1.25508- 4 1.00000+ 1 9.26266- 5 1.10000+ 1 8.21467- 5 1.30000+ 1 5.04918- 7 1.40000+ 1 4.10922- 7 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.95098- 3 3.00000+ 0 1.91920- 5 5.00000+ 0 2.07662- 5 6.00000+ 0 1.89490- 5 8.00000+ 0 1.16923- 8 1.00000+ 1 9.43024- 9 1.10000+ 1 7.92034- 9 1.30000+ 1 2.18373-11 1.40000+ 1 1.75628-11 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.03966+ 0 3.00000+ 0 6.66966+ 0 5.00000+ 0 4.61273+ 0 6.00000+ 0 4.49803+ 0 8.00000+ 0 3.66122+ 0 1.00000+ 1 2.79470+ 0 1.10000+ 1 2.76410+ 0 1.30000+ 1 9.99999- 1 1.40000+ 1 1.00000+ 0 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.76381- 3 3.00000+ 0 1.39085- 3 5.00000+ 0 1.26546- 3 6.00000+ 0 1.23112- 3 8.00000+ 0 1.35715- 4 1.00000+ 1 9.52924- 5 1.10000+ 1 9.03291- 5 1.30000+ 1 2.30502- 5 1.40000+ 1 2.16553- 5 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.66890- 1 1.04633- 2 6.00000+ 0 3.23251- 1 1.05007- 2 1.00000+ 1 2.20590- 2 1.16800- 2 1.10000+ 1 4.30891- 2 1.16852- 2 1.30000+ 1 4.61411- 5 1.17777- 2 1.40000+ 1 6.64471- 5 1.17784- 2 1.80000+ 1 6.72162- 4 1.18209- 2 1.90000+ 1 1.29230- 3 1.18212- 2 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.05370- 2 8.79060- 3 3.00000+ 0 5.00000+ 0 3.40416- 2 8.94410- 3 3.00000+ 0 6.00000+ 0 5.81569- 2 8.98150- 3 3.00000+ 0 8.00000+ 0 8.68245- 3 1.01078- 2 3.00000+ 0 1.00000+ 1 4.81858- 3 1.01608- 2 3.00000+ 0 1.10000+ 1 8.16152- 3 1.01660- 2 3.00000+ 0 1.30000+ 1 3.20598- 4 1.02585- 2 3.00000+ 0 1.40000+ 1 4.22865- 4 1.02592- 2 3.00000+ 0 1.60000+ 1 9.34125- 4 1.02919- 2 3.00000+ 0 1.80000+ 1 1.83797- 4 1.03017- 2 3.00000+ 0 1.90000+ 1 3.10929- 4 1.03020- 2 5.00000+ 0 5.00000+ 0 5.85512- 3 9.09760- 3 5.00000+ 0 6.00000+ 0 1.36222- 1 9.13500- 3 5.00000+ 0 8.00000+ 0 4.06977- 3 1.02613- 2 5.00000+ 0 1.00000+ 1 1.53944- 3 1.03143- 2 5.00000+ 0 1.10000+ 1 1.63510- 2 1.03195- 2 5.00000+ 0 1.30000+ 1 4.35309- 4 1.04120- 2 5.00000+ 0 1.40000+ 1 1.58922- 3 1.04127- 2 5.00000+ 0 1.60000+ 1 4.28390- 4 1.04454- 2 5.00000+ 0 1.80000+ 1 5.80381- 5 1.04552- 2 5.00000+ 0 1.90000+ 1 6.12178- 4 1.04555- 2 6.00000+ 0 6.00000+ 0 7.43816- 2 9.17240- 3 6.00000+ 0 8.00000+ 0 6.98314- 3 1.02987- 2 6.00000+ 0 1.00000+ 1 1.63388- 2 1.03517- 2 6.00000+ 0 1.10000+ 1 1.81856- 2 1.03569- 2 6.00000+ 0 1.30000+ 1 1.96094- 3 1.04494- 2 6.00000+ 0 1.40000+ 1 1.90012- 3 1.04501- 2 6.00000+ 0 1.60000+ 1 7.33820- 4 1.04828- 2 6.00000+ 0 1.80000+ 1 6.13595- 4 1.04926- 2 6.00000+ 0 1.90000+ 1 6.82666- 4 1.04929- 2 8.00000+ 0 8.00000+ 0 6.34075- 4 1.14250- 2 8.00000+ 0 1.00000+ 1 6.03843- 4 1.14780- 2 8.00000+ 0 1.10000+ 1 1.02371- 3 1.14832- 2 8.00000+ 0 1.30000+ 1 3.73822- 5 1.15757- 2 8.00000+ 0 1.40000+ 1 4.88828- 5 1.15764- 2 8.00000+ 0 1.60000+ 1 1.36592- 4 1.16091- 2 8.00000+ 0 1.80000+ 1 2.30043- 5 1.16189- 2 8.00000+ 0 1.90000+ 1 3.88199- 5 1.16192- 2 1.00000+ 1 1.00000+ 1 1.03444- 4 1.15311- 2 1.00000+ 1 1.10000+ 1 2.11769- 3 1.15363- 2 1.00000+ 1 1.30000+ 1 4.43344- 5 1.16287- 2 1.00000+ 1 1.40000+ 1 1.65514- 4 1.16295- 2 1.00000+ 1 1.60000+ 1 6.50271- 5 1.16622- 2 1.00000+ 1 1.80000+ 1 7.38892- 6 1.16719- 2 1.00000+ 1 1.90000+ 1 7.98045- 5 1.16722- 2 1.10000+ 1 1.10000+ 1 1.22342- 3 1.15414- 2 1.10000+ 1 1.30000+ 1 2.12753- 4 1.16339- 2 1.10000+ 1 1.40000+ 1 2.02121- 4 1.16347- 2 1.10000+ 1 1.60000+ 1 1.13969- 4 1.16674- 2 1.10000+ 1 1.80000+ 1 8.20642- 5 1.16771- 2 1.10000+ 1 1.90000+ 1 9.11772- 5 1.16774- 2 1.30000+ 1 1.40000+ 1 1.52017- 5 1.17271- 2 1.30000+ 1 1.60000+ 1 4.14583- 6 1.17598- 2 1.30000+ 1 1.80000+ 1 1.38198- 6 1.17696- 2 1.30000+ 1 1.90000+ 1 6.90957- 6 1.17699- 2 1.40000+ 1 1.40000+ 1 4.14573- 6 1.17279- 2 1.40000+ 1 1.60000+ 1 5.52746- 6 1.17606- 2 1.40000+ 1 1.80000+ 1 5.52746- 6 1.17703- 2 1.40000+ 1 1.90000+ 1 6.90940- 6 1.17706- 2 1.60000+ 1 1.60000+ 1 6.90941- 6 1.17933- 2 1.60000+ 1 1.80000+ 1 2.76389- 6 1.18030- 2 1.60000+ 1 1.90000+ 1 4.14573- 6 1.18033- 2 1.80000+ 1 1.90000+ 1 2.76401- 6 1.18131- 2 1.90000+ 1 1.90000+ 1 1.38190- 6 1.18134- 2 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.47177- 5 1.53500- 4 6.00000+ 0 7.92740- 5 1.90900- 4 1.00000+ 1 9.04147- 4 1.37025- 3 1.10000+ 1 1.55206- 3 1.37542- 3 1.30000+ 1 4.19556- 6 1.46788- 3 1.40000+ 1 6.17021- 6 1.46865- 3 1.80000+ 1 2.92382- 5 1.51108- 3 1.90000+ 1 5.22734- 5 1.51139- 3 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 5.86025- 2 1.02180- 4 5.00000+ 0 1.40000+ 1 9.40104- 2 1.02950- 4 5.00000+ 0 1.60000+ 1 8.28681- 3 1.35640- 4 5.00000+ 0 1.80000+ 1 2.12082- 3 1.45380- 4 5.00000+ 0 1.90000+ 1 2.95933- 3 1.45690- 4 6.00000+ 0 1.00000+ 1 7.54468- 2 4.19500- 5 6.00000+ 0 1.10000+ 1 1.59819- 1 4.71200- 5 6.00000+ 0 1.30000+ 1 1.59501- 1 1.39580- 4 6.00000+ 0 1.40000+ 1 2.27521- 1 1.40350- 4 6.00000+ 0 1.60000+ 1 1.42796- 2 1.73040- 4 6.00000+ 0 1.80000+ 1 2.48050- 3 1.82780- 4 6.00000+ 0 1.90000+ 1 5.31159- 3 1.83090- 4 8.00000+ 0 8.00000+ 0 8.65091- 3 1.11516- 3 8.00000+ 0 1.00000+ 1 1.62020- 2 1.16823- 3 8.00000+ 0 1.10000+ 1 3.13156- 2 1.17340- 3 8.00000+ 0 1.30000+ 1 2.05920- 2 1.26586- 3 8.00000+ 0 1.40000+ 1 3.01093- 2 1.26663- 3 8.00000+ 0 1.60000+ 1 1.66266- 3 1.29932- 3 8.00000+ 0 1.80000+ 1 6.18188- 4 1.30906- 3 8.00000+ 0 1.90000+ 1 1.18923- 3 1.30937- 3 1.00000+ 1 1.00000+ 1 1.93584- 4 1.22130- 3 1.00000+ 1 1.10000+ 1 6.17360- 4 1.22647- 3 1.00000+ 1 1.30000+ 1 3.35929- 4 1.31893- 3 1.00000+ 1 1.40000+ 1 6.42986- 3 1.31970- 3 1.00000+ 1 1.60000+ 1 1.34779- 3 1.35239- 3 1.00000+ 1 1.80000+ 1 1.13873- 5 1.36213- 3 1.00000+ 1 1.90000+ 1 2.27749- 5 1.36244- 3 1.10000+ 1 1.10000+ 1 8.54542- 4 1.23164- 3 1.10000+ 1 1.30000+ 1 6.98865- 3 1.32410- 3 1.10000+ 1 1.40000+ 1 4.95822- 3 1.32487- 3 1.10000+ 1 1.60000+ 1 2.87679- 3 1.35756- 3 1.10000+ 1 1.80000+ 1 2.51330- 5 1.36730- 3 1.10000+ 1 1.90000+ 1 5.56530- 5 1.36761- 3 1.30000+ 1 1.30000+ 1 7.68630- 4 1.41656- 3 1.30000+ 1 1.40000+ 1 3.61996- 2 1.41733- 3 1.30000+ 1 1.60000+ 1 1.65279- 3 1.45002- 3 1.30000+ 1 1.80000+ 1 1.62674- 5 1.45976- 3 1.30000+ 1 1.90000+ 1 2.36700- 4 1.46007- 3 1.40000+ 1 1.40000+ 1 1.00290- 2 1.41810- 3 1.40000+ 1 1.60000+ 1 2.41890- 3 1.45079- 3 1.40000+ 1 1.80000+ 1 2.35882- 4 1.46053- 3 1.40000+ 1 1.90000+ 1 1.73253- 4 1.46084- 3 1.60000+ 1 1.60000+ 1 7.80837- 5 1.48348- 3 1.60000+ 1 1.80000+ 1 5.12430- 5 1.49322- 3 1.60000+ 1 1.90000+ 1 9.92332- 5 1.49353- 3 1.80000+ 1 1.90000+ 1 8.13389- 7 1.50327- 3 1.90000+ 1 1.90000+ 1 8.13389- 7 1.50358- 3 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.11430- 9 3.74000- 5 8.00000+ 0 3.97241- 3 1.16368- 3 1.10000+ 1 2.16131- 5 1.22192- 3 1.30000+ 1 1.12390- 2 1.31438- 3 1.60000+ 1 1.49861- 4 1.34784- 3 1.90000+ 1 9.45533- 8 1.35789- 3 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.26086- 2 1.95400- 5 6.00000+ 0 1.80000+ 1 2.65720- 2 2.92800- 5 6.00000+ 0 1.90000+ 1 1.07277- 2 2.95900- 5 8.00000+ 0 8.00000+ 0 2.54130- 3 9.61660- 4 8.00000+ 0 1.00000+ 1 4.89318- 2 1.01473- 3 8.00000+ 0 1.10000+ 1 4.30681- 3 1.01990- 3 8.00000+ 0 1.30000+ 1 2.40949- 3 1.11236- 3 8.00000+ 0 1.40000+ 1 6.13075- 3 1.11313- 3 8.00000+ 0 1.60000+ 1 4.68445- 4 1.14582- 3 8.00000+ 0 1.80000+ 1 1.48441- 3 1.15556- 3 8.00000+ 0 1.90000+ 1 1.52252- 4 1.15587- 3 1.00000+ 1 1.00000+ 1 4.41442- 2 1.06780- 3 1.00000+ 1 1.10000+ 1 1.49533- 1 1.07297- 3 1.00000+ 1 1.30000+ 1 6.52003- 2 1.16543- 3 1.00000+ 1 1.40000+ 1 1.21956- 1 1.16620- 3 1.00000+ 1 1.60000+ 1 5.35476- 3 1.19889- 3 1.00000+ 1 1.80000+ 1 3.04777- 3 1.20863- 3 1.00000+ 1 1.90000+ 1 5.59496- 3 1.20894- 3 1.10000+ 1 1.10000+ 1 4.14269- 3 1.07814- 3 1.10000+ 1 1.30000+ 1 7.96706- 2 1.17060- 3 1.10000+ 1 1.40000+ 1 1.13769- 2 1.17137- 3 1.10000+ 1 1.60000+ 1 4.15737- 4 1.20406- 3 1.10000+ 1 1.80000+ 1 4.64920- 3 1.21380- 3 1.10000+ 1 1.90000+ 1 2.75204- 4 1.21411- 3 1.30000+ 1 1.30000+ 1 6.18256- 2 1.26306- 3 1.30000+ 1 1.40000+ 1 2.77674- 1 1.26383- 3 1.30000+ 1 1.60000+ 1 2.67909- 4 1.29652- 3 1.30000+ 1 1.80000+ 1 1.97630- 3 1.30626- 3 1.30000+ 1 1.90000+ 1 2.83768- 3 1.30657- 3 1.40000+ 1 1.40000+ 1 1.34073- 2 1.26460- 3 1.40000+ 1 1.60000+ 1 6.14825- 4 1.29729- 3 1.40000+ 1 1.80000+ 1 3.54844- 3 1.30703- 3 1.40000+ 1 1.90000+ 1 3.86464- 4 1.30734- 3 1.60000+ 1 1.60000+ 1 2.04948- 5 1.32998- 3 1.60000+ 1 1.80000+ 1 1.63957- 4 1.33972- 3 1.60000+ 1 1.90000+ 1 1.46392- 5 1.34003- 3 1.80000+ 1 1.80000+ 1 4.09876- 5 1.34946- 3 1.80000+ 1 1.90000+ 1 1.40533- 4 1.34977- 3 1.90000+ 1 1.90000+ 1 2.92771- 6 1.35008- 3 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.16398- 3 1.12628- 3 1.00000+ 1 1.16210- 5 1.17935- 3 1.10000+ 1 1.11650- 5 1.18452- 3 1.30000+ 1 9.90226- 4 1.27698- 3 1.40000+ 1 1.00090- 2 1.27775- 3 1.60000+ 1 1.30850- 4 1.31044- 3 1.80000+ 1 4.39948- 8 1.32018- 3 1.90000+ 1 4.17228- 8 1.32049- 3 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.71394- 3 9.24260- 4 8.00000+ 0 1.00000+ 1 1.97560- 3 9.77330- 4 8.00000+ 0 1.10000+ 1 5.19127- 2 9.82500- 4 8.00000+ 0 1.30000+ 1 4.23471- 3 1.07496- 3 8.00000+ 0 1.40000+ 1 4.78701- 3 1.07573- 3 8.00000+ 0 1.60000+ 1 5.02023- 4 1.10842- 3 8.00000+ 0 1.80000+ 1 6.79221- 5 1.11816- 3 8.00000+ 0 1.90000+ 1 1.58284- 3 1.11847- 3 1.00000+ 1 1.00000+ 1 7.44188- 4 1.03040- 3 1.00000+ 1 1.10000+ 1 8.18163- 2 1.03557- 3 1.00000+ 1 1.30000+ 1 4.55376- 3 1.12803- 3 1.00000+ 1 1.40000+ 1 4.25636- 2 1.12880- 3 1.00000+ 1 1.60000+ 1 1.88995- 4 1.16149- 3 1.00000+ 1 1.80000+ 1 5.02029- 5 1.17123- 3 1.00000+ 1 1.90000+ 1 2.54254- 3 1.17154- 3 1.10000+ 1 1.10000+ 1 1.19509- 1 1.04074- 3 1.10000+ 1 1.30000+ 1 9.74586- 2 1.13320- 3 1.10000+ 1 1.40000+ 1 1.47949- 1 1.13397- 3 1.10000+ 1 1.60000+ 1 5.64936- 3 1.16666- 3 1.10000+ 1 1.80000+ 1 3.05065- 3 1.17640- 3 1.10000+ 1 1.90000+ 1 8.19189- 3 1.17671- 3 1.30000+ 1 1.30000+ 1 1.13640- 2 1.22566- 3 1.30000+ 1 1.40000+ 1 2.26900- 1 1.22643- 3 1.30000+ 1 1.60000+ 1 4.34108- 4 1.25912- 3 1.30000+ 1 1.80000+ 1 1.68321- 4 1.26886- 3 1.30000+ 1 1.90000+ 1 2.90289- 3 1.26917- 3 1.40000+ 1 1.40000+ 1 1.53782- 1 1.22720- 3 1.40000+ 1 1.60000+ 1 5.07908- 4 1.25989- 3 1.40000+ 1 1.80000+ 1 1.52092- 3 1.26963- 3 1.40000+ 1 1.90000+ 1 4.66873- 3 1.26994- 3 1.60000+ 1 1.60000+ 1 2.36255- 5 1.29258- 3 1.60000+ 1 1.80000+ 1 5.90615- 6 1.30232- 3 1.60000+ 1 1.90000+ 1 1.71268- 4 1.30263- 3 1.80000+ 1 1.90000+ 1 7.67807- 5 1.31237- 3 1.90000+ 1 1.90000+ 1 1.12210- 4 1.31268- 3 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30510- 5 5.30700- 5 1.10000+ 1 3.41950- 5 5.82400- 5 1.80000+ 1 5.39910- 6 1.93900- 4 1.90000+ 1 8.47180- 6 1.94210- 4 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 4.90336- 2 1.75000- 6 1.00000+ 1 1.40000+ 1 2.17525- 2 2.52000- 6 1.00000+ 1 1.60000+ 1 9.19876- 2 3.52100- 5 1.00000+ 1 1.80000+ 1 2.33913- 2 4.49500- 5 1.00000+ 1 1.90000+ 1 5.71950- 2 4.52600- 5 1.10000+ 1 1.30000+ 1 5.86614- 2 6.92000- 6 1.10000+ 1 1.40000+ 1 1.36085- 1 7.69000- 6 1.10000+ 1 1.60000+ 1 1.65393- 1 4.03800- 5 1.10000+ 1 1.80000+ 1 5.62446- 2 5.01200- 5 1.10000+ 1 1.90000+ 1 8.98361- 2 5.04300- 5 1.30000+ 1 1.30000+ 1 9.29764- 3 9.93800- 5 1.30000+ 1 1.40000+ 1 3.88231- 2 1.00150- 4 1.30000+ 1 1.60000+ 1 6.46838- 2 1.32840- 4 1.30000+ 1 1.80000+ 1 3.06365- 3 1.42580- 4 1.30000+ 1 1.90000+ 1 2.75176- 3 1.42890- 4 1.40000+ 1 1.40000+ 1 2.27200- 2 1.00920- 4 1.40000+ 1 1.60000+ 1 9.59951- 2 1.33610- 4 1.40000+ 1 1.80000+ 1 1.44634- 3 1.43350- 4 1.40000+ 1 1.90000+ 1 6.63863- 3 1.43660- 4 1.60000+ 1 1.60000+ 1 2.05778- 3 1.66300- 4 1.60000+ 1 1.80000+ 1 9.50918- 4 1.76040- 4 1.60000+ 1 1.90000+ 1 1.80220- 3 1.76350- 4 1.80000+ 1 1.90000+ 1 7.42050- 5 1.86090- 4 1.90000+ 1 1.90000+ 1 5.35910- 5 1.86400- 4 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.88572- 5 9.76300- 5 1.60000+ 1 1.29330- 5 1.31090- 4 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.34402- 1 4.63100- 5 1.30000+ 1 1.40000+ 1 6.43634- 1 4.70800- 5 1.30000+ 1 1.60000+ 1 6.87471- 2 7.97700- 5 1.30000+ 1 1.80000+ 1 2.82964- 2 8.95100- 5 1.30000+ 1 1.90000+ 1 4.20236- 2 8.98200- 5 1.40000+ 1 1.40000+ 1 1.93011- 2 4.78500- 5 1.40000+ 1 1.60000+ 1 1.11385- 2 8.05400- 5 1.40000+ 1 1.80000+ 1 4.55047- 2 9.02800- 5 1.40000+ 1 1.90000+ 1 4.32698- 3 9.05900- 5 1.60000+ 1 1.60000+ 1 8.95721- 5 1.13230- 4 1.60000+ 1 1.80000+ 1 1.36224- 3 1.22970- 4 1.60000+ 1 1.90000+ 1 1.32295- 4 1.23280- 4 1.80000+ 1 1.90000+ 1 9.32223- 4 1.33020- 4 1.90000+ 1 1.90000+ 1 1.79141- 5 1.33330- 4 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.99485- 6 9.24600- 5 1.40000+ 1 6.50115- 5 9.32300- 5 1.60000+ 1 9.36567- 6 1.25920- 4 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.35221- 2 4.11400- 5 1.30000+ 1 1.40000+ 1 4.25302- 1 4.19100- 5 1.30000+ 1 1.60000+ 1 1.59034- 2 7.46000- 5 1.30000+ 1 1.80000+ 1 3.83864- 3 8.43400- 5 1.30000+ 1 1.90000+ 1 3.75074- 2 8.46500- 5 1.40000+ 1 1.40000+ 1 3.18188- 1 4.26800- 5 1.40000+ 1 1.60000+ 1 7.66233- 2 7.53700- 5 1.40000+ 1 1.80000+ 1 2.65141- 2 8.51100- 5 1.40000+ 1 1.90000+ 1 6.96985- 2 8.54200- 5 1.60000+ 1 1.60000+ 1 5.40078- 5 1.08060- 4 1.60000+ 1 1.80000+ 1 6.90088- 5 1.17800- 4 1.60000+ 1 1.90000+ 1 1.58120- 3 1.18110- 4 1.80000+ 1 1.90000+ 1 5.68574- 4 1.27850- 4 1.90000+ 1 1.90000+ 1 5.48304- 4 1.28160- 4 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 4.24871- 7 4.32000- 5 1.90000+ 1 8.00472- 8 4.35100- 5 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.14969- 1 1.56000- 5 1.60000+ 1 1.80000+ 1 2.08158- 1 2.53400- 5 1.60000+ 1 1.90000+ 1 2.09525- 1 2.56500- 5 1.80000+ 1 1.90000+ 1 1.50620- 1 3.53900- 5 1.90000+ 1 1.90000+ 1 1.67270- 2 3.57000- 5 1 33000 0 7 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.10922- 7 4.27400- 5 1 33000 0 9 7.49216+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.39262- 1 1.48300- 5 1.60000+ 1 1.80000+ 1 1.04650- 1 2.45700- 5 1.60000+ 1 1.90000+ 1 3.32552- 1 2.48800- 5 1.80000+ 1 1.90000+ 1 6.19813- 2 3.46200- 5 1.90000+ 1 1.90000+ 1 6.15543- 2 3.49300- 5 1 34000 0 0 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 1.33000+ 0 1.90000+ 1 2.67000+ 0 1 34000 0 0 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.26190- 2 3.00000+ 0 1.64150- 3 5.00000+ 0 1.48120- 3 6.00000+ 0 1.43860- 3 8.00000+ 0 2.26100- 4 1.00000+ 1 1.69770- 4 1.10000+ 1 1.63710- 4 1.30000+ 1 6.49100- 5 1.40000+ 1 6.39700- 5 1.60000+ 1 2.09900- 5 1.80000+ 1 9.82000- 6 1.90000+ 1 9.40000- 6 1 34000 0 0 7.89600+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.60690- 2 3.00000+ 0 3.19910- 3 5.00000+ 0 3.19290- 3 6.00000+ 0 3.03480- 3 8.00000+ 0 7.60150- 4 1.00000+ 1 7.08020- 4 1.10000+ 1 6.76730- 4 1.30000+ 1 5.55940- 4 1.40000+ 1 5.48720- 4 1.60000+ 1 1.10150- 4 1.80000+ 1 7.20800- 5 1.90000+ 1 6.81700- 5 1 34000 0 0 7.89600+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.32660-10 3.00000+ 0 1.02950- 9 5.00000+ 0 8.84300-10 6.00000+ 0 9.04380-10 8.00000+ 0 3.00280- 9 1.00000+ 1 3.03210- 9 1.10000+ 1 3.08580- 9 1.30000+ 1 3.20780- 9 1.40000+ 1 3.22830- 9 1.60000+ 1 9.15200- 9 1.80000+ 1 1.14650- 8 1.90000+ 1 1.17430- 8 1 34000 0 0 7.89600+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.30510- 6 3.00000+ 0 1.17000- 8 5.00000+ 0 1.71810- 8 6.00000+ 0 1.67790- 8 8.00000+ 0 7.78740-11 1.00000+ 1 1.92040-10 1.10000+ 1 1.72510-10 1.30000+ 1 2.23180-12 1.40000+ 1 2.09710-12 1 34000 0 0 7.89600+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.90410- 7 3.00000+ 0 8.02870- 6 5.00000+ 0 1.01200- 6 6.00000+ 0 9.86520- 7 8.00000+ 0 4.22990- 6 1.00000+ 1 3.86330- 6 1.10000+ 1 3.50600- 6 1.30000+ 1 6.45650- 8 1.40000+ 1 6.59990- 8 1 34000 0 0 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21292- 4 3.00000+ 0 1.18874- 4 5.00000+ 0 8.67441- 5 6.00000+ 0 8.50122- 5 8.00000+ 0 6.98933- 5 1.00000+ 1 5.86900- 5 1.10000+ 1 5.79553- 5 1.30000+ 1 3.19032- 5 1.40000+ 1 3.22758- 5 1.60000+ 1 2.09900- 5 1.80000+ 1 9.82000- 6 1.90000+ 1 9.40000- 6 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.07581- 1 3.00000+ 0 1.72238- 2 5.00000+ 0 1.85380- 2 6.00000+ 0 1.73777- 2 8.00000+ 0 1.57368- 4 1.00000+ 1 1.24274- 4 1.10000+ 1 1.10766- 4 1.30000+ 1 1.61492- 6 1.40000+ 1 1.32540- 6 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.66392- 3 3.00000+ 0 2.32795- 5 5.00000+ 0 2.54169- 5 6.00000+ 0 2.31031- 5 8.00000+ 0 1.72470- 8 1.00000+ 1 1.36929- 8 1.10000+ 1 1.15684- 8 1.30000+ 1 8.90730-11 1.40000+ 1 7.23271-11 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.64662+ 0 3.00000+ 0 6.47810+ 0 5.00000+ 0 4.48002+ 0 6.00000+ 0 4.35137+ 0 8.00000+ 0 3.43994+ 0 1.00000+ 1 2.71121+ 0 1.10000+ 1 2.66396+ 0 1.30000+ 1 9.99998- 1 1.40000+ 1 9.99999- 1 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.83379- 3 3.00000+ 0 1.49935- 3 5.00000+ 0 1.36904- 3 6.00000+ 0 1.33048- 3 8.00000+ 0 1.56189- 4 1.00000+ 1 1.11066- 4 1.10000+ 1 1.05743- 4 1.30000+ 1 3.30067- 5 1.40000+ 1 3.16942- 5 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.74701- 1 1.11378- 2 6.00000+ 0 3.37942- 1 1.11804- 2 1.00000+ 1 2.36001- 2 1.24492- 2 1.10000+ 1 4.60552- 2 1.24553- 2 1.30000+ 1 5.55973- 5 1.25541- 2 1.40000+ 1 7.99684- 5 1.25550- 2 1.80000+ 1 1.11901- 3 1.26092- 2 1.90000+ 1 2.15411- 3 1.26096- 2 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.86240- 2 9.33600- 3 3.00000+ 0 5.00000+ 0 3.19353- 2 9.49630- 3 3.00000+ 0 6.00000+ 0 5.39449- 2 9.53890- 3 3.00000+ 0 8.00000+ 0 8.26751- 3 1.07514- 2 3.00000+ 0 1.00000+ 1 4.62411- 3 1.08077- 2 3.00000+ 0 1.10000+ 1 7.74754- 3 1.08138- 2 3.00000+ 0 1.30000+ 1 3.20067- 4 1.09126- 2 3.00000+ 0 1.40000+ 1 4.21265- 4 1.09135- 2 3.00000+ 0 1.60000+ 1 9.57695- 4 1.09565- 2 3.00000+ 0 1.80000+ 1 2.61875- 4 1.09677- 2 3.00000+ 0 1.90000+ 1 4.36455- 4 1.09681- 2 5.00000+ 0 5.00000+ 0 5.44091- 3 9.65660- 3 5.00000+ 0 6.00000+ 0 1.26052- 1 9.69920- 3 5.00000+ 0 8.00000+ 0 3.87253- 3 1.09117- 2 5.00000+ 0 1.00000+ 1 1.46121- 3 1.09680- 2 5.00000+ 0 1.10000+ 1 1.54562- 2 1.09741- 2 5.00000+ 0 1.30000+ 1 4.33932- 4 1.10729- 2 5.00000+ 0 1.40000+ 1 1.58012- 3 1.10738- 2 5.00000+ 0 1.60000+ 1 4.37740- 4 1.11168- 2 5.00000+ 0 1.80000+ 1 8.22318- 5 1.11280- 2 5.00000+ 0 1.90000+ 1 8.53951- 4 1.11284- 2 6.00000+ 0 6.00000+ 0 6.85911- 2 9.74180- 3 6.00000+ 0 8.00000+ 0 6.56604- 3 1.09543- 2 6.00000+ 0 1.00000+ 1 1.54325- 2 1.10106- 2 6.00000+ 0 1.10000+ 1 1.71393- 2 1.10167- 2 6.00000+ 0 1.30000+ 1 1.94709- 3 1.11155- 2 6.00000+ 0 1.40000+ 1 1.88390- 3 1.11164- 2 6.00000+ 0 1.60000+ 1 7.42669- 4 1.11594- 2 6.00000+ 0 1.80000+ 1 8.57805- 4 1.11706- 2 6.00000+ 0 1.90000+ 1 9.50129- 4 1.11710- 2 8.00000+ 0 8.00000+ 0 6.05996- 4 1.21668- 2 8.00000+ 0 1.00000+ 1 5.79996- 4 1.22231- 2 8.00000+ 0 1.10000+ 1 9.74027- 4 1.22292- 2 8.00000+ 0 1.30000+ 1 3.77115- 5 1.23280- 2 8.00000+ 0 1.40000+ 1 4.81147- 5 1.23289- 2 8.00000+ 0 1.60000+ 1 1.40439- 4 1.23719- 2 8.00000+ 0 1.80000+ 1 3.25104- 5 1.23831- 2 8.00000+ 0 1.90000+ 1 5.46158- 5 1.23835- 2 1.00000+ 1 1.00000+ 1 9.81717- 5 1.22795- 2 1.00000+ 1 1.10000+ 1 2.00457- 3 1.22855- 2 1.00000+ 1 1.30000+ 1 4.37813- 5 1.23843- 2 1.00000+ 1 1.40000+ 1 1.64502- 4 1.23853- 2 1.00000+ 1 1.60000+ 1 6.63329- 5 1.24282- 2 1.00000+ 1 1.80000+ 1 1.06133- 5 1.24394- 2 1.00000+ 1 1.90000+ 1 1.11441- 4 1.24398- 2 1.10000+ 1 1.10000+ 1 1.14738- 3 1.22916- 2 1.10000+ 1 1.30000+ 1 2.09988- 4 1.23904- 2 1.10000+ 1 1.40000+ 1 1.99145- 4 1.23913- 2 1.10000+ 1 1.60000+ 1 1.15154- 4 1.24343- 2 1.10000+ 1 1.80000+ 1 1.13798- 4 1.24455- 2 1.10000+ 1 1.90000+ 1 1.27341- 4 1.24459- 2 1.30000+ 1 1.40000+ 1 1.64466- 5 1.24901- 2 1.30000+ 1 1.60000+ 1 3.79533- 6 1.25331- 2 1.30000+ 1 1.80000+ 1 2.53019- 6 1.25443- 2 1.30000+ 1 1.90000+ 1 1.01210- 5 1.25447- 2 1.40000+ 1 1.40000+ 1 3.79530- 6 1.24911- 2 1.40000+ 1 1.60000+ 1 5.06042- 6 1.25340- 2 1.40000+ 1 1.80000+ 1 8.85544- 6 1.25452- 2 1.40000+ 1 1.90000+ 1 1.01210- 5 1.25456- 2 1.60000+ 1 1.60000+ 1 7.59026- 6 1.25770- 2 1.60000+ 1 1.80000+ 1 3.79528- 6 1.25882- 2 1.60000+ 1 1.90000+ 1 6.32555- 6 1.25886- 2 1.80000+ 1 1.90000+ 1 5.06052- 6 1.25998- 2 1.90000+ 1 1.90000+ 1 2.53021- 6 1.26002- 2 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.44017- 5 1.60300- 4 6.00000+ 0 7.93759- 5 2.02900- 4 1.00000+ 1 9.53513- 4 1.47173- 3 1.10000+ 1 1.68825- 3 1.47779- 3 1.30000+ 1 4.78764- 6 1.57659- 3 1.40000+ 1 7.11894- 6 1.57753- 3 1.80000+ 1 4.80836- 5 1.63168- 3 1.90000+ 1 8.57302- 5 1.63210- 3 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 5.59359- 2 9.53900- 5 5.00000+ 0 1.40000+ 1 8.94797- 2 9.63300- 5 5.00000+ 0 1.60000+ 1 8.93292- 3 1.39310- 4 5.00000+ 0 1.80000+ 1 3.15270- 3 1.50480- 4 5.00000+ 0 1.90000+ 1 4.39708- 3 1.50900- 4 6.00000+ 0 1.00000+ 1 7.60445- 2 3.31300- 5 6.00000+ 0 1.10000+ 1 1.58202- 1 3.91900- 5 6.00000+ 0 1.30000+ 1 1.60232- 1 1.37990- 4 6.00000+ 0 1.40000+ 1 2.28382- 1 1.38930- 4 6.00000+ 0 1.60000+ 1 1.51664- 2 1.81910- 4 6.00000+ 0 1.80000+ 1 3.63510- 3 1.93080- 4 6.00000+ 0 1.90000+ 1 7.72150- 3 1.93500- 4 8.00000+ 0 8.00000+ 0 8.22446- 3 1.18930- 3 8.00000+ 0 1.00000+ 1 1.54976- 2 1.24563- 3 8.00000+ 0 1.10000+ 1 2.99145- 2 1.25169- 3 8.00000+ 0 1.30000+ 1 2.03338- 2 1.35049- 3 8.00000+ 0 1.40000+ 1 2.96988- 2 1.35143- 3 8.00000+ 0 1.60000+ 1 1.69706- 3 1.39441- 3 8.00000+ 0 1.80000+ 1 8.74457- 4 1.40558- 3 8.00000+ 0 1.90000+ 1 1.67827- 3 1.40600- 3 1.00000+ 1 1.00000+ 1 1.78196- 4 1.30196- 3 1.00000+ 1 1.10000+ 1 6.09039- 4 1.30802- 3 1.00000+ 1 1.30000+ 1 3.40590- 4 1.40682- 3 1.00000+ 1 1.40000+ 1 6.41588- 3 1.40776- 3 1.00000+ 1 1.60000+ 1 1.37668- 3 1.45074- 3 1.00000+ 1 1.80000+ 1 1.50374- 5 1.46191- 3 1.00000+ 1 1.90000+ 1 3.30835- 5 1.46233- 3 1.10000+ 1 1.10000+ 1 8.18233- 4 1.31408- 3 1.10000+ 1 1.30000+ 1 6.89220- 3 1.41288- 3 1.10000+ 1 1.40000+ 1 4.88190- 3 1.41382- 3 1.10000+ 1 1.60000+ 1 2.93787- 3 1.45680- 3 1.10000+ 1 1.80000+ 1 3.65510- 5 1.46797- 3 1.10000+ 1 1.90000+ 1 7.80824- 5 1.46839- 3 1.30000+ 1 1.30000+ 1 7.94754- 4 1.51168- 3 1.30000+ 1 1.40000+ 1 3.67561- 2 1.51262- 3 1.30000+ 1 1.60000+ 1 1.73459- 3 1.55560- 3 1.30000+ 1 1.80000+ 1 2.48122- 5 1.56677- 3 1.30000+ 1 1.90000+ 1 3.44366- 4 1.56719- 3 1.40000+ 1 1.40000+ 1 1.02015- 2 1.51356- 3 1.40000+ 1 1.60000+ 1 2.53742- 3 1.55654- 3 1.40000+ 1 1.80000+ 1 3.45855- 4 1.56771- 3 1.40000+ 1 1.90000+ 1 2.51121- 4 1.56813- 3 1.60000+ 1 1.60000+ 1 8.49589- 5 1.59952- 3 1.60000+ 1 1.80000+ 1 7.74406- 5 1.61069- 3 1.60000+ 1 1.90000+ 1 1.48867- 4 1.61111- 3 1.80000+ 1 1.90000+ 1 1.50368- 6 1.62228- 3 1.90000+ 1 1.90000+ 1 1.50368- 6 1.62270- 3 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30859- 9 4.26000- 5 8.00000+ 0 3.74707- 3 1.25510- 3 1.10000+ 1 2.22898- 5 1.31749- 3 1.30000+ 1 1.32429- 2 1.41629- 3 1.60000+ 1 1.55169- 4 1.46021- 3 1.90000+ 1 1.61999- 7 1.47180- 3 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.22690- 2 2.16100- 5 6.00000+ 0 1.80000+ 1 3.63917- 2 3.27800- 5 6.00000+ 0 1.90000+ 1 1.45517- 2 3.32000- 5 8.00000+ 0 8.00000+ 0 2.35276- 3 1.02900- 3 8.00000+ 0 1.00000+ 1 4.58157- 2 1.08533- 3 8.00000+ 0 1.10000+ 1 4.07086- 3 1.09139- 3 8.00000+ 0 1.30000+ 1 2.27312- 3 1.19019- 3 8.00000+ 0 1.40000+ 1 5.89265- 3 1.19113- 3 8.00000+ 0 1.60000+ 1 4.64716- 4 1.23411- 3 8.00000+ 0 1.80000+ 1 2.03689- 3 1.24528- 3 8.00000+ 0 1.90000+ 1 2.09776- 4 1.24570- 3 1.00000+ 1 1.00000+ 1 4.16910- 2 1.14166- 3 1.00000+ 1 1.10000+ 1 1.40778- 1 1.14772- 3 1.00000+ 1 1.30000+ 1 6.33417- 2 1.24652- 3 1.00000+ 1 1.40000+ 1 1.17929- 1 1.24746- 3 1.00000+ 1 1.60000+ 1 5.40394- 3 1.29044- 3 1.00000+ 1 1.80000+ 1 4.24081- 3 1.30161- 3 1.00000+ 1 1.90000+ 1 7.77268- 3 1.30203- 3 1.10000+ 1 1.10000+ 1 3.88762- 3 1.15378- 3 1.10000+ 1 1.30000+ 1 7.77015- 2 1.25258- 3 1.10000+ 1 1.40000+ 1 1.10235- 2 1.25352- 3 1.10000+ 1 1.60000+ 1 4.24878- 4 1.29650- 3 1.10000+ 1 1.80000+ 1 6.41301- 3 1.30767- 3 1.10000+ 1 1.90000+ 1 3.79723- 4 1.30809- 3 1.30000+ 1 1.30000+ 1 6.16967- 2 1.35138- 3 1.30000+ 1 1.40000+ 1 2.76418- 1 1.35232- 3 1.30000+ 1 1.60000+ 1 2.75061- 4 1.39530- 3 1.30000+ 1 1.80000+ 1 2.82125- 3 1.40647- 3 1.30000+ 1 1.90000+ 1 4.08662- 3 1.40689- 3 1.40000+ 1 1.40000+ 1 1.33145- 2 1.35326- 3 1.40000+ 1 1.60000+ 1 6.34669- 4 1.39624- 3 1.40000+ 1 1.80000+ 1 5.01102- 3 1.40741- 3 1.40000+ 1 1.90000+ 1 5.49693- 4 1.40783- 3 1.60000+ 1 1.60000+ 1 2.39001- 5 1.43922- 3 1.60000+ 1 1.80000+ 1 2.41653- 4 1.45039- 3 1.60000+ 1 1.90000+ 1 2.12447- 5 1.45081- 3 1.80000+ 1 1.80000+ 1 9.55997- 5 1.46156- 3 1.80000+ 1 1.90000+ 1 3.18657- 4 1.46198- 3 1.90000+ 1 1.90000+ 1 7.96644- 6 1.46240- 3 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.08913- 3 1.21250- 3 1.00000+ 1 1.22371- 5 1.26883- 3 1.10000+ 1 1.17321- 5 1.27489- 3 1.30000+ 1 1.18331- 3 1.37369- 3 1.40000+ 1 1.18471- 2 1.37463- 3 1.60000+ 1 1.36231- 4 1.41761- 3 1.80000+ 1 7.60566- 8 1.42878- 3 1.90000+ 1 7.22246- 8 1.42920- 3 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.55892- 3 9.86400- 4 8.00000+ 0 1.00000+ 1 1.87850- 3 1.04273- 3 8.00000+ 0 1.10000+ 1 4.92855- 2 1.04879- 3 8.00000+ 0 1.30000+ 1 4.11208- 3 1.14759- 3 8.00000+ 0 1.40000+ 1 4.58923- 3 1.14853- 3 8.00000+ 0 1.60000+ 1 5.06887- 4 1.19151- 3 8.00000+ 0 1.80000+ 1 9.48739- 5 1.20268- 3 8.00000+ 0 1.90000+ 1 2.18752- 3 1.20310- 3 1.00000+ 1 1.00000+ 1 7.07458- 4 1.09906- 3 1.00000+ 1 1.10000+ 1 7.81555- 2 1.10512- 3 1.00000+ 1 1.30000+ 1 4.51308- 3 1.20392- 3 1.00000+ 1 1.40000+ 1 4.19894- 2 1.20486- 3 1.00000+ 1 1.60000+ 1 1.92458- 4 1.24784- 3 1.00000+ 1 1.80000+ 1 7.04749- 5 1.25901- 3 1.00000+ 1 1.90000+ 1 3.54264- 3 1.25943- 3 1.10000+ 1 1.10000+ 1 1.14045- 1 1.11118- 3 1.10000+ 1 1.30000+ 1 9.57743- 2 1.20998- 3 1.10000+ 1 1.40000+ 1 1.45659- 1 1.21092- 3 1.10000+ 1 1.60000+ 1 5.76277- 3 1.25390- 3 1.10000+ 1 1.80000+ 1 4.29100- 3 1.26507- 3 1.10000+ 1 1.90000+ 1 1.14605- 2 1.26549- 3 1.30000+ 1 1.30000+ 1 1.15175- 2 1.30878- 3 1.30000+ 1 1.40000+ 1 2.29262- 1 1.30972- 3 1.30000+ 1 1.60000+ 1 4.52677- 4 1.35270- 3 1.30000+ 1 1.80000+ 1 2.46662- 4 1.36387- 3 1.30000+ 1 1.90000+ 1 4.16356- 3 1.36429- 3 1.40000+ 1 1.40000+ 1 1.55503- 1 1.31066- 3 1.40000+ 1 1.60000+ 1 5.25855- 4 1.35364- 3 1.40000+ 1 1.80000+ 1 2.20916- 3 1.36481- 3 1.40000+ 1 1.90000+ 1 6.73312- 3 1.36523- 3 1.60000+ 1 1.60000+ 1 2.43961- 5 1.39662- 3 1.60000+ 1 1.80000+ 1 1.08428- 5 1.40779- 3 1.60000+ 1 1.90000+ 1 2.57503- 4 1.40821- 3 1.80000+ 1 1.80000+ 1 2.71068- 6 1.41896- 3 1.80000+ 1 1.90000+ 1 1.76191- 4 1.41938- 3 1.90000+ 1 1.90000+ 1 2.57502- 4 1.41980- 3 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.29342- 5 5.63300- 5 1.10000+ 1 3.40875- 5 6.23900- 5 1.80000+ 1 9.43951- 6 2.16280- 4 1.90000+ 1 1.48014- 5 2.16700- 4 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.30000+ 1 3.96532- 2 0.00000+ 0 1.00000+ 1 1.40000+ 1 3.41851- 3 0.00000+ 0 1.00000+ 1 1.60000+ 1 9.32644- 2 3.53400- 5 1.00000+ 1 1.80000+ 1 3.53839- 2 4.65100- 5 1.00000+ 1 1.90000+ 1 8.38108- 2 4.69300- 5 1.10000+ 1 1.30000+ 1 1.68442- 2 0.00000+ 0 1.10000+ 1 1.40000+ 1 8.76458- 2 0.00000+ 0 1.10000+ 1 1.60000+ 1 1.66447- 1 4.14000- 5 1.10000+ 1 1.80000+ 1 8.20923- 2 5.25700- 5 1.10000+ 1 1.90000+ 1 1.31663- 1 5.29900- 5 1.30000+ 1 1.30000+ 1 1.01395- 2 9.62800- 5 1.30000+ 1 1.40000+ 1 3.09286- 2 9.72200- 5 1.30000+ 1 1.60000+ 1 6.52701- 2 1.40200- 4 1.30000+ 1 1.80000+ 1 4.54804- 3 1.51370- 4 1.30000+ 1 1.90000+ 1 3.95417- 3 1.51790- 4 1.40000+ 1 1.40000+ 1 2.18950- 2 9.81600- 5 1.40000+ 1 1.60000+ 1 9.68589- 2 1.41140- 4 1.40000+ 1 1.80000+ 1 2.02375- 3 1.52310- 4 1.40000+ 1 1.90000+ 1 9.74276- 3 1.52730- 4 1.60000+ 1 1.60000+ 1 4.50800- 3 1.84120- 4 1.60000+ 1 1.80000+ 1 3.00964- 3 1.95290- 4 1.60000+ 1 1.90000+ 1 5.69941- 3 1.95710- 4 1.80000+ 1 1.80000+ 1 1.15205- 4 2.06460- 4 1.80000+ 1 1.90000+ 1 6.99888- 4 2.06880- 4 1.90000+ 1 1.90000+ 1 3.13511- 4 2.07300- 4 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.03740- 4 1.04860- 4 1.60000+ 1 1.79729- 5 1.48780- 4 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.25731- 1 3.99500- 5 1.30000+ 1 1.40000+ 1 5.71959- 1 4.08900- 5 1.30000+ 1 1.60000+ 1 7.71506- 2 8.38700- 5 1.30000+ 1 1.80000+ 1 4.46168- 2 9.50400- 5 1.30000+ 1 1.90000+ 1 6.66993- 2 9.54600- 5 1.40000+ 1 1.40000+ 1 1.88310- 2 4.18300- 5 1.40000+ 1 1.60000+ 1 1.23953- 2 8.48100- 5 1.40000+ 1 1.80000+ 1 7.05102- 2 9.59800- 5 1.40000+ 1 1.90000+ 1 6.81313- 3 9.64000- 5 1.60000+ 1 1.60000+ 1 1.30992- 4 1.27790- 4 1.60000+ 1 1.80000+ 1 2.22967- 3 1.38960- 4 1.60000+ 1 1.90000+ 1 2.35226- 4 1.39380- 4 1.80000+ 1 1.80000+ 1 3.32411- 4 1.50130- 4 1.80000+ 1 1.90000+ 1 2.19308- 3 1.50550- 4 1.90000+ 1 1.90000+ 1 5.07078- 5 1.50970- 4 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 9.06327- 6 9.88000- 5 1.40000+ 1 8.45897- 5 9.97400- 5 1.60000+ 1 1.47660- 5 1.42720- 4 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.31477- 2 3.38900- 5 1.30000+ 1 1.40000+ 1 3.60711- 1 3.48300- 5 1.30000+ 1 1.60000+ 1 1.79650- 2 7.78100- 5 1.30000+ 1 1.80000+ 1 6.27576- 3 8.89800- 5 1.30000+ 1 1.90000+ 1 5.89988- 2 8.94000- 5 1.40000+ 1 1.40000+ 1 2.86054- 1 3.57700- 5 1.40000+ 1 1.60000+ 1 8.70133- 2 7.87500- 5 1.40000+ 1 1.80000+ 1 4.29477- 2 8.99200- 5 1.40000+ 1 1.90000+ 1 1.10953- 1 9.03400- 5 1.60000+ 1 1.60000+ 1 8.69148- 5 1.21730- 4 1.60000+ 1 1.80000+ 1 1.21062- 4 1.32900- 4 1.60000+ 1 1.90000+ 1 2.62691- 3 1.33320- 4 1.80000+ 1 1.80000+ 1 7.76050- 6 1.44070- 4 1.80000+ 1 1.90000+ 1 1.34564- 3 1.44490- 4 1.90000+ 1 1.90000+ 1 1.63659- 3 1.44910- 4 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.36030- 6 5.50900- 5 1.90000+ 1 2.54620- 7 5.55100- 5 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.01347- 1 2.29300- 5 1.60000+ 1 1.80000+ 1 2.43812- 1 3.41000- 5 1.60000+ 1 1.90000+ 1 2.68282- 1 3.45200- 5 1.80000+ 1 1.80000+ 1 3.11408- 2 4.52700- 5 1.80000+ 1 1.90000+ 1 1.29309- 1 4.56900- 5 1.90000+ 1 1.90000+ 1 2.61070- 2 4.61100- 5 1 34000 0 7 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.32540- 6 5.45700- 5 1 34000 0 9 7.89600+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.14907- 1 2.19900- 5 1.60000+ 1 1.80000+ 1 1.34483- 1 3.31600- 5 1.60000+ 1 1.90000+ 1 3.90750- 1 3.35800- 5 1.80000+ 1 1.80000+ 1 4.71399- 3 4.43300- 5 1.80000+ 1 1.90000+ 1 6.74690- 2 4.47500- 5 1.90000+ 1 1.90000+ 1 8.76760- 2 4.51700- 5 1 35000 0 0 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 1.67000+ 0 1.90000+ 1 3.33000+ 0 1 35000 0 0 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.34350- 2 3.00000+ 0 1.76920- 3 5.00000+ 0 1.60210- 3 6.00000+ 0 1.55360- 3 8.00000+ 0 2.51490- 4 1.00000+ 1 1.91820- 4 1.10000+ 1 1.84780- 4 1.30000+ 1 7.95900- 5 1.40000+ 1 7.84500- 5 1.60000+ 1 2.41800- 5 1.80000+ 1 1.15900- 5 1.90000+ 1 1.10300- 5 1 35000 0 0 7.99040+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.70880- 2 3.00000+ 0 3.42360- 3 5.00000+ 0 3.41840- 3 6.00000+ 0 3.23920- 3 8.00000+ 0 8.26690- 4 1.00000+ 1 7.73910- 4 1.10000+ 1 7.38160- 4 1.30000+ 1 6.19040- 4 1.40000+ 1 6.10750- 4 1.60000+ 1 1.28530- 4 1.80000+ 1 8.79900- 5 1.90000+ 1 8.30700- 5 1 35000 0 0 7.99040+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.25630-10 3.00000+ 0 9.95900-10 5.00000+ 0 8.54180-10 6.00000+ 0 8.74650-10 8.00000+ 0 2.88500- 9 1.00000+ 1 2.90120- 9 1.10000+ 1 2.95450- 9 1.30000+ 1 3.01400- 9 1.40000+ 1 3.03410- 9 1.60000+ 1 8.56110- 9 1.80000+ 1 1.04760- 8 1.90000+ 1 1.07350- 8 1 35000 0 0 7.99040+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.48580- 6 3.00000+ 0 1.40320- 8 5.00000+ 0 2.07040- 8 6.00000+ 0 2.02040- 8 8.00000+ 0 1.06070-10 1.00000+ 1 2.16620-10 1.10000+ 1 1.93180-10 1.30000+ 1 4.22970-12 1.40000+ 1 3.96380-12 1 35000 0 0 7.99040+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.10440- 7 3.00000+ 0 8.22300- 6 5.00000+ 0 1.10460- 6 6.00000+ 0 1.06600- 6 8.00000+ 0 4.35830- 6 1.00000+ 1 3.74470- 6 1.10000+ 1 3.34050- 6 1.30000+ 1 6.84590- 8 1.40000+ 1 7.00450- 8 1 35000 0 0 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.27480- 4 3.00000+ 0 1.28177- 4 5.00000+ 0 9.37053- 5 6.00000+ 0 9.14055- 5 8.00000+ 0 7.27014- 5 1.00000+ 1 6.33572- 5 1.10000+ 1 6.18063- 5 1.30000+ 1 3.57275- 5 1.40000+ 1 3.57755- 5 1.60000+ 1 2.41800- 5 1.80000+ 1 1.15900- 5 1.90000+ 1 1.10300- 5 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.36779- 1 3.00000+ 0 1.92956- 2 5.00000+ 0 2.08776- 2 6.00000+ 0 1.95097- 2 8.00000+ 0 1.95666- 4 1.00000+ 1 1.63390- 4 1.10000+ 1 1.46036- 4 1.30000+ 1 3.98738- 6 1.40000+ 1 3.29938- 6 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.41560- 3 3.00000+ 0 2.80469- 5 5.00000+ 0 3.08527- 5 6.00000+ 0 2.79057- 5 8.00000+ 0 2.47392- 8 1.00000+ 1 1.94226- 8 1.10000+ 1 1.65178- 8 1.30000+ 1 2.71492-10 1.40000+ 1 2.22444-10 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.24944+ 0 3.00000+ 0 6.26822+ 0 5.00000+ 0 4.33369+ 0 6.00000+ 0 4.19208+ 0 8.00000+ 0 3.15099+ 0 1.00000+ 1 2.61169+ 0 1.10000+ 1 2.53973+ 0 1.30000+ 1 9.99996- 1 1.40000+ 1 9.99997- 1 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.89192- 3 3.00000+ 0 1.61298- 3 5.00000+ 0 1.47754- 3 6.00000+ 0 1.43429- 3 8.00000+ 0 1.78764- 4 1.00000+ 1 1.28443- 4 1.10000+ 1 1.22957- 4 1.30000+ 1 4.38622- 5 1.40000+ 1 4.26743- 5 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.82072- 1 1.18329- 2 6.00000+ 0 3.51534- 1 1.18814- 2 1.00000+ 1 2.51133- 2 1.32432- 2 1.10000+ 1 4.89996- 2 1.32502- 2 1.30000+ 1 6.60448- 5 1.33554- 2 1.40000+ 1 9.48212- 5 1.33565- 2 1.80000+ 1 1.67432- 3 1.34234- 2 1.90000+ 1 3.22224- 3 1.34240- 2 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.67974- 2 9.89660- 3 3.00000+ 0 5.00000+ 0 2.99306- 2 1.00637- 2 3.00000+ 0 6.00000+ 0 4.99645- 2 1.01122- 2 3.00000+ 0 8.00000+ 0 7.86075- 3 1.14143- 2 3.00000+ 0 1.00000+ 1 4.42909- 3 1.14740- 2 3.00000+ 0 1.10000+ 1 7.33790- 3 1.14810- 2 3.00000+ 0 1.30000+ 1 3.18089- 4 1.15862- 2 3.00000+ 0 1.40000+ 1 4.15274- 4 1.15873- 2 3.00000+ 0 1.60000+ 1 9.67001- 4 1.16416- 2 3.00000+ 0 1.80000+ 1 3.41232- 4 1.16542- 2 3.00000+ 0 1.90000+ 1 5.59865- 4 1.16548- 2 5.00000+ 0 5.00000+ 0 5.04687- 3 1.02308- 2 5.00000+ 0 6.00000+ 0 1.16418- 1 1.02793- 2 5.00000+ 0 8.00000+ 0 3.67835- 3 1.15814- 2 5.00000+ 0 1.00000+ 1 1.38227- 3 1.16411- 2 5.00000+ 0 1.10000+ 1 1.45724- 2 1.16481- 2 5.00000+ 0 1.30000+ 1 4.29136- 4 1.17533- 2 5.00000+ 0 1.40000+ 1 1.55696- 3 1.17544- 2 5.00000+ 0 1.60000+ 1 4.40707- 4 1.18087- 2 5.00000+ 0 1.80000+ 1 1.05265- 4 1.18213- 2 5.00000+ 0 1.90000+ 1 1.09197- 3 1.18219- 2 6.00000+ 0 6.00000+ 0 6.31223- 2 1.03278- 2 6.00000+ 0 8.00000+ 0 6.16168- 3 1.16299- 2 6.00000+ 0 1.00000+ 1 1.45364- 2 1.16896- 2 6.00000+ 0 1.10000+ 1 1.61080- 2 1.16966- 2 6.00000+ 0 1.30000+ 1 1.91546- 3 1.18018- 2 6.00000+ 0 1.40000+ 1 1.85069- 3 1.18029- 2 6.00000+ 0 1.60000+ 1 7.39164- 4 1.18572- 2 6.00000+ 0 1.80000+ 1 1.09774- 3 1.18698- 2 6.00000+ 0 1.90000+ 1 1.20988- 3 1.18704- 2 8.00000+ 0 8.00000+ 0 5.79069- 4 1.29320- 2 8.00000+ 0 1.00000+ 1 5.57886- 4 1.29917- 2 8.00000+ 0 1.10000+ 1 9.25090- 4 1.29987- 2 8.00000+ 0 1.30000+ 1 3.76614- 5 1.31039- 2 8.00000+ 0 1.40000+ 1 4.82506- 5 1.31051- 2 8.00000+ 0 1.60000+ 1 1.42414- 4 1.31593- 2 8.00000+ 0 1.80000+ 1 4.35452- 5 1.31719- 2 8.00000+ 0 1.90000+ 1 7.06144- 5 1.31725- 2 1.00000+ 1 1.00000+ 1 9.31028- 5 1.30514- 2 1.00000+ 1 1.10000+ 1 1.89792- 3 1.30584- 2 1.00000+ 1 1.30000+ 1 4.29733- 5 1.31636- 2 1.00000+ 1 1.40000+ 1 1.62337- 4 1.31647- 2 1.00000+ 1 1.60000+ 1 6.80374- 5 1.32190- 2 1.00000+ 1 1.80000+ 1 1.43238- 5 1.32316- 2 1.00000+ 1 1.90000+ 1 1.42039- 4 1.32321- 2 1.10000+ 1 1.10000+ 1 1.07812- 3 1.30654- 2 1.10000+ 1 1.30000+ 1 2.05929- 4 1.31706- 2 1.10000+ 1 1.40000+ 1 1.95027- 4 1.31718- 2 1.10000+ 1 1.60000+ 1 1.13861- 4 1.32260- 2 1.10000+ 1 1.80000+ 1 1.45361- 4 1.32386- 2 1.10000+ 1 1.90000+ 1 1.62322- 4 1.32392- 2 1.30000+ 1 1.40000+ 1 1.73518- 5 1.32770- 2 1.30000+ 1 1.60000+ 1 4.62706- 6 1.33312- 2 1.30000+ 1 1.80000+ 1 3.47027- 6 1.33438- 2 1.30000+ 1 1.90000+ 1 1.38813- 5 1.33444- 2 1.40000+ 1 1.40000+ 1 4.62689- 6 1.32781- 2 1.40000+ 1 1.60000+ 1 5.78333- 6 1.33324- 2 1.40000+ 1 1.80000+ 1 1.15674- 5 1.33450- 2 1.40000+ 1 1.90000+ 1 1.38808- 5 1.33455- 2 1.60000+ 1 1.60000+ 1 8.09713- 6 1.33866- 2 1.60000+ 1 1.80000+ 1 4.62701- 6 1.33992- 2 1.60000+ 1 1.90000+ 1 8.09713- 6 1.33998- 2 1.80000+ 1 1.90000+ 1 1.04111- 5 1.34124- 2 1.90000+ 1 1.90000+ 1 5.78347- 6 1.34129- 2 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42686- 5 1.67100- 4 6.00000+ 0 8.04171- 5 2.15600- 4 1.00000+ 1 1.02582- 3 1.57738- 3 1.10000+ 1 1.83441- 3 1.58442- 3 1.30000+ 1 5.59093- 6 1.68961- 3 1.40000+ 1 8.31591- 6 1.69075- 3 1.80000+ 1 7.28638- 5 1.75761- 3 1.90000+ 1 1.29402- 4 1.75817- 3 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 5.22921- 2 8.75100- 5 5.00000+ 0 1.40000+ 1 8.34756- 2 8.86500- 5 5.00000+ 0 1.60000+ 1 9.47382- 3 1.42920- 4 5.00000+ 0 1.80000+ 1 4.30534- 3 1.55510- 4 5.00000+ 0 1.90000+ 1 5.98302- 3 1.56070- 4 6.00000+ 0 1.00000+ 1 7.78173- 2 2.37800- 5 6.00000+ 0 1.10000+ 1 1.58458- 1 3.08200- 5 6.00000+ 0 1.30000+ 1 1.60186- 1 1.36010- 4 6.00000+ 0 1.40000+ 1 2.28694- 1 1.37150- 4 6.00000+ 0 1.60000+ 1 1.59162- 2 1.91420- 4 6.00000+ 0 1.80000+ 1 4.89463- 3 2.04010- 4 6.00000+ 0 1.90000+ 1 1.03137- 2 2.04570- 4 8.00000+ 0 8.00000+ 0 7.88243- 3 1.26622- 3 8.00000+ 0 1.00000+ 1 1.49389- 2 1.32589- 3 8.00000+ 0 1.10000+ 1 2.87954- 2 1.33293- 3 8.00000+ 0 1.30000+ 1 2.00906- 2 1.43812- 3 8.00000+ 0 1.40000+ 1 2.93171- 2 1.43926- 3 8.00000+ 0 1.60000+ 1 1.72472- 3 1.49353- 3 8.00000+ 0 1.80000+ 1 1.14677- 3 1.50612- 3 8.00000+ 0 1.90000+ 1 2.19394- 3 1.50668- 3 1.00000+ 1 1.00000+ 1 1.65315- 4 1.38556- 3 1.00000+ 1 1.10000+ 1 6.01022- 4 1.39260- 3 1.00000+ 1 1.30000+ 1 3.46737- 4 1.49779- 3 1.00000+ 1 1.40000+ 1 6.40781- 3 1.49893- 3 1.00000+ 1 1.60000+ 1 1.40027- 3 1.55320- 3 1.00000+ 1 1.80000+ 1 1.89132- 5 1.56579- 3 1.00000+ 1 1.90000+ 1 4.41329- 5 1.56635- 3 1.10000+ 1 1.10000+ 1 7.85672- 4 1.39964- 3 1.10000+ 1 1.30000+ 1 6.78075- 3 1.50483- 3 1.10000+ 1 1.40000+ 1 4.79667- 3 1.50597- 3 1.10000+ 1 1.60000+ 1 2.97726- 3 1.56024- 3 1.10000+ 1 1.80000+ 1 4.94424- 5 1.57283- 3 1.10000+ 1 1.90000+ 1 1.01203- 4 1.57339- 3 1.30000+ 1 1.30000+ 1 8.18843- 4 1.61002- 3 1.30000+ 1 1.40000+ 1 3.71518- 2 1.61116- 3 1.30000+ 1 1.60000+ 1 1.80584- 3 1.66543- 3 1.30000+ 1 1.80000+ 1 3.43211- 5 1.67802- 3 1.30000+ 1 1.90000+ 1 4.60195- 4 1.67858- 3 1.40000+ 1 1.40000+ 1 1.03294- 2 1.61230- 3 1.40000+ 1 1.60000+ 1 2.63870- 3 1.66657- 3 1.40000+ 1 1.80000+ 1 4.68625- 4 1.67916- 3 1.40000+ 1 1.90000+ 1 3.36242- 4 1.67972- 3 1.60000+ 1 1.60000+ 1 9.17626- 5 1.72084- 3 1.60000+ 1 1.80000+ 1 1.07174- 4 1.73343- 3 1.60000+ 1 1.90000+ 1 2.05243- 4 1.73399- 3 1.80000+ 1 1.80000+ 1 5.18016- 7 1.74602- 3 1.80000+ 1 1.90000+ 1 2.58998- 6 1.74658- 3 1.90000+ 1 1.90000+ 1 2.80170- 6 1.74714- 3 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.53560- 9 4.85000- 5 8.00000+ 0 3.55419- 3 1.35061- 3 1.10000+ 1 2.28709- 5 1.41732- 3 1.30000+ 1 1.53540- 2 1.52251- 3 1.60000+ 1 1.61099- 4 1.57792- 3 1.90000+ 1 2.51959- 7 1.59107- 3 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.12782- 2 2.43200- 5 6.00000+ 0 1.80000+ 1 4.56678- 2 3.69100- 5 6.00000+ 0 1.90000+ 1 1.81328- 2 3.74700- 5 8.00000+ 0 8.00000+ 0 2.19109- 3 1.09912- 3 8.00000+ 0 1.00000+ 1 4.31400- 2 1.15879- 3 8.00000+ 0 1.10000+ 1 3.86845- 3 1.16583- 3 8.00000+ 0 1.30000+ 1 2.15961- 3 1.27102- 3 8.00000+ 0 1.40000+ 1 5.67422- 3 1.27216- 3 8.00000+ 0 1.60000+ 1 4.58103- 4 1.32643- 3 8.00000+ 0 1.80000+ 1 2.56928- 3 1.33902- 3 8.00000+ 0 1.90000+ 1 2.69046- 4 1.33958- 3 1.00000+ 1 1.00000+ 1 3.95066- 2 1.21846- 3 1.00000+ 1 1.10000+ 1 1.32975- 1 1.22550- 3 1.00000+ 1 1.30000+ 1 6.14586- 2 1.33069- 3 1.00000+ 1 1.40000+ 1 1.13910- 1 1.33183- 3 1.00000+ 1 1.60000+ 1 5.40279- 3 1.38610- 3 1.00000+ 1 1.80000+ 1 5.43176- 3 1.39869- 3 1.00000+ 1 1.90000+ 1 9.95448- 3 1.39925- 3 1.10000+ 1 1.10000+ 1 3.66000- 3 1.23254- 3 1.10000+ 1 1.30000+ 1 7.56137- 2 1.33773- 3 1.10000+ 1 1.40000+ 1 1.06581- 2 1.33887- 3 1.10000+ 1 1.60000+ 1 4.26593- 4 1.39314- 3 1.10000+ 1 1.80000+ 1 8.14394- 3 1.40573- 3 1.10000+ 1 1.90000+ 1 4.82334- 4 1.40629- 3 1.30000+ 1 1.30000+ 1 6.14910- 2 1.44292- 3 1.30000+ 1 1.40000+ 1 2.74803- 1 1.44406- 3 1.30000+ 1 1.60000+ 1 2.81142- 4 1.49833- 3 1.30000+ 1 1.80000+ 1 3.70514- 3 1.51092- 3 1.30000+ 1 1.90000+ 1 5.40881- 3 1.51148- 3 1.40000+ 1 1.40000+ 1 1.31736- 2 1.44520- 3 1.40000+ 1 1.60000+ 1 6.47143- 4 1.49947- 3 1.40000+ 1 1.80000+ 1 6.48837- 3 1.51206- 3 1.40000+ 1 1.90000+ 1 7.19852- 4 1.51262- 3 1.60000+ 1 1.60000+ 1 2.42387- 5 1.55374- 3 1.60000+ 1 1.80000+ 1 3.22355- 4 1.56633- 3 1.60000+ 1 1.90000+ 1 2.90851- 5 1.56689- 3 1.80000+ 1 1.80000+ 1 1.76936- 4 1.57892- 3 1.80000+ 1 1.90000+ 1 5.86561- 4 1.57948- 3 1.90000+ 1 1.90000+ 1 1.85899- 5 1.58004- 3 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.07397- 3 1.30211- 3 1.00000+ 1 1.30469- 5 1.36178- 3 1.10000+ 1 1.24819- 5 1.36882- 3 1.30000+ 1 1.40269- 3 1.47401- 3 1.40000+ 1 1.37369- 2 1.47515- 3 1.60000+ 1 1.43649- 4 1.52942- 3 1.80000+ 1 1.20339- 7 1.54201- 3 1.90000+ 1 1.14209- 7 1.54257- 3 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.42049- 3 1.05062- 3 8.00000+ 0 1.00000+ 1 1.78971- 3 1.11029- 3 8.00000+ 0 1.10000+ 1 4.69531- 2 1.11733- 3 8.00000+ 0 1.30000+ 1 4.00748- 3 1.22252- 3 8.00000+ 0 1.40000+ 1 4.41544- 3 1.22366- 3 8.00000+ 0 1.60000+ 1 5.05631- 4 1.27793- 3 8.00000+ 0 1.80000+ 1 1.22649- 4 1.29052- 3 8.00000+ 0 1.90000+ 1 2.80098- 3 1.29108- 3 1.00000+ 1 1.00000+ 1 6.70866- 4 1.16996- 3 1.00000+ 1 1.10000+ 1 7.48914- 2 1.17700- 3 1.00000+ 1 1.30000+ 1 4.46321- 3 1.28219- 3 1.00000+ 1 1.40000+ 1 4.13497- 2 1.28333- 3 1.00000+ 1 1.60000+ 1 1.95247- 4 1.33760- 3 1.00000+ 1 1.80000+ 1 9.01156- 5 1.35019- 3 1.00000+ 1 1.90000+ 1 4.56843- 3 1.35075- 3 1.10000+ 1 1.10000+ 1 1.09143- 1 1.18404- 3 1.10000+ 1 1.30000+ 1 9.40798- 2 1.28923- 3 1.10000+ 1 1.40000+ 1 1.43325- 1 1.29037- 3 1.10000+ 1 1.60000+ 1 5.84243- 3 1.34464- 3 1.10000+ 1 1.80000+ 1 5.58953- 3 1.35723- 3 1.10000+ 1 1.90000+ 1 1.48271- 2 1.35779- 3 1.30000+ 1 1.30000+ 1 1.16167- 2 1.39442- 3 1.30000+ 1 1.40000+ 1 2.30556- 1 1.39556- 3 1.30000+ 1 1.60000+ 1 4.70595- 4 1.44983- 3 1.30000+ 1 1.80000+ 1 3.32915- 4 1.46242- 3 1.30000+ 1 1.90000+ 1 5.49193- 3 1.46298- 3 1.40000+ 1 1.40000+ 1 1.56483- 1 1.39670- 3 1.40000+ 1 1.60000+ 1 5.38175- 4 1.45097- 3 1.40000+ 1 1.80000+ 1 2.94872- 3 1.46356- 3 1.40000+ 1 1.90000+ 1 8.92880- 3 1.46412- 3 1.60000+ 1 1.60000+ 1 2.75347- 5 1.50524- 3 1.60000+ 1 1.80000+ 1 1.25159- 5 1.51783- 3 1.60000+ 1 1.90000+ 1 3.50436- 4 1.51839- 3 1.80000+ 1 1.80000+ 1 2.50317- 6 1.53042- 3 1.80000+ 1 1.90000+ 1 3.27914- 4 1.53098- 3 1.90000+ 1 1.90000+ 1 4.78096- 4 1.53154- 3 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.28640- 5 5.96700- 5 1.10000+ 1 3.42006- 5 6.67100- 5 1.80000+ 1 1.43636- 5 2.39900- 4 1.90000+ 1 2.24554- 5 2.40460- 4 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 9.69691- 2 3.54900- 5 1.00000+ 1 1.80000+ 1 4.99921- 2 4.80800- 5 1.00000+ 1 1.90000+ 1 1.15798- 1 4.86400- 5 1.10000+ 1 1.60000+ 1 1.71048- 1 4.25300- 5 1.10000+ 1 1.80000+ 1 1.12436- 1 5.51200- 5 1.10000+ 1 1.90000+ 1 1.80935- 1 5.56800- 5 1.30000+ 1 1.30000+ 1 1.03379- 2 9.23100- 5 1.30000+ 1 1.40000+ 1 2.32724- 2 9.34500- 5 1.30000+ 1 1.60000+ 1 6.15730- 2 1.47720- 4 1.30000+ 1 1.80000+ 1 5.79510- 3 1.60310- 4 1.30000+ 1 1.90000+ 1 4.89132- 3 1.60870- 4 1.40000+ 1 1.40000+ 1 2.01035- 2 9.45900- 5 1.40000+ 1 1.60000+ 1 9.08770- 2 1.48860- 4 1.40000+ 1 1.80000+ 1 2.43116- 3 1.61450- 4 1.40000+ 1 1.90000+ 1 1.22081- 2 1.62010- 4 1.60000+ 1 1.60000+ 1 1.04319- 2 2.03130- 4 1.60000+ 1 1.80000+ 1 9.23322- 3 2.15720- 4 1.60000+ 1 1.90000+ 1 1.74468- 2 2.16280- 4 1.80000+ 1 1.80000+ 1 6.20954- 4 2.28310- 4 1.80000+ 1 1.90000+ 1 2.23054- 3 2.28870- 4 1.90000+ 1 1.90000+ 1 1.28490- 3 2.29430- 4 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.33030- 4 1.12230- 4 1.60000+ 1 2.43780- 5 1.67640- 4 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.15578- 1 3.26400- 5 1.30000+ 1 1.40000+ 1 4.87312- 1 3.37800- 5 1.30000+ 1 1.60000+ 1 8.57756- 2 8.80500- 5 1.30000+ 1 1.80000+ 1 6.41618- 2 1.00640- 4 1.30000+ 1 1.90000+ 1 9.63036- 2 1.01200- 4 1.40000+ 1 1.40000+ 1 1.82523- 2 3.49200- 5 1.40000+ 1 1.60000+ 1 1.37437- 2 8.91900- 5 1.40000+ 1 1.80000+ 1 9.97009- 2 1.01780- 4 1.40000+ 1 1.90000+ 1 9.75321- 3 1.02340- 4 1.60000+ 1 1.60000+ 1 1.77273- 4 1.43460- 4 1.60000+ 1 1.80000+ 1 3.29619- 3 1.56050- 4 1.60000+ 1 1.90000+ 1 3.76344- 4 1.56610- 4 1.80000+ 1 1.80000+ 1 1.04180- 3 1.68640- 4 1.80000+ 1 1.90000+ 1 4.26280- 3 1.69200- 4 1.90000+ 1 1.90000+ 1 1.07520- 4 1.69760- 4 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.14041- 5 1.05190- 4 1.40000+ 1 1.06931- 4 1.06330- 4 1.60000+ 1 2.23162- 5 1.60600- 4 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.25290- 2 2.56000- 5 1.30000+ 1 1.40000+ 1 2.83155- 1 2.67400- 5 1.30000+ 1 1.60000+ 1 2.02982- 2 8.10100- 5 1.30000+ 1 1.80000+ 1 9.38337- 3 9.36000- 5 1.30000+ 1 1.90000+ 1 8.49677- 2 9.41600- 5 1.40000+ 1 1.40000+ 1 2.44800- 1 2.78800- 5 1.40000+ 1 1.60000+ 1 9.85840- 2 8.21500- 5 1.40000+ 1 1.80000+ 1 6.37338- 2 9.47400- 5 1.40000+ 1 1.90000+ 1 1.61827- 1 9.53000- 5 1.60000+ 1 1.60000+ 1 1.27870- 4 1.36420- 4 1.60000+ 1 1.80000+ 1 1.94656- 4 1.49010- 4 1.60000+ 1 1.90000+ 1 3.95521- 3 1.49570- 4 1.80000+ 1 1.80000+ 1 2.44340- 5 1.61600- 4 1.80000+ 1 1.90000+ 1 2.65199- 3 1.62160- 4 1.90000+ 1 1.90000+ 1 3.62773- 3 1.62720- 4 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.36251- 6 6.80000- 5 1.90000+ 1 6.24872- 7 6.85600- 5 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.19834- 1 3.12300- 5 1.60000+ 1 1.80000+ 1 2.69287- 1 4.38200- 5 1.60000+ 1 1.90000+ 1 3.09911- 1 4.43800- 5 1.80000+ 1 1.80000+ 1 4.50335- 2 5.64100- 5 1.80000+ 1 1.90000+ 1 1.21787- 1 5.69700- 5 1.90000+ 1 1.90000+ 1 3.41431- 2 5.75300- 5 1 35000 0 7 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.29938- 6 6.74200- 5 1 35000 0 9 7.99040+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.26779- 1 3.00900- 5 1.60000+ 1 1.80000+ 1 1.54383- 1 4.26800- 5 1.60000+ 1 1.90000+ 1 4.24784- 1 4.32400- 5 1.80000+ 1 1.80000+ 1 8.40977- 3 5.52700- 5 1.80000+ 1 1.90000+ 1 7.01718- 2 5.58300- 5 1.90000+ 1 1.90000+ 1 1.15469- 1 5.63900- 5 1 36000 0 0 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 1 36000 0 0 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42800- 2 3.00000+ 0 1.90230- 3 5.00000+ 0 1.72830- 3 6.00000+ 0 1.67340- 3 8.00000+ 0 2.78170- 4 1.00000+ 1 2.15120- 4 1.10000+ 1 2.06960- 4 1.30000+ 1 9.53500- 5 1.40000+ 1 9.39800- 5 1.60000+ 1 2.74400- 5 1.80000+ 1 1.34300- 5 1.90000+ 1 1.27200- 5 1 36000 0 0 8.38000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.81430- 2 3.00000+ 0 3.65720- 3 5.00000+ 0 3.65290- 3 6.00000+ 0 3.45050- 3 8.00000+ 0 8.96870- 4 1.00000+ 1 8.43430- 4 1.10000+ 1 8.02720- 4 1.30000+ 1 6.84830- 4 1.40000+ 1 6.75340- 4 1.60000+ 1 1.47890- 4 1.80000+ 1 1.04720- 4 1.90000+ 1 9.86500- 5 1 36000 0 0 8.38000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.18990-10 3.00000+ 0 9.64240-10 5.00000+ 0 8.25990-10 6.00000+ 0 8.47230-10 8.00000+ 0 2.77490- 9 1.00000+ 1 2.78000- 9 1.10000+ 1 2.83360- 9 1.30000+ 1 2.84560- 9 1.40000+ 1 2.86490- 9 1.60000+ 1 8.05910- 9 1.80000+ 1 9.68100- 9 1.90000+ 1 9.92810- 9 1 36000 0 0 8.38000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.68590- 6 3.00000+ 0 1.67580- 8 5.00000+ 0 2.47170- 8 6.00000+ 0 2.40800- 8 8.00000+ 0 1.45910-10 1.00000+ 1 2.43290-10 1.10000+ 1 2.15430-10 1.30000+ 1 7.27460-12 1.40000+ 1 6.79280-12 1 36000 0 0 8.38000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.30770- 7 3.00000+ 0 7.15510- 6 5.00000+ 0 1.20020- 6 6.00000+ 0 1.14580- 6 8.00000+ 0 5.16930- 6 1.00000+ 1 3.54140- 6 1.10000+ 1 3.08270- 6 1.30000+ 1 7.02530- 8 1.40000+ 1 7.21090- 8 1 36000 0 0 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32344- 4 3.00000+ 0 1.33952- 4 5.00000+ 0 1.00375- 4 6.00000+ 0 9.73508- 5 8.00000+ 0 7.67778- 5 1.00000+ 1 6.74013- 5 1.10000+ 1 6.45189- 5 1.30000+ 1 3.98200- 5 1.40000+ 1 3.94532- 5 1.60000+ 1 2.74400- 5 1.80000+ 1 1.34300- 5 1.90000+ 1 1.27200- 5 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.64678- 1 3.00000+ 0 2.15300- 2 5.00000+ 0 2.33418- 2 6.00000+ 0 2.17909- 2 8.00000+ 0 2.40824- 4 1.00000+ 1 2.11089- 4 1.10000+ 1 1.89492- 4 1.30000+ 1 8.35663- 6 1.40000+ 1 6.96921- 6 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.20574- 3 3.00000+ 0 3.36265- 5 5.00000+ 0 3.70592- 5 6.00000+ 0 3.34387- 5 8.00000+ 0 3.43702- 8 1.00000+ 1 2.70443- 8 1.10000+ 1 2.32215- 8 1.30000+ 1 6.85499-10 1.40000+ 1 5.66318-10 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.83136+ 0 3.00000+ 0 5.88403+ 0 5.00000+ 0 4.17831+ 0 6.00000+ 0 4.02175+ 0 8.00000+ 0 2.97952+ 0 1.00000+ 1 2.48596+ 0 1.10000+ 1 2.37451+ 0 1.30000+ 1 9.99992- 1 1.40000+ 1 9.99993- 1 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.94191- 3 3.00000+ 0 1.73472- 3 5.00000+ 0 1.59087- 3 6.00000+ 0 1.54261- 3 8.00000+ 0 2.01358- 4 1.00000+ 1 1.47692- 4 1.10000+ 1 1.42418- 4 1.30000+ 1 5.55293- 5 1.40000+ 1 5.45262- 5 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.88869- 1 1.25517- 2 6.00000+ 0 3.64199- 1 1.26066- 2 1.00000+ 1 2.65729- 2 1.40649- 2 1.10000+ 1 5.18228- 2 1.40730- 2 1.30000+ 1 7.74727- 5 1.41846- 2 1.40000+ 1 1.11000- 4 1.41860- 2 1.80000+ 1 2.33499- 3 1.42666- 2 1.90000+ 1 4.49188- 3 1.42673- 2 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.50649- 2 1.04754- 2 3.00000+ 0 5.00000+ 0 2.80310- 2 1.06494- 2 3.00000+ 0 6.00000+ 0 4.62200- 2 1.07043- 2 3.00000+ 0 8.00000+ 0 7.46432- 3 1.20995- 2 3.00000+ 0 1.00000+ 1 4.23599- 3 1.21626- 2 3.00000+ 0 1.10000+ 1 6.93372- 3 1.21707- 2 3.00000+ 0 1.30000+ 1 3.13821- 4 1.22823- 2 3.00000+ 0 1.40000+ 1 4.05746- 4 1.22837- 2 3.00000+ 0 1.60000+ 1 9.67892- 4 1.23503- 2 3.00000+ 0 1.80000+ 1 4.20560- 4 1.23643- 2 3.00000+ 0 1.90000+ 1 6.81524- 4 1.23650- 2 5.00000+ 0 5.00000+ 0 4.67293- 3 1.08234- 2 5.00000+ 0 6.00000+ 0 1.07352- 1 1.08783- 2 5.00000+ 0 8.00000+ 0 3.49080- 3 1.22735- 2 5.00000+ 0 1.00000+ 1 1.30486- 3 1.23366- 2 5.00000+ 0 1.10000+ 1 1.37050- 2 1.23447- 2 5.00000+ 0 1.30000+ 1 4.20525- 4 1.24563- 2 5.00000+ 0 1.40000+ 1 1.52361- 3 1.24577- 2 5.00000+ 0 1.60000+ 1 4.40592- 4 1.25243- 2 5.00000+ 0 1.80000+ 1 1.28901- 4 1.25383- 2 5.00000+ 0 1.90000+ 1 1.32071- 3 1.25390- 2 6.00000+ 0 6.00000+ 0 5.79975- 2 1.09332- 2 6.00000+ 0 8.00000+ 0 5.77333- 3 1.23284- 2 6.00000+ 0 1.00000+ 1 1.36599- 2 1.23915- 2 6.00000+ 0 1.10000+ 1 1.51016- 2 1.23996- 2 6.00000+ 0 1.30000+ 1 1.87127- 3 1.25112- 2 6.00000+ 0 1.40000+ 1 1.80360- 3 1.25126- 2 6.00000+ 0 1.60000+ 1 7.29062- 4 1.25792- 2 6.00000+ 0 1.80000+ 1 1.32820- 3 1.25932- 2 6.00000+ 0 1.90000+ 1 1.45916- 3 1.25939- 2 8.00000+ 0 8.00000+ 0 5.54395- 4 1.37237- 2 8.00000+ 0 1.00000+ 1 5.37332- 4 1.37867- 2 8.00000+ 0 1.10000+ 1 8.80278- 4 1.37949- 2 8.00000+ 0 1.30000+ 1 3.73884- 5 1.39065- 2 8.00000+ 0 1.40000+ 1 4.70068- 5 1.39078- 2 8.00000+ 0 1.60000+ 1 1.43150- 4 1.39744- 2 8.00000+ 0 1.80000+ 1 5.34117- 5 1.39884- 2 8.00000+ 0 1.90000+ 1 8.65290- 5 1.39891- 2 1.00000+ 1 1.00000+ 1 8.83051- 5 1.38498- 2 1.00000+ 1 1.10000+ 1 1.79728- 3 1.38579- 2 1.00000+ 1 1.30000+ 1 4.19953- 5 1.39695- 2 1.00000+ 1 1.40000+ 1 1.59380- 4 1.39709- 2 1.00000+ 1 1.60000+ 1 6.89185- 5 1.40374- 2 1.00000+ 1 1.80000+ 1 1.72293- 5 1.40514- 2 1.00000+ 1 1.90000+ 1 1.73380- 4 1.40522- 2 1.10000+ 1 1.10000+ 1 1.00439- 3 1.38661- 2 1.10000+ 1 1.30000+ 1 1.99370- 4 1.39777- 2 1.10000+ 1 1.40000+ 1 1.88592- 4 1.39791- 2 1.10000+ 1 1.60000+ 1 1.12080- 4 1.40456- 2 1.10000+ 1 1.80000+ 1 1.74581- 4 1.40596- 2 1.10000+ 1 1.90000+ 1 1.93981- 4 1.40603- 2 1.30000+ 1 1.40000+ 1 1.79615- 5 1.40907- 2 1.30000+ 1 1.60000+ 1 4.22641- 6 1.41572- 2 1.30000+ 1 1.80000+ 1 4.22641- 6 1.41712- 2 1.30000+ 1 1.90000+ 1 1.79615- 5 1.41719- 2 1.40000+ 1 1.40000+ 1 4.34469- 6 1.40920- 2 1.40000+ 1 1.60000+ 1 6.51667- 6 1.41586- 2 1.40000+ 1 1.80000+ 1 1.52065- 5 1.41726- 2 1.40000+ 1 1.90000+ 1 1.73779- 5 1.41733- 2 1.60000+ 1 1.60000+ 1 8.71833- 6 1.42251- 2 1.60000+ 1 1.80000+ 1 5.81183- 6 1.42391- 2 1.60000+ 1 1.90000+ 1 9.68675- 6 1.42398- 2 1.80000+ 1 1.80000+ 1 1.05661- 6 1.42531- 2 1.80000+ 1 1.90000+ 1 1.69053- 5 1.42538- 2 1.90000+ 1 1.90000+ 1 9.70476- 6 1.42546- 2 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42479- 5 1.74000- 4 6.00000+ 0 8.20713- 5 2.28900- 4 1.00000+ 1 1.11439- 3 1.68718- 3 1.10000+ 1 1.98218- 3 1.69534- 3 1.30000+ 1 6.55615- 6 1.80695- 3 1.40000+ 1 9.75582- 6 1.80832- 3 1.80000+ 1 1.04499- 4 1.88887- 3 1.90000+ 1 1.84708- 4 1.88958- 3 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 5.73065- 2 7.86500- 5 5.00000+ 0 1.40000+ 1 9.14224- 2 8.00200- 5 5.00000+ 0 1.60000+ 1 1.18917- 2 1.46560- 4 5.00000+ 0 1.80000+ 1 6.64933- 3 1.60570- 4 5.00000+ 0 1.90000+ 1 9.21862- 3 1.61280- 4 6.00000+ 0 1.10000+ 1 1.27861- 1 2.19400- 5 6.00000+ 0 1.30000+ 1 1.91470- 1 1.33550- 4 6.00000+ 0 1.40000+ 1 2.72920- 1 1.34920- 4 6.00000+ 0 1.60000+ 1 1.97729- 2 2.01460- 4 6.00000+ 0 1.80000+ 1 7.45160- 3 2.15470- 4 6.00000+ 0 1.90000+ 1 1.55894- 2 2.16180- 4 8.00000+ 0 8.00000+ 0 7.62851- 3 1.34596- 3 8.00000+ 0 1.00000+ 1 1.45374- 2 1.40901- 3 8.00000+ 0 1.10000+ 1 2.79786- 2 1.41717- 3 8.00000+ 0 1.30000+ 1 1.99397- 2 1.52878- 3 8.00000+ 0 1.40000+ 1 2.90659- 2 1.53015- 3 8.00000+ 0 1.60000+ 1 1.75233- 3 1.59669- 3 8.00000+ 0 1.80000+ 1 1.43690- 3 1.61070- 3 8.00000+ 0 1.90000+ 1 2.73975- 3 1.61141- 3 1.00000+ 1 1.00000+ 1 1.53785- 4 1.47206- 3 1.00000+ 1 1.10000+ 1 5.94687- 4 1.48022- 3 1.00000+ 1 1.30000+ 1 3.57074- 4 1.59183- 3 1.00000+ 1 1.40000+ 1 6.44649- 3 1.59320- 3 1.00000+ 1 1.60000+ 1 1.42301- 3 1.65974- 3 1.00000+ 1 1.80000+ 1 2.17816- 5 1.67375- 3 1.00000+ 1 1.90000+ 1 5.61026- 5 1.67446- 3 1.10000+ 1 1.10000+ 1 7.39370- 4 1.48838- 3 1.10000+ 1 1.30000+ 1 6.56702- 3 1.59999- 3 1.10000+ 1 1.40000+ 1 4.64073- 3 1.60136- 3 1.10000+ 1 1.60000+ 1 2.94822- 3 1.66790- 3 1.10000+ 1 1.80000+ 1 6.10820- 5 1.68191- 3 1.10000+ 1 1.90000+ 1 1.21453- 4 1.68262- 3 1.30000+ 1 1.30000+ 1 8.46149- 4 1.71160- 3 1.30000+ 1 1.40000+ 1 3.76210- 2 1.71297- 3 1.30000+ 1 1.60000+ 1 1.87252- 3 1.77951- 3 1.30000+ 1 1.80000+ 1 4.55414- 5 1.79352- 3 1.30000+ 1 1.90000+ 1 5.87434- 4 1.79423- 3 1.40000+ 1 1.40000+ 1 1.04797- 2 1.71434- 3 1.40000+ 1 1.60000+ 1 2.73326- 3 1.78088- 3 1.40000+ 1 1.80000+ 1 6.05925- 4 1.79489- 3 1.40000+ 1 1.90000+ 1 4.29031- 4 1.79560- 3 1.60000+ 1 1.60000+ 1 9.76846- 5 1.84742- 3 1.60000+ 1 1.80000+ 1 1.40585- 4 1.86143- 3 1.60000+ 1 1.90000+ 1 2.67986- 4 1.86214- 3 1.80000+ 1 1.80000+ 1 7.73010- 7 1.87544- 3 1.80000+ 1 1.90000+ 1 6.18413- 6 1.87615- 3 1.90000+ 1 1.90000+ 1 4.62006- 6 1.87686- 3 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.79799- 9 5.49000- 5 8.00000+ 0 3.38438- 3 1.45013- 3 1.10000+ 1 2.35079- 5 1.52134- 3 1.30000+ 1 1.74919- 2 1.63295- 3 1.60000+ 1 1.67509- 4 1.70086- 3 1.90000+ 1 3.66198- 7 1.71558- 3 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.08855- 2 2.74600- 5 6.00000+ 0 1.80000+ 1 5.46950- 2 4.14700- 5 6.00000+ 0 1.90000+ 1 2.15170- 2 4.21800- 5 8.00000+ 0 8.00000+ 0 2.03727- 3 1.17196- 3 8.00000+ 0 1.00000+ 1 4.06245- 2 1.23501- 3 8.00000+ 0 1.10000+ 1 3.67292- 3 1.24317- 3 8.00000+ 0 1.30000+ 1 2.05945- 3 1.35478- 3 8.00000+ 0 1.40000+ 1 5.45922- 3 1.35615- 3 8.00000+ 0 1.60000+ 1 4.46067- 4 1.42269- 3 8.00000+ 0 1.80000+ 1 3.08477- 3 1.43670- 3 8.00000+ 0 1.90000+ 1 3.28449- 4 1.43741- 3 1.00000+ 1 1.00000+ 1 3.74502- 2 1.29806- 3 1.00000+ 1 1.10000+ 1 1.25663- 1 1.30622- 3 1.00000+ 1 1.30000+ 1 5.94956- 2 1.41783- 3 1.00000+ 1 1.40000+ 1 1.09768- 1 1.41920- 3 1.00000+ 1 1.60000+ 1 5.36171- 3 1.48574- 3 1.00000+ 1 1.80000+ 1 6.60675- 3 1.49975- 3 1.00000+ 1 1.90000+ 1 1.20927- 2 1.50046- 3 1.10000+ 1 1.10000+ 1 3.45316- 3 1.31438- 3 1.10000+ 1 1.30000+ 1 7.33333- 2 1.42599- 3 1.10000+ 1 1.40000+ 1 1.02704- 2 1.42736- 3 1.10000+ 1 1.60000+ 1 4.26100- 4 1.49390- 3 1.10000+ 1 1.80000+ 1 9.82708- 3 1.50791- 3 1.10000+ 1 1.90000+ 1 5.81445- 4 1.50862- 3 1.30000+ 1 1.30000+ 1 6.11583- 2 1.53760- 3 1.30000+ 1 1.40000+ 1 2.72737- 1 1.53897- 3 1.30000+ 1 1.60000+ 1 2.86295- 4 1.60551- 3 1.30000+ 1 1.80000+ 1 4.62492- 3 1.61952- 3 1.30000+ 1 1.90000+ 1 6.79101- 3 1.62023- 3 1.40000+ 1 1.40000+ 1 1.29541- 2 1.54034- 3 1.40000+ 1 1.60000+ 1 6.52471- 4 1.60688- 3 1.40000+ 1 1.80000+ 1 7.96061- 3 1.62089- 3 1.40000+ 1 1.90000+ 1 8.87686- 4 1.62160- 3 1.60000+ 1 1.60000+ 1 2.44127- 5 1.67342- 3 1.60000+ 1 1.80000+ 1 4.08357- 4 1.68743- 3 1.60000+ 1 1.90000+ 1 3.77275- 5 1.68814- 3 1.80000+ 1 1.80000+ 1 2.86289- 4 1.70144- 3 1.80000+ 1 1.90000+ 1 9.45404- 4 1.70215- 3 1.90000+ 1 1.90000+ 1 3.77848- 5 1.70286- 3 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.04641- 3 1.39523- 3 1.00000+ 1 1.36320- 5 1.45828- 3 1.10000+ 1 1.30140- 5 1.46644- 3 1.30000+ 1 1.62150- 3 1.57805- 3 1.40000+ 1 1.57820- 2 1.57942- 3 1.60000+ 1 1.50760- 4 1.64596- 3 1.80000+ 1 1.77550- 7 1.65997- 3 1.90000+ 1 1.68380- 7 1.66068- 3 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.30255- 3 1.11706- 3 8.00000+ 0 1.00000+ 1 1.70999- 3 1.18011- 3 8.00000+ 0 1.10000+ 1 4.49214- 2 1.18827- 3 8.00000+ 0 1.30000+ 1 3.91035- 3 1.29988- 3 8.00000+ 0 1.40000+ 1 4.25888- 3 1.30125- 3 8.00000+ 0 1.60000+ 1 5.04185- 4 1.36779- 3 8.00000+ 0 1.80000+ 1 1.51020- 4 1.38180- 3 8.00000+ 0 1.90000+ 1 3.41078- 3 1.38251- 3 1.00000+ 1 1.00000+ 1 6.41264- 4 1.24316- 3 1.00000+ 1 1.10000+ 1 7.20118- 2 1.25132- 3 1.00000+ 1 1.30000+ 1 4.40753- 3 1.36293- 3 1.00000+ 1 1.40000+ 1 4.06759- 2 1.36430- 3 1.00000+ 1 1.60000+ 1 1.95158- 4 1.43084- 3 1.00000+ 1 1.80000+ 1 1.11519- 4 1.44485- 3 1.00000+ 1 1.90000+ 1 5.59703- 3 1.44556- 3 1.10000+ 1 1.10000+ 1 1.04807- 1 1.25948- 3 1.10000+ 1 1.30000+ 1 9.23720- 2 1.37109- 3 1.10000+ 1 1.40000+ 1 1.40909- 1 1.37246- 3 1.10000+ 1 1.60000+ 1 5.88989- 3 1.43900- 3 1.10000+ 1 1.80000+ 1 6.91448- 3 1.45301- 3 1.10000+ 1 1.90000+ 1 1.82275- 2 1.45372- 3 1.30000+ 1 1.30000+ 1 1.16688- 2 1.48270- 3 1.30000+ 1 1.40000+ 1 2.30889- 1 1.48407- 3 1.30000+ 1 1.60000+ 1 4.80958- 4 1.55061- 3 1.30000+ 1 1.80000+ 1 4.22869- 4 1.56462- 3 1.30000+ 1 1.90000+ 1 6.85892- 3 1.56533- 3 1.40000+ 1 1.40000+ 1 1.56822- 1 1.48544- 3 1.40000+ 1 1.60000+ 1 5.48320- 4 1.55198- 3 1.40000+ 1 1.80000+ 1 3.72441- 3 1.56599- 3 1.40000+ 1 1.90000+ 1 1.12059- 2 1.56670- 3 1.60000+ 1 1.60000+ 1 2.78813- 5 1.61852- 3 1.60000+ 1 1.80000+ 1 1.85881- 5 1.63253- 3 1.60000+ 1 1.90000+ 1 4.48431- 4 1.63324- 3 1.80000+ 1 1.80000+ 1 4.64684- 6 1.64654- 3 1.80000+ 1 1.90000+ 1 5.39044- 4 1.64725- 3 1.90000+ 1 1.90000+ 1 7.83011- 4 1.64796- 3 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.27624- 5 6.30500- 5 1.10000+ 1 3.51138- 5 7.12100- 5 1.80000+ 1 1.97284- 5 2.64740- 4 1.90000+ 1 3.07209- 5 2.65450- 4 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 8.18146- 2 3.56100- 5 1.00000+ 1 1.80000+ 1 5.44392- 2 4.96200- 5 1.00000+ 1 1.90000+ 1 1.22909- 1 5.03300- 5 1.10000+ 1 1.60000+ 1 1.42976- 1 4.37700- 5 1.10000+ 1 1.80000+ 1 1.18520- 1 5.77800- 5 1.10000+ 1 1.90000+ 1 1.91429- 1 5.84900- 5 1.30000+ 1 1.30000+ 1 1.01571- 2 8.74700- 5 1.30000+ 1 1.40000+ 1 1.71526- 2 8.88400- 5 1.30000+ 1 1.60000+ 1 5.60700- 2 1.55380- 4 1.30000+ 1 1.80000+ 1 6.75392- 3 1.69390- 4 1.30000+ 1 1.90000+ 1 5.55833- 3 1.70100- 4 1.40000+ 1 1.40000+ 1 1.83723- 2 9.02100- 5 1.40000+ 1 1.60000+ 1 8.31509- 2 1.56750- 4 1.40000+ 1 1.80000+ 1 2.71101- 3 1.70760- 4 1.40000+ 1 1.90000+ 1 1.41569- 2 1.71470- 4 1.60000+ 1 1.60000+ 1 1.58861- 2 2.23290- 4 1.60000+ 1 1.80000+ 1 1.76513- 2 2.37300- 4 1.60000+ 1 1.90000+ 1 3.32763- 2 2.38010- 4 1.80000+ 1 1.80000+ 1 1.01328- 3 2.51310- 4 1.80000+ 1 1.90000+ 1 2.80685- 3 2.52020- 4 1.90000+ 1 1.90000+ 1 3.09833- 3 2.52730- 4 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.67029- 4 1.19770- 4 1.60000+ 1 3.24469- 5 1.87680- 4 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 1.02288- 1 2.44200- 5 1.30000+ 1 1.40000+ 1 3.81784- 1 2.57900- 5 1.30000+ 1 1.60000+ 1 9.64043- 2 9.23300- 5 1.30000+ 1 1.80000+ 1 8.85373- 2 1.06340- 4 1.30000+ 1 1.90000+ 1 1.33504- 1 1.07050- 4 1.40000+ 1 1.40000+ 1 1.75764- 2 2.71600- 5 1.40000+ 1 1.60000+ 1 1.54648- 2 9.37000- 5 1.40000+ 1 1.80000+ 1 1.35410- 1 1.07710- 4 1.40000+ 1 1.90000+ 1 1.33880- 2 1.08420- 4 1.60000+ 1 1.60000+ 1 2.31230- 4 1.60240- 4 1.60000+ 1 1.80000+ 1 4.65011- 3 1.74250- 4 1.60000+ 1 1.90000+ 1 5.69246- 4 1.74960- 4 1.80000+ 1 1.80000+ 1 2.30383- 3 1.88260- 4 1.80000+ 1 1.90000+ 1 7.49094- 3 1.88970- 4 1.90000+ 1 1.90000+ 1 1.98199- 4 1.89680- 4 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.41139- 5 1.11610- 4 1.40000+ 1 1.32959- 4 1.12980- 4 1.60000+ 1 3.23128- 5 1.79520- 4 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.14849- 2 1.62600- 5 1.30000+ 1 1.40000+ 1 1.80620- 1 1.76300- 5 1.30000+ 1 1.60000+ 1 2.33887- 2 8.41700- 5 1.30000+ 1 1.80000+ 1 1.35465- 2 9.81800- 5 1.30000+ 1 1.90000+ 1 1.18447- 1 9.88900- 5 1.40000+ 1 1.40000+ 1 1.90649- 1 1.90000- 5 1.40000+ 1 1.60000+ 1 1.13798- 1 8.55400- 5 1.40000+ 1 1.80000+ 1 9.14734- 2 9.95500- 5 1.40000+ 1 1.90000+ 1 2.28386- 1 1.00260- 4 1.60000+ 1 1.60000+ 1 1.79160- 4 1.52080- 4 1.60000+ 1 1.80000+ 1 3.00946- 4 1.66090- 4 1.60000+ 1 1.90000+ 1 5.72675- 3 1.66800- 4 1.80000+ 1 1.80000+ 1 5.56009- 5 1.80100- 4 1.80000+ 1 1.90000+ 1 4.76317- 3 1.80810- 4 1.90000+ 1 1.90000+ 1 7.00116- 3 1.81520- 4 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 7.05533- 6 8.19200- 5 1.90000+ 1 1.30130- 6 8.26300- 5 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.62098- 1 4.04700- 5 1.60000+ 1 1.80000+ 1 2.89268- 1 5.44800- 5 1.60000+ 1 1.90000+ 1 3.39017- 1 5.51900- 5 1.80000+ 1 1.80000+ 1 4.93182- 2 6.84900- 5 1.80000+ 1 1.90000+ 1 1.18532- 1 6.92000- 5 1.90000+ 1 1.90000+ 1 4.17582- 2 6.99100- 5 1 36000 0 7 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 6.96921- 6 8.12600- 5 1 36000 0 9 8.38000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.62786- 1 3.91000- 5 1.60000+ 1 1.80000+ 1 1.66903- 1 5.31100- 5 1.60000+ 1 1.90000+ 1 4.46972- 1 5.38200- 5 1.80000+ 1 1.80000+ 1 1.05990- 2 6.71200- 5 1.80000+ 1 1.90000+ 1 7.20131- 2 6.78300- 5 1.90000+ 1 1.90000+ 1 1.40720- 1 6.85400- 5 1 37000 0 0 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.70000+ 1 1.00000+ 0 1 37000 0 0 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.51590- 2 3.00000+ 0 2.04800- 3 5.00000+ 0 1.86710- 3 6.00000+ 0 1.80510- 3 8.00000+ 0 3.13180- 4 1.00000+ 1 2.46690- 4 1.10000+ 1 2.37290- 4 1.30000+ 1 1.19200- 4 1.40000+ 1 1.17570- 4 1.60000+ 1 3.67200- 5 1.80000+ 1 2.07300- 5 1.90000+ 1 1.97500- 5 2.70000+ 1 4.02000- 6 1 37000 0 0 8.54678+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.92350- 2 3.00000+ 0 3.90010- 3 5.00000+ 0 3.89680- 3 6.00000+ 0 3.66880- 3 8.00000+ 0 9.70940- 4 1.00000+ 1 9.16840- 4 1.10000+ 1 8.70650- 4 1.30000+ 1 7.53870- 4 1.40000+ 1 7.43040- 4 1.60000+ 1 1.75220- 4 1.80000+ 1 1.34080- 4 1.90000+ 1 1.27080- 4 2.70000+ 1 1.24300- 5 1 37000 0 0 8.54678+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.12730-10 3.00000+ 0 9.34500-10 5.00000+ 0 7.99740-10 6.00000+ 0 8.21360-10 8.00000+ 0 2.67220- 9 1.00000+ 1 2.66760- 9 1.10000+ 1 2.72130- 9 1.30000+ 1 2.69540- 9 1.40000+ 1 2.71390- 9 1.60000+ 1 7.47220- 9 1.80000+ 1 8.58050- 9 1.90000+ 1 8.76190- 9 2.70000+ 1 2.75680- 8 1 37000 0 0 8.54678+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.90430- 6 3.00000+ 0 1.98340- 8 5.00000+ 0 2.92830- 8 6.00000+ 0 2.84990- 8 8.00000+ 0 1.95030-10 1.00000+ 1 2.75290-10 1.10000+ 1 2.42630-10 1.30000+ 1 1.10880-11 1.40000+ 1 1.03870-11 1.60000+ 1 7.08570-12 1 37000 0 0 8.54678+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.50790- 7 3.00000+ 0 6.18990- 6 5.00000+ 0 1.28310- 6 6.00000+ 0 1.22210- 6 8.00000+ 0 5.83090- 6 1.00000+ 1 3.16050- 6 1.10000+ 1 2.81740- 6 1.30000+ 1 6.68400- 8 1.40000+ 1 6.94020- 8 1.60000+ 1 2.48220- 7 1 37000 0 0 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.38979- 4 3.00000+ 0 1.40943- 4 5.00000+ 0 1.08550- 4 6.00000+ 0 1.04770- 4 8.00000+ 0 8.24324- 5 1.00000+ 1 7.20204- 5 1.10000+ 1 6.85822- 5 1.30000+ 1 4.37728- 5 1.40000+ 1 4.33238- 5 1.60000+ 1 2.41157- 5 1.80000+ 1 2.07300- 5 1.90000+ 1 1.97500- 5 2.70000+ 1 4.02000- 6 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.91312- 1 3.00000+ 0 2.39681- 2 5.00000+ 0 2.60575- 2 6.00000+ 0 2.42301- 2 8.00000+ 0 2.96330- 4 1.00000+ 1 2.69882- 4 1.10000+ 1 2.43061- 4 1.30000+ 1 1.67112- 5 1.40000+ 1 1.41782- 5 1.60000+ 1 1.17080- 6 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.03159- 3 3.00000+ 0 4.01208- 5 5.00000+ 0 4.43327- 5 6.00000+ 0 3.97654- 5 8.00000+ 0 4.69167- 8 1.00000+ 1 3.72283- 8 1.10000+ 1 3.22901- 8 1.30000+ 1 1.56011- 9 1.40000+ 1 1.30267- 9 1.60000+ 1 1.95321-11 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.09078+ 0 3.00000+ 0 8.27059+ 0 5.00000+ 0 6.09204+ 0 6.00000+ 0 5.86224+ 0 8.00000+ 0 4.37487+ 0 1.00000+ 1 3.67418+ 0 1.10000+ 1 3.43571+ 0 1.30000+ 1 1.91723+ 0 1.40000+ 1 1.88672+ 0 1.60000+ 1 9.99999- 1 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.98843- 3 3.00000+ 0 1.86694- 3 5.00000+ 0 1.71422- 3 6.00000+ 0 1.66056- 3 8.00000+ 0 2.30701- 4 1.00000+ 1 1.74632- 4 1.10000+ 1 1.68676- 4 1.30000+ 1 7.54257- 5 1.40000+ 1 7.42449- 5 1.60000+ 1 1.26043- 5 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.95309- 1 1.32919- 2 6.00000+ 0 3.75737- 1 1.33539- 2 1.00000+ 1 2.80028- 2 1.49123- 2 1.10000+ 1 5.45866- 2 1.49217- 2 1.30000+ 1 8.99573- 5 1.50398- 2 1.40000+ 1 1.28639- 4 1.50414- 2 1.80000+ 1 3.05098- 3 1.51383- 2 1.90000+ 1 5.87956- 3 1.51392- 2 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.34404- 2 1.10630- 2 3.00000+ 0 5.00000+ 0 2.62521- 2 1.12439- 2 3.00000+ 0 6.00000+ 0 4.27348- 2 1.13059- 2 3.00000+ 0 8.00000+ 0 7.08389- 3 1.27978- 2 3.00000+ 0 1.00000+ 1 4.04921- 3 1.28643- 2 3.00000+ 0 1.10000+ 1 6.54675- 3 1.28737- 2 3.00000+ 0 1.30000+ 1 3.07831- 4 1.29918- 2 3.00000+ 0 1.40000+ 1 3.94675- 4 1.29934- 2 3.00000+ 0 1.60000+ 1 9.95879- 4 1.30743- 2 3.00000+ 0 1.80000+ 1 4.60326- 4 1.30903- 2 3.00000+ 0 1.90000+ 1 7.40151- 4 1.30912- 2 3.00000+ 0 2.70000+ 1 5.30765- 5 1.31070- 2 5.00000+ 0 5.00000+ 0 4.32612- 3 1.14248- 2 5.00000+ 0 6.00000+ 0 9.89536- 2 1.14868- 2 5.00000+ 0 8.00000+ 0 3.31381- 3 1.29787- 2 5.00000+ 0 1.00000+ 1 1.23130- 3 1.30452- 2 5.00000+ 0 1.10000+ 1 1.28790- 2 1.30546- 2 5.00000+ 0 1.30000+ 1 4.11096- 4 1.31727- 2 5.00000+ 0 1.40000+ 1 1.48321- 3 1.31743- 2 5.00000+ 0 1.60000+ 1 4.52598- 4 1.32552- 2 5.00000+ 0 1.80000+ 1 1.38955- 4 1.32712- 2 5.00000+ 0 1.90000+ 1 1.42530- 3 1.32721- 2 5.00000+ 0 2.70000+ 1 2.41248- 5 1.32879- 2 6.00000+ 0 6.00000+ 0 5.32560- 2 1.15488- 2 6.00000+ 0 8.00000+ 0 5.40548- 3 1.30407- 2 6.00000+ 0 1.00000+ 1 1.28227- 2 1.31072- 2 6.00000+ 0 1.10000+ 1 1.41439- 2 1.31166- 2 6.00000+ 0 1.30000+ 1 1.81887- 3 1.32347- 2 6.00000+ 0 1.40000+ 1 1.74941- 3 1.32363- 2 6.00000+ 0 1.60000+ 1 7.39140- 4 1.33172- 2 6.00000+ 0 1.80000+ 1 1.42523- 3 1.33332- 2 6.00000+ 0 1.90000+ 1 1.57001- 3 1.33341- 2 6.00000+ 0 2.70000+ 1 3.95596- 5 1.33499- 2 8.00000+ 0 8.00000+ 0 5.29939- 4 1.45326- 2 8.00000+ 0 1.00000+ 1 5.17385- 4 1.45991- 2 8.00000+ 0 1.10000+ 1 8.36144- 4 1.46085- 2 8.00000+ 0 1.30000+ 1 3.68156- 5 1.47266- 2 8.00000+ 0 1.40000+ 1 4.65042- 5 1.47282- 2 8.00000+ 0 1.60000+ 1 1.49199- 4 1.48091- 2 8.00000+ 0 1.80000+ 1 5.91013- 5 1.48251- 2 8.00000+ 0 1.90000+ 1 9.49449- 5 1.48261- 2 8.00000+ 0 2.70000+ 1 7.75101- 6 1.48418- 2 1.00000+ 1 1.00000+ 1 8.50265- 5 1.46656- 2 1.00000+ 1 1.10000+ 1 1.70933- 3 1.46750- 2 1.00000+ 1 1.30000+ 1 4.20282- 5 1.47931- 2 1.00000+ 1 1.40000+ 1 1.56371- 4 1.47947- 2 1.00000+ 1 1.60000+ 1 7.13459- 5 1.48756- 2 1.00000+ 1 1.80000+ 1 1.85689- 5 1.48916- 2 1.00000+ 1 1.90000+ 1 1.89606- 4 1.48926- 2 1.00000+ 1 2.70000+ 1 3.90913- 6 1.49083- 2 1.10000+ 1 1.10000+ 1 9.40643- 4 1.46844- 2 1.10000+ 1 1.30000+ 1 1.92951- 4 1.48025- 2 1.10000+ 1 1.40000+ 1 1.82342- 4 1.48041- 2 1.10000+ 1 1.60000+ 1 1.13841- 4 1.48850- 2 1.10000+ 1 1.80000+ 1 1.88133- 4 1.49010- 2 1.10000+ 1 1.90000+ 1 2.08388- 4 1.49020- 2 1.10000+ 1 2.70000+ 1 5.78854- 6 1.49177- 2 1.30000+ 1 1.40000+ 1 1.83335- 5 1.49222- 2 1.30000+ 1 1.60000+ 1 4.82454- 6 1.50031- 2 1.30000+ 1 1.80000+ 1 4.82454- 6 1.50191- 2 1.30000+ 1 1.90000+ 1 2.12291- 5 1.50200- 2 1.40000+ 1 1.40000+ 1 5.14126- 6 1.49239- 2 1.40000+ 1 1.60000+ 1 6.16957- 6 1.50047- 2 1.40000+ 1 1.80000+ 1 1.74806- 5 1.50207- 2 1.40000+ 1 1.90000+ 1 2.05652- 5 1.50217- 2 1.60000+ 1 1.60000+ 1 9.34996- 6 1.50856- 2 1.60000+ 1 1.80000+ 1 6.80003- 6 1.51015- 2 1.60000+ 1 1.90000+ 1 1.10498- 5 1.51025- 2 1.60000+ 1 2.70000+ 1 8.50012- 7 1.51183- 2 1.80000+ 1 1.80000+ 1 9.64967- 7 1.51175- 2 1.80000+ 1 1.90000+ 1 2.12289- 5 1.51185- 2 1.90000+ 1 1.90000+ 1 1.12181- 5 1.51195- 2 1.90000+ 1 2.70000+ 1 9.34862- 7 1.51352- 2 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42440- 5 1.80900- 4 6.00000+ 0 8.37978- 5 2.42900- 4 1.00000+ 1 1.21360- 3 1.80131- 3 1.10000+ 1 2.14720- 3 1.81071- 3 1.30000+ 1 7.67288- 6 1.92880- 3 1.40000+ 1 1.14190- 5 1.93043- 3 1.80000+ 1 1.35250- 4 2.02727- 3 1.90000+ 1 2.40039- 4 2.02825- 3 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 6.17335- 2 6.17000- 5 5.00000+ 0 1.40000+ 1 9.76960- 2 6.33300- 5 5.00000+ 0 1.60000+ 1 1.55840- 2 1.44180- 4 5.00000+ 0 1.80000+ 1 9.19382- 3 1.60170- 4 5.00000+ 0 1.90000+ 1 1.27869- 2 1.61150- 4 5.00000+ 0 2.70000+ 1 8.25321- 4 1.76880- 4 6.00000+ 0 1.30000+ 1 2.29189- 1 1.23700- 4 6.00000+ 0 1.40000+ 1 3.27249- 1 1.25330- 4 6.00000+ 0 1.60000+ 1 2.55050- 2 2.06180- 4 6.00000+ 0 1.80000+ 1 1.01528- 2 2.22170- 4 6.00000+ 0 1.90000+ 1 2.12342- 2 2.23150- 4 6.00000+ 0 2.70000+ 1 1.35833- 3 2.38880- 4 8.00000+ 0 8.00000+ 0 7.34575- 3 1.42164- 3 8.00000+ 0 1.00000+ 1 1.40645- 2 1.48813- 3 8.00000+ 0 1.10000+ 1 2.70281- 2 1.49753- 3 8.00000+ 0 1.30000+ 1 1.96242- 2 1.61562- 3 8.00000+ 0 1.40000+ 1 2.85732- 2 1.61725- 3 8.00000+ 0 1.60000+ 1 1.82356- 3 1.69810- 3 8.00000+ 0 1.80000+ 1 1.58791- 3 1.71409- 3 8.00000+ 0 1.90000+ 1 3.03485- 3 1.71507- 3 8.00000+ 0 2.70000+ 1 9.76972- 5 1.73080- 3 1.00000+ 1 1.00000+ 1 1.43449- 4 1.55462- 3 1.00000+ 1 1.10000+ 1 5.84933- 4 1.56402- 3 1.00000+ 1 1.30000+ 1 3.61717- 4 1.68211- 3 1.00000+ 1 1.40000+ 1 6.40897- 3 1.68374- 3 1.00000+ 1 1.60000+ 1 1.47896- 3 1.76459- 3 1.00000+ 1 1.80000+ 1 2.28778- 5 1.78058- 3 1.00000+ 1 1.90000+ 1 6.36875- 5 1.78156- 3 1.00000+ 1 2.70000+ 1 7.72889- 5 1.79729- 3 1.10000+ 1 1.10000+ 1 6.91421- 4 1.57342- 3 1.10000+ 1 1.30000+ 1 6.24023- 3 1.69151- 3 1.10000+ 1 1.40000+ 1 4.40385- 3 1.69314- 3 1.10000+ 1 1.60000+ 1 2.96696- 3 1.77399- 3 1.10000+ 1 1.80000+ 1 6.64338- 5 1.78998- 3 1.10000+ 1 1.90000+ 1 1.29642- 4 1.79096- 3 1.10000+ 1 2.70000+ 1 1.55435- 4 1.80669- 3 1.30000+ 1 1.30000+ 1 8.60713- 4 1.80960- 3 1.30000+ 1 1.40000+ 1 3.76483- 2 1.81123- 3 1.30000+ 1 1.60000+ 1 1.98049- 3 1.89208- 3 1.30000+ 1 1.80000+ 1 5.31759- 5 1.90807- 3 1.30000+ 1 1.90000+ 1 6.61002- 4 1.90905- 3 1.30000+ 1 2.70000+ 1 1.03261- 4 1.92478- 3 1.40000+ 1 1.40000+ 1 1.05019- 2 1.81286- 3 1.40000+ 1 1.60000+ 1 2.88799- 3 1.89371- 3 1.40000+ 1 1.80000+ 1 6.86335- 4 1.90970- 3 1.40000+ 1 1.90000+ 1 4.82904- 4 1.91068- 3 1.40000+ 1 2.70000+ 1 1.50870- 4 1.92641- 3 1.60000+ 1 1.60000+ 1 1.09443- 4 1.97456- 3 1.60000+ 1 1.80000+ 1 1.66944- 4 1.99055- 3 1.60000+ 1 1.90000+ 1 3.19664- 4 1.99153- 3 1.60000+ 1 2.70000+ 1 1.17480- 5 2.00726- 3 1.80000+ 1 1.80000+ 1 6.18304- 7 2.00654- 3 1.80000+ 1 1.90000+ 1 6.80136- 6 2.00752- 3 1.80000+ 1 2.70000+ 1 8.65630- 6 2.02325- 3 1.90000+ 1 1.90000+ 1 5.56487- 6 2.00850- 3 1.90000+ 1 2.70000+ 1 1.66941- 5 2.02423- 3 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.12298- 9 6.20000- 5 8.00000+ 0 3.26826- 3 1.55392- 3 1.10000+ 1 2.43977- 5 1.62981- 3 1.30000+ 1 1.99178- 2 1.74790- 3 1.60000+ 1 1.76188- 4 1.83038- 3 1.90000+ 1 4.93454- 7 1.84735- 3 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.07243- 2 2.52800- 5 6.00000+ 0 1.80000+ 1 5.75554- 2 4.12700- 5 6.00000+ 0 1.90000+ 1 2.25323- 2 4.22500- 5 6.00000+ 0 2.70000+ 1 1.01684- 3 5.79800- 5 8.00000+ 0 8.00000+ 0 1.92798- 3 1.24074- 3 8.00000+ 0 1.00000+ 1 3.89921- 2 1.30723- 3 8.00000+ 0 1.10000+ 1 3.54753- 3 1.31663- 3 8.00000+ 0 1.30000+ 1 2.02537- 3 1.43472- 3 8.00000+ 0 1.40000+ 1 5.33277- 3 1.43635- 3 8.00000+ 0 1.60000+ 1 4.55616- 4 1.51720- 3 8.00000+ 0 1.80000+ 1 3.34666- 3 1.53319- 3 8.00000+ 0 1.90000+ 1 3.62424- 4 1.53417- 3 8.00000+ 0 2.70000+ 1 2.48515- 5 1.54990- 3 1.00000+ 1 1.00000+ 1 3.61850- 2 1.37372- 3 1.00000+ 1 1.10000+ 1 1.21043- 1 1.38312- 3 1.00000+ 1 1.30000+ 1 5.85107- 2 1.50121- 3 1.00000+ 1 1.40000+ 1 1.07399- 1 1.50284- 3 1.00000+ 1 1.60000+ 1 5.58757- 3 1.58369- 3 1.00000+ 1 1.80000+ 1 7.26507- 3 1.59968- 3 1.00000+ 1 1.90000+ 1 1.33608- 2 1.60066- 3 1.00000+ 1 2.70000+ 1 3.04435- 4 1.61639- 3 1.10000+ 1 1.10000+ 1 3.31556- 3 1.39252- 3 1.10000+ 1 1.30000+ 1 7.22453- 2 1.51061- 3 1.10000+ 1 1.40000+ 1 1.00674- 2 1.51224- 3 1.10000+ 1 1.60000+ 1 4.47332- 4 1.59309- 3 1.10000+ 1 1.80000+ 1 1.07086- 2 1.60908- 3 1.10000+ 1 1.90000+ 1 6.37850- 4 1.61006- 3 1.10000+ 1 2.70000+ 1 2.48513- 5 1.62579- 3 1.30000+ 1 1.30000+ 1 6.11214- 2 1.62870- 3 1.30000+ 1 1.40000+ 1 2.71821- 1 1.63033- 3 1.30000+ 1 1.60000+ 1 3.02366- 4 1.71118- 3 1.30000+ 1 1.80000+ 1 5.14844- 3 1.72717- 3 1.30000+ 1 1.90000+ 1 7.66647- 3 1.72815- 3 1.30000+ 1 2.70000+ 1 1.65681- 5 1.74388- 3 1.40000+ 1 1.40000+ 1 1.29059- 2 1.63196- 3 1.40000+ 1 1.60000+ 1 6.85472- 4 1.71281- 3 1.40000+ 1 1.80000+ 1 8.77903- 3 1.72880- 3 1.40000+ 1 1.90000+ 1 9.94018- 4 1.72978- 3 1.40000+ 1 2.70000+ 1 3.72766- 5 1.74551- 3 1.60000+ 1 1.60000+ 1 2.69231- 5 1.79366- 3 1.60000+ 1 1.80000+ 1 4.80468- 4 1.80965- 3 1.60000+ 1 1.90000+ 1 4.55617- 5 1.81063- 3 1.60000+ 1 2.70000+ 1 2.07102- 6 1.82636- 3 1.80000+ 1 1.80000+ 1 3.56181- 4 1.82564- 3 1.80000+ 1 1.90000+ 1 1.18248- 3 1.82662- 3 1.80000+ 1 2.70000+ 1 2.69216- 5 1.84235- 3 1.90000+ 1 1.90000+ 1 6.34866- 5 1.82760- 3 1.90000+ 1 2.70000+ 1 4.23257- 6 1.84333- 3 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.10362- 3 1.49192- 3 1.00000+ 1 1.44991- 5 1.55841- 3 1.10000+ 1 1.38131- 5 1.56781- 3 1.30000+ 1 1.88571- 3 1.68590- 3 1.40000+ 1 1.78401- 2 1.68753- 3 1.60000+ 1 1.61311- 4 1.76838- 3 1.80000+ 1 2.39921- 7 1.78437- 3 1.90000+ 1 2.29301- 7 1.78535- 3 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.19473- 3 1.17874- 3 8.00000+ 0 1.00000+ 1 1.63843- 3 1.24523- 3 8.00000+ 0 1.10000+ 1 4.31987- 2 1.25463- 3 8.00000+ 0 1.30000+ 1 3.84208- 3 1.37272- 3 8.00000+ 0 1.40000+ 1 4.15918- 3 1.37435- 3 8.00000+ 0 1.60000+ 1 5.19367- 4 1.45520- 3 8.00000+ 0 1.80000+ 1 1.65152- 4 1.47119- 3 8.00000+ 0 1.90000+ 1 3.72243- 3 1.47217- 3 8.00000+ 0 2.70000+ 1 2.82496- 5 1.48790- 3 1.00000+ 1 1.00000+ 1 6.10639- 4 1.31172- 3 1.00000+ 1 1.10000+ 1 6.95845- 2 1.32112- 3 1.00000+ 1 1.30000+ 1 4.37236- 3 1.43921- 3 1.00000+ 1 1.40000+ 1 4.01131- 2 1.44084- 3 1.00000+ 1 1.60000+ 1 2.02098- 4 1.52169- 3 1.00000+ 1 1.80000+ 1 1.19521- 4 1.53768- 3 1.00000+ 1 1.90000+ 1 6.14764- 3 1.53866- 3 1.00000+ 1 2.70000+ 1 1.08654- 5 1.55439- 3 1.10000+ 1 1.10000+ 1 1.01122- 1 1.33052- 3 1.10000+ 1 1.30000+ 1 9.09849- 2 1.44861- 3 1.10000+ 1 1.40000+ 1 1.39014- 1 1.45024- 3 1.10000+ 1 1.60000+ 1 6.14752- 3 1.53109- 3 1.10000+ 1 1.80000+ 1 7.63395- 3 1.54708- 3 1.10000+ 1 1.90000+ 1 2.00946- 2 1.54806- 3 1.10000+ 1 2.70000+ 1 3.34647- 4 1.56379- 3 1.30000+ 1 1.30000+ 1 1.17621- 2 1.56670- 3 1.30000+ 1 1.40000+ 1 2.32126- 1 1.56833- 3 1.30000+ 1 1.60000+ 1 5.10662- 4 1.64918- 3 1.30000+ 1 1.80000+ 1 4.78073- 4 1.66517- 3 1.30000+ 1 1.90000+ 1 7.66649- 3 1.66615- 3 1.30000+ 1 2.70000+ 1 2.82492- 5 1.68188- 3 1.40000+ 1 1.40000+ 1 1.57773- 1 1.56996- 3 1.40000+ 1 1.60000+ 1 5.78040- 4 1.65081- 3 1.40000+ 1 1.80000+ 1 4.19408- 3 1.66680- 3 1.40000+ 1 1.90000+ 1 1.25953- 2 1.66778- 3 1.40000+ 1 2.70000+ 1 3.04231- 5 1.68351- 3 1.60000+ 1 1.60000+ 1 3.04231- 5 1.73166- 3 1.60000+ 1 1.80000+ 1 1.95575- 5 1.74765- 3 1.60000+ 1 1.90000+ 1 5.30229- 4 1.74863- 3 1.60000+ 1 2.70000+ 1 2.17309- 6 1.76436- 3 1.80000+ 1 1.80000+ 1 6.51921- 6 1.76364- 3 1.80000+ 1 1.90000+ 1 6.75821- 4 1.76462- 3 1.80000+ 1 2.70000+ 1 2.17307- 6 1.78035- 3 1.90000+ 1 1.90000+ 1 9.82255- 4 1.76560- 3 1.90000+ 1 2.70000+ 1 2.82504- 5 1.78133- 3 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.28346- 5 6.64900- 5 1.10000+ 1 3.66574- 5 7.58900- 5 1.80000+ 1 2.51671- 5 2.92450- 4 1.90000+ 1 3.93837- 5 2.93430- 4 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 7.45938- 2 2.97700- 5 1.00000+ 1 1.80000+ 1 5.63682- 2 4.57600- 5 1.00000+ 1 1.90000+ 1 1.25457- 1 4.67400- 5 1.00000+ 1 2.70000+ 1 2.04137- 3 6.24700- 5 1.10000+ 1 1.60000+ 1 1.30467- 1 3.91700- 5 1.10000+ 1 1.80000+ 1 1.18239- 1 5.51600- 5 1.10000+ 1 1.90000+ 1 1.93455- 1 5.61400- 5 1.10000+ 1 2.70000+ 1 3.62023- 3 7.18700- 5 1.30000+ 1 1.30000+ 1 9.88290- 3 7.47800- 5 1.30000+ 1 1.40000+ 1 1.28149- 2 7.64100- 5 1.30000+ 1 1.60000+ 1 5.16769- 2 1.57260- 4 1.30000+ 1 1.80000+ 1 6.97684- 3 1.73250- 4 1.30000+ 1 1.90000+ 1 5.64708- 3 1.74230- 4 1.30000+ 1 2.70000+ 1 1.22250- 3 1.89960- 4 1.40000+ 1 1.40000+ 1 1.68756- 2 7.80400- 5 1.40000+ 1 1.60000+ 1 7.66486- 2 1.58890- 4 1.40000+ 1 1.80000+ 1 2.66098- 3 1.74880- 4 1.40000+ 1 1.90000+ 1 1.46042- 2 1.75860- 4 1.40000+ 1 2.70000+ 1 1.81083- 3 1.91590- 4 1.60000+ 1 1.60000+ 1 1.85583- 2 2.39740- 4 1.60000+ 1 1.80000+ 1 2.26357- 2 2.55730- 4 1.60000+ 1 1.90000+ 1 4.29564- 2 2.56710- 4 1.60000+ 1 2.70000+ 1 9.64637- 4 2.72440- 4 1.80000+ 1 1.80000+ 1 1.13661- 3 2.71720- 4 1.80000+ 1 1.90000+ 1 3.07573- 3 2.72700- 4 1.80000+ 1 2.70000+ 1 4.42563- 4 2.88430- 4 1.90000+ 1 1.90000+ 1 4.11840- 3 2.73680- 4 1.90000+ 1 2.70000+ 1 9.35706- 4 2.89410- 4 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.05309- 4 1.27490- 4 1.60000+ 1 4.31809- 5 2.09970- 4 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.70000+ 1 1.34710- 3 5.38000- 6 1.30000+ 1 1.30000+ 1 8.65265- 2 8.29000- 6 1.30000+ 1 1.40000+ 1 2.45584- 1 9.92000- 6 1.30000+ 1 1.60000+ 1 1.18293- 1 9.07700- 5 1.30000+ 1 1.80000+ 1 1.16183- 1 1.06760- 4 1.30000+ 1 1.90000+ 1 1.77524- 1 1.07740- 4 1.30000+ 1 2.70000+ 1 3.37752- 3 1.23470- 4 1.40000+ 1 1.40000+ 1 1.67190- 2 1.15500- 5 1.40000+ 1 1.60000+ 1 1.88548- 2 9.24000- 5 1.40000+ 1 1.80000+ 1 1.74509- 1 1.08390- 4 1.40000+ 1 1.90000+ 1 1.76080- 2 1.09370- 4 1.40000+ 1 2.70000+ 1 4.58769- 4 1.25100- 4 1.60000+ 1 1.60000+ 1 3.26232- 4 1.73250- 4 1.60000+ 1 1.80000+ 1 6.36966- 3 1.89240- 4 1.60000+ 1 1.90000+ 1 8.34938- 4 1.90220- 4 1.60000+ 1 2.70000+ 1 1.63546- 5 2.05950- 4 1.80000+ 1 1.80000+ 1 3.45342- 3 2.05230- 4 1.80000+ 1 1.90000+ 1 1.12655- 2 2.06210- 4 1.80000+ 1 2.70000+ 1 1.85065- 4 2.21940- 4 1.90000+ 1 1.90000+ 1 2.95231- 4 2.07190- 4 1.90000+ 1 2.70000+ 1 2.06577- 5 2.22920- 4 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.71050- 5 1.18090- 4 1.40000+ 1 1.61970- 4 1.19720- 4 1.60000+ 1 4.60740- 5 2.00570- 4 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.30000+ 1 2.06103- 2 0.00000+ 0 1.30000+ 1 1.40000+ 1 6.92957- 2 5.20000- 7 1.30000+ 1 1.60000+ 1 2.80401- 2 8.13700- 5 1.30000+ 1 1.80000+ 1 1.77104- 2 9.73600- 5 1.30000+ 1 1.90000+ 1 1.51043- 1 9.83400- 5 1.30000+ 1 2.70000+ 1 7.40204- 4 1.14070- 4 1.40000+ 1 1.40000+ 1 1.30739- 1 2.15000- 6 1.40000+ 1 1.60000+ 1 1.37065- 1 8.30000- 5 1.40000+ 1 1.80000+ 1 1.19256- 1 9.89900- 5 1.40000+ 1 1.90000+ 1 2.94775- 1 9.99700- 5 1.40000+ 1 2.70000+ 1 3.88529- 3 1.15700- 4 1.60000+ 1 1.60000+ 1 2.54769- 4 1.63850- 4 1.60000+ 1 1.80000+ 1 4.26547- 4 1.79840- 4 1.60000+ 1 1.90000+ 1 7.72794- 3 1.80820- 4 1.60000+ 1 2.70000+ 1 1.25451- 5 1.96550- 4 1.80000+ 1 1.80000+ 1 8.84644- 5 1.95830- 4 1.80000+ 1 1.90000+ 1 7.50939- 3 1.96810- 4 1.80000+ 1 2.70000+ 1 1.14485- 5 2.12540- 4 1.90000+ 1 1.90000+ 1 1.03611- 2 1.97790- 4 1.90000+ 1 2.70000+ 1 2.22911- 4 2.13520- 4 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.32000- 5 9.84700- 5 1.90000+ 1 2.43730- 6 9.94500- 5 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.28124- 1 4.57600- 5 1.60000+ 1 1.80000+ 1 3.00460- 1 6.17500- 5 1.60000+ 1 1.90000+ 1 3.56668- 1 6.27300- 5 1.60000+ 1 2.70000+ 1 3.86716- 3 7.84600- 5 1.80000+ 1 1.80000+ 1 3.83487- 2 7.77400- 5 1.80000+ 1 1.90000+ 1 1.20434- 1 7.87200- 5 1.80000+ 1 2.70000+ 1 5.59693- 3 9.44500- 5 1.90000+ 1 1.90000+ 1 4.16794- 2 7.97000- 5 1.90000+ 1 2.70000+ 1 4.80458- 3 9.54300- 5 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.31400- 5 9.78200- 5 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.27512- 1 4.41300- 5 1.60000+ 1 1.80000+ 1 1.73274- 1 6.01200- 5 1.60000+ 1 1.90000+ 1 4.54659- 1 6.11000- 5 1.60000+ 1 2.70000+ 1 3.77450- 3 7.68300- 5 1.80000+ 1 1.80000+ 1 9.24850- 3 7.61100- 5 1.80000+ 1 1.90000+ 1 7.31646- 2 7.70900- 5 1.80000+ 1 2.70000+ 1 2.66481- 3 9.28200- 5 1.90000+ 1 1.90000+ 1 1.42464- 1 7.80700- 5 1.90000+ 1 2.70000+ 1 1.32256- 2 9.38000- 5 1 37000 0 7 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.43250- 7 1.59900- 5 1.90000+ 1 8.27549- 7 1.69700- 5 1 37000 0 9 8.54678+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 3.52740- 1 1.19700- 5 1.90000+ 1 2.70000+ 1 6.47259- 1 1.29500- 5 1 38000 0 0 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.70000+ 1 2.00000+ 0 1 38000 0 0 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.60670- 2 3.00000+ 0 2.20010- 3 5.00000+ 0 2.01210- 3 6.00000+ 0 1.94240- 3 8.00000+ 0 3.50320- 4 1.00000+ 1 2.80320- 4 1.10000+ 1 2.69530- 4 1.30000+ 1 1.44930- 4 1.40000+ 1 1.43010- 4 1.60000+ 1 4.63900- 5 1.80000+ 1 2.84700- 5 1.90000+ 1 2.72000- 5 2.70000+ 1 5.10000- 6 1 38000 0 0 8.76200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.03640- 2 3.00000+ 0 4.15250- 3 5.00000+ 0 4.15010- 3 6.00000+ 0 3.89420- 3 8.00000+ 0 1.04890- 3 1.00000+ 1 9.94220- 4 1.10000+ 1 9.41980- 4 1.30000+ 1 8.26100- 4 1.40000+ 1 8.13800- 4 1.60000+ 1 2.04800- 4 1.80000+ 1 1.63430- 4 1.90000+ 1 1.55020- 4 2.70000+ 1 2.21000- 5 1 38000 0 0 8.76200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.06750-10 3.00000+ 0 9.06320-10 5.00000+ 0 7.74630-10 6.00000+ 0 7.96650-10 8.00000+ 0 2.57610- 9 1.00000+ 1 2.56330- 9 1.10000+ 1 2.61660- 9 1.30000+ 1 2.56100- 9 1.40000+ 1 2.57920- 9 1.60000+ 1 6.98560- 9 1.80000+ 1 7.84680- 9 1.90000+ 1 8.00890- 9 2.70000+ 1 2.25900- 8 1 38000 0 0 8.76200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.14380- 6 3.00000+ 0 2.33020- 8 5.00000+ 0 3.44600- 8 6.00000+ 0 3.34850- 8 8.00000+ 0 2.54740-10 1.00000+ 1 3.12880-10 1.10000+ 1 2.75120-10 1.30000+ 1 1.58110-11 1.40000+ 1 1.47970-11 1.60000+ 1 8.79580-12 1.80000+ 1 8.60290-13 1.90000+ 1 8.68850-13 1 38000 0 0 8.76200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.70830- 7 3.00000+ 0 6.22810- 6 5.00000+ 0 1.36620- 6 6.00000+ 0 1.29650- 6 8.00000+ 0 6.56770- 6 1.00000+ 1 2.81840- 6 1.10000+ 1 2.47330- 6 1.30000+ 1 6.05660- 8 1.40000+ 1 6.36750- 8 1.60000+ 1 6.50950- 7 1.80000+ 1 7.04760-10 1.90000+ 1 1.60000- 9 1 38000 0 0 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.75492- 4 3.00000+ 0 1.83381- 4 5.00000+ 0 1.40426- 4 6.00000+ 0 1.35217- 4 8.00000+ 0 1.05669- 4 1.00000+ 1 9.03125- 5 1.10000+ 1 8.55340- 5 1.30000+ 1 5.91236- 5 1.40000+ 1 5.82321- 5 1.60000+ 1 3.27503- 5 1.80000+ 1 2.84700- 5 1.90000+ 1 2.72000- 5 2.70000+ 1 5.10000- 6 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.16630- 1 3.00000+ 0 2.66399- 2 5.00000+ 0 2.89356- 2 6.00000+ 0 2.68293- 2 8.00000+ 0 3.60057- 4 1.00000+ 1 3.38442- 4 1.10000+ 1 3.05975- 4 1.30000+ 1 2.86527- 5 1.40000+ 1 2.44360- 5 1.60000+ 1 1.95750- 6 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.89200- 3 3.00000+ 0 4.75644- 5 5.00000+ 0 5.26098- 5 6.00000+ 0 4.69784- 5 8.00000+ 0 6.29168- 8 1.00000+ 1 5.06598- 8 1.10000+ 1 4.43592- 8 1.30000+ 1 3.17365- 9 1.40000+ 1 2.67050- 9 1.60000+ 1 3.68506-11 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.37528+ 0 3.00000+ 0 7.81104+ 0 5.00000+ 0 5.70956+ 0 6.00000+ 0 5.45554+ 0 8.00000+ 0 4.03275+ 0 1.00000+ 1 3.31813+ 0 1.10000+ 1 2.99613+ 0 1.30000+ 1 1.88191+ 0 1.40000+ 1 1.83979+ 0 1.60000+ 1 9.99998- 1 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.99951- 3 3.00000+ 0 1.96915- 3 5.00000+ 0 1.81906- 3 6.00000+ 0 1.76020- 3 8.00000+ 0 2.44588- 4 1.00000+ 1 1.89957- 4 1.10000+ 1 1.83952- 4 1.30000+ 1 8.58032- 5 1.40000+ 1 8.47752- 5 1.60000+ 1 1.36397- 5 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.01262- 1 1.40549- 2 6.00000+ 0 3.86455- 1 1.41246- 2 1.00000+ 1 2.93724- 2 1.57867- 2 1.10000+ 1 5.72517- 2 1.57975- 2 1.30000+ 1 1.03471- 4 1.59221- 2 1.40000+ 1 1.47642- 4 1.59240- 2 1.80000+ 1 3.80545- 3 1.60385- 2 1.90000+ 1 7.27519- 3 1.60398- 2 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.19164- 2 1.16668- 2 3.00000+ 0 5.00000+ 0 2.45900- 2 1.18548- 2 3.00000+ 0 6.00000+ 0 3.94917- 2 1.19245- 2 3.00000+ 0 8.00000+ 0 6.72035- 3 1.35166- 2 3.00000+ 0 1.00000+ 1 3.86748- 3 1.35866- 2 3.00000+ 0 1.10000+ 1 6.17248- 3 1.35974- 2 3.00000+ 0 1.30000+ 1 3.00465- 4 1.37220- 2 3.00000+ 0 1.40000+ 1 3.82402- 4 1.37239- 2 3.00000+ 0 1.60000+ 1 1.01513- 3 1.38205- 2 3.00000+ 0 1.80000+ 1 4.89038- 4 1.38384- 2 3.00000+ 0 1.90000+ 1 7.78046- 4 1.38397- 2 3.00000+ 0 2.70000+ 1 1.27766- 4 1.38618- 2 5.00000+ 0 5.00000+ 0 4.00268- 3 1.20428- 2 5.00000+ 0 6.00000+ 0 9.11413- 2 1.21125- 2 5.00000+ 0 8.00000+ 0 3.14354- 3 1.37046- 2 5.00000+ 0 1.00000+ 1 1.15949- 3 1.37746- 2 5.00000+ 0 1.10000+ 1 1.20840- 2 1.37854- 2 5.00000+ 0 1.30000+ 1 4.00016- 4 1.39100- 2 5.00000+ 0 1.40000+ 1 1.43612- 3 1.39119- 2 5.00000+ 0 1.60000+ 1 4.60810- 4 1.40085- 2 5.00000+ 0 1.80000+ 1 1.45377- 4 1.40264- 2 5.00000+ 0 1.90000+ 1 1.48988- 3 1.40277- 2 5.00000+ 0 2.70000+ 1 5.81528- 5 1.40498- 2 6.00000+ 0 6.00000+ 0 4.88691- 2 1.21822- 2 6.00000+ 0 8.00000+ 0 5.05765- 3 1.37743- 2 6.00000+ 0 1.00000+ 1 1.20211- 2 1.38443- 2 6.00000+ 0 1.10000+ 1 1.32293- 2 1.38551- 2 6.00000+ 0 1.30000+ 1 1.75874- 3 1.39797- 2 6.00000+ 0 1.40000+ 1 1.68915- 3 1.39816- 2 6.00000+ 0 1.60000+ 1 7.41882- 4 1.40782- 2 6.00000+ 0 1.80000+ 1 1.48552- 3 1.40961- 2 6.00000+ 0 1.90000+ 1 1.63619- 3 1.40974- 2 6.00000+ 0 2.70000+ 1 9.33963- 5 1.41195- 2 8.00000+ 0 8.00000+ 0 5.08453- 4 1.53664- 2 8.00000+ 0 1.00000+ 1 4.98730- 4 1.54364- 2 8.00000+ 0 1.10000+ 1 7.94783- 4 1.54471- 2 8.00000+ 0 1.30000+ 1 3.61258- 5 1.55717- 2 8.00000+ 0 1.40000+ 1 4.49379- 5 1.55737- 2 8.00000+ 0 1.60000+ 1 1.53316- 4 1.56703- 2 8.00000+ 0 1.80000+ 1 6.34457- 5 1.56882- 2 8.00000+ 0 1.90000+ 1 1.00451- 4 1.56895- 2 8.00000+ 0 2.70000+ 1 1.93852- 5 1.57116- 2 1.00000+ 1 1.00000+ 1 8.00282- 5 1.55064- 2 1.00000+ 1 1.10000+ 1 1.60935- 3 1.55171- 2 1.00000+ 1 1.30000+ 1 4.13311- 5 1.56418- 2 1.00000+ 1 1.40000+ 1 1.51262- 4 1.56437- 2 1.00000+ 1 1.60000+ 1 7.29901- 5 1.57403- 2 1.00000+ 1 1.80000+ 1 2.02267- 5 1.57582- 2 1.00000+ 1 1.90000+ 1 1.98743- 4 1.57595- 2 1.00000+ 1 2.70000+ 1 8.79410- 6 1.57816- 2 1.10000+ 1 1.10000+ 1 8.84013- 4 1.55279- 2 1.10000+ 1 1.30000+ 1 1.87577- 4 1.56525- 2 1.10000+ 1 1.40000+ 1 1.76285- 4 1.56545- 2 1.10000+ 1 1.60000+ 1 1.15492- 4 1.57511- 2 1.10000+ 1 1.80000+ 1 1.96254- 4 1.57690- 2 1.10000+ 1 1.90000+ 1 2.18838- 4 1.57703- 2 1.10000+ 1 2.70000+ 1 1.47629- 5 1.57924- 2 1.30000+ 1 1.40000+ 1 1.85031- 5 1.57791- 2 1.30000+ 1 1.60000+ 1 5.28648- 6 1.58757- 2 1.30000+ 1 1.80000+ 1 5.28648- 6 1.58936- 2 1.30000+ 1 1.90000+ 1 2.29095- 5 1.58949- 2 1.30000+ 1 2.70000+ 1 8.81120- 7 1.59170- 2 1.40000+ 1 1.40000+ 1 4.59420- 6 1.57810- 2 1.40000+ 1 1.60000+ 1 6.43169- 6 1.58776- 2 1.40000+ 1 1.80000+ 1 1.92951- 5 1.58955- 2 1.40000+ 1 1.90000+ 1 2.20528- 5 1.58968- 2 1.40000+ 1 2.70000+ 1 9.18841- 7 1.59189- 2 1.60000+ 1 1.60000+ 1 9.55047- 6 1.59742- 2 1.60000+ 1 1.80000+ 1 8.08142- 6 1.59921- 2 1.60000+ 1 1.90000+ 1 1.24895- 5 1.59934- 2 1.60000+ 1 2.70000+ 1 2.20400- 6 1.60155- 2 1.80000+ 1 1.80000+ 1 8.20672- 7 1.60101- 2 1.80000+ 1 1.90000+ 1 2.29790- 5 1.60113- 2 1.80000+ 1 2.70000+ 1 8.20672- 7 1.60334- 2 1.90000+ 1 1.90000+ 1 1.19272- 5 1.60126- 2 1.90000+ 1 2.70000+ 1 1.49095- 6 1.60347- 2 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42440- 5 1.88000- 4 6.00000+ 0 8.55393- 5 2.57700- 4 1.00000+ 1 1.34140- 3 1.91978- 3 1.10000+ 1 2.36111- 3 1.93057- 3 1.30000+ 1 9.07693- 6 2.05517- 3 1.40000+ 1 1.35100- 5 2.05709- 3 1.80000+ 1 1.69321- 4 2.17163- 3 1.90000+ 1 3.00261- 4 2.17290- 3 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 5.10354- 2 4.30700- 5 5.00000+ 0 1.40000+ 1 8.22803- 2 4.49900- 5 5.00000+ 0 1.60000+ 1 1.71475- 2 1.41610- 4 5.00000+ 0 1.80000+ 1 1.05113- 2 1.59530- 4 5.00000+ 0 1.90000+ 1 1.46117- 2 1.60800- 4 5.00000+ 0 2.70000+ 1 2.10437- 3 1.82900- 4 6.00000+ 0 1.30000+ 1 2.35463- 1 1.12770- 4 6.00000+ 0 1.40000+ 1 3.36556- 1 1.14690- 4 6.00000+ 0 1.60000+ 1 2.75232- 2 2.11310- 4 6.00000+ 0 1.80000+ 1 1.13720- 2 2.29230- 4 6.00000+ 0 1.90000+ 1 2.37029- 2 2.30500- 4 6.00000+ 0 2.70000+ 1 3.42494- 3 2.52600- 4 8.00000+ 0 8.00000+ 0 6.99334- 3 1.49946- 3 8.00000+ 0 1.00000+ 1 1.34432- 2 1.56946- 3 8.00000+ 0 1.10000+ 1 2.57968- 2 1.58025- 3 8.00000+ 0 1.30000+ 1 1.90554- 2 1.70485- 3 8.00000+ 0 1.40000+ 1 2.77049- 2 1.70677- 3 8.00000+ 0 1.60000+ 1 1.85719- 3 1.80339- 3 8.00000+ 0 1.80000+ 1 1.68746- 3 1.82131- 3 8.00000+ 0 1.90000+ 1 3.22734- 3 1.82258- 3 8.00000+ 0 2.70000+ 1 2.31720- 4 1.84468- 3 1.00000+ 1 1.00000+ 1 1.31922- 4 1.63946- 3 1.00000+ 1 1.10000+ 1 5.67221- 4 1.65025- 3 1.00000+ 1 1.30000+ 1 3.61325- 4 1.77485- 3 1.00000+ 1 1.40000+ 1 6.29282- 3 1.77677- 3 1.00000+ 1 1.60000+ 1 1.50489- 3 1.87339- 3 1.00000+ 1 1.80000+ 1 2.29416- 5 1.89131- 3 1.00000+ 1 1.90000+ 1 6.82502- 5 1.89258- 3 1.00000+ 1 2.70000+ 1 1.82957- 4 1.91468- 3 1.10000+ 1 1.10000+ 1 6.41298- 4 1.66104- 3 1.10000+ 1 1.30000+ 1 5.88660- 3 1.78564- 3 1.10000+ 1 1.40000+ 1 4.14686- 3 1.78756- 3 1.10000+ 1 1.60000+ 1 2.93661- 3 1.88418- 3 1.10000+ 1 1.80000+ 1 6.93762- 5 1.90210- 3 1.10000+ 1 1.90000+ 1 1.32922- 4 1.90337- 3 1.10000+ 1 2.70000+ 1 3.57375- 4 1.92547- 3 1.30000+ 1 1.30000+ 1 8.60887- 4 1.91024- 3 1.30000+ 1 1.40000+ 1 3.70107- 2 1.91216- 3 1.30000+ 1 1.60000+ 1 2.04819- 3 2.00878- 3 1.30000+ 1 1.80000+ 1 5.96484- 5 2.02670- 3 1.30000+ 1 1.90000+ 1 7.12346- 4 2.02797- 3 1.30000+ 1 2.70000+ 1 2.48341- 4 2.05007- 3 1.40000+ 1 1.40000+ 1 1.03391- 2 1.91408- 3 1.40000+ 1 1.60000+ 1 2.98410- 3 2.01070- 3 1.40000+ 1 1.80000+ 1 7.46167- 4 2.02862- 3 1.40000+ 1 1.90000+ 1 5.20767- 4 2.02989- 3 1.40000+ 1 2.70000+ 1 3.61895- 4 2.05199- 3 1.60000+ 1 1.60000+ 1 1.19293- 4 2.10732- 3 1.60000+ 1 1.80000+ 1 1.89266- 4 2.12524- 3 1.60000+ 1 1.90000+ 1 3.61889- 4 2.12651- 3 1.60000+ 1 2.70000+ 1 2.98234- 5 2.14861- 3 1.80000+ 1 1.80000+ 1 1.03044- 6 2.14316- 3 1.80000+ 1 1.90000+ 1 7.21323- 6 2.14443- 3 1.80000+ 1 2.70000+ 1 2.06094- 5 2.16653- 3 1.90000+ 1 1.90000+ 1 6.88239- 6 2.14570- 3 1.90000+ 1 2.70000+ 1 4.41618- 5 2.16780- 3 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.52670- 9 6.97000- 5 8.00000+ 0 3.19830- 3 1.66178- 3 1.10000+ 1 2.53380- 5 1.74257- 3 1.30000+ 1 2.23780- 2 1.86717- 3 1.60000+ 1 1.87380- 4 1.96571- 3 1.90000+ 1 6.35231- 7 1.98490- 3 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 2.09968- 2 2.33100- 5 6.00000+ 0 1.80000+ 1 6.06555- 2 4.12300- 5 6.00000+ 0 1.90000+ 1 2.37161- 2 4.25000- 5 6.00000+ 0 2.70000+ 1 2.34175- 3 6.46000- 5 8.00000+ 0 8.00000+ 0 1.83746- 3 1.31146- 3 8.00000+ 0 1.00000+ 1 3.75582- 2 1.38146- 3 8.00000+ 0 1.10000+ 1 3.44401- 3 1.39225- 3 8.00000+ 0 1.30000+ 1 1.97718- 3 1.51685- 3 8.00000+ 0 1.40000+ 1 5.20966- 3 1.51877- 3 8.00000+ 0 1.60000+ 1 4.63740- 4 1.61539- 3 8.00000+ 0 1.80000+ 1 3.55268- 3 1.63331- 3 8.00000+ 0 1.90000+ 1 3.91941- 4 1.63458- 3 8.00000+ 0 2.70000+ 1 5.82088- 5 1.65668- 3 1.00000+ 1 1.00000+ 1 3.50677- 2 1.45146- 3 1.00000+ 1 1.10000+ 1 1.16919- 1 1.46225- 3 1.00000+ 1 1.30000+ 1 5.75226- 2 1.58685- 3 1.00000+ 1 1.40000+ 1 1.05095- 1 1.58877- 3 1.00000+ 1 1.60000+ 1 5.78382- 3 1.68539- 3 1.00000+ 1 1.80000+ 1 7.80361- 3 1.70331- 3 1.00000+ 1 1.90000+ 1 1.43835- 2 1.70458- 3 1.00000+ 1 2.70000+ 1 7.35369- 4 1.72668- 3 1.10000+ 1 1.10000+ 1 3.19371- 3 1.47304- 3 1.10000+ 1 1.30000+ 1 7.11538- 2 1.59764- 3 1.10000+ 1 1.40000+ 1 9.86226- 3 1.59956- 3 1.10000+ 1 1.60000+ 1 4.65674- 4 1.69618- 3 1.10000+ 1 1.80000+ 1 1.14014- 2 1.71410- 3 1.10000+ 1 1.90000+ 1 6.81038- 4 1.71537- 3 1.10000+ 1 2.70000+ 1 5.82084- 5 1.73747- 3 1.30000+ 1 1.30000+ 1 6.08399- 2 1.72224- 3 1.30000+ 1 1.40000+ 1 2.69924- 1 1.72416- 3 1.30000+ 1 1.60000+ 1 3.16254- 4 1.82078- 3 1.30000+ 1 1.80000+ 1 5.58213- 3 1.83870- 3 1.30000+ 1 1.90000+ 1 8.39760- 3 1.83997- 3 1.30000+ 1 2.70000+ 1 4.07457- 5 1.86207- 3 1.40000+ 1 1.40000+ 1 1.28160- 2 1.72608- 3 1.40000+ 1 1.60000+ 1 7.15999- 4 1.82270- 3 1.40000+ 1 1.80000+ 1 9.43404- 3 1.84062- 3 1.40000+ 1 1.90000+ 1 1.08074- 3 1.84189- 3 1.40000+ 1 2.70000+ 1 8.92557- 5 1.86399- 3 1.60000+ 1 1.60000+ 1 2.91038- 5 1.91932- 3 1.60000+ 1 1.80000+ 1 5.49098- 4 1.93724- 3 1.60000+ 1 1.90000+ 1 5.23880- 5 1.93851- 3 1.60000+ 1 2.70000+ 1 7.76099- 6 1.96061- 3 1.80000+ 1 1.80000+ 1 4.22971- 4 1.95516- 3 1.80000+ 1 1.90000+ 1 1.40278- 3 1.95643- 3 1.80000+ 1 2.70000+ 1 6.98494- 5 1.97853- 3 1.90000+ 1 1.90000+ 1 9.51812- 5 1.95770- 3 1.90000+ 1 2.70000+ 1 1.50289- 5 1.97980- 3 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.16371- 3 1.59208- 3 1.00000+ 1 1.54100- 5 1.66208- 3 1.10000+ 1 1.46510- 5 1.67287- 3 1.30000+ 1 2.13350- 3 1.79747- 3 1.40000+ 1 2.00610- 2 1.79939- 3 1.60000+ 1 1.72440- 4 1.89601- 3 1.80000+ 1 3.08341- 7 1.91393- 3 1.90000+ 1 2.95621- 7 1.91520- 3 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.11241- 3 1.24176- 3 8.00000+ 0 1.00000+ 1 1.58126- 3 1.31176- 3 8.00000+ 0 1.10000+ 1 4.17960- 2 1.32255- 3 8.00000+ 0 1.30000+ 1 3.77536- 3 1.44715- 3 8.00000+ 0 1.40000+ 1 4.05127- 3 1.44907- 3 8.00000+ 0 1.60000+ 1 5.33216- 4 1.54569- 3 8.00000+ 0 1.80000+ 1 1.75691- 4 1.56361- 3 8.00000+ 0 1.90000+ 1 3.97558- 3 1.56488- 3 8.00000+ 0 2.70000+ 1 6.53755- 5 1.58698- 3 1.00000+ 1 1.00000+ 1 5.88381- 4 1.38176- 3 1.00000+ 1 1.10000+ 1 6.75999- 2 1.39255- 3 1.00000+ 1 1.30000+ 1 4.33520- 3 1.51715- 3 1.00000+ 1 1.40000+ 1 3.96422- 2 1.51907- 3 1.00000+ 1 1.60000+ 1 2.10434- 4 1.61569- 3 1.00000+ 1 1.80000+ 1 1.28709- 4 1.63361- 3 1.00000+ 1 1.90000+ 1 6.59891- 3 1.63488- 3 1.00000+ 1 2.70000+ 1 2.65586- 5 1.65698- 3 1.10000+ 1 1.10000+ 1 9.81055- 2 1.40334- 3 1.10000+ 1 1.30000+ 1 8.98120- 2 1.52794- 3 1.10000+ 1 1.40000+ 1 1.37370- 1 1.52986- 3 1.10000+ 1 1.60000+ 1 6.39060- 3 1.62648- 3 1.10000+ 1 1.80000+ 1 8.24391- 3 1.64440- 3 1.10000+ 1 1.90000+ 1 2.16478- 2 1.64567- 3 1.10000+ 1 2.70000+ 1 8.11110- 4 1.66777- 3 1.30000+ 1 1.30000+ 1 1.18183- 2 1.65254- 3 1.30000+ 1 1.40000+ 1 2.32629- 1 1.65446- 3 1.30000+ 1 1.60000+ 1 5.37297- 4 1.75108- 3 1.30000+ 1 1.80000+ 1 5.27081- 4 1.76900- 3 1.30000+ 1 1.90000+ 1 8.34135- 3 1.77027- 3 1.30000+ 1 2.70000+ 1 6.74182- 5 1.79237- 3 1.40000+ 1 1.40000+ 1 1.58174- 1 1.65638- 3 1.40000+ 1 1.60000+ 1 6.06755- 4 1.75300- 3 1.40000+ 1 1.80000+ 1 4.59455- 3 1.77092- 3 1.40000+ 1 1.90000+ 1 1.37674- 2 1.77219- 3 1.40000+ 1 2.70000+ 1 7.76323- 5 1.79429- 3 1.60000+ 1 1.60000+ 1 3.18542- 5 1.84962- 3 1.60000+ 1 1.80000+ 1 2.38918- 5 1.86754- 3 1.60000+ 1 1.90000+ 1 5.93302- 4 1.86881- 3 1.60000+ 1 2.70000+ 1 7.96360- 6 1.89091- 3 1.80000+ 1 1.80000+ 1 6.12892- 6 1.88546- 3 1.80000+ 1 1.90000+ 1 8.04940- 4 1.88673- 3 1.80000+ 1 2.70000+ 1 2.04290- 6 1.90883- 3 1.90000+ 1 1.90000+ 1 1.17277- 3 1.88800- 3 1.90000+ 1 2.70000+ 1 7.76346- 5 1.91010- 3 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.28771- 5 7.00000- 5 1.10000+ 1 3.81493- 5 8.07900- 5 1.80000+ 1 3.08013- 5 3.21850- 4 1.90000+ 1 4.81773- 5 3.23120- 4 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 7.10855- 2 2.36100- 5 1.00000+ 1 1.80000+ 1 5.70898- 2 4.15300- 5 1.00000+ 1 1.90000+ 1 1.25192- 1 4.28000- 5 1.00000+ 1 2.70000+ 1 5.46332- 3 6.49000- 5 1.10000+ 1 1.60000+ 1 1.23319- 1 3.44000- 5 1.10000+ 1 1.80000+ 1 1.17826- 1 5.23200- 5 1.10000+ 1 1.90000+ 1 1.92780- 1 5.35900- 5 1.10000+ 1 2.70000+ 1 9.61558- 3 7.56900- 5 1.30000+ 1 1.30000+ 1 9.49246- 3 6.04600- 5 1.30000+ 1 1.40000+ 1 9.57209- 3 6.23800- 5 1.30000+ 1 1.60000+ 1 4.77473- 2 1.59000- 4 1.30000+ 1 1.80000+ 1 6.98746- 3 1.76920- 4 1.30000+ 1 1.90000+ 1 5.56455- 3 1.78190- 4 1.30000+ 1 2.70000+ 1 3.15935- 3 2.00290- 4 1.40000+ 1 1.40000+ 1 1.54710- 2 6.43000- 5 1.40000+ 1 1.60000+ 1 7.07817- 2 1.60920- 4 1.40000+ 1 1.80000+ 1 2.54760- 3 1.78840- 4 1.40000+ 1 1.90000+ 1 1.45626- 2 1.80110- 4 1.40000+ 1 2.70000+ 1 4.67734- 3 2.02210- 4 1.60000+ 1 1.60000+ 1 1.93001- 2 2.57540- 4 1.60000+ 1 1.80000+ 1 2.50056- 2 2.75460- 4 1.60000+ 1 1.90000+ 1 4.75857- 2 2.76730- 4 1.60000+ 1 2.70000+ 1 2.84378- 3 2.98830- 4 1.80000+ 1 1.80000+ 1 1.22711- 3 2.93380- 4 1.80000+ 1 1.90000+ 1 3.24939- 3 2.94650- 4 1.80000+ 1 2.70000+ 1 1.28261- 3 3.16750- 4 1.90000+ 1 1.90000+ 1 3.99461- 3 2.95920- 4 1.90000+ 1 2.70000+ 1 2.44610- 3 3.18020- 4 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.48320- 4 1.35390- 4 1.60000+ 1 5.72540- 5 2.33930- 4 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.70000+ 1 4.90330- 3 5.69000- 6 1.30000+ 1 1.30000+ 1 7.14962- 2 0.00000+ 0 1.30000+ 1 1.40000+ 1 8.81671- 2 0.00000+ 0 1.30000+ 1 1.60000+ 1 1.43935- 1 8.90000- 5 1.30000+ 1 1.80000+ 1 1.45906- 1 1.06920- 4 1.30000+ 1 1.90000+ 1 2.25115- 1 1.08190- 4 1.30000+ 1 2.70000+ 1 1.17208- 2 1.30290- 4 1.40000+ 1 1.40000+ 1 1.51679- 2 0.00000+ 0 1.40000+ 1 1.60000+ 1 2.28890- 2 9.09200- 5 1.40000+ 1 1.80000+ 1 2.15547- 1 1.08840- 4 1.40000+ 1 1.90000+ 1 2.21108- 2 1.10110- 4 1.40000+ 1 2.70000+ 1 1.55551- 3 1.32210- 4 1.60000+ 1 1.60000+ 1 4.25855- 4 1.87540- 4 1.60000+ 1 1.80000+ 1 7.97606- 3 2.05460- 4 1.60000+ 1 1.90000+ 1 1.10211- 3 2.06730- 4 1.60000+ 1 2.70000+ 1 6.09692- 5 2.28830- 4 1.80000+ 1 1.80000+ 1 4.79417- 3 2.23380- 4 1.80000+ 1 1.90000+ 1 1.56348- 2 2.24650- 4 1.80000+ 1 2.70000+ 1 7.01011- 4 2.46750- 4 1.90000+ 1 1.90000+ 1 4.06517- 4 2.25920- 4 1.90000+ 1 2.70000+ 1 8.01430- 5 2.48020- 4 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.06602- 5 1.24600- 4 1.40000+ 1 1.96722- 4 1.26520- 4 1.60000+ 1 6.36015- 5 2.23140- 4 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.45599- 2 7.82100- 5 1.30000+ 1 1.80000+ 1 2.29524- 2 9.61300- 5 1.30000+ 1 1.90000+ 1 1.89774- 1 9.74000- 5 1.30000+ 1 2.70000+ 1 2.57597- 3 1.19500- 4 1.40000+ 1 1.60000+ 1 1.69019- 1 8.01300- 5 1.40000+ 1 1.80000+ 1 1.53944- 1 9.80500- 5 1.40000+ 1 1.90000+ 1 3.75672- 1 9.93200- 5 1.40000+ 1 2.70000+ 1 1.36510- 2 1.21420- 4 1.60000+ 1 1.60000+ 1 3.61574- 4 1.76750- 4 1.60000+ 1 1.80000+ 1 5.95652- 4 1.94670- 4 1.60000+ 1 1.90000+ 1 1.03292- 2 1.95940- 4 1.60000+ 1 2.70000+ 1 5.16529- 5 2.18040- 4 1.80000+ 1 1.80000+ 1 1.25711- 4 2.12590- 4 1.80000+ 1 1.90000+ 1 1.05521- 2 2.13860- 4 1.80000+ 1 2.70000+ 1 4.62497- 5 2.35960- 4 1.90000+ 1 1.90000+ 1 1.46486- 2 2.15130- 4 1.90000+ 1 2.70000+ 1 8.60556- 4 2.37230- 4 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.27441- 5 1.16460- 4 1.90000+ 1 4.18221- 6 1.17730- 4 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.04606- 1 5.21500- 5 1.60000+ 1 1.80000+ 1 3.02847- 1 7.00700- 5 1.60000+ 1 1.90000+ 1 3.60977- 1 7.13400- 5 1.60000+ 1 2.70000+ 1 8.90187- 3 9.34400- 5 1.80000+ 1 1.80000+ 1 2.44974- 2 8.79900- 5 1.80000+ 1 1.90000+ 1 1.25355- 1 8.92600- 5 1.80000+ 1 2.70000+ 1 1.46484- 2 1.11360- 4 1.90000+ 1 1.90000+ 1 4.57023- 2 9.05300- 5 1.90000+ 1 2.70000+ 1 1.24379- 2 1.12630- 4 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.27921- 5 1.15810- 4 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.02406- 1 5.02300- 5 1.60000+ 1 1.80000+ 1 1.75003- 1 6.81500- 5 1.60000+ 1 1.90000+ 1 4.51299- 1 6.94200- 5 1.60000+ 1 2.70000+ 1 8.69572- 3 9.15200- 5 1.80000+ 1 1.80000+ 1 7.59466- 3 8.60700- 5 1.80000+ 1 1.90000+ 1 7.93690- 2 8.73400- 5 1.80000+ 1 2.70000+ 1 6.96886- 3 1.09440- 4 1.90000+ 1 1.90000+ 1 1.30926- 1 8.86100- 5 1.90000+ 1 2.70000+ 1 3.77146- 2 1.10710- 4 1 38000 0 7 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 5.62070- 7 1.79200- 5 1.90000+ 1 1.39543- 6 1.91900- 5 1 38000 0 9 8.76200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 3.54579- 1 1.28200- 5 1.90000+ 1 2.70000+ 1 6.45419- 1 1.40900- 5 1 39000 0 0 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000- 1 2.20000+ 1 6.00000- 1 2.70000+ 1 2.00000+ 0 1 39000 0 0 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.70000- 2 3.00000+ 0 2.35490- 3 5.00000+ 0 2.15970- 3 6.00000+ 0 2.08150- 3 8.00000+ 0 3.85790- 4 1.00000+ 1 3.12260- 4 1.10000+ 1 2.99920- 4 1.30000+ 1 1.68740- 4 1.40000+ 1 1.66510- 4 1.60000+ 1 5.33500- 5 1.80000+ 1 3.37100- 5 1.90000+ 1 3.21400- 5 2.10000+ 1 5.24000- 6 2.20000+ 1 5.13000- 6 2.70000+ 1 5.68000- 6 1 39000 0 0 8.89059+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.15320- 2 3.00000+ 0 4.41470- 3 5.00000+ 0 4.41330- 3 6.00000+ 0 4.12680- 3 8.00000+ 0 1.13070- 3 1.00000+ 1 1.07530- 3 1.10000+ 1 1.01650- 3 1.30000+ 1 9.01120- 4 1.40000+ 1 8.87190- 4 1.60000+ 1 2.32920- 4 1.80000+ 1 1.89780- 4 1.90000+ 1 1.79680- 4 2.10000+ 1 7.78200- 5 2.20000+ 1 7.61800- 5 2.70000+ 1 2.70000- 5 1 39000 0 0 8.89059+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.01110-10 3.00000+ 0 8.80060-10 5.00000+ 0 7.51080-10 6.00000+ 0 7.73480-10 8.00000+ 0 2.48570- 9 1.00000+ 1 2.46600- 9 1.10000+ 1 2.51970- 9 1.30000+ 1 2.44050- 9 1.40000+ 1 2.45870- 9 1.60000+ 1 6.60720- 9 1.80000+ 1 7.34090- 9 1.90000+ 1 7.49530- 9 2.10000+ 1 1.21870- 8 2.20000+ 1 1.23220- 8 2.70000+ 1 2.07680- 8 1 39000 0 0 8.89059+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.40440- 6 3.00000+ 0 2.71130- 8 5.00000+ 0 4.04470- 8 6.00000+ 0 3.92480- 8 8.00000+ 0 3.21050-10 1.00000+ 1 3.55470-10 1.10000+ 1 3.12250-10 1.30000+ 1 2.10770-11 1.40000+ 1 1.96410-11 1.60000+ 1 1.04950-11 1.80000+ 1 3.30880-12 1.90000+ 1 3.11800-12 1 39000 0 0 8.89059+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.89930- 7 3.00000+ 0 6.01090- 6 5.00000+ 0 1.45280- 6 6.00000+ 0 1.37360- 6 8.00000+ 0 7.09460- 6 1.00000+ 1 2.51820- 6 1.10000+ 1 2.67640- 6 1.30000+ 1 6.24570- 8 1.40000+ 1 6.59510- 8 1.60000+ 1 2.25900- 6 1.80000+ 1 6.39700- 8 1.90000+ 1 6.06030- 8 1 39000 0 0 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.95213- 5 3.00000+ 0 7.44196- 5 5.00000+ 0 5.63953- 5 6.00000+ 0 5.48539- 5 8.00000+ 0 4.32146- 5 1.00000+ 1 3.52299- 5 1.10000+ 1 3.49872- 5 1.30000+ 1 2.42230- 5 1.40000+ 1 2.40227- 5 1.60000+ 1 1.58675- 5 1.80000+ 1 1.05633- 5 1.90000+ 1 1.05948- 5 2.10000+ 1 5.24000- 6 2.20000+ 1 5.13000- 6 2.70000+ 1 5.68000- 6 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.40627- 1 3.00000+ 0 2.94770- 2 5.00000+ 0 3.20324- 2 6.00000+ 0 2.95947- 2 8.00000+ 0 4.34332- 4 1.00000+ 1 4.18682- 4 1.10000+ 1 3.80382- 4 1.30000+ 1 4.59797- 5 1.40000+ 1 3.94919- 5 1.60000+ 1 3.06808- 6 1.80000+ 1 1.33060- 7 1.90000+ 1 3.30990- 8 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07849- 2 3.00000+ 0 5.59572- 5 5.00000+ 0 6.21266- 5 6.00000+ 0 5.51703- 5 8.00000+ 0 8.36032- 8 1.00000+ 1 6.87562- 8 1.10000+ 1 6.07176- 8 1.30000+ 1 5.93763- 9 1.40000+ 1 5.03410- 9 1.60000+ 1 6.41881-11 1.80000+ 1 3.76994-12 1.90000+ 1 8.88186-13 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21221+ 1 3.00000+ 0 1.30460+ 1 5.00000+ 0 9.64471+ 0 6.00000+ 0 9.35372+ 0 8.00000+ 0 7.15412+ 0 1.00000+ 1 5.64970+ 0 1.10000+ 1 5.60336+ 0 1.30000+ 1 3.57108+ 0 1.40000+ 1 3.53520+ 0 1.60000+ 1 1.99008+ 0 1.80000+ 1 1.00000+ 0 1.90000+ 1 1.00000+ 0 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.14562- 3 3.00000+ 0 2.22452- 3 5.00000+ 0 2.04118- 3 6.00000+ 0 1.97148- 3 8.00000+ 0 3.42492- 4 1.00000+ 1 2.76961- 4 1.10000+ 1 2.64872- 4 1.30000+ 1 1.44511- 4 1.40000+ 1 1.42482- 4 1.60000+ 1 3.74824- 5 1.80000+ 1 2.31467- 5 1.90000+ 1 2.15452- 5 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.06808- 1 1.48403- 2 6.00000+ 0 3.96256- 1 1.49185- 2 1.00000+ 1 3.07037- 2 1.66877- 2 1.10000+ 1 5.98234- 2 1.67001- 2 1.30000+ 1 1.17909- 4 1.68313- 2 1.40000+ 1 1.67888- 4 1.68335- 2 1.80000+ 1 4.52636- 3 1.69663- 2 1.90000+ 1 8.71401- 3 1.69679- 2 2.10000+ 1 6.95743- 7 1.69948- 2 2.20000+ 1 9.83070- 7 1.69949- 2 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 2.05016- 2 1.22902- 2 3.00000+ 0 5.00000+ 0 2.30498- 2 1.24854- 2 3.00000+ 0 6.00000+ 0 3.64985- 2 1.25636- 2 3.00000+ 0 8.00000+ 0 6.37286- 3 1.42593- 2 3.00000+ 0 1.00000+ 1 3.69254- 3 1.43328- 2 3.00000+ 0 1.10000+ 1 5.81573- 3 1.43452- 2 3.00000+ 0 1.30000+ 1 2.93071- 4 1.44764- 2 3.00000+ 0 1.40000+ 1 3.69576- 4 1.44786- 2 3.00000+ 0 1.60000+ 1 1.01041- 3 1.45917- 2 3.00000+ 0 1.80000+ 1 4.99232- 4 1.46114- 2 3.00000+ 0 1.90000+ 1 7.83425- 4 1.46130- 2 3.00000+ 0 2.10000+ 1 2.41547- 6 1.46399- 2 3.00000+ 0 2.20000+ 1 2.41547- 6 1.46400- 2 3.00000+ 0 2.70000+ 1 1.26412- 4 1.46394- 2 5.00000+ 0 5.00000+ 0 3.71064- 3 1.26806- 2 5.00000+ 0 6.00000+ 0 8.40673- 2 1.27588- 2 5.00000+ 0 8.00000+ 0 2.98502- 3 1.44545- 2 5.00000+ 0 1.00000+ 1 1.09023- 3 1.45280- 2 5.00000+ 0 1.10000+ 1 1.13392- 2 1.45404- 2 5.00000+ 0 1.30000+ 1 3.86502- 4 1.46716- 2 5.00000+ 0 1.40000+ 1 1.38413- 3 1.46738- 2 5.00000+ 0 1.60000+ 1 4.58972- 4 1.47869- 2 5.00000+ 0 1.80000+ 1 1.45745- 4 1.48066- 2 5.00000+ 0 1.90000+ 1 1.49200- 3 1.48082- 2 5.00000+ 0 2.10000+ 1 2.41561- 6 1.48351- 2 5.00000+ 0 2.20000+ 1 9.66263- 6 1.48352- 2 5.00000+ 0 2.70000+ 1 5.71733- 5 1.48346- 2 6.00000+ 0 6.00000+ 0 4.49051- 2 1.28370- 2 6.00000+ 0 8.00000+ 0 4.73125- 3 1.45327- 2 6.00000+ 0 1.00000+ 1 1.12661- 2 1.46062- 2 6.00000+ 0 1.10000+ 1 1.23690- 2 1.46186- 2 6.00000+ 0 1.30000+ 1 1.69248- 3 1.47498- 2 6.00000+ 0 1.40000+ 1 1.62077- 3 1.47520- 2 6.00000+ 0 1.60000+ 1 7.27848- 4 1.48651- 2 6.00000+ 0 1.80000+ 1 1.48558- 3 1.48848- 2 6.00000+ 0 1.90000+ 1 1.63372- 3 1.48864- 2 6.00000+ 0 2.10000+ 1 1.20777- 5 1.49133- 2 6.00000+ 0 2.20000+ 1 1.12721- 5 1.49134- 2 6.00000+ 0 2.70000+ 1 9.09842- 5 1.49128- 2 8.00000+ 0 8.00000+ 0 4.88729- 4 1.62284- 2 8.00000+ 0 1.00000+ 1 4.82292- 4 1.63019- 2 8.00000+ 0 1.10000+ 1 7.58456- 4 1.63143- 2 8.00000+ 0 1.30000+ 1 3.54284- 5 1.64455- 2 8.00000+ 0 1.40000+ 1 4.42830- 5 1.64477- 2 8.00000+ 0 1.60000+ 1 1.54593- 4 1.65609- 2 8.00000+ 0 1.80000+ 1 6.52183- 5 1.65805- 2 8.00000+ 0 1.90000+ 1 1.02255- 4 1.65821- 2 8.00000+ 0 2.70000+ 1 1.93243- 5 1.66085- 2 1.00000+ 1 1.00000+ 1 7.58991- 5 1.63755- 2 1.00000+ 1 1.10000+ 1 1.52593- 3 1.63878- 2 1.00000+ 1 1.30000+ 1 3.99448- 5 1.65190- 2 1.00000+ 1 1.40000+ 1 1.47809- 4 1.65212- 2 1.00000+ 1 1.60000+ 1 7.35042- 5 1.66344- 2 1.00000+ 1 1.80000+ 1 1.99735- 5 1.66540- 2 1.00000+ 1 1.90000+ 1 2.01329- 4 1.66556- 2 1.00000+ 1 2.20000+ 1 7.98967- 7 1.66826- 2 1.00000+ 1 2.70000+ 1 9.58739- 6 1.66821- 2 1.10000+ 1 1.10000+ 1 8.42945- 4 1.64002- 2 1.10000+ 1 1.30000+ 1 1.84495- 4 1.65313- 2 1.10000+ 1 1.40000+ 1 1.72570- 4 1.65336- 2 1.10000+ 1 1.60000+ 1 1.15311- 4 1.66467- 2 1.10000+ 1 1.80000+ 1 2.00397- 4 1.66664- 2 1.10000+ 1 1.90000+ 1 2.22668- 4 1.66679- 2 1.10000+ 1 2.10000+ 1 1.59050- 6 1.66948- 2 1.10000+ 1 2.20000+ 1 1.59050- 6 1.66949- 2 1.10000+ 1 2.70000+ 1 1.43147- 5 1.66944- 2 1.30000+ 1 1.40000+ 1 1.85189- 5 1.66647- 2 1.30000+ 1 1.60000+ 1 5.63610- 6 1.67779- 2 1.30000+ 1 1.80000+ 1 4.83087- 6 1.67975- 2 1.30000+ 1 1.90000+ 1 2.41544- 5 1.67991- 2 1.30000+ 1 2.70000+ 1 8.05183- 7 1.68256- 2 1.40000+ 1 1.40000+ 1 4.92116- 6 1.66670- 2 1.40000+ 1 1.60000+ 1 6.56170- 6 1.67801- 2 1.40000+ 1 1.80000+ 1 1.96856- 5 1.67998- 2 1.40000+ 1 1.90000+ 1 2.29658- 5 1.68013- 2 1.40000+ 1 2.70000+ 1 8.20232- 7 1.68278- 2 1.60000+ 1 1.60000+ 1 1.06188- 5 1.68933- 2 1.60000+ 1 1.80000+ 1 8.49496- 6 1.69129- 2 1.60000+ 1 1.90000+ 1 1.41582- 5 1.69145- 2 1.60000+ 1 2.70000+ 1 2.83164- 6 1.69410- 2 1.80000+ 1 1.80000+ 1 1.45617- 6 1.69326- 2 1.80000+ 1 1.90000+ 1 2.40264- 5 1.69341- 2 1.80000+ 1 2.70000+ 1 1.45617- 6 1.69606- 2 1.90000+ 1 1.90000+ 1 1.31093- 5 1.69357- 2 1.90000+ 1 2.70000+ 1 1.45657- 6 1.69622- 2 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42440- 5 1.95200- 4 6.00000+ 0 8.72648- 5 2.73400- 4 1.00000+ 1 1.49080- 3 2.04264- 3 1.10000+ 1 2.61029- 3 2.05498- 3 1.30000+ 1 1.07610- 5 2.18616- 3 1.40000+ 1 1.60210- 5 2.18839- 3 1.80000+ 1 2.03209- 4 2.32119- 3 1.90000+ 1 3.58709- 4 2.32276- 3 2.10000+ 1 5.05809- 8 2.34966- 3 2.20000+ 1 7.52018- 8 2.34977- 3 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30000+ 1 2.98457- 2 2.64600- 5 5.00000+ 0 1.40000+ 1 5.18591- 2 2.86900- 5 5.00000+ 0 1.60000+ 1 1.92459- 2 1.41850- 4 5.00000+ 0 1.80000+ 1 1.20523- 2 1.61490- 4 5.00000+ 0 1.90000+ 1 1.67136- 2 1.63060- 4 5.00000+ 0 2.10000+ 1 3.22272- 4 1.89960- 4 5.00000+ 0 2.20000+ 1 5.50785- 4 1.90070- 4 5.00000+ 0 2.70000+ 1 2.34001- 3 1.89520- 4 6.00000+ 0 1.30000+ 1 2.51251- 1 1.04660- 4 6.00000+ 0 1.40000+ 1 3.58887- 1 1.06890- 4 6.00000+ 0 1.60000+ 1 3.05364- 2 2.20050- 4 6.00000+ 0 1.80000+ 1 1.28267- 2 2.39690- 4 6.00000+ 0 1.90000+ 1 2.65786- 2 2.41260- 4 6.00000+ 0 2.10000+ 1 1.14264- 3 2.68160- 4 6.00000+ 0 2.20000+ 1 1.54464- 3 2.68270- 4 6.00000+ 0 2.70000+ 1 3.76102- 3 2.67720- 4 8.00000+ 0 8.00000+ 0 6.66434- 3 1.58332- 3 8.00000+ 0 1.00000+ 1 1.28614- 2 1.65685- 3 8.00000+ 0 1.10000+ 1 2.46341- 2 1.66919- 3 8.00000+ 0 1.30000+ 1 1.84546- 2 1.80037- 3 8.00000+ 0 1.40000+ 1 2.67984- 2 1.80260- 3 8.00000+ 0 1.60000+ 1 1.85161- 3 1.91576- 3 8.00000+ 0 1.80000+ 1 1.72159- 3 1.93540- 3 8.00000+ 0 1.90000+ 1 3.28609- 3 1.93697- 3 8.00000+ 0 2.10000+ 1 1.20919- 4 1.96387- 3 8.00000+ 0 2.20000+ 1 1.74712- 4 1.96398- 3 8.00000+ 0 2.70000+ 1 2.29060- 4 1.96343- 3 1.00000+ 1 1.00000+ 1 1.21451- 4 1.73038- 3 1.00000+ 1 1.10000+ 1 5.49190- 4 1.74272- 3 1.00000+ 1 1.30000+ 1 3.60084- 4 1.87390- 3 1.00000+ 1 1.40000+ 1 6.15028- 3 1.87613- 3 1.00000+ 1 1.60000+ 1 1.49842- 3 1.98929- 3 1.00000+ 1 1.80000+ 1 2.18397- 5 2.00893- 3 1.00000+ 1 1.90000+ 1 7.03134- 5 2.01050- 3 1.00000+ 1 2.10000+ 1 2.13067- 6 2.03740- 3 1.00000+ 1 2.20000+ 1 3.08951- 5 2.03751- 3 1.00000+ 1 2.70000+ 1 1.80574- 4 2.03696- 3 1.10000+ 1 1.10000+ 1 6.01403- 4 1.75506- 3 1.10000+ 1 1.30000+ 1 5.57610- 3 1.88624- 3 1.10000+ 1 1.40000+ 1 3.92178- 3 1.88847- 3 1.10000+ 1 1.60000+ 1 2.87228- 3 2.00163- 3 1.10000+ 1 1.80000+ 1 7.03139- 5 2.02127- 3 1.10000+ 1 1.90000+ 1 1.31568- 4 2.02284- 3 1.10000+ 1 2.10000+ 1 2.66329- 5 2.04974- 3 1.10000+ 1 2.20000+ 1 1.91769- 5 2.04985- 3 1.10000+ 1 2.70000+ 1 3.45713- 4 2.04930- 3 1.30000+ 1 1.30000+ 1 8.56018- 4 2.01742- 3 1.30000+ 1 1.40000+ 1 3.62432- 2 2.01965- 3 1.30000+ 1 1.60000+ 1 2.06304- 3 2.13281- 3 1.30000+ 1 1.80000+ 1 6.33887- 5 2.15245- 3 1.30000+ 1 1.90000+ 1 7.31354- 4 2.15402- 3 1.30000+ 1 2.10000+ 1 1.11862- 5 2.18092- 3 1.30000+ 1 2.20000+ 1 1.95490- 4 2.18103- 3 1.30000+ 1 2.70000+ 1 2.47166- 4 2.18048- 3 1.40000+ 1 1.40000+ 1 1.01373- 2 2.02188- 3 1.40000+ 1 1.60000+ 1 3.00293- 3 2.13504- 3 1.40000+ 1 1.80000+ 1 7.75085- 4 2.15468- 3 1.40000+ 1 1.90000+ 1 5.34286- 4 2.15625- 3 1.40000+ 1 2.10000+ 1 1.94975- 4 2.18315- 3 1.40000+ 1 2.20000+ 1 1.11865- 4 2.18326- 3 1.40000+ 1 2.70000+ 1 3.59559- 4 2.18271- 3 1.60000+ 1 1.60000+ 1 1.24122- 4 2.24820- 3 1.60000+ 1 1.80000+ 1 2.00810- 4 2.26784- 3 1.60000+ 1 1.90000+ 1 3.83537- 4 2.26941- 3 1.60000+ 1 2.10000+ 1 1.33164- 5 2.29631- 3 1.60000+ 1 2.20000+ 1 1.97099- 5 2.29642- 3 1.60000+ 1 2.70000+ 1 3.03621- 5 2.29587- 3 1.80000+ 1 1.80000+ 1 1.14318- 6 2.28748- 3 1.80000+ 1 1.90000+ 1 9.71702- 6 2.28905- 3 1.80000+ 1 2.10000+ 1 5.71605- 7 2.31595- 3 1.80000+ 1 2.20000+ 1 4.00111- 6 2.31606- 3 1.80000+ 1 2.70000+ 1 2.57220- 5 2.31551- 3 1.90000+ 1 1.90000+ 1 7.45752- 6 2.29062- 3 1.90000+ 1 2.10000+ 1 3.72871- 6 2.31752- 3 1.90000+ 1 2.20000+ 1 2.66326- 6 2.31763- 3 1.90000+ 1 2.70000+ 1 4.63424- 5 2.31708- 3 2.10000+ 1 2.70000+ 1 1.59810- 6 2.34398- 3 2.20000+ 1 2.70000+ 1 2.13069- 6 2.34409- 3 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.03038- 9 7.82000- 5 8.00000+ 0 3.12648- 3 1.77391- 3 1.10000+ 1 2.62458- 5 1.85978- 3 1.30000+ 1 2.48598- 2 1.99096- 3 1.60000+ 1 1.98628- 4 2.10635- 3 1.90000+ 1 7.70064- 7 2.12756- 3 2.10000+ 1 1.34319- 4 2.15446- 3 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.98612- 2 2.48500- 5 6.00000+ 0 1.80000+ 1 6.11315- 2 4.44900- 5 6.00000+ 0 1.90000+ 1 2.36800- 2 4.60600- 5 6.00000+ 0 2.10000+ 1 4.84985- 3 7.29600- 5 6.00000+ 0 2.20000+ 1 1.97633- 3 7.30700- 5 6.00000+ 0 2.70000+ 1 2.26025- 3 7.25200- 5 8.00000+ 0 8.00000+ 0 1.75066- 3 1.38812- 3 8.00000+ 0 1.00000+ 1 3.61776- 2 1.46165- 3 8.00000+ 0 1.10000+ 1 3.34115- 3 1.47399- 3 8.00000+ 0 1.30000+ 1 1.93261- 3 1.60517- 3 8.00000+ 0 1.40000+ 1 5.07533- 3 1.60740- 3 8.00000+ 0 1.60000+ 1 4.62227- 4 1.72056- 3 8.00000+ 0 1.80000+ 1 3.61586- 3 1.74020- 3 8.00000+ 0 1.90000+ 1 4.03987- 4 1.74177- 3 8.00000+ 0 2.10000+ 1 9.09862- 6 1.76867- 3 8.00000+ 0 2.20000+ 1 2.36571- 5 1.76878- 3 8.00000+ 0 2.70000+ 1 5.64124- 5 1.76823- 3 1.00000+ 1 1.00000+ 1 3.39722- 2 1.53518- 3 1.00000+ 1 1.10000+ 1 1.12874- 1 1.54752- 3 1.00000+ 1 1.30000+ 1 5.63724- 2 1.67870- 3 1.00000+ 1 1.40000+ 1 1.02538- 1 1.68093- 3 1.00000+ 1 1.60000+ 1 5.84695- 3 1.79409- 3 1.00000+ 1 1.80000+ 1 8.03275- 3 1.81373- 3 1.00000+ 1 1.90000+ 1 1.47996- 2 1.81530- 3 1.00000+ 1 2.10000+ 1 3.67594- 4 1.84220- 3 1.00000+ 1 2.20000+ 1 6.66044- 4 1.84231- 3 1.00000+ 1 2.70000+ 1 7.36997- 4 1.84176- 3 1.10000+ 1 1.10000+ 1 3.07722- 3 1.55986- 3 1.10000+ 1 1.30000+ 1 6.97989- 2 1.69104- 3 1.10000+ 1 1.40000+ 1 9.63231- 3 1.69327- 3 1.10000+ 1 1.60000+ 1 4.73143- 4 1.80643- 3 1.10000+ 1 1.80000+ 1 1.16397- 2 1.82607- 3 1.10000+ 1 1.90000+ 1 6.96991- 4 1.82764- 3 1.10000+ 1 2.10000+ 1 4.14904- 4 1.85454- 3 1.10000+ 1 2.20000+ 1 5.27736- 5 1.85465- 3 1.10000+ 1 2.70000+ 1 5.82330- 5 1.85410- 3 1.30000+ 1 1.30000+ 1 6.02143- 2 1.82222- 3 1.30000+ 1 1.40000+ 1 2.66590- 1 1.82445- 3 1.30000+ 1 1.60000+ 1 3.25737- 4 1.93761- 3 1.30000+ 1 1.80000+ 1 5.79045- 3 1.95725- 3 1.30000+ 1 1.90000+ 1 8.76422- 3 1.95882- 3 1.30000+ 1 2.10000+ 1 7.09704- 4 1.98572- 3 1.30000+ 1 2.20000+ 1 1.64143- 3 1.98583- 3 1.30000+ 1 2.70000+ 1 4.18549- 5 1.98528- 3 1.40000+ 1 1.40000+ 1 1.26563- 2 1.82668- 3 1.40000+ 1 1.60000+ 1 7.27884- 4 1.93984- 3 1.40000+ 1 1.80000+ 1 9.70445- 3 1.95948- 3 1.40000+ 1 1.90000+ 1 1.12103- 3 1.96105- 3 1.40000+ 1 2.10000+ 1 1.42661- 3 1.98795- 3 1.40000+ 1 2.20000+ 1 1.45578- 4 1.98806- 3 1.40000+ 1 2.70000+ 1 9.09859- 5 1.98751- 3 1.60000+ 1 1.60000+ 1 3.21271- 5 2.05300- 3 1.60000+ 1 1.80000+ 1 6.08524- 4 2.07264- 3 1.60000+ 1 1.90000+ 1 5.85845- 5 2.07421- 3 1.60000+ 1 2.10000+ 1 1.88983- 6 2.10111- 3 1.60000+ 1 2.20000+ 1 3.77956- 6 2.10122- 3 1.60000+ 1 2.70000+ 1 7.55912- 6 2.10067- 3 1.80000+ 1 1.80000+ 1 4.62220- 4 2.09228- 3 1.80000+ 1 1.90000+ 1 1.52675- 3 2.09385- 3 1.80000+ 1 2.10000+ 1 3.82142- 5 2.12075- 3 1.80000+ 1 2.20000+ 1 6.36904- 5 2.12086- 3 1.80000+ 1 2.70000+ 1 7.46060- 5 2.12031- 3 1.90000+ 1 1.90000+ 1 6.30867- 5 2.09542- 3 1.90000+ 1 2.10000+ 1 8.31595- 5 2.12232- 3 1.90000+ 1 2.20000+ 1 8.60265- 6 2.12243- 3 1.90000+ 1 2.70000+ 1 1.14699- 5 2.12188- 3 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.29921- 3 1.69571- 3 1.00000+ 1 1.66400- 5 1.76924- 3 1.10000+ 1 1.57890- 5 1.78158- 3 1.30000+ 1 2.43130- 3 1.91276- 3 1.40000+ 1 2.21780- 2 1.91499- 3 1.60000+ 1 1.87340- 4 2.02815- 3 1.80000+ 1 3.81561- 7 2.04779- 3 1.90000+ 1 3.65820- 7 2.04936- 3 2.10000+ 1 1.30290- 5 2.07626- 3 2.20000+ 1 1.15260- 4 2.07637- 3 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.03256- 3 1.30992- 3 8.00000+ 0 1.00000+ 1 1.52674- 3 1.38345- 3 8.00000+ 0 1.10000+ 1 4.04447- 2 1.39579- 3 8.00000+ 0 1.30000+ 1 3.69969- 3 1.52697- 3 8.00000+ 0 1.40000+ 1 3.94202- 3 1.52920- 3 8.00000+ 0 1.60000+ 1 5.36502- 4 1.64236- 3 8.00000+ 0 1.80000+ 1 1.80761- 4 1.66200- 3 8.00000+ 0 1.90000+ 1 4.06314- 3 1.66357- 3 8.00000+ 0 2.10000+ 1 1.73073- 5 1.69047- 3 8.00000+ 0 2.20000+ 1 1.73073- 5 1.69058- 3 8.00000+ 0 2.70000+ 1 6.53801- 5 1.69003- 3 1.00000+ 1 1.00000+ 1 5.65359- 4 1.45698- 3 1.00000+ 1 1.10000+ 1 6.56591- 2 1.46932- 3 1.00000+ 1 1.30000+ 1 4.28254- 3 1.60050- 3 1.00000+ 1 1.40000+ 1 3.90352- 2 1.60273- 3 1.00000+ 1 1.60000+ 1 2.11542- 4 1.71589- 3 1.00000+ 1 1.80000+ 1 1.30763- 4 1.73553- 3 1.00000+ 1 1.90000+ 1 6.77679- 3 1.73710- 3 1.00000+ 1 2.10000+ 1 2.69225- 5 1.76400- 3 1.00000+ 1 2.20000+ 1 2.24991- 4 1.76411- 3 1.00000+ 1 2.70000+ 1 2.69225- 5 1.76356- 3 1.10000+ 1 1.10000+ 1 9.51393- 2 1.48166- 3 1.10000+ 1 1.30000+ 1 8.84111- 2 1.61284- 3 1.10000+ 1 1.40000+ 1 1.35308- 1 1.61507- 3 1.10000+ 1 1.60000+ 1 6.48781- 3 1.72823- 3 1.10000+ 1 1.80000+ 1 8.53019- 3 1.74787- 3 1.10000+ 1 1.90000+ 1 2.22979- 2 1.74944- 3 1.10000+ 1 2.10000+ 1 5.63405- 4 1.77634- 3 1.10000+ 1 2.20000+ 1 8.57612- 4 1.77645- 3 1.10000+ 1 2.70000+ 1 8.15289- 4 1.77590- 3 1.30000+ 1 1.30000+ 1 1.18045- 2 1.74402- 3 1.30000+ 1 1.40000+ 1 2.31866- 1 1.74625- 3 1.30000+ 1 1.60000+ 1 5.51873- 4 1.85941- 3 1.30000+ 1 1.80000+ 1 5.53790- 4 1.87905- 3 1.30000+ 1 1.90000+ 1 8.66868- 3 1.88062- 3 1.30000+ 1 2.10000+ 1 1.40370- 4 1.90752- 3 1.30000+ 1 2.20000+ 1 1.25573- 3 1.90763- 3 1.30000+ 1 2.70000+ 1 6.92242- 5 1.90708- 3 1.40000+ 1 1.40000+ 1 1.57703- 1 1.74848- 3 1.40000+ 1 1.60000+ 1 6.19207- 4 1.86164- 3 1.40000+ 1 1.80000+ 1 4.81135- 3 1.88128- 3 1.40000+ 1 1.90000+ 1 1.43644- 2 1.88285- 3 1.40000+ 1 2.10000+ 1 1.38651- 3 1.90975- 3 1.40000+ 1 2.20000+ 1 1.81905- 3 1.90986- 3 1.40000+ 1 2.70000+ 1 7.69190- 5 1.90931- 3 1.60000+ 1 1.60000+ 1 3.53713- 5 1.97480- 3 1.60000+ 1 1.80000+ 1 2.55456- 5 1.99444- 3 1.60000+ 1 1.90000+ 1 6.66154- 4 1.99601- 3 1.60000+ 1 2.10000+ 1 1.96512- 6 2.02291- 3 1.60000+ 1 2.20000+ 1 1.96512- 6 2.02302- 3 1.60000+ 1 2.70000+ 1 7.85999- 6 2.02247- 3 1.80000+ 1 1.80000+ 1 7.69157- 6 2.01408- 3 1.80000+ 1 1.90000+ 1 8.80744- 4 2.01565- 3 1.80000+ 1 2.10000+ 1 3.84594- 6 2.04255- 3 1.80000+ 1 2.20000+ 1 2.88443- 5 2.04266- 3 1.80000+ 1 2.70000+ 1 3.84594- 6 2.04211- 3 1.90000+ 1 1.90000+ 1 1.28266- 3 2.01722- 3 1.90000+ 1 2.10000+ 1 5.57665- 5 2.04412- 3 1.90000+ 1 2.20000+ 1 9.03810- 5 2.04423- 3 1.90000+ 1 2.70000+ 1 8.26917- 5 2.04368- 3 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.28356- 5 7.35300- 5 1.10000+ 1 4.01185- 5 8.58700- 5 1.80000+ 1 3.70196- 5 3.52080- 4 1.90000+ 1 5.76323- 5 3.53650- 4 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 6.81047- 2 2.01800- 5 1.00000+ 1 1.80000+ 1 5.75745- 2 3.98200- 5 1.00000+ 1 1.90000+ 1 1.24444- 1 4.13900- 5 1.00000+ 1 2.10000+ 1 2.08772- 3 6.82900- 5 1.00000+ 1 2.20000+ 1 2.48905- 3 6.84000- 5 1.00000+ 1 2.70000+ 1 5.71809- 3 6.78500- 5 1.10000+ 1 1.60000+ 1 1.17642- 1 3.25200- 5 1.10000+ 1 1.80000+ 1 1.16009- 1 5.21600- 5 1.10000+ 1 1.90000+ 1 1.89939- 1 5.37300- 5 1.10000+ 1 2.10000+ 1 2.35661- 3 8.06300- 5 1.10000+ 1 2.20000+ 1 3.76903- 3 8.07400- 5 1.10000+ 1 2.70000+ 1 9.94037- 3 8.01900- 5 1.30000+ 1 1.30000+ 1 9.52422- 3 4.83100- 5 1.30000+ 1 1.40000+ 1 7.75781- 3 5.05400- 5 1.30000+ 1 1.60000+ 1 4.55068- 2 1.63700- 4 1.30000+ 1 1.80000+ 1 7.00534- 3 1.83340- 4 1.30000+ 1 1.90000+ 1 5.51493- 3 1.84910- 4 1.30000+ 1 2.10000+ 1 2.32815- 4 2.11810- 4 1.30000+ 1 2.20000+ 1 2.19751- 4 2.11920- 4 1.30000+ 1 2.70000+ 1 3.17270- 3 2.11370- 4 1.40000+ 1 1.40000+ 1 1.49875- 2 5.27700- 5 1.40000+ 1 1.60000+ 1 6.74316- 2 1.65930- 4 1.40000+ 1 1.80000+ 1 2.45950- 3 1.85570- 4 1.40000+ 1 1.90000+ 1 1.45204- 2 1.87140- 4 1.40000+ 1 2.10000+ 1 2.31103- 4 2.14040- 4 1.40000+ 1 2.20000+ 1 4.37089- 4 2.14150- 4 1.40000+ 1 2.70000+ 1 4.69198- 3 2.13600- 4 1.60000+ 1 1.60000+ 1 1.94132- 2 2.79090- 4 1.60000+ 1 1.80000+ 1 2.60629- 2 2.98730- 4 1.60000+ 1 1.90000+ 1 4.95672- 2 3.00300- 4 1.60000+ 1 2.10000+ 1 1.88046- 3 3.27200- 4 1.60000+ 1 2.20000+ 1 2.74199- 3 3.27310- 4 1.60000+ 1 2.70000+ 1 3.06342- 3 3.26760- 4 1.80000+ 1 1.80000+ 1 1.27649- 3 3.18370- 4 1.80000+ 1 1.90000+ 1 3.29939- 3 3.19940- 4 1.80000+ 1 2.10000+ 1 8.04038- 5 3.46840- 4 1.80000+ 1 2.20000+ 1 2.76410- 5 3.46950- 4 1.80000+ 1 2.70000+ 1 1.39462- 3 3.46400- 4 1.90000+ 1 1.90000+ 1 4.13104- 3 3.21510- 4 1.90000+ 1 2.10000+ 1 6.28209- 5 3.48410- 4 1.90000+ 1 2.20000+ 1 1.78414- 4 3.48520- 4 1.90000+ 1 2.70000+ 1 2.65857- 3 3.47970- 4 2.10000+ 1 2.70000+ 1 1.00499- 4 3.74870- 4 2.20000+ 1 2.70000+ 1 1.45739- 4 3.74980- 4 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.93080- 4 1.43520- 4 1.60000+ 1 7.40460- 5 2.58910- 4 2.10000+ 1 4.59550- 6 3.07020- 4 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.70264- 3 7.10000- 6 1.10000+ 1 2.20000+ 1 3.76663- 3 7.21000- 6 1.10000+ 1 2.70000+ 1 6.98372- 3 6.66000- 6 1.30000+ 1 1.60000+ 1 1.70582- 1 9.01700- 5 1.30000+ 1 1.80000+ 1 1.75268- 1 1.09810- 4 1.30000+ 1 1.90000+ 1 2.71117- 1 1.11380- 4 1.30000+ 1 2.10000+ 1 1.99688- 3 1.38280- 4 1.30000+ 1 2.20000+ 1 1.27539- 3 1.38390- 4 1.30000+ 1 2.70000+ 1 1.50397- 2 1.37840- 4 1.40000+ 1 1.60000+ 1 2.72371- 2 9.24000- 5 1.40000+ 1 1.80000+ 1 2.54300- 1 1.12040- 4 1.40000+ 1 1.90000+ 1 2.64142- 2 1.13610- 4 1.40000+ 1 2.10000+ 1 8.11283- 4 1.40510- 4 1.40000+ 1 2.20000+ 1 3.18018- 4 1.40620- 4 1.40000+ 1 2.70000+ 1 1.95898- 3 1.40070- 4 1.60000+ 1 1.60000+ 1 5.10000- 4 2.05560- 4 1.60000+ 1 1.80000+ 1 9.15427- 3 2.25200- 4 1.60000+ 1 1.90000+ 1 1.31576- 3 2.26770- 4 1.60000+ 1 2.10000+ 1 3.25342- 5 2.53670- 4 1.60000+ 1 2.20000+ 1 4.49721- 5 2.53780- 4 1.60000+ 1 2.70000+ 1 7.84647- 5 2.53230- 4 1.80000+ 1 1.80000+ 1 6.16576- 3 2.44840- 4 1.80000+ 1 1.90000+ 1 2.00575- 2 2.46410- 4 1.80000+ 1 2.10000+ 1 6.52271- 4 2.73310- 4 1.80000+ 1 2.20000+ 1 1.10876- 3 2.73420- 4 1.80000+ 1 2.70000+ 1 9.36748- 4 2.72870- 4 1.90000+ 1 1.90000+ 1 5.19217- 4 2.47980- 4 1.90000+ 1 2.10000+ 1 1.06001- 4 2.74880- 4 1.90000+ 1 2.20000+ 1 5.51667- 5 2.74990- 4 1.90000+ 1 2.70000+ 1 1.09255- 4 2.74440- 4 2.10000+ 1 2.20000+ 1 2.16348- 6 3.01890- 4 2.10000+ 1 2.70000+ 1 3.24522- 6 3.01340- 4 2.20000+ 1 2.70000+ 1 3.24520- 6 3.01450- 4 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.37891- 5 1.31180- 4 1.40000+ 1 2.27841- 4 1.33410- 4 1.60000+ 1 8.36904- 5 2.46570- 4 2.10000+ 1 5.66922- 7 2.94680- 4 2.20000+ 1 4.67192- 6 2.94790- 4 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.36603- 2 7.78300- 5 1.30000+ 1 1.80000+ 1 2.29777- 2 9.74700- 5 1.30000+ 1 1.90000+ 1 1.84457- 1 9.90400- 5 1.30000+ 1 2.10000+ 1 4.74284- 4 1.25940- 4 1.30000+ 1 2.20000+ 1 4.80357- 4 1.26050- 4 1.30000+ 1 2.70000+ 1 2.67162- 3 1.25500- 4 1.40000+ 1 1.60000+ 1 1.64419- 1 8.00600- 5 1.40000+ 1 1.80000+ 1 1.53532- 1 9.97000- 5 1.40000+ 1 1.90000+ 1 3.69582- 1 1.01270- 4 1.40000+ 1 2.10000+ 1 9.56647- 4 1.28170- 4 1.40000+ 1 2.20000+ 1 2.74216- 3 1.28280- 4 1.40000+ 1 2.70000+ 1 1.42715- 2 1.27730- 4 1.60000+ 1 1.60000+ 1 4.78405- 4 1.93220- 4 1.60000+ 1 1.80000+ 1 7.69366- 4 2.12860- 4 1.60000+ 1 1.90000+ 1 1.28567- 2 2.14430- 4 1.60000+ 1 2.10000+ 1 4.06891- 5 2.41330- 4 1.60000+ 1 2.20000+ 1 5.79499- 5 2.41440- 4 1.60000+ 1 2.70000+ 1 7.39784- 5 2.40890- 4 1.80000+ 1 1.80000+ 1 1.60584- 4 2.32500- 4 1.80000+ 1 1.90000+ 1 1.33782- 2 2.34070- 4 1.80000+ 1 2.10000+ 1 2.50097- 5 2.60970- 4 1.80000+ 1 2.20000+ 1 9.60894- 5 2.61080- 4 1.80000+ 1 2.70000+ 1 6.31814- 5 2.60530- 4 1.90000+ 1 1.90000+ 1 1.82113- 2 2.35640- 4 1.90000+ 1 2.10000+ 1 8.82996- 4 2.62540- 4 1.90000+ 1 2.20000+ 1 1.21476- 3 2.62650- 4 1.90000+ 1 2.70000+ 1 1.11804- 3 2.62100- 4 2.10000+ 1 2.20000+ 1 2.01411- 6 2.89550- 4 2.10000+ 1 2.70000+ 1 2.01411- 6 2.89000- 4 2.20000+ 1 2.70000+ 1 4.02802- 6 2.89110- 4 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.67952- 5 1.35030- 4 1.90000+ 1 6.71234- 6 1.36600- 4 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.57153- 2 6.20400- 5 1.60000+ 1 1.80000+ 1 2.61165- 1 8.16800- 5 1.60000+ 1 1.90000+ 1 3.09475- 1 8.32500- 5 1.60000+ 1 2.10000+ 1 4.19798- 2 1.10150- 4 1.60000+ 1 2.20000+ 1 9.41734- 3 1.10260- 4 1.60000+ 1 2.70000+ 1 7.03162- 3 1.09710- 4 1.80000+ 1 1.80000+ 1 9.57929- 3 1.01320- 4 1.80000+ 1 1.90000+ 1 1.04387- 1 1.02890- 4 1.80000+ 1 2.10000+ 1 3.68388- 2 1.29790- 4 1.80000+ 1 2.20000+ 1 5.85695- 3 1.29900- 4 1.80000+ 1 2.70000+ 1 1.07288- 2 1.29350- 4 1.90000+ 1 1.90000+ 1 4.52863- 2 1.04460- 4 1.90000+ 1 2.10000+ 1 6.05219- 2 1.31360- 4 1.90000+ 1 2.20000+ 1 3.80882- 3 1.31470- 4 1.90000+ 1 2.70000+ 1 1.09236- 2 1.30920- 4 2.10000+ 1 2.20000+ 1 3.55773- 3 1.58370- 4 2.10000+ 1 2.70000+ 1 3.26471- 3 1.57820- 4 2.20000+ 1 2.70000+ 1 4.18562- 4 1.57930- 4 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.70869- 5 1.34370- 4 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.69710- 2 5.98100- 5 1.60000+ 1 1.80000+ 1 1.57569- 1 7.94500- 5 1.60000+ 1 1.90000+ 1 3.97729- 1 8.10200- 5 1.60000+ 1 2.10000+ 1 6.16681- 3 1.07920- 4 1.60000+ 1 2.20000+ 1 4.12634- 2 1.08030- 4 1.60000+ 1 2.70000+ 1 7.11852- 3 1.07480- 4 1.80000+ 1 1.80000+ 1 5.10080- 3 9.90900- 5 1.80000+ 1 1.90000+ 1 7.60186- 2 1.00660- 4 1.80000+ 1 2.10000+ 1 1.14200- 3 1.27560- 4 1.80000+ 1 2.20000+ 1 2.98061- 2 1.27670- 4 1.80000+ 1 2.70000+ 1 5.86218- 3 1.27120- 4 1.90000+ 1 1.90000+ 1 7.12277- 2 1.02230- 4 1.90000+ 1 2.10000+ 1 7.20653- 3 1.29130- 4 1.90000+ 1 2.20000+ 1 9.00162- 2 1.29240- 4 1.90000+ 1 2.70000+ 1 2.11691- 2 1.28690- 4 2.10000+ 1 2.20000+ 1 2.24593- 3 1.56140- 4 2.10000+ 1 2.70000+ 1 2.66458- 4 1.55590- 4 2.20000+ 1 2.70000+ 1 3.08349- 3 1.55700- 4 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 8.46113- 7 1.96400- 5 1.90000+ 1 2.15531- 6 2.12100- 5 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 5.46211- 2 1.44000- 5 1.80000+ 1 2.20000+ 1 1.72329- 1 1.45100- 5 1.80000+ 1 2.70000+ 1 1.12091- 1 1.39600- 5 1.90000+ 1 2.10000+ 1 2.22923- 1 1.59700- 5 1.90000+ 1 2.20000+ 1 2.27525- 1 1.60800- 5 1.90000+ 1 2.70000+ 1 2.00594- 1 1.55300- 5 2.10000+ 1 2.20000+ 1 1.73303- 3 4.29800- 5 2.10000+ 1 2.70000+ 1 3.32358- 3 4.24300- 5 2.20000+ 1 2.70000+ 1 4.85732- 3 4.25400- 5 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.15169- 8 2.84700- 5 2.70000+ 1 4.15430- 8 2.80300- 5 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.20000+ 1 6.42782- 1 2.33400- 5 2.10000+ 1 2.70000+ 1 3.28607- 1 2.27900- 5 2.20000+ 1 2.70000+ 1 2.86110- 2 2.29000- 5 1 39000 0 7 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.28400- 9 2.69000- 5 2.20000+ 1 2.06940- 8 2.70100- 5 2.70000+ 1 1.01210- 8 2.64600- 5 1 39000 0 9 8.89059+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.20000+ 1 5.14224- 1 2.17700- 5 2.10000+ 1 2.70000+ 1 1.00846- 1 2.12200- 5 2.20000+ 1 2.70000+ 1 3.84930- 1 2.13300- 5 1 40000 0 0 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 8.00000- 1 2.20000+ 1 1.20000+ 0 2.70000+ 1 2.00000+ 0 1 40000 0 0 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.79620- 2 3.00000+ 0 2.51460- 3 5.00000+ 0 2.31220- 3 6.00000+ 0 2.22480- 3 8.00000+ 0 4.22060- 4 1.00000+ 1 3.44930- 4 1.10000+ 1 3.30880- 4 1.30000+ 1 1.93090- 4 1.40000+ 1 1.90490- 4 1.60000+ 1 5.99600- 5 1.80000+ 1 3.86300- 5 1.90000+ 1 3.67400- 5 2.10000+ 1 6.67000- 6 2.20000+ 1 6.52000- 6 2.70000+ 1 6.12000- 6 1 40000 0 0 9.12200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.27380- 2 3.00000+ 0 4.68670- 3 5.00000+ 0 4.68630- 3 6.00000+ 0 4.36650- 3 8.00000+ 0 1.21630- 3 1.00000+ 1 1.16020- 3 1.10000+ 1 1.09400- 3 1.30000+ 1 9.78880- 4 1.40000+ 1 9.63140- 4 1.60000+ 1 2.61560- 4 1.80000+ 1 2.16450- 4 1.90000+ 1 2.04440- 4 2.10000+ 1 9.82900- 5 2.20000+ 1 9.62500- 5 2.70000+ 1 3.09000- 5 1 40000 0 0 9.12200+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.95710-10 3.00000+ 0 8.54570-10 5.00000+ 0 7.28680-10 6.00000+ 0 7.51850-10 8.00000+ 0 2.40110- 9 1.00000+ 1 2.37570- 9 1.10000+ 1 2.42930- 9 1.30000+ 1 2.33240- 9 1.40000+ 1 2.35020- 9 1.60000+ 1 6.27890- 9 1.80000+ 1 6.92000- 9 1.90000+ 1 7.07440- 9 2.10000+ 1 1.07470- 8 2.20000+ 1 1.08590- 8 2.70000+ 1 1.95630- 8 1 40000 0 0 9.12200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.68780- 6 3.00000+ 0 3.13660- 8 5.00000+ 0 4.72580- 8 6.00000+ 0 4.57810- 8 8.00000+ 0 3.98200-10 1.00000+ 1 4.06840-10 1.10000+ 1 3.57840-10 1.30000+ 1 2.71900-11 1.40000+ 1 2.52160-11 1.60000+ 1 1.23280-11 1.80000+ 1 7.01390-12 1.90000+ 1 6.45160-12 1 40000 0 0 9.12200+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00840- 6 3.00000+ 0 5.65990- 6 5.00000+ 0 1.54120- 6 6.00000+ 0 1.45080- 6 8.00000+ 0 7.58600- 6 1.00000+ 1 2.68840- 6 1.10000+ 1 2.83890- 6 1.30000+ 1 7.01380- 8 1.40000+ 1 7.37060- 8 1.60000+ 1 4.51160- 6 1.80000+ 1 2.67450- 7 1.90000+ 1 2.50690- 7 1 40000 0 0 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.87263- 5 3.00000+ 0 8.55570- 5 5.00000+ 0 6.51166- 5 6.00000+ 0 6.32220- 5 8.00000+ 0 5.08453- 5 1.00000+ 1 4.12949- 5 1.10000+ 1 4.09280- 5 1.30000+ 1 2.76666- 5 1.40000+ 1 2.76933- 5 1.60000+ 1 1.94661- 5 1.80000+ 1 1.31134- 5 1.90000+ 1 1.30204- 5 2.10000+ 1 6.67000- 6 2.20000+ 1 6.52000- 6 2.70000+ 1 6.12000- 6 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.63351- 1 3.00000+ 0 3.25134- 2 5.00000+ 0 3.52962- 2 6.00000+ 0 3.25348- 2 8.00000+ 0 5.20270- 4 1.00000+ 1 5.13114- 4 1.10000+ 1 4.67857- 4 1.30000+ 1 7.00636- 5 1.40000+ 1 6.05752- 5 1.60000+ 1 4.57552- 6 1.80000+ 1 4.07699- 7 1.90000+ 1 1.02640- 7 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17100- 2 3.00000+ 0 6.54020- 5 5.00000+ 0 7.28652- 5 6.00000+ 0 6.44515- 5 8.00000+ 0 1.10460- 7 1.00000+ 1 9.31398- 8 1.10000+ 1 8.31887- 8 1.30000+ 1 1.04209- 8 1.40000+ 1 8.89612- 9 1.60000+ 1 1.05622-10 1.80000+ 1 1.30631-11 1.90000+ 1 3.10614-12 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10668+ 1 3.00000+ 0 1.21149+ 1 5.00000+ 0 8.97732+ 0 6.00000+ 0 8.69183+ 0 8.00000+ 0 6.79544+ 0 1.00000+ 1 5.32550+ 0 1.10000+ 1 5.27609+ 0 1.30000+ 1 3.23532+ 0 1.40000+ 1 3.24736+ 0 1.60000+ 1 1.98609+ 0 1.80000+ 1 1.00000+ 0 1.90000+ 1 1.00000+ 0 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.17325- 3 3.00000+ 0 2.36364- 3 5.00000+ 0 2.17422- 3 6.00000+ 0 2.09713- 3 8.00000+ 0 3.71104- 4 1.00000+ 1 3.03542- 4 1.10000+ 1 2.89869- 4 1.30000+ 1 1.65413- 4 1.40000+ 1 1.62788- 4 1.60000+ 1 4.04938- 5 1.80000+ 1 2.55166- 5 1.90000+ 1 2.37196- 5 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.11871- 1 1.56498- 2 6.00000+ 0 4.05451- 1 1.57372- 2 1.00000+ 1 3.19751- 2 1.76171- 2 1.10000+ 1 6.22642- 2 1.76311- 2 1.30000+ 1 1.33290- 4 1.77689- 2 1.40000+ 1 1.89330- 4 1.77715- 2 1.80000+ 1 5.23601- 3 1.79234- 2 1.90000+ 1 1.00560- 2 1.79253- 2 2.10000+ 1 1.88260- 6 1.79553- 2 2.20000+ 1 2.65631- 6 1.79555- 2 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.92160- 2 1.29328- 2 3.00000+ 0 5.00000+ 0 2.16294- 2 1.31352- 2 3.00000+ 0 6.00000+ 0 3.37582- 2 1.32226- 2 3.00000+ 0 8.00000+ 0 6.04934- 3 1.50253- 2 3.00000+ 0 1.00000+ 1 3.52485- 3 1.51025- 2 3.00000+ 0 1.10000+ 1 5.47525- 3 1.51165- 2 3.00000+ 0 1.30000+ 1 2.84214- 4 1.52543- 2 3.00000+ 0 1.40000+ 1 3.55655- 4 1.52569- 2 3.00000+ 0 1.60000+ 1 9.98466- 4 1.53874- 2 3.00000+ 0 1.80000+ 1 5.02919- 4 1.54088- 2 3.00000+ 0 1.90000+ 1 7.77582- 4 1.54107- 2 3.00000+ 0 2.10000+ 1 4.41788- 6 1.54407- 2 3.00000+ 0 2.20000+ 1 5.89062- 6 1.54409- 2 3.00000+ 0 2.70000+ 1 1.22969- 4 1.54413- 2 5.00000+ 0 5.00000+ 0 3.43642- 3 1.33376- 2 5.00000+ 0 6.00000+ 0 7.74818- 2 1.34250- 2 5.00000+ 0 8.00000+ 0 2.83263- 3 1.52277- 2 5.00000+ 0 1.00000+ 1 1.02565- 3 1.53049- 2 5.00000+ 0 1.10000+ 1 1.06306- 2 1.53189- 2 5.00000+ 0 1.30000+ 1 3.72597- 4 1.54567- 2 5.00000+ 0 1.40000+ 1 1.32980- 3 1.54593- 2 5.00000+ 0 1.60000+ 1 4.52838- 4 1.55898- 2 5.00000+ 0 1.80000+ 1 1.44321- 4 1.56112- 2 5.00000+ 0 1.90000+ 1 1.47412- 3 1.56131- 2 5.00000+ 0 2.10000+ 1 5.89060- 6 1.56431- 2 5.00000+ 0 2.20000+ 1 2.13533- 5 1.56433- 2 5.00000+ 0 2.70000+ 1 5.52244- 5 1.56437- 2 6.00000+ 0 6.00000+ 0 4.12300- 2 1.35124- 2 6.00000+ 0 8.00000+ 0 4.42295- 3 1.53151- 2 6.00000+ 0 1.00000+ 1 1.05528- 2 1.53923- 2 6.00000+ 0 1.10000+ 1 1.15559- 2 1.54063- 2 6.00000+ 0 1.30000+ 1 1.62358- 3 1.55441- 2 6.00000+ 0 1.40000+ 1 1.55067- 3 1.55467- 2 6.00000+ 0 1.60000+ 1 7.07602- 4 1.56772- 2 6.00000+ 0 1.80000+ 1 1.46675- 3 1.56986- 2 6.00000+ 0 1.90000+ 1 1.60818- 3 1.57005- 2 6.00000+ 0 2.10000+ 1 2.57714- 5 1.57305- 2 6.00000+ 0 2.20000+ 1 2.50352- 5 1.57307- 2 6.00000+ 0 2.70000+ 1 8.68889- 5 1.57311- 2 8.00000+ 0 8.00000+ 0 4.69772- 4 1.71179- 2 8.00000+ 0 1.00000+ 1 4.65351- 4 1.71950- 2 8.00000+ 0 1.10000+ 1 7.21605- 4 1.72091- 2 8.00000+ 0 1.30000+ 1 3.46080- 5 1.73468- 2 8.00000+ 0 1.40000+ 1 4.27063- 5 1.73494- 2 8.00000+ 0 1.60000+ 1 1.54627- 4 1.74800- 2 8.00000+ 0 1.80000+ 1 6.62714- 5 1.75013- 2 8.00000+ 0 1.90000+ 1 1.02347- 4 1.75032- 2 8.00000+ 0 2.10000+ 1 7.36337- 7 1.75333- 2 8.00000+ 0 2.20000+ 1 7.36337- 7 1.75334- 2 8.00000+ 0 2.70000+ 1 1.91443- 5 1.75338- 2 1.00000+ 1 1.00000+ 1 7.21668- 5 1.72721- 2 1.00000+ 1 1.10000+ 1 1.45058- 3 1.72862- 2 1.00000+ 1 1.30000+ 1 3.93639- 5 1.74240- 2 1.00000+ 1 1.40000+ 1 1.43603- 4 1.74266- 2 1.00000+ 1 1.60000+ 1 7.36253- 5 1.75571- 2 1.00000+ 1 1.80000+ 1 2.04112- 5 1.75784- 2 1.00000+ 1 1.90000+ 1 2.01191- 4 1.75803- 2 1.00000+ 1 2.10000+ 1 7.28966- 7 1.76104- 2 1.00000+ 1 2.20000+ 1 2.18687- 6 1.76105- 2 1.00000+ 1 2.70000+ 1 8.74759- 6 1.76109- 2 1.10000+ 1 1.10000+ 1 8.03077- 4 1.73002- 2 1.10000+ 1 1.30000+ 1 1.80164- 4 1.74380- 2 1.10000+ 1 1.40000+ 1 1.67769- 4 1.74406- 2 1.10000+ 1 1.60000+ 1 1.14514- 4 1.75712- 2 1.10000+ 1 1.80000+ 1 2.02050- 4 1.75925- 2 1.10000+ 1 1.90000+ 1 2.23936- 4 1.75944- 2 1.10000+ 1 2.10000+ 1 2.91765- 6 1.76244- 2 1.10000+ 1 2.20000+ 1 2.91765- 6 1.76246- 2 1.10000+ 1 2.70000+ 1 1.38590- 5 1.76250- 2 1.30000+ 1 1.40000+ 1 1.84081- 5 1.75784- 2 1.30000+ 1 1.60000+ 1 5.89067- 6 1.77089- 2 1.30000+ 1 1.80000+ 1 5.15415- 6 1.77303- 2 1.30000+ 1 1.90000+ 1 2.42989- 5 1.77322- 2 1.30000+ 1 2.70000+ 1 7.36331- 7 1.77628- 2 1.40000+ 1 1.40000+ 1 4.59906- 6 1.75810- 2 1.40000+ 1 1.60000+ 1 6.89880- 6 1.77115- 2 1.40000+ 1 1.80000+ 1 1.99291- 5 1.77329- 2 1.40000+ 1 1.90000+ 1 2.37616- 5 1.77348- 2 1.40000+ 1 2.70000+ 1 7.66521- 7 1.77654- 2 1.60000+ 1 1.60000+ 1 1.15989- 5 1.78421- 2 1.60000+ 1 1.80000+ 1 9.55251- 6 1.78634- 2 1.60000+ 1 1.90000+ 1 1.50115- 5 1.78653- 2 1.60000+ 1 2.70000+ 1 2.72925- 6 1.78959- 2 1.80000+ 1 1.80000+ 1 1.35926- 6 1.78847- 2 1.80000+ 1 1.90000+ 1 2.58255- 5 1.78866- 2 1.80000+ 1 2.70000+ 1 1.35926- 6 1.79172- 2 1.90000+ 1 1.90000+ 1 1.32552- 5 1.78885- 2 1.90000+ 1 2.10000+ 1 6.31215- 7 1.79186- 2 1.90000+ 1 2.70000+ 1 1.89362- 6 1.79191- 2 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.42420- 5 2.02400- 4 6.00000+ 0 8.89759- 5 2.89800- 4 1.00000+ 1 1.65510- 3 2.16967- 3 1.10000+ 1 2.88070- 3 2.18372- 3 1.30000+ 1 1.26990- 5 2.32151- 3 1.40000+ 1 1.89090- 5 2.32411- 3 1.80000+ 1 2.39470- 4 2.47597- 3 1.90000+ 1 4.20599- 4 2.47786- 3 2.10000+ 1 1.40280- 7 2.50793- 3 2.20000+ 1 2.08920- 7 2.50808- 3 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.21226- 2 1.42440- 4 5.00000+ 0 1.80000+ 1 1.41162- 2 1.63770- 4 5.00000+ 0 1.90000+ 1 1.94906- 2 1.65660- 4 5.00000+ 0 2.10000+ 1 7.78082- 4 1.95730- 4 5.00000+ 0 2.20000+ 1 1.32791- 3 1.95880- 4 5.00000+ 0 2.70000+ 1 2.64059- 3 1.96280- 4 6.00000+ 0 1.30000+ 1 2.77521- 1 9.67100- 5 6.00000+ 0 1.40000+ 1 3.97356- 1 9.93100- 5 6.00000+ 0 1.60000+ 1 3.47349- 2 2.29840- 4 6.00000+ 0 1.80000+ 1 1.47659- 2 2.51170- 4 6.00000+ 0 1.90000+ 1 3.04169- 2 2.53060- 4 6.00000+ 0 2.10000+ 1 2.82404- 3 2.83130- 4 6.00000+ 0 2.20000+ 1 3.79996- 3 2.83280- 4 6.00000+ 0 2.70000+ 1 4.19050- 3 2.83680- 4 8.00000+ 0 8.00000+ 0 6.24472- 3 1.67048- 3 8.00000+ 0 1.00000+ 1 1.20948- 2 1.74761- 3 8.00000+ 0 1.10000+ 1 2.31263- 2 1.76166- 3 8.00000+ 0 1.30000+ 1 1.75286- 2 1.89945- 3 8.00000+ 0 1.40000+ 1 2.54176- 2 1.90205- 3 8.00000+ 0 1.60000+ 1 1.80000- 3 2.03258- 3 8.00000+ 0 1.80000+ 1 1.70458- 3 2.05391- 3 8.00000+ 0 1.90000+ 1 3.24706- 3 2.05580- 3 8.00000+ 0 2.10000+ 1 2.57557- 4 2.08587- 3 8.00000+ 0 2.20000+ 1 3.71499- 4 2.08602- 3 8.00000+ 0 2.70000+ 1 2.18106- 4 2.08642- 3 1.00000+ 1 1.00000+ 1 1.10030- 4 1.82474- 3 1.00000+ 1 1.10000+ 1 5.20960- 4 1.83879- 3 1.00000+ 1 1.30000+ 1 3.52019- 4 1.97658- 3 1.00000+ 1 1.40000+ 1 5.89281- 3 1.97918- 3 1.00000+ 1 1.60000+ 1 1.45530- 3 2.10971- 3 1.00000+ 1 1.80000+ 1 2.04482- 5 2.13104- 3 1.00000+ 1 1.90000+ 1 7.01104- 5 2.13293- 3 1.00000+ 1 2.10000+ 1 4.86887- 6 2.16300- 3 1.00000+ 1 2.20000+ 1 6.47550- 5 2.16315- 3 1.00000+ 1 2.70000+ 1 1.71386- 4 2.16355- 3 1.10000+ 1 1.10000+ 1 5.62861- 4 1.85284- 3 1.10000+ 1 1.30000+ 1 5.26230- 3 1.99063- 3 1.10000+ 1 1.40000+ 1 3.69443- 3 1.99323- 3 1.10000+ 1 1.60000+ 1 2.78462- 3 2.12376- 3 1.10000+ 1 1.80000+ 1 7.01124- 5 2.14509- 3 1.10000+ 1 1.90000+ 1 1.29026- 4 2.14698- 3 1.10000+ 1 2.10000+ 1 5.55061- 5 2.17705- 3 1.10000+ 1 2.20000+ 1 3.94393- 5 2.17720- 3 1.10000+ 1 2.70000+ 1 3.27690- 4 2.17760- 3 1.30000+ 1 1.30000+ 1 8.32562- 4 2.12842- 3 1.30000+ 1 1.40000+ 1 3.47351- 2 2.13102- 3 1.30000+ 1 1.60000+ 1 2.02239- 3 2.26155- 3 1.30000+ 1 1.80000+ 1 6.57277- 5 2.28288- 3 1.30000+ 1 1.90000+ 1 7.26920- 4 2.28477- 3 1.30000+ 1 2.10000+ 1 2.43440- 5 2.31484- 3 1.30000+ 1 2.20000+ 1 4.14325- 4 2.31499- 3 1.30000+ 1 2.70000+ 1 2.36607- 4 2.31539- 3 1.40000+ 1 1.40000+ 1 9.72634- 3 2.13362- 3 1.40000+ 1 1.60000+ 1 2.93981- 3 2.26415- 3 1.40000+ 1 1.80000+ 1 7.79488- 4 2.28548- 3 1.40000+ 1 1.90000+ 1 5.30711- 4 2.28737- 3 1.40000+ 1 2.10000+ 1 4.13848- 4 2.31744- 3 1.40000+ 1 2.20000+ 1 2.38562- 4 2.31759- 3 1.40000+ 1 2.70000+ 1 3.44225- 4 2.31799- 3 1.60000+ 1 1.60000+ 1 1.25132- 4 2.39468- 3 1.60000+ 1 1.80000+ 1 2.05458- 4 2.41601- 3 1.60000+ 1 1.90000+ 1 3.91446- 4 2.41790- 3 1.60000+ 1 2.10000+ 1 2.97007- 5 2.44797- 3 1.60000+ 1 2.20000+ 1 4.28442- 5 2.44812- 3 1.60000+ 1 2.70000+ 1 3.01874- 5 2.44852- 3 1.80000+ 1 1.80000+ 1 1.08883- 6 2.43734- 3 1.80000+ 1 1.90000+ 1 1.03438- 5 2.43923- 3 1.80000+ 1 2.10000+ 1 1.08883- 6 2.46930- 3 1.80000+ 1 2.20000+ 1 9.79951- 6 2.46945- 3 1.80000+ 1 2.70000+ 1 2.72210- 5 2.46985- 3 1.90000+ 1 1.90000+ 1 7.30320- 6 2.44112- 3 1.90000+ 1 2.10000+ 1 7.79017- 6 2.47119- 3 1.90000+ 1 2.20000+ 1 5.84261- 6 2.47134- 3 1.90000+ 1 2.70000+ 1 4.62539- 5 2.47174- 3 2.10000+ 1 2.20000+ 1 2.92120- 6 2.50141- 3 2.10000+ 1 2.70000+ 1 3.40819- 6 2.50181- 3 2.20000+ 1 2.20000+ 1 9.73757- 7 2.50156- 3 2.20000+ 1 2.70000+ 1 4.86883- 6 2.50196- 3 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.68000- 9 8.74000- 5 8.00000+ 0 3.10680- 3 1.89014- 3 1.10000+ 1 2.75940- 5 1.98132- 3 1.30000+ 1 2.72920- 2 2.11911- 3 1.60000+ 1 2.13450- 4 2.25224- 3 1.90000+ 1 9.26250- 7 2.27546- 3 2.10000+ 1 3.42880- 4 2.30553- 3 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.94971- 2 2.74400- 5 6.00000+ 0 1.80000+ 1 6.06862- 2 4.87700- 5 6.00000+ 0 1.90000+ 1 2.34235- 2 5.06600- 5 6.00000+ 0 2.10000+ 1 1.04571- 2 8.07300- 5 6.00000+ 0 2.20000+ 1 4.20298- 3 8.08800- 5 6.00000+ 0 2.70000+ 1 2.13315- 3 8.12800- 5 8.00000+ 0 8.00000+ 0 1.66960- 3 1.46808- 3 8.00000+ 0 1.00000+ 1 3.48939- 2 1.54521- 3 8.00000+ 0 1.10000+ 1 3.24523- 3 1.55926- 3 8.00000+ 0 1.30000+ 1 1.89539- 3 1.69705- 3 8.00000+ 0 1.40000+ 1 4.94049- 3 1.69965- 3 8.00000+ 0 1.60000+ 1 4.55042- 4 1.83018- 3 8.00000+ 0 1.80000+ 1 3.64218- 3 1.85151- 3 8.00000+ 0 1.90000+ 1 4.10564- 4 1.85340- 3 8.00000+ 0 2.10000+ 1 2.05287- 5 1.88347- 3 8.00000+ 0 2.20000+ 1 5.13203- 5 1.88362- 3 8.00000+ 0 2.70000+ 1 5.47426- 5 1.88402- 3 1.00000+ 1 1.00000+ 1 3.29321- 2 1.62234- 3 1.00000+ 1 1.10000+ 1 1.09038- 1 1.63639- 3 1.00000+ 1 1.30000+ 1 5.51691- 2 1.77418- 3 1.00000+ 1 1.40000+ 1 9.99103- 2 1.77678- 3 1.00000+ 1 1.60000+ 1 5.86932- 3 1.90731- 3 1.00000+ 1 1.80000+ 1 8.17531- 3 1.92864- 3 1.00000+ 1 1.90000+ 1 1.50471- 2 1.93053- 3 1.00000+ 1 2.10000+ 1 8.07415- 4 1.96060- 3 1.00000+ 1 2.20000+ 1 1.45578- 3 1.96075- 3 1.00000+ 1 2.70000+ 1 7.25310- 4 1.96115- 3 1.10000+ 1 1.10000+ 1 2.96457- 3 1.65044- 3 1.10000+ 1 1.30000+ 1 6.83308- 2 1.78823- 3 1.10000+ 1 1.40000+ 1 9.39312- 3 1.79083- 3 1.10000+ 1 1.60000+ 1 4.77275- 4 1.92136- 3 1.10000+ 1 1.80000+ 1 1.17507- 2 1.94269- 3 1.10000+ 1 1.90000+ 1 7.03112- 4 1.94458- 3 1.10000+ 1 2.10000+ 1 9.04910- 4 1.97465- 3 1.10000+ 1 2.20000+ 1 1.16328- 4 1.97480- 3 1.10000+ 1 2.70000+ 1 5.81630- 5 1.97520- 3 1.30000+ 1 1.30000+ 1 5.94112- 2 1.92602- 3 1.30000+ 1 1.40000+ 1 2.62408- 1 1.92862- 3 1.30000+ 1 1.60000+ 1 3.31884- 4 2.05915- 3 1.30000+ 1 1.80000+ 1 5.92754- 3 2.08048- 3 1.30000+ 1 1.90000+ 1 9.01348- 3 2.08237- 3 1.30000+ 1 2.10000+ 1 1.56365- 3 2.11244- 3 1.30000+ 1 2.20000+ 1 3.61302- 3 2.11259- 3 1.30000+ 1 2.70000+ 1 4.10565- 5 2.11299- 3 1.40000+ 1 1.40000+ 1 1.24601- 2 1.93122- 3 1.40000+ 1 1.60000+ 1 7.33880- 4 2.06175- 3 1.40000+ 1 1.80000+ 1 9.85397- 3 2.08308- 3 1.40000+ 1 1.90000+ 1 1.14794- 3 2.08497- 3 1.40000+ 1 2.10000+ 1 3.11526- 3 2.11504- 3 1.40000+ 1 2.20000+ 1 3.19904- 4 2.11519- 3 1.40000+ 1 2.70000+ 1 8.89596- 5 2.11559- 3 1.60000+ 1 1.60000+ 1 3.37432- 5 2.19228- 3 1.60000+ 1 1.80000+ 1 6.73003- 4 2.21361- 3 1.60000+ 1 1.90000+ 1 6.56128- 5 2.21550- 3 1.60000+ 1 2.10000+ 1 3.74925- 6 2.24557- 3 1.60000+ 1 2.20000+ 1 9.37321- 6 2.24572- 3 1.60000+ 1 2.70000+ 1 7.49859- 6 2.24612- 3 1.80000+ 1 1.80000+ 1 4.92668- 4 2.23494- 3 1.80000+ 1 1.90000+ 1 1.62173- 3 2.23683- 3 1.80000+ 1 2.10000+ 1 8.55310- 5 2.26690- 3 1.80000+ 1 2.20000+ 1 1.43699- 4 2.26705- 3 1.80000+ 1 2.70000+ 1 7.52715- 5 2.26745- 3 1.90000+ 1 1.90000+ 1 5.46065- 5 2.23872- 3 1.90000+ 1 2.10000+ 1 1.52892- 4 2.26879- 3 1.90000+ 1 2.20000+ 1 1.74746- 5 2.26894- 3 1.90000+ 1 2.70000+ 1 8.73677- 6 2.26934- 3 2.10000+ 1 2.10000+ 1 5.13186- 6 2.29886- 3 2.10000+ 1 2.20000+ 1 2.39491- 5 2.29901- 3 2.20000+ 1 2.20000+ 1 1.71075- 6 2.29916- 3 2.20000+ 1 2.70000+ 1 1.71075- 6 2.29956- 3 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.43089- 3 1.80274- 3 1.00000+ 1 1.77549- 5 1.87987- 3 1.10000+ 1 1.67809- 5 1.89392- 3 1.30000+ 1 2.68449- 3 2.03171- 3 1.40000+ 1 2.44299- 2 2.03431- 3 1.60000+ 1 2.02879- 4 2.16484- 3 1.80000+ 1 4.61389- 7 2.18617- 3 1.90000+ 1 4.42379- 7 2.18806- 3 2.10000+ 1 3.34459- 5 2.21813- 3 2.20000+ 1 2.96189- 4 2.21828- 3 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.96044- 3 1.38068- 3 8.00000+ 0 1.00000+ 1 1.47393- 3 1.45781- 3 8.00000+ 0 1.10000+ 1 3.92029- 2 1.47186- 3 8.00000+ 0 1.30000+ 1 3.62497- 3 1.60965- 3 8.00000+ 0 1.40000+ 1 3.83912- 3 1.61225- 3 8.00000+ 0 1.60000+ 1 5.35487- 4 1.74278- 3 8.00000+ 0 1.80000+ 1 1.81517- 4 1.76411- 3 8.00000+ 0 1.90000+ 1 4.11138- 3 1.76600- 3 8.00000+ 0 2.10000+ 1 3.63036- 5 1.79607- 3 8.00000+ 0 2.20000+ 1 3.63036- 5 1.79622- 3 8.00000+ 0 2.70000+ 1 6.35318- 5 1.79662- 3 1.00000+ 1 1.00000+ 1 5.42761- 4 1.53494- 3 1.00000+ 1 1.10000+ 1 6.38600- 2 1.54899- 3 1.00000+ 1 1.30000+ 1 4.22221- 3 1.68678- 3 1.00000+ 1 1.40000+ 1 3.83872- 2 1.68938- 3 1.00000+ 1 1.60000+ 1 2.12394- 4 1.81991- 3 1.00000+ 1 1.80000+ 1 1.32510- 4 1.84124- 3 1.00000+ 1 1.90000+ 1 6.88531- 3 1.84313- 3 1.00000+ 1 2.10000+ 1 5.99032- 5 1.87320- 3 1.00000+ 1 2.20000+ 1 4.91931- 4 1.87335- 3 1.00000+ 1 2.70000+ 1 2.54137- 5 1.87375- 3 1.10000+ 1 1.10000+ 1 9.23940- 2 1.56304- 3 1.10000+ 1 1.30000+ 1 8.69775- 2 1.70083- 3 1.10000+ 1 1.40000+ 1 1.33178- 1 1.70343- 3 1.10000+ 1 1.60000+ 1 6.54399- 3 1.83396- 3 1.10000+ 1 1.80000+ 1 8.73100- 3 1.85529- 3 1.10000+ 1 1.90000+ 1 2.27138- 2 1.85718- 3 1.10000+ 1 2.10000+ 1 1.24342- 3 1.88725- 3 1.10000+ 1 2.20000+ 1 1.88969- 3 1.88740- 3 1.10000+ 1 2.70000+ 1 8.07804- 4 1.88780- 3 1.30000+ 1 1.30000+ 1 1.17640- 2 1.83862- 3 1.30000+ 1 1.40000+ 1 2.30515- 1 1.84122- 3 1.30000+ 1 1.60000+ 1 5.62698- 4 1.97175- 3 1.30000+ 1 1.80000+ 1 5.73600- 4 1.99308- 3 1.30000+ 1 1.90000+ 1 8.89427- 3 1.99497- 3 1.30000+ 1 2.10000+ 1 3.12204- 4 2.02504- 3 1.30000+ 1 2.20000+ 1 2.76811- 3 2.02519- 3 1.30000+ 1 2.70000+ 1 6.89772- 5 2.02559- 3 1.40000+ 1 1.40000+ 1 1.56823- 1 1.84382- 3 1.40000+ 1 1.60000+ 1 6.28040- 4 1.97435- 3 1.40000+ 1 1.80000+ 1 4.96815- 3 1.99568- 3 1.40000+ 1 1.90000+ 1 1.47907- 2 1.99757- 3 1.40000+ 1 2.10000+ 1 3.08035- 3 2.02764- 3 1.40000+ 1 2.20000+ 1 4.03149- 3 2.02779- 3 1.40000+ 1 2.70000+ 1 7.80540- 5 2.02819- 3 1.60000+ 1 1.60000+ 1 3.82219- 5 2.10488- 3 1.60000+ 1 1.80000+ 1 2.86670- 5 2.12621- 3 1.60000+ 1 1.90000+ 1 7.24326- 4 2.12810- 3 1.60000+ 1 2.10000+ 1 5.73339- 6 2.15817- 3 1.60000+ 1 2.20000+ 1 5.73339- 6 2.15832- 3 1.60000+ 1 2.70000+ 1 9.55538- 6 2.15872- 3 1.80000+ 1 1.80000+ 1 7.26084- 6 2.14754- 3 1.80000+ 1 1.90000+ 1 9.42096- 4 2.14943- 3 1.80000+ 1 2.10000+ 1 7.26084- 6 2.17950- 3 1.80000+ 1 2.20000+ 1 6.53490- 5 2.17965- 3 1.80000+ 1 2.70000+ 1 3.63047- 6 2.18005- 3 1.90000+ 1 1.90000+ 1 1.36859- 3 2.15132- 3 1.90000+ 1 2.10000+ 1 1.27054- 4 2.18139- 3 1.90000+ 1 2.20000+ 1 2.08742- 4 2.18154- 3 1.90000+ 1 2.70000+ 1 8.53127- 5 2.18194- 3 2.10000+ 1 2.10000+ 1 1.81517- 6 2.21146- 3 2.10000+ 1 2.20000+ 1 1.99678- 5 2.21161- 3 2.20000+ 1 2.20000+ 1 1.45210- 5 2.21176- 3 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.28204- 5 7.71300- 5 1.10000+ 1 4.22173- 5 9.11800- 5 1.80000+ 1 4.38818- 5 3.83430- 4 1.90000+ 1 6.79333- 5 3.85320- 4 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 6.39722- 2 1.71700- 5 1.00000+ 1 1.80000+ 1 5.71842- 2 3.85000- 5 1.00000+ 1 1.90000+ 1 1.21546- 1 4.03900- 5 1.00000+ 1 2.10000+ 1 5.37702- 3 7.04600- 5 1.00000+ 1 2.20000+ 1 6.57089- 3 7.06100- 5 1.00000+ 1 2.70000+ 1 5.57841- 3 7.10100- 5 1.10000+ 1 1.60000+ 1 1.12383- 1 3.12200- 5 1.10000+ 1 1.80000+ 1 1.13459- 1 5.25500- 5 1.10000+ 1 1.90000+ 1 1.85841- 1 5.44400- 5 1.10000+ 1 2.10000+ 1 6.04968- 3 8.45100- 5 1.10000+ 1 2.20000+ 1 9.59848- 3 8.46600- 5 1.10000+ 1 2.70000+ 1 9.58693- 3 8.50600- 5 1.30000+ 1 1.30000+ 1 9.56478- 3 3.58800- 5 1.30000+ 1 1.40000+ 1 6.64057- 3 3.84800- 5 1.30000+ 1 1.60000+ 1 4.31087- 2 1.69010- 4 1.30000+ 1 1.80000+ 1 6.94678- 3 1.90340- 4 1.30000+ 1 1.90000+ 1 5.39351- 3 1.92230- 4 1.30000+ 1 2.10000+ 1 6.02841- 4 2.22300- 4 1.30000+ 1 2.20000+ 1 5.97102- 4 2.22450- 4 1.30000+ 1 2.70000+ 1 3.01930- 3 2.22850- 4 1.40000+ 1 1.40000+ 1 1.47457- 2 4.10800- 5 1.40000+ 1 1.60000+ 1 6.38155- 2 1.71610- 4 1.40000+ 1 1.80000+ 1 2.34676- 3 1.92940- 4 1.40000+ 1 1.90000+ 1 1.43060- 2 1.94830- 4 1.40000+ 1 2.10000+ 1 6.26740- 4 2.24900- 4 1.40000+ 1 2.20000+ 1 1.14802- 3 2.25050- 4 1.40000+ 1 2.70000+ 1 4.46077- 3 2.25450- 4 1.60000+ 1 1.60000+ 1 1.93500- 2 3.02140- 4 1.60000+ 1 1.80000+ 1 2.66637- 2 3.23470- 4 1.60000+ 1 1.90000+ 1 5.06296- 2 3.25360- 4 1.60000+ 1 2.10000+ 1 4.71701- 3 3.55430- 4 1.60000+ 1 2.20000+ 1 6.88232- 3 3.55580- 4 1.60000+ 1 2.70000+ 1 3.06682- 3 3.55980- 4 1.80000+ 1 1.80000+ 1 1.30409- 3 3.44800- 4 1.80000+ 1 1.90000+ 1 3.31499- 3 3.46690- 4 1.80000+ 1 2.10000+ 1 2.00622- 4 3.76760- 4 1.80000+ 1 2.20000+ 1 6.29887- 5 3.76910- 4 1.80000+ 1 2.70000+ 1 1.41837- 3 3.77310- 4 1.90000+ 1 1.90000+ 1 4.12307- 3 3.48580- 4 1.90000+ 1 2.10000+ 1 1.46439- 4 3.78650- 4 1.90000+ 1 2.20000+ 1 4.34717- 4 3.78800- 4 1.90000+ 1 2.70000+ 1 2.64504- 3 3.79200- 4 2.10000+ 1 2.20000+ 1 4.57624- 6 4.08870- 4 2.10000+ 1 2.70000+ 1 1.63223- 4 4.09270- 4 2.20000+ 1 2.20000+ 1 1.50229- 6 4.09020- 4 2.20000+ 1 2.70000+ 1 2.34357- 4 4.09420- 4 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.31060- 4 1.51840- 4 1.60000+ 1 9.36081- 5 2.84970- 4 2.10000+ 1 1.56040- 5 3.38260- 4 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 3.87418- 3 7.38000- 6 1.10000+ 1 2.20000+ 1 8.51837- 3 7.53000- 6 1.10000+ 1 2.70000+ 1 6.97046- 3 7.93000- 6 1.30000+ 1 1.60000+ 1 1.66908- 1 9.18800- 5 1.30000+ 1 1.80000+ 1 1.72679- 1 1.13210- 4 1.30000+ 1 1.90000+ 1 2.67507- 1 1.15100- 4 1.30000+ 1 2.10000+ 1 5.05025- 3 1.45170- 4 1.30000+ 1 2.20000+ 1 3.50760- 3 1.45320- 4 1.30000+ 1 2.70000+ 1 1.49392- 2 1.45720- 4 1.40000+ 1 1.60000+ 1 2.68655- 2 9.44800- 5 1.40000+ 1 1.80000+ 1 2.46769- 1 1.15810- 4 1.40000+ 1 1.90000+ 1 2.58473- 2 1.17700- 4 1.40000+ 1 2.10000+ 1 1.69667- 3 1.47770- 4 1.40000+ 1 2.20000+ 1 7.90630- 4 1.47920- 4 1.40000+ 1 2.70000+ 1 1.92134- 3 1.48320- 4 1.60000+ 1 1.60000+ 1 5.78115- 4 2.25010- 4 1.60000+ 1 1.80000+ 1 9.94732- 3 2.46340- 4 1.60000+ 1 1.90000+ 1 1.47628- 3 2.48230- 4 1.60000+ 1 2.10000+ 1 7.63726- 5 2.78300- 4 1.60000+ 1 2.20000+ 1 1.16009- 4 2.78450- 4 1.60000+ 1 2.70000+ 1 8.99089- 5 2.78850- 4 1.80000+ 1 1.80000+ 1 6.35530- 3 2.67670- 4 1.80000+ 1 1.90000+ 1 2.06049- 2 2.69560- 4 1.80000+ 1 2.10000+ 1 1.65116- 3 2.99630- 4 1.80000+ 1 2.20000+ 1 2.80109- 3 2.99780- 4 1.80000+ 1 2.70000+ 1 9.53580- 4 3.00180- 4 1.90000+ 1 1.90000+ 1 5.32480- 4 2.71450- 4 1.90000+ 1 2.10000+ 1 2.53075- 4 3.01520- 4 1.90000+ 1 2.20000+ 1 1.37681- 4 3.01670- 4 1.90000+ 1 2.70000+ 1 1.12364- 4 3.02070- 4 2.10000+ 1 2.20000+ 1 1.41727- 5 3.31740- 4 2.10000+ 1 2.70000+ 1 7.08636- 6 3.32140- 4 2.20000+ 1 2.20000+ 1 1.01240- 6 3.31890- 4 2.20000+ 1 2.70000+ 1 8.09880- 6 3.32290- 4 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.65625- 5 1.37790- 4 1.40000+ 1 2.55954- 4 1.40390- 4 1.60000+ 1 1.07222- 4 2.70920- 4 2.10000+ 1 1.93148- 6 3.24210- 4 2.20000+ 1 1.59796- 5 3.24360- 4 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.29672- 2 7.78300- 5 1.30000+ 1 1.80000+ 1 2.28996- 2 9.91600- 5 1.30000+ 1 1.90000+ 1 1.78500- 1 1.01050- 4 1.30000+ 1 2.10000+ 1 1.20935- 3 1.31120- 4 1.30000+ 1 2.20000+ 1 1.08512- 3 1.31270- 4 1.30000+ 1 2.70000+ 1 2.63711- 3 1.31670- 4 1.40000+ 1 1.60000+ 1 1.60481- 1 8.04300- 5 1.40000+ 1 1.80000+ 1 1.52508- 1 1.01760- 4 1.40000+ 1 1.90000+ 1 3.61640- 1 1.03650- 4 1.40000+ 1 2.10000+ 1 2.67759- 3 1.33720- 4 1.40000+ 1 2.20000+ 1 7.05849- 3 1.33870- 4 1.40000+ 1 2.70000+ 1 1.41804- 2 1.34270- 4 1.60000+ 1 1.60000+ 1 6.01208- 4 2.10960- 4 1.60000+ 1 1.80000+ 1 9.46718- 4 2.32290- 4 1.60000+ 1 1.90000+ 1 1.52984- 2 2.34180- 4 1.60000+ 1 2.10000+ 1 1.14257- 4 2.64250- 4 1.60000+ 1 2.20000+ 1 1.56419- 4 2.64400- 4 1.60000+ 1 2.70000+ 1 9.38515- 5 2.64800- 4 1.80000+ 1 1.80000+ 1 1.86650- 4 2.53620- 4 1.80000+ 1 1.90000+ 1 1.55459- 2 2.55510- 4 1.80000+ 1 2.10000+ 1 6.54671- 5 2.85580- 4 1.80000+ 1 2.20000+ 1 2.66051- 4 2.85730- 4 1.80000+ 1 2.70000+ 1 7.38273- 5 2.86130- 4 1.90000+ 1 1.90000+ 1 2.11154- 2 2.57400- 4 1.90000+ 1 2.10000+ 1 2.51200- 3 2.87470- 4 1.90000+ 1 2.20000+ 1 3.45886- 3 2.87620- 4 1.90000+ 1 2.70000+ 1 1.28555- 3 2.88020- 4 2.10000+ 1 2.20000+ 1 1.03529- 5 3.17690- 4 2.10000+ 1 2.70000+ 1 5.64696- 6 3.18090- 4 2.20000+ 1 2.20000+ 1 2.82321- 6 3.17840- 4 2.20000+ 1 2.70000+ 1 8.46972- 6 3.18240- 4 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 5.66062- 5 1.54460- 4 1.90000+ 1 1.02430- 5 1.56350- 4 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.04693- 2 7.31700- 5 1.60000+ 1 1.80000+ 1 2.01380- 1 9.45000- 5 1.60000+ 1 1.90000+ 1 2.36700- 1 9.63900- 5 1.60000+ 1 2.10000+ 1 9.27501- 2 1.26460- 4 1.60000+ 1 2.20000+ 1 2.00732- 2 1.26610- 4 1.60000+ 1 2.70000+ 1 4.79932- 3 1.27010- 4 1.80000+ 1 1.80000+ 1 2.51465- 3 1.15830- 4 1.80000+ 1 1.90000+ 1 8.30272- 2 1.17720- 4 1.80000+ 1 2.10000+ 1 6.96858- 2 1.47790- 4 1.80000+ 1 2.20000+ 1 9.24901- 3 1.47940- 4 1.80000+ 1 2.70000+ 1 6.56379- 3 1.48340- 4 1.90000+ 1 1.90000+ 1 4.18992- 2 1.19610- 4 1.90000+ 1 2.10000+ 1 1.36485- 1 1.49680- 4 1.90000+ 1 2.20000+ 1 7.88461- 3 1.49830- 4 1.90000+ 1 2.70000+ 1 8.34162- 3 1.50230- 4 2.10000+ 1 2.20000+ 1 1.98067- 2 1.79900- 4 2.10000+ 1 2.70000+ 1 7.35136- 3 1.80300- 4 2.20000+ 1 2.20000+ 1 7.61811- 5 1.80050- 4 2.20000+ 1 2.70000+ 1 8.76092- 4 1.80450- 4 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 5.73698- 5 1.53750- 4 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.36004- 2 7.05700- 5 1.60000+ 1 1.80000+ 1 1.26761- 1 9.19000- 5 1.60000+ 1 1.90000+ 1 3.14450- 1 9.37900- 5 1.60000+ 1 2.10000+ 1 1.35155- 2 1.23860- 4 1.60000+ 1 2.20000+ 1 9.35050- 2 1.24010- 4 1.60000+ 1 2.70000+ 1 5.08605- 3 1.24410- 4 1.80000+ 1 1.80000+ 1 3.45020- 3 1.13230- 4 1.80000+ 1 1.90000+ 1 7.57273- 2 1.15120- 4 1.80000+ 1 2.10000+ 1 2.31205- 3 1.45190- 4 1.80000+ 1 2.20000+ 1 6.93248- 2 1.45340- 4 1.80000+ 1 2.70000+ 1 4.69512- 3 1.45740- 4 1.90000+ 1 1.90000+ 1 4.56479- 2 1.17010- 4 1.90000+ 1 2.10000+ 1 1.03398- 2 1.47080- 4 1.90000+ 1 2.20000+ 1 1.46526- 1 1.47230- 4 1.90000+ 1 2.70000+ 1 1.14553- 2 1.47630- 4 2.10000+ 1 2.20000+ 1 1.28043- 2 1.77300- 4 2.10000+ 1 2.70000+ 1 6.04636- 4 1.77700- 4 2.20000+ 1 2.20000+ 1 2.98770- 3 1.77450- 4 2.20000+ 1 2.70000+ 1 7.14927- 3 1.77850- 4 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.20950- 6 2.13300- 5 1.90000+ 1 3.16379- 6 2.32200- 5 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 6.46625- 2 1.46600- 5 1.80000+ 1 2.20000+ 1 2.10112- 1 1.48100- 5 1.80000+ 1 2.70000+ 1 5.63451- 2 1.52100- 5 1.90000+ 1 2.10000+ 1 2.74649- 1 1.65500- 5 1.90000+ 1 2.20000+ 1 2.78866- 1 1.67000- 5 1.90000+ 1 2.70000+ 1 1.01454- 1 1.71000- 5 2.10000+ 1 2.20000+ 1 4.48820- 3 4.67700- 5 2.10000+ 1 2.70000+ 1 3.89189- 3 4.71700- 5 2.20000+ 1 2.20000+ 1 2.37050- 4 4.69200- 5 2.20000+ 1 2.70000+ 1 5.29024- 3 4.73200- 5 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.47610- 7 3.19600- 5 2.70000+ 1 6.00899- 8 3.25100- 5 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.20000+ 1 8.14030- 1 2.54400- 5 2.10000+ 1 2.70000+ 1 1.58419- 1 2.58400- 5 2.20000+ 1 2.20000+ 1 4.81824- 3 2.55900- 5 2.20000+ 1 2.70000+ 1 2.27327- 2 2.59900- 5 1 40000 0 7 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.75180- 9 3.00700- 5 2.20000+ 1 7.96830- 8 3.02200- 5 2.70000+ 1 1.42050- 8 3.06200- 5 1 40000 0 9 9.12200+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.20000+ 1 5.97340- 1 2.35500- 5 2.10000+ 1 2.70000+ 1 4.13902- 2 2.39500- 5 2.20000+ 1 2.20000+ 1 1.14184- 1 2.37000- 5 2.20000+ 1 2.70000+ 1 2.47086- 1 2.41000- 5 1 41000 0 0 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 1.60000+ 0 2.20000+ 1 2.40000+ 0 2.70000+ 1 1.00000+ 0 1 41000 0 0 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.89480- 2 3.00000+ 0 2.67630- 3 5.00000+ 0 2.46660- 3 6.00000+ 0 2.36910- 3 8.00000+ 0 4.55980- 4 1.00000+ 1 3.75220- 4 1.10000+ 1 3.59280- 4 1.30000+ 1 2.14820- 4 1.40000+ 1 2.11810- 4 1.60000+ 1 6.34500- 5 1.80000+ 1 4.05800- 5 1.90000+ 1 3.83600- 5 2.10000+ 1 5.94000- 6 2.20000+ 1 5.76000- 6 2.70000+ 1 5.73000- 6 1 41000 0 0 9.29064+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.39840- 2 3.00000+ 0 4.96890- 3 5.00000+ 0 4.96950- 3 6.00000+ 0 4.61340- 3 8.00000+ 0 1.30550- 3 1.00000+ 1 1.24860- 3 1.10000+ 1 1.17440- 3 1.30000+ 1 1.05920- 3 1.40000+ 1 1.04150- 3 1.60000+ 1 2.88210- 4 1.80000+ 1 2.39970- 4 1.90000+ 1 2.25730- 4 2.10000+ 1 1.07000- 4 2.20000+ 1 1.04320- 4 2.70000+ 1 2.81500- 5 1 41000 0 0 9.29064+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.90570-10 3.00000+ 0 8.30630-10 5.00000+ 0 7.07440-10 6.00000+ 0 7.31000-10 8.00000+ 0 2.32200- 9 1.00000+ 1 2.29110- 9 1.10000+ 1 2.34550- 9 1.30000+ 1 2.23430- 9 1.40000+ 1 2.25210- 9 1.60000+ 1 6.01640- 9 1.80000+ 1 6.60720- 9 1.90000+ 1 6.76550- 9 2.10000+ 1 1.04960- 8 2.20000+ 1 1.06430- 8 2.70000+ 1 2.01030- 8 1 41000 0 0 9.29064+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.99400- 6 3.00000+ 0 3.59910- 8 5.00000+ 0 5.51230- 8 6.00000+ 0 5.32990- 8 8.00000+ 0 4.80350-10 1.00000+ 1 4.68850-10 1.10000+ 1 4.13730-10 1.30000+ 1 3.36610-11 1.40000+ 1 3.10220-11 1.60000+ 1 1.41640-11 1.80000+ 1 1.31730-11 1.90000+ 1 1.16970-11 1 41000 0 0 9.29064+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02550- 6 3.00000+ 0 5.86360- 6 5.00000+ 0 1.63560- 6 6.00000+ 0 1.53170- 6 8.00000+ 0 7.97610- 6 1.00000+ 1 2.78810- 6 1.10000+ 1 2.93530- 6 1.30000+ 1 9.16430- 8 1.40000+ 1 9.53130- 8 1.60000+ 1 7.96120- 6 1.80000+ 1 1.03350- 6 1.90000+ 1 1.07330- 6 1 41000 0 0 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.34495- 5 3.00000+ 0 7.00877- 5 5.00000+ 0 5.33968- 5 6.00000+ 0 5.17056- 5 8.00000+ 0 4.29924- 5 1.00000+ 1 3.46131- 5 1.10000+ 1 3.42388- 5 1.30000+ 1 2.23501- 5 1.40000+ 1 2.24909- 5 1.60000+ 1 1.73835- 5 1.80000+ 1 1.17098- 5 1.90000+ 1 1.16355- 5 2.10000+ 1 5.94000- 6 2.20000+ 1 5.76000- 6 2.70000+ 1 5.73000- 6 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.84887- 1 3.00000+ 0 3.57925- 2 5.00000+ 0 3.88475- 2 6.00000+ 0 3.56540- 2 8.00000+ 0 6.17578- 4 1.00000+ 1 6.21790- 4 1.10000+ 1 5.68856- 4 1.30000+ 1 1.02385- 4 1.40000+ 1 8.90418- 5 1.60000+ 1 6.55884- 6 1.80000+ 1 9.64753- 7 1.90000+ 1 2.45861- 7 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.26645- 2 3.00000+ 0 7.63919- 5 5.00000+ 0 8.52435- 5 6.00000+ 0 7.49351- 5 8.00000+ 0 1.45180- 7 1.00000+ 1 1.26429- 7 1.10000+ 1 1.14344- 7 1.30000+ 1 1.73127- 8 1.40000+ 1 1.48742- 8 1.60000+ 1 1.65052-10 1.80000+ 1 3.34348-11 1.90000+ 1 8.01161-12 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.88253+ 0 3.00000+ 0 1.10224+ 1 5.00000+ 0 8.15337+ 0 6.00000+ 0 7.87071+ 0 8.00000+ 0 6.37375+ 0 1.00000+ 1 4.93050+ 0 1.10000+ 1 4.87567+ 0 1.30000+ 1 2.82441+ 0 1.40000+ 1 2.86333+ 0 1.60000+ 1 1.98185+ 0 1.80000+ 1 9.99999- 1 1.90000+ 1 1.00000+ 0 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.22005- 3 3.00000+ 0 2.52982- 3 5.00000+ 0 2.32796- 3 6.00000+ 0 2.24246- 3 8.00000+ 0 4.12842- 4 1.00000+ 1 3.40480- 4 1.10000+ 1 3.24927- 4 1.30000+ 1 1.92453- 4 1.40000+ 1 1.89304- 4 1.60000+ 1 4.60663- 5 1.80000+ 1 2.88702- 5 1.90000+ 1 2.67245- 5 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.16740- 1 1.64814- 2 6.00000+ 0 4.13889- 1 1.65789- 2 1.00000+ 1 3.31819- 2 1.85728- 2 1.10000+ 1 6.46149- 2 1.85887- 2 1.30000+ 1 1.49620- 4 1.87332- 2 1.40000+ 1 2.12010- 4 1.87362- 2 1.80000+ 1 5.86619- 3 1.89074- 2 1.90000+ 1 1.12170- 2 1.89096- 2 2.10000+ 1 4.28589- 6 1.89421- 2 2.20000+ 1 6.00769- 6 1.89422- 2 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.80219- 2 1.35954- 2 3.00000+ 0 5.00000+ 0 2.03407- 2 1.38051- 2 3.00000+ 0 6.00000+ 0 3.12706- 2 1.39026- 2 3.00000+ 0 8.00000+ 0 5.74453- 3 1.58157- 2 3.00000+ 0 1.00000+ 1 3.36890- 3 1.58965- 2 3.00000+ 0 1.10000+ 1 5.15925- 3 1.59124- 2 3.00000+ 0 1.30000+ 1 2.75115- 4 1.60569- 2 3.00000+ 0 1.40000+ 1 3.41214- 4 1.60599- 2 3.00000+ 0 1.60000+ 1 9.70359- 4 1.62082- 2 3.00000+ 0 1.80000+ 1 4.93612- 4 1.62311- 2 3.00000+ 0 1.90000+ 1 7.51196- 4 1.62333- 2 3.00000+ 0 2.10000+ 1 8.76630- 6 1.62658- 2 3.00000+ 0 2.20000+ 1 1.07894- 5 1.62659- 2 3.00000+ 0 2.70000+ 1 5.19231- 5 1.62660- 2 5.00000+ 0 5.00000+ 0 3.18622- 3 1.40148- 2 5.00000+ 0 6.00000+ 0 7.15087- 2 1.41123- 2 5.00000+ 0 8.00000+ 0 2.69447- 3 1.60254- 2 5.00000+ 0 1.00000+ 1 9.64282- 4 1.61062- 2 5.00000+ 0 1.10000+ 1 9.96364- 3 1.61221- 2 5.00000+ 0 1.30000+ 1 3.58754- 4 1.62666- 2 5.00000+ 0 1.40000+ 1 1.27517- 3 1.62696- 2 5.00000+ 0 1.60000+ 1 4.41009- 4 1.64179- 2 5.00000+ 0 1.80000+ 1 1.39589- 4 1.64408- 2 5.00000+ 0 1.90000+ 1 1.41541- 3 1.64430- 2 5.00000+ 0 2.10000+ 1 1.14637- 5 1.64755- 2 5.00000+ 0 2.20000+ 1 4.04593- 5 1.64756- 2 5.00000+ 0 2.70000+ 1 2.36018- 5 1.64757- 2 6.00000+ 0 6.00000+ 0 3.78960- 2 1.42098- 2 6.00000+ 0 8.00000+ 0 4.13981- 3 1.61229- 2 6.00000+ 0 1.00000+ 1 9.87904- 3 1.62037- 2 6.00000+ 0 1.10000+ 1 1.07916- 2 1.62196- 2 6.00000+ 0 1.30000+ 1 1.55439- 3 1.63641- 2 6.00000+ 0 1.40000+ 1 1.48158- 3 1.63671- 2 6.00000+ 0 1.60000+ 1 6.77715- 4 1.65154- 2 6.00000+ 0 1.80000+ 1 1.41005- 3 1.65383- 2 6.00000+ 0 1.90000+ 1 1.53885- 3 1.65405- 2 6.00000+ 0 2.10000+ 1 4.99008- 5 1.65730- 2 6.00000+ 0 2.20000+ 1 4.72024- 5 1.65731- 2 6.00000+ 0 2.70000+ 1 3.57405- 5 1.65732- 2 8.00000+ 0 8.00000+ 0 4.51128- 4 1.80360- 2 8.00000+ 0 1.00000+ 1 4.49773- 4 1.81168- 2 8.00000+ 0 1.10000+ 1 6.87155- 4 1.81327- 2 8.00000+ 0 1.30000+ 1 3.43881- 5 1.82772- 2 8.00000+ 0 1.40000+ 1 4.18088- 5 1.82802- 2 8.00000+ 0 1.60000+ 1 1.52398- 4 1.84286- 2 8.00000+ 0 1.80000+ 1 6.60828- 5 1.84514- 2 8.00000+ 0 1.90000+ 1 1.00473- 4 1.84537- 2 8.00000+ 0 2.10000+ 1 1.34868- 6 1.84861- 2 8.00000+ 0 2.20000+ 1 1.34868- 6 1.84863- 2 8.00000+ 0 2.70000+ 1 8.09183- 6 1.84863- 2 1.00000+ 1 1.00000+ 1 6.97848- 5 1.81976- 2 1.00000+ 1 1.10000+ 1 1.38708- 3 1.82135- 2 1.00000+ 1 1.30000+ 1 3.82482- 5 1.83580- 2 1.00000+ 1 1.40000+ 1 1.39569- 4 1.83610- 2 1.00000+ 1 1.60000+ 1 7.31440- 5 1.85093- 2 1.00000+ 1 1.80000+ 1 2.01311- 5 1.85322- 2 1.00000+ 1 1.90000+ 1 1.97276- 4 1.85344- 2 1.00000+ 1 2.10000+ 1 1.34208- 6 1.85668- 2 1.00000+ 1 2.20000+ 1 4.69706- 6 1.85670- 2 1.00000+ 1 2.70000+ 1 4.02612- 6 1.85670- 2 1.10000+ 1 1.10000+ 1 7.69410- 4 1.82294- 2 1.10000+ 1 1.30000+ 1 1.76676- 4 1.83739- 2 1.10000+ 1 1.40000+ 1 1.64545- 4 1.83769- 2 1.10000+ 1 1.60000+ 1 1.12618- 4 1.85253- 2 1.10000+ 1 1.80000+ 1 1.98929- 4 1.85481- 2 1.10000+ 1 1.90000+ 1 2.19159- 4 1.85504- 2 1.10000+ 1 2.10000+ 1 5.39492- 6 1.85828- 2 1.10000+ 1 2.20000+ 1 5.39492- 6 1.85830- 2 1.10000+ 1 2.70000+ 1 6.06918- 6 1.85830- 2 1.30000+ 1 1.40000+ 1 1.82073- 5 1.85214- 2 1.30000+ 1 1.60000+ 1 5.39487- 6 1.86697- 2 1.30000+ 1 1.80000+ 1 5.39487- 6 1.86926- 2 1.30000+ 1 1.90000+ 1 2.42765- 5 1.86948- 2 1.30000+ 1 2.20000+ 1 6.74337- 7 1.87274- 2 1.40000+ 1 1.40000+ 1 4.85488- 6 1.85244- 2 1.40000+ 1 1.60000+ 1 6.93573- 6 1.86727- 2 1.40000+ 1 1.80000+ 1 2.01139- 5 1.86956- 2 1.40000+ 1 1.90000+ 1 2.28882- 5 1.86978- 2 1.40000+ 1 2.10000+ 1 6.93573- 7 1.87302- 2 1.40000+ 1 2.70000+ 1 6.93573- 7 1.87305- 2 1.60000+ 1 1.60000+ 1 1.28624- 5 1.88211- 2 1.60000+ 1 1.80000+ 1 1.08314- 5 1.88440- 2 1.60000+ 1 1.90000+ 1 1.62472- 5 1.88462- 2 1.60000+ 1 2.70000+ 1 1.35393- 6 1.88788- 2 1.80000+ 1 1.80000+ 1 1.30756- 6 1.88668- 2 1.80000+ 1 1.90000+ 1 2.74568- 5 1.88691- 2 1.80000+ 1 2.20000+ 1 6.53770- 7 1.89017- 2 1.80000+ 1 2.70000+ 1 6.53770- 7 1.89017- 2 1.90000+ 1 1.90000+ 1 1.50906- 5 1.88713- 2 1.90000+ 1 2.10000+ 1 6.56106- 7 1.89037- 2 1.90000+ 1 2.20000+ 1 6.56106- 7 1.89039- 2 1.90000+ 1 2.70000+ 1 6.56106- 7 1.89039- 2 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.44469- 5 2.09700- 4 6.00000+ 0 9.10735- 5 3.07200- 4 1.00000+ 1 1.83809- 3 2.30108- 3 1.10000+ 1 3.18188- 3 2.31702- 3 1.30000+ 1 1.49499- 5 2.46148- 3 1.40000+ 1 2.22739- 5 2.46449- 3 1.80000+ 1 2.74859- 4 2.63572- 3 1.90000+ 1 4.79487- 4 2.63794- 3 2.10000+ 1 3.29878- 7 2.67036- 3 2.20000+ 1 4.89657- 7 2.67054- 3 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.21211- 2 1.46250- 4 5.00000+ 0 1.80000+ 1 1.42290- 2 1.69120- 4 5.00000+ 0 1.90000+ 1 1.95477- 2 1.71340- 4 5.00000+ 0 2.10000+ 1 1.47751- 3 2.03760- 4 5.00000+ 0 2.20000+ 1 2.50305- 3 2.03940- 4 5.00000+ 0 2.70000+ 1 1.15135- 3 2.03970- 4 6.00000+ 0 1.30000+ 1 2.77150- 1 9.23800- 5 6.00000+ 0 1.40000+ 1 3.95478- 1 9.53900- 5 6.00000+ 0 1.60000+ 1 3.45530- 2 2.43750- 4 6.00000+ 0 1.80000+ 1 1.46831- 2 2.66620- 4 6.00000+ 0 1.90000+ 1 2.99523- 2 2.68840- 4 6.00000+ 0 2.10000+ 1 5.48059- 3 3.01260- 4 6.00000+ 0 2.20000+ 1 7.32036- 3 3.01440- 4 6.00000+ 0 2.70000+ 1 1.78886- 3 3.01470- 4 8.00000+ 0 8.00000+ 0 6.05255- 3 1.76434- 3 8.00000+ 0 1.00000+ 1 1.17635- 2 1.84510- 3 8.00000+ 0 1.10000+ 1 2.24521- 2 1.86104- 3 8.00000+ 0 1.30000+ 1 1.71764- 2 2.00550- 3 8.00000+ 0 1.40000+ 1 2.48695- 2 2.00851- 3 8.00000+ 0 1.60000+ 1 1.78025- 3 2.15687- 3 8.00000+ 0 1.80000+ 1 1.69984- 3 2.17974- 3 8.00000+ 0 1.90000+ 1 3.22354- 3 2.18196- 3 8.00000+ 0 2.10000+ 1 5.00969- 4 2.21438- 3 8.00000+ 0 2.20000+ 1 7.19619- 4 2.21456- 3 8.00000+ 0 2.70000+ 1 9.31809- 5 2.21459- 3 1.00000+ 1 1.00000+ 1 1.01943- 4 1.92586- 3 1.00000+ 1 1.10000+ 1 5.06961- 4 1.94180- 3 1.00000+ 1 1.30000+ 1 3.57969- 4 2.08626- 3 1.00000+ 1 1.40000+ 1 5.83862- 3 2.08927- 3 1.00000+ 1 1.60000+ 1 1.43880- 3 2.23763- 3 1.00000+ 1 1.80000+ 1 1.89127- 5 2.26050- 3 1.00000+ 1 1.90000+ 1 7.01158- 5 2.26272- 3 1.00000+ 1 2.10000+ 1 1.01483- 5 2.29514- 3 1.00000+ 1 2.20000+ 1 1.25938- 4 2.29532- 3 1.00000+ 1 2.70000+ 1 7.33453- 5 2.29535- 3 1.10000+ 1 1.10000+ 1 5.41105- 4 1.95774- 3 1.10000+ 1 1.30000+ 1 5.13470- 3 2.10220- 3 1.10000+ 1 1.40000+ 1 3.60143- 3 2.10521- 3 1.10000+ 1 1.60000+ 1 2.74758- 3 2.25357- 3 1.10000+ 1 1.80000+ 1 7.01184- 5 2.27644- 3 1.10000+ 1 1.90000+ 1 1.26393- 4 2.27866- 3 1.10000+ 1 2.10000+ 1 1.05638- 4 2.31108- 3 1.10000+ 1 2.20000+ 1 7.51923- 5 2.31126- 3 1.10000+ 1 2.70000+ 1 1.39775- 4 2.31129- 3 1.30000+ 1 1.30000+ 1 8.36324- 4 2.24666- 3 1.30000+ 1 1.40000+ 1 3.43087- 2 2.24967- 3 1.30000+ 1 1.60000+ 1 2.01448- 3 2.39803- 3 1.30000+ 1 1.80000+ 1 6.78103- 5 2.42090- 3 1.30000+ 1 1.90000+ 1 7.26529- 4 2.42312- 3 1.30000+ 1 2.10000+ 1 4.88957- 5 2.45554- 3 1.30000+ 1 2.20000+ 1 8.03109- 4 2.45572- 3 1.30000+ 1 2.70000+ 1 1.01943- 4 2.45575- 3 1.40000+ 1 1.40000+ 1 9.62072- 3 2.25268- 3 1.40000+ 1 1.60000+ 1 2.92424- 3 2.40104- 3 1.40000+ 1 1.80000+ 1 7.90689- 4 2.42391- 3 1.40000+ 1 1.90000+ 1 5.30049- 4 2.42613- 3 1.40000+ 1 2.10000+ 1 8.04520- 4 2.45855- 3 1.40000+ 1 2.20000+ 1 4.63627- 4 2.45873- 3 1.40000+ 1 2.70000+ 1 1.48078- 4 2.45876- 3 1.60000+ 1 1.60000+ 1 1.25939- 4 2.54940- 3 1.60000+ 1 1.80000+ 1 2.08040- 4 2.57227- 3 1.60000+ 1 1.90000+ 1 3.94857- 4 2.57449- 3 1.60000+ 1 2.10000+ 1 5.85854- 5 2.60691- 3 1.60000+ 1 2.20000+ 1 8.44171- 5 2.60709- 3 1.60000+ 1 2.70000+ 1 1.29169- 5 2.60712- 3 1.80000+ 1 1.80000+ 1 1.26494- 6 2.59514- 3 1.80000+ 1 1.90000+ 1 1.32819- 5 2.59736- 3 1.80000+ 1 2.10000+ 1 2.52989- 6 2.62978- 3 1.80000+ 1 2.20000+ 1 2.40331- 5 2.62996- 3 1.80000+ 1 2.70000+ 1 1.45479- 5 2.62999- 3 1.90000+ 1 1.90000+ 1 9.86221- 6 2.59958- 3 1.90000+ 1 2.10000+ 1 2.03402- 5 2.63200- 3 1.90000+ 1 2.20000+ 1 1.47940- 5 2.63218- 3 1.90000+ 1 2.70000+ 1 2.71212- 5 2.63221- 3 2.10000+ 1 2.10000+ 1 4.61286- 7 2.66442- 3 2.10000+ 1 2.20000+ 1 1.61450- 5 2.66460- 3 2.10000+ 1 2.70000+ 1 2.76763- 6 2.66463- 3 2.20000+ 1 2.20000+ 1 4.61295- 6 2.66478- 3 2.20000+ 1 2.70000+ 1 4.15170- 6 2.66481- 3 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.42520- 9 9.75000- 5 8.00000+ 0 3.07200- 3 2.01062- 3 1.10000+ 1 2.88300- 5 2.10732- 3 1.30000+ 1 2.97420- 2 2.25178- 3 1.60000+ 1 2.27820- 4 2.40315- 3 1.90000+ 1 1.07000- 6 2.42824- 3 2.10000+ 1 7.34840- 4 2.46066- 3 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.87213- 2 3.40500- 5 6.00000+ 0 1.80000+ 1 5.84216- 2 5.69200- 5 6.00000+ 0 1.90000+ 1 2.22654- 2 5.91400- 5 6.00000+ 0 2.10000+ 1 1.97238- 2 9.15600- 5 6.00000+ 0 2.20000+ 1 7.82873- 3 9.17400- 5 6.00000+ 0 2.70000+ 1 8.79151- 4 9.17700- 5 8.00000+ 0 8.00000+ 0 1.58788- 3 1.55464- 3 8.00000+ 0 1.00000+ 1 3.35811- 2 1.63540- 3 8.00000+ 0 1.10000+ 1 3.14051- 3 1.65134- 3 8.00000+ 0 1.30000+ 1 1.85631- 3 1.79580- 3 8.00000+ 0 1.40000+ 1 4.79749- 3 1.79881- 3 8.00000+ 0 1.60000+ 1 4.41971- 4 1.94717- 3 8.00000+ 0 1.80000+ 1 3.56642- 3 1.97004- 3 8.00000+ 0 1.90000+ 1 4.06622- 4 1.97226- 3 8.00000+ 0 2.10000+ 1 4.01808- 5 2.00468- 3 8.00000+ 0 2.20000+ 1 9.80440- 5 2.00486- 3 8.00000+ 0 2.70000+ 1 2.25016- 5 2.00489- 3 1.00000+ 1 1.00000+ 1 3.17997- 2 1.71616- 3 1.00000+ 1 1.10000+ 1 1.04926- 1 1.73210- 3 1.00000+ 1 1.30000+ 1 5.37437- 2 1.87656- 3 1.00000+ 1 1.40000+ 1 9.68980- 2 1.87957- 3 1.00000+ 1 1.60000+ 1 5.77813- 3 2.02793- 3 1.00000+ 1 1.80000+ 1 8.07620- 3 2.05080- 3 1.00000+ 1 1.90000+ 1 1.48138- 2 2.05302- 3 1.00000+ 1 2.10000+ 1 1.56068- 3 2.08544- 3 1.00000+ 1 2.20000+ 1 2.79499- 3 2.08562- 3 1.00000+ 1 2.70000+ 1 3.08600- 4 2.08565- 3 1.10000+ 1 1.10000+ 1 2.84634- 3 1.74804- 3 1.10000+ 1 1.30000+ 1 6.65256- 2 1.89250- 3 1.10000+ 1 1.40000+ 1 9.10666- 3 1.89551- 3 1.10000+ 1 1.60000+ 1 4.70916- 4 2.04387- 3 1.10000+ 1 1.80000+ 1 1.15209- 2 2.06674- 3 1.10000+ 1 1.90000+ 1 6.89473- 4 2.06896- 3 1.10000+ 1 2.10000+ 1 1.74218- 3 2.10138- 3 1.10000+ 1 2.20000+ 1 2.21793- 4 2.10156- 3 1.10000+ 1 2.70000+ 1 2.41076- 5 2.10159- 3 1.30000+ 1 1.30000+ 1 5.83064- 2 2.03696- 3 1.30000+ 1 1.40000+ 1 2.57030- 1 2.03997- 3 1.30000+ 1 1.60000+ 1 3.34302- 4 2.18833- 3 1.30000+ 1 1.80000+ 1 5.89034- 3 2.21120- 3 1.30000+ 1 1.90000+ 1 8.96964- 3 2.21342- 3 1.30000+ 1 2.10000+ 1 3.03595- 3 2.24584- 3 1.30000+ 1 2.20000+ 1 6.98622- 3 2.24602- 3 1.30000+ 1 2.70000+ 1 1.76793- 5 2.24605- 3 1.40000+ 1 1.40000+ 1 1.22000- 2 2.04298- 3 1.40000+ 1 1.60000+ 1 7.26452- 4 2.19134- 3 1.40000+ 1 1.80000+ 1 9.72040- 3 2.21421- 3 1.40000+ 1 1.90000+ 1 1.13631- 3 2.21643- 3 1.40000+ 1 2.10000+ 1 6.00106- 3 2.24885- 3 1.40000+ 1 2.20000+ 1 6.17173- 4 2.24903- 3 1.40000+ 1 2.70000+ 1 3.85734- 5 2.24906- 3 1.60000+ 1 1.60000+ 1 3.56706- 5 2.33970- 3 1.60000+ 1 1.80000+ 1 7.19069- 4 2.36257- 3 1.60000+ 1 1.90000+ 1 7.13423- 5 2.36479- 3 1.60000+ 1 2.10000+ 1 9.38699- 6 2.39721- 3 1.60000+ 1 2.20000+ 1 1.68968- 5 2.39739- 3 1.60000+ 1 2.70000+ 1 3.75487- 6 2.39742- 3 1.80000+ 1 1.80000+ 1 4.98220- 4 2.38544- 3 1.80000+ 1 1.90000+ 1 1.62641- 3 2.38766- 3 1.80000+ 1 2.10000+ 1 1.70361- 4 2.42008- 3 1.80000+ 1 2.20000+ 1 2.81265- 4 2.42026- 3 1.80000+ 1 2.70000+ 1 3.21439- 5 2.42029- 3 1.90000+ 1 1.90000+ 1 4.24015- 5 2.38988- 3 1.90000+ 1 2.10000+ 1 2.39732- 4 2.42230- 3 1.90000+ 1 2.20000+ 1 2.93547- 5 2.42248- 3 1.90000+ 1 2.70000+ 1 3.26164- 6 2.42251- 3 2.10000+ 1 2.10000+ 1 3.21458- 5 2.45472- 3 2.10000+ 1 2.20000+ 1 1.38224- 4 2.45490- 3 2.20000+ 1 2.20000+ 1 6.42870- 6 2.45508- 3 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.61282- 3 1.91312- 3 1.00000+ 1 1.91061- 5 1.99388- 3 1.10000+ 1 1.80001- 5 2.00982- 3 1.30000+ 1 2.98892- 3 2.15428- 3 1.40000+ 1 2.65531- 2 2.15729- 3 1.60000+ 1 2.22041- 4 2.30565- 3 1.80000+ 1 5.44723- 7 2.32852- 3 1.90000+ 1 5.21303- 7 2.33074- 3 2.10000+ 1 7.31244- 5 2.36316- 3 2.20000+ 1 6.44983- 4 2.36334- 3 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.88696- 3 1.45714- 3 8.00000+ 0 1.00000+ 1 1.42084- 3 1.53790- 3 8.00000+ 0 1.10000+ 1 3.79749- 2 1.55384- 3 8.00000+ 0 1.30000+ 1 3.54261- 3 1.69830- 3 8.00000+ 0 1.40000+ 1 3.73459- 3 1.70131- 3 8.00000+ 0 1.60000+ 1 5.26164- 4 1.84967- 3 8.00000+ 0 1.80000+ 1 1.79961- 4 1.87254- 3 8.00000+ 0 1.90000+ 1 4.04477- 3 1.87476- 3 8.00000+ 0 2.10000+ 1 6.85549- 5 1.90718- 3 8.00000+ 0 2.20000+ 1 6.85549- 5 1.90736- 3 8.00000+ 0 2.70000+ 1 2.74224- 5 1.90739- 3 1.00000+ 1 1.00000+ 1 5.21036- 4 1.61866- 3 1.00000+ 1 1.10000+ 1 6.20493- 2 1.63460- 3 1.00000+ 1 1.30000+ 1 4.14431- 3 1.77906- 3 1.00000+ 1 1.40000+ 1 3.75864- 2 1.78207- 3 1.00000+ 1 1.60000+ 1 2.09097- 4 1.93043- 3 1.00000+ 1 1.80000+ 1 1.28550- 4 1.95330- 3 1.00000+ 1 1.90000+ 1 6.79886- 3 1.95552- 3 1.00000+ 1 2.10000+ 1 1.14832- 4 1.98794- 3 1.00000+ 1 2.20000+ 1 9.47847- 4 1.98812- 3 1.00000+ 1 2.70000+ 1 1.02841- 5 1.98815- 3 1.10000+ 1 1.10000+ 1 8.96176- 2 1.65054- 3 1.10000+ 1 1.30000+ 1 8.52530- 2 1.79500- 3 1.10000+ 1 1.40000+ 1 1.30534- 1 1.79801- 3 1.10000+ 1 1.60000+ 1 6.48696- 3 1.94637- 3 1.10000+ 1 1.80000+ 1 8.69281- 3 1.96924- 3 1.10000+ 1 1.90000+ 1 2.24718- 2 1.97146- 3 1.10000+ 1 2.10000+ 1 2.41829- 3 2.00388- 3 1.10000+ 1 2.20000+ 1 3.66094- 3 2.00406- 3 1.10000+ 1 2.70000+ 1 3.46207- 4 2.00409- 3 1.30000+ 1 1.30000+ 1 1.16616- 2 1.93946- 3 1.30000+ 1 1.40000+ 1 2.28029- 1 1.94247- 3 1.30000+ 1 1.60000+ 1 5.62159- 4 2.09083- 3 1.30000+ 1 1.80000+ 1 5.77585- 4 2.11370- 3 1.30000+ 1 1.90000+ 1 8.84890- 3 2.11592- 3 1.30000+ 1 2.10000+ 1 6.11847- 4 2.14834- 3 1.30000+ 1 2.20000+ 1 5.37131- 3 2.14852- 3 1.30000+ 1 2.70000+ 1 2.91363- 5 2.14855- 3 1.40000+ 1 1.40000+ 1 1.55151- 1 1.94548- 3 1.40000+ 1 1.60000+ 1 6.27281- 4 2.09384- 3 1.40000+ 1 1.80000+ 1 4.97887- 3 2.11671- 3 1.40000+ 1 1.90000+ 1 1.47584- 2 2.11893- 3 1.40000+ 1 2.10000+ 1 6.02952- 3 2.15135- 3 1.40000+ 1 2.20000+ 1 7.85307- 3 2.15153- 3 1.40000+ 1 2.70000+ 1 3.25635- 5 2.15156- 3 1.60000+ 1 1.60000+ 1 4.05851- 5 2.24220- 3 1.60000+ 1 1.80000+ 1 3.09217- 5 2.26507- 3 1.60000+ 1 1.90000+ 1 7.80766- 4 2.26729- 3 1.60000+ 1 2.10000+ 1 1.35281- 5 2.29971- 3 1.60000+ 1 2.20000+ 1 1.35281- 5 2.29989- 3 1.60000+ 1 2.70000+ 1 3.86510- 6 2.29992- 3 1.80000+ 1 1.80000+ 1 8.56958- 6 2.28794- 3 1.80000+ 1 1.90000+ 1 9.52962- 4 2.29016- 3 1.80000+ 1 2.10000+ 1 1.54260- 5 2.32258- 3 1.80000+ 1 2.20000+ 1 1.26834- 4 2.32276- 3 1.80000+ 1 2.70000+ 1 1.71401- 6 2.32279- 3 1.90000+ 1 1.90000+ 1 1.37802- 3 2.29238- 3 1.90000+ 1 2.10000+ 1 2.51952- 4 2.32480- 3 1.90000+ 1 2.20000+ 1 4.11337- 4 2.32498- 3 1.90000+ 1 2.70000+ 1 3.77064- 5 2.32501- 3 2.10000+ 1 2.10000+ 1 6.85570- 6 2.35722- 3 2.10000+ 1 2.20000+ 1 1.19975- 4 2.35740- 3 2.20000+ 1 2.20000+ 1 8.22664- 5 2.35758- 3 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.27585- 5 8.07600- 5 1.10000+ 1 4.42112- 5 9.67000- 5 1.80000+ 1 5.11166- 5 4.15400- 4 1.90000+ 1 7.84540- 5 4.17620- 4 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 6.11798- 2 1.73100- 5 1.00000+ 1 1.80000+ 1 5.64765- 2 4.01800- 5 1.00000+ 1 1.90000+ 1 1.17693- 1 4.24000- 5 1.00000+ 1 2.10000+ 1 1.14238- 2 7.48200- 5 1.00000+ 1 2.20000+ 1 1.41104- 2 7.50000- 5 1.00000+ 1 2.70000+ 1 2.37154- 3 7.50300- 5 1.10000+ 1 1.60000+ 1 1.06344- 1 3.32500- 5 1.10000+ 1 1.80000+ 1 1.09491- 1 5.61200- 5 1.10000+ 1 1.90000+ 1 1.79043- 1 5.83400- 5 1.10000+ 1 2.10000+ 1 1.27397- 2 9.07600- 5 1.10000+ 1 2.20000+ 1 1.98647- 2 9.09400- 5 1.10000+ 1 2.70000+ 1 3.98939- 3 9.09700- 5 1.30000+ 1 1.30000+ 1 9.58294- 3 2.63400- 5 1.30000+ 1 1.40000+ 1 5.98578- 3 2.93500- 5 1.30000+ 1 1.60000+ 1 4.11491- 2 1.77710- 4 1.30000+ 1 1.80000+ 1 6.81159- 3 2.00580- 4 1.30000+ 1 1.90000+ 1 5.24022- 3 2.02800- 4 1.30000+ 1 2.10000+ 1 1.26429- 3 2.35220- 4 1.30000+ 1 2.20000+ 1 1.29041- 3 2.35400- 4 1.30000+ 1 2.70000+ 1 1.25022- 3 2.35430- 4 1.40000+ 1 1.40000+ 1 1.45366- 2 3.23600- 5 1.40000+ 1 1.60000+ 1 6.08343- 2 1.80720- 4 1.40000+ 1 1.80000+ 1 2.23146- 3 2.03590- 4 1.40000+ 1 1.90000+ 1 1.39370- 2 2.05810- 4 1.40000+ 1 2.10000+ 1 1.36153- 3 2.38230- 4 1.40000+ 1 2.20000+ 1 2.41977- 3 2.38410- 4 1.40000+ 1 2.70000+ 1 1.84643- 3 2.38440- 4 1.60000+ 1 1.60000+ 1 1.89972- 2 3.29080- 4 1.60000+ 1 1.80000+ 1 2.66019- 2 3.51950- 4 1.60000+ 1 1.90000+ 1 5.03256- 2 3.54170- 4 1.60000+ 1 2.10000+ 1 9.51391- 3 3.86590- 4 1.60000+ 1 2.20000+ 1 1.38046- 2 3.86770- 4 1.60000+ 1 2.70000+ 1 1.31447- 3 3.86800- 4 1.80000+ 1 1.80000+ 1 1.48022- 3 3.74820- 4 1.80000+ 1 1.90000+ 1 3.69809- 3 3.77040- 4 1.80000+ 1 2.10000+ 1 4.56606- 4 4.09460- 4 1.80000+ 1 2.20000+ 1 1.35482- 4 4.09640- 4 1.80000+ 1 2.70000+ 1 7.02477- 4 4.09670- 4 1.90000+ 1 1.90000+ 1 4.91762- 3 3.79260- 4 1.90000+ 1 2.10000+ 1 3.46236- 4 4.11680- 4 1.90000+ 1 2.20000+ 1 1.04128- 3 4.11860- 4 1.90000+ 1 2.70000+ 1 1.37981- 3 4.11890- 4 2.10000+ 1 2.10000+ 1 1.34664- 5 4.44100- 4 2.10000+ 1 2.20000+ 1 3.36662- 5 4.44280- 4 2.10000+ 1 2.70000+ 1 2.22202- 4 4.44310- 4 2.20000+ 1 2.20000+ 1 3.19746- 5 4.44460- 4 2.20000+ 1 2.70000+ 1 3.28878- 4 4.44490- 4 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.60689- 4 1.60400- 4 1.60000+ 1 1.11770- 4 3.11770- 4 2.10000+ 1 4.14389- 5 3.69280- 4 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.67299- 3 1.00000- 5 1.10000+ 1 2.20000+ 1 1.67657- 2 1.01800- 5 1.10000+ 1 2.70000+ 1 3.12725- 3 1.02100- 5 1.30000+ 1 1.60000+ 1 1.64647- 1 9.69500- 5 1.30000+ 1 1.80000+ 1 1.70436- 1 1.19820- 4 1.30000+ 1 1.90000+ 1 2.63359- 1 1.22040- 4 1.30000+ 1 2.10000+ 1 1.05832- 2 1.54460- 4 1.30000+ 1 2.20000+ 1 7.79588- 3 1.54640- 4 1.30000+ 1 2.70000+ 1 6.51678- 3 1.54670- 4 1.40000+ 1 1.60000+ 1 2.69636- 2 9.99600- 5 1.40000+ 1 1.80000+ 1 2.39758- 1 1.22830- 4 1.40000+ 1 1.90000+ 1 2.52618- 2 1.25050- 4 1.40000+ 1 2.10000+ 1 3.00614- 3 1.57470- 4 1.40000+ 1 2.20000+ 1 1.61676- 3 1.57650- 4 1.40000+ 1 2.70000+ 1 8.32306- 4 1.57680- 4 1.60000+ 1 1.60000+ 1 6.22756- 4 2.48320- 4 1.60000+ 1 1.80000+ 1 1.02671- 2 2.71190- 4 1.60000+ 1 1.90000+ 1 1.56020- 3 2.73410- 4 1.60000+ 1 2.10000+ 1 1.43491- 4 3.05830- 4 1.60000+ 1 2.20000+ 1 2.36280- 4 3.06010- 4 1.60000+ 1 2.70000+ 1 4.11357- 5 3.06040- 4 1.80000+ 1 1.80000+ 1 6.46130- 3 2.94060- 4 1.80000+ 1 1.90000+ 1 2.08471- 2 2.96280- 4 1.80000+ 1 2.10000+ 1 3.39159- 3 3.28700- 4 1.80000+ 1 2.20000+ 1 5.69927- 3 3.28880- 4 1.80000+ 1 2.70000+ 1 4.15661- 4 3.28910- 4 1.90000+ 1 1.90000+ 1 5.38560- 4 2.98500- 4 1.90000+ 1 2.10000+ 1 4.93704- 4 3.30920- 4 1.90000+ 1 2.20000+ 1 2.78073- 4 3.31100- 4 1.90000+ 1 2.70000+ 1 4.97575- 5 3.31130- 4 2.10000+ 1 2.10000+ 1 1.75625- 5 3.63340- 4 2.10000+ 1 2.20000+ 1 5.85420- 5 3.63520- 4 2.10000+ 1 2.70000+ 1 5.85420- 6 3.63550- 4 2.20000+ 1 2.20000+ 1 8.78186- 6 3.63700- 4 2.20000+ 1 2.70000+ 1 6.83008- 6 3.63730- 4 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.84592- 5 1.44460- 4 1.40000+ 1 2.75920- 4 1.47470- 4 1.60000+ 1 1.29599- 4 2.95830- 4 2.10000+ 1 5.14451- 6 3.53340- 4 2.20000+ 1 4.24027- 5 3.53520- 4 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.27028- 2 8.10100- 5 1.30000+ 1 1.80000+ 1 2.28635- 2 1.03880- 4 1.30000+ 1 1.90000+ 1 1.73035- 1 1.06100- 4 1.30000+ 1 2.10000+ 1 2.54754- 3 1.38520- 4 1.30000+ 1 2.20000+ 1 2.07753- 3 1.38700- 4 1.30000+ 1 2.70000+ 1 1.14488- 3 1.38730- 4 1.40000+ 1 1.60000+ 1 1.58381- 1 8.40200- 5 1.40000+ 1 1.80000+ 1 1.51741- 1 1.06890- 4 1.40000+ 1 1.90000+ 1 3.54247- 1 1.09110- 4 1.40000+ 1 2.10000+ 1 6.09604- 3 1.41530- 4 1.40000+ 1 2.20000+ 1 1.49323- 2 1.41710- 4 1.40000+ 1 2.70000+ 1 6.18574- 3 1.41740- 4 1.60000+ 1 1.60000+ 1 7.11262- 4 2.32380- 4 1.60000+ 1 1.80000+ 1 1.09699- 3 2.55250- 4 1.60000+ 1 1.90000+ 1 1.72492- 2 2.57470- 4 1.60000+ 1 2.10000+ 1 2.52251- 4 2.89890- 4 1.60000+ 1 2.20000+ 1 3.29969- 4 2.90070- 4 1.60000+ 1 2.70000+ 1 4.83949- 5 2.90100- 4 1.80000+ 1 1.80000+ 1 2.05390- 4 2.78120- 4 1.80000+ 1 1.90000+ 1 1.71176- 2 2.80340- 4 1.80000+ 1 2.10000+ 1 1.41296- 4 3.12760- 4 1.80000+ 1 2.20000+ 1 5.79772- 4 3.12940- 4 1.80000+ 1 2.70000+ 1 3.49613- 5 3.12970- 4 1.90000+ 1 1.90000+ 1 2.23733- 2 2.82560- 4 1.90000+ 1 2.10000+ 1 5.38481- 3 3.14980- 4 1.90000+ 1 2.20000+ 1 7.36085- 3 3.15160- 4 1.90000+ 1 2.70000+ 1 5.85182- 4 3.15190- 4 2.10000+ 1 2.10000+ 1 4.51835- 6 3.47400- 4 2.10000+ 1 2.20000+ 1 4.51835- 5 3.47580- 4 2.10000+ 1 2.70000+ 1 4.51835- 6 3.47610- 4 2.20000+ 1 2.20000+ 1 3.34365- 5 3.47760- 4 2.20000+ 1 2.70000+ 1 6.32560- 6 3.47790- 4 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 8.36222- 5 1.74240- 4 1.90000+ 1 1.49810- 5 1.76460- 4 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.87220- 2 8.79200- 5 1.60000+ 1 1.80000+ 1 1.30364- 1 1.10790- 4 1.60000+ 1 1.90000+ 1 1.51400- 1 1.13010- 4 1.60000+ 1 2.10000+ 1 1.42809- 1 1.45430- 4 1.60000+ 1 2.20000+ 1 2.97254- 2 1.45610- 4 1.60000+ 1 2.70000+ 1 1.21146- 3 1.45640- 4 1.80000+ 1 1.80000+ 1 3.03802- 4 1.33660- 4 1.80000+ 1 1.90000+ 1 6.13377- 2 1.35880- 4 1.80000+ 1 2.10000+ 1 9.85850- 2 1.68300- 4 1.80000+ 1 2.20000+ 1 1.14229- 2 1.68480- 4 1.80000+ 1 2.70000+ 1 1.67096- 3 1.68510- 4 1.90000+ 1 1.90000+ 1 3.24743- 2 1.38100- 4 1.90000+ 1 2.10000+ 1 2.12307- 1 1.70520- 4 1.90000+ 1 2.20000+ 1 1.14655- 2 1.70700- 4 1.90000+ 1 2.70000+ 1 2.36389- 3 1.70730- 4 2.10000+ 1 2.10000+ 1 1.51281- 2 2.02940- 4 2.10000+ 1 2.20000+ 1 6.23174- 2 2.03120- 4 2.10000+ 1 2.70000+ 1 4.93466- 3 2.03150- 4 2.20000+ 1 2.20000+ 1 7.68251- 4 2.03300- 4 2.20000+ 1 2.70000+ 1 5.90952- 4 2.03330- 4 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 8.51742- 5 1.73450- 4 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.21148- 2 8.49100- 5 1.60000+ 1 1.80000+ 1 8.56969- 2 1.07780- 4 1.60000+ 1 1.90000+ 1 2.09551- 1 1.10000- 4 1.60000+ 1 2.10000+ 1 2.08101- 2 1.42420- 4 1.60000+ 1 2.20000+ 1 1.48016- 1 1.42600- 4 1.60000+ 1 2.70000+ 1 1.34172- 3 1.42630- 4 1.80000+ 1 1.80000+ 1 1.94121- 3 1.30650- 4 1.80000+ 1 1.90000+ 1 6.35733- 2 1.32870- 4 1.80000+ 1 2.10000+ 1 3.36857- 3 1.65290- 4 1.80000+ 1 2.20000+ 1 1.11529- 1 1.65470- 4 1.80000+ 1 2.70000+ 1 1.39876- 3 1.65500- 4 1.90000+ 1 1.90000+ 1 3.15444- 2 1.35090- 4 1.90000+ 1 2.10000+ 1 1.25609- 2 1.67510- 4 1.90000+ 1 2.20000+ 1 1.92685- 1 1.67690- 4 1.90000+ 1 2.70000+ 1 2.74034- 3 1.67720- 4 2.10000+ 1 2.10000+ 1 2.28376- 4 1.99930- 4 2.10000+ 1 2.20000+ 1 4.17631- 2 2.00110- 4 2.10000+ 1 2.70000+ 1 3.99647- 4 2.00140- 4 2.20000+ 1 2.20000+ 1 3.37134- 2 2.00290- 4 2.20000+ 1 2.70000+ 1 4.93863- 3 2.00320- 4 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.65491- 6 2.28700- 5 1.90000+ 1 4.43332- 6 2.50900- 5 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 7.43952- 2 1.69300- 5 1.80000+ 1 2.20000+ 1 2.29944- 1 1.71100- 5 1.80000+ 1 2.70000+ 1 1.44918- 2 1.71400- 5 1.90000+ 1 2.10000+ 1 3.15364- 1 1.91500- 5 1.90000+ 1 2.20000+ 1 3.22374- 1 1.93300- 5 1.90000+ 1 2.70000+ 1 2.52846- 2 1.93600- 5 2.10000+ 1 2.10000+ 1 1.30372- 4 5.15700- 5 2.10000+ 1 2.20000+ 1 9.80548- 3 5.17500- 5 2.10000+ 1 2.70000+ 1 1.94820- 3 5.17800- 5 2.20000+ 1 2.20000+ 1 2.54329- 3 5.19300- 5 2.20000+ 1 2.70000+ 1 3.71204- 3 5.19600- 5 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.89809- 7 3.46400- 5 2.70000+ 1 7.49439- 8 3.48500- 5 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 8.88093- 2 2.87000- 5 2.10000+ 1 2.20000+ 1 8.49022- 1 2.88800- 5 2.10000+ 1 2.70000+ 1 3.46175- 2 2.89100- 5 2.20000+ 1 2.20000+ 1 2.16262- 2 2.90600- 5 2.20000+ 1 2.70000+ 1 5.92381- 3 2.90900- 5 1 41000 0 7 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.24220- 8 3.24200- 5 2.20000+ 1 2.03980- 7 3.26000- 5 2.70000+ 1 1.94590- 8 3.26300- 5 1 41000 0 9 9.29064+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.31504- 2 2.64800- 5 2.10000+ 1 2.20000+ 1 6.14870- 1 2.66600- 5 2.10000+ 1 2.70000+ 1 8.97994- 3 2.66900- 5 2.20000+ 1 2.20000+ 1 3.21461- 1 2.68400- 5 2.20000+ 1 2.70000+ 1 4.15393- 2 2.68700- 5 1 42000 0 0 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 2.00000+ 0 2.20000+ 1 3.00000+ 0 2.70000+ 1 1.00000+ 0 1 42000 0 0 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.99650- 2 3.00000+ 0 2.84650- 3 5.00000+ 0 2.62950- 3 6.00000+ 0 2.52100- 3 8.00000+ 0 4.94090- 4 1.00000+ 1 4.09640- 4 1.10000+ 1 3.91630- 4 1.30000+ 1 2.40450- 4 1.40000+ 1 2.37000- 4 1.60000+ 1 6.96300- 5 1.80000+ 1 4.50700- 5 1.90000+ 1 4.24600- 5 2.10000+ 1 7.00000- 6 2.20000+ 1 6.77000- 6 2.70000+ 1 5.97000- 6 1 42000 0 0 9.59400+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.52700- 2 3.00000+ 0 5.26140- 3 5.00000+ 0 5.26300- 3 6.00000+ 0 4.86740- 3 8.00000+ 0 1.39860- 3 1.00000+ 1 1.34090- 3 1.10000+ 1 1.25790- 3 1.30000+ 1 1.14250- 3 1.40000+ 1 1.12260- 3 1.60000+ 1 3.18360- 4 1.80000+ 1 2.67890- 4 1.90000+ 1 2.51260- 4 2.10000+ 1 1.27140- 4 2.20000+ 1 1.23910- 4 2.70000+ 1 3.04500- 5 1 42000 0 0 9.59400+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.85700-10 3.00000+ 0 8.07840-10 5.00000+ 0 6.87360-10 6.00000+ 0 7.11300-10 8.00000+ 0 2.24740- 9 1.00000+ 1 2.21270- 9 1.10000+ 1 2.26710- 9 1.30000+ 1 2.14510- 9 1.40000+ 1 2.16290- 9 1.60000+ 1 5.75760- 9 1.80000+ 1 6.28280- 9 1.90000+ 1 6.44110- 9 2.10000+ 1 9.57670- 9 2.20000+ 1 9.70800- 9 2.70000+ 1 1.93500- 8 1 42000 0 0 9.59400+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.32670- 6 3.00000+ 0 4.12010- 8 5.00000+ 0 6.38270- 8 6.00000+ 0 6.15950- 8 8.00000+ 0 5.81840-10 1.00000+ 1 5.47160-10 1.10000+ 1 4.86080-10 1.30000+ 1 4.16450-11 1.40000+ 1 3.81700-11 1.60000+ 1 1.63070-11 1.80000+ 1 1.99040-11 1.90000+ 1 1.74710-11 1 42000 0 0 9.59400+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04360- 6 3.00000+ 0 6.08570- 6 5.00000+ 0 1.72560- 6 6.00000+ 0 1.60960- 6 8.00000+ 0 8.49650- 6 1.00000+ 1 2.93240- 6 1.10000+ 1 3.08400- 6 1.30000+ 1 1.11980- 7 1.40000+ 1 1.15710- 7 1.60000+ 1 1.08320- 5 1.80000+ 1 1.96900- 6 1.90000+ 1 2.06490- 6 1 42000 0 0 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.87836- 5 3.00000+ 0 7.71055- 5 5.00000+ 0 5.88964- 5 6.00000+ 0 5.68495- 5 8.00000+ 0 4.84041- 5 1.00000+ 1 3.88332- 5 1.10000+ 1 3.82795- 5 1.30000+ 1 2.44812- 5 1.40000+ 1 2.45910- 5 1.60000+ 1 2.03840- 5 1.80000+ 1 1.37695- 5 1.90000+ 1 1.36648- 5 2.10000+ 1 7.00000- 6 2.20000+ 1 6.77000- 6 2.70000+ 1 5.97000- 6 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.05249- 1 3.00000+ 0 3.92921- 2 5.00000+ 0 4.26472- 2 6.00000+ 0 3.89618- 2 8.00000+ 0 7.30877- 4 1.00000+ 1 7.46158- 4 1.10000+ 1 6.84553- 4 1.30000+ 1 1.45165- 4 1.40000+ 1 1.26872- 4 1.60000+ 1 9.08181- 6 1.80000+ 1 1.93855- 6 1.90000+ 1 5.00139- 7 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.36470- 2 3.00000+ 0 8.88315- 5 5.00000+ 0 9.92617- 5 6.00000+ 0 8.67054- 5 8.00000+ 0 1.89939- 7 1.00000+ 1 1.69567- 7 1.10000+ 1 1.54936- 7 1.30000+ 1 2.76588- 8 1.40000+ 1 2.39104- 8 1.60000+ 1 2.50588-10 1.80000+ 1 7.39126-11 1.90000+ 1 1.78614-11 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.04410+ 0 3.00000+ 0 1.02612+ 1 5.00000+ 0 7.59397+ 0 6.00000+ 0 7.30442+ 0 8.00000+ 0 6.06951+ 0 1.00000+ 1 4.66342+ 0 1.10000+ 1 4.59403+ 0 1.30000+ 1 2.56286+ 0 1.40000+ 1 2.59815+ 0 1.60000+ 1 1.97834+ 0 1.80000+ 1 9.99998- 1 1.90000+ 1 9.99999- 1 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.24920- 3 3.00000+ 0 2.68056- 3 5.00000+ 0 2.47134- 3 6.00000+ 0 2.37745- 3 8.00000+ 0 4.45496- 4 1.00000+ 1 3.70637- 4 1.10000+ 1 3.53196- 4 1.30000+ 1 2.15941- 4 1.40000+ 1 2.12385- 4 1.60000+ 1 4.92457- 5 1.80000+ 1 3.13004- 5 1.90000+ 1 2.87951- 5 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.21309- 1 1.73355- 2 6.00000+ 0 4.21718- 1 1.74440- 2 1.00000+ 1 3.43589- 2 1.95554- 2 1.10000+ 1 6.68877- 2 1.95734- 2 1.30000+ 1 1.66919- 4 1.97245- 2 1.40000+ 1 2.36039- 4 1.97280- 2 1.80000+ 1 6.34137- 3 1.99199- 2 1.90000+ 1 1.22259- 2 1.99225- 2 2.10000+ 1 6.70827- 6 1.99580- 2 2.20000+ 1 9.38546- 6 1.99582- 2 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.68986- 2 1.42720- 2 3.00000+ 0 5.00000+ 0 1.91303- 2 1.44890- 2 3.00000+ 0 6.00000+ 0 2.89512- 2 1.45975- 2 3.00000+ 0 8.00000+ 0 5.45088- 3 1.66244- 2 3.00000+ 0 1.00000+ 1 3.21842- 3 1.67089- 2 3.00000+ 0 1.10000+ 1 4.85455- 3 1.67269- 2 3.00000+ 0 1.30000+ 1 2.65431- 4 1.68780- 2 3.00000+ 0 1.40000+ 1 3.25897- 4 1.68815- 2 3.00000+ 0 1.60000+ 1 9.48087- 4 1.70489- 2 3.00000+ 0 1.80000+ 1 4.90095- 4 1.70734- 2 3.00000+ 0 1.90000+ 1 7.33913- 4 1.70760- 2 3.00000+ 0 2.10000+ 1 1.17274- 5 1.71115- 2 3.00000+ 0 2.20000+ 1 1.41970- 5 1.71117- 2 3.00000+ 0 2.70000+ 1 4.93812- 5 1.71125- 2 5.00000+ 0 5.00000+ 0 2.95095- 3 1.47060- 2 5.00000+ 0 6.00000+ 0 6.59412- 2 1.48145- 2 5.00000+ 0 8.00000+ 0 2.56222- 3 1.68414- 2 5.00000+ 0 1.00000+ 1 9.06126- 4 1.69259- 2 5.00000+ 0 1.10000+ 1 9.32469- 3 1.69439- 2 5.00000+ 0 1.30000+ 1 3.44428- 4 1.70950- 2 5.00000+ 0 1.40000+ 1 1.21905- 3 1.70985- 2 5.00000+ 0 1.60000+ 1 4.31455- 4 1.72659- 2 5.00000+ 0 1.80000+ 1 1.36419- 4 1.72904- 2 5.00000+ 0 1.90000+ 1 1.37401- 3 1.72930- 2 5.00000+ 0 2.10000+ 1 1.48138- 5 1.73285- 2 5.00000+ 0 2.20000+ 1 5.30846- 5 1.73287- 2 5.00000+ 0 2.70000+ 1 2.22206- 5 1.73295- 2 6.00000+ 0 6.00000+ 0 3.48003- 2 1.49230- 2 6.00000+ 0 8.00000+ 0 3.87085- 3 1.69499- 2 6.00000+ 0 1.00000+ 1 9.23534- 3 1.70344- 2 6.00000+ 0 1.10000+ 1 1.00617- 2 1.70524- 2 6.00000+ 0 1.30000+ 1 1.48384- 3 1.72035- 2 6.00000+ 0 1.40000+ 1 1.41037- 3 1.72070- 2 6.00000+ 0 1.60000+ 1 6.51830- 4 1.73744- 2 6.00000+ 0 1.80000+ 1 1.36844- 3 1.73989- 2 6.00000+ 0 1.90000+ 1 1.48879- 3 1.74015- 2 6.00000+ 0 2.10000+ 1 6.48092- 5 1.74370- 2 6.00000+ 0 2.20000+ 1 6.11092- 5 1.74372- 2 6.00000+ 0 2.70000+ 1 3.33331- 5 1.74380- 2 8.00000+ 0 8.00000+ 0 4.33314- 4 1.89768- 2 8.00000+ 0 1.00000+ 1 4.34543- 4 1.90613- 2 8.00000+ 0 1.10000+ 1 6.53053- 4 1.90793- 2 8.00000+ 0 1.30000+ 1 3.33339- 5 1.92305- 2 8.00000+ 0 1.40000+ 1 4.01212- 5 1.92339- 2 8.00000+ 0 1.60000+ 1 1.50608- 4 1.94013- 2 8.00000+ 0 1.80000+ 1 6.60460- 5 1.94258- 2 8.00000+ 0 1.90000+ 1 9.87621- 5 1.94284- 2 8.00000+ 0 2.10000+ 1 1.23453- 6 1.94639- 2 8.00000+ 0 2.20000+ 1 1.85179- 6 1.94641- 2 8.00000+ 0 2.70000+ 1 8.02442- 6 1.94649- 2 1.00000+ 1 1.00000+ 1 6.66619- 5 1.91457- 2 1.00000+ 1 1.10000+ 1 1.32271- 3 1.91637- 2 1.00000+ 1 1.30000+ 1 3.76519- 5 1.93149- 2 1.00000+ 1 1.40000+ 1 1.35791- 4 1.93184- 2 1.00000+ 1 1.60000+ 1 7.34510- 5 1.94857- 2 1.00000+ 1 1.80000+ 1 1.97514- 5 1.95103- 2 1.00000+ 1 1.90000+ 1 1.95045- 4 1.95129- 2 1.00000+ 1 2.10000+ 1 1.85172- 6 1.95484- 2 1.00000+ 1 2.20000+ 1 6.17228- 6 1.95486- 2 1.00000+ 1 2.70000+ 1 3.70323- 6 1.95494- 2 1.10000+ 1 1.10000+ 1 7.28964- 4 1.91817- 2 1.10000+ 1 1.30000+ 1 1.70979- 4 1.93329- 2 1.10000+ 1 1.40000+ 1 1.58636- 4 1.93364- 2 1.10000+ 1 1.60000+ 1 1.09868- 4 1.95037- 2 1.10000+ 1 1.80000+ 1 1.96280- 4 1.95283- 2 1.10000+ 1 1.90000+ 1 2.15414- 4 1.95309- 2 1.10000+ 1 2.10000+ 1 7.40703- 6 1.95664- 2 1.10000+ 1 2.20000+ 1 6.78987- 6 1.95666- 2 1.10000+ 1 2.70000+ 1 5.55528- 6 1.95674- 2 1.30000+ 1 1.40000+ 1 1.78998- 5 1.94875- 2 1.30000+ 1 1.60000+ 1 5.55524- 6 1.96549- 2 1.30000+ 1 1.80000+ 1 5.55524- 6 1.96795- 2 1.30000+ 1 1.90000+ 1 2.40713- 5 1.96821- 2 1.30000+ 1 2.20000+ 1 6.17238- 7 1.97178- 2 1.40000+ 1 1.40000+ 1 4.43629- 6 1.94910- 2 1.40000+ 1 1.60000+ 1 6.97157- 6 1.96584- 2 1.40000+ 1 1.80000+ 1 1.96463- 5 1.96829- 2 1.40000+ 1 1.90000+ 1 2.34493- 5 1.96855- 2 1.40000+ 1 2.10000+ 1 6.33760- 7 1.97210- 2 1.40000+ 1 2.20000+ 1 6.33760- 7 1.97212- 2 1.40000+ 1 2.70000+ 1 6.33760- 7 1.97220- 2 1.60000+ 1 1.60000+ 1 1.32246- 5 1.98257- 2 1.60000+ 1 1.80000+ 1 1.13361- 5 1.98503- 2 1.60000+ 1 1.90000+ 1 1.70036- 5 1.98529- 2 1.60000+ 1 2.70000+ 1 1.25955- 6 1.98894- 2 1.80000+ 1 1.80000+ 1 1.20817- 6 1.98749- 2 1.80000+ 1 1.90000+ 1 2.83906- 5 1.98775- 2 1.80000+ 1 2.20000+ 1 6.04070- 7 1.99132- 2 1.80000+ 1 2.70000+ 1 6.04070- 7 1.99140- 2 1.90000+ 1 1.90000+ 1 1.54390- 5 1.98801- 2 1.90000+ 1 2.10000+ 1 1.18759- 6 1.99155- 2 1.90000+ 1 2.20000+ 1 1.18759- 6 1.99158- 2 1.90000+ 1 2.70000+ 1 5.93780- 7 1.99166- 2 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.46510- 5 2.17000- 4 6.00000+ 0 9.43281- 5 3.25500- 4 1.00000+ 1 2.06580- 3 2.43686- 3 1.10000+ 1 3.55290- 3 2.45487- 3 1.30000+ 1 1.77590- 5 2.60605- 3 1.40000+ 1 2.64600- 5 2.60950- 3 1.80000+ 1 3.21860- 4 2.80143- 3 1.90000+ 1 5.58410- 4 2.80404- 3 2.10000+ 1 5.41000- 7 2.83950- 3 2.20000+ 1 8.04221- 7 2.83973- 3 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.21850- 2 1.47370- 4 5.00000+ 0 1.80000+ 1 1.44546- 2 1.71930- 4 5.00000+ 0 1.90000+ 1 1.97679- 2 1.74540- 4 5.00000+ 0 2.10000+ 1 1.91069- 3 2.10000- 4 5.00000+ 0 2.20000+ 1 3.22715- 3 2.10230- 4 5.00000+ 0 2.70000+ 1 1.11875- 3 2.11030- 4 6.00000+ 0 1.30000+ 1 2.74324- 1 8.50500- 5 6.00000+ 0 1.40000+ 1 3.91700- 1 8.85000- 5 6.00000+ 0 1.60000+ 1 3.42468- 2 2.55870- 4 6.00000+ 0 1.80000+ 1 1.46577- 2 2.80430- 4 6.00000+ 0 1.90000+ 1 2.97016- 2 2.83040- 4 6.00000+ 0 2.10000+ 1 7.24798- 3 3.18500- 4 6.00000+ 0 2.20000+ 1 9.63521- 3 3.18730- 4 6.00000+ 0 2.70000+ 1 1.71710- 3 3.19530- 4 8.00000+ 0 8.00000+ 0 5.96311- 3 1.85832- 3 8.00000+ 0 1.00000+ 1 1.16176- 2 1.94277- 3 8.00000+ 0 1.10000+ 1 2.21331- 2 1.96078- 3 8.00000+ 0 1.30000+ 1 1.70780- 2 2.11196- 3 8.00000+ 0 1.40000+ 1 2.46913- 2 2.11541- 3 8.00000+ 0 1.60000+ 1 1.80049- 3 2.28278- 3 8.00000+ 0 1.80000+ 1 1.74189- 3 2.30734- 3 8.00000+ 0 1.90000+ 1 3.29417- 3 2.30995- 3 8.00000+ 0 2.10000+ 1 6.76875- 4 2.34541- 3 8.00000+ 0 2.20000+ 1 9.69560- 4 2.34564- 3 8.00000+ 0 2.70000+ 1 9.10497- 5 2.34644- 3 1.00000+ 1 1.00000+ 1 9.72663- 5 2.02722- 3 1.00000+ 1 1.10000+ 1 5.02318- 4 2.04523- 3 1.00000+ 1 1.30000+ 1 3.65981- 4 2.19641- 3 1.00000+ 1 1.40000+ 1 5.85522- 3 2.19986- 3 1.00000+ 1 1.60000+ 1 1.45418- 3 2.36723- 3 1.00000+ 1 1.80000+ 1 1.86530- 5 2.39179- 3 1.00000+ 1 1.90000+ 1 7.19511- 5 2.39440- 3 1.00000+ 1 2.10000+ 1 1.42128- 5 2.42986- 3 1.00000+ 1 2.20000+ 1 1.69220- 4 2.43009- 3 1.00000+ 1 2.70000+ 1 7.15070- 5 2.43089- 3 1.10000+ 1 1.10000+ 1 5.32099- 4 2.06324- 3 1.10000+ 1 1.30000+ 1 5.06747- 3 2.21442- 3 1.10000+ 1 1.40000+ 1 3.54703- 3 2.21787- 3 1.10000+ 1 1.60000+ 1 2.77155- 3 2.38524- 3 1.10000+ 1 1.80000+ 1 7.19537- 5 2.40980- 3 1.10000+ 1 1.90000+ 1 1.27913- 4 2.41241- 3 1.10000+ 1 2.10000+ 1 1.39023- 4 2.44787- 3 1.10000+ 1 2.20000+ 1 9.86041- 5 2.44810- 3 1.10000+ 1 2.70000+ 1 1.36363- 4 2.44890- 3 1.30000+ 1 1.30000+ 1 8.47875- 4 2.36560- 3 1.30000+ 1 1.40000+ 1 3.43383- 2 2.36905- 3 1.30000+ 1 1.60000+ 1 2.04793- 3 2.53642- 3 1.30000+ 1 1.80000+ 1 7.23957- 5 2.56098- 3 1.30000+ 1 1.90000+ 1 7.43949- 4 2.56359- 3 1.30000+ 1 2.10000+ 1 6.70654- 5 2.59905- 3 1.30000+ 1 2.20000+ 1 1.08018- 3 2.59928- 3 1.30000+ 1 2.70000+ 1 1.00377- 4 2.60008- 3 1.40000+ 1 1.40000+ 1 9.63668- 3 2.37250- 3 1.40000+ 1 1.60000+ 1 2.96911- 3 2.53987- 3 1.40000+ 1 1.80000+ 1 8.20348- 4 2.56443- 3 1.40000+ 1 1.90000+ 1 5.42748- 4 2.56704- 3 1.40000+ 1 2.10000+ 1 1.08198- 3 2.60250- 3 1.40000+ 1 2.20000+ 1 6.24913- 4 2.60273- 3 1.40000+ 1 2.70000+ 1 1.45240- 4 2.60353- 3 1.60000+ 1 1.60000+ 1 1.30578- 4 2.70724- 3 1.60000+ 1 1.80000+ 1 2.18521- 4 2.73180- 3 1.60000+ 1 1.90000+ 1 4.13062- 4 2.73441- 3 1.60000+ 1 2.10000+ 1 8.12784- 5 2.76987- 3 1.60000+ 1 2.20000+ 1 1.16366- 4 2.77010- 3 1.60000+ 1 2.70000+ 1 1.33248- 5 2.77090- 3 1.80000+ 1 1.80000+ 1 1.10414- 6 2.75636- 3 1.80000+ 1 1.90000+ 1 1.26980- 5 2.75897- 3 1.80000+ 1 2.10000+ 1 3.31241- 6 2.79443- 3 1.80000+ 1 2.20000+ 1 3.03646- 5 2.79466- 3 1.80000+ 1 2.70000+ 1 1.32499- 5 2.79546- 3 1.90000+ 1 1.90000+ 1 9.52715- 6 2.76158- 3 1.90000+ 1 2.10000+ 1 2.48771- 5 2.79704- 3 1.90000+ 1 2.20000+ 1 1.85249- 5 2.79727- 3 1.90000+ 1 2.70000+ 1 2.43479- 5 2.79807- 3 2.10000+ 1 2.10000+ 1 1.33249- 6 2.83250- 3 2.10000+ 1 2.20000+ 1 3.15351- 5 2.83273- 3 2.10000+ 1 2.70000+ 1 3.99746- 6 2.83353- 3 2.20000+ 1 2.20000+ 1 9.32709- 6 2.83296- 3 2.20000+ 1 2.70000+ 1 5.77392- 6 2.83376- 3 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.40141- 9 1.08500- 4 8.00000+ 0 3.12821- 3 2.13541- 3 1.10000+ 1 3.06781- 5 2.23787- 3 1.30000+ 1 3.23221- 2 2.38905- 3 1.60000+ 1 2.47530- 4 2.55987- 3 1.90000+ 1 1.27480- 6 2.58704- 3 2.10000+ 1 1.11150- 3 2.62250- 3 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.76902- 2 3.88700- 5 6.00000+ 0 1.80000+ 1 5.77051- 2 6.34300- 5 6.00000+ 0 1.90000+ 1 2.18574- 2 6.60400- 5 6.00000+ 0 2.10000+ 1 2.57433- 2 1.01500- 4 6.00000+ 0 2.20000+ 1 1.01173- 2 1.01730- 4 6.00000+ 0 2.70000+ 1 8.16958- 4 1.02530- 4 8.00000+ 0 8.00000+ 0 1.51549- 3 1.64132- 3 8.00000+ 0 1.00000+ 1 3.24837- 2 1.72577- 3 8.00000+ 0 1.10000+ 1 3.05064- 3 1.74378- 3 8.00000+ 0 1.30000+ 1 1.84952- 3 1.89496- 3 8.00000+ 0 1.40000+ 1 4.66779- 3 1.89841- 3 8.00000+ 0 1.60000+ 1 4.32766- 4 2.06578- 3 8.00000+ 0 1.80000+ 1 3.55324- 3 2.09034- 3 8.00000+ 0 1.90000+ 1 4.08470- 4 2.09295- 3 8.00000+ 0 2.10000+ 1 5.46657- 5 2.12841- 3 8.00000+ 0 2.20000+ 1 1.27562- 4 2.12864- 3 8.00000+ 0 2.70000+ 1 2.12592- 5 2.12944- 3 1.00000+ 1 1.00000+ 1 3.08830- 2 1.81022- 3 1.00000+ 1 1.10000+ 1 1.01539- 1 1.82823- 3 1.00000+ 1 1.30000+ 1 5.25228- 2 1.97941- 3 1.00000+ 1 1.40000+ 1 9.42097- 2 1.98286- 3 1.00000+ 1 1.60000+ 1 5.75189- 3 2.15023- 3 1.00000+ 1 1.80000+ 1 8.11790- 3 2.17479- 3 1.00000+ 1 1.90000+ 1 1.48633- 2 2.17740- 3 1.00000+ 1 2.10000+ 1 2.07271- 3 2.21286- 3 1.00000+ 1 2.20000+ 1 3.69296- 3 2.21309- 3 1.00000+ 1 2.70000+ 1 2.97626- 4 2.21389- 3 1.10000+ 1 1.10000+ 1 2.74540- 3 1.84624- 3 1.10000+ 1 1.30000+ 1 6.49692- 2 1.99742- 3 1.10000+ 1 1.40000+ 1 8.86803- 3 2.00087- 3 1.10000+ 1 1.60000+ 1 4.70730- 4 2.16824- 3 1.10000+ 1 1.80000+ 1 1.14901- 2 2.19280- 3 1.10000+ 1 1.90000+ 1 6.89417- 4 2.19541- 3 1.10000+ 1 2.10000+ 1 2.30051- 3 2.23087- 3 1.10000+ 1 2.20000+ 1 2.91557- 4 2.23110- 3 1.10000+ 1 2.70000+ 1 2.42954- 5 2.23190- 3 1.30000+ 1 1.30000+ 1 5.73832- 2 2.14860- 3 1.30000+ 1 1.40000+ 1 2.52304- 1 2.15205- 3 1.30000+ 1 1.60000+ 1 3.38623- 4 2.31942- 3 1.30000+ 1 1.80000+ 1 5.94034- 3 2.34398- 3 1.30000+ 1 1.90000+ 1 9.08649- 3 2.34659- 3 1.30000+ 1 2.10000+ 1 4.03911- 3 2.38205- 3 1.30000+ 1 2.20000+ 1 9.29021- 3 2.38228- 3 1.30000+ 1 2.70000+ 1 1.82213- 5 2.38308- 3 1.40000+ 1 1.40000+ 1 1.19743- 2 2.15550- 3 1.40000+ 1 1.60000+ 1 7.22785- 4 2.32287- 3 1.40000+ 1 1.80000+ 1 9.72526- 3 2.34743- 3 1.40000+ 1 1.90000+ 1 1.14491- 3 2.35004- 3 1.40000+ 1 2.10000+ 1 7.92487- 3 2.38550- 3 1.40000+ 1 2.20000+ 1 8.18492- 4 2.38573- 3 1.40000+ 1 2.70000+ 1 3.64433- 5 2.38653- 3 1.60000+ 1 1.60000+ 1 3.68029- 5 2.49024- 3 1.60000+ 1 1.80000+ 1 7.65523- 4 2.51480- 3 1.60000+ 1 1.90000+ 1 7.72831- 5 2.51741- 3 1.60000+ 1 2.10000+ 1 1.28807- 5 2.55287- 3 1.60000+ 1 2.20000+ 1 2.39221- 5 2.55310- 3 1.60000+ 1 2.70000+ 1 3.68029- 6 2.55390- 3 1.80000+ 1 1.80000+ 1 5.17793- 4 2.53936- 3 1.80000+ 1 1.90000+ 1 1.68244- 3 2.54197- 3 1.80000+ 1 2.10000+ 1 2.32323- 4 2.57743- 3 1.80000+ 1 2.20000+ 1 3.82663- 4 2.57766- 3 1.80000+ 1 2.70000+ 1 3.18873- 5 2.57846- 3 1.90000+ 1 1.90000+ 1 4.40372- 5 2.54458- 3 1.90000+ 1 2.10000+ 1 3.23444- 4 2.58004- 3 1.90000+ 1 2.20000+ 1 3.79625- 5 2.58027- 3 1.90000+ 1 2.70000+ 1 3.03701- 6 2.58107- 3 2.10000+ 1 2.10000+ 1 6.22559- 5 2.61550- 3 2.10000+ 1 2.20000+ 1 2.64215- 4 2.61573- 3 2.20000+ 1 2.20000+ 1 1.21484- 5 2.61596- 3 2.20000+ 1 2.70000+ 1 1.51863- 6 2.61676- 3 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 4.80691- 3 2.02691- 3 1.00000+ 1 2.04171- 5 2.11136- 3 1.10000+ 1 1.93151- 5 2.12937- 3 1.30000+ 1 3.25261- 3 2.28055- 3 1.40000+ 1 2.88901- 2 2.28400- 3 1.60000+ 1 2.43921- 4 2.45137- 3 1.80000+ 1 6.49682- 7 2.47593- 3 1.90000+ 1 6.21102- 7 2.47854- 3 2.10000+ 1 1.10700- 4 2.51400- 3 2.20000+ 1 9.76493- 4 2.51423- 3 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.82547- 3 1.53282- 3 8.00000+ 0 1.00000+ 1 1.37352- 3 1.61727- 3 8.00000+ 0 1.10000+ 1 3.69039- 2 1.63528- 3 8.00000+ 0 1.30000+ 1 3.47225- 3 1.78646- 3 8.00000+ 0 1.40000+ 1 3.64786- 3 1.78991- 3 8.00000+ 0 1.60000+ 1 5.21805- 4 1.95728- 3 8.00000+ 0 1.80000+ 1 1.78814- 4 1.98184- 3 8.00000+ 0 1.90000+ 1 4.04769- 3 1.98445- 3 8.00000+ 0 2.10000+ 1 8.94067- 5 2.01991- 3 8.00000+ 0 2.20000+ 1 8.94067- 5 2.02014- 3 8.00000+ 0 2.70000+ 1 2.60089- 5 2.02094- 3 1.00000+ 1 1.00000+ 1 5.00703- 4 1.70172- 3 1.00000+ 1 1.10000+ 1 6.04716- 2 1.71973- 3 1.00000+ 1 1.30000+ 1 4.07553- 3 1.87091- 3 1.00000+ 1 1.40000+ 1 3.68806- 2 1.87436- 3 1.00000+ 1 1.60000+ 1 2.08084- 4 2.04173- 3 1.00000+ 1 1.80000+ 1 1.28422- 4 2.06629- 3 1.00000+ 1 1.90000+ 1 6.82620- 3 2.06890- 3 1.00000+ 1 2.10000+ 1 1.54431- 4 2.10436- 3 1.00000+ 1 2.20000+ 1 1.25338- 3 2.10459- 3 1.00000+ 1 2.70000+ 1 1.13797- 5 2.10539- 3 1.10000+ 1 1.10000+ 1 8.71832- 2 1.73774- 3 1.10000+ 1 1.30000+ 1 8.37669- 2 1.88892- 3 1.10000+ 1 1.40000+ 1 1.28256- 1 1.89237- 3 1.10000+ 1 1.60000+ 1 6.48945- 3 2.05974- 3 1.10000+ 1 1.80000+ 1 8.78581- 3 2.08430- 3 1.10000+ 1 1.90000+ 1 2.26032- 2 2.08691- 3 1.10000+ 1 2.10000+ 1 3.22511- 3 2.12237- 3 1.10000+ 1 2.20000+ 1 4.87665- 3 2.12260- 3 1.10000+ 1 2.70000+ 1 3.34860- 4 2.12340- 3 1.30000+ 1 1.30000+ 1 1.15759- 2 2.04010- 3 1.30000+ 1 1.40000+ 1 2.25887- 1 2.04355- 3 1.30000+ 1 1.60000+ 1 5.67325- 4 2.21092- 3 1.30000+ 1 1.80000+ 1 5.88461- 4 2.23548- 3 1.30000+ 1 1.90000+ 1 8.94734- 3 2.23809- 3 1.30000+ 1 2.10000+ 1 8.20896- 4 2.27355- 3 1.30000+ 1 2.20000+ 1 7.15401- 3 2.27378- 3 1.30000+ 1 2.70000+ 1 2.92597- 5 2.27458- 3 1.40000+ 1 1.40000+ 1 1.53710- 1 2.04700- 3 1.40000+ 1 1.60000+ 1 6.32331- 4 2.21437- 3 1.40000+ 1 1.80000+ 1 5.05864- 3 2.23893- 3 1.40000+ 1 1.90000+ 1 1.49617- 2 2.24154- 3 1.40000+ 1 2.10000+ 1 8.07723- 3 2.27700- 3 1.40000+ 1 2.20000+ 1 1.04982- 2 2.27723- 3 1.40000+ 1 2.70000+ 1 3.25100- 5 2.27803- 3 1.60000+ 1 1.60000+ 1 4.35809- 5 2.38174- 3 1.60000+ 1 1.80000+ 1 3.22117- 5 2.40630- 3 1.60000+ 1 1.90000+ 1 8.29900- 4 2.40891- 3 1.60000+ 1 2.10000+ 1 1.70525- 5 2.44437- 3 1.60000+ 1 2.20000+ 1 1.89481- 5 2.44460- 3 1.60000+ 1 2.70000+ 1 3.78952- 6 2.44540- 3 1.80000+ 1 1.80000+ 1 8.12746- 6 2.43086- 3 1.80000+ 1 1.90000+ 1 9.91627- 4 2.43347- 3 1.80000+ 1 2.10000+ 1 2.27578- 5 2.46893- 3 1.80000+ 1 2.20000+ 1 1.75566- 4 2.46916- 3 1.80000+ 1 2.70000+ 1 1.62557- 6 2.46996- 3 1.90000+ 1 1.90000+ 1 1.43211- 3 2.43608- 3 1.90000+ 1 2.10000+ 1 3.44616- 4 2.47154- 3 1.90000+ 1 2.20000+ 1 5.65688- 4 2.47177- 3 1.90000+ 1 2.70000+ 1 3.73887- 5 2.47257- 3 2.10000+ 1 2.10000+ 1 1.30044- 5 2.50700- 3 2.10000+ 1 2.20000+ 1 2.30826- 4 2.50723- 3 2.20000+ 1 2.20000+ 1 1.59295- 4 2.50746- 3 2.20000+ 1 2.70000+ 1 1.62559- 6 2.50826- 3 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.27743- 5 8.44500- 5 1.10000+ 1 4.65177- 5 1.02460- 4 1.80000+ 1 5.95832- 5 4.49020- 4 1.90000+ 1 9.07301- 5 4.51630- 4 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 5.79964- 2 1.48200- 5 1.00000+ 1 1.80000+ 1 5.54640- 2 3.93800- 5 1.00000+ 1 1.90000+ 1 1.13885- 1 4.19900- 5 1.00000+ 1 2.10000+ 1 1.62743- 2 7.74500- 5 1.00000+ 1 2.20000+ 1 2.04641- 2 7.76800- 5 1.00000+ 1 2.70000+ 1 2.21145- 3 7.84800- 5 1.10000+ 1 1.60000+ 1 1.00458- 1 3.28300- 5 1.10000+ 1 1.80000+ 1 1.05310- 1 5.73900- 5 1.10000+ 1 1.90000+ 1 1.71755- 1 6.00000- 5 1.10000+ 1 2.10000+ 1 1.78783- 2 9.54600- 5 1.10000+ 1 2.20000+ 1 2.75581- 2 9.56900- 5 1.10000+ 1 2.70000+ 1 3.67254- 3 9.64900- 5 1.30000+ 1 1.30000+ 1 9.65075- 3 1.31900- 5 1.30000+ 1 1.40000+ 1 5.72136- 3 1.66400- 5 1.30000+ 1 1.60000+ 1 3.89883- 2 1.84010- 4 1.30000+ 1 1.80000+ 1 6.65408- 3 2.08570- 4 1.30000+ 1 1.90000+ 1 5.08479- 3 2.11180- 4 1.30000+ 1 2.10000+ 1 1.78940- 3 2.46640- 4 1.30000+ 1 2.20000+ 1 1.88320- 3 2.46870- 4 1.30000+ 1 2.70000+ 1 1.13596- 3 2.47670- 4 1.40000+ 1 1.40000+ 1 1.44114- 2 2.00900- 5 1.40000+ 1 1.60000+ 1 5.76118- 2 1.87460- 4 1.40000+ 1 1.80000+ 1 2.11854- 3 2.12020- 4 1.40000+ 1 1.90000+ 1 1.35443- 2 2.14630- 4 1.40000+ 1 2.10000+ 1 1.98662- 3 2.50090- 4 1.40000+ 1 2.20000+ 1 3.45487- 3 2.50320- 4 1.40000+ 1 2.70000+ 1 1.67682- 3 2.51120- 4 1.60000+ 1 1.60000+ 1 1.82067- 2 3.54830- 4 1.60000+ 1 1.80000+ 1 2.59272- 2 3.79390- 4 1.60000+ 1 1.90000+ 1 4.89149- 2 3.82000- 4 1.60000+ 1 2.10000+ 1 1.28393- 2 4.17460- 4 1.60000+ 1 2.20000+ 1 1.86260- 2 4.17690- 4 1.60000+ 1 2.70000+ 1 1.21370- 3 4.18490- 4 1.80000+ 1 1.80000+ 1 1.45390- 3 4.03950- 4 1.80000+ 1 1.90000+ 1 3.59165- 3 4.06560- 4 1.80000+ 1 2.10000+ 1 6.14115- 4 4.42020- 4 1.80000+ 1 2.20000+ 1 1.79111- 4 4.42250- 4 1.80000+ 1 2.70000+ 1 6.65304- 4 4.43050- 4 1.90000+ 1 1.90000+ 1 4.83198- 3 4.09170- 4 1.90000+ 1 2.10000+ 1 4.67219- 4 4.44630- 4 1.90000+ 1 2.20000+ 1 1.41852- 3 4.44860- 4 1.90000+ 1 2.70000+ 1 1.30724- 3 4.45660- 4 2.10000+ 1 2.10000+ 1 3.15252- 5 4.80090- 4 2.10000+ 1 2.20000+ 1 6.93508- 5 4.80320- 4 2.10000+ 1 2.70000+ 1 2.96337- 4 4.81120- 4 2.20000+ 1 2.20000+ 1 6.72499- 5 4.80550- 4 2.20000+ 1 2.70000+ 1 4.28742- 4 4.81350- 4 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.87230- 4 1.69190- 4 1.60000+ 1 1.31530- 4 3.40010- 4 2.10000+ 1 7.39280- 5 4.02640- 4 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 9.53689- 3 1.10100- 5 1.10000+ 1 2.20000+ 1 2.22890- 2 1.12400- 5 1.10000+ 1 2.70000+ 1 3.11617- 3 1.20400- 5 1.30000+ 1 1.60000+ 1 1.61402- 1 9.95600- 5 1.30000+ 1 1.80000+ 1 1.67080- 1 1.24120- 4 1.30000+ 1 1.90000+ 1 2.58007- 1 1.26730- 4 1.30000+ 1 2.10000+ 1 1.49526- 2 1.62190- 4 1.30000+ 1 2.20000+ 1 1.16747- 2 1.62420- 4 1.30000+ 1 2.70000+ 1 6.21474- 3 1.63220- 4 1.40000+ 1 1.60000+ 1 2.66750- 2 1.03010- 4 1.40000+ 1 1.80000+ 1 2.31553- 1 1.27570- 4 1.40000+ 1 1.90000+ 1 2.45258- 2 1.30180- 4 1.40000+ 1 2.10000+ 1 3.60609- 3 1.65640- 4 1.40000+ 1 2.20000+ 1 2.24445- 3 1.65870- 4 1.40000+ 1 2.70000+ 1 7.85542- 4 1.66670- 4 1.60000+ 1 1.60000+ 1 6.48330- 4 2.70380- 4 1.60000+ 1 1.80000+ 1 1.03914- 2 2.94940- 4 1.60000+ 1 1.90000+ 1 1.60794- 3 2.97550- 4 1.60000+ 1 2.10000+ 1 1.83789- 4 3.33010- 4 1.60000+ 1 2.20000+ 1 3.26016- 4 3.33240- 4 1.60000+ 1 2.70000+ 1 4.15596- 5 3.34040- 4 1.80000+ 1 1.80000+ 1 6.54210- 3 3.19500- 4 1.80000+ 1 1.90000+ 1 2.10256- 2 3.22110- 4 1.80000+ 1 2.10000+ 1 4.76422- 3 3.57570- 4 1.80000+ 1 2.20000+ 1 7.98343- 3 3.57800- 4 1.80000+ 1 2.70000+ 1 4.00659- 4 3.58600- 4 1.90000+ 1 1.90000+ 1 5.43456- 4 3.24720- 4 1.90000+ 1 2.10000+ 1 6.61252- 4 3.60180- 4 1.90000+ 1 2.20000+ 1 3.84865- 4 3.60410- 4 1.90000+ 1 2.70000+ 1 4.82279- 5 3.61210- 4 2.10000+ 1 2.10000+ 1 4.35891- 5 3.95640- 4 2.10000+ 1 2.20000+ 1 1.12219- 4 3.95870- 4 2.10000+ 1 2.70000+ 1 6.49193- 6 3.96670- 4 2.20000+ 1 2.20000+ 1 2.04043- 5 3.96100- 4 2.20000+ 1 2.70000+ 1 9.27475- 6 3.96900- 4 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.99625- 5 1.51180- 4 1.40000+ 1 2.92486- 4 1.54630- 4 1.60000+ 1 1.54076- 4 3.22000- 4 2.10000+ 1 9.19067- 6 3.84630- 4 2.20000+ 1 7.58636- 5 3.84860- 4 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.21577- 2 8.15500- 5 1.30000+ 1 1.80000+ 1 2.26212- 2 1.06110- 4 1.30000+ 1 1.90000+ 1 1.66914- 1 1.08720- 4 1.30000+ 1 2.10000+ 1 3.60189- 3 1.44180- 4 1.30000+ 1 2.20000+ 1 2.74161- 3 1.44410- 4 1.30000+ 1 2.70000+ 1 1.08244- 3 1.45210- 4 1.40000+ 1 1.60000+ 1 1.55120- 1 8.50000- 5 1.40000+ 1 1.80000+ 1 1.50074- 1 1.09560- 4 1.40000+ 1 1.90000+ 1 3.44715- 1 1.12170- 4 1.40000+ 1 2.10000+ 1 9.25682- 3 1.47630- 4 1.40000+ 1 2.20000+ 1 2.13604- 2 1.47860- 4 1.40000+ 1 2.70000+ 1 5.88134- 3 1.48660- 4 1.60000+ 1 1.60000+ 1 7.96241- 4 2.52370- 4 1.60000+ 1 1.80000+ 1 1.20794- 3 2.76930- 4 1.60000+ 1 1.90000+ 1 1.86110- 2 2.79540- 4 1.60000+ 1 2.10000+ 1 3.67964- 4 3.15000- 4 1.60000+ 1 2.20000+ 1 4.64483- 4 3.15230- 4 1.60000+ 1 2.70000+ 1 5.12724- 5 3.16030- 4 1.80000+ 1 1.80000+ 1 2.15440- 4 3.01490- 4 1.80000+ 1 1.90000+ 1 1.80479- 2 3.04100- 4 1.80000+ 1 2.10000+ 1 1.98098- 4 3.39560- 4 1.80000+ 1 2.20000+ 1 8.34323- 4 3.39790- 4 1.80000+ 1 2.70000+ 1 3.61498- 5 3.40590- 4 1.90000+ 1 1.90000+ 1 2.36222- 2 3.06710- 4 1.90000+ 1 2.10000+ 1 7.89697- 3 3.42170- 4 1.90000+ 1 2.20000+ 1 1.07836- 2 3.42400- 4 1.90000+ 1 2.70000+ 1 5.90031- 4 3.43200- 4 2.10000+ 1 2.10000+ 1 1.19609- 5 3.77630- 4 2.10000+ 1 2.20000+ 1 8.97082- 5 3.77860- 4 2.10000+ 1 2.70000+ 1 5.98051- 6 3.78660- 4 2.20000+ 1 2.20000+ 1 7.17652- 5 3.78090- 4 2.20000+ 1 2.70000+ 1 8.54350- 6 3.78890- 4 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.19401- 4 1.95380- 4 1.90000+ 1 2.11982- 5 1.97990- 4 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.72992- 2 1.01190- 4 1.60000+ 1 1.80000+ 1 8.96720- 2 1.25750- 4 1.60000+ 1 1.90000+ 1 1.02695- 1 1.28360- 4 1.60000+ 1 2.10000+ 1 1.60549- 1 1.63820- 4 1.60000+ 1 2.20000+ 1 3.24590- 2 1.64050- 4 1.60000+ 1 2.70000+ 1 7.28879- 4 1.64850- 4 1.80000+ 1 1.90000+ 1 5.28905- 2 1.52920- 4 1.80000+ 1 2.10000+ 1 1.08693- 1 1.88380- 4 1.80000+ 1 2.20000+ 1 1.14925- 2 1.88610- 4 1.80000+ 1 2.70000+ 1 1.04473- 3 1.89410- 4 1.90000+ 1 1.90000+ 1 2.74547- 2 1.55530- 4 1.90000+ 1 2.10000+ 1 2.42259- 1 1.90990- 4 1.90000+ 1 2.20000+ 1 1.24150- 2 1.91220- 4 1.90000+ 1 2.70000+ 1 1.60348- 3 1.92020- 4 2.10000+ 1 2.10000+ 1 3.21186- 2 2.26450- 4 2.10000+ 1 2.20000+ 1 9.91232- 2 2.26680- 4 2.10000+ 1 2.70000+ 1 5.36919- 3 2.27480- 4 2.20000+ 1 2.20000+ 1 1.38482- 3 2.26910- 4 2.20000+ 1 2.70000+ 1 6.07393- 4 2.27710- 4 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.22210- 4 1.94540- 4 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.97751- 2 9.77400- 5 1.60000+ 1 1.80000+ 1 5.93024- 2 1.22300- 4 1.60000+ 1 1.90000+ 1 1.43881- 1 1.24910- 4 1.60000+ 1 2.10000+ 1 2.28327- 2 1.60370- 4 1.60000+ 1 2.20000+ 1 1.66505- 1 1.60600- 4 1.60000+ 1 2.70000+ 1 8.22998- 4 1.61400- 4 1.80000+ 1 1.80000+ 1 1.15212- 3 1.46860- 4 1.80000+ 1 1.90000+ 1 5.60094- 2 1.49470- 4 1.80000+ 1 2.10000+ 1 3.48005- 3 1.84930- 4 1.80000+ 1 2.20000+ 1 1.27874- 1 1.85160- 4 1.80000+ 1 2.70000+ 1 9.64035- 4 1.85960- 4 1.90000+ 1 1.90000+ 1 2.88752- 2 1.52080- 4 1.90000+ 1 2.10000+ 1 1.34969- 2 1.87540- 4 1.90000+ 1 2.20000+ 1 2.18856- 1 1.87770- 4 1.90000+ 1 2.70000+ 1 1.81058- 3 1.88570- 4 2.10000+ 1 2.10000+ 1 4.70274- 4 2.23000- 4 2.10000+ 1 2.20000+ 1 6.65913- 2 2.23230- 4 2.10000+ 1 2.70000+ 1 4.23255- 4 2.24030- 4 2.20000+ 1 2.20000+ 1 6.13710- 2 2.23460- 4 2.20000+ 1 2.70000+ 1 5.38475- 3 2.24260- 4 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.16460- 6 2.45600- 5 1.90000+ 1 5.97820- 6 2.71700- 5 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 7.08979- 2 1.75600- 5 1.80000+ 1 2.20000+ 1 2.31324- 1 1.77900- 5 1.80000+ 1 2.70000+ 1 1.04084- 2 1.85900- 5 1.90000+ 1 2.10000+ 1 3.18425- 1 2.01700- 5 1.90000+ 1 2.20000+ 1 3.29109- 1 2.04000- 5 1.90000+ 1 2.70000+ 1 1.81754- 2 2.12000- 5 2.10000+ 1 2.10000+ 1 2.25239- 4 5.56300- 5 2.10000+ 1 2.20000+ 1 1.24751- 2 5.58600- 5 2.10000+ 1 2.70000+ 1 1.87167- 3 5.66600- 5 2.20000+ 1 2.20000+ 1 3.61166- 3 5.60900- 5 2.20000+ 1 2.70000+ 1 3.46805- 3 5.68900- 5 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.82990- 6 3.80700- 5 2.70000+ 1 1.08650- 7 3.91000- 5 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.15261- 1 3.10700- 5 2.10000+ 1 2.20000+ 1 8.34874- 1 3.13000- 5 2.10000+ 1 2.70000+ 1 2.23961- 2 3.21000- 5 2.20000+ 1 2.20000+ 1 2.40660- 2 3.15300- 5 2.20000+ 1 2.70000+ 1 3.40101- 3 3.23300- 5 1 42000 0 7 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.65800- 8 3.54600- 5 2.20000+ 1 4.25860- 7 3.56900- 5 2.70000+ 1 2.76990- 8 3.64900- 5 1 42000 0 9 9.59400+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.70643- 2 2.84600- 5 2.10000+ 1 2.20000+ 1 6.11039- 1 2.86900- 5 2.10000+ 1 2.70000+ 1 5.62672- 3 2.94900- 5 2.20000+ 1 2.20000+ 1 3.40849- 1 2.89200- 5 2.20000+ 1 2.70000+ 1 2.54206- 2 2.97200- 5 1 43000 0 0 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 2.40000+ 0 2.20000+ 1 3.60000+ 0 2.70000+ 1 1.00000+ 0 1 43000 0 0 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.10120- 2 3.00000+ 0 3.02240- 3 5.00000+ 0 2.79790- 3 6.00000+ 0 2.67760- 3 8.00000+ 0 5.33420- 4 1.00000+ 1 4.45240- 4 1.10000+ 1 4.24950- 4 1.30000+ 1 2.67010- 4 1.40000+ 1 2.63070- 4 1.60000+ 1 7.58500- 5 1.80000+ 1 4.96000- 5 1.90000+ 1 4.65500- 5 2.10000+ 1 8.07000- 6 2.20000+ 1 7.78000- 6 2.70000+ 1 6.19000- 6 1 43000 0 0 9.80000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.65970- 2 3.00000+ 0 5.56440- 3 5.00000+ 0 5.56690- 3 6.00000+ 0 5.12860- 3 8.00000+ 0 1.49560- 3 1.00000+ 1 1.43700- 3 1.10000+ 1 1.34440- 3 1.30000+ 1 1.22860- 3 1.40000+ 1 1.20640- 3 1.60000+ 1 3.49520- 4 1.80000+ 1 2.96770- 4 1.90000+ 1 2.77480- 4 2.10000+ 1 1.47680- 4 2.20000+ 1 1.43830- 4 2.70000+ 1 3.25400- 5 1 43000 0 0 9.80000+ 1 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.81030-10 3.00000+ 0 7.86220-10 5.00000+ 0 6.68440-10 6.00000+ 0 6.92770-10 8.00000+ 0 2.17720- 9 1.00000+ 1 2.13890- 9 1.10000+ 1 2.19380- 9 1.30000+ 1 2.06290- 9 1.40000+ 1 2.08060- 9 1.60000+ 1 5.52590- 9 1.80000+ 1 5.99700- 9 1.90000+ 1 6.15540- 9 2.10000+ 1 8.85460- 9 2.20000+ 1 8.97820- 9 2.70000+ 1 1.87170- 8 1 43000 0 0 9.80000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.68640- 6 3.00000+ 0 4.69440- 8 5.00000+ 0 7.35760- 8 6.00000+ 0 7.08830- 8 8.00000+ 0 6.97860-10 1.00000+ 1 6.44270-10 1.10000+ 1 5.77240-10 1.30000+ 1 5.07350-11 1.40000+ 1 4.62400-11 1.60000+ 1 1.86470-11 1.80000+ 1 2.83320-11 1.90000+ 1 2.45690-11 1 43000 0 0 9.80000+ 1 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06170- 6 3.00000+ 0 6.33270- 6 5.00000+ 0 1.81640- 6 6.00000+ 0 1.68800- 6 8.00000+ 0 9.04670- 6 1.00000+ 1 3.07440- 6 1.10000+ 1 3.23250- 6 1.30000+ 1 1.38170- 7 1.40000+ 1 1.41900- 7 1.60000+ 1 1.36420- 5 1.80000+ 1 3.32500- 6 1.90000+ 1 3.49640- 6 1 43000 0 0 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.37457- 5 3.00000+ 0 8.38504- 5 5.00000+ 0 6.41873- 5 6.00000+ 0 6.17547- 5 8.00000+ 0 5.37070- 5 1.00000+ 1 4.29815- 5 1.10000+ 1 4.22279- 5 1.30000+ 1 2.65521- 5 1.40000+ 1 2.66164- 5 1.60000+ 1 2.34120- 5 1.80000+ 1 1.58517- 5 1.90000+ 1 1.57148- 5 2.10000+ 1 8.07000- 6 2.20000+ 1 7.78000- 6 2.70000+ 1 6.19000- 6 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.24516- 1 3.00000+ 0 4.30616- 2 5.00000+ 0 4.67068- 2 6.00000+ 0 4.24676- 2 8.00000+ 0 8.62630- 4 1.00000+ 1 8.89951- 4 1.10000+ 1 8.18668- 4 1.30000+ 1 2.00354- 4 1.40000+ 1 1.76009- 4 1.60000+ 1 1.22394- 5 1.80000+ 1 3.47919- 6 1.90000+ 1 9.08906- 7 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.46585- 2 3.00000+ 0 1.02952- 4 5.00000+ 0 1.15129- 4 6.00000+ 0 9.99117- 5 8.00000+ 0 2.47384- 7 1.00000+ 1 2.26160- 7 1.10000+ 1 2.08417- 7 1.30000+ 1 4.26311- 8 1.40000+ 1 3.70746- 8 1.60000+ 1 3.69040-10 1.80000+ 1 1.44779-10 1.90000+ 1 3.52805-11 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.36252+ 0 3.00000+ 0 9.64779+ 0 5.00000+ 0 7.14132+ 0 6.00000+ 0 6.84374+ 0 8.00000+ 0 5.82124+ 0 1.00000+ 1 4.44848+ 0 1.10000+ 1 4.36631+ 0 1.30000+ 1 2.35606+ 0 1.40000+ 1 2.38790+ 0 1.60000+ 1 1.97484+ 0 1.80000+ 1 9.99997- 1 1.90000+ 1 9.99999- 1 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.27980- 3 3.00000+ 0 2.83560- 3 5.00000+ 0 2.61858- 3 6.00000+ 0 2.51593- 3 8.00000+ 0 4.79466- 4 1.00000+ 1 4.02032- 4 1.10000+ 1 3.82514- 4 1.30000+ 1 2.40415- 4 1.40000+ 1 2.36417- 4 1.60000+ 1 5.24377- 5 1.80000+ 1 3.37482- 5 1.90000+ 1 3.08352- 5 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.25571- 1 1.82141- 2 6.00000+ 0 4.28852- 1 1.83344- 2 1.00000+ 1 3.54672- 2 2.05668- 2 1.10000+ 1 6.90254- 2 2.05870- 2 1.30000+ 1 1.85021- 4 2.07450- 2 1.40000+ 1 2.61141- 4 2.07489- 2 1.80000+ 1 6.84274- 3 2.09624- 2 1.90000+ 1 1.31501- 2 2.09654- 2 2.10000+ 1 9.78925- 6 2.10039- 2 2.20000+ 1 1.36611- 5 2.10042- 2 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.58584- 2 1.49672- 2 3.00000+ 0 5.00000+ 0 1.80122- 2 1.51917- 2 3.00000+ 0 6.00000+ 0 2.68209- 2 1.53120- 2 3.00000+ 0 8.00000+ 0 5.17375- 3 1.74562- 2 3.00000+ 0 1.00000+ 1 3.07477- 3 1.75444- 2 3.00000+ 0 1.10000+ 1 4.56756- 3 1.75646- 2 3.00000+ 0 1.30000+ 1 2.55570- 4 1.77226- 2 3.00000+ 0 1.40000+ 1 3.10990- 4 1.77265- 2 3.00000+ 0 1.60000+ 1 9.22767- 4 1.79137- 2 3.00000+ 0 1.80000+ 1 4.83997- 4 1.79400- 2 3.00000+ 0 1.90000+ 1 7.13006- 4 1.79430- 2 3.00000+ 0 2.10000+ 1 1.47010- 5 1.79815- 2 3.00000+ 0 2.20000+ 1 1.75278- 5 1.79818- 2 3.00000+ 0 2.70000+ 1 4.63663- 5 1.79834- 2 5.00000+ 0 5.00000+ 0 2.73505- 3 1.54162- 2 5.00000+ 0 6.00000+ 0 6.08360- 2 1.55365- 2 5.00000+ 0 8.00000+ 0 2.43808- 3 1.76807- 2 5.00000+ 0 1.00000+ 1 8.50402- 4 1.77689- 2 5.00000+ 0 1.10000+ 1 8.72374- 3 1.77891- 2 5.00000+ 0 1.30000+ 1 3.29655- 4 1.79471- 2 5.00000+ 0 1.40000+ 1 1.16305- 3 1.79510- 2 5.00000+ 0 1.60000+ 1 4.20130- 4 1.81382- 2 5.00000+ 0 1.80000+ 1 1.32308- 4 1.81645- 2 5.00000+ 0 1.90000+ 1 1.32644- 3 1.81675- 2 5.00000+ 0 2.10000+ 1 1.86593- 5 1.82060- 2 5.00000+ 0 2.20000+ 1 6.50233- 5 1.82063- 2 5.00000+ 0 2.70000+ 1 2.09206- 5 1.82079- 2 6.00000+ 0 6.00000+ 0 3.19699- 2 1.56568- 2 6.00000+ 0 8.00000+ 0 3.61926- 3 1.78010- 2 6.00000+ 0 1.00000+ 1 8.63035- 3 1.78892- 2 6.00000+ 0 1.10000+ 1 9.37921- 3 1.79094- 2 6.00000+ 0 1.30000+ 1 1.41296- 3 1.80674- 2 6.00000+ 0 1.40000+ 1 1.34004- 3 1.80713- 2 6.00000+ 0 1.60000+ 1 6.24241- 4 1.82585- 2 6.00000+ 0 1.80000+ 1 1.32021- 3 1.82848- 2 6.00000+ 0 1.90000+ 1 1.43220- 3 1.82878- 2 6.00000+ 0 2.10000+ 1 7.97228- 5 1.83263- 2 6.00000+ 0 2.20000+ 1 7.52000- 5 1.83266- 2 6.00000+ 0 2.70000+ 1 3.10987- 5 1.83282- 2 8.00000+ 0 8.00000+ 0 4.16160- 4 1.99452- 2 8.00000+ 0 1.00000+ 1 4.19534- 4 2.00333- 2 8.00000+ 0 1.10000+ 1 6.20277- 4 2.00536- 2 8.00000+ 0 1.30000+ 1 3.22290- 5 2.02116- 2 8.00000+ 0 1.40000+ 1 3.84478- 5 2.02155- 2 8.00000+ 0 1.60000+ 1 1.48146- 4 2.04027- 2 8.00000+ 0 1.80000+ 1 6.61559- 5 2.04290- 2 8.00000+ 0 1.90000+ 1 9.72531- 5 2.04320- 2 8.00000+ 0 2.10000+ 1 1.69625- 6 2.04705- 2 8.00000+ 0 2.20000+ 1 2.26160- 6 2.04708- 2 8.00000+ 0 2.70000+ 1 7.35054- 6 2.04724- 2 1.00000+ 1 1.00000+ 1 6.33278- 5 2.01215- 2 1.00000+ 1 1.10000+ 1 1.25413- 3 2.01418- 2 1.00000+ 1 1.30000+ 1 3.61882- 5 2.02997- 2 1.00000+ 1 1.40000+ 1 1.31185- 4 2.03037- 2 1.00000+ 1 1.60000+ 1 7.23753- 5 2.04909- 2 1.00000+ 1 1.80000+ 1 1.97901- 5 2.05172- 2 1.00000+ 1 1.90000+ 1 1.91113- 4 2.05202- 2 1.00000+ 1 2.10000+ 1 2.26159- 6 2.05587- 2 1.00000+ 1 2.20000+ 1 7.35050- 6 2.05590- 2 1.00000+ 1 2.70000+ 1 3.39247- 6 2.05606- 2 1.10000+ 1 1.10000+ 1 6.89245- 4 2.01621- 2 1.10000+ 1 1.30000+ 1 1.65099- 4 2.03200- 2 1.10000+ 1 1.40000+ 1 1.52658- 4 2.03240- 2 1.10000+ 1 1.60000+ 1 1.06859- 4 2.05112- 2 1.10000+ 1 1.80000+ 1 1.92241- 4 2.05374- 2 1.10000+ 1 1.90000+ 1 2.10325- 4 2.05405- 2 1.10000+ 1 2.10000+ 1 9.61193- 6 2.05790- 2 1.10000+ 1 2.20000+ 1 8.48107- 6 2.05793- 2 1.10000+ 1 2.70000+ 1 5.08862- 6 2.05809- 2 1.30000+ 1 1.40000+ 1 1.75277- 5 2.04819- 2 1.30000+ 1 1.60000+ 1 5.65432- 6 2.06691- 2 1.30000+ 1 1.80000+ 1 5.08878- 6 2.06954- 2 1.30000+ 1 1.90000+ 1 2.43147- 5 2.06984- 2 1.30000+ 1 2.20000+ 1 1.13079- 6 2.07372- 2 1.40000+ 1 1.40000+ 1 4.56920- 6 2.04859- 2 1.40000+ 1 1.60000+ 1 6.85399- 6 2.06731- 2 1.40000+ 1 1.80000+ 1 1.94196- 5 2.06993- 2 1.40000+ 1 1.90000+ 1 2.28450- 5 2.07024- 2 1.40000+ 1 2.10000+ 1 1.14225- 6 2.07409- 2 1.40000+ 1 2.20000+ 1 5.71164- 7 2.07411- 2 1.40000+ 1 2.70000+ 1 5.71164- 7 2.07427- 2 1.60000+ 1 1.60000+ 1 1.32285- 5 2.08603- 2 1.60000+ 1 1.80000+ 1 1.15023- 5 2.08865- 2 1.60000+ 1 1.90000+ 1 1.72539- 5 2.08896- 2 1.60000+ 1 2.10000+ 1 5.75154- 7 2.09281- 2 1.60000+ 1 2.20000+ 1 5.75154- 7 2.09284- 2 1.60000+ 1 2.70000+ 1 1.15023- 6 2.09300- 2 1.80000+ 1 1.80000+ 1 1.60391- 6 2.09128- 2 1.80000+ 1 1.90000+ 1 2.78017- 5 2.09158- 2 1.80000+ 1 2.10000+ 1 5.34659- 7 2.09543- 2 1.80000+ 1 2.20000+ 1 1.06924- 6 2.09546- 2 1.80000+ 1 2.70000+ 1 5.34659- 7 2.09562- 2 1.90000+ 1 1.90000+ 1 1.64370- 5 2.09189- 2 1.90000+ 1 2.10000+ 1 1.17403- 6 2.09574- 2 1.90000+ 1 2.20000+ 1 1.17403- 6 2.09577- 2 1.90000+ 1 2.70000+ 1 5.87055- 7 2.09593- 2 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.48490- 5 2.24500- 4 6.00000+ 0 9.87623- 5 3.44800- 4 1.00000+ 1 2.31551- 3 2.57716- 3 1.10000+ 1 3.95781- 3 2.59745- 3 1.30000+ 1 2.10051- 5 2.75539- 3 1.40000+ 1 3.13101- 5 2.75933- 3 1.80000+ 1 3.73861- 4 2.97280- 3 1.90000+ 1 6.44802- 4 2.97585- 3 2.10000+ 1 8.29562- 7 3.01433- 3 2.20000+ 1 1.23410- 6 3.01462- 3 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.21422- 2 1.48650- 4 5.00000+ 0 1.80000+ 1 1.45601- 2 1.74900- 4 5.00000+ 0 1.90000+ 1 1.98375- 2 1.77950- 4 5.00000+ 0 2.10000+ 1 2.33670- 3 2.16430- 4 5.00000+ 0 2.20000+ 1 3.93160- 3 2.16720- 4 5.00000+ 0 2.70000+ 1 1.07806- 3 2.18310- 4 6.00000+ 0 1.30000+ 1 2.71175- 1 7.77900- 5 6.00000+ 0 1.40000+ 1 3.89940- 1 8.17300- 5 6.00000+ 0 1.60000+ 1 3.37026- 2 2.68950- 4 6.00000+ 0 1.80000+ 1 1.45021- 2 2.95200- 4 6.00000+ 0 1.90000+ 1 2.91873- 2 2.98250- 4 6.00000+ 0 2.10000+ 1 9.05723- 3 3.36730- 4 6.00000+ 0 2.20000+ 1 1.19845- 2 3.37020- 4 6.00000+ 0 2.70000+ 1 1.63299- 3 3.38610- 4 8.00000+ 0 8.00000+ 0 5.85408- 3 1.95556- 3 8.00000+ 0 1.00000+ 1 1.14355- 2 2.04374- 3 8.00000+ 0 1.10000+ 1 2.17414- 2 2.06403- 3 8.00000+ 0 1.30000+ 1 1.69049- 2 2.22197- 3 8.00000+ 0 1.40000+ 1 2.43990- 2 2.22591- 3 8.00000+ 0 1.60000+ 1 1.80867- 3 2.41313- 3 8.00000+ 0 1.80000+ 1 1.77028- 3 2.43938- 3 8.00000+ 0 1.90000+ 1 3.33799- 3 2.44243- 3 8.00000+ 0 2.10000+ 1 8.61474- 4 2.48091- 3 8.00000+ 0 2.20000+ 1 1.23124- 3 2.48120- 3 8.00000+ 0 2.70000+ 1 8.87051- 5 2.48279- 3 1.00000+ 1 1.00000+ 1 9.21165- 5 2.13192- 3 1.00000+ 1 1.10000+ 1 4.95548- 4 2.15221- 3 1.00000+ 1 1.30000+ 1 3.72304- 4 2.31015- 3 1.00000+ 1 1.40000+ 1 5.84147- 3 2.31409- 3 1.00000+ 1 1.60000+ 1 1.45891- 3 2.50131- 3 1.00000+ 1 1.80000+ 1 1.79108- 5 2.52756- 3 1.00000+ 1 1.90000+ 1 7.29248- 5 2.53061- 3 1.00000+ 1 2.10000+ 1 1.87657- 5 2.56909- 3 1.00000+ 1 2.20000+ 1 2.14083- 4 2.56938- 3 1.00000+ 1 2.70000+ 1 6.90864- 5 2.57097- 3 1.10000+ 1 1.10000+ 1 5.20726- 4 2.17250- 3 1.10000+ 1 1.30000+ 1 4.97349- 3 2.33044- 3 1.10000+ 1 1.40000+ 1 3.47404- 3 2.33438- 3 1.10000+ 1 1.60000+ 1 2.77502- 3 2.52160- 3 1.10000+ 1 1.80000+ 1 7.29264- 5 2.54785- 3 1.10000+ 1 1.90000+ 1 1.28367- 4 2.55090- 3 1.10000+ 1 2.10000+ 1 1.72292- 4 2.58938- 3 1.10000+ 1 2.20000+ 1 1.22397- 4 2.58967- 3 1.10000+ 1 2.70000+ 1 1.31776- 4 2.59126- 3 1.30000+ 1 1.30000+ 1 8.53367- 4 2.48838- 3 1.30000+ 1 1.40000+ 1 3.41498- 2 2.49232- 3 1.30000+ 1 1.60000+ 1 2.06535- 3 2.67954- 3 1.30000+ 1 1.80000+ 1 7.59117- 5 2.70579- 3 1.30000+ 1 1.90000+ 1 7.53568- 4 2.70884- 3 1.30000+ 1 2.10000+ 1 8.70005- 5 2.74732- 3 1.30000+ 1 2.20000+ 1 1.36643- 3 2.74761- 3 1.30000+ 1 2.70000+ 1 9.76611- 5 2.74920- 3 1.40000+ 1 1.40000+ 1 9.59101- 3 2.49626- 3 1.40000+ 1 1.60000+ 1 2.98992- 3 2.68348- 3 1.40000+ 1 1.80000+ 1 8.42722- 4 2.70973- 3 1.40000+ 1 1.90000+ 1 5.48879- 4 2.71278- 3 1.40000+ 1 2.10000+ 1 1.36897- 3 2.75126- 3 1.40000+ 1 2.20000+ 1 7.92386- 4 2.75155- 3 1.40000+ 1 2.70000+ 1 1.41157- 4 2.75314- 3 1.60000+ 1 1.60000+ 1 1.33911- 4 2.87070- 3 1.60000+ 1 1.80000+ 1 2.26449- 4 2.89695- 3 1.60000+ 1 1.90000+ 1 4.26880- 4 2.90000- 3 1.60000+ 1 2.10000+ 1 1.04905- 4 2.93848- 3 1.60000+ 1 2.20000+ 1 1.50539- 4 2.93877- 3 1.60000+ 1 2.70000+ 1 1.32201- 5 2.94036- 3 1.80000+ 1 1.80000+ 1 1.00397- 6 2.92320- 3 1.80000+ 1 1.90000+ 1 1.25497- 5 2.92625- 3 1.80000+ 1 2.10000+ 1 4.01596- 6 2.96473- 3 1.80000+ 1 2.20000+ 1 3.71479- 5 2.96502- 3 1.80000+ 1 2.70000+ 1 1.25497- 5 2.96661- 3 1.90000+ 1 1.90000+ 1 9.06517- 6 2.92930- 3 1.90000+ 1 2.10000+ 1 3.00587- 5 2.96778- 3 1.90000+ 1 2.20000+ 1 2.19476- 5 2.96807- 3 1.90000+ 1 2.70000+ 1 2.29017- 5 2.96966- 3 2.10000+ 1 2.10000+ 1 2.13233- 6 3.00626- 3 2.10000+ 1 2.20000+ 1 5.28813- 5 3.00655- 3 2.10000+ 1 2.70000+ 1 5.11755- 6 3.00814- 3 2.20000+ 1 2.20000+ 1 1.57791- 5 3.00684- 3 2.20000+ 1 2.70000+ 1 7.24994- 6 3.00843- 3 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.67174- 9 1.20300- 4 8.00000+ 0 3.18252- 3 2.26448- 3 1.10000+ 1 3.25822- 5 2.37295- 3 1.30000+ 1 3.49882- 2 2.53089- 3 1.60000+ 1 2.68291- 4 2.72205- 3 1.90000+ 1 1.50311- 6 2.75135- 3 2.10000+ 1 1.57301- 3 2.78983- 3 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.70452- 2 4.44500- 5 6.00000+ 0 1.80000+ 1 5.70085- 2 7.07000- 5 6.00000+ 0 1.90000+ 1 2.12704- 2 7.37500- 5 6.00000+ 0 2.10000+ 1 3.16586- 2 1.12230- 4 6.00000+ 0 2.20000+ 1 1.23404- 2 1.12520- 4 6.00000+ 0 2.70000+ 1 7.57723- 4 1.14110- 4 8.00000+ 0 8.00000+ 0 1.45085- 3 1.73106- 3 8.00000+ 0 1.00000+ 1 3.14638- 2 1.81924- 3 8.00000+ 0 1.10000+ 1 2.97201- 3 1.83953- 3 8.00000+ 0 1.30000+ 1 1.82596- 3 1.99747- 3 8.00000+ 0 1.40000+ 1 4.54051- 3 2.00141- 3 8.00000+ 0 1.60000+ 1 4.22713- 4 2.18863- 3 8.00000+ 0 1.80000+ 1 3.52976- 3 2.21488- 3 8.00000+ 0 1.90000+ 1 4.09780- 4 2.21793- 3 8.00000+ 0 2.10000+ 1 6.90144- 5 2.25641- 3 8.00000+ 0 2.20000+ 1 1.56720- 4 2.25670- 3 8.00000+ 0 2.70000+ 1 2.01300- 5 2.25829- 3 1.00000+ 1 1.00000+ 1 3.00341- 2 1.90742- 3 1.00000+ 1 1.10000+ 1 9.83761- 2 1.92771- 3 1.00000+ 1 1.30000+ 1 5.13072- 2 2.08565- 3 1.00000+ 1 1.40000+ 1 9.16323- 2 2.08959- 3 1.00000+ 1 1.60000+ 1 5.71082- 3 2.27681- 3 1.00000+ 1 1.80000+ 1 8.12923- 3 2.30306- 3 1.00000+ 1 1.90000+ 1 1.48468- 2 2.30611- 3 1.00000+ 1 2.10000+ 1 2.60386- 3 2.34459- 3 1.00000+ 1 2.20000+ 1 4.61672- 3 2.34488- 3 1.00000+ 1 2.70000+ 1 2.84673- 4 2.34647- 3 1.10000+ 1 1.10000+ 1 2.65410- 3 1.94800- 3 1.10000+ 1 1.30000+ 1 6.34270- 2 2.10594- 3 1.10000+ 1 1.40000+ 1 8.63389- 3 2.10988- 3 1.10000+ 1 1.60000+ 1 4.68725- 4 2.29710- 3 1.10000+ 1 1.80000+ 1 1.14235- 2 2.32335- 3 1.10000+ 1 1.90000+ 1 6.84373- 4 2.32640- 3 1.10000+ 1 2.10000+ 1 2.87411- 3 2.36488- 3 1.10000+ 1 2.20000+ 1 3.63767- 4 2.36517- 3 1.10000+ 1 2.70000+ 1 2.30048- 5 2.36676- 3 1.30000+ 1 1.30000+ 1 5.63100- 2 2.26388- 3 1.30000+ 1 1.40000+ 1 2.47072- 1 2.26782- 3 1.30000+ 1 1.60000+ 1 3.42182- 4 2.45504- 3 1.30000+ 1 1.80000+ 1 5.95964- 3 2.48129- 3 1.30000+ 1 1.90000+ 1 9.13830- 3 2.48434- 3 1.30000+ 1 2.10000+ 1 5.07386- 3 2.52282- 3 1.30000+ 1 2.20000+ 1 1.16590- 2 2.52311- 3 1.30000+ 1 2.70000+ 1 1.72534- 5 2.52470- 3 1.40000+ 1 1.40000+ 1 1.17259- 2 2.27176- 3 1.40000+ 1 1.60000+ 1 7.18861- 4 2.45898- 3 1.40000+ 1 1.80000+ 1 9.68578- 3 2.48523- 3 1.40000+ 1 1.90000+ 1 1.14732- 3 2.48828- 3 1.40000+ 1 2.10000+ 1 9.87971- 3 2.52676- 3 1.40000+ 1 2.20000+ 1 1.02509- 3 2.52705- 3 1.40000+ 1 2.70000+ 1 3.45055- 5 2.52864- 3 1.60000+ 1 1.60000+ 1 3.74969- 5 2.64620- 3 1.60000+ 1 1.80000+ 1 7.98144- 4 2.67245- 3 1.60000+ 1 1.90000+ 1 8.03526- 5 2.67550- 3 1.60000+ 1 2.10000+ 1 1.60707- 5 2.71398- 3 1.60000+ 1 2.20000+ 1 3.21403- 5 2.71427- 3 1.60000+ 1 2.70000+ 1 3.57121- 6 2.71586- 3 1.80000+ 1 1.80000+ 1 5.33405- 4 2.69870- 3 1.80000+ 1 1.90000+ 1 1.72535- 3 2.70175- 3 1.80000+ 1 2.10000+ 1 2.99054- 4 2.74023- 3 1.80000+ 1 2.20000+ 1 4.90273- 4 2.74052- 3 1.80000+ 1 2.70000+ 1 3.16310- 5 2.74211- 3 1.90000+ 1 1.90000+ 1 4.45703- 5 2.70480- 3 1.90000+ 1 2.10000+ 1 4.16953- 4 2.74328- 3 1.90000+ 1 2.20000+ 1 4.88844- 5 2.74357- 3 1.90000+ 1 2.70000+ 1 2.87558- 6 2.74516- 3 2.10000+ 1 2.10000+ 1 1.04958- 4 2.78176- 3 2.10000+ 1 2.20000+ 1 4.39965- 4 2.78205- 3 2.20000+ 1 2.20000+ 1 2.15663- 5 2.78234- 3 2.20000+ 1 2.70000+ 1 1.43782- 6 2.78393- 3 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.00258- 3 2.14418- 3 1.00000+ 1 2.17759- 5 2.23236- 3 1.10000+ 1 2.06459- 5 2.25265- 3 1.30000+ 1 3.52648- 3 2.41059- 3 1.40000+ 1 3.13069- 2 2.41453- 3 1.60000+ 1 2.67279- 4 2.60175- 3 1.80000+ 1 7.66606- 7 2.62800- 3 1.90000+ 1 7.32087- 7 2.63105- 3 2.10000+ 1 1.56589- 4 2.66953- 3 2.20000+ 1 1.38169- 3 2.66982- 3 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.76224- 3 1.61076- 3 8.00000+ 0 1.00000+ 1 1.32524- 3 1.69894- 3 8.00000+ 0 1.10000+ 1 3.58856- 2 1.71923- 3 8.00000+ 0 1.30000+ 1 3.40716- 3 1.87717- 3 8.00000+ 0 1.40000+ 1 3.58478- 3 1.88111- 3 8.00000+ 0 1.60000+ 1 5.14323- 4 2.06833- 3 8.00000+ 0 1.80000+ 1 1.77622- 4 2.09458- 3 8.00000+ 0 1.90000+ 1 4.02964- 3 2.09763- 3 8.00000+ 0 2.10000+ 1 1.11199- 4 2.13611- 3 8.00000+ 0 2.20000+ 1 1.11199- 4 2.13640- 3 8.00000+ 0 2.70000+ 1 2.47119- 5 2.13799- 3 1.00000+ 1 1.00000+ 1 4.80328- 4 1.78712- 3 1.00000+ 1 1.10000+ 1 5.89351- 2 1.80741- 3 1.00000+ 1 1.30000+ 1 4.00797- 3 1.96535- 3 1.00000+ 1 1.40000+ 1 3.61401- 2 1.96929- 3 1.00000+ 1 1.60000+ 1 2.05416- 4 2.15651- 3 1.00000+ 1 1.80000+ 1 1.26644- 4 2.18276- 3 1.00000+ 1 1.90000+ 1 6.81921- 3 2.18581- 3 1.00000+ 1 2.10000+ 1 1.94604- 4 2.22429- 3 1.00000+ 1 2.20000+ 1 1.56924- 3 2.22458- 3 1.00000+ 1 2.70000+ 1 1.08114- 5 2.22617- 3 1.10000+ 1 1.10000+ 1 8.48233- 2 1.82770- 3 1.10000+ 1 1.30000+ 1 8.22007- 2 1.98564- 3 1.10000+ 1 1.40000+ 1 1.25876- 1 1.98958- 3 1.10000+ 1 1.60000+ 1 6.46682- 3 2.17680- 3 1.10000+ 1 1.80000+ 1 8.83307- 3 2.20305- 3 1.10000+ 1 1.90000+ 1 2.26113- 2 2.20610- 3 1.10000+ 1 2.10000+ 1 4.06520- 3 2.24458- 3 1.10000+ 1 2.20000+ 1 6.13934- 3 2.24487- 3 1.10000+ 1 2.70000+ 1 3.22797- 4 2.24646- 3 1.30000+ 1 1.30000+ 1 1.14838- 2 2.14358- 3 1.30000+ 1 1.40000+ 1 2.23607- 1 2.14752- 3 1.30000+ 1 1.60000+ 1 5.69969- 4 2.33474- 3 1.30000+ 1 1.80000+ 1 5.97774- 4 2.36099- 3 1.30000+ 1 1.90000+ 1 8.99586- 3 2.36404- 3 1.30000+ 1 2.10000+ 1 1.04105- 3 2.40252- 3 1.30000+ 1 2.20000+ 1 9.01573- 3 2.40281- 3 1.30000+ 1 2.70000+ 1 2.78030- 5 2.40440- 3 1.40000+ 1 1.40000+ 1 1.52184- 1 2.15146- 3 1.40000+ 1 1.60000+ 1 6.33226- 4 2.33868- 3 1.40000+ 1 1.80000+ 1 5.11543- 3 2.36493- 3 1.40000+ 1 1.90000+ 1 1.50866- 2 2.36798- 3 1.40000+ 1 2.10000+ 1 1.02355- 2 2.40646- 3 1.40000+ 1 2.20000+ 1 1.32735- 2 2.40675- 3 1.40000+ 1 2.70000+ 1 3.08901- 5 2.40834- 3 1.60000+ 1 1.60000+ 1 4.44426- 5 2.52590- 3 1.60000+ 1 1.80000+ 1 3.33322- 5 2.55215- 3 1.60000+ 1 1.90000+ 1 8.72154- 4 2.55520- 3 1.60000+ 1 2.10000+ 1 2.22208- 5 2.59368- 3 1.60000+ 1 2.20000+ 1 2.40725- 5 2.59397- 3 1.60000+ 1 2.70000+ 1 3.70345- 6 2.59556- 3 1.80000+ 1 1.80000+ 1 7.72265- 6 2.57840- 3 1.80000+ 1 1.90000+ 1 1.02248- 3 2.58145- 3 1.80000+ 1 2.10000+ 1 2.93465- 5 2.61993- 3 1.80000+ 1 2.20000+ 1 2.25502- 4 2.62022- 3 1.80000+ 1 2.70000+ 1 1.54455- 6 2.62181- 3 1.90000+ 1 1.90000+ 1 1.47190- 3 2.58450- 3 1.90000+ 1 2.10000+ 1 4.46352- 4 2.62298- 3 1.90000+ 1 2.20000+ 1 7.30569- 4 2.62327- 3 1.90000+ 1 2.70000+ 1 3.70686- 5 2.62486- 3 2.10000+ 1 2.10000+ 1 2.16230- 5 2.66146- 3 2.10000+ 1 2.20000+ 1 3.89221- 4 2.66175- 3 2.10000+ 1 2.70000+ 1 1.54450- 6 2.66334- 3 2.20000+ 1 2.20000+ 1 2.68754- 4 2.66204- 3 2.20000+ 1 2.70000+ 1 1.54450- 6 2.66363- 3 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.27913- 5 8.81800- 5 1.10000+ 1 4.88686- 5 1.08470- 4 1.80000+ 1 6.89190- 5 4.83820- 4 1.90000+ 1 1.04066- 4 4.86870- 4 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 5.60667- 2 1.23300- 5 1.00000+ 1 1.80000+ 1 5.42784- 2 3.85800- 5 1.00000+ 1 1.90000+ 1 1.09856- 1 4.16300- 5 1.00000+ 1 2.10000+ 1 2.15841- 2 8.01100- 5 1.00000+ 1 2.20000+ 1 2.74381- 2 8.04000- 5 1.00000+ 1 2.70000+ 1 2.05209- 3 8.19900- 5 1.10000+ 1 1.60000+ 1 9.48727- 2 3.26200- 5 1.10000+ 1 1.80000+ 1 1.00747- 1 5.88700- 5 1.10000+ 1 1.90000+ 1 1.63792- 1 6.19200- 5 1.10000+ 1 2.10000+ 1 2.32021- 2 1.00400- 4 1.10000+ 1 2.20000+ 1 3.54433- 2 1.00690- 4 1.10000+ 1 2.70000+ 1 3.36559- 3 1.02280- 4 1.30000+ 1 1.30000+ 1 9.58244- 3 0.00000+ 0 1.30000+ 1 1.40000+ 1 5.71571- 3 3.34000- 6 1.30000+ 1 1.60000+ 1 3.69508- 2 1.90560- 4 1.30000+ 1 1.80000+ 1 6.47820- 3 2.16810- 4 1.30000+ 1 1.90000+ 1 4.92464- 3 2.19860- 4 1.30000+ 1 2.10000+ 1 2.34693- 3 2.58340- 4 1.30000+ 1 2.20000+ 1 2.53256- 3 2.58630- 4 1.30000+ 1 2.70000+ 1 1.02935- 3 2.60220- 4 1.40000+ 1 1.40000+ 1 1.44403- 2 7.28000- 6 1.40000+ 1 1.60000+ 1 5.45425- 2 1.94500- 4 1.40000+ 1 1.80000+ 1 2.00911- 3 2.20750- 4 1.40000+ 1 1.90000+ 1 1.31208- 2 2.23800- 4 1.40000+ 1 2.10000+ 1 2.67252- 3 2.62280- 4 1.40000+ 1 2.20000+ 1 4.56374- 3 2.62570- 4 1.40000+ 1 2.70000+ 1 1.51820- 3 2.64160- 4 1.60000+ 1 1.60000+ 1 1.71718- 2 3.81720- 4 1.60000+ 1 1.80000+ 1 2.48064- 2 4.07970- 4 1.60000+ 1 1.90000+ 1 4.66589- 2 4.11020- 4 1.60000+ 1 2.10000+ 1 1.59179- 2 4.49500- 4 1.60000+ 1 2.20000+ 1 2.30745- 2 4.49790- 4 1.60000+ 1 2.70000+ 1 1.09803- 3 4.51380- 4 1.80000+ 1 1.80000+ 1 1.41630- 3 4.34220- 4 1.80000+ 1 1.90000+ 1 3.46836- 3 4.37270- 4 1.80000+ 1 2.10000+ 1 7.69799- 4 4.75750- 4 1.80000+ 1 2.20000+ 1 2.18399- 4 4.76040- 4 1.80000+ 1 2.70000+ 1 6.24918- 4 4.77630- 4 1.90000+ 1 1.90000+ 1 4.66692- 3 4.40320- 4 1.90000+ 1 2.10000+ 1 5.83371- 4 4.78800- 4 1.90000+ 1 2.20000+ 1 1.78137- 3 4.79090- 4 1.90000+ 1 2.70000+ 1 1.21598- 3 4.80680- 4 2.10000+ 1 2.10000+ 1 5.95317- 5 5.17280- 4 2.10000+ 1 2.20000+ 1 1.20985- 4 5.17570- 4 2.10000+ 1 2.70000+ 1 3.53353- 4 5.19160- 4 2.20000+ 1 2.20000+ 1 1.20985- 4 5.17860- 4 2.20000+ 1 2.70000+ 1 5.12743- 4 5.19450- 4 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.08441- 4 1.78230- 4 1.60000+ 1 1.50791- 4 3.69390- 4 2.10000+ 1 1.19070- 4 4.37170- 4 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.19315- 2 1.22200- 5 1.10000+ 1 2.20000+ 1 2.71305- 2 1.25100- 5 1.10000+ 1 2.70000+ 1 2.99221- 3 1.41000- 5 1.30000+ 1 1.60000+ 1 1.58075- 1 1.02380- 4 1.30000+ 1 1.80000+ 1 1.63612- 1 1.28630- 4 1.30000+ 1 1.90000+ 1 2.52229- 1 1.31680- 4 1.30000+ 1 2.10000+ 1 1.96635- 2 1.70160- 4 1.30000+ 1 2.20000+ 1 1.61203- 2 1.70450- 4 1.30000+ 1 2.70000+ 1 5.89306- 3 1.72040- 4 1.40000+ 1 1.60000+ 1 2.63805- 2 1.06320- 4 1.40000+ 1 1.80000+ 1 2.23604- 1 1.32570- 4 1.40000+ 1 1.90000+ 1 2.37477- 2 1.35620- 4 1.40000+ 1 2.10000+ 1 4.06957- 3 1.74100- 4 1.40000+ 1 2.20000+ 1 2.90013- 3 1.74390- 4 1.40000+ 1 2.70000+ 1 7.39409- 4 1.75980- 4 1.60000+ 1 1.60000+ 1 6.61577- 4 2.93540- 4 1.60000+ 1 1.80000+ 1 1.03607- 2 3.19790- 4 1.60000+ 1 1.90000+ 1 1.62479- 3 3.22840- 4 1.60000+ 1 2.10000+ 1 2.19339- 4 3.61320- 4 1.60000+ 1 2.20000+ 1 4.13932- 4 3.61610- 4 1.60000+ 1 2.70000+ 1 4.06845- 5 3.63200- 4 1.80000+ 1 1.80000+ 1 6.58469- 3 3.46040- 4 1.80000+ 1 1.90000+ 1 2.10820- 2 3.49090- 4 1.80000+ 1 2.10000+ 1 6.22136- 3 3.87570- 4 1.80000+ 1 2.20000+ 1 1.04010- 2 3.87860- 4 1.80000+ 1 2.70000+ 1 3.82090- 4 3.89450- 4 1.90000+ 1 1.90000+ 1 5.45730- 4 3.52140- 4 1.90000+ 1 2.10000+ 1 8.26990- 4 3.90620- 4 1.90000+ 1 2.20000+ 1 4.96192- 4 3.90910- 4 1.90000+ 1 2.70000+ 1 4.59939- 5 3.92500- 4 2.10000+ 1 2.10000+ 1 8.22572- 5 4.29100- 4 2.10000+ 1 2.20000+ 1 1.87513- 4 4.29390- 4 2.10000+ 1 2.70000+ 1 7.96044- 6 4.30980- 4 2.20000+ 1 2.20000+ 1 3.80327- 5 4.29680- 4 2.20000+ 1 2.70000+ 1 1.14985- 5 4.31270- 4 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.09009- 5 1.57940- 4 1.40000+ 1 3.03760- 4 1.61880- 4 1.60000+ 1 1.78209- 4 3.49100- 4 2.10000+ 1 1.48175- 5 4.16880- 4 2.20000+ 1 1.22269- 4 4.17170- 4 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.16513- 2 8.20900- 5 1.30000+ 1 1.80000+ 1 2.23194- 2 1.08340- 4 1.30000+ 1 1.90000+ 1 1.60788- 1 1.11390- 4 1.30000+ 1 2.10000+ 1 4.74010- 3 1.49870- 4 1.30000+ 1 2.20000+ 1 3.43230- 3 1.50160- 4 1.30000+ 1 2.70000+ 1 1.01936- 3 1.51750- 4 1.40000+ 1 1.60000+ 1 1.51835- 1 8.60300- 5 1.40000+ 1 1.80000+ 1 1.48042- 1 1.12280- 4 1.40000+ 1 1.90000+ 1 3.35066- 1 1.15330- 4 1.40000+ 1 2.10000+ 1 1.29672- 2 1.53810- 4 1.40000+ 1 2.20000+ 1 2.84358- 2 1.54100- 4 1.40000+ 1 2.70000+ 1 5.56499- 3 1.55690- 4 1.60000+ 1 1.60000+ 1 8.64144- 4 2.73250- 4 1.60000+ 1 1.80000+ 1 1.29697- 3 2.99500- 4 1.60000+ 1 1.90000+ 1 1.96624- 2 3.02550- 4 1.60000+ 1 2.10000+ 1 4.90943- 4 3.41030- 4 1.60000+ 1 2.20000+ 1 6.02592- 4 3.41320- 4 1.60000+ 1 2.70000+ 1 5.20017- 5 3.42910- 4 1.80000+ 1 1.80000+ 1 2.17085- 4 3.25750- 4 1.80000+ 1 1.90000+ 1 1.82895- 2 3.28800- 4 1.80000+ 1 2.10000+ 1 2.49078- 4 3.67280- 4 1.80000+ 1 2.20000+ 1 1.08260- 3 3.67570- 4 1.80000+ 1 2.70000+ 1 3.47883- 5 3.69160- 4 1.90000+ 1 1.90000+ 1 2.45335- 2 3.31850- 4 1.90000+ 1 2.10000+ 1 1.06630- 2 3.70330- 4 1.90000+ 1 2.20000+ 1 1.45451- 2 3.70620- 4 1.90000+ 1 2.70000+ 1 5.84514- 4 3.72210- 4 2.10000+ 1 2.10000+ 1 2.18774- 5 4.08810- 4 2.10000+ 1 2.20000+ 1 1.54760- 4 4.09100- 4 2.10000+ 1 2.70000+ 1 7.29268- 6 4.10690- 4 2.20000+ 1 2.20000+ 1 1.27217- 4 4.09390- 4 2.20000+ 1 2.70000+ 1 9.72275- 6 4.10980- 4 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.65709- 4 2.17410- 4 1.90000+ 1 2.91469- 5 2.20460- 4 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.02979- 2 1.15310- 4 1.60000+ 1 1.80000+ 1 6.13361- 2 1.41560- 4 1.60000+ 1 1.90000+ 1 6.90946- 2 1.44610- 4 1.60000+ 1 2.10000+ 1 1.66620- 1 1.83090- 4 1.60000+ 1 2.20000+ 1 3.26469- 2 1.83380- 4 1.60000+ 1 2.70000+ 1 4.13505- 4 1.84970- 4 1.80000+ 1 1.80000+ 1 2.55982- 4 1.67810- 4 1.80000+ 1 1.90000+ 1 4.60744- 2 1.70860- 4 1.80000+ 1 2.10000+ 1 1.14108- 1 2.09340- 4 1.80000+ 1 2.20000+ 1 1.13218- 2 2.09630- 4 1.80000+ 1 2.70000+ 1 6.89162- 4 2.11220- 4 1.90000+ 1 1.90000+ 1 2.28207- 2 1.73910- 4 1.90000+ 1 2.10000+ 1 2.55072- 1 2.12390- 4 1.90000+ 1 2.20000+ 1 1.24830- 2 2.12680- 4 1.90000+ 1 2.70000+ 1 1.06327- 3 2.14270- 4 2.10000+ 1 2.10000+ 1 5.14508- 2 2.50870- 4 2.10000+ 1 2.20000+ 1 1.36023- 1 2.51160- 4 2.10000+ 1 2.70000+ 1 5.39512- 3 2.52750- 4 2.20000+ 1 2.20000+ 1 2.04787- 3 2.51450- 4 2.20000+ 1 2.70000+ 1 5.90725- 4 2.53040- 4 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.70388- 4 2.16520- 4 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.21169- 2 1.11370- 4 1.60000+ 1 1.80000+ 1 4.06844- 2 1.37620- 4 1.60000+ 1 1.90000+ 1 9.85304- 2 1.40670- 4 1.60000+ 1 2.10000+ 1 2.31796- 2 1.79150- 4 1.60000+ 1 2.20000+ 1 1.73617- 1 1.79440- 4 1.60000+ 1 2.70000+ 1 4.98488- 4 1.81030- 4 1.80000+ 1 1.80000+ 1 6.51861- 4 1.63870- 4 1.80000+ 1 1.90000+ 1 4.84296- 2 1.66920- 4 1.80000+ 1 2.10000+ 1 3.37433- 3 2.05400- 4 1.80000+ 1 2.20000+ 1 1.35820- 1 2.05690- 4 1.80000+ 1 2.70000+ 1 6.51861- 4 2.07280- 4 1.90000+ 1 1.90000+ 1 2.62852- 2 1.69970- 4 1.90000+ 1 2.10000+ 1 1.37281- 2 2.08450- 4 1.90000+ 1 2.20000+ 1 2.30747- 1 2.08740- 4 1.90000+ 1 2.70000+ 1 1.22710- 3 2.10330- 4 2.10000+ 1 2.10000+ 1 7.66864- 4 2.46930- 4 2.10000+ 1 2.20000+ 1 9.19334- 2 2.47220- 4 2.10000+ 1 2.70000+ 1 4.21787- 4 2.48810- 4 2.20000+ 1 2.20000+ 1 9.17212- 2 2.47510- 4 2.20000+ 1 2.70000+ 1 5.44483- 3 2.49100- 4 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.75862- 6 2.62500- 5 1.90000+ 1 7.81247- 6 2.93000- 5 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 6.87044- 2 1.81800- 5 1.80000+ 1 2.20000+ 1 2.27486- 1 1.84700- 5 1.80000+ 1 2.70000+ 1 8.17189- 3 2.00600- 5 1.90000+ 1 2.10000+ 1 3.21726- 1 2.12300- 5 1.90000+ 1 2.20000+ 1 3.34828- 1 2.15200- 5 1.90000+ 1 2.70000+ 1 1.39214- 2 2.31100- 5 2.10000+ 1 2.10000+ 1 3.26069- 4 5.97100- 5 2.10000+ 1 2.20000+ 1 1.51761- 2 6.00000- 5 2.10000+ 1 2.70000+ 1 1.82198- 3 6.15900- 5 2.20000+ 1 2.20000+ 1 4.58873- 3 6.02900- 5 2.20000+ 1 2.70000+ 1 3.23823- 3 6.18800- 5 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.32552- 6 4.15300- 5 2.70000+ 1 1.53671- 7 4.34100- 5 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.30841- 1 3.34600- 5 2.10000+ 1 2.20000+ 1 8.25887- 1 3.37500- 5 2.10000+ 1 2.70000+ 1 1.56362- 2 3.53400- 5 2.20000+ 1 2.20000+ 1 2.55044- 2 3.40400- 5 2.20000+ 1 2.70000+ 1 2.12774- 3 3.56300- 5 1 43000 0 7 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.51739- 8 3.84800- 5 2.20000+ 1 7.81629- 7 3.87700- 5 2.70000+ 1 4.21030- 8 4.03600- 5 1 43000 0 9 9.80000+ 1 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.95148- 2 3.04100- 5 2.10000+ 1 2.20000+ 1 6.06641- 1 3.07000- 5 2.10000+ 1 2.70000+ 1 3.80347- 3 3.22900- 5 2.20000+ 1 2.20000+ 1 3.52752- 1 3.09900- 5 2.20000+ 1 2.70000+ 1 1.72873- 2 3.25800- 5 1 44000 0 0 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 2.80000+ 0 2.20000+ 1 4.20000+ 0 2.70000+ 1 1.00000+ 0 1 44000 0 0 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.20870- 2 3.00000+ 0 3.20390- 3 5.00000+ 0 2.97180- 3 6.00000+ 0 2.83870- 3 8.00000+ 0 5.74030- 4 1.00000+ 1 4.82060- 4 1.10000+ 1 4.59290- 4 1.30000+ 1 2.94530- 4 1.40000+ 1 2.90050- 4 1.60000+ 1 8.21400- 5 1.80000+ 1 5.41900- 5 1.90000+ 1 5.06600- 5 2.10000+ 1 9.15000- 6 2.20000+ 1 8.79000- 6 2.70000+ 1 6.38000- 6 1 44000 0 0 1.01070+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.79660- 2 3.00000+ 0 5.87830- 3 5.00000+ 0 5.88170- 3 6.00000+ 0 5.39690- 3 8.00000+ 0 1.59650- 3 1.00000+ 1 1.53700- 3 1.10000+ 1 1.43390- 3 1.30000+ 1 1.31760- 3 1.40000+ 1 1.29280- 3 1.60000+ 1 3.81750- 4 1.80000+ 1 3.26650- 4 1.90000+ 1 3.04430- 4 2.10000+ 1 1.68760- 4 2.20000+ 1 1.64210- 4 2.70000+ 1 3.44800- 5 1 44000 0 0 1.01070+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.76590-10 3.00000+ 0 7.65750-10 5.00000+ 0 6.49910-10 6.00000+ 0 6.75390-10 8.00000+ 0 2.11110- 9 1.00000+ 1 2.06940- 9 1.10000+ 1 2.12460- 9 1.30000+ 1 1.98720- 9 1.40000+ 1 2.00490- 9 1.60000+ 1 5.30970- 9 1.80000+ 1 5.73830- 9 1.90000+ 1 5.89660- 9 2.10000+ 1 8.26770- 9 2.20000+ 1 8.38740- 9 2.70000+ 1 1.81690- 8 1 44000 0 0 1.01070+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.07410- 6 3.00000+ 0 5.32580- 8 5.00000+ 0 8.45300- 8 6.00000+ 0 8.12150- 8 8.00000+ 0 8.29660-10 1.00000+ 1 7.64070-10 1.10000+ 1 6.91420-10 1.30000+ 1 6.10360-11 1.40000+ 1 5.52900-11 1.60000+ 1 2.11930-11 1.80000+ 1 3.86690-11 1.90000+ 1 3.31280-11 1 44000 0 0 1.01070+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07980- 6 3.00000+ 0 6.46000- 6 5.00000+ 0 1.90660- 6 6.00000+ 0 1.76610- 6 8.00000+ 0 9.55580- 6 1.00000+ 1 3.21140- 6 1.10000+ 1 3.38460- 6 1.30000+ 1 1.70240- 7 1.40000+ 1 1.74000- 7 1.60000+ 1 1.64940- 5 1.80000+ 1 5.11590- 6 1.90000+ 1 5.42170- 6 1 44000 0 0 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.85077- 5 3.00000+ 0 9.03763- 5 5.00000+ 0 6.93787- 5 6.00000+ 0 6.65498- 5 8.00000+ 0 5.87364- 5 1.00000+ 1 4.71225- 5 1.10000+ 1 4.61446- 5 1.30000+ 1 2.86391- 5 1.40000+ 1 2.86400- 5 1.60000+ 1 2.64571- 5 1.80000+ 1 1.79500- 5 1.90000+ 1 1.77767- 5 2.10000+ 1 9.15000- 6 2.20000+ 1 8.79000- 6 2.70000+ 1 6.38000- 6 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.42738- 1 3.00000+ 0 4.70179- 2 5.00000+ 0 5.09408- 2 6.00000+ 0 4.61809- 2 8.00000+ 0 1.00997- 3 1.00000+ 1 1.05064- 3 1.10000+ 1 9.72179- 4 1.30000+ 1 2.70190- 4 1.40000+ 1 2.38587- 4 1.60000+ 1 1.61163- 5 1.80000+ 1 5.74850- 6 1.90000+ 1 1.52089- 6 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.56955- 2 3.00000+ 0 1.18709- 4 5.00000+ 0 1.32777- 4 6.00000+ 0 1.14680- 4 8.00000+ 0 3.18297- 7 1.00000+ 1 2.97814- 7 1.10000+ 1 2.77237- 7 1.30000+ 1 6.37179- 8 1.40000+ 1 5.57318- 8 1.60000+ 1 5.28838-10 1.80000+ 1 2.59472-10 1.90000+ 1 6.37739-11 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.81099+ 0 3.00000+ 0 9.14722+ 0 5.00000+ 0 6.77719+ 0 6.00000+ 0 6.47287+ 0 8.00000+ 0 5.61880+ 0 1.00000+ 1 4.27795+ 0 1.10000+ 1 4.18376+ 0 1.30000+ 1 2.19582+ 0 1.40000+ 1 2.22394+ 0 1.60000+ 1 1.97147+ 0 1.80000+ 1 9.99994- 1 1.90000+ 1 9.99998- 1 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.31299- 3 3.00000+ 0 2.99481- 3 5.00000+ 0 2.76964- 3 6.00000+ 0 2.65747- 3 8.00000+ 0 5.14975- 4 1.00000+ 1 4.34640- 4 1.10000+ 1 4.12868- 4 1.30000+ 1 2.65827- 4 1.40000+ 1 2.61354- 4 1.60000+ 1 5.56824- 5 1.80000+ 1 3.62398- 5 1.90000+ 1 3.28832- 5 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.29599- 1 1.91152- 2 6.00000+ 0 4.35598- 1 1.92483- 2 1.00000+ 1 3.65518- 2 2.16049- 2 1.10000+ 1 7.10886- 2 2.16277- 2 1.30000+ 1 2.04189- 4 2.17925- 2 1.40000+ 1 2.87289- 4 2.17969- 2 1.80000+ 1 7.15846- 3 2.20328- 2 1.90000+ 1 1.37819- 2 2.20363- 2 2.10000+ 1 1.36059- 5 2.20778- 2 2.20000+ 1 1.89269- 5 2.20782- 2 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.48957- 2 1.56792- 2 3.00000+ 0 5.00000+ 0 1.69821- 2 1.59113- 2 3.00000+ 0 6.00000+ 0 2.48619- 2 1.60444- 2 3.00000+ 0 8.00000+ 0 4.91238- 3 1.83091- 2 3.00000+ 0 1.00000+ 1 2.93899- 3 1.84010- 2 3.00000+ 0 1.10000+ 1 4.29709- 3 1.84238- 2 3.00000+ 0 1.30000+ 1 2.45703- 4 1.85886- 2 3.00000+ 0 1.40000+ 1 2.95971- 4 1.85930- 2 3.00000+ 0 1.60000+ 1 8.95176- 4 1.88010- 2 3.00000+ 0 1.80000+ 1 4.75833- 4 1.88289- 2 3.00000+ 0 1.90000+ 1 6.89913- 4 1.88324- 2 3.00000+ 0 2.10000+ 1 1.76232- 5 1.88739- 2 3.00000+ 0 2.20000+ 1 2.07335- 5 1.88743- 2 3.00000+ 0 2.70000+ 1 4.35413- 5 1.88767- 2 5.00000+ 0 5.00000+ 0 2.53560- 3 1.61434- 2 5.00000+ 0 6.00000+ 0 5.61569- 2 1.62765- 2 5.00000+ 0 8.00000+ 0 2.32167- 3 1.85412- 2 5.00000+ 0 1.00000+ 1 7.98243- 4 1.86331- 2 5.00000+ 0 1.10000+ 1 8.16101- 3 1.86559- 2 5.00000+ 0 1.30000+ 1 3.15149- 4 1.88207- 2 5.00000+ 0 1.40000+ 1 1.10717- 3 1.88251- 2 5.00000+ 0 1.60000+ 1 4.08989- 4 1.90331- 2 5.00000+ 0 1.80000+ 1 1.27516- 4 1.90610- 2 5.00000+ 0 1.90000+ 1 1.27467- 3 1.90645- 2 5.00000+ 0 2.10000+ 1 2.22889- 5 1.91060- 2 5.00000+ 0 2.20000+ 1 7.67159- 5 1.91064- 2 5.00000+ 0 2.70000+ 1 1.96969- 5 1.91088- 2 6.00000+ 0 6.00000+ 0 2.93834- 2 1.64096- 2 6.00000+ 0 8.00000+ 0 3.38495- 3 1.86743- 2 6.00000+ 0 1.00000+ 1 8.06450- 3 1.87662- 2 6.00000+ 0 1.10000+ 1 8.74037- 3 1.87890- 2 6.00000+ 0 1.30000+ 1 1.34300- 3 1.89538- 2 6.00000+ 0 1.40000+ 1 1.27045- 3 1.89582- 2 6.00000+ 0 1.60000+ 1 5.96109- 4 1.91662- 2 6.00000+ 0 1.80000+ 1 1.26839- 3 1.91941- 2 6.00000+ 0 1.90000+ 1 1.37108- 3 1.91976- 2 6.00000+ 0 2.10000+ 1 9.43381- 5 1.92391- 2 6.00000+ 0 2.20000+ 1 8.86388- 5 1.92395- 2 6.00000+ 0 2.70000+ 1 2.85095- 5 1.92419- 2 8.00000+ 0 8.00000+ 0 3.99144- 4 2.09389- 2 8.00000+ 0 1.00000+ 1 4.05379- 4 2.10309- 2 8.00000+ 0 1.10000+ 1 5.88863- 4 2.10537- 2 8.00000+ 0 1.30000+ 1 3.16209- 5 2.12184- 2 8.00000+ 0 1.40000+ 1 3.73224- 5 2.12229- 2 8.00000+ 0 1.60000+ 1 1.45145- 4 2.14308- 2 8.00000+ 0 1.80000+ 1 6.58328- 5 2.14588- 2 8.00000+ 0 1.90000+ 1 9.48616- 5 2.14623- 2 8.00000+ 0 2.10000+ 1 2.07344- 6 2.15038- 2 8.00000+ 0 2.20000+ 1 2.59184- 6 2.15042- 2 8.00000+ 0 2.70000+ 1 7.25720- 6 2.15066- 2 1.00000+ 1 1.00000+ 1 6.01312- 5 2.11229- 2 1.00000+ 1 1.10000+ 1 1.18811- 3 2.11456- 2 1.00000+ 1 1.30000+ 1 3.52487- 5 2.13104- 2 1.00000+ 1 1.40000+ 1 1.25959- 4 2.13149- 2 1.00000+ 1 1.60000+ 1 7.15351- 5 2.15228- 2 1.00000+ 1 1.80000+ 1 1.91801- 5 2.15507- 2 1.00000+ 1 1.90000+ 1 1.86096- 4 2.15543- 2 1.00000+ 1 2.10000+ 1 2.59183- 6 2.15958- 2 1.00000+ 1 2.20000+ 1 8.81231- 6 2.15961- 2 1.00000+ 1 2.70000+ 1 3.62836- 6 2.15986- 2 1.10000+ 1 1.10000+ 1 6.51580- 4 2.11684- 2 1.10000+ 1 1.30000+ 1 1.58624- 4 2.13332- 2 1.10000+ 1 1.40000+ 1 1.46695- 4 2.13377- 2 1.10000+ 1 1.60000+ 1 1.03671- 4 2.15456- 2 1.10000+ 1 1.80000+ 1 1.87127- 4 2.15735- 2 1.10000+ 1 1.90000+ 1 2.04240- 4 2.15770- 2 1.10000+ 1 2.10000+ 1 1.14040- 5 2.16186- 2 1.10000+ 1 2.20000+ 1 1.03671- 5 2.16189- 2 1.10000+ 1 2.70000+ 1 5.18365- 6 2.16213- 2 1.30000+ 1 1.40000+ 1 1.71057- 5 2.15024- 2 1.30000+ 1 1.60000+ 1 5.70182- 6 2.17103- 2 1.30000+ 1 1.80000+ 1 5.18344- 6 2.17383- 2 1.30000+ 1 1.90000+ 1 2.38437- 5 2.17418- 2 1.30000+ 1 2.20000+ 1 1.03667- 6 2.17837- 2 1.30000+ 1 2.70000+ 1 5.18344- 7 2.17861- 2 1.40000+ 1 1.40000+ 1 4.25251- 6 2.15069- 2 1.40000+ 1 1.60000+ 1 6.37872- 6 2.17148- 2 1.40000+ 1 1.80000+ 1 1.96683- 5 2.17428- 2 1.40000+ 1 1.90000+ 1 2.28569- 5 2.17463- 2 1.40000+ 1 2.10000+ 1 1.06311- 6 2.17878- 2 1.40000+ 1 2.20000+ 1 5.31561- 7 2.17882- 2 1.40000+ 1 2.70000+ 1 5.31561- 7 2.17906- 2 1.60000+ 1 1.60000+ 1 1.35282- 5 2.19227- 2 1.60000+ 1 1.80000+ 1 1.19047- 5 2.19507- 2 1.60000+ 1 1.90000+ 1 1.73164- 5 2.19542- 2 1.60000+ 1 2.10000+ 1 5.41126- 7 2.19957- 2 1.60000+ 1 2.20000+ 1 5.41126- 7 2.19961- 2 1.60000+ 1 2.70000+ 1 1.08224- 6 2.19985- 2 1.80000+ 1 1.80000+ 1 1.48869- 6 2.19786- 2 1.80000+ 1 1.90000+ 1 2.82850- 5 2.19821- 2 1.80000+ 1 2.10000+ 1 4.96223- 7 2.20237- 2 1.80000+ 1 2.20000+ 1 1.48869- 6 2.20240- 2 1.80000+ 1 2.70000+ 1 4.96223- 7 2.20264- 2 1.90000+ 1 1.90000+ 1 1.61851- 5 2.19857- 2 1.90000+ 1 2.10000+ 1 1.56630- 6 2.20272- 2 1.90000+ 1 2.20000+ 1 1.56630- 6 2.20275- 2 1.90000+ 1 2.70000+ 1 1.04417- 6 2.20300- 2 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.50210- 5 2.32100- 4 6.00000+ 0 1.04540- 4 3.65200- 4 1.00000+ 1 2.61200- 3 2.72184- 3 1.10000+ 1 4.43660- 3 2.74461- 3 1.30000+ 1 2.49630- 5 2.90937- 3 1.40000+ 1 3.72020- 5 2.91385- 3 1.80000+ 1 4.34860- 4 3.14971- 3 1.90000+ 1 7.45580- 4 3.15324- 3 2.10000+ 1 1.22390- 6 3.19475- 3 2.20000+ 1 1.82230- 6 3.19511- 3 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.24390- 2 1.49960- 4 5.00000+ 0 1.80000+ 1 1.48970- 2 1.77910- 4 5.00000+ 0 1.90000+ 1 2.01857- 2 1.81440- 4 5.00000+ 0 2.10000+ 1 2.80746- 3 2.22950- 4 5.00000+ 0 2.20000+ 1 4.70405- 3 2.23310- 4 5.00000+ 0 2.70000+ 1 1.05582- 3 2.25720- 4 6.00000+ 0 1.30000+ 1 2.64472- 1 7.06700- 5 6.00000+ 0 1.40000+ 1 3.85840- 1 7.51500- 5 6.00000+ 0 1.60000+ 1 3.37022- 2 2.83060- 4 6.00000+ 0 1.80000+ 1 1.45652- 2 3.11010- 4 6.00000+ 0 1.90000+ 1 2.90995- 2 3.14540- 4 6.00000+ 0 2.10000+ 1 1.11140- 2 3.56050- 4 6.00000+ 0 2.20000+ 1 1.46402- 2 3.56410- 4 6.00000+ 0 2.70000+ 1 1.57669- 3 3.58820- 4 8.00000+ 0 8.00000+ 0 5.85840- 3 2.05584- 3 8.00000+ 0 1.00000+ 1 1.14701- 2 2.14781- 3 8.00000+ 0 1.10000+ 1 2.17604- 2 2.17058- 3 8.00000+ 0 1.30000+ 1 1.70276- 2 2.33534- 3 8.00000+ 0 1.40000+ 1 2.45387- 2 2.33982- 3 8.00000+ 0 1.60000+ 1 1.84613- 3 2.54773- 3 8.00000+ 0 1.80000+ 1 1.82563- 3 2.57568- 3 8.00000+ 0 1.90000+ 1 3.43152- 3 2.57921- 3 8.00000+ 0 2.10000+ 1 1.07332- 3 2.62072- 3 8.00000+ 0 2.20000+ 1 1.52990- 3 2.62108- 3 8.00000+ 0 2.70000+ 1 8.72916- 5 2.62349- 3 1.00000+ 1 1.00000+ 1 8.93801- 5 2.23978- 3 1.00000+ 1 1.10000+ 1 4.96602- 4 2.26255- 3 1.00000+ 1 1.30000+ 1 3.85082- 4 2.42731- 3 1.00000+ 1 1.40000+ 1 5.93038- 3 2.43179- 3 1.00000+ 1 1.60000+ 1 1.48721- 3 2.63970- 3 1.00000+ 1 1.80000+ 1 1.75405- 5 2.66765- 3 1.00000+ 1 1.90000+ 1 7.47619- 5 2.67118- 3 1.00000+ 1 2.10000+ 1 2.42238- 5 2.71269- 3 1.00000+ 1 2.20000+ 1 2.65632- 4 2.71305- 3 1.00000+ 1 2.70000+ 1 6.80786- 5 2.71546- 3 1.10000+ 1 1.10000+ 1 5.19582- 4 2.28532- 3 1.10000+ 1 1.30000+ 1 4.96406- 3 2.45008- 3 1.10000+ 1 1.40000+ 1 3.46041- 3 2.45456- 3 1.10000+ 1 1.60000+ 1 2.82346- 3 2.66247- 3 1.10000+ 1 1.80000+ 1 7.47639- 5 2.69042- 3 1.10000+ 1 1.90000+ 1 1.30730- 4 2.69395- 3 1.10000+ 1 2.10000+ 1 2.08832- 4 2.73546- 3 1.10000+ 1 2.20000+ 1 1.48685- 4 2.73582- 3 1.10000+ 1 2.70000+ 1 1.29480- 4 2.73823- 3 1.30000+ 1 1.30000+ 1 8.73332- 4 2.61484- 3 1.30000+ 1 1.40000+ 1 3.45289- 2 2.61932- 3 1.30000+ 1 1.60000+ 1 2.11344- 3 2.82723- 3 1.30000+ 1 1.80000+ 1 8.06089- 5 2.85518- 3 1.30000+ 1 1.90000+ 1 7.73508- 4 2.85871- 3 1.30000+ 1 2.10000+ 1 1.09841- 4 2.90022- 3 1.30000+ 1 2.20000+ 1 1.69186- 3 2.90058- 3 1.30000+ 1 2.70000+ 1 9.64808- 5 2.90299- 3 1.40000+ 1 1.40000+ 1 9.70433- 3 2.62380- 3 1.40000+ 1 1.60000+ 1 3.05559- 3 2.83171- 3 1.40000+ 1 1.80000+ 1 8.77078- 4 2.85966- 3 1.40000+ 1 1.90000+ 1 5.62590- 4 2.86319- 3 1.40000+ 1 2.10000+ 1 1.69574- 3 2.90470- 3 1.40000+ 1 2.20000+ 1 9.83169- 4 2.90506- 3 1.40000+ 1 2.70000+ 1 1.39503- 4 2.90747- 3 1.60000+ 1 1.60000+ 1 1.39503- 4 3.03962- 3 1.60000+ 1 1.80000+ 1 2.37236- 4 3.06757- 3 1.60000+ 1 1.90000+ 1 4.46060- 4 3.07110- 3 1.60000+ 1 2.10000+ 1 1.32814- 4 3.11261- 3 1.60000+ 1 2.20000+ 1 1.90039- 4 3.11297- 3 1.60000+ 1 2.70000+ 1 1.29475- 5 3.11538- 3 1.80000+ 1 1.80000+ 1 9.17714- 7 3.09552- 3 1.80000+ 1 1.90000+ 1 1.23893- 5 3.09905- 3 1.80000+ 1 2.10000+ 1 5.04746- 6 3.14056- 3 1.80000+ 1 2.20000+ 1 4.40493- 5 3.14092- 3 1.80000+ 1 2.70000+ 1 1.19302- 5 3.14333- 3 1.90000+ 1 1.90000+ 1 9.11288- 6 3.10258- 3 1.90000+ 1 2.10000+ 1 3.69078- 5 3.14409- 3 1.90000+ 1 2.20000+ 1 2.68825- 5 3.14445- 3 1.90000+ 1 2.70000+ 1 2.23258- 5 3.14686- 3 2.10000+ 1 2.10000+ 1 3.34133- 6 3.18560- 3 2.10000+ 1 2.20000+ 1 8.22798- 5 3.18596- 3 2.10000+ 1 2.70000+ 1 6.26488- 6 3.18837- 3 2.20000+ 1 2.20000+ 1 2.46420- 5 3.18632- 3 2.20000+ 1 2.70000+ 1 8.77097- 6 3.18873- 3 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.21328- 9 1.33100- 4 8.00000+ 0 3.23479- 3 2.39777- 3 1.10000+ 1 3.45399- 5 2.51251- 3 1.30000+ 1 3.76879- 2 2.67727- 3 1.60000+ 1 2.90119- 4 2.88966- 3 1.90000+ 1 1.75319- 6 2.92114- 3 2.10000+ 1 2.11849- 3 2.96265- 3 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.60881- 2 5.09600- 5 6.00000+ 0 1.80000+ 1 5.58635- 2 7.89100- 5 6.00000+ 0 1.90000+ 1 2.07457- 2 8.24400- 5 6.00000+ 0 2.10000+ 1 3.75520- 2 1.23950- 4 6.00000+ 0 2.20000+ 1 1.45000- 2 1.24310- 4 6.00000+ 0 2.70000+ 1 7.00259- 4 1.26720- 4 8.00000+ 0 8.00000+ 0 1.39508- 3 1.82374- 3 8.00000+ 0 1.00000+ 1 3.05545- 2 1.91571- 3 8.00000+ 0 1.10000+ 1 2.90212- 3 1.93848- 3 8.00000+ 0 1.30000+ 1 1.80730- 3 2.10324- 3 8.00000+ 0 1.40000+ 1 4.41046- 3 2.10772- 3 8.00000+ 0 1.60000+ 1 4.14977- 4 2.31563- 3 8.00000+ 0 1.80000+ 1 3.50413- 3 2.34358- 3 8.00000+ 0 1.90000+ 1 4.09513- 4 2.34711- 3 8.00000+ 0 2.10000+ 1 8.46347- 5 2.38862- 3 8.00000+ 0 2.20000+ 1 1.87012- 4 2.38898- 3 8.00000+ 0 2.70000+ 1 1.91107- 5 2.39139- 3 1.00000+ 1 1.00000+ 1 2.93029- 2 2.00768- 3 1.00000+ 1 1.10000+ 1 9.55954- 2 2.03045- 3 1.00000+ 1 1.30000+ 1 5.01954- 2 2.19521- 3 1.00000+ 1 1.40000+ 1 8.92738- 2 2.19969- 3 1.00000+ 1 1.60000+ 1 5.67327- 3 2.40760- 3 1.00000+ 1 1.80000+ 1 8.13431- 3 2.43555- 3 1.00000+ 1 1.90000+ 1 1.48147- 2 2.43908- 3 1.00000+ 1 2.10000+ 1 3.14913- 3 2.48059- 3 1.00000+ 1 2.20000+ 1 5.55582- 3 2.48095- 3 1.00000+ 1 2.70000+ 1 2.74371- 4 2.48336- 3 1.10000+ 1 1.10000+ 1 2.57170- 3 2.05322- 3 1.10000+ 1 1.30000+ 1 6.20049- 2 2.21798- 3 1.10000+ 1 1.40000+ 1 8.42240- 3 2.22246- 3 1.10000+ 1 1.60000+ 1 4.68215- 4 2.43037- 3 1.10000+ 1 1.80000+ 1 1.13458- 2 2.45832- 3 1.10000+ 1 1.90000+ 1 6.79799- 4 2.46185- 3 1.10000+ 1 2.10000+ 1 3.45767- 3 2.50336- 3 1.10000+ 1 2.20000+ 1 4.35443- 4 2.50372- 3 1.10000+ 1 2.70000+ 1 2.18405- 5 2.50613- 3 1.30000+ 1 1.30000+ 1 5.51620- 2 2.38274- 3 1.30000+ 1 1.40000+ 1 2.41435- 1 2.38722- 3 1.30000+ 1 1.60000+ 1 3.45354- 4 2.59513- 3 1.30000+ 1 1.80000+ 1 5.95808- 3 2.62308- 3 1.30000+ 1 1.90000+ 1 9.15253- 3 2.62661- 3 1.30000+ 1 2.10000+ 1 6.12769- 3 2.66812- 3 1.30000+ 1 2.20000+ 1 1.40615- 2 2.66848- 3 1.30000+ 1 2.70000+ 1 1.63807- 5 2.67089- 3 1.40000+ 1 1.40000+ 1 1.14676- 2 2.39170- 3 1.40000+ 1 1.60000+ 1 7.11188- 4 2.59961- 3 1.40000+ 1 1.80000+ 1 9.61406- 3 2.62756- 3 1.40000+ 1 1.90000+ 1 1.14526- 3 2.63109- 3 1.40000+ 1 2.10000+ 1 1.18432- 2 2.67260- 3 1.40000+ 1 2.20000+ 1 1.23546- 3 2.67296- 3 1.40000+ 1 2.70000+ 1 3.41261- 5 2.67537- 3 1.60000+ 1 1.60000+ 1 3.79360- 5 2.80752- 3 1.60000+ 1 1.80000+ 1 8.24268- 4 2.83547- 3 1.60000+ 1 1.90000+ 1 8.44922- 5 2.83900- 3 1.60000+ 1 2.10000+ 1 2.06928- 5 2.88051- 3 1.60000+ 1 2.20000+ 1 3.96596- 5 2.88087- 3 1.60000+ 1 2.70000+ 1 3.44864- 6 2.88328- 3 1.80000+ 1 1.80000+ 1 5.46007- 4 2.86342- 3 1.80000+ 1 1.90000+ 1 1.75816- 3 2.86695- 3 1.80000+ 1 2.10000+ 1 3.69931- 4 2.90846- 3 1.80000+ 1 2.20000+ 1 6.01992- 4 2.90882- 3 1.80000+ 1 2.70000+ 1 3.13957- 5 2.91123- 3 1.90000+ 1 1.90000+ 1 4.50468- 5 2.87048- 3 1.90000+ 1 2.10000+ 1 5.14604- 4 2.91199- 3 1.90000+ 1 2.20000+ 1 6.14278- 5 2.91235- 3 1.90000+ 1 2.70000+ 1 2.73004- 6 2.91476- 3 2.10000+ 1 2.10000+ 1 1.61073- 4 2.95350- 3 2.10000+ 1 2.20000+ 1 6.70210- 4 2.95386- 3 2.10000+ 1 2.70000+ 1 1.36501- 6 2.95627- 3 2.20000+ 1 2.20000+ 1 3.13959- 5 2.95422- 3 2.20000+ 1 2.70000+ 1 1.36503- 6 2.95663- 3 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.19990- 3 2.26467- 3 1.00000+ 1 2.31850- 5 2.35664- 3 1.10000+ 1 2.19410- 5 2.37941- 3 1.30000+ 1 3.80980- 3 2.54417- 3 1.40000+ 1 3.38060- 2 2.54865- 3 1.60000+ 1 2.92170- 4 2.75656- 3 1.80000+ 1 8.96430- 7 2.78451- 3 1.90000+ 1 8.55220- 7 2.78804- 3 2.10000+ 1 2.11420- 4 2.82955- 3 2.20000+ 1 1.86530- 3 2.82991- 3 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.70907- 3 1.69064- 3 8.00000+ 0 1.00000+ 1 1.28402- 3 1.78261- 3 8.00000+ 0 1.10000+ 1 3.49492- 2 1.80538- 3 8.00000+ 0 1.30000+ 1 3.34295- 3 1.97014- 3 8.00000+ 0 1.40000+ 1 3.50770- 3 1.97462- 3 8.00000+ 0 1.60000+ 1 5.07409- 4 2.18253- 3 8.00000+ 0 1.80000+ 1 1.76488- 4 2.21048- 3 8.00000+ 0 1.90000+ 1 4.00634- 3 2.21401- 3 8.00000+ 0 2.10000+ 1 1.32366- 4 2.25552- 3 8.00000+ 0 2.20000+ 1 1.30898- 4 2.25588- 3 8.00000+ 0 2.70000+ 1 2.35317- 5 2.25829- 3 1.00000+ 1 1.00000+ 1 4.61806- 4 1.87458- 3 1.00000+ 1 1.10000+ 1 5.75138- 2 1.89735- 3 1.00000+ 1 1.30000+ 1 3.93413- 3 2.06211- 3 1.00000+ 1 1.40000+ 1 3.54105- 2 2.06659- 3 1.00000+ 1 1.60000+ 1 2.02961- 4 2.27450- 3 1.00000+ 1 1.80000+ 1 1.25004- 4 2.30245- 3 1.00000+ 1 1.90000+ 1 6.79774- 3 2.30598- 3 1.00000+ 1 2.10000+ 1 2.35311- 4 2.34749- 3 1.00000+ 1 2.20000+ 1 1.88843- 3 2.34785- 3 1.00000+ 1 2.70000+ 1 1.02948- 5 2.35026- 3 1.10000+ 1 1.10000+ 1 8.26162- 2 1.92012- 3 1.10000+ 1 1.30000+ 1 8.07131- 2 2.08488- 3 1.10000+ 1 1.40000+ 1 1.23549- 1 2.08936- 3 1.10000+ 1 1.60000+ 1 6.43463- 3 2.29727- 3 1.10000+ 1 1.80000+ 1 8.85549- 3 2.32522- 3 1.10000+ 1 1.90000+ 1 2.25610- 2 2.32875- 3 1.10000+ 1 2.10000+ 1 4.93287- 3 2.37026- 3 1.10000+ 1 2.20000+ 1 7.43739- 3 2.37062- 3 1.10000+ 1 2.70000+ 1 3.10330- 4 2.37303- 3 1.30000+ 1 1.30000+ 1 1.13656- 2 2.24964- 3 1.30000+ 1 1.40000+ 1 2.20911- 1 2.25412- 3 1.30000+ 1 1.60000+ 1 5.70674- 4 2.46203- 3 1.30000+ 1 1.80000+ 1 6.01537- 4 2.48998- 3 1.30000+ 1 1.90000+ 1 9.01297- 3 2.49351- 3 1.30000+ 1 2.10000+ 1 1.26925- 3 2.53502- 3 1.30000+ 1 2.20000+ 1 1.09122- 2 2.53538- 3 1.30000+ 1 2.70000+ 1 2.64734- 5 2.53779- 3 1.40000+ 1 1.40000+ 1 1.50346- 1 2.25860- 3 1.40000+ 1 1.60000+ 1 6.33894- 4 2.46651- 3 1.40000+ 1 1.80000+ 1 5.14171- 3 2.49446- 3 1.40000+ 1 1.90000+ 1 1.51435- 2 2.49799- 3 1.40000+ 1 2.10000+ 1 1.24557- 2 2.53950- 3 1.40000+ 1 2.20000+ 1 1.61180- 2 2.53986- 3 1.40000+ 1 2.70000+ 1 3.08860- 5 2.54227- 3 1.60000+ 1 1.60000+ 1 4.71841- 5 2.67442- 3 1.60000+ 1 1.80000+ 1 3.44798- 5 2.70237- 3 1.60000+ 1 1.90000+ 1 9.11021- 4 2.70590- 3 1.60000+ 1 2.10000+ 1 2.90355- 5 2.74741- 3 1.60000+ 1 2.20000+ 1 3.08503- 5 2.74777- 3 1.60000+ 1 2.70000+ 1 3.62944- 6 2.75018- 3 1.80000+ 1 1.80000+ 1 8.82417- 6 2.73032- 3 1.80000+ 1 1.90000+ 1 1.04567- 3 2.73385- 3 1.80000+ 1 2.10000+ 1 3.52971- 5 2.77536- 3 1.80000+ 1 2.20000+ 1 2.79436- 4 2.77572- 3 1.80000+ 1 2.70000+ 1 1.47082- 6 2.77813- 3 1.90000+ 1 1.90000+ 1 1.50311- 3 2.73738- 3 1.90000+ 1 2.10000+ 1 5.51539- 4 2.77889- 3 1.90000+ 1 2.20000+ 1 9.04552- 4 2.77925- 3 1.90000+ 1 2.70000+ 1 3.52982- 5 2.78166- 3 2.10000+ 1 2.10000+ 1 3.38280- 5 2.82040- 3 2.10000+ 1 2.20000+ 1 5.97151- 4 2.82076- 3 2.10000+ 1 2.70000+ 1 1.47084- 6 2.82317- 3 2.20000+ 1 2.20000+ 1 4.13289- 4 2.82112- 3 2.20000+ 1 2.70000+ 1 1.47086- 6 2.82353- 3 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.25823- 5 9.19700- 5 1.10000+ 1 5.03770- 5 1.14740- 4 1.80000+ 1 7.78450- 5 5.19840- 4 1.90000+ 1 1.16501- 4 5.23370- 4 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 5.47452- 2 9.83000- 6 1.00000+ 1 1.80000+ 1 5.33609- 2 3.77800- 5 1.00000+ 1 1.90000+ 1 1.06389- 1 4.13100- 5 1.00000+ 1 2.10000+ 1 2.73247- 2 8.28200- 5 1.00000+ 1 2.20000+ 1 3.52065- 2 8.31800- 5 1.00000+ 1 2.70000+ 1 1.91872- 3 8.55900- 5 1.10000+ 1 1.60000+ 1 8.98216- 2 3.26000- 5 1.10000+ 1 1.80000+ 1 9.65724- 2 6.05500- 5 1.10000+ 1 1.90000+ 1 1.56510- 1 6.40800- 5 1.10000+ 1 2.10000+ 1 2.87301- 2 1.05590- 4 1.10000+ 1 2.20000+ 1 4.35188- 2 1.05950- 4 1.10000+ 1 2.70000+ 1 3.08991- 3 1.08360- 4 1.30000+ 1 1.30000+ 1 6.68986- 3 0.00000+ 0 1.30000+ 1 1.40000+ 1 4.56097- 3 0.00000+ 0 1.30000+ 1 1.60000+ 1 3.53477- 2 1.97360- 4 1.30000+ 1 1.80000+ 1 6.33341- 3 2.25310- 4 1.30000+ 1 1.90000+ 1 4.80685- 3 2.28840- 4 1.30000+ 1 2.10000+ 1 2.93801- 3 2.70350- 4 1.30000+ 1 2.20000+ 1 3.23661- 3 2.70710- 4 1.30000+ 1 2.70000+ 1 9.35459- 4 2.73120- 4 1.40000+ 1 1.40000+ 1 1.32785- 2 0.00000+ 0 1.40000+ 1 1.60000+ 1 5.21360- 2 2.01840- 4 1.40000+ 1 1.80000+ 1 1.92209- 3 2.29790- 4 1.40000+ 1 1.90000+ 1 1.27687- 2 2.33320- 4 1.40000+ 1 2.10000+ 1 3.41768- 3 2.74830- 4 1.40000+ 1 2.20000+ 1 5.74720- 3 2.75190- 4 1.40000+ 1 2.70000+ 1 1.37815- 3 2.77600- 4 1.60000+ 1 1.60000+ 1 1.60762- 2 4.09750- 4 1.60000+ 1 1.80000+ 1 2.35269- 2 4.37700- 4 1.60000+ 1 1.90000+ 1 4.41059- 2 4.41230- 4 1.60000+ 1 2.10000+ 1 1.87407- 2 4.82740- 4 1.60000+ 1 2.20000+ 1 2.71422- 2 4.83100- 4 1.60000+ 1 2.70000+ 1 9.85685- 4 4.85510- 4 1.80000+ 1 1.80000+ 1 1.37512- 3 4.65650- 4 1.80000+ 1 1.90000+ 1 3.34012- 3 4.69180- 4 1.80000+ 1 2.10000+ 1 9.20856- 4 5.10690- 4 1.80000+ 1 2.20000+ 1 2.58485- 4 5.11050- 4 1.80000+ 1 2.70000+ 1 5.83603- 4 5.13460- 4 1.90000+ 1 1.90000+ 1 4.51433- 3 4.72710- 4 1.90000+ 1 2.10000+ 1 6.99321- 4 5.14220- 4 1.90000+ 1 2.20000+ 1 2.14781- 3 5.14580- 4 1.90000+ 1 2.70000+ 1 1.13228- 3 5.16990- 4 2.10000+ 1 2.10000+ 1 9.80220- 5 5.55730- 4 2.10000+ 1 2.20000+ 1 1.99663- 4 5.56090- 4 2.10000+ 1 2.70000+ 1 4.15672- 4 5.58500- 4 2.20000+ 1 2.20000+ 1 1.94212- 4 5.56450- 4 2.20000+ 1 2.70000+ 1 6.00813- 4 5.58860- 4 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.21480- 4 1.87530- 4 1.60000+ 1 1.67910- 4 3.99920- 4 2.10000+ 1 1.76430- 4 4.72910- 4 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.39636- 2 1.36200- 5 1.10000+ 1 2.20000+ 1 3.26396- 2 1.39800- 5 1.10000+ 1 2.70000+ 1 2.86177- 3 1.63900- 5 1.30000+ 1 1.60000+ 1 1.54898- 1 1.05390- 4 1.30000+ 1 1.80000+ 1 1.59905- 1 1.33340- 4 1.30000+ 1 1.90000+ 1 2.45690- 1 1.36870- 4 1.30000+ 1 2.10000+ 1 2.46859- 2 1.78380- 4 1.30000+ 1 2.20000+ 1 2.11038- 2 1.78740- 4 1.30000+ 1 2.70000+ 1 5.57773- 3 1.81150- 4 1.40000+ 1 1.60000+ 1 2.60923- 2 1.09870- 4 1.40000+ 1 1.80000+ 1 2.15457- 1 1.37820- 4 1.40000+ 1 1.90000+ 1 2.29300- 2 1.41350- 4 1.40000+ 1 2.10000+ 1 4.42397- 3 1.82860- 4 1.40000+ 1 2.20000+ 1 3.58231- 3 1.83220- 4 1.40000+ 1 2.70000+ 1 6.94284- 4 1.85630- 4 1.60000+ 1 1.60000+ 1 6.70563- 4 3.17780- 4 1.60000+ 1 1.80000+ 1 1.02794- 2 3.45730- 4 1.60000+ 1 1.90000+ 1 1.62891- 3 3.49260- 4 1.60000+ 1 2.10000+ 1 2.50613- 4 3.90770- 4 1.60000+ 1 2.20000+ 1 4.99516- 4 3.91130- 4 1.60000+ 1 2.70000+ 1 3.89457- 5 3.93540- 4 1.80000+ 1 1.80000+ 1 6.60394- 3 3.73680- 4 1.80000+ 1 1.90000+ 1 2.10610- 2 3.77210- 4 1.80000+ 1 2.10000+ 1 7.73935- 3 4.18720- 4 1.80000+ 1 2.20000+ 1 1.29023- 2 4.19080- 4 1.80000+ 1 2.70000+ 1 3.62371- 4 4.21490- 4 1.90000+ 1 1.90000+ 1 5.46097- 4 3.80740- 4 1.90000+ 1 2.10000+ 1 9.88892- 4 4.22250- 4 1.90000+ 1 2.20000+ 1 6.07883- 4 4.22610- 4 1.90000+ 1 2.70000+ 1 4.40266- 5 4.25020- 4 2.10000+ 1 2.10000+ 1 1.34628- 4 4.63760- 4 2.10000+ 1 2.20000+ 1 2.87015- 4 4.64120- 4 2.10000+ 1 2.70000+ 1 8.46673- 6 4.66530- 4 2.20000+ 1 2.20000+ 1 6.26540- 5 4.64480- 4 2.20000+ 1 2.70000+ 1 1.35469- 5 4.66890- 4 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.12591- 5 1.64760- 4 1.40000+ 1 3.09499- 4 1.69240- 4 1.60000+ 1 2.00825- 4 3.77150- 4 2.10000+ 1 2.20755- 5 4.50140- 4 2.20000+ 1 1.82172- 4 4.50500- 4 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.11813- 2 8.26200- 5 1.30000+ 1 1.80000+ 1 2.19875- 2 1.10570- 4 1.30000+ 1 1.90000+ 1 1.54834- 1 1.14100- 4 1.30000+ 1 2.10000+ 1 5.94240- 3 1.55610- 4 1.30000+ 1 2.20000+ 1 4.15775- 3 1.55970- 4 1.30000+ 1 2.70000+ 1 9.56295- 4 1.58380- 4 1.40000+ 1 1.60000+ 1 1.48855- 1 8.71000- 5 1.40000+ 1 1.80000+ 1 1.45847- 1 1.15050- 4 1.40000+ 1 1.90000+ 1 3.24884- 1 1.18580- 4 1.40000+ 1 2.10000+ 1 1.71767- 2 1.60090- 4 1.40000+ 1 2.20000+ 1 3.60173- 2 1.60450- 4 1.40000+ 1 2.70000+ 1 5.24708- 3 1.62860- 4 1.60000+ 1 1.60000+ 1 9.08195- 4 2.95010- 4 1.60000+ 1 1.80000+ 1 1.35246- 3 3.22960- 4 1.60000+ 1 1.90000+ 1 2.02308- 2 3.26490- 4 1.60000+ 1 2.10000+ 1 6.09531- 4 3.68000- 4 1.60000+ 1 2.20000+ 1 7.30840- 4 3.68360- 4 1.60000+ 1 2.70000+ 1 5.30664- 5 3.70770- 4 1.80000+ 1 1.80000+ 1 2.18218- 4 3.50910- 4 1.80000+ 1 1.90000+ 1 1.85353- 2 3.54440- 4 1.80000+ 1 2.10000+ 1 3.01744- 4 3.95950- 4 1.80000+ 1 2.20000+ 1 1.34303- 3 3.96310- 4 1.80000+ 1 2.70000+ 1 3.36770- 5 3.98720- 4 1.90000+ 1 1.90000+ 1 2.49553- 2 3.57970- 4 1.90000+ 1 2.10000+ 1 1.34791- 2 3.99480- 4 1.90000+ 1 2.20000+ 1 1.83540- 2 3.99840- 4 1.90000+ 1 2.70000+ 1 5.64420- 4 4.02250- 4 2.10000+ 1 2.10000+ 1 3.54172- 5 4.40990- 4 2.10000+ 1 2.20000+ 1 2.44072- 4 4.41350- 4 2.10000+ 1 2.70000+ 1 7.69966- 6 4.43760- 4 2.20000+ 1 2.20000+ 1 2.00181- 4 4.41710- 4 2.20000+ 1 2.70000+ 1 1.07786- 5 4.44120- 4 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.24441- 4 2.40340- 4 1.90000+ 1 3.91083- 5 2.43870- 4 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 6.15188- 3 1.30250- 4 1.60000+ 1 1.80000+ 1 4.26164- 2 1.58200- 4 1.60000+ 1 1.90000+ 1 4.70108- 2 1.61730- 4 1.60000+ 1 2.10000+ 1 1.66043- 1 2.03240- 4 1.60000+ 1 2.20000+ 1 3.15105- 2 2.03600- 4 1.60000+ 1 2.70000+ 1 2.39689- 4 2.06010- 4 1.80000+ 1 1.80000+ 1 6.23188- 4 1.86150- 4 1.80000+ 1 1.90000+ 1 3.98517- 2 1.89680- 4 1.80000+ 1 2.10000+ 1 1.14991- 1 2.31190- 4 1.80000+ 1 2.20000+ 1 1.09460- 2 2.31550- 4 1.80000+ 1 2.70000+ 1 4.79376- 4 2.33960- 4 1.90000+ 1 1.90000+ 1 1.89194- 2 1.93210- 4 1.90000+ 1 2.10000+ 1 2.57260- 1 2.34720- 4 1.90000+ 1 2.20000+ 1 1.21130- 2 2.35080- 4 1.90000+ 1 2.70000+ 1 7.19075- 4 2.37490- 4 2.10000+ 1 2.10000+ 1 7.12040- 2 2.76230- 4 2.10000+ 1 2.20000+ 1 1.70636- 1 2.76590- 4 2.10000+ 1 2.70000+ 1 5.16141- 3 2.79000- 4 2.20000+ 1 2.20000+ 1 2.70055- 3 2.76950- 4 2.20000+ 1 2.70000+ 1 5.59272- 4 2.79360- 4 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.31790- 4 2.39390- 4 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.48891- 3 1.25770- 4 1.60000+ 1 1.80000+ 1 2.81263- 2 1.53720- 4 1.60000+ 1 1.90000+ 1 6.84025- 2 1.57250- 4 1.60000+ 1 2.10000+ 1 2.25608- 2 1.98760- 4 1.60000+ 1 2.20000+ 1 1.73604- 1 1.99120- 4 1.60000+ 1 2.70000+ 1 2.97044- 4 2.01530- 4 1.80000+ 1 1.80000+ 1 3.75241- 4 1.81670- 4 1.80000+ 1 1.90000+ 1 4.14785- 2 1.85200- 4 1.80000+ 1 2.10000+ 1 3.14265- 3 2.26710- 4 1.80000+ 1 2.20000+ 1 1.38026- 1 2.27070- 4 1.80000+ 1 2.70000+ 1 4.37778- 4 2.29480- 4 1.90000+ 1 1.90000+ 1 2.37176- 2 1.88730- 4 1.90000+ 1 2.10000+ 1 1.35716- 2 2.30240- 4 1.90000+ 1 2.20000+ 1 2.33096- 1 2.30600- 4 1.90000+ 1 2.70000+ 1 8.44284- 4 2.33010- 4 2.10000+ 1 2.10000+ 1 1.06323- 3 2.71750- 4 2.10000+ 1 2.20000+ 1 1.15946- 1 2.72110- 4 2.10000+ 1 2.70000+ 1 3.90880- 4 2.74520- 4 2.20000+ 1 2.20000+ 1 1.21978- 1 2.72470- 4 2.20000+ 1 2.70000+ 1 5.22184- 3 2.74880- 4 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.47438- 6 2.79500- 5 1.90000+ 1 9.92755- 6 3.14800- 5 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 6.70551- 2 1.88000- 5 1.80000+ 1 2.20000+ 1 2.18949- 1 1.91600- 5 1.80000+ 1 2.70000+ 1 6.55421- 3 2.15700- 5 1.90000+ 1 2.10000+ 1 3.29463- 1 2.23300- 5 1.90000+ 1 2.20000+ 1 3.38362- 1 2.26900- 5 1.90000+ 1 2.70000+ 1 1.10914- 2 2.51000- 5 2.10000+ 1 2.10000+ 1 4.30165- 4 6.38400- 5 2.10000+ 1 2.20000+ 1 1.77692- 2 6.42000- 5 2.10000+ 1 2.70000+ 1 1.76154- 3 6.66100- 5 2.20000+ 1 2.20000+ 1 5.51706- 3 6.45600- 5 2.20000+ 1 2.70000+ 1 3.03370- 3 6.69700- 5 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.54648- 6 4.50400- 5 2.70000+ 1 2.02019- 7 4.78100- 5 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.42340- 1 3.58900- 5 2.10000+ 1 2.20000+ 1 8.18265- 1 3.62500- 5 2.10000+ 1 2.70000+ 1 1.15220- 2 3.86600- 5 2.20000+ 1 2.20000+ 1 2.64409- 2 3.66100- 5 2.20000+ 1 2.70000+ 1 1.42599- 3 3.90200- 5 1 44000 0 7 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.42960- 7 4.15100- 5 2.20000+ 1 1.31750- 6 4.18700- 5 2.70000+ 1 6.04329- 8 4.42800- 5 1 44000 0 9 1.01070+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.11816- 2 3.23600- 5 2.10000+ 1 2.20000+ 1 6.02397- 1 3.27200- 5 2.10000+ 1 2.70000+ 1 2.71045- 3 3.51300- 5 2.20000+ 1 2.20000+ 1 3.61341- 1 3.30800- 5 2.20000+ 1 2.70000+ 1 1.23680- 2 3.54900- 5 1 45000 0 0 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 3.20000+ 0 2.20000+ 1 4.80000+ 0 2.70000+ 1 1.00000+ 0 1 45000 0 0 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.31910- 2 3.00000+ 0 3.39120- 3 5.00000+ 0 3.15150- 3 6.00000+ 0 3.00450- 3 8.00000+ 0 6.15950- 4 1.00000+ 1 5.20150- 4 1.10000+ 1 4.94660- 4 1.30000+ 1 3.23030- 4 1.40000+ 1 3.17960- 4 1.60000+ 1 8.85200- 5 1.80000+ 1 5.88400- 5 1.90000+ 1 5.47800- 5 2.10000+ 1 1.02400- 5 2.20000+ 1 9.81000- 6 2.70000+ 1 6.56000- 6 1 45000 0 0 1.02905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.93780- 2 3.00000+ 0 6.20320- 3 5.00000+ 0 6.20750- 3 6.00000+ 0 5.67250- 3 8.00000+ 0 1.70130- 3 1.00000+ 1 1.64090- 3 1.10000+ 1 1.52640- 3 1.30000+ 1 1.40940- 3 1.40000+ 1 1.38180- 3 1.60000+ 1 4.15100- 4 1.80000+ 1 3.57600- 4 1.90000+ 1 3.32130- 4 2.10000+ 1 1.90480- 4 2.20000+ 1 1.85150- 4 2.70000+ 1 3.62900- 5 1 45000 0 0 1.02905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.72300-10 3.00000+ 0 7.46060-10 5.00000+ 0 6.32530-10 6.00000+ 0 6.58400-10 8.00000+ 0 2.04860- 9 1.00000+ 1 2.00460- 9 1.10000+ 1 2.06020- 9 1.30000+ 1 1.91730- 9 1.40000+ 1 1.93500- 9 1.60000+ 1 5.11270- 9 1.80000+ 1 5.50280- 9 1.90000+ 1 5.66500- 9 2.10000+ 1 7.77340- 9 2.20000+ 1 7.88540- 9 2.70000+ 1 1.76820- 8 1 45000 0 0 1.02905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.49140- 6 3.00000+ 0 6.01930- 8 5.00000+ 0 9.66940- 8 6.00000+ 0 9.27330- 8 8.00000+ 0 9.78700-10 1.00000+ 1 9.11470-10 1.10000+ 1 8.33840-10 1.30000+ 1 7.26400-11 1.40000+ 1 6.53870-11 1.60000+ 1 2.39810-11 1.80000+ 1 5.11380-11 1.90000+ 1 4.32680-11 1 45000 0 0 1.02905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.09780- 6 3.00000+ 0 6.54570- 6 5.00000+ 0 1.99750- 6 6.00000+ 0 1.84460- 6 8.00000+ 0 9.85990- 6 1.00000+ 1 3.35130- 6 1.10000+ 1 3.54190- 6 1.30000+ 1 2.08050- 7 1.40000+ 1 2.11780- 7 1.60000+ 1 1.92100- 5 1.80000+ 1 7.41220- 6 1.90000+ 1 7.90460- 6 1 45000 0 0 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.31875- 5 3.00000+ 0 9.69010- 5 5.00000+ 0 7.45507- 5 6.00000+ 0 7.13308- 5 8.00000+ 0 6.42461- 5 1.00000+ 1 5.12759- 5 1.10000+ 1 5.00719- 5 1.30000+ 1 3.07635- 5 1.40000+ 1 3.06937- 5 1.60000+ 1 2.95269- 5 1.80000+ 1 2.00707- 5 1.90000+ 1 1.98602- 5 2.10000+ 1 1.02400- 5 2.20000+ 1 9.81000- 6 2.70000+ 1 6.56000- 6 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.60041- 1 3.00000+ 0 5.13354- 2 5.00000+ 0 5.55519- 2 6.00000+ 0 5.01057- 2 8.00000+ 0 1.17367- 3 1.00000+ 1 1.23492- 3 1.10000+ 1 1.14265- 3 1.30000+ 1 3.57024- 4 1.40000+ 1 3.16850- 4 1.60000+ 1 2.07752- 5 1.80000+ 1 8.91578- 6 1.90000+ 1 2.38919- 6 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.67591- 2 3.00000+ 0 1.36722- 4 5.00000+ 0 1.52916- 4 6.00000+ 0 1.31151- 4 8.00000+ 0 4.04666- 7 1.00000+ 1 3.88789- 7 1.10000+ 1 3.62635- 7 1.30000+ 1 9.27312- 8 1.40000+ 1 8.15531- 8 1.60000+ 1 7.39730-10 1.80000+ 1 4.34232-10 1.90000+ 1 1.07615-10 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.35337+ 0 3.00000+ 0 8.73377+ 0 5.00000+ 0 6.47604+ 0 6.00000+ 0 6.16745+ 0 8.00000+ 0 5.45412+ 0 1.00000+ 1 4.13847+ 0 1.10000+ 1 4.03481+ 0 1.30000+ 1 2.06930+ 0 1.40000+ 1 2.09385+ 0 1.60000+ 1 1.96819+ 0 1.80000+ 1 9.99991- 1 1.90000+ 1 9.99998- 1 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.34871- 3 3.00000+ 0 3.15758- 3 5.00000+ 0 2.92403- 3 6.00000+ 0 2.80202- 3 8.00000+ 0 5.51299- 4 1.00000+ 1 4.68485- 4 1.10000+ 1 4.44225- 4 1.30000+ 1 2.92174- 4 1.40000+ 1 2.87185- 4 1.60000+ 1 5.89923- 5 1.80000+ 1 3.87689- 5 1.90000+ 1 3.49196- 5 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.33320- 1 2.00395- 2 6.00000+ 0 4.41689- 1 2.01865- 2 1.00000+ 1 3.75619- 2 2.26708- 2 1.10000+ 1 7.30379- 2 2.26963- 2 1.30000+ 1 2.24130- 4 2.28680- 2 1.40000+ 1 3.14599- 4 2.28730- 2 1.80000+ 1 7.47039- 3 2.31322- 2 1.90000+ 1 1.44280- 2 2.31362- 2 2.10000+ 1 1.82090- 5 2.31808- 2 2.20000+ 1 2.52660- 5 2.31812- 2 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.40181- 2 1.64086- 2 3.00000+ 0 5.00000+ 0 1.60260- 2 1.66483- 2 3.00000+ 0 6.00000+ 0 2.30599- 2 1.67953- 2 3.00000+ 0 8.00000+ 0 4.66856- 3 1.91838- 2 3.00000+ 0 1.00000+ 1 2.80958- 3 1.92796- 2 3.00000+ 0 1.10000+ 1 4.04000- 3 1.93051- 2 3.00000+ 0 1.30000+ 1 2.35954- 4 1.94768- 2 3.00000+ 0 1.40000+ 1 2.81603- 4 1.94818- 2 3.00000+ 0 1.60000+ 1 8.67193- 4 1.97113- 2 3.00000+ 0 1.80000+ 1 4.66162- 4 1.97410- 2 3.00000+ 0 1.90000+ 1 6.64058- 4 1.97450- 2 3.00000+ 0 2.10000+ 1 2.04551- 5 1.97896- 2 3.00000+ 0 2.20000+ 1 2.37830- 5 1.97900- 2 3.00000+ 0 2.70000+ 1 4.04332- 5 1.97932- 2 5.00000+ 0 5.00000+ 0 2.35473- 3 1.68880- 2 5.00000+ 0 6.00000+ 0 5.18704- 2 1.70350- 2 5.00000+ 0 8.00000+ 0 2.21188- 3 1.94235- 2 5.00000+ 0 1.00000+ 1 7.49682- 4 1.95193- 2 5.00000+ 0 1.10000+ 1 7.63938- 3 1.95448- 2 5.00000+ 0 1.30000+ 1 3.00643- 4 1.97165- 2 5.00000+ 0 1.40000+ 1 1.05133- 3 1.97215- 2 5.00000+ 0 1.60000+ 1 3.96727- 4 1.99510- 2 5.00000+ 0 1.80000+ 1 1.22729- 4 1.99807- 2 5.00000+ 0 1.90000+ 1 1.22113- 3 1.99847- 2 5.00000+ 0 2.10000+ 1 2.56871- 5 2.00293- 2 5.00000+ 0 2.20000+ 1 8.80022- 5 2.00297- 2 5.00000+ 0 2.70000+ 1 1.85516- 5 2.00329- 2 6.00000+ 0 6.00000+ 0 2.70248- 2 1.71820- 2 6.00000+ 0 8.00000+ 0 3.16473- 3 1.95705- 2 6.00000+ 0 1.00000+ 1 7.54027- 3 1.96663- 2 6.00000+ 0 1.10000+ 1 8.14957- 3 1.96918- 2 6.00000+ 0 1.30000+ 1 1.27342- 3 1.98635- 2 6.00000+ 0 1.40000+ 1 1.20111- 3 1.98685- 2 6.00000+ 0 1.60000+ 1 5.67493- 4 2.00980- 2 6.00000+ 0 1.80000+ 1 1.21489- 3 2.01277- 2 6.00000+ 0 1.90000+ 1 1.30859- 3 2.01317- 2 6.00000+ 0 2.10000+ 1 1.07987- 4 2.01763- 2 6.00000+ 0 2.20000+ 1 1.00844- 4 2.01767- 2 6.00000+ 0 2.70000+ 1 2.61631- 5 2.01799- 2 8.00000+ 0 8.00000+ 0 3.82932- 4 2.19591- 2 8.00000+ 0 1.00000+ 1 3.91491- 4 2.20549- 2 8.00000+ 0 1.10000+ 1 5.58453- 4 2.20804- 2 8.00000+ 0 1.30000+ 1 3.04445- 5 2.22520- 2 8.00000+ 0 1.40000+ 1 3.56776- 5 2.22571- 2 8.00000+ 0 1.60000+ 1 1.41753- 4 2.24865- 2 8.00000+ 0 1.80000+ 1 6.51694- 5 2.25162- 2 8.00000+ 0 1.90000+ 1 9.18082- 5 2.25203- 2 8.00000+ 0 2.10000+ 1 2.85402- 6 2.25648- 2 8.00000+ 0 2.20000+ 1 2.85402- 6 2.25652- 2 8.00000+ 0 2.70000+ 1 6.65979- 6 2.25685- 2 1.00000+ 1 1.00000+ 1 5.70838- 5 2.21507- 2 1.00000+ 1 1.10000+ 1 1.12601- 3 2.21762- 2 1.00000+ 1 1.30000+ 1 3.42500- 5 2.23478- 2 1.00000+ 1 1.40000+ 1 1.20828- 4 2.23529- 2 1.00000+ 1 1.60000+ 1 7.04046- 5 2.25823- 2 1.00000+ 1 1.80000+ 1 1.85522- 5 2.26120- 2 1.00000+ 1 1.90000+ 1 1.80294- 4 2.26161- 2 1.00000+ 1 2.10000+ 1 2.85410- 6 2.26606- 2 1.00000+ 1 2.20000+ 1 9.98987- 6 2.26610- 2 1.00000+ 1 2.70000+ 1 3.32983- 6 2.26643- 2 1.10000+ 1 1.10000+ 1 6.15562- 4 2.22017- 2 1.10000+ 1 1.30000+ 1 1.52222- 4 2.23733- 2 1.10000+ 1 1.40000+ 1 1.40331- 4 2.23784- 2 1.10000+ 1 1.60000+ 1 1.00377- 4 2.26078- 2 1.10000+ 1 1.80000+ 1 1.81711- 4 2.26375- 2 1.10000+ 1 1.90000+ 1 1.97901- 4 2.26416- 2 1.10000+ 1 2.10000+ 1 1.28440- 5 2.26861- 2 1.10000+ 1 2.20000+ 1 1.18922- 5 2.26865- 2 1.10000+ 1 2.70000+ 1 4.75710- 6 2.26898- 2 1.30000+ 1 1.40000+ 1 1.71250- 5 2.25500- 2 1.30000+ 1 1.60000+ 1 5.23265- 6 2.27794- 2 1.30000+ 1 1.80000+ 1 5.23265- 6 2.28091- 2 1.30000+ 1 1.90000+ 1 2.33088- 5 2.28132- 2 1.30000+ 1 2.20000+ 1 1.42710- 6 2.28582- 2 1.30000+ 1 2.70000+ 1 4.75692- 7 2.28614- 2 1.40000+ 1 1.40000+ 1 4.42844- 6 2.25551- 2 1.40000+ 1 1.60000+ 1 6.39672- 6 2.27845- 2 1.40000+ 1 1.80000+ 1 1.91896- 5 2.28142- 2 1.40000+ 1 1.90000+ 1 2.21438- 5 2.28183- 2 1.40000+ 1 2.10000+ 1 1.47618- 6 2.28628- 2 1.40000+ 1 2.20000+ 1 4.92054- 7 2.28632- 2 1.40000+ 1 2.70000+ 1 4.92054- 7 2.28665- 2 1.60000+ 1 1.60000+ 1 1.37104- 5 2.30140- 2 1.60000+ 1 1.80000+ 1 1.22410- 5 2.30436- 2 1.60000+ 1 1.90000+ 1 1.71381- 5 2.30477- 2 1.60000+ 1 2.10000+ 1 4.89662- 7 2.30922- 2 1.60000+ 1 2.20000+ 1 4.89662- 7 2.30927- 2 1.60000+ 1 2.70000+ 1 1.46900- 6 2.30959- 2 1.80000+ 1 1.80000+ 1 1.41869- 6 2.30733- 2 1.80000+ 1 1.90000+ 1 2.88468- 5 2.30774- 2 1.80000+ 1 2.10000+ 1 4.72889- 7 2.31219- 2 1.80000+ 1 2.20000+ 1 1.41869- 6 2.31223- 2 1.80000+ 1 2.70000+ 1 4.72889- 7 2.31256- 2 1.90000+ 1 1.90000+ 1 1.63242- 5 2.30814- 2 1.90000+ 1 2.10000+ 1 1.97870- 6 2.31260- 2 1.90000+ 1 2.20000+ 1 1.97870- 6 2.31264- 2 1.90000+ 1 2.70000+ 1 9.89359- 7 2.31297- 2 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.51919- 5 2.39700- 4 6.00000+ 0 1.11940- 4 3.86700- 4 1.00000+ 1 2.98569- 3 2.87105- 3 1.10000+ 1 5.03658- 3 2.89654- 3 1.30000+ 1 2.99809- 5 3.06817- 3 1.40000+ 1 4.47098- 5 3.07324- 3 1.80000+ 1 5.10468- 4 3.33236- 3 1.90000+ 1 8.69556- 4 3.33642- 3 2.10000+ 1 1.76879- 6 3.38096- 3 2.20000+ 1 2.63549- 6 3.38139- 3 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.28705- 2 1.51180- 4 5.00000+ 0 1.80000+ 1 1.52834- 2 1.80860- 4 5.00000+ 0 1.90000+ 1 2.06177- 2 1.84920- 4 5.00000+ 0 2.10000+ 1 3.30485- 3 2.29460- 4 5.00000+ 0 2.20000+ 1 5.50995- 3 2.29890- 4 5.00000+ 0 2.70000+ 1 1.03629- 3 2.33140- 4 6.00000+ 0 1.30000+ 1 2.54194- 1 6.36700- 5 6.00000+ 0 1.40000+ 1 3.83280- 1 6.87400- 5 6.00000+ 0 1.60000+ 1 3.38292- 2 2.98180- 4 6.00000+ 0 1.80000+ 1 1.46578- 2 3.27860- 4 6.00000+ 0 1.90000+ 1 2.90725- 2 3.31920- 4 6.00000+ 0 2.10000+ 1 1.33494- 2 3.76460- 4 6.00000+ 0 2.20000+ 1 1.75063- 2 3.76890- 4 6.00000+ 0 2.70000+ 1 1.52734- 3 3.80140- 4 8.00000+ 0 8.00000+ 0 5.89687- 3 2.15930- 3 8.00000+ 0 1.00000+ 1 1.15723- 2 2.25510- 3 8.00000+ 0 1.10000+ 1 2.19021- 2 2.28059- 3 8.00000+ 0 1.30000+ 1 1.72305- 2 2.45222- 3 8.00000+ 0 1.40000+ 1 2.47887- 2 2.45729- 3 8.00000+ 0 1.60000+ 1 1.89056- 3 2.68673- 3 8.00000+ 0 1.80000+ 1 1.88686- 3 2.71641- 3 8.00000+ 0 1.90000+ 1 3.53455- 3 2.72047- 3 8.00000+ 0 2.10000+ 1 1.30516- 3 2.76501- 3 8.00000+ 0 2.20000+ 1 1.85558- 3 2.76544- 3 8.00000+ 0 2.70000+ 1 8.64581- 5 2.76869- 3 1.00000+ 1 1.00000+ 1 8.68713- 5 2.35090- 3 1.00000+ 1 1.10000+ 1 4.99819- 4 2.37639- 3 1.00000+ 1 1.30000+ 1 3.99769- 4 2.54802- 3 1.00000+ 1 1.40000+ 1 6.04646- 3 2.55309- 3 1.00000+ 1 1.60000+ 1 1.52164- 3 2.78253- 3 1.00000+ 1 1.80000+ 1 1.68795- 5 2.81221- 3 1.00000+ 1 1.90000+ 1 7.69903- 5 2.81627- 3 1.00000+ 1 2.10000+ 1 3.04667- 5 2.86081- 3 1.00000+ 1 2.20000+ 1 3.21959- 4 2.86124- 3 1.00000+ 1 2.70000+ 1 6.71083- 5 2.86449- 3 1.10000+ 1 1.10000+ 1 5.21238- 4 2.40188- 3 1.10000+ 1 1.30000+ 1 4.97480- 3 2.57351- 3 1.10000+ 1 1.40000+ 1 3.45963- 3 2.57858- 3 1.10000+ 1 1.60000+ 1 2.88160- 3 2.80802- 3 1.10000+ 1 1.80000+ 1 7.69917- 5 2.83770- 3 1.10000+ 1 1.90000+ 1 1.33806- 4 2.84176- 3 1.10000+ 1 2.10000+ 1 2.47440- 4 2.88630- 3 1.10000+ 1 2.20000+ 1 1.75805- 4 2.88673- 3 1.10000+ 1 2.70000+ 1 1.27638- 4 2.88998- 3 1.30000+ 1 1.30000+ 1 8.96292- 4 2.74514- 3 1.30000+ 1 1.40000+ 1 3.50375- 2 2.75021- 3 1.30000+ 1 1.60000+ 1 2.16761- 3 2.97965- 3 1.30000+ 1 1.80000+ 1 8.56352- 5 3.00933- 3 1.30000+ 1 1.90000+ 1 7.94183- 4 3.01339- 3 1.30000+ 1 2.10000+ 1 1.35452- 4 3.05793- 3 1.30000+ 1 2.20000+ 1 2.04368- 3 3.05836- 3 1.30000+ 1 2.70000+ 1 9.55172- 5 3.06161- 3 1.40000+ 1 1.40000+ 1 9.85357- 3 2.75528- 3 1.40000+ 1 1.60000+ 1 3.12887- 3 2.98472- 3 1.40000+ 1 1.80000+ 1 9.13565- 4 3.01440- 3 1.40000+ 1 1.90000+ 1 5.76790- 4 3.01846- 3 1.40000+ 1 2.10000+ 1 2.04903- 3 3.06300- 3 1.40000+ 1 2.20000+ 1 1.19018- 3 3.06343- 3 1.40000+ 1 2.70000+ 1 1.37919- 4 3.06668- 3 1.60000+ 1 1.60000+ 1 1.44926- 4 3.21416- 3 1.60000+ 1 1.80000+ 1 2.48663- 4 3.24384- 3 1.60000+ 1 1.90000+ 1 4.65643- 4 3.24790- 3 1.60000+ 1 2.10000+ 1 1.63857- 4 3.29244- 3 1.60000+ 1 2.20000+ 1 2.33431- 4 3.29287- 3 1.60000+ 1 2.70000+ 1 1.31743- 5 3.29612- 3 1.80000+ 1 1.80000+ 1 8.23404- 7 3.27352- 3 1.80000+ 1 1.90000+ 1 1.19390- 5 3.27758- 3 1.80000+ 1 2.10000+ 1 5.76399- 6 3.32212- 3 1.80000+ 1 2.20000+ 1 4.98169- 5 3.32255- 3 1.80000+ 1 2.70000+ 1 1.11164- 5 3.32580- 3 1.90000+ 1 1.90000+ 1 8.64592- 6 3.28164- 3 1.90000+ 1 2.10000+ 1 4.11721- 5 3.32618- 3 1.90000+ 1 2.20000+ 1 3.00555- 5 3.32661- 3 1.90000+ 1 2.70000+ 1 2.05861- 5 3.32986- 3 2.10000+ 1 2.10000+ 1 4.94054- 6 3.37072- 3 2.10000+ 1 2.20000+ 1 1.21450- 4 3.37115- 3 2.10000+ 1 2.70000+ 1 6.99902- 6 3.37440- 3 2.20000+ 1 2.20000+ 1 3.62299- 5 3.37158- 3 2.20000+ 1 2.70000+ 1 1.02929- 5 3.37483- 3 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.00631- 8 1.47000- 4 8.00000+ 0 3.28632- 3 2.53555- 3 1.10000+ 1 3.65623- 5 2.65684- 3 1.30000+ 1 4.05713- 2 2.82847- 3 1.60000+ 1 3.13132- 4 3.06298- 3 1.90000+ 1 2.03571- 6 3.09672- 3 2.10000+ 1 2.76402- 3 3.14126- 3 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.53610- 2 5.84800- 5 6.00000+ 0 1.80000+ 1 5.49380- 2 8.81600- 5 6.00000+ 0 1.90000+ 1 2.01197- 2 9.22200- 5 6.00000+ 0 2.10000+ 1 4.31731- 2 1.36760- 4 6.00000+ 0 2.20000+ 1 1.65616- 2 1.37190- 4 6.00000+ 0 2.70000+ 1 6.47630- 4 1.40440- 4 8.00000+ 0 8.00000+ 0 1.34075- 3 1.91960- 3 8.00000+ 0 1.00000+ 1 2.96700- 2 2.01540- 3 8.00000+ 0 1.10000+ 1 2.83075- 3 2.04089- 3 8.00000+ 0 1.30000+ 1 1.79237- 3 2.21252- 3 8.00000+ 0 1.40000+ 1 4.29098- 3 2.21759- 3 8.00000+ 0 1.60000+ 1 4.04954- 4 2.44703- 3 8.00000+ 0 1.80000+ 1 3.46676- 3 2.47671- 3 8.00000+ 0 1.90000+ 1 4.08850- 4 2.48077- 3 8.00000+ 0 2.10000+ 1 1.01231- 4 2.52531- 3 8.00000+ 0 2.20000+ 1 2.15458- 4 2.52574- 3 8.00000+ 0 2.70000+ 1 1.81714- 5 2.52899- 3 1.00000+ 1 1.00000+ 1 2.85638- 2 2.11120- 3 1.00000+ 1 1.10000+ 1 9.28095- 2 2.13669- 3 1.00000+ 1 1.30000+ 1 4.90540- 2 2.30832- 3 1.00000+ 1 1.40000+ 1 8.68559- 2 2.31339- 3 1.00000+ 1 1.60000+ 1 5.61616- 3 2.54283- 3 1.00000+ 1 1.80000+ 1 8.10701- 3 2.57251- 3 1.00000+ 1 1.90000+ 1 1.47204- 2 2.57657- 3 1.00000+ 1 2.10000+ 1 3.69919- 3 2.62111- 3 1.00000+ 1 2.20000+ 1 6.49382- 3 2.62154- 3 1.00000+ 1 2.70000+ 1 2.62192- 4 2.62479- 3 1.10000+ 1 1.10000+ 1 2.49202- 3 2.16218- 3 1.10000+ 1 1.30000+ 1 6.04819- 2 2.33381- 3 1.10000+ 1 1.40000+ 1 8.19897- 3 2.33888- 3 1.10000+ 1 1.60000+ 1 4.64660- 4 2.56832- 3 1.10000+ 1 1.80000+ 1 1.12240- 2 2.59800- 3 1.10000+ 1 1.90000+ 1 6.73605- 4 2.60206- 3 1.10000+ 1 2.10000+ 1 4.03527- 3 2.64660- 3 1.10000+ 1 2.20000+ 1 5.07464- 4 2.64703- 3 1.10000+ 1 2.70000+ 1 2.07666- 5 2.65028- 3 1.30000+ 1 1.30000+ 1 5.40295- 2 2.50544- 3 1.30000+ 1 1.40000+ 1 2.35949- 1 2.51051- 3 1.30000+ 1 1.60000+ 1 3.49138- 4 2.73995- 3 1.30000+ 1 1.80000+ 1 5.93517- 3 2.76963- 3 1.30000+ 1 1.90000+ 1 9.12586- 3 2.77369- 3 1.30000+ 1 2.10000+ 1 7.18404- 3 2.81823- 3 1.30000+ 1 2.20000+ 1 1.64625- 2 2.81866- 3 1.30000+ 1 2.70000+ 1 1.68730- 5 2.82191- 3 1.40000+ 1 1.40000+ 1 1.12099- 2 2.51558- 3 1.40000+ 1 1.60000+ 1 7.02168- 4 2.74502- 3 1.40000+ 1 1.80000+ 1 9.51108- 3 2.77470- 3 1.40000+ 1 1.90000+ 1 1.13826- 3 2.77876- 3 1.40000+ 1 2.10000+ 1 1.37891- 2 2.82330- 3 1.40000+ 1 2.20000+ 1 1.44334- 3 2.82373- 3 1.40000+ 1 2.70000+ 1 3.24479- 5 2.82698- 3 1.60000+ 1 1.60000+ 1 3.81470- 5 2.97446- 3 1.60000+ 1 1.80000+ 1 8.40880- 4 3.00414- 3 1.60000+ 1 1.90000+ 1 8.62464- 5 3.00820- 3 1.60000+ 1 2.10000+ 1 2.48782- 5 3.05274- 3 1.60000+ 1 2.20000+ 1 4.64388- 5 3.05317- 3 1.60000+ 1 2.70000+ 1 3.31701- 6 3.05642- 3 1.80000+ 1 1.80000+ 1 5.54455- 4 3.03382- 3 1.80000+ 1 1.90000+ 1 1.77613- 3 3.03788- 3 1.80000+ 1 2.10000+ 1 4.41749- 4 3.08242- 3 1.80000+ 1 2.20000+ 1 7.13801- 4 3.08285- 3 1.80000+ 1 2.70000+ 1 3.10917- 5 3.08610- 3 1.90000+ 1 1.90000+ 1 4.54277- 5 3.04194- 3 1.90000+ 1 2.10000+ 1 6.13937- 4 3.08648- 3 1.90000+ 1 2.20000+ 1 7.26847- 5 3.08691- 3 1.90000+ 1 2.70000+ 1 2.59584- 6 3.09016- 3 2.10000+ 1 2.10000+ 1 2.31031- 4 3.13102- 3 2.10000+ 1 2.20000+ 1 9.55279- 4 3.13145- 3 2.10000+ 1 2.70000+ 1 1.29790- 6 3.13470- 3 2.20000+ 1 2.20000+ 1 4.54274- 5 3.13188- 3 2.20000+ 1 2.70000+ 1 1.29791- 6 3.13513- 3 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.39871- 3 2.38855- 3 1.00000+ 1 2.46420- 5 2.48435- 3 1.10000+ 1 2.32790- 5 2.50984- 3 1.30000+ 1 4.09921- 3 2.68147- 3 1.40000+ 1 3.63911- 2 2.68654- 3 1.60000+ 1 3.18650- 4 2.91598- 3 1.80000+ 1 1.03990- 6 2.94566- 3 1.90000+ 1 9.91492- 7 2.94972- 3 2.10000+ 1 2.75470- 4 2.99426- 3 2.20000+ 1 2.42980- 3 2.99469- 3 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.65776- 3 1.77260- 3 8.00000+ 0 1.00000+ 1 1.24265- 3 1.86840- 3 8.00000+ 0 1.10000+ 1 3.40599- 2 1.89389- 3 8.00000+ 0 1.30000+ 1 3.27916- 3 2.06552- 3 8.00000+ 0 1.40000+ 1 3.43624- 3 2.07059- 3 8.00000+ 0 1.60000+ 1 5.00702- 4 2.30003- 3 8.00000+ 0 1.80000+ 1 1.73914- 4 2.32971- 3 8.00000+ 0 1.90000+ 1 3.97198- 3 2.33377- 3 8.00000+ 0 2.10000+ 1 1.52874- 4 2.37831- 3 8.00000+ 0 2.20000+ 1 1.51476- 4 2.37874- 3 8.00000+ 0 2.70000+ 1 2.24403- 5 2.38199- 3 1.00000+ 1 1.00000+ 1 4.43206- 4 1.96420- 3 1.00000+ 1 1.10000+ 1 5.61630- 2 1.98969- 3 1.00000+ 1 1.30000+ 1 3.85847- 3 2.16132- 3 1.00000+ 1 1.40000+ 1 3.46732- 2 2.16639- 3 1.00000+ 1 1.60000+ 1 2.00558- 4 2.39583- 3 1.00000+ 1 1.80000+ 1 1.22018- 4 2.42551- 3 1.00000+ 1 1.90000+ 1 6.75739- 3 2.42957- 3 1.00000+ 1 2.10000+ 1 2.76301- 4 2.47411- 3 1.00000+ 1 2.20000+ 1 2.20620- 3 2.47454- 3 1.00000+ 1 2.70000+ 1 9.81789- 6 2.47779- 3 1.10000+ 1 1.10000+ 1 8.05189- 2 2.01518- 3 1.10000+ 1 1.30000+ 1 7.92456- 2 2.18681- 3 1.10000+ 1 1.40000+ 1 1.21241- 1 2.19188- 3 1.10000+ 1 1.60000+ 1 6.39150- 3 2.42132- 3 1.10000+ 1 1.80000+ 1 8.85277- 3 2.45100- 3 1.10000+ 1 1.90000+ 1 2.24488- 2 2.45506- 3 1.10000+ 1 2.10000+ 1 5.81530- 3 2.49960- 3 1.10000+ 1 2.20000+ 1 8.74931- 3 2.50003- 3 1.10000+ 1 2.70000+ 1 2.97346- 4 2.50328- 3 1.30000+ 1 1.30000+ 1 1.12322- 2 2.35844- 3 1.30000+ 1 1.40000+ 1 2.17995- 1 2.36351- 3 1.30000+ 1 1.60000+ 1 5.69462- 4 2.59295- 3 1.30000+ 1 1.80000+ 1 6.04513- 4 2.62263- 3 1.30000+ 1 1.90000+ 1 8.99759- 3 2.62669- 3 1.30000+ 1 2.10000+ 1 1.50220- 3 2.67123- 3 1.30000+ 1 2.20000+ 1 1.28230- 2 2.67166- 3 1.30000+ 1 2.70000+ 1 2.66476- 5 2.67491- 3 1.40000+ 1 1.40000+ 1 1.48345- 1 2.36858- 3 1.40000+ 1 1.60000+ 1 6.33963- 4 2.59802- 3 1.40000+ 1 1.80000+ 1 5.14748- 3 2.62770- 3 1.40000+ 1 1.90000+ 1 1.51440- 2 2.63176- 3 1.40000+ 1 2.10000+ 1 1.47116- 2 2.67630- 3 1.40000+ 1 2.20000+ 1 1.89988- 2 2.67673- 3 1.40000+ 1 2.70000+ 1 2.94542- 5 2.67998- 3 1.60000+ 1 1.60000+ 1 4.76311- 5 2.82746- 3 1.60000+ 1 1.80000+ 1 3.52808- 5 2.85714- 3 1.60000+ 1 1.90000+ 1 9.40235- 4 2.86120- 3 1.60000+ 1 2.10000+ 1 3.52808- 5 2.90574- 3 1.60000+ 1 2.20000+ 1 3.70455- 5 2.90617- 3 1.60000+ 1 2.70000+ 1 3.52808- 6 2.90942- 3 1.80000+ 1 1.80000+ 1 8.40472- 6 2.88682- 3 1.80000+ 1 1.90000+ 1 1.06318- 3 2.89088- 3 1.80000+ 1 2.10000+ 1 4.20245- 5 2.93542- 3 1.80000+ 1 2.20000+ 1 3.33396- 4 2.93585- 3 1.80000+ 1 2.70000+ 1 1.40078- 6 2.93910- 3 1.90000+ 1 1.90000+ 1 1.52597- 3 2.89494- 3 1.90000+ 1 2.10000+ 1 6.60587- 4 2.93948- 3 1.90000+ 1 2.20000+ 1 1.08418- 3 2.93991- 3 1.90000+ 1 2.70000+ 1 3.50640- 5 2.94316- 3 2.10000+ 1 2.10000+ 1 4.76860- 5 2.98402- 3 2.10000+ 1 2.20000+ 1 8.58363- 4 2.98445- 3 2.10000+ 1 2.70000+ 1 1.40253- 6 2.98770- 3 2.20000+ 1 2.20000+ 1 5.94658- 4 2.98488- 3 2.20000+ 1 2.70000+ 1 1.40251- 6 2.98813- 3 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.20313- 5 9.58000- 5 1.10000+ 1 5.04302- 5 1.21290- 4 1.80000+ 1 8.50343- 5 5.57110- 4 1.90000+ 1 1.26055- 4 5.61170- 4 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 5.31769- 2 7.28000- 6 1.00000+ 1 1.80000+ 1 5.37396- 2 3.69600- 5 1.00000+ 1 1.90000+ 1 1.05777- 1 4.10200- 5 1.00000+ 1 2.10000+ 1 3.43503- 2 8.55600- 5 1.00000+ 1 2.20000+ 1 4.45999- 2 8.59900- 5 1.00000+ 1 2.70000+ 1 1.83528- 3 8.92400- 5 1.10000+ 1 1.60000+ 1 8.66817- 2 3.27700- 5 1.10000+ 1 1.80000+ 1 9.42671- 2 6.24500- 5 1.10000+ 1 1.90000+ 1 1.52107- 1 6.65100- 5 1.10000+ 1 2.10000+ 1 3.46942- 2 1.11050- 4 1.10000+ 1 2.20000+ 1 5.21901- 2 1.11480- 4 1.10000+ 1 2.70000+ 1 2.88782- 3 1.14730- 4 1.30000+ 1 1.60000+ 1 3.46321- 2 2.04400- 4 1.30000+ 1 1.80000+ 1 6.34697- 3 2.34080- 4 1.30000+ 1 1.90000+ 1 4.80641- 3 2.38140- 4 1.30000+ 1 2.10000+ 1 3.63526- 3 2.82680- 4 1.30000+ 1 2.20000+ 1 4.07245- 3 2.83110- 4 1.30000+ 1 2.70000+ 1 8.76538- 4 2.86360- 4 1.40000+ 1 1.60000+ 1 5.10368- 2 2.09470- 4 1.40000+ 1 1.80000+ 1 1.88241- 3 2.39150- 4 1.40000+ 1 1.90000+ 1 1.27379- 2 2.43210- 4 1.40000+ 1 2.10000+ 1 4.30661- 3 2.87750- 4 1.40000+ 1 2.20000+ 1 7.14070- 3 2.88180- 4 1.40000+ 1 2.70000+ 1 1.29020- 3 2.91430- 4 1.60000+ 1 1.60000+ 1 1.52102- 2 4.38910- 4 1.60000+ 1 1.80000+ 1 2.25033- 2 4.68590- 4 1.60000+ 1 1.90000+ 1 4.20478- 2 4.72650- 4 1.60000+ 1 2.10000+ 1 2.14950- 2 5.17190- 4 1.60000+ 1 2.20000+ 1 3.11012- 2 5.17620- 4 1.60000+ 1 2.70000+ 1 8.91826- 4 5.20870- 4 1.80000+ 1 1.80000+ 1 1.35187- 3 4.98270- 4 1.80000+ 1 1.90000+ 1 3.26645- 3 5.02330- 4 1.80000+ 1 2.10000+ 1 1.07727- 3 5.46870- 4 1.80000+ 1 2.20000+ 1 3.01495- 4 5.47300- 4 1.80000+ 1 2.70000+ 1 5.54979- 4 5.50550- 4 1.90000+ 1 1.90000+ 1 4.40594- 3 5.06390- 4 1.90000+ 1 2.10000+ 1 8.24497- 4 5.50930- 4 1.90000+ 1 2.20000+ 1 2.52861- 3 5.51360- 4 1.90000+ 1 2.70000+ 1 1.06261- 3 5.54610- 4 2.10000+ 1 2.10000+ 1 1.56089- 4 5.95470- 4 2.10000+ 1 2.20000+ 1 3.27040- 4 5.95900- 4 2.10000+ 1 2.70000+ 1 5.07276- 4 5.99150- 4 2.20000+ 1 2.20000+ 1 3.08442- 4 5.96330- 4 2.20000+ 1 2.70000+ 1 7.33952- 4 5.99580- 4 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.30419- 4 1.97120- 4 1.60000+ 1 1.83780- 4 4.31630- 4 2.10000+ 1 2.46989- 4 5.09910- 4 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.59092- 2 1.52500- 5 1.10000+ 1 2.20000+ 1 3.69983- 2 1.56800- 5 1.10000+ 1 2.70000+ 1 2.68436- 3 1.89300- 5 1.30000+ 1 1.60000+ 1 1.51846- 1 1.08600- 4 1.30000+ 1 1.80000+ 1 1.56294- 1 1.38280- 4 1.30000+ 1 1.90000+ 1 2.39452- 1 1.42340- 4 1.30000+ 1 2.10000+ 1 2.98106- 2 1.86880- 4 1.30000+ 1 2.20000+ 1 2.63906- 2 1.87310- 4 1.30000+ 1 2.70000+ 1 5.25605- 3 1.90560- 4 1.40000+ 1 1.60000+ 1 2.57883- 2 1.13670- 4 1.40000+ 1 1.80000+ 1 2.07833- 1 1.43350- 4 1.40000+ 1 1.90000+ 1 2.21325- 2 1.47410- 4 1.40000+ 1 2.10000+ 1 4.67775- 3 1.91950- 4 1.40000+ 1 2.20000+ 1 4.25590- 3 1.92380- 4 1.40000+ 1 2.70000+ 1 6.52233- 4 1.95630- 4 1.60000+ 1 1.60000+ 1 6.74131- 4 3.43110- 4 1.60000+ 1 1.80000+ 1 1.01607- 2 3.72790- 4 1.60000+ 1 1.90000+ 1 1.62169- 3 3.76850- 4 1.60000+ 1 2.10000+ 1 2.79067- 4 4.21390- 4 1.60000+ 1 2.20000+ 1 5.83268- 4 4.21820- 4 1.60000+ 1 2.70000+ 1 3.81284- 5 4.25070- 4 1.80000+ 1 1.80000+ 1 6.59621- 3 4.02470- 4 1.80000+ 1 1.90000+ 1 2.09539- 2 4.06530- 4 1.80000+ 1 2.10000+ 1 9.28133- 3 4.51070- 4 1.80000+ 1 2.20000+ 1 1.54305- 2 4.51500- 4 1.80000+ 1 2.70000+ 1 3.43956- 4 4.54750- 4 1.90000+ 1 1.90000+ 1 5.48428- 4 4.10590- 4 1.90000+ 1 2.10000+ 1 1.15239- 3 4.55130- 4 1.90000+ 1 2.20000+ 1 7.24172- 4 4.55560- 4 1.90000+ 1 2.70000+ 1 4.25032- 5 4.58810- 4 2.10000+ 1 2.10000+ 1 1.99567- 4 4.99670- 4 2.10000+ 1 2.20000+ 1 4.11298- 4 5.00100- 4 2.10000+ 1 2.70000+ 1 8.92363- 6 5.03350- 4 2.20000+ 1 2.20000+ 1 9.41070- 5 5.00530- 4 2.20000+ 1 2.70000+ 1 1.46028- 5 5.03780- 4 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.09382- 5 1.71630- 4 1.40000+ 1 3.08773- 4 1.76700- 4 1.60000+ 1 2.20372- 4 4.06140- 4 2.10000+ 1 3.07828- 5 4.84420- 4 2.20000+ 1 2.53794- 4 4.84850- 4 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.07273- 2 8.31100- 5 1.30000+ 1 1.80000+ 1 2.16320- 2 1.12790- 4 1.30000+ 1 1.90000+ 1 1.49041- 1 1.16850- 4 1.30000+ 1 2.10000+ 1 7.17786- 3 1.61390- 4 1.30000+ 1 2.20000+ 1 4.92196- 3 1.61820- 4 1.30000+ 1 2.70000+ 1 8.97420- 4 1.65070- 4 1.40000+ 1 1.60000+ 1 1.45931- 1 8.81800- 5 1.40000+ 1 1.80000+ 1 1.43687- 1 1.17860- 4 1.40000+ 1 1.90000+ 1 3.15229- 1 1.21920- 4 1.40000+ 1 2.10000+ 1 2.18203- 2 1.66460- 4 1.40000+ 1 2.20000+ 1 4.39642- 2 1.66890- 4 1.40000+ 1 2.70000+ 1 4.94092- 3 1.70140- 4 1.60000+ 1 1.60000+ 1 9.28450- 4 3.17620- 4 1.60000+ 1 1.80000+ 1 1.37056- 3 3.47300- 4 1.60000+ 1 1.90000+ 1 2.02924- 2 3.51360- 4 1.60000+ 1 2.10000+ 1 7.14744- 4 3.95900- 4 1.60000+ 1 2.20000+ 1 8.42972- 4 3.96330- 4 1.60000+ 1 2.70000+ 1 5.15792- 5 3.99580- 4 1.80000+ 1 1.80000+ 1 2.16748- 4 3.76980- 4 1.80000+ 1 1.90000+ 1 1.85876- 2 3.81040- 4 1.80000+ 1 2.10000+ 1 3.50427- 4 4.25580- 4 1.80000+ 1 2.20000+ 1 1.60155- 3 4.26010- 4 1.80000+ 1 2.70000+ 1 3.24455- 5 4.29260- 4 1.90000+ 1 1.90000+ 1 2.48396- 2 3.85100- 4 1.90000+ 1 2.10000+ 1 1.61512- 2 4.29640- 4 1.90000+ 1 2.20000+ 1 2.19490- 2 4.30070- 4 1.90000+ 1 2.70000+ 1 5.35511- 4 4.33320- 4 2.10000+ 1 2.10000+ 1 5.20581- 5 4.74180- 4 2.10000+ 1 2.20000+ 1 3.58528- 4 4.74610- 4 2.10000+ 1 2.70000+ 1 8.79845- 6 4.77860- 4 2.20000+ 1 2.20000+ 1 2.90345- 4 4.75040- 4 2.20000+ 1 2.70000+ 1 1.17313- 5 4.78290- 4 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.97659- 4 2.64190- 4 1.90000+ 1 5.13589- 5 2.68250- 4 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.69993- 3 1.45990- 4 1.60000+ 1 1.80000+ 1 3.02673- 2 1.75670- 4 1.60000+ 1 1.90000+ 1 3.26204- 2 1.79730- 4 1.60000+ 1 2.10000+ 1 1.61397- 1 2.24270- 4 1.60000+ 1 2.20000+ 1 2.96914- 2 2.24700- 4 1.60000+ 1 2.70000+ 1 1.43817- 4 2.27950- 4 1.80000+ 1 1.80000+ 1 9.28305- 4 2.05350- 4 1.80000+ 1 1.90000+ 1 3.44769- 2 2.09410- 4 1.80000+ 1 2.10000+ 1 1.13269- 1 2.53950- 4 1.80000+ 1 2.20000+ 1 1.04850- 2 2.54380- 4 1.80000+ 1 2.70000+ 1 3.39929- 4 2.57630- 4 1.90000+ 1 1.90000+ 1 1.57808- 2 2.13470- 4 1.90000+ 1 2.10000+ 1 2.53187- 1 2.58010- 4 1.90000+ 1 2.20000+ 1 1.15319- 2 2.58440- 4 1.90000+ 1 2.70000+ 1 5.09897- 4 2.61690- 4 2.10000+ 1 2.10000+ 1 9.04231- 2 3.02550- 4 2.10000+ 1 2.20000+ 1 2.02219- 1 3.02980- 4 2.10000+ 1 2.70000+ 1 4.83760- 3 3.06230- 4 2.20000+ 1 2.20000+ 1 3.33181- 3 3.03410- 4 2.20000+ 1 2.70000+ 1 5.11578- 4 3.06660- 4 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.08647- 4 2.63180- 4 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.66266- 3 1.40920- 4 1.60000+ 1 1.80000+ 1 1.97169- 2 1.70600- 4 1.60000+ 1 1.90000+ 1 4.84746- 2 1.74660- 4 1.60000+ 1 2.10000+ 1 2.14248- 2 2.19200- 4 1.60000+ 1 2.20000+ 1 1.69159- 1 2.19630- 4 1.60000+ 1 2.70000+ 1 1.79829- 4 2.22880- 4 1.80000+ 1 1.80000+ 1 2.18362- 4 2.00280- 4 1.80000+ 1 1.90000+ 1 3.55542- 2 2.04340- 4 1.80000+ 1 2.10000+ 1 2.87722- 3 2.48880- 4 1.80000+ 1 2.20000+ 1 1.36750- 1 2.49310- 4 1.80000+ 1 2.70000+ 1 3.08282- 4 2.52560- 4 1.90000+ 1 1.90000+ 1 2.12839- 2 2.08400- 4 1.90000+ 1 2.10000+ 1 1.31909- 2 2.52940- 4 1.90000+ 1 2.20000+ 1 2.29789- 1 2.53370- 4 1.90000+ 1 2.70000+ 1 6.03707- 4 2.56620- 4 2.10000+ 1 2.10000+ 1 1.33593- 3 2.97480- 4 2.10000+ 1 2.20000+ 1 1.38113- 1 2.97910- 4 2.10000+ 1 2.70000+ 1 3.59659- 4 3.01160- 4 2.20000+ 1 2.20000+ 1 1.50782- 1 2.98340- 4 2.20000+ 1 2.70000+ 1 4.90659- 3 3.01590- 4 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 4.31159- 6 2.96800- 5 1.90000+ 1 1.23020- 5 3.37400- 5 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 6.38079- 2 1.94400- 5 1.80000+ 1 2.20000+ 1 2.13853- 1 1.98700- 5 1.80000+ 1 2.70000+ 1 5.53834- 3 2.31200- 5 1.90000+ 1 2.10000+ 1 3.30715- 1 2.35000- 5 1.90000+ 1 2.20000+ 1 3.45059- 1 2.39300- 5 1.90000+ 1 2.70000+ 1 9.22458- 3 2.71800- 5 2.10000+ 1 2.10000+ 1 5.39954- 4 6.80400- 5 2.10000+ 1 2.20000+ 1 2.03302- 2 6.84700- 5 2.10000+ 1 2.70000+ 1 1.72476- 3 7.17200- 5 2.20000+ 1 2.20000+ 1 6.33348- 3 6.89000- 5 2.20000+ 1 2.70000+ 1 2.85779- 3 7.21500- 5 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.66423- 6 4.86000- 5 2.70000+ 1 2.51551- 7 5.22800- 5 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.51600- 1 3.83600- 5 2.10000+ 1 2.20000+ 1 8.11220- 1 3.87900- 5 2.10000+ 1 2.70000+ 1 8.91290- 3 4.20400- 5 2.20000+ 1 2.20000+ 1 2.72398- 2 3.92200- 5 2.20000+ 1 2.70000+ 1 1.01829- 3 4.24700- 5 1 45000 0 7 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.24979- 7 4.45400- 5 2.20000+ 1 2.08120- 6 4.49700- 5 2.70000+ 1 8.30148- 8 4.82200- 5 1 45000 0 9 1.02905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.22881- 2 3.43000- 5 2.10000+ 1 2.20000+ 1 5.98671- 1 3.47300- 5 2.10000+ 1 2.70000+ 1 2.02961- 3 3.79800- 5 2.20000+ 1 2.20000+ 1 3.67592- 1 3.51600- 5 2.20000+ 1 2.70000+ 1 9.41667- 3 3.84100- 5 1 46000 0 0 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 1 46000 0 0 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.43210- 2 3.00000+ 0 3.58000- 3 5.00000+ 0 3.33260- 3 6.00000+ 0 3.17060- 3 8.00000+ 0 6.54940- 4 1.00000+ 1 5.55250- 4 1.10000+ 1 5.26800- 4 1.30000+ 1 3.48240- 4 1.40000+ 1 3.42510- 4 1.60000+ 1 9.10100- 5 1.80000+ 1 5.96800- 5 1.90000+ 1 5.50900- 5 2.10000+ 1 8.14000- 6 2.20000+ 1 7.67000- 6 1 46000 0 0 1.06400+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.08330- 2 3.00000+ 0 6.53950- 3 5.00000+ 0 6.54470- 3 6.00000+ 0 5.95550- 3 8.00000+ 0 1.81020- 3 1.00000+ 1 1.74880- 3 1.10000+ 1 1.62190- 3 1.30000+ 1 1.50410- 3 1.40000+ 1 1.47340- 3 1.60000+ 1 4.47180- 4 1.80000+ 1 3.86230- 4 1.90000+ 1 3.56960- 4 2.10000+ 1 1.98860- 4 2.20000+ 1 1.92050- 4 1 46000 0 0 1.06400+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.68250-10 3.00000+ 0 7.27140-10 5.00000+ 0 6.16310-10 6.00000+ 0 6.42180-10 8.00000+ 0 1.98950- 9 1.00000+ 1 1.94320- 9 1.10000+ 1 1.99910- 9 1.30000+ 1 1.85240- 9 1.40000+ 1 1.87020- 9 1.60000+ 1 4.94670- 9 1.80000+ 1 5.31350- 9 1.90000+ 1 5.47960- 9 2.10000+ 1 7.77720- 9 2.20000+ 1 7.93940- 9 1 46000 0 0 1.06400+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.93970- 6 3.00000+ 0 6.76690- 8 5.00000+ 0 1.10480- 7 6.00000+ 0 1.05680- 7 8.00000+ 0 1.13590- 9 1.00000+ 1 1.09290- 9 1.10000+ 1 1.00850- 9 1.30000+ 1 8.48310-11 1.40000+ 1 7.58270-11 1.60000+ 1 2.68880-11 1.80000+ 1 6.81910-11 1.90000+ 1 5.65260-11 1 46000 0 0 1.06400+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.11490- 6 3.00000+ 0 6.19190- 6 5.00000+ 0 2.09200- 6 6.00000+ 0 1.92620- 6 8.00000+ 0 1.04630- 5 1.00000+ 1 3.47360- 6 1.10000+ 1 3.68670- 6 1.30000+ 1 2.60910- 7 1.40000+ 1 2.63280- 7 1.60000+ 1 2.17860- 5 1.80000+ 1 1.12900- 5 1.90000+ 1 1.19990- 5 1 46000 0 0 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.23532- 5 3.00000+ 0 7.32151- 5 5.00000+ 0 5.66283- 5 6.00000+ 0 5.40319- 5 8.00000+ 0 4.95507- 5 1.00000+ 1 3.95341- 5 1.10000+ 1 3.84322- 5 1.30000+ 1 2.34252- 5 1.40000+ 1 2.32412- 5 1.60000+ 1 2.32868- 5 1.80000+ 1 1.58742- 5 1.90000+ 1 1.56416- 5 2.10000+ 1 8.14000- 6 2.20000+ 1 7.67000- 6 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.76494- 1 3.00000+ 0 5.58903- 2 5.00000+ 0 6.04673- 2 6.00000+ 0 5.42565- 2 8.00000+ 0 1.36370- 3 1.00000+ 1 1.43949- 3 1.10000+ 1 1.33730- 3 1.30000+ 1 4.63218- 4 1.40000+ 1 4.13132- 4 1.60000+ 1 2.62775- 5 1.80000+ 1 1.31540- 5 1.90000+ 1 3.57109- 6 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.78502- 2 3.00000+ 0 1.57035- 4 5.00000+ 0 1.75583- 4 6.00000+ 0 1.49505- 4 8.00000+ 0 5.13115- 7 1.00000+ 1 5.01315- 7 1.10000+ 1 4.69467- 7 1.30000+ 1 1.31639- 7 1.40000+ 1 1.16359- 7 1.60000+ 1 1.00356- 9 1.80000+ 1 6.77958-10 1.90000+ 1 1.69177-10 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.93316+ 0 3.00000+ 0 8.31955+ 0 5.00000+ 0 6.19032+ 0 6.00000+ 0 5.88175+ 0 8.00000+ 0 5.30251+ 0 1.00000+ 1 4.01278+ 0 1.10000+ 1 3.89856+ 0 1.30000+ 1 1.95277+ 0 1.40000+ 1 1.97514+ 0 1.60000+ 1 1.96364+ 0 1.80000+ 1 9.99987- 1 1.90000+ 1 9.99996- 1 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.40845- 3 3.00000+ 0 3.34975- 3 5.00000+ 0 3.10039- 3 6.00000+ 0 2.96706- 3 8.00000+ 0 6.04876- 4 1.00000+ 1 5.15215- 4 1.10000+ 1 4.87898- 4 1.30000+ 1 3.24683- 4 1.40000+ 1 3.19152- 4 1.60000+ 1 6.77222- 5 1.80000+ 1 4.38051- 5 1.90000+ 1 3.94482- 5 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.36740- 1 2.09884- 2 6.00000+ 0 4.47191- 1 2.11504- 2 1.00000+ 1 3.85201- 2 2.37657- 2 1.10000+ 1 7.48661- 2 2.37942- 2 1.30000+ 1 2.44900- 4 2.39728- 2 1.40000+ 1 3.42670- 4 2.39785- 2 1.80000+ 1 7.78411- 3 2.42613- 2 1.90000+ 1 1.50840- 2 2.42659- 2 2.10000+ 1 2.43940- 5 2.43129- 2 2.20000+ 1 3.35390- 5 2.43133- 2 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.32067- 2 1.71610- 2 3.00000+ 0 5.00000+ 0 1.51653- 2 1.74084- 2 3.00000+ 0 6.00000+ 0 2.14310- 2 1.75704- 2 3.00000+ 0 8.00000+ 0 4.44130- 3 2.00861- 2 3.00000+ 0 1.00000+ 1 2.69097- 3 2.01857- 2 3.00000+ 0 1.10000+ 1 3.80518- 3 2.02142- 2 3.00000+ 0 1.30000+ 1 2.26511- 4 2.03928- 2 3.00000+ 0 1.40000+ 1 2.67608- 4 2.03985- 2 3.00000+ 0 1.60000+ 1 8.34318- 4 2.06500- 2 3.00000+ 0 1.80000+ 1 4.52146- 4 2.06813- 2 3.00000+ 0 1.90000+ 1 6.31431- 4 2.06859- 2 3.00000+ 0 2.10000+ 1 2.40502- 5 2.07329- 2 3.00000+ 0 2.20000+ 1 2.75488- 5 2.07333- 2 5.00000+ 0 5.00000+ 0 2.18914- 3 1.76558- 2 5.00000+ 0 6.00000+ 0 4.79880- 2 1.78178- 2 5.00000+ 0 8.00000+ 0 2.11248- 3 2.03335- 2 5.00000+ 0 1.00000+ 1 7.04457- 4 2.04331- 2 5.00000+ 0 1.10000+ 1 7.15354- 3 2.04616- 2 5.00000+ 0 1.30000+ 1 2.87284- 4 2.06402- 2 5.00000+ 0 1.40000+ 1 9.98738- 4 2.06459- 2 5.00000+ 0 1.60000+ 1 3.83061- 4 2.08974- 2 5.00000+ 0 1.80000+ 1 1.16754- 4 2.09287- 2 5.00000+ 0 1.90000+ 1 1.15353- 3 2.09333- 2 5.00000+ 0 2.10000+ 1 2.97355- 5 2.09803- 2 5.00000+ 0 2.20000+ 1 1.02326- 4 2.09807- 2 6.00000+ 0 6.00000+ 0 2.48907- 2 1.79798- 2 6.00000+ 0 8.00000+ 0 2.96417- 3 2.04955- 2 6.00000+ 0 1.00000+ 1 7.05148- 3 2.05951- 2 6.00000+ 0 1.10000+ 1 7.60023- 3 2.06236- 2 6.00000+ 0 1.30000+ 1 1.20771- 3 2.08022- 2 6.00000+ 0 1.40000+ 1 1.13601- 3 2.08079- 2 6.00000+ 0 1.60000+ 1 5.36976- 4 2.10594- 2 6.00000+ 0 1.80000+ 1 1.14914- 3 2.10907- 2 6.00000+ 0 1.90000+ 1 1.23135- 3 2.10953- 2 6.00000+ 0 2.10000+ 1 1.25937- 4 2.11423- 2 6.00000+ 0 2.20000+ 1 1.16315- 4 2.11427- 2 8.00000+ 0 8.00000+ 0 3.67747- 4 2.30111- 2 8.00000+ 0 1.00000+ 1 3.78246- 4 2.31108- 2 8.00000+ 0 1.10000+ 1 5.30426- 4 2.31393- 2 8.00000+ 0 1.30000+ 1 2.97355- 5 2.33178- 2 8.00000+ 0 1.40000+ 1 3.41070- 5 2.33235- 2 8.00000+ 0 1.60000+ 1 1.37741- 4 2.35750- 2 8.00000+ 0 1.80000+ 1 6.38444- 5 2.36064- 2 8.00000+ 0 1.90000+ 1 8.78949- 5 2.36110- 2 8.00000+ 0 2.10000+ 1 3.06092- 6 2.36579- 2 8.00000+ 0 2.20000+ 1 3.49826- 6 2.36584- 2 1.00000+ 1 1.00000+ 1 5.42214- 5 2.32105- 2 1.00000+ 1 1.10000+ 1 1.06604- 3 2.32389- 2 1.00000+ 1 1.30000+ 1 3.27946- 5 2.34175- 2 1.00000+ 1 1.40000+ 1 1.15875- 4 2.34232- 2 1.00000+ 1 1.60000+ 1 6.86507- 5 2.36747- 2 1.00000+ 1 1.80000+ 1 1.79282- 5 2.37061- 2 1.00000+ 1 1.90000+ 1 1.72287- 4 2.37107- 2 1.00000+ 1 2.10000+ 1 3.49817- 6 2.37576- 2 1.00000+ 1 2.20000+ 1 1.18065- 5 2.37581- 2 1.10000+ 1 1.10000+ 1 5.81577- 4 2.32674- 2 1.10000+ 1 1.30000+ 1 1.46050- 4 2.34460- 2 1.10000+ 1 1.40000+ 1 1.34249- 4 2.34517- 2 1.10000+ 1 1.60000+ 1 9.62023- 5 2.37032- 2 1.10000+ 1 1.80000+ 1 1.74043- 4 2.37345- 2 1.10000+ 1 1.90000+ 1 1.88482- 4 2.37391- 2 1.10000+ 1 2.10000+ 1 1.53046- 5 2.37861- 2 1.10000+ 1 2.20000+ 1 1.39931- 5 2.37865- 2 1.30000+ 1 1.40000+ 1 1.66161- 5 2.36302- 2 1.30000+ 1 1.60000+ 1 5.24746- 6 2.38817- 2 1.30000+ 1 1.80000+ 1 5.24746- 6 2.39131- 2 1.30000+ 1 1.90000+ 1 2.27390- 5 2.39177- 2 1.30000+ 1 2.20000+ 1 1.74909- 6 2.39651- 2 1.40000+ 1 1.40000+ 1 4.11657- 6 2.36360- 2 1.40000+ 1 1.60000+ 1 6.40342- 6 2.38875- 2 1.40000+ 1 1.80000+ 1 1.87531- 5 2.39188- 2 1.40000+ 1 1.90000+ 1 2.19537- 5 2.39234- 2 1.40000+ 1 2.10000+ 1 1.82951- 6 2.39703- 2 1.40000+ 1 2.20000+ 1 9.14764- 7 2.39708- 2 1.60000+ 1 1.60000+ 1 1.45751- 5 2.41390- 2 1.60000+ 1 1.80000+ 1 1.26314- 5 2.41703- 2 1.60000+ 1 1.90000+ 1 1.79758- 5 2.41749- 2 1.60000+ 1 2.10000+ 1 4.85833- 7 2.42218- 2 1.60000+ 1 2.20000+ 1 4.85833- 7 2.42223- 2 1.80000+ 1 1.80000+ 1 1.37324- 6 2.42016- 2 1.80000+ 1 1.90000+ 1 2.92971- 5 2.42062- 2 1.80000+ 1 2.10000+ 1 4.57744- 7 2.42532- 2 1.80000+ 1 2.20000+ 1 1.83096- 6 2.42536- 2 1.90000+ 1 1.90000+ 1 1.71991- 5 2.42108- 2 1.90000+ 1 2.10000+ 1 2.45697- 6 2.42578- 2 1.90000+ 1 2.20000+ 1 2.45697- 6 2.42582- 2 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.57010- 5 2.47400- 4 6.00000+ 0 1.22620- 4 4.09400- 4 1.00000+ 1 3.59420- 3 3.02475- 3 1.10000+ 1 6.02259- 3 3.05320- 3 1.30000+ 1 3.78970- 5 3.23176- 3 1.40000+ 1 5.65149- 5 3.23749- 3 1.80000+ 1 6.23719- 4 3.52032- 3 1.90000+ 1 1.05400- 3 3.52491- 3 2.10000+ 1 2.70900- 6 3.57186- 3 2.20000+ 1 4.01560- 6 3.57233- 3 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.48330- 2 1.56390- 4 5.00000+ 0 1.80000+ 1 1.66348- 2 1.87720- 4 5.00000+ 0 1.90000+ 1 2.22819- 2 1.92310- 4 5.00000+ 0 2.10000+ 1 4.20574- 3 2.39260- 4 5.00000+ 0 2.20000+ 1 6.94950- 3 2.39730- 4 6.00000+ 0 1.30000+ 1 2.24937- 1 6.11600- 5 6.00000+ 0 1.40000+ 1 3.75836- 1 6.68900- 5 6.00000+ 0 1.60000+ 1 3.59848- 2 3.18390- 4 6.00000+ 0 1.80000+ 1 1.55936- 2 3.49720- 4 6.00000+ 0 1.90000+ 1 3.06817- 2 3.54310- 4 6.00000+ 0 2.10000+ 1 1.74692- 2 4.01260- 4 6.00000+ 0 2.20000+ 1 2.27175- 2 4.01730- 4 8.00000+ 0 8.00000+ 0 6.35170- 3 2.27012- 3 8.00000+ 0 1.00000+ 1 1.24948- 2 2.36981- 3 8.00000+ 0 1.10000+ 1 2.35948- 2 2.39826- 3 8.00000+ 0 1.30000+ 1 1.86424- 2 2.57682- 3 8.00000+ 0 1.40000+ 1 2.67735- 2 2.58255- 3 8.00000+ 0 1.60000+ 1 2.05680- 3 2.83405- 3 8.00000+ 0 1.80000+ 1 2.06030- 3 2.86538- 3 8.00000+ 0 1.90000+ 1 3.84048- 3 2.86997- 3 8.00000+ 0 2.10000+ 1 1.72484- 3 2.91692- 3 8.00000+ 0 2.20000+ 1 2.43642- 3 2.91739- 3 1.00000+ 1 1.00000+ 1 9.03531- 5 2.46950- 3 1.00000+ 1 1.10000+ 1 5.37776- 4 2.49795- 3 1.00000+ 1 1.30000+ 1 4.43943- 4 2.67651- 3 1.00000+ 1 1.40000+ 1 6.57193- 3 2.68224- 3 1.00000+ 1 1.60000+ 1 1.65368- 3 2.93374- 3 1.00000+ 1 1.80000+ 1 1.78088- 5 2.96507- 3 1.00000+ 1 1.90000+ 1 8.29686- 5 2.96966- 3 1.00000+ 1 2.10000+ 1 4.12666- 5 3.01661- 3 1.00000+ 1 2.20000+ 1 4.22659- 4 3.01708- 3 1.10000+ 1 1.10000+ 1 5.60357- 4 2.52640- 3 1.10000+ 1 1.30000+ 1 5.31197- 3 2.70496- 3 1.10000+ 1 1.40000+ 1 3.68611- 3 2.71069- 3 1.10000+ 1 1.60000+ 1 3.12453- 3 2.96219- 3 1.10000+ 1 1.80000+ 1 8.34022- 5 2.99352- 3 1.10000+ 1 1.90000+ 1 1.43781- 4 2.99811- 3 1.10000+ 1 2.10000+ 1 3.18399- 4 3.04506- 3 1.10000+ 1 2.20000+ 1 2.25440- 4 3.04553- 3 1.30000+ 1 1.30000+ 1 9.82153- 4 2.88352- 3 1.30000+ 1 1.40000+ 1 3.80110- 2 2.88925- 3 1.30000+ 1 1.60000+ 1 2.35487- 3 3.14075- 3 1.30000+ 1 1.80000+ 1 9.60009- 5 3.17208- 3 1.30000+ 1 1.90000+ 1 8.57065- 4 3.17667- 3 1.30000+ 1 2.10000+ 1 1.81566- 4 3.22362- 3 1.30000+ 1 2.20000+ 1 2.67633- 3 3.22409- 3 1.40000+ 1 1.40000+ 1 1.06940- 2 2.89498- 3 1.40000+ 1 1.60000+ 1 3.39386- 3 3.14648- 3 1.40000+ 1 1.80000+ 1 1.00254- 3 3.17781- 3 1.40000+ 1 1.90000+ 1 6.22050- 4 3.18240- 3 1.40000+ 1 2.10000+ 1 2.69398- 3 3.22935- 3 1.40000+ 1 2.20000+ 1 1.56153- 3 3.22982- 3 1.60000+ 1 1.60000+ 1 1.58983- 4 3.39798- 3 1.60000+ 1 1.80000+ 1 2.73241- 4 3.42931- 3 1.60000+ 1 1.90000+ 1 5.09108- 4 3.43390- 3 1.60000+ 1 2.10000+ 1 2.17192- 4 3.48085- 3 1.60000+ 1 2.20000+ 1 3.07975- 4 3.48132- 3 1.80000+ 1 1.80000+ 1 8.68784- 7 3.46064- 3 1.80000+ 1 1.90000+ 1 1.30324- 5 3.46523- 3 1.80000+ 1 2.10000+ 1 7.81908- 6 3.51218- 3 1.80000+ 1 2.20000+ 1 6.60276- 5 3.51265- 3 1.90000+ 1 1.90000+ 1 9.55647- 6 3.46982- 3 1.90000+ 1 2.10000+ 1 5.34283- 5 3.51677- 3 1.90000+ 1 2.20000+ 1 3.90951- 5 3.51724- 3 2.10000+ 1 2.10000+ 1 7.81889- 6 3.56372- 3 2.10000+ 1 2.20000+ 1 1.98951- 4 3.56419- 3 2.20000+ 1 2.20000+ 1 5.95119- 5 3.56466- 3 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.24710- 8 1.62000- 4 8.00000+ 0 3.35730- 3 2.67766- 3 1.10000+ 1 3.86160- 5 2.80580- 3 1.30000+ 1 4.34510- 2 2.98436- 3 1.60000+ 1 3.37060- 4 3.24159- 3 1.90000+ 1 2.31720- 6 3.27751- 3 2.10000+ 1 3.61220- 3 3.32446- 3 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.46606- 2 7.09900- 5 6.00000+ 0 1.80000+ 1 5.26161- 2 1.02320- 4 6.00000+ 0 1.90000+ 1 1.90981- 2 1.06910- 4 6.00000+ 0 2.10000+ 1 5.03842- 2 1.53860- 4 6.00000+ 0 2.20000+ 1 1.91211- 2 1.54330- 4 8.00000+ 0 8.00000+ 0 1.28613- 3 2.02272- 3 8.00000+ 0 1.00000+ 1 2.87984- 2 2.12241- 3 8.00000+ 0 1.10000+ 1 2.75976- 3 2.15086- 3 8.00000+ 0 1.30000+ 1 1.77853- 3 2.32942- 3 8.00000+ 0 1.40000+ 1 4.16556- 3 2.33515- 3 8.00000+ 0 1.60000+ 1 3.91261- 4 2.58665- 3 8.00000+ 0 1.80000+ 1 3.38304- 3 2.61798- 3 8.00000+ 0 1.90000+ 1 4.01122- 4 2.62257- 3 8.00000+ 0 2.10000+ 1 1.22189- 4 2.66952- 3 8.00000+ 0 2.20000+ 1 2.53019- 4 2.66999- 3 1.00000+ 1 1.00000+ 1 2.78171- 2 2.22210- 3 1.00000+ 1 1.10000+ 1 9.00108- 2 2.25055- 3 1.00000+ 1 1.30000+ 1 4.78407- 2 2.42911- 3 1.00000+ 1 1.40000+ 1 8.43363- 2 2.43484- 3 1.00000+ 1 1.60000+ 1 5.50987- 3 2.68634- 3 1.00000+ 1 1.80000+ 1 7.96738- 3 2.71767- 3 1.00000+ 1 1.90000+ 1 1.43910- 2 2.72226- 3 1.00000+ 1 2.10000+ 1 4.41123- 3 2.76921- 3 1.00000+ 1 2.20000+ 1 7.67576- 3 2.76968- 3 1.10000+ 1 1.10000+ 1 2.41052- 3 2.27900- 3 1.10000+ 1 1.30000+ 1 5.88528- 2 2.45756- 3 1.10000+ 1 1.40000+ 1 7.96452- 3 2.46329- 3 1.10000+ 1 1.60000+ 1 4.57897- 4 2.71479- 3 1.10000+ 1 1.80000+ 1 1.09531- 2 2.74612- 3 1.10000+ 1 1.90000+ 1 6.55381- 4 2.75071- 3 1.10000+ 1 2.10000+ 1 4.78537- 3 2.79766- 3 1.10000+ 1 2.20000+ 1 5.97379- 4 2.79813- 3 1.30000+ 1 1.30000+ 1 5.27645- 2 2.63612- 3 1.30000+ 1 1.40000+ 1 2.29928- 1 2.64185- 3 1.30000+ 1 1.60000+ 1 3.50514- 4 2.89335- 3 1.30000+ 1 1.80000+ 1 5.82529- 3 2.92468- 3 1.30000+ 1 1.90000+ 1 8.94182- 3 2.92927- 3 1.30000+ 1 2.10000+ 1 8.54813- 3 2.97622- 3 1.30000+ 1 2.20000+ 1 1.94822- 2 2.97669- 3 1.40000+ 1 1.40000+ 1 1.09264- 2 2.64758- 3 1.40000+ 1 1.60000+ 1 6.86240- 4 2.89908- 3 1.40000+ 1 1.80000+ 1 9.27543- 3 2.93041- 3 1.40000+ 1 1.90000+ 1 1.11321- 3 2.93500- 3 1.40000+ 1 2.10000+ 1 1.63090- 2 2.98195- 3 1.40000+ 1 2.20000+ 1 1.70573- 3 2.98242- 3 1.60000+ 1 1.60000+ 1 3.90014- 5 3.15058- 3 1.60000+ 1 1.80000+ 1 8.54792- 4 3.18191- 3 1.60000+ 1 1.90000+ 1 8.77548- 5 3.18650- 3 1.60000+ 1 2.10000+ 1 3.08752- 5 3.23345- 3 1.60000+ 1 2.20000+ 1 5.68770- 5 3.23392- 3 1.80000+ 1 1.80000+ 1 5.58590- 4 3.21324- 3 1.80000+ 1 1.90000+ 1 1.77596- 3 3.21783- 3 1.80000+ 1 2.10000+ 1 5.38569- 4 3.26478- 3 1.80000+ 1 2.20000+ 1 8.61679- 4 3.26525- 3 1.90000+ 1 1.90000+ 1 4.44332- 5 3.22242- 3 1.90000+ 1 2.10000+ 1 7.33136- 4 3.26937- 3 1.90000+ 1 2.20000+ 1 8.51610- 5 3.26984- 3 2.10000+ 1 2.10000+ 1 3.44339- 4 3.31632- 3 2.10000+ 1 2.20000+ 1 1.41316- 3 3.31679- 3 2.20000+ 1 2.20000+ 1 6.48840- 5 3.31726- 3 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.59771- 3 2.51566- 3 1.00000+ 1 2.61430- 5 2.61535- 3 1.10000+ 1 2.46530- 5 2.64380- 3 1.30000+ 1 4.39151- 3 2.82236- 3 1.40000+ 1 3.89871- 2 2.82809- 3 1.60000+ 1 3.46701- 4 3.07959- 3 1.80000+ 1 1.18510- 6 3.11092- 3 1.90000+ 1 1.12730- 6 3.11551- 3 2.10000+ 1 3.59771- 4 3.16246- 3 2.20000+ 1 3.15361- 3 3.16293- 3 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.60911- 3 1.86072- 3 8.00000+ 0 1.00000+ 1 1.20249- 3 1.96041- 3 8.00000+ 0 1.10000+ 1 3.32031- 2 1.98886- 3 8.00000+ 0 1.30000+ 1 3.20624- 3 2.16742- 3 8.00000+ 0 1.40000+ 1 3.36146- 3 2.17315- 3 8.00000+ 0 1.60000+ 1 4.89565- 4 2.42465- 3 8.00000+ 0 1.80000+ 1 1.69880- 4 2.45598- 3 8.00000+ 0 1.90000+ 1 3.88574- 3 2.46057- 3 8.00000+ 0 2.10000+ 1 1.80568- 4 2.50752- 3 8.00000+ 0 2.20000+ 1 1.77901- 4 2.50799- 3 1.00000+ 1 1.00000+ 1 4.26727- 4 2.06010- 3 1.00000+ 1 1.10000+ 1 5.48781- 2 2.08855- 3 1.00000+ 1 1.30000+ 1 3.77761- 3 2.26711- 3 1.00000+ 1 1.40000+ 1 3.39114- 2 2.27284- 3 1.00000+ 1 1.60000+ 1 1.95304- 4 2.52434- 3 1.00000+ 1 1.80000+ 1 1.19058- 4 2.55567- 3 1.00000+ 1 1.90000+ 1 6.62294- 3 2.56026- 3 1.00000+ 1 2.10000+ 1 3.29075- 4 2.60721- 3 1.00000+ 1 2.20000+ 1 2.60991- 3 2.60768- 3 1.10000+ 1 1.10000+ 1 7.85170- 2 2.11700- 3 1.10000+ 1 1.30000+ 1 7.77209- 2 2.29556- 3 1.10000+ 1 1.40000+ 1 1.18805- 1 2.30129- 3 1.10000+ 1 1.60000+ 1 6.29929- 3 2.55279- 3 1.10000+ 1 1.80000+ 1 8.73599- 3 2.58412- 3 1.10000+ 1 1.90000+ 1 2.20149- 2 2.58871- 3 1.10000+ 1 2.10000+ 1 6.95992- 3 2.63566- 3 1.10000+ 1 2.20000+ 1 1.04081- 2 2.63613- 3 1.30000+ 1 1.30000+ 1 1.10602- 2 2.47412- 3 1.30000+ 1 1.40000+ 1 2.14182- 1 2.47985- 3 1.30000+ 1 1.60000+ 1 5.63156- 4 2.73135- 3 1.30000+ 1 1.80000+ 1 5.96588- 4 2.76268- 3 1.30000+ 1 1.90000+ 1 8.83763- 3 2.76727- 3 1.30000+ 1 2.10000+ 1 1.80311- 3 2.81422- 3 1.30000+ 1 2.20000+ 1 1.52382- 2 2.81469- 3 1.40000+ 1 1.40000+ 1 1.45746- 1 2.48558- 3 1.40000+ 1 1.60000+ 1 6.27339- 4 2.73708- 3 1.40000+ 1 1.80000+ 1 5.07353- 3 2.76841- 3 1.40000+ 1 1.90000+ 1 1.48913- 2 2.77300- 3 1.40000+ 1 2.10000+ 1 1.76299- 2 2.81995- 3 1.40000+ 1 2.20000+ 1 2.26320- 2 2.82042- 3 1.60000+ 1 1.60000+ 1 4.87992- 5 2.98858- 3 1.60000+ 1 1.80000+ 1 3.65984- 5 3.01991- 3 1.60000+ 1 1.90000+ 1 9.62020- 4 3.02450- 3 1.60000+ 1 2.10000+ 1 4.35702- 5 3.07145- 3 1.60000+ 1 2.20000+ 1 4.53141- 5 3.07192- 3 1.80000+ 1 1.80000+ 1 8.12469- 6 3.05124- 3 1.80000+ 1 1.90000+ 1 1.06578- 3 3.05583- 3 1.80000+ 1 2.10000+ 1 5.14578- 5 3.10278- 3 1.80000+ 1 2.20000+ 1 4.03541- 4 3.10325- 3 1.90000+ 1 1.90000+ 1 1.50214- 3 3.06042- 3 1.90000+ 1 2.10000+ 1 7.91880- 4 3.10737- 3 1.90000+ 1 2.20000+ 1 1.29349- 3 3.10784- 3 2.10000+ 1 2.10000+ 1 7.22306- 5 3.15432- 3 2.10000+ 1 2.20000+ 1 1.28137- 3 3.15479- 3 2.20000+ 1 2.20000+ 1 8.06521- 4 3.15526- 3 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.18522- 5 9.96900- 5 1.10000+ 1 5.19514- 5 1.28140- 4 1.80000+ 1 9.52038- 5 5.95260- 4 1.90000+ 1 1.39497- 4 5.99850- 4 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 5.06227- 2 8.68000- 6 1.00000+ 1 1.80000+ 1 5.23701- 2 4.00100- 5 1.00000+ 1 1.90000+ 1 1.02130- 1 4.46000- 5 1.00000+ 1 2.10000+ 1 4.25813- 2 9.15500- 5 1.00000+ 1 2.20000+ 1 5.54363- 2 9.20200- 5 1.10000+ 1 1.60000+ 1 8.21567- 2 3.71300- 5 1.10000+ 1 1.80000+ 1 8.97852- 2 6.84600- 5 1.10000+ 1 1.90000+ 1 1.43840- 1 7.30500- 5 1.10000+ 1 2.10000+ 1 4.15499- 2 1.20000- 4 1.10000+ 1 2.20000+ 1 6.15995- 2 1.20470- 4 1.30000+ 1 1.60000+ 1 3.25759- 2 2.15690- 4 1.30000+ 1 1.80000+ 1 6.10415- 3 2.47020- 4 1.30000+ 1 1.90000+ 1 4.60315- 3 2.51610- 4 1.30000+ 1 2.10000+ 1 4.34660- 3 2.98560- 4 1.30000+ 1 2.20000+ 1 4.90134- 3 2.99030- 4 1.40000+ 1 1.60000+ 1 4.80086- 2 2.21420- 4 1.40000+ 1 1.80000+ 1 1.76778- 3 2.52750- 4 1.40000+ 1 1.90000+ 1 1.21750- 2 2.57340- 4 1.40000+ 1 2.10000+ 1 5.22248- 3 3.04290- 4 1.40000+ 1 2.20000+ 1 8.49941- 3 3.04760- 4 1.60000+ 1 1.60000+ 1 1.38819- 2 4.72920- 4 1.60000+ 1 1.80000+ 1 2.06588- 2 5.04250- 4 1.60000+ 1 1.90000+ 1 3.84243- 2 5.08840- 4 1.60000+ 1 2.10000+ 1 2.39424- 2 5.55790- 4 1.60000+ 1 2.20000+ 1 3.43530- 2 5.56260- 4 1.80000+ 1 1.80000+ 1 1.40052- 3 5.35580- 4 1.80000+ 1 1.90000+ 1 3.36804- 3 5.40170- 4 1.80000+ 1 2.10000+ 1 1.34954- 3 5.87120- 4 1.80000+ 1 2.20000+ 1 3.76618- 4 5.87590- 4 1.90000+ 1 1.90000+ 1 4.61671- 3 5.44760- 4 1.90000+ 1 2.10000+ 1 1.06396- 3 5.91710- 4 1.90000+ 1 2.20000+ 1 3.22455- 3 5.92180- 4 2.10000+ 1 2.10000+ 1 4.42405- 4 6.38660- 4 2.10000+ 1 2.20000+ 1 9.07399- 4 6.39130- 4 2.20000+ 1 2.20000+ 1 1.41510- 3 6.39600- 4 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.29339- 4 2.07010- 4 1.60000+ 1 1.94240- 4 4.64240- 4 2.10000+ 1 3.34289- 4 5.47110- 4 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.85757- 2 2.03100- 5 1.10000+ 1 2.20000+ 1 4.34132- 2 2.07800- 5 1.30000+ 1 1.60000+ 1 1.49881- 1 1.16000- 4 1.30000+ 1 1.80000+ 1 1.52979- 1 1.47330- 4 1.30000+ 1 1.90000+ 1 2.33097- 1 1.51920- 4 1.30000+ 1 2.10000+ 1 3.62731- 2 1.98870- 4 1.30000+ 1 2.20000+ 1 3.27585- 2 1.99340- 4 1.40000+ 1 1.60000+ 1 2.55296- 2 1.21730- 4 1.40000+ 1 1.80000+ 1 2.01201- 1 1.53060- 4 1.40000+ 1 1.90000+ 1 2.13363- 2 1.57650- 4 1.40000+ 1 2.10000+ 1 5.06885- 3 2.04600- 4 1.40000+ 1 2.20000+ 1 5.07365- 3 2.05070- 4 1.60000+ 1 1.60000+ 1 6.73804- 4 3.73230- 4 1.60000+ 1 1.80000+ 1 1.00184- 2 4.04560- 4 1.60000+ 1 1.90000+ 1 1.60505- 3 4.09150- 4 1.60000+ 1 2.10000+ 1 3.16943- 4 4.56100- 4 1.60000+ 1 2.20000+ 1 6.84766- 4 4.56570- 4 1.80000+ 1 1.80000+ 1 6.54246- 3 4.35890- 4 1.80000+ 1 1.90000+ 1 2.06822- 2 4.40480- 4 1.80000+ 1 2.10000+ 1 1.11645- 2 4.87430- 4 1.80000+ 1 2.20000+ 1 1.83927- 2 4.87900- 4 1.90000+ 1 1.90000+ 1 5.50525- 4 4.45070- 4 1.90000+ 1 2.10000+ 1 1.36196- 3 4.92020- 4 1.90000+ 1 2.20000+ 1 8.64212- 4 4.92490- 4 2.10000+ 1 2.10000+ 1 2.88387- 4 5.38970- 4 2.10000+ 1 2.20000+ 1 5.57761- 4 5.39440- 4 2.20000+ 1 2.20000+ 1 1.51780- 4 5.39910- 4 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.00985- 5 1.78560- 4 1.40000+ 1 3.02791- 4 1.84290- 4 1.60000+ 1 2.35107- 4 4.35790- 4 2.10000+ 1 4.18334- 5 5.18660- 4 2.20000+ 1 3.42448- 4 5.19130- 4 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 3.04256- 2 8.75500- 5 1.30000+ 1 1.80000+ 1 2.12619- 2 1.18880- 4 1.30000+ 1 1.90000+ 1 1.43596- 1 1.23470- 4 1.30000+ 1 2.10000+ 1 8.72896- 3 1.70420- 4 1.30000+ 1 2.20000+ 1 5.92168- 3 1.70890- 4 1.40000+ 1 1.60000+ 1 1.43625- 1 9.32800- 5 1.40000+ 1 1.80000+ 1 1.41638- 1 1.24610- 4 1.40000+ 1 1.90000+ 1 3.05855- 1 1.29200- 4 1.40000+ 1 2.10000+ 1 2.78102- 2 1.76150- 4 1.40000+ 1 2.20000+ 1 5.36631- 2 1.76620- 4 1.60000+ 1 1.60000+ 1 9.42197- 4 3.44780- 4 1.60000+ 1 1.80000+ 1 1.38149- 3 3.76110- 4 1.60000+ 1 1.90000+ 1 2.02975- 2 3.80700- 4 1.60000+ 1 2.10000+ 1 8.54088- 4 4.27650- 4 1.60000+ 1 2.20000+ 1 9.84089- 4 4.28120- 4 1.80000+ 1 1.80000+ 1 2.15038- 4 4.07440- 4 1.80000+ 1 1.90000+ 1 1.85877- 2 4.12030- 4 1.80000+ 1 2.10000+ 1 4.12386- 4 4.58980- 4 1.80000+ 1 2.20000+ 1 1.92031- 3 4.59450- 4 1.90000+ 1 1.90000+ 1 2.44376- 2 4.16620- 4 1.90000+ 1 2.10000+ 1 1.93853- 2 4.63570- 4 1.90000+ 1 2.20000+ 1 2.60973- 2 4.64040- 4 2.10000+ 1 2.10000+ 1 7.63891- 5 5.10520- 4 2.10000+ 1 2.20000+ 1 5.13756- 4 5.10990- 4 2.20000+ 1 2.20000+ 1 4.15559- 4 5.11460- 4 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.87627- 4 2.88560- 4 1.90000+ 1 6.61165- 5 2.93150- 4 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.16725- 3 1.66220- 4 1.60000+ 1 1.80000+ 1 2.11938- 2 1.97550- 4 1.60000+ 1 1.90000+ 1 2.22043- 2 2.02140- 4 1.60000+ 1 2.10000+ 1 1.54661- 1 2.49090- 4 1.60000+ 1 2.20000+ 1 2.73623- 2 2.49560- 4 1.80000+ 1 1.80000+ 1 1.08363- 3 2.28880- 4 1.80000+ 1 1.90000+ 1 2.84051- 2 2.33470- 4 1.80000+ 1 2.10000+ 1 1.09482- 1 2.80420- 4 1.80000+ 1 2.20000+ 1 9.86806- 3 2.80890- 4 1.90000+ 1 1.90000+ 1 1.25872- 2 2.38060- 4 1.90000+ 1 2.10000+ 1 2.43989- 1 2.85010- 4 1.90000+ 1 2.20000+ 1 1.07322- 2 2.85480- 4 2.10000+ 1 2.10000+ 1 1.15866- 1 3.31960- 4 2.10000+ 1 2.20000+ 1 2.35501- 1 3.32430- 4 2.20000+ 1 2.20000+ 1 4.44347- 3 3.32900- 4 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.03399- 4 2.87420- 4 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.86182- 3 1.60490- 4 1.60000+ 1 1.80000+ 1 1.36377- 2 1.91820- 4 1.60000+ 1 1.90000+ 1 3.39896- 2 1.96410- 4 1.60000+ 1 2.10000+ 1 2.01360- 2 2.43360- 4 1.60000+ 1 2.20000+ 1 1.62184- 1 2.43830- 4 1.80000+ 1 1.80000+ 1 1.13648- 4 2.23150- 4 1.80000+ 1 1.90000+ 1 2.92157- 2 2.27740- 4 1.80000+ 1 2.10000+ 1 2.62410- 3 2.74690- 4 1.80000+ 1 2.20000+ 1 1.32676- 1 2.75160- 4 1.90000+ 1 1.90000+ 1 1.81826- 2 2.32330- 4 1.90000+ 1 2.10000+ 1 1.27063- 2 2.79280- 4 1.90000+ 1 2.20000+ 1 2.21710- 1 2.79750- 4 2.10000+ 1 2.10000+ 1 1.72533- 3 3.26230- 4 2.10000+ 1 2.20000+ 1 1.62614- 1 3.26700- 4 2.20000+ 1 2.20000+ 1 1.85219- 1 3.27170- 4 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 5.29363- 6 3.13300- 5 1.90000+ 1 1.49481- 5 3.59200- 5 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 6.33850- 2 2.31900- 5 1.80000+ 1 2.20000+ 1 2.07346- 1 2.36600- 5 1.90000+ 1 2.10000+ 1 3.39031- 1 2.77800- 5 1.90000+ 1 2.20000+ 1 3.53883- 1 2.82500- 5 2.10000+ 1 2.10000+ 1 7.49380- 4 7.47300- 5 2.10000+ 1 2.20000+ 1 2.59428- 2 7.52000- 5 2.20000+ 1 2.20000+ 1 9.64265- 3 7.56700- 5 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.31540- 5 5.15400- 5 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.64999- 1 4.34000- 5 2.10000+ 1 2.20000+ 1 8.06842- 1 4.38700- 5 2.20000+ 1 2.20000+ 1 2.81460- 2 4.43400- 5 1 46000 0 7 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.48799- 7 4.69500- 5 2.20000+ 1 3.22229- 6 4.74200- 5 1 46000 0 9 1.06400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.41651- 2 3.88100- 5 2.10000+ 1 2.20000+ 1 5.93523- 1 3.92800- 5 2.20000+ 1 2.20000+ 1 3.82309- 1 3.97500- 5 1 47000 0 0 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 1.00000+ 0 1 47000 0 0 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.54890- 2 3.00000+ 0 3.78340- 3 5.00000+ 0 3.52810- 3 6.00000+ 0 3.35000- 3 8.00000+ 0 7.03800- 4 1.00000+ 1 6.00190- 4 1.10000+ 1 5.68530- 4 1.30000+ 1 3.82990- 4 1.40000+ 1 3.76550- 4 1.60000+ 1 1.01610- 4 1.80000+ 1 6.84100- 5 1.90000+ 1 6.31400- 5 2.10000+ 1 1.24700- 5 2.20000+ 1 1.18600- 5 2.70000+ 1 6.89000- 6 1 47000 0 0 1.07868+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.23330- 2 3.00000+ 0 6.88720- 3 5.00000+ 0 6.89330- 3 6.00000+ 0 6.24560- 3 8.00000+ 0 1.92320- 3 1.00000+ 1 1.86070- 3 1.10000+ 1 1.72050- 3 1.30000+ 1 1.60180- 3 1.40000+ 1 1.56790- 3 1.60000+ 1 4.85310- 4 1.80000+ 1 4.22870- 4 1.90000+ 1 3.89890- 4 2.10000+ 1 2.35980- 4 2.20000+ 1 2.28790- 4 2.70000+ 1 3.96400- 5 1 47000 0 0 1.07868+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.64310-10 3.00000+ 0 7.08990-10 5.00000+ 0 6.00480-10 6.00000+ 0 6.27120-10 8.00000+ 0 1.93350- 9 1.00000+ 1 1.88520- 9 1.10000+ 1 1.94200- 9 1.30000+ 1 1.79180- 9 1.40000+ 1 1.80950- 9 1.60000+ 1 4.76520- 9 1.80000+ 1 5.09340- 9 1.90000+ 1 5.25560- 9 2.10000+ 1 6.97790- 9 2.20000+ 1 7.08600- 9 2.70000+ 1 1.68560- 8 1 47000 0 0 1.07868+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.42180- 6 3.00000+ 0 7.60390- 8 5.00000+ 0 1.25250- 7 6.00000+ 0 1.19610- 7 8.00000+ 0 1.33390- 9 1.00000+ 1 1.30970- 9 1.10000+ 1 1.22450- 9 1.30000+ 1 1.00180-10 1.40000+ 1 8.89910-11 1.60000+ 1 3.03640-11 1.80000+ 1 8.34950-11 1.90000+ 1 6.88650-11 1 47000 0 0 1.07868+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13440- 6 3.00000+ 0 5.32410- 6 5.00000+ 0 2.17930- 6 6.00000+ 0 2.00210- 6 8.00000+ 0 1.11230- 5 1.00000+ 1 3.64220- 6 1.10000+ 1 3.87380- 6 1.30000+ 1 3.01750- 7 1.40000+ 1 3.05280- 7 1.60000+ 1 2.39270- 5 1.80000+ 1 1.37580- 5 1.90000+ 1 1.47050- 5 1 47000 0 0 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.20446- 5 3.00000+ 0 1.08154- 4 5.00000+ 0 8.46777- 5 6.00000+ 0 8.06776- 5 8.00000+ 0 7.45983- 5 1.00000+ 1 5.95909- 5 1.10000+ 1 5.78684- 5 1.30000+ 1 3.51110- 5 1.40000+ 1 3.48689- 5 1.60000+ 1 3.56779- 5 1.80000+ 1 2.43802- 5 1.90000+ 1 2.40724- 5 2.10000+ 1 1.24700- 5 2.20000+ 1 1.18600- 5 2.70000+ 1 6.89000- 6 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.92095- 1 3.00000+ 0 6.06288- 2 5.00000+ 0 6.55375- 2 6.00000+ 0 5.86450- 2 8.00000+ 0 1.57417- 3 1.00000+ 1 1.66681- 3 1.10000+ 1 1.55538- 3 1.30000+ 1 5.91855- 4 1.40000+ 1 5.30367- 4 1.60000+ 1 3.28027- 5 1.80000+ 1 1.86381- 5 1.90000+ 1 5.12682- 6 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.89659- 2 3.00000+ 0 1.79979- 4 5.00000+ 0 2.00400- 4 6.00000+ 0 1.69839- 4 8.00000+ 0 6.43695- 7 1.00000+ 1 6.36980- 7 1.10000+ 1 5.99394- 7 1.30000+ 1 1.83556- 7 1.40000+ 1 1.63083- 7 1.60000+ 1 1.35858- 9 1.80000+ 1 1.04487- 9 1.90000+ 1 2.63313-10 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.62060+ 0 3.00000+ 0 7.95990+ 0 5.00000+ 0 5.99807+ 0 6.00000+ 0 5.68536+ 0 8.00000+ 0 5.17894+ 0 1.00000+ 1 3.92067+ 0 1.10000+ 1 3.79936+ 0 1.30000+ 1 1.88222+ 0 1.40000+ 1 1.90158+ 0 1.60000+ 1 1.95757+ 0 1.80000+ 1 9.99981- 1 1.90000+ 1 9.99995- 1 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.43107- 3 3.00000+ 0 3.49527- 3 5.00000+ 0 3.24302- 3 6.00000+ 0 3.09948- 3 8.00000+ 0 6.28558- 4 1.00000+ 1 5.39962- 4 1.10000+ 1 5.10062- 4 1.30000+ 1 3.47695- 4 1.40000+ 1 3.41518- 4 1.60000+ 1 6.59308- 5 1.80000+ 1 4.40288- 5 1.90000+ 1 3.90674- 5 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40010- 1 2.19609- 2 6.00000+ 0 4.52271- 1 2.21390- 2 1.00000+ 1 3.94350- 2 2.48888- 2 1.10000+ 1 7.66271- 2 2.49205- 2 1.30000+ 1 2.66540- 4 2.51060- 2 1.40000+ 1 3.71920- 4 2.51124- 2 1.80000+ 1 8.01611- 3 2.54206- 2 1.90000+ 1 1.55010- 2 2.54259- 2 2.10000+ 1 3.00340- 5 2.54765- 2 2.20000+ 1 4.13960- 5 2.54771- 2 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.24287- 2 1.79222- 2 3.00000+ 0 5.00000+ 0 1.43406- 2 1.81775- 2 3.00000+ 0 6.00000+ 0 1.98916- 2 1.83556- 2 3.00000+ 0 8.00000+ 0 4.21957- 3 2.10018- 2 3.00000+ 0 1.00000+ 1 2.57543- 3 2.11054- 2 3.00000+ 0 1.10000+ 1 3.57864- 3 2.11371- 2 3.00000+ 0 1.30000+ 1 2.17263- 4 2.13226- 2 3.00000+ 0 1.40000+ 1 2.53808- 4 2.13290- 2 3.00000+ 0 1.60000+ 1 8.09640- 4 2.16040- 2 3.00000+ 0 1.80000+ 1 4.45778- 4 2.16372- 2 3.00000+ 0 1.90000+ 1 6.12048- 4 2.16425- 2 3.00000+ 0 2.10000+ 1 2.53005- 5 2.16931- 2 3.00000+ 0 2.20000+ 1 2.93170- 5 2.16937- 2 3.00000+ 0 2.70000+ 1 3.53413- 5 2.16987- 2 5.00000+ 0 5.00000+ 0 2.03503- 3 1.84328- 2 5.00000+ 0 6.00000+ 0 4.43833- 2 1.86109- 2 5.00000+ 0 8.00000+ 0 2.01606- 3 2.12571- 2 5.00000+ 0 1.00000+ 1 6.60224- 4 2.13607- 2 5.00000+ 0 1.10000+ 1 6.69116- 3 2.13924- 2 5.00000+ 0 1.30000+ 1 2.73082- 4 2.15779- 2 5.00000+ 0 1.40000+ 1 9.46165- 4 2.15843- 2 5.00000+ 0 1.60000+ 1 3.73102- 4 2.18593- 2 5.00000+ 0 1.80000+ 1 1.12453- 4 2.18925- 2 5.00000+ 0 1.90000+ 1 1.11127- 3 2.18978- 2 5.00000+ 0 2.10000+ 1 3.17262- 5 2.19484- 2 5.00000+ 0 2.20000+ 1 1.08438- 4 2.19490- 2 5.00000+ 0 2.70000+ 1 1.60639- 5 2.19540- 2 6.00000+ 0 6.00000+ 0 2.29225- 2 1.87890- 2 6.00000+ 0 8.00000+ 0 2.77353- 3 2.14352- 2 6.00000+ 0 1.00000+ 1 6.58675- 3 2.15388- 2 6.00000+ 0 1.10000+ 1 7.07956- 3 2.15705- 2 6.00000+ 0 1.30000+ 1 1.14177- 3 2.17560- 2 6.00000+ 0 1.40000+ 1 1.07065- 3 2.17624- 2 6.00000+ 0 1.60000+ 1 5.12452- 4 2.20374- 2 6.00000+ 0 1.80000+ 1 1.10481- 3 2.20706- 2 6.00000+ 0 1.90000+ 1 1.18154- 3 2.20759- 2 6.00000+ 0 2.10000+ 1 1.32532- 4 2.21265- 2 6.00000+ 0 2.20000+ 1 1.22895- 4 2.21271- 2 6.00000+ 0 2.70000+ 1 2.20884- 5 2.21321- 2 8.00000+ 0 8.00000+ 0 3.53001- 4 2.40814- 2 8.00000+ 0 1.00000+ 1 3.65463- 4 2.41850- 2 8.00000+ 0 1.10000+ 1 5.02811- 4 2.42167- 2 8.00000+ 0 1.30000+ 1 2.85144- 5 2.44022- 2 8.00000+ 0 1.40000+ 1 3.25300- 5 2.44086- 2 8.00000+ 0 1.60000+ 1 1.34938- 4 2.46836- 2 8.00000+ 0 1.80000+ 1 6.34518- 5 2.47168- 2 8.00000+ 0 1.90000+ 1 8.59411- 5 2.47221- 2 8.00000+ 0 2.10000+ 1 3.21273- 6 2.47727- 2 8.00000+ 0 2.20000+ 1 3.61439- 6 2.47733- 2 8.00000+ 0 2.70000+ 1 6.02394- 6 2.47783- 2 1.00000+ 1 1.00000+ 1 5.14049- 5 2.42886- 2 1.00000+ 1 1.10000+ 1 1.00764- 3 2.43203- 2 1.00000+ 1 1.30000+ 1 3.17261- 5 2.45058- 2 1.00000+ 1 1.40000+ 1 1.10846- 4 2.45123- 2 1.00000+ 1 1.60000+ 1 6.78713- 5 2.47872- 2 1.00000+ 1 1.80000+ 1 1.72694- 5 2.48204- 2 1.00000+ 1 1.90000+ 1 1.67469- 4 2.48257- 2 1.00000+ 1 2.10000+ 1 3.61442- 6 2.48763- 2 1.00000+ 1 2.20000+ 1 1.28514- 5 2.48769- 2 1.00000+ 1 2.70000+ 1 2.81112- 6 2.48819- 2 1.10000+ 1 1.10000+ 1 5.48157- 4 2.43519- 2 1.10000+ 1 1.30000+ 1 1.40147- 4 2.45375- 2 1.10000+ 1 1.40000+ 1 1.28102- 4 2.45439- 2 1.10000+ 1 1.60000+ 1 9.31669- 5 2.48189- 2 1.10000+ 1 1.80000+ 1 1.69473- 4 2.48521- 2 1.10000+ 1 1.90000+ 1 1.83116- 4 2.48573- 2 1.10000+ 1 2.10000+ 1 1.64645- 5 2.49080- 2 1.10000+ 1 2.20000+ 1 1.48585- 5 2.49086- 2 1.10000+ 1 2.70000+ 1 4.01585- 6 2.49136- 2 1.30000+ 1 1.40000+ 1 1.60641- 5 2.47295- 2 1.30000+ 1 1.60000+ 1 5.22099- 6 2.50044- 2 1.30000+ 1 1.80000+ 1 5.22099- 6 2.50376- 2 1.30000+ 1 1.90000+ 1 2.24899- 5 2.50429- 2 1.30000+ 1 2.20000+ 1 1.60641- 6 2.50941- 2 1.30000+ 1 2.70000+ 1 4.01613- 7 2.50991- 2 1.40000+ 1 1.40000+ 1 4.17417- 6 2.47359- 2 1.40000+ 1 1.60000+ 1 6.26116- 6 2.50108- 2 1.40000+ 1 1.80000+ 1 1.83667- 5 2.50440- 2 1.40000+ 1 1.90000+ 1 2.12872- 5 2.50493- 2 1.40000+ 1 2.10000+ 1 1.66963- 6 2.51000- 2 1.40000+ 1 2.20000+ 1 8.34824- 7 2.51006- 2 1.40000+ 1 2.70000+ 1 4.17417- 7 2.51056- 2 1.60000+ 1 1.60000+ 1 1.38173- 5 2.52858- 2 1.60000+ 1 1.80000+ 1 1.25221- 5 2.53190- 2 1.60000+ 1 1.90000+ 1 1.72711- 5 2.53242- 2 1.60000+ 1 2.10000+ 1 8.63567- 7 2.53749- 2 1.60000+ 1 2.20000+ 1 8.63567- 7 2.53755- 2 1.60000+ 1 2.70000+ 1 1.29539- 6 2.53805- 2 1.80000+ 1 1.80000+ 1 1.64374- 6 2.53522- 2 1.80000+ 1 1.90000+ 1 2.87649- 5 2.53574- 2 1.80000+ 1 2.10000+ 1 4.10944- 7 2.54081- 2 1.80000+ 1 2.20000+ 1 2.05452- 6 2.54087- 2 1.80000+ 1 2.70000+ 1 4.10944- 7 2.54137- 2 1.90000+ 1 1.90000+ 1 1.64699- 5 2.53627- 2 1.90000+ 1 2.10000+ 1 3.03387- 6 2.54134- 2 1.90000+ 1 2.20000+ 1 2.60039- 6 2.54140- 2 1.90000+ 1 2.70000+ 1 8.66846- 7 2.54190- 2 2.10000+ 1 2.20000+ 1 4.01610- 7 2.54647- 2 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.68020- 5 2.55300- 4 6.00000+ 0 1.43670- 4 4.33400- 4 1.00000+ 1 4.63860- 3 3.18321- 3 1.10000+ 1 7.71881- 3 3.21487- 3 1.30000+ 1 5.12670- 5 3.40041- 3 1.40000+ 1 7.64721- 5 3.40685- 3 1.80000+ 1 8.29451- 4 3.71499- 3 1.90000+ 1 1.39380- 3 3.72026- 3 2.10000+ 1 4.09120- 6 3.77093- 3 2.20000+ 1 6.10301- 6 3.77154- 3 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 2.96700- 2 1.53690- 4 5.00000+ 0 1.80000+ 1 2.00846- 2 1.86890- 4 5.00000+ 0 1.90000+ 1 2.67853- 2 1.92160- 4 5.00000+ 0 2.10000+ 1 5.41292- 3 2.42830- 4 5.00000+ 0 2.20000+ 1 8.90858- 3 2.43440- 4 5.00000+ 0 2.70000+ 1 1.24959- 3 2.48410- 4 6.00000+ 0 1.30000+ 1 1.57803- 1 5.04100- 5 6.00000+ 0 1.40000+ 1 3.55506- 1 5.68500- 5 6.00000+ 0 1.60000+ 1 4.25130- 2 3.31790- 4 6.00000+ 0 1.80000+ 1 1.84771- 2 3.64990- 4 6.00000+ 0 1.90000+ 1 3.61112- 2 3.70260- 4 6.00000+ 0 2.10000+ 1 2.27109- 2 4.20930- 4 6.00000+ 0 2.20000+ 1 2.95294- 2 4.21540- 4 6.00000+ 0 2.70000+ 1 1.79036- 3 4.26510- 4 8.00000+ 0 8.00000+ 0 7.50775- 3 2.37580- 3 8.00000+ 0 1.00000+ 1 1.48024- 2 2.47941- 3 8.00000+ 0 1.10000+ 1 2.78844- 2 2.51107- 3 8.00000+ 0 1.30000+ 1 2.21083- 2 2.69661- 3 8.00000+ 0 1.40000+ 1 3.16912- 2 2.70305- 3 8.00000+ 0 1.60000+ 1 2.47961- 3 2.97799- 3 8.00000+ 0 1.80000+ 1 2.51377- 3 3.01119- 3 8.00000+ 0 1.90000+ 1 4.67524- 3 3.01646- 3 8.00000+ 0 2.10000+ 1 2.27058- 3 3.06713- 3 8.00000+ 0 2.20000+ 1 3.21109- 3 3.06774- 3 8.00000+ 0 2.70000+ 1 1.05730- 4 3.07271- 3 1.00000+ 1 1.00000+ 1 1.03716- 4 2.58302- 3 1.00000+ 1 1.10000+ 1 6.32378- 4 2.61468- 3 1.00000+ 1 1.30000+ 1 5.40233- 4 2.80022- 3 1.00000+ 1 1.40000+ 1 7.85035- 3 2.80666- 3 1.00000+ 1 1.60000+ 1 1.99219- 3 3.08160- 3 1.00000+ 1 1.80000+ 1 2.01387- 5 3.11480- 3 1.00000+ 1 1.90000+ 1 1.00698- 4 3.12007- 3 1.00000+ 1 2.10000+ 1 5.63904- 5 3.17074- 3 1.00000+ 1 2.20000+ 1 5.56850- 4 3.17135- 3 1.00000+ 1 2.70000+ 1 8.20666- 5 3.17632- 3 1.10000+ 1 1.10000+ 1 6.59578- 4 2.64634- 3 1.10000+ 1 1.30000+ 1 6.23076- 3 2.83188- 3 1.10000+ 1 1.40000+ 1 4.31336- 3 2.83832- 3 1.10000+ 1 1.60000+ 1 3.75399- 3 3.11326- 3 1.10000+ 1 1.80000+ 1 1.00701- 4 3.14646- 3 1.10000+ 1 1.90000+ 1 1.73714- 4 3.15173- 3 1.10000+ 1 2.10000+ 1 4.07844- 4 3.20240- 3 1.10000+ 1 2.20000+ 1 2.89506- 4 3.20301- 3 1.10000+ 1 2.70000+ 1 1.54570- 4 3.20798- 3 1.30000+ 1 1.30000+ 1 1.17964- 3 3.01742- 3 1.30000+ 1 1.40000+ 1 4.51465- 2 3.02386- 3 1.30000+ 1 1.60000+ 1 2.83821- 3 3.29880- 3 1.30000+ 1 1.80000+ 1 1.20333- 4 3.33200- 3 1.30000+ 1 1.90000+ 1 1.03766- 3 3.33727- 3 1.30000+ 1 2.10000+ 1 2.41675- 4 3.38794- 3 1.30000+ 1 2.20000+ 1 3.51077- 3 3.38855- 3 1.30000+ 1 2.70000+ 1 1.16306- 4 3.39352- 3 1.40000+ 1 1.40000+ 1 1.27085- 2 3.03030- 3 1.40000+ 1 1.60000+ 1 4.08464- 3 3.30524- 3 1.40000+ 1 1.80000+ 1 1.23098- 3 3.33844- 3 1.40000+ 1 1.90000+ 1 7.51693- 4 3.34371- 3 1.40000+ 1 2.10000+ 1 3.52131- 3 3.39438- 3 1.40000+ 1 2.20000+ 1 2.05221- 3 3.39499- 3 1.40000+ 1 2.70000+ 1 1.67652- 4 3.39996- 3 1.60000+ 1 1.60000+ 1 1.95363- 4 3.58018- 3 1.60000+ 1 1.80000+ 1 3.38860- 4 3.61338- 3 1.60000+ 1 1.90000+ 1 6.29876- 4 3.61865- 3 1.60000+ 1 2.10000+ 1 2.90528- 4 3.66932- 3 1.60000+ 1 2.20000+ 1 4.12360- 4 3.66993- 3 1.60000+ 1 2.70000+ 1 1.66146- 5 3.67490- 3 1.80000+ 1 1.80000+ 1 1.00697- 6 3.64658- 3 1.80000+ 1 1.90000+ 1 1.61117- 5 3.65185- 3 1.80000+ 1 2.10000+ 1 1.10768- 5 3.70252- 3 1.80000+ 1 2.20000+ 1 8.96183- 5 3.70313- 3 1.80000+ 1 2.70000+ 1 1.40964- 5 3.70810- 3 1.90000+ 1 1.90000+ 1 1.15795- 5 3.65712- 3 1.90000+ 1 2.10000+ 1 7.09902- 5 3.70779- 3 1.90000+ 1 2.20000+ 1 5.18587- 5 3.70840- 3 1.90000+ 1 2.70000+ 1 2.61817- 5 3.71337- 3 2.10000+ 1 2.10000+ 1 1.20830- 5 3.75846- 3 2.10000+ 1 2.20000+ 1 2.87994- 4 3.75907- 3 2.10000+ 1 2.70000+ 1 1.20830- 5 3.76404- 3 2.20000+ 1 2.20000+ 1 8.66014- 5 3.75968- 3 2.20000+ 1 2.70000+ 1 1.71187- 5 3.76465- 3 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.54060- 8 1.78100- 4 8.00000+ 0 3.43680- 3 2.82430- 3 1.10000+ 1 4.07270- 5 2.95957- 3 1.30000+ 1 4.65050- 2 3.14511- 3 1.60000+ 1 3.62160- 4 3.42649- 3 1.90000+ 1 2.68350- 6 3.46496- 3 2.10000+ 1 4.34690- 3 3.51563- 3 2.70000+ 1 8.58879- 6 3.52121- 3 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.40207- 2 7.64900- 5 6.00000+ 0 1.80000+ 1 5.25703- 2 1.09690- 4 6.00000+ 0 1.90000+ 1 1.89685- 2 1.14960- 4 6.00000+ 0 2.10000+ 1 5.38634- 2 1.65630- 4 6.00000+ 0 2.20000+ 1 2.03836- 2 1.66240- 4 6.00000+ 0 2.70000+ 1 5.53415- 4 1.71210- 4 8.00000+ 0 8.00000+ 0 1.24136- 3 2.12050- 3 8.00000+ 0 1.00000+ 1 2.80792- 2 2.22411- 3 8.00000+ 0 1.10000+ 1 2.70218- 3 2.25577- 3 8.00000+ 0 1.30000+ 1 1.77590- 3 2.44131- 3 8.00000+ 0 1.40000+ 1 4.06256- 3 2.44775- 3 8.00000+ 0 1.60000+ 1 3.84671- 4 2.72269- 3 8.00000+ 0 1.80000+ 1 3.38062- 3 2.75589- 3 8.00000+ 0 1.90000+ 1 4.04727- 4 2.76116- 3 8.00000+ 0 2.10000+ 1 1.35699- 4 2.81183- 3 8.00000+ 0 2.20000+ 1 2.72566- 4 2.81244- 3 8.00000+ 0 2.70000+ 1 1.65199- 5 2.81741- 3 1.00000+ 1 1.00000+ 1 2.72170- 2 2.32772- 3 1.00000+ 1 1.10000+ 1 8.77100- 2 2.35938- 3 1.00000+ 1 1.30000+ 1 4.68534- 2 2.54492- 3 1.00000+ 1 1.40000+ 1 8.22458- 2 2.55136- 3 1.00000+ 1 1.60000+ 1 5.49018- 3 2.82630- 3 1.00000+ 1 1.80000+ 1 8.01433- 3 2.85950- 3 1.00000+ 1 1.90000+ 1 1.44490- 2 2.86477- 3 1.00000+ 1 2.10000+ 1 4.79637- 3 2.91544- 3 1.00000+ 1 2.20000+ 1 8.33520- 3 2.91605- 3 1.00000+ 1 2.70000+ 1 2.38344- 4 2.92102- 3 1.10000+ 1 1.10000+ 1 2.34330- 3 2.39104- 3 1.10000+ 1 1.30000+ 1 5.74909- 2 2.57658- 3 1.10000+ 1 1.40000+ 1 7.76771- 3 2.58302- 3 1.10000+ 1 1.60000+ 1 4.56659- 4 2.85796- 3 1.10000+ 1 1.80000+ 1 1.09376- 2 2.89116- 3 1.10000+ 1 1.90000+ 1 6.56053- 4 2.89643- 3 1.10000+ 1 2.10000+ 1 5.16808- 3 2.94710- 3 1.10000+ 1 2.20000+ 1 6.46589- 4 2.94771- 3 1.10000+ 1 2.70000+ 1 2.00593- 5 2.95268- 3 1.30000+ 1 1.30000+ 1 5.17162- 2 2.76212- 3 1.30000+ 1 1.40000+ 1 2.24889- 1 2.76856- 3 1.30000+ 1 1.60000+ 1 3.57530- 4 3.04350- 3 1.30000+ 1 1.80000+ 1 5.85017- 3 3.07670- 3 1.30000+ 1 1.90000+ 1 8.99016- 3 3.08197- 3 1.30000+ 1 2.10000+ 1 9.26857- 3 3.13264- 3 1.30000+ 1 2.20000+ 1 2.11728- 2 3.13325- 3 1.30000+ 1 2.70000+ 1 1.53398- 5 3.13822- 3 1.40000+ 1 1.40000+ 1 1.06886- 2 2.77500- 3 1.40000+ 1 1.60000+ 1 6.80849- 4 3.04994- 3 1.40000+ 1 1.80000+ 1 9.25059- 3 3.08314- 3 1.40000+ 1 1.90000+ 1 1.11623- 3 3.08841- 3 1.40000+ 1 2.10000+ 1 1.75588- 2 3.13908- 3 1.40000+ 1 2.20000+ 1 1.85132- 3 3.13969- 3 1.40000+ 1 2.70000+ 1 2.94986- 5 3.14466- 3 1.60000+ 1 1.60000+ 1 3.86750- 5 3.32488- 3 1.60000+ 1 1.80000+ 1 8.69393- 4 3.35808- 3 1.60000+ 1 1.90000+ 1 8.97247- 5 3.36335- 3 1.60000+ 1 2.10000+ 1 3.40343- 5 3.41402- 3 1.60000+ 1 2.20000+ 1 6.18782- 5 3.41463- 3 1.60000+ 1 2.70000+ 1 3.09398- 6 3.41960- 3 1.80000+ 1 1.80000+ 1 5.72870- 4 3.39128- 3 1.80000+ 1 1.90000+ 1 1.81488- 3 3.39655- 3 1.80000+ 1 2.10000+ 1 5.95447- 4 3.44722- 3 1.80000+ 1 2.20000+ 1 9.49576- 4 3.44783- 3 1.80000+ 1 2.70000+ 1 2.85233- 5 3.45280- 3 1.90000+ 1 1.90000+ 1 4.60176- 5 3.40182- 3 1.90000+ 1 2.10000+ 1 8.14144- 4 3.45249- 3 1.90000+ 1 2.20000+ 1 9.55777- 5 3.45310- 3 1.90000+ 1 2.70000+ 1 2.35989- 6 3.45807- 3 2.10000+ 1 2.10000+ 1 4.11793- 4 3.50316- 3 2.10000+ 1 2.20000+ 1 1.69322- 3 3.50377- 3 2.10000+ 1 2.70000+ 1 1.17988- 6 3.50874- 3 2.20000+ 1 2.20000+ 1 8.43111- 5 3.50438- 3 2.20000+ 1 2.70000+ 1 2.47977- 6 3.50935- 3 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 5.80057- 3 2.64620- 3 1.00000+ 1 2.77053- 5 2.74981- 3 1.10000+ 1 2.60823- 5 2.78147- 3 1.30000+ 1 4.71305- 3 2.96701- 3 1.40000+ 1 4.18065- 2 2.97345- 3 1.60000+ 1 3.76594- 4 3.24839- 3 1.80000+ 1 1.37262- 6 3.28159- 3 1.90000+ 1 1.30602- 6 3.28686- 3 2.10000+ 1 4.33485- 4 3.33753- 3 2.20000+ 1 3.81994- 3 3.33814- 3 2.70000+ 1 1.07151- 5 3.34311- 3 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.56830- 3 1.94240- 3 8.00000+ 0 1.00000+ 1 1.16599- 3 2.04601- 3 8.00000+ 0 1.10000+ 1 3.24760- 2 2.07767- 3 8.00000+ 0 1.30000+ 1 3.15200- 3 2.26321- 3 8.00000+ 0 1.40000+ 1 3.30574- 3 2.26965- 3 8.00000+ 0 1.60000+ 1 4.85617- 4 2.54459- 3 8.00000+ 0 1.80000+ 1 1.69139- 4 2.57779- 3 8.00000+ 0 1.90000+ 1 3.89389- 3 2.58306- 3 8.00000+ 0 2.10000+ 1 1.93475- 4 2.63373- 3 8.00000+ 0 2.20000+ 1 1.90908- 4 2.63434- 3 8.00000+ 0 2.70000+ 1 2.05004- 5 2.63931- 3 1.00000+ 1 1.00000+ 1 4.10019- 4 2.14962- 3 1.00000+ 1 1.10000+ 1 5.37241- 2 2.18128- 3 1.00000+ 1 1.30000+ 1 3.70436- 3 2.36682- 3 1.00000+ 1 1.40000+ 1 3.32171- 2 2.37326- 3 1.00000+ 1 1.60000+ 1 1.93480- 4 2.64820- 3 1.00000+ 1 1.80000+ 1 1.17881- 4 2.68140- 3 1.00000+ 1 1.90000+ 1 6.64992- 3 2.68667- 3 1.00000+ 1 2.10000+ 1 3.57488- 4 2.73734- 3 1.00000+ 1 2.20000+ 1 2.82917- 3 2.73795- 3 1.00000+ 1 2.70000+ 1 7.68776- 6 2.74292- 3 1.10000+ 1 1.10000+ 1 7.67020- 2 2.21294- 3 1.10000+ 1 1.30000+ 1 7.64292- 2 2.39848- 3 1.10000+ 1 1.40000+ 1 1.16709- 1 2.40492- 3 1.10000+ 1 1.60000+ 1 6.29241- 3 2.67986- 3 1.10000+ 1 1.80000+ 1 8.80641- 3 2.71306- 3 1.10000+ 1 1.90000+ 1 2.21180- 2 2.71833- 3 1.10000+ 1 2.10000+ 1 7.58916- 3 2.76900- 3 1.10000+ 1 2.20000+ 1 1.13651- 2 2.76961- 3 1.10000+ 1 2.70000+ 1 2.72920- 4 2.77458- 3 1.30000+ 1 1.30000+ 1 1.09295- 2 2.58402- 3 1.30000+ 1 1.40000+ 1 2.11329- 1 2.59046- 3 1.30000+ 1 1.60000+ 1 5.66329- 4 2.86540- 3 1.30000+ 1 1.80000+ 1 6.02204- 4 2.89860- 3 1.30000+ 1 1.90000+ 1 8.90009- 3 2.90387- 3 1.30000+ 1 2.10000+ 1 1.97062- 3 2.95454- 3 1.30000+ 1 2.20000+ 1 1.66111- 2 2.95515- 3 1.30000+ 1 2.70000+ 1 2.43438- 5 2.96012- 3 1.40000+ 1 1.40000+ 1 1.43784- 1 2.59690- 3 1.40000+ 1 1.60000+ 1 6.31694- 4 2.87184- 3 1.40000+ 1 1.80000+ 1 5.11008- 3 2.90504- 3 1.40000+ 1 1.90000+ 1 1.50159- 2 2.91031- 3 1.40000+ 1 2.10000+ 1 1.92408- 2 2.96098- 3 1.40000+ 1 2.20000+ 1 2.47427- 2 2.96159- 3 1.40000+ 1 2.70000+ 1 2.69076- 5 2.96656- 3 1.60000+ 1 1.60000+ 1 4.84321- 5 3.14678- 3 1.60000+ 1 1.80000+ 1 3.67411- 5 3.17998- 3 1.60000+ 1 1.90000+ 1 9.85335- 4 3.18525- 3 1.60000+ 1 2.10000+ 1 4.67627- 5 3.23592- 3 1.60000+ 1 2.20000+ 1 5.01028- 5 3.23653- 3 1.60000+ 1 2.70000+ 1 3.34023- 6 3.24150- 3 1.80000+ 1 1.80000+ 1 7.74242- 6 3.21318- 3 1.80000+ 1 1.90000+ 1 1.09694- 3 3.21845- 3 1.80000+ 1 2.10000+ 1 5.80704- 5 3.26912- 3 1.80000+ 1 2.20000+ 1 4.47778- 4 3.26973- 3 1.80000+ 1 2.70000+ 1 1.29053- 6 3.27470- 3 1.90000+ 1 1.90000+ 1 1.55162- 3 3.22372- 3 1.90000+ 1 2.10000+ 1 8.85396- 4 3.27439- 3 1.90000+ 1 2.20000+ 1 1.44912- 3 3.27500- 3 1.90000+ 1 2.70000+ 1 3.33142- 5 3.27997- 3 2.10000+ 1 2.10000+ 1 8.71313- 5 3.32506- 3 2.10000+ 1 2.20000+ 1 1.54531- 3 3.32567- 3 2.10000+ 1 2.70000+ 1 1.28145- 6 3.33064- 3 2.20000+ 1 2.20000+ 1 1.04386- 3 3.32628- 3 2.20000+ 1 2.70000+ 1 1.25022- 6 3.33125- 3 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.17609- 5 1.03610- 4 1.10000+ 1 5.40680- 5 1.35270- 4 1.80000+ 1 1.07080- 4 6.35390- 4 1.90000+ 1 1.55547- 4 6.40660- 4 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 4.90814- 2 2.00000- 6 1.00000+ 1 1.80000+ 1 5.06885- 2 3.52000- 5 1.00000+ 1 1.90000+ 1 9.72279- 2 4.04700- 5 1.00000+ 1 2.10000+ 1 4.68491- 2 9.11400- 5 1.00000+ 1 2.20000+ 1 6.18134- 2 9.17500- 5 1.00000+ 1 2.70000+ 1 1.57056- 3 9.67200- 5 1.10000+ 1 1.60000+ 1 7.81284- 2 3.36600- 5 1.10000+ 1 1.80000+ 1 8.61447- 2 6.68600- 5 1.10000+ 1 1.90000+ 1 1.37576- 1 7.21300- 5 1.10000+ 1 2.10000+ 1 4.48569- 2 1.22800- 4 1.10000+ 1 2.20000+ 1 6.63488- 2 1.23410- 4 1.10000+ 1 2.70000+ 1 2.43607- 3 1.28380- 4 1.30000+ 1 1.60000+ 1 3.10946- 2 2.19200- 4 1.30000+ 1 1.80000+ 1 5.92315- 3 2.52400- 4 1.30000+ 1 1.90000+ 1 4.48021- 3 2.57670- 4 1.30000+ 1 2.10000+ 1 4.78314- 3 3.08340- 4 1.30000+ 1 2.20000+ 1 5.49568- 3 3.08950- 4 1.30000+ 1 2.70000+ 1 7.21350- 4 3.13920- 4 1.40000+ 1 1.60000+ 1 4.57588- 2 2.25640- 4 1.40000+ 1 1.80000+ 1 1.68410- 3 2.58840- 4 1.40000+ 1 1.90000+ 1 1.17807- 2 2.64110- 4 1.40000+ 1 2.10000+ 1 5.82763- 3 3.14780- 4 1.40000+ 1 2.20000+ 1 9.45349- 3 3.15390- 4 1.40000+ 1 2.70000+ 1 1.05944- 3 3.20360- 4 1.60000+ 1 1.60000+ 1 1.28606- 2 5.00580- 4 1.60000+ 1 1.80000+ 1 1.93837- 2 5.33780- 4 1.60000+ 1 1.90000+ 1 3.59725- 2 5.39050- 4 1.60000+ 1 2.10000+ 1 2.48813- 2 5.89720- 4 1.60000+ 1 2.20000+ 1 3.59013- 2 5.90330- 4 1.60000+ 1 2.70000+ 1 6.91002- 4 5.95300- 4 1.80000+ 1 1.80000+ 1 1.25464- 3 5.66980- 4 1.80000+ 1 1.90000+ 1 3.01549- 3 5.72250- 4 1.80000+ 1 2.10000+ 1 1.32745- 3 6.22920- 4 1.80000+ 1 2.20000+ 1 3.79271- 4 6.23530- 4 1.80000+ 1 2.70000+ 1 4.79157- 4 6.28500- 4 1.90000+ 1 1.90000+ 1 3.97971- 3 5.77520- 4 1.90000+ 1 2.10000+ 1 1.02827- 3 6.28190- 4 1.90000+ 1 2.20000+ 1 3.11358- 3 6.28800- 4 1.90000+ 1 2.70000+ 1 8.89862- 4 6.33770- 4 2.10000+ 1 2.10000+ 1 3.38126- 4 6.78860- 4 2.10000+ 1 2.20000+ 1 7.59755- 4 6.79470- 4 2.10000+ 1 2.70000+ 1 7.18024- 4 6.84440- 4 2.20000+ 1 2.20000+ 1 7.52422- 4 6.80080- 4 2.20000+ 1 2.70000+ 1 1.16108- 3 6.85050- 4 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.27938- 4 2.17200- 4 1.60000+ 1 2.06329- 4 4.98580- 4 2.10000+ 1 4.15938- 4 5.87720- 4 2.70000+ 1 6.78877- 6 5.93300- 4 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.92673- 2 1.91900- 5 1.10000+ 1 2.20000+ 1 4.57469- 2 1.98000- 5 1.10000+ 1 2.70000+ 1 2.35657- 3 2.47700- 5 1.30000+ 1 1.60000+ 1 1.45617- 1 1.15590- 4 1.30000+ 1 1.80000+ 1 1.48882- 1 1.48790- 4 1.30000+ 1 1.90000+ 1 2.26187- 1 1.54060- 4 1.30000+ 1 2.10000+ 1 4.01223- 2 2.04730- 4 1.30000+ 1 2.20000+ 1 3.75358- 2 2.05340- 4 1.30000+ 1 2.70000+ 1 4.63286- 3 2.10310- 4 1.40000+ 1 1.60000+ 1 2.50795- 2 1.22030- 4 1.40000+ 1 1.80000+ 1 1.93335- 1 1.55230- 4 1.40000+ 1 1.90000+ 1 2.05233- 2 1.60500- 4 1.40000+ 1 2.10000+ 1 4.95939- 3 2.11170- 4 1.40000+ 1 2.20000+ 1 5.55855- 3 2.11780- 4 1.40000+ 1 2.70000+ 1 5.73315- 4 2.16750- 4 1.60000+ 1 1.60000+ 1 6.88665- 4 3.96970- 4 1.60000+ 1 1.80000+ 1 1.01020- 2 4.30170- 4 1.60000+ 1 1.90000+ 1 1.62728- 3 4.35440- 4 1.60000+ 1 2.10000+ 1 3.34769- 4 4.86110- 4 1.60000+ 1 2.20000+ 1 7.62036- 4 4.86720- 4 1.60000+ 1 2.70000+ 1 3.51594- 5 4.91690- 4 1.80000+ 1 1.80000+ 1 6.56237- 3 4.63370- 4 1.80000+ 1 1.90000+ 1 2.06892- 2 4.68640- 4 1.80000+ 1 2.10000+ 1 1.24316- 2 5.19310- 4 1.80000+ 1 2.20000+ 1 2.05715- 2 5.19920- 4 1.80000+ 1 2.70000+ 1 3.08085- 4 5.24890- 4 1.90000+ 1 1.90000+ 1 5.69607- 4 4.73910- 4 1.90000+ 1 2.10000+ 1 1.51634- 3 5.24580- 4 1.90000+ 1 2.20000+ 1 9.87935- 4 5.25190- 4 1.90000+ 1 2.70000+ 1 3.96109- 5 5.30160- 4 2.10000+ 1 2.10000+ 1 3.72564- 4 5.75250- 4 2.10000+ 1 2.20000+ 1 7.46627- 4 5.75860- 4 2.10000+ 1 2.70000+ 1 9.90451- 6 5.80830- 4 2.20000+ 1 2.20000+ 1 1.91000- 4 5.76470- 4 2.20000+ 1 2.70000+ 1 1.91792- 5 5.81440- 4 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.91336- 5 1.85540- 4 1.40000+ 1 2.95566- 4 1.91980- 4 1.60000+ 1 2.51377- 4 4.66920- 4 2.10000+ 1 5.20803- 5 5.56060- 4 2.20000+ 1 4.28195- 4 5.56670- 4 2.70000+ 1 8.22321- 6 5.61640- 4 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.98474- 2 8.39300- 5 1.30000+ 1 1.80000+ 1 2.08601- 2 1.17130- 4 1.30000+ 1 1.90000+ 1 1.37843- 1 1.22400- 4 1.30000+ 1 2.10000+ 1 9.70871- 3 1.73070- 4 1.30000+ 1 2.20000+ 1 6.57618- 3 1.73680- 4 1.30000+ 1 2.70000+ 1 7.88437- 4 1.78650- 4 1.40000+ 1 1.60000+ 1 1.39899- 1 9.03700- 5 1.40000+ 1 1.80000+ 1 1.38922- 1 1.23570- 4 1.40000+ 1 1.90000+ 1 2.95727- 1 1.28840- 4 1.40000+ 1 2.10000+ 1 3.21096- 2 1.79510- 4 1.40000+ 1 2.20000+ 1 6.05906- 2 1.80120- 4 1.40000+ 1 2.70000+ 1 4.36072- 3 1.85090- 4 1.60000+ 1 1.60000+ 1 9.33720- 4 3.65310- 4 1.60000+ 1 1.80000+ 1 1.36100- 3 3.98510- 4 1.60000+ 1 1.90000+ 1 1.98467- 2 4.03780- 4 1.60000+ 1 2.10000+ 1 9.03667- 4 4.54450- 4 1.60000+ 1 2.20000+ 1 1.03341- 3 4.55060- 4 1.60000+ 1 2.70000+ 1 4.77785- 5 4.60030- 4 1.80000+ 1 1.80000+ 1 2.13114- 4 4.31710- 4 1.80000+ 1 1.90000+ 1 1.86909- 2 4.36980- 4 1.80000+ 1 2.10000+ 1 4.44510- 4 4.87650- 4 1.80000+ 1 2.20000+ 1 2.13357- 3 4.88260- 4 1.80000+ 1 2.70000+ 1 2.92286- 5 4.93230- 4 1.90000+ 1 1.90000+ 1 2.41584- 2 4.42250- 4 1.90000+ 1 2.10000+ 1 2.12754- 2 4.92920- 4 1.90000+ 1 2.20000+ 1 2.87896- 2 4.93530- 4 1.90000+ 1 2.70000+ 1 4.74156- 4 4.98500- 4 2.10000+ 1 2.10000+ 1 9.57190- 5 5.43590- 4 2.10000+ 1 2.20000+ 1 6.94116- 4 5.44200- 4 2.10000+ 1 2.70000+ 1 1.03294- 5 5.49170- 4 2.20000+ 1 2.20000+ 1 5.54075- 4 5.44810- 4 2.20000+ 1 2.70000+ 1 1.34972- 5 5.49780- 4 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 4.96493- 4 3.14580- 4 1.90000+ 1 8.38964- 5 3.19850- 4 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.36972- 3 1.79770- 4 1.60000+ 1 1.80000+ 1 1.65080- 2 2.12970- 4 1.60000+ 1 1.90000+ 1 1.68149- 2 2.18240- 4 1.60000+ 1 2.10000+ 1 1.47468- 1 2.68910- 4 1.60000+ 1 2.20000+ 1 2.54562- 2 2.69520- 4 1.60000+ 1 2.70000+ 1 5.40635- 5 2.74490- 4 1.80000+ 1 1.80000+ 1 1.26149- 3 2.46170- 4 1.80000+ 1 1.90000+ 1 2.58785- 2 2.51440- 4 1.80000+ 1 2.10000+ 1 1.06279- 1 3.02110- 4 1.80000+ 1 2.20000+ 1 9.53303- 3 3.02720- 4 1.80000+ 1 2.70000+ 1 1.89219- 4 3.07690- 4 1.90000+ 1 1.90000+ 1 1.11640- 2 2.56710- 4 1.90000+ 1 2.10000+ 1 2.36616- 1 3.07380- 4 1.90000+ 1 2.20000+ 1 1.02005- 2 3.07990- 4 1.90000+ 1 2.70000+ 1 2.61304- 4 3.12960- 4 2.10000+ 1 2.10000+ 1 1.25271- 1 3.58050- 4 2.10000+ 1 2.20000+ 1 2.56030- 1 3.58660- 4 2.10000+ 1 2.70000+ 1 4.09092- 3 3.63630- 4 2.20000+ 1 2.20000+ 1 4.55197- 3 3.59270- 4 2.20000+ 1 2.70000+ 1 4.22359- 4 3.64240- 4 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 5.18596- 4 3.13410- 4 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.87976- 3 1.73330- 4 1.60000+ 1 1.80000+ 1 1.02446- 2 2.06530- 4 1.60000+ 1 1.90000+ 1 2.62179- 2 2.11800- 4 1.60000+ 1 2.10000+ 1 1.86547- 2 2.62470- 4 1.60000+ 1 2.20000+ 1 1.54974- 1 2.63080- 4 1.60000+ 1 2.70000+ 1 7.12716- 5 2.68050- 4 1.80000+ 1 1.80000+ 1 6.23610- 5 2.39730- 4 1.80000+ 1 1.90000+ 1 2.63160- 2 2.45000- 4 1.80000+ 1 2.10000+ 1 2.36087- 3 2.95670- 4 1.80000+ 1 2.20000+ 1 1.29281- 1 2.96280- 4 1.80000+ 1 2.70000+ 1 1.51456- 4 3.01250- 4 1.90000+ 1 1.90000+ 1 1.69621- 2 2.50270- 4 1.90000+ 1 2.10000+ 1 1.22311- 2 3.00940- 4 1.90000+ 1 2.20000+ 1 2.15320- 1 3.01550- 4 1.90000+ 1 2.70000+ 1 3.29623- 4 3.06520- 4 2.10000+ 1 2.10000+ 1 1.84422- 3 3.51610- 4 2.10000+ 1 2.20000+ 1 1.76244- 1 3.52220- 4 2.10000+ 1 2.70000+ 1 2.93989- 4 3.57190- 4 2.20000+ 1 2.20000+ 1 2.01873- 1 3.52830- 4 2.20000+ 1 2.70000+ 1 4.16944- 3 3.57800- 4 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 6.37280- 6 3.32000- 5 1.90000+ 1 1.80641- 5 3.84700- 5 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 5.68739- 2 2.07300- 5 1.80000+ 1 2.20000+ 1 1.94698- 1 2.13400- 5 1.80000+ 1 2.70000+ 1 4.22850- 3 2.63100- 5 1.90000+ 1 2.10000+ 1 3.39415- 1 2.60000- 5 1.90000+ 1 2.20000+ 1 3.55464- 1 2.66100- 5 1.90000+ 1 2.70000+ 1 6.90197- 3 3.15800- 5 2.10000+ 1 2.10000+ 1 9.12451- 4 7.66700- 5 2.10000+ 1 2.20000+ 1 2.95812- 2 7.72800- 5 2.10000+ 1 2.70000+ 1 1.95331- 3 8.22500- 5 2.20000+ 1 2.20000+ 1 7.48201- 3 7.78900- 5 2.20000+ 1 2.70000+ 1 2.46620- 3 8.28600- 5 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.82340- 5 5.59400- 5 2.70000+ 1 4.04071- 7 6.15200- 5 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.62928- 1 4.34700- 5 2.10000+ 1 2.20000+ 1 8.02579- 1 4.40800- 5 2.10000+ 1 2.70000+ 1 5.74532- 3 4.90500- 5 2.20000+ 1 2.20000+ 1 2.81442- 2 4.46900- 5 2.20000+ 1 2.70000+ 1 5.84824- 4 4.96600- 5 1 47000 0 7 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.82828- 7 5.06700- 5 2.20000+ 1 4.50238- 6 5.12800- 5 2.70000+ 1 1.41619- 7 5.62500- 5 1 47000 0 9 1.07868+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.36138- 2 3.82000- 5 2.10000+ 1 2.20000+ 1 5.88646- 1 3.88100- 5 2.10000+ 1 2.70000+ 1 1.24719- 3 4.37800- 5 2.20000+ 1 2.20000+ 1 3.80450- 1 3.94200- 5 2.20000+ 1 2.70000+ 1 6.03830- 3 4.43900- 5 1 48000 0 0 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 1 48000 0 0 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.66880- 2 3.00000+ 0 3.99410- 3 5.00000+ 0 3.73090- 3 6.00000+ 0 3.53540- 3 8.00000+ 0 7.55370- 4 1.00000+ 1 6.47790- 4 1.10000+ 1 6.12630- 4 1.30000+ 1 4.20060- 4 1.40000+ 1 4.12860- 4 1.60000+ 1 1.13360- 4 1.80000+ 1 7.82200- 5 1.90000+ 1 7.21900- 5 2.10000+ 1 1.77100- 5 2.20000+ 1 1.69700- 5 2.70000+ 1 8.22000- 6 1 48000 0 0 1.12410+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.38780- 2 3.00000+ 0 7.24690- 3 5.00000+ 0 7.25370- 3 6.00000+ 0 6.54310- 3 8.00000+ 0 2.04060- 3 1.00000+ 1 1.97710- 3 1.10000+ 1 1.82230- 3 1.30000+ 1 1.70270- 3 1.40000+ 1 1.66530- 3 1.60000+ 1 5.26190- 4 1.80000+ 1 4.62500- 4 1.90000+ 1 4.25500- 4 2.10000+ 1 2.73900- 4 2.20000+ 1 2.66000- 4 2.70000+ 1 5.21900- 5 1 48000 0 0 1.12410+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.60560-10 3.00000+ 0 6.92000-10 5.00000+ 0 5.85030-10 6.00000+ 0 6.12450-10 8.00000+ 0 1.88020- 9 1.00000+ 1 1.83040- 9 1.10000+ 1 1.88750- 9 1.30000+ 1 1.73500- 9 1.40000+ 1 1.75320- 9 1.60000+ 1 4.59530- 9 1.80000+ 1 4.88490- 9 1.90000+ 1 5.04320- 9 2.10000+ 1 6.40250- 9 2.20000+ 1 6.49520- 9 2.70000+ 1 1.50680- 8 1 48000 0 0 1.12410+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.93860- 6 3.00000+ 0 8.52250- 8 5.00000+ 0 1.41450- 7 6.00000+ 0 1.34830- 7 8.00000+ 0 1.56130- 9 1.00000+ 1 1.56670- 9 1.10000+ 1 1.48270- 9 1.30000+ 1 1.17800-10 1.40000+ 1 1.04060-10 1.60000+ 1 3.42280-11 1.80000+ 1 1.01090-10 1.90000+ 1 8.30390-11 1 48000 0 0 1.12410+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.15390- 6 3.00000+ 0 4.19470- 6 5.00000+ 0 2.26050- 6 6.00000+ 0 2.07700- 6 8.00000+ 0 1.17130- 5 1.00000+ 1 3.83190- 6 1.10000+ 1 4.07220- 6 1.30000+ 1 3.43480- 7 1.40000+ 1 3.48270- 7 1.60000+ 1 2.53420- 5 1.80000+ 1 1.64700- 5 1.90000+ 1 1.77340- 5 1 48000 0 0 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.25901- 4 3.00000+ 0 1.46419- 4 5.00000+ 0 1.17298- 4 6.00000+ 0 1.11660- 4 8.00000+ 0 1.03454- 4 1.00000+ 1 8.31198- 5 1.10000+ 1 8.06400- 5 1.30000+ 1 4.88625- 5 1.40000+ 1 4.85638- 5 1.60000+ 1 5.00757- 5 1.80000+ 1 3.46649- 5 1.90000+ 1 3.42840- 5 2.10000+ 1 1.77100- 5 2.20000+ 1 1.69700- 5 2.70000+ 1 8.22000- 6 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.07031- 1 3.00000+ 0 6.56994- 2 5.00000+ 0 7.10827- 2 6.00000+ 0 6.32777- 2 8.00000+ 0 1.80984- 3 1.00000+ 1 1.92318- 3 1.10000+ 1 1.79703- 3 1.30000+ 1 7.45516- 4 1.40000+ 1 6.71120- 4 1.60000+ 1 4.02881- 5 1.80000+ 1 2.55394- 5 1.90000+ 1 7.11945- 6 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.01073- 2 3.00000+ 0 2.06806- 4 5.00000+ 0 2.28634- 4 6.00000+ 0 1.92335- 4 8.00000+ 0 8.00526- 7 1.00000+ 1 8.01787- 7 1.10000+ 1 7.54979- 7 1.30000+ 1 2.51456- 7 1.40000+ 1 2.24521- 7 1.60000+ 1 1.79869- 9 1.80000+ 1 1.55814- 9 1.90000+ 1 3.96876-10 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.34054+ 0 3.00000+ 0 7.54703+ 0 5.00000+ 0 5.82744+ 0 6.00000+ 0 5.51436+ 0 8.00000+ 0 5.05678+ 0 1.00000+ 1 3.83766+ 0 1.10000+ 1 3.70971+ 0 1.30000+ 1 1.82521+ 0 1.40000+ 1 1.84205+ 0 1.60000+ 1 1.93707+ 0 1.80000+ 1 9.99974- 1 1.90000+ 1 9.99993- 1 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.45484- 3 3.00000+ 0 3.64088- 3 5.00000+ 0 3.38497- 3 6.00000+ 0 3.23140- 3 8.00000+ 0 6.51116- 4 1.00000+ 1 5.63868- 4 1.10000+ 1 5.31235- 4 1.30000+ 1 3.70946- 4 1.40000+ 1 3.64072- 4 1.60000+ 1 6.32825- 5 1.80000+ 1 4.35535- 5 1.90000+ 1 3.79056- 5 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.43038- 1 2.29571- 2 6.00000+ 0 4.56837- 1 2.31526- 2 1.00000+ 1 4.03067- 2 2.60402- 2 1.10000+ 1 7.82974- 2 2.60754- 2 1.30000+ 1 2.88988- 4 2.62679- 2 1.40000+ 1 4.02237- 4 2.62751- 2 1.80000+ 1 8.20524- 3 2.66098- 2 1.90000+ 1 1.59199- 2 2.66158- 2 2.10000+ 1 3.60657- 5 2.66703- 2 2.20000+ 1 4.96946- 5 2.66710- 2 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.17163- 2 1.86998- 2 3.00000+ 0 5.00000+ 0 1.35877- 2 1.89630- 2 3.00000+ 0 6.00000+ 0 1.84885- 2 1.91585- 2 3.00000+ 0 8.00000+ 0 4.01440- 3 2.19385- 2 3.00000+ 0 1.00000+ 1 2.46821- 3 2.20461- 2 3.00000+ 0 1.10000+ 1 3.36905- 3 2.20813- 2 3.00000+ 0 1.30000+ 1 2.08296- 4 2.22738- 2 3.00000+ 0 1.40000+ 1 2.40796- 4 2.22810- 2 3.00000+ 0 1.60000+ 1 7.86285- 4 2.25805- 2 3.00000+ 0 1.80000+ 1 4.39859- 4 2.26157- 2 3.00000+ 0 1.90000+ 1 5.93497- 4 2.26217- 2 3.00000+ 0 2.10000+ 1 2.69607- 5 2.26762- 2 3.00000+ 0 2.20000+ 1 3.06533- 5 2.26769- 2 3.00000+ 0 2.70000+ 1 7.60795- 5 2.26857- 2 5.00000+ 0 5.00000+ 0 1.89140- 3 1.92262- 2 5.00000+ 0 6.00000+ 0 4.10623- 2 1.94217- 2 5.00000+ 0 8.00000+ 0 1.92787- 3 2.22017- 2 5.00000+ 0 1.00000+ 1 6.19718- 4 2.23093- 2 5.00000+ 0 1.10000+ 1 6.25946- 3 2.23445- 2 5.00000+ 0 1.30000+ 1 2.59990- 4 2.25370- 2 5.00000+ 0 1.40000+ 1 8.96323- 4 2.25442- 2 5.00000+ 0 1.60000+ 1 3.64156- 4 2.28437- 2 5.00000+ 0 1.80000+ 1 1.08577- 4 2.28789- 2 5.00000+ 0 1.90000+ 1 1.06988- 3 2.28849- 2 5.00000+ 0 2.10000+ 1 3.32390- 5 2.29394- 2 5.00000+ 0 2.20000+ 1 1.12638- 4 2.29401- 2 5.00000+ 0 2.70000+ 1 3.50843- 5 2.29489- 2 6.00000+ 0 6.00000+ 0 2.11080- 2 1.96172- 2 6.00000+ 0 8.00000+ 0 2.59664- 3 2.23972- 2 6.00000+ 0 1.00000+ 1 6.15352- 3 2.25048- 2 6.00000+ 0 1.10000+ 1 6.59576- 3 2.25400- 2 6.00000+ 0 1.30000+ 1 1.08028- 3 2.27325- 2 6.00000+ 0 1.40000+ 1 1.01011- 3 2.27397- 2 6.00000+ 0 1.60000+ 1 4.89717- 4 2.30392- 2 6.00000+ 0 1.80000+ 1 1.06218- 3 2.30744- 2 6.00000+ 0 1.90000+ 1 1.13342- 3 2.30804- 2 6.00000+ 0 2.10000+ 1 1.37379- 4 2.31349- 2 6.00000+ 0 2.20000+ 1 1.27416- 4 2.31356- 2 6.00000+ 0 2.70000+ 1 4.72736- 5 2.31444- 2 8.00000+ 0 8.00000+ 0 3.38662- 4 2.51773- 2 8.00000+ 0 1.00000+ 1 3.53449- 4 2.52848- 2 8.00000+ 0 1.10000+ 1 4.76794- 4 2.53200- 2 8.00000+ 0 1.30000+ 1 2.76985- 5 2.55126- 2 8.00000+ 0 1.40000+ 1 3.10234- 5 2.55198- 2 8.00000+ 0 1.60000+ 1 1.32221- 4 2.58193- 2 8.00000+ 0 1.80000+ 1 6.31531- 5 2.58544- 2 8.00000+ 0 1.90000+ 1 8.42054- 5 2.58604- 2 8.00000+ 0 2.10000+ 1 3.69332- 6 2.59149- 2 8.00000+ 0 2.20000+ 1 4.06260- 6 2.59157- 2 8.00000+ 0 2.70000+ 1 1.29266- 5 2.59244- 2 1.00000+ 1 1.00000+ 1 4.87532- 5 2.53924- 2 1.00000+ 1 1.10000+ 1 9.52152- 4 2.54276- 2 1.00000+ 1 1.30000+ 1 3.06553- 5 2.56201- 2 1.00000+ 1 1.40000+ 1 1.06004- 4 2.56273- 2 1.00000+ 1 1.60000+ 1 6.68511- 5 2.59268- 2 1.00000+ 1 1.80000+ 1 1.69908- 5 2.59620- 2 1.00000+ 1 1.90000+ 1 1.63246- 4 2.59680- 2 1.00000+ 1 2.10000+ 1 4.06280- 6 2.60225- 2 1.00000+ 1 2.20000+ 1 1.32959- 5 2.60232- 2 1.00000+ 1 2.70000+ 1 6.27885- 6 2.60320- 2 1.10000+ 1 1.10000+ 1 5.16701- 4 2.54627- 2 1.10000+ 1 1.30000+ 1 1.34074- 4 2.56553- 2 1.10000+ 1 1.40000+ 1 1.22252- 4 2.56625- 2 1.10000+ 1 1.60000+ 1 9.01170- 5 2.59620- 2 1.10000+ 1 1.80000+ 1 1.64716- 4 2.59971- 2 1.10000+ 1 1.90000+ 1 1.77635- 4 2.60032- 2 1.10000+ 1 2.10000+ 1 1.69905- 5 2.60577- 2 1.10000+ 1 2.20000+ 1 1.55118- 5 2.60584- 2 1.10000+ 1 2.70000+ 1 8.49474- 6 2.60671- 2 1.30000+ 1 1.40000+ 1 1.55110- 5 2.58551- 2 1.30000+ 1 1.60000+ 1 5.17040- 6 2.61546- 2 1.30000+ 1 1.80000+ 1 5.17040- 6 2.61897- 2 1.30000+ 1 1.90000+ 1 2.21589- 5 2.61957- 2 1.30000+ 1 2.20000+ 1 1.84662- 6 2.62510- 2 1.30000+ 1 2.70000+ 1 3.69324- 7 2.62597- 2 1.40000+ 1 1.40000+ 1 3.83010- 6 2.58623- 2 1.40000+ 1 1.60000+ 1 6.12810- 6 2.61618- 2 1.40000+ 1 1.80000+ 1 1.80005- 5 2.61969- 2 1.40000+ 1 1.90000+ 1 2.06819- 5 2.62029- 2 1.40000+ 1 2.10000+ 1 1.91505- 6 2.62574- 2 1.40000+ 1 2.20000+ 1 7.66000- 7 2.62582- 2 1.40000+ 1 2.70000+ 1 7.66000- 7 2.62669- 2 1.60000+ 1 1.60000+ 1 1.35667- 5 2.64613- 2 1.60000+ 1 1.80000+ 1 1.24038- 5 2.64964- 2 1.60000+ 1 1.90000+ 1 1.66674- 5 2.65024- 2 1.60000+ 1 2.10000+ 1 7.75224- 7 2.65569- 2 1.60000+ 1 2.20000+ 1 7.75224- 7 2.65577- 2 1.60000+ 1 2.70000+ 1 2.71324- 6 2.65664- 2 1.80000+ 1 1.80000+ 1 1.47728- 6 2.65316- 2 1.80000+ 1 1.90000+ 1 2.80679- 5 2.65376- 2 1.80000+ 1 2.10000+ 1 7.38638- 7 2.65921- 2 1.80000+ 1 2.20000+ 1 2.21592- 6 2.65928- 2 1.80000+ 1 2.70000+ 1 1.10800- 6 2.66016- 2 1.90000+ 1 1.90000+ 1 1.63497- 5 2.65436- 2 1.90000+ 1 2.10000+ 1 3.19044- 6 2.65981- 2 1.90000+ 1 2.20000+ 1 2.79149- 6 2.65988- 2 1.90000+ 1 2.70000+ 1 1.59516- 6 2.66076- 2 2.10000+ 1 2.20000+ 1 4.05707- 7 2.66533- 2 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.87570- 5 2.63200- 4 6.00000+ 0 1.64670- 4 4.58700- 4 1.00000+ 1 6.45791- 3 3.34631- 3 1.10000+ 1 1.06670- 2 3.38147- 3 1.30000+ 1 7.47191- 5 3.57404- 3 1.40000+ 1 1.11450- 4 3.58124- 3 1.80000+ 1 1.19010- 3 3.91588- 3 1.90000+ 1 1.98980- 3 3.92191- 3 2.10000+ 1 6.51711- 6 3.97639- 3 2.20000+ 1 9.75711- 6 3.97713- 3 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 3.84431- 2 1.49840- 4 5.00000+ 0 1.80000+ 1 2.64697- 2 1.84980- 4 5.00000+ 0 1.90000+ 1 3.50907- 2 1.91010- 4 5.00000+ 0 2.10000+ 1 7.48961- 3 2.45490- 4 5.00000+ 0 2.20000+ 1 1.22871- 2 2.46230- 4 5.00000+ 0 2.70000+ 1 3.62988- 3 2.54980- 4 6.00000+ 0 1.30000+ 1 1.02638- 1 3.86400- 5 6.00000+ 0 1.40000+ 1 2.51670- 1 4.58400- 5 6.00000+ 0 1.60000+ 1 5.44658- 2 3.45340- 4 6.00000+ 0 1.80000+ 1 2.38780- 2 3.80480- 4 6.00000+ 0 1.90000+ 1 4.64661- 2 3.86510- 4 6.00000+ 0 2.10000+ 1 3.18858- 2 4.40990- 4 6.00000+ 0 2.20000+ 1 4.14022- 2 4.41730- 4 6.00000+ 0 2.70000+ 1 5.13472- 3 4.50480- 4 8.00000+ 0 8.00000+ 0 9.65185- 3 2.48336- 3 8.00000+ 0 1.00000+ 1 1.90665- 2 2.59094- 3 8.00000+ 0 1.10000+ 1 3.58278- 2 2.62610- 3 8.00000+ 0 1.30000+ 1 2.84744- 2 2.81867- 3 8.00000+ 0 1.40000+ 1 4.07401- 2 2.82587- 3 8.00000+ 0 1.60000+ 1 3.24824- 3 3.12537- 3 8.00000+ 0 1.80000+ 1 3.33128- 3 3.16051- 3 8.00000+ 0 1.90000+ 1 6.18383- 3 3.16654- 3 8.00000+ 0 2.10000+ 1 3.19738- 3 3.22102- 3 8.00000+ 0 2.20000+ 1 4.52127- 3 3.22176- 3 8.00000+ 0 2.70000+ 1 3.07477- 4 3.23051- 3 1.00000+ 1 1.00000+ 1 1.27059- 4 2.69852- 3 1.00000+ 1 1.10000+ 1 8.03613- 4 2.73368- 3 1.00000+ 1 1.30000+ 1 7.19757- 4 2.92625- 3 1.00000+ 1 1.40000+ 1 1.02098- 2 2.93345- 3 1.00000+ 1 1.60000+ 1 2.60661- 3 3.23295- 3 1.00000+ 1 1.80000+ 1 2.54097- 5 3.26809- 3 1.00000+ 1 1.90000+ 1 1.32135- 4 3.27412- 3 1.00000+ 1 2.10000+ 1 8.19491- 5 3.32860- 3 1.00000+ 1 2.20000+ 1 7.86456- 4 3.32934- 3 1.00000+ 1 2.70000+ 1 2.38220- 4 3.33809- 3 1.10000+ 1 1.10000+ 1 8.38538- 4 2.76884- 3 1.10000+ 1 1.30000+ 1 7.95612- 3 2.96141- 3 1.10000+ 1 1.40000+ 1 5.49752- 3 2.96861- 3 1.10000+ 1 1.60000+ 1 4.89980- 3 3.26811- 3 1.10000+ 1 1.80000+ 1 1.32135- 4 3.30325- 3 1.10000+ 1 1.90000+ 1 2.26789- 4 3.30928- 3 1.10000+ 1 2.10000+ 1 5.60304- 4 3.36376- 3 1.10000+ 1 2.20000+ 1 3.98942- 4 3.36450- 3 1.10000+ 1 2.70000+ 1 4.47873- 4 3.37325- 3 1.30000+ 1 1.30000+ 1 1.54239- 3 3.15398- 3 1.30000+ 1 1.40000+ 1 5.82533- 2 3.16118- 3 1.30000+ 1 1.60000+ 1 3.71699- 3 3.46068- 3 1.30000+ 1 1.80000+ 1 1.63902- 4 3.49582- 3 1.30000+ 1 1.90000+ 1 1.36773- 3 3.50185- 3 1.30000+ 1 2.10000+ 1 3.44310- 4 3.55633- 3 1.30000+ 1 2.20000+ 1 4.92653- 3 3.55707- 3 1.30000+ 1 2.70000+ 1 3.37965- 4 3.56582- 3 1.40000+ 1 1.40000+ 1 1.64120- 2 3.16838- 3 1.40000+ 1 1.60000+ 1 5.34065- 3 3.46788- 3 1.40000+ 1 1.80000+ 1 1.64409- 3 3.50302- 3 1.40000+ 1 1.90000+ 1 9.89097- 4 3.50905- 3 1.40000+ 1 2.10000+ 1 4.92766- 3 3.56353- 3 1.40000+ 1 2.20000+ 1 2.88460- 3 3.56427- 3 1.40000+ 1 2.70000+ 1 4.85962- 4 3.57302- 3 1.60000+ 1 1.60000+ 1 2.60445- 4 3.76738- 3 1.60000+ 1 1.80000+ 1 4.56112- 4 3.80252- 3 1.60000+ 1 1.90000+ 1 8.47451- 4 3.80855- 3 1.60000+ 1 2.10000+ 1 4.16103- 4 3.86303- 3 1.60000+ 1 2.20000+ 1 5.90177- 4 3.86377- 3 1.60000+ 1 2.70000+ 1 4.89145- 5 3.87252- 3 1.80000+ 1 1.80000+ 1 1.27059- 6 3.83766- 3 1.80000+ 1 1.90000+ 1 2.22343- 5 3.84369- 3 1.80000+ 1 2.10000+ 1 1.58814- 5 3.89817- 3 1.80000+ 1 2.20000+ 1 1.30227- 4 3.89891- 3 1.80000+ 1 2.70000+ 1 4.19267- 5 3.90766- 3 1.90000+ 1 1.90000+ 1 1.52471- 5 3.84972- 3 1.90000+ 1 2.10000+ 1 1.00371- 4 3.90420- 3 1.90000+ 1 2.20000+ 1 7.43283- 5 3.90494- 3 1.90000+ 1 2.70000+ 1 7.75040- 5 3.91369- 3 2.10000+ 1 2.10000+ 1 1.84225- 5 3.95868- 3 2.10000+ 1 2.20000+ 1 4.38973- 4 3.95942- 3 2.10000+ 1 2.70000+ 1 3.81149- 5 3.96817- 3 2.20000+ 1 2.20000+ 1 1.32134- 4 3.96016- 3 2.20000+ 1 2.70000+ 1 5.39965- 5 3.96891- 3 2.70000+ 1 2.70000+ 1 2.54100- 6 3.97766- 3 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.89701- 8 1.95500- 4 8.00000+ 0 3.51722- 3 2.97553- 3 1.10000+ 1 4.29162- 5 3.11827- 3 1.30000+ 1 4.99682- 2 3.31084- 3 1.60000+ 1 3.88632- 4 3.61754- 3 1.90000+ 1 3.11932- 6 3.65871- 3 2.10000+ 1 5.14243- 3 3.71319- 3 2.70000+ 1 2.27301- 5 3.72268- 3 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.35397- 2 8.21400- 5 6.00000+ 0 1.80000+ 1 5.20491- 2 1.17280- 4 6.00000+ 0 1.90000+ 1 1.86095- 2 1.23310- 4 6.00000+ 0 2.10000+ 1 5.63771- 2 1.77790- 4 6.00000+ 0 2.20000+ 1 2.12343- 2 1.78530- 4 6.00000+ 0 2.70000+ 1 1.18106- 3 1.87280- 4 8.00000+ 0 8.00000+ 0 1.20144- 3 2.22016- 3 8.00000+ 0 1.00000+ 1 2.74784- 2 2.32774- 3 8.00000+ 0 1.10000+ 1 2.65309- 3 2.36290- 3 8.00000+ 0 1.30000+ 1 1.78009- 3 2.55547- 3 8.00000+ 0 1.40000+ 1 3.97108- 3 2.56267- 3 8.00000+ 0 1.60000+ 1 3.78197- 4 2.86217- 3 8.00000+ 0 1.80000+ 1 3.38795- 3 2.89731- 3 8.00000+ 0 1.90000+ 1 4.08772- 4 2.90334- 3 8.00000+ 0 2.10000+ 1 1.48331- 4 2.95782- 3 8.00000+ 0 2.20000+ 1 2.88738- 4 2.95856- 3 8.00000+ 0 2.70000+ 1 3.51019- 5 2.96731- 3 1.00000+ 1 1.00000+ 1 2.67128- 2 2.43532- 3 1.00000+ 1 1.10000+ 1 8.57155- 2 2.47048- 3 1.00000+ 1 1.30000+ 1 4.60022- 2 2.66305- 3 1.00000+ 1 1.40000+ 1 8.03891- 2 2.67025- 3 1.00000+ 1 1.60000+ 1 5.48818- 3 2.96975- 3 1.00000+ 1 1.80000+ 1 8.08099- 3 3.00489- 3 1.00000+ 1 1.90000+ 1 1.45427- 2 3.01092- 3 1.00000+ 1 2.10000+ 1 5.14535- 3 3.06540- 3 1.00000+ 1 2.20000+ 1 8.92356- 3 3.06614- 3 1.00000+ 1 2.70000+ 1 5.31046- 4 3.07489- 3 1.10000+ 1 1.10000+ 1 2.28494- 3 2.50564- 3 1.10000+ 1 1.30000+ 1 5.62778- 2 2.69821- 3 1.10000+ 1 1.40000+ 1 7.59427- 3 2.70541- 3 1.10000+ 1 1.60000+ 1 4.57447- 4 3.00491- 3 1.10000+ 1 1.80000+ 1 1.09488- 2 3.04005- 3 1.10000+ 1 1.90000+ 1 6.57854- 4 3.04608- 3 1.10000+ 1 2.10000+ 1 5.50664- 3 3.10056- 3 1.10000+ 1 2.20000+ 1 6.89568- 4 3.10130- 3 1.10000+ 1 2.70000+ 1 4.30279- 5 3.11005- 3 1.30000+ 1 1.30000+ 1 5.07838- 2 2.89078- 3 1.30000+ 1 1.40000+ 1 2.20345- 1 2.89798- 3 1.30000+ 1 1.60000+ 1 3.65735- 4 3.19748- 3 1.30000+ 1 1.80000+ 1 5.88349- 3 3.23262- 3 1.30000+ 1 1.90000+ 1 9.05398- 3 3.23865- 3 1.30000+ 1 2.10000+ 1 9.91457- 3 3.29313- 3 1.30000+ 1 2.20000+ 1 2.26802- 2 3.29387- 3 1.30000+ 1 2.70000+ 1 3.51012- 5 3.30262- 3 1.40000+ 1 1.40000+ 1 1.04771- 2 2.90518- 3 1.40000+ 1 1.60000+ 1 6.77130- 4 3.20468- 3 1.40000+ 1 1.80000+ 1 9.24437- 3 3.23982- 3 1.40000+ 1 1.90000+ 1 1.12208- 3 3.24585- 3 1.40000+ 1 2.10000+ 1 1.86555- 2 3.30033- 3 1.40000+ 1 2.20000+ 1 1.98050- 3 3.30107- 3 1.40000+ 1 2.70000+ 1 6.45415- 5 3.30982- 3 1.60000+ 1 1.60000+ 1 3.76124- 5 3.50418- 3 1.60000+ 1 1.80000+ 1 8.67955- 4 3.53932- 3 1.60000+ 1 1.90000+ 1 9.11384- 5 3.54535- 3 1.60000+ 1 2.10000+ 1 3.76124- 5 3.59983- 3 1.60000+ 1 2.20000+ 1 6.36540- 5 3.60057- 3 1.60000+ 1 2.70000+ 1 7.23298- 6 3.60932- 3 1.80000+ 1 1.80000+ 1 5.89149- 4 3.57446- 3 1.80000+ 1 1.90000+ 1 1.85796- 3 3.58049- 3 1.80000+ 1 2.10000+ 1 6.50314- 4 3.63497- 3 1.80000+ 1 2.20000+ 1 1.03319- 3 3.63571- 3 1.80000+ 1 2.70000+ 1 6.57094- 5 3.64446- 3 1.90000+ 1 1.90000+ 1 4.75555- 5 3.58652- 3 1.90000+ 1 2.10000+ 1 8.93386- 4 3.64100- 3 1.90000+ 1 2.20000+ 1 1.04170- 4 3.64174- 3 1.90000+ 1 2.70000+ 1 6.79368- 6 3.65049- 3 2.10000+ 1 2.10000+ 1 4.80076- 4 3.69548- 3 2.10000+ 1 2.20000+ 1 1.96794- 3 3.69622- 3 2.10000+ 1 2.70000+ 1 3.39684- 6 3.70497- 3 2.20000+ 1 2.20000+ 1 1.08044- 4 3.69696- 3 2.20000+ 1 2.70000+ 1 5.20673- 6 3.70571- 3 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 6.00518- 3 2.78003- 3 1.00000+ 1 2.93199- 5 2.88761- 3 1.10000+ 1 2.75549- 5 2.92277- 3 1.30000+ 1 5.04698- 3 3.11534- 3 1.40000+ 1 4.47809- 2 3.12254- 3 1.60000+ 1 4.08279- 4 3.42204- 3 1.80000+ 1 1.58660- 6 3.45718- 3 1.90000+ 1 1.51070- 6 3.46321- 3 2.10000+ 1 5.10248- 4 3.51769- 3 2.20000+ 1 4.51149- 3 3.51843- 3 2.70000+ 1 2.85249- 5 3.52718- 3 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.52808- 3 2.02466- 3 8.00000+ 0 1.00000+ 1 1.13227- 3 2.13224- 3 8.00000+ 0 1.10000+ 1 3.18017- 2 2.16740- 3 8.00000+ 0 1.30000+ 1 3.10042- 3 2.35997- 3 8.00000+ 0 1.40000+ 1 3.25781- 3 2.36717- 3 8.00000+ 0 1.60000+ 1 4.81938- 4 2.66667- 3 8.00000+ 0 1.80000+ 1 1.68427- 4 2.70181- 3 8.00000+ 0 1.90000+ 1 3.90564- 3 2.70784- 3 8.00000+ 0 2.10000+ 1 2.05299- 4 2.76232- 3 8.00000+ 0 2.20000+ 1 2.02841- 4 2.76306- 3 8.00000+ 0 2.70000+ 1 4.54866- 5 2.77181- 3 1.00000+ 1 1.00000+ 1 3.94634- 4 2.23982- 3 1.00000+ 1 1.10000+ 1 5.26749- 2 2.27498- 3 1.00000+ 1 1.30000+ 1 3.63156- 3 2.46755- 3 1.00000+ 1 1.40000+ 1 3.25354- 2 2.47475- 3 1.00000+ 1 1.60000+ 1 1.91781- 4 2.77425- 3 1.00000+ 1 1.80000+ 1 1.15556- 4 2.80939- 3 1.00000+ 1 1.90000+ 1 6.68297- 3 2.81542- 3 1.00000+ 1 2.10000+ 1 3.82342- 4 2.86990- 3 1.00000+ 1 2.20000+ 1 3.01811- 3 2.87064- 3 1.00000+ 1 2.70000+ 1 1.84406- 5 2.87939- 3 1.10000+ 1 1.10000+ 1 7.50337- 2 2.31014- 3 1.10000+ 1 1.30000+ 1 7.51685- 2 2.50271- 3 1.10000+ 1 1.40000+ 1 1.14655- 1 2.50991- 3 1.10000+ 1 1.60000+ 1 6.29076- 3 2.80941- 3 1.10000+ 1 1.80000+ 1 8.88224- 3 2.84455- 3 1.10000+ 1 1.90000+ 1 2.22355- 2 2.85058- 3 1.10000+ 1 2.10000+ 1 8.15168- 3 2.90506- 3 1.10000+ 1 2.20000+ 1 1.22130- 2 2.90580- 3 1.10000+ 1 2.70000+ 1 6.08521- 4 2.91455- 3 1.30000+ 1 1.30000+ 1 1.08013- 2 2.69528- 3 1.30000+ 1 1.40000+ 1 2.08561- 1 2.70248- 3 1.30000+ 1 1.60000+ 1 5.69235- 4 3.00198- 3 1.30000+ 1 1.80000+ 1 6.07317- 4 3.03712- 3 1.30000+ 1 1.90000+ 1 8.96332- 3 3.04315- 3 1.30000+ 1 2.10000+ 1 2.11938- 3 3.09763- 3 1.30000+ 1 2.20000+ 1 1.78133- 2 3.09837- 3 1.30000+ 1 2.70000+ 1 5.40945- 5 3.10712- 3 1.40000+ 1 1.40000+ 1 1.41872- 1 2.70968- 3 1.40000+ 1 1.60000+ 1 6.38060- 4 3.00918- 3 1.40000+ 1 1.80000+ 1 5.14166- 3 3.04432- 3 1.40000+ 1 1.90000+ 1 1.51356- 2 3.05035- 3 1.40000+ 1 2.10000+ 1 2.06738- 2 3.10483- 3 1.40000+ 1 2.20000+ 1 2.66066- 2 3.10557- 3 1.40000+ 1 2.70000+ 1 6.14686- 5 3.11432- 3 1.60000+ 1 1.60000+ 1 4.87636- 5 3.30868- 3 1.60000+ 1 1.80000+ 1 3.61786- 5 3.34382- 3 1.60000+ 1 1.90000+ 1 9.90999- 4 3.34985- 3 1.60000+ 1 2.10000+ 1 5.03363- 5 3.40433- 3 1.60000+ 1 2.20000+ 1 5.34815- 5 3.40507- 3 1.60000+ 1 2.70000+ 1 9.43769- 6 3.41382- 3 1.80000+ 1 1.80000+ 1 8.65926- 6 3.37896- 3 1.80000+ 1 1.90000+ 1 1.13193- 3 3.38499- 3 1.80000+ 1 2.10000+ 1 6.30893- 5 3.43947- 3 1.80000+ 1 2.20000+ 1 4.91144- 4 3.44021- 3 1.80000+ 1 2.70000+ 1 2.47411- 6 3.44896- 3 1.90000+ 1 1.90000+ 1 1.59221- 3 3.39102- 3 1.90000+ 1 2.10000+ 1 9.67800- 4 3.44550- 3 1.90000+ 1 2.20000+ 1 1.58744- 3 3.44624- 3 1.90000+ 1 2.70000+ 1 7.45438- 5 3.45499- 3 2.10000+ 1 2.10000+ 1 1.02034- 4 3.49998- 3 2.10000+ 1 2.20000+ 1 1.80597- 3 3.50072- 3 2.10000+ 1 2.70000+ 1 3.68808- 6 3.50947- 3 2.20000+ 1 2.20000+ 1 1.29129- 3 3.50146- 3 2.20000+ 1 2.70000+ 1 3.80177- 6 3.51021- 3 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.16757- 5 1.07580- 4 1.10000+ 1 5.65657- 5 1.42740- 4 1.80000+ 1 1.20080- 4 6.77150- 4 1.90000+ 1 1.72823- 4 6.83180- 4 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.60000+ 1 4.13581- 2 0.00000+ 0 1.00000+ 1 1.80000+ 1 4.92490- 2 2.93600- 5 1.00000+ 1 1.90000+ 1 9.36500- 2 3.53900- 5 1.00000+ 1 2.10000+ 1 5.10064- 2 8.98700- 5 1.00000+ 1 2.20000+ 1 6.79992- 2 9.06100- 5 1.00000+ 1 2.70000+ 1 3.54633- 3 9.93600- 5 1.10000+ 1 1.60000+ 1 7.60897- 2 2.93800- 5 1.10000+ 1 1.80000+ 1 8.39822- 2 6.45200- 5 1.10000+ 1 1.90000+ 1 1.33293- 1 7.05500- 5 1.10000+ 1 2.10000+ 1 4.74325- 2 1.25030- 4 1.10000+ 1 2.20000+ 1 7.00961- 2 1.25770- 4 1.10000+ 1 2.70000+ 1 5.51458- 3 1.34520- 4 1.30000+ 1 1.60000+ 1 2.98378- 2 2.21950- 4 1.30000+ 1 1.80000+ 1 5.81988- 3 2.57090- 4 1.30000+ 1 1.90000+ 1 4.39842- 3 2.63120- 4 1.30000+ 1 2.10000+ 1 5.21439- 3 3.17600- 4 1.30000+ 1 2.20000+ 1 6.08422- 3 3.18340- 4 1.30000+ 1 2.70000+ 1 1.61212- 3 3.27090- 4 1.40000+ 1 1.60000+ 1 4.38315- 2 2.29150- 4 1.40000+ 1 1.80000+ 1 1.61474- 3 2.64290- 4 1.40000+ 1 1.90000+ 1 1.15443- 2 2.70320- 4 1.40000+ 1 2.10000+ 1 6.43079- 3 3.24800- 4 1.40000+ 1 2.20000+ 1 1.03742- 2 3.25540- 4 1.40000+ 1 2.70000+ 1 2.36433- 3 3.34290- 4 1.60000+ 1 1.60000+ 1 1.19259- 2 5.28650- 4 1.60000+ 1 1.80000+ 1 1.81602- 2 5.63790- 4 1.60000+ 1 1.90000+ 1 3.36429- 2 5.69820- 4 1.60000+ 1 2.10000+ 1 2.52594- 2 6.24300- 4 1.60000+ 1 2.20000+ 1 3.65646- 2 6.25040- 4 1.60000+ 1 2.70000+ 1 1.48662- 3 6.33790- 4 1.80000+ 1 1.80000+ 1 1.11068- 3 5.98930- 4 1.80000+ 1 1.90000+ 1 2.66722- 3 6.04960- 4 1.80000+ 1 2.10000+ 1 1.26846- 3 6.59440- 4 1.80000+ 1 2.20000+ 1 3.72147- 4 6.60180- 4 1.80000+ 1 2.70000+ 1 9.88981- 4 6.68930- 4 1.90000+ 1 1.90000+ 1 3.41632- 3 6.10990- 4 1.90000+ 1 2.10000+ 1 9.75900- 4 6.65470- 4 1.90000+ 1 2.20000+ 1 2.93738- 3 6.66210- 4 1.90000+ 1 2.70000+ 1 1.77166- 3 6.74960- 4 2.10000+ 1 2.10000+ 1 2.81373- 4 7.19950- 4 2.10000+ 1 2.20000+ 1 6.82163- 4 7.20690- 4 2.10000+ 1 2.70000+ 1 1.29436- 3 7.29440- 4 2.20000+ 1 2.20000+ 1 5.72377- 4 7.21430- 4 2.20000+ 1 2.70000+ 1 1.87221- 3 7.30180- 4 2.70000+ 1 2.70000+ 1 4.39219- 5 7.38930- 4 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.26419- 4 2.27730- 4 1.60000+ 1 2.18565- 4 5.34430- 4 2.10000+ 1 5.01896- 4 6.30080- 4 2.70000+ 1 1.75080- 5 6.39570- 4 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.91616- 2 1.74500- 5 1.10000+ 1 2.20000+ 1 4.63839- 2 1.81900- 5 1.10000+ 1 2.70000+ 1 5.20645- 3 2.69400- 5 1.30000+ 1 1.60000+ 1 1.41727- 1 1.14370- 4 1.30000+ 1 1.80000+ 1 1.45155- 1 1.49510- 4 1.30000+ 1 1.90000+ 1 2.19971- 1 1.55540- 4 1.30000+ 1 2.10000+ 1 4.30693- 2 2.10020- 4 1.30000+ 1 2.20000+ 1 4.14578- 2 2.10760- 4 1.30000+ 1 2.70000+ 1 1.04394- 2 2.19510- 4 1.40000+ 1 1.60000+ 1 2.45658- 2 1.21570- 4 1.40000+ 1 1.80000+ 1 1.86489- 1 1.56710- 4 1.40000+ 1 1.90000+ 1 1.97870- 2 1.62740- 4 1.40000+ 1 2.10000+ 1 4.74954- 3 2.17220- 4 1.40000+ 1 2.20000+ 1 5.90054- 3 2.17960- 4 1.40000+ 1 2.70000+ 1 1.28824- 3 2.26710- 4 1.60000+ 1 1.60000+ 1 6.96708- 4 4.21070- 4 1.60000+ 1 1.80000+ 1 1.01888- 2 4.56210- 4 1.60000+ 1 1.90000+ 1 1.64562- 3 4.62240- 4 1.60000+ 1 2.10000+ 1 3.47983- 4 5.16720- 4 1.60000+ 1 2.20000+ 1 8.28771- 4 5.17460- 4 1.60000+ 1 2.70000+ 1 8.31008- 5 5.26210- 4 1.80000+ 1 1.80000+ 1 6.64002- 3 4.91350- 4 1.80000+ 1 1.90000+ 1 2.08911- 2 4.97380- 4 1.80000+ 1 2.10000+ 1 1.36244- 2 5.51860- 4 1.80000+ 1 2.20000+ 1 2.25991- 2 5.52600- 4 1.80000+ 1 2.70000+ 1 7.15351- 4 5.61350- 4 1.90000+ 1 1.90000+ 1 6.00078- 4 5.03410- 4 1.90000+ 1 2.10000+ 1 1.67256- 3 5.57890- 4 1.90000+ 1 2.20000+ 1 1.11294- 3 5.58630- 4 1.90000+ 1 2.70000+ 1 9.51230- 5 5.67380- 4 2.10000+ 1 2.10000+ 1 4.62685- 4 6.12370- 4 2.10000+ 1 2.20000+ 1 9.63628- 4 6.13110- 4 2.10000+ 1 2.70000+ 1 2.46875- 5 6.21860- 4 2.20000+ 1 2.20000+ 1 2.39517- 4 6.13850- 4 2.20000+ 1 2.70000+ 1 4.93627- 5 6.22600- 4 2.70000+ 1 2.70000+ 1 2.12220- 6 6.31350- 4 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.80039- 5 1.92570- 4 1.40000+ 1 2.86592- 4 1.99770- 4 1.60000+ 1 2.66666- 4 4.99270- 4 2.10000+ 1 6.25791- 5 5.94920- 4 2.20000+ 1 5.15567- 4 5.95660- 4 2.70000+ 1 2.12177- 5 6.04410- 4 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.91916- 2 7.92100- 5 1.30000+ 1 1.80000+ 1 2.04328- 2 1.14350- 4 1.30000+ 1 1.90000+ 1 1.31993- 1 1.20380- 4 1.30000+ 1 2.10000+ 1 1.05331- 2 1.74860- 4 1.30000+ 1 2.20000+ 1 7.16789- 3 1.75600- 4 1.30000+ 1 2.70000+ 1 1.78471- 3 1.84350- 4 1.40000+ 1 1.60000+ 1 1.35809- 1 8.64100- 5 1.40000+ 1 1.80000+ 1 1.36063- 1 1.21550- 4 1.40000+ 1 1.90000+ 1 2.86131- 1 1.27580- 4 1.40000+ 1 2.10000+ 1 3.61173- 2 1.82060- 4 1.40000+ 1 2.20000+ 1 6.65426- 2 1.82800- 4 1.40000+ 1 2.70000+ 1 9.89396- 3 1.91550- 4 1.60000+ 1 1.60000+ 1 9.14952- 4 3.85910- 4 1.60000+ 1 1.80000+ 1 1.33439- 3 4.21050- 4 1.60000+ 1 1.90000+ 1 1.94229- 2 4.27080- 4 1.60000+ 1 2.10000+ 1 9.43211- 4 4.81560- 4 1.60000+ 1 2.20000+ 1 1.06934- 3 4.82300- 4 1.60000+ 1 2.70000+ 1 1.09379- 4 4.91050- 4 1.80000+ 1 1.80000+ 1 2.09941- 4 4.56190- 4 1.80000+ 1 1.90000+ 1 1.88133- 2 4.62220- 4 1.80000+ 1 2.10000+ 1 4.70009- 4 5.16700- 4 1.80000+ 1 2.20000+ 1 2.31731- 3 5.17440- 4 1.80000+ 1 2.70000+ 1 6.76422- 5 5.26190- 4 1.90000+ 1 1.90000+ 1 2.41319- 2 4.68250- 4 1.90000+ 1 2.10000+ 1 2.30994- 2 5.22730- 4 1.90000+ 1 2.20000+ 1 3.13386- 2 5.23470- 4 1.90000+ 1 2.70000+ 1 1.09039- 3 5.32220- 4 2.10000+ 1 2.10000+ 1 1.18836- 4 5.77210- 4 2.10000+ 1 2.20000+ 1 9.28892- 4 5.77950- 4 2.10000+ 1 2.70000+ 1 2.75336- 5 5.86700- 4 2.20000+ 1 2.20000+ 1 7.14906- 4 5.78690- 4 2.20000+ 1 2.70000+ 1 3.53680- 5 5.87440- 4 2.70000+ 1 2.70000+ 1 1.89723- 6 5.96190- 4 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 6.26730- 4 3.41840- 4 1.90000+ 1 1.04950- 4 3.47870- 4 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 8.78719- 4 1.93340- 4 1.60000+ 1 1.80000+ 1 1.33151- 2 2.28480- 4 1.60000+ 1 1.90000+ 1 1.31572- 2 2.34510- 4 1.60000+ 1 2.10000+ 1 1.41428- 1 2.88990- 4 1.60000+ 1 2.20000+ 1 2.35913- 2 2.89730- 4 1.60000+ 1 2.70000+ 1 7.91650- 5 2.98480- 4 1.80000+ 1 1.80000+ 1 1.40118- 3 2.63620- 4 1.80000+ 1 1.90000+ 1 2.37961- 2 2.69650- 4 1.80000+ 1 2.10000+ 1 1.03642- 1 3.24130- 4 1.80000+ 1 2.20000+ 1 9.24627- 3 3.24870- 4 1.80000+ 1 2.70000+ 1 3.64155- 4 3.33620- 4 1.90000+ 1 1.90000+ 1 1.00452- 2 2.75680- 4 1.90000+ 1 2.10000+ 1 2.30350- 1 3.30160- 4 1.90000+ 1 2.20000+ 1 9.68156- 3 3.30900- 4 1.90000+ 1 2.70000+ 1 4.82904- 4 3.39650- 4 2.10000+ 1 2.10000+ 1 1.32249- 1 3.84640- 4 2.10000+ 1 2.20000+ 1 2.71003- 1 3.85380- 4 2.10000+ 1 2.70000+ 1 9.08775- 3 3.94130- 4 2.20000+ 1 2.20000+ 1 4.59751- 3 3.86120- 4 2.20000+ 1 2.70000+ 1 8.70488- 4 3.94870- 4 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 6.56932- 4 3.40670- 4 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.26485- 3 1.86140- 4 1.60000+ 1 1.80000+ 1 7.97185- 3 2.21280- 4 1.60000+ 1 1.90000+ 1 2.09885- 2 2.27310- 4 1.60000+ 1 2.10000+ 1 1.72088- 2 2.81790- 4 1.60000+ 1 2.20000+ 1 1.48507- 1 2.82530- 4 1.60000+ 1 2.70000+ 1 1.09311- 4 2.91280- 4 1.80000+ 1 1.80000+ 1 3.90385- 5 2.56420- 4 1.80000+ 1 1.90000+ 1 2.39551- 2 2.62450- 4 1.80000+ 1 2.10000+ 1 2.13151- 3 3.16930- 4 1.80000+ 1 2.20000+ 1 1.26304- 1 3.17670- 4 1.80000+ 1 2.70000+ 1 2.81076- 4 3.26420- 4 1.90000+ 1 1.90000+ 1 1.59125- 2 2.68480- 4 1.90000+ 1 2.10000+ 1 1.18130- 2 3.22960- 4 1.90000+ 1 2.20000+ 1 2.09887- 1 3.23700- 4 1.90000+ 1 2.70000+ 1 6.48066- 4 3.32450- 4 2.10000+ 1 2.10000+ 1 1.91295- 3 3.77440- 4 2.10000+ 1 2.20000+ 1 1.86337- 1 3.78180- 4 2.10000+ 1 2.70000+ 1 6.40267- 4 3.86930- 4 2.20000+ 1 2.20000+ 1 2.14163- 1 3.78920- 4 2.20000+ 1 2.70000+ 1 9.26788- 3 3.87670- 4 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 7.68543- 6 3.51400- 5 1.90000+ 1 2.18563- 5 4.11700- 5 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 4.70923- 2 1.74300- 5 1.80000+ 1 2.20000+ 1 1.65369- 1 1.81700- 5 1.80000+ 1 2.70000+ 1 8.73909- 3 2.69200- 5 1.90000+ 1 2.10000+ 1 3.41710- 1 2.34600- 5 1.90000+ 1 2.20000+ 1 3.59016- 1 2.42000- 5 1.90000+ 1 2.70000+ 1 1.51542- 2 3.29500- 5 2.10000+ 1 2.10000+ 1 1.15926- 3 7.79400- 5 2.10000+ 1 2.20000+ 1 3.48037- 2 7.86800- 5 2.10000+ 1 2.70000+ 1 5.28803- 3 8.74300- 5 2.20000+ 1 2.20000+ 1 5.89581- 3 7.94200- 5 2.20000+ 1 2.70000+ 1 4.41318- 3 8.81700- 5 2.70000+ 1 2.70000+ 1 1.13310- 2 9.69200- 5 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.41961- 5 6.05100- 5 2.70000+ 1 1.34331- 6 7.00000- 5 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 1.60717- 1 4.28000- 5 2.10000+ 1 2.20000+ 1 7.98462- 1 4.35400- 5 2.10000+ 1 2.70000+ 1 1.17148- 2 5.22900- 5 2.20000+ 1 2.20000+ 1 2.79941- 2 4.42800- 5 2.20000+ 1 2.70000+ 1 1.08507- 3 5.30300- 5 2.70000+ 1 2.70000+ 1 1.15650- 6 6.17800- 5 1 48000 0 7 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.36900- 7 5.44800- 5 2.20000+ 1 6.00120- 6 5.52200- 5 2.70000+ 1 4.81350- 7 6.39700- 5 1 48000 0 9 1.12410+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.31846- 2 3.67700- 5 2.10000+ 1 2.20000+ 1 5.84403- 1 3.75100- 5 2.10000+ 1 2.70000+ 1 2.28186- 3 4.62600- 5 2.20000+ 1 2.20000+ 1 3.78198- 1 3.82500- 5 2.20000+ 1 2.70000+ 1 1.19220- 2 4.70000- 5 2.70000+ 1 2.70000+ 1 3.52910- 6 5.57500- 5 1 49000 0 0 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 3.30000- 1 3.00000+ 1 6.70000- 1 1 49000 0 0 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.79210- 2 3.00000+ 0 4.21380- 3 5.00000+ 0 3.94250- 3 6.00000+ 0 3.72840- 3 8.00000+ 0 8.11240- 4 1.00000+ 1 6.99620- 4 1.10000+ 1 6.60670- 4 1.30000+ 1 4.61040- 4 1.40000+ 1 4.53000- 4 1.60000+ 1 1.27900- 4 1.80000+ 1 9.07700- 5 1.90000+ 1 8.38700- 5 2.10000+ 1 2.54900- 5 2.20000+ 1 2.45800- 5 2.70000+ 1 1.08300- 5 2.90000+ 1 4.91000- 6 3.00000+ 1 4.58000- 6 1 49000 0 0 1.14820+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.54700- 2 3.00000+ 0 7.61880- 3 5.00000+ 0 7.62630- 3 6.00000+ 0 6.84790- 3 8.00000+ 0 2.16240- 3 1.00000+ 1 2.09780- 3 1.10000+ 1 1.92720- 3 1.30000+ 1 1.80680- 3 1.40000+ 1 1.76550- 3 1.60000+ 1 5.69520- 4 1.80000+ 1 5.04800- 4 1.90000+ 1 4.63460- 4 2.10000+ 1 3.14580- 4 2.20000+ 1 3.05860- 4 2.70000+ 1 7.06700- 5 2.90000+ 1 3.40800- 5 3.00000+ 1 2.91200- 5 1 49000 0 0 1.14820+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.56940-10 3.00000+ 0 6.75390-10 5.00000+ 0 5.70740-10 6.00000+ 0 5.98550-10 8.00000+ 0 1.82960- 9 1.00000+ 1 1.77830- 9 1.10000+ 1 1.83620- 9 1.30000+ 1 1.68170- 9 1.40000+ 1 1.69990- 9 1.60000+ 1 4.43310- 9 1.80000+ 1 4.68800- 9 1.90000+ 1 4.84240- 9 2.10000+ 1 5.93140- 9 2.20000+ 1 6.00480- 9 2.70000+ 1 1.32260- 8 2.90000+ 1 1.88290- 8 3.00000+ 1 2.00070- 8 1 49000 0 0 1.14820+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.49310- 6 3.00000+ 0 9.53790- 8 5.00000+ 0 1.59220- 7 6.00000+ 0 1.51460- 7 8.00000+ 0 1.83510- 9 1.00000+ 1 1.86100- 9 1.10000+ 1 1.77970- 9 1.30000+ 1 1.38950-10 1.40000+ 1 1.22030-10 1.60000+ 1 3.90820-11 1.80000+ 1 1.19080-10 1.90000+ 1 9.69880-11 2.10000+ 1 1.34560-13 2.20000+ 1 1.14600-13 1 49000 0 0 1.14820+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17360- 6 3.00000+ 0 2.79470- 6 5.00000+ 0 2.34540- 6 6.00000+ 0 2.15320- 6 8.00000+ 0 1.17670- 5 1.00000+ 1 4.02370- 6 1.10000+ 1 4.30390- 6 1.30000+ 1 3.87320- 7 1.40000+ 1 3.92400- 7 1.60000+ 1 2.61890- 5 1.80000+ 1 1.92340- 5 1.90000+ 1 2.14610- 5 2.10000+ 1 3.78100- 8 2.20000+ 1 1.82850- 8 1 49000 0 0 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13887- 4 3.00000+ 0 1.27455- 4 5.00000+ 0 1.08113- 4 6.00000+ 0 1.02053- 4 8.00000+ 0 9.47613- 5 1.00000+ 1 7.74273- 5 1.10000+ 1 7.41026- 5 1.30000+ 1 4.60835- 5 1.40000+ 1 4.41379- 5 1.60000+ 1 4.65763- 5 1.80000+ 1 3.32371- 5 1.90000+ 1 3.18613- 5 2.10000+ 1 1.78589- 5 2.20000+ 1 1.51206- 5 2.70000+ 1 1.08300- 5 2.90000+ 1 4.91000- 6 3.00000+ 1 4.58000- 6 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.21307- 1 3.00000+ 0 7.08149- 2 5.00000+ 0 7.69584- 2 6.00000+ 0 6.81657- 2 8.00000+ 0 2.06969- 3 1.00000+ 1 2.20472- 3 1.10000+ 1 2.06196- 3 1.30000+ 1 9.27787- 4 1.40000+ 1 8.38213- 4 1.60000+ 1 4.88503- 5 1.80000+ 1 3.40415- 5 1.90000+ 1 9.61245- 6 2.10000+ 1 4.34642-10 2.20000+ 1 4.56828-10 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.12761- 2 3.00000+ 0 2.39034- 4 5.00000+ 0 2.60062- 4 6.00000+ 0 2.17191- 4 8.00000+ 0 9.88313- 7 1.00000+ 1 9.96383- 7 1.10000+ 1 9.38044- 7 1.30000+ 1 3.39844- 7 1.40000+ 1 3.04586- 7 1.60000+ 1 2.37000- 9 1.80000+ 1 2.25579- 9 1.90000+ 1 5.80736-10 2.10000+ 1 8.96621-15 2.20000+ 1 9.13655-15 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.30183+ 1 3.00000+ 0 1.46763+ 1 5.00000+ 0 1.22254+ 1 6.00000+ 0 1.16078+ 1 8.00000+ 0 1.06490+ 1 1.00000+ 1 8.43030+ 0 1.10000+ 1 8.17360+ 0 1.30000+ 1 4.51302+ 0 1.40000+ 1 4.54137+ 0 1.60000+ 1 4.73255+ 0 1.80000+ 1 2.98307+ 0 1.90000+ 1 2.98125+ 0 2.10000+ 1 1.00000+ 0 2.20000+ 1 1.00000+ 0 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.53102- 3 3.00000+ 0 3.84731- 3 5.00000+ 0 3.57433- 3 6.00000+ 0 3.40916- 3 8.00000+ 0 7.15490- 4 1.00000+ 1 6.21196- 4 1.10000+ 1 5.85629- 4 1.30000+ 1 4.14617- 4 1.40000+ 1 4.08558- 4 1.60000+ 1 8.13213- 5 1.80000+ 1 5.75306- 5 1.90000+ 1 5.20082- 5 2.10000+ 1 7.63114- 6 2.20000+ 1 9.45935- 6 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.45699- 1 2.39785- 2 6.00000+ 0 4.60909- 1 2.41926- 2 1.00000+ 1 4.11269- 2 2.72214- 2 1.10000+ 1 7.98527- 2 2.72603- 2 1.30000+ 1 3.12289- 4 2.74600- 2 1.40000+ 1 4.33329- 4 2.74680- 2 1.80000+ 1 8.39467- 3 2.78302- 2 1.90000+ 1 1.63419- 2 2.78371- 2 2.10000+ 1 4.27049- 5 2.78955- 2 2.20000+ 1 5.88148- 5 2.78964- 2 2.90000+ 1 6.08048- 5 2.79161- 2 3.00000+ 1 1.08290- 4 2.79164- 2 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.10692- 2 1.94934- 2 3.00000+ 0 5.00000+ 0 1.28924- 2 1.97647- 2 3.00000+ 0 6.00000+ 0 1.72017- 2 1.99788- 2 3.00000+ 0 8.00000+ 0 3.82424- 3 2.28960- 2 3.00000+ 0 1.00000+ 1 2.36619- 3 2.30076- 2 3.00000+ 0 1.10000+ 1 3.17103- 3 2.30465- 2 3.00000+ 0 1.30000+ 1 1.99254- 4 2.32462- 2 3.00000+ 0 1.40000+ 1 2.28159- 4 2.32542- 2 3.00000+ 0 1.60000+ 1 7.64388- 4 2.35793- 2 3.00000+ 0 1.80000+ 1 4.33870- 4 2.36164- 2 3.00000+ 0 1.90000+ 1 5.75326- 4 2.36233- 2 3.00000+ 0 2.10000+ 1 2.78829- 5 2.36817- 2 3.00000+ 0 2.20000+ 1 3.16221- 5 2.36826- 2 3.00000+ 0 2.70000+ 1 8.39854- 5 2.36964- 2 3.00000+ 0 2.90000+ 1 5.44045- 6 2.37023- 2 3.00000+ 0 3.00000+ 1 7.14052- 6 2.37026- 2 5.00000+ 0 5.00000+ 0 1.76059- 3 2.00360- 2 5.00000+ 0 6.00000+ 0 3.80208- 2 2.02501- 2 5.00000+ 0 8.00000+ 0 1.84423- 3 2.31673- 2 5.00000+ 0 1.00000+ 1 5.81791- 4 2.32789- 2 5.00000+ 0 1.10000+ 1 5.86284- 3 2.33178- 2 5.00000+ 0 1.30000+ 1 2.47530- 4 2.35175- 2 5.00000+ 0 1.40000+ 1 8.48378- 4 2.35255- 2 5.00000+ 0 1.60000+ 1 3.55318- 4 2.38506- 2 5.00000+ 0 1.80000+ 1 1.05069- 4 2.38877- 2 5.00000+ 0 1.90000+ 1 1.03095- 3 2.38946- 2 5.00000+ 0 2.10000+ 1 3.43429- 5 2.39530- 2 5.00000+ 0 2.20000+ 1 1.16287- 4 2.39539- 2 5.00000+ 0 2.70000+ 1 3.87633- 5 2.39677- 2 5.00000+ 0 2.90000+ 1 1.36004- 6 2.39736- 2 5.00000+ 0 3.00000+ 1 1.25810- 5 2.39739- 2 6.00000+ 0 6.00000+ 0 1.94558- 2 2.04642- 2 6.00000+ 0 8.00000+ 0 2.43189- 3 2.33814- 2 6.00000+ 0 1.00000+ 1 5.75590- 3 2.34930- 2 6.00000+ 0 1.10000+ 1 6.15099- 3 2.35319- 2 6.00000+ 0 1.30000+ 1 1.02041- 3 2.37316- 2 6.00000+ 0 1.40000+ 1 9.51738- 4 2.37396- 2 6.00000+ 0 1.60000+ 1 4.67532- 4 2.40647- 2 6.00000+ 0 1.80000+ 1 1.02108- 3 2.41018- 2 6.00000+ 0 1.90000+ 1 1.08738- 3 2.41087- 2 6.00000+ 0 2.10000+ 1 1.41454- 4 2.41671- 2 6.00000+ 0 2.20000+ 1 1.30906- 4 2.41680- 2 6.00000+ 0 2.70000+ 1 5.10031- 5 2.41818- 2 6.00000+ 0 2.90000+ 1 1.25809- 5 2.41877- 2 6.00000+ 0 3.00000+ 1 1.32612- 5 2.41880- 2 8.00000+ 0 8.00000+ 0 3.25413- 4 2.62985- 2 8.00000+ 0 1.00000+ 1 3.41729- 4 2.64101- 2 8.00000+ 0 1.10000+ 1 4.51906- 4 2.64491- 2 8.00000+ 0 1.30000+ 1 2.68620- 5 2.66487- 2 8.00000+ 0 1.40000+ 1 2.95828- 5 2.66568- 2 8.00000+ 0 1.60000+ 1 1.29549- 4 2.69819- 2 8.00000+ 0 1.80000+ 1 6.29050- 5 2.70190- 2 8.00000+ 0 1.90000+ 1 8.19476- 5 2.70259- 2 8.00000+ 0 2.10000+ 1 3.74045- 6 2.70843- 2 8.00000+ 0 2.20000+ 1 4.08036- 6 2.70852- 2 8.00000+ 0 2.70000+ 1 1.42808- 5 2.70989- 2 8.00000+ 0 2.90000+ 1 6.80049- 7 2.71048- 2 8.00000+ 0 3.00000+ 1 1.02014- 6 2.71052- 2 1.00000+ 1 1.00000+ 1 4.62437- 5 2.65218- 2 1.00000+ 1 1.10000+ 1 9.01070- 4 2.65607- 2 1.00000+ 1 1.30000+ 1 2.92423- 5 2.67603- 2 1.00000+ 1 1.40000+ 1 1.00987- 4 2.67684- 2 1.00000+ 1 1.60000+ 1 6.59652- 5 2.70935- 2 1.00000+ 1 1.80000+ 1 1.66603- 5 2.71306- 2 1.00000+ 1 1.90000+ 1 1.58786- 4 2.71375- 2 1.00000+ 1 2.10000+ 1 4.08030- 6 2.71959- 2 1.00000+ 1 2.20000+ 1 1.39404- 5 2.71968- 2 1.00000+ 1 2.70000+ 1 7.14049- 6 2.72105- 2 1.00000+ 1 2.90000+ 1 3.40028- 7 2.72165- 2 1.00000+ 1 3.00000+ 1 2.04014- 6 2.72168- 2 1.10000+ 1 1.10000+ 1 4.87598- 4 2.65997- 2 1.10000+ 1 1.30000+ 1 1.27852- 4 2.67993- 2 1.10000+ 1 1.40000+ 1 1.16288- 4 2.68073- 2 1.10000+ 1 1.60000+ 1 8.70466- 5 2.71324- 2 1.10000+ 1 1.80000+ 1 1.60147- 4 2.71696- 2 1.10000+ 1 1.90000+ 1 1.72400- 4 2.71765- 2 1.10000+ 1 2.10000+ 1 1.76827- 5 2.72348- 2 1.10000+ 1 2.20000+ 1 1.59812- 5 2.72357- 2 1.10000+ 1 2.70000+ 1 9.52083- 6 2.72495- 2 1.10000+ 1 2.90000+ 1 2.04016- 6 2.72554- 2 1.10000+ 1 3.00000+ 1 2.04016- 6 2.72557- 2 1.30000+ 1 1.40000+ 1 1.46744- 5 2.70070- 2 1.30000+ 1 1.60000+ 1 5.00239- 6 2.73321- 2 1.30000+ 1 1.80000+ 1 5.00239- 6 2.73692- 2 1.30000+ 1 1.90000+ 1 2.13432- 5 2.73761- 2 1.30000+ 1 2.20000+ 1 2.00097- 6 2.74354- 2 1.30000+ 1 2.70000+ 1 6.66981- 7 2.74491- 2 1.30000+ 1 3.00000+ 1 3.33499- 7 2.74554- 2 1.40000+ 1 1.40000+ 1 3.78005- 6 2.70150- 2 1.40000+ 1 1.60000+ 1 5.84164- 6 2.73401- 2 1.40000+ 1 1.80000+ 1 1.71806- 5 2.73772- 2 1.40000+ 1 1.90000+ 1 1.99303- 5 2.73841- 2 1.40000+ 1 2.10000+ 1 2.06177- 6 2.74425- 2 1.40000+ 1 2.20000+ 1 1.03094- 6 2.74434- 2 1.40000+ 1 2.70000+ 1 6.87248- 7 2.74572- 2 1.40000+ 1 2.90000+ 1 3.43633- 7 2.74631- 2 1.40000+ 1 3.00000+ 1 3.43633- 7 2.74634- 2 1.60000+ 1 1.60000+ 1 1.34758- 5 2.76652- 2 1.60000+ 1 1.80000+ 1 1.27664- 5 2.77023- 2 1.60000+ 1 1.90000+ 1 1.63125- 5 2.77092- 2 1.60000+ 1 2.10000+ 1 7.09235- 7 2.77676- 2 1.60000+ 1 2.20000+ 1 7.09235- 7 2.77685- 2 1.60000+ 1 2.70000+ 1 2.83696- 6 2.77823- 2 1.60000+ 1 3.00000+ 1 3.54627- 7 2.77885- 2 1.80000+ 1 1.80000+ 1 1.33804- 6 2.77395- 2 1.80000+ 1 1.90000+ 1 2.77666- 5 2.77464- 2 1.80000+ 1 2.10000+ 1 6.69043- 7 2.78047- 2 1.80000+ 1 2.20000+ 1 2.34158- 6 2.78056- 2 1.80000+ 1 2.70000+ 1 1.33804- 6 2.78194- 2 1.80000+ 1 3.00000+ 1 3.34530- 7 2.78256- 2 1.90000+ 1 1.90000+ 1 1.61790- 5 2.77533- 2 1.90000+ 1 2.10000+ 1 3.23592- 6 2.78116- 2 1.90000+ 1 2.20000+ 1 2.87629- 6 2.78125- 2 1.90000+ 1 2.70000+ 1 1.79761- 6 2.78263- 2 1.90000+ 1 2.90000+ 1 3.59544- 7 2.78322- 2 1.90000+ 1 3.00000+ 1 3.59544- 7 2.78325- 2 2.10000+ 1 2.20000+ 1 4.23379- 7 2.78709- 2 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.03271- 5 2.71300- 4 6.00000+ 0 2.50072- 4 4.85400- 4 1.00000+ 1 1.02851- 2 3.51418- 3 1.10000+ 1 1.68651- 2 3.55313- 3 1.30000+ 1 1.24421- 4 3.75276- 3 1.40000+ 1 1.85641- 4 3.76080- 3 1.80000+ 1 1.95251- 3 4.12303- 3 1.90000+ 1 3.24772- 3 4.12993- 3 2.10000+ 1 1.17491- 5 4.18831- 3 2.20000+ 1 1.76511- 5 4.18922- 3 2.90000+ 1 1.65441- 5 4.20889- 3 3.00000+ 1 2.53942- 5 4.20922- 3 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.88937- 2 1.43400- 4 5.00000+ 0 1.80000+ 1 4.11128- 2 1.80530- 4 5.00000+ 0 1.90000+ 1 5.42717- 2 1.87430- 4 5.00000+ 0 2.10000+ 1 1.19829- 2 2.45810- 4 5.00000+ 0 2.20000+ 1 1.96309- 2 2.46720- 4 5.00000+ 0 2.70000+ 1 6.26656- 3 2.60470- 4 5.00000+ 0 2.90000+ 1 4.85827- 4 2.66390- 4 5.00000+ 0 3.00000+ 1 6.27036- 4 2.66720- 4 6.00000+ 0 1.60000+ 1 8.25243- 2 3.57500- 4 6.00000+ 0 1.80000+ 1 3.62001- 2 3.94630- 4 6.00000+ 0 1.90000+ 1 6.99323- 2 4.01530- 4 6.00000+ 0 2.10000+ 1 5.19192- 2 4.59910- 4 6.00000+ 0 2.20000+ 1 6.73032- 2 4.60820- 4 6.00000+ 0 2.70000+ 1 8.76763- 3 4.74570- 4 6.00000+ 0 2.90000+ 1 4.34972- 4 4.80490- 4 6.00000+ 0 3.00000+ 1 8.30433- 4 4.80820- 4 8.00000+ 0 8.00000+ 0 1.45732- 2 2.59132- 3 8.00000+ 0 1.00000+ 1 2.88183- 2 2.70294- 3 8.00000+ 0 1.10000+ 1 5.40196- 2 2.74189- 3 8.00000+ 0 1.30000+ 1 4.30715- 2 2.94152- 3 8.00000+ 0 1.40000+ 1 6.14967- 2 2.94956- 3 8.00000+ 0 1.60000+ 1 4.99575- 3 3.27466- 3 8.00000+ 0 1.80000+ 1 5.17946- 3 3.31179- 3 8.00000+ 0 1.90000+ 1 9.59710- 3 3.31869- 3 8.00000+ 0 2.10000+ 1 5.24526- 3 3.37707- 3 8.00000+ 0 2.20000+ 1 7.41648- 3 3.37798- 3 8.00000+ 0 2.70000+ 1 5.37596- 4 3.39173- 3 8.00000+ 0 2.90000+ 1 6.40227- 5 3.39765- 3 8.00000+ 0 3.00000+ 1 1.16751- 4 3.39798- 3 1.00000+ 1 1.00000+ 1 1.85483- 4 2.81456- 3 1.00000+ 1 1.10000+ 1 1.20322- 3 2.85351- 3 1.00000+ 1 1.30000+ 1 1.11572- 3 3.05314- 3 1.00000+ 1 1.40000+ 1 1.55443- 2 3.06118- 3 1.00000+ 1 1.60000+ 1 4.00897- 3 3.38628- 3 1.00000+ 1 1.80000+ 1 3.67197- 5 3.42341- 3 1.00000+ 1 1.90000+ 1 2.03374- 4 3.43031- 3 1.00000+ 1 2.10000+ 1 1.38413- 4 3.48869- 3 1.00000+ 1 2.20000+ 1 1.28892- 3 3.48960- 3 1.00000+ 1 2.70000+ 1 4.15218- 4 3.50335- 3 1.00000+ 1 3.00000+ 1 2.82465- 6 3.50960- 3 1.10000+ 1 1.10000+ 1 1.26160- 3 2.89246- 3 1.10000+ 1 1.30000+ 1 1.18840- 2 3.09209- 3 1.10000+ 1 1.40000+ 1 8.19040- 3 3.10013- 3 1.10000+ 1 1.60000+ 1 7.51530- 3 3.42523- 3 1.10000+ 1 1.80000+ 1 2.03370- 4 3.46236- 3 1.10000+ 1 1.90000+ 1 3.49300- 4 3.46926- 3 1.10000+ 1 2.10000+ 1 8.92570- 4 3.52764- 3 1.10000+ 1 2.20000+ 1 6.36450- 4 3.52855- 3 1.10000+ 1 2.70000+ 1 7.78630- 4 3.54230- 3 1.10000+ 1 2.90000+ 1 2.82460- 6 3.54822- 3 1.10000+ 1 3.00000+ 1 3.76600- 6 3.54855- 3 1.30000+ 1 1.30000+ 1 2.35651- 3 3.29172- 3 1.30000+ 1 1.40000+ 1 8.81216- 2 3.29976- 3 1.30000+ 1 1.60000+ 1 5.70828- 3 3.62486- 3 1.30000+ 1 1.80000+ 1 2.61740- 4 3.66199- 3 1.30000+ 1 1.90000+ 1 2.10712- 3 3.66889- 3 1.30000+ 1 2.10000+ 1 5.69578- 4 3.72727- 3 1.30000+ 1 2.20000+ 1 8.03829- 3 3.72818- 3 1.30000+ 1 2.70000+ 1 5.88437- 4 3.74193- 3 1.30000+ 1 2.90000+ 1 3.76585- 6 3.74785- 3 1.30000+ 1 3.00000+ 1 2.54200- 5 3.74818- 3 1.40000+ 1 1.40000+ 1 2.48353- 2 3.30780- 3 1.40000+ 1 1.60000+ 1 8.18841- 3 3.63290- 3 1.40000+ 1 1.80000+ 1 2.57044- 3 3.67003- 3 1.40000+ 1 1.90000+ 1 1.52152- 3 3.67693- 3 1.40000+ 1 2.10000+ 1 8.02101- 3 3.73531- 3 1.40000+ 1 2.20000+ 1 4.71516- 3 3.73622- 3 1.40000+ 1 2.70000+ 1 8.44562- 4 3.74997- 3 1.40000+ 1 2.90000+ 1 3.10704- 5 3.75589- 3 1.40000+ 1 3.00000+ 1 1.88303- 5 3.75622- 3 1.60000+ 1 1.60000+ 1 4.08605- 4 3.95800- 3 1.60000+ 1 1.80000+ 1 7.22168- 4 3.99513- 3 1.60000+ 1 1.90000+ 1 1.33701- 3 4.00203- 3 1.60000+ 1 2.10000+ 1 6.92968- 4 4.06041- 3 1.60000+ 1 2.20000+ 1 9.83931- 4 4.06132- 3 1.60000+ 1 2.70000+ 1 8.75630- 5 4.07507- 3 1.60000+ 1 2.90000+ 1 8.47389- 6 4.08099- 3 1.60000+ 1 3.00000+ 1 1.60062- 5 4.08132- 3 1.80000+ 1 1.80000+ 1 1.88300- 6 4.03226- 3 1.80000+ 1 1.90000+ 1 3.48360- 5 4.03916- 3 1.80000+ 1 2.10000+ 1 2.73040- 5 4.09754- 3 1.80000+ 1 2.20000+ 1 2.19370- 4 4.09845- 3 1.80000+ 1 2.70000+ 1 7.43791- 5 4.11220- 3 1.90000+ 1 1.90000+ 1 2.44801- 5 4.04606- 3 1.90000+ 1 2.10000+ 1 1.65701- 4 4.10444- 3 1.90000+ 1 2.20000+ 1 1.22400- 4 4.10535- 3 1.90000+ 1 2.70000+ 1 1.38410- 4 4.11910- 3 1.90000+ 1 3.00000+ 1 9.41533- 7 4.12535- 3 2.10000+ 1 2.10000+ 1 3.29536- 5 4.16282- 3 2.10000+ 1 2.20000+ 1 7.73003- 4 4.16373- 3 2.10000+ 1 2.70000+ 1 7.15562- 5 4.17748- 3 2.10000+ 1 3.00000+ 1 1.88303- 6 4.18373- 3 2.20000+ 1 2.20000+ 1 2.34443- 4 4.16464- 3 2.20000+ 1 2.70000+ 1 1.01691- 4 4.17839- 3 2.20000+ 1 2.90000+ 1 2.82464- 6 4.18431- 3 2.20000+ 1 3.00000+ 1 1.88303- 6 4.18464- 3 2.70000+ 1 2.70000+ 1 4.70748- 6 4.19214- 3 2.70000+ 1 2.90000+ 1 9.41545- 7 4.19806- 3 2.70000+ 1 3.00000+ 1 1.88303- 6 4.19839- 3 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.37041- 8 2.14100- 4 8.00000+ 0 3.59692- 3 3.13126- 3 1.10000+ 1 4.51632- 5 3.28183- 3 1.30000+ 1 5.35573- 2 3.48146- 3 1.60000+ 1 4.16342- 4 3.81460- 3 1.90000+ 1 3.61202- 6 3.85863- 3 2.10000+ 1 6.00883- 3 3.91701- 3 2.70000+ 1 3.08832- 5 3.93167- 3 3.00000+ 1 2.82402- 8 3.93792- 3 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.31747- 2 8.62000- 5 6.00000+ 0 1.80000+ 1 5.12122- 2 1.23330- 4 6.00000+ 0 1.90000+ 1 1.83060- 2 1.30230- 4 6.00000+ 0 2.10000+ 1 5.91906- 2 1.88610- 4 6.00000+ 0 2.20000+ 1 2.22377- 2 1.89520- 4 6.00000+ 0 2.70000+ 1 1.30228- 3 2.03270- 4 6.00000+ 0 2.90000+ 1 6.15778- 4 2.09190- 4 6.00000+ 0 3.00000+ 1 2.21557- 4 2.09520- 4 8.00000+ 0 8.00000+ 0 1.15885- 3 2.32002- 3 8.00000+ 0 1.00000+ 1 2.68790- 2 2.43164- 3 8.00000+ 0 1.10000+ 1 2.60122- 3 2.47059- 3 8.00000+ 0 1.30000+ 1 1.79866- 3 2.67022- 3 8.00000+ 0 1.40000+ 1 3.87634- 3 2.67826- 3 8.00000+ 0 1.60000+ 1 3.72528- 4 3.00336- 3 8.00000+ 0 1.80000+ 1 3.38638- 3 3.04049- 3 8.00000+ 0 1.90000+ 1 4.11636- 4 3.04739- 3 8.00000+ 0 2.10000+ 1 1.61832- 4 3.10577- 3 8.00000+ 0 2.20000+ 1 3.04108- 4 3.10668- 3 8.00000+ 0 2.70000+ 1 3.91002- 5 3.12043- 3 8.00000+ 0 2.90000+ 1 4.01859- 5 3.12635- 3 8.00000+ 0 3.00000+ 1 5.43027- 6 3.12668- 3 1.00000+ 1 1.00000+ 1 2.61792- 2 2.54326- 3 1.00000+ 1 1.10000+ 1 8.36362- 2 2.58221- 3 1.00000+ 1 1.30000+ 1 4.50797- 2 2.78184- 3 1.00000+ 1 1.40000+ 1 7.83878- 2 2.78988- 3 1.00000+ 1 1.60000+ 1 5.47268- 3 3.11498- 3 1.00000+ 1 1.80000+ 1 8.12620- 3 3.15211- 3 1.00000+ 1 1.90000+ 1 1.45986- 2 3.15901- 3 1.00000+ 1 2.10000+ 1 5.46748- 3 3.21739- 3 1.00000+ 1 2.20000+ 1 9.45600- 3 3.21830- 3 1.00000+ 1 2.70000+ 1 6.01711- 4 3.23205- 3 1.00000+ 1 2.90000+ 1 9.88388- 5 3.23797- 3 1.00000+ 1 3.00000+ 1 1.77037- 4 3.23830- 3 1.10000+ 1 1.10000+ 1 2.22213- 3 2.62116- 3 1.10000+ 1 1.30000+ 1 5.49654- 2 2.82079- 3 1.10000+ 1 1.40000+ 1 7.40928- 3 2.82883- 3 1.10000+ 1 1.60000+ 1 4.57263- 4 3.15393- 3 1.10000+ 1 1.80000+ 1 1.09287- 2 3.19106- 3 1.10000+ 1 1.90000+ 1 6.58183- 4 3.19796- 3 1.10000+ 1 2.10000+ 1 5.81395- 3 3.25634- 3 1.10000+ 1 2.20000+ 1 7.28751- 4 3.25725- 3 1.10000+ 1 2.70000+ 1 4.88753- 5 3.27100- 3 1.10000+ 1 2.90000+ 1 1.29241- 4 3.27692- 3 1.10000+ 1 3.00000+ 1 7.60243- 6 3.27725- 3 1.30000+ 1 1.30000+ 1 4.98011- 2 3.02042- 3 1.30000+ 1 1.40000+ 1 2.15566- 1 3.02846- 3 1.30000+ 1 1.60000+ 1 3.72529- 4 3.35356- 3 1.30000+ 1 1.80000+ 1 5.90493- 3 3.39069- 3 1.30000+ 1 1.90000+ 1 9.10809- 3 3.39759- 3 1.30000+ 1 2.10000+ 1 1.05039- 2 3.45597- 3 1.30000+ 1 2.20000+ 1 2.40538- 2 3.45688- 3 1.30000+ 1 2.70000+ 1 4.12707- 5 3.47063- 3 1.30000+ 1 2.90000+ 1 7.05971- 5 3.47655- 3 1.30000+ 1 3.00000+ 1 1.09698- 4 3.47688- 3 1.40000+ 1 1.40000+ 1 1.02499- 2 3.03650- 3 1.40000+ 1 1.60000+ 1 6.71198- 4 3.36160- 3 1.40000+ 1 1.80000+ 1 9.21332- 3 3.39873- 3 1.40000+ 1 1.90000+ 1 1.12625- 3 3.40563- 3 1.40000+ 1 2.10000+ 1 1.96461- 2 3.46401- 3 1.40000+ 1 2.20000+ 1 2.09726- 3 3.46492- 3 1.40000+ 1 2.70000+ 1 7.16814- 5 3.47867- 3 1.40000+ 1 2.90000+ 1 1.07528- 4 3.48459- 3 1.40000+ 1 3.00000+ 1 1.30331- 5 3.48492- 3 1.60000+ 1 1.60000+ 1 3.63623- 5 3.68670- 3 1.60000+ 1 1.80000+ 1 8.59179- 4 3.72383- 3 1.60000+ 1 1.90000+ 1 9.02293- 5 3.73073- 3 1.60000+ 1 2.10000+ 1 4.04009- 5 3.78911- 3 1.60000+ 1 2.20000+ 1 6.73337- 5 3.79002- 3 1.60000+ 1 2.70000+ 1 8.08021- 6 3.80377- 3 1.60000+ 1 2.90000+ 1 1.07740- 5 3.80969- 3 1.60000+ 1 3.00000+ 1 1.34670- 6 3.81002- 3 1.80000+ 1 1.80000+ 1 6.02250- 4 3.76096- 3 1.80000+ 1 1.90000+ 1 1.89396- 3 3.76786- 3 1.80000+ 1 2.10000+ 1 7.01347- 4 3.82624- 3 1.80000+ 1 2.20000+ 1 1.10965- 3 3.82715- 3 1.80000+ 1 2.70000+ 1 7.54123- 5 3.84090- 3 1.80000+ 1 2.90000+ 1 1.50821- 5 3.84682- 3 1.80000+ 1 3.00000+ 1 2.26236- 5 3.84715- 3 1.90000+ 1 1.90000+ 1 4.88720- 5 3.77476- 3 1.90000+ 1 2.10000+ 1 9.70903- 4 3.83314- 3 1.90000+ 1 2.20000+ 1 1.14038- 4 3.83405- 3 1.90000+ 1 2.70000+ 1 7.60191- 6 3.84780- 3 1.90000+ 1 2.90000+ 1 2.28056- 5 3.85372- 3 1.90000+ 1 3.00000+ 1 1.08600- 6 3.85405- 3 2.10000+ 1 2.10000+ 1 5.48463- 4 3.89152- 3 2.10000+ 1 2.20000+ 1 2.24936- 3 3.89243- 3 2.10000+ 1 2.70000+ 1 3.25826- 6 3.90618- 3 2.10000+ 1 2.90000+ 1 8.68902- 6 3.91210- 3 2.10000+ 1 3.00000+ 1 1.19476- 5 3.91243- 3 2.20000+ 1 2.20000+ 1 1.21586- 4 3.89334- 3 2.20000+ 1 2.70000+ 1 6.14020- 6 3.90709- 3 2.20000+ 1 2.90000+ 1 1.47370- 5 3.91301- 3 2.20000+ 1 3.00000+ 1 1.22806- 6 3.91334- 3 2.70000+ 1 2.90000+ 1 1.08611- 6 3.92676- 3 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 6.21202- 3 2.91716- 3 1.00000+ 1 3.09891- 5 3.02878- 3 1.10000+ 1 2.90761- 5 3.06773- 3 1.30000+ 1 5.39872- 3 3.26736- 3 1.40000+ 1 4.78882- 2 3.27540- 3 1.60000+ 1 4.41862- 4 3.60050- 3 1.80000+ 1 1.82781- 6 3.63763- 3 1.90000+ 1 1.74281- 6 3.64453- 3 2.10000+ 1 5.94202- 4 3.70291- 3 2.20000+ 1 5.26492- 3 3.70382- 3 2.70000+ 1 3.90521- 5 3.71757- 3 2.90000+ 1 1.54491- 8 3.72349- 3 3.00000+ 1 1.36000- 8 3.72382- 3 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.48931- 3 2.10592- 3 8.00000+ 0 1.00000+ 1 1.09629- 3 2.21754- 3 8.00000+ 0 1.10000+ 1 3.11246- 2 2.25649- 3 8.00000+ 0 1.30000+ 1 3.04949- 3 2.45612- 3 8.00000+ 0 1.40000+ 1 3.21231- 3 2.46416- 3 8.00000+ 0 1.60000+ 1 4.77937- 4 2.78926- 3 8.00000+ 0 1.80000+ 1 1.66402- 4 2.82639- 3 8.00000+ 0 1.90000+ 1 3.91568- 3 2.83329- 3 8.00000+ 0 2.10000+ 1 2.14780- 4 2.89167- 3 8.00000+ 0 2.20000+ 1 2.12421- 4 2.89258- 3 8.00000+ 0 2.70000+ 1 5.07474- 5 2.90633- 3 8.00000+ 0 2.90000+ 1 2.36030- 6 2.91225- 3 8.00000+ 0 3.00000+ 1 4.48451- 5 2.91258- 3 1.00000+ 1 1.00000+ 1 3.78825- 4 2.32916- 3 1.00000+ 1 1.10000+ 1 5.16581- 2 2.36811- 3 1.00000+ 1 1.30000+ 1 3.55575- 3 2.56774- 3 1.00000+ 1 1.40000+ 1 3.18263- 2 2.57578- 3 1.00000+ 1 1.60000+ 1 1.90002- 4 2.90088- 3 1.00000+ 1 1.80000+ 1 1.14468- 4 2.93801- 3 1.00000+ 1 1.90000+ 1 6.71377- 3 2.94491- 3 1.00000+ 1 2.10000+ 1 4.05972- 4 3.00329- 3 1.00000+ 1 2.20000+ 1 3.18992- 3 3.00420- 3 1.00000+ 1 2.70000+ 1 2.00627- 5 3.01795- 3 1.00000+ 1 2.90000+ 1 1.18016- 6 3.02387- 3 1.00000+ 1 3.00000+ 1 7.78888- 5 3.02420- 3 1.10000+ 1 1.10000+ 1 7.34249- 2 2.40706- 3 1.10000+ 1 1.30000+ 1 7.38546- 2 2.60669- 3 1.10000+ 1 1.40000+ 1 1.12487- 1 2.61473- 3 1.10000+ 1 1.60000+ 1 6.28779- 3 2.93983- 3 1.10000+ 1 1.80000+ 1 8.94888- 3 2.97696- 3 1.10000+ 1 1.90000+ 1 2.23423- 2 2.98386- 3 1.10000+ 1 2.10000+ 1 8.67742- 3 3.04224- 3 1.10000+ 1 2.20000+ 1 1.30028- 2 3.04315- 3 1.10000+ 1 2.70000+ 1 6.90359- 4 3.05690- 3 1.10000+ 1 2.90000+ 1 1.09758- 4 3.06282- 3 1.10000+ 1 3.00000+ 1 2.65523- 4 3.06315- 3 1.30000+ 1 1.30000+ 1 1.06669- 2 2.80632- 3 1.30000+ 1 1.40000+ 1 2.05682- 1 2.81436- 3 1.30000+ 1 1.60000+ 1 5.71176- 4 3.13946- 3 1.30000+ 1 1.80000+ 1 6.11297- 4 3.17659- 3 1.30000+ 1 1.90000+ 1 9.01475- 3 3.18349- 3 1.30000+ 1 2.10000+ 1 2.26112- 3 3.24187- 3 1.30000+ 1 2.20000+ 1 1.89400- 2 3.24278- 3 1.30000+ 1 2.70000+ 1 6.25480- 5 3.25653- 3 1.30000+ 1 2.90000+ 1 7.08061- 6 3.26245- 3 1.30000+ 1 3.00000+ 1 1.03851- 4 3.26278- 3 1.40000+ 1 1.40000+ 1 1.39866- 1 2.82240- 3 1.40000+ 1 1.60000+ 1 6.43181- 4 3.14750- 3 1.40000+ 1 1.80000+ 1 5.16322- 3 3.18463- 3 1.40000+ 1 1.90000+ 1 1.52310- 2 3.19153- 3 1.40000+ 1 2.10000+ 1 2.20248- 2 3.24991- 3 1.40000+ 1 2.20000+ 1 2.83598- 2 3.25082- 3 1.40000+ 1 2.70000+ 1 7.08072- 5 3.26457- 3 1.40000+ 1 2.90000+ 1 6.25489- 5 3.27049- 3 1.40000+ 1 3.00000+ 1 1.79387- 4 3.27082- 3 1.60000+ 1 1.60000+ 1 4.73080- 5 3.47260- 3 1.60000+ 1 1.80000+ 1 3.69603- 5 3.50973- 3 1.60000+ 1 1.90000+ 1 9.91961- 4 3.51663- 3 1.60000+ 1 2.10000+ 1 5.32218- 5 3.57501- 3 1.60000+ 1 2.20000+ 1 5.61780- 5 3.57592- 3 1.60000+ 1 2.70000+ 1 1.03483- 5 3.58967- 3 1.60000+ 1 3.00000+ 1 1.18269- 5 3.59592- 3 1.80000+ 1 1.80000+ 1 8.21448- 6 3.54686- 3 1.80000+ 1 1.90000+ 1 1.15476- 3 3.55376- 3 1.80000+ 1 2.10000+ 1 6.80639- 5 3.61214- 3 1.80000+ 1 2.20000+ 1 5.26938- 4 3.61305- 3 1.80000+ 1 2.70000+ 1 3.52054- 6 3.62680- 3 1.80000+ 1 3.00000+ 1 1.29084- 5 3.63305- 3 1.90000+ 1 1.90000+ 1 1.63158- 3 3.56066- 3 1.90000+ 1 2.10000+ 1 1.04841- 3 3.61904- 3 1.90000+ 1 2.20000+ 1 1.72245- 3 3.61995- 3 1.90000+ 1 2.70000+ 1 8.63006- 5 3.63370- 3 1.90000+ 1 2.90000+ 1 1.39945- 5 3.63962- 3 1.90000+ 1 3.00000+ 1 3.84850- 5 3.63995- 3 2.10000+ 1 2.10000+ 1 1.18019- 4 3.67742- 3 2.10000+ 1 2.20000+ 1 2.07709- 3 3.67833- 3 2.10000+ 1 2.70000+ 1 4.72052- 6 3.69208- 3 2.10000+ 1 2.90000+ 1 1.18019- 6 3.69800- 3 2.10000+ 1 3.00000+ 1 1.18019- 5 3.69833- 3 2.20000+ 1 2.20000+ 1 1.52418- 3 3.67924- 3 2.20000+ 1 2.70000+ 1 4.98101- 6 3.69299- 3 2.20000+ 1 2.90000+ 1 7.47163- 6 3.69891- 3 2.20000+ 1 3.00000+ 1 2.11704- 5 3.69924- 3 2.70000+ 1 3.00000+ 1 1.18020- 6 3.71299- 3 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.20234- 5 1.11620- 4 1.10000+ 1 6.13267- 5 1.50570- 4 1.80000+ 1 1.38112- 4 7.20470- 4 1.90000+ 1 1.97064- 4 7.27370- 4 2.90000+ 1 1.27064- 6 8.06330- 4 3.00000+ 1 1.69943- 6 8.06660- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.80000+ 1 5.06489- 2 2.08500- 5 1.00000+ 1 1.90000+ 1 9.56822- 2 2.77500- 5 1.00000+ 1 2.10000+ 1 5.86778- 2 8.61300- 5 1.00000+ 1 2.20000+ 1 7.89299- 2 8.70400- 5 1.00000+ 1 2.70000+ 1 4.57234- 3 1.00790- 4 1.00000+ 1 2.90000+ 1 3.58231- 4 1.06710- 4 1.00000+ 1 3.00000+ 1 6.14311- 4 1.07040- 4 1.10000+ 1 1.60000+ 1 7.65737- 2 2.26700- 5 1.10000+ 1 1.80000+ 1 8.37926- 2 5.98000- 5 1.10000+ 1 1.90000+ 1 1.31907- 1 6.67000- 5 1.10000+ 1 2.10000+ 1 5.03908- 2 1.25080- 4 1.10000+ 1 2.20000+ 1 7.43234- 2 1.25990- 4 1.10000+ 1 2.70000+ 1 6.75027- 3 1.39740- 4 1.10000+ 1 2.90000+ 1 5.63258- 4 1.45660- 4 1.10000+ 1 3.00000+ 1 8.49183- 4 1.45990- 4 1.30000+ 1 1.60000+ 1 3.07246- 2 2.22300- 4 1.30000+ 1 1.80000+ 1 6.10665- 3 2.59430- 4 1.30000+ 1 1.90000+ 1 4.63810- 3 2.66330- 4 1.30000+ 1 2.10000+ 1 5.94528- 3 3.24710- 4 1.30000+ 1 2.20000+ 1 7.01621- 3 3.25620- 4 1.30000+ 1 2.70000+ 1 2.01395- 3 3.39370- 4 1.30000+ 1 2.90000+ 1 3.77647- 5 3.45290- 4 1.30000+ 1 3.00000+ 1 2.62085- 5 3.45620- 4 1.40000+ 1 1.60000+ 1 4.51657- 2 2.30340- 4 1.40000+ 1 1.80000+ 1 1.66566- 3 2.67470- 4 1.40000+ 1 1.90000+ 1 1.20782- 2 2.74370- 4 1.40000+ 1 2.10000+ 1 7.40202- 3 3.32750- 4 1.40000+ 1 2.20000+ 1 1.18979- 2 3.33660- 4 1.40000+ 1 2.70000+ 1 2.95113- 3 3.47410- 4 1.40000+ 1 2.90000+ 1 9.49168- 6 3.53330- 4 1.40000+ 1 3.00000+ 1 6.91293- 5 3.53660- 4 1.60000+ 1 1.60000+ 1 1.12525- 2 5.55440- 4 1.60000+ 1 1.80000+ 1 1.73242- 2 5.92570- 4 1.60000+ 1 1.90000+ 1 3.20517- 2 5.99470- 4 1.60000+ 1 2.10000+ 1 2.58183- 2 6.57850- 4 1.60000+ 1 2.20000+ 1 3.74731- 2 6.58760- 4 1.60000+ 1 2.70000+ 1 1.71432- 3 6.72510- 4 1.60000+ 1 2.90000+ 1 1.26283- 4 6.78430- 4 1.60000+ 1 3.00000+ 1 2.16841- 4 6.78760- 4 1.80000+ 1 1.80000+ 1 1.04747- 3 6.29700- 4 1.80000+ 1 1.90000+ 1 2.51973- 3 6.36600- 4 1.80000+ 1 2.10000+ 1 1.27575- 3 6.94980- 4 1.80000+ 1 2.20000+ 1 3.86539- 4 6.95890- 4 1.80000+ 1 2.70000+ 1 1.14247- 3 7.09640- 4 1.80000+ 1 2.90000+ 1 1.31929- 5 7.15560- 4 1.80000+ 1 3.00000+ 1 1.45115- 5 7.15890- 4 1.90000+ 1 1.90000+ 1 3.20106- 3 6.43500- 4 1.90000+ 1 2.10000+ 1 1.00114- 3 7.01880- 4 1.90000+ 1 2.20000+ 1 2.98948- 3 7.02790- 4 1.90000+ 1 2.70000+ 1 2.02363- 3 7.16540- 4 1.90000+ 1 2.90000+ 1 1.51114- 5 7.22460- 4 1.90000+ 1 3.00000+ 1 3.77778- 5 7.22790- 4 2.10000+ 1 2.10000+ 1 2.90085- 4 7.60260- 4 2.10000+ 1 2.20000+ 1 7.59034- 4 7.61170- 4 2.10000+ 1 2.70000+ 1 1.54714- 3 7.74920- 4 2.10000+ 1 2.90000+ 1 7.25211- 6 7.80840- 4 2.10000+ 1 3.00000+ 1 4.83457- 6 7.81170- 4 2.20000+ 1 2.20000+ 1 6.07949- 4 7.62080- 4 2.20000+ 1 2.70000+ 1 2.24565- 3 7.75830- 4 2.20000+ 1 2.90000+ 1 2.41726- 6 7.81750- 4 2.20000+ 1 3.00000+ 1 1.69211- 5 7.82080- 4 2.70000+ 1 2.70000+ 1 5.92214- 5 7.89580- 4 2.70000+ 1 2.90000+ 1 7.25198- 6 7.95500- 4 2.70000+ 1 3.00000+ 1 1.32949- 5 7.95830- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.24827- 4 2.38580- 4 1.60000+ 1 2.30758- 4 5.71720- 4 2.10000+ 1 5.95233- 4 6.74130- 4 2.70000+ 1 2.31479- 5 6.88790- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.89180- 2 1.34600- 5 1.10000+ 1 2.20000+ 1 4.66191- 2 1.43700- 5 1.10000+ 1 2.70000+ 1 5.98734- 3 2.81200- 5 1.10000+ 1 2.90000+ 1 4.34351- 4 3.40400- 5 1.10000+ 1 3.00000+ 1 4.45779- 4 3.43700- 5 1.30000+ 1 1.60000+ 1 1.39268- 1 1.10680- 4 1.30000+ 1 1.80000+ 1 1.41825- 1 1.47810- 4 1.30000+ 1 1.90000+ 1 2.13852- 1 1.54710- 4 1.30000+ 1 2.10000+ 1 4.58588- 2 2.13090- 4 1.30000+ 1 2.20000+ 1 4.52938- 2 2.14000- 4 1.30000+ 1 2.70000+ 1 1.25979- 2 2.27750- 4 1.30000+ 1 2.90000+ 1 9.19801- 4 2.33670- 4 1.30000+ 1 3.00000+ 1 1.39179- 3 2.34000- 4 1.40000+ 1 1.60000+ 1 2.39640- 2 1.18720- 4 1.40000+ 1 1.80000+ 1 1.80196- 1 1.55850- 4 1.40000+ 1 1.90000+ 1 1.90542- 2 1.62750- 4 1.40000+ 1 2.10000+ 1 4.53050- 3 2.21130- 4 1.40000+ 1 2.20000+ 1 6.25299- 3 2.22040- 4 1.40000+ 1 2.70000+ 1 1.52893- 3 2.35790- 4 1.40000+ 1 2.90000+ 1 1.02602- 3 2.41710- 4 1.40000+ 1 3.00000+ 1 1.15652- 4 2.42040- 4 1.60000+ 1 1.60000+ 1 7.06205- 4 4.43820- 4 1.60000+ 1 1.80000+ 1 1.02425- 2 4.80950- 4 1.60000+ 1 1.90000+ 1 1.66063- 3 4.87850- 4 1.60000+ 1 2.10000+ 1 3.59234- 4 5.46230- 4 1.60000+ 1 2.20000+ 1 8.90880- 4 5.47140- 4 1.60000+ 1 2.70000+ 1 1.03154- 4 5.60890- 4 1.60000+ 1 2.90000+ 1 5.62647- 5 5.66810- 4 1.60000+ 1 3.00000+ 1 1.00991- 5 5.67140- 4 1.80000+ 1 1.80000+ 1 6.73287- 3 5.18080- 4 1.80000+ 1 1.90000+ 1 2.11462- 2 5.24980- 4 1.80000+ 1 2.10000+ 1 1.48517- 2 5.83360- 4 1.80000+ 1 2.20000+ 1 2.46766- 2 5.84270- 4 1.80000+ 1 2.70000+ 1 8.84031- 4 5.98020- 4 1.80000+ 1 2.90000+ 1 8.69304- 5 6.03940- 4 1.80000+ 1 3.00000+ 1 1.42315- 4 6.04270- 4 1.90000+ 1 1.90000+ 1 6.16559- 4 5.31880- 4 1.90000+ 1 2.10000+ 1 1.79304- 3 5.90260- 4 1.90000+ 1 2.20000+ 1 1.21599- 3 5.91170- 4 1.90000+ 1 2.70000+ 1 1.17257- 4 6.04920- 4 1.90000+ 1 2.90000+ 1 1.31239- 4 6.10840- 4 1.90000+ 1 3.00000+ 1 6.98894- 6 6.11170- 4 2.10000+ 1 2.10000+ 1 5.31666- 4 6.48640- 4 2.10000+ 1 2.20000+ 1 1.14554- 3 6.49550- 4 2.10000+ 1 2.70000+ 1 3.21025- 5 6.63300- 4 2.10000+ 1 2.90000+ 1 9.16147- 5 6.69220- 4 2.10000+ 1 3.00000+ 1 1.09623- 5 6.69550- 4 2.20000+ 1 2.20000+ 1 2.18482- 4 6.50460- 4 2.20000+ 1 2.70000+ 1 5.05125- 5 6.64210- 4 2.20000+ 1 2.90000+ 1 1.19886- 4 6.70130- 4 2.20000+ 1 3.00000+ 1 5.47729- 6 6.70460- 4 2.70000+ 1 2.70000+ 1 3.36178- 6 6.77960- 4 2.70000+ 1 2.90000+ 1 4.70650- 6 6.83880- 4 2.70000+ 1 3.00000+ 1 6.72375- 7 6.84210- 4 2.90000+ 1 3.00000+ 1 6.72376- 7 6.90130- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.68731- 5 1.99630- 4 1.40000+ 1 2.77578- 4 2.07670- 4 1.60000+ 1 2.81847- 4 5.32770- 4 2.10000+ 1 7.38662- 5 6.35180- 4 2.20000+ 1 6.09594- 4 6.36090- 4 2.70000+ 1 2.80689- 5 6.49840- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.84590- 2 7.17300- 5 1.30000+ 1 1.80000+ 1 1.99782- 2 1.08860- 4 1.30000+ 1 1.90000+ 1 1.26970- 1 1.15760- 4 1.30000+ 1 2.10000+ 1 1.11938- 2 1.74140- 4 1.30000+ 1 2.20000+ 1 7.70633- 3 1.75050- 4 1.30000+ 1 2.70000+ 1 2.11418- 3 1.88800- 4 1.30000+ 1 2.90000+ 1 1.36567- 4 1.94720- 4 1.30000+ 1 3.00000+ 1 7.05492- 4 1.95050- 4 1.40000+ 1 1.60000+ 1 1.31805- 1 7.97700- 5 1.40000+ 1 1.80000+ 1 1.33523- 1 1.16900- 4 1.40000+ 1 1.90000+ 1 2.77672- 1 1.23800- 4 1.40000+ 1 2.10000+ 1 3.97124- 2 1.82180- 4 1.40000+ 1 2.20000+ 1 7.15554- 2 1.83090- 4 1.40000+ 1 2.70000+ 1 1.18037- 2 1.96840- 4 1.40000+ 1 2.90000+ 1 9.21429- 4 2.02760- 4 1.40000+ 1 3.00000+ 1 1.68307- 3 2.03090- 4 1.60000+ 1 1.60000+ 1 8.98589- 4 4.04870- 4 1.60000+ 1 1.80000+ 1 1.30670- 3 4.42000- 4 1.60000+ 1 1.90000+ 1 1.89493- 2 4.48900- 4 1.60000+ 1 2.10000+ 1 9.70051- 4 5.07280- 4 1.60000+ 1 2.20000+ 1 1.08997- 3 5.08190- 4 1.60000+ 1 2.70000+ 1 1.30795- 4 5.21940- 4 1.60000+ 1 2.90000+ 1 8.47713- 6 5.27860- 4 1.60000+ 1 3.00000+ 1 9.93066- 5 5.28190- 4 1.80000+ 1 1.80000+ 1 2.06686- 4 4.79130- 4 1.80000+ 1 1.90000+ 1 1.88601- 2 4.86030- 4 1.80000+ 1 2.10000+ 1 4.90469- 4 5.44410- 4 1.80000+ 1 2.20000+ 1 2.48479- 3 5.45320- 4 1.80000+ 1 2.70000+ 1 8.15604- 5 5.59070- 4 1.80000+ 1 2.90000+ 1 2.23463- 6 5.64990- 4 1.80000+ 1 3.00000+ 1 9.94392- 5 5.65320- 4 1.90000+ 1 1.90000+ 1 2.41871- 2 4.92930- 4 1.90000+ 1 2.10000+ 1 2.49091- 2 5.51310- 4 1.90000+ 1 2.20000+ 1 3.38675- 2 5.52220- 4 1.90000+ 1 2.70000+ 1 1.33581- 3 5.65970- 4 1.90000+ 1 2.90000+ 1 1.18696- 4 5.71890- 4 1.90000+ 1 3.00000+ 1 2.91875- 4 5.72220- 4 2.10000+ 1 2.10000+ 1 1.33995- 4 6.09690- 4 2.10000+ 1 2.20000+ 1 1.12278- 3 6.10600- 4 2.10000+ 1 2.70000+ 1 3.52623- 5 6.24350- 4 2.10000+ 1 2.90000+ 1 1.41058- 6 6.30270- 4 2.10000+ 1 3.00000+ 1 9.52086- 5 6.30600- 4 2.20000+ 1 2.20000+ 1 7.97471- 4 6.11510- 4 2.20000+ 1 2.70000+ 1 4.35253- 5 6.25260- 4 2.20000+ 1 2.90000+ 1 8.42415- 6 6.31180- 4 2.20000+ 1 3.00000+ 1 1.27756- 4 6.31510- 4 2.70000+ 1 2.70000+ 1 2.38560- 6 6.39010- 4 2.70000+ 1 3.00000+ 1 4.17468- 6 6.45260- 4 2.90000+ 1 3.00000+ 1 5.96400- 7 6.51180- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 7.73915- 4 3.70270- 4 1.90000+ 1 1.28401- 4 3.77170- 4 2.90000+ 1 6.34274- 6 4.56130- 4 3.00000+ 1 9.71226- 7 4.56460- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 4.70287- 4 3.13000- 6 1.40000+ 1 3.00000+ 1 1.49512- 3 3.46000- 6 1.60000+ 1 1.60000+ 1 5.54502- 4 2.05240- 4 1.60000+ 1 1.80000+ 1 1.09502- 2 2.42370- 4 1.60000+ 1 1.90000+ 1 1.04584- 2 2.49270- 4 1.60000+ 1 2.10000+ 1 1.34907- 1 3.07650- 4 1.60000+ 1 2.20000+ 1 2.19622- 2 3.08560- 4 1.60000+ 1 2.70000+ 1 6.31731- 5 3.22310- 4 1.60000+ 1 2.90000+ 1 6.31731- 5 3.28230- 4 1.60000+ 1 3.00000+ 1 4.21133- 5 3.28560- 4 1.80000+ 1 1.80000+ 1 1.51615- 3 2.79500- 4 1.80000+ 1 1.90000+ 1 2.21655- 2 2.86400- 4 1.80000+ 1 2.10000+ 1 1.00603- 1 3.44780- 4 1.80000+ 1 2.20000+ 1 8.94932- 3 3.45690- 4 1.80000+ 1 2.70000+ 1 3.86053- 4 3.59440- 4 1.80000+ 1 2.90000+ 1 2.10572- 5 3.65360- 4 1.80000+ 1 3.00000+ 1 1.19323- 4 3.65690- 4 1.90000+ 1 1.90000+ 1 9.17386- 3 2.93300- 4 1.90000+ 1 2.10000+ 1 2.23419- 1 3.51680- 4 1.90000+ 1 2.20000+ 1 9.22314- 3 3.52590- 4 1.90000+ 1 2.70000+ 1 4.91323- 4 3.66340- 4 1.90000+ 1 2.90000+ 1 1.26351- 4 3.72260- 4 1.90000+ 1 3.00000+ 1 9.82681- 5 3.72590- 4 2.10000+ 1 2.10000+ 1 1.38534- 1 4.10060- 4 2.10000+ 1 2.20000+ 1 2.84465- 1 4.10970- 4 2.10000+ 1 2.70000+ 1 1.07322- 2 4.24720- 4 2.10000+ 1 2.90000+ 1 7.29985- 4 4.30640- 4 2.10000+ 1 3.00000+ 1 1.48109- 3 4.30970- 4 2.20000+ 1 2.20000+ 1 4.80098- 3 4.11880- 4 2.20000+ 1 2.70000+ 1 9.89694- 4 4.25630- 4 2.20000+ 1 2.90000+ 1 4.91322- 5 4.31550- 4 2.20000+ 1 3.00000+ 1 4.91322- 5 4.31880- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 8.15090- 4 3.69130- 4 3.00000+ 1 6.16207- 6 4.48420- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 8.45286- 4 1.97200- 4 1.60000+ 1 1.80000+ 1 6.25656- 3 2.34330- 4 1.60000+ 1 1.90000+ 1 1.71551- 2 2.41230- 4 1.60000+ 1 2.10000+ 1 1.60677- 2 2.99610- 4 1.60000+ 1 2.20000+ 1 1.42137- 1 3.00520- 4 1.60000+ 1 2.70000+ 1 9.00717- 5 3.14270- 4 1.60000+ 1 2.90000+ 1 2.77136- 5 3.20190- 4 1.60000+ 1 3.00000+ 1 8.31434- 5 3.20520- 4 1.80000+ 1 1.80000+ 1 2.07859- 5 2.71460- 4 1.80000+ 1 1.90000+ 1 2.21863- 2 2.78360- 4 1.80000+ 1 2.10000+ 1 1.94016- 3 3.36740- 4 1.80000+ 1 2.20000+ 1 1.23040- 1 3.37650- 4 1.80000+ 1 2.70000+ 1 2.77145- 4 3.51400- 4 1.80000+ 1 3.00000+ 1 1.17792- 4 3.57650- 4 1.90000+ 1 1.90000+ 1 1.51464- 2 2.85260- 4 1.90000+ 1 2.10000+ 1 1.14461- 2 3.43640- 4 1.90000+ 1 2.20000+ 1 2.04087- 1 3.44550- 4 1.90000+ 1 2.70000+ 1 6.78996- 4 3.58300- 4 1.90000+ 1 2.90000+ 1 1.17790- 4 3.64220- 4 1.90000+ 1 3.00000+ 1 1.66296- 4 3.64550- 4 2.10000+ 1 2.10000+ 1 1.98170- 3 4.02020- 4 2.10000+ 1 2.20000+ 1 1.95751- 1 4.02930- 4 2.10000+ 1 2.70000+ 1 7.20583- 4 4.16680- 4 2.10000+ 1 2.90000+ 1 1.38580- 5 4.22600- 4 2.10000+ 1 3.00000+ 1 5.54307- 5 4.22930- 4 2.20000+ 1 2.20000+ 1 2.25564- 1 4.03840- 4 2.20000+ 1 2.70000+ 1 1.09743- 2 4.17590- 4 2.20000+ 1 2.90000+ 1 8.66068- 4 4.23510- 4 2.20000+ 1 3.00000+ 1 1.35811- 3 4.23840- 4 2.70000+ 1 3.00000+ 1 6.92898- 6 4.37590- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 8.99273- 6 3.71300- 5 1.90000+ 1 2.66255- 5 4.40300- 5 2.90000+ 1 2.82324- 7 1.22990- 4 3.00000+ 1 2.36710- 7 1.23320- 4 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 3.13612- 2 1.16400- 5 1.80000+ 1 2.20000+ 1 1.17895- 1 1.25500- 5 1.80000+ 1 2.70000+ 1 8.75568- 3 2.63000- 5 1.80000+ 1 2.90000+ 1 4.93629- 4 3.22200- 5 1.80000+ 1 3.00000+ 1 1.28375- 3 3.25500- 5 1.90000+ 1 2.10000+ 1 3.55758- 1 1.85400- 5 1.90000+ 1 2.20000+ 1 3.78615- 1 1.94500- 5 1.90000+ 1 2.70000+ 1 1.83631- 2 3.32000- 5 1.90000+ 1 2.90000+ 1 1.65767- 3 3.91200- 5 1.90000+ 1 3.00000+ 1 2.18216- 3 3.94500- 5 2.10000+ 1 2.10000+ 1 1.56975- 3 7.69200- 5 2.10000+ 1 2.20000+ 1 4.37208- 2 7.78300- 5 2.10000+ 1 2.70000+ 1 7.85877- 3 9.15800- 5 2.10000+ 1 2.90000+ 1 6.52069- 5 9.75000- 5 2.10000+ 1 3.00000+ 1 7.36206- 4 9.78300- 5 2.20000+ 1 2.20000+ 1 5.88485- 3 7.87400- 5 2.20000+ 1 2.70000+ 1 5.12322- 3 9.24900- 5 2.20000+ 1 2.90000+ 1 2.69092- 4 9.84100- 5 2.20000+ 1 3.00000+ 1 2.39777- 4 9.87400- 5 2.70000+ 1 2.70000+ 1 1.30436- 2 1.06240- 4 2.70000+ 1 2.90000+ 1 1.47146- 3 1.12160- 4 2.70000+ 1 3.00000+ 1 2.55089- 3 1.12490- 4 2.90000+ 1 3.00000+ 1 1.06499- 3 1.18410- 4 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.17311- 5 6.52800- 5 2.70000+ 1 2.29661- 6 7.99400- 5 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 5.49502- 4 1.99000- 6 1.90000+ 1 3.00000+ 1 7.92402- 4 2.32000- 6 2.10000+ 1 2.10000+ 1 1.60965- 1 3.97900- 5 2.10000+ 1 2.20000+ 1 7.91695- 1 4.07000- 5 2.10000+ 1 2.70000+ 1 1.26357- 2 5.44500- 5 2.10000+ 1 2.90000+ 1 9.81929- 4 6.03700- 5 2.10000+ 1 3.00000+ 1 1.95464- 3 6.07000- 5 2.20000+ 1 2.20000+ 1 2.78490- 2 4.16100- 5 2.20000+ 1 2.70000+ 1 1.17376- 3 5.53600- 5 2.20000+ 1 2.90000+ 1 1.09766- 3 6.12800- 5 2.20000+ 1 3.00000+ 1 2.05692- 4 6.16100- 5 2.70000+ 1 2.70000+ 1 3.11231- 6 6.91100- 5 2.70000+ 1 2.90000+ 1 4.99385- 5 7.50300- 5 2.70000+ 1 3.00000+ 1 5.23435- 6 7.53600- 5 2.90000+ 1 3.00000+ 1 7.35662- 6 8.12800- 5 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.31720- 7 5.83800- 5 2.20000+ 1 7.93580- 6 5.92900- 5 2.70000+ 1 8.44040- 7 7.30400- 5 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.29548- 2 3.28900- 5 2.10000+ 1 2.20000+ 1 5.81745- 1 3.38000- 5 2.10000+ 1 2.70000+ 1 2.16648- 3 4.75500- 5 2.10000+ 1 2.90000+ 1 1.69898- 4 5.34700- 5 2.10000+ 1 3.00000+ 1 8.73573- 4 5.38000- 5 2.20000+ 1 2.20000+ 1 3.76626- 1 3.47100- 5 2.20000+ 1 2.70000+ 1 1.21088- 2 4.84600- 5 2.20000+ 1 2.90000+ 1 1.22648- 3 5.43800- 5 2.20000+ 1 3.00000+ 1 2.05908- 3 5.47100- 5 2.70000+ 1 2.70000+ 1 1.77507- 6 6.22100- 5 2.70000+ 1 2.90000+ 1 3.80364- 6 6.81300- 5 2.70000+ 1 3.00000+ 1 5.07143- 5 6.84600- 5 2.90000+ 1 3.00000+ 1 4.05730- 6 7.43800- 5 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.70179-10 2.05800- 5 3.00000+ 1 6.44637-11 2.09100- 5 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 4.32822- 1 3.83000- 6 2.70000+ 1 2.90000+ 1 2.69162- 1 9.75000- 6 2.70000+ 1 3.00000+ 1 2.39722- 1 1.00800- 5 2.90000+ 1 3.00000+ 1 5.82938- 2 1.60000- 5 1 49000 0 7 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.56828-10 2.00000- 5 1 49000 0 9 1.14820+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.90000+ 1 2.12361- 1 8.84000- 6 2.70000+ 1 3.00000+ 1 7.26924- 1 9.17000- 6 2.90000+ 1 3.00000+ 1 6.07147- 2 1.50900- 5 1 50000 0 0 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 6.70000- 1 3.00000+ 1 1.33000+ 0 1 50000 0 0 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.91840- 2 3.00000+ 0 4.44030- 3 5.00000+ 0 4.16080- 3 6.00000+ 0 3.92680- 3 8.00000+ 0 8.69050- 4 1.00000+ 1 7.53360- 4 1.10000+ 1 7.10320- 4 1.30000+ 1 5.03570- 4 1.40000+ 1 4.94620- 4 1.60000+ 1 1.42810- 4 1.80000+ 1 1.03640- 4 1.90000+ 1 9.58000- 5 2.10000+ 1 3.34900- 5 2.20000+ 1 3.23900- 5 2.70000+ 1 1.33900- 5 2.90000+ 1 6.28000- 6 3.00000+ 1 5.77000- 6 1 50000 0 0 1.18690+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.71090- 2 3.00000+ 0 8.00330- 3 5.00000+ 0 8.01130- 3 6.00000+ 0 7.16000- 3 8.00000+ 0 2.28880- 3 1.00000+ 1 2.22300- 3 1.10000+ 1 2.03550- 3 1.30000+ 1 1.91400- 3 1.40000+ 1 1.86860- 3 1.60000+ 1 6.15430- 4 1.80000+ 1 5.49730- 4 1.90000+ 1 5.03680- 4 2.10000+ 1 3.56440- 4 2.20000+ 1 3.46740- 4 2.70000+ 1 8.67000- 5 2.90000+ 1 4.93100- 5 3.00000+ 1 4.27500- 5 1 50000 0 0 1.18690+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.53460-10 3.00000+ 0 6.59560-10 5.00000+ 0 5.56840-10 6.00000+ 0 5.85030-10 8.00000+ 0 1.78140- 9 1.00000+ 1 1.72880- 9 1.10000+ 1 1.78750- 9 1.30000+ 1 1.63150- 9 1.40000+ 1 1.65010- 9 1.60000+ 1 4.27860- 9 1.80000+ 1 4.50650- 9 1.90000+ 1 4.65710- 9 2.10000+ 1 5.54520- 9 2.20000+ 1 5.61480- 9 2.70000+ 1 1.21180- 8 2.90000+ 1 1.60140- 8 3.00000+ 1 1.69720- 8 1 50000 0 0 1.18690+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.08660- 6 3.00000+ 0 1.06570- 7 5.00000+ 0 1.78590- 7 6.00000+ 0 1.69520- 7 8.00000+ 0 2.15970- 9 1.00000+ 1 2.19690- 9 1.10000+ 1 2.11940- 9 1.30000+ 1 1.64080-10 1.40000+ 1 1.43240-10 1.60000+ 1 4.53520-11 1.80000+ 1 1.38120-10 1.90000+ 1 1.11340-10 2.10000+ 1 5.41060-13 2.20000+ 1 4.68450-13 1 50000 0 0 1.18690+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19390- 6 3.00000+ 0 2.91120- 6 5.00000+ 0 2.42920- 6 6.00000+ 0 2.22910- 6 8.00000+ 0 1.23340- 5 1.00000+ 1 4.20910- 6 1.10000+ 1 4.54950- 6 1.30000+ 1 4.30480- 7 1.40000+ 1 4.35660- 7 1.60000+ 1 2.54860- 5 1.80000+ 1 2.16610- 5 1.90000+ 1 2.56210- 5 2.10000+ 1 8.03190- 8 2.20000+ 1 7.85950- 8 1 50000 0 0 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.47281- 4 3.00000+ 0 1.66378- 4 5.00000+ 0 1.40190- 4 6.00000+ 0 1.33642- 4 8.00000+ 0 1.24242- 4 1.00000+ 1 1.00467- 4 1.10000+ 1 9.78050- 5 1.30000+ 1 5.87307- 5 1.40000+ 1 5.92431- 5 1.60000+ 1 6.12744- 5 1.80000+ 1 4.30598- 5 1.90000+ 1 4.32041- 5 2.10000+ 1 2.15355- 5 2.20000+ 1 2.18348- 5 2.70000+ 1 1.33900- 5 2.90000+ 1 6.28000- 6 3.00000+ 1 5.77000- 6 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.35034- 1 3.00000+ 0 7.64754- 2 5.00000+ 0 8.31961- 2 6.00000+ 0 7.33215- 2 8.00000+ 0 2.35900- 3 1.00000+ 1 2.51962- 3 1.10000+ 1 2.36104- 3 1.30000+ 1 1.14017- 3 1.40000+ 1 1.03475- 3 1.60000+ 1 5.87045- 5 1.80000+ 1 4.42689- 5 1.90000+ 1 1.26720- 5 2.10000+ 1 6.84457- 9 2.20000+ 1 7.16671- 9 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.24704- 2 3.00000+ 0 2.70567- 4 5.00000+ 0 2.95025- 4 6.00000+ 0 2.44591- 4 8.00000+ 0 1.20735- 6 1.00000+ 1 1.22888- 6 1.10000+ 1 1.15740- 6 1.30000+ 1 4.52834- 7 1.40000+ 1 4.07705- 7 1.60000+ 1 3.16597- 9 1.80000+ 1 3.17519- 9 1.90000+ 1 8.26755-10 2.10000+ 1 1.86761-13 2.20000+ 1 1.90778-13 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.25694+ 1 3.00000+ 0 1.43254+ 1 5.00000+ 0 1.19236+ 1 6.00000+ 0 1.13087+ 1 8.00000+ 0 1.04430+ 1 1.00000+ 1 8.26445+ 0 1.10000+ 1 8.00640+ 0 1.30000+ 1 4.42502+ 0 1.40000+ 1 4.44806+ 0 1.60000+ 1 4.64008+ 0 1.80000+ 1 2.97759+ 0 1.90000+ 1 2.97614+ 0 2.10000+ 1 1.00000+ 0 2.20000+ 1 1.00000+ 0 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.56631- 3 3.00000+ 0 4.00335- 3 5.00000+ 0 3.72558- 3 6.00000+ 0 3.54857- 3 8.00000+ 0 7.43601- 4 1.00000+ 1 6.51664- 4 1.10000+ 1 6.11358- 4 1.30000+ 1 4.44386- 4 1.40000+ 1 4.34969- 4 1.60000+ 1 8.15324- 5 1.80000+ 1 6.05770- 5 1.90000+ 1 5.25950- 5 2.10000+ 1 1.19545- 5 2.20000+ 1 1.05552- 5 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.48181- 1 2.50232- 2 6.00000+ 0 4.64342- 1 2.52572- 2 1.00000+ 1 4.18921- 2 2.84306- 2 1.10000+ 1 8.13413- 2 2.84737- 2 1.30000+ 1 3.36211- 4 2.86804- 2 1.40000+ 1 4.65142- 4 2.86894- 2 1.80000+ 1 8.58463- 3 2.90804- 2 1.90000+ 1 1.67661- 2 2.90882- 2 2.10000+ 1 4.97472- 5 2.91505- 2 2.20000+ 1 6.84092- 5 2.91516- 2 2.90000+ 1 1.71861- 4 2.91777- 2 3.00000+ 1 3.12041- 4 2.91782- 2 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 1.04630- 2 2.03034- 2 3.00000+ 0 5.00000+ 0 1.22577- 2 2.05829- 2 3.00000+ 0 6.00000+ 0 1.60274- 2 2.08169- 2 3.00000+ 0 8.00000+ 0 3.64557- 3 2.38746- 2 3.00000+ 0 1.00000+ 1 2.27313- 3 2.39903- 2 3.00000+ 0 1.10000+ 1 2.98891- 3 2.40334- 2 3.00000+ 0 1.30000+ 1 1.90837- 4 2.42401- 2 3.00000+ 0 1.40000+ 1 2.16222- 4 2.42491- 2 3.00000+ 0 1.60000+ 1 7.42979- 4 2.46009- 2 3.00000+ 0 1.80000+ 1 4.28048- 4 2.46401- 2 3.00000+ 0 1.90000+ 1 5.57472- 4 2.46479- 2 3.00000+ 0 2.10000+ 1 2.88297- 5 2.47102- 2 3.00000+ 0 2.20000+ 1 3.22760- 5 2.47113- 2 3.00000+ 0 2.70000+ 1 8.99343- 5 2.47303- 2 3.00000+ 0 2.90000+ 1 1.22205- 5 2.47374- 2 3.00000+ 0 3.00000+ 1 1.56669- 5 2.47379- 2 5.00000+ 0 5.00000+ 0 1.63952- 3 2.08624- 2 5.00000+ 0 6.00000+ 0 3.52383- 2 2.10964- 2 5.00000+ 0 8.00000+ 0 1.76864- 3 2.41541- 2 5.00000+ 0 1.00000+ 1 5.46488- 4 2.42698- 2 5.00000+ 0 1.10000+ 1 5.49034- 3 2.43129- 2 5.00000+ 0 1.30000+ 1 2.35644- 4 2.45196- 2 5.00000+ 0 1.40000+ 1 8.03446- 4 2.45286- 2 5.00000+ 0 1.60000+ 1 3.47186- 4 2.48804- 2 5.00000+ 0 1.80000+ 1 1.01214- 4 2.49196- 2 5.00000+ 0 1.90000+ 1 9.92120- 4 2.49274- 2 5.00000+ 0 2.10000+ 1 3.50953- 5 2.49897- 2 5.00000+ 0 2.20000+ 1 1.18760- 4 2.49908- 2 5.00000+ 0 2.70000+ 1 4.16761- 5 2.50098- 2 5.00000+ 0 2.90000+ 1 2.82018- 6 2.50169- 2 5.00000+ 0 3.00000+ 1 2.78900- 5 2.50174- 2 6.00000+ 0 6.00000+ 0 1.79448- 2 2.13304- 2 6.00000+ 0 8.00000+ 0 2.28063- 3 2.43881- 2 6.00000+ 0 1.00000+ 1 5.38260- 3 2.45038- 2 6.00000+ 0 1.10000+ 1 5.73591- 3 2.45469- 2 6.00000+ 0 1.30000+ 1 9.64476- 4 2.47536- 2 6.00000+ 0 1.40000+ 1 8.96833- 4 2.47626- 2 6.00000+ 0 1.60000+ 1 4.46838- 4 2.51144- 2 6.00000+ 0 1.80000+ 1 9.80201- 4 2.51536- 2 6.00000+ 0 1.90000+ 1 1.04219- 3 2.51614- 2 6.00000+ 0 2.10000+ 1 1.43831- 4 2.52237- 2 6.00000+ 0 2.20000+ 1 1.32856- 4 2.52248- 2 6.00000+ 0 2.70000+ 1 5.35837- 5 2.52438- 2 6.00000+ 0 2.90000+ 1 2.82018- 5 2.52509- 2 6.00000+ 0 3.00000+ 1 2.91421- 5 2.52514- 2 8.00000+ 0 8.00000+ 0 3.12731- 4 2.74459- 2 8.00000+ 0 1.00000+ 1 3.30916- 4 2.75616- 2 8.00000+ 0 1.10000+ 1 4.28672- 4 2.76046- 2 8.00000+ 0 1.30000+ 1 2.56963- 5 2.78114- 2 8.00000+ 0 1.40000+ 1 2.82024- 5 2.78203- 2 8.00000+ 0 1.60000+ 1 1.27232- 4 2.81721- 2 8.00000+ 0 1.80000+ 1 6.23583- 5 2.82113- 2 8.00000+ 0 1.90000+ 1 8.02206- 5 2.82191- 2 8.00000+ 0 2.10000+ 1 3.76042- 6 2.82815- 2 8.00000+ 0 2.20000+ 1 4.38714- 6 2.82826- 2 8.00000+ 0 2.70000+ 1 1.53552- 5 2.83016- 2 8.00000+ 0 2.90000+ 1 1.88006- 6 2.83087- 2 8.00000+ 0 3.00000+ 1 2.19343- 6 2.83092- 2 1.00000+ 1 1.00000+ 1 4.35559- 5 2.76773- 2 1.00000+ 1 1.10000+ 1 8.51694- 4 2.77203- 2 1.00000+ 1 1.30000+ 1 2.82013- 5 2.79271- 2 1.00000+ 1 1.40000+ 1 9.61980- 5 2.79360- 2 1.00000+ 1 1.60000+ 1 6.51775- 5 2.82878- 2 1.00000+ 1 1.80000+ 1 1.59802- 5 2.83270- 2 1.00000+ 1 1.90000+ 1 1.54176- 4 2.83348- 2 1.00000+ 1 2.10000+ 1 4.07361- 6 2.83971- 2 1.00000+ 1 2.20000+ 1 1.44144- 5 2.83982- 2 1.00000+ 1 2.70000+ 1 7.83378- 6 2.84172- 2 1.00000+ 1 2.90000+ 1 3.13356- 7 2.84244- 2 1.00000+ 1 3.00000+ 1 4.38697- 6 2.84249- 2 1.10000+ 1 1.10000+ 1 4.59680- 4 2.77634- 2 1.10000+ 1 1.30000+ 1 1.22200- 4 2.79701- 2 1.10000+ 1 1.40000+ 1 1.10928- 4 2.79791- 2 1.10000+ 1 1.60000+ 1 8.39773- 5 2.83309- 2 1.10000+ 1 1.80000+ 1 1.55423- 4 2.83700- 2 1.10000+ 1 1.90000+ 1 1.66999- 4 2.83779- 2 1.10000+ 1 2.10000+ 1 1.81741- 5 2.84402- 2 1.10000+ 1 2.20000+ 1 1.66083- 5 2.84413- 2 1.10000+ 1 2.70000+ 1 1.00268- 5 2.84603- 2 1.10000+ 1 2.90000+ 1 4.38691- 6 2.84674- 2 1.10000+ 1 3.00000+ 1 4.70025- 6 2.84679- 2 1.30000+ 1 1.40000+ 1 1.40271- 5 2.81858- 2 1.30000+ 1 1.60000+ 1 4.87885- 6 2.85376- 2 1.30000+ 1 1.80000+ 1 4.87885- 6 2.85768- 2 1.30000+ 1 1.90000+ 1 2.07353- 5 2.85846- 2 1.30000+ 1 2.20000+ 1 2.13441- 6 2.86480- 2 1.30000+ 1 2.70000+ 1 6.09856- 7 2.86670- 2 1.30000+ 1 3.00000+ 1 6.09856- 7 2.86747- 2 1.40000+ 1 1.40000+ 1 3.48310- 6 2.81948- 2 1.40000+ 1 1.60000+ 1 5.38282- 6 2.85466- 2 1.40000+ 1 1.80000+ 1 1.70979- 5 2.85857- 2 1.40000+ 1 1.90000+ 1 1.93152- 5 2.85936- 2 1.40000+ 1 2.10000+ 1 2.21636- 6 2.86559- 2 1.40000+ 1 2.20000+ 1 9.49919- 7 2.86570- 2 1.40000+ 1 2.70000+ 1 6.33273- 7 2.86760- 2 1.40000+ 1 2.90000+ 1 6.33273- 7 2.86831- 2 1.40000+ 1 3.00000+ 1 6.33273- 7 2.86836- 2 1.60000+ 1 1.60000+ 1 1.32276- 5 2.88984- 2 1.60000+ 1 1.80000+ 1 1.25826- 5 2.89375- 2 1.60000+ 1 1.90000+ 1 1.61310- 5 2.89454- 2 1.60000+ 1 2.10000+ 1 6.45282- 7 2.90077- 2 1.60000+ 1 2.20000+ 1 9.67931- 7 2.90088- 2 1.60000+ 1 2.70000+ 1 3.22650- 6 2.90278- 2 1.60000+ 1 2.90000+ 1 3.22650- 7 2.90349- 2 1.60000+ 1 3.00000+ 1 3.22650- 7 2.90354- 2 1.80000+ 1 1.80000+ 1 1.50284- 6 2.89767- 2 1.80000+ 1 1.90000+ 1 2.70528- 5 2.89846- 2 1.80000+ 1 2.10000+ 1 6.01174- 7 2.90469- 2 1.80000+ 1 2.20000+ 1 2.40470- 6 2.90480- 2 1.80000+ 1 2.70000+ 1 1.50284- 6 2.90670- 2 1.80000+ 1 3.00000+ 1 9.01769- 7 2.90746- 2 1.90000+ 1 1.90000+ 1 1.54482- 5 2.89924- 2 1.90000+ 1 2.10000+ 1 3.21843- 6 2.90547- 2 1.90000+ 1 2.20000+ 1 2.89651- 6 2.90558- 2 1.90000+ 1 2.70000+ 1 1.93091- 6 2.90748- 2 1.90000+ 1 2.90000+ 1 9.65511- 7 2.90819- 2 1.90000+ 1 3.00000+ 1 9.65511- 7 2.90824- 2 2.10000+ 1 2.20000+ 1 4.72032- 7 2.91181- 2 2.70000+ 1 2.70000+ 1 3.13361- 7 2.91572- 2 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.02552- 5 2.79500- 4 6.00000+ 0 2.70912- 4 5.13500- 4 1.00000+ 1 1.09711- 2 3.68694- 3 1.10000+ 1 1.78552- 2 3.72998- 3 1.30000+ 1 1.38641- 4 3.93673- 3 1.40000+ 1 2.06912- 4 3.94568- 3 1.80000+ 1 2.14322- 3 4.33666- 3 1.90000+ 1 3.54693- 3 4.34450- 3 2.10000+ 1 1.39921- 5 4.40681- 3 2.20000+ 1 2.10792- 5 4.40791- 3 2.90000+ 1 4.90124- 5 4.43402- 3 3.00000+ 1 7.62786- 5 4.43453- 3 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.83520- 2 1.36690- 4 5.00000+ 0 1.80000+ 1 4.10540- 2 1.75860- 4 5.00000+ 0 1.90000+ 1 5.38980- 2 1.83700- 4 5.00000+ 0 2.10000+ 1 1.23240- 2 2.46010- 4 5.00000+ 0 2.20000+ 1 2.01090- 2 2.47110- 4 5.00000+ 0 2.70000+ 1 6.83859- 3 2.66110- 4 5.00000+ 0 2.90000+ 1 1.12440- 3 2.73220- 4 5.00000+ 0 3.00000+ 1 1.44180- 3 2.73730- 4 6.00000+ 0 1.60000+ 1 8.00973- 2 3.70690- 4 6.00000+ 0 1.80000+ 1 3.52981- 2 4.09860- 4 6.00000+ 0 1.90000+ 1 6.78992- 2 4.17700- 4 6.00000+ 0 2.10000+ 1 5.42662- 2 4.80010- 4 6.00000+ 0 2.20000+ 1 7.02152- 2 4.81110- 4 6.00000+ 0 2.70000+ 1 9.42833- 3 5.00110- 4 6.00000+ 0 2.90000+ 1 9.86493- 4 5.07220- 4 6.00000+ 0 3.00000+ 1 1.87191- 3 5.07730- 4 8.00000+ 0 8.00000+ 0 1.42199- 2 2.70220- 3 8.00000+ 0 1.00000+ 1 2.81618- 2 2.81789- 3 8.00000+ 0 1.10000+ 1 5.26386- 2 2.86093- 3 8.00000+ 0 1.30000+ 1 4.20607- 2 3.06768- 3 8.00000+ 0 1.40000+ 1 5.99385- 2 3.07663- 3 8.00000+ 0 1.60000+ 1 4.96466- 3 3.42844- 3 8.00000+ 0 1.80000+ 1 5.19726- 3 3.46761- 3 8.00000+ 0 1.90000+ 1 9.61223- 3 3.47545- 3 8.00000+ 0 2.10000+ 1 5.49486- 3 3.53776- 3 8.00000+ 0 2.20000+ 1 7.76444- 3 3.53886- 3 8.00000+ 0 2.70000+ 1 5.88816- 4 3.55786- 3 8.00000+ 0 2.90000+ 1 1.49679- 4 3.56497- 3 8.00000+ 0 3.00000+ 1 2.70508- 4 3.56548- 3 1.00000+ 1 1.00000+ 1 1.74931- 4 2.93358- 3 1.00000+ 1 1.10000+ 1 1.16230- 3 2.97662- 3 1.00000+ 1 1.30000+ 1 1.11720- 3 3.18337- 3 1.00000+ 1 1.40000+ 1 1.52840- 2 3.19232- 3 1.00000+ 1 1.60000+ 1 3.97911- 3 3.54413- 3 1.00000+ 1 1.80000+ 1 3.51661- 5 3.58330- 3 1.00000+ 1 1.90000+ 1 2.01981- 4 3.59114- 3 1.00000+ 1 2.10000+ 1 1.48780- 4 3.65345- 3 1.00000+ 1 2.20000+ 1 1.34980- 3 3.65455- 3 1.00000+ 1 2.70000+ 1 4.53561- 4 3.67355- 3 1.00000+ 1 2.90000+ 1 9.01703- 7 3.68066- 3 1.00000+ 1 3.00000+ 1 5.41012- 6 3.68117- 3 1.10000+ 1 1.10000+ 1 1.22530- 3 3.01966- 3 1.10000+ 1 1.30000+ 1 1.14580- 2 3.22641- 3 1.10000+ 1 1.40000+ 1 7.87350- 3 3.23536- 3 1.10000+ 1 1.60000+ 1 7.43910- 3 3.58717- 3 1.10000+ 1 1.80000+ 1 2.01980- 4 3.62634- 3 1.10000+ 1 1.90000+ 1 3.47150- 4 3.63418- 3 1.10000+ 1 2.10000+ 1 9.08000- 4 3.69649- 3 1.10000+ 1 2.20000+ 1 6.48300- 4 3.69759- 3 1.10000+ 1 2.70000+ 1 8.48490- 4 3.71659- 3 1.10000+ 1 2.90000+ 1 5.41010- 6 3.72370- 3 1.10000+ 1 3.00000+ 1 9.01700- 6 3.72421- 3 1.30000+ 1 1.30000+ 1 2.32357- 3 3.43316- 3 1.30000+ 1 1.40000+ 1 8.60538- 2 3.44211- 3 1.30000+ 1 1.60000+ 1 5.66082- 3 3.79392- 3 1.30000+ 1 1.80000+ 1 2.68696- 4 3.83309- 3 1.30000+ 1 1.90000+ 1 2.09277- 3 3.84093- 3 1.30000+ 1 2.10000+ 1 6.02332- 4 3.90324- 3 1.30000+ 1 2.20000+ 1 8.37108- 3 3.90434- 3 1.30000+ 1 2.70000+ 1 6.41101- 4 3.92334- 3 1.30000+ 1 2.90000+ 1 8.11519- 6 3.93045- 3 1.30000+ 1 3.00000+ 1 5.86102- 5 3.93096- 3 1.40000+ 1 1.40000+ 1 2.42588- 2 3.45106- 3 1.40000+ 1 1.60000+ 1 8.10565- 3 3.80287- 3 1.40000+ 1 1.80000+ 1 2.58878- 3 3.84204- 3 1.40000+ 1 1.90000+ 1 1.50765- 3 3.84988- 3 1.40000+ 1 2.10000+ 1 8.33566- 3 3.91219- 3 1.40000+ 1 2.20000+ 1 4.91885- 3 3.91329- 3 1.40000+ 1 2.70000+ 1 9.19759- 4 3.93229- 3 1.40000+ 1 2.90000+ 1 7.39423- 5 3.93940- 3 1.40000+ 1 3.00000+ 1 4.23813- 5 3.93991- 3 1.60000+ 1 1.60000+ 1 4.12989- 4 4.15468- 3 1.60000+ 1 1.80000+ 1 7.35789- 4 4.19385- 3 1.60000+ 1 1.90000+ 1 1.36160- 3 4.20169- 3 1.60000+ 1 2.10000+ 1 7.37569- 4 4.26400- 3 1.60000+ 1 2.20000+ 1 1.04500- 3 4.26510- 3 1.60000+ 1 2.70000+ 1 9.73849- 5 4.28410- 3 1.60000+ 1 2.90000+ 1 2.07390- 5 4.29121- 3 1.60000+ 1 3.00000+ 1 3.78699- 5 4.29172- 3 1.80000+ 1 1.80000+ 1 1.80343- 6 4.23302- 3 1.80000+ 1 1.90000+ 1 3.51667- 5 4.24086- 3 1.80000+ 1 2.10000+ 1 3.06586- 5 4.30317- 3 1.80000+ 1 2.20000+ 1 2.35354- 4 4.30427- 3 1.80000+ 1 2.70000+ 1 8.38586- 5 4.32327- 3 1.80000+ 1 3.00000+ 1 9.01717- 7 4.33089- 3 1.90000+ 1 1.90000+ 1 2.52481- 5 4.24870- 3 1.90000+ 1 2.10000+ 1 1.74030- 4 4.31101- 3 1.90000+ 1 2.20000+ 1 1.28940- 4 4.31211- 3 1.90000+ 1 2.70000+ 1 1.55090- 4 4.33111- 3 1.90000+ 1 2.90000+ 1 9.01702- 7 4.33822- 3 1.90000+ 1 3.00000+ 1 1.80340- 6 4.33873- 3 2.10000+ 1 2.10000+ 1 3.69689- 5 4.37332- 3 2.10000+ 1 2.20000+ 1 8.59350- 4 4.37442- 3 2.10000+ 1 2.70000+ 1 8.38590- 5 4.39342- 3 2.10000+ 1 2.90000+ 1 9.01721- 7 4.40053- 3 2.10000+ 1 3.00000+ 1 4.50851- 6 4.40104- 3 2.20000+ 1 2.20000+ 1 2.61493- 4 4.37552- 3 2.20000+ 1 2.70000+ 1 1.18131- 4 4.39452- 3 2.20000+ 1 2.90000+ 1 6.31178- 6 4.40163- 3 2.20000+ 1 3.00000+ 1 3.60675- 6 4.40214- 3 2.70000+ 1 2.70000+ 1 5.41032- 6 4.41352- 3 2.70000+ 1 2.90000+ 1 2.70521- 6 4.42063- 3 2.70000+ 1 3.00000+ 1 4.50858- 6 4.42114- 3 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.94830- 8 2.34000- 4 8.00000+ 0 3.67630- 3 3.29175- 3 1.10000+ 1 4.74740- 5 3.45048- 3 1.30000+ 1 5.73491- 2 3.65723- 3 1.60000+ 1 4.45350- 4 4.01799- 3 1.90000+ 1 4.17020- 6 4.06500- 3 2.10000+ 1 6.92291- 3 4.12731- 3 2.70000+ 1 3.80590- 5 4.14741- 3 3.00000+ 1 8.97371- 8 4.15503- 3 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.27083- 2 9.11900- 5 6.00000+ 0 1.80000+ 1 5.11173- 2 1.30360- 4 6.00000+ 0 1.90000+ 1 1.82256- 2 1.38200- 4 6.00000+ 0 2.10000+ 1 6.12161- 2 2.00510- 4 6.00000+ 0 2.20000+ 1 2.29250- 2 2.01610- 4 6.00000+ 0 2.70000+ 1 1.38132- 3 2.20610- 4 6.00000+ 0 2.90000+ 1 1.41051- 3 2.27720- 4 6.00000+ 0 3.00000+ 1 5.05994- 4 2.28230- 4 8.00000+ 0 8.00000+ 0 1.12159- 3 2.42270- 3 8.00000+ 0 1.00000+ 1 2.62986- 2 2.53839- 3 8.00000+ 0 1.10000+ 1 2.55307- 3 2.58143- 3 8.00000+ 0 1.30000+ 1 1.80393- 3 2.78818- 3 8.00000+ 0 1.40000+ 1 3.78205- 3 2.79713- 3 8.00000+ 0 1.60000+ 1 3.66216- 4 3.14894- 3 8.00000+ 0 1.80000+ 1 3.39088- 3 3.18811- 3 8.00000+ 0 1.90000+ 1 4.15251- 4 3.19595- 3 8.00000+ 0 2.10000+ 1 1.74234- 4 3.25826- 3 8.00000+ 0 2.20000+ 1 3.16130- 4 3.25936- 3 8.00000+ 0 2.70000+ 1 4.27750- 5 3.27836- 3 8.00000+ 0 2.90000+ 1 9.28582- 5 3.28547- 3 8.00000+ 0 3.00000+ 1 1.14769- 5 3.28598- 3 1.00000+ 1 1.00000+ 1 2.56982- 2 2.65408- 3 1.00000+ 1 1.10000+ 1 8.17441- 2 2.69712- 3 1.00000+ 1 1.30000+ 1 4.41718- 2 2.90387- 3 1.00000+ 1 1.40000+ 1 7.64574- 2 2.91282- 3 1.00000+ 1 1.60000+ 1 5.46400- 3 3.26463- 3 1.00000+ 1 1.80000+ 1 8.17871- 3 3.30380- 3 1.00000+ 1 1.90000+ 1 1.46599- 2 3.31164- 3 1.00000+ 1 2.10000+ 1 5.74768- 3 3.37395- 3 1.00000+ 1 2.20000+ 1 9.91433- 3 3.37505- 3 1.00000+ 1 2.70000+ 1 6.62542- 4 3.39405- 3 1.00000+ 1 2.90000+ 1 2.30583- 4 3.40116- 3 1.00000+ 1 3.00000+ 1 4.11080- 4 3.40167- 3 1.10000+ 1 1.10000+ 1 2.16701- 3 2.74016- 3 1.10000+ 1 1.30000+ 1 5.36843- 2 2.94691- 3 1.10000+ 1 1.40000+ 1 7.23227- 3 2.95586- 3 1.10000+ 1 1.60000+ 1 4.56970- 4 3.30767- 3 1.10000+ 1 1.80000+ 1 1.09190- 2 3.34684- 3 1.10000+ 1 1.90000+ 1 6.58353- 4 3.35468- 3 1.10000+ 1 2.10000+ 1 6.07007- 3 3.41699- 3 1.10000+ 1 2.20000+ 1 7.61643- 4 3.41809- 3 1.10000+ 1 2.70000+ 1 5.42552- 5 3.43709- 3 1.10000+ 1 2.90000+ 1 3.00483- 4 3.44420- 3 1.10000+ 1 3.00000+ 1 1.77364- 5 3.44471- 3 1.30000+ 1 1.30000+ 1 4.87959- 2 3.15366- 3 1.30000+ 1 1.40000+ 1 2.10732- 1 3.16261- 3 1.30000+ 1 1.60000+ 1 3.80817- 4 3.51442- 3 1.30000+ 1 1.80000+ 1 5.91980- 3 3.55359- 3 1.30000+ 1 1.90000+ 1 9.13752- 3 3.56143- 3 1.30000+ 1 2.10000+ 1 1.10010- 2 3.62374- 3 1.30000+ 1 2.20000+ 1 2.52089- 2 3.62484- 3 1.30000+ 1 2.70000+ 1 4.59081- 5 3.64384- 3 1.30000+ 1 2.90000+ 1 1.63806- 4 3.65095- 3 1.30000+ 1 3.00000+ 1 2.54569- 4 3.65146- 3 1.40000+ 1 1.40000+ 1 1.00230- 2 3.17156- 3 1.40000+ 1 1.60000+ 1 6.65630- 4 3.52337- 3 1.40000+ 1 1.80000+ 1 9.17927- 3 3.56254- 3 1.40000+ 1 1.90000+ 1 1.12789- 3 3.57038- 3 1.40000+ 1 2.10000+ 1 2.04462- 2 3.63269- 3 1.40000+ 1 2.20000+ 1 2.19520- 3 3.63379- 3 1.40000+ 1 2.70000+ 1 7.82499- 5 3.65279- 3 1.40000+ 1 2.90000+ 1 2.48308- 4 3.65990- 3 1.40000+ 1 3.00000+ 1 3.13001- 5 3.66041- 3 1.60000+ 1 1.60000+ 1 3.51015- 5 3.87518- 3 1.60000+ 1 1.80000+ 1 8.49964- 4 3.91435- 3 1.60000+ 1 1.90000+ 1 9.02623- 5 3.92219- 3 1.60000+ 1 2.10000+ 1 4.26225- 5 3.98450- 3 1.60000+ 1 2.20000+ 1 6.89499- 5 3.98560- 3 1.60000+ 1 2.70000+ 1 8.77525- 6 4.00460- 3 1.60000+ 1 2.90000+ 1 2.38187- 5 4.01171- 3 1.60000+ 1 3.00000+ 1 2.50730- 6 4.01222- 3 1.80000+ 1 1.80000+ 1 6.10792- 4 3.95352- 3 1.80000+ 1 1.90000+ 1 1.91285- 3 3.96136- 3 1.80000+ 1 2.10000+ 1 7.41099- 4 4.02367- 3 1.80000+ 1 2.20000+ 1 1.16862- 3 4.02477- 3 1.80000+ 1 2.70000+ 1 8.34780- 5 4.04377- 3 1.80000+ 1 2.90000+ 1 3.46119- 5 4.05088- 3 1.80000+ 1 3.00000+ 1 5.39560- 5 4.05139- 3 1.90000+ 1 1.90000+ 1 4.97417- 5 3.96920- 3 1.90000+ 1 2.10000+ 1 1.03418- 3 4.03151- 3 1.90000+ 1 2.20000+ 1 1.21255- 4 4.03261- 3 1.90000+ 1 2.70000+ 1 9.32651- 6 4.05161- 3 1.90000+ 1 2.90000+ 1 5.38892- 5 4.05872- 3 1.90000+ 1 3.00000+ 1 3.10891- 6 4.05923- 3 2.10000+ 1 2.10000+ 1 6.14515- 4 4.09382- 3 2.10000+ 1 2.20000+ 1 2.51234- 3 4.09492- 3 2.10000+ 1 2.70000+ 1 4.17316- 6 4.11392- 3 2.10000+ 1 2.90000+ 1 2.08668- 5 4.12103- 3 2.10000+ 1 3.00000+ 1 2.92129- 5 4.12154- 3 2.20000+ 1 2.20000+ 1 1.31249- 4 4.09602- 3 2.20000+ 1 2.70000+ 1 6.78903- 6 4.11502- 3 2.20000+ 1 2.90000+ 1 3.50772- 5 4.12213- 3 2.20000+ 1 3.00000+ 1 3.39462- 6 4.12264- 3 2.70000+ 1 2.90000+ 1 2.08670- 6 4.14113- 3 2.90000+ 1 3.00000+ 1 1.04330- 6 4.14875- 3 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 6.42092- 3 3.05775- 3 1.00000+ 1 3.27131- 5 3.17344- 3 1.10000+ 1 3.06441- 5 3.21648- 3 1.30000+ 1 5.76902- 3 3.42323- 3 1.40000+ 1 5.11512- 2 3.43218- 3 1.60000+ 1 4.77372- 4 3.78399- 3 1.80000+ 1 2.10011- 6 3.82316- 3 1.90000+ 1 2.00481- 6 3.83100- 3 2.10000+ 1 6.82392- 4 3.89331- 3 2.20000+ 1 6.05732- 3 3.89441- 3 2.70000+ 1 4.84992- 5 3.91341- 3 2.90000+ 1 4.78822- 8 3.92052- 3 3.00000+ 1 4.30161- 8 3.92103- 3 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.44845- 3 2.18870- 3 8.00000+ 0 1.00000+ 1 1.06172- 3 2.30439- 3 8.00000+ 0 1.10000+ 1 3.05038- 2 2.34743- 3 8.00000+ 0 1.30000+ 1 3.00469- 3 2.55418- 3 8.00000+ 0 1.40000+ 1 3.18725- 3 2.56313- 3 8.00000+ 0 1.60000+ 1 4.74119- 4 2.91494- 3 8.00000+ 0 1.80000+ 1 1.65612- 4 2.95411- 3 8.00000+ 0 1.90000+ 1 3.92003- 3 2.96195- 3 8.00000+ 0 2.10000+ 1 2.24582- 4 3.02426- 3 8.00000+ 0 2.20000+ 1 2.22312- 4 3.02536- 3 8.00000+ 0 2.70000+ 1 5.55775- 5 3.04436- 3 8.00000+ 0 2.90000+ 1 4.53692- 6 3.05147- 3 8.00000+ 0 3.00000+ 1 1.05492- 4 3.05198- 3 1.00000+ 1 1.00000+ 1 3.62969- 4 2.42008- 3 1.00000+ 1 1.10000+ 1 5.06425- 2 2.46312- 3 1.00000+ 1 1.30000+ 1 3.48551- 3 2.66987- 3 1.00000+ 1 1.40000+ 1 3.11278- 2 2.67882- 3 1.00000+ 1 1.60000+ 1 1.87159- 4 3.03063- 3 1.00000+ 1 1.80000+ 1 1.12291- 4 3.06980- 3 1.00000+ 1 1.90000+ 1 6.73617- 3 3.07764- 3 1.00000+ 1 2.10000+ 1 4.25348- 4 3.13995- 3 1.00000+ 1 2.20000+ 1 3.33704- 3 3.14105- 3 1.00000+ 1 2.70000+ 1 2.26852- 5 3.16005- 3 1.00000+ 1 2.90000+ 1 3.40273- 6 3.16716- 3 1.00000+ 1 3.00000+ 1 1.81479- 4 3.16767- 3 1.10000+ 1 1.10000+ 1 7.17968- 2 2.50616- 3 1.10000+ 1 1.30000+ 1 7.25677- 2 2.71291- 3 1.10000+ 1 1.40000+ 1 1.10410- 1 2.72186- 3 1.10000+ 1 1.60000+ 1 6.27926- 3 3.07367- 3 1.10000+ 1 1.80000+ 1 9.00835- 3 3.11284- 3 1.10000+ 1 1.90000+ 1 2.24169- 2 3.12068- 3 1.10000+ 1 2.10000+ 1 9.14083- 3 3.18299- 3 1.10000+ 1 2.20000+ 1 1.36945- 2 3.18409- 3 1.10000+ 1 2.70000+ 1 7.61061- 4 3.20309- 3 1.10000+ 1 2.90000+ 1 2.57473- 4 3.21020- 3 1.10000+ 1 3.00000+ 1 6.18178- 4 3.21071- 3 1.30000+ 1 1.30000+ 1 1.05382- 2 2.91966- 3 1.30000+ 1 1.40000+ 1 2.02895- 1 2.92861- 3 1.30000+ 1 1.60000+ 1 5.73952- 4 3.28042- 3 1.30000+ 1 1.80000+ 1 6.15885- 4 3.31959- 3 1.30000+ 1 1.90000+ 1 9.06045- 3 3.32743- 3 1.30000+ 1 2.10000+ 1 2.38429- 3 3.38974- 3 1.30000+ 1 2.20000+ 1 1.99236- 2 3.39084- 3 1.30000+ 1 2.70000+ 1 6.91922- 5 3.40984- 3 1.30000+ 1 2.90000+ 1 1.81479- 5 3.41695- 3 1.30000+ 1 3.00000+ 1 2.41599- 4 3.41746- 3 1.40000+ 1 1.40000+ 1 1.37946- 1 2.93756- 3 1.40000+ 1 1.60000+ 1 6.47647- 4 3.28937- 3 1.40000+ 1 1.80000+ 1 5.18590- 3 3.32854- 3 1.40000+ 1 1.90000+ 1 1.53213- 2 3.33638- 3 1.40000+ 1 2.10000+ 1 2.32100- 2 3.39869- 3 1.40000+ 1 2.20000+ 1 2.98978- 2 3.39979- 3 1.40000+ 1 2.70000+ 1 7.82623- 5 3.41879- 3 1.40000+ 1 2.90000+ 1 1.47454- 4 3.42590- 3 1.40000+ 1 3.00000+ 1 4.16268- 4 3.42641- 3 1.60000+ 1 1.60000+ 1 4.72189- 5 3.64118- 3 1.60000+ 1 1.80000+ 1 3.61092- 5 3.68035- 3 1.60000+ 1 1.90000+ 1 9.90212- 4 3.68819- 3 1.60000+ 1 2.10000+ 1 5.55509- 5 3.75050- 3 1.60000+ 1 2.20000+ 1 5.83274- 5 3.75160- 3 1.60000+ 1 2.70000+ 1 1.11107- 5 3.77060- 3 1.60000+ 1 2.90000+ 1 1.38874- 6 3.77771- 3 1.60000+ 1 3.00000+ 1 2.63866- 5 3.77822- 3 1.80000+ 1 1.80000+ 1 7.76619- 6 3.71952- 3 1.80000+ 1 1.90000+ 1 1.17046- 3 3.72736- 3 1.80000+ 1 2.10000+ 1 7.21167- 5 3.78967- 3 1.80000+ 1 2.20000+ 1 5.56974- 4 3.79077- 3 1.80000+ 1 2.70000+ 1 3.32838- 6 3.80977- 3 1.80000+ 1 3.00000+ 1 3.10658- 5 3.81739- 3 1.90000+ 1 1.90000+ 1 1.65779- 3 3.73520- 3 1.90000+ 1 2.10000+ 1 1.11622- 3 3.79751- 3 1.90000+ 1 2.20000+ 1 1.83604- 3 3.79861- 3 1.90000+ 1 2.70000+ 1 9.52348- 5 3.81761- 3 1.90000+ 1 2.90000+ 1 3.32212- 5 3.82472- 3 1.90000+ 1 3.00000+ 1 9.08070- 5 3.82523- 3 2.10000+ 1 2.10000+ 1 1.31571- 4 3.85982- 3 2.10000+ 1 2.20000+ 1 2.33557- 3 3.86092- 3 2.10000+ 1 2.70000+ 1 5.67130- 6 3.87992- 3 2.10000+ 1 2.90000+ 1 2.26858- 6 3.88703- 3 2.10000+ 1 3.00000+ 1 3.06257- 5 3.88754- 3 2.20000+ 1 2.20000+ 1 1.71774- 3 3.86202- 3 2.20000+ 1 2.70000+ 1 5.98918- 6 3.88102- 3 2.20000+ 1 2.90000+ 1 1.67698- 5 3.88813- 3 2.20000+ 1 3.00000+ 1 5.39049- 5 3.88864- 3 2.70000+ 1 3.00000+ 1 2.26851- 6 3.90764- 3 3.00000+ 1 3.00000+ 1 1.13420- 6 3.91526- 3 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.16905- 5 1.15690- 4 1.10000+ 1 6.27128- 5 1.58730- 4 1.80000+ 1 1.48722- 4 7.65410- 4 1.90000+ 1 2.10154- 4 7.73250- 4 2.90000+ 1 3.70385- 6 8.62770- 4 3.00000+ 1 5.01278- 6 8.63280- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.80000+ 1 4.86190- 2 1.20500- 5 1.00000+ 1 1.90000+ 1 9.13095- 2 1.98900- 5 1.00000+ 1 2.10000+ 1 6.13161- 2 8.22000- 5 1.00000+ 1 2.20000+ 1 8.30191- 2 8.33000- 5 1.00000+ 1 2.70000+ 1 5.14062- 3 1.02300- 4 1.00000+ 1 2.90000+ 1 9.50090- 4 1.09410- 4 1.00000+ 1 3.00000+ 1 1.62900- 3 1.09920- 4 1.10000+ 1 1.60000+ 1 7.56386- 2 1.59200- 5 1.10000+ 1 1.80000+ 1 8.20918- 2 5.50900- 5 1.10000+ 1 1.90000+ 1 1.28365- 1 6.29300- 5 1.10000+ 1 2.10000+ 1 5.21376- 2 1.25240- 4 1.10000+ 1 2.20000+ 1 7.66770- 2 1.26340- 4 1.10000+ 1 2.70000+ 1 7.57441- 3 1.45340- 4 1.10000+ 1 2.90000+ 1 1.49152- 3 1.52450- 4 1.10000+ 1 3.00000+ 1 2.26481- 3 1.52960- 4 1.30000+ 1 1.60000+ 1 2.95988- 2 2.22670- 4 1.30000+ 1 1.80000+ 1 5.95534- 3 2.61840- 4 1.30000+ 1 1.90000+ 1 4.54959- 3 2.69680- 4 1.30000+ 1 2.10000+ 1 6.24623- 3 3.31990- 4 1.30000+ 1 2.20000+ 1 7.44815- 3 3.33090- 4 1.30000+ 1 2.70000+ 1 2.21050- 3 3.52090- 4 1.30000+ 1 2.90000+ 1 9.86479- 5 3.59200- 4 1.30000+ 1 3.00000+ 1 6.94883- 5 3.59710- 4 1.40000+ 1 1.60000+ 1 4.34308- 2 2.31620- 4 1.40000+ 1 1.80000+ 1 1.59529- 3 2.70790- 4 1.40000+ 1 1.90000+ 1 1.17593- 2 2.78630- 4 1.40000+ 1 2.10000+ 1 7.85453- 3 3.40940- 4 1.40000+ 1 2.20000+ 1 1.25642- 2 3.42040- 4 1.40000+ 1 2.70000+ 1 3.23460- 3 3.61040- 4 1.40000+ 1 2.90000+ 1 2.44671- 5 3.68150- 4 1.40000+ 1 3.00000+ 1 1.82033- 4 3.68660- 4 1.60000+ 1 1.60000+ 1 1.04626- 2 5.83430- 4 1.60000+ 1 1.80000+ 1 1.62981- 2 6.22600- 4 1.60000+ 1 1.90000+ 1 3.01252- 2 6.30440- 4 1.60000+ 1 2.10000+ 1 2.57342- 2 6.92750- 4 1.60000+ 1 2.20000+ 1 3.74092- 2 6.93850- 4 1.60000+ 1 2.70000+ 1 1.82982- 3 7.12850- 4 1.60000+ 1 2.90000+ 1 3.20335- 4 7.19960- 4 1.60000+ 1 3.00000+ 1 5.57686- 4 7.20470- 4 1.80000+ 1 1.80000+ 1 9.71036- 4 6.61770- 4 1.80000+ 1 1.90000+ 1 2.33896- 3 6.69610- 4 1.80000+ 1 2.10000+ 1 1.24154- 3 7.31920- 4 1.80000+ 1 2.20000+ 1 3.89835- 4 7.33020- 4 1.80000+ 1 2.70000+ 1 1.20967- 3 7.52020- 4 1.80000+ 1 2.90000+ 1 3.30769- 5 7.59130- 4 1.80000+ 1 3.00000+ 1 3.54398- 5 7.59640- 4 1.90000+ 1 1.90000+ 1 2.97432- 3 6.77450- 4 1.90000+ 1 2.10000+ 1 1.00567- 3 7.39760- 4 1.90000+ 1 2.20000+ 1 2.96872- 3 7.40860- 4 1.90000+ 1 2.70000+ 1 2.13622- 3 7.59860- 4 1.90000+ 1 2.90000+ 1 3.82475- 5 7.66970- 4 1.90000+ 1 3.00000+ 1 9.56199- 5 7.67480- 4 2.10000+ 1 2.10000+ 1 3.00331- 4 8.02070- 4 2.10000+ 1 2.20000+ 1 8.44683- 4 8.03170- 4 2.10000+ 1 2.70000+ 1 1.76330- 3 8.22170- 4 2.10000+ 1 2.90000+ 1 1.87707- 5 8.29280- 4 2.10000+ 1 3.00000+ 1 1.43538- 5 8.29790- 4 2.20000+ 1 2.20000+ 1 6.48155- 4 8.04270- 4 2.20000+ 1 2.70000+ 1 2.56269- 3 8.23270- 4 2.20000+ 1 2.90000+ 1 5.52050- 6 8.30380- 4 2.20000+ 1 3.00000+ 1 4.41640- 5 8.30890- 4 2.70000+ 1 2.70000+ 1 7.28700- 5 8.42270- 4 2.70000+ 1 2.90000+ 1 2.20821- 5 8.49380- 4 2.70000+ 1 3.00000+ 1 3.86449- 5 8.49890- 4 2.90000+ 1 3.00000+ 1 1.10408- 6 8.57000- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.24515- 4 2.49790- 4 1.60000+ 1 2.43739- 4 6.10550- 4 2.10000+ 1 6.94411- 4 7.19870- 4 2.70000+ 1 2.77859- 5 7.39970- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.86054- 2 9.55000- 6 1.10000+ 1 2.20000+ 1 4.60845- 2 1.06500- 5 1.10000+ 1 2.70000+ 1 6.62273- 3 2.96500- 5 1.10000+ 1 2.90000+ 1 1.27371- 3 3.67600- 5 1.10000+ 1 3.00000+ 1 1.42508- 3 3.72700- 5 1.30000+ 1 1.60000+ 1 1.36376- 1 1.06980- 4 1.30000+ 1 1.80000+ 1 1.38431- 1 1.46150- 4 1.30000+ 1 1.90000+ 1 2.07705- 1 1.53990- 4 1.30000+ 1 2.10000+ 1 4.81460- 2 2.16300- 4 1.30000+ 1 2.20000+ 1 4.86115- 2 2.17400- 4 1.30000+ 1 2.70000+ 1 1.41746- 2 2.36400- 4 1.30000+ 1 2.90000+ 1 2.42189- 3 2.43510- 4 1.30000+ 1 3.00000+ 1 3.69940- 3 2.44020- 4 1.40000+ 1 1.60000+ 1 2.34475- 2 1.15930- 4 1.40000+ 1 1.80000+ 1 1.73738- 1 1.55100- 4 1.40000+ 1 1.90000+ 1 1.83723- 2 1.62940- 4 1.40000+ 1 2.10000+ 1 4.29404- 3 2.25250- 4 1.40000+ 1 2.20000+ 1 6.50409- 3 2.26350- 4 1.40000+ 1 2.70000+ 1 1.70412- 3 2.45350- 4 1.40000+ 1 2.90000+ 1 2.64511- 3 2.52460- 4 1.40000+ 1 3.00000+ 1 3.03372- 4 2.52970- 4 1.60000+ 1 1.60000+ 1 7.11816- 4 4.67740- 4 1.60000+ 1 1.80000+ 1 1.02782- 2 5.06910- 4 1.60000+ 1 1.90000+ 1 1.67073- 3 5.14750- 4 1.60000+ 1 2.10000+ 1 3.64278- 4 5.77060- 4 1.60000+ 1 2.20000+ 1 9.38615- 4 5.78160- 4 1.60000+ 1 2.70000+ 1 1.18633- 4 5.97160- 4 1.60000+ 1 2.90000+ 1 1.50041- 4 6.04270- 4 1.60000+ 1 3.00000+ 1 2.86115- 5 6.04780- 4 1.80000+ 1 1.80000+ 1 6.87665- 3 5.46080- 4 1.80000+ 1 1.90000+ 1 2.15649- 2 5.53920- 4 1.80000+ 1 2.10000+ 1 1.60037- 2 6.16230- 4 1.80000+ 1 2.20000+ 1 2.66134- 2 6.17330- 4 1.80000+ 1 2.70000+ 1 1.02687- 3 6.36330- 4 1.80000+ 1 2.90000+ 1 2.37549- 4 6.43440- 4 1.80000+ 1 3.00000+ 1 3.96367- 4 6.43950- 4 1.90000+ 1 1.90000+ 1 6.26634- 4 5.61760- 4 1.90000+ 1 2.10000+ 1 1.87251- 3 6.24070- 4 1.90000+ 1 2.20000+ 1 1.29248- 3 6.25170- 4 1.90000+ 1 2.70000+ 1 1.34062- 4 6.44170- 4 1.90000+ 1 2.90000+ 1 3.53240- 4 6.51280- 4 1.90000+ 1 3.00000+ 1 2.03361- 5 6.51790- 4 2.10000+ 1 2.10000+ 1 5.77265- 4 6.86380- 4 2.10000+ 1 2.20000+ 1 1.28315- 3 6.87480- 4 2.10000+ 1 2.70000+ 1 3.66382- 5 7.06480- 4 2.10000+ 1 2.90000+ 1 2.57971- 4 7.13590- 4 2.10000+ 1 3.00000+ 1 2.91612- 5 7.14100- 4 2.20000+ 1 2.20000+ 1 1.99105- 4 6.88580- 4 2.20000+ 1 2.70000+ 1 4.91846- 5 7.07580- 4 2.20000+ 1 2.90000+ 1 2.73820- 4 7.14690- 4 2.20000+ 1 3.00000+ 1 1.22964- 5 7.15200- 4 2.70000+ 1 2.70000+ 1 4.48925- 6 7.26580- 4 2.70000+ 1 2.90000+ 1 1.41106- 5 7.33690- 4 2.70000+ 1 3.00000+ 1 1.92402- 6 7.34200- 4 2.90000+ 1 3.00000+ 1 5.77236- 6 7.41310- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.59149- 5 2.06750- 4 1.40000+ 1 2.70259- 4 2.15700- 4 1.60000+ 1 2.98824- 4 5.67510- 4 2.10000+ 1 8.59388- 5 6.76830- 4 2.20000+ 1 7.09477- 4 6.77930- 4 2.70000+ 1 3.37980- 5 6.96930- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.78786- 2 6.39400- 5 1.30000+ 1 1.80000+ 1 1.95508- 2 1.03110- 4 1.30000+ 1 1.90000+ 1 1.22311- 1 1.10950- 4 1.30000+ 1 2.10000+ 1 1.17453- 2 1.73260- 4 1.30000+ 1 2.20000+ 1 8.15886- 3 1.74360- 4 1.30000+ 1 2.70000+ 1 2.35650- 3 1.93360- 4 1.30000+ 1 2.90000+ 1 3.58977- 4 2.00470- 4 1.30000+ 1 3.00000+ 1 1.82980- 3 2.00980- 4 1.40000+ 1 1.60000+ 1 1.28474- 1 7.28900- 5 1.40000+ 1 1.80000+ 1 1.31043- 1 1.12060- 4 1.40000+ 1 1.90000+ 1 2.68675- 1 1.19900- 4 1.40000+ 1 2.10000+ 1 4.27775- 2 1.82210- 4 1.40000+ 1 2.20000+ 1 7.56734- 2 1.83310- 4 1.40000+ 1 2.70000+ 1 1.32445- 2 2.02310- 4 1.40000+ 1 2.90000+ 1 2.42905- 3 2.09420- 4 1.40000+ 1 3.00000+ 1 4.41809- 3 2.09930- 4 1.60000+ 1 1.60000+ 1 8.73703- 4 4.24700- 4 1.60000+ 1 1.80000+ 1 1.27474- 3 4.63870- 4 1.60000+ 1 1.90000+ 1 1.84819- 2 4.71710- 4 1.60000+ 1 2.10000+ 1 9.82751- 4 5.34020- 4 1.60000+ 1 2.20000+ 1 1.09752- 3 5.35120- 4 1.60000+ 1 2.70000+ 1 1.46562- 4 5.54120- 4 1.60000+ 1 2.90000+ 1 2.15874- 5 5.61230- 4 1.60000+ 1 3.00000+ 1 2.59052- 4 5.61740- 4 1.80000+ 1 1.80000+ 1 2.03704- 4 5.03040- 4 1.80000+ 1 1.90000+ 1 1.89003- 2 5.10880- 4 1.80000+ 1 2.10000+ 1 5.02292- 4 5.73190- 4 1.80000+ 1 2.20000+ 1 2.61073- 3 5.74290- 4 1.80000+ 1 2.70000+ 1 9.17134- 5 5.93290- 4 1.80000+ 1 2.90000+ 1 6.39847- 6 6.00400- 4 1.80000+ 1 3.00000+ 1 2.66620- 4 6.00910- 4 1.90000+ 1 1.90000+ 1 2.42025- 2 5.18720- 4 1.90000+ 1 2.10000+ 1 2.62926- 2 5.81030- 4 1.90000+ 1 2.20000+ 1 3.57836- 2 5.82130- 4 1.90000+ 1 2.70000+ 1 1.51593- 3 6.01130- 4 1.90000+ 1 2.90000+ 1 3.19341- 4 6.08240- 4 1.90000+ 1 3.00000+ 1 7.85347- 4 6.08750- 4 2.10000+ 1 2.10000+ 1 1.44768- 4 6.43340- 4 2.10000+ 1 2.20000+ 1 1.30420- 3 6.44440- 4 2.10000+ 1 2.70000+ 1 4.21386- 5 6.63440- 4 2.10000+ 1 2.90000+ 1 4.75728- 6 6.70550- 4 2.10000+ 1 3.00000+ 1 2.71844- 4 6.71060- 4 2.20000+ 1 2.20000+ 1 8.31814- 4 6.45540- 4 2.20000+ 1 2.70000+ 1 4.73332- 5 6.64540- 4 2.20000+ 1 2.90000+ 1 2.27207- 5 6.71650- 4 2.20000+ 1 3.00000+ 1 3.42066- 4 6.72160- 4 2.70000+ 1 2.70000+ 1 3.37578- 6 6.83540- 4 2.70000+ 1 2.90000+ 1 1.12526- 6 6.90650- 4 2.70000+ 1 3.00000+ 1 1.29410- 5 6.91160- 4 2.90000+ 1 3.00000+ 1 2.81325- 6 6.98270- 4 3.00000+ 1 3.00000+ 1 1.12534- 6 6.98780- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 9.37775- 4 3.99930- 4 1.90000+ 1 1.54161- 4 4.07770- 4 2.90000+ 1 2.06751- 5 4.97290- 4 3.00000+ 1 3.19592- 6 4.97800- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 1.08601- 3 2.67000- 6 1.40000+ 1 3.00000+ 1 3.43491- 3 3.18000- 6 1.60000+ 1 1.60000+ 1 3.47264- 4 2.17950- 4 1.60000+ 1 1.80000+ 1 9.28768- 3 2.57120- 4 1.60000+ 1 1.90000+ 1 8.58683- 3 2.64960- 4 1.60000+ 1 2.10000+ 1 1.29751- 1 3.27270- 4 1.60000+ 1 2.20000+ 1 2.04313- 2 3.28370- 4 1.60000+ 1 2.70000+ 1 5.05113- 5 3.47370- 4 1.60000+ 1 2.90000+ 1 1.45219- 4 3.54480- 4 1.60000+ 1 3.00000+ 1 1.01023- 4 3.54990- 4 1.80000+ 1 1.80000+ 1 1.60367- 3 2.96290- 4 1.80000+ 1 1.90000+ 1 2.07600- 2 3.04130- 4 1.80000+ 1 2.10000+ 1 9.81926- 2 3.66440- 4 1.80000+ 1 2.20000+ 1 8.70681- 3 3.67540- 4 1.80000+ 1 2.70000+ 1 3.91459- 4 3.86540- 4 1.80000+ 1 2.90000+ 1 6.31385- 5 3.93650- 4 1.80000+ 1 3.00000+ 1 3.03057- 4 3.94160- 4 1.90000+ 1 1.90000+ 1 8.46059- 3 3.11970- 4 1.90000+ 1 2.10000+ 1 2.17727- 1 3.74280- 4 1.90000+ 1 2.20000+ 1 8.80792- 3 3.75380- 4 1.90000+ 1 2.70000+ 1 4.79861- 4 3.94380- 4 1.90000+ 1 2.90000+ 1 3.15685- 4 4.01490- 4 1.90000+ 1 3.00000+ 1 2.39931- 4 4.02000- 4 2.10000+ 1 2.10000+ 1 1.42616- 1 4.36590- 4 2.10000+ 1 2.20000+ 1 2.93077- 1 4.37690- 4 2.10000+ 1 2.70000+ 1 1.18444- 2 4.56690- 4 2.10000+ 1 2.90000+ 1 1.91321- 3 4.63800- 4 2.10000+ 1 3.00000+ 1 3.92106- 3 4.64310- 4 2.20000+ 1 2.20000+ 1 4.91234- 3 4.38790- 4 2.20000+ 1 2.70000+ 1 1.05443- 3 4.57790- 4 2.20000+ 1 2.90000+ 1 1.19963- 4 4.64900- 4 2.20000+ 1 3.00000+ 1 1.32594- 4 4.65410- 4 2.70000+ 1 2.90000+ 1 6.31403- 6 4.83900- 4 2.70000+ 1 3.00000+ 1 6.31403- 6 4.84410- 4 2.90000+ 1 3.00000+ 1 6.31413- 6 4.91520- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 9.93907- 4 3.98820- 4 3.00000+ 1 2.05909- 5 4.88850- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.74069- 4 2.09000- 4 1.60000+ 1 1.80000+ 1 5.06674- 3 2.48170- 4 1.60000+ 1 1.90000+ 1 1.44884- 2 2.56010- 4 1.60000+ 1 2.10000+ 1 1.49561- 2 3.18320- 4 1.60000+ 1 2.20000+ 1 1.36880- 1 3.19420- 4 1.60000+ 1 2.70000+ 1 7.48767- 5 3.38420- 4 1.60000+ 1 2.90000+ 1 4.99189- 5 3.45530- 4 1.60000+ 1 3.00000+ 1 1.99678- 4 3.46040- 4 1.80000+ 1 1.80000+ 1 6.23959- 6 2.87340- 4 1.80000+ 1 1.90000+ 1 2.07084- 2 2.95180- 4 1.80000+ 1 2.10000+ 1 1.77825- 3 3.57490- 4 1.80000+ 1 2.20000+ 1 1.20555- 1 3.58590- 4 1.80000+ 1 2.70000+ 1 2.62055- 4 3.77590- 4 1.80000+ 1 3.00000+ 1 2.99488- 4 3.85210- 4 1.90000+ 1 1.90000+ 1 1.44694- 2 3.03020- 4 1.90000+ 1 2.10000+ 1 1.11435- 2 3.65330- 4 1.90000+ 1 2.20000+ 1 1.99687- 1 3.66430- 4 1.90000+ 1 2.70000+ 1 6.98848- 4 3.85430- 4 1.90000+ 1 2.90000+ 1 2.99500- 4 3.92540- 4 1.90000+ 1 3.00000+ 1 4.30533- 4 3.93050- 4 2.10000+ 1 2.10000+ 1 2.02159- 3 4.27640- 4 2.10000+ 1 2.20000+ 1 2.02059- 1 4.28740- 4 2.10000+ 1 2.70000+ 1 7.67449- 4 4.47740- 4 2.10000+ 1 2.90000+ 1 3.11972- 5 4.54850- 4 2.10000+ 1 3.00000+ 1 1.49746- 4 4.55360- 4 2.20000+ 1 2.20000+ 1 2.33289- 1 4.29840- 4 2.20000+ 1 2.70000+ 1 1.21297- 2 4.48840- 4 2.20000+ 1 2.90000+ 1 2.27752- 3 4.55950- 4 2.20000+ 1 3.00000+ 1 3.61271- 3 4.56460- 4 2.70000+ 1 3.00000+ 1 1.24790- 5 4.75460- 4 2.90000+ 1 3.00000+ 1 6.23968- 6 4.82570- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.02960- 5 3.91700- 5 1.90000+ 1 3.13973- 5 4.70100- 5 2.90000+ 1 1.06787- 6 1.36530- 4 3.00000+ 1 9.37397- 7 1.37040- 4 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 1.96692- 2 5.68000- 6 1.80000+ 1 2.20000+ 1 8.16127- 2 6.78000- 6 1.80000+ 1 2.70000+ 1 1.08155- 2 2.57800- 5 1.80000+ 1 2.90000+ 1 1.49130- 3 3.28900- 5 1.80000+ 1 3.00000+ 1 3.74125- 3 3.34000- 5 1.90000+ 1 2.10000+ 1 3.52535- 1 1.35200- 5 1.90000+ 1 2.20000+ 1 3.90468- 1 1.46200- 5 1.90000+ 1 2.70000+ 1 2.03757- 2 3.36200- 5 1.90000+ 1 2.90000+ 1 4.38996- 3 4.07300- 5 1.90000+ 1 3.00000+ 1 5.91100- 3 4.12400- 5 2.10000+ 1 2.10000+ 1 2.07184- 3 7.58300- 5 2.10000+ 1 2.20000+ 1 5.26424- 2 7.69300- 5 2.10000+ 1 2.70000+ 1 1.08525- 2 9.59300- 5 2.10000+ 1 2.90000+ 1 2.46739- 4 1.03040- 4 2.10000+ 1 3.00000+ 1 2.26843- 3 1.03550- 4 2.20000+ 1 2.20000+ 1 6.55275- 3 7.80300- 5 2.20000+ 1 2.70000+ 1 6.42614- 3 9.70300- 5 2.20000+ 1 2.90000+ 1 7.57360- 4 1.04140- 4 2.20000+ 1 3.00000+ 1 6.89736- 4 1.04650- 4 2.70000+ 1 2.70000+ 1 1.33890- 2 1.16030- 4 2.70000+ 1 2.90000+ 1 3.59853- 3 1.23140- 4 2.70000+ 1 3.00000+ 1 6.29343- 3 1.23650- 4 2.90000+ 1 3.00000+ 1 2.23730- 3 1.30760- 4 3.00000+ 1 3.00000+ 1 9.20979- 4 1.31270- 4 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.07152- 5 7.01500- 5 2.70000+ 1 3.50671- 6 9.02500- 5 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.01376- 3 1.56000- 6 1.90000+ 1 3.00000+ 1 1.61365- 3 2.07000- 6 2.10000+ 1 2.10000+ 1 1.60014- 1 3.66600- 5 2.10000+ 1 2.20000+ 1 7.85201- 1 3.77600- 5 2.10000+ 1 2.70000+ 1 1.30515- 2 5.67600- 5 2.10000+ 1 2.90000+ 1 2.34881- 3 6.38700- 5 2.10000+ 1 3.00000+ 1 4.74892- 3 6.43800- 5 2.20000+ 1 2.20000+ 1 2.74221- 2 3.88600- 5 2.20000+ 1 2.70000+ 1 1.31445- 3 5.78600- 5 2.20000+ 1 2.90000+ 1 2.54101- 3 6.49700- 5 2.20000+ 1 3.00000+ 1 4.98573- 4 6.54800- 5 2.70000+ 1 2.70000+ 1 5.90372- 6 7.68600- 5 2.70000+ 1 2.90000+ 1 1.23982- 4 8.39700- 5 2.70000+ 1 3.00000+ 1 1.33151- 5 8.44800- 5 2.90000+ 1 3.00000+ 1 4.44682- 5 9.15900- 5 3.00000+ 1 3.00000+ 1 5.02452- 7 9.21000- 5 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.05021- 6 6.23100- 5 2.20000+ 1 1.02981- 5 6.34100- 5 2.70000+ 1 1.30981- 6 8.24100- 5 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.28698- 2 2.88200- 5 2.10000+ 1 2.20000+ 1 5.80847- 1 2.99200- 5 2.10000+ 1 2.70000+ 1 2.01128- 3 4.89200- 5 2.10000+ 1 2.90000+ 1 3.94328- 4 5.60300- 5 2.10000+ 1 3.00000+ 1 1.95168- 3 5.65400- 5 2.20000+ 1 2.20000+ 1 3.72596- 1 3.10200- 5 2.20000+ 1 2.70000+ 1 1.16189- 2 5.00200- 5 2.20000+ 1 2.90000+ 1 2.81647- 3 5.71300- 5 2.20000+ 1 3.00000+ 1 4.72146- 3 5.76400- 5 2.70000+ 1 2.70000+ 1 5.31005- 7 6.90200- 5 2.70000+ 1 2.90000+ 1 8.07140- 6 7.61300- 5 2.70000+ 1 3.00000+ 1 1.17778- 4 7.66400- 5 2.90000+ 1 3.00000+ 1 2.32592- 5 8.37500- 5 3.00000+ 1 3.00000+ 1 1.06211- 5 8.42600- 5 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 5.82368- 9 2.72100- 5 3.00000+ 1 1.02090- 9 2.77200- 5 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 3.80318- 1 6.71000- 6 2.70000+ 1 2.90000+ 1 2.81669- 1 1.38200- 5 2.70000+ 1 3.00000+ 1 2.44679- 1 1.43300- 5 2.90000+ 1 3.00000+ 1 8.83536- 2 2.14400- 5 3.00000+ 1 3.00000+ 1 4.98008- 3 2.19500- 5 1 50000 0 7 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 7.16671- 9 2.66200- 5 1 50000 0 9 1.18690+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 4.14761- 1 5.61000- 6 2.70000+ 1 2.90000+ 1 1.24220- 1 1.27200- 5 2.70000+ 1 3.00000+ 1 3.85890- 1 1.32300- 5 2.90000+ 1 3.00000+ 1 4.60810- 2 2.03400- 5 3.00000+ 1 3.00000+ 1 2.90480- 2 2.08500- 5 1 51000 0 0 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 1.00000+ 0 3.00000+ 1 2.00000+ 0 1 51000 0 0 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.04790- 2 3.00000+ 0 4.67370- 3 5.00000+ 0 4.38600- 3 6.00000+ 0 4.13050- 3 8.00000+ 0 9.28980- 4 1.00000+ 1 8.09160- 4 1.10000+ 1 7.61690- 4 1.30000+ 1 5.47790- 4 1.40000+ 1 5.37850- 4 1.60000+ 1 1.58270- 4 1.80000+ 1 1.17020- 4 1.90000+ 1 1.08120- 4 2.10000+ 1 4.18700- 5 2.20000+ 1 4.05600- 5 2.70000+ 1 1.59200- 5 2.90000+ 1 7.73000- 6 3.00000+ 1 7.02000- 6 1 51000 0 0 1.21750+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.87970- 2 3.00000+ 0 8.40060- 3 5.00000+ 0 8.40920- 3 6.00000+ 0 7.47970- 3 8.00000+ 0 2.41980- 3 1.00000+ 1 2.35280- 3 1.10000+ 1 2.14700- 3 1.30000+ 1 2.02440- 3 1.40000+ 1 1.97460- 3 1.60000+ 1 6.63760- 4 1.80000+ 1 5.97080- 4 1.90000+ 1 5.45890- 4 2.10000+ 1 3.99640- 4 2.20000+ 1 3.88830- 4 2.70000+ 1 1.02580- 4 2.90000+ 1 6.38900- 5 3.00000+ 1 5.58100- 5 1 51000 0 0 1.21750+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.50140-10 3.00000+ 0 6.44110-10 5.00000+ 0 5.43330-10 6.00000+ 0 5.72290-10 8.00000+ 0 1.73500- 9 1.00000+ 1 1.68210- 9 1.10000+ 1 1.74080- 9 1.30000+ 1 1.58440- 9 1.40000+ 1 1.60290- 9 1.60000+ 1 4.13190- 9 1.80000+ 1 4.33270- 9 1.90000+ 1 4.48330- 9 2.10000+ 1 5.22470- 9 2.20000+ 1 5.28650- 9 2.70000+ 1 1.12910- 8 2.90000+ 1 1.42800- 8 3.00000+ 1 1.50870- 8 1 51000 0 0 1.21750+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.72220- 6 3.00000+ 0 1.18850- 7 5.00000+ 0 1.99660- 7 6.00000+ 0 1.89090- 7 8.00000+ 0 2.54190- 9 1.00000+ 1 2.57860- 9 1.10000+ 1 2.50860- 9 1.30000+ 1 1.93400-10 1.40000+ 1 1.67820-10 1.60000+ 1 5.35160-11 1.80000+ 1 1.58670-10 1.90000+ 1 1.26620-10 2.10000+ 1 1.36520-12 2.20000+ 1 1.18940-12 1 51000 0 0 1.21750+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21470- 6 3.00000+ 0 3.02760- 6 5.00000+ 0 2.51000- 6 6.00000+ 0 2.30330- 6 8.00000+ 0 1.28700- 5 1.00000+ 1 4.41730- 6 1.10000+ 1 4.79760- 6 1.30000+ 1 4.72720- 7 1.40000+ 1 4.77390- 7 1.60000+ 1 2.25920- 5 1.80000+ 1 2.36210- 5 1.90000+ 1 3.03260- 5 2.10000+ 1 1.37970- 7 2.20000+ 1 1.44310- 7 1 51000 0 0 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.60789- 4 3.00000+ 0 1.83297- 4 5.00000+ 0 1.54347- 4 6.00000+ 0 1.47129- 4 8.00000+ 0 1.37474- 4 1.00000+ 1 1.11159- 4 1.10000+ 1 1.08187- 4 1.30000+ 1 6.51004- 5 1.40000+ 1 6.57528- 5 1.60000+ 1 6.75407- 5 1.80000+ 1 4.84041- 5 1.90000+ 1 4.86623- 5 2.10000+ 1 2.41962- 5 2.20000+ 1 2.46771- 5 2.70000+ 1 1.59200- 5 2.90000+ 1 7.73000- 6 3.00000+ 1 7.02000- 6 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.48266- 1 3.00000+ 0 8.25050- 2 5.00000+ 0 8.98518- 2 6.00000+ 0 7.87520- 2 8.00000+ 0 2.67978- 3 1.00000+ 1 2.86074- 3 1.10000+ 1 2.68582- 3 1.30000+ 1 1.38498- 3 1.40000+ 1 1.26364- 3 1.60000+ 1 6.97622- 5 1.80000+ 1 5.63200- 5 1.90000+ 1 1.63591- 5 2.10000+ 1 3.41022- 8 2.20000+ 1 3.55699- 8 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.36913- 2 3.00000+ 0 3.05668- 4 5.00000+ 0 3.34044- 4 6.00000+ 0 2.74721- 4 8.00000+ 0 1.46669- 6 1.00000+ 1 1.49945- 6 1.10000+ 1 1.41285- 6 1.30000+ 1 5.95366- 7 1.40000+ 1 5.38901- 7 1.60000+ 1 4.28440- 9 1.80000+ 1 4.36089- 9 1.90000+ 1 1.14874- 9 2.10000+ 1 1.16786-12 2.20000+ 1 1.19302-12 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21448+ 1 3.00000+ 0 1.39804+ 1 5.00000+ 0 1.16289+ 1 6.00000+ 0 1.10219+ 1 8.00000+ 0 1.02344+ 1 1.00000+ 1 8.09963+ 0 1.10000+ 1 7.83814+ 0 1.30000+ 1 4.34174+ 0 1.40000+ 1 4.36050+ 0 1.60000+ 1 4.51540+ 0 1.80000+ 1 2.97103+ 0 1.90000+ 1 2.97117+ 0 2.10000+ 1 1.00000+ 0 2.20000+ 1 1.00000+ 0 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.62689- 3 3.00000+ 0 4.18473- 3 5.00000+ 0 3.89761- 3 6.00000+ 0 3.70865- 3 8.00000+ 0 7.90039- 4 1.00000+ 1 6.96501- 4 1.10000+ 1 6.52090- 4 1.30000+ 1 4.82094- 4 1.40000+ 1 4.71558- 4 1.60000+ 1 9.07250- 5 1.80000+ 1 6.86115- 5 1.90000+ 1 5.94565- 5 2.10000+ 1 1.76738- 5 2.20000+ 1 1.58829- 5 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.50430- 1 2.60930- 2 6.00000+ 0 4.67350- 1 2.63485- 2 1.00000+ 1 4.26060- 2 2.96698- 2 1.10000+ 1 8.26640- 2 2.97173- 2 1.30000+ 1 3.60860- 4 2.99312- 2 1.40000+ 1 4.97690- 4 2.99411- 2 1.80000+ 1 8.77440- 3 3.03620- 2 1.90000+ 1 1.71920- 2 3.03709- 2 2.10000+ 1 5.71680- 5 3.04371- 2 2.20000+ 1 7.84450- 5 3.04384- 2 2.90000+ 1 3.23920- 4 3.04713- 2 3.00000+ 1 5.95080- 4 3.04720- 2 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 9.90275- 3 2.11316- 2 3.00000+ 0 5.00000+ 0 1.16747- 2 2.14193- 2 3.00000+ 0 6.00000+ 0 1.49491- 2 2.16748- 2 3.00000+ 0 8.00000+ 0 3.47898- 3 2.48763- 2 3.00000+ 0 1.00000+ 1 2.18615- 3 2.49961- 2 3.00000+ 0 1.10000+ 1 2.81937- 3 2.50436- 2 3.00000+ 0 1.30000+ 1 1.82728- 4 2.52575- 2 3.00000+ 0 1.40000+ 1 2.04712- 4 2.52674- 2 3.00000+ 0 1.60000+ 1 7.22565- 4 2.56470- 2 3.00000+ 0 1.80000+ 1 4.22149- 4 2.56883- 2 3.00000+ 0 1.90000+ 1 5.40121- 4 2.56972- 2 3.00000+ 0 2.10000+ 1 2.94918- 5 2.57634- 2 3.00000+ 0 2.20000+ 1 3.26721- 5 2.57647- 2 3.00000+ 0 2.70000+ 1 9.45492- 5 2.57894- 2 3.00000+ 0 2.90000+ 1 2.05291- 5 2.57976- 2 3.00000+ 0 3.00000+ 1 2.54445- 5 2.57983- 2 5.00000+ 0 5.00000+ 0 1.52851- 3 2.17070- 2 5.00000+ 0 6.00000+ 0 3.26966- 2 2.19625- 2 5.00000+ 0 8.00000+ 0 1.69860- 3 2.51640- 2 5.00000+ 0 1.00000+ 1 5.14099- 4 2.52838- 2 5.00000+ 0 1.10000+ 1 5.14555- 3 2.53313- 2 5.00000+ 0 1.30000+ 1 2.24378- 4 2.55452- 2 5.00000+ 0 1.40000+ 1 7.60718- 4 2.55551- 2 5.00000+ 0 1.60000+ 1 3.39748- 4 2.59347- 2 5.00000+ 0 1.80000+ 1 9.74410- 5 2.59760- 2 5.00000+ 0 1.90000+ 1 9.54184- 4 2.59849- 2 5.00000+ 0 2.10000+ 1 3.55635- 5 2.60511- 2 5.00000+ 0 2.20000+ 1 1.19985- 4 2.60524- 2 5.00000+ 0 2.70000+ 1 4.42374- 5 2.60771- 2 5.00000+ 0 2.90000+ 1 4.62620- 6 2.60853- 2 5.00000+ 0 3.00000+ 1 4.48166- 5 2.60860- 2 6.00000+ 0 6.00000+ 0 1.65720- 2 2.22180- 2 6.00000+ 0 8.00000+ 0 2.14087- 3 2.54195- 2 6.00000+ 0 1.00000+ 1 5.03716- 3 2.55393- 2 6.00000+ 0 1.10000+ 1 5.35262- 3 2.55868- 2 6.00000+ 0 1.30000+ 1 9.11672- 4 2.58007- 2 6.00000+ 0 1.40000+ 1 8.45454- 4 2.58106- 2 6.00000+ 0 1.60000+ 1 4.27062- 4 2.61902- 2 6.00000+ 0 1.80000+ 1 9.40285- 4 2.62315- 2 6.00000+ 0 1.90000+ 1 9.98068- 4 2.62404- 2 6.00000+ 0 2.10000+ 1 1.44858- 4 2.63066- 2 6.00000+ 0 2.20000+ 1 1.33879- 4 2.63079- 2 6.00000+ 0 2.70000+ 1 5.55167- 5 2.63326- 2 6.00000+ 0 2.90000+ 1 4.53955- 5 2.63408- 2 6.00000+ 0 3.00000+ 1 4.71305- 5 2.63415- 2 8.00000+ 0 8.00000+ 0 3.00989- 4 2.86210- 2 8.00000+ 0 1.00000+ 1 3.20951- 4 2.87409- 2 8.00000+ 0 1.10000+ 1 4.07121- 4 2.87883- 2 8.00000+ 0 1.30000+ 1 2.48664- 5 2.90022- 2 8.00000+ 0 1.40000+ 1 2.68901- 5 2.90122- 2 8.00000+ 0 1.60000+ 1 1.24622- 4 2.93917- 2 8.00000+ 0 1.80000+ 1 6.21655- 5 2.94330- 2 8.00000+ 0 1.90000+ 1 7.80690- 5 2.94419- 2 8.00000+ 0 2.10000+ 1 4.04804- 6 2.95081- 2 8.00000+ 0 2.20000+ 1 4.33720- 6 2.95095- 2 8.00000+ 0 2.70000+ 1 1.61923- 5 2.95341- 2 8.00000+ 0 2.90000+ 1 2.89137- 6 2.95423- 2 8.00000+ 0 3.00000+ 1 3.75897- 6 2.95430- 2 1.00000+ 1 1.00000+ 1 4.13463- 5 2.88607- 2 1.00000+ 1 1.10000+ 1 8.05560- 4 2.89081- 2 1.00000+ 1 1.30000+ 1 2.71796- 5 2.91220- 2 1.00000+ 1 1.40000+ 1 9.19480- 5 2.91320- 2 1.00000+ 1 1.60000+ 1 6.41900- 5 2.95116- 2 1.00000+ 1 1.80000+ 1 1.56139- 5 2.95528- 2 1.00000+ 1 1.90000+ 1 1.49777- 4 2.95617- 2 1.00000+ 1 2.10000+ 1 4.33719- 6 2.96280- 2 1.00000+ 1 2.20000+ 1 1.44563- 5 2.96293- 2 1.00000+ 1 2.70000+ 1 8.38514- 6 2.96539- 2 1.00000+ 1 2.90000+ 1 8.67421- 7 2.96621- 2 1.00000+ 1 3.00000+ 1 6.93949- 6 2.96628- 2 1.10000+ 1 1.10000+ 1 4.33717- 4 2.89556- 2 1.10000+ 1 1.30000+ 1 1.16519- 4 2.91695- 2 1.10000+ 1 1.40000+ 1 1.05533- 4 2.91795- 2 1.10000+ 1 1.60000+ 1 8.12488- 5 2.95590- 2 1.10000+ 1 1.80000+ 1 1.50641- 4 2.96003- 2 1.10000+ 1 1.90000+ 1 1.61922- 4 2.96092- 2 1.10000+ 1 2.10000+ 1 1.85055- 5 2.96754- 2 1.10000+ 1 2.20000+ 1 1.67696- 5 2.96767- 2 1.10000+ 1 2.70000+ 1 1.06985- 5 2.97014- 2 1.10000+ 1 2.90000+ 1 7.22853- 6 2.97096- 2 1.10000+ 1 3.00000+ 1 7.51769- 6 2.97103- 2 1.30000+ 1 1.40000+ 1 1.34430- 5 2.93934- 2 1.30000+ 1 1.60000+ 1 4.76136- 6 2.97729- 2 1.30000+ 1 1.80000+ 1 4.76136- 6 2.98142- 2 1.30000+ 1 1.90000+ 1 2.01664- 5 2.98231- 2 1.30000+ 1 2.20000+ 1 1.96043- 6 2.98906- 2 1.30000+ 1 2.70000+ 1 5.60157- 7 2.99153- 2 1.30000+ 1 2.90000+ 1 2.80074- 7 2.99235- 2 1.30000+ 1 3.00000+ 1 8.40232- 7 2.99242- 2 1.40000+ 1 1.40000+ 1 3.20034- 6 2.94033- 2 1.40000+ 1 1.60000+ 1 5.23701- 6 2.97829- 2 1.40000+ 1 1.80000+ 1 1.65846- 5 2.98241- 2 1.40000+ 1 1.90000+ 1 1.89113- 5 2.98330- 2 1.40000+ 1 2.10000+ 1 2.03648- 6 2.98993- 2 1.40000+ 1 2.20000+ 1 1.16377- 6 2.99006- 2 1.40000+ 1 2.70000+ 1 5.81886- 7 2.99252- 2 1.40000+ 1 2.90000+ 1 8.72825- 7 2.99334- 2 1.40000+ 1 3.00000+ 1 8.72825- 7 2.99341- 2 1.60000+ 1 1.60000+ 1 1.30046- 5 3.01625- 2 1.60000+ 1 1.80000+ 1 1.24266- 5 3.02037- 2 1.60000+ 1 1.90000+ 1 1.56052- 5 3.02126- 2 1.60000+ 1 2.10000+ 1 8.66933- 7 3.02789- 2 1.60000+ 1 2.20000+ 1 8.66933- 7 3.02802- 2 1.60000+ 1 2.70000+ 1 3.46784- 6 3.03048- 2 1.60000+ 1 2.90000+ 1 5.77958- 7 3.03130- 2 1.60000+ 1 3.00000+ 1 8.66933- 7 3.03137- 2 1.80000+ 1 1.80000+ 1 1.36562- 6 3.02450- 2 1.80000+ 1 1.90000+ 1 2.64943- 5 3.02539- 2 1.80000+ 1 2.10000+ 1 8.19410- 7 3.03201- 2 1.80000+ 1 2.20000+ 1 2.45827- 6 3.03214- 2 1.80000+ 1 2.70000+ 1 1.63878- 6 3.03461- 2 1.80000+ 1 3.00000+ 1 1.36562- 6 3.03550- 2 1.90000+ 1 1.90000+ 1 1.48831- 5 3.02628- 2 1.90000+ 1 2.10000+ 1 3.43459- 6 3.03290- 2 1.90000+ 1 2.20000+ 1 2.86204- 6 3.03303- 2 1.90000+ 1 2.70000+ 1 2.00334- 6 3.03550- 2 1.90000+ 1 2.90000+ 1 1.43097- 6 3.03631- 2 1.90000+ 1 3.00000+ 1 1.43097- 6 3.03639- 2 2.10000+ 1 2.20000+ 1 2.89130- 7 3.03966- 2 2.10000+ 1 3.00000+ 1 2.89130- 7 3.04301- 2 2.70000+ 1 2.70000+ 1 4.36520- 7 3.04472- 2 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.01991- 5 2.87700- 4 6.00000+ 0 2.93921- 4 5.43200- 4 1.00000+ 1 1.16940- 2 3.86454- 3 1.10000+ 1 1.88821- 2 3.91201- 3 1.30000+ 1 1.54180- 4 4.12591- 3 1.40000+ 1 2.30111- 4 4.13585- 3 1.80000+ 1 2.34711- 3 4.55668- 3 1.90000+ 1 3.86191- 3 4.56558- 3 2.10000+ 1 1.64701- 5 4.63183- 3 2.20000+ 1 2.48731- 5 4.63314- 3 2.90000+ 1 9.68973- 5 4.66597- 3 3.00000+ 1 1.51600- 4 4.66668- 3 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.78268- 2 1.29430- 4 5.00000+ 0 1.80000+ 1 4.09279- 2 1.70680- 4 5.00000+ 0 1.90000+ 1 5.34318- 2 1.79580- 4 5.00000+ 0 2.10000+ 1 1.26330- 2 2.45830- 4 5.00000+ 0 2.20000+ 1 2.05049- 2 2.47140- 4 5.00000+ 0 2.70000+ 1 7.31718- 3 2.71780- 4 5.00000+ 0 2.90000+ 1 1.88009- 3 2.79970- 4 5.00000+ 0 3.00000+ 1 2.39889- 3 2.80680- 4 6.00000+ 0 1.60000+ 1 7.79982- 2 3.84930- 4 6.00000+ 0 1.80000+ 1 3.45396- 2 4.26180- 4 6.00000+ 0 1.90000+ 1 6.60903- 2 4.35080- 4 6.00000+ 0 2.10000+ 1 5.62784- 2 5.01330- 4 6.00000+ 0 2.20000+ 1 7.26563- 2 5.02640- 4 6.00000+ 0 2.70000+ 1 9.89641- 3 5.27280- 4 6.00000+ 0 2.90000+ 1 1.61198- 3 5.35470- 4 6.00000+ 0 3.00000+ 1 3.03977- 3 5.36180- 4 8.00000+ 0 8.00000+ 0 1.38843- 2 2.81574- 3 8.00000+ 0 1.00000+ 1 2.75506- 2 2.93556- 3 8.00000+ 0 1.10000+ 1 5.13510- 2 2.98303- 3 8.00000+ 0 1.30000+ 1 4.10878- 2 3.19693- 3 8.00000+ 0 1.40000+ 1 5.84282- 2 3.20687- 3 8.00000+ 0 1.60000+ 1 4.93640- 3 3.58645- 3 8.00000+ 0 1.80000+ 1 5.21491- 3 3.62770- 3 8.00000+ 0 1.90000+ 1 9.62439- 3 3.63660- 3 8.00000+ 0 2.10000+ 1 5.70782- 3 3.70285- 3 8.00000+ 0 2.20000+ 1 8.05656- 3 3.70416- 3 8.00000+ 0 2.70000+ 1 6.33043- 4 3.72880- 3 8.00000+ 0 2.90000+ 1 2.51665- 4 3.73699- 3 8.00000+ 0 3.00000+ 1 4.54049- 4 3.73770- 3 1.00000+ 1 1.00000+ 1 1.65179- 4 3.05538- 3 1.00000+ 1 1.10000+ 1 1.12249- 3 3.10285- 3 1.00000+ 1 1.30000+ 1 1.11819- 3 3.31675- 3 1.00000+ 1 1.40000+ 1 1.50359- 2 3.32669- 3 1.00000+ 1 1.60000+ 1 3.95138- 3 3.70627- 3 1.00000+ 1 1.80000+ 1 3.37268- 5 3.74752- 3 1.00000+ 1 1.90000+ 1 1.99769- 4 3.75642- 3 1.00000+ 1 2.10000+ 1 1.58259- 4 3.82267- 3 1.00000+ 1 2.20000+ 1 1.40189- 3 3.82398- 3 1.00000+ 1 2.70000+ 1 4.86008- 4 3.84862- 3 1.00000+ 1 2.90000+ 1 1.72959- 6 3.85681- 3 1.00000+ 1 3.00000+ 1 9.51295- 6 3.85752- 3 1.10000+ 1 1.10000+ 1 1.19259- 3 3.15032- 3 1.10000+ 1 1.30000+ 1 1.10479- 2 3.36422- 3 1.10000+ 1 1.40000+ 1 7.57034- 3 3.37416- 3 1.10000+ 1 1.60000+ 1 7.36544- 3 3.75374- 3 1.10000+ 1 1.80000+ 1 1.99768- 4 3.79499- 3 1.10000+ 1 1.90000+ 1 3.45057- 4 3.80389- 3 1.10000+ 1 2.10000+ 1 9.15822- 4 3.87014- 3 1.10000+ 1 2.20000+ 1 6.53785- 4 3.87145- 3 1.10000+ 1 2.70000+ 1 9.06312- 4 3.89609- 3 1.10000+ 1 2.90000+ 1 9.51292- 6 3.90428- 3 1.10000+ 1 3.00000+ 1 1.55659- 5 3.90499- 3 1.30000+ 1 1.30000+ 1 2.29003- 3 3.57812- 3 1.30000+ 1 1.40000+ 1 8.40160- 2 3.58806- 3 1.30000+ 1 1.60000+ 1 5.61277- 3 3.96764- 3 1.30000+ 1 1.80000+ 1 2.75003- 4 4.00889- 3 1.30000+ 1 1.90000+ 1 2.07642- 3 4.01779- 3 1.30000+ 1 2.10000+ 1 6.30457- 4 4.08404- 3 1.30000+ 1 2.20000+ 1 8.64230- 3 4.08535- 3 1.30000+ 1 2.70000+ 1 6.85798- 4 4.10999- 3 1.30000+ 1 2.90000+ 1 1.38372- 5 4.11818- 3 1.30000+ 1 3.00000+ 1 9.77252- 5 4.11889- 3 1.40000+ 1 1.40000+ 1 2.36891- 2 3.59800- 3 1.40000+ 1 1.60000+ 1 8.02214- 3 3.97758- 3 1.40000+ 1 1.80000+ 1 2.60561- 3 4.01883- 3 1.40000+ 1 1.90000+ 1 1.49171- 3 4.02773- 3 1.40000+ 1 2.10000+ 1 8.58844- 3 4.09398- 3 1.40000+ 1 2.20000+ 1 5.08412- 3 4.09529- 3 1.40000+ 1 2.70000+ 1 9.81576- 4 4.11993- 3 1.40000+ 1 2.90000+ 1 1.24531- 4 4.12812- 3 1.40000+ 1 3.00000+ 1 7.09153- 5 4.12883- 3 1.60000+ 1 1.60000+ 1 4.17715- 4 4.35716- 3 1.60000+ 1 1.80000+ 1 7.50659- 4 4.39841- 3 1.60000+ 1 1.90000+ 1 1.38372- 3 4.40731- 3 1.60000+ 1 2.10000+ 1 7.77459- 4 4.47356- 3 1.60000+ 1 2.20000+ 1 1.10091- 3 4.47487- 3 1.60000+ 1 2.70000+ 1 1.06371- 4 4.49951- 3 1.60000+ 1 2.90000+ 1 3.63204- 5 4.50770- 3 1.60000+ 1 3.00000+ 1 6.48608- 5 4.50841- 3 1.80000+ 1 1.80000+ 1 1.72959- 6 4.43966- 3 1.80000+ 1 1.90000+ 1 3.63197- 5 4.44856- 3 1.80000+ 1 2.10000+ 1 3.28618- 5 4.51481- 3 1.80000+ 1 2.20000+ 1 2.49928- 4 4.51612- 3 1.80000+ 1 2.70000+ 1 9.25324- 5 4.54076- 3 1.80000+ 1 3.00000+ 1 1.72959- 6 4.54966- 3 1.90000+ 1 1.90000+ 1 2.50799- 5 4.45746- 3 1.90000+ 1 2.10000+ 1 1.81609- 4 4.52371- 3 1.90000+ 1 2.20000+ 1 1.34049- 4 4.52502- 3 1.90000+ 1 2.70000+ 1 1.70359- 4 4.54966- 3 1.90000+ 1 2.90000+ 1 1.72959- 6 4.55785- 3 1.90000+ 1 3.00000+ 1 2.59449- 6 4.55856- 3 2.10000+ 1 2.10000+ 1 4.15093- 5 4.58996- 3 2.10000+ 1 2.20000+ 1 9.38291- 4 4.59127- 3 2.10000+ 1 2.70000+ 1 9.51260- 5 4.61591- 3 2.10000+ 1 2.90000+ 1 1.72953- 6 4.62410- 3 2.10000+ 1 3.00000+ 1 8.64774- 6 4.62481- 3 2.20000+ 1 2.20000+ 1 2.86250- 4 4.59258- 3 2.20000+ 1 2.70000+ 1 1.34050- 4 4.61722- 3 2.20000+ 1 2.90000+ 1 1.21080- 5 4.62541- 3 2.20000+ 1 3.00000+ 1 6.05350- 6 4.62612- 3 2.70000+ 1 2.70000+ 1 6.29062- 6 4.64186- 3 2.70000+ 1 2.90000+ 1 3.93152- 6 4.65005- 3 2.70000+ 1 3.00000+ 1 7.07692- 6 4.65076- 3 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.65139- 8 2.55500- 4 8.00000+ 0 3.75579- 3 3.45702- 3 1.10000+ 1 4.98529- 5 3.62431- 3 1.30000+ 1 6.14489- 2 3.83821- 3 1.60000+ 1 4.75729- 4 4.22773- 3 1.90000+ 1 4.80709- 6 4.27788- 3 2.10000+ 1 7.90419- 3 4.34413- 3 2.70000+ 1 4.53629- 5 4.37008- 3 3.00000+ 1 1.88800- 7 4.37898- 3 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.21968- 2 9.72300- 5 6.00000+ 0 1.80000+ 1 5.10434- 2 1.38480- 4 6.00000+ 0 1.90000+ 1 1.80542- 2 1.47380- 4 6.00000+ 0 2.10000+ 1 6.24951- 2 2.13630- 4 6.00000+ 0 2.20000+ 1 2.33185- 2 2.14940- 4 6.00000+ 0 2.70000+ 1 1.44509- 3 2.39580- 4 6.00000+ 0 2.90000+ 1 2.35405- 3 2.47770- 4 6.00000+ 0 3.00000+ 1 8.42596- 4 2.48480- 4 8.00000+ 0 8.00000+ 0 1.08766- 3 2.52804- 3 8.00000+ 0 1.00000+ 1 2.57903- 2 2.64786- 3 8.00000+ 0 1.10000+ 1 2.50973- 3 2.69533- 3 8.00000+ 0 1.30000+ 1 1.81369- 3 2.90923- 3 8.00000+ 0 1.40000+ 1 3.69470- 3 2.91917- 3 8.00000+ 0 1.60000+ 1 3.61530- 4 3.29875- 3 8.00000+ 0 1.80000+ 1 3.39438- 3 3.34000- 3 8.00000+ 0 1.90000+ 1 4.18783- 4 3.34890- 3 8.00000+ 0 2.10000+ 1 1.85790- 4 3.41515- 3 8.00000+ 0 2.20000+ 1 3.26387- 4 3.41646- 3 8.00000+ 0 2.70000+ 1 4.51925- 5 3.44110- 3 8.00000+ 0 2.90000+ 1 1.55668- 4 3.44929- 3 8.00000+ 0 3.00000+ 1 1.90810- 5 3.45000- 3 1.00000+ 1 1.00000+ 1 2.52550- 2 2.76768- 3 1.00000+ 1 1.10000+ 1 7.99652- 2 2.81515- 3 1.00000+ 1 1.30000+ 1 4.33538- 2 3.02905- 3 1.00000+ 1 1.40000+ 1 7.47090- 2 3.03899- 3 1.00000+ 1 1.60000+ 1 5.46102- 3 3.41857- 3 1.00000+ 1 1.80000+ 1 8.23563- 3 3.45982- 3 1.00000+ 1 1.90000+ 1 1.47306- 2 3.46872- 3 1.00000+ 1 2.10000+ 1 5.99844- 3 3.53497- 3 1.00000+ 1 2.20000+ 1 1.03134- 2 3.53628- 3 1.00000+ 1 2.70000+ 1 7.16019- 4 3.56092- 3 1.00000+ 1 2.90000+ 1 3.89656- 4 3.56911- 3 1.00000+ 1 3.00000+ 1 6.91918- 4 3.56982- 3 1.10000+ 1 1.10000+ 1 2.11597- 3 2.86262- 3 1.10000+ 1 1.30000+ 1 5.24769- 2 3.07652- 3 1.10000+ 1 1.40000+ 1 7.06566- 3 3.08646- 3 1.10000+ 1 1.60000+ 1 4.57927- 4 3.46604- 3 1.10000+ 1 1.80000+ 1 1.09154- 2 3.50729- 3 1.10000+ 1 1.90000+ 1 6.59774- 4 3.51619- 3 1.10000+ 1 2.10000+ 1 6.28843- 3 3.58244- 3 1.10000+ 1 2.20000+ 1 7.90348- 4 3.58375- 3 1.10000+ 1 2.70000+ 1 5.82451- 5 3.60839- 3 1.10000+ 1 2.90000+ 1 5.02108- 4 3.61658- 3 1.10000+ 1 3.00000+ 1 3.01270- 5 3.61729- 3 1.30000+ 1 1.30000+ 1 4.78289- 2 3.29042- 3 1.30000+ 1 1.40000+ 1 2.06154- 1 3.30036- 3 1.30000+ 1 1.60000+ 1 3.89648- 4 3.67994- 3 1.30000+ 1 1.80000+ 1 5.93291- 3 3.72119- 3 1.30000+ 1 1.90000+ 1 9.16067- 3 3.73009- 3 1.30000+ 1 2.10000+ 1 1.14282- 2 3.79634- 3 1.30000+ 1 2.20000+ 1 2.61935- 2 3.79765- 3 1.30000+ 1 2.70000+ 1 5.12140- 5 3.82229- 3 1.30000+ 1 2.90000+ 1 2.74155- 4 3.83048- 3 1.30000+ 1 3.00000+ 1 4.26818- 4 3.83119- 3 1.40000+ 1 1.40000+ 1 9.80724- 3 3.31030- 3 1.40000+ 1 1.60000+ 1 6.60813- 4 3.68988- 3 1.40000+ 1 1.80000+ 1 9.14352- 3 3.73113- 3 1.40000+ 1 1.90000+ 1 1.12974- 3 3.74003- 3 1.40000+ 1 2.10000+ 1 2.11137- 2 3.80628- 3 1.40000+ 1 2.20000+ 1 2.27858- 3 3.80759- 3 1.40000+ 1 2.70000+ 1 8.43570- 5 3.83223- 3 1.40000+ 1 2.90000+ 1 4.13755- 4 3.84042- 3 1.40000+ 1 3.00000+ 1 5.22219- 5 3.84113- 3 1.60000+ 1 1.60000+ 1 3.39299- 5 4.06946- 3 1.60000+ 1 1.80000+ 1 8.41212- 4 4.11071- 3 1.60000+ 1 1.90000+ 1 9.00889- 5 4.11961- 3 1.60000+ 1 2.10000+ 1 4.44590- 5 4.18586- 3 1.60000+ 1 2.20000+ 1 6.90286- 5 4.18717- 3 1.60000+ 1 2.70000+ 1 8.18971- 6 4.21181- 3 1.60000+ 1 2.90000+ 1 3.86101- 5 4.22000- 3 1.60000+ 1 3.00000+ 1 4.67985- 6 4.22071- 3 1.80000+ 1 1.80000+ 1 6.20064- 4 4.15196- 3 1.80000+ 1 1.90000+ 1 1.93456- 3 4.16086- 3 1.80000+ 1 2.10000+ 1 7.78472- 4 4.22711- 3 1.80000+ 1 2.20000+ 1 1.22177- 3 4.22842- 3 1.80000+ 1 2.70000+ 1 9.07853- 5 4.25306- 3 1.80000+ 1 2.90000+ 1 5.79495- 5 4.26125- 3 1.80000+ 1 3.00000+ 1 9.07853- 5 4.26196- 3 1.90000+ 1 1.90000+ 1 5.18081- 5 4.16976- 3 1.90000+ 1 2.10000+ 1 1.09797- 3 4.23601- 3 1.90000+ 1 2.20000+ 1 1.28518- 4 4.23732- 3 1.90000+ 1 2.70000+ 1 9.96277- 6 4.26196- 3 1.90000+ 1 2.90000+ 1 9.16592- 5 4.27015- 3 1.90000+ 1 3.00000+ 1 4.98130- 6 4.27086- 3 2.10000+ 1 2.10000+ 1 6.75853- 4 4.30226- 3 2.10000+ 1 2.20000+ 1 2.75865- 3 4.30357- 3 2.10000+ 1 2.70000+ 1 5.02100- 6 4.32821- 3 2.10000+ 1 2.90000+ 1 3.71558- 5 4.33640- 3 2.10000+ 1 3.00000+ 1 5.12140- 5 4.33711- 3 2.20000+ 1 2.20000+ 1 1.38854- 4 4.30488- 3 2.20000+ 1 2.70000+ 1 8.35227- 6 4.32952- 3 2.20000+ 1 2.90000+ 1 5.95091- 5 4.33771- 3 2.20000+ 1 3.00000+ 1 6.26395- 6 4.33842- 3 2.70000+ 1 2.90000+ 1 4.01689- 6 4.36235- 3 2.90000+ 1 2.90000+ 1 1.00425- 6 4.37054- 3 2.90000+ 1 3.00000+ 1 3.01275- 6 4.37125- 3 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 6.63168- 3 3.20152- 3 1.00000+ 1 3.44929- 5 3.32134- 3 1.10000+ 1 3.22599- 5 3.36881- 3 1.30000+ 1 6.15498- 3 3.58271- 3 1.40000+ 1 5.45798- 2 3.59265- 3 1.60000+ 1 5.14908- 4 3.97223- 3 1.80000+ 1 2.40449- 6 4.01348- 3 1.90000+ 1 2.29839- 6 4.02238- 3 2.10000+ 1 7.74928- 4 4.08863- 3 2.20000+ 1 6.88898- 3 4.08994- 3 2.70000+ 1 5.81298- 5 4.11458- 3 2.90000+ 1 9.89377- 8 4.12277- 3 3.00000+ 1 8.99957- 8 4.12348- 3 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.41410- 3 2.27254- 3 8.00000+ 0 1.00000+ 1 1.03082- 3 2.39236- 3 8.00000+ 0 1.10000+ 1 2.99215- 2 2.43983- 3 8.00000+ 0 1.30000+ 1 2.95925- 3 2.65373- 3 8.00000+ 0 1.40000+ 1 3.15039- 3 2.66367- 3 8.00000+ 0 1.60000+ 1 4.70652- 4 3.04325- 3 8.00000+ 0 1.80000+ 1 1.63805- 4 3.08450- 3 8.00000+ 0 1.90000+ 1 3.93005- 3 3.09340- 3 8.00000+ 0 2.10000+ 1 2.31500- 4 3.15965- 3 8.00000+ 0 2.20000+ 1 2.30410- 4 3.16096- 3 8.00000+ 0 2.70000+ 1 5.89678- 5 3.18560- 3 8.00000+ 0 2.90000+ 1 7.64376- 6 3.19379- 3 8.00000+ 0 3.00000+ 1 1.75808- 4 3.19450- 3 1.00000+ 1 1.00000+ 1 3.49437- 4 2.51218- 3 1.00000+ 1 1.10000+ 1 4.97459- 2 2.55965- 3 1.00000+ 1 1.30000+ 1 3.41244- 3 2.77355- 3 1.00000+ 1 1.40000+ 1 3.04566- 2 2.78349- 3 1.00000+ 1 1.60000+ 1 1.84539- 4 3.16307- 3 1.00000+ 1 1.80000+ 1 1.10294- 4 3.20432- 3 1.00000+ 1 1.90000+ 1 6.76168- 3 3.21322- 3 1.00000+ 1 2.10000+ 1 4.42247- 4 3.27947- 3 1.00000+ 1 2.20000+ 1 3.45836- 3 3.28078- 3 1.00000+ 1 2.70000+ 1 2.40232- 5 3.30542- 3 1.00000+ 1 2.90000+ 1 5.45979- 6 3.31361- 3 1.00000+ 1 3.00000+ 1 3.04666- 4 3.31432- 3 1.10000+ 1 1.10000+ 1 7.03608- 2 2.60712- 3 1.10000+ 1 1.30000+ 1 7.13600- 2 2.82102- 3 1.10000+ 1 1.40000+ 1 1.08393- 1 2.83096- 3 1.10000+ 1 1.60000+ 1 6.27362- 3 3.21054- 3 1.10000+ 1 1.80000+ 1 9.06471- 3 3.25179- 3 1.10000+ 1 1.90000+ 1 2.24947- 2 3.26069- 3 1.10000+ 1 2.10000+ 1 9.55481- 3 3.32694- 3 1.10000+ 1 2.20000+ 1 1.43000- 2 3.32825- 3 1.10000+ 1 2.70000+ 1 8.22283- 4 3.35289- 3 1.10000+ 1 2.90000+ 1 4.35692- 4 3.36108- 3 1.10000+ 1 3.00000+ 1 1.03962- 3 3.36179- 3 1.30000+ 1 1.30000+ 1 1.04024- 2 3.03492- 3 1.30000+ 1 1.40000+ 1 2.00017- 1 3.04486- 3 1.30000+ 1 1.60000+ 1 5.76564- 4 3.42444- 3 1.30000+ 1 1.80000+ 1 6.18074- 4 3.46569- 3 1.30000+ 1 1.90000+ 1 9.10512- 3 3.47459- 3 1.30000+ 1 2.10000+ 1 2.49308- 3 3.54084- 3 1.30000+ 1 2.20000+ 1 2.07568- 2 3.54215- 3 1.30000+ 1 2.70000+ 1 7.42553- 5 3.56679- 3 1.30000+ 1 2.90000+ 1 2.94838- 5 3.57498- 3 1.30000+ 1 3.00000+ 1 4.06204- 4 3.57569- 3 1.40000+ 1 1.40000+ 1 1.35950- 1 3.05480- 3 1.40000+ 1 1.60000+ 1 6.54095- 4 3.43438- 3 1.40000+ 1 1.80000+ 1 5.19775- 3 3.47563- 3 1.40000+ 1 1.90000+ 1 1.53994- 2 3.48453- 3 1.40000+ 1 2.10000+ 1 2.42363- 2 3.55078- 3 1.40000+ 1 2.20000+ 1 3.12199- 2 3.55209- 3 1.40000+ 1 2.70000+ 1 8.51748- 5 3.57673- 3 1.40000+ 1 2.90000+ 1 2.46794- 4 3.58492- 3 1.40000+ 1 3.00000+ 1 6.99965- 4 3.58563- 3 1.60000+ 1 1.60000+ 1 4.69733- 5 3.81396- 3 1.60000+ 1 1.80000+ 1 3.52288- 5 3.85521- 3 1.60000+ 1 1.90000+ 1 9.87750- 4 3.86411- 3 1.60000+ 1 2.10000+ 1 5.74127- 5 3.93036- 3 1.60000+ 1 2.20000+ 1 6.00207- 5 3.93167- 3 1.60000+ 1 2.70000+ 1 1.17438- 5 3.95631- 3 1.60000+ 1 2.90000+ 1 1.30484- 6 3.96450- 3 1.60000+ 1 3.00000+ 1 4.43620- 5 3.96521- 3 1.80000+ 1 1.80000+ 1 8.41042- 6 3.89646- 3 1.80000+ 1 1.90000+ 1 1.18585- 3 3.90536- 3 1.80000+ 1 2.10000+ 1 7.56929- 5 3.97161- 3 1.80000+ 1 2.20000+ 1 5.82418- 4 3.97292- 3 1.80000+ 1 2.70000+ 1 3.15378- 6 3.99756- 3 1.80000+ 1 2.90000+ 1 1.05132- 6 4.00575- 3 1.80000+ 1 3.00000+ 1 5.36139- 5 4.00646- 3 1.90000+ 1 1.90000+ 1 1.66647- 3 3.91426- 3 1.90000+ 1 2.10000+ 1 1.16521- 3 3.98051- 3 1.90000+ 1 2.20000+ 1 1.91764- 3 3.98182- 3 1.90000+ 1 2.70000+ 1 1.03185- 4 4.00646- 3 1.90000+ 1 2.90000+ 1 5.62795- 5 4.01465- 3 1.90000+ 1 3.00000+ 1 1.53206- 4 4.01536- 3 2.10000+ 1 2.10000+ 1 1.46321- 4 4.04676- 3 2.10000+ 1 2.20000+ 1 2.57925- 3 4.04807- 3 2.10000+ 1 2.70000+ 1 6.55179- 6 4.07271- 3 2.10000+ 1 2.90000+ 1 3.27589- 6 4.08090- 3 2.10000+ 1 3.00000+ 1 5.45976- 5 4.08161- 3 2.20000+ 1 2.20000+ 1 1.90590- 3 4.04938- 3 2.20000+ 1 2.70000+ 1 6.93888- 6 4.07402- 3 2.20000+ 1 2.90000+ 1 3.00695- 5 4.08221- 3 2.20000+ 1 3.00000+ 1 9.59901- 5 4.08292- 3 2.70000+ 1 2.70000+ 1 1.09203- 6 4.09866- 3 2.70000+ 1 3.00000+ 1 4.36785- 6 4.10756- 3 2.90000+ 1 3.00000+ 1 2.18399- 6 4.11575- 3 3.00000+ 1 3.00000+ 1 3.27589- 6 4.11646- 3 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.14777- 5 1.19820- 4 1.10000+ 1 6.46851- 5 1.67290- 4 1.80000+ 1 1.60535- 4 8.11960- 4 1.90000+ 1 2.24792- 4 8.20860- 4 2.90000+ 1 7.23611- 6 9.21250- 4 3.00000+ 1 9.82188- 6 9.21960- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.80000+ 1 4.75189- 2 2.80000- 6 1.00000+ 1 1.90000+ 1 8.73217- 2 1.17000- 5 1.00000+ 1 2.10000+ 1 6.33903- 2 7.79500- 5 1.00000+ 1 2.20000+ 1 8.60312- 2 7.92600- 5 1.00000+ 1 2.70000+ 1 5.59965- 3 1.03900- 4 1.00000+ 1 2.90000+ 1 1.71433- 3 1.12090- 4 1.00000+ 1 3.00000+ 1 2.93122- 3 1.12800- 4 1.10000+ 1 1.60000+ 1 7.39341- 2 9.02000- 6 1.10000+ 1 1.80000+ 1 8.08845- 2 5.02700- 5 1.10000+ 1 1.90000+ 1 1.25741- 1 5.91700- 5 1.10000+ 1 2.10000+ 1 5.33180- 2 1.25420- 4 1.10000+ 1 2.20000+ 1 7.82427- 2 1.26730- 4 1.10000+ 1 2.70000+ 1 8.28604- 3 1.51370- 4 1.10000+ 1 2.90000+ 1 2.68563- 3 1.59560- 4 1.10000+ 1 3.00000+ 1 4.08464- 3 1.60270- 4 1.30000+ 1 1.60000+ 1 2.86204- 2 2.22920- 4 1.30000+ 1 1.80000+ 1 5.83951- 3 2.64170- 4 1.30000+ 1 1.90000+ 1 4.48476- 3 2.73070- 4 1.30000+ 1 2.10000+ 1 6.50010- 3 3.39320- 4 1.30000+ 1 2.20000+ 1 7.82225- 3 3.40630- 4 1.30000+ 1 2.70000+ 1 2.35662- 3 3.65270- 4 1.30000+ 1 2.90000+ 1 1.74939- 4 3.73460- 4 1.30000+ 1 3.00000+ 1 1.24902- 4 3.74170- 4 1.40000+ 1 1.60000+ 1 4.19181- 2 2.32860- 4 1.40000+ 1 1.80000+ 1 1.53459- 3 2.74110- 4 1.40000+ 1 1.90000+ 1 1.15090- 2 2.83010- 4 1.40000+ 1 2.10000+ 1 8.24424- 3 3.49260- 4 1.40000+ 1 2.20000+ 1 1.31200- 2 3.50570- 4 1.40000+ 1 2.70000+ 1 3.44104- 3 3.75210- 4 1.40000+ 1 2.90000+ 1 4.25700- 5 3.83400- 4 1.40000+ 1 3.00000+ 1 3.23753- 4 3.84110- 4 1.60000+ 1 1.60000+ 1 9.80676- 3 6.12440- 4 1.60000+ 1 1.80000+ 1 1.54346- 2 6.53690- 4 1.60000+ 1 1.90000+ 1 2.85018- 2 6.62590- 4 1.60000+ 1 2.10000+ 1 2.54366- 2 7.28840- 4 1.60000+ 1 2.20000+ 1 3.70155- 2 7.30150- 4 1.60000+ 1 2.70000+ 1 1.89544- 3 7.54790- 4 1.60000+ 1 2.90000+ 1 5.52173- 4 7.62980- 4 1.60000+ 1 3.00000+ 1 9.66005- 4 7.63690- 4 1.80000+ 1 1.80000+ 1 9.04042- 4 6.94940- 4 1.80000+ 1 1.90000+ 1 2.18453- 3 7.03840- 4 1.80000+ 1 2.10000+ 1 1.20146- 3 7.70090- 4 1.80000+ 1 2.20000+ 1 3.92352- 4 7.71400- 4 1.80000+ 1 2.70000+ 1 1.24735- 3 7.96040- 4 1.80000+ 1 2.90000+ 1 5.54428- 5 8.04230- 4 1.80000+ 1 3.00000+ 1 6.07688- 5 8.04940- 4 1.90000+ 1 1.90000+ 1 2.78616- 3 7.12740- 4 1.90000+ 1 2.10000+ 1 1.00873- 3 7.78990- 4 1.90000+ 1 2.20000+ 1 2.94067- 3 7.80300- 4 1.90000+ 1 2.70000+ 1 2.20450- 3 8.04940- 4 1.90000+ 1 2.90000+ 1 6.40594- 5 8.13130- 4 1.90000+ 1 3.00000+ 1 1.63711- 4 8.13840- 4 2.10000+ 1 2.10000+ 1 3.04172- 4 8.45240- 4 2.10000+ 1 2.20000+ 1 9.14483- 4 8.46550- 4 2.10000+ 1 2.70000+ 1 1.92169- 3 8.71190- 4 2.10000+ 1 2.90000+ 1 3.22297- 5 8.79380- 4 2.10000+ 1 3.00000+ 1 2.71940- 5 8.80090- 4 2.20000+ 1 2.20000+ 1 6.72807- 4 8.47860- 4 2.20000+ 1 2.70000+ 1 2.79591- 3 8.72500- 4 2.20000+ 1 2.90000+ 1 1.00718- 5 8.80690- 4 2.20000+ 1 3.00000+ 1 8.15840- 5 8.81400- 4 2.70000+ 1 2.70000+ 1 8.13849- 5 8.97140- 4 2.70000+ 1 2.90000+ 1 4.11786- 5 9.05330- 4 2.70000+ 1 3.00000+ 1 7.15748- 5 9.06040- 4 2.90000+ 1 3.00000+ 1 2.01438- 6 9.14230- 4 3.00000+ 1 3.00000+ 1 2.01438- 6 9.14940- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.22810- 4 2.61370- 4 1.60000+ 1 2.55602- 4 6.50890- 4 2.10000+ 1 7.92687- 4 7.67290- 4 2.70000+ 1 3.19958- 5 7.93240- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.82395- 2 5.60000- 6 1.10000+ 1 2.20000+ 1 4.69709- 2 6.91000- 6 1.10000+ 1 2.70000+ 1 7.11002- 3 3.15500- 5 1.10000+ 1 2.90000+ 1 2.45659- 3 3.97400- 5 1.10000+ 1 3.00000+ 1 2.88056- 3 4.04500- 5 1.30000+ 1 1.60000+ 1 1.32881- 1 1.03100- 4 1.30000+ 1 1.80000+ 1 1.34782- 1 1.44350- 4 1.30000+ 1 1.90000+ 1 2.01202- 1 1.53250- 4 1.30000+ 1 2.10000+ 1 4.96127- 2 2.19500- 4 1.30000+ 1 2.20000+ 1 5.10401- 2 2.20810- 4 1.30000+ 1 2.70000+ 1 1.53599- 2 2.45450- 4 1.30000+ 1 2.90000+ 1 4.29815- 3 2.53640- 4 1.30000+ 1 3.00000+ 1 6.59061- 3 2.54350- 4 1.40000+ 1 1.60000+ 1 2.28507- 2 1.13040- 4 1.40000+ 1 1.80000+ 1 1.67391- 1 1.54290- 4 1.40000+ 1 1.90000+ 1 1.76795- 2 1.63190- 4 1.40000+ 1 2.10000+ 1 4.02461- 3 2.29440- 4 1.40000+ 1 2.20000+ 1 6.65159- 3 2.30750- 4 1.40000+ 1 2.70000+ 1 1.82883- 3 2.55390- 4 1.40000+ 1 2.90000+ 1 4.59865- 3 2.63580- 4 1.40000+ 1 3.00000+ 1 5.33859- 4 2.64290- 4 1.60000+ 1 1.60000+ 1 7.17075- 4 4.92620- 4 1.60000+ 1 1.80000+ 1 1.02860- 2 5.33870- 4 1.60000+ 1 1.90000+ 1 1.67563- 3 5.42770- 4 1.60000+ 1 2.10000+ 1 3.67323- 4 6.09020- 4 1.60000+ 1 2.20000+ 1 9.80913- 4 6.10330- 4 1.60000+ 1 2.70000+ 1 1.32598- 4 6.34970- 4 1.60000+ 1 2.90000+ 1 2.71251- 4 6.43160- 4 1.60000+ 1 3.00000+ 1 5.20886- 5 6.43870- 4 1.80000+ 1 1.80000+ 1 7.02024- 3 5.75120- 4 1.80000+ 1 1.90000+ 1 2.19914- 2 5.84020- 4 1.80000+ 1 2.10000+ 1 1.71177- 2 6.50270- 4 1.80000+ 1 2.20000+ 1 2.84761- 2 6.51580- 4 1.80000+ 1 2.70000+ 1 1.15795- 3 6.76220- 4 1.80000+ 1 2.90000+ 1 4.41866- 4 6.84410- 4 1.80000+ 1 3.00000+ 1 7.44260- 4 6.85120- 4 1.90000+ 1 1.90000+ 1 6.30080- 4 5.92920- 4 1.90000+ 1 2.10000+ 1 1.92215- 3 6.59170- 4 1.90000+ 1 2.20000+ 1 1.34629- 3 6.60480- 4 1.90000+ 1 2.70000+ 1 1.46299- 4 6.85120- 4 1.90000+ 1 2.90000+ 1 6.39514- 4 6.93310- 4 1.90000+ 1 3.00000+ 1 3.69361- 5 6.94020- 4 2.10000+ 1 2.10000+ 1 6.13559- 4 7.25420- 4 2.10000+ 1 2.20000+ 1 1.40827- 3 7.26730- 4 2.10000+ 1 2.70000+ 1 4.00923- 5 7.51370- 4 2.10000+ 1 2.90000+ 1 4.83954- 4 7.59560- 4 2.10000+ 1 3.00000+ 1 5.44099- 5 7.60270- 4 2.20000+ 1 2.20000+ 1 1.89491- 4 7.28040- 4 2.20000+ 1 2.70000+ 1 4.91391- 5 7.52680- 4 2.20000+ 1 2.90000+ 1 4.46578- 4 7.60870- 4 2.20000+ 1 3.00000+ 1 2.00486- 5 7.61580- 4 2.70000+ 1 2.70000+ 1 5.48474- 6 7.77320- 4 2.70000+ 1 2.90000+ 1 2.74237- 5 7.85510- 4 2.70000+ 1 3.00000+ 1 3.65633- 6 7.86220- 4 2.90000+ 1 3.00000+ 1 1.82819- 5 7.94410- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.49033- 5 2.13900- 4 1.40000+ 1 2.62304- 4 2.23840- 4 1.60000+ 1 3.15146- 4 6.03420- 4 2.10000+ 1 9.81626- 5 7.19820- 4 2.20000+ 1 8.10751- 4 7.21130- 4 2.70000+ 1 3.91178- 5 7.45770- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.74654- 2 5.56300- 5 1.30000+ 1 1.80000+ 1 1.92200- 2 9.68800- 5 1.30000+ 1 1.90000+ 1 1.18206- 1 1.05780- 4 1.30000+ 1 2.10000+ 1 1.22421- 2 1.72030- 4 1.30000+ 1 2.20000+ 1 8.60260- 3 1.73340- 4 1.30000+ 1 2.70000+ 1 2.55490- 3 1.97980- 4 1.30000+ 1 2.90000+ 1 6.44219- 4 2.06170- 4 1.30000+ 1 3.00000+ 1 3.22967- 3 2.06880- 4 1.40000+ 1 1.60000+ 1 1.24785- 1 6.55700- 5 1.40000+ 1 1.80000+ 1 1.28111- 1 1.06820- 4 1.40000+ 1 1.90000+ 1 2.59733- 1 1.15720- 4 1.40000+ 1 2.10000+ 1 4.53504- 2 1.81970- 4 1.40000+ 1 2.20000+ 1 7.88583- 2 1.83280- 4 1.40000+ 1 2.70000+ 1 1.43350- 2 2.07920- 4 1.40000+ 1 2.90000+ 1 4.33872- 3 2.16110- 4 1.40000+ 1 3.00000+ 1 7.82851- 3 2.16820- 4 1.60000+ 1 1.60000+ 1 8.56645- 4 4.45150- 4 1.60000+ 1 1.80000+ 1 1.25215- 3 4.86400- 4 1.60000+ 1 1.90000+ 1 1.81260- 2 4.95300- 4 1.60000+ 1 2.10000+ 1 9.92057- 4 5.61550- 4 1.60000+ 1 2.20000+ 1 1.09956- 3 5.62860- 4 1.60000+ 1 2.70000+ 1 1.59077- 4 5.87500- 4 1.60000+ 1 2.90000+ 1 3.86959- 5 5.95690- 4 1.60000+ 1 3.00000+ 1 4.60032- 4 5.96400- 4 1.80000+ 1 1.80000+ 1 2.01078- 4 5.27650- 4 1.80000+ 1 1.90000+ 1 1.89930- 2 5.36550- 4 1.80000+ 1 2.10000+ 1 5.12947- 4 6.02800- 4 1.80000+ 1 2.20000+ 1 2.73504- 3 6.04110- 4 1.80000+ 1 2.70000+ 1 1.00537- 4 6.28750- 4 1.80000+ 1 2.90000+ 1 1.23110- 5 6.36940- 4 1.80000+ 1 3.00000+ 1 4.86290- 4 6.37650- 4 1.90000+ 1 1.90000+ 1 2.42588- 2 5.45450- 4 1.90000+ 1 2.10000+ 1 2.75761- 2 6.11700- 4 1.90000+ 1 2.20000+ 1 3.75489- 2 6.13010- 4 1.90000+ 1 2.70000+ 1 1.67918- 3 6.37650- 4 1.90000+ 1 2.90000+ 1 5.85847- 4 6.45840- 4 1.90000+ 1 3.00000+ 1 1.44099- 3 6.46550- 4 2.10000+ 1 2.10000+ 1 1.53470- 4 6.77950- 4 2.10000+ 1 2.20000+ 1 1.47192- 3 6.79260- 4 2.10000+ 1 2.70000+ 1 4.76734- 5 7.03900- 4 2.10000+ 1 2.90000+ 1 8.48970- 6 7.12090- 4 2.10000+ 1 3.00000+ 1 5.16583- 4 7.12800- 4 2.20000+ 1 2.20000+ 1 8.69299- 4 6.80570- 4 2.20000+ 1 2.70000+ 1 5.05202- 5 7.05210- 4 2.20000+ 1 2.90000+ 1 4.06475- 5 7.13400- 4 2.20000+ 1 3.00000+ 1 6.22512- 4 7.14110- 4 2.70000+ 1 2.70000+ 1 3.74216- 6 7.29850- 4 2.70000+ 1 2.90000+ 1 1.60377- 6 7.38040- 4 2.70000+ 1 3.00000+ 1 2.56607- 5 7.38750- 4 2.90000+ 1 3.00000+ 1 9.08820- 6 7.46940- 4 3.00000+ 1 3.00000+ 1 8.55365- 6 7.47650- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.11899- 3 4.30770- 4 1.90000+ 1 1.82228- 4 4.39670- 4 2.90000+ 1 4.44276- 5 5.40060- 4 3.00000+ 1 6.87213- 6 5.40770- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 1.73601- 3 2.21000- 6 1.40000+ 1 3.00000+ 1 5.53562- 3 2.92000- 6 1.60000+ 1 1.60000+ 1 2.12687- 4 2.31250- 4 1.60000+ 1 1.80000+ 1 8.05343- 3 2.72500- 4 1.60000+ 1 1.90000+ 1 7.18535- 3 2.81400- 4 1.60000+ 1 2.10000+ 1 1.24792- 1 3.47650- 4 1.60000+ 1 2.20000+ 1 1.91357- 2 3.48960- 4 1.60000+ 1 2.70000+ 1 4.02368- 5 3.73600- 4 1.60000+ 1 2.90000+ 1 2.29931- 4 3.81790- 4 1.60000+ 1 3.00000+ 1 1.49457- 4 3.82500- 4 1.80000+ 1 1.80000+ 1 1.68434- 3 3.13750- 4 1.80000+ 1 1.90000+ 1 1.96888- 2 3.22650- 4 1.80000+ 1 2.10000+ 1 9.56848- 2 3.88900- 4 1.80000+ 1 2.20000+ 1 8.46180- 3 3.90210- 4 1.80000+ 1 2.70000+ 1 3.96644- 4 4.14850- 4 1.80000+ 1 2.90000+ 1 1.14964- 4 4.23040- 4 1.80000+ 1 3.00000+ 1 5.17382- 4 4.23750- 4 1.90000+ 1 1.90000+ 1 7.90972- 3 3.31550- 4 1.90000+ 1 2.10000+ 1 2.11927- 1 3.97800- 4 1.90000+ 1 2.20000+ 1 8.43851- 3 3.99110- 4 1.90000+ 1 2.70000+ 1 4.59879- 4 4.23750- 4 1.90000+ 1 2.90000+ 1 5.40343- 4 4.31940- 4 1.90000+ 1 3.00000+ 1 4.02365- 4 4.32650- 4 2.10000+ 1 2.10000+ 1 1.45821- 1 4.64050- 4 2.10000+ 1 2.20000+ 1 2.99776- 1 4.65360- 4 2.10000+ 1 2.70000+ 1 1.27160- 2 4.90000- 4 2.10000+ 1 2.90000+ 1 3.42615- 3 4.98190- 4 2.10000+ 1 3.00000+ 1 7.03603- 3 4.98900- 4 2.20000+ 1 2.20000+ 1 4.99509- 3 4.66670- 4 2.20000+ 1 2.70000+ 1 1.09213- 3 4.91310- 4 2.20000+ 1 2.90000+ 1 2.12681- 4 4.99500- 4 2.20000+ 1 3.00000+ 1 2.29924- 4 5.00210- 4 2.70000+ 1 2.90000+ 1 1.14959- 5 5.24140- 4 2.70000+ 1 3.00000+ 1 1.14959- 5 5.24850- 4 2.90000+ 1 3.00000+ 1 1.72458- 5 5.33040- 4 3.00000+ 1 3.00000+ 1 5.74824- 6 5.33750- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.19460- 3 4.29730- 4 3.00000+ 1 4.50310- 5 5.30830- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.92795- 4 2.21310- 4 1.60000+ 1 1.80000+ 1 4.17274- 3 2.62560- 4 1.60000+ 1 1.90000+ 1 1.25250- 2 2.71460- 4 1.60000+ 1 2.10000+ 1 1.40556- 2 3.37710- 4 1.60000+ 1 2.20000+ 1 1.32044- 1 3.39020- 4 1.60000+ 1 2.70000+ 1 6.26221- 5 3.63660- 4 1.60000+ 1 2.90000+ 1 7.40070- 5 3.71850- 4 1.60000+ 1 3.00000+ 1 3.13105- 4 3.72560- 4 1.80000+ 1 1.80000+ 1 5.69289- 6 3.03810- 4 1.80000+ 1 1.90000+ 1 1.95778- 2 3.12710- 4 1.80000+ 1 2.10000+ 1 1.63386- 3 3.78960- 4 1.80000+ 1 2.20000+ 1 1.17916- 1 3.80270- 4 1.80000+ 1 2.70000+ 1 2.44794- 4 4.04910- 4 1.80000+ 1 3.00000+ 1 5.12359- 4 4.13810- 4 1.90000+ 1 1.90000+ 1 1.39812- 2 3.21610- 4 1.90000+ 1 2.10000+ 1 1.08670- 2 3.87860- 4 1.90000+ 1 2.20000+ 1 1.95012- 1 3.89170- 4 1.90000+ 1 2.70000+ 1 7.05885- 4 4.13810- 4 1.90000+ 1 2.90000+ 1 5.06657- 4 4.22000- 4 1.90000+ 1 3.00000+ 1 7.57118- 4 4.22710- 4 2.10000+ 1 2.10000+ 1 2.04946- 3 4.54110- 4 2.10000+ 1 2.20000+ 1 2.07143- 1 4.55420- 4 2.10000+ 1 2.70000+ 1 7.96982- 4 4.80060- 4 2.10000+ 1 2.90000+ 1 5.69277- 5 4.88250- 4 2.10000+ 1 3.00000+ 1 2.73244- 4 4.88960- 4 2.20000+ 1 2.20000+ 1 2.39387- 1 4.56730- 4 2.20000+ 1 2.70000+ 1 1.30533- 2 4.81370- 4 2.20000+ 1 2.90000+ 1 4.08737- 3 4.89560- 4 2.20000+ 1 3.00000+ 1 6.51250- 3 4.90270- 4 2.70000+ 1 2.90000+ 1 5.69294- 6 5.14200- 4 2.70000+ 1 3.00000+ 1 1.70791- 5 5.14910- 4 2.90000+ 1 3.00000+ 1 1.13860- 5 5.23100- 4 3.00000+ 1 3.00000+ 1 5.69280- 6 5.23810- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.11008- 5 4.12500- 5 1.90000+ 1 3.55055- 5 5.01500- 5 2.90000+ 1 2.45802- 6 1.50540- 4 3.00000+ 1 2.21759- 6 1.51250- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10000+ 1 1.23647- 2 0.00000+ 0 1.80000+ 1 2.20000+ 1 5.29858- 2 6.90000- 7 1.80000+ 1 2.70000+ 1 2.36331- 2 2.53300- 5 1.80000+ 1 2.90000+ 1 5.60013- 3 3.35200- 5 1.80000+ 1 3.00000+ 1 1.36663- 2 3.42300- 5 1.90000+ 1 2.10000+ 1 3.19771- 1 8.28000- 6 1.90000+ 1 2.20000+ 1 3.92784- 1 9.59000- 6 1.90000+ 1 2.70000+ 1 2.28346- 2 3.42300- 5 1.90000+ 1 2.90000+ 1 8.27216- 3 4.24200- 5 1.90000+ 1 3.00000+ 1 1.12279- 2 4.31300- 5 2.10000+ 1 2.10000+ 1 2.62288- 3 7.45300- 5 2.10000+ 1 2.20000+ 1 5.96203- 2 7.58400- 5 2.10000+ 1 2.70000+ 1 1.40458- 2 1.00480- 4 2.10000+ 1 2.90000+ 1 5.99395- 4 1.08670- 4 2.10000+ 1 3.00000+ 1 4.56870- 3 1.09380- 4 2.20000+ 1 2.20000+ 1 8.36742- 3 7.71500- 5 2.20000+ 1 2.70000+ 1 9.16607- 3 1.01790- 4 2.20000+ 1 2.90000+ 1 1.69897- 3 1.09980- 4 2.20000+ 1 3.00000+ 1 1.57855- 3 1.10690- 4 2.70000+ 1 2.70000+ 1 1.26954- 2 1.26430- 4 2.70000+ 1 2.90000+ 1 5.66860- 3 1.34620- 4 2.70000+ 1 3.00000+ 1 9.95204- 3 1.35330- 4 2.90000+ 1 3.00000+ 1 4.14270- 3 1.43520- 4 3.00000+ 1 3.00000+ 1 2.08160- 3 1.44230- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.11183- 5 7.51500- 5 2.70000+ 1 5.06973- 6 1.01100- 4 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.50626- 3 1.17000- 6 1.90000+ 1 3.00000+ 1 2.40366- 3 1.88000- 6 2.10000+ 1 2.10000+ 1 1.61216- 1 3.32800- 5 2.10000+ 1 2.20000+ 1 7.75450- 1 3.45900- 5 2.10000+ 1 2.70000+ 1 1.35479- 2 5.92300- 5 2.10000+ 1 2.90000+ 1 3.91809- 3 6.74200- 5 2.10000+ 1 3.00000+ 1 7.94367- 3 6.81300- 5 2.20000+ 1 2.20000+ 1 2.70941- 2 3.59000- 5 2.20000+ 1 2.70000+ 1 1.50765- 3 6.05400- 5 2.20000+ 1 2.90000+ 1 4.13725- 3 6.87300- 5 2.20000+ 1 3.00000+ 1 8.43212- 4 6.94400- 5 2.70000+ 1 2.70000+ 1 9.35485- 6 8.51800- 5 2.70000+ 1 2.90000+ 1 2.12621- 4 9.33700- 5 2.70000+ 1 3.00000+ 1 2.36753- 5 9.40800- 5 2.90000+ 1 3.00000+ 1 1.28421- 4 1.02270- 4 3.00000+ 1 3.00000+ 1 2.77181- 6 1.02980- 4 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.32730- 6 6.62500- 5 2.20000+ 1 1.30310- 5 6.75600- 5 2.70000+ 1 1.93160- 6 9.22000- 5 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.30506- 2 2.43800- 5 2.10000+ 1 2.20000+ 1 5.79528- 1 2.56900- 5 2.10000+ 1 2.70000+ 1 1.90107- 3 5.03300- 5 2.10000+ 1 2.90000+ 1 6.20917- 4 5.85200- 5 2.10000+ 1 3.00000+ 1 2.95853- 3 5.92300- 5 2.20000+ 1 2.20000+ 1 3.68928- 1 2.70000- 5 2.20000+ 1 2.70000+ 1 1.10160- 2 5.16400- 5 2.20000+ 1 2.90000+ 1 4.38568- 3 5.98300- 5 2.20000+ 1 3.00000+ 1 7.27995- 3 6.05400- 5 2.70000+ 1 2.90000+ 1 1.16647- 5 8.44700- 5 2.70000+ 1 3.00000+ 1 1.84475- 4 8.51800- 5 2.90000+ 1 3.00000+ 1 6.20029- 5 9.33700- 5 3.00000+ 1 3.00000+ 1 5.64400- 5 9.40800- 5 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.90219- 8 3.41400- 5 3.00000+ 1 5.08028- 9 3.48500- 5 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 2.38722- 1 1.00300- 5 2.70000+ 1 2.90000+ 1 3.18124- 1 1.82200- 5 2.70000+ 1 3.00000+ 1 3.10501- 1 1.89300- 5 2.90000+ 1 3.00000+ 1 1.21620- 1 2.71200- 5 3.00000+ 1 3.00000+ 1 1.10330- 2 2.78300- 5 1 51000 0 7 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.55699- 8 3.35400- 5 1 51000 0 9 1.21750+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 2.77392- 1 8.72000- 6 2.70000+ 1 2.90000+ 1 1.59951- 1 1.69100- 5 2.70000+ 1 3.00000+ 1 4.64135- 1 1.76200- 5 2.90000+ 1 3.00000+ 1 4.45559- 2 2.58100- 5 3.00000+ 1 3.00000+ 1 5.39659- 2 2.65200- 5 1 52000 0 0 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 1.33000+ 0 3.00000+ 1 2.67000+ 0 1 52000 0 0 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.18050- 2 3.00000+ 0 4.91420- 3 5.00000+ 0 4.61820- 3 6.00000+ 0 4.33970- 3 8.00000+ 0 9.91080- 4 1.00000+ 1 8.67090- 4 1.10000+ 1 8.14850- 4 1.30000+ 1 5.93740- 4 1.40000+ 1 5.82740- 4 1.60000+ 1 1.74330- 4 1.80000+ 1 1.30970- 4 1.90000+ 1 1.20920- 4 2.10000+ 1 5.07100- 5 2.20000+ 1 4.91800- 5 2.70000+ 1 1.84500- 5 2.90000+ 1 9.23000- 6 3.00000+ 1 8.31000- 6 1 52000 0 0 1.27600+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.05350- 2 3.00000+ 0 8.81120- 3 5.00000+ 0 8.82020- 3 6.00000+ 0 7.80680- 3 8.00000+ 0 2.55560- 3 1.00000+ 1 2.48740- 3 1.10000+ 1 2.26180- 3 1.30000+ 1 2.13810- 3 1.40000+ 1 2.08360- 3 1.60000+ 1 7.14470- 4 1.80000+ 1 6.46790- 4 1.90000+ 1 5.89990- 4 2.10000+ 1 4.44260- 4 2.20000+ 1 4.32210- 4 2.70000+ 1 1.18960- 4 2.90000+ 1 7.85300- 5 3.00000+ 1 6.88100- 5 1 52000 0 0 1.27600+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.46930-10 3.00000+ 0 6.29440-10 5.00000+ 0 5.30580-10 6.00000+ 0 5.59930-10 8.00000+ 0 1.69100- 9 1.00000+ 1 1.63730- 9 1.10000+ 1 1.69680- 9 1.30000+ 1 1.53960- 9 1.40000+ 1 1.55850- 9 1.60000+ 1 3.99670- 9 1.80000+ 1 4.17440- 9 1.90000+ 1 4.32110- 9 2.10000+ 1 4.94670- 9 2.20000+ 1 5.00460- 9 2.70000+ 1 1.06120- 8 2.90000+ 1 1.30410- 8 3.00000+ 1 1.37590- 8 1 52000 0 0 1.27600+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.39970- 6 3.00000+ 0 1.32310- 7 5.00000+ 0 2.22440- 7 6.00000+ 0 2.10300- 7 8.00000+ 0 2.98650- 9 1.00000+ 1 3.01140- 9 1.10000+ 1 2.95090- 9 1.30000+ 1 2.27500-10 1.40000+ 1 1.96100-10 1.60000+ 1 6.41780-11 1.80000+ 1 1.80950-10 1.90000+ 1 1.42860-10 2.10000+ 1 2.78140-12 2.20000+ 1 2.42620-12 1 52000 0 0 1.27600+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23590- 6 3.00000+ 0 3.13920- 6 5.00000+ 0 2.58980- 6 6.00000+ 0 2.37730- 6 8.00000+ 0 1.31970- 5 1.00000+ 1 4.63660- 6 1.10000+ 1 5.05230- 6 1.30000+ 1 5.14620- 7 1.40000+ 1 5.18280- 7 1.60000+ 1 1.34370- 5 1.80000+ 1 2.52030- 5 1.90000+ 1 3.60790- 5 2.10000+ 1 1.74660- 7 2.20000+ 1 1.95120- 7 1 52000 0 0 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.72983- 4 3.00000+ 0 1.98567- 4 5.00000+ 0 1.67470- 4 6.00000+ 0 1.59542- 4 8.00000+ 0 1.49002- 4 1.00000+ 1 1.21179- 4 1.10000+ 1 1.17779- 4 1.30000+ 1 7.12508- 5 1.40000+ 1 7.18669- 5 1.60000+ 1 7.19572- 5 1.80000+ 1 5.38028- 5 1.90000+ 1 5.41041- 5 2.10000+ 1 2.69837- 5 2.20000+ 1 2.74502- 5 2.70000+ 1 1.84500- 5 2.90000+ 1 9.23000- 6 3.00000+ 1 8.31000- 6 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.61051- 1 3.00000+ 0 8.87899- 2 5.00000+ 0 9.68239- 2 6.00000+ 0 8.44709- 2 8.00000+ 0 3.03770- 3 1.00000+ 1 3.22841- 3 1.10000+ 1 3.04180- 3 1.30000+ 1 1.66994- 3 1.40000+ 1 1.52806- 3 1.60000+ 1 8.22198- 5 1.80000+ 1 7.05175- 5 1.90000+ 1 2.07627- 5 2.10000+ 1 1.06070- 7 2.20000+ 1 1.10200- 7 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.49388- 2 3.00000+ 0 3.44145- 4 5.00000+ 0 3.76983- 4 6.00000+ 0 3.07804- 4 8.00000+ 0 1.77537- 6 1.00000+ 1 1.81140- 6 1.10000+ 1 1.71107- 6 1.30000+ 1 7.75507- 7 1.40000+ 1 7.03947- 7 1.60000+ 1 5.79234- 9 1.80000+ 1 5.87928- 9 1.90000+ 1 1.56293- 9 2.10000+ 1 4.41424-12 2.20000+ 1 4.50388-12 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17091+ 1 3.00000+ 0 1.35874+ 1 5.00000+ 0 1.13135+ 1 6.00000+ 0 1.07157+ 1 8.00000+ 0 9.96113+ 0 1.00000+ 1 7.91357+ 0 1.10000+ 1 7.64713+ 0 1.30000+ 1 4.25155+ 0 1.40000+ 1 4.26536+ 0 1.60000+ 1 4.28366+ 0 1.80000+ 1 2.96364+ 0 1.90000+ 1 2.96673+ 0 2.10000+ 1 1.00000+ 0 2.20000+ 1 1.00000+ 0 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.69320- 3 3.00000+ 0 4.37149- 3 5.00000+ 0 4.07375- 3 6.00000+ 0 3.87235- 3 8.00000+ 0 8.40302- 4 1.00000+ 1 7.44099- 4 1.10000+ 1 6.95360- 4 1.30000+ 1 5.21714- 4 1.40000+ 1 5.10169- 4 1.60000+ 1 1.02367- 4 1.80000+ 1 7.71613- 5 1.90000+ 1 6.68143- 5 2.10000+ 1 2.37263- 5 2.20000+ 1 2.17298- 5 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.52440- 1 2.71868- 2 6.00000+ 0 4.69940- 1 2.74653- 2 1.00000+ 1 4.32710- 2 3.09379- 2 1.10000+ 1 8.39200- 2 3.09901- 2 1.30000+ 1 3.86150- 4 3.12113- 2 1.40000+ 1 5.30980- 4 3.12223- 2 1.80000+ 1 8.96460- 3 3.16740- 2 1.90000+ 1 1.76190- 2 3.16841- 2 2.10000+ 1 6.50000- 5 3.17543- 2 2.20000+ 1 8.90040- 5 3.17558- 2 2.90000+ 1 5.13610- 4 3.17958- 2 3.00000+ 1 9.49710- 4 3.17967- 2 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 9.39283- 3 2.19766- 2 3.00000+ 0 5.00000+ 0 1.11329- 2 2.22726- 2 3.00000+ 0 6.00000+ 0 1.39553- 2 2.25511- 2 3.00000+ 0 8.00000+ 0 3.32387- 3 2.58997- 2 3.00000+ 0 1.00000+ 1 2.10360- 3 2.60237- 2 3.00000+ 0 1.10000+ 1 2.65978- 3 2.60759- 2 3.00000+ 0 1.30000+ 1 1.75221- 4 2.62971- 2 3.00000+ 0 1.40000+ 1 1.94176- 4 2.63081- 2 3.00000+ 0 1.60000+ 1 7.03015- 4 2.67165- 2 3.00000+ 0 1.80000+ 1 4.16144- 4 2.67598- 2 3.00000+ 0 1.90000+ 1 5.22450- 4 2.67699- 2 3.00000+ 0 2.10000+ 1 2.99158- 5 2.68401- 2 3.00000+ 0 2.20000+ 1 3.28538- 5 2.68416- 2 3.00000+ 0 2.70000+ 1 9.82943- 5 2.68723- 2 3.00000+ 0 2.90000+ 1 2.96481- 5 2.68816- 2 3.00000+ 0 3.00000+ 1 3.60574- 5 2.68825- 2 5.00000+ 0 5.00000+ 0 1.42729- 3 2.25686- 2 5.00000+ 0 6.00000+ 0 3.03647- 2 2.28471- 2 5.00000+ 0 8.00000+ 0 1.63254- 3 2.61957- 2 5.00000+ 0 1.00000+ 1 4.83445- 4 2.63197- 2 5.00000+ 0 1.10000+ 1 4.82887- 3 2.63719- 2 5.00000+ 0 1.30000+ 1 2.13404- 4 2.65931- 2 5.00000+ 0 1.40000+ 1 7.19568- 4 2.66041- 2 5.00000+ 0 1.60000+ 1 3.32270- 4 2.70125- 2 5.00000+ 0 1.80000+ 1 9.40179- 5 2.70558- 2 5.00000+ 0 1.90000+ 1 9.17753- 4 2.70659- 2 5.00000+ 0 2.10000+ 1 3.57902- 5 2.71361- 2 5.00000+ 0 2.20000+ 1 1.20463- 4 2.71376- 2 5.00000+ 0 2.70000+ 1 4.62079- 5 2.71683- 2 5.00000+ 0 2.90000+ 1 6.67744- 6 2.71776- 2 5.00000+ 0 3.00000+ 1 6.30346- 5 2.71785- 2 6.00000+ 0 6.00000+ 0 1.53173- 2 2.31256- 2 6.00000+ 0 8.00000+ 0 2.00997- 3 2.64742- 2 6.00000+ 0 1.00000+ 1 4.71997- 3 2.65982- 2 6.00000+ 0 1.10000+ 1 5.00070- 3 2.66504- 2 6.00000+ 0 1.30000+ 1 8.60596- 4 2.68716- 2 6.00000+ 0 1.40000+ 1 7.95691- 4 2.68826- 2 6.00000+ 0 1.60000+ 1 4.07868- 4 2.72910- 2 6.00000+ 0 1.80000+ 1 9.02006- 4 2.73343- 2 6.00000+ 0 1.90000+ 1 9.55985- 4 2.73444- 2 6.00000+ 0 2.10000+ 1 1.44764- 4 2.74146- 2 6.00000+ 0 2.20000+ 1 1.33282- 4 2.74161- 2 6.00000+ 0 2.70000+ 1 5.66262- 5 2.74468- 2 6.00000+ 0 2.90000+ 1 6.35698- 5 2.74561- 2 6.00000+ 0 3.00000+ 1 6.57065- 5 2.74570- 2 8.00000+ 0 8.00000+ 0 2.89546- 4 2.98228- 2 8.00000+ 0 1.00000+ 1 3.11452- 4 2.99468- 2 8.00000+ 0 1.10000+ 1 3.86244- 4 2.99991- 2 8.00000+ 0 1.30000+ 1 2.40398- 5 3.02202- 2 8.00000+ 0 1.40000+ 1 2.56421- 5 3.02312- 2 8.00000+ 0 1.60000+ 1 1.22057- 4 3.06396- 2 8.00000+ 0 1.80000+ 1 6.17022- 5 3.06829- 2 8.00000+ 0 1.90000+ 1 7.61260- 5 3.06930- 2 8.00000+ 0 2.10000+ 1 4.00660- 6 3.07632- 2 8.00000+ 0 2.20000+ 1 4.27372- 6 3.07647- 2 8.00000+ 0 2.70000+ 1 1.70950- 5 3.07955- 2 8.00000+ 0 2.90000+ 1 4.27372- 6 3.08047- 2 8.00000+ 0 3.00000+ 1 5.34210- 6 3.08056- 2 1.00000+ 1 1.00000+ 1 3.92634- 5 3.00708- 2 1.00000+ 1 1.10000+ 1 7.62832- 4 3.01231- 2 1.00000+ 1 1.30000+ 1 2.61746- 5 3.03442- 2 1.00000+ 1 1.40000+ 1 8.76079- 5 3.03552- 2 1.00000+ 1 1.60000+ 1 6.35690- 5 3.07636- 2 1.00000+ 1 1.80000+ 1 1.52235- 5 3.08069- 2 1.00000+ 1 1.90000+ 1 1.45302- 4 3.08170- 2 1.00000+ 1 2.10000+ 1 4.27357- 6 3.08872- 2 1.00000+ 1 2.20000+ 1 1.46901- 5 3.08887- 2 1.00000+ 1 2.70000+ 1 8.81414- 6 3.09195- 2 1.00000+ 1 2.90000+ 1 1.06834- 6 3.09287- 2 1.00000+ 1 3.00000+ 1 9.88227- 6 3.09296- 2 1.10000+ 1 1.10000+ 1 4.09479- 4 3.01753- 2 1.10000+ 1 1.30000+ 1 1.11124- 4 3.03964- 2 1.10000+ 1 1.40000+ 1 1.00170- 4 3.04074- 2 1.10000+ 1 1.60000+ 1 7.85293- 5 3.08158- 2 1.10000+ 1 1.80000+ 1 1.46103- 4 3.08592- 2 1.10000+ 1 1.90000+ 1 1.56517- 4 3.08692- 2 1.10000+ 1 2.10000+ 1 1.86966- 5 3.09394- 2 1.10000+ 1 2.20000+ 1 1.68284- 5 3.09410- 2 1.10000+ 1 2.70000+ 1 1.09516- 5 3.09717- 2 1.10000+ 1 2.90000+ 1 1.04171- 5 3.09809- 2 1.10000+ 1 3.00000+ 1 1.06839- 5 3.09818- 2 1.30000+ 1 1.40000+ 1 1.27703- 5 3.06285- 2 1.30000+ 1 1.60000+ 1 4.59737- 6 3.10369- 2 1.30000+ 1 1.80000+ 1 4.59737- 6 3.10803- 2 1.30000+ 1 1.90000+ 1 1.94119- 5 3.10903- 2 1.30000+ 1 2.20000+ 1 2.04339- 6 3.11621- 2 1.30000+ 1 2.70000+ 1 7.66237- 7 3.11928- 2 1.30000+ 1 2.90000+ 1 2.55415- 7 3.12020- 2 1.30000+ 1 3.00000+ 1 1.27703- 6 3.12029- 2 1.40000+ 1 1.40000+ 1 3.15462- 6 3.06395- 2 1.40000+ 1 1.60000+ 1 4.99493- 6 3.10479- 2 1.40000+ 1 1.80000+ 1 1.57731- 5 3.10913- 2 1.40000+ 1 1.90000+ 1 1.78761- 5 3.11013- 2 1.40000+ 1 2.10000+ 1 2.10320- 6 3.11715- 2 1.40000+ 1 2.20000+ 1 1.05151- 6 3.11731- 2 1.40000+ 1 2.70000+ 1 7.88664- 7 3.12038- 2 1.40000+ 1 2.90000+ 1 1.05151- 6 3.12130- 2 1.40000+ 1 3.00000+ 1 1.31441- 6 3.12139- 2 1.60000+ 1 1.60000+ 1 1.27988- 5 3.14563- 2 1.60000+ 1 1.80000+ 1 1.25316- 5 3.14997- 2 1.60000+ 1 1.90000+ 1 1.54652- 5 3.15097- 2 1.60000+ 1 2.10000+ 1 7.99897- 7 3.15800- 2 1.60000+ 1 2.20000+ 1 7.99897- 7 3.15815- 2 1.60000+ 1 2.70000+ 1 3.46629- 6 3.16122- 2 1.60000+ 1 2.90000+ 1 7.99897- 7 3.16214- 2 1.60000+ 1 3.00000+ 1 1.06648- 6 3.16224- 2 1.80000+ 1 1.80000+ 1 1.25236- 6 3.15431- 2 1.80000+ 1 1.90000+ 1 2.60494- 5 3.15531- 2 1.80000+ 1 2.10000+ 1 7.51433- 7 3.16233- 2 1.80000+ 1 2.20000+ 1 2.50480- 6 3.16248- 2 1.80000+ 1 2.70000+ 1 1.75325- 6 3.16556- 2 1.80000+ 1 2.90000+ 1 2.50480- 7 3.16648- 2 1.80000+ 1 3.00000+ 1 1.75325- 6 3.16657- 2 1.90000+ 1 1.90000+ 1 1.43594- 5 3.15632- 2 1.90000+ 1 2.10000+ 1 3.33363- 6 3.16334- 2 1.90000+ 1 2.20000+ 1 3.07709- 6 3.16349- 2 1.90000+ 1 2.70000+ 1 2.05151- 6 3.16656- 2 1.90000+ 1 2.90000+ 1 1.79490- 6 3.16748- 2 1.90000+ 1 3.00000+ 1 2.05151- 6 3.16758- 2 2.10000+ 1 2.20000+ 1 3.86415- 7 3.17051- 2 2.10000+ 1 3.00000+ 1 3.86415- 7 3.17460- 2 2.20000+ 1 2.90000+ 1 2.67100- 7 3.17466- 2 2.20000+ 1 3.00000+ 1 2.67100- 7 3.17475- 2 2.70000+ 1 2.70000+ 1 2.94705- 7 3.17681- 2 2.70000+ 1 3.00000+ 1 2.94705- 7 3.17782- 2 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.01439- 5 2.96000- 4 6.00000+ 0 3.19129- 4 5.74500- 4 1.00000+ 1 1.24479- 2 4.04711- 3 1.10000+ 1 1.99389- 2 4.09935- 3 1.30000+ 1 1.71069- 4 4.32046- 3 1.40000+ 1 2.55459- 4 4.33146- 3 1.80000+ 1 2.56269- 3 4.78323- 3 1.90000+ 1 4.19368- 3 4.79328- 3 2.10000+ 1 1.91949- 5 4.86349- 3 2.20000+ 1 2.90409- 5 4.86502- 3 2.90000+ 1 1.61129- 4 4.90497- 3 3.00000+ 1 2.52049- 4 4.90589- 3 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.70459- 2 1.21670- 4 5.00000+ 0 1.80000+ 1 4.08716- 2 1.65030- 4 5.00000+ 0 1.90000+ 1 5.30226- 2 1.75080- 4 5.00000+ 0 2.10000+ 1 1.28041- 2 2.45290- 4 5.00000+ 0 2.20000+ 1 2.06398- 2 2.46820- 4 5.00000+ 0 2.70000+ 1 7.74327- 3 2.77550- 4 5.00000+ 0 2.90000+ 1 2.74913- 3 2.86770- 4 5.00000+ 0 3.00000+ 1 3.47270- 3 2.87690- 4 6.00000+ 0 1.60000+ 1 7.60230- 2 4.00170- 4 6.00000+ 0 1.80000+ 1 3.37247- 2 4.43530- 4 6.00000+ 0 1.90000+ 1 6.41962- 2 4.53580- 4 6.00000+ 0 2.10000+ 1 5.78676- 2 5.23790- 4 6.00000+ 0 2.20000+ 1 7.44849- 2 5.25320- 4 6.00000+ 0 2.70000+ 1 1.03168- 2 5.56050- 4 6.00000+ 0 2.90000+ 1 2.30828- 3 5.65270- 4 6.00000+ 0 3.00000+ 1 4.31705- 3 5.66190- 4 8.00000+ 0 8.00000+ 0 1.35982- 2 2.93204- 3 8.00000+ 0 1.00000+ 1 2.70384- 2 3.05603- 3 8.00000+ 0 1.10000+ 1 5.02537- 2 3.10827- 3 8.00000+ 0 1.30000+ 1 4.02627- 2 3.32938- 3 8.00000+ 0 1.40000+ 1 5.71383- 2 3.34038- 3 8.00000+ 0 1.60000+ 1 4.92356- 3 3.74879- 3 8.00000+ 0 1.80000+ 1 5.24639- 3 3.79215- 3 8.00000+ 0 1.90000+ 1 9.65979- 3 3.80220- 3 8.00000+ 0 2.10000+ 1 5.89845- 3 3.87241- 3 8.00000+ 0 2.20000+ 1 8.31587- 3 3.87394- 3 8.00000+ 0 2.70000+ 1 6.75433- 4 3.90467- 3 8.00000+ 0 2.90000+ 1 3.71815- 4 3.91389- 3 8.00000+ 0 3.00000+ 1 6.66301- 4 3.91481- 3 1.00000+ 1 1.00000+ 1 1.57204- 4 3.18002- 3 1.00000+ 1 1.10000+ 1 1.08889- 3 3.23226- 3 1.00000+ 1 1.30000+ 1 1.12119- 3 3.45337- 3 1.00000+ 1 1.40000+ 1 1.47842- 2 3.46437- 3 1.00000+ 1 1.60000+ 1 3.93705- 3 3.87278- 3 1.00000+ 1 1.80000+ 1 3.16087- 5 3.91614- 3 1.00000+ 1 1.90000+ 1 1.97977- 4 3.92619- 3 1.00000+ 1 2.10000+ 1 1.68035- 4 3.99640- 3 1.00000+ 1 2.20000+ 1 1.44732- 3 3.99793- 3 1.00000+ 1 2.70000+ 1 5.17395- 4 4.02866- 3 1.00000+ 1 2.90000+ 1 1.66365- 6 4.03788- 3 1.00000+ 1 3.00000+ 1 1.33091- 5 4.03880- 3 1.10000+ 1 1.10000+ 1 1.16700- 3 3.28450- 3 1.10000+ 1 1.30000+ 1 1.06449- 2 3.50561- 3 1.10000+ 1 1.40000+ 1 7.27251- 3 3.51661- 3 1.10000+ 1 1.60000+ 1 7.31671- 3 3.92502- 3 1.10000+ 1 1.80000+ 1 1.97976- 4 3.96838- 3 1.10000+ 1 1.90000+ 1 3.44370- 4 3.97843- 3 1.10000+ 1 2.10000+ 1 9.17477- 4 4.04864- 3 1.10000+ 1 2.20000+ 1 6.54645- 4 4.05017- 3 1.10000+ 1 2.70000+ 1 9.60691- 4 4.08090- 3 1.10000+ 1 2.90000+ 1 1.41412- 5 4.09012- 3 1.10000+ 1 3.00000+ 1 2.24589- 5 4.09104- 3 1.30000+ 1 1.30000+ 1 2.26164- 3 3.72672- 3 1.30000+ 1 1.40000+ 1 8.23034- 2 3.73772- 3 1.30000+ 1 1.60000+ 1 5.56967- 3 4.14613- 3 1.30000+ 1 1.80000+ 1 2.82808- 4 4.18949- 3 1.30000+ 1 1.90000+ 1 2.05794- 3 4.19954- 3 1.30000+ 1 2.10000+ 1 6.57114- 4 4.26975- 3 1.30000+ 1 2.20000+ 1 8.87778- 3 4.27128- 3 1.30000+ 1 2.70000+ 1 7.26168- 4 4.30201- 3 1.30000+ 1 2.90000+ 1 2.07954- 5 4.31123- 3 1.30000+ 1 3.00000+ 1 1.42239- 4 4.31215- 3 1.40000+ 1 1.40000+ 1 2.32085- 2 3.74872- 3 1.40000+ 1 1.60000+ 1 7.94702- 3 4.15713- 3 1.40000+ 1 1.80000+ 1 2.62187- 3 4.20049- 3 1.40000+ 1 1.90000+ 1 1.47559- 3 4.21054- 3 1.40000+ 1 2.10000+ 1 8.80878- 3 4.28075- 3 1.40000+ 1 2.20000+ 1 5.23035- 3 4.28228- 3 1.40000+ 1 2.70000+ 1 1.03727- 3 4.31301- 3 1.40000+ 1 2.90000+ 1 1.83002- 4 4.32223- 3 1.40000+ 1 3.00000+ 1 1.02317- 4 4.32315- 3 1.60000+ 1 1.60000+ 1 4.23377- 4 4.56554- 3 1.60000+ 1 1.80000+ 1 7.65258- 4 4.60890- 3 1.60000+ 1 1.90000+ 1 1.40909- 3 4.61895- 3 1.60000+ 1 2.10000+ 1 8.13500- 4 4.68916- 3 1.60000+ 1 2.20000+ 1 1.15037- 3 4.69069- 3 1.60000+ 1 2.70000+ 1 1.14787- 4 4.72142- 3 1.60000+ 1 2.90000+ 1 5.40664- 5 4.73064- 3 1.60000+ 1 3.00000+ 1 9.73242- 5 4.73156- 3 1.80000+ 1 1.80000+ 1 1.66363- 6 4.65226- 3 1.80000+ 1 1.90000+ 1 3.66009- 5 4.66231- 3 1.80000+ 1 2.10000+ 1 3.57698- 5 4.73252- 3 1.80000+ 1 2.20000+ 1 2.64510- 4 4.73405- 3 1.80000+ 1 2.70000+ 1 1.00648- 4 4.76478- 3 1.80000+ 1 3.00000+ 1 2.49539- 6 4.77492- 3 1.90000+ 1 1.90000+ 1 2.57859- 5 4.67236- 3 1.90000+ 1 2.10000+ 1 1.87154- 4 4.74257- 3 1.90000+ 1 2.20000+ 1 1.38080- 4 4.74410- 3 1.90000+ 1 2.70000+ 1 1.84664- 4 4.77483- 3 1.90000+ 1 2.90000+ 1 2.49539- 6 4.78405- 3 1.90000+ 1 3.00000+ 1 3.32717- 6 4.78497- 3 2.10000+ 1 2.10000+ 1 4.49202- 5 4.81278- 3 2.10000+ 1 2.20000+ 1 1.01152- 3 4.81431- 3 2.10000+ 1 2.70000+ 1 1.05652- 4 4.84504- 3 2.10000+ 1 2.90000+ 1 2.49548- 6 4.85426- 3 2.10000+ 1 3.00000+ 1 1.33095- 5 4.85518- 3 2.20000+ 1 2.20000+ 1 3.10274- 4 4.81584- 3 2.20000+ 1 2.70000+ 1 1.49721- 4 4.84657- 3 2.20000+ 1 2.90000+ 1 1.83004- 5 4.85579- 3 2.20000+ 1 3.00000+ 1 9.98210- 6 4.85671- 3 2.70000+ 1 2.70000+ 1 6.23379- 6 4.87730- 3 2.70000+ 1 2.90000+ 1 6.23379- 6 4.88652- 3 2.70000+ 1 3.00000+ 1 1.03893- 5 4.88744- 3 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.56125- 8 2.78500- 4 8.00000+ 0 3.83474- 3 3.62712- 3 1.10000+ 1 5.22925- 5 3.80335- 3 1.30000+ 1 6.57057- 2 4.02446- 3 1.60000+ 1 5.07455- 4 4.44387- 3 1.90000+ 1 5.52046- 6 4.49728- 3 2.10000+ 1 8.93779- 3 4.56749- 3 2.70000+ 1 5.29715- 5 4.59975- 3 3.00000+ 1 3.32173- 7 4.60989- 3 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.18057- 2 1.04170- 4 6.00000+ 0 1.80000+ 1 5.08536- 2 1.47530- 4 6.00000+ 0 1.90000+ 1 1.78731- 2 1.57580- 4 6.00000+ 0 2.10000+ 1 6.35534- 2 2.27790- 4 6.00000+ 0 2.20000+ 1 2.36704- 2 2.29320- 4 6.00000+ 0 2.70000+ 1 1.49714- 3 2.60050- 4 6.00000+ 0 2.90000+ 1 3.42698- 3 2.69270- 4 6.00000+ 0 3.00000+ 1 1.22138- 3 2.70190- 4 8.00000+ 0 8.00000+ 0 1.05585- 3 2.63604- 3 8.00000+ 0 1.00000+ 1 2.53181- 2 2.76003- 3 8.00000+ 0 1.10000+ 1 2.46989- 3 2.81227- 3 8.00000+ 0 1.30000+ 1 1.82424- 3 3.03338- 3 8.00000+ 0 1.40000+ 1 3.61006- 3 3.04438- 3 8.00000+ 0 1.60000+ 1 3.56165- 4 3.45279- 3 8.00000+ 0 1.80000+ 1 3.39701- 3 3.49615- 3 8.00000+ 0 1.90000+ 1 4.21961- 4 3.50620- 3 8.00000+ 0 2.10000+ 1 1.97437- 4 3.57641- 3 8.00000+ 0 2.20000+ 1 3.34860- 4 3.57794- 3 8.00000+ 0 2.70000+ 1 4.83896- 5 3.60867- 3 8.00000+ 0 2.90000+ 1 2.27434- 4 3.61789- 3 8.00000+ 0 3.00000+ 1 2.90340- 5 3.61881- 3 1.00000+ 1 1.00000+ 1 2.48478- 2 2.88402- 3 1.00000+ 1 1.10000+ 1 7.83041- 2 2.93626- 3 1.00000+ 1 1.30000+ 1 4.25589- 2 3.15737- 3 1.00000+ 1 1.40000+ 1 7.30088- 2 3.16837- 3 1.00000+ 1 1.60000+ 1 5.45957- 3 3.57678- 3 1.00000+ 1 1.80000+ 1 8.28921- 3 3.62014- 3 1.00000+ 1 1.90000+ 1 1.47874- 2 3.63019- 3 1.00000+ 1 2.10000+ 1 6.21703- 3 3.70040- 3 1.00000+ 1 2.20000+ 1 1.06515- 2 3.70193- 3 1.00000+ 1 2.70000+ 1 7.66507- 4 3.73266- 3 1.00000+ 1 2.90000+ 1 5.74863- 4 3.74188- 3 1.00000+ 1 3.00000+ 1 1.01714- 3 3.74280- 3 1.10000+ 1 1.10000+ 1 2.06732- 3 2.98850- 3 1.10000+ 1 1.30000+ 1 5.13028- 2 3.20961- 3 1.10000+ 1 1.40000+ 1 6.90331- 3 3.22061- 3 1.10000+ 1 1.60000+ 1 4.58754- 4 3.62902- 3 1.10000+ 1 1.80000+ 1 1.09037- 2 3.67238- 3 1.10000+ 1 1.90000+ 1 6.60063- 4 3.68243- 3 1.10000+ 1 2.10000+ 1 6.46790- 3 3.75264- 3 1.10000+ 1 2.20000+ 1 8.13932- 4 3.75417- 3 1.10000+ 1 2.70000+ 1 6.29086- 5 3.78490- 3 1.10000+ 1 2.90000+ 1 7.33612- 4 3.79412- 3 1.10000+ 1 3.00000+ 1 4.45201- 5 3.79504- 3 1.30000+ 1 1.30000+ 1 4.68779- 2 3.43072- 3 1.30000+ 1 1.40000+ 1 2.01611- 1 3.44172- 3 1.30000+ 1 1.60000+ 1 3.98751- 4 3.85013- 3 1.30000+ 1 1.80000+ 1 5.93950- 3 3.89349- 3 1.30000+ 1 1.90000+ 1 9.17011- 3 3.90354- 3 1.30000+ 1 2.10000+ 1 1.17870- 2 3.97375- 3 1.30000+ 1 2.20000+ 1 2.70158- 2 3.97528- 3 1.30000+ 1 2.70000+ 1 5.61332- 5 4.00601- 3 1.30000+ 1 2.90000+ 1 4.01632- 4 4.01523- 3 1.30000+ 1 3.00000+ 1 6.25207- 4 4.01615- 3 1.40000+ 1 1.40000+ 1 9.59544- 3 3.45272- 3 1.40000+ 1 1.60000+ 1 6.55226- 4 3.86113- 3 1.40000+ 1 1.80000+ 1 9.09751- 3 3.90449- 3 1.40000+ 1 1.90000+ 1 1.13039- 3 3.91454- 3 1.40000+ 1 2.10000+ 1 2.16485- 2 3.98475- 3 1.40000+ 1 2.20000+ 1 2.34790- 3 3.98628- 3 1.40000+ 1 2.70000+ 1 8.90396- 5 4.01701- 3 1.40000+ 1 2.90000+ 1 6.01983- 4 4.02623- 3 1.40000+ 1 3.00000+ 1 7.64564- 5 4.02715- 3 1.60000+ 1 1.60000+ 1 3.27157- 5 4.26954- 3 1.60000+ 1 1.80000+ 1 8.29890- 4 4.31290- 3 1.60000+ 1 1.90000+ 1 8.83347- 5 4.32295- 3 1.60000+ 1 2.10000+ 1 4.68944- 5 4.39316- 3 1.60000+ 1 2.20000+ 1 6.97942- 5 4.39469- 3 1.60000+ 1 2.70000+ 1 8.72437- 6 4.42542- 3 1.60000+ 1 2.90000+ 1 5.56157- 5 4.43464- 3 1.60000+ 1 3.00000+ 1 6.54303- 6 4.43556- 3 1.80000+ 1 1.80000+ 1 6.29655- 4 4.35626- 3 1.80000+ 1 1.90000+ 1 1.95708- 3 4.36631- 3 1.80000+ 1 2.10000+ 1 8.11683- 4 4.43652- 3 1.80000+ 1 2.20000+ 1 1.26944- 3 4.43805- 3 1.80000+ 1 2.70000+ 1 9.83574- 5 4.46878- 3 1.80000+ 1 2.90000+ 1 8.73264- 5 4.47800- 3 1.80000+ 1 3.00000+ 1 1.34212- 4 4.47892- 3 1.90000+ 1 1.90000+ 1 5.19206- 5 4.37636- 3 1.90000+ 1 2.10000+ 1 1.13760- 3 4.44657- 3 1.90000+ 1 2.20000+ 1 1.33107- 4 4.44810- 3 1.90000+ 1 2.70000+ 1 1.03847- 5 4.47883- 3 1.90000+ 1 2.90000+ 1 1.34999- 4 4.48805- 3 1.90000+ 1 3.00000+ 1 6.60790- 6 4.48897- 3 2.10000+ 1 2.10000+ 1 7.24751- 4 4.51678- 3 2.10000+ 1 2.20000+ 1 2.94968- 3 4.51831- 3 2.10000+ 1 2.70000+ 1 5.73661- 6 4.54904- 3 2.10000+ 1 2.90000+ 1 5.73661- 5 4.55826- 3 2.10000+ 1 3.00000+ 1 7.84031- 5 4.55918- 3 2.20000+ 1 2.20000+ 1 1.43341- 4 4.51984- 3 2.20000+ 1 2.70000+ 1 8.65820- 6 4.55057- 3 2.20000+ 1 2.90000+ 1 8.75434- 5 4.55979- 3 2.20000+ 1 3.00000+ 1 9.62023- 6 4.56071- 3 2.70000+ 1 2.70000+ 1 7.55572- 7 4.58130- 3 2.70000+ 1 2.90000+ 1 5.28882- 6 4.59052- 3 2.70000+ 1 3.00000+ 1 7.55572- 7 4.59144- 3 2.90000+ 1 2.90000+ 1 2.78348- 6 4.59974- 3 2.90000+ 1 3.00000+ 1 8.35063- 6 4.60066- 3 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 6.84445- 3 3.34862- 3 1.00000+ 1 3.63287- 5 3.47261- 3 1.10000+ 1 3.39238- 5 3.52485- 3 1.30000+ 1 6.56145- 3 3.74596- 3 1.40000+ 1 5.81756- 2 3.75696- 3 1.60000+ 1 5.54526- 4 4.16537- 3 1.80000+ 1 2.74368- 6 4.20873- 3 1.90000+ 1 2.62658- 6 4.21878- 3 2.10000+ 1 8.71934- 4 4.28899- 3 2.20000+ 1 7.76025- 3 4.29052- 3 2.70000+ 1 6.83185- 5 4.32125- 3 2.90000+ 1 1.71819- 7 4.33047- 3 3.00000+ 1 1.57399- 7 4.33139- 3 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.38172- 3 2.35754- 3 8.00000+ 0 1.00000+ 1 9.99696- 4 2.48153- 3 8.00000+ 0 1.10000+ 1 2.93664- 2 2.53377- 3 8.00000+ 0 1.30000+ 1 2.91694- 3 2.75488- 3 8.00000+ 0 1.40000+ 1 3.12008- 3 2.76588- 3 8.00000+ 0 1.60000+ 1 4.67230- 4 3.17429- 3 8.00000+ 0 1.80000+ 1 1.62047- 4 3.21765- 3 8.00000+ 0 1.90000+ 1 3.93751- 3 3.22770- 3 8.00000+ 0 2.10000+ 1 2.37818- 4 3.29791- 3 8.00000+ 0 2.20000+ 1 2.36766- 4 3.29944- 3 8.00000+ 0 2.70000+ 1 6.31358- 5 3.33017- 3 8.00000+ 0 2.90000+ 1 1.15756- 5 3.33939- 3 8.00000+ 0 3.00000+ 1 2.56750- 4 3.34031- 3 1.00000+ 1 1.00000+ 1 3.34629- 4 2.60552- 3 1.00000+ 1 1.10000+ 1 4.88879- 2 2.65776- 3 1.00000+ 1 1.30000+ 1 3.33989- 3 2.87887- 3 1.00000+ 1 1.40000+ 1 2.97965- 2 2.88987- 3 1.00000+ 1 1.60000+ 1 1.82049- 4 3.29828- 3 1.00000+ 1 1.80000+ 1 1.08380- 4 3.34164- 3 1.00000+ 1 1.90000+ 1 6.78293- 3 3.35169- 3 1.00000+ 1 2.10000+ 1 4.56669- 4 3.42190- 3 1.00000+ 1 2.20000+ 1 3.55673- 3 3.42343- 3 1.00000+ 1 2.70000+ 1 2.52545- 5 3.45416- 3 1.00000+ 1 2.90000+ 1 7.36572- 6 3.46338- 3 1.00000+ 1 3.00000+ 1 4.45101- 4 3.46430- 3 1.10000+ 1 1.10000+ 1 6.89790- 2 2.71000- 3 1.10000+ 1 1.30000+ 1 7.01967- 2 2.93111- 3 1.10000+ 1 1.40000+ 1 1.06450- 1 2.94211- 3 1.10000+ 1 1.60000+ 1 6.27177- 3 3.35052- 3 1.10000+ 1 1.80000+ 1 9.11607- 3 3.39388- 3 1.10000+ 1 1.90000+ 1 2.25590- 2 3.40393- 3 1.10000+ 1 2.10000+ 1 9.91783- 3 3.47414- 3 1.10000+ 1 2.20000+ 1 1.48229- 2 3.47567- 3 1.10000+ 1 2.70000+ 1 8.79706- 4 3.50640- 3 1.10000+ 1 2.90000+ 1 6.41907- 4 3.51562- 3 1.10000+ 1 3.00000+ 1 1.52271- 3 3.51654- 3 1.30000+ 1 1.30000+ 1 1.02668- 2 3.15222- 3 1.30000+ 1 1.40000+ 1 1.97212- 1 3.16322- 3 1.30000+ 1 1.60000+ 1 5.78764- 4 3.57163- 3 1.30000+ 1 1.80000+ 1 6.19791- 4 3.61499- 3 1.30000+ 1 1.90000+ 1 9.13887- 3 3.62504- 3 1.30000+ 1 2.10000+ 1 2.58762- 3 3.69525- 3 1.30000+ 1 2.20000+ 1 2.14672- 2 3.69678- 3 1.30000+ 1 2.70000+ 1 7.99730- 5 3.72751- 3 1.30000+ 1 2.90000+ 1 4.31417- 5 3.73673- 3 1.30000+ 1 3.00000+ 1 5.94536- 4 3.73765- 3 1.40000+ 1 1.40000+ 1 1.33975- 1 3.17422- 3 1.40000+ 1 1.60000+ 1 6.60797- 4 3.58263- 3 1.40000+ 1 1.80000+ 1 5.20049- 3 3.62599- 3 1.40000+ 1 1.90000+ 1 1.54558- 2 3.63604- 3 1.40000+ 1 2.10000+ 1 2.51239- 2 3.70625- 3 1.40000+ 1 2.20000+ 1 3.23525- 2 3.70778- 3 1.40000+ 1 2.70000+ 1 9.25926- 5 3.73851- 3 1.40000+ 1 2.90000+ 1 3.61979- 4 3.74773- 3 1.40000+ 1 3.00000+ 1 1.02595- 3 3.74865- 3 1.60000+ 1 1.60000+ 1 4.49035- 5 3.99104- 3 1.60000+ 1 1.80000+ 1 3.39803- 5 4.03440- 3 1.60000+ 1 1.90000+ 1 9.73304- 4 4.04445- 3 1.60000+ 1 2.10000+ 1 5.82526- 5 4.11466- 3 1.60000+ 1 2.20000+ 1 6.06784- 5 4.11619- 3 1.60000+ 1 2.70000+ 1 1.21361- 5 4.14692- 3 1.60000+ 1 2.90000+ 1 2.42722- 6 4.15614- 3 1.60000+ 1 3.00000+ 1 6.31089- 5 4.15706- 3 1.80000+ 1 1.80000+ 1 8.00827- 6 4.07776- 3 1.80000+ 1 1.90000+ 1 1.20322- 3 4.08781- 3 1.80000+ 1 2.10000+ 1 7.90785- 5 4.15802- 3 1.80000+ 1 2.20000+ 1 6.05599- 4 4.15955- 3 1.80000+ 1 2.70000+ 1 4.00395- 6 4.19028- 3 1.80000+ 1 2.90000+ 1 1.00103- 6 4.19950- 3 1.80000+ 1 3.00000+ 1 7.90785- 5 4.20042- 3 1.90000+ 1 1.90000+ 1 1.67714- 3 4.09786- 3 1.90000+ 1 2.10000+ 1 1.21078- 3 4.16807- 3 1.90000+ 1 2.20000+ 1 1.99263- 3 4.16960- 3 1.90000+ 1 2.70000+ 1 1.11412- 4 4.20033- 3 1.90000+ 1 2.90000+ 1 8.38044- 5 4.20955- 3 1.90000+ 1 3.00000+ 1 2.25787- 4 4.21047- 3 2.10000+ 1 2.10000+ 1 1.56727- 4 4.23828- 3 2.10000+ 1 2.20000+ 1 2.77012- 3 4.23981- 3 2.10000+ 1 2.70000+ 1 7.26525- 6 4.27054- 3 2.10000+ 1 2.90000+ 1 6.22741- 6 4.27976- 3 2.10000+ 1 3.00000+ 1 8.30348- 5 4.28068- 3 2.20000+ 1 2.20000+ 1 2.03473- 3 4.24134- 3 2.20000+ 1 2.70000+ 1 7.64079- 6 4.27207- 3 2.20000+ 1 2.90000+ 1 4.58432- 5 4.28129- 3 2.20000+ 1 3.00000+ 1 1.46268- 4 4.28221- 3 2.70000+ 1 2.70000+ 1 1.35241- 6 4.30280- 3 2.70000+ 1 3.00000+ 1 9.46651- 6 4.31294- 3 2.90000+ 1 3.00000+ 1 5.26126- 6 4.32216- 3 3.00000+ 1 3.00000+ 1 7.54185- 6 4.32308- 3 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.15654- 5 1.23990- 4 1.10000+ 1 6.87482- 5 1.76230- 4 1.80000+ 1 1.76931- 4 8.60110- 4 1.90000+ 1 2.45284- 4 8.70160- 4 2.90000+ 1 1.21651- 5 9.81850- 4 3.00000+ 1 1.64771- 5 9.82770- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.80000+ 1 3.83913- 2 0.00000+ 0 1.00000+ 1 1.90000+ 1 8.43278- 2 3.07000- 6 1.00000+ 1 2.10000+ 1 6.62651- 2 7.32800- 5 1.00000+ 1 2.20000+ 1 9.03897- 2 7.48100- 5 1.00000+ 1 2.70000+ 1 6.11588- 3 1.05540- 4 1.00000+ 1 2.90000+ 1 2.67541- 3 1.14760- 4 1.00000+ 1 3.00000+ 1 4.54073- 3 1.15680- 4 1.10000+ 1 1.60000+ 1 7.14604- 2 1.90000- 6 1.10000+ 1 1.80000+ 1 8.01846- 2 4.52600- 5 1.10000+ 1 1.90000+ 1 1.23882- 1 5.53100- 5 1.10000+ 1 2.10000+ 1 5.42762- 2 1.25520- 4 1.10000+ 1 2.20000+ 1 7.94798- 2 1.27050- 4 1.10000+ 1 2.70000+ 1 8.96277- 3 1.57780- 4 1.10000+ 1 2.90000+ 1 4.11336- 3 1.67000- 4 1.10000+ 1 3.00000+ 1 6.24516- 3 1.67920- 4 1.30000+ 1 1.60000+ 1 2.83876- 2 2.23010- 4 1.30000+ 1 1.80000+ 1 5.86934- 3 2.66370- 4 1.30000+ 1 1.90000+ 1 4.53247- 3 2.76420- 4 1.30000+ 1 2.10000+ 1 6.86261- 3 3.46630- 4 1.30000+ 1 2.20000+ 1 8.31812- 3 3.48160- 4 1.30000+ 1 2.70000+ 1 2.52209- 3 3.78890- 4 1.30000+ 1 2.90000+ 1 2.68467- 4 3.88110- 4 1.30000+ 1 3.00000+ 1 1.93538- 4 3.89030- 4 1.40000+ 1 1.60000+ 1 4.15142- 2 2.34010- 4 1.40000+ 1 1.80000+ 1 1.51355- 3 2.77370- 4 1.40000+ 1 1.90000+ 1 1.15470- 2 2.87420- 4 1.40000+ 1 2.10000+ 1 8.76602- 3 3.57630- 4 1.40000+ 1 2.20000+ 1 1.38820- 2 3.59160- 4 1.40000+ 1 2.70000+ 1 3.67631- 3 3.89890- 4 1.40000+ 1 2.90000+ 1 6.41470- 5 3.99110- 4 1.40000+ 1 3.00000+ 1 4.96718- 4 4.00030- 4 1.60000+ 1 1.60000+ 1 9.29198- 3 6.42420- 4 1.60000+ 1 1.80000+ 1 1.47432- 2 6.85780- 4 1.60000+ 1 1.90000+ 1 2.71952- 2 6.95830- 4 1.60000+ 1 2.10000+ 1 2.51500- 2 7.66040- 4 1.60000+ 1 2.20000+ 1 3.66225- 2 7.67570- 4 1.60000+ 1 2.70000+ 1 1.94714- 3 7.98300- 4 1.60000+ 1 2.90000+ 1 8.12990- 4 8.07520- 4 1.60000+ 1 3.00000+ 1 1.42538- 3 8.08440- 4 1.80000+ 1 1.80000+ 1 8.48436- 4 7.29140- 4 1.80000+ 1 1.90000+ 1 2.05721- 3 7.39190- 4 1.80000+ 1 2.10000+ 1 1.16591- 3 8.09400- 4 1.80000+ 1 2.20000+ 1 3.96448- 4 8.10930- 4 1.80000+ 1 2.70000+ 1 1.27408- 3 8.41660- 4 1.80000+ 1 2.90000+ 1 7.88994- 5 8.50880- 4 1.80000+ 1 3.00000+ 1 8.86425- 5 8.51800- 4 1.90000+ 1 1.90000+ 1 2.63307- 3 7.49240- 4 1.90000+ 1 2.10000+ 1 1.01731- 3 8.19450- 4 1.90000+ 1 2.20000+ 1 2.92529- 3 8.20980- 4 1.90000+ 1 2.70000+ 1 2.25523- 3 8.51710- 4 1.90000+ 1 2.90000+ 1 9.30758- 5 8.60930- 4 1.90000+ 1 3.00000+ 1 2.39203- 4 8.61850- 4 2.10000+ 1 2.10000+ 1 3.04816- 4 8.89660- 4 2.10000+ 1 2.20000+ 1 9.71736- 4 8.91190- 4 2.10000+ 1 2.70000+ 1 2.04138- 3 9.21920- 4 2.10000+ 1 2.90000+ 1 4.80339- 5 9.31140- 4 2.10000+ 1 3.00000+ 1 4.24900- 5 9.32060- 4 2.20000+ 1 2.20000+ 1 6.90721- 4 8.92720- 4 2.20000+ 1 2.70000+ 1 2.97852- 3 9.23450- 4 2.20000+ 1 2.90000+ 1 1.48142- 5 9.32670- 4 2.20000+ 1 3.00000+ 1 1.24994- 4 9.33590- 4 2.70000+ 1 2.70000+ 1 8.65234- 5 9.54180- 4 2.70000+ 1 2.90000+ 1 6.22977- 5 9.63400- 4 2.70000+ 1 3.00000+ 1 1.09885- 4 9.64320- 4 2.90000+ 1 2.90000+ 1 6.81396- 7 9.72620- 4 2.90000+ 1 3.00000+ 1 2.72546- 6 9.73540- 4 3.00000+ 1 3.00000+ 1 3.84565- 6 9.74460- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.18372- 4 2.73350- 4 1.60000+ 1 2.65558- 4 6.92760- 4 2.10000+ 1 8.87335- 4 8.16380- 4 2.70000+ 1 3.58310- 5 8.48640- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.94967- 2 1.53000- 6 1.10000+ 1 2.20000+ 1 4.66301- 2 3.06000- 6 1.10000+ 1 2.70000+ 1 7.50938- 3 3.37900- 5 1.10000+ 1 2.90000+ 1 3.79178- 3 4.30100- 5 1.10000+ 1 3.00000+ 1 4.50952- 3 4.39300- 5 1.30000+ 1 1.60000+ 1 1.29495- 1 9.90200- 5 1.30000+ 1 1.80000+ 1 1.31234- 1 1.42380- 4 1.30000+ 1 1.90000+ 1 1.94831- 1 1.52430- 4 1.30000+ 1 2.10000+ 1 5.05505- 2 2.22640- 4 1.30000+ 1 2.20000+ 1 5.28667- 2 2.24170- 4 1.30000+ 1 2.70000+ 1 1.63006- 2 2.54900- 4 1.30000+ 1 2.90000+ 1 6.43456- 3 2.64120- 4 1.30000+ 1 3.00000+ 1 9.86716- 3 2.65040- 4 1.40000+ 1 1.60000+ 1 2.22344- 2 1.10020- 4 1.40000+ 1 1.80000+ 1 1.61424- 1 1.53380- 4 1.40000+ 1 1.90000+ 1 1.70185- 2 1.63430- 4 1.40000+ 1 2.10000+ 1 3.75699- 3 2.33640- 4 1.40000+ 1 2.20000+ 1 6.73501- 3 2.35170- 4 1.40000+ 1 2.70000+ 1 1.92190- 3 2.65900- 4 1.40000+ 1 2.90000+ 1 6.75348- 3 2.75120- 4 1.40000+ 1 3.00000+ 1 7.91261- 4 2.76040- 4 1.60000+ 1 1.60000+ 1 7.20944- 4 5.18430- 4 1.60000+ 1 1.80000+ 1 1.02882- 2 5.61790- 4 1.60000+ 1 1.90000+ 1 1.67823- 3 5.71840- 4 1.60000+ 1 2.10000+ 1 3.69009- 4 6.42050- 4 1.60000+ 1 2.20000+ 1 1.01840- 3 6.43580- 4 1.60000+ 1 2.70000+ 1 1.44457- 4 6.74310- 4 1.60000+ 1 2.90000+ 1 4.12336- 4 6.83530- 4 1.60000+ 1 3.00000+ 1 8.01049- 5 6.84450- 4 1.80000+ 1 1.80000+ 1 7.10366- 3 6.05150- 4 1.80000+ 1 1.90000+ 1 2.22318- 2 6.15200- 4 1.80000+ 1 2.10000+ 1 1.79716- 2 6.85410- 4 1.80000+ 1 2.20000+ 1 2.99020- 2 6.86940- 4 1.80000+ 1 2.70000+ 1 1.26360- 3 7.17670- 4 1.80000+ 1 2.90000+ 1 6.84243- 4 7.26890- 4 1.80000+ 1 3.00000+ 1 1.16259- 3 7.27810- 4 1.90000+ 1 1.90000+ 1 6.35358- 4 6.25250- 4 1.90000+ 1 2.10000+ 1 1.96118- 3 6.95460- 4 1.90000+ 1 2.20000+ 1 1.39224- 3 6.96990- 4 1.90000+ 1 2.70000+ 1 1.57255- 4 7.27720- 4 1.90000+ 1 2.90000+ 1 9.74359- 4 7.36940- 4 1.90000+ 1 3.00000+ 1 5.73147- 5 7.37860- 4 2.10000+ 1 2.10000+ 1 6.32892- 4 7.65670- 4 2.10000+ 1 2.20000+ 1 1.49936- 3 7.67200- 4 2.10000+ 1 2.70000+ 1 4.26447- 5 7.97930- 4 2.10000+ 1 2.90000+ 1 7.48641- 4 8.07150- 4 2.10000+ 1 3.00000+ 1 8.46099- 5 8.08070- 4 2.20000+ 1 2.20000+ 1 1.90364- 4 7.68730- 4 2.20000+ 1 2.70000+ 1 5.10234- 5 7.99460- 4 2.20000+ 1 2.90000+ 1 6.55187- 4 8.08680- 4 2.20000+ 1 3.00000+ 1 2.95583- 5 8.09600- 4 2.70000+ 1 2.70000+ 1 6.28197- 6 8.30190- 4 2.70000+ 1 2.90000+ 1 4.39730- 5 8.39410- 4 2.70000+ 1 3.00000+ 1 6.28197- 6 8.40330- 4 2.90000+ 1 2.90000+ 1 5.61751- 6 8.48630- 4 2.90000+ 1 3.00000+ 1 3.41737- 5 8.49550- 4 3.00000+ 1 3.00000+ 1 1.15848- 6 8.50470- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.39223- 5 2.21110- 4 1.40000+ 1 2.54586- 4 2.32110- 4 1.60000+ 1 3.31557- 4 6.40520- 4 2.10000+ 1 1.10638- 4 7.64140- 4 2.20000+ 1 9.13672- 4 7.65670- 4 2.70000+ 1 4.43334- 5 7.96400- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.71162- 2 4.67800- 5 1.30000+ 1 1.80000+ 1 1.88576- 2 9.01400- 5 1.30000+ 1 1.90000+ 1 1.14130- 1 1.00190- 4 1.30000+ 1 2.10000+ 1 1.26177- 2 1.70400- 4 1.30000+ 1 2.20000+ 1 8.98253- 3 1.71930- 4 1.30000+ 1 2.70000+ 1 2.70974- 3 2.02660- 4 1.30000+ 1 2.90000+ 1 9.74900- 4 2.11880- 4 1.30000+ 1 3.00000+ 1 4.79416- 3 2.12800- 4 1.40000+ 1 1.60000+ 1 1.21321- 1 5.77800- 5 1.40000+ 1 1.80000+ 1 1.25311- 1 1.01140- 4 1.40000+ 1 1.90000+ 1 2.50865- 1 1.11190- 4 1.40000+ 1 2.10000+ 1 4.74911- 2 1.81400- 4 1.40000+ 1 2.20000+ 1 8.13184- 2 1.82930- 4 1.40000+ 1 2.70000+ 1 1.51906- 2 2.13660- 4 1.40000+ 1 2.90000+ 1 6.53942- 3 2.22880- 4 1.40000+ 1 3.00000+ 1 1.16735- 2 2.23800- 4 1.60000+ 1 1.60000+ 1 8.40610- 4 4.66190- 4 1.60000+ 1 1.80000+ 1 1.22679- 3 5.09550- 4 1.60000+ 1 1.90000+ 1 1.77486- 2 5.19600- 4 1.60000+ 1 2.10000+ 1 9.95511- 4 5.89810- 4 1.60000+ 1 2.20000+ 1 1.09737- 3 5.91340- 4 1.60000+ 1 2.70000+ 1 1.68122- 4 6.22070- 4 1.60000+ 1 2.90000+ 1 5.80781- 5 6.31290- 4 1.60000+ 1 3.00000+ 1 6.87771- 4 6.32210- 4 1.80000+ 1 1.80000+ 1 1.97667- 4 5.52910- 4 1.80000+ 1 1.90000+ 1 1.90525- 2 5.62960- 4 1.80000+ 1 2.10000+ 1 5.19856- 4 6.33170- 4 1.80000+ 1 2.20000+ 1 2.84715- 3 6.34700- 4 1.80000+ 1 2.70000+ 1 1.08711- 4 6.65430- 4 1.80000+ 1 2.90000+ 1 1.77890- 5 6.74650- 4 1.80000+ 1 3.00000+ 1 7.46144- 4 6.75570- 4 1.90000+ 1 1.90000+ 1 2.43680- 2 5.73010- 4 1.90000+ 1 2.10000+ 1 2.88026- 2 6.43220- 4 1.90000+ 1 2.20000+ 1 3.92092- 2 6.44750- 4 1.90000+ 1 2.70000+ 1 1.82570- 3 6.75480- 4 1.90000+ 1 2.90000+ 1 9.09915- 4 6.84700- 4 1.90000+ 1 3.00000+ 1 2.22954- 3 6.85620- 4 2.10000+ 1 2.10000+ 1 1.62205- 4 7.13430- 4 2.10000+ 1 2.20000+ 1 1.66037- 3 7.14960- 4 2.10000+ 1 2.70000+ 1 5.30038- 5 7.45690- 4 2.10000+ 1 2.90000+ 1 1.34099- 5 7.54910- 4 2.10000+ 1 3.00000+ 1 8.31457- 4 7.55830- 4 2.20000+ 1 2.20000+ 1 8.95625- 4 7.16490- 4 2.20000+ 1 2.70000+ 1 5.25872- 5 7.47220- 4 2.20000+ 1 2.90000+ 1 6.17102- 5 7.56440- 4 2.20000+ 1 3.00000+ 1 9.46597- 4 7.57360- 4 2.70000+ 1 2.70000+ 1 4.63044- 6 7.77950- 4 2.70000+ 1 2.90000+ 1 2.57229- 6 7.87170- 4 2.70000+ 1 3.00000+ 1 4.21877- 5 7.88090- 4 2.90000+ 1 3.00000+ 1 2.10930- 5 7.97310- 4 3.00000+ 1 3.00000+ 1 2.46957- 5 7.98230- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.32149- 3 4.62770- 4 1.90000+ 1 2.13079- 4 4.72820- 4 2.90000+ 1 7.96737- 5 5.84510- 4 3.00000+ 1 1.22779- 5 5.85430- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 2.38601- 3 1.77000- 6 1.40000+ 1 3.00000+ 1 8.09794- 3 2.69000- 6 1.60000+ 1 1.60000+ 1 1.26689- 4 2.45080- 4 1.60000+ 1 1.80000+ 1 7.10540- 3 2.88440- 4 1.60000+ 1 1.90000+ 1 6.12887- 3 2.98490- 4 1.60000+ 1 2.10000+ 1 1.19957- 1 3.68700- 4 1.60000+ 1 2.20000+ 1 1.79475- 2 3.70230- 4 1.60000+ 1 2.70000+ 1 3.16721- 5 4.00960- 4 1.60000+ 1 2.90000+ 1 3.11448- 4 4.10180- 4 1.60000+ 1 3.00000+ 1 2.00590- 4 4.11100- 4 1.80000+ 1 1.80000+ 1 1.75265- 3 3.31800- 4 1.80000+ 1 1.90000+ 1 1.87780- 2 3.41850- 4 1.80000+ 1 2.10000+ 1 9.33380- 2 4.12060- 4 1.80000+ 1 2.20000+ 1 8.24056- 3 4.13590- 4 1.80000+ 1 2.70000+ 1 4.01201- 4 4.44320- 4 1.80000+ 1 2.90000+ 1 1.74206- 4 4.53540- 4 1.80000+ 1 3.00000+ 1 7.54897- 4 4.54460- 4 1.90000+ 1 1.90000+ 1 7.44835- 3 3.51900- 4 1.90000+ 1 2.10000+ 1 2.06612- 1 4.22110- 4 1.90000+ 1 2.20000+ 1 8.11355- 3 4.23640- 4 1.90000+ 1 2.70000+ 1 4.38143- 4 4.54370- 4 1.90000+ 1 2.90000+ 1 7.86546- 4 4.63590- 4 1.90000+ 1 3.00000+ 1 5.80673- 4 4.64510- 4 2.10000+ 1 2.10000+ 1 1.48113- 1 4.92320- 4 2.10000+ 1 2.20000+ 1 3.04568- 1 4.93850- 4 2.10000+ 1 2.70000+ 1 1.33392- 2 5.24580- 4 2.10000+ 1 2.90000+ 1 5.15227- 3 5.33800- 4 2.10000+ 1 3.00000+ 1 1.06054- 2 5.34720- 4 2.20000+ 1 2.20000+ 1 5.04131- 3 4.95380- 4 2.20000+ 1 2.70000+ 1 1.10858- 3 5.26110- 4 2.20000+ 1 2.90000+ 1 3.11450- 4 5.35330- 4 2.20000+ 1 3.00000+ 1 3.43132- 4 5.36250- 4 2.70000+ 1 2.90000+ 1 2.11148- 5 5.66060- 4 2.70000+ 1 3.00000+ 1 1.58360- 5 5.66980- 4 2.90000+ 1 3.00000+ 1 3.16719- 5 5.76200- 4 3.00000+ 1 3.00000+ 1 1.05580- 5 5.77120- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.41809- 3 4.61820- 4 3.00000+ 1 8.16492- 5 5.74430- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.67350- 4 2.34080- 4 1.60000+ 1 1.80000+ 1 3.48098- 3 2.77440- 4 1.60000+ 1 1.90000+ 1 1.10295- 2 2.87490- 4 1.60000+ 1 2.10000+ 1 1.32580- 2 3.57700- 4 1.60000+ 1 2.20000+ 1 1.27396- 1 3.59230- 4 1.60000+ 1 2.70000+ 1 4.71818- 5 3.89960- 4 1.60000+ 1 2.90000+ 1 9.43619- 5 3.99180- 4 1.60000+ 1 3.00000+ 1 4.24642- 4 4.00100- 4 1.80000+ 1 1.90000+ 1 1.86725- 2 3.30850- 4 1.80000+ 1 2.10000+ 1 1.50976- 3 4.01060- 4 1.80000+ 1 2.20000+ 1 1.15407- 1 4.02590- 4 1.80000+ 1 2.70000+ 1 2.25431- 4 4.33320- 4 1.80000+ 1 3.00000+ 1 7.44394- 4 4.43460- 4 1.90000+ 1 1.90000+ 1 1.35886- 2 3.40900- 4 1.90000+ 1 2.10000+ 1 1.06310- 2 4.11110- 4 1.90000+ 1 2.20000+ 1 1.90715- 1 4.12640- 4 1.90000+ 1 2.70000+ 1 7.07702- 4 4.43370- 4 1.90000+ 1 2.90000+ 1 7.28699- 4 4.52590- 4 1.90000+ 1 3.00000+ 1 1.11664- 3 4.53510- 4 2.10000+ 1 2.10000+ 1 2.07067- 3 4.81320- 4 2.10000+ 1 2.20000+ 1 2.11112- 1 4.82850- 4 2.10000+ 1 2.70000+ 1 8.12575- 4 5.13580- 4 2.10000+ 1 2.90000+ 1 7.86354- 5 5.22800- 4 2.10000+ 1 3.00000+ 1 4.03656- 4 5.23720- 4 2.20000+ 1 2.20000+ 1 2.44116- 1 4.84380- 4 2.20000+ 1 2.70000+ 1 1.37455- 2 5.15110- 4 2.20000+ 1 2.90000+ 1 6.16507- 3 5.24330- 4 2.20000+ 1 3.00000+ 1 9.86081- 3 5.25250- 4 2.70000+ 1 2.90000+ 1 5.41120- 6 5.55060- 4 2.70000+ 1 3.00000+ 1 3.24664- 5 5.55980- 4 2.90000+ 1 3.00000+ 1 3.14527- 5 5.65200- 4 3.00000+ 1 3.00000+ 1 2.09678- 5 5.66120- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.16124- 5 4.33600- 5 1.90000+ 1 3.95034- 5 5.34100- 5 2.90000+ 1 4.50791- 6 1.65100- 4 3.00000+ 1 4.12975- 6 1.66020- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.20000+ 1 5.41594- 3 0.00000+ 0 1.80000+ 1 2.70000+ 1 4.63716- 2 2.49100- 5 1.80000+ 1 2.90000+ 1 1.62323- 2 3.41300- 5 1.80000+ 1 3.00000+ 1 3.88606- 2 3.50500- 5 1.90000+ 1 2.10000+ 1 2.58969- 1 2.70000- 6 1.90000+ 1 2.20000+ 1 3.64220- 1 4.23000- 6 1.90000+ 1 2.70000+ 1 4.07609- 2 3.49600- 5 1.90000+ 1 2.90000+ 1 2.13361- 2 4.41800- 5 1.90000+ 1 3.00000+ 1 2.92571- 2 4.51000- 5 2.10000+ 1 2.10000+ 1 3.31224- 3 7.29100- 5 2.10000+ 1 2.20000+ 1 6.64305- 2 7.44400- 5 2.10000+ 1 2.70000+ 1 1.78613- 2 1.05170- 4 2.10000+ 1 2.90000+ 1 1.20889- 3 1.14390- 4 2.10000+ 1 3.00000+ 1 7.82143- 3 1.15310- 4 2.20000+ 1 2.20000+ 1 1.36297- 2 7.59700- 5 2.20000+ 1 2.70000+ 1 1.65601- 2 1.06700- 4 2.20000+ 1 2.90000+ 1 4.18637- 3 1.15920- 4 2.20000+ 1 3.00000+ 1 3.96701- 3 1.16840- 4 2.70000+ 1 2.70000+ 1 1.19023- 2 1.37430- 4 2.70000+ 1 2.90000+ 1 7.58822- 3 1.46650- 4 2.70000+ 1 3.00000+ 1 1.33216- 2 1.47570- 4 2.90000+ 1 2.90000+ 1 6.10611- 4 1.55870- 4 2.90000+ 1 3.00000+ 1 6.20302- 3 1.56790- 4 3.00000+ 1 3.00000+ 1 3.91372- 3 1.57710- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.31239- 5 8.02600- 5 2.70000+ 1 7.07609- 6 1.12520- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 2.00056- 3 8.20000- 7 1.90000+ 1 3.00000+ 1 3.16964- 3 1.74000- 6 2.10000+ 1 2.10000+ 1 1.60625- 1 2.95500- 5 2.10000+ 1 2.20000+ 1 7.67086- 1 3.10800- 5 2.10000+ 1 2.70000+ 1 1.40470- 2 6.18100- 5 2.10000+ 1 2.90000+ 1 5.64153- 3 7.10300- 5 2.10000+ 1 3.00000+ 1 1.13898- 2 7.19500- 5 2.20000+ 1 2.20000+ 1 2.65239- 2 3.26100- 5 2.20000+ 1 2.70000+ 1 1.70906- 3 6.33400- 5 2.20000+ 1 2.90000+ 1 5.82542- 3 7.25600- 5 2.20000+ 1 3.00000+ 1 1.22755- 3 7.34800- 5 2.70000+ 1 2.70000+ 1 1.30214- 5 9.40700- 5 2.70000+ 1 2.90000+ 1 3.11001- 4 1.03290- 4 2.70000+ 1 3.00000+ 1 3.59173- 5 1.04210- 4 2.90000+ 1 2.90000+ 1 4.66623- 5 1.12510- 4 2.90000+ 1 3.00000+ 1 2.70417- 4 1.13430- 4 3.00000+ 1 3.00000+ 1 7.59569- 6 1.14350- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.61941- 6 7.02100- 5 2.20000+ 1 1.62461- 5 7.17400- 5 2.70000+ 1 2.68311- 6 1.02470- 4 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.32702- 2 1.95000- 5 2.10000+ 1 2.20000+ 1 5.75081- 1 2.10300- 5 2.10000+ 1 2.70000+ 1 1.77252- 3 5.17600- 5 2.10000+ 1 2.90000+ 1 8.06439- 4 6.09800- 5 2.10000+ 1 3.00000+ 1 3.71221- 3 6.19000- 5 2.20000+ 1 2.20000+ 1 3.68959- 1 2.25600- 5 2.20000+ 1 2.70000+ 1 1.04453- 2 5.32900- 5 2.20000+ 1 2.90000+ 1 5.80241- 3 6.25100- 5 2.20000+ 1 3.00000+ 1 9.57440- 3 6.34300- 5 2.70000+ 1 2.70000+ 1 9.01660- 8 8.40200- 5 2.70000+ 1 2.90000+ 1 1.70409- 5 9.32400- 5 2.70000+ 1 3.00000+ 1 2.87260- 4 9.41600- 5 2.90000+ 1 2.90000+ 1 7.56549- 7 1.02460- 4 2.90000+ 1 3.00000+ 1 1.17264- 4 1.03380- 4 3.00000+ 1 3.00000+ 1 1.33910- 4 1.04300- 4 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 9.03377- 8 4.14800- 5 3.00000+ 1 1.57320- 8 4.24000- 5 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 1.80030- 1 1.38100- 5 2.70000+ 1 2.90000+ 1 3.22594- 1 2.30300- 5 2.70000+ 1 3.00000+ 1 2.89244- 1 2.39500- 5 2.90000+ 1 2.90000+ 1 3.86969- 2 3.22500- 5 2.90000+ 1 3.00000+ 1 1.52892- 1 3.31700- 5 3.00000+ 1 3.00000+ 1 1.65429- 2 3.40900- 5 1 52000 0 7 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 1.10200- 7 4.08700- 5 1 52000 0 9 1.27600+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 1.85533- 1 1.22800- 5 2.70000+ 1 2.90000+ 1 2.00104- 1 2.15000- 5 2.70000+ 1 3.00000+ 1 4.73844- 1 2.24200- 5 2.90000+ 1 2.90000+ 1 3.24135- 3 3.07200- 5 2.90000+ 1 3.00000+ 1 4.75177- 2 3.16400- 5 3.00000+ 1 3.00000+ 1 8.97601- 2 3.25600- 5 1 53000 0 0 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 1.67000+ 0 3.00000+ 1 3.33000+ 0 1 53000 0 0 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.31640- 2 3.00000+ 0 5.16190- 3 5.00000+ 0 4.85750- 3 6.00000+ 0 4.55450- 3 8.00000+ 0 1.05540- 3 1.00000+ 1 9.27200- 4 1.10000+ 1 8.69810- 4 1.30000+ 1 6.41460- 4 1.40000+ 1 6.29310- 4 1.60000+ 1 1.91040- 4 1.80000+ 1 1.45530- 4 1.90000+ 1 1.34210- 4 2.10000+ 1 6.00400- 5 2.20000+ 1 5.82600- 5 2.70000+ 1 2.10100- 5 2.90000+ 1 1.07700- 5 3.00000+ 1 9.63000- 6 1 53000 0 0 1.26904+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.23240- 2 3.00000+ 0 9.23540- 3 5.00000+ 0 9.24470- 3 6.00000+ 0 8.14140- 3 8.00000+ 0 2.69620- 3 1.00000+ 1 2.62670- 3 1.10000+ 1 2.37990- 3 1.30000+ 1 2.25510- 3 1.40000+ 1 2.19550- 3 1.60000+ 1 7.67530- 4 1.80000+ 1 6.98800- 4 1.90000+ 1 6.35920- 4 2.10000+ 1 4.90340- 4 2.20000+ 1 4.76940- 4 2.70000+ 1 1.36000- 4 2.90000+ 1 9.35900- 5 3.00000+ 1 8.20200- 5 1 53000 0 0 1.26904+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.43810-10 3.00000+ 0 6.15540-10 5.00000+ 0 5.18230-10 6.00000+ 0 5.48350-10 8.00000+ 0 1.64890- 9 1.00000+ 1 1.59450- 9 1.10000+ 1 1.65470- 9 1.30000+ 1 1.49750- 9 1.40000+ 1 1.51640- 9 1.60000+ 1 3.86930- 9 1.80000+ 1 4.02760- 9 1.90000+ 1 4.17050- 9 2.10000+ 1 4.70340- 9 2.20000+ 1 4.75750- 9 2.70000+ 1 1.00320- 8 2.90000+ 1 1.20830- 8 3.00000+ 1 1.27390- 8 1 53000 0 0 1.26904+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.12200- 6 3.00000+ 0 1.47000- 7 5.00000+ 0 2.47170- 7 6.00000+ 0 2.33140- 7 8.00000+ 0 3.50130- 9 1.00000+ 1 3.49830- 9 1.10000+ 1 3.45170- 9 1.30000+ 1 2.66890-10 1.40000+ 1 2.28560-10 1.60000+ 1 7.80580-11 1.80000+ 1 2.05130-10 1.90000+ 1 1.60280-10 2.10000+ 1 4.99790-12 2.20000+ 1 4.35080-12 1 53000 0 0 1.26904+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.25770- 6 3.00000+ 0 3.25200- 6 5.00000+ 0 2.66590- 6 6.00000+ 0 2.45020- 6 8.00000+ 0 1.30020- 5 1.00000+ 1 4.88470- 6 1.10000+ 1 5.30930- 6 1.30000+ 1 5.55230- 7 1.40000+ 1 5.57740- 7 1.60000+ 1 6.37110- 6 1.80000+ 1 2.59690- 5 1.90000+ 1 4.39830- 5 2.10000+ 1 1.05800- 7 2.20000+ 1 1.20850- 7 1 53000 0 0 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.85925- 4 3.00000+ 0 2.13785- 4 5.00000+ 0 1.81520- 4 6.00000+ 0 1.72828- 4 8.00000+ 0 1.58962- 4 1.00000+ 1 1.31728- 4 1.10000+ 1 1.27876- 4 1.30000+ 1 7.80894- 5 1.40000+ 1 7.85672- 5 1.60000+ 1 7.13468- 5 1.80000+ 1 6.04154- 5 1.90000+ 1 6.07792- 5 2.10000+ 1 3.04624- 5 2.20000+ 1 3.08148- 5 2.70000+ 1 2.10100- 5 2.90000+ 1 1.07700- 5 3.00000+ 1 9.63000- 6 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.73451- 1 3.00000+ 0 9.52313- 2 5.00000+ 0 1.04204- 1 6.00000+ 0 9.04912- 2 8.00000+ 0 3.42360- 3 1.00000+ 1 3.63954- 3 1.10000+ 1 3.43263- 3 1.30000+ 1 1.99432- 3 1.40000+ 1 1.83116- 3 1.60000+ 1 9.59765- 5 1.80000+ 1 8.67876- 5 1.90000+ 1 2.59611- 5 2.10000+ 1 2.54820- 7 2.20000+ 1 2.63720- 7 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.62135- 2 3.00000+ 0 3.85734- 4 5.00000+ 0 4.24490- 4 6.00000+ 0 3.44080- 4 8.00000+ 0 2.13433- 6 1.00000+ 1 2.18116- 6 1.10000+ 1 2.05934- 6 1.30000+ 1 9.98606- 7 1.40000+ 1 9.09469- 7 1.60000+ 1 7.81711- 9 1.80000+ 1 7.77403- 9 1.90000+ 1 2.08917- 9 2.10000+ 1 1.25978-11 2.20000+ 1 1.28247-11 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.11764+ 1 3.00000+ 0 1.30128+ 1 5.00000+ 0 1.08942+ 1 6.00000+ 0 1.03121+ 1 8.00000+ 0 9.46950+ 0 1.00000+ 1 7.64035+ 0 1.10000+ 1 7.36915+ 0 1.30000+ 1 4.12245+ 0 1.40000+ 1 4.13056+ 0 1.60000+ 1 3.71564+ 0 1.80000+ 1 2.95440+ 0 1.90000+ 1 2.96350+ 0 2.10000+ 1 1.00000+ 0 2.20000+ 1 1.00000+ 0 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.76455- 3 3.00000+ 0 4.56238- 3 5.00000+ 0 4.25149- 3 6.00000+ 0 4.03759- 3 8.00000+ 0 8.94304- 4 1.00000+ 1 7.93291- 4 1.10000+ 1 7.39875- 4 1.30000+ 1 5.62372- 4 1.40000+ 1 5.49833- 4 1.60000+ 1 1.19685- 4 1.80000+ 1 8.51068- 5 1.90000+ 1 7.34287- 5 2.10000+ 1 2.95776- 5 2.20000+ 1 2.74452- 5 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.54309- 1 2.83065- 2 6.00000+ 0 4.72118- 1 2.86095- 2 1.00000+ 1 4.39088- 2 3.22368- 2 1.10000+ 1 8.51517- 2 3.22942- 2 1.30000+ 1 4.12249- 4 3.25225- 2 1.40000+ 1 5.65058- 4 3.25347- 2 1.80000+ 1 9.15607- 3 3.30185- 2 1.90000+ 1 1.79119- 2 3.30298- 2 2.10000+ 1 7.32237- 5 3.31040- 2 2.20000+ 1 1.00070- 4 3.31057- 2 2.90000+ 1 7.32127- 4 3.31532- 2 3.00000+ 1 1.37130- 3 3.31544- 2 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 8.91673- 3 2.28402- 2 3.00000+ 0 5.00000+ 0 1.06418- 2 2.31446- 2 3.00000+ 0 6.00000+ 0 1.30507- 2 2.34476- 2 3.00000+ 0 8.00000+ 0 3.17941- 3 2.69467- 2 3.00000+ 0 1.00000+ 1 2.02890- 3 2.70749- 2 3.00000+ 0 1.10000+ 1 2.51372- 3 2.71323- 2 3.00000+ 0 1.30000+ 1 1.68000- 4 2.73606- 2 3.00000+ 0 1.40000+ 1 1.83814- 4 2.73728- 2 3.00000+ 0 1.60000+ 1 6.84137- 4 2.78111- 2 3.00000+ 0 1.80000+ 1 4.10625- 4 2.78566- 2 3.00000+ 0 1.90000+ 1 5.05507- 4 2.78679- 2 3.00000+ 0 2.10000+ 1 3.01428- 5 2.79421- 2 3.00000+ 0 2.20000+ 1 3.28600- 5 2.79438- 2 3.00000+ 0 2.70000+ 1 1.01299- 4 2.79811- 2 3.00000+ 0 2.90000+ 1 3.92840- 5 2.79913- 2 3.00000+ 0 3.00000+ 1 4.69428- 5 2.79925- 2 5.00000+ 0 5.00000+ 0 1.33390- 3 2.34490- 2 5.00000+ 0 6.00000+ 0 2.82368- 2 2.37520- 2 5.00000+ 0 8.00000+ 0 1.57310- 3 2.72511- 2 5.00000+ 0 1.00000+ 1 4.55341- 4 2.73793- 2 5.00000+ 0 1.10000+ 1 4.53287- 3 2.74367- 2 5.00000+ 0 1.30000+ 1 2.03331- 4 2.76650- 2 5.00000+ 0 1.40000+ 1 6.81651- 4 2.76772- 2 5.00000+ 0 1.60000+ 1 3.25647- 4 2.81155- 2 5.00000+ 0 1.80000+ 1 9.04264- 5 2.81610- 2 5.00000+ 0 1.90000+ 1 8.81532- 4 2.81723- 2 5.00000+ 0 2.10000+ 1 3.60726- 5 2.82465- 2 5.00000+ 0 2.20000+ 1 1.20073- 4 2.82482- 2 5.00000+ 0 2.70000+ 1 4.79310- 5 2.82855- 2 5.00000+ 0 2.90000+ 1 8.64728- 6 2.82957- 2 5.00000+ 0 3.00000+ 1 8.15323- 5 2.82969- 2 6.00000+ 0 6.00000+ 0 1.41721- 2 2.40550- 2 6.00000+ 0 8.00000+ 0 1.89061- 3 2.75541- 2 6.00000+ 0 1.00000+ 1 4.42382- 3 2.76823- 2 6.00000+ 0 1.10000+ 1 4.67357- 3 2.77397- 2 6.00000+ 0 1.30000+ 1 8.13596- 4 2.79680- 2 6.00000+ 0 1.40000+ 1 7.49837- 4 2.79802- 2 6.00000+ 0 1.60000+ 1 3.89866- 4 2.84185- 2 6.00000+ 0 1.80000+ 1 8.64481- 4 2.84640- 2 6.00000+ 0 1.90000+ 1 9.14422- 4 2.84753- 2 6.00000+ 0 2.10000+ 1 1.44039- 4 2.85495- 2 6.00000+ 0 2.20000+ 1 1.32428- 4 2.85512- 2 6.00000+ 0 2.70000+ 1 5.73198- 5 2.85885- 2 6.00000+ 0 2.90000+ 1 8.22729- 5 2.85987- 2 6.00000+ 0 3.00000+ 1 8.44971- 5 2.85999- 2 8.00000+ 0 8.00000+ 0 2.79178- 4 3.10532- 2 8.00000+ 0 1.00000+ 1 3.02645- 4 3.11814- 2 8.00000+ 0 1.10000+ 1 3.67138- 4 3.12388- 2 8.00000+ 0 1.30000+ 1 2.32233- 5 3.14671- 2 8.00000+ 0 1.40000+ 1 2.44589- 5 3.14793- 2 8.00000+ 0 1.60000+ 1 1.19826- 4 3.19176- 2 8.00000+ 0 1.80000+ 1 6.12717- 5 3.19631- 2 8.00000+ 0 1.90000+ 1 7.38715- 5 3.19744- 2 8.00000+ 0 2.10000+ 1 4.20010- 6 3.20486- 2 8.00000+ 0 2.20000+ 1 4.44713- 6 3.20503- 2 8.00000+ 0 2.70000+ 1 1.77891- 5 3.20876- 2 8.00000+ 0 2.90000+ 1 5.92953- 6 3.20978- 2 8.00000+ 0 3.00000+ 1 6.91780- 6 3.20990- 2 1.00000+ 1 1.00000+ 1 3.73070- 5 3.13096- 2 1.00000+ 1 1.10000+ 1 7.22172- 4 3.13670- 2 1.00000+ 1 1.30000+ 1 2.49538- 5 3.15953- 2 1.00000+ 1 1.40000+ 1 8.32602- 5 3.16075- 2 1.00000+ 1 1.60000+ 1 6.27548- 5 3.20458- 2 1.00000+ 1 1.80000+ 1 1.48233- 5 3.20913- 2 1.00000+ 1 1.90000+ 1 1.40835- 4 3.21026- 2 1.00000+ 1 2.10000+ 1 4.44717- 6 3.21768- 2 1.00000+ 1 2.20000+ 1 1.48233- 5 3.21785- 2 1.00000+ 1 2.70000+ 1 9.14145- 6 3.22158- 2 1.00000+ 1 2.90000+ 1 1.48233- 6 3.22260- 2 1.00000+ 1 3.00000+ 1 1.30958- 5 3.22272- 2 1.10000+ 1 1.10000+ 1 3.86652- 4 3.14244- 2 1.10000+ 1 1.30000+ 1 1.05990- 4 3.16527- 2 1.10000+ 1 1.40000+ 1 9.53676- 5 3.16649- 2 1.10000+ 1 1.60000+ 1 7.58480- 5 3.21031- 2 1.10000+ 1 1.80000+ 1 1.41567- 4 3.21487- 2 1.10000+ 1 1.90000+ 1 1.51453- 4 3.21600- 2 1.10000+ 1 2.10000+ 1 1.87766- 5 3.22341- 2 1.10000+ 1 2.20000+ 1 1.67993- 5 3.22359- 2 1.10000+ 1 2.70000+ 1 1.11182- 5 3.22732- 2 1.10000+ 1 2.90000+ 1 1.33414- 5 3.22834- 2 1.10000+ 1 3.00000+ 1 1.40832- 5 3.22846- 2 1.30000+ 1 1.40000+ 1 1.21717- 5 3.18932- 2 1.30000+ 1 1.60000+ 1 4.44716- 6 3.23315- 2 1.30000+ 1 1.80000+ 1 4.44716- 6 3.23770- 2 1.30000+ 1 1.90000+ 1 1.87255- 5 3.23883- 2 1.30000+ 1 2.20000+ 1 2.10657- 6 3.24643- 2 1.30000+ 1 2.70000+ 1 7.02186- 7 3.25015- 2 1.30000+ 1 2.90000+ 1 4.68127- 7 3.25118- 2 1.30000+ 1 3.00000+ 1 1.63843- 6 3.25129- 2 1.40000+ 1 1.40000+ 1 2.86227- 6 3.19054- 2 1.40000+ 1 1.60000+ 1 4.77035- 6 3.23436- 2 1.40000+ 1 1.80000+ 1 1.50265- 5 3.23892- 2 1.40000+ 1 1.90000+ 1 1.71738- 5 3.24005- 2 1.40000+ 1 2.10000+ 1 2.14665- 6 3.24746- 2 1.40000+ 1 2.20000+ 1 9.54089- 7 3.24764- 2 1.40000+ 1 2.70000+ 1 7.15548- 7 3.25137- 2 1.40000+ 1 2.90000+ 1 1.43105- 6 3.25239- 2 1.40000+ 1 3.00000+ 1 1.66961- 6 3.25251- 2 1.60000+ 1 1.60000+ 1 1.24217- 5 3.27819- 2 1.60000+ 1 1.80000+ 1 1.24217- 5 3.28274- 2 1.60000+ 1 1.90000+ 1 1.48109- 5 3.28387- 2 1.60000+ 1 2.10000+ 1 7.16603- 7 3.29129- 2 1.60000+ 1 2.20000+ 1 9.55497- 7 3.29147- 2 1.60000+ 1 2.70000+ 1 3.58307- 6 3.29519- 2 1.60000+ 1 2.90000+ 1 1.19432- 6 3.29622- 2 1.60000+ 1 3.00000+ 1 1.43316- 6 3.29633- 2 1.80000+ 1 1.80000+ 1 1.37022- 6 3.28729- 2 1.80000+ 1 1.90000+ 1 2.55791- 5 3.28843- 2 1.80000+ 1 2.10000+ 1 6.85131- 7 3.29584- 2 1.80000+ 1 2.20000+ 1 2.51218- 6 3.29602- 2 1.80000+ 1 2.70000+ 1 1.82706- 6 3.29975- 2 1.80000+ 1 2.90000+ 1 2.28382- 7 3.30077- 2 1.80000+ 1 3.00000+ 1 2.28382- 6 3.30088- 2 1.90000+ 1 1.90000+ 1 1.38134- 5 3.28956- 2 1.90000+ 1 2.10000+ 1 3.22323- 6 3.29697- 2 1.90000+ 1 2.20000+ 1 2.99304- 6 3.29715- 2 1.90000+ 1 2.70000+ 1 2.07209- 6 3.30088- 2 1.90000+ 1 2.90000+ 1 2.53257- 6 3.30190- 2 1.90000+ 1 3.00000+ 1 2.53257- 6 3.30202- 2 2.10000+ 1 2.20000+ 1 4.94134- 7 3.30457- 2 2.10000+ 1 2.70000+ 1 2.47071- 7 3.30829- 2 2.10000+ 1 3.00000+ 1 2.47071- 7 3.30943- 2 2.20000+ 1 2.70000+ 1 2.47072- 7 3.30847- 2 2.20000+ 1 2.90000+ 1 2.47072- 7 3.30950- 2 2.20000+ 1 3.00000+ 1 2.47072- 7 3.30961- 2 2.70000+ 1 2.70000+ 1 2.47072- 7 3.31220- 2 2.70000+ 1 2.90000+ 1 2.47072- 7 3.31322- 2 2.70000+ 1 3.00000+ 1 2.47072- 7 3.31334- 2 2.90000+ 1 3.00000+ 1 2.47069- 7 3.31436- 2 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.99879- 5 3.04400- 4 6.00000+ 0 3.45078- 4 6.07400- 4 1.00000+ 1 1.31549- 2 4.23470- 3 1.10000+ 1 2.08889- 2 4.29209- 3 1.30000+ 1 1.88269- 4 4.52044- 3 1.40000+ 1 2.81209- 4 4.53259- 3 1.80000+ 1 2.77369- 3 5.01637- 3 1.90000+ 1 4.51118- 3 5.02769- 3 2.10000+ 1 2.20399- 5 5.10186- 3 2.20000+ 1 3.34348- 5 5.10364- 3 2.90000+ 1 2.41689- 4 5.15113- 3 3.00000+ 1 3.77128- 4 5.15227- 3 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.64269- 2 1.13360- 4 5.00000+ 0 1.80000+ 1 4.07635- 2 1.58870- 4 5.00000+ 0 1.90000+ 1 5.25610- 2 1.70190- 4 5.00000+ 0 2.10000+ 1 1.29922- 2 2.44360- 4 5.00000+ 0 2.20000+ 1 2.08579- 2 2.46140- 4 5.00000+ 0 2.70000+ 1 8.11508- 3 2.83390- 4 5.00000+ 0 2.90000+ 1 3.69136- 3 2.93630- 4 5.00000+ 0 3.00000+ 1 4.63100- 3 2.94770- 4 6.00000+ 0 1.60000+ 1 7.43152- 2 4.16360- 4 6.00000+ 0 1.80000+ 1 3.29765- 2 4.61870- 4 6.00000+ 0 1.90000+ 1 6.23732- 2 4.73190- 4 6.00000+ 0 2.10000+ 1 5.93997- 2 5.47360- 4 6.00000+ 0 2.20000+ 1 7.62633- 2 5.49140- 4 6.00000+ 0 2.70000+ 1 1.06434- 2 5.86390- 4 6.00000+ 0 2.90000+ 1 3.03892- 3 5.96630- 4 6.00000+ 0 3.00000+ 1 5.64832- 3 5.97770- 4 8.00000+ 0 8.00000+ 0 1.33311- 2 3.05110- 3 8.00000+ 0 1.00000+ 1 2.65331- 2 3.17930- 3 8.00000+ 0 1.10000+ 1 4.91513- 2 3.23669- 3 8.00000+ 0 1.30000+ 1 3.94319- 2 3.46504- 3 8.00000+ 0 1.40000+ 1 5.58364- 2 3.47719- 3 8.00000+ 0 1.60000+ 1 4.90313- 3 3.91546- 3 8.00000+ 0 1.80000+ 1 5.26610- 3 3.96097- 3 8.00000+ 0 1.90000+ 1 9.67521- 3 3.97229- 3 8.00000+ 0 2.10000+ 1 6.06316- 3 4.04646- 3 8.00000+ 0 2.20000+ 1 8.53470- 3 4.04824- 3 8.00000+ 0 2.70000+ 1 7.11215- 4 4.08549- 3 8.00000+ 0 2.90000+ 1 5.02958- 4 4.09573- 3 8.00000+ 0 3.00000+ 1 8.98620- 4 4.09687- 3 1.00000+ 1 1.00000+ 1 1.48177- 4 3.30750- 3 1.00000+ 1 1.10000+ 1 1.05168- 3 3.36489- 3 1.00000+ 1 1.30000+ 1 1.12451- 3 3.59324- 3 1.00000+ 1 1.40000+ 1 1.45656- 2 3.60539- 3 1.00000+ 1 1.60000+ 1 3.91878- 3 4.04366- 3 1.00000+ 1 1.80000+ 1 3.04348- 5 4.08917- 3 1.00000+ 1 1.90000+ 1 1.95419- 4 4.10049- 3 1.00000+ 1 2.10000+ 1 1.77001- 4 4.17466- 3 1.00000+ 1 2.20000+ 1 1.48728- 3 4.17644- 3 1.00000+ 1 2.70000+ 1 5.43017- 4 4.21369- 3 1.00000+ 1 2.90000+ 1 2.40269- 6 4.22393- 3 1.00000+ 1 3.00000+ 1 1.76199- 5 4.22507- 3 1.10000+ 1 1.10000+ 1 1.13975- 3 3.42228- 3 1.10000+ 1 1.30000+ 1 1.02699- 2 3.65063- 3 1.10000+ 1 1.40000+ 1 6.99365- 3 3.66278- 3 1.10000+ 1 1.60000+ 1 7.25887- 3 4.10105- 3 1.10000+ 1 1.80000+ 1 1.95424- 4 4.14656- 3 1.10000+ 1 1.90000+ 1 3.42794- 4 4.15788- 3 1.10000+ 1 2.10000+ 1 9.13857- 4 4.23205- 3 1.10000+ 1 2.20000+ 1 6.51971- 4 4.23383- 3 1.10000+ 1 2.70000+ 1 1.00678- 3 4.27108- 3 1.10000+ 1 2.90000+ 1 1.84218- 5 4.28132- 3 1.10000+ 1 3.00000+ 1 3.04355- 5 4.28246- 3 1.30000+ 1 1.30000+ 1 2.23147- 3 3.87898- 3 1.30000+ 1 1.40000+ 1 8.04566- 2 3.89113- 3 1.30000+ 1 1.60000+ 1 5.52494- 3 4.32940- 3 1.30000+ 1 1.80000+ 1 2.89938- 4 4.37491- 3 1.30000+ 1 1.90000+ 1 2.03917- 3 4.38623- 3 1.30000+ 1 2.10000+ 1 6.80006- 4 4.46040- 3 1.30000+ 1 2.20000+ 1 9.05944- 3 4.46218- 3 1.30000+ 1 2.70000+ 1 7.60095- 4 4.49943- 3 1.30000+ 1 2.90000+ 1 2.88337- 5 4.50967- 3 1.30000+ 1 3.00000+ 1 1.89020- 4 4.51081- 3 1.40000+ 1 1.40000+ 1 2.26910- 2 3.90328- 3 1.40000+ 1 1.60000+ 1 7.86852- 3 4.34155- 3 1.40000+ 1 1.80000+ 1 2.63828- 3 4.38706- 3 1.40000+ 1 1.90000+ 1 1.45850- 3 4.39838- 3 1.40000+ 1 2.10000+ 1 8.97605- 3 4.47255- 3 1.40000+ 1 2.20000+ 1 5.34479- 3 4.47433- 3 1.40000+ 1 2.70000+ 1 1.08442- 3 4.51158- 3 1.40000+ 1 2.90000+ 1 2.48290- 4 4.52182- 3 1.40000+ 1 3.00000+ 1 1.36957- 4 4.52296- 3 1.60000+ 1 1.60000+ 1 4.28507- 4 4.77982- 3 1.60000+ 1 1.80000+ 1 7.79317- 4 4.82533- 3 1.60000+ 1 1.90000+ 1 1.43049- 3 4.83665- 3 1.60000+ 1 2.10000+ 1 8.46599- 4 4.91082- 3 1.60000+ 1 2.20000+ 1 1.19657- 3 4.91260- 3 1.60000+ 1 2.70000+ 1 1.23350- 4 4.94985- 3 1.60000+ 1 2.90000+ 1 7.44880- 5 4.96009- 3 1.60000+ 1 3.00000+ 1 1.32954- 4 4.96123- 3 1.80000+ 1 1.80000+ 1 1.60184- 6 4.87084- 3 1.80000+ 1 1.90000+ 1 3.68419- 5 4.88216- 3 1.80000+ 1 2.10000+ 1 3.84437- 5 4.95633- 3 1.80000+ 1 2.20000+ 1 2.77917- 4 4.95811- 3 1.80000+ 1 2.70000+ 1 1.08119- 4 4.99536- 3 1.80000+ 1 3.00000+ 1 3.20367- 6 5.00674- 3 1.90000+ 1 1.90000+ 1 2.52665- 5 4.89348- 3 1.90000+ 1 2.10000+ 1 1.89493- 4 4.96765- 3 1.90000+ 1 2.20000+ 1 1.39746- 4 4.96943- 3 1.90000+ 1 2.70000+ 1 1.95816- 4 5.00668- 3 1.90000+ 1 2.90000+ 1 3.15826- 6 5.01692- 3 1.90000+ 1 3.00000+ 1 4.73730- 6 5.01806- 3 2.10000+ 1 2.10000+ 1 4.79689- 5 5.04182- 3 2.10000+ 1 2.20000+ 1 1.05927- 3 5.04360- 3 2.10000+ 1 2.70000+ 1 1.14022- 4 5.08085- 3 2.10000+ 1 2.90000+ 1 3.93172- 6 5.09109- 3 2.10000+ 1 3.00000+ 1 1.72996- 5 5.09223- 3 2.20000+ 1 2.20000+ 1 3.26309- 4 5.04538- 3 2.20000+ 1 2.70000+ 1 1.62377- 4 5.08263- 3 2.20000+ 1 2.90000+ 1 2.60106- 5 5.09287- 3 2.20000+ 1 3.00000+ 1 1.34001- 5 5.09401- 3 2.70000+ 1 2.70000+ 1 6.78771- 6 5.11988- 3 2.70000+ 1 2.90000+ 1 8.02247- 6 5.13012- 3 2.70000+ 1 3.00000+ 1 1.41927- 5 5.13126- 3 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.67999- 8 3.03000- 4 8.00000+ 0 3.92489- 3 3.80210- 3 1.10000+ 1 5.50079- 5 3.98769- 3 1.30000+ 1 7.02248- 2 4.21604- 3 1.60000+ 1 5.40509- 4 4.66646- 3 1.90000+ 1 6.31929- 6 4.72329- 3 2.10000+ 1 1.00360- 2 4.79746- 3 2.70000+ 1 6.10559- 5 4.83649- 3 3.00000+ 1 5.28549- 7 4.84787- 3 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.14294- 2 1.11960- 4 6.00000+ 0 1.80000+ 1 5.04681- 2 1.57470- 4 6.00000+ 0 1.90000+ 1 1.76294- 2 1.68790- 4 6.00000+ 0 2.10000+ 1 6.42816- 2 2.42960- 4 6.00000+ 0 2.20000+ 1 2.38704- 2 2.44740- 4 6.00000+ 0 2.70000+ 1 1.53723- 3 2.81990- 4 6.00000+ 0 2.90000+ 1 4.57738- 3 2.92230- 4 6.00000+ 0 3.00000+ 1 1.62607- 3 2.93370- 4 8.00000+ 0 8.00000+ 0 1.02794- 3 2.74670- 3 8.00000+ 0 1.00000+ 1 2.48945- 2 2.87490- 3 8.00000+ 0 1.10000+ 1 2.43523- 3 2.93229- 3 8.00000+ 0 1.30000+ 1 1.83807- 3 3.16064- 3 8.00000+ 0 1.40000+ 1 3.52278- 3 3.17279- 3 8.00000+ 0 1.60000+ 1 3.51358- 4 3.61106- 3 8.00000+ 0 1.80000+ 1 3.40613- 3 3.65657- 3 8.00000+ 0 1.90000+ 1 4.26120- 4 3.66789- 3 8.00000+ 0 2.10000+ 1 2.08388- 4 3.74206- 3 8.00000+ 0 2.20000+ 1 3.41084- 4 3.74384- 3 8.00000+ 0 2.70000+ 1 5.04623- 5 3.78109- 3 8.00000+ 0 2.90000+ 1 3.06500- 4 3.79133- 3 8.00000+ 0 3.00000+ 1 3.83112- 5 3.79247- 3 1.00000+ 1 1.00000+ 1 2.45287- 2 3.00310- 3 1.00000+ 1 1.10000+ 1 7.69105- 2 3.06049- 3 1.00000+ 1 1.30000+ 1 4.18445- 2 3.28884- 3 1.00000+ 1 1.40000+ 1 7.14703- 2 3.30099- 3 1.00000+ 1 1.60000+ 1 5.46847- 3 3.73926- 3 1.00000+ 1 1.80000+ 1 8.35310- 3 3.78477- 3 1.00000+ 1 1.90000+ 1 1.48648- 2 3.79609- 3 1.00000+ 1 2.10000+ 1 6.41213- 3 3.87026- 3 1.00000+ 1 2.20000+ 1 1.09464- 2 3.87204- 3 1.00000+ 1 2.70000+ 1 8.12951- 4 3.90929- 3 1.00000+ 1 2.90000+ 1 7.81188- 4 3.91953- 3 1.00000+ 1 3.00000+ 1 1.37634- 3 3.92067- 3 1.10000+ 1 1.10000+ 1 2.02405- 3 3.11788- 3 1.10000+ 1 1.30000+ 1 5.02422- 2 3.34623- 3 1.10000+ 1 1.40000+ 1 6.76265- 3 3.35838- 3 1.10000+ 1 1.60000+ 1 4.59773- 4 3.79665- 3 1.10000+ 1 1.80000+ 1 1.09056- 2 3.84216- 3 1.10000+ 1 1.90000+ 1 6.60668- 4 3.85348- 3 1.10000+ 1 2.10000+ 1 6.62249- 3 3.92765- 3 1.10000+ 1 2.20000+ 1 8.34471- 4 3.92943- 3 1.10000+ 1 2.70000+ 1 6.63489- 5 3.96668- 3 1.10000+ 1 2.90000+ 1 9.87766- 4 3.97692- 3 1.10000+ 1 3.00000+ 1 5.98061- 5 3.97806- 3 1.30000+ 1 1.30000+ 1 4.58917- 2 3.57458- 3 1.30000+ 1 1.40000+ 1 1.96844- 1 3.58673- 3 1.30000+ 1 1.60000+ 1 4.09295- 4 4.02500- 3 1.30000+ 1 1.80000+ 1 5.94594- 3 4.07051- 3 1.30000+ 1 1.90000+ 1 9.17743- 3 4.08183- 3 1.30000+ 1 2.10000+ 1 1.20861- 2 4.15600- 3 1.30000+ 1 2.20000+ 1 2.76909- 2 4.15778- 3 1.30000+ 1 2.70000+ 1 6.07410- 5 4.19503- 3 1.30000+ 1 2.90000+ 1 5.41062- 4 4.20527- 3 1.30000+ 1 3.00000+ 1 8.41970- 4 4.20641- 3 1.40000+ 1 1.40000+ 1 9.37876- 3 3.59888- 3 1.40000+ 1 1.60000+ 1 6.49444- 4 4.03715- 3 1.40000+ 1 1.80000+ 1 9.04942- 3 4.08266- 3 1.40000+ 1 1.90000+ 1 1.13067- 3 4.09398- 3 1.40000+ 1 2.10000+ 1 2.20603- 2 4.16815- 3 1.40000+ 1 2.20000+ 1 2.40632- 3 4.16993- 3 1.40000+ 1 2.70000+ 1 9.34485- 5 4.20718- 3 1.40000+ 1 2.90000+ 1 8.03639- 4 4.21742- 3 1.40000+ 1 3.00000+ 1 1.01863- 4 4.21856- 3 1.60000+ 1 1.60000+ 1 3.15393- 5 4.47542- 3 1.60000+ 1 1.80000+ 1 8.17978- 4 4.52093- 3 1.60000+ 1 1.90000+ 1 8.74965- 5 4.53225- 3 1.60000+ 1 2.10000+ 1 4.88349- 5 4.60642- 3 1.60000+ 1 2.20000+ 1 7.01987- 5 4.60820- 3 1.60000+ 1 2.70000+ 1 9.15680- 6 4.64545- 3 1.60000+ 1 2.90000+ 1 7.32540- 5 4.65569- 3 1.60000+ 1 3.00000+ 1 8.13937- 6 4.65683- 3 1.80000+ 1 1.80000+ 1 6.40191- 4 4.56644- 3 1.80000+ 1 1.90000+ 1 1.98201- 3 4.57776- 3 1.80000+ 1 2.10000+ 1 8.43026- 4 4.65193- 3 1.80000+ 1 2.20000+ 1 1.31112- 3 4.65371- 3 1.80000+ 1 2.70000+ 1 1.05380- 4 4.69096- 3 1.80000+ 1 2.90000+ 1 1.19426- 4 4.70120- 3 1.80000+ 1 3.00000+ 1 1.83535- 4 4.70234- 3 1.90000+ 1 1.90000+ 1 5.19761- 5 4.58908- 3 1.90000+ 1 2.10000+ 1 1.16949- 3 4.66325- 3 1.90000+ 1 2.20000+ 1 1.37106- 4 4.66503- 3 1.90000+ 1 2.70000+ 1 1.16499- 5 4.70228- 3 1.90000+ 1 2.90000+ 1 1.82812- 4 4.71252- 3 1.90000+ 1 3.00000+ 1 9.85780- 6 4.71366- 3 2.10000+ 1 2.10000+ 1 7.72474- 4 4.73742- 3 2.10000+ 1 2.20000+ 1 3.13948- 3 4.73920- 3 2.10000+ 1 2.70000+ 1 6.42197- 6 4.77645- 3 2.10000+ 1 2.90000+ 1 7.98159- 5 4.78669- 3 2.10000+ 1 3.00000+ 1 1.10093- 4 4.78783- 3 2.20000+ 1 2.20000+ 1 1.49357- 4 4.74098- 3 2.20000+ 1 2.70000+ 1 8.99792- 6 4.77823- 3 2.20000+ 1 2.90000+ 1 1.19668- 4 4.78847- 3 2.20000+ 1 3.00000+ 1 1.25968- 5 4.78961- 3 2.70000+ 1 2.70000+ 1 7.81687- 7 4.81548- 3 2.70000+ 1 2.90000+ 1 8.59860- 6 4.82572- 3 2.70000+ 1 3.00000+ 1 7.81687- 7 4.82686- 3 2.90000+ 1 2.90000+ 1 5.67346- 6 4.83596- 3 2.90000+ 1 3.00000+ 1 1.70205- 5 4.83710- 3 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.05937- 3 3.49910- 3 1.00000+ 1 3.82208- 5 3.62730- 3 1.10000+ 1 3.56368- 5 3.68469- 3 1.30000+ 1 6.98697- 3 3.91304- 3 1.40000+ 1 6.19427- 2 3.92519- 3 1.60000+ 1 5.96297- 4 4.36346- 3 1.80000+ 1 3.11799- 6 4.40897- 3 1.90000+ 1 2.99079- 6 4.42029- 3 2.10000+ 1 9.74006- 4 4.49446- 3 2.20000+ 1 8.67596- 3 4.49624- 3 2.70000+ 1 7.92526- 5 4.53349- 3 2.90000+ 1 2.70649- 7 4.54373- 3 3.00000+ 1 2.49149- 7 4.54487- 3 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.35310- 3 2.44370- 3 8.00000+ 0 1.00000+ 1 9.72469- 4 2.57190- 3 8.00000+ 0 1.10000+ 1 2.88831- 2 2.62929- 3 8.00000+ 0 1.30000+ 1 2.87269- 3 2.85764- 3 8.00000+ 0 1.40000+ 1 3.08991- 3 2.86979- 3 8.00000+ 0 1.60000+ 1 4.63882- 4 3.30806- 3 8.00000+ 0 1.80000+ 1 1.60377- 4 3.35357- 3 8.00000+ 0 1.90000+ 1 3.94770- 3 3.36489- 3 8.00000+ 0 2.10000+ 1 2.42613- 4 3.43906- 3 8.00000+ 0 2.20000+ 1 2.41591- 4 3.44084- 3 8.00000+ 0 2.70000+ 1 6.59816- 5 3.47809- 3 8.00000+ 0 2.90000+ 1 1.52269- 5 3.48833- 3 8.00000+ 0 3.00000+ 1 3.46150- 4 3.48947- 3 1.00000+ 1 1.00000+ 1 3.21783- 4 2.70010- 3 1.00000+ 1 1.10000+ 1 4.81238- 2 2.75749- 3 1.00000+ 1 1.30000+ 1 3.27369- 3 2.98584- 3 1.00000+ 1 1.40000+ 1 2.92012- 2 2.99799- 3 1.00000+ 1 1.60000+ 1 1.79665- 4 3.43626- 3 1.00000+ 1 1.80000+ 1 1.06581- 4 3.48177- 3 1.00000+ 1 1.90000+ 1 6.81035- 3 3.49309- 3 1.00000+ 1 2.10000+ 1 4.67954- 4 3.56726- 3 1.00000+ 1 2.20000+ 1 3.63807- 3 3.56904- 3 1.00000+ 1 2.70000+ 1 2.63923- 5 3.60629- 3 1.00000+ 1 2.90000+ 1 1.01505- 5 3.61653- 3 1.00000+ 1 3.00000+ 1 6.00942- 4 3.61767- 3 1.10000+ 1 1.10000+ 1 6.77243- 2 2.81488- 3 1.10000+ 1 1.30000+ 1 6.91858- 2 3.04323- 3 1.10000+ 1 1.40000+ 1 1.04721- 1 3.05538- 3 1.10000+ 1 1.60000+ 1 6.27961- 3 3.49365- 3 1.10000+ 1 1.80000+ 1 9.17734- 3 3.53916- 3 1.10000+ 1 1.90000+ 1 2.26488- 2 3.55048- 3 1.10000+ 1 2.10000+ 1 1.02358- 2 3.62465- 3 1.10000+ 1 2.20000+ 1 1.52771- 2 3.62643- 3 1.10000+ 1 2.70000+ 1 9.32901- 4 3.66368- 3 1.10000+ 1 2.90000+ 1 8.70966- 4 3.67392- 3 1.10000+ 1 3.00000+ 1 2.05556- 3 3.67506- 3 1.30000+ 1 1.30000+ 1 1.01182- 2 3.27158- 3 1.30000+ 1 1.40000+ 1 1.94016- 1 3.28373- 3 1.30000+ 1 1.60000+ 1 5.81636- 4 3.72200- 3 1.30000+ 1 1.80000+ 1 6.20206- 4 3.76751- 3 1.30000+ 1 1.90000+ 1 9.15953- 3 3.77883- 3 1.30000+ 1 2.10000+ 1 2.66959- 3 3.85300- 3 1.30000+ 1 2.20000+ 1 2.20602- 2 3.85478- 3 1.30000+ 1 2.70000+ 1 8.52661- 5 3.89203- 3 1.30000+ 1 2.90000+ 1 5.88734- 5 3.90227- 3 1.30000+ 1 3.00000+ 1 7.99866- 4 3.90341- 3 1.40000+ 1 1.40000+ 1 1.31777- 1 3.29588- 3 1.40000+ 1 1.60000+ 1 6.66903- 4 3.73415- 3 1.40000+ 1 1.80000+ 1 5.19620- 3 3.77966- 3 1.40000+ 1 1.90000+ 1 1.54901- 2 3.79098- 3 1.40000+ 1 2.10000+ 1 2.58880- 2 3.86515- 3 1.40000+ 1 2.20000+ 1 3.33216- 2 3.86693- 3 1.40000+ 1 2.70000+ 1 9.94772- 5 3.90418- 3 1.40000+ 1 2.90000+ 1 4.88247- 4 3.91442- 3 1.40000+ 1 3.00000+ 1 1.38153- 3 3.91556- 3 1.60000+ 1 1.60000+ 1 4.38749- 5 4.17242- 3 1.60000+ 1 1.80000+ 1 3.37502- 5 4.21793- 3 1.60000+ 1 1.90000+ 1 9.54016- 4 4.22925- 3 1.60000+ 1 2.10000+ 1 5.73734- 5 4.30342- 3 1.60000+ 1 2.20000+ 1 6.18766- 5 4.30520- 3 1.60000+ 1 2.70000+ 1 1.23758- 5 4.34245- 3 1.60000+ 1 2.90000+ 1 3.37502- 6 4.35269- 3 1.60000+ 1 3.00000+ 1 8.32521- 5 4.35383- 3 1.80000+ 1 1.80000+ 1 7.64967- 6 4.26344- 3 1.80000+ 1 1.90000+ 1 1.22101- 3 4.27476- 3 1.80000+ 1 2.10000+ 1 8.22317- 5 4.34893- 3 1.80000+ 1 2.20000+ 1 6.26306- 4 4.35071- 3 1.80000+ 1 2.70000+ 1 3.82459- 6 4.38796- 3 1.80000+ 1 2.90000+ 1 1.91230- 6 4.39820- 3 1.80000+ 1 3.00000+ 1 1.08052- 4 4.39934- 3 1.90000+ 1 1.90000+ 1 1.69339- 3 4.28608- 3 1.90000+ 1 2.10000+ 1 1.25370- 3 4.36025- 3 1.90000+ 1 2.20000+ 1 2.06291- 3 4.36203- 3 1.90000+ 1 2.70000+ 1 1.18138- 4 4.39928- 3 1.90000+ 1 2.90000+ 1 1.13452- 4 4.40952- 3 1.90000+ 1 3.00000+ 1 3.05677- 4 4.41066- 3 2.10000+ 1 2.10000+ 1 1.68437- 4 4.43442- 3 2.10000+ 1 2.20000+ 1 2.97019- 3 4.43620- 3 2.10000+ 1 2.70000+ 1 7.97368- 6 4.47345- 3 2.10000+ 1 2.90000+ 1 7.97368- 6 4.48369- 3 2.10000+ 1 3.00000+ 1 1.16611- 4 4.48483- 3 2.20000+ 1 2.20000+ 1 2.16663- 3 4.43798- 3 2.20000+ 1 2.70000+ 1 8.31765- 6 4.47523- 3 2.20000+ 1 2.90000+ 1 6.44609- 5 4.48547- 3 2.20000+ 1 3.00000+ 1 2.03776- 4 4.48661- 3 2.70000+ 1 2.70000+ 1 1.37812- 6 4.51248- 3 2.70000+ 1 3.00000+ 1 1.51608- 5 4.52386- 3 2.90000+ 1 3.00000+ 1 1.00580- 5 4.53410- 3 3.00000+ 1 3.00000+ 1 1.38529- 5 4.53524- 3 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.18601- 5 1.28200- 4 1.10000+ 1 7.47920- 5 1.85590- 4 1.80000+ 1 1.97547- 4 9.09870- 4 1.90000+ 1 2.70957- 4 9.21190- 4 2.90000+ 1 1.88593- 5 1.04463- 3 3.00000+ 1 2.53822- 5 1.04577- 3 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.90000+ 1 8.79158- 2 0.00000+ 0 1.00000+ 1 2.10000+ 1 7.21454- 2 6.81600- 5 1.00000+ 1 2.20000+ 1 9.87565- 2 6.99400- 5 1.00000+ 1 2.70000+ 1 6.97089- 3 1.07190- 4 1.00000+ 1 2.90000+ 1 4.00405- 3 1.17430- 4 1.00000+ 1 3.00000+ 1 6.73592- 3 1.18570- 4 1.10000+ 1 1.60000+ 1 6.58161- 2 0.00000+ 0 1.10000+ 1 1.80000+ 1 8.14973- 2 4.00600- 5 1.10000+ 1 1.90000+ 1 1.25568- 1 5.13800- 5 1.10000+ 1 2.10000+ 1 5.59498- 2 1.25550- 4 1.10000+ 1 2.20000+ 1 8.17873- 2 1.27330- 4 1.10000+ 1 2.70000+ 1 9.77695- 3 1.64580- 4 1.10000+ 1 2.90000+ 1 5.87052- 3 1.74820- 4 1.10000+ 1 3.00000+ 1 8.86628- 3 1.75960- 4 1.30000+ 1 1.60000+ 1 2.97374- 2 2.22900- 4 1.30000+ 1 1.80000+ 1 6.21784- 3 2.68410- 4 1.30000+ 1 1.90000+ 1 4.84196- 3 2.79730- 4 1.30000+ 1 2.10000+ 1 7.57530- 3 3.53900- 4 1.30000+ 1 2.20000+ 1 9.23990- 3 3.55680- 4 1.30000+ 1 2.70000+ 1 2.81470- 3 3.92930- 4 1.30000+ 1 2.90000+ 1 3.95867- 4 4.03170- 4 1.30000+ 1 3.00000+ 1 2.87454- 4 4.04310- 4 1.40000+ 1 1.60000+ 1 4.34890- 2 2.35050- 4 1.40000+ 1 1.80000+ 1 1.57592- 3 2.80560- 4 1.40000+ 1 1.90000+ 1 1.22044- 2 2.91880- 4 1.40000+ 1 2.10000+ 1 9.74457- 3 3.66050- 4 1.40000+ 1 2.20000+ 1 1.53719- 2 3.67830- 4 1.40000+ 1 2.70000+ 1 4.09733- 3 4.05080- 4 1.40000+ 1 2.90000+ 1 9.31129- 5 4.15320- 4 1.40000+ 1 3.00000+ 1 7.30187- 4 4.16460- 4 1.60000+ 1 1.60000+ 1 8.91742- 3 6.73320- 4 1.60000+ 1 1.80000+ 1 1.42686- 2 7.18830- 4 1.60000+ 1 1.90000+ 1 2.62932- 2 7.30150- 4 1.60000+ 1 2.10000+ 1 2.50743- 2 8.04320- 4 1.60000+ 1 2.20000+ 1 3.65247- 2 8.06100- 4 1.60000+ 1 2.70000+ 1 2.00069- 3 8.43350- 4 1.60000+ 1 2.90000+ 1 1.10321- 3 8.53590- 4 1.60000+ 1 3.00000+ 1 1.93309- 3 8.54730- 4 1.80000+ 1 1.80000+ 1 8.08363- 4 7.64340- 4 1.80000+ 1 1.90000+ 1 1.96665- 3 7.75660- 4 1.80000+ 1 2.10000+ 1 1.13927- 3 8.49830- 4 1.80000+ 1 2.20000+ 1 4.03279- 4 8.51610- 4 1.80000+ 1 2.70000+ 1 1.30116- 3 8.88860- 4 1.80000+ 1 2.90000+ 1 1.04886- 4 8.99100- 4 1.80000+ 1 3.00000+ 1 1.17549- 4 9.00240- 4 1.90000+ 1 1.90000+ 1 2.52973- 3 7.86980- 4 1.90000+ 1 2.10000+ 1 1.03586- 3 8.61150- 4 1.90000+ 1 2.20000+ 1 2.93661- 3 8.62930- 4 1.90000+ 1 2.70000+ 1 2.31112- 3 9.00180- 4 1.90000+ 1 2.90000+ 1 1.24927- 4 9.10420- 4 1.90000+ 1 3.00000+ 1 3.19269- 4 9.11560- 4 2.10000+ 1 2.10000+ 1 3.09033- 4 9.35320- 4 2.10000+ 1 2.20000+ 1 1.04405- 3 9.37100- 4 2.10000+ 1 2.70000+ 1 2.18502- 3 9.74350- 4 2.10000+ 1 2.90000+ 1 6.63444- 5 9.84590- 4 2.10000+ 1 3.00000+ 1 6.11040- 5 9.85730- 4 2.20000+ 1 2.20000+ 1 7.18936- 4 9.38880- 4 2.20000+ 1 2.70000+ 1 3.19586- 3 9.76130- 4 2.20000+ 1 2.90000+ 1 2.19197- 5 9.86370- 4 2.20000+ 1 3.00000+ 1 1.77114- 4 9.87510- 4 2.70000+ 1 2.70000+ 1 8.83153- 5 1.01338- 3 2.70000+ 1 2.90000+ 1 8.30781- 5 1.02362- 3 2.70000+ 1 3.00000+ 1 1.46693- 4 1.02476- 3 2.90000+ 1 2.90000+ 1 1.46804- 6 1.03386- 3 2.90000+ 1 3.00000+ 1 3.91473- 6 1.03500- 3 3.00000+ 1 3.00000+ 1 6.68222- 6 1.03614- 3 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.15773- 4 2.85740- 4 1.60000+ 1 2.76166- 4 7.36160- 4 2.10000+ 1 9.85329- 4 8.67160- 4 2.70000+ 1 3.97036- 5 9.06190- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 2.02172- 2 0.00000+ 0 1.10000+ 1 2.20000+ 1 5.00399- 2 0.00000+ 0 1.10000+ 1 2.70000+ 1 7.73556- 3 3.63800- 5 1.10000+ 1 2.90000+ 1 5.15206- 3 4.66200- 5 1.10000+ 1 3.00000+ 1 6.12326- 3 4.77600- 5 1.30000+ 1 1.60000+ 1 1.25747- 1 9.47000- 5 1.30000+ 1 1.80000+ 1 1.27274- 1 1.40210- 4 1.30000+ 1 1.90000+ 1 1.87741- 1 1.51530- 4 1.30000+ 1 2.10000+ 1 5.08484- 2 2.25700- 4 1.30000+ 1 2.20000+ 1 5.39554- 2 2.27480- 4 1.30000+ 1 2.70000+ 1 1.69842- 2 2.64730- 4 1.30000+ 1 2.90000+ 1 8.72453- 3 2.74970- 4 1.30000+ 1 3.00000+ 1 1.33358- 2 2.76110- 4 1.40000+ 1 1.60000+ 1 2.15085- 2 1.06850- 4 1.40000+ 1 1.80000+ 1 1.55248- 1 1.52360- 4 1.40000+ 1 1.90000+ 1 1.62976- 2 1.63680- 4 1.40000+ 1 2.10000+ 1 3.48616- 3 2.37850- 4 1.40000+ 1 2.20000+ 1 6.74609- 3 2.39630- 4 1.40000+ 1 2.70000+ 1 1.98399- 3 2.76880- 4 1.40000+ 1 2.90000+ 1 9.00224- 3 2.87120- 4 1.40000+ 1 3.00000+ 1 1.06042- 3 2.88260- 4 1.60000+ 1 1.60000+ 1 7.22799- 4 5.45120- 4 1.60000+ 1 1.80000+ 1 1.02704- 2 5.90630- 4 1.60000+ 1 1.90000+ 1 1.67678- 3 6.01950- 4 1.60000+ 1 2.10000+ 1 3.68727- 4 6.76120- 4 1.60000+ 1 2.20000+ 1 1.04761- 3 6.77900- 4 1.60000+ 1 2.70000+ 1 1.54751- 4 7.15150- 4 1.60000+ 1 2.90000+ 1 5.69328- 4 7.25390- 4 1.60000+ 1 3.00000+ 1 1.12084- 4 7.26530- 4 1.80000+ 1 1.80000+ 1 7.20080- 3 6.36140- 4 1.80000+ 1 1.90000+ 1 2.25110- 2 6.47460- 4 1.80000+ 1 2.10000+ 1 1.87645- 2 7.21630- 4 1.80000+ 1 2.20000+ 1 3.12219- 2 7.23410- 4 1.80000+ 1 2.70000+ 1 1.36490- 3 7.60660- 4 1.80000+ 1 2.90000+ 1 9.68283- 4 7.70900- 4 1.80000+ 1 3.00000+ 1 1.65081- 3 7.72040- 4 1.90000+ 1 1.90000+ 1 6.40000- 4 6.58780- 4 1.90000+ 1 2.10000+ 1 1.99098- 3 7.32950- 4 1.90000+ 1 2.20000+ 1 1.43155- 3 7.34730- 4 1.90000+ 1 2.70000+ 1 1.66429- 4 7.71980- 4 1.90000+ 1 2.90000+ 1 1.35304- 3 7.82220- 4 1.90000+ 1 3.00000+ 1 8.05093- 5 7.83360- 4 2.10000+ 1 2.10000+ 1 6.48047- 4 8.07120- 4 2.10000+ 1 2.20000+ 1 1.58030- 3 8.08900- 4 2.10000+ 1 2.70000+ 1 4.43611- 5 8.46150- 4 2.10000+ 1 2.90000+ 1 1.05053- 3 8.56390- 4 2.10000+ 1 3.00000+ 1 1.17653- 4 8.57530- 4 2.20000+ 1 2.20000+ 1 1.98305- 4 8.10680- 4 2.20000+ 1 2.70000+ 1 5.47166- 5 8.47930- 4 2.20000+ 1 2.90000+ 1 9.12919- 4 8.58170- 4 2.20000+ 1 3.00000+ 1 4.11193- 5 8.59310- 4 2.70000+ 1 2.70000+ 1 6.90180- 6 8.85180- 4 2.70000+ 1 2.90000+ 1 6.31782- 5 8.95420- 4 2.70000+ 1 3.00000+ 1 9.02539- 6 8.96560- 4 2.90000+ 1 2.90000+ 1 1.58996- 5 9.05660- 4 2.90000+ 1 3.00000+ 1 5.95230- 5 9.06800- 4 3.00000+ 1 3.00000+ 1 1.64415- 6 9.07940- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.30088- 5 2.28350- 4 1.40000+ 1 2.47498- 4 2.40500- 4 1.60000+ 1 3.48651- 4 6.78770- 4 2.10000+ 1 1.23532- 4 8.09770- 4 2.20000+ 1 1.01966- 3 8.11550- 4 2.70000+ 1 4.96183- 5 8.48800- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.69811- 2 3.73100- 5 1.30000+ 1 1.80000+ 1 1.84223- 2 8.28200- 5 1.30000+ 1 1.90000+ 1 1.09499- 1 9.41400- 5 1.30000+ 1 2.10000+ 1 1.28571- 2 1.68310- 4 1.30000+ 1 2.20000+ 1 9.29526- 3 1.70090- 4 1.30000+ 1 2.70000+ 1 2.82867- 3 2.07340- 4 1.30000+ 1 2.90000+ 1 1.33788- 3 2.17580- 4 1.30000+ 1 3.00000+ 1 6.43915- 3 2.18720- 4 1.40000+ 1 1.60000+ 1 1.18103- 1 4.94600- 5 1.40000+ 1 1.80000+ 1 1.22344- 1 9.49700- 5 1.40000+ 1 1.90000+ 1 2.42638- 1 1.06290- 4 1.40000+ 1 2.10000+ 1 4.93172- 2 1.80460- 4 1.40000+ 1 2.20000+ 1 8.31954- 2 1.82240- 4 1.40000+ 1 2.70000+ 1 1.59281- 2 2.19490- 4 1.40000+ 1 2.90000+ 1 8.98459- 3 2.29730- 4 1.40000+ 1 3.00000+ 1 1.58222- 2 2.30870- 4 1.60000+ 1 1.60000+ 1 8.22802- 4 4.87730- 4 1.60000+ 1 1.80000+ 1 1.20087- 3 5.33240- 4 1.60000+ 1 1.90000+ 1 1.73790- 2 5.44560- 4 1.60000+ 1 2.10000+ 1 9.92989- 4 6.18730- 4 1.60000+ 1 2.20000+ 1 1.08966- 3 6.20510- 4 1.60000+ 1 2.70000+ 1 1.75972- 4 6.57760- 4 1.60000+ 1 2.90000+ 1 7.92863- 5 6.68000- 4 1.60000+ 1 3.00000+ 1 9.32086- 4 6.69140- 4 1.80000+ 1 1.80000+ 1 1.94470- 4 5.78750- 4 1.80000+ 1 1.90000+ 1 1.91102- 2 5.90070- 4 1.80000+ 1 2.10000+ 1 5.24337- 4 6.64240- 4 1.80000+ 1 2.20000+ 1 2.94110- 3 6.66020- 4 1.80000+ 1 2.70000+ 1 1.14399- 4 7.03270- 4 1.80000+ 1 2.90000+ 1 2.47855- 5 7.13510- 4 1.80000+ 1 3.00000+ 1 1.03628- 3 7.14650- 4 1.90000+ 1 1.90000+ 1 2.45950- 2 6.01390- 4 1.90000+ 1 2.10000+ 1 2.99649- 2 6.75560- 4 1.90000+ 1 2.20000+ 1 4.07859- 2 6.77340- 4 1.90000+ 1 2.70000+ 1 1.96564- 3 7.14590- 4 1.90000+ 1 2.90000+ 1 1.28897- 3 7.24830- 4 1.90000+ 1 3.00000+ 1 3.13905- 3 7.25970- 4 2.10000+ 1 2.10000+ 1 1.67204- 4 7.49730- 4 2.10000+ 1 2.20000+ 1 1.82249- 3 7.51510- 4 2.10000+ 1 2.70000+ 1 5.73792- 5 7.88760- 4 2.10000+ 1 2.90000+ 1 1.85092- 5 7.99000- 4 2.10000+ 1 3.00000+ 1 1.19078- 3 8.00140- 4 2.20000+ 1 2.20000+ 1 9.36502- 4 7.53290- 4 2.20000+ 1 2.70000+ 1 5.55383- 5 7.90540- 4 2.20000+ 1 2.90000+ 1 8.66187- 5 8.00780- 4 2.20000+ 1 3.00000+ 1 1.33039- 3 8.01920- 4 2.70000+ 1 2.70000+ 1 5.15076- 6 8.27790- 4 2.70000+ 1 2.90000+ 1 4.12067- 6 8.38030- 4 2.70000+ 1 3.00000+ 1 6.43829- 5 8.39170- 4 2.90000+ 1 2.90000+ 1 5.15077- 7 8.48270- 4 2.90000+ 1 3.00000+ 1 4.27514- 5 8.49410- 4 3.00000+ 1 3.00000+ 1 5.56282- 5 8.50550- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.54270- 3 4.95930- 4 1.90000+ 1 2.46300- 4 5.07250- 4 2.90000+ 1 1.28520- 4 6.30690- 4 3.00000+ 1 1.96650- 5 6.31830- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 3.38489- 3 1.38000- 6 1.40000+ 1 3.00000+ 1 1.02811- 2 2.52000- 6 1.60000+ 1 1.60000+ 1 6.84787- 5 2.59380- 4 1.60000+ 1 1.80000+ 1 6.38803- 3 3.04890- 4 1.60000+ 1 1.90000+ 1 5.33157- 3 3.16210- 4 1.60000+ 1 2.10000+ 1 1.15812- 1 3.90380- 4 1.60000+ 1 2.20000+ 1 1.68894- 2 3.92160- 4 1.60000+ 1 2.70000+ 1 2.93474- 5 4.29410- 4 1.60000+ 1 2.90000+ 1 3.91313- 4 4.39650- 4 1.60000+ 1 3.00000+ 1 2.39662- 4 4.40790- 4 1.80000+ 1 1.80000+ 1 1.80983- 3 3.50400- 4 1.80000+ 1 1.90000+ 1 1.79904- 2 3.61720- 4 1.80000+ 1 2.10000+ 1 9.12801- 2 4.35890- 4 1.80000+ 1 2.20000+ 1 8.04146- 3 4.37670- 4 1.80000+ 1 2.70000+ 1 4.05992- 4 4.74920- 4 1.80000+ 1 2.90000+ 1 2.49455- 4 4.85160- 4 1.80000+ 1 3.00000+ 1 1.00278- 3 4.86300- 4 1.90000+ 1 1.90000+ 1 7.05347- 3 3.73040- 4 1.90000+ 1 2.10000+ 1 2.01890- 1 4.47210- 4 1.90000+ 1 2.20000+ 1 7.83106- 3 4.48990- 4 1.90000+ 1 2.70000+ 1 4.25550- 4 4.86240- 4 1.90000+ 1 2.90000+ 1 1.04191- 3 4.96480- 4 1.90000+ 1 3.00000+ 1 7.67957- 4 4.97620- 4 2.10000+ 1 2.10000+ 1 1.49466- 1 5.21380- 4 2.10000+ 1 2.20000+ 1 3.07351- 1 5.23160- 4 2.10000+ 1 2.70000+ 1 1.38522- 2 5.60410- 4 2.10000+ 1 2.90000+ 1 7.06321- 3 5.70650- 4 2.10000+ 1 3.00000+ 1 1.45272- 2 5.71790- 4 2.20000+ 1 2.20000+ 1 5.06749- 3 5.24940- 4 2.20000+ 1 2.70000+ 1 1.12018- 3 5.62190- 4 2.20000+ 1 2.90000+ 1 4.25547- 4 5.72430- 4 2.20000+ 1 3.00000+ 1 4.64680- 4 5.73570- 4 2.70000+ 1 2.90000+ 1 2.93480- 5 6.09680- 4 2.70000+ 1 3.00000+ 1 1.95660- 5 6.10820- 4 2.90000+ 1 2.90000+ 1 3.58687- 6 6.19920- 4 2.90000+ 1 3.00000+ 1 4.66291- 5 6.21060- 4 3.00000+ 1 3.00000+ 1 1.95660- 5 6.22200- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.66508- 3 4.95100- 4 3.00000+ 1 1.32809- 4 6.19680- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.75311- 4 2.47230- 4 1.60000+ 1 1.80000+ 1 2.95120- 3 2.92740- 4 1.60000+ 1 1.90000+ 1 9.90049- 3 3.04060- 4 1.60000+ 1 2.10000+ 1 1.25452- 2 3.78230- 4 1.60000+ 1 2.20000+ 1 1.23305- 1 3.80010- 4 1.60000+ 1 2.70000+ 1 3.89587- 5 4.17260- 4 1.60000+ 1 2.90000+ 1 1.07138- 4 4.27500- 4 1.60000+ 1 3.00000+ 1 5.35689- 4 4.28640- 4 1.80000+ 1 1.90000+ 1 1.78970- 2 3.49570- 4 1.80000+ 1 2.10000+ 1 1.40733- 3 4.23740- 4 1.80000+ 1 2.20000+ 1 1.13251- 1 4.25520- 4 1.80000+ 1 2.70000+ 1 2.09417- 4 4.62770- 4 1.80000+ 1 3.00000+ 1 9.93477- 4 4.74150- 4 1.90000+ 1 1.90000+ 1 1.32276- 2 3.60890- 4 1.90000+ 1 2.10000+ 1 1.04265- 2 4.35060- 4 1.90000+ 1 2.20000+ 1 1.87009- 1 4.36840- 4 1.90000+ 1 2.70000+ 1 7.15892- 4 4.74090- 4 1.90000+ 1 2.90000+ 1 9.69124- 4 4.84330- 4 1.90000+ 1 3.00000+ 1 1.50969- 3 4.85470- 4 2.10000+ 1 2.10000+ 1 2.07946- 3 5.09230- 4 2.10000+ 1 2.20000+ 1 2.13718- 1 5.11010- 4 2.10000+ 1 2.70000+ 1 8.23009- 4 5.48260- 4 2.10000+ 1 2.90000+ 1 1.02266- 4 5.58500- 4 2.10000+ 1 3.00000+ 1 5.55166- 4 5.59640- 4 2.20000+ 1 2.20000+ 1 2.47234- 1 5.12790- 4 2.20000+ 1 2.70000+ 1 1.43119- 2 5.50040- 4 2.20000+ 1 2.90000+ 1 8.47865- 3 5.60280- 4 2.20000+ 1 3.00000+ 1 1.35530- 2 5.61420- 4 2.70000+ 1 2.90000+ 1 5.82756- 6 5.97530- 4 2.70000+ 1 3.00000+ 1 5.24479- 5 5.98670- 4 2.90000+ 1 3.00000+ 1 5.84394- 5 6.08910- 4 3.00000+ 1 3.00000+ 1 5.52515- 5 6.10050- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.15500- 5 4.55100- 5 1.90000+ 1 4.13561- 5 5.68300- 5 2.90000+ 1 6.85555- 6 1.80270- 4 3.00000+ 1 6.45112- 6 1.81410- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 7.11118- 2 2.45000- 5 1.80000+ 1 2.90000+ 1 3.36908- 2 3.47400- 5 1.80000+ 1 3.00000+ 1 7.86198- 2 3.58800- 5 1.90000+ 1 2.10000+ 1 7.94422- 2 0.00000+ 0 1.90000+ 1 2.20000+ 1 1.93271- 1 0.00000+ 0 1.90000+ 1 2.70000+ 1 9.61990- 2 3.58200- 5 1.90000+ 1 2.90000+ 1 6.67229- 2 4.60600- 5 1.90000+ 1 3.00000+ 1 9.14419- 2 4.72000- 5 2.10000+ 1 2.10000+ 1 4.72047- 3 7.09600- 5 2.10000+ 1 2.20000+ 1 8.19960- 2 7.27400- 5 2.10000+ 1 2.70000+ 1 2.52415- 2 1.09990- 4 2.10000+ 1 2.90000+ 1 2.47466- 3 1.20230- 4 2.10000+ 1 3.00000+ 1 1.38191- 2 1.21370- 4 2.20000+ 1 2.20000+ 1 2.96109- 2 7.45200- 5 2.20000+ 1 2.70000+ 1 3.97174- 2 1.11770- 4 2.20000+ 1 2.90000+ 1 1.27417- 2 1.22010- 4 2.20000+ 1 3.00000+ 1 1.22923- 2 1.23150- 4 2.70000+ 1 2.70000+ 1 1.33015- 2 1.49020- 4 2.70000+ 1 2.90000+ 1 1.11636- 2 1.59260- 4 2.70000+ 1 3.00000+ 1 1.95724- 2 1.60400- 4 2.90000+ 1 2.90000+ 1 1.97664- 3 1.69500- 4 2.90000+ 1 3.00000+ 1 1.20355- 2 1.70640- 4 3.00000+ 1 3.00000+ 1 8.77101- 3 1.71780- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 7.65493- 5 8.54900- 5 2.70000+ 1 9.57234- 6 1.24520- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 2.53791- 3 5.50000- 7 1.90000+ 1 3.00000+ 1 3.83562- 3 1.69000- 6 2.10000+ 1 2.10000+ 1 1.61524- 1 2.54500- 5 2.10000+ 1 2.20000+ 1 7.55545- 1 2.72300- 5 2.10000+ 1 2.70000+ 1 1.48220- 2 6.44800- 5 2.10000+ 1 2.90000+ 1 7.67480- 3 7.47200- 5 2.10000+ 1 3.00000+ 1 1.54078- 2 7.58600- 5 2.20000+ 1 2.20000+ 1 2.60528- 2 2.90100- 5 2.20000+ 1 2.70000+ 1 1.93171- 3 6.62600- 5 2.20000+ 1 2.90000+ 1 7.76571- 3 7.65000- 5 2.20000+ 1 3.00000+ 1 1.67889- 3 7.76400- 5 2.70000+ 1 2.70000+ 1 1.70899- 5 1.03510- 4 2.70000+ 1 2.90000+ 1 4.28094- 4 1.13750- 4 2.70000+ 1 3.00000+ 1 5.13775- 5 1.14890- 4 2.90000+ 1 2.90000+ 1 1.35670- 4 1.23990- 4 2.90000+ 1 3.00000+ 1 4.89932- 4 1.25130- 4 3.00000+ 1 3.00000+ 1 1.55081- 5 1.26270- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.95100- 6 7.41700- 5 2.20000+ 1 1.98800- 5 7.59500- 5 2.70000+ 1 3.61780- 6 1.13200- 4 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 2.44338- 2 1.41300- 5 2.10000+ 1 2.20000+ 1 5.70180- 1 1.59100- 5 2.10000+ 1 2.70000+ 1 1.58818- 3 5.31600- 5 2.10000+ 1 2.90000+ 1 9.21288- 4 6.34000- 5 2.10000+ 1 3.00000+ 1 4.10725- 3 6.45400- 5 2.20000+ 1 2.20000+ 1 3.69775- 1 1.76900- 5 2.20000+ 1 2.70000+ 1 9.72295- 3 5.49400- 5 2.20000+ 1 2.90000+ 1 6.98697- 3 6.51800- 5 2.20000+ 1 3.00000+ 1 1.13950- 2 6.63200- 5 2.70000+ 1 2.70000+ 1 5.73423- 7 9.21900- 5 2.70000+ 1 2.90000+ 1 2.41797- 5 1.02430- 4 2.70000+ 1 3.00000+ 1 4.28147- 4 1.03570- 4 2.90000+ 1 2.90000+ 1 1.80042- 6 1.12670- 4 2.90000+ 1 3.00000+ 1 1.79420- 4 1.13810- 4 3.00000+ 1 3.00000+ 1 2.29340- 4 1.14950- 4 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.17300- 7 4.92700- 5 3.00000+ 1 3.75201- 8 5.04100- 5 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 2.66873- 1 1.80200- 5 2.70000+ 1 2.90000+ 1 2.29671- 1 2.82600- 5 2.70000+ 1 3.00000+ 1 1.59767- 1 2.94000- 5 2.90000+ 1 2.90000+ 1 8.43844- 2 3.85000- 5 2.90000+ 1 3.00000+ 1 2.12546- 1 3.96400- 5 3.00000+ 1 3.00000+ 1 4.67581- 2 4.07800- 5 1 53000 0 7 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 2.63720- 7 4.86300- 5 1 53000 0 9 1.26904+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 2.50200- 1 1.62400- 5 2.70000+ 1 2.90000+ 1 1.73167- 1 2.64800- 5 2.70000+ 1 3.00000+ 1 3.11382- 1 2.76200- 5 2.90000+ 1 2.90000+ 1 1.19119- 2 3.67200- 5 2.90000+ 1 3.00000+ 1 1.06558- 1 3.78600- 5 3.00000+ 1 3.00000+ 1 1.46780- 1 3.90000- 5 1 54000 0 0 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 1 54000 0 0 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.45560- 2 3.00000+ 0 5.41690- 3 5.00000+ 0 5.10390- 3 6.00000+ 0 4.77470- 3 8.00000+ 0 1.12200- 3 1.00000+ 1 9.89470- 4 1.10000+ 1 9.26560- 4 1.30000+ 1 6.90910- 4 1.40000+ 1 6.77520- 4 1.60000+ 1 2.08370- 4 1.80000+ 1 1.60690- 4 1.90000+ 1 1.47980- 4 2.10000+ 1 6.98400- 5 2.20000+ 1 6.77800- 5 2.70000+ 1 2.36100- 5 2.90000+ 1 1.23500- 5 3.00000+ 1 1.09600- 5 1 54000 0 0 1.31300+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.41650- 2 3.00000+ 0 9.67360- 3 5.00000+ 0 9.68320- 3 6.00000+ 0 8.48370- 3 8.00000+ 0 2.84190- 3 1.00000+ 1 2.77100- 3 1.10000+ 1 2.50140- 3 1.30000+ 1 2.37540- 3 1.40000+ 1 2.31030- 3 1.60000+ 1 8.22970- 4 1.80000+ 1 7.53150- 4 1.90000+ 1 6.83660- 4 2.10000+ 1 5.37930- 4 2.20000+ 1 5.23060- 4 2.70000+ 1 1.53750- 4 2.90000+ 1 1.09170- 4 3.00000+ 1 9.55500- 5 1 54000 0 0 1.31300+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.40830-10 3.00000+ 0 6.02020-10 5.00000+ 0 5.06640-10 6.00000+ 0 5.37150-10 8.00000+ 0 1.60870- 9 1.00000+ 1 1.55350- 9 1.10000+ 1 1.61450- 9 1.30000+ 1 1.45740- 9 1.40000+ 1 1.47670- 9 1.60000+ 1 3.74960- 9 1.80000+ 1 3.88860- 9 1.90000+ 1 4.03150- 9 2.10000+ 1 4.48720- 9 2.20000+ 1 4.54120- 9 2.70000+ 1 9.52650- 9 2.90000+ 1 1.12990- 8 3.00000+ 1 1.19170- 8 1 54000 0 0 1.31300+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.89110- 6 3.00000+ 0 1.63080- 7 5.00000+ 0 2.73940- 7 6.00000+ 0 2.57740- 7 8.00000+ 0 4.09610- 9 1.00000+ 1 4.04460- 9 1.10000+ 1 4.01550- 9 1.30000+ 1 3.12170-10 1.40000+ 1 2.65500-10 1.60000+ 1 9.60210-11 1.80000+ 1 2.31370-10 1.90000+ 1 1.78880-10 2.10000+ 1 8.24740-12 2.20000+ 1 7.14820-12 1 54000 0 0 1.31300+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21660- 6 3.00000+ 0 3.18350- 6 5.00000+ 0 2.57720- 6 6.00000+ 0 2.36740- 6 8.00000+ 0 1.11700- 5 1.00000+ 1 4.97630- 6 1.10000+ 1 5.57280- 6 1.30000+ 1 5.94600- 7 1.40000+ 1 5.95720- 7 1.60000+ 1 5.19810- 6 1.80000+ 1 2.57050- 5 1.90000+ 1 3.19730- 5 2.10000+ 1 8.04910- 8 2.20000+ 1 8.04240- 8 1 54000 0 0 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.95232- 4 3.00000+ 0 2.24658- 4 5.00000+ 0 1.91948- 4 6.00000+ 0 1.83034- 4 8.00000+ 0 1.62675- 4 1.00000+ 1 1.38351- 4 1.10000+ 1 1.35176- 4 1.30000+ 1 8.28408- 5 1.40000+ 1 8.38129- 5 1.60000+ 1 7.00740- 5 1.80000+ 1 6.52099- 5 1.90000+ 1 6.59767- 5 2.10000+ 1 3.26813- 5 2.20000+ 1 3.37864- 5 2.70000+ 1 2.36100- 5 2.90000+ 1 1.23500- 5 3.00000+ 1 1.09600- 5 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.85656- 1 3.00000+ 0 1.02250- 1 5.00000+ 0 1.12040- 1 6.00000+ 0 9.68522- 2 8.00000+ 0 3.83145- 3 1.00000+ 1 4.09277- 3 1.10000+ 1 3.86246- 3 1.30000+ 1 2.36070- 3 1.40000+ 1 2.17642- 3 1.60000+ 1 1.11344- 4 1.80000+ 1 1.05423- 4 1.90000+ 1 3.19463- 5 2.10000+ 1 5.19939- 7 2.20000+ 1 5.35970- 7 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.75166- 2 3.00000+ 0 4.32284- 4 5.00000+ 0 4.76926- 4 6.00000+ 0 3.83777- 4 8.00000+ 0 2.54431- 6 1.00000+ 1 2.61042- 6 1.10000+ 1 2.46566- 6 1.30000+ 1 1.27197- 6 1.40000+ 1 1.16302- 6 1.60000+ 1 1.03542- 8 1.80000+ 1 1.01199- 8 1.90000+ 1 2.74361- 9 2.10000+ 1 2.99968-11 2.20000+ 1 3.04538-11 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07484+ 1 3.00000+ 0 1.25173+ 1 5.00000+ 0 1.05706+ 1 6.00000+ 0 1.00016+ 1 8.00000+ 0 8.78902+ 0 1.00000+ 1 7.36088+ 0 1.10000+ 1 7.12207+ 0 1.30000+ 1 4.01667+ 0 1.40000+ 1 4.01641+ 0 1.60000+ 1 3.24930+ 0 1.80000+ 1 2.94238+ 0 1.90000+ 1 2.94034+ 0 2.10000+ 1 9.99999- 1 2.20000+ 1 9.99999- 1 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.84418- 3 3.00000+ 0 4.75996- 3 5.00000+ 0 4.43503- 3 6.00000+ 0 4.20789- 3 8.00000+ 0 9.56781- 4 1.00000+ 1 8.48509- 4 1.10000+ 1 7.88919- 4 1.30000+ 1 6.06797- 4 1.40000+ 1 5.92544- 4 1.60000+ 1 1.38286- 4 1.80000+ 1 9.54699- 5 1.90000+ 1 8.20005- 5 2.10000+ 1 3.71587- 5 2.20000+ 1 3.39936- 5 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.55988- 1 2.94521- 2 6.00000+ 0 4.74077- 1 2.97813- 2 1.00000+ 1 4.45027- 2 3.35665- 2 1.10000+ 1 8.62775- 2 3.36294- 2 1.30000+ 1 4.38977- 4 3.38651- 2 1.40000+ 1 5.99496- 4 3.38785- 2 1.80000+ 1 9.33064- 3 3.43953- 2 1.90000+ 1 1.81979- 2 3.44080- 2 2.10000+ 1 8.18305- 5 3.44862- 2 2.20000+ 1 1.11539- 4 3.44882- 2 2.90000+ 1 9.56254- 4 3.45436- 2 3.00000+ 1 1.80819- 3 3.45450- 2 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 8.66166- 3 2.37222- 2 3.00000+ 0 5.00000+ 0 1.02644- 2 2.40352- 2 3.00000+ 0 6.00000+ 0 1.23564- 2 2.43644- 2 3.00000+ 0 8.00000+ 0 3.08562- 3 2.80171- 2 3.00000+ 0 1.00000+ 1 1.95658- 3 2.81496- 2 3.00000+ 0 1.10000+ 1 2.38363- 3 2.82125- 2 3.00000+ 0 1.30000+ 1 1.53828- 4 2.84482- 2 3.00000+ 0 1.40000+ 1 1.67791- 4 2.84616- 2 3.00000+ 0 1.60000+ 1 6.64150- 4 2.89307- 2 3.00000+ 0 1.80000+ 1 3.96230- 4 2.89784- 2 3.00000+ 0 1.90000+ 1 4.79527- 4 2.89911- 2 3.00000+ 0 2.10000+ 1 2.76823- 5 2.90693- 2 3.00000+ 0 2.20000+ 1 2.98489- 5 2.90713- 2 3.00000+ 0 2.70000+ 1 9.46053- 5 2.91155- 2 3.00000+ 0 2.90000+ 1 4.09221- 5 2.91267- 2 3.00000+ 0 3.00000+ 1 4.69406- 5 2.91281- 2 5.00000+ 0 5.00000+ 0 1.25048- 3 2.43482- 2 5.00000+ 0 6.00000+ 0 2.62988- 2 2.46774- 2 5.00000+ 0 8.00000+ 0 1.51823- 3 2.83301- 2 5.00000+ 0 1.00000+ 1 4.28008- 4 2.84626- 2 5.00000+ 0 1.10000+ 1 4.24412- 3 2.85255- 2 5.00000+ 0 1.30000+ 1 1.83434- 4 2.87612- 2 5.00000+ 0 1.40000+ 1 6.15039- 4 2.87746- 2 5.00000+ 0 1.60000+ 1 3.14624- 4 2.92437- 2 5.00000+ 0 1.80000+ 1 8.49746- 5 2.92914- 2 5.00000+ 0 1.90000+ 1 8.25682- 4 2.93041- 2 5.00000+ 0 2.10000+ 1 3.24971- 5 2.93823- 2 5.00000+ 0 2.20000+ 1 1.08087- 4 2.93843- 2 5.00000+ 0 2.70000+ 1 4.45331- 5 2.94285- 2 5.00000+ 0 2.90000+ 1 8.66599- 6 2.94398- 2 5.00000+ 0 3.00000+ 1 8.06413- 5 2.94411- 2 6.00000+ 0 6.00000+ 0 1.31388- 2 2.50066- 2 6.00000+ 0 8.00000+ 0 1.78907- 3 2.86593- 2 6.00000+ 0 1.00000+ 1 4.13904- 3 2.87918- 2 6.00000+ 0 1.10000+ 1 4.35297- 3 2.88547- 2 6.00000+ 0 1.30000+ 1 7.31324- 4 2.90904- 2 6.00000+ 0 1.40000+ 1 6.73074- 4 2.91038- 2 6.00000+ 0 1.60000+ 1 3.69038- 4 2.95729- 2 6.00000+ 0 1.80000+ 1 8.09080- 4 2.96206- 2 6.00000+ 0 1.90000+ 1 8.51687- 4 2.96333- 2 6.00000+ 0 2.10000+ 1 1.29275- 4 2.97115- 2 6.00000+ 0 2.20000+ 1 1.18682- 4 2.97135- 2 6.00000+ 0 2.70000+ 1 5.22368- 5 2.97577- 2 6.00000+ 0 2.90000+ 1 8.32919- 5 2.97689- 2 6.00000+ 0 3.00000+ 1 8.32919- 5 2.97703- 2 8.00000+ 0 8.00000+ 0 2.70593- 4 3.23120- 2 8.00000+ 0 1.00000+ 1 2.92261- 4 3.24445- 2 8.00000+ 0 1.10000+ 1 3.47861- 4 3.25074- 2 8.00000+ 0 1.30000+ 1 2.11847- 5 3.27431- 2 8.00000+ 0 1.40000+ 1 2.23884- 5 3.27565- 2 8.00000+ 0 1.60000+ 1 1.16271- 4 3.32256- 2 8.00000+ 0 1.80000+ 1 5.92216- 5 3.32733- 2 8.00000+ 0 1.90000+ 1 7.00556- 5 3.32860- 2 8.00000+ 0 2.10000+ 1 3.85184- 6 3.33642- 2 8.00000+ 0 2.20000+ 1 4.09250- 6 3.33662- 2 8.00000+ 0 2.70000+ 1 1.66113- 5 3.34104- 2 8.00000+ 0 2.90000+ 1 6.01855- 6 3.34216- 2 8.00000+ 0 3.00000+ 1 6.98139- 6 3.34230- 2 1.00000+ 1 1.00000+ 1 3.51465- 5 3.25771- 2 1.00000+ 1 1.10000+ 1 6.78846- 4 3.26400- 2 1.00000+ 1 1.30000+ 1 2.28686- 5 3.28756- 2 1.00000+ 1 1.40000+ 1 7.58282- 5 3.28890- 2 1.00000+ 1 1.60000+ 1 6.06623- 5 3.33582- 2 1.00000+ 1 1.80000+ 1 1.39611- 5 3.34058- 2 1.00000+ 1 1.90000+ 1 1.32398- 4 3.34185- 2 1.00000+ 1 2.10000+ 1 4.09224- 6 3.34967- 2 1.00000+ 1 2.20000+ 1 1.34806- 5 3.34987- 2 1.00000+ 1 2.70000+ 1 8.66606- 6 3.35429- 2 1.00000+ 1 2.90000+ 1 1.44436- 6 3.35542- 2 1.00000+ 1 3.00000+ 1 1.29992- 5 3.35556- 2 1.10000+ 1 1.10000+ 1 3.61812- 4 3.27029- 2 1.10000+ 1 1.30000+ 1 9.62873- 5 3.29385- 2 1.10000+ 1 1.40000+ 1 8.64198- 5 3.29519- 2 1.10000+ 1 1.60000+ 1 7.19762- 5 3.34211- 2 1.10000+ 1 1.80000+ 1 1.33125- 4 3.34687- 2 1.10000+ 1 1.90000+ 1 1.41782- 4 3.34815- 2 1.10000+ 1 2.10000+ 1 1.70917- 5 3.35596- 2 1.10000+ 1 2.20000+ 1 1.54066- 5 3.35617- 2 1.10000+ 1 2.70000+ 1 1.01101- 5 3.36058- 2 1.10000+ 1 2.90000+ 1 1.37213- 5 3.36171- 2 1.10000+ 1 3.00000+ 1 1.37213- 5 3.36185- 2 1.30000+ 1 1.40000+ 1 1.13060- 5 3.31876- 2 1.30000+ 1 1.60000+ 1 4.42382- 6 3.36567- 2 1.30000+ 1 1.80000+ 1 4.42382- 6 3.37044- 2 1.30000+ 1 1.90000+ 1 1.84328- 5 3.37171- 2 1.30000+ 1 2.20000+ 1 1.96617- 6 3.37973- 2 1.30000+ 1 2.70000+ 1 7.37293- 7 3.38415- 2 1.30000+ 1 2.90000+ 1 4.91529- 7 3.38527- 2 1.30000+ 1 3.00000+ 1 1.72029- 6 3.38541- 2 1.40000+ 1 1.40000+ 1 2.73182- 6 3.32010- 2 1.40000+ 1 1.60000+ 1 4.71854- 6 3.36701- 2 1.40000+ 1 1.80000+ 1 1.46525- 5 3.37178- 2 1.40000+ 1 1.90000+ 1 1.66394- 5 3.37305- 2 1.40000+ 1 2.10000+ 1 1.98682- 6 3.38086- 2 1.40000+ 1 2.20000+ 1 9.93361- 7 3.38107- 2 1.40000+ 1 2.70000+ 1 7.45035- 7 3.38549- 2 1.40000+ 1 2.90000+ 1 1.49009- 6 3.38661- 2 1.40000+ 1 3.00000+ 1 1.49009- 6 3.38675- 2 1.60000+ 1 1.60000+ 1 1.26247- 5 3.41393- 2 1.60000+ 1 1.80000+ 1 1.23819- 5 3.41869- 2 1.60000+ 1 1.90000+ 1 1.45671- 5 3.41996- 2 1.60000+ 1 2.10000+ 1 7.28344- 7 3.42778- 2 1.60000+ 1 2.20000+ 1 7.28344- 7 3.42798- 2 1.60000+ 1 2.70000+ 1 3.64173- 6 3.43240- 2 1.60000+ 1 2.90000+ 1 1.21391- 6 3.43353- 2 1.60000+ 1 3.00000+ 1 1.45671- 6 3.43367- 2 1.80000+ 1 1.80000+ 1 1.42393- 6 3.42346- 2 1.80000+ 1 1.90000+ 1 2.56306- 5 3.42473- 2 1.80000+ 1 2.10000+ 1 7.11955- 7 3.43255- 2 1.80000+ 1 2.20000+ 1 2.37328- 6 3.43275- 2 1.80000+ 1 2.70000+ 1 1.66117- 6 3.43717- 2 1.80000+ 1 2.90000+ 1 2.37328- 7 3.43830- 2 1.80000+ 1 3.00000+ 1 2.61053- 6 3.43843- 2 1.90000+ 1 1.90000+ 1 1.39612- 5 3.42600- 2 1.90000+ 1 2.10000+ 1 3.12947- 6 3.43382- 2 1.90000+ 1 2.20000+ 1 2.88873- 6 3.43402- 2 1.90000+ 1 2.70000+ 1 2.16649- 6 3.43844- 2 1.90000+ 1 2.90000+ 1 2.64799- 6 3.43957- 2 1.90000+ 1 3.00000+ 1 2.64799- 6 3.43971- 2 2.10000+ 1 2.20000+ 1 5.34297- 7 3.44184- 2 2.10000+ 1 3.00000+ 1 5.34297- 7 3.44752- 2 2.20000+ 1 2.90000+ 1 4.27857- 7 3.44759- 2 2.20000+ 1 3.00000+ 1 4.27857- 7 3.44773- 2 2.70000+ 1 2.70000+ 1 2.81545- 7 3.45088- 2 2.70000+ 1 2.90000+ 1 2.81545- 7 3.45200- 2 2.70000+ 1 3.00000+ 1 2.81545- 7 3.45214- 2 2.90000+ 1 3.00000+ 1 3.41278- 7 3.45327- 2 3.00000+ 1 3.00000+ 1 2.40729- 7 3.45341- 2 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.98398- 5 3.13000- 4 6.00000+ 0 3.73327- 4 6.42200- 4 1.00000+ 1 1.38829- 2 4.42743- 3 1.10000+ 1 2.18758- 2 4.49034- 3 1.30000+ 1 2.06838- 4 4.72599- 3 1.40000+ 1 3.08777- 4 4.73938- 3 1.80000+ 1 2.99258- 3 5.25621- 3 1.90000+ 1 4.83886- 3 5.26892- 3 2.10000+ 1 2.51578- 5 5.34706- 3 2.20000+ 1 3.82137- 5 5.34912- 3 2.90000+ 1 3.40147- 4 5.40455- 3 3.00000+ 1 5.28266- 4 5.40594- 3 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.69431- 2 1.04630- 4 5.00000+ 0 1.80000+ 1 4.06576- 2 1.52310- 4 5.00000+ 0 1.90000+ 1 5.15253- 2 1.65020- 4 5.00000+ 0 2.10000+ 1 1.31854- 2 2.43160- 4 5.00000+ 0 2.20000+ 1 2.18037- 2 2.45220- 4 5.00000+ 0 2.70000+ 1 7.77756- 3 2.89390- 4 5.00000+ 0 2.90000+ 1 3.96775- 3 3.00650- 4 5.00000+ 0 3.00000+ 1 4.77790- 3 3.02040- 4 6.00000+ 0 1.60000+ 1 7.43055- 2 4.33830- 4 6.00000+ 0 1.80000+ 1 3.23640- 2 4.81510- 4 6.00000+ 0 1.90000+ 1 6.09524- 2 4.94220- 4 6.00000+ 0 2.10000+ 1 6.22297- 2 5.72360- 4 6.00000+ 0 2.20000+ 1 8.00767- 2 5.74420- 4 6.00000+ 0 2.70000+ 1 1.02309- 2 6.18590- 4 6.00000+ 0 2.90000+ 1 3.22316- 3 6.29850- 4 6.00000+ 0 3.00000+ 1 5.81492- 3 6.31240- 4 8.00000+ 0 8.00000+ 0 1.34704- 2 3.17290- 3 8.00000+ 0 1.00000+ 1 2.67210- 2 3.30543- 3 8.00000+ 0 1.10000+ 1 4.93433- 2 3.36834- 3 8.00000+ 0 1.30000+ 1 3.87315- 2 3.60399- 3 8.00000+ 0 1.40000+ 1 5.46919- 2 3.61738- 3 8.00000+ 0 1.60000+ 1 4.95078- 3 4.08653- 3 8.00000+ 0 1.80000+ 1 5.29200- 3 4.13421- 3 8.00000+ 0 1.90000+ 1 9.69018- 3 4.14692- 3 8.00000+ 0 2.10000+ 1 5.94375- 3 4.22506- 3 8.00000+ 0 2.20000+ 1 8.34214- 3 4.22712- 3 8.00000+ 0 2.70000+ 1 6.89327- 4 4.27129- 3 8.00000+ 0 2.90000+ 1 5.44942- 4 4.28255- 3 8.00000+ 0 3.00000+ 1 9.47105- 4 4.28394- 3 1.00000+ 1 1.00000+ 1 1.55808- 4 3.43796- 3 1.00000+ 1 1.10000+ 1 9.80531- 4 3.50087- 3 1.00000+ 1 1.30000+ 1 1.09226- 3 3.73652- 3 1.00000+ 1 1.40000+ 1 1.43276- 2 3.74991- 3 1.00000+ 1 1.60000+ 1 3.95236- 3 4.21906- 3 1.00000+ 1 1.80000+ 1 3.26282- 5 4.26674- 3 1.00000+ 1 1.90000+ 1 1.81912- 4 4.27945- 3 1.00000+ 1 2.10000+ 1 1.68037- 4 4.35759- 3 1.00000+ 1 2.20000+ 1 1.47329- 3 4.35965- 3 1.00000+ 1 2.70000+ 1 5.26152- 4 4.40382- 3 1.00000+ 1 2.90000+ 1 3.26282- 6 4.41508- 3 1.00000+ 1 3.00000+ 1 1.79464- 5 4.41647- 3 1.10000+ 1 1.10000+ 1 1.15513- 3 3.56378- 3 1.10000+ 1 1.30000+ 1 9.88891- 3 3.79943- 3 1.10000+ 1 1.40000+ 1 6.71326- 3 3.81282- 3 1.10000+ 1 1.60000+ 1 7.29570- 3 4.28197- 3 1.10000+ 1 1.80000+ 1 1.82737- 4 4.32965- 3 1.10000+ 1 1.90000+ 1 3.46720- 4 4.34236- 3 1.10000+ 1 2.10000+ 1 8.84304- 4 4.42050- 3 1.10000+ 1 2.20000+ 1 6.19996- 4 4.42256- 3 1.10000+ 1 2.70000+ 1 9.71613- 4 4.46673- 3 1.10000+ 1 2.90000+ 1 1.87633- 5 4.47799- 3 1.10000+ 1 3.00000+ 1 3.26303- 5 4.47938- 3 1.30000+ 1 1.30000+ 1 2.11287- 3 4.03508- 3 1.30000+ 1 1.40000+ 1 7.75065- 2 4.04847- 3 1.30000+ 1 1.60000+ 1 5.42578- 3 4.51762- 3 1.30000+ 1 1.80000+ 1 2.81438- 4 4.56530- 3 1.30000+ 1 1.90000+ 1 1.96689- 3 4.57801- 3 1.30000+ 1 2.10000+ 1 6.43642- 4 4.65615- 3 1.30000+ 1 2.20000+ 1 8.78828- 3 4.65821- 3 1.30000+ 1 2.70000+ 1 7.17055- 4 4.70238- 3 1.30000+ 1 2.90000+ 1 3.01835- 5 4.71364- 3 1.30000+ 1 3.00000+ 1 1.92525- 4 4.71503- 3 1.40000+ 1 1.40000+ 1 2.17703- 2 4.06186- 3 1.40000+ 1 1.60000+ 1 7.70643- 3 4.53101- 3 1.40000+ 1 1.80000+ 1 2.59329- 3 4.57869- 3 1.40000+ 1 1.90000+ 1 1.40068- 3 4.59140- 3 1.40000+ 1 2.10000+ 1 8.70981- 3 4.66954- 3 1.40000+ 1 2.20000+ 1 5.15306- 3 4.67160- 3 1.40000+ 1 2.70000+ 1 1.01963- 3 4.71577- 3 1.40000+ 1 2.90000+ 1 2.63493- 4 4.72703- 3 1.40000+ 1 3.00000+ 1 1.37862- 4 4.72842- 3 1.60000+ 1 1.60000+ 1 4.32375- 4 5.00016- 3 1.60000+ 1 1.80000+ 1 7.84776- 4 5.04784- 3 1.60000+ 1 1.90000+ 1 1.43573- 3 5.06055- 3 1.60000+ 1 2.10000+ 1 8.30437- 4 5.13869- 3 1.60000+ 1 2.20000+ 1 1.17056- 3 5.14075- 3 1.60000+ 1 2.70000+ 1 1.19103- 4 5.18492- 3 1.60000+ 1 2.90000+ 1 8.07632- 5 5.19618- 3 1.60000+ 1 3.00000+ 1 1.40313- 4 5.19757- 3 1.80000+ 1 1.80000+ 1 1.63148- 6 5.09552- 3 1.80000+ 1 1.90000+ 1 3.42610- 5 5.10823- 3 1.80000+ 1 2.10000+ 1 3.67101- 5 5.18637- 3 1.80000+ 1 2.20000+ 1 2.74906- 4 5.18843- 3 1.80000+ 1 2.70000+ 1 1.04424- 4 5.23260- 3 1.80000+ 1 3.00000+ 1 3.26296- 6 5.24525- 3 1.90000+ 1 1.90000+ 1 2.74199- 5 5.12094- 3 1.90000+ 1 2.10000+ 1 1.95369- 4 5.19908- 3 1.90000+ 1 2.20000+ 1 1.43096- 4 5.20114- 3 1.90000+ 1 2.70000+ 1 2.00512- 4 5.24531- 3 1.90000+ 1 2.90000+ 1 3.42744- 6 5.25657- 3 1.90000+ 1 3.00000+ 1 5.14125- 6 5.25796- 3 2.10000+ 1 2.10000+ 1 4.95404- 5 5.27722- 3 2.10000+ 1 2.20000+ 1 1.11855- 3 5.27928- 3 2.10000+ 1 2.70000+ 1 1.16462- 4 5.32345- 3 2.10000+ 1 2.90000+ 1 4.34560- 6 5.33471- 3 2.10000+ 1 3.00000+ 1 1.99905- 5 5.33610- 3 2.20000+ 1 2.20000+ 1 3.50437- 4 5.28134- 3 2.20000+ 1 2.70000+ 1 1.69423- 4 5.32551- 3 2.20000+ 1 2.90000+ 1 3.03172- 5 5.33677- 3 2.20000+ 1 3.00000+ 1 1.51580- 5 5.33816- 3 2.70000+ 1 2.70000+ 1 7.76019- 6 5.36968- 3 2.70000+ 1 2.90000+ 1 1.00891- 5 5.38094- 3 2.70000+ 1 3.00000+ 1 1.78484- 5 5.38233- 3 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.04308- 8 3.29200- 4 8.00000+ 0 4.02949- 3 3.98190- 3 1.10000+ 1 5.82469- 5 4.17734- 3 1.30000+ 1 7.49118- 2 4.41299- 3 1.60000+ 1 5.74889- 4 4.89553- 3 1.90000+ 1 7.20318- 6 4.95592- 3 2.10000+ 1 1.11830- 2 5.03406- 3 2.70000+ 1 6.89998- 5 5.08029- 3 3.00000+ 1 7.86878- 7 5.09294- 3 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.18029- 2 1.20830- 4 6.00000+ 0 1.80000+ 1 5.17412- 2 1.68510- 4 6.00000+ 0 1.90000+ 1 1.78166- 2 1.81220- 4 6.00000+ 0 2.10000+ 1 6.41393- 2 2.59360- 4 6.00000+ 0 2.20000+ 1 2.38654- 2 2.61420- 4 6.00000+ 0 2.70000+ 1 1.50864- 3 3.05590- 4 6.00000+ 0 2.90000+ 1 5.09719- 3 3.16850- 4 6.00000+ 0 3.00000+ 1 1.72846- 3 3.18240- 4 8.00000+ 0 8.00000+ 0 1.06054- 3 2.85990- 3 8.00000+ 0 1.00000+ 1 2.55320- 2 2.99243- 3 8.00000+ 0 1.10000+ 1 2.44630- 3 3.05534- 3 8.00000+ 0 1.30000+ 1 1.93866- 3 3.29099- 3 8.00000+ 0 1.40000+ 1 3.44740- 3 3.30438- 3 8.00000+ 0 1.60000+ 1 3.62792- 4 3.77353- 3 8.00000+ 0 1.80000+ 1 3.49728- 3 3.82121- 3 8.00000+ 0 1.90000+ 1 4.28047- 4 3.83392- 3 8.00000+ 0 2.10000+ 1 2.14985- 4 3.91206- 3 8.00000+ 0 2.20000+ 1 3.33025- 4 3.91412- 3 8.00000+ 0 2.70000+ 1 4.99075- 5 3.95829- 3 8.00000+ 0 2.90000+ 1 3.39753- 4 3.96955- 3 8.00000+ 0 3.00000+ 1 4.12702- 5 3.97094- 3 1.00000+ 1 1.00000+ 1 2.50355- 2 3.12496- 3 1.00000+ 1 1.10000+ 1 7.82246- 2 3.18787- 3 1.00000+ 1 1.30000+ 1 4.14630- 2 3.42352- 3 1.00000+ 1 1.40000+ 1 7.09763- 2 3.43691- 3 1.00000+ 1 1.60000+ 1 5.59516- 3 3.90606- 3 1.00000+ 1 1.80000+ 1 8.52327- 3 3.95374- 3 1.00000+ 1 1.90000+ 1 1.51001- 2 3.96645- 3 1.00000+ 1 2.10000+ 1 6.34856- 3 4.04459- 3 1.00000+ 1 2.20000+ 1 1.08434- 2 4.04665- 3 1.00000+ 1 2.70000+ 1 7.98467- 4 4.09082- 3 1.00000+ 1 2.90000+ 1 8.59909- 4 4.10208- 3 1.00000+ 1 3.00000+ 1 1.47120- 3 4.10347- 3 1.10000+ 1 1.10000+ 1 2.05088- 3 3.25078- 3 1.10000+ 1 1.30000+ 1 4.88211- 2 3.48643- 3 1.10000+ 1 1.40000+ 1 6.63360- 3 3.49982- 3 1.10000+ 1 1.60000+ 1 4.60667- 4 3.96897- 3 1.10000+ 1 1.80000+ 1 1.11101- 2 4.01665- 3 1.10000+ 1 1.90000+ 1 6.70842- 4 4.02936- 3 1.10000+ 1 2.10000+ 1 6.46296- 3 4.10750- 3 1.10000+ 1 2.20000+ 1 8.20570- 4 4.10956- 3 1.10000+ 1 2.70000+ 1 6.43017- 5 4.15373- 3 1.10000+ 1 2.90000+ 1 1.08546- 3 4.16499- 3 1.10000+ 1 3.00000+ 1 6.33423- 5 4.16638- 3 1.30000+ 1 1.30000+ 1 4.44831- 2 3.72208- 3 1.30000+ 1 1.40000+ 1 1.90970- 1 3.73547- 3 1.30000+ 1 1.60000+ 1 4.34745- 4 4.20462- 3 1.30000+ 1 1.80000+ 1 5.87078- 3 4.25230- 3 1.30000+ 1 1.90000+ 1 8.90828- 3 4.26501- 3 1.30000+ 1 2.10000+ 1 1.17156- 2 4.34315- 3 1.30000+ 1 2.20000+ 1 2.68071- 2 4.34521- 3 1.30000+ 1 2.70000+ 1 6.23823- 5 4.38938- 3 1.30000+ 1 2.90000+ 1 5.76810- 4 4.40064- 3 1.30000+ 1 3.00000+ 1 8.60891- 4 4.40203- 3 1.40000+ 1 1.40000+ 1 9.10198- 3 3.74886- 3 1.40000+ 1 1.60000+ 1 6.40165- 4 4.21801- 3 1.40000+ 1 1.80000+ 1 8.99930- 3 4.26569- 3 1.40000+ 1 1.90000+ 1 1.10941- 3 4.27840- 3 1.40000+ 1 2.10000+ 1 2.14914- 2 4.35654- 3 1.40000+ 1 2.20000+ 1 2.33408- 3 4.35860- 3 1.40000+ 1 2.70000+ 1 8.92559- 5 4.40277- 3 1.40000+ 1 2.90000+ 1 8.63778- 4 4.41403- 3 1.40000+ 1 3.00000+ 1 1.05571- 4 4.41542- 3 1.60000+ 1 1.60000+ 1 3.27322- 5 4.68716- 3 1.60000+ 1 1.80000+ 1 8.20343- 4 4.73484- 3 1.60000+ 1 1.90000+ 1 8.59216- 5 4.74755- 3 1.60000+ 1 2.10000+ 1 5.01198- 5 4.82569- 3 1.60000+ 1 2.20000+ 1 6.75094- 5 4.82775- 3 1.60000+ 1 2.70000+ 1 9.20597- 6 4.87192- 3 1.60000+ 1 2.90000+ 1 7.97825- 5 4.88318- 3 1.60000+ 1 3.00000+ 1 8.18317- 6 4.88457- 3 1.80000+ 1 1.80000+ 1 6.72093- 4 4.78252- 3 1.80000+ 1 1.90000+ 1 2.07285- 3 4.79523- 3 1.80000+ 1 2.10000+ 1 8.56570- 4 4.87337- 3 1.80000+ 1 2.20000+ 1 1.33677- 3 4.87543- 3 1.80000+ 1 2.70000+ 1 1.06605- 4 4.91960- 3 1.80000+ 1 2.90000+ 1 1.34415- 4 4.93086- 3 1.80000+ 1 3.00000+ 1 2.02088- 4 4.93225- 3 1.90000+ 1 1.90000+ 1 5.68419- 5 4.80794- 3 1.90000+ 1 2.10000+ 1 1.21422- 3 4.88608- 3 1.90000+ 1 2.20000+ 1 1.44067- 4 4.88814- 3 1.90000+ 1 2.70000+ 1 1.17613- 5 4.93231- 3 1.90000+ 1 2.90000+ 1 2.14626- 4 4.94357- 3 1.90000+ 1 3.00000+ 1 1.07805- 5 4.94496- 3 2.10000+ 1 2.10000+ 1 8.05787- 4 4.96422- 3 2.10000+ 1 2.20000+ 1 3.27573- 3 4.96628- 3 2.10000+ 1 2.70000+ 1 7.08574- 6 5.01045- 3 2.10000+ 1 2.90000+ 1 9.11071- 5 5.02171- 3 2.10000+ 1 3.00000+ 1 1.21481- 4 5.02310- 3 2.20000+ 1 2.20000+ 1 1.61273- 4 4.96834- 3 2.20000+ 1 2.70000+ 1 9.24532- 6 5.01251- 3 2.20000+ 1 2.90000+ 1 1.42790- 4 5.02377- 3 2.20000+ 1 3.00000+ 1 1.43812- 5 5.02516- 3 2.70000+ 1 2.70000+ 1 1.05031- 6 5.05668- 3 2.70000+ 1 2.90000+ 1 1.15534- 5 5.06794- 3 2.70000+ 1 3.00000+ 1 1.05031- 6 5.06933- 3 2.90000+ 1 2.90000+ 1 9.11085- 6 5.07920- 3 2.90000+ 1 3.00000+ 1 2.73341- 5 5.08059- 3 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.27630- 3 3.65270- 3 1.00000+ 1 4.01710- 5 3.78523- 3 1.10000+ 1 3.74000- 5 3.84814- 3 1.30000+ 1 7.43320- 3 4.08379- 3 1.40000+ 1 6.58790- 2 4.09718- 3 1.60000+ 1 6.41050- 4 4.56633- 3 1.80000+ 1 3.53540- 6 4.61401- 3 1.90000+ 1 3.39230- 6 4.62672- 3 2.10000+ 1 1.08100- 3 4.70486- 3 2.20000+ 1 9.63999- 3 4.70692- 3 2.70000+ 1 9.02559- 5 4.75109- 3 2.90000+ 1 3.99850- 7 4.76235- 3 3.00000+ 1 3.69190- 7 4.76374- 3 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.38459- 3 2.53070- 3 8.00000+ 0 1.00000+ 1 9.64060- 4 2.66323- 3 8.00000+ 0 1.10000+ 1 2.96214- 2 2.72614- 3 8.00000+ 0 1.30000+ 1 2.89018- 3 2.96179- 3 8.00000+ 0 1.40000+ 1 3.27309- 3 2.97518- 3 8.00000+ 0 1.60000+ 1 4.74737- 4 3.44433- 3 8.00000+ 0 1.80000+ 1 1.58591- 4 3.49201- 3 8.00000+ 0 1.90000+ 1 4.05462- 3 3.50472- 3 8.00000+ 0 2.10000+ 1 2.44153- 4 3.58286- 3 8.00000+ 0 2.20000+ 1 2.55628- 4 3.58492- 3 8.00000+ 0 2.70000+ 1 6.46908- 5 3.62909- 3 8.00000+ 0 2.90000+ 1 1.56507- 5 3.64035- 3 8.00000+ 0 3.00000+ 1 3.74579- 4 3.64174- 3 1.00000+ 1 1.00000+ 1 3.16145- 4 2.79576- 3 1.00000+ 1 1.10000+ 1 4.91920- 2 2.85867- 3 1.00000+ 1 1.30000+ 1 3.16246- 3 3.09432- 3 1.00000+ 1 1.40000+ 1 2.84558- 2 3.10771- 3 1.00000+ 1 1.60000+ 1 1.77374- 4 3.57686- 3 1.00000+ 1 1.80000+ 1 1.04335- 4 3.62454- 3 1.00000+ 1 1.90000+ 1 6.96986- 3 3.63725- 3 1.00000+ 1 2.10000+ 1 4.52813- 4 3.71539- 3 1.00000+ 1 2.20000+ 1 3.55373- 3 3.71745- 3 1.00000+ 1 2.70000+ 1 2.50415- 5 3.76162- 3 1.00000+ 1 2.90000+ 1 1.04335- 5 3.77288- 3 1.00000+ 1 3.00000+ 1 6.47945- 4 3.77427- 3 1.10000+ 1 1.10000+ 1 6.89830- 2 2.92158- 3 1.10000+ 1 1.30000+ 1 6.91441- 2 3.15723- 3 1.10000+ 1 1.40000+ 1 1.03651- 1 3.17062- 3 1.10000+ 1 1.60000+ 1 6.42509- 3 3.63977- 3 1.10000+ 1 1.80000+ 1 9.36020- 3 3.68745- 3 1.10000+ 1 1.90000+ 1 2.30447- 2 3.70016- 3 1.10000+ 1 2.10000+ 1 1.02162- 2 3.77830- 3 1.10000+ 1 2.20000+ 1 1.51275- 2 3.78036- 3 1.10000+ 1 2.70000+ 1 9.16140- 4 3.82453- 3 1.10000+ 1 2.90000+ 1 9.58901- 4 3.83579- 3 1.10000+ 1 3.00000+ 1 2.20269- 3 3.83718- 3 1.30000+ 1 1.30000+ 1 9.89602- 3 3.39288- 3 1.30000+ 1 1.40000+ 1 1.90317- 1 3.40627- 3 1.30000+ 1 1.60000+ 1 5.87458- 4 3.87542- 3 1.30000+ 1 1.80000+ 1 5.99960- 4 3.92310- 3 1.30000+ 1 1.90000+ 1 9.16519- 3 3.93581- 3 1.30000+ 1 2.10000+ 1 2.60751- 3 4.01395- 3 1.30000+ 1 2.20000+ 1 2.16801- 2 4.01601- 3 1.30000+ 1 2.70000+ 1 8.24281- 5 4.06018- 3 1.30000+ 1 2.90000+ 1 6.15604- 5 4.07144- 3 1.30000+ 1 3.00000+ 1 8.43075- 4 4.07283- 3 1.40000+ 1 1.40000+ 1 1.28990- 1 3.41966- 3 1.40000+ 1 1.60000+ 1 7.05325- 4 3.88881- 3 1.40000+ 1 1.80000+ 1 5.05429- 3 3.93649- 3 1.40000+ 1 1.90000+ 1 1.52978- 2 3.94920- 3 1.40000+ 1 2.10000+ 1 2.53349- 2 4.02734- 3 1.40000+ 1 2.20000+ 1 3.25886- 2 4.02940- 3 1.40000+ 1 2.70000+ 1 1.01206- 4 4.07357- 3 1.40000+ 1 2.90000+ 1 5.12294- 4 4.08483- 3 1.40000+ 1 3.00000+ 1 1.43576- 3 4.08622- 3 1.60000+ 1 1.60000+ 1 4.38428- 5 4.35796- 3 1.60000+ 1 1.80000+ 1 3.26012- 5 4.40564- 3 1.60000+ 1 1.90000+ 1 9.49944- 4 4.41835- 3 1.60000+ 1 2.10000+ 1 5.73327- 5 4.49649- 3 1.60000+ 1 2.20000+ 1 6.29540- 5 4.49855- 3 1.60000+ 1 2.70000+ 1 1.23663- 5 4.54272- 3 1.60000+ 1 2.90000+ 1 3.37258- 6 4.55398- 3 1.60000+ 1 3.00000+ 1 8.76855- 5 4.55537- 3 1.80000+ 1 1.80000+ 1 8.02789- 6 4.45332- 3 1.80000+ 1 1.90000+ 1 1.27441- 3 4.46603- 3 1.80000+ 1 2.10000+ 1 8.12818- 5 4.54417- 3 1.80000+ 1 2.20000+ 1 6.24155- 4 4.54623- 3 1.80000+ 1 2.70000+ 1 4.01375- 6 4.59040- 3 1.80000+ 1 2.90000+ 1 2.00687- 6 4.60166- 3 1.80000+ 1 3.00000+ 1 1.18408- 4 4.60305- 3 1.90000+ 1 1.90000+ 1 1.75771- 3 4.47874- 3 1.90000+ 1 2.10000+ 1 1.27636- 3 4.55688- 3 1.90000+ 1 2.20000+ 1 2.07905- 3 4.55894- 3 1.90000+ 1 2.70000+ 1 1.18886- 4 4.60311- 3 1.90000+ 1 2.90000+ 1 1.27731- 4 4.61437- 3 1.90000+ 1 3.00000+ 1 3.34063- 4 4.61576- 3 2.10000+ 1 2.10000+ 1 1.76674- 4 4.63502- 3 2.10000+ 1 2.20000+ 1 3.11867- 3 4.63708- 3 2.10000+ 1 2.70000+ 1 7.68140- 6 4.68125- 3 2.10000+ 1 2.90000+ 1 8.77907- 6 4.69251- 3 2.10000+ 1 3.00000+ 1 1.31689- 4 4.69390- 3 2.20000+ 1 2.20000+ 1 2.27414- 3 4.63914- 3 2.20000+ 1 2.70000+ 1 9.17935- 6 4.68331- 3 2.20000+ 1 2.90000+ 1 7.22866- 5 4.69457- 3 2.20000+ 1 3.00000+ 1 2.27192- 4 4.69596- 3 2.70000+ 1 2.70000+ 1 1.74576- 6 4.72748- 3 2.70000+ 1 3.00000+ 1 1.92042- 5 4.74013- 3 2.90000+ 1 3.00000+ 1 1.56510- 5 4.75139- 3 3.00000+ 1 3.00000+ 1 2.14940- 5 4.75278- 3 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.26204- 5 1.32530- 4 1.10000+ 1 8.43362- 5 1.95440- 4 1.80000+ 1 2.27950- 4 9.61310- 4 1.90000+ 1 3.09248- 4 9.74020- 4 2.90000+ 1 2.84097- 5 1.10965- 3 3.00000+ 1 3.79478- 5 1.11104- 3 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.98435- 2 6.26900- 5 1.00000+ 1 2.20000+ 1 1.23229- 1 6.47500- 5 1.00000+ 1 2.70000+ 1 9.08811- 3 1.08920- 4 1.00000+ 1 2.90000+ 1 6.50251- 3 1.20180- 4 1.00000+ 1 3.00000+ 1 1.08334- 2 1.21570- 4 1.10000+ 1 1.80000+ 1 9.52022- 2 3.47500- 5 1.10000+ 1 1.90000+ 1 1.46209- 1 4.74600- 5 1.10000+ 1 2.10000+ 1 6.59116- 2 1.25600- 4 1.10000+ 1 2.20000+ 1 9.62122- 2 1.27660- 4 1.10000+ 1 2.70000+ 1 1.21415- 2 1.71830- 4 1.10000+ 1 2.90000+ 1 9.05711- 3 1.83090- 4 1.10000+ 1 3.00000+ 1 1.35936- 2 1.84480- 4 1.30000+ 1 1.60000+ 1 3.60225- 2 2.22720- 4 1.30000+ 1 1.80000+ 1 7.61524- 3 2.70400- 4 1.30000+ 1 1.90000+ 1 5.98012- 3 2.83110- 4 1.30000+ 1 2.10000+ 1 9.60553- 3 3.61250- 4 1.30000+ 1 2.20000+ 1 1.17826- 2 3.63310- 4 1.30000+ 1 2.70000+ 1 3.59419- 3 4.07480- 4 1.30000+ 1 2.90000+ 1 6.33647- 4 4.18740- 4 1.30000+ 1 3.00000+ 1 4.63705- 4 4.20130- 4 1.40000+ 1 1.60000+ 1 5.26696- 2 2.36110- 4 1.40000+ 1 1.80000+ 1 1.89730- 3 2.83790- 4 1.40000+ 1 1.90000+ 1 1.49167- 2 2.96500- 4 1.40000+ 1 2.10000+ 1 1.24389- 2 3.74640- 4 1.40000+ 1 2.20000+ 1 1.95409- 2 3.76700- 4 1.40000+ 1 2.70000+ 1 5.22473- 3 4.20870- 4 1.40000+ 1 2.90000+ 1 1.46893- 4 4.32130- 4 1.40000+ 1 3.00000+ 1 1.16445- 3 4.33520- 4 1.60000+ 1 1.60000+ 1 8.51591- 3 7.05260- 4 1.60000+ 1 1.80000+ 1 1.37313- 2 7.52940- 4 1.60000+ 1 1.90000+ 1 2.52760- 2 7.65650- 4 1.60000+ 1 2.10000+ 1 2.47403- 2 8.43790- 4 1.60000+ 1 2.20000+ 1 3.60446- 2 8.45850- 4 1.60000+ 1 2.70000+ 1 2.02363- 3 8.90020- 4 1.60000+ 1 2.90000+ 1 1.39959- 3 9.01280- 4 1.60000+ 1 3.00000+ 1 2.44753- 3 9.02670- 4 1.80000+ 1 1.80000+ 1 7.60174- 4 8.00620- 4 1.80000+ 1 1.90000+ 1 1.85598- 3 8.13330- 4 1.80000+ 1 2.10000+ 1 1.09414- 3 8.91470- 4 1.80000+ 1 2.20000+ 1 4.03762- 4 8.93530- 4 1.80000+ 1 2.70000+ 1 1.29853- 3 9.37700- 4 1.80000+ 1 2.90000+ 1 1.28774- 4 9.48960- 4 1.80000+ 1 3.00000+ 1 1.45389- 4 9.50350- 4 1.90000+ 1 1.90000+ 1 2.40546- 3 8.26040- 4 1.90000+ 1 2.10000+ 1 1.03949- 3 9.04180- 4 1.90000+ 1 2.20000+ 1 2.90518- 3 9.06240- 4 1.90000+ 1 2.70000+ 1 2.31723- 3 9.50410- 4 1.90000+ 1 2.90000+ 1 1.54806- 4 9.61670- 4 1.90000+ 1 3.00000+ 1 3.97824- 4 9.63060- 4 2.10000+ 1 2.10000+ 1 3.13120- 4 9.82320- 4 2.10000+ 1 2.20000+ 1 1.11218- 3 9.84380- 4 2.10000+ 1 2.70000+ 1 2.31403- 3 1.02855- 3 2.10000+ 1 2.90000+ 1 8.55546- 5 1.03981- 3 2.10000+ 1 3.00000+ 1 8.22293- 5 1.04120- 3 2.20000+ 1 2.20000+ 1 7.44067- 4 9.86440- 4 2.20000+ 1 2.70000+ 1 3.39165- 3 1.03061- 3 2.20000+ 1 2.90000+ 1 3.00970- 5 1.04187- 3 2.20000+ 1 3.00000+ 1 2.35758- 4 1.04326- 3 2.70000+ 1 2.70000+ 1 8.60760- 5 1.07478- 3 2.70000+ 1 2.90000+ 1 1.02014- 4 1.08604- 3 2.70000+ 1 3.00000+ 1 1.78524- 4 1.08743- 3 2.90000+ 1 2.90000+ 1 2.23235- 6 1.09730- 3 2.90000+ 1 3.00000+ 1 5.58118- 6 1.09869- 3 3.00000+ 1 3.00000+ 1 1.05390- 5 1.10008- 3 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.23922- 4 2.98560- 4 1.60000+ 1 2.93474- 4 7.81100- 4 2.10000+ 1 1.10941- 3 9.19630- 4 2.70000+ 1 4.42907- 5 9.65860- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.20000+ 1 4.54615- 2 0.00000+ 0 1.10000+ 1 2.70000+ 1 8.17419- 3 3.93000- 5 1.10000+ 1 2.90000+ 1 6.75548- 3 5.05600- 5 1.10000+ 1 3.00000+ 1 7.95812- 3 5.19500- 5 1.30000+ 1 1.60000+ 1 1.26439- 1 9.01900- 5 1.30000+ 1 1.80000+ 1 1.28225- 1 1.37870- 4 1.30000+ 1 1.90000+ 1 1.87814- 1 1.50580- 4 1.30000+ 1 2.10000+ 1 5.27275- 2 2.28720- 4 1.30000+ 1 2.20000+ 1 5.66639- 2 2.30780- 4 1.30000+ 1 2.70000+ 1 1.81619- 2 2.74950- 4 1.30000+ 1 2.90000+ 1 1.15331- 2 2.86210- 4 1.30000+ 1 3.00000+ 1 1.75443- 2 2.87600- 4 1.40000+ 1 1.60000+ 1 2.16181- 2 1.03580- 4 1.40000+ 1 1.80000+ 1 1.55228- 1 1.51260- 4 1.40000+ 1 1.90000+ 1 1.62144- 2 1.63970- 4 1.40000+ 1 2.10000+ 1 3.35803- 3 2.42110- 4 1.40000+ 1 2.20000+ 1 6.97326- 3 2.44170- 4 1.40000+ 1 2.70000+ 1 2.10220- 3 2.88340- 4 1.40000+ 1 2.90000+ 1 1.17157- 2 2.99600- 4 1.40000+ 1 3.00000+ 1 1.38477- 3 3.00990- 4 1.60000+ 1 1.60000+ 1 7.11491- 4 5.72730- 4 1.60000+ 1 1.80000+ 1 1.00712- 2 6.20410- 4 1.60000+ 1 1.90000+ 1 1.64492- 3 6.33120- 4 1.60000+ 1 2.10000+ 1 3.60604- 4 7.11260- 4 1.60000+ 1 2.20000+ 1 1.05443- 3 7.13320- 4 1.60000+ 1 2.70000+ 1 1.61142- 4 7.57490- 4 1.60000+ 1 2.90000+ 1 7.26084- 4 7.68750- 4 1.60000+ 1 3.00000+ 1 1.44113- 4 7.70140- 4 1.80000+ 1 1.80000+ 1 7.18716- 3 6.68090- 4 1.80000+ 1 1.90000+ 1 2.24402- 2 6.80800- 4 1.80000+ 1 2.10000+ 1 1.91939- 2 7.58940- 4 1.80000+ 1 2.20000+ 1 3.19327- 2 7.61000- 4 1.80000+ 1 2.70000+ 1 1.43652- 3 8.05170- 4 1.80000+ 1 2.90000+ 1 1.26701- 3 8.16430- 4 1.80000+ 1 3.00000+ 1 2.16657- 3 8.17820- 4 1.90000+ 1 1.90000+ 1 6.35024- 4 6.93510- 4 1.90000+ 1 2.10000+ 1 1.98394- 3 7.71650- 4 1.90000+ 1 2.20000+ 1 1.44210- 3 7.73710- 4 1.90000+ 1 2.70000+ 1 1.71361- 4 8.17880- 4 1.90000+ 1 2.90000+ 1 1.73954- 3 8.29140- 4 1.90000+ 1 3.00000+ 1 1.04112- 4 8.30530- 4 2.10000+ 1 2.10000+ 1 6.39249- 4 8.49790- 4 2.10000+ 1 2.20000+ 1 1.60199- 3 8.51850- 4 2.10000+ 1 2.70000+ 1 4.45985- 5 8.96020- 4 2.10000+ 1 2.90000+ 1 1.33914- 3 9.07280- 4 2.10000+ 1 3.00000+ 1 1.48662- 4 9.08670- 4 2.20000+ 1 2.20000+ 1 2.04162- 4 8.53910- 4 2.20000+ 1 2.70000+ 1 5.78418- 5 8.98080- 4 2.20000+ 1 2.90000+ 1 1.18744- 3 9.09340- 4 2.20000+ 1 3.00000+ 1 5.31492- 5 9.10730- 4 2.70000+ 1 2.70000+ 1 7.24053- 6 9.42250- 4 2.70000+ 1 2.90000+ 1 8.10945- 5 9.53510- 4 2.70000+ 1 3.00000+ 1 1.11021- 5 9.54900- 4 2.90000+ 1 2.90000+ 1 3.12454- 5 9.64770- 4 2.90000+ 1 3.00000+ 1 9.30160- 5 9.66160- 4 3.00000+ 1 3.00000+ 1 2.44933- 6 9.67550- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.21851- 5 2.35650- 4 1.40000+ 1 2.41335- 4 2.49040- 4 1.60000+ 1 3.66684- 4 7.18190- 4 2.10000+ 1 1.36958- 4 8.56720- 4 2.20000+ 1 1.12974- 3 8.58780- 4 2.70000+ 1 5.48100- 5 9.02950- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.71286- 2 2.72800- 5 1.30000+ 1 1.80000+ 1 1.79867- 2 7.49600- 5 1.30000+ 1 1.90000+ 1 1.04918- 1 8.76700- 5 1.30000+ 1 2.10000+ 1 1.29951- 2 1.65810- 4 1.30000+ 1 2.20000+ 1 9.54389- 3 1.67870- 4 1.30000+ 1 2.70000+ 1 2.91347- 3 2.12040- 4 1.30000+ 1 2.90000+ 1 1.72128- 3 2.23300- 4 1.30000+ 1 3.00000+ 1 8.10935- 3 2.24690- 4 1.40000+ 1 1.60000+ 1 1.15746- 1 4.06700- 5 1.40000+ 1 1.80000+ 1 1.19367- 1 8.83500- 5 1.40000+ 1 1.90000+ 1 2.34124- 1 1.01060- 4 1.40000+ 1 2.10000+ 1 5.07807- 2 1.79200- 4 1.40000+ 1 2.20000+ 1 8.44980- 2 1.81260- 4 1.40000+ 1 2.70000+ 1 1.65062- 2 2.25430- 4 1.40000+ 1 2.90000+ 1 1.15884- 2 2.36690- 4 1.40000+ 1 3.00000+ 1 2.01376- 2 2.38080- 4 1.60000+ 1 1.60000+ 1 8.03028- 4 5.09820- 4 1.60000+ 1 1.80000+ 1 1.17422- 3 5.57500- 4 1.60000+ 1 1.90000+ 1 1.70023- 2 5.70210- 4 1.60000+ 1 2.10000+ 1 9.86782- 4 6.48350- 4 1.60000+ 1 2.20000+ 1 1.07868- 3 6.50410- 4 1.60000+ 1 2.70000+ 1 1.81922- 4 6.94580- 4 1.60000+ 1 2.90000+ 1 1.01989- 4 7.05840- 4 1.60000+ 1 3.00000+ 1 1.18526- 3 7.07230- 4 1.80000+ 1 1.80000+ 1 1.90674- 4 6.05180- 4 1.80000+ 1 1.90000+ 1 1.91487- 2 6.17890- 4 1.80000+ 1 2.10000+ 1 5.25034- 4 6.96030- 4 1.80000+ 1 2.20000+ 1 3.02399- 3 6.98090- 4 1.80000+ 1 2.70000+ 1 1.19748- 4 7.42260- 4 1.80000+ 1 2.90000+ 1 3.13178- 5 7.53520- 4 1.80000+ 1 3.00000+ 1 1.34947- 3 7.54910- 4 1.90000+ 1 1.90000+ 1 2.48295- 2 6.30600- 4 1.90000+ 1 2.10000+ 1 3.10231- 2 7.08740- 4 1.90000+ 1 2.20000+ 1 4.22075- 2 7.10800- 4 1.90000+ 1 2.70000+ 1 2.09267- 3 7.54970- 4 1.90000+ 1 2.90000+ 1 1.71438- 3 7.66230- 4 1.90000+ 1 3.00000+ 1 4.14942- 3 7.67620- 4 2.10000+ 1 2.10000+ 1 1.73248- 4 7.86880- 4 2.10000+ 1 2.20000+ 1 2.00734- 3 7.88940- 4 2.10000+ 1 2.70000+ 1 6.17858- 5 8.33110- 4 2.10000+ 1 2.90000+ 1 2.42287- 5 8.44370- 4 2.10000+ 1 3.00000+ 1 1.61491- 3 8.45760- 4 2.20000+ 1 2.20000+ 1 9.72047- 4 7.91000- 4 2.20000+ 1 2.70000+ 1 5.77792- 5 8.35170- 4 2.20000+ 1 2.90000+ 1 1.14100- 4 8.46430- 4 2.20000+ 1 3.00000+ 1 1.74981- 3 8.47820- 4 2.70000+ 1 2.70000+ 1 6.23866- 6 8.79340- 4 2.70000+ 1 2.90000+ 1 6.23866- 6 8.90600- 4 2.70000+ 1 3.00000+ 1 9.25395- 5 8.91990- 4 2.90000+ 1 2.90000+ 1 5.19899- 7 9.01860- 4 2.90000+ 1 3.00000+ 1 7.69443- 5 9.03250- 4 3.00000+ 1 3.00000+ 1 1.06347- 4 9.04640- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.78220- 3 5.30220- 4 1.90000+ 1 2.81619- 4 5.42930- 4 2.90000+ 1 1.93170- 4 6.78560- 4 3.00000+ 1 2.92809- 5 6.79950- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 4.09385- 3 1.04000- 6 1.40000+ 1 3.00000+ 1 1.28221- 2 2.43000- 6 1.60000+ 1 1.60000+ 1 3.20525- 5 2.74170- 4 1.60000+ 1 1.80000+ 1 5.84296- 3 3.21850- 4 1.60000+ 1 1.90000+ 1 4.72560- 3 3.34560- 4 1.60000+ 1 2.10000+ 1 1.12367- 1 4.12700- 4 1.60000+ 1 2.20000+ 1 1.60132- 2 4.14760- 4 1.60000+ 1 2.70000+ 1 2.74744- 5 4.58930- 4 1.60000+ 1 2.90000+ 1 4.71648- 4 4.70190- 4 1.60000+ 1 3.00000+ 1 2.79329- 4 4.71580- 4 1.80000+ 1 1.80000+ 1 1.85929- 3 3.69530- 4 1.80000+ 1 1.90000+ 1 1.73555- 2 3.82240- 4 1.80000+ 1 2.10000+ 1 8.96346- 2 4.60380- 4 1.80000+ 1 2.20000+ 1 7.88559- 3 4.62440- 4 1.80000+ 1 2.70000+ 1 4.12136- 4 5.06610- 4 1.80000+ 1 2.90000+ 1 3.34284- 4 5.17870- 4 1.80000+ 1 3.00000+ 1 1.26839- 3 5.19260- 4 1.90000+ 1 1.90000+ 1 6.74057- 3 3.94950- 4 1.90000+ 1 2.10000+ 1 1.98079- 1 4.73090- 4 1.90000+ 1 2.20000+ 1 7.60596- 3 4.75150- 4 1.90000+ 1 2.70000+ 1 4.12125- 4 5.19320- 4 1.90000+ 1 2.90000+ 1 1.30510- 3 5.30580- 4 1.90000+ 1 3.00000+ 1 9.57042- 4 5.31970- 4 2.10000+ 1 2.10000+ 1 1.49771- 1 5.51230- 4 2.10000+ 1 2.20000+ 1 3.07974- 1 5.53290- 4 2.10000+ 1 2.70000+ 1 1.42057- 2 5.97460- 4 2.10000+ 1 2.90000+ 1 9.07857- 3 6.08720- 4 2.10000+ 1 3.00000+ 1 1.86393- 2 6.10110- 4 2.20000+ 1 2.20000+ 1 5.08743- 3 5.55350- 4 2.20000+ 1 2.70000+ 1 1.12651- 3 5.99520- 4 2.20000+ 1 2.90000+ 1 5.44925- 4 6.10780- 4 2.20000+ 1 3.00000+ 1 5.90719- 4 6.12170- 4 2.70000+ 1 2.90000+ 1 3.92614- 5 6.54950- 4 2.70000+ 1 3.00000+ 1 2.18115- 5 6.56340- 4 2.90000+ 1 2.90000+ 1 9.01829- 6 6.66210- 4 2.90000+ 1 3.00000+ 1 6.61355- 5 6.67600- 4 3.00000+ 1 3.00000+ 1 3.41659- 5 6.68990- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.93632- 3 5.29540- 4 3.00000+ 1 2.01152- 4 6.66560- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.13937- 4 2.60780- 4 1.60000+ 1 1.80000+ 1 2.52951- 3 3.08460- 4 1.60000+ 1 1.90000+ 1 9.01947- 3 3.21170- 4 1.60000+ 1 2.10000+ 1 1.19188- 2 3.99310- 4 1.60000+ 1 2.20000+ 1 1.19627- 1 4.01370- 4 1.60000+ 1 2.70000+ 1 3.64612- 5 4.45540- 4 1.60000+ 1 2.90000+ 1 1.18499- 4 4.56800- 4 1.60000+ 1 3.00000+ 1 6.38066- 4 4.58190- 4 1.80000+ 1 1.90000+ 1 1.72470- 2 3.68850- 4 1.80000+ 1 2.10000+ 1 1.31261- 3 4.46990- 4 1.80000+ 1 2.20000+ 1 1.11266- 1 4.49050- 4 1.80000+ 1 2.70000+ 1 1.91427- 4 4.93220- 4 1.80000+ 1 3.00000+ 1 1.24424- 3 5.05870- 4 1.90000+ 1 1.90000+ 1 1.29165- 2 3.81560- 4 1.90000+ 1 2.10000+ 1 1.02452- 2 4.59700- 4 1.90000+ 1 2.20000+ 1 1.83561- 1 4.61760- 4 1.90000+ 1 2.70000+ 1 7.24691- 4 5.05930- 4 1.90000+ 1 2.90000+ 1 1.22158- 3 5.17190- 4 1.90000+ 1 3.00000+ 1 1.92336- 3 5.18580- 4 2.10000+ 1 2.10000+ 1 2.08757- 3 5.37840- 4 2.10000+ 1 2.20000+ 1 2.15467- 1 5.39900- 4 2.10000+ 1 2.70000+ 1 8.29510- 4 5.84070- 4 2.10000+ 1 2.90000+ 1 1.27618- 4 5.95330- 4 2.10000+ 1 3.00000+ 1 7.11026- 4 5.96720- 4 2.20000+ 1 2.20000+ 1 2.49282- 1 5.41960- 4 2.20000+ 1 2.70000+ 1 1.47626- 2 5.86130- 4 2.20000+ 1 2.90000+ 1 1.09521- 2 5.97390- 4 2.20000+ 1 3.00000+ 1 1.75069- 2 5.98780- 4 2.70000+ 1 2.90000+ 1 1.18340- 5 6.41560- 4 2.70000+ 1 3.00000+ 1 7.10049- 5 6.42950- 4 2.90000+ 1 3.00000+ 1 9.12910- 5 6.54210- 4 3.00000+ 1 3.00000+ 1 1.07371- 4 6.55600- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.12457- 5 4.76800- 5 1.90000+ 1 4.28906- 5 6.03900- 5 2.90000+ 1 9.46397- 6 1.96020- 4 3.00000+ 1 9.08276- 6 1.97410- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 8.32736- 2 2.40700- 5 1.80000+ 1 2.90000+ 1 5.06202- 2 3.53300- 5 1.80000+ 1 3.00000+ 1 1.15048- 1 3.67200- 5 1.90000+ 1 2.70000+ 1 1.24769- 1 3.67800- 5 1.90000+ 1 2.90000+ 1 1.08354- 1 4.80400- 5 1.90000+ 1 3.00000+ 1 1.48959- 1 4.94300- 5 2.10000+ 1 2.10000+ 1 5.96540- 3 6.86900- 5 2.10000+ 1 2.20000+ 1 8.80750- 2 7.07500- 5 2.10000+ 1 2.70000+ 1 3.13400- 2 1.14920- 4 2.10000+ 1 2.90000+ 1 4.16902- 3 1.26180- 4 2.10000+ 1 3.00000+ 1 2.04515- 2 1.27570- 4 2.20000+ 1 2.20000+ 1 3.23010- 2 7.28100- 5 2.20000+ 1 2.70000+ 1 4.78604- 2 1.16980- 4 2.20000+ 1 2.90000+ 1 1.85678- 2 1.28240- 4 2.20000+ 1 3.00000+ 1 1.82116- 2 1.29630- 4 2.70000+ 1 2.70000+ 1 1.40408- 2 1.61150- 4 2.70000+ 1 2.90000+ 1 1.47300- 2 1.72410- 4 2.70000+ 1 3.00000+ 1 2.57576- 2 1.73800- 4 2.90000+ 1 2.90000+ 1 5.04777- 3 1.83670- 4 2.90000+ 1 3.00000+ 1 2.36544- 2 1.85060- 4 3.00000+ 1 3.00000+ 1 1.87311- 2 1.86450- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.16709- 5 9.08500- 5 2.70000+ 1 1.24890- 5 1.37080- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 3.19292- 3 3.60000- 7 1.90000+ 1 3.00000+ 1 4.70697- 3 1.75000- 6 2.10000+ 1 2.10000+ 1 1.61182- 1 2.10100- 5 2.10000+ 1 2.20000+ 1 7.42342- 1 2.30700- 5 2.10000+ 1 2.70000+ 1 1.60252- 2 6.72400- 5 2.10000+ 1 2.90000+ 1 1.02080- 2 7.85000- 5 2.10000+ 1 3.00000+ 1 2.03822- 2 7.98900- 5 2.20000+ 1 2.20000+ 1 2.54467- 2 2.51300- 5 2.20000+ 1 2.70000+ 1 2.20325- 3 6.93000- 5 2.20000+ 1 2.90000+ 1 1.01669- 2 8.05600- 5 2.20000+ 1 3.00000+ 1 2.24012- 3 8.19500- 5 2.70000+ 1 2.70000+ 1 2.20759- 5 1.13470- 4 2.70000+ 1 2.90000+ 1 5.74488- 4 1.24730- 4 2.70000+ 1 3.00000+ 1 7.19851- 5 1.26120- 4 2.90000+ 1 2.90000+ 1 2.84313- 4 1.35990- 4 2.90000+ 1 3.00000+ 1 8.18786- 4 1.37380- 4 3.00000+ 1 3.00000+ 1 2.82610- 5 1.38770- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.29319- 6 7.81400- 5 2.20000+ 1 2.38608- 5 8.02000- 5 2.70000+ 1 4.75907- 6 1.24370- 4 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 5.80238- 2 8.30000- 6 2.10000+ 1 2.20000+ 1 2.94546- 1 1.03600- 5 2.10000+ 1 2.70000+ 1 2.49165- 3 5.45300- 5 2.10000+ 1 2.90000+ 1 1.75630- 3 6.57900- 5 2.10000+ 1 3.00000+ 1 7.61009- 3 6.71800- 5 2.20000+ 1 2.20000+ 1 5.89073- 1 1.24200- 5 2.20000+ 1 2.70000+ 1 1.36657- 2 5.65900- 5 2.20000+ 1 2.90000+ 1 1.20733- 2 6.78500- 5 2.20000+ 1 3.00000+ 1 1.94638- 2 6.92400- 5 2.70000+ 1 2.70000+ 1 1.55220- 6 1.00760- 4 2.70000+ 1 2.90000+ 1 3.34235- 5 1.12020- 4 2.70000+ 1 3.00000+ 1 6.11640- 4 1.13410- 4 2.90000+ 1 2.90000+ 1 3.16997- 6 1.23280- 4 2.90000+ 1 3.00000+ 1 2.52438- 4 1.24670- 4 3.00000+ 1 3.00000+ 1 3.63168- 4 1.26060- 4 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.44001- 7 5.74900- 5 3.00000+ 1 7.59381- 8 5.88800- 5 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 3.25078- 1 2.26200- 5 2.70000+ 1 2.90000+ 1 7.75770- 2 3.38800- 5 2.70000+ 1 3.00000+ 1 4.66254- 2 3.52700- 5 2.90000+ 1 2.90000+ 1 1.50101- 1 4.51400- 5 2.90000+ 1 3.00000+ 1 3.16940- 1 4.65300- 5 3.00000+ 1 3.00000+ 1 8.36781- 2 4.79200- 5 1 54000 0 7 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 5.35970- 7 5.68200- 5 1 54000 0 9 1.31300+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 3.68057- 1 2.05600- 5 2.70000+ 1 2.90000+ 1 6.75438- 2 3.18200- 5 2.70000+ 1 3.00000+ 1 1.00209- 1 3.32100- 5 2.90000+ 1 2.90000+ 1 2.62920- 2 4.30800- 5 2.90000+ 1 3.00000+ 1 1.90988- 1 4.44700- 5 3.00000+ 1 3.00000+ 1 2.46910- 1 4.58600- 5 1 55000 0 0 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 1.00000+ 0 1 55000 0 0 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.59850- 2 3.00000+ 0 5.68490- 3 5.00000+ 0 5.36320- 3 6.00000+ 0 5.00610- 3 8.00000+ 0 1.19640- 3 1.00000+ 1 1.05950- 3 1.10000+ 1 9.90680- 4 1.30000+ 1 7.47700- 4 1.40000+ 1 7.32980- 4 1.60000+ 1 2.31860- 4 1.80000+ 1 1.81970- 4 1.90000+ 1 1.67760- 4 2.10000+ 1 8.56100- 5 2.20000+ 1 8.32400- 5 2.70000+ 1 3.09700- 5 2.90000+ 1 1.82700- 5 3.00000+ 1 1.64300- 5 4.10000+ 1 3.69000- 6 1 55000 0 0 1.32905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.60600- 2 3.00000+ 0 1.01260- 2 5.00000+ 0 1.01360- 2 6.00000+ 0 8.83350- 3 8.00000+ 0 2.99260- 3 1.00000+ 1 2.92040- 3 1.10000+ 1 2.62620- 3 1.30000+ 1 2.49900- 3 1.40000+ 1 2.42810- 3 1.60000+ 1 8.80970- 4 1.80000+ 1 8.10070- 4 1.90000+ 1 7.33450- 4 2.10000+ 1 5.87740- 4 2.20000+ 1 5.71300- 4 2.70000+ 1 1.78890- 4 2.90000+ 1 1.36150- 4 3.00000+ 1 1.21050- 4 4.10000+ 1 1.39400- 5 1 55000 0 0 1.32905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.37940-10 3.00000+ 0 5.88890-10 5.00000+ 0 4.95060-10 6.00000+ 0 5.26330-10 8.00000+ 0 1.57010- 9 1.00000+ 1 1.51490- 9 1.10000+ 1 1.57630- 9 1.30000+ 1 1.41950- 9 1.40000+ 1 1.43880- 9 1.60000+ 1 3.63570- 9 1.80000+ 1 3.75930- 9 1.90000+ 1 3.90020- 9 2.10000+ 1 4.29020- 9 2.20000+ 1 4.34040- 9 2.70000+ 1 8.92800- 9 2.90000+ 1 1.02100- 8 3.00000+ 1 1.06810- 8 4.10000+ 1 3.00700- 8 1 55000 0 0 1.32905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07070- 5 3.00000+ 0 1.80310- 7 5.00000+ 0 3.02830- 7 6.00000+ 0 2.84270- 7 8.00000+ 0 4.74620- 9 1.00000+ 1 4.66510- 9 1.10000+ 1 4.66100- 9 1.30000+ 1 3.61360-10 1.40000+ 1 3.05800-10 1.60000+ 1 1.16950-10 1.80000+ 1 2.62510-10 1.90000+ 1 2.01820-10 2.10000+ 1 1.20860-11 2.20000+ 1 1.06100-11 1 55000 0 0 1.32905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23870- 6 3.00000+ 0 3.29370- 6 5.00000+ 0 2.65020- 6 6.00000+ 0 2.43890- 6 8.00000+ 0 1.15470- 5 1.00000+ 1 4.93840- 6 1.10000+ 1 5.84160- 6 1.30000+ 1 6.26540- 7 1.40000+ 1 6.32580- 7 1.60000+ 1 5.76190- 6 1.80000+ 1 2.33980- 5 1.90000+ 1 3.72710- 5 2.10000+ 1 7.71840- 8 2.20000+ 1 7.48700- 8 1 55000 0 0 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.50959- 4 3.00000+ 0 2.90909- 4 5.00000+ 0 2.48147- 4 6.00000+ 0 2.36925- 4 8.00000+ 0 2.11631- 4 1.00000+ 1 1.78742- 4 1.10000+ 1 1.75725- 4 1.30000+ 1 1.08226- 4 1.40000+ 1 1.09398- 4 1.60000+ 1 9.16850- 5 1.80000+ 1 8.53370- 5 1.90000+ 1 8.64585- 5 2.10000+ 1 4.30528- 5 2.20000+ 1 4.44307- 5 2.70000+ 1 3.09700- 5 2.90000+ 1 1.82700- 5 3.00000+ 1 1.64300- 5 4.10000+ 1 3.69000- 6 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.97496- 1 3.00000+ 0 1.09438- 1 5.00000+ 0 1.20212- 1 6.00000+ 0 1.03496- 1 8.00000+ 0 4.29578- 3 1.00000+ 1 4.56828- 3 1.10000+ 1 4.31813- 3 1.30000+ 1 2.77703- 3 1.40000+ 1 2.56653- 3 1.60000+ 1 1.27666- 4 1.80000+ 1 1.26397- 4 1.90000+ 1 3.88942- 5 2.10000+ 1 9.47759- 7 2.20000+ 1 9.73099- 7 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.88452- 2 3.00000+ 0 4.82723- 4 5.00000+ 0 5.34456- 4 6.00000+ 0 4.27127- 4 8.00000+ 0 3.02005- 6 1.00000+ 1 3.08791- 6 1.10000+ 1 2.92466- 6 1.30000+ 1 1.60465- 6 1.40000+ 1 1.47134- 6 1.60000+ 1 1.33204- 8 1.80000+ 1 1.30182- 8 1.90000+ 1 3.57202- 9 2.10000+ 1 6.40787-11 2.20000+ 1 6.50127-11 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04666+ 1 3.00000+ 0 1.22870+ 1 5.00000+ 0 1.03541+ 1 6.00000+ 0 9.81528+ 0 8.00000+ 0 8.66547+ 0 1.00000+ 1 7.18804+ 0 1.10000+ 1 7.02099+ 0 1.30000+ 1 3.97501+ 0 1.40000+ 1 3.97405+ 0 1.60000+ 1 3.19840+ 0 1.80000+ 1 2.91556+ 0 1.90000+ 1 2.93895+ 0 2.10000+ 1 9.99999- 1 2.20000+ 1 9.99999- 1 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.88888- 3 3.00000+ 0 4.91127- 3 5.00000+ 0 4.58060- 3 6.00000+ 0 4.34205- 3 8.00000+ 0 9.81749- 4 1.00000+ 1 8.77670- 4 1.10000+ 1 8.12030- 4 1.30000+ 1 6.37870- 4 1.40000+ 1 6.22110- 4 1.60000+ 1 1.40162- 4 1.80000+ 1 9.66199- 5 1.90000+ 1 8.12980- 5 2.10000+ 1 4.25571- 5 2.20000+ 1 3.88093- 5 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.57590- 1 3.06218- 2 6.00000+ 0 4.75711- 1 3.09789- 2 1.00000+ 1 4.50681- 2 3.49255- 2 1.10000+ 1 8.73561- 2 3.49943- 2 1.30000+ 1 4.66391- 4 3.52373- 2 1.40000+ 1 6.35151- 4 3.52520- 2 1.80000+ 1 9.48262- 3 3.58030- 2 1.90000+ 1 1.84830- 2 3.58172- 2 2.10000+ 1 9.09342- 5 3.58994- 2 2.20000+ 1 1.23610- 4 3.59018- 2 2.90000+ 1 1.16990- 3 3.59667- 2 3.00000+ 1 2.21200- 3 3.59686- 2 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 8.24482- 3 2.46152- 2 3.00000+ 0 5.00000+ 0 9.83301- 3 2.49369- 2 3.00000+ 0 6.00000+ 0 1.15824- 2 2.52940- 2 3.00000+ 0 8.00000+ 0 2.95775- 3 2.91037- 2 3.00000+ 0 1.00000+ 1 1.89175- 3 2.92406- 2 3.00000+ 0 1.10000+ 1 2.25698- 3 2.93094- 2 3.00000+ 0 1.30000+ 1 1.47986- 4 2.95524- 2 3.00000+ 0 1.40000+ 1 1.59373- 4 2.95671- 2 3.00000+ 0 1.60000+ 1 6.47312- 4 3.00682- 2 3.00000+ 0 1.80000+ 1 3.91059- 4 3.01181- 2 3.00000+ 0 1.90000+ 1 4.64273- 4 3.01323- 2 3.00000+ 0 2.10000+ 1 2.79008- 5 3.02145- 2 3.00000+ 0 2.20000+ 1 2.96863- 5 3.02169- 2 3.00000+ 0 2.70000+ 1 1.00447- 4 3.02691- 2 3.00000+ 0 2.90000+ 1 4.75444- 5 3.02818- 2 3.00000+ 0 3.00000+ 1 5.44630- 5 3.02837- 2 3.00000+ 0 4.10000+ 1 3.34817- 6 3.02964- 2 5.00000+ 0 5.00000+ 0 1.17047- 3 2.52586- 2 5.00000+ 0 6.00000+ 0 2.45362- 2 2.56157- 2 5.00000+ 0 8.00000+ 0 1.46720- 3 2.94254- 2 5.00000+ 0 1.00000+ 1 4.03773- 4 2.95623- 2 5.00000+ 0 1.10000+ 1 3.99539- 3 2.96311- 2 5.00000+ 0 1.30000+ 1 1.75443- 4 2.98741- 2 5.00000+ 0 1.40000+ 1 5.84125- 4 2.98888- 2 5.00000+ 0 1.60000+ 1 3.09148- 4 3.03899- 2 5.00000+ 0 1.80000+ 1 8.19168- 5 3.04398- 2 5.00000+ 0 1.90000+ 1 7.94621- 4 3.04540- 2 5.00000+ 0 2.10000+ 1 3.23650- 5 3.05362- 2 5.00000+ 0 2.20000+ 1 1.07815- 4 3.05386- 2 5.00000+ 0 2.70000+ 1 4.75437- 5 3.05908- 2 5.00000+ 0 2.90000+ 1 9.82111- 6 3.06035- 2 5.00000+ 0 3.00000+ 1 9.26268- 5 3.06054- 2 5.00000+ 0 4.10000+ 1 1.56235- 6 3.06181- 2 6.00000+ 0 6.00000+ 0 1.21928- 2 2.59728- 2 6.00000+ 0 8.00000+ 0 1.68583- 3 2.97825- 2 6.00000+ 0 1.00000+ 1 3.89036- 3 2.99194- 2 6.00000+ 0 1.10000+ 1 4.07823- 3 2.99882- 2 6.00000+ 0 1.30000+ 1 6.93286- 4 3.02312- 2 6.00000+ 0 1.40000+ 1 6.36145- 4 3.02459- 2 6.00000+ 0 1.60000+ 1 3.53337- 4 3.07470- 2 6.00000+ 0 1.80000+ 1 7.76533- 4 3.07969- 2 6.00000+ 0 1.90000+ 1 8.16047- 4 3.08111- 2 6.00000+ 0 2.10000+ 1 1.28562- 4 3.08933- 2 6.00000+ 0 2.20000+ 1 1.17626- 4 3.08957- 2 6.00000+ 0 2.70000+ 1 5.44625- 5 3.09479- 2 6.00000+ 0 2.90000+ 1 9.37424- 5 3.09606- 2 6.00000+ 0 3.00000+ 1 9.53094- 5 3.09625- 2 6.00000+ 0 4.10000+ 1 1.78580- 6 3.09752- 2 8.00000+ 0 8.00000+ 0 2.61379- 4 3.35922- 2 8.00000+ 0 1.00000+ 1 2.84810- 4 3.37291- 2 8.00000+ 0 1.10000+ 1 3.31467- 4 3.37979- 2 8.00000+ 0 1.30000+ 1 2.05354- 5 3.40409- 2 8.00000+ 0 1.40000+ 1 2.14281- 5 3.40556- 2 8.00000+ 0 1.60000+ 1 1.14060- 4 3.45567- 2 8.00000+ 0 1.80000+ 1 5.89270- 5 3.46066- 2 8.00000+ 0 1.90000+ 1 6.83032- 5 3.46208- 2 8.00000+ 0 2.10000+ 1 3.79457- 6 3.47030- 2 8.00000+ 0 2.20000+ 1 4.01771- 6 3.47054- 2 8.00000+ 0 2.70000+ 1 1.76327- 5 3.47576- 2 8.00000+ 0 2.90000+ 1 7.14275- 6 3.47703- 2 8.00000+ 0 3.00000+ 1 8.03561- 6 3.47722- 2 8.00000+ 0 4.10000+ 1 6.69627- 7 3.47849- 2 1.00000+ 1 1.00000+ 1 3.34803- 5 3.38660- 2 1.00000+ 1 1.10000+ 1 6.44147- 4 3.39348- 2 1.00000+ 1 1.30000+ 1 2.20974- 5 3.41778- 2 1.00000+ 1 1.40000+ 1 7.25403- 5 3.41925- 2 1.00000+ 1 1.60000+ 1 6.00414- 5 3.46936- 2 1.00000+ 1 1.80000+ 1 1.36151- 5 3.47435- 2 1.00000+ 1 1.90000+ 1 1.28557- 4 3.47577- 2 1.00000+ 1 2.10000+ 1 4.01752- 6 3.48399- 2 1.00000+ 1 2.20000+ 1 1.33917- 5 3.48423- 2 1.00000+ 1 2.70000+ 1 9.37391- 6 3.48945- 2 1.00000+ 1 2.90000+ 1 1.56230- 6 3.49072- 2 1.00000+ 1 3.00000+ 1 1.49537- 5 3.49091- 2 1.00000+ 1 4.10000+ 1 2.23208- 7 3.49218- 2 1.10000+ 1 1.10000+ 1 3.42386- 4 3.40036- 2 1.10000+ 1 1.30000+ 1 9.19617- 5 3.42466- 2 1.10000+ 1 1.40000+ 1 8.23640- 5 3.42613- 2 1.10000+ 1 1.60000+ 1 6.96393- 5 3.47625- 2 1.10000+ 1 1.80000+ 1 1.29021- 4 3.48123- 2 1.10000+ 1 1.90000+ 1 1.37047- 4 3.48266- 2 1.10000+ 1 2.10000+ 1 1.71864- 5 3.49087- 2 1.10000+ 1 2.20000+ 1 1.54010- 5 3.49111- 2 1.10000+ 1 2.70000+ 1 1.07138- 5 3.49633- 2 1.10000+ 1 2.90000+ 1 1.56234- 5 3.49760- 2 1.10000+ 1 3.00000+ 1 1.60713- 5 3.49779- 2 1.10000+ 1 4.10000+ 1 4.46407- 7 3.49906- 2 1.30000+ 1 1.40000+ 1 1.07622- 5 3.45043- 2 1.30000+ 1 1.60000+ 1 4.25999- 6 3.50054- 2 1.30000+ 1 1.80000+ 1 4.25999- 6 3.50553- 2 1.30000+ 1 1.90000+ 1 1.77119- 5 3.50695- 2 1.30000+ 1 2.20000+ 1 2.01798- 6 3.51541- 2 1.30000+ 1 2.70000+ 1 6.72634- 7 3.52063- 2 1.30000+ 1 2.90000+ 1 4.48422- 7 3.52190- 2 1.30000+ 1 3.00000+ 1 2.01798- 6 3.52209- 2 1.40000+ 1 1.40000+ 1 2.72082- 6 3.45190- 2 1.40000+ 1 1.60000+ 1 4.53461- 6 3.50202- 2 1.40000+ 1 1.80000+ 1 1.40586- 5 3.50700- 2 1.40000+ 1 1.90000+ 1 1.58702- 5 3.50843- 2 1.40000+ 1 2.10000+ 1 2.04065- 6 3.51664- 2 1.40000+ 1 2.20000+ 1 9.06902- 7 3.51688- 2 1.40000+ 1 2.70000+ 1 6.80192- 7 3.52210- 2 1.40000+ 1 2.90000+ 1 1.58702- 6 3.52337- 2 1.40000+ 1 3.00000+ 1 1.81399- 6 3.52356- 2 1.60000+ 1 1.60000+ 1 1.21701- 5 3.55213- 2 1.60000+ 1 1.80000+ 1 1.21701- 5 3.55712- 2 1.60000+ 1 1.90000+ 1 1.39095- 5 3.55854- 2 1.60000+ 1 2.10000+ 1 8.69280- 7 3.56675- 2 1.60000+ 1 2.20000+ 1 8.69280- 7 3.56699- 2 1.60000+ 1 2.70000+ 1 3.69454- 6 3.57222- 2 1.60000+ 1 2.90000+ 1 1.52119- 6 3.57349- 2 1.60000+ 1 3.00000+ 1 1.73874- 6 3.57367- 2 1.60000+ 1 4.10000+ 1 2.17334- 7 3.57494- 2 1.80000+ 1 1.80000+ 1 1.29261- 6 3.56211- 2 1.80000+ 1 1.90000+ 1 2.47748- 5 3.56353- 2 1.80000+ 1 2.10000+ 1 8.61731- 7 3.57174- 2 1.80000+ 1 2.20000+ 1 2.36983- 6 3.57198- 2 1.80000+ 1 2.70000+ 1 1.93901- 6 3.57721- 2 1.80000+ 1 2.90000+ 1 2.15446- 7 3.57848- 2 1.80000+ 1 3.00000+ 1 2.80067- 6 3.57866- 2 1.90000+ 1 1.90000+ 1 1.31390- 5 3.56495- 2 1.90000+ 1 2.10000+ 1 3.23093- 6 3.57316- 2 1.90000+ 1 2.20000+ 1 2.80009- 6 3.57340- 2 1.90000+ 1 2.70000+ 1 2.15402- 6 3.57863- 2 1.90000+ 1 2.90000+ 1 3.01551- 6 3.57990- 2 1.90000+ 1 3.00000+ 1 3.01551- 6 3.58008- 2 2.10000+ 1 2.20000+ 1 4.46397- 7 3.58161- 2 2.10000+ 1 2.70000+ 1 2.23208- 7 3.58684- 2 2.10000+ 1 3.00000+ 1 4.46397- 7 3.58830- 2 2.20000+ 1 2.70000+ 1 2.22678- 7 3.58708- 2 2.20000+ 1 2.90000+ 1 2.22678- 7 3.58835- 2 2.20000+ 1 3.00000+ 1 4.45336- 7 3.58853- 2 2.70000+ 1 2.70000+ 1 2.97594- 7 3.59231- 2 2.70000+ 1 2.90000+ 1 2.97594- 7 3.59358- 2 2.70000+ 1 3.00000+ 1 2.97594- 7 3.59376- 2 2.90000+ 1 3.00000+ 1 4.46411- 7 3.59503- 2 3.00000+ 1 3.00000+ 1 2.23210- 7 3.59521- 2 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.97728- 5 3.21700- 4 6.00000+ 0 4.06196- 4 6.78800- 4 1.00000+ 1 1.47019- 2 4.62540- 3 1.10000+ 1 2.29628- 2 4.69422- 3 1.30000+ 1 2.27678- 4 4.93720- 3 1.40000+ 1 3.40117- 4 4.95192- 3 1.80000+ 1 3.23707- 3 5.50293- 3 1.90000+ 1 5.20245- 3 5.51714- 3 2.10000+ 1 2.86717- 5 5.59929- 3 2.20000+ 1 4.36686- 5 5.60166- 3 2.90000+ 1 4.28926- 4 5.66663- 3 3.00000+ 1 6.74753- 4 5.66847- 3 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.60754- 2 8.98400- 5 5.00000+ 0 1.80000+ 1 4.06257- 2 1.39730- 4 5.00000+ 0 1.90000+ 1 5.11320- 2 1.53940- 4 5.00000+ 0 2.10000+ 1 1.32726- 2 2.36090- 4 5.00000+ 0 2.20000+ 1 2.17894- 2 2.38460- 4 5.00000+ 0 2.70000+ 1 8.38881- 3 2.90730- 4 5.00000+ 0 2.90000+ 1 4.63842- 3 3.03430- 4 5.00000+ 0 3.00000+ 1 5.64980- 3 3.05270- 4 5.00000+ 0 4.10000+ 1 2.75960- 4 3.18010- 4 6.00000+ 0 1.60000+ 1 7.26278- 2 4.46940- 4 6.00000+ 0 1.80000+ 1 3.16058- 2 4.96830- 4 6.00000+ 0 1.90000+ 1 5.90973- 2 5.11040- 4 6.00000+ 0 2.10000+ 1 6.34053- 2 5.93190- 4 6.00000+ 0 2.20000+ 1 8.13422- 2 5.95560- 4 6.00000+ 0 2.70000+ 1 1.08776- 2 6.47830- 4 6.00000+ 0 2.90000+ 1 3.69187- 3 6.60530- 4 6.00000+ 0 3.00000+ 1 6.75107- 3 6.62370- 4 6.00000+ 0 4.10000+ 1 3.57724- 4 6.75110- 4 8.00000+ 0 8.00000+ 0 1.32248- 2 3.29210- 3 8.00000+ 0 1.00000+ 1 2.62760- 2 3.42900- 3 8.00000+ 0 1.10000+ 1 4.83450- 2 3.49782- 3 8.00000+ 0 1.30000+ 1 3.80041- 2 3.74080- 3 8.00000+ 0 1.40000+ 1 5.35467- 2 3.75552- 3 8.00000+ 0 1.60000+ 1 4.93910- 3 4.25664- 3 8.00000+ 0 1.80000+ 1 5.31963- 3 4.30653- 3 8.00000+ 0 1.90000+ 1 9.71567- 3 4.32074- 3 8.00000+ 0 2.10000+ 1 6.09394- 3 4.40289- 3 8.00000+ 0 2.20000+ 1 8.54166- 3 4.40526- 3 8.00000+ 0 2.70000+ 1 7.49282- 4 4.45753- 3 8.00000+ 0 2.90000+ 1 6.43122- 4 4.47023- 3 8.00000+ 0 3.00000+ 1 1.13448- 3 4.47207- 3 8.00000+ 0 4.10000+ 1 2.43728- 5 4.48481- 3 1.00000+ 1 1.00000+ 1 1.48598- 4 3.56590- 3 1.00000+ 1 1.10000+ 1 9.49751- 4 3.63472- 3 1.00000+ 1 1.30000+ 1 1.09751- 3 3.87770- 3 1.00000+ 1 1.40000+ 1 1.41019- 2 3.89242- 3 1.00000+ 1 1.60000+ 1 3.93958- 3 4.39354- 3 1.00000+ 1 1.80000+ 1 3.06620- 5 4.44343- 3 1.00000+ 1 1.90000+ 1 1.80045- 4 4.45764- 3 1.00000+ 1 2.10000+ 1 1.76893- 4 4.53979- 3 1.00000+ 1 2.20000+ 1 1.50957- 3 4.54216- 3 1.00000+ 1 2.70000+ 1 5.70791- 4 4.59443- 3 1.00000+ 1 2.90000+ 1 3.14479- 6 4.60713- 3 1.00000+ 1 3.00000+ 1 2.04416- 5 4.60897- 3 1.00000+ 1 4.10000+ 1 1.88687- 5 4.62171- 3 1.10000+ 1 1.10000+ 1 1.13372- 3 3.70354- 3 1.10000+ 1 1.30000+ 1 9.52214- 3 3.94652- 3 1.10000+ 1 1.40000+ 1 6.44449- 3 3.96124- 3 1.10000+ 1 1.60000+ 1 7.24627- 3 4.46236- 3 1.10000+ 1 1.80000+ 1 1.80040- 4 4.51225- 3 1.10000+ 1 1.90000+ 1 3.46711- 4 4.52646- 3 1.10000+ 1 2.10000+ 1 8.77385- 4 4.60861- 3 1.10000+ 1 2.20000+ 1 6.14025- 4 4.61098- 3 1.10000+ 1 2.70000+ 1 1.04961- 3 4.66325- 3 1.10000+ 1 2.90000+ 1 2.12270- 5 4.67595- 3 1.10000+ 1 3.00000+ 1 3.85224- 5 4.67779- 3 1.10000+ 1 4.10000+ 1 3.45928- 5 4.69053- 3 1.30000+ 1 1.30000+ 1 2.08812- 3 4.18950- 3 1.30000+ 1 1.40000+ 1 7.59775- 2 4.20422- 3 1.30000+ 1 1.60000+ 1 5.38305- 3 4.70534- 3 1.30000+ 1 1.80000+ 1 2.89333- 4 4.75523- 3 1.30000+ 1 1.90000+ 1 1.94509- 3 4.76944- 3 1.30000+ 1 2.10000+ 1 6.64348- 4 4.85159- 3 1.30000+ 1 2.20000+ 1 8.95723- 3 4.85396- 3 1.30000+ 1 2.70000+ 1 7.72834- 4 4.90623- 3 1.30000+ 1 2.90000+ 1 3.61664- 5 4.91893- 3 1.30000+ 1 3.00000+ 1 2.27220- 4 4.92077- 3 1.30000+ 1 4.10000+ 1 2.51582- 5 4.93351- 3 1.40000+ 1 1.40000+ 1 2.13410- 2 4.21894- 3 1.40000+ 1 1.60000+ 1 7.63019- 3 4.72006- 3 1.40000+ 1 1.80000+ 1 2.60546- 3 4.76995- 3 1.40000+ 1 1.90000+ 1 1.38138- 3 4.78416- 3 1.40000+ 1 2.10000+ 1 8.86360- 3 4.86631- 3 1.40000+ 1 2.20000+ 1 5.25891- 3 4.86868- 3 1.40000+ 1 2.70000+ 1 1.09751- 3 4.92095- 3 1.40000+ 1 2.90000+ 1 3.10544- 4 4.93365- 3 1.40000+ 1 3.00000+ 1 1.62739- 4 4.93549- 3 1.40000+ 1 4.10000+ 1 3.61665- 5 4.94823- 3 1.60000+ 1 1.60000+ 1 4.37907- 4 5.22118- 3 1.60000+ 1 1.80000+ 1 7.98774- 4 5.27107- 3 1.60000+ 1 1.90000+ 1 1.45765- 3 5.28528- 3 1.60000+ 1 2.10000+ 1 8.61668- 4 5.36743- 3 1.60000+ 1 2.20000+ 1 1.21233- 3 5.36980- 3 1.60000+ 1 2.70000+ 1 1.31301- 4 5.42207- 3 1.60000+ 1 2.90000+ 1 9.66972- 5 5.43477- 3 1.60000+ 1 3.00000+ 1 1.70607- 4 5.43661- 3 1.60000+ 1 4.10000+ 1 4.71702- 6 5.44935- 3 1.80000+ 1 1.80000+ 1 1.57238- 6 5.32096- 3 1.80000+ 1 1.90000+ 1 3.45934- 5 5.33517- 3 1.80000+ 1 2.10000+ 1 3.93090- 5 5.41732- 3 1.80000+ 1 2.20000+ 1 2.87756- 4 5.41969- 3 1.80000+ 1 2.70000+ 1 1.15573- 4 5.47196- 3 1.80000+ 1 3.00000+ 1 3.93090- 6 5.48650- 3 1.80000+ 1 4.10000+ 1 3.93090- 6 5.49924- 3 1.90000+ 1 1.90000+ 1 2.70932- 5 5.34938- 3 1.90000+ 1 2.10000+ 1 1.92840- 4 5.43153- 3 1.90000+ 1 2.20000+ 1 1.40243- 4 5.43390- 3 1.90000+ 1 2.70000+ 1 2.14357- 4 5.48617- 3 1.90000+ 1 2.90000+ 1 3.98418- 6 5.49887- 3 1.90000+ 1 3.00000+ 1 6.37507- 6 5.50071- 3 1.90000+ 1 4.10000+ 1 7.17186- 6 5.51345- 3 2.10000+ 1 2.10000+ 1 5.20161- 5 5.51368- 3 2.10000+ 1 2.20000+ 1 1.15166- 3 5.51605- 3 2.10000+ 1 2.70000+ 1 1.27597- 4 5.56832- 3 2.10000+ 1 2.90000+ 1 4.87621- 6 5.58102- 3 2.10000+ 1 3.00000+ 1 2.35696- 5 5.58286- 3 2.10000+ 1 4.10000+ 1 4.06355- 6 5.59560- 3 2.20000+ 1 2.20000+ 1 3.54855- 4 5.51842- 3 2.20000+ 1 2.70000+ 1 1.80705- 4 5.57069- 3 2.20000+ 1 2.90000+ 1 3.59783- 5 5.58339- 3 2.20000+ 1 3.00000+ 1 1.71718- 5 5.58523- 3 2.20000+ 1 4.10000+ 1 5.72359- 6 5.59797- 3 2.70000+ 1 2.70000+ 1 8.77218- 6 5.62296- 3 2.70000+ 1 2.90000+ 1 1.21448- 5 5.63566- 3 2.70000+ 1 3.00000+ 1 2.09169- 5 5.63750- 3 2.70000+ 1 4.10000+ 1 6.74749- 7 5.65024- 3 2.90000+ 1 3.00000+ 1 7.86192- 7 5.65020- 3 2.90000+ 1 4.10000+ 1 7.86192- 7 5.66294- 3 3.00000+ 1 4.10000+ 1 7.86212- 7 5.66478- 3 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.71309- 8 3.57100- 4 8.00000+ 0 4.13494- 3 4.16680- 3 1.10000+ 1 6.16116- 5 4.37252- 3 1.30000+ 1 7.98698- 2 4.61550- 3 1.60000+ 1 6.10766- 4 5.13134- 3 1.90000+ 1 8.19408- 6 5.19544- 3 2.10000+ 1 1.24211- 2 5.27759- 3 2.70000+ 1 7.78028- 5 5.33223- 3 3.00000+ 1 1.06341- 6 5.34677- 3 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.14012- 2 1.25240- 4 6.00000+ 0 1.80000+ 1 5.14175- 2 1.75130- 4 6.00000+ 0 1.90000+ 1 1.76201- 2 1.89340- 4 6.00000+ 0 2.10000+ 1 6.46739- 2 2.71490- 4 6.00000+ 0 2.20000+ 1 2.39677- 2 2.73860- 4 6.00000+ 0 2.70000+ 1 1.59369- 3 3.26130- 4 6.00000+ 0 2.90000+ 1 5.92872- 3 3.38830- 4 6.00000+ 0 3.00000+ 1 2.04704- 3 3.40670- 4 6.00000+ 0 4.10000+ 1 5.19185- 5 3.53410- 4 8.00000+ 0 8.00000+ 0 1.03279- 3 2.97040- 3 8.00000+ 0 1.00000+ 1 2.51232- 2 3.10730- 3 8.00000+ 0 1.10000+ 1 2.41421- 3 3.17612- 3 8.00000+ 0 1.30000+ 1 1.95522- 3 3.41910- 3 8.00000+ 0 1.40000+ 1 3.36540- 3 3.43382- 3 8.00000+ 0 1.60000+ 1 3.58807- 4 3.93494- 3 8.00000+ 0 1.80000+ 1 3.50465- 3 3.98483- 3 8.00000+ 0 1.90000+ 1 4.31107- 4 3.99904- 3 8.00000+ 0 2.10000+ 1 2.26219- 4 4.08119- 3 8.00000+ 0 2.20000+ 1 3.38402- 4 4.08356- 3 8.00000+ 0 2.70000+ 1 5.37716- 5 4.13583- 3 8.00000+ 0 2.90000+ 1 3.98669- 4 4.14853- 3 8.00000+ 0 3.00000+ 1 4.91384- 5 4.15037- 3 8.00000+ 0 4.10000+ 1 1.85421- 6 4.16311- 3 1.00000+ 1 1.00000+ 1 2.47244- 2 3.24420- 3 1.00000+ 1 1.10000+ 1 7.68474- 2 3.31302- 3 1.00000+ 1 1.30000+ 1 4.07942- 2 3.55600- 3 1.00000+ 1 1.40000+ 1 6.95158- 2 3.57072- 3 1.00000+ 1 1.60000+ 1 5.60237- 3 4.07184- 3 1.00000+ 1 1.80000+ 1 8.58602- 3 4.12173- 3 1.00000+ 1 1.90000+ 1 1.51693- 2 4.13594- 3 1.00000+ 1 2.10000+ 1 6.52941- 3 4.21809- 3 1.00000+ 1 2.20000+ 1 1.11095- 2 4.22046- 3 1.00000+ 1 2.70000+ 1 8.72396- 4 4.27273- 3 1.00000+ 1 2.90000+ 1 1.01608- 3 4.28543- 3 1.00000+ 1 3.00000+ 1 1.76705- 3 4.28727- 3 1.00000+ 1 4.10000+ 1 2.87407- 5 4.30001- 3 1.10000+ 1 1.10000+ 1 2.00798- 3 3.38184- 3 1.10000+ 1 1.30000+ 1 4.78292- 2 3.62482- 3 1.10000+ 1 1.40000+ 1 6.49972- 3 3.63954- 3 1.10000+ 1 1.60000+ 1 4.61691- 4 4.14066- 3 1.10000+ 1 1.80000+ 1 1.11064- 2 4.19055- 3 1.10000+ 1 1.90000+ 1 6.71233- 4 4.20476- 3 1.10000+ 1 2.10000+ 1 6.59711- 3 4.28691- 3 1.10000+ 1 2.20000+ 1 8.39030- 4 4.28928- 3 1.10000+ 1 2.70000+ 1 7.04585- 5 4.34155- 3 1.10000+ 1 2.90000+ 1 1.27010- 3 4.35425- 3 1.10000+ 1 3.00000+ 1 7.60222- 5 4.35609- 3 1.10000+ 1 4.10000+ 1 1.85416- 6 4.36883- 3 1.30000+ 1 1.30000+ 1 4.35664- 2 3.86780- 3 1.30000+ 1 1.40000+ 1 1.86542- 1 3.88252- 3 1.30000+ 1 1.60000+ 1 4.45927- 4 4.38364- 3 1.30000+ 1 1.80000+ 1 5.87214- 3 4.43353- 3 1.30000+ 1 1.90000+ 1 8.90575- 3 4.44774- 3 1.30000+ 1 2.10000+ 1 1.19817- 2 4.52989- 3 1.30000+ 1 2.20000+ 1 2.74043- 2 4.53226- 3 1.30000+ 1 2.70000+ 1 6.95321- 5 4.58453- 3 1.30000+ 1 2.90000+ 1 6.74917- 4 4.59723- 3 1.30000+ 1 3.00000+ 1 1.02814- 3 4.59907- 3 1.30000+ 1 4.10000+ 1 1.85416- 6 4.61181- 3 1.40000+ 1 1.40000+ 1 8.90104- 3 3.89724- 3 1.40000+ 1 1.60000+ 1 6.34129- 4 4.39836- 3 1.40000+ 1 1.80000+ 1 8.94188- 3 4.44825- 3 1.40000+ 1 1.90000+ 1 1.10883- 3 4.46246- 3 1.40000+ 1 2.10000+ 1 2.18457- 2 4.54461- 3 1.40000+ 1 2.20000+ 1 2.38538- 3 4.54698- 3 1.40000+ 1 2.70000+ 1 9.54951- 5 4.59925- 3 1.40000+ 1 2.90000+ 1 1.00217- 3 4.61195- 3 1.40000+ 1 3.00000+ 1 1.26085- 4 4.61379- 3 1.40000+ 1 4.10000+ 1 2.78128- 6 4.62653- 3 1.60000+ 1 1.60000+ 1 3.17120- 5 4.89948- 3 1.60000+ 1 1.80000+ 1 8.13937- 4 4.94937- 3 1.60000+ 1 1.90000+ 1 8.55287- 5 4.96358- 3 1.60000+ 1 2.10000+ 1 5.18937- 5 5.04573- 3 1.60000+ 1 2.20000+ 1 6.72668- 5 5.04810- 3 1.60000+ 1 2.70000+ 1 9.61014- 6 5.10037- 3 1.60000+ 1 2.90000+ 1 9.22532- 5 5.11307- 3 1.60000+ 1 3.00000+ 1 9.61014- 6 5.11491- 3 1.80000+ 1 1.80000+ 1 6.76917- 4 4.99926- 3 1.80000+ 1 1.90000+ 1 2.07914- 3 5.01347- 3 1.80000+ 1 2.10000+ 1 8.78208- 4 5.09562- 3 1.80000+ 1 2.20000+ 1 1.36437- 3 5.09799- 3 1.80000+ 1 2.70000+ 1 1.16039- 4 5.15026- 3 1.80000+ 1 2.90000+ 1 1.59115- 4 5.16296- 3 1.80000+ 1 3.00000+ 1 2.41753- 4 5.16480- 3 1.80000+ 1 4.10000+ 1 3.51629- 6 5.17754- 3 1.90000+ 1 1.90000+ 1 5.62834- 5 5.02768- 3 1.90000+ 1 2.10000+ 1 1.23358- 3 5.10983- 3 1.90000+ 1 2.20000+ 1 1.46700- 4 5.11220- 3 1.90000+ 1 2.70000+ 1 1.29176- 5 5.16447- 3 1.90000+ 1 2.90000+ 1 2.49121- 4 5.17717- 3 1.90000+ 1 3.00000+ 1 1.29176- 5 5.17901- 3 2.10000+ 1 2.10000+ 1 8.38872- 4 5.19198- 3 2.10000+ 1 2.20000+ 1 3.40041- 3 5.19435- 3 2.10000+ 1 2.70000+ 1 7.62647- 6 5.24662- 3 2.10000+ 1 2.90000+ 1 1.09629- 4 5.25932- 3 2.10000+ 1 3.00000+ 1 1.46811- 4 5.26116- 3 2.20000+ 1 2.20000+ 1 1.69903- 4 5.19672- 3 2.20000+ 1 2.70000+ 1 1.07405- 5 5.24899- 3 2.20000+ 1 2.90000+ 1 1.69903- 4 5.26169- 3 2.20000+ 1 3.00000+ 1 1.75763- 5 5.26353- 3 2.70000+ 1 2.70000+ 1 9.45652- 7 5.30126- 3 2.70000+ 1 2.90000+ 1 1.41843- 5 5.31396- 3 2.70000+ 1 3.00000+ 1 1.89121- 6 5.31580- 3 2.90000+ 1 2.90000+ 1 1.24405- 5 5.32666- 3 2.90000+ 1 3.00000+ 1 3.61910- 5 5.32850- 3 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.49529- 3 3.80970- 3 1.00000+ 1 4.21800- 5 3.94660- 3 1.10000+ 1 3.92130- 5 4.01542- 3 1.30000+ 1 7.89869- 3 4.25840- 3 1.40000+ 1 6.99779- 2 4.27312- 3 1.60000+ 1 6.90749- 4 4.77424- 3 1.80000+ 1 3.99380- 6 4.82413- 3 1.90000+ 1 3.83990- 6 4.83834- 3 2.10000+ 1 1.19450- 3 4.92049- 3 2.20000+ 1 1.06640- 2 4.92286- 3 2.70000+ 1 1.02540- 4 4.97513- 3 2.90000+ 1 5.26310- 7 4.98783- 3 3.00000+ 1 4.95950- 7 4.98967- 3 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.35482- 3 2.61330- 3 8.00000+ 0 1.00000+ 1 9.36134- 4 2.75020- 3 8.00000+ 0 1.10000+ 1 2.91282- 2 2.81902- 3 8.00000+ 0 1.30000+ 1 2.84977- 3 3.06200- 3 8.00000+ 0 1.40000+ 1 3.24929- 3 3.07672- 3 8.00000+ 0 1.60000+ 1 4.72106- 4 3.57784- 3 8.00000+ 0 1.80000+ 1 1.57030- 4 3.62773- 3 8.00000+ 0 1.90000+ 1 4.06173- 3 3.64194- 3 8.00000+ 0 2.10000+ 1 2.48631- 4 3.72409- 3 8.00000+ 0 2.20000+ 1 2.61716- 4 3.72646- 3 8.00000+ 0 2.70000+ 1 7.04600- 5 3.77873- 3 8.00000+ 0 2.90000+ 1 1.81187- 5 3.79143- 3 8.00000+ 0 3.00000+ 1 4.46952- 4 3.79327- 3 8.00000+ 0 4.10000+ 1 2.01325- 6 3.80601- 3 1.00000+ 1 1.00000+ 1 3.02982- 4 2.88710- 3 1.00000+ 1 1.10000+ 1 4.84422- 2 2.95592- 3 1.00000+ 1 1.30000+ 1 3.09831- 3 3.19890- 3 1.00000+ 1 1.40000+ 1 2.78825- 2 3.21362- 3 1.00000+ 1 1.60000+ 1 1.75144- 4 3.71474- 3 1.00000+ 1 1.80000+ 1 1.02672- 4 3.76463- 3 1.00000+ 1 1.90000+ 1 6.99098- 3 3.77884- 3 1.00000+ 1 2.10000+ 1 4.63035- 4 3.86099- 3 1.00000+ 1 2.20000+ 1 3.62276- 3 3.86336- 3 1.00000+ 1 2.70000+ 1 2.61719- 5 3.91563- 3 1.00000+ 1 2.90000+ 1 1.20785- 5 3.92833- 3 1.00000+ 1 3.00000+ 1 7.74087- 4 3.93017- 3 1.00000+ 1 4.10000+ 1 1.00661- 6 3.94291- 3 1.10000+ 1 1.10000+ 1 6.77375- 2 3.02474- 3 1.10000+ 1 1.30000+ 1 6.81525- 2 3.26772- 3 1.10000+ 1 1.40000+ 1 1.01957- 1 3.28244- 3 1.10000+ 1 1.60000+ 1 6.42821- 3 3.78356- 3 1.10000+ 1 1.80000+ 1 9.41018- 3 3.83345- 3 1.10000+ 1 1.90000+ 1 2.31033- 2 3.84766- 3 1.10000+ 1 2.10000+ 1 1.05110- 2 3.92981- 3 1.10000+ 1 2.20000+ 1 1.55409- 2 3.93218- 3 1.10000+ 1 2.70000+ 1 9.99578- 4 3.98445- 3 1.10000+ 1 2.90000+ 1 1.13038- 3 3.99715- 3 1.10000+ 1 3.00000+ 1 2.63632- 3 3.99899- 3 1.10000+ 1 4.10000+ 1 3.32185- 5 4.01173- 3 1.30000+ 1 1.30000+ 1 9.75679- 3 3.51070- 3 1.30000+ 1 1.40000+ 1 1.87316- 1 3.52542- 3 1.30000+ 1 1.60000+ 1 5.89864- 4 4.02654- 3 1.30000+ 1 1.80000+ 1 5.99957- 4 4.07643- 3 1.30000+ 1 1.90000+ 1 9.17934- 3 4.09064- 3 1.30000+ 1 2.10000+ 1 2.68270- 3 4.17279- 3 1.30000+ 1 2.20000+ 1 2.22132- 2 4.17516- 3 1.30000+ 1 2.70000+ 1 9.05935- 5 4.22743- 3 1.30000+ 1 2.90000+ 1 7.24776- 5 4.24013- 3 1.30000+ 1 3.00000+ 1 1.00564- 3 4.24197- 3 1.30000+ 1 4.10000+ 1 3.01988- 6 4.25471- 3 1.40000+ 1 1.40000+ 1 1.26924- 1 3.54014- 3 1.40000+ 1 1.60000+ 1 7.13693- 4 4.04126- 3 1.40000+ 1 1.80000+ 1 5.04412- 3 4.09115- 3 1.40000+ 1 1.90000+ 1 1.53188- 2 4.10536- 3 1.40000+ 1 2.10000+ 1 2.60245- 2 4.18751- 3 1.40000+ 1 2.20000+ 1 3.34672- 2 4.18988- 3 1.40000+ 1 2.70000+ 1 1.10734- 4 4.24215- 3 1.40000+ 1 2.90000+ 1 5.98927- 4 4.25485- 3 1.40000+ 1 3.00000+ 1 1.71432- 3 4.25669- 3 1.40000+ 1 4.10000+ 1 4.02642- 6 4.26943- 3 1.60000+ 1 1.60000+ 1 4.30451- 5 4.54238- 3 1.60000+ 1 1.80000+ 1 3.14976- 5 4.59227- 3 1.60000+ 1 1.90000+ 1 9.36523- 4 4.60648- 3 1.60000+ 1 2.10000+ 1 5.77458- 5 4.68863- 3 1.60000+ 1 2.20000+ 1 6.40459- 5 4.69100- 3 1.60000+ 1 2.70000+ 1 1.25981- 5 4.74327- 3 1.60000+ 1 2.90000+ 1 3.14976- 6 4.75597- 3 1.60000+ 1 3.00000+ 1 1.02893- 4 4.75781- 3 1.80000+ 1 1.80000+ 1 7.61805- 6 4.64216- 3 1.80000+ 1 1.90000+ 1 1.28269- 3 4.65637- 3 1.80000+ 1 2.10000+ 1 8.28426- 5 4.73852- 3 1.80000+ 1 2.20000+ 1 6.37995- 4 4.74089- 3 1.80000+ 1 2.70000+ 1 4.76103- 6 4.79316- 3 1.80000+ 1 2.90000+ 1 1.90452- 6 4.80586- 3 1.80000+ 1 3.00000+ 1 1.41888- 4 4.80770- 3 1.90000+ 1 1.90000+ 1 1.74867- 3 4.67058- 3 1.90000+ 1 2.10000+ 1 1.30091- 3 4.75273- 3 1.90000+ 1 2.20000+ 1 2.11707- 3 4.75510- 3 1.90000+ 1 2.70000+ 1 1.28334- 4 4.80737- 3 1.90000+ 1 2.90000+ 1 1.49568- 4 4.82007- 3 1.90000+ 1 3.00000+ 1 3.97033- 4 4.82191- 3 1.90000+ 1 4.10000+ 1 4.61630- 6 4.83465- 3 2.10000+ 1 2.10000+ 1 1.84136- 4 4.83488- 3 2.10000+ 1 2.20000+ 1 3.24353- 3 4.83725- 3 2.10000+ 1 2.70000+ 1 8.22979- 6 4.88952- 3 2.10000+ 1 2.90000+ 1 1.02871- 5 4.90222- 3 2.10000+ 1 3.00000+ 1 1.58419- 4 4.90406- 3 2.20000+ 1 2.20000+ 1 2.35957- 3 4.83962- 3 2.20000+ 1 2.70000+ 1 1.07205- 5 4.89189- 3 2.20000+ 1 2.90000+ 1 8.57656- 5 4.90459- 3 2.20000+ 1 3.00000+ 1 2.74442- 4 4.90643- 3 2.70000+ 1 2.70000+ 1 1.37992- 6 4.94416- 3 2.70000+ 1 2.90000+ 1 1.37992- 6 4.95686- 3 2.70000+ 1 3.00000+ 1 2.06981- 5 4.95870- 3 2.90000+ 1 3.00000+ 1 2.05700- 5 4.97140- 3 3.00000+ 1 3.00000+ 1 2.81088- 5 4.97324- 3 3.00000+ 1 4.10000+ 1 1.17118- 6 4.98598- 3 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.23737- 5 1.36900- 4 1.10000+ 1 8.75325- 5 2.05720- 4 1.80000+ 1 2.43176- 4 1.01443- 3 1.90000+ 1 3.26311- 4 1.02864- 3 2.90000+ 1 3.53939- 5 1.17813- 3 3.00000+ 1 4.77344- 5 1.17997- 3 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 9.00842- 2 5.12900- 5 1.00000+ 1 2.20000+ 1 1.23569- 1 5.36600- 5 1.00000+ 1 2.70000+ 1 9.68314- 3 1.05930- 4 1.00000+ 1 2.90000+ 1 7.52615- 3 1.18630- 4 1.00000+ 1 3.00000+ 1 1.26409- 2 1.20470- 4 1.00000+ 1 4.10000+ 1 3.14485- 4 1.33210- 4 1.10000+ 1 1.80000+ 1 9.43332- 2 2.37500- 5 1.10000+ 1 1.90000+ 1 1.42492- 1 3.79600- 5 1.10000+ 1 2.10000+ 1 6.57840- 2 1.20110- 4 1.10000+ 1 2.20000+ 1 9.57370- 2 1.22480- 4 1.10000+ 1 2.70000+ 1 1.30920- 2 1.74750- 4 1.10000+ 1 2.90000+ 1 1.05428- 2 1.87450- 4 1.10000+ 1 3.00000+ 1 1.60076- 2 1.89290- 4 1.10000+ 1 4.10000+ 1 4.31863- 4 2.02030- 4 1.30000+ 1 1.60000+ 1 3.51244- 2 2.16840- 4 1.30000+ 1 1.80000+ 1 7.49716- 3 2.66730- 4 1.30000+ 1 1.90000+ 1 5.93632- 3 2.80940- 4 1.30000+ 1 2.10000+ 1 9.76973- 3 3.63090- 4 1.30000+ 1 2.20000+ 1 1.20543- 2 3.65460- 4 1.30000+ 1 2.70000+ 1 3.77048- 3 4.17730- 4 1.30000+ 1 2.90000+ 1 7.23910- 4 4.30430- 4 1.30000+ 1 3.00000+ 1 5.43809- 4 4.32270- 4 1.30000+ 1 4.10000+ 1 1.19128- 4 4.45010- 4 1.40000+ 1 1.60000+ 1 5.13004- 2 2.31560- 4 1.40000+ 1 1.80000+ 1 1.83350- 3 2.81450- 4 1.40000+ 1 1.90000+ 1 1.46601- 2 2.95660- 4 1.40000+ 1 2.10000+ 1 1.27214- 2 3.77810- 4 1.40000+ 1 2.20000+ 1 1.98911- 2 3.80180- 4 1.40000+ 1 2.70000+ 1 5.47285- 3 4.32450- 4 1.40000+ 1 2.90000+ 1 1.65729- 4 4.45150- 4 1.40000+ 1 3.00000+ 1 1.35220- 3 4.46990- 4 1.40000+ 1 4.10000+ 1 1.73134- 4 4.59730- 4 1.60000+ 1 1.60000+ 1 8.01413- 3 7.32680- 4 1.60000+ 1 1.80000+ 1 1.30144- 2 7.82570- 4 1.60000+ 1 1.90000+ 1 2.39294- 2 7.96780- 4 1.60000+ 1 2.10000+ 1 2.39905- 2 8.78930- 4 1.60000+ 1 2.20000+ 1 3.49588- 2 8.81300- 4 1.60000+ 1 2.70000+ 1 2.06840- 3 9.33570- 4 1.60000+ 1 2.90000+ 1 1.55650- 3 9.46270- 4 1.60000+ 1 3.00000+ 1 2.77072- 3 9.48110- 4 1.60000+ 1 4.10000+ 1 6.73729- 5 9.60850- 4 1.80000+ 1 1.80000+ 1 7.00744- 4 8.32460- 4 1.80000+ 1 1.90000+ 1 1.71700- 3 8.46670- 4 1.80000+ 1 2.10000+ 1 1.02749- 3 9.28820- 4 1.80000+ 1 2.20000+ 1 3.95692- 4 9.31190- 4 1.80000+ 1 2.70000+ 1 1.30028- 3 9.83460- 4 1.80000+ 1 2.90000+ 1 1.37899- 4 9.96160- 4 1.80000+ 1 3.00000+ 1 1.58881- 4 9.98000- 4 1.80000+ 1 4.10000+ 1 4.12204- 5 1.01074- 3 1.90000+ 1 1.90000+ 1 2.21331- 3 8.60880- 4 1.90000+ 1 2.10000+ 1 1.00674- 3 9.43030- 4 1.90000+ 1 2.20000+ 1 2.77531- 3 9.45400- 4 1.90000+ 1 2.70000+ 1 2.30242- 3 9.97670- 4 1.90000+ 1 2.90000+ 1 1.66715- 4 1.01037- 3 1.90000+ 1 3.00000+ 1 4.34018- 4 1.01221- 3 1.90000+ 1 4.10000+ 1 7.25781- 5 1.02495- 3 2.10000+ 1 2.10000+ 1 2.99605- 4 1.02518- 3 2.10000+ 1 2.20000+ 1 1.11764- 3 1.02755- 3 2.10000+ 1 2.70000+ 1 2.38396- 3 1.07982- 3 2.10000+ 1 2.90000+ 1 9.35767- 5 1.09252- 3 2.10000+ 1 3.00000+ 1 9.58449- 5 1.09436- 3 2.10000+ 1 4.10000+ 1 7.47101- 5 1.10710- 3 2.20000+ 1 2.20000+ 1 7.19807- 4 1.02992- 3 2.20000+ 1 2.70000+ 1 3.45630- 3 1.08219- 3 2.20000+ 1 2.90000+ 1 3.45630- 5 1.09489- 3 2.20000+ 1 3.00000+ 1 2.67477- 4 1.09673- 3 2.20000+ 1 4.10000+ 1 1.08945- 4 1.10947- 3 2.70000+ 1 2.70000+ 1 8.64993- 5 1.13446- 3 2.70000+ 1 2.90000+ 1 1.11062- 4 1.14716- 3 2.70000+ 1 3.00000+ 1 1.97563- 4 1.14900- 3 2.70000+ 1 4.10000+ 1 5.33956- 6 1.16174- 3 2.90000+ 1 2.90000+ 1 2.59813- 6 1.15986- 3 2.90000+ 1 3.00000+ 1 6.06225- 6 1.16170- 3 2.90000+ 1 4.10000+ 1 2.02066- 6 1.17444- 3 3.00000+ 1 3.00000+ 1 1.06753- 5 1.16354- 3 3.00000+ 1 4.10000+ 1 4.41736- 6 1.17628- 3 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.33604- 4 3.11800- 4 1.60000+ 1 3.12234- 4 8.27640- 4 2.10000+ 1 1.24439- 3 9.73890- 4 2.70000+ 1 4.94729- 5 1.02853- 3 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.70000+ 1 8.99611- 3 3.78500- 5 1.10000+ 1 2.90000+ 1 8.17555- 3 5.05500- 5 1.10000+ 1 3.00000+ 1 9.76549- 3 5.23900- 5 1.10000+ 1 4.10000+ 1 2.76087- 4 6.51300- 5 1.30000+ 1 1.60000+ 1 1.29771- 1 7.99400- 5 1.30000+ 1 1.80000+ 1 1.32517- 1 1.29830- 4 1.30000+ 1 1.90000+ 1 1.93126- 1 1.44040- 4 1.30000+ 1 2.10000+ 1 5.58814- 2 2.26190- 4 1.30000+ 1 2.20000+ 1 6.07310- 2 2.28560- 4 1.30000+ 1 2.70000+ 1 2.04267- 2 2.80830- 4 1.30000+ 1 2.90000+ 1 1.39158- 2 2.93530- 4 1.30000+ 1 3.00000+ 1 2.14496- 2 2.95370- 4 1.30000+ 1 4.10000+ 1 6.64005- 4 3.08110- 4 1.40000+ 1 1.60000+ 1 2.22992- 2 9.46600- 5 1.40000+ 1 1.80000+ 1 1.59686- 1 1.44550- 4 1.40000+ 1 1.90000+ 1 1.66119- 2 1.58760- 4 1.40000+ 1 2.10000+ 1 3.32833- 3 2.40910- 4 1.40000+ 1 2.20000+ 1 7.37297- 3 2.43280- 4 1.40000+ 1 2.70000+ 1 2.34182- 3 2.95550- 4 1.40000+ 1 2.90000+ 1 1.39188- 2 3.08250- 4 1.40000+ 1 3.00000+ 1 1.68487- 3 3.10090- 4 1.40000+ 1 4.10000+ 1 7.42054- 5 3.22830- 4 1.60000+ 1 1.60000+ 1 6.99283- 4 5.95780- 4 1.60000+ 1 1.80000+ 1 9.90058- 3 6.45670- 4 1.60000+ 1 1.90000+ 1 1.61691- 3 6.59880- 4 1.60000+ 1 2.10000+ 1 3.52853- 4 7.42030- 4 1.60000+ 1 2.20000+ 1 1.05972- 3 7.44400- 4 1.60000+ 1 2.70000+ 1 1.71772- 4 7.96670- 4 1.60000+ 1 2.90000+ 1 8.22730- 4 8.09370- 4 1.60000+ 1 3.00000+ 1 1.68852- 4 8.11210- 4 1.60000+ 1 4.10000+ 1 5.24033- 6 8.23950- 4 1.80000+ 1 1.80000+ 1 7.18883- 3 6.95560- 4 1.80000+ 1 1.90000+ 1 2.24110- 2 7.09770- 4 1.80000+ 1 2.10000+ 1 1.95821- 2 7.91920- 4 1.80000+ 1 2.20000+ 1 3.25733- 2 7.94290- 4 1.80000+ 1 2.70000+ 1 1.55124- 3 8.46560- 4 1.80000+ 1 2.90000+ 1 1.47642- 3 8.59260- 4 1.80000+ 1 3.00000+ 1 2.58196- 3 8.61100- 4 1.80000+ 1 4.10000+ 1 5.11155- 5 8.73840- 4 1.90000+ 1 1.90000+ 1 6.45715- 4 7.23980- 4 1.90000+ 1 2.10000+ 1 2.01902- 3 8.06130- 4 1.90000+ 1 2.20000+ 1 1.48367- 3 8.08500- 4 1.90000+ 1 2.70000+ 1 1.85851- 4 8.60770- 4 1.90000+ 1 2.90000+ 1 2.03424- 3 8.73470- 4 1.90000+ 1 3.00000+ 1 1.25600- 4 8.75310- 4 1.90000+ 1 4.10000+ 1 5.70887- 6 8.88050- 4 2.10000+ 1 2.10000+ 1 6.44417- 4 8.88280- 4 2.10000+ 1 2.20000+ 1 1.65737- 3 8.90650- 4 2.10000+ 1 2.70000+ 1 4.69180- 5 9.42920- 4 2.10000+ 1 2.90000+ 1 1.55232- 3 9.55620- 4 2.10000+ 1 3.00000+ 1 1.74106- 4 9.57460- 4 2.10000+ 1 4.10000+ 1 1.69578- 6 9.70200- 4 2.20000+ 1 2.20000+ 1 2.26787- 4 8.93020- 4 2.20000+ 1 2.70000+ 1 6.80031- 5 9.45290- 4 2.20000+ 1 2.90000+ 1 1.48581- 3 9.57990- 4 2.20000+ 1 3.00000+ 1 6.80031- 5 9.59830- 4 2.20000+ 1 4.10000+ 1 2.24538- 6 9.72570- 4 2.70000+ 1 2.70000+ 1 7.87279- 6 9.97560- 4 2.70000+ 1 2.90000+ 1 9.49150- 5 1.01026- 3 2.70000+ 1 3.00000+ 1 1.35587- 5 1.01210- 3 2.70000+ 1 4.10000+ 1 4.37383- 7 1.02484- 3 2.90000+ 1 2.90000+ 1 4.48573- 5 1.02296- 3 2.90000+ 1 3.00000+ 1 1.36044- 4 1.02480- 3 2.90000+ 1 4.10000+ 1 2.57372- 6 1.03754- 3 3.00000+ 1 3.00000+ 1 3.45243- 6 1.02664- 3 3.00000+ 1 4.10000+ 1 3.45243- 7 1.03938- 3 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.12415- 5 2.42980- 4 1.40000+ 1 2.33778- 4 2.57700- 4 1.60000+ 1 3.82106- 4 7.58820- 4 2.10000+ 1 1.49791- 4 9.05070- 4 2.20000+ 1 1.23501- 3 9.07440- 4 2.70000+ 1 6.00413- 5 9.59710- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.61370- 2 1.11200- 5 1.30000+ 1 1.80000+ 1 1.75519- 2 6.10100- 5 1.30000+ 1 1.90000+ 1 1.01384- 1 7.52200- 5 1.30000+ 1 2.10000+ 1 1.29933- 2 1.57370- 4 1.30000+ 1 2.20000+ 1 9.67777- 3 1.59740- 4 1.30000+ 1 2.70000+ 1 3.05018- 3 2.12010- 4 1.30000+ 1 2.90000+ 1 1.95474- 3 2.24710- 4 1.30000+ 1 3.00000+ 1 9.19137- 3 2.26550- 4 1.30000+ 1 4.10000+ 1 9.92321- 5 2.39290- 4 1.40000+ 1 1.60000+ 1 1.12964- 1 2.58400- 5 1.40000+ 1 1.80000+ 1 1.18087- 1 7.57300- 5 1.40000+ 1 1.90000+ 1 2.27079- 1 8.99400- 5 1.40000+ 1 2.10000+ 1 5.20128- 2 1.72090- 4 1.40000+ 1 2.20000+ 1 8.55188- 2 1.74460- 4 1.40000+ 1 2.70000+ 1 1.75292- 2 2.26730- 4 1.40000+ 1 2.90000+ 1 1.33016- 2 2.39430- 4 1.40000+ 1 3.00000+ 1 2.32581- 2 2.41270- 4 1.40000+ 1 4.10000+ 1 5.75998- 4 2.54010- 4 1.60000+ 1 1.60000+ 1 7.88312- 4 5.26960- 4 1.60000+ 1 1.80000+ 1 1.15253- 3 5.76850- 4 1.60000+ 1 1.90000+ 1 1.67099- 2 5.91060- 4 1.60000+ 1 2.10000+ 1 9.86243- 4 6.73210- 4 1.60000+ 1 2.20000+ 1 1.07508- 3 6.75580- 4 1.60000+ 1 2.70000+ 1 1.93561- 4 7.27850- 4 1.60000+ 1 2.90000+ 1 1.16134- 4 7.40550- 4 1.60000+ 1 3.00000+ 1 1.37159- 3 7.42390- 4 1.60000+ 1 4.10000+ 1 6.15847- 6 7.55130- 4 1.80000+ 1 1.80000+ 1 1.88033- 4 6.26740- 4 1.80000+ 1 1.90000+ 1 1.92762- 2 6.40950- 4 1.80000+ 1 2.10000+ 1 5.27385- 4 7.23100- 4 1.80000+ 1 2.20000+ 1 3.11689- 3 7.25470- 4 1.80000+ 1 2.70000+ 1 1.28935- 4 7.77740- 4 1.80000+ 1 2.90000+ 1 3.58150- 5 7.90440- 4 1.80000+ 1 3.00000+ 1 1.59650- 3 7.92280- 4 1.80000+ 1 4.10000+ 1 4.47680- 6 8.05020- 4 1.90000+ 1 1.90000+ 1 2.50532- 2 6.55160- 4 1.90000+ 1 2.10000+ 1 3.19814- 2 7.37310- 4 1.90000+ 1 2.20000+ 1 4.34977- 2 7.39680- 4 1.90000+ 1 2.70000+ 1 2.27848- 3 7.91950- 4 1.90000+ 1 2.90000+ 1 2.02397- 3 8.04650- 4 1.90000+ 1 3.00000+ 1 4.95806- 3 8.06490- 4 1.90000+ 1 4.10000+ 1 7.47328- 5 8.19230- 4 2.10000+ 1 2.10000+ 1 1.80346- 4 8.19460- 4 2.10000+ 1 2.20000+ 1 2.22502- 3 8.21830- 4 2.10000+ 1 2.70000+ 1 6.93618- 5 8.74100- 4 2.10000+ 1 2.90000+ 1 2.83473- 5 8.86800- 4 2.10000+ 1 3.00000+ 1 2.00071- 3 8.88640- 4 2.10000+ 1 4.10000+ 1 2.41254- 6 9.01380- 4 2.20000+ 1 2.20000+ 1 1.06367- 3 8.24200- 4 2.20000+ 1 2.70000+ 1 6.52493- 5 8.76470- 4 2.20000+ 1 2.90000+ 1 1.40804- 4 8.89170- 4 2.20000+ 1 3.00000+ 1 2.19742- 3 8.91010- 4 2.20000+ 1 4.10000+ 1 1.96237- 6 9.03750- 4 2.70000+ 1 2.70000+ 1 7.40594- 6 9.28740- 4 2.70000+ 1 2.90000+ 1 7.93489- 6 9.41440- 4 2.70000+ 1 3.00000+ 1 1.24314- 4 9.43280- 4 2.70000+ 1 4.10000+ 1 5.29005- 7 9.56020- 4 2.90000+ 1 2.90000+ 1 1.11957- 6 9.54140- 4 2.90000+ 1 3.00000+ 1 1.18117- 4 9.55980- 4 3.00000+ 1 3.00000+ 1 1.71229- 4 9.57820- 4 3.00000+ 1 4.10000+ 1 4.58137- 6 9.70560- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.07960- 3 5.65730- 4 1.90000+ 1 3.25161- 4 5.79940- 4 2.90000+ 1 2.61900- 4 7.29430- 4 3.00000+ 1 4.00351- 5 7.31270- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 9.55523- 3 0.00000+ 0 1.40000+ 1 4.10000+ 1 5.15787- 4 1.10300- 5 1.60000+ 1 1.60000+ 1 1.31129- 5 2.83980- 4 1.60000+ 1 1.80000+ 1 5.48567- 3 3.33870- 4 1.60000+ 1 1.90000+ 1 4.31002- 3 3.48080- 4 1.60000+ 1 2.10000+ 1 1.10757- 1 4.30230- 4 1.60000+ 1 2.20000+ 1 1.54262- 2 4.32600- 4 1.60000+ 1 2.70000+ 1 2.62259- 5 4.84870- 4 1.60000+ 1 2.90000+ 1 5.20167- 4 4.97570- 4 1.60000+ 1 3.00000+ 1 3.01595- 4 4.99410- 4 1.80000+ 1 1.80000+ 1 1.93219- 3 3.83760- 4 1.80000+ 1 1.90000+ 1 1.70307- 2 3.97970- 4 1.80000+ 1 2.10000+ 1 8.95888- 2 4.80120- 4 1.80000+ 1 2.20000+ 1 7.86856- 3 4.82490- 4 1.80000+ 1 2.70000+ 1 4.41519- 4 5.34760- 4 1.80000+ 1 2.90000+ 1 3.97809- 4 5.47460- 4 1.80000+ 1 3.00000+ 1 1.47746- 3 5.49300- 4 1.80000+ 1 4.10000+ 1 1.31139- 5 5.62040- 4 1.90000+ 1 1.90000+ 1 6.55214- 3 4.12180- 4 1.90000+ 1 2.10000+ 1 1.97831- 1 4.94330- 4 1.90000+ 1 2.20000+ 1 7.52685- 3 4.96700- 4 1.90000+ 1 2.70000+ 1 4.19609- 4 5.48970- 4 1.90000+ 1 2.90000+ 1 1.48174- 3 5.61670- 4 1.90000+ 1 3.00000+ 1 1.10592- 3 5.63510- 4 1.90000+ 1 4.10000+ 1 1.31125- 5 5.76250- 4 2.10000+ 1 2.10000+ 1 1.50784- 1 5.76480- 4 2.10000+ 1 2.20000+ 1 3.10056- 1 5.78850- 4 2.10000+ 1 2.70000+ 1 1.50714- 2 6.31120- 4 2.10000+ 1 2.90000+ 1 1.04734- 2 6.43820- 4 2.10000+ 1 3.00000+ 1 2.18827- 2 6.45660- 4 2.10000+ 1 4.10000+ 1 4.93793- 4 6.58400- 4 2.20000+ 1 2.20000+ 1 5.16667- 3 5.81220- 4 2.20000+ 1 2.70000+ 1 1.18019- 3 6.33490- 4 2.20000+ 1 2.90000+ 1 6.29439- 4 6.46190- 4 2.20000+ 1 3.00000+ 1 6.90648- 4 6.48030- 4 2.20000+ 1 4.10000+ 1 3.49705- 5 6.60770- 4 2.70000+ 1 2.90000+ 1 4.63325- 5 6.98460- 4 2.70000+ 1 3.00000+ 1 2.94826- 5 7.00300- 4 2.90000+ 1 2.90000+ 1 1.44805- 5 7.11160- 4 2.90000+ 1 3.00000+ 1 9.26797- 5 7.13000- 4 3.00000+ 1 3.00000+ 1 5.56161- 5 7.14840- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.24497- 3 5.65220- 4 3.00000+ 1 2.76176- 4 7.16550- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.29331- 5 2.69260- 4 1.60000+ 1 1.80000+ 1 2.18790- 3 3.19150- 4 1.60000+ 1 1.90000+ 1 8.33159- 3 3.33360- 4 1.60000+ 1 2.10000+ 1 1.13606- 2 4.15510- 4 1.60000+ 1 2.20000+ 1 1.16190- 1 4.17880- 4 1.60000+ 1 2.70000+ 1 3.00304- 5 4.70150- 4 1.60000+ 1 2.90000+ 1 1.15831- 4 4.82850- 4 1.60000+ 1 3.00000+ 1 6.99297- 4 4.84690- 4 1.80000+ 1 1.90000+ 1 1.66976- 2 3.83250- 4 1.80000+ 1 2.10000+ 1 1.23567- 3 4.65400- 4 1.80000+ 1 2.20000+ 1 1.09698- 1 4.67770- 4 1.80000+ 1 2.70000+ 1 1.84489- 4 5.20040- 4 1.80000+ 1 2.90000+ 1 4.29039- 6 5.32740- 4 1.80000+ 1 3.00000+ 1 1.42438- 3 5.34580- 4 1.80000+ 1 4.10000+ 1 4.29039- 6 5.47320- 4 1.90000+ 1 1.90000+ 1 1.26351- 2 3.97460- 4 1.90000+ 1 2.10000+ 1 1.01124- 2 4.79610- 4 1.90000+ 1 2.20000+ 1 1.80864- 1 4.81980- 4 1.90000+ 1 2.70000+ 1 7.55097- 4 5.34250- 4 1.90000+ 1 2.90000+ 1 1.36858- 3 5.46950- 4 1.90000+ 1 3.00000+ 1 2.22665- 3 5.48790- 4 1.90000+ 1 4.10000+ 1 2.57411- 5 5.61530- 4 2.10000+ 1 2.10000+ 1 2.08937- 3 5.61760- 4 2.10000+ 1 2.20000+ 1 2.16800- 1 5.64130- 4 2.10000+ 1 2.70000+ 1 8.58027- 4 6.16400- 4 2.10000+ 1 2.90000+ 1 1.41572- 4 6.29100- 4 2.10000+ 1 3.00000+ 1 8.32294- 4 6.30940- 4 2.10000+ 1 4.10000+ 1 2.57402- 5 6.43680- 4 2.20000+ 1 2.20000+ 1 2.50840- 1 5.66500- 4 2.20000+ 1 2.70000+ 1 1.56243- 2 6.18770- 4 2.20000+ 1 2.90000+ 1 1.26008- 2 6.31470- 4 2.20000+ 1 3.00000+ 1 2.05208- 2 6.33310- 4 2.20000+ 1 4.10000+ 1 5.10539- 4 6.46050- 4 2.70000+ 1 2.90000+ 1 1.24710- 5 6.83740- 4 2.70000+ 1 3.00000+ 1 9.97675- 5 6.85580- 4 2.90000+ 1 3.00000+ 1 1.33738- 4 6.98280- 4 3.00000+ 1 3.00000+ 1 1.59454- 4 7.00120- 4 3.00000+ 1 4.10000+ 1 6.64381- 6 7.12860- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.12361- 5 4.98900- 5 1.90000+ 1 4.55959- 5 6.41000- 5 2.90000+ 1 1.23188- 5 2.13590- 4 3.00000+ 1 1.20406- 5 2.15430- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 7.61086- 2 1.89200- 5 1.80000+ 1 2.90000+ 1 5.26425- 2 3.16200- 5 1.80000+ 1 3.00000+ 1 1.19047- 1 3.34600- 5 1.80000+ 1 4.10000+ 1 2.37299- 3 4.62000- 5 1.90000+ 1 2.70000+ 1 1.13094- 1 3.31300- 5 1.90000+ 1 2.90000+ 1 1.06608- 1 4.58300- 5 1.90000+ 1 3.00000+ 1 1.49267- 1 4.76700- 5 1.90000+ 1 4.10000+ 1 3.59204- 3 6.04100- 5 2.10000+ 1 2.10000+ 1 6.13813- 3 6.06400- 5 2.10000+ 1 2.20000+ 1 7.70327- 2 6.30100- 5 2.10000+ 1 2.70000+ 1 3.21623- 2 1.15280- 4 2.10000+ 1 2.90000+ 1 5.04274- 3 1.27980- 4 2.10000+ 1 3.00000+ 1 2.22643- 2 1.29820- 4 2.10000+ 1 4.10000+ 1 8.80204- 4 1.42560- 4 2.20000+ 1 2.20000+ 1 2.90258- 2 6.53800- 5 2.20000+ 1 2.70000+ 1 4.80950- 2 1.17650- 4 2.20000+ 1 2.90000+ 1 1.97498- 2 1.30350- 4 2.20000+ 1 3.00000+ 1 2.00843- 2 1.32190- 4 2.20000+ 1 4.10000+ 1 1.31532- 3 1.44930- 4 2.70000+ 1 2.70000+ 1 1.38602- 2 1.69920- 4 2.70000+ 1 2.90000+ 1 1.57799- 2 1.82620- 4 2.70000+ 1 3.00000+ 1 2.80816- 2 1.84460- 4 2.70000+ 1 4.10000+ 1 8.10461- 4 1.97200- 4 2.90000+ 1 2.90000+ 1 5.50465- 3 1.95320- 4 2.90000+ 1 3.00000+ 1 2.54055- 2 1.97160- 4 2.90000+ 1 4.10000+ 1 1.85899- 3 2.09900- 4 3.00000+ 1 3.00000+ 1 2.07661- 2 1.99000- 4 3.00000+ 1 4.10000+ 1 3.32899- 3 2.11740- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.08230- 4 9.63600- 5 2.70000+ 1 1.63241- 5 1.51000- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.10000+ 1 1.87881- 4 1.05200- 5 2.10000+ 1 2.10000+ 1 1.63201- 1 1.07500- 5 2.10000+ 1 2.20000+ 1 7.29819- 1 1.31200- 5 2.10000+ 1 2.70000+ 1 1.94886- 2 6.53900- 5 2.10000+ 1 2.90000+ 1 1.31855- 2 7.80900- 5 2.10000+ 1 3.00000+ 1 2.66408- 2 7.99300- 5 2.10000+ 1 4.10000+ 1 6.49856- 4 9.26700- 5 2.20000+ 1 2.20000+ 1 2.50975- 2 1.54900- 5 2.20000+ 1 2.70000+ 1 2.79293- 3 6.77600- 5 2.20000+ 1 2.90000+ 1 1.29795- 2 8.04600- 5 2.20000+ 1 3.00000+ 1 2.96993- 3 8.23000- 5 2.20000+ 1 4.10000+ 1 8.23633- 5 9.50400- 5 2.70000+ 1 2.70000+ 1 3.06958- 5 1.20030- 4 2.70000+ 1 2.90000+ 1 7.46578- 4 1.32730- 4 2.70000+ 1 3.00000+ 1 9.99006- 5 1.34570- 4 2.70000+ 1 4.10000+ 1 1.83946- 6 1.47310- 4 2.90000+ 1 2.90000+ 1 4.64404- 4 1.45430- 4 2.90000+ 1 3.00000+ 1 1.36010- 3 1.47270- 4 2.90000+ 1 4.10000+ 1 2.91091- 5 1.60010- 4 3.00000+ 1 3.00000+ 1 4.55887- 5 1.49110- 4 3.00000+ 1 4.10000+ 1 2.89656- 6 1.61850- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.69840- 6 8.21500- 5 2.20000+ 1 2.81180- 5 8.45200- 5 2.70000+ 1 6.19989- 6 1.36790- 4 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.10000+ 1 7.88904- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 1.80721- 1 0.00000+ 0 2.10000+ 1 2.70000+ 1 2.43401- 3 5.11800- 5 2.10000+ 1 2.90000+ 1 1.77651- 3 6.38800- 5 2.10000+ 1 3.00000+ 1 7.61968- 3 6.57200- 5 2.10000+ 1 4.10000+ 1 7.83244- 5 7.84600- 5 2.20000+ 1 2.20000+ 1 6.81190- 1 1.28000- 6 2.20000+ 1 2.70000+ 1 1.31198- 2 5.35500- 5 2.20000+ 1 2.90000+ 1 1.21430- 2 6.62500- 5 2.20000+ 1 3.00000+ 1 1.97468- 2 6.80900- 5 2.20000+ 1 4.10000+ 1 4.39568- 4 8.08300- 5 2.70000+ 1 2.70000+ 1 3.17611- 6 1.05820- 4 2.70000+ 1 2.90000+ 1 4.43466- 5 1.18520- 4 2.70000+ 1 3.00000+ 1 8.45201- 4 1.20360- 4 2.70000+ 1 4.10000+ 1 2.35258- 7 1.33100- 4 2.90000+ 1 2.90000+ 1 4.29381- 6 1.31220- 4 2.90000+ 1 3.00000+ 1 3.50808- 4 1.33060- 4 2.90000+ 1 4.10000+ 1 5.57650- 7 1.45800- 4 3.00000+ 1 3.00000+ 1 5.41278- 4 1.34900- 4 3.00000+ 1 4.10000+ 1 1.46513- 5 1.47640- 4 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 8.08289- 7 6.73400- 5 3.00000+ 1 1.39470- 7 6.91800- 5 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 2.46742- 1 2.36700- 5 2.70000+ 1 2.90000+ 1 5.60254- 2 3.63700- 5 2.70000+ 1 3.00000+ 1 6.54960- 2 3.82100- 5 2.70000+ 1 4.10000+ 1 8.12578- 3 5.09500- 5 2.90000+ 1 2.90000+ 1 1.51938- 1 4.90700- 5 2.90000+ 1 3.00000+ 1 3.56354- 1 5.09100- 5 2.90000+ 1 4.10000+ 1 4.19779- 3 6.36500- 5 3.00000+ 1 3.00000+ 1 1.08283- 1 5.27500- 5 3.00000+ 1 4.10000+ 1 2.83728- 3 6.54900- 5 1 55000 0 7 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 9.73099- 7 6.68100- 5 1 55000 0 9 1.32905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 3.05976- 1 2.13000- 5 2.70000+ 1 2.90000+ 1 4.21417- 2 3.40000- 5 2.70000+ 1 3.00000+ 1 1.02864- 1 3.58400- 5 2.70000+ 1 4.10000+ 1 1.00980- 2 4.85800- 5 2.90000+ 1 2.90000+ 1 3.03864- 2 4.67000- 5 2.90000+ 1 3.00000+ 1 2.40029- 1 4.85400- 5 2.90000+ 1 4.10000+ 1 1.53463- 3 6.12800- 5 3.00000+ 1 3.00000+ 1 2.61637- 1 5.03800- 5 3.00000+ 1 4.10000+ 1 5.33315- 3 6.31200- 5 1 56000 0 0 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 56000 0 0 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.74490- 2 3.00000+ 0 5.96080- 3 5.00000+ 0 5.63030- 3 6.00000+ 0 5.24340- 3 8.00000+ 0 1.27340- 3 1.00000+ 1 1.13220- 3 1.10000+ 1 1.05700- 3 1.30000+ 1 8.06640- 4 1.40000+ 1 7.90490- 4 1.60000+ 1 2.56350- 4 1.80000+ 1 2.04210- 4 1.90000+ 1 1.88350- 4 2.10000+ 1 1.02160- 4 2.20000+ 1 9.94600- 5 2.70000+ 1 3.83900- 5 2.90000+ 1 2.43000- 5 3.00000+ 1 2.20000- 5 4.10000+ 1 4.64000- 6 1 56000 0 0 1.37330+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.80100- 2 3.00000+ 0 1.05940- 2 5.00000+ 0 1.06040- 2 6.00000+ 0 9.19110- 3 8.00000+ 0 3.14870- 3 1.00000+ 1 3.07510- 3 1.10000+ 1 2.75460- 3 1.30000+ 1 2.62600- 3 1.40000+ 1 2.54900- 3 1.60000+ 1 9.41600- 4 1.80000+ 1 8.69640- 4 1.90000+ 1 7.85320- 4 2.10000+ 1 6.39560- 4 2.20000+ 1 6.21430- 4 2.70000+ 1 2.05610- 4 2.90000+ 1 1.62630- 4 3.00000+ 1 1.45190- 4 4.10000+ 1 2.40500- 5 1 56000 0 0 1.37330+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.35160-10 3.00000+ 0 5.76150-10 5.00000+ 0 4.84240-10 6.00000+ 0 5.15910-10 8.00000+ 0 1.53340- 9 1.00000+ 1 1.47740- 9 1.10000+ 1 1.53960- 9 1.30000+ 1 1.38320- 9 1.40000+ 1 1.40290- 9 1.60000+ 1 3.52760- 9 1.80000+ 1 3.63680- 9 1.90000+ 1 3.77740- 9 2.10000+ 1 4.10870- 9 2.20000+ 1 4.15890- 9 2.70000+ 1 8.42600- 9 2.90000+ 1 9.46480- 9 3.00000+ 1 9.88180- 9 4.10000+ 1 2.49730- 8 1 56000 0 0 1.37330+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.15710- 5 3.00000+ 0 1.98820- 7 5.00000+ 0 3.34020- 7 6.00000+ 0 3.12860- 7 8.00000+ 0 5.46230- 9 1.00000+ 1 5.36540- 9 1.10000+ 1 5.39390- 9 1.30000+ 1 4.15580-10 1.40000+ 1 3.49610-10 1.60000+ 1 1.41330-10 1.80000+ 1 2.98790-10 1.90000+ 1 2.29100-10 2.10000+ 1 1.67240-11 2.20000+ 1 1.46980-11 2.70000+ 1 7.43920-12 1 56000 0 0 1.37330+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.26230- 6 3.00000+ 0 3.40740- 6 5.00000+ 0 2.72140- 6 6.00000+ 0 2.50930- 6 8.00000+ 0 1.18720- 5 1.00000+ 1 5.12440- 6 1.10000+ 1 6.08420- 6 1.30000+ 1 6.55310- 7 1.40000+ 1 6.67650- 7 1.60000+ 1 6.32930- 6 1.80000+ 1 1.74120- 5 1.90000+ 1 2.48810- 6 2.10000+ 1 8.06150- 8 2.20000+ 1 8.11110- 8 2.70000+ 1 6.44090- 7 1 56000 0 0 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.46160- 4 3.00000+ 0 2.86906- 4 5.00000+ 0 2.47187- 4 6.00000+ 0 2.33523- 4 8.00000+ 0 2.08340- 4 1.00000+ 1 1.78964- 4 1.10000+ 1 1.69757- 4 1.30000+ 1 1.10536- 4 1.40000+ 1 1.10342- 4 1.60000+ 1 9.01390- 5 1.80000+ 1 9.19437- 5 1.90000+ 1 7.08681- 5 2.10000+ 1 4.76083- 5 2.20000+ 1 4.73621- 5 2.70000+ 1 2.73769- 5 2.90000+ 1 2.43000- 5 3.00000+ 1 2.20000- 5 4.10000+ 1 4.64000- 6 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00922+ 0 3.00000+ 0 1.17140- 1 5.00000+ 0 1.29013- 1 6.00000+ 0 1.10464- 1 8.00000+ 0 4.80401- 3 1.00000+ 1 5.09488- 3 1.10000+ 1 4.81834- 3 1.30000+ 1 3.24041- 3 1.40000+ 1 3.00509- 3 1.60000+ 1 1.46050- 4 1.80000+ 1 1.49588- 4 1.90000+ 1 4.67738- 5 2.10000+ 1 1.59084- 6 2.20000+ 1 1.62687- 6 2.70000+ 1 2.89523-10 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.02035- 2 3.00000+ 0 5.38659- 4 5.00000+ 0 5.98660- 4 6.00000+ 0 4.74379- 4 8.00000+ 0 3.57165- 6 1.00000+ 1 3.65141- 6 1.10000+ 1 3.45678- 6 1.30000+ 1 2.00265- 6 1.40000+ 1 1.84305- 6 1.60000+ 1 1.69071- 8 1.80000+ 1 1.65186- 8 1.90000+ 1 4.62319- 9 2.10000+ 1 1.24391-10 2.20000+ 1 1.26007-10 2.70000+ 1 4.58602-15 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22319+ 1 3.00000+ 0 1.44381+ 1 5.00000+ 0 1.22505+ 1 6.00000+ 0 1.15719+ 1 8.00000+ 0 1.02180+ 1 1.00000+ 1 8.57915+ 0 1.10000+ 1 8.15349+ 0 1.30000+ 1 4.87767+ 0 1.40000+ 1 4.97205+ 0 1.60000+ 1 3.89206+ 0 1.80000+ 1 3.89235+ 0 1.90000+ 1 2.82573+ 0 2.10000+ 1 1.47759+ 0 2.20000+ 1 1.59375+ 0 2.70000+ 1 1.00000+ 0 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.99936- 3 3.00000+ 0 5.13523- 3 5.00000+ 0 4.78445- 3 6.00000+ 0 4.53550- 3 8.00000+ 0 1.06149- 3 1.00000+ 1 9.49585- 4 1.10000+ 1 8.83787- 4 1.30000+ 1 6.94102- 4 1.40000+ 1 6.78305- 4 1.60000+ 1 1.66194- 4 1.80000+ 1 1.12250- 4 1.90000+ 1 1.17477- 4 2.10000+ 1 5.45516- 5 2.20000+ 1 5.20978- 5 2.70000+ 1 1.10131- 5 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.59109- 1 3.18187- 2 6.00000+ 0 4.77119- 1 3.22056- 2 1.00000+ 1 4.55999- 2 3.63168- 2 1.10000+ 1 8.83548- 2 3.63920- 2 1.30000+ 1 4.94539- 4 3.66424- 2 1.40000+ 1 6.71248- 4 3.66585- 2 1.80000+ 1 9.63368- 3 3.72448- 2 1.90000+ 1 1.87670- 2 3.72606- 2 2.10000+ 1 1.00470- 4 3.73468- 2 2.20000+ 1 1.36260- 4 3.73495- 2 2.90000+ 1 1.35170- 3 3.74247- 2 3.00000+ 1 2.59259- 3 3.74270- 2 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.85623- 3 2.55274- 2 3.00000+ 0 5.00000+ 0 9.44683- 3 2.58579- 2 3.00000+ 0 6.00000+ 0 1.08677- 2 2.62448- 2 3.00000+ 0 8.00000+ 0 2.83874- 3 3.02148- 2 3.00000+ 0 1.00000+ 1 1.83216- 3 3.03560- 2 3.00000+ 0 1.10000+ 1 2.13946- 3 3.04312- 2 3.00000+ 0 1.30000+ 1 1.42074- 4 3.06816- 2 3.00000+ 0 1.40000+ 1 1.51393- 4 3.06977- 2 3.00000+ 0 1.60000+ 1 6.31250- 4 3.12318- 2 3.00000+ 0 1.80000+ 1 3.86661- 4 3.12840- 2 3.00000+ 0 1.90000+ 1 4.49615- 4 3.12999- 2 3.00000+ 0 2.10000+ 1 2.79586- 5 3.13860- 2 3.00000+ 0 2.20000+ 1 2.96152- 5 3.13887- 2 3.00000+ 0 2.70000+ 1 1.05825- 4 3.14498- 2 3.00000+ 0 2.90000+ 1 5.32253- 5 3.14639- 2 3.00000+ 0 3.00000+ 1 6.02669- 5 3.14662- 2 3.00000+ 0 4.10000+ 1 9.94079- 6 3.14836- 2 5.00000+ 0 5.00000+ 0 1.09947- 3 2.61884- 2 5.00000+ 0 6.00000+ 0 2.29213- 2 2.65753- 2 5.00000+ 0 8.00000+ 0 1.42036- 3 3.05453- 2 5.00000+ 0 1.00000+ 1 3.81066- 4 3.06865- 2 5.00000+ 0 1.10000+ 1 3.76445- 3 3.07617- 2 5.00000+ 0 1.30000+ 1 1.67334- 4 3.10121- 2 5.00000+ 0 1.40000+ 1 5.54213- 4 3.10282- 2 5.00000+ 0 1.60000+ 1 3.04026- 4 3.15623- 2 5.00000+ 0 1.80000+ 1 7.89044- 5 3.16145- 2 5.00000+ 0 1.90000+ 1 7.64613- 4 3.16303- 2 5.00000+ 0 2.10000+ 1 3.23084- 5 3.17165- 2 5.00000+ 0 2.20000+ 1 1.06871- 4 3.17192- 2 5.00000+ 0 2.70000+ 1 5.05333- 5 3.17803- 2 5.00000+ 0 2.90000+ 1 1.07691- 5 3.17944- 2 5.00000+ 0 3.00000+ 1 1.01899- 4 3.17967- 2 5.00000+ 0 4.10000+ 1 4.76342- 6 3.18141- 2 6.00000+ 0 6.00000+ 0 1.13338- 2 2.69622- 2 6.00000+ 0 8.00000+ 0 1.59121- 3 3.09322- 2 6.00000+ 0 1.00000+ 1 3.65831- 3 3.10734- 2 6.00000+ 0 1.10000+ 1 3.82427- 3 3.11486- 2 6.00000+ 0 1.30000+ 1 6.56313- 4 3.13990- 2 6.00000+ 0 1.40000+ 1 6.00196- 4 3.14151- 2 6.00000+ 0 1.60000+ 1 3.38618- 4 3.19493- 2 6.00000+ 0 1.80000+ 1 7.44958- 4 3.20014- 2 6.00000+ 0 1.90000+ 1 7.81598- 4 3.20172- 2 6.00000+ 0 2.10000+ 1 1.27160- 4 3.21034- 2 6.00000+ 0 2.20000+ 1 1.15976- 4 3.21061- 2 6.00000+ 0 2.70000+ 1 5.63322- 5 3.21672- 2 6.00000+ 0 2.90000+ 1 1.01685- 4 3.21813- 2 6.00000+ 0 3.00000+ 1 1.04176- 4 3.21836- 2 6.00000+ 0 4.10000+ 1 5.38481- 6 3.22010- 2 8.00000+ 0 8.00000+ 0 2.52661- 4 3.49022- 2 8.00000+ 0 1.00000+ 1 2.77920- 4 3.50434- 2 8.00000+ 0 1.10000+ 1 3.15828- 4 3.51186- 2 8.00000+ 0 1.30000+ 1 1.98821- 5 3.53690- 2 8.00000+ 0 1.40000+ 1 2.05033- 5 3.53851- 2 8.00000+ 0 1.60000+ 1 1.12045- 4 3.59192- 2 8.00000+ 0 1.80000+ 1 5.88162- 5 3.59714- 2 8.00000+ 0 1.90000+ 1 6.64790- 5 3.59872- 2 8.00000+ 0 2.10000+ 1 3.93482- 6 3.60734- 2 8.00000+ 0 2.20000+ 1 3.93482- 6 3.60761- 2 8.00000+ 0 2.70000+ 1 1.88457- 5 3.61372- 2 8.00000+ 0 2.90000+ 1 8.07673- 6 3.61513- 2 8.00000+ 0 3.00000+ 1 8.90562- 6 3.61536- 2 8.00000+ 0 4.10000+ 1 1.86397- 6 3.61710- 2 1.00000+ 1 1.00000+ 1 3.18932- 5 3.51846- 2 1.00000+ 1 1.10000+ 1 6.11364- 4 3.52598- 2 1.00000+ 1 1.30000+ 1 2.13321- 5 3.55102- 2 1.00000+ 1 1.40000+ 1 6.91724- 5 3.55263- 2 1.00000+ 1 1.60000+ 1 5.96458- 5 3.60604- 2 1.00000+ 1 1.80000+ 1 1.30469- 5 3.61126- 2 1.00000+ 1 1.90000+ 1 1.24462- 4 3.61285- 2 1.00000+ 1 2.10000+ 1 4.14207- 6 3.62146- 2 1.00000+ 1 2.20000+ 1 1.34612- 5 3.62173- 2 1.00000+ 1 2.70000+ 1 9.94080- 6 3.62784- 2 1.00000+ 1 2.90000+ 1 1.86401- 6 3.62925- 2 1.00000+ 1 3.00000+ 1 1.65683- 5 3.62948- 2 1.00000+ 1 4.10000+ 1 1.03550- 6 3.63122- 2 1.10000+ 1 1.10000+ 1 3.23912- 4 3.53350- 2 1.10000+ 1 1.30000+ 1 8.80222- 5 3.55854- 2 1.10000+ 1 1.40000+ 1 7.84927- 5 3.56015- 2 1.10000+ 1 1.60000+ 1 6.73084- 5 3.61356- 2 1.10000+ 1 1.80000+ 1 1.24882- 4 3.61878- 2 1.10000+ 1 1.90000+ 1 1.32550- 4 3.62036- 2 1.10000+ 1 2.10000+ 1 1.71905- 5 3.62898- 2 1.10000+ 1 2.20000+ 1 1.53257- 5 3.62925- 2 1.10000+ 1 2.70000+ 1 1.11832- 5 3.63536- 2 1.10000+ 1 2.90000+ 1 1.69823- 5 3.63677- 2 1.10000+ 1 3.00000+ 1 1.76036- 5 3.63700- 2 1.10000+ 1 4.10000+ 1 1.03549- 6 3.63874- 2 1.30000+ 1 1.40000+ 1 1.02672- 5 3.58519- 2 1.30000+ 1 1.60000+ 1 4.10694- 6 3.63860- 2 1.30000+ 1 1.80000+ 1 4.10694- 6 3.64381- 2 1.30000+ 1 1.90000+ 1 1.70447- 5 3.64540- 2 1.30000+ 1 2.20000+ 1 1.84820- 6 3.65429- 2 1.30000+ 1 2.70000+ 1 6.16038- 7 3.66040- 2 1.30000+ 1 2.90000+ 1 6.16038- 7 3.66181- 2 1.30000+ 1 3.00000+ 1 2.25885- 6 3.66204- 2 1.40000+ 1 1.40000+ 1 2.49469- 6 3.58680- 2 1.40000+ 1 1.60000+ 1 4.36558- 6 3.64022- 2 1.40000+ 1 1.80000+ 1 1.35123- 5 3.64543- 2 1.40000+ 1 1.90000+ 1 1.53840- 5 3.64702- 2 1.40000+ 1 2.10000+ 1 1.87110- 6 3.65563- 2 1.40000+ 1 2.20000+ 1 8.31545- 7 3.65590- 2 1.40000+ 1 2.70000+ 1 6.23669- 7 3.66201- 2 1.40000+ 1 2.90000+ 1 1.87110- 6 3.66342- 2 1.40000+ 1 3.00000+ 1 2.07886- 6 3.66365- 2 1.60000+ 1 1.60000+ 1 1.18938- 5 3.69363- 2 1.60000+ 1 1.80000+ 1 1.20930- 5 3.69884- 2 1.60000+ 1 1.90000+ 1 1.36778- 5 3.70043- 2 1.60000+ 1 2.10000+ 1 7.92938- 7 3.70905- 2 1.60000+ 1 2.20000+ 1 7.92938- 7 3.70932- 2 1.60000+ 1 2.70000+ 1 3.96477- 6 3.71543- 2 1.60000+ 1 2.90000+ 1 1.58591- 6 3.71683- 2 1.60000+ 1 3.00000+ 1 1.78422- 6 3.71706- 2 1.60000+ 1 4.10000+ 1 3.96477- 7 3.71880- 2 1.80000+ 1 1.80000+ 1 1.16070- 6 3.70406- 2 1.80000+ 1 1.90000+ 1 2.37952- 5 3.70564- 2 1.80000+ 1 2.10000+ 1 7.73815- 7 3.71426- 2 1.80000+ 1 2.20000+ 1 2.51493- 6 3.71453- 2 1.80000+ 1 2.70000+ 1 1.93453- 6 3.72064- 2 1.80000+ 1 2.90000+ 1 3.86916- 7 3.72205- 2 1.80000+ 1 3.00000+ 1 3.09533- 6 3.72228- 2 1.80000+ 1 4.10000+ 1 1.93453- 7 3.72401- 2 1.90000+ 1 1.90000+ 1 1.25701- 5 3.70723- 2 1.90000+ 1 2.10000+ 1 3.09430- 6 3.71585- 2 1.90000+ 1 2.20000+ 1 2.70747- 6 3.71612- 2 1.90000+ 1 2.70000+ 1 2.12736- 6 3.72223- 2 1.90000+ 1 2.90000+ 1 3.28767- 6 3.72363- 2 1.90000+ 1 3.00000+ 1 3.28767- 6 3.72386- 2 1.90000+ 1 4.10000+ 1 1.93389- 7 3.72560- 2 2.10000+ 1 2.20000+ 1 3.82369- 7 3.72474- 2 2.10000+ 1 2.70000+ 1 1.91180- 7 3.73084- 2 2.10000+ 1 2.90000+ 1 1.91180- 7 3.73225- 2 2.10000+ 1 3.00000+ 1 3.82369- 7 3.73248- 2 2.20000+ 1 2.70000+ 1 1.78722- 7 3.73111- 2 2.20000+ 1 2.90000+ 1 3.57453- 7 3.73252- 2 2.20000+ 1 3.00000+ 1 3.57453- 7 3.73275- 2 2.70000+ 1 2.70000+ 1 3.66589- 7 3.73722- 2 2.70000+ 1 2.90000+ 1 1.83290- 7 3.73863- 2 2.70000+ 1 3.00000+ 1 3.66589- 7 3.73886- 2 2.90000+ 1 3.00000+ 1 5.19969- 7 3.74027- 2 3.00000+ 1 3.00000+ 1 2.07100- 7 3.74050- 2 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.97370- 5 3.30500- 4 6.00000+ 0 4.42920- 4 7.17400- 4 1.00000+ 1 1.55720- 2 4.82860- 3 1.10000+ 1 2.40990- 2 4.90380- 3 1.30000+ 1 2.50490- 4 5.15416- 3 1.40000+ 1 3.74210- 4 5.17031- 3 1.80000+ 1 3.49930- 3 5.75659- 3 1.90000+ 1 5.58689- 3 5.77245- 3 2.10000+ 1 3.25660- 5 5.85864- 3 2.20000+ 1 4.97069- 5 5.86134- 3 2.90000+ 1 5.18289- 4 5.93650- 3 3.00000+ 1 8.16269- 4 5.93880- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.57124- 2 7.41500- 5 5.00000+ 0 1.80000+ 1 4.04804- 2 1.26290- 4 5.00000+ 0 1.90000+ 1 5.06575- 2 1.42150- 4 5.00000+ 0 2.10000+ 1 1.33451- 2 2.28340- 4 5.00000+ 0 2.20000+ 1 2.18252- 2 2.31040- 4 5.00000+ 0 2.70000+ 1 8.98827- 3 2.92110- 4 5.00000+ 0 2.90000+ 1 5.22511- 3 3.06200- 4 5.00000+ 0 3.00000+ 1 6.38480- 3 3.08500- 4 5.00000+ 0 4.10000+ 1 8.41018- 4 3.25860- 4 6.00000+ 0 1.60000+ 1 7.07979- 2 4.61050- 4 6.00000+ 0 1.80000+ 1 3.08656- 2 5.13190- 4 6.00000+ 0 1.90000+ 1 5.73873- 2 5.29050- 4 6.00000+ 0 2.10000+ 1 6.46915- 2 6.15240- 4 6.00000+ 0 2.20000+ 1 8.27825- 2 6.17940- 4 6.00000+ 0 2.70000+ 1 1.14543- 2 6.79010- 4 6.00000+ 0 2.90000+ 1 4.07566- 3 6.93100- 4 6.00000+ 0 3.00000+ 1 7.48044- 3 6.95400- 4 6.00000+ 0 4.10000+ 1 1.07444- 3 7.12760- 4 8.00000+ 0 8.00000+ 0 1.29622- 2 3.41400- 3 8.00000+ 0 1.00000+ 1 2.57908- 2 3.55520- 3 8.00000+ 0 1.10000+ 1 4.73012- 2 3.63040- 3 8.00000+ 0 1.30000+ 1 3.71605- 2 3.88076- 3 8.00000+ 0 1.40000+ 1 5.22324- 2 3.89691- 3 8.00000+ 0 1.60000+ 1 4.91106- 3 4.43105- 3 8.00000+ 0 1.80000+ 1 5.32797- 3 4.48319- 3 8.00000+ 0 1.90000+ 1 9.70585- 3 4.49905- 3 8.00000+ 0 2.10000+ 1 6.21191- 3 4.58524- 3 8.00000+ 0 2.20000+ 1 8.69169- 3 4.58794- 3 8.00000+ 0 2.70000+ 1 8.04634- 4 4.64901- 3 8.00000+ 0 2.90000+ 1 7.28863- 4 4.66310- 3 8.00000+ 0 3.00000+ 1 1.29481- 3 4.66540- 3 8.00000+ 0 4.10000+ 1 7.57661- 5 4.68276- 3 1.00000+ 1 1.00000+ 1 1.38651- 4 3.69640- 3 1.00000+ 1 1.10000+ 1 9.09944- 4 3.77160- 3 1.00000+ 1 1.30000+ 1 1.10846- 3 4.02196- 3 1.00000+ 1 1.40000+ 1 1.39173- 2 4.03811- 3 1.00000+ 1 1.60000+ 1 3.91410- 3 4.57225- 3 1.00000+ 1 1.80000+ 1 2.87904- 5 4.62439- 3 1.00000+ 1 1.90000+ 1 1.77289- 4 4.64025- 3 1.00000+ 1 2.10000+ 1 1.84870- 4 4.72644- 3 1.00000+ 1 2.20000+ 1 1.54485- 3 4.72914- 3 1.00000+ 1 2.70000+ 1 6.10672- 4 4.79021- 3 1.00000+ 1 2.90000+ 1 3.78818- 6 4.80430- 3 1.00000+ 1 3.00000+ 1 2.34876- 5 4.80660- 3 1.00000+ 1 4.10000+ 1 5.68238- 5 4.82396- 3 1.10000+ 1 1.10000+ 1 1.10233- 3 3.84680- 3 1.10000+ 1 1.30000+ 1 9.19572- 3 4.09716- 3 1.10000+ 1 1.40000+ 1 6.20753- 3 4.11331- 3 1.10000+ 1 1.60000+ 1 7.17261- 3 4.64745- 3 1.10000+ 1 1.80000+ 1 1.77289- 4 4.69959- 3 1.10000+ 1 1.90000+ 1 3.43211- 4 4.71545- 3 1.10000+ 1 2.10000+ 1 8.69798- 4 4.80164- 3 1.10000+ 1 2.20000+ 1 6.07638- 4 4.80434- 3 1.10000+ 1 2.70000+ 1 1.11911- 3 4.86541- 3 1.10000+ 1 2.90000+ 1 2.42447- 5 4.87950- 3 1.10000+ 1 3.00000+ 1 4.39427- 5 4.88180- 3 1.10000+ 1 4.10000+ 1 1.04550- 4 4.89916- 3 1.30000+ 1 1.30000+ 1 2.06463- 3 4.34752- 3 1.30000+ 1 1.40000+ 1 7.42418- 2 4.36367- 3 1.30000+ 1 1.60000+ 1 5.33082- 3 4.89781- 3 1.30000+ 1 1.80000+ 1 2.95491- 4 4.94995- 3 1.30000+ 1 1.90000+ 1 1.92515- 3 4.96581- 3 1.30000+ 1 2.10000+ 1 6.82661- 4 5.05200- 3 1.30000+ 1 2.20000+ 1 9.08294- 3 5.05470- 3 1.30000+ 1 2.70000+ 1 8.25089- 4 5.11577- 3 1.30000+ 1 2.90000+ 1 4.24293- 5 5.12986- 3 1.30000+ 1 3.00000+ 1 2.57604- 4 5.13216- 3 1.30000+ 1 4.10000+ 1 7.72824- 5 5.14952- 3 1.40000+ 1 1.40000+ 1 2.08633- 2 4.37982- 3 1.40000+ 1 1.60000+ 1 7.54033- 3 4.91396- 3 1.40000+ 1 1.80000+ 1 2.62075- 3 4.96610- 3 1.40000+ 1 1.90000+ 1 1.36384- 3 4.98196- 3 1.40000+ 1 2.10000+ 1 8.97546- 3 5.06815- 3 1.40000+ 1 2.20000+ 1 5.33780- 3 5.07085- 3 1.40000+ 1 2.70000+ 1 1.16914- 3 5.13192- 3 1.40000+ 1 2.90000+ 1 3.53072- 4 5.14601- 3 1.40000+ 1 3.00000+ 1 1.84112- 4 5.14831- 3 1.40000+ 1 4.10000+ 1 1.09101- 4 5.16567- 3 1.60000+ 1 1.60000+ 1 4.41722- 4 5.44810- 3 1.60000+ 1 1.80000+ 1 8.10686- 4 5.50024- 3 1.60000+ 1 1.90000+ 1 1.47519- 3 5.51610- 3 1.60000+ 1 2.10000+ 1 8.89491- 4 5.60229- 3 1.60000+ 1 2.20000+ 1 1.24936- 3 5.60499- 3 1.60000+ 1 2.70000+ 1 1.43201- 4 5.66606- 3 1.60000+ 1 2.90000+ 1 1.10616- 4 5.68015- 3 1.60000+ 1 3.00000+ 1 1.96993- 4 5.68245- 3 1.60000+ 1 4.10000+ 1 1.36382- 5 5.69981- 3 1.80000+ 1 1.80000+ 1 1.51525- 6 5.55238- 3 1.80000+ 1 1.90000+ 1 3.48529- 5 5.56824- 3 1.80000+ 1 2.10000+ 1 4.16720- 5 5.65443- 3 1.80000+ 1 2.20000+ 1 3.00028- 4 5.65713- 3 1.80000+ 1 2.70000+ 1 1.26532- 4 5.71820- 3 1.80000+ 1 3.00000+ 1 4.54587- 6 5.73459- 3 1.80000+ 1 4.10000+ 1 1.21231- 5 5.75195- 3 1.90000+ 1 1.90000+ 1 2.58158- 5 5.58410- 3 1.90000+ 1 2.10000+ 1 1.88821- 4 5.67029- 3 1.90000+ 1 2.20000+ 1 1.37188- 4 5.67299- 3 1.90000+ 1 2.70000+ 1 2.24238- 4 5.73406- 3 1.90000+ 1 2.90000+ 1 4.42542- 6 5.74815- 3 1.90000+ 1 3.00000+ 1 6.63838- 6 5.75045- 3 1.90000+ 1 4.10000+ 1 2.06525- 5 5.76781- 3 2.10000+ 1 2.10000+ 1 5.28210- 5 5.75648- 3 2.10000+ 1 2.20000+ 1 1.16812- 3 5.75918- 3 2.10000+ 1 2.70000+ 1 1.36583- 4 5.82025- 3 2.10000+ 1 2.90000+ 1 6.03707- 6 5.83434- 3 2.10000+ 1 3.00000+ 1 2.64115- 5 5.83664- 3 2.10000+ 1 4.10000+ 1 1.28293- 5 5.85400- 3 2.20000+ 1 2.20000+ 1 3.56108- 4 5.76188- 3 2.20000+ 1 2.70000+ 1 1.91164- 4 5.82295- 3 2.20000+ 1 2.90000+ 1 4.04833- 5 5.83704- 3 2.20000+ 1 3.00000+ 1 1.87419- 5 5.83934- 3 2.20000+ 1 4.10000+ 1 1.79927- 5 5.85670- 3 2.70000+ 1 2.70000+ 1 9.01847- 6 5.88402- 3 2.70000+ 1 2.90000+ 1 1.38281- 5 5.89811- 3 2.70000+ 1 3.00000+ 1 2.46497- 5 5.90041- 3 2.70000+ 1 4.10000+ 1 1.80369- 6 5.91777- 3 2.90000+ 1 3.00000+ 1 7.57667- 7 5.91450- 3 2.90000+ 1 4.10000+ 1 1.51523- 6 5.93186- 3 3.00000+ 1 3.00000+ 1 1.84745- 7 5.91680- 3 3.00000+ 1 4.10000+ 1 7.38954- 7 5.93416- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.07649- 7 3.86900- 4 8.00000+ 0 4.24138- 3 4.35690- 3 1.10000+ 1 6.51076- 5 4.57330- 3 1.30000+ 1 8.52395- 2 4.82366- 3 1.60000+ 1 6.48217- 4 5.37395- 3 1.90000+ 1 9.31455- 6 5.44195- 3 2.10000+ 1 1.37659- 2 5.52814- 3 2.70000+ 1 8.75435- 5 5.59191- 3 3.00000+ 1 1.36159- 6 5.60830- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.10656- 2 1.30550- 4 6.00000+ 0 1.80000+ 1 5.11170- 2 1.82690- 4 6.00000+ 0 1.90000+ 1 1.74845- 2 1.98550- 4 6.00000+ 0 2.10000+ 1 6.50700- 2 2.84740- 4 6.00000+ 0 2.20000+ 1 2.40504- 2 2.87440- 4 6.00000+ 0 2.70000+ 1 1.67076- 3 3.48510- 4 6.00000+ 0 2.90000+ 1 6.63611- 3 3.62600- 4 6.00000+ 0 3.00000+ 1 2.30963- 3 3.64900- 4 6.00000+ 0 4.10000+ 1 1.55059- 4 3.82260- 4 8.00000+ 0 8.00000+ 0 1.00467- 3 3.08350- 3 8.00000+ 0 1.00000+ 1 2.47231- 2 3.22470- 3 8.00000+ 0 1.10000+ 1 2.37952- 3 3.29990- 3 8.00000+ 0 1.30000+ 1 1.97445- 3 3.55026- 3 8.00000+ 0 1.40000+ 1 3.29193- 3 3.56641- 3 8.00000+ 0 1.60000+ 1 3.53125- 4 4.10055- 3 8.00000+ 0 1.80000+ 1 3.50619- 3 4.15269- 3 8.00000+ 0 1.90000+ 1 4.33787- 4 4.16855- 3 8.00000+ 0 2.10000+ 1 2.37499- 4 4.25474- 3 8.00000+ 0 2.20000+ 1 3.43283- 4 4.25744- 3 8.00000+ 0 2.70000+ 1 5.64649- 5 4.31851- 3 8.00000+ 0 2.90000+ 1 4.49929- 4 4.33260- 3 8.00000+ 0 3.00000+ 1 5.64649- 5 4.33490- 3 8.00000+ 0 4.10000+ 1 5.37738- 6 4.35226- 3 1.00000+ 1 1.00000+ 1 2.43875- 2 3.36590- 3 1.00000+ 1 1.10000+ 1 7.54066- 2 3.44110- 3 1.00000+ 1 1.30000+ 1 4.00999- 2 3.69146- 3 1.00000+ 1 1.40000+ 1 6.79915- 2 3.70761- 3 1.00000+ 1 1.60000+ 1 5.60228- 3 4.24175- 3 1.00000+ 1 1.80000+ 1 8.63248- 3 4.29389- 3 1.00000+ 1 1.90000+ 1 1.52043- 2 4.30975- 3 1.00000+ 1 2.10000+ 1 6.68956- 3 4.39594- 3 1.00000+ 1 2.20000+ 1 1.13357- 2 4.39864- 3 1.00000+ 1 2.70000+ 1 9.42882- 4 4.45971- 3 1.00000+ 1 2.90000+ 1 1.15521- 3 4.47380- 3 1.00000+ 1 3.00000+ 1 2.02190- 3 4.47610- 3 1.00000+ 1 4.10000+ 1 8.87290- 5 4.49346- 3 1.10000+ 1 1.10000+ 1 1.96548- 3 3.51630- 3 1.10000+ 1 1.30000+ 1 4.67709- 2 3.76666- 3 1.10000+ 1 1.40000+ 1 6.35725- 3 3.78281- 3 1.10000+ 1 1.60000+ 1 4.62476- 4 4.31695- 3 1.10000+ 1 1.80000+ 1 1.10814- 2 4.36909- 3 1.10000+ 1 1.90000+ 1 6.70405- 4 4.38495- 3 1.10000+ 1 2.10000+ 1 6.70576- 3 4.47114- 3 1.10000+ 1 2.20000+ 1 8.54133- 4 4.47384- 3 1.10000+ 1 2.70000+ 1 7.52848- 5 4.53491- 3 1.10000+ 1 2.90000+ 1 1.43038- 3 4.54900- 3 1.10000+ 1 3.00000+ 1 8.69349- 5 4.55130- 3 1.10000+ 1 4.10000+ 1 7.17021- 6 4.56866- 3 1.30000+ 1 1.30000+ 1 4.27161- 2 4.01702- 3 1.30000+ 1 1.40000+ 1 1.82488- 1 4.03317- 3 1.30000+ 1 1.60000+ 1 4.57986- 4 4.56731- 3 1.30000+ 1 1.80000+ 1 5.86884- 3 4.61945- 3 1.30000+ 1 1.90000+ 1 8.88972- 3 4.63531- 3 1.30000+ 1 2.10000+ 1 1.22085- 2 4.72150- 3 1.30000+ 1 2.20000+ 1 2.79031- 2 4.72420- 3 1.30000+ 1 2.70000+ 1 7.70771- 5 4.78527- 3 1.30000+ 1 2.90000+ 1 7.61804- 4 4.79936- 3 1.30000+ 1 3.00000+ 1 1.17053- 3 4.80166- 3 1.30000+ 1 4.10000+ 1 7.17019- 6 4.81902- 3 1.40000+ 1 1.40000+ 1 8.71064- 3 4.04932- 3 1.40000+ 1 1.60000+ 1 6.28291- 4 4.58346- 3 1.40000+ 1 1.80000+ 1 8.87992- 3 4.63560- 3 1.40000+ 1 1.90000+ 1 1.10683- 3 4.65146- 3 1.40000+ 1 2.10000+ 1 2.21326- 2 4.73765- 3 1.40000+ 1 2.20000+ 1 2.42792- 3 4.74035- 3 1.40000+ 1 2.70000+ 1 1.02169- 4 4.80142- 3 1.40000+ 1 2.90000+ 1 1.12213- 3 4.81551- 3 1.40000+ 1 3.00000+ 1 1.43401- 4 4.81781- 3 1.40000+ 1 4.10000+ 1 9.85925- 6 4.83517- 3 1.60000+ 1 1.60000+ 1 3.08128- 5 5.11760- 3 1.60000+ 1 1.80000+ 1 8.06591- 4 5.16974- 3 1.60000+ 1 1.90000+ 1 8.60933- 5 5.18560- 3 1.60000+ 1 2.10000+ 1 5.34681- 5 5.27179- 3 1.60000+ 1 2.20000+ 1 6.79693- 5 5.27449- 3 1.60000+ 1 2.70000+ 1 9.96929- 6 5.33556- 3 1.60000+ 1 2.90000+ 1 1.03310- 4 5.34965- 3 1.60000+ 1 3.00000+ 1 1.08743- 5 5.35195- 3 1.60000+ 1 4.10000+ 1 9.06268- 7 5.36931- 3 1.80000+ 1 1.80000+ 1 6.82120- 4 5.22188- 3 1.80000+ 1 1.90000+ 1 2.08475- 3 5.23774- 3 1.80000+ 1 2.10000+ 1 8.99494- 4 5.32393- 3 1.80000+ 1 2.20000+ 1 1.39099- 3 5.32663- 3 1.80000+ 1 2.70000+ 1 1.25385- 4 5.38770- 3 1.80000+ 1 2.90000+ 1 1.81395- 4 5.40179- 3 1.80000+ 1 3.00000+ 1 2.77533- 4 5.40409- 3 1.80000+ 1 4.10000+ 1 1.17032- 5 5.42145- 3 1.90000+ 1 1.90000+ 1 5.59748- 5 5.25360- 3 1.90000+ 1 2.10000+ 1 1.25500- 3 5.33979- 3 1.90000+ 1 2.20000+ 1 1.49562- 4 5.34249- 3 1.90000+ 1 2.70000+ 1 1.39937- 5 5.40356- 3 1.90000+ 1 2.90000+ 1 2.81613- 4 5.41765- 3 1.90000+ 1 3.00000+ 1 1.48687- 5 5.41995- 3 1.90000+ 1 4.10000+ 1 8.74614- 7 5.43731- 3 2.10000+ 1 2.10000+ 1 8.61810- 4 5.42598- 3 2.10000+ 1 2.20000+ 1 3.48579- 3 5.42868- 3 2.10000+ 1 2.70000+ 1 8.94931- 6 5.48975- 3 2.10000+ 1 2.90000+ 1 1.24396- 4 5.50384- 3 2.10000+ 1 3.00000+ 1 1.69134- 4 5.50614- 3 2.10000+ 1 4.10000+ 1 8.94931- 7 5.52350- 3 2.20000+ 1 2.20000+ 1 1.76094- 4 5.43138- 3 2.20000+ 1 2.70000+ 1 1.11213- 5 5.49245- 3 2.20000+ 1 2.90000+ 1 1.95566- 4 5.50654- 3 2.20000+ 1 3.00000+ 1 2.03902- 5 5.50884- 3 2.20000+ 1 4.10000+ 1 9.26854- 7 5.52620- 3 2.70000+ 1 2.70000+ 1 9.07216- 7 5.55352- 3 2.70000+ 1 2.90000+ 1 1.72363- 5 5.56761- 3 2.70000+ 1 3.00000+ 1 1.81439- 6 5.56991- 3 2.90000+ 1 2.90000+ 1 1.37559- 5 5.58170- 3 2.90000+ 1 3.00000+ 1 4.22517- 5 5.58400- 3 2.90000+ 1 4.10000+ 1 1.96507- 6 5.60136- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.71684- 3 3.97000- 3 1.00000+ 1 4.42513- 5 4.11120- 3 1.10000+ 1 4.10792- 5 4.18640- 3 1.30000+ 1 8.38245- 3 4.43676- 3 1.40000+ 1 7.42514- 2 4.45291- 3 1.60000+ 1 7.43294- 4 4.98705- 3 1.80000+ 1 4.49883- 6 5.03919- 3 1.90000+ 1 4.33302- 6 5.05505- 3 2.10000+ 1 1.31391- 3 5.14124- 3 2.20000+ 1 1.17411- 2 5.14394- 3 2.70000+ 1 1.16221- 4 5.20501- 3 2.90000+ 1 6.62344- 7 5.21910- 3 3.00000+ 1 6.29994- 7 5.22140- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.32476- 3 2.69660- 3 8.00000+ 0 1.00000+ 1 9.07829- 4 2.83780- 3 8.00000+ 0 1.10000+ 1 2.86375- 2 2.91300- 3 8.00000+ 0 1.30000+ 1 2.81587- 3 3.16336- 3 8.00000+ 0 1.40000+ 1 3.23474- 3 3.17951- 3 8.00000+ 0 1.60000+ 1 4.67515- 4 3.71365- 3 8.00000+ 0 1.80000+ 1 1.54544- 4 3.76579- 3 8.00000+ 0 1.90000+ 1 4.06109- 3 3.78165- 3 8.00000+ 0 2.10000+ 1 2.52714- 4 3.86784- 3 8.00000+ 0 2.20000+ 1 2.67292- 4 3.87054- 3 8.00000+ 0 2.70000+ 1 7.48425- 5 3.93161- 3 8.00000+ 0 2.90000+ 1 2.04113- 5 3.94570- 3 8.00000+ 0 3.00000+ 1 5.09311- 4 3.94800- 3 8.00000+ 0 4.10000+ 1 6.80378- 6 3.96536- 3 1.00000+ 1 1.00000+ 1 2.89651- 4 2.97900- 3 1.00000+ 1 1.10000+ 1 4.76627- 2 3.05420- 3 1.00000+ 1 1.30000+ 1 3.03160- 3 3.30456- 3 1.00000+ 1 1.40000+ 1 2.72625- 2 3.32071- 3 1.00000+ 1 1.60000+ 1 1.72045- 4 3.85485- 3 1.00000+ 1 1.80000+ 1 1.00113- 4 3.90699- 3 1.00000+ 1 1.90000+ 1 7.00024- 3 3.92285- 3 1.00000+ 1 2.10000+ 1 4.71405- 4 4.00904- 3 1.00000+ 1 2.20000+ 1 3.67599- 3 4.01174- 3 1.00000+ 1 2.70000+ 1 2.81879- 5 4.07281- 3 1.00000+ 1 2.90000+ 1 1.36076- 5 4.08690- 3 1.00000+ 1 3.00000+ 1 8.82555- 4 4.08920- 3 1.00000+ 1 4.10000+ 1 2.91597- 6 4.10656- 3 1.10000+ 1 1.10000+ 1 6.64652- 2 3.12940- 3 1.10000+ 1 1.30000+ 1 6.70973- 2 3.37976- 3 1.10000+ 1 1.40000+ 1 1.00166- 1 3.39591- 3 1.10000+ 1 1.60000+ 1 6.42000- 3 3.93005- 3 1.10000+ 1 1.80000+ 1 9.44380- 3 3.98219- 3 1.10000+ 1 1.90000+ 1 2.31157- 2 3.99805- 3 1.10000+ 1 2.10000+ 1 1.07766- 2 4.08424- 3 1.10000+ 1 2.20000+ 1 1.59039- 2 4.08694- 3 1.10000+ 1 2.70000+ 1 1.07797- 3 4.14801- 3 1.10000+ 1 2.90000+ 1 1.28402- 3 4.16210- 3 1.10000+ 1 3.00000+ 1 3.00919- 3 4.16440- 3 1.10000+ 1 4.10000+ 1 1.02061- 4 4.18176- 3 1.30000+ 1 1.30000+ 1 9.62934- 3 3.63012- 3 1.30000+ 1 1.40000+ 1 1.84674- 1 3.64627- 3 1.30000+ 1 1.60000+ 1 5.93880- 4 4.18041- 3 1.30000+ 1 1.80000+ 1 5.99706- 4 4.23255- 3 1.30000+ 1 1.90000+ 1 9.19103- 3 4.24841- 3 1.30000+ 1 2.10000+ 1 2.74878- 3 4.33460- 3 1.30000+ 1 2.20000+ 1 2.26892- 2 4.33730- 3 1.30000+ 1 2.70000+ 1 9.81665- 5 4.39837- 3 1.30000+ 1 2.90000+ 1 8.16458- 5 4.41246- 3 1.30000+ 1 3.00000+ 1 1.14601- 3 4.41476- 3 1.30000+ 1 4.10000+ 1 9.71986- 6 4.43212- 3 1.40000+ 1 1.40000+ 1 1.25081- 1 3.66242- 3 1.40000+ 1 1.60000+ 1 7.23191- 4 4.19656- 3 1.40000+ 1 1.80000+ 1 5.02640- 3 4.24870- 3 1.40000+ 1 1.90000+ 1 1.53258- 2 4.26456- 3 1.40000+ 1 2.10000+ 1 2.66381- 2 4.35075- 3 1.40000+ 1 2.20000+ 1 3.42446- 2 4.35345- 3 1.40000+ 1 2.70000+ 1 1.21502- 4 4.41452- 3 1.40000+ 1 2.90000+ 1 6.74578- 4 4.42861- 3 1.40000+ 1 3.00000+ 1 1.95468- 3 4.43091- 3 1.40000+ 1 4.10000+ 1 1.16643- 5 4.44827- 3 1.60000+ 1 1.60000+ 1 4.13006- 5 4.73070- 3 1.60000+ 1 1.80000+ 1 3.04851- 5 4.78284- 3 1.60000+ 1 1.90000+ 1 9.23375- 4 4.79870- 3 1.60000+ 1 2.10000+ 1 5.80195- 5 4.88489- 3 1.60000+ 1 2.20000+ 1 6.49030- 5 4.88759- 3 1.60000+ 1 2.70000+ 1 1.37673- 5 4.94866- 3 1.60000+ 1 2.90000+ 1 3.93341- 6 4.96275- 3 1.60000+ 1 3.00000+ 1 1.16040- 4 4.96505- 3 1.60000+ 1 4.10000+ 1 9.83408- 7 4.98241- 3 1.80000+ 1 1.80000+ 1 7.25826- 6 4.83498- 3 1.80000+ 1 1.90000+ 1 1.29282- 3 4.85084- 3 1.80000+ 1 2.10000+ 1 8.52812- 5 4.93703- 3 1.80000+ 1 2.20000+ 1 6.52298- 4 4.93973- 3 1.80000+ 1 2.70000+ 1 4.53620- 6 5.00080- 3 1.80000+ 1 2.90000+ 1 1.81458- 6 5.01489- 3 1.80000+ 1 3.00000+ 1 1.63308- 4 5.01719- 3 1.90000+ 1 1.90000+ 1 1.74410- 3 4.86670- 3 1.90000+ 1 2.10000+ 1 1.32635- 3 4.95289- 3 1.90000+ 1 2.20000+ 1 2.15743- 3 4.95559- 3 1.90000+ 1 2.70000+ 1 1.37781- 4 5.01666- 3 1.90000+ 1 2.90000+ 1 1.69174- 4 5.03075- 3 1.90000+ 1 3.00000+ 1 4.51710- 4 5.03305- 3 1.90000+ 1 4.10000+ 1 1.30808- 5 5.05041- 3 2.10000+ 1 2.10000+ 1 1.90939- 4 5.03908- 3 2.10000+ 1 2.20000+ 1 3.35937- 3 5.04178- 3 2.10000+ 1 2.70000+ 1 9.69247- 6 5.10285- 3 2.10000+ 1 2.90000+ 1 1.25999- 5 5.11694- 3 2.10000+ 1 3.00000+ 1 1.84153- 4 5.11924- 3 2.10000+ 1 4.10000+ 1 9.69247- 7 5.13660- 3 2.20000+ 1 2.20000+ 1 2.45300- 3 5.04448- 3 2.20000+ 1 2.70000+ 1 1.11410- 5 5.10555- 3 2.20000+ 1 2.90000+ 1 9.82365- 5 5.11964- 3 2.20000+ 1 3.00000+ 1 3.19030- 4 5.12194- 3 2.20000+ 1 4.10000+ 1 1.01282- 6 5.13930- 3 2.70000+ 1 2.70000+ 1 1.14485- 6 5.16662- 3 2.70000+ 1 2.90000+ 1 1.14485- 6 5.18071- 3 2.70000+ 1 3.00000+ 1 2.28974- 5 5.18301- 3 2.90000+ 1 3.00000+ 1 2.46271- 5 5.19710- 3 3.00000+ 1 3.00000+ 1 3.45615- 5 5.19940- 3 3.00000+ 1 4.10000+ 1 2.09467- 6 5.21676- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.21716- 5 1.41200- 4 1.10000+ 1 9.09584- 5 2.16400- 4 1.80000+ 1 2.60402- 4 1.06919- 3 1.90000+ 1 3.45504- 4 1.08505- 3 2.90000+ 1 4.24306- 5 1.24910- 3 3.00000+ 1 5.71172- 5 1.25140- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.87193- 2 3.90400- 5 1.00000+ 1 2.20000+ 1 1.22412- 1 4.17400- 5 1.00000+ 1 2.70000+ 1 1.03487- 2 1.02810- 4 1.00000+ 1 2.90000+ 1 8.49132- 3 1.16900- 4 1.00000+ 1 3.00000+ 1 1.42668- 2 1.19200- 4 1.00000+ 1 4.10000+ 1 9.58607- 4 1.36560- 4 1.10000+ 1 1.80000+ 1 9.26368- 2 1.21900- 5 1.10000+ 1 1.90000+ 1 1.41741- 1 2.80500- 5 1.10000+ 1 2.10000+ 1 6.52001- 2 1.14240- 4 1.10000+ 1 2.20000+ 1 9.47410- 2 1.16940- 4 1.10000+ 1 2.70000+ 1 1.39940- 2 1.78010- 4 1.10000+ 1 2.90000+ 1 1.18148- 2 1.92100- 4 1.10000+ 1 3.00000+ 1 1.79806- 2 1.94400- 4 1.10000+ 1 4.10000+ 1 1.31879- 3 2.11760- 4 1.30000+ 1 1.60000+ 1 3.46182- 2 2.10410- 4 1.30000+ 1 1.80000+ 1 7.43480- 3 2.62550- 4 1.30000+ 1 1.90000+ 1 5.93861- 3 2.78410- 4 1.30000+ 1 2.10000+ 1 9.95766- 3 3.64600- 4 1.30000+ 1 2.20000+ 1 1.23400- 2 3.67300- 4 1.30000+ 1 2.70000+ 1 3.96826- 3 4.28370- 4 1.30000+ 1 2.90000+ 1 8.05301- 4 4.42460- 4 1.30000+ 1 3.00000+ 1 6.16336- 4 4.44760- 4 1.30000+ 1 4.10000+ 1 3.55399- 4 4.62120- 4 1.40000+ 1 1.60000+ 1 5.04611- 2 2.26560- 4 1.40000+ 1 1.80000+ 1 1.78388- 3 2.78700- 4 1.40000+ 1 1.90000+ 1 1.45220- 2 2.94560- 4 1.40000+ 1 2.10000+ 1 1.30363- 2 3.80750- 4 1.40000+ 1 2.20000+ 1 2.03070- 2 3.83450- 4 1.40000+ 1 2.70000+ 1 5.75043- 3 4.44520- 4 1.40000+ 1 2.90000+ 1 1.82344- 4 4.58610- 4 1.40000+ 1 3.00000+ 1 1.51210- 3 4.60910- 4 1.40000+ 1 4.10000+ 1 5.14428- 4 4.78270- 4 1.60000+ 1 1.60000+ 1 7.59099- 3 7.60700- 4 1.60000+ 1 1.80000+ 1 1.24083- 2 8.12840- 4 1.60000+ 1 1.90000+ 1 2.27799- 2 8.28700- 4 1.60000+ 1 2.10000+ 1 2.32863- 2 9.14890- 4 1.60000+ 1 2.20000+ 1 3.39289- 2 9.17590- 4 1.60000+ 1 2.70000+ 1 2.10883- 3 9.78660- 4 1.60000+ 1 2.90000+ 1 1.67974- 3 9.92750- 4 1.60000+ 1 3.00000+ 1 3.01144- 3 9.95050- 4 1.60000+ 1 4.10000+ 1 1.95169- 4 1.01241- 3 1.80000+ 1 1.80000+ 1 6.41761- 4 8.64980- 4 1.80000+ 1 1.90000+ 1 1.57978- 3 8.80840- 4 1.80000+ 1 2.10000+ 1 9.57554- 4 9.67030- 4 1.80000+ 1 2.20000+ 1 3.83841- 4 9.69730- 4 1.80000+ 1 2.70000+ 1 1.28485- 3 1.03080- 3 1.80000+ 1 2.90000+ 1 1.41412- 4 1.04489- 3 1.80000+ 1 3.00000+ 1 1.65651- 4 1.04719- 3 1.80000+ 1 4.10000+ 1 1.15148- 4 1.06455- 3 1.90000+ 1 1.90000+ 1 2.03042- 3 8.96700- 4 1.90000+ 1 2.10000+ 1 9.71460- 4 9.82890- 4 1.90000+ 1 2.20000+ 1 2.63980- 3 9.85590- 4 1.90000+ 1 2.70000+ 1 2.26140- 3 1.04666- 3 1.90000+ 1 2.90000+ 1 1.71776- 4 1.06075- 3 1.90000+ 1 3.00000+ 1 4.52286- 4 1.06305- 3 1.90000+ 1 4.10000+ 1 2.02015- 4 1.08041- 3 2.10000+ 1 2.10000+ 1 2.84378- 4 1.06908- 3 2.10000+ 1 2.20000+ 1 1.10407- 3 1.07178- 3 2.10000+ 1 2.70000+ 1 2.41276- 3 1.13285- 3 2.10000+ 1 2.90000+ 1 9.82000- 5 1.14694- 3 2.10000+ 1 3.00000+ 1 1.06386- 4 1.14924- 3 2.10000+ 1 4.10000+ 1 2.15498- 4 1.16660- 3 2.20000+ 1 2.20000+ 1 6.88028- 4 1.07448- 3 2.20000+ 1 2.70000+ 1 3.46437- 3 1.13555- 3 2.20000+ 1 2.90000+ 1 3.76648- 5 1.14964- 3 2.20000+ 1 3.00000+ 1 2.87853- 4 1.15194- 3 2.20000+ 1 4.10000+ 1 3.08716- 4 1.16930- 3 2.70000+ 1 2.70000+ 1 8.73578- 5 1.19662- 3 2.70000+ 1 2.90000+ 1 1.17842- 4 1.21071- 3 2.70000+ 1 3.00000+ 1 2.11564- 4 1.21301- 3 2.70000+ 1 4.10000+ 1 1.59243- 5 1.23037- 3 2.90000+ 1 2.90000+ 1 2.49023- 6 1.22480- 3 2.90000+ 1 3.00000+ 1 6.11249- 6 1.22710- 3 2.90000+ 1 4.10000+ 1 5.20695- 6 1.24446- 3 3.00000+ 1 3.00000+ 1 9.60807- 6 1.22940- 3 3.00000+ 1 4.10000+ 1 1.06190- 5 1.24676- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.33458- 4 3.25560- 4 1.60000+ 1 3.23610- 4 8.75850- 4 2.10000+ 1 1.35284- 3 1.03004- 3 2.70000+ 1 5.37662- 5 1.09381- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.70000+ 1 9.36917- 3 3.68100- 5 1.10000+ 1 2.90000+ 1 8.81307- 3 5.09000- 5 1.10000+ 1 3.00000+ 1 1.04938- 2 5.32000- 5 1.10000+ 1 4.10000+ 1 8.07454- 4 7.05600- 5 1.30000+ 1 1.60000+ 1 1.28188- 1 6.92100- 5 1.30000+ 1 1.80000+ 1 1.29470- 1 1.21350- 4 1.30000+ 1 1.90000+ 1 1.87231- 1 1.37210- 4 1.30000+ 1 2.10000+ 1 5.57667- 2 2.23400- 4 1.30000+ 1 2.20000+ 1 6.12164- 2 2.26100- 4 1.30000+ 1 2.70000+ 1 2.15811- 2 2.87170- 4 1.30000+ 1 2.90000+ 1 1.53423- 2 3.01260- 4 1.30000+ 1 3.00000+ 1 2.37217- 2 3.03560- 4 1.30000+ 1 4.10000+ 1 2.01743- 3 3.20920- 4 1.40000+ 1 1.60000+ 1 2.16521- 2 8.53600- 5 1.40000+ 1 1.80000+ 1 1.54943- 1 1.37500- 4 1.40000+ 1 1.90000+ 1 1.60774- 2 1.53360- 4 1.40000+ 1 2.10000+ 1 3.12470- 3 2.39550- 4 1.40000+ 1 2.20000+ 1 7.34020- 3 2.42250- 4 1.40000+ 1 2.70000+ 1 2.44696- 3 3.03320- 4 1.40000+ 1 2.90000+ 1 1.51440- 2 3.17410- 4 1.40000+ 1 3.00000+ 1 1.85664- 3 3.19710- 4 1.40000+ 1 4.10000+ 1 2.20822- 4 3.37070- 4 1.60000+ 1 1.60000+ 1 7.08938- 4 6.19500- 4 1.60000+ 1 1.80000+ 1 1.00050- 2 6.71640- 4 1.60000+ 1 1.90000+ 1 1.63283- 3 6.87500- 4 1.60000+ 1 2.10000+ 1 3.55326- 4 7.73690- 4 1.60000+ 1 2.20000+ 1 1.09532- 3 7.76390- 4 1.60000+ 1 2.70000+ 1 1.86871- 4 8.37460- 4 1.60000+ 1 2.90000+ 1 9.27429- 4 8.51550- 4 1.60000+ 1 3.00000+ 1 1.94339- 4 8.53850- 4 1.60000+ 1 4.10000+ 1 1.66742- 5 8.71210- 4 1.80000+ 1 1.80000+ 1 7.38929- 3 7.23780- 4 1.80000+ 1 1.90000+ 1 2.29982- 2 7.39640- 4 1.80000+ 1 2.10000+ 1 2.05189- 2 8.25830- 4 1.80000+ 1 2.20000+ 1 3.41183- 2 8.28530- 4 1.80000+ 1 2.70000+ 1 1.70771- 3 8.89600- 4 1.80000+ 1 2.90000+ 1 1.70715- 3 9.03690- 4 1.80000+ 1 3.00000+ 1 3.01982- 3 9.05990- 4 1.80000+ 1 4.10000+ 1 1.60688- 4 9.23350- 4 1.90000+ 1 1.90000+ 1 6.79118- 4 7.55500- 4 1.90000+ 1 2.10000+ 1 2.12524- 3 8.41690- 4 1.90000+ 1 2.20000+ 1 1.57637- 3 8.44390- 4 1.90000+ 1 2.70000+ 1 2.06573- 4 9.05460- 4 1.90000+ 1 2.90000+ 1 2.37568- 3 9.19550- 4 1.90000+ 1 3.00000+ 1 1.50407- 4 9.21850- 4 1.90000+ 1 4.10000+ 1 1.87210- 5 9.39210- 4 2.10000+ 1 2.10000+ 1 6.66010- 4 9.27880- 4 2.10000+ 1 2.20000+ 1 1.75479- 3 9.30580- 4 2.10000+ 1 2.70000+ 1 5.04227- 5 9.91650- 4 2.10000+ 1 2.90000+ 1 1.78309- 3 1.00574- 3 2.10000+ 1 3.00000+ 1 2.00026- 4 1.00804- 3 2.10000+ 1 4.10000+ 1 4.98690- 6 1.02540- 3 2.20000+ 1 2.20000+ 1 2.58893- 4 9.33280- 4 2.20000+ 1 2.70000+ 1 8.17570- 5 9.94350- 4 2.20000+ 1 2.90000+ 1 1.84971- 3 1.00844- 3 2.20000+ 1 3.00000+ 1 8.55011- 5 1.01074- 3 2.20000+ 1 4.10000+ 1 7.49438- 6 1.02810- 3 2.70000+ 1 2.70000+ 1 8.45051- 6 1.05542- 3 2.70000+ 1 2.90000+ 1 1.07848- 4 1.06951- 3 2.70000+ 1 3.00000+ 1 1.52919- 5 1.07181- 3 2.70000+ 1 4.10000+ 1 1.60968- 6 1.08917- 3 2.90000+ 1 2.90000+ 1 6.07523- 5 1.08360- 3 2.90000+ 1 3.00000+ 1 1.84937- 4 1.08590- 3 2.90000+ 1 4.10000+ 1 9.55222- 6 1.10326- 3 3.00000+ 1 3.00000+ 1 4.87452- 6 1.08820- 3 3.00000+ 1 4.10000+ 1 1.12487- 6 1.10556- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.04260- 5 2.50360- 4 1.40000+ 1 2.27508- 4 2.66510- 4 1.60000+ 1 3.99742- 4 8.00650- 4 2.10000+ 1 1.63434- 4 9.54840- 4 2.20000+ 1 1.34654- 3 9.57540- 4 2.70000+ 1 6.58525- 5 1.01861- 3 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60000+ 1 2.32097- 2 0.00000+ 0 1.30000+ 1 1.80000+ 1 1.72299- 2 4.61500- 5 1.30000+ 1 1.90000+ 1 9.76230- 2 6.20100- 5 1.30000+ 1 2.10000+ 1 1.31104- 2 1.48200- 4 1.30000+ 1 2.20000+ 1 9.89727- 3 1.50900- 4 1.30000+ 1 2.70000+ 1 3.20952- 3 2.11970- 4 1.30000+ 1 2.90000+ 1 2.16983- 3 2.26060- 4 1.30000+ 1 3.00000+ 1 1.01021- 2 2.28360- 4 1.30000+ 1 4.10000+ 1 2.95847- 4 2.45720- 4 1.40000+ 1 1.60000+ 1 1.11772- 1 1.01600- 5 1.40000+ 1 1.80000+ 1 1.15537- 1 6.23000- 5 1.40000+ 1 1.90000+ 1 2.21743- 1 7.81600- 5 1.40000+ 1 2.10000+ 1 5.30239- 2 1.64350- 4 1.40000+ 1 2.20000+ 1 8.63254- 2 1.67050- 4 1.40000+ 1 2.70000+ 1 1.84769- 2 2.28120- 4 1.40000+ 1 2.90000+ 1 1.47548- 2 2.42210- 4 1.40000+ 1 3.00000+ 1 2.56930- 2 2.44510- 4 1.40000+ 1 4.10000+ 1 1.72129- 3 2.61870- 4 1.60000+ 1 1.60000+ 1 7.77212- 4 5.44300- 4 1.60000+ 1 1.80000+ 1 1.13743- 3 5.96440- 4 1.60000+ 1 1.90000+ 1 1.65053- 2 6.12300- 4 1.60000+ 1 2.10000+ 1 9.85710- 4 6.98490- 4 1.60000+ 1 2.20000+ 1 1.07218- 3 7.01190- 4 1.60000+ 1 2.70000+ 1 2.04245- 4 7.62260- 4 1.60000+ 1 2.90000+ 1 1.28829- 4 7.76350- 4 1.60000+ 1 3.00000+ 1 1.52560- 3 7.78650- 4 1.60000+ 1 4.10000+ 1 1.86463- 5 7.96010- 4 1.80000+ 1 1.80000+ 1 1.85078- 4 6.48580- 4 1.80000+ 1 1.90000+ 1 1.94900- 2 6.64440- 4 1.80000+ 1 2.10000+ 1 5.31562- 4 7.50630- 4 1.80000+ 1 2.20000+ 1 3.22440- 3 7.53330- 4 1.80000+ 1 2.70000+ 1 1.37713- 4 8.14400- 4 1.80000+ 1 2.90000+ 1 3.94719- 5 8.28490- 4 1.80000+ 1 3.00000+ 1 1.81831- 3 8.30790- 4 1.80000+ 1 4.10000+ 1 1.22802- 5 8.48150- 4 1.90000+ 1 1.90000+ 1 2.54000- 2 6.80300- 4 1.90000+ 1 2.10000+ 1 3.30729- 2 7.66490- 4 1.90000+ 1 2.20000+ 1 4.49486- 2 7.69190- 4 1.90000+ 1 2.70000+ 1 2.47840- 3 8.30260- 4 1.90000+ 1 2.90000+ 1 2.32127- 3 8.44350- 4 1.90000+ 1 3.00000+ 1 5.70139- 3 8.46650- 4 1.90000+ 1 4.10000+ 1 2.33001- 4 8.64010- 4 2.10000+ 1 2.10000+ 1 1.91977- 4 8.52680- 4 2.10000+ 1 2.20000+ 1 2.50471- 3 8.55380- 4 2.10000+ 1 2.70000+ 1 7.87560- 5 9.16450- 4 2.10000+ 1 2.90000+ 1 3.32263- 5 9.30540- 4 2.10000+ 1 3.00000+ 1 2.41369- 3 9.32840- 4 2.10000+ 1 4.10000+ 1 7.38348- 6 9.50200- 4 2.20000+ 1 2.20000+ 1 1.17943- 3 8.58080- 4 2.20000+ 1 2.70000+ 1 7.43147- 5 9.19150- 4 2.20000+ 1 2.90000+ 1 1.69861- 4 9.33240- 4 2.20000+ 1 3.00000+ 1 2.67420- 3 9.35540- 4 2.20000+ 1 4.10000+ 1 6.57209- 6 9.52900- 4 2.70000+ 1 2.70000+ 1 8.60724- 6 9.80220- 4 2.70000+ 1 2.90000+ 1 9.68308- 6 9.94310- 4 2.70000+ 1 3.00000+ 1 1.57073- 4 9.96610- 4 2.70000+ 1 4.10000+ 1 1.61383- 6 1.01397- 3 2.90000+ 1 2.90000+ 1 1.16403- 6 1.00840- 3 2.90000+ 1 3.00000+ 1 1.61801- 4 1.01070- 3 2.90000+ 1 4.10000+ 1 1.16403- 6 1.02806- 3 3.00000+ 1 3.00000+ 1 2.40133- 4 1.01300- 3 3.00000+ 1 4.10000+ 1 1.64143- 5 1.03036- 3 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.41782- 3 6.02430- 4 1.90000+ 1 3.73993- 4 6.18290- 4 2.90000+ 1 3.39423- 4 7.82340- 4 3.00000+ 1 5.17224- 5 7.84640- 4 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 4.10000+ 1 1.63611- 3 1.15100- 5 1.60000+ 1 1.60000+ 1 4.20596- 6 2.93940- 4 1.60000+ 1 1.80000+ 1 5.21523- 3 3.46080- 4 1.60000+ 1 1.90000+ 1 3.99140- 3 3.61940- 4 1.60000+ 1 2.10000+ 1 1.09776- 1 4.48130- 4 1.60000+ 1 2.20000+ 1 1.50155- 2 4.50830- 4 1.60000+ 1 2.70000+ 1 2.94401- 5 5.11900- 4 1.60000+ 1 2.90000+ 1 5.55163- 4 5.25990- 4 1.60000+ 1 3.00000+ 1 3.19638- 4 5.28290- 4 1.60000+ 1 4.10000+ 1 4.20596- 6 5.45650- 4 1.80000+ 1 1.80000+ 1 1.99777- 3 3.98220- 4 1.80000+ 1 1.90000+ 1 1.67942- 2 4.14080- 4 1.80000+ 1 2.10000+ 1 8.95379- 2 5.00270- 4 1.80000+ 1 2.20000+ 1 7.85656- 3 5.02970- 4 1.80000+ 1 2.70000+ 1 4.66852- 4 5.64040- 4 1.80000+ 1 2.90000+ 1 4.62647- 4 5.78130- 4 1.80000+ 1 3.00000+ 1 1.65297- 3 5.80430- 4 1.80000+ 1 4.10000+ 1 4.20595- 5 5.97790- 4 1.90000+ 1 1.90000+ 1 6.41800- 3 4.29940- 4 1.90000+ 1 2.10000+ 1 1.97613- 1 5.16130- 4 1.90000+ 1 2.20000+ 1 7.47780- 3 5.18830- 4 1.90000+ 1 2.70000+ 1 4.28985- 4 5.79900- 4 1.90000+ 1 2.90000+ 1 1.63184- 3 5.93990- 4 1.90000+ 1 3.00000+ 1 1.22381- 3 5.96290- 4 1.90000+ 1 4.10000+ 1 3.78513- 5 6.13650- 4 2.10000+ 1 2.10000+ 1 1.52023- 1 6.02320- 4 2.10000+ 1 2.20000+ 1 3.12500- 1 6.05020- 4 2.10000+ 1 2.70000+ 1 1.59062- 2 6.66090- 4 2.10000+ 1 2.90000+ 1 1.16886- 2 6.80180- 4 2.10000+ 1 3.00000+ 1 2.46050- 2 6.82480- 4 2.10000+ 1 4.10000+ 1 1.48100- 3 6.99840- 4 2.20000+ 1 2.20000+ 1 5.26977- 3 6.07720- 4 2.20000+ 1 2.70000+ 1 1.23649- 3 6.68790- 4 2.20000+ 1 2.90000+ 1 7.06572- 4 6.82880- 4 2.20000+ 1 3.00000+ 1 7.78074- 4 6.85180- 4 2.20000+ 1 4.10000+ 1 1.09349- 4 7.02540- 4 2.70000+ 1 2.90000+ 1 5.58000- 5 7.43950- 4 2.70000+ 1 3.00000+ 1 3.58717- 5 7.46250- 4 2.90000+ 1 2.90000+ 1 2.08547- 5 7.58040- 4 2.90000+ 1 3.00000+ 1 1.22147- 4 7.60340- 4 2.90000+ 1 4.10000+ 1 2.97940- 6 7.77700- 4 3.00000+ 1 3.00000+ 1 8.01193- 5 7.62640- 4 3.00000+ 1 4.10000+ 1 5.34138- 6 7.80000- 4 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.59409- 3 6.02140- 4 3.00000+ 1 3.58259- 4 7.68490- 4 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.46940- 5 2.77790- 4 1.60000+ 1 1.80000+ 1 1.91368- 3 3.29930- 4 1.60000+ 1 1.90000+ 1 7.78058- 3 3.45790- 4 1.60000+ 1 2.10000+ 1 1.09010- 2 4.31980- 4 1.60000+ 1 2.20000+ 1 1.13458- 1 4.34680- 4 1.60000+ 1 2.70000+ 1 2.84399- 5 4.95750- 4 1.60000+ 1 2.90000+ 1 1.09699- 4 5.09840- 4 1.60000+ 1 3.00000+ 1 7.39458- 4 5.12140- 4 1.60000+ 1 4.10000+ 1 4.06304- 6 5.29500- 4 1.80000+ 1 1.80000+ 1 4.06296- 6 3.82070- 4 1.80000+ 1 1.90000+ 1 1.62039- 2 3.97930- 4 1.80000+ 1 2.10000+ 1 1.16607- 3 4.84120- 4 1.80000+ 1 2.20000+ 1 1.07960- 1 4.86820- 4 1.80000+ 1 2.70000+ 1 1.74716- 4 5.47890- 4 1.80000+ 1 2.90000+ 1 4.06296- 6 5.61980- 4 1.80000+ 1 3.00000+ 1 1.56015- 3 5.64280- 4 1.80000+ 1 4.10000+ 1 1.62518- 5 5.81640- 4 1.90000+ 1 1.90000+ 1 1.23833- 2 4.13790- 4 1.90000+ 1 2.10000+ 1 9.97469- 3 4.99980- 4 1.90000+ 1 2.20000+ 1 1.77871- 1 5.02680- 4 1.90000+ 1 2.70000+ 1 7.88182- 4 5.63750- 4 1.90000+ 1 2.90000+ 1 1.49097- 3 5.77840- 4 1.90000+ 1 3.00000+ 1 2.46201- 3 5.80140- 4 1.90000+ 1 4.10000+ 1 6.90669- 5 5.97500- 4 2.10000+ 1 2.10000+ 1 2.09236- 3 5.86170- 4 2.10000+ 1 2.20000+ 1 2.18023- 1 5.88870- 4 2.10000+ 1 2.70000+ 1 8.81602- 4 6.49940- 4 2.10000+ 1 2.90000+ 1 1.54381- 4 6.64030- 4 2.10000+ 1 3.00000+ 1 9.30353- 4 6.66330- 4 2.10000+ 1 4.10000+ 1 7.71908- 5 6.83690- 4 2.20000+ 1 2.20000+ 1 2.52236- 1 5.91570- 4 2.20000+ 1 2.70000+ 1 1.64344- 2 6.52640- 4 2.20000+ 1 2.90000+ 1 1.40097- 2 6.66730- 4 2.20000+ 1 3.00000+ 1 2.30213- 2 6.69030- 4 2.20000+ 1 4.10000+ 1 1.52764- 3 6.86390- 4 2.70000+ 1 2.90000+ 1 1.31809- 5 7.27800- 4 2.70000+ 1 3.00000+ 1 1.31809- 4 7.30100- 4 2.90000+ 1 3.00000+ 1 1.85999- 4 7.44190- 4 3.00000+ 1 3.00000+ 1 2.06512- 4 7.46490- 4 3.00000+ 1 4.10000+ 1 1.29071- 5 7.63850- 4 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.14550- 5 5.21400- 5 1.90000+ 1 4.87369- 5 6.80000- 5 2.90000+ 1 1.54913- 5 2.32050- 4 3.00000+ 1 1.49497- 5 2.34350- 4 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 7.18217- 2 1.37500- 5 1.80000+ 1 2.90000+ 1 5.27204- 2 2.78400- 5 1.80000+ 1 3.00000+ 1 1.18005- 1 3.01400- 5 1.80000+ 1 4.10000+ 1 6.41486- 3 4.75000- 5 1.90000+ 1 2.70000+ 1 1.08661- 1 2.96100- 5 1.90000+ 1 2.90000+ 1 1.07356- 1 4.37000- 5 1.90000+ 1 3.00000+ 1 1.51144- 1 4.60000- 5 1.90000+ 1 4.10000+ 1 9.67194- 3 6.33600- 5 2.10000+ 1 2.10000+ 1 6.05781- 3 5.20300- 5 2.10000+ 1 2.20000+ 1 6.24046- 2 5.47300- 5 2.10000+ 1 2.70000+ 1 3.18686- 2 1.15800- 4 2.10000+ 1 2.90000+ 1 5.62512- 3 1.29890- 4 2.10000+ 1 3.00000+ 1 2.24423- 2 1.32190- 4 2.10000+ 1 4.10000+ 1 2.42238- 3 1.49550- 4 2.20000+ 1 2.20000+ 1 2.45898- 2 5.74300- 5 2.20000+ 1 2.70000+ 1 4.65357- 2 1.18500- 4 2.20000+ 1 2.90000+ 1 1.95585- 2 1.32590- 4 2.20000+ 1 3.00000+ 1 2.04017- 2 1.34890- 4 2.20000+ 1 4.10000+ 1 3.53511- 3 1.52250- 4 2.70000+ 1 2.70000+ 1 1.36981- 2 1.79570- 4 2.70000+ 1 2.90000+ 1 1.64656- 2 1.93660- 4 2.70000+ 1 3.00000+ 1 2.95147- 2 1.95960- 4 2.70000+ 1 4.10000+ 1 2.25702- 3 2.13320- 4 2.90000+ 1 2.90000+ 1 5.67202- 3 2.07750- 4 2.90000+ 1 3.00000+ 1 2.55543- 2 2.10050- 4 2.90000+ 1 4.10000+ 1 5.05090- 3 2.27410- 4 3.00000+ 1 3.00000+ 1 2.13146- 2 2.12350- 4 3.00000+ 1 4.10000+ 1 9.14662- 3 2.29710- 4 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.25750- 4 1.02050- 4 2.70000+ 1 2.07930- 5 1.65820- 4 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.10000+ 1 8.60480- 4 1.12200- 5 2.10000+ 1 2.10000+ 1 1.34526- 1 0.00000+ 0 2.10000+ 1 2.20000+ 1 7.15290- 1 2.59000- 6 2.10000+ 1 2.70000+ 1 2.82156- 2 6.36600- 5 2.10000+ 1 2.90000+ 1 1.98396- 2 7.77500- 5 2.10000+ 1 3.00000+ 1 4.01339- 2 8.00500- 5 2.10000+ 1 4.10000+ 1 2.68451- 3 9.74100- 5 2.20000+ 1 2.20000+ 1 2.58571- 2 5.29000- 6 2.20000+ 1 2.70000+ 1 4.20779- 3 6.63600- 5 2.20000+ 1 2.90000+ 1 1.92094- 2 8.04500- 5 2.20000+ 1 3.00000+ 1 4.54654- 3 8.27500- 5 2.20000+ 1 4.10000+ 1 3.44117- 4 1.00110- 4 2.70000+ 1 2.70000+ 1 4.25953- 5 1.27430- 4 2.70000+ 1 2.90000+ 1 9.56923- 4 1.41520- 4 2.70000+ 1 3.00000+ 1 1.35695- 4 1.43820- 4 2.70000+ 1 4.10000+ 1 6.88686- 6 1.61180- 4 2.90000+ 1 2.90000+ 1 7.07435- 4 1.55610- 4 2.90000+ 1 3.00000+ 1 2.08875- 3 1.57910- 4 2.90000+ 1 4.10000+ 1 1.20213- 4 1.75270- 4 3.00000+ 1 3.00000+ 1 6.78120- 5 1.60210- 4 3.00000+ 1 4.10000+ 1 1.19769- 5 1.77570- 4 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.22958- 6 8.61900- 5 2.20000+ 1 3.38658- 5 8.88900- 5 2.70000+ 1 8.06314- 6 1.49960- 4 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.70000+ 1 4.09744- 2 4.78000- 5 2.10000+ 1 2.90000+ 1 3.10756- 2 6.18900- 5 2.10000+ 1 3.00000+ 1 1.30577- 1 6.41900- 5 2.10000+ 1 4.10000+ 1 3.79204- 3 8.15500- 5 2.20000+ 1 2.70000+ 1 2.17883- 1 5.05000- 5 2.20000+ 1 2.90000+ 1 2.10287- 1 6.45900- 5 2.20000+ 1 3.00000+ 1 3.41679- 1 6.68900- 5 2.20000+ 1 4.10000+ 1 2.11358- 2 8.42500- 5 2.70000+ 1 2.70000+ 1 6.07223- 6 1.11570- 4 2.70000+ 1 2.90000+ 1 5.92015- 5 1.25660- 4 2.70000+ 1 3.00000+ 1 1.14998- 3 1.27960- 4 2.70000+ 1 4.10000+ 1 1.24203- 6 1.45320- 4 2.90000+ 1 2.90000+ 1 5.78690- 6 1.39750- 4 2.90000+ 1 3.00000+ 1 4.83217- 4 1.42050- 4 2.90000+ 1 4.10000+ 1 2.01294- 6 1.59410- 4 3.00000+ 1 3.00000+ 1 7.87035- 4 1.44350- 4 3.00000+ 1 4.10000+ 1 5.72488- 5 1.61710- 4 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.35730- 6 7.78600- 5 3.00000+ 1 2.33400- 7 8.01600- 5 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 1.53468- 1 2.53800- 5 2.70000+ 1 2.90000+ 1 6.78731- 2 3.94700- 5 2.70000+ 1 3.00000+ 1 8.76893- 2 4.17700- 5 2.70000+ 1 4.10000+ 1 1.50889- 2 5.91300- 5 2.90000+ 1 2.90000+ 1 1.41201- 1 5.35600- 5 2.90000+ 1 3.00000+ 1 3.80629- 1 5.58600- 5 2.90000+ 1 4.10000+ 1 1.38291- 2 7.32200- 5 3.00000+ 1 3.00000+ 1 1.30399- 1 5.81600- 5 3.00000+ 1 4.10000+ 1 9.82072- 3 7.55200- 5 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 1.62670- 6 7.74600- 5 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 1.95207- 1 2.26800- 5 2.70000+ 1 2.90000+ 1 4.90575- 2 3.67700- 5 2.70000+ 1 3.00000+ 1 1.35613- 1 3.90700- 5 2.70000+ 1 4.10000+ 1 1.86613- 2 5.64300- 5 2.90000+ 1 2.90000+ 1 3.07522- 2 5.08600- 5 2.90000+ 1 3.00000+ 1 2.78701- 1 5.31600- 5 2.90000+ 1 4.10000+ 1 5.21656- 3 7.05200- 5 3.00000+ 1 3.00000+ 1 2.68173- 1 5.54600- 5 3.00000+ 1 4.10000+ 1 1.86165- 2 7.28200- 5 1 56000 0 7 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 6.92429-11 1.40900- 5 3.00000+ 1 2.20280-10 1.63900- 5 1 56000 0 9 1.37330+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.82459- 1 9.45000- 6 3.00000+ 1 4.10000+ 1 6.09319- 1 1.17500- 5 4.10000+ 1 4.10000+ 1 8.22139- 3 2.91100- 5 1 57000 0 0 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000- 1 3.30000+ 1 6.00000- 1 4.10000+ 1 2.00000+ 0 1 57000 0 0 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.89430- 2 3.00000+ 0 6.24180- 3 5.00000+ 0 5.90250- 3 6.00000+ 0 5.48380- 3 8.00000+ 0 1.35040- 3 1.00000+ 1 1.20480- 3 1.10000+ 1 1.12270- 3 1.30000+ 1 8.64960- 4 1.40000+ 1 8.47280- 4 1.60000+ 1 2.79130- 4 1.80000+ 1 2.24730- 4 1.90000+ 1 2.07070- 4 2.10000+ 1 1.16830- 4 2.20000+ 1 1.13760- 4 2.70000+ 1 4.36500- 5 2.90000+ 1 2.83300- 5 3.00000+ 1 2.55900- 5 3.20000+ 1 5.58000- 6 3.30000+ 1 5.34000- 6 4.10000+ 1 5.14000- 6 1 57000 0 0 1.38905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.00170- 2 3.00000+ 0 1.10770- 2 5.00000+ 0 1.10870- 2 6.00000+ 0 9.55640- 3 8.00000+ 0 3.31010- 3 1.00000+ 1 3.23500- 3 1.10000+ 1 2.88630- 3 1.30000+ 1 2.75630- 3 1.40000+ 1 2.67270- 3 1.60000+ 1 1.00470- 3 1.80000+ 1 9.31660- 4 1.90000+ 1 8.39040- 4 2.10000+ 1 6.93020- 4 2.20000+ 1 6.73050- 4 2.70000+ 1 2.30710- 4 2.90000+ 1 1.86100- 4 3.00000+ 1 1.65860- 4 3.20000+ 1 7.70300- 5 3.30000+ 1 7.37700- 5 4.10000+ 1 2.91000- 5 1 57000 0 0 1.38905+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32450-10 3.00000+ 0 5.64180-10 5.00000+ 0 4.73430-10 6.00000+ 0 5.05480-10 8.00000+ 0 1.49790- 9 1.00000+ 1 1.44150- 9 1.10000+ 1 1.50490- 9 1.30000+ 1 1.34890- 9 1.40000+ 1 1.36850- 9 1.60000+ 1 3.42520- 9 1.80000+ 1 3.52220- 9 1.90000+ 1 3.66120- 9 2.10000+ 1 3.94650- 9 2.20000+ 1 3.99290- 9 2.70000+ 1 8.03210- 9 2.90000+ 1 8.93960- 9 3.00000+ 1 9.33730- 9 3.20000+ 1 1.40480- 8 3.30000+ 1 1.43340- 8 4.10000+ 1 2.31080- 8 1 57000 0 0 1.38905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.24850- 5 3.00000+ 0 2.18590- 7 5.00000+ 0 3.68000- 7 6.00000+ 0 3.43770- 7 8.00000+ 0 6.23200- 9 1.00000+ 1 6.16690- 9 1.10000+ 1 6.23410- 9 1.30000+ 1 4.74190-10 1.40000+ 1 3.96320-10 1.60000+ 1 1.67940-10 1.80000+ 1 3.35830-10 1.90000+ 1 2.56230-10 2.10000+ 1 2.17920-11 2.20000+ 1 1.90690-11 2.70000+ 1 8.92610-12 1 57000 0 0 1.38905+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.28570- 6 3.00000+ 0 3.51580- 6 5.00000+ 0 2.79440- 6 6.00000+ 0 2.57950- 6 8.00000+ 0 1.21510- 5 1.00000+ 1 5.28330- 6 1.10000+ 1 6.11840- 6 1.30000+ 1 6.98020- 7 1.40000+ 1 7.04410- 7 1.60000+ 1 6.86550- 6 1.80000+ 1 5.77770- 6 1.90000+ 1 2.79360- 6 2.10000+ 1 9.46320- 8 2.20000+ 1 9.74580- 8 2.70000+ 1 6.20920- 7 1 57000 0 0 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.57087- 4 3.00000+ 0 3.01700- 4 5.00000+ 0 2.59085- 4 6.00000+ 0 2.45691- 4 8.00000+ 0 2.19982- 4 1.00000+ 1 1.87293- 4 1.10000+ 1 1.78709- 4 1.30000+ 1 1.17836- 4 1.40000+ 1 1.17250- 4 1.60000+ 1 9.61450- 5 1.80000+ 1 8.95869- 5 1.90000+ 1 7.75746- 5 2.10000+ 1 5.17237- 5 2.20000+ 1 5.10017- 5 2.70000+ 1 3.16210- 5 2.90000+ 1 2.83300- 5 3.00000+ 1 2.55900- 5 3.20000+ 1 5.58000- 6 3.30000+ 1 5.34000- 6 4.10000+ 1 5.14000- 6 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02074+ 0 3.00000+ 0 1.25153- 1 5.00000+ 0 1.38077- 1 6.00000+ 0 1.17767- 1 8.00000+ 0 5.35368- 3 1.00000+ 1 5.64506- 3 1.10000+ 1 5.34814- 3 1.30000+ 1 3.76057- 3 1.40000+ 1 3.49498- 3 1.60000+ 1 1.66006- 4 1.80000+ 1 1.75641- 4 1.90000+ 1 5.56254- 5 2.10000+ 1 2.50719- 6 2.20000+ 1 2.55364- 6 2.70000+ 1 1.46569- 9 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.15894- 2 3.00000+ 0 5.99346- 4 5.00000+ 0 6.68171- 4 6.00000+ 0 5.25820- 4 8.00000+ 0 4.20274- 6 1.00000+ 1 4.27625- 6 1.10000+ 1 4.05774- 6 1.30000+ 1 2.47798- 6 1.40000+ 1 2.28577- 6 1.60000+ 1 2.10124- 8 1.80000+ 1 2.07718- 8 1.90000+ 1 5.87507- 9 2.10000+ 1 2.22848-10 2.20000+ 1 2.25109-10 2.70000+ 1 2.55401-14 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.11970+ 1 3.00000+ 0 1.33331+ 1 5.00000+ 0 1.12679+ 1 6.00000+ 0 1.06629+ 1 8.00000+ 0 9.46515+ 0 1.00000+ 1 7.88447+ 0 1.10000+ 1 7.50790+ 0 1.30000+ 1 4.52559+ 0 1.40000+ 1 4.58391+ 0 1.60000+ 1 3.61827+ 0 1.80000+ 1 3.34733+ 0 1.90000+ 1 2.66891+ 0 2.10000+ 1 1.35765+ 0 2.20000+ 1 1.44045+ 0 2.70000+ 1 1.00000+ 0 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.09655- 3 3.00000+ 0 5.34075- 3 5.00000+ 0 4.97524- 3 6.00000+ 0 4.71229- 3 8.00000+ 0 1.12621- 3 1.00000+ 1 1.01323- 3 1.10000+ 1 9.39934- 4 1.30000+ 1 7.44646- 4 1.40000+ 1 7.27745- 4 1.60000+ 1 1.82964- 4 1.80000+ 1 1.35122- 4 1.90000+ 1 1.29490- 4 2.10000+ 1 6.51060- 5 2.20000+ 1 6.27581- 5 2.70000+ 1 1.20290- 5 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.60460- 1 3.30405- 2 6.00000+ 0 4.78351- 1 3.34592- 2 1.00000+ 1 4.61051- 2 3.77382- 2 1.10000+ 1 8.93241- 2 3.78203- 2 1.30000+ 1 5.23301- 4 3.80780- 2 1.40000+ 1 7.07811- 4 3.80957- 2 1.80000+ 1 9.78351- 3 3.87183- 2 1.90000+ 1 1.90470- 2 3.87359- 2 2.10000+ 1 1.10460- 4 3.88262- 2 2.20000+ 1 1.49380- 4 3.88292- 2 2.90000+ 1 1.53260- 3 3.89147- 2 3.00000+ 1 2.93570- 3 3.89174- 2 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.51100- 3 2.64594- 2 3.00000+ 0 5.00000+ 0 9.09623- 3 2.67987- 2 3.00000+ 0 6.00000+ 0 1.02196- 2 2.72174- 2 3.00000+ 0 8.00000+ 0 2.73086- 3 3.13508- 2 3.00000+ 0 1.00000+ 1 1.77731- 3 3.14964- 2 3.00000+ 0 1.10000+ 1 2.03029- 3 3.15785- 2 3.00000+ 0 1.30000+ 1 1.36909- 4 3.18362- 2 3.00000+ 0 1.40000+ 1 1.44041- 4 3.18539- 2 3.00000+ 0 1.60000+ 1 6.16375- 4 3.24221- 2 3.00000+ 0 1.80000+ 1 3.82621- 4 3.24765- 2 3.00000+ 0 1.90000+ 1 4.35566- 4 3.24941- 2 3.00000+ 0 2.10000+ 1 2.79206- 5 3.25844- 2 3.00000+ 0 2.20000+ 1 2.92683- 5 3.25874- 2 3.00000+ 0 2.70000+ 1 1.09759- 4 3.26575- 2 3.00000+ 0 2.90000+ 1 5.71899- 5 3.26729- 2 3.00000+ 0 3.00000+ 1 6.37356- 5 3.26756- 2 3.00000+ 0 3.20000+ 1 3.85106- 7 3.26956- 2 3.00000+ 0 4.10000+ 1 1.09759- 5 3.26961- 2 5.00000+ 0 5.00000+ 0 1.03398- 3 2.71380- 2 5.00000+ 0 6.00000+ 0 2.14358- 2 2.75567- 2 5.00000+ 0 8.00000+ 0 1.37779- 3 3.16901- 2 5.00000+ 0 1.00000+ 1 3.60470- 4 3.18357- 2 5.00000+ 0 1.10000+ 1 3.55314- 3 3.19178- 2 5.00000+ 0 1.30000+ 1 1.60018- 4 3.21755- 2 5.00000+ 0 1.40000+ 1 5.26277- 4 3.21932- 2 5.00000+ 0 1.60000+ 1 2.99240- 4 3.27614- 2 5.00000+ 0 1.80000+ 1 7.60602- 5 3.28158- 2 5.00000+ 0 1.90000+ 1 7.36190- 4 3.28334- 2 5.00000+ 0 2.10000+ 1 3.21576- 5 3.29237- 2 5.00000+ 0 2.20000+ 1 1.05717- 4 3.29267- 2 5.00000+ 0 2.70000+ 1 5.27622- 5 3.29968- 2 5.00000+ 0 2.90000+ 1 1.13611- 5 3.30122- 2 5.00000+ 0 3.00000+ 1 1.07071- 4 3.30149- 2 5.00000+ 0 3.20000+ 1 5.77682- 7 3.30349- 2 5.00000+ 0 4.10000+ 1 5.39179- 6 3.30354- 2 6.00000+ 0 6.00000+ 0 1.05453- 2 2.79754- 2 6.00000+ 0 8.00000+ 0 1.50330- 3 3.21088- 2 6.00000+ 0 1.00000+ 1 3.44689- 3 3.22544- 2 6.00000+ 0 1.10000+ 1 3.59220- 3 3.23365- 2 6.00000+ 0 1.30000+ 1 6.21980- 4 3.25942- 2 6.00000+ 0 1.40000+ 1 5.66901- 4 3.26119- 2 6.00000+ 0 1.60000+ 1 3.24662- 4 3.31801- 2 6.00000+ 0 1.80000+ 1 7.15379- 4 3.32345- 2 6.00000+ 0 1.90000+ 1 7.49067- 4 3.32521- 2 6.00000+ 0 2.10000+ 1 1.25168- 4 3.33424- 2 6.00000+ 0 2.20000+ 1 1.13999- 4 3.33454- 2 6.00000+ 0 2.70000+ 1 5.71909- 5 3.34155- 2 6.00000+ 0 2.90000+ 1 1.06291- 4 3.34309- 2 6.00000+ 0 3.00000+ 1 1.08991- 4 3.34336- 2 6.00000+ 0 3.20000+ 1 1.92566- 6 3.34536- 2 6.00000+ 0 4.10000+ 1 5.77678- 6 3.34541- 2 8.00000+ 0 8.00000+ 0 2.44545- 4 3.62422- 2 8.00000+ 0 1.00000+ 1 2.71683- 4 3.63878- 2 8.00000+ 0 1.10000+ 1 3.01346- 4 3.64699- 2 8.00000+ 0 1.30000+ 1 1.92556- 5 3.67276- 2 8.00000+ 0 1.40000+ 1 1.94485- 5 3.67453- 2 8.00000+ 0 1.60000+ 1 1.10144- 4 3.73135- 2 8.00000+ 0 1.80000+ 1 5.85357- 5 3.73679- 2 8.00000+ 0 1.90000+ 1 6.46973- 5 3.73855- 2 8.00000+ 0 2.10000+ 1 4.04359- 6 3.74758- 2 8.00000+ 0 2.20000+ 1 4.04359- 6 3.74788- 2 8.00000+ 0 2.70000+ 1 1.96405- 5 3.75489- 2 8.00000+ 0 2.90000+ 1 8.85749- 6 3.75643- 2 8.00000+ 0 3.00000+ 1 9.43524- 6 3.75670- 2 8.00000+ 0 4.10000+ 1 1.92556- 6 3.75875- 2 1.00000+ 1 1.00000+ 1 3.02330- 5 3.65334- 2 1.00000+ 1 1.10000+ 1 5.81348- 4 3.66155- 2 1.00000+ 1 1.30000+ 1 2.04106- 5 3.68732- 2 1.00000+ 1 1.40000+ 1 6.60500- 5 3.68909- 2 1.00000+ 1 1.60000+ 1 5.91171- 5 3.74591- 2 1.00000+ 1 1.80000+ 1 1.27089- 5 3.75135- 2 1.00000+ 1 1.90000+ 1 1.20734- 4 3.75311- 2 1.00000+ 1 2.10000+ 1 4.04383- 6 3.76214- 2 1.00000+ 1 2.20000+ 1 1.32858- 5 3.76244- 2 1.00000+ 1 2.70000+ 1 1.03982- 5 3.76945- 2 1.00000+ 1 2.90000+ 1 1.92568- 6 3.77099- 2 1.00000+ 1 3.00000+ 1 1.75231- 5 3.77126- 2 1.00000+ 1 4.10000+ 1 9.62780- 7 3.77331- 2 1.10000+ 1 1.10000+ 1 3.07142- 4 3.66976- 2 1.10000+ 1 1.30000+ 1 8.41495- 5 3.69553- 2 1.10000+ 1 1.40000+ 1 7.47160- 5 3.69730- 2 1.10000+ 1 1.60000+ 1 6.52788- 5 3.75412- 2 1.10000+ 1 1.80000+ 1 1.20929- 4 3.75956- 2 1.10000+ 1 1.90000+ 1 1.28248- 4 3.76132- 2 1.10000+ 1 2.10000+ 1 1.71380- 5 3.77035- 2 1.10000+ 1 2.20000+ 1 1.52124- 5 3.77065- 2 1.10000+ 1 2.70000+ 1 1.15540- 5 3.77766- 2 1.10000+ 1 2.90000+ 1 1.79079- 5 3.77920- 2 1.10000+ 1 3.00000+ 1 1.86788- 5 3.77947- 2 1.10000+ 1 3.20000+ 1 1.92567- 7 3.78147- 2 1.10000+ 1 4.10000+ 1 1.15540- 6 3.78152- 2 1.30000+ 1 1.40000+ 1 9.58138- 6 3.72308- 2 1.30000+ 1 1.60000+ 1 4.13331- 6 3.77989- 2 1.30000+ 1 1.80000+ 1 3.94544- 6 3.78533- 2 1.30000+ 1 1.90000+ 1 1.63446- 5 3.78710- 2 1.30000+ 1 2.20000+ 1 1.87882- 6 3.79643- 2 1.30000+ 1 2.70000+ 1 7.51490- 7 3.80344- 2 1.30000+ 1 2.90000+ 1 5.63627- 7 3.80497- 2 1.30000+ 1 3.00000+ 1 2.44236- 6 3.80524- 2 1.40000+ 1 1.40000+ 1 2.27942- 6 3.72484- 2 1.40000+ 1 1.60000+ 1 4.17881- 6 3.78166- 2 1.40000+ 1 1.80000+ 1 1.29159- 5 3.78710- 2 1.40000+ 1 1.90000+ 1 1.46260- 5 3.78886- 2 1.40000+ 1 2.10000+ 1 1.89951- 6 3.79789- 2 1.40000+ 1 2.20000+ 1 9.49696- 7 3.79820- 2 1.40000+ 1 2.70000+ 1 7.59765- 7 3.80521- 2 1.40000+ 1 2.90000+ 1 1.89951- 6 3.80674- 2 1.40000+ 1 3.00000+ 1 2.08946- 6 3.80701- 2 1.60000+ 1 1.60000+ 1 1.16572- 5 3.83847- 2 1.60000+ 1 1.80000+ 1 1.20205- 5 3.84391- 2 1.60000+ 1 1.90000+ 1 1.32952- 5 3.84568- 2 1.60000+ 1 2.10000+ 1 7.28508- 7 3.85470- 2 1.60000+ 1 2.20000+ 1 7.28508- 7 3.85501- 2 1.60000+ 1 2.70000+ 1 4.18903- 6 3.86202- 2 1.60000+ 1 2.90000+ 1 1.82136- 6 3.86355- 2 1.60000+ 1 3.00000+ 1 2.00350- 6 3.86383- 2 1.60000+ 1 4.10000+ 1 3.64255- 7 3.86587- 2 1.80000+ 1 1.80000+ 1 1.23297- 6 3.84935- 2 1.80000+ 1 1.90000+ 1 2.30753- 5 3.85112- 2 1.80000+ 1 2.10000+ 1 7.04571- 7 3.86014- 2 1.80000+ 1 2.20000+ 1 2.46612- 6 3.86045- 2 1.80000+ 1 2.70000+ 1 2.11383- 6 3.86746- 2 1.80000+ 1 2.90000+ 1 3.52286- 7 3.86899- 2 1.80000+ 1 3.00000+ 1 3.34679- 6 3.86927- 2 1.80000+ 1 4.10000+ 1 1.76152- 7 3.87131- 2 1.90000+ 1 1.90000+ 1 1.20228- 5 3.85289- 2 1.90000+ 1 2.10000+ 1 3.13661- 6 3.86191- 2 1.90000+ 1 2.20000+ 1 2.78818- 6 3.86222- 2 1.90000+ 1 2.70000+ 1 2.26530- 6 3.86923- 2 1.90000+ 1 2.90000+ 1 3.31087- 6 3.87076- 2 1.90000+ 1 3.00000+ 1 3.48505- 6 3.87103- 2 1.90000+ 1 4.10000+ 1 1.74261- 7 3.87308- 2 2.10000+ 1 2.20000+ 1 3.36365- 7 3.87124- 2 2.10000+ 1 2.70000+ 1 1.68191- 7 3.87825- 2 2.10000+ 1 2.90000+ 1 1.68191- 7 3.87978- 2 2.10000+ 1 3.00000+ 1 5.04555- 7 3.88006- 2 2.20000+ 1 2.70000+ 1 1.79315- 7 3.87856- 2 2.20000+ 1 2.90000+ 1 3.58613- 7 3.88009- 2 2.20000+ 1 3.00000+ 1 3.58613- 7 3.88036- 2 2.70000+ 1 2.70000+ 1 3.13457- 7 3.88557- 2 2.70000+ 1 2.90000+ 1 3.13457- 7 3.88710- 2 2.70000+ 1 3.00000+ 1 3.13457- 7 3.88738- 2 2.90000+ 1 3.00000+ 1 5.54821- 7 3.88891- 2 3.00000+ 1 3.00000+ 1 1.92560- 7 3.88918- 2 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.97811- 5 3.39300- 4 6.00000+ 0 4.85253- 4 7.58000- 4 1.00000+ 1 1.65301- 2 5.03700- 3 1.10000+ 1 2.53612- 2 5.11910- 3 1.30000+ 1 2.76122- 4 5.37684- 3 1.40000+ 1 4.12703- 4 5.39452- 3 1.80000+ 1 3.78713- 3 6.01707- 3 1.90000+ 1 6.00664- 3 6.03473- 3 2.10000+ 1 3.69512- 5 6.12497- 3 2.20000+ 1 5.65024- 5 6.12804- 3 2.90000+ 1 5.62464- 4 6.21347- 3 3.00000+ 1 8.77756- 4 6.21621- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.55451- 2 6.01700- 5 5.00000+ 0 1.80000+ 1 4.03504- 2 1.14570- 4 5.00000+ 0 1.90000+ 1 5.01608- 2 1.32230- 4 5.00000+ 0 2.10000+ 1 1.34367- 2 2.22470- 4 5.00000+ 0 2.20000+ 1 2.18829- 2 2.25540- 4 5.00000+ 0 2.70000+ 1 9.42702- 3 2.95650- 4 5.00000+ 0 2.90000+ 1 5.66240- 3 3.10970- 4 5.00000+ 0 3.00000+ 1 6.89156- 3 3.13710- 4 5.00000+ 0 3.20000+ 1 2.12270- 4 3.33720- 4 5.00000+ 0 4.10000+ 1 9.42039- 4 3.34160- 4 6.00000+ 0 1.60000+ 1 6.91806- 2 4.78870- 4 6.00000+ 0 1.80000+ 1 3.01272- 2 5.33270- 4 6.00000+ 0 1.90000+ 1 5.57159- 2 5.50930- 4 6.00000+ 0 2.10000+ 1 6.59130- 2 6.41170- 4 6.00000+ 0 2.20000+ 1 8.41383- 2 6.44240- 4 6.00000+ 0 2.70000+ 1 1.18607- 2 7.14350- 4 6.00000+ 0 2.90000+ 1 4.32876- 3 7.29670- 4 6.00000+ 0 3.00000+ 1 7.92281- 3 7.32410- 4 6.00000+ 0 3.20000+ 1 9.80069- 4 7.52420- 4 6.00000+ 0 4.10000+ 1 1.18506- 3 7.52860- 4 8.00000+ 0 8.00000+ 0 1.27417- 2 3.54100- 3 8.00000+ 0 1.00000+ 1 2.53717- 2 3.68660- 3 8.00000+ 0 1.10000+ 1 4.63758- 2 3.76870- 3 8.00000+ 0 1.30000+ 1 3.64277- 2 4.02644- 3 8.00000+ 0 1.40000+ 1 5.10780- 2 4.04412- 3 8.00000+ 0 1.60000+ 1 4.89394- 3 4.61227- 3 8.00000+ 0 1.80000+ 1 5.34186- 3 4.66667- 3 8.00000+ 0 1.90000+ 1 9.70430- 3 4.68433- 3 8.00000+ 0 2.10000+ 1 6.32552- 3 4.77457- 3 8.00000+ 0 2.20000+ 1 8.83185- 3 4.77764- 3 8.00000+ 0 2.70000+ 1 8.49824- 4 4.84775- 3 8.00000+ 0 2.90000+ 1 7.94925- 4 4.86307- 3 8.00000+ 0 3.00000+ 1 1.41199- 3 4.86581- 3 8.00000+ 0 3.20000+ 1 9.73554- 5 4.88582- 3 8.00000+ 0 4.10000+ 1 8.49070- 5 4.88626- 3 1.00000+ 1 1.00000+ 1 1.31752- 4 3.83220- 3 1.00000+ 1 1.10000+ 1 8.78344- 4 3.91430- 3 1.00000+ 1 1.30000+ 1 1.11330- 3 4.17204- 3 1.00000+ 1 1.40000+ 1 1.37378- 2 4.18972- 3 1.00000+ 1 1.60000+ 1 3.89901- 3 4.75787- 3 1.00000+ 1 1.80000+ 1 2.78139- 5 4.81227- 3 1.00000+ 1 1.90000+ 1 1.74203- 4 4.82993- 3 1.00000+ 1 2.10000+ 1 1.92505- 4 4.92017- 3 1.00000+ 1 2.20000+ 1 1.57447- 3 4.92324- 3 1.00000+ 1 2.70000+ 1 6.44093- 4 4.99335- 3 1.00000+ 1 2.90000+ 1 3.65964- 6 5.00867- 3 1.00000+ 1 3.00000+ 1 2.48867- 5 5.01141- 3 1.00000+ 1 3.20000+ 1 2.92775- 6 5.03142- 3 1.00000+ 1 4.10000+ 1 6.44093- 5 5.03186- 3 1.10000+ 1 1.10000+ 1 1.08259- 3 3.99640- 3 1.10000+ 1 1.30000+ 1 8.87204- 3 4.25414- 3 1.10000+ 1 1.40000+ 1 5.96854- 3 4.27182- 3 1.10000+ 1 1.60000+ 1 7.11902- 3 4.83997- 3 1.10000+ 1 1.80000+ 1 1.74940- 4 4.89437- 3 1.10000+ 1 1.90000+ 1 3.42566- 4 4.91203- 3 1.10000+ 1 2.10000+ 1 8.57138- 4 5.00227- 3 1.10000+ 1 2.20000+ 1 5.97275- 4 5.00534- 3 1.10000+ 1 2.70000+ 1 1.17632- 3 5.07545- 3 1.10000+ 1 2.90000+ 1 2.56175- 5 5.09077- 3 1.10000+ 1 3.00000+ 1 4.75777- 5 5.09351- 3 1.10000+ 1 3.20000+ 1 1.24432- 5 5.11352- 3 1.10000+ 1 4.10000+ 1 1.17108- 4 5.11396- 3 1.30000+ 1 1.30000+ 1 2.03852- 3 4.51188- 3 1.30000+ 1 1.40000+ 1 7.26466- 2 4.52956- 3 1.30000+ 1 1.60000+ 1 5.28692- 3 5.09771- 3 1.30000+ 1 1.80000+ 1 3.02307- 4 5.15211- 3 1.30000+ 1 1.90000+ 1 1.90161- 3 5.16977- 3 1.30000+ 1 2.10000+ 1 6.99032- 4 5.26001- 3 1.30000+ 1 2.20000+ 1 9.18686- 3 5.26308- 3 1.30000+ 1 2.70000+ 1 8.65917- 4 5.33319- 3 1.30000+ 1 2.90000+ 1 4.68469- 5 5.34851- 3 1.30000+ 1 3.00000+ 1 2.77425- 4 5.35125- 3 1.30000+ 1 3.20000+ 1 1.09787- 5 5.37126- 3 1.30000+ 1 4.10000+ 1 8.56423- 5 5.37170- 3 1.40000+ 1 1.40000+ 1 2.04155- 2 4.54724- 3 1.40000+ 1 1.60000+ 1 7.46402- 3 5.11539- 3 1.40000+ 1 1.80000+ 1 2.63283- 3 5.16979- 3 1.40000+ 1 1.90000+ 1 1.34319- 3 5.18745- 3 1.40000+ 1 2.10000+ 1 9.06489- 3 5.27769- 3 1.40000+ 1 2.20000+ 1 5.40420- 3 5.28076- 3 1.40000+ 1 2.70000+ 1 1.22456- 3 5.35087- 3 1.40000+ 1 2.90000+ 1 3.85758- 4 5.36619- 3 1.40000+ 1 3.00000+ 1 1.97636- 4 5.36893- 3 1.40000+ 1 3.20000+ 1 1.33224- 4 5.38894- 3 1.40000+ 1 4.10000+ 1 1.21511- 4 5.38938- 3 1.60000+ 1 1.60000+ 1 4.46512- 4 5.68354- 3 1.60000+ 1 1.80000+ 1 8.23470- 4 5.73794- 3 1.60000+ 1 1.90000+ 1 1.49397- 3 5.75560- 3 1.60000+ 1 2.10000+ 1 9.16432- 4 5.84584- 3 1.60000+ 1 2.20000+ 1 1.28463- 3 5.84891- 3 1.60000+ 1 2.70000+ 1 1.53717- 4 5.91902- 3 1.60000+ 1 2.90000+ 1 1.22234- 4 5.93434- 3 1.60000+ 1 3.00000+ 1 2.17395- 4 5.93708- 3 1.60000+ 1 3.20000+ 1 1.39070- 5 5.95709- 3 1.60000+ 1 4.10000+ 1 1.53717- 5 5.95753- 3 1.80000+ 1 1.80000+ 1 1.46393- 6 5.79234- 3 1.80000+ 1 1.90000+ 1 3.51340- 5 5.81000- 3 1.80000+ 1 2.10000+ 1 4.46510- 5 5.90024- 3 1.80000+ 1 2.20000+ 1 3.11107- 4 5.90331- 3 1.80000+ 1 2.70000+ 1 1.36146- 4 5.97342- 3 1.80000+ 1 3.00000+ 1 5.12368- 6 5.99148- 3 1.80000+ 1 3.20000+ 1 7.31982- 7 6.01149- 3 1.80000+ 1 4.10000+ 1 1.31756- 5 6.01193- 3 1.90000+ 1 1.90000+ 1 2.54948- 5 5.82766- 3 1.90000+ 1 2.10000+ 1 1.84661- 4 5.91790- 3 1.90000+ 1 2.20000+ 1 1.33673- 4 5.92097- 3 1.90000+ 1 2.70000+ 1 2.32197- 4 5.99108- 3 1.90000+ 1 2.90000+ 1 4.82313- 6 6.00640- 3 1.90000+ 1 3.00000+ 1 6.89045- 6 6.00914- 3 1.90000+ 1 3.20000+ 1 2.75611- 6 6.02915- 3 1.90000+ 1 4.10000+ 1 2.34277- 5 6.02959- 3 2.10000+ 1 2.10000+ 1 5.45582- 5 6.00814- 3 2.10000+ 1 2.20000+ 1 1.18819- 3 6.01121- 3 2.10000+ 1 2.70000+ 1 1.45250- 4 6.08132- 3 2.10000+ 1 2.90000+ 1 6.37708- 6 6.09664- 3 2.10000+ 1 3.00000+ 1 2.83419- 5 6.09938- 3 2.10000+ 1 3.20000+ 1 1.41710- 6 6.11939- 3 2.10000+ 1 4.10000+ 1 1.41710- 5 6.11983- 3 2.20000+ 1 2.20000+ 1 3.51408- 4 6.01428- 3 2.20000+ 1 2.70000+ 1 1.95457- 4 6.08439- 3 2.20000+ 1 2.90000+ 1 4.29047- 5 6.09971- 3 2.20000+ 1 3.00000+ 1 1.97495- 5 6.10245- 3 2.20000+ 1 3.20000+ 1 1.70251- 5 6.12246- 3 2.20000+ 1 4.10000+ 1 1.97495- 5 6.12290- 3 2.70000+ 1 2.70000+ 1 9.97102- 6 6.15450- 3 2.70000+ 1 2.90000+ 1 1.55107- 5 6.16982- 3 2.70000+ 1 3.00000+ 1 2.71420- 5 6.17256- 3 2.70000+ 1 3.20000+ 1 1.66184- 6 6.19257- 3 2.70000+ 1 4.10000+ 1 2.21573- 6 6.19301- 3 2.90000+ 1 3.00000+ 1 7.31980- 7 6.18788- 3 2.90000+ 1 4.10000+ 1 2.19594- 6 6.20833- 3 3.00000+ 1 3.00000+ 1 1.54591- 7 6.19062- 3 3.00000+ 1 3.20000+ 1 1.54591- 7 6.21063- 3 3.00000+ 1 4.10000+ 1 7.72925- 7 6.21107- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.32340- 7 4.18700- 4 8.00000+ 0 4.35239- 3 4.55210- 3 1.10000+ 1 6.87938- 5 4.77980- 3 1.30000+ 1 9.06868- 2 5.03754- 3 1.60000+ 1 6.87818- 4 5.62337- 3 1.90000+ 1 1.05360- 5 5.69543- 3 2.10000+ 1 1.51540- 2 5.78567- 3 2.70000+ 1 9.69438- 5 5.85885- 3 3.00000+ 1 1.68380- 6 5.87691- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.07198- 2 1.39570- 4 6.00000+ 0 1.80000+ 1 5.06992- 2 1.93970- 4 6.00000+ 0 1.90000+ 1 1.73021- 2 2.11630- 4 6.00000+ 0 2.10000+ 1 6.52978- 2 3.01870- 4 6.00000+ 0 2.20000+ 1 2.40739- 2 3.04940- 4 6.00000+ 0 2.70000+ 1 1.71803- 3 3.75050- 4 6.00000+ 0 2.90000+ 1 7.13828- 3 3.90370- 4 6.00000+ 0 3.00000+ 1 2.49176- 3 3.93110- 4 6.00000+ 0 3.20000+ 1 9.79004- 4 4.13120- 4 6.00000+ 0 4.10000+ 1 1.69809- 4 4.13560- 4 8.00000+ 0 8.00000+ 0 9.74747- 4 3.20170- 3 8.00000+ 0 1.00000+ 1 2.43211- 2 3.34730- 3 8.00000+ 0 1.10000+ 1 2.34279- 3 3.42940- 3 8.00000+ 0 1.30000+ 1 2.01009- 3 3.68714- 3 8.00000+ 0 1.40000+ 1 3.21693- 3 3.70482- 3 8.00000+ 0 1.60000+ 1 3.47411- 4 4.27297- 3 8.00000+ 0 1.80000+ 1 3.50030- 3 4.32737- 3 8.00000+ 0 1.90000+ 1 4.35801- 4 4.34503- 3 8.00000+ 0 2.10000+ 1 2.50391- 4 4.43527- 3 8.00000+ 0 2.20000+ 1 3.46555- 4 4.43834- 3 8.00000+ 0 2.70000+ 1 5.89162- 5 4.50845- 3 8.00000+ 0 2.90000+ 1 4.86914- 4 4.52377- 3 8.00000+ 0 3.00000+ 1 6.23831- 5 4.52651- 3 8.00000+ 0 3.20000+ 1 3.46555- 6 4.54652- 3 8.00000+ 0 4.10000+ 1 6.06472- 6 4.54696- 3 1.00000+ 1 1.00000+ 1 2.40357- 2 3.49290- 3 1.00000+ 1 1.10000+ 1 7.39467- 2 3.57500- 3 1.00000+ 1 1.30000+ 1 3.93775- 2 3.83274- 3 1.00000+ 1 1.40000+ 1 6.63866- 2 3.85042- 3 1.00000+ 1 1.60000+ 1 5.59335- 3 4.41857- 3 1.00000+ 1 1.80000+ 1 8.66221- 3 4.47297- 3 1.00000+ 1 1.90000+ 1 1.52087- 2 4.49063- 3 1.00000+ 1 2.10000+ 1 6.82273- 3 4.58087- 3 1.00000+ 1 2.20000+ 1 1.15053- 2 4.58394- 3 1.00000+ 1 2.70000+ 1 9.98936- 4 4.65405- 3 1.00000+ 1 2.90000+ 1 1.25968- 3 4.66937- 3 1.00000+ 1 3.00000+ 1 2.20671- 3 4.67211- 3 1.00000+ 1 3.20000+ 1 1.04832- 4 4.69212- 3 1.00000+ 1 4.10000+ 1 1.00498- 4 4.69256- 3 1.10000+ 1 1.10000+ 1 1.91992- 3 3.65710- 3 1.10000+ 1 1.30000+ 1 4.56623- 2 3.91484- 3 1.10000+ 1 1.40000+ 1 6.21036- 3 3.93252- 3 1.10000+ 1 1.60000+ 1 4.61769- 4 4.50067- 3 1.10000+ 1 1.80000+ 1 1.10330- 2 4.55507- 3 1.10000+ 1 1.90000+ 1 6.68866- 4 4.57273- 3 1.10000+ 1 2.10000+ 1 6.78644- 3 4.66297- 3 1.10000+ 1 2.20000+ 1 8.66396- 4 4.66604- 3 1.10000+ 1 2.70000+ 1 7.97088- 5 4.73615- 3 1.10000+ 1 2.90000+ 1 1.54563- 3 4.75147- 3 1.10000+ 1 3.00000+ 1 9.44384- 5 4.75421- 3 1.10000+ 1 3.20000+ 1 1.02234- 4 4.77422- 3 1.10000+ 1 4.10000+ 1 7.79759- 6 4.77466- 3 1.30000+ 1 1.30000+ 1 4.18869- 2 4.17258- 3 1.30000+ 1 1.40000+ 1 1.78480- 1 4.19026- 3 1.30000+ 1 1.60000+ 1 4.68721- 4 4.75841- 3 1.30000+ 1 1.80000+ 1 5.85355- 3 4.81281- 3 1.30000+ 1 1.90000+ 1 8.86754- 3 4.83047- 3 1.30000+ 1 2.10000+ 1 1.23894- 2 4.92071- 3 1.30000+ 1 2.20000+ 1 2.82950- 2 4.92378- 3 1.30000+ 1 2.70000+ 1 8.40394- 5 4.99389- 3 1.30000+ 1 2.90000+ 1 8.24826- 4 5.00921- 3 1.30000+ 1 3.00000+ 1 1.27358- 3 5.01195- 3 1.30000+ 1 3.20000+ 1 1.87140- 4 5.03196- 3 1.30000+ 1 4.10000+ 1 8.66403- 6 5.03240- 3 1.40000+ 1 1.40000+ 1 8.52029- 3 4.20794- 3 1.40000+ 1 1.60000+ 1 6.21213- 4 4.77609- 3 1.40000+ 1 1.80000+ 1 8.79933- 3 4.83049- 3 1.40000+ 1 1.90000+ 1 1.10293- 3 4.84815- 3 1.40000+ 1 2.10000+ 1 2.23505- 2 4.93839- 3 1.40000+ 1 2.20000+ 1 2.45970- 3 4.94146- 3 1.40000+ 1 2.70000+ 1 1.07433- 4 5.01157- 3 1.40000+ 1 2.90000+ 1 1.20603- 3 5.02689- 3 1.40000+ 1 3.00000+ 1 1.55947- 4 5.02963- 3 1.40000+ 1 3.20000+ 1 3.30102- 4 5.04964- 3 1.40000+ 1 4.10000+ 1 1.03969- 5 5.05008- 3 1.60000+ 1 1.60000+ 1 3.00728- 5 5.34424- 3 1.60000+ 1 1.80000+ 1 8.02514- 4 5.39864- 3 1.60000+ 1 1.90000+ 1 8.59226- 5 5.41630- 3 1.60000+ 1 2.10000+ 1 5.58488- 5 5.50654- 3 1.60000+ 1 2.20000+ 1 6.78769- 5 5.50961- 3 1.60000+ 1 2.70000+ 1 1.03105- 5 5.57972- 3 1.60000+ 1 2.90000+ 1 1.11704- 4 5.59504- 3 1.60000+ 1 3.00000+ 1 1.20291- 5 5.59778- 3 1.60000+ 1 3.20000+ 1 8.59226- 7 5.61779- 3 1.60000+ 1 4.10000+ 1 8.59226- 7 5.61823- 3 1.80000+ 1 1.80000+ 1 6.89191- 4 5.45304- 3 1.80000+ 1 1.90000+ 1 2.09629- 3 5.47070- 3 1.80000+ 1 2.10000+ 1 9.21818- 4 5.56094- 3 1.80000+ 1 2.20000+ 1 1.41759- 3 5.56401- 3 1.80000+ 1 2.70000+ 1 1.33527- 4 5.63412- 3 1.80000+ 1 2.90000+ 1 1.99073- 4 5.64944- 3 1.80000+ 1 3.00000+ 1 3.03812- 4 5.65218- 3 1.80000+ 1 3.20000+ 1 1.43905- 5 5.67219- 3 1.80000+ 1 4.10000+ 1 1.35924- 5 5.67263- 3 1.90000+ 1 1.90000+ 1 5.58378- 5 5.48836- 3 1.90000+ 1 2.10000+ 1 1.25964- 3 5.57860- 3 1.90000+ 1 2.20000+ 1 1.50271- 4 5.58167- 3 1.90000+ 1 2.70000+ 1 1.39601- 5 5.65178- 3 1.90000+ 1 2.90000+ 1 3.01353- 4 5.66710- 3 1.90000+ 1 3.00000+ 1 1.56016- 5 5.66984- 3 1.90000+ 1 3.20000+ 1 1.88864- 5 5.68985- 3 1.90000+ 1 4.10000+ 1 1.64233- 6 5.69029- 3 2.10000+ 1 2.10000+ 1 8.71524- 4 5.66884- 3 2.10000+ 1 2.20000+ 1 3.51624- 3 5.67191- 3 2.10000+ 1 2.70000+ 1 9.99864- 6 5.74202- 3 2.10000+ 1 2.90000+ 1 1.34984- 4 5.75734- 3 2.10000+ 1 3.00000+ 1 1.84149- 4 5.76008- 3 2.10000+ 1 3.20000+ 1 2.66637- 5 5.78009- 3 2.10000+ 1 4.10000+ 1 8.33233- 7 5.78053- 3 2.20000+ 1 2.20000+ 1 1.63785- 4 5.67498- 3 2.20000+ 1 2.70000+ 1 1.11309- 5 5.74509- 3 2.20000+ 1 2.90000+ 1 1.93197- 4 5.76041- 3 2.20000+ 1 3.00000+ 1 2.06715- 5 5.76315- 3 2.20000+ 1 3.20000+ 1 5.00900- 5 5.78316- 3 2.20000+ 1 4.10000+ 1 7.95067- 7 5.78360- 3 2.70000+ 1 2.70000+ 1 8.66417- 7 5.81520- 3 2.70000+ 1 2.90000+ 1 1.99277- 5 5.83052- 3 2.70000+ 1 3.00000+ 1 1.73287- 6 5.83326- 3 2.90000+ 1 2.90000+ 1 1.55945- 5 5.84584- 3 2.90000+ 1 3.00000+ 1 4.59207- 5 5.84858- 3 2.90000+ 1 3.20000+ 1 1.73285- 6 5.86859- 3 2.90000+ 1 4.10000+ 1 1.73285- 6 5.86903- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 7.94728- 3 4.13340- 3 1.00000+ 1 4.64224- 5 4.27900- 3 1.10000+ 1 4.30334- 5 4.36110- 3 1.30000+ 1 8.88689- 3 4.61884- 3 1.40000+ 1 7.87038- 2 4.63652- 3 1.60000+ 1 7.99448- 4 5.20467- 3 1.80000+ 1 5.05065- 6 5.25907- 3 1.90000+ 1 4.87535- 6 5.27673- 3 2.10000+ 1 1.43911- 3 5.36697- 3 2.20000+ 1 1.28741- 2 5.37004- 3 2.70000+ 1 1.29521- 4 5.44015- 3 2.90000+ 1 8.09308- 7 5.45547- 3 3.00000+ 1 7.60547- 7 5.45821- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.29521- 3 2.78300- 3 8.00000+ 0 1.00000+ 1 8.80055- 4 2.92860- 3 8.00000+ 0 1.10000+ 1 2.81684- 2 3.01070- 3 8.00000+ 0 1.30000+ 1 2.78485- 3 3.26844- 3 8.00000+ 0 1.40000+ 1 3.22439- 3 3.28612- 3 8.00000+ 0 1.60000+ 1 4.63050- 4 3.85427- 3 8.00000+ 0 1.80000+ 1 1.52153- 4 3.90867- 3 8.00000+ 0 1.90000+ 1 4.05857- 3 3.92633- 3 8.00000+ 0 2.10000+ 1 2.56407- 4 4.01657- 3 8.00000+ 0 2.20000+ 1 2.72381- 4 4.01964- 3 8.00000+ 0 2.70000+ 1 7.88960- 5 4.08975- 3 8.00000+ 0 2.90000+ 1 2.16025- 5 4.10507- 3 8.00000+ 0 3.00000+ 1 5.53207- 4 4.10781- 3 8.00000+ 0 3.20000+ 1 3.75686- 6 4.12782- 3 8.00000+ 0 4.10000+ 1 7.51403- 6 4.12826- 3 1.00000+ 1 1.00000+ 1 2.77071- 4 3.07420- 3 1.00000+ 1 1.10000+ 1 4.69133- 2 3.15630- 3 1.00000+ 1 1.30000+ 1 2.96526- 3 3.41404- 3 1.00000+ 1 1.40000+ 1 2.66476- 2 3.43172- 3 1.00000+ 1 1.60000+ 1 1.69064- 4 3.99987- 3 1.00000+ 1 1.80000+ 1 9.67396- 5 4.05427- 3 1.00000+ 1 1.90000+ 1 7.00495- 3 4.07193- 3 1.00000+ 1 2.10000+ 1 4.78072- 4 4.16217- 3 1.00000+ 1 2.20000+ 1 3.71648- 3 4.16524- 3 1.00000+ 1 2.70000+ 1 2.91158- 5 4.23535- 3 1.00000+ 1 2.90000+ 1 1.40881- 5 4.25067- 3 1.00000+ 1 3.00000+ 1 9.61785- 4 4.25341- 3 1.00000+ 1 3.20000+ 1 7.51400- 6 4.27342- 3 1.00000+ 1 4.10000+ 1 2.81764- 6 4.27386- 3 1.10000+ 1 1.10000+ 1 6.52441- 2 3.23840- 3 1.10000+ 1 1.30000+ 1 6.60624- 2 3.49614- 3 1.10000+ 1 1.40000+ 1 9.83858- 2 3.51382- 3 1.10000+ 1 1.60000+ 1 6.41019- 3 4.08197- 3 1.10000+ 1 1.80000+ 1 9.47088- 3 4.13637- 3 1.10000+ 1 1.90000+ 1 2.31108- 2 4.15403- 3 1.10000+ 1 2.10000+ 1 1.10096- 2 4.24427- 3 1.10000+ 1 2.20000+ 1 1.62152- 2 4.24734- 3 1.10000+ 1 2.70000+ 1 1.14212- 3 4.31745- 3 1.10000+ 1 2.90000+ 1 1.40034- 3 4.33277- 3 1.10000+ 1 3.00000+ 1 3.27794- 3 4.33551- 3 1.10000+ 1 3.20000+ 1 1.69063- 4 4.35552- 3 1.10000+ 1 4.10000+ 1 1.14586- 4 4.35596- 3 1.30000+ 1 1.30000+ 1 9.50104- 3 3.75388- 3 1.30000+ 1 1.40000+ 1 1.82037- 1 3.77156- 3 1.30000+ 1 1.60000+ 1 5.96413- 4 4.33971- 3 1.30000+ 1 1.80000+ 1 5.97351- 4 4.39411- 3 1.30000+ 1 1.90000+ 1 9.19299- 3 4.41177- 3 1.30000+ 1 2.10000+ 1 2.80638- 3 4.50201- 3 1.30000+ 1 2.20000+ 1 2.30884- 2 4.50508- 3 1.30000+ 1 2.70000+ 1 1.05200- 4 4.57519- 3 1.30000+ 1 2.90000+ 1 8.82873- 5 4.59051- 3 1.30000+ 1 3.00000+ 1 1.24634- 3 4.59325- 3 1.30000+ 1 3.20000+ 1 4.22649- 5 4.61326- 3 1.30000+ 1 4.10000+ 1 1.03314- 5 4.61370- 3 1.40000+ 1 1.40000+ 1 1.23233- 1 3.78924- 3 1.40000+ 1 1.60000+ 1 7.33555- 4 4.35739- 3 1.40000+ 1 1.80000+ 1 5.00045- 3 4.41179- 3 1.40000+ 1 1.90000+ 1 1.53150- 2 4.42945- 3 1.40000+ 1 2.10000+ 1 2.71640- 2 4.51969- 3 1.40000+ 1 2.20000+ 1 3.49033- 2 4.52276- 3 1.40000+ 1 2.70000+ 1 1.31486- 4 4.59287- 3 1.40000+ 1 2.90000+ 1 7.29801- 4 4.60819- 3 1.40000+ 1 3.00000+ 1 2.12734- 3 4.61093- 3 1.40000+ 1 3.20000+ 1 4.11372- 4 4.63094- 3 1.40000+ 1 4.10000+ 1 1.31486- 5 4.63138- 3 1.60000+ 1 1.60000+ 1 4.08284- 5 4.92554- 3 1.60000+ 1 1.80000+ 1 2.96924- 5 4.97994- 3 1.60000+ 1 1.90000+ 1 9.14898- 4 4.99760- 3 1.60000+ 1 2.10000+ 1 5.84589- 5 5.08784- 3 1.60000+ 1 2.20000+ 1 6.58825- 5 5.09091- 3 1.60000+ 1 2.70000+ 1 1.39181- 5 5.16102- 3 1.60000+ 1 2.90000+ 1 4.63939- 6 5.17634- 3 1.60000+ 1 3.00000+ 1 1.24338- 4 5.17908- 3 1.60000+ 1 3.20000+ 1 9.27917- 7 5.19909- 3 1.60000+ 1 4.10000+ 1 9.27917- 7 5.19953- 3 1.80000+ 1 1.80000+ 1 6.95604- 6 5.03434- 3 1.80000+ 1 1.90000+ 1 1.30681- 3 5.05200- 3 1.80000+ 1 2.10000+ 1 8.69507- 5 5.14224- 3 1.80000+ 1 2.20000+ 1 6.66021- 4 5.14531- 3 1.80000+ 1 2.70000+ 1 5.21682- 6 5.21542- 3 1.80000+ 1 2.90000+ 1 1.73903- 6 5.23074- 3 1.80000+ 1 3.00000+ 1 1.79115- 4 5.23348- 3 1.80000+ 1 3.20000+ 1 1.73903- 6 5.25349- 3 1.80000+ 1 4.10000+ 1 8.69507- 7 5.25393- 3 1.90000+ 1 1.90000+ 1 1.72299- 3 5.06966- 3 1.90000+ 1 2.10000+ 1 1.33625- 3 5.15990- 3 1.90000+ 1 2.20000+ 1 2.17113- 3 5.16297- 3 1.90000+ 1 2.70000+ 1 1.43931- 4 5.23308- 3 1.90000+ 1 2.90000+ 1 1.81550- 4 5.24840- 3 1.90000+ 1 3.00000+ 1 4.85744- 4 5.25114- 3 1.90000+ 1 3.20000+ 1 2.04444- 5 5.27115- 3 1.90000+ 1 4.10000+ 1 1.47199- 5 5.27159- 3 2.10000+ 1 2.10000+ 1 1.94304- 4 5.25014- 3 2.10000+ 1 2.20000+ 1 3.41628- 3 5.25321- 3 2.10000+ 1 2.70000+ 1 9.94097- 6 5.32332- 3 2.10000+ 1 2.90000+ 1 1.35555- 5 5.33864- 3 2.10000+ 1 3.00000+ 1 2.00635- 4 5.34138- 3 2.10000+ 1 3.20000+ 1 5.42224- 6 5.36139- 3 2.10000+ 1 4.10000+ 1 9.03745- 7 5.36183- 3 2.20000+ 1 2.20000+ 1 2.48338- 3 5.25628- 3 2.20000+ 1 2.70000+ 1 1.22106- 5 5.32639- 3 2.20000+ 1 2.90000+ 1 1.05204- 4 5.34171- 3 2.20000+ 1 3.00000+ 1 3.45661- 4 5.34445- 3 2.20000+ 1 3.20000+ 1 5.35374- 5 5.36446- 3 2.20000+ 1 4.10000+ 1 9.39268- 7 5.36490- 3 2.70000+ 1 2.70000+ 1 1.01963- 6 5.39650- 3 2.70000+ 1 2.90000+ 1 1.01963- 6 5.41182- 3 2.70000+ 1 3.00000+ 1 2.44710- 5 5.41456- 3 2.90000+ 1 3.00000+ 1 2.81773- 5 5.42988- 3 3.00000+ 1 3.00000+ 1 3.94463- 5 5.43262- 3 3.00000+ 1 3.20000+ 1 2.81763- 6 5.45263- 3 3.00000+ 1 4.10000+ 1 1.87852- 6 5.45307- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.20702- 5 1.45600- 4 1.10000+ 1 9.50744- 5 2.27700- 4 1.80000+ 1 2.81588- 4 1.12567- 3 1.90000+ 1 3.69262- 4 1.14333- 3 2.90000+ 1 4.99631- 5 1.32207- 3 3.00000+ 1 6.57250- 5 1.32481- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.80839- 2 2.87700- 5 1.00000+ 1 2.20000+ 1 1.20788- 1 3.18400- 5 1.00000+ 1 2.70000+ 1 1.09260- 2 1.01950- 4 1.00000+ 1 2.90000+ 1 9.24123- 3 1.17270- 4 1.00000+ 1 3.00000+ 1 1.54417- 2 1.20010- 4 1.00000+ 1 3.20000+ 1 3.75210- 4 1.40020- 4 1.00000+ 1 3.30000+ 1 5.09583- 4 1.40260- 4 1.00000+ 1 4.10000+ 1 1.08077- 3 1.40460- 4 1.10000+ 1 1.80000+ 1 9.43904- 2 2.97000- 6 1.10000+ 1 1.90000+ 1 1.38798- 1 2.06300- 5 1.10000+ 1 2.10000+ 1 6.44967- 2 1.10870- 4 1.10000+ 1 2.20000+ 1 9.36698- 2 1.13940- 4 1.10000+ 1 2.70000+ 1 1.47292- 2 1.84050- 4 1.10000+ 1 2.90000+ 1 1.27807- 2 1.99370- 4 1.10000+ 1 3.00000+ 1 1.93637- 2 2.02110- 4 1.10000+ 1 3.20000+ 1 3.17588- 4 2.22120- 4 1.10000+ 1 3.30000+ 1 4.61160- 4 2.22360- 4 1.10000+ 1 4.10000+ 1 1.48049- 3 2.22560- 4 1.30000+ 1 1.60000+ 1 3.41261- 2 2.06310- 4 1.30000+ 1 1.80000+ 1 7.38531- 3 2.60710- 4 1.30000+ 1 1.90000+ 1 5.96823- 3 2.78370- 4 1.30000+ 1 2.10000+ 1 1.01577- 2 3.68610- 4 1.30000+ 1 2.20000+ 1 1.26534- 2 3.71680- 4 1.30000+ 1 2.70000+ 1 4.10813- 3 4.41790- 4 1.30000+ 1 2.90000+ 1 8.63523- 4 4.57110- 4 1.30000+ 1 3.00000+ 1 6.69607- 4 4.59850- 4 1.30000+ 1 3.20000+ 1 5.54047- 5 4.79860- 4 1.30000+ 1 3.30000+ 1 7.04955- 5 4.80100- 4 1.30000+ 1 4.10000+ 1 3.91758- 4 4.80300- 4 1.40000+ 1 1.60000+ 1 4.97529- 2 2.23990- 4 1.40000+ 1 1.80000+ 1 1.74400- 3 2.78390- 4 1.40000+ 1 1.90000+ 1 1.43992- 2 2.96050- 4 1.40000+ 1 2.10000+ 1 1.33693- 2 3.86290- 4 1.40000+ 1 2.20000+ 1 2.07365- 2 3.89360- 4 1.40000+ 1 2.70000+ 1 5.94683- 3 4.59470- 4 1.40000+ 1 2.90000+ 1 1.93916- 4 4.74790- 4 1.40000+ 1 3.00000+ 1 1.62161- 3 4.77530- 4 1.40000+ 1 3.20000+ 1 7.66965- 5 4.97540- 4 1.40000+ 1 3.30000+ 1 1.12468- 4 4.97780- 4 1.40000+ 1 4.10000+ 1 5.66039- 4 4.97980- 4 1.60000+ 1 1.60000+ 1 7.19801- 3 7.92140- 4 1.60000+ 1 1.80000+ 1 1.18408- 2 8.46540- 4 1.60000+ 1 1.90000+ 1 2.17025- 2 8.64200- 4 1.60000+ 1 2.10000+ 1 2.25925- 2 9.54440- 4 1.60000+ 1 2.20000+ 1 3.29072- 2 9.57510- 4 1.60000+ 1 2.70000+ 1 2.11678- 3 1.02762- 3 1.60000+ 1 2.90000+ 1 1.74609- 3 1.04294- 3 1.60000+ 1 3.00000+ 1 3.13281- 3 1.04568- 3 1.60000+ 1 3.20000+ 1 1.38005- 4 1.06569- 3 1.60000+ 1 3.30000+ 1 1.96009- 4 1.06593- 3 1.60000+ 1 4.10000+ 1 2.09345- 4 1.06613- 3 1.80000+ 1 1.80000+ 1 5.98629- 4 9.00940- 4 1.80000+ 1 1.90000+ 1 1.48080- 3 9.18600- 4 1.80000+ 1 2.10000+ 1 9.05642- 4 1.00884- 3 1.80000+ 1 2.20000+ 1 3.77914- 4 1.01191- 3 1.80000+ 1 2.70000+ 1 1.27058- 3 1.08202- 3 1.80000+ 1 2.90000+ 1 1.42410- 4 1.09734- 3 1.80000+ 1 3.00000+ 1 1.68304- 4 1.10008- 3 1.80000+ 1 3.20000+ 1 4.93215- 6 1.12009- 3 1.80000+ 1 3.30000+ 1 2.46592- 6 1.12033- 3 1.80000+ 1 4.10000+ 1 1.20831- 4 1.12053- 3 1.90000+ 1 1.90000+ 1 1.89878- 3 9.36260- 4 1.90000+ 1 2.10000+ 1 9.52294- 4 1.02650- 3 1.90000+ 1 2.20000+ 1 2.55247- 3 1.02957- 3 1.90000+ 1 2.70000+ 1 2.22863- 3 1.09968- 3 1.90000+ 1 2.90000+ 1 1.74593- 4 1.11500- 3 1.90000+ 1 3.00000+ 1 4.59719- 4 1.11774- 3 1.90000+ 1 3.20000+ 1 5.87840- 6 1.13775- 3 1.90000+ 1 3.30000+ 1 1.46964- 5 1.13799- 3 1.90000+ 1 4.10000+ 1 2.12214- 4 1.13819- 3 2.10000+ 1 2.10000+ 1 2.80428- 4 1.11674- 3 2.10000+ 1 2.20000+ 1 1.12941- 3 1.11981- 3 2.10000+ 1 2.70000+ 1 2.50387- 3 1.18992- 3 2.10000+ 1 2.90000+ 1 1.03145- 4 1.20524- 3 2.10000+ 1 3.00000+ 1 1.17325- 4 1.20798- 3 2.10000+ 1 3.20000+ 1 3.22303- 6 1.22799- 3 2.10000+ 1 3.30000+ 1 5.80198- 6 1.22823- 3 2.10000+ 1 4.10000+ 1 2.37880- 4 1.22843- 3 2.20000+ 1 2.20000+ 1 6.90144- 4 1.12288- 3 2.20000+ 1 2.70000+ 1 3.59468- 3 1.19299- 3 2.20000+ 1 2.90000+ 1 4.13434- 5 1.20831- 3 2.20000+ 1 3.00000+ 1 3.12293- 4 1.21105- 3 2.20000+ 1 3.20000+ 1 5.72461- 6 1.23106- 3 2.20000+ 1 3.30000+ 1 6.99635- 6 1.23130- 3 2.20000+ 1 4.10000+ 1 3.40937- 4 1.23150- 3 2.70000+ 1 2.70000+ 1 8.50982- 5 1.26310- 3 2.70000+ 1 2.90000+ 1 1.18518- 4 1.27842- 3 2.70000+ 1 3.00000+ 1 2.12943- 4 1.28116- 3 2.70000+ 1 3.20000+ 1 9.32581- 6 1.30117- 3 2.70000+ 1 3.30000+ 1 1.32117- 5 1.30141- 3 2.70000+ 1 4.10000+ 1 1.67096- 5 1.30161- 3 2.90000+ 1 2.90000+ 1 3.07804- 6 1.29374- 3 2.90000+ 1 3.00000+ 1 7.25543- 6 1.29648- 3 2.90000+ 1 3.20000+ 1 2.19856- 7 1.31649- 3 2.90000+ 1 4.10000+ 1 6.37605- 6 1.31693- 3 3.00000+ 1 3.00000+ 1 1.14425- 5 1.29922- 3 3.00000+ 1 3.20000+ 1 2.48732- 7 1.31923- 3 3.00000+ 1 3.30000+ 1 7.46207- 7 1.31947- 3 3.00000+ 1 4.10000+ 1 1.29351- 5 1.31967- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.31287- 4 3.39840- 4 1.60000+ 1 3.32713- 4 9.25670- 4 2.10000+ 1 1.45150- 3 1.08797- 3 2.70000+ 1 5.68378- 5 1.16115- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.70000+ 1 9.67741- 3 3.84500- 5 1.10000+ 1 2.90000+ 1 9.37946- 3 5.37700- 5 1.10000+ 1 3.00000+ 1 1.10949- 2 5.65100- 5 1.10000+ 1 3.20000+ 1 1.24143- 4 7.65200- 5 1.10000+ 1 3.30000+ 1 3.03747- 4 7.67600- 5 1.10000+ 1 4.10000+ 1 8.88830- 4 7.69600- 5 1.30000+ 1 1.60000+ 1 1.27012- 1 6.07100- 5 1.30000+ 1 1.80000+ 1 1.28218- 1 1.15110- 4 1.30000+ 1 1.90000+ 1 1.83653- 1 1.32770- 4 1.30000+ 1 2.10000+ 1 5.61719- 2 2.23010- 4 1.30000+ 1 2.20000+ 1 6.22306- 2 2.26080- 4 1.30000+ 1 2.70000+ 1 2.26131- 2 2.96190- 4 1.30000+ 1 2.90000+ 1 1.64526- 2 3.11510- 4 1.30000+ 1 3.00000+ 1 2.53300- 2 3.14250- 4 1.30000+ 1 3.20000+ 1 3.27666- 4 3.34260- 4 1.30000+ 1 3.30000+ 1 3.77511- 4 3.34500- 4 1.30000+ 1 4.10000+ 1 2.27368- 3 3.34700- 4 1.40000+ 1 1.60000+ 1 2.06592- 2 7.83900- 5 1.40000+ 1 1.80000+ 1 1.47001- 1 1.32790- 4 1.40000+ 1 1.90000+ 1 1.52156- 2 1.50450- 4 1.40000+ 1 2.10000+ 1 2.87749- 3 2.40690- 4 1.40000+ 1 2.20000+ 1 7.13583- 3 2.43760- 4 1.40000+ 1 2.70000+ 1 2.45466- 3 3.13870- 4 1.40000+ 1 2.90000+ 1 1.54696- 2 3.29190- 4 1.40000+ 1 3.00000+ 1 1.90849- 3 3.31930- 4 1.40000+ 1 3.20000+ 1 1.12957- 5 3.51940- 4 1.40000+ 1 3.30000+ 1 3.97804- 5 3.52180- 4 1.40000+ 1 4.10000+ 1 2.35729- 4 3.52380- 4 1.60000+ 1 1.60000+ 1 7.27051- 4 6.46540- 4 1.60000+ 1 1.80000+ 1 1.02368- 2 7.00940- 4 1.60000+ 1 1.90000+ 1 1.66991- 3 7.18600- 4 1.60000+ 1 2.10000+ 1 3.62098- 4 8.08840- 4 1.60000+ 1 2.20000+ 1 1.14329- 3 8.11910- 4 1.60000+ 1 2.70000+ 1 2.02060- 4 8.82020- 4 1.60000+ 1 2.90000+ 1 1.02005- 3 8.97340- 4 1.60000+ 1 3.00000+ 1 2.15869- 4 9.00080- 4 1.60000+ 1 3.20000+ 1 1.72696- 6 9.20090- 4 1.60000+ 1 3.30000+ 1 6.33212- 6 9.20330- 4 1.60000+ 1 4.10000+ 1 1.95715- 5 9.20530- 4 1.80000+ 1 1.80000+ 1 7.67859- 3 7.55340- 4 1.80000+ 1 1.90000+ 1 2.38563- 2 7.73000- 4 1.80000+ 1 2.10000+ 1 2.16527- 2 8.63240- 4 1.80000+ 1 2.20000+ 1 3.59904- 2 8.66310- 4 1.80000+ 1 2.70000+ 1 1.87019- 3 9.36420- 4 1.80000+ 1 2.90000+ 1 1.92233- 3 9.51740- 4 1.80000+ 1 3.00000+ 1 3.41744- 3 9.54480- 4 1.80000+ 1 3.20000+ 1 1.32342- 4 9.74490- 4 1.80000+ 1 3.30000+ 1 2.11987- 4 9.74730- 4 1.80000+ 1 4.10000+ 1 1.88637- 4 9.74930- 4 1.90000+ 1 1.90000+ 1 7.21660- 4 7.90660- 4 1.90000+ 1 2.10000+ 1 2.25603- 3 8.80900- 4 1.90000+ 1 2.20000+ 1 1.68882- 3 8.83970- 4 1.90000+ 1 2.70000+ 1 2.28138- 4 9.54080- 4 1.90000+ 1 2.90000+ 1 2.70363- 3 9.69400- 4 1.90000+ 1 3.00000+ 1 1.73589- 4 9.72140- 4 1.90000+ 1 3.20000+ 1 1.13070- 5 9.92150- 4 1.90000+ 1 3.30000+ 1 8.64657- 6 9.92390- 4 1.90000+ 1 4.10000+ 1 2.19488- 5 9.92590- 4 2.10000+ 1 2.10000+ 1 7.02943- 4 9.71140- 4 2.10000+ 1 2.20000+ 1 1.89463- 3 9.74210- 4 2.10000+ 1 2.70000+ 1 5.52328- 5 1.04432- 3 2.10000+ 1 2.90000+ 1 2.01740- 3 1.05964- 3 2.10000+ 1 3.00000+ 1 2.25944- 4 1.06238- 3 2.10000+ 1 3.20000+ 1 7.25273- 6 1.08239- 3 2.10000+ 1 3.30000+ 1 1.06001- 5 1.08263- 3 2.10000+ 1 4.10000+ 1 5.57912- 6 1.08283- 3 2.20000+ 1 2.20000+ 1 3.06129- 4 9.77280- 4 2.20000+ 1 2.70000+ 1 1.00284- 4 1.04739- 3 2.20000+ 1 2.90000+ 1 2.30088- 3 1.06271- 3 2.20000+ 1 3.00000+ 1 1.06689- 4 1.06545- 3 2.20000+ 1 3.20000+ 1 6.78604- 6 1.08546- 3 2.20000+ 1 3.30000+ 1 3.01616- 6 1.08570- 3 2.20000+ 1 4.10000+ 1 9.80200- 6 1.08590- 3 2.70000+ 1 2.70000+ 1 9.75005- 6 1.11750- 3 2.70000+ 1 2.90000+ 1 1.21678- 4 1.13282- 3 2.70000+ 1 3.00000+ 1 1.75503- 5 1.13556- 3 2.70000+ 1 3.30000+ 1 3.90003- 7 1.15581- 3 2.70000+ 1 4.10000+ 1 1.94994- 6 1.15601- 3 2.90000+ 1 2.90000+ 1 7.48829- 5 1.14814- 3 2.90000+ 1 3.00000+ 1 2.27767- 4 1.15088- 3 2.90000+ 1 3.20000+ 1 8.58066- 6 1.17089- 3 2.90000+ 1 3.30000+ 1 1.40400- 5 1.17113- 3 2.90000+ 1 4.10000+ 1 1.20901- 5 1.17133- 3 3.00000+ 1 3.00000+ 1 6.24011- 6 1.15362- 3 3.00000+ 1 3.20000+ 1 7.80050- 7 1.17363- 3 3.00000+ 1 3.30000+ 1 7.80050- 7 1.17387- 3 3.00000+ 1 4.10000+ 1 1.56003- 6 1.17407- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.97111- 5 2.57740- 4 1.40000+ 1 2.22313- 4 2.75420- 4 1.60000+ 1 4.18515- 4 8.43570- 4 2.10000+ 1 1.77749- 4 1.00587- 3 2.20000+ 1 1.46315- 3 1.00894- 3 2.70000+ 1 7.14704- 5 1.07905- 3 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.79594- 2 3.30100- 5 1.30000+ 1 1.90000+ 1 9.97042- 2 5.06700- 5 1.30000+ 1 2.10000+ 1 1.38934- 2 1.40910- 4 1.30000+ 1 2.20000+ 1 1.06315- 2 1.43980- 4 1.30000+ 1 2.70000+ 1 3.49109- 3 2.14090- 4 1.30000+ 1 2.90000+ 1 2.43724- 3 2.29410- 4 1.30000+ 1 3.00000+ 1 1.11689- 2 2.32150- 4 1.30000+ 1 3.20000+ 1 7.55979- 5 2.52160- 4 1.30000+ 1 3.30000+ 1 5.53548- 5 2.52400- 4 1.30000+ 1 4.10000+ 1 3.43290- 4 2.52600- 4 1.40000+ 1 1.60000+ 1 1.07275- 1 0.00000+ 0 1.40000+ 1 1.80000+ 1 1.16961- 1 5.06900- 5 1.40000+ 1 1.90000+ 1 2.21001- 1 6.83500- 5 1.40000+ 1 2.10000+ 1 5.53428- 2 1.58590- 4 1.40000+ 1 2.20000+ 1 8.92749- 2 1.61660- 4 1.40000+ 1 2.70000+ 1 1.97290- 2 2.31770- 4 1.40000+ 1 2.90000+ 1 1.62200- 2 2.47090- 4 1.40000+ 1 3.00000+ 1 2.79757- 2 2.49830- 4 1.40000+ 1 3.20000+ 1 3.00687- 4 2.69840- 4 1.40000+ 1 3.30000+ 1 4.81434- 4 2.70080- 4 1.40000+ 1 4.10000+ 1 1.95678- 3 2.70280- 4 1.60000+ 1 1.60000+ 1 7.80788- 4 5.64440- 4 1.60000+ 1 1.80000+ 1 1.14488- 3 6.18840- 4 1.60000+ 1 1.90000+ 1 1.66480- 2 6.36500- 4 1.60000+ 1 2.10000+ 1 1.00544- 3 7.26740- 4 1.60000+ 1 2.20000+ 1 1.09143- 3 7.29810- 4 1.60000+ 1 2.70000+ 1 2.16286- 4 7.99920- 4 1.60000+ 1 2.90000+ 1 1.40292- 4 8.15240- 4 1.60000+ 1 3.00000+ 1 1.65844- 3 8.17980- 4 1.60000+ 1 3.20000+ 1 5.84536- 6 8.37990- 4 1.60000+ 1 3.30000+ 1 5.84536- 6 8.38230- 4 1.60000+ 1 4.10000+ 1 2.08767- 5 8.38430- 4 1.80000+ 1 1.80000+ 1 1.85754- 4 6.73240- 4 1.80000+ 1 1.90000+ 1 2.00548- 2 6.90900- 4 1.80000+ 1 2.10000+ 1 5.45009- 4 7.81140- 4 1.80000+ 1 2.20000+ 1 3.38799- 3 7.84210- 4 1.80000+ 1 2.70000+ 1 1.47201- 4 8.54320- 4 1.80000+ 1 2.90000+ 1 4.20563- 5 8.69640- 4 1.80000+ 1 3.00000+ 1 2.01772- 3 8.72380- 4 1.80000+ 1 3.20000+ 1 2.62849- 6 8.92390- 4 1.80000+ 1 3.30000+ 1 1.75239- 5 8.92630- 4 1.80000+ 1 4.10000+ 1 1.40191- 5 8.92830- 4 1.90000+ 1 1.90000+ 1 2.61932- 2 7.08560- 4 1.90000+ 1 2.10000+ 1 3.47042- 2 7.98800- 4 1.90000+ 1 2.20000+ 1 4.71322- 2 8.01870- 4 1.90000+ 1 2.70000+ 1 2.69712- 3 8.71980- 4 1.90000+ 1 2.90000+ 1 2.60872- 3 8.87300- 4 1.90000+ 1 3.00000+ 1 6.38314- 3 8.90040- 4 1.90000+ 1 3.20000+ 1 2.08507- 4 9.10050- 4 1.90000+ 1 3.30000+ 1 2.76699- 4 9.10290- 4 1.90000+ 1 4.10000+ 1 2.71212- 4 9.10490- 4 2.10000+ 1 2.10000+ 1 2.08177- 4 8.89040- 4 2.10000+ 1 2.20000+ 1 2.86688- 3 8.92110- 4 2.10000+ 1 2.70000+ 1 8.99504- 5 9.62220- 4 2.10000+ 1 2.90000+ 1 3.79070- 5 9.77540- 4 2.10000+ 1 3.00000+ 1 2.84432- 3 9.80280- 4 2.10000+ 1 3.20000+ 1 1.92745- 6 1.00029- 3 2.10000+ 1 3.30000+ 1 1.54205- 5 1.00053- 3 2.10000+ 1 4.10000+ 1 8.35265- 6 1.00073- 3 2.20000+ 1 2.20000+ 1 1.34695- 3 8.95180- 4 2.20000+ 1 2.70000+ 1 8.57657- 5 9.65290- 4 2.20000+ 1 2.90000+ 1 2.03913- 4 9.80610- 4 2.20000+ 1 3.00000+ 1 3.21536- 3 9.83350- 4 2.20000+ 1 3.20000+ 1 1.34853- 5 1.00336- 3 2.20000+ 1 3.30000+ 1 1.40243- 5 1.00360- 3 2.20000+ 1 4.10000+ 1 8.09116- 6 1.00380- 3 2.70000+ 1 2.70000+ 1 1.04939- 5 1.03540- 3 2.70000+ 1 2.90000+ 1 1.15984- 5 1.05072- 3 2.70000+ 1 3.00000+ 1 1.88887- 4 1.05346- 3 2.70000+ 1 3.20000+ 1 5.52314- 7 1.07347- 3 2.70000+ 1 3.30000+ 1 5.52314- 7 1.07371- 3 2.70000+ 1 4.10000+ 1 2.20923- 6 1.07391- 3 2.90000+ 1 2.90000+ 1 1.85085- 6 1.06604- 3 2.90000+ 1 3.00000+ 1 2.07305- 4 1.06878- 3 2.90000+ 1 3.30000+ 1 1.23394- 6 1.08903- 3 2.90000+ 1 4.10000+ 1 1.23394- 6 1.08923- 3 3.00000+ 1 3.00000+ 1 2.95535- 4 1.07152- 3 3.00000+ 1 3.20000+ 1 1.66593- 5 1.09153- 3 3.00000+ 1 3.30000+ 1 2.15948- 5 1.09177- 3 3.00000+ 1 4.10000+ 1 2.09768- 5 1.09197- 3 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.76061- 3 6.40230- 4 1.90000+ 1 4.22472- 4 6.57890- 4 2.90000+ 1 4.14312- 4 8.36630- 4 3.00000+ 1 6.24853- 5 8.39370- 4 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 8.74704- 3 1.21000- 5 1.40000+ 1 3.30000+ 1 1.15341- 3 1.23400- 5 1.40000+ 1 4.10000+ 1 1.70060- 3 1.25400- 5 1.60000+ 1 1.80000+ 1 4.83803- 3 3.61100- 4 1.60000+ 1 1.90000+ 1 3.61784- 3 3.78760- 4 1.60000+ 1 2.10000+ 1 1.05488- 1 4.69000- 4 1.60000+ 1 2.20000+ 1 1.41866- 2 4.72070- 4 1.60000+ 1 2.70000+ 1 2.75547- 5 5.42180- 4 1.60000+ 1 2.90000+ 1 5.55055- 4 5.57500- 4 1.60000+ 1 3.00000+ 1 3.14938- 4 5.60240- 4 1.60000+ 1 3.20000+ 1 4.92070- 4 5.80250- 4 1.60000+ 1 3.30000+ 1 6.69213- 5 5.80490- 4 1.60000+ 1 4.10000+ 1 3.93655- 6 5.80690- 4 1.80000+ 1 1.80000+ 1 1.99574- 3 4.15500- 4 1.80000+ 1 1.90000+ 1 1.60764- 2 4.33160- 4 1.80000+ 1 2.10000+ 1 8.67847- 2 5.23400- 4 1.80000+ 1 2.20000+ 1 7.60890- 3 5.26470- 4 1.80000+ 1 2.70000+ 1 4.76296- 4 5.96580- 4 1.80000+ 1 2.90000+ 1 4.92040- 4 6.11900- 4 1.80000+ 1 3.00000+ 1 1.71232- 3 6.14640- 4 1.80000+ 1 3.20000+ 1 4.01503- 4 6.34650- 4 1.80000+ 1 3.30000+ 1 3.93631- 5 6.34890- 4 1.80000+ 1 4.10000+ 1 4.32999- 5 6.35090- 4 1.90000+ 1 1.90000+ 1 6.10545- 3 4.50820- 4 1.90000+ 1 2.10000+ 1 1.91395- 1 5.41060- 4 1.90000+ 1 2.20000+ 1 7.20769- 3 5.44130- 4 1.90000+ 1 2.70000+ 1 4.21201- 4 6.14240- 4 1.90000+ 1 2.90000+ 1 1.67700- 3 6.29560- 4 1.90000+ 1 3.00000+ 1 1.25967- 3 6.32300- 4 1.90000+ 1 3.20000+ 1 8.93573- 4 6.52310- 4 1.90000+ 1 3.30000+ 1 3.14929- 5 6.52550- 4 1.90000+ 1 4.10000+ 1 3.93645- 5 6.52750- 4 2.10000+ 1 2.10000+ 1 1.50766- 1 6.31300- 4 2.10000+ 1 2.20000+ 1 3.09837- 1 6.34370- 4 2.10000+ 1 2.70000+ 1 1.62907- 2 7.04480- 4 2.10000+ 1 2.90000+ 1 1.23850- 2 7.19800- 4 2.10000+ 1 3.00000+ 1 2.61065- 2 7.22540- 4 2.10000+ 1 3.20000+ 1 1.61636- 3 7.42550- 4 2.10000+ 1 3.30000+ 1 1.79681- 3 7.42790- 4 2.10000+ 1 4.10000+ 1 1.62405- 3 7.42990- 4 2.20000+ 1 2.20000+ 1 5.19228- 3 6.37440- 4 2.20000+ 1 2.70000+ 1 1.23615- 3 7.07550- 4 2.20000+ 1 2.90000+ 1 7.40063- 4 7.22870- 4 2.20000+ 1 3.00000+ 1 8.14861- 4 7.25610- 4 2.20000+ 1 3.20000+ 1 1.49586- 3 7.45620- 4 2.20000+ 1 3.30000+ 1 5.11760- 5 7.45860- 4 2.20000+ 1 4.10000+ 1 1.14157- 4 7.46060- 4 2.70000+ 1 2.70000+ 1 2.23388- 6 7.77660- 4 2.70000+ 1 2.90000+ 1 3.57423- 5 7.92980- 4 2.70000+ 1 3.00000+ 1 2.23388- 5 7.95720- 4 2.70000+ 1 3.20000+ 1 4.46777- 5 8.15730- 4 2.70000+ 1 3.30000+ 1 4.46777- 6 8.15970- 4 2.90000+ 1 2.90000+ 1 2.03482- 5 8.08300- 4 2.90000+ 1 3.00000+ 1 1.24625- 4 8.11040- 4 2.90000+ 1 3.20000+ 1 3.81512- 5 8.31050- 4 2.90000+ 1 3.30000+ 1 2.54342- 6 8.31290- 4 2.90000+ 1 4.10000+ 1 2.54342- 6 8.31490- 4 3.00000+ 1 3.00000+ 1 4.24386- 5 8.13780- 4 3.00000+ 1 3.20000+ 1 7.54465- 5 8.33790- 4 3.00000+ 1 3.30000+ 1 2.35769- 6 8.34030- 4 3.00000+ 1 4.10000+ 1 2.35769- 6 8.34230- 4 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.99184- 3 6.40210- 4 3.00000+ 1 4.42066- 4 8.21690- 4 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.30974- 5 2.89020- 4 1.60000+ 1 1.80000+ 1 1.68225- 3 3.43420- 4 1.60000+ 1 1.90000+ 1 7.30286- 3 3.61080- 4 1.60000+ 1 2.10000+ 1 1.04519- 2 4.51320- 4 1.60000+ 1 2.20000+ 1 1.10392- 1 4.54390- 4 1.60000+ 1 2.70000+ 1 3.07982- 5 5.24500- 4 1.60000+ 1 2.90000+ 1 1.03940- 4 5.39820- 4 1.60000+ 1 3.00000+ 1 7.50677- 4 5.42560- 4 1.60000+ 1 3.20000+ 1 5.00458- 5 5.62570- 4 1.60000+ 1 3.30000+ 1 5.00458- 4 5.62810- 4 1.60000+ 1 4.10000+ 1 3.84961- 6 5.63010- 4 1.80000+ 1 1.80000+ 1 7.69944- 6 3.97820- 4 1.80000+ 1 1.90000+ 1 1.57274- 2 4.15480- 4 1.80000+ 1 2.10000+ 1 1.10497- 3 5.05720- 4 1.80000+ 1 2.20000+ 1 1.06019- 1 5.08790- 4 1.80000+ 1 2.70000+ 1 1.65550- 4 5.78900- 4 1.80000+ 1 2.90000+ 1 3.84978- 6 5.94220- 4 1.80000+ 1 3.00000+ 1 1.63227- 3 5.96960- 4 1.80000+ 1 3.20000+ 1 3.84978- 6 6.16970- 4 1.80000+ 1 3.30000+ 1 4.81224- 4 6.17210- 4 1.80000+ 1 4.10000+ 1 1.53983- 5 6.17410- 4 1.90000+ 1 1.90000+ 1 1.21110- 2 4.33140- 4 1.90000+ 1 2.10000+ 1 9.81641- 3 5.23380- 4 1.90000+ 1 2.20000+ 1 1.74506- 1 5.26450- 4 1.90000+ 1 2.70000+ 1 8.08402- 4 5.96560- 4 1.90000+ 1 2.90000+ 1 1.55900- 3 6.11880- 4 1.90000+ 1 3.00000+ 1 2.60227- 3 6.14620- 4 1.90000+ 1 3.20000+ 1 5.00453- 5 6.34630- 4 1.90000+ 1 3.30000+ 1 7.93017- 4 6.34870- 4 1.90000+ 1 4.10000+ 1 7.69903- 5 6.35070- 4 2.10000+ 1 2.10000+ 1 2.08648- 3 6.13620- 4 2.10000+ 1 2.20000+ 1 2.17821- 1 6.16690- 4 2.10000+ 1 2.70000+ 1 8.93114- 4 6.86800- 4 2.10000+ 1 2.90000+ 1 1.57825- 4 7.02120- 4 2.10000+ 1 3.00000+ 1 9.93206- 4 7.04860- 4 2.10000+ 1 3.20000+ 1 1.92474- 5 7.24870- 4 2.10000+ 1 3.30000+ 1 1.00092- 3 7.25110- 4 2.10000+ 1 4.10000+ 1 8.08409- 5 7.25310- 4 2.20000+ 1 2.20000+ 1 2.51948- 1 6.19760- 4 2.20000+ 1 2.70000+ 1 1.69505- 2 6.89870- 4 2.20000+ 1 2.90000+ 1 1.49451- 2 7.05190- 4 2.20000+ 1 3.00000+ 1 2.46074- 2 7.07930- 4 2.20000+ 1 3.20000+ 1 1.28970- 3 7.27940- 4 2.20000+ 1 3.30000+ 1 2.62159- 3 7.28180- 4 2.20000+ 1 4.10000+ 1 1.68228- 3 7.28380- 4 2.70000+ 1 2.90000+ 1 7.69915- 6 7.75300- 4 2.70000+ 1 3.00000+ 1 9.23922- 5 7.78040- 4 2.70000+ 1 3.20000+ 1 3.84963- 6 7.98050- 4 2.70000+ 1 3.30000+ 1 7.69915- 5 7.98290- 4 2.90000+ 1 3.00000+ 1 1.73230- 4 7.93360- 4 2.90000+ 1 3.30000+ 1 6.92928- 5 8.13610- 4 3.00000+ 1 3.00000+ 1 1.46288- 4 7.96100- 4 3.00000+ 1 3.20000+ 1 3.84959- 6 8.16110- 4 3.00000+ 1 3.30000+ 1 1.11637- 4 8.16350- 4 3.00000+ 1 4.10000+ 1 7.69908- 6 8.16550- 4 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.16134- 5 5.44000- 5 1.90000+ 1 5.20461- 5 7.20600- 5 2.90000+ 1 1.84568- 5 2.50800- 4 3.00000+ 1 1.75527- 5 2.53540- 4 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70000+ 1 6.69291- 2 1.07500- 5 1.80000+ 1 2.90000+ 1 5.22747- 2 2.60700- 5 1.80000+ 1 3.00000+ 1 1.14752- 1 2.88100- 5 1.80000+ 1 3.20000+ 1 3.51989- 3 4.88200- 5 1.80000+ 1 3.30000+ 1 7.04306- 3 4.90600- 5 1.80000+ 1 4.10000+ 1 6.52180- 3 4.92600- 5 1.90000+ 1 2.70000+ 1 1.03950- 1 2.84100- 5 1.90000+ 1 2.90000+ 1 1.06178- 1 4.37300- 5 1.90000+ 1 3.00000+ 1 1.49520- 1 4.64700- 5 1.90000+ 1 3.20000+ 1 7.50517- 3 6.64800- 5 1.90000+ 1 3.30000+ 1 8.98782- 3 6.67200- 5 1.90000+ 1 4.10000+ 1 9.99085- 3 6.69200- 5 2.10000+ 1 2.10000+ 1 5.95237- 3 4.54700- 5 2.10000+ 1 2.20000+ 1 4.88714- 2 4.85400- 5 2.10000+ 1 2.70000+ 1 3.06451- 2 1.18650- 4 2.10000+ 1 2.90000+ 1 5.90676- 3 1.33970- 4 2.10000+ 1 3.00000+ 1 2.14136- 2 1.36710- 4 2.10000+ 1 3.20000+ 1 1.32380- 4 1.56720- 4 2.10000+ 1 3.30000+ 1 2.06348- 4 1.56960- 4 2.10000+ 1 4.10000+ 1 2.45225- 3 1.57160- 4 2.20000+ 1 2.20000+ 1 2.09127- 2 5.16100- 5 2.20000+ 1 2.70000+ 1 4.46839- 2 1.21720- 4 2.20000+ 1 2.90000+ 1 1.88843- 2 1.37040- 4 2.20000+ 1 3.00000+ 1 2.00432- 2 1.39780- 4 2.20000+ 1 3.20000+ 1 1.96665- 4 1.59790- 4 2.20000+ 1 3.30000+ 1 2.63019- 4 1.60030- 4 2.20000+ 1 4.10000+ 1 3.57654- 3 1.60230- 4 2.70000+ 1 2.70000+ 1 1.34894- 2 1.91830- 4 2.70000+ 1 2.90000+ 1 1.67553- 2 2.07150- 4 2.70000+ 1 3.00000+ 1 3.00633- 2 2.09890- 4 2.70000+ 1 3.20000+ 1 1.26943- 3 2.29900- 4 2.70000+ 1 3.30000+ 1 1.79996- 3 2.30140- 4 2.70000+ 1 4.10000+ 1 2.35775- 3 2.30340- 4 2.90000+ 1 2.90000+ 1 5.92112- 3 2.22470- 4 2.90000+ 1 3.00000+ 1 2.61096- 2 2.25210- 4 2.90000+ 1 3.20000+ 1 4.87122- 4 2.45220- 4 2.90000+ 1 3.30000+ 1 7.68608- 4 2.45460- 4 2.90000+ 1 4.10000+ 1 5.40162- 3 2.45660- 4 3.00000+ 1 3.00000+ 1 2.20298- 2 2.27950- 4 3.00000+ 1 3.20000+ 1 1.01760- 3 2.47960- 4 3.00000+ 1 3.30000+ 1 1.30987- 3 2.48200- 4 3.00000+ 1 4.10000+ 1 9.80785- 3 2.48400- 4 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.45349- 4 1.07900- 4 2.70000+ 1 2.59489- 5 1.81080- 4 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.20000+ 1 9.14712- 4 1.20800- 5 1.90000+ 1 3.30000+ 1 1.45473- 3 1.23200- 5 1.90000+ 1 4.10000+ 1 3.05064- 3 1.25200- 5 2.10000+ 1 2.20000+ 1 5.92310- 1 0.00000+ 0 2.10000+ 1 2.70000+ 1 9.74719- 2 6.42500- 5 2.10000+ 1 2.90000+ 1 7.02265- 2 7.95700- 5 2.10000+ 1 3.00000+ 1 1.41267- 1 8.23100- 5 2.10000+ 1 3.20000+ 1 3.83491- 3 1.02320- 4 2.10000+ 1 3.30000+ 1 7.99940- 3 1.02560- 4 2.10000+ 1 4.10000+ 1 9.89618- 3 1.02760- 4 2.20000+ 1 2.20000+ 1 1.82861- 2 0.00000+ 0 2.20000+ 1 2.70000+ 1 6.98937- 3 6.73200- 5 2.20000+ 1 2.90000+ 1 3.13104- 2 8.26400- 5 2.20000+ 1 3.00000+ 1 7.56156- 3 8.53800- 5 2.20000+ 1 3.20000+ 1 4.43151- 4 1.05390- 4 2.20000+ 1 3.30000+ 1 2.08599- 4 1.05630- 4 2.20000+ 1 4.10000+ 1 6.00560- 4 1.05830- 4 2.70000+ 1 2.70000+ 1 5.64699- 5 1.37430- 4 2.70000+ 1 2.90000+ 1 1.17075- 3 1.52750- 4 2.70000+ 1 3.00000+ 1 1.74644- 4 1.55490- 4 2.70000+ 1 3.20000+ 1 1.78323- 5 1.75500- 4 2.70000+ 1 3.30000+ 1 1.06148- 5 1.75740- 4 2.70000+ 1 4.10000+ 1 9.48236- 6 1.75940- 4 2.90000+ 1 2.90000+ 1 1.00572- 3 1.68070- 4 2.90000+ 1 3.00000+ 1 2.97228- 3 1.70810- 4 2.90000+ 1 3.20000+ 1 1.01919- 4 1.90820- 4 2.90000+ 1 3.30000+ 1 1.78090- 4 1.91060- 4 2.90000+ 1 4.10000+ 1 1.77677- 4 1.91260- 4 3.00000+ 1 3.00000+ 1 7.68905- 5 1.73550- 4 3.00000+ 1 3.20000+ 1 2.81749- 5 1.93560- 4 3.00000+ 1 3.30000+ 1 7.48372- 6 1.93800- 4 3.00000+ 1 4.10000+ 1 1.43803- 5 1.94000- 4 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.69537- 6 9.02400- 5 2.20000+ 1 3.92845- 5 9.33100- 5 2.70000+ 1 1.01092- 5 1.63420- 4 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.70000+ 1 3.71910- 2 4.65900- 5 2.10000+ 1 2.90000+ 1 2.85279- 2 6.19100- 5 2.10000+ 1 3.00000+ 1 1.17542- 1 6.46500- 5 2.10000+ 1 3.20000+ 1 1.33557- 3 8.46600- 5 2.10000+ 1 3.30000+ 1 3.55140- 3 8.49000- 5 2.10000+ 1 4.10000+ 1 3.65223- 3 8.51000- 5 2.20000+ 1 2.70000+ 1 2.10565- 1 4.96600- 5 2.20000+ 1 2.90000+ 1 2.07811- 1 6.49800- 5 2.20000+ 1 3.00000+ 1 3.34943- 1 6.77200- 5 2.20000+ 1 3.20000+ 1 1.39399- 2 8.77300- 5 2.20000+ 1 3.30000+ 1 1.55905- 2 8.79700- 5 2.20000+ 1 4.10000+ 1 2.18708- 2 8.81700- 5 2.70000+ 1 2.70000+ 1 9.96724- 6 1.19770- 4 2.70000+ 1 2.90000+ 1 7.48334- 5 1.35090- 4 2.70000+ 1 3.00000+ 1 1.45395- 3 1.37830- 4 2.70000+ 1 3.20000+ 1 9.01777- 6 1.57840- 4 2.70000+ 1 3.30000+ 1 1.97757- 5 1.58080- 4 2.70000+ 1 4.10000+ 1 2.05684- 6 1.58280- 4 2.90000+ 1 2.90000+ 1 7.48394- 6 1.50410- 4 2.90000+ 1 3.00000+ 1 6.26923- 4 1.53150- 4 2.90000+ 1 3.20000+ 1 2.15880- 6 1.73160- 4 2.90000+ 1 3.30000+ 1 8.41931- 6 1.73400- 4 2.90000+ 1 4.10000+ 1 2.73445- 6 1.73600- 4 3.00000+ 1 3.00000+ 1 1.00804- 3 1.55890- 4 3.00000+ 1 3.20000+ 1 5.29120- 5 1.75900- 4 3.00000+ 1 3.30000+ 1 7.29688- 5 1.76140- 4 3.00000+ 1 4.10000+ 1 7.59824- 5 1.76340- 4 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.14189- 6 8.85000- 5 3.00000+ 1 3.64769- 7 9.12400- 5 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 8.89538- 2 2.95300- 5 2.70000+ 1 2.90000+ 1 6.00897- 2 4.48500- 5 2.70000+ 1 3.00000+ 1 7.67379- 2 4.75900- 5 2.70000+ 1 3.20000+ 1 2.35002- 2 6.76000- 5 2.70000+ 1 3.30000+ 1 9.96216- 3 6.78400- 5 2.70000+ 1 4.10000+ 1 9.45546- 3 6.80400- 5 2.90000+ 1 2.90000+ 1 1.18753- 1 6.01700- 5 2.90000+ 1 3.00000+ 1 3.77595- 1 6.29100- 5 2.90000+ 1 3.20000+ 1 4.20375- 2 8.29200- 5 2.90000+ 1 3.30000+ 1 1.86205- 2 8.31600- 5 2.90000+ 1 4.10000+ 1 1.53429- 2 8.33600- 5 3.00000+ 1 3.00000+ 1 9.55102- 2 6.56500- 5 3.00000+ 1 3.20000+ 1 5.01538- 2 8.56600- 5 3.00000+ 1 3.30000+ 1 5.72109- 3 8.59000- 5 3.00000+ 1 4.10000+ 1 7.56448- 3 8.61000- 5 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 2.55299- 6 8.81700- 5 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 2.70000+ 1 1.12753- 1 2.64600- 5 2.70000+ 1 2.90000+ 1 4.38823- 2 4.17800- 5 2.70000+ 1 3.00000+ 1 1.20589- 1 4.45200- 5 2.70000+ 1 3.20000+ 1 8.75627- 3 6.45300- 5 2.70000+ 1 3.30000+ 1 2.99485- 2 6.47700- 5 2.70000+ 1 4.10000+ 1 1.17697- 2 6.49700- 5 2.90000+ 1 2.90000+ 1 2.72704- 2 5.71000- 5 2.90000+ 1 3.00000+ 1 2.86042- 1 5.98400- 5 2.90000+ 1 3.20000+ 1 2.32175- 3 7.98500- 5 2.90000+ 1 3.30000+ 1 3.92593- 2 8.00900- 5 2.90000+ 1 4.10000+ 1 5.82562- 3 8.02900- 5 3.00000+ 1 3.00000+ 1 2.11108- 1 6.25800- 5 3.00000+ 1 3.20000+ 1 1.31287- 2 8.25900- 5 3.00000+ 1 3.30000+ 1 6.92741- 2 8.28300- 5 3.00000+ 1 4.10000+ 1 1.80682- 2 8.30300- 5 1 57000 0 7 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.39489-10 1.53200- 5 3.00000+ 1 1.12620- 9 1.80600- 5 1 57000 0 9 1.38905+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.86159- 1 1.01800- 5 3.00000+ 1 4.10000+ 1 6.05669- 1 1.29200- 5 4.10000+ 1 4.10000+ 1 8.17208- 3 3.33700- 5 1 58000 0 0 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 8.60000- 1 2.50000+ 1 1.14000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 58000 0 0 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.04560- 2 3.00000+ 0 6.51330- 3 5.00000+ 0 6.16530- 3 6.00000+ 0 5.71280- 3 8.00000+ 0 1.40990- 3 1.00000+ 1 1.25990- 3 1.10000+ 1 1.17050- 3 1.30000+ 1 9.05490- 4 1.40000+ 1 8.86140- 4 1.60000+ 1 2.85010- 4 1.80000+ 1 2.28580- 4 1.90000+ 1 2.09350- 4 2.10000+ 1 1.15790- 4 2.20000+ 1 1.12440- 4 2.40000+ 1 6.85000- 6 2.50000+ 1 6.51000- 6 2.70000+ 1 4.17500- 5 2.90000+ 1 2.63500- 5 3.00000+ 1 2.35900- 5 4.10000+ 1 4.81000- 6 1 58000 0 0 1.40120+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.20820- 2 3.00000+ 0 1.15780- 2 5.00000+ 0 1.15880- 2 6.00000+ 0 9.93200- 3 8.00000+ 0 3.47880- 3 1.00000+ 1 3.40250- 3 1.10000+ 1 3.02310- 3 1.30000+ 1 2.89290- 3 1.40000+ 1 2.80210- 3 1.60000+ 1 1.05540- 3 1.80000+ 1 9.79250- 4 1.90000+ 1 8.77080- 4 2.10000+ 1 7.24370- 4 2.20000+ 1 7.02220- 4 2.40000+ 1 3.65310- 4 2.50000+ 1 3.59050- 4 2.70000+ 1 2.29240- 4 2.90000+ 1 1.81560- 4 3.00000+ 1 1.60210- 4 4.10000+ 1 2.56100- 5 1 58000 0 0 1.40120+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.29830-10 3.00000+ 0 5.52210-10 5.00000+ 0 4.63000-10 6.00000+ 0 4.95830-10 8.00000+ 0 1.46350- 9 1.00000+ 1 1.40720- 9 1.10000+ 1 1.47090- 9 1.30000+ 1 1.31560- 9 1.40000+ 1 1.33530- 9 1.60000+ 1 3.34760- 9 1.80000+ 1 3.43990- 9 1.90000+ 1 3.58320- 9 2.10000+ 1 3.86080- 9 2.20000+ 1 3.91180- 9 2.40000+ 1 5.69970- 9 2.50000+ 1 5.76150- 9 2.70000+ 1 8.00120- 9 2.90000+ 1 8.97430- 9 3.00000+ 1 9.41070- 9 4.10000+ 1 2.41000- 8 1 58000 0 0 1.40120+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.34360- 5 3.00000+ 0 2.38270- 7 5.00000+ 0 4.02090- 7 6.00000+ 0 3.74720- 7 8.00000+ 0 6.80180- 9 1.00000+ 1 6.75310- 9 1.10000+ 1 6.83270- 9 1.30000+ 1 1.22650- 9 1.40000+ 1 1.11670- 9 1.60000+ 1 1.75610-10 1.80000+ 1 3.60950-10 1.90000+ 1 2.70080-10 2.10000+ 1 6.25510-11 2.20000+ 1 5.72490-11 2.70000+ 1 9.04660-12 1 58000 0 0 1.40120+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.30690- 6 3.00000+ 0 3.60320- 6 5.00000+ 0 2.81950- 6 6.00000+ 0 2.62560- 6 8.00000+ 0 1.29240- 5 1.00000+ 1 5.68490- 6 1.10000+ 1 6.56400- 6 1.30000+ 1 7.91530- 7 1.40000+ 1 7.20370- 7 1.60000+ 1 7.64850- 6 1.80000+ 1 1.24980- 5 1.90000+ 1 3.72260- 6 2.10000+ 1 6.08720- 7 2.20000+ 1 3.22600- 7 2.70000+ 1 5.97750- 7 1 58000 0 0 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.86434- 4 3.00000+ 0 2.20935- 4 5.00000+ 0 1.91654- 4 6.00000+ 0 1.77471- 4 8.00000+ 0 1.60968- 4 1.00000+ 1 1.39948- 4 1.10000+ 1 1.28064- 4 1.30000+ 1 9.11189- 5 1.40000+ 1 8.28455- 5 1.60000+ 1 7.46261- 5 1.80000+ 1 7.27472- 5 1.90000+ 1 5.44982- 5 2.10000+ 1 4.40417- 5 2.20000+ 1 3.34877- 5 2.40000+ 1 6.85000- 6 2.50000+ 1 6.51000- 6 2.70000+ 1 2.93233- 5 2.90000+ 1 2.63500- 5 3.00000+ 1 2.35900- 5 4.10000+ 1 4.81000- 6 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03222+ 0 3.00000+ 0 1.33421- 1 5.00000+ 0 1.47709- 1 6.00000+ 0 1.25438- 1 8.00000+ 0 5.93579- 3 1.00000+ 1 6.24205- 3 1.10000+ 1 5.92688- 3 1.30000+ 1 4.33251- 3 1.40000+ 1 4.03919- 3 1.60000+ 1 1.87817- 4 1.80000+ 1 2.04001- 4 1.90000+ 1 6.57581- 5 2.10000+ 1 3.76238- 6 2.20000+ 1 3.81379- 6 2.70000+ 1 4.63243- 9 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.30065- 2 3.00000+ 0 6.64556- 4 5.00000+ 0 7.44845- 4 6.00000+ 0 5.81604- 4 8.00000+ 0 4.91500- 6 1.00000+ 1 4.99833- 6 1.10000+ 1 4.75299- 6 1.30000+ 1 3.06497- 6 1.40000+ 1 2.83667- 6 1.60000+ 1 2.49131- 8 1.80000+ 1 2.51517- 8 1.90000+ 1 7.21917- 9 2.10000+ 1 3.42320-10 2.20000+ 1 3.43063-10 2.70000+ 1 8.11629-14 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05662+ 1 3.00000+ 0 1.26793+ 1 5.00000+ 0 1.07229+ 1 6.00000+ 0 1.01087+ 1 8.00000+ 0 8.97086+ 0 1.00000+ 1 7.48349+ 0 1.10000+ 1 7.05696+ 0 1.30000+ 1 4.35952+ 0 1.40000+ 1 4.35290+ 0 1.60000+ 1 3.48155+ 0 1.80000+ 1 3.34059+ 0 1.90000+ 1 2.49084+ 0 2.10000+ 1 1.33339+ 0 2.20000+ 1 1.35301+ 0 2.70000+ 1 1.00000+ 0 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.26305- 3 3.00000+ 0 5.62781- 3 5.00000+ 0 5.22880- 3 6.00000+ 0 4.95372- 3 8.00000+ 0 1.24402- 3 1.00000+ 1 1.11495- 3 1.10000+ 1 1.03768- 3 1.30000+ 1 8.11306- 4 1.40000+ 1 8.00458- 4 1.60000+ 1 2.10359- 4 1.80000+ 1 1.55808- 4 1.90000+ 1 1.54845- 4 2.10000+ 1 7.17479- 5 2.20000+ 1 7.89519- 5 2.70000+ 1 1.24267- 5 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.61771- 1 3.42907- 2 6.00000+ 0 4.79371- 1 3.47432- 2 1.00000+ 1 4.65951- 2 3.91961- 2 1.10000+ 1 9.02803- 2 3.92855- 2 1.30000+ 1 5.54032- 4 3.95505- 2 1.40000+ 1 7.46762- 4 3.95699- 2 1.80000+ 1 9.91953- 3 4.02274- 2 1.90000+ 1 1.93001- 2 4.02466- 2 2.10000+ 1 1.16500- 4 4.03402- 2 2.20000+ 1 1.56780- 4 4.03436- 2 2.90000+ 1 1.67250- 3 4.04296- 2 3.00000+ 1 3.23581- 3 4.04324- 2 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 7.20379- 3 2.74294- 2 3.00000+ 0 5.00000+ 0 8.80211- 3 2.77774- 2 3.00000+ 0 6.00000+ 0 9.64949- 3 2.82299- 2 3.00000+ 0 8.00000+ 0 2.63775- 3 3.25328- 2 3.00000+ 0 1.00000+ 1 1.73381- 3 3.26828- 2 3.00000+ 0 1.10000+ 1 1.93646- 3 3.27722- 2 3.00000+ 0 1.30000+ 1 1.32403- 4 3.30372- 2 3.00000+ 0 1.40000+ 1 1.37610- 4 3.30566- 2 3.00000+ 0 1.60000+ 1 5.97348- 4 3.36577- 2 3.00000+ 0 1.80000+ 1 3.74571- 4 3.37141- 2 3.00000+ 0 1.90000+ 1 4.16433- 4 3.37333- 2 3.00000+ 0 2.10000+ 1 2.71279- 5 3.38269- 2 3.00000+ 0 2.20000+ 1 2.80263- 5 3.38303- 2 3.00000+ 0 2.70000+ 1 1.01325- 4 3.39009- 2 3.00000+ 0 2.90000+ 1 5.20990- 5 3.39163- 2 3.00000+ 0 3.00000+ 1 5.64109- 5 3.39191- 2 3.00000+ 0 4.10000+ 1 9.34231- 6 3.39379- 2 5.00000+ 0 5.00000+ 0 9.75665- 4 2.81254- 2 5.00000+ 0 6.00000+ 0 2.01198- 2 2.85779- 2 5.00000+ 0 8.00000+ 0 1.34368- 3 3.28808- 2 5.00000+ 0 1.00000+ 1 3.42594- 4 3.30308- 2 5.00000+ 0 1.10000+ 1 3.36462- 3 3.31202- 2 5.00000+ 0 1.30000+ 1 1.53776- 4 3.33852- 2 5.00000+ 0 1.40000+ 1 5.02483- 4 3.34046- 2 5.00000+ 0 1.60000+ 1 2.92827- 4 3.40057- 2 5.00000+ 0 1.80000+ 1 7.24004- 5 3.40621- 2 5.00000+ 0 1.90000+ 1 6.98319- 4 3.40813- 2 5.00000+ 0 2.10000+ 1 3.10805- 5 3.41749- 2 5.00000+ 0 2.20000+ 1 1.01149- 4 3.41783- 2 5.00000+ 0 2.70000+ 1 4.92234- 5 3.42489- 2 5.00000+ 0 2.90000+ 1 1.00603- 5 3.42643- 2 5.00000+ 0 3.00000+ 1 9.39567- 5 3.42671- 2 5.00000+ 0 4.10000+ 1 4.49124- 6 3.42859- 2 6.00000+ 0 6.00000+ 0 9.84781- 3 2.90304- 2 6.00000+ 0 8.00000+ 0 1.42715- 3 3.33333- 2 6.00000+ 0 1.00000+ 1 3.25793- 3 3.34833- 2 6.00000+ 0 1.10000+ 1 3.38562- 3 3.35727- 2 6.00000+ 0 1.30000+ 1 5.92642- 4 3.38377- 2 6.00000+ 0 1.40000+ 1 5.38585- 4 3.38571- 2 6.00000+ 0 1.60000+ 1 3.08993- 4 3.44582- 2 6.00000+ 0 1.80000+ 1 6.78158- 4 3.45146- 2 6.00000+ 0 1.90000+ 1 7.07278- 4 3.45338- 2 6.00000+ 0 2.10000+ 1 1.19638- 4 3.46274- 2 6.00000+ 0 2.20000+ 1 1.08503- 4 3.46308- 2 6.00000+ 0 2.40000+ 1 1.79652- 7 3.47363- 2 6.00000+ 0 2.70000+ 1 5.19177- 5 3.47014- 2 6.00000+ 0 2.90000+ 1 9.37725- 5 3.47168- 2 6.00000+ 0 3.00000+ 1 9.52140- 5 3.47196- 2 6.00000+ 0 4.10000+ 1 4.67077- 6 3.47384- 2 8.00000+ 0 8.00000+ 0 2.37855- 4 3.76362- 2 8.00000+ 0 1.00000+ 1 2.66966- 4 3.77862- 2 8.00000+ 0 1.10000+ 1 2.88877- 4 3.78756- 2 8.00000+ 0 1.30000+ 1 1.88633- 5 3.81406- 2 8.00000+ 0 1.40000+ 1 1.86833- 5 3.81600- 2 8.00000+ 0 1.60000+ 1 1.07437- 4 3.87611- 2 8.00000+ 0 1.80000+ 1 5.78474- 5 3.88175- 2 8.00000+ 0 1.90000+ 1 6.23383- 5 3.88367- 2 8.00000+ 0 2.10000+ 1 3.77266- 6 3.89303- 2 8.00000+ 0 2.20000+ 1 3.77266- 6 3.89337- 2 8.00000+ 0 2.70000+ 1 1.81450- 5 3.90043- 2 8.00000+ 0 2.90000+ 1 8.08445- 6 3.90197- 2 8.00000+ 0 3.00000+ 1 8.44362- 6 3.90225- 2 8.00000+ 0 4.10000+ 1 1.61691- 6 3.90413- 2 1.00000+ 1 1.00000+ 1 2.91032- 5 3.79362- 2 1.00000+ 1 1.10000+ 1 5.54754- 4 3.80256- 2 1.00000+ 1 1.30000+ 1 1.99414- 5 3.82906- 2 1.00000+ 1 1.40000+ 1 6.34156- 5 3.83100- 2 1.00000+ 1 1.60000+ 1 5.82065- 5 3.89111- 2 1.00000+ 1 1.80000+ 1 1.22161- 5 3.89675- 2 1.00000+ 1 1.90000+ 1 1.15513- 4 3.89867- 2 1.00000+ 1 2.10000+ 1 3.95227- 6 3.90803- 2 1.00000+ 1 2.20000+ 1 1.29354- 5 3.90837- 2 1.00000+ 1 2.70000+ 1 9.88013- 6 3.91543- 2 1.00000+ 1 2.90000+ 1 1.61688- 6 3.91697- 2 1.00000+ 1 3.00000+ 1 1.54495- 5 3.91725- 2 1.00000+ 1 4.10000+ 1 8.98228- 7 3.91913- 2 1.10000+ 1 1.10000+ 1 2.92290- 4 3.81150- 2 1.10000+ 1 1.30000+ 1 8.08437- 5 3.83800- 2 1.10000+ 1 1.40000+ 1 7.16798- 5 3.83994- 2 1.10000+ 1 1.60000+ 1 6.26978- 5 3.90005- 2 1.10000+ 1 1.80000+ 1 1.15874- 4 3.90569- 2 1.10000+ 1 1.90000+ 1 1.22162- 4 3.90761- 2 1.10000+ 1 2.10000+ 1 1.65280- 5 3.91697- 2 1.10000+ 1 2.20000+ 1 1.45522- 5 3.91731- 2 1.10000+ 1 2.70000+ 1 1.05995- 5 3.92437- 2 1.10000+ 1 2.90000+ 1 1.59889- 5 3.92591- 2 1.10000+ 1 3.00000+ 1 1.65280- 5 3.92619- 2 1.10000+ 1 4.10000+ 1 8.98235- 7 3.92807- 2 1.30000+ 1 1.30000+ 1 1.76463- 7 3.86450- 2 1.30000+ 1 1.40000+ 1 9.35241- 6 3.86644- 2 1.30000+ 1 1.60000+ 1 4.05851- 6 3.92655- 2 1.30000+ 1 1.80000+ 1 3.88204- 6 3.93219- 2 1.30000+ 1 1.90000+ 1 1.58815- 5 3.93412- 2 1.30000+ 1 2.20000+ 1 1.76463- 6 3.94381- 2 1.30000+ 1 2.70000+ 1 7.05805- 7 3.95088- 2 1.30000+ 1 2.90000+ 1 5.29371- 7 3.95242- 2 1.30000+ 1 3.00000+ 1 2.11740- 6 3.95269- 2 1.40000+ 1 1.40000+ 1 2.32924- 6 3.86837- 2 1.40000+ 1 1.60000+ 1 3.94186- 6 3.92848- 2 1.40000+ 1 1.80000+ 1 1.25422- 5 3.93413- 2 1.40000+ 1 1.90000+ 1 1.41546- 5 3.93605- 2 1.40000+ 1 2.10000+ 1 1.79183- 6 3.94541- 2 1.40000+ 1 2.20000+ 1 8.95863- 7 3.94574- 2 1.40000+ 1 2.70000+ 1 7.16681- 7 3.95281- 2 1.40000+ 1 2.90000+ 1 1.79183- 6 3.95435- 2 1.40000+ 1 3.00000+ 1 1.97103- 6 3.95463- 2 1.60000+ 1 1.60000+ 1 1.17014- 5 3.98860- 2 1.60000+ 1 1.80000+ 1 1.22256- 5 3.99424- 2 1.60000+ 1 1.90000+ 1 1.30990- 5 3.99616- 2 1.60000+ 1 2.10000+ 1 8.73254- 7 4.00552- 2 1.60000+ 1 2.20000+ 1 8.73254- 7 4.00585- 2 1.60000+ 1 2.70000+ 1 4.01705- 6 4.01292- 2 1.60000+ 1 2.90000+ 1 1.74661- 6 4.01446- 2 1.60000+ 1 3.00000+ 1 1.74661- 6 4.01474- 2 1.60000+ 1 4.10000+ 1 3.49302- 7 4.01662- 2 1.80000+ 1 1.80000+ 1 1.20636- 6 3.99988- 2 1.80000+ 1 1.90000+ 1 2.30936- 5 4.00181- 2 1.80000+ 1 2.10000+ 1 6.89333- 7 4.01116- 2 1.80000+ 1 2.20000+ 1 2.41271- 6 4.01150- 2 1.80000+ 1 2.70000+ 1 2.06799- 6 4.01857- 2 1.80000+ 1 2.90000+ 1 3.44671- 7 4.02011- 2 1.80000+ 1 3.00000+ 1 3.10207- 6 4.02038- 2 1.80000+ 1 4.10000+ 1 1.72345- 7 4.02226- 2 1.90000+ 1 1.90000+ 1 1.21472- 5 4.00373- 2 1.90000+ 1 2.10000+ 1 3.07949- 6 4.01309- 2 1.90000+ 1 2.20000+ 1 2.73727- 6 4.01342- 2 1.90000+ 1 2.70000+ 1 2.22405- 6 4.02049- 2 1.90000+ 1 2.90000+ 1 3.25051- 6 4.02203- 2 1.90000+ 1 3.00000+ 1 3.25051- 6 4.02231- 2 1.90000+ 1 4.10000+ 1 1.71091- 7 4.02418- 2 2.10000+ 1 2.20000+ 1 3.91894- 7 4.02278- 2 2.10000+ 1 2.70000+ 1 1.95958- 7 4.02985- 2 2.10000+ 1 2.90000+ 1 1.95958- 7 4.03139- 2 2.10000+ 1 3.00000+ 1 3.91894- 7 4.03166- 2 2.20000+ 1 2.70000+ 1 1.79657- 7 4.03018- 2 2.20000+ 1 2.90000+ 1 3.59293- 7 4.03172- 2 2.20000+ 1 3.00000+ 1 3.59293- 7 4.03200- 2 2.70000+ 1 2.70000+ 1 3.21424- 7 4.03725- 2 2.70000+ 1 2.90000+ 1 3.21424- 7 4.03879- 2 2.70000+ 1 3.00000+ 1 3.21424- 7 4.03907- 2 2.90000+ 1 3.00000+ 1 5.50002- 7 4.04061- 2 3.00000+ 1 3.00000+ 1 1.79661- 7 4.04088- 2 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.96961- 5 3.48000- 4 6.00000+ 0 5.29714- 4 8.00500- 4 1.00000+ 1 1.75251- 2 5.25340- 3 1.10000+ 1 2.66202- 2 5.34280- 3 1.30000+ 1 3.03592- 4 5.60781- 3 1.40000+ 1 4.53803- 4 5.62716- 3 1.80000+ 1 4.00893- 3 6.28472- 3 1.90000+ 1 6.29864- 3 6.30395- 3 2.10000+ 1 4.01833- 5 6.39751- 3 2.20000+ 1 6.14834- 5 6.40086- 3 2.90000+ 1 5.88974- 4 6.48695- 3 3.00000+ 1 9.09206- 4 6.48971- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.47841- 2 6.29900- 5 5.00000+ 0 1.80000+ 1 3.99795- 2 1.19420- 4 5.00000+ 0 1.90000+ 1 4.92255- 2 1.38650- 4 5.00000+ 0 2.10000+ 1 1.30870- 2 2.32210- 4 5.00000+ 0 2.20000+ 1 2.11470- 2 2.35560- 4 5.00000+ 0 2.40000+ 1 7.53161- 3 3.41150- 4 5.00000+ 0 2.70000+ 1 8.88051- 3 3.06250- 4 5.00000+ 0 2.90000+ 1 5.23510- 3 3.21650- 4 5.00000+ 0 3.00000+ 1 6.27376- 3 3.24410- 4 5.00000+ 0 4.10000+ 1 8.07260- 4 3.43190- 4 6.00000+ 0 1.60000+ 1 6.72892- 2 5.15490- 4 6.00000+ 0 1.80000+ 1 2.91699- 2 5.71920- 4 6.00000+ 0 1.90000+ 1 5.34164- 2 5.91150- 4 6.00000+ 0 2.10000+ 1 6.53386- 2 6.84710- 4 6.00000+ 0 2.20000+ 1 8.31461- 2 6.88060- 4 6.00000+ 0 2.40000+ 1 1.04117- 2 7.93650- 4 6.00000+ 0 2.70000+ 1 1.09806- 2 7.58750- 4 6.00000+ 0 2.90000+ 1 3.90621- 3 7.74150- 4 6.00000+ 0 3.00000+ 1 7.04269- 3 7.76910- 4 6.00000+ 0 4.10000+ 1 1.00092- 3 7.95690- 4 8.00000+ 0 8.00000+ 0 1.26117- 2 3.69350- 3 8.00000+ 0 1.00000+ 1 2.51440- 2 3.84350- 3 8.00000+ 0 1.10000+ 1 4.57877- 2 3.93290- 3 8.00000+ 0 1.30000+ 1 3.59850- 2 4.19791- 3 8.00000+ 0 1.40000+ 1 5.03293- 2 4.21726- 3 8.00000+ 0 1.60000+ 1 4.85554- 3 4.81839- 3 8.00000+ 0 1.80000+ 1 5.31261- 3 4.87482- 3 8.00000+ 0 1.90000+ 1 9.60003- 3 4.89405- 3 8.00000+ 0 2.10000+ 1 6.26093- 3 4.98761- 3 8.00000+ 0 2.20000+ 1 8.71121- 3 4.99096- 3 8.00000+ 0 2.40000+ 1 5.83742- 5 5.09655- 3 8.00000+ 0 2.70000+ 1 8.03706- 4 5.06165- 3 8.00000+ 0 2.90000+ 1 7.36080- 4 5.07705- 3 8.00000+ 0 3.00000+ 1 1.29203- 3 5.07981- 3 8.00000+ 0 4.10000+ 1 7.33226- 5 5.09859- 3 1.00000+ 1 1.00000+ 1 1.26006- 4 3.99350- 3 1.00000+ 1 1.10000+ 1 8.54950- 4 4.08290- 3 1.00000+ 1 1.30000+ 1 1.12620- 3 4.34791- 3 1.00000+ 1 1.40000+ 1 1.36589- 2 4.36726- 3 1.00000+ 1 1.60000+ 1 3.86823- 3 4.96839- 3 1.00000+ 1 1.80000+ 1 2.56274- 5 5.02482- 3 1.00000+ 1 1.90000+ 1 1.69422- 4 5.04405- 3 1.00000+ 1 2.10000+ 1 1.95060- 4 5.13761- 3 1.00000+ 1 2.20000+ 1 1.56036- 3 5.14096- 3 1.00000+ 1 2.40000+ 1 1.99321- 5 5.24655- 3 1.00000+ 1 2.70000+ 1 6.09349- 4 5.21165- 3 1.00000+ 1 2.90000+ 1 2.84736- 6 5.22705- 3 1.00000+ 1 3.00000+ 1 2.27792- 5 5.22981- 3 1.00000+ 1 4.10000+ 1 5.55250- 5 5.24859- 3 1.10000+ 1 1.10000+ 1 1.07132- 3 4.17230- 3 1.10000+ 1 1.30000+ 1 8.61935- 3 4.43731- 3 1.10000+ 1 1.40000+ 1 5.77742- 3 4.45666- 3 1.10000+ 1 1.60000+ 1 7.03477- 3 5.05779- 3 1.10000+ 1 1.80000+ 1 1.70849- 4 5.11422- 3 1.10000+ 1 1.90000+ 1 3.38835- 4 5.13345- 3 1.10000+ 1 2.10000+ 1 8.22208- 4 5.22701- 3 1.10000+ 1 2.20000+ 1 5.70215- 4 5.23036- 3 1.10000+ 1 2.40000+ 1 6.12203- 5 5.33595- 3 1.10000+ 1 2.70000+ 1 1.10770- 3 5.30105- 3 1.10000+ 1 2.90000+ 1 2.34918- 5 5.31645- 3 1.10000+ 1 3.00000+ 1 4.34259- 5 5.31921- 3 1.10000+ 1 4.10000+ 1 1.00374- 4 5.33799- 3 1.30000+ 1 1.30000+ 1 2.02807- 3 4.70232- 3 1.30000+ 1 1.40000+ 1 7.16026- 2 4.72167- 3 1.30000+ 1 1.60000+ 1 5.22435- 3 5.32280- 3 1.30000+ 1 1.80000+ 1 3.06121- 4 5.37923- 3 1.30000+ 1 1.90000+ 1 1.85733- 3 5.39846- 3 1.30000+ 1 2.10000+ 1 6.96208- 4 5.49202- 3 1.30000+ 1 2.20000+ 1 9.02934- 3 5.49537- 3 1.30000+ 1 2.40000+ 1 6.97625- 5 5.60096- 3 1.30000+ 1 2.70000+ 1 8.15088- 4 5.56606- 3 1.30000+ 1 2.90000+ 1 4.41372- 5 5.58146- 3 1.30000+ 1 3.00000+ 1 2.50575- 4 5.58422- 3 1.30000+ 1 4.10000+ 1 7.40347- 5 5.60300- 3 1.40000+ 1 1.40000+ 1 2.01219- 2 4.74102- 3 1.40000+ 1 1.60000+ 1 7.35863- 3 5.34215- 3 1.40000+ 1 1.80000+ 1 2.62192- 3 5.39858- 3 1.40000+ 1 1.90000+ 1 1.30699- 3 5.41781- 3 1.40000+ 1 2.10000+ 1 8.91055- 3 5.51137- 3 1.40000+ 1 2.20000+ 1 5.31539- 3 5.51472- 3 1.40000+ 1 2.40000+ 1 2.21389- 4 5.62031- 3 1.40000+ 1 2.70000+ 1 1.15032- 3 5.58541- 3 1.40000+ 1 2.90000+ 1 3.57364- 4 5.60081- 3 1.40000+ 1 3.00000+ 1 1.77964- 4 5.60357- 3 1.40000+ 1 4.10000+ 1 1.03936- 4 5.62235- 3 1.60000+ 1 1.60000+ 1 4.43486- 4 5.94328- 3 1.60000+ 1 1.80000+ 1 8.20070- 4 5.99971- 3 1.60000+ 1 1.90000+ 1 1.47932- 3 6.01894- 3 1.60000+ 1 2.10000+ 1 9.06900- 4 6.11250- 3 1.60000+ 1 2.20000+ 1 1.26788- 3 6.11585- 3 1.60000+ 1 2.40000+ 1 7.11864- 6 6.22144- 3 1.60000+ 1 2.70000+ 1 1.45219- 4 6.18654- 3 1.60000+ 1 2.90000+ 1 1.13904- 4 6.20194- 3 1.60000+ 1 3.00000+ 1 1.99317- 4 6.20470- 3 1.60000+ 1 4.10000+ 1 1.35250- 5 6.22348- 3 1.80000+ 1 1.80000+ 1 1.42367- 6 6.05614- 3 1.80000+ 1 1.90000+ 1 3.41696- 5 6.07537- 3 1.80000+ 1 2.10000+ 1 4.48485- 5 6.16893- 3 1.80000+ 1 2.20000+ 1 3.08934- 4 6.17228- 3 1.80000+ 1 2.40000+ 1 2.84733- 6 6.27787- 3 1.80000+ 1 2.70000+ 1 1.28849- 4 6.24297- 3 1.80000+ 1 3.00000+ 1 4.27110- 6 6.26113- 3 1.80000+ 1 4.10000+ 1 1.13905- 5 6.27991- 3 1.90000+ 1 1.90000+ 1 2.65854- 5 6.09460- 3 1.90000+ 1 2.10000+ 1 1.86797- 4 6.18816- 3 1.90000+ 1 2.20000+ 1 1.35030- 4 6.19151- 3 1.90000+ 1 2.40000+ 1 9.79449- 6 6.29710- 3 1.90000+ 1 2.70000+ 1 2.28774- 4 6.26220- 3 1.90000+ 1 2.90000+ 1 4.89730- 6 6.27760- 3 1.90000+ 1 3.00000+ 1 6.99639- 6 6.28036- 3 1.90000+ 1 4.10000+ 1 2.09889- 5 6.29914- 3 2.10000+ 1 2.10000+ 1 5.62375- 5 6.28172- 3 2.10000+ 1 2.20000+ 1 1.20521- 3 6.28507- 3 2.10000+ 1 2.40000+ 1 8.54261- 6 6.39066- 3 2.10000+ 1 2.70000+ 1 1.41666- 4 6.35576- 3 2.10000+ 1 2.90000+ 1 6.40706- 6 6.37116- 3 2.10000+ 1 3.00000+ 1 2.56279- 5 6.37392- 3 2.10000+ 1 4.10000+ 1 1.28139- 5 6.39270- 3 2.20000+ 1 2.20000+ 1 3.68797- 4 6.28842- 3 2.20000+ 1 2.40000+ 1 2.19014- 5 6.39401- 3 2.20000+ 1 2.70000+ 1 1.96412- 4 6.35911- 3 2.20000+ 1 2.90000+ 1 4.16822- 5 6.37451- 3 2.20000+ 1 3.00000+ 1 1.83695- 5 6.37727- 3 2.20000+ 1 4.10000+ 1 1.76623- 5 6.39605- 3 2.40000+ 1 2.70000+ 1 7.11864- 7 6.46470- 3 2.40000+ 1 3.00000+ 1 1.42365- 6 6.48286- 3 2.70000+ 1 2.70000+ 1 1.21022- 5 6.42980- 3 2.70000+ 1 2.90000+ 1 1.77966- 5 6.44520- 3 2.70000+ 1 3.00000+ 1 3.13230- 5 6.44796- 3 2.70000+ 1 4.10000+ 1 2.13563- 6 6.46674- 3 2.90000+ 1 3.00000+ 1 1.17105- 6 6.46336- 3 2.90000+ 1 4.10000+ 1 2.34197- 6 6.48214- 3 3.00000+ 1 3.00000+ 1 2.52793- 7 6.46612- 3 3.00000+ 1 4.10000+ 1 1.01112- 6 6.48490- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.63879- 7 4.52500- 4 8.00000+ 0 4.45537- 3 4.75540- 3 1.10000+ 1 7.24765- 5 4.99480- 3 1.30000+ 1 9.74613- 2 5.25981- 3 1.60000+ 1 7.27655- 4 5.88029- 3 1.90000+ 1 1.17659- 5 5.95595- 3 2.10000+ 1 1.61809- 2 6.04951- 3 2.40000+ 1 1.66449- 6 6.15845- 3 2.70000+ 1 1.06279- 4 6.12355- 3 3.00000+ 1 2.07038- 6 6.14171- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.04652- 2 1.67490- 4 6.00000+ 0 1.80000+ 1 5.04543- 2 2.23920- 4 6.00000+ 0 1.90000+ 1 1.70597- 2 2.43150- 4 6.00000+ 0 2.10000+ 1 6.43291- 2 3.36710- 4 6.00000+ 0 2.20000+ 1 2.36441- 2 3.40060- 4 6.00000+ 0 2.40000+ 1 3.22355- 4 4.45650- 4 6.00000+ 0 2.70000+ 1 1.59974- 3 4.10750- 4 6.00000+ 0 2.90000+ 1 6.61104- 3 4.26150- 4 6.00000+ 0 3.00000+ 1 2.27852- 3 4.28910- 4 6.00000+ 0 4.10000+ 1 1.44588- 4 4.47690- 4 8.00000+ 0 8.00000+ 0 9.61874- 4 3.34550- 3 8.00000+ 0 1.00000+ 1 2.43060- 2 3.49550- 3 8.00000+ 0 1.10000+ 1 2.34563- 3 3.58490- 3 8.00000+ 0 1.30000+ 1 2.06248- 3 3.84991- 3 8.00000+ 0 1.40000+ 1 3.19174- 3 3.86926- 3 8.00000+ 0 1.60000+ 1 3.43592- 4 4.47039- 3 8.00000+ 0 1.80000+ 1 3.50157- 3 4.52682- 3 8.00000+ 0 1.90000+ 1 4.37145- 4 4.54605- 3 8.00000+ 0 2.10000+ 1 2.57692- 4 4.63961- 3 8.00000+ 0 2.20000+ 1 3.43592- 4 4.64296- 3 8.00000+ 0 2.40000+ 1 1.61591- 5 4.74855- 3 8.00000+ 0 2.70000+ 1 5.61320- 5 4.71365- 3 8.00000+ 0 2.90000+ 1 4.54174- 4 4.72905- 3 8.00000+ 0 3.00000+ 1 5.78326- 5 4.73181- 3 8.00000+ 0 4.10000+ 1 5.10278- 6 4.75059- 3 1.00000+ 1 1.00000+ 1 2.40755- 2 3.64550- 3 1.00000+ 1 1.10000+ 1 7.36636- 2 3.73490- 3 1.00000+ 1 1.30000+ 1 3.92821- 2 3.99991- 3 1.00000+ 1 1.40000+ 1 6.58801- 2 4.01926- 3 1.00000+ 1 1.60000+ 1 5.60475- 3 4.62039- 3 1.00000+ 1 1.80000+ 1 8.69882- 3 4.67682- 3 1.00000+ 1 1.90000+ 1 1.51764- 2 4.69605- 3 1.00000+ 1 2.10000+ 1 6.82182- 3 4.78961- 3 1.00000+ 1 2.20000+ 1 1.14347- 2 4.79296- 3 1.00000+ 1 2.40000+ 1 6.37867- 5 4.89855- 3 1.00000+ 1 2.70000+ 1 9.53417- 4 4.86365- 3 1.00000+ 1 2.90000+ 1 1.17871- 3 4.87905- 3 1.00000+ 1 3.00000+ 1 2.03691- 3 4.88181- 3 1.00000+ 1 4.10000+ 1 8.76005- 5 4.90059- 3 1.10000+ 1 1.10000+ 1 1.90761- 3 3.82430- 3 1.10000+ 1 1.30000+ 1 4.53206- 2 4.08931- 3 1.10000+ 1 1.40000+ 1 6.16417- 3 4.10866- 3 1.10000+ 1 1.60000+ 1 4.63516- 4 4.70979- 3 1.10000+ 1 1.80000+ 1 1.09986- 2 4.76622- 3 1.10000+ 1 1.90000+ 1 6.65927- 4 4.78545- 3 1.10000+ 1 2.10000+ 1 6.73589- 3 4.87901- 3 1.10000+ 1 2.20000+ 1 8.60685- 4 4.88236- 3 1.10000+ 1 2.40000+ 1 4.16734- 5 4.98795- 3 1.10000+ 1 2.70000+ 1 7.65450- 5 4.95305- 3 1.10000+ 1 2.90000+ 1 1.43476- 3 4.96845- 3 1.10000+ 1 3.00000+ 1 8.67492- 5 4.97121- 3 1.10000+ 1 4.10000+ 1 6.80396- 6 4.98999- 3 1.30000+ 1 1.30000+ 1 4.16799- 2 4.35432- 3 1.30000+ 1 1.40000+ 1 1.77190- 1 4.37367- 3 1.30000+ 1 1.60000+ 1 4.81375- 4 4.97480- 3 1.30000+ 1 1.80000+ 1 5.84364- 3 5.03123- 3 1.30000+ 1 1.90000+ 1 8.81257- 3 5.05046- 3 1.30000+ 1 2.10000+ 1 1.23248- 2 5.14402- 3 1.30000+ 1 2.20000+ 1 2.80773- 2 5.14737- 3 1.30000+ 1 2.40000+ 1 2.60252- 4 5.25296- 3 1.30000+ 1 2.70000+ 1 8.24969- 5 5.21806- 3 1.30000+ 1 2.90000+ 1 7.67141- 4 5.23346- 3 1.30000+ 1 3.00000+ 1 1.17106- 3 5.23622- 3 1.30000+ 1 4.10000+ 1 7.65460- 6 5.25500- 3 1.40000+ 1 1.40000+ 1 8.46171- 3 4.39302- 3 1.40000+ 1 1.60000+ 1 6.16619- 4 4.99415- 3 1.40000+ 1 1.80000+ 1 8.73045- 3 5.05058- 3 1.40000+ 1 1.90000+ 1 1.09717- 3 5.06981- 3 1.40000+ 1 2.10000+ 1 2.21294- 2 5.16337- 3 1.40000+ 1 2.20000+ 1 2.44091- 3 5.16672- 3 1.40000+ 1 2.40000+ 1 1.07159- 4 5.27231- 3 1.40000+ 1 2.70000+ 1 1.01218- 4 5.23741- 3 1.40000+ 1 2.90000+ 1 1.11498- 3 5.25281- 3 1.40000+ 1 3.00000+ 1 1.43730- 4 5.25557- 3 1.40000+ 1 4.10000+ 1 9.35547- 6 5.27435- 3 1.60000+ 1 1.60000+ 1 2.97686- 5 5.59528- 3 1.60000+ 1 1.80000+ 1 8.12259- 4 5.65171- 3 1.60000+ 1 1.90000+ 1 8.67552- 5 5.67094- 3 1.60000+ 1 2.10000+ 1 5.78364- 5 5.76450- 3 1.60000+ 1 2.20000+ 1 6.80443- 5 5.76785- 3 1.60000+ 1 2.40000+ 1 3.40211- 6 5.87344- 3 1.60000+ 1 2.70000+ 1 9.35595- 6 5.83854- 3 1.60000+ 1 2.90000+ 1 1.05463- 4 5.85394- 3 1.60000+ 1 3.00000+ 1 1.10568- 5 5.85670- 3 1.60000+ 1 4.10000+ 1 8.50554- 7 5.87548- 3 1.80000+ 1 1.80000+ 1 7.16265- 4 5.70814- 3 1.80000+ 1 1.90000+ 1 2.16252- 3 5.72737- 3 1.80000+ 1 2.10000+ 1 9.52058- 4 5.82093- 3 1.80000+ 1 2.20000+ 1 1.45438- 3 5.82428- 3 1.80000+ 1 2.40000+ 1 7.29243- 6 5.92987- 3 1.80000+ 1 2.70000+ 1 1.32076- 4 5.89497- 3 1.80000+ 1 2.90000+ 1 1.92836- 4 5.91037- 3 1.80000+ 1 3.00000+ 1 2.90070- 4 5.91313- 3 1.80000+ 1 4.10000+ 1 1.21533- 5 5.93191- 3 1.90000+ 1 1.90000+ 1 5.79250- 5 5.74660- 3 1.90000+ 1 2.10000+ 1 1.30373- 3 5.84016- 3 1.90000+ 1 2.20000+ 1 1.55310- 4 5.84351- 3 1.90000+ 1 2.40000+ 1 6.71616- 6 5.94910- 3 1.90000+ 1 2.70000+ 1 1.42718- 5 5.91420- 3 1.90000+ 1 2.90000+ 1 2.92145- 4 5.92960- 3 1.90000+ 1 3.00000+ 1 1.51117- 5 5.93236- 3 1.90000+ 1 4.10000+ 1 1.67903- 6 5.95114- 3 2.10000+ 1 2.10000+ 1 8.94368- 4 5.93372- 3 2.10000+ 1 2.20000+ 1 3.59551- 3 5.93707- 3 2.10000+ 1 2.40000+ 1 2.70258- 5 6.04266- 3 2.10000+ 1 2.70000+ 1 1.01352- 5 6.00776- 3 2.10000+ 1 2.90000+ 1 1.30059- 4 6.02316- 3 2.10000+ 1 3.00000+ 1 1.74825- 4 6.02592- 3 2.10000+ 1 4.10000+ 1 8.44582- 7 6.04470- 3 2.20000+ 1 2.20000+ 1 2.02956- 4 5.94042- 3 2.20000+ 1 2.40000+ 1 1.36610- 5 6.04601- 3 2.20000+ 1 2.70000+ 1 1.26848- 5 6.01111- 3 2.20000+ 1 2.90000+ 1 2.23450- 4 6.02651- 3 2.20000+ 1 3.00000+ 1 2.34183- 5 6.02927- 3 2.20000+ 1 4.10000+ 1 9.75792- 7 6.04805- 3 2.40000+ 1 2.70000+ 1 8.50494- 7 6.11670- 3 2.40000+ 1 2.90000+ 1 8.50494- 7 6.13210- 3 2.40000+ 1 3.00000+ 1 8.50494- 7 6.13486- 3 2.70000+ 1 2.70000+ 1 1.02461- 6 6.08180- 3 2.70000+ 1 2.90000+ 1 2.15160- 5 6.09720- 3 2.70000+ 1 3.00000+ 1 2.04922- 6 6.09996- 3 2.90000+ 1 2.90000+ 1 1.73009- 5 6.11260- 3 2.90000+ 1 3.00000+ 1 5.08219- 5 6.11536- 3 2.90000+ 1 4.10000+ 1 2.16267- 6 6.13414- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.16369- 3 4.30290- 3 1.00000+ 1 4.85599- 5 4.45290- 3 1.10000+ 1 4.49529- 5 4.54230- 3 1.30000+ 1 9.46468- 3 4.80731- 3 1.40000+ 1 8.38199- 2 4.82666- 3 1.60000+ 1 8.57009- 4 5.42779- 3 1.80000+ 1 5.58679- 6 5.48422- 3 1.90000+ 1 5.38599- 6 5.50345- 3 2.10000+ 1 1.52070- 3 5.59701- 3 2.20000+ 1 1.35920- 2 5.60036- 3 2.40000+ 1 2.52120- 7 5.70595- 3 2.50000+ 1 1.44690- 6 5.70629- 3 2.70000+ 1 1.43630- 4 5.67105- 3 2.90000+ 1 9.83388- 7 5.68645- 3 3.00000+ 1 8.89019- 7 5.68921- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.27377- 3 2.89300- 3 8.00000+ 0 1.00000+ 1 8.58381- 4 3.04300- 3 8.00000+ 0 1.10000+ 1 2.79374- 2 3.13240- 3 8.00000+ 0 1.30000+ 1 2.78284- 3 3.39741- 3 8.00000+ 0 1.40000+ 1 3.25868- 3 3.41676- 3 8.00000+ 0 1.60000+ 1 4.55718- 4 4.01789- 3 8.00000+ 0 1.80000+ 1 1.49151- 4 4.07432- 3 8.00000+ 0 1.90000+ 1 4.01705- 3 4.09355- 3 8.00000+ 0 2.10000+ 1 2.54400- 4 4.18711- 3 8.00000+ 0 2.20000+ 1 2.72695- 4 4.19046- 3 8.00000+ 0 2.40000+ 1 1.92165- 5 4.29605- 3 8.00000+ 0 2.70000+ 1 7.41235- 5 4.26115- 3 8.00000+ 0 2.90000+ 1 2.01327- 5 4.27655- 3 8.00000+ 0 3.00000+ 1 5.06975- 4 4.27931- 3 8.00000+ 0 4.10000+ 1 6.40548- 6 4.29809- 3 1.00000+ 1 1.00000+ 1 2.65379- 4 3.19300- 3 1.00000+ 1 1.10000+ 1 4.65476- 2 3.28240- 3 1.00000+ 1 1.30000+ 1 2.92926- 3 3.54741- 3 1.00000+ 1 1.40000+ 1 2.62634- 2 3.56676- 3 1.00000+ 1 1.60000+ 1 1.65629- 4 4.16789- 3 1.00000+ 1 1.80000+ 1 9.33412- 5 4.22432- 3 1.00000+ 1 1.90000+ 1 6.94288- 3 4.24355- 3 1.00000+ 1 2.10000+ 1 4.72196- 4 4.33711- 3 1.00000+ 1 2.20000+ 1 3.65594- 3 4.34046- 3 1.00000+ 1 2.40000+ 1 2.10469- 5 4.44605- 3 1.00000+ 1 2.70000+ 1 2.74532- 5 4.41115- 3 1.00000+ 1 2.90000+ 1 1.28114- 5 4.42655- 3 1.00000+ 1 3.00000+ 1 8.82143- 4 4.42931- 3 1.00000+ 1 4.10000+ 1 2.74532- 6 4.44809- 3 1.10000+ 1 1.10000+ 1 6.45456- 2 3.37180- 3 1.10000+ 1 1.30000+ 1 6.55415- 2 3.63681- 3 1.10000+ 1 1.40000+ 1 9.74194- 2 3.65616- 3 1.10000+ 1 1.60000+ 1 6.37354- 3 4.25729- 3 1.10000+ 1 1.80000+ 1 9.42149- 3 4.31372- 3 1.10000+ 1 1.90000+ 1 2.28719- 2 4.33295- 3 1.10000+ 1 2.10000+ 1 1.09426- 2 4.42651- 3 1.10000+ 1 2.20000+ 1 1.60622- 2 4.42986- 3 1.10000+ 1 2.40000+ 1 1.00661- 4 4.53545- 3 1.10000+ 1 2.70000+ 1 1.08165- 3 4.50055- 3 1.10000+ 1 2.90000+ 1 1.29767- 3 4.51595- 3 1.10000+ 1 3.00000+ 1 3.00238- 3 4.51871- 3 1.10000+ 1 4.10000+ 1 9.88320- 5 4.53749- 3 1.30000+ 1 1.30000+ 1 9.47187- 3 3.90182- 3 1.30000+ 1 1.40000+ 1 1.81209- 1 3.92117- 3 1.30000+ 1 1.60000+ 1 5.97577- 4 4.52230- 3 1.30000+ 1 1.80000+ 1 5.93006- 4 4.57873- 3 1.30000+ 1 1.90000+ 1 9.11610- 3 4.59796- 3 1.30000+ 1 2.10000+ 1 2.79194- 3 4.69152- 3 1.30000+ 1 2.20000+ 1 2.28965- 2 4.69487- 3 1.30000+ 1 2.40000+ 1 5.76519- 5 4.80046- 3 1.30000+ 1 2.70000+ 1 1.00663- 4 4.76556- 3 1.30000+ 1 2.90000+ 1 8.14464- 5 4.78096- 3 1.30000+ 1 3.00000+ 1 1.14483- 3 4.78372- 3 1.30000+ 1 4.10000+ 1 9.15141- 6 4.80250- 3 1.40000+ 1 1.40000+ 1 1.22648- 1 3.94052- 3 1.40000+ 1 1.60000+ 1 7.39406- 4 4.54165- 3 1.40000+ 1 1.80000+ 1 4.94909- 3 4.59808- 3 1.40000+ 1 1.90000+ 1 1.51769- 2 4.61731- 3 1.40000+ 1 2.10000+ 1 2.70036- 2 4.71087- 3 1.40000+ 1 2.20000+ 1 3.46430- 2 4.71422- 3 1.40000+ 1 2.40000+ 1 6.08545- 4 4.81981- 3 1.40000+ 1 2.70000+ 1 1.25372- 4 4.78491- 3 1.40000+ 1 2.90000+ 1 6.72618- 4 4.80031- 3 1.40000+ 1 3.00000+ 1 1.95106- 3 4.80307- 3 1.40000+ 1 4.10000+ 1 1.18965- 5 4.82185- 3 1.60000+ 1 1.60000+ 1 4.03746- 5 5.14278- 3 1.60000+ 1 1.80000+ 1 2.93618- 5 5.19921- 3 1.60000+ 1 1.90000+ 1 9.22132- 4 5.21844- 3 1.60000+ 1 2.10000+ 1 5.87256- 5 5.31200- 3 1.60000+ 1 2.20000+ 1 6.69846- 5 5.31535- 3 1.60000+ 1 2.40000+ 1 2.75276- 6 5.42094- 3 1.60000+ 1 2.70000+ 1 1.28461- 5 5.38604- 3 1.60000+ 1 2.90000+ 1 3.67021- 6 5.40144- 3 1.60000+ 1 3.00000+ 1 1.16533- 4 5.40420- 3 1.60000+ 1 4.10000+ 1 9.17619- 7 5.42298- 3 1.80000+ 1 1.80000+ 1 6.96149- 6 5.25564- 3 1.80000+ 1 1.90000+ 1 1.33567- 3 5.27487- 3 1.80000+ 1 2.10000+ 1 8.87580- 5 5.36843- 3 1.80000+ 1 2.20000+ 1 6.76124- 4 5.37178- 3 1.80000+ 1 2.40000+ 1 2.61052- 6 5.47737- 3 1.80000+ 1 2.70000+ 1 4.35080- 6 5.44247- 3 1.80000+ 1 2.90000+ 1 1.74027- 6 5.45787- 3 1.80000+ 1 3.00000+ 1 1.69681- 4 5.46063- 3 1.90000+ 1 1.90000+ 1 1.75868- 3 5.29410- 3 1.90000+ 1 2.10000+ 1 1.36787- 3 5.38766- 3 1.90000+ 1 2.20000+ 1 2.21674- 3 5.39101- 3 1.90000+ 1 2.40000+ 1 1.06732- 5 5.49660- 3 1.90000+ 1 2.70000+ 1 1.40399- 4 5.46170- 3 1.90000+ 1 2.90000+ 1 1.73233- 4 5.47710- 3 1.90000+ 1 3.00000+ 1 4.58956- 4 5.47986- 3 1.90000+ 1 4.10000+ 1 1.31364- 5 5.49864- 3 2.10000+ 1 2.10000+ 1 1.99490- 4 5.48122- 3 2.10000+ 1 2.20000+ 1 3.49966- 3 5.48457- 3 2.10000+ 1 2.40000+ 1 6.37610- 6 5.59016- 3 2.10000+ 1 2.70000+ 1 1.00200- 5 5.55526- 3 2.10000+ 1 2.90000+ 1 1.27526- 5 5.57066- 3 2.10000+ 1 3.00000+ 1 1.90380- 4 5.57342- 3 2.10000+ 1 4.10000+ 1 9.10939- 7 5.59220- 3 2.20000+ 1 2.20000+ 1 2.57970- 3 5.48792- 3 2.20000+ 1 2.40000+ 1 6.53321- 5 5.59351- 3 2.20000+ 1 2.70000+ 1 1.15293- 5 5.55861- 3 2.20000+ 1 2.90000+ 1 1.01839- 4 5.57401- 3 2.20000+ 1 3.00000+ 1 3.32435- 4 5.57677- 3 2.20000+ 1 4.10000+ 1 9.60825- 7 5.59555- 3 2.40000+ 1 3.00000+ 1 1.83020- 6 5.68236- 3 2.70000+ 1 2.70000+ 1 1.15218- 6 5.62930- 3 2.70000+ 1 2.90000+ 1 1.15218- 6 5.64470- 3 2.70000+ 1 3.00000+ 1 2.53476- 5 5.64746- 3 2.90000+ 1 3.00000+ 1 3.11159- 5 5.66286- 3 3.00000+ 1 3.00000+ 1 4.82571- 5 5.66562- 3 3.00000+ 1 4.10000+ 1 2.68081- 6 5.68440- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.14319- 5 1.50000- 4 1.10000+ 1 9.56526- 5 2.39400- 4 1.80000+ 1 2.96638- 4 1.18132- 3 1.90000+ 1 3.82722- 4 1.20055- 3 2.90000+ 1 5.60244- 5 1.38355- 3 3.00000+ 1 7.03367- 5 1.38631- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.58743- 2 3.42100- 5 1.00000+ 1 2.20000+ 1 1.18528- 1 3.75600- 5 1.00000+ 1 2.40000+ 1 6.68488- 3 1.43150- 4 1.00000+ 1 2.50000+ 1 8.91334- 3 1.43490- 4 1.00000+ 1 2.70000+ 1 9.96413- 3 1.08250- 4 1.00000+ 1 2.90000+ 1 8.27499- 3 1.23650- 4 1.00000+ 1 3.00000+ 1 1.36262- 2 1.26410- 4 1.00000+ 1 4.10000+ 1 8.97181- 4 1.45190- 4 1.10000+ 1 1.80000+ 1 8.83699- 2 1.08200- 5 1.10000+ 1 1.90000+ 1 1.31097- 1 3.00500- 5 1.10000+ 1 2.10000+ 1 6.04468- 2 1.23610- 4 1.10000+ 1 2.20000+ 1 8.74035- 2 1.26960- 4 1.10000+ 1 2.40000+ 1 1.53448- 2 2.32550- 4 1.10000+ 1 2.50000+ 1 1.92048- 2 2.32890- 4 1.10000+ 1 2.70000+ 1 1.32789- 2 1.97650- 4 1.10000+ 1 2.90000+ 1 1.12855- 2 2.13050- 4 1.10000+ 1 3.00000+ 1 1.67979- 2 2.15810- 4 1.10000+ 1 4.10000+ 1 1.21126- 3 2.34590- 4 1.30000+ 1 1.60000+ 1 3.21930- 2 2.19400- 4 1.30000+ 1 1.80000+ 1 6.98075- 3 2.75830- 4 1.30000+ 1 1.90000+ 1 5.68036- 3 2.95060- 4 1.30000+ 1 2.10000+ 1 9.63515- 3 3.88620- 4 1.30000+ 1 2.20000+ 1 1.20181- 2 3.91970- 4 1.30000+ 1 2.40000+ 1 7.53130- 4 4.97560- 4 1.30000+ 1 2.50000+ 1 7.48132- 4 4.97900- 4 1.30000+ 1 2.70000+ 1 3.69283- 3 4.62660- 4 1.30000+ 1 2.90000+ 1 7.60342- 4 4.78060- 4 1.30000+ 1 3.00000+ 1 5.90925- 4 4.80820- 4 1.30000+ 1 4.10000+ 1 3.21376- 4 4.99600- 4 1.40000+ 1 1.60000+ 1 4.68273- 2 2.38750- 4 1.40000+ 1 1.80000+ 1 1.62294- 3 2.95180- 4 1.40000+ 1 1.90000+ 1 1.35634- 2 3.14410- 4 1.40000+ 1 2.10000+ 1 1.27445- 2 4.07970- 4 1.40000+ 1 2.20000+ 1 1.96830- 2 4.11320- 4 1.40000+ 1 2.40000+ 1 9.03946- 4 5.16910- 4 1.40000+ 1 2.50000+ 1 1.35744- 3 5.17250- 4 1.40000+ 1 2.70000+ 1 5.33359- 3 4.82010- 4 1.40000+ 1 2.90000+ 1 1.68639- 4 4.97410- 4 1.40000+ 1 3.00000+ 1 1.41452- 3 5.00170- 4 1.40000+ 1 4.10000+ 1 4.63800- 4 5.18950- 4 1.60000+ 1 1.60000+ 1 6.88537- 3 8.39880- 4 1.60000+ 1 1.80000+ 1 1.13441- 2 8.96310- 4 1.60000+ 1 1.90000+ 1 2.06978- 2 9.15540- 4 1.60000+ 1 2.10000+ 1 2.15991- 2 1.00910- 3 1.60000+ 1 2.20000+ 1 3.14041- 2 1.01245- 3 1.60000+ 1 2.40000+ 1 9.70140- 4 1.11804- 3 1.60000+ 1 2.50000+ 1 1.22846- 3 1.11838- 3 1.60000+ 1 2.70000+ 1 1.93266- 3 1.08314- 3 1.60000+ 1 2.90000+ 1 1.55991- 3 1.09854- 3 1.60000+ 1 3.00000+ 1 2.76791- 3 1.10130- 3 1.60000+ 1 4.10000+ 1 1.73673- 4 1.12008- 3 1.80000+ 1 1.80000+ 1 5.78366- 4 9.52740- 4 1.80000+ 1 1.90000+ 1 1.43545- 3 9.71970- 4 1.80000+ 1 2.10000+ 1 8.70869- 4 1.06553- 3 1.80000+ 1 2.20000+ 1 3.76379- 4 1.06888- 3 1.80000+ 1 2.40000+ 1 1.97784- 5 1.17447- 3 1.80000+ 1 2.50000+ 1 6.53299- 5 1.17481- 3 1.80000+ 1 2.70000+ 1 1.18852- 3 1.13957- 3 1.80000+ 1 2.90000+ 1 1.28260- 4 1.15497- 3 1.80000+ 1 3.00000+ 1 1.51637- 4 1.15773- 3 1.80000+ 1 4.10000+ 1 1.03087- 4 1.17651- 3 1.90000+ 1 1.90000+ 1 1.84596- 3 9.91200- 4 1.90000+ 1 2.10000+ 1 9.51147- 4 1.08476- 3 1.90000+ 1 2.20000+ 1 2.51391- 3 1.08811- 3 1.90000+ 1 2.40000+ 1 6.60499- 5 1.19370- 3 1.90000+ 1 2.50000+ 1 1.15448- 4 1.19404- 3 1.90000+ 1 2.70000+ 1 2.08549- 3 1.15880- 3 1.90000+ 1 2.90000+ 1 1.59096- 4 1.17420- 3 1.90000+ 1 3.00000+ 1 4.15241- 4 1.17696- 3 1.90000+ 1 4.10000+ 1 1.81496- 4 1.19574- 3 2.10000+ 1 2.10000+ 1 2.63867- 4 1.17832- 3 2.10000+ 1 2.20000+ 1 1.10110- 3 1.18167- 3 2.10000+ 1 2.40000+ 1 6.04162- 5 1.28726- 3 2.10000+ 1 2.50000+ 1 4.50679- 4 1.28760- 3 2.10000+ 1 2.70000+ 1 2.30017- 3 1.25236- 3 2.10000+ 1 2.90000+ 1 9.12457- 5 1.26776- 3 2.10000+ 1 3.00000+ 1 1.06659- 4 1.27052- 3 2.10000+ 1 4.10000+ 1 1.99753- 4 1.28930- 3 2.20000+ 1 2.20000+ 1 6.54387- 4 1.18502- 3 2.20000+ 1 2.40000+ 1 4.53191- 4 1.29061- 3 2.20000+ 1 2.50000+ 1 2.54393- 4 1.29095- 3 2.20000+ 1 2.70000+ 1 3.27426- 3 1.25571- 3 2.20000+ 1 2.90000+ 1 3.80689- 5 1.27111- 3 2.20000+ 1 3.00000+ 1 2.78556- 4 1.27387- 3 2.20000+ 1 4.10000+ 1 2.83994- 4 1.29265- 3 2.40000+ 1 2.50000+ 1 4.04625- 5 1.39654- 3 2.40000+ 1 2.70000+ 1 8.53580- 5 1.36130- 3 2.40000+ 1 2.90000+ 1 1.66284- 6 1.37670- 3 2.40000+ 1 3.00000+ 1 6.65147- 6 1.37946- 3 2.40000+ 1 4.10000+ 1 7.20567- 6 1.39824- 3 2.50000+ 1 2.50000+ 1 1.66297- 6 1.39688- 3 2.50000+ 1 2.70000+ 1 1.08092- 4 1.36164- 3 2.50000+ 1 2.90000+ 1 7.76047- 6 1.37704- 3 2.50000+ 1 3.00000+ 1 1.05321- 5 1.37980- 3 2.50000+ 1 4.10000+ 1 9.42341- 6 1.39858- 3 2.70000+ 1 2.70000+ 1 9.47123- 5 1.32640- 3 2.70000+ 1 2.90000+ 1 1.29758- 4 1.34180- 3 2.70000+ 1 3.00000+ 1 2.30150- 4 1.34456- 3 2.70000+ 1 4.10000+ 1 1.70485- 5 1.36334- 3 2.90000+ 1 2.90000+ 1 3.73014- 6 1.35720- 3 2.90000+ 1 3.00000+ 1 9.01434- 6 1.35996- 3 2.90000+ 1 4.10000+ 1 7.46017- 6 1.37874- 3 3.00000+ 1 3.00000+ 1 1.49553- 5 1.36272- 3 3.00000+ 1 4.10000+ 1 1.57026- 5 1.38150- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.41529- 4 3.54410- 4 1.60000+ 1 3.46386- 4 9.74890- 4 2.10000+ 1 1.53191- 3 1.14411- 3 2.70000+ 1 5.90543- 5 1.21815- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 4.90941- 3 8.25500- 5 1.10000+ 1 2.50000+ 1 5.99868- 3 8.28900- 5 1.10000+ 1 2.70000+ 1 8.39154- 3 4.76500- 5 1.10000+ 1 2.90000+ 1 8.08190- 3 6.30500- 5 1.10000+ 1 3.00000+ 1 9.38470- 3 6.58100- 5 1.10000+ 1 4.10000+ 1 7.06891- 4 8.45900- 5 1.30000+ 1 1.60000+ 1 1.16703- 1 6.94000- 5 1.30000+ 1 1.80000+ 1 1.17359- 1 1.25830- 4 1.30000+ 1 1.90000+ 1 1.66399- 1 1.45060- 4 1.30000+ 1 2.10000+ 1 5.13490- 2 2.38620- 4 1.30000+ 1 2.20000+ 1 5.72238- 2 2.41970- 4 1.30000+ 1 2.40000+ 1 2.36170- 2 3.47560- 4 1.30000+ 1 2.50000+ 1 3.51724- 2 3.47900- 4 1.30000+ 1 2.70000+ 1 1.97634- 2 3.12660- 4 1.30000+ 1 2.90000+ 1 1.40511- 2 3.28060- 4 1.30000+ 1 3.00000+ 1 2.12295- 2 3.30820- 4 1.30000+ 1 4.10000+ 1 1.81185- 3 3.49600- 4 1.40000+ 1 1.60000+ 1 1.96840- 2 8.87500- 5 1.40000+ 1 1.80000+ 1 1.38991- 1 1.45180- 4 1.40000+ 1 1.90000+ 1 1.41980- 2 1.64410- 4 1.40000+ 1 2.10000+ 1 2.60837- 3 2.57970- 4 1.40000+ 1 2.20000+ 1 6.71982- 3 2.61320- 4 1.40000+ 1 2.40000+ 1 6.65735- 4 3.66910- 4 1.40000+ 1 2.50000+ 1 5.64023- 4 3.67250- 4 1.40000+ 1 2.70000+ 1 2.22688- 3 3.32010- 4 1.40000+ 1 2.90000+ 1 1.36371- 2 3.47410- 4 1.40000+ 1 3.00000+ 1 1.65372- 3 3.50170- 4 1.40000+ 1 4.10000+ 1 1.95099- 4 3.68950- 4 1.60000+ 1 1.60000+ 1 7.46216- 4 6.89880- 4 1.60000+ 1 1.80000+ 1 1.04392- 2 7.46310- 4 1.60000+ 1 1.90000+ 1 1.69801- 3 7.65540- 4 1.60000+ 1 2.10000+ 1 3.63705- 4 8.59100- 4 1.60000+ 1 2.20000+ 1 1.16750- 3 8.62450- 4 1.60000+ 1 2.40000+ 1 1.70392- 5 9.68040- 4 1.60000+ 1 2.50000+ 1 5.93448- 5 9.68380- 4 1.60000+ 1 2.70000+ 1 1.98008- 4 9.33140- 4 1.60000+ 1 2.90000+ 1 9.75367- 4 9.48540- 4 1.60000+ 1 3.00000+ 1 2.03882- 4 9.51300- 4 1.60000+ 1 4.10000+ 1 1.76267- 5 9.70080- 4 1.80000+ 1 1.80000+ 1 7.87540- 3 8.02740- 4 1.80000+ 1 1.90000+ 1 2.43663- 2 8.21970- 4 1.80000+ 1 2.10000+ 1 2.21402- 2 9.15530- 4 1.80000+ 1 2.20000+ 1 3.67418- 2 9.18880- 4 1.80000+ 1 2.40000+ 1 8.38202- 4 1.02447- 3 1.80000+ 1 2.50000+ 1 1.45389- 3 1.02481- 3 1.80000+ 1 2.70000+ 1 1.82530- 3 9.89570- 4 1.80000+ 1 2.90000+ 1 1.84376- 3 1.00497- 3 1.80000+ 1 3.00000+ 1 3.23471- 3 1.00773- 3 1.80000+ 1 4.10000+ 1 1.67267- 4 1.02651- 3 1.90000+ 1 1.90000+ 1 7.25219- 4 8.41200- 4 1.90000+ 1 2.10000+ 1 2.23303- 3 9.34760- 4 1.90000+ 1 2.20000+ 1 1.68174- 3 9.38110- 4 1.90000+ 1 2.40000+ 1 6.55884- 4 1.04370- 3 1.90000+ 1 2.50000+ 1 1.95961- 4 1.04404- 3 1.90000+ 1 2.70000+ 1 2.17963- 4 1.00880- 3 1.90000+ 1 2.90000+ 1 2.53627- 3 1.02420- 3 1.90000+ 1 3.00000+ 1 1.61970- 4 1.02696- 3 1.90000+ 1 4.10000+ 1 1.86634- 5 1.04574- 3 2.10000+ 1 2.10000+ 1 7.41836- 4 1.02832- 3 2.10000+ 1 2.20000+ 1 2.03524- 3 1.03167- 3 2.10000+ 1 2.40000+ 1 7.90577- 5 1.13726- 3 2.10000+ 1 2.50000+ 1 1.33748- 4 1.13760- 3 2.10000+ 1 2.70000+ 1 5.46867- 5 1.10236- 3 2.10000+ 1 2.90000+ 1 2.01337- 3 1.11776- 3 2.10000+ 1 3.00000+ 1 2.21118- 4 1.12052- 3 2.10000+ 1 4.10000+ 1 4.75547- 6 1.13930- 3 2.20000+ 1 2.20000+ 1 3.58739- 4 1.03502- 3 2.20000+ 1 2.40000+ 1 2.09771- 4 1.14061- 3 2.20000+ 1 2.50000+ 1 4.31886- 5 1.14095- 3 2.20000+ 1 2.70000+ 1 1.12371- 4 1.10571- 3 2.20000+ 1 2.90000+ 1 2.51419- 3 1.12111- 3 2.20000+ 1 3.00000+ 1 1.15468- 4 1.12387- 3 2.20000+ 1 4.10000+ 1 1.01364- 5 1.14265- 3 2.40000+ 1 2.50000+ 1 6.78133- 5 1.24654- 3 2.40000+ 1 2.70000+ 1 9.04180- 7 1.21130- 3 2.40000+ 1 2.90000+ 1 5.28957- 5 1.22670- 3 2.40000+ 1 3.00000+ 1 5.47038- 5 1.22946- 3 2.50000+ 1 2.50000+ 1 4.52110- 7 1.24688- 3 2.50000+ 1 2.70000+ 1 6.78157- 6 1.21164- 3 2.50000+ 1 2.90000+ 1 9.22302- 5 1.22704- 3 2.50000+ 1 3.00000+ 1 1.49190- 5 1.22980- 3 2.50000+ 1 4.10000+ 1 4.52110- 7 1.24858- 3 2.70000+ 1 2.70000+ 1 1.08799- 5 1.17640- 3 2.70000+ 1 2.90000+ 1 1.32447- 4 1.19180- 3 2.70000+ 1 3.00000+ 1 1.89200- 5 1.19456- 3 2.70000+ 1 4.10000+ 1 1.89200- 6 1.21334- 3 2.90000+ 1 2.90000+ 1 9.82025- 5 1.20720- 3 2.90000+ 1 3.00000+ 1 2.96366- 4 1.20996- 3 2.90000+ 1 4.10000+ 1 1.51980- 5 1.22874- 3 3.00000+ 1 3.00000+ 1 1.09689- 5 1.21272- 3 3.00000+ 1 4.10000+ 1 2.35040- 6 1.23150- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.96426- 5 2.65010- 4 1.40000+ 1 2.24510- 4 2.84360- 4 1.60000+ 1 4.46362- 4 8.85490- 4 2.10000+ 1 1.91406- 4 1.05471- 3 2.20000+ 1 1.57059- 3 1.05806- 3 2.70000+ 1 7.62926- 5 1.12875- 3 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.68620- 2 3.64300- 5 1.30000+ 1 1.90000+ 1 9.21799- 2 5.56600- 5 1.30000+ 1 2.10000+ 1 1.31550- 2 1.49220- 4 1.30000+ 1 2.20000+ 1 1.03221- 2 1.52570- 4 1.30000+ 1 2.40000+ 1 2.37208- 3 2.58160- 4 1.30000+ 1 2.50000+ 1 3.50517- 3 2.58500- 4 1.30000+ 1 2.70000+ 1 3.11791- 3 2.23260- 4 1.30000+ 1 2.90000+ 1 2.13413- 3 2.38660- 4 1.30000+ 1 3.00000+ 1 9.60227- 3 2.41420- 4 1.30000+ 1 4.10000+ 1 2.78701- 4 2.60200- 4 1.40000+ 1 1.60000+ 1 9.85735- 2 0.00000+ 0 1.40000+ 1 1.80000+ 1 1.09464- 1 5.57800- 5 1.40000+ 1 1.90000+ 1 2.04346- 1 7.50100- 5 1.40000+ 1 2.10000+ 1 5.30989- 2 1.68570- 4 1.40000+ 1 2.20000+ 1 8.43871- 2 1.71920- 4 1.40000+ 1 2.40000+ 1 2.18473- 2 2.77510- 4 1.40000+ 1 2.50000+ 1 2.58097- 2 2.77850- 4 1.40000+ 1 2.70000+ 1 1.75102- 2 2.42610- 4 1.40000+ 1 2.90000+ 1 1.41392- 2 2.58010- 4 1.40000+ 1 3.00000+ 1 2.39261- 2 2.60770- 4 1.40000+ 1 4.10000+ 1 1.57900- 3 2.79550- 4 1.60000+ 1 1.60000+ 1 7.84122- 4 6.00480- 4 1.60000+ 1 1.80000+ 1 1.14980- 3 6.56910- 4 1.60000+ 1 1.90000+ 1 1.67334- 2 6.76140- 4 1.60000+ 1 2.10000+ 1 1.00555- 3 7.69700- 4 1.60000+ 1 2.20000+ 1 1.08941- 3 7.73050- 4 1.60000+ 1 2.40000+ 1 1.03153- 4 8.78640- 4 1.60000+ 1 2.50000+ 1 1.56827- 4 8.78980- 4 1.60000+ 1 2.70000+ 1 2.07148- 4 8.43740- 4 1.60000+ 1 2.90000+ 1 1.31667- 4 8.59140- 4 1.60000+ 1 3.00000+ 1 1.55233- 3 8.61900- 4 1.60000+ 1 4.10000+ 1 1.84503- 5 8.80680- 4 1.80000+ 1 1.80000+ 1 1.81861- 4 7.13340- 4 1.80000+ 1 1.90000+ 1 2.00615- 2 7.32570- 4 1.80000+ 1 2.10000+ 1 5.36840- 4 8.26130- 4 1.80000+ 1 2.20000+ 1 3.42453- 3 8.29480- 4 1.80000+ 1 2.40000+ 1 1.07543- 4 9.35070- 4 1.80000+ 1 2.50000+ 1 6.41770- 4 9.35410- 4 1.80000+ 1 2.70000+ 1 1.40768- 4 9.00170- 4 1.80000+ 1 2.90000+ 1 3.84721- 5 9.15570- 4 1.80000+ 1 3.00000+ 1 1.87983- 3 9.18330- 4 1.80000+ 1 4.10000+ 1 1.22409- 5 9.37110- 4 1.90000+ 1 1.90000+ 1 2.66275- 2 7.51800- 4 1.90000+ 1 2.10000+ 1 3.53624- 2 8.45360- 4 1.90000+ 1 2.20000+ 1 4.79069- 2 8.48710- 4 1.90000+ 1 2.40000+ 1 1.88253- 3 9.54300- 4 1.90000+ 1 2.50000+ 1 2.12371- 3 9.54640- 4 1.90000+ 1 2.70000+ 1 2.61780- 3 9.19400- 4 1.90000+ 1 2.90000+ 1 2.48209- 3 9.34800- 4 1.90000+ 1 3.00000+ 1 6.02065- 3 9.37560- 4 1.90000+ 1 4.10000+ 1 2.39494- 4 9.56340- 4 2.10000+ 1 2.10000+ 1 2.20773- 4 9.38920- 4 2.10000+ 1 2.20000+ 1 3.19283- 3 9.42270- 4 2.10000+ 1 2.40000+ 1 3.40171- 5 1.04786- 3 2.10000+ 1 2.50000+ 1 4.31840- 4 1.04820- 3 2.10000+ 1 2.70000+ 1 9.23345- 5 1.01296- 3 2.10000+ 1 2.90000+ 1 3.74908- 5 1.02836- 3 2.10000+ 1 3.00000+ 1 2.86525- 3 1.03112- 3 2.10000+ 1 4.10000+ 1 8.33118- 6 1.04990- 3 2.20000+ 1 2.20000+ 1 1.51800- 3 9.45620- 4 2.20000+ 1 2.40000+ 1 2.83584- 4 1.05121- 3 2.20000+ 1 2.50000+ 1 2.57636- 4 1.05155- 3 2.20000+ 1 2.70000+ 1 9.11074- 5 1.01631- 3 2.20000+ 1 2.90000+ 1 2.14801- 4 1.03171- 3 2.20000+ 1 3.00000+ 1 3.34506- 3 1.03447- 3 2.20000+ 1 4.10000+ 1 7.84374- 6 1.05325- 3 2.40000+ 1 2.50000+ 1 1.02943- 4 1.15714- 3 2.40000+ 1 2.70000+ 1 9.17978- 6 1.12190- 3 2.40000+ 1 2.90000+ 1 9.17978- 6 1.13730- 3 2.40000+ 1 3.00000+ 1 1.35727- 4 1.14006- 3 2.40000+ 1 4.10000+ 1 6.55702- 7 1.15884- 3 2.50000+ 1 2.50000+ 1 5.90132- 6 1.15748- 3 2.50000+ 1 2.70000+ 1 1.11467- 5 1.12224- 3 2.50000+ 1 2.90000+ 1 5.50771- 5 1.13764- 3 2.50000+ 1 3.00000+ 1 1.56708- 4 1.14040- 3 2.50000+ 1 4.10000+ 1 6.55699- 7 1.15918- 3 2.70000+ 1 2.70000+ 1 1.22145- 5 1.08700- 3 2.70000+ 1 2.90000+ 1 1.36512- 5 1.10240- 3 2.70000+ 1 3.00000+ 1 2.18416- 4 1.10516- 3 2.70000+ 1 4.10000+ 1 2.15536- 6 1.12394- 3 2.90000+ 1 2.90000+ 1 1.69328- 6 1.11780- 3 2.90000+ 1 3.00000+ 1 2.48070- 4 1.12056- 3 2.90000+ 1 4.10000+ 1 1.69328- 6 1.13934- 3 3.00000+ 1 3.00000+ 1 4.25119- 4 1.12332- 3 3.00000+ 1 4.10000+ 1 2.88901- 5 1.14210- 3 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.93691- 3 6.76910- 4 1.90000+ 1 4.43022- 4 6.96140- 4 2.40000+ 1 2.28191- 4 8.98640- 4 2.90000+ 1 4.62482- 4 8.79140- 4 3.00000+ 1 6.86833- 5 8.81900- 4 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 2.62971- 2 1.25000- 5 1.40000+ 1 2.50000+ 1 4.38084- 3 1.28400- 5 1.40000+ 1 4.10000+ 1 3.82230- 4 1.45400- 5 1.60000+ 1 1.80000+ 1 4.49161- 3 3.91900- 4 1.60000+ 1 1.90000+ 1 3.29320- 3 4.11130- 4 1.60000+ 1 2.10000+ 1 9.89338- 2 5.04690- 4 1.60000+ 1 2.20000+ 1 1.31461- 2 5.08040- 4 1.60000+ 1 2.40000+ 1 2.67707- 3 6.13630- 4 1.60000+ 1 2.50000+ 1 9.44639- 4 6.13970- 4 1.60000+ 1 2.70000+ 1 2.61353- 5 5.78730- 4 1.60000+ 1 2.90000+ 1 4.85396- 4 5.94130- 4 1.60000+ 1 3.00000+ 1 2.68837- 4 5.96890- 4 1.60000+ 1 4.10000+ 1 3.73386- 6 6.15670- 4 1.80000+ 1 1.80000+ 1 1.96028- 3 4.48330- 4 1.80000+ 1 1.90000+ 1 1.52115- 2 4.67560- 4 1.80000+ 1 2.10000+ 1 8.19259- 2 5.61120- 4 1.80000+ 1 2.20000+ 1 7.16116- 3 5.64470- 4 1.80000+ 1 2.40000+ 1 1.81451- 3 6.70060- 4 1.80000+ 1 2.50000+ 1 1.08277- 3 6.70400- 4 1.80000+ 1 2.70000+ 1 4.36852- 4 6.35160- 4 1.80000+ 1 2.90000+ 1 4.48044- 4 6.50560- 4 1.80000+ 1 3.00000+ 1 1.51212- 3 6.53320- 4 1.80000+ 1 4.10000+ 1 3.73380- 5 6.72100- 4 1.90000+ 1 1.90000+ 1 5.73143- 3 4.86790- 4 1.90000+ 1 2.10000+ 1 1.79967- 1 5.80350- 4 1.90000+ 1 2.20000+ 1 6.75809- 3 5.83700- 4 1.90000+ 1 2.40000+ 1 1.39642- 3 6.89290- 4 1.90000+ 1 2.50000+ 1 6.01142- 4 6.89630- 4 1.90000+ 1 2.70000+ 1 3.73389- 4 6.54390- 4 1.90000+ 1 2.90000+ 1 1.47854- 3 6.69790- 4 1.90000+ 1 3.00000+ 1 1.10141- 3 6.72550- 4 1.90000+ 1 4.10000+ 1 3.36044- 5 6.91330- 4 2.10000+ 1 2.10000+ 1 1.44127- 1 6.73910- 4 2.10000+ 1 2.20000+ 1 2.95738- 1 6.77260- 4 2.10000+ 1 2.40000+ 1 9.13293- 3 7.82850- 4 2.10000+ 1 2.50000+ 1 1.22276- 2 7.83190- 4 2.10000+ 1 2.70000+ 1 1.48376- 2 7.47950- 4 2.10000+ 1 2.90000+ 1 1.10509- 2 7.63350- 4 2.10000+ 1 3.00000+ 1 2.30744- 2 7.66110- 4 2.10000+ 1 4.10000+ 1 1.34387- 3 7.84890- 4 2.20000+ 1 2.20000+ 1 4.89141- 3 6.80610- 4 2.20000+ 1 2.40000+ 1 8.42738- 3 7.86200- 4 2.20000+ 1 2.50000+ 1 5.48885- 4 7.86540- 4 2.20000+ 1 2.70000+ 1 1.10893- 3 7.51300- 4 2.20000+ 1 2.90000+ 1 6.49703- 4 7.66700- 4 2.20000+ 1 3.00000+ 1 7.09425- 4 7.69460- 4 2.20000+ 1 4.10000+ 1 9.33461- 5 7.88240- 4 2.40000+ 1 2.50000+ 1 1.95645- 3 8.92130- 4 2.40000+ 1 2.70000+ 1 4.03268- 4 8.56890- 4 2.40000+ 1 2.90000+ 1 1.90423- 4 8.72290- 4 2.40000+ 1 3.00000+ 1 1.68026- 4 8.75050- 4 2.40000+ 1 4.10000+ 1 3.73396- 5 8.93830- 4 2.50000+ 1 2.50000+ 1 7.46762- 6 8.92470- 4 2.50000+ 1 2.70000+ 1 1.00814- 4 8.57230- 4 2.50000+ 1 2.90000+ 1 7.09419- 5 8.72630- 4 2.50000+ 1 3.00000+ 1 6.72096- 5 8.75390- 4 2.50000+ 1 4.10000+ 1 7.46762- 6 8.94170- 4 2.70000+ 1 2.70000+ 1 5.31054- 6 8.21990- 4 2.70000+ 1 2.90000+ 1 7.43460- 5 8.37390- 4 2.70000+ 1 3.00000+ 1 4.77940- 5 8.40150- 4 2.90000+ 1 2.90000+ 1 3.26866- 5 8.52790- 4 2.90000+ 1 3.00000+ 1 1.96125- 4 8.55550- 4 2.90000+ 1 4.10000+ 1 4.66981- 6 8.74330- 4 3.00000+ 1 3.00000+ 1 1.56544- 4 8.58310- 4 3.00000+ 1 4.10000+ 1 1.04366- 5 8.77090- 4 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.22511- 3 6.76790- 4 2.40000+ 1 1.15450- 5 8.79290- 4 2.50000+ 1 2.25851- 4 8.79630- 4 3.00000+ 1 5.06172- 4 8.62550- 4 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.12828- 5 3.16120- 4 1.60000+ 1 1.80000+ 1 1.52694- 3 3.72550- 4 1.60000+ 1 1.90000+ 1 6.96867- 3 3.91780- 4 1.60000+ 1 2.10000+ 1 1.00373- 2 4.85340- 4 1.60000+ 1 2.20000+ 1 1.06556- 1 4.88690- 4 1.60000+ 1 2.40000+ 1 9.02588- 4 5.94280- 4 1.60000+ 1 2.50000+ 1 2.86192- 3 5.94620- 4 1.60000+ 1 2.70000+ 1 2.63248- 5 5.59380- 4 1.60000+ 1 2.90000+ 1 8.64986- 5 5.74780- 4 1.60000+ 1 3.00000+ 1 6.69416- 4 5.77540- 4 1.60000+ 1 4.10000+ 1 3.76085- 6 5.96320- 4 1.80000+ 1 1.80000+ 1 7.52100- 6 4.28980- 4 1.80000+ 1 1.90000+ 1 1.53653- 2 4.48210- 4 1.80000+ 1 2.10000+ 1 1.04546- 3 5.41770- 4 1.80000+ 1 2.20000+ 1 1.03010- 1 5.45120- 4 1.80000+ 1 2.40000+ 1 3.91092- 4 6.50710- 4 1.80000+ 1 2.50000+ 1 1.38766- 3 6.51050- 4 1.80000+ 1 2.70000+ 1 1.46653- 4 6.15810- 4 1.80000+ 1 2.90000+ 1 3.76066- 6 6.31210- 4 1.80000+ 1 3.00000+ 1 1.48169- 3 6.33970- 4 1.80000+ 1 4.10000+ 1 1.12822- 5 6.52750- 4 1.90000+ 1 1.90000+ 1 1.18685- 2 4.67440- 4 1.90000+ 1 2.10000+ 1 9.55956- 3 5.61000- 4 1.90000+ 1 2.20000+ 1 1.68980- 1 5.64350- 4 1.90000+ 1 2.40000+ 1 7.93498- 4 6.69940- 4 1.90000+ 1 2.50000+ 1 1.89540- 3 6.70280- 4 1.90000+ 1 2.70000+ 1 7.59645- 4 6.35040- 4 1.90000+ 1 2.90000+ 1 1.42526- 3 6.50440- 4 1.90000+ 1 3.00000+ 1 2.36155- 3 6.53200- 4 1.90000+ 1 4.10000+ 1 6.76906- 5 6.71980- 4 2.10000+ 1 2.10000+ 1 2.03083- 3 6.54560- 4 2.10000+ 1 2.20000+ 1 2.10801- 1 6.57910- 4 2.10000+ 1 2.40000+ 1 4.13675- 4 7.63500- 4 2.10000+ 1 2.50000+ 1 5.23108- 3 7.63840- 4 2.10000+ 1 2.70000+ 1 8.31107- 4 7.28600- 4 2.10000+ 1 2.90000+ 1 1.39138- 4 7.44000- 4 2.10000+ 1 3.00000+ 1 9.02560- 4 7.46760- 4 2.10000+ 1 4.10000+ 1 7.14515- 5 7.65540- 4 2.20000+ 1 2.20000+ 1 2.43379- 1 6.61260- 4 2.20000+ 1 2.40000+ 1 1.05985- 2 7.66850- 4 2.20000+ 1 2.50000+ 1 1.51254- 2 7.67190- 4 2.20000+ 1 2.70000+ 1 1.56449- 2 7.31950- 4 2.20000+ 1 2.90000+ 1 1.35190- 2 7.47350- 4 2.20000+ 1 3.00000+ 1 2.20305- 2 7.50110- 4 2.20000+ 1 4.10000+ 1 1.41402- 3 7.68890- 4 2.40000+ 1 2.50000+ 1 1.65083- 3 8.72780- 4 2.40000+ 1 2.70000+ 1 1.01537- 4 8.37540- 4 2.40000+ 1 2.90000+ 1 4.51277- 5 8.52940- 4 2.40000+ 1 3.00000+ 1 6.76916- 5 8.55700- 4 2.40000+ 1 4.10000+ 1 7.52118- 6 8.74480- 4 2.50000+ 1 2.50000+ 1 1.57945- 4 8.73120- 4 2.50000+ 1 2.70000+ 1 4.13677- 4 8.37880- 4 2.50000+ 1 2.90000+ 1 1.76750- 4 8.53280- 4 2.50000+ 1 3.00000+ 1 2.03084- 4 8.56040- 4 2.50000+ 1 4.10000+ 1 3.76076- 5 8.74820- 4 2.70000+ 1 2.90000+ 1 1.89475- 5 8.18040- 4 2.70000+ 1 3.00000+ 1 1.98953- 4 8.20800- 4 2.90000+ 1 3.00000+ 1 2.93751- 4 8.36200- 4 3.00000+ 1 3.00000+ 1 2.96483- 4 8.38960- 4 3.00000+ 1 4.10000+ 1 1.79683- 5 8.57740- 4 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.19538- 5 5.64300- 5 1.90000+ 1 5.67068- 5 7.56600- 5 2.90000+ 1 2.13483- 5 2.58660- 4 3.00000+ 1 1.99030- 5 2.61420- 4 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.31480- 2 4.95800- 5 1.80000+ 1 2.50000+ 1 2.04087- 2 4.99200- 5 1.80000+ 1 2.70000+ 1 6.18757- 2 1.46800- 5 1.80000+ 1 2.90000+ 1 4.71703- 2 3.00800- 5 1.80000+ 1 3.00000+ 1 1.02579- 1 3.28400- 5 1.80000+ 1 4.10000+ 1 5.40066- 3 5.16200- 5 1.90000+ 1 2.40000+ 1 4.19702- 2 6.88100- 5 1.90000+ 1 2.50000+ 1 4.93059- 2 6.91500- 5 1.90000+ 1 2.70000+ 1 8.61517- 2 3.39100- 5 1.90000+ 1 2.90000+ 1 8.65660- 2 4.93100- 5 1.90000+ 1 3.00000+ 1 1.19933- 1 5.20700- 5 1.90000+ 1 4.10000+ 1 7.59719- 3 7.08500- 5 2.10000+ 1 2.10000+ 1 5.40786- 3 5.34300- 5 2.10000+ 1 2.20000+ 1 4.26653- 2 5.67800- 5 2.10000+ 1 2.40000+ 1 1.38992- 3 1.62370- 4 2.10000+ 1 2.50000+ 1 3.50843- 3 1.62710- 4 2.10000+ 1 2.70000+ 1 2.67983- 2 1.27470- 4 2.10000+ 1 2.90000+ 1 5.05341- 3 1.42870- 4 2.10000+ 1 3.00000+ 1 1.80536- 2 1.45630- 4 2.10000+ 1 4.10000+ 1 1.98438- 3 1.64410- 4 2.20000+ 1 2.20000+ 1 1.85025- 2 6.01300- 5 2.20000+ 1 2.40000+ 1 4.01970- 3 1.65720- 4 2.20000+ 1 2.50000+ 1 3.41546- 3 1.66060- 4 2.20000+ 1 2.70000+ 1 3.90499- 2 1.30820- 4 2.20000+ 1 2.90000+ 1 1.60755- 2 1.46220- 4 2.20000+ 1 3.00000+ 1 1.68086- 2 1.48980- 4 2.20000+ 1 4.10000+ 1 2.88952- 3 1.67760- 4 2.40000+ 1 2.50000+ 1 3.23721- 4 2.71650- 4 2.40000+ 1 2.70000+ 1 2.65667- 3 2.36410- 4 2.40000+ 1 2.90000+ 1 3.45517- 4 2.51810- 4 2.40000+ 1 3.00000+ 1 8.21764- 4 2.54570- 4 2.40000+ 1 4.10000+ 1 1.78370- 4 2.73350- 4 2.50000+ 1 2.50000+ 1 2.95698- 5 2.71990- 4 2.50000+ 1 2.70000+ 1 3.42053- 3 2.36750- 4 2.50000+ 1 2.90000+ 1 2.73597- 4 2.52150- 4 2.50000+ 1 3.00000+ 1 1.03595- 3 2.54910- 4 2.50000+ 1 4.10000+ 1 2.29710- 4 2.73690- 4 2.70000+ 1 2.70000+ 1 1.50059- 2 2.01510- 4 2.70000+ 1 2.90000+ 1 1.82526- 2 2.16910- 4 2.70000+ 1 3.00000+ 1 3.24179- 2 2.19670- 4 2.70000+ 1 4.10000+ 1 2.40129- 3 2.38450- 4 2.90000+ 1 2.90000+ 1 6.30863- 3 2.32310- 4 2.90000+ 1 3.00000+ 1 2.76904- 2 2.35070- 4 2.90000+ 1 4.10000+ 1 5.45543- 3 2.53850- 4 3.00000+ 1 3.00000+ 1 2.48011- 2 2.37830- 4 3.00000+ 1 4.10000+ 1 1.05123- 2 2.56610- 4 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.65340- 4 1.12790- 4 2.70000+ 1 3.08910- 5 1.86830- 4 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 1.19501- 2 1.23800- 5 1.90000+ 1 2.50000+ 1 9.01989- 3 1.27200- 5 1.90000+ 1 4.10000+ 1 1.26403- 3 1.44200- 5 2.10000+ 1 2.10000+ 1 8.35972- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 5.95361- 1 3.50000- 7 2.10000+ 1 2.40000+ 1 2.67165- 2 1.05940- 4 2.10000+ 1 2.50000+ 1 5.45184- 2 1.06280- 4 2.10000+ 1 2.70000+ 1 4.02292- 2 7.10400- 5 2.10000+ 1 2.90000+ 1 2.84508- 2 8.64400- 5 2.10000+ 1 3.00000+ 1 5.61770- 2 8.92000- 5 2.10000+ 1 4.10000+ 1 3.68942- 3 1.07980- 4 2.20000+ 1 2.20000+ 1 2.56495- 2 3.70000- 6 2.20000+ 1 2.40000+ 1 6.24014- 3 1.09290- 4 2.20000+ 1 2.50000+ 1 1.68034- 3 1.09630- 4 2.20000+ 1 2.70000+ 1 6.09839- 3 7.43900- 5 2.20000+ 1 2.90000+ 1 2.70149- 2 8.97900- 5 2.20000+ 1 3.00000+ 1 6.31487- 3 9.25500- 5 2.20000+ 1 4.10000+ 1 4.81831- 4 1.11330- 4 2.40000+ 1 2.50000+ 1 4.47748- 4 2.15220- 4 2.40000+ 1 2.70000+ 1 5.59142- 4 1.79980- 4 2.40000+ 1 2.90000+ 1 1.74453- 3 1.95380- 4 2.40000+ 1 3.00000+ 1 7.98089- 4 1.98140- 4 2.40000+ 1 4.10000+ 1 4.84886- 5 2.16920- 4 2.50000+ 1 2.50000+ 1 2.62106- 6 2.15560- 4 2.50000+ 1 2.70000+ 1 2.65808- 4 1.80320- 4 2.50000+ 1 2.90000+ 1 2.85761- 3 1.95720- 4 2.50000+ 1 3.00000+ 1 2.59257- 4 1.98480- 4 2.50000+ 1 4.10000+ 1 1.90026- 5 2.17260- 4 2.70000+ 1 2.70000+ 1 7.33228- 5 1.45080- 4 2.70000+ 1 2.90000+ 1 1.46846- 3 1.60480- 4 2.70000+ 1 3.00000+ 1 2.17839- 4 1.63240- 4 2.70000+ 1 4.10000+ 1 1.12810- 5 1.82020- 4 2.90000+ 1 2.90000+ 1 1.56222- 3 1.75880- 4 2.90000+ 1 3.00000+ 1 4.57048- 3 1.78640- 4 2.90000+ 1 4.10000+ 1 2.56696- 4 1.97420- 4 3.00000+ 1 3.00000+ 1 1.59627- 4 1.81400- 4 3.00000+ 1 4.10000+ 1 2.83328- 5 2.00180- 4 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.25900- 6 9.35600- 5 2.20000+ 1 4.52840- 5 9.69100- 5 2.70000+ 1 1.25310- 5 1.67600- 4 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 9.53531- 3 8.67100- 5 2.10000+ 1 2.50000+ 1 2.86298- 2 8.70500- 5 2.10000+ 1 2.70000+ 1 2.84905- 2 5.18100- 5 2.10000+ 1 2.90000+ 1 2.14903- 2 6.72100- 5 2.10000+ 1 3.00000+ 1 8.80097- 2 6.99700- 5 2.10000+ 1 4.10000+ 1 2.55447- 3 8.87500- 5 2.20000+ 1 2.40000+ 1 1.24767- 1 9.00600- 5 2.20000+ 1 2.50000+ 1 1.24838- 1 9.04000- 5 2.20000+ 1 2.70000+ 1 1.49721- 1 5.51600- 5 2.20000+ 1 2.90000+ 1 1.44932- 1 7.05600- 5 2.20000+ 1 3.00000+ 1 2.31069- 1 7.33200- 5 2.20000+ 1 4.10000+ 1 1.40844- 2 9.21000- 5 2.40000+ 1 2.50000+ 1 1.25081- 3 1.95990- 4 2.40000+ 1 2.70000+ 1 1.36755- 3 1.60750- 4 2.40000+ 1 2.90000+ 1 5.81187- 4 1.76150- 4 2.40000+ 1 3.00000+ 1 8.34930- 3 1.78910- 4 2.40000+ 1 4.10000+ 1 9.21555- 5 1.97690- 4 2.50000+ 1 2.50000+ 1 7.20898- 5 1.96330- 4 2.50000+ 1 2.70000+ 1 2.92447- 3 1.61090- 4 2.50000+ 1 2.90000+ 1 2.46892- 3 1.76490- 4 2.50000+ 1 3.00000+ 1 1.01001- 2 1.79250- 4 2.50000+ 1 4.10000+ 1 2.21470- 4 1.98030- 4 2.70000+ 1 2.70000+ 1 1.13418- 5 1.25850- 4 2.70000+ 1 2.90000+ 1 9.46518- 5 1.41250- 4 2.70000+ 1 3.00000+ 1 1.83273- 3 1.44010- 4 2.70000+ 1 4.10000+ 1 2.18105- 6 1.62790- 4 2.90000+ 1 2.90000+ 1 9.23112- 6 1.56650- 4 2.90000+ 1 3.00000+ 1 8.02077- 4 1.59410- 4 2.90000+ 1 4.10000+ 1 3.28207- 6 1.78190- 4 3.00000+ 1 3.00000+ 1 1.52620- 3 1.62170- 4 3.00000+ 1 4.10000+ 1 1.07802- 4 1.80950- 4 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.29381- 7 1.08940- 4 2.90000+ 1 2.86143- 6 8.94400- 5 3.00000+ 1 4.82671- 7 9.22000- 5 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.55342- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 3.67155- 3 0.00000+ 0 2.40000+ 1 2.50000+ 1 6.80222- 2 1.02430- 4 2.40000+ 1 2.70000+ 1 4.75190- 2 6.71900- 5 2.40000+ 1 2.90000+ 1 4.35566- 2 8.25900- 5 2.40000+ 1 3.00000+ 1 7.08820- 2 8.53500- 5 2.40000+ 1 4.10000+ 1 4.51920- 3 1.04130- 4 2.50000+ 1 2.50000+ 1 4.25792- 5 1.02770- 4 2.50000+ 1 2.70000+ 1 1.88667- 3 6.75300- 5 2.50000+ 1 2.90000+ 1 6.64409- 3 8.29300- 5 2.50000+ 1 3.00000+ 1 2.07590- 3 8.56900- 5 2.50000+ 1 4.10000+ 1 1.45710- 4 1.04470- 4 2.70000+ 1 2.70000+ 1 6.19019- 2 3.22900- 5 2.70000+ 1 2.90000+ 1 3.86277- 2 4.76900- 5 2.70000+ 1 3.00000+ 1 4.89528- 2 5.04500- 5 2.70000+ 1 4.10000+ 1 6.02678- 3 6.92300- 5 2.90000+ 1 2.90000+ 1 1.04552- 1 6.30900- 5 2.90000+ 1 3.00000+ 1 3.10456- 1 6.58500- 5 2.90000+ 1 4.10000+ 1 1.22299- 2 8.46300- 5 3.00000+ 1 3.00000+ 1 1.13748- 1 6.86100- 5 3.00000+ 1 4.10000+ 1 9.00153- 3 8.73900- 5 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.19609- 8 1.05590- 4 2.50000+ 1 2.41437- 7 1.05930- 4 3.00000+ 1 3.55876- 6 8.88500- 5 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.50000+ 1 1.57397- 1 9.90800- 5 2.40000+ 1 2.70000+ 1 1.94029- 2 6.38400- 5 2.40000+ 1 2.90000+ 1 1.12874- 2 7.92400- 5 2.40000+ 1 3.00000+ 1 5.22348- 2 8.20000- 5 2.40000+ 1 4.10000+ 1 1.64500- 3 1.00780- 4 2.50000+ 1 2.50000+ 1 1.57405- 2 9.94200- 5 2.50000+ 1 2.70000+ 1 1.39590- 1 6.41800- 5 2.50000+ 1 2.90000+ 1 1.39020- 1 7.95800- 5 2.50000+ 1 3.00000+ 1 2.12771- 1 8.23400- 5 2.50000+ 1 4.10000+ 1 1.33628- 2 1.01120- 4 2.70000+ 1 2.70000+ 1 5.65788- 2 2.89400- 5 2.70000+ 1 2.90000+ 1 2.01873- 2 4.43400- 5 2.70000+ 1 3.00000+ 1 5.52564- 2 4.71000- 5 2.70000+ 1 4.10000+ 1 5.41580- 3 6.58800- 5 2.90000+ 1 2.90000+ 1 5.31452- 3 5.97400- 5 2.90000+ 1 3.00000+ 1 5.14828- 2 6.25000- 5 2.90000+ 1 4.10000+ 1 1.04598- 3 8.12800- 5 3.00000+ 1 3.00000+ 1 3.90579- 2 6.52600- 5 3.00000+ 1 4.10000+ 1 3.20560- 3 8.40400- 5 1 58000 0 7 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.07321- 9 1.54000- 5 3.00000+ 1 3.55922- 9 1.81600- 5 1 58000 0 9 1.40120+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.89813- 1 1.05900- 5 3.00000+ 1 4.10000+ 1 6.02064- 1 1.33500- 5 4.10000+ 1 4.10000+ 1 8.12345- 3 3.21300- 5 1 59000 0 0 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 1.29000+ 0 2.50000+ 1 1.71000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 59000 0 0 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.20100- 2 3.00000+ 0 6.79980- 3 5.00000+ 0 6.44290- 3 6.00000+ 0 5.95440- 3 8.00000+ 0 1.48010- 3 1.00000+ 1 1.32570- 3 1.10000+ 1 1.22840- 3 1.30000+ 1 9.55980- 4 1.40000+ 1 9.34860- 4 1.60000+ 1 2.99250- 4 1.80000+ 1 2.40640- 4 1.90000+ 1 2.19560- 4 2.10000+ 1 1.22280- 4 2.20000+ 1 1.18590- 4 2.40000+ 1 7.65000- 6 2.50000+ 1 7.24000- 6 2.70000+ 1 4.33000- 5 2.90000+ 1 2.72600- 5 3.00000+ 1 2.42600- 5 4.10000+ 1 4.89000- 6 1 59000 0 0 1.40908+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.42070- 2 3.00000+ 0 1.20950- 2 5.00000+ 0 1.21040- 2 6.00000+ 0 1.03140- 2 8.00000+ 0 3.65210- 3 1.00000+ 1 3.57450- 3 1.10000+ 1 3.16240- 3 1.30000+ 1 3.03140- 3 1.40000+ 1 2.93310- 3 1.60000+ 1 1.11420- 3 1.80000+ 1 1.03580- 3 1.90000+ 1 9.23650- 4 2.10000+ 1 7.67180- 4 2.20000+ 1 7.42800- 4 2.40000+ 1 3.99110- 4 2.50000+ 1 3.92020- 4 2.70000+ 1 2.40620- 4 2.90000+ 1 1.90500- 4 3.00000+ 1 1.67070- 4 4.10000+ 1 2.62800- 5 1 59000 0 0 1.40908+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.27320-10 3.00000+ 0 5.41010-10 5.00000+ 0 4.53350-10 6.00000+ 0 4.86560-10 8.00000+ 0 1.43070- 9 1.00000+ 1 1.37400- 9 1.10000+ 1 1.43840- 9 1.30000+ 1 1.28400- 9 1.40000+ 1 1.30440- 9 1.60000+ 1 3.26540- 9 1.80000+ 1 3.35030- 9 1.90000+ 1 3.49550- 9 2.10000+ 1 3.75150- 9 2.20000+ 1 3.80210- 9 2.40000+ 1 5.41780- 9 2.50000+ 1 5.47960- 9 2.70000+ 1 7.81970- 9 2.90000+ 1 8.76580- 9 3.00000+ 1 9.20990- 9 4.10000+ 1 2.37370- 8 1 59000 0 0 1.40908+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.44500- 5 3.00000+ 0 2.59930- 7 5.00000+ 0 4.39730- 7 6.00000+ 0 4.08690- 7 8.00000+ 0 7.54190- 9 1.00000+ 1 7.52650- 9 1.10000+ 1 7.63680- 9 1.30000+ 1 1.82100- 9 1.40000+ 1 1.68070- 9 1.60000+ 1 1.94190-10 1.80000+ 1 3.95300-10 1.90000+ 1 2.91910-10 2.10000+ 1 9.19530-11 2.20000+ 1 8.43990-11 2.70000+ 1 9.90750-12 1 59000 0 0 1.40908+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32980- 6 3.00000+ 0 3.69870- 6 5.00000+ 0 2.85970- 6 6.00000+ 0 2.67890- 6 8.00000+ 0 1.34990- 5 1.00000+ 1 6.00090- 6 1.10000+ 1 6.94300- 6 1.30000+ 1 8.71680- 7 1.40000+ 1 7.48290- 7 1.60000+ 1 8.24680- 6 1.80000+ 1 1.18360- 5 1.90000+ 1 4.34870- 6 2.10000+ 1 7.80830- 7 2.20000+ 1 5.31640- 7 2.70000+ 1 5.74580- 7 1 59000 0 0 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.70601- 4 3.00000+ 0 2.03642- 4 5.00000+ 0 1.76812- 4 6.00000+ 0 1.62886- 4 8.00000+ 0 1.48525- 4 1.00000+ 1 1.29327- 4 1.10000+ 1 1.17064- 4 1.30000+ 1 8.57036- 5 1.40000+ 1 7.61396- 5 1.60000+ 1 7.10085- 5 1.80000+ 1 6.76276- 5 1.90000+ 1 5.07525- 5 2.10000+ 1 4.29762- 5 2.20000+ 1 3.05297- 5 2.40000+ 1 7.65000- 6 2.50000+ 1 7.24000- 6 2.70000+ 1 3.01743- 5 2.90000+ 1 2.72600- 5 3.00000+ 1 2.42600- 5 4.10000+ 1 4.89000- 6 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04362+ 0 3.00000+ 0 1.41960- 1 5.00000+ 0 1.57773- 1 6.00000+ 0 1.33450- 1 8.00000+ 0 6.56805- 3 1.00000+ 1 6.88350- 3 1.10000+ 1 6.53826- 3 1.30000+ 1 4.96023- 3 1.40000+ 1 4.64001- 3 1.60000+ 1 2.10669- 4 1.80000+ 1 2.35187- 4 1.90000+ 1 7.68318- 5 2.10000+ 1 5.42514- 6 2.20000+ 1 5.47046- 6 2.70000+ 1 1.13099- 8 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.44528- 2 3.00000+ 0 7.35009- 4 5.00000+ 0 8.28522- 4 6.00000+ 0 6.42141- 4 8.00000+ 0 5.72202- 6 1.00000+ 1 5.80891- 6 1.10000+ 1 5.52351- 6 1.30000+ 1 3.73270- 6 1.40000+ 1 3.46948- 6 1.60000+ 1 2.95163- 8 1.80000+ 1 3.05337- 8 1.90000+ 1 8.85568- 9 2.10000+ 1 5.26323-10 2.20000+ 1 5.24229-10 2.70000+ 1 2.07605-13 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.93010+ 0 3.00000+ 0 1.20051+ 1 5.00000+ 0 1.01324+ 1 6.00000+ 0 9.54937+ 0 8.00000+ 0 8.49641+ 0 1.00000+ 1 7.05617+ 0 1.10000+ 1 6.64865+ 0 1.30000+ 1 4.15966+ 0 1.40000+ 1 4.11151+ 0 1.60000+ 1 3.34024+ 0 1.80000+ 1 3.12939+ 0 1.90000+ 1 2.37539+ 0 2.10000+ 1 1.28425+ 0 2.20000+ 1 1.26688+ 0 2.70000+ 1 1.00000+ 0 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.38660- 3 3.00000+ 0 5.86115- 3 5.00000+ 0 5.43757- 3 6.00000+ 0 5.14937- 3 8.00000+ 0 1.32585- 3 1.00000+ 1 1.19056- 3 1.10000+ 1 1.10581- 3 1.30000+ 1 8.66544- 4 1.40000+ 1 8.55251- 4 1.60000+ 1 2.28212- 4 1.80000+ 1 1.72982- 4 1.90000+ 1 1.68799- 4 2.10000+ 1 7.93032- 5 2.20000+ 1 8.80597- 5 2.70000+ 1 1.31257- 5 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.62970- 1 3.55671- 2 6.00000+ 0 4.80249- 1 3.60556- 2 1.00000+ 1 4.70639- 2 4.06843- 2 1.10000+ 1 9.11188- 2 4.07816- 2 1.30000+ 1 5.84639- 4 4.10540- 2 1.40000+ 1 7.85059- 4 4.10751- 2 1.80000+ 1 1.00620- 2 4.17694- 2 1.90000+ 1 1.95640- 2 4.17904- 2 2.10000+ 1 1.24520- 4 4.18877- 2 2.20000+ 1 1.67000- 4 4.18914- 2 2.90000+ 1 1.80740- 3 4.19827- 2 3.00000+ 1 3.53409- 3 4.19857- 2 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.91610- 3 2.84104- 2 3.00000+ 0 5.00000+ 0 8.52798- 3 2.87673- 2 3.00000+ 0 6.00000+ 0 9.11903- 3 2.92558- 2 3.00000+ 0 8.00000+ 0 2.54905- 3 3.37301- 2 3.00000+ 0 1.00000+ 1 1.69203- 3 3.38845- 2 3.00000+ 0 1.10000+ 1 1.84719- 3 3.39818- 2 3.00000+ 0 1.30000+ 1 1.27822- 4 3.42542- 2 3.00000+ 0 1.40000+ 1 1.31178- 4 3.42753- 2 3.00000+ 0 1.60000+ 1 5.81240- 4 3.49109- 2 3.00000+ 0 1.80000+ 1 3.68534- 4 3.49696- 2 3.00000+ 0 1.90000+ 1 4.00412- 4 3.49906- 2 3.00000+ 0 2.10000+ 1 2.66723- 5 3.50879- 2 3.00000+ 0 2.20000+ 1 2.71743- 5 3.50916- 2 3.00000+ 0 2.70000+ 1 9.81229- 5 3.51669- 2 3.00000+ 0 2.90000+ 1 5.09954- 5 3.51829- 2 3.00000+ 0 3.00000+ 1 5.36784- 5 3.51859- 2 3.00000+ 0 4.10000+ 1 8.72312- 6 3.52053- 2 5.00000+ 0 5.00000+ 0 9.21226- 4 2.91242- 2 5.00000+ 0 6.00000+ 0 1.88975- 2 2.96127- 2 5.00000+ 0 8.00000+ 0 1.31174- 3 3.40870- 2 5.00000+ 0 1.00000+ 1 3.25422- 4 3.42414- 2 5.00000+ 0 1.10000+ 1 3.18632- 3 3.43387- 2 5.00000+ 0 1.30000+ 1 1.47779- 4 3.46111- 2 5.00000+ 0 1.40000+ 1 4.79407- 4 3.46322- 2 5.00000+ 0 1.60000+ 1 2.87670- 4 3.52678- 2 5.00000+ 0 1.80000+ 1 6.94432- 5 3.53265- 2 5.00000+ 0 1.90000+ 1 6.66446- 4 3.53475- 2 5.00000+ 0 2.10000+ 1 3.01930- 5 3.54448- 2 5.00000+ 0 2.20000+ 1 9.77992- 5 3.54485- 2 5.00000+ 0 2.40000+ 1 1.67740- 7 3.55594- 2 5.00000+ 0 2.70000+ 1 4.81420- 5 3.55238- 2 5.00000+ 0 2.90000+ 1 9.56147- 6 3.55398- 2 5.00000+ 0 3.00000+ 1 8.87288- 5 3.55428- 2 5.00000+ 0 4.10000+ 1 4.36130- 6 3.55622- 2 6.00000+ 0 6.00000+ 0 9.20098- 3 3.01012- 2 6.00000+ 0 8.00000+ 0 1.35536- 3 3.45755- 2 6.00000+ 0 1.00000+ 1 3.07997- 3 3.47299- 2 6.00000+ 0 1.10000+ 1 3.19116- 3 3.48272- 2 6.00000+ 0 1.30000+ 1 5.64290- 4 3.50996- 2 6.00000+ 0 1.40000+ 1 5.11110- 4 3.51207- 2 6.00000+ 0 1.60000+ 1 2.95224- 4 3.57563- 2 6.00000+ 0 1.80000+ 1 6.46304- 4 3.58150- 2 6.00000+ 0 1.90000+ 1 6.72005- 4 3.58360- 2 6.00000+ 0 2.10000+ 1 1.15739- 4 3.59333- 2 6.00000+ 0 2.20000+ 1 1.04504- 4 3.59370- 2 6.00000+ 0 2.40000+ 1 3.35488- 7 3.60479- 2 6.00000+ 0 2.70000+ 1 4.93173- 5 3.60123- 2 6.00000+ 0 2.90000+ 1 8.87308- 5 3.60283- 2 6.00000+ 0 3.00000+ 1 8.95750- 5 3.60313- 2 6.00000+ 0 4.10000+ 1 4.36139- 6 3.60507- 2 8.00000+ 0 8.00000+ 0 2.31339- 4 3.90498- 2 8.00000+ 0 1.00000+ 1 2.62372- 4 3.92042- 2 8.00000+ 0 1.10000+ 1 2.76965- 4 3.93015- 2 8.00000+ 0 1.30000+ 1 1.82854- 5 3.95739- 2 8.00000+ 0 1.40000+ 1 1.79497- 5 3.95950- 2 8.00000+ 0 1.60000+ 1 1.05182- 4 4.02306- 2 8.00000+ 0 1.80000+ 1 5.72043- 5 4.02893- 2 8.00000+ 0 1.90000+ 1 6.02240- 5 4.03103- 2 8.00000+ 0 2.10000+ 1 3.85834- 6 4.04076- 2 8.00000+ 0 2.20000+ 1 3.69062- 6 4.04113- 2 8.00000+ 0 2.70000+ 1 1.77814- 5 4.04866- 2 8.00000+ 0 2.90000+ 1 7.88449- 6 4.05026- 2 8.00000+ 0 3.00000+ 1 8.05211- 6 4.05056- 2 8.00000+ 0 4.10000+ 1 1.50984- 6 4.05250- 2 1.00000+ 1 1.00000+ 1 2.76778- 5 3.93586- 2 1.00000+ 1 1.10000+ 1 5.29062- 4 3.94559- 2 1.00000+ 1 1.30000+ 1 1.92907- 5 3.97283- 2 1.00000+ 1 1.40000+ 1 6.08907- 5 3.97494- 2 1.00000+ 1 1.60000+ 1 5.77029- 5 4.03850- 2 1.00000+ 1 1.80000+ 1 1.17412- 5 4.04437- 2 1.00000+ 1 1.90000+ 1 1.11040- 4 4.04647- 2 1.00000+ 1 2.10000+ 1 4.02585- 6 4.05620- 2 1.00000+ 1 2.20000+ 1 1.25806- 5 4.05657- 2 1.00000+ 1 2.70000+ 1 9.72849- 6 4.06410- 2 1.00000+ 1 2.90000+ 1 1.67742- 6 4.06570- 2 1.00000+ 1 3.00000+ 1 1.47616- 5 4.06600- 2 1.00000+ 1 4.10000+ 1 8.38691- 7 4.06794- 2 1.10000+ 1 1.10000+ 1 2.78120- 4 3.95532- 2 1.10000+ 1 1.30000+ 1 7.76676- 5 3.98256- 2 1.10000+ 1 1.40000+ 1 6.86064- 5 3.98467- 2 1.10000+ 1 1.60000+ 1 6.03877- 5 4.04823- 2 1.10000+ 1 1.80000+ 1 1.11380- 4 4.05410- 2 1.10000+ 1 1.90000+ 1 1.17246- 4 4.05620- 2 1.10000+ 1 2.10000+ 1 1.61030- 5 4.06593- 2 1.10000+ 1 2.20000+ 1 1.40903- 5 4.06630- 2 1.10000+ 1 2.70000+ 1 1.00641- 5 4.07383- 2 1.10000+ 1 2.90000+ 1 1.52645- 5 4.07543- 2 1.10000+ 1 3.00000+ 1 1.56001- 5 4.07573- 2 1.10000+ 1 4.10000+ 1 8.38689- 7 4.07767- 2 1.30000+ 1 1.30000+ 1 1.65275- 7 4.00980- 2 1.30000+ 1 1.40000+ 1 9.09062- 6 4.01192- 2 1.30000+ 1 1.60000+ 1 3.96665- 6 4.07548- 2 1.30000+ 1 1.80000+ 1 3.80131- 6 4.08134- 2 1.30000+ 1 1.90000+ 1 1.53707- 5 4.08345- 2 1.30000+ 1 2.20000+ 1 1.81809- 6 4.09354- 2 1.30000+ 1 2.70000+ 1 6.61083- 7 4.10107- 2 1.30000+ 1 2.90000+ 1 4.95826- 7 4.10268- 2 1.30000+ 1 3.00000+ 1 1.98333- 6 4.10298- 2 1.40000+ 1 1.40000+ 1 2.18064- 6 4.01403- 2 1.40000+ 1 1.60000+ 1 3.85807- 6 4.07759- 2 1.40000+ 1 1.80000+ 1 1.20778- 5 4.08345- 2 1.40000+ 1 1.90000+ 1 1.37548- 5 4.08556- 2 1.40000+ 1 2.10000+ 1 1.84524- 6 4.09529- 2 1.40000+ 1 2.20000+ 1 8.38696- 7 4.09565- 2 1.40000+ 1 2.70000+ 1 6.70953- 7 4.10318- 2 1.40000+ 1 2.90000+ 1 1.67743- 6 4.10479- 2 1.40000+ 1 3.00000+ 1 1.84524- 6 4.10509- 2 1.60000+ 1 1.60000+ 1 1.16365- 5 4.14115- 2 1.60000+ 1 1.80000+ 1 1.22913- 5 4.14701- 2 1.60000+ 1 1.90000+ 1 1.27836- 5 4.14912- 2 1.60000+ 1 2.10000+ 1 8.19405- 7 4.15885- 2 1.60000+ 1 2.20000+ 1 8.19405- 7 4.15922- 2 1.60000+ 1 2.70000+ 1 3.93328- 6 4.16674- 2 1.60000+ 1 2.90000+ 1 1.63885- 6 4.16835- 2 1.60000+ 1 3.00000+ 1 1.80280- 6 4.16865- 2 1.60000+ 1 4.10000+ 1 3.27770- 7 4.17059- 2 1.80000+ 1 1.80000+ 1 1.12094- 6 4.15287- 2 1.80000+ 1 1.90000+ 1 2.22600- 5 4.15498- 2 1.80000+ 1 2.10000+ 1 8.00707- 7 4.16471- 2 1.80000+ 1 2.20000+ 1 2.40217- 6 4.16508- 2 1.80000+ 1 2.70000+ 1 2.08186- 6 4.17261- 2 1.80000+ 1 2.90000+ 1 3.20291- 7 4.17421- 2 1.80000+ 1 3.00000+ 1 3.04280- 6 4.17451- 2 1.80000+ 1 4.10000+ 1 1.60145- 7 4.17645- 2 1.90000+ 1 1.90000+ 1 1.19209- 5 4.15709- 2 1.90000+ 1 2.10000+ 1 3.06095- 6 4.16682- 2 1.90000+ 1 2.20000+ 1 2.73873- 6 4.16718- 2 1.90000+ 1 2.70000+ 1 2.09428- 6 4.17471- 2 1.90000+ 1 2.90000+ 1 3.06095- 6 4.17632- 2 1.90000+ 1 3.00000+ 1 3.22202- 6 4.17662- 2 1.90000+ 1 4.10000+ 1 1.61100- 7 4.17855- 2 2.10000+ 1 2.20000+ 1 3.35486- 7 4.17691- 2 2.10000+ 1 2.70000+ 1 1.67742- 7 4.18444- 2 2.10000+ 1 2.90000+ 1 1.67742- 7 4.18605- 2 2.10000+ 1 3.00000+ 1 5.03227- 7 4.18635- 2 2.20000+ 1 2.20000+ 1 1.48761- 7 4.17728- 2 2.20000+ 1 2.70000+ 1 1.48761- 7 4.18481- 2 2.20000+ 1 2.90000+ 1 2.97523- 7 4.18641- 2 2.20000+ 1 3.00000+ 1 2.97523- 7 4.18671- 2 2.70000+ 1 2.70000+ 1 3.23323- 7 4.19234- 2 2.70000+ 1 2.90000+ 1 3.23323- 7 4.19394- 2 2.70000+ 1 3.00000+ 1 3.23323- 7 4.19424- 2 2.90000+ 1 3.00000+ 1 5.21859- 7 4.19585- 2 3.00000+ 1 3.00000+ 1 1.67740- 7 4.19615- 2 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.96489- 5 3.56900- 4 6.00000+ 0 5.79058- 4 8.45400- 4 1.00000+ 1 1.85309- 2 5.47410- 3 1.10000+ 1 2.78659- 2 5.57140- 3 1.30000+ 1 3.32829- 4 5.84382- 3 1.40000+ 1 4.97649- 4 5.86494- 3 1.80000+ 1 4.26949- 3 6.55916- 3 1.90000+ 1 6.64918- 3 6.58024- 3 2.10000+ 1 4.43179- 5 6.67752- 3 2.20000+ 1 6.78878- 5 6.68121- 3 2.90000+ 1 6.22078- 4 6.77254- 3 3.00000+ 1 9.50327- 4 6.77554- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.41131- 2 5.76500- 5 5.00000+ 0 1.80000+ 1 3.97611- 2 1.16260- 4 5.00000+ 0 1.90000+ 1 4.83178- 2 1.37340- 4 5.00000+ 0 2.10000+ 1 1.28799- 2 2.34620- 4 5.00000+ 0 2.20000+ 1 2.05940- 2 2.38310- 4 5.00000+ 0 2.40000+ 1 1.21569- 2 3.49250- 4 5.00000+ 0 2.70000+ 1 8.74201- 3 3.13600- 4 5.00000+ 0 2.90000+ 1 5.16423- 3 3.29640- 4 5.00000+ 0 3.00000+ 1 6.11685- 3 3.32640- 4 5.00000+ 0 4.10000+ 1 7.73509- 4 3.52010- 4 6.00000+ 0 1.60000+ 1 6.54618- 2 5.46150- 4 6.00000+ 0 1.80000+ 1 2.82983- 2 6.04760- 4 6.00000+ 0 1.90000+ 1 5.14248- 2 6.25840- 4 6.00000+ 0 2.10000+ 1 6.51249- 2 7.23120- 4 6.00000+ 0 2.20000+ 1 8.26424- 2 7.26810- 4 6.00000+ 0 2.40000+ 1 1.69040- 2 8.37750- 4 6.00000+ 0 2.70000+ 1 1.06391- 2 8.02100- 4 6.00000+ 0 2.90000+ 1 3.76795- 3 8.18140- 4 6.00000+ 0 3.00000+ 1 6.72286- 3 8.21140- 4 6.00000+ 0 4.10000+ 1 9.42851- 4 8.40510- 4 8.00000+ 0 8.00000+ 0 1.24593- 2 3.83960- 3 8.00000+ 0 1.00000+ 1 2.48903- 2 3.99400- 3 8.00000+ 0 1.10000+ 1 4.51378- 2 4.09130- 3 8.00000+ 0 1.30000+ 1 3.54932- 2 4.36372- 3 8.00000+ 0 1.40000+ 1 4.95121- 2 4.38484- 3 8.00000+ 0 1.60000+ 1 4.83235- 3 5.02045- 3 8.00000+ 0 1.80000+ 1 5.30668- 3 5.07906- 3 8.00000+ 0 1.90000+ 1 9.54593- 3 5.10014- 3 8.00000+ 0 2.10000+ 1 6.25485- 3 5.19742- 3 8.00000+ 0 2.20000+ 1 8.67821- 3 5.20111- 3 8.00000+ 0 2.40000+ 1 9.81563- 5 5.31205- 3 8.00000+ 0 2.70000+ 1 7.96294- 4 5.27640- 3 8.00000+ 0 2.90000+ 1 7.30628- 4 5.29244- 3 8.00000+ 0 3.00000+ 1 1.27317- 3 5.29544- 3 8.00000+ 0 4.10000+ 1 7.05047- 5 5.31481- 3 1.00000+ 1 1.00000+ 1 1.20269- 4 4.14840- 3 1.00000+ 1 1.10000+ 1 8.31530- 4 4.24570- 3 1.00000+ 1 1.30000+ 1 1.13642- 3 4.51812- 3 1.00000+ 1 1.40000+ 1 1.35121- 2 4.53924- 3 1.00000+ 1 1.60000+ 1 3.84869- 3 5.17485- 3 1.00000+ 1 1.80000+ 1 2.41924- 5 5.23346- 3 1.00000+ 1 1.90000+ 1 1.65208- 4 5.25454- 3 1.00000+ 1 2.10000+ 1 1.99077- 4 5.35182- 3 1.00000+ 1 2.20000+ 1 1.55876- 3 5.35551- 3 1.00000+ 1 2.40000+ 1 3.31784- 5 5.46645- 3 1.00000+ 1 2.70000+ 1 6.03443- 4 5.43080- 3 1.00000+ 1 2.90000+ 1 2.76487- 6 5.44684- 3 1.00000+ 1 3.00000+ 1 2.21190- 5 5.44984- 3 1.00000+ 1 4.10000+ 1 5.32237- 5 5.46921- 3 1.10000+ 1 1.10000+ 1 1.06110- 3 4.34300- 3 1.10000+ 1 1.30000+ 1 8.32848- 3 4.61542- 3 1.10000+ 1 1.40000+ 1 5.56161- 3 4.63654- 3 1.10000+ 1 1.60000+ 1 6.97094- 3 5.27215- 3 1.10000+ 1 1.80000+ 1 1.66586- 4 5.33076- 3 1.10000+ 1 1.90000+ 1 3.37325- 4 5.35184- 3 1.10000+ 1 2.10000+ 1 7.94213- 4 5.44912- 3 1.10000+ 1 2.20000+ 1 5.48136- 4 5.45281- 3 1.10000+ 1 2.40000+ 1 1.01615- 4 5.56375- 3 1.10000+ 1 2.70000+ 1 1.09217- 3 5.52810- 3 1.10000+ 1 2.90000+ 1 2.28108- 5 5.54414- 3 1.10000+ 1 3.00000+ 1 4.28572- 5 5.54714- 3 1.10000+ 1 4.10000+ 1 9.60800- 5 5.56651- 3 1.30000+ 1 1.30000+ 1 2.01139- 3 4.88784- 3 1.30000+ 1 1.40000+ 1 7.04768- 2 4.90896- 3 1.30000+ 1 1.60000+ 1 5.16563- 3 5.54457- 3 1.30000+ 1 1.80000+ 1 3.11050- 4 5.60318- 3 1.30000+ 1 1.90000+ 1 1.81661- 3 5.62426- 3 1.30000+ 1 2.10000+ 1 6.99519- 4 5.72154- 3 1.30000+ 1 2.20000+ 1 8.96233- 3 5.72523- 3 1.30000+ 1 2.40000+ 1 1.16819- 4 5.83617- 3 1.30000+ 1 2.70000+ 1 8.01809- 4 5.80052- 3 1.30000+ 1 2.90000+ 1 4.49299- 5 5.81656- 3 1.30000+ 1 3.00000+ 1 2.43313- 4 5.81956- 3 1.30000+ 1 4.10000+ 1 7.05050- 5 5.83893- 3 1.40000+ 1 1.40000+ 1 1.98013- 2 4.93008- 3 1.40000+ 1 1.60000+ 1 7.25862- 3 5.56569- 3 1.40000+ 1 1.80000+ 1 2.61416- 3 5.62430- 3 1.40000+ 1 1.90000+ 1 1.27460- 3 5.64538- 3 1.40000+ 1 2.10000+ 1 8.84022- 3 5.74266- 3 1.40000+ 1 2.20000+ 1 5.27970- 3 5.74635- 3 1.40000+ 1 2.40000+ 1 3.71187- 4 5.85729- 3 1.40000+ 1 2.70000+ 1 1.12949- 3 5.82164- 3 1.40000+ 1 2.90000+ 1 3.53911- 4 5.83768- 3 1.40000+ 1 3.00000+ 1 1.72118- 4 5.84068- 3 1.40000+ 1 4.10000+ 1 9.95382- 5 5.86005- 3 1.60000+ 1 1.60000+ 1 4.43760- 4 6.20130- 3 1.60000+ 1 1.80000+ 1 8.22567- 4 6.25991- 3 1.60000+ 1 1.90000+ 1 1.47723- 3 6.28099- 3 1.60000+ 1 2.10000+ 1 9.08284- 4 6.37827- 3 1.60000+ 1 2.20000+ 1 1.26635- 3 6.38196- 3 1.60000+ 1 2.40000+ 1 1.17514- 5 6.49290- 3 1.60000+ 1 2.70000+ 1 1.45158- 4 6.45725- 3 1.60000+ 1 2.90000+ 1 1.13361- 4 6.47329- 3 1.60000+ 1 3.00000+ 1 1.96997- 4 6.47629- 3 1.60000+ 1 4.10000+ 1 1.31331- 5 6.49566- 3 1.80000+ 1 1.80000+ 1 1.38249- 6 6.31852- 3 1.80000+ 1 1.90000+ 1 3.38694- 5 6.33960- 3 1.80000+ 1 2.10000+ 1 4.63127- 5 6.43688- 3 1.80000+ 1 2.20000+ 1 3.11050- 4 6.44057- 3 1.80000+ 1 2.40000+ 1 4.14727- 6 6.55151- 3 1.80000+ 1 2.70000+ 1 1.29259- 4 6.51586- 3 1.80000+ 1 3.00000+ 1 4.14727- 6 6.53490- 3 1.80000+ 1 4.10000+ 1 1.10595- 5 6.55427- 3 1.90000+ 1 1.90000+ 1 2.68558- 5 6.36068- 3 1.90000+ 1 2.10000+ 1 1.85246- 4 6.45796- 3 1.90000+ 1 2.20000+ 1 1.33593- 4 6.46165- 3 1.90000+ 1 2.40000+ 1 1.65281- 5 6.57259- 3 1.90000+ 1 2.70000+ 1 2.30699- 4 6.53694- 3 1.90000+ 1 2.90000+ 1 4.82036- 6 6.55298- 3 1.90000+ 1 3.00000+ 1 6.88630- 6 6.55598- 3 1.90000+ 1 4.10000+ 1 2.06596- 5 6.57535- 3 2.10000+ 1 2.10000+ 1 5.73734- 5 6.55524- 3 2.10000+ 1 2.20000+ 1 1.20754- 3 6.55893- 3 2.10000+ 1 2.40000+ 1 1.45160- 5 6.66987- 3 2.10000+ 1 2.70000+ 1 1.41017- 4 6.63422- 3 2.10000+ 1 2.90000+ 1 6.22123- 6 6.65026- 3 2.10000+ 1 3.00000+ 1 2.48850- 5 6.65326- 3 2.10000+ 1 4.10000+ 1 1.24425- 5 6.67263- 3 2.20000+ 1 2.20000+ 1 3.72582- 4 6.56262- 3 2.20000+ 1 2.40000+ 1 3.73265- 5 6.67356- 3 2.20000+ 1 2.70000+ 1 1.96302- 4 6.63791- 3 2.20000+ 1 2.90000+ 1 4.21655- 5 6.65395- 3 2.20000+ 1 3.00000+ 1 1.79720- 5 6.65695- 3 2.20000+ 1 4.10000+ 1 1.72801- 5 6.67632- 3 2.40000+ 1 2.70000+ 1 2.07373- 6 6.74885- 3 2.40000+ 1 2.90000+ 1 6.91222- 7 6.76489- 3 2.40000+ 1 3.00000+ 1 2.07373- 6 6.76789- 3 2.70000+ 1 2.70000+ 1 1.29536- 5 6.71320- 3 2.70000+ 1 2.90000+ 1 1.98108- 5 6.72924- 3 2.70000+ 1 3.00000+ 1 3.42875- 5 6.73224- 3 2.70000+ 1 4.10000+ 1 2.28591- 6 6.75161- 3 2.90000+ 1 3.00000+ 1 1.35007- 6 6.74828- 3 2.90000+ 1 4.10000+ 1 2.70022- 6 6.76765- 3 3.00000+ 1 3.00000+ 1 2.94500- 7 6.75128- 3 3.00000+ 1 4.10000+ 1 1.17800- 6 6.77065- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.01510- 7 4.88500- 4 8.00000+ 0 4.56331- 3 4.96280- 3 1.10000+ 1 7.66701- 5 5.21450- 3 1.30000+ 1 1.04150- 1 5.48692- 3 1.60000+ 1 7.69781- 4 6.14365- 3 1.90000+ 1 1.31740- 5 6.22334- 3 2.10000+ 1 1.74700- 2 6.32062- 3 2.40000+ 1 3.02990- 6 6.43525- 3 2.70000+ 1 1.16420- 4 6.39960- 3 3.00000+ 1 2.47500- 6 6.41864- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 1.01769- 2 1.89250- 4 6.00000+ 0 1.80000+ 1 5.00474- 2 2.47860- 4 6.00000+ 0 1.90000+ 1 1.67882- 2 2.68940- 4 6.00000+ 0 2.10000+ 1 6.35611- 2 3.66220- 4 6.00000+ 0 2.20000+ 1 2.32616- 2 3.69910- 4 6.00000+ 0 2.40000+ 1 5.27477- 4 4.80850- 4 6.00000+ 0 2.70000+ 1 1.55010- 3 4.45200- 4 6.00000+ 0 2.90000+ 1 6.49743- 3 4.61240- 4 6.00000+ 0 3.00000+ 1 2.22373- 3 4.64240- 4 6.00000+ 0 4.10000+ 1 1.36225- 4 4.83610- 4 8.00000+ 0 8.00000+ 0 9.45397- 4 3.48270- 3 8.00000+ 0 1.00000+ 1 2.41694- 2 3.63710- 3 8.00000+ 0 1.10000+ 1 2.33686- 3 3.73440- 3 8.00000+ 0 1.30000+ 1 2.10247- 3 4.00682- 3 8.00000+ 0 1.40000+ 1 3.14177- 3 4.02794- 3 8.00000+ 0 1.60000+ 1 3.39761- 4 4.66355- 3 8.00000+ 0 1.80000+ 1 3.50478- 3 4.72216- 3 8.00000+ 0 1.90000+ 1 4.38615- 4 4.74324- 3 8.00000+ 0 2.10000+ 1 2.65828- 4 4.84052- 3 8.00000+ 0 2.20000+ 1 3.41443- 4 4.84421- 3 8.00000+ 0 2.40000+ 1 2.65828- 5 4.95515- 3 8.00000+ 0 2.70000+ 1 5.48276- 5 4.91950- 3 8.00000+ 0 2.90000+ 1 4.51064- 4 4.93554- 3 8.00000+ 0 3.00000+ 1 5.73185- 5 4.93854- 3 8.00000+ 0 4.10000+ 1 4.98426- 6 4.95791- 3 1.00000+ 1 1.00000+ 1 2.40188- 2 3.79150- 3 1.00000+ 1 1.10000+ 1 7.30453- 2 3.88880- 3 1.00000+ 1 1.30000+ 1 3.89913- 2 4.16122- 3 1.00000+ 1 1.40000+ 1 6.50739- 2 4.18234- 3 1.00000+ 1 1.60000+ 1 5.61628- 3 4.81795- 3 1.00000+ 1 1.80000+ 1 8.74315- 3 4.87656- 3 1.00000+ 1 1.90000+ 1 1.51751- 2 4.89764- 3 1.00000+ 1 2.10000+ 1 6.86062- 3 4.99492- 3 1.00000+ 1 2.20000+ 1 1.14372- 2 4.99861- 3 1.00000+ 1 2.40000+ 1 1.07986- 4 5.10955- 3 1.00000+ 1 2.70000+ 1 9.51136- 4 5.07390- 3 1.00000+ 1 2.90000+ 1 1.17626- 3 5.08994- 3 1.00000+ 1 3.00000+ 1 2.01862- 3 5.09294- 3 1.00000+ 1 4.10000+ 1 8.47311- 5 5.11231- 3 1.10000+ 1 1.10000+ 1 1.88569- 3 3.98610- 3 1.10000+ 1 1.30000+ 1 4.47436- 2 4.25852- 3 1.10000+ 1 1.40000+ 1 6.09181- 3 4.27964- 3 1.10000+ 1 1.60000+ 1 4.64377- 4 4.91525- 3 1.10000+ 1 1.80000+ 1 1.09700- 2 4.97386- 3 1.10000+ 1 1.90000+ 1 6.63734- 4 4.99494- 3 1.10000+ 1 2.10000+ 1 6.72215- 3 5.09222- 3 1.10000+ 1 2.20000+ 1 8.59787- 4 5.09591- 3 1.10000+ 1 2.40000+ 1 6.89499- 5 5.20685- 3 1.10000+ 1 2.70000+ 1 7.64259- 5 5.17120- 3 1.10000+ 1 2.90000+ 1 1.42135- 3 5.18724- 3 1.10000+ 1 3.00000+ 1 8.55637- 5 5.19024- 3 1.10000+ 1 4.10000+ 1 6.64580- 6 5.20961- 3 1.30000+ 1 1.30000+ 1 4.11241- 2 4.53094- 3 1.30000+ 1 1.40000+ 1 1.74342- 1 4.55206- 3 1.30000+ 1 1.60000+ 1 4.94247- 4 5.18767- 3 1.30000+ 1 1.80000+ 1 5.82470- 3 5.24628- 3 1.30000+ 1 1.90000+ 1 8.75352- 3 5.26736- 3 1.30000+ 1 2.10000+ 1 1.23143- 2 5.36464- 3 1.30000+ 1 2.20000+ 1 2.79969- 2 5.36833- 3 1.30000+ 1 2.40000+ 1 4.37772- 4 5.47927- 3 1.30000+ 1 2.70000+ 1 8.39001- 5 5.44362- 3 1.30000+ 1 2.90000+ 1 7.59260- 4 5.45966- 3 1.30000+ 1 3.00000+ 1 1.15217- 3 5.46266- 3 1.30000+ 1 4.10000+ 1 7.47637- 6 5.48203- 3 1.40000+ 1 1.40000+ 1 8.33441- 3 4.57318- 3 1.40000+ 1 1.60000+ 1 6.10575- 4 5.20879- 3 1.40000+ 1 1.80000+ 1 8.64858- 3 5.26740- 3 1.40000+ 1 1.90000+ 1 1.08986- 3 5.28848- 3 1.40000+ 1 2.10000+ 1 2.19947- 2 5.38576- 3 1.40000+ 1 2.20000+ 1 2.43396- 3 5.38945- 3 1.40000+ 1 2.40000+ 1 1.80261- 4 5.50039- 3 1.40000+ 1 2.70000+ 1 9.96818- 5 5.46474- 3 1.40000+ 1 2.90000+ 1 1.09570- 3 5.48078- 3 1.40000+ 1 3.00000+ 1 1.41219- 4 5.48378- 3 1.40000+ 1 4.10000+ 1 9.13799- 6 5.50315- 3 1.60000+ 1 1.60000+ 1 2.99046- 5 5.84440- 3 1.60000+ 1 1.80000+ 1 8.18240- 4 5.90301- 3 1.60000+ 1 1.90000+ 1 8.80497- 5 5.92409- 3 1.60000+ 1 2.10000+ 1 6.06411- 5 6.02137- 3 1.60000+ 1 2.20000+ 1 6.72867- 5 6.02506- 3 1.60000+ 1 2.40000+ 1 4.98407- 6 6.13600- 3 1.60000+ 1 2.70000+ 1 9.13763- 6 6.10035- 3 1.60000+ 1 2.90000+ 1 1.05497- 4 6.11639- 3 1.60000+ 1 3.00000+ 1 1.16304- 5 6.11939- 3 1.60000+ 1 4.10000+ 1 8.30699- 7 6.13876- 3 1.80000+ 1 1.80000+ 1 7.27603- 4 5.96162- 3 1.80000+ 1 1.90000+ 1 2.18282- 3 5.98270- 3 1.80000+ 1 2.10000+ 1 9.65337- 4 6.07998- 3 1.80000+ 1 2.20000+ 1 1.46644- 3 6.08367- 3 1.80000+ 1 2.40000+ 1 1.27234- 5 6.19461- 3 1.80000+ 1 2.70000+ 1 1.32796- 4 6.15896- 3 1.80000+ 1 2.90000+ 1 1.94023- 4 6.17500- 3 1.80000+ 1 3.00000+ 1 2.90239- 4 6.17800- 3 1.80000+ 1 4.10000+ 1 1.19278- 5 6.19737- 3 1.90000+ 1 1.90000+ 1 5.88801- 5 6.00378- 3 1.90000+ 1 2.10000+ 1 1.32436- 3 6.10106- 3 1.90000+ 1 2.20000+ 1 1.57565- 4 6.10475- 3 1.90000+ 1 2.40000+ 1 1.07801- 5 6.21569- 3 1.90000+ 1 2.70000+ 1 1.40974- 5 6.18004- 3 1.90000+ 1 2.90000+ 1 2.95230- 4 6.19608- 3 1.90000+ 1 3.00000+ 1 1.49270- 5 6.19908- 3 1.90000+ 1 4.10000+ 1 1.65860- 6 6.21845- 3 2.10000+ 1 2.10000+ 1 9.11262- 4 6.19834- 3 2.10000+ 1 2.20000+ 1 3.64943- 3 6.20203- 3 2.10000+ 1 2.40000+ 1 4.65207- 5 6.31297- 3 2.10000+ 1 2.70000+ 1 9.96820- 6 6.27732- 3 2.10000+ 1 2.90000+ 1 1.31247- 4 6.29336- 3 2.10000+ 1 3.00000+ 1 1.74449- 4 6.29636- 3 2.10000+ 1 4.10000+ 1 8.30733- 7 6.31573- 3 2.20000+ 1 2.20000+ 1 2.12539- 4 6.20572- 3 2.20000+ 1 2.40000+ 1 2.37256- 5 6.31666- 3 2.20000+ 1 2.70000+ 1 1.28504- 5 6.28101- 3 2.20000+ 1 2.90000+ 1 2.31322- 4 6.29705- 3 2.20000+ 1 3.00000+ 1 2.47144- 5 6.30005- 3 2.20000+ 1 4.10000+ 1 9.88550- 7 6.31942- 3 2.40000+ 1 2.70000+ 1 8.30712- 7 6.39195- 3 2.40000+ 1 2.90000+ 1 1.66145- 6 6.40799- 3 2.40000+ 1 3.00000+ 1 1.66145- 6 6.41099- 3 2.70000+ 1 2.70000+ 1 1.07257- 6 6.35630- 3 2.70000+ 1 2.90000+ 1 2.35963- 5 6.37234- 3 2.70000+ 1 3.00000+ 1 2.14517- 6 6.37534- 3 2.90000+ 1 2.90000+ 1 1.86981- 5 6.38838- 3 2.90000+ 1 3.00000+ 1 5.49238- 5 6.39138- 3 2.90000+ 1 4.10000+ 1 2.33726- 6 6.41075- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.39009- 3 4.47430- 3 1.00000+ 1 5.08049- 5 4.62870- 3 1.10000+ 1 4.69660- 5 4.72600- 3 1.30000+ 1 1.00440- 2 4.99842- 3 1.40000+ 1 8.89339- 2 5.01954- 3 1.60000+ 1 9.18479- 4 5.65515- 3 1.80000+ 1 6.19859- 6 5.71376- 3 1.90000+ 1 5.97799- 6 5.73484- 3 2.10000+ 1 1.62790- 3 5.83212- 3 2.20000+ 1 1.45510- 2 5.83581- 3 2.40000+ 1 4.57250- 7 5.94675- 3 2.50000+ 1 2.62110- 6 5.94716- 3 2.70000+ 1 1.58760- 4 5.91110- 3 2.90000+ 1 1.16790- 6 5.92714- 3 3.00000+ 1 1.03740- 6 5.93014- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.25432- 3 2.99420- 3 8.00000+ 0 1.00000+ 1 8.37989- 4 3.14860- 3 8.00000+ 0 1.10000+ 1 2.76493- 2 3.24590- 3 8.00000+ 0 1.30000+ 1 2.76402- 3 3.51832- 3 8.00000+ 0 1.40000+ 1 3.26753- 3 3.53944- 3 8.00000+ 0 1.60000+ 1 4.51034- 4 4.17505- 3 8.00000+ 0 1.80000+ 1 1.45893- 4 4.23366- 3 8.00000+ 0 1.90000+ 1 3.99774- 3 4.25474- 3 8.00000+ 0 2.10000+ 1 2.53538- 4 4.35202- 3 8.00000+ 0 2.20000+ 1 2.73999- 4 4.35571- 3 8.00000+ 0 2.40000+ 1 3.29155- 5 4.46665- 3 8.00000+ 0 2.70000+ 1 7.29485- 5 4.43100- 3 8.00000+ 0 2.90000+ 1 1.95718- 5 4.44704- 3 8.00000+ 0 3.00000+ 1 4.99941- 4 4.45004- 3 8.00000+ 0 4.10000+ 1 6.22708- 6 4.46941- 3 1.00000+ 1 1.00000+ 1 2.55316- 4 3.30300- 3 1.00000+ 1 1.10000+ 1 4.61342- 2 3.40030- 3 1.00000+ 1 1.30000+ 1 2.88233- 3 3.67272- 3 1.00000+ 1 1.40000+ 1 2.58456- 2 3.69384- 3 1.00000+ 1 1.60000+ 1 1.62801- 4 4.32945- 3 1.00000+ 1 1.80000+ 1 9.07441- 5 4.38806- 3 1.00000+ 1 1.90000+ 1 6.91594- 3 4.40914- 3 1.00000+ 1 2.10000+ 1 4.69700- 4 4.50642- 3 1.00000+ 1 2.20000+ 1 3.62700- 3 4.51011- 3 1.00000+ 1 2.40000+ 1 3.64729- 5 4.62105- 3 1.00000+ 1 2.70000+ 1 2.66884- 5 4.58540- 3 1.00000+ 1 2.90000+ 1 1.24544- 5 4.60144- 3 1.00000+ 1 3.00000+ 1 8.70032- 4 4.60444- 3 1.00000+ 1 4.10000+ 1 2.66884- 6 4.62381- 3 1.10000+ 1 1.10000+ 1 6.37684- 2 3.49760- 3 1.10000+ 1 1.30000+ 1 6.49554- 2 3.77002- 3 1.10000+ 1 1.40000+ 1 9.63146- 2 3.79114- 3 1.10000+ 1 1.60000+ 1 6.35634- 3 4.42675- 3 1.10000+ 1 1.80000+ 1 9.41070- 3 4.48536- 3 1.10000+ 1 1.90000+ 1 2.27517- 2 4.50644- 3 1.10000+ 1 2.10000+ 1 1.09736- 2 4.60372- 3 1.10000+ 1 2.20000+ 1 1.60621- 2 4.60741- 3 1.10000+ 1 2.40000+ 1 1.70807- 4 4.71835- 3 1.10000+ 1 2.70000+ 1 1.07465- 3 4.68270- 3 1.10000+ 1 2.90000+ 1 1.28723- 3 4.69874- 3 1.10000+ 1 3.00000+ 1 2.95796- 3 4.70174- 3 1.10000+ 1 4.10000+ 1 9.60784- 5 4.72111- 3 1.30000+ 1 1.30000+ 1 9.38165- 3 4.04244- 3 1.30000+ 1 1.40000+ 1 1.79172- 1 4.06356- 3 1.30000+ 1 1.60000+ 1 5.98707- 4 4.69917- 3 1.30000+ 1 1.80000+ 1 5.88017- 4 4.75778- 3 1.30000+ 1 1.90000+ 1 9.06287- 3 4.77886- 3 1.30000+ 1 2.10000+ 1 2.79690- 3 4.87614- 3 1.30000+ 1 2.20000+ 1 2.28472- 2 4.87983- 3 1.30000+ 1 2.40000+ 1 9.69698- 5 4.99077- 3 1.30000+ 1 2.70000+ 1 1.00525- 4 4.95512- 3 1.30000+ 1 2.90000+ 1 8.00641- 5 4.97116- 3 1.30000+ 1 3.00000+ 1 1.12621- 3 4.97416- 3 1.30000+ 1 4.10000+ 1 8.89642- 6 4.99353- 3 1.40000+ 1 1.40000+ 1 1.21224- 1 4.08468- 3 1.40000+ 1 1.60000+ 1 7.48160- 4 4.72029- 3 1.40000+ 1 1.80000+ 1 4.89813- 3 4.77890- 3 1.40000+ 1 1.90000+ 1 1.50680- 2 4.79998- 3 1.40000+ 1 2.10000+ 1 2.70148- 2 4.89726- 3 1.40000+ 1 2.20000+ 1 3.46189- 2 4.90095- 3 1.40000+ 1 2.40000+ 1 1.03013- 3 5.01189- 3 1.40000+ 1 2.70000+ 1 1.26322- 4 4.97624- 3 1.40000+ 1 2.90000+ 1 6.60995- 4 4.99228- 3 1.40000+ 1 3.00000+ 1 1.91885- 3 4.99528- 3 1.40000+ 1 4.10000+ 1 1.15652- 5 5.01465- 3 1.60000+ 1 1.60000+ 1 4.01107- 5 5.35590- 3 1.60000+ 1 1.80000+ 1 2.85231- 5 5.41451- 3 1.60000+ 1 1.90000+ 1 9.22529- 4 5.43559- 3 1.60000+ 1 2.10000+ 1 5.88275- 5 5.53287- 3 1.60000+ 1 2.20000+ 1 6.77408- 5 5.53656- 3 1.60000+ 1 2.40000+ 1 4.45659- 6 5.64750- 3 1.60000+ 1 2.70000+ 1 1.33696- 5 5.61185- 3 1.60000+ 1 2.90000+ 1 3.56524- 6 5.62789- 3 1.60000+ 1 3.00000+ 1 1.14985- 4 5.63089- 3 1.60000+ 1 4.10000+ 1 8.91378- 7 5.65026- 3 1.80000+ 1 1.80000+ 1 6.81548- 6 5.47312- 3 1.80000+ 1 1.90000+ 1 1.34860- 3 5.49420- 3 1.80000+ 1 2.10000+ 1 8.94486- 5 5.59148- 3 1.80000+ 1 2.20000+ 1 6.79828- 4 5.59517- 3 1.80000+ 1 2.40000+ 1 5.11135- 6 5.70611- 3 1.80000+ 1 2.70000+ 1 4.25953- 6 5.67046- 3 1.80000+ 1 2.90000+ 1 1.70384- 6 5.68650- 3 1.80000+ 1 3.00000+ 1 1.69534- 4 5.68950- 3 1.90000+ 1 1.90000+ 1 1.77219- 3 5.51528- 3 1.90000+ 1 2.10000+ 1 1.38681- 3 5.61256- 3 1.90000+ 1 2.20000+ 1 2.24356- 3 5.61625- 3 1.90000+ 1 2.40000+ 1 1.76982- 5 5.72719- 3 1.90000+ 1 2.70000+ 1 1.40780- 4 5.69154- 3 1.90000+ 1 2.90000+ 1 1.73759- 4 5.70758- 3 1.90000+ 1 3.00000+ 1 4.57731- 4 5.71058- 3 1.90000+ 1 4.10000+ 1 1.28713- 5 5.72995- 3 2.10000+ 1 2.10000+ 1 2.02263- 4 5.70984- 3 2.10000+ 1 2.20000+ 1 3.54217- 3 5.71353- 3 2.10000+ 1 2.40000+ 1 9.75792- 6 5.82447- 3 2.10000+ 1 2.70000+ 1 9.75792- 6 5.78882- 3 2.10000+ 1 2.90000+ 1 1.24192- 5 5.80486- 3 2.10000+ 1 3.00000+ 1 1.89842- 4 5.80786- 3 2.10000+ 1 4.10000+ 1 8.87143- 7 5.82723- 3 2.20000+ 1 2.20000+ 1 2.62556- 3 5.71722- 3 2.20000+ 1 2.40000+ 1 1.11982- 4 5.82816- 3 2.20000+ 1 2.70000+ 1 1.22341- 5 5.79251- 3 2.20000+ 1 2.90000+ 1 1.01636- 4 5.80855- 3 2.20000+ 1 3.00000+ 1 3.33140- 4 5.81155- 3 2.20000+ 1 4.10000+ 1 9.41118- 7 5.83092- 3 2.40000+ 1 2.70000+ 1 5.51975- 7 5.90345- 3 2.40000+ 1 2.90000+ 1 5.51975- 7 5.91949- 3 2.40000+ 1 3.00000+ 1 1.65585- 6 5.92249- 3 2.70000+ 1 2.70000+ 1 1.18907- 6 5.86780- 3 2.70000+ 1 2.90000+ 1 1.18907- 6 5.88384- 3 2.70000+ 1 3.00000+ 1 2.61588- 5 5.88684- 3 2.90000+ 1 3.00000+ 1 3.43240- 5 5.90288- 3 3.00000+ 1 3.00000+ 1 5.56593- 5 5.90588- 3 3.00000+ 1 4.10000+ 1 3.00862- 6 5.92525- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.10818- 5 1.54400- 4 1.10000+ 1 9.88251- 5 2.51700- 4 1.80000+ 1 3.16115- 4 1.23946- 3 1.90000+ 1 4.01733- 4 1.26054- 3 2.90000+ 1 6.29011- 5 1.45284- 3 3.00000+ 1 7.68729- 5 1.45584- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.44227- 2 3.21200- 5 1.00000+ 1 2.20000+ 1 1.16817- 1 3.58100- 5 1.00000+ 1 2.40000+ 1 1.01595- 2 1.46750- 4 1.00000+ 1 2.50000+ 1 1.35983- 2 1.47160- 4 1.00000+ 1 2.70000+ 1 9.66932- 3 1.11100- 4 1.00000+ 1 2.90000+ 1 8.04321- 3 1.27140- 4 1.00000+ 1 3.00000+ 1 1.30887- 2 1.30140- 4 1.00000+ 1 4.10000+ 1 8.45729- 4 1.49510- 4 1.10000+ 1 1.80000+ 1 8.60038- 2 1.10600- 5 1.10000+ 1 1.90000+ 1 1.25116- 1 3.21400- 5 1.10000+ 1 2.10000+ 1 5.77696- 2 1.29420- 4 1.10000+ 1 2.20000+ 1 8.33666- 2 1.33110- 4 1.10000+ 1 2.40000+ 1 2.40774- 2 2.44050- 4 1.10000+ 1 2.50000+ 1 3.02936- 2 2.44460- 4 1.10000+ 1 2.70000+ 1 1.27475- 2 2.08400- 4 1.10000+ 1 2.90000+ 1 1.08290- 2 2.24440- 4 1.10000+ 1 3.00000+ 1 1.59129- 2 2.27440- 4 1.10000+ 1 4.10000+ 1 1.12644- 3 2.46810- 4 1.30000+ 1 1.60000+ 1 3.09425- 2 2.24870- 4 1.30000+ 1 1.80000+ 1 6.73727- 3 2.83480- 4 1.30000+ 1 1.90000+ 1 5.54156- 3 3.04560- 4 1.30000+ 1 2.10000+ 1 9.40465- 3 4.01840- 4 1.30000+ 1 2.20000+ 1 1.17608- 2 4.05530- 4 1.30000+ 1 2.40000+ 1 1.18547- 3 5.16470- 4 1.30000+ 1 2.50000+ 1 1.17321- 3 5.16880- 4 1.30000+ 1 2.70000+ 1 3.52472- 3 4.80820- 4 1.30000+ 1 2.90000+ 1 7.27491- 4 4.96860- 4 1.30000+ 1 3.00000+ 1 5.69701- 4 4.99860- 4 1.30000+ 1 4.10000+ 1 2.98313- 4 5.19230- 4 1.40000+ 1 1.60000+ 1 4.49877- 2 2.45990- 4 1.40000+ 1 1.80000+ 1 1.54384- 3 3.04600- 4 1.40000+ 1 1.90000+ 1 1.30549- 2 3.25680- 4 1.40000+ 1 2.10000+ 1 1.24928- 2 4.22960- 4 1.40000+ 1 2.20000+ 1 1.92115- 2 4.26650- 4 1.40000+ 1 2.40000+ 1 1.41126- 3 5.37590- 4 1.40000+ 1 2.50000+ 1 2.14282- 3 5.38000- 4 1.40000+ 1 2.70000+ 1 5.08383- 3 5.01940- 4 1.40000+ 1 2.90000+ 1 1.59821- 4 5.17980- 4 1.40000+ 1 3.00000+ 1 1.34584- 3 5.20980- 4 1.40000+ 1 4.10000+ 1 4.29533- 4 5.40350- 4 1.60000+ 1 1.60000+ 1 6.53898- 3 8.81600- 4 1.60000+ 1 1.80000+ 1 1.08175- 2 9.40210- 4 1.60000+ 1 1.90000+ 1 1.96667- 2 9.61290- 4 1.60000+ 1 2.10000+ 1 2.06703- 2 1.05857- 3 1.60000+ 1 2.20000+ 1 3.00116- 2 1.06226- 3 1.60000+ 1 2.40000+ 1 1.53301- 3 1.17320- 3 1.60000+ 1 2.50000+ 1 1.95012- 3 1.17361- 3 1.60000+ 1 2.70000+ 1 1.83084- 3 1.13755- 3 1.60000+ 1 2.90000+ 1 1.48025- 3 1.15359- 3 1.60000+ 1 3.00000+ 1 2.60878- 3 1.15659- 3 1.60000+ 1 4.10000+ 1 1.60015- 4 1.17596- 3 1.80000+ 1 1.80000+ 1 5.50983- 4 9.98820- 4 1.80000+ 1 1.90000+ 1 1.37345- 3 1.01990- 3 1.80000+ 1 2.10000+ 1 8.31020- 4 1.11718- 3 1.80000+ 1 2.20000+ 1 3.71125- 4 1.12087- 3 1.80000+ 1 2.40000+ 1 2.95974- 5 1.23181- 3 1.80000+ 1 2.50000+ 1 1.03020- 4 1.23222- 3 1.80000+ 1 2.70000+ 1 1.13835- 3 1.19616- 3 1.80000+ 1 2.90000+ 1 1.21237- 4 1.21220- 3 1.80000+ 1 3.00000+ 1 1.43436- 4 1.21520- 3 1.80000+ 1 4.10000+ 1 9.61942- 5 1.23457- 3 1.90000+ 1 1.90000+ 1 1.76439- 3 1.04098- 3 1.90000+ 1 2.10000+ 1 9.40099- 4 1.13826- 3 1.90000+ 1 2.20000+ 1 2.45437- 3 1.14195- 3 1.90000+ 1 2.40000+ 1 1.03242- 4 1.25289- 3 1.90000+ 1 2.50000+ 1 1.84633- 4 1.25330- 3 1.90000+ 1 2.70000+ 1 1.99330- 3 1.21724- 3 1.90000+ 1 2.90000+ 1 1.51857- 4 1.23328- 3 1.90000+ 1 3.00000+ 1 3.93317- 4 1.23628- 3 1.90000+ 1 4.10000+ 1 1.68793- 4 1.25565- 3 2.10000+ 1 2.10000+ 1 2.50028- 4 1.23554- 3 2.10000+ 1 2.20000+ 1 1.07200- 3 1.23923- 3 2.10000+ 1 2.40000+ 1 9.62960- 5 1.35017- 3 2.10000+ 1 2.50000+ 1 7.25121- 4 1.35058- 3 2.10000+ 1 2.70000+ 1 2.19221- 3 1.31452- 3 2.10000+ 1 2.90000+ 1 8.52736- 5 1.33056- 3 2.10000+ 1 3.00000+ 1 1.03837- 4 1.33356- 3 2.10000+ 1 4.10000+ 1 1.85051- 4 1.35293- 3 2.20000+ 1 2.20000+ 1 6.29885- 4 1.24292- 3 2.20000+ 1 2.40000+ 1 7.25954- 4 1.35386- 3 2.20000+ 1 2.50000+ 1 4.09833- 4 1.35427- 3 2.20000+ 1 2.70000+ 1 3.13225- 3 1.31821- 3 2.20000+ 1 2.90000+ 1 3.77260- 5 1.33425- 3 2.20000+ 1 3.00000+ 1 2.68648- 4 1.33725- 3 2.20000+ 1 4.10000+ 1 2.64072- 4 1.35662- 3 2.40000+ 1 2.40000+ 1 3.24703- 6 1.46480- 3 2.40000+ 1 2.50000+ 1 1.08786- 4 1.46521- 3 2.40000+ 1 2.70000+ 1 1.39094- 4 1.42915- 3 2.40000+ 1 2.90000+ 1 2.70599- 6 1.44519- 3 2.40000+ 1 3.00000+ 1 1.02830- 5 1.44819- 3 2.40000+ 1 4.10000+ 1 1.19069- 5 1.46756- 3 2.50000+ 1 2.50000+ 1 1.56955- 5 1.46562- 3 2.50000+ 1 2.70000+ 1 1.76980- 4 1.42956- 3 2.50000+ 1 2.90000+ 1 1.24482- 5 1.44560- 3 2.50000+ 1 3.00000+ 1 1.73192- 5 1.44860- 3 2.50000+ 1 4.10000+ 1 1.46128- 5 1.46797- 3 2.70000+ 1 2.70000+ 1 9.81169- 5 1.39350- 3 2.70000+ 1 2.90000+ 1 1.34237- 4 1.40954- 3 2.70000+ 1 3.00000+ 1 2.36742- 4 1.41254- 3 2.70000+ 1 4.10000+ 1 1.70845- 5 1.43191- 3 2.90000+ 1 2.90000+ 1 4.42474- 6 1.42558- 3 2.90000+ 1 3.00000+ 1 1.03247- 5 1.42858- 3 2.90000+ 1 4.10000+ 1 8.48110- 6 1.44795- 3 3.00000+ 1 3.00000+ 1 1.71270- 5 1.43158- 3 3.00000+ 1 4.10000+ 1 1.80049- 5 1.45095- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.48518- 4 3.69720- 4 1.60000+ 1 3.58896- 4 1.02645- 3 2.10000+ 1 1.62310- 3 1.20342- 3 2.70000+ 1 6.18376- 5 1.28240- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 7.61505- 3 8.96500- 5 1.10000+ 1 2.50000+ 1 9.18929- 3 9.00600- 5 1.10000+ 1 2.70000+ 1 7.81839- 3 5.40000- 5 1.10000+ 1 2.90000+ 1 7.59772- 3 7.00400- 5 1.10000+ 1 3.00000+ 1 8.68938- 3 7.30400- 5 1.10000+ 1 4.10000+ 1 6.42964- 4 9.24100- 5 1.30000+ 1 1.60000+ 1 1.10786- 1 7.04700- 5 1.30000+ 1 1.80000+ 1 1.11218- 1 1.29080- 4 1.30000+ 1 1.90000+ 1 1.55725- 1 1.50160- 4 1.30000+ 1 2.10000+ 1 4.88027- 2 2.47440- 4 1.30000+ 1 2.20000+ 1 5.46953- 2 2.51130- 4 1.30000+ 1 2.40000+ 1 3.63876- 2 3.62070- 4 1.30000+ 1 2.50000+ 1 5.45327- 2 3.62480- 4 1.30000+ 1 2.70000+ 1 1.86179- 2 3.26420- 4 1.30000+ 1 2.90000+ 1 1.31963- 2 3.42460- 4 1.30000+ 1 3.00000+ 1 1.96663- 2 3.45460- 4 1.30000+ 1 4.10000+ 1 1.66313- 3 3.64830- 4 1.40000+ 1 1.60000+ 1 1.87168- 2 9.15900- 5 1.40000+ 1 1.80000+ 1 1.30883- 1 1.50200- 4 1.40000+ 1 1.90000+ 1 1.32779- 2 1.71280- 4 1.40000+ 1 2.10000+ 1 2.38454- 3 2.68560- 4 1.40000+ 1 2.20000+ 1 6.37251- 3 2.72250- 4 1.40000+ 1 2.40000+ 1 1.03962- 3 3.83190- 4 1.40000+ 1 2.50000+ 1 8.77531- 4 3.83600- 4 1.40000+ 1 2.70000+ 1 2.09493- 3 3.47540- 4 1.40000+ 1 2.90000+ 1 1.27293- 2 3.63580- 4 1.40000+ 1 3.00000+ 1 1.53142- 3 3.66580- 4 1.40000+ 1 4.10000+ 1 1.78197- 4 3.85950- 4 1.60000+ 1 1.60000+ 1 7.63930- 4 7.27200- 4 1.60000+ 1 1.80000+ 1 1.06503- 2 7.85810- 4 1.60000+ 1 1.90000+ 1 1.72770- 3 8.06890- 4 1.60000+ 1 2.10000+ 1 3.67086- 4 9.04170- 4 1.60000+ 1 2.20000+ 1 1.19944- 3 9.07860- 4 1.60000+ 1 2.40000+ 1 2.49875- 5 1.01880- 3 1.60000+ 1 2.50000+ 1 9.99522- 5 1.01921- 3 1.60000+ 1 2.70000+ 1 2.02289- 4 9.83150- 4 1.60000+ 1 2.90000+ 1 9.88225- 4 9.99190- 4 1.60000+ 1 3.00000+ 1 2.05850- 4 1.00219- 3 1.60000+ 1 4.10000+ 1 1.72534- 5 1.02156- 3 1.80000+ 1 1.80000+ 1 8.05449- 3 8.44420- 4 1.80000+ 1 1.90000+ 1 2.48260- 2 8.65500- 4 1.80000+ 1 2.10000+ 1 2.27206- 2 9.62780- 4 1.80000+ 1 2.20000+ 1 3.76548- 2 9.66470- 4 1.80000+ 1 2.40000+ 1 1.41434- 3 1.07741- 3 1.80000+ 1 2.50000+ 1 2.46495- 3 1.07782- 3 1.80000+ 1 2.70000+ 1 1.85360- 3 1.04176- 3 1.80000+ 1 2.90000+ 1 1.87466- 3 1.05780- 3 1.80000+ 1 3.00000+ 1 3.26809- 3 1.06080- 3 1.80000+ 1 4.10000+ 1 1.65414- 4 1.08017- 3 1.90000+ 1 1.90000+ 1 7.40813- 4 8.86580- 4 1.90000+ 1 2.10000+ 1 2.26012- 3 9.83860- 4 1.90000+ 1 2.20000+ 1 1.71367- 3 9.87550- 4 1.90000+ 1 2.40000+ 1 1.11087- 3 1.09849- 3 1.90000+ 1 2.50000+ 1 3.31057- 4 1.09890- 3 1.90000+ 1 2.70000+ 1 2.20026- 4 1.06284- 3 1.90000+ 1 2.90000+ 1 2.56218- 3 1.07888- 3 1.90000+ 1 3.00000+ 1 1.64177- 4 1.08188- 3 1.90000+ 1 4.10000+ 1 1.88394- 5 1.10125- 3 2.10000+ 1 2.10000+ 1 7.69507- 4 1.08114- 3 2.10000+ 1 2.20000+ 1 2.14584- 3 1.08483- 3 2.10000+ 1 2.40000+ 1 1.34041- 4 1.19577- 3 2.10000+ 1 2.50000+ 1 2.32733- 4 1.19618- 3 2.10000+ 1 2.70000+ 1 5.60531- 5 1.16012- 3 2.10000+ 1 2.90000+ 1 2.08061- 3 1.17616- 3 2.10000+ 1 3.00000+ 1 2.26033- 4 1.17916- 3 2.10000+ 1 4.10000+ 1 4.87426- 6 1.19853- 3 2.20000+ 1 2.20000+ 1 4.09169- 4 1.08852- 3 2.20000+ 1 2.40000+ 1 3.85578- 4 1.19946- 3 2.20000+ 1 2.50000+ 1 8.00646- 5 1.19987- 3 2.20000+ 1 2.70000+ 1 1.27717- 4 1.16381- 3 2.20000+ 1 2.90000+ 1 2.82148- 3 1.17985- 3 2.20000+ 1 3.00000+ 1 1.28693- 4 1.18285- 3 2.20000+ 1 4.10000+ 1 1.08064- 5 1.20222- 3 2.40000+ 1 2.40000+ 1 8.40905- 6 1.31040- 3 2.40000+ 1 2.50000+ 1 2.03794- 4 1.31081- 3 2.40000+ 1 2.70000+ 1 1.48394- 6 1.27475- 3 2.40000+ 1 2.90000+ 1 9.59619- 5 1.29079- 3 2.40000+ 1 3.00000+ 1 9.99196- 5 1.29379- 3 2.50000+ 1 2.50000+ 1 4.94661- 6 1.31122- 3 2.50000+ 1 2.70000+ 1 1.18717- 5 1.27516- 3 2.50000+ 1 2.90000+ 1 1.68185- 4 1.29120- 3 2.50000+ 1 3.00000+ 1 2.67111- 5 1.29420- 3 2.50000+ 1 4.10000+ 1 9.89285- 7 1.31357- 3 2.70000+ 1 2.70000+ 1 1.18332- 5 1.23910- 3 2.70000+ 1 2.90000+ 1 1.43542- 4 1.25514- 3 2.70000+ 1 3.00000+ 1 2.00650- 5 1.25814- 3 2.70000+ 1 4.10000+ 1 2.05787- 6 1.27751- 3 2.90000+ 1 2.90000+ 1 1.15938- 4 1.27118- 3 2.90000+ 1 3.00000+ 1 3.47119- 4 1.27418- 3 2.90000+ 1 4.10000+ 1 1.72532- 5 1.29355- 3 3.00000+ 1 3.00000+ 1 1.48587- 5 1.27718- 3 3.00000+ 1 4.10000+ 1 3.18399- 6 1.29655- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.92318- 5 2.72420- 4 1.40000+ 1 2.22842- 4 2.93540- 4 1.60000+ 1 4.69455- 4 9.29150- 4 2.10000+ 1 2.05072- 4 1.10612- 3 2.20000+ 1 1.67909- 3 1.10981- 3 2.70000+ 1 8.14970- 5 1.18510- 3 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.60612- 2 3.17800- 5 1.30000+ 1 1.90000+ 1 8.70339- 2 5.28600- 5 1.30000+ 1 2.10000+ 1 1.27062- 2 1.50140- 4 1.30000+ 1 2.20000+ 1 1.01674- 2 1.53830- 4 1.30000+ 1 2.40000+ 1 3.61371- 3 2.64770- 4 1.30000+ 1 2.50000+ 1 5.36444- 3 2.65180- 4 1.30000+ 1 2.70000+ 1 2.94310- 3 2.29120- 4 1.30000+ 1 2.90000+ 1 2.01849- 3 2.45160- 4 1.30000+ 1 3.00000+ 1 8.93015- 3 2.48160- 4 1.30000+ 1 4.10000+ 1 2.55142- 4 2.67530- 4 1.40000+ 1 1.60000+ 1 9.35976- 2 0.00000+ 0 1.40000+ 1 1.80000+ 1 1.04937- 1 5.29000- 5 1.40000+ 1 1.90000+ 1 1.92310- 1 7.39800- 5 1.40000+ 1 2.10000+ 1 5.19231- 2 1.71260- 4 1.40000+ 1 2.20000+ 1 8.15879- 2 1.74950- 4 1.40000+ 1 2.40000+ 1 3.34672- 2 2.85890- 4 1.40000+ 1 2.50000+ 1 3.97706- 2 2.86300- 4 1.40000+ 1 2.70000+ 1 1.65880- 2 2.50240- 4 1.40000+ 1 2.90000+ 1 1.34100- 2 2.66280- 4 1.40000+ 1 3.00000+ 1 2.23561- 2 2.69280- 4 1.40000+ 1 4.10000+ 1 1.45132- 3 2.88650- 4 1.60000+ 1 1.60000+ 1 7.81935- 4 6.29900- 4 1.60000+ 1 1.80000+ 1 1.14918- 3 6.88510- 4 1.60000+ 1 1.90000+ 1 1.67442- 2 7.09590- 4 1.60000+ 1 2.10000+ 1 1.00843- 3 8.06870- 4 1.60000+ 1 2.20000+ 1 1.09251- 3 8.10560- 4 1.60000+ 1 2.40000+ 1 1.69043- 4 9.21500- 4 1.60000+ 1 2.50000+ 1 2.56484- 4 9.21910- 4 1.60000+ 1 2.70000+ 1 2.05680- 4 8.85850- 4 1.60000+ 1 2.90000+ 1 1.30737- 4 9.01890- 4 1.60000+ 1 3.00000+ 1 1.53884- 3 9.04890- 4 1.60000+ 1 4.10000+ 1 1.74872- 5 9.24260- 4 1.80000+ 1 1.80000+ 1 1.77337- 4 7.47120- 4 1.80000+ 1 1.90000+ 1 2.00873- 2 7.68200- 4 1.80000+ 1 2.10000+ 1 5.31136- 4 8.65480- 4 1.80000+ 1 2.20000+ 1 3.47514- 3 8.69170- 4 1.80000+ 1 2.40000+ 1 1.79064- 4 9.80110- 4 1.80000+ 1 2.50000+ 1 1.07352- 3 9.80520- 4 1.80000+ 1 2.70000+ 1 1.39273- 4 9.44460- 4 1.80000+ 1 2.90000+ 1 3.71974- 5 9.60500- 4 1.80000+ 1 3.00000+ 1 1.86589- 3 9.63500- 4 1.80000+ 1 4.10000+ 1 1.21107- 5 9.82870- 4 1.90000+ 1 1.90000+ 1 2.69474- 2 7.89280- 4 1.90000+ 1 2.10000+ 1 3.60242- 2 8.86560- 4 1.90000+ 1 2.20000+ 1 4.87122- 2 8.90250- 4 1.90000+ 1 2.40000+ 1 3.15840- 3 1.00119- 3 1.90000+ 1 2.50000+ 1 3.58564- 3 1.00160- 3 1.90000+ 1 2.70000+ 1 2.63949- 3 9.65540- 4 1.90000+ 1 2.90000+ 1 2.50570- 3 9.81580- 4 1.90000+ 1 3.00000+ 1 6.03812- 3 9.84580- 4 1.90000+ 1 4.10000+ 1 2.34690- 4 1.00395- 3 2.10000+ 1 2.10000+ 1 2.29157- 4 9.83840- 4 2.10000+ 1 2.20000+ 1 3.47038- 3 9.87530- 4 2.10000+ 1 2.40000+ 1 5.96253- 5 1.09847- 3 2.10000+ 1 2.50000+ 1 7.59331- 4 1.09888- 3 2.10000+ 1 2.70000+ 1 9.62615- 5 1.06282- 3 2.10000+ 1 2.90000+ 1 3.80748- 5 1.07886- 3 2.10000+ 1 3.00000+ 1 2.98264- 3 1.08186- 3 2.10000+ 1 4.10000+ 1 7.90233- 6 1.10123- 3 2.20000+ 1 2.20000+ 1 1.65770- 3 9.91220- 4 2.20000+ 1 2.40000+ 1 5.13566- 4 1.10216- 3 2.20000+ 1 2.50000+ 1 4.64963- 4 1.10257- 3 2.20000+ 1 2.70000+ 1 9.65742- 5 1.06651- 3 2.20000+ 1 2.90000+ 1 2.30236- 4 1.08255- 3 2.20000+ 1 3.00000+ 1 3.55964- 3 1.08555- 3 2.20000+ 1 4.10000+ 1 8.31433- 6 1.10492- 3 2.40000+ 1 2.40000+ 1 2.75801- 6 1.21310- 3 2.40000+ 1 2.50000+ 1 2.98558- 4 1.21351- 3 2.40000+ 1 2.70000+ 1 1.51696- 5 1.17745- 3 2.40000+ 1 2.90000+ 1 1.58592- 5 1.19349- 3 2.40000+ 1 3.00000+ 1 2.37194- 4 1.19649- 3 2.40000+ 1 4.10000+ 1 1.37904- 6 1.21586- 3 2.50000+ 1 2.50000+ 1 5.44717- 5 1.21392- 3 2.50000+ 1 2.70000+ 1 1.86169- 5 1.17786- 3 2.50000+ 1 2.90000+ 1 9.79126- 5 1.19390- 3 2.50000+ 1 3.00000+ 1 2.75801- 4 1.19690- 3 2.50000+ 1 4.10000+ 1 1.37904- 6 1.21627- 3 2.70000+ 1 2.70000+ 1 1.36446- 5 1.14180- 3 2.70000+ 1 2.90000+ 1 1.52498- 5 1.15784- 3 2.70000+ 1 3.00000+ 1 2.43198- 4 1.16084- 3 2.70000+ 1 4.10000+ 1 2.40777- 6 1.18021- 3 2.90000+ 1 2.90000+ 1 1.93599- 6 1.17388- 3 2.90000+ 1 3.00000+ 1 2.82647- 4 1.17688- 3 2.90000+ 1 4.10000+ 1 1.93599- 6 1.19625- 3 3.00000+ 1 3.00000+ 1 5.22777- 4 1.17988- 3 3.00000+ 1 4.10000+ 1 3.45121- 5 1.19925- 3 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.23263- 3 7.15340- 4 1.90000+ 1 4.78385- 4 7.36420- 4 2.40000+ 1 3.57934- 4 9.48330- 4 2.90000+ 1 5.25406- 4 9.28720- 4 3.00000+ 1 7.74068- 5 9.31720- 4 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 3.89687- 2 1.34700- 5 1.40000+ 1 2.50000+ 1 6.46310- 3 1.38800- 5 1.40000+ 1 4.10000+ 1 3.37709- 4 1.62300- 5 1.60000+ 1 1.60000+ 1 3.52106- 6 3.57480- 4 1.60000+ 1 1.80000+ 1 4.18296- 3 4.16090- 4 1.60000+ 1 1.90000+ 1 3.01751- 3 4.37170- 4 1.60000+ 1 2.10000+ 1 9.35343- 2 5.34450- 4 1.60000+ 1 2.20000+ 1 1.22953- 2 5.38140- 4 1.60000+ 1 2.40000+ 1 4.10541- 3 6.49080- 4 1.60000+ 1 2.50000+ 1 1.44348- 3 6.49490- 4 1.60000+ 1 2.70000+ 1 2.81678- 5 6.13430- 4 1.60000+ 1 2.90000+ 1 4.47162- 4 6.29470- 4 1.60000+ 1 3.00000+ 1 2.49996- 4 6.32470- 4 1.60000+ 1 4.10000+ 1 3.52106- 6 6.51840- 4 1.80000+ 1 1.80000+ 1 1.91557- 3 4.74700- 4 1.80000+ 1 1.90000+ 1 1.44107- 2 4.95780- 4 1.80000+ 1 2.10000+ 1 7.78766- 2 5.93060- 4 1.80000+ 1 2.20000+ 1 6.79219- 3 5.96750- 4 1.80000+ 1 2.40000+ 1 2.75000- 3 7.07690- 4 1.80000+ 1 2.50000+ 1 1.61978- 3 7.08100- 4 1.80000+ 1 2.70000+ 1 4.15499- 4 6.72040- 4 1.80000+ 1 2.90000+ 1 4.33099- 4 6.88080- 4 1.80000+ 1 3.00000+ 1 1.42252- 3 6.91080- 4 1.80000+ 1 4.10000+ 1 3.52121- 5 7.10450- 4 1.90000+ 1 1.90000+ 1 5.40122- 3 5.16860- 4 1.90000+ 1 2.10000+ 1 1.70622- 1 6.14140- 4 1.90000+ 1 2.20000+ 1 6.39781- 3 6.17830- 4 1.90000+ 1 2.40000+ 1 2.06328- 3 7.28770- 4 1.90000+ 1 2.50000+ 1 9.11951- 4 7.29180- 4 1.90000+ 1 2.70000+ 1 3.48600- 4 6.93120- 4 1.90000+ 1 2.90000+ 1 1.38723- 3 7.09160- 4 1.90000+ 1 3.00000+ 1 1.03166- 3 7.12160- 4 1.90000+ 1 4.10000+ 1 2.81686- 5 7.31530- 4 2.10000+ 1 2.10000+ 1 1.38844- 1 7.11420- 4 2.10000+ 1 2.20000+ 1 2.84577- 1 7.15110- 4 2.10000+ 1 2.40000+ 1 1.45201- 2 8.26050- 4 2.10000+ 1 2.50000+ 1 1.93782- 2 8.26460- 4 2.10000+ 1 2.70000+ 1 1.41231- 2 7.90400- 4 2.10000+ 1 2.90000+ 1 1.05363- 2 8.06440- 4 2.10000+ 1 3.00000+ 1 2.18728- 2 8.09440- 4 2.10000+ 1 4.10000+ 1 1.24347- 3 8.28810- 4 2.20000+ 1 2.20000+ 1 4.67603- 3 7.18800- 4 2.20000+ 1 2.40000+ 1 1.35356- 2 8.29740- 4 2.20000+ 1 2.50000+ 1 8.66188- 4 8.30150- 4 2.20000+ 1 2.70000+ 1 1.04224- 3 7.94090- 4 2.20000+ 1 2.90000+ 1 6.12679- 4 8.10130- 4 2.20000+ 1 3.00000+ 1 6.68992- 4 8.13130- 4 2.20000+ 1 4.10000+ 1 8.45062- 5 8.32500- 4 2.40000+ 1 2.40000+ 1 4.57742- 4 9.40680- 4 2.40000+ 1 2.50000+ 1 5.05984- 3 9.41090- 4 2.40000+ 1 2.70000+ 1 6.19719- 4 9.05030- 4 2.40000+ 1 2.90000+ 1 2.88745- 4 9.21070- 4 2.40000+ 1 3.00000+ 1 2.50008- 4 9.24070- 4 2.40000+ 1 4.10000+ 1 5.28162- 5 9.43440- 4 2.50000+ 1 2.50000+ 1 5.28160- 5 9.41500- 4 2.50000+ 1 2.70000+ 1 1.51409- 4 9.05440- 4 2.50000+ 1 2.90000+ 1 1.05634- 4 9.21480- 4 2.50000+ 1 3.00000+ 1 1.02112- 4 9.24480- 4 2.50000+ 1 4.10000+ 1 1.40839- 5 9.43850- 4 2.70000+ 1 2.70000+ 1 6.12227- 6 8.69380- 4 2.70000+ 1 2.90000+ 1 8.57103- 5 8.85420- 4 2.70000+ 1 3.00000+ 1 5.50990- 5 8.88420- 4 2.90000+ 1 2.90000+ 1 4.05088- 5 9.01460- 4 2.90000+ 1 3.00000+ 1 2.37257- 4 9.04460- 4 2.90000+ 1 4.10000+ 1 5.78737- 6 9.23830- 4 3.00000+ 1 3.00000+ 1 2.03664- 4 9.07460- 4 3.00000+ 1 4.10000+ 1 1.35782- 5 9.26830- 4 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.58008- 3 7.15300- 4 2.40000+ 1 1.87829- 5 9.27210- 4 2.50000+ 1 3.66718- 4 9.27620- 4 3.00000+ 1 5.93946- 4 9.10600- 4 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.23522- 6 3.36360- 4 1.60000+ 1 1.80000+ 1 1.37468- 3 3.94970- 4 1.60000+ 1 1.90000+ 1 6.61654- 3 4.16050- 4 1.60000+ 1 2.10000+ 1 9.61563- 3 5.13330- 4 1.60000+ 1 2.20000+ 1 1.02779- 1 5.17020- 4 1.60000+ 1 2.40000+ 1 1.40369- 3 6.27960- 4 1.60000+ 1 2.50000+ 1 4.50033- 3 6.28370- 4 1.60000+ 1 2.70000+ 1 2.53228- 5 5.92310- 4 1.60000+ 1 2.90000+ 1 7.95889- 5 6.08350- 4 1.60000+ 1 3.00000+ 1 6.33087- 4 6.11350- 4 1.60000+ 1 4.10000+ 1 3.61760- 6 6.30720- 4 1.80000+ 1 1.80000+ 1 1.08521- 5 4.53580- 4 1.80000+ 1 1.90000+ 1 1.48942- 2 4.74660- 4 1.80000+ 1 2.10000+ 1 9.87608- 4 5.71940- 4 1.80000+ 1 2.20000+ 1 9.98664- 2 5.75630- 4 1.80000+ 1 2.40000+ 1 6.11375- 4 6.86570- 4 1.80000+ 1 2.50000+ 1 2.18508- 3 6.86980- 4 1.80000+ 1 2.70000+ 1 1.33857- 4 6.50920- 4 1.80000+ 1 2.90000+ 1 7.23515- 6 6.66960- 4 1.80000+ 1 3.00000+ 1 1.42172- 3 6.69960- 4 1.80000+ 1 4.10000+ 1 1.08521- 5 6.89330- 4 1.90000+ 1 1.90000+ 1 1.15326- 2 4.95740- 4 1.90000+ 1 2.10000+ 1 9.28962- 3 5.93020- 4 1.90000+ 1 2.20000+ 1 1.63403- 1 5.96710- 4 1.90000+ 1 2.40000+ 1 1.19016- 3 7.07650- 4 1.90000+ 1 2.50000+ 1 2.85410- 3 7.08060- 4 1.90000+ 1 2.70000+ 1 7.37962- 4 6.72000- 4 1.90000+ 1 2.90000+ 1 1.37461- 3 6.88040- 4 1.90000+ 1 3.00000+ 1 2.27173- 3 6.91040- 4 1.90000+ 1 4.10000+ 1 6.51141- 5 7.10410- 4 2.10000+ 1 2.10000+ 1 1.98606- 3 6.90300- 4 2.10000+ 1 2.20000+ 1 2.05347- 1 6.93990- 4 2.10000+ 1 2.40000+ 1 6.69264- 4 8.04930- 4 2.10000+ 1 2.50000+ 1 8.60620- 3 8.05340- 4 2.10000+ 1 2.70000+ 1 7.99490- 4 7.69280- 4 2.10000+ 1 2.90000+ 1 1.33856- 4 7.85320- 4 2.10000+ 1 3.00000+ 1 8.71847- 4 7.88320- 4 2.10000+ 1 4.10000+ 1 6.51167- 5 8.07690- 4 2.20000+ 1 2.20000+ 1 2.36724- 1 6.97680- 4 2.20000+ 1 2.40000+ 1 1.69272- 2 8.08620- 4 2.20000+ 1 2.50000+ 1 2.44949- 2 8.09030- 4 2.20000+ 1 2.70000+ 1 1.50527- 2 7.72970- 4 2.20000+ 1 2.90000+ 1 1.30277- 2 7.89010- 4 2.20000+ 1 3.00000+ 1 2.11078- 2 7.92010- 4 2.20000+ 1 4.10000+ 1 1.32401- 3 8.11380- 4 2.40000+ 1 2.40000+ 1 3.61756- 5 9.19560- 4 2.40000+ 1 2.50000+ 1 4.36638- 3 9.19970- 4 2.40000+ 1 2.70000+ 1 1.59182- 4 8.83910- 4 2.40000+ 1 2.90000+ 1 7.23514- 5 8.99950- 4 2.40000+ 1 3.00000+ 1 1.04912- 4 9.02950- 4 2.40000+ 1 4.10000+ 1 1.44695- 5 9.22320- 4 2.50000+ 1 2.50000+ 1 1.41083- 3 9.20380- 4 2.50000+ 1 2.70000+ 1 6.51156- 4 8.84320- 4 2.50000+ 1 2.90000+ 1 2.74938- 4 9.00360- 4 2.50000+ 1 3.00000+ 1 3.07481- 4 9.03360- 4 2.50000+ 1 4.10000+ 1 5.78801- 5 9.22730- 4 2.70000+ 1 2.90000+ 1 2.25460- 5 8.64300- 4 2.70000+ 1 3.00000+ 1 2.36732- 4 8.67300- 4 2.90000+ 1 3.00000+ 1 3.39508- 4 8.83340- 4 3.00000+ 1 3.00000+ 1 3.41061- 4 8.86340- 4 3.00000+ 1 4.10000+ 1 2.13168- 5 9.05710- 4 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.23844- 5 5.86100- 5 1.90000+ 1 6.13230- 5 7.96900- 5 2.90000+ 1 2.42612- 5 2.71990- 4 3.00000+ 1 2.17993- 5 2.74990- 4 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.77883- 2 5.09600- 5 1.80000+ 1 2.50000+ 1 2.75278- 2 5.13700- 5 1.80000+ 1 2.70000+ 1 5.87307- 2 1.53100- 5 1.80000+ 1 2.90000+ 1 4.50950- 2 3.13500- 5 1.80000+ 1 3.00000+ 1 9.65789- 2 3.43500- 5 1.80000+ 1 4.10000+ 1 4.99259- 3 5.37200- 5 1.90000+ 1 2.40000+ 1 5.74097- 2 7.20400- 5 1.90000+ 1 2.50000+ 1 6.82201- 2 7.24500- 5 1.90000+ 1 2.70000+ 1 7.83288- 2 3.63900- 5 1.90000+ 1 2.90000+ 1 7.89086- 2 5.24300- 5 1.90000+ 1 3.00000+ 1 1.08237- 1 5.54300- 5 1.90000+ 1 4.10000+ 1 6.74125- 3 7.48000- 5 2.10000+ 1 2.10000+ 1 5.14126- 3 5.46900- 5 2.10000+ 1 2.20000+ 1 3.63951- 2 5.83800- 5 2.10000+ 1 2.40000+ 1 1.94553- 3 1.69320- 4 2.10000+ 1 2.50000+ 1 4.88165- 3 1.69730- 4 2.10000+ 1 2.70000+ 1 2.47347- 2 1.33670- 4 2.10000+ 1 2.90000+ 1 4.74858- 3 1.49710- 4 2.10000+ 1 3.00000+ 1 1.62956- 2 1.52710- 4 2.10000+ 1 4.10000+ 1 1.78283- 3 1.72080- 4 2.20000+ 1 2.20000+ 1 1.64439- 2 6.20700- 5 2.20000+ 1 2.40000+ 1 5.56926- 3 1.73010- 4 2.20000+ 1 2.50000+ 1 4.78379- 3 1.73420- 4 2.20000+ 1 2.70000+ 1 3.59979- 2 1.37360- 4 2.20000+ 1 2.90000+ 1 1.46650- 2 1.53400- 4 2.20000+ 1 3.00000+ 1 1.52675- 2 1.56400- 4 2.20000+ 1 4.10000+ 1 2.59387- 3 1.75770- 4 2.40000+ 1 2.40000+ 1 7.63696- 5 2.83950- 4 2.40000+ 1 2.50000+ 1 7.45960- 4 2.84360- 4 2.40000+ 1 2.70000+ 1 3.93720- 3 2.48300- 4 2.40000+ 1 2.90000+ 1 5.04266- 4 2.64340- 4 2.40000+ 1 3.00000+ 1 1.20878- 3 2.67340- 4 2.40000+ 1 4.10000+ 1 2.57707- 4 2.86710- 4 2.50000+ 1 2.50000+ 1 2.32825- 4 2.84770- 4 2.50000+ 1 2.70000+ 1 5.09758- 3 2.48710- 4 2.50000+ 1 2.90000+ 1 3.93856- 4 2.64750- 4 2.50000+ 1 3.00000+ 1 1.52943- 3 2.67750- 4 2.50000+ 1 4.10000+ 1 3.33505- 4 2.87120- 4 2.70000+ 1 2.70000+ 1 1.56080- 2 2.12650- 4 2.70000+ 1 2.90000+ 1 1.90101- 2 2.28690- 4 2.70000+ 1 3.00000+ 1 3.35777- 2 2.31690- 4 2.70000+ 1 4.10000+ 1 2.43012- 3 2.51060- 4 2.90000+ 1 2.90000+ 1 6.39896- 3 2.44730- 4 2.90000+ 1 3.00000+ 1 2.77763- 2 2.47730- 4 2.90000+ 1 4.10000+ 1 5.40725- 3 2.67100- 4 3.00000+ 1 3.00000+ 1 2.50685- 2 2.50730- 4 3.00000+ 1 4.10000+ 1 1.04810- 2 2.70100- 4 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.87450- 4 1.18360- 4 2.70000+ 1 3.66019- 5 1.97340- 4 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 1.85796- 2 1.34300- 5 1.90000+ 1 2.50000+ 1 1.43291- 2 1.38400- 5 1.90000+ 1 4.10000+ 1 1.30927- 3 1.61900- 5 2.10000+ 1 2.10000+ 1 6.90309- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 5.26765- 1 0.00000+ 0 2.10000+ 1 2.40000+ 1 4.34740- 2 1.10710- 4 2.10000+ 1 2.50000+ 1 8.92123- 2 1.11120- 4 2.10000+ 1 2.70000+ 1 4.24932- 2 7.50600- 5 2.10000+ 1 2.90000+ 1 3.00133- 2 9.11000- 5 2.10000+ 1 3.00000+ 1 5.84101- 2 9.41000- 5 2.10000+ 1 4.10000+ 1 3.77036- 3 1.13470- 4 2.20000+ 1 2.20000+ 1 2.43521- 2 3.46000- 6 2.20000+ 1 2.40000+ 1 1.01921- 2 1.14400- 4 2.20000+ 1 2.50000+ 1 2.74040- 3 1.14810- 4 2.20000+ 1 2.70000+ 1 6.46620- 3 7.87500- 5 2.20000+ 1 2.90000+ 1 2.82615- 2 9.47900- 5 2.20000+ 1 3.00000+ 1 6.54696- 3 9.77900- 5 2.20000+ 1 4.10000+ 1 4.95579- 4 1.17160- 4 2.40000+ 1 2.40000+ 1 4.52804- 5 2.25340- 4 2.40000+ 1 2.50000+ 1 1.13440- 3 2.25750- 4 2.40000+ 1 2.70000+ 1 9.07420- 4 1.89690- 4 2.40000+ 1 2.90000+ 1 2.93746- 3 2.05730- 4 2.40000+ 1 3.00000+ 1 1.26969- 3 2.08730- 4 2.40000+ 1 4.10000+ 1 7.68404- 5 2.28100- 4 2.50000+ 1 2.50000+ 1 2.26404- 5 2.26160- 4 2.50000+ 1 2.70000+ 1 4.40233- 4 1.90100- 4 2.50000+ 1 2.90000+ 1 4.82719- 3 2.06140- 4 2.50000+ 1 3.00000+ 1 4.22856- 4 2.09140- 4 2.50000+ 1 4.10000+ 1 3.08730- 5 2.28510- 4 2.70000+ 1 2.70000+ 1 9.17053- 5 1.54040- 4 2.70000+ 1 2.90000+ 1 1.75995- 3 1.70080- 4 2.70000+ 1 3.00000+ 1 2.65207- 4 1.73080- 4 2.70000+ 1 4.10000+ 1 1.34383- 5 1.92450- 4 2.90000+ 1 2.90000+ 1 2.16700- 3 1.86120- 4 2.90000+ 1 3.00000+ 1 6.30378- 3 1.89120- 4 2.90000+ 1 4.10000+ 1 3.45706- 4 2.08490- 4 3.00000+ 1 3.00000+ 1 2.31701- 4 1.92120- 4 3.00000+ 1 4.10000+ 1 4.10689- 5 2.11490- 4 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.81183- 6 9.72800- 5 2.20000+ 1 5.16333- 5 1.00970- 4 2.70000+ 1 1.51631- 5 1.76260- 4 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.23085- 2 8.96300- 5 2.10000+ 1 2.50000+ 1 3.70563- 2 9.00400- 5 2.10000+ 1 2.70000+ 1 2.46212- 2 5.39800- 5 2.10000+ 1 2.90000+ 1 1.84988- 2 7.00200- 5 2.10000+ 1 3.00000+ 1 7.49247- 2 7.30200- 5 2.10000+ 1 4.10000+ 1 2.14142- 3 9.23900- 5 2.20000+ 1 2.40000+ 1 1.61261- 1 9.33200- 5 2.20000+ 1 2.50000+ 1 1.63063- 1 9.37300- 5 2.20000+ 1 2.70000+ 1 1.28705- 1 5.76700- 5 2.20000+ 1 2.90000+ 1 1.24727- 1 7.37100- 5 2.20000+ 1 3.00000+ 1 1.96814- 1 7.67100- 5 2.20000+ 1 4.10000+ 1 1.17742- 2 9.60800- 5 2.40000+ 1 2.40000+ 1 2.53348- 5 2.04260- 4 2.40000+ 1 2.50000+ 1 2.55120- 3 2.04670- 4 2.40000+ 1 2.70000+ 1 1.82798- 3 1.68610- 4 2.40000+ 1 2.90000+ 1 7.84152- 4 1.84650- 4 2.40000+ 1 3.00000+ 1 1.13635- 2 1.87650- 4 2.40000+ 1 4.10000+ 1 1.20974- 4 2.07020- 4 2.50000+ 1 2.50000+ 1 4.93404- 4 2.05080- 4 2.50000+ 1 2.70000+ 1 3.92050- 3 1.69020- 4 2.50000+ 1 2.90000+ 1 3.30551- 3 1.85060- 4 2.50000+ 1 3.00000+ 1 1.38080- 2 1.88060- 4 2.50000+ 1 4.10000+ 1 2.90727- 4 2.07430- 4 2.70000+ 1 2.70000+ 1 1.38363- 5 1.32960- 4 2.70000+ 1 2.90000+ 1 1.14417- 4 1.49000- 4 2.70000+ 1 3.00000+ 1 2.21060- 3 1.52000- 4 2.70000+ 1 4.10000+ 1 2.66078- 6 1.71370- 4 2.90000+ 1 2.90000+ 1 1.10431- 5 1.65040- 4 2.90000+ 1 3.00000+ 1 9.94181- 4 1.68040- 4 2.90000+ 1 4.10000+ 1 3.98074- 6 1.87410- 4 3.00000+ 1 3.00000+ 1 2.05005- 3 1.71040- 4 3.00000+ 1 4.10000+ 1 1.41362- 4 1.90410- 4 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.47445- 7 1.14630- 4 2.90000+ 1 4.02583- 6 9.50200- 5 3.00000+ 1 6.72974- 7 9.80200- 5 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.56955- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 4.83062- 3 0.00000+ 0 2.40000+ 1 2.40000+ 1 9.93934- 3 1.06980- 4 2.40000+ 1 2.50000+ 1 1.13121- 1 1.07390- 4 2.40000+ 1 2.70000+ 1 5.10979- 2 7.13300- 5 2.40000+ 1 2.90000+ 1 4.57855- 2 8.73700- 5 2.40000+ 1 3.00000+ 1 7.46723- 2 9.03700- 5 2.40000+ 1 4.10000+ 1 4.70432- 3 1.09740- 4 2.50000+ 1 2.50000+ 1 2.64069- 4 1.07800- 4 2.50000+ 1 2.70000+ 1 2.29447- 3 7.17400- 5 2.50000+ 1 2.90000+ 1 7.64718- 3 8.77800- 5 2.50000+ 1 3.00000+ 1 2.43797- 3 9.07800- 5 2.50000+ 1 4.10000+ 1 1.72341- 4 1.10150- 4 2.70000+ 1 2.70000+ 1 4.59380- 2 3.56800- 5 2.70000+ 1 2.90000+ 1 3.13245- 2 5.17200- 5 2.70000+ 1 3.00000+ 1 3.92704- 2 5.47200- 5 2.70000+ 1 4.10000+ 1 4.37748- 3 7.40900- 5 2.90000+ 1 2.90000+ 1 9.53790- 2 6.77600- 5 2.90000+ 1 3.00000+ 1 2.90476- 1 7.07600- 5 2.90000+ 1 4.10000+ 1 1.14760- 2 9.01300- 5 3.00000+ 1 3.00000+ 1 1.10327- 1 7.37600- 5 3.00000+ 1 4.10000+ 1 8.76373- 3 9.31300- 5 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.33919- 8 1.10940- 4 2.50000+ 1 4.72468- 7 1.11350- 4 3.00000+ 1 4.97158- 6 9.43300- 5 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.65836- 3 1.03290- 4 2.40000+ 1 2.50000+ 1 2.30000- 1 1.03700- 4 2.40000+ 1 2.70000+ 1 1.82941- 2 6.76400- 5 2.40000+ 1 2.90000+ 1 1.05643- 2 8.36800- 5 2.40000+ 1 3.00000+ 1 4.64873- 2 8.66800- 5 2.40000+ 1 4.10000+ 1 1.50483- 3 1.06050- 4 2.50000+ 1 2.50000+ 1 7.73717- 2 1.04110- 4 2.50000+ 1 2.70000+ 1 1.33087- 1 6.80500- 5 2.50000+ 1 2.90000+ 1 1.32037- 1 8.40900- 5 2.50000+ 1 3.00000+ 1 1.96611- 1 8.70900- 5 2.50000+ 1 4.10000+ 1 1.23506- 2 1.06460- 4 2.70000+ 1 2.70000+ 1 3.25602- 2 3.19900- 5 2.70000+ 1 2.90000+ 1 1.27198- 2 4.80300- 5 2.70000+ 1 3.00000+ 1 3.45967- 2 5.10300- 5 2.70000+ 1 4.10000+ 1 3.06598- 3 7.04000- 5 2.90000+ 1 2.90000+ 1 3.06588- 3 6.40700- 5 2.90000+ 1 3.00000+ 1 2.99567- 2 6.70700- 5 2.90000+ 1 4.10000+ 1 6.19330- 4 8.64400- 5 3.00000+ 1 3.00000+ 1 2.16002- 2 7.00700- 5 3.00000+ 1 4.10000+ 1 1.84274- 3 8.94400- 5 1 59000 0 7 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.57889- 9 1.60400- 5 3.00000+ 1 8.73106- 9 1.90400- 5 1 59000 0 9 1.40908+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.93428- 1 1.11500- 5 3.00000+ 1 4.10000+ 1 5.98517- 1 1.41500- 5 4.10000+ 1 4.10000+ 1 8.05486- 3 3.35200- 5 1 60000 0 0 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 1.71000+ 0 2.50000+ 1 2.29000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 60000 0 0 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.35970- 2 3.00000+ 0 7.09330- 3 5.00000+ 0 6.72740- 3 6.00000+ 0 6.20070- 3 8.00000+ 0 1.55180- 3 1.00000+ 1 1.39280- 3 1.10000+ 1 1.28710- 3 1.30000+ 1 1.00730- 3 1.40000+ 1 9.84320- 4 1.60000+ 1 3.13580- 4 1.80000+ 1 2.52760- 4 1.90000+ 1 2.29720- 4 2.10000+ 1 1.28680- 4 2.20000+ 1 1.24620- 4 2.40000+ 1 8.32000- 6 2.50000+ 1 7.85000- 6 2.70000+ 1 4.48000- 5 2.90000+ 1 2.81200- 5 3.00000+ 1 2.48800- 5 4.10000+ 1 4.96000- 6 1 60000 0 0 1.44240+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.63930- 2 3.00000+ 0 1.26290- 2 5.00000+ 0 1.26380- 2 6.00000+ 0 1.07050- 2 8.00000+ 0 3.83100- 3 1.00000+ 1 3.75210- 3 1.10000+ 1 3.30500- 3 1.30000+ 1 3.17330- 3 1.40000+ 1 3.06700- 3 1.60000+ 1 1.17440- 3 1.80000+ 1 1.09370- 3 1.90000+ 1 9.70860- 4 2.10000+ 1 8.10530- 4 2.20000+ 1 7.83760- 4 2.40000+ 1 4.32430- 4 2.50000+ 1 4.24420- 4 2.70000+ 1 2.51940- 4 2.90000+ 1 1.99330- 4 3.00000+ 1 1.73680- 4 4.10000+ 1 2.69100- 5 1 60000 0 0 1.44240+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.24850-10 3.00000+ 0 5.29810-10 5.00000+ 0 4.43700-10 6.00000+ 0 4.77290-10 8.00000+ 0 1.39910- 9 1.00000+ 1 1.34270- 9 1.10000+ 1 1.40750- 9 1.30000+ 1 1.25420- 9 1.40000+ 1 1.27470- 9 1.60000+ 1 3.18700- 9 1.80000+ 1 3.26570- 9 1.90000+ 1 3.41250- 9 2.10000+ 1 3.65000- 9 2.20000+ 1 3.70130- 9 2.40000+ 1 5.18230- 9 2.50000+ 1 5.24790- 9 2.70000+ 1 7.64590- 9 2.90000+ 1 8.57270- 9 3.00000+ 1 9.02840- 9 4.10000+ 1 2.34050- 8 1 60000 0 0 1.44240+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.55190- 5 3.00000+ 0 2.83010- 7 5.00000+ 0 4.79830- 7 6.00000+ 0 4.44830- 7 8.00000+ 0 8.33190- 9 1.00000+ 1 8.35690- 9 1.10000+ 1 8.50260- 9 1.30000+ 1 2.56080- 9 1.40000+ 1 2.38200- 9 1.60000+ 1 2.14000-10 1.80000+ 1 4.32120-10 1.90000+ 1 3.14900-10 2.10000+ 1 1.26040-10 2.20000+ 1 1.15750-10 2.70000+ 1 1.08070-11 1 60000 0 0 1.44240+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.35300- 6 3.00000+ 0 3.79610- 6 5.00000+ 0 2.89640- 6 6.00000+ 0 2.73040- 6 8.00000+ 0 1.40640- 5 1.00000+ 1 6.33600- 6 1.10000+ 1 7.27810- 6 1.30000+ 1 9.71580- 7 1.40000+ 1 7.78920- 7 1.60000+ 1 8.81510- 6 1.80000+ 1 1.20740- 5 1.90000+ 1 4.94630- 6 2.10000+ 1 1.05400- 6 2.20000+ 1 7.96210- 7 2.70000+ 1 5.51410- 7 1 60000 0 0 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.58474- 4 3.00000+ 0 1.90450- 4 5.00000+ 0 1.65075- 4 6.00000+ 0 1.51912- 4 8.00000+ 0 1.39104- 4 1.00000+ 1 1.20883- 4 1.10000+ 1 1.08906- 4 1.30000+ 1 8.09015- 5 1.40000+ 1 7.15064- 5 1.60000+ 1 6.85527- 5 1.80000+ 1 6.35570- 5 1.90000+ 1 4.84945- 5 2.10000+ 1 4.13809- 5 2.20000+ 1 2.89358- 5 2.40000+ 1 8.32000- 6 2.50000+ 1 7.85000- 6 2.70000+ 1 3.09676- 5 2.90000+ 1 2.81200- 5 3.00000+ 1 2.48800- 5 4.10000+ 1 4.96000- 6 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05499+ 0 3.00000+ 0 1.50911- 1 5.00000+ 0 1.68308- 1 6.00000+ 0 1.41820- 1 8.00000+ 0 7.23758- 3 1.00000+ 1 7.57691- 3 1.10000+ 1 7.20885- 3 1.30000+ 1 5.65870- 3 1.40000+ 1 5.29993- 3 1.60000+ 1 2.34900- 4 1.80000+ 1 2.68360- 4 1.90000+ 1 8.92207- 5 2.10000+ 1 7.54407- 6 2.20000+ 1 7.58979- 6 2.70000+ 1 2.34510- 8 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.59288- 2 3.00000+ 0 8.11582- 4 5.00000+ 0 9.19782- 4 6.00000+ 0 7.07649- 4 8.00000+ 0 6.63049- 6 1.00000+ 1 6.73843- 6 1.10000+ 1 6.41900- 6 1.30000+ 1 4.53084- 6 1.40000+ 1 4.22132- 6 1.60000+ 1 3.45468- 8 1.80000+ 1 3.66159- 8 1.90000+ 1 1.07995- 8 2.10000+ 1 7.79023-10 2.20000+ 1 7.73273-10 2.70000+ 1 4.50076-13 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.43679+ 0 3.00000+ 0 1.14896+ 1 5.00000+ 0 9.67710+ 0 6.00000+ 0 9.11831+ 0 8.00000+ 0 8.13722+ 0 1.00000+ 1 6.73414+ 0 1.10000+ 1 6.33223+ 0 1.30000+ 1 4.01077+ 0 1.40000+ 1 3.93356+ 0 1.60000+ 1 3.24600+ 0 1.80000+ 1 2.98896+ 0 1.90000+ 1 2.29946+ 0 2.10000+ 1 1.25497+ 0 2.20000+ 1 1.21429+ 0 2.70000+ 1 1.00000+ 0 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.50968- 3 3.00000+ 0 6.09127- 3 5.00000+ 0 5.64254- 3 6.00000+ 0 5.34114- 3 8.00000+ 0 1.40607- 3 1.00000+ 1 1.26518- 3 1.10000+ 1 1.17177- 3 1.30000+ 1 9.21868- 4 1.40000+ 1 9.08592- 4 1.60000+ 1 2.44993- 4 1.80000+ 1 1.89166- 4 1.90000+ 1 1.81215- 4 2.10000+ 1 8.72983- 5 2.20000+ 1 9.56834- 5 2.70000+ 1 1.38324- 5 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.64102- 1 3.68696- 2 6.00000+ 0 4.80963- 1 3.73963- 2 1.00000+ 1 4.75113- 2 4.22042- 2 1.10000+ 1 9.19385- 2 4.23099- 2 1.30000+ 1 6.16074- 4 4.25897- 2 1.40000+ 1 8.24125- 4 4.26127- 2 1.80000+ 1 1.02021- 2 4.33442- 2 1.90000+ 1 1.98271- 2 4.33673- 2 2.10000+ 1 1.32701- 4 4.34683- 2 2.20000+ 1 1.77241- 4 4.34724- 2 2.90000+ 1 1.91541- 3 4.35689- 2 3.00000+ 1 3.79042- 3 4.35721- 2 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.65734- 3 2.94104- 2 3.00000+ 0 5.00000+ 0 8.27537- 3 2.97763- 2 3.00000+ 0 6.00000+ 0 8.62944- 3 3.03030- 2 3.00000+ 0 8.00000+ 0 2.46752- 3 3.49519- 2 3.00000+ 0 1.00000+ 1 1.65276- 3 3.51109- 2 3.00000+ 0 1.10000+ 1 1.76287- 3 3.52166- 2 3.00000+ 0 1.30000+ 1 1.23623- 4 3.54964- 2 3.00000+ 0 1.40000+ 1 1.25346- 4 3.55194- 2 3.00000+ 0 1.60000+ 1 5.65864- 4 3.61901- 2 3.00000+ 0 1.80000+ 1 3.62710- 4 3.62509- 2 3.00000+ 0 1.90000+ 1 3.84830- 4 3.62740- 2 3.00000+ 0 2.10000+ 1 2.61985- 5 3.63750- 2 3.00000+ 0 2.20000+ 1 2.61985- 5 3.63791- 2 3.00000+ 0 2.70000+ 1 9.50704- 5 3.64589- 2 3.00000+ 0 2.90000+ 1 4.97306- 5 3.64756- 2 3.00000+ 0 3.00000+ 1 5.09854- 5 3.64788- 2 3.00000+ 0 4.10000+ 1 8.31516- 6 3.64987- 2 5.00000+ 0 5.00000+ 0 8.71606- 4 3.01422- 2 5.00000+ 0 6.00000+ 0 1.77767- 2 3.06689- 2 5.00000+ 0 8.00000+ 0 1.28167- 3 3.53178- 2 5.00000+ 0 1.00000+ 1 3.09523- 4 3.54768- 2 5.00000+ 0 1.10000+ 1 3.02344- 3 3.55825- 2 5.00000+ 0 1.30000+ 1 1.41980- 4 3.58623- 2 5.00000+ 0 1.40000+ 1 4.57310- 4 3.58853- 2 5.00000+ 0 1.60000+ 1 2.82861- 4 3.65560- 2 5.00000+ 0 1.80000+ 1 6.65164- 5 3.66168- 2 5.00000+ 0 1.90000+ 1 6.36448- 4 3.66399- 2 5.00000+ 0 2.10000+ 1 2.93366- 5 3.67409- 2 5.00000+ 0 2.20000+ 1 9.44463- 5 3.67450- 2 5.00000+ 0 2.40000+ 1 1.56882- 7 3.68613- 2 5.00000+ 0 2.70000+ 1 4.70636- 5 3.68248- 2 5.00000+ 0 2.90000+ 1 9.09912- 6 3.68415- 2 5.00000+ 0 3.00000+ 1 8.39321- 5 3.68447- 2 5.00000+ 0 4.10000+ 1 4.07895- 6 3.68646- 2 6.00000+ 0 6.00000+ 0 8.61102- 3 3.11956- 2 6.00000+ 0 8.00000+ 0 1.28783- 3 3.58445- 2 6.00000+ 0 1.00000+ 1 2.91680- 3 3.60035- 2 6.00000+ 0 1.10000+ 1 3.01311- 3 3.61092- 2 6.00000+ 0 1.30000+ 1 5.37009- 4 3.63890- 2 6.00000+ 0 1.40000+ 1 4.84772- 4 3.64120- 2 6.00000+ 0 1.60000+ 1 2.81924- 4 3.70827- 2 6.00000+ 0 1.80000+ 1 6.16396- 4 3.71435- 2 6.00000+ 0 1.90000+ 1 6.38653- 4 3.71666- 2 6.00000+ 0 2.10000+ 1 1.11546- 4 3.72676- 2 6.00000+ 0 2.20000+ 1 1.00407- 4 3.72717- 2 6.00000+ 0 2.40000+ 1 4.70647- 7 3.73880- 2 6.00000+ 0 2.70000+ 1 4.69081- 5 3.73515- 2 6.00000+ 0 2.90000+ 1 8.39341- 5 3.73682- 2 6.00000+ 0 3.00000+ 1 8.42453- 5 3.73714- 2 6.00000+ 0 4.10000+ 1 4.07905- 6 3.73913- 2 8.00000+ 0 8.00000+ 0 2.25126- 4 4.04934- 2 8.00000+ 0 1.00000+ 1 2.58227- 4 4.06524- 2 8.00000+ 0 1.10000+ 1 2.65601- 4 4.07581- 2 8.00000+ 0 1.30000+ 1 1.77278- 5 4.10379- 2 8.00000+ 0 1.40000+ 1 1.72560- 5 4.10609- 2 8.00000+ 0 1.60000+ 1 1.02904- 4 4.17316- 2 8.00000+ 0 1.80000+ 1 5.67903- 5 4.17924- 2 8.00000+ 0 1.90000+ 1 5.80450- 5 4.18155- 2 8.00000+ 0 2.10000+ 1 3.76511- 6 4.19165- 2 8.00000+ 0 2.20000+ 1 3.60820- 6 4.19206- 2 8.00000+ 0 2.70000+ 1 1.72560- 5 4.20004- 2 8.00000+ 0 2.90000+ 1 7.84390- 6 4.20171- 2 8.00000+ 0 3.00000+ 1 7.68691- 6 4.20203- 2 8.00000+ 0 4.10000+ 1 1.56880- 6 4.20402- 2 1.00000+ 1 1.00000+ 1 2.65127- 5 4.08114- 2 1.00000+ 1 1.10000+ 1 5.05467- 4 4.09171- 2 1.00000+ 1 1.30000+ 1 1.86695- 5 4.11969- 2 1.00000+ 1 1.40000+ 1 5.83567- 5 4.12199- 2 1.00000+ 1 1.60000+ 1 5.71049- 5 4.18906- 2 1.00000+ 1 1.80000+ 1 1.12953- 5 4.19514- 2 1.00000+ 1 1.90000+ 1 1.06835- 4 4.19745- 2 1.00000+ 1 2.10000+ 1 3.92203- 6 4.20755- 2 1.00000+ 1 2.20000+ 1 1.20793- 5 4.20796- 2 1.00000+ 1 2.70000+ 1 9.57017- 6 4.21594- 2 1.00000+ 1 2.90000+ 1 1.56881- 6 4.21761- 2 1.00000+ 1 3.00000+ 1 1.41191- 5 4.21793- 2 1.00000+ 1 4.10000+ 1 7.84396- 7 4.21992- 2 1.10000+ 1 1.10000+ 1 2.64970- 4 4.10228- 2 1.10000+ 1 1.30000+ 1 7.45174- 5 4.13026- 2 1.10000+ 1 1.40000+ 1 6.55752- 5 4.13256- 2 1.10000+ 1 1.60000+ 1 5.82019- 5 4.19963- 2 1.10000+ 1 1.80000+ 1 1.07155- 4 4.20571- 2 1.10000+ 1 1.90000+ 1 1.12321- 4 4.20802- 2 1.10000+ 1 2.10000+ 1 1.55314- 5 4.21812- 2 1.10000+ 1 2.20000+ 1 1.36483- 5 4.21853- 2 1.10000+ 1 2.70000+ 1 9.72694- 6 4.22651- 2 1.10000+ 1 2.90000+ 1 1.45899- 5 4.22818- 2 1.10000+ 1 3.00000+ 1 1.49031- 5 4.22850- 2 1.10000+ 1 4.10000+ 1 7.84394- 7 4.23049- 2 1.30000+ 1 1.30000+ 1 1.55073- 7 4.15824- 2 1.30000+ 1 1.40000+ 1 8.83919- 6 4.16054- 2 1.30000+ 1 1.60000+ 1 3.87682- 6 4.22761- 2 1.30000+ 1 1.80000+ 1 3.72173- 6 4.23369- 2 1.30000+ 1 1.90000+ 1 1.48862- 5 4.23600- 2 1.30000+ 1 2.20000+ 1 1.70572- 6 4.24651- 2 1.30000+ 1 2.70000+ 1 6.20272- 7 4.25449- 2 1.30000+ 1 2.90000+ 1 4.65209- 7 4.25616- 2 1.30000+ 1 3.00000+ 1 2.01601- 6 4.25648- 2 1.40000+ 1 1.40000+ 1 2.19627- 6 4.16284- 2 1.40000+ 1 1.60000+ 1 3.76506- 6 4.22991- 2 1.40000+ 1 1.80000+ 1 1.17659- 5 4.23599- 2 1.40000+ 1 1.90000+ 1 1.31772- 5 4.23830- 2 1.40000+ 1 2.10000+ 1 1.72558- 6 4.24840- 2 1.40000+ 1 2.20000+ 1 7.84380- 7 4.24881- 2 1.40000+ 1 2.70000+ 1 6.27492- 7 4.25679- 2 1.40000+ 1 2.90000+ 1 1.56878- 6 4.25846- 2 1.40000+ 1 3.00000+ 1 1.72558- 6 4.25878- 2 1.60000+ 1 1.60000+ 1 1.15654- 5 4.29698- 2 1.60000+ 1 1.80000+ 1 1.23370- 5 4.30307- 2 1.60000+ 1 1.90000+ 1 1.24909- 5 4.30537- 2 1.60000+ 1 2.10000+ 1 7.71017- 7 4.31547- 2 1.60000+ 1 2.20000+ 1 7.71017- 7 4.31588- 2 1.60000+ 1 2.70000+ 1 3.85514- 6 4.32386- 2 1.60000+ 1 2.90000+ 1 1.69618- 6 4.32553- 2 1.60000+ 1 3.00000+ 1 1.69618- 6 4.32585- 2 1.60000+ 1 4.10000+ 1 3.08411- 7 4.32785- 2 1.80000+ 1 1.80000+ 1 1.20496- 6 4.30915- 2 1.80000+ 1 1.90000+ 1 2.16880- 5 4.31145- 2 1.80000+ 1 2.10000+ 1 7.53055- 7 4.32156- 2 1.80000+ 1 2.20000+ 1 2.40973- 6 4.32196- 2 1.80000+ 1 2.70000+ 1 1.95803- 6 4.32994- 2 1.80000+ 1 2.90000+ 1 3.01226- 7 4.33161- 2 1.80000+ 1 3.00000+ 1 2.86162- 6 4.33194- 2 1.80000+ 1 4.10000+ 1 1.50612- 7 4.33393- 2 1.90000+ 1 1.90000+ 1 1.15493- 5 4.31376- 2 1.90000+ 1 2.10000+ 1 3.03934- 6 4.32386- 2 1.90000+ 1 2.20000+ 1 2.73537- 6 4.32427- 2 1.90000+ 1 2.70000+ 1 2.12752- 6 4.33225- 2 1.90000+ 1 2.90000+ 1 3.03934- 6 4.33392- 2 1.90000+ 1 3.00000+ 1 3.03934- 6 4.33424- 2 1.90000+ 1 4.10000+ 1 1.51967- 7 4.33623- 2 2.10000+ 1 2.20000+ 1 3.28405- 7 4.33437- 2 2.10000+ 1 2.70000+ 1 1.64202- 7 4.34235- 2 2.10000+ 1 2.90000+ 1 1.64202- 7 4.34402- 2 2.10000+ 1 3.00000+ 1 4.92597- 7 4.34434- 2 2.20000+ 1 2.20000+ 1 1.47836- 7 4.33478- 2 2.20000+ 1 2.70000+ 1 1.47836- 7 4.34276- 2 2.20000+ 1 2.90000+ 1 2.95672- 7 4.34443- 2 2.20000+ 1 3.00000+ 1 2.95672- 7 4.34475- 2 2.70000+ 1 2.70000+ 1 3.25199- 7 4.35074- 2 2.70000+ 1 2.90000+ 1 3.25199- 7 4.35241- 2 2.70000+ 1 3.00000+ 1 3.25199- 7 4.35273- 2 2.90000+ 1 3.00000+ 1 4.86003- 7 4.35440- 2 3.00000+ 1 3.00000+ 1 1.56881- 7 4.35472- 2 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.95979- 5 3.65900- 4 6.00000+ 0 6.33018- 4 8.92600- 4 1.00000+ 1 1.95529- 2 5.70050- 3 1.10000+ 1 2.91289- 2 5.80620- 3 1.30000+ 1 3.64169- 4 6.08600- 3 1.40000+ 1 5.44508- 4 6.10898- 3 1.80000+ 1 4.53448- 3 6.84054- 3 1.90000+ 1 7.00107- 3 6.86358- 3 2.10000+ 1 4.86998- 5 6.96462- 3 2.20000+ 1 7.46957- 5 6.96868- 3 2.90000+ 1 6.54617- 4 7.06518- 3 3.00000+ 1 9.89396- 4 7.06842- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.29737- 2 5.23200- 5 5.00000+ 0 1.80000+ 1 3.93498- 2 1.13140- 4 5.00000+ 0 1.90000+ 1 4.75791- 2 1.36180- 4 5.00000+ 0 2.10000+ 1 1.26668- 2 2.37220- 4 5.00000+ 0 2.20000+ 1 2.01313- 2 2.41280- 4 5.00000+ 0 2.40000+ 1 1.70199- 2 3.57580- 4 5.00000+ 0 2.70000+ 1 8.59810- 3 3.21100- 4 5.00000+ 0 2.90000+ 1 5.08474- 3 3.37780- 4 5.00000+ 0 3.00000+ 1 5.95536- 3 3.41020- 4 5.00000+ 0 4.10000+ 1 7.40387- 4 3.60940- 4 6.00000+ 0 1.60000+ 1 6.37832- 2 5.79020- 4 6.00000+ 0 1.80000+ 1 2.74213- 2 6.39840- 4 6.00000+ 0 1.90000+ 1 4.94683- 2 6.62880- 4 6.00000+ 0 2.10000+ 1 6.50632- 2 7.63920- 4 6.00000+ 0 2.20000+ 1 8.22699- 2 7.67980- 4 6.00000+ 0 2.40000+ 1 2.37404- 2 8.84280- 4 6.00000+ 0 2.70000+ 1 1.02959- 2 8.47800- 4 6.00000+ 0 2.90000+ 1 3.62873- 3 8.64480- 4 6.00000+ 0 3.00000+ 1 6.40841- 3 8.67720- 4 6.00000+ 0 4.10000+ 1 8.89393- 4 8.87640- 4 8.00000+ 0 8.00000+ 0 1.23065- 2 3.98970- 3 8.00000+ 0 1.00000+ 1 2.46088- 2 4.14870- 3 8.00000+ 0 1.10000+ 1 4.44510- 2 4.25440- 3 8.00000+ 0 1.30000+ 1 3.49399- 2 4.53420- 3 8.00000+ 0 1.40000+ 1 4.86089- 2 4.55718- 3 8.00000+ 0 1.60000+ 1 4.79730- 3 5.22792- 3 8.00000+ 0 1.80000+ 1 5.28604- 3 5.28874- 3 8.00000+ 0 1.90000+ 1 9.46356- 3 5.31178- 3 8.00000+ 0 2.10000+ 1 6.23130- 3 5.41282- 3 8.00000+ 0 2.20000+ 1 8.61821- 3 5.41688- 3 8.00000+ 0 2.40000+ 1 1.42313- 4 5.53318- 3 8.00000+ 0 2.70000+ 1 7.86705- 4 5.49670- 3 8.00000+ 0 2.90000+ 1 7.22275- 4 5.51338- 3 8.00000+ 0 3.00000+ 1 1.24856- 3 5.51662- 3 8.00000+ 0 4.10000+ 1 6.77971- 5 5.53654- 3 1.00000+ 1 1.00000+ 1 1.14783- 4 4.30770- 3 1.00000+ 1 1.10000+ 1 8.05504- 4 4.41340- 3 1.00000+ 1 1.30000+ 1 1.14521- 3 4.69320- 3 1.00000+ 1 1.40000+ 1 1.33862- 2 4.71618- 3 1.00000+ 1 1.60000+ 1 3.82064- 3 5.38692- 3 1.00000+ 1 1.80000+ 1 2.28228- 5 5.44774- 3 1.00000+ 1 1.90000+ 1 1.61100- 4 5.47078- 3 1.00000+ 1 2.10000+ 1 2.02046- 4 5.57182- 3 1.00000+ 1 2.20000+ 1 1.55537- 3 5.57588- 3 1.00000+ 1 2.40000+ 1 4.83303- 5 5.69218- 3 1.00000+ 1 2.70000+ 1 5.95411- 4 5.65570- 3 1.00000+ 1 2.90000+ 1 2.68498- 6 5.67238- 3 1.00000+ 1 3.00000+ 1 2.08083- 5 5.67562- 3 1.00000+ 1 4.10000+ 1 5.10151- 5 5.69554- 3 1.10000+ 1 1.10000+ 1 1.04925- 3 4.51910- 3 1.10000+ 1 1.30000+ 1 8.05599- 3 4.79890- 3 1.10000+ 1 1.40000+ 1 5.35867- 3 4.82188- 3 1.10000+ 1 1.60000+ 1 6.88992- 3 5.49262- 3 1.10000+ 1 1.80000+ 1 1.63118- 4 5.55344- 3 1.10000+ 1 1.90000+ 1 3.34297- 4 5.57648- 3 1.10000+ 1 2.10000+ 1 7.65912- 4 5.67752- 3 1.10000+ 1 2.20000+ 1 5.25612- 4 5.68158- 3 1.10000+ 1 2.40000+ 1 1.44321- 4 5.79788- 3 1.10000+ 1 2.70000+ 1 1.07341- 3 5.76140- 3 1.10000+ 1 2.90000+ 1 2.21523- 5 5.77808- 3 1.10000+ 1 3.00000+ 1 4.22910- 5 5.78132- 3 1.10000+ 1 4.10000+ 1 9.19641- 5 5.80124- 3 1.30000+ 1 1.30000+ 1 1.99156- 3 5.07870- 3 1.30000+ 1 1.40000+ 1 6.91632- 2 5.10168- 3 1.30000+ 1 1.60000+ 1 5.10076- 3 5.77242- 3 1.30000+ 1 1.80000+ 1 3.15488- 4 5.83324- 3 1.30000+ 1 1.90000+ 1 1.77482- 3 5.85628- 3 1.30000+ 1 2.10000+ 1 7.00779- 4 5.95732- 3 1.30000+ 1 2.20000+ 1 8.86512- 3 5.96138- 3 1.30000+ 1 2.40000+ 1 1.68485- 4 6.07768- 3 1.30000+ 1 2.70000+ 1 7.86702- 4 6.04120- 3 1.30000+ 1 2.90000+ 1 4.49731- 5 6.05788- 3 1.30000+ 1 3.00000+ 1 2.34928- 4 6.06112- 3 1.30000+ 1 4.10000+ 1 6.77969- 5 6.08104- 3 1.40000+ 1 1.40000+ 1 1.94286- 2 5.12466- 3 1.40000+ 1 1.60000+ 1 7.15091- 3 5.79540- 3 1.40000+ 1 1.80000+ 1 2.60447- 3 5.85622- 3 1.40000+ 1 1.90000+ 1 1.24051- 3 5.87926- 3 1.40000+ 1 2.10000+ 1 8.73958- 3 5.98030- 3 1.40000+ 1 2.20000+ 1 5.22506- 3 5.98436- 3 1.40000+ 1 2.40000+ 1 5.34319- 4 6.10066- 3 1.40000+ 1 2.70000+ 1 1.10617- 3 6.06418- 3 1.40000+ 1 2.90000+ 1 3.49731- 4 6.08086- 3 1.40000+ 1 3.00000+ 1 1.65800- 4 6.08410- 3 1.40000+ 1 4.10000+ 1 9.46457- 5 6.10402- 3 1.60000+ 1 1.60000+ 1 4.43027- 4 6.46614- 3 1.60000+ 1 1.80000+ 1 8.22942- 4 6.52696- 3 1.60000+ 1 1.90000+ 1 1.47002- 3 6.55000- 3 1.60000+ 1 2.10000+ 1 9.07526- 4 6.65104- 3 1.60000+ 1 2.20000+ 1 1.26132- 3 6.65510- 3 1.60000+ 1 2.40000+ 1 1.67810- 5 6.77140- 3 1.60000+ 1 2.70000+ 1 1.43651- 4 6.73492- 3 1.60000+ 1 2.90000+ 1 1.12769- 4 6.75160- 3 1.60000+ 1 3.00000+ 1 1.93992- 4 6.75484- 3 1.60000+ 1 4.10000+ 1 1.27530- 5 6.77476- 3 1.80000+ 1 1.80000+ 1 6.71261- 7 6.58778- 3 1.80000+ 1 1.90000+ 1 3.28903- 5 6.61082- 3 1.80000+ 1 2.10000+ 1 4.69869- 5 6.71186- 3 1.80000+ 1 2.20000+ 1 3.12793- 4 6.71592- 3 1.80000+ 1 2.40000+ 1 6.71261- 6 6.83222- 3 1.80000+ 1 2.70000+ 1 1.28207- 4 6.79574- 3 1.80000+ 1 3.00000+ 1 4.02742- 6 6.81566- 3 1.80000+ 1 4.10000+ 1 1.07397- 5 6.83558- 3 1.90000+ 1 1.90000+ 1 2.68495- 5 6.63386- 3 1.90000+ 1 2.10000+ 1 1.81908- 4 6.73490- 3 1.90000+ 1 2.20000+ 1 1.30217- 4 6.73896- 3 1.90000+ 1 2.40000+ 1 2.41648- 5 6.85526- 3 1.90000+ 1 2.70000+ 1 2.28890- 4 6.81878- 3 1.90000+ 1 2.90000+ 1 4.69864- 6 6.83546- 3 1.90000+ 1 3.00000+ 1 6.71254- 6 6.83870- 3 1.90000+ 1 4.10000+ 1 1.94668- 5 6.85862- 3 2.10000+ 1 2.10000+ 1 5.77260- 5 6.83594- 3 2.10000+ 1 2.20000+ 1 1.20557- 3 6.84000- 3 2.10000+ 1 2.40000+ 1 2.08080- 5 6.95630- 3 2.10000+ 1 2.70000+ 1 1.39626- 4 6.91982- 3 2.10000+ 1 2.90000+ 1 6.71252- 6 6.93650- 3 2.10000+ 1 3.00000+ 1 2.41648- 5 6.93974- 3 2.10000+ 1 4.10000+ 1 1.20829- 5 6.95966- 3 2.20000+ 1 2.20000+ 1 3.72544- 4 6.84406- 3 2.20000+ 1 2.40000+ 1 5.37006- 5 6.96036- 3 2.20000+ 1 2.70000+ 1 1.94669- 4 6.92388- 3 2.20000+ 1 2.90000+ 1 4.22896- 5 6.94056- 3 2.20000+ 1 3.00000+ 1 1.74524- 5 6.94380- 3 2.20000+ 1 4.10000+ 1 1.67812- 5 6.96372- 3 2.40000+ 1 2.70000+ 1 2.68497- 6 7.04018- 3 2.40000+ 1 2.90000+ 1 6.71259- 7 7.05686- 3 2.40000+ 1 3.00000+ 1 3.35615- 6 7.06010- 3 2.70000+ 1 2.70000+ 1 1.41550- 5 7.00370- 3 2.70000+ 1 2.90000+ 1 2.16475- 5 7.02038- 3 2.70000+ 1 3.00000+ 1 3.74675- 5 7.02362- 3 2.70000+ 1 4.10000+ 1 2.49774- 6 7.04354- 3 2.90000+ 1 3.00000+ 1 1.51179- 6 7.04030- 3 2.90000+ 1 4.10000+ 1 3.02339- 6 7.06022- 3 3.00000+ 1 3.00000+ 1 3.36926- 7 7.04354- 3 3.00000+ 1 4.10000+ 1 1.34767- 6 7.06346- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.47147- 7 5.26700- 4 8.00000+ 0 4.67154- 3 5.17560- 3 1.10000+ 1 8.16000- 5 5.44030- 3 1.30000+ 1 1.11179- 1 5.72010- 3 1.60000+ 1 8.13490- 4 6.41382- 3 1.90000+ 1 1.47148- 5 6.49768- 3 2.10000+ 1 1.88168- 2 6.59872- 3 2.40000+ 1 4.83284- 6 6.71908- 3 2.70000+ 1 1.27328- 4 6.68260- 3 3.00000+ 1 2.93247- 6 6.70252- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 9.88423- 3 2.13120- 4 6.00000+ 0 1.80000+ 1 4.94682- 2 2.73940- 4 6.00000+ 0 1.90000+ 1 1.65525- 2 2.96980- 4 6.00000+ 0 2.10000+ 1 6.26745- 2 3.98020- 4 6.00000+ 0 2.20000+ 1 2.28801- 2 4.02080- 4 6.00000+ 0 2.40000+ 1 7.45458- 4 5.18380- 4 6.00000+ 0 2.70000+ 1 1.50563- 3 4.81900- 4 6.00000+ 0 2.90000+ 1 6.38918- 3 4.98580- 4 6.00000+ 0 3.00000+ 1 2.16902- 3 5.01820- 4 6.00000+ 0 4.10000+ 1 1.29112- 4 5.21740- 4 8.00000+ 0 8.00000+ 0 9.28948- 4 3.62380- 3 8.00000+ 0 1.00000+ 1 2.40336- 2 3.78280- 3 8.00000+ 0 1.10000+ 1 2.32658- 3 3.88850- 3 8.00000+ 0 1.30000+ 1 2.14622- 3 4.16830- 3 8.00000+ 0 1.40000+ 1 3.09798- 3 4.19128- 3 8.00000+ 0 1.60000+ 1 3.34574- 4 4.86202- 3 8.00000+ 0 1.80000+ 1 3.50152- 3 4.92284- 3 8.00000+ 0 1.90000+ 1 4.40126- 4 4.94588- 3 8.00000+ 0 2.10000+ 1 2.74472- 4 5.04692- 3 8.00000+ 0 2.20000+ 1 3.39431- 4 5.05098- 3 8.00000+ 0 2.40000+ 1 3.81668- 5 5.16728- 3 8.00000+ 0 2.70000+ 1 5.35946- 5 5.13080- 3 8.00000+ 0 2.90000+ 1 4.46634- 4 5.14748- 3 8.00000+ 0 3.00000+ 1 5.68420- 5 5.15072- 3 8.00000+ 0 4.10000+ 1 4.87219- 6 5.17064- 3 1.00000+ 1 1.00000+ 1 2.39399- 2 3.94180- 3 1.00000+ 1 1.10000+ 1 7.23787- 2 4.04750- 3 1.00000+ 1 1.30000+ 1 3.86736- 2 4.32730- 3 1.00000+ 1 1.40000+ 1 6.41953- 2 4.35028- 3 1.00000+ 1 1.60000+ 1 5.61851- 3 5.02102- 3 1.00000+ 1 1.80000+ 1 8.77170- 3 5.08184- 3 1.00000+ 1 1.90000+ 1 1.51377- 2 5.10488- 3 1.00000+ 1 2.10000+ 1 6.88632- 3 5.20592- 3 1.00000+ 1 2.20000+ 1 1.14168- 2 5.20998- 3 1.00000+ 1 2.40000+ 1 1.56728- 4 5.32628- 3 1.00000+ 1 2.70000+ 1 9.46842- 4 5.28980- 3 1.00000+ 1 2.90000+ 1 1.17101- 3 5.30648- 3 1.00000+ 1 3.00000+ 1 1.99197- 3 5.30972- 3 1.00000+ 1 4.10000+ 1 8.20171- 5 5.32964- 3 1.10000+ 1 1.10000+ 1 1.86369- 3 4.15320- 3 1.10000+ 1 1.30000+ 1 4.40959- 2 4.43300- 3 1.10000+ 1 1.40000+ 1 6.00739- 3 4.45598- 3 1.10000+ 1 1.60000+ 1 4.64506- 4 5.12672- 3 1.10000+ 1 1.80000+ 1 1.09200- 2 5.18754- 3 1.10000+ 1 1.90000+ 1 6.60185- 4 5.21058- 3 1.10000+ 1 2.10000+ 1 6.69192- 3 5.31162- 3 1.10000+ 1 2.20000+ 1 8.57537- 4 5.31568- 3 1.10000+ 1 2.40000+ 1 9.82613- 5 5.43198- 3 1.10000+ 1 2.70000+ 1 7.63320- 5 5.39550- 3 1.10000+ 1 2.90000+ 1 1.40242- 3 5.41218- 3 1.10000+ 1 3.00000+ 1 8.44530- 5 5.41542- 3 1.10000+ 1 4.10000+ 1 6.49646- 6 5.43534- 3 1.30000+ 1 1.30000+ 1 4.06288- 2 4.71280- 3 1.30000+ 1 1.40000+ 1 1.71843- 1 4.73578- 3 1.30000+ 1 1.60000+ 1 5.07539- 4 5.40652- 3 1.30000+ 1 1.80000+ 1 5.80217- 3 5.46734- 3 1.30000+ 1 1.90000+ 1 8.68023- 3 5.49038- 3 1.30000+ 1 2.10000+ 1 1.22815- 2 5.59142- 3 1.30000+ 1 2.20000+ 1 2.78648- 2 5.59548- 3 1.30000+ 1 2.40000+ 1 6.35040- 4 5.71178- 3 1.30000+ 1 2.70000+ 1 8.60778- 5 5.67530- 3 1.30000+ 1 2.90000+ 1 7.49521- 4 5.69198- 3 1.30000+ 1 3.00000+ 1 1.13042- 3 5.69522- 3 1.30000+ 1 4.10000+ 1 7.30871- 6 5.71514- 3 1.40000+ 1 1.40000+ 1 8.21738- 3 4.75876- 3 1.40000+ 1 1.60000+ 1 6.03376- 4 5.42950- 3 1.40000+ 1 1.80000+ 1 8.56147- 3 5.49032- 3 1.40000+ 1 1.90000+ 1 1.08173- 3 5.51336- 3 1.40000+ 1 2.10000+ 1 2.18332- 2 5.61440- 3 1.40000+ 1 2.20000+ 1 2.42231- 3 5.61846- 3 1.40000+ 1 2.40000+ 1 2.60670- 4 5.73476- 3 1.40000+ 1 2.70000+ 1 9.82624- 5 5.69828- 3 1.40000+ 1 2.90000+ 1 1.07509- 3 5.71496- 3 1.40000+ 1 3.00000+ 1 1.38864- 4 5.71820- 3 1.40000+ 1 4.10000+ 1 8.12065- 6 5.73812- 3 1.60000+ 1 1.60000+ 1 2.92340- 5 6.10024- 3 1.60000+ 1 1.80000+ 1 8.23416- 4 6.16106- 3 1.60000+ 1 1.90000+ 1 8.85099- 5 6.18410- 3 1.60000+ 1 2.10000+ 1 6.25262- 5 6.28514- 3 1.60000+ 1 2.20000+ 1 6.73987- 5 6.28920- 3 1.60000+ 1 2.40000+ 1 8.12042- 6 6.40550- 3 1.60000+ 1 2.70000+ 1 9.74476- 6 6.36902- 3 1.60000+ 1 2.90000+ 1 1.04755- 4 6.38570- 3 1.60000+ 1 3.00000+ 1 1.13682- 5 6.38894- 3 1.60000+ 1 4.10000+ 1 8.12042- 7 6.40886- 3 1.80000+ 1 1.80000+ 1 7.38865- 4 6.22188- 3 1.80000+ 1 1.90000+ 1 2.20102- 3 6.24492- 3 1.80000+ 1 2.10000+ 1 9.78857- 4 6.34596- 3 1.80000+ 1 2.20000+ 1 1.47691- 3 6.35002- 3 1.80000+ 1 2.40000+ 1 1.79832- 5 6.46632- 3 1.80000+ 1 2.70000+ 1 1.33702- 4 6.42984- 3 1.80000+ 1 2.90000+ 1 1.95470- 4 6.44652- 3 1.80000+ 1 3.00000+ 1 2.89291- 4 6.44976- 3 1.80000+ 1 4.10000+ 1 1.17279- 5 6.46968- 3 1.90000+ 1 1.90000+ 1 5.86049- 5 6.26796- 3 1.90000+ 1 2.10000+ 1 1.33169- 3 6.36900- 3 1.90000+ 1 2.20000+ 1 1.58720- 4 6.37306- 3 1.90000+ 1 2.40000+ 1 1.54650- 5 6.48936- 3 1.90000+ 1 2.70000+ 1 1.46509- 5 6.45288- 3 1.90000+ 1 2.90000+ 1 2.94656- 4 6.46956- 3 1.90000+ 1 3.00000+ 1 1.54650- 5 6.47280- 3 1.90000+ 1 4.10000+ 1 1.62790- 6 6.49272- 3 2.10000+ 1 2.10000+ 1 9.17609- 4 6.47004- 3 2.10000+ 1 2.20000+ 1 3.66136- 3 6.47410- 3 2.10000+ 1 2.40000+ 1 6.73993- 5 6.59040- 3 2.10000+ 1 2.70000+ 1 1.05562- 5 6.55392- 3 2.10000+ 1 2.90000+ 1 1.30740- 4 6.57060- 3 2.10000+ 1 3.00000+ 1 1.72967- 4 6.57384- 3 2.10000+ 1 4.10000+ 1 8.12048- 7 6.59376- 3 2.20000+ 1 2.20000+ 1 2.21289- 4 6.47816- 3 2.20000+ 1 2.40000+ 1 3.60493- 5 6.59446- 3 2.20000+ 1 2.70000+ 1 1.40184- 5 6.55798- 3 2.20000+ 1 2.90000+ 1 2.38311- 4 6.57466- 3 2.20000+ 1 3.00000+ 1 2.50338- 5 6.57790- 3 2.20000+ 1 4.10000+ 1 1.00135- 6 6.59782- 3 2.40000+ 1 2.70000+ 1 1.77531- 6 6.67428- 3 2.40000+ 1 2.90000+ 1 2.66301- 6 6.69096- 3 2.40000+ 1 3.00000+ 1 1.77531- 6 6.69420- 3 2.70000+ 1 2.70000+ 1 1.14052- 6 6.63780- 3 2.70000+ 1 2.90000+ 1 2.50911- 5 6.65448- 3 2.70000+ 1 3.00000+ 1 2.28101- 6 6.65772- 3 2.90000+ 1 2.90000+ 1 2.04160- 5 6.67116- 3 2.90000+ 1 3.00000+ 1 5.76451- 5 6.67440- 3 2.90000+ 1 4.10000+ 1 2.40192- 6 6.69432- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.61846- 3 4.64890- 3 1.00000+ 1 5.31104- 5 4.80790- 3 1.10000+ 1 4.90313- 5 4.91360- 3 1.30000+ 1 1.06491- 2 5.19340- 3 1.40000+ 1 9.42566- 2 5.21638- 3 1.60000+ 1 9.83207- 4 5.88712- 3 1.80000+ 1 6.85835- 6 5.94794- 3 1.90000+ 1 6.61854- 6 5.97098- 3 2.10000+ 1 1.73821- 3 6.07202- 3 2.20000+ 1 1.55401- 2 6.07608- 3 2.40000+ 1 7.26795- 7 6.19238- 3 2.50000+ 1 4.15893- 6 6.19285- 3 2.70000+ 1 1.72231- 4 6.15590- 3 2.90000+ 1 1.37011- 6 6.17258- 3 3.00000+ 1 1.20741- 6 6.17582- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.23320- 3 3.09710- 3 8.00000+ 0 1.00000+ 1 8.16058- 4 3.25610- 3 8.00000+ 0 1.10000+ 1 2.73592- 2 3.36180- 3 8.00000+ 0 1.30000+ 1 2.75188- 3 3.64160- 3 8.00000+ 0 1.40000+ 1 3.28334- 3 3.66458- 3 8.00000+ 0 1.60000+ 1 4.45686- 4 4.33532- 3 8.00000+ 0 1.80000+ 1 1.42789- 4 4.39614- 3 8.00000+ 0 1.90000+ 1 3.97124- 3 4.41918- 3 8.00000+ 0 2.10000+ 1 2.53546- 4 4.52022- 3 8.00000+ 0 2.20000+ 1 2.75188- 4 4.52428- 3 8.00000+ 0 2.40000+ 1 4.75961- 5 4.64058- 3 8.00000+ 0 2.70000+ 1 7.18266- 5 4.60410- 3 8.00000+ 0 2.90000+ 1 1.90382- 5 4.62078- 3 8.00000+ 0 3.00000+ 1 4.90653- 4 4.62402- 3 8.00000+ 0 4.10000+ 1 6.05743- 6 4.64394- 3 1.00000+ 1 1.00000+ 1 2.44031- 4 3.41510- 3 1.00000+ 1 1.10000+ 1 4.56597- 2 3.52080- 3 1.00000+ 1 1.30000+ 1 2.83151- 3 3.80060- 3 1.00000+ 1 1.40000+ 1 2.53735- 2 3.82358- 3 1.00000+ 1 1.60000+ 1 1.59228- 4 4.49432- 3 1.00000+ 1 1.80000+ 1 8.73992- 5 4.55514- 3 1.00000+ 1 1.90000+ 1 6.87540- 3 4.57818- 3 1.00000+ 1 2.10000+ 1 4.66453- 4 4.67922- 3 1.00000+ 1 2.20000+ 1 3.58796- 3 4.68328- 3 1.00000+ 1 2.40000+ 1 5.36543- 5 4.79958- 3 1.00000+ 1 2.70000+ 1 2.59612- 5 4.76310- 3 1.00000+ 1 2.90000+ 1 1.12494- 5 4.77978- 3 1.00000+ 1 3.00000+ 1 8.54976- 4 4.78302- 3 1.00000+ 1 4.10000+ 1 2.59612- 6 4.80294- 3 1.10000+ 1 1.10000+ 1 6.29306- 2 3.62650- 3 1.10000+ 1 1.30000+ 1 6.42635- 2 3.90630- 3 1.10000+ 1 1.40000+ 1 9.50484- 2 3.92928- 3 1.10000+ 1 1.60000+ 1 6.32143- 3 4.60002- 3 1.10000+ 1 1.80000+ 1 9.37721- 3 4.66084- 3 1.10000+ 1 1.90000+ 1 2.25713- 2 4.68388- 3 1.10000+ 1 2.10000+ 1 1.09838- 2 4.78492- 3 1.10000+ 1 2.20000+ 1 1.60257- 2 4.78898- 3 1.10000+ 1 2.40000+ 1 2.48363- 4 4.90528- 3 1.10000+ 1 2.70000+ 1 1.06354- 3 4.86880- 3 1.10000+ 1 2.90000+ 1 1.27216- 3 4.88548- 3 1.10000+ 1 3.00000+ 1 2.90332- 3 4.88872- 3 1.10000+ 1 4.10000+ 1 9.25916- 5 4.90864- 3 1.30000+ 1 1.30000+ 1 9.29913- 3 4.18610- 3 1.30000+ 1 1.40000+ 1 1.77467- 1 4.20908- 3 1.30000+ 1 1.60000+ 1 6.00562- 4 4.87982- 3 1.30000+ 1 1.80000+ 1 5.81547- 4 4.94064- 3 1.30000+ 1 1.90000+ 1 9.00225- 3 4.96368- 3 1.30000+ 1 2.10000+ 1 2.79601- 3 5.06472- 3 1.30000+ 1 2.20000+ 1 2.27715- 2 5.06878- 3 1.30000+ 1 2.40000+ 1 1.41052- 4 5.18508- 3 1.30000+ 1 2.70000+ 1 9.95129- 5 5.14860- 3 1.30000+ 1 2.90000+ 1 7.87500- 5 5.16528- 3 1.30000+ 1 3.00000+ 1 1.10596- 3 5.16852- 3 1.30000+ 1 4.10000+ 1 8.65387- 6 5.18844- 3 1.40000+ 1 1.40000+ 1 1.19976- 1 4.23206- 3 1.40000+ 1 1.60000+ 1 7.57185- 4 4.90280- 3 1.40000+ 1 1.80000+ 1 4.83751- 3 4.96362- 3 1.40000+ 1 1.90000+ 1 1.49412- 2 4.98666- 3 1.40000+ 1 2.10000+ 1 2.69822- 2 5.08770- 3 1.40000+ 1 2.20000+ 1 3.45375- 2 5.09176- 3 1.40000+ 1 2.40000+ 1 1.50230- 3 5.20806- 3 1.40000+ 1 2.70000+ 1 1.27216- 4 5.17158- 3 1.40000+ 1 2.90000+ 1 6.47309- 4 5.18826- 3 1.40000+ 1 3.00000+ 1 1.88128- 3 5.19150- 3 1.40000+ 1 4.10000+ 1 1.12494- 5 5.21142- 3 1.60000+ 1 1.60000+ 1 3.98079- 5 5.57354- 3 1.60000+ 1 1.80000+ 1 2.85576- 5 5.63436- 3 1.60000+ 1 1.90000+ 1 9.20708- 4 5.65740- 3 1.60000+ 1 2.10000+ 1 5.97094- 5 5.75844- 3 1.60000+ 1 2.20000+ 1 6.83634- 5 5.76250- 3 1.60000+ 1 2.40000+ 1 6.92309- 6 5.87880- 3 1.60000+ 1 2.70000+ 1 1.29812- 5 5.84232- 3 1.60000+ 1 2.90000+ 1 3.46144- 6 5.85900- 3 1.60000+ 1 3.00000+ 1 1.14231- 4 5.86224- 3 1.60000+ 1 4.10000+ 1 8.65381- 7 5.88216- 3 1.80000+ 1 1.80000+ 1 6.68454- 6 5.69518- 3 1.80000+ 1 1.90000+ 1 1.36113- 3 5.71822- 3 1.80000+ 1 2.10000+ 1 9.02399- 5 5.81926- 3 1.80000+ 1 2.20000+ 1 6.83469- 4 5.82332- 3 1.80000+ 1 2.40000+ 1 7.52012- 6 5.93962- 3 1.80000+ 1 2.70000+ 1 4.17767- 6 5.90314- 3 1.80000+ 1 2.90000+ 1 1.67109- 6 5.91982- 3 1.80000+ 1 3.00000+ 1 1.69624- 4 5.92306- 3 1.90000+ 1 1.90000+ 1 1.78476- 3 5.74126- 3 1.90000+ 1 2.10000+ 1 1.40632- 3 5.84230- 3 1.90000+ 1 2.20000+ 1 2.26905- 3 5.84636- 3 1.90000+ 1 2.40000+ 1 2.60722- 5 5.96266- 3 1.90000+ 1 2.70000+ 1 1.41424- 4 5.92618- 3 1.90000+ 1 2.90000+ 1 1.74604- 4 5.94286- 3 1.90000+ 1 3.00000+ 1 4.55876- 4 5.94610- 3 1.90000+ 1 4.10000+ 1 1.26406- 5 5.96602- 3 2.10000+ 1 2.10000+ 1 2.03666- 4 5.94334- 3 2.10000+ 1 2.20000+ 1 3.56323- 3 5.94740- 3 2.10000+ 1 2.40000+ 1 1.46717- 5 6.06370- 3 2.10000+ 1 2.70000+ 1 1.03565- 5 6.02722- 3 2.10000+ 1 2.90000+ 1 1.29456- 5 6.04390- 3 2.10000+ 1 3.00000+ 1 1.88993- 4 6.04714- 3 2.10000+ 1 4.10000+ 1 8.63008- 7 6.06706- 3 2.20000+ 1 2.20000+ 1 2.66568- 3 5.95146- 3 2.20000+ 1 2.40000+ 1 1.66370- 4 6.06776- 3 2.20000+ 1 2.70000+ 1 1.20153- 5 6.03128- 3 2.20000+ 1 2.90000+ 1 1.01669- 4 6.04796- 3 2.20000+ 1 3.00000+ 1 3.33666- 4 6.05120- 3 2.20000+ 1 4.10000+ 1 9.24299- 7 6.07112- 3 2.40000+ 1 2.70000+ 1 6.88815- 7 6.14758- 3 2.40000+ 1 2.90000+ 1 6.88815- 7 6.16426- 3 2.40000+ 1 3.00000+ 1 2.75520- 6 6.16750- 3 2.70000+ 1 2.70000+ 1 1.21057- 6 6.11110- 3 2.70000+ 1 2.90000+ 1 1.21057- 6 6.12778- 3 2.70000+ 1 3.00000+ 1 2.66321- 5 6.13102- 3 2.90000+ 1 3.00000+ 1 3.75633- 5 6.14770- 3 3.00000+ 1 3.00000+ 1 6.31632- 5 6.15094- 3 3.00000+ 1 4.10000+ 1 3.41424- 6 6.17086- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.05723- 5 1.59000- 4 1.10000+ 1 1.00394- 4 2.64700- 4 1.80000+ 1 3.31118- 4 1.29904- 3 1.90000+ 1 4.14292- 4 1.32208- 3 2.90000+ 1 6.90403- 5 1.52368- 3 3.00000+ 1 8.23827- 5 1.52692- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.29823- 2 3.03200- 5 1.00000+ 1 2.20000+ 1 1.14520- 1 3.43800- 5 1.00000+ 1 2.40000+ 1 1.33894- 2 1.50680- 4 1.00000+ 1 2.50000+ 1 1.79307- 2 1.51150- 4 1.00000+ 1 2.70000+ 1 9.38292- 3 1.14200- 4 1.00000+ 1 2.90000+ 1 7.81408- 3 1.30880- 4 1.00000+ 1 3.00000+ 1 1.25818- 2 1.34120- 4 1.00000+ 1 4.10000+ 1 7.99464- 4 1.54040- 4 1.10000+ 1 1.80000+ 1 8.28063- 2 1.19400- 5 1.10000+ 1 1.90000+ 1 1.20266- 1 3.49800- 5 1.10000+ 1 2.10000+ 1 5.50863- 2 1.36020- 4 1.10000+ 1 2.20000+ 1 7.93019- 2 1.40080- 4 1.10000+ 1 2.40000+ 1 3.28494- 2 2.56380- 4 1.10000+ 1 2.50000+ 1 4.13716- 2 2.56850- 4 1.10000+ 1 2.70000+ 1 1.22521- 2 2.19900- 4 1.10000+ 1 2.90000+ 1 1.03944- 2 2.36580- 4 1.10000+ 1 3.00000+ 1 1.50675- 2 2.39820- 4 1.10000+ 1 4.10000+ 1 1.04871- 3 2.59740- 4 1.30000+ 1 1.60000+ 1 2.98600- 2 2.30920- 4 1.30000+ 1 1.80000+ 1 6.51307- 3 2.91740- 4 1.30000+ 1 1.90000+ 1 5.41132- 3 3.14780- 4 1.30000+ 1 2.10000+ 1 9.17384- 3 4.15820- 4 1.30000+ 1 2.20000+ 1 1.14880- 2 4.19880- 4 1.30000+ 1 2.40000+ 1 1.61961- 3 5.36180- 4 1.30000+ 1 2.50000+ 1 1.59217- 3 5.36650- 4 1.30000+ 1 2.70000+ 1 3.36629- 3 4.99700- 4 1.30000+ 1 2.90000+ 1 6.95497- 4 5.16380- 4 1.30000+ 1 3.00000+ 1 5.49291- 4 5.19620- 4 1.30000+ 1 4.10000+ 1 2.77404- 4 5.39540- 4 1.40000+ 1 1.60000+ 1 4.33081- 2 2.53900- 4 1.40000+ 1 1.80000+ 1 1.46926- 3 3.14720- 4 1.40000+ 1 1.90000+ 1 1.25887- 2 3.37760- 4 1.40000+ 1 2.10000+ 1 1.22398- 2 4.38800- 4 1.40000+ 1 2.20000+ 1 1.87522- 2 4.42860- 4 1.40000+ 1 2.40000+ 1 1.91666- 3 5.59160- 4 1.40000+ 1 2.50000+ 1 2.92536- 3 5.59630- 4 1.40000+ 1 2.70000+ 1 4.84524- 3 5.22680- 4 1.40000+ 1 2.90000+ 1 1.51511- 4 5.39360- 4 1.40000+ 1 3.00000+ 1 1.28050- 3 5.42600- 4 1.40000+ 1 4.10000+ 1 3.99159- 4 5.62520- 4 1.60000+ 1 1.60000+ 1 6.21952- 3 9.24640- 4 1.60000+ 1 1.80000+ 1 1.03156- 2 9.85460- 4 1.60000+ 1 1.90000+ 1 1.86820- 2 1.00850- 3 1.60000+ 1 2.10000+ 1 1.97916- 2 1.10954- 3 1.60000+ 1 2.20000+ 1 2.86975- 2 1.11360- 3 1.60000+ 1 2.40000+ 1 2.09731- 3 1.22990- 3 1.60000+ 1 2.50000+ 1 2.67027- 3 1.23037- 3 1.60000+ 1 2.70000+ 1 1.73435- 3 1.19342- 3 1.60000+ 1 2.90000+ 1 1.40299- 3 1.21010- 3 1.60000+ 1 3.00000+ 1 2.45538- 3 1.21334- 3 1.60000+ 1 4.10000+ 1 1.48158- 4 1.23326- 3 1.80000+ 1 1.80000+ 1 5.25571- 4 1.04628- 3 1.80000+ 1 1.90000+ 1 1.31578- 3 1.06932- 3 1.80000+ 1 2.10000+ 1 7.92386- 4 1.17036- 3 1.80000+ 1 2.20000+ 1 3.65345- 4 1.17442- 3 1.80000+ 1 2.40000+ 1 3.95128- 5 1.29072- 3 1.80000+ 1 2.50000+ 1 1.41268- 4 1.29119- 3 1.80000+ 1 2.70000+ 1 1.09063- 3 1.25424- 3 1.80000+ 1 2.90000+ 1 1.14746- 4 1.27092- 3 1.80000+ 1 3.00000+ 1 1.35855- 4 1.27416- 3 1.80000+ 1 4.10000+ 1 8.98472- 5 1.29408- 3 1.90000+ 1 1.90000+ 1 1.68920- 3 1.09236- 3 1.90000+ 1 2.10000+ 1 9.27627- 4 1.19340- 3 1.90000+ 1 2.20000+ 1 2.39399- 3 1.19746- 3 1.90000+ 1 2.40000+ 1 1.41070- 4 1.31376- 3 1.90000+ 1 2.50000+ 1 2.55068- 4 1.31423- 3 1.90000+ 1 2.70000+ 1 1.90630- 3 1.27728- 3 1.90000+ 1 2.90000+ 1 1.44715- 4 1.29396- 3 1.90000+ 1 3.00000+ 1 3.73236- 4 1.29720- 3 1.90000+ 1 4.10000+ 1 1.57207- 4 1.31712- 3 2.10000+ 1 2.10000+ 1 2.36356- 4 1.29444- 3 2.10000+ 1 2.20000+ 1 1.03713- 3 1.29850- 3 2.10000+ 1 2.40000+ 1 1.33191- 4 1.41480- 3 2.10000+ 1 2.50000+ 1 1.00331- 3 1.41527- 3 2.10000+ 1 2.70000+ 1 2.08250- 3 1.37832- 3 2.10000+ 1 2.90000+ 1 7.96973- 5 1.39500- 3 2.10000+ 1 3.00000+ 1 1.00441- 4 1.39824- 3 2.10000+ 1 4.10000+ 1 1.71403- 4 1.41816- 3 2.20000+ 1 2.20000+ 1 6.02491- 4 1.30256- 3 2.20000+ 1 2.40000+ 1 1.00236- 3 1.41886- 3 2.20000+ 1 2.50000+ 1 5.66369- 4 1.41933- 3 2.20000+ 1 2.70000+ 1 2.97706- 3 1.38238- 3 2.20000+ 1 2.90000+ 1 3.66431- 5 1.39906- 3 2.20000+ 1 3.00000+ 1 2.56510- 4 1.40230- 3 2.20000+ 1 4.10000+ 1 2.44666- 4 1.42222- 3 2.40000+ 1 2.40000+ 1 1.33007- 5 1.53516- 3 2.40000+ 1 2.50000+ 1 2.18675- 4 1.53563- 3 2.40000+ 1 2.70000+ 1 1.97909- 4 1.49868- 3 2.40000+ 1 2.90000+ 1 3.72415- 6 1.51536- 3 2.40000+ 1 3.00000+ 1 1.38328- 5 1.51860- 3 2.40000+ 1 4.10000+ 1 1.59611- 5 1.53852- 3 2.50000+ 1 2.50000+ 1 4.36269- 5 1.53610- 3 2.50000+ 1 2.70000+ 1 2.51656- 4 1.49915- 3 2.50000+ 1 2.90000+ 1 1.70246- 5 1.51583- 3 2.50000+ 1 3.00000+ 1 2.39417- 5 1.51907- 3 2.50000+ 1 4.10000+ 1 2.07486- 5 1.53899- 3 2.70000+ 1 2.70000+ 1 1.00201- 4 1.46220- 3 2.70000+ 1 2.90000+ 1 1.37091- 4 1.47888- 3 2.70000+ 1 3.00000+ 1 2.40291- 4 1.48212- 3 2.70000+ 1 4.10000+ 1 1.69493- 5 1.50204- 3 2.90000+ 1 2.90000+ 1 4.62745- 6 1.49556- 3 2.90000+ 1 3.00000+ 1 1.17790- 5 1.49880- 3 2.90000+ 1 4.10000+ 1 9.67565- 6 1.51872- 3 3.00000+ 1 3.00000+ 1 1.93562- 5 1.50204- 3 3.00000+ 1 4.10000+ 1 1.98524- 5 1.52196- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.57078- 4 3.85500- 4 1.60000+ 1 3.71586- 4 1.07922- 3 2.10000+ 1 1.71579- 3 1.26412- 3 2.70000+ 1 6.47039- 5 1.34800- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 1.02057- 2 9.73800- 5 1.10000+ 1 2.50000+ 1 1.21408- 2 9.78500- 5 1.10000+ 1 2.70000+ 1 7.23200- 3 6.09000- 5 1.10000+ 1 2.90000+ 1 7.13326- 3 7.75800- 5 1.10000+ 1 3.00000+ 1 8.00141- 3 8.08200- 5 1.10000+ 1 4.10000+ 1 5.85255- 4 1.00740- 4 1.30000+ 1 1.60000+ 1 1.05001- 1 7.19200- 5 1.30000+ 1 1.80000+ 1 1.05248- 1 1.32740- 4 1.30000+ 1 1.90000+ 1 1.45729- 1 1.55780- 4 1.30000+ 1 2.10000+ 1 4.61295- 2 2.56820- 4 1.30000+ 1 2.20000+ 1 5.19610- 2 2.60880- 4 1.30000+ 1 2.40000+ 1 4.86321- 2 3.77180- 4 1.30000+ 1 2.50000+ 1 7.30182- 2 3.77650- 4 1.30000+ 1 2.70000+ 1 1.75085- 2 3.40700- 4 1.30000+ 1 2.90000+ 1 1.23584- 2 3.57380- 4 1.30000+ 1 3.00000+ 1 1.81605- 2 3.60620- 4 1.30000+ 1 4.10000+ 1 1.52078- 3 3.80540- 4 1.40000+ 1 1.60000+ 1 1.77380- 2 9.49000- 5 1.40000+ 1 1.80000+ 1 1.23518- 1 1.55720- 4 1.40000+ 1 1.90000+ 1 1.23887- 2 1.78760- 4 1.40000+ 1 2.10000+ 1 2.18126- 3 2.79800- 4 1.40000+ 1 2.20000+ 1 6.01740- 3 2.83860- 4 1.40000+ 1 2.40000+ 1 1.40452- 3 4.00160- 4 1.40000+ 1 2.50000+ 1 1.17662- 3 4.00630- 4 1.40000+ 1 2.70000+ 1 1.96636- 3 3.63680- 4 1.40000+ 1 2.90000+ 1 1.18448- 2 3.80360- 4 1.40000+ 1 3.00000+ 1 1.41304- 3 3.83600- 4 1.40000+ 1 4.10000+ 1 1.62967- 4 4.03520- 4 1.60000+ 1 1.60000+ 1 7.81659- 4 7.65640- 4 1.60000+ 1 1.80000+ 1 1.08527- 2 8.26460- 4 1.60000+ 1 1.90000+ 1 1.75615- 3 8.49500- 4 1.60000+ 1 2.10000+ 1 3.70637- 4 9.50540- 4 1.60000+ 1 2.20000+ 1 1.23123- 3 9.54600- 4 1.60000+ 1 2.40000+ 1 3.13405- 5 1.07090- 3 1.60000+ 1 2.50000+ 1 1.45840- 4 1.07137- 3 1.60000+ 1 2.70000+ 1 2.05516- 4 1.03442- 3 1.60000+ 1 2.90000+ 1 1.00043- 3 1.05110- 3 1.60000+ 1 3.00000+ 1 2.07315- 4 1.05434- 3 1.60000+ 1 4.10000+ 1 1.74772- 5 1.07426- 3 1.80000+ 1 1.80000+ 1 8.23123- 3 8.87280- 4 1.80000+ 1 1.90000+ 1 2.52703- 2 9.10320- 4 1.80000+ 1 2.10000+ 1 2.32439- 2 1.01136- 3 1.80000+ 1 2.20000+ 1 3.84636- 2 1.01542- 3 1.80000+ 1 2.40000+ 1 2.06733- 3 1.13172- 3 1.80000+ 1 2.50000+ 1 3.60141- 3 1.13219- 3 1.80000+ 1 2.70000+ 1 1.88018- 3 1.09524- 3 1.80000+ 1 2.90000+ 1 1.90340- 3 1.11192- 3 1.80000+ 1 3.00000+ 1 3.29442- 3 1.11516- 3 1.80000+ 1 4.10000+ 1 1.63406- 4 1.13508- 3 1.90000+ 1 1.90000+ 1 7.54059- 4 9.33360- 4 1.90000+ 1 2.10000+ 1 2.27702- 3 1.03440- 3 1.90000+ 1 2.20000+ 1 1.73709- 3 1.03846- 3 1.90000+ 1 2.40000+ 1 1.62320- 3 1.15476- 3 1.90000+ 1 2.50000+ 1 4.79650- 4 1.15523- 3 1.90000+ 1 2.70000+ 1 2.21541- 4 1.11828- 3 1.90000+ 1 2.90000+ 1 2.57795- 3 1.13496- 3 1.90000+ 1 3.00000+ 1 1.65306- 4 1.13820- 3 1.90000+ 1 4.10000+ 1 1.82919- 5 1.15812- 3 2.10000+ 1 2.10000+ 1 7.92759- 4 1.13544- 3 2.10000+ 1 2.20000+ 1 2.24107- 3 1.13950- 3 2.10000+ 1 2.40000+ 1 1.95700- 4 1.25580- 3 2.10000+ 1 2.50000+ 1 3.45440- 4 1.25627- 3 2.10000+ 1 2.70000+ 1 5.65375- 5 1.21932- 3 2.10000+ 1 2.90000+ 1 2.13228- 3 1.23600- 3 2.10000+ 1 3.00000+ 1 2.28641- 4 1.23924- 3 2.10000+ 1 4.10000+ 1 4.97031- 6 1.25916- 3 2.20000+ 1 2.20000+ 1 4.56155- 4 1.14356- 3 2.20000+ 1 2.40000+ 1 5.99986- 4 1.25986- 3 2.20000+ 1 2.50000+ 1 1.25035- 4 1.26033- 3 2.20000+ 1 2.70000+ 1 1.41141- 4 1.22338- 3 2.20000+ 1 2.90000+ 1 3.09321- 3 1.24006- 3 2.20000+ 1 3.00000+ 1 1.40602- 4 1.24330- 3 2.20000+ 1 4.10000+ 1 1.18066- 5 1.26322- 3 2.40000+ 1 2.40000+ 1 3.40258- 5 1.37616- 3 2.40000+ 1 2.50000+ 1 4.50293- 4 1.37663- 3 2.40000+ 1 2.70000+ 1 1.59494- 6 1.33968- 3 2.40000+ 1 2.90000+ 1 1.47792- 4 1.35636- 3 2.40000+ 1 3.00000+ 1 1.54175- 4 1.35960- 3 2.50000+ 1 2.50000+ 1 1.54176- 5 1.37710- 3 2.50000+ 1 2.70000+ 1 1.86070- 5 1.34015- 3 2.50000+ 1 2.90000+ 1 2.59441- 4 1.35683- 3 2.50000+ 1 3.00000+ 1 4.09354- 5 1.36007- 3 2.50000+ 1 4.10000+ 1 1.59495- 6 1.37999- 3 2.70000+ 1 2.70000+ 1 1.26336- 5 1.30320- 3 2.70000+ 1 2.90000+ 1 1.52698- 4 1.31988- 3 2.70000+ 1 3.00000+ 1 2.14224- 5 1.32312- 3 2.70000+ 1 4.10000+ 1 2.19705- 6 1.34304- 3 2.90000+ 1 2.90000+ 1 1.31117- 4 1.33656- 3 2.90000+ 1 3.00000+ 1 3.88669- 4 1.33980- 3 2.90000+ 1 4.10000+ 1 1.87299- 5 1.35972- 3 3.00000+ 1 3.00000+ 1 1.87953- 5 1.34304- 3 3.00000+ 1 4.10000+ 1 4.33737- 6 1.36296- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.89694- 5 2.79800- 4 1.40000+ 1 2.22937- 4 3.02780- 4 1.60000+ 1 4.96432- 4 9.73520- 4 2.10000+ 1 2.20324- 4 1.15842- 3 2.20000+ 1 1.79965- 3 1.16248- 3 2.70000+ 1 8.73928- 5 1.24230- 3 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.54358- 2 2.70400- 5 1.30000+ 1 1.90000+ 1 8.28843- 2 5.00800- 5 1.30000+ 1 2.10000+ 1 1.23494- 2 1.51120- 4 1.30000+ 1 2.20000+ 1 1.00858- 2 1.55180- 4 1.30000+ 1 2.40000+ 1 4.82745- 3 2.71480- 4 1.30000+ 1 2.50000+ 1 7.15819- 3 2.71950- 4 1.30000+ 1 2.70000+ 1 2.80179- 3 2.35000- 4 1.30000+ 1 2.90000+ 1 1.92420- 3 2.51680- 4 1.30000+ 1 3.00000+ 1 8.37878- 3 2.54920- 4 1.30000+ 1 4.10000+ 1 2.36214- 4 2.74840- 4 1.40000+ 1 1.60000+ 1 8.25365- 2 0.00000+ 0 1.40000+ 1 1.80000+ 1 1.01420- 1 5.00200- 5 1.40000+ 1 1.90000+ 1 1.83081- 1 7.30600- 5 1.40000+ 1 2.10000+ 1 5.11130- 2 1.74100- 4 1.40000+ 1 2.20000+ 1 7.94051- 2 1.78160- 4 1.40000+ 1 2.40000+ 1 4.48067- 2 2.94460- 4 1.40000+ 1 2.50000+ 1 5.33612- 2 2.94930- 4 1.40000+ 1 2.70000+ 1 1.58050- 2 2.57980- 4 1.40000+ 1 2.90000+ 1 1.27976- 2 2.74660- 4 1.40000+ 1 3.00000+ 1 2.10162- 2 2.77900- 4 1.40000+ 1 4.10000+ 1 1.34793- 3 2.97820- 4 1.60000+ 1 1.60000+ 1 7.75381- 4 6.59940- 4 1.60000+ 1 1.80000+ 1 1.14490- 3 7.20760- 4 1.60000+ 1 1.90000+ 1 1.67126- 2 7.43800- 4 1.60000+ 1 2.10000+ 1 1.00716- 3 8.44840- 4 1.60000+ 1 2.20000+ 1 1.09129- 3 8.48900- 4 1.60000+ 1 2.40000+ 1 2.38383- 4 9.65200- 4 1.60000+ 1 2.50000+ 1 3.62100- 4 9.65670- 4 1.60000+ 1 2.70000+ 1 2.02916- 4 9.28720- 4 1.60000+ 1 2.90000+ 1 1.28680- 4 9.45400- 4 1.60000+ 1 3.00000+ 1 1.51940- 3 9.48640- 4 1.60000+ 1 4.10000+ 1 1.73220- 5 9.68560- 4 1.80000+ 1 1.80000+ 1 1.72485- 4 7.81580- 4 1.80000+ 1 1.90000+ 1 2.00257- 2 8.04620- 4 1.80000+ 1 2.10000+ 1 5.25155- 4 9.05660- 4 1.80000+ 1 2.20000+ 1 3.51469- 3 9.09720- 4 1.80000+ 1 2.40000+ 1 2.58726- 4 1.02602- 3 1.80000+ 1 2.50000+ 1 1.54551- 3 1.02649- 3 1.80000+ 1 2.70000+ 1 1.37475- 4 9.89540- 4 1.80000+ 1 2.90000+ 1 3.58624- 5 1.00622- 3 1.80000+ 1 3.00000+ 1 1.84180- 3 1.00946- 3 1.80000+ 1 4.10000+ 1 1.11004- 5 1.02938- 3 1.90000+ 1 1.90000+ 1 2.71298- 2 8.27660- 4 1.90000+ 1 2.10000+ 1 3.65552- 2 9.28700- 4 1.90000+ 1 2.20000+ 1 4.93358- 2 9.32760- 4 1.90000+ 1 2.40000+ 1 4.57317- 3 1.04906- 3 1.90000+ 1 2.50000+ 1 5.20296- 3 1.04953- 3 1.90000+ 1 2.70000+ 1 2.64860- 3 1.01258- 3 1.90000+ 1 2.90000+ 1 2.51701- 3 1.02926- 3 1.90000+ 1 3.00000+ 1 6.02164- 3 1.03250- 3 1.90000+ 1 4.10000+ 1 2.29250- 4 1.05242- 3 2.10000+ 1 2.10000+ 1 2.36279- 4 1.02974- 3 2.10000+ 1 2.20000+ 1 3.73321- 3 1.03380- 3 2.10000+ 1 2.40000+ 1 9.00806- 5 1.15010- 3 2.10000+ 1 2.50000+ 1 1.14079- 3 1.15057- 3 2.10000+ 1 2.70000+ 1 9.89386- 5 1.11362- 3 2.10000+ 1 2.90000+ 1 3.83958- 5 1.13030- 3 2.10000+ 1 3.00000+ 1 3.07695- 3 1.13354- 3 2.10000+ 1 4.10000+ 1 8.12205- 6 1.15346- 3 2.20000+ 1 2.20000+ 1 1.79638- 3 1.03786- 3 2.20000+ 1 2.40000+ 1 7.97720- 4 1.15416- 3 2.20000+ 1 2.50000+ 1 7.18140- 4 1.15463- 3 2.20000+ 1 2.70000+ 1 1.01821- 4 1.11768- 3 2.20000+ 1 2.90000+ 1 2.44784- 4 1.13436- 3 2.20000+ 1 3.00000+ 1 3.75864- 3 1.13760- 3 2.20000+ 1 4.10000+ 1 8.09186- 6 1.15752- 3 2.40000+ 1 2.40000+ 1 1.13543- 5 1.27046- 3 2.40000+ 1 2.50000+ 1 6.33706- 4 1.27093- 3 2.40000+ 1 2.70000+ 1 2.19983- 5 1.23398- 3 2.40000+ 1 2.90000+ 1 2.41287- 5 1.25066- 3 2.40000+ 1 3.00000+ 1 3.50555- 4 1.25390- 3 2.40000+ 1 4.10000+ 1 2.12894- 6 1.27382- 3 2.50000+ 1 2.50000+ 1 1.56133- 4 1.27140- 3 2.50000+ 1 2.70000+ 1 2.69671- 5 1.23445- 3 2.50000+ 1 2.90000+ 1 1.46195- 4 1.25113- 3 2.50000+ 1 3.00000+ 1 4.08064- 4 1.25437- 3 2.50000+ 1 4.10000+ 1 2.12906- 6 1.27429- 3 2.70000+ 1 2.70000+ 1 1.47241- 5 1.19750- 3 2.70000+ 1 2.90000+ 1 1.64562- 5 1.21418- 3 2.70000+ 1 3.00000+ 1 2.60695- 4 1.21742- 3 2.70000+ 1 4.10000+ 1 2.59836- 6 1.23734- 3 2.90000+ 1 2.90000+ 1 2.12180- 6 1.23086- 3 2.90000+ 1 3.00000+ 1 3.07648- 4 1.23410- 3 2.90000+ 1 4.10000+ 1 2.12180- 6 1.25402- 3 3.00000+ 1 3.00000+ 1 6.22064- 4 1.23734- 3 3.00000+ 1 4.10000+ 1 4.01342- 5 1.25726- 3 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.51201- 3 7.54540- 4 1.90000+ 1 5.07746- 4 7.77580- 4 2.40000+ 1 5.62670- 4 9.98980- 4 2.90000+ 1 5.85923- 4 9.79180- 4 3.00000+ 1 8.52467- 5 9.82420- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 4.99718- 2 1.46600- 5 1.40000+ 1 2.50000+ 1 7.93895- 3 1.51300- 5 1.40000+ 1 3.00000+ 1 2.27426- 3 0.00000+ 0 1.40000+ 1 4.10000+ 1 2.89309- 4 1.80200- 5 1.60000+ 1 1.60000+ 1 9.92676- 6 3.80140- 4 1.60000+ 1 1.80000+ 1 3.88796- 3 4.40960- 4 1.60000+ 1 1.90000+ 1 2.76615- 3 4.64000- 4 1.60000+ 1 2.10000+ 1 8.80770- 2 5.65040- 4 1.60000+ 1 2.20000+ 1 1.14554- 2 5.69100- 4 1.60000+ 1 2.40000+ 1 5.44654- 3 6.85400- 4 1.60000+ 1 2.50000+ 1 1.89606- 3 6.85870- 4 1.60000+ 1 2.70000+ 1 2.64722- 5 6.48920- 4 1.60000+ 1 2.90000+ 1 4.13613- 4 6.65600- 4 1.60000+ 1 3.00000+ 1 2.28307- 4 6.68840- 4 1.60000+ 1 4.10000+ 1 3.30892- 6 6.88760- 4 1.80000+ 1 1.80000+ 1 1.85643- 3 5.01780- 4 1.80000+ 1 1.90000+ 1 1.35790- 2 5.24820- 4 1.80000+ 1 2.10000+ 1 7.36528- 2 6.25860- 4 1.80000+ 1 2.20000+ 1 6.40330- 3 6.29920- 4 1.80000+ 1 2.40000+ 1 3.61356- 3 7.46220- 4 1.80000+ 1 2.50000+ 1 2.09810- 3 7.46690- 4 1.80000+ 1 2.70000+ 1 3.93793- 4 7.09740- 4 1.80000+ 1 2.90000+ 1 4.13650- 4 7.26420- 4 1.80000+ 1 3.00000+ 1 1.32686- 3 7.29660- 4 1.80000+ 1 4.10000+ 1 3.30922- 5 7.49580- 4 1.90000+ 1 1.90000+ 1 5.06283- 3 5.47860- 4 1.90000+ 1 2.10000+ 1 1.60780- 1 6.48900- 4 1.90000+ 1 2.20000+ 1 6.02251- 3 6.52960- 4 1.90000+ 1 2.40000+ 1 2.64390- 3 7.69260- 4 1.90000+ 1 2.50000+ 1 1.19116- 3 7.69730- 4 1.90000+ 1 2.70000+ 1 3.20969- 4 7.32780- 4 1.90000+ 1 2.90000+ 1 1.29375- 3 7.49460- 4 1.90000+ 1 3.00000+ 1 9.59623- 4 7.52700- 4 1.90000+ 1 4.10000+ 1 2.64734- 5 7.72620- 4 2.10000+ 1 2.10000+ 1 1.33228- 1 7.49940- 4 2.10000+ 1 2.20000+ 1 2.72743- 1 7.54000- 4 2.10000+ 1 2.40000+ 1 1.99255- 2 8.70300- 4 2.10000+ 1 2.50000+ 1 2.64084- 2 8.70770- 4 2.10000+ 1 2.70000+ 1 1.33755- 2 8.33820- 4 2.10000+ 1 2.90000+ 1 9.99270- 3 8.50500- 4 2.10000+ 1 3.00000+ 1 2.06188- 2 8.53740- 4 2.10000+ 1 4.10000+ 1 1.15082- 3 8.73660- 4 2.20000+ 1 2.20000+ 1 4.44752- 3 7.58060- 4 2.20000+ 1 2.40000+ 1 1.87060- 2 8.74360- 4 2.20000+ 1 2.50000+ 1 1.17143- 3 8.74830- 4 2.20000+ 1 2.70000+ 1 9.69576- 4 8.37880- 4 2.20000+ 1 2.90000+ 1 5.75800- 4 8.54560- 4 2.20000+ 1 3.00000+ 1 6.25426- 4 8.57800- 4 2.20000+ 1 4.10000+ 1 7.94196- 5 8.77720- 4 2.40000+ 1 2.40000+ 1 1.65119- 3 9.90660- 4 2.40000+ 1 2.50000+ 1 9.73221- 3 9.91130- 4 2.40000+ 1 2.70000+ 1 8.23975- 4 9.54180- 4 2.40000+ 1 2.90000+ 1 3.80541- 4 9.70860- 4 2.40000+ 1 3.00000+ 1 3.17670- 4 9.74100- 4 2.40000+ 1 4.10000+ 1 6.94906- 5 9.94020- 4 2.50000+ 1 2.50000+ 1 1.35667- 4 9.91600- 4 2.50000+ 1 2.70000+ 1 2.01865- 4 9.54650- 4 2.50000+ 1 2.90000+ 1 1.35667- 4 9.71330- 4 2.50000+ 1 3.00000+ 1 1.32361- 4 9.74570- 4 2.50000+ 1 4.10000+ 1 1.65449- 5 9.94490- 4 2.70000+ 1 2.70000+ 1 7.01003- 6 9.17700- 4 2.70000+ 1 2.90000+ 1 9.81400- 5 9.34380- 4 2.70000+ 1 3.00000+ 1 6.30910- 5 9.37620- 4 2.90000+ 1 2.90000+ 1 4.73670- 5 9.51060- 4 2.90000+ 1 3.00000+ 1 2.77438- 4 9.54300- 4 2.90000+ 1 4.10000+ 1 6.76706- 6 9.74220- 4 3.00000+ 1 3.00000+ 1 2.56071- 4 9.57540- 4 3.00000+ 1 4.10000+ 1 1.82908- 5 9.77460- 4 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.90050- 3 7.54600- 4 2.40000+ 1 3.05600- 5 9.76000- 4 2.50000+ 1 5.95471- 4 9.76470- 4 3.00000+ 1 6.82311- 4 9.59440- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.47259- 6 3.57160- 4 1.60000+ 1 1.80000+ 1 1.23970- 3 4.17980- 4 1.60000+ 1 1.90000+ 1 6.28540- 3 4.41020- 4 1.60000+ 1 2.10000+ 1 9.18855- 3 5.42060- 4 1.60000+ 1 2.20000+ 1 9.87884- 2 5.46120- 4 1.60000+ 1 2.40000+ 1 1.88909- 3 6.62420- 4 1.60000+ 1 2.50000+ 1 6.09447- 3 6.62890- 4 1.60000+ 1 2.70000+ 1 2.43073- 5 6.25940- 4 1.60000+ 1 2.90000+ 1 6.94519- 5 6.42620- 4 1.60000+ 1 3.00000+ 1 5.93812- 4 6.45860- 4 1.60000+ 1 4.10000+ 1 3.47259- 6 6.65780- 4 1.80000+ 1 1.80000+ 1 1.04169- 5 4.78800- 4 1.80000+ 1 1.90000+ 1 1.44040- 2 5.01840- 4 1.80000+ 1 2.10000+ 1 9.30588- 4 6.02880- 4 1.80000+ 1 2.20000+ 1 9.65334- 2 6.06940- 4 1.80000+ 1 2.40000+ 1 8.29889- 4 7.23240- 4 1.80000+ 1 2.50000+ 1 2.96534- 3 7.23710- 4 1.80000+ 1 2.70000+ 1 1.21537- 4 6.86760- 4 1.80000+ 1 2.90000+ 1 6.94464- 6 7.03440- 4 1.80000+ 1 3.00000+ 1 1.35764- 3 7.06680- 4 1.80000+ 1 4.10000+ 1 1.04169- 5 7.26600- 4 1.90000+ 1 1.90000+ 1 1.11474- 2 5.24880- 4 1.90000+ 1 2.10000+ 1 8.99399- 3 6.25920- 4 1.90000+ 1 2.20000+ 1 1.57380- 1 6.29980- 4 1.90000+ 1 2.40000+ 1 1.55217- 3 7.46280- 4 1.90000+ 1 2.50000+ 1 3.71913- 3 7.46750- 4 1.90000+ 1 2.70000+ 1 7.11868- 4 7.09800- 4 1.90000+ 1 2.90000+ 1 1.31615- 3 7.26480- 4 1.90000+ 1 3.00000+ 1 2.17035- 3 7.29720- 4 1.90000+ 1 4.10000+ 1 5.90333- 5 7.49640- 4 2.10000+ 1 2.10000+ 1 1.93071- 3 7.26960- 4 2.10000+ 1 2.20000+ 1 1.99033- 1 7.31020- 4 2.10000+ 1 2.40000+ 1 9.37569- 4 8.47320- 4 2.10000+ 1 2.50000+ 1 1.21502- 2 8.47790- 4 2.10000+ 1 2.70000+ 1 7.63951- 4 8.10840- 4 2.10000+ 1 2.90000+ 1 1.25012- 4 8.27520- 4 2.10000+ 1 3.00000+ 1 8.36876- 4 8.30760- 4 2.10000+ 1 4.10000+ 1 6.25040- 5 8.50680- 4 2.20000+ 1 2.20000+ 1 2.29136- 1 7.35080- 4 2.20000+ 1 2.40000+ 1 2.33354- 2 8.51380- 4 2.20000+ 1 2.50000+ 1 3.40797- 2 8.51850- 4 2.20000+ 1 2.70000+ 1 1.44046- 2 8.14900- 4 2.20000+ 1 2.90000+ 1 1.24803- 2 8.31580- 4 2.20000+ 1 3.00000+ 1 2.01018- 2 8.34820- 4 2.20000+ 1 4.10000+ 1 1.23267- 3 8.54740- 4 2.40000+ 1 2.40000+ 1 1.31952- 4 9.67680- 4 2.40000+ 1 2.50000+ 1 8.60144- 3 9.68150- 4 2.40000+ 1 2.70000+ 1 2.15298- 4 9.31200- 4 2.40000+ 1 2.90000+ 1 9.72305- 5 9.47880- 4 2.40000+ 1 3.00000+ 1 1.35423- 4 9.51120- 4 2.40000+ 1 4.10000+ 1 1.73620- 5 9.71040- 4 2.50000+ 1 2.50000+ 1 3.76072- 3 9.68620- 4 2.50000+ 1 2.70000+ 1 8.85505- 4 9.31670- 4 2.50000+ 1 2.90000+ 1 3.75045- 4 9.48350- 4 2.50000+ 1 3.00000+ 1 3.99333- 4 9.51590- 4 2.50000+ 1 4.10000+ 1 7.63969- 5 9.71510- 4 2.70000+ 1 2.90000+ 1 2.62133- 5 9.11400- 4 2.70000+ 1 3.00000+ 1 2.75237- 4 9.14640- 4 2.90000+ 1 3.00000+ 1 3.75110- 4 9.31320- 4 3.00000+ 1 3.00000+ 1 3.84057- 4 9.34560- 4 3.00000+ 1 4.10000+ 1 2.40029- 5 9.54480- 4 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.28305- 5 6.08200- 5 1.90000+ 1 6.69160- 5 8.38600- 5 2.90000+ 1 2.69566- 5 2.85460- 4 3.00000+ 1 2.35562- 5 2.88700- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.11294- 2 5.25000- 5 1.80000+ 1 2.50000+ 1 3.24395- 2 5.29700- 5 1.80000+ 1 2.70000+ 1 5.54458- 2 1.60200- 5 1.80000+ 1 2.90000+ 1 4.31589- 2 3.27000- 5 1.80000+ 1 3.00000+ 1 9.15604- 2 3.59400- 5 1.80000+ 1 4.10000+ 1 4.61056- 3 5.58600- 5 1.90000+ 1 2.40000+ 1 7.08915- 2 7.55400- 5 1.90000+ 1 2.50000+ 1 8.42822- 2 7.60100- 5 1.90000+ 1 2.70000+ 1 7.23777- 2 3.90600- 5 1.90000+ 1 2.90000+ 1 7.31232- 2 5.57400- 5 1.90000+ 1 3.00000+ 1 9.92273- 2 5.89800- 5 1.90000+ 1 4.10000+ 1 6.11536- 3 7.89000- 5 2.10000+ 1 2.10000+ 1 4.91802- 3 5.62200- 5 2.10000+ 1 2.20000+ 1 3.16382- 2 6.02800- 5 2.10000+ 1 2.40000+ 1 2.42407- 3 1.76580- 4 2.10000+ 1 2.50000+ 1 6.02728- 3 1.77050- 4 2.10000+ 1 2.70000+ 1 2.30893- 2 1.40100- 4 2.10000+ 1 2.90000+ 1 4.49761- 3 1.56780- 4 2.10000+ 1 3.00000+ 1 1.48603- 2 1.60020- 4 2.10000+ 1 4.10000+ 1 1.62474- 3 1.79940- 4 2.20000+ 1 2.20000+ 1 1.48880- 2 6.43400- 5 2.20000+ 1 2.40000+ 1 6.87086- 3 1.80640- 4 2.20000+ 1 2.50000+ 1 5.93494- 3 1.81110- 4 2.20000+ 1 2.70000+ 1 3.35956- 2 1.44160- 4 2.20000+ 1 2.90000+ 1 1.35165- 2 1.60840- 4 2.20000+ 1 3.00000+ 1 1.40005- 2 1.64080- 4 2.20000+ 1 4.10000+ 1 2.36018- 3 1.84000- 4 2.40000+ 1 2.40000+ 1 2.59075- 4 2.96940- 4 2.40000+ 1 2.50000+ 1 1.32043- 3 2.97410- 4 2.40000+ 1 2.70000+ 1 5.13509- 3 2.60460- 4 2.40000+ 1 2.90000+ 1 6.49150- 4 2.77140- 4 2.40000+ 1 3.00000+ 1 1.56781- 3 2.80380- 4 2.40000+ 1 4.10000+ 1 3.28305- 4 3.00300- 4 2.50000+ 1 2.50000+ 1 5.66086- 4 2.97880- 4 2.50000+ 1 2.70000+ 1 6.65726- 3 2.60930- 4 2.50000+ 1 2.90000+ 1 4.96854- 4 2.77610- 4 2.50000+ 1 3.00000+ 1 1.98348- 3 2.80850- 4 2.50000+ 1 4.10000+ 1 4.25499- 4 3.00770- 4 2.70000+ 1 2.70000+ 1 1.60730- 2 2.23980- 4 2.70000+ 1 2.90000+ 1 1.95802- 2 2.40660- 4 2.70000+ 1 3.00000+ 1 3.44050- 2 2.43900- 4 2.70000+ 1 4.10000+ 1 2.43511- 3 2.63820- 4 2.90000+ 1 2.90000+ 1 6.35950- 3 2.57340- 4 2.90000+ 1 3.00000+ 1 2.74330- 2 2.60580- 4 2.90000+ 1 4.10000+ 1 5.25523- 3 2.80500- 4 3.00000+ 1 3.00000+ 1 2.43103- 2 2.63820- 4 3.00000+ 1 4.10000+ 1 1.00214- 2 2.83740- 4 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.09939- 4 1.24080- 4 2.70000+ 1 4.25509- 5 2.07960- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 2.42628- 2 1.47200- 5 1.90000+ 1 2.50000+ 1 1.83284- 2 1.51900- 5 1.90000+ 1 3.00000+ 1 9.92586- 3 0.00000+ 0 1.90000+ 1 4.10000+ 1 1.26467- 3 1.80800- 5 2.10000+ 1 2.10000+ 1 4.17349- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 4.84890- 1 0.00000+ 0 2.10000+ 1 2.40000+ 1 5.69232- 2 1.15760- 4 2.10000+ 1 2.50000+ 1 1.17475- 1 1.16230- 4 2.10000+ 1 2.70000+ 1 4.14013- 2 7.92800- 5 2.10000+ 1 2.90000+ 1 2.92193- 2 9.59600- 5 2.10000+ 1 3.00000+ 1 5.61028- 2 9.92000- 5 2.10000+ 1 4.10000+ 1 3.55082- 3 1.19120- 4 2.20000+ 1 2.20000+ 1 2.26635- 2 3.52000- 6 2.20000+ 1 2.40000+ 1 1.41004- 2 1.19820- 4 2.20000+ 1 2.50000+ 1 3.78191- 3 1.20290- 4 2.20000+ 1 2.70000+ 1 6.63308- 3 8.33400- 5 2.20000+ 1 2.90000+ 1 2.87646- 2 1.00020- 4 2.20000+ 1 3.00000+ 1 6.57795- 3 1.03260- 4 2.20000+ 1 4.10000+ 1 4.96216- 4 1.23180- 4 2.40000+ 1 2.40000+ 1 1.51072- 4 2.36120- 4 2.40000+ 1 2.50000+ 1 2.03180- 3 2.36590- 4 2.40000+ 1 2.70000+ 1 1.19302- 3 1.99640- 4 2.40000+ 1 2.90000+ 1 3.98838- 3 2.16320- 4 2.40000+ 1 3.00000+ 1 1.63591- 3 2.19560- 4 2.40000+ 1 4.10000+ 1 9.87958- 5 2.39480- 4 2.50000+ 1 2.50000+ 1 5.45098- 5 2.37060- 4 2.50000+ 1 2.70000+ 1 5.87591- 4 2.00110- 4 2.50000+ 1 2.90000+ 1 6.54724- 3 2.16790- 4 2.50000+ 1 3.00000+ 1 5.55337- 4 2.20030- 4 2.50000+ 1 4.10000+ 1 4.04927- 5 2.39950- 4 2.70000+ 1 2.70000+ 1 1.13755- 4 1.63160- 4 2.70000+ 1 2.90000+ 1 2.10239- 3 1.79840- 4 2.70000+ 1 3.00000+ 1 3.21250- 4 1.83080- 4 2.70000+ 1 4.10000+ 1 1.62920- 5 2.03000- 4 2.90000+ 1 2.90000+ 1 2.92179- 3 1.96520- 4 2.90000+ 1 3.00000+ 1 8.45129- 3 1.99760- 4 2.90000+ 1 4.10000+ 1 4.54883- 4 2.19680- 4 3.00000+ 1 3.00000+ 1 3.27475- 4 2.03000- 4 3.00000+ 1 4.10000+ 1 5.74839- 5 2.22920- 4 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.42716- 6 1.01040- 4 2.20000+ 1 5.82576- 5 1.05100- 4 2.70000+ 1 1.83679- 5 1.84920- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.42184- 2 9.27200- 5 2.10000+ 1 2.50000+ 1 4.28276- 2 9.31900- 5 2.10000+ 1 2.70000+ 1 2.18307- 2 5.62400- 5 2.10000+ 1 2.90000+ 1 1.63383- 2 7.29200- 5 2.10000+ 1 3.00000+ 1 6.55308- 2 7.61600- 5 2.10000+ 1 4.10000+ 1 1.84300- 3 9.60800- 5 2.20000+ 1 2.40000+ 1 1.86939- 1 9.67800- 5 2.20000+ 1 2.50000+ 1 1.89360- 1 9.72500- 5 2.20000+ 1 2.70000+ 1 1.13912- 1 6.03000- 5 2.20000+ 1 2.90000+ 1 1.10070- 1 7.69800- 5 2.20000+ 1 3.00000+ 1 1.71952- 1 8.02200- 5 2.20000+ 1 4.10000+ 1 1.00810- 2 1.00140- 4 2.40000+ 1 2.40000+ 1 7.43381- 5 2.13080- 4 2.40000+ 1 2.50000+ 1 4.06146- 3 2.13550- 4 2.40000+ 1 2.70000+ 1 2.19743- 3 1.76600- 4 2.40000+ 1 2.90000+ 1 9.49772- 4 1.93280- 4 2.40000+ 1 3.00000+ 1 1.38468- 2 1.96520- 4 2.40000+ 1 4.10000+ 1 1.42018- 4 2.16440- 4 2.50000+ 1 2.50000+ 1 1.06178- 3 2.14020- 4 2.50000+ 1 2.70000+ 1 4.70694- 3 1.77070- 4 2.50000+ 1 2.90000+ 1 3.96506- 3 1.93750- 4 2.50000+ 1 3.00000+ 1 1.68304- 2 1.96990- 4 2.50000+ 1 4.10000+ 1 3.40633- 4 2.16910- 4 2.70000+ 1 2.70000+ 1 1.63478- 5 1.40120- 4 2.70000+ 1 2.90000+ 1 1.36241- 4 1.56800- 4 2.70000+ 1 3.00000+ 1 2.62501- 3 1.60040- 4 2.70000+ 1 4.10000+ 1 2.88502- 6 1.79960- 4 2.90000+ 1 2.90000+ 1 1.30388- 5 1.73480- 4 2.90000+ 1 3.00000+ 1 1.21398- 3 1.76720- 4 2.90000+ 1 4.10000+ 1 4.77029- 6 1.96640- 4 3.00000+ 1 3.00000+ 1 2.64729- 3 1.79960- 4 3.00000+ 1 4.10000+ 1 1.78892- 4 1.99880- 4 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 8.75365- 7 1.20360- 4 2.90000+ 1 5.36760- 6 1.00560- 4 3.00000+ 1 8.89581- 7 1.03800- 4 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.82375- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 5.39700- 3 0.00000+ 0 2.40000+ 1 2.40000+ 1 2.69179- 2 1.12040- 4 2.40000+ 1 2.50000+ 1 1.63959- 1 1.12510- 4 2.40000+ 1 2.70000+ 1 5.52482- 2 7.55600- 5 2.40000+ 1 2.90000+ 1 4.84888- 2 9.22400- 5 2.40000+ 1 3.00000+ 1 7.90302- 2 9.54800- 5 2.40000+ 1 4.10000+ 1 4.89897- 3 1.15400- 4 2.50000+ 1 2.50000+ 1 5.72710- 4 1.12980- 4 2.50000+ 1 2.70000+ 1 2.74905- 3 7.60300- 5 2.50000+ 1 2.90000+ 1 8.74345- 3 9.27100- 5 2.50000+ 1 3.00000+ 1 2.82858- 3 9.59500- 5 2.50000+ 1 4.10000+ 1 2.01336- 4 1.15870- 4 2.70000+ 1 2.70000+ 1 3.54020- 2 3.90800- 5 2.70000+ 1 2.90000+ 1 2.57353- 2 5.57600- 5 2.70000+ 1 3.00000+ 1 3.20120- 2 5.90000- 5 2.70000+ 1 4.10000+ 1 3.29656- 3 7.89200- 5 2.90000+ 1 2.90000+ 1 8.24508- 2 7.24400- 5 2.90000+ 1 3.00000+ 1 2.55865- 1 7.56800- 5 2.90000+ 1 4.10000+ 1 1.01073- 2 9.56000- 5 3.00000+ 1 3.00000+ 1 9.99062- 2 7.89200- 5 3.00000+ 1 4.10000+ 1 7.94477- 3 9.88400- 5 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.62153- 8 1.16300- 4 2.50000+ 1 9.34015- 7 1.16770- 4 3.00000+ 1 6.60454- 6 9.97400- 5 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 3.78666- 3 1.07980- 4 2.40000+ 1 2.50000+ 1 2.80830- 1 1.08450- 4 2.40000+ 1 2.70000+ 1 1.66819- 2 7.15000- 5 2.40000+ 1 2.90000+ 1 9.55562- 3 8.81800- 5 2.40000+ 1 3.00000+ 1 4.01949- 2 9.14200- 5 2.40000+ 1 4.10000+ 1 1.33283- 3 1.11340- 4 2.50000+ 1 2.50000+ 1 1.27935- 1 1.08920- 4 2.50000+ 1 2.70000+ 1 1.22083- 1 7.19700- 5 2.50000+ 1 2.90000+ 1 1.20623- 1 8.86500- 5 2.50000+ 1 3.00000+ 1 1.75223- 1 9.18900- 5 2.50000+ 1 4.10000+ 1 1.09191- 2 1.11810- 4 2.70000+ 1 2.70000+ 1 2.07587- 2 3.50200- 5 2.70000+ 1 2.90000+ 1 8.67403- 3 5.17000- 5 2.70000+ 1 3.00000+ 1 2.34273- 2 5.49400- 5 2.70000+ 1 4.10000+ 1 1.91724- 3 7.48600- 5 2.90000+ 1 2.90000+ 1 1.95836- 3 6.83800- 5 2.90000+ 1 3.00000+ 1 1.92685- 2 7.16200- 5 2.90000+ 1 4.10000+ 1 4.03282- 4 9.15400- 5 3.00000+ 1 3.00000+ 1 1.32580- 2 7.48600- 5 3.00000+ 1 4.10000+ 1 1.16207- 3 9.47800- 5 1 60000 0 7 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 5.26785- 9 1.66800- 5 3.00000+ 1 1.81832- 8 1.99200- 5 1 60000 0 9 1.44240+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.97163- 1 1.17200- 5 3.00000+ 1 4.10000+ 1 5.94845- 1 1.49600- 5 4.10000+ 1 4.10000+ 1 7.99137- 3 3.48800- 5 1 61000 0 0 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 2.14000+ 0 2.50000+ 1 2.86000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 61000 0 0 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.52190- 2 3.00000+ 0 7.39410- 3 5.00000+ 0 7.01920- 3 6.00000+ 0 6.45190- 3 8.00000+ 0 1.62510- 3 1.00000+ 1 1.46160- 3 1.10000+ 1 1.34690- 3 1.30000+ 1 1.05960- 3 1.40000+ 1 1.03460- 3 1.60000+ 1 3.28070- 4 1.80000+ 1 2.65010- 4 1.90000+ 1 2.39870- 4 2.10000+ 1 1.35050- 4 2.20000+ 1 1.30590- 4 2.40000+ 1 8.88000- 6 2.50000+ 1 8.35000- 6 2.70000+ 1 4.62700- 5 2.90000+ 1 2.89600- 5 3.00000+ 1 2.54600- 5 4.10000+ 1 5.03000- 6 1 61000 0 0 1.45000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.86420- 2 3.00000+ 0 1.31800- 2 5.00000+ 0 1.31880- 2 6.00000+ 0 1.11030- 2 8.00000+ 0 4.01580- 3 1.00000+ 1 3.93550- 3 1.10000+ 1 3.45090- 3 1.30000+ 1 3.31860- 3 1.40000+ 1 3.20380- 3 1.60000+ 1 1.23630- 3 1.80000+ 1 1.15310- 3 1.90000+ 1 1.01880- 3 2.10000+ 1 8.54520- 4 2.20000+ 1 8.25190- 4 2.40000+ 1 4.65590- 4 2.50000+ 1 4.56560- 4 2.70000+ 1 2.63270- 4 2.90000+ 1 2.08110- 4 3.00000+ 1 1.80130- 4 4.10000+ 1 2.75300- 5 1 61000 0 0 1.45000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22490-10 3.00000+ 0 5.19380-10 5.00000+ 0 4.34430-10 6.00000+ 0 4.68800-10 8.00000+ 0 1.36850- 9 1.00000+ 1 1.31220- 9 1.10000+ 1 1.37820- 9 1.30000+ 1 1.22570- 9 1.40000+ 1 1.24610- 9 1.60000+ 1 3.11240- 9 1.80000+ 1 3.18540- 9 1.90000+ 1 3.33450- 9 2.10000+ 1 3.55500- 9 2.20000+ 1 3.60670- 9 2.40000+ 1 4.98150- 9 2.50000+ 1 5.04320- 9 2.70000+ 1 7.48380- 9 2.90000+ 1 8.39120- 9 3.00000+ 1 8.85850- 9 4.10000+ 1 2.30880- 8 1 61000 0 0 1.45000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.66360- 5 3.00000+ 0 3.07690- 7 5.00000+ 0 5.22660- 7 6.00000+ 0 4.83240- 7 8.00000+ 0 9.17640- 9 1.00000+ 1 9.24870- 9 1.10000+ 1 9.43420- 9 1.30000+ 1 3.45990- 9 1.40000+ 1 3.23420- 9 1.60000+ 1 2.35240-10 1.80000+ 1 4.71770-10 1.90000+ 1 3.39030-10 2.10000+ 1 1.65140-10 2.20000+ 1 1.51550-10 2.70000+ 1 1.17660-11 1 61000 0 0 1.45000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.37680- 6 3.00000+ 0 3.89650- 6 5.00000+ 0 2.93170- 6 6.00000+ 0 2.78030- 6 8.00000+ 0 1.45730- 5 1.00000+ 1 6.66550- 6 1.10000+ 1 6.96820- 6 1.30000+ 1 1.07090- 6 1.40000+ 1 8.14430- 7 1.60000+ 1 9.35440- 6 1.80000+ 1 1.21280- 5 1.90000+ 1 5.51990- 6 2.10000+ 1 1.38170- 6 2.20000+ 1 1.11320- 6 2.70000+ 1 5.37710- 7 1 61000 0 0 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.47770- 4 3.00000+ 0 1.78845- 4 5.00000+ 0 1.54502- 4 6.00000+ 0 1.42289- 4 8.00000+ 0 1.30690- 4 1.00000+ 1 1.13351- 4 1.10000+ 1 1.01372- 4 1.30000+ 1 7.62238- 5 1.40000+ 1 6.78114- 5 1.60000+ 1 6.66205- 5 1.80000+ 1 5.99982- 5 1.90000+ 1 4.69635- 5 2.10000+ 1 3.92297- 5 2.20000+ 1 2.80321- 5 2.40000+ 1 8.88000- 6 2.50000+ 1 8.35000- 6 2.70000+ 1 3.17258- 5 2.90000+ 1 2.89600- 5 3.00000+ 1 2.54600- 5 4.10000+ 1 5.03000- 6 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06636+ 0 3.00000+ 0 1.60259- 1 5.00000+ 0 1.79298- 1 6.00000+ 0 1.50538- 1 8.00000+ 0 7.95045- 3 1.00000+ 1 8.30125- 3 1.10000+ 1 7.88820- 3 1.30000+ 1 6.42068- 3 1.40000+ 1 6.02152- 3 1.60000+ 1 2.62044- 4 1.80000+ 1 3.04789- 4 1.90000+ 1 1.02919- 4 2.10000+ 1 1.02218- 5 2.20000+ 1 1.02388- 5 2.70000+ 1 4.34466- 8 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.74371- 2 3.00000+ 0 8.94718- 4 5.00000+ 0 1.01914- 3 6.00000+ 0 7.78493- 4 8.00000+ 0 7.67129- 6 1.00000+ 1 7.78483- 6 1.10000+ 1 7.41076- 6 1.30000+ 1 5.47672- 6 1.40000+ 1 5.11903- 6 1.60000+ 1 4.03982- 8 1.80000+ 1 4.36628- 8 1.90000+ 1 1.30513- 8 2.10000+ 1 1.12279- 9 2.20000+ 1 1.10838- 9 2.70000+ 1 8.70479-13 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.96568+ 0 3.00000+ 0 1.10050+ 1 5.00000+ 0 9.25729+ 0 6.00000+ 0 8.69990+ 0 8.00000+ 0 7.77793+ 0 1.00000+ 1 6.45340+ 0 1.10000+ 1 5.95055+ 0 1.30000+ 1 3.88532+ 0 1.40000+ 1 3.78325+ 0 1.60000+ 1 3.17061+ 0 1.80000+ 1 2.87420+ 0 1.90000+ 1 2.24381+ 0 2.10000+ 1 1.23314+ 0 2.20000+ 1 1.17929+ 0 2.70000+ 1 1.00000+ 0 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.63411- 3 3.00000+ 0 6.32054- 3 5.00000+ 0 5.84555- 3 6.00000+ 0 5.53112- 3 8.00000+ 0 1.48674- 3 1.00000+ 1 1.34046- 3 1.10000+ 1 1.23812- 3 1.30000+ 1 9.77899- 4 1.40000+ 1 9.61670- 4 1.60000+ 1 2.61409- 4 1.80000+ 1 2.04968- 4 1.90000+ 1 1.92893- 4 2.10000+ 1 9.58192- 5 2.20000+ 1 1.02557- 4 2.70000+ 1 1.45442- 5 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.65280- 1 3.81998- 2 6.00000+ 0 4.81370- 1 3.87671- 2 1.00000+ 1 4.79180- 2 4.37574- 2 1.10000+ 1 9.27300- 2 4.38721- 2 1.30000+ 1 6.48420- 4 4.41594- 2 1.40000+ 1 8.64430- 4 4.41844- 2 1.80000+ 1 1.03430- 2 4.49540- 2 1.90000+ 1 2.00890- 2 4.49791- 2 2.10000+ 1 1.41080- 4 4.50839- 2 2.20000+ 1 1.87690- 4 4.50884- 2 2.90000+ 1 2.02790- 3 4.51900- 2 3.00000+ 1 4.06060- 3 4.51935- 2 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.41398- 3 3.04308- 2 3.00000+ 0 5.00000+ 0 8.05210- 3 3.08057- 2 3.00000+ 0 6.00000+ 0 8.18215- 3 3.13730- 2 3.00000+ 0 8.00000+ 0 2.39187- 3 3.61998- 2 3.00000+ 0 1.00000+ 1 1.61847- 3 3.63633- 2 3.00000+ 0 1.10000+ 1 1.68598- 3 3.64780- 2 3.00000+ 0 1.30000+ 1 1.19612- 4 3.67653- 2 3.00000+ 0 1.40000+ 1 1.19748- 4 3.67903- 2 3.00000+ 0 1.60000+ 1 5.51277- 4 3.74968- 2 3.00000+ 0 1.80000+ 1 3.57495- 4 3.75599- 2 3.00000+ 0 1.90000+ 1 3.70277- 4 3.75850- 2 3.00000+ 0 2.10000+ 1 2.55664- 5 3.76898- 2 3.00000+ 0 2.20000+ 1 2.54205- 5 3.76943- 2 3.00000+ 0 2.70000+ 1 9.21263- 5 3.77786- 2 3.00000+ 0 2.90000+ 1 4.86349- 5 3.77959- 2 3.00000+ 0 3.00000+ 1 4.84880- 5 3.77994- 2 3.00000+ 0 4.10000+ 1 7.78743- 6 3.78199- 2 5.00000+ 0 5.00000+ 0 8.25501- 4 3.11806- 2 5.00000+ 0 6.00000+ 0 1.67451- 2 3.17479- 2 5.00000+ 0 8.00000+ 0 1.25605- 3 3.65747- 2 5.00000+ 0 1.00000+ 1 2.94893- 4 3.67382- 2 5.00000+ 0 1.10000+ 1 2.87015- 3 3.68529- 2 5.00000+ 0 1.30000+ 1 1.36656- 4 3.71402- 2 5.00000+ 0 1.40000+ 1 4.36831- 4 3.71652- 2 5.00000+ 0 1.60000+ 1 2.78581- 4 3.78717- 2 5.00000+ 0 1.80000+ 1 6.36214- 5 3.79348- 2 5.00000+ 0 1.90000+ 1 6.07587- 4 3.79599- 2 5.00000+ 0 2.10000+ 1 2.86529- 5 3.80647- 2 5.00000+ 0 2.20000+ 1 9.12491- 5 3.80692- 2 5.00000+ 0 2.40000+ 1 2.93862- 7 3.81909- 2 5.00000+ 0 2.70000+ 1 4.61371- 5 3.81535- 2 5.00000+ 0 2.90000+ 1 8.66919- 6 3.81708- 2 5.00000+ 0 3.00000+ 1 7.90494- 5 3.81743- 2 5.00000+ 0 4.10000+ 1 3.96726- 6 3.81948- 2 6.00000+ 0 6.00000+ 0 8.06709- 3 3.23152- 2 6.00000+ 0 8.00000+ 0 1.22638- 3 3.71420- 2 6.00000+ 0 1.00000+ 1 2.76353- 3 3.73055- 2 6.00000+ 0 1.10000+ 1 2.84630- 3 3.74202- 2 6.00000+ 0 1.30000+ 1 5.11885- 4 3.77075- 2 6.00000+ 0 1.40000+ 1 4.60452- 4 3.77325- 2 6.00000+ 0 1.60000+ 1 2.69749- 4 3.84390- 2 6.00000+ 0 1.80000+ 1 5.87575- 4 3.85021- 2 6.00000+ 0 1.90000+ 1 6.06794- 4 3.85272- 2 6.00000+ 0 2.10000+ 1 1.07407- 4 3.86320- 2 6.00000+ 0 2.20000+ 1 9.63789- 5 3.86365- 2 6.00000+ 0 2.40000+ 1 5.87672- 7 3.87582- 2 6.00000+ 0 2.70000+ 1 4.46651- 5 3.87208- 2 6.00000+ 0 2.90000+ 1 7.93403- 5 3.87381- 2 6.00000+ 0 3.00000+ 1 7.90436- 5 3.87416- 2 6.00000+ 0 4.10000+ 1 3.82000- 6 3.87621- 2 8.00000+ 0 8.00000+ 0 2.19512- 4 4.19688- 2 8.00000+ 0 1.00000+ 1 2.54478- 4 4.21323- 2 8.00000+ 0 1.10000+ 1 2.55072- 4 4.22470- 2 8.00000+ 0 1.30000+ 1 1.73378- 5 4.25343- 2 8.00000+ 0 1.40000+ 1 1.66034- 5 4.25593- 2 8.00000+ 0 1.60000+ 1 1.00943- 4 4.32658- 2 8.00000+ 0 1.80000+ 1 5.62755- 5 4.33289- 2 8.00000+ 0 1.90000+ 1 5.61238- 5 4.33540- 2 8.00000+ 0 2.10000+ 1 3.67327- 6 4.34588- 2 8.00000+ 0 2.20000+ 1 3.52631- 6 4.34633- 2 8.00000+ 0 2.70000+ 1 1.68972- 5 4.35476- 2 8.00000+ 0 2.90000+ 1 7.64069- 6 4.35649- 2 8.00000+ 0 3.00000+ 1 7.34627- 6 4.35684- 2 8.00000+ 0 4.10000+ 1 1.46932- 6 4.35889- 2 1.00000+ 1 1.00000+ 1 2.54199- 5 4.22958- 2 1.00000+ 1 1.10000+ 1 4.82963- 4 4.24105- 2 1.00000+ 1 1.30000+ 1 1.80723- 5 4.26978- 2 1.00000+ 1 1.40000+ 1 5.59795- 5 4.27228- 2 1.00000+ 1 1.60000+ 1 5.65679- 5 4.34293- 2 1.00000+ 1 1.80000+ 1 1.08736- 5 4.34924- 2 1.00000+ 1 1.90000+ 1 1.02549- 4 4.35175- 2 1.00000+ 1 2.10000+ 1 3.82019- 6 4.36223- 2 1.00000+ 1 2.20000+ 1 1.17548- 5 4.36268- 2 1.00000+ 1 2.70000+ 1 9.40345- 6 4.37111- 2 1.00000+ 1 2.90000+ 1 1.46933- 6 4.37284- 2 1.00000+ 1 3.00000+ 1 1.33714- 5 4.37319- 2 1.00000+ 1 4.10000+ 1 7.34634- 7 4.37524- 2 1.10000+ 1 1.10000+ 1 2.52429- 4 4.25252- 2 1.10000+ 1 1.30000+ 1 7.17029- 5 4.28125- 2 1.10000+ 1 1.40000+ 1 6.27397- 5 4.28375- 2 1.10000+ 1 1.60000+ 1 5.61244- 5 4.35440- 2 1.10000+ 1 1.80000+ 1 1.02996- 4 4.36071- 2 1.10000+ 1 1.90000+ 1 1.07695- 4 4.36322- 2 1.10000+ 1 2.10000+ 1 1.51340- 5 4.37370- 2 1.10000+ 1 2.20000+ 1 1.32236- 5 4.37415- 2 1.10000+ 1 2.70000+ 1 9.25697- 6 4.38258- 2 1.10000+ 1 2.90000+ 1 1.39579- 5 4.38431- 2 1.10000+ 1 3.00000+ 1 1.41058- 5 4.38466- 2 1.10000+ 1 4.10000+ 1 7.34634- 7 4.38671- 2 1.30000+ 1 1.30000+ 1 1.45736- 7 4.30998- 2 1.30000+ 1 1.40000+ 1 8.59836- 6 4.31248- 2 1.30000+ 1 1.60000+ 1 3.78907- 6 4.38313- 2 1.30000+ 1 1.80000+ 1 3.64338- 6 4.38944- 2 1.30000+ 1 1.90000+ 1 1.44279- 5 4.39195- 2 1.30000+ 1 2.20000+ 1 1.74881- 6 4.40288- 2 1.30000+ 1 2.70000+ 1 5.82913- 7 4.41131- 2 1.30000+ 1 2.90000+ 1 4.37197- 7 4.41304- 2 1.30000+ 1 3.00000+ 1 1.89458- 6 4.41339- 2 1.40000+ 1 1.40000+ 1 2.05704- 6 4.31498- 2 1.40000+ 1 1.60000+ 1 3.67334- 6 4.38563- 2 1.40000+ 1 1.80000+ 1 1.13133- 5 4.39194- 2 1.40000+ 1 1.90000+ 1 1.26362- 5 4.39445- 2 1.40000+ 1 2.10000+ 1 1.76319- 6 4.40493- 2 1.40000+ 1 2.20000+ 1 8.81546- 7 4.40538- 2 1.40000+ 1 2.70000+ 1 5.87707- 7 4.41381- 2 1.40000+ 1 2.90000+ 1 1.46935- 6 4.41554- 2 1.40000+ 1 3.00000+ 1 1.61631- 6 4.41589- 2 1.60000+ 1 1.60000+ 1 1.14537- 5 4.45629- 2 1.60000+ 1 1.80000+ 1 1.23233- 5 4.46259- 2 1.60000+ 1 1.90000+ 1 1.21783- 5 4.46511- 2 1.60000+ 1 2.10000+ 1 8.69828- 7 4.47559- 2 1.60000+ 1 2.20000+ 1 7.24876- 7 4.47603- 2 1.60000+ 1 2.70000+ 1 3.76944- 6 4.48447- 2 1.60000+ 1 2.90000+ 1 1.73975- 6 4.48620- 2 1.60000+ 1 3.00000+ 1 1.59483- 6 4.48655- 2 1.60000+ 1 4.10000+ 1 2.89951- 7 4.48859- 2 1.80000+ 1 1.80000+ 1 1.14032- 6 4.46890- 2 1.80000+ 1 1.90000+ 1 2.12382- 5 4.47141- 2 1.80000+ 1 2.10000+ 1 7.12661- 7 4.48189- 2 1.80000+ 1 2.20000+ 1 2.28055- 6 4.48234- 2 1.80000+ 1 2.70000+ 1 1.99549- 6 4.49077- 2 1.80000+ 1 2.90000+ 1 2.85066- 7 4.49250- 2 1.80000+ 1 3.00000+ 1 2.70818- 6 4.49285- 2 1.80000+ 1 4.10000+ 1 1.42539- 7 4.49490- 2 1.90000+ 1 1.90000+ 1 1.13946- 5 4.47393- 2 1.90000+ 1 2.10000+ 1 3.06788- 6 4.48441- 2 1.90000+ 1 2.20000+ 1 2.62968- 6 4.48485- 2 1.90000+ 1 2.70000+ 1 2.04526- 6 4.49329- 2 1.90000+ 1 2.90000+ 1 2.92175- 6 4.49502- 2 1.90000+ 1 3.00000+ 1 2.92175- 6 4.49537- 2 1.90000+ 1 4.10000+ 1 1.46094- 7 4.49741- 2 2.10000+ 1 2.20000+ 1 3.21594- 7 4.49534- 2 2.10000+ 1 2.70000+ 1 1.60804- 7 4.50377- 2 2.10000+ 1 2.90000+ 1 1.60804- 7 4.50550- 2 2.10000+ 1 3.00000+ 1 4.82398- 7 4.50585- 2 2.20000+ 1 2.20000+ 1 1.46934- 7 4.49578- 2 2.20000+ 1 2.70000+ 1 1.46934- 7 4.50421- 2 2.20000+ 1 2.90000+ 1 2.93856- 7 4.50594- 2 2.20000+ 1 3.00000+ 1 2.93856- 7 4.50629- 2 2.70000+ 1 2.70000+ 1 3.27053- 7 4.51265- 2 2.70000+ 1 2.90000+ 1 3.27053- 7 4.51438- 2 2.70000+ 1 3.00000+ 1 3.27053- 7 4.51473- 2 2.90000+ 1 3.00000+ 1 4.48450- 7 4.51646- 2 3.00000+ 1 3.00000+ 1 1.46930- 7 4.51681- 2 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.95252- 5 3.74900- 4 6.00000+ 0 6.91825- 4 9.42200- 4 1.00000+ 1 2.06102- 2 5.93250- 3 1.10000+ 1 3.04012- 2 6.04720- 3 1.30000+ 1 3.97503- 4 6.33450- 3 1.40000+ 1 5.94335- 4 6.35950- 3 1.80000+ 1 4.80574- 3 7.12909- 3 1.90000+ 1 7.35056- 3 7.15423- 3 2.10000+ 1 5.33524- 5 7.25905- 3 2.20000+ 1 8.19256- 5 7.26351- 3 2.90000+ 1 6.86825- 4 7.36514- 3 3.00000+ 1 1.02631- 3 7.36864- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.23265- 2 4.68300- 5 5.00000+ 0 1.80000+ 1 3.91162- 2 1.09890- 4 5.00000+ 0 1.90000+ 1 4.66573- 2 1.35030- 4 5.00000+ 0 2.10000+ 1 1.24500- 2 2.39850- 4 5.00000+ 0 2.20000+ 1 1.96446- 2 2.44310- 4 5.00000+ 0 2.40000+ 1 2.19657- 2 3.66020- 4 5.00000+ 0 2.70000+ 1 8.41977- 3 3.28630- 4 5.00000+ 0 2.90000+ 1 4.99430- 3 3.45940- 4 5.00000+ 0 3.00000+ 1 5.78618- 3 3.49440- 4 5.00000+ 0 4.10000+ 1 7.11042- 4 3.69870- 4 6.00000+ 0 1.60000+ 1 6.20082- 2 6.14130- 4 6.00000+ 0 1.80000+ 1 2.65678- 2 6.77190- 4 6.00000+ 0 1.90000+ 1 4.75219- 2 7.02330- 4 6.00000+ 0 2.10000+ 1 6.48700- 2 8.07150- 4 6.00000+ 0 2.20000+ 1 8.17508- 2 8.11610- 4 6.00000+ 0 2.40000+ 1 3.07226- 2 9.33320- 4 6.00000+ 0 2.70000+ 1 9.94402- 3 8.95930- 4 6.00000+ 0 2.90000+ 1 3.48613- 3 9.13240- 4 6.00000+ 0 3.00000+ 1 6.09106- 3 9.16740- 4 6.00000+ 0 4.10000+ 1 8.40105- 4 9.37170- 4 8.00000+ 0 8.00000+ 0 1.21505- 2 4.14390- 3 8.00000+ 0 1.00000+ 1 2.43223- 2 4.30740- 3 8.00000+ 0 1.10000+ 1 4.37529- 2 4.42210- 3 8.00000+ 0 1.30000+ 1 3.43642- 2 4.70940- 3 8.00000+ 0 1.40000+ 1 4.76759- 2 4.73440- 3 8.00000+ 0 1.60000+ 1 4.75822- 3 5.44093- 3 8.00000+ 0 1.80000+ 1 5.25856- 3 5.50399- 3 8.00000+ 0 1.90000+ 1 9.36681- 3 5.52913- 3 8.00000+ 0 2.10000+ 1 6.19188- 3 5.63395- 3 8.00000+ 0 2.20000+ 1 8.53620- 3 5.63841- 3 8.00000+ 0 2.40000+ 1 1.90299- 4 5.76012- 3 8.00000+ 0 2.70000+ 1 7.74889- 4 5.72273- 3 8.00000+ 0 2.90000+ 1 7.11664- 4 5.74004- 3 8.00000+ 0 3.00000+ 1 1.22129- 3 5.74354- 3 8.00000+ 0 4.10000+ 1 6.58226- 5 5.76397- 3 1.00000+ 1 1.00000+ 1 1.08842- 4 4.47090- 3 1.00000+ 1 1.10000+ 1 7.78823- 4 4.58560- 3 1.00000+ 1 1.30000+ 1 1.15297- 3 4.87290- 3 1.00000+ 1 1.40000+ 1 1.32505- 2 4.89790- 3 1.00000+ 1 1.60000+ 1 3.78909- 3 5.60443- 3 1.00000+ 1 1.80000+ 1 2.15066- 5 5.66749- 3 1.00000+ 1 1.90000+ 1 1.56411- 4 5.69263- 3 1.00000+ 1 2.10000+ 1 2.05299- 4 5.79745- 3 1.00000+ 1 2.20000+ 1 1.54860- 3 5.80191- 3 1.00000+ 1 2.40000+ 1 6.51735- 5 5.92362- 3 1.00000+ 1 2.70000+ 1 5.86565- 4 5.88623- 3 1.00000+ 1 2.90000+ 1 2.60691- 6 5.90354- 3 1.00000+ 1 3.00000+ 1 2.02036- 5 5.90704- 3 1.00000+ 1 4.10000+ 1 4.95314- 5 5.92747- 3 1.10000+ 1 1.10000+ 1 1.03745- 3 4.70030- 3 1.10000+ 1 1.30000+ 1 7.78161- 3 4.98760- 3 1.10000+ 1 1.40000+ 1 5.15563- 3 5.01260- 3 1.10000+ 1 1.60000+ 1 6.80207- 3 5.71913- 3 1.10000+ 1 1.80000+ 1 1.58371- 4 5.78219- 3 1.10000+ 1 1.90000+ 1 3.31726- 4 5.80733- 3 1.10000+ 1 2.10000+ 1 7.36444- 4 5.91215- 3 1.10000+ 1 2.20000+ 1 5.02473- 4 5.91661- 3 1.10000+ 1 2.40000+ 1 1.89656- 4 6.03832- 3 1.10000+ 1 2.70000+ 1 1.05255- 3 6.00093- 3 1.10000+ 1 2.90000+ 1 2.15061- 5 6.01824- 3 1.10000+ 1 3.00000+ 1 4.10588- 5 6.02174- 3 1.10000+ 1 4.10000+ 1 8.86347- 5 6.04217- 3 1.30000+ 1 1.30000+ 1 1.96888- 3 5.27490- 3 1.30000+ 1 1.40000+ 1 6.77858- 2 5.29990- 3 1.30000+ 1 1.60000+ 1 5.02871- 3 6.00643- 3 1.30000+ 1 1.80000+ 1 3.18698- 4 6.06949- 3 1.30000+ 1 1.90000+ 1 1.73034- 3 6.09463- 3 1.30000+ 1 2.10000+ 1 6.99296- 4 6.19945- 3 1.30000+ 1 2.20000+ 1 8.74616- 3 6.20391- 3 1.30000+ 1 2.40000+ 1 2.24197- 4 6.32562- 3 1.30000+ 1 2.70000+ 1 7.70336- 4 6.28823- 3 1.30000+ 1 2.90000+ 1 4.49684- 5 6.30554- 3 1.30000+ 1 3.00000+ 1 2.26795- 4 6.30904- 3 1.30000+ 1 4.10000+ 1 6.45213- 5 6.32947- 3 1.40000+ 1 1.40000+ 1 1.90407- 2 5.32490- 3 1.40000+ 1 1.60000+ 1 7.03288- 3 6.03143- 3 1.40000+ 1 1.80000+ 1 2.59013- 3 6.09449- 3 1.40000+ 1 1.90000+ 1 1.20444- 3 6.11963- 3 1.40000+ 1 2.10000+ 1 8.61926- 3 6.22445- 3 1.40000+ 1 2.20000+ 1 5.15790- 3 6.22891- 3 1.40000+ 1 2.40000+ 1 7.09078- 4 6.35062- 3 1.40000+ 1 2.70000+ 1 1.08058- 3 6.31323- 3 1.40000+ 1 2.90000+ 1 3.44756- 4 6.33054- 3 1.40000+ 1 3.00000+ 1 1.59021- 4 6.33404- 3 1.40000+ 1 4.10000+ 1 9.05921- 5 6.35447- 3 1.60000+ 1 1.60000+ 1 4.41223- 4 6.73796- 3 1.60000+ 1 1.80000+ 1 8.21826- 4 6.80102- 3 1.60000+ 1 1.90000+ 1 1.46057- 3 6.82616- 3 1.60000+ 1 2.10000+ 1 9.03932- 4 6.93098- 3 1.60000+ 1 2.20000+ 1 1.25263- 3 6.93544- 3 1.60000+ 1 2.40000+ 1 2.28103- 5 7.05715- 3 1.60000+ 1 2.70000+ 1 1.42080- 4 7.01976- 3 1.60000+ 1 2.90000+ 1 1.11438- 4 7.03707- 3 1.60000+ 1 3.00000+ 1 1.90302- 4 7.04057- 3 1.60000+ 1 4.10000+ 1 1.17309- 5 7.06100- 3 1.80000+ 1 1.80000+ 1 6.51733- 7 6.86408- 3 1.80000+ 1 1.90000+ 1 3.19346- 5 6.88922- 3 1.80000+ 1 2.10000+ 1 4.82283- 5 6.99404- 3 1.80000+ 1 2.20000+ 1 3.12831- 4 6.99850- 3 1.80000+ 1 2.40000+ 1 8.47254- 6 7.12021- 3 1.80000+ 1 2.70000+ 1 1.27088- 4 7.08282- 3 1.80000+ 1 3.00000+ 1 3.91032- 6 7.10363- 3 1.80000+ 1 4.10000+ 1 1.04271- 5 7.12406- 3 1.90000+ 1 1.90000+ 1 2.60691- 5 6.91436- 3 1.90000+ 1 2.10000+ 1 1.77275- 4 7.01918- 3 1.90000+ 1 2.20000+ 1 1.26434- 4 7.02364- 3 1.90000+ 1 2.40000+ 1 3.19347- 5 7.14535- 3 1.90000+ 1 2.70000+ 1 2.26153- 4 7.10796- 3 1.90000+ 1 2.90000+ 1 4.56203- 6 7.12527- 3 1.90000+ 1 3.00000+ 1 6.51735- 6 7.12877- 3 1.90000+ 1 4.10000+ 1 1.89006- 5 7.14920- 3 2.10000+ 1 2.10000+ 1 5.80058- 5 7.12400- 3 2.10000+ 1 2.20000+ 1 1.19850- 3 7.12846- 3 2.10000+ 1 2.40000+ 1 2.80250- 5 7.25017- 3 2.10000+ 1 2.70000+ 1 1.38166- 4 7.21278- 3 2.10000+ 1 2.90000+ 1 6.51743- 6 7.23009- 3 2.10000+ 1 3.00000+ 1 2.34625- 5 7.23359- 3 2.10000+ 1 4.10000+ 1 1.17312- 5 7.25402- 3 2.20000+ 1 2.20000+ 1 3.70845- 4 7.13292- 3 2.20000+ 1 2.40000+ 1 7.16919- 5 7.25463- 3 2.20000+ 1 2.70000+ 1 1.92259- 4 7.21724- 3 2.20000+ 1 2.90000+ 1 4.17115- 5 7.23455- 3 2.20000+ 1 3.00000+ 1 1.69452- 5 7.23805- 3 2.20000+ 1 4.10000+ 1 1.62927- 5 7.25848- 3 2.40000+ 1 2.70000+ 1 3.25859- 6 7.33895- 3 2.40000+ 1 2.90000+ 1 1.30349- 6 7.35626- 3 2.40000+ 1 3.00000+ 1 3.91029- 6 7.35976- 3 2.70000+ 1 2.70000+ 1 1.60732- 5 7.30156- 3 2.70000+ 1 2.90000+ 1 2.32171- 5 7.31887- 3 2.70000+ 1 3.00000+ 1 4.01844- 5 7.32237- 3 2.70000+ 1 4.10000+ 1 2.67892- 6 7.34280- 3 2.90000+ 1 3.00000+ 1 1.64262- 6 7.33968- 3 2.90000+ 1 4.10000+ 1 3.28532- 6 7.36011- 3 3.00000+ 1 3.00000+ 1 3.83346- 7 7.34318- 3 3.00000+ 1 4.10000+ 1 1.53337- 6 7.36361- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.02233- 7 5.67300- 4 8.00000+ 0 4.78025- 3 5.39410- 3 1.10000+ 1 8.67550- 5 5.67230- 3 1.30000+ 1 1.18501- 1 5.95960- 3 1.60000+ 1 8.58860- 4 6.69113- 3 1.90000+ 1 1.63812- 5 6.77933- 3 2.10000+ 1 2.02152- 2 6.88415- 3 2.40000+ 1 7.14288- 6 7.01032- 3 2.70000+ 1 1.38492- 4 6.97293- 3 3.00000+ 1 3.39654- 6 6.99374- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 9.62665- 3 2.39230- 4 6.00000+ 0 1.80000+ 1 4.90490- 2 3.02290- 4 6.00000+ 0 1.90000+ 1 1.63248- 2 3.27430- 4 6.00000+ 0 2.10000+ 1 6.18431- 2 4.32250- 4 6.00000+ 0 2.20000+ 1 2.24791- 2 4.36710- 4 6.00000+ 0 2.40000+ 1 9.71726- 4 5.58420- 4 6.00000+ 0 2.70000+ 1 1.45771- 3 5.21030- 4 6.00000+ 0 2.90000+ 1 6.26574- 3 5.38340- 4 6.00000+ 0 3.00000+ 1 2.11183- 3 5.41840- 4 6.00000+ 0 4.10000+ 1 1.22257- 4 5.62270- 4 8.00000+ 0 8.00000+ 0 9.12205- 4 3.76900- 3 8.00000+ 0 1.00000+ 1 2.39005- 2 3.93250- 3 8.00000+ 0 1.10000+ 1 2.31506- 3 4.04720- 3 8.00000+ 0 1.30000+ 1 2.19129- 3 4.33450- 3 8.00000+ 0 1.40000+ 1 3.05285- 3 4.35950- 3 8.00000+ 0 1.60000+ 1 3.30291- 4 5.06603- 3 8.00000+ 0 1.80000+ 1 3.49572- 3 5.12909- 3 8.00000+ 0 1.90000+ 1 4.40636- 4 5.15423- 3 8.00000+ 0 2.10000+ 1 2.82647- 4 5.25905- 3 8.00000+ 0 2.20000+ 1 3.37437- 4 5.26351- 3 8.00000+ 0 2.40000+ 1 5.00194- 5 5.38522- 3 8.00000+ 0 2.70000+ 1 5.24000- 5 5.34783- 3 8.00000+ 0 2.90000+ 1 4.42209- 4 5.36514- 3 8.00000+ 0 3.00000+ 1 5.63702- 5 5.36864- 3 8.00000+ 0 4.10000+ 1 4.76358- 6 5.38907- 3 1.00000+ 1 1.00000+ 1 2.38603- 2 4.09600- 3 1.00000+ 1 1.10000+ 1 7.17066- 2 4.21070- 3 1.00000+ 1 1.30000+ 1 3.83337- 2 4.49800- 3 1.00000+ 1 1.40000+ 1 6.32896- 2 4.52300- 3 1.00000+ 1 1.60000+ 1 5.61636- 3 5.22953- 3 1.00000+ 1 1.80000+ 1 8.79108- 3 5.29259- 3 1.00000+ 1 1.90000+ 1 1.50843- 2 5.31773- 3 1.00000+ 1 2.10000+ 1 6.89701- 3 5.42255- 3 1.00000+ 1 2.20000+ 1 1.13692- 2 5.42701- 3 1.00000+ 1 2.40000+ 1 2.10401- 4 5.54872- 3 1.00000+ 1 2.70000+ 1 9.40861- 4 5.51133- 3 1.00000+ 1 2.90000+ 1 1.16232- 3 5.52864- 3 1.00000+ 1 3.00000+ 1 1.96099- 3 5.53214- 3 1.00000+ 1 4.10000+ 1 8.01892- 5 5.55257- 3 1.10000+ 1 1.10000+ 1 1.84036- 3 4.32540- 3 1.10000+ 1 1.30000+ 1 4.34129- 2 4.61270- 3 1.10000+ 1 1.40000+ 1 5.92039- 3 4.63770- 3 1.10000+ 1 1.60000+ 1 4.64449- 4 5.34423- 3 1.10000+ 1 1.80000+ 1 1.08592- 2 5.40729- 3 1.10000+ 1 1.90000+ 1 6.55800- 4 5.43243- 3 1.10000+ 1 2.10000+ 1 6.64689- 3 5.53725- 3 1.10000+ 1 2.20000+ 1 8.53513- 4 5.54171- 3 1.10000+ 1 2.40000+ 1 1.29416- 4 5.66342- 3 1.10000+ 1 2.70000+ 1 7.54242- 5 5.62603- 3 1.10000+ 1 2.90000+ 1 1.38154- 3 5.64334- 3 1.10000+ 1 3.00000+ 1 8.25704- 5 5.64684- 3 1.10000+ 1 4.10000+ 1 6.35177- 6 5.66727- 3 1.30000+ 1 1.30000+ 1 4.01017- 2 4.90000- 3 1.30000+ 1 1.40000+ 1 1.69208- 1 4.92500- 3 1.30000+ 1 1.60000+ 1 5.20817- 4 5.63153- 3 1.30000+ 1 1.80000+ 1 5.77047- 3 5.69459- 3 1.30000+ 1 1.90000+ 1 8.59090- 3 5.71973- 3 1.30000+ 1 2.10000+ 1 1.22209- 2 5.82455- 3 1.30000+ 1 2.20000+ 1 2.76641- 2 5.82901- 3 1.30000+ 1 2.40000+ 1 8.47923- 4 5.95072- 3 1.30000+ 1 2.70000+ 1 8.73373- 5 5.91333- 3 1.30000+ 1 2.90000+ 1 7.38362- 4 5.93064- 3 1.30000+ 1 3.00000+ 1 1.10517- 3 5.93414- 3 1.30000+ 1 4.10000+ 1 7.14556- 6 5.95457- 3 1.40000+ 1 1.40000+ 1 8.09490- 3 4.95000- 3 1.40000+ 1 1.60000+ 1 5.96229- 4 5.65653- 3 1.40000+ 1 1.80000+ 1 8.46398- 3 5.71959- 3 1.40000+ 1 1.90000+ 1 1.07179- 3 5.74473- 3 1.40000+ 1 2.10000+ 1 2.16284- 2 5.84955- 3 1.40000+ 1 2.20000+ 1 2.40554- 3 5.85401- 3 1.40000+ 1 2.40000+ 1 3.46937- 4 5.97572- 3 1.40000+ 1 2.70000+ 1 9.60611- 5 5.93833- 3 1.40000+ 1 2.90000+ 1 1.05194- 3 5.95564- 3 1.40000+ 1 3.00000+ 1 1.35763- 4 5.95914- 3 1.40000+ 1 4.10000+ 1 7.93938- 6 5.97957- 3 1.60000+ 1 1.60000+ 1 2.93754- 5 6.36306- 3 1.60000+ 1 1.80000+ 1 8.26482- 4 6.42612- 3 1.60000+ 1 1.90000+ 1 8.89195- 5 6.45126- 3 1.60000+ 1 2.10000+ 1 6.51036- 5 6.55608- 3 1.60000+ 1 2.20000+ 1 6.74843- 5 6.56054- 3 1.60000+ 1 2.40000+ 1 1.03209- 5 6.68225- 3 1.60000+ 1 2.70000+ 1 9.52752- 6 6.64486- 3 1.60000+ 1 2.90000+ 1 1.04791- 4 6.66217- 3 1.60000+ 1 3.00000+ 1 1.11151- 5 6.66567- 3 1.60000+ 1 4.10000+ 1 7.93947- 7 6.68610- 3 1.80000+ 1 1.80000+ 1 7.50235- 4 6.48918- 3 1.80000+ 1 1.90000+ 1 2.21917- 3 6.51432- 3 1.80000+ 1 2.10000+ 1 9.91354- 4 6.61914- 3 1.80000+ 1 2.20000+ 1 1.48664- 3 6.62360- 3 1.80000+ 1 2.40000+ 1 2.46480- 5 6.74531- 3 1.80000+ 1 2.70000+ 1 1.34035- 4 6.70792- 3 1.80000+ 1 2.90000+ 1 1.97186- 4 6.72523- 3 1.80000+ 1 3.00000+ 1 2.88851- 4 6.72873- 3 1.80000+ 1 4.10000+ 1 1.15544- 5 6.74916- 3 1.90000+ 1 1.90000+ 1 5.90040- 5 6.53946- 3 1.90000+ 1 2.10000+ 1 1.33229- 3 6.64428- 3 1.90000+ 1 2.20000+ 1 1.59468- 4 6.64874- 3 1.90000+ 1 2.40000+ 1 2.07316- 5 6.77045- 3 1.90000+ 1 2.70000+ 1 1.43514- 5 6.73306- 3 1.90000+ 1 2.90000+ 1 2.91827- 4 6.75037- 3 1.90000+ 1 3.00000+ 1 1.51501- 5 6.75387- 3 1.90000+ 1 4.10000+ 1 1.59468- 6 6.77430- 3 2.10000+ 1 2.10000+ 1 9.20177- 4 6.74910- 3 2.10000+ 1 2.20000+ 1 3.65924- 3 6.75356- 3 2.10000+ 1 2.40000+ 1 9.05120- 5 6.87527- 3 2.10000+ 1 2.70000+ 1 1.11153- 5 6.83788- 3 2.10000+ 1 2.90000+ 1 1.30212- 4 6.85519- 3 2.10000+ 1 3.00000+ 1 1.70702- 4 6.85869- 3 2.10000+ 1 4.10000+ 1 7.93957- 7 6.87912- 3 2.20000+ 1 2.20000+ 1 2.29481- 4 6.75802- 3 2.20000+ 1 2.40000+ 1 5.05457- 5 6.87973- 3 2.20000+ 1 2.70000+ 1 1.41530- 5 6.84234- 3 2.20000+ 1 2.90000+ 1 2.42623- 4 6.85965- 3 2.20000+ 1 3.00000+ 1 2.52735- 5 6.86315- 3 2.20000+ 1 4.10000+ 1 1.01094- 6 6.88358- 3 2.40000+ 1 2.70000+ 1 1.90210- 6 6.96405- 3 2.40000+ 1 2.90000+ 1 3.80417- 6 6.98136- 3 2.40000+ 1 3.00000+ 1 2.85313- 6 6.98486- 3 2.70000+ 1 2.70000+ 1 1.20476- 6 6.92666- 3 2.70000+ 1 2.90000+ 1 2.65051- 5 6.94397- 3 2.70000+ 1 3.00000+ 1 2.40948- 6 6.94747- 3 2.90000+ 1 2.90000+ 1 2.15109- 5 6.96128- 3 2.90000+ 1 3.00000+ 1 6.07373- 5 6.96478- 3 2.90000+ 1 4.10000+ 1 2.53071- 6 6.98521- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.84900- 3 4.82680- 3 1.00000+ 1 5.58640- 5 4.99030- 3 1.10000+ 1 5.11520- 5 5.10500- 3 1.30000+ 1 1.12790- 2 5.39230- 3 1.40000+ 1 9.98020- 2 5.41730- 3 1.60000+ 1 1.05130- 3 6.12383- 3 1.80000+ 1 7.57080- 6 6.18689- 3 1.90000+ 1 7.30910- 6 6.21203- 3 2.10000+ 1 1.85170- 3 6.31685- 3 2.20000+ 1 1.65580- 2 6.32131- 3 2.40000+ 1 1.07080- 6 6.44302- 3 2.50000+ 1 6.11720- 6 6.44355- 3 2.70000+ 1 1.86600- 4 6.40563- 3 2.90000+ 1 1.58320- 6 6.42294- 3 3.00000+ 1 1.37390- 6 6.42644- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.21367- 3 3.20170- 3 8.00000+ 0 1.00000+ 1 7.95896- 4 3.36520- 3 8.00000+ 0 1.10000+ 1 2.70975- 2 3.47990- 3 8.00000+ 0 1.30000+ 1 2.73642- 3 3.76720- 3 8.00000+ 0 1.40000+ 1 3.30068- 3 3.79220- 3 8.00000+ 0 1.60000+ 1 4.40474- 4 4.49873- 3 8.00000+ 0 1.80000+ 1 1.39801- 4 4.56179- 3 8.00000+ 0 1.90000+ 1 3.94766- 3 4.58693- 3 8.00000+ 0 2.10000+ 1 2.52673- 4 4.69175- 3 8.00000+ 0 2.20000+ 1 2.76248- 4 4.69621- 3 8.00000+ 0 2.40000+ 1 6.48499- 5 4.81792- 3 8.00000+ 0 2.70000+ 1 6.99045- 5 4.78053- 3 8.00000+ 0 2.90000+ 1 1.85287- 5 4.79784- 3 8.00000+ 0 3.00000+ 1 4.81768- 4 4.80134- 3 8.00000+ 0 4.10000+ 1 5.89538- 6 4.82177- 3 1.00000+ 1 1.00000+ 1 2.33296- 4 3.52870- 3 1.00000+ 1 1.10000+ 1 4.52764- 2 3.64340- 3 1.00000+ 1 1.30000+ 1 2.78357- 3 3.93070- 3 1.00000+ 1 1.40000+ 1 2.49479- 2 3.95570- 3 1.00000+ 1 1.60000+ 1 1.55810- 4 4.66223- 3 1.00000+ 1 1.80000+ 1 8.33799- 5 4.72529- 3 1.00000+ 1 1.90000+ 1 6.83969- 3 4.75043- 3 1.00000+ 1 2.10000+ 1 4.62380- 4 4.85525- 3 1.00000+ 1 2.20000+ 1 3.54388- 3 4.85971- 3 1.00000+ 1 2.40000+ 1 7.24302- 5 4.98142- 3 1.00000+ 1 2.70000+ 1 2.52671- 5 4.94403- 3 1.00000+ 1 2.90000+ 1 1.09486- 5 4.96134- 3 1.00000+ 1 3.00000+ 1 8.40517- 4 4.96484- 3 1.00000+ 1 4.10000+ 1 2.52671- 6 4.98527- 3 1.10000+ 1 1.10000+ 1 6.22005- 2 3.75810- 3 1.10000+ 1 1.30000+ 1 6.36794- 2 4.04540- 3 1.10000+ 1 1.40000+ 1 9.39199- 2 4.07040- 3 1.10000+ 1 1.60000+ 1 6.29804- 3 4.77693- 3 1.10000+ 1 1.80000+ 1 9.35149- 3 4.83999- 3 1.10000+ 1 1.90000+ 1 2.24144- 2 4.86513- 3 1.10000+ 1 2.10000+ 1 1.09749- 2 4.96995- 3 1.10000+ 1 2.20000+ 1 1.59608- 2 4.97441- 3 1.10000+ 1 2.40000+ 1 3.34367- 4 5.09612- 3 1.10000+ 1 2.70000+ 1 1.05283- 3 5.05873- 3 1.10000+ 1 2.90000+ 1 1.25657- 3 5.07604- 3 1.10000+ 1 3.00000+ 1 2.84750- 3 5.07954- 3 1.10000+ 1 4.10000+ 1 8.92725- 5 5.09997- 3 1.30000+ 1 1.30000+ 1 9.20458- 3 4.33270- 3 1.30000+ 1 1.40000+ 1 1.75358- 1 4.35770- 3 1.30000+ 1 1.60000+ 1 6.01328- 4 5.06423- 3 1.30000+ 1 1.80000+ 1 5.76075- 4 5.12729- 3 1.30000+ 1 1.90000+ 1 8.93174- 3 5.15243- 3 1.30000+ 1 2.10000+ 1 2.79027- 3 5.25725- 3 1.30000+ 1 2.20000+ 1 2.26389- 2 5.26171- 3 1.30000+ 1 2.40000+ 1 1.89500- 4 5.38342- 3 1.30000+ 1 2.70000+ 1 9.93863- 5 5.34603- 3 1.30000+ 1 2.90000+ 1 7.74848- 5 5.36334- 3 1.30000+ 1 3.00000+ 1 1.08397- 3 5.36684- 3 1.30000+ 1 4.10000+ 1 8.42233- 6 5.38727- 3 1.40000+ 1 1.40000+ 1 1.18517- 1 4.38270- 3 1.40000+ 1 1.60000+ 1 7.66425- 4 5.08923- 3 1.40000+ 1 1.80000+ 1 4.77360- 3 5.15229- 3 1.40000+ 1 1.90000+ 1 1.47982- 2 5.17743- 3 1.40000+ 1 2.10000+ 1 2.68883- 2 5.28225- 3 1.40000+ 1 2.20000+ 1 3.43742- 2 5.28671- 3 1.40000+ 1 2.40000+ 1 2.01962- 3 5.40842- 3 1.40000+ 1 2.70000+ 1 1.28012- 4 5.37103- 3 1.40000+ 1 2.90000+ 1 6.33333- 4 5.38834- 3 1.40000+ 1 3.00000+ 1 1.84023- 3 5.39184- 3 1.40000+ 1 4.10000+ 1 1.09486- 5 5.41227- 3 1.60000+ 1 1.60000+ 1 3.95854- 5 5.79576- 3 1.60000+ 1 1.80000+ 1 2.77947- 5 5.85882- 3 1.60000+ 1 1.90000+ 1 9.19715- 4 5.88396- 3 1.60000+ 1 2.10000+ 1 5.98018- 5 5.98878- 3 1.60000+ 1 2.20000+ 1 6.90660- 5 5.99324- 3 1.60000+ 1 2.40000+ 1 9.26513- 6 6.11495- 3 1.60000+ 1 2.70000+ 1 1.26332- 5 6.07756- 3 1.60000+ 1 2.90000+ 1 3.36900- 6 6.09487- 3 1.60000+ 1 3.00000+ 1 1.12028- 4 6.09837- 3 1.60000+ 1 4.10000+ 1 8.42265- 7 6.11880- 3 1.80000+ 1 1.80000+ 1 6.57787- 6 5.92188- 3 1.80000+ 1 1.90000+ 1 1.37565- 3 5.94702- 3 1.80000+ 1 2.10000+ 1 9.12700- 5 6.05184- 3 1.80000+ 1 2.20000+ 1 6.85734- 4 6.05630- 3 1.80000+ 1 2.40000+ 1 9.86618- 6 6.17801- 3 1.80000+ 1 2.70000+ 1 4.11097- 6 6.14062- 3 1.80000+ 1 2.90000+ 1 1.64447- 6 6.15793- 3 1.80000+ 1 3.00000+ 1 1.68550- 4 6.16143- 3 1.90000+ 1 1.90000+ 1 1.79913- 3 5.97216- 3 1.90000+ 1 2.10000+ 1 1.42488- 3 6.07698- 3 1.90000+ 1 2.20000+ 1 2.29247- 3 6.08144- 3 1.90000+ 1 2.40000+ 1 3.57959- 5 6.20315- 3 1.90000+ 1 2.70000+ 1 1.41628- 4 6.16576- 3 1.90000+ 1 2.90000+ 1 1.75087- 4 6.18307- 3 1.90000+ 1 3.00000+ 1 4.54443- 4 6.18657- 3 1.90000+ 1 4.10000+ 1 1.16719- 5 6.20700- 3 2.10000+ 1 2.10000+ 1 2.05499- 4 6.18180- 3 2.10000+ 1 2.20000+ 1 3.58543- 3 6.18626- 3 2.10000+ 1 2.40000+ 1 2.02136- 5 6.30797- 3 2.10000+ 1 2.70000+ 1 1.01062- 5 6.27058- 3 2.10000+ 1 2.90000+ 1 1.26326- 5 6.28789- 3 2.10000+ 1 3.00000+ 1 1.86974- 4 6.29139- 3 2.10000+ 1 4.10000+ 1 8.42229- 7 6.31182- 3 2.20000+ 1 2.20000+ 1 2.70297- 3 6.19072- 3 2.20000+ 1 2.40000+ 1 2.26469- 4 6.31243- 3 2.20000+ 1 2.70000+ 1 1.27328- 5 6.27504- 3 2.20000+ 1 2.90000+ 1 1.00956- 4 6.29235- 3 2.20000+ 1 3.00000+ 1 3.31959- 4 6.29585- 3 2.20000+ 1 4.10000+ 1 9.09486- 7 6.31628- 3 2.40000+ 1 2.70000+ 1 1.36339- 6 6.39675- 3 2.40000+ 1 2.90000+ 1 1.36339- 6 6.41406- 3 2.40000+ 1 3.00000+ 1 3.40831- 6 6.41756- 3 2.70000+ 1 2.70000+ 1 1.23207- 6 6.35936- 3 2.70000+ 1 2.90000+ 1 1.23207- 6 6.37667- 3 2.70000+ 1 3.00000+ 1 2.71049- 5 6.38017- 3 2.90000+ 1 3.00000+ 1 4.05130- 5 6.39748- 3 3.00000+ 1 3.00000+ 1 7.04109- 5 6.40098- 3 3.00000+ 1 4.10000+ 1 3.80608- 6 6.42141- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.02992- 5 1.63500- 4 1.10000+ 1 1.04011- 4 2.78200- 4 1.80000+ 1 3.53547- 4 1.36009- 3 1.90000+ 1 4.35360- 4 1.38523- 3 2.90000+ 1 7.60715- 5 1.59614- 3 3.00000+ 1 8.81289- 5 1.59964- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 8.08800- 2 2.84500- 5 1.00000+ 1 2.20000+ 1 1.12327- 1 3.29100- 5 1.00000+ 1 2.40000+ 1 1.64988- 2 1.54620- 4 1.00000+ 1 2.50000+ 1 2.21280- 2 1.55150- 4 1.00000+ 1 2.70000+ 1 9.14147- 3 1.17230- 4 1.00000+ 1 2.90000+ 1 7.62069- 3 1.34540- 4 1.00000+ 1 3.00000+ 1 1.21272- 2 1.38040- 4 1.00000+ 1 4.10000+ 1 7.60492- 4 1.58470- 4 1.10000+ 1 1.80000+ 1 8.00658- 2 1.31900- 5 1.10000+ 1 1.90000+ 1 1.14538- 1 3.83300- 5 1.10000+ 1 2.10000+ 1 5.22198- 2 1.43150- 4 1.10000+ 1 2.20000+ 1 7.50544- 2 1.47610- 4 1.10000+ 1 2.40000+ 1 4.17270- 2 2.69320- 4 1.10000+ 1 2.50000+ 1 5.25374- 2 2.69850- 4 1.10000+ 1 2.70000+ 1 1.17695- 2 2.31930- 4 1.10000+ 1 2.90000+ 1 9.96812- 3 2.49240- 4 1.10000+ 1 3.00000+ 1 1.42493- 2 2.52740- 4 1.10000+ 1 4.10000+ 1 9.80883- 4 2.73170- 4 1.30000+ 1 1.60000+ 1 2.89027- 2 2.37430- 4 1.30000+ 1 1.80000+ 1 6.33442- 3 3.00490- 4 1.30000+ 1 1.90000+ 1 5.32477- 3 3.25630- 4 1.30000+ 1 2.10000+ 1 9.00772- 3 4.30450- 4 1.30000+ 1 2.20000+ 1 1.12952- 2 4.34910- 4 1.30000+ 1 2.40000+ 1 2.06779- 3 5.56620- 4 1.30000+ 1 2.50000+ 1 2.01800- 3 5.57150- 4 1.30000+ 1 2.70000+ 1 3.24462- 3 5.19230- 4 1.30000+ 1 2.90000+ 1 6.70997- 4 5.36540- 4 1.30000+ 1 3.00000+ 1 5.34910- 4 5.40040- 4 1.30000+ 1 4.10000+ 1 2.61346- 4 5.60470- 4 1.40000+ 1 1.60000+ 1 4.19071- 2 2.62430- 4 1.40000+ 1 1.80000+ 1 1.40929- 3 3.25490- 4 1.40000+ 1 1.90000+ 1 1.22239- 2 3.50630- 4 1.40000+ 1 2.10000+ 1 1.20598- 2 4.55450- 4 1.40000+ 1 2.20000+ 1 1.84044- 2 4.59910- 4 1.40000+ 1 2.40000+ 1 2.43149- 3 5.81620- 4 1.40000+ 1 2.50000+ 1 3.72718- 3 5.82150- 4 1.40000+ 1 2.70000+ 1 4.66345- 3 5.44230- 4 1.40000+ 1 2.90000+ 1 1.45041- 4 5.61540- 4 1.40000+ 1 3.00000+ 1 1.22958- 3 5.65040- 4 1.40000+ 1 4.10000+ 1 3.75595- 4 5.85470- 4 1.60000+ 1 1.60000+ 1 5.91590- 3 9.68960- 4 1.60000+ 1 1.80000+ 1 9.84241- 3 1.03202- 3 1.60000+ 1 1.90000+ 1 1.77568- 2 1.05716- 3 1.60000+ 1 2.10000+ 1 1.89027- 2 1.16198- 3 1.60000+ 1 2.20000+ 1 2.73732- 2 1.16644- 3 1.60000+ 1 2.40000+ 1 2.64265- 3 1.28815- 3 1.60000+ 1 2.50000+ 1 3.36245- 3 1.28868- 3 1.60000+ 1 2.70000+ 1 1.63909- 3 1.25076- 3 1.60000+ 1 2.90000+ 1 1.32663- 3 1.26807- 3 1.60000+ 1 3.00000+ 1 2.30658- 3 1.27157- 3 1.60000+ 1 4.10000+ 1 1.36500- 4 1.29200- 3 1.80000+ 1 1.80000+ 1 4.98865- 4 1.09508- 3 1.80000+ 1 1.90000+ 1 1.25612- 3 1.12022- 3 1.80000+ 1 2.10000+ 1 7.52661- 4 1.22504- 3 1.80000+ 1 2.20000+ 1 3.57072- 4 1.22950- 3 1.80000+ 1 2.40000+ 1 4.77803- 5 1.35121- 3 1.80000+ 1 2.50000+ 1 1.78274- 4 1.35174- 3 1.80000+ 1 2.70000+ 1 1.04036- 3 1.31382- 3 1.80000+ 1 2.90000+ 1 1.07887- 4 1.33113- 3 1.80000+ 1 3.00000+ 1 1.28440- 4 1.33463- 3 1.80000+ 1 4.10000+ 1 8.37408- 5 1.35506- 3 1.90000+ 1 1.90000+ 1 1.61440- 3 1.14536- 3 1.90000+ 1 2.10000+ 1 9.13150- 4 1.25018- 3 1.90000+ 1 2.20000+ 1 2.33197- 3 1.25464- 3 1.90000+ 1 2.40000+ 1 1.78164- 4 1.37635- 3 1.90000+ 1 2.50000+ 1 3.26042- 4 1.37688- 3 1.90000+ 1 2.70000+ 1 1.81935- 3 1.33896- 3 1.90000+ 1 2.90000+ 1 1.37470- 4 1.35627- 3 1.90000+ 1 3.00000+ 1 3.52876- 4 1.35977- 3 1.90000+ 1 4.10000+ 1 1.46898- 4 1.38020- 3 2.10000+ 1 2.10000+ 1 2.22827- 4 1.35500- 3 2.10000+ 1 2.20000+ 1 1.00197- 3 1.35946- 3 2.10000+ 1 2.40000+ 1 1.68794- 4 1.48117- 3 2.10000+ 1 2.50000+ 1 1.27472- 3 1.48170- 3 2.10000+ 1 2.70000+ 1 1.97559- 3 1.44378- 3 2.10000+ 1 2.90000+ 1 7.41045- 5 1.46109- 3 2.10000+ 1 3.00000+ 1 9.72627- 5 1.46459- 3 2.10000+ 1 4.10000+ 1 1.59017- 4 1.48502- 3 2.20000+ 1 2.20000+ 1 5.75872- 4 1.36392- 3 2.20000+ 1 2.40000+ 1 1.27195- 3 1.48563- 3 2.20000+ 1 2.50000+ 1 7.19978- 4 1.48616- 3 2.20000+ 1 2.70000+ 1 2.82672- 3 1.44824- 3 2.20000+ 1 2.90000+ 1 3.56429- 5 1.46555- 3 2.20000+ 1 3.00000+ 1 2.44907- 4 1.46905- 3 2.20000+ 1 4.10000+ 1 2.27097- 4 1.48948- 3 2.40000+ 1 2.40000+ 1 2.90983- 5 1.60734- 3 2.40000+ 1 2.50000+ 1 3.66549- 4 1.60787- 3 2.40000+ 1 2.70000+ 1 2.52187- 4 1.56995- 3 2.40000+ 1 2.90000+ 1 4.59454- 6 1.58726- 3 2.40000+ 1 3.00000+ 1 1.73569- 5 1.59076- 3 2.40000+ 1 4.10000+ 1 1.99092- 5 1.61119- 3 2.50000+ 1 2.50000+ 1 8.52546- 5 1.60840- 3 2.50000+ 1 2.70000+ 1 3.20617- 4 1.57048- 3 2.50000+ 1 2.90000+ 1 2.19525- 5 1.58779- 3 2.50000+ 1 3.00000+ 1 3.06307- 5 1.59129- 3 2.50000+ 1 4.10000+ 1 2.55246- 5 1.61172- 3 2.70000+ 1 2.70000+ 1 1.02098- 4 1.53256- 3 2.70000+ 1 2.90000+ 1 1.39877- 4 1.54987- 3 2.70000+ 1 3.00000+ 1 2.43518- 4 1.55337- 3 2.70000+ 1 4.10000+ 1 1.68463- 5 1.57380- 3 2.90000+ 1 2.90000+ 1 5.13707- 6 1.56718- 3 2.90000+ 1 3.00000+ 1 1.30762- 5 1.57068- 3 2.90000+ 1 4.10000+ 1 1.02741- 5 1.59111- 3 3.00000+ 1 3.00000+ 1 2.11715- 5 1.57418- 3 3.00000+ 1 4.10000+ 1 2.11715- 5 1.59461- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.64901- 4 4.02000- 4 1.60000+ 1 3.83351- 4 1.13353- 3 2.10000+ 1 1.80132- 3 1.32655- 3 2.70000+ 1 6.73414- 5 1.41533- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 1.26365- 2 1.05820- 4 1.10000+ 1 2.50000+ 1 1.47790- 2 1.06350- 4 1.10000+ 1 2.70000+ 1 6.70211- 3 6.84300- 5 1.10000+ 1 2.90000+ 1 6.66956- 3 8.57400- 5 1.10000+ 1 3.00000+ 1 7.33727- 3 8.92400- 5 1.10000+ 1 4.10000+ 1 5.32702- 4 1.09670- 4 1.30000+ 1 1.60000+ 1 9.92647- 2 7.39300- 5 1.30000+ 1 1.80000+ 1 9.95079- 2 1.36990- 4 1.30000+ 1 1.90000+ 1 1.35896- 1 1.62130- 4 1.30000+ 1 2.10000+ 1 4.36721- 2 2.66950- 4 1.30000+ 1 2.20000+ 1 4.93735- 2 2.71410- 4 1.30000+ 1 2.40000+ 1 6.02794- 2 3.93120- 4 1.30000+ 1 2.50000+ 1 9.05850- 2 3.93650- 4 1.30000+ 1 2.70000+ 1 1.64872- 2 3.55730- 4 1.30000+ 1 2.90000+ 1 1.16009- 2 3.73040- 4 1.30000+ 1 3.00000+ 1 1.67911- 2 3.76540- 4 1.30000+ 1 4.10000+ 1 1.40192- 3 3.96970- 4 1.40000+ 1 1.60000+ 1 1.67799- 2 9.89300- 5 1.40000+ 1 1.80000+ 1 1.16281- 1 1.61990- 4 1.40000+ 1 1.90000+ 1 1.15858- 2 1.87130- 4 1.40000+ 1 2.10000+ 1 2.00949- 3 2.91950- 4 1.40000+ 1 2.20000+ 1 5.69867- 3 2.96410- 4 1.40000+ 1 2.40000+ 1 1.76485- 3 4.18120- 4 1.40000+ 1 2.50000+ 1 1.46533- 3 4.18650- 4 1.40000+ 1 2.70000+ 1 1.85021- 3 3.80730- 4 1.40000+ 1 2.90000+ 1 1.10615- 2 3.98040- 4 1.40000+ 1 3.00000+ 1 1.30942- 3 4.01540- 4 1.40000+ 1 4.10000+ 1 1.49910- 4 4.21970- 4 1.60000+ 1 1.60000+ 1 7.98240- 4 8.05460- 4 1.60000+ 1 1.80000+ 1 1.10709- 2 8.68520- 4 1.60000+ 1 1.90000+ 1 1.78303- 3 8.93660- 4 1.60000+ 1 2.10000+ 1 3.74408- 4 9.98480- 4 1.60000+ 1 2.20000+ 1 1.26168- 3 1.00294- 3 1.60000+ 1 2.40000+ 1 3.65868- 5 1.12465- 3 1.60000+ 1 2.50000+ 1 1.94534- 4 1.12518- 3 1.60000+ 1 2.70000+ 1 2.09163- 4 1.08726- 3 1.60000+ 1 2.90000+ 1 1.01044- 3 1.10457- 3 1.60000+ 1 3.00000+ 1 2.08564- 4 1.10807- 3 1.60000+ 1 4.10000+ 1 1.70749- 5 1.12850- 3 1.80000+ 1 1.80000+ 1 8.40552- 3 9.31580- 4 1.80000+ 1 1.90000+ 1 2.57065- 2 9.56720- 4 1.80000+ 1 2.10000+ 1 2.37666- 2 1.06154- 3 1.80000+ 1 2.20000+ 1 3.92701- 2 1.06600- 3 1.80000+ 1 2.40000+ 1 2.78111- 3 1.18771- 3 1.80000+ 1 2.50000+ 1 4.83969- 3 1.18824- 3 1.80000+ 1 2.70000+ 1 1.90178- 3 1.15032- 3 1.80000+ 1 2.90000+ 1 1.92582- 3 1.16763- 3 1.80000+ 1 3.00000+ 1 3.31272- 3 1.17113- 3 1.80000+ 1 4.10000+ 1 1.61225- 4 1.19156- 3 1.90000+ 1 1.90000+ 1 7.67392- 4 9.81860- 4 1.90000+ 1 2.10000+ 1 2.28984- 3 1.08668- 3 1.90000+ 1 2.20000+ 1 1.75863- 3 1.09114- 3 1.90000+ 1 2.40000+ 1 2.18266- 3 1.21285- 3 1.90000+ 1 2.50000+ 1 6.40415- 4 1.21338- 3 1.90000+ 1 2.70000+ 1 2.22570- 4 1.17546- 3 1.90000+ 1 2.90000+ 1 2.59230- 3 1.19277- 3 1.90000+ 1 3.00000+ 1 1.66585- 4 1.19627- 3 1.90000+ 1 4.10000+ 1 1.77505- 5 1.21670- 3 2.10000+ 1 2.10000+ 1 8.07450- 4 1.19150- 3 2.10000+ 1 2.20000+ 1 2.30609- 3 1.19596- 3 2.10000+ 1 2.40000+ 1 2.61814- 4 1.31767- 3 2.10000+ 1 2.50000+ 1 4.68395- 4 1.31820- 3 2.10000+ 1 2.70000+ 1 5.71372- 5 1.28028- 3 2.10000+ 1 2.90000+ 1 2.16054- 3 1.29759- 3 2.10000+ 1 3.00000+ 1 2.28545- 4 1.30109- 3 2.10000+ 1 4.10000+ 1 5.02312- 6 1.32152- 3 2.20000+ 1 2.20000+ 1 4.98891- 4 1.20042- 3 2.20000+ 1 2.40000+ 1 8.49798- 4 1.32213- 3 2.20000+ 1 2.50000+ 1 1.77479- 4 1.32266- 3 2.20000+ 1 2.70000+ 1 1.53771- 4 1.28474- 3 2.20000+ 1 2.90000+ 1 3.33563- 3 1.30205- 3 2.20000+ 1 3.00000+ 1 1.50298- 4 1.30555- 3 2.20000+ 1 4.10000+ 1 1.27179- 5 1.32598- 3 2.40000+ 1 2.40000+ 1 8.13547- 5 1.44384- 3 2.40000+ 1 2.50000+ 1 8.41430- 4 1.44437- 3 2.40000+ 1 2.70000+ 1 2.27558- 6 1.40645- 3 2.40000+ 1 2.90000+ 1 2.09373- 4 1.42376- 3 2.40000+ 1 3.00000+ 1 2.18458- 4 1.42726- 3 2.50000+ 1 2.50000+ 1 3.29972- 5 1.44490- 3 2.50000+ 1 2.70000+ 1 2.61713- 5 1.40698- 3 2.50000+ 1 2.90000+ 1 3.65824- 4 1.42429- 3 2.50000+ 1 3.00000+ 1 5.74632- 5 1.42779- 3 2.50000+ 1 4.10000+ 1 2.27565- 6 1.44822- 3 2.70000+ 1 2.70000+ 1 1.35225- 5 1.36906- 3 2.70000+ 1 2.90000+ 1 1.62260- 4 1.38637- 3 2.70000+ 1 3.00000+ 1 2.29294- 5 1.38987- 3 2.70000+ 1 4.10000+ 1 2.35164- 6 1.41030- 3 2.90000+ 1 2.90000+ 1 1.45712- 4 1.40368- 3 2.90000+ 1 3.00000+ 1 4.29302- 4 1.40718- 3 2.90000+ 1 4.10000+ 1 2.00683- 5 1.42761- 3 3.00000+ 1 3.00000+ 1 2.31519- 5 1.41068- 3 3.00000+ 1 4.10000+ 1 5.34280- 6 1.43111- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.84421- 5 2.87300- 4 1.40000+ 1 2.19934- 4 3.12300- 4 1.60000+ 1 5.16518- 4 1.01883- 3 2.10000+ 1 2.32391- 4 1.21185- 3 2.20000+ 1 1.89346- 3 1.21631- 3 2.70000+ 1 9.20965- 5 1.30063- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.60176- 2 2.22900- 5 1.30000+ 1 1.90000+ 1 8.55190- 2 4.74300- 5 1.30000+ 1 2.10000+ 1 1.29806- 2 1.52250- 4 1.30000+ 1 2.20000+ 1 1.07896- 2 1.56710- 4 1.30000+ 1 2.40000+ 1 6.47700- 3 2.78420- 4 1.30000+ 1 2.50000+ 1 9.59862- 3 2.78950- 4 1.30000+ 1 2.70000+ 1 2.89004- 3 2.41030- 4 1.30000+ 1 2.90000+ 1 1.98792- 3 2.58340- 4 1.30000+ 1 3.00000+ 1 8.51062- 3 2.61840- 4 1.30000+ 1 4.10000+ 1 2.37887- 4 2.82270- 4 1.40000+ 1 1.80000+ 1 1.09088- 1 4.72900- 5 1.40000+ 1 1.90000+ 1 1.93059- 1 7.24300- 5 1.40000+ 1 2.10000+ 1 5.56440- 2 1.77250- 4 1.40000+ 1 2.20000+ 1 8.56271- 2 1.81710- 4 1.40000+ 1 2.40000+ 1 6.20578- 2 3.03420- 4 1.40000+ 1 2.50000+ 1 7.39622- 2 3.03950- 4 1.40000+ 1 2.70000+ 1 1.68015- 2 2.66030- 4 1.40000+ 1 2.90000+ 1 1.36104- 2 2.83340- 4 1.40000+ 1 3.00000+ 1 2.20058- 2 2.86840- 4 1.40000+ 1 4.10000+ 1 1.39854- 3 3.07270- 4 1.60000+ 1 1.60000+ 1 7.58231- 4 6.90760- 4 1.60000+ 1 1.80000+ 1 1.12287- 3 7.53820- 4 1.60000+ 1 1.90000+ 1 1.64507- 2 7.78960- 4 1.60000+ 1 2.10000+ 1 9.90877- 4 8.83780- 4 1.60000+ 1 2.20000+ 1 1.07377- 3 8.88240- 4 1.60000+ 1 2.40000+ 1 3.06687- 4 1.00995- 3 1.60000+ 1 2.50000+ 1 4.64444- 4 1.01048- 3 1.60000+ 1 2.70000+ 1 1.97207- 4 9.72560- 4 1.60000+ 1 2.90000+ 1 1.24768- 4 9.89870- 4 1.60000+ 1 3.00000+ 1 1.47866- 3 9.93370- 4 1.60000+ 1 4.10000+ 1 1.60986- 5 1.01380- 3 1.80000+ 1 1.80000+ 1 1.64206- 4 8.16880- 4 1.80000+ 1 1.90000+ 1 1.96916- 2 8.42020- 4 1.80000+ 1 2.10000+ 1 5.08375- 4 9.46840- 4 1.80000+ 1 2.20000+ 1 3.47921- 3 9.51300- 4 1.80000+ 1 2.40000+ 1 3.37544- 4 1.07301- 3 1.80000+ 1 2.50000+ 1 2.01527- 3 1.07354- 3 1.80000+ 1 2.70000+ 1 1.33522- 4 1.03562- 3 1.80000+ 1 2.90000+ 1 3.40008- 5 1.05293- 3 1.80000+ 1 3.00000+ 1 1.79052- 3 1.05643- 3 1.80000+ 1 4.10000+ 1 1.07813- 5 1.07686- 3 1.90000+ 1 1.90000+ 1 2.68114- 2 8.67160- 4 1.90000+ 1 2.10000+ 1 3.62894- 2 9.71980- 4 1.90000+ 1 2.20000+ 1 4.88935- 2 9.76440- 4 1.90000+ 1 2.40000+ 1 5.98198- 3 1.09815- 3 1.90000+ 1 2.50000+ 1 6.81017- 3 1.09868- 3 1.90000+ 1 2.70000+ 1 2.60199- 3 1.06076- 3 1.90000+ 1 2.90000+ 1 2.47329- 3 1.07807- 3 1.90000+ 1 3.00000+ 1 5.87866- 3 1.08157- 3 1.90000+ 1 4.10000+ 1 2.19916- 4 1.10200- 3 2.10000+ 1 2.10000+ 1 2.39788- 4 1.07680- 3 2.10000+ 1 2.20000+ 1 3.94142- 3 1.08126- 3 2.10000+ 1 2.40000+ 1 1.23642- 4 1.20297- 3 2.10000+ 1 2.50000+ 1 1.56160- 3 1.20350- 3 2.10000+ 1 2.70000+ 1 1.00409- 4 1.16558- 3 2.10000+ 1 2.90000+ 1 3.82152- 5 1.18289- 3 2.10000+ 1 3.00000+ 1 3.12613- 3 1.18639- 3 2.10000+ 1 4.10000+ 1 8.24276- 6 1.20682- 3 2.20000+ 1 2.20000+ 1 1.90793- 3 1.08572- 3 2.20000+ 1 2.40000+ 1 1.12679- 3 1.20743- 3 2.20000+ 1 2.50000+ 1 1.00711- 3 1.20796- 3 2.20000+ 1 2.70000+ 1 1.04981- 4 1.17004- 3 2.20000+ 1 2.90000+ 1 2.55456- 4 1.18735- 3 2.20000+ 1 3.00000+ 1 3.89824- 3 1.19085- 3 2.20000+ 1 4.10000+ 1 8.39861- 6 1.21128- 3 2.40000+ 1 2.40000+ 1 2.61695- 5 1.32914- 3 2.40000+ 1 2.50000+ 1 1.13836- 3 1.32967- 3 2.40000+ 1 2.70000+ 1 2.98023- 5 1.29175- 3 2.40000+ 1 2.90000+ 1 3.27122- 5 1.30906- 3 2.40000+ 1 3.00000+ 1 4.73954- 4 1.31256- 3 2.40000+ 1 4.10000+ 1 2.18076- 6 1.33299- 3 2.50000+ 1 2.50000+ 1 3.25664- 4 1.33020- 3 2.50000+ 1 2.70000+ 1 3.63468- 5 1.29228- 3 2.50000+ 1 2.90000+ 1 1.99202- 4 1.30959- 3 2.50000+ 1 3.00000+ 1 5.53199- 4 1.31309- 3 2.50000+ 1 4.10000+ 1 2.90767- 6 1.33352- 3 2.70000+ 1 2.70000+ 1 1.53611- 5 1.25436- 3 2.70000+ 1 2.90000+ 1 1.62648- 5 1.27167- 3 2.70000+ 1 3.00000+ 1 2.69272- 4 1.27517- 3 2.70000+ 1 4.10000+ 1 2.71081- 6 1.29560- 3 2.90000+ 1 2.90000+ 1 2.26780- 6 1.28898- 3 2.90000+ 1 3.00000+ 1 3.26565- 4 1.29248- 3 2.90000+ 1 4.10000+ 1 1.13392- 6 1.31291- 3 3.00000+ 1 3.00000+ 1 7.06873- 4 1.29598- 3 3.00000+ 1 4.10000+ 1 4.45132- 5 1.31641- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.74012- 3 7.94590- 4 1.90000+ 1 5.29564- 4 8.19730- 4 2.40000+ 1 8.83883- 4 1.05072- 3 2.90000+ 1 6.38003- 4 1.03064- 3 3.00000+ 1 9.13153- 5 1.03414- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 6.09046- 2 1.61200- 5 1.40000+ 1 2.50000+ 1 9.41852- 3 1.66500- 5 1.40000+ 1 3.00000+ 1 3.06029- 3 0.00000+ 0 1.40000+ 1 4.10000+ 1 2.59848- 4 1.99700- 5 1.60000+ 1 1.60000+ 1 1.56299- 5 4.03460- 4 1.60000+ 1 1.80000+ 1 3.64514- 3 4.66520- 4 1.60000+ 1 1.90000+ 1 2.56341- 3 4.91660- 4 1.60000+ 1 2.10000+ 1 8.34166- 2 5.96480- 4 1.60000+ 1 2.20000+ 1 1.07194- 2 6.00940- 4 1.60000+ 1 2.40000+ 1 6.74915- 3 7.22650- 4 1.60000+ 1 2.50000+ 1 2.32888- 3 7.23180- 4 1.60000+ 1 2.70000+ 1 2.81347- 5 6.85260- 4 1.60000+ 1 2.90000+ 1 3.84497- 4 7.02570- 4 1.60000+ 1 3.00000+ 1 2.09448- 4 7.06070- 4 1.60000+ 1 4.10000+ 1 3.12612- 6 7.26500- 4 1.80000+ 1 1.80000+ 1 1.80064- 3 5.29580- 4 1.80000+ 1 1.90000+ 1 1.28481- 2 5.54720- 4 1.80000+ 1 2.10000+ 1 7.01470- 2 6.59540- 4 1.80000+ 1 2.20000+ 1 6.07401- 3 6.64000- 4 1.80000+ 1 2.40000+ 1 4.41730- 3 7.85710- 4 1.80000+ 1 2.50000+ 1 2.51656- 3 7.86240- 4 1.80000+ 1 2.70000+ 1 3.75138- 4 7.48320- 4 1.80000+ 1 2.90000+ 1 3.93888- 4 7.65630- 4 1.80000+ 1 3.00000+ 1 1.24420- 3 7.69130- 4 1.80000+ 1 4.10000+ 1 3.12619- 5 7.89560- 4 1.90000+ 1 1.90000+ 1 4.76717- 3 5.79860- 4 1.90000+ 1 2.10000+ 1 1.52606- 1 6.84680- 4 1.90000+ 1 2.20000+ 1 5.71139- 3 6.89140- 4 1.90000+ 1 2.40000+ 1 3.15730- 3 8.10850- 4 1.90000+ 1 2.50000+ 1 1.44744- 3 8.11380- 4 1.90000+ 1 2.70000+ 1 3.00091- 4 7.73460- 4 1.90000+ 1 2.90000+ 1 1.20661- 3 7.90770- 4 1.90000+ 1 3.00000+ 1 8.94052- 4 7.94270- 4 1.90000+ 1 4.10000+ 1 2.50091- 5 8.14700- 4 2.10000+ 1 2.10000+ 1 1.26569- 1 7.89500- 4 2.10000+ 1 2.20000+ 1 2.58719- 1 7.93960- 4 2.10000+ 1 2.40000+ 1 2.50245- 2 9.15670- 4 2.10000+ 1 2.50000+ 1 3.29332- 2 9.16200- 4 2.10000+ 1 2.70000+ 1 1.25539- 2 8.78280- 4 2.10000+ 1 2.90000+ 1 9.39221- 3 8.95590- 4 2.10000+ 1 3.00000+ 1 1.92600- 2 8.99090- 4 2.10000+ 1 4.10000+ 1 1.05406- 3 9.19520- 4 2.20000+ 1 2.20000+ 1 4.22964- 3 7.98420- 4 2.20000+ 1 2.40000+ 1 2.39361- 2 9.20130- 4 2.20000+ 1 2.50000+ 1 1.47538- 3 9.20660- 4 2.20000+ 1 2.70000+ 1 9.06583- 4 8.82740- 4 2.20000+ 1 2.90000+ 1 5.40830- 4 9.00050- 4 2.20000+ 1 3.00000+ 1 5.84586- 4 9.03550- 4 2.20000+ 1 4.10000+ 1 7.19016- 5 9.23980- 4 2.40000+ 1 2.40000+ 1 3.48576- 3 1.04184- 3 2.40000+ 1 2.50000+ 1 1.60154- 2 1.04237- 3 2.40000+ 1 2.70000+ 1 1.01600- 3 1.00445- 3 2.40000+ 1 2.90000+ 1 4.65801- 4 1.02176- 3 2.40000+ 1 3.00000+ 1 3.78262- 4 1.02526- 3 2.40000+ 1 4.10000+ 1 8.44063- 5 1.04569- 3 2.50000+ 1 2.50000+ 1 2.56343- 4 1.04290- 3 2.50000+ 1 2.70000+ 1 2.50097- 4 1.00498- 3 2.50000+ 1 2.90000+ 1 1.59423- 4 1.02229- 3 2.50000+ 1 3.00000+ 1 1.62558- 4 1.02579- 3 2.50000+ 1 4.10000+ 1 1.87565- 5 1.04622- 3 2.70000+ 1 2.70000+ 1 8.21279- 6 9.67060- 4 2.70000+ 1 2.90000+ 1 1.14979- 4 9.84370- 4 2.70000+ 1 3.00000+ 1 6.57037- 5 9.87870- 4 2.90000+ 1 2.90000+ 1 5.53274- 5 1.00168- 3 2.90000+ 1 3.00000+ 1 3.16130- 4 1.00518- 3 2.90000+ 1 4.10000+ 1 7.90393- 6 1.02561- 3 3.00000+ 1 3.00000+ 1 3.13628- 4 1.00868- 3 3.00000+ 1 4.10000+ 1 2.24020- 5 1.02911- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.13088- 3 7.94730- 4 2.40000+ 1 4.99017- 5 1.02572- 3 2.50000+ 1 9.70454- 4 1.02625- 3 3.00000+ 1 7.67766- 4 1.00914- 3 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 1.12158- 3 4.41520- 4 1.60000+ 1 1.90000+ 1 5.96304- 3 4.66660- 4 1.60000+ 1 2.10000+ 1 8.73730- 3 5.71480- 4 1.60000+ 1 2.20000+ 1 9.46322- 2 5.75940- 4 1.60000+ 1 2.40000+ 1 2.34937- 3 6.97650- 4 1.60000+ 1 2.50000+ 1 7.63875- 3 6.98180- 4 1.60000+ 1 2.70000+ 1 2.32275- 5 6.60260- 4 1.60000+ 1 2.90000+ 1 6.30485- 5 6.77570- 4 1.60000+ 1 3.00000+ 1 5.57484- 4 6.81070- 4 1.60000+ 1 4.10000+ 1 3.31839- 6 7.01500- 4 1.80000+ 1 1.80000+ 1 1.32730- 5 5.04580- 4 1.80000+ 1 1.90000+ 1 1.38513- 2 5.29720- 4 1.80000+ 1 2.10000+ 1 8.79354- 4 6.34540- 4 1.80000+ 1 2.20000+ 1 9.29731- 2 6.39000- 4 1.80000+ 1 2.40000+ 1 1.03873- 3 7.60710- 4 1.80000+ 1 2.50000+ 1 3.71328- 3 7.61240- 4 1.80000+ 1 2.70000+ 1 1.12827- 4 7.23320- 4 1.80000+ 1 2.90000+ 1 6.63663- 6 7.40630- 4 1.80000+ 1 3.00000+ 1 1.29091- 3 7.44130- 4 1.80000+ 1 4.10000+ 1 9.95487- 6 7.64560- 4 1.90000+ 1 1.90000+ 1 1.07185- 2 5.54860- 4 1.90000+ 1 2.10000+ 1 8.67762- 3 6.59680- 4 1.90000+ 1 2.20000+ 1 1.51080- 1 6.64140- 4 1.90000+ 1 2.40000+ 1 1.86490- 3 7.85850- 4 1.90000+ 1 2.50000+ 1 4.45992- 3 7.86380- 4 1.90000+ 1 2.70000+ 1 6.86907- 4 7.48460- 4 1.90000+ 1 2.90000+ 1 1.25443- 3 7.65770- 4 1.90000+ 1 3.00000+ 1 2.06074- 3 7.69270- 4 1.90000+ 1 4.10000+ 1 5.64125- 5 7.89700- 4 2.10000+ 1 2.10000+ 1 1.86155- 3 7.64500- 4 2.10000+ 1 2.20000+ 1 1.92068- 1 7.68960- 4 2.10000+ 1 2.40000+ 1 1.20454- 3 8.90670- 4 2.10000+ 1 2.50000+ 1 1.57188- 2 8.91200- 4 2.10000+ 1 2.70000+ 1 7.23396- 4 8.53280- 4 2.10000+ 1 2.90000+ 1 1.16146- 4 8.70590- 4 2.10000+ 1 3.00000+ 1 7.99716- 4 8.74090- 4 2.10000+ 1 4.10000+ 1 5.64111- 5 8.94520- 4 2.20000+ 1 2.20000+ 1 2.20783- 1 7.73420- 4 2.20000+ 1 2.40000+ 1 2.96354- 2 8.95130- 4 2.20000+ 1 2.50000+ 1 4.35793- 2 8.95660- 4 2.20000+ 1 2.70000+ 1 1.37374- 2 8.57740- 4 2.20000+ 1 2.90000+ 1 1.19156- 2 8.75050- 4 2.20000+ 1 3.00000+ 1 1.90759- 2 8.78550- 4 2.20000+ 1 4.10000+ 1 1.15137- 3 8.98980- 4 2.40000+ 1 2.40000+ 1 2.85359- 4 1.01684- 3 2.40000+ 1 2.50000+ 1 1.43522- 2 1.01737- 3 2.40000+ 1 2.70000+ 1 2.65457- 4 9.79450- 4 2.40000+ 1 2.90000+ 1 1.22772- 4 9.96760- 4 2.40000+ 1 3.00000+ 1 1.65907- 4 1.00026- 3 2.40000+ 1 4.10000+ 1 2.32264- 5 1.02069- 3 2.50000+ 1 2.50000+ 1 7.25381- 3 1.01790- 3 2.50000+ 1 2.70000+ 1 1.10831- 3 9.79980- 4 2.50000+ 1 2.90000+ 1 4.64562- 4 9.97290- 4 2.50000+ 1 3.00000+ 1 4.81154- 4 1.00079- 3 2.50000+ 1 4.10000+ 1 9.29114- 5 1.02122- 3 2.70000+ 1 2.90000+ 1 2.97963- 5 9.59370- 4 2.70000+ 1 3.00000+ 1 3.12862- 4 9.62870- 4 2.90000+ 1 3.00000+ 1 4.00358- 4 9.80180- 4 3.00000+ 1 3.00000+ 1 4.30230- 4 9.83680- 4 3.00000+ 1 4.10000+ 1 2.77573- 5 1.00411- 3 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.34334- 5 6.30600- 5 1.90000+ 1 7.38232- 5 8.82000- 5 2.90000+ 1 3.01975- 5 2.99110- 4 3.00000+ 1 2.55455- 5 3.02610- 4 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.35897- 2 5.41800- 5 1.80000+ 1 2.50000+ 1 3.61382- 2 5.47100- 5 1.80000+ 1 2.70000+ 1 5.24893- 2 1.67900- 5 1.80000+ 1 2.90000+ 1 4.12727- 2 3.41000- 5 1.80000+ 1 3.00000+ 1 8.62034- 2 3.76000- 5 1.80000+ 1 4.10000+ 1 4.29056- 3 5.80300- 5 1.90000+ 1 2.40000+ 1 8.15717- 2 7.93200- 5 1.90000+ 1 2.50000+ 1 9.75900- 2 7.98500- 5 1.90000+ 1 2.70000+ 1 6.72893- 2 4.19300- 5 1.90000+ 1 2.90000+ 1 6.82634- 2 5.92400- 5 1.90000+ 1 3.00000+ 1 9.15831- 2 6.27400- 5 1.90000+ 1 4.10000+ 1 5.56908- 3 8.31700- 5 2.10000+ 1 2.10000+ 1 4.83373- 3 5.79700- 5 2.10000+ 1 2.20000+ 1 2.84842- 2 6.24300- 5 2.10000+ 1 2.40000+ 1 2.88296- 3 1.84140- 4 2.10000+ 1 2.50000+ 1 7.09850- 3 1.84670- 4 2.10000+ 1 2.70000+ 1 2.20803- 2 1.46750- 4 2.10000+ 1 2.90000+ 1 4.35760- 3 1.64060- 4 2.10000+ 1 3.00000+ 1 1.39258- 2 1.67560- 4 2.10000+ 1 4.10000+ 1 1.52221- 3 1.87990- 4 2.20000+ 1 2.20000+ 1 1.38777- 2 6.68900- 5 2.20000+ 1 2.40000+ 1 8.09940- 3 1.88600- 4 2.20000+ 1 2.50000+ 1 7.02496- 3 1.89130- 4 2.20000+ 1 2.70000+ 1 3.20842- 2 1.51210- 4 2.20000+ 1 2.90000+ 1 1.27936- 2 1.68520- 4 2.20000+ 1 3.00000+ 1 1.31588- 2 1.72020- 4 2.20000+ 1 4.10000+ 1 2.20874- 3 1.92450- 4 2.40000+ 1 2.40000+ 1 5.27141- 4 3.10310- 4 2.40000+ 1 2.50000+ 1 2.06375- 3 3.10840- 4 2.40000+ 1 2.70000+ 1 6.34914- 3 2.72920- 4 2.40000+ 1 2.90000+ 1 7.93898- 4 2.90230- 4 2.40000+ 1 3.00000+ 1 1.92878- 3 2.93730- 4 2.40000+ 1 4.10000+ 1 3.98475- 4 3.14160- 4 2.50000+ 1 2.50000+ 1 1.03752- 3 3.11370- 4 2.50000+ 1 2.70000+ 1 8.23279- 3 2.73450- 4 2.50000+ 1 2.90000+ 1 5.94023- 4 2.90760- 4 2.50000+ 1 3.00000+ 1 2.43890- 3 2.94260- 4 2.50000+ 1 4.10000+ 1 5.15973- 4 3.14690- 4 2.70000+ 1 2.70000+ 1 1.64495- 2 2.35530- 4 2.70000+ 1 2.90000+ 1 2.00432- 2 2.52840- 4 2.70000+ 1 3.00000+ 1 3.50217- 2 2.56340- 4 2.70000+ 1 4.10000+ 1 2.43987- 3 2.76770- 4 2.90000+ 1 2.90000+ 1 6.23722- 3 2.70150- 4 2.90000+ 1 3.00000+ 1 2.66679- 2 2.73650- 4 2.90000+ 1 4.10000+ 1 5.06147- 3 2.94080- 4 3.00000+ 1 3.00000+ 1 2.32705- 2 2.77150- 4 3.00000+ 1 4.10000+ 1 9.50207- 3 2.97580- 4 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.33796- 4 1.29960- 4 2.70000+ 1 4.91800- 5 2.18740- 4 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 3.50851- 2 1.62600- 5 1.90000+ 1 2.50000+ 1 2.69865- 2 1.67900- 5 1.90000+ 1 3.00000+ 1 1.30756- 2 0.00000+ 0 1.90000+ 1 4.10000+ 1 1.49004- 3 2.01100- 5 2.10000+ 1 2.10000+ 1 3.52695- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 4.22184- 1 0.00000+ 0 2.10000+ 1 2.40000+ 1 6.95957- 2 1.21080- 4 2.10000+ 1 2.50000+ 1 1.43909- 1 1.21610- 4 2.10000+ 1 2.70000+ 1 4.03589- 2 8.36900- 5 2.10000+ 1 2.90000+ 1 2.84872- 2 1.01000- 4 2.10000+ 1 3.00000+ 1 5.39343- 2 1.04500- 4 2.10000+ 1 4.10000+ 1 3.36396- 3 1.24930- 4 2.20000+ 1 2.20000+ 1 2.11279- 2 3.83000- 6 2.20000+ 1 2.40000+ 1 1.75960- 2 1.25540- 4 2.20000+ 1 2.50000+ 1 4.70471- 3 1.26070- 4 2.20000+ 1 2.70000+ 1 6.60838- 3 8.81500- 5 2.20000+ 1 2.90000+ 1 2.84101- 2 1.05460- 4 2.20000+ 1 3.00000+ 1 6.41764- 3 1.08960- 4 2.20000+ 1 4.10000+ 1 4.82500- 4 1.29390- 4 2.40000+ 1 2.40000+ 1 2.99494- 4 2.47250- 4 2.40000+ 1 2.50000+ 1 3.15585- 3 2.47780- 4 2.40000+ 1 2.70000+ 1 1.46720- 3 2.09860- 4 2.40000+ 1 2.90000+ 1 5.03630- 3 2.27170- 4 2.40000+ 1 3.00000+ 1 1.96908- 3 2.30670- 4 2.40000+ 1 4.10000+ 1 1.19103- 4 2.51100- 4 2.50000+ 1 2.50000+ 1 9.69394- 5 2.48310- 4 2.50000+ 1 2.70000+ 1 7.32013- 4 2.10390- 4 2.50000+ 1 2.90000+ 1 8.25339- 3 2.27700- 4 2.50000+ 1 3.00000+ 1 6.79625- 4 2.31200- 4 2.50000+ 1 4.10000+ 1 4.95533- 5 2.51630- 4 2.70000+ 1 2.70000+ 1 1.38293- 4 1.72470- 4 2.70000+ 1 2.90000+ 1 2.46968- 3 1.89780- 4 2.70000+ 1 3.00000+ 1 3.81822- 4 1.93280- 4 2.70000+ 1 4.10000+ 1 1.94138- 5 2.13710- 4 2.90000+ 1 2.90000+ 1 3.78435- 3 2.07090- 4 2.90000+ 1 3.00000+ 1 1.08866- 2 2.10590- 4 2.90000+ 1 4.10000+ 1 5.76123- 4 2.31020- 4 3.00000+ 1 3.00000+ 1 4.39270- 4 2.14090- 4 3.00000+ 1 4.10000+ 1 7.65214- 5 2.34520- 4 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.09410- 6 1.04820- 4 2.20000+ 1 6.54390- 5 1.09280- 4 2.70000+ 1 2.18120- 5 1.93600- 4 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.56619- 2 9.59400- 5 2.10000+ 1 2.50000+ 1 4.69495- 2 9.64700- 5 2.10000+ 1 2.70000+ 1 1.96644- 2 5.85500- 5 2.10000+ 1 2.90000+ 1 1.47075- 2 7.58600- 5 2.10000+ 1 3.00000+ 1 5.83924- 2 7.93600- 5 2.10000+ 1 4.10000+ 1 1.62417- 3 9.97900- 5 2.20000+ 1 2.40000+ 1 2.05555- 1 1.00400- 4 2.20000+ 1 2.50000+ 1 2.09414- 1 1.00930- 4 2.20000+ 1 2.70000+ 1 1.02215- 1 6.30100- 5 2.20000+ 1 2.90000+ 1 9.88376- 2 8.03200- 5 2.20000+ 1 3.00000+ 1 1.52875- 1 8.38200- 5 2.20000+ 1 4.10000+ 1 8.84315- 3 1.04250- 4 2.40000+ 1 2.40000+ 1 1.33490- 4 2.22110- 4 2.40000+ 1 2.50000+ 1 5.72303- 3 2.22640- 4 2.40000+ 1 2.70000+ 1 2.51043- 3 1.84720- 4 2.40000+ 1 2.90000+ 1 1.08866- 3 2.02030- 4 2.40000+ 1 3.00000+ 1 1.59271- 2 2.05530- 4 2.40000+ 1 4.10000+ 1 1.59291- 4 2.25960- 4 2.50000+ 1 2.50000+ 1 1.73077- 3 2.23170- 4 2.50000+ 1 2.70000+ 1 5.36617- 3 1.85250- 4 2.50000+ 1 2.90000+ 1 4.50174- 3 2.02560- 4 2.50000+ 1 3.00000+ 1 1.93452- 2 2.06060- 4 2.50000+ 1 4.10000+ 1 3.81106- 4 2.26490- 4 2.70000+ 1 2.70000+ 1 1.85617- 5 1.47330- 4 2.70000+ 1 2.90000+ 1 1.59097- 4 1.64640- 4 2.70000+ 1 3.00000+ 1 3.06051- 3 1.68140- 4 2.70000+ 1 4.10000+ 1 3.03054- 6 1.88570- 4 2.90000+ 1 2.90000+ 1 1.49628- 5 1.81950- 4 2.90000+ 1 3.00000+ 1 1.44588- 3 1.85450- 4 2.90000+ 1 4.10000+ 1 5.75501- 6 2.05880- 4 3.00000+ 1 3.00000+ 1 3.36878- 3 1.88950- 4 3.00000+ 1 4.10000+ 1 2.23521- 4 2.09380- 4 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.68386- 6 1.26170- 4 2.90000+ 1 6.83457- 6 1.06090- 4 3.00000+ 1 1.12333- 6 1.09590- 4 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 5.00805- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 5.86465- 3 0.00000+ 0 2.40000+ 1 2.40000+ 1 4.68622- 2 1.17290- 4 2.40000+ 1 2.50000+ 1 2.23955- 1 1.17820- 4 2.40000+ 1 2.70000+ 1 6.01663- 2 7.99000- 5 2.40000+ 1 2.90000+ 1 5.20296- 2 9.72100- 5 2.40000+ 1 3.00000+ 1 8.44866- 2 1.00710- 4 2.40000+ 1 4.10000+ 1 5.18230- 3 1.21140- 4 2.50000+ 1 2.50000+ 1 9.74269- 4 1.18350- 4 2.50000+ 1 2.70000+ 1 3.24121- 3 8.04300- 5 2.50000+ 1 2.90000+ 1 9.89146- 3 9.77400- 5 2.50000+ 1 3.00000+ 1 3.23596- 3 1.01240- 4 2.50000+ 1 4.10000+ 1 2.32161- 4 1.21670- 4 2.70000+ 1 2.70000+ 1 2.72232- 2 4.25100- 5 2.70000+ 1 2.90000+ 1 2.09748- 2 5.98200- 5 2.70000+ 1 3.00000+ 1 2.58445- 2 6.33200- 5 2.70000+ 1 4.10000+ 1 2.49877- 3 8.37500- 5 2.90000+ 1 2.90000+ 1 6.70901- 2 7.71300- 5 2.90000+ 1 3.00000+ 1 2.10696- 1 8.06300- 5 2.90000+ 1 4.10000+ 1 8.33442- 3 1.01060- 4 3.00000+ 1 3.00000+ 1 8.43829- 2 8.41300- 5 3.00000+ 1 4.10000+ 1 6.74341- 3 1.04560- 4 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 9.00334- 8 1.21710- 4 2.50000+ 1 1.82061- 6 1.22240- 4 3.00000+ 1 8.32034- 6 1.05130- 4 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 5.48056- 3 1.12830- 4 2.40000+ 1 2.50000+ 1 3.18521- 1 1.13360- 4 2.40000+ 1 2.70000+ 1 1.51313- 2 7.54400- 5 2.40000+ 1 2.90000+ 1 8.60464- 3 9.27500- 5 2.40000+ 1 3.00000+ 1 3.47765- 2 9.62500- 5 2.40000+ 1 4.10000+ 1 1.17829- 3 1.16680- 4 2.50000+ 1 2.50000+ 1 1.67702- 1 1.13890- 4 2.50000+ 1 2.70000+ 1 1.11115- 1 7.59700- 5 2.50000+ 1 2.90000+ 1 1.09295- 1 9.32800- 5 2.50000+ 1 3.00000+ 1 1.55211- 1 9.67800- 5 2.50000+ 1 4.10000+ 1 9.65081- 3 1.17210- 4 2.70000+ 1 2.70000+ 1 1.42999- 2 3.80500- 5 2.70000+ 1 2.90000+ 1 6.30674- 3 5.53600- 5 2.70000+ 1 3.00000+ 1 1.68472- 2 5.88600- 5 2.70000+ 1 4.10000+ 1 1.30037- 3 7.92900- 5 2.90000+ 1 2.90000+ 1 1.35178- 3 7.26700- 5 2.90000+ 1 3.00000+ 1 1.33438- 2 7.61700- 5 2.90000+ 1 4.10000+ 1 2.83546- 4 9.66000- 5 3.00000+ 1 3.00000+ 1 8.79760- 3 7.96700- 5 3.00000+ 1 4.10000+ 1 7.94450- 4 1.00100- 4 1 61000 0 7 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 9.61283- 9 1.73100- 5 3.00000+ 1 3.38338- 8 2.08100- 5 1 61000 0 9 1.45000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.99477- 1 1.22800- 5 3.00000+ 1 4.10000+ 1 5.92576- 1 1.57800- 5 4.10000+ 1 4.10000+ 1 7.94684- 3 3.62100- 5 1 62000 0 0 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 2.57000+ 0 2.50000+ 1 3.43000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 62000 0 0 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.68760- 2 3.00000+ 0 7.70230- 3 5.00000+ 0 7.31820- 3 6.00000+ 0 6.70790- 3 8.00000+ 0 1.70010- 3 1.00000+ 1 1.53190- 3 1.10000+ 1 1.40770- 3 1.30000+ 1 1.11290- 3 1.40000+ 1 1.08580- 3 1.60000+ 1 3.42770- 4 1.80000+ 1 2.77430- 4 1.90000+ 1 2.50060- 4 2.10000+ 1 1.41400- 4 2.20000+ 1 1.36520- 4 2.40000+ 1 9.37000- 6 2.50000+ 1 8.75000- 6 2.70000+ 1 4.77400- 5 2.90000+ 1 2.97900- 5 3.00000+ 1 2.60200- 5 4.10000+ 1 5.09000- 6 1 62000 0 0 1.50400+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.09560- 2 3.00000+ 0 1.37490- 2 5.00000+ 0 1.37570- 2 6.00000+ 0 1.15100- 2 8.00000+ 0 4.20650- 3 1.00000+ 1 4.12480- 3 1.10000+ 1 3.60030- 3 1.30000+ 1 3.46730- 3 1.40000+ 1 3.34350- 3 1.60000+ 1 1.29970- 3 1.80000+ 1 1.21410- 3 1.90000+ 1 1.06750- 3 2.10000+ 1 8.99230- 4 2.20000+ 1 8.67180- 4 2.40000+ 1 4.98810- 4 2.50000+ 1 4.88670- 4 2.70000+ 1 2.74680- 4 2.90000+ 1 2.16910- 4 3.00000+ 1 1.86460- 4 4.10000+ 1 2.81500- 5 1 62000 0 0 1.50400+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.20170-10 3.00000+ 0 5.08960-10 5.00000+ 0 4.25160-10 6.00000+ 0 4.60300-10 8.00000+ 0 1.33960- 9 1.00000+ 1 1.28280- 9 1.10000+ 1 1.34960- 9 1.30000+ 1 1.19830- 9 1.40000+ 1 1.21910- 9 1.60000+ 1 3.04140- 9 1.80000+ 1 3.10900- 9 1.90000+ 1 3.26000- 9 2.10000+ 1 3.46580- 9 2.20000+ 1 3.51830- 9 2.40000+ 1 4.80380- 9 2.50000+ 1 4.86950- 9 2.70000+ 1 7.32930- 9 2.90000+ 1 8.21750- 9 3.00000+ 1 8.70020- 9 4.10000+ 1 2.27910- 8 1 62000 0 0 1.50400+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.78240- 5 3.00000+ 0 3.33830- 7 5.00000+ 0 5.68280- 7 6.00000+ 0 5.24010- 7 8.00000+ 0 1.00780- 8 1.00000+ 1 1.02080- 8 1.10000+ 1 1.04320- 8 1.30000+ 1 4.53650- 9 1.40000+ 1 4.25270- 9 1.60000+ 1 2.57960-10 1.80000+ 1 5.14430-10 1.90000+ 1 3.64540-10 2.10000+ 1 2.09700-10 2.20000+ 1 1.92100-10 2.70000+ 1 1.27910-11 1 62000 0 0 1.50400+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.40100- 6 3.00000+ 0 3.99200- 6 5.00000+ 0 2.96330- 6 6.00000+ 0 2.82920- 6 8.00000+ 0 1.50690- 5 1.00000+ 1 7.00930- 6 1.10000+ 1 7.35190- 6 1.30000+ 1 1.17110- 6 1.40000+ 1 8.53900- 7 1.60000+ 1 9.86950- 6 1.80000+ 1 1.20220- 5 1.90000+ 1 6.06330- 6 2.10000+ 1 1.77740- 6 2.20000+ 1 1.47860- 6 2.70000+ 1 5.24020- 7 1 62000 0 0 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.39104- 4 3.00000+ 0 1.69333- 4 5.00000+ 0 1.45525- 4 6.00000+ 0 1.34588- 4 8.00000+ 0 1.24074- 4 1.00000+ 1 1.06875- 4 1.10000+ 1 9.62110- 5 1.30000+ 1 7.18988- 5 1.40000+ 1 6.47703- 5 1.60000+ 1 6.51548- 5 1.80000+ 1 5.69770- 5 1.90000+ 1 4.59598- 5 2.10000+ 1 3.69672- 5 2.20000+ 1 2.75418- 5 2.40000+ 1 9.37000- 6 2.50000+ 1 8.75000- 6 2.70000+ 1 3.24592- 5 2.90000+ 1 2.97900- 5 3.00000+ 1 2.60200- 5 4.10000+ 1 5.09000- 6 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07788+ 0 3.00000+ 0 1.69973- 1 5.00000+ 0 1.91078- 1 6.00000+ 0 1.59630- 1 8.00000+ 0 8.73776- 3 1.00000+ 1 9.08503- 3 1.10000+ 1 8.63333- 3 1.30000+ 1 7.24721- 3 1.40000+ 1 6.80664- 3 1.60000+ 1 2.90743- 4 1.80000+ 1 3.43679- 4 1.90000+ 1 1.17846- 4 2.10000+ 1 1.35360- 5 2.20000+ 1 1.34885- 5 2.70000+ 1 7.41185- 8 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.89775- 2 3.00000+ 0 9.84509- 4 5.00000+ 0 1.12912- 3 6.00000+ 0 8.54954- 4 8.00000+ 0 8.88915- 6 1.00000+ 1 8.99315- 6 1.10000+ 1 8.55843- 6 1.30000+ 1 6.59258- 6 1.40000+ 1 6.17813- 6 1.60000+ 1 4.69344- 8 1.80000+ 1 5.16106- 8 1.90000+ 1 1.56410- 8 2.10000+ 1 1.58063- 9 2.20000+ 1 1.55019- 9 2.70000+ 1 1.54899-12 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.58786+ 0 3.00000+ 0 1.06071+ 1 5.00000+ 0 8.89872+ 0 6.00000+ 0 8.36899+ 0 8.00000+ 0 7.50518+ 0 1.00000+ 1 6.20254+ 0 1.10000+ 1 5.72128+ 0 1.30000+ 1 3.76623+ 0 1.40000+ 1 3.64643+ 0 1.60000+ 1 3.10701+ 0 1.80000+ 1 2.76445+ 0 1.90000+ 1 2.20168+ 0 2.10000+ 1 1.21416+ 0 2.20000+ 1 1.15514+ 0 2.70000+ 1 1.00000+ 0 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.75940- 3 3.00000+ 0 6.54846- 3 5.00000+ 0 6.04355- 3 6.00000+ 0 5.71836- 3 8.00000+ 0 1.56714- 3 1.00000+ 1 1.41603- 3 1.10000+ 1 1.30293- 3 1.30000+ 1 1.03441- 3 1.40000+ 1 1.01485- 3 1.60000+ 1 2.77568- 4 1.80000+ 1 2.20401- 4 1.90000+ 1 2.04085- 4 2.10000+ 1 1.04431- 4 2.20000+ 1 1.08977- 4 2.70000+ 1 1.52808- 5 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.66251- 1 3.95578- 2 6.00000+ 0 4.81921- 1 4.01681- 2 1.00000+ 1 4.82941- 2 4.53441- 2 1.10000+ 1 9.34372- 2 4.54683- 2 1.30000+ 1 6.80781- 4 4.57631- 2 1.40000+ 1 9.04282- 4 4.57902- 2 1.80000+ 1 1.04730- 2 4.65986- 2 1.90000+ 1 2.03310- 2 4.66259- 2 2.10000+ 1 1.49470- 4 4.67346- 2 2.20000+ 1 1.98030- 4 4.67395- 2 2.90000+ 1 2.11390- 3 4.68462- 2 3.00000+ 1 4.27591- 3 4.68500- 2 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 6.19526- 3 3.14714- 2 3.00000+ 0 5.00000+ 0 7.84522- 3 3.18555- 2 3.00000+ 0 6.00000+ 0 7.76643- 3 3.24658- 2 3.00000+ 0 8.00000+ 0 2.32218- 3 3.74736- 2 3.00000+ 0 1.00000+ 1 1.58645- 3 3.76418- 2 3.00000+ 0 1.10000+ 1 1.61314- 3 3.77660- 2 3.00000+ 0 1.30000+ 1 1.15928- 4 3.80608- 2 3.00000+ 0 1.40000+ 1 1.14545- 4 3.80879- 2 3.00000+ 0 1.60000+ 1 5.37715- 4 3.88309- 2 3.00000+ 0 1.80000+ 1 3.52314- 4 3.88963- 2 3.00000+ 0 1.90000+ 1 3.56181- 4 3.89236- 2 3.00000+ 0 2.10000+ 1 2.50859- 5 3.90323- 2 3.00000+ 0 2.20000+ 1 2.45356- 5 3.90372- 2 3.00000+ 0 2.70000+ 1 8.91831- 5 3.91260- 2 3.00000+ 0 2.90000+ 1 4.74165- 5 3.91439- 2 3.00000+ 0 3.00000+ 1 4.60384- 5 3.91477- 2 3.00000+ 0 4.10000+ 1 7.44347- 6 3.91686- 2 5.00000+ 0 5.00000+ 0 7.83550- 4 3.22396- 2 5.00000+ 0 6.00000+ 0 1.57987- 2 3.28499- 2 5.00000+ 0 8.00000+ 0 1.23217- 3 3.78577- 2 5.00000+ 0 1.00000+ 1 2.81058- 4 3.80259- 2 5.00000+ 0 1.10000+ 1 2.73043- 3 3.81501- 2 5.00000+ 0 1.30000+ 1 1.31495- 4 3.84449- 2 5.00000+ 0 1.40000+ 1 4.17248- 4 3.84720- 2 5.00000+ 0 1.60000+ 1 2.74582- 4 3.92150- 2 5.00000+ 0 1.80000+ 1 6.10631- 5 3.92804- 2 5.00000+ 0 1.90000+ 1 5.80886- 4 3.93077- 2 5.00000+ 0 2.10000+ 1 2.77065- 5 3.94164- 2 5.00000+ 0 2.20000+ 1 8.79427- 5 3.94213- 2 5.00000+ 0 2.40000+ 1 4.13528- 7 3.95484- 2 5.00000+ 0 2.70000+ 1 4.52127- 5 3.95101- 2 5.00000+ 0 2.90000+ 1 8.13285- 6 3.95280- 2 5.00000+ 0 3.00000+ 1 7.47065- 5 3.95318- 2 5.00000+ 0 4.10000+ 1 3.72173- 6 3.95527- 2 6.00000+ 0 6.00000+ 0 7.57176- 3 3.34602- 2 6.00000+ 0 8.00000+ 0 1.16871- 3 3.84680- 2 6.00000+ 0 1.00000+ 1 2.62364- 3 3.86362- 2 6.00000+ 0 1.10000+ 1 2.69416- 3 3.87604- 2 6.00000+ 0 1.30000+ 1 4.87663- 4 3.90552- 2 6.00000+ 0 1.40000+ 1 4.37360- 4 3.90823- 2 6.00000+ 0 1.60000+ 1 2.58021- 4 3.98253- 2 6.00000+ 0 1.80000+ 1 5.60853- 4 3.98907- 2 6.00000+ 0 1.90000+ 1 5.77273- 4 3.99180- 2 6.00000+ 0 2.10000+ 1 1.03372- 4 4.00267- 2 6.00000+ 0 2.20000+ 1 9.24875- 5 4.00316- 2 6.00000+ 0 2.40000+ 1 6.89167- 7 4.01587- 2 6.00000+ 0 2.70000+ 1 4.23160- 5 4.01204- 2 6.00000+ 0 2.90000+ 1 7.49872- 5 4.01383- 2 6.00000+ 0 3.00000+ 1 7.42986- 5 4.01421- 2 6.00000+ 0 4.10000+ 1 3.44593- 6 4.01630- 2 8.00000+ 0 8.00000+ 0 2.14199- 4 4.34758- 2 8.00000+ 0 1.00000+ 1 2.51151- 4 4.36440- 2 8.00000+ 0 1.10000+ 1 2.45083- 4 4.37682- 2 8.00000+ 0 1.30000+ 1 1.68170- 5 4.40630- 2 8.00000+ 0 1.40000+ 1 1.59892- 5 4.40901- 2 8.00000+ 0 1.60000+ 1 9.88260- 5 4.48331- 2 8.00000+ 0 1.80000+ 1 5.58236- 5 4.48985- 2 8.00000+ 0 1.90000+ 1 5.41717- 5 4.49258- 2 8.00000+ 0 2.10000+ 1 3.58382- 6 4.50345- 2 8.00000+ 0 2.20000+ 1 3.44601- 6 4.50394- 2 8.00000+ 0 2.70000+ 1 1.64031- 5 4.51282- 2 8.00000+ 0 2.90000+ 1 7.58118- 6 4.51461- 2 8.00000+ 0 3.00000+ 1 7.02953- 6 4.51499- 2 8.00000+ 0 4.10000+ 1 1.37842- 6 4.51708- 2 1.00000+ 1 1.00000+ 1 2.43987- 5 4.38122- 2 1.00000+ 1 1.10000+ 1 4.62455- 4 4.39364- 2 1.00000+ 1 1.30000+ 1 1.76442- 5 4.42312- 2 1.00000+ 1 1.40000+ 1 5.36204- 5 4.42583- 2 1.00000+ 1 1.60000+ 1 5.61021- 5 4.50013- 2 1.00000+ 1 1.80000+ 1 1.04759- 5 4.50667- 2 1.00000+ 1 1.90000+ 1 9.86911- 5 4.50940- 2 1.00000+ 1 2.10000+ 1 3.72169- 6 4.52027- 2 1.00000+ 1 2.20000+ 1 1.14411- 5 4.52076- 2 1.00000+ 1 2.70000+ 1 9.23498- 6 4.52964- 2 1.00000+ 1 2.90000+ 1 1.37844- 6 4.53143- 2 1.00000+ 1 3.00000+ 1 1.26809- 5 4.53181- 2 1.00000+ 1 4.10000+ 1 8.27047- 7 4.53390- 2 1.10000+ 1 1.10000+ 1 2.40948- 4 4.40606- 2 1.10000+ 1 1.30000+ 1 6.87820- 5 4.43554- 2 1.10000+ 1 1.40000+ 1 6.00991- 5 4.43825- 2 1.10000+ 1 1.60000+ 1 5.41726- 5 4.51255- 2 1.10000+ 1 1.80000+ 1 9.92463- 5 4.51909- 2 1.10000+ 1 1.90000+ 1 1.03376- 4 4.52182- 2 1.10000+ 1 2.10000+ 1 1.47486- 5 4.53269- 2 1.10000+ 1 2.20000+ 1 1.28193- 5 4.53318- 2 1.10000+ 1 2.40000+ 1 1.37844- 7 4.54589- 2 1.10000+ 1 2.70000+ 1 8.95955- 6 4.54206- 2 1.10000+ 1 2.90000+ 1 1.32332- 5 4.54385- 2 1.10000+ 1 3.00000+ 1 1.33705- 5 4.54423- 2 1.10000+ 1 4.10000+ 1 6.89194- 7 4.54632- 2 1.30000+ 1 1.30000+ 1 1.38284- 7 4.46502- 2 1.30000+ 1 1.40000+ 1 8.29691- 6 4.46773- 2 1.30000+ 1 1.60000+ 1 3.73359- 6 4.54203- 2 1.30000+ 1 1.80000+ 1 3.59533- 6 4.54857- 2 1.30000+ 1 1.90000+ 1 1.41050- 5 4.55130- 2 1.30000+ 1 2.20000+ 1 1.65936- 6 4.56266- 2 1.30000+ 1 2.70000+ 1 5.53112- 7 4.57154- 2 1.30000+ 1 2.90000+ 1 4.14845- 7 4.57333- 2 1.30000+ 1 3.00000+ 1 1.79762- 6 4.57371- 2 1.40000+ 1 1.40000+ 1 1.92977- 6 4.47044- 2 1.40000+ 1 1.60000+ 1 3.44602- 6 4.54474- 2 1.40000+ 1 1.80000+ 1 1.08887- 5 4.55128- 2 1.40000+ 1 1.90000+ 1 1.21295- 5 4.55401- 2 1.40000+ 1 2.10000+ 1 1.65405- 6 4.56488- 2 1.40000+ 1 2.20000+ 1 8.27036- 7 4.56537- 2 1.40000+ 1 2.70000+ 1 5.51342- 7 4.57425- 2 1.40000+ 1 2.90000+ 1 1.37842- 6 4.57604- 2 1.40000+ 1 3.00000+ 1 1.51623- 6 4.57642- 2 1.60000+ 1 1.60000+ 1 1.13776- 5 4.61905- 2 1.60000+ 1 1.80000+ 1 1.24740- 5 4.62558- 2 1.60000+ 1 1.90000+ 1 1.19258- 5 4.62832- 2 1.60000+ 1 2.10000+ 1 8.22456- 7 4.63918- 2 1.60000+ 1 2.20000+ 1 6.85368- 7 4.63967- 2 1.60000+ 1 2.70000+ 1 3.70103- 6 4.64855- 2 1.60000+ 1 2.90000+ 1 1.64489- 6 4.65034- 2 1.60000+ 1 3.00000+ 1 1.50784- 6 4.65072- 2 1.60000+ 1 4.10000+ 1 2.74148- 7 4.65281- 2 1.80000+ 1 1.80000+ 1 1.06605- 6 4.63211- 2 1.80000+ 1 1.90000+ 1 2.05199- 5 4.63485- 2 1.80000+ 1 2.10000+ 1 7.99482- 7 4.64572- 2 1.80000+ 1 2.20000+ 1 2.26524- 6 4.64620- 2 1.80000+ 1 2.70000+ 1 1.99870- 6 4.65508- 2 1.80000+ 1 2.90000+ 1 2.66490- 7 4.65688- 2 1.80000+ 1 3.00000+ 1 2.66490- 6 4.65725- 2 1.80000+ 1 4.10000+ 1 1.33250- 7 4.65935- 2 1.90000+ 1 1.90000+ 1 1.09942- 5 4.63759- 2 1.90000+ 1 2.10000+ 1 3.02320- 6 4.64845- 2 1.90000+ 1 2.20000+ 1 2.61093- 6 4.64894- 2 1.90000+ 1 2.70000+ 1 1.92387- 6 4.65782- 2 1.90000+ 1 2.90000+ 1 2.88571- 6 4.65961- 2 1.90000+ 1 3.00000+ 1 2.88571- 6 4.65999- 2 1.90000+ 1 4.10000+ 1 1.37420- 7 4.66208- 2 2.10000+ 1 2.20000+ 1 4.13511- 7 4.65981- 2 2.10000+ 1 2.70000+ 1 1.37840- 7 4.66869- 2 2.10000+ 1 2.90000+ 1 1.37840- 7 4.67048- 2 2.10000+ 1 3.00000+ 1 4.13511- 7 4.67086- 2 2.20000+ 1 2.20000+ 1 1.45270- 7 4.66030- 2 2.20000+ 1 2.70000+ 1 1.45270- 7 4.66917- 2 2.20000+ 1 2.90000+ 1 2.90531- 7 4.67097- 2 2.20000+ 1 3.00000+ 1 2.90531- 7 4.67135- 2 2.70000+ 1 2.70000+ 1 3.28897- 7 4.67805- 2 2.70000+ 1 2.90000+ 1 3.28897- 7 4.67985- 2 2.70000+ 1 3.00000+ 1 3.28897- 7 4.68022- 2 2.90000+ 1 3.00000+ 1 4.13521- 7 4.68202- 2 3.00000+ 1 3.00000+ 1 1.37840- 7 4.68240- 2 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.94711- 5 3.84100- 4 6.00000+ 0 7.57615- 4 9.94400- 4 1.00000+ 1 2.17351- 2 6.17040- 3 1.10000+ 1 3.17062- 2 6.29460- 3 1.30000+ 1 4.33753- 4 6.58940- 3 1.40000+ 1 6.48764- 4 6.61650- 3 1.80000+ 1 5.09003- 3 7.42487- 3 1.90000+ 1 7.71405- 3 7.45224- 3 2.10000+ 1 5.84004- 5 7.56090- 3 2.20000+ 1 8.97756- 5 7.56578- 3 2.90000+ 1 7.20135- 4 7.67251- 3 3.00000+ 1 1.06361- 3 7.67628- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.11884- 2 4.13300- 5 5.00000+ 0 1.80000+ 1 3.86747- 2 1.06670- 4 5.00000+ 0 1.90000+ 1 4.57306- 2 1.34040- 4 5.00000+ 0 2.10000+ 1 1.22184- 2 2.42700- 4 5.00000+ 0 2.20000+ 1 1.90537- 2 2.47580- 4 5.00000+ 0 2.40000+ 1 2.69250- 2 3.74730- 4 5.00000+ 0 2.70000+ 1 8.26883- 3 3.36360- 4 5.00000+ 0 2.90000+ 1 4.91054- 3 3.54310- 4 5.00000+ 0 3.00000+ 1 5.61986- 3 3.58080- 4 5.00000+ 0 4.10000+ 1 6.81420- 4 3.79010- 4 6.00000+ 0 1.60000+ 1 6.02552- 2 6.51630- 4 6.00000+ 0 1.80000+ 1 2.57250- 2 7.16970- 4 6.00000+ 0 1.90000+ 1 4.56796- 2 7.44340- 4 6.00000+ 0 2.10000+ 1 6.44603- 2 8.53000- 4 6.00000+ 0 2.20000+ 1 8.10161- 2 8.57880- 4 6.00000+ 0 2.40000+ 1 3.77610- 2 9.85030- 4 6.00000+ 0 2.70000+ 1 9.60542- 3 9.46660- 4 6.00000+ 0 2.90000+ 1 3.34944- 3 9.64610- 4 6.00000+ 0 3.00000+ 1 5.78719- 3 9.68380- 4 6.00000+ 0 4.10000+ 1 7.92990- 4 9.89310- 4 8.00000+ 0 8.00000+ 0 1.20195- 2 4.30210- 3 8.00000+ 0 1.00000+ 1 2.41025- 2 4.47030- 3 8.00000+ 0 1.10000+ 1 4.31566- 2 4.59450- 3 8.00000+ 0 1.30000+ 1 3.38790- 2 4.88930- 3 8.00000+ 0 1.40000+ 1 4.68699- 2 4.91640- 3 8.00000+ 0 1.60000+ 1 4.73032- 3 5.65943- 3 8.00000+ 0 1.80000+ 1 5.24332- 3 5.72477- 3 8.00000+ 0 1.90000+ 1 9.29165- 3 5.75214- 3 8.00000+ 0 2.10000+ 1 6.15335- 3 5.86080- 3 8.00000+ 0 2.20000+ 1 8.45629- 3 5.86568- 3 8.00000+ 0 2.40000+ 1 2.40229- 4 5.99283- 3 8.00000+ 0 2.70000+ 1 7.65711- 4 5.95446- 3 8.00000+ 0 2.90000+ 1 7.02952- 4 5.97241- 3 8.00000+ 0 3.00000+ 1 1.19671- 3 5.97618- 3 8.00000+ 0 4.10000+ 1 6.33866- 5 5.99711- 3 1.00000+ 1 1.00000+ 1 1.04586- 4 4.63850- 3 1.00000+ 1 1.10000+ 1 7.56177- 4 4.76270- 3 1.00000+ 1 1.30000+ 1 1.16245- 3 5.05750- 3 1.00000+ 1 1.40000+ 1 1.31017- 2 5.08460- 3 1.00000+ 1 1.60000+ 1 3.76688- 3 5.82763- 3 1.00000+ 1 1.80000+ 1 2.02834- 5 5.89297- 3 1.00000+ 1 1.90000+ 1 1.51493- 4 5.92034- 3 1.00000+ 1 2.10000+ 1 2.07902- 4 6.02900- 3 1.00000+ 1 2.20000+ 1 1.54083- 3 6.03388- 3 1.00000+ 1 2.40000+ 1 8.24014- 5 6.16103- 3 1.00000+ 1 2.70000+ 1 5.79351- 4 6.12266- 3 1.00000+ 1 2.90000+ 1 2.53531- 6 6.14061- 3 1.00000+ 1 3.00000+ 1 1.90157- 5 6.14438- 3 1.00000+ 1 4.10000+ 1 4.75389- 5 6.16531- 3 1.10000+ 1 1.10000+ 1 1.03068- 3 4.88690- 3 1.10000+ 1 1.30000+ 1 7.50636- 3 5.18170- 3 1.10000+ 1 1.40000+ 1 4.95365- 3 5.20880- 3 1.10000+ 1 1.60000+ 1 6.73224- 3 5.95183- 3 1.10000+ 1 1.80000+ 1 1.54662- 4 6.01717- 3 1.10000+ 1 1.90000+ 1 3.30244- 4 6.04454- 3 1.10000+ 1 2.10000+ 1 7.07395- 4 6.15320- 3 1.10000+ 1 2.20000+ 1 4.79191- 4 6.15808- 3 1.10000+ 1 2.40000+ 1 2.36446- 4 6.28523- 3 1.10000+ 1 2.70000+ 1 1.03451- 3 6.24686- 3 1.10000+ 1 2.90000+ 1 2.02839- 5 6.26481- 3 1.10000+ 1 3.00000+ 1 4.05680- 5 6.26858- 3 1.10000+ 1 4.10000+ 1 8.49370- 5 6.28951- 3 1.30000+ 1 1.30000+ 1 1.94911- 3 5.47650- 3 1.30000+ 1 1.40000+ 1 6.66378- 2 5.50360- 3 1.30000+ 1 1.60000+ 1 4.96066- 3 6.24663- 3 1.30000+ 1 1.80000+ 1 3.22639- 4 6.31197- 3 1.30000+ 1 1.90000+ 1 1.68539- 3 6.33934- 3 1.30000+ 1 2.10000+ 1 6.97899- 4 6.44800- 3 1.30000+ 1 2.20000+ 1 8.63527- 3 6.45288- 3 1.30000+ 1 2.40000+ 1 2.83339- 4 6.58003- 3 1.30000+ 1 2.70000+ 1 7.54322- 4 6.54166- 3 1.30000+ 1 2.90000+ 1 4.50064- 5 6.55961- 3 1.30000+ 1 3.00000+ 1 2.18048- 4 6.56338- 3 1.30000+ 1 4.10000+ 1 6.21183- 5 6.58431- 3 1.40000+ 1 1.40000+ 1 1.87102- 2 5.53070- 3 1.40000+ 1 1.60000+ 1 6.92011- 3 6.27373- 3 1.40000+ 1 1.80000+ 1 2.57483- 3 6.33907- 3 1.40000+ 1 1.90000+ 1 1.16945- 3 6.36644- 3 1.40000+ 1 2.10000+ 1 8.50606- 3 6.47510- 3 1.40000+ 1 2.20000+ 1 5.09442- 3 6.47998- 3 1.40000+ 1 2.40000+ 1 8.95057- 4 6.60713- 3 1.40000+ 1 2.70000+ 1 1.05539- 3 6.56876- 3 1.40000+ 1 2.90000+ 1 3.39138- 4 6.58671- 3 1.40000+ 1 3.00000+ 1 1.52760- 4 6.59048- 3 1.40000+ 1 4.10000+ 1 8.68422- 5 6.61141- 3 1.60000+ 1 1.60000+ 1 4.40529- 4 7.01676- 3 1.60000+ 1 1.80000+ 1 8.21501- 4 7.08210- 3 1.60000+ 1 1.90000+ 1 1.45220- 3 7.10947- 3 1.60000+ 1 2.10000+ 1 8.98843- 4 7.21813- 3 1.60000+ 1 2.20000+ 1 1.24180- 3 7.22301- 3 1.60000+ 1 2.40000+ 1 2.91580- 5 7.35016- 3 1.60000+ 1 2.70000+ 1 1.40716- 4 7.31179- 3 1.60000+ 1 2.90000+ 1 1.10293- 4 7.32974- 3 1.60000+ 1 3.00000+ 1 1.86990- 4 7.33351- 3 1.60000+ 1 4.10000+ 1 1.14092- 5 7.35444- 3 1.80000+ 1 1.80000+ 1 6.33889- 7 7.14744- 3 1.80000+ 1 1.90000+ 1 3.10597- 5 7.17481- 3 1.80000+ 1 2.10000+ 1 4.88083- 5 7.28347- 3 1.80000+ 1 2.20000+ 1 3.13126- 4 7.28835- 3 1.80000+ 1 2.40000+ 1 1.07764- 5 7.41550- 3 1.80000+ 1 2.70000+ 1 1.26135- 4 7.37713- 3 1.80000+ 1 3.00000+ 1 3.80320- 6 7.39885- 3 1.80000+ 1 4.10000+ 1 1.01416- 5 7.41978- 3 1.90000+ 1 1.90000+ 1 2.59879- 5 7.20218- 3 1.90000+ 1 2.10000+ 1 1.72409- 4 7.31084- 3 1.90000+ 1 2.20000+ 1 1.22346- 4 7.31572- 3 1.90000+ 1 2.40000+ 1 3.99346- 5 7.44287- 3 1.90000+ 1 2.70000+ 1 2.23117- 4 7.40450- 3 1.90000+ 1 2.90000+ 1 4.43705- 6 7.42245- 3 1.90000+ 1 3.00000+ 1 6.33890- 6 7.42622- 3 1.90000+ 1 4.10000+ 1 1.83826- 5 7.44715- 3 2.10000+ 1 2.10000+ 1 5.83175- 5 7.41950- 3 2.10000+ 1 2.20000+ 1 1.18981- 3 7.42438- 3 2.10000+ 1 2.40000+ 1 3.54968- 5 7.55153- 3 2.10000+ 1 2.70000+ 1 1.36284- 4 7.51316- 3 2.10000+ 1 2.90000+ 1 6.97278- 6 7.53111- 3 2.10000+ 1 3.00000+ 1 2.28197- 5 7.53488- 3 2.10000+ 1 4.10000+ 1 1.14093- 5 7.55581- 3 2.20000+ 1 2.20000+ 1 3.68279- 4 7.42926- 3 2.20000+ 1 2.40000+ 1 9.12777- 5 7.55641- 3 2.20000+ 1 2.70000+ 1 1.88895- 4 7.51804- 3 2.20000+ 1 2.90000+ 1 4.12024- 5 7.53599- 3 2.20000+ 1 3.00000+ 1 1.58473- 5 7.53976- 3 2.20000+ 1 4.10000+ 1 1.52134- 5 7.56069- 3 2.40000+ 1 2.40000+ 1 5.51437- 7 7.68356- 3 2.40000+ 1 2.70000+ 1 3.85991- 6 7.64519- 3 2.40000+ 1 2.90000+ 1 1.10281- 6 7.66314- 3 2.40000+ 1 3.00000+ 1 4.41148- 6 7.66691- 3 2.40000+ 1 4.10000+ 1 5.51437- 7 7.68784- 3 2.70000+ 1 2.70000+ 1 1.69043- 5 7.60682- 3 2.70000+ 1 2.90000+ 1 2.53579- 5 7.62477- 3 2.70000+ 1 3.00000+ 1 4.22638- 5 7.62854- 3 2.70000+ 1 4.10000+ 1 2.81753- 6 7.64947- 3 2.90000+ 1 3.00000+ 1 1.75935- 6 7.64649- 3 2.90000+ 1 4.10000+ 1 3.51848- 6 7.66742- 3 3.00000+ 1 3.00000+ 1 4.35304- 7 7.65026- 3 3.00000+ 1 4.10000+ 1 1.74111- 6 7.67119- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.69428- 7 6.10300- 4 8.00000+ 0 4.91137- 3 5.61810- 3 1.10000+ 1 9.21354- 5 5.91050- 3 1.30000+ 1 1.26459- 1 6.20530- 3 1.60000+ 1 9.05884- 4 6.97543- 3 1.90000+ 1 1.82499- 5 7.06814- 3 2.10000+ 1 2.17149- 2 7.17680- 3 2.40000+ 1 1.00679- 5 7.30883- 3 2.70000+ 1 1.48559- 4 7.27046- 3 3.00000+ 1 3.89638- 6 7.29218- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 9.38092- 3 2.67530- 4 6.00000+ 0 1.80000+ 1 4.85293- 2 3.32870- 4 6.00000+ 0 1.90000+ 1 1.60790- 2 3.60240- 4 6.00000+ 0 2.10000+ 1 6.07291- 2 4.68900- 4 6.00000+ 0 2.20000+ 1 2.20201- 2 4.73780- 4 6.00000+ 0 2.40000+ 1 1.20527- 3 6.00930- 4 6.00000+ 0 2.70000+ 1 1.40784- 3 5.62560- 4 6.00000+ 0 2.90000+ 1 6.13318- 3 5.80510- 4 6.00000+ 0 3.00000+ 1 2.04852- 3 5.84280- 4 6.00000+ 0 4.10000+ 1 1.15699- 4 6.05210- 4 8.00000+ 0 8.00000+ 0 8.97661- 4 3.91800- 3 8.00000+ 0 1.00000+ 1 2.37857- 2 4.08620- 3 8.00000+ 0 1.10000+ 1 2.30712- 3 4.21040- 3 8.00000+ 0 1.30000+ 1 2.23717- 3 4.50520- 3 8.00000+ 0 1.40000+ 1 3.00131- 3 4.53230- 3 8.00000+ 0 1.60000+ 1 3.25356- 4 5.27533- 3 8.00000+ 0 1.80000+ 1 3.49455- 3 5.34067- 3 8.00000+ 0 1.90000+ 1 4.41086- 4 5.36804- 3 8.00000+ 0 2.10000+ 1 2.91201- 4 5.47670- 3 8.00000+ 0 2.20000+ 1 3.33923- 4 5.48158- 3 8.00000+ 0 2.40000+ 1 6.36765- 5 5.60873- 3 8.00000+ 0 2.70000+ 1 5.20270- 5 5.57036- 3 8.00000+ 0 2.90000+ 1 4.37206- 4 5.58831- 3 8.00000+ 0 3.00000+ 1 5.59112- 5 5.59208- 3 8.00000+ 0 4.10000+ 1 3.88255- 6 5.61301- 3 1.00000+ 1 1.00000+ 1 2.38203- 2 4.25440- 3 1.00000+ 1 1.10000+ 1 7.11284- 2 4.37860- 3 1.00000+ 1 1.30000+ 1 3.80300- 2 4.67340- 3 1.00000+ 1 1.40000+ 1 6.24469- 2 4.70050- 3 1.00000+ 1 1.60000+ 1 5.61983- 3 5.44353- 3 1.00000+ 1 1.80000+ 1 8.82033- 3 5.50887- 3 1.00000+ 1 1.90000+ 1 1.50430- 2 5.53624- 3 1.00000+ 1 2.10000+ 1 6.89888- 3 5.64490- 3 1.00000+ 1 2.20000+ 1 1.13059- 2 5.64978- 3 1.00000+ 1 2.40000+ 1 2.66363- 4 5.77693- 3 1.00000+ 1 2.70000+ 1 9.34964- 4 5.73856- 3 1.00000+ 1 2.90000+ 1 1.15478- 3 5.75651- 3 1.00000+ 1 3.00000+ 1 1.93123- 3 5.76028- 3 1.00000+ 1 4.10000+ 1 7.76562- 5 5.78121- 3 1.10000+ 1 1.10000+ 1 1.81940- 3 4.50280- 3 1.10000+ 1 1.30000+ 1 4.27838- 2 4.79760- 3 1.10000+ 1 1.40000+ 1 5.84251- 3 4.82470- 3 1.10000+ 1 1.60000+ 1 4.65137- 4 5.56773- 3 1.10000+ 1 1.80000+ 1 1.08098- 2 5.63307- 3 1.10000+ 1 1.90000+ 1 6.51512- 4 5.66044- 3 1.10000+ 1 2.10000+ 1 6.59191- 3 5.76910- 3 1.10000+ 1 2.20000+ 1 8.47925- 4 5.77398- 3 1.10000+ 1 2.40000+ 1 1.62298- 4 5.90113- 3 1.10000+ 1 2.70000+ 1 7.53220- 5 5.86276- 3 1.10000+ 1 2.90000+ 1 1.36125- 3 5.88071- 3 1.10000+ 1 3.00000+ 1 8.15342- 5 5.88448- 3 1.10000+ 1 4.10000+ 1 6.21237- 6 5.90541- 3 1.30000+ 1 1.30000+ 1 3.94965- 2 5.09240- 3 1.30000+ 1 1.40000+ 1 1.66193- 1 5.11950- 3 1.30000+ 1 1.60000+ 1 5.34269- 4 5.86253- 3 1.30000+ 1 1.80000+ 1 5.73485- 3 5.92787- 3 1.30000+ 1 1.90000+ 1 8.49393- 3 5.95524- 3 1.30000+ 1 2.10000+ 1 1.21354- 2 6.06390- 3 1.30000+ 1 2.20000+ 1 2.74043- 2 6.06878- 3 1.30000+ 1 2.40000+ 1 1.07395- 3 6.19593- 3 1.30000+ 1 2.70000+ 1 8.93023- 5 6.15756- 3 1.30000+ 1 2.90000+ 1 7.26072- 4 6.17551- 3 1.30000+ 1 3.00000+ 1 1.07869- 3 6.17928- 3 1.30000+ 1 4.10000+ 1 7.76566- 6 6.20021- 3 1.40000+ 1 1.40000+ 1 7.95855- 3 5.14660- 3 1.40000+ 1 1.60000+ 1 5.88617- 4 5.88963- 3 1.40000+ 1 1.80000+ 1 8.35785- 3 5.95497- 3 1.40000+ 1 1.90000+ 1 1.06153- 3 5.98234- 3 1.40000+ 1 2.10000+ 1 2.13708- 2 6.09100- 3 1.40000+ 1 2.20000+ 1 2.38399- 3 6.09588- 3 1.40000+ 1 2.40000+ 1 4.37969- 4 6.22303- 3 1.40000+ 1 2.70000+ 1 9.47381- 5 6.18466- 3 1.40000+ 1 2.90000+ 1 1.02818- 3 6.20261- 3 1.40000+ 1 3.00000+ 1 1.32780- 4 6.20638- 3 1.40000+ 1 4.10000+ 1 7.76545- 6 6.22731- 3 1.60000+ 1 1.60000+ 1 2.87311- 5 6.63266- 3 1.60000+ 1 1.80000+ 1 8.29310- 4 6.69800- 3 1.60000+ 1 1.90000+ 1 8.92972- 5 6.72537- 3 1.60000+ 1 2.10000+ 1 6.67792- 5 6.83403- 3 1.60000+ 1 2.20000+ 1 6.67792- 5 6.83891- 3 1.60000+ 1 2.40000+ 1 1.32000- 5 6.96606- 3 1.60000+ 1 2.70000+ 1 9.31790- 6 6.92769- 3 1.60000+ 1 2.90000+ 1 1.04053- 4 6.94564- 3 1.60000+ 1 3.00000+ 1 1.16480- 5 6.94941- 3 1.60000+ 1 4.10000+ 1 7.76521- 7 6.97034- 3 1.80000+ 1 1.80000+ 1 7.62739- 4 6.76334- 3 1.80000+ 1 1.90000+ 1 2.23953- 3 6.79071- 3 1.80000+ 1 2.10000+ 1 1.00226- 3 6.89937- 3 1.80000+ 1 2.20000+ 1 1.49358- 3 6.90425- 3 1.80000+ 1 2.40000+ 1 3.19382- 5 7.03140- 3 1.80000+ 1 2.70000+ 1 1.35363- 4 6.99303- 3 1.80000+ 1 2.90000+ 1 1.98479- 4 7.01098- 3 1.80000+ 1 3.00000+ 1 2.87464- 4 7.01475- 3 1.80000+ 1 4.10000+ 1 1.14073- 5 7.03568- 3 1.90000+ 1 1.90000+ 1 5.95063- 5 6.81808- 3 1.90000+ 1 2.10000+ 1 1.33101- 3 6.92674- 3 1.90000+ 1 2.20000+ 1 1.59735- 4 6.93162- 3 1.90000+ 1 2.40000+ 1 2.58388- 5 7.05877- 3 1.90000+ 1 2.70000+ 1 1.48771- 5 7.02040- 3 1.90000+ 1 2.90000+ 1 2.90480- 4 7.03835- 3 1.90000+ 1 3.00000+ 1 1.48771- 5 7.04212- 3 1.90000+ 1 4.10000+ 1 1.56595- 6 7.06305- 3 2.10000+ 1 2.10000+ 1 9.21005- 4 7.03540- 3 2.10000+ 1 2.20000+ 1 3.64966- 3 7.04028- 3 2.10000+ 1 2.40000+ 1 1.14923- 4 7.16743- 3 2.10000+ 1 2.70000+ 1 1.08714- 5 7.12906- 3 2.10000+ 1 2.90000+ 1 1.28901- 4 7.14701- 3 2.10000+ 1 3.00000+ 1 1.67733- 4 7.15078- 3 2.10000+ 1 4.10000+ 1 7.76554- 7 7.17171- 3 2.20000+ 1 2.20000+ 1 2.34302- 4 7.04516- 3 2.20000+ 1 2.40000+ 1 6.56442- 5 7.17231- 3 2.20000+ 1 2.70000+ 1 1.41386- 5 7.13394- 3 2.20000+ 1 2.90000+ 1 2.44394- 4 7.15189- 3 2.20000+ 1 3.00000+ 1 2.62574- 5 7.15566- 3 2.20000+ 1 4.10000+ 1 1.00993- 6 7.17659- 3 2.40000+ 1 2.40000+ 1 1.59929- 6 7.29946- 3 2.40000+ 1 2.70000+ 1 2.39894- 6 7.26109- 3 2.40000+ 1 2.90000+ 1 3.99812- 6 7.27904- 3 2.40000+ 1 3.00000+ 1 3.19858- 6 7.28281- 3 2.70000+ 1 2.70000+ 1 1.24994- 6 7.22272- 3 2.70000+ 1 2.90000+ 1 2.74980- 5 7.24067- 3 2.70000+ 1 3.00000+ 1 2.49982- 6 7.24444- 3 2.90000+ 1 2.90000+ 1 2.23481- 5 7.25862- 3 2.90000+ 1 3.00000+ 1 6.31030- 5 7.26239- 3 2.90000+ 1 4.10000+ 1 2.62929- 6 7.28332- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 9.08094- 3 5.00780- 3 1.00000+ 1 5.87386- 5 5.17600- 3 1.10000+ 1 5.36936- 5 5.30020- 3 1.30000+ 1 1.19329- 2 5.59500- 3 1.40000+ 1 1.05569- 1 5.62210- 3 1.60000+ 1 1.12269- 3 6.36513- 3 1.80000+ 1 8.33774- 6 6.43047- 3 1.90000+ 1 8.05344- 6 6.45784- 3 2.10000+ 1 1.96849- 3 6.56650- 3 2.20000+ 1 1.76049- 2 6.57138- 3 2.40000+ 1 1.50069- 6 6.69853- 3 2.50000+ 1 8.59424- 6 6.69915- 3 2.70000+ 1 2.01869- 4 6.66016- 3 2.90000+ 1 1.80079- 6 6.67811- 3 3.00000+ 1 1.55729- 6 6.68188- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.19296- 3 3.30770- 3 8.00000+ 0 1.00000+ 1 7.74006- 4 3.47590- 3 8.00000+ 0 1.10000+ 1 2.68217- 2 3.60010- 3 8.00000+ 0 1.30000+ 1 2.72703- 3 3.89490- 3 8.00000+ 0 1.40000+ 1 3.32477- 3 3.92200- 3 8.00000+ 0 1.60000+ 1 4.33729- 4 4.66503- 3 8.00000+ 0 1.80000+ 1 1.36109- 4 4.73037- 3 8.00000+ 0 1.90000+ 1 3.91686- 3 4.75774- 3 8.00000+ 0 2.10000+ 1 2.51718- 4 4.86640- 3 8.00000+ 0 2.20000+ 1 2.77947- 4 4.87128- 3 8.00000+ 0 2.40000+ 1 8.28123- 5 4.99843- 3 8.00000+ 0 2.70000+ 1 6.88730- 5 4.96006- 3 8.00000+ 0 2.90000+ 1 1.72180- 5 4.97801- 3 8.00000+ 0 3.00000+ 1 4.72264- 4 4.98178- 3 8.00000+ 0 4.10000+ 1 5.73930- 6 5.00271- 3 1.00000+ 1 1.00000+ 1 2.22192- 4 3.64410- 3 1.00000+ 1 1.10000+ 1 4.48307- 2 3.76830- 3 1.00000+ 1 1.30000+ 1 2.73197- 3 4.06310- 3 1.00000+ 1 1.40000+ 1 2.44663- 2 4.09020- 3 1.00000+ 1 1.60000+ 1 1.51689- 4 4.83323- 3 1.00000+ 1 1.80000+ 1 8.03496- 5 4.89857- 3 1.00000+ 1 1.90000+ 1 6.79148- 3 4.92594- 3 1.00000+ 1 2.10000+ 1 4.56683- 4 5.03460- 3 1.00000+ 1 2.20000+ 1 3.49349- 3 5.03948- 3 1.00000+ 1 2.40000+ 1 9.26489- 5 5.16663- 3 1.00000+ 1 2.70000+ 1 2.45977- 5 5.12826- 3 1.00000+ 1 2.90000+ 1 1.06585- 5 5.14621- 3 1.00000+ 1 3.00000+ 1 8.24016- 4 5.14998- 3 1.00000+ 1 4.10000+ 1 1.63985- 6 5.17091- 3 1.10000+ 1 1.10000+ 1 6.13944- 2 3.89250- 3 1.10000+ 1 1.30000+ 1 6.30070- 2 4.18730- 3 1.10000+ 1 1.40000+ 1 9.26580- 2 4.21440- 3 1.10000+ 1 1.60000+ 1 6.26089- 3 4.95743- 3 1.10000+ 1 1.80000+ 1 9.30935- 3 5.02277- 3 1.10000+ 1 1.90000+ 1 2.22094- 2 5.05014- 3 1.10000+ 1 2.10000+ 1 1.09517- 2 5.15880- 3 1.10000+ 1 2.20000+ 1 1.58703- 2 5.16368- 3 1.10000+ 1 2.40000+ 1 4.25527- 4 5.29083- 3 1.10000+ 1 2.70000+ 1 1.03959- 3 5.25246- 3 1.10000+ 1 2.90000+ 1 1.23884- 3 5.27041- 3 1.10000+ 1 3.00000+ 1 2.78697- 3 5.27418- 3 1.10000+ 1 4.10000+ 1 8.60945- 5 5.29511- 3 1.30000+ 1 1.30000+ 1 9.11482- 3 4.48210- 3 1.30000+ 1 1.40000+ 1 1.73532- 1 4.50920- 3 1.30000+ 1 1.60000+ 1 6.02639- 4 5.25223- 3 1.30000+ 1 1.80000+ 1 5.68206- 4 5.31757- 3 1.30000+ 1 1.90000+ 1 8.85817- 3 5.34494- 3 1.30000+ 1 2.10000+ 1 2.77945- 3 5.45360- 3 1.30000+ 1 2.20000+ 1 2.24879- 2 5.45848- 3 1.30000+ 1 2.40000+ 1 2.41045- 4 5.58563- 3 1.30000+ 1 2.70000+ 1 9.92126- 5 5.54726- 3 1.30000+ 1 2.90000+ 1 7.54327- 5 5.56521- 3 1.30000+ 1 3.00000+ 1 1.06100- 3 5.56898- 3 1.30000+ 1 4.10000+ 1 8.19922- 6 5.58991- 3 1.40000+ 1 1.40000+ 1 1.17206- 1 4.53630- 3 1.40000+ 1 1.60000+ 1 7.75642- 4 5.27933- 3 1.40000+ 1 1.80000+ 1 4.70309- 3 5.34467- 3 1.40000+ 1 1.90000+ 1 1.46437- 2 5.37204- 3 1.40000+ 1 2.10000+ 1 2.67604- 2 5.48070- 3 1.40000+ 1 2.20000+ 1 3.41706- 2 5.48558- 3 1.40000+ 1 2.40000+ 1 2.57297- 3 5.61273- 3 1.40000+ 1 2.70000+ 1 1.29543- 4 5.57436- 3 1.40000+ 1 2.90000+ 1 6.17423- 4 5.59231- 3 1.40000+ 1 3.00000+ 1 1.79811- 3 5.59608- 3 1.40000+ 1 4.10000+ 1 1.06587- 5 5.61701- 3 1.60000+ 1 1.60000+ 1 3.93566- 5 6.02236- 3 1.60000+ 1 1.80000+ 1 2.70578- 5 6.08770- 3 1.60000+ 1 1.90000+ 1 9.16717- 4 6.11507- 3 1.60000+ 1 2.10000+ 1 5.98558- 5 6.22373- 3 1.60000+ 1 2.20000+ 1 7.05148- 5 6.22861- 3 1.60000+ 1 2.40000+ 1 1.22997- 5 6.35576- 3 1.60000+ 1 2.70000+ 1 1.22997- 5 6.31739- 3 1.60000+ 1 2.90000+ 1 3.27960- 6 6.33534- 3 1.60000+ 1 3.00000+ 1 1.10690- 4 6.33911- 3 1.60000+ 1 4.10000+ 1 8.19950- 7 6.36004- 3 1.80000+ 1 1.80000+ 1 6.47850- 6 6.15304- 3 1.80000+ 1 1.90000+ 1 1.38961- 3 6.18041- 3 1.80000+ 1 2.10000+ 1 9.15063- 5 6.28907- 3 1.80000+ 1 2.20000+ 1 6.87528- 4 6.29395- 3 1.80000+ 1 2.40000+ 1 1.29570- 5 6.42110- 3 1.80000+ 1 2.70000+ 1 4.04887- 6 6.38273- 3 1.80000+ 1 2.90000+ 1 1.61962- 6 6.40068- 3 1.80000+ 1 3.00000+ 1 1.68439- 4 6.40445- 3 1.90000+ 1 1.90000+ 1 1.80286- 3 6.20778- 3 1.90000+ 1 2.10000+ 1 1.43498- 3 6.31644- 3 1.90000+ 1 2.20000+ 1 2.30288- 3 6.32132- 3 1.90000+ 1 2.40000+ 1 4.57961- 5 6.44847- 3 1.90000+ 1 2.70000+ 1 1.41975- 4 6.41010- 3 1.90000+ 1 2.90000+ 1 1.74030- 4 6.42805- 3 1.90000+ 1 3.00000+ 1 4.49579- 4 6.43182- 3 1.90000+ 1 4.10000+ 1 1.14499- 5 6.45275- 3 2.10000+ 1 2.10000+ 1 2.05804- 4 6.42510- 3 2.10000+ 1 2.20000+ 1 3.58392- 3 6.42998- 3 2.10000+ 1 2.40000+ 1 2.54172- 5 6.55713- 3 2.10000+ 1 2.70000+ 1 9.83857- 6 6.51876- 3 2.10000+ 1 2.90000+ 1 1.22993- 5 6.53671- 3 2.10000+ 1 3.00000+ 1 1.84476- 4 6.54048- 3 2.10000+ 1 4.10000+ 1 8.19925- 7 6.56141- 3 2.20000+ 1 2.20000+ 1 2.73596- 3 6.43486- 3 2.20000+ 1 2.40000+ 1 2.92327- 4 6.56201- 3 2.20000+ 1 2.70000+ 1 1.25543- 5 6.52364- 3 2.20000+ 1 2.90000+ 1 1.00433- 4 6.54159- 3 2.20000+ 1 3.00000+ 1 3.30904- 4 6.54536- 3 2.20000+ 1 4.10000+ 1 8.96738- 7 6.56629- 3 2.40000+ 1 2.70000+ 1 1.60417- 6 6.65079- 3 2.40000+ 1 2.90000+ 1 1.60417- 6 6.66874- 3 2.40000+ 1 3.00000+ 1 5.61440- 6 6.67251- 3 2.70000+ 1 2.70000+ 1 1.25353- 6 6.61242- 3 2.70000+ 1 2.90000+ 1 1.25353- 6 6.63037- 3 2.70000+ 1 3.00000+ 1 2.75777- 5 6.63414- 3 2.90000+ 1 3.00000+ 1 4.36427- 5 6.65209- 3 3.00000+ 1 3.00000+ 1 7.83512- 5 6.65586- 3 3.00000+ 1 4.10000+ 1 4.23526- 6 6.67679- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.02090- 5 1.68200- 4 1.10000+ 1 1.09270- 4 2.92400- 4 1.80000+ 1 3.82760- 4 1.42267- 3 1.90000+ 1 4.63431- 4 1.45004- 3 2.90000+ 1 8.44635- 5 1.67031- 3 3.00000+ 1 9.55501- 5 1.67408- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 7.84286- 2 2.68000- 5 1.00000+ 1 2.20000+ 1 1.09929- 1 3.16800- 5 1.00000+ 1 2.40000+ 1 1.93669- 2 1.58830- 4 1.00000+ 1 2.50000+ 1 2.59557- 2 1.59450- 4 1.00000+ 1 2.70000+ 1 8.92089- 3 1.20460- 4 1.00000+ 1 2.90000+ 1 7.43857- 3 1.38410- 4 1.00000+ 1 3.00000+ 1 1.16939- 2 1.42180- 4 1.00000+ 1 4.10000+ 1 7.23093- 4 1.63110- 4 1.10000+ 1 1.80000+ 1 7.70484- 2 1.49700- 5 1.10000+ 1 1.90000+ 1 1.09317- 1 4.23400- 5 1.10000+ 1 2.10000+ 1 4.93649- 2 1.51000- 4 1.10000+ 1 2.20000+ 1 7.09050- 2 1.55880- 4 1.10000+ 1 2.40000+ 1 5.05602- 2 2.83030- 4 1.10000+ 1 2.50000+ 1 6.36088- 2 2.83650- 4 1.10000+ 1 2.70000+ 1 1.13251- 2 2.44660- 4 1.10000+ 1 2.90000+ 1 9.57293- 3 2.62610- 4 1.10000+ 1 3.00000+ 1 1.34838- 2 2.66380- 4 1.10000+ 1 4.10000+ 1 9.17568- 4 2.87310- 4 1.30000+ 1 1.60000+ 1 2.81013- 2 2.44430- 4 1.30000+ 1 1.80000+ 1 6.17410- 3 3.09770- 4 1.30000+ 1 1.90000+ 1 5.24994- 3 3.37140- 4 1.30000+ 1 2.10000+ 1 8.84678- 3 4.45800- 4 1.30000+ 1 2.20000+ 1 1.11026- 2 4.50680- 4 1.30000+ 1 2.40000+ 1 2.51464- 3 5.77830- 4 1.30000+ 1 2.50000+ 1 2.43724- 3 5.78450- 4 1.30000+ 1 2.70000+ 1 3.13111- 3 5.39460- 4 1.30000+ 1 2.90000+ 1 6.47734- 4 5.57410- 4 1.30000+ 1 3.00000+ 1 5.21726- 4 5.61180- 4 1.30000+ 1 4.10000+ 1 2.46864- 4 5.82110- 4 1.40000+ 1 1.60000+ 1 4.06710- 2 2.71530- 4 1.40000+ 1 1.80000+ 1 1.35329- 3 3.36870- 4 1.40000+ 1 1.90000+ 1 1.18943- 2 3.64240- 4 1.40000+ 1 2.10000+ 1 1.18888- 2 4.72900- 4 1.40000+ 1 2.20000+ 1 1.80793- 2 4.77780- 4 1.40000+ 1 2.40000+ 1 2.94288- 3 6.04930- 4 1.40000+ 1 2.50000+ 1 4.52468- 3 6.05550- 4 1.40000+ 1 2.70000+ 1 4.49181- 3 5.66560- 4 1.40000+ 1 2.90000+ 1 1.39015- 4 5.84510- 4 1.40000+ 1 3.00000+ 1 1.18241- 3 5.88280- 4 1.40000+ 1 4.10000+ 1 3.54208- 4 6.09210- 4 1.60000+ 1 1.60000+ 1 5.63204- 3 1.01456- 3 1.60000+ 1 1.80000+ 1 9.39756- 3 1.07990- 3 1.60000+ 1 1.90000+ 1 1.68948- 2 1.10727- 3 1.60000+ 1 2.10000+ 1 1.80658- 2 1.21593- 3 1.60000+ 1 2.20000+ 1 2.61234- 2 1.22081- 3 1.60000+ 1 2.40000+ 1 3.16787- 3 1.34796- 3 1.60000+ 1 2.50000+ 1 4.02621- 3 1.34858- 3 1.60000+ 1 2.70000+ 1 1.55145- 3 1.30959- 3 1.60000+ 1 2.90000+ 1 1.25525- 3 1.32754- 3 1.60000+ 1 3.00000+ 1 2.16791- 3 1.33131- 3 1.60000+ 1 4.10000+ 1 1.26433- 4 1.35224- 3 1.80000+ 1 1.80000+ 1 4.74302- 4 1.14524- 3 1.80000+ 1 1.90000+ 1 1.19993- 3 1.17261- 3 1.80000+ 1 2.10000+ 1 7.13889- 4 1.28127- 3 1.80000+ 1 2.20000+ 1 3.47911- 4 1.28615- 3 1.80000+ 1 2.40000+ 1 5.51397- 5 1.41330- 3 1.80000+ 1 2.50000+ 1 2.13729- 4 1.41392- 3 1.80000+ 1 2.70000+ 1 9.92550- 4 1.37493- 3 1.80000+ 1 2.90000+ 1 1.01499- 4 1.39288- 3 1.80000+ 1 3.00000+ 1 1.21020- 4 1.39665- 3 1.80000+ 1 4.10000+ 1 7.80760- 5 1.41758- 3 1.90000+ 1 1.90000+ 1 1.54757- 3 1.19998- 3 1.90000+ 1 2.10000+ 1 9.00123- 4 1.30864- 3 1.90000+ 1 2.20000+ 1 2.27721- 3 1.31352- 3 1.90000+ 1 2.40000+ 1 2.15171- 4 1.44067- 3 1.90000+ 1 2.50000+ 1 3.96626- 4 1.44129- 3 1.90000+ 1 2.70000+ 1 1.74233- 3 1.40230- 3 1.90000+ 1 2.90000+ 1 1.31578- 4 1.42025- 3 1.90000+ 1 3.00000+ 1 3.34401- 4 1.42402- 3 1.90000+ 1 4.10000+ 1 1.37277- 4 1.44495- 3 2.10000+ 1 2.10000+ 1 2.11319- 4 1.41730- 3 2.10000+ 1 2.20000+ 1 9.66548- 4 1.42218- 3 2.10000+ 1 2.40000+ 1 2.04500- 4 1.54933- 3 2.10000+ 1 2.50000+ 1 1.53967- 3 1.54995- 3 2.10000+ 1 2.70000+ 1 1.87714- 3 1.51096- 3 2.10000+ 1 2.90000+ 1 6.96289- 5 1.52891- 3 2.10000+ 1 3.00000+ 1 9.34899- 5 1.53268- 3 2.10000+ 1 4.10000+ 1 1.47537- 4 1.55361- 3 2.20000+ 1 2.20000+ 1 5.51120- 4 1.42706- 3 2.20000+ 1 2.40000+ 1 1.53650- 3 1.55421- 3 2.20000+ 1 2.50000+ 1 8.69910- 4 1.55483- 3 2.20000+ 1 2.70000+ 1 2.68950- 3 1.51584- 3 2.20000+ 1 2.90000+ 1 3.42931- 5 1.53379- 3 2.20000+ 1 3.00000+ 1 2.34739- 4 1.53756- 3 2.20000+ 1 4.10000+ 1 2.11557- 4 1.55849- 3 2.40000+ 1 2.40000+ 1 5.11615- 5 1.68136- 3 2.40000+ 1 2.50000+ 1 5.56896- 4 1.68198- 3 2.40000+ 1 2.70000+ 1 3.06471- 4 1.64299- 3 2.40000+ 1 2.90000+ 1 5.41165- 6 1.66094- 3 2.40000+ 1 3.00000+ 1 2.06611- 5 1.66471- 3 2.40000+ 1 4.10000+ 1 2.41054- 5 1.68564- 3 2.50000+ 1 2.50000+ 1 1.41473- 4 1.68260- 3 2.50000+ 1 2.70000+ 1 3.86359- 4 1.64361- 3 2.50000+ 1 2.90000+ 1 2.58559- 5 1.66156- 3 2.50000+ 1 3.00000+ 1 3.65867- 5 1.66533- 3 2.50000+ 1 4.10000+ 1 3.02474- 5 1.68626- 3 2.70000+ 1 2.70000+ 1 1.04371- 4 1.60462- 3 2.70000+ 1 2.90000+ 1 1.43184- 4 1.62257- 3 2.70000+ 1 3.00000+ 1 2.47025- 4 1.62634- 3 2.70000+ 1 4.10000+ 1 1.67832- 5 1.64727- 3 2.90000+ 1 2.90000+ 1 5.68038- 6 1.64052- 3 2.90000+ 1 3.00000+ 1 1.39422- 5 1.64429- 3 2.90000+ 1 4.10000+ 1 1.08440- 5 1.66522- 3 3.00000+ 1 3.00000+ 1 2.25072- 5 1.64806- 3 3.00000+ 1 4.10000+ 1 2.25072- 5 1.66899- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.76616- 4 4.19000- 4 1.60000+ 1 3.97059- 4 1.18913- 3 2.10000+ 1 1.89628- 3 1.39050- 3 2.70000+ 1 7.03660- 5 1.48416- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 1.48927- 2 1.14830- 4 1.10000+ 1 2.50000+ 1 1.71625- 2 1.15450- 4 1.10000+ 1 2.70000+ 1 6.20256- 3 7.64600- 5 1.10000+ 1 2.90000+ 1 6.21881- 3 9.44100- 5 1.10000+ 1 3.00000+ 1 6.70369- 3 9.81800- 5 1.10000+ 1 4.10000+ 1 4.84201- 4 1.19110- 4 1.30000+ 1 1.60000+ 1 9.39764- 2 7.62300- 5 1.30000+ 1 1.80000+ 1 9.40972- 2 1.41570- 4 1.30000+ 1 1.90000+ 1 1.26825- 1 1.68940- 4 1.30000+ 1 2.10000+ 1 4.12282- 2 2.77600- 4 1.30000+ 1 2.20000+ 1 4.67448- 2 2.82480- 4 1.30000+ 1 2.40000+ 1 7.10973- 2 4.09630- 4 1.30000+ 1 2.50000+ 1 1.06932- 1 4.10250- 4 1.30000+ 1 2.70000+ 1 1.55224- 2 3.71260- 4 1.30000+ 1 2.90000+ 1 1.08845- 2 3.89210- 4 1.30000+ 1 3.00000+ 1 1.55076- 2 3.92980- 4 1.30000+ 1 4.10000+ 1 1.29248- 3 4.13910- 4 1.40000+ 1 1.60000+ 1 1.58551- 2 1.03330- 4 1.40000+ 1 1.80000+ 1 1.09663- 1 1.68670- 4 1.40000+ 1 1.90000+ 1 1.08261- 2 1.96040- 4 1.40000+ 1 2.10000+ 1 1.85622- 3 3.04700- 4 1.40000+ 1 2.20000+ 1 5.39009- 3 3.09580- 4 1.40000+ 1 2.40000+ 1 2.10577- 3 4.36730- 4 1.40000+ 1 2.50000+ 1 1.73308- 3 4.37350- 4 1.40000+ 1 2.70000+ 1 1.74060- 3 3.98360- 4 1.40000+ 1 2.90000+ 1 1.03200- 2 4.16310- 4 1.40000+ 1 3.00000+ 1 1.21143- 3 4.20080- 4 1.40000+ 1 4.10000+ 1 1.37887- 4 4.41010- 4 1.60000+ 1 1.60000+ 1 8.13030- 4 8.46360- 4 1.60000+ 1 1.80000+ 1 1.12703- 2 9.11700- 4 1.60000+ 1 1.90000+ 1 1.80644- 3 9.39070- 4 1.60000+ 1 2.10000+ 1 3.77558- 4 1.04773- 3 1.60000+ 1 2.20000+ 1 1.28792- 3 1.05261- 3 1.60000+ 1 2.40000+ 1 4.12672- 5 1.17976- 3 1.60000+ 1 2.50000+ 1 2.47600- 4 1.18038- 3 1.60000+ 1 2.70000+ 1 2.11882- 4 1.14139- 3 1.60000+ 1 2.90000+ 1 1.01938- 3 1.15934- 3 1.60000+ 1 3.00000+ 1 2.08800- 4 1.16311- 3 1.60000+ 1 4.10000+ 1 1.66312- 5 1.18404- 3 1.80000+ 1 1.80000+ 1 8.57028- 3 9.77040- 4 1.80000+ 1 1.90000+ 1 2.60976- 2 1.00441- 3 1.80000+ 1 2.10000+ 1 2.42249- 2 1.11307- 3 1.80000+ 1 2.20000+ 1 3.99611- 2 1.11795- 3 1.80000+ 1 2.40000+ 1 3.54627- 3 1.24510- 3 1.80000+ 1 2.50000+ 1 6.15930- 3 1.24572- 3 1.80000+ 1 2.70000+ 1 1.91904- 3 1.20673- 3 1.80000+ 1 2.90000+ 1 1.94322- 3 1.22468- 3 1.80000+ 1 3.00000+ 1 3.32117- 3 1.22845- 3 1.80000+ 1 4.10000+ 1 1.59336- 4 1.24938- 3 1.90000+ 1 1.90000+ 1 7.70859- 4 1.03178- 3 1.90000+ 1 2.10000+ 1 2.27519- 3 1.14044- 3 1.90000+ 1 2.20000+ 1 1.75866- 3 1.14532- 3 1.90000+ 1 2.40000+ 1 2.75330- 3 1.27247- 3 1.90000+ 1 2.50000+ 1 8.02153- 4 1.27309- 3 1.90000+ 1 2.70000+ 1 2.20446- 4 1.23410- 3 1.90000+ 1 2.90000+ 1 2.57461- 3 1.25205- 3 1.90000+ 1 3.00000+ 1 1.65329- 4 1.25582- 3 1.90000+ 1 4.10000+ 1 1.76883- 5 1.27675- 3 2.10000+ 1 2.10000+ 1 8.20273- 4 1.24910- 3 2.10000+ 1 2.20000+ 1 2.36314- 3 1.25398- 3 2.10000+ 1 2.40000+ 1 3.31537- 4 1.38113- 3 2.10000+ 1 2.50000+ 1 6.00949- 4 1.38175- 3 2.10000+ 1 2.70000+ 1 5.70517- 5 1.34276- 3 2.10000+ 1 2.90000+ 1 2.18393- 3 1.36071- 3 2.10000+ 1 3.00000+ 1 2.28204- 4 1.36448- 3 2.10000+ 1 4.10000+ 1 5.07134- 6 1.38541- 3 2.20000+ 1 2.20000+ 1 5.34289- 4 1.25886- 3 2.20000+ 1 2.40000+ 1 1.12306- 3 1.38601- 3 2.20000+ 1 2.50000+ 1 2.35624- 4 1.38663- 3 2.20000+ 1 2.70000+ 1 1.64024- 4 1.34764- 3 2.20000+ 1 2.90000+ 1 3.52945- 3 1.36559- 3 2.20000+ 1 3.00000+ 1 1.57899- 4 1.36936- 3 2.20000+ 1 4.10000+ 1 1.34645- 5 1.39029- 3 2.40000+ 1 2.40000+ 1 1.56575- 4 1.51316- 3 2.40000+ 1 2.50000+ 1 1.40325- 3 1.51378- 3 2.40000+ 1 2.70000+ 1 2.40890- 6 1.47479- 3 2.40000+ 1 2.90000+ 1 2.78239- 4 1.49274- 3 2.40000+ 1 3.00000+ 1 2.89083- 4 1.49651- 3 2.50000+ 1 2.50000+ 1 5.89518- 5 1.51440- 3 2.50000+ 1 2.70000+ 1 3.39422- 5 1.47541- 3 2.50000+ 1 2.90000+ 1 4.78747- 4 1.49336- 3 2.50000+ 1 3.00000+ 1 7.50275- 5 1.49713- 3 2.50000+ 1 4.10000+ 1 2.97731- 6 1.51806- 3 2.70000+ 1 2.70000+ 1 1.38018- 5 1.43642- 3 2.70000+ 1 2.90000+ 1 1.71274- 4 1.45437- 3 2.70000+ 1 3.00000+ 1 2.38404- 5 1.45814- 3 2.70000+ 1 4.10000+ 1 2.50929- 6 1.47907- 3 2.90000+ 1 2.90000+ 1 1.55732- 4 1.47232- 3 2.90000+ 1 3.00000+ 1 4.56817- 4 1.47609- 3 2.90000+ 1 4.10000+ 1 2.17082- 5 1.49702- 3 3.00000+ 1 3.00000+ 1 2.75843- 5 1.47986- 3 3.00000+ 1 4.10000+ 1 6.36543- 6 1.50079- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.81716- 5 2.94800- 4 1.40000+ 1 2.19940- 4 3.21900- 4 1.60000+ 1 5.43516- 4 1.06493- 3 2.10000+ 1 2.47485- 4 1.26630- 3 2.20000+ 1 2.01118- 3 1.27118- 3 2.70000+ 1 9.77374- 5 1.35996- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.52670- 2 1.73700- 5 1.30000+ 1 1.90000+ 1 8.03410- 2 4.47400- 5 1.30000+ 1 2.10000+ 1 1.24393- 2 1.53400- 4 1.30000+ 1 2.20000+ 1 1.05122- 2 1.58280- 4 1.30000+ 1 2.40000+ 1 7.56722- 3 2.85430- 4 1.30000+ 1 2.50000+ 1 1.11873- 2 2.86050- 4 1.30000+ 1 2.70000+ 1 2.72408- 3 2.47060- 4 1.30000+ 1 2.90000+ 1 1.87734- 3 2.65010- 4 1.30000+ 1 3.00000+ 1 7.90681- 3 2.68780- 4 1.30000+ 1 4.10000+ 1 2.18664- 4 2.89710- 4 1.40000+ 1 1.80000+ 1 1.03819- 1 4.44700- 5 1.40000+ 1 1.90000+ 1 1.81051- 1 7.18400- 5 1.40000+ 1 2.10000+ 1 5.37899- 2 1.80500- 4 1.40000+ 1 2.20000+ 1 8.19178- 2 1.85380- 4 1.40000+ 1 2.40000+ 1 7.26520- 2 3.12530- 4 1.40000+ 1 2.50000+ 1 8.65464- 2 3.13150- 4 1.40000+ 1 2.70000+ 1 1.58405- 2 2.74160- 4 1.40000+ 1 2.90000+ 1 1.28432- 2 2.92110- 4 1.40000+ 1 3.00000+ 1 2.04463- 2 2.95880- 4 1.40000+ 1 4.10000+ 1 1.28484- 3 3.16810- 4 1.60000+ 1 1.60000+ 1 7.51239- 4 7.22160- 4 1.60000+ 1 1.80000+ 1 1.11848- 3 7.87500- 4 1.60000+ 1 1.90000+ 1 1.64503- 2 8.14870- 4 1.60000+ 1 2.10000+ 1 9.89144- 4 9.23530- 4 1.60000+ 1 2.20000+ 1 1.07295- 3 9.28410- 4 1.60000+ 1 2.40000+ 1 3.81613- 4 1.05556- 3 1.60000+ 1 2.50000+ 1 5.78004- 4 1.05618- 3 1.60000+ 1 2.70000+ 1 1.94794- 4 1.01719- 3 1.60000+ 1 2.90000+ 1 1.22942- 4 1.03514- 3 1.60000+ 1 3.00000+ 1 1.46014- 3 1.03891- 3 1.60000+ 1 4.10000+ 1 1.59665- 5 1.05984- 3 1.80000+ 1 1.80000+ 1 1.58803- 4 8.52840- 4 1.80000+ 1 1.90000+ 1 1.96491- 2 8.80210- 4 1.80000+ 1 2.10000+ 1 5.00959- 4 9.88870- 4 1.80000+ 1 2.20000+ 1 3.49868- 3 9.93750- 4 1.80000+ 1 2.40000+ 1 4.26498- 4 1.12090- 3 1.80000+ 1 2.50000+ 1 2.53526- 3 1.12152- 3 1.80000+ 1 2.70000+ 1 1.31790- 4 1.08253- 3 1.80000+ 1 2.90000+ 1 3.19238- 5 1.10048- 3 1.80000+ 1 3.00000+ 1 1.76564- 3 1.10425- 3 1.80000+ 1 4.10000+ 1 1.06415- 5 1.12518- 3 1.90000+ 1 1.90000+ 1 2.68767- 2 9.07580- 4 1.90000+ 1 2.10000+ 1 3.65503- 2 1.01624- 3 1.90000+ 1 2.20000+ 1 4.91615- 2 1.02112- 3 1.90000+ 1 2.40000+ 1 7.55095- 3 1.14827- 3 1.90000+ 1 2.50000+ 1 8.59827- 3 1.14889- 3 1.90000+ 1 2.70000+ 1 2.59524- 3 1.10990- 3 1.90000+ 1 2.90000+ 1 2.46772- 3 1.12785- 3 1.90000+ 1 3.00000+ 1 5.82582- 3 1.13162- 3 1.90000+ 1 4.10000+ 1 2.14964- 4 1.15255- 3 2.10000+ 1 2.10000+ 1 2.42563- 4 1.12490- 3 2.10000+ 1 2.20000+ 1 4.13465- 3 1.12978- 3 2.10000+ 1 2.40000+ 1 1.60700- 4 1.25693- 3 2.10000+ 1 2.50000+ 1 2.02085- 3 1.25755- 3 2.10000+ 1 2.70000+ 1 1.01574- 4 1.21856- 3 2.10000+ 1 2.90000+ 1 3.79010- 5 1.23651- 3 2.10000+ 1 3.00000+ 1 3.15922- 3 1.24028- 3 2.10000+ 1 4.10000+ 1 8.33801- 6 1.26121- 3 2.20000+ 1 2.20000+ 1 2.03367- 3 1.13466- 3 2.20000+ 1 2.40000+ 1 1.51466- 3 1.26181- 3 2.20000+ 1 2.50000+ 1 1.34530- 3 1.26243- 3 2.20000+ 1 2.70000+ 1 1.09493- 4 1.22344- 3 2.20000+ 1 2.90000+ 1 2.67160- 4 1.24139- 3 2.20000+ 1 3.00000+ 1 4.05509- 3 1.24516- 3 2.20000+ 1 4.10000+ 1 8.75961- 6 1.26609- 3 2.40000+ 1 2.40000+ 1 4.90361- 5 1.38896- 3 2.40000+ 1 2.50000+ 1 1.86939- 3 1.38958- 3 2.40000+ 1 2.70000+ 1 3.84712- 5 1.35059- 3 2.40000+ 1 2.90000+ 1 4.37557- 5 1.36854- 3 2.40000+ 1 3.00000+ 1 6.17075- 4 1.37231- 3 2.40000+ 1 4.10000+ 1 3.01740- 6 1.39324- 3 2.50000+ 1 2.50000+ 1 5.81964- 4 1.39020- 3 2.50000+ 1 2.70000+ 1 4.66788- 5 1.35121- 3 2.50000+ 1 2.90000+ 1 2.60498- 4 1.36916- 3 2.50000+ 1 3.00000+ 1 7.18997- 4 1.37293- 3 2.50000+ 1 4.10000+ 1 3.76447- 6 1.39386- 3 2.70000+ 1 2.70000+ 1 1.51934- 5 1.31222- 3 2.70000+ 1 2.90000+ 1 1.70927- 5 1.33017- 3 2.70000+ 1 3.00000+ 1 2.80156- 4 1.33394- 3 2.70000+ 1 4.10000+ 1 2.84882- 6 1.35487- 3 2.90000+ 1 2.90000+ 1 2.38165- 6 1.34812- 3 2.90000+ 1 3.00000+ 1 3.39377- 4 1.35189- 3 2.90000+ 1 4.10000+ 1 1.19086- 6 1.37282- 3 3.00000+ 1 3.00000+ 1 8.02920- 4 1.35566- 3 3.00000+ 1 4.10000+ 1 4.92882- 5 1.37659- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.90345- 3 8.35470- 4 1.90000+ 1 5.36461- 4 8.62840- 4 2.40000+ 1 1.34573- 3 1.10353- 3 2.90000+ 1 6.80961- 4 1.08311- 3 3.00000+ 1 9.54735- 5 1.08688- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 7.12296- 2 1.77300- 5 1.40000+ 1 2.50000+ 1 1.09689- 2 1.83500- 5 1.40000+ 1 3.00000+ 1 2.85994- 3 1.08000- 6 1.40000+ 1 4.10000+ 1 2.39073- 4 2.20100- 5 1.60000+ 1 1.60000+ 1 2.06675- 5 4.27360- 4 1.60000+ 1 1.80000+ 1 3.42197- 3 4.92700- 4 1.60000+ 1 1.90000+ 1 2.38566- 3 5.20070- 4 1.60000+ 1 2.10000+ 1 7.90344- 2 6.28730- 4 1.60000+ 1 2.20000+ 1 1.00330- 2 6.33610- 4 1.60000+ 1 2.40000+ 1 7.96609- 3 7.60760- 4 1.60000+ 1 2.50000+ 1 2.72216- 3 7.61380- 4 1.60000+ 1 2.70000+ 1 2.65736- 5 7.22390- 4 1.60000+ 1 2.90000+ 1 3.57273- 4 7.40340- 4 1.60000+ 1 3.00000+ 1 1.94876- 4 7.44110- 4 1.60000+ 1 4.10000+ 1 2.95254- 6 7.65040- 4 1.80000+ 1 1.80000+ 1 1.73597- 3 5.58040- 4 1.80000+ 1 1.90000+ 1 1.21280- 2 5.85410- 4 1.80000+ 1 2.10000+ 1 6.66824- 2 6.94070- 4 1.80000+ 1 2.20000+ 1 5.74528- 3 6.98950- 4 1.80000+ 1 2.40000+ 1 5.15192- 3 8.26100- 4 1.80000+ 1 2.50000+ 1 2.88163- 3 8.26720- 4 1.80000+ 1 2.70000+ 1 3.57244- 4 7.87730- 4 1.80000+ 1 2.90000+ 1 3.77895- 4 8.05680- 4 1.80000+ 1 3.00000+ 1 1.16615- 3 8.09450- 4 1.80000+ 1 4.10000+ 1 2.65715- 5 8.30380- 4 1.90000+ 1 1.90000+ 1 4.48472- 3 6.12780- 4 1.90000+ 1 2.10000+ 1 1.44546- 1 7.21440- 4 1.90000+ 1 2.20000+ 1 5.41180- 3 7.26320- 4 1.90000+ 1 2.40000+ 1 3.58724- 3 8.53470- 4 1.90000+ 1 2.50000+ 1 1.67099- 3 8.54090- 4 1.90000+ 1 2.70000+ 1 2.83429- 4 8.15100- 4 1.90000+ 1 2.90000+ 1 1.12778- 3 8.33050- 4 1.90000+ 1 3.00000+ 1 8.32593- 4 8.36820- 4 1.90000+ 1 4.10000+ 1 2.36194- 5 8.57750- 4 2.10000+ 1 2.10000+ 1 1.19872- 1 8.30100- 4 2.10000+ 1 2.20000+ 1 2.44656- 1 8.34980- 4 2.10000+ 1 2.40000+ 1 2.97833- 2 9.62130- 4 2.10000+ 1 2.50000+ 1 3.89097- 2 9.62750- 4 2.10000+ 1 2.70000+ 1 1.17538- 2 9.23760- 4 2.10000+ 1 2.90000+ 1 8.80094- 3 9.41710- 4 2.10000+ 1 3.00000+ 1 1.79337- 2 9.45480- 4 2.10000+ 1 4.10000+ 1 9.65424- 4 9.66410- 4 2.20000+ 1 2.20000+ 1 4.01821- 3 8.39860- 4 2.20000+ 1 2.40000+ 1 2.90427- 2 9.67010- 4 2.20000+ 1 2.50000+ 1 1.75974- 3 9.67630- 4 2.20000+ 1 2.70000+ 1 8.47341- 4 9.28640- 4 2.20000+ 1 2.90000+ 1 5.07818- 4 9.46590- 4 2.20000+ 1 3.00000+ 1 5.49158- 4 9.50360- 4 2.20000+ 1 4.10000+ 1 6.49543- 5 9.71290- 4 2.40000+ 1 2.40000+ 1 5.97010- 3 1.09416- 3 2.40000+ 1 2.50000+ 1 2.39039- 2 1.09478- 3 2.40000+ 1 2.70000+ 1 1.20110- 3 1.05579- 3 2.40000+ 1 2.90000+ 1 5.45694- 4 1.07374- 3 2.40000+ 1 3.00000+ 1 4.27058- 4 1.07751- 3 2.40000+ 1 4.10000+ 1 9.78695- 5 1.09844- 3 2.50000+ 1 2.50000+ 1 4.13313- 4 1.09540- 3 2.50000+ 1 2.70000+ 1 2.92272- 4 1.05641- 3 2.50000+ 1 2.90000+ 1 1.83054- 4 1.07436- 3 2.50000+ 1 3.00000+ 1 1.86001- 4 1.07813- 3 2.50000+ 1 4.10000+ 1 2.36176- 5 1.09906- 3 2.70000+ 1 2.70000+ 1 9.21124- 6 1.01742- 3 2.70000+ 1 2.90000+ 1 1.28960- 4 1.03537- 3 2.70000+ 1 3.00000+ 1 7.36903- 5 1.03914- 3 2.90000+ 1 2.90000+ 1 6.40493- 5 1.05332- 3 2.90000+ 1 3.00000+ 1 3.56853- 4 1.05709- 3 2.90000+ 1 4.10000+ 1 9.15002- 6 1.07802- 3 3.00000+ 1 3.00000+ 1 3.75827- 4 1.06086- 3 3.00000+ 1 4.10000+ 1 2.68443- 5 1.08179- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.27581- 3 8.35740- 4 2.40000+ 1 7.73872- 5 1.07643- 3 2.50000+ 1 1.50260- 3 1.07705- 3 3.00000+ 1 8.36453- 4 1.05978- 3 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 1.01462- 3 4.65600- 4 1.60000+ 1 1.90000+ 1 5.65193- 3 4.92970- 4 1.60000+ 1 2.10000+ 1 8.27871- 3 6.01630- 4 1.60000+ 1 2.20000+ 1 9.04114- 2 6.06510- 4 1.60000+ 1 2.40000+ 1 2.78161- 3 7.33660- 4 1.60000+ 1 2.50000+ 1 9.07832- 3 7.34280- 4 1.60000+ 1 2.70000+ 1 2.21269- 5 6.95290- 4 1.60000+ 1 2.90000+ 1 5.68972- 5 7.13240- 4 1.60000+ 1 3.00000+ 1 5.21569- 4 7.17010- 4 1.60000+ 1 4.10000+ 1 3.16101- 6 7.37940- 4 1.80000+ 1 1.80000+ 1 1.26432- 5 5.30940- 4 1.80000+ 1 1.90000+ 1 1.32643- 2 5.58310- 4 1.80000+ 1 2.10000+ 1 8.25014- 4 6.66970- 4 1.80000+ 1 2.20000+ 1 8.91695- 2 6.71850- 4 1.80000+ 1 2.40000+ 1 1.23282- 3 7.99000- 4 1.80000+ 1 2.50000+ 1 4.41910- 3 7.99620- 4 1.80000+ 1 2.70000+ 1 1.01152- 4 7.60630- 4 1.80000+ 1 2.90000+ 1 6.32192- 6 7.78580- 4 1.80000+ 1 3.00000+ 1 1.22006- 3 7.82350- 4 1.80000+ 1 4.10000+ 1 9.48277- 6 8.03280- 4 1.90000+ 1 1.90000+ 1 1.02481- 2 5.85680- 4 1.90000+ 1 2.10000+ 1 8.32935- 3 6.94340- 4 1.90000+ 1 2.20000+ 1 1.44290- 1 6.99220- 4 1.90000+ 1 2.40000+ 1 2.13376- 3 8.26370- 4 1.90000+ 1 2.50000+ 1 5.08925- 3 8.26990- 4 1.90000+ 1 2.70000+ 1 6.57493- 4 7.88000- 4 1.90000+ 1 2.90000+ 1 1.19168- 3 8.05950- 4 1.90000+ 1 3.00000+ 1 1.95043- 3 8.09720- 4 1.90000+ 1 4.10000+ 1 5.05764- 5 8.30650- 4 2.10000+ 1 2.10000+ 1 1.78919- 3 8.03000- 4 2.10000+ 1 2.20000+ 1 1.84692- 1 8.07880- 4 2.10000+ 1 2.40000+ 1 1.46677- 3 9.35030- 4 2.10000+ 1 2.50000+ 1 1.92039- 2 9.35650- 4 2.10000+ 1 2.70000+ 1 6.82806- 4 8.96660- 4 2.10000+ 1 2.90000+ 1 1.10639- 4 9.14610- 4 2.10000+ 1 3.00000+ 1 7.61842- 4 9.18380- 4 2.10000+ 1 4.10000+ 1 5.37395- 5 9.39310- 4 2.20000+ 1 2.20000+ 1 2.11993- 1 8.12760- 4 2.20000+ 1 2.40000+ 1 3.56355- 2 9.39910- 4 2.20000+ 1 2.50000+ 1 5.26985- 2 9.40530- 4 2.20000+ 1 2.70000+ 1 1.30455- 2 9.01540- 4 2.20000+ 1 2.90000+ 1 1.13289- 2 9.19490- 4 2.20000+ 1 3.00000+ 1 1.80211- 2 9.23260- 4 2.20000+ 1 4.10000+ 1 1.06848- 3 9.44190- 4 2.40000+ 1 2.40000+ 1 4.94433- 4 1.06706- 3 2.40000+ 1 2.50000+ 1 2.17390- 2 1.06768- 3 2.40000+ 1 2.70000+ 1 3.18982- 4 1.02869- 3 2.40000+ 1 2.90000+ 1 1.46730- 4 1.04664- 3 2.40000+ 1 3.00000+ 1 1.91376- 4 1.05041- 3 2.40000+ 1 4.10000+ 1 2.55194- 5 1.07134- 3 2.50000+ 1 2.50000+ 1 1.19707- 2 1.06830- 3 2.50000+ 1 2.70000+ 1 1.32649- 3 1.02931- 3 2.50000+ 1 2.90000+ 1 5.54833- 4 1.04726- 3 2.50000+ 1 3.00000+ 1 5.51645- 4 1.05103- 3 2.50000+ 1 4.10000+ 1 1.08414- 4 1.07196- 3 2.70000+ 1 2.90000+ 1 3.34744- 5 1.00827- 3 2.70000+ 1 3.00000+ 1 3.51477- 4 1.01204- 3 2.90000+ 1 3.00000+ 1 4.20531- 4 1.02999- 3 3.00000+ 1 3.00000+ 1 4.69764- 4 1.03376- 3 3.00000+ 1 4.10000+ 1 3.13179- 5 1.05469- 3 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.40372- 5 6.53400- 5 1.90000+ 1 8.12061- 5 9.27100- 5 2.90000+ 1 3.37239- 5 3.12980- 4 3.00000+ 1 2.76328- 5 3.16750- 4 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.52354- 2 5.59700- 5 1.80000+ 1 2.50000+ 1 3.82313- 2 5.65900- 5 1.80000+ 1 2.70000+ 1 5.03008- 2 1.76000- 5 1.80000+ 1 2.90000+ 1 3.93192- 2 3.55500- 5 1.80000+ 1 3.00000+ 1 8.10937- 2 3.93200- 5 1.80000+ 1 4.10000+ 1 3.97475- 3 6.02500- 5 1.90000+ 1 2.40000+ 1 9.18325- 2 8.33400- 5 1.90000+ 1 2.50000+ 1 1.09809- 1 8.39600- 5 1.90000+ 1 2.70000+ 1 6.31694- 2 4.49700- 5 1.90000+ 1 2.90000+ 1 6.41402- 2 6.29200- 5 1.90000+ 1 3.00000+ 1 8.50549- 2 6.66900- 5 1.90000+ 1 4.10000+ 1 5.13265- 3 8.76200- 5 2.10000+ 1 2.10000+ 1 4.70751- 3 5.99700- 5 2.10000+ 1 2.20000+ 1 2.57816- 2 6.48500- 5 2.10000+ 1 2.40000+ 1 3.28333- 3 1.92000- 4 2.10000+ 1 2.50000+ 1 8.01398- 3 1.92620- 4 2.10000+ 1 2.70000+ 1 2.10904- 2 1.53630- 4 2.10000+ 1 2.90000+ 1 4.20294- 3 1.71580- 4 2.10000+ 1 3.00000+ 1 1.30075- 2 1.75350- 4 2.10000+ 1 4.10000+ 1 1.42242- 3 1.96280- 4 2.20000+ 1 2.20000+ 1 1.29819- 2 6.97300- 5 2.20000+ 1 2.40000+ 1 9.14043- 3 1.96880- 4 2.20000+ 1 2.50000+ 1 7.95501- 3 1.97500- 4 2.20000+ 1 2.70000+ 1 3.06090- 2 1.58510- 4 2.20000+ 1 2.90000+ 1 1.20800- 2 1.76460- 4 2.20000+ 1 3.00000+ 1 1.23308- 2 1.80230- 4 2.20000+ 1 4.10000+ 1 2.06082- 3 2.01160- 4 2.40000+ 1 2.40000+ 1 8.73377- 4 3.24030- 4 2.40000+ 1 2.50000+ 1 2.94033- 3 3.24650- 4 2.40000+ 1 2.70000+ 1 7.49184- 3 2.85660- 4 2.40000+ 1 2.90000+ 1 9.26192- 4 3.03610- 4 2.40000+ 1 3.00000+ 1 2.26654- 3 3.07380- 4 2.40000+ 1 4.10000+ 1 4.60038- 4 3.28310- 4 2.50000+ 1 2.50000+ 1 1.62546- 3 3.25270- 4 2.50000+ 1 2.70000+ 1 9.68861- 3 2.86280- 4 2.50000+ 1 2.90000+ 1 6.76027- 4 3.04230- 4 2.50000+ 1 3.00000+ 1 2.85695- 3 3.08000- 4 2.50000+ 1 4.10000+ 1 5.94275- 4 3.28930- 4 2.70000+ 1 2.70000+ 1 1.70276- 2 2.47290- 4 2.70000+ 1 2.90000+ 1 2.07393- 2 2.65240- 4 2.70000+ 1 3.00000+ 1 3.60230- 2 2.69010- 4 2.70000+ 1 4.10000+ 1 2.46674- 3 2.89940- 4 2.90000+ 1 2.90000+ 1 6.04509- 3 2.83190- 4 2.90000+ 1 3.00000+ 1 2.57556- 2 2.86960- 4 2.90000+ 1 4.10000+ 1 4.83305- 3 3.07890- 4 3.00000+ 1 3.00000+ 1 2.17816- 2 2.90730- 4 3.00000+ 1 4.10000+ 1 8.81008- 3 3.11660- 4 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.59488- 4 1.36030- 4 2.70000+ 1 5.59150- 5 2.29690- 4 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 4.27494- 2 1.80000- 5 1.90000+ 1 2.50000+ 1 3.24552- 2 1.86200- 5 1.90000+ 1 2.90000+ 1 5.77702- 3 0.00000+ 0 1.90000+ 1 3.00000+ 1 1.30080- 2 1.35000- 6 1.90000+ 1 4.10000+ 1 1.47807- 3 2.22800- 5 2.10000+ 1 2.10000+ 1 2.89218- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 3.56272- 1 0.00000+ 0 2.10000+ 1 2.40000+ 1 8.35767- 2 1.26660- 4 2.10000+ 1 2.50000+ 1 1.72770- 1 1.27280- 4 2.10000+ 1 2.70000+ 1 4.03836- 2 8.82900- 5 2.10000+ 1 2.90000+ 1 2.84954- 2 1.06240- 4 2.10000+ 1 3.00000+ 1 5.31535- 2 1.10010- 4 2.10000+ 1 4.10000+ 1 3.27456- 3 1.30940- 4 2.20000+ 1 2.20000+ 1 1.99768- 2 4.39000- 6 2.20000+ 1 2.40000+ 1 2.06933- 2 1.31540- 4 2.20000+ 1 2.50000+ 1 5.51216- 3 1.32160- 4 2.20000+ 1 2.70000+ 1 6.44929- 3 9.31700- 5 2.20000+ 1 2.90000+ 1 2.75836- 2 1.11120- 4 2.20000+ 1 3.00000+ 1 6.14446- 3 1.14890- 4 2.20000+ 1 4.10000+ 1 4.62114- 4 1.35820- 4 2.40000+ 1 2.40000+ 1 4.91310- 4 2.58690- 4 2.40000+ 1 2.50000+ 1 4.53347- 3 2.59310- 4 2.40000+ 1 2.70000+ 1 1.74190- 3 2.20320- 4 2.40000+ 1 2.90000+ 1 6.11679- 3 2.38270- 4 2.40000+ 1 3.00000+ 1 2.28486- 3 2.42040- 4 2.40000+ 1 4.10000+ 1 1.38619- 4 2.62970- 4 2.50000+ 1 2.50000+ 1 1.53267- 4 2.59930- 4 2.50000+ 1 2.70000+ 1 8.94098- 4 2.20940- 4 2.50000+ 1 2.90000+ 1 1.01608- 2 2.38890- 4 2.50000+ 1 3.00000+ 1 8.14185- 4 2.42660- 4 2.50000+ 1 4.10000+ 1 5.96055- 5 2.63590- 4 2.70000+ 1 2.70000+ 1 1.63251- 4 1.81950- 4 2.70000+ 1 2.90000+ 1 2.83503- 3 1.99900- 4 2.70000+ 1 3.00000+ 1 4.43269- 4 2.03670- 4 2.70000+ 1 4.10000+ 1 2.22416- 5 2.24600- 4 2.90000+ 1 2.90000+ 1 4.74232- 3 2.17850- 4 2.90000+ 1 3.00000+ 1 1.35630- 2 2.21620- 4 2.90000+ 1 4.10000+ 1 7.06592- 4 2.42550- 4 3.00000+ 1 3.00000+ 1 5.82399- 4 2.25390- 4 3.00000+ 1 4.10000+ 1 1.00649- 4 2.46320- 4 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.76441- 6 1.08660- 4 2.20000+ 1 7.29771- 5 1.13540- 4 2.70000+ 1 2.56080- 5 2.02320- 4 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.66861- 2 9.92900- 5 2.10000+ 1 2.50000+ 1 4.98835- 2 9.99100- 5 2.10000+ 1 2.70000+ 1 1.80358- 2 6.09200- 5 2.10000+ 1 2.90000+ 1 1.34411- 2 7.88700- 5 2.10000+ 1 3.00000+ 1 5.28742- 2 8.26400- 5 2.10000+ 1 4.10000+ 1 1.44947- 3 1.03570- 4 2.20000+ 1 2.40000+ 1 2.19291- 1 1.04170- 4 2.20000+ 1 2.50000+ 1 2.23638- 1 1.04790- 4 2.20000+ 1 2.70000+ 1 9.35154- 2 6.58000- 5 2.20000+ 1 2.90000+ 1 9.03497- 2 8.37500- 5 2.20000+ 1 3.00000+ 1 1.38170- 1 8.75200- 5 2.20000+ 1 4.10000+ 1 7.84707- 3 1.08450- 4 2.40000+ 1 2.40000+ 1 1.98757- 4 2.31320- 4 2.40000+ 1 2.50000+ 1 7.46221- 3 2.31940- 4 2.40000+ 1 2.70000+ 1 2.78392- 3 1.92950- 4 2.40000+ 1 2.90000+ 1 1.21013- 3 2.10900- 4 2.40000+ 1 3.00000+ 1 1.77375- 2 2.14670- 4 2.40000+ 1 4.10000+ 1 1.73518- 4 2.35600- 4 2.50000+ 1 2.50000+ 1 2.46072- 3 2.32560- 4 2.50000+ 1 2.70000+ 1 5.93507- 3 1.93570- 4 2.50000+ 1 2.90000+ 1 4.96192- 3 2.11520- 4 2.50000+ 1 3.00000+ 1 2.15210- 2 2.15290- 4 2.50000+ 1 4.10000+ 1 4.12374- 4 2.36220- 4 2.70000+ 1 2.70000+ 1 2.00265- 5 1.54580- 4 2.70000+ 1 2.90000+ 1 1.80231- 4 1.72530- 4 2.70000+ 1 3.00000+ 1 3.46056- 3 1.76300- 4 2.70000+ 1 4.10000+ 1 3.48288- 6 1.97230- 4 2.90000+ 1 2.90000+ 1 1.71184- 5 1.90480- 4 2.90000+ 1 3.00000+ 1 1.71628- 3 1.94250- 4 2.90000+ 1 4.10000+ 1 6.70830- 6 2.15180- 4 3.00000+ 1 3.00000+ 1 4.17858- 3 1.98020- 4 3.00000+ 1 4.10000+ 1 2.73527- 4 2.18950- 4 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.09591- 6 1.32030- 4 2.90000+ 1 8.30866- 6 1.11610- 4 3.00000+ 1 1.35430- 6 1.15380- 4 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 5.06855- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 6.11649- 3 0.00000+ 0 2.40000+ 1 2.40000+ 1 6.82227- 2 1.22660- 4 2.40000+ 1 2.50000+ 1 2.85036- 1 1.23280- 4 2.40000+ 1 2.70000+ 1 6.42488- 2 8.42900- 5 2.40000+ 1 2.90000+ 1 5.48355- 2 1.02240- 4 2.40000+ 1 3.00000+ 1 8.85796- 2 1.06010- 4 2.40000+ 1 4.10000+ 1 5.35768- 3 1.26940- 4 2.50000+ 1 2.50000+ 1 1.45529- 3 1.23900- 4 2.50000+ 1 2.70000+ 1 3.72930- 3 8.49100- 5 2.50000+ 1 2.90000+ 1 1.09667- 2 1.02860- 4 2.50000+ 1 3.00000+ 1 3.62062- 3 1.06630- 4 2.50000+ 1 4.10000+ 1 2.62117- 4 1.27560- 4 2.70000+ 1 2.70000+ 1 2.07361- 2 4.59200- 5 2.70000+ 1 2.90000+ 1 1.67718- 2 6.38700- 5 2.70000+ 1 3.00000+ 1 2.04668- 2 6.76400- 5 2.70000+ 1 4.10000+ 1 1.87135- 3 8.85700- 5 2.90000+ 1 2.90000+ 1 5.20293- 2 8.18200- 5 2.90000+ 1 3.00000+ 1 1.64964- 1 8.55900- 5 2.90000+ 1 4.10000+ 1 6.49655- 3 1.06520- 4 3.00000+ 1 3.00000+ 1 6.81004- 2 8.93600- 5 3.00000+ 1 4.10000+ 1 5.43463- 3 1.10290- 4 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.65880- 7 1.27150- 4 2.50000+ 1 3.35750- 6 1.27770- 4 3.00000+ 1 9.95360- 6 1.10500- 4 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 6.80555- 3 1.17780- 4 2.40000+ 1 2.50000+ 1 3.45608- 1 1.18400- 4 2.40000+ 1 2.70000+ 1 1.38219- 2 7.94100- 5 2.40000+ 1 2.90000+ 1 7.81197- 3 9.73600- 5 2.40000+ 1 3.00000+ 1 3.04752- 2 1.01130- 4 2.40000+ 1 4.10000+ 1 1.04714- 3 1.22060- 4 2.50000+ 1 2.50000+ 1 1.98866- 1 1.19020- 4 2.50000+ 1 2.70000+ 1 1.01843- 1 8.00300- 5 2.50000+ 1 2.90000+ 1 9.98080- 2 9.79800- 5 2.50000+ 1 3.00000+ 1 1.38658- 1 1.01750- 4 2.50000+ 1 4.10000+ 1 8.56460- 3 1.22680- 4 2.70000+ 1 2.70000+ 1 1.05066- 2 4.10400- 5 2.70000+ 1 2.90000+ 1 4.79946- 3 5.89900- 5 2.70000+ 1 3.00000+ 1 1.27440- 2 6.27600- 5 2.70000+ 1 4.10000+ 1 9.34866- 4 8.36900- 5 2.90000+ 1 2.90000+ 1 9.88139- 4 7.69400- 5 2.90000+ 1 3.00000+ 1 9.74009- 3 8.07100- 5 2.90000+ 1 4.10000+ 1 2.09775- 4 1.01640- 4 3.00000+ 1 3.00000+ 1 6.18497- 3 8.44800- 5 3.00000+ 1 4.10000+ 1 5.68631- 4 1.05410- 4 1 62000 0 7 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.61451- 8 1.79500- 5 3.00000+ 1 5.79734- 8 2.17200- 5 1 62000 0 9 1.50400+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.01753- 1 1.28600- 5 3.00000+ 1 4.10000+ 1 5.90344- 1 1.66300- 5 4.10000+ 1 4.10000+ 1 7.90345- 3 3.75600- 5 1 63000 0 0 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 3.00000+ 0 2.50000+ 1 4.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 63000 0 0 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.85680- 2 3.00000+ 0 8.01810- 3 5.00000+ 0 7.62480- 3 6.00000+ 0 6.96880- 3 8.00000+ 0 1.77690- 3 1.00000+ 1 1.60400- 3 1.10000+ 1 1.46960- 3 1.30000+ 1 1.16720- 3 1.40000+ 1 1.13780- 3 1.60000+ 1 3.57700- 4 1.80000+ 1 2.90050- 4 1.90000+ 1 2.60300- 4 2.10000+ 1 1.47760- 4 2.20000+ 1 1.42440- 4 2.40000+ 1 9.77000- 6 2.50000+ 1 9.08000- 6 2.70000+ 1 4.92100- 5 2.90000+ 1 3.06100- 5 3.00000+ 1 2.65600- 5 4.10000+ 1 5.16000- 6 1 63000 0 0 1.51960+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.33370- 2 3.00000+ 0 1.43370- 2 5.00000+ 0 1.43440- 2 6.00000+ 0 1.19240- 2 8.00000+ 0 4.40350- 3 1.00000+ 1 4.32030- 3 1.10000+ 1 3.75300- 3 1.30000+ 1 3.61950- 3 1.40000+ 1 3.48610- 3 1.60000+ 1 1.36490- 3 1.80000+ 1 1.27690- 3 1.90000+ 1 1.11710- 3 2.10000+ 1 9.44720- 4 2.20000+ 1 9.09770- 4 2.40000+ 1 5.32240- 4 2.50000+ 1 5.20880- 4 2.70000+ 1 2.86230- 4 2.90000+ 1 2.25770- 4 3.00000+ 1 1.92710- 4 4.10000+ 1 2.87600- 5 1 63000 0 0 1.51960+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17930-10 3.00000+ 0 4.98920-10 5.00000+ 0 4.16670-10 6.00000+ 0 4.52190-10 8.00000+ 0 1.31140- 9 1.00000+ 1 1.25460- 9 1.10000+ 1 1.32260- 9 1.30000+ 1 1.17200- 9 1.40000+ 1 1.19320- 9 1.60000+ 1 2.97340- 9 1.80000+ 1 3.03640- 9 1.90000+ 1 3.18930- 9 2.10000+ 1 3.38160- 9 2.20000+ 1 3.43490- 9 2.40000+ 1 4.64550- 9 2.50000+ 1 4.71110- 9 2.70000+ 1 7.18260- 9 2.90000+ 1 8.05530- 9 3.00000+ 1 8.54960- 9 4.10000+ 1 2.25010- 8 1 63000 0 0 1.51960+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.90640- 5 3.00000+ 0 3.61690- 7 5.00000+ 0 6.16880- 7 6.00000+ 0 5.67260- 7 8.00000+ 0 1.10410- 8 1.00000+ 1 1.12340- 8 1.10000+ 1 1.15050- 8 1.30000+ 1 5.80950- 9 1.40000+ 1 5.45570- 9 1.60000+ 1 2.82360-10 1.80000+ 1 5.60350-10 1.90000+ 1 3.91310-10 2.10000+ 1 2.60100-10 2.20000+ 1 2.37810-10 2.70000+ 1 1.38780-11 1 63000 0 0 1.51960+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42610- 6 3.00000+ 0 4.09540- 6 5.00000+ 0 2.99440- 6 6.00000+ 0 2.87700- 6 8.00000+ 0 1.55600- 5 1.00000+ 1 7.35790- 6 1.10000+ 1 7.74730- 6 1.30000+ 1 1.28440- 6 1.40000+ 1 8.97300- 7 1.60000+ 1 1.03700- 5 1.80000+ 1 1.25710- 5 1.90000+ 1 6.58240- 6 2.10000+ 1 2.23200- 6 2.20000+ 1 1.89150- 6 2.70000+ 1 1.03340- 6 1 63000 0 0 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.31310- 4 3.00000+ 0 1.60844- 4 5.00000+ 0 1.37298- 4 6.00000+ 0 1.27627- 4 8.00000+ 0 1.18219- 4 1.00000+ 1 1.01057- 4 1.10000+ 1 9.16695- 5 1.30000+ 1 6.77275- 5 1.40000+ 1 6.20404- 5 1.60000+ 1 6.40101- 5 1.80000+ 1 5.45827- 5 1.90000+ 1 4.51759- 5 2.10000+ 1 3.45623- 5 2.20000+ 1 2.72381- 5 2.40000+ 1 9.77000- 6 2.50000+ 1 9.08000- 6 2.70000+ 1 3.31891- 5 2.90000+ 1 3.06100- 5 3.00000+ 1 2.65600- 5 4.10000+ 1 5.16000- 6 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.08934+ 0 3.00000+ 0 1.79816- 1 5.00000+ 0 2.03028- 1 6.00000+ 0 1.69061- 1 8.00000+ 0 9.57586- 3 1.00000+ 1 9.89921- 3 1.10000+ 1 9.42235- 3 1.30000+ 1 8.13455- 3 1.40000+ 1 7.65687- 3 1.60000+ 1 3.20628- 4 1.80000+ 1 3.84817- 4 1.90000+ 1 1.34043- 4 2.10000+ 1 1.75337- 5 2.20000+ 1 1.74053- 5 2.70000+ 1 1.18720- 7 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.05497- 2 3.00000+ 0 1.07979- 3 5.00000+ 0 1.24654- 3 6.00000+ 0 9.37250- 4 8.00000+ 0 1.02847- 5 1.00000+ 1 1.03561- 5 1.10000+ 1 9.86996- 6 1.30000+ 1 7.90486- 6 1.40000+ 1 7.43358- 6 1.60000+ 1 5.41499- 8 1.80000+ 1 6.05240- 8 1.90000+ 1 1.86245- 8 2.10000+ 1 2.17519- 9 2.20000+ 1 2.12178- 9 2.70000+ 1 2.58583-12 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.24324+ 0 3.00000+ 0 1.02499+ 1 5.00000+ 0 8.56794+ 0 6.00000+ 0 8.06348+ 0 8.00000+ 0 7.26235+ 0 1.00000+ 1 5.97778+ 0 1.10000+ 1 5.51528+ 0 1.30000+ 1 3.64903+ 0 1.40000+ 1 3.51925+ 0 1.60000+ 1 3.05714+ 0 1.80000+ 1 2.68692+ 0 1.90000+ 1 2.16687+ 0 2.10000+ 1 1.19699+ 0 2.20000+ 1 1.13673+ 0 2.70000+ 1 1.00000+ 0 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.88703- 3 3.00000+ 0 6.77747- 3 5.00000+ 0 6.24096- 3 6.00000+ 0 5.90392- 3 8.00000+ 0 1.64840- 3 1.00000+ 1 1.49259- 3 1.10000+ 1 1.36806- 3 1.30000+ 1 1.09157- 3 1.40000+ 1 1.06833- 3 1.60000+ 1 2.93636- 4 1.80000+ 1 2.35407- 4 1.90000+ 1 2.15105- 4 2.10000+ 1 1.13196- 4 2.20000+ 1 1.15200- 4 2.70000+ 1 1.60209- 5 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.67330- 1 4.09432- 2 6.00000+ 0 4.82130- 1 4.15992- 2 1.00000+ 1 4.86630- 2 4.69640- 2 1.10000+ 1 9.41490- 2 4.70984- 2 1.30000+ 1 7.14180- 4 4.74008- 2 1.40000+ 1 9.45020- 4 4.74302- 2 1.80000+ 1 1.06020- 2 4.82779- 2 1.90000+ 1 2.05690- 2 4.83077- 2 2.10000+ 1 1.58080- 4 4.84202- 2 2.20000+ 1 2.08550- 4 4.84256- 2 2.90000+ 1 2.18980- 3 4.85374- 2 3.00000+ 1 4.47120- 3 4.85414- 2 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.99083- 3 3.25318- 2 3.00000+ 0 5.00000+ 0 7.66467- 3 3.29251- 2 3.00000+ 0 6.00000+ 0 7.38773- 3 3.35811- 2 3.00000+ 0 8.00000+ 0 2.25796- 3 3.87730- 2 3.00000+ 0 1.00000+ 1 1.55888- 3 3.89459- 2 3.00000+ 0 1.10000+ 1 1.54678- 3 3.90803- 2 3.00000+ 0 1.30000+ 1 1.12405- 4 3.93827- 2 3.00000+ 0 1.40000+ 1 1.09558- 4 3.94121- 2 3.00000+ 0 1.60000+ 1 5.24982- 4 4.01922- 2 3.00000+ 0 1.80000+ 1 3.48099- 4 4.02598- 2 3.00000+ 0 1.90000+ 1 3.43047- 4 4.02896- 2 3.00000+ 0 2.10000+ 1 2.44753- 5 4.04021- 2 3.00000+ 0 2.20000+ 1 2.36990- 5 4.04075- 2 3.00000+ 0 2.70000+ 1 8.65071- 5 4.05007- 2 3.00000+ 0 2.90000+ 1 4.64902- 5 4.05193- 2 3.00000+ 0 3.00000+ 1 4.39012- 5 4.05233- 2 3.00000+ 0 4.10000+ 1 6.99338- 6 4.05447- 2 5.00000+ 0 5.00000+ 0 7.44282- 4 3.33184- 2 5.00000+ 0 6.00000+ 0 1.49258- 2 3.39744- 2 5.00000+ 0 8.00000+ 0 1.21212- 3 3.91663- 2 5.00000+ 0 1.00000+ 1 2.68462- 4 3.93392- 2 5.00000+ 0 1.10000+ 1 2.59870- 3 3.94736- 2 5.00000+ 0 1.30000+ 1 1.26780- 4 3.97760- 2 5.00000+ 0 1.40000+ 1 3.99261- 4 3.98054- 2 5.00000+ 0 1.60000+ 1 2.71309- 4 4.05855- 2 5.00000+ 0 1.80000+ 1 5.85340- 5 4.06531- 2 5.00000+ 0 1.90000+ 1 5.55169- 4 4.06829- 2 5.00000+ 0 2.10000+ 1 2.70656- 5 4.07954- 2 5.00000+ 0 2.20000+ 1 8.48250- 5 4.08008- 2 5.00000+ 0 2.40000+ 1 3.88514- 7 4.09334- 2 5.00000+ 0 2.50000+ 1 1.29501- 7 4.09341- 2 5.00000+ 0 2.70000+ 1 4.42898- 5 4.08940- 2 5.00000+ 0 2.90000+ 1 7.76987- 6 4.09126- 2 5.00000+ 0 3.00000+ 1 7.04505- 5 4.09166- 2 5.00000+ 0 4.10000+ 1 3.62613- 6 4.09380- 2 6.00000+ 0 6.00000+ 0 7.11573- 3 3.46304- 2 6.00000+ 0 8.00000+ 0 1.11617- 3 3.98223- 2 6.00000+ 0 1.00000+ 1 2.49205- 3 3.99952- 2 6.00000+ 0 1.10000+ 1 2.55193- 3 4.01296- 2 6.00000+ 0 1.30000+ 1 4.65566- 4 4.04320- 2 6.00000+ 0 1.40000+ 1 4.16097- 4 4.04614- 2 6.00000+ 0 1.60000+ 1 2.47353- 4 4.12415- 2 6.00000+ 0 1.80000+ 1 5.35379- 4 4.13091- 2 6.00000+ 0 1.90000+ 1 5.49227- 4 4.13389- 2 6.00000+ 0 2.10000+ 1 9.95838- 5 4.14514- 2 6.00000+ 0 2.20000+ 1 8.87092- 5 4.14568- 2 6.00000+ 0 2.40000+ 1 7.76997- 7 4.15894- 2 6.00000+ 0 2.50000+ 1 1.29503- 7 4.15901- 2 6.00000+ 0 2.70000+ 1 4.04054- 5 4.15500- 2 6.00000+ 0 2.90000+ 1 7.08385- 5 4.15686- 2 6.00000+ 0 3.00000+ 1 6.98067- 5 4.15726- 2 6.00000+ 0 4.10000+ 1 3.23767- 6 4.15940- 2 8.00000+ 0 8.00000+ 0 2.09405- 4 4.50142- 2 8.00000+ 0 1.00000+ 1 2.48392- 4 4.51871- 2 8.00000+ 0 1.10000+ 1 2.35959- 4 4.53215- 2 8.00000+ 0 1.30000+ 1 1.64470- 5 4.56239- 2 8.00000+ 0 1.40000+ 1 1.52807- 5 4.56533- 2 8.00000+ 0 1.60000+ 1 9.71231- 5 4.64334- 2 8.00000+ 0 1.80000+ 1 5.55546- 5 4.65010- 2 8.00000+ 0 1.90000+ 1 5.24468- 5 4.65308- 2 8.00000+ 0 2.10000+ 1 3.62611- 6 4.66433- 2 8.00000+ 0 2.20000+ 1 3.23761- 6 4.66487- 2 8.00000+ 0 2.70000+ 1 1.59282- 5 4.67419- 2 8.00000+ 0 2.90000+ 1 7.38164- 6 4.67605- 2 8.00000+ 0 3.00000+ 1 6.73432- 6 4.67645- 2 8.00000+ 0 4.10000+ 1 1.29500- 6 4.67859- 2 1.00000+ 1 1.00000+ 1 2.34397- 5 4.53600- 2 1.00000+ 1 1.10000+ 1 4.42756- 4 4.54944- 2 1.00000+ 1 1.30000+ 1 1.70944- 5 4.57968- 2 1.00000+ 1 1.40000+ 1 5.15425- 5 4.58262- 2 1.00000+ 1 1.60000+ 1 5.56879- 5 4.66063- 2 1.00000+ 1 1.80000+ 1 1.01016- 5 4.66739- 2 1.00000+ 1 1.90000+ 1 9.49236- 5 4.67037- 2 1.00000+ 1 2.10000+ 1 3.62609- 6 4.68162- 2 1.00000+ 1 2.20000+ 1 1.10075- 5 4.68216- 2 1.00000+ 1 2.70000+ 1 9.06476- 6 4.69148- 2 1.00000+ 1 2.90000+ 1 1.29500- 6 4.69334- 2 1.00000+ 1 3.00000+ 1 1.20441- 5 4.69374- 2 1.00000+ 1 4.10000+ 1 7.76979- 7 4.69588- 2 1.10000+ 1 1.10000+ 1 2.30128- 4 4.56288- 2 1.10000+ 1 1.30000+ 1 6.61772- 5 4.59312- 2 1.10000+ 1 1.40000+ 1 5.76299- 5 4.59606- 2 1.10000+ 1 1.60000+ 1 5.24470- 5 4.67407- 2 1.10000+ 1 1.80000+ 1 9.54404- 5 4.68083- 2 1.10000+ 1 1.90000+ 1 9.91925- 5 4.68381- 2 1.10000+ 1 2.10000+ 1 1.42451- 5 4.69506- 2 1.10000+ 1 2.20000+ 1 1.23026- 5 4.69560- 2 1.10000+ 1 2.40000+ 1 1.29501- 7 4.70886- 2 1.10000+ 1 2.70000+ 1 8.54704- 6 4.70492- 2 1.10000+ 1 2.90000+ 1 1.26917- 5 4.70678- 2 1.10000+ 1 3.00000+ 1 1.25620- 5 4.70718- 2 1.10000+ 1 4.10000+ 1 6.47496- 7 4.70932- 2 1.30000+ 1 1.30000+ 1 1.29270- 7 4.62336- 2 1.30000+ 1 1.40000+ 1 8.01483- 6 4.62630- 2 1.30000+ 1 1.60000+ 1 3.61967- 6 4.70431- 2 1.30000+ 1 1.80000+ 1 3.49040- 6 4.71107- 2 1.30000+ 1 1.90000+ 1 1.35734- 5 4.71405- 2 1.30000+ 1 2.20000+ 1 1.68051- 6 4.72584- 2 1.30000+ 1 2.70000+ 1 6.46343- 7 4.73516- 2 1.30000+ 1 2.90000+ 1 5.17081- 7 4.73702- 2 1.30000+ 1 3.00000+ 1 1.68051- 6 4.73742- 2 1.40000+ 1 1.40000+ 1 1.94247- 6 4.62924- 2 1.40000+ 1 1.60000+ 1 3.36705- 6 4.70725- 2 1.40000+ 1 1.80000+ 1 1.04896- 5 4.71401- 2 1.40000+ 1 1.90000+ 1 1.17845- 5 4.71699- 2 1.40000+ 1 2.10000+ 1 1.68348- 6 4.72824- 2 1.40000+ 1 2.20000+ 1 7.76969- 7 4.72878- 2 1.40000+ 1 2.70000+ 1 5.17993- 7 4.73810- 2 1.40000+ 1 2.90000+ 1 1.42448- 6 4.73996- 2 1.40000+ 1 3.00000+ 1 1.42448- 6 4.74036- 2 1.60000+ 1 1.60000+ 1 1.11995- 5 4.78526- 2 1.60000+ 1 1.80000+ 1 1.23578- 5 4.79202- 2 1.60000+ 1 1.90000+ 1 1.15853- 5 4.79500- 2 1.60000+ 1 2.10000+ 1 7.72332- 7 4.80625- 2 1.60000+ 1 2.20000+ 1 7.72332- 7 4.80679- 2 1.60000+ 1 2.70000+ 1 3.73314- 6 4.81611- 2 1.60000+ 1 2.90000+ 1 1.67343- 6 4.81797- 2 1.60000+ 1 3.00000+ 1 1.54470- 6 4.81837- 2 1.60000+ 1 4.10000+ 1 2.57451- 7 4.82051- 2 1.80000+ 1 1.80000+ 1 1.01601- 6 4.79879- 2 1.80000+ 1 1.90000+ 1 2.00659- 5 4.80176- 2 1.80000+ 1 2.10000+ 1 7.61991- 7 4.81302- 2 1.80000+ 1 2.20000+ 1 2.15903- 6 4.81355- 2 1.80000+ 1 2.70000+ 1 2.03203- 6 4.82287- 2 1.80000+ 1 2.90000+ 1 2.54004- 7 4.82473- 2 1.80000+ 1 3.00000+ 1 2.54004- 6 4.82514- 2 1.80000+ 1 4.10000+ 1 1.27002- 7 4.82728- 2 1.90000+ 1 1.90000+ 1 1.06016- 5 4.80474- 2 1.90000+ 1 2.10000+ 1 2.97361- 6 4.81599- 2 1.90000+ 1 2.20000+ 1 2.45639- 6 4.81653- 2 1.90000+ 1 2.70000+ 1 1.93924- 6 4.82585- 2 1.90000+ 1 2.90000+ 1 2.71494- 6 4.82771- 2 1.90000+ 1 3.00000+ 1 2.71494- 6 4.82811- 2 1.90000+ 1 4.10000+ 1 1.29283- 7 4.83025- 2 2.10000+ 1 2.20000+ 1 3.88503- 7 4.82778- 2 2.10000+ 1 2.70000+ 1 1.29498- 7 4.83710- 2 2.10000+ 1 2.90000+ 1 1.29498- 7 4.83896- 2 2.10000+ 1 3.00000+ 1 3.88503- 7 4.83937- 2 2.20000+ 1 2.20000+ 1 1.43645- 7 4.82831- 2 2.20000+ 1 2.70000+ 1 1.43645- 7 4.83763- 2 2.20000+ 1 2.90000+ 1 2.87290- 7 4.83949- 2 2.20000+ 1 3.00000+ 1 2.87290- 7 4.83990- 2 2.70000+ 1 2.70000+ 1 3.30410- 7 4.84696- 2 2.70000+ 1 2.90000+ 1 3.30410- 7 4.84882- 2 2.70000+ 1 3.00000+ 1 3.30410- 7 4.84922- 2 2.90000+ 1 3.00000+ 1 3.88510- 7 4.85108- 2 3.00000+ 1 3.00000+ 1 1.29500- 7 4.85149- 2 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.93261- 5 3.93300- 4 6.00000+ 0 8.25292- 4 1.04930- 3 1.00000+ 1 2.27671- 2 6.41410- 3 1.10000+ 1 3.28561- 2 6.54850- 3 1.30000+ 1 4.69841- 4 6.85090- 3 1.40000+ 1 7.02982- 4 6.88030- 3 1.80000+ 1 5.35512- 3 7.72805- 3 1.90000+ 1 8.03462- 3 7.75780- 3 2.10000+ 1 6.34252- 5 7.87034- 3 2.20000+ 1 9.76163- 5 7.87566- 3 2.90000+ 1 7.49482- 4 7.98749- 3 3.00000+ 1 1.09390- 3 7.99154- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.10832- 2 3.56000- 5 5.00000+ 0 1.80000+ 1 3.83907- 2 1.03250- 4 5.00000+ 0 1.90000+ 1 4.49185- 2 1.33000- 4 5.00000+ 0 2.10000+ 1 1.19896- 2 2.45540- 4 5.00000+ 0 2.20000+ 1 1.85628- 2 2.50860- 4 5.00000+ 0 2.40000+ 1 2.72344- 2 3.83530- 4 5.00000+ 0 2.50000+ 1 4.44404- 3 3.84220- 4 5.00000+ 0 2.70000+ 1 8.09859- 3 3.44090- 4 5.00000+ 0 2.90000+ 1 4.82334- 3 3.62690- 4 5.00000+ 0 3.00000+ 1 5.45030- 3 3.66740- 4 5.00000+ 0 4.10000+ 1 6.55272- 4 3.88140- 4 6.00000+ 0 1.60000+ 1 5.85679- 2 6.91600- 4 6.00000+ 0 1.80000+ 1 2.49028- 2 7.59250- 4 6.00000+ 0 1.90000+ 1 4.38567- 2 7.89000- 4 6.00000+ 0 2.10000+ 1 6.41424- 2 9.01540- 4 6.00000+ 0 2.20000+ 1 8.03969- 2 9.06860- 4 6.00000+ 0 2.40000+ 1 3.84236- 2 1.03953- 3 6.00000+ 0 2.50000+ 1 6.07853- 3 1.04022- 3 6.00000+ 0 2.70000+ 1 9.27383- 3 1.00009- 3 6.00000+ 0 2.90000+ 1 3.21409- 3 1.01869- 3 6.00000+ 0 3.00000+ 1 5.49352- 3 1.02274- 3 6.00000+ 0 4.10000+ 1 7.50735- 4 1.04414- 3 8.00000+ 0 8.00000+ 0 1.18735- 2 4.46430- 3 8.00000+ 0 1.00000+ 1 2.38306- 2 4.63720- 3 8.00000+ 0 1.10000+ 1 4.24802- 2 4.77160- 3 8.00000+ 0 1.30000+ 1 3.33073- 2 5.07400- 3 8.00000+ 0 1.40000+ 1 4.59433- 2 5.10340- 3 8.00000+ 0 1.60000+ 1 4.68977- 3 5.88350- 3 8.00000+ 0 1.80000+ 1 5.21192- 3 5.95115- 3 8.00000+ 0 1.90000+ 1 9.18615- 3 5.98090- 3 8.00000+ 0 2.10000+ 1 6.10016- 3 6.09344- 3 8.00000+ 0 2.20000+ 1 8.35411- 3 6.09876- 3 8.00000+ 0 2.40000+ 1 2.51270- 4 6.23143- 3 8.00000+ 0 2.50000+ 1 3.69511- 5 6.23212- 3 8.00000+ 0 2.70000+ 1 7.53829- 4 6.19199- 3 8.00000+ 0 2.90000+ 1 6.92242- 4 6.21059- 3 8.00000+ 0 3.00000+ 1 1.16829- 3 6.21464- 3 8.00000+ 0 4.10000+ 1 6.09714- 5 6.23604- 3 1.00000+ 1 1.00000+ 1 9.97661- 5 4.81010- 3 1.00000+ 1 1.10000+ 1 7.30431- 4 4.94450- 3 1.00000+ 1 1.30000+ 1 1.16951- 3 5.24690- 3 1.00000+ 1 1.40000+ 1 1.29620- 2 5.27630- 3 1.00000+ 1 1.60000+ 1 3.73518- 3 6.05640- 3 1.00000+ 1 1.80000+ 1 1.90924- 5 6.12405- 3 1.00000+ 1 1.90000+ 1 1.46578- 4 6.15380- 3 1.00000+ 1 2.10000+ 1 2.10012- 4 6.26634- 3 1.00000+ 1 2.20000+ 1 1.53166- 3 6.27166- 3 1.00000+ 1 2.40000+ 1 8.68374- 5 6.40433- 3 1.00000+ 1 2.50000+ 1 3.81851- 5 6.40502- 3 1.00000+ 1 2.70000+ 1 5.70284- 4 6.36489- 3 1.00000+ 1 2.90000+ 1 1.84761- 6 6.38349- 3 1.00000+ 1 3.00000+ 1 1.84761- 5 6.38754- 3 1.00000+ 1 4.10000+ 1 4.61899- 5 6.40894- 3 1.10000+ 1 1.10000+ 1 1.02180- 3 5.07890- 3 1.10000+ 1 1.30000+ 1 7.24118- 3 5.38130- 3 1.10000+ 1 1.40000+ 1 4.75879- 3 5.41070- 3 1.10000+ 1 1.60000+ 1 6.64136- 3 6.19080- 3 1.10000+ 1 1.80000+ 1 1.50267- 4 6.25845- 3 1.10000+ 1 1.90000+ 1 3.28246- 4 6.28820- 3 1.10000+ 1 2.10000+ 1 6.78057- 4 6.40074- 3 1.10000+ 1 2.20000+ 1 4.56349- 4 6.40606- 3 1.10000+ 1 2.40000+ 1 2.42650- 4 6.53873- 3 1.10000+ 1 2.50000+ 1 2.46333- 5 6.53942- 3 1.10000+ 1 2.70000+ 1 1.01372- 3 6.49929- 3 1.10000+ 1 2.90000+ 1 1.97074- 5 6.51789- 3 1.10000+ 1 3.00000+ 1 3.94148- 5 6.52194- 3 1.10000+ 1 4.10000+ 1 8.19085- 5 6.54334- 3 1.30000+ 1 1.30000+ 1 1.92526- 3 5.68370- 3 1.30000+ 1 1.40000+ 1 6.52401- 2 5.71310- 3 1.30000+ 1 1.60000+ 1 4.88504- 3 6.49320- 3 1.30000+ 1 1.80000+ 1 3.25777- 4 6.56085- 3 1.30000+ 1 1.90000+ 1 1.63947- 3 6.59060- 3 1.30000+ 1 2.10000+ 1 6.94699- 4 6.70314- 3 1.30000+ 1 2.20000+ 1 8.49891- 3 6.70846- 3 1.30000+ 1 2.40000+ 1 2.94999- 4 6.84113- 3 1.30000+ 1 2.50000+ 1 1.04087- 4 6.84182- 3 1.30000+ 1 2.70000+ 1 7.37795- 4 6.80169- 3 1.30000+ 1 2.90000+ 1 4.49585- 5 6.82029- 3 1.30000+ 1 3.00000+ 1 2.10009- 4 6.82434- 3 1.30000+ 1 4.10000+ 1 5.91219- 5 6.84574- 3 1.40000+ 1 1.40000+ 1 1.83136- 2 5.74250- 3 1.40000+ 1 1.60000+ 1 6.79715- 3 6.52260- 3 1.40000+ 1 1.80000+ 1 2.55709- 3 6.59025- 3 1.40000+ 1 1.90000+ 1 1.13258- 3 6.62000- 3 1.40000+ 1 2.10000+ 1 8.36775- 3 6.73254- 3 1.40000+ 1 2.20000+ 1 5.01552- 3 6.73786- 3 1.40000+ 1 2.40000+ 1 9.30552- 4 6.87053- 3 1.40000+ 1 2.50000+ 1 8.99169- 5 6.87122- 3 1.40000+ 1 2.70000+ 1 1.02908- 3 6.83109- 3 1.40000+ 1 2.90000+ 1 3.33800- 4 6.84969- 3 1.40000+ 1 3.00000+ 1 1.46577- 4 6.85374- 3 1.40000+ 1 4.10000+ 1 8.25254- 5 6.87514- 3 1.60000+ 1 1.60000+ 1 4.37875- 4 7.30270- 3 1.60000+ 1 1.80000+ 1 8.19079- 4 7.37035- 3 1.60000+ 1 1.90000+ 1 1.43920- 3 7.40010- 3 1.60000+ 1 2.10000+ 1 8.92992- 4 7.51264- 3 1.60000+ 1 2.20000+ 1 1.22980- 3 7.51796- 3 1.60000+ 1 2.40000+ 1 3.01763- 5 7.65063- 3 1.60000+ 1 2.50000+ 1 4.31086- 6 7.65132- 3 1.60000+ 1 2.70000+ 1 1.39179- 4 7.61119- 3 1.60000+ 1 2.90000+ 1 1.09008- 4 7.62979- 3 1.60000+ 1 3.00000+ 1 1.82909- 4 7.63384- 3 1.60000+ 1 4.10000+ 1 1.10853- 5 7.65524- 3 1.80000+ 1 1.80000+ 1 6.15860- 7 7.43800- 3 1.80000+ 1 1.90000+ 1 3.01766- 5 7.46775- 3 1.80000+ 1 2.10000+ 1 4.98850- 5 7.58029- 3 1.80000+ 1 2.20000+ 1 3.12853- 4 7.58561- 3 1.80000+ 1 2.40000+ 1 1.17018- 5 7.71828- 3 1.80000+ 1 2.50000+ 1 5.54273- 6 7.71897- 3 1.80000+ 1 2.70000+ 1 1.25018- 4 7.67884- 3 1.80000+ 1 3.00000+ 1 3.69506- 6 7.70149- 3 1.80000+ 1 4.10000+ 1 9.85405- 6 7.72289- 3 1.90000+ 1 1.90000+ 1 2.58653- 5 7.49750- 3 1.90000+ 1 2.10000+ 1 1.67508- 4 7.61004- 3 1.90000+ 1 2.20000+ 1 1.18250- 4 7.61536- 3 1.90000+ 1 2.40000+ 1 4.12624- 5 7.74803- 3 1.90000+ 1 2.50000+ 1 4.31095- 6 7.74872- 3 1.90000+ 1 2.70000+ 1 2.19865- 4 7.70859- 3 1.90000+ 1 2.90000+ 1 4.31095- 6 7.72719- 3 1.90000+ 1 3.00000+ 1 6.15866- 6 7.73124- 3 1.90000+ 1 4.10000+ 1 1.78596- 5 7.75264- 3 2.10000+ 1 2.10000+ 1 5.85037- 5 7.72258- 3 2.10000+ 1 2.20000+ 1 1.17810- 3 7.72790- 3 2.10000+ 1 2.40000+ 1 3.69490- 5 7.86057- 3 2.10000+ 1 2.50000+ 1 1.04687- 5 7.86126- 3 2.10000+ 1 2.70000+ 1 1.34868- 4 7.82113- 3 2.10000+ 1 2.90000+ 1 6.77416- 6 7.83973- 3 2.10000+ 1 3.00000+ 1 2.15536- 5 7.84378- 3 2.10000+ 1 4.10000+ 1 1.10850- 5 7.86518- 3 2.20000+ 1 2.20000+ 1 3.65206- 4 7.73322- 3 2.20000+ 1 2.40000+ 1 9.48418- 5 7.86589- 3 2.20000+ 1 2.50000+ 1 1.04691- 5 7.86658- 3 2.20000+ 1 2.70000+ 1 1.85987- 4 7.82645- 3 2.20000+ 1 2.90000+ 1 4.12618- 5 7.84505- 3 2.20000+ 1 3.00000+ 1 1.53959- 5 7.84910- 3 2.20000+ 1 4.10000+ 1 1.47805- 5 7.87050- 3 2.40000+ 1 2.40000+ 1 5.49789- 7 7.99856- 3 2.40000+ 1 2.50000+ 1 2.19907- 6 7.99925- 3 2.40000+ 1 2.70000+ 1 3.84842- 6 7.95912- 3 2.40000+ 1 2.90000+ 1 1.09958- 6 7.97772- 3 2.40000+ 1 3.00000+ 1 4.39839- 6 7.98177- 3 2.40000+ 1 4.10000+ 1 5.49789- 7 8.00317- 3 2.50000+ 1 2.50000+ 1 6.15877- 7 7.99994- 3 2.50000+ 1 2.70000+ 1 6.15877- 7 7.95981- 3 2.50000+ 1 2.90000+ 1 6.15877- 7 7.97841- 3 2.50000+ 1 3.00000+ 1 6.15877- 7 7.98246- 3 2.70000+ 1 2.70000+ 1 1.79550- 5 7.91968- 3 2.70000+ 1 2.90000+ 1 2.69316- 5 7.93828- 3 2.70000+ 1 3.00000+ 1 4.48882- 5 7.94233- 3 2.70000+ 1 4.10000+ 1 2.99248- 6 7.96373- 3 2.90000+ 1 3.00000+ 1 1.85337- 6 7.96093- 3 2.90000+ 1 4.10000+ 1 3.70674- 6 7.98233- 3 3.00000+ 1 3.00000+ 1 4.82617- 7 7.96498- 3 3.00000+ 1 4.10000+ 1 1.93039- 6 7.98638- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.49028- 7 6.56000- 4 8.00000+ 0 5.04328- 3 5.84790- 3 1.10000+ 1 9.77456- 5 6.15520- 3 1.30000+ 1 1.34449- 1 6.45760- 3 1.60000+ 1 9.54556- 4 7.26710- 3 1.90000+ 1 2.02149- 5 7.36450- 3 2.10000+ 1 2.32319- 2 7.47704- 3 2.40000+ 1 1.38669- 5 7.61503- 3 2.70000+ 1 1.59169- 4 7.57559- 3 3.00000+ 1 4.45118- 6 7.59824- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 9.13440- 3 2.98300- 4 6.00000+ 0 1.80000+ 1 4.81080- 2 3.65950- 4 6.00000+ 0 1.90000+ 1 1.58398- 2 3.95700- 4 6.00000+ 0 2.10000+ 1 5.97259- 2 5.08240- 4 6.00000+ 0 2.20000+ 1 2.15988- 2 5.13560- 4 6.00000+ 0 2.40000+ 1 1.23661- 3 6.46230- 4 6.00000+ 0 2.50000+ 1 2.36220- 4 6.46920- 4 6.00000+ 0 2.70000+ 1 1.36422- 3 6.06790- 4 6.00000+ 0 2.90000+ 1 6.01362- 3 6.25390- 4 6.00000+ 0 3.00000+ 1 1.99234- 3 6.29440- 4 6.00000+ 0 4.10000+ 1 1.09385- 4 6.50840- 4 8.00000+ 0 8.00000+ 0 8.81050- 4 4.07100- 3 8.00000+ 0 1.00000+ 1 2.36582- 2 4.24390- 3 8.00000+ 0 1.10000+ 1 2.29536- 3 4.37830- 3 8.00000+ 0 1.30000+ 1 2.28477- 3 4.68070- 3 8.00000+ 0 1.40000+ 1 2.95460- 3 4.71010- 3 8.00000+ 0 1.60000+ 1 3.20529- 4 5.49020- 3 8.00000+ 0 1.80000+ 1 3.48643- 3 5.55785- 3 8.00000+ 0 1.90000+ 1 4.40535- 4 5.58760- 3 8.00000+ 0 2.10000+ 1 3.00017- 4 5.70014- 3 8.00000+ 0 2.20000+ 1 3.30408- 4 5.70546- 3 8.00000+ 0 2.40000+ 1 6.60787- 5 5.83813- 3 8.00000+ 0 2.50000+ 1 5.31660- 6 5.83882- 3 8.00000+ 0 2.70000+ 1 5.08889- 5 5.79869- 3 8.00000+ 0 2.90000+ 1 4.32179- 4 5.81729- 3 8.00000+ 0 3.00000+ 1 5.46871- 5 5.82134- 3 8.00000+ 0 4.10000+ 1 3.79762- 6 5.84274- 3 1.00000+ 1 1.00000+ 1 2.37407- 2 4.41680- 3 1.00000+ 1 1.10000+ 1 7.04501- 2 4.55120- 3 1.00000+ 1 1.30000+ 1 3.76681- 2 4.85360- 3 1.00000+ 1 1.40000+ 1 6.15066- 2 4.88300- 3 1.00000+ 1 1.60000+ 1 5.61325- 3 5.66310- 3 1.00000+ 1 1.80000+ 1 8.83250- 3 5.73075- 3 1.00000+ 1 1.90000+ 1 1.49678- 2 5.76050- 3 1.00000+ 1 2.10000+ 1 6.89148- 3 5.87304- 3 1.00000+ 1 2.20000+ 1 1.12278- 2 5.87836- 3 1.00000+ 1 2.40000+ 1 2.80290- 4 6.01103- 3 1.00000+ 1 2.50000+ 1 3.34221- 5 6.01172- 3 1.00000+ 1 2.70000+ 1 9.28219- 4 5.97159- 3 1.00000+ 1 2.90000+ 1 1.14545- 3 5.99019- 3 1.00000+ 1 3.00000+ 1 1.89817- 3 5.99424- 3 1.00000+ 1 4.10000+ 1 7.51990- 5 6.01564- 3 1.10000+ 1 1.10000+ 1 1.79552- 3 4.68560- 3 1.10000+ 1 1.30000+ 1 4.20633- 2 4.98800- 3 1.10000+ 1 1.40000+ 1 5.75214- 3 5.01740- 3 1.10000+ 1 1.60000+ 1 4.64089- 4 5.79750- 3 1.10000+ 1 1.80000+ 1 1.07375- 2 5.86515- 3 1.10000+ 1 1.90000+ 1 6.46372- 4 5.89490- 3 1.10000+ 1 2.10000+ 1 6.52763- 3 6.00744- 3 1.10000+ 1 2.20000+ 1 8.41609- 4 6.01276- 3 1.10000+ 1 2.40000+ 1 1.67102- 4 6.14543- 3 1.10000+ 1 2.50000+ 1 1.21529- 5 6.14612- 3 1.10000+ 1 2.70000+ 1 7.44353- 5 6.10599- 3 1.10000+ 1 2.90000+ 1 1.33909- 3 6.12459- 3 1.10000+ 1 3.00000+ 1 7.97526- 5 6.12864- 3 1.10000+ 1 4.10000+ 1 6.07654- 6 6.15004- 3 1.30000+ 1 1.30000+ 1 3.89268- 2 5.29040- 3 1.30000+ 1 1.40000+ 1 1.63375- 1 5.31980- 3 1.30000+ 1 1.60000+ 1 5.48398- 4 6.09990- 3 1.30000+ 1 1.80000+ 1 5.69535- 3 6.16755- 3 1.30000+ 1 1.90000+ 1 8.38443- 3 6.19730- 3 1.30000+ 1 2.10000+ 1 1.20362- 2 6.30984- 3 1.30000+ 1 2.20000+ 1 2.71153- 2 6.31516- 3 1.30000+ 1 2.40000+ 1 1.12336- 3 6.44783- 3 1.30000+ 1 2.50000+ 1 2.89390- 4 6.44852- 3 1.30000+ 1 2.70000+ 1 9.11495- 5 6.40839- 3 1.30000+ 1 2.90000+ 1 7.13978- 4 6.42699- 3 1.30000+ 1 3.00000+ 1 1.05200- 3 6.43104- 3 1.30000+ 1 4.10000+ 1 7.59572- 6 6.45244- 3 1.40000+ 1 1.40000+ 1 7.82786- 3 5.34920- 3 1.40000+ 1 1.60000+ 1 5.80300- 4 6.12930- 3 1.40000+ 1 1.80000+ 1 8.24893- 3 6.19695- 3 1.40000+ 1 1.90000+ 1 1.04978- 3 6.22670- 3 1.40000+ 1 2.10000+ 1 2.11054- 2 6.33924- 3 1.40000+ 1 2.20000+ 1 2.35993- 3 6.34456- 3 1.40000+ 1 2.40000+ 1 4.57259- 4 6.47723- 3 1.40000+ 1 2.50000+ 1 2.20267- 5 6.47792- 3 1.40000+ 1 2.70000+ 1 9.26624- 5 6.43779- 3 1.40000+ 1 2.90000+ 1 1.00419- 3 6.45639- 3 1.40000+ 1 3.00000+ 1 1.29888- 4 6.46044- 3 1.40000+ 1 4.10000+ 1 7.59571- 6 6.48184- 3 1.60000+ 1 1.60000+ 1 2.81016- 5 6.90940- 3 1.60000+ 1 1.80000+ 1 8.31681- 4 6.97705- 3 1.60000+ 1 1.90000+ 1 8.96233- 5 7.00680- 3 1.60000+ 1 2.10000+ 1 6.91167- 5 7.11934- 3 1.60000+ 1 2.20000+ 1 6.60766- 5 7.12466- 3 1.60000+ 1 2.40000+ 1 1.36715- 5 7.25733- 3 1.60000+ 1 2.50000+ 1 7.59528- 7 7.25802- 3 1.60000+ 1 2.70000+ 1 9.11443- 6 7.21789- 3 1.60000+ 1 2.90000+ 1 1.03298- 4 7.23649- 3 1.60000+ 1 3.00000+ 1 1.13933- 5 7.24054- 3 1.60000+ 1 4.10000+ 1 7.59528- 7 7.26194- 3 1.80000+ 1 1.80000+ 1 7.75045- 4 7.04470- 3 1.80000+ 1 1.90000+ 1 2.25974- 3 7.07445- 3 1.80000+ 1 2.10000+ 1 1.01413- 3 7.18699- 3 1.80000+ 1 2.20000+ 1 1.50201- 3 7.19231- 3 1.80000+ 1 2.40000+ 1 3.38291- 5 7.32498- 3 1.80000+ 1 2.50000+ 1 3.75865- 6 7.32567- 3 1.80000+ 1 2.70000+ 1 1.36064- 4 7.28554- 3 1.80000+ 1 2.90000+ 1 1.99206- 4 7.30414- 3 1.80000+ 1 3.00000+ 1 2.86413- 4 7.30819- 3 1.80000+ 1 4.10000+ 1 1.12767- 5 7.32959- 3 1.90000+ 1 1.90000+ 1 5.91618- 5 7.10420- 3 1.90000+ 1 2.10000+ 1 1.32778- 3 7.21674- 3 1.90000+ 1 2.20000+ 1 1.59056- 4 7.22206- 3 1.90000+ 1 2.40000+ 1 2.68919- 5 7.35473- 3 1.90000+ 1 2.50000+ 1 1.53662- 6 7.35542- 3 1.90000+ 1 2.70000+ 1 1.45994- 5 7.31529- 3 1.90000+ 1 2.90000+ 1 2.88130- 4 7.33389- 3 1.90000+ 1 3.00000+ 1 1.45994- 5 7.33794- 3 1.90000+ 1 4.10000+ 1 1.53662- 6 7.35934- 3 2.10000+ 1 2.10000+ 1 9.19088- 4 7.32928- 3 2.10000+ 1 2.20000+ 1 3.62903- 3 7.33460- 3 2.10000+ 1 2.40000+ 1 1.20773- 4 7.46727- 3 2.10000+ 1 2.50000+ 1 3.19003- 5 7.46796- 3 2.10000+ 1 2.70000+ 1 1.13938- 5 7.42783- 3 2.10000+ 1 2.90000+ 1 1.27608- 4 7.44643- 3 2.10000+ 1 3.00000+ 1 1.64825- 4 7.45048- 3 2.10000+ 1 4.10000+ 1 7.59564- 7 7.47188- 3 2.20000+ 1 2.20000+ 1 2.42115- 4 7.33992- 3 2.20000+ 1 2.40000+ 1 7.07840- 5 7.47259- 3 2.20000+ 1 2.50000+ 1 3.07764- 6 7.47328- 3 2.20000+ 1 2.70000+ 1 1.43623- 5 7.43315- 3 2.20000+ 1 2.90000+ 1 2.50309- 4 7.45175- 3 2.20000+ 1 3.00000+ 1 2.66730- 5 7.45580- 3 2.20000+ 1 4.10000+ 1 1.02590- 6 7.47720- 3 2.40000+ 1 2.40000+ 1 1.63817- 6 7.60526- 3 2.40000+ 1 2.50000+ 1 2.45739- 6 7.60595- 3 2.40000+ 1 2.70000+ 1 2.45739- 6 7.56582- 3 2.40000+ 1 2.90000+ 1 4.09556- 6 7.58442- 3 2.40000+ 1 3.00000+ 1 3.27643- 6 7.58847- 3 2.50000+ 1 2.90000+ 1 7.59557- 7 7.58511- 3 2.70000+ 1 2.70000+ 1 1.28753- 6 7.52638- 3 2.70000+ 1 2.90000+ 1 2.83255- 5 7.54498- 3 2.70000+ 1 3.00000+ 1 2.57488- 6 7.54903- 3 2.90000+ 1 2.90000+ 1 2.30871- 5 7.56358- 3 2.90000+ 1 3.00000+ 1 6.51895- 5 7.56763- 3 2.90000+ 1 4.10000+ 1 2.71606- 6 7.58903- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 9.31463- 3 5.19190- 3 1.00000+ 1 6.17092- 5 5.36480- 3 1.10000+ 1 5.64192- 5 5.49920- 3 1.30000+ 1 1.26100- 2 5.80160- 3 1.40000+ 1 1.11530- 1 5.83100- 3 1.60000+ 1 1.19770- 3 6.61110- 3 1.80000+ 1 9.15923- 6 6.67875- 3 1.90000+ 1 8.85513- 6 6.70850- 3 2.10000+ 1 2.09041- 3 6.82104- 3 2.20000+ 1 1.86861- 2 6.82636- 3 2.40000+ 1 2.02191- 6 6.95903- 3 2.50000+ 1 1.15640- 5 6.95972- 3 2.70000+ 1 2.18121- 4 6.91959- 3 2.90000+ 1 2.04401- 6 6.93819- 3 3.00000+ 1 1.76171- 6 6.94224- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.17206- 3 3.41500- 3 8.00000+ 0 1.00000+ 1 7.52962- 4 3.58790- 3 8.00000+ 0 1.10000+ 1 2.65491- 2 3.72230- 3 8.00000+ 0 1.30000+ 1 2.71796- 3 4.02470- 3 8.00000+ 0 1.40000+ 1 3.35276- 3 4.05410- 3 8.00000+ 0 1.60000+ 1 4.27975- 4 4.83420- 3 8.00000+ 0 1.80000+ 1 1.32538- 4 4.90185- 3 8.00000+ 0 1.90000+ 1 3.88448- 3 4.93160- 3 8.00000+ 0 2.10000+ 1 2.51513- 4 5.04414- 3 8.00000+ 0 2.20000+ 1 2.79457- 4 5.04946- 3 8.00000+ 0 2.40000+ 1 8.86247- 5 5.18213- 3 8.00000+ 0 2.50000+ 1 1.99615- 5 5.18282- 3 8.00000+ 0 2.70000+ 1 6.70704- 5 5.14269- 3 8.00000+ 0 2.90000+ 1 1.67679- 5 5.16129- 3 8.00000+ 0 3.00000+ 1 4.62305- 4 5.16534- 3 8.00000+ 0 4.10000+ 1 5.58905- 6 5.18674- 3 1.00000+ 1 1.00000+ 1 2.11592- 4 3.76080- 3 1.00000+ 1 1.10000+ 1 4.43992- 2 3.89520- 3 1.00000+ 1 1.30000+ 1 2.67885- 3 4.19760- 3 1.00000+ 1 1.40000+ 1 2.39789- 2 4.22700- 3 1.00000+ 1 1.60000+ 1 1.48516- 4 5.00710- 3 1.00000+ 1 1.80000+ 1 7.66502- 5 5.07475- 3 1.00000+ 1 1.90000+ 1 6.74229- 3 5.10450- 3 1.00000+ 1 2.10000+ 1 4.51127- 4 5.21704- 3 1.00000+ 1 2.20000+ 1 3.43906- 3 5.22236- 3 1.00000+ 1 2.40000+ 1 9.82066- 5 5.35503- 3 1.00000+ 1 2.50000+ 1 3.27362- 5 5.35572- 3 1.00000+ 1 2.70000+ 1 2.39536- 5 5.31559- 3 1.00000+ 1 2.90000+ 1 1.03794- 5 5.33419- 3 1.00000+ 1 3.00000+ 1 8.07242- 4 5.33824- 3 1.00000+ 1 4.10000+ 1 1.59693- 6 5.35964- 3 1.10000+ 1 1.10000+ 1 6.05932- 2 4.02960- 3 1.10000+ 1 1.30000+ 1 6.23244- 2 4.33200- 3 1.10000+ 1 1.40000+ 1 9.13673- 2 4.36140- 3 1.10000+ 1 1.60000+ 1 6.22304- 3 5.14150- 3 1.10000+ 1 1.80000+ 1 9.26255- 3 5.20915- 3 1.10000+ 1 1.90000+ 1 2.19947- 2 5.23890- 3 1.10000+ 1 2.10000+ 1 1.09199- 2 5.35144- 3 1.10000+ 1 2.20000+ 1 1.57670- 2 5.35676- 3 1.10000+ 1 2.40000+ 1 4.47917- 4 5.48943- 3 1.10000+ 1 2.50000+ 1 7.26593- 5 5.49012- 3 1.10000+ 1 2.70000+ 1 1.02681- 3 5.44999- 3 1.10000+ 1 2.90000+ 1 1.22166- 3 5.46859- 3 1.10000+ 1 3.00000+ 1 2.72591- 3 5.47264- 3 1.10000+ 1 4.10000+ 1 8.38359- 5 5.49404- 3 1.30000+ 1 1.30000+ 1 9.02389- 3 4.63440- 3 1.30000+ 1 1.40000+ 1 1.71663- 1 4.66380- 3 1.30000+ 1 1.60000+ 1 6.04453- 4 5.44390- 3 1.30000+ 1 1.80000+ 1 5.60529- 4 5.51155- 3 1.30000+ 1 1.90000+ 1 8.77990- 3 5.54130- 3 1.30000+ 1 2.10000+ 1 2.76590- 3 5.65384- 3 1.30000+ 1 2.20000+ 1 2.23197- 2 5.65916- 3 1.30000+ 1 2.40000+ 1 2.54710- 4 5.79183- 3 1.30000+ 1 2.50000+ 1 1.09395- 4 5.79252- 3 1.30000+ 1 2.70000+ 1 9.90094- 5 5.75239- 3 1.30000+ 1 2.90000+ 1 7.42571- 5 5.77099- 3 1.30000+ 1 3.00000+ 1 1.03795- 3 5.77504- 3 1.30000+ 1 4.10000+ 1 7.98482- 6 5.79644- 3 1.40000+ 1 1.40000+ 1 1.15868- 1 4.69320- 3 1.40000+ 1 1.60000+ 1 7.86464- 4 5.47330- 3 1.40000+ 1 1.80000+ 1 4.62767- 3 5.54095- 3 1.40000+ 1 1.90000+ 1 1.44773- 2 5.57070- 3 1.40000+ 1 2.10000+ 1 2.66050- 2 5.68324- 3 1.40000+ 1 2.20000+ 1 3.39349- 2 5.68856- 3 1.40000+ 1 2.40000+ 1 2.71152- 3 5.82123- 3 1.40000+ 1 2.50000+ 1 3.11386- 4 5.82192- 3 1.40000+ 1 2.70000+ 1 1.30139- 4 5.78179- 3 1.40000+ 1 2.90000+ 1 6.02023- 4 5.80039- 3 1.40000+ 1 3.00000+ 1 1.75577- 3 5.80444- 3 1.40000+ 1 4.10000+ 1 1.03791- 5 5.82584- 3 1.60000+ 1 1.60000+ 1 3.91229- 5 6.25340- 3 1.60000+ 1 1.80000+ 1 2.63485- 5 6.32105- 3 1.60000+ 1 1.90000+ 1 9.12659- 4 6.35080- 3 1.60000+ 1 2.10000+ 1 6.06809- 5 6.46334- 3 1.60000+ 1 2.20000+ 1 7.10622- 5 6.46866- 3 1.60000+ 1 2.40000+ 1 1.27755- 5 6.60133- 3 1.60000+ 1 2.50000+ 1 3.19363- 6 6.60202- 3 1.60000+ 1 2.70000+ 1 1.19760- 5 6.56189- 3 1.60000+ 1 2.90000+ 1 3.19363- 6 6.58049- 3 1.60000+ 1 3.00000+ 1 1.08593- 4 6.58454- 3 1.60000+ 1 4.10000+ 1 7.98457- 7 6.60594- 3 1.80000+ 1 1.80000+ 1 6.34614- 6 6.38870- 3 1.80000+ 1 1.90000+ 1 1.39456- 3 6.41845- 3 1.80000+ 1 2.10000+ 1 9.12261- 5 6.53099- 3 1.80000+ 1 2.20000+ 1 6.83794- 4 6.53631- 3 1.80000+ 1 2.40000+ 1 1.34857- 5 6.66898- 3 1.80000+ 1 2.50000+ 1 4.75940- 6 6.66967- 3 1.80000+ 1 2.70000+ 1 3.96619- 6 6.62954- 3 1.80000+ 1 2.90000+ 1 1.58653- 6 6.64814- 3 1.80000+ 1 3.00000+ 1 1.66586- 4 6.65219- 3 1.90000+ 1 1.90000+ 1 1.80164- 3 6.44820- 3 1.90000+ 1 2.10000+ 1 1.44197- 3 6.56074- 3 1.90000+ 1 2.20000+ 1 2.30551- 3 6.56606- 3 1.90000+ 1 2.40000+ 1 4.85911- 5 6.69873- 3 1.90000+ 1 2.50000+ 1 8.22327- 6 6.69942- 3 1.90000+ 1 2.70000+ 1 1.41292- 4 6.65929- 3 1.90000+ 1 2.90000+ 1 1.73436- 4 6.67789- 3 1.90000+ 1 3.00000+ 1 4.44041- 4 6.68194- 3 1.90000+ 1 4.10000+ 1 1.12128- 5 6.70334- 3 2.10000+ 1 2.10000+ 1 2.05202- 4 6.67328- 3 2.10000+ 1 2.20000+ 1 3.57780- 3 6.67860- 3 2.10000+ 1 2.40000+ 1 2.71470- 5 6.81127- 3 2.10000+ 1 2.50000+ 1 1.11777- 5 6.81196- 3 2.10000+ 1 2.70000+ 1 1.03793- 5 6.77183- 3 2.10000+ 1 2.90000+ 1 1.19761- 5 6.79043- 3 2.10000+ 1 3.00000+ 1 1.82038- 4 6.79448- 3 2.10000+ 1 4.10000+ 1 7.98462- 7 6.81588- 3 2.20000+ 1 2.20000+ 1 2.77019- 3 6.68392- 3 2.20000+ 1 2.40000+ 1 3.13708- 4 6.81659- 3 2.20000+ 1 2.50000+ 1 3.54447- 5 6.81728- 3 2.20000+ 1 2.70000+ 1 1.32917- 5 6.77715- 3 2.20000+ 1 2.90000+ 1 1.00139- 4 6.79575- 3 2.20000+ 1 3.00000+ 1 3.30556- 4 6.79980- 3 2.20000+ 1 4.10000+ 1 8.86174- 7 6.82120- 3 2.40000+ 1 2.40000+ 1 7.74468- 7 6.94926- 3 2.40000+ 1 2.50000+ 1 3.09768- 6 6.94995- 3 2.40000+ 1 2.70000+ 1 1.54893- 6 6.90982- 3 2.40000+ 1 2.90000+ 1 1.54893- 6 6.92842- 3 2.40000+ 1 3.00000+ 1 5.42103- 6 6.93247- 3 2.50000+ 1 2.50000+ 1 7.98478- 7 6.95064- 3 2.50000+ 1 2.70000+ 1 7.98478- 7 6.91051- 3 2.50000+ 1 2.90000+ 1 7.98478- 7 6.92911- 3 2.50000+ 1 3.00000+ 1 7.98478- 7 6.93316- 3 2.70000+ 1 2.70000+ 1 1.27513- 6 6.87038- 3 2.70000+ 1 2.90000+ 1 1.27513- 6 6.88898- 3 2.70000+ 1 3.00000+ 1 2.80528- 5 6.89303- 3 2.90000+ 1 3.00000+ 1 4.63622- 5 6.91163- 3 3.00000+ 1 3.00000+ 1 8.48266- 5 6.91568- 3 3.00000+ 1 4.10000+ 1 4.71271- 6 6.93708- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01554- 5 1.72900- 4 1.10000+ 1 1.15748- 4 3.07300- 4 1.80000+ 1 4.15297- 4 1.48685- 3 1.90000+ 1 4.94167- 4 1.51660- 3 2.90000+ 1 9.37866- 5 1.74629- 3 3.00000+ 1 1.03809- 4 1.75034- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 7.60819- 2 2.51400- 5 1.00000+ 1 2.20000+ 1 1.06929- 1 3.04600- 5 1.00000+ 1 2.40000+ 1 2.20537- 2 1.63130- 4 1.00000+ 1 2.50000+ 1 2.94902- 2 1.63820- 4 1.00000+ 1 2.70000+ 1 8.72760- 3 1.23690- 4 1.00000+ 1 2.90000+ 1 7.27569- 3 1.42290- 4 1.00000+ 1 3.00000+ 1 1.13052- 2 1.46340- 4 1.00000+ 1 4.10000+ 1 6.90150- 4 1.67740- 4 1.10000+ 1 1.80000+ 1 7.47270- 2 1.72500- 5 1.10000+ 1 1.90000+ 1 1.04346- 1 4.70000- 5 1.10000+ 1 2.10000+ 1 4.66442- 2 1.59540- 4 1.10000+ 1 2.20000+ 1 6.69589- 2 1.64860- 4 1.10000+ 1 2.40000+ 1 5.91453- 2 2.97530- 4 1.10000+ 1 2.50000+ 1 7.43222- 2 2.98220- 4 1.10000+ 1 2.70000+ 1 1.08765- 2 2.58090- 4 1.10000+ 1 2.90000+ 1 9.17444- 3 2.76690- 4 1.10000+ 1 3.00000+ 1 1.27326- 2 2.80740- 4 1.10000+ 1 4.10000+ 1 8.61888- 4 3.02140- 4 1.30000+ 1 1.60000+ 1 2.73260- 2 2.52000- 4 1.30000+ 1 1.80000+ 1 6.02603- 3 3.19650- 4 1.30000+ 1 1.90000+ 1 5.19160- 3 3.49400- 4 1.30000+ 1 2.10000+ 1 8.70028- 3 4.61940- 4 1.30000+ 1 2.20000+ 1 1.09255- 2 4.67260- 4 1.30000+ 1 2.40000+ 1 2.96063- 3 5.99930- 4 1.30000+ 1 2.50000+ 1 2.84846- 3 6.00620- 4 1.30000+ 1 2.70000+ 1 3.03047- 3 5.60490- 4 1.30000+ 1 2.90000+ 1 6.26869- 4 5.79090- 4 1.30000+ 1 3.00000+ 1 5.10314- 4 5.83140- 4 1.30000+ 1 4.10000+ 1 2.34203- 4 6.04540- 4 1.40000+ 1 1.60000+ 1 3.95235- 2 2.81400- 4 1.40000+ 1 1.80000+ 1 1.30310- 3 3.49050- 4 1.40000+ 1 1.90000+ 1 1.15934- 2 3.78800- 4 1.40000+ 1 2.10000+ 1 1.17212- 2 4.91340- 4 1.40000+ 1 2.20000+ 1 1.77546- 2 4.96660- 4 1.40000+ 1 2.40000+ 1 3.44617- 3 6.29330- 4 1.40000+ 1 2.50000+ 1 5.31222- 3 6.30020- 4 1.40000+ 1 2.70000+ 1 4.34062- 3 5.89890- 4 1.40000+ 1 2.90000+ 1 1.33532- 4 6.08490- 4 1.40000+ 1 3.00000+ 1 1.13897- 3 6.12540- 4 1.40000+ 1 4.10000+ 1 3.35364- 4 6.33940- 4 1.60000+ 1 1.60000+ 1 5.35338- 3 1.06150- 3 1.60000+ 1 1.80000+ 1 8.95412- 3 1.12915- 3 1.60000+ 1 1.90000+ 1 1.60294- 2 1.15890- 3 1.60000+ 1 2.10000+ 1 1.72152- 2 1.27144- 3 1.60000+ 1 2.20000+ 1 2.48570- 2 1.27676- 3 1.60000+ 1 2.40000+ 1 3.65263- 3 1.40943- 3 1.60000+ 1 2.50000+ 1 4.63563- 3 1.41012- 3 1.60000+ 1 2.70000+ 1 1.46369- 3 1.36999- 3 1.60000+ 1 2.90000+ 1 1.18444- 3 1.38859- 3 1.60000+ 1 3.00000+ 1 2.03069- 3 1.39264- 3 1.60000+ 1 4.10000+ 1 1.16830- 4 1.41404- 3 1.80000+ 1 1.80000+ 1 4.49645- 4 1.19680- 3 1.80000+ 1 1.90000+ 1 1.14304- 3 1.22655- 3 1.80000+ 1 2.10000+ 1 6.75845- 4 1.33909- 3 1.80000+ 1 2.20000+ 1 3.37696- 4 1.34441- 3 1.80000+ 1 2.40000+ 1 6.15226- 5 1.47708- 3 1.80000+ 1 2.50000+ 1 2.47488- 4 1.47777- 3 1.80000+ 1 2.70000+ 1 9.43657- 4 1.43764- 3 1.80000+ 1 2.90000+ 1 9.48291- 5 1.45624- 3 1.80000+ 1 3.00000+ 1 1.13796- 4 1.46029- 3 1.80000+ 1 4.10000+ 1 7.30881- 5 1.48169- 3 1.90000+ 1 1.90000+ 1 1.49489- 3 1.25630- 3 1.90000+ 1 2.10000+ 1 8.92705- 4 1.36884- 3 1.90000+ 1 2.20000+ 1 2.23864- 3 1.37416- 3 1.90000+ 1 2.40000+ 1 2.53889- 4 1.50683- 3 1.90000+ 1 2.50000+ 1 4.70637- 4 1.50752- 3 1.90000+ 1 2.70000+ 1 1.68004- 3 1.46739- 3 1.90000+ 1 2.90000+ 1 1.26025- 4 1.48599- 3 1.90000+ 1 3.00000+ 1 3.18948- 4 1.49004- 3 1.90000+ 1 4.10000+ 1 1.30151- 4 1.51144- 3 2.10000+ 1 2.10000+ 1 1.99869- 4 1.48138- 3 2.10000+ 1 2.20000+ 1 9.28940- 4 1.48670- 3 2.10000+ 1 2.40000+ 1 2.38105- 4 1.61937- 3 2.10000+ 1 2.50000+ 1 1.79105- 3 1.62006- 3 2.10000+ 1 2.70000+ 1 1.78137- 3 1.57993- 3 2.10000+ 1 2.90000+ 1 6.49365- 5 1.59853- 3 2.10000+ 1 3.00000+ 1 9.02664- 5 1.60258- 3 2.10000+ 1 4.10000+ 1 1.37245- 4 1.62398- 3 2.20000+ 1 2.20000+ 1 5.26735- 4 1.49202- 3 2.20000+ 1 2.40000+ 1 1.78881- 3 1.62469- 3 2.20000+ 1 2.50000+ 1 1.01262- 3 1.62538- 3 2.20000+ 1 2.70000+ 1 2.55653- 3 1.58525- 3 2.20000+ 1 2.90000+ 1 3.34655- 5 1.60385- 3 2.20000+ 1 3.00000+ 1 2.24165- 4 1.60790- 3 2.20000+ 1 4.10000+ 1 1.97127- 4 1.62930- 3 2.40000+ 1 2.40000+ 1 7.85422- 5 1.75736- 3 2.40000+ 1 2.50000+ 1 7.73322- 4 1.75805- 3 2.40000+ 1 2.70000+ 1 3.52272- 4 1.71792- 3 2.40000+ 1 2.90000+ 1 6.04177- 6 1.73652- 3 2.40000+ 1 3.00000+ 1 2.32360- 5 1.74057- 3 2.40000+ 1 4.10000+ 1 2.69564- 5 1.76197- 3 2.50000+ 1 2.50000+ 1 2.12782- 4 1.75874- 3 2.50000+ 1 2.70000+ 1 4.51408- 4 1.71861- 3 2.50000+ 1 2.90000+ 1 3.00632- 5 1.73721- 3 2.50000+ 1 3.00000+ 1 4.22779- 5 1.74126- 3 2.50000+ 1 4.10000+ 1 3.42916- 5 1.76266- 3 2.70000+ 1 2.70000+ 1 1.06468- 4 1.67848- 3 2.70000+ 1 2.90000+ 1 1.45722- 4 1.69708- 3 2.70000+ 1 3.00000+ 1 2.50039- 4 1.70113- 3 2.70000+ 1 4.10000+ 1 1.66693- 5 1.72253- 3 2.90000+ 1 2.90000+ 1 6.00298- 6 1.71568- 3 2.90000+ 1 3.00000+ 1 1.47349- 5 1.71973- 3 2.90000+ 1 4.10000+ 1 1.14604- 5 1.74113- 3 3.00000+ 1 3.00000+ 1 2.38364- 5 1.72378- 3 3.00000+ 1 4.10000+ 1 2.38364- 5 1.74518- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 4.88161- 4 4.36800- 4 1.60000+ 1 4.09941- 4 1.24630- 3 2.10000+ 1 1.98570- 3 1.45624- 3 2.70000+ 1 7.32241- 5 1.55479- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 1.69550- 2 1.24630- 4 1.10000+ 1 2.50000+ 1 1.92240- 2 1.25320- 4 1.10000+ 1 2.70000+ 1 5.75818- 3 8.51900- 5 1.10000+ 1 2.90000+ 1 5.80975- 3 1.03790- 4 1.10000+ 1 3.00000+ 1 6.13099- 3 1.07840- 4 1.10000+ 1 4.10000+ 1 4.41995- 4 1.29240- 4 1.30000+ 1 1.60000+ 1 8.90104- 2 7.91000- 5 1.30000+ 1 1.80000+ 1 8.90572- 2 1.46750- 4 1.30000+ 1 1.90000+ 1 1.18213- 1 1.76500- 4 1.30000+ 1 2.10000+ 1 3.89565- 2 2.89040- 4 1.30000+ 1 2.20000+ 1 4.42758- 2 2.94360- 4 1.30000+ 1 2.40000+ 1 8.10625- 2 4.27030- 4 1.30000+ 1 2.50000+ 1 1.21926- 1 4.27720- 4 1.30000+ 1 2.70000+ 1 1.46207- 2 3.87590- 4 1.30000+ 1 2.90000+ 1 1.02207- 2 4.06190- 4 1.30000+ 1 3.00000+ 1 1.43247- 2 4.10240- 4 1.30000+ 1 4.10000+ 1 1.19803- 3 4.31640- 4 1.40000+ 1 1.60000+ 1 1.49994- 2 1.08500- 4 1.40000+ 1 1.80000+ 1 1.03424- 1 1.76150- 4 1.40000+ 1 1.90000+ 1 1.01411- 2 2.05900- 4 1.40000+ 1 2.10000+ 1 1.72225- 3 3.18440- 4 1.40000+ 1 2.20000+ 1 5.09906- 3 3.23760- 4 1.40000+ 1 2.40000+ 1 2.43249- 3 4.56430- 4 1.40000+ 1 2.50000+ 1 1.98437- 3 4.57120- 4 1.40000+ 1 2.70000+ 1 1.63876- 3 4.16990- 4 1.40000+ 1 2.90000+ 1 9.65199- 3 4.35590- 4 1.40000+ 1 3.00000+ 1 1.12333- 3 4.39640- 4 1.40000+ 1 4.10000+ 1 1.27311- 4 4.61040- 4 1.60000+ 1 1.60000+ 1 8.28089- 4 8.88600- 4 1.60000+ 1 1.80000+ 1 1.14662- 2 9.56250- 4 1.60000+ 1 1.90000+ 1 1.82780- 3 9.86000- 4 1.60000+ 1 2.10000+ 1 3.81365- 4 1.09854- 3 1.60000+ 1 2.20000+ 1 1.31461- 3 1.10386- 3 1.60000+ 1 2.40000+ 1 4.47951- 5 1.23653- 3 1.60000+ 1 2.50000+ 1 3.02999- 4 1.23722- 3 1.60000+ 1 2.70000+ 1 2.14035- 4 1.19709- 3 1.60000+ 1 2.90000+ 1 1.02657- 3 1.21569- 3 1.60000+ 1 3.00000+ 1 2.09047- 4 1.21974- 3 1.60000+ 1 4.10000+ 1 1.67984- 5 1.24114- 3 1.80000+ 1 1.80000+ 1 8.72663- 3 1.02390- 3 1.80000+ 1 1.90000+ 1 2.64688- 2 1.05365- 3 1.80000+ 1 2.10000+ 1 2.46578- 2 1.16619- 3 1.80000+ 1 2.20000+ 1 4.06088- 2 1.17151- 3 1.80000+ 1 2.40000+ 1 4.36306- 3 1.30418- 3 1.80000+ 1 2.50000+ 1 7.56002- 3 1.30487- 3 1.80000+ 1 2.70000+ 1 1.93555- 3 1.26474- 3 1.80000+ 1 2.90000+ 1 1.96058- 3 1.28334- 3 1.80000+ 1 3.00000+ 1 3.32673- 3 1.28739- 3 1.80000+ 1 4.10000+ 1 1.57380- 4 1.30879- 3 1.90000+ 1 1.90000+ 1 7.74504- 4 1.08340- 3 1.90000+ 1 2.10000+ 1 2.25836- 3 1.19594- 3 1.90000+ 1 2.20000+ 1 1.75651- 3 1.20126- 3 1.90000+ 1 2.40000+ 1 3.34952- 3 1.33393- 3 1.90000+ 1 2.50000+ 1 9.69118- 4 1.33462- 3 1.90000+ 1 2.70000+ 1 2.18380- 4 1.29449- 3 1.90000+ 1 2.90000+ 1 2.55737- 3 1.31309- 3 1.90000+ 1 3.00000+ 1 1.64800- 4 1.31714- 3 1.90000+ 1 4.10000+ 1 1.69548- 5 1.33854- 3 2.10000+ 1 2.10000+ 1 8.33949- 4 1.30848- 3 2.10000+ 1 2.20000+ 1 2.41618- 3 1.31380- 3 2.10000+ 1 2.40000+ 1 4.05438- 4 1.44647- 3 2.10000+ 1 2.50000+ 1 7.41718- 4 1.44716- 3 2.10000+ 1 2.70000+ 1 5.76475- 5 1.40703- 3 2.10000+ 1 2.90000+ 1 2.20543- 3 1.42563- 3 2.10000+ 1 3.00000+ 1 2.27376- 4 1.42968- 3 2.10000+ 1 4.10000+ 1 4.48353- 6 1.45108- 3 2.20000+ 1 2.20000+ 1 5.58356- 4 1.31912- 3 2.20000+ 1 2.40000+ 1 1.39716- 3 1.45179- 3 2.20000+ 1 2.50000+ 1 2.93117- 4 1.45248- 3 2.20000+ 1 2.70000+ 1 1.70926- 4 1.41235- 3 2.20000+ 1 2.90000+ 1 3.64334- 3 1.43095- 3 2.20000+ 1 3.00000+ 1 1.62062- 4 1.43500- 3 2.20000+ 1 4.10000+ 1 1.32941- 5 1.45640- 3 2.40000+ 1 2.40000+ 1 2.63900- 4 1.58446- 3 2.40000+ 1 2.50000+ 1 2.16256- 3 1.58515- 3 2.40000+ 1 2.70000+ 1 2.53122- 6 1.54502- 3 2.40000+ 1 2.90000+ 1 3.53142- 4 1.56362- 3 2.40000+ 1 3.00000+ 1 3.67042- 4 1.56767- 3 2.50000+ 1 2.50000+ 1 9.53514- 5 1.58584- 3 2.50000+ 1 2.70000+ 1 4.27223- 5 1.54571- 3 2.50000+ 1 2.90000+ 1 6.00572- 4 1.56431- 3 2.50000+ 1 3.00000+ 1 9.34953- 5 1.56836- 3 2.50000+ 1 4.10000+ 1 3.09577- 6 1.58976- 3 2.70000+ 1 2.70000+ 1 1.46210- 5 1.50558- 3 2.70000+ 1 2.90000+ 1 1.80107- 4 1.52418- 3 2.70000+ 1 3.00000+ 1 2.45892- 5 1.52823- 3 2.70000+ 1 4.10000+ 1 1.99365- 6 1.54963- 3 2.90000+ 1 2.90000+ 1 1.67258- 4 1.54278- 3 2.90000+ 1 3.00000+ 1 4.85439- 4 1.54683- 3 2.90000+ 1 4.10000+ 1 2.24369- 5 1.56823- 3 3.00000+ 1 3.00000+ 1 3.20360- 5 1.55088- 3 3.00000+ 1 4.10000+ 1 7.39248- 6 1.57228- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.79421- 5 3.02400- 4 1.40000+ 1 2.20428- 4 3.31800- 4 1.60000+ 1 5.72596- 4 1.11190- 3 2.10000+ 1 2.63278- 4 1.32184- 3 2.20000+ 1 2.13420- 3 1.32716- 3 2.70000+ 1 1.03231- 4 1.42039- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.47268- 2 1.23500- 5 1.30000+ 1 1.90000+ 1 7.55414- 2 4.21000- 5 1.30000+ 1 2.10000+ 1 1.19258- 2 1.54640- 4 1.30000+ 1 2.20000+ 1 1.02495- 2 1.59960- 4 1.30000+ 1 2.40000+ 1 8.52200- 3 2.92630- 4 1.30000+ 1 2.50000+ 1 1.25784- 2 2.93320- 4 1.30000+ 1 2.70000+ 1 2.56604- 3 2.53190- 4 1.30000+ 1 2.90000+ 1 1.77193- 3 2.71790- 4 1.30000+ 1 3.00000+ 1 7.33895- 3 2.75840- 4 1.30000+ 1 4.10000+ 1 2.02005- 4 2.97240- 4 1.40000+ 1 1.80000+ 1 9.88491- 2 4.17500- 5 1.40000+ 1 1.90000+ 1 1.70093- 1 7.15000- 5 1.40000+ 1 2.10000+ 1 5.18807- 2 1.84040- 4 1.40000+ 1 2.20000+ 1 7.83235- 2 1.89360- 4 1.40000+ 1 2.40000+ 1 8.21466- 2 3.22030- 4 1.40000+ 1 2.50000+ 1 9.79207- 2 3.22720- 4 1.40000+ 1 2.70000+ 1 1.49598- 2 2.82590- 4 1.40000+ 1 2.90000+ 1 1.21382- 2 3.01190- 4 1.40000+ 1 3.00000+ 1 1.90236- 2 3.05240- 4 1.40000+ 1 4.10000+ 1 1.18330- 3 3.26640- 4 1.60000+ 1 1.60000+ 1 7.42469- 4 7.54200- 4 1.60000+ 1 1.80000+ 1 1.11090- 3 8.21850- 4 1.60000+ 1 1.90000+ 1 1.64257- 2 8.51600- 4 1.60000+ 1 2.10000+ 1 9.86004- 4 9.64140- 4 1.60000+ 1 2.20000+ 1 1.07057- 3 9.69460- 4 1.60000+ 1 2.40000+ 1 4.59385- 4 1.10213- 3 1.60000+ 1 2.50000+ 1 6.95799- 4 1.10282- 3 1.60000+ 1 2.70000+ 1 1.91343- 4 1.06269- 3 1.60000+ 1 2.90000+ 1 1.20973- 4 1.08129- 3 1.60000+ 1 3.00000+ 1 1.44063- 3 1.08534- 3 1.60000+ 1 4.10000+ 1 1.50229- 5 1.10674- 3 1.80000+ 1 1.80000+ 1 1.52426- 4 8.89500- 4 1.80000+ 1 1.90000+ 1 1.95761- 2 9.19250- 4 1.80000+ 1 2.10000+ 1 4.92764- 4 1.03179- 3 1.80000+ 1 2.20000+ 1 3.50832- 3 1.03711- 3 1.80000+ 1 2.40000+ 1 5.17762- 4 1.16978- 3 1.80000+ 1 2.50000+ 1 3.06886- 3 1.17047- 3 1.80000+ 1 2.70000+ 1 1.29037- 4 1.13034- 3 1.80000+ 1 2.90000+ 1 3.06472- 5 1.14894- 3 1.80000+ 1 3.00000+ 1 1.73800- 3 1.15299- 3 1.80000+ 1 4.10000+ 1 9.67798- 6 1.17439- 3 1.90000+ 1 1.90000+ 1 2.69077- 2 9.49000- 4 1.90000+ 1 2.10000+ 1 3.67425- 2 1.06154- 3 1.90000+ 1 2.20000+ 1 4.93319- 2 1.06686- 3 1.90000+ 1 2.40000+ 1 9.18096- 3 1.19953- 3 1.90000+ 1 2.50000+ 1 1.04525- 2 1.20022- 3 1.90000+ 1 2.70000+ 1 2.58262- 3 1.16009- 3 1.90000+ 1 2.90000+ 1 2.45587- 3 1.17869- 3 1.90000+ 1 3.00000+ 1 5.75890- 3 1.18274- 3 1.90000+ 1 4.10000+ 1 2.09842- 4 1.20414- 3 2.10000+ 1 2.10000+ 1 2.45058- 4 1.17408- 3 2.10000+ 1 2.20000+ 1 4.32070- 3 1.17940- 3 2.10000+ 1 2.40000+ 1 2.00650- 4 1.31207- 3 2.10000+ 1 2.50000+ 1 2.51891- 3 1.31276- 3 2.10000+ 1 2.70000+ 1 1.02621- 4 1.27263- 3 2.10000+ 1 2.90000+ 1 3.75248- 5 1.29123- 3 2.10000+ 1 3.00000+ 1 3.18735- 3 1.29528- 3 2.10000+ 1 4.10000+ 1 7.65850- 6 1.31668- 3 2.20000+ 1 2.20000+ 1 2.15069- 3 1.18472- 3 2.20000+ 1 2.40000+ 1 1.95166- 3 1.31739- 3 2.20000+ 1 2.50000+ 1 1.72315- 3 1.31808- 3 2.20000+ 1 2.70000+ 1 1.12757- 4 1.27795- 3 2.20000+ 1 2.90000+ 1 2.77733- 4 1.29655- 3 2.20000+ 1 3.00000+ 1 4.18941- 3 1.30060- 3 2.20000+ 1 4.10000+ 1 9.08116- 6 1.32200- 3 2.40000+ 1 2.40000+ 1 8.08874- 5 1.45006- 3 2.40000+ 1 2.50000+ 1 2.81649- 3 1.45075- 3 2.40000+ 1 2.70000+ 1 4.69940- 5 1.41062- 3 2.40000+ 1 2.90000+ 1 5.39219- 5 1.42922- 3 2.40000+ 1 3.00000+ 1 7.61866- 4 1.43327- 3 2.40000+ 1 4.10000+ 1 3.85172- 6 1.45467- 3 2.50000+ 1 2.50000+ 1 9.34520- 4 1.45144- 3 2.50000+ 1 2.70000+ 1 5.72456- 5 1.41131- 3 2.50000+ 1 2.90000+ 1 3.25691- 4 1.42991- 3 2.50000+ 1 3.00000+ 1 8.93491- 4 1.43396- 3 2.50000+ 1 4.10000+ 1 4.64150- 6 1.45536- 3 2.70000+ 1 2.70000+ 1 1.58944- 5 1.37118- 3 2.70000+ 1 2.90000+ 1 1.78815- 5 1.38978- 3 2.70000+ 1 3.00000+ 1 2.90088- 4 1.39383- 3 2.70000+ 1 4.10000+ 1 2.98020- 6 1.41523- 3 2.90000+ 1 2.90000+ 1 2.49712- 6 1.40838- 3 2.90000+ 1 3.00000+ 1 3.52097- 4 1.41243- 3 2.90000+ 1 4.10000+ 1 1.24860- 6 1.43383- 3 3.00000+ 1 3.00000+ 1 8.88638- 4 1.41648- 3 3.00000+ 1 4.10000+ 1 5.56848- 5 1.43788- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.96122- 3 8.77150- 4 1.90000+ 1 5.31961- 4 9.06900- 4 2.40000+ 1 2.00222- 3 1.15743- 3 2.90000+ 1 7.04201- 4 1.13659- 3 3.00000+ 1 9.66963- 5 1.14064- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 7.89171- 2 1.96300- 5 1.40000+ 1 2.50000+ 1 1.20333- 2 2.03200- 5 1.40000+ 1 2.90000+ 1 7.50952- 4 0.00000+ 0 1.40000+ 1 3.00000+ 1 2.57498- 3 2.84000- 6 1.40000+ 1 4.10000+ 1 2.13206- 4 2.42400- 5 1.60000+ 1 1.60000+ 1 2.49962- 5 4.51800- 4 1.60000+ 1 1.80000+ 1 3.19942- 3 5.19450- 4 1.60000+ 1 1.90000+ 1 2.21622- 3 5.49200- 4 1.60000+ 1 2.10000+ 1 7.45091- 2 6.61740- 4 1.60000+ 1 2.20000+ 1 9.35397- 3 6.67060- 4 1.60000+ 1 2.40000+ 1 9.05122- 3 7.99730- 4 1.60000+ 1 2.50000+ 1 3.06340- 3 8.00420- 4 1.60000+ 1 2.70000+ 1 2.77735- 5 7.60290- 4 1.60000+ 1 2.90000+ 1 3.33283- 4 7.78890- 4 1.60000+ 1 3.00000+ 1 1.80522- 4 7.82940- 4 1.60000+ 1 4.10000+ 1 2.77735- 6 8.04340- 4 1.80000+ 1 1.80000+ 1 1.66631- 3 5.87100- 4 1.80000+ 1 1.90000+ 1 1.14051- 2 6.16850- 4 1.80000+ 1 2.10000+ 1 6.31786- 2 7.29390- 4 1.80000+ 1 2.20000+ 1 5.40978- 3 7.34710- 4 1.80000+ 1 2.40000+ 1 5.79310- 3 8.67380- 4 1.80000+ 1 2.50000+ 1 3.18540- 3 8.68070- 4 1.80000+ 1 2.70000+ 1 3.36041- 4 8.27940- 4 1.80000+ 1 2.90000+ 1 3.58256- 4 8.46540- 4 1.80000+ 1 3.00000+ 1 1.08582- 3 8.50590- 4 1.80000+ 1 4.10000+ 1 2.49947- 5 8.71990- 4 1.90000+ 1 1.90000+ 1 4.19911- 3 6.46600- 4 1.90000+ 1 2.10000+ 1 1.36398- 1 7.59140- 4 1.90000+ 1 2.20000+ 1 5.10719- 3 7.64460- 4 1.90000+ 1 2.40000+ 1 3.92970- 3 8.97130- 4 1.90000+ 1 2.50000+ 1 1.85793- 3 8.97820- 4 1.90000+ 1 2.70000+ 1 2.63827- 4 8.57690- 4 1.90000+ 1 2.90000+ 1 1.04695- 3 8.76290- 4 1.90000+ 1 3.00000+ 1 7.72045- 4 8.80340- 4 1.90000+ 1 4.10000+ 1 1.94391- 5 9.01740- 4 2.10000+ 1 2.10000+ 1 1.13634- 1 8.71680- 4 2.10000+ 1 2.20000+ 1 2.31575- 1 8.77000- 4 2.10000+ 1 2.40000+ 1 3.42544- 2 1.00967- 3 2.10000+ 1 2.50000+ 1 4.44411- 2 1.01036- 3 2.10000+ 1 2.70000+ 1 1.10194- 2 9.70230- 4 2.10000+ 1 2.90000+ 1 8.25631- 3 9.88830- 4 2.10000+ 1 3.00000+ 1 1.67132- 2 9.92880- 4 2.10000+ 1 4.10000+ 1 8.88682- 4 1.01428- 3 2.20000+ 1 2.20000+ 1 3.79924- 3 8.82320- 4 2.20000+ 1 2.40000+ 1 3.37982- 2 1.01499- 3 2.20000+ 1 2.50000+ 1 2.01899- 3 1.01568- 3 2.20000+ 1 2.70000+ 1 7.88711- 4 9.75550- 4 2.20000+ 1 2.90000+ 1 4.74893- 4 9.94150- 4 2.20000+ 1 3.00000+ 1 5.13779- 4 9.98200- 4 2.20000+ 1 4.10000+ 1 5.83204- 5 1.01960- 3 2.40000+ 1 2.40000+ 1 9.18197- 3 1.14766- 3 2.40000+ 1 2.50000+ 1 3.36333- 2 1.14835- 3 2.40000+ 1 2.70000+ 1 1.38616- 3 1.10822- 3 2.40000+ 1 2.90000+ 1 6.23322- 4 1.12682- 3 2.40000+ 1 3.00000+ 1 4.72479- 4 1.13087- 3 2.40000+ 1 4.10000+ 1 1.11002- 4 1.15227- 3 2.50000+ 1 2.50000+ 1 6.13024- 4 1.14904- 3 2.50000+ 1 2.70000+ 1 3.33370- 4 1.10891- 3 2.50000+ 1 2.90000+ 1 2.03395- 4 1.12751- 3 2.50000+ 1 3.00000+ 1 2.06222- 4 1.13156- 3 2.50000+ 1 4.10000+ 1 2.54257- 5 1.15296- 3 2.70000+ 1 2.70000+ 1 1.03790- 5 1.06878- 3 2.70000+ 1 2.90000+ 1 1.45305- 4 1.08738- 3 2.70000+ 1 3.00000+ 1 8.30318- 5 1.09143- 3 2.90000+ 1 2.90000+ 1 7.26636- 5 1.10598- 3 2.90000+ 1 3.00000+ 1 3.94478- 4 1.11003- 3 2.90000+ 1 4.10000+ 1 1.03812- 5 1.13143- 3 3.00000+ 1 3.00000+ 1 4.40135- 4 1.11408- 3 3.00000+ 1 4.10000+ 1 3.38578- 5 1.13548- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.25772- 3 8.77500- 4 2.40000+ 1 1.17240- 4 1.12803- 3 2.50000+ 1 2.27321- 3 1.12872- 3 3.00000+ 1 8.82164- 4 1.11124- 3 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 9.21746- 4 4.90050- 4 1.60000+ 1 1.90000+ 1 5.34440- 3 5.19800- 4 1.60000+ 1 2.10000+ 1 7.83635- 3 6.32340- 4 1.60000+ 1 2.20000+ 1 8.60466- 2 6.37660- 4 1.60000+ 1 2.40000+ 1 3.17359- 3 7.70330- 4 1.60000+ 1 2.50000+ 1 1.04034- 2 7.71020- 4 1.60000+ 1 2.70000+ 1 2.10168- 5 7.30890- 4 1.60000+ 1 2.90000+ 1 5.10404- 5 7.49490- 4 1.60000+ 1 3.00000+ 1 4.89387- 4 7.53540- 4 1.60000+ 1 4.10000+ 1 3.00246- 6 7.74940- 4 1.80000+ 1 1.80000+ 1 1.20095- 5 5.57700- 4 1.80000+ 1 1.90000+ 1 1.26668- 2 5.87450- 4 1.80000+ 1 2.10000+ 1 7.74590- 4 6.99990- 4 1.80000+ 1 2.20000+ 1 8.52830- 2 7.05310- 4 1.80000+ 1 2.40000+ 1 1.41111- 3 8.37980- 4 1.80000+ 1 2.50000+ 1 5.06791- 3 8.38670- 4 1.80000+ 1 2.70000+ 1 9.30700- 5 7.98540- 4 1.80000+ 1 2.90000+ 1 6.00449- 6 8.17140- 4 1.80000+ 1 3.00000+ 1 1.14994- 3 8.21190- 4 1.80000+ 1 4.10000+ 1 6.00449- 6 8.42590- 4 1.90000+ 1 1.90000+ 1 9.76438- 3 6.17200- 4 1.90000+ 1 2.10000+ 1 7.97489- 3 7.29740- 4 1.90000+ 1 2.20000+ 1 1.37499- 1 7.35060- 4 1.90000+ 1 2.40000+ 1 2.35699- 3 8.67730- 4 1.90000+ 1 2.50000+ 1 5.59977- 3 8.68420- 4 1.90000+ 1 2.70000+ 1 6.27537- 4 8.28290- 4 1.90000+ 1 2.90000+ 1 1.12595- 3 8.46890- 4 1.90000+ 1 3.00000+ 1 1.83461- 3 8.50940- 4 1.90000+ 1 4.10000+ 1 4.80414- 5 8.72340- 4 2.10000+ 1 2.10000+ 1 1.71133- 3 8.42280- 4 2.10000+ 1 2.20000+ 1 1.76691- 1 8.47600- 4 2.10000+ 1 2.40000+ 1 1.71422- 3 9.80270- 4 2.10000+ 1 2.50000+ 1 2.25349- 2 9.80960- 4 2.10000+ 1 2.70000+ 1 6.45496- 4 9.40830- 4 2.10000+ 1 2.90000+ 1 1.02077- 4 9.59430- 4 2.10000+ 1 3.00000+ 1 7.23557- 4 9.63480- 4 2.10000+ 1 4.10000+ 1 4.80369- 5 9.84880- 4 2.20000+ 1 2.20000+ 1 2.02534- 1 8.52920- 4 2.20000+ 1 2.40000+ 1 4.12310- 2 9.85590- 4 2.20000+ 1 2.50000+ 1 6.12753- 2 9.86280- 4 2.20000+ 1 2.70000+ 1 1.23496- 2 9.46150- 4 2.20000+ 1 2.90000+ 1 1.07279- 2 9.64750- 4 2.20000+ 1 3.00000+ 1 1.69594- 2 9.68800- 4 2.20000+ 1 4.10000+ 1 9.93826- 4 9.90200- 4 2.40000+ 1 2.40000+ 1 7.65619- 4 1.11826- 3 2.40000+ 1 2.50000+ 1 3.07955- 2 1.11895- 3 2.40000+ 1 2.70000+ 1 3.68967- 4 1.07882- 3 2.40000+ 1 2.90000+ 1 1.69111- 4 1.09742- 3 2.40000+ 1 3.00000+ 1 2.15229- 4 1.10147- 3 2.40000+ 1 4.10000+ 1 2.76731- 5 1.12287- 3 2.50000+ 1 2.50000+ 1 1.79667- 2 1.11964- 3 2.50000+ 1 2.70000+ 1 1.53814- 3 1.07951- 3 2.50000+ 1 2.90000+ 1 6.39903- 4 1.09811- 3 2.50000+ 1 3.00000+ 1 6.15283- 4 1.10216- 3 2.50000+ 1 4.10000+ 1 1.23062- 4 1.12356- 3 2.70000+ 1 2.90000+ 1 3.88320- 5 1.05798- 3 2.70000+ 1 3.00000+ 1 3.88320- 4 1.06203- 3 2.90000+ 1 3.00000+ 1 4.36272- 4 1.08063- 3 3.00000+ 1 3.00000+ 1 5.12899- 4 1.08468- 3 3.00000+ 1 4.10000+ 1 3.41931- 5 1.10608- 3 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.45883- 5 6.76500- 5 1.90000+ 1 8.87784- 5 9.74000- 5 2.90000+ 1 3.74187- 5 3.27090- 4 3.00000+ 1 2.97116- 5 3.31140- 4 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.66378- 2 5.78800- 5 1.80000+ 1 2.50000+ 1 3.99021- 2 5.85700- 5 1.80000+ 1 2.70000+ 1 4.77890- 2 1.84400- 5 1.80000+ 1 2.90000+ 1 3.76344- 2 3.70400- 5 1.80000+ 1 3.00000+ 1 7.66748- 2 4.10900- 5 1.80000+ 1 4.10000+ 1 3.71859- 3 6.24900- 5 1.90000+ 1 2.40000+ 1 1.00552- 1 8.76300- 5 1.90000+ 1 2.50000+ 1 1.20557- 1 8.83200- 5 1.90000+ 1 2.70000+ 1 5.97973- 2 4.81900- 5 1.90000+ 1 2.90000+ 1 6.07680- 2 6.67900- 5 1.90000+ 1 3.00000+ 1 7.95751- 2 7.08400- 5 1.90000+ 1 4.10000+ 1 4.75259- 3 9.22400- 5 2.10000+ 1 2.10000+ 1 4.61408- 3 6.21800- 5 2.10000+ 1 2.20000+ 1 2.36019- 2 6.75000- 5 2.10000+ 1 2.40000+ 1 3.63932- 3 2.00170- 4 2.10000+ 1 2.50000+ 1 8.80155- 3 2.00860- 4 2.10000+ 1 2.70000+ 1 2.01750- 2 1.60730- 4 2.10000+ 1 2.90000+ 1 4.06496- 3 1.79330- 4 2.10000+ 1 3.00000+ 1 1.22006- 2 1.83380- 4 2.10000+ 1 4.10000+ 1 1.33781- 3 2.04780- 4 2.20000+ 1 2.20000+ 1 1.22201- 2 7.28200- 5 2.20000+ 1 2.40000+ 1 1.00487- 2 2.05490- 4 2.20000+ 1 2.50000+ 1 8.77427- 3 2.06180- 4 2.20000+ 1 2.70000+ 1 2.92510- 2 1.66050- 4 2.20000+ 1 2.90000+ 1 1.14553- 2 1.84650- 4 2.20000+ 1 3.00000+ 1 1.15890- 2 1.88700- 4 2.20000+ 1 4.10000+ 1 1.93502- 3 2.10100- 4 2.40000+ 1 2.40000+ 1 1.28924- 3 3.38160- 4 2.40000+ 1 2.50000+ 1 3.92620- 3 3.38850- 4 2.40000+ 1 2.70000+ 1 8.52360- 3 2.98720- 4 2.40000+ 1 2.90000+ 1 1.04497- 3 3.17320- 4 2.40000+ 1 3.00000+ 1 2.57345- 3 3.21370- 4 2.40000+ 1 4.10000+ 1 5.15035- 4 3.42770- 4 2.50000+ 1 2.50000+ 1 2.30977- 3 3.39540- 4 2.50000+ 1 2.70000+ 1 1.09559- 2 2.99410- 4 2.50000+ 1 2.90000+ 1 7.40567- 4 3.18010- 4 2.50000+ 1 3.00000+ 1 3.22388- 3 3.22060- 4 2.50000+ 1 4.10000+ 1 6.61429- 4 3.43460- 4 2.70000+ 1 2.70000+ 1 1.75933- 2 2.59280- 4 2.70000+ 1 2.90000+ 1 2.14226- 2 2.77880- 4 2.70000+ 1 3.00000+ 1 3.69963- 2 2.81930- 4 2.70000+ 1 4.10000+ 1 2.50406- 3 3.03330- 4 2.90000+ 1 2.90000+ 1 5.80754- 3 2.96480- 4 2.90000+ 1 3.00000+ 1 2.45896- 2 3.00530- 4 2.90000+ 1 4.10000+ 1 4.57481- 3 3.21930- 4 3.00000+ 1 3.00000+ 1 2.03434- 2 3.04580- 4 3.00000+ 1 4.10000+ 1 8.16644- 3 3.25980- 4 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.86511- 4 1.42290- 4 2.70000+ 1 6.30528- 5 2.40840- 4 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 4.63220- 2 1.99800- 5 1.90000+ 1 2.50000+ 1 3.54084- 2 2.06700- 5 1.90000+ 1 2.90000+ 1 1.20459- 2 0.00000+ 0 1.90000+ 1 3.00000+ 1 1.20447- 2 3.19000- 6 1.90000+ 1 4.10000+ 1 1.37913- 3 2.45900- 5 2.10000+ 1 2.10000+ 1 2.37467- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 3.20923- 1 0.00000+ 0 2.10000+ 1 2.40000+ 1 9.12399- 2 1.32520- 4 2.10000+ 1 2.50000+ 1 1.88985- 1 1.33210- 4 2.10000+ 1 2.70000+ 1 3.79629- 2 9.30800- 5 2.10000+ 1 2.90000+ 1 2.67329- 2 1.11680- 4 2.10000+ 1 3.00000+ 1 4.91334- 2 1.15730- 4 2.10000+ 1 4.10000+ 1 3.00653- 3 1.37130- 4 2.20000+ 1 2.20000+ 1 1.84586- 2 5.17000- 6 2.20000+ 1 2.40000+ 1 2.38885- 2 1.37840- 4 2.20000+ 1 2.50000+ 1 6.34651- 3 1.38530- 4 2.20000+ 1 2.70000+ 1 6.40363- 3 9.84000- 5 2.20000+ 1 2.90000+ 1 2.71910- 2 1.17000- 4 2.20000+ 1 3.00000+ 1 5.98259- 3 1.21050- 4 2.20000+ 1 4.10000+ 1 4.49145- 4 1.42450- 4 2.40000+ 1 2.40000+ 1 7.32192- 4 2.70510- 4 2.40000+ 1 2.50000+ 1 6.20881- 3 2.71200- 4 2.40000+ 1 2.70000+ 1 2.04064- 3 2.31070- 4 2.40000+ 1 2.90000+ 1 7.30687- 3 2.49670- 4 2.40000+ 1 3.00000+ 1 2.61536- 3 2.53720- 4 2.40000+ 1 4.10000+ 1 1.59133- 4 2.75120- 4 2.50000+ 1 2.50000+ 1 2.24494- 4 2.71890- 4 2.50000+ 1 2.70000+ 1 1.07572- 3 2.31760- 4 2.50000+ 1 2.90000+ 1 1.23072- 2 2.50360- 4 2.50000+ 1 3.00000+ 1 9.60870- 4 2.54410- 4 2.50000+ 1 4.10000+ 1 7.06712- 5 2.75810- 4 2.70000+ 1 2.70000+ 1 1.93236- 4 1.91630- 4 2.70000+ 1 2.90000+ 1 3.26340- 3 2.10230- 4 2.70000+ 1 3.00000+ 1 5.14656- 4 2.14280- 4 2.70000+ 1 4.10000+ 1 2.60115- 5 2.35680- 4 2.90000+ 1 2.90000+ 1 5.87019- 3 2.28830- 4 2.90000+ 1 3.00000+ 1 1.66943- 2 2.32880- 4 2.90000+ 1 4.10000+ 1 8.57504- 4 2.54280- 4 3.00000+ 1 3.00000+ 1 7.50483- 4 2.36930- 4 3.00000+ 1 4.10000+ 1 1.28597- 4 2.58330- 4 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 7.49954- 6 1.12540- 4 2.20000+ 1 8.05574- 5 1.17860- 4 2.70000+ 1 3.00042- 5 2.11090- 4 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.75083- 2 1.02770- 4 2.10000+ 1 2.50000+ 1 5.20007- 2 1.03460- 4 2.10000+ 1 2.70000+ 1 1.66545- 2 6.33300- 5 2.10000+ 1 2.90000+ 1 1.24120- 2 8.19300- 5 2.10000+ 1 3.00000+ 1 4.83323- 2 8.59800- 5 2.10000+ 1 4.10000+ 1 1.31294- 3 1.07380- 4 2.20000+ 1 2.40000+ 1 2.29890- 1 1.08090- 4 2.20000+ 1 2.50000+ 1 2.35642- 1 1.08780- 4 2.20000+ 1 2.70000+ 1 8.61819- 2 6.86500- 5 2.20000+ 1 2.90000+ 1 8.32778- 2 8.72500- 5 2.20000+ 1 3.00000+ 1 1.25920- 1 9.13000- 5 2.20000+ 1 4.10000+ 1 7.08235- 3 1.12700- 4 2.40000+ 1 2.40000+ 1 2.68272- 4 2.40760- 4 2.40000+ 1 2.50000+ 1 9.25397- 3 2.41450- 4 2.40000+ 1 2.70000+ 1 3.02452- 3 2.01320- 4 2.40000+ 1 2.90000+ 1 1.31410- 3 2.19920- 4 2.40000+ 1 3.00000+ 1 1.92701- 2 2.23970- 4 2.40000+ 1 4.10000+ 1 1.85181- 4 2.45370- 4 2.50000+ 1 2.50000+ 1 3.23801- 3 2.42140- 4 2.50000+ 1 2.70000+ 1 6.44508- 3 2.02010- 4 2.50000+ 1 2.90000+ 1 5.35732- 3 2.20610- 4 2.50000+ 1 3.00000+ 1 2.33853- 2 2.24660- 4 2.50000+ 1 4.10000+ 1 4.39452- 4 2.46060- 4 2.70000+ 1 2.70000+ 1 2.13484- 5 1.61880- 4 2.70000+ 1 2.90000+ 1 2.02554- 4 1.80480- 4 2.70000+ 1 3.00000+ 1 3.89074- 3 1.84530- 4 2.70000+ 1 4.10000+ 1 3.47507- 6 2.05930- 4 2.90000+ 1 2.90000+ 1 1.89101- 5 1.99080- 4 2.90000+ 1 3.00000+ 1 1.97644- 3 2.03130- 4 2.90000+ 1 4.10000+ 1 7.56428- 6 2.24530- 4 3.00000+ 1 3.00000+ 1 5.04013- 3 2.07180- 4 3.00000+ 1 4.10000+ 1 3.24498- 4 2.28580- 4 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 5.35870- 6 1.37990- 4 2.90000+ 1 9.62489- 6 1.17150- 4 3.00000+ 1 1.55605- 6 1.21200- 4 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.97867- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 6.09235- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 3.25740- 4 1.60000- 7 2.40000+ 1 2.40000+ 1 9.06733- 2 1.28220- 4 2.40000+ 1 2.50000+ 1 3.46996- 1 1.28910- 4 2.40000+ 1 2.70000+ 1 6.76267- 2 8.87800- 5 2.40000+ 1 2.90000+ 1 5.70390- 2 1.07380- 4 2.40000+ 1 3.00000+ 1 9.14799- 2 1.11430- 4 2.40000+ 1 4.10000+ 1 5.49312- 3 1.32830- 4 2.50000+ 1 2.50000+ 1 1.98534- 3 1.29600- 4 2.50000+ 1 2.70000+ 1 4.16183- 3 8.94700- 5 2.50000+ 1 2.90000+ 1 1.18515- 2 1.08070- 4 2.50000+ 1 3.00000+ 1 3.93152- 3 1.12120- 4 2.50000+ 1 4.10000+ 1 2.85736- 4 1.33520- 4 2.70000+ 1 2.70000+ 1 1.55319- 2 4.93400- 5 2.70000+ 1 2.90000+ 1 1.30736- 2 6.79400- 5 2.70000+ 1 3.00000+ 1 1.58034- 2 7.19900- 5 2.70000+ 1 4.10000+ 1 1.38393- 3 9.33900- 5 2.90000+ 1 2.90000+ 1 3.75465- 2 8.65400- 5 2.90000+ 1 3.00000+ 1 1.19312- 1 9.05900- 5 2.90000+ 1 4.10000+ 1 4.70119- 3 1.11990- 4 3.00000+ 1 3.00000+ 1 5.08067- 2 9.46400- 5 3.00000+ 1 4.10000+ 1 4.09615- 3 1.16040- 4 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.86760- 7 1.32670- 4 2.50000+ 1 5.81030- 6 1.33360- 4 3.00000+ 1 1.12920- 5 1.15880- 4 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 7.87621- 3 1.22900- 4 2.40000+ 1 2.50000+ 1 3.66913- 1 1.23590- 4 2.40000+ 1 2.70000+ 1 1.26975- 2 8.34600- 5 2.40000+ 1 2.90000+ 1 7.13073- 3 1.02060- 4 2.40000+ 1 3.00000+ 1 2.69421- 2 1.06110- 4 2.40000+ 1 4.10000+ 1 9.40828- 4 1.27510- 4 2.50000+ 1 2.50000+ 1 2.24120- 1 1.24280- 4 2.50000+ 1 2.70000+ 1 9.36559- 2 8.41500- 5 2.50000+ 1 2.90000+ 1 9.15946- 2 1.02750- 4 2.50000+ 1 3.00000+ 1 1.24727- 1 1.06800- 4 2.50000+ 1 4.10000+ 1 7.68226- 3 1.28200- 4 2.70000+ 1 2.70000+ 1 7.95965- 3 4.40200- 5 2.70000+ 1 2.90000+ 1 3.78626- 3 6.26200- 5 2.70000+ 1 3.00000+ 1 9.98350- 3 6.66700- 5 2.70000+ 1 4.10000+ 1 7.00605- 4 8.80700- 5 2.90000+ 1 2.90000+ 1 7.56691- 4 8.12200- 5 2.90000+ 1 3.00000+ 1 7.38399- 3 8.52700- 5 2.90000+ 1 4.10000+ 1 1.61119- 4 1.06670- 4 3.00000+ 1 3.00000+ 1 4.54304- 3 8.93200- 5 3.00000+ 1 4.10000+ 1 4.27260- 4 1.10720- 4 1 63000 0 7 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.54791- 8 1.86000- 5 3.00000+ 1 9.32413- 8 2.26500- 5 1 63000 0 9 1.51960+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.04261- 1 1.34400- 5 3.00000+ 1 4.10000+ 1 5.87882- 1 1.74900- 5 4.10000+ 1 4.10000+ 1 7.85712- 3 3.88900- 5 1 64000 0 0 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 3.00000+ 0 2.50000+ 1 4.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000- 1 3.30000+ 1 6.00000- 1 4.10000+ 1 2.00000+ 0 1 64000 0 0 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.03030- 2 3.00000+ 0 8.34980- 3 5.00000+ 0 7.94700- 3 6.00000+ 0 7.24270- 3 8.00000+ 0 1.86460- 3 1.00000+ 1 1.68690- 3 1.10000+ 1 1.54180- 3 1.30000+ 1 1.23160- 3 1.40000+ 1 1.19980- 3 1.60000+ 1 3.81390- 4 1.80000+ 1 3.11300- 4 1.90000+ 1 2.78860- 4 2.10000+ 1 1.62160- 4 2.20000+ 1 1.56300- 4 2.40000+ 1 1.70300- 5 2.50000+ 1 1.62000- 5 2.70000+ 1 5.46600- 5 2.90000+ 1 3.48300- 5 3.00000+ 1 3.01800- 5 3.20000+ 1 5.19000- 6 3.30000+ 1 4.85000- 6 4.10000+ 1 5.71000- 6 1 64000 0 0 1.57250+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.57860- 2 3.00000+ 0 1.49430- 2 5.00000+ 0 1.49490- 2 6.00000+ 0 1.23460- 2 8.00000+ 0 4.60580- 3 1.00000+ 1 4.52110- 3 1.10000+ 1 3.90840- 3 1.30000+ 1 3.77390- 3 1.40000+ 1 3.63050- 3 1.60000+ 1 1.43750- 3 1.80000+ 1 1.34760- 3 1.90000+ 1 1.17410- 3 2.10000+ 1 1.00000- 3 2.20000+ 1 9.62170- 4 2.40000+ 1 5.98850- 4 2.50000+ 1 5.87090- 4 2.70000+ 1 3.11990- 4 2.90000+ 1 2.50030- 4 3.00000+ 1 2.13100- 4 3.20000+ 1 8.77400- 5 3.30000+ 1 8.18900- 5 4.10000+ 1 3.45100- 5 1 64000 0 0 1.57250+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.15770-10 3.00000+ 0 4.89260-10 5.00000+ 0 4.08170-10 6.00000+ 0 4.44080-10 8.00000+ 0 1.28400- 9 1.00000+ 1 1.22760- 9 1.10000+ 1 1.29630- 9 1.30000+ 1 1.14730- 9 1.40000+ 1 1.16850- 9 1.60000+ 1 2.90390- 9 1.80000+ 1 2.96030- 9 1.90000+ 1 3.11400- 9 2.10000+ 1 3.28540- 9 2.20000+ 1 3.33830- 9 2.40000+ 1 4.24770- 9 2.50000+ 1 4.29790- 9 2.70000+ 1 6.92770- 9 2.90000+ 1 7.70770- 9 3.00000+ 1 8.18660- 9 3.20000+ 1 1.31370- 8 3.30000+ 1 1.35930- 8 4.10000+ 1 2.09260- 8 1 64000 0 0 1.57250+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.03790- 5 3.00000+ 0 3.92170- 7 5.00000+ 0 6.69830- 7 6.00000+ 0 6.14250- 7 8.00000+ 0 1.22310- 8 1.00000+ 1 1.25030- 8 1.10000+ 1 1.28570- 8 1.30000+ 1 6.92270- 9 1.40000+ 1 6.51640- 9 1.60000+ 1 3.22690-10 1.80000+ 1 6.18910-10 1.90000+ 1 4.29700-10 2.10000+ 1 2.90900-10 2.20000+ 1 2.64960-10 2.70000+ 1 1.61030-11 1 64000 0 0 1.57250+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.45270- 6 3.00000+ 0 4.20310- 6 5.00000+ 0 3.03850- 6 6.00000+ 0 2.93110- 6 8.00000+ 0 1.57980- 5 1.00000+ 1 7.66400- 6 1.10000+ 1 8.10080- 6 1.30000+ 1 1.32370- 6 1.40000+ 1 9.44770- 7 1.60000+ 1 1.06430- 5 1.80000+ 1 8.79660- 6 1.90000+ 1 6.85980- 6 2.10000+ 1 2.14760- 6 2.20000+ 1 2.09110- 6 2.70000+ 1 1.54280- 6 1 64000 0 0 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.71553- 4 3.00000+ 0 2.10339- 4 5.00000+ 0 1.78231- 4 6.00000+ 0 1.68351- 4 8.00000+ 0 1.55245- 4 1.00000+ 1 1.30622- 4 1.10000+ 1 1.21747- 4 1.30000+ 1 8.77909- 5 1.40000+ 1 8.35663- 5 1.60000+ 1 8.13780- 5 1.80000+ 1 6.68498- 5 1.90000+ 1 6.18832- 5 2.10000+ 1 4.33973- 5 2.20000+ 1 3.94077- 5 2.40000+ 1 1.70300- 5 2.50000+ 1 1.62000- 5 2.70000+ 1 3.75901- 5 2.90000+ 1 3.48300- 5 3.00000+ 1 3.01800- 5 3.20000+ 1 5.19000- 6 3.30000+ 1 4.85000- 6 4.10000+ 1 5.71000- 6 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10084+ 0 3.00000+ 0 1.90254- 1 5.00000+ 0 2.15400- 1 6.00000+ 0 1.78858- 1 8.00000+ 0 1.04527- 2 1.00000+ 1 1.07931- 2 1.10000+ 1 1.02708- 2 1.30000+ 1 9.10349- 3 1.40000+ 1 8.57392- 3 1.60000+ 1 3.52878- 4 1.80000+ 1 4.28001- 4 1.90000+ 1 1.51871- 4 2.10000+ 1 2.23390- 5 2.20000+ 1 2.20634- 5 2.70000+ 1 1.80948- 7 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.21554- 2 3.00000+ 0 1.18412- 3 5.00000+ 0 1.37334- 3 6.00000+ 0 1.02592- 3 8.00000+ 0 1.18584- 5 1.00000+ 1 1.19584- 5 1.10000+ 1 1.13871- 5 1.30000+ 1 9.46342- 6 1.40000+ 1 8.90973- 6 1.60000+ 1 6.31156- 8 1.80000+ 1 7.11946- 8 1.90000+ 1 2.22846- 8 2.10000+ 1 3.01231- 9 2.20000+ 1 2.91759- 9 2.70000+ 1 4.25505-12 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.83600+ 0 3.00000+ 0 9.80109+ 0 5.00000+ 0 8.14884+ 0 6.00000+ 0 7.70751+ 0 8.00000+ 0 6.96196+ 0 1.00000+ 1 5.66748+ 0 1.10000+ 1 5.28378+ 0 1.30000+ 1 3.49881+ 0 1.40000+ 1 3.37303+ 0 1.60000+ 1 2.96181+ 0 1.80000+ 1 2.35953+ 0 1.90000+ 1 2.14617+ 0 2.10000+ 1 1.16959+ 0 2.20000+ 1 1.12657+ 0 2.70000+ 1 1.00000+ 0 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.97606- 3 3.00000+ 0 6.95534- 3 5.00000+ 0 6.39543- 3 6.00000+ 0 6.04843- 3 8.00000+ 0 1.69750- 3 1.00000+ 1 1.54432- 3 1.10000+ 1 1.40867- 3 1.30000+ 1 1.13435- 3 1.40000+ 1 1.10732- 3 1.60000+ 1 2.99949- 4 1.80000+ 1 2.44379- 4 1.90000+ 1 2.16954- 4 2.10000+ 1 1.18760- 4 2.20000+ 1 1.16889- 4 2.70000+ 1 1.70699- 5 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.68220- 1 4.23560- 2 6.00000+ 0 4.82240- 1 4.30603- 2 1.00000+ 1 4.90060- 2 4.86161- 2 1.10000+ 1 9.47869- 2 4.87612- 2 1.30000+ 1 7.47609- 4 4.90714- 2 1.40000+ 1 9.84989- 4 4.91032- 2 1.80000+ 1 1.07690- 2 4.99917- 2 1.90000+ 1 2.09040- 2 5.00241- 2 2.10000+ 1 1.68470- 4 5.01408- 2 2.20000+ 1 2.21410- 4 5.01467- 2 2.90000+ 1 2.26800- 3 5.02682- 2 3.00000+ 1 4.67370- 3 5.02728- 2 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.80221- 3 3.36034- 2 3.00000+ 0 5.00000+ 0 7.49325- 3 3.40062- 2 3.00000+ 0 6.00000+ 0 7.02906- 3 3.47105- 2 3.00000+ 0 8.00000+ 0 2.19695- 3 4.00886- 2 3.00000+ 0 1.00000+ 1 1.53179- 3 4.02663- 2 3.00000+ 0 1.10000+ 1 1.48254- 3 4.04114- 2 3.00000+ 0 1.30000+ 1 1.08988- 4 4.07216- 2 3.00000+ 0 1.40000+ 1 1.04845- 4 4.07534- 2 3.00000+ 0 1.60000+ 1 5.14124- 4 4.15718- 2 3.00000+ 0 1.80000+ 1 3.44873- 4 4.16419- 2 3.00000+ 0 1.90000+ 1 3.31712- 4 4.16743- 2 3.00000+ 0 2.10000+ 1 2.42334- 5 4.17910- 2 3.00000+ 0 2.20000+ 1 2.30159- 5 4.17969- 2 3.00000+ 0 2.70000+ 1 8.74346- 5 4.18985- 2 3.00000+ 0 2.90000+ 1 4.83464- 5 4.19184- 2 3.00000+ 0 3.00000+ 1 4.46913- 5 4.19230- 2 3.00000+ 0 3.20000+ 1 2.43555- 7 4.19480- 2 3.00000+ 0 4.10000+ 1 7.67204- 6 4.19475- 2 5.00000+ 0 5.00000+ 0 7.07999- 4 3.44090- 2 5.00000+ 0 6.00000+ 0 1.41137- 2 3.51133- 2 5.00000+ 0 8.00000+ 0 1.19251- 3 4.04914- 2 5.00000+ 0 1.00000+ 1 2.56352- 4 4.06691- 2 5.00000+ 0 1.10000+ 1 2.47627- 3 4.08142- 2 5.00000+ 0 1.30000+ 1 1.22026- 4 4.11244- 2 5.00000+ 0 1.40000+ 1 3.81416- 4 4.11562- 2 5.00000+ 0 1.60000+ 1 2.68653- 4 4.19746- 2 5.00000+ 0 1.80000+ 1 5.63863- 5 4.20447- 2 5.00000+ 0 1.90000+ 1 5.33388- 4 4.20771- 2 5.00000+ 0 2.10000+ 1 2.64267- 5 4.21938- 2 5.00000+ 0 2.20000+ 1 8.24435- 5 4.21997- 2 5.00000+ 0 2.40000+ 1 3.65343- 7 4.23390- 2 5.00000+ 0 2.50000+ 1 1.21781- 7 4.23398- 2 5.00000+ 0 2.70000+ 1 4.53005- 5 4.23013- 2 5.00000+ 0 2.90000+ 1 7.91548- 6 4.23212- 2 5.00000+ 0 3.00000+ 1 7.13588- 5 4.23258- 2 5.00000+ 0 3.20000+ 1 3.65343- 7 4.23508- 2 5.00000+ 0 4.10000+ 1 4.01866- 6 4.23503- 2 6.00000+ 0 6.00000+ 0 6.69248- 3 3.58176- 2 6.00000+ 0 8.00000+ 0 1.06588- 3 4.11957- 2 6.00000+ 0 1.00000+ 1 2.36947- 3 4.13734- 2 6.00000+ 0 1.10000+ 1 2.41920- 3 4.15185- 2 6.00000+ 0 1.30000+ 1 4.43762- 4 4.18287- 2 6.00000+ 0 1.40000+ 1 3.95182- 4 4.18605- 2 6.00000+ 0 1.60000+ 1 2.37592- 4 4.26789- 2 6.00000+ 0 1.80000+ 1 5.13064- 4 4.27490- 2 6.00000+ 0 1.90000+ 1 5.25014- 4 4.27814- 2 6.00000+ 0 2.10000+ 1 9.64477- 5 4.28981- 2 6.00000+ 0 2.20000+ 1 8.56101- 5 4.29040- 2 6.00000+ 0 2.40000+ 1 8.52457- 7 4.30433- 2 6.00000+ 0 2.50000+ 1 1.21781- 7 4.30441- 2 6.00000+ 0 2.70000+ 1 3.99442- 5 4.30056- 2 6.00000+ 0 2.90000+ 1 7.13587- 5 4.30255- 2 6.00000+ 0 3.00000+ 1 7.03905- 5 4.30301- 2 6.00000+ 0 3.20000+ 1 1.09607- 6 4.30551- 2 6.00000+ 0 4.10000+ 1 3.53159- 6 4.30546- 2 8.00000+ 0 8.00000+ 0 2.04701- 4 4.65738- 2 8.00000+ 0 1.00000+ 1 2.45630- 4 4.67515- 2 8.00000+ 0 1.10000+ 1 2.26997- 4 4.68966- 2 8.00000+ 0 1.30000+ 1 1.59532- 5 4.72068- 2 8.00000+ 0 1.40000+ 1 1.47349- 5 4.72386- 2 8.00000+ 0 1.60000+ 1 9.54712- 5 4.80570- 2 8.00000+ 0 1.80000+ 1 5.54094- 5 4.81271- 2 8.00000+ 0 1.90000+ 1 5.09032- 5 4.81595- 2 8.00000+ 0 2.10000+ 1 3.53154- 6 4.82762- 2 8.00000+ 0 2.20000+ 1 3.16623- 6 4.82821- 2 8.00000+ 0 2.70000+ 1 1.61965- 5 4.83837- 2 8.00000+ 0 2.90000+ 1 7.79371- 6 4.84036- 2 8.00000+ 0 3.00000+ 1 6.81989- 6 4.84082- 2 8.00000+ 0 4.10000+ 1 1.46137- 6 4.84327- 2 1.00000+ 1 1.00000+ 1 2.24076- 5 4.69292- 2 1.00000+ 1 1.10000+ 1 4.24273- 4 4.70743- 2 1.00000+ 1 1.30000+ 1 1.65619- 5 4.73845- 2 1.00000+ 1 1.40000+ 1 4.94444- 5 4.74163- 2 1.00000+ 1 1.60000+ 1 5.54094- 5 4.82347- 2 1.00000+ 1 1.80000+ 1 9.86426- 6 4.83048- 2 1.00000+ 1 1.90000+ 1 9.17008- 5 4.83372- 2 1.00000+ 1 2.10000+ 1 3.65337- 6 4.84539- 2 1.00000+ 1 2.20000+ 1 1.07162- 5 4.84598- 2 1.00000+ 1 2.70000+ 1 9.37682- 6 4.85614- 2 1.00000+ 1 2.90000+ 1 1.33963- 6 4.85813- 2 1.00000+ 1 3.00000+ 1 1.23001- 5 4.85859- 2 1.00000+ 1 4.10000+ 1 8.52444- 7 4.86104- 2 1.10000+ 1 1.10000+ 1 2.19931- 4 4.72194- 2 1.10000+ 1 1.30000+ 1 6.35680- 5 4.75296- 2 1.10000+ 1 1.40000+ 1 5.50424- 5 4.75614- 2 1.10000+ 1 1.60000+ 1 5.06604- 5 4.83798- 2 1.10000+ 1 1.80000+ 1 9.21874- 5 4.84499- 2 1.10000+ 1 1.90000+ 1 9.54702- 5 4.84823- 2 1.10000+ 1 2.10000+ 1 1.38827- 5 4.85990- 2 1.10000+ 1 2.20000+ 1 1.20556- 5 4.86049- 2 1.10000+ 1 2.40000+ 1 1.21778- 7 4.87442- 2 1.10000+ 1 2.70000+ 1 8.52436- 6 4.87065- 2 1.10000+ 1 2.90000+ 1 1.27865- 5 4.87264- 2 1.10000+ 1 3.00000+ 1 1.27865- 5 4.87310- 2 1.10000+ 1 3.20000+ 1 1.21778- 7 4.87560- 2 1.10000+ 1 4.10000+ 1 7.30667- 7 4.87555- 2 1.30000+ 1 1.30000+ 1 1.22106- 7 4.78398- 2 1.30000+ 1 1.40000+ 1 7.69278- 6 4.78716- 2 1.30000+ 1 1.60000+ 1 3.54103- 6 4.86900- 2 1.30000+ 1 1.80000+ 1 3.41896- 6 4.87601- 2 1.30000+ 1 1.90000+ 1 1.31874- 5 4.87925- 2 1.30000+ 1 2.20000+ 1 1.58737- 6 4.89151- 2 1.30000+ 1 2.70000+ 1 6.10513- 7 4.90167- 2 1.30000+ 1 2.90000+ 1 4.88416- 7 4.90366- 2 1.30000+ 1 3.00000+ 1 1.70943- 6 4.90412- 2 1.40000+ 1 1.40000+ 1 1.82668- 6 4.79034- 2 1.40000+ 1 1.60000+ 1 3.28804- 6 4.87218- 2 1.40000+ 1 1.80000+ 1 1.01075- 5 4.87919- 2 1.40000+ 1 1.90000+ 1 1.13249- 5 4.88243- 2 1.40000+ 1 2.10000+ 1 1.58310- 6 4.89410- 2 1.40000+ 1 2.20000+ 1 7.30670- 7 4.89469- 2 1.40000+ 1 2.70000+ 1 4.87104- 7 4.90485- 2 1.40000+ 1 2.90000+ 1 1.33962- 6 4.90684- 2 1.40000+ 1 3.00000+ 1 1.46136- 6 4.90730- 2 1.60000+ 1 1.60000+ 1 1.09692- 5 4.95402- 2 1.60000+ 1 1.80000+ 1 1.24161- 5 4.96103- 2 1.60000+ 1 1.90000+ 1 1.12101- 5 4.96427- 2 1.60000+ 1 2.10000+ 1 7.23263- 7 4.97594- 2 1.60000+ 1 2.20000+ 1 7.23263- 7 4.97653- 2 1.60000+ 1 2.70000+ 1 3.73683- 6 4.98669- 2 1.60000+ 1 2.90000+ 1 1.68755- 6 4.98868- 2 1.60000+ 1 3.00000+ 1 1.56705- 6 4.98914- 2 1.60000+ 1 4.10000+ 1 3.61632- 7 4.99159- 2 1.80000+ 1 1.80000+ 1 1.05870- 6 4.96804- 2 1.80000+ 1 1.90000+ 1 1.92912- 5 4.97128- 2 1.80000+ 1 2.10000+ 1 7.05775- 7 4.98295- 2 1.80000+ 1 2.20000+ 1 2.11731- 6 4.98354- 2 1.80000+ 1 2.70000+ 1 1.99962- 6 4.99370- 2 1.80000+ 1 2.90000+ 1 2.35259- 7 4.99569- 2 1.80000+ 1 3.00000+ 1 2.58786- 6 4.99615- 2 1.80000+ 1 4.10000+ 1 2.35259- 7 4.99860- 2 1.90000+ 1 1.90000+ 1 1.00277- 5 4.97453- 2 1.90000+ 1 2.10000+ 1 2.83122- 6 4.98620- 2 1.90000+ 1 2.20000+ 1 2.35932- 6 4.98678- 2 1.90000+ 1 2.70000+ 1 1.88742- 6 4.99695- 2 1.90000+ 1 2.90000+ 1 2.71320- 6 4.99893- 2 1.90000+ 1 3.00000+ 1 2.71320- 6 4.99940- 2 1.90000+ 1 4.10000+ 1 1.17966- 7 5.00184- 2 2.10000+ 1 2.20000+ 1 3.65336- 7 4.99845- 2 2.10000+ 1 2.70000+ 1 1.21778- 7 5.00862- 2 2.10000+ 1 2.90000+ 1 1.21778- 7 5.01060- 2 2.10000+ 1 3.00000+ 1 3.65336- 7 5.01107- 2 2.20000+ 1 2.20000+ 1 1.21778- 7 4.99904- 2 2.20000+ 1 2.70000+ 1 1.21778- 7 5.00920- 2 2.20000+ 1 2.90000+ 1 2.43557- 7 5.01119- 2 2.20000+ 1 3.00000+ 1 3.65336- 7 5.01165- 2 2.70000+ 1 2.70000+ 1 4.25224- 7 5.01937- 2 2.70000+ 1 2.90000+ 1 2.83483- 7 5.02135- 2 2.70000+ 1 3.00000+ 1 2.83483- 7 5.02182- 2 2.90000+ 1 3.00000+ 1 3.65330- 7 5.02380- 2 3.00000+ 1 3.00000+ 1 1.21880- 7 5.02426- 2 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.92809- 5 4.02800- 4 6.00000+ 0 9.04024- 4 1.10710- 3 1.00000+ 1 2.39379- 2 6.66290- 3 1.10000+ 1 3.41518- 2 6.80800- 3 1.30000+ 1 5.10657- 4 7.11820- 3 1.40000+ 1 7.64065- 4 7.15000- 3 1.80000+ 1 5.67896- 3 8.03850- 3 1.90000+ 1 8.44465- 3 8.07094- 3 2.10000+ 1 6.97826- 5 8.18764- 3 2.20000+ 1 1.07569- 4 8.19350- 3 2.90000+ 1 7.84435- 4 8.31497- 3 3.00000+ 1 1.13049- 3 8.31962- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 5.02254- 2 2.14100- 5 5.00000+ 0 1.80000+ 1 3.80496- 2 9.15000- 5 5.00000+ 0 1.90000+ 1 4.40603- 2 1.23940- 4 5.00000+ 0 2.10000+ 1 1.18658- 2 2.40640- 4 5.00000+ 0 2.20000+ 1 1.82540- 2 2.46500- 4 5.00000+ 0 2.40000+ 1 2.96209- 2 3.85770- 4 5.00000+ 0 2.50000+ 1 4.85604- 3 3.86600- 4 5.00000+ 0 2.70000+ 1 8.26643- 3 3.48140- 4 5.00000+ 0 2.90000+ 1 5.02880- 3 3.67970- 4 5.00000+ 0 3.00000+ 1 5.64924- 3 3.72620- 4 5.00000+ 0 3.20000+ 1 1.39305- 4 3.97610- 4 5.00000+ 0 4.10000+ 1 7.22838- 4 3.97090- 4 6.00000+ 0 1.60000+ 1 5.69877- 2 7.25710- 4 6.00000+ 0 1.80000+ 1 2.41932- 2 7.95800- 4 6.00000+ 0 1.90000+ 1 4.22801- 2 8.28240- 4 6.00000+ 0 2.10000+ 1 6.41925- 2 9.44940- 4 6.00000+ 0 2.20000+ 1 8.02490- 2 9.50800- 4 6.00000+ 0 2.40000+ 1 4.19702- 2 1.09007- 3 6.00000+ 0 2.50000+ 1 6.67631- 3 1.09090- 3 6.00000+ 0 2.70000+ 1 9.31797- 3 1.05244- 3 6.00000+ 0 2.90000+ 1 3.27813- 3 1.07227- 3 6.00000+ 0 3.00000+ 1 5.58175- 3 1.07692- 3 6.00000+ 0 3.20000+ 1 7.04878- 4 1.10191- 3 6.00000+ 0 4.10000+ 1 8.16090- 4 1.10139- 3 8.00000+ 0 8.00000+ 0 1.17132- 2 4.62060- 3 8.00000+ 0 1.00000+ 1 2.35253- 2 4.79830- 3 8.00000+ 0 1.10000+ 1 4.17559- 2 4.94340- 3 8.00000+ 0 1.30000+ 1 3.26376- 2 5.25360- 3 8.00000+ 0 1.40000+ 1 4.48870- 2 5.28540- 3 8.00000+ 0 1.60000+ 1 4.64974- 3 6.10381- 3 8.00000+ 0 1.80000+ 1 5.18708- 3 6.17390- 3 8.00000+ 0 1.90000+ 1 9.09906- 3 6.20634- 3 8.00000+ 0 2.10000+ 1 6.07378- 3 6.32304- 3 8.00000+ 0 2.20000+ 1 8.29253- 3 6.32890- 3 8.00000+ 0 2.40000+ 1 2.83990- 4 6.46817- 3 8.00000+ 0 2.50000+ 1 4.18498- 5 6.46900- 3 8.00000+ 0 2.70000+ 1 7.71267- 4 6.43054- 3 8.00000+ 0 2.90000+ 1 7.23439- 4 6.45037- 3 8.00000+ 0 3.00000+ 1 1.22019- 3 6.45502- 3 8.00000+ 0 3.20000+ 1 6.93523- 5 6.48001- 3 8.00000+ 0 4.10000+ 1 6.75602- 5 6.47949- 3 1.00000+ 1 1.00000+ 1 9.32701- 5 4.97600- 3 1.00000+ 1 1.10000+ 1 6.98294- 4 5.12110- 3 1.00000+ 1 1.30000+ 1 1.18077- 3 5.43130- 3 1.00000+ 1 1.40000+ 1 1.28184- 2 5.46310- 3 1.00000+ 1 1.60000+ 1 3.70264- 3 6.28151- 3 1.00000+ 1 1.80000+ 1 1.79351- 5 6.35160- 3 1.00000+ 1 1.90000+ 1 1.42288- 4 6.38404- 3 1.00000+ 1 2.10000+ 1 2.13437- 4 6.50074- 3 1.00000+ 1 2.20000+ 1 1.53475- 3 6.50660- 3 1.00000+ 1 2.40000+ 1 9.74541- 5 6.64587- 3 1.00000+ 1 2.50000+ 1 4.36445- 5 6.64670- 3 1.00000+ 1 2.70000+ 1 5.82903- 4 6.60824- 3 1.00000+ 1 2.90000+ 1 1.79351- 6 6.62807- 3 1.00000+ 1 3.00000+ 1 1.91316- 5 6.63272- 3 1.00000+ 1 3.20000+ 1 2.39133- 6 6.65771- 3 1.00000+ 1 4.10000+ 1 5.08180- 5 6.65719- 3 1.10000+ 1 1.10000+ 1 1.00559- 3 5.26620- 3 1.10000+ 1 1.30000+ 1 6.98316- 3 5.57640- 3 1.10000+ 1 1.40000+ 1 4.57440- 3 5.60820- 3 1.10000+ 1 1.60000+ 1 6.55092- 3 6.42661- 3 1.10000+ 1 1.80000+ 1 1.45887- 4 6.49670- 3 1.10000+ 1 1.90000+ 1 3.25245- 4 6.52914- 3 1.10000+ 1 2.10000+ 1 6.55264- 4 6.64584- 3 1.10000+ 1 2.20000+ 1 4.37640- 4 6.65170- 3 1.10000+ 1 2.40000+ 1 2.67239- 4 6.79097- 3 1.10000+ 1 2.50000+ 1 2.75023- 5 6.79180- 3 1.10000+ 1 2.70000+ 1 1.03016- 3 6.75334- 3 1.10000+ 1 2.90000+ 1 2.03276- 5 6.77317- 3 1.10000+ 1 3.00000+ 1 4.12530- 5 6.77782- 3 1.10000+ 1 3.20000+ 1 6.57667- 6 6.80281- 3 1.10000+ 1 4.10000+ 1 8.96807- 5 6.80229- 3 1.30000+ 1 1.30000+ 1 1.90116- 3 5.88660- 3 1.30000+ 1 1.40000+ 1 6.37199- 2 5.91840- 3 1.30000+ 1 1.60000+ 1 4.80865- 3 6.73681- 3 1.30000+ 1 1.80000+ 1 3.29428- 4 6.80690- 3 1.30000+ 1 1.90000+ 1 1.60100- 3 6.83934- 3 1.30000+ 1 2.10000+ 1 6.94719- 4 6.95604- 3 1.30000+ 1 2.20000+ 1 8.41310- 3 6.96190- 3 1.30000+ 1 2.40000+ 1 3.30629- 4 7.10117- 3 1.30000+ 1 2.50000+ 1 1.17179- 4 7.10200- 3 1.30000+ 1 2.70000+ 1 7.48523- 4 7.06354- 3 1.30000+ 1 2.90000+ 1 4.78300- 5 7.08337- 3 1.30000+ 1 3.00000+ 1 2.16428- 4 7.08802- 3 1.30000+ 1 3.20000+ 1 7.77217- 6 7.11301- 3 1.30000+ 1 4.10000+ 1 6.51678- 5 7.11249- 3 1.40000+ 1 1.40000+ 1 1.78891- 2 5.95020- 3 1.40000+ 1 1.60000+ 1 6.67281- 3 6.76861- 3 1.40000+ 1 1.80000+ 1 2.54807- 3 6.83870- 3 1.40000+ 1 1.90000+ 1 1.10194- 3 6.87114- 3 1.40000+ 1 2.10000+ 1 8.27625- 3 6.98784- 3 1.40000+ 1 2.20000+ 1 4.96588- 3 6.99370- 3 1.40000+ 1 2.40000+ 1 1.04085- 3 7.13297- 3 1.40000+ 1 2.50000+ 1 1.01036- 4 7.13380- 3 1.40000+ 1 2.70000+ 1 1.04146- 3 7.09534- 3 1.40000+ 1 2.90000+ 1 3.49148- 4 7.11517- 3 1.40000+ 1 3.00000+ 1 1.50065- 4 7.11982- 3 1.40000+ 1 3.20000+ 1 9.02773- 5 7.14481- 3 1.40000+ 1 4.10000+ 1 9.08750- 5 7.14429- 3 1.60000+ 1 1.60000+ 1 4.36456- 4 7.58702- 3 1.60000+ 1 1.80000+ 1 8.19086- 4 7.65711- 3 1.60000+ 1 1.90000+ 1 1.43251- 3 7.68955- 3 1.60000+ 1 2.10000+ 1 8.93811- 4 7.80625- 3 1.60000+ 1 2.20000+ 1 1.22684- 3 7.81211- 3 1.60000+ 1 2.40000+ 1 3.40790- 5 7.95138- 3 1.60000+ 1 2.50000+ 1 4.78305- 6 7.95221- 3 1.60000+ 1 2.70000+ 1 1.43493- 4 7.91375- 3 1.60000+ 1 2.90000+ 1 1.14193- 4 7.93358- 3 1.60000+ 1 3.00000+ 1 1.91906- 4 7.93823- 3 1.60000+ 1 3.20000+ 1 1.01643- 5 7.96322- 3 1.60000+ 1 4.10000+ 1 1.25552- 5 7.96270- 3 1.80000+ 1 1.80000+ 1 5.97879- 7 7.72720- 3 1.80000+ 1 1.90000+ 1 2.98929- 5 7.75964- 3 1.80000+ 1 2.10000+ 1 5.08191- 5 7.87634- 3 1.80000+ 1 2.20000+ 1 3.15669- 4 7.88220- 3 1.80000+ 1 2.40000+ 1 1.31528- 5 8.02147- 3 1.80000+ 1 2.50000+ 1 6.57661- 6 8.02230- 3 1.80000+ 1 2.70000+ 1 1.29145- 4 7.98384- 3 1.80000+ 1 3.00000+ 1 4.18493- 6 8.00832- 3 1.80000+ 1 3.20000+ 1 5.97879- 7 8.03331- 3 1.80000+ 1 4.10000+ 1 1.13596- 5 8.03279- 3 1.90000+ 1 1.90000+ 1 2.63064- 5 7.79208- 3 1.90000+ 1 2.10000+ 1 1.63816- 4 7.90878- 3 1.90000+ 1 2.20000+ 1 1.14787- 4 7.91464- 3 1.90000+ 1 2.40000+ 1 4.60350- 5 8.05391- 3 1.90000+ 1 2.50000+ 1 4.78301- 6 8.05474- 3 1.90000+ 1 2.70000+ 1 2.25384- 4 8.01628- 3 1.90000+ 1 2.90000+ 1 4.18489- 6 8.03611- 3 1.90000+ 1 3.00000+ 1 6.57655- 6 8.04076- 3 1.90000+ 1 3.20000+ 1 1.79354- 6 8.06575- 3 1.90000+ 1 4.10000+ 1 1.97295- 5 8.06523- 3 2.10000+ 1 2.10000+ 1 5.91917- 5 8.02548- 3 2.10000+ 1 2.20000+ 1 1.18203- 3 8.03134- 3 2.10000+ 1 2.40000+ 1 4.24501- 5 8.17061- 3 2.10000+ 1 2.50000+ 1 1.19576- 5 8.17144- 3 2.10000+ 1 2.70000+ 1 1.38710- 4 8.13298- 3 2.10000+ 1 2.90000+ 1 7.17461- 6 8.15281- 3 2.10000+ 1 3.00000+ 1 2.27189- 5 8.15746- 3 2.10000+ 1 3.20000+ 1 1.19576- 6 8.18245- 3 2.10000+ 1 4.10000+ 1 1.19576- 5 8.18193- 3 2.20000+ 1 2.20000+ 1 3.50946- 4 8.03720- 3 2.20000+ 1 2.40000+ 1 1.02877- 4 8.17647- 3 2.20000+ 1 2.50000+ 1 1.08600- 5 8.17730- 3 2.20000+ 1 2.70000+ 1 1.82906- 4 8.13884- 3 2.20000+ 1 2.90000+ 1 4.17259- 5 8.15867- 3 2.20000+ 1 3.00000+ 1 1.54325- 5 8.16332- 3 2.20000+ 1 3.20000+ 1 1.25744- 5 8.18831- 3 2.20000+ 1 4.10000+ 1 1.60039- 5 8.18779- 3 2.40000+ 1 2.40000+ 1 5.00836- 7 8.31574- 3 2.40000+ 1 2.50000+ 1 2.50410- 6 8.31657- 3 2.40000+ 1 2.70000+ 1 4.50750- 6 8.27811- 3 2.40000+ 1 2.90000+ 1 1.50244- 6 8.29794- 3 2.40000+ 1 3.00000+ 1 5.00836- 6 8.30259- 3 2.40000+ 1 3.20000+ 1 5.00836- 7 8.32758- 3 2.40000+ 1 4.10000+ 1 5.00836- 7 8.32706- 3 2.50000+ 1 2.50000+ 1 1.11042- 6 8.31740- 3 2.50000+ 1 2.70000+ 1 1.11042- 6 8.27894- 3 2.50000+ 1 2.90000+ 1 1.11042- 6 8.29877- 3 2.50000+ 1 3.00000+ 1 1.11042- 6 8.30342- 3 2.70000+ 1 2.70000+ 1 1.81669- 5 8.24048- 3 2.70000+ 1 2.90000+ 1 2.72495- 5 8.26031- 3 2.70000+ 1 3.00000+ 1 4.63231- 5 8.26496- 3 2.70000+ 1 3.20000+ 1 2.72495- 6 8.28995- 3 2.70000+ 1 4.10000+ 1 2.72495- 6 8.28943- 3 2.90000+ 1 3.00000+ 1 1.45769- 6 8.28479- 3 2.90000+ 1 4.10000+ 1 4.37287- 6 8.30926- 3 3.00000+ 1 3.00000+ 1 5.34021- 7 8.28944- 3 3.00000+ 1 4.10000+ 1 2.13596- 6 8.31391- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.42864- 7 7.04300- 4 8.00000+ 0 5.18024- 3 6.08240- 3 1.10000+ 1 1.04641- 4 6.40520- 3 1.30000+ 1 1.42311- 1 6.71540- 3 1.60000+ 1 1.00571- 3 7.56561- 3 1.90000+ 1 2.24122- 5 7.66814- 3 2.10000+ 1 2.49912- 2 7.78484- 3 2.40000+ 1 1.85561- 5 7.92997- 3 2.70000+ 1 1.70461- 4 7.89234- 3 3.00000+ 1 4.97924- 6 7.91682- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 8.85629- 3 3.22910- 4 6.00000+ 0 1.80000+ 1 4.76509- 2 3.93000- 4 6.00000+ 0 1.90000+ 1 1.55609- 2 4.25440- 4 6.00000+ 0 2.10000+ 1 5.89657- 2 5.42140- 4 6.00000+ 0 2.20000+ 1 2.12662- 2 5.48000- 4 6.00000+ 0 2.40000+ 1 1.36149- 3 6.87270- 4 6.00000+ 0 2.50000+ 1 2.61184- 4 6.88100- 4 6.00000+ 0 2.70000+ 1 1.36885- 3 6.49640- 4 6.00000+ 0 2.90000+ 1 6.24918- 3 6.69470- 4 6.00000+ 0 3.00000+ 1 2.06733- 3 6.74120- 4 6.00000+ 0 3.20000+ 1 6.54071- 4 6.99110- 4 6.00000+ 0 4.10000+ 1 1.19127- 4 6.98590- 4 8.00000+ 0 8.00000+ 0 8.61214- 4 4.21780- 3 8.00000+ 0 1.00000+ 1 2.34289- 2 4.39550- 3 8.00000+ 0 1.10000+ 1 2.27291- 3 4.54060- 3 8.00000+ 0 1.30000+ 1 2.32394- 3 4.85080- 3 8.00000+ 0 1.40000+ 1 2.89284- 3 4.88260- 3 8.00000+ 0 1.60000+ 1 3.15197- 4 5.70101- 3 8.00000+ 0 1.80000+ 1 3.47362- 3 5.77110- 3 8.00000+ 0 1.90000+ 1 4.40216- 4 5.80354- 3 8.00000+ 0 2.10000+ 1 3.09268- 4 5.92024- 3 8.00000+ 0 2.20000+ 1 3.27750- 4 5.92610- 3 8.00000+ 0 2.40000+ 1 7.32485- 5 6.06537- 3 8.00000+ 0 2.50000+ 1 5.91906- 6 6.06620- 3 8.00000+ 0 2.70000+ 1 5.10505- 5 6.02774- 3 8.00000+ 0 2.90000+ 1 4.51338- 4 6.04757- 3 8.00000+ 0 3.00000+ 1 5.77094- 5 6.05222- 3 8.00000+ 0 3.20000+ 1 3.69927- 6 6.07721- 3 8.00000+ 0 4.10000+ 1 4.43917- 6 6.07669- 3 1.00000+ 1 1.00000+ 1 2.35568- 2 4.57320- 3 1.00000+ 1 1.10000+ 1 6.94605- 2 4.71830- 3 1.00000+ 1 1.30000+ 1 3.71204- 2 5.02850- 3 1.00000+ 1 1.40000+ 1 6.02639- 2 5.06030- 3 1.00000+ 1 1.60000+ 1 5.59494- 3 5.87871- 3 1.00000+ 1 1.80000+ 1 8.83017- 3 5.94880- 3 1.00000+ 1 1.90000+ 1 1.48775- 2 5.98124- 3 1.00000+ 1 2.10000+ 1 6.89927- 3 6.09794- 3 1.00000+ 1 2.20000+ 1 1.11751- 2 6.10380- 3 1.00000+ 1 2.40000+ 1 3.15920- 4 6.24307- 3 1.00000+ 1 2.50000+ 1 3.77325- 5 6.24390- 3 1.00000+ 1 2.70000+ 1 9.54393- 4 6.20544- 3 1.00000+ 1 2.90000+ 1 1.20230- 3 6.22527- 3 1.00000+ 1 3.00000+ 1 1.98947- 3 6.22992- 3 1.00000+ 1 3.20000+ 1 7.91644- 5 6.25491- 3 1.00000+ 1 4.10000+ 1 8.43441- 5 6.25439- 3 1.10000+ 1 1.10000+ 1 1.76387- 3 4.86340- 3 1.10000+ 1 1.30000+ 1 4.11236- 2 5.17360- 3 1.10000+ 1 1.40000+ 1 5.63291- 3 5.20540- 3 1.10000+ 1 1.60000+ 1 4.62440- 4 6.02381- 3 1.10000+ 1 1.80000+ 1 1.06490- 2 6.09390- 3 1.10000+ 1 1.90000+ 1 6.39995- 4 6.12634- 3 1.10000+ 1 2.10000+ 1 6.47396- 3 6.24304- 3 1.10000+ 1 2.20000+ 1 8.36770- 4 6.24890- 3 1.10000+ 1 2.40000+ 1 1.84967- 4 6.38817- 3 1.10000+ 1 2.50000+ 1 1.33180- 5 6.38900- 3 1.10000+ 1 2.70000+ 1 7.62083- 5 6.35054- 3 1.10000+ 1 2.90000+ 1 1.39250- 3 6.37037- 3 1.10000+ 1 3.00000+ 1 8.28673- 5 6.37502- 3 1.10000+ 1 3.20000+ 1 7.25077- 5 6.40001- 3 1.10000+ 1 4.10000+ 1 6.65909- 6 6.39949- 3 1.30000+ 1 1.30000+ 1 3.81483- 2 5.48380- 3 1.30000+ 1 1.40000+ 1 1.59706- 1 5.51560- 3 1.30000+ 1 1.60000+ 1 5.61567- 4 6.33401- 3 1.30000+ 1 1.80000+ 1 5.64320- 3 6.40410- 3 1.30000+ 1 1.90000+ 1 8.26268- 3 6.43654- 3 1.30000+ 1 2.10000+ 1 1.19566- 2 6.55324- 3 1.30000+ 1 2.20000+ 1 2.68835- 2 6.55910- 3 1.30000+ 1 2.40000+ 1 1.26080- 3 6.69837- 3 1.30000+ 1 2.50000+ 1 3.26289- 4 6.69920- 3 1.30000+ 1 2.70000+ 1 9.61845- 5 6.66074- 3 1.30000+ 1 2.90000+ 1 7.42085- 4 6.68057- 3 1.30000+ 1 3.00000+ 1 1.09281- 3 6.68522- 3 1.30000+ 1 3.20000+ 1 1.33913- 4 6.71021- 3 1.30000+ 1 4.10000+ 1 8.13875- 6 6.70969- 3 1.40000+ 1 1.40000+ 1 7.65693- 3 5.54740- 3 1.40000+ 1 1.60000+ 1 5.70433- 4 6.36581- 3 1.40000+ 1 1.80000+ 1 8.12236- 3 6.43590- 3 1.40000+ 1 1.90000+ 1 1.03585- 3 6.46834- 3 1.40000+ 1 2.10000+ 1 2.08771- 2 6.58504- 3 1.40000+ 1 2.20000+ 1 2.34029- 3 6.59090- 3 1.40000+ 1 2.40000+ 1 5.12001- 4 6.73017- 3 1.40000+ 1 2.50000+ 1 2.51555- 5 6.73100- 3 1.40000+ 1 2.70000+ 1 9.39627- 5 6.69254- 3 1.40000+ 1 2.90000+ 1 1.03656- 3 6.71237- 3 1.40000+ 1 3.00000+ 1 1.34661- 4 6.71702- 3 1.40000+ 1 3.20000+ 1 2.27878- 4 6.74201- 3 1.40000+ 1 4.10000+ 1 8.13880- 6 6.74149- 3 1.60000+ 1 1.60000+ 1 2.81164- 5 7.18422- 3 1.60000+ 1 1.80000+ 1 8.34655- 4 7.25431- 3 1.60000+ 1 1.90000+ 1 9.02740- 5 7.28675- 3 1.60000+ 1 2.10000+ 1 7.17716- 5 7.40345- 3 1.60000+ 1 2.20000+ 1 6.58533- 5 7.40931- 3 1.60000+ 1 2.40000+ 1 1.55379- 5 7.54858- 3 1.60000+ 1 2.50000+ 1 7.39920- 7 7.54941- 3 1.60000+ 1 2.70000+ 1 8.87867- 6 7.51095- 3 1.60000+ 1 2.90000+ 1 1.08763- 4 7.53078- 3 1.60000+ 1 3.00000+ 1 1.18393- 5 7.53543- 3 1.60000+ 1 3.20000+ 1 7.39920- 7 7.56042- 3 1.60000+ 1 4.10000+ 1 7.39920- 7 7.55990- 3 1.80000+ 1 1.80000+ 1 7.74864- 4 7.32440- 3 1.80000+ 1 1.90000+ 1 2.24181- 3 7.35684- 3 1.80000+ 1 2.10000+ 1 1.01235- 3 7.47354- 3 1.80000+ 1 2.20000+ 1 1.49015- 3 7.47940- 3 1.80000+ 1 2.40000+ 1 3.77629- 5 7.61867- 3 1.80000+ 1 2.50000+ 1 3.63091- 6 7.61950- 3 1.80000+ 1 2.70000+ 1 1.40158- 4 7.58104- 3 1.80000+ 1 2.90000+ 1 2.09137- 4 7.60087- 3 1.80000+ 1 3.00000+ 1 2.99921- 4 7.60552- 3 1.80000+ 1 3.20000+ 1 1.16198- 5 7.63051- 3 1.80000+ 1 4.10000+ 1 1.23452- 5 7.62999- 3 1.90000+ 1 1.90000+ 1 5.75289- 5 7.38928- 3 1.90000+ 1 2.10000+ 1 1.29117- 3 7.50598- 3 1.90000+ 1 2.20000+ 1 1.55119- 4 7.51184- 3 1.90000+ 1 2.40000+ 1 2.91283- 5 7.65111- 3 1.90000+ 1 2.50000+ 1 2.18465- 6 7.65194- 3 1.90000+ 1 2.70000+ 1 1.45651- 5 7.61348- 3 1.90000+ 1 2.90000+ 1 2.94200- 4 7.63331- 3 1.90000+ 1 3.00000+ 1 1.52925- 5 7.63796- 3 1.90000+ 1 3.20000+ 1 1.45651- 5 7.66295- 3 1.90000+ 1 4.10000+ 1 1.45651- 6 7.66243- 3 2.10000+ 1 2.10000+ 1 9.25589- 4 7.62268- 3 2.10000+ 1 2.20000+ 1 3.64337- 3 7.62854- 3 2.10000+ 1 2.40000+ 1 1.37616- 4 7.76781- 3 2.10000+ 1 2.50000+ 1 3.62532- 5 7.76864- 3 2.10000+ 1 2.70000+ 1 1.25778- 5 7.73018- 3 2.10000+ 1 2.90000+ 1 1.35398- 4 7.75001- 3 2.10000+ 1 3.00000+ 1 1.73875- 4 7.75466- 3 2.10000+ 1 3.20000+ 1 2.07169- 5 7.77965- 3 2.10000+ 1 4.10000+ 1 7.39887- 7 7.77913- 3 2.20000+ 1 2.20000+ 1 2.19780- 4 7.63440- 3 2.20000+ 1 2.40000+ 1 7.29615- 5 7.77367- 3 2.20000+ 1 2.50000+ 1 3.60286- 6 7.77450- 3 2.20000+ 1 2.70000+ 1 1.35116- 5 7.73604- 3 2.20000+ 1 2.90000+ 1 2.35996- 4 7.75587- 3 2.20000+ 1 3.00000+ 1 2.52210- 5 7.76052- 3 2.20000+ 1 3.20000+ 1 4.86415- 5 7.78551- 3 2.20000+ 1 4.10000+ 1 9.00749- 7 7.78499- 3 2.40000+ 1 2.40000+ 1 1.47982- 6 7.91294- 3 2.40000+ 1 2.50000+ 1 2.95945- 6 7.91377- 3 2.40000+ 1 2.70000+ 1 2.21962- 6 7.87531- 3 2.40000+ 1 2.90000+ 1 5.17907- 6 7.89514- 3 2.40000+ 1 3.00000+ 1 3.69935- 6 7.89979- 3 2.40000+ 1 3.20000+ 1 1.47982- 6 7.92478- 3 2.50000+ 1 2.90000+ 1 7.39906- 7 7.89597- 3 2.50000+ 1 3.20000+ 1 7.39906- 7 7.92561- 3 2.70000+ 1 2.70000+ 1 1.14208- 6 7.83768- 3 2.70000+ 1 2.90000+ 1 2.85510- 5 7.85751- 3 2.70000+ 1 3.00000+ 1 3.42615- 6 7.86216- 3 2.90000+ 1 2.90000+ 1 2.31647- 5 7.87734- 3 2.90000+ 1 3.00000+ 1 6.58372- 5 7.88199- 3 2.90000+ 1 3.20000+ 1 2.43842- 6 7.90698- 3 2.90000+ 1 4.10000+ 1 2.43842- 6 7.90646- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 9.55798- 3 5.37810- 3 1.00000+ 1 6.48298- 5 5.55580- 3 1.10000+ 1 5.92819- 5 5.70090- 3 1.30000+ 1 1.32890- 2 6.01110- 3 1.40000+ 1 1.17530- 1 6.04290- 3 1.60000+ 1 1.27740- 3 6.86131- 3 1.80000+ 1 1.00730- 5 6.93140- 3 1.90000+ 1 9.75548- 6 6.96384- 3 2.10000+ 1 2.23329- 3 7.08054- 3 2.20000+ 1 1.99820- 2 7.08640- 3 2.40000+ 1 2.66279- 6 7.22567- 3 2.50000+ 1 1.53040- 5 7.22650- 3 2.70000+ 1 2.35569- 4 7.18804- 3 2.90000+ 1 2.28459- 6 7.20787- 3 3.00000+ 1 1.96740- 6 7.21252- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.14997- 3 3.51350- 3 8.00000+ 0 1.00000+ 1 7.30959- 4 3.69120- 3 8.00000+ 0 1.10000+ 1 2.62428- 2 3.83630- 3 8.00000+ 0 1.30000+ 1 2.70041- 3 4.14650- 3 8.00000+ 0 1.40000+ 1 3.37478- 3 4.17830- 3 8.00000+ 0 1.60000+ 1 4.22144- 4 4.99671- 3 8.00000+ 0 1.80000+ 1 1.28808- 4 5.06680- 3 8.00000+ 0 1.90000+ 1 3.86434- 3 5.09924- 3 8.00000+ 0 2.10000+ 1 2.51418- 4 5.21594- 3 8.00000+ 0 2.20000+ 1 2.83225- 4 5.22180- 3 8.00000+ 0 2.40000+ 1 1.01652- 4 5.36107- 3 8.00000+ 0 2.50000+ 1 2.32795- 5 5.36190- 3 8.00000+ 0 2.70000+ 1 6.82844- 5 5.32344- 3 8.00000+ 0 2.90000+ 1 1.70717- 5 5.34327- 3 8.00000+ 0 3.00000+ 1 4.84192- 4 5.34792- 3 8.00000+ 0 3.20000+ 1 2.32795- 6 5.37291- 3 8.00000+ 0 4.10000+ 1 6.20785- 6 5.37239- 3 1.00000+ 1 1.00000+ 1 2.00978- 4 3.86890- 3 1.00000+ 1 1.10000+ 1 4.39223- 2 4.01400- 3 1.00000+ 1 1.30000+ 1 2.62198- 3 4.32420- 3 1.00000+ 1 1.40000+ 1 2.34687- 2 4.35600- 3 1.00000+ 1 1.60000+ 1 1.44329- 4 5.17441- 3 1.00000+ 1 1.80000+ 1 7.37171- 5 5.24450- 3 1.00000+ 1 1.90000+ 1 6.70987- 3 5.27694- 3 1.00000+ 1 2.10000+ 1 4.47746- 4 5.39364- 3 1.00000+ 1 2.20000+ 1 3.40048- 3 5.39950- 3 1.00000+ 1 2.40000+ 1 1.11742- 4 5.53877- 3 1.00000+ 1 2.50000+ 1 3.72472- 5 5.53960- 3 1.00000+ 1 2.70000+ 1 2.40551- 5 5.50114- 3 1.00000+ 1 2.90000+ 1 1.00874- 5 5.52097- 3 1.00000+ 1 3.00000+ 1 8.45829- 4 5.52562- 3 1.00000+ 1 3.20000+ 1 5.43170- 6 5.55061- 3 1.00000+ 1 4.10000+ 1 2.32796- 6 5.55009- 3 1.10000+ 1 1.10000+ 1 5.97408- 2 4.15910- 3 1.10000+ 1 1.30000+ 1 6.15547- 2 4.46930- 3 1.10000+ 1 1.40000+ 1 8.99570- 2 4.50110- 3 1.10000+ 1 1.60000+ 1 6.19450- 3 5.31951- 3 1.10000+ 1 1.80000+ 1 9.23229- 3 5.38960- 3 1.10000+ 1 1.90000+ 1 2.18427- 2 5.42204- 3 1.10000+ 1 2.10000+ 1 1.09305- 2 5.53874- 3 1.10000+ 1 2.20000+ 1 1.57340- 2 5.54460- 3 1.10000+ 1 2.40000+ 1 5.08264- 4 5.68387- 3 1.10000+ 1 2.50000+ 1 8.30274- 5 5.68470- 3 1.10000+ 1 2.70000+ 1 1.05453- 3 5.64624- 3 1.10000+ 1 2.90000+ 1 1.27807- 3 5.66607- 3 1.10000+ 1 3.00000+ 1 2.85166- 3 5.67072- 3 1.10000+ 1 3.20000+ 1 1.24157- 4 5.69571- 3 1.10000+ 1 4.10000+ 1 9.31166- 5 5.69519- 3 1.30000+ 1 1.30000+ 1 8.89317- 3 4.77950- 3 1.30000+ 1 1.40000+ 1 1.68931- 1 4.81130- 3 1.30000+ 1 1.60000+ 1 6.05274- 4 5.62971- 3 1.30000+ 1 1.80000+ 1 5.53284- 4 5.69980- 3 1.30000+ 1 1.90000+ 1 8.70764- 3 5.73224- 3 1.30000+ 1 2.10000+ 1 2.76257- 3 5.84894- 3 1.30000+ 1 2.20000+ 1 2.22297- 2 5.85480- 3 1.30000+ 1 2.40000+ 1 2.88664- 4 5.99407- 3 1.30000+ 1 2.50000+ 1 1.24929- 4 5.99490- 3 1.30000+ 1 2.70000+ 1 1.02433- 4 5.95644- 3 1.30000+ 1 2.90000+ 1 7.68250- 5 5.97627- 3 1.30000+ 1 3.00000+ 1 1.08338- 3 5.98092- 3 1.30000+ 1 3.20000+ 1 3.10391- 5 6.00591- 3 1.30000+ 1 4.10000+ 1 9.31196- 6 6.00539- 3 1.40000+ 1 1.40000+ 1 1.13968- 1 4.84310- 3 1.40000+ 1 1.60000+ 1 7.97725- 4 5.66151- 3 1.40000+ 1 1.80000+ 1 4.55508- 3 5.73160- 3 1.40000+ 1 1.90000+ 1 1.43219- 2 5.76404- 3 1.40000+ 1 2.10000+ 1 2.65405- 2 5.88074- 3 1.40000+ 1 2.20000+ 1 3.38304- 2 5.88660- 3 1.40000+ 1 2.40000+ 1 3.07537- 3 6.02587- 3 1.40000+ 1 2.50000+ 1 3.55411- 4 6.02670- 3 1.40000+ 1 2.70000+ 1 1.36575- 4 5.98824- 3 1.40000+ 1 2.90000+ 1 6.21576- 4 6.00807- 3 1.40000+ 1 3.00000+ 1 1.82822- 3 6.01272- 3 1.40000+ 1 3.20000+ 1 2.97214- 4 6.03771- 3 1.40000+ 1 4.10000+ 1 1.16394- 5 6.03719- 3 1.60000+ 1 1.60000+ 1 3.87960- 5 6.47992- 3 1.60000+ 1 1.80000+ 1 2.63810- 5 6.55001- 3 1.60000+ 1 1.90000+ 1 9.14076- 4 6.58245- 3 1.60000+ 1 2.10000+ 1 6.12979- 5 6.69915- 3 1.60000+ 1 2.20000+ 1 7.29376- 5 6.70501- 3 1.60000+ 1 2.40000+ 1 1.47424- 5 6.84428- 3 1.60000+ 1 2.50000+ 1 3.87960- 6 6.84511- 3 1.60000+ 1 2.70000+ 1 1.24151- 5 6.80665- 3 1.60000+ 1 2.90000+ 1 3.87960- 6 6.82648- 3 1.60000+ 1 3.00000+ 1 1.14840- 4 6.83113- 3 1.60000+ 1 3.20000+ 1 7.75953- 7 6.85612- 3 1.60000+ 1 4.10000+ 1 7.75953- 7 6.85560- 3 1.80000+ 1 1.80000+ 1 6.12369- 6 6.62010- 3 1.80000+ 1 1.90000+ 1 1.38701- 3 6.65254- 3 1.80000+ 1 2.10000+ 1 9.03205- 5 6.76924- 3 1.80000+ 1 2.20000+ 1 6.76658- 4 6.77510- 3 1.80000+ 1 2.40000+ 1 1.53093- 5 6.91437- 3 1.80000+ 1 2.50000+ 1 5.35803- 6 6.91520- 3 1.80000+ 1 2.70000+ 1 4.59267- 6 6.87674- 3 1.80000+ 1 2.90000+ 1 1.53093- 6 6.89657- 3 1.80000+ 1 3.00000+ 1 1.74525- 4 6.90122- 3 1.80000+ 1 3.20000+ 1 7.65472- 7 6.92621- 3 1.90000+ 1 1.90000+ 1 1.78295- 3 6.68498- 3 1.90000+ 1 2.10000+ 1 1.43625- 3 6.80168- 3 1.90000+ 1 2.20000+ 1 2.28948- 3 6.80754- 3 1.90000+ 1 2.40000+ 1 5.46836- 5 6.94681- 3 1.90000+ 1 2.50000+ 1 9.35355- 6 6.94764- 3 1.90000+ 1 2.70000+ 1 1.44629- 4 6.90918- 3 1.90000+ 1 2.90000+ 1 1.80600- 4 6.92901- 3 1.90000+ 1 3.00000+ 1 4.62639- 4 6.93366- 3 1.90000+ 1 3.20000+ 1 1.65497- 5 6.95865- 3 1.90000+ 1 4.10000+ 1 1.29516- 5 6.95813- 3 2.10000+ 1 2.10000+ 1 2.07968- 4 6.91838- 3 2.10000+ 1 2.20000+ 1 3.61531- 3 6.92424- 3 2.10000+ 1 2.40000+ 1 3.10390- 5 7.06351- 3 2.10000+ 1 2.50000+ 1 1.31925- 5 7.06434- 3 2.10000+ 1 2.70000+ 1 1.00876- 5 7.02588- 3 2.10000+ 1 2.90000+ 1 1.24161- 5 7.04571- 3 2.10000+ 1 3.00000+ 1 1.92448- 4 7.05036- 3 2.10000+ 1 3.20000+ 1 4.65590- 6 7.07535- 3 2.10000+ 1 4.10000+ 1 7.76012- 7 7.07483- 3 2.20000+ 1 2.20000+ 1 2.73537- 3 6.93010- 3 2.20000+ 1 2.40000+ 1 3.50967- 4 7.06937- 3 2.20000+ 1 2.50000+ 1 4.03988- 5 7.07020- 3 2.20000+ 1 2.70000+ 1 1.34663- 5 7.03174- 3 2.20000+ 1 2.90000+ 1 1.01839- 4 7.05157- 3 2.20000+ 1 3.00000+ 1 3.40846- 4 7.05622- 3 2.20000+ 1 3.20000+ 1 4.37664- 5 7.08121- 3 2.20000+ 1 4.10000+ 1 8.41654- 7 7.08069- 3 2.40000+ 1 2.40000+ 1 7.76012- 7 7.20864- 3 2.40000+ 1 2.50000+ 1 4.65590- 6 7.20947- 3 2.40000+ 1 2.70000+ 1 2.32801- 6 7.17101- 3 2.40000+ 1 2.90000+ 1 2.32801- 6 7.19084- 3 2.40000+ 1 3.00000+ 1 6.98402- 6 7.19549- 3 2.50000+ 1 2.50000+ 1 1.76836- 6 7.21030- 3 2.50000+ 1 2.70000+ 1 8.84187- 7 7.17184- 3 2.50000+ 1 2.90000+ 1 8.84187- 7 7.19167- 3 2.50000+ 1 3.00000+ 1 1.76836- 6 7.19632- 3 2.70000+ 1 2.70000+ 1 1.15304- 6 7.13338- 3 2.70000+ 1 2.90000+ 1 1.15304- 6 7.15321- 3 2.70000+ 1 3.00000+ 1 2.88248- 5 7.15786- 3 2.90000+ 1 3.00000+ 1 4.90149- 5 7.17769- 3 3.00000+ 1 3.00000+ 1 8.66407- 5 7.18234- 3 3.00000+ 1 3.20000+ 1 6.18904- 6 7.20733- 3 3.00000+ 1 4.10000+ 1 4.12603- 6 7.20681- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.96770- 6 1.77700- 4 1.10000+ 1 1.21580- 4 3.22800- 4 1.80000+ 1 4.40280- 4 1.55330- 3 1.90000+ 1 5.15330- 4 1.58574- 3 2.90000+ 1 1.00880- 4 1.82977- 3 3.00000+ 1 1.10870- 4 1.83442- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 7.09033- 2 1.55400- 5 1.00000+ 1 2.20000+ 1 1.04253- 1 2.14000- 5 1.00000+ 1 2.40000+ 1 2.37397- 2 1.60670- 4 1.00000+ 1 2.50000+ 1 3.19024- 2 1.61500- 4 1.00000+ 1 2.70000+ 1 9.23679- 3 1.23040- 4 1.00000+ 1 2.90000+ 1 7.86698- 3 1.42870- 4 1.00000+ 1 3.00000+ 1 1.21597- 2 1.47520- 4 1.00000+ 1 3.20000+ 1 2.61814- 4 1.72510- 4 1.00000+ 1 3.30000+ 1 3.49789- 4 1.72850- 4 1.00000+ 1 4.10000+ 1 7.96218- 4 1.71990- 4 1.10000+ 1 1.80000+ 1 7.35971- 2 1.15000- 5 1.10000+ 1 1.90000+ 1 1.01149- 1 4.39400- 5 1.10000+ 1 2.10000+ 1 4.47069- 2 1.60640- 4 1.10000+ 1 2.20000+ 1 6.42459- 2 1.66500- 4 1.10000+ 1 2.40000+ 1 6.39492- 2 3.05770- 4 1.10000+ 1 2.50000+ 1 8.07231- 2 3.06600- 4 1.10000+ 1 2.70000+ 1 1.09678- 2 2.68140- 4 1.10000+ 1 2.90000+ 1 9.42679- 3 2.87970- 4 1.10000+ 1 3.00000+ 1 1.29787- 2 2.92620- 4 1.10000+ 1 3.20000+ 1 1.70749- 4 3.17610- 4 1.10000+ 1 3.30000+ 1 2.41133- 4 3.17950- 4 1.10000+ 1 4.10000+ 1 9.43876- 4 3.17090- 4 1.30000+ 1 1.60000+ 1 2.71528- 2 2.51610- 4 1.30000+ 1 1.80000+ 1 5.99127- 3 3.21700- 4 1.30000+ 1 1.90000+ 1 5.23404- 3 3.54140- 4 1.30000+ 1 2.10000+ 1 8.72901- 3 4.70840- 4 1.30000+ 1 2.20000+ 1 1.09732- 2 4.76700- 4 1.30000+ 1 2.40000+ 1 3.24509- 3 6.15970- 4 1.30000+ 1 2.50000+ 1 3.11932- 3 6.16800- 4 1.30000+ 1 2.70000+ 1 3.08293- 3 5.78340- 4 1.30000+ 1 2.90000+ 1 6.51793- 4 5.98170- 4 1.30000+ 1 3.00000+ 1 5.39963- 4 6.02820- 4 1.30000+ 1 3.20000+ 1 3.48262- 5 6.27810- 4 1.30000+ 1 3.30000+ 1 4.39328- 5 6.28150- 4 1.30000+ 1 4.10000+ 1 2.58802- 4 6.27290- 4 1.40000+ 1 1.60000+ 1 3.84869- 2 2.83410- 4 1.40000+ 1 1.80000+ 1 1.25322- 3 3.53500- 4 1.40000+ 1 1.90000+ 1 1.13029- 2 3.85940- 4 1.40000+ 1 2.10000+ 1 1.15918- 2 5.02640- 4 1.40000+ 1 2.20000+ 1 1.75039- 2 5.08500- 4 1.40000+ 1 2.40000+ 1 3.69104- 3 6.47770- 4 1.40000+ 1 2.50000+ 1 5.73885- 3 6.48600- 4 1.40000+ 1 2.70000+ 1 4.32662- 3 6.10140- 4 1.40000+ 1 2.90000+ 1 1.35510- 4 6.29970- 4 1.40000+ 1 3.00000+ 1 1.16555- 3 6.34620- 4 1.40000+ 1 3.20000+ 1 4.92468- 5 6.59610- 4 1.40000+ 1 3.30000+ 1 6.80636- 5 6.59950- 4 1.40000+ 1 4.10000+ 1 3.63381- 4 6.59090- 4 1.60000+ 1 1.60000+ 1 5.07697- 3 1.10182- 3 1.60000+ 1 1.80000+ 1 8.52725- 3 1.17191- 3 1.60000+ 1 1.90000+ 1 1.52113- 2 1.20435- 3 1.60000+ 1 2.10000+ 1 1.64602- 2 1.32105- 3 1.60000+ 1 2.20000+ 1 2.37390- 2 1.32691- 3 1.60000+ 1 2.40000+ 1 3.88838- 3 1.46618- 3 1.60000+ 1 2.50000+ 1 4.95807- 3 1.46701- 3 1.60000+ 1 2.70000+ 1 1.43444- 3 1.42855- 3 1.60000+ 1 2.90000+ 1 1.18652- 3 1.44838- 3 1.60000+ 1 3.00000+ 1 2.03505- 3 1.45303- 3 1.60000+ 1 3.20000+ 1 7.53556- 5 1.47802- 3 1.60000+ 1 3.30000+ 1 1.02555- 4 1.47836- 3 1.60000+ 1 4.10000+ 1 1.24848- 4 1.47750- 3 1.80000+ 1 1.80000+ 1 4.22496- 4 1.24200- 3 1.80000+ 1 1.90000+ 1 1.08046- 3 1.27444- 3 1.80000+ 1 2.10000+ 1 6.36806- 4 1.39114- 3 1.80000+ 1 2.20000+ 1 3.25733- 4 1.39700- 3 1.80000+ 1 2.40000+ 1 6.22096- 5 1.53627- 3 1.80000+ 1 2.50000+ 1 2.60493- 4 1.53710- 3 1.80000+ 1 2.70000+ 1 9.20191- 4 1.49864- 3 1.80000+ 1 2.90000+ 1 9.33118- 5 1.51847- 3 1.80000+ 1 3.00000+ 1 1.12755- 4 1.52312- 3 1.80000+ 1 3.20000+ 1 2.59189- 6 1.54811- 3 1.80000+ 1 3.30000+ 1 1.72798- 6 1.54845- 3 1.80000+ 1 4.10000+ 1 7.73276- 5 1.54759- 3 1.90000+ 1 1.90000+ 1 1.42877- 3 1.30688- 3 1.90000+ 1 2.10000+ 1 8.80351- 4 1.42358- 3 1.90000+ 1 2.20000+ 1 2.18953- 3 1.42944- 3 1.90000+ 1 2.40000+ 1 2.71157- 4 1.56871- 3 1.90000+ 1 2.50000+ 1 5.09719- 4 1.56954- 3 1.90000+ 1 2.70000+ 1 1.65681- 3 1.53108- 3 1.90000+ 1 2.90000+ 1 1.27318- 4 1.55091- 3 1.90000+ 1 3.00000+ 1 3.21120- 4 1.55556- 3 1.90000+ 1 3.20000+ 1 4.34533- 6 1.58055- 3 1.90000+ 1 3.30000+ 1 9.12517- 6 1.58089- 3 1.90000+ 1 4.10000+ 1 1.39053- 4 1.58003- 3 2.10000+ 1 2.10000+ 1 1.91707- 4 1.54028- 3 2.10000+ 1 2.20000+ 1 8.97664- 4 1.54614- 3 2.10000+ 1 2.40000+ 1 2.57774- 4 1.68541- 3 2.10000+ 1 2.50000+ 1 1.94102- 3 1.68624- 3 2.10000+ 1 2.70000+ 1 1.76320- 3 1.64778- 3 2.10000+ 1 2.90000+ 1 6.43351- 5 1.66761- 3 2.10000+ 1 3.00000+ 1 9.30269- 5 1.67226- 3 2.10000+ 1 3.20000+ 1 1.30411- 6 1.69725- 3 2.10000+ 1 3.30000+ 1 3.47766- 6 1.69759- 3 2.10000+ 1 4.10000+ 1 1.47797- 4 1.69673- 3 2.20000+ 1 2.20000+ 1 5.09288- 4 1.55200- 3 2.20000+ 1 2.40000+ 1 1.92970- 3 1.69127- 3 2.20000+ 1 2.50000+ 1 1.10111- 3 1.69210- 3 2.20000+ 1 2.70000+ 1 2.53836- 3 1.65364- 3 2.20000+ 1 2.90000+ 1 3.43290- 5 1.67347- 3 2.20000+ 1 3.00000+ 1 2.30740- 4 1.67812- 3 2.20000+ 1 3.20000+ 1 3.47631- 6 1.70311- 3 2.20000+ 1 3.30000+ 1 3.91082- 6 1.70345- 3 2.20000+ 1 4.10000+ 1 2.12486- 4 1.70259- 3 2.40000+ 1 2.40000+ 1 1.01261- 4 1.83054- 3 2.40000+ 1 2.50000+ 1 9.84679- 4 1.83137- 3 2.40000+ 1 2.70000+ 1 4.17341- 4 1.79291- 3 2.40000+ 1 2.90000+ 1 6.62464- 6 1.81274- 3 2.40000+ 1 3.00000+ 1 2.79161- 5 1.81739- 3 2.40000+ 1 3.20000+ 1 9.46352- 7 1.84238- 3 2.40000+ 1 3.30000+ 1 8.99038- 6 1.84272- 3 2.40000+ 1 4.10000+ 1 3.45418- 5 1.84186- 3 2.50000+ 1 2.50000+ 1 2.65005- 4 1.83220- 3 2.50000+ 1 2.70000+ 1 5.18480- 4 1.79374- 3 2.50000+ 1 2.90000+ 1 3.50260- 5 1.81357- 3 2.50000+ 1 3.00000+ 1 4.97780- 5 1.81822- 3 2.50000+ 1 3.20000+ 1 9.21759- 6 1.84321- 3 2.50000+ 1 3.30000+ 1 5.06963- 6 1.84355- 3 2.50000+ 1 4.10000+ 1 4.28641- 5 1.84269- 3 2.70000+ 1 2.70000+ 1 1.01971- 4 1.75528- 3 2.70000+ 1 2.90000+ 1 1.42184- 4 1.77511- 3 2.70000+ 1 3.00000+ 1 2.44148- 4 1.77976- 3 2.70000+ 1 3.20000+ 1 9.09591- 6 1.80475- 3 2.70000+ 1 3.30000+ 1 1.19684- 5 1.80509- 3 2.70000+ 1 4.10000+ 1 1.77132- 5 1.80423- 3 2.90000+ 1 2.90000+ 1 6.00716- 6 1.79494- 3 2.90000+ 1 3.00000+ 1 1.50181- 5 1.79959- 3 2.90000+ 1 3.20000+ 1 5.00601- 7 1.82458- 3 2.90000+ 1 4.10000+ 1 1.25152- 5 1.82406- 3 3.00000+ 1 3.00000+ 1 2.35144- 5 1.80424- 3 3.00000+ 1 3.20000+ 1 5.73538- 7 1.82923- 3 3.00000+ 1 3.30000+ 1 1.14707- 6 1.82957- 3 3.00000+ 1 4.10000+ 1 2.46630- 5 1.82871- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.01653- 4 4.55300- 4 1.60000+ 1 4.24901- 4 1.30551- 3 2.10000+ 1 2.09834- 3 1.52474- 3 2.70000+ 1 7.72181- 5 1.63224- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.40000+ 1 1.80415- 2 1.28070- 4 1.10000+ 1 2.50000+ 1 2.02666- 2 1.28900- 4 1.10000+ 1 2.70000+ 1 5.61873- 3 9.04400- 5 1.10000+ 1 2.90000+ 1 5.78810- 3 1.10270- 4 1.10000+ 1 3.00000+ 1 6.01799- 3 1.14920- 4 1.10000+ 1 3.20000+ 1 5.71919- 5 1.39910- 4 1.10000+ 1 3.30000+ 1 1.36359- 4 1.40250- 4 1.10000+ 1 4.10000+ 1 4.66898- 4 1.39390- 4 1.30000+ 1 1.60000+ 1 8.55778- 2 7.39100- 5 1.30000+ 1 1.80000+ 1 8.55878- 2 1.44000- 4 1.30000+ 1 1.90000+ 1 1.12156- 1 1.76440- 4 1.30000+ 1 2.10000+ 1 3.72987- 2 2.93140- 4 1.30000+ 1 2.20000+ 1 4.25620- 2 2.99000- 4 1.30000+ 1 2.40000+ 1 8.56224- 2 4.38270- 4 1.30000+ 1 2.50000+ 1 1.29613- 1 4.39100- 4 1.30000+ 1 2.70000+ 1 1.44489- 2 4.00640- 4 1.30000+ 1 2.90000+ 1 1.02667- 2 4.20470- 4 1.30000+ 1 3.00000+ 1 1.42712- 2 4.25120- 4 1.30000+ 1 3.20000+ 1 1.63504- 4 4.50110- 4 1.30000+ 1 3.30000+ 1 1.87724- 4 4.50450- 4 1.30000+ 1 4.10000+ 1 1.28528- 3 4.49590- 4 1.40000+ 1 1.60000+ 1 1.43791- 2 1.05710- 4 1.40000+ 1 1.80000+ 1 9.92001- 2 1.75800- 4 1.40000+ 1 1.90000+ 1 9.63010- 3 2.08240- 4 1.40000+ 1 2.10000+ 1 1.62386- 3 3.24940- 4 1.40000+ 1 2.20000+ 1 4.89793- 3 3.30800- 4 1.40000+ 1 2.40000+ 1 2.61640- 3 4.70070- 4 1.40000+ 1 2.50000+ 1 2.12118- 3 4.70900- 4 1.40000+ 1 2.70000+ 1 1.61292- 3 4.32440- 4 1.40000+ 1 2.90000+ 1 9.62190- 3 4.52270- 4 1.40000+ 1 3.00000+ 1 1.12152- 3 4.56920- 4 1.40000+ 1 3.20000+ 1 4.84651- 6 4.81910- 4 1.40000+ 1 3.30000+ 1 1.97096- 5 4.82250- 4 1.40000+ 1 4.10000+ 1 1.36034- 4 4.81390- 4 1.60000+ 1 1.60000+ 1 8.36797- 4 9.24120- 4 1.60000+ 1 1.80000+ 1 1.15987- 2 9.94210- 4 1.60000+ 1 1.90000+ 1 1.84239- 3 1.02665- 3 1.60000+ 1 2.10000+ 1 3.84145- 4 1.14335- 3 1.60000+ 1 2.20000+ 1 1.33987- 3 1.14921- 3 1.60000+ 1 2.40000+ 1 4.42076- 5 1.28848- 3 1.60000+ 1 2.50000+ 1 3.41183- 4 1.28931- 3 1.60000+ 1 2.70000+ 1 2.23515- 4 1.25085- 3 1.60000+ 1 2.90000+ 1 1.08584- 3 1.27068- 3 1.60000+ 1 3.00000+ 1 2.22266- 4 1.27533- 3 1.60000+ 1 3.20000+ 1 1.24522- 6 1.30032- 3 1.60000+ 1 3.30000+ 1 5.60359- 6 1.30066- 3 1.60000+ 1 4.10000+ 1 1.86786- 5 1.29980- 3 1.80000+ 1 1.80000+ 1 8.83558- 3 1.06430- 3 1.80000+ 1 1.90000+ 1 2.66874- 2 1.09674- 3 1.80000+ 1 2.10000+ 1 2.50751- 2 1.21344- 3 1.80000+ 1 2.20000+ 1 4.12449- 2 1.21930- 3 1.80000+ 1 2.40000+ 1 4.92492- 3 1.35857- 3 1.80000+ 1 2.50000+ 1 8.56816- 3 1.35940- 3 1.80000+ 1 2.70000+ 1 2.01701- 3 1.32094- 3 1.80000+ 1 2.90000+ 1 2.08233- 3 1.34077- 3 1.80000+ 1 3.00000+ 1 3.54082- 3 1.34542- 3 1.80000+ 1 3.20000+ 1 1.14801- 4 1.37041- 3 1.80000+ 1 3.30000+ 1 1.77011- 4 1.37075- 3 1.80000+ 1 4.10000+ 1 1.78292- 4 1.36989- 3 1.90000+ 1 1.90000+ 1 7.81737- 4 1.12918- 3 1.90000+ 1 2.10000+ 1 2.26561- 3 1.24588- 3 1.90000+ 1 2.20000+ 1 1.77226- 3 1.25174- 3 1.90000+ 1 2.40000+ 1 3.77431- 3 1.39101- 3 1.90000+ 1 2.50000+ 1 1.09117- 3 1.39184- 3 1.90000+ 1 2.70000+ 1 2.25685- 4 1.35338- 3 1.90000+ 1 2.90000+ 1 2.69239- 3 1.37321- 3 1.90000+ 1 3.00000+ 1 1.74996- 4 1.37786- 3 1.90000+ 1 3.20000+ 1 8.78360- 6 1.40285- 3 1.90000+ 1 3.30000+ 1 6.75663- 6 1.40319- 3 1.90000+ 1 4.10000+ 1 1.89182- 5 1.40233- 3 2.10000+ 1 2.10000+ 1 8.39223- 4 1.36258- 3 2.10000+ 1 2.20000+ 1 2.44508- 3 1.36844- 3 2.10000+ 1 2.40000+ 1 4.46459- 4 1.50771- 3 2.10000+ 1 2.50000+ 1 8.29139- 4 1.50854- 3 2.10000+ 1 2.70000+ 1 5.93591- 5 1.47008- 3 2.10000+ 1 2.90000+ 1 2.31629- 3 1.48991- 3 2.10000+ 1 3.00000+ 1 2.38060- 4 1.49456- 3 2.10000+ 1 3.20000+ 1 6.31484- 6 1.51955- 3 2.10000+ 1 3.30000+ 1 1.01037- 5 1.51989- 3 2.10000+ 1 4.10000+ 1 5.05194- 6 1.51903- 3 2.20000+ 1 2.20000+ 1 5.71177- 4 1.37430- 3 2.20000+ 1 2.40000+ 1 1.54361- 3 1.51357- 3 2.20000+ 1 2.50000+ 1 3.27291- 4 1.51440- 3 2.20000+ 1 2.70000+ 1 1.80089- 4 1.47594- 3 2.20000+ 1 2.90000+ 1 3.86951- 3 1.49577- 3 2.20000+ 1 3.00000+ 1 1.72494- 4 1.50042- 3 2.20000+ 1 3.20000+ 1 1.01096- 5 1.52541- 3 2.20000+ 1 3.30000+ 1 4.42282- 6 1.52575- 3 2.20000+ 1 4.10000+ 1 1.57962- 5 1.52489- 3 2.40000+ 1 2.40000+ 1 3.68850- 4 1.65284- 3 2.40000+ 1 2.50000+ 1 3.03205- 3 1.65367- 3 2.40000+ 1 2.70000+ 1 2.82633- 6 1.61521- 3 2.40000+ 1 2.90000+ 1 4.67068- 4 1.63504- 3 2.40000+ 1 3.00000+ 1 4.88279- 4 1.63969- 3 2.40000+ 1 3.20000+ 1 2.11985- 6 1.66468- 3 2.40000+ 1 3.30000+ 1 7.77272- 6 1.66502- 3 2.50000+ 1 2.50000+ 1 1.22571- 4 1.65450- 3 2.50000+ 1 2.70000+ 1 4.99112- 5 1.61604- 3 2.50000+ 1 2.90000+ 1 7.26585- 4 1.63587- 3 2.50000+ 1 3.00000+ 1 1.13726- 4 1.64052- 3 2.50000+ 1 3.20000+ 1 3.79067- 6 1.66551- 3 2.50000+ 1 3.30000+ 1 1.26359- 6 1.66585- 3 2.50000+ 1 4.10000+ 1 4.42254- 6 1.66499- 3 2.70000+ 1 2.70000+ 1 1.51638- 5 1.57758- 3 2.70000+ 1 2.90000+ 1 1.87017- 4 1.59741- 3 2.70000+ 1 3.00000+ 1 2.59029- 5 1.60206- 3 2.70000+ 1 3.30000+ 1 6.31835- 7 1.62739- 3 2.70000+ 1 4.10000+ 1 2.52719- 6 1.62653- 3 2.90000+ 1 2.90000+ 1 1.66906- 4 1.61724- 3 2.90000+ 1 3.00000+ 1 4.86963- 4 1.62189- 3 2.90000+ 1 3.20000+ 1 1.55903- 5 1.64688- 3 2.90000+ 1 3.30000+ 1 2.38442- 5 1.64722- 3 2.90000+ 1 4.10000+ 1 2.38442- 5 1.64636- 3 3.00000+ 1 3.00000+ 1 3.37062- 5 1.62654- 3 3.00000+ 1 3.20000+ 1 2.24711- 6 1.65153- 3 3.00000+ 1 3.30000+ 1 2.24711- 6 1.65187- 3 3.00000+ 1 4.10000+ 1 6.74124- 6 1.65101- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.76578- 5 3.10200- 4 1.40000+ 1 2.20475- 4 3.42000- 4 1.60000+ 1 6.01821- 4 1.16041- 3 2.10000+ 1 2.81120- 4 1.37964- 3 2.20000+ 1 2.27510- 3 1.38550- 3 2.70000+ 1 1.10040- 4 1.48714- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.45417- 2 0.00000+ 0 1.30000+ 1 1.90000+ 1 7.19054- 2 3.13400- 5 1.30000+ 1 2.10000+ 1 1.16165- 2 1.48040- 4 1.30000+ 1 2.20000+ 1 1.01420- 2 1.53900- 4 1.30000+ 1 2.40000+ 1 8.85791- 3 2.93170- 4 1.30000+ 1 2.50000+ 1 1.31386- 2 2.94000- 4 1.30000+ 1 2.70000+ 1 2.53775- 3 2.55540- 4 1.30000+ 1 2.90000+ 1 1.79260- 3 2.75370- 4 1.30000+ 1 3.00000+ 1 7.35126- 3 2.80020- 4 1.30000+ 1 3.20000+ 1 4.61980- 5 3.05010- 4 1.30000+ 1 3.30000+ 1 3.82125- 5 3.05350- 4 1.30000+ 1 4.10000+ 1 2.17303- 4 3.04490- 4 1.40000+ 1 1.80000+ 1 9.53486- 2 3.07000- 5 1.40000+ 1 1.90000+ 1 1.62484- 1 6.31400- 5 1.40000+ 1 2.10000+ 1 5.08114- 2 1.79840- 4 1.40000+ 1 2.20000+ 1 7.61185- 2 1.85700- 4 1.40000+ 1 2.40000+ 1 8.57314- 2 3.24970- 4 1.40000+ 1 2.50000+ 1 1.02738- 1 3.25800- 4 1.40000+ 1 2.70000+ 1 1.48045- 2 2.87340- 4 1.40000+ 1 2.90000+ 1 1.22679- 2 3.07170- 4 1.40000+ 1 3.00000+ 1 1.90596- 2 3.11820- 4 1.40000+ 1 3.20000+ 1 2.02484- 4 3.36810- 4 1.40000+ 1 3.30000+ 1 2.97161- 4 3.37150- 4 1.40000+ 1 4.10000+ 1 1.27654- 3 3.36290- 4 1.60000+ 1 1.60000+ 1 7.31206- 4 7.79020- 4 1.60000+ 1 1.80000+ 1 1.10110- 3 8.49110- 4 1.60000+ 1 1.90000+ 1 1.63473- 2 8.81550- 4 1.60000+ 1 2.10000+ 1 9.85856- 4 9.98250- 4 1.60000+ 1 2.20000+ 1 1.07384- 3 1.00411- 3 1.60000+ 1 2.40000+ 1 5.07696- 4 1.14338- 3 1.60000+ 1 2.50000+ 1 7.74837- 4 1.14421- 3 1.60000+ 1 2.70000+ 1 1.93900- 4 1.10575- 3 1.60000+ 1 2.90000+ 1 1.25371- 4 1.12558- 3 1.60000+ 1 3.00000+ 1 1.50525- 3 1.13023- 3 1.60000+ 1 3.20000+ 1 3.89346- 6 1.15522- 3 1.60000+ 1 3.30000+ 1 3.89346- 6 1.15556- 3 1.60000+ 1 4.10000+ 1 1.71316- 5 1.15470- 3 1.80000+ 1 1.80000+ 1 1.46549- 4 9.19200- 4 1.80000+ 1 1.90000+ 1 1.95098- 2 9.51640- 4 1.80000+ 1 2.10000+ 1 4.87174- 4 1.06834- 3 1.80000+ 1 2.20000+ 1 3.54640- 3 1.07420- 3 1.80000+ 1 2.40000+ 1 5.79058- 4 1.21347- 3 1.80000+ 1 2.50000+ 1 3.44436- 3 1.21430- 3 1.80000+ 1 2.70000+ 1 1.31498- 4 1.17584- 3 1.80000+ 1 2.90000+ 1 3.08933- 5 1.19567- 3 1.80000+ 1 3.00000+ 1 1.82037- 3 1.20032- 3 1.80000+ 1 3.20000+ 1 2.37645- 6 1.22531- 3 1.80000+ 1 3.30000+ 1 1.34665- 5 1.22565- 3 1.80000+ 1 4.10000+ 1 1.10901- 5 1.22479- 3 1.90000+ 1 1.90000+ 1 2.68792- 2 9.84080- 4 1.90000+ 1 2.10000+ 1 3.69630- 2 1.10078- 3 1.90000+ 1 2.20000+ 1 4.95546- 2 1.10664- 3 1.90000+ 1 2.40000+ 1 1.02769- 2 1.24591- 3 1.90000+ 1 2.50000+ 1 1.17722- 2 1.24674- 3 1.90000+ 1 2.70000+ 1 2.66620- 3 1.20828- 3 1.90000+ 1 2.90000+ 1 2.58882- 3 1.22811- 3 1.90000+ 1 3.00000+ 1 6.06108- 3 1.23276- 3 1.90000+ 1 3.20000+ 1 1.65783- 4 1.25775- 3 1.90000+ 1 3.30000+ 1 2.11835- 4 1.25809- 3 1.90000+ 1 4.10000+ 1 2.35631- 4 1.25723- 3 2.10000+ 1 2.10000+ 1 2.48324- 4 1.21748- 3 2.10000+ 1 2.20000+ 1 4.50476- 3 1.22334- 3 2.10000+ 1 2.40000+ 1 2.27746- 4 1.36261- 3 2.10000+ 1 2.50000+ 1 2.86801- 3 1.36344- 3 2.10000+ 1 2.70000+ 1 1.06642- 4 1.32498- 3 2.10000+ 1 2.90000+ 1 3.88470- 5 1.34481- 3 2.10000+ 1 3.00000+ 1 3.39112- 3 1.34946- 3 2.10000+ 1 3.20000+ 1 1.52346- 6 1.37445- 3 2.10000+ 1 3.30000+ 1 1.75200- 5 1.37479- 3 2.10000+ 1 4.10000+ 1 9.14080- 6 1.37393- 3 2.20000+ 1 2.20000+ 1 2.24417- 3 1.22920- 3 2.20000+ 1 2.40000+ 1 2.25485- 3 1.36847- 3 2.20000+ 1 2.50000+ 1 1.99052- 3 1.36930- 3 2.20000+ 1 2.70000+ 1 1.18835- 4 1.33084- 3 2.20000+ 1 2.90000+ 1 2.97830- 4 1.35067- 3 2.20000+ 1 3.00000+ 1 4.50272- 3 1.35532- 3 2.20000+ 1 3.20000+ 1 1.82827- 5 1.38031- 3 2.20000+ 1 3.30000+ 1 1.75209- 5 1.38065- 3 2.20000+ 1 4.10000+ 1 9.90286- 6 1.37979- 3 2.40000+ 1 2.40000+ 1 1.12383- 4 1.50774- 3 2.40000+ 1 2.50000+ 1 3.92582- 3 1.50857- 3 2.40000+ 1 2.70000+ 1 5.95980- 5 1.47011- 3 2.40000+ 1 2.90000+ 1 7.15172- 5 1.48994- 3 2.40000+ 1 3.00000+ 1 1.00209- 3 1.49459- 3 2.40000+ 1 3.20000+ 1 1.70277- 6 1.51958- 3 2.40000+ 1 3.30000+ 1 1.02167- 5 1.51992- 3 2.40000+ 1 4.10000+ 1 5.10833- 6 1.51906- 3 2.50000+ 1 2.50000+ 1 1.25744- 3 1.50940- 3 2.50000+ 1 2.70000+ 1 6.96310- 5 1.47094- 3 2.50000+ 1 2.90000+ 1 4.13693- 4 1.49077- 3 2.50000+ 1 3.00000+ 1 1.13377- 3 1.49542- 3 2.50000+ 1 3.20000+ 1 1.39262- 5 1.52041- 3 2.50000+ 1 3.30000+ 1 9.01127- 6 1.52075- 3 2.50000+ 1 4.10000+ 1 5.73443- 6 1.51989- 3 2.70000+ 1 2.70000+ 1 1.57653- 5 1.43248- 3 2.70000+ 1 2.90000+ 1 1.76199- 5 1.45231- 3 2.70000+ 1 3.00000+ 1 2.96767- 4 1.45696- 3 2.70000+ 1 3.20000+ 1 9.27384- 7 1.48195- 3 2.70000+ 1 3.30000+ 1 9.27384- 7 1.48229- 3 2.70000+ 1 4.10000+ 1 2.78211- 6 1.48143- 3 2.90000+ 1 2.90000+ 1 2.27485- 6 1.47214- 3 2.90000+ 1 3.00000+ 1 3.59441- 4 1.47679- 3 2.90000+ 1 3.30000+ 1 1.13744- 6 1.50212- 3 2.90000+ 1 4.10000+ 1 2.27485- 6 1.50126- 3 3.00000+ 1 3.00000+ 1 8.88184- 4 1.48144- 3 3.00000+ 1 3.20000+ 1 4.13100- 5 1.50643- 3 3.00000+ 1 3.30000+ 1 5.16379- 5 1.50677- 3 3.00000+ 1 4.10000+ 1 5.78345- 5 1.50591- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.93894- 3 9.20300- 4 1.90000+ 1 5.11724- 4 9.52740- 4 2.40000+ 1 2.83965- 3 1.21457- 3 2.90000+ 1 7.13394- 4 1.19677- 3 3.00000+ 1 9.53542- 5 1.20142- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 8.51492- 2 1.47700- 5 1.40000+ 1 2.50000+ 1 1.28348- 2 1.56000- 5 1.40000+ 1 3.00000+ 1 3.01050- 3 1.62000- 6 1.40000+ 1 3.20000+ 1 1.12993- 3 2.66100- 5 1.40000+ 1 3.30000+ 1 1.51956- 4 2.69500- 5 1.40000+ 1 4.10000+ 1 2.62778- 4 2.60900- 5 1.60000+ 1 1.60000+ 1 2.85461- 5 4.68820- 4 1.60000+ 1 1.80000+ 1 2.98433- 3 5.38910- 4 1.60000+ 1 1.90000+ 1 2.05527- 3 5.71350- 4 1.60000+ 1 2.10000+ 1 7.02545- 2 6.88050- 4 1.60000+ 1 2.20000+ 1 8.77667- 3 6.93910- 4 1.60000+ 1 2.40000+ 1 9.39697- 3 8.33180- 4 1.60000+ 1 2.50000+ 1 3.16350- 3 8.34010- 4 1.60000+ 1 2.70000+ 1 2.59510- 5 7.95550- 4 1.60000+ 1 2.90000+ 1 3.24382- 4 8.15380- 4 1.60000+ 1 3.00000+ 1 1.79056- 4 8.20030- 4 1.60000+ 1 3.20000+ 1 2.43940- 4 8.45020- 4 1.60000+ 1 3.30000+ 1 2.85461- 5 8.45360- 4 1.60000+ 1 4.10000+ 1 2.59510- 6 8.44500- 4 1.80000+ 1 1.80000+ 1 1.58830- 3 6.09000- 4 1.80000+ 1 1.90000+ 1 1.07132- 2 6.41440- 4 1.80000+ 1 2.10000+ 1 5.97910- 2 7.58140- 4 1.80000+ 1 2.20000+ 1 5.09955- 3 7.64000- 4 1.80000+ 1 2.40000+ 1 5.98443- 3 9.03270- 4 1.80000+ 1 2.50000+ 1 3.26721- 3 9.04100- 4 1.80000+ 1 2.70000+ 1 3.26988- 4 8.65640- 4 1.80000+ 1 2.90000+ 1 3.55540- 4 8.85470- 4 1.80000+ 1 3.00000+ 1 1.07437- 3 8.90120- 4 1.80000+ 1 3.20000+ 1 2.05022- 4 9.15110- 4 1.80000+ 1 3.30000+ 1 2.07610- 5 9.15450- 4 1.80000+ 1 4.10000+ 1 2.59513- 5 9.14590- 4 1.90000+ 1 1.90000+ 1 3.93675- 3 6.73880- 4 1.90000+ 1 2.10000+ 1 1.28801- 1 7.90580- 4 1.90000+ 1 2.20000+ 1 4.82681- 3 7.96440- 4 1.90000+ 1 2.40000+ 1 3.93410- 3 9.35710- 4 1.90000+ 1 2.50000+ 1 1.90487- 3 9.36540- 4 1.90000+ 1 2.70000+ 1 2.54316- 4 8.98080- 4 1.90000+ 1 2.90000+ 1 1.02762- 3 9.17910- 4 1.90000+ 1 3.00000+ 1 7.60361- 4 9.22560- 4 1.90000+ 1 3.20000+ 1 4.46352- 4 9.47550- 4 1.90000+ 1 3.30000+ 1 1.55704- 5 9.47890- 4 1.90000+ 1 4.10000+ 1 2.07605- 5 9.47030- 4 2.10000+ 1 2.10000+ 1 1.08107- 1 9.07280- 4 2.10000+ 1 2.20000+ 1 2.20087- 1 9.13140- 4 2.10000+ 1 2.40000+ 1 3.63577- 2 1.05241- 3 2.10000+ 1 2.50000+ 1 4.71050- 2 1.05324- 3 2.10000+ 1 2.70000+ 1 1.07419- 2 1.01478- 3 2.10000+ 1 2.90000+ 1 8.22151- 3 1.03461- 3 2.10000+ 1 3.00000+ 1 1.66560- 2 1.03926- 3 2.10000+ 1 3.20000+ 1 8.61605- 4 1.06425- 3 2.10000+ 1 3.30000+ 1 9.26478- 4 1.06459- 3 2.10000+ 1 4.10000+ 1 9.42049- 4 1.06373- 3 2.20000+ 1 2.20000+ 1 3.61498- 3 9.19000- 4 2.20000+ 1 2.40000+ 1 3.63338- 2 1.05827- 3 2.20000+ 1 2.50000+ 1 2.14104- 3 1.05910- 3 2.20000+ 1 2.70000+ 1 7.62966- 4 1.02064- 3 2.20000+ 1 2.90000+ 1 4.69703- 4 1.04047- 3 2.20000+ 1 3.00000+ 1 5.11226- 4 1.04512- 3 2.20000+ 1 3.20000+ 1 7.70747- 4 1.07011- 3 2.20000+ 1 3.30000+ 1 2.59508- 5 1.07045- 3 2.20000+ 1 4.10000+ 1 6.22820- 5 1.06959- 3 2.40000+ 1 2.40000+ 1 1.20319- 2 1.19754- 3 2.40000+ 1 2.50000+ 1 4.42625- 2 1.19837- 3 2.40000+ 1 2.70000+ 1 1.67499- 3 1.15991- 3 2.40000+ 1 2.90000+ 1 7.62975- 4 1.17974- 3 2.40000+ 1 3.00000+ 1 5.63297- 4 1.18439- 3 2.40000+ 1 3.20000+ 1 1.51993- 4 1.20938- 3 2.40000+ 1 3.30000+ 1 1.69875- 4 1.20972- 3 2.40000+ 1 4.10000+ 1 1.49020- 4 1.20886- 3 2.50000+ 1 2.50000+ 1 7.20300- 4 1.19920- 3 2.50000+ 1 2.70000+ 1 3.58841- 4 1.16074- 3 2.50000+ 1 2.90000+ 1 2.18984- 4 1.18057- 3 2.50000+ 1 3.00000+ 1 2.24261- 4 1.18522- 3 2.50000+ 1 3.20000+ 1 1.55662- 4 1.21021- 3 2.50000+ 1 3.30000+ 1 7.91531- 6 1.21055- 3 2.50000+ 1 4.10000+ 1 2.90227- 5 1.20969- 3 2.70000+ 1 2.70000+ 1 6.55653- 6 1.12228- 3 2.70000+ 1 2.90000+ 1 9.83514- 5 1.14211- 3 2.70000+ 1 3.00000+ 1 5.90119- 5 1.14676- 3 2.70000+ 1 3.20000+ 1 9.17917- 5 1.17175- 3 2.70000+ 1 3.30000+ 1 6.55653- 6 1.17209- 3 2.90000+ 1 2.90000+ 1 6.66204- 5 1.16194- 3 2.90000+ 1 3.00000+ 1 3.49747- 4 1.16659- 3 2.90000+ 1 3.20000+ 1 9.16031- 5 1.19158- 3 2.90000+ 1 3.30000+ 1 8.32756- 6 1.19192- 3 2.90000+ 1 4.10000+ 1 8.32756- 6 1.19106- 3 3.00000+ 1 3.00000+ 1 2.11015- 4 1.17124- 3 3.00000+ 1 3.20000+ 1 3.09486- 4 1.19623- 3 3.00000+ 1 3.30000+ 1 1.40672- 5 1.19657- 3 3.00000+ 1 4.10000+ 1 1.40672- 5 1.19571- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 4.12453- 3 9.20940- 4 2.40000+ 1 1.68071- 4 1.18277- 3 2.50000+ 1 3.25482- 3 1.18360- 3 3.00000+ 1 8.87426- 4 1.16962- 3 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 8.31436- 4 5.07110- 4 1.60000+ 1 1.90000+ 1 5.03947- 3 5.39550- 4 1.60000+ 1 2.10000+ 1 7.43484- 3 6.56250- 4 1.60000+ 1 2.20000+ 1 8.18711- 2 6.62110- 4 1.60000+ 1 2.40000+ 1 3.29456- 3 8.01380- 4 1.60000+ 1 2.50000+ 1 1.09309- 2 8.02210- 4 1.60000+ 1 2.70000+ 1 1.97952- 5 7.63750- 4 1.60000+ 1 2.90000+ 1 4.80763- 5 7.83580- 4 1.60000+ 1 3.00000+ 1 4.83591- 4 7.88230- 4 1.60000+ 1 3.20000+ 1 2.54524- 5 8.13220- 4 1.60000+ 1 3.30000+ 1 2.68662- 4 8.13560- 4 1.60000+ 1 4.10000+ 1 2.82810- 6 8.12700- 4 1.80000+ 1 1.80000+ 1 1.41392- 5 5.77200- 4 1.80000+ 1 1.90000+ 1 1.20610- 2 6.09640- 4 1.80000+ 1 2.10000+ 1 7.23974- 4 7.26340- 4 1.80000+ 1 2.20000+ 1 8.13589- 2 7.32200- 4 1.80000+ 1 2.40000+ 1 1.47907- 3 8.71470- 4 1.80000+ 1 2.50000+ 1 5.33929- 3 8.72300- 4 1.80000+ 1 2.70000+ 1 8.76686- 5 8.33840- 4 1.80000+ 1 2.90000+ 1 5.65597- 6 8.53670- 4 1.80000+ 1 3.00000+ 1 1.15103- 3 8.58320- 4 1.80000+ 1 3.20000+ 1 2.82813- 6 8.83310- 4 1.80000+ 1 3.30000+ 1 2.68665- 4 8.83650- 4 1.80000+ 1 4.10000+ 1 8.48410- 6 8.82790- 4 1.90000+ 1 1.90000+ 1 9.27869- 3 6.42080- 4 1.90000+ 1 2.10000+ 1 7.62434- 3 7.58780- 4 1.90000+ 1 2.20000+ 1 1.30812- 1 7.64640- 4 1.90000+ 1 2.40000+ 1 2.39249- 3 9.03910- 4 1.90000+ 1 2.50000+ 1 5.67004- 3 9.04740- 4 1.90000+ 1 2.70000+ 1 6.19333- 4 8.66280- 4 1.90000+ 1 2.90000+ 1 1.12284- 3 8.86110- 4 1.90000+ 1 3.00000+ 1 1.82964- 3 8.90760- 4 1.90000+ 1 3.20000+ 1 3.11086- 5 9.15750- 4 1.90000+ 1 3.30000+ 1 4.29854- 4 9.16090- 4 1.90000+ 1 4.10000+ 1 5.09037- 5 9.15230- 4 2.10000+ 1 2.10000+ 1 1.64874- 3 8.75480- 4 2.10000+ 1 2.20000+ 1 1.69599- 1 8.81340- 4 2.10000+ 1 2.40000+ 1 1.84380- 3 1.02061- 3 2.10000+ 1 2.50000+ 1 2.45194- 2 1.02144- 3 2.10000+ 1 2.70000+ 1 6.30655- 4 9.82980- 4 2.10000+ 1 2.90000+ 1 1.01816- 4 1.00281- 3 2.10000+ 1 3.00000+ 1 7.29643- 4 1.00746- 3 2.10000+ 1 3.20000+ 1 1.13116- 5 1.03245- 3 2.10000+ 1 3.30000+ 1 5.65600- 4 1.03279- 3 2.10000+ 1 4.10000+ 1 5.09046- 5 1.03193- 3 2.20000+ 1 2.20000+ 1 1.94139- 1 8.87200- 4 2.20000+ 1 2.40000+ 1 4.39084- 2 1.02647- 3 2.20000+ 1 2.50000+ 1 6.60343- 2 1.02730- 3 2.20000+ 1 2.70000+ 1 1.21312- 2 9.88840- 4 2.20000+ 1 2.90000+ 1 1.07668- 2 1.00867- 3 2.20000+ 1 3.00000+ 1 1.70380- 2 1.01332- 3 2.20000+ 1 3.20000+ 1 7.49423- 4 1.03831- 3 2.20000+ 1 3.30000+ 1 1.46494- 3 1.03865- 3 2.20000+ 1 4.10000+ 1 1.06057- 3 1.03779- 3 2.40000+ 1 2.40000+ 1 1.00109- 3 1.16574- 3 2.40000+ 1 2.50000+ 1 4.04578- 2 1.16657- 3 2.40000+ 1 2.70000+ 1 4.42796- 4 1.12811- 3 2.40000+ 1 2.90000+ 1 2.05357- 4 1.14794- 3 2.40000+ 1 3.00000+ 1 2.59908- 4 1.15259- 3 2.40000+ 1 3.20000+ 1 9.62588- 6 1.17758- 3 2.40000+ 1 3.30000+ 1 1.57211- 4 1.17792- 3 2.40000+ 1 4.10000+ 1 3.85037- 5 1.17706- 3 2.50000+ 1 2.50000+ 1 2.39342- 2 1.16740- 3 2.50000+ 1 2.70000+ 1 1.87732- 3 1.12894- 3 2.50000+ 1 2.90000+ 1 7.92977- 4 1.14877- 3 2.50000+ 1 3.00000+ 1 7.41199- 4 1.15342- 3 2.50000+ 1 3.20000+ 1 1.16526- 4 1.17841- 3 2.50000+ 1 3.30000+ 1 2.62176- 4 1.17875- 3 2.50000+ 1 4.10000+ 1 1.61820- 4 1.17789- 3 2.70000+ 1 2.70000+ 1 1.15515- 5 1.09048- 3 2.70000+ 1 2.90000+ 1 2.31019- 5 1.11031- 3 2.70000+ 1 3.00000+ 1 2.54130- 4 1.11496- 3 2.70000+ 1 3.20000+ 1 1.15515- 5 1.13995- 3 2.70000+ 1 3.30000+ 1 1.61718- 4 1.14029- 3 2.90000+ 1 3.00000+ 1 3.36527- 4 1.13479- 3 2.90000+ 1 3.30000+ 1 1.09376- 4 1.16012- 3 3.00000+ 1 3.00000+ 1 3.49315- 4 1.13944- 3 3.00000+ 1 3.20000+ 1 1.05857- 5 1.16443- 3 3.00000+ 1 3.30000+ 1 2.11703- 4 1.16477- 3 3.00000+ 1 4.10000+ 1 2.11703- 5 1.16391- 3 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.51836- 5 7.00900- 5 1.90000+ 1 9.66993- 5 1.02530- 4 2.90000+ 1 4.18163- 5 3.46560- 4 3.00000+ 1 3.21927- 5 3.51210- 4 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.24379- 2 5.30600- 5 1.80000+ 1 2.50000+ 1 3.30401- 2 5.38900- 5 1.80000+ 1 2.70000+ 1 4.63146- 2 1.54300- 5 1.80000+ 1 2.90000+ 1 3.78800- 2 3.52600- 5 1.80000+ 1 3.00000+ 1 7.68365- 2 3.99100- 5 1.80000+ 1 3.20000+ 1 2.10593- 3 6.49000- 5 1.80000+ 1 3.30000+ 1 3.83745- 3 6.52400- 5 1.80000+ 1 4.10000+ 1 3.99271- 3 6.43800- 5 1.90000+ 1 2.40000+ 1 9.78255- 2 8.55000- 5 1.90000+ 1 2.50000+ 1 1.18418- 1 8.63300- 5 1.90000+ 1 2.70000+ 1 5.99730- 2 4.78700- 5 1.90000+ 1 2.90000+ 1 6.21932- 2 6.77000- 5 1.90000+ 1 3.00000+ 1 8.10762- 2 7.23500- 5 1.90000+ 1 3.20000+ 1 3.47852- 3 9.73400- 5 1.90000+ 1 3.30000+ 1 4.10086- 3 9.76800- 5 1.90000+ 1 4.10000+ 1 5.19442- 3 9.68200- 5 2.10000+ 1 2.10000+ 1 4.61154- 3 5.70700- 5 2.10000+ 1 2.20000+ 1 2.06468- 2 6.29300- 5 2.10000+ 1 2.40000+ 1 3.58280- 3 2.02200- 4 2.10000+ 1 2.50000+ 1 8.53931- 3 2.03030- 4 2.10000+ 1 2.70000+ 1 2.00441- 2 1.64570- 4 2.10000+ 1 2.90000+ 1 4.21412- 3 1.84400- 4 2.10000+ 1 3.00000+ 1 1.20842- 2 1.89050- 4 2.10000+ 1 3.20000+ 1 8.36620- 5 2.14040- 4 2.10000+ 1 3.30000+ 1 8.72477- 5 2.14380- 4 2.10000+ 1 4.10000+ 1 1.42898- 3 2.13520- 4 2.20000+ 1 2.20000+ 1 1.14032- 2 6.87900- 5 2.20000+ 1 2.40000+ 1 9.71970- 3 2.08060- 4 2.20000+ 1 2.50000+ 1 8.58952- 3 2.08890- 4 2.20000+ 1 2.70000+ 1 2.90511- 2 1.70430- 4 2.20000+ 1 2.90000+ 1 1.14523- 2 1.90260- 4 2.20000+ 1 3.00000+ 1 1.16208- 2 1.94910- 4 2.20000+ 1 3.20000+ 1 8.41063- 5 2.19900- 4 2.20000+ 1 3.30000+ 1 1.36149- 4 2.20240- 4 2.20000+ 1 4.10000+ 1 2.06403- 3 2.19380- 4 2.40000+ 1 2.40000+ 1 1.54896- 3 3.47330- 4 2.40000+ 1 2.50000+ 1 4.60660- 3 3.48160- 4 2.40000+ 1 2.70000+ 1 9.80544- 3 3.09700- 4 2.40000+ 1 2.90000+ 1 1.20606- 3 3.29530- 4 2.40000+ 1 3.00000+ 1 3.03271- 3 3.34180- 4 2.40000+ 1 3.20000+ 1 1.74842- 5 3.59170- 4 2.40000+ 1 3.30000+ 1 1.31737- 5 3.59510- 4 2.40000+ 1 4.10000+ 1 6.33047- 4 3.58650- 4 2.50000+ 1 2.50000+ 1 2.68213- 3 3.48990- 4 2.50000+ 1 2.70000+ 1 1.21916- 2 3.10530- 4 2.50000+ 1 2.90000+ 1 8.18649- 4 3.30360- 4 2.50000+ 1 3.00000+ 1 3.64959- 3 3.35010- 4 2.50000+ 1 3.20000+ 1 1.09793- 5 3.60000- 4 2.50000+ 1 3.30000+ 1 2.56188- 5 3.60340- 4 2.50000+ 1 4.10000+ 1 7.86861- 4 3.59480- 4 2.70000+ 1 2.70000+ 1 1.71075- 2 2.72070- 4 2.70000+ 1 2.90000+ 1 2.12552- 2 2.91900- 4 2.70000+ 1 3.00000+ 1 3.67632- 2 2.96550- 4 2.70000+ 1 3.20000+ 1 1.32119- 3 3.21540- 4 2.70000+ 1 3.30000+ 1 1.81252- 3 3.21880- 4 2.70000+ 1 4.10000+ 1 2.63224- 3 3.21020- 4 2.90000+ 1 2.90000+ 1 5.33828- 3 3.11730- 4 2.90000+ 1 3.00000+ 1 2.25386- 2 3.16380- 4 2.90000+ 1 3.20000+ 1 3.77442- 4 3.41370- 4 2.90000+ 1 3.30000+ 1 4.63765- 4 3.41710- 4 2.90000+ 1 4.10000+ 1 4.46467- 3 3.40850- 4 3.00000+ 1 3.00000+ 1 1.76177- 2 3.21030- 4 3.00000+ 1 3.20000+ 1 6.02511- 4 3.46020- 4 3.00000+ 1 3.30000+ 1 8.20628- 4 3.46360- 4 3.00000+ 1 4.10000+ 1 7.52077- 3 3.45500- 4 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.18900- 4 1.49140- 4 2.70000+ 1 7.16307- 5 2.56640- 4 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 4.84278- 2 1.54100- 5 1.90000+ 1 2.50000+ 1 3.78613- 2 1.62400- 5 1.90000+ 1 2.90000+ 1 1.22742- 2 0.00000+ 0 1.90000+ 1 3.00000+ 1 1.43954- 2 2.26000- 6 1.90000+ 1 3.20000+ 1 4.40668- 4 2.72500- 5 1.90000+ 1 3.30000+ 1 6.87600- 4 2.75900- 5 1.90000+ 1 4.10000+ 1 1.78243- 3 2.67300- 5 2.10000+ 1 2.20000+ 1 7.12134- 2 0.00000+ 0 2.10000+ 1 2.40000+ 1 1.46786- 1 1.32110- 4 2.10000+ 1 2.50000+ 1 3.06962- 1 1.32940- 4 2.10000+ 1 2.70000+ 1 6.07419- 2 9.44800- 5 2.10000+ 1 2.90000+ 1 4.35526- 2 1.14310- 4 2.10000+ 1 3.00000+ 1 7.94593- 2 1.18960- 4 2.10000+ 1 3.20000+ 1 1.88846- 3 1.43950- 4 2.10000+ 1 3.30000+ 1 3.61390- 3 1.44290- 4 2.10000+ 1 4.10000+ 1 5.24890- 3 1.43430- 4 2.20000+ 1 2.20000+ 1 1.02337- 2 0.00000+ 0 2.20000+ 1 2.40000+ 1 2.72731- 2 1.37970- 4 2.20000+ 1 2.50000+ 1 7.20527- 3 1.38800- 4 2.20000+ 1 2.70000+ 1 7.13517- 3 1.00340- 4 2.20000+ 1 2.90000+ 1 3.03368- 2 1.20170- 4 2.20000+ 1 3.00000+ 1 6.72001- 3 1.24820- 4 2.20000+ 1 3.20000+ 1 2.81493- 4 1.49810- 4 2.20000+ 1 3.30000+ 1 1.47879- 4 1.50150- 4 2.20000+ 1 4.10000+ 1 5.40171- 4 1.49290- 4 2.40000+ 1 2.40000+ 1 8.66030- 4 2.77240- 4 2.40000+ 1 2.50000+ 1 7.38751- 3 2.78070- 4 2.40000+ 1 2.70000+ 1 2.40298- 3 2.39610- 4 2.40000+ 1 2.90000+ 1 9.02496- 3 2.59440- 4 2.40000+ 1 3.00000+ 1 3.06463- 3 2.64090- 4 2.40000+ 1 3.20000+ 1 1.14464- 4 2.89080- 4 2.40000+ 1 3.30000+ 1 4.30407- 5 2.89420- 4 2.40000+ 1 4.10000+ 1 2.05272- 4 2.88560- 4 2.50000+ 1 2.50000+ 1 2.54412- 4 2.78900- 4 2.50000+ 1 2.70000+ 1 1.23617- 3 2.40440- 4 2.50000+ 1 2.90000+ 1 1.45324- 2 2.60270- 4 2.50000+ 1 3.00000+ 1 1.10948- 3 2.64920- 4 2.50000+ 1 3.20000+ 1 2.29248- 4 2.89910- 4 2.50000+ 1 3.30000+ 1 1.51440- 5 2.90250- 4 2.50000+ 1 4.10000+ 1 8.80655- 5 2.89390- 4 2.70000+ 1 2.70000+ 1 2.21546- 4 2.01980- 4 2.70000+ 1 2.90000+ 1 3.65827- 3 2.21810- 4 2.70000+ 1 3.00000+ 1 5.92424- 4 2.26460- 4 2.70000+ 1 3.20000+ 1 4.47031- 5 2.51450- 4 2.70000+ 1 3.30000+ 1 2.70175- 5 2.51790- 4 2.70000+ 1 4.10000+ 1 3.29126- 5 2.50930- 4 2.90000+ 1 2.90000+ 1 6.65120- 3 2.41640- 4 2.90000+ 1 3.00000+ 1 1.89534- 2 2.46290- 4 2.90000+ 1 3.20000+ 1 5.58021- 4 2.71280- 4 2.90000+ 1 3.30000+ 1 9.35735- 4 2.71620- 4 2.90000+ 1 4.10000+ 1 1.03745- 3 2.70760- 4 3.00000+ 1 3.00000+ 1 7.34587- 4 2.50940- 4 3.00000+ 1 3.20000+ 1 1.90345- 4 2.75930- 4 3.00000+ 1 3.30000+ 1 5.34816- 5 2.76270- 4 3.00000+ 1 4.10000+ 1 1.35281- 4 2.75410- 4 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.20865- 6 1.16700- 4 2.20000+ 1 8.89425- 5 1.22560- 4 2.70000+ 1 3.46188- 5 2.24200- 4 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.65944- 2 9.96700- 5 2.10000+ 1 2.50000+ 1 4.98200- 2 1.00500- 4 2.10000+ 1 2.70000+ 1 1.65834- 2 6.20400- 5 2.10000+ 1 2.90000+ 1 1.25180- 2 8.18700- 5 2.10000+ 1 3.00000+ 1 4.83143- 2 8.65200- 5 2.10000+ 1 3.20000+ 1 4.93204- 4 1.11510- 4 2.10000+ 1 3.30000+ 1 1.12317- 3 1.11850- 4 2.10000+ 1 4.10000+ 1 1.41274- 3 1.10990- 4 2.20000+ 1 2.40000+ 1 2.20358- 1 1.05530- 4 2.20000+ 1 2.50000+ 1 2.27516- 1 1.06360- 4 2.20000+ 1 2.70000+ 1 8.56831- 2 6.79000- 5 2.20000+ 1 2.90000+ 1 8.41657- 2 8.77300- 5 2.20000+ 1 3.00000+ 1 1.26614- 1 9.23800- 5 2.20000+ 1 3.20000+ 1 4.45374- 3 1.17370- 4 2.20000+ 1 3.30000+ 1 4.90815- 3 1.17710- 4 2.20000+ 1 4.10000+ 1 7.61659- 3 1.16850- 4 2.40000+ 1 2.40000+ 1 2.81870- 4 2.44800- 4 2.40000+ 1 2.50000+ 1 9.75886- 3 2.45630- 4 2.40000+ 1 2.70000+ 1 3.24779- 3 2.07170- 4 2.40000+ 1 2.90000+ 1 1.46378- 3 2.27000- 4 2.40000+ 1 3.00000+ 1 2.16477- 2 2.31650- 4 2.40000+ 1 3.20000+ 1 2.80218- 5 2.56640- 4 2.40000+ 1 3.30000+ 1 2.11002- 4 2.56980- 4 2.40000+ 1 4.10000+ 1 2.14711- 4 2.56120- 4 2.50000+ 1 2.50000+ 1 3.29576- 3 2.46460- 4 2.50000+ 1 2.70000+ 1 6.65034- 3 2.08000- 4 2.50000+ 1 2.90000+ 1 5.63578- 3 2.27830- 4 2.50000+ 1 3.00000+ 1 2.52937- 2 2.32480- 4 2.50000+ 1 3.20000+ 1 4.58772- 5 2.57470- 4 2.50000+ 1 3.30000+ 1 2.22266- 4 2.57810- 4 2.50000+ 1 4.10000+ 1 4.91995- 4 2.56950- 4 2.70000+ 1 2.70000+ 1 2.38695- 5 1.69540- 4 2.70000+ 1 2.90000+ 1 2.18900- 4 1.89370- 4 2.70000+ 1 3.00000+ 1 4.22296- 3 1.94020- 4 2.70000+ 1 3.20000+ 1 2.08222- 5 2.19010- 4 2.70000+ 1 3.30000+ 1 4.21541- 5 2.19350- 4 2.70000+ 1 4.10000+ 1 4.06303- 6 2.18490- 4 2.90000+ 1 2.90000+ 1 2.05888- 5 2.09200- 4 2.90000+ 1 3.00000+ 1 2.23147- 3 2.13850- 4 2.90000+ 1 3.20000+ 1 5.92267- 6 2.38840- 4 2.90000+ 1 3.30000+ 1 2.22806- 5 2.39180- 4 2.90000+ 1 4.10000+ 1 9.02479- 6 2.38320- 4 3.00000+ 1 3.00000+ 1 5.44170- 3 2.18500- 4 3.00000+ 1 3.20000+ 1 2.43300- 4 2.43490- 4 3.00000+ 1 3.30000+ 1 3.21886- 4 2.43830- 4 3.00000+ 1 4.10000+ 1 3.75276- 4 2.42970- 4 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 8.86250- 6 1.45130- 4 2.90000+ 1 1.08241- 5 1.27330- 4 3.00000+ 1 1.73556- 6 1.31980- 4 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 3.11287- 2 6.70000- 7 2.20000+ 1 3.30000+ 1 5.75006- 3 1.01000- 6 2.20000+ 1 4.10000+ 1 3.66241- 3 1.50000- 7 2.40000+ 1 2.40000+ 1 1.00853- 1 1.28100- 4 2.40000+ 1 2.50000+ 1 3.88655- 1 1.28930- 4 2.40000+ 1 2.70000+ 1 7.51963- 2 9.04700- 5 2.40000+ 1 2.90000+ 1 6.30367- 2 1.10300- 4 2.40000+ 1 3.00000+ 1 1.02011- 1 1.14950- 4 2.40000+ 1 3.20000+ 1 4.60786- 3 1.39940- 4 2.40000+ 1 3.30000+ 1 4.81983- 3 1.40280- 4 2.40000+ 1 4.10000+ 1 6.64352- 3 1.39420- 4 2.50000+ 1 2.50000+ 1 2.03164- 3 1.29760- 4 2.50000+ 1 2.70000+ 1 4.13017- 3 9.13000- 5 2.50000+ 1 2.90000+ 1 1.12614- 2 1.11130- 4 2.50000+ 1 3.00000+ 1 3.91910- 3 1.15780- 4 2.50000+ 1 3.20000+ 1 2.59365- 3 1.40770- 4 2.50000+ 1 3.30000+ 1 1.03166- 4 1.41110- 4 2.50000+ 1 4.10000+ 1 3.08978- 4 1.40250- 4 2.70000+ 1 2.70000+ 1 9.77560- 3 5.28400- 5 2.70000+ 1 2.90000+ 1 9.42369- 3 7.26700- 5 2.70000+ 1 3.00000+ 1 1.12841- 2 7.73200- 5 2.70000+ 1 3.20000+ 1 2.46294- 3 1.02310- 4 2.70000+ 1 3.30000+ 1 9.43731- 4 1.02650- 4 2.70000+ 1 4.10000+ 1 9.46094- 4 1.01790- 4 2.90000+ 1 2.90000+ 1 2.21145- 2 9.25000- 5 2.90000+ 1 3.00000+ 1 7.74010- 2 9.71500- 5 2.90000+ 1 3.20000+ 1 8.16434- 3 1.22140- 4 2.90000+ 1 3.30000+ 1 2.79563- 3 1.22480- 4 2.90000+ 1 4.10000+ 1 3.18505- 3 1.21620- 4 3.00000+ 1 3.00000+ 1 2.51433- 2 1.01800- 4 3.00000+ 1 3.20000+ 1 1.23085- 2 1.26790- 4 3.00000+ 1 3.30000+ 1 1.23545- 3 1.27130- 4 3.00000+ 1 4.10000+ 1 2.08189- 3 1.26270- 4 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.62684- 7 1.39270- 4 2.50000+ 1 9.38668- 6 1.40100- 4 3.00000+ 1 1.21911- 5 1.26120- 4 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 7.97336- 3 1.22240- 4 2.40000+ 1 2.50000+ 1 3.73817- 1 1.23070- 4 2.40000+ 1 2.70000+ 1 1.27675- 2 8.46100- 5 2.40000+ 1 2.90000+ 1 7.32772- 3 1.04440- 4 2.40000+ 1 3.00000+ 1 2.60438- 2 1.09090- 4 2.40000+ 1 3.20000+ 1 2.92343- 4 1.34080- 4 2.40000+ 1 3.30000+ 1 5.32581- 3 1.34420- 4 2.40000+ 1 4.10000+ 1 1.02660- 3 1.33560- 4 2.50000+ 1 2.50000+ 1 2.16502- 1 1.23900- 4 2.50000+ 1 2.70000+ 1 9.03916- 2 8.54400- 5 2.50000+ 1 2.90000+ 1 8.95410- 2 1.05270- 4 2.50000+ 1 3.00000+ 1 1.19078- 1 1.09920- 4 2.50000+ 1 3.20000+ 1 4.64165- 3 1.34910- 4 2.50000+ 1 3.30000+ 1 8.76265- 3 1.35250- 4 2.50000+ 1 4.10000+ 1 8.03718- 3 1.34390- 4 2.70000+ 1 2.70000+ 1 5.37133- 3 4.69800- 5 2.70000+ 1 2.90000+ 1 2.91927- 3 6.68100- 5 2.70000+ 1 3.00000+ 1 7.62696- 3 7.14600- 5 2.70000+ 1 3.20000+ 1 3.68475- 4 9.64500- 5 2.70000+ 1 3.30000+ 1 1.26015- 3 9.67900- 5 2.70000+ 1 4.10000+ 1 5.10981- 4 9.59300- 5 2.90000+ 1 2.90000+ 1 4.98301- 4 8.66400- 5 2.90000+ 1 3.00000+ 1 5.27243- 3 9.12900- 5 2.90000+ 1 3.20000+ 1 3.90823- 5 1.16280- 4 2.90000+ 1 3.30000+ 1 6.40961- 4 1.16620- 4 2.90000+ 1 4.10000+ 1 1.20184- 4 1.15760- 4 3.00000+ 1 3.00000+ 1 2.54961- 3 9.59400- 5 3.00000+ 1 3.20000+ 1 1.41040- 4 1.20930- 4 3.00000+ 1 3.30000+ 1 8.71232- 4 1.21270- 4 3.00000+ 1 4.10000+ 1 2.59548- 4 1.20410- 4 1 64000 0 7 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.75379- 8 1.98300- 5 3.00000+ 1 1.43410- 7 2.44800- 5 1 64000 0 9 1.57250+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.06729- 1 1.41200- 5 3.00000+ 1 4.10000+ 1 5.85459- 1 1.87700- 5 4.10000+ 1 4.10000+ 1 7.81169- 3 4.32400- 5 1 65000 0 0 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 3.86000+ 0 2.50000+ 1 5.14000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 65000 0 0 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.20600- 2 3.00000+ 0 8.67310- 3 5.00000+ 0 8.26090- 3 6.00000+ 0 7.50530- 3 8.00000+ 0 1.93580- 3 1.00000+ 1 1.75340- 3 1.10000+ 1 1.59680- 3 1.30000+ 1 1.27900- 3 1.40000+ 1 1.24460- 3 1.60000+ 1 3.88390- 4 1.80000+ 1 3.16000- 4 1.90000+ 1 2.81040- 4 2.10000+ 1 1.60590- 4 2.20000+ 1 1.54290- 4 2.40000+ 1 1.03900- 5 2.50000+ 1 9.53000- 6 2.70000+ 1 5.21700- 5 2.90000+ 1 3.22400- 5 3.00000+ 1 2.75900- 5 4.10000+ 1 5.29000- 6 1 65000 0 0 1.58925+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.83070- 2 3.00000+ 0 1.55710- 2 5.00000+ 0 1.55760- 2 6.00000+ 0 1.27780- 2 8.00000+ 0 4.81640- 3 1.00000+ 1 4.73030- 3 1.10000+ 1 4.06880- 3 1.30000+ 1 3.93430- 3 1.40000+ 1 3.78000- 3 1.60000+ 1 1.50110- 3 1.80000+ 1 1.40790- 3 1.90000+ 1 1.21890- 3 2.10000+ 1 1.03820- 3 2.20000+ 1 9.96910- 4 2.40000+ 1 6.00050- 4 2.50000+ 1 5.85940- 4 2.70000+ 1 3.09880- 4 2.90000+ 1 2.43840- 4 3.00000+ 1 2.05060- 4 4.10000+ 1 3.00000- 5 1 65000 0 0 1.58925+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13650-10 3.00000+ 0 4.80000-10 5.00000+ 0 3.99670-10 6.00000+ 0 4.36360-10 8.00000+ 0 1.25770- 9 1.00000+ 1 1.20170- 9 1.10000+ 1 1.27080- 9 1.30000+ 1 1.12300- 9 1.40000+ 1 1.14460- 9 1.60000+ 1 2.84600- 9 1.80000+ 1 2.90010- 9 1.90000+ 1 3.05760- 9 2.10000+ 1 3.22600- 9 2.20000+ 1 3.28080- 9 2.40000+ 1 4.36750- 9 2.50000+ 1 4.44080- 9 2.70000+ 1 6.91220- 9 2.90000+ 1 7.75020- 9 3.00000+ 1 8.27150- 9 4.10000+ 1 2.19610- 8 1 65000 0 0 1.58925+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.17420- 5 3.00000+ 0 4.22490- 7 5.00000+ 0 7.23400- 7 6.00000+ 0 6.61500- 7 8.00000+ 0 1.31590- 8 1.00000+ 1 1.34930- 8 1.10000+ 1 1.38920- 8 1.30000+ 1 9.02190- 9 1.40000+ 1 8.48290- 9 1.60000+ 1 3.36750-10 1.80000+ 1 6.63330-10 1.90000+ 1 4.49600-10 2.10000+ 1 3.80390-10 2.20000+ 1 3.46230-10 2.70000+ 1 1.62910-11 1 65000 0 0 1.58925+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.47820- 6 3.00000+ 0 4.29400- 6 5.00000+ 0 3.04970- 6 6.00000+ 0 2.96890- 6 8.00000+ 0 1.65160- 5 1.00000+ 1 8.47010- 6 1.10000+ 1 8.55930- 6 1.30000+ 1 1.54410- 6 1.40000+ 1 9.96900- 7 1.60000+ 1 1.13390- 5 1.80000+ 1 1.44170- 5 1.90000+ 1 7.54700- 6 2.10000+ 1 3.42330- 6 2.20000+ 1 2.84170- 6 2.70000+ 1 2.31350- 6 1 65000 0 0 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19295- 4 3.00000+ 0 1.47714- 4 5.00000+ 0 1.24647- 4 6.00000+ 0 1.16749- 4 8.00000+ 0 1.09464- 4 1.00000+ 1 9.29230- 5 1.10000+ 1 8.47148- 5 1.30000+ 1 6.13277- 5 1.40000+ 1 5.76434- 5 1.60000+ 1 6.26166- 5 1.80000+ 1 5.14467- 5 1.90000+ 1 4.42559- 5 2.10000+ 1 3.09874- 5 2.20000+ 1 2.69212- 5 2.40000+ 1 1.03900- 5 2.50000+ 1 9.53000- 6 2.70000+ 1 3.46094- 5 2.90000+ 1 3.22400- 5 3.00000+ 1 2.75900- 5 4.10000+ 1 5.29000- 6 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.11255+ 0 3.00000+ 0 2.01055- 1 5.00000+ 0 2.28297- 1 6.00000+ 0 1.89015- 1 8.00000+ 0 1.13812- 2 1.00000+ 1 1.17260- 2 1.10000+ 1 1.11246- 2 1.30000+ 1 1.01188- 2 1.40000+ 1 9.55894- 3 1.60000+ 1 3.86274- 4 1.80000+ 1 4.74115- 4 1.90000+ 1 1.70749- 4 2.10000+ 1 2.79886- 5 2.20000+ 1 2.75265- 5 2.70000+ 1 2.64929- 7 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.37954- 2 3.00000+ 0 1.29619- 3 5.00000+ 0 1.51087- 3 6.00000+ 0 1.12082- 3 8.00000+ 0 1.36151- 5 1.00000+ 1 1.37414- 5 1.10000+ 1 1.30028- 5 1.30000+ 1 1.12159- 5 1.40000+ 1 1.05815- 5 1.60000+ 1 7.14609- 8 1.80000+ 1 8.14638- 8 1.90000+ 1 2.58746- 8 2.10000+ 1 3.89827- 9 2.20000+ 1 3.74963- 9 2.70000+ 1 6.25560-12 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.64702+ 0 3.00000+ 0 9.62272+ 0 5.00000+ 0 7.99300+ 0 6.00000+ 0 7.52180+ 0 8.00000+ 0 6.85523+ 0 1.00000+ 1 5.65025+ 0 1.10000+ 1 5.15822+ 0 1.30000+ 1 3.43056+ 0 1.40000+ 1 3.28792+ 0 1.60000+ 1 2.98173+ 0 1.80000+ 1 2.58628+ 0 1.90000+ 1 2.11328+ 0 2.10000+ 1 1.16479+ 0 2.20000+ 1 1.11206+ 0 2.70000+ 1 1.00000+ 0 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.14528- 3 3.00000+ 0 7.22920- 3 5.00000+ 0 6.62538- 3 6.00000+ 0 6.26773- 3 8.00000+ 0 1.81272- 3 1.00000+ 1 1.64674- 3 1.10000+ 1 1.49908- 3 1.30000+ 1 1.20646- 3 1.40000+ 1 1.17638- 3 1.60000+ 1 3.25702- 4 1.80000+ 1 2.64472- 4 1.90000+ 1 2.36758- 4 2.10000+ 1 1.29599- 4 2.20000+ 1 1.27365- 4 2.70000+ 1 1.75606- 5 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.69190- 1 4.37991- 2 6.00000+ 0 4.82480- 1 4.45547- 2 1.00000+ 1 4.93490- 2 5.03066- 2 1.10000+ 1 9.54509- 2 5.04632- 2 1.30000+ 1 7.82680- 4 5.07810- 2 1.40000+ 1 1.02710- 3 5.08154- 2 1.80000+ 1 1.08290- 2 5.17440- 2 1.90000+ 1 2.09880- 2 5.17790- 2 2.10000+ 1 1.75640- 4 5.18994- 2 2.20000+ 1 2.29690- 4 5.19057- 2 2.90000+ 1 2.32380- 3 5.20278- 2 3.00000+ 1 4.80430- 3 5.20324- 2 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.63350- 3 3.47138- 2 3.00000+ 0 5.00000+ 0 7.35518- 3 3.51260- 2 3.00000+ 0 6.00000+ 0 6.71148- 3 3.58816- 2 3.00000+ 0 8.00000+ 0 2.14442- 3 4.14511- 2 3.00000+ 0 1.00000+ 1 1.51142- 3 4.16335- 2 3.00000+ 0 1.10000+ 1 1.42667- 3 4.17901- 2 3.00000+ 0 1.30000+ 1 1.05966- 4 4.21079- 2 3.00000+ 0 1.40000+ 1 1.00578- 4 4.21423- 2 3.00000+ 0 1.60000+ 1 5.02166- 4 4.29985- 2 3.00000+ 0 1.80000+ 1 3.40639- 4 4.30709- 2 3.00000+ 0 1.90000+ 1 3.18938- 4 4.31059- 2 3.00000+ 0 2.10000+ 1 2.35359- 5 4.32263- 2 3.00000+ 0 2.20000+ 1 2.20428- 5 4.32326- 2 3.00000+ 0 2.70000+ 1 8.16285- 5 4.33347- 2 3.00000+ 0 2.90000+ 1 4.45459- 5 4.33547- 2 3.00000+ 0 3.00000+ 1 3.98385- 5 4.33593- 2 3.00000+ 0 4.10000+ 1 6.42903- 6 4.33816- 2 5.00000+ 0 5.00000+ 0 6.75081- 4 3.55382- 2 5.00000+ 0 6.00000+ 0 1.33809- 2 3.62938- 2 5.00000+ 0 8.00000+ 0 1.17830- 3 4.18633- 2 5.00000+ 0 1.00000+ 1 2.45576- 4 4.20457- 2 5.00000+ 0 1.10000+ 1 2.36454- 3 4.22023- 2 5.00000+ 0 1.30000+ 1 1.18026- 4 4.25201- 2 5.00000+ 0 1.40000+ 1 3.65894- 4 4.25545- 2 5.00000+ 0 1.60000+ 1 2.65668- 4 4.34107- 2 5.00000+ 0 1.80000+ 1 5.39597- 5 4.34831- 2 5.00000+ 0 1.90000+ 1 5.08961- 4 4.35181- 2 5.00000+ 0 2.10000+ 1 2.54872- 5 4.36385- 2 5.00000+ 0 2.20000+ 1 7.88709- 5 4.36448- 2 5.00000+ 0 2.40000+ 1 3.44428- 7 4.37887- 2 5.00000+ 0 2.50000+ 1 2.29606- 7 4.37896- 2 5.00000+ 0 2.70000+ 1 4.28242- 5 4.37469- 2 5.00000+ 0 2.90000+ 1 7.00339- 6 4.37669- 2 5.00000+ 0 3.00000+ 1 6.30298- 5 4.37715- 2 5.00000+ 0 4.10000+ 1 3.32945- 6 4.37938- 2 6.00000+ 0 6.00000+ 0 6.31127- 3 3.70494- 2 6.00000+ 0 8.00000+ 0 1.02148- 3 4.26189- 2 6.00000+ 0 1.00000+ 1 2.25774- 3 4.28013- 2 6.00000+ 0 1.10000+ 1 2.29889- 3 4.29579- 2 6.00000+ 0 1.30000+ 1 4.24674- 4 4.32757- 2 6.00000+ 0 1.40000+ 1 3.76931- 4 4.33101- 2 6.00000+ 0 1.60000+ 1 2.27675- 4 4.41663- 2 6.00000+ 0 1.80000+ 1 4.89191- 4 4.42387- 2 6.00000+ 0 1.90000+ 1 4.98518- 4 4.42737- 2 6.00000+ 0 2.10000+ 1 9.21910- 5 4.43941- 2 6.00000+ 0 2.20000+ 1 8.15194- 5 4.44004- 2 6.00000+ 0 2.40000+ 1 6.88825- 7 4.45443- 2 6.00000+ 0 2.50000+ 1 3.44442- 7 4.45452- 2 6.00000+ 0 2.70000+ 1 3.66252- 5 4.45025- 2 6.00000+ 0 2.90000+ 1 6.36056- 5 4.45225- 2 6.00000+ 0 3.00000+ 1 6.17676- 5 4.45271- 2 6.00000+ 0 4.10000+ 1 2.87028- 6 4.45494- 2 8.00000+ 0 8.00000+ 0 2.00911- 4 4.81884- 2 8.00000+ 0 1.00000+ 1 2.43971- 4 4.83708- 2 8.00000+ 0 1.10000+ 1 2.19281- 4 4.85274- 2 8.00000+ 0 1.30000+ 1 1.56139- 5 4.88452- 2 8.00000+ 0 1.40000+ 1 1.41217- 5 4.88796- 2 8.00000+ 0 1.60000+ 1 9.37969- 5 4.97358- 2 8.00000+ 0 1.80000+ 1 5.51074- 5 4.98082- 2 8.00000+ 0 1.90000+ 1 4.91370- 5 4.98432- 2 8.00000+ 0 2.10000+ 1 3.44431- 6 4.99636- 2 8.00000+ 0 2.20000+ 1 3.09983- 6 4.99699- 2 8.00000+ 0 2.70000+ 1 1.52690- 5 5.00720- 2 8.00000+ 0 2.90000+ 1 7.23291- 6 5.00920- 2 8.00000+ 0 3.00000+ 1 6.08495- 6 5.00966- 2 8.00000+ 0 4.10000+ 1 1.14813- 6 5.01189- 2 1.00000+ 1 1.00000+ 1 2.15843- 5 4.85532- 2 1.00000+ 1 1.10000+ 1 4.07457- 4 4.87098- 2 1.00000+ 1 1.30000+ 1 1.61880- 5 4.90276- 2 1.00000+ 1 1.40000+ 1 4.75292- 5 4.90620- 2 1.00000+ 1 1.60000+ 1 5.51075- 5 4.99182- 2 1.00000+ 1 1.80000+ 1 9.41467- 6 4.99906- 2 1.00000+ 1 1.90000+ 1 8.80585- 5 5.00256- 2 1.00000+ 1 2.10000+ 1 3.55904- 6 5.01460- 2 1.00000+ 1 2.20000+ 1 1.03331- 5 5.01523- 2 1.00000+ 1 2.70000+ 1 8.84024- 6 5.02544- 2 1.00000+ 1 2.90000+ 1 1.26296- 6 5.02744- 2 1.00000+ 1 3.00000+ 1 1.09062- 5 5.02790- 2 1.00000+ 1 4.10000+ 1 6.88804- 7 5.03013- 2 1.10000+ 1 1.10000+ 1 2.10682- 4 4.88664- 2 1.10000+ 1 1.30000+ 1 6.13097- 5 4.91842- 2 1.10000+ 1 1.40000+ 1 5.29262- 5 4.92186- 2 1.10000+ 1 1.60000+ 1 4.90239- 5 5.00748- 2 1.10000+ 1 1.80000+ 1 8.86337- 5 5.01472- 2 1.10000+ 1 1.90000+ 1 9.15022- 5 5.01822- 2 1.10000+ 1 2.10000+ 1 1.34331- 5 5.03026- 2 1.10000+ 1 2.20000+ 1 1.14814- 5 5.03089- 2 1.10000+ 1 2.40000+ 1 1.14814- 7 5.04528- 2 1.10000+ 1 2.70000+ 1 7.92155- 6 5.04110- 2 1.10000+ 1 2.90000+ 1 1.14814- 5 5.04310- 2 1.10000+ 1 3.00000+ 1 1.13658- 5 5.04356- 2 1.10000+ 1 4.10000+ 1 5.74036- 7 5.04579- 2 1.30000+ 1 1.30000+ 1 1.15465- 7 4.95020- 2 1.30000+ 1 1.40000+ 1 7.50485- 6 4.95364- 2 1.30000+ 1 1.60000+ 1 3.46388- 6 5.03926- 2 1.30000+ 1 1.80000+ 1 3.34840- 6 5.04650- 2 1.30000+ 1 1.90000+ 1 1.27013- 5 5.05000- 2 1.30000+ 1 2.20000+ 1 1.61646- 6 5.06267- 2 1.30000+ 1 2.70000+ 1 5.77290- 7 5.07288- 2 1.30000+ 1 2.90000+ 1 4.61834- 7 5.07488- 2 1.30000+ 1 3.00000+ 1 1.61646- 6 5.07534- 2 1.40000+ 1 1.40000+ 1 1.72215- 6 4.95708- 2 1.40000+ 1 1.60000+ 1 3.09982- 6 5.04270- 2 1.40000+ 1 1.80000+ 1 9.75889- 6 5.04994- 2 1.40000+ 1 1.90000+ 1 1.09062- 5 5.05344- 2 1.40000+ 1 2.10000+ 1 1.60732- 6 5.06548- 2 1.40000+ 1 2.20000+ 1 6.88800- 7 5.06611- 2 1.40000+ 1 2.70000+ 1 4.59223- 7 5.07632- 2 1.40000+ 1 2.90000+ 1 1.26295- 6 5.07832- 2 1.40000+ 1 3.00000+ 1 1.37767- 6 5.07878- 2 1.60000+ 1 1.60000+ 1 1.09860- 5 5.12832- 2 1.60000+ 1 1.80000+ 1 1.24900- 5 5.13556- 2 1.60000+ 1 1.90000+ 1 1.11014- 5 5.13906- 2 1.60000+ 1 2.10000+ 1 8.09506- 7 5.15110- 2 1.60000+ 1 2.20000+ 1 6.93842- 7 5.15173- 2 1.60000+ 1 2.70000+ 1 3.58508- 6 5.16194- 2 1.60000+ 1 2.90000+ 1 1.61908- 6 5.16394- 2 1.60000+ 1 3.00000+ 1 1.38776- 6 5.16440- 2 1.60000+ 1 4.10000+ 1 2.31288- 7 5.16663- 2 1.80000+ 1 1.80000+ 1 1.02824- 6 5.14280- 2 1.80000+ 1 1.90000+ 1 1.90790- 5 5.14630- 2 1.80000+ 1 2.10000+ 1 6.85422- 7 5.15834- 2 1.80000+ 1 2.20000+ 1 2.05639- 6 5.15897- 2 1.80000+ 1 2.70000+ 1 1.94212- 6 5.16918- 2 1.80000+ 1 2.90000+ 1 2.28481- 7 5.17118- 2 1.80000+ 1 3.00000+ 1 2.39906- 6 5.17164- 2 1.80000+ 1 4.10000+ 1 1.14249- 7 5.17387- 2 1.90000+ 1 1.90000+ 1 9.87381- 6 5.14979- 2 1.90000+ 1 2.10000+ 1 2.75542- 6 5.16184- 2 1.90000+ 1 2.20000+ 1 2.41094- 6 5.16247- 2 1.90000+ 1 2.70000+ 1 1.72219- 6 5.17268- 2 1.90000+ 1 2.90000+ 1 2.52587- 6 5.17467- 2 1.90000+ 1 3.00000+ 1 2.41094- 6 5.17514- 2 1.90000+ 1 4.10000+ 1 1.14815- 7 5.17737- 2 2.10000+ 1 2.20000+ 1 3.44432- 7 5.17451- 2 2.10000+ 1 2.70000+ 1 1.14813- 7 5.18472- 2 2.10000+ 1 2.90000+ 1 1.14813- 7 5.18672- 2 2.10000+ 1 3.00000+ 1 3.44432- 7 5.18718- 2 2.20000+ 1 2.20000+ 1 1.19132- 7 5.17514- 2 2.20000+ 1 2.70000+ 1 1.19132- 7 5.18535- 2 2.20000+ 1 2.90000+ 1 2.38246- 7 5.18735- 2 2.20000+ 1 3.00000+ 1 3.57389- 7 5.18781- 2 2.70000+ 1 2.70000+ 1 4.25606- 7 5.19557- 2 2.70000+ 1 2.90000+ 1 2.83722- 7 5.19756- 2 2.70000+ 1 3.00000+ 1 2.83722- 7 5.19802- 2 2.90000+ 1 3.00000+ 1 3.44430- 7 5.20002- 2 3.00000+ 1 3.00000+ 1 1.14810- 7 5.20048- 2 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.92190- 5 4.12200- 4 6.00000+ 0 9.90679- 4 1.16780- 3 1.00000+ 1 2.51770- 2 6.91970- 3 1.10000+ 1 3.55210- 2 7.07630- 3 1.30000+ 1 5.55120- 4 7.39410- 3 1.40000+ 1 8.30699- 4 7.42850- 3 1.80000+ 1 5.96490- 3 8.35710- 3 1.90000+ 1 8.76939- 3 8.39206- 3 2.10000+ 1 7.52289- 5 8.51251- 3 2.20000+ 1 1.16020- 4 8.51881- 3 2.90000+ 1 8.17579- 4 8.64086- 3 3.00000+ 1 1.16360- 3 8.64551- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 4.97912- 2 2.38100- 5 5.00000+ 0 1.80000+ 1 3.76816- 2 9.62000- 5 5.00000+ 0 1.90000+ 1 4.31422- 2 1.31160- 4 5.00000+ 0 2.10000+ 1 1.15507- 2 2.51610- 4 5.00000+ 0 2.20000+ 1 1.75580- 2 2.57910- 4 5.00000+ 0 2.40000+ 1 2.75456- 2 4.01810- 4 5.00000+ 0 2.50000+ 1 1.34191- 2 4.02670- 4 5.00000+ 0 2.70000+ 1 7.79855- 3 3.60030- 4 5.00000+ 0 2.90000+ 1 4.65860- 3 3.79960- 4 5.00000+ 0 3.00000+ 1 5.12735- 3 3.84610- 4 5.00000+ 0 4.10000+ 1 6.06871- 4 4.06910- 4 6.00000+ 0 1.60000+ 1 5.53219- 2 7.79410- 4 6.00000+ 0 1.80000+ 1 2.33841- 2 8.51800- 4 6.00000+ 0 1.90000+ 1 4.04701- 2 8.86760- 4 6.00000+ 0 2.10000+ 1 6.33774- 2 1.00721- 3 6.00000+ 0 2.20000+ 1 7.89093- 2 1.01351- 3 6.00000+ 0 2.40000+ 1 3.90181- 2 1.15741- 3 6.00000+ 0 2.50000+ 1 1.84400- 2 1.15827- 3 6.00000+ 0 2.70000+ 1 8.64777- 3 1.11563- 3 6.00000+ 0 2.90000+ 1 2.96551- 3 1.13556- 3 6.00000+ 0 3.00000+ 1 4.95219- 3 1.14021- 3 6.00000+ 0 4.10000+ 1 6.73324- 4 1.16251- 3 8.00000+ 0 8.00000+ 0 1.16100- 2 4.80150- 3 8.00000+ 0 1.00000+ 1 2.33675- 2 4.98390- 3 8.00000+ 0 1.10000+ 1 4.12563- 2 5.14050- 3 8.00000+ 0 1.30000+ 1 3.22199- 2 5.45830- 3 8.00000+ 0 1.40000+ 1 4.41745- 2 5.49270- 3 8.00000+ 0 1.60000+ 1 4.61640- 3 6.34891- 3 8.00000+ 0 1.80000+ 1 5.15901- 3 6.42130- 3 8.00000+ 0 1.90000+ 1 8.98979- 3 6.45626- 3 8.00000+ 0 2.10000+ 1 5.98414- 3 6.57671- 3 8.00000+ 0 2.20000+ 1 8.13739- 3 6.58301- 3 8.00000+ 0 2.40000+ 1 2.69919- 4 6.72691- 3 8.00000+ 0 2.50000+ 1 1.18343- 4 6.72777- 3 8.00000+ 0 2.70000+ 1 7.32196- 4 6.68513- 3 8.00000+ 0 2.90000+ 1 6.72156- 4 6.70506- 3 8.00000+ 0 3.00000+ 1 1.11522- 3 6.70971- 3 8.00000+ 0 4.10000+ 1 5.71284- 5 6.73201- 3 1.00000+ 1 1.00000+ 1 8.91929- 5 5.16630- 3 1.00000+ 1 1.10000+ 1 6.79147- 4 5.32290- 3 1.00000+ 1 1.30000+ 1 1.19092- 3 5.64070- 3 1.00000+ 1 1.40000+ 1 1.26933- 2 5.67510- 3 1.00000+ 1 1.60000+ 1 3.67847- 3 6.53131- 3 1.00000+ 1 1.80000+ 1 1.69059- 5 6.60370- 3 1.00000+ 1 1.90000+ 1 1.37573- 4 6.63866- 3 1.00000+ 1 2.10000+ 1 2.14540- 4 6.75911- 3 1.00000+ 1 2.20000+ 1 1.51447- 3 6.76541- 3 1.00000+ 1 2.40000+ 1 9.32731- 5 6.90931- 3 1.00000+ 1 2.50000+ 1 1.23589- 4 6.91017- 3 1.00000+ 1 2.70000+ 1 5.53811- 4 6.86753- 3 1.00000+ 1 2.90000+ 1 1.74890- 6 6.88746- 3 1.00000+ 1 3.00000+ 1 1.69059- 5 6.89211- 3 1.00000+ 1 4.10000+ 1 4.31394- 5 6.91441- 3 1.10000+ 1 1.10000+ 1 1.00330- 3 5.47950- 3 1.10000+ 1 1.30000+ 1 6.73781- 3 5.79730- 3 1.10000+ 1 1.40000+ 1 4.39427- 3 5.83170- 3 1.10000+ 1 1.60000+ 1 6.47256- 3 6.68791- 3 1.10000+ 1 1.80000+ 1 1.41666- 4 6.76030- 3 1.10000+ 1 1.90000+ 1 3.24123- 4 6.79526- 3 1.10000+ 1 2.10000+ 1 6.23764- 4 6.91571- 3 1.10000+ 1 2.20000+ 1 4.12164- 4 6.92201- 3 1.10000+ 1 2.40000+ 1 2.50088- 4 7.06591- 3 1.10000+ 1 2.50000+ 1 7.63682- 5 7.06677- 3 1.10000+ 1 2.70000+ 1 9.74128- 4 7.02413- 3 1.10000+ 1 2.90000+ 1 1.80719- 5 7.04406- 3 1.10000+ 1 3.00000+ 1 3.84761- 5 7.04871- 3 1.10000+ 1 4.10000+ 1 7.52020- 5 7.07101- 3 1.30000+ 1 1.30000+ 1 1.88241- 3 6.11510- 3 1.30000+ 1 1.40000+ 1 6.26777- 2 6.14950- 3 1.30000+ 1 1.60000+ 1 4.73438- 3 7.00571- 3 1.30000+ 1 1.80000+ 1 3.31718- 4 7.07810- 3 1.30000+ 1 1.90000+ 1 1.55189- 3 7.11306- 3 1.30000+ 1 2.10000+ 1 6.86162- 4 7.23351- 3 1.30000+ 1 2.20000+ 1 8.23213- 3 7.23981- 3 1.30000+ 1 2.40000+ 1 3.14813- 4 7.38371- 3 1.30000+ 1 2.50000+ 1 3.31142- 4 7.38457- 3 1.30000+ 1 2.70000+ 1 7.04826- 4 7.34193- 3 1.30000+ 1 2.90000+ 1 4.48883- 5 7.36186- 3 1.30000+ 1 3.00000+ 1 1.94132- 4 7.36651- 3 1.30000+ 1 4.10000+ 1 5.47990- 5 7.38881- 3 1.40000+ 1 1.40000+ 1 1.75861- 2 6.18390- 3 1.40000+ 1 1.60000+ 1 6.55194- 3 7.04011- 3 1.40000+ 1 1.80000+ 1 2.52424- 3 7.11250- 3 1.40000+ 1 1.90000+ 1 1.06270- 3 7.14746- 3 1.40000+ 1 2.10000+ 1 8.09795- 3 7.26791- 3 1.40000+ 1 2.20000+ 1 4.85830- 3 7.27421- 3 1.40000+ 1 2.40000+ 1 9.87565- 4 7.41811- 3 1.40000+ 1 2.50000+ 1 2.84496- 4 7.41897- 3 1.40000+ 1 2.70000+ 1 9.78268- 4 7.37633- 3 1.40000+ 1 2.90000+ 1 3.23550- 4 7.39626- 3 1.40000+ 1 3.00000+ 1 1.34078- 4 7.40091- 3 1.40000+ 1 4.10000+ 1 7.57867- 5 7.42321- 3 1.60000+ 1 1.60000+ 1 4.33743- 4 7.89632- 3 1.60000+ 1 1.80000+ 1 8.14405- 4 7.96871- 3 1.60000+ 1 1.90000+ 1 1.41424- 3 8.00367- 3 1.60000+ 1 2.10000+ 1 8.77943- 4 8.12412- 3 1.60000+ 1 2.20000+ 1 1.20094- 3 8.13042- 3 1.60000+ 1 2.40000+ 1 3.26462- 5 8.27432- 3 1.60000+ 1 2.50000+ 1 1.39920- 5 8.27518- 3 1.60000+ 1 2.70000+ 1 1.35827- 4 8.23254- 3 1.60000+ 1 2.90000+ 1 1.06099- 4 8.25247- 3 1.60000+ 1 3.00000+ 1 1.75468- 4 8.25712- 3 1.60000+ 1 4.10000+ 1 1.04926- 5 8.27942- 3 1.80000+ 1 1.80000+ 1 5.82976- 7 8.04110- 3 1.80000+ 1 1.90000+ 1 2.91478- 5 8.07606- 3 1.80000+ 1 2.10000+ 1 5.07182- 5 8.19651- 3 1.80000+ 1 2.20000+ 1 3.11890- 4 8.20281- 3 1.80000+ 1 2.40000+ 1 1.22428- 5 8.34671- 3 1.80000+ 1 2.50000+ 1 1.86552- 5 8.34757- 3 1.80000+ 1 2.70000+ 1 1.22428- 4 8.30493- 3 1.80000+ 1 3.00000+ 1 3.49771- 6 8.32951- 3 1.80000+ 1 4.10000+ 1 9.32738- 6 8.35181- 3 1.90000+ 1 1.90000+ 1 2.56508- 5 8.11102- 3 1.90000+ 1 2.10000+ 1 1.57402- 4 8.23147- 3 1.90000+ 1 2.20000+ 1 1.09596- 4 8.23777- 3 1.90000+ 1 2.40000+ 1 4.31400- 5 8.38167- 3 1.90000+ 1 2.50000+ 1 1.28249- 5 8.38253- 3 1.90000+ 1 2.70000+ 1 2.12785- 4 8.33989- 3 1.90000+ 1 2.90000+ 1 3.49774- 6 8.35982- 3 1.90000+ 1 3.00000+ 1 5.82981- 6 8.36447- 3 1.90000+ 1 4.10000+ 1 1.63241- 5 8.38677- 3 2.10000+ 1 2.10000+ 1 5.82982- 5 8.35192- 3 2.10000+ 1 2.20000+ 1 1.15194- 3 8.35822- 3 2.10000+ 1 2.40000+ 1 4.02239- 5 8.50212- 3 2.10000+ 1 2.50000+ 1 3.32294- 5 8.50298- 3 2.10000+ 1 2.70000+ 1 1.30583- 4 8.46034- 3 2.10000+ 1 2.90000+ 1 6.99571- 6 8.48027- 3 2.10000+ 1 3.00000+ 1 1.98215- 5 8.48492- 3 2.10000+ 1 4.10000+ 1 9.91072- 6 8.50722- 3 2.20000+ 1 2.20000+ 1 3.57351- 4 8.36452- 3 2.20000+ 1 2.40000+ 1 1.01431- 4 8.50842- 3 2.20000+ 1 2.50000+ 1 3.26462- 5 8.50928- 3 2.20000+ 1 2.70000+ 1 1.78974- 4 8.46664- 3 2.20000+ 1 2.90000+ 1 4.02237- 5 8.48657- 3 2.20000+ 1 3.00000+ 1 1.39920- 5 8.49122- 3 2.20000+ 1 4.10000+ 1 1.39920- 5 8.51352- 3 2.40000+ 1 2.40000+ 1 5.99102- 7 8.65232- 3 2.40000+ 1 2.50000+ 1 4.19363- 6 8.65318- 3 2.40000+ 1 2.70000+ 1 4.79290- 6 8.61054- 3 2.40000+ 1 2.90000+ 1 1.79729- 6 8.63047- 3 2.40000+ 1 3.00000+ 1 5.39196- 6 8.63512- 3 2.40000+ 1 4.10000+ 1 5.99102- 7 8.65742- 3 2.50000+ 1 2.50000+ 1 1.16597- 6 8.65404- 3 2.50000+ 1 2.70000+ 1 1.74890- 6 8.61140- 3 2.50000+ 1 2.90000+ 1 2.33183- 6 8.63133- 3 2.50000+ 1 3.00000+ 1 1.74890- 6 8.63598- 3 2.70000+ 1 2.70000+ 1 1.95371- 5 8.56876- 3 2.70000+ 1 2.90000+ 1 2.93077- 5 8.58869- 3 2.70000+ 1 3.00000+ 1 4.88486- 5 8.59334- 3 2.70000+ 1 4.10000+ 1 3.25646- 6 8.61564- 3 2.90000+ 1 3.00000+ 1 2.01821- 6 8.61327- 3 2.90000+ 1 4.10000+ 1 4.03649- 6 8.63557- 3 3.00000+ 1 3.00000+ 1 5.82971- 7 8.61792- 3 3.00000+ 1 4.10000+ 1 2.33183- 6 8.64022- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.58278- 7 7.55600- 4 8.00000+ 0 5.30998- 3 6.32510- 3 1.10000+ 1 1.11840- 4 6.66410- 3 1.30000+ 1 1.51420- 1 6.98190- 3 1.60000+ 1 1.05700- 3 7.87251- 3 1.90000+ 1 2.46599- 5 7.97986- 3 2.10000+ 1 2.64439- 2 8.10031- 3 2.40000+ 1 2.40519- 5 8.25051- 3 2.70000+ 1 1.82079- 4 8.20873- 3 3.00000+ 1 5.55118- 6 8.23331- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 8.62883- 3 3.67210- 4 6.00000+ 0 1.80000+ 1 4.71593- 2 4.39600- 4 6.00000+ 0 1.90000+ 1 1.52778- 2 4.74560- 4 6.00000+ 0 2.10000+ 1 5.75606- 2 5.95010- 4 6.00000+ 0 2.20000+ 1 2.06816- 2 6.01310- 4 6.00000+ 0 2.40000+ 1 1.28300- 3 7.45210- 4 6.00000+ 0 2.50000+ 1 7.33899- 4 7.46070- 4 6.00000+ 0 2.70000+ 1 1.27796- 3 7.03430- 4 6.00000+ 0 2.90000+ 1 5.77966- 3 7.23360- 4 6.00000+ 0 3.00000+ 1 1.87805- 3 7.28010- 4 6.00000+ 0 4.10000+ 1 9.89233- 5 7.50310- 4 8.00000+ 0 8.00000+ 0 8.51702- 4 4.38930- 3 8.00000+ 0 1.00000+ 1 2.34347- 2 4.57170- 3 8.00000+ 0 1.10000+ 1 2.27509- 3 4.72830- 3 8.00000+ 0 1.30000+ 1 2.38503- 3 5.04610- 3 8.00000+ 0 1.40000+ 1 2.85340- 3 5.08050- 3 8.00000+ 0 1.60000+ 1 3.11301- 4 5.93671- 3 8.00000+ 0 1.80000+ 1 3.47518- 3 6.00910- 3 8.00000+ 0 1.90000+ 1 4.40778- 4 6.04406- 3 8.00000+ 0 2.10000+ 1 3.17120- 4 6.16451- 3 8.00000+ 0 2.20000+ 1 3.22949- 4 6.17081- 3 8.00000+ 0 2.40000+ 1 6.98242- 5 6.31471- 3 8.00000+ 0 2.50000+ 1 1.67289- 5 6.31557- 3 8.00000+ 0 2.70000+ 1 4.80051- 5 6.27293- 3 8.00000+ 0 2.90000+ 1 4.22574- 4 6.29286- 3 8.00000+ 0 3.00000+ 1 5.38234- 5 6.29751- 3 8.00000+ 0 4.10000+ 1 3.63664- 6 6.31981- 3 1.00000+ 1 1.00000+ 1 2.36329- 2 4.75410- 3 1.00000+ 1 1.10000+ 1 6.91970- 2 4.91070- 3 1.00000+ 1 1.30000+ 1 3.69665- 2 5.22850- 3 1.00000+ 1 1.40000+ 1 5.96735- 2 5.26290- 3 1.00000+ 1 1.60000+ 1 5.60479- 3 6.11911- 3 1.00000+ 1 1.80000+ 1 8.86160- 3 6.19150- 3 1.00000+ 1 1.90000+ 1 1.48173- 2 6.22646- 3 1.00000+ 1 2.10000+ 1 6.85788- 3 6.34691- 3 1.00000+ 1 2.20000+ 1 1.10334- 2 6.35321- 3 1.00000+ 1 2.40000+ 1 3.01832- 4 6.49711- 3 1.00000+ 1 2.50000+ 1 1.06914- 4 6.49797- 3 1.00000+ 1 2.70000+ 1 9.14286- 4 6.45533- 3 1.00000+ 1 2.90000+ 1 1.12734- 3 6.47526- 3 1.00000+ 1 3.00000+ 1 1.83280- 3 6.47991- 3 1.00000+ 1 4.10000+ 1 7.12765- 5 6.50221- 3 1.10000+ 1 1.10000+ 1 1.75066- 3 5.06730- 3 1.10000+ 1 1.30000+ 1 4.06427- 2 5.38510- 3 1.10000+ 1 1.40000+ 1 5.57722- 3 5.41950- 3 1.10000+ 1 1.60000+ 1 4.62583- 4 6.27571- 3 1.10000+ 1 1.80000+ 1 1.06019- 2 6.34810- 3 1.10000+ 1 1.90000+ 1 6.34977- 4 6.38306- 3 1.10000+ 1 2.10000+ 1 6.37720- 3 6.50351- 3 1.10000+ 1 2.20000+ 1 8.26279- 4 6.50981- 3 1.10000+ 1 2.40000+ 1 1.73835- 4 6.65371- 3 1.10000+ 1 2.50000+ 1 3.63664- 5 6.65457- 3 1.10000+ 1 2.70000+ 1 7.34622- 5 6.61193- 3 1.10000+ 1 2.90000+ 1 1.29539- 3 6.63186- 3 1.10000+ 1 3.00000+ 1 7.63699- 5 6.63651- 3 1.10000+ 1 4.10000+ 1 5.81886- 6 6.65881- 3 1.30000+ 1 1.30000+ 1 3.76824- 2 5.70290- 3 1.30000+ 1 1.40000+ 1 1.57298- 1 5.73730- 3 1.30000+ 1 1.60000+ 1 5.76795- 4 6.59351- 3 1.30000+ 1 1.80000+ 1 5.60506- 3 6.66590- 3 1.30000+ 1 1.90000+ 1 8.14768- 3 6.70086- 3 1.30000+ 1 2.10000+ 1 1.17933- 2 6.82131- 3 1.30000+ 1 2.20000+ 1 2.64308- 2 6.82761- 3 1.30000+ 1 2.40000+ 1 1.20304- 3 6.97151- 3 1.30000+ 1 2.50000+ 1 9.25173- 4 6.97237- 3 1.30000+ 1 2.70000+ 1 9.45556- 5 6.92973- 3 1.30000+ 1 2.90000+ 1 6.88827- 4 6.94966- 3 1.30000+ 1 3.00000+ 1 9.96499- 4 6.95431- 3 1.30000+ 1 4.10000+ 1 7.27365- 6 6.97661- 3 1.40000+ 1 1.40000+ 1 7.54982- 3 5.77170- 3 1.40000+ 1 1.60000+ 1 5.62955- 4 6.62791- 3 1.40000+ 1 1.80000+ 1 8.01446- 3 6.70030- 3 1.40000+ 1 1.90000+ 1 1.02408- 3 6.73526- 3 1.40000+ 1 2.10000+ 1 2.04959- 2 6.85571- 3 1.40000+ 1 2.20000+ 1 2.30273- 3 6.86201- 3 1.40000+ 1 2.40000+ 1 4.88038- 4 7.00591- 3 1.40000+ 1 2.50000+ 1 7.12784- 5 7.00677- 3 1.40000+ 1 2.70000+ 1 8.87323- 5 6.96413- 3 1.40000+ 1 2.90000+ 1 9.56457- 4 6.98406- 3 1.40000+ 1 3.00000+ 1 1.22923- 4 6.98871- 3 1.40000+ 1 4.10000+ 1 6.54621- 6 7.01101- 3 1.60000+ 1 1.60000+ 1 2.76386- 5 7.48412- 3 1.60000+ 1 1.80000+ 1 8.34994- 4 7.55651- 3 1.60000+ 1 1.90000+ 1 9.01921- 5 7.59147- 3 1.60000+ 1 2.10000+ 1 7.41894- 5 7.71192- 3 1.60000+ 1 2.20000+ 1 6.47353- 5 7.71822- 3 1.60000+ 1 2.40000+ 1 1.45475- 5 7.86212- 3 1.60000+ 1 2.50000+ 1 2.90929- 6 7.86298- 3 1.60000+ 1 2.70000+ 1 8.72825- 6 7.82034- 3 1.60000+ 1 2.90000+ 1 1.01824- 4 7.84027- 3 1.60000+ 1 3.00000+ 1 1.09106- 5 7.84492- 3 1.60000+ 1 4.10000+ 1 7.27351- 7 7.86722- 3 1.80000+ 1 1.80000+ 1 7.87931- 4 7.62890- 3 1.80000+ 1 1.90000+ 1 2.26178- 3 7.66386- 3 1.80000+ 1 2.10000+ 1 1.01826- 3 7.78431- 3 1.80000+ 1 2.20000+ 1 1.48754- 3 7.79061- 3 1.80000+ 1 2.40000+ 1 3.69337- 5 7.93451- 3 1.80000+ 1 2.50000+ 1 1.08636- 5 7.93537- 3 1.80000+ 1 2.70000+ 1 1.35428- 4 7.89273- 3 1.80000+ 1 2.90000+ 1 1.99155- 4 7.91266- 3 1.80000+ 1 3.00000+ 1 2.79531- 4 7.91731- 3 1.80000+ 1 4.10000+ 1 1.08636- 5 7.93961- 3 1.90000+ 1 1.90000+ 1 5.85276- 5 7.69882- 3 1.90000+ 1 2.10000+ 1 1.29777- 3 7.81927- 3 1.90000+ 1 2.20000+ 1 1.56558- 4 7.82557- 3 1.90000+ 1 2.40000+ 1 2.85309- 5 7.96947- 3 1.90000+ 1 2.50000+ 1 5.85276- 6 7.97033- 3 1.90000+ 1 2.70000+ 1 1.46323- 5 7.92769- 3 1.90000+ 1 2.90000+ 1 2.79456- 4 7.94762- 3 1.90000+ 1 3.00000+ 1 1.38998- 5 7.95227- 3 1.90000+ 1 4.10000+ 1 1.46323- 6 7.97457- 3 2.10000+ 1 2.10000+ 1 9.11386- 4 7.93972- 3 2.10000+ 1 2.20000+ 1 3.57194- 3 7.94602- 3 2.10000+ 1 2.40000+ 1 1.30196- 4 8.08992- 3 2.10000+ 1 2.50000+ 1 1.01824- 4 8.09078- 3 2.10000+ 1 2.70000+ 1 1.23650- 5 8.04814- 3 2.10000+ 1 2.90000+ 1 1.25103- 4 8.06807- 3 2.10000+ 1 3.00000+ 1 1.57841- 4 8.07272- 3 2.10000+ 1 4.10000+ 1 7.27356- 7 8.09502- 3 2.20000+ 1 2.20000+ 1 2.48342- 4 7.95232- 3 2.20000+ 1 2.40000+ 1 7.97159- 5 8.09622- 3 2.20000+ 1 2.50000+ 1 1.22642- 5 8.09708- 3 2.20000+ 1 2.70000+ 1 1.43074- 5 8.05444- 3 2.20000+ 1 2.90000+ 1 2.50395- 4 8.07437- 3 2.20000+ 1 3.00000+ 1 2.65715- 5 8.07902- 3 2.20000+ 1 4.10000+ 1 1.02202- 6 8.10132- 3 2.40000+ 1 2.40000+ 1 1.83311- 6 8.24012- 3 2.40000+ 1 2.50000+ 1 5.49891- 6 8.24098- 3 2.40000+ 1 2.70000+ 1 2.74952- 6 8.19834- 3 2.40000+ 1 2.90000+ 1 5.49891- 6 8.21827- 3 2.40000+ 1 3.00000+ 1 4.58248- 6 8.22292- 3 2.50000+ 1 2.70000+ 1 6.62587- 7 8.19920- 3 2.50000+ 1 2.90000+ 1 1.32522- 6 8.21913- 3 2.50000+ 1 3.00000+ 1 6.62587- 7 8.22378- 3 2.70000+ 1 2.70000+ 1 1.29254- 6 8.15656- 3 2.70000+ 1 2.90000+ 1 2.97282- 5 8.17649- 3 2.70000+ 1 3.00000+ 1 2.58516- 6 8.18114- 3 2.90000+ 1 2.90000+ 1 2.45576- 5 8.19642- 3 2.90000+ 1 3.00000+ 1 6.78939- 5 8.20107- 3 2.90000+ 1 4.10000+ 1 2.88923- 6 8.22337- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 9.82757- 3 5.56950- 3 1.00000+ 1 6.79308- 5 5.75190- 3 1.10000+ 1 6.21268- 5 5.90850- 3 1.30000+ 1 1.40340- 2 6.22630- 3 1.40000+ 1 1.24080- 1 6.26070- 3 1.60000+ 1 1.35840- 3 7.11691- 3 1.80000+ 1 1.09840- 5 7.18930- 3 1.90000+ 1 1.06350- 5 7.22426- 3 2.10000+ 1 2.34109- 3 7.34471- 3 2.20000+ 1 2.09389- 2 7.35101- 3 2.40000+ 1 3.43259- 6 7.49491- 3 2.50000+ 1 1.96549- 5 7.49577- 3 2.70000+ 1 2.53639- 4 7.45313- 3 2.90000+ 1 2.52739- 6 7.47306- 3 3.00000+ 1 2.16629- 6 7.47771- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.13211- 3 3.63370- 3 8.00000+ 0 1.00000+ 1 7.11543- 4 3.81610- 3 8.00000+ 0 1.10000+ 1 2.60454- 2 3.97270- 3 8.00000+ 0 1.30000+ 1 2.70068- 3 4.29050- 3 8.00000+ 0 1.40000+ 1 3.41890- 3 4.32490- 3 8.00000+ 0 1.60000+ 1 4.15248- 4 5.18111- 3 8.00000+ 0 1.80000+ 1 1.25030- 4 5.25350- 3 8.00000+ 0 1.90000+ 1 3.82441- 3 5.28846- 3 8.00000+ 0 2.10000+ 1 2.50061- 4 5.40891- 3 8.00000+ 0 2.20000+ 1 2.84911- 4 5.41521- 3 8.00000+ 0 2.40000+ 1 9.85112- 5 5.55911- 3 8.00000+ 0 2.50000+ 1 6.74430- 5 5.55997- 3 8.00000+ 0 2.70000+ 1 6.44098- 5 5.51733- 3 8.00000+ 0 2.90000+ 1 1.59131- 5 5.53726- 3 8.00000+ 0 3.00000+ 1 4.44041- 4 5.54191- 3 8.00000+ 0 4.10000+ 1 5.30422- 6 5.56421- 3 1.00000+ 1 1.00000+ 1 1.90202- 4 3.99850- 3 1.00000+ 1 1.10000+ 1 4.36079- 2 4.15510- 3 1.00000+ 1 1.30000+ 1 2.57646- 3 4.47290- 3 1.00000+ 1 1.40000+ 1 2.30369- 2 4.50730- 3 1.00000+ 1 1.60000+ 1 1.40945- 4 5.36351- 3 1.00000+ 1 1.80000+ 1 6.97164- 5 5.43590- 3 1.00000+ 1 1.90000+ 1 6.64579- 3 5.47086- 3 1.00000+ 1 2.10000+ 1 4.38758- 4 5.59131- 3 1.00000+ 1 2.20000+ 1 3.32067- 3 5.59761- 3 1.00000+ 1 2.40000+ 1 1.08360- 4 5.74151- 3 1.00000+ 1 2.50000+ 1 1.07612- 4 5.74237- 3 1.00000+ 1 2.70000+ 1 2.19753- 5 5.69973- 3 1.00000+ 1 2.90000+ 1 9.09305- 6 5.71966- 3 1.00000+ 1 3.00000+ 1 7.75972- 4 5.72431- 3 1.00000+ 1 4.10000+ 1 1.51550- 6 5.74661- 3 1.10000+ 1 1.10000+ 1 5.90985- 2 4.31170- 3 1.10000+ 1 1.30000+ 1 6.10223- 2 4.62950- 3 1.10000+ 1 1.40000+ 1 8.88784- 2 4.66390- 3 1.10000+ 1 1.60000+ 1 6.15157- 3 5.52011- 3 1.10000+ 1 1.80000+ 1 9.17061- 3 5.59250- 3 1.10000+ 1 1.90000+ 1 2.15736- 2 5.62746- 3 1.10000+ 1 2.10000+ 1 1.08216- 2 5.74791- 3 1.10000+ 1 2.20000+ 1 1.55075- 2 5.75421- 3 1.10000+ 1 2.40000+ 1 4.88005- 4 5.89811- 3 1.10000+ 1 2.50000+ 1 2.35662- 4 5.89897- 3 1.10000+ 1 2.70000+ 1 1.00098- 3 5.85633- 3 1.10000+ 1 2.90000+ 1 1.18589- 3 5.87626- 3 1.10000+ 1 3.00000+ 1 2.60664- 3 5.88091- 3 1.10000+ 1 4.10000+ 1 7.80495- 5 5.90321- 3 1.30000+ 1 1.30000+ 1 8.82027- 3 4.94730- 3 1.30000+ 1 1.40000+ 1 1.67433- 1 4.98170- 3 1.30000+ 1 1.60000+ 1 6.06980- 4 5.83791- 3 1.30000+ 1 1.80000+ 1 5.44823- 4 5.91030- 3 1.30000+ 1 1.90000+ 1 8.60857- 3 5.94526- 3 1.30000+ 1 2.10000+ 1 2.72872- 3 6.06571- 3 1.30000+ 1 2.20000+ 1 2.18975- 2 6.07201- 3 1.30000+ 1 2.40000+ 1 2.76582- 4 6.21591- 3 1.30000+ 1 2.50000+ 1 3.55400- 4 6.21677- 3 1.30000+ 1 2.70000+ 1 9.77518- 5 6.17413- 3 1.30000+ 1 2.90000+ 1 7.04735- 5 6.19406- 3 1.30000+ 1 3.00000+ 1 9.91904- 4 6.19871- 3 1.30000+ 1 4.10000+ 1 7.57783- 6 6.22101- 3 1.40000+ 1 1.40000+ 1 1.12866- 1 5.01610- 3 1.40000+ 1 1.60000+ 1 8.08527- 4 5.87231- 3 1.40000+ 1 1.80000+ 1 4.47007- 3 5.94470- 3 1.40000+ 1 1.90000+ 1 1.41194- 2 5.97966- 3 1.40000+ 1 2.10000+ 1 2.61947- 2 6.10011- 3 1.40000+ 1 2.20000+ 1 3.33363- 2 6.10641- 3 1.40000+ 1 2.40000+ 1 2.94996- 3 6.25031- 3 1.40000+ 1 2.50000+ 1 1.01392- 3 6.25117- 3 1.40000+ 1 2.70000+ 1 1.31853- 4 6.20853- 3 1.40000+ 1 2.90000+ 1 5.69822- 4 6.22846- 3 1.40000+ 1 3.00000+ 1 1.66863- 3 6.23311- 3 1.40000+ 1 4.10000+ 1 1.06083- 5 6.25541- 3 1.60000+ 1 1.60000+ 1 3.78865- 5 6.72852- 3 1.60000+ 1 1.80000+ 1 2.57638- 5 6.80091- 3 1.60000+ 1 1.90000+ 1 9.05557- 4 6.83587- 3 1.60000+ 1 2.10000+ 1 6.13786- 5 6.95632- 3 1.60000+ 1 2.20000+ 1 7.35003- 5 6.96262- 3 1.60000+ 1 2.40000+ 1 1.43973- 5 7.10652- 3 1.60000+ 1 2.50000+ 1 1.13664- 5 7.10738- 3 1.60000+ 1 2.70000+ 1 1.21237- 5 7.06474- 3 1.60000+ 1 2.90000+ 1 3.03092- 6 7.08467- 3 1.60000+ 1 3.00000+ 1 1.05334- 4 7.08932- 3 1.60000+ 1 4.10000+ 1 7.57761- 7 7.11162- 3 1.80000+ 1 1.80000+ 1 5.30426- 6 6.87330- 3 1.80000+ 1 1.90000+ 1 1.39357- 3 6.90826- 3 1.80000+ 1 2.10000+ 1 9.01781- 5 7.02871- 3 1.80000+ 1 2.20000+ 1 6.69865- 4 7.03501- 3 1.80000+ 1 2.40000+ 1 1.51550- 5 7.17891- 3 1.80000+ 1 2.50000+ 1 1.43977- 5 7.17977- 3 1.80000+ 1 2.70000+ 1 3.78876- 6 7.13713- 3 1.80000+ 1 2.90000+ 1 1.51550- 6 7.15706- 3 1.80000+ 1 3.00000+ 1 1.62924- 4 7.16171- 3 1.90000+ 1 1.90000+ 1 1.80250- 3 6.94322- 3 1.90000+ 1 2.10000+ 1 1.45310- 3 7.06367- 3 1.90000+ 1 2.20000+ 1 2.30817- 3 7.06997- 3 1.90000+ 1 2.40000+ 1 5.40316- 5 7.21387- 3 1.90000+ 1 2.50000+ 1 2.73763- 5 7.21473- 3 1.90000+ 1 2.70000+ 1 1.39765- 4 7.17209- 3 1.90000+ 1 2.90000+ 1 1.71455- 4 7.19202- 3 1.90000+ 1 3.00000+ 1 4.32980- 4 7.19667- 3 1.90000+ 1 4.10000+ 1 1.08064- 5 7.21897- 3 2.10000+ 1 2.10000+ 1 2.04598- 4 7.18412- 3 2.10000+ 1 2.20000+ 1 3.54863- 3 7.19042- 3 2.10000+ 1 2.40000+ 1 2.95527- 5 7.33432- 3 2.10000+ 1 2.50000+ 1 3.63730- 5 7.33518- 3 2.10000+ 1 2.70000+ 1 9.85117- 6 7.29254- 3 2.10000+ 1 2.90000+ 1 1.13667- 5 7.31247- 3 2.10000+ 1 3.00000+ 1 1.76563- 4 7.31712- 3 2.10000+ 1 4.10000+ 1 7.57780- 7 7.33942- 3 2.20000+ 1 2.20000+ 1 2.78866- 3 7.19672- 3 2.20000+ 1 2.40000+ 1 3.47837- 4 7.34062- 3 2.20000+ 1 2.50000+ 1 1.17933- 4 7.34148- 3 2.20000+ 1 2.70000+ 1 1.36736- 5 7.29884- 3 2.20000+ 1 2.90000+ 1 9.65750- 5 7.31877- 3 2.20000+ 1 3.00000+ 1 3.23060- 4 7.32342- 3 2.20000+ 1 4.10000+ 1 8.54634- 7 7.34572- 3 2.40000+ 1 2.40000+ 1 9.80822- 7 7.48452- 3 2.40000+ 1 2.50000+ 1 8.82743- 6 7.48538- 3 2.40000+ 1 2.70000+ 1 2.94248- 6 7.44274- 3 2.40000+ 1 2.90000+ 1 1.96156- 6 7.46267- 3 2.40000+ 1 3.00000+ 1 7.84665- 6 7.46732- 3 2.50000+ 1 2.50000+ 1 2.27334- 6 7.48624- 3 2.50000+ 1 2.70000+ 1 1.51548- 6 7.44360- 3 2.50000+ 1 2.90000+ 1 1.51548- 6 7.46353- 3 2.50000+ 1 3.00000+ 1 3.03097- 6 7.46818- 3 2.70000+ 1 2.70000+ 1 1.26561- 6 7.40096- 3 2.70000+ 1 2.90000+ 1 1.26561- 6 7.42089- 3 2.70000+ 1 3.00000+ 1 2.91087- 5 7.42554- 3 2.90000+ 1 3.00000+ 1 5.17429- 5 7.44547- 3 3.00000+ 1 3.00000+ 1 9.92747- 5 7.45012- 3 3.00000+ 1 4.10000+ 1 5.51503- 6 7.47242- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.87481- 6 1.82400- 4 1.10000+ 1 1.28752- 4 3.39000- 4 1.80000+ 1 4.78639- 4 1.61980- 3 1.90000+ 1 5.49127- 4 1.65476- 3 2.90000+ 1 1.09361- 4 1.90356- 3 3.00000+ 1 1.18181- 4 1.90821- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 7.04261- 2 2.18100- 5 1.00000+ 1 2.20000+ 1 1.01872- 1 2.81100- 5 1.00000+ 1 2.40000+ 1 2.65901- 2 1.72010- 4 1.00000+ 1 2.50000+ 1 3.55163- 2 1.72870- 4 1.00000+ 1 2.70000+ 1 8.38188- 3 1.30230- 4 1.00000+ 1 2.90000+ 1 6.99757- 3 1.50160- 4 1.00000+ 1 3.00000+ 1 1.06105- 2 1.54810- 4 1.00000+ 1 4.10000+ 1 6.45993- 4 1.77110- 4 1.10000+ 1 1.80000+ 1 6.96257- 2 2.30000- 5 1.10000+ 1 1.90000+ 1 9.52460- 2 5.79600- 5 1.10000+ 1 2.10000+ 1 4.17246- 2 1.78410- 4 1.10000+ 1 2.20000+ 1 5.99159- 2 1.84710- 4 1.10000+ 1 2.40000+ 1 7.56162- 2 3.28610- 4 1.10000+ 1 2.50000+ 1 9.46970- 2 3.29470- 4 1.10000+ 1 2.70000+ 1 1.00783- 2 2.86830- 4 1.10000+ 1 2.90000+ 1 8.47426- 3 3.06760- 4 1.10000+ 1 3.00000+ 1 1.13837- 2 3.11410- 4 1.10000+ 1 4.10000+ 1 7.78169- 4 3.33710- 4 1.30000+ 1 1.60000+ 1 2.60132- 2 2.68410- 4 1.30000+ 1 1.80000+ 1 5.75682- 3 3.40800- 4 1.30000+ 1 1.90000+ 1 5.09281- 3 3.75760- 4 1.30000+ 1 2.10000+ 1 8.39535- 3 4.96210- 4 1.30000+ 1 2.20000+ 1 1.05398- 2 5.02510- 4 1.30000+ 1 2.40000+ 1 3.81720- 3 6.46410- 4 1.30000+ 1 2.50000+ 1 3.62551- 3 6.47270- 4 1.30000+ 1 2.70000+ 1 2.84167- 3 6.04630- 4 1.30000+ 1 2.90000+ 1 5.87787- 4 6.24560- 4 1.30000+ 1 3.00000+ 1 4.88354- 4 6.29210- 4 1.30000+ 1 4.10000+ 1 2.11548- 4 6.51510- 4 1.40000+ 1 1.60000+ 1 3.75084- 2 3.02810- 4 1.40000+ 1 1.80000+ 1 1.21113- 3 3.75200- 4 1.40000+ 1 1.90000+ 1 1.10459- 2 4.10160- 4 1.40000+ 1 2.10000+ 1 1.13725- 2 5.30610- 4 1.40000+ 1 2.20000+ 1 1.71118- 2 5.36910- 4 1.40000+ 1 2.40000+ 1 4.40618- 3 6.80810- 4 1.40000+ 1 2.50000+ 1 6.81402- 3 6.81670- 4 1.40000+ 1 2.70000+ 1 4.05474- 3 6.39030- 4 1.40000+ 1 2.90000+ 1 1.23467- 4 6.58960- 4 1.40000+ 1 3.00000+ 1 1.05798- 3 6.63610- 4 1.40000+ 1 4.10000+ 1 3.01918- 4 6.85910- 4 1.60000+ 1 1.60000+ 1 4.86578- 3 1.15902- 3 1.60000+ 1 1.80000+ 1 8.18277- 3 1.23141- 3 1.60000+ 1 1.90000+ 1 1.45265- 2 1.26637- 3 1.60000+ 1 2.10000+ 1 1.57130- 2 1.38682- 3 1.60000+ 1 2.20000+ 1 2.26185- 2 1.39312- 3 1.60000+ 1 2.40000+ 1 4.54556- 3 1.53702- 3 1.60000+ 1 2.50000+ 1 5.74753- 3 1.53788- 3 1.60000+ 1 2.70000+ 1 1.31279- 3 1.49524- 3 1.60000+ 1 2.90000+ 1 1.06195- 3 1.51517- 3 1.60000+ 1 3.00000+ 1 1.79474- 3 1.51982- 3 1.60000+ 1 4.10000+ 1 1.00916- 4 1.54212- 3 1.80000+ 1 1.80000+ 1 4.06653- 4 1.30380- 3 1.80000+ 1 1.90000+ 1 1.04482- 3 1.33876- 3 1.80000+ 1 2.10000+ 1 6.08332- 4 1.45921- 3 1.80000+ 1 2.20000+ 1 3.16772- 4 1.46551- 3 1.80000+ 1 2.40000+ 1 7.10003- 5 1.60941- 3 1.80000+ 1 2.50000+ 1 3.11285- 4 1.61027- 3 1.80000+ 1 2.70000+ 1 8.60823- 4 1.56763- 3 1.80000+ 1 2.90000+ 1 8.36019- 5 1.58756- 3 1.80000+ 1 3.00000+ 1 1.00830- 4 1.59221- 3 1.80000+ 1 4.10000+ 1 6.42782- 5 1.61451- 3 1.90000+ 1 1.90000+ 1 1.36616- 3 1.37372- 3 1.90000+ 1 2.10000+ 1 8.61256- 4 1.49417- 3 1.90000+ 1 2.20000+ 1 2.12338- 3 1.50047- 3 1.90000+ 1 2.40000+ 1 3.24860- 4 1.64437- 3 1.90000+ 1 2.50000+ 1 6.06481- 4 1.64523- 3 1.90000+ 1 2.70000+ 1 1.53196- 3 1.60259- 3 1.90000+ 1 2.90000+ 1 1.14163- 4 1.62252- 3 1.90000+ 1 3.00000+ 1 2.84578- 4 1.62717- 3 1.90000+ 1 4.10000+ 1 1.14163- 4 1.64947- 3 2.10000+ 1 2.10000+ 1 1.80246- 4 1.61462- 3 2.10000+ 1 2.20000+ 1 8.59809- 4 1.62092- 3 2.10000+ 1 2.40000+ 1 3.04427- 4 1.76482- 3 2.10000+ 1 2.50000+ 1 2.27706- 3 1.76568- 3 2.10000+ 1 2.70000+ 1 1.62217- 3 1.72304- 3 2.10000+ 1 2.90000+ 1 5.68743- 5 1.74297- 3 2.10000+ 1 3.00000+ 1 8.44773- 5 1.74762- 3 2.10000+ 1 4.10000+ 1 1.20440- 4 1.76992- 3 2.20000+ 1 2.20000+ 1 4.84766- 4 1.62722- 3 2.20000+ 1 2.40000+ 1 2.28117- 3 1.77112- 3 2.20000+ 1 2.50000+ 1 1.29190- 3 1.77198- 3 2.20000+ 1 2.70000+ 1 2.34039- 3 1.72934- 3 2.20000+ 1 2.90000+ 1 3.10582- 5 1.74927- 3 2.20000+ 1 3.00000+ 1 2.07756- 4 1.75392- 3 2.20000+ 1 4.10000+ 1 1.73760- 4 1.77622- 3 2.40000+ 1 2.40000+ 1 1.51520- 4 1.91502- 3 2.40000+ 1 2.50000+ 1 1.30071- 3 1.91588- 3 2.40000+ 1 2.70000+ 1 4.35236- 4 1.87324- 3 2.40000+ 1 2.90000+ 1 6.71555- 6 1.89317- 3 2.40000+ 1 3.00000+ 1 2.81217- 5 1.89782- 3 2.40000+ 1 4.10000+ 1 3.18977- 5 1.92012- 3 2.50000+ 1 2.50000+ 1 3.93674- 4 1.91674- 3 2.50000+ 1 2.70000+ 1 5.62993- 4 1.87410- 3 2.50000+ 1 2.90000+ 1 3.78166- 5 1.89403- 3 2.50000+ 1 3.00000+ 1 5.28613- 5 1.89868- 3 2.50000+ 1 4.10000+ 1 4.12545- 5 1.92098- 3 2.70000+ 1 2.70000+ 1 1.10962- 4 1.83146- 3 2.70000+ 1 2.90000+ 1 1.51932- 4 1.85139- 3 2.70000+ 1 3.00000+ 1 2.56634- 4 1.85604- 3 2.70000+ 1 4.10000+ 1 1.70711- 5 1.87834- 3 2.90000+ 1 2.90000+ 1 6.25134- 6 1.87132- 3 2.90000+ 1 3.00000+ 1 1.62533- 5 1.87597- 3 2.90000+ 1 4.10000+ 1 1.25023- 5 1.89827- 3 3.00000+ 1 3.00000+ 1 2.61370- 5 1.88062- 3 3.00000+ 1 4.10000+ 1 2.61370- 5 1.90292- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.20470- 4 4.74400- 4 1.60000+ 1 4.41000- 4 1.36501- 3 2.10000+ 1 2.18450- 3 1.59281- 3 2.70000+ 1 7.98119- 5 1.70123- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.15983- 2 0.00000+ 0 1.10000+ 1 2.20000+ 1 2.86320- 2 2.31000- 6 1.10000+ 1 2.40000+ 1 1.96362- 2 1.46210- 4 1.10000+ 1 2.50000+ 1 2.16280- 2 1.47070- 4 1.10000+ 1 2.70000+ 1 4.75148- 3 1.04430- 4 1.10000+ 1 2.90000+ 1 4.81965- 3 1.24360- 4 1.10000+ 1 3.00000+ 1 4.87462- 3 1.29010- 4 1.10000+ 1 4.10000+ 1 3.49759- 4 1.51310- 4 1.30000+ 1 1.60000+ 1 7.62711- 2 8.60100- 5 1.30000+ 1 1.80000+ 1 7.62155- 2 1.58400- 4 1.30000+ 1 1.90000+ 1 9.81543- 2 1.93360- 4 1.30000+ 1 2.10000+ 1 3.29606- 2 3.13810- 4 1.30000+ 1 2.20000+ 1 3.76275- 2 3.20110- 4 1.30000+ 1 2.40000+ 1 9.33290- 2 4.64010- 4 1.30000+ 1 2.50000+ 1 1.40276- 1 4.64870- 4 1.30000+ 1 2.70000+ 1 1.23470- 2 4.22230- 4 1.30000+ 1 2.90000+ 1 8.57852- 3 4.42160- 4 1.30000+ 1 3.00000+ 1 1.16215- 2 4.46810- 4 1.30000+ 1 4.10000+ 1 9.58669- 4 4.69110- 4 1.40000+ 1 1.60000+ 1 1.28277- 2 1.20410- 4 1.40000+ 1 1.80000+ 1 8.80252- 2 1.92800- 4 1.40000+ 1 1.90000+ 1 8.47556- 3 2.27760- 4 1.40000+ 1 2.10000+ 1 1.42159- 3 3.48210- 4 1.40000+ 1 2.20000+ 1 4.33642- 3 3.54510- 4 1.40000+ 1 2.40000+ 1 2.86372- 3 4.98410- 4 1.40000+ 1 2.50000+ 1 2.29803- 3 4.99270- 4 1.40000+ 1 2.70000+ 1 1.38061- 3 4.56630- 4 1.40000+ 1 2.90000+ 1 8.03020- 3 4.76560- 4 1.40000+ 1 3.00000+ 1 9.17601- 4 4.81210- 4 1.40000+ 1 4.10000+ 1 1.03265- 4 5.03510- 4 1.60000+ 1 1.60000+ 1 8.54570- 4 9.76620- 4 1.60000+ 1 1.80000+ 1 1.18611- 2 1.04901- 3 1.60000+ 1 1.90000+ 1 1.86595- 3 1.08397- 3 1.60000+ 1 2.10000+ 1 3.87933- 4 1.20442- 3 1.60000+ 1 2.20000+ 1 1.36311- 3 1.21072- 3 1.60000+ 1 2.40000+ 1 4.95218- 5 1.35462- 3 1.60000+ 1 2.50000+ 1 4.24750- 4 1.35548- 3 1.60000+ 1 2.70000+ 1 2.17760- 4 1.31284- 3 1.60000+ 1 2.90000+ 1 1.04058- 3 1.33277- 3 1.60000+ 1 3.00000+ 1 2.08240- 4 1.33742- 3 1.60000+ 1 4.10000+ 1 1.65072- 5 1.35972- 3 1.80000+ 1 1.80000+ 1 8.97786- 3 1.12140- 3 1.80000+ 1 1.90000+ 1 2.69997- 2 1.15636- 3 1.80000+ 1 2.10000+ 1 2.53329- 2 1.27681- 3 1.80000+ 1 2.20000+ 1 4.15666- 2 1.28311- 3 1.80000+ 1 2.40000+ 1 6.09198- 3 1.42701- 3 1.80000+ 1 2.50000+ 1 1.04981- 2 1.42787- 3 1.80000+ 1 2.70000+ 1 1.95362- 3 1.38523- 3 1.80000+ 1 2.90000+ 1 1.97699- 3 1.40516- 3 1.80000+ 1 3.00000+ 1 3.30967- 3 1.40981- 3 1.80000+ 1 4.10000+ 1 1.52474- 4 1.43211- 3 1.90000+ 1 1.90000+ 1 7.80751- 4 1.19132- 3 1.90000+ 1 2.10000+ 1 2.22644- 3 1.31177- 3 1.90000+ 1 2.20000+ 1 1.75313- 3 1.31807- 3 1.90000+ 1 2.40000+ 1 4.61942- 3 1.46197- 3 1.90000+ 1 2.50000+ 1 1.31906- 3 1.46283- 3 1.90000+ 1 2.70000+ 1 2.14664- 4 1.42019- 3 1.90000+ 1 2.90000+ 1 2.52644- 3 1.44012- 3 1.90000+ 1 3.00000+ 1 1.61837- 4 1.44477- 3 1.90000+ 1 4.10000+ 1 1.62516- 5 1.46707- 3 2.10000+ 1 2.10000+ 1 8.59707- 4 1.43222- 3 2.10000+ 1 2.20000+ 1 2.51200- 3 1.43852- 3 2.10000+ 1 2.40000+ 1 5.65726- 4 1.58242- 3 2.10000+ 1 2.50000+ 1 1.04149- 3 1.58328- 3 2.10000+ 1 2.70000+ 1 5.84080- 5 1.54064- 3 2.10000+ 1 2.90000+ 1 2.25152- 3 1.56057- 3 2.10000+ 1 3.00000+ 1 2.25746- 4 1.56522- 3 2.10000+ 1 4.10000+ 1 4.59369- 6 1.58752- 3 2.20000+ 1 2.20000+ 1 5.88321- 4 1.44482- 3 2.20000+ 1 2.40000+ 1 1.94463- 3 1.58872- 3 2.20000+ 1 2.50000+ 1 4.09324- 4 1.58958- 3 2.20000+ 1 2.70000+ 1 1.79656- 4 1.54694- 3 2.20000+ 1 2.90000+ 1 3.75963- 3 1.56687- 3 2.20000+ 1 3.00000+ 1 1.64519- 4 1.57152- 3 2.20000+ 1 4.10000+ 1 1.38196- 5 1.59382- 3 2.40000+ 1 2.40000+ 1 5.73972- 4 1.73262- 3 2.40000+ 1 2.50000+ 1 4.20955- 3 1.73348- 3 2.40000+ 1 2.70000+ 1 2.64494- 6 1.69084- 3 2.40000+ 1 2.90000+ 1 5.01256- 4 1.71077- 3 2.40000+ 1 3.00000+ 1 5.17770- 4 1.71542- 3 2.50000+ 1 2.50000+ 1 2.02027- 4 1.73434- 3 2.50000+ 1 2.70000+ 1 6.12003- 5 1.69170- 3 2.50000+ 1 2.90000+ 1 8.59436- 4 1.71163- 3 2.50000+ 1 3.00000+ 1 1.32930- 4 1.71628- 3 2.50000+ 1 4.10000+ 1 4.60628- 6 1.73858- 3 2.70000+ 1 2.70000+ 1 1.62513- 5 1.64906- 3 2.70000+ 1 2.90000+ 1 1.95751- 4 1.66899- 3 2.70000+ 1 3.00000+ 1 2.65913- 5 1.67364- 3 2.70000+ 1 4.10000+ 1 2.21608- 6 1.69594- 3 2.90000+ 1 2.90000+ 1 1.90110- 4 1.68892- 3 2.90000+ 1 3.00000+ 1 5.46557- 4 1.69357- 3 2.90000+ 1 4.10000+ 1 2.49515- 5 1.71587- 3 3.00000+ 1 3.00000+ 1 4.01047- 5 1.69822- 3 3.00000+ 1 4.10000+ 1 1.00263- 5 1.72052- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.75361- 5 3.17800- 4 1.40000+ 1 2.22551- 4 3.52200- 4 1.60000+ 1 6.34424- 4 1.20841- 3 2.10000+ 1 2.96382- 4 1.43621- 3 2.20000+ 1 2.39092- 3 1.44251- 3 2.70000+ 1 1.14811- 4 1.54463- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.38785- 2 1.80000- 6 1.30000+ 1 1.90000+ 1 6.67999- 2 3.67600- 5 1.30000+ 1 2.10000+ 1 1.10192- 2 1.57210- 4 1.30000+ 1 2.20000+ 1 9.78590- 3 1.63510- 4 1.30000+ 1 2.40000+ 1 1.00820- 2 3.07410- 4 1.30000+ 1 2.50000+ 1 1.47929- 2 3.08270- 4 1.30000+ 1 2.70000+ 1 2.29142- 3 2.65630- 4 1.30000+ 1 2.90000+ 1 1.58912- 3 2.85560- 4 1.30000+ 1 3.00000+ 1 6.36672- 3 2.90210- 4 1.30000+ 1 4.10000+ 1 1.75221- 4 3.12510- 4 1.40000+ 1 1.80000+ 1 8.99162- 2 3.62000- 5 1.40000+ 1 1.90000+ 1 1.51299- 1 7.11600- 5 1.40000+ 1 2.10000+ 1 4.85535- 2 1.91610- 4 1.40000+ 1 2.20000+ 1 7.19544- 2 1.97910- 4 1.40000+ 1 2.40000+ 1 9.78453- 2 3.41810- 4 1.40000+ 1 2.50000+ 1 1.16538- 1 3.42670- 4 1.40000+ 1 2.70000+ 1 1.33865- 2 3.00030- 4 1.40000+ 1 2.90000+ 1 1.08836- 2 3.19960- 4 1.40000+ 1 3.00000+ 1 1.65117- 2 3.24610- 4 1.40000+ 1 4.10000+ 1 1.03558- 3 3.46910- 4 1.60000+ 1 1.60000+ 1 7.21648- 4 8.20020- 4 1.60000+ 1 1.80000+ 1 1.09261- 3 8.92410- 4 1.60000+ 1 1.90000+ 1 1.63564- 2 9.27370- 4 1.60000+ 1 2.10000+ 1 9.76967- 4 1.04782- 3 1.60000+ 1 2.20000+ 1 1.06466- 3 1.05412- 3 1.60000+ 1 2.40000+ 1 6.23122- 4 1.19802- 3 1.60000+ 1 2.50000+ 1 9.48239- 4 1.19888- 3 1.60000+ 1 2.70000+ 1 1.82357- 4 1.15624- 3 1.60000+ 1 2.90000+ 1 1.15623- 4 1.17617- 3 1.60000+ 1 3.00000+ 1 1.39755- 3 1.18082- 3 1.60000+ 1 4.10000+ 1 1.39677- 5 1.20312- 3 1.80000+ 1 1.80000+ 1 1.39307- 4 9.64800- 4 1.80000+ 1 1.90000+ 1 1.93832- 2 9.99760- 4 1.80000+ 1 2.10000+ 1 4.73478- 4 1.12021- 3 1.80000+ 1 2.20000+ 1 3.52284- 3 1.12651- 3 1.80000+ 1 2.40000+ 1 7.09847- 4 1.27041- 3 1.80000+ 1 2.50000+ 1 4.17234- 3 1.27127- 3 1.80000+ 1 2.70000+ 1 1.23653- 4 1.22863- 3 1.80000+ 1 2.90000+ 1 2.73924- 5 1.24856- 3 1.80000+ 1 3.00000+ 1 1.67873- 3 1.25321- 3 1.80000+ 1 4.10000+ 1 9.39165- 6 1.27551- 3 1.90000+ 1 1.90000+ 1 2.69297- 2 1.03472- 3 1.90000+ 1 2.10000+ 1 3.70132- 2 1.15517- 3 1.90000+ 1 2.20000+ 1 4.95156- 2 1.16147- 3 1.90000+ 1 2.40000+ 1 1.26172- 2 1.30537- 3 1.90000+ 1 2.50000+ 1 1.43459- 2 1.30623- 3 1.90000+ 1 2.70000+ 1 2.55786- 3 1.26359- 3 1.90000+ 1 2.90000+ 1 2.43097- 3 1.28352- 3 1.90000+ 1 3.00000+ 1 5.62064- 3 1.28817- 3 1.90000+ 1 4.10000+ 1 1.99832- 4 1.31047- 3 2.10000+ 1 2.10000+ 1 2.46809- 4 1.27562- 3 2.10000+ 1 2.20000+ 1 4.63052- 3 1.28192- 3 2.10000+ 1 2.40000+ 1 2.89370- 4 1.42582- 3 2.10000+ 1 2.50000+ 1 3.58819- 3 1.42668- 3 2.10000+ 1 2.70000+ 1 1.02127- 4 1.38404- 3 2.10000+ 1 2.90000+ 1 3.55894- 5 1.40397- 3 2.10000+ 1 3.00000+ 1 3.19673- 3 1.40862- 3 2.10000+ 1 4.10000+ 1 7.73707- 6 1.43092- 3 2.20000+ 1 2.20000+ 1 2.27619- 3 1.28822- 3 2.20000+ 1 2.40000+ 1 2.84472- 3 1.43212- 3 2.20000+ 1 2.50000+ 1 2.48686- 3 1.43298- 3 2.20000+ 1 2.70000+ 1 1.13735- 4 1.39034- 3 2.20000+ 1 2.90000+ 1 2.83935- 4 1.41027- 3 2.20000+ 1 3.00000+ 1 4.23612- 3 1.41492- 3 2.20000+ 1 4.10000+ 1 8.51074- 6 1.43722- 3 2.40000+ 1 2.40000+ 1 1.74582- 4 1.57602- 3 2.40000+ 1 2.50000+ 1 5.41842- 3 1.57688- 3 2.40000+ 1 2.70000+ 1 6.44864- 5 1.53424- 3 2.40000+ 1 2.90000+ 1 7.70654- 5 1.55417- 3 2.40000+ 1 3.00000+ 1 1.05457- 3 1.55882- 3 2.40000+ 1 4.10000+ 1 4.71823- 6 1.58112- 3 2.50000+ 1 2.50000+ 1 1.91277- 3 1.57774- 3 2.50000+ 1 2.70000+ 1 7.89495- 5 1.53510- 3 2.50000+ 1 2.90000+ 1 4.52587- 4 1.55503- 3 2.50000+ 1 3.00000+ 1 1.22334- 3 1.55968- 3 2.50000+ 1 4.10000+ 1 5.47159- 6 1.58198- 3 2.70000+ 1 2.70000+ 1 1.71759- 5 1.49246- 3 2.70000+ 1 2.90000+ 1 1.82494- 5 1.51239- 3 2.70000+ 1 3.00000+ 1 3.05950- 4 1.51704- 3 2.70000+ 1 4.10000+ 1 2.14701- 6 1.53934- 3 2.90000+ 1 2.90000+ 1 2.68565- 6 1.53232- 3 2.90000+ 1 3.00000+ 1 3.69274- 4 1.53697- 3 2.90000+ 1 4.10000+ 1 1.34285- 6 1.55927- 3 3.00000+ 1 3.00000+ 1 1.06010- 3 1.54162- 3 3.00000+ 1 4.10000+ 1 6.32037- 5 1.56392- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.76941- 3 9.63000- 4 1.90000+ 1 4.77932- 4 9.97960- 4 2.40000+ 1 3.87801- 3 1.26861- 3 2.90000+ 1 6.98033- 4 1.24676- 3 3.00000+ 1 9.12113- 5 1.25141- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 9.47858- 2 2.40100- 5 1.40000+ 1 2.50000+ 1 1.37645- 2 2.48700- 5 1.40000+ 1 2.90000+ 1 7.77494- 4 2.16000- 6 1.40000+ 1 3.00000+ 1 2.26216- 3 6.81000- 6 1.40000+ 1 4.10000+ 1 1.70528- 4 2.91100- 5 1.60000+ 1 1.60000+ 1 3.18254- 5 5.02220- 4 1.60000+ 1 1.80000+ 1 2.79313- 3 5.74610- 4 1.60000+ 1 1.90000+ 1 1.91691- 3 6.09570- 4 1.60000+ 1 2.10000+ 1 6.59523- 2 7.30020- 4 1.60000+ 1 2.20000+ 1 8.13990- 3 7.36320- 4 1.60000+ 1 2.40000+ 1 1.08618- 2 8.80220- 4 1.60000+ 1 2.50000+ 1 3.60592- 3 8.81080- 4 1.60000+ 1 2.70000+ 1 2.44814- 5 8.38440- 4 1.60000+ 1 2.90000+ 1 2.83965- 4 8.58370- 4 1.60000+ 1 3.00000+ 1 1.56676- 4 8.63020- 4 1.60000+ 1 4.10000+ 1 2.44814- 6 8.85320- 4 1.80000+ 1 1.80000+ 1 1.51294- 3 6.47000- 4 1.80000+ 1 1.90000+ 1 1.00348- 2 6.81960- 4 1.80000+ 1 2.10000+ 1 5.63318- 2 8.02410- 4 1.80000+ 1 2.20000+ 1 4.76395- 3 8.08710- 4 1.80000+ 1 2.40000+ 1 6.86431- 3 9.52610- 4 1.80000+ 1 2.50000+ 1 3.66472- 3 9.53470- 4 1.80000+ 1 2.70000+ 1 2.96218- 4 9.10830- 4 1.80000+ 1 2.90000+ 1 3.15806- 4 9.30760- 4 1.80000+ 1 3.00000+ 1 9.32682- 4 9.35410- 4 1.80000+ 1 4.10000+ 1 2.20334- 5 9.57710- 4 1.90000+ 1 1.90000+ 1 3.66963- 3 7.16920- 4 1.90000+ 1 2.10000+ 1 1.20739- 1 8.37370- 4 1.90000+ 1 2.20000+ 1 4.51899- 3 8.43670- 4 1.90000+ 1 2.40000+ 1 4.39409- 3 9.87570- 4 1.90000+ 1 2.50000+ 1 2.14681- 3 9.88430- 4 1.90000+ 1 2.70000+ 1 2.27662- 4 9.45790- 4 1.90000+ 1 2.90000+ 1 8.98393- 4 9.65720- 4 1.90000+ 1 3.00000+ 1 6.58507- 4 9.70370- 4 1.90000+ 1 4.10000+ 1 1.71354- 5 9.92670- 4 2.10000+ 1 2.10000+ 1 1.01348- 1 9.57820- 4 2.10000+ 1 2.20000+ 1 2.05888- 1 9.64120- 4 2.10000+ 1 2.40000+ 1 4.19139- 2 1.10802- 3 2.10000+ 1 2.50000+ 1 5.36652- 2 1.10888- 3 2.10000+ 1 2.70000+ 1 9.64553- 3 1.06624- 3 2.10000+ 1 2.90000+ 1 7.23158- 3 1.08617- 3 2.10000+ 1 3.00000+ 1 1.44423- 2 1.09082- 3 2.10000+ 1 4.10000+ 1 7.46674- 4 1.11312- 3 2.20000+ 1 2.20000+ 1 3.37106- 3 9.70420- 4 2.20000+ 1 2.40000+ 1 4.22007- 2 1.11432- 3 2.20000+ 1 2.50000+ 1 2.45054- 3 1.11518- 3 2.20000+ 1 2.70000+ 1 6.80575- 4 1.07254- 3 2.20000+ 1 2.90000+ 1 4.11275- 4 1.09247- 3 2.20000+ 1 3.00000+ 1 4.43105- 4 1.09712- 3 2.20000+ 1 4.10000+ 1 4.89607- 5 1.11942- 3 2.40000+ 1 2.40000+ 1 1.69198- 2 1.25822- 3 2.40000+ 1 2.50000+ 1 5.55332- 2 1.25908- 3 2.40000+ 1 2.70000+ 1 1.66321- 3 1.21644- 3 2.40000+ 1 2.90000+ 1 7.38394- 4 1.23637- 3 2.40000+ 1 3.00000+ 1 5.24176- 4 1.24102- 3 2.40000+ 1 4.10000+ 1 1.28521- 4 1.26332- 3 2.50000+ 1 2.50000+ 1 1.13839- 3 1.25994- 3 2.50000+ 1 2.70000+ 1 4.13721- 4 1.21730- 3 2.50000+ 1 2.90000+ 1 2.45072- 4 1.23723- 3 2.50000+ 1 3.00000+ 1 2.47704- 4 1.24188- 3 2.50000+ 1 4.10000+ 1 3.16211- 5 1.26418- 3 2.70000+ 1 2.70000+ 1 1.31118- 5 1.17466- 3 2.70000+ 1 2.90000+ 1 1.70452- 4 1.19459- 3 2.70000+ 1 3.00000+ 1 1.04897- 4 1.19924- 3 2.90000+ 1 2.90000+ 1 8.98663- 5 1.21452- 3 2.90000+ 1 3.00000+ 1 4.62177- 4 1.21917- 3 2.90000+ 1 4.10000+ 1 1.28387- 5 1.24147- 3 3.00000+ 1 3.00000+ 1 5.76515- 4 1.22382- 3 3.00000+ 1 4.10000+ 1 4.43478- 5 1.24612- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.85130- 3 9.63560- 4 2.40000+ 1 2.30100- 4 1.23421- 3 2.50000+ 1 4.45220- 3 1.23507- 3 3.00000+ 1 8.73370- 4 1.21701- 3 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.69378- 6 4.67820- 4 1.60000+ 1 1.80000+ 1 7.62314- 4 5.40210- 4 1.60000+ 1 1.90000+ 1 4.77598- 3 5.75170- 4 1.60000+ 1 2.10000+ 1 7.00359- 3 6.95620- 4 1.60000+ 1 2.20000+ 1 7.75790- 2 7.01920- 4 1.60000+ 1 2.40000+ 1 3.83307- 3 8.45820- 4 1.60000+ 1 2.50000+ 1 1.26658- 2 8.46680- 4 1.60000+ 1 2.70000+ 1 1.88553- 5 8.04040- 4 1.60000+ 1 2.90000+ 1 4.04047- 5 8.23970- 4 1.60000+ 1 3.00000+ 1 4.25605- 4 8.28620- 4 1.60000+ 1 4.10000+ 1 2.69378- 6 8.50920- 4 1.80000+ 1 1.80000+ 1 1.34690- 5 6.12600- 4 1.80000+ 1 1.90000+ 1 1.14813- 2 6.47560- 4 1.80000+ 1 2.10000+ 1 6.78867- 4 7.68010- 4 1.80000+ 1 2.20000+ 1 7.73654- 2 7.74310- 4 1.80000+ 1 2.40000+ 1 1.72414- 3 9.18210- 4 1.80000+ 1 2.50000+ 1 6.20142- 3 9.19070- 4 1.80000+ 1 2.70000+ 1 7.81229- 5 8.76430- 4 1.80000+ 1 2.90000+ 1 5.38772- 6 8.96360- 4 1.80000+ 1 3.00000+ 1 1.01555- 3 9.01010- 4 1.80000+ 1 4.10000+ 1 5.38772- 6 9.23310- 4 1.90000+ 1 1.90000+ 1 8.80373- 3 6.82520- 4 1.90000+ 1 2.10000+ 1 7.24403- 3 8.02970- 4 1.90000+ 1 2.20000+ 1 1.23810- 1 8.09270- 4 1.90000+ 1 2.40000+ 1 2.70474- 3 9.53170- 4 1.90000+ 1 2.50000+ 1 6.32802- 3 9.54030- 4 1.90000+ 1 2.70000+ 1 5.65715- 4 9.11390- 4 1.90000+ 1 2.90000+ 1 9.99425- 4 9.31320- 4 1.90000+ 1 3.00000+ 1 1.61096- 3 9.35970- 4 1.90000+ 1 4.10000+ 1 4.31014- 5 9.58270- 4 2.10000+ 1 2.10000+ 1 1.55439- 3 9.23420- 4 2.10000+ 1 2.20000+ 1 1.60425- 1 9.29720- 4 2.10000+ 1 2.40000+ 1 2.16044- 3 1.07362- 3 2.10000+ 1 2.50000+ 1 2.85358- 2 1.07448- 3 2.10000+ 1 2.70000+ 1 5.71095- 4 1.03184- 3 2.10000+ 1 2.90000+ 1 8.88962- 5 1.05177- 3 2.10000+ 1 3.00000+ 1 6.43825- 4 1.05642- 3 2.10000+ 1 4.10000+ 1 4.04070- 5 1.07872- 3 2.20000+ 1 2.20000+ 1 1.83316- 1 9.36020- 4 2.20000+ 1 2.40000+ 1 5.10016- 2 1.07992- 3 2.20000+ 1 2.50000+ 1 7.64094- 2 1.08078- 3 2.20000+ 1 2.70000+ 1 1.10028- 2 1.03814- 3 2.20000+ 1 2.90000+ 1 9.55820- 3 1.05807- 3 2.20000+ 1 3.00000+ 1 1.49106- 2 1.06272- 3 2.20000+ 1 4.10000+ 1 8.51287- 4 1.08502- 3 2.40000+ 1 2.40000+ 1 1.43706- 3 1.22382- 3 2.40000+ 1 2.50000+ 1 5.18524- 2 1.22468- 3 2.40000+ 1 2.70000+ 1 4.44923- 4 1.18204- 3 2.40000+ 1 2.90000+ 1 2.01744- 4 1.20197- 3 2.40000+ 1 3.00000+ 1 2.48724- 4 1.20662- 3 2.40000+ 1 4.10000+ 1 3.31636- 5 1.22892- 3 2.50000+ 1 2.50000+ 1 3.24257- 2 1.22554- 3 2.50000+ 1 2.70000+ 1 1.87147- 3 1.18290- 3 2.50000+ 1 2.90000+ 1 7.74021- 4 1.20283- 3 2.50000+ 1 3.00000+ 1 6.91096- 4 1.20748- 3 2.50000+ 1 4.10000+ 1 1.43748- 4 1.22978- 3 2.70000+ 1 2.70000+ 1 2.19180- 5 1.14026- 3 2.70000+ 1 2.90000+ 1 4.38338- 5 1.16019- 3 2.70000+ 1 3.00000+ 1 4.38338- 4 1.16484- 3 2.90000+ 1 3.00000+ 1 4.65460- 4 1.18477- 3 3.00000+ 1 3.00000+ 1 5.97596- 4 1.18942- 3 3.00000+ 1 4.10000+ 1 4.26846- 5 1.21172- 3 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.56452- 5 7.23900- 5 1.90000+ 1 1.04617- 4 1.07350- 4 2.90000+ 1 4.64065- 5 3.56150- 4 3.00000+ 1 3.46545- 5 3.60800- 4 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.83547- 2 6.20000- 5 1.80000+ 1 2.50000+ 1 4.16493- 2 6.28600- 5 1.80000+ 1 2.70000+ 1 4.37213- 2 2.02200- 5 1.80000+ 1 2.90000+ 1 3.46418- 2 4.01500- 5 1.80000+ 1 3.00000+ 1 6.89982- 2 4.48000- 5 1.80000+ 1 4.10000+ 1 3.28012- 3 6.71000- 5 1.90000+ 1 2.40000+ 1 1.16208- 1 9.69600- 5 1.90000+ 1 2.50000+ 1 1.40075- 1 9.78200- 5 1.90000+ 1 2.70000+ 1 5.39305- 2 5.51800- 5 1.90000+ 1 2.90000+ 1 5.49391- 2 7.51100- 5 1.90000+ 1 3.00000+ 1 7.01343- 2 7.97600- 5 1.90000+ 1 4.10000+ 1 4.12327- 3 1.02060- 4 2.10000+ 1 2.10000+ 1 4.34054- 3 6.72100- 5 2.10000+ 1 2.20000+ 1 1.99709- 2 7.35100- 5 2.10000+ 1 2.40000+ 1 4.18722- 3 2.17410- 4 2.10000+ 1 2.50000+ 1 9.95251- 3 2.18270- 4 2.10000+ 1 2.70000+ 1 1.82985- 2 1.75630- 4 2.10000+ 1 2.90000+ 1 3.74791- 3 1.95560- 4 2.10000+ 1 3.00000+ 1 1.06249- 2 2.00210- 4 2.10000+ 1 4.10000+ 1 1.17032- 3 2.22510- 4 2.20000+ 1 2.20000+ 1 1.08334- 2 7.98100- 5 2.20000+ 1 2.40000+ 1 1.13827- 2 2.23710- 4 2.20000+ 1 2.50000+ 1 9.99196- 3 2.24570- 4 2.20000+ 1 2.70000+ 1 2.64752- 2 1.81930- 4 2.20000+ 1 2.90000+ 1 1.02094- 2 2.01860- 4 2.20000+ 1 3.00000+ 1 1.01178- 2 2.06510- 4 2.20000+ 1 4.10000+ 1 1.68839- 3 2.28810- 4 2.40000+ 1 2.40000+ 1 2.26767- 3 3.67610- 4 2.40000+ 1 2.50000+ 1 6.08398- 3 3.68470- 4 2.40000+ 1 2.70000+ 1 1.01949- 2 3.25830- 4 2.40000+ 1 2.90000+ 1 1.23103- 3 3.45760- 4 2.40000+ 1 3.00000+ 1 3.07877- 3 3.50410- 4 2.40000+ 1 4.10000+ 1 5.95242- 4 3.72710- 4 2.50000+ 1 2.50000+ 1 3.93290- 3 3.69330- 4 2.50000+ 1 2.70000+ 1 1.31769- 2 3.26690- 4 2.50000+ 1 2.90000+ 1 8.38147- 4 3.46620- 4 2.50000+ 1 3.00000+ 1 3.86966- 3 3.51270- 4 2.50000+ 1 4.10000+ 1 7.68973- 4 3.73570- 4 2.70000+ 1 2.70000+ 1 1.90496- 2 2.84050- 4 2.70000+ 1 2.90000+ 1 2.31641- 2 3.03980- 4 2.70000+ 1 3.00000+ 1 3.94873- 2 3.08630- 4 2.70000+ 1 4.10000+ 1 2.61015- 3 3.30930- 4 2.90000+ 1 2.90000+ 1 5.29083- 3 3.23910- 4 2.90000+ 1 3.00000+ 1 2.22281- 2 3.28560- 4 2.90000+ 1 4.10000+ 1 4.05788- 3 3.50860- 4 3.00000+ 1 3.00000+ 1 1.77848- 2 3.33210- 4 3.00000+ 1 4.10000+ 1 7.03978- 3 3.55510- 4 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.44685- 4 1.55410- 4 2.70000+ 1 7.74741- 5 2.63830- 4 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 5.56702- 2 2.45700- 5 1.90000+ 1 2.50000+ 1 4.25626- 2 2.54300- 5 1.90000+ 1 2.90000+ 1 1.11922- 2 2.72000- 6 1.90000+ 1 3.00000+ 1 1.11661- 2 7.37000- 6 1.90000+ 1 4.10000+ 1 1.26826- 3 2.96700- 5 2.10000+ 1 2.10000+ 1 1.89168- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.91695- 1 1.12000- 6 2.10000+ 1 2.40000+ 1 9.58481- 2 1.45020- 4 2.10000+ 1 2.50000+ 1 1.98961- 1 1.45880- 4 2.10000+ 1 2.70000+ 1 3.12326- 2 1.03240- 4 2.10000+ 1 2.90000+ 1 2.19772- 2 1.23170- 4 2.10000+ 1 3.00000+ 1 3.91730- 2 1.27820- 4 2.10000+ 1 4.10000+ 1 2.38320- 3 1.50120- 4 2.20000+ 1 2.20000+ 1 1.75178- 2 7.42000- 6 2.20000+ 1 2.40000+ 1 2.85075- 2 1.51320- 4 2.20000+ 1 2.50000+ 1 7.54279- 3 1.52180- 4 2.20000+ 1 2.70000+ 1 5.97855- 3 1.09540- 4 2.20000+ 1 2.90000+ 1 2.50657- 2 1.29470- 4 2.20000+ 1 3.00000+ 1 5.37536- 3 1.34120- 4 2.20000+ 1 4.10000+ 1 4.03889- 4 1.56420- 4 2.40000+ 1 2.40000+ 1 1.31882- 3 2.95220- 4 2.40000+ 1 2.50000+ 1 1.01009- 2 2.96080- 4 2.40000+ 1 2.70000+ 1 2.57839- 3 2.53440- 4 2.40000+ 1 2.90000+ 1 9.51811- 3 2.73370- 4 2.40000+ 1 3.00000+ 1 3.14636- 3 2.78020- 4 2.40000+ 1 4.10000+ 1 1.94294- 4 3.00320- 4 2.50000+ 1 2.50000+ 1 4.19456- 4 2.96940- 4 2.50000+ 1 2.70000+ 1 1.49450- 3 2.54300- 4 2.50000+ 1 2.90000+ 1 1.72280- 2 2.74230- 4 2.50000+ 1 3.00000+ 1 1.28236- 3 2.78880- 4 2.50000+ 1 4.10000+ 1 9.55657- 5 3.01180- 4 2.70000+ 1 2.70000+ 1 2.59890- 4 2.11660- 4 2.70000+ 1 2.90000+ 1 4.20256- 3 2.31590- 4 2.70000+ 1 3.00000+ 1 6.72854- 4 2.36240- 4 2.70000+ 1 4.10000+ 1 3.45685- 5 2.58540- 4 2.90000+ 1 2.90000+ 1 8.41041- 3 2.51520- 4 2.90000+ 1 3.00000+ 1 2.36153- 2 2.56170- 4 2.90000+ 1 4.10000+ 1 1.18313- 3 2.78470- 4 3.00000+ 1 3.00000+ 1 1.18499- 3 2.60820- 4 3.00000+ 1 4.10000+ 1 1.99906- 4 2.83120- 4 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.87578- 6 1.20450- 4 2.20000+ 1 9.74247- 5 1.26750- 4 2.70000+ 1 3.95999- 5 2.28870- 4 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.85797- 2 1.10060- 4 2.10000+ 1 2.50000+ 1 5.45661- 2 1.10920- 4 2.10000+ 1 2.70000+ 1 1.46113- 2 6.82800- 5 2.10000+ 1 2.90000+ 1 1.08685- 2 8.82100- 5 2.10000+ 1 3.00000+ 1 4.14904- 2 9.28600- 5 2.10000+ 1 4.10000+ 1 1.10368- 3 1.15160- 4 2.20000+ 1 2.40000+ 1 2.44274- 1 1.16360- 4 2.20000+ 1 2.50000+ 1 2.51625- 1 1.17220- 4 2.20000+ 1 2.70000+ 1 7.54746- 2 7.45800- 5 2.20000+ 1 2.90000+ 1 7.29346- 2 9.45100- 5 2.20000+ 1 3.00000+ 1 1.07763- 1 9.91600- 5 2.20000+ 1 4.10000+ 1 5.91623- 3 1.21460- 4 2.40000+ 1 2.40000+ 1 4.15045- 4 2.60260- 4 2.40000+ 1 2.50000+ 1 1.29435- 2 2.61120- 4 2.40000+ 1 2.70000+ 1 3.46292- 3 2.18480- 4 2.40000+ 1 2.90000+ 1 1.49893- 3 2.38410- 4 2.40000+ 1 3.00000+ 1 2.18925- 2 2.43060- 4 2.40000+ 1 4.10000+ 1 2.05017- 4 2.65360- 4 2.50000+ 1 2.50000+ 1 4.87138- 3 2.61980- 4 2.50000+ 1 2.70000+ 1 7.34643- 3 2.19340- 4 2.50000+ 1 2.90000+ 1 6.03253- 3 2.39270- 4 2.50000+ 1 3.00000+ 1 2.65114- 2 2.43920- 4 2.50000+ 1 4.10000+ 1 4.82145- 4 2.66220- 4 2.70000+ 1 2.70000+ 1 2.14606- 5 1.76700- 4 2.70000+ 1 2.90000+ 1 2.43436- 4 1.96630- 4 2.70000+ 1 3.00000+ 1 4.66101- 3 2.01280- 4 2.70000+ 1 4.10000+ 1 3.67897- 6 2.23580- 4 2.90000+ 1 2.90000+ 1 2.22088- 5 2.16560- 4 2.90000+ 1 3.00000+ 1 2.54387- 3 2.21210- 4 2.90000+ 1 4.10000+ 1 9.31293- 6 2.43510- 4 3.00000+ 1 3.00000+ 1 7.03753- 3 2.25860- 4 3.00000+ 1 4.10000+ 1 4.42155- 4 2.48160- 4 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.32339- 5 1.50200- 4 2.90000+ 1 1.14742- 5 1.28350- 4 3.00000+ 1 1.81928- 6 1.33000- 4 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.73257- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 4.50176- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 2.30501- 4 1.01000- 6 2.40000+ 1 2.40000+ 1 1.28298- 1 1.39810- 4 2.40000+ 1 2.50000+ 1 4.43626- 1 1.40670- 4 2.40000+ 1 2.70000+ 1 6.86050- 2 9.80300- 5 2.40000+ 1 2.90000+ 1 5.67903- 2 1.17960- 4 2.40000+ 1 3.00000+ 1 8.94608- 2 1.22610- 4 2.40000+ 1 4.10000+ 1 5.33885- 3 1.44910- 4 2.50000+ 1 2.50000+ 1 3.06369- 3 1.41530- 4 2.50000+ 1 2.70000+ 1 4.75913- 3 9.88900- 5 2.50000+ 1 2.90000+ 1 1.28829- 2 1.18820- 4 2.50000+ 1 3.00000+ 1 4.28214- 3 1.23470- 4 2.50000+ 1 4.10000+ 1 3.15097- 4 1.45770- 4 2.70000+ 1 2.70000+ 1 8.29304- 3 5.62500- 5 2.70000+ 1 2.90000+ 1 7.42979- 3 7.61800- 5 2.70000+ 1 3.00000+ 1 8.82887- 3 8.08300- 5 2.70000+ 1 4.10000+ 1 7.17258- 4 1.03130- 4 2.90000+ 1 2.90000+ 1 1.78746- 2 9.61100- 5 2.90000+ 1 3.00000+ 1 5.62515- 2 1.00760- 4 2.90000+ 1 4.10000+ 1 2.22077- 3 1.23060- 4 3.00000+ 1 3.00000+ 1 2.67005- 2 1.05410- 4 3.00000+ 1 4.10000+ 1 2.17742- 3 1.27710- 4 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 6.89955- 7 1.43900- 4 2.50000+ 1 1.40209- 5 1.44760- 4 3.00000+ 1 1.27859- 5 1.26700- 4 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 9.46033- 3 1.33510- 4 2.40000+ 1 2.50000+ 1 3.96759- 1 1.34370- 4 2.40000+ 1 2.70000+ 1 1.09901- 2 9.17300- 5 2.40000+ 1 2.90000+ 1 6.10819- 3 1.11660- 4 2.40000+ 1 3.00000+ 1 2.17691- 2 1.16310- 4 2.40000+ 1 4.10000+ 1 7.80396- 4 1.38610- 4 2.50000+ 1 2.50000+ 1 2.60947- 1 1.35230- 4 2.50000+ 1 2.70000+ 1 8.12635- 2 9.25900- 5 2.50000+ 1 2.90000+ 1 7.90563- 2 1.12520- 4 2.50000+ 1 3.00000+ 1 1.03511- 1 1.17170- 4 2.50000+ 1 4.10000+ 1 6.35807- 3 1.39470- 4 2.70000+ 1 2.70000+ 1 5.10849- 3 4.99500- 5 2.70000+ 1 2.90000+ 1 2.55465- 3 6.98800- 5 2.70000+ 1 3.00000+ 1 6.62403- 3 7.45300- 5 2.70000+ 1 4.10000+ 1 4.34732- 4 9.68300- 5 2.90000+ 1 2.90000+ 1 4.89311- 4 8.98100- 5 2.90000+ 1 3.00000+ 1 4.67458- 3 9.44600- 5 2.90000+ 1 4.10000+ 1 1.04371- 4 1.16760- 4 3.00000+ 1 3.00000+ 1 2.71450- 3 9.91100- 5 3.00000+ 1 4.10000+ 1 2.64280- 4 1.21410- 4 1 65000 0 7 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 5.51281- 8 1.99300- 5 3.00000+ 1 2.09801- 7 2.45800- 5 1 65000 0 9 1.58925+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.09171- 1 1.46400- 5 3.00000+ 1 4.10000+ 1 5.83062- 1 1.92900- 5 4.10000+ 1 4.10000+ 1 7.76712- 3 4.15900- 5 1 66000 0 0 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 4.29000+ 0 2.50000+ 1 5.71000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 66000 0 0 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.38610- 2 3.00000+ 0 9.01250- 3 5.00000+ 0 8.59070- 3 6.00000+ 0 7.78100- 3 8.00000+ 0 2.01820- 3 1.00000+ 1 1.83090- 3 1.10000+ 1 1.66210- 3 1.30000+ 1 1.33660- 3 1.40000+ 1 1.29950- 3 1.60000+ 1 4.04200- 4 1.80000+ 1 3.29380- 4 1.90000+ 1 2.91560- 4 2.10000+ 1 1.67070- 4 2.20000+ 1 1.60240- 4 2.40000+ 1 1.06200- 5 2.50000+ 1 9.66000- 6 2.70000+ 1 5.36700- 5 2.90000+ 1 3.30600- 5 3.00000+ 1 2.80900- 5 4.10000+ 1 5.35000- 6 1 66000 0 0 1.62500+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.09000- 2 3.00000+ 0 1.62180- 2 5.00000+ 0 1.62220- 2 6.00000+ 0 1.32170- 2 8.00000+ 0 5.03290- 3 1.00000+ 1 4.94520- 3 1.10000+ 1 4.23190- 3 1.30000+ 1 4.09690- 3 1.40000+ 1 3.93140- 3 1.60000+ 1 1.57210- 3 1.80000+ 1 1.47630- 3 1.90000+ 1 1.27120- 3 2.10000+ 1 1.08630- 3 2.20000+ 1 1.04150- 3 2.40000+ 1 6.34570- 4 2.50000+ 1 6.18910- 4 2.70000+ 1 3.22040- 4 2.90000+ 1 2.53100- 4 3.00000+ 1 2.11210- 4 4.10000+ 1 3.06200- 5 1 66000 0 0 1.62500+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.11600-10 3.00000+ 0 4.70730-10 5.00000+ 0 3.91950-10 6.00000+ 0 4.29020-10 8.00000+ 0 1.23260- 9 1.00000+ 1 1.17620- 9 1.10000+ 1 1.24650- 9 1.30000+ 1 1.09980- 9 1.40000+ 1 1.12140- 9 1.60000+ 1 2.78610- 9 1.80000+ 1 2.83600- 9 1.90000+ 1 2.99580- 9 2.10000+ 1 3.15410- 9 2.20000+ 1 3.20980- 9 2.40000+ 1 4.24770- 9 2.50000+ 1 4.32110- 9 2.70000+ 1 6.78100- 9 2.90000+ 1 7.60730- 9 3.00000+ 1 8.14410- 9 4.10000+ 1 2.16980- 8 1 66000 0 0 1.62500+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.31810- 5 3.00000+ 0 4.55700- 7 5.00000+ 0 7.81580- 7 6.00000+ 0 7.12730- 7 8.00000+ 0 1.43210- 8 1.00000+ 1 1.47450- 8 1.10000+ 1 1.52040- 8 1.30000+ 1 1.10060- 8 1.40000+ 1 1.03470- 8 1.60000+ 1 3.67270-10 1.80000+ 1 7.20990-10 1.90000+ 1 4.81110-10 2.10000+ 1 4.51300-10 2.20000+ 1 4.09720-10 2.70000+ 1 1.76240-11 1 66000 0 0 1.62500+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.50580- 6 3.00000+ 0 4.39910- 6 5.00000+ 0 3.07560- 6 6.00000+ 0 3.01330- 6 8.00000+ 0 1.69710- 5 1.00000+ 1 8.84080- 6 1.10000+ 1 8.95860- 6 1.30000+ 1 1.67780- 6 1.40000+ 1 1.05430- 6 1.60000+ 1 1.18210- 5 1.80000+ 1 1.48390- 5 1.90000+ 1 7.99900- 6 2.10000+ 1 4.09640- 6 2.20000+ 1 3.37540- 6 2.70000+ 1 3.08410- 6 1 66000 0 0 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.14445- 4 3.00000+ 0 1.42508- 4 5.00000+ 0 1.19522- 4 6.00000+ 0 1.12326- 4 8.00000+ 0 1.05952- 4 1.00000+ 1 8.95941- 5 1.10000+ 1 8.19105- 5 1.30000+ 1 5.89737- 5 1.40000+ 1 5.57927- 5 1.60000+ 1 6.21687- 5 1.80000+ 1 5.03519- 5 1.90000+ 1 4.39854- 5 2.10000+ 1 2.98860- 5 2.20000+ 1 2.68000- 5 2.40000+ 1 1.06200- 5 2.50000+ 1 9.66000- 6 2.70000+ 1 3.53099- 5 2.90000+ 1 3.30600- 5 3.00000+ 1 2.80900- 5 4.10000+ 1 5.35000- 6 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.12442+ 0 3.00000+ 0 2.11868- 1 5.00000+ 0 2.42014- 1 6.00000+ 0 1.99526- 1 8.00000+ 0 1.24020- 2 1.00000+ 1 1.26776- 2 1.10000+ 1 1.20752- 2 1.30000+ 1 1.12293- 2 1.40000+ 1 1.06134- 2 1.60000+ 1 4.22338- 4 1.80000+ 1 5.22284- 4 1.90000+ 1 1.91661- 4 2.10000+ 1 3.45844- 5 2.20000+ 1 3.38671- 5 2.70000+ 1 3.75217- 7 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.54709- 2 3.00000+ 0 1.41374- 3 5.00000+ 0 1.66194- 3 6.00000+ 0 1.22256- 3 8.00000+ 0 1.56451- 5 1.00000+ 1 1.56806- 5 1.10000+ 1 1.48880- 5 1.30000+ 1 1.32625- 5 1.40000+ 1 1.25020- 5 1.60000+ 1 8.17352- 8 1.80000+ 1 9.37176- 8 1.90000+ 1 3.03240- 8 2.10000+ 1 5.07966- 9 2.20000+ 1 4.85358- 9 2.70000+ 1 9.21596-12 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.36422+ 0 3.00000+ 0 9.32594+ 0 5.00000+ 0 7.70746+ 0 6.00000+ 0 7.26544+ 0 8.00000+ 0 6.65693+ 0 1.00000+ 1 5.46712+ 0 1.10000+ 1 4.99478+ 0 1.30000+ 1 3.32635+ 0 1.40000+ 1 3.17820+ 0 1.60000+ 1 2.94372+ 0 1.80000+ 1 2.52539+ 0 1.90000+ 1 2.09189+ 0 2.10000+ 1 1.15143+ 0 2.20000+ 1 1.10333+ 0 2.70000+ 1 1.00000+ 0 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.27568- 3 3.00000+ 0 7.45625- 3 5.00000+ 0 6.80924- 3 6.00000+ 0 6.44611- 3 8.00000+ 0 1.89660- 3 1.00000+ 1 1.72563- 3 1.10000+ 1 1.56530- 3 1.30000+ 1 1.26436- 3 1.40000+ 1 1.23121- 3 1.60000+ 1 3.41950- 4 1.80000+ 1 2.78934- 4 1.90000+ 1 2.47544- 4 2.10000+ 1 1.37179- 4 2.20000+ 1 1.33435- 4 2.70000+ 1 1.83601- 5 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.70040- 1 4.52703- 2 6.00000+ 0 4.82590- 1 4.60800- 2 1.00000+ 1 4.96700- 2 5.20301- 2 1.10000+ 1 9.60170- 2 5.21989- 2 1.30000+ 1 8.17830- 4 5.25244- 2 1.40000+ 1 1.06890- 3 5.25615- 2 1.80000+ 1 1.09330- 2 5.35316- 2 1.90000+ 1 2.11790- 2 5.35694- 2 2.10000+ 1 1.84630- 4 5.36939- 2 2.20000+ 1 2.40370- 4 5.37008- 2 2.90000+ 1 2.38080- 3 5.38279- 2 3.00000+ 1 4.93810- 3 5.38329- 2 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.47190- 3 3.58360- 2 3.00000+ 0 5.00000+ 0 7.22423- 3 3.62578- 2 3.00000+ 0 6.00000+ 0 6.40908- 3 3.70675- 2 3.00000+ 0 8.00000+ 0 2.09365- 3 4.28303- 2 3.00000+ 0 1.00000+ 1 1.49202- 3 4.30176- 2 3.00000+ 0 1.10000+ 1 1.37284- 3 4.31864- 2 3.00000+ 0 1.30000+ 1 1.03002- 4 4.35119- 2 3.00000+ 0 1.40000+ 1 9.63966- 5 4.35490- 2 3.00000+ 0 1.60000+ 1 4.91940- 4 4.44443- 2 3.00000+ 0 1.80000+ 1 3.37501- 4 4.45191- 2 3.00000+ 0 1.90000+ 1 3.08034- 4 4.45569- 2 3.00000+ 0 2.10000+ 1 2.29615- 5 4.46814- 2 3.00000+ 0 2.20000+ 1 2.12292- 5 4.46883- 2 3.00000+ 0 2.70000+ 1 7.95005- 5 4.47948- 2 3.00000+ 0 2.90000+ 1 4.37565- 5 4.48154- 2 3.00000+ 0 3.00000+ 1 3.79083- 5 4.48204- 2 3.00000+ 0 4.10000+ 1 6.06567- 6 4.48431- 2 5.00000+ 0 5.00000+ 0 6.44609- 4 3.66796- 2 5.00000+ 0 6.00000+ 0 1.27054- 2 3.74893- 2 5.00000+ 0 8.00000+ 0 1.16481- 3 4.32521- 2 5.00000+ 0 1.00000+ 1 2.35046- 4 4.34394- 2 5.00000+ 0 1.10000+ 1 2.25996- 3 4.36082- 2 5.00000+ 0 1.30000+ 1 1.13956- 4 4.39337- 2 5.00000+ 0 1.40000+ 1 3.50516- 4 4.39708- 2 5.00000+ 0 1.60000+ 1 2.63542- 4 4.48661- 2 5.00000+ 0 1.80000+ 1 5.18841- 5 4.49409- 2 5.00000+ 0 1.90000+ 1 4.87878- 4 4.49787- 2 5.00000+ 0 2.10000+ 1 2.48046- 5 4.51032- 2 5.00000+ 0 2.20000+ 1 7.60414- 5 4.51101- 2 5.00000+ 0 2.40000+ 1 3.24957- 7 4.52597- 2 5.00000+ 0 2.50000+ 1 3.24957- 7 4.52606- 2 5.00000+ 0 2.70000+ 1 4.22434- 5 4.52166- 2 5.00000+ 0 2.90000+ 1 6.71582- 6 4.52372- 2 5.00000+ 0 3.00000+ 1 5.96833- 5 4.52422- 2 5.00000+ 0 4.10000+ 1 3.24957- 6 4.52649- 2 6.00000+ 0 6.00000+ 0 5.96127- 3 3.82990- 2 6.00000+ 0 8.00000+ 0 9.79343- 4 4.40618- 2 6.00000+ 0 1.00000+ 1 2.15221- 3 4.42491- 2 6.00000+ 0 1.10000+ 1 2.18572- 3 4.44179- 2 6.00000+ 0 1.30000+ 1 4.06003- 4 4.47434- 2 6.00000+ 0 1.40000+ 1 3.58865- 4 4.47805- 2 6.00000+ 0 1.60000+ 1 2.18916- 4 4.56758- 2 6.00000+ 0 1.80000+ 1 4.67940- 4 4.57506- 2 6.00000+ 0 1.90000+ 1 4.75427- 4 4.57884- 2 6.00000+ 0 2.10000+ 1 8.88232- 5 4.59129- 2 6.00000+ 0 2.20000+ 1 7.80995- 5 4.59198- 2 6.00000+ 0 2.40000+ 1 7.58217- 7 4.60694- 2 6.00000+ 0 2.50000+ 1 4.33272- 7 4.60703- 2 6.00000+ 0 2.70000+ 1 3.49874- 5 4.60263- 2 6.00000+ 0 2.90000+ 1 6.02240- 5 4.60469- 2 6.00000+ 0 3.00000+ 1 5.82753- 5 4.60519- 2 6.00000+ 0 4.10000+ 1 2.70800- 6 4.60746- 2 8.00000+ 0 8.00000+ 0 1.97128- 4 4.98246- 2 8.00000+ 0 1.00000+ 1 2.42190- 4 5.00119- 2 8.00000+ 0 1.10000+ 1 2.11749- 4 5.01807- 2 8.00000+ 0 1.30000+ 1 1.52724- 5 5.05062- 2 8.00000+ 0 1.40000+ 1 1.35392- 5 5.05433- 2 8.00000+ 0 1.60000+ 1 9.22885- 5 5.14386- 2 8.00000+ 0 1.80000+ 1 5.49162- 5 5.15134- 2 8.00000+ 0 1.90000+ 1 4.76588- 5 5.15512- 2 8.00000+ 0 2.10000+ 1 3.35772- 6 5.16757- 2 8.00000+ 0 2.20000+ 1 3.03278- 6 5.16826- 2 8.00000+ 0 2.70000+ 1 1.49473- 5 5.17891- 2 8.00000+ 0 2.90000+ 1 7.14888- 6 5.18097- 2 8.00000+ 0 3.00000+ 1 5.84899- 6 5.18147- 2 8.00000+ 0 4.10000+ 1 1.19149- 6 5.18374- 2 1.00000+ 1 1.00000+ 1 2.07968- 5 5.01992- 2 1.00000+ 1 1.10000+ 1 3.91125- 4 5.03680- 2 1.00000+ 1 1.30000+ 1 1.58140- 5 5.06935- 2 1.00000+ 1 1.40000+ 1 4.58168- 5 5.07306- 2 1.00000+ 1 1.60000+ 1 5.49167- 5 5.16259- 2 1.00000+ 1 1.80000+ 1 9.09823- 6 5.17007- 2 1.00000+ 1 1.90000+ 1 8.48086- 5 5.17385- 2 1.00000+ 1 2.10000+ 1 3.46604- 6 5.18630- 2 1.00000+ 1 2.20000+ 1 9.96459- 6 5.18699- 2 1.00000+ 1 2.70000+ 1 8.77398- 6 5.19764- 2 1.00000+ 1 2.90000+ 1 1.19150- 6 5.19970- 2 1.00000+ 1 3.00000+ 1 1.03979- 5 5.20020- 2 1.00000+ 1 4.10000+ 1 6.49865- 7 5.20247- 2 1.10000+ 1 1.10000+ 1 2.01678- 4 5.05368- 2 1.10000+ 1 1.30000+ 1 5.91397- 5 5.08623- 2 1.10000+ 1 1.40000+ 1 5.08003- 5 5.08994- 2 1.10000+ 1 1.60000+ 1 4.74408- 5 5.17947- 2 1.10000+ 1 1.80000+ 1 8.53536- 5 5.18695- 2 1.10000+ 1 1.90000+ 1 8.78405- 5 5.19073- 2 1.10000+ 1 2.10000+ 1 1.29978- 5 5.20318- 2 1.10000+ 1 2.20000+ 1 1.11564- 5 5.20387- 2 1.10000+ 1 2.40000+ 1 1.08312- 7 5.21883- 2 1.10000+ 1 2.70000+ 1 7.58175- 6 5.21452- 2 1.10000+ 1 2.90000+ 1 1.10484- 5 5.21658- 2 1.10000+ 1 3.00000+ 1 1.07231- 5 5.21708- 2 1.10000+ 1 4.10000+ 1 5.41559- 7 5.21935- 2 1.30000+ 1 1.30000+ 1 1.09695- 7 5.11878- 2 1.30000+ 1 1.40000+ 1 7.24023- 6 5.12249- 2 1.30000+ 1 1.60000+ 1 3.40063- 6 5.21202- 2 1.30000+ 1 1.80000+ 1 3.29097- 6 5.21950- 2 1.30000+ 1 1.90000+ 1 1.23956- 5 5.22328- 2 1.30000+ 1 2.20000+ 1 1.53581- 6 5.23642- 2 1.30000+ 1 2.70000+ 1 5.48477- 7 5.24707- 2 1.30000+ 1 2.90000+ 1 4.38782- 7 5.24913- 2 1.30000+ 1 3.00000+ 1 1.53581- 6 5.24963- 2 1.40000+ 1 1.40000+ 1 1.73296- 6 5.12620- 2 1.40000+ 1 1.60000+ 1 3.03270- 6 5.21573- 2 1.40000+ 1 1.80000+ 1 9.42276- 6 5.22321- 2 1.40000+ 1 1.90000+ 1 1.05056- 5 5.22699- 2 1.40000+ 1 2.10000+ 1 1.51640- 6 5.23944- 2 1.40000+ 1 2.20000+ 1 7.58153- 7 5.24013- 2 1.40000+ 1 2.70000+ 1 4.33235- 7 5.25078- 2 1.40000+ 1 2.90000+ 1 1.19146- 6 5.25284- 2 1.40000+ 1 3.00000+ 1 1.29975- 6 5.25334- 2 1.60000+ 1 1.60000+ 1 1.09470- 5 5.30526- 2 1.60000+ 1 1.80000+ 1 1.25895- 5 5.31274- 2 1.60000+ 1 1.90000+ 1 1.08377- 5 5.31652- 2 1.60000+ 1 2.10000+ 1 7.66279- 7 5.32897- 2 1.60000+ 1 2.20000+ 1 6.56808- 7 5.32966- 2 1.60000+ 1 2.70000+ 1 3.50307- 6 5.34031- 2 1.60000+ 1 2.90000+ 1 1.64209- 6 5.34237- 2 1.60000+ 1 3.00000+ 1 1.31368- 6 5.34287- 2 1.60000+ 1 4.10000+ 1 2.18939- 7 5.34514- 2 1.80000+ 1 1.80000+ 1 9.74847- 7 5.32022- 2 1.80000+ 1 1.90000+ 1 1.85219- 5 5.32401- 2 1.80000+ 1 2.10000+ 1 7.58174- 7 5.33645- 2 1.80000+ 1 2.20000+ 1 2.05795- 6 5.33714- 2 1.80000+ 1 2.70000+ 1 1.94967- 6 5.34779- 2 1.80000+ 1 2.90000+ 1 2.16624- 7 5.34986- 2 1.80000+ 1 3.00000+ 1 2.27451- 6 5.35035- 2 1.80000+ 1 4.10000+ 1 1.08312- 7 5.35263- 2 1.90000+ 1 1.90000+ 1 9.43765- 6 5.32779- 2 1.90000+ 1 2.10000+ 1 2.68118- 6 5.34024- 2 1.90000+ 1 2.20000+ 1 2.25212- 6 5.34092- 2 1.90000+ 1 2.70000+ 1 1.71594- 6 5.35158- 2 1.90000+ 1 2.90000+ 1 2.35944- 6 5.35364- 2 1.90000+ 1 3.00000+ 1 2.35944- 6 5.35413- 2 1.90000+ 1 4.10000+ 1 1.07245- 7 5.35641- 2 2.10000+ 1 2.20000+ 1 3.24944- 7 5.35337- 2 2.10000+ 1 2.70000+ 1 1.08311- 7 5.36403- 2 2.10000+ 1 2.90000+ 1 1.08311- 7 5.36609- 2 2.10000+ 1 3.00000+ 1 3.24944- 7 5.36658- 2 2.20000+ 1 2.20000+ 1 1.16574- 7 5.35405- 2 2.20000+ 1 2.70000+ 1 1.16574- 7 5.36471- 2 2.20000+ 1 2.90000+ 1 2.33148- 7 5.36677- 2 2.20000+ 1 3.00000+ 1 3.49733- 7 5.36727- 2 2.70000+ 1 2.70000+ 1 4.25982- 7 5.37537- 2 2.70000+ 1 2.90000+ 1 2.83979- 7 5.37743- 2 2.70000+ 1 3.00000+ 1 2.83979- 7 5.37792- 2 2.90000+ 1 3.00000+ 1 3.24940- 7 5.37998- 2 3.00000+ 1 3.00000+ 1 1.08310- 7 5.38048- 2 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90198- 5 4.21800- 4 6.00000+ 0 1.07709- 3 1.23150- 3 1.00000+ 1 2.62327- 2 7.18160- 3 1.10000+ 1 3.65676- 2 7.35040- 3 1.30000+ 1 5.97223- 4 7.67590- 3 1.40000+ 1 8.93960- 4 7.71300- 3 1.80000+ 1 6.23213- 3 8.68312- 3 1.90000+ 1 9.06690- 3 8.72094- 3 2.10000+ 1 8.10551- 5 8.84543- 3 2.20000+ 1 1.25169- 4 8.85226- 3 2.90000+ 1 8.45670- 4 8.97944- 3 3.00000+ 1 1.18769- 3 8.98441- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 4.99517- 2 1.76000- 5 5.00000+ 0 1.80000+ 1 3.75506- 2 9.24200- 5 5.00000+ 0 1.90000+ 1 4.22908- 2 1.30240- 4 5.00000+ 0 2.10000+ 1 1.13405- 2 2.54730- 4 5.00000+ 0 2.20000+ 1 1.70827- 2 2.61560- 4 5.00000+ 0 2.40000+ 1 2.74972- 2 4.11180- 4 5.00000+ 0 2.50000+ 1 1.78477- 2 4.12140- 4 5.00000+ 0 2.70000+ 1 7.65229- 3 3.68130- 4 5.00000+ 0 2.90000+ 1 4.57812- 3 3.88740- 4 5.00000+ 0 3.00000+ 1 4.97159- 3 3.93710- 4 5.00000+ 0 4.10000+ 1 5.84231- 4 4.16450- 4 6.00000+ 0 1.60000+ 1 5.37977- 2 8.27300- 4 6.00000+ 0 1.80000+ 1 2.26448- 2 9.02120- 4 6.00000+ 0 1.90000+ 1 3.88310- 2 9.39940- 4 6.00000+ 0 2.10000+ 1 6.30182- 2 1.06443- 3 6.00000+ 0 2.20000+ 1 7.82813- 2 1.07126- 3 6.00000+ 0 2.40000+ 1 3.90618- 2 1.22088- 3 6.00000+ 0 2.50000+ 1 2.45625- 2 1.22184- 3 6.00000+ 0 2.70000+ 1 8.34780- 3 1.17783- 3 6.00000+ 0 2.90000+ 1 2.84527- 3 1.19844- 3 6.00000+ 0 3.00000+ 1 4.69767- 3 1.20341- 3 6.00000+ 0 4.10000+ 1 6.38125- 4 1.22615- 3 8.00000+ 0 8.00000+ 0 1.14823- 2 4.97610- 3 8.00000+ 0 1.00000+ 1 2.31194- 2 5.16340- 3 8.00000+ 0 1.10000+ 1 4.06212- 2 5.33220- 3 8.00000+ 0 1.30000+ 1 3.16517- 2 5.65770- 3 8.00000+ 0 1.40000+ 1 4.32565- 2 5.69480- 3 8.00000+ 0 1.60000+ 1 4.57521- 3 6.59010- 3 8.00000+ 0 1.80000+ 1 5.12484- 3 6.66492- 3 8.00000+ 0 1.90000+ 1 8.87535- 3 6.70274- 3 8.00000+ 0 2.10000+ 1 5.91886- 3 6.82723- 3 8.00000+ 0 2.20000+ 1 8.01817- 3 6.83406- 3 8.00000+ 0 2.40000+ 1 2.77928- 4 6.98368- 3 8.00000+ 0 2.50000+ 1 1.61658- 4 6.98464- 3 8.00000+ 0 2.70000+ 1 7.20937- 4 6.94063- 3 8.00000+ 0 2.90000+ 1 6.61381- 4 6.96124- 3 8.00000+ 0 3.00000+ 1 1.08740- 3 6.96621- 3 8.00000+ 0 4.10000+ 1 5.50191- 5 6.98895- 3 1.00000+ 1 1.00000+ 1 8.50814- 5 5.35070- 3 1.00000+ 1 1.10000+ 1 6.55125- 4 5.51950- 3 1.00000+ 1 1.30000+ 1 1.19739- 3 5.84500- 3 1.00000+ 1 1.40000+ 1 1.25558- 2 5.88210- 3 1.00000+ 1 1.60000+ 1 3.64895- 3 6.77740- 3 1.00000+ 1 1.80000+ 1 1.58813- 5 6.85222- 3 1.00000+ 1 1.90000+ 1 1.32723- 4 6.89004- 3 1.00000+ 1 2.10000+ 1 2.15544- 4 7.01453- 3 1.00000+ 1 2.20000+ 1 1.50372- 3 7.02136- 3 1.00000+ 1 2.40000+ 1 9.58541- 5 7.17098- 3 1.00000+ 1 2.50000+ 1 1.69033- 4 7.17194- 3 1.00000+ 1 2.70000+ 1 5.45657- 4 7.12793- 3 1.00000+ 1 2.90000+ 1 1.70157- 6 7.14854- 3 1.00000+ 1 3.00000+ 1 1.58813- 5 7.15351- 3 1.00000+ 1 4.10000+ 1 4.14057- 5 7.17625- 3 1.10000+ 1 1.10000+ 1 9.97703- 4 5.68830- 3 1.10000+ 1 1.30000+ 1 6.49189- 3 6.01380- 3 1.10000+ 1 1.40000+ 1 4.21489- 3 6.05090- 3 1.10000+ 1 1.60000+ 1 6.38513- 3 6.94620- 3 1.10000+ 1 1.80000+ 1 1.37268- 4 7.02102- 3 1.10000+ 1 1.90000+ 1 3.23304- 4 7.05884- 3 1.10000+ 1 2.10000+ 1 5.96130- 4 7.18333- 3 1.10000+ 1 2.20000+ 1 3.90238- 4 7.19016- 3 1.10000+ 1 2.40000+ 1 2.51856- 4 7.33978- 3 1.10000+ 1 2.50000+ 1 1.02668- 4 7.34074- 3 1.10000+ 1 2.70000+ 1 9.54055- 4 7.29673- 3 1.10000+ 1 2.90000+ 1 1.75836- 5 7.31734- 3 1.10000+ 1 3.00000+ 1 3.74361- 5 7.32231- 3 1.10000+ 1 4.10000+ 1 7.26041- 5 7.34505- 3 1.30000+ 1 1.30000+ 1 1.85591- 3 6.33930- 3 1.30000+ 1 1.40000+ 1 6.13022- 2 6.37640- 3 1.30000+ 1 1.60000+ 1 4.65745- 3 7.27170- 3 1.30000+ 1 1.80000+ 1 3.34082- 4 7.34652- 3 1.30000+ 1 1.90000+ 1 1.50536- 3 7.38434- 3 1.30000+ 1 2.10000+ 1 6.80665- 4 7.50883- 3 1.30000+ 1 2.20000+ 1 8.08278- 3 7.51566- 3 1.30000+ 1 2.40000+ 1 3.21605- 4 7.66528- 3 1.30000+ 1 2.50000+ 1 4.50363- 4 7.66624- 3 1.30000+ 1 2.70000+ 1 6.88598- 4 7.62223- 3 1.30000+ 1 2.90000+ 1 4.48085- 5 7.64284- 3 1.30000+ 1 3.00000+ 1 1.86046- 4 7.64781- 3 1.30000+ 1 4.10000+ 1 5.21840- 5 7.67055- 3 1.40000+ 1 1.40000+ 1 1.71929- 2 6.41350- 3 1.40000+ 1 1.60000+ 1 6.42702- 3 7.30880- 3 1.40000+ 1 1.80000+ 1 2.50429- 3 7.38362- 3 1.40000+ 1 1.90000+ 1 1.02668- 3 7.42144- 3 1.40000+ 1 2.10000+ 1 7.94826- 3 7.54593- 3 1.40000+ 1 2.20000+ 1 4.77078- 3 7.55276- 3 1.40000+ 1 2.40000+ 1 1.00798- 3 7.70238- 3 1.40000+ 1 2.50000+ 1 3.86261- 4 7.70334- 3 1.40000+ 1 2.70000+ 1 9.52951- 4 7.65933- 3 1.40000+ 1 2.90000+ 1 3.17636- 4 7.67994- 3 1.40000+ 1 3.00000+ 1 1.28190- 4 7.68491- 3 1.40000+ 1 4.10000+ 1 7.26040- 5 7.70765- 3 1.60000+ 1 1.60000+ 1 4.31072- 4 8.20410- 3 1.60000+ 1 1.80000+ 1 8.11686- 4 8.27892- 3 1.60000+ 1 1.90000+ 1 1.39990- 3 8.31674- 3 1.60000+ 1 2.10000+ 1 8.69532- 4 8.44123- 3 1.60000+ 1 2.20000+ 1 1.18545- 3 8.44806- 3 1.60000+ 1 2.40000+ 1 3.34648- 5 8.59768- 3 1.60000+ 1 2.50000+ 1 1.92857- 5 8.59864- 3 1.60000+ 1 2.70000+ 1 1.34434- 4 8.55463- 3 1.60000+ 1 2.90000+ 1 1.04934- 4 8.57524- 3 1.60000+ 1 3.00000+ 1 1.71868- 4 8.58021- 3 1.60000+ 1 4.10000+ 1 1.02101- 5 8.60295- 3 1.80000+ 1 1.80000+ 1 5.67226- 7 8.35374- 3 1.80000+ 1 1.90000+ 1 2.83602- 5 8.39156- 3 1.80000+ 1 2.10000+ 1 5.10493- 5 8.51605- 3 1.80000+ 1 2.20000+ 1 3.10258- 4 8.52288- 3 1.80000+ 1 2.40000+ 1 1.30466- 5 8.67250- 3 1.80000+ 1 2.50000+ 1 2.55246- 5 8.67346- 3 1.80000+ 1 2.70000+ 1 1.21379- 4 8.62945- 3 1.80000+ 1 3.00000+ 1 3.40315- 6 8.65503- 3 1.80000+ 1 4.10000+ 1 9.07530- 6 8.67777- 3 1.90000+ 1 1.90000+ 1 2.55246- 5 8.42938- 3 1.90000+ 1 2.10000+ 1 1.52012- 4 8.55387- 3 1.90000+ 1 2.20000+ 1 1.04934- 4 8.56070- 3 1.90000+ 1 2.40000+ 1 4.36748- 5 8.71032- 3 1.90000+ 1 2.50000+ 1 1.75835- 5 8.71128- 3 1.90000+ 1 2.70000+ 1 2.09301- 4 8.66727- 3 1.90000+ 1 2.90000+ 1 3.40314- 6 8.68788- 3 1.90000+ 1 3.00000+ 1 6.23937- 6 8.69285- 3 1.90000+ 1 4.10000+ 1 1.58813- 5 8.71559- 3 2.10000+ 1 2.10000+ 1 5.84236- 5 8.67836- 3 2.10000+ 1 2.20000+ 1 1.13618- 3 8.68519- 3 2.10000+ 1 2.40000+ 1 4.08399- 5 8.83481- 3 2.10000+ 1 2.50000+ 1 4.48090- 5 8.83577- 3 2.10000+ 1 2.70000+ 1 1.28192- 4 8.79176- 3 2.10000+ 1 2.90000+ 1 6.80672- 6 8.81237- 3 2.10000+ 1 3.00000+ 1 1.92860- 5 8.81734- 3 2.10000+ 1 4.10000+ 1 9.64248- 6 8.84008- 3 2.20000+ 1 2.20000+ 1 3.52814- 4 8.69202- 3 2.20000+ 1 2.40000+ 1 1.03800- 4 8.84164- 3 2.20000+ 1 2.50000+ 1 4.42417- 5 8.84260- 3 2.20000+ 1 2.70000+ 1 1.75268- 4 8.79859- 3 2.20000+ 1 2.90000+ 1 3.97038- 5 8.81920- 3 2.20000+ 1 3.00000+ 1 1.30466- 5 8.82417- 3 2.20000+ 1 4.10000+ 1 1.30466- 5 8.84691- 3 2.40000+ 1 2.40000+ 1 6.18219- 7 8.99126- 3 2.40000+ 1 2.50000+ 1 6.18219- 6 8.99222- 3 2.40000+ 1 2.70000+ 1 4.94575- 6 8.94821- 3 2.40000+ 1 2.90000+ 1 1.85454- 6 8.96882- 3 2.40000+ 1 3.00000+ 1 5.56386- 6 8.97379- 3 2.40000+ 1 4.10000+ 1 6.18219- 7 8.99653- 3 2.50000+ 1 2.50000+ 1 1.13445- 6 8.99318- 3 2.50000+ 1 2.70000+ 1 2.83602- 6 8.94917- 3 2.50000+ 1 2.90000+ 1 2.83602- 6 8.96978- 3 2.50000+ 1 3.00000+ 1 2.26880- 6 8.97475- 3 2.70000+ 1 2.70000+ 1 2.00684- 5 8.90516- 3 2.70000+ 1 2.90000+ 1 3.12157- 5 8.92577- 3 2.70000+ 1 3.00000+ 1 5.01701- 5 8.93074- 3 2.70000+ 1 4.10000+ 1 3.34454- 6 8.95348- 3 2.90000+ 1 3.00000+ 1 2.09465- 6 8.95135- 3 2.90000+ 1 4.10000+ 1 4.18928- 6 8.97409- 3 3.00000+ 1 3.00000+ 1 7.76452- 7 8.95632- 3 3.00000+ 1 4.10000+ 1 2.32921- 6 8.97906- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.95775- 7 8.09700- 4 8.00000+ 0 5.44567- 3 6.57250- 3 1.10000+ 1 1.19509- 4 6.92860- 3 1.30000+ 1 1.60749- 1 7.25410- 3 1.60000+ 1 1.11119- 3 8.18650- 3 1.90000+ 1 2.72118- 5 8.29914- 3 2.10000+ 1 2.81968- 2 8.42363- 3 2.40000+ 1 3.04788- 5 8.58008- 3 2.70000+ 1 1.94439- 4 8.53703- 3 3.00000+ 1 6.10736- 6 8.56261- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 8.40595- 3 4.05500- 4 6.00000+ 0 1.80000+ 1 4.66122- 2 4.80320- 4 6.00000+ 0 1.90000+ 1 1.50262- 2 5.18140- 4 6.00000+ 0 2.10000+ 1 5.64083- 2 6.42630- 4 6.00000+ 0 2.20000+ 1 2.01929- 2 6.49460- 4 6.00000+ 0 2.40000+ 1 1.29586- 3 7.99080- 4 6.00000+ 0 2.50000+ 1 9.85055- 4 8.00040- 4 6.00000+ 0 2.70000+ 1 1.23678- 3 7.56030- 4 6.00000+ 0 2.90000+ 1 5.66129- 3 7.76640- 4 6.00000+ 0 3.00000+ 1 1.82070- 3 7.81610- 4 6.00000+ 0 4.10000+ 1 9.38750- 5 8.04350- 4 8.00000+ 0 8.00000+ 0 8.32780- 4 4.55430- 3 8.00000+ 0 1.00000+ 1 2.32913- 2 4.74160- 3 8.00000+ 0 1.10000+ 1 2.25866- 3 4.91040- 3 8.00000+ 0 1.30000+ 1 2.45142- 3 5.23590- 3 8.00000+ 0 1.40000+ 1 2.80284- 3 5.27300- 3 8.00000+ 0 1.60000+ 1 3.05084- 4 6.16830- 3 8.00000+ 0 1.80000+ 1 3.45912- 3 6.24312- 3 8.00000+ 0 1.90000+ 1 4.38799- 4 6.28094- 3 8.00000+ 0 2.10000+ 1 3.27142- 4 6.40543- 3 8.00000+ 0 2.20000+ 1 3.17897- 4 6.41226- 3 8.00000+ 0 2.40000+ 1 7.11192- 5 6.56188- 3 8.00000+ 0 2.50000+ 1 2.27571- 5 6.56284- 3 8.00000+ 0 2.70000+ 1 4.69376- 5 6.51883- 3 8.00000+ 0 2.90000+ 1 4.16742- 4 6.53944- 3 8.00000+ 0 3.00000+ 1 5.26283- 5 6.54441- 3 8.00000+ 0 4.10000+ 1 3.55590- 6 6.56715- 3 1.00000+ 1 1.00000+ 1 2.35267- 2 4.92890- 3 1.00000+ 1 1.10000+ 1 6.84390- 2 5.09770- 3 1.00000+ 1 1.30000+ 1 3.65417- 2 5.42320- 3 1.00000+ 1 1.40000+ 1 5.85886- 2 5.46030- 3 1.00000+ 1 1.60000+ 1 5.58646- 3 6.35560- 3 1.00000+ 1 1.80000+ 1 8.85364- 3 6.43042- 3 1.00000+ 1 1.90000+ 1 1.46996- 2 6.46824- 3 1.00000+ 1 2.10000+ 1 6.82535- 3 6.59273- 3 1.00000+ 1 2.20000+ 1 1.09029- 2 6.59956- 3 1.00000+ 1 2.40000+ 1 3.11492- 4 6.74918- 3 1.00000+ 1 2.50000+ 1 1.45796- 4 6.75014- 3 1.00000+ 1 2.70000+ 1 9.05386- 4 6.70613- 3 1.00000+ 1 2.90000+ 1 1.11650- 3 6.72674- 3 1.00000+ 1 3.00000+ 1 1.79579- 3 6.73171- 3 1.00000+ 1 4.10000+ 1 6.96961- 5 6.75445- 3 1.10000+ 1 1.10000+ 1 1.72317- 3 5.26650- 3 1.10000+ 1 1.30000+ 1 3.98215- 2 5.59200- 3 1.10000+ 1 1.40000+ 1 5.47688- 3 5.62910- 3 1.10000+ 1 1.60000+ 1 4.60859- 4 6.52440- 3 1.10000+ 1 1.80000+ 1 1.05006- 2 6.59922- 3 1.10000+ 1 1.90000+ 1 6.27974- 4 6.63704- 3 1.10000+ 1 2.10000+ 1 6.28961- 3 6.76153- 3 1.10000+ 1 2.20000+ 1 8.17833- 4 6.76836- 3 1.10000+ 1 2.40000+ 1 1.75664- 4 6.91798- 3 1.10000+ 1 2.50000+ 1 4.90709- 5 6.91894- 3 1.10000+ 1 2.70000+ 1 7.25409- 5 6.87493- 3 1.10000+ 1 2.90000+ 1 1.27164- 3 6.89554- 3 1.10000+ 1 3.00000+ 1 7.46739- 5 6.90051- 3 1.10000+ 1 4.10000+ 1 5.68959- 6 6.92325- 3 1.30000+ 1 1.30000+ 1 3.70732- 2 5.91750- 3 1.30000+ 1 1.40000+ 1 1.54317- 1 5.95460- 3 1.30000+ 1 1.60000+ 1 5.90262- 4 6.84990- 3 1.30000+ 1 1.80000+ 1 5.54857- 3 6.92472- 3 1.30000+ 1 1.90000+ 1 8.02201- 3 6.96254- 3 1.30000+ 1 2.10000+ 1 1.16484- 2 7.08703- 3 1.30000+ 1 2.20000+ 1 2.60367- 2 7.09386- 3 1.30000+ 1 2.40000+ 1 1.22814- 3 7.24348- 3 1.30000+ 1 2.50000+ 1 1.25657- 3 7.24444- 3 1.30000+ 1 2.70000+ 1 9.60081- 5 7.20043- 3 1.30000+ 1 2.90000+ 1 6.74890- 4 7.22104- 3 1.30000+ 1 3.00000+ 1 9.69325- 4 7.22601- 3 1.30000+ 1 4.10000+ 1 7.11172- 6 7.24875- 3 1.40000+ 1 1.40000+ 1 7.40837- 3 5.99170- 3 1.40000+ 1 1.60000+ 1 5.52600- 4 6.88700- 3 1.40000+ 1 1.80000+ 1 7.88219- 3 6.96182- 3 1.40000+ 1 1.90000+ 1 1.00984- 3 6.99964- 3 1.40000+ 1 2.10000+ 1 2.01795- 2 7.12413- 3 1.40000+ 1 2.20000+ 1 2.26868- 3 7.13096- 3 1.40000+ 1 2.40000+ 1 4.98556- 4 7.28058- 3 1.40000+ 1 2.50000+ 1 9.67276- 5 7.28154- 3 1.40000+ 1 2.70000+ 1 8.60521- 5 7.23753- 3 1.40000+ 1 2.90000+ 1 9.31658- 4 7.25814- 3 1.40000+ 1 3.00000+ 1 1.20188- 4 7.26311- 3 1.40000+ 1 4.10000+ 1 6.40075- 6 7.28585- 3 1.60000+ 1 1.60000+ 1 2.70261- 5 7.78230- 3 1.60000+ 1 1.80000+ 1 8.34242- 4 7.85712- 3 1.60000+ 1 1.90000+ 1 9.03222- 5 7.89494- 3 1.60000+ 1 2.10000+ 1 7.60970- 5 8.01943- 3 1.60000+ 1 2.20000+ 1 6.40085- 5 8.02626- 3 1.60000+ 1 2.40000+ 1 1.49345- 5 8.17588- 3 1.60000+ 1 2.50000+ 1 4.26713- 6 8.17684- 3 1.60000+ 1 2.70000+ 1 8.53457- 6 8.13283- 3 1.60000+ 1 2.90000+ 1 1.00281- 4 8.15344- 3 1.60000+ 1 3.00000+ 1 1.06681- 5 8.15841- 3 1.60000+ 1 4.10000+ 1 7.11210- 7 8.18115- 3 1.80000+ 1 1.80000+ 1 7.93665- 4 7.93194- 3 1.80000+ 1 1.90000+ 1 2.25864- 3 7.96976- 3 1.80000+ 1 2.10000+ 1 1.01909- 3 8.09425- 3 1.80000+ 1 2.20000+ 1 1.47918- 3 8.10108- 3 1.80000+ 1 2.40000+ 1 3.84034- 5 8.25070- 3 1.80000+ 1 2.50000+ 1 1.49340- 5 8.25166- 3 1.80000+ 1 2.70000+ 1 1.35125- 4 8.20765- 3 1.80000+ 1 2.90000+ 1 1.98414- 4 8.22826- 3 1.80000+ 1 3.00000+ 1 2.75947- 4 8.23323- 3 1.80000+ 1 4.10000+ 1 1.06677- 5 8.25597- 3 1.90000+ 1 1.90000+ 1 5.79398- 5 8.00758- 3 1.90000+ 1 2.10000+ 1 1.28536- 3 8.13207- 3 1.90000+ 1 2.20000+ 1 1.55222- 4 8.13890- 3 1.90000+ 1 2.40000+ 1 2.86099- 5 8.28852- 3 1.90000+ 1 2.50000+ 1 7.15296- 6 8.28948- 3 1.90000+ 1 2.70000+ 1 1.43055- 5 8.24547- 3 1.90000+ 1 2.90000+ 1 2.75383- 4 8.26608- 3 1.90000+ 1 3.00000+ 1 1.35906- 5 8.27105- 3 1.90000+ 1 4.10000+ 1 1.43055- 6 8.29379- 3 2.10000+ 1 2.10000+ 1 9.03913- 4 8.25656- 3 2.10000+ 1 2.20000+ 1 3.53019- 3 8.26339- 3 2.10000+ 1 2.40000+ 1 1.33706- 4 8.41301- 3 2.10000+ 1 2.50000+ 1 1.38675- 4 8.41397- 3 2.10000+ 1 2.70000+ 1 1.20892- 5 8.36996- 3 2.10000+ 1 2.90000+ 1 1.23755- 4 8.39057- 3 2.10000+ 1 3.00000+ 1 1.54331- 4 8.39554- 3 2.10000+ 1 4.10000+ 1 7.11190- 7 8.41828- 3 2.20000+ 1 2.20000+ 1 2.51384- 4 8.27022- 3 2.20000+ 1 2.40000+ 1 8.37981- 5 8.41984- 3 2.20000+ 1 2.50000+ 1 1.63514- 5 8.42080- 3 2.20000+ 1 2.70000+ 1 1.43064- 5 8.37679- 3 2.20000+ 1 2.90000+ 1 2.51384- 4 8.39740- 3 2.20000+ 1 3.00000+ 1 2.65695- 5 8.40237- 3 2.20000+ 1 4.10000+ 1 1.02192- 6 8.42511- 3 2.40000+ 1 2.40000+ 1 1.98620- 6 8.56946- 3 2.40000+ 1 2.50000+ 1 7.94510- 6 8.57042- 3 2.40000+ 1 2.70000+ 1 2.97937- 6 8.52641- 3 2.40000+ 1 2.90000+ 1 5.95861- 6 8.54702- 3 2.40000+ 1 3.00000+ 1 4.96558- 6 8.55199- 3 2.50000+ 1 2.50000+ 1 8.87966- 7 8.57138- 3 2.50000+ 1 2.70000+ 1 8.87966- 7 8.52737- 3 2.50000+ 1 2.90000+ 1 1.77588- 6 8.54798- 3 2.50000+ 1 3.00000+ 1 8.87966- 7 8.55295- 3 2.70000+ 1 2.70000+ 1 1.29883- 6 8.48336- 3 2.70000+ 1 2.90000+ 1 2.98734- 5 8.50397- 3 2.70000+ 1 3.00000+ 1 2.59758- 6 8.50894- 3 2.90000+ 1 2.90000+ 1 2.49380- 5 8.52458- 3 2.90000+ 1 3.00000+ 1 6.89495- 5 8.52955- 3 2.90000+ 1 4.10000+ 1 2.93403- 6 8.55229- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.01080- 2 5.76280- 3 1.00000+ 1 7.11822- 5 5.95010- 3 1.10000+ 1 6.51122- 5 6.11890- 3 1.30000+ 1 1.47800- 2 6.44440- 3 1.40000+ 1 1.30640- 1 6.48150- 3 1.60000+ 1 1.44450- 3 7.37680- 3 1.80000+ 1 1.19880- 5 7.45162- 3 1.90000+ 1 1.16170- 5 7.48944- 3 2.10000+ 1 2.47241- 3 7.61393- 3 2.20000+ 1 2.21091- 2 7.62076- 3 2.40000+ 1 4.32911- 6 7.77038- 3 2.50000+ 1 2.45611- 5 7.77134- 3 2.70000+ 1 2.72991- 4 7.72733- 3 2.90000+ 1 2.78571- 6 7.74794- 3 3.00000+ 1 2.36511- 6 7.75291- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.11278- 3 3.74460- 3 8.00000+ 0 1.00000+ 1 6.91115- 4 3.93190- 3 8.00000+ 0 1.10000+ 1 2.58124- 2 4.10070- 3 8.00000+ 0 1.30000+ 1 2.69216- 3 4.42620- 3 8.00000+ 0 1.40000+ 1 3.45632- 3 4.46330- 3 8.00000+ 0 1.60000+ 1 4.08338- 4 5.35860- 3 8.00000+ 0 1.80000+ 1 1.21834- 4 5.43342- 3 8.00000+ 0 1.90000+ 1 3.79684- 3 5.47124- 3 8.00000+ 0 2.10000+ 1 2.49571- 4 5.59573- 3 8.00000+ 0 2.20000+ 1 2.87971- 4 5.60256- 3 8.00000+ 0 2.40000+ 1 1.03371- 4 5.75218- 3 8.00000+ 0 2.50000+ 1 9.37785- 5 5.75314- 3 8.00000+ 0 2.70000+ 1 6.27629- 5 5.70913- 3 8.00000+ 0 2.90000+ 1 1.47675- 5 5.72974- 3 8.00000+ 0 3.00000+ 1 4.34900- 4 5.73471- 3 8.00000+ 0 4.10000+ 1 5.16857- 6 5.75745- 3 1.00000+ 1 1.00000+ 1 1.80162- 4 4.11920- 3 1.00000+ 1 1.10000+ 1 4.32435- 2 4.28800- 3 1.00000+ 1 1.30000+ 1 2.52605- 3 4.61350- 3 1.00000+ 1 1.40000+ 1 2.25793- 2 4.65060- 3 1.00000+ 1 1.60000+ 1 1.36596- 4 5.54590- 3 1.00000+ 1 1.80000+ 1 6.64557- 5 5.62072- 3 1.00000+ 1 1.90000+ 1 6.59816- 3 5.65854- 3 1.00000+ 1 2.10000+ 1 4.31951- 4 5.78303- 3 1.00000+ 1 2.20000+ 1 3.25766- 3 5.78986- 3 1.00000+ 1 2.40000+ 1 1.12967- 4 5.93948- 3 1.00000+ 1 2.50000+ 1 1.49891- 4 5.94044- 3 1.00000+ 1 2.70000+ 1 2.14134- 5 5.89643- 3 1.00000+ 1 2.90000+ 1 8.12226- 6 5.91704- 3 1.00000+ 1 3.00000+ 1 7.60540- 4 5.92201- 3 1.00000+ 1 4.10000+ 1 1.47676- 6 5.94475- 3 1.10000+ 1 1.10000+ 1 5.83995- 2 4.45680- 3 1.10000+ 1 1.30000+ 1 6.03935- 2 4.78230- 3 1.10000+ 1 1.40000+ 1 8.76713- 2 4.81940- 3 1.10000+ 1 1.60000+ 1 6.11831- 3 5.71470- 3 1.10000+ 1 1.80000+ 1 9.12445- 3 5.78952- 3 1.10000+ 1 1.90000+ 1 2.13689- 2 5.82734- 3 1.10000+ 1 2.10000+ 1 1.07578- 2 5.95183- 3 1.10000+ 1 2.20000+ 1 1.53551- 2 5.95866- 3 1.10000+ 1 2.40000+ 1 5.04324- 4 6.10828- 3 1.10000+ 1 2.50000+ 1 3.23402- 4 6.10924- 3 1.10000+ 1 2.70000+ 1 9.89468- 4 6.06523- 3 1.10000+ 1 2.90000+ 1 1.16890- 3 6.08584- 3 1.10000+ 1 3.00000+ 1 2.54972- 3 6.09081- 3 1.10000+ 1 4.10000+ 1 7.60541- 5 6.11355- 3 1.30000+ 1 1.30000+ 1 8.70821- 3 5.10780- 3 1.30000+ 1 1.40000+ 1 1.65065- 1 5.14490- 3 1.30000+ 1 1.60000+ 1 6.07670- 4 6.04020- 3 1.30000+ 1 1.80000+ 1 5.36794- 4 6.11502- 3 1.30000+ 1 1.90000+ 1 8.51520- 3 6.15284- 3 1.30000+ 1 2.10000+ 1 2.70610- 3 6.27733- 3 1.30000+ 1 2.20000+ 1 2.16529- 2 6.28416- 3 1.30000+ 1 2.40000+ 1 2.86505- 4 6.43378- 3 1.30000+ 1 2.50000+ 1 4.89556- 4 6.43474- 3 1.30000+ 1 2.70000+ 1 9.74656- 5 6.39073- 3 1.30000+ 1 2.90000+ 1 6.86695- 5 6.41134- 3 1.30000+ 1 3.00000+ 1 9.68773- 4 6.41631- 3 1.30000+ 1 4.10000+ 1 7.38391- 6 6.43905- 3 1.40000+ 1 1.40000+ 1 1.11212- 1 5.18200- 3 1.40000+ 1 1.60000+ 1 8.21074- 4 6.07730- 3 1.40000+ 1 1.80000+ 1 4.38794- 3 6.15212- 3 1.40000+ 1 1.90000+ 1 1.39258- 2 6.18994- 3 1.40000+ 1 2.10000+ 1 2.59499- 2 6.31443- 3 1.40000+ 1 2.20000+ 1 3.29846- 2 6.32126- 3 1.40000+ 1 2.40000+ 1 3.05076- 3 6.47088- 3 1.40000+ 1 2.50000+ 1 1.39470- 3 6.47184- 3 1.40000+ 1 2.70000+ 1 1.33646- 4 6.42783- 3 1.40000+ 1 2.90000+ 1 5.54495- 4 6.44844- 3 1.40000+ 1 3.00000+ 1 1.62512- 3 6.45341- 3 1.40000+ 1 4.10000+ 1 1.03367- 5 6.47615- 3 1.60000+ 1 1.60000+ 1 3.76571- 5 6.97260- 3 1.60000+ 1 1.80000+ 1 2.43673- 5 7.04742- 3 1.60000+ 1 1.90000+ 1 9.00857- 4 7.08524- 3 1.60000+ 1 2.10000+ 1 6.12876- 5 7.20973- 3 1.60000+ 1 2.20000+ 1 7.45795- 5 7.21656- 3 1.60000+ 1 2.40000+ 1 1.47680- 5 7.36618- 3 1.60000+ 1 2.50000+ 1 1.55071- 5 7.36714- 3 1.60000+ 1 2.70000+ 1 1.18146- 5 7.32313- 3 1.60000+ 1 2.90000+ 1 2.95350- 6 7.34374- 3 1.60000+ 1 3.00000+ 1 1.03374- 4 7.34871- 3 1.60000+ 1 4.10000+ 1 7.38414- 7 7.37145- 3 1.80000+ 1 1.80000+ 1 5.16860- 6 7.12224- 3 1.80000+ 1 1.90000+ 1 1.38739- 3 7.16006- 3 1.80000+ 1 2.10000+ 1 8.86035- 5 7.28455- 3 1.80000+ 1 2.20000+ 1 6.59372- 4 7.29138- 3 1.80000+ 1 2.40000+ 1 1.62449- 5 7.44100- 3 1.80000+ 1 2.50000+ 1 2.06744- 5 7.44196- 3 1.80000+ 1 2.70000+ 1 3.69192- 6 7.39795- 3 1.80000+ 1 2.90000+ 1 1.47676- 6 7.41856- 3 1.80000+ 1 3.00000+ 1 1.59486- 4 7.42353- 3 1.90000+ 1 1.90000+ 1 1.80381- 3 7.19788- 3 1.90000+ 1 2.10000+ 1 1.45815- 3 7.32237- 3 1.90000+ 1 2.20000+ 1 2.30694- 3 7.32920- 3 1.90000+ 1 2.40000+ 1 5.66817- 5 7.47882- 3 1.90000+ 1 2.50000+ 1 3.82601- 5 7.47978- 3 1.90000+ 1 2.70000+ 1 1.39576- 4 7.43577- 3 1.90000+ 1 2.90000+ 1 1.70747- 4 7.45638- 3 1.90000+ 1 3.00000+ 1 4.27229- 4 7.46135- 3 1.90000+ 1 4.10000+ 1 1.06271- 5 7.48409- 3 2.10000+ 1 2.10000+ 1 2.03799- 4 7.44686- 3 2.10000+ 1 2.20000+ 1 3.52790- 3 7.45369- 3 2.10000+ 1 2.40000+ 1 3.10113- 5 7.60331- 3 2.10000+ 1 2.50000+ 1 5.02084- 5 7.60427- 3 2.10000+ 1 2.70000+ 1 9.59866- 6 7.56026- 3 2.10000+ 1 2.90000+ 1 1.10752- 5 7.58087- 3 2.10000+ 1 3.00000+ 1 1.72780- 4 7.58584- 3 2.10000+ 1 4.10000+ 1 7.38391- 7 7.60858- 3 2.20000+ 1 2.20000+ 1 2.79609- 3 7.46052- 3 2.20000+ 1 2.40000+ 1 3.62224- 4 7.61014- 3 2.20000+ 1 2.50000+ 1 1.63885- 4 7.61110- 3 2.20000+ 1 2.70000+ 1 1.42871- 5 7.56709- 3 2.20000+ 1 2.90000+ 1 9.49662- 5 7.58770- 3 2.20000+ 1 3.00000+ 1 3.18517- 4 7.59267- 3 2.20000+ 1 4.10000+ 1 8.40441- 7 7.61541- 3 2.40000+ 1 2.40000+ 1 9.98578- 7 7.75976- 3 2.40000+ 1 2.50000+ 1 1.29809- 5 7.76072- 3 2.40000+ 1 2.70000+ 1 2.99568- 6 7.71671- 3 2.40000+ 1 2.90000+ 1 2.99568- 6 7.73732- 3 2.40000+ 1 3.00000+ 1 8.98721- 6 7.74229- 3 2.50000+ 1 2.50000+ 1 2.95321- 6 7.76168- 3 2.50000+ 1 2.70000+ 1 2.21498- 6 7.71767- 3 2.50000+ 1 2.90000+ 1 2.21498- 6 7.73828- 3 2.50000+ 1 3.00000+ 1 4.42987- 6 7.74325- 3 2.70000+ 1 2.70000+ 1 1.28638- 6 7.67366- 3 2.70000+ 1 2.90000+ 1 1.28638- 6 7.69427- 3 2.70000+ 1 3.00000+ 1 2.95863- 5 7.69924- 3 2.90000+ 1 3.00000+ 1 5.41762- 5 7.71985- 3 3.00000+ 1 3.00000+ 1 1.05367- 4 7.72482- 3 3.00000+ 1 4.10000+ 1 5.85365- 6 7.74756- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.99615- 6 1.87300- 4 1.10000+ 1 1.39204- 4 3.56100- 4 1.80000+ 1 5.26512- 4 1.68882- 3 1.90000+ 1 5.92620- 4 1.72664- 3 2.90000+ 1 1.20981- 4 1.98514- 3 3.00000+ 1 1.26889- 4 1.99011- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 6.74933- 2 2.02300- 5 1.00000+ 1 2.20000+ 1 9.89692- 2 2.70600- 5 1.00000+ 1 2.40000+ 1 2.86201- 2 1.76680- 4 1.00000+ 1 2.50000+ 1 3.81094- 2 1.77640- 4 1.00000+ 1 2.70000+ 1 8.22137- 3 1.33630- 4 1.00000+ 1 2.90000+ 1 6.86413- 3 1.54240- 4 1.00000+ 1 3.00000+ 1 1.02755- 2 1.59210- 4 1.00000+ 1 4.10000+ 1 6.20347- 4 1.81950- 4 1.10000+ 1 1.80000+ 1 6.76722- 2 2.67200- 5 1.10000+ 1 1.90000+ 1 9.05467- 2 6.45400- 5 1.10000+ 1 2.10000+ 1 3.93001- 2 1.89030- 4 1.10000+ 1 2.20000+ 1 5.65091- 2 1.95860- 4 1.10000+ 1 2.40000+ 1 8.38256- 2 3.45480- 4 1.10000+ 1 2.50000+ 1 1.04767- 1 3.46440- 4 1.10000+ 1 2.70000+ 1 9.70733- 3 3.02430- 4 1.10000+ 1 2.90000+ 1 8.15248- 3 3.23040- 4 1.10000+ 1 3.00000+ 1 1.07639- 2 3.28010- 4 1.10000+ 1 4.10000+ 1 7.33442- 4 3.50750- 4 1.30000+ 1 1.60000+ 1 2.54494- 2 2.77400- 4 1.30000+ 1 1.80000+ 1 5.63843- 3 3.52220- 4 1.30000+ 1 1.90000+ 1 5.05883- 3 3.90040- 4 1.30000+ 1 2.10000+ 1 8.26069- 3 5.14530- 4 1.30000+ 1 2.20000+ 1 1.03648- 2 5.21360- 4 1.30000+ 1 2.40000+ 1 4.24216- 3 6.70980- 4 1.30000+ 1 2.50000+ 1 4.00585- 3 6.71940- 4 1.30000+ 1 2.70000+ 1 2.76038- 3 6.27930- 4 1.30000+ 1 2.90000+ 1 5.70866- 4 6.48540- 4 1.30000+ 1 3.00000+ 1 4.79891- 4 6.53510- 4 1.30000+ 1 4.10000+ 1 2.01999- 4 6.76250- 4 1.40000+ 1 1.60000+ 1 3.66036- 2 3.14500- 4 1.40000+ 1 1.80000+ 1 1.17013- 3 3.89320- 4 1.40000+ 1 1.90000+ 1 1.08098- 2 4.27140- 4 1.40000+ 1 2.10000+ 1 1.12238- 2 5.51630- 4 1.40000+ 1 2.20000+ 1 1.68288- 2 5.58460- 4 1.40000+ 1 2.40000+ 1 4.88328- 3 7.08080- 4 1.40000+ 1 2.50000+ 1 7.55518- 3 7.09040- 4 1.40000+ 1 2.70000+ 1 3.93418- 3 6.65030- 4 1.40000+ 1 2.90000+ 1 1.19074- 4 6.85640- 4 1.40000+ 1 3.00000+ 1 1.02390- 3 6.90610- 4 1.40000+ 1 4.10000+ 1 2.87903- 4 7.13350- 4 1.60000+ 1 1.60000+ 1 4.64470- 3 1.20980- 3 1.60000+ 1 1.80000+ 1 7.83262- 3 1.28462- 3 1.60000+ 1 1.90000+ 1 1.38485- 2 1.32244- 3 1.60000+ 1 2.10000+ 1 1.50032- 2 1.44693- 3 1.60000+ 1 2.20000+ 1 2.15662- 2 1.45376- 3 1.60000+ 1 2.40000+ 1 4.93364- 3 1.60338- 3 1.60000+ 1 2.50000+ 1 6.22467- 3 1.60434- 3 1.60000+ 1 2.70000+ 1 1.24380- 3 1.56033- 3 1.60000+ 1 2.90000+ 1 1.00529- 3 1.58094- 3 1.60000+ 1 3.00000+ 1 1.68737- 3 1.58591- 3 1.60000+ 1 4.10000+ 1 9.40328- 5 1.60865- 3 1.80000+ 1 1.80000+ 1 3.86583- 4 1.35944- 3 1.80000+ 1 1.90000+ 1 9.98881- 4 1.39726- 3 1.80000+ 1 2.10000+ 1 5.77876- 4 1.52175- 3 1.80000+ 1 2.20000+ 1 3.06150- 4 1.52858- 3 1.80000+ 1 2.40000+ 1 7.44341- 5 1.67820- 3 1.80000+ 1 2.50000+ 1 3.40571- 4 1.67916- 3 1.80000+ 1 2.70000+ 1 8.21602- 4 1.63515- 3 1.80000+ 1 2.90000+ 1 7.88380- 5 1.65576- 3 1.80000+ 1 3.00000+ 1 9.52418- 5 1.66073- 3 1.80000+ 1 4.10000+ 1 6.00283- 5 1.68347- 3 1.90000+ 1 1.90000+ 1 1.30101- 3 1.43508- 3 1.90000+ 1 2.10000+ 1 8.41186- 4 1.55957- 3 1.90000+ 1 2.20000+ 1 2.06055- 3 1.56640- 3 1.90000+ 1 2.40000+ 1 3.57757- 4 1.71602- 3 1.90000+ 1 2.50000+ 1 6.69526- 4 1.71698- 3 1.90000+ 1 2.70000+ 1 1.45745- 3 1.67297- 3 1.90000+ 1 2.90000+ 1 1.08049- 4 1.69358- 3 1.90000+ 1 3.00000+ 1 2.67730- 4 1.69855- 3 1.90000+ 1 4.10000+ 1 1.06850- 4 1.72129- 3 2.10000+ 1 2.10000+ 1 1.72481- 4 1.68406- 3 2.10000+ 1 2.20000+ 1 8.28370- 4 1.69089- 3 2.10000+ 1 2.40000+ 1 3.35775- 4 1.84051- 3 2.10000+ 1 2.50000+ 1 2.50294- 3 1.84147- 3 2.10000+ 1 2.70000+ 1 1.55348- 3 1.79746- 3 2.10000+ 1 2.90000+ 1 5.36234- 5 1.81807- 3 2.10000+ 1 3.00000+ 1 8.16381- 5 1.82304- 3 2.10000+ 1 4.10000+ 1 1.13252- 4 1.84578- 3 2.20000+ 1 2.20000+ 1 4.63422- 4 1.69772- 3 2.20000+ 1 2.40000+ 1 2.49239- 3 1.84734- 3 2.20000+ 1 2.50000+ 1 1.41185- 3 1.84830- 3 2.20000+ 1 2.70000+ 1 2.23028- 3 1.80429- 3 2.20000+ 1 2.90000+ 1 3.00130- 5 1.82490- 3 2.20000+ 1 3.00000+ 1 1.99292- 4 1.82987- 3 2.20000+ 1 4.10000+ 1 1.62482- 4 1.85261- 3 2.40000+ 1 2.40000+ 1 1.96084- 4 1.99696- 3 2.40000+ 1 2.50000+ 1 1.60761- 3 1.99792- 3 2.40000+ 1 2.70000+ 1 4.72614- 4 1.95391- 3 2.40000+ 1 2.90000+ 1 6.80292- 6 1.97452- 3 2.40000+ 1 3.00000+ 1 3.04152- 5 1.97949- 3 2.40000+ 1 4.10000+ 1 3.40171- 5 2.00223- 3 2.50000+ 1 2.50000+ 1 4.99564- 4 1.99888- 3 2.50000+ 1 2.70000+ 1 6.08820- 4 1.95487- 3 2.50000+ 1 2.90000+ 1 4.09158- 5 1.97548- 3 2.50000+ 1 3.00000+ 1 5.72784- 5 1.98045- 3 2.50000+ 1 4.10000+ 1 4.41898- 5 2.00319- 3 2.70000+ 1 2.70000+ 1 1.13482- 4 1.91086- 3 2.70000+ 1 2.90000+ 1 1.55012- 4 1.93147- 3 2.70000+ 1 3.00000+ 1 2.59729- 4 1.93644- 3 2.70000+ 1 4.10000+ 1 1.69634- 5 1.95918- 3 2.90000+ 1 2.90000+ 1 6.65255- 6 1.95208- 3 2.90000+ 1 3.00000+ 1 1.66311- 5 1.95705- 3 2.90000+ 1 4.10000+ 1 1.26394- 5 1.97979- 3 3.00000+ 1 3.00000+ 1 2.81423- 5 1.96202- 3 3.00000+ 1 4.10000+ 1 2.64863- 5 1.98476- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.36645- 4 4.94300- 4 1.60000+ 1 4.55005- 4 1.42670- 3 2.10000+ 1 2.27572- 3 1.66383- 3 2.70000+ 1 8.28598- 5 1.77723- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.12045- 2 1.73000- 6 1.10000+ 1 2.20000+ 1 2.73876- 2 8.56000- 6 1.10000+ 1 2.40000+ 1 2.11348- 2 1.58180- 4 1.10000+ 1 2.50000+ 1 2.29393- 2 1.59140- 4 1.10000+ 1 2.70000+ 1 4.44900- 3 1.15130- 4 1.10000+ 1 2.90000+ 1 4.52247- 3 1.35740- 4 1.10000+ 1 3.00000+ 1 4.47361- 3 1.40710- 4 1.10000+ 1 4.10000+ 1 3.20470- 4 1.63450- 4 1.30000+ 1 1.60000+ 1 7.26379- 2 9.01000- 5 1.30000+ 1 1.80000+ 1 7.25669- 2 1.64920- 4 1.30000+ 1 1.90000+ 1 9.19743- 2 2.02740- 4 1.30000+ 1 2.10000+ 1 3.11707- 2 3.27230- 4 1.30000+ 1 2.20000+ 1 3.56394- 2 3.34060- 4 1.30000+ 1 2.40000+ 1 1.00644- 1 4.83680- 4 1.30000+ 1 2.50000+ 1 1.51168- 1 4.84640- 4 1.30000+ 1 2.70000+ 1 1.16814- 2 4.40630- 4 1.30000+ 1 2.90000+ 1 8.09702- 3 4.61240- 4 1.30000+ 1 3.00000+ 1 1.07699- 2 4.66210- 4 1.30000+ 1 4.10000+ 1 8.92294- 4 4.88950- 4 1.40000+ 1 1.60000+ 1 1.21864- 2 1.27200- 4 1.40000+ 1 1.80000+ 1 8.36298- 2 2.02020- 4 1.40000+ 1 1.90000+ 1 7.97901- 3 2.39840- 4 1.40000+ 1 2.10000+ 1 1.33626- 3 3.64330- 4 1.40000+ 1 2.20000+ 1 4.12126- 3 3.71160- 4 1.40000+ 1 2.40000+ 1 3.12623- 3 5.20780- 4 1.40000+ 1 2.50000+ 1 2.48604- 3 5.21740- 4 1.40000+ 1 2.70000+ 1 1.30597- 3 4.77730- 4 1.40000+ 1 2.90000+ 1 7.55266- 3 4.98340- 4 1.40000+ 1 3.00000+ 1 8.55257- 4 5.03310- 4 1.40000+ 1 4.10000+ 1 9.58155- 5 5.26050- 4 1.60000+ 1 1.60000+ 1 8.66759- 4 1.02250- 3 1.60000+ 1 1.80000+ 1 1.20418- 2 1.09732- 3 1.60000+ 1 1.90000+ 1 1.88064- 3 1.13514- 3 1.60000+ 1 2.10000+ 1 3.91483- 4 1.25963- 3 1.60000+ 1 2.20000+ 1 1.38490- 3 1.26646- 3 1.60000+ 1 2.40000+ 1 5.05317- 5 1.41608- 3 1.60000+ 1 2.50000+ 1 4.88078- 4 1.41704- 3 1.60000+ 1 2.70000+ 1 2.19400- 4 1.37303- 3 1.60000+ 1 2.90000+ 1 1.04523- 3 1.39364- 3 1.60000+ 1 3.00000+ 1 2.07256- 4 1.39861- 3 1.60000+ 1 4.10000+ 1 1.66317- 5 1.42135- 3 1.80000+ 1 1.80000+ 1 9.07120- 3 1.17214- 3 1.80000+ 1 1.90000+ 1 2.71728- 2 1.20996- 3 1.80000+ 1 2.10000+ 1 2.55763- 2 1.33445- 3 1.80000+ 1 2.20000+ 1 4.18872- 2 1.34128- 3 1.80000+ 1 2.40000+ 1 6.97514- 3 1.49090- 3 1.80000+ 1 2.50000+ 1 1.19839- 2 1.49186- 3 1.80000+ 1 2.70000+ 1 1.95368- 3 1.44785- 3 1.80000+ 1 2.90000+ 1 1.97771- 3 1.46846- 3 1.80000+ 1 3.00000+ 1 3.28691- 3 1.47343- 3 1.80000+ 1 4.10000+ 1 1.50081- 4 1.49617- 3 1.90000+ 1 1.90000+ 1 7.82844- 4 1.24778- 3 1.90000+ 1 2.10000+ 1 2.20589- 3 1.37227- 3 1.90000+ 1 2.20000+ 1 1.74803- 3 1.37910- 3 1.90000+ 1 2.40000+ 1 5.26841- 3 1.52872- 3 1.90000+ 1 2.50000+ 1 1.49541- 3 1.52968- 3 1.90000+ 1 2.70000+ 1 2.12764- 4 1.48567- 3 1.90000+ 1 2.90000+ 1 2.50990- 3 1.50628- 3 1.90000+ 1 3.00000+ 1 1.60754- 4 1.51125- 3 1.90000+ 1 4.10000+ 1 1.55353- 5 1.53399- 3 2.10000+ 1 2.10000+ 1 8.68986- 4 1.49676- 3 2.10000+ 1 2.20000+ 1 2.53910- 3 1.50359- 3 2.10000+ 1 2.40000+ 1 6.45808- 4 1.65321- 3 2.10000+ 1 2.50000+ 1 1.19257- 3 1.65417- 3 2.10000+ 1 2.70000+ 1 5.81101- 5 1.61016- 3 2.10000+ 1 2.90000+ 1 2.26014- 3 1.63077- 3 2.10000+ 1 3.00000+ 1 2.23866- 4 1.63574- 3 2.10000+ 1 4.10000+ 1 4.62216- 6 1.65848- 3 2.20000+ 1 2.20000+ 1 6.00261- 4 1.51042- 3 2.20000+ 1 2.40000+ 1 2.22458- 3 1.66004- 3 2.20000+ 1 2.50000+ 1 4.68582- 4 1.66100- 3 2.20000+ 1 2.70000+ 1 1.83150- 4 1.61699- 3 2.20000+ 1 2.90000+ 1 3.80198- 3 1.63760- 3 2.20000+ 1 3.00000+ 1 1.65103- 4 1.64257- 3 2.20000+ 1 4.10000+ 1 1.40371- 5 1.66531- 3 2.40000+ 1 2.40000+ 1 7.76069- 4 1.80966- 3 2.40000+ 1 2.50000+ 1 5.48470- 3 1.81062- 3 2.40000+ 1 2.70000+ 1 2.66451- 6 1.76661- 3 2.40000+ 1 2.90000+ 1 5.72903- 4 1.78722- 3 2.40000+ 1 3.00000+ 1 5.89554- 4 1.79219- 3 2.50000+ 1 2.50000+ 1 2.70720- 4 1.81158- 3 2.50000+ 1 2.70000+ 1 7.01884- 5 1.76757- 3 2.50000+ 1 2.90000+ 1 9.86660- 4 1.78818- 3 2.50000+ 1 3.00000+ 1 1.51741- 4 1.79315- 3 2.50000+ 1 4.10000+ 1 5.34784- 6 1.81589- 3 2.70000+ 1 2.70000+ 1 1.70844- 5 1.72356- 3 2.70000+ 1 2.90000+ 1 2.03457- 4 1.74417- 3 2.70000+ 1 3.00000+ 1 2.71783- 5 1.74914- 3 2.70000+ 1 4.10000+ 1 2.32967- 6 1.77188- 3 2.90000+ 1 2.90000+ 1 2.03161- 4 1.76478- 3 2.90000+ 1 3.00000+ 1 5.77556- 4 1.76975- 3 2.90000+ 1 4.10000+ 1 2.55543- 5 1.79249- 3 3.00000+ 1 3.00000+ 1 4.45576- 5 1.77472- 3 3.00000+ 1 4.10000+ 1 1.11395- 5 1.79746- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74839- 5 3.25500- 4 1.40000+ 1 2.25709- 4 3.62600- 4 1.60000+ 1 6.72077- 4 1.25790- 3 2.10000+ 1 3.16009- 4 1.49503- 3 2.20000+ 1 2.54019- 3 1.50186- 3 2.70000+ 1 1.21689- 4 1.60843- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.34660- 2 0.00000+ 0 1.30000+ 1 1.90000+ 1 6.30962- 2 3.39400- 5 1.30000+ 1 2.10000+ 1 1.06191- 2 1.58430- 4 1.30000+ 1 2.20000+ 1 9.56309- 3 1.65260- 4 1.30000+ 1 2.40000+ 1 1.07743- 2 3.14880- 4 1.30000+ 1 2.50000+ 1 1.57506- 2 3.15840- 4 1.30000+ 1 2.70000+ 1 2.17746- 3 2.71830- 4 1.30000+ 1 2.90000+ 1 1.51313- 3 2.92440- 4 1.30000+ 1 3.00000+ 1 5.96642- 3 2.97410- 4 1.30000+ 1 4.10000+ 1 1.63135- 4 3.20150- 4 1.40000+ 1 1.80000+ 1 8.58766- 2 3.32200- 5 1.40000+ 1 1.90000+ 1 1.42846- 1 7.10400- 5 1.40000+ 1 2.10000+ 1 4.69642- 2 1.95530- 4 1.40000+ 1 2.20000+ 1 6.90238- 2 2.02360- 4 1.40000+ 1 2.40000+ 1 1.04855- 1 3.51980- 4 1.40000+ 1 2.50000+ 1 1.24872- 1 3.52940- 4 1.40000+ 1 2.70000+ 1 1.27171- 2 3.08930- 4 1.40000+ 1 2.90000+ 1 1.03551- 2 3.29540- 4 1.40000+ 1 3.00000+ 1 1.54544- 2 3.34510- 4 1.40000+ 1 4.10000+ 1 9.63462- 4 3.57250- 4 1.60000+ 1 1.60000+ 1 7.07523- 4 8.53700- 4 1.60000+ 1 1.80000+ 1 1.07773- 3 9.28520- 4 1.60000+ 1 1.90000+ 1 1.62404- 2 9.66340- 4 1.60000+ 1 2.10000+ 1 9.68354- 4 1.09083- 3 1.60000+ 1 2.20000+ 1 1.05782- 3 1.09766- 3 1.60000+ 1 2.40000+ 1 7.05961- 4 1.24728- 3 1.60000+ 1 2.50000+ 1 1.07773- 3 1.24824- 3 1.60000+ 1 2.70000+ 1 1.77456- 4 1.20423- 3 1.60000+ 1 2.90000+ 1 1.12439- 4 1.22484- 3 1.60000+ 1 3.00000+ 1 1.37146- 3 1.22981- 3 1.60000+ 1 4.10000+ 1 1.30030- 5 1.25255- 3 1.80000+ 1 1.80000+ 1 1.32717- 4 1.00334- 3 1.80000+ 1 1.90000+ 1 1.92039- 2 1.04116- 3 1.80000+ 1 2.10000+ 1 4.63335- 4 1.16565- 3 1.80000+ 1 2.20000+ 1 3.50650- 3 1.17248- 3 1.80000+ 1 2.40000+ 1 8.05487- 4 1.32210- 3 1.80000+ 1 2.50000+ 1 4.71256- 3 1.32306- 3 1.80000+ 1 2.70000+ 1 1.20441- 4 1.27905- 3 1.80000+ 1 2.90000+ 1 2.53146- 5 1.29966- 3 1.80000+ 1 3.00000+ 1 1.64245- 3 1.30463- 3 1.80000+ 1 4.10000+ 1 9.20571- 6 1.32737- 3 1.90000+ 1 1.90000+ 1 2.68590- 2 1.07898- 3 1.90000+ 1 2.10000+ 1 3.69585- 2 1.20347- 3 1.90000+ 1 2.20000+ 1 4.93601- 2 1.21030- 3 1.90000+ 1 2.40000+ 1 1.43308- 2 1.35992- 3 1.90000+ 1 2.50000+ 1 1.62757- 2 1.36088- 3 1.90000+ 1 2.70000+ 1 2.53328- 3 1.31687- 3 1.90000+ 1 2.90000+ 1 2.40695- 3 1.33748- 3 1.90000+ 1 3.00000+ 1 5.53098- 3 1.34245- 3 1.90000+ 1 4.10000+ 1 1.94111- 4 1.36519- 3 2.10000+ 1 2.10000+ 1 2.44091- 4 1.32796- 3 2.10000+ 1 2.20000+ 1 4.68858- 3 1.33479- 3 2.10000+ 1 2.40000+ 1 3.31051- 4 1.48441- 3 2.10000+ 1 2.50000+ 1 4.09165- 3 1.48537- 3 2.10000+ 1 2.70000+ 1 1.00687- 4 1.44136- 3 2.10000+ 1 2.90000+ 1 3.43252- 5 1.46197- 3 2.10000+ 1 3.00000+ 1 3.13794- 3 1.46694- 3 2.10000+ 1 4.10000+ 1 7.62806- 6 1.48968- 3 2.20000+ 1 2.20000+ 1 2.28140- 3 1.34162- 3 2.20000+ 1 2.40000+ 1 3.26131- 3 1.49124- 3 2.20000+ 1 2.50000+ 1 2.83521- 3 1.49220- 3 2.20000+ 1 2.70000+ 1 1.12125- 4 1.44819- 3 2.20000+ 1 2.90000+ 1 2.80702- 4 1.46880- 3 2.20000+ 1 3.00000+ 1 4.15081- 3 1.47377- 3 2.20000+ 1 4.10000+ 1 8.39015- 6 1.49651- 3 2.40000+ 1 2.40000+ 1 2.32816- 4 1.64086- 3 2.40000+ 1 2.50000+ 1 6.94138- 3 1.64182- 3 2.40000+ 1 2.70000+ 1 7.27069- 5 1.59781- 3 2.40000+ 1 2.90000+ 1 8.66295- 5 1.61842- 3 2.40000+ 1 3.00000+ 1 1.17492- 3 1.62339- 3 2.40000+ 1 4.10000+ 1 5.41419- 6 1.64613- 3 2.50000+ 1 2.50000+ 1 2.51788- 3 1.64278- 3 2.50000+ 1 2.70000+ 1 8.87371- 5 1.59877- 3 2.50000+ 1 2.90000+ 1 5.10055- 4 1.61938- 3 2.50000+ 1 3.00000+ 1 1.36814- 3 1.62435- 3 2.50000+ 1 4.10000+ 1 6.17319- 6 1.64709- 3 2.70000+ 1 2.70000+ 1 1.67050- 5 1.55476- 3 2.70000+ 1 2.90000+ 1 1.89318- 5 1.57537- 3 2.70000+ 1 3.00000+ 1 3.12934- 4 1.58034- 3 2.70000+ 1 4.10000+ 1 2.22728- 6 1.60308- 3 2.90000+ 1 2.90000+ 1 2.77264- 6 1.59598- 3 2.90000+ 1 3.00000+ 1 3.75699- 4 1.60095- 3 2.90000+ 1 4.10000+ 1 1.38637- 6 1.62369- 3 3.00000+ 1 3.00000+ 1 1.13840- 3 1.60592- 3 3.00000+ 1 4.10000+ 1 6.91905- 5 1.62866- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.54520- 3 1.00722- 3 1.90000+ 1 4.38450- 4 1.04504- 3 2.40000+ 1 5.07360- 3 1.32598- 3 2.90000+ 1 6.71020- 4 1.30354- 3 3.00000+ 1 8.44380- 5 1.30851- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.01919- 1 2.64800- 5 1.40000+ 1 2.50000+ 1 1.47157- 2 2.74400- 5 1.40000+ 1 2.90000+ 1 7.51115- 4 4.04000- 6 1.40000+ 1 3.00000+ 1 2.09792- 3 9.01000- 6 1.40000+ 1 4.10000+ 1 1.56331- 4 3.17500- 5 1.60000+ 1 1.60000+ 1 3.44089- 5 5.28200- 4 1.60000+ 1 1.80000+ 1 2.60828- 3 6.03020- 4 1.60000+ 1 1.90000+ 1 1.78709- 3 6.40840- 4 1.60000+ 1 2.10000+ 1 6.19613- 2 7.65330- 4 1.60000+ 1 2.20000+ 1 7.57930- 3 7.72160- 4 1.60000+ 1 2.40000+ 1 1.16121- 2 9.21780- 4 1.60000+ 1 2.50000+ 1 3.81477- 3 9.22740- 4 1.60000+ 1 2.70000+ 1 2.52344- 5 8.78730- 4 1.60000+ 1 2.90000+ 1 2.63790- 4 8.99340- 4 1.60000+ 1 3.00000+ 1 1.44510- 4 9.04310- 4 1.60000+ 1 4.10000+ 1 2.29393- 6 9.27050- 4 1.80000+ 1 1.80000+ 1 1.43372- 3 6.77840- 4 1.80000+ 1 1.90000+ 1 9.39154- 3 7.15660- 4 1.80000+ 1 2.10000+ 1 5.31659- 2 8.40150- 4 1.80000+ 1 2.20000+ 1 4.46177- 3 8.46980- 4 1.80000+ 1 2.40000+ 1 7.28792- 3 9.96600- 4 1.80000+ 1 2.50000+ 1 3.83319- 3 9.97560- 4 1.80000+ 1 2.70000+ 1 2.77575- 4 9.53550- 4 1.80000+ 1 2.90000+ 1 2.95927- 4 9.74160- 4 1.80000+ 1 3.00000+ 1 8.64791- 4 9.79130- 4 1.80000+ 1 4.10000+ 1 2.06460- 5 1.00187- 3 1.90000+ 1 1.90000+ 1 3.42487- 3 7.53480- 4 1.90000+ 1 2.10000+ 1 1.13563- 1 8.77970- 4 1.90000+ 1 2.20000+ 1 4.25062- 3 8.84800- 4 1.90000+ 1 2.40000+ 1 4.53039- 3 1.03442- 3 1.90000+ 1 2.50000+ 1 2.24575- 3 1.03538- 3 1.90000+ 1 2.70000+ 1 2.13343- 4 9.91370- 4 1.90000+ 1 2.90000+ 1 8.30391- 4 1.01198- 3 1.90000+ 1 3.00000+ 1 6.05590- 4 1.01695- 3 1.90000+ 1 4.10000+ 1 1.60566- 5 1.03969- 3 2.10000+ 1 2.10000+ 1 9.54995- 2 1.00246- 3 2.10000+ 1 2.20000+ 1 1.93674- 1 1.00929- 3 2.10000+ 1 2.40000+ 1 4.50532- 2 1.15891- 3 2.10000+ 1 2.50000+ 1 5.73018- 2 1.15987- 3 2.10000+ 1 2.70000+ 1 9.00878- 3 1.11586- 3 2.10000+ 1 2.90000+ 1 6.75341- 3 1.13647- 3 2.10000+ 1 3.00000+ 1 1.34034- 2 1.14144- 3 2.10000+ 1 4.10000+ 1 6.85906- 4 1.16418- 3 2.20000+ 1 2.20000+ 1 3.16571- 3 1.01612- 3 2.20000+ 1 2.40000+ 1 4.57763- 2 1.16574- 3 2.20000+ 1 2.50000+ 1 2.62653- 3 1.16670- 3 2.20000+ 1 2.70000+ 1 6.30835- 4 1.12269- 3 2.20000+ 1 2.90000+ 1 3.80811- 4 1.14330- 3 2.20000+ 1 3.00000+ 1 4.12916- 4 1.14827- 3 2.20000+ 1 4.10000+ 1 4.58802- 5 1.17101- 3 2.40000+ 1 2.40000+ 1 2.12050- 2 1.31536- 3 2.40000+ 1 2.50000+ 1 6.70780- 2 1.31632- 3 2.40000+ 1 2.70000+ 1 1.76135- 3 1.27231- 3 2.40000+ 1 2.90000+ 1 7.77343- 4 1.29292- 3 2.40000+ 1 3.00000+ 1 5.33111- 4 1.29789- 3 2.40000+ 1 4.10000+ 1 1.36211- 4 1.32063- 3 2.50000+ 1 2.50000+ 1 1.45819- 3 1.31728- 3 2.50000+ 1 2.70000+ 1 4.51220- 4 1.27327- 3 2.50000+ 1 2.90000+ 1 2.65125- 4 1.29388- 3 2.50000+ 1 3.00000+ 1 2.65125- 4 1.29885- 3 2.50000+ 1 4.10000+ 1 3.31401- 5 1.32159- 3 2.70000+ 1 2.70000+ 1 1.43347- 5 1.22926- 3 2.70000+ 1 2.90000+ 1 1.86354- 4 1.24987- 3 2.70000+ 1 3.00000+ 1 1.14681- 4 1.25484- 3 2.90000+ 1 2.90000+ 1 9.84452- 5 1.27048- 3 2.90000+ 1 3.00000+ 1 4.92251- 4 1.27545- 3 2.90000+ 1 4.10000+ 1 1.40640- 5 1.29819- 3 3.00000+ 1 3.00000+ 1 6.44365- 4 1.28042- 3 3.00000+ 1 4.10000+ 1 5.36953- 5 1.30316- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.50122- 3 1.00794- 3 2.40000+ 1 3.00822- 4 1.28888- 3 2.50000+ 1 5.81703- 3 1.28984- 3 3.00000+ 1 8.29015- 4 1.27141- 3 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.54452- 6 4.91100- 4 1.60000+ 1 1.80000+ 1 6.97181- 4 5.65920- 4 1.60000+ 1 1.90000+ 1 4.50635- 3 6.03740- 4 1.60000+ 1 2.10000+ 1 6.61053- 3 7.28230- 4 1.60000+ 1 2.20000+ 1 7.35182- 2 7.35060- 4 1.60000+ 1 2.40000+ 1 4.11191- 3 8.84680- 4 1.60000+ 1 2.50000+ 1 1.36310- 2 8.85640- 4 1.60000+ 1 2.70000+ 1 1.78103- 5 8.41630- 4 1.60000+ 1 2.90000+ 1 3.56227- 5 8.62240- 4 1.60000+ 1 3.00000+ 1 3.96943- 4 8.67210- 4 1.60000+ 1 4.10000+ 1 2.54452- 6 8.89950- 4 1.80000+ 1 1.80000+ 1 1.27223- 5 6.40740- 4 1.80000+ 1 1.90000+ 1 1.08984- 2 6.78560- 4 1.80000+ 1 2.10000+ 1 6.36135- 4 8.03050- 4 1.80000+ 1 2.20000+ 1 7.35262- 2 8.09880- 4 1.80000+ 1 2.40000+ 1 1.85503- 3 9.59500- 4 1.80000+ 1 2.50000+ 1 6.68191- 3 9.60460- 4 1.80000+ 1 2.70000+ 1 7.12464- 5 9.16450- 4 1.80000+ 1 2.90000+ 1 5.08902- 6 9.37060- 4 1.80000+ 1 3.00000+ 1 9.51678- 4 9.42030- 4 1.80000+ 1 4.10000+ 1 5.08902- 6 9.64770- 4 1.90000+ 1 1.90000+ 1 8.33075- 3 7.16380- 4 1.90000+ 1 2.10000+ 1 6.89057- 3 8.40870- 4 1.90000+ 1 2.20000+ 1 1.17305- 1 8.47700- 4 1.90000+ 1 2.40000+ 1 2.82685- 3 9.97320- 4 1.90000+ 1 2.50000+ 1 6.54691- 3 9.98280- 4 1.90000+ 1 2.70000+ 1 5.36899- 4 9.54270- 4 1.90000+ 1 2.90000+ 1 9.38941- 4 9.74880- 4 1.90000+ 1 3.00000+ 1 1.50387- 3 9.79850- 4 1.90000+ 1 4.10000+ 1 4.07118- 5 1.00259- 3 2.10000+ 1 2.10000+ 1 1.47571- 3 9.65360- 4 2.10000+ 1 2.20000+ 1 1.52389- 1 9.72190- 4 2.10000+ 1 2.40000+ 1 2.35629- 3 1.12181- 3 2.10000+ 1 2.50000+ 1 3.11551- 2 1.12277- 3 2.10000+ 1 2.70000+ 1 5.36906- 4 1.07876- 3 2.10000+ 1 2.90000+ 1 8.39686- 5 1.09937- 3 2.10000+ 1 3.00000+ 1 6.05589- 4 1.10434- 3 2.10000+ 1 4.10000+ 1 3.81678- 5 1.12708- 3 2.20000+ 1 2.20000+ 1 1.73822- 1 9.79020- 4 2.20000+ 1 2.40000+ 1 5.51235- 2 1.12864- 3 2.20000+ 1 2.50000+ 1 8.28407- 2 1.12960- 3 2.20000+ 1 2.70000+ 1 1.03587- 2 1.08559- 3 2.20000+ 1 2.90000+ 1 8.99739- 3 1.10620- 3 2.20000+ 1 3.00000+ 1 1.39536- 2 1.11117- 3 2.20000+ 1 4.10000+ 1 7.86245- 4 1.13391- 3 2.40000+ 1 2.40000+ 1 1.81961- 3 1.27826- 3 2.40000+ 1 2.50000+ 1 6.32850- 2 1.27922- 3 2.40000+ 1 2.70000+ 1 4.75018- 4 1.23521- 3 2.40000+ 1 2.90000+ 1 2.15445- 4 1.25582- 3 2.40000+ 1 3.00000+ 1 2.56983- 4 1.26079- 3 2.40000+ 1 4.10000+ 1 3.63396- 5 1.28353- 3 2.50000+ 1 2.50000+ 1 4.04649- 2 1.28018- 3 2.50000+ 1 2.70000+ 1 1.99135- 3 1.23617- 3 2.50000+ 1 2.90000+ 1 8.23004- 4 1.25678- 3 2.50000+ 1 3.00000+ 1 7.08767- 4 1.26175- 3 2.50000+ 1 4.10000+ 1 1.53170- 4 1.28449- 3 2.70000+ 1 2.70000+ 1 2.43278- 5 1.19216- 3 2.70000+ 1 2.90000+ 1 2.43278- 5 1.21277- 3 2.70000+ 1 3.00000+ 1 4.86547- 4 1.21774- 3 2.90000+ 1 3.00000+ 1 4.82633- 4 1.23835- 3 3.00000+ 1 3.00000+ 1 6.62121- 4 1.24332- 3 3.00000+ 1 4.10000+ 1 2.45231- 5 1.26606- 3 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.62052- 5 7.48200- 5 1.90000+ 1 1.13697- 4 1.12640- 4 2.90000+ 1 5.17155- 5 3.71140- 4 3.00000+ 1 3.74802- 5 3.76110- 4 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.86127- 2 6.42000- 5 1.80000+ 1 2.50000+ 1 4.16772- 2 6.51600- 5 1.80000+ 1 2.70000+ 1 4.17456- 2 2.11500- 5 1.80000+ 1 2.90000+ 1 3.31829- 2 4.17600- 5 1.80000+ 1 3.00000+ 1 6.52110- 2 4.67300- 5 1.80000+ 1 4.10000+ 1 3.06575- 3 6.94700- 5 1.90000+ 1 2.40000+ 1 1.23373- 1 1.02020- 4 1.90000+ 1 2.50000+ 1 1.48731- 1 1.02980- 4 1.90000+ 1 2.70000+ 1 5.13419- 2 5.89700- 5 1.90000+ 1 2.90000+ 1 5.23555- 2 7.95800- 5 1.90000+ 1 3.00000+ 1 6.59113- 2 8.45500- 5 1.90000+ 1 4.10000+ 1 3.84832- 3 1.07290- 4 2.10000+ 1 2.10000+ 1 4.21069- 3 7.00600- 5 2.10000+ 1 2.20000+ 1 1.86018- 2 7.68900- 5 2.10000+ 1 2.40000+ 1 4.41990- 3 2.26510- 4 2.10000+ 1 2.50000+ 1 1.04275- 2 2.27470- 4 2.10000+ 1 2.70000+ 1 1.75053- 2 1.83460- 4 2.10000+ 1 2.90000+ 1 3.60599- 3 2.04070- 4 2.10000+ 1 3.00000+ 1 9.96088- 3 2.09040- 4 2.10000+ 1 4.10000+ 1 1.09766- 3 2.31780- 4 2.20000+ 1 2.20000+ 1 1.02886- 2 8.37200- 5 2.20000+ 1 2.40000+ 1 1.19326- 2 2.33340- 4 2.20000+ 1 2.50000+ 1 1.04942- 2 2.34300- 4 2.20000+ 1 2.70000+ 1 2.53089- 2 1.90290- 4 2.20000+ 1 2.90000+ 1 9.68752- 3 2.10900- 4 2.20000+ 1 3.00000+ 1 9.48892- 3 2.15870- 4 2.20000+ 1 4.10000+ 1 1.58120- 3 2.38610- 4 2.40000+ 1 2.40000+ 1 2.82579- 3 3.82960- 4 2.40000+ 1 2.50000+ 1 7.25861- 3 3.83920- 4 2.40000+ 1 2.70000+ 1 1.09266- 2 3.39910- 4 2.40000+ 1 2.90000+ 1 1.31038- 3 3.60520- 4 2.40000+ 1 3.00000+ 1 3.30563- 3 3.65490- 4 2.40000+ 1 4.10000+ 1 6.26605- 4 3.88230- 4 2.50000+ 1 2.50000+ 1 4.81711- 3 3.84880- 4 2.50000+ 1 2.70000+ 1 1.40588- 2 3.40870- 4 2.50000+ 1 2.90000+ 1 8.68131- 4 3.61480- 4 2.50000+ 1 3.00000+ 1 4.12960- 3 3.66450- 4 2.50000+ 1 4.10000+ 1 8.05931- 4 3.89190- 4 2.70000+ 1 2.70000+ 1 1.98831- 2 2.96860- 4 2.70000+ 1 2.90000+ 1 2.41528- 2 3.17470- 4 2.70000+ 1 3.00000+ 1 4.09044- 2 3.22440- 4 2.70000+ 1 4.10000+ 1 2.67977- 3 3.45180- 4 2.90000+ 1 2.90000+ 1 5.05296- 3 3.38080- 4 2.90000+ 1 3.00000+ 1 2.11282- 2 3.43050- 4 2.90000+ 1 4.10000+ 1 3.82155- 3 3.65790- 4 3.00000+ 1 3.00000+ 1 1.69076- 2 3.48020- 4 3.00000+ 1 4.10000+ 1 6.64999- 3 3.70760- 4 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.75917- 4 1.62310- 4 2.70000+ 1 8.51767- 5 2.75710- 4 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 5.92303- 2 2.72000- 5 1.90000+ 1 2.50000+ 1 4.56154- 2 2.81600- 5 1.90000+ 1 2.90000+ 1 1.08809- 2 4.76000- 6 1.90000+ 1 3.00000+ 1 1.08463- 2 9.73000- 6 1.90000+ 1 4.10000+ 1 1.20670- 3 3.24700- 5 2.10000+ 1 2.10000+ 1 1.69482- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.62872- 1 2.07000- 6 2.10000+ 1 2.40000+ 1 1.01189- 1 1.51690- 4 2.10000+ 1 2.50000+ 1 2.09982- 1 1.52650- 4 2.10000+ 1 2.70000+ 1 2.97433- 2 1.08640- 4 2.10000+ 1 2.90000+ 1 2.09120- 2 1.29250- 4 2.10000+ 1 3.00000+ 1 3.66739- 2 1.34220- 4 2.10000+ 1 4.10000+ 1 2.23652- 3 1.56960- 4 2.20000+ 1 2.20000+ 1 1.69014- 2 8.90000- 6 2.20000+ 1 2.40000+ 1 3.05118- 2 1.58520- 4 2.20000+ 1 2.50000+ 1 8.05175- 3 1.59480- 4 2.20000+ 1 2.70000+ 1 5.75483- 3 1.15470- 4 2.20000+ 1 2.90000+ 1 2.40145- 2 1.36080- 4 2.20000+ 1 3.00000+ 1 5.08092- 3 1.41050- 4 2.20000+ 1 4.10000+ 1 3.82548- 4 1.63790- 4 2.40000+ 1 2.40000+ 1 1.65980- 3 3.08140- 4 2.40000+ 1 2.50000+ 1 1.23029- 2 3.09100- 4 2.40000+ 1 2.70000+ 1 2.82493- 3 2.65090- 4 2.40000+ 1 2.90000+ 1 1.05484- 2 2.85700- 4 2.40000+ 1 3.00000+ 1 3.36015- 3 2.90670- 4 2.40000+ 1 4.10000+ 1 2.09716- 4 3.13410- 4 2.50000+ 1 2.50000+ 1 5.41316- 4 3.10060- 4 2.50000+ 1 2.70000+ 1 1.71554- 3 2.66050- 4 2.50000+ 1 2.90000+ 1 1.97927- 2 2.86660- 4 2.50000+ 1 3.00000+ 1 1.44203- 3 2.91630- 4 2.50000+ 1 4.10000+ 1 1.08315- 4 3.14370- 4 2.70000+ 1 2.70000+ 1 2.96946- 4 2.22040- 4 2.70000+ 1 2.90000+ 1 4.72071- 3 2.42650- 4 2.70000+ 1 3.00000+ 1 7.59222- 4 2.47620- 4 2.70000+ 1 4.10000+ 1 3.87034- 5 2.70360- 4 2.90000+ 1 2.90000+ 1 9.80361- 3 2.63260- 4 2.90000+ 1 3.00000+ 1 2.73498- 2 2.68230- 4 2.90000+ 1 4.10000+ 1 1.35450- 3 2.90970- 4 3.00000+ 1 3.00000+ 1 1.43128- 3 2.73200- 4 3.00000+ 1 4.10000+ 1 2.43319- 4 2.95940- 4 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.70730- 6 1.24490- 4 2.20000+ 1 1.06167- 4 1.31320- 4 2.70000+ 1 4.54658- 5 2.37890- 4 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.89147- 2 1.13870- 4 2.10000+ 1 2.50000+ 1 5.52664- 2 1.14830- 4 2.10000+ 1 2.70000+ 1 1.38400- 2 7.08200- 5 2.10000+ 1 2.90000+ 1 1.02766- 2 9.14300- 5 2.10000+ 1 3.00000+ 1 3.88519- 2 9.64000- 5 2.10000+ 1 4.10000+ 1 1.02110- 3 1.19140- 4 2.20000+ 1 2.40000+ 1 2.48828- 1 1.20700- 4 2.20000+ 1 2.50000+ 1 2.57241- 1 1.21660- 4 2.20000+ 1 2.70000+ 1 7.14833- 2 7.76500- 5 2.20000+ 1 2.90000+ 1 6.90735- 2 9.82600- 5 2.20000+ 1 3.00000+ 1 1.00875- 1 1.03230- 4 2.20000+ 1 4.10000+ 1 5.46340- 3 1.25970- 4 2.40000+ 1 2.40000+ 1 4.92490- 4 2.70320- 4 2.40000+ 1 2.50000+ 1 1.48492- 2 2.71280- 4 2.40000+ 1 2.70000+ 1 3.67715- 3 2.27270- 4 2.40000+ 1 2.90000+ 1 1.58704- 3 2.47880- 4 2.40000+ 1 3.00000+ 1 2.30709- 2 2.52850- 4 2.40000+ 1 4.10000+ 1 2.14460- 4 2.75590- 4 2.50000+ 1 2.50000+ 1 5.70791- 3 2.72240- 4 2.50000+ 1 2.70000+ 1 7.75463- 3 2.28230- 4 2.50000+ 1 2.90000+ 1 6.32656- 3 2.48840- 4 2.50000+ 1 3.00000+ 1 2.78052- 2 2.53810- 4 2.50000+ 1 4.10000+ 1 4.99894- 4 2.76550- 4 2.70000+ 1 2.70000+ 1 2.05640- 5 1.84220- 4 2.70000+ 1 2.90000+ 1 2.59374- 4 2.04830- 4 2.70000+ 1 3.00000+ 1 4.96277- 3 2.09800- 4 2.70000+ 1 4.10000+ 1 3.31691- 6 2.32540- 4 2.90000+ 1 2.90000+ 1 2.35095- 5 2.25440- 4 2.90000+ 1 3.00000+ 1 2.83607- 3 2.30410- 4 2.90000+ 1 4.10000+ 1 1.05387- 5 2.53150- 4 3.00000+ 1 3.00000+ 1 8.09896- 3 2.35380- 4 3.00000+ 1 4.10000+ 1 5.03685- 4 2.58120- 4 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.88926- 5 1.56450- 4 2.90000+ 1 1.20820- 5 1.34010- 4 3.00000+ 1 1.89460- 6 1.38980- 4 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.49881- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 4.39193- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 1.91009- 4 1.48000- 6 2.40000+ 1 2.40000+ 1 1.42599- 1 1.45830- 4 2.40000+ 1 2.50000+ 1 4.75986- 1 1.46790- 4 2.40000+ 1 2.70000+ 1 6.71265- 2 1.02780- 4 2.40000+ 1 2.90000+ 1 5.51607- 2 1.23390- 4 2.40000+ 1 3.00000+ 1 8.59682- 2 1.28360- 4 2.40000+ 1 4.10000+ 1 5.13027- 3 1.51100- 4 2.50000+ 1 2.50000+ 1 3.62897- 3 1.47750- 4 2.50000+ 1 2.70000+ 1 5.00994- 3 1.03740- 4 2.50000+ 1 2.90000+ 1 1.32743- 2 1.24350- 4 2.50000+ 1 3.00000+ 1 4.40828- 3 1.29320- 4 2.50000+ 1 4.10000+ 1 3.26516- 4 1.52060- 4 2.70000+ 1 2.70000+ 1 6.01858- 3 5.97300- 5 2.70000+ 1 2.90000+ 1 5.54890- 3 8.03400- 5 2.70000+ 1 3.00000+ 1 6.52914- 3 8.53100- 5 2.70000+ 1 4.10000+ 1 5.13404- 4 1.08050- 4 2.90000+ 1 2.90000+ 1 1.23281- 2 1.00950- 4 2.90000+ 1 3.00000+ 1 3.84740- 2 1.05920- 4 2.90000+ 1 4.10000+ 1 1.51400- 3 1.28660- 4 3.00000+ 1 3.00000+ 1 1.92714- 2 1.10890- 4 3.00000+ 1 4.10000+ 1 1.57961- 3 1.33630- 4 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 9.73283- 7 1.49620- 4 2.50000+ 1 1.98161- 5 1.50580- 4 3.00000+ 1 1.30390- 5 1.32150- 4 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.00569- 2 1.39000- 4 2.40000+ 1 2.50000+ 1 4.07316- 1 1.39960- 4 2.40000+ 1 2.70000+ 1 1.03259- 2 9.59500- 5 2.40000+ 1 2.90000+ 1 5.71381- 3 1.16560- 4 2.40000+ 1 3.00000+ 1 1.98287- 2 1.21530- 4 2.40000+ 1 4.10000+ 1 7.19875- 4 1.44270- 4 2.50000+ 1 2.50000+ 1 2.74987- 1 1.40920- 4 2.50000+ 1 2.70000+ 1 7.64435- 2 9.69100- 5 2.50000+ 1 2.90000+ 1 7.42803- 2 1.17520- 4 2.50000+ 1 3.00000+ 1 9.53362- 2 1.22490- 4 2.50000+ 1 4.10000+ 1 5.86467- 3 1.45230- 4 2.70000+ 1 2.70000+ 1 4.23803- 3 5.29000- 5 2.70000+ 1 2.90000+ 1 2.16857- 3 7.35100- 5 2.70000+ 1 3.00000+ 1 5.58990- 3 7.84800- 5 2.70000+ 1 4.10000+ 1 3.55525- 4 1.01220- 4 2.90000+ 1 2.90000+ 1 4.08716- 4 9.41200- 5 2.90000+ 1 3.00000+ 1 3.85094- 3 9.90900- 5 2.90000+ 1 4.10000+ 1 8.62545- 5 1.21830- 4 3.00000+ 1 3.00000+ 1 2.18048- 3 1.04060- 4 3.00000+ 1 4.10000+ 1 2.15228- 4 1.26800- 4 1 66000 0 7 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 7.68777- 8 2.06100- 5 3.00000+ 1 2.98339- 7 2.55800- 5 1 66000 0 9 1.62500+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.11569- 1 1.52600- 5 3.00000+ 1 4.10000+ 1 5.80708- 1 2.02300- 5 4.10000+ 1 4.10000+ 1 7.72307- 3 4.29700- 5 1 67000 0 0 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 4.71000+ 0 2.50000+ 1 6.29000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 67000 0 0 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.56990- 2 3.00000+ 0 9.36020- 3 5.00000+ 0 8.92870- 3 6.00000+ 0 8.06170- 3 8.00000+ 0 2.10250- 3 1.00000+ 1 1.91040- 3 1.10000+ 1 1.72850- 3 1.30000+ 1 1.39520- 3 1.40000+ 1 1.35530- 3 1.60000+ 1 4.20350- 4 1.80000+ 1 3.43050- 4 1.90000+ 1 3.02200- 4 2.10000+ 1 1.73630- 4 2.20000+ 1 1.66230- 4 2.40000+ 1 1.08000- 5 2.50000+ 1 9.73000- 6 2.70000+ 1 5.51900- 5 2.90000+ 1 3.38900- 5 3.00000+ 1 2.85800- 5 4.10000+ 1 5.42000- 6 1 67000 0 0 1.64930+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.35690- 2 3.00000+ 0 1.68870- 2 5.00000+ 0 1.68900- 2 6.00000+ 0 1.36650- 2 8.00000+ 0 5.25630- 3 1.00000+ 1 5.16710- 3 1.10000+ 1 4.39850- 3 1.30000+ 1 4.26310- 3 1.40000+ 1 4.08560- 3 1.60000+ 1 1.64530- 3 1.80000+ 1 1.54680- 3 1.90000+ 1 1.32450- 3 2.10000+ 1 1.13540- 3 2.20000+ 1 1.08690- 3 2.40000+ 1 6.69560- 4 2.50000+ 1 6.52230- 4 2.70000+ 1 3.34470- 4 2.90000+ 1 2.62540- 4 3.00000+ 1 2.17350- 4 4.10000+ 1 3.12600- 5 1 67000 0 0 1.64930+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.09590-10 3.00000+ 0 4.61850-10 5.00000+ 0 3.84110-10 6.00000+ 0 4.22070-10 8.00000+ 0 1.20790- 9 1.00000+ 1 1.15190- 9 1.10000+ 1 1.22300- 9 1.30000+ 1 1.07780- 9 1.40000+ 1 1.09980- 9 1.60000+ 1 2.72820- 9 1.80000+ 1 2.77460- 9 1.90000+ 1 2.93670- 9 2.10000+ 1 3.08540- 9 2.20000+ 1 3.14180- 9 2.40000+ 1 4.13580- 9 2.50000+ 1 4.21300- 9 2.70000+ 1 6.65740- 9 2.90000+ 1 7.46830- 9 3.00000+ 1 8.02050- 9 4.10000+ 1 2.14470- 8 1 67000 0 0 1.64930+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.46840- 5 3.00000+ 0 4.90800- 7 5.00000+ 0 8.43110- 7 6.00000+ 0 7.66770- 7 8.00000+ 0 1.55570- 8 1.00000+ 1 1.60790- 8 1.10000+ 1 1.66100- 8 1.30000+ 1 1.32810- 8 1.40000+ 1 1.24800- 8 1.60000+ 1 4.00120-10 1.80000+ 1 7.83290-10 1.90000+ 1 5.14430-10 2.10000+ 1 5.30150-10 2.20000+ 1 4.79970-10 2.70000+ 1 1.90540-11 1 67000 0 0 1.64930+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.53380- 6 3.00000+ 0 4.49280- 6 5.00000+ 0 3.09960- 6 6.00000+ 0 3.05720- 6 8.00000+ 0 1.74340- 5 1.00000+ 1 9.20610- 6 1.10000+ 1 9.37980- 6 1.30000+ 1 1.83270- 6 1.40000+ 1 1.11450- 6 1.60000+ 1 1.22980- 5 1.80000+ 1 1.61620- 5 1.90000+ 1 8.42710- 6 2.10000+ 1 4.71500- 6 2.20000+ 1 3.94560- 6 2.70000+ 1 3.85480- 6 1 67000 0 0 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10307- 4 3.00000+ 0 1.37888- 4 5.00000+ 0 1.15110- 4 6.00000+ 0 1.08401- 4 8.00000+ 0 1.02986- 4 1.00000+ 1 8.68061- 5 1.10000+ 1 7.94825- 5 1.30000+ 1 5.69723- 5 1.40000+ 1 5.41279- 5 1.60000+ 1 6.18974- 5 1.80000+ 1 4.98515- 5 1.90000+ 1 4.37513- 5 2.10000+ 1 2.90465- 5 2.20000+ 1 2.66574- 5 2.40000+ 1 1.08000- 5 2.50000+ 1 9.73000- 6 2.70000+ 1 3.60202- 5 2.90000+ 1 3.38900- 5 3.00000+ 1 2.85800- 5 4.10000+ 1 5.42000- 6 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13562+ 0 3.00000+ 0 2.23285- 1 5.00000+ 0 2.55731- 1 6.00000+ 0 2.10359- 1 8.00000+ 0 1.34249- 2 1.00000+ 1 1.37001- 2 1.10000+ 1 1.30579- 2 1.30000+ 1 1.23790- 2 1.40000+ 1 1.17358- 2 1.60000+ 1 4.58645- 4 1.80000+ 1 5.72201- 4 1.90000+ 1 2.13657- 4 2.10000+ 1 4.22222- 5 2.20000+ 1 4.11518- 5 2.70000+ 1 5.16820- 7 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.71434- 2 3.00000+ 0 1.54195- 3 5.00000+ 0 1.82127- 3 6.00000+ 0 1.33128- 3 8.00000+ 0 1.78033- 5 1.00000+ 1 1.78600- 5 1.10000+ 1 1.69396- 5 1.30000+ 1 1.55307- 5 1.40000+ 1 1.46439- 5 1.60000+ 1 9.27307- 8 1.80000+ 1 1.07108- 7 1.90000+ 1 3.52170- 8 2.10000+ 1 6.51924- 9 2.20000+ 1 6.18402- 9 2.70000+ 1 1.31991-11 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.11768+ 0 3.00000+ 0 9.05440+ 0 5.00000+ 0 7.45229+ 0 6.00000+ 0 7.03221+ 0 8.00000+ 0 6.48664+ 0 1.00000+ 1 5.31025+ 0 1.10000+ 1 4.85256+ 0 1.30000+ 1 3.22860+ 0 1.40000+ 1 3.07962+ 0 1.60000+ 1 2.91571+ 0 1.80000+ 1 2.50101+ 0 1.90000+ 1 2.07312+ 0 2.10000+ 1 1.13885+ 0 2.20000+ 1 1.09610+ 0 2.70000+ 1 9.99999- 1 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.44534- 3 3.00000+ 0 7.68036- 3 5.00000+ 0 6.99232- 3 6.00000+ 0 6.62202- 3 8.00000+ 0 1.98171- 3 1.00000+ 1 1.80573- 3 1.10000+ 1 1.63208- 3 1.30000+ 1 1.32270- 3 1.40000+ 1 1.28653- 3 1.60000+ 1 3.58360- 4 1.80000+ 1 2.93091- 4 1.90000+ 1 2.58413- 4 2.10000+ 1 1.44577- 4 2.20000+ 1 1.39566- 4 2.70000+ 1 1.91698- 5 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.70679- 1 4.67703- 2 6.00000+ 0 4.82087- 1 4.76373- 2 1.00000+ 1 4.99337- 2 5.37886- 2 1.10000+ 1 9.65175- 2 5.39705- 2 1.30000+ 1 8.52835- 4 5.43038- 2 1.40000+ 1 1.11029- 3 5.43437- 2 1.80000+ 1 1.10229- 2 5.53559- 2 1.90000+ 1 2.13439- 2 5.53968- 2 2.10000+ 1 1.93629- 4 5.55254- 2 2.20000+ 1 2.50919- 4 5.55328- 2 2.90000+ 1 2.43829- 3 5.56651- 2 3.00000+ 1 5.07127- 3 5.56704- 2 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.40512- 3 3.69786- 2 3.00000+ 0 5.00000+ 0 7.20820- 3 3.74101- 2 3.00000+ 0 6.00000+ 0 6.21731- 3 3.82771- 2 3.00000+ 0 8.00000+ 0 2.07667- 3 4.42363- 2 3.00000+ 0 1.00000+ 1 1.49518- 3 4.44284- 2 3.00000+ 0 1.10000+ 1 1.34079- 3 4.46103- 2 3.00000+ 0 1.30000+ 1 1.01699- 4 4.49436- 2 3.00000+ 0 1.40000+ 1 9.39197- 5 4.49835- 2 3.00000+ 0 1.60000+ 1 4.89334- 4 4.59184- 2 3.00000+ 0 1.80000+ 1 3.39465- 4 4.59957- 2 3.00000+ 0 1.90000+ 1 3.01686- 4 4.60366- 2 3.00000+ 0 2.10000+ 1 2.28316- 5 4.61652- 2 3.00000+ 0 2.20000+ 1 2.08597- 5 4.61726- 2 3.00000+ 0 2.70000+ 1 7.85639- 5 4.62836- 2 3.00000+ 0 2.90000+ 1 4.35854- 5 4.63049- 2 3.00000+ 0 3.00000+ 1 3.67385- 5 4.63102- 2 3.00000+ 0 4.10000+ 1 5.91541- 6 4.63334- 2 5.00000+ 0 5.00000+ 0 6.24766- 4 3.78416- 2 5.00000+ 0 6.00000+ 0 1.22398- 2 3.87086- 2 5.00000+ 0 8.00000+ 0 1.16918- 3 4.46678- 2 5.00000+ 0 1.00000+ 1 2.28625- 4 4.48599- 2 5.00000+ 0 1.10000+ 1 2.19315- 3 4.50418- 2 5.00000+ 0 1.30000+ 1 1.11778- 4 4.53751- 2 5.00000+ 0 1.40000+ 1 3.40813- 4 4.54150- 2 5.00000+ 0 1.60000+ 1 2.65364- 4 4.63499- 2 5.00000+ 0 1.80000+ 1 5.06449- 5 4.64272- 2 5.00000+ 0 1.90000+ 1 4.74800- 4 4.64681- 2 5.00000+ 0 2.10000+ 1 2.44924- 5 4.65967- 2 5.00000+ 0 2.20000+ 1 7.44104- 5 4.66041- 2 5.00000+ 0 2.40000+ 1 4.15111- 7 4.67595- 2 5.00000+ 0 2.50000+ 1 4.15111- 7 4.67606- 2 5.00000+ 0 2.70000+ 1 4.22391- 5 4.67151- 2 5.00000+ 0 2.90000+ 1 6.43426- 6 4.67364- 2 5.00000+ 0 3.00000+ 1 5.73917- 5 4.67417- 2 5.00000+ 0 4.10000+ 1 3.21723- 6 4.67649- 2 6.00000+ 0 6.00000+ 0 5.71165- 3 3.95756- 2 6.00000+ 0 8.00000+ 0 9.52797- 4 4.55348- 2 6.00000+ 0 1.00000+ 1 2.08350- 3 4.57269- 2 6.00000+ 0 1.10000+ 1 2.10990- 3 4.59088- 2 6.00000+ 0 1.30000+ 1 3.93743- 4 4.62421- 2 6.00000+ 0 1.40000+ 1 3.46825- 4 4.62820- 2 6.00000+ 0 1.60000+ 1 2.13470- 4 4.72169- 2 6.00000+ 0 1.80000+ 1 4.54650- 4 4.72942- 2 6.00000+ 0 1.90000+ 1 4.60260- 4 4.73351- 2 6.00000+ 0 2.10000+ 1 8.66521- 5 4.74637- 2 6.00000+ 0 2.20000+ 1 7.59647- 5 4.74711- 2 6.00000+ 0 2.40000+ 1 7.26418- 7 4.76265- 2 6.00000+ 0 2.50000+ 1 5.18877- 7 4.76276- 2 6.00000+ 0 2.70000+ 1 3.39355- 5 4.75821- 2 6.00000+ 0 2.90000+ 1 5.80124- 5 4.76034- 2 6.00000+ 0 3.00000+ 1 5.57275- 5 4.76087- 2 6.00000+ 0 4.10000+ 1 2.59448- 6 4.76319- 2 8.00000+ 0 8.00000+ 0 1.96353- 4 5.14940- 2 8.00000+ 0 1.00000+ 1 2.44204- 4 5.16861- 2 8.00000+ 0 1.10000+ 1 2.07463- 4 5.18680- 2 8.00000+ 0 1.30000+ 1 1.51533- 5 5.22013- 2 8.00000+ 0 1.40000+ 1 1.32843- 5 5.22412- 2 8.00000+ 0 1.60000+ 1 9.22617- 5 5.31761- 2 8.00000+ 0 1.80000+ 1 5.55250- 5 5.32534- 2 8.00000+ 0 1.90000+ 1 4.68069- 5 5.32943- 2 8.00000+ 0 2.10000+ 1 3.42486- 6 5.34229- 2 8.00000+ 0 2.20000+ 1 2.90595- 6 5.34303- 2 8.00000+ 0 2.70000+ 1 1.48413- 5 5.35413- 2 8.00000+ 0 2.90000+ 1 7.16113- 6 5.35626- 2 8.00000+ 0 3.00000+ 1 5.70820- 6 5.35679- 2 8.00000+ 0 4.10000+ 1 1.14162- 6 5.35911- 2 1.00000+ 1 1.00000+ 1 2.03420- 5 5.18782- 2 1.00000+ 1 1.10000+ 1 3.81591- 4 5.20601- 2 1.00000+ 1 1.30000+ 1 1.55671- 5 5.23934- 2 1.00000+ 1 1.40000+ 1 4.46281- 5 5.24333- 2 1.00000+ 1 1.60000+ 1 5.55240- 5 5.33682- 2 1.00000+ 1 1.80000+ 1 8.92531- 6 5.34455- 2 1.00000+ 1 1.90000+ 1 8.29231- 5 5.34864- 2 1.00000+ 1 2.10000+ 1 3.42481- 6 5.36150- 2 1.00000+ 1 2.20000+ 1 9.85899- 6 5.36224- 2 1.00000+ 1 2.70000+ 1 8.82121- 6 5.37334- 2 1.00000+ 1 2.90000+ 1 1.14161- 6 5.37547- 2 1.00000+ 1 3.00000+ 1 1.00670- 5 5.37600- 2 1.00000+ 1 4.10000+ 1 6.22671- 7 5.37832- 2 1.10000+ 1 1.10000+ 1 1.96151- 4 5.22420- 2 1.10000+ 1 1.30000+ 1 5.78053- 5 5.25753- 2 1.10000+ 1 1.40000+ 1 4.95062- 5 5.26152- 2 1.10000+ 1 1.60000+ 1 4.66003- 5 5.35501- 2 1.10000+ 1 1.80000+ 1 8.35434- 5 5.36274- 2 1.10000+ 1 1.90000+ 1 8.57255- 5 5.36683- 2 1.10000+ 1 2.10000+ 1 1.27651- 5 5.37969- 2 1.10000+ 1 2.20000+ 1 1.08971- 5 5.38043- 2 1.10000+ 1 2.40000+ 1 1.03781- 7 5.39597- 2 1.10000+ 1 2.50000+ 1 1.03781- 7 5.39608- 2 1.10000+ 1 2.70000+ 1 7.36864- 6 5.39153- 2 1.10000+ 1 2.90000+ 1 1.06901- 5 5.39366- 2 1.10000+ 1 3.00000+ 1 1.03781- 5 5.39419- 2 1.10000+ 1 4.10000+ 1 5.18903- 7 5.39651- 2 1.30000+ 1 1.30000+ 1 1.03231- 7 5.29086- 2 1.30000+ 1 1.40000+ 1 7.01946- 6 5.29485- 2 1.30000+ 1 1.60000+ 1 3.40668- 6 5.38834- 2 1.30000+ 1 1.80000+ 1 3.30343- 6 5.39607- 2 1.30000+ 1 1.90000+ 1 1.19753- 5 5.40016- 2 1.30000+ 1 2.20000+ 1 1.44532- 6 5.41376- 2 1.30000+ 1 2.70000+ 1 5.16154- 7 5.42486- 2 1.30000+ 1 2.90000+ 1 4.12924- 7 5.42699- 2 1.30000+ 1 3.00000+ 1 1.44532- 6 5.42752- 2 1.40000+ 1 1.40000+ 1 1.66051- 6 5.29884- 2 1.40000+ 1 1.60000+ 1 2.90593- 6 5.39233- 2 1.40000+ 1 1.80000+ 1 9.23661- 6 5.40006- 2 1.40000+ 1 1.90000+ 1 1.01702- 5 5.40415- 2 1.40000+ 1 2.10000+ 1 1.45302- 6 5.41701- 2 1.40000+ 1 2.20000+ 1 7.26459- 7 5.41775- 2 1.40000+ 1 2.70000+ 1 4.15125- 7 5.42885- 2 1.40000+ 1 2.90000+ 1 1.14162- 6 5.43098- 2 1.40000+ 1 3.00000+ 1 1.24542- 6 5.43151- 2 1.60000+ 1 1.60000+ 1 1.08395- 5 5.48583- 2 1.60000+ 1 1.80000+ 1 1.27155- 5 5.49356- 2 1.60000+ 1 1.90000+ 1 1.05272- 5 5.49764- 2 1.60000+ 1 2.10000+ 1 7.29578- 7 5.51050- 2 1.60000+ 1 2.20000+ 1 6.25351- 7 5.51124- 2 1.60000+ 1 2.70000+ 1 3.43954- 6 5.52235- 2 1.60000+ 1 2.90000+ 1 1.66764- 6 5.52448- 2 1.60000+ 1 3.00000+ 1 1.25077- 6 5.52501- 2 1.60000+ 1 4.10000+ 1 3.12690- 7 5.52732- 2 1.80000+ 1 1.80000+ 1 9.34075- 7 5.50129- 2 1.80000+ 1 1.90000+ 1 1.81621- 5 5.50537- 2 1.80000+ 1 2.10000+ 1 7.26455- 7 5.51823- 2 1.80000+ 1 2.20000+ 1 2.07561- 6 5.51897- 2 1.80000+ 1 2.70000+ 1 1.97191- 6 5.53008- 2 1.80000+ 1 2.90000+ 1 2.07561- 7 5.53221- 2 1.80000+ 1 3.00000+ 1 2.17941- 6 5.53274- 2 1.80000+ 1 4.10000+ 1 1.03781- 7 5.53505- 2 1.90000+ 1 1.90000+ 1 9.07292- 6 5.50946- 2 1.90000+ 1 2.10000+ 1 2.62104- 6 5.52232- 2 1.90000+ 1 2.20000+ 1 2.21774- 6 5.52306- 2 1.90000+ 1 2.70000+ 1 1.61289- 6 5.53416- 2 1.90000+ 1 2.90000+ 1 2.21774- 6 5.53629- 2 1.90000+ 1 3.00000+ 1 2.21774- 6 5.53682- 2 1.90000+ 1 4.10000+ 1 1.00805- 7 5.53914- 2 2.10000+ 1 2.20000+ 1 3.11588- 7 5.53591- 2 2.10000+ 1 2.70000+ 1 1.03860- 7 5.54702- 2 2.10000+ 1 2.90000+ 1 1.03860- 7 5.54915- 2 2.10000+ 1 3.00000+ 1 3.11588- 7 5.54968- 2 2.20000+ 1 2.20000+ 1 1.14120- 7 5.53665- 2 2.20000+ 1 2.70000+ 1 1.14120- 7 5.54776- 2 2.20000+ 1 2.90000+ 1 2.28238- 7 5.54989- 2 2.20000+ 1 3.00000+ 1 3.42369- 7 5.55042- 2 2.70000+ 1 2.70000+ 1 4.26375- 7 5.55886- 2 2.70000+ 1 2.90000+ 1 2.84240- 7 5.56099- 2 2.70000+ 1 3.00000+ 1 2.84240- 7 5.56152- 2 2.90000+ 1 3.00000+ 1 3.10648- 7 5.56365- 2 3.00000+ 1 3.00000+ 1 1.03779- 7 5.56418- 2 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90050- 5 4.31500- 4 6.00000+ 0 1.18290- 3 1.29850- 3 1.00000+ 1 2.75780- 2 7.44980- 3 1.10000+ 1 3.79780- 2 7.63170- 3 1.30000+ 1 6.48109- 4 7.96500- 3 1.40000+ 1 9.70149- 4 8.00490- 3 1.80000+ 1 6.57069- 3 9.01715- 3 1.90000+ 1 9.45579- 3 9.05800- 3 2.10000+ 1 8.80929- 5 9.18657- 3 2.20000+ 1 1.36210- 4 9.19397- 3 2.90000+ 1 8.82609- 4 9.32631- 3 3.00000+ 1 1.22250- 3 9.33162- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 4.85423- 2 1.11500- 5 5.00000+ 0 1.80000+ 1 3.70644- 2 8.84500- 5 5.00000+ 0 1.90000+ 1 4.16035- 2 1.29300- 4 5.00000+ 0 2.10000+ 1 1.11315- 2 2.57870- 4 5.00000+ 0 2.20000+ 1 1.65853- 2 2.65270- 4 5.00000+ 0 2.40000+ 1 2.73714- 2 4.20700- 4 5.00000+ 0 2.50000+ 1 2.21881- 2 4.21770- 4 5.00000+ 0 2.70000+ 1 7.51418- 3 3.76310- 4 5.00000+ 0 2.90000+ 1 4.50607- 3 3.97610- 4 5.00000+ 0 3.00000+ 1 4.82951- 3 4.02920- 4 5.00000+ 0 4.10000+ 1 5.63603- 4 4.26080- 4 6.00000+ 0 1.60000+ 1 5.23843- 2 8.78150- 4 6.00000+ 0 1.80000+ 1 2.19296- 2 9.55450- 4 6.00000+ 0 1.90000+ 1 3.72942- 2 9.96300- 4 6.00000+ 0 2.10000+ 1 6.26264- 2 1.12487- 3 6.00000+ 0 2.20000+ 1 7.75189- 2 1.13227- 3 6.00000+ 0 2.40000+ 1 3.89706- 2 1.28770- 3 6.00000+ 0 2.50000+ 1 3.05925- 2 1.28877- 3 6.00000+ 0 2.70000+ 1 8.06744- 3 1.24331- 3 6.00000+ 0 2.90000+ 1 2.73672- 3 1.26461- 3 6.00000+ 0 3.00000+ 1 4.46341- 3 1.26992- 3 6.00000+ 0 4.10000+ 1 6.05639- 4 1.29308- 3 8.00000+ 0 8.00000+ 0 1.13806- 2 5.15520- 3 8.00000+ 0 1.00000+ 1 2.29576- 2 5.34730- 3 8.00000+ 0 1.10000+ 1 4.01128- 2 5.52920- 3 8.00000+ 0 1.30000+ 1 3.12071- 2 5.86250- 3 8.00000+ 0 1.40000+ 1 4.25095- 2 5.90240- 3 8.00000+ 0 1.60000+ 1 4.55170- 3 6.83735- 3 8.00000+ 0 1.80000+ 1 5.11054- 3 6.91465- 3 8.00000+ 0 1.90000+ 1 8.79557- 3 6.95550- 3 8.00000+ 0 2.10000+ 1 5.86479- 3 7.08407- 3 8.00000+ 0 2.20000+ 1 7.91511- 3 7.09147- 3 8.00000+ 0 2.40000+ 1 2.84276- 4 7.24690- 3 8.00000+ 0 2.50000+ 1 2.05731- 4 7.24797- 3 8.00000+ 0 2.70000+ 1 7.12359- 4 7.20251- 3 8.00000+ 0 2.90000+ 1 6.53739- 4 7.22381- 3 8.00000+ 0 3.00000+ 1 1.06471- 3 7.22912- 3 8.00000+ 0 4.10000+ 1 5.36479- 5 7.25228- 3 1.00000+ 1 1.00000+ 1 8.13058- 5 5.53940- 3 1.00000+ 1 1.10000+ 1 6.35503- 4 5.72130- 3 1.00000+ 1 1.30000+ 1 1.20625- 3 6.05460- 3 1.00000+ 1 1.40000+ 1 1.24171- 2 6.09450- 3 1.00000+ 1 1.60000+ 1 3.63213- 3 7.02945- 3 1.00000+ 1 1.80000+ 1 1.49344- 5 7.10675- 3 1.00000+ 1 1.90000+ 1 1.28314- 4 7.14760- 3 1.00000+ 1 2.10000+ 1 2.17376- 4 7.27617- 3 1.00000+ 1 2.20000+ 1 1.49344- 3 7.28357- 3 1.00000+ 1 2.40000+ 1 9.90015- 5 7.43900- 3 1.00000+ 1 2.50000+ 1 2.16828- 4 7.44007- 3 1.00000+ 1 2.70000+ 1 5.39259- 4 7.39461- 3 1.00000+ 1 2.90000+ 1 1.65937- 6 7.41591- 3 1.00000+ 1 3.00000+ 1 1.54864- 5 7.42122- 3 1.00000+ 1 4.10000+ 1 4.03763- 5 7.44438- 3 1.10000+ 1 1.10000+ 1 9.97245- 4 5.90320- 3 1.10000+ 1 1.30000+ 1 6.25225- 3 6.23650- 3 1.10000+ 1 1.40000+ 1 4.04150- 3 6.27640- 3 1.10000+ 1 1.60000+ 1 6.31971- 3 7.21135- 3 1.10000+ 1 1.80000+ 1 1.33857- 4 7.28865- 3 1.10000+ 1 1.90000+ 1 3.24105- 4 7.32950- 3 1.10000+ 1 2.10000+ 1 5.69682- 4 7.45807- 3 1.10000+ 1 2.20000+ 1 3.69476- 4 7.46547- 3 1.10000+ 1 2.40000+ 1 2.52761- 4 7.62090- 3 1.10000+ 1 2.50000+ 1 1.28873- 4 7.62197- 3 1.10000+ 1 2.70000+ 1 9.38066- 4 7.57651- 3 1.10000+ 1 2.90000+ 1 1.71459- 5 7.59781- 3 1.10000+ 1 3.00000+ 1 3.70570- 5 7.60312- 3 1.10000+ 1 4.10000+ 1 7.02445- 5 7.62628- 3 1.30000+ 1 1.30000+ 1 1.83349- 3 6.56980- 3 1.30000+ 1 1.40000+ 1 6.01758- 2 6.60970- 3 1.30000+ 1 1.60000+ 1 4.58949- 3 7.54465- 3 1.30000+ 1 1.80000+ 1 3.37393- 4 7.62195- 3 1.30000+ 1 1.90000+ 1 1.46183- 3 7.66280- 3 1.30000+ 1 2.10000+ 1 6.75868- 4 7.79137- 3 1.30000+ 1 2.20000+ 1 7.95247- 3 7.79877- 3 1.30000+ 1 2.40000+ 1 3.28529- 4 7.95420- 3 1.30000+ 1 2.50000+ 1 5.73547- 4 7.95527- 3 1.30000+ 1 2.70000+ 1 6.73670- 4 7.90981- 3 1.30000+ 1 2.90000+ 1 4.48019- 5 7.93111- 3 1.30000+ 1 3.00000+ 1 1.78649- 4 7.93642- 3 1.30000+ 1 4.10000+ 1 5.03317- 5 7.95958- 3 1.40000+ 1 1.40000+ 1 1.68653- 2 6.64960- 3 1.40000+ 1 1.60000+ 1 6.31457- 3 7.58455- 3 1.40000+ 1 1.80000+ 1 2.48558- 3 7.66185- 3 1.40000+ 1 1.90000+ 1 9.91677- 4 7.70270- 3 1.40000+ 1 2.10000+ 1 7.81694- 3 7.83127- 3 1.40000+ 1 2.20000+ 1 4.69298- 3 7.83867- 3 1.40000+ 1 2.40000+ 1 1.02818- 3 7.99410- 3 1.40000+ 1 2.50000+ 1 4.91148- 4 7.99517- 3 1.40000+ 1 2.70000+ 1 9.29753- 4 7.94971- 3 1.40000+ 1 2.90000+ 1 3.12498- 4 7.97101- 3 1.40000+ 1 3.00000+ 1 1.22238- 4 7.97632- 3 1.40000+ 1 4.10000+ 1 6.91365- 5 7.99948- 3 1.60000+ 1 1.60000+ 1 4.30302- 4 8.51950- 3 1.60000+ 1 1.80000+ 1 8.10291- 4 8.59680- 3 1.60000+ 1 1.90000+ 1 1.38940- 3 8.63765- 3 1.60000+ 1 2.10000+ 1 8.61710- 4 8.76622- 3 1.60000+ 1 2.20000+ 1 1.16978- 3 8.77362- 3 1.60000+ 1 2.40000+ 1 3.42923- 5 8.92905- 3 1.60000+ 1 2.50000+ 1 2.43368- 5 8.93012- 3 1.60000+ 1 2.70000+ 1 1.33297- 4 8.88466- 3 1.60000+ 1 2.90000+ 1 1.03982- 4 8.90596- 3 1.60000+ 1 3.00000+ 1 1.68144- 4 8.91127- 3 1.60000+ 1 4.10000+ 1 9.95585- 6 8.93443- 3 1.80000+ 1 1.80000+ 1 5.53101- 7 8.67410- 3 1.80000+ 1 1.90000+ 1 2.71005- 5 8.71495- 3 1.80000+ 1 2.10000+ 1 5.19905- 5 8.84352- 3 1.80000+ 1 2.20000+ 1 3.09194- 4 8.85092- 3 1.80000+ 1 2.40000+ 1 1.32742- 5 9.00635- 3 1.80000+ 1 2.50000+ 1 3.26325- 5 9.00742- 3 1.80000+ 1 2.70000+ 1 1.20576- 4 8.96196- 3 1.80000+ 1 3.00000+ 1 3.31845- 6 8.98857- 3 1.80000+ 1 4.10000+ 1 8.84956- 6 9.01173- 3 1.90000+ 1 1.90000+ 1 2.59962- 5 8.75580- 3 1.90000+ 1 2.10000+ 1 1.47115- 4 8.88437- 3 1.90000+ 1 2.20000+ 1 1.00664- 4 8.89177- 3 1.90000+ 1 2.40000+ 1 4.42479- 5 9.04720- 3 1.90000+ 1 2.50000+ 1 2.21235- 5 9.04827- 3 1.90000+ 1 2.70000+ 1 2.06314- 4 9.00281- 3 1.90000+ 1 2.90000+ 1 3.31843- 6 9.02411- 3 1.90000+ 1 3.00000+ 1 6.08407- 6 9.02942- 3 1.90000+ 1 4.10000+ 1 1.54865- 5 9.05258- 3 2.10000+ 1 2.10000+ 1 5.80723- 5 9.01294- 3 2.10000+ 1 2.20000+ 1 1.12113- 3 9.02034- 3 2.10000+ 1 2.40000+ 1 4.20333- 5 9.17577- 3 2.10000+ 1 2.50000+ 1 5.69661- 5 9.17684- 3 2.10000+ 1 2.70000+ 1 1.26102- 4 9.13138- 3 2.10000+ 1 2.90000+ 1 6.63694- 6 9.15268- 3 2.10000+ 1 3.00000+ 1 1.82513- 5 9.15799- 3 2.10000+ 1 4.10000+ 1 9.40219- 6 9.18115- 3 2.20000+ 1 2.20000+ 1 3.48455- 4 9.02774- 3 2.20000+ 1 2.40000+ 1 1.06201- 4 9.18317- 3 2.20000+ 1 2.50000+ 1 5.64159- 5 9.18424- 3 2.20000+ 1 2.70000+ 1 1.72015- 4 9.13878- 3 2.20000+ 1 2.90000+ 1 3.92702- 5 9.16008- 3 2.20000+ 1 3.00000+ 1 1.27210- 5 9.16539- 3 2.20000+ 1 4.10000+ 1 1.27210- 5 9.18855- 3 2.40000+ 1 2.40000+ 1 6.12269- 7 9.33860- 3 2.40000+ 1 2.50000+ 1 7.95946- 6 9.33967- 3 2.40000+ 1 2.70000+ 1 5.51054- 6 9.29421- 3 2.40000+ 1 2.90000+ 1 1.83689- 6 9.31551- 3 2.40000+ 1 3.00000+ 1 5.51054- 6 9.32082- 3 2.40000+ 1 4.10000+ 1 6.12269- 7 9.34398- 3 2.50000+ 1 2.50000+ 1 1.57367- 6 9.34074- 3 2.50000+ 1 2.70000+ 1 3.14705- 6 9.29528- 3 2.50000+ 1 2.90000+ 1 3.67166- 6 9.31658- 3 2.50000+ 1 3.00000+ 1 2.62262- 6 9.32189- 3 2.70000+ 1 2.70000+ 1 2.16635- 5 9.24982- 3 2.70000+ 1 2.90000+ 1 3.19252- 5 9.27112- 3 2.70000+ 1 3.00000+ 1 5.13104- 5 9.27643- 3 2.70000+ 1 4.10000+ 1 3.42078- 6 9.29959- 3 2.90000+ 1 3.00000+ 1 2.17285- 6 9.29773- 3 2.90000+ 1 4.10000+ 1 4.34564- 6 9.32089- 3 3.00000+ 1 3.00000+ 1 8.26470- 7 9.30304- 3 3.00000+ 1 4.10000+ 1 2.47953- 6 9.32620- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 9.56968- 7 8.67000- 4 8.00000+ 0 5.58209- 3 6.82620- 3 1.10000+ 1 1.27570- 4 7.20020- 3 1.30000+ 1 1.70000- 1 7.53350- 3 1.60000+ 1 1.16700- 3 8.50835- 3 1.90000+ 1 2.98989- 5 8.62650- 3 2.10000+ 1 2.99479- 2 8.75507- 3 2.40000+ 1 3.80809- 5 8.91790- 3 2.70000+ 1 2.07420- 4 8.87351- 3 3.00000+ 1 6.66899- 6 8.90012- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 8.17967- 3 4.46650- 4 6.00000+ 0 1.80000+ 1 4.61712- 2 5.23950- 4 6.00000+ 0 1.90000+ 1 1.47740- 2 5.64800- 4 6.00000+ 0 2.10000+ 1 5.52672- 2 6.93370- 4 6.00000+ 0 2.20000+ 1 1.97282- 2 7.00770- 4 6.00000+ 0 2.40000+ 1 1.30329- 3 8.56200- 4 6.00000+ 0 2.50000+ 1 1.23786- 3 8.57270- 4 6.00000+ 0 2.70000+ 1 1.19813- 3 8.11810- 4 6.00000+ 0 2.90000+ 1 5.54568- 3 8.33110- 4 6.00000+ 0 3.00000+ 1 1.76524- 3 8.38420- 4 6.00000+ 0 4.10000+ 1 8.90648- 5 8.61580- 4 8.00000+ 0 8.00000+ 0 8.17552- 4 4.72370- 3 8.00000+ 0 1.00000+ 1 2.31676- 2 4.91580- 3 8.00000+ 0 1.10000+ 1 2.24527- 3 5.09770- 3 8.00000+ 0 1.30000+ 1 2.50347- 3 5.43100- 3 8.00000+ 0 1.40000+ 1 2.75189- 3 5.47090- 3 8.00000+ 0 1.60000+ 1 2.99889- 4 6.40585- 3 8.00000+ 0 1.80000+ 1 3.44904- 3 6.48315- 3 8.00000+ 0 1.90000+ 1 4.37665- 4 6.52400- 3 8.00000+ 0 2.10000+ 1 3.35377- 4 6.65257- 3 8.00000+ 0 2.20000+ 1 3.13802- 4 6.65997- 3 8.00000+ 0 2.40000+ 1 7.23632- 5 6.81540- 3 8.00000+ 0 2.50000+ 1 2.92227- 5 6.81647- 3 8.00000+ 0 2.70000+ 1 4.59220- 5 6.77101- 3 8.00000+ 0 2.90000+ 1 4.11222- 4 6.79231- 3 8.00000+ 0 3.00000+ 1 5.21847- 5 6.79762- 3 8.00000+ 0 4.10000+ 1 3.47888- 6 6.82078- 3 1.00000+ 1 1.00000+ 1 2.34424- 2 5.10790- 3 1.00000+ 1 1.10000+ 1 6.77282- 2 5.28980- 3 1.00000+ 1 1.30000+ 1 3.61195- 2 5.62310- 3 1.00000+ 1 1.40000+ 1 5.75536- 2 5.66300- 3 1.00000+ 1 1.60000+ 1 5.56995- 3 6.59795- 3 1.00000+ 1 1.80000+ 1 8.85181- 3 6.67525- 3 1.00000+ 1 1.90000+ 1 1.45845- 2 6.71610- 3 1.00000+ 1 2.10000+ 1 6.78965- 3 6.84467- 3 1.00000+ 1 2.20000+ 1 1.07736- 2 6.85207- 3 1.00000+ 1 2.40000+ 1 3.20080- 4 7.00750- 3 1.00000+ 1 2.50000+ 1 1.86475- 4 7.00857- 3 1.00000+ 1 2.70000+ 1 8.96190- 4 6.96311- 3 1.00000+ 1 2.90000+ 1 1.10569- 3 6.98441- 3 1.00000+ 1 3.00000+ 1 1.76040- 3 6.98972- 3 1.00000+ 1 4.10000+ 1 6.74933- 5 7.01288- 3 1.10000+ 1 1.10000+ 1 1.69774- 3 5.47170- 3 1.10000+ 1 1.30000+ 1 3.90239- 2 5.80500- 3 1.10000+ 1 1.40000+ 1 5.37853- 3 5.84490- 3 1.10000+ 1 1.60000+ 1 4.58531- 4 6.77985- 3 1.10000+ 1 1.80000+ 1 1.04133- 2 6.85715- 3 1.10000+ 1 1.90000+ 1 6.21339- 4 6.89800- 3 1.10000+ 1 2.10000+ 1 6.19756- 3 7.02657- 3 1.10000+ 1 2.20000+ 1 8.07798- 4 7.03397- 3 1.10000+ 1 2.40000+ 1 1.76730- 4 7.18940- 3 1.10000+ 1 2.50000+ 1 6.12285- 5 7.19047- 3 1.10000+ 1 2.70000+ 1 7.16661- 5 7.14501- 3 1.10000+ 1 2.90000+ 1 1.24890- 3 7.16631- 3 1.10000+ 1 3.00000+ 1 7.30573- 5 7.17162- 3 1.10000+ 1 4.10000+ 1 5.56646- 6 7.19478- 3 1.30000+ 1 1.30000+ 1 3.64209- 2 6.13830- 3 1.30000+ 1 1.40000+ 1 1.51229- 1 6.17820- 3 1.30000+ 1 1.60000+ 1 6.03967- 4 7.11315- 3 1.30000+ 1 1.80000+ 1 5.49343- 3 7.19045- 3 1.30000+ 1 1.90000+ 1 7.88284- 3 7.23130- 3 1.30000+ 1 2.10000+ 1 1.14924- 2 7.35987- 3 1.30000+ 1 2.20000+ 1 2.56181- 2 7.36727- 3 1.30000+ 1 2.40000+ 1 1.25318- 3 7.52270- 3 1.30000+ 1 2.50000+ 1 1.59758- 3 7.52377- 3 1.30000+ 1 2.70000+ 1 9.74103- 5 7.47831- 3 1.30000+ 1 2.90000+ 1 6.62422- 4 7.49961- 3 1.30000+ 1 3.00000+ 1 9.40743- 4 7.50492- 3 1.30000+ 1 4.10000+ 1 7.65399- 6 7.52808- 3 1.40000+ 1 1.40000+ 1 7.26272- 3 6.21810- 3 1.40000+ 1 1.60000+ 1 5.43414- 4 7.15305- 3 1.40000+ 1 1.80000+ 1 7.75399- 3 7.23035- 3 1.40000+ 1 1.90000+ 1 9.94995- 4 7.27120- 3 1.40000+ 1 2.10000+ 1 1.98303- 2 7.39977- 3 1.40000+ 1 2.20000+ 1 2.23345- 3 7.40717- 3 1.40000+ 1 2.40000+ 1 5.07927- 4 7.56260- 3 1.40000+ 1 2.50000+ 1 1.22460- 4 7.56367- 3 1.40000+ 1 2.70000+ 1 8.41867- 5 7.51821- 3 1.40000+ 1 2.90000+ 1 9.07336- 4 7.53951- 3 1.40000+ 1 3.00000+ 1 1.16885- 4 7.54482- 3 1.40000+ 1 4.10000+ 1 6.26224- 6 7.56798- 3 1.60000+ 1 1.60000+ 1 2.64402- 5 8.08800- 3 1.60000+ 1 1.80000+ 1 8.34983- 4 8.16530- 3 1.60000+ 1 1.90000+ 1 8.97601- 5 8.20615- 3 1.60000+ 1 2.10000+ 1 7.79293- 5 8.33472- 3 1.60000+ 1 2.20000+ 1 6.26233- 5 8.34212- 3 1.60000+ 1 2.40000+ 1 1.53079- 5 8.49755- 3 1.60000+ 1 2.50000+ 1 4.87045- 6 8.49862- 3 1.60000+ 1 2.70000+ 1 8.34983- 6 8.45316- 3 1.60000+ 1 2.90000+ 1 9.95010- 5 8.47446- 3 1.60000+ 1 3.00000+ 1 1.04365- 5 8.47977- 3 1.60000+ 1 4.10000+ 1 6.95797- 7 8.50293- 3 1.80000+ 1 1.80000+ 1 7.96700- 4 8.24260- 3 1.80000+ 1 1.90000+ 1 2.24738- 3 8.28345- 3 1.80000+ 1 2.10000+ 1 1.01512- 3 8.41202- 3 1.80000+ 1 2.20000+ 1 1.46324- 3 8.41942- 3 1.80000+ 1 2.40000+ 1 3.89645- 5 8.57485- 3 1.80000+ 1 2.50000+ 1 1.87860- 5 8.57592- 3 1.80000+ 1 2.70000+ 1 1.34287- 4 8.53046- 3 1.80000+ 1 2.90000+ 1 1.97609- 4 8.55176- 3 1.80000+ 1 3.00000+ 1 2.71357- 4 8.55707- 3 1.80000+ 1 4.10000+ 1 1.04365- 5 8.58023- 3 1.90000+ 1 1.90000+ 1 5.74268- 5 8.32430- 3 1.90000+ 1 2.10000+ 1 1.27043- 3 8.45287- 3 1.90000+ 1 2.20000+ 1 1.54074- 4 8.46027- 3 1.90000+ 1 2.40000+ 1 2.87124- 5 8.61570- 3 1.90000+ 1 2.50000+ 1 9.10453- 6 8.61677- 3 1.90000+ 1 2.70000+ 1 1.40061- 5 8.57131- 3 1.90000+ 1 2.90000+ 1 2.71040- 4 8.59261- 3 1.90000+ 1 3.00000+ 1 1.33059- 5 8.59792- 3 1.90000+ 1 4.10000+ 1 1.40061- 6 8.62108- 3 2.10000+ 1 2.10000+ 1 8.95468- 4 8.58144- 3 2.10000+ 1 2.20000+ 1 3.48455- 3 8.58884- 3 2.10000+ 1 2.40000+ 1 1.37071- 4 8.74427- 3 2.10000+ 1 2.50000+ 1 1.77428- 4 8.74534- 3 2.10000+ 1 2.70000+ 1 1.25245- 5 8.69988- 3 2.10000+ 1 2.90000+ 1 1.21767- 4 8.72118- 3 2.10000+ 1 3.00000+ 1 1.50984- 4 8.72649- 3 2.10000+ 1 4.10000+ 1 6.95801- 7 8.74965- 3 2.20000+ 1 2.20000+ 1 2.54050- 4 8.59624- 3 2.20000+ 1 2.40000+ 1 8.77429- 5 8.75167- 3 2.20000+ 1 2.50000+ 1 2.14253- 5 8.75274- 3 2.20000+ 1 2.70000+ 1 1.42834- 5 8.70728- 3 2.20000+ 1 2.90000+ 1 2.52010- 4 8.72858- 3 2.20000+ 1 3.00000+ 1 2.65269- 5 8.73389- 3 2.20000+ 1 4.10000+ 1 1.02028- 6 8.75705- 3 2.40000+ 1 2.40000+ 1 2.85044- 6 8.90710- 3 2.40000+ 1 2.50000+ 1 1.04521- 5 8.90817- 3 2.40000+ 1 2.70000+ 1 2.85044- 6 8.86271- 3 2.40000+ 1 2.90000+ 1 6.65115- 6 8.88401- 3 2.40000+ 1 3.00000+ 1 4.75081- 6 8.88932- 3 2.50000+ 1 2.50000+ 1 9.89165- 7 8.90924- 3 2.50000+ 1 2.70000+ 1 9.89165- 7 8.86378- 3 2.50000+ 1 2.90000+ 1 2.96736- 6 8.88508- 3 2.50000+ 1 3.00000+ 1 1.97829- 6 8.89039- 3 2.70000+ 1 2.70000+ 1 1.30194- 6 8.81832- 3 2.70000+ 1 2.90000+ 1 2.99432- 5 8.83962- 3 2.70000+ 1 3.00000+ 1 2.60383- 6 8.84493- 3 2.90000+ 1 2.90000+ 1 2.64110- 5 8.86092- 3 2.90000+ 1 3.00000+ 1 6.89603- 5 8.86623- 3 2.90000+ 1 4.10000+ 1 2.93448- 6 8.88939- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.03919- 2 5.95920- 3 1.00000+ 1 7.46295- 5 6.15130- 3 1.10000+ 1 6.81875- 5 6.33320- 3 1.30000+ 1 1.55479- 2 6.66650- 3 1.40000+ 1 1.37399- 1 6.70640- 3 1.60000+ 1 1.53739- 3 7.64135- 3 1.80000+ 1 1.30609- 5 7.71865- 3 1.90000+ 1 1.26679- 5 7.75950- 3 2.10000+ 1 2.60558- 3 7.88807- 3 2.20000+ 1 2.33078- 2 7.89547- 3 2.40000+ 1 5.37266- 6 8.05090- 3 2.50000+ 1 3.05558- 5 8.05197- 3 2.70000+ 1 2.93478- 4 8.00651- 3 2.90000+ 1 2.99558- 6 8.02781- 3 3.00000+ 1 2.57848- 6 8.03312- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.09134- 3 3.85670- 3 8.00000+ 0 1.00000+ 1 6.70461- 4 4.04880- 3 8.00000+ 0 1.10000+ 1 2.55484- 2 4.23070- 3 8.00000+ 0 1.30000+ 1 2.68757- 3 4.56400- 3 8.00000+ 0 1.40000+ 1 3.50049- 3 4.60390- 3 8.00000+ 0 1.60000+ 1 4.01428- 4 5.53885- 3 8.00000+ 0 1.80000+ 1 1.17980- 4 5.61615- 3 8.00000+ 0 1.90000+ 1 3.76092- 3 5.65700- 3 8.00000+ 0 2.10000+ 1 2.49620- 4 5.78557- 3 8.00000+ 0 2.20000+ 1 2.91342- 4 5.79297- 3 8.00000+ 0 2.40000+ 1 1.07911- 4 5.94840- 3 8.00000+ 0 2.50000+ 1 1.21579- 4 5.94947- 3 8.00000+ 0 2.70000+ 1 6.11470- 5 5.90401- 3 8.00000+ 0 2.90000+ 1 1.43883- 5 5.92531- 3 8.00000+ 0 3.00000+ 1 4.25873- 4 5.93062- 3 8.00000+ 0 4.10000+ 1 4.31616- 6 5.95378- 3 1.00000+ 1 1.00000+ 1 1.69773- 4 4.24090- 3 1.00000+ 1 1.10000+ 1 4.28130- 2 4.42280- 3 1.00000+ 1 1.30000+ 1 2.47114- 3 4.75610- 3 1.00000+ 1 1.40000+ 1 2.20688- 2 4.79600- 3 1.00000+ 1 1.60000+ 1 1.33085- 4 5.73095- 3 1.00000+ 1 1.80000+ 1 6.25858- 5 5.80825- 3 1.00000+ 1 1.90000+ 1 6.54064- 3 5.84910- 3 1.00000+ 1 2.10000+ 1 4.24430- 4 5.97767- 3 1.00000+ 1 2.20000+ 1 3.19056- 3 5.98507- 3 1.00000+ 1 2.40000+ 1 1.17263- 4 6.14050- 3 1.00000+ 1 2.50000+ 1 1.93511- 4 6.14157- 3 1.00000+ 1 2.70000+ 1 2.08615- 5 6.09611- 3 1.00000+ 1 2.90000+ 1 7.91325- 6 6.11741- 3 1.00000+ 1 3.00000+ 1 7.44557- 4 6.12272- 3 1.00000+ 1 4.10000+ 1 1.43883- 6 6.14588- 3 1.10000+ 1 1.10000+ 1 5.76007- 2 4.60470- 3 1.10000+ 1 1.30000+ 1 5.96733- 2 4.93800- 3 1.10000+ 1 1.40000+ 1 8.63080- 2 4.97790- 3 1.10000+ 1 1.60000+ 1 6.07258- 3 5.91285- 3 1.10000+ 1 1.80000+ 1 9.06403- 3 5.99015- 3 1.10000+ 1 1.90000+ 1 2.11177- 2 6.03100- 3 1.10000+ 1 2.10000+ 1 1.06862- 2 6.15957- 3 1.10000+ 1 2.20000+ 1 1.51922- 2 6.16697- 3 1.10000+ 1 2.40000+ 1 5.19401- 4 6.32240- 3 1.10000+ 1 2.50000+ 1 4.15105- 4 6.32347- 3 1.10000+ 1 2.70000+ 1 9.75505- 4 6.27801- 3 1.10000+ 1 2.90000+ 1 1.15102- 3 6.29931- 3 1.10000+ 1 3.00000+ 1 2.48908- 3 6.30462- 3 1.10000+ 1 4.10000+ 1 7.33793- 5 6.32778- 3 1.30000+ 1 1.30000+ 1 8.60256- 3 5.27130- 3 1.30000+ 1 1.40000+ 1 1.62954- 1 5.31120- 3 1.30000+ 1 1.60000+ 1 6.09325- 4 6.24615- 3 1.30000+ 1 1.80000+ 1 5.28049- 4 6.32345- 3 1.30000+ 1 1.90000+ 1 8.42149- 3 6.36430- 3 1.30000+ 1 2.10000+ 1 2.68119- 3 6.49287- 3 1.30000+ 1 2.20000+ 1 2.14029- 2 6.50027- 3 1.30000+ 1 2.40000+ 1 2.94232- 4 6.65570- 3 1.30000+ 1 2.50000+ 1 6.28038- 4 6.65677- 3 1.30000+ 1 2.70000+ 1 9.71155- 5 6.61131- 3 1.30000+ 1 2.90000+ 1 6.69045- 5 6.63261- 3 1.30000+ 1 3.00000+ 1 9.46012- 4 6.63792- 3 1.30000+ 1 4.10000+ 1 7.19413- 6 6.66108- 3 1.40000+ 1 1.40000+ 1 1.09701- 1 5.35110- 3 1.40000+ 1 1.60000+ 1 8.34449- 4 6.28605- 3 1.40000+ 1 1.80000+ 1 4.30063- 3 6.36335- 3 1.40000+ 1 1.90000+ 1 1.37272- 2 6.40420- 3 1.40000+ 1 2.10000+ 1 2.56872- 2 6.53277- 3 1.40000+ 1 2.20000+ 1 3.26134- 2 6.54017- 3 1.40000+ 1 2.40000+ 1 3.13942- 3 6.69560- 3 1.40000+ 1 2.50000+ 1 1.79055- 3 6.69667- 3 1.40000+ 1 2.70000+ 1 1.34532- 4 6.65121- 3 1.40000+ 1 2.90000+ 1 5.38118- 4 6.67251- 3 1.40000+ 1 3.00000+ 1 1.58189- 3 6.67782- 3 1.40000+ 1 4.10000+ 1 1.00717- 5 6.70098- 3 1.60000+ 1 1.60000+ 1 3.66882- 5 7.22100- 3 1.60000+ 1 1.80000+ 1 2.37403- 5 7.29830- 3 1.60000+ 1 1.90000+ 1 8.95647- 4 7.33915- 3 1.60000+ 1 2.10000+ 1 6.18683- 5 7.46772- 3 1.60000+ 1 2.20000+ 1 7.55371- 5 7.47512- 3 1.60000+ 1 2.40000+ 1 1.58272- 5 7.63055- 3 1.60000+ 1 2.50000+ 1 2.01432- 5 7.63162- 3 1.60000+ 1 2.70000+ 1 1.15102- 5 7.58616- 3 1.60000+ 1 2.90000+ 1 2.87750- 6 7.60746- 3 1.60000+ 1 3.00000+ 1 1.01433- 4 7.61277- 3 1.60000+ 1 4.10000+ 1 7.19409- 7 7.63593- 3 1.80000+ 1 1.80000+ 1 5.03548- 6 7.37560- 3 1.80000+ 1 1.90000+ 1 1.38049- 3 7.41645- 3 1.80000+ 1 2.10000+ 1 8.77691- 5 7.54502- 3 1.80000+ 1 2.20000+ 1 6.48168- 4 7.55242- 3 1.80000+ 1 2.40000+ 1 1.65456- 5 7.70785- 3 1.80000+ 1 2.50000+ 1 2.66170- 5 7.70892- 3 1.80000+ 1 2.70000+ 1 3.59684- 6 7.66346- 3 1.80000+ 1 2.90000+ 1 1.43883- 6 7.68476- 3 1.80000+ 1 3.00000+ 1 1.56822- 4 7.69007- 3 1.90000+ 1 1.90000+ 1 1.80354- 3 7.45730- 3 1.90000+ 1 2.10000+ 1 1.46351- 3 7.58587- 3 1.90000+ 1 2.20000+ 1 2.30677- 3 7.59327- 3 1.90000+ 1 2.40000+ 1 5.85403- 5 7.74870- 3 1.90000+ 1 2.50000+ 1 4.94808- 5 7.74977- 3 1.90000+ 1 2.70000+ 1 1.39387- 4 7.70431- 3 1.90000+ 1 2.90000+ 1 1.69347- 4 7.72561- 3 1.90000+ 1 3.00000+ 1 4.22333- 4 7.73092- 3 1.90000+ 1 4.10000+ 1 1.04540- 5 7.75408- 3 2.10000+ 1 2.10000+ 1 2.02149- 4 7.71444- 3 2.10000+ 1 2.20000+ 1 3.49906- 3 7.72184- 3 2.10000+ 1 2.40000+ 1 3.16544- 5 7.87727- 3 2.10000+ 1 2.50000+ 1 6.47465- 5 7.87834- 3 2.10000+ 1 2.70000+ 1 1.00719- 5 7.83288- 3 2.10000+ 1 2.90000+ 1 1.07914- 5 7.85418- 3 2.10000+ 1 3.00000+ 1 1.69777- 4 7.85949- 3 2.10000+ 1 4.10000+ 1 7.19407- 7 7.88265- 3 2.20000+ 1 2.20000+ 1 2.80047- 3 7.72924- 3 2.20000+ 1 2.40000+ 1 3.77255- 4 7.88467- 3 2.20000+ 1 2.50000+ 1 2.12613- 4 7.88574- 3 2.20000+ 1 2.70000+ 1 1.40644- 5 7.84028- 3 2.20000+ 1 2.90000+ 1 9.34815- 5 7.86158- 3 2.20000+ 1 3.00000+ 1 3.14368- 4 7.86689- 3 2.20000+ 1 4.10000+ 1 8.27317- 7 7.89005- 3 2.40000+ 1 2.40000+ 1 1.10833- 6 8.04010- 3 2.40000+ 1 2.50000+ 1 1.88417- 5 8.04117- 3 2.40000+ 1 2.70000+ 1 3.32491- 6 7.99571- 3 2.40000+ 1 2.90000+ 1 3.32491- 6 8.01701- 3 2.40000+ 1 3.00000+ 1 9.97493- 6 8.02232- 3 2.50000+ 1 2.50000+ 1 4.31607- 6 8.04224- 3 2.50000+ 1 2.70000+ 1 2.87737- 6 7.99678- 3 2.50000+ 1 2.90000+ 1 2.87737- 6 8.01808- 3 2.50000+ 1 3.00000+ 1 5.75508- 6 8.02339- 3 2.70000+ 1 2.70000+ 1 1.31930- 6 7.95132- 3 2.70000+ 1 2.90000+ 1 1.31930- 6 7.97262- 3 2.70000+ 1 3.00000+ 1 3.03432- 5 7.97793- 3 2.90000+ 1 3.00000+ 1 5.61806- 5 7.99923- 3 3.00000+ 1 3.00000+ 1 1.11223- 4 8.00454- 3 3.00000+ 1 4.10000+ 1 6.35589- 6 8.02770- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.81223- 6 1.92100- 4 1.10000+ 1 1.46277- 4 3.74000- 4 1.80000+ 1 5.60982- 4 1.75945- 3 1.90000+ 1 6.19085- 4 1.80030- 3 2.90000+ 1 1.28638- 4 2.06861- 3 3.00000+ 1 1.31922- 4 2.07392- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 6.46495- 2 1.84700- 5 1.00000+ 1 2.20000+ 1 9.61854- 2 2.58700- 5 1.00000+ 1 2.40000+ 1 3.03071- 2 1.81300- 4 1.00000+ 1 2.50000+ 1 4.02891- 2 1.82370- 4 1.00000+ 1 2.70000+ 1 8.08885- 3 1.36910- 4 1.00000+ 1 2.90000+ 1 6.75251- 3 1.58210- 4 1.00000+ 1 3.00000+ 1 9.98954- 3 1.63520- 4 1.00000+ 1 4.10000+ 1 5.98665- 4 1.86680- 4 1.10000+ 1 1.80000+ 1 6.58979- 2 3.09500- 5 1.10000+ 1 1.90000+ 1 8.67482- 2 7.18000- 5 1.10000+ 1 2.10000+ 1 3.72335- 2 2.00370- 4 1.10000+ 1 2.20000+ 1 5.35849- 2 2.07770- 4 1.10000+ 1 2.40000+ 1 9.13118- 2 3.63200- 4 1.10000+ 1 2.50000+ 1 1.13990- 1 3.64270- 4 1.10000+ 1 2.70000+ 1 9.34578- 3 3.18810- 4 1.10000+ 1 2.90000+ 1 7.84352- 3 3.40110- 4 1.10000+ 1 3.00000+ 1 1.01804- 2 3.45420- 4 1.10000+ 1 4.10000+ 1 6.94707- 4 3.68580- 4 1.30000+ 1 1.60000+ 1 2.49552- 2 2.86950- 4 1.30000+ 1 1.80000+ 1 5.52401- 3 3.64250- 4 1.30000+ 1 1.90000+ 1 5.02963- 3 4.05100- 4 1.30000+ 1 2.10000+ 1 8.11195- 3 5.33670- 4 1.30000+ 1 2.20000+ 1 1.01757- 2 5.41070- 4 1.30000+ 1 2.40000+ 1 4.63748- 3 6.96500- 4 1.30000+ 1 2.50000+ 1 4.35486- 3 6.97570- 4 1.30000+ 1 2.70000+ 1 2.67831- 3 6.52110- 4 1.30000+ 1 2.90000+ 1 5.53635- 4 6.73410- 4 1.30000+ 1 3.00000+ 1 4.70738- 4 6.78720- 4 1.30000+ 1 4.10000+ 1 1.92663- 4 7.01880- 4 1.40000+ 1 1.60000+ 1 3.57748- 2 3.26850- 4 1.40000+ 1 1.80000+ 1 1.13094- 3 4.04150- 4 1.40000+ 1 1.90000+ 1 1.05701- 2 4.45000- 4 1.40000+ 1 2.10000+ 1 1.10552- 2 5.73570- 4 1.40000+ 1 2.20000+ 1 1.65178- 2 5.80970- 4 1.40000+ 1 2.40000+ 1 5.31927- 3 7.36400- 4 1.40000+ 1 2.50000+ 1 8.23628- 3 7.37470- 4 1.40000+ 1 2.70000+ 1 3.81338- 3 6.92010- 4 1.40000+ 1 2.90000+ 1 1.14842- 4 7.13310- 4 1.40000+ 1 3.00000+ 1 9.88505- 4 7.18620- 4 1.40000+ 1 4.10000+ 1 2.74131- 4 7.41780- 4 1.60000+ 1 1.60000+ 1 4.43285- 3 1.26180- 3 1.60000+ 1 1.80000+ 1 7.49030- 3 1.33910- 3 1.60000+ 1 1.90000+ 1 1.31737- 2 1.37995- 3 1.60000+ 1 2.10000+ 1 1.43420- 2 1.50852- 3 1.60000+ 1 2.20000+ 1 2.05782- 2 1.51592- 3 1.60000+ 1 2.40000+ 1 5.30532- 3 1.67135- 3 1.60000+ 1 2.50000+ 1 6.67974- 3 1.67242- 3 1.60000+ 1 2.70000+ 1 1.18006- 3 1.62696- 3 1.60000+ 1 2.90000+ 1 9.53620- 4 1.64826- 3 1.60000+ 1 3.00000+ 1 1.58700- 3 1.65357- 3 1.60000+ 1 4.10000+ 1 8.73549- 5 1.67673- 3 1.80000+ 1 1.80000+ 1 3.68413- 4 1.41640- 3 1.80000+ 1 1.90000+ 1 9.57750- 4 1.45725- 3 1.80000+ 1 2.10000+ 1 5.49974- 4 1.58582- 3 1.80000+ 1 2.20000+ 1 2.96580- 4 1.59322- 3 1.80000+ 1 2.40000+ 1 7.72023- 5 1.74865- 3 1.80000+ 1 2.50000+ 1 3.69173- 4 1.74972- 3 1.80000+ 1 2.70000+ 1 7.86533- 4 1.70426- 3 1.80000+ 1 2.90000+ 1 7.45260- 5 1.72556- 3 1.80000+ 1 3.00000+ 1 9.01944- 5 1.73087- 3 1.80000+ 1 4.10000+ 1 5.65634- 5 1.75403- 3 1.90000+ 1 1.90000+ 1 1.24096- 3 1.49810- 3 1.90000+ 1 2.10000+ 1 8.22471- 4 1.62667- 3 1.90000+ 1 2.20000+ 1 2.00117- 3 1.63407- 3 1.90000+ 1 2.40000+ 1 3.90230- 4 1.78950- 3 1.90000+ 1 2.50000+ 1 7.30732- 4 1.79057- 3 1.90000+ 1 2.70000+ 1 1.38887- 3 1.74511- 3 1.90000+ 1 2.90000+ 1 1.03190- 4 1.76641- 3 1.90000+ 1 3.00000+ 1 2.52637- 4 1.77172- 3 1.90000+ 1 4.10000+ 1 9.97488- 5 1.79488- 3 2.10000+ 1 2.10000+ 1 1.65105- 4 1.75524- 3 2.10000+ 1 2.20000+ 1 7.94190- 4 1.76264- 3 2.10000+ 1 2.40000+ 1 3.65380- 4 1.91807- 3 2.10000+ 1 2.50000+ 1 2.71708- 3 1.91914- 3 2.10000+ 1 2.70000+ 1 1.48627- 3 1.87368- 3 2.10000+ 1 2.90000+ 1 5.04468- 5 1.89498- 3 2.10000+ 1 3.00000+ 1 7.91127- 5 1.90029- 3 2.10000+ 1 4.10000+ 1 1.06632- 4 1.92345- 3 2.20000+ 1 2.20000+ 1 4.44099- 4 1.77004- 3 2.20000+ 1 2.40000+ 1 2.69842- 3 1.92547- 3 2.20000+ 1 2.50000+ 1 1.52871- 3 1.92654- 3 2.20000+ 1 2.70000+ 1 2.12915- 3 1.88108- 3 2.20000+ 1 2.90000+ 1 2.86629- 5 1.90238- 3 2.20000+ 1 3.00000+ 1 1.91482- 4 1.90769- 3 2.20000+ 1 4.10000+ 1 1.52491- 4 1.93085- 3 2.40000+ 1 2.40000+ 1 2.44993- 4 2.08090- 3 2.40000+ 1 2.50000+ 1 1.93774- 3 2.08197- 3 2.40000+ 1 2.70000+ 1 5.08686- 4 2.03651- 3 2.40000+ 1 2.90000+ 1 6.87946- 6 2.05781- 3 2.40000+ 1 3.00000+ 1 3.21045- 5 2.06312- 3 2.40000+ 1 4.10000+ 1 3.63077- 5 2.08628- 3 2.50000+ 1 2.50000+ 1 6.11730- 4 2.08304- 3 2.50000+ 1 2.70000+ 1 6.50583- 4 2.03758- 3 2.50000+ 1 2.90000+ 1 4.35278- 5 2.05888- 3 2.50000+ 1 3.00000+ 1 6.10160- 5 2.06419- 3 2.50000+ 1 4.10000+ 1 4.62466- 5 2.08735- 3 2.70000+ 1 2.70000+ 1 1.15929- 4 1.99212- 3 2.70000+ 1 2.90000+ 1 1.57977- 4 2.01342- 3 2.70000+ 1 3.00000+ 1 2.63086- 4 2.01873- 3 2.70000+ 1 4.10000+ 1 1.68188- 5 2.04189- 3 2.90000+ 1 2.90000+ 1 6.82415- 6 2.03472- 3 2.90000+ 1 3.00000+ 1 1.70604- 5 2.04003- 3 2.90000+ 1 4.10000+ 1 1.29656- 5 2.06319- 3 3.00000+ 1 3.00000+ 1 2.89667- 5 2.04534- 3 3.00000+ 1 4.10000+ 1 2.80884- 5 2.06850- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.60644- 4 5.15200- 4 1.60000+ 1 4.74877- 4 1.49005- 3 2.10000+ 1 2.39469- 3 1.73677- 3 2.70000+ 1 8.69575- 5 1.85521- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.04753- 2 8.27000- 6 1.10000+ 1 2.20000+ 1 2.51295- 2 1.56700- 5 1.10000+ 1 2.40000+ 1 2.25903- 2 1.71100- 4 1.10000+ 1 2.50000+ 1 2.41868- 2 1.72170- 4 1.10000+ 1 2.70000+ 1 4.18081- 3 1.26710- 4 1.10000+ 1 2.90000+ 1 4.27596- 3 1.48010- 4 1.10000+ 1 3.00000+ 1 4.13007- 3 1.53320- 4 1.10000+ 1 4.10000+ 1 2.96085- 4 1.76480- 4 1.30000+ 1 1.60000+ 1 6.96294- 2 9.48500- 5 1.30000+ 1 1.80000+ 1 6.95598- 2 1.72150- 4 1.30000+ 1 1.90000+ 1 8.66525- 2 2.13000- 4 1.30000+ 1 2.10000+ 1 2.95705- 2 3.41570- 4 1.30000+ 1 2.20000+ 1 3.38980- 2 3.48970- 4 1.30000+ 1 2.40000+ 1 1.07307- 1 5.04400- 4 1.30000+ 1 2.50000+ 1 1.61059- 1 5.05470- 4 1.30000+ 1 2.70000+ 1 1.10797- 2 4.60010- 4 1.30000+ 1 2.90000+ 1 7.66257- 3 4.81310- 4 1.30000+ 1 3.00000+ 1 1.00039- 2 4.86620- 4 1.30000+ 1 4.10000+ 1 8.32095- 4 5.09780- 4 1.40000+ 1 1.60000+ 1 1.16864- 2 1.34750- 4 1.40000+ 1 1.80000+ 1 7.99382- 2 2.12050- 4 1.40000+ 1 1.90000+ 1 7.54926- 3 2.52900- 4 1.40000+ 1 2.10000+ 1 1.26361- 3 3.81470- 4 1.40000+ 1 2.20000+ 1 3.92510- 3 3.88870- 4 1.40000+ 1 2.40000+ 1 3.37281- 3 5.44300- 4 1.40000+ 1 2.50000+ 1 2.66123- 3 5.45370- 4 1.40000+ 1 2.70000+ 1 1.23807- 3 4.99910- 4 1.40000+ 1 2.90000+ 1 7.13175- 3 5.21210- 4 1.40000+ 1 3.00000+ 1 7.99064- 4 5.26520- 4 1.40000+ 1 4.10000+ 1 8.94219- 5 5.49680- 4 1.60000+ 1 1.60000+ 1 8.76162- 4 1.06970- 3 1.60000+ 1 1.80000+ 1 1.21621- 2 1.14700- 3 1.60000+ 1 1.90000+ 1 1.88938- 3 1.18785- 3 1.60000+ 1 2.10000+ 1 3.93965- 4 1.31642- 3 1.60000+ 1 2.20000+ 1 1.40271- 3 1.32382- 3 1.60000+ 1 2.40000+ 1 5.15010- 5 1.47925- 3 1.60000+ 1 2.50000+ 1 5.53628- 4 1.48032- 3 1.60000+ 1 2.70000+ 1 2.20165- 4 1.43486- 3 1.60000+ 1 2.90000+ 1 1.04802- 3 1.45616- 3 1.60000+ 1 3.00000+ 1 2.06000- 4 1.46147- 3 1.60000+ 1 4.10000+ 1 1.60937- 5 1.48463- 3 1.80000+ 1 1.80000+ 1 9.12220- 3 1.22430- 3 1.80000+ 1 1.90000+ 1 2.71998- 2 1.26515- 3 1.80000+ 1 2.10000+ 1 2.56844- 2 1.39372- 3 1.80000+ 1 2.20000+ 1 4.19798- 2 1.40112- 3 1.80000+ 1 2.40000+ 1 7.88128- 3 1.55655- 3 1.80000+ 1 2.50000+ 1 1.35020- 2 1.55762- 3 1.80000+ 1 2.70000+ 1 1.95007- 3 1.51216- 3 1.80000+ 1 2.90000+ 1 1.97474- 3 1.53346- 3 1.80000+ 1 3.00000+ 1 3.25377- 3 1.53877- 3 1.80000+ 1 4.10000+ 1 1.47311- 4 1.56193- 3 1.90000+ 1 1.90000+ 1 7.74663- 4 1.30600- 3 1.90000+ 1 2.10000+ 1 2.16031- 3 1.43457- 3 1.90000+ 1 2.20000+ 1 1.72040- 3 1.44197- 3 1.90000+ 1 2.40000+ 1 5.86998- 3 1.59740- 3 1.90000+ 1 2.50000+ 1 1.65717- 3 1.59847- 3 1.90000+ 1 2.70000+ 1 2.08311- 4 1.55301- 3 1.90000+ 1 2.90000+ 1 2.45907- 3 1.57431- 3 1.90000+ 1 3.00000+ 1 1.57064- 4 1.57962- 3 1.90000+ 1 4.10000+ 1 1.46415- 5 1.60278- 3 2.10000+ 1 2.10000+ 1 8.75905- 4 1.56314- 3 2.10000+ 1 2.20000+ 1 2.55622- 3 1.57054- 3 2.10000+ 1 2.40000+ 1 7.23735- 4 1.72597- 3 2.10000+ 1 2.50000+ 1 1.33766- 3 1.72704- 3 2.10000+ 1 2.70000+ 1 5.82165- 5 1.68158- 3 2.10000+ 1 2.90000+ 1 2.25849- 3 1.70288- 3 2.10000+ 1 3.00000+ 1 2.20958- 4 1.70819- 3 2.10000+ 1 4.10000+ 1 4.63087- 6 1.73135- 3 2.20000+ 1 2.20000+ 1 5.97367- 4 1.57794- 3 2.20000+ 1 2.40000+ 1 2.44122- 3 1.73337- 3 2.20000+ 1 2.50000+ 1 5.15351- 4 1.73444- 3 2.20000+ 1 2.70000+ 1 1.81925- 4 1.68898- 3 2.20000+ 1 2.90000+ 1 3.74590- 3 1.71028- 3 2.20000+ 1 3.00000+ 1 1.61419- 4 1.71559- 3 2.20000+ 1 4.10000+ 1 1.32309- 5 1.73875- 3 2.40000+ 1 2.40000+ 1 1.00822- 3 1.88880- 3 2.40000+ 1 2.50000+ 1 6.91525- 3 1.88987- 3 2.40000+ 1 2.70000+ 1 2.65660- 6 1.84441- 3 2.40000+ 1 2.90000+ 1 6.40899- 4 1.86571- 3 2.40000+ 1 3.00000+ 1 6.56859- 4 1.87102- 3 2.50000+ 1 2.50000+ 1 3.44680- 4 1.89094- 3 2.50000+ 1 2.70000+ 1 7.74041- 5 1.84548- 3 2.50000+ 1 2.90000+ 1 1.09222- 3 1.86678- 3 2.50000+ 1 3.00000+ 1 1.66710- 4 1.87209- 3 2.50000+ 1 4.10000+ 1 5.95416- 6 1.89525- 3 2.70000+ 1 2.70000+ 1 1.78234- 5 1.80002- 3 2.70000+ 1 2.90000+ 1 2.10644- 4 1.82132- 3 2.70000+ 1 3.00000+ 1 2.75430- 5 1.82663- 3 2.70000+ 1 4.10000+ 1 2.43049- 6 1.84979- 3 2.90000+ 1 2.90000+ 1 2.14723- 4 1.84262- 3 2.90000+ 1 3.00000+ 1 6.07259- 4 1.84793- 3 2.90000+ 1 4.10000+ 1 2.73528- 5 1.87109- 3 3.00000+ 1 3.00000+ 1 5.26137- 5 1.85324- 3 3.00000+ 1 4.10000+ 1 8.76883- 6 1.87640- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74501- 5 3.33300- 4 1.40000+ 1 2.28972- 4 3.73200- 4 1.60000+ 1 7.11846- 4 1.30815- 3 2.10000+ 1 3.36263- 4 1.55487- 3 2.20000+ 1 2.69572- 3 1.56227- 3 2.70000+ 1 1.28871- 4 1.67331- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.80000+ 1 1.28336- 2 0.00000+ 0 1.30000+ 1 1.90000+ 1 5.99794- 2 3.11000- 5 1.30000+ 1 2.10000+ 1 1.02638- 2 1.59670- 4 1.30000+ 1 2.20000+ 1 9.38094- 3 1.67070- 4 1.30000+ 1 2.40000+ 1 1.12936- 2 3.22500- 4 1.30000+ 1 2.50000+ 1 1.64578- 2 3.23570- 4 1.30000+ 1 2.70000+ 1 2.06810- 3 2.78110- 4 1.30000+ 1 2.90000+ 1 1.44065- 3 2.99410- 4 1.30000+ 1 3.00000+ 1 5.59138- 3 3.04720- 4 1.30000+ 1 4.10000+ 1 1.51836- 4 3.27880- 4 1.40000+ 1 1.80000+ 1 8.25872- 2 3.01500- 5 1.40000+ 1 1.90000+ 1 1.35643- 1 7.10000- 5 1.40000+ 1 2.10000+ 1 4.56102- 2 1.99570- 4 1.40000+ 1 2.20000+ 1 6.64508- 2 2.06970- 4 1.40000+ 1 2.40000+ 1 1.10280- 1 3.62400- 4 1.40000+ 1 2.50000+ 1 1.31334- 1 3.63470- 4 1.40000+ 1 2.70000+ 1 1.20683- 2 3.18010- 4 1.40000+ 1 2.90000+ 1 9.84722- 3 3.39310- 4 1.40000+ 1 3.00000+ 1 1.44561- 2 3.44620- 4 1.40000+ 1 4.10000+ 1 8.98647- 4 3.67780- 4 1.60000+ 1 1.60000+ 1 6.92324- 4 8.87800- 4 1.60000+ 1 1.80000+ 1 1.06268- 3 9.65100- 4 1.60000+ 1 1.90000+ 1 1.61133- 2 1.00595- 3 1.60000+ 1 2.10000+ 1 9.60655- 4 1.13452- 3 1.60000+ 1 2.20000+ 1 1.05286- 3 1.14192- 3 1.60000+ 1 2.40000+ 1 7.97374- 4 1.29735- 3 1.60000+ 1 2.50000+ 1 1.22214- 3 1.29842- 3 1.60000+ 1 2.70000+ 1 1.72324- 4 1.25296- 3 1.60000+ 1 2.90000+ 1 1.09595- 4 1.27426- 3 1.60000+ 1 3.00000+ 1 1.34610- 3 1.27957- 3 1.60000+ 1 4.10000+ 1 1.28489- 5 1.30273- 3 1.80000+ 1 1.80000+ 1 1.25554- 4 1.04240- 3 1.80000+ 1 1.90000+ 1 1.90749- 2 1.08325- 3 1.80000+ 1 2.10000+ 1 4.55312- 4 1.21182- 3 1.80000+ 1 2.20000+ 1 3.52305- 3 1.21922- 3 1.80000+ 1 2.40000+ 1 9.09114- 4 1.37465- 3 1.80000+ 1 2.50000+ 1 5.29071- 3 1.37572- 3 1.80000+ 1 2.70000+ 1 1.17990- 4 1.33026- 3 1.80000+ 1 2.90000+ 1 2.42027- 5 1.35156- 3 1.80000+ 1 3.00000+ 1 1.61407- 3 1.35687- 3 1.80000+ 1 4.10000+ 1 8.31986- 6 1.38003- 3 1.90000+ 1 1.90000+ 1 2.67365- 2 1.12410- 3 1.90000+ 1 2.10000+ 1 3.69124- 2 1.25267- 3 1.90000+ 1 2.20000+ 1 4.92004- 2 1.26007- 3 1.90000+ 1 2.40000+ 1 1.61185- 2 1.41550- 3 1.90000+ 1 2.50000+ 1 1.82867- 2 1.41657- 3 1.90000+ 1 2.70000+ 1 2.51156- 3 1.37111- 3 1.90000+ 1 2.90000+ 1 2.38607- 3 1.39241- 3 1.90000+ 1 3.00000+ 1 5.44019- 3 1.39772- 3 1.90000+ 1 4.10000+ 1 1.88953- 4 1.42088- 3 2.10000+ 1 2.10000+ 1 2.42616- 4 1.38124- 3 2.10000+ 1 2.20000+ 1 4.77363- 3 1.38864- 3 2.10000+ 1 2.40000+ 1 3.76384- 4 1.54407- 3 2.10000+ 1 2.50000+ 1 4.62644- 3 1.54514- 3 2.10000+ 1 2.70000+ 1 9.90122- 5 1.49968- 3 2.10000+ 1 2.90000+ 1 3.32565- 5 1.52098- 3 2.10000+ 1 3.00000+ 1 3.09597- 3 1.52629- 3 2.10000+ 1 4.10000+ 1 6.80239- 6 1.54945- 3 2.20000+ 1 2.20000+ 1 2.29981- 3 1.39604- 3 2.20000+ 1 2.40000+ 1 3.70491- 3 1.55147- 3 2.20000+ 1 2.50000+ 1 3.20593- 3 1.55254- 3 2.20000+ 1 2.70000+ 1 1.10343- 4 1.50708- 3 2.20000+ 1 2.90000+ 1 2.78131- 4 1.52838- 3 2.20000+ 1 3.00000+ 1 4.08568- 3 1.53369- 3 2.20000+ 1 4.10000+ 1 8.31361- 6 1.55685- 3 2.40000+ 1 2.40000+ 1 2.99675- 4 1.70690- 3 2.40000+ 1 2.50000+ 1 8.66460- 3 1.70797- 3 2.40000+ 1 2.70000+ 1 7.96565- 5 1.66251- 3 2.40000+ 1 2.90000+ 1 9.63498- 5 1.68381- 3 2.40000+ 1 3.00000+ 1 1.29274- 3 1.68912- 3 2.40000+ 1 4.10000+ 1 6.06920- 6 1.71228- 3 2.50000+ 1 2.50000+ 1 3.18834- 3 1.70904- 3 2.50000+ 1 2.70000+ 1 9.79661- 5 1.66358- 3 2.50000+ 1 2.90000+ 1 5.62173- 4 1.68488- 3 2.50000+ 1 3.00000+ 1 1.49739- 3 1.69019- 3 2.50000+ 1 4.10000+ 1 6.78237- 6 1.71335- 3 2.70000+ 1 2.70000+ 1 1.72279- 5 1.61812- 3 2.70000+ 1 2.90000+ 1 1.95250- 5 1.63942- 3 2.70000+ 1 3.00000+ 1 3.19293- 4 1.64473- 3 2.70000+ 1 4.10000+ 1 2.29704- 6 1.66789- 3 2.90000+ 1 2.90000+ 1 2.85348- 6 1.66072- 3 2.90000+ 1 3.00000+ 1 3.82373- 4 1.66603- 3 2.90000+ 1 4.10000+ 1 1.42676- 6 1.68919- 3 3.00000+ 1 3.00000+ 1 1.22146- 3 1.67134- 3 3.00000+ 1 4.10000+ 1 7.24531- 5 1.69450- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.27622- 3 1.05215- 3 1.90000+ 1 3.93353- 4 1.09300- 3 2.40000+ 1 6.39904- 3 1.38440- 3 2.90000+ 1 6.39924- 4 1.36131- 3 3.00000+ 1 7.74585- 5 1.36662- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.04547- 1 2.91000- 5 1.40000+ 1 2.50000+ 1 1.49728- 2 3.01700- 5 1.40000+ 1 2.90000+ 1 6.56304- 4 6.01000- 6 1.40000+ 1 3.00000+ 1 1.89809- 3 1.13200- 5 1.40000+ 1 4.10000+ 1 1.36147- 4 3.44800- 5 1.60000+ 1 1.60000+ 1 3.68770- 5 5.54500- 4 1.60000+ 1 1.80000+ 1 2.44904- 3 6.31800- 4 1.60000+ 1 1.90000+ 1 1.67895- 3 6.72650- 4 1.60000+ 1 2.10000+ 1 5.85875- 2 8.01220- 4 1.60000+ 1 2.20000+ 1 7.14317- 3 8.08620- 4 1.60000+ 1 2.40000+ 1 1.23341- 2 9.64050- 4 1.60000+ 1 2.50000+ 1 4.01733- 3 9.65120- 4 1.60000+ 1 2.70000+ 1 2.38621- 5 9.19660- 4 1.60000+ 1 2.90000+ 1 2.45111- 4 9.40960- 4 1.60000+ 1 3.00000+ 1 1.34492- 4 9.46270- 4 1.60000+ 1 4.10000+ 1 2.16915- 6 9.69430- 4 1.80000+ 1 1.80000+ 1 1.36664- 3 7.09100- 4 1.80000+ 1 1.90000+ 1 8.86325- 3 7.49950- 4 1.80000+ 1 2.10000+ 1 5.04632- 2 8.78520- 4 1.80000+ 1 2.20000+ 1 4.20619- 3 8.85920- 4 1.80000+ 1 2.40000+ 1 7.73762- 3 1.04135- 3 1.80000+ 1 2.50000+ 1 4.03900- 3 1.04242- 3 1.80000+ 1 2.70000+ 1 2.60315- 4 9.96960- 4 1.80000+ 1 2.90000+ 1 2.79828- 4 1.01826- 3 1.80000+ 1 3.00000+ 1 8.06916- 4 1.02357- 3 1.80000+ 1 4.10000+ 1 1.95240- 5 1.04673- 3 1.90000+ 1 1.90000+ 1 3.21903- 3 7.90800- 4 1.90000+ 1 2.10000+ 1 1.07331- 1 9.19370- 4 1.90000+ 1 2.20000+ 1 4.01941- 3 9.26770- 4 1.90000+ 1 2.40000+ 1 4.65718- 3 1.08220- 3 1.90000+ 1 2.50000+ 1 2.35127- 3 1.08327- 3 1.90000+ 1 2.70000+ 1 1.99559- 4 1.03781- 3 1.90000+ 1 2.90000+ 1 7.74378- 4 1.05911- 3 1.90000+ 1 3.00000+ 1 5.63974- 4 1.06442- 3 1.90000+ 1 4.10000+ 1 1.51836- 5 1.08758- 3 2.10000+ 1 2.10000+ 1 9.05192- 2 1.04794- 3 2.10000+ 1 2.20000+ 1 1.83318- 1 1.05534- 3 2.10000+ 1 2.40000+ 1 4.81741- 2 1.21077- 3 2.10000+ 1 2.50000+ 1 6.08726- 2 1.21184- 3 2.10000+ 1 2.70000+ 1 8.47079- 3 1.16638- 3 2.10000+ 1 2.90000+ 1 6.34935- 3 1.18768- 3 2.10000+ 1 3.00000+ 1 1.25055- 2 1.19299- 3 2.10000+ 1 4.10000+ 1 6.33404- 4 1.21615- 3 2.20000+ 1 2.20000+ 1 3.00221- 3 1.06274- 3 2.20000+ 1 2.40000+ 1 4.94283- 2 1.21817- 3 2.20000+ 1 2.50000+ 1 2.80252- 3 1.21924- 3 2.20000+ 1 2.70000+ 1 5.92203- 4 1.17378- 3 2.20000+ 1 2.90000+ 1 3.55761- 4 1.19508- 3 2.20000+ 1 3.00000+ 1 3.86120- 4 1.20039- 3 2.20000+ 1 4.10000+ 1 4.12138- 5 1.22355- 3 2.40000+ 1 2.40000+ 1 2.54827- 2 1.37360- 3 2.40000+ 1 2.50000+ 1 7.82970- 2 1.37467- 3 2.40000+ 1 2.70000+ 1 1.82203- 3 1.32921- 3 2.40000+ 1 2.90000+ 1 8.01652- 4 1.35051- 3 2.40000+ 1 3.00000+ 1 5.30806- 4 1.35582- 3 2.40000+ 1 4.10000+ 1 1.36499- 4 1.37898- 3 2.50000+ 1 2.50000+ 1 1.80785- 3 1.37574- 3 2.50000+ 1 2.70000+ 1 4.86394- 4 1.33028- 3 2.50000+ 1 2.90000+ 1 2.80044- 4 1.35158- 3 2.50000+ 1 3.00000+ 1 2.80044- 4 1.35689- 3 2.50000+ 1 4.10000+ 1 3.43922- 5 1.38005- 3 2.70000+ 1 2.70000+ 1 1.54865- 5 1.28482- 3 2.70000+ 1 2.90000+ 1 2.01324- 4 1.30612- 3 2.70000+ 1 3.00000+ 1 1.23902- 4 1.31143- 3 2.90000+ 1 2.90000+ 1 1.07479- 4 1.32742- 3 2.90000+ 1 3.00000+ 1 5.22051- 4 1.33273- 3 2.90000+ 1 4.10000+ 1 1.53542- 5 1.35589- 3 3.00000+ 1 3.00000+ 1 7.21032- 4 1.33804- 3 3.00000+ 1 4.10000+ 1 6.00827- 5 1.36120- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.15808- 3 1.05310- 3 2.40000+ 1 3.75518- 4 1.34450- 3 2.50000+ 1 7.25947- 3 1.34557- 3 3.00000+ 1 7.63806- 4 1.32672- 3 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.82057- 6 5.14600- 4 1.60000+ 1 1.80000+ 1 6.41136- 4 5.91900- 4 1.60000+ 1 1.90000+ 1 4.25418- 3 6.32750- 4 1.60000+ 1 2.10000+ 1 6.28120- 3 7.61320- 4 1.60000+ 1 2.20000+ 1 6.96528- 2 7.68720- 4 1.60000+ 1 2.40000+ 1 4.35780- 3 9.24150- 4 1.60000+ 1 2.50000+ 1 1.44934- 2 9.25220- 4 1.60000+ 1 2.70000+ 1 1.68721- 5 8.79760- 4 1.60000+ 1 2.90000+ 1 3.37434- 5 9.01060- 4 1.60000+ 1 3.00000+ 1 3.71184- 4 9.06370- 4 1.60000+ 1 4.10000+ 1 2.41034- 6 9.29530- 4 1.80000+ 1 1.80000+ 1 1.20509- 5 6.69200- 4 1.80000+ 1 1.90000+ 1 1.03809- 2 7.10050- 4 1.80000+ 1 2.10000+ 1 5.95298- 4 8.38620- 4 1.80000+ 1 2.20000+ 1 6.98628- 2 8.46020- 4 1.80000+ 1 2.40000+ 1 1.98117- 3 1.00145- 3 1.80000+ 1 2.50000+ 1 7.12912- 3 1.00252- 3 1.80000+ 1 2.70000+ 1 6.50737- 5 9.57060- 4 1.80000+ 1 2.90000+ 1 4.82025- 6 9.78360- 4 1.80000+ 1 3.00000+ 1 8.96535- 4 9.83670- 4 1.80000+ 1 4.10000+ 1 4.82025- 6 1.00683- 3 1.90000+ 1 1.90000+ 1 7.89130- 3 7.50900- 4 1.90000+ 1 2.10000+ 1 6.55596- 3 8.79470- 4 1.90000+ 1 2.20000+ 1 1.11073- 1 8.86870- 4 1.90000+ 1 2.40000+ 1 2.94048- 3 1.04230- 3 1.90000+ 1 2.50000+ 1 6.73444- 3 1.04337- 3 1.90000+ 1 2.70000+ 1 5.08577- 4 9.97910- 4 1.90000+ 1 2.90000+ 1 8.84579- 4 1.01921- 3 1.90000+ 1 3.00000+ 1 1.40521- 3 1.02452- 3 1.90000+ 1 4.10000+ 1 3.61538- 5 1.04768- 3 2.10000+ 1 2.10000+ 1 1.40752- 3 1.00804- 3 2.10000+ 1 2.20000+ 1 1.44605- 1 1.01544- 3 2.10000+ 1 2.40000+ 1 2.53785- 3 1.17087- 3 2.10000+ 1 2.50000+ 1 3.36383- 2 1.17194- 3 2.10000+ 1 2.70000+ 1 5.06121- 4 1.12648- 3 2.10000+ 1 2.90000+ 1 7.71245- 5 1.14778- 3 2.10000+ 1 3.00000+ 1 5.71202- 4 1.15309- 3 2.10000+ 1 4.10000+ 1 3.61517- 5 1.17625- 3 2.20000+ 1 2.20000+ 1 1.64660- 1 1.02284- 3 2.20000+ 1 2.40000+ 1 5.88789- 2 1.17827- 3 2.20000+ 1 2.50000+ 1 8.87783- 2 1.17934- 3 2.20000+ 1 2.70000+ 1 9.75912- 3 1.13388- 3 2.20000+ 1 2.90000+ 1 8.47187- 3 1.15518- 3 2.20000+ 1 3.00000+ 1 1.30423- 2 1.16049- 3 2.20000+ 1 4.10000+ 1 7.27875- 4 1.18365- 3 2.40000+ 1 2.40000+ 1 2.20314- 3 1.33370- 3 2.40000+ 1 2.50000+ 1 7.44439- 2 1.33477- 3 2.40000+ 1 2.70000+ 1 4.93075- 4 1.28931- 3 2.40000+ 1 2.90000+ 1 2.21280- 4 1.31061- 3 2.40000+ 1 3.00000+ 1 2.62171- 4 1.31592- 3 2.40000+ 1 4.10000+ 1 3.60779- 5 1.33908- 3 2.50000+ 1 2.50000+ 1 4.84230- 2 1.33584- 3 2.50000+ 1 2.70000+ 1 2.06494- 3 1.29038- 3 2.50000+ 1 2.90000+ 1 8.53382- 4 1.31168- 3 2.50000+ 1 3.00000+ 1 7.09152- 4 1.31699- 3 2.50000+ 1 4.10000+ 1 1.56247- 4 1.34015- 3 2.70000+ 1 2.70000+ 1 2.70997- 5 1.24492- 3 2.70000+ 1 2.90000+ 1 2.70997- 5 1.26622- 3 2.70000+ 1 3.00000+ 1 5.14878- 4 1.27153- 3 2.90000+ 1 3.00000+ 1 5.01378- 4 1.29283- 3 3.00000+ 1 3.00000+ 1 7.11022- 4 1.29814- 3 3.00000+ 1 4.10000+ 1 2.63346- 5 1.32130- 3 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.66499- 5 7.73000- 5 1.90000+ 1 1.22481- 4 1.18150- 4 2.90000+ 1 5.71069- 5 3.86460- 4 3.00000+ 1 4.01827- 5 3.91770- 4 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.87688- 2 6.65000- 5 1.80000+ 1 2.50000+ 1 4.15324- 2 6.75700- 5 1.80000+ 1 2.70000+ 1 3.98685- 2 2.21100- 5 1.80000+ 1 2.90000+ 1 3.18687- 2 4.34100- 5 1.80000+ 1 3.00000+ 1 6.17461- 2 4.87200- 5 1.80000+ 1 4.10000+ 1 2.87940- 3 7.18800- 5 1.90000+ 1 2.40000+ 1 1.29871- 1 1.07350- 4 1.90000+ 1 2.50000+ 1 1.57142- 1 1.08420- 4 1.90000+ 1 2.70000+ 1 4.90184- 2 6.29600- 5 1.90000+ 1 2.90000+ 1 5.00606- 2 8.42600- 5 1.90000+ 1 3.00000+ 1 6.21793- 2 8.95700- 5 1.90000+ 1 4.10000+ 1 3.59731- 3 1.12730- 4 2.10000+ 1 2.10000+ 1 4.04664- 3 7.30900- 5 2.10000+ 1 2.20000+ 1 1.72958- 2 8.04900- 5 2.10000+ 1 2.40000+ 1 4.58186- 3 2.35920- 4 2.10000+ 1 2.50000+ 1 1.07421- 2 2.36990- 4 2.10000+ 1 2.70000+ 1 1.66229- 2 1.91530- 4 2.10000+ 1 2.90000+ 1 3.44298- 3 2.12830- 4 2.10000+ 1 3.00000+ 1 9.27470- 3 2.18140- 4 2.10000+ 1 4.10000+ 1 1.02231- 3 2.41300- 4 2.20000+ 1 2.20000+ 1 9.71973- 3 8.78900- 5 2.20000+ 1 2.40000+ 1 1.22954- 2 2.43320- 4 2.20000+ 1 2.50000+ 1 1.08273- 2 2.44390- 4 2.20000+ 1 2.70000+ 1 2.39971- 2 1.98930- 4 2.20000+ 1 2.90000+ 1 9.13381- 3 2.20230- 4 2.20000+ 1 3.00000+ 1 8.83221- 3 2.25540- 4 2.20000+ 1 4.10000+ 1 1.47078- 3 2.48700- 4 2.40000+ 1 2.40000+ 1 3.42522- 3 3.98750- 4 2.40000+ 1 2.50000+ 1 8.49434- 3 3.99820- 4 2.40000+ 1 2.70000+ 1 1.15924- 2 3.54360- 4 2.40000+ 1 2.90000+ 1 1.38354- 3 3.75660- 4 2.40000+ 1 3.00000+ 1 3.51850- 3 3.80970- 4 2.40000+ 1 4.10000+ 1 6.54539- 4 4.04130- 4 2.50000+ 1 2.50000+ 1 5.79679- 3 4.00890- 4 2.50000+ 1 2.70000+ 1 1.49558- 2 3.55430- 4 2.50000+ 1 2.90000+ 1 8.97579- 4 3.76730- 4 2.50000+ 1 3.00000+ 1 4.39970- 3 3.82040- 4 2.50000+ 1 4.10000+ 1 8.43632- 4 4.05200- 4 2.70000+ 1 2.70000+ 1 2.07509- 2 3.09970- 4 2.70000+ 1 2.90000+ 1 2.51867- 2 3.31270- 4 2.70000+ 1 3.00000+ 1 4.23502- 2 3.36580- 4 2.70000+ 1 4.10000+ 1 2.75296- 3 3.59740- 4 2.90000+ 1 2.90000+ 1 4.82818- 3 3.52570- 4 2.90000+ 1 3.00000+ 1 2.01024- 2 3.57880- 4 2.90000+ 1 4.10000+ 1 3.60990- 3 3.81040- 4 3.00000+ 1 3.00000+ 1 1.60814- 2 3.63190- 4 3.00000+ 1 4.10000+ 1 6.30102- 3 3.86350- 4 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.07046- 4 1.69420- 4 2.70000+ 1 9.30760- 5 2.87860- 4 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 6.14138- 2 3.00500- 5 1.90000+ 1 2.50000+ 1 4.71116- 2 3.11200- 5 1.90000+ 1 2.90000+ 1 1.03945- 2 6.96000- 6 1.90000+ 1 3.00000+ 1 1.02365- 2 1.22700- 5 1.90000+ 1 4.10000+ 1 1.12289- 3 3.54300- 5 2.10000+ 1 2.10000+ 1 1.92509- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.63949- 1 3.19000- 6 2.10000+ 1 2.40000+ 1 9.88073- 2 1.58620- 4 2.10000+ 1 2.50000+ 1 2.05268- 1 1.59690- 4 2.10000+ 1 2.70000+ 1 2.64321- 2 1.14230- 4 2.10000+ 1 2.90000+ 1 1.85698- 2 1.35530- 4 2.10000+ 1 3.00000+ 1 3.20455- 2 1.40840- 4 2.10000+ 1 4.10000+ 1 1.96418- 3 1.64000- 4 2.20000+ 1 2.20000+ 1 1.62821- 2 1.05900- 5 2.20000+ 1 2.40000+ 1 3.22350- 2 1.66020- 4 2.20000+ 1 2.50000+ 1 8.48248- 3 1.67090- 4 2.20000+ 1 2.70000+ 1 5.52517- 3 1.21630- 4 2.20000+ 1 2.90000+ 1 2.29055- 2 1.42930- 4 2.20000+ 1 3.00000+ 1 4.78813- 3 1.48240- 4 2.20000+ 1 4.10000+ 1 3.61182- 4 1.71400- 4 2.40000+ 1 2.40000+ 1 1.97196- 3 3.21450- 4 2.40000+ 1 2.50000+ 1 1.42458- 2 3.22520- 4 2.40000+ 1 2.70000+ 1 2.97855- 3 2.77060- 4 2.40000+ 1 2.90000+ 1 1.12286- 2 2.98360- 4 2.40000+ 1 3.00000+ 1 3.45046- 3 3.03670- 4 2.40000+ 1 4.10000+ 1 2.17443- 4 3.26830- 4 2.50000+ 1 2.50000+ 1 6.73424- 4 3.23590- 4 2.50000+ 1 2.70000+ 1 1.92670- 3 2.78130- 4 2.50000+ 1 2.90000+ 1 2.22368- 2 2.99430- 4 2.50000+ 1 3.00000+ 1 1.58602- 3 3.04740- 4 2.50000+ 1 4.10000+ 1 1.19870- 4 3.27900- 4 2.70000+ 1 2.70000+ 1 3.36810- 4 2.32670- 4 2.70000+ 1 2.90000+ 1 5.26828- 3 2.53970- 4 2.70000+ 1 3.00000+ 1 8.51175- 4 2.59280- 4 2.70000+ 1 4.10000+ 1 4.37938- 5 2.82440- 4 2.90000+ 1 2.90000+ 1 1.10667- 2 2.75270- 4 2.90000+ 1 3.00000+ 1 3.06626- 2 2.80580- 4 2.90000+ 1 4.10000+ 1 1.49944- 3 3.03740- 4 3.00000+ 1 3.00000+ 1 1.70358- 3 2.85890- 4 3.00000+ 1 4.10000+ 1 2.86809- 4 3.09050- 4 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.04984- 5 1.28570- 4 2.20000+ 1 1.15233- 4 1.35970- 4 2.70000+ 1 5.13651- 5 2.47010- 4 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.91978- 2 1.17770- 4 2.10000+ 1 2.50000+ 1 5.56769- 2 1.18840- 4 2.10000+ 1 2.70000+ 1 1.31807- 2 7.33800- 5 2.10000+ 1 2.90000+ 1 9.77788- 3 9.46800- 5 2.10000+ 1 3.00000+ 1 3.66050- 2 9.99900- 5 2.10000+ 1 4.10000+ 1 9.50904- 4 1.23150- 4 2.20000+ 1 2.40000+ 1 2.52709- 1 1.25170- 4 2.20000+ 1 2.50000+ 1 2.61618- 1 1.26240- 4 2.20000+ 1 2.70000+ 1 6.80798- 2 8.07800- 5 2.20000+ 1 2.90000+ 1 6.57767- 2 1.02080- 4 2.20000+ 1 3.00000+ 1 9.48764- 2 1.07390- 4 2.20000+ 1 4.10000+ 1 5.08532- 3 1.30550- 4 2.40000+ 1 2.40000+ 1 5.68273- 4 2.80600- 4 2.40000+ 1 2.50000+ 1 1.66846- 2 2.81670- 4 2.40000+ 1 2.70000+ 1 3.86247- 3 2.36210- 4 2.40000+ 1 2.90000+ 1 1.65986- 3 2.57510- 4 2.40000+ 1 3.00000+ 1 2.39878- 2 2.62820- 4 2.40000+ 1 4.10000+ 1 2.21763- 4 2.85980- 4 2.50000+ 1 2.50000+ 1 6.56733- 3 2.82740- 4 2.50000+ 1 2.70000+ 1 8.15491- 3 2.37280- 4 2.50000+ 1 2.90000+ 1 6.60340- 3 2.58580- 4 2.50000+ 1 3.00000+ 1 2.89730- 2 2.63890- 4 2.50000+ 1 4.10000+ 1 5.17030- 4 2.87050- 4 2.70000+ 1 2.70000+ 1 1.86225- 5 1.91820- 4 2.70000+ 1 2.90000+ 1 2.76449- 4 2.13120- 4 2.70000+ 1 3.00000+ 1 5.27941- 3 2.18430- 4 2.70000+ 1 4.10000+ 1 3.58106- 6 2.41590- 4 2.90000+ 1 2.90000+ 1 2.43179- 5 2.34420- 4 2.90000+ 1 3.00000+ 1 3.10890- 3 2.39730- 4 2.90000+ 1 4.10000+ 1 1.12578- 5 2.62890- 4 3.00000+ 1 3.00000+ 1 9.19917- 3 2.45040- 4 3.00000+ 1 4.10000+ 1 5.66364- 4 2.68200- 4 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.57228- 5 1.62830- 4 2.90000+ 1 1.26004- 5 1.39740- 4 3.00000+ 1 1.95459- 6 1.45050- 4 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.13278- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 4.65377- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 1.58425- 4 1.98000- 6 2.40000+ 1 2.40000+ 1 1.54437- 1 1.52030- 4 2.40000+ 1 2.50000+ 1 5.02171- 1 1.53100- 4 2.40000+ 1 2.70000+ 1 6.50682- 2 1.07640- 4 2.40000+ 1 2.90000+ 1 5.31102- 2 1.28940- 4 2.40000+ 1 3.00000+ 1 8.18466- 2 1.34250- 4 2.40000+ 1 4.10000+ 1 4.90530- 3 1.57410- 4 2.50000+ 1 2.50000+ 1 4.19499- 3 1.54170- 4 2.50000+ 1 2.70000+ 1 5.21909- 3 1.08710- 4 2.50000+ 1 2.90000+ 1 1.35837- 2 1.30010- 4 2.50000+ 1 3.00000+ 1 4.49450- 3 1.35320- 4 2.50000+ 1 4.10000+ 1 3.34699- 4 1.58480- 4 2.70000+ 1 2.70000+ 1 4.36706- 3 6.32500- 5 2.70000+ 1 2.90000+ 1 4.12257- 3 8.45500- 5 2.70000+ 1 3.00000+ 1 4.80422- 3 8.98600- 5 2.70000+ 1 4.10000+ 1 3.69136- 4 1.13020- 4 2.90000+ 1 2.90000+ 1 8.52394- 3 1.05850- 4 2.90000+ 1 3.00000+ 1 2.62176- 2 1.11160- 4 2.90000+ 1 4.10000+ 1 1.03638- 3 1.34320- 4 3.00000+ 1 3.00000+ 1 1.38640- 2 1.16470- 4 3.00000+ 1 4.10000+ 1 1.14895- 3 1.39630- 4 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.30481- 6 1.55430- 4 2.50000+ 1 2.66232- 5 1.56500- 4 3.00000+ 1 1.31741- 5 1.37650- 4 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.05668- 2 1.44630- 4 2.40000+ 1 2.50000+ 1 4.16444- 1 1.45700- 4 2.40000+ 1 2.70000+ 1 9.74478- 3 1.00240- 4 2.40000+ 1 2.90000+ 1 5.37603- 3 1.21540- 4 2.40000+ 1 3.00000+ 1 1.81745- 2 1.26850- 4 2.40000+ 1 4.10000+ 1 6.67542- 4 1.50010- 4 2.50000+ 1 2.50000+ 1 2.86713- 1 1.46770- 4 2.50000+ 1 2.70000+ 1 7.22509- 2 1.01310- 4 2.50000+ 1 2.90000+ 1 7.00997- 2 1.22610- 4 2.50000+ 1 3.00000+ 1 8.83082- 2 1.27920- 4 2.50000+ 1 4.10000+ 1 5.45204- 3 1.51080- 4 2.70000+ 1 2.70000+ 1 3.59643- 3 5.58500- 5 2.70000+ 1 2.90000+ 1 1.87032- 3 7.71500- 5 2.70000+ 1 3.00000+ 1 4.78477- 3 8.24600- 5 2.70000+ 1 4.10000+ 1 2.96545- 4 1.05620- 4 2.90000+ 1 2.90000+ 1 3.48959- 4 9.84500- 5 2.90000+ 1 3.00000+ 1 3.22597- 3 1.03760- 4 2.90000+ 1 4.10000+ 1 7.30981- 5 1.26920- 4 3.00000+ 1 3.00000+ 1 1.78740- 3 1.09070- 4 3.00000+ 1 4.10000+ 1 1.78610- 4 1.32230- 4 1 67000 0 7 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.04240- 7 2.13000- 5 3.00000+ 1 4.12580- 7 2.66100- 5 1 67000 0 9 1.64930+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.13950- 1 1.58800- 5 3.00000+ 1 4.10000+ 1 5.78370- 1 2.11900- 5 4.10000+ 1 4.10000+ 1 7.68000- 3 4.43500- 5 1 68000 0 0 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 5.14000+ 0 2.50000+ 1 6.86000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 68000 0 0 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.75740- 2 3.00000+ 0 9.71620- 3 5.00000+ 0 9.27480- 3 6.00000+ 0 8.34740- 3 8.00000+ 0 2.18890- 3 1.00000+ 1 1.99180- 3 1.10000+ 1 1.79620- 3 1.30000+ 1 1.45500- 3 1.40000+ 1 1.41200- 3 1.60000+ 1 4.36850- 4 1.80000+ 1 3.57040- 4 1.90000+ 1 3.12970- 4 2.10000+ 1 1.80250- 4 2.20000+ 1 1.72260- 4 2.40000+ 1 1.09400- 5 2.50000+ 1 9.76000- 6 2.70000+ 1 5.67300- 5 2.90000+ 1 3.47300- 5 3.00000+ 1 2.90600- 5 4.10000+ 1 5.48000- 6 1 68000 0 0 1.67260+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.63160- 2 3.00000+ 0 1.75780- 2 5.00000+ 0 1.75790- 2 6.00000+ 0 1.41210- 2 8.00000+ 0 5.48690- 3 1.00000+ 1 5.39600- 3 1.10000+ 1 4.56870- 3 1.30000+ 1 4.43290- 3 1.40000+ 1 4.24280- 3 1.60000+ 1 1.72060- 3 1.80000+ 1 1.61950- 3 1.90000+ 1 1.37880- 3 2.10000+ 1 1.18540- 3 2.20000+ 1 1.13290- 3 2.40000+ 1 7.05070- 4 2.50000+ 1 6.85920- 4 2.70000+ 1 3.47200- 4 2.90000+ 1 2.72200- 4 3.00000+ 1 2.23500- 4 4.10000+ 1 3.19100- 5 1 68000 0 0 1.67260+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07660-10 3.00000+ 0 4.52960-10 5.00000+ 0 3.76580-10 6.00000+ 0 4.15120-10 8.00000+ 0 1.18430- 9 1.00000+ 1 1.12840- 9 1.10000+ 1 1.20060- 9 1.30000+ 1 1.05610- 9 1.40000+ 1 1.07850- 9 1.60000+ 1 2.67260- 9 1.80000+ 1 2.71550- 9 1.90000+ 1 2.88040- 9 2.10000+ 1 3.01980- 9 2.20000+ 1 3.07730- 9 2.40000+ 1 4.03150- 9 2.50000+ 1 4.10870- 9 2.70000+ 1 6.53770- 9 2.90000+ 1 7.33700- 9 3.00000+ 1 7.90080- 9 4.10000+ 1 2.12000- 8 1 68000 0 0 1.67260+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.62680- 5 3.00000+ 0 5.27910- 7 5.00000+ 0 9.09010- 7 6.00000+ 0 8.23780- 7 8.00000+ 0 1.68700- 8 1.00000+ 1 1.74950- 8 1.10000+ 1 1.81090- 8 1.30000+ 1 1.58590- 8 1.40000+ 1 1.48850- 8 1.60000+ 1 4.35610-10 1.80000+ 1 8.50680-10 1.90000+ 1 5.49620-10 2.10000+ 1 6.17530-10 2.20000+ 1 5.57400-10 2.70000+ 1 2.05890-11 1 68000 0 0 1.67260+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.56290- 6 3.00000+ 0 4.58760- 6 5.00000+ 0 3.12110- 6 6.00000+ 0 3.10110- 6 8.00000+ 0 1.78560- 5 1.00000+ 1 9.56610- 6 1.10000+ 1 9.63330- 6 1.30000+ 1 1.99100- 6 1.40000+ 1 1.18130- 6 1.60000+ 1 1.27750- 5 1.80000+ 1 1.66760- 5 1.90000+ 1 8.85120- 6 2.10000+ 1 5.61740- 6 2.20000+ 1 4.54760- 6 2.70000+ 1 4.27520- 6 1 68000 0 0 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06199- 4 3.00000+ 0 1.33446- 4 5.00000+ 0 1.10901- 4 6.00000+ 0 1.04551- 4 8.00000+ 0 1.00060- 4 1.00000+ 1 8.41460- 5 1.10000+ 1 7.70120- 5 1.30000+ 1 5.51566- 5 1.40000+ 1 5.24536- 5 1.60000+ 1 6.16386- 5 1.80000+ 1 4.93046- 5 1.90000+ 1 4.35272- 5 2.10000+ 1 2.84817- 5 2.20000+ 1 2.65012- 5 2.40000+ 1 1.09400- 5 2.50000+ 1 9.76000- 6 2.70000+ 1 3.67153- 5 2.90000+ 1 3.47300- 5 3.00000+ 1 2.90600- 5 4.10000+ 1 5.48000- 6 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.14787+ 0 3.00000+ 0 2.34828- 1 5.00000+ 0 2.69904- 1 6.00000+ 0 2.21531- 1 8.00000+ 0 1.45259- 2 1.00000+ 1 1.47788- 2 1.10000+ 1 1.40763- 2 1.30000+ 1 1.36496- 2 1.40000+ 1 1.29284- 2 1.60000+ 1 4.98376- 4 1.80000+ 1 6.24005- 4 1.90000+ 1 2.37435- 4 2.10000+ 1 5.09594- 5 2.20000+ 1 4.94449- 5 2.70000+ 1 6.95151- 7 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.89006- 2 3.00000+ 0 1.67707- 3 5.00000+ 0 1.99248- 3 6.00000+ 0 1.44727- 3 8.00000+ 0 2.02197- 5 1.00000+ 1 2.02611- 5 1.10000+ 1 1.91758- 5 1.30000+ 1 1.81310- 5 1.40000+ 1 1.70272- 5 1.60000+ 1 1.05192- 7 1.80000+ 1 1.21710- 7 1.90000+ 1 4.07918- 8 2.10000+ 1 8.24392- 9 2.20000+ 1 7.76240- 9 2.70000+ 1 1.84524-11 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.85379+ 0 3.00000+ 0 8.77345+ 0 5.00000+ 0 7.18895+ 0 6.00000+ 0 6.78765+ 0 8.00000+ 0 6.30137+ 0 1.00000+ 1 5.14559+ 0 1.10000+ 1 4.68849+ 0 1.30000+ 1 3.13071+ 0 1.40000+ 1 2.97797+ 0 1.60000+ 1 2.88553+ 0 1.80000+ 1 2.45472+ 0 1.90000+ 1 2.05599+ 0 2.10000+ 1 1.12982+ 0 2.20000+ 1 1.09001+ 0 2.70000+ 1 9.99999- 1 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.56717- 3 3.00000+ 0 7.90568- 3 5.00000+ 0 7.17142- 3 6.00000+ 0 6.79558- 3 8.00000+ 0 2.06862- 3 1.00000+ 1 1.88739- 3 1.10000+ 1 1.70001- 3 1.30000+ 1 1.38171- 3 1.40000+ 1 1.34252- 3 1.60000+ 1 3.75106- 4 1.80000+ 1 3.07614- 4 1.90000+ 1 2.69402- 4 2.10000+ 1 1.51760- 4 2.20000+ 1 1.45751- 4 2.70000+ 1 2.00147- 5 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.71691- 1 4.82992- 2 6.00000+ 0 4.82122- 1 4.92266- 2 1.00000+ 1 5.02172- 2 5.55822- 2 1.10000+ 1 9.70585- 2 5.57778- 2 1.30000+ 1 8.89314- 4 5.61190- 2 1.40000+ 1 1.15261- 3 5.61620- 2 1.80000+ 1 1.11171- 2 5.72170- 2 1.90000+ 1 2.15141- 2 5.72610- 2 2.10000+ 1 2.02941- 4 5.73937- 2 2.20000+ 1 2.61801- 4 5.74017- 2 2.90000+ 1 2.47651- 3 5.75393- 2 3.00000+ 1 5.13622- 3 5.75449- 2 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.24722- 3 3.81416- 2 3.00000+ 0 5.00000+ 0 7.07966- 3 3.85830- 2 3.00000+ 0 6.00000+ 0 5.93173- 3 3.95104- 2 3.00000+ 0 8.00000+ 0 2.02555- 3 4.56689- 2 3.00000+ 0 1.00000+ 1 1.47513- 3 4.58660- 2 3.00000+ 0 1.10000+ 1 1.28853- 3 4.60616- 2 3.00000+ 0 1.30000+ 1 9.86644- 5 4.64028- 2 3.00000+ 0 1.40000+ 1 8.98643- 5 4.64458- 2 3.00000+ 0 1.60000+ 1 4.78662- 4 4.74209- 2 3.00000+ 0 1.80000+ 1 3.36077- 4 4.75008- 2 3.00000+ 0 1.90000+ 1 2.90807- 4 4.75448- 2 3.00000+ 0 2.10000+ 1 2.22945- 5 4.76775- 2 3.00000+ 0 2.20000+ 1 2.00455- 5 4.76855- 2 3.00000+ 0 2.70000+ 1 7.63679- 5 4.78011- 2 3.00000+ 0 2.90000+ 1 4.28280- 5 4.78231- 2 3.00000+ 0 3.00000+ 1 3.50057- 5 4.78287- 2 3.00000+ 0 4.10000+ 1 5.67113- 6 4.78523- 2 5.00000+ 0 5.00000+ 0 5.95178- 4 3.90244- 2 5.00000+ 0 6.00000+ 0 1.15949- 2 3.99518- 2 5.00000+ 0 8.00000+ 0 1.15549- 3 4.61103- 2 5.00000+ 0 1.00000+ 1 2.18640- 4 4.63074- 2 5.00000+ 0 1.10000+ 1 2.09130- 3 4.65030- 2 5.00000+ 0 1.30000+ 1 1.07949- 4 4.68442- 2 5.00000+ 0 1.40000+ 1 3.25999- 4 4.68872- 2 5.00000+ 0 1.60000+ 1 2.63029- 4 4.78623- 2 5.00000+ 0 1.80000+ 1 4.84999- 5 4.79422- 2 5.00000+ 0 1.90000+ 1 4.53889- 4 4.79862- 2 5.00000+ 0 2.10000+ 1 2.37600- 5 4.81189- 2 5.00000+ 0 2.20000+ 1 7.14748- 5 4.81269- 2 5.00000+ 0 2.40000+ 1 3.91109- 7 4.82883- 2 5.00000+ 0 2.50000+ 1 4.88879- 7 4.82894- 2 5.00000+ 0 2.70000+ 1 4.16549- 5 4.82425- 2 5.00000+ 0 2.90000+ 1 6.16019- 6 4.82645- 2 5.00000+ 0 3.00000+ 1 5.41708- 5 4.82701- 2 5.00000+ 0 4.10000+ 1 3.12899- 6 4.82937- 2 6.00000+ 0 6.00000+ 0 5.38138- 3 4.08792- 2 6.00000+ 0 8.00000+ 0 9.12191- 4 4.70377- 2 6.00000+ 0 1.00000+ 1 1.98206- 3 4.72348- 2 6.00000+ 0 1.10000+ 1 2.00166- 3 4.74304- 2 6.00000+ 0 1.30000+ 1 3.75642- 4 4.77716- 2 6.00000+ 0 1.40000+ 1 3.29702- 4 4.78146- 2 6.00000+ 0 1.60000+ 1 2.04846- 4 4.87897- 2 6.00000+ 0 1.80000+ 1 4.33830- 4 4.88696- 2 6.00000+ 0 1.90000+ 1 4.37850- 4 4.89136- 2 6.00000+ 0 2.10000+ 1 8.31093- 5 4.90463- 2 6.00000+ 0 2.20000+ 1 7.25513- 5 4.90543- 2 6.00000+ 0 2.40000+ 1 7.82233- 7 4.92157- 2 6.00000+ 0 2.50000+ 1 5.86636- 7 4.92168- 2 6.00000+ 0 2.70000+ 1 3.23642- 5 4.91699- 2 6.00000+ 0 2.90000+ 1 5.48527- 5 4.91919- 2 6.00000+ 0 3.00000+ 1 5.23118- 5 4.91975- 2 6.00000+ 0 4.10000+ 1 2.34665- 6 4.92211- 2 8.00000+ 0 8.00000+ 0 1.92434- 4 5.31962- 2 8.00000+ 0 1.00000+ 1 2.42304- 4 5.33933- 2 8.00000+ 0 1.10000+ 1 2.00064- 4 5.35889- 2 8.00000+ 0 1.30000+ 1 1.47642- 5 5.39301- 2 8.00000+ 0 1.40000+ 1 1.27112- 5 5.39731- 2 8.00000+ 0 1.60000+ 1 9.06438- 5 5.49482- 2 8.00000+ 0 1.80000+ 1 5.52459- 5 5.50281- 2 8.00000+ 0 1.90000+ 1 4.52738- 5 5.50721- 2 8.00000+ 0 2.10000+ 1 3.32455- 6 5.52048- 2 8.00000+ 0 2.20000+ 1 2.83565- 6 5.52128- 2 8.00000+ 0 2.70000+ 1 1.44712- 5 5.53284- 2 8.00000+ 0 2.90000+ 1 7.04032- 6 5.53504- 2 8.00000+ 0 3.00000+ 1 5.47579- 6 5.53560- 2 8.00000+ 0 4.10000+ 1 1.07561- 6 5.53796- 2 1.00000+ 1 1.00000+ 1 1.94583- 5 5.35904- 2 1.00000+ 1 1.10000+ 1 3.65605- 4 5.37860- 2 1.00000+ 1 1.30000+ 1 1.51563- 5 5.41272- 2 1.00000+ 1 1.40000+ 1 4.28275- 5 5.41702- 2 1.00000+ 1 1.60000+ 1 5.52457- 5 5.51453- 2 1.00000+ 1 1.80000+ 1 8.60443- 6 5.52252- 2 1.00000+ 1 1.90000+ 1 7.96922- 5 5.52692- 2 1.00000+ 1 2.10000+ 1 3.32454- 6 5.54019- 2 1.00000+ 1 2.20000+ 1 9.48443- 6 5.54099- 2 1.00000+ 1 2.50000+ 1 9.77814- 8 5.55724- 2 1.00000+ 1 2.70000+ 1 8.70273- 6 5.55255- 2 1.00000+ 1 2.90000+ 1 1.07561- 6 5.55475- 2 1.00000+ 1 3.00000+ 1 9.48443- 6 5.55531- 2 1.00000+ 1 4.10000+ 1 6.84428- 7 5.55767- 2 1.10000+ 1 1.10000+ 1 1.87453- 4 5.39816- 2 1.10000+ 1 1.30000+ 1 5.55407- 5 5.43228- 2 1.10000+ 1 1.40000+ 1 4.73267- 5 5.43658- 2 1.10000+ 1 1.60000+ 1 4.49797- 5 5.53409- 2 1.10000+ 1 1.80000+ 1 8.03773- 5 5.54208- 2 1.10000+ 1 1.90000+ 1 8.21353- 5 5.54648- 2 1.10000+ 1 2.10000+ 1 1.24182- 5 5.55975- 2 1.10000+ 1 2.20000+ 1 1.04621- 5 5.56055- 2 1.10000+ 1 2.40000+ 1 9.77815- 8 5.57669- 2 1.10000+ 1 2.50000+ 1 9.77815- 8 5.57680- 2 1.10000+ 1 2.70000+ 1 7.13799- 6 5.57211- 2 1.10000+ 1 2.90000+ 1 1.01691- 5 5.57431- 2 1.10000+ 1 3.00000+ 1 9.77815- 6 5.57487- 2 1.10000+ 1 4.10000+ 1 4.88887- 7 5.57723- 2 1.30000+ 1 1.30000+ 1 9.82756- 8 5.46640- 2 1.30000+ 1 1.40000+ 1 6.78068- 6 5.47070- 2 1.30000+ 1 1.60000+ 1 3.34134- 6 5.56821- 2 1.30000+ 1 1.80000+ 1 3.24305- 6 5.57620- 2 1.30000+ 1 1.90000+ 1 1.15964- 5 5.58060- 2 1.30000+ 1 2.20000+ 1 1.47413- 6 5.59467- 2 1.30000+ 1 2.70000+ 1 4.91358- 7 5.60623- 2 1.30000+ 1 2.90000+ 1 3.93092- 7 5.60843- 2 1.30000+ 1 3.00000+ 1 1.37584- 6 5.60899- 2 1.40000+ 1 1.40000+ 1 1.56451- 6 5.47500- 2 1.40000+ 1 1.60000+ 1 2.83560- 6 5.57251- 2 1.40000+ 1 1.80000+ 1 8.89803- 6 5.58050- 2 1.40000+ 1 1.90000+ 1 9.77802- 6 5.58490- 2 1.40000+ 1 2.10000+ 1 1.46670- 6 5.59817- 2 1.40000+ 1 2.20000+ 1 6.84420- 7 5.59897- 2 1.40000+ 1 2.70000+ 1 4.88880- 7 5.61053- 2 1.40000+ 1 2.90000+ 1 1.07559- 6 5.61273- 2 1.40000+ 1 3.00000+ 1 1.17339- 6 5.61329- 2 1.60000+ 1 1.60000+ 1 1.07574- 5 5.67003- 2 1.60000+ 1 1.80000+ 1 1.27318- 5 5.67801- 2 1.60000+ 1 1.90000+ 1 1.02639- 5 5.68242- 2 1.60000+ 1 2.10000+ 1 7.89555- 7 5.69569- 2 1.60000+ 1 2.20000+ 1 5.92127- 7 5.69649- 2 1.60000+ 1 2.70000+ 1 3.45425- 6 5.70804- 2 1.60000+ 1 2.90000+ 1 1.57912- 6 5.71024- 2 1.60000+ 1 3.00000+ 1 1.28297- 6 5.71081- 2 1.60000+ 1 4.10000+ 1 2.96079- 7 5.71317- 2 1.80000+ 1 1.80000+ 1 9.77805- 7 5.68599- 2 1.80000+ 1 1.90000+ 1 1.75021- 5 5.69040- 2 1.80000+ 1 2.10000+ 1 6.84422- 7 5.70367- 2 1.80000+ 1 2.20000+ 1 1.95561- 6 5.70447- 2 1.80000+ 1 2.70000+ 1 1.95561- 6 5.71602- 2 1.80000+ 1 2.90000+ 1 1.95561- 7 5.71822- 2 1.80000+ 1 3.00000+ 1 2.05341- 6 5.71879- 2 1.80000+ 1 4.10000+ 1 1.95561- 7 5.72115- 2 1.90000+ 1 1.90000+ 1 8.77004- 6 5.69481- 2 1.90000+ 1 2.10000+ 1 2.47852- 6 5.70808- 2 1.90000+ 1 2.20000+ 1 2.09723- 6 5.70888- 2 1.90000+ 1 2.70000+ 1 1.52526- 6 5.72043- 2 1.90000+ 1 2.90000+ 1 2.19248- 6 5.72263- 2 1.90000+ 1 3.00000+ 1 2.09723- 6 5.72320- 2 1.90000+ 1 4.10000+ 1 9.53271- 8 5.72555- 2 2.10000+ 1 2.20000+ 1 2.98951- 7 5.72215- 2 2.10000+ 1 2.70000+ 1 9.96507- 8 5.73370- 2 2.10000+ 1 2.90000+ 1 9.96507- 8 5.73590- 2 2.10000+ 1 3.00000+ 1 2.98951- 7 5.73647- 2 2.20000+ 1 2.20000+ 1 9.77819- 8 5.72295- 2 2.20000+ 1 2.70000+ 1 9.77819- 8 5.73450- 2 2.20000+ 1 2.90000+ 1 2.93345- 7 5.73670- 2 2.20000+ 1 3.00000+ 1 2.93345- 7 5.73727- 2 2.70000+ 1 2.70000+ 1 3.73393- 7 5.74605- 2 2.70000+ 1 2.90000+ 1 3.73393- 7 5.74825- 2 2.70000+ 1 3.00000+ 1 2.48929- 7 5.74882- 2 2.90000+ 1 3.00000+ 1 2.99401- 7 5.75102- 2 3.00000+ 1 3.00000+ 1 9.77815- 8 5.75159- 2 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.89200- 5 4.41400- 4 6.00000+ 0 1.29540- 3 1.36880- 3 1.00000+ 1 2.88470- 2 7.72440- 3 1.10000+ 1 3.92470- 2 7.92000- 3 1.30000+ 1 6.99840- 4 8.26120- 3 1.40000+ 1 1.04760- 3 8.30420- 3 1.80000+ 1 6.89370- 3 9.35916- 3 1.90000+ 1 9.80791- 3 9.40323- 3 2.10000+ 1 9.52451- 5 9.53595- 3 2.20000+ 1 1.47450- 4 9.54394- 3 2.90000+ 1 9.16851- 4 9.68147- 3 3.00000+ 1 1.25270- 3 9.68714- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 4.70872- 2 4.55000- 6 5.00000+ 0 1.80000+ 1 3.70382- 2 8.43600- 5 5.00000+ 0 1.90000+ 1 4.07263- 2 1.28430- 4 5.00000+ 0 2.10000+ 1 1.09344- 2 2.61150- 4 5.00000+ 0 2.20000+ 1 1.61857- 2 2.69140- 4 5.00000+ 0 2.40000+ 1 2.71078- 2 4.30460- 4 5.00000+ 0 2.50000+ 1 2.64486- 2 4.31640- 4 5.00000+ 0 2.70000+ 1 7.37883- 3 3.84670- 4 5.00000+ 0 2.90000+ 1 4.43941- 3 4.06670- 4 5.00000+ 0 3.00000+ 1 4.68873- 3 4.12340- 4 5.00000+ 0 4.10000+ 1 5.44949- 4 4.35920- 4 6.00000+ 0 1.60000+ 1 5.10374- 2 9.31950- 4 6.00000+ 0 1.80000+ 1 2.12807- 2 1.01176- 3 6.00000+ 0 1.90000+ 1 3.58619- 2 1.05583- 3 6.00000+ 0 2.10000+ 1 6.23583- 2 1.18855- 3 6.00000+ 0 2.20000+ 1 7.69415- 2 1.19654- 3 6.00000+ 0 2.40000+ 1 3.88370- 2 1.35786- 3 6.00000+ 0 2.50000+ 1 3.64594- 2 1.35904- 3 6.00000+ 0 2.70000+ 1 7.80837- 3 1.31207- 3 6.00000+ 0 2.90000+ 1 2.63311- 3 1.33407- 3 6.00000+ 0 3.00000+ 1 4.24521- 3 1.33974- 3 6.00000+ 0 4.10000+ 1 5.77311- 4 1.36332- 3 8.00000+ 0 8.00000+ 0 1.12820- 2 5.33840- 3 8.00000+ 0 1.00000+ 1 2.27808- 2 5.53550- 3 8.00000+ 0 1.10000+ 1 3.95902- 2 5.73110- 3 8.00000+ 0 1.30000+ 1 3.07336- 2 6.07230- 3 8.00000+ 0 1.40000+ 1 4.17234- 2 6.11530- 3 8.00000+ 0 1.60000+ 1 4.52371- 3 7.09045- 3 8.00000+ 0 1.80000+ 1 5.09085- 3 7.17026- 3 8.00000+ 0 1.90000+ 1 8.70437- 3 7.21433- 3 8.00000+ 0 2.10000+ 1 5.80914- 3 7.34705- 3 8.00000+ 0 2.20000+ 1 7.80929- 3 7.35504- 3 8.00000+ 0 2.40000+ 1 2.89747- 4 7.51636- 3 8.00000+ 0 2.50000+ 1 2.50368- 4 7.51754- 3 8.00000+ 0 2.70000+ 1 7.03613- 4 7.47057- 3 8.00000+ 0 2.90000+ 1 6.45874- 4 7.49257- 3 8.00000+ 0 3.00000+ 1 1.04086- 3 7.49824- 3 8.00000+ 0 4.10000+ 1 5.23379- 5 7.52182- 3 1.00000+ 1 1.00000+ 1 7.76932- 5 5.73260- 3 1.00000+ 1 1.10000+ 1 6.15078- 4 5.92820- 3 1.00000+ 1 1.30000+ 1 1.21403- 3 6.26940- 3 1.00000+ 1 1.40000+ 1 1.23056- 2 6.31240- 3 1.00000+ 1 1.60000+ 1 3.61114- 3 7.28755- 3 1.00000+ 1 1.80000+ 1 1.40279- 5 7.36736- 3 1.00000+ 1 1.90000+ 1 1.24091- 4 7.41143- 3 1.00000+ 1 2.10000+ 1 2.19070- 4 7.54415- 3 1.00000+ 1 2.20000+ 1 1.48374- 3 7.55214- 3 1.00000+ 1 2.40000+ 1 1.01431- 4 7.71346- 3 1.00000+ 1 2.50000+ 1 2.65455- 4 7.71464- 3 1.00000+ 1 2.70000+ 1 5.33061- 4 7.66767- 3 1.00000+ 1 2.90000+ 1 1.61864- 6 7.68967- 3 1.00000+ 1 3.00000+ 1 1.45676- 5 7.69534- 3 1.00000+ 1 4.10000+ 1 3.93867- 5 7.71892- 3 1.10000+ 1 1.10000+ 1 9.96486- 4 6.12380- 3 1.10000+ 1 1.30000+ 1 6.03254- 3 6.46500- 3 1.10000+ 1 1.40000+ 1 3.88131- 3 6.50800- 3 1.10000+ 1 1.60000+ 1 6.24563- 3 7.48315- 3 1.10000+ 1 1.80000+ 1 1.30571- 4 7.56296- 3 1.10000+ 1 1.90000+ 1 3.24271- 4 7.60703- 3 1.10000+ 1 2.10000+ 1 5.44931- 4 7.73975- 3 1.10000+ 1 2.20000+ 1 3.49080- 4 7.74774- 3 1.10000+ 1 2.40000+ 1 2.53046- 4 7.90906- 3 1.10000+ 1 2.50000+ 1 1.54306- 4 7.91024- 3 1.10000+ 1 2.70000+ 1 9.20992- 4 7.86327- 3 1.10000+ 1 2.90000+ 1 1.61862- 5 7.88527- 3 1.10000+ 1 3.00000+ 1 3.66881- 5 7.89094- 3 1.10000+ 1 4.10000+ 1 6.79801- 5 7.91452- 3 1.30000+ 1 1.30000+ 1 1.80968- 3 6.80620- 3 1.30000+ 1 1.40000+ 1 5.89309- 2 6.84920- 3 1.30000+ 1 1.60000+ 1 4.52353- 3 7.82435- 3 1.30000+ 1 1.80000+ 1 3.39924- 4 7.90416- 3 1.30000+ 1 1.90000+ 1 1.41906- 3 7.94823- 3 1.30000+ 1 2.10000+ 1 6.70669- 4 8.08095- 3 1.30000+ 1 2.20000+ 1 7.81495- 3 8.08894- 3 1.30000+ 1 2.40000+ 1 3.33980- 4 8.25026- 3 1.30000+ 1 2.50000+ 1 6.97092- 4 8.25144- 3 1.30000+ 1 2.70000+ 1 6.59328- 4 8.20447- 3 1.30000+ 1 2.90000+ 1 4.47829- 5 8.22647- 3 1.30000+ 1 3.00000+ 1 1.71575- 4 8.23214- 3 1.30000+ 1 4.10000+ 1 4.85613- 5 8.25572- 3 1.40000+ 1 1.40000+ 1 1.65074- 2 6.89220- 3 1.40000+ 1 1.60000+ 1 6.20489- 3 7.86735- 3 1.40000+ 1 1.80000+ 1 2.46848- 3 7.94716- 3 1.40000+ 1 1.90000+ 1 9.58233- 4 7.99123- 3 1.40000+ 1 2.10000+ 1 7.67852- 3 8.12395- 3 1.40000+ 1 2.20000+ 1 4.61097- 3 8.13194- 3 1.40000+ 1 2.40000+ 1 1.04234- 3 8.29326- 3 1.40000+ 1 2.50000+ 1 5.95680- 4 8.29444- 3 1.40000+ 1 2.70000+ 1 9.07527- 4 8.24747- 3 1.40000+ 1 2.90000+ 1 3.07547- 4 8.26947- 3 1.40000+ 1 3.00000+ 1 1.16548- 4 8.27514- 3 1.40000+ 1 4.10000+ 1 6.69046- 5 8.29872- 3 1.60000+ 1 1.60000+ 1 4.28410- 4 8.84250- 3 1.60000+ 1 1.80000+ 1 8.09338- 4 8.92231- 3 1.60000+ 1 1.90000+ 1 1.37749- 3 8.96638- 3 1.60000+ 1 2.10000+ 1 8.54131- 4 9.09910- 3 1.60000+ 1 2.20000+ 1 1.15514- 3 9.10709- 3 1.60000+ 1 2.40000+ 1 3.50710- 5 9.26841- 3 1.60000+ 1 2.50000+ 1 2.96757- 5 9.26959- 3 1.60000+ 1 2.70000+ 1 1.31652- 4 9.22262- 3 1.60000+ 1 2.90000+ 1 1.02520- 4 9.24462- 3 1.60000+ 1 3.00000+ 1 1.64568- 4 9.25029- 3 1.60000+ 1 4.10000+ 1 9.71156- 6 9.27387- 3 1.80000+ 1 1.80000+ 1 5.39558- 7 9.00212- 3 1.80000+ 1 1.90000+ 1 2.64372- 5 9.04619- 3 1.80000+ 1 2.10000+ 1 5.23349- 5 9.17891- 3 1.80000+ 1 2.20000+ 1 3.08079- 4 9.18690- 3 1.80000+ 1 2.40000+ 1 1.34895- 5 9.34822- 3 1.80000+ 1 2.50000+ 1 3.99267- 5 9.34940- 3 1.80000+ 1 2.70000+ 1 1.19234- 4 9.30243- 3 1.80000+ 1 3.00000+ 1 3.23720- 6 9.33010- 3 1.80000+ 1 4.10000+ 1 8.63268- 6 9.35368- 3 1.90000+ 1 1.90000+ 1 2.58980- 5 9.09026- 3 1.90000+ 1 2.10000+ 1 1.41906- 4 9.22298- 3 1.90000+ 1 2.20000+ 1 9.65783- 5 9.23097- 3 1.90000+ 1 2.40000+ 1 4.42444- 5 9.39229- 3 1.90000+ 1 2.50000+ 1 2.64377- 5 9.39347- 3 1.90000+ 1 2.70000+ 1 2.03396- 4 9.34650- 3 1.90000+ 1 2.90000+ 1 3.23726- 6 9.36850- 3 1.90000+ 1 3.00000+ 1 5.93521- 6 9.37417- 3 1.90000+ 1 4.10000+ 1 1.51077- 5 9.39775- 3 2.10000+ 1 2.10000+ 1 5.77336- 5 9.35570- 3 2.10000+ 1 2.20000+ 1 1.10608- 3 9.36369- 3 2.10000+ 1 2.40000+ 1 4.31670- 5 9.52501- 3 2.10000+ 1 2.50000+ 1 6.96067- 5 9.52619- 3 2.10000+ 1 2.70000+ 1 1.24100- 4 9.47922- 3 2.10000+ 1 2.90000+ 1 6.47499- 6 9.50122- 3 2.10000+ 1 3.00000+ 1 1.72658- 5 9.50689- 3 2.10000+ 1 4.10000+ 1 9.17243- 6 9.53047- 3 2.20000+ 1 2.20000+ 1 3.43696- 4 9.37168- 3 2.20000+ 1 2.40000+ 1 1.07915- 4 9.53300- 3 2.20000+ 1 2.50000+ 1 6.85242- 5 9.53418- 3 2.20000+ 1 2.70000+ 1 1.68877- 4 9.48721- 3 2.20000+ 1 2.90000+ 1 3.88489- 5 9.50921- 3 2.20000+ 1 3.00000+ 1 1.18697- 5 9.51488- 3 2.20000+ 1 4.10000+ 1 1.24094- 5 9.53846- 3 2.40000+ 1 2.40000+ 1 6.12965- 7 9.69432- 3 2.40000+ 1 2.50000+ 1 1.04197- 5 9.69550- 3 2.40000+ 1 2.70000+ 1 5.51673- 6 9.64853- 3 2.40000+ 1 2.90000+ 1 1.83888- 6 9.67053- 3 2.40000+ 1 3.00000+ 1 5.51673- 6 9.67620- 3 2.40000+ 1 4.10000+ 1 6.12965- 7 9.69978- 3 2.50000+ 1 2.50000+ 1 1.90440- 6 9.69668- 3 2.50000+ 1 2.70000+ 1 3.80889- 6 9.64971- 3 2.50000+ 1 2.90000+ 1 4.28506- 6 9.67171- 3 2.50000+ 1 3.00000+ 1 2.85655- 6 9.67738- 3 2.50000+ 1 4.10000+ 1 4.76114- 7 9.70096- 3 2.70000+ 1 2.70000+ 1 2.21165- 5 9.60274- 3 2.70000+ 1 2.90000+ 1 3.25918- 5 9.62474- 3 2.70000+ 1 3.00000+ 1 5.23797- 5 9.63041- 3 2.70000+ 1 4.10000+ 1 3.49200- 6 9.65399- 3 2.90000+ 1 3.00000+ 1 2.25260- 6 9.65241- 3 2.90000+ 1 4.10000+ 1 4.50530- 6 9.67599- 3 3.00000+ 1 3.00000+ 1 8.77382- 7 9.65808- 3 3.00000+ 1 4.10000+ 1 2.63212- 6 9.68166- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.14740- 6 9.27400- 4 8.00000+ 0 5.71951- 3 7.08590- 3 1.10000+ 1 1.36920- 4 7.47860- 3 1.30000+ 1 1.79620- 1 7.81980- 3 1.60000+ 1 1.22460- 3 8.83795- 3 1.90000+ 1 3.27541- 5 8.96183- 3 2.10000+ 1 3.17611- 2 9.09455- 3 2.40000+ 1 4.62231- 5 9.26386- 3 2.70000+ 1 2.20510- 4 9.21807- 3 3.00000+ 1 7.27231- 6 9.24574- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 7.95143- 3 4.90550- 4 6.00000+ 0 1.80000+ 1 4.56113- 2 5.70360- 4 6.00000+ 0 1.90000+ 1 1.44750- 2 6.14430- 4 6.00000+ 0 2.10000+ 1 5.40059- 2 7.47150- 4 6.00000+ 0 2.20000+ 1 1.92143- 2 7.55140- 4 6.00000+ 0 2.40000+ 1 1.31198- 3 9.16460- 4 6.00000+ 0 2.50000+ 1 1.49036- 3 9.17640- 4 6.00000+ 0 2.70000+ 1 1.15740- 3 8.70670- 4 6.00000+ 0 2.90000+ 1 5.42913- 3 8.92670- 4 6.00000+ 0 3.00000+ 1 1.70827- 3 8.98340- 4 6.00000+ 0 4.10000+ 1 8.51057- 5 9.21920- 4 8.00000+ 0 8.00000+ 0 8.03412- 4 4.89700- 3 8.00000+ 0 1.00000+ 1 2.30569- 2 5.09410- 3 8.00000+ 0 1.10000+ 1 2.23380- 3 5.28970- 3 8.00000+ 0 1.30000+ 1 2.55516- 3 5.63090- 3 8.00000+ 0 1.40000+ 1 2.69553- 3 5.67390- 3 8.00000+ 0 1.60000+ 1 2.95477- 4 6.64905- 3 8.00000+ 0 1.80000+ 1 3.44362- 3 6.72886- 3 8.00000+ 0 1.90000+ 1 4.37090- 4 6.77293- 3 8.00000+ 0 2.10000+ 1 3.43817- 4 6.90565- 3 8.00000+ 0 2.20000+ 1 3.08404- 4 6.91364- 3 8.00000+ 0 2.40000+ 1 7.28491- 5 7.07496- 3 8.00000+ 0 2.50000+ 1 3.54042- 5 7.07614- 3 8.00000+ 0 2.70000+ 1 4.49351- 5 7.02917- 3 8.00000+ 0 2.90000+ 1 4.07142- 4 7.05117- 3 8.00000+ 0 3.00000+ 1 5.10628- 5 7.05684- 3 8.00000+ 0 4.10000+ 1 3.40409- 6 7.08042- 3 1.00000+ 1 1.00000+ 1 2.34003- 2 5.29120- 3 1.00000+ 1 1.10000+ 1 6.70928- 2 5.48680- 3 1.00000+ 1 1.30000+ 1 3.57477- 2 5.82800- 3 1.00000+ 1 1.40000+ 1 5.66190- 2 5.87100- 3 1.00000+ 1 1.60000+ 1 5.56327- 3 6.84615- 3 1.00000+ 1 1.80000+ 1 8.86355- 3 6.92596- 3 1.00000+ 1 1.90000+ 1 1.44953- 2 6.97003- 3 1.00000+ 1 2.10000+ 1 6.75203- 3 7.10275- 3 1.00000+ 1 2.20000+ 1 1.06423- 2 7.11074- 3 1.00000+ 1 2.40000+ 1 3.26127- 4 7.27206- 3 1.00000+ 1 2.50000+ 1 2.26722- 4 7.27324- 3 1.00000+ 1 2.70000+ 1 8.89874- 4 7.22627- 3 1.00000+ 1 2.90000+ 1 1.09751- 3 7.24827- 3 1.00000+ 1 3.00000+ 1 1.72794- 3 7.25394- 3 1.00000+ 1 4.10000+ 1 6.60410- 5 7.27752- 3 1.10000+ 1 1.10000+ 1 1.67487- 3 5.68240- 3 1.10000+ 1 1.30000+ 1 3.82870- 2 6.02360- 3 1.10000+ 1 1.40000+ 1 5.28939- 3 6.06660- 3 1.10000+ 1 1.60000+ 1 4.57528- 4 7.04175- 3 1.10000+ 1 1.80000+ 1 1.03375- 2 7.12156- 3 1.10000+ 1 1.90000+ 1 6.14789- 4 7.16563- 3 1.10000+ 1 2.10000+ 1 6.10312- 3 7.29835- 3 1.10000+ 1 2.20000+ 1 7.97945- 4 7.30634- 3 1.10000+ 1 2.40000+ 1 1.77700- 4 7.46766- 3 1.10000+ 1 2.50000+ 1 7.35307- 5 7.46884- 3 1.10000+ 1 2.70000+ 1 7.08061- 5 7.42187- 3 1.10000+ 1 2.90000+ 1 1.22898- 3 7.44387- 3 1.10000+ 1 3.00000+ 1 7.14877- 5 7.44954- 3 1.10000+ 1 4.10000+ 1 5.44680- 6 7.47312- 3 1.30000+ 1 1.30000+ 1 3.57008- 2 6.36480- 3 1.30000+ 1 1.40000+ 1 1.47800- 1 6.40780- 3 1.30000+ 1 1.60000+ 1 6.18878- 4 7.38295- 3 1.30000+ 1 1.80000+ 1 5.43638- 3 7.46276- 3 1.30000+ 1 1.90000+ 1 7.74230- 3 7.50683- 3 1.30000+ 1 2.10000+ 1 1.13215- 2 7.63955- 3 1.30000+ 1 2.20000+ 1 2.51659- 2 7.64754- 3 1.30000+ 1 2.40000+ 1 1.27311- 3 7.80886- 3 1.30000+ 1 2.50000+ 1 1.94305- 3 7.81004- 3 1.30000+ 1 2.70000+ 1 9.94002- 5 7.76307- 3 1.30000+ 1 2.90000+ 1 6.48825- 4 7.78507- 3 1.30000+ 1 3.00000+ 1 9.13026- 4 7.79074- 3 1.30000+ 1 4.10000+ 1 7.48901- 6 7.81432- 3 1.40000+ 1 1.40000+ 1 7.10671- 3 6.45080- 3 1.40000+ 1 1.60000+ 1 5.33099- 4 7.42595- 3 1.40000+ 1 1.80000+ 1 7.62268- 3 7.50576- 3 1.40000+ 1 1.90000+ 1 9.79749- 4 7.54983- 3 1.40000+ 1 2.10000+ 1 1.94534- 2 7.68255- 3 1.40000+ 1 2.20000+ 1 2.19571- 3 7.69054- 3 1.40000+ 1 2.40000+ 1 5.15413- 4 7.85186- 3 1.40000+ 1 2.50000+ 1 1.48420- 4 7.85304- 3 1.40000+ 1 2.70000+ 1 8.23798- 5 7.80607- 3 1.40000+ 1 2.90000+ 1 8.83695- 4 7.82807- 3 1.40000+ 1 3.00000+ 1 1.13702- 4 7.83374- 3 1.40000+ 1 4.10000+ 1 6.12769- 6 7.85732- 3 1.60000+ 1 1.60000+ 1 2.65520- 5 8.40110- 3 1.60000+ 1 1.80000+ 1 8.35429- 4 8.48091- 3 1.60000+ 1 1.90000+ 1 8.98683- 5 8.52498- 3 1.60000+ 1 2.10000+ 1 8.03414- 5 8.65770- 3 1.60000+ 1 2.20000+ 1 6.19571- 5 8.66569- 3 1.60000+ 1 2.40000+ 1 1.56587- 5 8.82701- 3 1.60000+ 1 2.50000+ 1 6.12765- 6 8.82819- 3 1.60000+ 1 2.70000+ 1 8.16997- 6 8.78122- 3 1.60000+ 1 2.90000+ 1 9.87235- 5 8.80322- 3 1.60000+ 1 3.00000+ 1 1.08933- 5 8.80889- 3 1.60000+ 1 4.10000+ 1 6.80849- 7 8.83247- 3 1.80000+ 1 1.80000+ 1 7.99262- 4 8.56072- 3 1.80000+ 1 1.90000+ 1 2.23651- 3 8.60479- 3 1.80000+ 1 2.10000+ 1 1.00965- 3 8.73751- 3 1.80000+ 1 2.20000+ 1 1.44465- 3 8.74550- 3 1.80000+ 1 2.40000+ 1 4.01684- 5 8.90682- 3 1.80000+ 1 2.50000+ 1 2.31475- 5 8.90800- 3 1.80000+ 1 2.70000+ 1 1.33444- 4 8.86103- 3 1.80000+ 1 2.90000+ 1 1.96083- 4 8.88303- 3 1.80000+ 1 3.00000+ 1 2.66889- 4 8.88870- 3 1.80000+ 1 4.10000+ 1 1.02124- 5 8.91228- 3 1.90000+ 1 1.90000+ 1 5.66325- 5 8.64886- 3 1.90000+ 1 2.10000+ 1 1.24720- 3 8.78158- 3 1.90000+ 1 2.20000+ 1 1.51479- 4 8.78957- 3 1.90000+ 1 2.40000+ 1 2.93400- 5 8.95089- 3 1.90000+ 1 2.50000+ 1 1.15990- 5 8.95207- 3 1.90000+ 1 2.70000+ 1 1.43284- 5 8.90510- 3 1.90000+ 1 2.90000+ 1 2.66095- 4 8.92710- 3 1.90000+ 1 3.00000+ 1 1.29642- 5 8.93277- 3 1.90000+ 1 4.10000+ 1 1.36463- 6 8.95635- 3 2.10000+ 1 2.10000+ 1 8.86424- 4 8.91430- 3 2.10000+ 1 2.20000+ 1 3.43688- 3 8.92229- 3 2.10000+ 1 2.40000+ 1 1.39577- 4 9.08361- 3 2.10000+ 1 2.50000+ 1 2.15829- 4 9.08479- 3 2.10000+ 1 2.70000+ 1 1.29362- 5 9.03782- 3 2.10000+ 1 2.90000+ 1 1.19823- 4 9.05982- 3 2.10000+ 1 3.00000+ 1 1.47058- 4 9.06549- 3 2.10000+ 1 4.10000+ 1 6.80851- 7 9.08907- 3 2.20000+ 1 2.20000+ 1 2.57286- 4 8.93028- 3 2.20000+ 1 2.40000+ 1 9.12338- 5 9.09160- 3 2.20000+ 1 2.50000+ 1 2.66518- 5 9.09278- 3 2.20000+ 1 2.70000+ 1 1.43514- 5 9.04581- 3 2.20000+ 1 2.90000+ 1 2.52171- 4 9.06781- 3 2.20000+ 1 3.00000+ 1 2.66518- 5 9.07348- 3 2.20000+ 1 4.10000+ 1 1.02509- 6 9.09706- 3 2.40000+ 1 2.40000+ 1 2.87457- 6 9.25292- 3 2.40000+ 1 2.50000+ 1 1.34149- 5 9.25410- 3 2.40000+ 1 2.70000+ 1 3.83262- 6 9.20713- 3 2.40000+ 1 2.90000+ 1 6.70718- 6 9.22913- 3 2.40000+ 1 3.00000+ 1 4.79081- 6 9.23480- 3 2.50000+ 1 2.50000+ 1 1.26641- 6 9.25528- 3 2.50000+ 1 2.70000+ 1 1.26641- 6 9.20831- 3 2.50000+ 1 2.90000+ 1 5.06541- 6 9.23031- 3 2.50000+ 1 3.00000+ 1 2.53279- 6 9.23598- 3 2.70000+ 1 2.70000+ 1 1.30499- 6 9.16134- 3 2.70000+ 1 2.90000+ 1 3.00131- 5 9.18334- 3 2.70000+ 1 3.00000+ 1 2.60994- 6 9.18901- 3 2.90000+ 1 2.90000+ 1 2.68093- 5 9.20534- 3 2.90000+ 1 3.00000+ 1 7.00049- 5 9.21101- 3 2.90000+ 1 4.10000+ 1 2.97896- 6 9.23459- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.06781- 2 6.15850- 3 1.00000+ 1 7.87365- 5 6.35560- 3 1.10000+ 1 7.15654- 5 6.55120- 3 1.30000+ 1 1.63411- 2 6.89240- 3 1.40000+ 1 1.44331- 1 6.93540- 3 1.60000+ 1 1.63601- 3 7.91055- 3 1.80000+ 1 1.42001- 5 7.99036- 3 1.90000+ 1 1.37901- 5 8.03443- 3 2.10000+ 1 2.74402- 3 8.16715- 3 2.20000+ 1 2.45452- 2 8.17514- 3 2.40000+ 1 6.64694- 6 8.33646- 3 2.50000+ 1 3.72932- 5 8.33764- 3 2.70000+ 1 3.15172- 4 8.29067- 3 2.90000+ 1 3.21802- 6 8.31267- 3 3.00000+ 1 2.80762- 6 8.31834- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.06655- 3 3.96960- 3 8.00000+ 0 1.00000+ 1 6.46781- 4 4.16670- 3 8.00000+ 0 1.10000+ 1 2.52779- 2 4.36230- 3 8.00000+ 0 1.30000+ 1 2.68881- 3 4.70350- 3 8.00000+ 0 1.40000+ 1 3.56391- 3 4.74650- 3 8.00000+ 0 1.60000+ 1 3.93112- 4 5.72165- 3 8.00000+ 0 1.80000+ 1 1.14216- 4 5.80146- 3 8.00000+ 0 1.90000+ 1 3.72028- 3 5.84553- 3 8.00000+ 0 2.10000+ 1 2.49473- 4 5.97825- 3 8.00000+ 0 2.20000+ 1 2.97111- 4 5.98624- 3 8.00000+ 0 2.40000+ 1 1.11426- 4 6.14756- 3 8.00000+ 0 2.50000+ 1 1.51361- 4 6.14874- 3 8.00000+ 0 2.70000+ 1 5.95637- 5 6.10177- 3 8.00000+ 0 2.90000+ 1 1.40151- 5 6.12377- 3 8.00000+ 0 3.00000+ 1 4.15550- 4 6.12944- 3 8.00000+ 0 4.10000+ 1 4.20432- 6 6.15302- 3 1.00000+ 1 1.00000+ 1 1.58377- 4 4.36380- 3 1.00000+ 1 1.10000+ 1 4.23531- 2 4.55940- 3 1.00000+ 1 1.30000+ 1 2.41977- 3 4.90060- 3 1.00000+ 1 1.40000+ 1 2.15393- 2 4.94360- 3 1.00000+ 1 1.60000+ 1 1.28934- 4 5.91875- 3 1.00000+ 1 1.80000+ 1 5.95644- 5 5.99856- 3 1.00000+ 1 1.90000+ 1 6.47638- 3 6.04263- 3 1.00000+ 1 2.10000+ 1 4.16253- 4 6.17535- 3 1.00000+ 1 2.20000+ 1 3.12337- 3 6.18334- 3 1.00000+ 1 2.40000+ 1 1.21231- 4 6.34466- 3 1.00000+ 1 2.50000+ 1 2.38955- 4 6.34584- 3 1.00000+ 1 2.70000+ 1 2.03214- 5 6.29887- 3 1.00000+ 1 2.90000+ 1 7.70840- 6 6.32087- 3 1.00000+ 1 3.00000+ 1 7.28792- 4 6.32654- 3 1.00000+ 1 4.10000+ 1 1.40153- 6 6.35012- 3 1.10000+ 1 1.10000+ 1 5.67684- 2 4.75500- 3 1.10000+ 1 1.30000+ 1 5.88719- 2 5.09620- 3 1.10000+ 1 1.40000+ 1 8.48470- 2 5.13920- 3 1.10000+ 1 1.60000+ 1 6.02091- 3 6.11435- 3 1.10000+ 1 1.80000+ 1 8.99261- 3 6.19416- 3 1.10000+ 1 1.90000+ 1 2.08432- 2 6.23823- 3 1.10000+ 1 2.10000+ 1 1.06031- 2 6.37095- 3 1.10000+ 1 2.20000+ 1 1.50111- 2 6.37894- 3 1.10000+ 1 2.40000+ 1 5.33278- 4 6.54026- 3 1.10000+ 1 2.50000+ 1 5.08756- 4 6.54144- 3 1.10000+ 1 2.70000+ 1 9.60757- 4 6.49447- 3 1.10000+ 1 2.90000+ 1 1.13178- 3 6.51647- 3 1.10000+ 1 3.00000+ 1 2.42739- 3 6.52214- 3 1.10000+ 1 4.10000+ 1 7.14783- 5 6.54572- 3 1.30000+ 1 1.30000+ 1 8.50021- 3 5.43740- 3 1.30000+ 1 1.40000+ 1 1.60888- 1 5.48040- 3 1.30000+ 1 1.60000+ 1 6.10347- 4 6.45555- 3 1.30000+ 1 1.80000+ 1 5.19230- 4 6.53536- 3 1.30000+ 1 1.90000+ 1 8.31970- 3 6.57943- 3 1.30000+ 1 2.10000+ 1 2.65427- 3 6.71215- 3 1.30000+ 1 2.20000+ 1 2.11565- 2 6.72014- 3 1.30000+ 1 2.40000+ 1 3.01328- 4 6.88146- 3 1.30000+ 1 2.50000+ 1 7.69395- 4 6.88264- 3 1.30000+ 1 2.70000+ 1 9.67012- 5 6.83567- 3 1.30000+ 1 2.90000+ 1 6.51676- 5 6.85767- 3 1.30000+ 1 3.00000+ 1 9.23571- 4 6.86334- 3 1.30000+ 1 4.10000+ 1 7.00737- 6 6.88692- 3 1.40000+ 1 1.40000+ 1 1.08261- 1 5.52340- 3 1.40000+ 1 1.60000+ 1 8.45802- 4 6.49855- 3 1.40000+ 1 1.80000+ 1 4.21491- 3 6.57836- 3 1.40000+ 1 1.90000+ 1 1.35218- 2 6.62243- 3 1.40000+ 1 2.10000+ 1 2.54131- 2 6.75515- 3 1.40000+ 1 2.20000+ 1 3.22377- 2 6.76314- 3 1.40000+ 1 2.40000+ 1 3.20952- 3 6.92446- 3 1.40000+ 1 2.50000+ 1 2.18988- 3 6.92564- 3 1.40000+ 1 2.70000+ 1 1.35249- 4 6.87867- 3 1.40000+ 1 2.90000+ 1 5.22747- 4 6.90067- 3 1.40000+ 1 3.00000+ 1 1.53957- 3 6.90634- 3 1.40000+ 1 4.10000+ 1 9.81010- 6 6.92992- 3 1.60000+ 1 1.60000+ 1 3.64396- 5 7.47370- 3 1.60000+ 1 1.80000+ 1 2.31250- 5 7.55351- 3 1.60000+ 1 1.90000+ 1 8.88531- 4 7.59758- 3 1.60000+ 1 2.10000+ 1 6.16648- 5 7.73030- 3 1.60000+ 1 2.20000+ 1 7.70829- 5 7.73829- 3 1.60000+ 1 2.40000+ 1 1.61175- 5 7.89961- 3 1.60000+ 1 2.50000+ 1 2.45259- 5 7.90079- 3 1.60000+ 1 2.70000+ 1 1.12113- 5 7.85382- 3 1.60000+ 1 2.90000+ 1 2.80291- 6 7.87582- 3 1.60000+ 1 3.00000+ 1 9.95065- 5 7.88149- 3 1.60000+ 1 4.10000+ 1 7.00754- 7 7.90507- 3 1.80000+ 1 1.80000+ 1 4.90519- 6 7.63332- 3 1.80000+ 1 1.90000+ 1 1.37210- 3 7.67739- 3 1.80000+ 1 2.10000+ 1 8.61940- 5 7.81011- 3 1.80000+ 1 2.20000+ 1 6.37695- 4 7.81810- 3 1.80000+ 1 2.40000+ 1 1.75194- 5 7.97942- 3 1.80000+ 1 2.50000+ 1 3.22340- 5 7.98060- 3 1.80000+ 1 2.70000+ 1 3.50368- 6 7.93363- 3 1.80000+ 1 2.90000+ 1 1.40151- 6 7.95563- 3 1.80000+ 1 3.00000+ 1 1.54160- 4 7.96130- 3 1.90000+ 1 1.90000+ 1 1.80287- 3 7.72146- 3 1.90000+ 1 2.10000+ 1 1.46871- 3 7.85418- 3 1.90000+ 1 2.20000+ 1 2.30702- 3 7.86217- 3 1.90000+ 1 2.40000+ 1 6.03682- 5 8.02349- 3 1.90000+ 1 2.50000+ 1 6.10570- 5 8.02467- 3 1.90000+ 1 2.70000+ 1 1.38579- 4 7.97770- 3 1.90000+ 1 2.90000+ 1 1.68759- 4 7.99970- 3 1.90000+ 1 3.00000+ 1 4.17093- 4 8.00537- 3 1.90000+ 1 4.10000+ 1 1.02898- 5 8.02895- 3 2.10000+ 1 2.10000+ 1 2.00428- 4 7.98690- 3 2.10000+ 1 2.20000+ 1 3.46587- 3 7.99489- 3 2.10000+ 1 2.40000+ 1 3.22349- 5 8.15621- 3 2.10000+ 1 2.50000+ 1 7.98871- 5 8.15739- 3 2.10000+ 1 2.70000+ 1 9.81045- 6 8.11042- 3 2.10000+ 1 2.90000+ 1 1.05111- 5 8.13242- 3 2.10000+ 1 3.00000+ 1 1.66780- 4 8.13809- 3 2.10000+ 1 4.10000+ 1 7.00775- 7 8.16167- 3 2.20000+ 1 2.20000+ 1 2.80168- 3 8.00288- 3 2.20000+ 1 2.40000+ 1 3.91052- 4 8.16420- 3 2.20000+ 1 2.50000+ 1 2.63142- 4 8.16538- 3 2.20000+ 1 2.70000+ 1 1.46642- 5 8.11841- 3 2.20000+ 1 2.90000+ 1 9.28745- 5 8.14041- 3 2.20000+ 1 3.00000+ 1 3.11192- 4 8.14608- 3 2.20000+ 1 4.10000+ 1 8.14701- 7 8.16966- 3 2.40000+ 1 2.40000+ 1 1.14680- 6 8.32552- 3 2.40000+ 1 2.50000+ 1 2.52286- 5 8.32670- 3 2.40000+ 1 2.70000+ 1 3.44041- 6 8.27973- 3 2.40000+ 1 2.90000+ 1 3.44041- 6 8.30173- 3 2.40000+ 1 3.00000+ 1 1.14680- 5 8.30740- 3 2.50000+ 1 2.50000+ 1 5.89038- 6 8.32788- 3 2.50000+ 1 2.70000+ 1 3.68138- 6 8.28091- 3 2.50000+ 1 2.90000+ 1 3.68138- 6 8.30291- 3 2.50000+ 1 3.00000+ 1 7.36298- 6 8.30858- 3 2.70000+ 1 2.70000+ 1 1.35244- 6 8.23394- 3 2.70000+ 1 2.90000+ 1 1.35244- 6 8.25594- 3 2.70000+ 1 3.00000+ 1 3.11063- 5 8.26161- 3 2.90000+ 1 3.00000+ 1 5.82274- 5 8.28361- 3 3.00000+ 1 3.00000+ 1 1.17497- 4 8.28928- 3 3.00000+ 1 4.10000+ 1 6.71423- 6 8.31286- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.77413- 6 1.97100- 4 1.10000+ 1 1.57040- 4 3.92700- 4 1.80000+ 1 6.05932- 4 1.83186- 3 1.90000+ 1 6.55122- 4 1.87593- 3 2.90000+ 1 1.37670- 4 2.15417- 3 3.00000+ 1 1.39060- 4 2.15984- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 6.12639- 2 1.68500- 5 1.00000+ 1 2.20000+ 1 9.28997- 2 2.48400- 5 1.00000+ 1 2.40000+ 1 3.19834- 2 1.86160- 4 1.00000+ 1 2.50000+ 1 4.24934- 2 1.87340- 4 1.00000+ 1 2.70000+ 1 7.96315- 3 1.40370- 4 1.00000+ 1 2.90000+ 1 6.65319- 3 1.62370- 4 1.00000+ 1 3.00000+ 1 9.71551- 3 1.68040- 4 1.00000+ 1 4.10000+ 1 5.78406- 4 1.91620- 4 1.10000+ 1 1.80000+ 1 6.41849- 2 3.56600- 5 1.10000+ 1 1.90000+ 1 8.28150- 2 7.97300- 5 1.10000+ 1 2.10000+ 1 3.50859- 2 2.12450- 4 1.10000+ 1 2.20000+ 1 5.06008- 2 2.20440- 4 1.10000+ 1 2.40000+ 1 9.91993- 2 3.81760- 4 1.10000+ 1 2.50000+ 1 1.23605- 1 3.82940- 4 1.10000+ 1 2.70000+ 1 9.03748- 3 3.35970- 4 1.10000+ 1 2.90000+ 1 7.57113- 3 3.57970- 4 1.10000+ 1 3.00000+ 1 9.65283- 3 3.63640- 4 1.10000+ 1 4.10000+ 1 6.58880- 4 3.87220- 4 1.30000+ 1 1.60000+ 1 2.44594- 2 2.97050- 4 1.30000+ 1 1.80000+ 1 5.42190- 3 3.76860- 4 1.30000+ 1 1.90000+ 1 5.01800- 3 4.20930- 4 1.30000+ 1 2.10000+ 1 7.99629- 3 5.53650- 4 1.30000+ 1 2.20000+ 1 1.00202- 2 5.61640- 4 1.30000+ 1 2.40000+ 1 5.05013- 3 7.22960- 4 1.30000+ 1 2.50000+ 1 4.71707- 3 7.24140- 4 1.30000+ 1 2.70000+ 1 2.61459- 3 6.77170- 4 1.30000+ 1 2.90000+ 1 5.39464- 4 6.99170- 4 1.30000+ 1 3.00000+ 1 4.65017- 4 7.04840- 4 1.30000+ 1 4.10000+ 1 1.85139- 4 7.28420- 4 1.40000+ 1 1.60000+ 1 3.50597- 2 3.40050- 4 1.40000+ 1 1.80000+ 1 1.09589- 3 4.19860- 4 1.40000+ 1 1.90000+ 1 1.03800- 2 4.63930- 4 1.40000+ 1 2.10000+ 1 1.09139- 2 5.96650- 4 1.40000+ 1 2.20000+ 1 1.62542- 2 6.04640- 4 1.40000+ 1 2.40000+ 1 5.78000- 3 7.65960- 4 1.40000+ 1 2.50000+ 1 8.94578- 3 7.67140- 4 1.40000+ 1 2.70000+ 1 3.71386- 3 7.20170- 4 1.40000+ 1 2.90000+ 1 1.11257- 4 7.42170- 4 1.40000+ 1 3.00000+ 1 9.59665- 4 7.47840- 4 1.40000+ 1 4.10000+ 1 2.63034- 4 7.71420- 4 1.60000+ 1 1.60000+ 1 4.22603- 3 1.31520- 3 1.60000+ 1 1.80000+ 1 7.15879- 3 1.39501- 3 1.60000+ 1 1.90000+ 1 1.25342- 2 1.43908- 3 1.60000+ 1 2.10000+ 1 1.36780- 2 1.57180- 3 1.60000+ 1 2.20000+ 1 1.95917- 2 1.57979- 3 1.60000+ 1 2.40000+ 1 5.62493- 3 1.74111- 3 1.60000+ 1 2.50000+ 1 7.06508- 3 1.74229- 3 1.60000+ 1 2.70000+ 1 1.11864- 3 1.69532- 3 1.60000+ 1 2.90000+ 1 9.02989- 4 1.71732- 3 1.60000+ 1 3.00000+ 1 1.49110- 3 1.72299- 3 1.60000+ 1 4.10000+ 1 8.16922- 5 1.74657- 3 1.80000+ 1 1.80000+ 1 3.49988- 4 1.47482- 3 1.80000+ 1 1.90000+ 1 9.14669- 4 1.51889- 3 1.80000+ 1 2.10000+ 1 5.21376- 4 1.65161- 3 1.80000+ 1 2.20000+ 1 2.84872- 4 1.65960- 3 1.80000+ 1 2.40000+ 1 7.89497- 5 1.82092- 3 1.80000+ 1 2.50000+ 1 3.95131- 4 1.82210- 3 1.80000+ 1 2.70000+ 1 7.50212- 4 1.77513- 3 1.80000+ 1 2.90000+ 1 6.98572- 5 1.79713- 3 1.80000+ 1 3.00000+ 1 8.51367- 5 1.80280- 3 1.80000+ 1 4.10000+ 1 5.31175- 5 1.82638- 3 1.90000+ 1 1.90000+ 1 1.17805- 3 1.56296- 3 1.90000+ 1 2.10000+ 1 8.00063- 4 1.69568- 3 1.90000+ 1 2.20000+ 1 1.93513- 3 1.70367- 3 1.90000+ 1 2.40000+ 1 4.20604- 4 1.86499- 3 1.90000+ 1 2.50000+ 1 7.86584- 4 1.86617- 3 1.90000+ 1 2.70000+ 1 1.31850- 3 1.81920- 3 1.90000+ 1 2.90000+ 1 9.78715- 5 1.84120- 3 1.90000+ 1 3.00000+ 1 2.37211- 4 1.84687- 3 1.90000+ 1 4.10000+ 1 9.35032- 5 1.87045- 3 2.10000+ 1 2.10000+ 1 1.56509- 4 1.82840- 3 2.10000+ 1 2.20000+ 1 7.54998- 4 1.83639- 3 2.10000+ 1 2.40000+ 1 3.89469- 4 1.99771- 3 2.10000+ 1 2.50000+ 1 2.88029- 3 1.99889- 3 2.10000+ 1 2.70000+ 1 1.40934- 3 1.95192- 3 2.10000+ 1 2.90000+ 1 4.70969- 5 1.97392- 3 2.10000+ 1 3.00000+ 1 7.60806- 5 1.97959- 3 2.10000+ 1 4.10000+ 1 9.96318- 5 2.00317- 3 2.20000+ 1 2.20000+ 1 4.23470- 4 1.84438- 3 2.20000+ 1 2.40000+ 1 2.86687- 3 2.00570- 3 2.20000+ 1 2.50000+ 1 1.62480- 3 2.00688- 3 2.20000+ 1 2.70000+ 1 2.02391- 3 1.95991- 3 2.20000+ 1 2.90000+ 1 2.72851- 5 1.98191- 3 2.20000+ 1 3.00000+ 1 1.83001- 4 1.98758- 3 2.20000+ 1 4.10000+ 1 1.42984- 4 2.01116- 3 2.40000+ 1 2.40000+ 1 2.97969- 4 2.16702- 3 2.40000+ 1 2.50000+ 1 2.27943- 3 2.16820- 3 2.40000+ 1 2.70000+ 1 5.38462- 4 2.12123- 3 2.40000+ 1 2.90000+ 1 7.27629- 6 2.14323- 3 2.40000+ 1 3.00000+ 1 3.38351- 5 2.14890- 3 2.40000+ 1 4.10000+ 1 3.78377- 5 2.17248- 3 2.50000+ 1 2.50000+ 1 7.26323- 4 2.16938- 3 2.50000+ 1 2.70000+ 1 6.81195- 4 2.12241- 3 2.50000+ 1 2.90000+ 1 4.54610- 5 2.14441- 3 2.50000+ 1 3.00000+ 1 6.41629- 5 2.15008- 3 2.50000+ 1 4.10000+ 1 4.76621- 5 2.17366- 3 2.70000+ 1 2.70000+ 1 1.17779- 4 2.07544- 3 2.70000+ 1 2.90000+ 1 1.60942- 4 2.09744- 3 2.70000+ 1 3.00000+ 1 2.66384- 4 2.10311- 3 2.70000+ 1 4.10000+ 1 1.72659- 5 2.12669- 3 2.90000+ 1 2.90000+ 1 6.66792- 6 2.11944- 3 2.90000+ 1 3.00000+ 1 1.77804- 5 2.12511- 3 2.90000+ 1 4.10000+ 1 1.33348- 5 2.14869- 3 3.00000+ 1 3.00000+ 1 3.02446- 5 2.13078- 3 3.00000+ 1 4.10000+ 1 2.92996- 5 2.15436- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 5.85987- 4 5.36800- 4 1.60000+ 1 4.94692- 4 1.55495- 3 2.10000+ 1 2.51157- 3 1.81155- 3 2.70000+ 1 9.10354- 5 1.93507- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 9.67668- 3 1.53500- 5 1.10000+ 1 2.20000+ 1 2.31652- 2 2.33400- 5 1.10000+ 1 2.40000+ 1 2.38102- 2 1.84660- 4 1.10000+ 1 2.50000+ 1 2.51345- 2 1.85840- 4 1.10000+ 1 2.70000+ 1 3.91685- 3 1.38870- 4 1.10000+ 1 2.90000+ 1 4.03426- 3 1.60870- 4 1.10000+ 1 3.00000+ 1 3.79631- 3 1.66540- 4 1.10000+ 1 4.10000+ 1 2.73612- 4 1.90120- 4 1.30000+ 1 1.60000+ 1 6.65560- 2 9.99500- 5 1.30000+ 1 1.80000+ 1 6.64468- 2 1.79760- 4 1.30000+ 1 1.90000+ 1 8.14080- 2 2.23830- 4 1.30000+ 1 2.10000+ 1 2.80508- 2 3.56550- 4 1.30000+ 1 2.20000+ 1 3.22030- 2 3.64540- 4 1.30000+ 1 2.40000+ 1 1.13614- 1 5.25860- 4 1.30000+ 1 2.50000+ 1 1.70385- 1 5.27040- 4 1.30000+ 1 2.70000+ 1 1.05382- 2 4.80070- 4 1.30000+ 1 2.90000+ 1 7.27115- 3 5.02070- 4 1.30000+ 1 3.00000+ 1 9.30918- 3 5.07740- 4 1.30000+ 1 4.10000+ 1 7.79933- 4 5.31320- 4 1.40000+ 1 1.60000+ 1 1.11380- 2 1.42950- 4 1.40000+ 1 1.80000+ 1 7.62825- 2 2.22760- 4 1.40000+ 1 1.90000+ 1 7.14597- 3 2.66830- 4 1.40000+ 1 2.10000+ 1 1.19829- 3 3.99550- 4 1.40000+ 1 2.20000+ 1 3.73910- 3 4.07540- 4 1.40000+ 1 2.40000+ 1 3.61621- 3 5.68860- 4 1.40000+ 1 2.50000+ 1 2.82702- 3 5.70040- 4 1.40000+ 1 2.70000+ 1 1.17691- 3 5.23070- 4 1.40000+ 1 2.90000+ 1 6.74803- 3 5.45070- 4 1.40000+ 1 3.00000+ 1 7.48720- 4 5.50740- 4 1.40000+ 1 4.10000+ 1 8.35206- 5 5.74320- 4 1.60000+ 1 1.60000+ 1 8.86048- 4 1.11810- 3 1.60000+ 1 1.80000+ 1 1.23257- 2 1.19791- 3 1.60000+ 1 1.90000+ 1 1.90044- 3 1.24198- 3 1.60000+ 1 2.10000+ 1 3.96671- 4 1.37470- 3 1.60000+ 1 2.20000+ 1 1.42079- 3 1.38269- 3 1.60000+ 1 2.40000+ 1 5.25034- 5 1.54401- 3 1.60000+ 1 2.50000+ 1 6.20298- 4 1.54519- 3 1.60000+ 1 2.70000+ 1 2.21676- 4 1.49822- 3 1.60000+ 1 2.90000+ 1 1.05261- 3 1.52022- 3 1.60000+ 1 3.00000+ 1 2.04821- 4 1.52589- 3 1.60000+ 1 4.10000+ 1 1.62044- 5 1.54947- 3 1.80000+ 1 1.80000+ 1 9.20624- 3 1.27772- 3 1.80000+ 1 1.90000+ 1 2.73192- 2 1.32179- 3 1.80000+ 1 2.10000+ 1 2.58692- 2 1.45451- 3 1.80000+ 1 2.20000+ 1 4.21968- 2 1.46250- 3 1.80000+ 1 2.40000+ 1 8.80806- 3 1.62382- 3 1.80000+ 1 2.50000+ 1 1.50381- 2 1.62500- 3 1.80000+ 1 2.70000+ 1 1.95005- 3 1.57803- 3 1.80000+ 1 2.90000+ 1 1.97473- 3 1.60003- 3 1.80000+ 1 3.00000+ 1 3.22800- 3 1.60570- 3 1.80000+ 1 4.10000+ 1 1.44809- 4 1.62928- 3 1.90000+ 1 1.90000+ 1 7.70599- 4 1.36586- 3 1.90000+ 1 2.10000+ 1 2.12506- 3 1.49858- 3 1.90000+ 1 2.20000+ 1 1.70216- 3 1.50657- 3 1.90000+ 1 2.40000+ 1 6.48535- 3 1.66789- 3 1.90000+ 1 2.50000+ 1 1.82092- 3 1.66907- 3 1.90000+ 1 2.70000+ 1 2.04523- 4 1.62210- 3 1.90000+ 1 2.90000+ 1 2.42544- 3 1.64410- 3 1.90000+ 1 3.00000+ 1 1.55040- 4 1.64977- 3 1.90000+ 1 4.10000+ 1 1.45146- 5 1.67335- 3 2.10000+ 1 2.10000+ 1 8.84964- 4 1.63130- 3 2.10000+ 1 2.20000+ 1 2.57297- 3 1.63929- 3 2.10000+ 1 2.40000+ 1 8.06396- 4 1.80061- 3 2.10000+ 1 2.50000+ 1 1.49091- 3 1.80179- 3 2.10000+ 1 2.70000+ 1 5.85964- 5 1.75482- 3 2.10000+ 1 2.90000+ 1 2.26731- 3 1.77682- 3 2.10000+ 1 3.00000+ 1 2.19076- 4 1.78249- 3 2.10000+ 1 4.10000+ 1 3.99540- 6 1.80607- 3 2.20000+ 1 2.20000+ 1 6.02635- 4 1.64728- 3 2.20000+ 1 2.40000+ 1 2.69821- 3 1.80860- 3 2.20000+ 1 2.50000+ 1 5.69964- 4 1.80978- 3 2.20000+ 1 2.70000+ 1 1.83114- 4 1.76281- 3 2.20000+ 1 2.90000+ 1 3.75169- 3 1.78481- 3 2.20000+ 1 3.00000+ 1 1.60476- 4 1.79048- 3 2.20000+ 1 4.10000+ 1 1.33175- 5 1.81406- 3 2.40000+ 1 2.40000+ 1 1.27784- 3 1.96992- 3 2.40000+ 1 2.50000+ 1 8.54860- 3 1.97110- 3 2.40000+ 1 2.70000+ 1 2.66354- 6 1.92413- 3 2.40000+ 1 2.90000+ 1 7.12500- 4 1.94613- 3 2.40000+ 1 3.00000+ 1 7.25823- 4 1.95180- 3 2.50000+ 1 2.50000+ 1 4.34169- 4 1.97228- 3 2.50000+ 1 2.70000+ 1 8.65667- 5 1.92531- 3 2.50000+ 1 2.90000+ 1 1.21395- 3 1.94731- 3 2.50000+ 1 3.00000+ 1 1.83790- 4 1.95298- 3 2.50000+ 1 4.10000+ 1 5.99327- 6 1.97656- 3 2.70000+ 1 2.70000+ 1 1.77900- 5 1.87834- 3 2.70000+ 1 2.90000+ 1 2.18565- 4 1.90034- 3 2.70000+ 1 3.00000+ 1 2.88033- 5 1.90601- 3 2.70000+ 1 4.10000+ 1 2.54146- 6 1.92959- 3 2.90000+ 1 2.90000+ 1 2.28881- 4 1.92234- 3 2.90000+ 1 3.00000+ 1 6.39676- 4 1.92801- 3 2.90000+ 1 4.10000+ 1 2.78762- 5 1.95159- 3 3.00000+ 1 3.00000+ 1 5.70433- 5 1.93368- 3 3.00000+ 1 4.10000+ 1 9.50724- 6 1.95726- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74229- 5 3.41200- 4 1.40000+ 1 2.32729- 4 3.84200- 4 1.60000+ 1 7.53797- 4 1.35935- 3 2.10000+ 1 3.57449- 4 1.61595- 3 2.20000+ 1 2.85669- 3 1.62394- 3 2.70000+ 1 1.36359- 4 1.73947- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 5.75955- 2 2.82300- 5 1.30000+ 1 2.10000+ 1 1.00695- 2 1.60950- 4 1.30000+ 1 2.20000+ 1 9.33385- 3 1.68940- 4 1.30000+ 1 2.40000+ 1 1.19989- 2 3.30260- 4 1.30000+ 1 2.50000+ 1 1.74356- 2 3.31440- 4 1.30000+ 1 2.70000+ 1 2.00186- 3 2.84470- 4 1.30000+ 1 2.90000+ 1 1.39919- 3 3.06470- 4 1.30000+ 1 3.00000+ 1 5.34017- 3 3.12140- 4 1.30000+ 1 4.10000+ 1 1.44828- 4 3.35720- 4 1.40000+ 1 1.80000+ 1 8.05237- 2 2.71600- 5 1.40000+ 1 1.90000+ 1 1.30792- 1 7.12300- 5 1.40000+ 1 2.10000+ 1 4.48732- 2 2.03950- 4 1.40000+ 1 2.20000+ 1 6.48998- 2 2.11940- 4 1.40000+ 1 2.40000+ 1 1.17836- 1 3.73260- 4 1.40000+ 1 2.50000+ 1 1.40114- 1 3.74440- 4 1.40000+ 1 2.70000+ 1 1.17137- 2 3.27470- 4 1.40000+ 1 2.90000+ 1 9.56953- 3 3.49470- 4 1.40000+ 1 3.00000+ 1 1.38099- 2 3.55140- 4 1.40000+ 1 4.10000+ 1 8.54464- 4 3.78720- 4 1.60000+ 1 1.60000+ 1 6.76968- 4 9.22500- 4 1.60000+ 1 1.80000+ 1 1.04910- 3 1.00231- 3 1.60000+ 1 1.90000+ 1 1.60360- 2 1.04638- 3 1.60000+ 1 2.10000+ 1 9.52704- 4 1.17910- 3 1.60000+ 1 2.20000+ 1 1.04759- 3 1.18709- 3 1.60000+ 1 2.40000+ 1 8.89204- 4 1.34841- 3 1.60000+ 1 2.50000+ 1 1.37037- 3 1.34959- 3 1.60000+ 1 2.70000+ 1 1.68122- 4 1.30262- 3 1.60000+ 1 2.90000+ 1 1.06850- 4 1.32462- 3 1.60000+ 1 3.00000+ 1 1.32404- 3 1.33029- 3 1.60000+ 1 4.10000+ 1 1.19553- 5 1.35387- 3 1.80000+ 1 1.80000+ 1 1.19356- 4 1.08212- 3 1.80000+ 1 1.90000+ 1 1.89860- 2 1.12619- 3 1.80000+ 1 2.10000+ 1 4.48330- 4 1.25891- 3 1.80000+ 1 2.20000+ 1 3.52996- 3 1.26690- 3 1.80000+ 1 2.40000+ 1 1.01380- 3 1.42822- 3 1.80000+ 1 2.50000+ 1 5.86604- 3 1.42940- 3 1.80000+ 1 2.70000+ 1 1.15628- 4 1.38243- 3 1.80000+ 1 2.90000+ 1 2.23794- 5 1.40443- 3 1.80000+ 1 3.00000+ 1 1.58820- 3 1.41010- 3 1.80000+ 1 4.10000+ 1 8.20586- 6 1.43368- 3 1.90000+ 1 1.90000+ 1 2.65595- 2 1.17026- 3 1.90000+ 1 2.10000+ 1 3.67555- 2 1.30298- 3 1.90000+ 1 2.20000+ 1 4.89023- 2 1.31097- 3 1.90000+ 1 2.40000+ 1 1.78511- 2 1.47229- 3 1.90000+ 1 2.50000+ 1 2.02239- 2 1.47347- 3 1.90000+ 1 2.70000+ 1 2.48380- 3 1.42650- 3 1.90000+ 1 2.90000+ 1 2.35976- 3 1.44850- 3 1.90000+ 1 3.00000+ 1 5.33970- 3 1.45417- 3 1.90000+ 1 4.10000+ 1 1.83820- 4 1.47775- 3 2.10000+ 1 2.10000+ 1 2.39852- 4 1.43570- 3 2.10000+ 1 2.20000+ 1 4.83092- 3 1.44369- 3 2.10000+ 1 2.40000+ 1 4.22163- 4 1.60501- 3 2.10000+ 1 2.50000+ 1 5.16059- 3 1.60619- 3 2.10000+ 1 2.70000+ 1 9.71345- 5 1.55922- 3 2.10000+ 1 2.90000+ 1 3.21293- 5 1.58122- 3 2.10000+ 1 3.00000+ 1 3.04543- 3 1.58689- 3 2.10000+ 1 4.10000+ 1 6.72480- 6 1.61047- 3 2.20000+ 1 2.20000+ 1 2.30593- 3 1.45168- 3 2.20000+ 1 2.40000+ 1 4.15335- 3 1.61300- 3 2.20000+ 1 2.50000+ 1 3.57476- 3 1.61418- 3 2.20000+ 1 2.70000+ 1 1.09095- 4 1.56721- 3 2.20000+ 1 2.90000+ 1 2.75713- 4 1.58921- 3 2.20000+ 1 3.00000+ 1 4.01262- 3 1.59488- 3 2.20000+ 1 4.10000+ 1 7.47234- 6 1.61846- 3 2.40000+ 1 2.40000+ 1 3.76601- 4 1.77432- 3 2.40000+ 1 2.50000+ 1 1.05943- 2 1.77550- 3 2.40000+ 1 2.70000+ 1 8.74293- 5 1.72853- 3 2.40000+ 1 2.90000+ 1 1.06855- 4 1.75053- 3 2.40000+ 1 3.00000+ 1 1.41080- 3 1.75620- 3 2.40000+ 1 4.10000+ 1 5.97831- 6 1.77978- 3 2.50000+ 1 2.50000+ 1 3.98423- 3 1.77668- 3 2.50000+ 1 2.70000+ 1 1.09095- 4 1.72971- 3 2.50000+ 1 2.90000+ 1 6.20199- 4 1.75171- 3 2.50000+ 1 3.00000+ 1 1.64238- 3 1.75738- 3 2.50000+ 1 4.10000+ 1 7.47230- 6 1.78096- 3 2.70000+ 1 2.70000+ 1 1.78217- 5 1.68274- 3 2.70000+ 1 2.90000+ 1 1.90092- 5 1.70474- 3 2.70000+ 1 3.00000+ 1 3.26721- 4 1.71041- 3 2.70000+ 1 4.10000+ 1 2.37614- 6 1.73399- 3 2.90000+ 1 2.90000+ 1 1.47376- 6 1.72674- 3 2.90000+ 1 3.00000+ 1 3.90541- 4 1.73241- 3 2.90000+ 1 4.10000+ 1 1.47376- 6 1.75599- 3 3.00000+ 1 3.00000+ 1 1.29544- 3 1.73808- 3 3.00000+ 1 4.10000+ 1 7.44498- 5 1.76166- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.99158- 3 1.09796- 3 1.90000+ 1 3.51528- 4 1.14203- 3 2.40000+ 1 7.82206- 3 1.44406- 3 2.90000+ 1 6.03097- 4 1.42027- 3 3.00000+ 1 7.07576- 5 1.42594- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.09113- 1 3.20600- 5 1.40000+ 1 2.50000+ 1 1.52543- 2 3.32400- 5 1.40000+ 1 2.90000+ 1 6.47657- 4 8.27000- 6 1.40000+ 1 3.00000+ 1 1.74223- 3 1.39400- 5 1.40000+ 1 4.10000+ 1 1.22566- 4 3.75200- 5 1.60000+ 1 1.60000+ 1 3.86630- 5 5.81300- 4 1.60000+ 1 1.80000+ 1 2.28732- 3 6.61110- 4 1.60000+ 1 1.90000+ 1 1.56890- 3 7.05180- 4 1.60000+ 1 2.10000+ 1 5.51099- 2 8.37900- 4 1.60000+ 1 2.20000+ 1 6.66838- 3 8.45890- 4 1.60000+ 1 2.40000+ 1 1.29363- 2 1.00721- 3 1.60000+ 1 2.50000+ 1 4.16766- 3 1.00839- 3 1.60000+ 1 2.70000+ 1 2.23840- 5 9.61420- 4 1.60000+ 1 2.90000+ 1 2.27907- 4 9.83420- 4 1.60000+ 1 3.00000+ 1 1.26169- 4 9.89090- 4 1.60000+ 1 4.10000+ 1 2.03490- 6 1.01267- 3 1.80000+ 1 1.80000+ 1 1.29018- 3 7.40920- 4 1.80000+ 1 1.90000+ 1 8.28827- 3 7.84990- 4 1.80000+ 1 2.10000+ 1 4.76132- 2 9.17710- 4 1.80000+ 1 2.20000+ 1 3.93335- 3 9.25700- 4 1.80000+ 1 2.40000+ 1 8.08026- 3 1.08702- 3 1.80000+ 1 2.50000+ 1 4.16763- 3 1.08820- 3 1.80000+ 1 2.70000+ 1 2.42162- 4 1.04123- 3 1.80000+ 1 2.90000+ 1 2.60473- 4 1.06323- 3 1.80000+ 1 3.00000+ 1 7.46809- 4 1.06890- 3 1.80000+ 1 4.10000+ 1 1.62802- 5 1.09248- 3 1.90000+ 1 1.90000+ 1 3.00377- 3 8.29060- 4 1.90000+ 1 2.10000+ 1 1.00865- 1 9.61780- 4 1.90000+ 1 2.20000+ 1 3.78092- 3 9.69770- 4 1.90000+ 1 2.40000+ 1 4.71113- 3 1.13109- 3 1.90000+ 1 2.50000+ 1 2.40944- 3 1.13227- 3 1.90000+ 1 2.70000+ 1 1.87229- 4 1.08530- 3 1.90000+ 1 2.90000+ 1 7.16320- 4 1.10730- 3 1.90000+ 1 3.00000+ 1 5.20971- 4 1.11297- 3 1.90000+ 1 4.10000+ 1 1.42446- 5 1.13655- 3 2.10000+ 1 2.10000+ 1 8.53190- 2 1.09450- 3 2.10000+ 1 2.20000+ 1 1.72465- 1 1.10249- 3 2.10000+ 1 2.40000+ 1 5.06021- 2 1.26381- 3 2.10000+ 1 2.50000+ 1 6.35370- 2 1.26499- 3 2.10000+ 1 2.70000+ 1 7.92183- 3 1.21802- 3 2.10000+ 1 2.90000+ 1 5.93785- 3 1.24002- 3 2.10000+ 1 3.00000+ 1 1.16130- 2 1.24569- 3 2.10000+ 1 4.10000+ 1 5.81975- 4 1.26927- 3 2.20000+ 1 2.20000+ 1 2.81828- 3 1.11048- 3 2.20000+ 1 2.40000+ 1 5.23151- 2 1.27180- 3 2.20000+ 1 2.50000+ 1 2.93233- 3 1.27298- 3 2.20000+ 1 2.70000+ 1 5.51456- 4 1.22601- 3 2.20000+ 1 2.90000+ 1 3.29659- 4 1.24801- 3 2.20000+ 1 3.00000+ 1 3.60185- 4 1.25368- 3 2.20000+ 1 4.10000+ 1 3.86628- 5 1.27726- 3 2.40000+ 1 2.40000+ 1 3.03430- 2 1.43312- 3 2.40000+ 1 2.50000+ 1 9.09600- 2 1.43430- 3 2.40000+ 1 2.70000+ 1 1.90059- 3 1.38733- 3 2.40000+ 1 2.90000+ 1 8.32279- 4 1.40933- 3 2.40000+ 1 3.00000+ 1 5.31116- 4 1.41500- 3 2.40000+ 1 4.10000+ 1 1.42442- 4 1.43858- 3 2.50000+ 1 2.50000+ 1 2.20166- 3 1.43548- 3 2.50000+ 1 2.70000+ 1 5.20590- 4 1.38851- 3 2.50000+ 1 2.90000+ 1 2.98502- 4 1.41051- 3 2.50000+ 1 3.00000+ 1 2.96108- 4 1.41618- 3 2.50000+ 1 4.10000+ 1 3.58206- 5 1.43976- 3 2.70000+ 1 2.70000+ 1 1.66484- 5 1.34154- 3 2.70000+ 1 2.90000+ 1 2.16433- 4 1.36354- 3 2.70000+ 1 3.00000+ 1 1.33197- 4 1.36921- 3 2.90000+ 1 2.90000+ 1 1.12060- 4 1.38554- 3 2.90000+ 1 3.00000+ 1 5.44307- 4 1.39121- 3 2.90000+ 1 4.10000+ 1 1.60089- 5 1.41479- 3 3.00000+ 1 3.00000+ 1 7.88166- 4 1.39688- 3 3.00000+ 1 4.10000+ 1 6.56799- 5 1.42046- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.81361- 3 1.09903- 3 2.40000+ 1 4.53181- 4 1.40106- 3 2.50000+ 1 8.76233- 3 1.40224- 3 3.00000+ 1 7.06932- 4 1.38294- 3 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.54003- 6 5.38300- 4 1.60000+ 1 1.80000+ 1 5.87940- 4 6.18110- 4 1.60000+ 1 1.90000+ 1 4.00443- 3 6.62180- 4 1.60000+ 1 2.10000+ 1 5.91792- 3 7.94900- 4 1.60000+ 1 2.20000+ 1 6.57958- 2 8.02890- 4 1.60000+ 1 2.40000+ 1 4.56508- 3 9.64210- 4 1.60000+ 1 2.50000+ 1 1.52279- 2 9.65390- 4 1.60000+ 1 2.70000+ 1 1.58895- 5 9.18420- 4 1.60000+ 1 2.90000+ 1 2.95108- 5 9.40420- 4 1.60000+ 1 3.00000+ 1 3.45046- 4 9.46090- 4 1.60000+ 1 4.10000+ 1 2.27007- 6 9.69670- 4 1.80000+ 1 1.80000+ 1 1.13508- 5 6.97920- 4 1.80000+ 1 1.90000+ 1 9.82247- 3 7.41990- 4 1.80000+ 1 2.10000+ 1 5.56155- 4 8.74710- 4 1.80000+ 1 2.20000+ 1 6.61580- 2 8.82700- 4 1.80000+ 1 2.40000+ 1 2.08395- 3 1.04402- 3 1.80000+ 1 2.50000+ 1 7.51157- 3 1.04520- 3 1.80000+ 1 2.70000+ 1 5.90217- 5 9.98230- 4 1.80000+ 1 2.90000+ 1 4.54004- 6 1.02023- 3 1.80000+ 1 3.00000+ 1 8.37670- 4 1.02590- 3 1.80000+ 1 4.10000+ 1 4.54004- 6 1.04948- 3 1.90000+ 1 1.90000+ 1 7.42521- 3 7.86060- 4 1.90000+ 1 2.10000+ 1 6.20852- 3 9.18780- 4 1.90000+ 1 2.20000+ 1 1.04744- 1 9.26770- 4 1.90000+ 1 2.40000+ 1 3.01000- 3 1.08809- 3 1.90000+ 1 2.50000+ 1 6.82135- 3 1.08927- 3 1.90000+ 1 2.70000+ 1 4.78973- 4 1.04230- 3 1.90000+ 1 2.90000+ 1 8.30818- 4 1.06430- 3 1.90000+ 1 3.00000+ 1 1.30750- 3 1.06997- 3 1.90000+ 1 4.10000+ 1 3.40498- 5 1.09355- 3 2.10000+ 1 2.10000+ 1 1.33261- 3 1.05150- 3 2.10000+ 1 2.20000+ 1 1.36854- 1 1.05949- 3 2.10000+ 1 2.40000+ 1 2.69236- 3 1.22081- 3 2.10000+ 1 2.50000+ 1 3.56671- 2 1.22199- 3 2.10000+ 1 2.70000+ 1 4.74452- 4 1.17502- 3 2.10000+ 1 2.90000+ 1 7.26424- 5 1.19702- 3 2.10000+ 1 3.00000+ 1 5.35739- 4 1.20269- 3 2.10000+ 1 4.10000+ 1 3.17809- 5 1.22627- 3 2.20000+ 1 2.20000+ 1 1.55553- 1 1.06748- 3 2.20000+ 1 2.40000+ 1 6.19568- 2 1.22880- 3 2.20000+ 1 2.50000+ 1 9.36282- 2 1.22998- 3 2.20000+ 1 2.70000+ 1 9.16183- 3 1.18301- 3 2.20000+ 1 2.90000+ 1 7.95430- 3 1.20501- 3 2.20000+ 1 3.00000+ 1 1.21552- 2 1.21068- 3 2.20000+ 1 4.10000+ 1 6.71941- 4 1.23426- 3 2.40000+ 1 2.40000+ 1 2.64230- 3 1.39012- 3 2.40000+ 1 2.50000+ 1 8.70959- 2 1.39130- 3 2.40000+ 1 2.70000+ 1 5.15296- 4 1.34433- 3 2.40000+ 1 2.90000+ 1 2.31537- 4 1.36633- 3 2.40000+ 1 3.00000+ 1 2.67873- 4 1.37200- 3 2.40000+ 1 4.10000+ 1 3.63208- 5 1.39558- 3 2.50000+ 1 2.50000+ 1 5.74892- 2 1.39248- 3 2.50000+ 1 2.70000+ 1 2.16557- 3 1.34551- 3 2.50000+ 1 2.90000+ 1 8.92141- 4 1.36751- 3 2.50000+ 1 3.00000+ 1 7.15065- 4 1.37318- 3 2.50000+ 1 4.10000+ 1 1.61169- 4 1.39676- 3 2.70000+ 1 2.70000+ 1 2.83832- 5 1.29854- 3 2.70000+ 1 2.90000+ 1 2.83832- 5 1.32054- 3 2.70000+ 1 3.00000+ 1 5.39275- 4 1.32621- 3 2.90000+ 1 3.00000+ 1 5.19122- 4 1.34821- 3 3.00000+ 1 3.00000+ 1 7.59607- 4 1.35388- 3 3.00000+ 1 4.10000+ 1 2.92158- 5 1.37746- 3 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.71801- 5 7.98100- 5 1.90000+ 1 1.32410- 4 1.23880- 4 2.90000+ 1 6.32577- 5 4.02120- 4 3.00000+ 1 4.29763- 5 4.07790- 4 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.91785- 2 6.88700- 5 1.80000+ 1 2.50000+ 1 4.15322- 2 7.00500- 5 1.80000+ 1 2.70000+ 1 3.82592- 2 2.30800- 5 1.80000+ 1 2.90000+ 1 3.06668- 2 4.50800- 5 1.80000+ 1 3.00000+ 1 5.88908- 2 5.07500- 5 1.80000+ 1 4.10000+ 1 2.72839- 3 7.43300- 5 1.90000+ 1 2.40000+ 1 1.35610- 1 1.12940- 4 1.90000+ 1 2.50000+ 1 1.64246- 1 1.14120- 4 1.90000+ 1 2.70000+ 1 4.67338- 2 6.71500- 5 1.90000+ 1 2.90000+ 1 4.77576- 2 8.91500- 5 1.90000+ 1 3.00000+ 1 5.84162- 2 9.48200- 5 1.90000+ 1 4.10000+ 1 3.36977- 3 1.18400- 4 2.10000+ 1 2.10000+ 1 3.92407- 3 7.63500- 5 2.10000+ 1 2.20000+ 1 1.62755- 2 8.43400- 5 2.10000+ 1 2.40000+ 1 4.74385- 3 2.45660- 4 2.10000+ 1 2.50000+ 1 1.10645- 2 2.46840- 4 2.10000+ 1 2.70000+ 1 1.58501- 2 1.99870- 4 2.10000+ 1 2.90000+ 1 3.31182- 3 2.21870- 4 2.10000+ 1 3.00000+ 1 8.67783- 3 2.27540- 4 2.10000+ 1 4.10000+ 1 9.62300- 4 2.51120- 4 2.20000+ 1 2.20000+ 1 9.24757- 3 9.23300- 5 2.20000+ 1 2.40000+ 1 1.26840- 2 2.53650- 4 2.20000+ 1 2.50000+ 1 1.11716- 2 2.54830- 4 2.20000+ 1 2.70000+ 1 2.28605- 2 2.07860- 4 2.20000+ 1 2.90000+ 1 8.65354- 3 2.29860- 4 2.20000+ 1 3.00000+ 1 8.26160- 3 2.35530- 4 2.20000+ 1 4.10000+ 1 1.38239- 3 2.59110- 4 2.40000+ 1 2.40000+ 1 4.05665- 3 4.14970- 4 2.40000+ 1 2.50000+ 1 9.76462- 3 4.16150- 4 2.40000+ 1 2.70000+ 1 1.21686- 2 3.69180- 4 2.40000+ 1 2.90000+ 1 1.44740- 3 3.91180- 4 2.40000+ 1 3.00000+ 1 3.71421- 3 3.96850- 4 2.40000+ 1 4.10000+ 1 6.78394- 4 4.20430- 4 2.50000+ 1 2.50000+ 1 6.79833- 3 4.17330- 4 2.50000+ 1 2.70000+ 1 1.56783- 2 3.70360- 4 2.50000+ 1 2.90000+ 1 9.15876- 4 3.92360- 4 2.50000+ 1 3.00000+ 1 4.63063- 3 3.98030- 4 2.50000+ 1 4.10000+ 1 8.72724- 4 4.21610- 4 2.70000+ 1 2.70000+ 1 2.15477- 2 3.23390- 4 2.70000+ 1 2.90000+ 1 2.61315- 2 3.45390- 4 2.70000+ 1 3.00000+ 1 4.36247- 2 3.51060- 4 2.70000+ 1 4.10000+ 1 2.81579- 3 3.74640- 4 2.90000+ 1 2.90000+ 1 4.58792- 3 3.67390- 4 2.90000+ 1 3.00000+ 1 1.90599- 2 3.73060- 4 2.90000+ 1 4.10000+ 1 3.39999- 3 3.96640- 4 3.00000+ 1 3.00000+ 1 1.53849- 2 3.78730- 4 3.00000+ 1 4.10000+ 1 6.00575- 3 4.02310- 4 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.40597- 4 1.76790- 4 2.70000+ 1 1.00463- 4 3.00310- 4 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 6.30282- 2 3.31300- 5 1.90000+ 1 2.50000+ 1 4.81784- 2 3.43100- 5 1.90000+ 1 2.90000+ 1 1.02837- 2 9.34000- 6 1.90000+ 1 3.00000+ 1 9.71210- 3 1.50100- 5 1.90000+ 1 4.10000+ 1 1.04853- 3 3.85900- 5 2.10000+ 1 2.10000+ 1 1.82720- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.44069- 1 4.53000- 6 2.10000+ 1 2.40000+ 1 1.02258- 1 1.65850- 4 2.10000+ 1 2.50000+ 1 2.12841- 1 1.67030- 4 2.10000+ 1 2.70000+ 1 2.52267- 2 1.20060- 4 2.10000+ 1 2.90000+ 1 1.77035- 2 1.42060- 4 2.10000+ 1 3.00000+ 1 3.00455- 2 1.47730- 4 2.10000+ 1 4.10000+ 1 1.84856- 3 1.71310- 4 2.20000+ 1 2.20000+ 1 1.58146- 2 1.25200- 5 2.20000+ 1 2.40000+ 1 3.37021- 2 1.73840- 4 2.20000+ 1 2.50000+ 1 8.84665- 3 1.75020- 4 2.20000+ 1 2.70000+ 1 5.30841- 3 1.28050- 4 2.20000+ 1 2.90000+ 1 2.18998- 2 1.50050- 4 2.20000+ 1 3.00000+ 1 4.51766- 3 1.55720- 4 2.20000+ 1 4.10000+ 1 3.41356- 4 1.79300- 4 2.40000+ 1 2.40000+ 1 2.30560- 3 3.35160- 4 2.40000+ 1 2.50000+ 1 1.63059- 2 3.36340- 4 2.40000+ 1 2.70000+ 1 3.13223- 3 2.89370- 4 2.40000+ 1 2.90000+ 1 1.19122- 2 3.11370- 4 2.40000+ 1 3.00000+ 1 3.53553- 3 3.17040- 4 2.40000+ 1 4.10000+ 1 2.25811- 4 3.40620- 4 2.50000+ 1 2.50000+ 1 8.14691- 4 3.37520- 4 2.50000+ 1 2.70000+ 1 2.12891- 3 2.90550- 4 2.50000+ 1 2.90000+ 1 2.45825- 2 3.12550- 4 2.50000+ 1 3.00000+ 1 1.71704- 3 3.18220- 4 2.50000+ 1 4.10000+ 1 1.31054- 4 3.41800- 4 2.70000+ 1 2.70000+ 1 3.75576- 4 2.43580- 4 2.70000+ 1 2.90000+ 1 5.78461- 3 2.65580- 4 2.70000+ 1 3.00000+ 1 9.37615- 4 2.71250- 4 2.70000+ 1 4.10000+ 1 4.79464- 5 2.94830- 4 2.90000+ 1 2.90000+ 1 1.24174- 2 2.87580- 4 2.90000+ 1 3.00000+ 1 3.41548- 2 2.93250- 4 2.90000+ 1 4.10000+ 1 1.66012- 3 3.16830- 4 3.00000+ 1 3.00000+ 1 2.00782- 3 2.98920- 4 3.00000+ 1 4.10000+ 1 3.35494- 4 3.22500- 4 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.12662- 5 1.32720- 4 2.20000+ 1 1.24250- 4 1.40710- 4 2.70000+ 1 5.83311- 5 2.56240- 4 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.94083- 2 1.21780- 4 2.10000+ 1 2.50000+ 1 5.60045- 2 1.22960- 4 2.10000+ 1 2.70000+ 1 1.25387- 2 7.59900- 5 2.10000+ 1 2.90000+ 1 9.32035- 3 9.79900- 5 2.10000+ 1 3.00000+ 1 3.44845- 2 1.03660- 4 2.10000+ 1 4.10000+ 1 8.92746- 4 1.27240- 4 2.20000+ 1 2.40000+ 1 2.55756- 1 1.29770- 4 2.20000+ 1 2.50000+ 1 2.65937- 1 1.30950- 4 2.20000+ 1 2.70000+ 1 6.48440- 2 8.39800- 5 2.20000+ 1 2.90000+ 1 6.27071- 2 1.05980- 4 2.20000+ 1 3.00000+ 1 8.93275- 2 1.11650- 4 2.20000+ 1 4.10000+ 1 4.77305- 3 1.35230- 4 2.40000+ 1 2.40000+ 1 6.47608- 4 2.91090- 4 2.40000+ 1 2.50000+ 1 1.86027- 2 2.92270- 4 2.40000+ 1 2.70000+ 1 4.06462- 3 2.45300- 4 2.40000+ 1 2.90000+ 1 1.73725- 3 2.67300- 4 2.40000+ 1 3.00000+ 1 2.49595- 2 2.72970- 4 2.40000+ 1 4.10000+ 1 2.29950- 4 2.96550- 4 2.50000+ 1 2.50000+ 1 7.41895- 3 2.93450- 4 2.50000+ 1 2.70000+ 1 8.53715- 3 2.46480- 4 2.50000+ 1 2.90000+ 1 6.86164- 3 2.68480- 4 2.50000+ 1 3.00000+ 1 3.00211- 2 2.74150- 4 2.50000+ 1 4.10000+ 1 5.32802- 4 2.97730- 4 2.70000+ 1 2.70000+ 1 1.67682- 5 1.99510- 4 2.70000+ 1 2.90000+ 1 2.91138- 4 2.21510- 4 2.70000+ 1 3.00000+ 1 5.54280- 3 2.27180- 4 2.70000+ 1 4.10000+ 1 3.04874- 6 2.50760- 4 2.90000+ 1 2.90000+ 1 2.48334- 5 2.43510- 4 2.90000+ 1 3.00000+ 1 3.38392- 3 2.49180- 4 2.90000+ 1 4.10000+ 1 1.19202- 5 2.72760- 4 3.00000+ 1 3.00000+ 1 1.02958- 2 2.54850- 4 3.00000+ 1 4.10000+ 1 6.29091- 4 2.78430- 4 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.35747- 5 1.69310- 4 2.90000+ 1 1.31398- 5 1.45520- 4 3.00000+ 1 2.01667- 6 1.51190- 4 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 4.02474- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 3.54957- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 1.14189- 4 2.51000- 6 2.40000+ 1 2.40000+ 1 1.63495- 1 1.58370- 4 2.40000+ 1 2.50000+ 1 5.20931- 1 1.59550- 4 2.40000+ 1 2.70000+ 1 6.27278- 2 1.12580- 4 2.40000+ 1 2.90000+ 1 5.09136- 2 1.34580- 4 2.40000+ 1 3.00000+ 1 7.74739- 2 1.40250- 4 2.40000+ 1 4.10000+ 1 4.66242- 3 1.63830- 4 2.50000+ 1 2.50000+ 1 4.82817- 3 1.60730- 4 2.50000+ 1 2.70000+ 1 5.50385- 3 1.13760- 4 2.50000+ 1 2.90000+ 1 1.41103- 2 1.35760- 4 2.50000+ 1 3.00000+ 1 4.63967- 3 1.41430- 4 2.50000+ 1 4.10000+ 1 3.47149- 4 1.65010- 4 2.70000+ 1 2.70000+ 1 3.31357- 3 6.67900- 5 2.70000+ 1 2.90000+ 1 3.19110- 3 8.87900- 5 2.70000+ 1 3.00000+ 1 3.68360- 3 9.44600- 5 2.70000+ 1 4.10000+ 1 2.75779- 4 1.18040- 4 2.90000+ 1 2.90000+ 1 6.02141- 3 1.10790- 4 2.90000+ 1 3.00000+ 1 1.81882- 2 1.16460- 4 2.90000+ 1 4.10000+ 1 7.25515- 4 1.40040- 4 3.00000+ 1 3.00000+ 1 1.01644- 2 1.22130- 4 3.00000+ 1 4.10000+ 1 8.43673- 4 1.45710- 4 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.66869- 6 1.61320- 4 2.50000+ 1 3.41427- 5 1.62500- 4 3.00000+ 1 1.35709- 5 1.43200- 4 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.10069- 2 1.50380- 4 2.40000+ 1 2.50000+ 1 4.24013- 1 1.51560- 4 2.40000+ 1 2.70000+ 1 9.24882- 3 1.04590- 4 2.40000+ 1 2.90000+ 1 5.08469- 3 1.26590- 4 2.40000+ 1 3.00000+ 1 1.67993- 2 1.32260- 4 2.40000+ 1 4.10000+ 1 6.24059- 4 1.55840- 4 2.50000+ 1 2.50000+ 1 2.96912- 1 1.52740- 4 2.50000+ 1 2.70000+ 1 6.86303- 2 1.05770- 4 2.50000+ 1 2.90000+ 1 6.64500- 2 1.27770- 4 2.50000+ 1 3.00000+ 1 8.22272- 2 1.33440- 4 2.50000+ 1 4.10000+ 1 5.10629- 3 1.57020- 4 2.70000+ 1 2.70000+ 1 3.08322- 3 5.88000- 5 2.70000+ 1 2.90000+ 1 1.63162- 3 8.08000- 5 2.70000+ 1 3.00000+ 1 4.13390- 3 8.64700- 5 2.70000+ 1 4.10000+ 1 2.51287- 4 1.10050- 4 2.90000+ 1 2.90000+ 1 3.02761- 4 1.02800- 4 2.90000+ 1 3.00000+ 1 2.74399- 3 1.08470- 4 2.90000+ 1 4.10000+ 1 6.34217- 5 1.32050- 4 3.00000+ 1 3.00000+ 1 1.48682- 3 1.14140- 4 3.00000+ 1 4.10000+ 1 1.51372- 4 1.37720- 4 1 68000 0 7 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.38000- 7 2.20000- 5 3.00000+ 1 5.57151- 7 2.76700- 5 1 68000 0 9 1.67260+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.15331- 1 1.65200- 5 3.00000+ 1 4.10000+ 1 5.77051- 1 2.21900- 5 4.10000+ 1 4.10000+ 1 7.61811- 3 4.57700- 5 1 69000 0 0 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 5.57000+ 0 2.50000+ 1 7.43000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 69000 0 0 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.94880- 2 3.00000+ 0 1.00810- 2 5.00000+ 0 9.62940- 3 6.00000+ 0 8.63810- 3 8.00000+ 0 2.27740- 3 1.00000+ 1 2.07520- 3 1.10000+ 1 1.86510- 3 1.30000+ 1 1.51600- 3 1.40000+ 1 1.46980- 3 1.60000+ 1 4.53730- 4 1.80000+ 1 3.71370- 4 1.90000+ 1 3.23870- 4 2.10000+ 1 1.86950- 4 2.20000+ 1 1.78330- 4 2.40000+ 1 1.10300- 5 2.50000+ 1 9.74000- 6 2.70000+ 1 5.83000- 5 2.90000+ 1 3.55800- 5 3.00000+ 1 2.95400- 5 4.10000+ 1 5.55000- 6 1 69000 0 0 1.68934+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.91430- 2 3.00000+ 0 1.82920- 2 5.00000+ 0 1.82910- 2 6.00000+ 0 1.45850- 2 8.00000+ 0 5.72480- 3 1.00000+ 1 5.63230- 3 1.10000+ 1 4.74240- 3 1.30000+ 1 4.60630- 3 1.40000+ 1 4.40290- 3 1.60000+ 1 1.79830- 3 1.80000+ 1 1.69440- 3 1.90000+ 1 1.43410- 3 2.10000+ 1 1.23640- 3 2.20000+ 1 1.17980- 3 2.40000+ 1 7.41110- 4 2.50000+ 1 7.20010- 4 2.70000+ 1 3.60240- 4 2.90000+ 1 2.82090- 4 3.00000+ 1 2.29670- 4 4.10000+ 1 3.25700- 5 1 69000 0 0 1.68934+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05770-10 3.00000+ 0 4.44860-10 5.00000+ 0 3.69280-10 6.00000+ 0 4.08170-10 8.00000+ 0 1.16120- 9 1.00000+ 1 1.10600- 9 1.10000+ 1 1.17860- 9 1.30000+ 1 1.03570- 9 1.40000+ 1 1.05810- 9 1.60000+ 1 2.61890- 9 1.80000+ 1 2.65870- 9 1.90000+ 1 2.82590- 9 2.10000+ 1 2.95720- 9 2.20000+ 1 3.01550- 9 2.40000+ 1 3.93500- 9 2.50000+ 1 4.01610- 9 2.70000+ 1 6.42180- 9 2.90000+ 1 7.20960- 9 3.00000+ 1 7.78880- 9 4.10000+ 1 2.09570- 8 1 69000 0 0 1.68934+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.79150- 5 3.00000+ 0 5.67170- 7 5.00000+ 0 9.77570- 7 6.00000+ 0 8.83920- 7 8.00000+ 0 1.82680- 8 1.00000+ 1 1.89990- 8 1.10000+ 1 1.97010- 8 1.30000+ 1 1.87680- 8 1.40000+ 1 1.76010- 8 1.60000+ 1 4.74040-10 1.80000+ 1 9.23220-10 1.90000+ 1 5.86830-10 2.10000+ 1 7.14450-10 2.20000+ 1 6.42630-10 2.70000+ 1 2.22340-11 1 69000 0 0 1.68934+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.59280- 6 3.00000+ 0 5.59470- 6 5.00000+ 0 3.14260- 6 6.00000+ 0 3.14330- 6 8.00000+ 0 1.82390- 5 1.00000+ 1 9.92090- 6 1.10000+ 1 1.00450- 5 1.30000+ 1 2.15290- 6 1.40000+ 1 1.25320- 6 1.60000+ 1 1.32630- 5 1.80000+ 1 1.79870- 5 1.90000+ 1 9.24980- 6 2.10000+ 1 6.36230- 6 2.20000+ 1 5.18360- 6 2.70000+ 1 4.69570- 6 1 69000 0 0 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02476- 4 3.00000+ 0 1.28577- 4 5.00000+ 0 1.07074- 4 6.00000+ 0 1.01054- 4 8.00000+ 0 9.74714- 5 1.00000+ 1 8.18065- 5 1.10000+ 1 7.49236- 5 1.30000+ 1 5.34843- 5 1.40000+ 1 5.08568- 5 1.60000+ 1 6.14748- 5 1.80000+ 1 4.91320- 5 1.90000+ 1 4.33131- 5 2.10000+ 1 2.80457- 5 2.20000+ 1 2.63071- 5 2.40000+ 1 1.10300- 5 2.50000+ 1 9.74000- 6 2.70000+ 1 3.74257- 5 2.90000+ 1 3.55800- 5 3.00000+ 1 2.95400- 5 4.10000+ 1 5.55000- 6 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16025+ 0 3.00000+ 0 2.48712- 1 5.00000+ 0 2.84401- 1 6.00000+ 0 2.33019- 1 8.00000+ 0 1.56869- 2 1.00000+ 1 1.58967- 2 1.10000+ 1 1.51609- 2 1.30000+ 1 1.49781- 2 1.40000+ 1 1.41891- 2 1.60000+ 1 5.38116- 4 1.80000+ 1 6.79058- 4 1.90000+ 1 2.62788- 4 2.10000+ 1 6.08904- 5 2.20000+ 1 5.88110- 5 2.70000+ 1 9.16071- 7 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.06964- 2 3.00000+ 0 1.80355- 3 5.00000+ 0 2.17534- 3 6.00000+ 0 1.57064- 3 8.00000+ 0 2.28584- 5 1.00000+ 1 2.28570- 5 1.10000+ 1 2.16205- 5 1.30000+ 1 2.09780- 5 1.40000+ 1 1.96415- 5 1.60000+ 1 1.18390- 7 1.80000+ 1 1.37900- 7 1.90000+ 1 4.69586- 8 2.10000+ 1 1.02889- 8 2.20000+ 1 9.62172- 9 2.70000+ 1 2.52652-11 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.62992+ 0 3.00000+ 0 8.80467+ 0 5.00000+ 0 6.95191+ 0 6.00000+ 0 6.57233+ 0 8.00000+ 0 6.14466+ 0 1.00000+ 1 5.00298+ 0 1.10000+ 1 4.56088+ 0 1.30000+ 1 3.03839+ 0 1.40000+ 1 2.88460+ 0 1.60000+ 1 2.86277+ 0 1.80000+ 1 2.43569+ 0 1.90000+ 1 2.04108+ 0 2.10000+ 1 1.12274+ 0 2.20000+ 1 1.08490+ 0 2.70000+ 1 9.99999- 1 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.68911- 3 3.00000+ 0 8.14888- 3 5.00000+ 0 7.34699- 3 6.00000+ 0 6.96641- 3 8.00000+ 0 2.15707- 3 1.00000+ 1 1.97054- 3 1.10000+ 1 1.76856- 3 1.30000+ 1 1.44154- 3 1.40000+ 1 1.39930- 3 1.60000+ 1 3.92137- 4 1.80000+ 1 3.22100- 4 1.90000+ 1 2.80510- 4 2.10000+ 1 1.58894- 4 2.20000+ 1 1.52013- 4 2.70000+ 1 2.08743- 5 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.72659- 1 4.98586- 2 6.00000+ 0 4.82018- 1 5.08499- 2 1.00000+ 1 5.05098- 2 5.74128- 2 1.10000+ 1 9.76196- 2 5.76229- 2 1.30000+ 1 9.26446- 4 5.79720- 2 1.40000+ 1 1.19560- 3 5.80182- 2 1.80000+ 1 1.12120- 2 5.91166- 2 1.90000+ 1 2.16849- 2 5.91641- 2 2.10000+ 1 2.12469- 4 5.93010- 2 2.20000+ 1 2.72659- 4 5.93097- 2 2.90000+ 1 2.50829- 3 5.94524- 2 3.00000+ 1 5.20078- 3 5.94585- 2 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 5.10404- 3 3.93260- 2 3.00000+ 0 5.00000+ 0 6.95844- 3 3.97776- 2 3.00000+ 0 6.00000+ 0 5.66455- 3 4.07689- 2 3.00000+ 0 8.00000+ 0 1.97777- 3 4.71296- 2 3.00000+ 0 1.00000+ 1 1.45568- 3 4.73318- 2 3.00000+ 0 1.10000+ 1 1.23828- 3 4.75419- 2 3.00000+ 0 1.30000+ 1 9.57212- 5 4.78910- 2 3.00000+ 0 1.40000+ 1 8.59452- 5 4.79372- 2 3.00000+ 0 1.60000+ 1 4.68455- 4 4.89533- 2 3.00000+ 0 1.80000+ 1 3.32717- 4 4.90356- 2 3.00000+ 0 1.90000+ 1 2.80247- 4 4.90831- 2 3.00000+ 0 2.10000+ 1 2.17627- 5 4.92200- 2 3.00000+ 0 2.20000+ 1 1.92727- 5 4.92287- 2 3.00000+ 0 2.70000+ 1 7.42373- 5 4.93487- 2 3.00000+ 0 2.90000+ 1 4.20506- 5 4.93714- 2 3.00000+ 0 3.00000+ 1 3.32897- 5 4.93775- 2 3.00000+ 0 4.10000+ 1 5.44055- 6 4.94014- 2 5.00000+ 0 5.00000+ 0 5.67860- 4 4.02292- 2 5.00000+ 0 6.00000+ 0 1.09958- 2 4.12205- 2 5.00000+ 0 8.00000+ 0 1.14248- 3 4.75812- 2 5.00000+ 0 1.00000+ 1 2.09236- 4 4.77834- 2 5.00000+ 0 1.10000+ 1 1.99716- 3 4.79935- 2 5.00000+ 0 1.30000+ 1 1.04118- 4 4.83426- 2 5.00000+ 0 1.40000+ 1 3.11595- 4 4.83888- 2 5.00000+ 0 1.60000+ 1 2.60876- 4 4.94049- 2 5.00000+ 0 1.80000+ 1 4.65671- 5 4.94872- 2 5.00000+ 0 1.90000+ 1 4.34532- 4 4.95347- 2 5.00000+ 0 2.10000+ 1 2.30536- 5 4.96716- 2 5.00000+ 0 2.20000+ 1 6.86989- 5 4.96803- 2 5.00000+ 0 2.40000+ 1 3.68853- 7 4.98476- 2 5.00000+ 0 2.50000+ 1 5.53281- 7 4.98489- 2 5.00000+ 0 2.70000+ 1 4.10363- 5 4.98003- 2 5.00000+ 0 2.90000+ 1 5.80970- 6 4.98230- 2 5.00000+ 0 3.00000+ 1 5.12711- 5 4.98291- 2 5.00000+ 0 4.10000+ 1 2.95095- 6 4.98530- 2 6.00000+ 0 6.00000+ 0 5.07546- 3 4.22118- 2 6.00000+ 0 8.00000+ 0 8.73512- 4 4.85725- 2 6.00000+ 0 1.00000+ 1 1.88822- 3 4.87747- 2 6.00000+ 0 1.10000+ 1 1.90152- 3 4.89848- 2 6.00000+ 0 1.30000+ 1 3.58255- 4 4.93339- 2 6.00000+ 0 1.40000+ 1 3.13264- 4 4.93801- 2 6.00000+ 0 1.60000+ 1 1.96602- 4 5.03962- 2 6.00000+ 0 1.80000+ 1 4.14515- 4 5.04785- 2 6.00000+ 0 1.90000+ 1 4.17015- 4 5.05260- 2 6.00000+ 0 2.10000+ 1 7.96751- 5 5.06629- 2 6.00000+ 0 2.20000+ 1 6.92570- 5 5.06716- 2 6.00000+ 0 2.40000+ 1 7.37751- 7 5.08389- 2 6.00000+ 0 2.50000+ 1 7.37751- 7 5.08402- 2 6.00000+ 0 2.70000+ 1 3.08014- 5 5.07916- 2 6.00000+ 0 2.90000+ 1 5.19197- 5 5.08143- 2 6.00000+ 0 3.00000+ 1 4.92466- 5 5.08204- 2 6.00000+ 0 4.10000+ 1 2.21322- 6 5.08443- 2 8.00000+ 0 8.00000+ 0 1.88577- 4 5.49332- 2 8.00000+ 0 1.00000+ 1 2.40508- 4 5.51354- 2 8.00000+ 0 1.10000+ 1 1.92827- 4 5.53455- 2 8.00000+ 0 1.30000+ 1 1.43858- 5 5.56946- 2 8.00000+ 0 1.40000+ 1 1.22648- 5 5.57408- 2 8.00000+ 0 1.60000+ 1 8.90821- 5 5.67569- 2 8.00000+ 0 1.80000+ 1 5.50534- 5 5.68392- 2 8.00000+ 0 1.90000+ 1 4.37105- 5 5.68867- 2 8.00000+ 0 2.10000+ 1 3.22756- 6 5.70236- 2 8.00000+ 0 2.20000+ 1 2.76647- 6 5.70323- 2 8.00000+ 0 2.70000+ 1 1.41088- 5 5.71523- 2 8.00000+ 0 2.90000+ 1 6.91633- 6 5.71750- 2 8.00000+ 0 3.00000+ 1 5.16414- 6 5.71811- 2 8.00000+ 0 4.10000+ 1 1.01439- 6 5.72050- 2 1.00000+ 1 1.00000+ 1 1.87195- 5 5.53376- 2 1.00000+ 1 1.10000+ 1 3.50791- 4 5.55477- 2 1.00000+ 1 1.30000+ 1 1.47546- 5 5.58968- 2 1.00000+ 1 1.40000+ 1 4.10360- 5 5.59430- 2 1.00000+ 1 1.60000+ 1 5.49607- 5 5.69591- 2 1.00000+ 1 1.80000+ 1 8.29970- 6 5.70414- 2 1.00000+ 1 1.90000+ 1 7.66272- 5 5.70889- 2 1.00000+ 1 2.10000+ 1 3.31982- 6 5.72258- 2 1.00000+ 1 2.20000+ 1 9.12938- 6 5.72345- 2 1.00000+ 1 2.40000+ 1 9.22167- 8 5.74018- 2 1.00000+ 1 2.50000+ 1 9.22167- 8 5.74031- 2 1.00000+ 1 2.70000+ 1 8.66839- 6 5.73545- 2 1.00000+ 1 2.90000+ 1 1.01437- 6 5.73772- 2 1.00000+ 1 3.00000+ 1 9.03708- 6 5.73833- 2 1.00000+ 1 4.10000+ 1 6.45474- 7 5.74072- 2 1.10000+ 1 1.10000+ 1 1.79355- 4 5.57578- 2 1.10000+ 1 1.30000+ 1 5.33917- 5 5.61069- 2 1.10000+ 1 1.40000+ 1 4.52758- 5 5.61531- 2 1.10000+ 1 1.60000+ 1 4.35239- 5 5.71692- 2 1.10000+ 1 1.80000+ 1 7.73671- 5 5.72515- 2 1.10000+ 1 1.90000+ 1 7.87491- 5 5.72990- 2 1.10000+ 1 2.10000+ 1 1.19877- 5 5.74359- 2 1.10000+ 1 2.20000+ 1 1.00517- 5 5.74446- 2 1.10000+ 1 2.40000+ 1 9.22167- 8 5.76119- 2 1.10000+ 1 2.50000+ 1 9.22167- 8 5.76132- 2 1.10000+ 1 2.70000+ 1 6.82394- 6 5.75646- 2 1.10000+ 1 2.90000+ 1 9.68267- 6 5.75873- 2 1.10000+ 1 3.00000+ 1 9.31397- 6 5.75934- 2 1.10000+ 1 4.10000+ 1 4.61058- 7 5.76173- 2 1.30000+ 1 1.30000+ 1 9.36394- 8 5.64560- 2 1.30000+ 1 1.40000+ 1 6.55432- 6 5.65022- 2 1.30000+ 1 1.60000+ 1 3.27731- 6 5.75183- 2 1.30000+ 1 1.80000+ 1 3.18369- 6 5.76006- 2 1.30000+ 1 1.90000+ 1 1.13298- 5 5.76481- 2 1.30000+ 1 2.20000+ 1 1.40450- 6 5.77937- 2 1.30000+ 1 2.70000+ 1 4.68171- 7 5.79137- 2 1.30000+ 1 2.90000+ 1 3.74541- 7 5.79364- 2 1.30000+ 1 3.00000+ 1 1.31088- 6 5.79425- 2 1.40000+ 1 1.40000+ 1 1.56770- 6 5.65484- 2 1.40000+ 1 1.60000+ 1 2.76651- 6 5.75645- 2 1.40000+ 1 1.80000+ 1 8.48402- 6 5.76468- 2 1.40000+ 1 1.90000+ 1 9.40592- 6 5.76943- 2 1.40000+ 1 2.10000+ 1 1.38320- 6 5.78312- 2 1.40000+ 1 2.20000+ 1 6.45491- 7 5.78399- 2 1.40000+ 1 2.70000+ 1 4.61070- 7 5.79599- 2 1.40000+ 1 2.90000+ 1 1.01440- 6 5.79826- 2 1.40000+ 1 3.00000+ 1 1.10660- 6 5.79887- 2 1.60000+ 1 1.60000+ 1 1.06767- 5 5.85805- 2 1.60000+ 1 1.80000+ 1 1.28307- 5 5.86629- 2 1.60000+ 1 1.90000+ 1 1.00206- 5 5.87104- 2 1.60000+ 1 2.10000+ 1 7.49229- 7 5.88473- 2 1.60000+ 1 2.20000+ 1 6.55542- 7 5.88559- 2 1.60000+ 1 2.70000+ 1 3.37160- 6 5.89760- 2 1.60000+ 1 2.90000+ 1 1.59211- 6 5.89987- 2 1.60000+ 1 3.00000+ 1 1.21746- 6 5.90047- 2 1.60000+ 1 4.10000+ 1 2.80958- 7 5.90287- 2 1.80000+ 1 1.80000+ 1 9.22204- 7 5.87453- 2 1.80000+ 1 1.90000+ 1 1.68762- 5 5.87928- 2 1.80000+ 1 2.10000+ 1 7.37752- 7 5.89297- 2 1.80000+ 1 2.20000+ 1 1.93652- 6 5.89383- 2 1.80000+ 1 2.70000+ 1 1.93652- 6 5.90583- 2 1.80000+ 1 2.90000+ 1 1.84432- 7 5.90810- 2 1.80000+ 1 3.00000+ 1 2.02883- 6 5.90871- 2 1.80000+ 1 4.10000+ 1 1.84432- 7 5.91111- 2 1.90000+ 1 1.90000+ 1 8.47639- 6 5.88403- 2 1.90000+ 1 2.10000+ 1 2.43469- 6 5.89772- 2 1.90000+ 1 2.20000+ 1 2.07396- 6 5.89858- 2 1.90000+ 1 2.70000+ 1 1.53293- 6 5.91058- 2 1.90000+ 1 2.90000+ 1 2.07396- 6 5.91285- 2 1.90000+ 1 3.00000+ 1 1.98381- 6 5.91346- 2 1.90000+ 1 4.10000+ 1 9.01742- 8 5.91586- 2 2.10000+ 1 2.20000+ 1 2.91702- 7 5.91227- 2 2.10000+ 1 2.70000+ 1 9.72364- 8 5.92427- 2 2.10000+ 1 2.90000+ 1 9.72364- 8 5.92655- 2 2.10000+ 1 3.00000+ 1 2.91702- 7 5.92715- 2 2.20000+ 1 2.20000+ 1 9.52127- 8 5.91313- 2 2.20000+ 1 2.70000+ 1 9.52127- 8 5.92514- 2 2.20000+ 1 2.90000+ 1 2.85631- 7 5.92741- 2 2.20000+ 1 3.00000+ 1 2.85631- 7 5.92801- 2 2.70000+ 1 2.70000+ 1 3.75338- 7 5.93714- 2 2.70000+ 1 2.90000+ 1 3.75338- 7 5.93941- 2 2.70000+ 1 3.00000+ 1 2.50220- 7 5.94002- 2 2.90000+ 1 3.00000+ 1 2.93439- 7 5.94229- 2 3.00000+ 1 3.00000+ 1 9.44766- 8 5.94289- 2 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.64760- 5 4.51600- 4 6.00000+ 0 1.23970- 3 1.44290- 3 1.00000+ 1 2.63861- 2 8.00580- 3 1.10000+ 1 3.54291- 2 8.21590- 3 1.30000+ 1 6.60072- 4 8.56500- 3 1.40000+ 1 9.88212- 4 8.61120- 3 1.80000+ 1 6.31962- 3 9.70963- 3 1.90000+ 1 8.88662- 3 9.75713- 3 2.10000+ 1 8.99542- 5 9.89405- 3 2.20000+ 1 1.39310- 4 9.90267- 3 2.90000+ 1 8.32412- 4 1.00454- 2 3.00000+ 1 1.12150- 3 1.00515- 2 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 3.98105- 2 0.00000+ 0 5.00000+ 0 1.80000+ 1 3.10515- 2 8.02300- 5 5.00000+ 0 1.90000+ 1 3.38890- 2 1.27730- 4 5.00000+ 0 2.10000+ 1 9.11492- 3 2.64650- 4 5.00000+ 0 2.20000+ 1 1.33868- 2 2.73270- 4 5.00000+ 0 2.40000+ 1 2.27635- 2 4.40570- 4 5.00000+ 0 2.50000+ 1 2.58870- 2 4.41860- 4 5.00000+ 0 2.70000+ 1 6.15429- 3 3.93300- 4 5.00000+ 0 2.90000+ 1 3.71308- 3 4.16020- 4 5.00000+ 0 3.00000+ 1 3.86308- 3 4.22060- 4 5.00000+ 0 4.10000+ 1 4.46838- 4 4.46050- 4 6.00000+ 0 1.40000+ 1 1.49011- 1 0.00000+ 0 6.00000+ 0 1.60000+ 1 4.21558- 2 9.89170- 4 6.00000+ 0 1.80000+ 1 1.75031- 2 1.07153- 3 6.00000+ 0 1.90000+ 1 2.92705- 2 1.11903- 3 6.00000+ 0 2.10000+ 1 5.25677- 2 1.25595- 3 6.00000+ 0 2.20000+ 1 6.47010- 2 1.26457- 3 6.00000+ 0 2.40000+ 1 3.27013- 2 1.43187- 3 6.00000+ 0 2.50000+ 1 3.57248- 2 1.43316- 3 6.00000+ 0 2.70000+ 1 6.41602- 3 1.38460- 3 6.00000+ 0 2.90000+ 1 2.14989- 3 1.40732- 3 6.00000+ 0 3.00000+ 1 3.42419- 3 1.41336- 3 6.00000+ 0 4.10000+ 1 4.66026- 4 1.43735- 3 8.00000+ 0 8.00000+ 0 9.48614- 3 5.52620- 3 8.00000+ 0 1.00000+ 1 1.91691- 2 5.72840- 3 8.00000+ 0 1.10000+ 1 3.31285- 2 5.93850- 3 8.00000+ 0 1.30000+ 1 2.56525- 2 6.28760- 3 8.00000+ 0 1.40000+ 1 3.47044- 2 6.33380- 3 8.00000+ 0 1.60000+ 1 3.81148- 3 7.34987- 3 8.00000+ 0 1.80000+ 1 4.29900- 3 7.43223- 3 8.00000+ 0 1.90000+ 1 7.30093- 3 7.47973- 3 8.00000+ 0 2.10000+ 1 4.87527- 3 7.61665- 3 8.00000+ 0 2.20000+ 1 6.52674- 3 7.62527- 3 8.00000+ 0 2.40000+ 1 2.49965- 4 7.79257- 3 8.00000+ 0 2.50000+ 1 2.50855- 4 7.79386- 3 8.00000+ 0 2.70000+ 1 5.89215- 4 7.74530- 3 8.00000+ 0 2.90000+ 1 5.40554- 4 7.76802- 3 8.00000+ 0 3.00000+ 1 8.62836- 4 7.77406- 3 8.00000+ 0 4.10000+ 1 4.28505- 5 7.79805- 3 1.00000+ 1 1.00000+ 1 6.29389- 5 5.93060- 3 1.00000+ 1 1.10000+ 1 5.04844- 4 6.14070- 3 1.00000+ 1 1.30000+ 1 1.03600- 3 6.48980- 3 1.00000+ 1 1.40000+ 1 1.03407- 2 6.53600- 3 1.00000+ 1 1.60000+ 1 3.04511- 3 7.55207- 3 1.00000+ 1 1.80000+ 1 1.11595- 5 7.63443- 3 1.00000+ 1 1.90000+ 1 1.01770- 4 7.68193- 3 1.00000+ 1 2.10000+ 1 1.86588- 4 7.81885- 3 1.00000+ 1 2.20000+ 1 1.25029- 3 7.82747- 3 1.00000+ 1 2.40000+ 1 8.79358- 5 7.99477- 3 1.00000+ 1 2.50000+ 1 2.67373- 4 7.99606- 3 1.00000+ 1 2.70000+ 1 4.46823- 4 7.94750- 3 1.00000+ 1 2.90000+ 1 1.33914- 6 7.97022- 3 1.00000+ 1 3.00000+ 1 1.20521- 5 7.97626- 3 1.00000+ 1 4.10000+ 1 3.21401- 5 8.00025- 3 1.10000+ 1 1.10000+ 1 8.44992- 4 6.35080- 3 1.10000+ 1 1.30000+ 1 4.93317- 3 6.69990- 3 1.10000+ 1 1.40000+ 1 3.15981- 3 6.74610- 3 1.10000+ 1 1.60000+ 1 5.23378- 3 7.76217- 3 1.10000+ 1 1.80000+ 1 1.07571- 4 7.84453- 3 1.10000+ 1 1.90000+ 1 2.75851- 4 7.89203- 3 1.10000+ 1 2.10000+ 1 4.41461- 4 8.02895- 3 1.10000+ 1 2.20000+ 1 2.79429- 4 8.03757- 3 1.10000+ 1 2.40000+ 1 2.13373- 4 8.20487- 3 1.10000+ 1 2.50000+ 1 1.51764- 4 8.20616- 3 1.10000+ 1 2.70000+ 1 7.67309- 4 8.15760- 3 1.10000+ 1 2.90000+ 1 1.33913- 5 8.18032- 3 1.10000+ 1 3.00000+ 1 3.07985- 5 8.18636- 3 1.10000+ 1 4.10000+ 1 5.53490- 5 8.21035- 3 1.30000+ 1 1.30000+ 1 1.51366- 3 7.04900- 3 1.30000+ 1 1.40000+ 1 4.89060- 2 7.09520- 3 1.30000+ 1 1.60000+ 1 3.77866- 3 8.11127- 3 1.30000+ 1 1.80000+ 1 2.90155- 4 8.19363- 3 1.30000+ 1 1.90000+ 1 1.16774- 3 8.24113- 3 1.30000+ 1 2.10000+ 1 5.63782- 4 8.37805- 3 1.30000+ 1 2.20000+ 1 6.50695- 3 8.38667- 3 1.30000+ 1 2.40000+ 1 2.86577- 4 8.55397- 3 1.30000+ 1 2.50000+ 1 6.95466- 4 8.55526- 3 1.30000+ 1 2.70000+ 1 5.47264- 4 8.50670- 3 1.30000+ 1 2.90000+ 1 3.79433- 5 8.52942- 3 1.30000+ 1 3.00000+ 1 1.39266- 4 8.53546- 3 1.30000+ 1 4.10000+ 1 3.97295- 5 8.55945- 3 1.40000+ 1 1.40000+ 1 1.36919- 2 7.14140- 3 1.40000+ 1 1.60000+ 1 5.16683- 3 8.15747- 3 1.40000+ 1 1.80000+ 1 2.07800- 3 8.23983- 3 1.40000+ 1 1.90000+ 1 7.84285- 4 8.28733- 3 1.40000+ 1 2.10000+ 1 6.39097- 3 8.42425- 3 1.40000+ 1 2.20000+ 1 3.83807- 3 8.43287- 3 1.40000+ 1 2.40000+ 1 8.92772- 4 8.60017- 3 1.40000+ 1 2.50000+ 1 5.93689- 4 8.60146- 3 1.40000+ 1 2.70000+ 1 7.50806- 4 8.55290- 3 1.40000+ 1 2.90000+ 1 2.56674- 4 8.57562- 3 1.40000+ 1 3.00000+ 1 9.46347- 5 8.58166- 3 1.40000+ 1 4.10000+ 1 5.44582- 5 8.60565- 3 1.60000+ 1 1.60000+ 1 3.62013- 4 9.17354- 3 1.60000+ 1 1.80000+ 1 6.85188- 4 9.25590- 3 1.60000+ 1 1.90000+ 1 1.15741- 3 9.30340- 3 1.60000+ 1 2.10000+ 1 7.17343- 4 9.44032- 3 1.60000+ 1 2.20000+ 1 9.66903- 4 9.44894- 3 1.60000+ 1 2.40000+ 1 3.03536- 5 9.61624- 3 1.60000+ 1 2.50000+ 1 2.94609- 5 9.61753- 3 1.60000+ 1 2.70000+ 1 1.10707- 4 9.56897- 3 1.60000+ 1 2.90000+ 1 8.61533- 5 9.59169- 3 1.60000+ 1 3.00000+ 1 1.37040- 4 9.59773- 3 1.60000+ 1 4.10000+ 1 8.03488- 6 9.62172- 3 1.80000+ 1 1.80000+ 1 4.46385- 7 9.33826- 3 1.80000+ 1 1.90000+ 1 2.18715- 5 9.38576- 3 1.80000+ 1 2.10000+ 1 4.46385- 5 9.52268- 3 1.80000+ 1 2.20000+ 1 2.60240- 4 9.53130- 3 1.80000+ 1 2.40000+ 1 1.16054- 5 9.69860- 3 1.80000+ 1 2.50000+ 1 4.01746- 5 9.69989- 3 1.80000+ 1 2.70000+ 1 1.00435- 4 9.65133- 3 1.80000+ 1 3.00000+ 1 2.67821- 6 9.68009- 3 1.80000+ 1 4.10000+ 1 7.14207- 6 9.70408- 3 1.90000+ 1 1.90000+ 1 2.18717- 5 9.43326- 3 1.90000+ 1 2.10000+ 1 1.16055- 4 9.57018- 3 1.90000+ 1 2.20000+ 1 7.81181- 5 9.57880- 3 1.90000+ 1 2.40000+ 1 3.79430- 5 9.74610- 3 1.90000+ 1 2.50000+ 1 2.63365- 5 9.74739- 3 1.90000+ 1 2.70000+ 1 1.69630- 4 9.69883- 3 1.90000+ 1 2.90000+ 1 2.67823- 6 9.72155- 3 1.90000+ 1 3.00000+ 1 4.91027- 6 9.72759- 3 1.90000+ 1 4.10000+ 1 1.24991- 5 9.75158- 3 2.10000+ 1 2.10000+ 1 4.91037- 5 9.70710- 3 2.10000+ 1 2.20000+ 1 9.24427- 4 9.71572- 3 2.10000+ 1 2.40000+ 1 3.70501- 5 9.88302- 3 2.10000+ 1 2.50000+ 1 6.96374- 5 9.88431- 3 2.10000+ 1 2.70000+ 1 1.04008- 4 9.83575- 3 2.10000+ 1 2.90000+ 1 5.80306- 6 9.85847- 3 2.10000+ 1 3.00000+ 1 1.42845- 5 9.86451- 3 2.10000+ 1 4.10000+ 1 7.58866- 6 9.88850- 3 2.20000+ 1 2.20000+ 1 2.87019- 4 9.72434- 3 2.20000+ 1 2.40000+ 1 9.24046- 5 9.89164- 3 2.20000+ 1 2.50000+ 1 6.87425- 5 9.89293- 3 2.20000+ 1 2.70000+ 1 1.40164- 4 9.84437- 3 2.20000+ 1 2.90000+ 1 3.21408- 5 9.86709- 3 2.20000+ 1 3.00000+ 1 9.37450- 6 9.87313- 3 2.20000+ 1 4.10000+ 1 1.02661- 5 9.89712- 3 2.40000+ 1 2.40000+ 1 5.80720- 7 1.00589- 2 2.40000+ 1 2.50000+ 1 1.27758- 5 1.00602- 2 2.40000+ 1 2.70000+ 1 5.22648- 6 1.00117- 2 2.40000+ 1 2.90000+ 1 1.74217- 6 1.00344- 2 2.40000+ 1 3.00000+ 1 5.80720- 6 1.00404- 2 2.40000+ 1 4.10000+ 1 5.80720- 7 1.00644- 2 2.50000+ 1 2.50000+ 1 2.37359- 6 1.00615- 2 2.50000+ 1 2.70000+ 1 4.27264- 6 1.00130- 2 2.50000+ 1 2.90000+ 1 5.22212- 6 1.00357- 2 2.50000+ 1 3.00000+ 1 3.32295- 6 1.00417- 2 2.50000+ 1 4.10000+ 1 4.74738- 7 1.00657- 2 2.70000+ 1 2.70000+ 1 2.25715- 5 9.96440- 3 2.70000+ 1 2.90000+ 1 3.32646- 5 9.98712- 3 2.70000+ 1 3.00000+ 1 5.34602- 5 9.99316- 3 2.70000+ 1 4.10000+ 1 3.56401- 6 1.00171- 2 2.90000+ 1 3.00000+ 1 2.33415- 6 1.00159- 2 2.90000+ 1 4.10000+ 1 4.66827- 6 1.00399- 2 3.00000+ 1 3.00000+ 1 9.11649- 7 1.00219- 2 3.00000+ 1 4.10000+ 1 2.73496- 6 1.00459- 2 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.37310- 6 9.91300- 4 8.00000+ 0 5.85810- 3 7.35200- 3 1.10000+ 1 1.47450- 4 7.76430- 3 1.30000+ 1 1.89400- 1 8.11340- 3 1.60000+ 1 1.28420- 3 9.17567- 3 1.90000+ 1 3.58520- 5 9.30553- 3 2.10000+ 1 3.36390- 2 9.44245- 3 2.40000+ 1 5.59150- 5 9.61837- 3 2.70000+ 1 2.33760- 4 9.57110- 3 3.00000+ 1 7.92010- 6 9.59986- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 7.73363- 3 5.37570- 4 6.00000+ 0 1.80000+ 1 4.51441- 2 6.19930- 4 6.00000+ 0 1.90000+ 1 1.41850- 2 6.67430- 4 6.00000+ 0 2.10000+ 1 5.28377- 2 8.04350- 4 6.00000+ 0 2.20000+ 1 1.87451- 2 8.12970- 4 6.00000+ 0 2.40000+ 1 1.31305- 3 9.80270- 4 6.00000+ 0 2.50000+ 1 1.73779- 3 9.81560- 4 6.00000+ 0 2.70000+ 1 1.12190- 3 9.33000- 4 6.00000+ 0 2.90000+ 1 5.32460- 3 9.55720- 4 6.00000+ 0 3.00000+ 1 1.65593- 3 9.61760- 4 6.00000+ 0 4.10000+ 1 8.12349- 5 9.85750- 4 8.00000+ 0 8.00000+ 0 7.87694- 4 5.07460- 3 8.00000+ 0 1.00000+ 1 2.29226- 2 5.27680- 3 8.00000+ 0 1.10000+ 1 2.21796- 3 5.48690- 3 8.00000+ 0 1.30000+ 1 2.60753- 3 5.83600- 3 8.00000+ 0 1.40000+ 1 2.64210- 3 5.88220- 3 8.00000+ 0 1.60000+ 1 2.90313- 4 6.89827- 3 8.00000+ 0 1.80000+ 1 3.43053- 3 6.98063- 3 8.00000+ 0 1.90000+ 1 4.35475- 4 7.02813- 3 8.00000+ 0 2.10000+ 1 3.52228- 4 7.16505- 3 8.00000+ 0 2.20000+ 1 3.03622- 4 7.17367- 3 8.00000+ 0 2.40000+ 1 7.39109- 5 7.34097- 3 8.00000+ 0 2.50000+ 1 4.19495- 5 7.34226- 3 8.00000+ 0 2.70000+ 1 4.39468- 5 7.29370- 3 8.00000+ 0 2.90000+ 1 4.02174- 4 7.31642- 3 8.00000+ 0 3.00000+ 1 5.06050- 5 7.32246- 3 8.00000+ 0 4.10000+ 1 3.32920- 6 7.34645- 3 1.00000+ 1 1.00000+ 1 2.33093- 2 5.47900- 3 1.00000+ 1 1.10000+ 1 6.63459- 2 5.68910- 3 1.00000+ 1 1.30000+ 1 3.53112- 2 6.03820- 3 1.00000+ 1 1.40000+ 1 5.55637- 2 6.08440- 3 1.00000+ 1 1.60000+ 1 5.54468- 3 7.10047- 3 1.00000+ 1 1.80000+ 1 8.85612- 3 7.18283- 3 1.00000+ 1 1.90000+ 1 1.43693- 2 7.23033- 3 1.00000+ 1 2.10000+ 1 6.70678- 3 7.36725- 3 1.00000+ 1 2.20000+ 1 1.04967- 2 7.37587- 3 1.00000+ 1 2.40000+ 1 3.31607- 4 7.54317- 3 1.00000+ 1 2.50000+ 1 2.67685- 4 7.54446- 3 1.00000+ 1 2.70000+ 1 8.81609- 4 7.49590- 3 1.00000+ 1 2.90000+ 1 1.08738- 3 7.51862- 3 1.00000+ 1 3.00000+ 1 1.69333- 3 7.52466- 3 1.00000+ 1 4.10000+ 1 6.45885- 5 7.54865- 3 1.10000+ 1 1.10000+ 1 1.64932- 3 5.89920- 3 1.10000+ 1 1.30000+ 1 3.74567- 2 6.24830- 3 1.10000+ 1 1.40000+ 1 5.18771- 3 6.29450- 3 1.10000+ 1 1.60000+ 1 4.55435- 4 7.31057- 3 1.10000+ 1 1.80000+ 1 1.02393- 2 7.39293- 3 1.10000+ 1 1.90000+ 1 6.07262- 4 7.44043- 3 1.10000+ 1 2.10000+ 1 6.00012- 3 7.57735- 3 1.10000+ 1 2.20000+ 1 7.87074- 4 7.58597- 3 1.10000+ 1 2.40000+ 1 1.77121- 4 7.75327- 3 1.10000+ 1 2.50000+ 1 8.52284- 5 7.75456- 3 1.10000+ 1 2.70000+ 1 6.99139- 5 7.70600- 3 1.10000+ 1 2.90000+ 1 1.20651- 3 7.72872- 3 1.10000+ 1 3.00000+ 1 6.99139- 5 7.73476- 3 1.10000+ 1 4.10000+ 1 5.32695- 6 7.75875- 3 1.30000+ 1 1.30000+ 1 3.50101- 2 6.59740- 3 1.30000+ 1 1.40000+ 1 1.44558- 1 6.64360- 3 1.30000+ 1 1.60000+ 1 6.32563- 4 7.65967- 3 1.30000+ 1 1.80000+ 1 5.37469- 3 7.74203- 3 1.30000+ 1 1.90000+ 1 7.59153- 3 7.78953- 3 1.30000+ 1 2.10000+ 1 1.11407- 2 7.92645- 3 1.30000+ 1 2.20000+ 1 2.46900- 2 7.93507- 3 1.30000+ 1 2.40000+ 1 1.28779- 3 8.10237- 3 1.30000+ 1 2.50000+ 1 2.28592- 3 8.10366- 3 1.30000+ 1 2.70000+ 1 1.01205- 4 8.05510- 3 1.30000+ 1 2.90000+ 1 6.35890- 4 8.07782- 3 1.30000+ 1 3.00000+ 1 8.84282- 4 8.08386- 3 1.30000+ 1 4.10000+ 1 7.32447- 6 8.10785- 3 1.40000+ 1 1.40000+ 1 6.95363- 3 6.68980- 3 1.40000+ 1 1.60000+ 1 5.22694- 4 7.70587- 3 1.40000+ 1 1.80000+ 1 7.48758- 3 7.78823- 3 1.40000+ 1 1.90000+ 1 9.63500- 4 7.83573- 3 1.40000+ 1 2.10000+ 1 1.90726- 2 7.97265- 3 1.40000+ 1 2.20000+ 1 2.15609- 3 7.98127- 3 1.40000+ 1 2.40000+ 1 5.20718- 4 8.14857- 3 1.40000+ 1 2.50000+ 1 1.74463- 4 8.14986- 3 1.40000+ 1 2.70000+ 1 7.99007- 5 8.10130- 3 1.40000+ 1 2.90000+ 1 8.60297- 4 8.12402- 3 1.40000+ 1 3.00000+ 1 1.10532- 4 8.13006- 3 1.40000+ 1 4.10000+ 1 5.99289- 6 8.15405- 3 1.60000+ 1 1.60000+ 1 2.59674- 5 8.72194- 3 1.60000+ 1 1.80000+ 1 8.34988- 4 8.80430- 3 1.60000+ 1 1.90000+ 1 8.98888- 5 8.85180- 3 1.60000+ 1 2.10000+ 1 8.25682- 5 8.98872- 3 1.60000+ 1 2.20000+ 1 6.05934- 5 8.99734- 3 1.60000+ 1 2.40000+ 1 1.59812- 5 9.16464- 3 1.60000+ 1 2.50000+ 1 7.32444- 6 9.16593- 3 1.60000+ 1 2.70000+ 1 7.98995- 6 9.11737- 3 1.60000+ 1 2.90000+ 1 9.78792- 5 9.14009- 3 1.60000+ 1 3.00000+ 1 1.06537- 5 9.14613- 3 1.60000+ 1 4.10000+ 1 6.65861- 7 9.17012- 3 1.80000+ 1 1.80000+ 1 8.00988- 4 8.88666- 3 1.80000+ 1 1.90000+ 1 2.22128- 3 8.93416- 3 1.80000+ 1 2.10000+ 1 1.00408- 3 9.07108- 3 1.80000+ 1 2.20000+ 1 1.42631- 3 9.07970- 3 1.80000+ 1 2.40000+ 1 4.06175- 5 9.24700- 3 1.80000+ 1 2.50000+ 1 2.72991- 5 9.24829- 3 1.80000+ 1 2.70000+ 1 1.33164- 4 9.19973- 3 1.80000+ 1 2.90000+ 1 1.95098- 4 9.22245- 3 1.80000+ 1 3.00000+ 1 2.61679- 4 9.22849- 3 1.80000+ 1 4.10000+ 1 9.98781- 6 9.25248- 3 1.90000+ 1 1.90000+ 1 5.59318- 5 8.98166- 3 1.90000+ 1 2.10000+ 1 1.22587- 3 9.11858- 3 1.90000+ 1 2.20000+ 1 1.49143- 4 9.12720- 3 1.90000+ 1 2.40000+ 1 2.92981- 5 9.29450- 3 1.90000+ 1 2.50000+ 1 1.33163- 5 9.29579- 3 1.90000+ 1 2.70000+ 1 1.39827- 5 9.24723- 3 1.90000+ 1 2.90000+ 1 2.61677- 4 9.26995- 3 1.90000+ 1 3.00000+ 1 1.26509- 5 9.27599- 3 1.90000+ 1 4.10000+ 1 1.33163- 6 9.29998- 3 2.10000+ 1 2.10000+ 1 8.75602- 4 9.25550- 3 2.10000+ 1 2.20000+ 1 3.38178- 3 9.26412- 3 2.10000+ 1 2.40000+ 1 1.41827- 4 9.43142- 3 2.10000+ 1 2.50000+ 1 2.55040- 4 9.43271- 3 2.10000+ 1 2.70000+ 1 1.33167- 5 9.38415- 3 2.10000+ 1 2.90000+ 1 1.18517- 4 9.40687- 3 2.10000+ 1 3.00000+ 1 1.43158- 4 9.41291- 3 2.10000+ 1 4.10000+ 1 6.65871- 7 9.43690- 3 2.20000+ 1 2.20000+ 1 2.59746- 4 9.27274- 3 2.20000+ 1 2.40000+ 1 9.44530- 5 9.44004- 3 2.20000+ 1 2.50000+ 1 3.18275- 5 9.44133- 3 2.20000+ 1 2.70000+ 1 1.43731- 5 9.39277- 3 2.20000+ 1 2.90000+ 1 2.53589- 4 9.41549- 3 2.20000+ 1 3.00000+ 1 2.66944- 5 9.42153- 3 2.20000+ 1 4.10000+ 1 1.02667- 6 9.44552- 3 2.40000+ 1 2.40000+ 1 2.93603- 6 9.60734- 3 2.40000+ 1 2.50000+ 1 1.76165- 5 9.60863- 3 2.40000+ 1 2.70000+ 1 3.91465- 6 9.56007- 3 2.40000+ 1 2.90000+ 1 6.85053- 6 9.58279- 3 2.40000+ 1 3.00000+ 1 4.89327- 6 9.58883- 3 2.50000+ 1 2.50000+ 1 1.55028- 6 9.60992- 3 2.50000+ 1 2.70000+ 1 3.10038- 6 9.56136- 3 2.50000+ 1 2.90000+ 1 6.20097- 6 9.58408- 3 2.50000+ 1 3.00000+ 1 3.10038- 6 9.59012- 3 2.70000+ 1 2.70000+ 1 1.30790- 6 9.51280- 3 2.70000+ 1 2.90000+ 1 3.00815- 5 9.53552- 3 2.70000+ 1 3.00000+ 1 2.61565- 6 9.54156- 3 2.90000+ 1 2.90000+ 1 2.76223- 5 9.55824- 3 2.90000+ 1 3.00000+ 1 7.05888- 5 9.56428- 3 2.90000+ 1 4.10000+ 1 3.06893- 6 9.58827- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.09680- 2 6.36070- 3 1.00000+ 1 8.29981- 5 6.56290- 3 1.10000+ 1 7.54461- 5 6.77300- 3 1.30000+ 1 1.71510- 2 7.12210- 3 1.40000+ 1 1.51460- 1 7.16830- 3 1.60000+ 1 1.73930- 3 8.18437- 3 1.80000+ 1 1.54050- 5 8.26673- 3 1.90000+ 1 1.49810- 5 8.31423- 3 2.10000+ 1 2.88460- 3 8.45115- 3 2.20000+ 1 2.57960- 2 8.45977- 3 2.40000+ 1 8.08221- 6 8.62707- 3 2.50000+ 1 4.53801- 5 8.62836- 3 2.70000+ 1 3.38110- 4 8.57980- 3 2.90000+ 1 3.45300- 6 8.60252- 3 3.00000+ 1 3.05320- 6 8.60856- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.04598- 3 4.08330- 3 8.00000+ 0 1.00000+ 1 6.26773- 4 4.28550- 3 8.00000+ 0 1.10000+ 1 2.50371- 2 4.49560- 3 8.00000+ 0 1.30000+ 1 2.68339- 3 4.84470- 3 8.00000+ 0 1.40000+ 1 3.61243- 3 4.89090- 3 8.00000+ 0 1.60000+ 1 3.86434- 4 5.90697- 3 8.00000+ 0 1.80000+ 1 1.10609- 4 5.98933- 3 8.00000+ 0 1.90000+ 1 3.69024- 3 6.03683- 3 8.00000+ 0 2.10000+ 1 2.49209- 4 6.17375- 3 8.00000+ 0 2.20000+ 1 3.01108- 4 6.18237- 3 8.00000+ 0 2.40000+ 1 1.16066- 4 6.34967- 3 8.00000+ 0 2.50000+ 1 1.82305- 4 6.35096- 3 8.00000+ 0 2.70000+ 1 5.87170- 5 6.30240- 3 8.00000+ 0 2.90000+ 1 1.29728- 5 6.32512- 3 8.00000+ 0 3.00000+ 1 4.07614- 4 6.33116- 3 8.00000+ 0 4.10000+ 1 4.09645- 6 6.35515- 3 1.00000+ 1 1.00000+ 1 1.48159- 4 4.48770- 3 1.00000+ 1 1.10000+ 1 4.19829- 2 4.69780- 3 1.00000+ 1 1.30000+ 1 2.36778- 3 5.04690- 3 1.00000+ 1 1.40000+ 1 2.10678- 2 5.09310- 3 1.00000+ 1 1.60000+ 1 1.24948- 4 6.10917- 3 1.00000+ 1 1.80000+ 1 5.59864- 5 6.19153- 3 1.00000+ 1 1.90000+ 1 6.42473- 3 6.23903- 3 1.00000+ 1 2.10000+ 1 4.08967- 4 6.37595- 3 1.00000+ 1 2.20000+ 1 3.05463- 3 6.38457- 3 1.00000+ 1 2.40000+ 1 1.25635- 4 6.55187- 3 1.00000+ 1 2.50000+ 1 2.86072- 4 6.55316- 3 1.00000+ 1 2.70000+ 1 1.91176- 5 6.50460- 3 1.00000+ 1 2.90000+ 1 6.82771- 6 6.52732- 3 1.00000+ 1 3.00000+ 1 7.14157- 4 6.53336- 3 1.00000+ 1 4.10000+ 1 1.36548- 6 6.55735- 3 1.10000+ 1 1.10000+ 1 5.60447- 2 4.90790- 3 1.10000+ 1 1.30000+ 1 5.82081- 2 5.25700- 3 1.10000+ 1 1.40000+ 1 8.35720- 2 5.30320- 3 1.10000+ 1 1.60000+ 1 5.98170- 3 6.31927- 3 1.10000+ 1 1.80000+ 1 8.93692- 3 6.40163- 3 1.10000+ 1 1.90000+ 1 2.06164- 2 6.44913- 3 1.10000+ 1 2.10000+ 1 1.05184- 2 6.58605- 3 1.10000+ 1 2.20000+ 1 1.48282- 2 6.59467- 3 1.10000+ 1 2.40000+ 1 5.44845- 4 6.76197- 3 1.10000+ 1 2.50000+ 1 6.03566- 4 6.76326- 3 1.10000+ 1 2.70000+ 1 9.49058- 4 6.71470- 3 1.10000+ 1 2.90000+ 1 1.11489- 3 6.73742- 3 1.10000+ 1 3.00000+ 1 2.37196- 3 6.74346- 3 1.10000+ 1 4.10000+ 1 6.96421- 5 6.76745- 3 1.30000+ 1 1.30000+ 1 8.37827- 3 5.60610- 3 1.30000+ 1 1.40000+ 1 1.58352- 1 5.65230- 3 1.30000+ 1 1.60000+ 1 6.11743- 4 6.66837- 3 1.30000+ 1 1.80000+ 1 5.10008- 4 6.75073- 3 1.30000+ 1 1.90000+ 1 8.21811- 3 6.79823- 3 1.30000+ 1 2.10000+ 1 2.62452- 3 6.93515- 3 1.30000+ 1 2.20000+ 1 2.08653- 2 6.94377- 3 1.30000+ 1 2.40000+ 1 3.07923- 4 7.11107- 3 1.30000+ 1 2.50000+ 1 9.14876- 4 7.11236- 3 1.30000+ 1 2.70000+ 1 9.62672- 5 7.06380- 3 1.30000+ 1 2.90000+ 1 6.34953- 5 7.08652- 3 1.30000+ 1 3.00000+ 1 9.01234- 4 7.09256- 3 1.30000+ 1 4.10000+ 1 6.82759- 6 7.11655- 3 1.40000+ 1 1.40000+ 1 1.06490- 1 5.69850- 3 1.40000+ 1 1.60000+ 1 8.58929- 4 6.71457- 3 1.40000+ 1 1.80000+ 1 4.12588- 3 6.79693- 3 1.40000+ 1 1.90000+ 1 1.33117- 2 6.84443- 3 1.40000+ 1 2.10000+ 1 2.51025- 2 6.98135- 3 1.40000+ 1 2.20000+ 1 3.18043- 2 6.98997- 3 1.40000+ 1 2.40000+ 1 3.28007- 3 7.15727- 3 1.40000+ 1 2.50000+ 1 2.60555- 3 7.15856- 3 1.40000+ 1 2.70000+ 1 1.36553- 4 7.11000- 3 1.40000+ 1 2.90000+ 1 5.07316- 4 7.13272- 3 1.40000+ 1 3.00000+ 1 1.49730- 3 7.13876- 3 1.40000+ 1 4.10000+ 1 1.02418- 5 7.16275- 3 1.60000+ 1 1.60000+ 1 3.55041- 5 7.73064- 3 1.60000+ 1 1.80000+ 1 2.25306- 5 7.81300- 3 1.60000+ 1 1.90000+ 1 8.83491- 4 7.86050- 3 1.60000+ 1 2.10000+ 1 6.21303- 5 7.99742- 3 1.60000+ 1 2.20000+ 1 7.78321- 5 8.00604- 3 1.60000+ 1 2.40000+ 1 1.63859- 5 8.17334- 3 1.60000+ 1 2.50000+ 1 2.93585- 5 8.17463- 3 1.60000+ 1 2.70000+ 1 1.09243- 5 8.12607- 3 1.60000+ 1 2.90000+ 1 2.73092- 6 8.14879- 3 1.60000+ 1 3.00000+ 1 9.76314- 5 8.15483- 3 1.60000+ 1 4.10000+ 1 6.82760- 7 8.17882- 3 1.80000+ 1 1.80000+ 1 4.77913- 6 7.89536- 3 1.80000+ 1 1.90000+ 1 1.36343- 3 7.94286- 3 1.80000+ 1 2.10000+ 1 8.46574- 5 8.07978- 3 1.80000+ 1 2.20000+ 1 6.24715- 4 8.08840- 3 1.80000+ 1 2.40000+ 1 1.77520- 5 8.25570- 3 1.80000+ 1 2.50000+ 1 3.89163- 5 8.25699- 3 1.80000+ 1 2.70000+ 1 3.41368- 6 8.20843- 3 1.80000+ 1 2.90000+ 1 1.36545- 6 8.23115- 3 1.80000+ 1 3.00000+ 1 1.51571- 4 8.23719- 3 1.90000+ 1 1.90000+ 1 1.80426- 3 7.99036- 3 1.90000+ 1 2.10000+ 1 1.47300- 3 8.12728- 3 1.90000+ 1 2.20000+ 1 2.30308- 3 8.13590- 3 1.90000+ 1 2.40000+ 1 6.28667- 5 8.30320- 3 1.90000+ 1 2.50000+ 1 7.30075- 5 8.30449- 3 1.90000+ 1 2.70000+ 1 1.38576- 4 8.25593- 3 1.90000+ 1 2.90000+ 1 1.68320- 4 8.27865- 3 1.90000+ 1 3.00000+ 1 4.12365- 4 8.28469- 3 1.90000+ 1 4.10000+ 1 1.01398- 5 8.30868- 3 2.10000+ 1 2.10000+ 1 1.98684- 4 8.26420- 3 2.10000+ 1 2.20000+ 1 3.43156- 3 8.27282- 3 2.10000+ 1 2.40000+ 1 3.27726- 5 8.44012- 3 2.10000+ 1 2.50000+ 1 9.42192- 5 8.44141- 3 2.10000+ 1 2.70000+ 1 9.55834- 6 8.39285- 3 2.10000+ 1 2.90000+ 1 1.02415- 5 8.41557- 3 2.10000+ 1 3.00000+ 1 1.63186- 4 8.42161- 3 2.10000+ 1 4.10000+ 1 6.82775- 7 8.44560- 3 2.20000+ 1 2.20000+ 1 2.80473- 3 8.28144- 3 2.20000+ 1 2.40000+ 1 4.03899- 4 8.44874- 3 2.20000+ 1 2.50000+ 1 3.16375- 4 8.45003- 3 2.20000+ 1 2.70000+ 1 1.44533- 5 8.40147- 3 2.20000+ 1 2.90000+ 1 9.07340- 5 8.42419- 3 2.20000+ 1 3.00000+ 1 3.06713- 4 8.43023- 3 2.20000+ 1 4.10000+ 1 8.02974- 7 8.45422- 3 2.40000+ 1 2.40000+ 1 1.17564- 6 8.61604- 3 2.40000+ 1 2.50000+ 1 3.29179- 5 8.61733- 3 2.40000+ 1 2.70000+ 1 4.70235- 6 8.56877- 3 2.40000+ 1 2.90000+ 1 3.52685- 6 8.59149- 3 2.40000+ 1 3.00000+ 1 1.17564- 5 8.59753- 3 2.50000+ 1 2.50000+ 1 7.53620- 6 8.61862- 3 2.50000+ 1 2.70000+ 1 4.52151- 6 8.57006- 3 2.50000+ 1 2.90000+ 1 5.27517- 6 8.59278- 3 2.50000+ 1 3.00000+ 1 9.04316- 6 8.59882- 3 2.70000+ 1 2.70000+ 1 1.38590- 6 8.52150- 3 2.70000+ 1 2.90000+ 1 1.38590- 6 8.54422- 3 2.70000+ 1 3.00000+ 1 3.18763- 5 8.55026- 3 2.90000+ 1 3.00000+ 1 6.03161- 5 8.57298- 3 3.00000+ 1 3.00000+ 1 1.22359- 4 8.57902- 3 3.00000+ 1 4.10000+ 1 6.99157- 6 8.60301- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.74887- 6 2.02200- 4 1.10000+ 1 1.68630- 4 4.12300- 4 1.80000+ 1 6.54488- 4 1.90603- 3 1.90000+ 1 6.92998- 4 1.95353- 3 2.90000+ 1 1.47380- 4 2.24182- 3 3.00000+ 1 1.46650- 4 2.24786- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 5.77964- 2 1.52500- 5 1.00000+ 1 2.20000+ 1 8.85280- 2 2.38700- 5 1.00000+ 1 2.40000+ 1 3.35558- 2 1.91170- 4 1.00000+ 1 2.50000+ 1 4.45580- 2 1.92460- 4 1.00000+ 1 2.70000+ 1 7.85384- 3 1.43900- 4 1.00000+ 1 2.90000+ 1 6.56877- 3 1.66620- 4 1.00000+ 1 3.00000+ 1 9.46831- 3 1.72660- 4 1.00000+ 1 4.10000+ 1 5.60213- 4 1.96650- 4 1.10000+ 1 1.80000+ 1 6.25690- 2 4.09300- 5 1.10000+ 1 1.90000+ 1 7.93246- 2 8.84300- 5 1.10000+ 1 2.10000+ 1 3.30849- 2 2.25350- 4 1.10000+ 1 2.20000+ 1 4.78401- 2 2.33970- 4 1.10000+ 1 2.40000+ 1 1.07061- 1 4.01270- 4 1.10000+ 1 2.50000+ 1 1.33115- 1 4.02560- 4 1.10000+ 1 2.70000+ 1 8.74677- 3 3.54000- 4 1.10000+ 1 2.90000+ 1 7.31821- 3 3.76720- 4 1.10000+ 1 3.00000+ 1 9.15993- 3 3.82760- 4 1.10000+ 1 4.10000+ 1 6.29033- 4 4.06750- 4 1.30000+ 1 1.60000+ 1 2.40741- 2 3.07670- 4 1.30000+ 1 1.80000+ 1 5.33769- 3 3.90030- 4 1.30000+ 1 1.90000+ 1 5.02473- 3 4.37530- 4 1.30000+ 1 2.10000+ 1 7.89950- 3 5.74450- 4 1.30000+ 1 2.20000+ 1 9.88989- 3 5.83070- 4 1.30000+ 1 2.40000+ 1 5.46729- 3 7.50370- 4 1.30000+ 1 2.50000+ 1 5.08184- 3 7.51660- 4 1.30000+ 1 2.70000+ 1 2.55881- 3 7.03100- 4 1.30000+ 1 2.90000+ 1 5.27597- 4 7.25820- 4 1.30000+ 1 3.00000+ 1 4.60952- 4 7.31860- 4 1.30000+ 1 4.10000+ 1 1.78471- 4 7.55850- 4 1.40000+ 1 1.60000+ 1 3.43933- 2 3.53870- 4 1.40000+ 1 1.80000+ 1 1.06516- 3 4.36230- 4 1.40000+ 1 1.90000+ 1 1.02159- 2 4.83730- 4 1.40000+ 1 2.10000+ 1 1.08038- 2 6.20650- 4 1.40000+ 1 2.20000+ 1 1.60278- 2 6.29270- 4 1.40000+ 1 2.40000+ 1 6.24159- 3 7.96570- 4 1.40000+ 1 2.50000+ 1 9.65511- 3 7.97860- 4 1.40000+ 1 2.70000+ 1 3.63102- 3 7.49300- 4 1.40000+ 1 2.90000+ 1 1.08338- 4 7.72020- 4 1.40000+ 1 3.00000+ 1 9.34918- 4 7.78060- 4 1.40000+ 1 4.10000+ 1 2.52801- 4 8.02050- 4 1.60000+ 1 1.60000+ 1 4.03650- 3 1.36994- 3 1.60000+ 1 1.80000+ 1 6.84603- 3 1.45230- 3 1.60000+ 1 1.90000+ 1 1.19272- 2 1.49980- 3 1.60000+ 1 2.10000+ 1 1.30622- 2 1.63672- 3 1.60000+ 1 2.20000+ 1 1.86787- 2 1.64534- 3 1.60000+ 1 2.40000+ 1 5.91046- 3 1.81264- 3 1.60000+ 1 2.50000+ 1 7.40592- 3 1.81393- 3 1.60000+ 1 2.70000+ 1 1.06067- 3 1.76537- 3 1.60000+ 1 2.90000+ 1 8.56125- 4 1.78809- 3 1.60000+ 1 3.00000+ 1 1.40188- 3 1.79413- 3 1.60000+ 1 4.10000+ 1 7.61064- 5 1.81812- 3 1.80000+ 1 1.80000+ 1 3.33743- 4 1.53466- 3 1.80000+ 1 1.90000+ 1 8.77095- 4 1.58216- 3 1.80000+ 1 2.10000+ 1 4.95742- 4 1.71908- 3 1.80000+ 1 2.20000+ 1 2.73937- 4 1.72770- 3 1.80000+ 1 2.40000+ 1 7.99582- 5 1.89500- 3 1.80000+ 1 2.50000+ 1 4.20981- 4 1.89629- 3 1.80000+ 1 2.70000+ 1 7.18571- 4 1.84773- 3 1.80000+ 1 2.90000+ 1 6.60516- 5 1.87045- 3 1.80000+ 1 3.00000+ 1 8.06510- 5 1.87649- 3 1.80000+ 1 4.10000+ 1 5.00617- 5 1.90048- 3 1.90000+ 1 1.90000+ 1 1.12287- 3 1.62966- 3 1.90000+ 1 2.10000+ 1 7.80094- 4 1.76658- 3 1.90000+ 1 2.20000+ 1 1.87688- 3 1.77520- 3 1.90000+ 1 2.40000+ 1 4.51930- 4 1.94250- 3 1.90000+ 1 2.50000+ 1 8.43028- 4 1.94379- 3 1.90000+ 1 2.70000+ 1 1.25738- 3 1.89523- 3 1.90000+ 1 2.90000+ 1 9.31665- 5 1.91795- 3 1.90000+ 1 3.00000+ 1 2.23523- 4 1.92399- 3 1.90000+ 1 4.10000+ 1 8.76057- 5 1.94798- 3 2.10000+ 1 2.10000+ 1 1.49216- 4 1.90350- 3 2.10000+ 1 2.20000+ 1 7.18515- 4 1.91212- 3 2.10000+ 1 2.40000+ 1 4.12162- 4 2.07942- 3 2.10000+ 1 2.50000+ 1 3.03370- 3 2.08071- 3 2.10000+ 1 2.70000+ 1 1.34018- 3 2.03215- 3 2.10000+ 1 2.90000+ 1 4.41113- 5 2.05487- 3 2.10000+ 1 3.00000+ 1 7.30585- 5 2.06091- 3 2.10000+ 1 4.10000+ 1 9.30460- 5 2.08490- 3 2.20000+ 1 2.20000+ 1 3.99412- 4 1.92074- 3 2.20000+ 1 2.40000+ 1 2.98312- 3 2.08804- 3 2.20000+ 1 2.50000+ 1 1.69188- 3 2.08933- 3 2.20000+ 1 2.70000+ 1 1.90339- 3 2.04077- 3 2.20000+ 1 2.90000+ 1 2.60562- 5 2.06349- 3 2.20000+ 1 3.00000+ 1 1.73131- 4 2.06953- 3 2.20000+ 1 4.10000+ 1 1.31993- 4 2.09352- 3 2.40000+ 1 2.40000+ 1 3.55647- 4 2.25534- 3 2.40000+ 1 2.50000+ 1 2.64280- 3 2.25663- 3 2.40000+ 1 2.70000+ 1 5.67354- 4 2.20807- 3 2.40000+ 1 2.90000+ 1 7.30048- 6 2.23079- 3 2.40000+ 1 3.00000+ 1 3.58073- 5 2.23683- 3 2.40000+ 1 4.10000+ 1 3.92829- 5 2.26082- 3 2.50000+ 1 2.50000+ 1 8.48950- 4 2.25792- 3 2.50000+ 1 2.70000+ 1 7.10603- 4 2.20936- 3 2.50000+ 1 2.90000+ 1 4.76295- 5 2.23208- 3 2.50000+ 1 3.00000+ 1 6.70951- 5 2.23812- 3 2.50000+ 1 4.10000+ 1 4.90174- 5 2.26211- 3 2.70000+ 1 2.70000+ 1 1.20166- 4 2.16080- 3 2.70000+ 1 2.90000+ 1 1.64434- 4 2.18352- 3 2.70000+ 1 3.00000+ 1 2.69433- 4 2.18956- 3 2.70000+ 1 4.10000+ 1 1.70761- 5 2.21355- 3 2.90000+ 1 2.90000+ 1 6.83623- 6 2.20624- 3 2.90000+ 1 3.00000+ 1 1.82292- 5 2.21228- 3 2.90000+ 1 4.10000+ 1 1.36715- 5 2.23627- 3 3.00000+ 1 3.00000+ 1 3.15698- 5 2.21832- 3 3.00000+ 1 4.10000+ 1 3.05510- 5 2.24231- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.13822- 4 5.59200- 4 1.60000+ 1 5.15744- 4 1.62147- 3 2.10000+ 1 2.63197- 3 1.88825- 3 2.70000+ 1 9.52937- 5 2.01690- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 8.88010- 3 2.31500- 5 1.10000+ 1 2.20000+ 1 2.16048- 2 3.17700- 5 1.10000+ 1 2.40000+ 1 2.48387- 2 1.99070- 4 1.10000+ 1 2.50000+ 1 2.58654- 2 2.00360- 4 1.10000+ 1 2.70000+ 1 3.66949- 3 1.51800- 4 1.10000+ 1 2.90000+ 1 3.81937- 3 1.74520- 4 1.10000+ 1 3.00000+ 1 3.49244- 3 1.80560- 4 1.10000+ 1 4.10000+ 1 2.53584- 4 2.04550- 4 1.30000+ 1 1.60000+ 1 6.35995- 2 1.05470- 4 1.30000+ 1 1.80000+ 1 6.36634- 2 1.87830- 4 1.30000+ 1 1.90000+ 1 7.64825- 2 2.35330- 4 1.30000+ 1 2.10000+ 1 2.66328- 2 3.72250- 4 1.30000+ 1 2.20000+ 1 3.06322- 2 3.80870- 4 1.30000+ 1 2.40000+ 1 1.19290- 1 5.48170- 4 1.30000+ 1 2.50000+ 1 1.78798- 1 5.49460- 4 1.30000+ 1 2.70000+ 1 1.00288- 2 5.00900- 4 1.30000+ 1 2.90000+ 1 6.91003- 3 5.23620- 4 1.30000+ 1 3.00000+ 1 8.66912- 3 5.29660- 4 1.30000+ 1 4.10000+ 1 7.27607- 4 5.53650- 4 1.40000+ 1 1.60000+ 1 1.06544- 2 1.51670- 4 1.40000+ 1 1.80000+ 1 7.28347- 2 2.34030- 4 1.40000+ 1 1.90000+ 1 6.78036- 3 2.81530- 4 1.40000+ 1 2.10000+ 1 1.14198- 3 4.18450- 4 1.40000+ 1 2.20000+ 1 3.56944- 3 4.27070- 4 1.40000+ 1 2.40000+ 1 3.85286- 3 5.94370- 4 1.40000+ 1 2.50000+ 1 2.98461- 3 5.95660- 4 1.40000+ 1 2.70000+ 1 1.12036- 3 5.47100- 4 1.40000+ 1 2.90000+ 1 6.40398- 3 5.69820- 4 1.40000+ 1 3.00000+ 1 7.03412- 4 5.75860- 4 1.40000+ 1 4.10000+ 1 7.83672- 5 5.99850- 4 1.60000+ 1 1.60000+ 1 8.95972- 4 1.16774- 3 1.60000+ 1 1.80000+ 1 1.24737- 2 1.25010- 3 1.60000+ 1 1.90000+ 1 1.90866- 3 1.29760- 3 1.60000+ 1 2.10000+ 1 4.00370- 4 1.43452- 3 1.60000+ 1 2.20000+ 1 1.43783- 3 1.44314- 3 1.60000+ 1 2.40000+ 1 5.34716- 5 1.61044- 3 1.60000+ 1 2.50000+ 1 6.89261- 4 1.61173- 3 1.60000+ 1 2.70000+ 1 2.22359- 4 1.56317- 3 1.60000+ 1 2.90000+ 1 1.05704- 3 1.58589- 3 1.60000+ 1 3.00000+ 1 2.03448- 4 1.59193- 3 1.60000+ 1 4.10000+ 1 1.56500- 5 1.61592- 3 1.80000+ 1 1.80000+ 1 9.28699- 3 1.33246- 3 1.80000+ 1 1.90000+ 1 2.74365- 2 1.37996- 3 1.80000+ 1 2.10000+ 1 2.60112- 2 1.51688- 3 1.80000+ 1 2.20000+ 1 4.23416- 2 1.52550- 3 1.80000+ 1 2.40000+ 1 9.74470- 3 1.69280- 3 1.80000+ 1 2.50000+ 1 1.65855- 2 1.69409- 3 1.80000+ 1 2.70000+ 1 1.95024- 3 1.64553- 3 1.80000+ 1 2.90000+ 1 1.97491- 3 1.66825- 3 1.80000+ 1 3.00000+ 1 3.20184- 3 1.67429- 3 1.80000+ 1 4.10000+ 1 1.42177- 4 1.69828- 3 1.90000+ 1 1.90000+ 1 7.66682- 4 1.42746- 3 1.90000+ 1 2.10000+ 1 2.09178- 3 1.56438- 3 1.90000+ 1 2.20000+ 1 1.68590- 3 1.57300- 3 1.90000+ 1 2.40000+ 1 7.09954- 3 1.74030- 3 1.90000+ 1 2.50000+ 1 1.98312- 3 1.74159- 3 1.90000+ 1 2.70000+ 1 2.01650- 4 1.69303- 3 1.90000+ 1 2.90000+ 1 2.39569- 3 1.71575- 3 1.90000+ 1 3.00000+ 1 1.52547- 4 1.72179- 3 1.90000+ 1 4.10000+ 1 1.37490- 5 1.74578- 3 2.10000+ 1 2.10000+ 1 8.88746- 4 1.70130- 3 2.10000+ 1 2.20000+ 1 2.57049- 3 1.70992- 3 2.10000+ 1 2.40000+ 1 8.84754- 4 1.87722- 3 2.10000+ 1 2.50000+ 1 1.63361- 3 1.87851- 3 2.10000+ 1 2.70000+ 1 5.86282- 5 1.82995- 3 2.10000+ 1 2.90000+ 1 2.26256- 3 1.85267- 3 2.10000+ 1 3.00000+ 1 2.15861- 4 1.85871- 3 2.10000+ 1 4.10000+ 1 3.99739- 6 1.88270- 3 2.20000+ 1 2.20000+ 1 6.02953- 4 1.71854- 3 2.20000+ 1 2.40000+ 1 2.93434- 3 1.88584- 3 2.20000+ 1 2.50000+ 1 6.20915- 4 1.88713- 3 2.20000+ 1 2.70000+ 1 1.83882- 4 1.83857- 3 2.20000+ 1 2.90000+ 1 3.73576- 3 1.86129- 3 2.20000+ 1 3.00000+ 1 1.58561- 4 1.86733- 3 2.20000+ 1 4.10000+ 1 1.33246- 5 1.89132- 3 2.40000+ 1 2.40000+ 1 1.58101- 3 2.05314- 3 2.40000+ 1 2.50000+ 1 1.03559- 2 2.05443- 3 2.40000+ 1 2.70000+ 1 2.66495- 6 2.00587- 3 2.40000+ 1 2.90000+ 1 7.82835- 4 2.02859- 3 2.40000+ 1 3.00000+ 1 7.92182- 4 2.03463- 3 2.50000+ 1 2.50000+ 1 5.31647- 4 2.05572- 3 2.50000+ 1 2.70000+ 1 9.46063- 5 2.00716- 3 2.50000+ 1 2.90000+ 1 1.32780- 3 2.02988- 3 2.50000+ 1 3.00000+ 1 1.99873- 4 2.03592- 3 2.50000+ 1 4.10000+ 1 6.66257- 6 2.05991- 3 2.70000+ 1 2.70000+ 1 1.85789- 5 1.95860- 3 2.70000+ 1 2.90000+ 1 2.26483- 4 1.98132- 3 2.70000+ 1 3.00000+ 1 2.91952- 5 1.98736- 3 2.70000+ 1 4.10000+ 1 2.65414- 6 2.01135- 3 2.90000+ 1 2.90000+ 1 2.41624- 4 2.00404- 3 2.90000+ 1 3.00000+ 1 6.73114- 4 2.01008- 3 2.90000+ 1 4.10000+ 1 2.98108- 5 2.03407- 3 3.00000+ 1 3.00000+ 1 6.17168- 5 2.01612- 3 3.00000+ 1 4.10000+ 1 1.02861- 5 2.04011- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74385- 5 3.49100- 4 1.40000+ 1 2.37056- 4 3.95300- 4 1.60000+ 1 7.99226- 4 1.41137- 3 2.10000+ 1 3.79976- 4 1.67815- 3 2.20000+ 1 3.02669- 3 1.68677- 3 2.70000+ 1 1.44332- 4 1.80680- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 5.48092- 2 2.52300- 5 1.30000+ 1 2.10000+ 1 9.71560- 3 1.62150- 4 1.30000+ 1 2.20000+ 1 9.10825- 3 1.70770- 4 1.30000+ 1 2.40000+ 1 1.24473- 2 3.38070- 4 1.30000+ 1 2.50000+ 1 1.80203- 2 3.39360- 4 1.30000+ 1 2.70000+ 1 1.90910- 3 2.90800- 4 1.30000+ 1 2.90000+ 1 1.33813- 3 3.13520- 4 1.30000+ 1 3.00000+ 1 5.02512- 3 3.19560- 4 1.30000+ 1 4.10000+ 1 1.35486- 4 3.43550- 4 1.40000+ 1 1.80000+ 1 7.79756- 2 2.39300- 5 1.40000+ 1 1.90000+ 1 1.23935- 1 7.14300- 5 1.40000+ 1 2.10000+ 1 4.33860- 2 2.08350- 4 1.40000+ 1 2.20000+ 1 6.22695- 2 2.16970- 4 1.40000+ 1 2.40000+ 1 1.22689- 1 3.84270- 4 1.40000+ 1 2.50000+ 1 1.45800- 1 3.85560- 4 1.40000+ 1 2.70000+ 1 1.11684- 2 3.37000- 4 1.40000+ 1 2.90000+ 1 9.13888- 3 3.59720- 4 1.40000+ 1 3.00000+ 1 1.29687- 2 3.65760- 4 1.40000+ 1 4.10000+ 1 8.00743- 4 3.89750- 4 1.60000+ 1 1.60000+ 1 6.58289- 4 9.57640- 4 1.60000+ 1 1.80000+ 1 1.02969- 3 1.04000- 3 1.60000+ 1 1.90000+ 1 1.58961- 2 1.08750- 3 1.60000+ 1 2.10000+ 1 9.40679- 4 1.22442- 3 1.60000+ 1 2.20000+ 1 1.03854- 3 1.23304- 3 1.60000+ 1 2.40000+ 1 9.81162- 4 1.40034- 3 1.60000+ 1 2.50000+ 1 1.52102- 3 1.40163- 3 1.60000+ 1 2.70000+ 1 1.62547- 4 1.35307- 3 1.60000+ 1 2.90000+ 1 1.04441- 4 1.37579- 3 1.60000+ 1 3.00000+ 1 1.29816- 3 1.38183- 3 1.60000+ 1 4.10000+ 1 1.10323- 5 1.40582- 3 1.80000+ 1 1.80000+ 1 1.12512- 4 1.12236- 3 1.80000+ 1 1.90000+ 1 1.88976- 2 1.16986- 3 1.80000+ 1 2.10000+ 1 4.40484- 4 1.30678- 3 1.80000+ 1 2.20000+ 1 3.53389- 3 1.31540- 3 1.80000+ 1 2.40000+ 1 1.11922- 3 1.48270- 3 1.80000+ 1 2.50000+ 1 6.44055- 3 1.48399- 3 1.80000+ 1 2.70000+ 1 1.13244- 4 1.43543- 3 1.80000+ 1 2.90000+ 1 2.13258- 5 1.45815- 3 1.80000+ 1 3.00000+ 1 1.56267- 3 1.46419- 3 1.80000+ 1 4.10000+ 1 8.08918- 6 1.48818- 3 1.90000+ 1 1.90000+ 1 2.62615- 2 1.21736- 3 1.90000+ 1 2.10000+ 1 3.64448- 2 1.35428- 3 1.90000+ 1 2.20000+ 1 4.84044- 2 1.36290- 3 1.90000+ 1 2.40000+ 1 1.94924- 2 1.53020- 3 1.90000+ 1 2.50000+ 1 2.20514- 2 1.53149- 3 1.90000+ 1 2.70000+ 1 2.44561- 3 1.48293- 3 1.90000+ 1 2.90000+ 1 2.32272- 3 1.50565- 3 1.90000+ 1 3.00000+ 1 5.21698- 3 1.51169- 3 1.90000+ 1 4.10000+ 1 1.77994- 4 1.53568- 3 2.10000+ 1 2.10000+ 1 2.36107- 4 1.49120- 3 2.10000+ 1 2.20000+ 1 4.86180- 3 1.49982- 3 2.10000+ 1 2.40000+ 1 4.66318- 4 1.66712- 3 2.10000+ 1 2.50000+ 1 5.67881- 3 1.66841- 3 2.10000+ 1 2.70000+ 1 9.48857- 5 1.61985- 3 2.10000+ 1 2.90000+ 1 3.08929- 5 1.64257- 3 2.10000+ 1 3.00000+ 1 2.98537- 3 1.64861- 3 2.10000+ 1 4.10000+ 1 6.61992- 6 1.67260- 3 2.20000+ 1 2.20000+ 1 2.29923- 3 1.50844- 3 2.20000+ 1 2.40000+ 1 4.58691- 3 1.67574- 3 2.20000+ 1 2.50000+ 1 3.93016- 3 1.67703- 3 2.20000+ 1 2.70000+ 1 1.06650- 4 1.62847- 3 2.20000+ 1 2.90000+ 1 2.72141- 4 1.65119- 3 2.20000+ 1 3.00000+ 1 3.92635- 3 1.65723- 3 2.20000+ 1 4.10000+ 1 7.35512- 6 1.68122- 3 2.40000+ 1 2.40000+ 1 4.61905- 4 1.84304- 3 2.40000+ 1 2.50000+ 1 1.27134- 2 1.84433- 3 2.40000+ 1 2.70000+ 1 9.56185- 5 1.79577- 3 2.40000+ 1 2.90000+ 1 1.16211- 4 1.81849- 3 2.40000+ 1 3.00000+ 1 1.52401- 3 1.82453- 3 2.40000+ 1 4.10000+ 1 6.61981- 6 1.84852- 3 2.50000+ 1 2.50000+ 1 4.84168- 3 1.84562- 3 2.50000+ 1 2.70000+ 1 1.19885- 4 1.79706- 3 2.50000+ 1 2.90000+ 1 6.73707- 4 1.81978- 3 2.50000+ 1 3.00000+ 1 1.77254- 3 1.82582- 3 2.50000+ 1 4.10000+ 1 8.09054- 6 1.84981- 3 2.70000+ 1 2.70000+ 1 1.72012- 5 1.74850- 3 2.70000+ 1 2.90000+ 1 1.96585- 5 1.77122- 3 2.70000+ 1 3.00000+ 1 3.34198- 4 1.77726- 3 2.70000+ 1 4.10000+ 1 2.45730- 6 1.80125- 3 2.90000+ 1 2.90000+ 1 1.51615- 6 1.79394- 3 2.90000+ 1 3.00000+ 1 3.97232- 4 1.79998- 3 2.90000+ 1 4.10000+ 1 1.51615- 6 1.82397- 3 3.00000+ 1 3.00000+ 1 1.36870- 3 1.80602- 3 3.00000+ 1 4.10000+ 1 8.02760- 5 1.83001- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.74879- 3 1.14463- 3 1.90000+ 1 3.16239- 4 1.19213- 3 2.40000+ 1 9.27847- 3 1.50497- 3 2.90000+ 1 5.68378- 4 1.48042- 3 3.00000+ 1 6.50458- 5 1.48646- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.10680- 1 3.51700- 5 1.40000+ 1 2.50000+ 1 1.52028- 2 3.64600- 5 1.40000+ 1 2.90000+ 1 5.91638- 4 1.06200- 5 1.40000+ 1 3.00000+ 1 1.59560- 3 1.66600- 5 1.40000+ 1 4.10000+ 1 1.09158- 4 4.06500- 5 1.60000+ 1 1.60000+ 1 3.83023- 5 6.08540- 4 1.60000+ 1 1.80000+ 1 2.14301- 3 6.90900- 4 1.60000+ 1 1.90000+ 1 1.47459- 3 7.38400- 4 1.60000+ 1 2.10000+ 1 5.20153- 2 8.75320- 4 1.60000+ 1 2.20000+ 1 6.24512- 3 8.83940- 4 1.60000+ 1 2.40000+ 1 1.34918- 2 1.05124- 3 1.60000+ 1 2.50000+ 1 4.30128- 3 1.05253- 3 1.60000+ 1 2.70000+ 1 2.29815- 5 1.00397- 3 1.60000+ 1 2.90000+ 1 2.12574- 4 1.02669- 3 1.60000+ 1 3.00000+ 1 1.16824- 4 1.03273- 3 1.60000+ 1 4.10000+ 1 1.91511- 6 1.05672- 3 1.80000+ 1 1.80000+ 1 1.22176- 3 7.73260- 4 1.80000+ 1 1.90000+ 1 7.77669- 3 8.20760- 4 1.80000+ 1 2.10000+ 1 4.51079- 2 9.57680- 4 1.80000+ 1 2.20000+ 1 3.69034- 3 9.66300- 4 1.80000+ 1 2.40000+ 1 8.41296- 3 1.13360- 3 1.80000+ 1 2.50000+ 1 4.29160- 3 1.13489- 3 1.80000+ 1 2.70000+ 1 2.27887- 4 1.08633- 3 1.80000+ 1 2.90000+ 1 2.45126- 4 1.10905- 3 1.80000+ 1 3.00000+ 1 6.95165- 4 1.11509- 3 1.80000+ 1 4.10000+ 1 1.53208- 5 1.13908- 3 1.90000+ 1 1.90000+ 1 2.80936- 3 8.68260- 4 1.90000+ 1 2.10000+ 1 9.50607- 2 1.00518- 3 1.90000+ 1 2.20000+ 1 3.56394- 3 1.01380- 3 1.90000+ 1 2.40000+ 1 4.74173- 3 1.18110- 3 1.90000+ 1 2.50000+ 1 2.45906- 3 1.18239- 3 1.90000+ 1 2.70000+ 1 1.74285- 4 1.13383- 3 1.90000+ 1 2.90000+ 1 6.66431- 4 1.15655- 3 1.90000+ 1 3.00000+ 1 4.82593- 4 1.16259- 3 1.90000+ 1 4.10000+ 1 1.14901- 5 1.18658- 3 2.10000+ 1 2.10000+ 1 8.06993- 2 1.14210- 3 2.10000+ 1 2.20000+ 1 1.62857- 1 1.15072- 3 2.10000+ 1 2.40000+ 1 5.27944- 2 1.31802- 3 2.10000+ 1 2.50000+ 1 6.59178- 2 1.31931- 3 2.10000+ 1 2.70000+ 1 7.43228- 3 1.27075- 3 2.10000+ 1 2.90000+ 1 5.57291- 3 1.29347- 3 2.10000+ 1 3.00000+ 1 1.08169- 2 1.29951- 3 2.10000+ 1 4.10000+ 1 5.38139- 4 1.32350- 3 2.20000+ 1 2.20000+ 1 2.65621- 3 1.15934- 3 2.20000+ 1 2.40000+ 1 5.49767- 2 1.32664- 3 2.20000+ 1 2.50000+ 1 3.05069- 3 1.32793- 3 2.20000+ 1 2.70000+ 1 5.15149- 4 1.27937- 3 2.20000+ 1 2.90000+ 1 3.06398- 4 1.30209- 3 2.20000+ 1 3.00000+ 1 3.35133- 4 1.30813- 3 2.20000+ 1 4.10000+ 1 3.44700- 5 1.33212- 3 2.40000+ 1 2.40000+ 1 3.53867- 2 1.49394- 3 2.40000+ 1 2.50000+ 1 1.03903- 1 1.49523- 3 2.40000+ 1 2.70000+ 1 1.97247- 3 1.44667- 3 2.40000+ 1 2.90000+ 1 8.61799- 4 1.46939- 3 2.40000+ 1 3.00000+ 1 5.30479- 4 1.47543- 3 2.40000+ 1 4.10000+ 1 1.45547- 4 1.49942- 3 2.50000+ 1 2.50000+ 1 2.59496- 3 1.49652- 3 2.50000+ 1 2.70000+ 1 5.46089- 4 1.44796- 3 2.50000+ 1 2.90000+ 1 3.12050- 4 1.47068- 3 2.50000+ 1 3.00000+ 1 3.05186- 4 1.47672- 3 2.50000+ 1 4.10000+ 1 3.90064- 5 1.50071- 3 2.70000+ 1 2.70000+ 1 1.78308- 5 1.39940- 3 2.70000+ 1 2.90000+ 1 2.31801- 4 1.42212- 3 2.70000+ 1 3.00000+ 1 1.42647- 4 1.42816- 3 2.90000+ 1 2.90000+ 1 1.19631- 4 1.44484- 3 2.90000+ 1 3.00000+ 1 5.63995- 4 1.45088- 3 2.90000+ 1 4.10000+ 1 1.70911- 5 1.47487- 3 3.00000+ 1 3.00000+ 1 8.54578- 4 1.45692- 3 3.00000+ 1 4.10000+ 1 7.76886- 5 1.48091- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.54729- 3 1.14593- 3 2.40000+ 1 5.29638- 4 1.45877- 3 2.50000+ 1 1.02470- 2 1.46006- 3 3.00000+ 1 6.59117- 4 1.44026- 3 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.27397- 6 5.62340- 4 1.60000+ 1 1.80000+ 1 5.40659- 4 6.44700- 4 1.60000+ 1 1.90000+ 1 3.76748- 3 6.92200- 4 1.60000+ 1 2.10000+ 1 5.57975- 3 8.29120- 4 1.60000+ 1 2.20000+ 1 6.20939- 2 8.37740- 4 1.60000+ 1 2.40000+ 1 4.73775- 3 1.00504- 3 1.60000+ 1 2.50000+ 1 1.58653- 2 1.00633- 3 1.60000+ 1 2.70000+ 1 1.49592- 5 9.57770- 4 1.60000+ 1 2.90000+ 1 2.77805- 5 9.80490- 4 1.60000+ 1 3.00000+ 1 3.20549- 4 9.86530- 4 1.60000+ 1 4.10000+ 1 2.13703- 6 1.01052- 3 1.80000+ 1 1.80000+ 1 8.54780- 6 7.27060- 4 1.80000+ 1 1.90000+ 1 9.30250- 3 7.74560- 4 1.80000+ 1 2.10000+ 1 5.21433- 4 9.11480- 4 1.80000+ 1 2.20000+ 1 6.26824- 2 9.20100- 4 1.80000+ 1 2.40000+ 1 2.17118- 3 1.08740- 3 1.80000+ 1 2.50000+ 1 7.84920- 3 1.08869- 3 1.80000+ 1 2.70000+ 1 5.55625- 5 1.04013- 3 1.80000+ 1 2.90000+ 1 4.27401- 6 1.06285- 3 1.80000+ 1 3.00000+ 1 7.84281- 4 1.06889- 3 1.80000+ 1 4.10000+ 1 4.27401- 6 1.09288- 3 1.90000+ 1 1.90000+ 1 6.98609- 3 8.22060- 4 1.90000+ 1 2.10000+ 1 5.87906- 3 9.58980- 4 1.90000+ 1 2.20000+ 1 9.87971- 2 9.67600- 4 1.90000+ 1 2.40000+ 1 3.06029- 3 1.13490- 3 1.90000+ 1 2.50000+ 1 6.86004- 3 1.13619- 3 1.90000+ 1 2.70000+ 1 4.50926- 4 1.08763- 3 1.90000+ 1 2.90000+ 1 7.77883- 4 1.11035- 3 1.90000+ 1 3.00000+ 1 1.21601- 3 1.11639- 3 1.90000+ 1 4.10000+ 1 3.20560- 5 1.14038- 3 2.10000+ 1 2.10000+ 1 1.25868- 3 1.09590- 3 2.10000+ 1 2.20000+ 1 1.29361- 1 1.10452- 3 2.10000+ 1 2.40000+ 1 2.82294- 3 1.27182- 3 2.10000+ 1 2.50000+ 1 3.74120- 2 1.27311- 3 2.10000+ 1 2.70000+ 1 4.44490- 4 1.22455- 3 2.10000+ 1 2.90000+ 1 6.83829- 5 1.24727- 3 2.10000+ 1 3.00000+ 1 5.02183- 4 1.25331- 3 2.10000+ 1 4.10000+ 1 2.99170- 5 1.27730- 3 2.20000+ 1 2.20000+ 1 1.46799- 1 1.11314- 3 2.20000+ 1 2.40000+ 1 6.45360- 2 1.28044- 3 2.20000+ 1 2.50000+ 1 9.77221- 2 1.28173- 3 2.20000+ 1 2.70000+ 1 8.59734- 3 1.23317- 3 2.20000+ 1 2.90000+ 1 7.46249- 3 1.25589- 3 2.20000+ 1 3.00000+ 1 1.13216- 2 1.26193- 3 2.20000+ 1 4.10000+ 1 6.19741- 4 1.28592- 3 2.40000+ 1 2.40000+ 1 3.09008- 3 1.44774- 3 2.40000+ 1 2.50000+ 1 9.97960- 2 1.44903- 3 2.40000+ 1 2.70000+ 1 5.32108- 4 1.40047- 3 2.40000+ 1 2.90000+ 1 2.39347- 4 1.42319- 3 2.40000+ 1 3.00000+ 1 2.73529- 4 1.42923- 3 2.40000+ 1 4.10000+ 1 3.84646- 5 1.45322- 3 2.50000+ 1 2.50000+ 1 6.66490- 2 1.45032- 3 2.50000+ 1 2.70000+ 1 2.24591- 3 1.40176- 3 2.50000+ 1 2.90000+ 1 9.25304- 4 1.42448- 3 2.50000+ 1 3.00000+ 1 7.13766- 4 1.43052- 3 2.50000+ 1 4.10000+ 1 1.66687- 4 1.45451- 3 2.70000+ 1 2.70000+ 1 2.90819- 5 1.35320- 3 2.70000+ 1 2.90000+ 1 2.90819- 5 1.37592- 3 2.70000+ 1 3.00000+ 1 5.52534- 4 1.38196- 3 2.90000+ 1 3.00000+ 1 5.37388- 4 1.40468- 3 3.00000+ 1 3.00000+ 1 8.10852- 4 1.41072- 3 3.00000+ 1 4.10000+ 1 3.24344- 5 1.43471- 3 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.74954- 5 8.23600- 5 1.90000+ 1 1.41776- 4 1.29860- 4 2.90000+ 1 6.93774- 5 4.18150- 4 3.00000+ 1 4.53800- 5 4.24190- 4 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.92929- 2 7.13300- 5 1.80000+ 1 2.50000+ 1 4.14003- 2 7.26200- 5 1.80000+ 1 2.70000+ 1 3.71107- 2 2.40600- 5 1.80000+ 1 2.90000+ 1 2.97146- 2 4.67800- 5 1.80000+ 1 3.00000+ 1 5.61720- 2 5.28200- 5 1.80000+ 1 4.10000+ 1 2.58406- 3 7.68100- 5 1.90000+ 1 2.40000+ 1 1.40873- 1 1.18830- 4 1.90000+ 1 2.50000+ 1 1.70630- 1 1.20120- 4 1.90000+ 1 2.70000+ 1 4.45742- 2 7.15600- 5 1.90000+ 1 2.90000+ 1 4.55002- 2 9.42800- 5 1.90000+ 1 3.00000+ 1 5.48789- 2 1.00320- 4 1.90000+ 1 4.10000+ 1 3.14439- 3 1.24310- 4 2.10000+ 1 2.10000+ 1 3.78905- 3 7.98300- 5 2.10000+ 1 2.20000+ 1 1.53905- 2 8.84500- 5 2.10000+ 1 2.40000+ 1 4.87838- 3 2.55750- 4 2.10000+ 1 2.50000+ 1 1.13289- 2 2.57040- 4 2.10000+ 1 2.70000+ 1 1.51538- 2 2.08480- 4 2.10000+ 1 2.90000+ 1 3.18488- 3 2.31200- 4 2.10000+ 1 3.00000+ 1 8.14123- 3 2.37240- 4 2.10000+ 1 4.10000+ 1 9.03719- 4 2.61230- 4 2.20000+ 1 2.20000+ 1 8.84259- 3 9.70700- 5 2.20000+ 1 2.40000+ 1 1.29928- 2 2.64370- 4 2.20000+ 1 2.50000+ 1 1.14448- 2 2.65660- 4 2.20000+ 1 2.70000+ 1 2.18173- 2 2.17100- 4 2.20000+ 1 2.90000+ 1 8.22213- 3 2.39820- 4 2.20000+ 1 3.00000+ 1 7.74007- 3 2.45860- 4 2.20000+ 1 4.10000+ 1 1.29695- 3 2.69850- 4 2.40000+ 1 2.40000+ 1 4.70529- 3 4.31670- 4 2.40000+ 1 2.50000+ 1 1.10462- 2 4.32960- 4 2.40000+ 1 2.70000+ 1 1.26692- 2 3.84400- 4 2.40000+ 1 2.90000+ 1 1.50227- 3 4.07120- 4 2.40000+ 1 3.00000+ 1 3.88920- 3 4.13160- 4 2.40000+ 1 4.10000+ 1 6.96609- 4 4.37150- 4 2.50000+ 1 2.50000+ 1 7.82511- 3 4.34250- 4 2.50000+ 1 2.70000+ 1 1.63015- 2 3.85690- 4 2.50000+ 1 2.90000+ 1 9.27630- 4 4.08410- 4 2.50000+ 1 3.00000+ 1 4.83638- 3 4.14450- 4 2.50000+ 1 4.10000+ 1 8.95104- 4 4.38440- 4 2.70000+ 1 2.70000+ 1 2.23274- 2 3.37130- 4 2.70000+ 1 2.90000+ 1 2.70624- 2 3.59850- 4 2.70000+ 1 3.00000+ 1 4.48254- 2 3.65890- 4 2.70000+ 1 4.10000+ 1 2.87897- 3 3.89880- 4 2.90000+ 1 2.90000+ 1 4.35919- 3 3.82570- 4 2.90000+ 1 3.00000+ 1 1.80694- 2 3.88610- 4 2.90000+ 1 4.10000+ 1 3.20103- 3 4.12600- 4 3.00000+ 1 3.00000+ 1 1.49146- 2 3.94650- 4 3.00000+ 1 4.10000+ 1 5.79090- 3 4.18640- 4 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 4.74995- 4 1.84420- 4 2.70000+ 1 1.08245- 4 3.13070- 4 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 6.37830- 2 3.64700- 5 1.90000+ 1 2.50000+ 1 4.87482- 2 3.77600- 5 1.90000+ 1 2.90000+ 1 9.80311- 3 1.19200- 5 1.90000+ 1 3.00000+ 1 9.23052- 3 1.79600- 5 1.90000+ 1 4.10000+ 1 9.75002- 4 4.19500- 5 2.10000+ 1 2.10000+ 1 2.13369- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.45170- 1 6.09000- 6 2.10000+ 1 2.40000+ 1 9.96608- 2 1.73390- 4 2.10000+ 1 2.50000+ 1 2.07595- 1 1.74680- 4 2.10000+ 1 2.70000+ 1 2.27056- 2 1.26120- 4 2.10000+ 1 2.90000+ 1 1.59205- 2 1.48840- 4 2.10000+ 1 3.00000+ 1 2.65647- 2 1.54880- 4 2.10000+ 1 4.10000+ 1 1.64621- 3 1.78870- 4 2.20000+ 1 2.20000+ 1 1.52411- 2 1.47100- 5 2.20000+ 1 2.40000+ 1 3.51025- 2 1.82010- 4 2.20000+ 1 2.50000+ 1 9.19197- 3 1.83300- 4 2.20000+ 1 2.70000+ 1 5.10380- 3 1.34740- 4 2.20000+ 1 2.90000+ 1 2.08962- 2 1.57460- 4 2.20000+ 1 3.00000+ 1 4.26366- 3 1.63500- 4 2.20000+ 1 4.10000+ 1 3.22605- 4 1.87490- 4 2.40000+ 1 2.40000+ 1 2.59296- 3 3.49310- 4 2.40000+ 1 2.50000+ 1 1.80255- 2 3.50600- 4 2.40000+ 1 2.70000+ 1 3.20673- 3 3.02040- 4 2.40000+ 1 2.90000+ 1 1.22703- 2 3.24760- 4 2.40000+ 1 3.00000+ 1 3.52173- 3 3.30800- 4 2.40000+ 1 4.10000+ 1 2.27660- 4 3.54790- 4 2.50000+ 1 2.50000+ 1 9.77911- 4 3.51890- 4 2.50000+ 1 2.70000+ 1 2.35502- 3 3.03330- 4 2.50000+ 1 2.90000+ 1 2.71699- 2 3.26050- 4 2.50000+ 1 3.00000+ 1 1.86030- 3 3.32090- 4 2.50000+ 1 4.10000+ 1 1.42842- 4 3.56080- 4 2.70000+ 1 2.70000+ 1 4.17213- 4 2.54770- 4 2.70000+ 1 2.90000+ 1 6.34300- 3 2.77490- 4 2.70000+ 1 3.00000+ 1 1.03070- 3 2.83530- 4 2.70000+ 1 4.10000+ 1 5.22767- 5 3.07520- 4 2.90000+ 1 2.90000+ 1 1.37940- 2 3.00210- 4 2.90000+ 1 3.00000+ 1 3.76612- 2 3.06250- 4 2.90000+ 1 4.10000+ 1 1.81078- 3 3.30240- 4 3.00000+ 1 3.00000+ 1 2.31340- 3 3.12290- 4 3.00000+ 1 4.10000+ 1 3.82496- 4 3.36280- 4 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.21114- 5 1.36920- 4 2.20000+ 1 1.33762- 4 1.45540- 4 2.70000+ 1 6.54529- 5 2.65570- 4 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.95754- 2 1.25890- 4 2.10000+ 1 2.50000+ 1 5.60568- 2 1.27180- 4 2.10000+ 1 2.70000+ 1 1.20422- 2 7.86200- 5 2.10000+ 1 2.90000+ 1 8.94074- 3 1.01340- 4 2.10000+ 1 3.00000+ 1 3.27350- 2 1.07380- 4 2.10000+ 1 4.10000+ 1 8.39693- 4 1.31370- 4 2.20000+ 1 2.40000+ 1 2.58148- 1 1.34510- 4 2.20000+ 1 2.50000+ 1 2.68802- 1 1.35800- 4 2.20000+ 1 2.70000+ 1 6.22604- 2 8.72400- 5 2.20000+ 1 2.90000+ 1 6.02182- 2 1.09960- 4 2.20000+ 1 3.00000+ 1 8.47037- 2 1.16000- 4 2.20000+ 1 4.10000+ 1 4.49573- 3 1.39990- 4 2.40000+ 1 2.40000+ 1 7.26963- 4 3.01810- 4 2.40000+ 1 2.50000+ 1 2.04980- 2 3.03100- 4 2.40000+ 1 2.70000+ 1 4.25541- 3 2.54540- 4 2.40000+ 1 2.90000+ 1 1.80819- 3 2.77260- 4 2.40000+ 1 3.00000+ 1 2.57719- 2 2.83300- 4 2.40000+ 1 4.10000+ 1 2.37391- 4 3.07290- 4 2.50000+ 1 2.50000+ 1 8.28774- 3 3.04390- 4 2.50000+ 1 2.70000+ 1 8.91926- 3 2.55830- 4 2.50000+ 1 2.90000+ 1 7.10909- 3 2.78550- 4 2.50000+ 1 3.00000+ 1 3.09624- 2 2.84590- 4 2.50000+ 1 4.10000+ 1 5.48416- 4 3.08580- 4 2.70000+ 1 2.70000+ 1 1.44240- 5 2.07270- 4 2.70000+ 1 2.90000+ 1 3.02904- 4 2.29990- 4 2.70000+ 1 3.00000+ 1 5.74966- 3 2.36030- 4 2.70000+ 1 4.10000+ 1 2.40398- 6 2.60020- 4 2.90000+ 1 2.90000+ 1 2.50573- 5 2.52710- 4 2.90000+ 1 3.00000+ 1 3.66721- 3 2.58750- 4 2.90000+ 1 4.10000+ 1 1.25290- 5 2.82740- 4 3.00000+ 1 3.00000+ 1 1.13818- 2 2.64790- 4 3.00000+ 1 4.10000+ 1 6.89144- 4 2.88780- 4 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.22563- 5 1.75920- 4 2.90000+ 1 1.39552- 5 1.51370- 4 3.00000+ 1 2.11915- 6 1.57410- 4 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 3.80270- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 4.19682- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 1.03378- 4 3.07000- 6 2.40000+ 1 2.40000+ 1 1.70859- 1 1.64890- 4 2.40000+ 1 2.50000+ 1 5.34958- 1 1.66180- 4 2.40000+ 1 2.70000+ 1 6.01685- 2 1.17620- 4 2.40000+ 1 2.90000+ 1 4.86072- 2 1.40340- 4 2.40000+ 1 3.00000+ 1 7.29834- 2 1.46380- 4 2.40000+ 1 4.10000+ 1 4.41901- 3 1.70370- 4 2.50000+ 1 2.50000+ 1 5.58599- 3 1.67470- 4 2.50000+ 1 2.70000+ 1 5.86128- 3 1.18910- 4 2.50000+ 1 2.90000+ 1 1.48215- 2 1.41630- 4 2.50000+ 1 3.00000+ 1 4.84218- 3 1.47670- 4 2.50000+ 1 4.10000+ 1 3.64198- 4 1.71660- 4 2.70000+ 1 2.70000+ 1 2.58994- 3 7.03500- 5 2.70000+ 1 2.90000+ 1 2.54689- 3 9.30700- 5 2.70000+ 1 3.00000+ 1 2.90599- 3 9.91100- 5 2.70000+ 1 4.10000+ 1 2.13320- 4 1.23100- 4 2.90000+ 1 2.90000+ 1 4.33484- 3 1.15790- 4 2.90000+ 1 3.00000+ 1 1.28306- 2 1.21830- 4 2.90000+ 1 4.10000+ 1 5.16602- 4 1.45820- 4 3.00000+ 1 3.00000+ 1 7.57067- 3 1.27870- 4 3.00000+ 1 4.10000+ 1 6.36068- 4 1.51860- 4 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.07281- 6 1.67300- 4 2.50000+ 1 4.25403- 5 1.68590- 4 3.00000+ 1 1.41201- 5 1.48790- 4 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.13858- 2 1.56270- 4 2.40000+ 1 2.50000+ 1 4.30101- 1 1.57560- 4 2.40000+ 1 2.70000+ 1 8.80903- 3 1.09000- 4 2.40000+ 1 2.90000+ 1 4.82914- 3 1.31720- 4 2.40000+ 1 3.00000+ 1 1.55921- 2 1.37760- 4 2.40000+ 1 4.10000+ 1 5.85802- 4 1.61750- 4 2.50000+ 1 2.50000+ 1 3.06100- 1 1.58850- 4 2.50000+ 1 2.70000+ 1 6.54603- 2 1.10290- 4 2.50000+ 1 2.90000+ 1 6.33302- 2 1.33010- 4 2.50000+ 1 3.00000+ 1 7.68751- 2 1.39050- 4 2.50000+ 1 4.10000+ 1 4.80751- 3 1.63040- 4 2.70000+ 1 2.70000+ 1 2.69653- 3 6.17300- 5 2.70000+ 1 2.90000+ 1 1.44502- 3 8.44500- 5 2.70000+ 1 3.00000+ 1 3.63562- 3 9.04900- 5 2.70000+ 1 4.10000+ 1 2.16269- 4 1.14480- 4 2.90000+ 1 2.90000+ 1 2.67175- 4 1.07170- 4 2.90000+ 1 3.00000+ 1 2.36423- 3 1.13210- 4 2.90000+ 1 4.10000+ 1 5.51141- 5 1.37200- 4 3.00000+ 1 3.00000+ 1 1.25494- 3 1.19250- 4 3.00000+ 1 4.10000+ 1 1.30164- 4 1.43240- 4 1 69000 0 7 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.78980- 7 2.27200- 5 3.00000+ 1 7.37091- 7 2.87600- 5 1 69000 0 9 1.68934+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.16520- 1 1.71700- 5 3.00000+ 1 4.10000+ 1 5.75971- 1 2.32100- 5 4.10000+ 1 4.10000+ 1 7.50791- 3 4.72000- 5 1 70000 0 0 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 1 70000 0 0 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.14410- 2 3.00000+ 0 1.04540- 2 5.00000+ 0 9.99260- 3 6.00000+ 0 8.93380- 3 8.00000+ 0 2.36810- 3 1.00000+ 1 2.16070- 3 1.10000+ 1 1.93520- 3 1.30000+ 1 1.57810- 3 1.40000+ 1 1.52850- 3 1.60000+ 1 4.71000- 4 1.80000+ 1 3.86040- 4 1.90000+ 1 3.34920- 4 2.10000+ 1 1.93730- 4 2.20000+ 1 1.84440- 4 2.40000+ 1 1.10900- 5 2.50000+ 1 9.67000- 6 2.70000+ 1 5.99000- 5 2.90000+ 1 3.64400- 5 3.00000+ 1 3.00100- 5 4.10000+ 1 5.61000- 6 1 70000 0 0 1.73040+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.20530- 2 3.00000+ 0 1.90290- 2 5.00000+ 0 1.90270- 2 6.00000+ 0 1.50580- 2 8.00000+ 0 5.97030- 3 1.00000+ 1 5.87620- 3 1.10000+ 1 4.91980- 3 1.30000+ 1 4.78330- 3 1.40000+ 1 4.56590- 3 1.60000+ 1 1.87830- 3 1.80000+ 1 1.77160- 3 1.90000+ 1 1.49040- 3 2.10000+ 1 1.28840- 3 2.20000+ 1 1.22740- 3 2.40000+ 1 7.77720- 4 2.50000+ 1 7.54510- 4 2.70000+ 1 3.73620- 4 2.90000+ 1 2.92230- 4 3.00000+ 1 2.35870- 4 4.10000+ 1 3.32500- 5 1 70000 0 0 1.73040+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03920-10 3.00000+ 0 4.36750-10 5.00000+ 0 3.62140-10 6.00000+ 0 4.01610-10 8.00000+ 0 1.13920- 9 1.00000+ 1 1.08390- 9 1.10000+ 1 1.15770- 9 1.30000+ 1 1.01600- 9 1.40000+ 1 1.03880- 9 1.60000+ 1 2.56720- 9 1.80000+ 1 2.60350- 9 1.90000+ 1 2.77340- 9 2.10000+ 1 2.89700- 9 2.20000+ 1 2.95640- 9 2.40000+ 1 3.84380- 9 2.50000+ 1 3.92720- 9 2.70000+ 1 6.30980- 9 2.90000+ 1 7.08220- 9 3.00000+ 1 7.67680- 9 4.10000+ 1 2.07210- 8 1 70000 0 0 1.73040+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.96390- 5 3.00000+ 0 6.08570- 7 5.00000+ 0 1.05080- 6 6.00000+ 0 9.47030- 7 8.00000+ 0 1.97460- 8 1.00000+ 1 2.05980- 8 1.10000+ 1 2.14010- 8 1.30000+ 1 2.20480- 8 1.40000+ 1 2.06520- 8 1.60000+ 1 5.15730-10 1.80000+ 1 1.00150- 9 1.90000+ 1 6.26110-10 2.10000+ 1 8.20400-10 2.20000+ 1 7.36210-10 2.70000+ 1 2.39980-11 2.90000+ 1 1.42640-12 3.00000+ 1 1.40460-12 1 70000 0 0 1.73040+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.62400- 6 3.00000+ 0 7.43260- 6 5.00000+ 0 3.16250- 6 6.00000+ 0 3.18510- 6 8.00000+ 0 1.86780- 5 1.00000+ 1 1.03030- 5 1.10000+ 1 1.04830- 5 1.30000+ 1 2.32460- 6 1.40000+ 1 1.32930- 6 1.60000+ 1 1.37480- 5 1.80000+ 1 1.88740- 5 1.90000+ 1 9.64820- 6 2.10000+ 1 7.25520- 6 2.20000+ 1 5.84870- 6 2.70000+ 1 5.11610- 6 2.90000+ 1 4.20510- 8 3.00000+ 1 6.10340- 9 1 70000 0 0 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.79609- 5 3.00000+ 0 1.00806- 4 5.00000+ 0 8.15830- 5 6.00000+ 0 7.72431- 5 8.00000+ 0 7.37354- 5 1.00000+ 1 6.22416- 5 1.10000+ 1 5.70870- 5 1.30000+ 1 4.18610- 5 1.40000+ 1 3.94876- 5 1.60000+ 1 4.08546- 5 1.80000+ 1 3.68196- 5 1.90000+ 1 3.18335- 5 2.10000+ 1 2.27302- 5 2.20000+ 1 2.14125- 5 2.40000+ 1 1.10900- 5 2.50000+ 1 9.67000- 6 2.70000+ 1 1.91207- 5 2.90000+ 1 1.68158- 5 3.00000+ 1 1.12200- 5 4.10000+ 1 5.61000- 6 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17275+ 0 3.00000+ 0 2.63718- 1 5.00000+ 0 2.99272- 1 6.00000+ 0 2.44812- 1 8.00000+ 0 1.69083- 2 1.00000+ 1 1.71024- 2 1.10000+ 1 1.62708- 2 1.30000+ 1 1.63655- 2 1.40000+ 1 1.55175- 2 1.60000+ 1 5.80046- 4 1.80000+ 1 7.34590- 4 1.90000+ 1 2.89295- 4 2.10000+ 1 7.19897- 5 2.20000+ 1 6.93113- 5 2.70000+ 1 1.18680- 6 2.90000+ 1 2.21450- 9 3.00000+ 1 4.68890-10 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.25310- 2 3.00000+ 0 1.93078- 3 5.00000+ 0 2.37085- 3 6.00000+ 0 1.70181- 3 8.00000+ 0 2.57416- 5 1.00000+ 1 2.57400- 5 1.10000+ 1 2.42365- 5 1.30000+ 1 2.40837- 5 1.40000+ 1 2.25083- 5 1.60000+ 1 1.33037- 7 1.80000+ 1 1.55198- 7 1.90000+ 1 5.37025- 8 2.10000+ 1 1.26765- 8 2.20000+ 1 1.17918- 8 2.70000+ 1 3.40058-11 2.90000+ 1 6.52657-14 3.00000+ 1 1.14409-14 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.97018+ 0 3.00000+ 0 1.09849+ 1 5.00000+ 0 8.34152+ 0 6.00000+ 0 7.86090+ 0 8.00000+ 0 7.57195+ 0 1.00000+ 1 6.17113+ 0 1.10000+ 1 5.59518+ 0 1.30000+ 1 3.68704+ 0 1.40000+ 1 3.51326+ 0 1.60000+ 1 4.33223+ 0 1.80000+ 1 3.35824+ 0 1.90000+ 1 2.82419+ 0 2.10000+ 1 1.49393+ 0 2.20000+ 1 1.42814+ 0 2.70000+ 1 2.40833+ 0 2.90000+ 1 1.99748+ 0 3.00000+ 1 1.00000+ 0 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.83201- 3 3.00000+ 0 8.42242- 3 5.00000+ 0 7.54017- 3 6.00000+ 0 7.15475- 3 8.00000+ 0 2.26862- 3 1.00000+ 1 2.07272- 3 1.10000+ 1 1.85388- 3 1.30000+ 1 1.51216- 3 1.40000+ 1 1.46650- 3 1.60000+ 1 4.30012- 4 1.80000+ 1 3.49065- 4 1.90000+ 1 3.03033- 4 2.10000+ 1 1.70987- 4 2.20000+ 1 1.63016- 4 2.70000+ 1 4.07792- 5 2.90000+ 1 1.96242- 5 3.00000+ 1 1.87900- 5 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.73490- 1 5.14484- 2 6.00000+ 0 4.81949- 1 5.25072- 2 1.00000+ 1 5.07949- 2 5.92803- 2 1.10000+ 1 9.81499- 2 5.95058- 2 1.30000+ 1 9.64309- 4 5.98629- 2 1.40000+ 1 1.23870- 3 5.99125- 2 1.80000+ 1 1.12980- 2 6.10550- 2 1.90000+ 1 2.18530- 2 6.11061- 2 2.10000+ 1 2.22100- 4 6.12473- 2 2.20000+ 1 2.83760- 4 6.12566- 2 2.90000+ 1 2.54000- 3 6.14046- 2 3.00000+ 1 5.26539- 3 6.14110- 2 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.96727- 3 4.05330- 2 3.00000+ 0 5.00000+ 0 6.85426- 3 4.09944- 2 3.00000+ 0 6.00000+ 0 5.41677- 3 4.20532- 2 3.00000+ 0 8.00000+ 0 1.93319- 3 4.86189- 2 3.00000+ 0 1.00000+ 1 1.43929- 3 4.88263- 2 3.00000+ 0 1.10000+ 1 1.19199- 3 4.90518- 2 3.00000+ 0 1.30000+ 1 9.29644- 5 4.94089- 2 3.00000+ 0 1.40000+ 1 8.22575- 5 4.94585- 2 3.00000+ 0 1.60000+ 1 4.59078- 4 5.05160- 2 3.00000+ 0 1.80000+ 1 3.29998- 4 5.06010- 2 3.00000+ 0 1.90000+ 1 2.70358- 4 5.06521- 2 3.00000+ 0 2.10000+ 1 2.12388- 5 5.07933- 2 3.00000+ 0 2.20000+ 1 1.85399- 5 5.08026- 2 3.00000+ 0 2.50000+ 1 8.70465- 8 5.09773- 2 3.00000+ 0 2.70000+ 1 7.23346- 5 5.09271- 2 3.00000+ 0 2.90000+ 1 4.13458- 5 5.09506- 2 3.00000+ 0 3.00000+ 1 3.17708- 5 5.09570- 2 3.00000+ 0 4.10000+ 1 5.22247- 6 5.09814- 2 5.00000+ 0 5.00000+ 0 5.42036- 4 4.14558- 2 5.00000+ 0 6.00000+ 0 1.04357- 2 4.25146- 2 5.00000+ 0 8.00000+ 0 1.13207- 3 4.90803- 2 5.00000+ 0 1.00000+ 1 2.00374- 4 4.92877- 2 5.00000+ 0 1.10000+ 1 1.90735- 3 4.95132- 2 5.00000+ 0 1.30000+ 1 1.00627- 4 4.98703- 2 5.00000+ 0 1.40000+ 1 2.98292- 4 4.99199- 2 5.00000+ 0 1.60000+ 1 2.59123- 4 5.09774- 2 5.00000+ 0 1.80000+ 1 4.47388- 5 5.10624- 2 5.00000+ 0 1.90000+ 1 4.15879- 4 5.11135- 2 5.00000+ 0 2.10000+ 1 2.23704- 5 5.12547- 2 5.00000+ 0 2.20000+ 1 6.60632- 5 5.12640- 2 5.00000+ 0 2.40000+ 1 3.48160- 7 5.14373- 2 5.00000+ 0 2.50000+ 1 6.09254- 7 5.14387- 2 5.00000+ 0 2.70000+ 1 4.04750- 5 5.13885- 2 5.00000+ 0 2.90000+ 1 5.57095- 6 5.14120- 2 5.00000+ 0 3.00000+ 1 4.84807- 5 5.14184- 2 5.00000+ 0 4.10000+ 1 2.87242- 6 5.14428- 2 6.00000+ 0 6.00000+ 0 4.79025- 3 4.35734- 2 6.00000+ 0 8.00000+ 0 8.37872- 4 5.01391- 2 6.00000+ 0 1.00000+ 1 1.79854- 3 5.03465- 2 6.00000+ 0 1.10000+ 1 1.80664- 3 5.05720- 2 6.00000+ 0 1.30000+ 1 3.42168- 4 5.09291- 2 6.00000+ 0 1.40000+ 1 2.98120- 4 5.09787- 2 6.00000+ 0 1.60000+ 1 1.88964- 4 5.20362- 2 6.00000+ 0 1.80000+ 1 3.95947- 4 5.21212- 2 6.00000+ 0 1.90000+ 1 3.97097- 4 5.21723- 2 6.00000+ 0 2.10000+ 1 7.65095- 5 5.23135- 2 6.00000+ 0 2.20000+ 1 6.62388- 5 5.23228- 2 6.00000+ 0 2.40000+ 1 6.96367- 7 5.24961- 2 6.00000+ 0 2.50000+ 1 7.83384- 7 5.24975- 2 6.00000+ 0 2.70000+ 1 2.94200- 5 5.24473- 2 6.00000+ 0 2.90000+ 1 4.92644- 5 5.24708- 2 6.00000+ 0 3.00000+ 1 4.63915- 5 5.24772- 2 6.00000+ 0 4.10000+ 1 2.08903- 6 5.25016- 2 8.00000+ 0 8.00000+ 0 1.85136- 4 5.67048- 2 8.00000+ 0 1.00000+ 1 2.39104- 4 5.69122- 2 8.00000+ 0 1.10000+ 1 1.86186- 4 5.71377- 2 8.00000+ 0 1.30000+ 1 1.40137- 5 5.74948- 2 8.00000+ 0 1.40000+ 1 1.17507- 5 5.75444- 2 8.00000+ 0 1.60000+ 1 8.76530- 5 5.86019- 2 8.00000+ 0 1.80000+ 1 5.49258- 5 5.86869- 2 8.00000+ 0 1.90000+ 1 4.23011- 5 5.87380- 2 8.00000+ 0 2.10000+ 1 3.22052- 6 5.88792- 2 8.00000+ 0 2.20000+ 1 2.61124- 6 5.88885- 2 8.00000+ 0 2.70000+ 1 1.37527- 5 5.90130- 2 8.00000+ 0 2.90000+ 1 6.87595- 6 5.90365- 2 8.00000+ 0 3.00000+ 1 4.96139- 6 5.90429- 2 8.00000+ 0 4.10000+ 1 9.57468- 7 5.90673- 2 1.00000+ 1 1.00000+ 1 1.80177- 5 5.71196- 2 1.00000+ 1 1.10000+ 1 3.36524- 4 5.73451- 2 1.00000+ 1 1.30000+ 1 1.43627- 5 5.77022- 2 1.00000+ 1 1.40000+ 1 3.93424- 5 5.77518- 2 1.00000+ 1 1.60000+ 1 5.47491- 5 5.88093- 2 1.00000+ 1 1.80000+ 1 8.00796- 6 5.88943- 2 1.00000+ 1 1.90000+ 1 7.37257- 5 5.89454- 2 1.00000+ 1 2.10000+ 1 3.22054- 6 5.90866- 2 1.00000+ 1 2.20000+ 1 8.79134- 6 5.90959- 2 1.00000+ 1 2.40000+ 1 8.70455- 8 5.92692- 2 1.00000+ 1 2.50000+ 1 8.70455- 8 5.92706- 2 1.00000+ 1 2.70000+ 1 8.53005- 6 5.92204- 2 1.00000+ 1 2.90000+ 1 9.57473- 7 5.92439- 2 1.00000+ 1 3.00000+ 1 8.61735- 6 5.92503- 2 1.00000+ 1 4.10000+ 1 6.09260- 7 5.92747- 2 1.10000+ 1 1.10000+ 1 1.71647- 4 5.75706- 2 1.10000+ 1 1.30000+ 1 5.13541- 5 5.79277- 2 1.10000+ 1 1.40000+ 1 4.34343- 5 5.79773- 2 1.10000+ 1 1.60000+ 1 4.20423- 5 5.90348- 2 1.10000+ 1 1.80000+ 1 7.44227- 5 5.91198- 2 1.10000+ 1 1.90000+ 1 7.55547- 5 5.91709- 2 1.10000+ 1 2.10000+ 1 1.15768- 5 5.93121- 2 1.10000+ 1 2.20000+ 1 9.66203- 6 5.93214- 2 1.10000+ 1 2.40000+ 1 8.70454- 8 5.94947- 2 1.10000+ 1 2.50000+ 1 8.70454- 8 5.94961- 2 1.10000+ 1 2.70000+ 1 6.52849- 6 5.94459- 2 1.10000+ 1 2.90000+ 1 9.22663- 6 5.94694- 2 1.10000+ 1 3.00000+ 1 8.79134- 6 5.94758- 2 1.10000+ 1 4.10000+ 1 4.35203- 7 5.95002- 2 1.30000+ 1 1.30000+ 1 8.92848- 8 5.82848- 2 1.30000+ 1 1.40000+ 1 6.33939- 6 5.83344- 2 1.30000+ 1 1.60000+ 1 3.21416- 6 5.93919- 2 1.30000+ 1 1.80000+ 1 3.12492- 6 5.94769- 2 1.30000+ 1 1.90000+ 1 1.09812- 5 5.95280- 2 1.30000+ 1 2.20000+ 1 1.33927- 6 5.96785- 2 1.30000+ 1 2.70000+ 1 5.35677- 7 5.98030- 2 1.30000+ 1 2.90000+ 1 3.57120- 7 5.98265- 2 1.30000+ 1 3.00000+ 1 1.24993- 6 5.98329- 2 1.40000+ 1 1.40000+ 1 1.47962- 6 5.83840- 2 1.40000+ 1 1.60000+ 1 2.61116- 6 5.94415- 2 1.40000+ 1 1.80000+ 1 8.18169- 6 5.95265- 2 1.40000+ 1 1.90000+ 1 9.05234- 6 5.95776- 2 1.40000+ 1 2.10000+ 1 1.30563- 6 5.97188- 2 1.40000+ 1 2.20000+ 1 6.09239- 7 5.97281- 2 1.40000+ 1 2.70000+ 1 4.35188- 7 5.98526- 2 1.40000+ 1 2.90000+ 1 1.04455- 6 5.98761- 2 1.40000+ 1 3.00000+ 1 1.04455- 6 5.98825- 2 1.60000+ 1 1.60000+ 1 1.06191- 5 6.04990- 2 1.60000+ 1 1.80000+ 1 1.29401- 5 6.05840- 2 1.60000+ 1 1.90000+ 1 9.81625- 6 6.06351- 2 1.60000+ 1 2.10000+ 1 7.13944- 7 6.07763- 2 1.60000+ 1 2.20000+ 1 6.24628- 7 6.07856- 2 1.60000+ 1 2.70000+ 1 3.30178- 6 6.09101- 2 1.60000+ 1 2.90000+ 1 1.60629- 6 6.09336- 2 1.60000+ 1 3.00000+ 1 1.16012- 6 6.09400- 2 1.60000+ 1 4.10000+ 1 2.67712- 7 6.09644- 2 1.80000+ 1 1.80000+ 1 8.70471- 7 6.06689- 2 1.80000+ 1 1.90000+ 1 1.62770- 5 6.07200- 2 1.80000+ 1 2.10000+ 1 6.96391- 7 6.08612- 2 1.80000+ 1 2.20000+ 1 1.82790- 6 6.08705- 2 1.80000+ 1 2.70000+ 1 2.00200- 6 6.09951- 2 1.80000+ 1 2.90000+ 1 2.61130- 7 6.10185- 2 1.80000+ 1 3.00000+ 1 1.91500- 6 6.10249- 2 1.80000+ 1 4.10000+ 1 1.74090- 7 6.10493- 2 1.90000+ 1 1.90000+ 1 8.27476- 6 6.07712- 2 1.90000+ 1 2.10000+ 1 2.41344- 6 6.09123- 2 1.90000+ 1 2.20000+ 1 1.98249- 6 6.09216- 2 1.90000+ 1 2.70000+ 1 1.46528- 6 6.10462- 2 1.90000+ 1 2.90000+ 1 1.98249- 6 6.10696- 2 1.90000+ 1 3.00000+ 1 1.89633- 6 6.10761- 2 1.90000+ 1 4.10000+ 1 8.61986- 8 6.11005- 2 2.10000+ 1 2.20000+ 1 2.87269- 7 6.10628- 2 2.10000+ 1 2.70000+ 1 9.57605- 8 6.11874- 2 2.10000+ 1 2.90000+ 1 9.57605- 8 6.12108- 2 2.10000+ 1 3.00000+ 1 2.87269- 7 6.12173- 2 2.20000+ 1 2.20000+ 1 9.27479- 8 6.10721- 2 2.20000+ 1 2.70000+ 1 9.27479- 8 6.11967- 2 2.20000+ 1 2.90000+ 1 2.78232- 7 6.12201- 2 2.20000+ 1 3.00000+ 1 2.78232- 7 6.12265- 2 2.70000+ 1 2.70000+ 1 3.77248- 7 6.13212- 2 2.70000+ 1 2.90000+ 1 3.77248- 7 6.13447- 2 2.70000+ 1 3.00000+ 1 2.51503- 7 6.13511- 2 2.90000+ 1 3.00000+ 1 2.87670- 7 6.13745- 2 3.00000+ 1 3.00000+ 1 9.41869- 8 6.13810- 2 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.35390- 5 4.61400- 4 6.00000+ 0 1.12080- 3 1.52020- 3 1.00000+ 1 2.27581- 2 8.29330- 3 1.10000+ 1 3.01641- 2 8.51880- 3 1.30000+ 1 5.87041- 4 8.87590- 3 1.40000+ 1 8.79192- 4 8.92550- 3 1.80000+ 1 5.46421- 3 1.00680- 2 1.90000+ 1 7.59292- 3 1.01191- 2 2.10000+ 1 8.00712- 5 1.02603- 2 2.20000+ 1 1.24190- 4 1.02696- 2 2.90000+ 1 7.13232- 4 1.04176- 2 3.00000+ 1 9.46222- 4 1.04240- 2 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.60000+ 1 3.06561- 2 0.00000+ 0 5.00000+ 0 1.80000+ 1 2.40439- 2 7.53600- 5 5.00000+ 0 1.90000+ 1 2.60610- 2 1.26480- 4 5.00000+ 0 2.10000+ 1 6.98822- 3 2.67670- 4 5.00000+ 0 2.20000+ 1 1.01426- 2 2.76960- 4 5.00000+ 0 2.40000+ 1 1.75361- 2 4.50310- 4 5.00000+ 0 2.50000+ 1 2.27678- 2 4.51730- 4 5.00000+ 0 2.70000+ 1 4.72491- 3 4.01500- 4 5.00000+ 0 2.90000+ 1 2.85677- 3 4.24960- 4 5.00000+ 0 3.00000+ 1 2.92515- 3 4.31390- 4 5.00000+ 0 4.10000+ 1 3.37873- 4 4.55790- 4 6.00000+ 0 1.40000+ 1 3.31581- 1 0.00000+ 0 6.00000+ 0 1.60000+ 1 3.20561- 2 1.04920- 3 6.00000+ 0 1.80000+ 1 1.32502- 2 1.13416- 3 6.00000+ 0 1.90000+ 1 2.19572- 2 1.18528- 3 6.00000+ 0 2.10000+ 1 4.07842- 2 1.32647- 3 6.00000+ 0 2.20000+ 1 5.00071- 2 1.33576- 3 6.00000+ 0 2.40000+ 1 2.52586- 2 1.50911- 3 6.00000+ 0 2.50000+ 1 3.14838- 2 1.51053- 3 6.00000+ 0 2.70000+ 1 4.84677- 3 1.46030- 3 6.00000+ 0 2.90000+ 1 1.61672- 3 1.48376- 3 6.00000+ 0 3.00000+ 1 2.54214- 3 1.49019- 3 6.00000+ 0 4.10000+ 1 3.47077- 4 1.51459- 3 8.00000+ 0 8.00000+ 0 7.35089- 3 5.71780- 3 8.00000+ 0 1.00000+ 1 1.48828- 2 5.92520- 3 8.00000+ 0 1.10000+ 1 2.55613- 2 6.15070- 3 8.00000+ 0 1.30000+ 1 1.97518- 2 6.50780- 3 8.00000+ 0 1.40000+ 1 2.66272- 2 6.55740- 3 8.00000+ 0 1.60000+ 1 2.96359- 3 7.61490- 3 8.00000+ 0 1.80000+ 1 3.34974- 3 7.69986- 3 8.00000+ 0 1.90000+ 1 5.64972- 3 7.75098- 3 8.00000+ 0 2.10000+ 1 3.76866- 3 7.89217- 3 8.00000+ 0 2.20000+ 1 5.02535- 3 7.90146- 3 8.00000+ 0 2.40000+ 1 1.97699- 4 8.07481- 3 8.00000+ 0 2.50000+ 1 2.25263- 4 8.07623- 3 8.00000+ 0 2.70000+ 1 4.55634- 4 8.02600- 3 8.00000+ 0 2.90000+ 1 4.17874- 4 8.04946- 3 8.00000+ 0 3.00000+ 1 6.60152- 4 8.05589- 3 8.00000+ 0 4.10000+ 1 3.26667- 5 8.08029- 3 1.00000+ 1 1.00000+ 1 4.72969- 5 6.13260- 3 1.00000+ 1 1.10000+ 1 3.82794- 4 6.35810- 3 1.00000+ 1 1.30000+ 1 8.14243- 4 6.71520- 3 1.00000+ 1 1.40000+ 1 7.98488- 3 6.76480- 3 1.00000+ 1 1.60000+ 1 2.36932- 3 7.82230- 3 1.00000+ 1 1.80000+ 1 8.16627- 6 7.90726- 3 1.00000+ 1 1.90000+ 1 7.68985- 5 7.95838- 3 1.00000+ 1 2.10000+ 1 1.46656- 4 8.09957- 3 1.00000+ 1 2.20000+ 1 9.69024- 4 8.10886- 3 1.00000+ 1 2.40000+ 1 6.97533- 5 8.28221- 3 1.00000+ 1 2.50000+ 1 2.42613- 4 8.28363- 3 1.00000+ 1 2.70000+ 1 3.45368- 4 8.23340- 3 1.00000+ 1 2.90000+ 1 6.80519- 7 8.25686- 3 1.00000+ 1 3.00000+ 1 8.84680- 6 8.26329- 3 1.00000+ 1 4.10000+ 1 2.44987- 5 8.28769- 3 1.10000+ 1 1.10000+ 1 6.62209- 4 6.58360- 3 1.10000+ 1 1.30000+ 1 3.70711- 3 6.94070- 3 1.10000+ 1 1.40000+ 1 2.36371- 3 6.99030- 3 1.10000+ 1 1.60000+ 1 4.04620- 3 8.04780- 3 1.10000+ 1 1.80000+ 1 8.16703- 5 8.13276- 3 1.10000+ 1 1.90000+ 1 2.16761- 4 8.18388- 3 1.10000+ 1 2.10000+ 1 3.29069- 4 8.32507- 3 1.10000+ 1 2.20000+ 1 2.05537- 4 8.33436- 3 1.10000+ 1 2.40000+ 1 1.65735- 4 8.50771- 3 1.10000+ 1 2.50000+ 1 1.34421- 4 8.50913- 3 1.10000+ 1 2.70000+ 1 5.89383- 4 8.45890- 3 1.10000+ 1 2.90000+ 1 1.02090- 5 8.48236- 3 1.10000+ 1 3.00000+ 1 2.41621- 5 8.48879- 3 1.10000+ 1 4.10000+ 1 4.18558- 5 8.51319- 3 1.30000+ 1 1.30000+ 1 1.16643- 3 7.29780- 3 1.30000+ 1 1.40000+ 1 3.74547- 2 7.34740- 3 1.30000+ 1 1.60000+ 1 2.90634- 3 8.40490- 3 1.30000+ 1 1.80000+ 1 2.28661- 4 8.48986- 3 1.30000+ 1 1.90000+ 1 8.84017- 4 8.54098- 3 1.30000+ 1 2.10000+ 1 4.36227- 4 8.68217- 3 1.30000+ 1 2.20000+ 1 4.99254- 3 8.69146- 3 1.30000+ 1 2.40000+ 1 2.26278- 4 8.86481- 3 1.30000+ 1 2.50000+ 1 6.26104- 4 8.86623- 3 1.30000+ 1 2.70000+ 1 4.18197- 4 8.81600- 3 1.30000+ 1 2.90000+ 1 2.96034- 5 8.83946- 3 1.30000+ 1 3.00000+ 1 1.04456- 4 8.84589- 3 1.30000+ 1 4.10000+ 1 2.96034- 5 8.87029- 3 1.40000+ 1 1.40000+ 1 1.04781- 2 7.39700- 3 1.40000+ 1 1.60000+ 1 3.96125- 3 8.45450- 3 1.40000+ 1 1.80000+ 1 1.60981- 3 8.53946- 3 1.40000+ 1 1.90000+ 1 5.90723- 4 8.59058- 3 1.40000+ 1 2.10000+ 1 4.90125- 3 8.73177- 3 1.40000+ 1 2.20000+ 1 2.94371- 3 8.74106- 3 1.40000+ 1 2.40000+ 1 7.04032- 4 8.91441- 3 1.40000+ 1 2.50000+ 1 5.33556- 4 8.91583- 3 1.40000+ 1 2.70000+ 1 5.72009- 4 8.86560- 3 1.40000+ 1 2.90000+ 1 1.97353- 4 8.88906- 3 1.40000+ 1 3.00000+ 1 7.04374- 5 8.89549- 3 1.40000+ 1 4.10000+ 1 4.08332- 5 8.91989- 3 1.60000+ 1 1.60000+ 1 2.82090- 4 9.51200- 3 1.60000+ 1 1.80000+ 1 5.34564- 4 9.59696- 3 1.60000+ 1 1.90000+ 1 8.96615- 4 9.64808- 3 1.60000+ 1 2.10000+ 1 5.53961- 4 9.78927- 3 1.60000+ 1 2.20000+ 1 7.43841- 4 9.79856- 3 1.60000+ 1 2.40000+ 1 2.38186- 5 9.97191- 3 1.60000+ 1 2.50000+ 1 2.65407- 5 9.97333- 3 1.60000+ 1 2.70000+ 1 8.57489- 5 9.92310- 3 1.60000+ 1 2.90000+ 1 6.66936- 5 9.94656- 3 1.60000+ 1 3.00000+ 1 1.04809- 4 9.95299- 3 1.60000+ 1 4.10000+ 1 6.12485- 6 9.97739- 3 1.80000+ 1 1.80000+ 1 3.40267- 7 9.68192- 3 1.80000+ 1 1.90000+ 1 1.66730- 5 9.73304- 3 1.80000+ 1 2.10000+ 1 3.53883- 5 9.87423- 3 1.80000+ 1 2.20000+ 1 2.02456- 4 9.88352- 3 1.80000+ 1 2.40000+ 1 9.52775- 6 1.00569- 2 1.80000+ 1 2.50000+ 1 3.64078- 5 1.00583- 2 1.80000+ 1 2.70000+ 1 7.79218- 5 1.00081- 2 1.80000+ 1 3.00000+ 1 2.04156- 6 1.00379- 2 1.80000+ 1 4.10000+ 1 5.44433- 6 1.00623- 2 1.90000+ 1 1.90000+ 1 1.73528- 5 9.78416- 3 1.90000+ 1 2.10000+ 1 8.74499- 5 9.92535- 3 1.90000+ 1 2.20000+ 1 5.81852- 5 9.93464- 3 1.90000+ 1 2.40000+ 1 2.92626- 5 1.01080- 2 1.90000+ 1 2.50000+ 1 2.34777- 5 1.01094- 2 1.90000+ 1 2.70000+ 1 1.30661- 4 1.00592- 2 1.90000+ 1 2.90000+ 1 2.04157- 6 1.00826- 2 1.90000+ 1 3.00000+ 1 3.74297- 6 1.00891- 2 1.90000+ 1 4.10000+ 1 9.18733- 6 1.01135- 2 2.10000+ 1 2.10000+ 1 3.81106- 5 1.00665- 2 2.10000+ 1 2.20000+ 1 7.10827- 4 1.00758- 2 2.10000+ 1 2.40000+ 1 2.92627- 5 1.02492- 2 2.10000+ 1 2.50000+ 1 6.26109- 5 1.02506- 2 2.10000+ 1 2.70000+ 1 7.96240- 5 1.02004- 2 2.10000+ 1 2.90000+ 1 4.42354- 6 1.02238- 2 2.10000+ 1 3.00000+ 1 1.05483- 5 1.02303- 2 2.10000+ 1 4.10000+ 1 5.78465- 6 1.02547- 2 2.20000+ 1 2.20000+ 1 2.20841- 4 1.00851- 2 2.20000+ 1 2.40000+ 1 7.31585- 5 1.02585- 2 2.20000+ 1 2.50000+ 1 6.19283- 5 1.02599- 2 2.20000+ 1 2.70000+ 1 1.07182- 4 1.02097- 2 2.20000+ 1 2.90000+ 1 2.48394- 5 1.02331- 2 2.20000+ 1 3.00000+ 1 7.14571- 6 1.02395- 2 2.20000+ 1 4.10000+ 1 7.48609- 6 1.02639- 2 2.40000+ 1 2.40000+ 1 5.55960- 7 1.04318- 2 2.40000+ 1 2.50000+ 1 1.50110- 5 1.04332- 2 2.40000+ 1 2.70000+ 1 5.55960- 6 1.03830- 2 2.40000+ 1 2.90000+ 1 1.66792- 6 1.04065- 2 2.40000+ 1 3.00000+ 1 5.55960- 6 1.04129- 2 2.40000+ 1 4.10000+ 1 5.55960- 7 1.04373- 2 2.50000+ 1 2.50000+ 1 2.89069- 6 1.04347- 2 2.50000+ 1 2.70000+ 1 5.29973- 6 1.03844- 2 2.50000+ 1 2.90000+ 1 5.78152- 6 1.04079- 2 2.50000+ 1 3.00000+ 1 3.85431- 6 1.04143- 2 2.50000+ 1 4.10000+ 1 4.81792- 7 1.04387- 2 2.70000+ 1 2.70000+ 1 2.27501- 5 1.03342- 2 2.70000+ 1 2.90000+ 1 3.47245- 5 1.03577- 2 2.70000+ 1 3.00000+ 1 5.38834- 5 1.03641- 2 2.70000+ 1 4.10000+ 1 3.59222- 6 1.03885- 2 2.90000+ 1 3.00000+ 1 2.41734- 6 1.03875- 2 2.90000+ 1 4.10000+ 1 4.83468- 6 1.04119- 2 3.00000+ 1 3.00000+ 1 9.46786- 7 1.03940- 2 3.00000+ 1 4.10000+ 1 2.84042- 6 1.04184- 2 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.63841- 6 1.05880- 3 8.00000+ 0 6.00413- 3 7.62450- 3 1.10000+ 1 1.58611- 4 8.05740- 3 1.30000+ 1 1.99491- 1 8.41450- 3 1.60000+ 1 1.34571- 3 9.52160- 3 1.90000+ 1 3.91242- 5 9.65768- 3 2.10000+ 1 3.55452- 2 9.79887- 3 2.40000+ 1 6.63133- 5 9.98151- 3 2.70000+ 1 2.47591- 4 9.93270- 3 3.00000+ 1 8.59464- 6 9.96259- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 7.52255- 3 5.87800- 4 6.00000+ 0 1.80000+ 1 4.46014- 2 6.72760- 4 6.00000+ 0 1.90000+ 1 1.39050- 2 7.23880- 4 6.00000+ 0 2.10000+ 1 5.16528- 2 8.65070- 4 6.00000+ 0 2.20000+ 1 1.82603- 2 8.74360- 4 6.00000+ 0 2.40000+ 1 1.31136- 3 1.04771- 3 6.00000+ 0 2.50000+ 1 1.97676- 3 1.04913- 3 6.00000+ 0 2.70000+ 1 1.08674- 3 9.98900- 4 6.00000+ 0 2.90000+ 1 5.22203- 3 1.02236- 3 6.00000+ 0 3.00000+ 1 1.60433- 3 1.02879- 3 6.00000+ 0 4.10000+ 1 7.74839- 5 1.05319- 3 8.00000+ 0 8.00000+ 0 7.72256- 4 5.25640- 3 8.00000+ 0 1.00000+ 1 2.27888- 2 5.46380- 3 8.00000+ 0 1.10000+ 1 2.20206- 3 5.68930- 3 8.00000+ 0 1.30000+ 1 2.66038- 3 6.04640- 3 8.00000+ 0 1.40000+ 1 2.58759- 3 6.09600- 3 8.00000+ 0 1.60000+ 1 2.84538- 4 7.15350- 3 8.00000+ 0 1.80000+ 1 3.41702- 3 7.23846- 3 8.00000+ 0 1.90000+ 1 4.32982- 4 7.28958- 3 8.00000+ 0 2.10000+ 1 3.61361- 4 7.43077- 3 8.00000+ 0 2.20000+ 1 2.98864- 4 7.44006- 3 8.00000+ 0 2.40000+ 1 7.42262- 5 7.61341- 3 8.00000+ 0 2.50000+ 1 4.81818- 5 7.61483- 3 8.00000+ 0 2.70000+ 1 4.29726- 5 7.56460- 3 8.00000+ 0 2.90000+ 1 3.97191- 4 7.58806- 3 8.00000+ 0 3.00000+ 1 4.94834- 5 7.59449- 3 8.00000+ 0 4.10000+ 1 3.25550- 6 7.61889- 3 1.00000+ 1 1.00000+ 1 2.32155- 2 5.67120- 3 1.00000+ 1 1.10000+ 1 6.55903- 2 5.89670- 3 1.00000+ 1 1.30000+ 1 3.48590- 2 6.25380- 3 1.00000+ 1 1.40000+ 1 5.44853- 2 6.30340- 3 1.00000+ 1 1.60000+ 1 5.52464- 3 7.36090- 3 1.00000+ 1 1.80000+ 1 8.84562- 3 7.44586- 3 1.00000+ 1 1.90000+ 1 1.42355- 2 7.49698- 3 1.00000+ 1 2.10000+ 1 6.65572- 3 7.63817- 3 1.00000+ 1 2.20000+ 1 1.03420- 2 7.64746- 3 1.00000+ 1 2.40000+ 1 3.36633- 4 7.82081- 3 1.00000+ 1 2.50000+ 1 3.08625- 4 7.82223- 3 1.00000+ 1 2.70000+ 1 8.73129- 4 7.77200- 3 1.00000+ 1 2.90000+ 1 1.07765- 3 7.79546- 3 1.00000+ 1 3.00000+ 1 1.65835- 3 7.80189- 3 1.00000+ 1 4.10000+ 1 6.31566- 5 7.82629- 3 1.10000+ 1 1.10000+ 1 1.62255- 3 6.12220- 3 1.10000+ 1 1.30000+ 1 3.66077- 2 6.47930- 3 1.10000+ 1 1.40000+ 1 5.08311- 3 6.52890- 3 1.10000+ 1 1.60000+ 1 4.52509- 4 7.58640- 3 1.10000+ 1 1.80000+ 1 1.01362- 2 7.67136- 3 1.10000+ 1 1.90000+ 1 5.99661- 4 7.72248- 3 1.10000+ 1 2.10000+ 1 5.89186- 3 7.86367- 3 1.10000+ 1 2.20000+ 1 7.75500- 4 7.87296- 3 1.10000+ 1 2.40000+ 1 1.76451- 4 8.04631- 3 1.10000+ 1 2.50000+ 1 9.57123- 5 8.04773- 3 1.10000+ 1 2.70000+ 1 6.96669- 5 7.99750- 3 1.10000+ 1 2.90000+ 1 1.18440- 3 8.02096- 3 1.10000+ 1 3.00000+ 1 6.77151- 5 8.02739- 3 1.10000+ 1 4.10000+ 1 5.20893- 6 8.05179- 3 1.30000+ 1 1.30000+ 1 3.43007- 2 6.83640- 3 1.30000+ 1 1.40000+ 1 1.41264- 1 6.88600- 3 1.30000+ 1 1.60000+ 1 6.47179- 4 7.94350- 3 1.30000+ 1 1.80000+ 1 5.31039- 3 8.02846- 3 1.30000+ 1 1.90000+ 1 7.43420- 3 8.07958- 3 1.30000+ 1 2.10000+ 1 1.09517- 2 8.22077- 3 1.30000+ 1 2.20000+ 1 2.42009- 2 8.23006- 3 1.30000+ 1 2.40000+ 1 1.29830- 3 8.40341- 3 1.30000+ 1 2.50000+ 1 2.62475- 3 8.40483- 3 1.30000+ 1 2.70000+ 1 1.02873- 4 8.35460- 3 1.30000+ 1 2.90000+ 1 6.23115- 4 8.37806- 3 1.30000+ 1 3.00000+ 1 8.56163- 4 8.38449- 3 1.30000+ 1 4.10000+ 1 7.16219- 6 8.40889- 3 1.40000+ 1 1.40000+ 1 6.79834- 3 6.93560- 3 1.40000+ 1 1.60000+ 1 5.12426- 4 7.99310- 3 1.40000+ 1 1.80000+ 1 7.34771- 3 8.07806- 3 1.40000+ 1 1.90000+ 1 9.46075- 4 8.12918- 3 1.40000+ 1 2.10000+ 1 1.86804- 2 8.27037- 3 1.40000+ 1 2.20000+ 1 2.11475- 3 8.27966- 3 1.40000+ 1 2.40000+ 1 5.24151- 4 8.45301- 3 1.40000+ 1 2.50000+ 1 2.00546- 4 8.45443- 3 1.40000+ 1 2.70000+ 1 7.81329- 5 8.40420- 3 1.40000+ 1 2.90000+ 1 8.37332- 4 8.42766- 3 1.40000+ 1 3.00000+ 1 1.07432- 4 8.43409- 3 1.40000+ 1 4.10000+ 1 5.86013- 6 8.45849- 3 1.60000+ 1 1.60000+ 1 2.53920- 5 9.05060- 3 1.60000+ 1 1.80000+ 1 8.34043- 4 9.13556- 3 1.60000+ 1 1.90000+ 1 8.98514- 5 9.18668- 3 1.60000+ 1 2.10000+ 1 8.46382- 5 9.32787- 3 1.60000+ 1 2.20000+ 1 5.99004- 5 9.33716- 3 1.60000+ 1 2.40000+ 1 1.56260- 5 9.51051- 3 1.60000+ 1 2.50000+ 1 8.46382- 6 9.51193- 3 1.60000+ 1 2.70000+ 1 7.81298- 6 9.46170- 3 1.60000+ 1 2.90000+ 1 9.70102- 5 9.48516- 3 1.60000+ 1 3.00000+ 1 1.04171- 5 9.49159- 3 1.60000+ 1 4.10000+ 1 6.51095- 7 9.51599- 3 1.80000+ 1 1.80000+ 1 8.02824- 4 9.22052- 3 1.80000+ 1 1.90000+ 1 2.20529- 3 9.27164- 3 1.80000+ 1 2.10000+ 1 9.97535- 4 9.41283- 3 1.80000+ 1 2.20000+ 1 1.40640- 3 9.42212- 3 1.80000+ 1 2.40000+ 1 4.16710- 5 9.59547- 3 1.80000+ 1 2.50000+ 1 3.12536- 5 9.59689- 3 1.80000+ 1 2.70000+ 1 1.32182- 4 9.54666- 3 1.80000+ 1 2.90000+ 1 1.94023- 4 9.57012- 3 1.80000+ 1 3.00000+ 1 2.57186- 4 9.57655- 3 1.80000+ 1 4.10000+ 1 9.76645- 6 9.60095- 3 1.90000+ 1 1.90000+ 1 5.59947- 5 9.32276- 3 1.90000+ 1 2.10000+ 1 1.20587- 3 9.46395- 3 1.90000+ 1 2.20000+ 1 1.47798- 4 9.47324- 3 1.90000+ 1 2.40000+ 1 2.92994- 5 9.64659- 3 1.90000+ 1 2.50000+ 1 1.49753- 5 9.64801- 3 1.90000+ 1 2.70000+ 1 1.36738- 5 9.59778- 3 1.90000+ 1 2.90000+ 1 2.57829- 4 9.62124- 3 1.90000+ 1 3.00000+ 1 1.23712- 5 9.62767- 3 1.90000+ 1 4.10000+ 1 1.30215- 6 9.65207- 3 2.10000+ 1 2.10000+ 1 8.64043- 4 9.60514- 3 2.10000+ 1 2.20000+ 1 3.32387- 3 9.61443- 3 2.10000+ 1 2.40000+ 1 1.43242- 4 9.78778- 3 2.10000+ 1 2.50000+ 1 2.93653- 4 9.78920- 3 2.10000+ 1 2.70000+ 1 1.36739- 5 9.73897- 3 2.10000+ 1 2.90000+ 1 1.16546- 4 9.76243- 3 2.10000+ 1 3.00000+ 1 1.39340- 4 9.76886- 3 2.10000+ 1 4.10000+ 1 6.51123- 7 9.79326- 3 2.20000+ 1 2.20000+ 1 2.62611- 4 9.62372- 3 2.20000+ 1 2.40000+ 1 9.78324- 5 9.79707- 3 2.20000+ 1 2.50000+ 1 3.81042- 5 9.79849- 3 2.20000+ 1 2.70000+ 1 1.44178- 5 9.74826- 3 2.20000+ 1 2.90000+ 1 2.53331- 4 9.77172- 3 2.20000+ 1 3.00000+ 1 2.67762- 5 9.77815- 3 2.20000+ 1 4.10000+ 1 1.02985- 6 9.80255- 3 2.40000+ 1 2.40000+ 1 2.96621- 6 9.97042- 3 2.40000+ 1 2.50000+ 1 2.17528- 5 9.97184- 3 2.40000+ 1 2.70000+ 1 3.95510- 6 9.92161- 3 2.40000+ 1 2.90000+ 1 6.92129- 6 9.94507- 3 2.40000+ 1 3.00000+ 1 4.94382- 6 9.95150- 3 2.50000+ 1 2.50000+ 1 1.84368- 6 9.97326- 3 2.50000+ 1 2.70000+ 1 3.68713- 6 9.92303- 3 2.50000+ 1 2.90000+ 1 9.21813- 6 9.94649- 3 2.50000+ 1 3.00000+ 1 3.68713- 6 9.95292- 3 2.70000+ 1 2.70000+ 1 1.26229- 6 9.87280- 3 2.70000+ 1 2.90000+ 1 3.02945- 5 9.89626- 3 2.70000+ 1 3.00000+ 1 2.52442- 6 9.90269- 3 2.90000+ 1 2.90000+ 1 2.80259- 5 9.91972- 3 2.90000+ 1 3.00000+ 1 7.16208- 5 9.92615- 3 2.90000+ 1 4.10000+ 1 3.11381- 6 9.95055- 3 3.00000+ 1 3.00000+ 1 6.51123- 7 9.93258- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.12631- 2 6.56570- 3 1.00000+ 1 8.74246- 5 6.77310- 3 1.10000+ 1 7.94785- 5 6.99860- 3 1.30000+ 1 1.79861- 2 7.35570- 3 1.40000+ 1 1.58741- 1 7.40530- 3 1.60000+ 1 1.84731- 3 8.46280- 3 1.80000+ 1 1.66891- 5 8.54776- 3 1.90000+ 1 1.62511- 5 8.59888- 3 2.10000+ 1 3.02842- 3 8.74007- 3 2.20000+ 1 2.71002- 2 8.74936- 3 2.40000+ 1 9.73387- 6 8.92271- 3 2.50000+ 1 5.45344- 5 8.92413- 3 2.70000+ 1 3.62332- 4 8.87390- 3 2.90000+ 1 3.70153- 6 8.89736- 3 3.00000+ 1 3.31612- 6 8.90379- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.02368- 3 4.19760- 3 8.00000+ 0 1.00000+ 1 6.05937- 4 4.40500- 3 8.00000+ 0 1.10000+ 1 2.47733- 2 4.63050- 3 8.00000+ 0 1.30000+ 1 2.68177- 3 4.98760- 3 8.00000+ 0 1.40000+ 1 3.66758- 3 5.03720- 3 8.00000+ 0 1.60000+ 1 3.78455- 4 6.09470- 3 8.00000+ 0 1.80000+ 1 1.06419- 4 6.17966- 3 8.00000+ 0 1.90000+ 1 3.65425- 3 6.23078- 3 8.00000+ 0 2.10000+ 1 2.49421- 4 6.37197- 3 8.00000+ 0 2.20000+ 1 3.05953- 4 6.38126- 3 8.00000+ 0 2.40000+ 1 1.19720- 4 6.55461- 3 8.00000+ 0 2.50000+ 1 2.14836- 4 6.55603- 3 8.00000+ 0 2.70000+ 1 5.71999- 5 6.50580- 3 8.00000+ 0 2.90000+ 1 1.26377- 5 6.52926- 3 8.00000+ 0 3.00000+ 1 3.99059- 4 6.53569- 3 8.00000+ 0 4.10000+ 1 3.99059- 6 6.56009- 3 1.00000+ 1 1.00000+ 1 1.38344- 4 4.61240- 3 1.00000+ 1 1.10000+ 1 4.15316- 2 4.83790- 3 1.00000+ 1 1.30000+ 1 2.31256- 3 5.19500- 3 1.00000+ 1 1.40000+ 1 2.05440- 2 5.24460- 3 1.00000+ 1 1.60000+ 1 1.21052- 4 6.30210- 3 1.00000+ 1 1.80000+ 1 5.25429- 5 6.38706- 3 1.00000+ 1 1.90000+ 1 6.36382- 3 6.43818- 3 1.00000+ 1 2.10000+ 1 4.00407- 4 6.57937- 3 1.00000+ 1 2.20000+ 1 2.98232- 3 6.58866- 3 1.00000+ 1 2.40000+ 1 1.29031- 4 6.76201- 3 1.00000+ 1 2.50000+ 1 3.35220- 4 6.76343- 3 1.00000+ 1 2.70000+ 1 1.86240- 5 6.71320- 3 1.00000+ 1 2.90000+ 1 6.65127- 6 6.73666- 3 1.00000+ 1 3.00000+ 1 6.99023- 4 6.74309- 3 1.00000+ 1 4.10000+ 1 1.33021- 6 6.76749- 3 1.10000+ 1 1.10000+ 1 5.52355- 2 5.06340- 3 1.10000+ 1 1.30000+ 1 5.74305- 2 5.42050- 3 1.10000+ 1 1.40000+ 1 8.21139- 2 5.47010- 3 1.10000+ 1 1.60000+ 1 5.92899- 3 6.52760- 3 1.10000+ 1 1.80000+ 1 8.86459- 3 6.61256- 3 1.10000+ 1 1.90000+ 1 2.03443- 2 6.66368- 3 1.10000+ 1 2.10000+ 1 1.04287- 2 6.80487- 3 1.10000+ 1 2.20000+ 1 1.46346- 2 6.81416- 3 1.10000+ 1 2.40000+ 1 5.56699- 4 6.98751- 3 1.10000+ 1 2.50000+ 1 7.01045- 4 6.98893- 3 1.10000+ 1 2.70000+ 1 9.35120- 4 6.93870- 3 1.10000+ 1 2.90000+ 1 1.09671- 3 6.96216- 3 1.10000+ 1 3.00000+ 1 2.31392- 3 6.96859- 3 1.10000+ 1 4.10000+ 1 6.71784- 5 6.99299- 3 1.30000+ 1 1.30000+ 1 8.26122- 3 5.77760- 3 1.30000+ 1 1.40000+ 1 1.56092- 1 5.82720- 3 1.30000+ 1 1.60000+ 1 6.13237- 4 6.88470- 3 1.30000+ 1 1.80000+ 1 5.00840- 4 6.96966- 3 1.30000+ 1 1.90000+ 1 8.11477- 3 7.02078- 3 1.30000+ 1 2.10000+ 1 2.59318- 3 7.16197- 3 1.30000+ 1 2.20000+ 1 2.05765- 2 7.17126- 3 1.30000+ 1 2.40000+ 1 3.13931- 4 7.34461- 3 1.30000+ 1 2.50000+ 1 1.06216- 3 7.34603- 3 1.30000+ 1 2.70000+ 1 9.57769- 5 7.29580- 3 1.30000+ 1 2.90000+ 1 6.18570- 5 7.31926- 3 1.30000+ 1 3.00000+ 1 8.79291- 4 7.32569- 3 1.30000+ 1 4.10000+ 1 6.65133- 6 7.35009- 3 1.40000+ 1 1.40000+ 1 1.04883- 1 5.87680- 3 1.40000+ 1 1.60000+ 1 8.73301- 4 6.93430- 3 1.40000+ 1 1.80000+ 1 4.03199- 3 7.01926- 3 1.40000+ 1 1.90000+ 1 1.30921- 2 7.07038- 3 1.40000+ 1 2.10000+ 1 2.47803- 2 7.21157- 3 1.40000+ 1 2.20000+ 1 3.13628- 2 7.22086- 3 1.40000+ 1 2.40000+ 1 3.33900- 3 7.39421- 3 1.40000+ 1 2.50000+ 1 3.02365- 3 7.39563- 3 1.40000+ 1 2.70000+ 1 1.38345- 4 7.34540- 3 1.40000+ 1 2.90000+ 1 4.91527- 4 7.36886- 3 1.40000+ 1 3.00000+ 1 1.45526- 3 7.37529- 3 1.40000+ 1 4.10000+ 1 9.97706- 6 7.39969- 3 1.60000+ 1 1.60000+ 1 3.52516- 5 7.99180- 3 1.60000+ 1 1.80000+ 1 2.19492- 5 8.07676- 3 1.60000+ 1 1.90000+ 1 8.76645- 4 8.12788- 3 1.60000+ 1 2.10000+ 1 6.25217- 5 8.26907- 3 1.60000+ 1 2.20000+ 1 7.98165- 5 8.27836- 3 1.60000+ 1 2.40000+ 1 1.72929- 5 8.45171- 3 1.60000+ 1 2.50000+ 1 3.45869- 5 8.45313- 3 1.60000+ 1 2.70000+ 1 1.06418- 5 8.40290- 3 1.60000+ 1 2.90000+ 1 2.66034- 6 8.42636- 3 1.60000+ 1 3.00000+ 1 9.57769- 5 8.43279- 3 1.60000+ 1 4.10000+ 1 6.65133- 7 8.45719- 3 1.80000+ 1 1.80000+ 1 3.99053- 6 8.16172- 3 1.80000+ 1 1.90000+ 1 1.35415- 3 8.21284- 3 1.80000+ 1 2.10000+ 1 8.31404- 5 8.35403- 3 1.80000+ 1 2.20000+ 1 6.11907- 4 8.36332- 3 1.80000+ 1 2.40000+ 1 1.86240- 5 8.53667- 3 1.80000+ 1 2.50000+ 1 4.58917- 5 8.53809- 3 1.80000+ 1 2.70000+ 1 3.32542- 6 8.48786- 3 1.80000+ 1 2.90000+ 1 6.65125- 7 8.51132- 3 1.80000+ 1 3.00000+ 1 1.48323- 4 8.51775- 3 1.90000+ 1 1.90000+ 1 1.80411- 3 8.26396- 3 1.90000+ 1 2.10000+ 1 1.47775- 3 8.40515- 3 1.90000+ 1 2.20000+ 1 2.30026- 3 8.41444- 3 1.90000+ 1 2.40000+ 1 6.45985- 5 8.58779- 3 1.90000+ 1 2.50000+ 1 8.59130- 5 8.58921- 3 1.90000+ 1 2.70000+ 1 1.38521- 4 8.53898- 3 1.90000+ 1 2.90000+ 1 1.67829- 4 8.56244- 3 1.90000+ 1 3.00000+ 1 4.07575- 4 8.56887- 3 1.90000+ 1 4.10000+ 1 9.98975- 6 8.59327- 3 2.10000+ 1 2.10000+ 1 1.96210- 4 8.54634- 3 2.10000+ 1 2.20000+ 1 3.39201- 3 8.55563- 3 2.10000+ 1 2.40000+ 1 3.39201- 5 8.72898- 3 2.10000+ 1 2.50000+ 1 1.09740- 4 8.73040- 3 2.10000+ 1 2.70000+ 1 9.97700- 6 8.68017- 3 2.10000+ 1 2.90000+ 1 9.97700- 6 8.70363- 3 2.10000+ 1 3.00000+ 1 1.59626- 4 8.71006- 3 2.10000+ 1 4.10000+ 1 6.65129- 7 8.73446- 3 2.20000+ 1 2.20000+ 1 2.80317- 3 8.56492- 3 2.20000+ 1 2.40000+ 1 4.16401- 4 8.73827- 3 2.20000+ 1 2.50000+ 1 3.72065- 4 8.73969- 3 2.20000+ 1 2.70000+ 1 1.50413- 5 8.68946- 3 2.20000+ 1 2.90000+ 1 8.94544- 5 8.71292- 3 2.20000+ 1 3.00000+ 1 3.03207- 4 8.71935- 3 2.20000+ 1 4.10000+ 1 7.91641- 7 8.74375- 3 2.40000+ 1 2.40000+ 1 1.19042- 6 8.91162- 3 2.40000+ 1 2.50000+ 1 4.16643- 5 8.91304- 3 2.40000+ 1 2.70000+ 1 4.76135- 6 8.86281- 3 2.40000+ 1 2.90000+ 1 3.57115- 6 8.88627- 3 2.40000+ 1 3.00000+ 1 1.19042- 5 8.89270- 3 2.50000+ 1 2.50000+ 1 9.18301- 6 8.91446- 3 2.50000+ 1 2.70000+ 1 6.12201- 6 8.86423- 3 2.50000+ 1 2.90000+ 1 6.12201- 6 8.88769- 3 2.50000+ 1 3.00000+ 1 1.07129- 5 8.89412- 3 2.50000+ 1 4.10000+ 1 7.65245- 7 8.91852- 3 2.70000+ 1 2.70000+ 1 1.41977- 6 8.81400- 3 2.70000+ 1 2.90000+ 1 1.41977- 6 8.83746- 3 2.70000+ 1 3.00000+ 1 3.26547- 5 8.84389- 3 2.90000+ 1 3.00000+ 1 6.24484- 5 8.86735- 3 3.00000+ 1 3.00000+ 1 1.27316- 4 8.87378- 3 3.00000+ 1 4.10000+ 1 7.27504- 6 8.89818- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.72676- 6 2.07400- 4 1.10000+ 1 1.80949- 4 4.32900- 4 1.80000+ 1 7.06437- 4 1.98206- 3 1.90000+ 1 7.31827- 4 2.03318- 3 2.90000+ 1 1.57669- 4 2.33166- 3 3.00000+ 1 1.54579- 4 2.33809- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 5.41939- 2 1.36700- 5 1.00000+ 1 2.20000+ 1 8.65156- 2 2.29600- 5 1.00000+ 1 2.40000+ 1 3.48269- 2 1.96310- 4 1.00000+ 1 2.50000+ 1 4.61255- 2 1.97730- 4 1.00000+ 1 2.70000+ 1 7.75563- 3 1.47500- 4 1.00000+ 1 2.90000+ 1 6.48570- 3 1.70960- 4 1.00000+ 1 3.00000+ 1 9.23143- 3 1.77390- 4 1.00000+ 1 4.10000+ 1 5.44153- 4 2.01790- 4 1.10000+ 1 1.80000+ 1 6.13101- 2 4.68600- 5 1.10000+ 1 1.90000+ 1 7.61489- 2 9.79800- 5 1.10000+ 1 2.10000+ 1 3.12663- 2 2.39170- 4 1.10000+ 1 2.20000+ 1 4.53705- 2 2.48460- 4 1.10000+ 1 2.40000+ 1 1.14191- 1 4.21810- 4 1.10000+ 1 2.50000+ 1 1.41559- 1 4.23230- 4 1.10000+ 1 2.70000+ 1 8.46211- 3 3.73000- 4 1.10000+ 1 2.90000+ 1 7.07487- 3 3.96460- 4 1.10000+ 1 3.00000+ 1 8.68523- 3 4.02890- 4 1.10000+ 1 4.10000+ 1 5.99897- 4 4.27290- 4 1.30000+ 1 1.60000+ 1 2.36537- 2 3.19000- 4 1.30000+ 1 1.80000+ 1 5.24091- 3 4.03960- 4 1.30000+ 1 1.90000+ 1 5.01761- 3 4.55080- 4 1.30000+ 1 2.10000+ 1 7.76640- 3 5.96270- 4 1.30000+ 1 2.20000+ 1 9.71162- 3 6.05560- 4 1.30000+ 1 2.40000+ 1 5.83433- 3 7.78910- 4 1.30000+ 1 2.50000+ 1 5.39658- 3 7.80330- 4 1.30000+ 1 2.70000+ 1 2.49507- 3 7.30100- 4 1.30000+ 1 2.90000+ 1 5.13411- 4 7.53560- 4 1.30000+ 1 3.00000+ 1 4.54626- 4 7.59990- 4 1.30000+ 1 4.10000+ 1 1.71470- 4 7.84390- 4 1.40000+ 1 1.60000+ 1 3.37779- 2 3.68600- 4 1.40000+ 1 1.80000+ 1 1.03209- 3 4.53560- 4 1.40000+ 1 1.90000+ 1 1.00290- 2 5.04680- 4 1.40000+ 1 2.10000+ 1 1.06421- 2 6.45870- 4 1.40000+ 1 2.20000+ 1 1.57380- 2 6.55160- 4 1.40000+ 1 2.40000+ 1 6.65027- 3 8.28510- 4 1.40000+ 1 2.50000+ 1 1.02767- 2 8.29930- 4 1.40000+ 1 2.70000+ 1 3.53186- 3 7.79700- 4 1.40000+ 1 2.90000+ 1 1.04848- 4 8.03160- 4 1.40000+ 1 3.00000+ 1 9.06246- 4 8.09590- 4 1.40000+ 1 4.10000+ 1 2.42602- 4 8.33990- 4 1.60000+ 1 1.60000+ 1 3.84555- 3 1.42610- 3 1.60000+ 1 1.80000+ 1 6.53962- 3 1.51106- 3 1.60000+ 1 1.90000+ 1 1.13320- 2 1.56218- 3 1.60000+ 1 2.10000+ 1 1.24515- 2 1.70337- 3 1.60000+ 1 2.20000+ 1 1.77713- 2 1.71266- 3 1.60000+ 1 2.40000+ 1 6.17188- 3 1.88601- 3 1.60000+ 1 2.50000+ 1 7.71198- 3 1.88743- 3 1.60000+ 1 2.70000+ 1 1.00670- 3 1.83720- 3 1.60000+ 1 2.90000+ 1 8.12101- 4 1.86066- 3 1.60000+ 1 3.00000+ 1 1.31789- 3 1.86709- 3 1.60000+ 1 4.10000+ 1 7.11828- 5 1.89149- 3 1.80000+ 1 1.80000+ 1 3.12138- 4 1.59602- 3 1.80000+ 1 1.90000+ 1 8.25123- 4 1.64714- 3 1.80000+ 1 2.10000+ 1 4.62526- 4 1.78833- 3 1.80000+ 1 2.20000+ 1 2.58773- 4 1.79762- 3 1.80000+ 1 2.40000+ 1 7.87706- 5 1.97097- 3 1.80000+ 1 2.50000+ 1 4.35821- 4 1.97239- 3 1.80000+ 1 2.70000+ 1 6.74758- 4 1.92216- 3 1.80000+ 1 2.90000+ 1 6.11932- 5 1.94562- 3 1.80000+ 1 3.00000+ 1 7.48633- 5 1.95205- 3 1.80000+ 1 4.10000+ 1 4.62190- 5 1.97645- 3 1.90000+ 1 1.90000+ 1 1.04845- 3 1.69826- 3 1.90000+ 1 2.10000+ 1 7.46393- 4 1.83945- 3 1.90000+ 1 2.20000+ 1 1.78671- 3 1.84874- 3 1.90000+ 1 2.40000+ 1 4.72962- 4 2.02209- 3 1.90000+ 1 2.50000+ 1 8.79183- 4 2.02351- 3 1.90000+ 1 2.70000+ 1 1.17442- 3 1.97328- 3 1.90000+ 1 2.90000+ 1 8.69096- 5 1.99674- 3 1.90000+ 1 3.00000+ 1 2.07022- 4 2.00317- 3 1.90000+ 1 4.10000+ 1 8.07252- 5 2.02757- 3 2.10000+ 1 2.10000+ 1 1.42119- 4 1.98064- 3 2.10000+ 1 2.20000+ 1 6.80812- 4 1.98993- 3 2.10000+ 1 2.40000+ 1 4.33584- 4 2.16328- 3 2.10000+ 1 2.50000+ 1 3.17363- 3 2.16470- 3 2.10000+ 1 2.70000+ 1 1.27555- 3 2.11447- 3 2.10000+ 1 2.90000+ 1 4.12613- 5 2.13793- 3 2.10000+ 1 3.00000+ 1 7.00793- 5 2.14436- 3 2.10000+ 1 4.10000+ 1 8.74349- 5 2.16876- 3 2.20000+ 1 2.20000+ 1 3.76663- 4 1.99922- 3 2.20000+ 1 2.40000+ 1 3.08489- 3 2.17257- 3 2.20000+ 1 2.50000+ 1 1.74965- 3 2.17399- 3 2.20000+ 1 2.70000+ 1 1.79093- 3 2.12376- 3 2.20000+ 1 2.90000+ 1 2.45284- 5 2.14722- 3 2.20000+ 1 3.00000+ 1 1.63957- 4 2.15365- 3 2.20000+ 1 4.10000+ 1 1.22644- 4 2.17805- 3 2.40000+ 1 2.40000+ 1 4.06889- 4 2.34592- 3 2.40000+ 1 2.50000+ 1 2.95370- 3 2.34734- 3 2.40000+ 1 2.70000+ 1 5.81660- 4 2.29711- 3 2.40000+ 1 2.90000+ 1 7.16107- 6 2.32057- 3 2.40000+ 1 3.00000+ 1 3.67837- 5 2.32700- 3 2.40000+ 1 4.10000+ 1 3.93850- 5 2.35140- 3 2.50000+ 1 2.50000+ 1 9.60038- 4 2.34876- 3 2.50000+ 1 2.70000+ 1 7.26379- 4 2.29853- 3 2.50000+ 1 2.90000+ 1 4.88157- 5 2.32199- 3 2.50000+ 1 3.00000+ 1 6.89929- 5 2.32842- 3 2.50000+ 1 4.10000+ 1 4.94665- 5 2.35282- 3 2.70000+ 1 2.70000+ 1 1.22764- 4 2.24830- 3 2.70000+ 1 2.90000+ 1 1.67347- 4 2.27176- 3 2.70000+ 1 3.00000+ 1 2.71361- 4 2.27819- 3 2.70000+ 1 4.10000+ 1 1.74451- 5 2.30259- 3 2.90000+ 1 2.90000+ 1 6.99410- 6 2.29522- 3 2.90000+ 1 3.00000+ 1 1.86510- 5 2.30165- 3 2.90000+ 1 4.10000+ 1 1.39877- 5 2.32605- 3 3.00000+ 1 3.00000+ 1 3.34087- 5 2.30808- 3 3.00000+ 1 4.10000+ 1 3.12530- 5 2.33248- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.50875- 4 5.82600- 4 1.60000+ 1 5.43144- 4 1.68970- 3 2.10000+ 1 2.78382- 3 1.96697- 3 2.70000+ 1 1.00751- 4 2.10080- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 8.33332- 3 3.17700- 5 1.10000+ 1 2.20000+ 1 2.05054- 2 4.10600- 5 1.10000+ 1 2.40000+ 1 2.59211- 2 2.14410- 4 1.10000+ 1 2.50000+ 1 2.66390- 2 2.15830- 4 1.10000+ 1 2.70000+ 1 3.45162- 3 1.65600- 4 1.10000+ 1 2.90000+ 1 3.61819- 3 1.89060- 4 1.10000+ 1 3.00000+ 1 3.21550- 3 1.95490- 4 1.10000+ 1 4.10000+ 1 2.35571- 4 2.19890- 4 1.30000+ 1 1.60000+ 1 6.11101- 2 1.11600- 4 1.30000+ 1 1.80000+ 1 6.10758- 2 1.96560- 4 1.30000+ 1 1.90000+ 1 7.21075- 2 2.47680- 4 1.30000+ 1 2.10000+ 1 2.52466- 2 3.88870- 4 1.30000+ 1 2.20000+ 1 2.91209- 2 3.98160- 4 1.30000+ 1 2.40000+ 1 1.24240- 1 5.71510- 4 1.30000+ 1 2.50000+ 1 1.86011- 1 5.72930- 4 1.30000+ 1 2.70000+ 1 9.54376- 3 5.22700- 4 1.30000+ 1 2.90000+ 1 6.56234- 3 5.46160- 4 1.30000+ 1 3.00000+ 1 8.06546- 3 5.52590- 4 1.30000+ 1 4.10000+ 1 6.81167- 4 5.76990- 4 1.40000+ 1 1.60000+ 1 1.02177- 2 1.61200- 4 1.40000+ 1 1.80000+ 1 6.98344- 2 2.46160- 4 1.40000+ 1 1.90000+ 1 6.43195- 3 2.97280- 4 1.40000+ 1 2.10000+ 1 1.08902- 3 4.38470- 4 1.40000+ 1 2.20000+ 1 3.39948- 3 4.47760- 4 1.40000+ 1 2.40000+ 1 4.05820- 3 6.21110- 4 1.40000+ 1 2.50000+ 1 3.11636- 3 6.22530- 4 1.40000+ 1 2.70000+ 1 1.06474- 3 5.72300- 4 1.40000+ 1 2.90000+ 1 6.06666- 3 5.95760- 4 1.40000+ 1 3.00000+ 1 6.58780- 4 6.02190- 4 1.40000+ 1 4.10000+ 1 7.34736- 5 6.26590- 4 1.60000+ 1 1.60000+ 1 9.02832- 4 1.21870- 3 1.60000+ 1 1.80000+ 1 1.25815- 2 1.30366- 3 1.60000+ 1 1.90000+ 1 1.91235- 3 1.35478- 3 1.60000+ 1 2.10000+ 1 4.03302- 4 1.49597- 3 1.60000+ 1 2.20000+ 1 1.45015- 3 1.50526- 3 1.60000+ 1 2.40000+ 1 5.43392- 5 1.67861- 3 1.60000+ 1 2.50000+ 1 7.57476- 4 1.68003- 3 1.60000+ 1 2.70000+ 1 2.23249- 4 1.62980- 3 1.60000+ 1 2.90000+ 1 1.05865- 3 1.65326- 3 1.60000+ 1 3.00000+ 1 2.01646- 4 1.65969- 3 1.60000+ 1 4.10000+ 1 1.57129- 5 1.68409- 3 1.80000+ 1 1.80000+ 1 9.32869- 3 1.38862- 3 1.80000+ 1 1.90000+ 1 2.74104- 2 1.43974- 3 1.80000+ 1 2.10000+ 1 2.60785- 2 1.58093- 3 1.80000+ 1 2.20000+ 1 4.23636- 2 1.59022- 3 1.80000+ 1 2.40000+ 1 1.06896- 2 1.76357- 3 1.80000+ 1 2.50000+ 1 1.81288- 2 1.76499- 3 1.80000+ 1 2.70000+ 1 1.94516- 3 1.71476- 3 1.80000+ 1 2.90000+ 1 1.97106- 3 1.73822- 3 1.80000+ 1 3.00000+ 1 3.16543- 3 1.74465- 3 1.80000+ 1 4.10000+ 1 1.39909- 4 1.76905- 3 1.90000+ 1 1.90000+ 1 7.60186- 4 1.49086- 3 1.90000+ 1 2.10000+ 1 2.05462- 3 1.63205- 3 1.90000+ 1 2.20000+ 1 1.66350- 3 1.64134- 3 1.90000+ 1 2.40000+ 1 7.70823- 3 1.81469- 3 1.90000+ 1 2.50000+ 1 2.14266- 3 1.81611- 3 1.90000+ 1 2.70000+ 1 1.98144- 4 1.76588- 3 1.90000+ 1 2.90000+ 1 2.35762- 3 1.78934- 3 1.90000+ 1 3.00000+ 1 1.49578- 4 1.79577- 3 1.90000+ 1 4.10000+ 1 1.35978- 5 1.82017- 3 2.10000+ 1 2.10000+ 1 8.79223- 4 1.77324- 3 2.10000+ 1 2.20000+ 1 2.52573- 3 1.78253- 3 2.10000+ 1 2.40000+ 1 9.44024- 4 1.95588- 3 2.10000+ 1 2.50000+ 1 1.73617- 3 1.95730- 3 2.10000+ 1 2.70000+ 1 5.76106- 5 1.90707- 3 2.10000+ 1 2.90000+ 1 2.21804- 3 1.93053- 3 2.10000+ 1 3.00000+ 1 2.08839- 4 1.93696- 3 2.10000+ 1 4.10000+ 1 3.92781- 6 1.96136- 3 2.20000+ 1 2.20000+ 1 5.93765- 4 1.79182- 3 2.20000+ 1 2.40000+ 1 3.09973- 3 1.96517- 3 2.20000+ 1 2.50000+ 1 6.56629- 4 1.96659- 3 2.20000+ 1 2.70000+ 1 1.81343- 4 1.91636- 3 2.20000+ 1 2.90000+ 1 3.65435- 3 1.93982- 3 2.20000+ 1 3.00000+ 1 1.54502- 4 1.94625- 3 2.20000+ 1 4.10000+ 1 1.24386- 5 1.97065- 3 2.40000+ 1 2.40000+ 1 1.89203- 3 2.13852- 3 2.40000+ 1 2.50000+ 1 1.21663- 2 2.13994- 3 2.40000+ 1 2.70000+ 1 2.61867- 6 2.08971- 3 2.40000+ 1 2.90000+ 1 8.39945- 4 2.11317- 3 2.40000+ 1 3.00000+ 1 8.45186- 4 2.11960- 3 2.50000+ 1 2.50000+ 1 6.29756- 4 2.14136- 3 2.50000+ 1 2.70000+ 1 1.00815- 4 2.09113- 3 2.50000+ 1 2.90000+ 1 1.41929- 3 2.11459- 3 2.50000+ 1 3.00000+ 1 2.12761- 4 2.12102- 3 2.50000+ 1 4.10000+ 1 7.20112- 6 2.14542- 3 2.70000+ 1 2.70000+ 1 1.92747- 5 2.04090- 3 2.70000+ 1 2.90000+ 1 2.33135- 4 2.06436- 3 2.70000+ 1 3.00000+ 1 3.02892- 5 2.07079- 3 2.70000+ 1 4.10000+ 1 2.75356- 6 2.09519- 3 2.90000+ 1 2.90000+ 1 2.55841- 4 2.08782- 3 2.90000+ 1 3.00000+ 1 7.05658- 4 2.09425- 3 2.90000+ 1 4.10000+ 1 3.00992- 5 2.11865- 3 3.00000+ 1 3.00000+ 1 6.48270- 5 2.10068- 3 3.00000+ 1 4.10000+ 1 1.17866- 5 2.12508- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.74335- 5 3.57100- 4 1.40000+ 1 2.41494- 4 4.06700- 4 1.60000+ 1 8.46026- 4 1.46420- 3 2.10000+ 1 4.02834- 4 1.74147- 3 2.20000+ 1 3.20007- 3 1.75076- 3 2.70000+ 1 1.52479- 4 1.87530- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 5.24318- 2 2.21800- 5 1.30000+ 1 2.10000+ 1 9.40118- 3 1.63370- 4 1.30000+ 1 2.20000+ 1 8.93756- 3 1.72660- 4 1.30000+ 1 2.40000+ 1 1.27197- 2 3.46010- 4 1.30000+ 1 2.50000+ 1 1.83507- 2 3.47430- 4 1.30000+ 1 2.70000+ 1 1.81782- 3 2.97200- 4 1.30000+ 1 2.90000+ 1 1.27850- 3 3.20660- 4 1.30000+ 1 3.00000+ 1 4.72406- 3 3.27090- 4 1.30000+ 1 4.10000+ 1 1.27308- 4 3.51490- 4 1.40000+ 1 1.80000+ 1 7.60132- 2 2.06600- 5 1.40000+ 1 1.90000+ 1 1.18312- 1 7.17800- 5 1.40000+ 1 2.10000+ 1 4.21284- 2 2.12970- 4 1.40000+ 1 2.20000+ 1 6.00053- 2 2.22260- 4 1.40000+ 1 2.40000+ 1 1.26025- 1 3.95610- 4 1.40000+ 1 2.50000+ 1 1.49788- 1 3.97030- 4 1.40000+ 1 2.70000+ 1 1.06534- 2 3.46800- 4 1.40000+ 1 2.90000+ 1 8.73597- 3 3.70260- 4 1.40000+ 1 3.00000+ 1 1.21890- 2 3.76690- 4 1.40000+ 1 4.10000+ 1 7.51122- 4 4.01090- 4 1.60000+ 1 1.60000+ 1 6.39185- 4 9.93200- 4 1.60000+ 1 1.80000+ 1 1.01210- 3 1.07816- 3 1.60000+ 1 1.90000+ 1 1.57447- 2 1.12928- 3 1.60000+ 1 2.10000+ 1 9.32308- 4 1.27047- 3 1.60000+ 1 2.20000+ 1 1.03386- 3 1.27976- 3 1.60000+ 1 2.40000+ 1 1.08248- 3 1.45311- 3 1.60000+ 1 2.50000+ 1 1.68907- 3 1.45453- 3 1.60000+ 1 2.70000+ 1 1.56715- 4 1.40430- 3 1.60000+ 1 2.90000+ 1 1.00848- 4 1.42776- 3 1.60000+ 1 3.00000+ 1 1.27260- 3 1.43419- 3 1.60000+ 1 4.10000+ 1 1.08831- 5 1.45859- 3 1.80000+ 1 1.80000+ 1 1.05926- 4 1.16312- 3 1.80000+ 1 1.90000+ 1 1.87731- 2 1.21424- 3 1.80000+ 1 2.10000+ 1 4.34579- 4 1.35543- 3 1.80000+ 1 2.20000+ 1 3.55348- 3 1.36472- 3 1.80000+ 1 2.40000+ 1 1.22974- 3 1.53807- 3 1.80000+ 1 2.50000+ 1 7.03108- 3 1.53949- 3 1.80000+ 1 2.70000+ 1 1.11002- 4 1.48926- 3 1.80000+ 1 2.90000+ 1 1.95890- 5 1.51272- 3 1.80000+ 1 3.00000+ 1 1.53810- 3 1.51915- 3 1.80000+ 1 4.10000+ 1 7.98076- 6 1.54355- 3 1.90000+ 1 1.90000+ 1 2.59616- 2 1.26536- 3 1.90000+ 1 2.10000+ 1 3.61229- 2 1.40655- 3 1.90000+ 1 2.20000+ 1 4.78745- 2 1.41584- 3 1.90000+ 1 2.40000+ 1 2.11949- 2 1.58919- 3 1.90000+ 1 2.50000+ 1 2.39345- 2 1.59061- 3 1.90000+ 1 2.70000+ 1 2.41235- 3 1.54038- 3 1.90000+ 1 2.90000+ 1 2.29116- 3 1.56384- 3 1.90000+ 1 3.00000+ 1 5.10337- 3 1.57027- 3 1.90000+ 1 4.10000+ 1 1.72669- 4 1.59467- 3 2.10000+ 1 2.10000+ 1 2.34338- 4 1.54774- 3 2.10000+ 1 2.20000+ 1 4.90724- 3 1.55703- 3 2.10000+ 1 2.40000+ 1 5.12933- 4 1.73038- 3 2.10000+ 1 2.50000+ 1 6.20673- 3 1.73180- 3 2.10000+ 1 2.70000+ 1 9.35909- 5 1.68157- 3 2.10000+ 1 2.90000+ 1 2.97424- 5 1.70503- 3 2.10000+ 1 3.00000+ 1 2.92972- 3 1.71146- 3 2.10000+ 1 4.10000+ 1 6.52936- 6 1.73586- 3 2.20000+ 1 2.20000+ 1 2.30427- 3 1.56632- 3 2.20000+ 1 2.40000+ 1 5.03066- 3 1.73967- 3 2.20000+ 1 2.50000+ 1 4.29070- 3 1.74109- 3 2.20000+ 1 2.70000+ 1 1.05201- 4 1.69086- 3 2.20000+ 1 2.90000+ 1 2.69163- 4 1.71432- 3 2.20000+ 1 3.00000+ 1 3.84455- 3 1.72075- 3 2.20000+ 1 4.10000+ 1 7.25529- 6 1.74515- 3 2.40000+ 1 2.40000+ 1 5.59362- 4 1.91302- 3 2.40000+ 1 2.50000+ 1 1.51013- 2 1.91444- 3 2.40000+ 1 2.70000+ 1 1.03751- 4 1.86421- 3 2.40000+ 1 2.90000+ 1 1.26968- 4 1.88767- 3 2.40000+ 1 3.00000+ 1 1.64114- 3 1.89410- 3 2.40000+ 1 4.10000+ 1 7.25530- 6 1.91850- 3 2.50000+ 1 2.50000+ 1 5.80865- 3 1.91586- 3 2.50000+ 1 2.70000+ 1 1.31319- 4 1.86563- 3 2.50000+ 1 2.90000+ 1 7.29163- 4 1.88909- 3 2.50000+ 1 3.00000+ 1 1.90596- 3 1.89552- 3 2.50000+ 1 4.10000+ 1 8.70624- 6 1.91992- 3 2.70000+ 1 2.70000+ 1 1.77292- 5 1.81540- 3 2.70000+ 1 2.90000+ 1 2.02618- 5 1.83886- 3 2.70000+ 1 3.00000+ 1 3.40652- 4 1.84529- 3 2.70000+ 1 4.10000+ 1 2.53268- 6 1.86969- 3 2.90000+ 1 2.90000+ 1 1.55384- 6 1.86232- 3 2.90000+ 1 3.00000+ 1 4.03997- 4 1.86875- 3 2.90000+ 1 4.10000+ 1 1.55384- 6 1.89315- 3 3.00000+ 1 3.00000+ 1 1.43547- 3 1.87518- 3 3.00000+ 1 4.10000+ 1 8.14148- 5 1.89958- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.55239- 3 1.19206- 3 1.90000+ 1 2.87578- 4 1.24318- 3 2.40000+ 1 1.07589- 2 1.56701- 3 2.90000+ 1 5.41077- 4 1.54166- 3 3.00000+ 1 6.04237- 5 1.54809- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.09879- 1 3.85100- 5 1.40000+ 1 2.50000+ 1 1.49972- 2 3.99300- 5 1.40000+ 1 2.90000+ 1 5.54072- 4 1.31600- 5 1.40000+ 1 3.00000+ 1 1.43244- 3 1.95900- 5 1.40000+ 1 4.10000+ 1 9.63445- 5 4.39900- 5 1.60000+ 1 1.60000+ 1 3.79683- 5 6.36100- 4 1.60000+ 1 1.80000+ 1 2.01247- 3 7.21060- 4 1.60000+ 1 1.90000+ 1 1.38677- 3 7.72180- 4 1.60000+ 1 2.10000+ 1 4.91573- 2 9.13370- 4 1.60000+ 1 2.20000+ 1 5.89584- 3 9.22660- 4 1.60000+ 1 2.40000+ 1 1.39834- 2 1.09601- 3 1.60000+ 1 2.50000+ 1 4.41693- 3 1.09743- 3 1.60000+ 1 2.70000+ 1 2.16964- 5 1.04720- 3 1.60000+ 1 2.90000+ 1 1.97068- 4 1.07066- 3 1.60000+ 1 3.00000+ 1 1.10292- 4 1.07709- 3 1.60000+ 1 4.10000+ 1 1.80806- 6 1.10149- 3 1.80000+ 1 1.80000+ 1 1.15534- 3 8.06020- 4 1.80000+ 1 1.90000+ 1 7.32223- 3 8.57140- 4 1.80000+ 1 2.10000+ 1 4.27255- 2 9.98330- 4 1.80000+ 1 2.20000+ 1 3.46597- 3 1.00762- 3 1.80000+ 1 2.40000+ 1 8.73426- 3 1.18097- 3 1.80000+ 1 2.50000+ 1 4.43862- 3 1.18239- 3 1.80000+ 1 2.70000+ 1 2.13346- 4 1.13216- 3 1.80000+ 1 2.90000+ 1 2.29609- 4 1.15562- 3 1.80000+ 1 3.00000+ 1 6.47261- 4 1.16205- 3 1.80000+ 1 4.10000+ 1 1.44644- 5 1.18645- 3 1.90000+ 1 1.90000+ 1 2.63784- 3 9.08260- 4 1.90000+ 1 2.10000+ 1 8.96740- 2 1.04945- 3 1.90000+ 1 2.20000+ 1 3.36645- 3 1.05874- 3 1.90000+ 1 2.40000+ 1 4.74963- 3 1.23209- 3 1.90000+ 1 2.50000+ 1 2.50765- 3 1.23351- 3 1.90000+ 1 2.70000+ 1 1.64526- 4 1.18328- 3 1.90000+ 1 2.90000+ 1 6.20153- 4 1.20674- 3 1.90000+ 1 3.00000+ 1 4.48377- 4 1.21317- 3 1.90000+ 1 4.10000+ 1 1.08476- 5 1.23757- 3 2.10000+ 1 2.10000+ 1 7.63066- 2 1.19064- 3 2.10000+ 1 2.20000+ 1 1.53748- 1 1.19993- 3 2.10000+ 1 2.40000+ 1 5.48347- 2 1.37328- 3 2.10000+ 1 2.50000+ 1 6.80397- 2 1.37470- 3 2.10000+ 1 2.70000+ 1 6.99139- 3 1.32447- 3 2.10000+ 1 2.90000+ 1 5.23961- 3 1.34793- 3 2.10000+ 1 3.00000+ 1 1.00890- 2 1.35436- 3 2.10000+ 1 4.10000+ 1 4.99014- 4 1.37876- 3 2.20000+ 1 2.20000+ 1 2.51310- 3 1.20922- 3 2.20000+ 1 2.40000+ 1 5.75624- 2 1.38257- 3 2.20000+ 1 2.50000+ 1 3.15861- 3 1.38399- 3 2.20000+ 1 2.70000+ 1 4.82727- 4 1.33376- 3 2.20000+ 1 2.90000+ 1 2.85659- 4 1.35722- 3 2.20000+ 1 3.00000+ 1 3.14597- 4 1.36365- 3 2.20000+ 1 4.10000+ 1 3.25434- 5 1.38805- 3 2.40000+ 1 2.40000+ 1 4.07702- 2 1.55592- 3 2.40000+ 1 2.50000+ 1 1.17585- 1 1.55734- 3 2.40000+ 1 2.70000+ 1 2.03952- 3 1.50711- 3 2.40000+ 1 2.90000+ 1 8.89595- 4 1.53057- 3 2.40000+ 1 3.00000+ 1 5.26145- 4 1.53700- 3 2.40000+ 1 4.10000+ 1 1.48262- 4 1.56140- 3 2.50000+ 1 2.50000+ 1 3.03210- 3 1.55876- 3 2.50000+ 1 2.70000+ 1 5.75333- 4 1.50853- 3 2.50000+ 1 2.90000+ 1 3.26524- 4 1.53199- 3 2.50000+ 1 3.00000+ 1 3.15433- 4 1.53842- 3 2.50000+ 1 4.10000+ 1 3.99837- 5 1.56282- 3 2.70000+ 1 2.70000+ 1 1.97697- 5 1.45830- 3 2.70000+ 1 2.90000+ 1 2.37232- 4 1.48176- 3 2.70000+ 1 3.00000+ 1 1.58156- 4 1.48819- 3 2.90000+ 1 2.90000+ 1 1.27707- 4 1.50522- 3 2.90000+ 1 3.00000+ 1 5.83824- 4 1.51165- 3 2.90000+ 1 4.10000+ 1 1.82451- 5 1.53605- 3 3.00000+ 1 3.00000+ 1 9.17941- 4 1.51808- 3 3.00000+ 1 4.10000+ 1 8.34536- 5 1.54248- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.32810- 3 1.19358- 3 2.40000+ 1 6.06901- 4 1.51741- 3 2.50000+ 1 1.17530- 2 1.51883- 3 3.00000+ 1 6.10111- 4 1.49849- 3 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.02369- 6 5.86500- 4 1.60000+ 1 1.80000+ 1 4.96924- 4 6.71460- 4 1.60000+ 1 1.90000+ 1 3.54082- 3 7.22580- 4 1.60000+ 1 2.10000+ 1 5.28313- 3 8.63770- 4 1.60000+ 1 2.20000+ 1 5.85692- 2 8.73060- 4 1.60000+ 1 2.40000+ 1 4.87672- 3 1.04641- 3 1.60000+ 1 2.50000+ 1 1.63663- 2 1.04783- 3 1.60000+ 1 2.70000+ 1 1.40827- 5 9.97600- 4 1.60000+ 1 2.90000+ 1 2.41421- 5 1.02106- 3 1.60000+ 1 3.00000+ 1 2.97761- 4 1.02749- 3 1.60000+ 1 4.10000+ 1 2.01190- 6 1.05189- 3 1.80000+ 1 1.80000+ 1 8.04709- 6 7.56420- 4 1.80000+ 1 1.90000+ 1 8.80571- 3 8.07540- 4 1.80000+ 1 2.10000+ 1 4.84843- 4 9.48730- 4 1.80000+ 1 2.20000+ 1 5.91655- 2 9.58020- 4 1.80000+ 1 2.40000+ 1 2.25131- 3 1.13137- 3 1.80000+ 1 2.50000+ 1 8.13801- 3 1.13279- 3 1.80000+ 1 2.70000+ 1 5.02958- 5 1.08256- 3 1.80000+ 1 2.90000+ 1 4.02365- 6 1.10602- 3 1.80000+ 1 3.00000+ 1 7.34316- 4 1.11245- 3 1.80000+ 1 4.10000+ 1 4.02365- 6 1.13685- 3 1.90000+ 1 1.90000+ 1 6.56831- 3 8.58660- 4 1.90000+ 1 2.10000+ 1 5.55033- 3 9.99850- 4 1.90000+ 1 2.20000+ 1 9.28799- 2 1.00914- 3 1.90000+ 1 2.40000+ 1 3.10411- 3 1.18249- 3 1.90000+ 1 2.50000+ 1 6.85204- 3 1.18391- 3 1.90000+ 1 2.70000+ 1 4.24474- 4 1.13368- 3 1.90000+ 1 2.90000+ 1 7.30254- 4 1.15714- 3 1.90000+ 1 3.00000+ 1 1.13055- 3 1.16357- 3 1.90000+ 1 4.10000+ 1 3.01758- 5 1.18797- 3 2.10000+ 1 2.10000+ 1 1.19298- 3 1.14104- 3 2.10000+ 1 2.20000+ 1 1.22003- 1 1.15033- 3 2.10000+ 1 2.40000+ 1 2.93728- 3 1.32368- 3 2.10000+ 1 2.50000+ 1 3.89672- 2 1.32510- 3 2.10000+ 1 2.70000+ 1 4.18466- 4 1.27487- 3 2.10000+ 1 2.90000+ 1 6.23666- 5 1.29833- 3 2.10000+ 1 3.00000+ 1 4.70763- 4 1.30476- 3 2.10000+ 1 4.10000+ 1 2.81662- 5 1.32916- 3 2.20000+ 1 2.20000+ 1 1.38181- 1 1.15962- 3 2.20000+ 1 2.40000+ 1 6.67157- 2 1.33297- 3 2.20000+ 1 2.50000+ 1 1.01203- 1 1.33439- 3 2.20000+ 1 2.70000+ 1 8.06335- 3 1.28416- 3 2.20000+ 1 2.90000+ 1 6.99514- 3 1.30762- 3 2.20000+ 1 3.00000+ 1 1.05295- 2 1.31405- 3 2.20000+ 1 4.10000+ 1 5.73380- 4 1.33845- 3 2.40000+ 1 2.40000+ 1 3.55904- 3 1.50632- 3 2.40000+ 1 2.50000+ 1 1.12963- 1 1.50774- 3 2.40000+ 1 2.70000+ 1 5.47225- 4 1.45751- 3 2.40000+ 1 2.90000+ 1 2.47463- 4 1.48097- 3 2.40000+ 1 3.00000+ 1 2.75628- 4 1.48740- 3 2.40000+ 1 4.10000+ 1 3.82253- 5 1.51180- 3 2.50000+ 1 2.50000+ 1 7.61237- 2 1.50916- 3 2.50000+ 1 2.70000+ 1 2.31161- 3 1.45893- 3 2.50000+ 1 2.90000+ 1 9.53623- 4 1.48239- 3 2.50000+ 1 3.00000+ 1 7.08170- 4 1.48882- 3 2.50000+ 1 4.10000+ 1 1.68991- 4 1.51322- 3 2.70000+ 1 2.70000+ 1 2.97876- 5 1.40870- 3 2.70000+ 1 2.90000+ 1 2.97876- 5 1.43216- 3 2.70000+ 1 3.00000+ 1 5.65945- 4 1.43859- 3 2.90000+ 1 3.00000+ 1 5.56011- 4 1.46205- 3 3.00000+ 1 3.00000+ 1 8.58058- 4 1.46848- 3 3.00000+ 1 4.10000+ 1 3.43231- 5 1.49288- 3 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.78923- 5 8.49600- 5 1.90000+ 1 1.52063- 4 1.36080- 4 2.90000+ 1 7.63311- 5 4.34560- 4 3.00000+ 1 4.80976- 5 4.40990- 4 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.96156- 2 7.38700- 5 1.80000+ 1 2.50000+ 1 4.12834- 2 7.52900- 5 1.80000+ 1 2.70000+ 1 3.57906- 2 2.50600- 5 1.80000+ 1 2.90000+ 1 2.87513- 2 4.85200- 5 1.80000+ 1 3.00000+ 1 5.37838- 2 5.49500- 5 1.80000+ 1 4.10000+ 1 2.46051- 3 7.93500- 5 1.90000+ 1 2.40000+ 1 1.45222- 1 1.24990- 4 1.90000+ 1 2.50000+ 1 1.75847- 1 1.26410- 4 1.90000+ 1 2.70000+ 1 4.23158- 2 7.61800- 5 1.90000+ 1 2.90000+ 1 4.32245- 2 9.96400- 5 1.90000+ 1 3.00000+ 1 5.12723- 2 1.06070- 4 1.90000+ 1 4.10000+ 1 2.94060- 3 1.30470- 4 2.10000+ 1 2.10000+ 1 3.67933- 3 8.35400- 5 2.10000+ 1 2.20000+ 1 1.46701- 2 9.28300- 5 2.10000+ 1 2.40000+ 1 5.01049- 3 2.66180- 4 2.10000+ 1 2.50000+ 1 1.16010- 2 2.67600- 4 2.10000+ 1 2.70000+ 1 1.45080- 2 2.17370- 4 2.10000+ 1 2.90000+ 1 3.07514- 3 2.40830- 4 2.10000+ 1 3.00000+ 1 7.64568- 3 2.47260- 4 2.10000+ 1 4.10000+ 1 8.54900- 4 2.71660- 4 2.20000+ 1 2.20000+ 1 8.47024- 3 1.02120- 4 2.20000+ 1 2.40000+ 1 1.33173- 2 2.75470- 4 2.20000+ 1 2.50000+ 1 1.17236- 2 2.76890- 4 2.20000+ 1 2.70000+ 1 2.08638- 2 2.26660- 4 2.20000+ 1 2.90000+ 1 7.82595- 3 2.50120- 4 2.20000+ 1 3.00000+ 1 7.26602- 3 2.56550- 4 2.20000+ 1 4.10000+ 1 1.22505- 3 2.80950- 4 2.40000+ 1 2.40000+ 1 5.39783- 3 4.48820- 4 2.40000+ 1 2.50000+ 1 1.23971- 2 4.50240- 4 2.40000+ 1 2.70000+ 1 1.31566- 2 4.00010- 4 2.40000+ 1 2.90000+ 1 1.55648- 3 4.23470- 4 2.40000+ 1 3.00000+ 1 4.07065- 3 4.29900- 4 2.40000+ 1 4.10000+ 1 7.14413- 4 4.54300- 4 2.50000+ 1 2.50000+ 1 8.90863- 3 4.51660- 4 2.50000+ 1 2.70000+ 1 1.69025- 2 4.01430- 4 2.50000+ 1 2.90000+ 1 9.38159- 4 4.24890- 4 2.50000+ 1 3.00000+ 1 5.04318- 3 4.31320- 4 2.50000+ 1 4.10000+ 1 9.16445- 4 4.55720- 4 2.70000+ 1 2.70000+ 1 2.32596- 2 3.51200- 4 2.70000+ 1 2.90000+ 1 2.81631- 2 3.74660- 4 2.70000+ 1 3.00000+ 1 4.62640- 2 3.81090- 4 2.70000+ 1 4.10000+ 1 2.95609- 3 4.05490- 4 2.90000+ 1 2.90000+ 1 4.20776- 3 3.98120- 4 2.90000+ 1 3.00000+ 1 1.73982- 2 4.04550- 4 2.90000+ 1 4.10000+ 1 3.05272- 3 4.28950- 4 3.00000+ 1 3.00000+ 1 1.45270- 2 4.10980- 4 3.00000+ 1 4.10000+ 1 5.63058- 3 4.35380- 4 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.10008- 4 1.92310- 4 2.70000+ 1 1.15685- 4 3.26140- 4 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 6.37623- 2 4.00300- 5 1.90000+ 1 2.50000+ 1 4.87835- 2 4.14500- 5 1.90000+ 1 2.90000+ 1 9.37766- 3 1.46800- 5 1.90000+ 1 3.00000+ 1 8.76265- 3 2.11100- 5 1.90000+ 1 4.10000+ 1 9.04386- 4 4.55100- 5 2.10000+ 1 2.10000+ 1 2.04607- 2 0.00000+ 0 2.10000+ 1 2.20000+ 1 2.39714- 1 7.87000- 6 2.10000+ 1 2.40000+ 1 9.99961- 2 1.81220- 4 2.10000+ 1 2.50000+ 1 2.08286- 1 1.82640- 4 2.10000+ 1 2.70000+ 1 2.12561- 2 1.32410- 4 2.10000+ 1 2.90000+ 1 1.48812- 2 1.55870- 4 2.10000+ 1 3.00000+ 1 2.44195- 2 1.62300- 4 2.10000+ 1 4.10000+ 1 1.51904- 3 1.86700- 4 2.20000+ 1 2.20000+ 1 1.48240- 2 1.71600- 5 2.20000+ 1 2.40000+ 1 3.63624- 2 1.90510- 4 2.20000+ 1 2.50000+ 1 9.50266- 3 1.91930- 4 2.20000+ 1 2.70000+ 1 4.91378- 3 1.41700- 4 2.20000+ 1 2.90000+ 1 2.00308- 2 1.65160- 4 2.20000+ 1 3.00000+ 1 4.03278- 3 1.71590- 4 2.20000+ 1 4.10000+ 1 3.06054- 4 1.95990- 4 2.40000+ 1 2.40000+ 1 2.90098- 3 3.63860- 4 2.40000+ 1 2.50000+ 1 1.98699- 2 3.65280- 4 2.40000+ 1 2.70000+ 1 3.29096- 3 3.15050- 4 2.40000+ 1 2.90000+ 1 1.26652- 2 3.38510- 4 2.40000+ 1 3.00000+ 1 3.51614- 3 3.44940- 4 2.40000+ 1 4.10000+ 1 2.30926- 4 3.69340- 4 2.50000+ 1 2.50000+ 1 1.13874- 3 3.66700- 4 2.50000+ 1 2.70000+ 1 2.54338- 3 3.16470- 4 2.50000+ 1 2.90000+ 1 2.93102- 2 3.39930- 4 2.50000+ 1 3.00000+ 1 1.96801- 3 3.46360- 4 2.50000+ 1 4.10000+ 1 1.52838- 4 3.70760- 4 2.70000+ 1 2.70000+ 1 4.64334- 4 2.66240- 4 2.70000+ 1 2.90000+ 1 6.95989- 3 2.89700- 4 2.70000+ 1 3.00000+ 1 1.13283- 3 2.96130- 4 2.70000+ 1 4.10000+ 1 5.70850- 5 3.20530- 4 2.90000+ 1 2.90000+ 1 1.51080- 2 3.13160- 4 2.90000+ 1 3.00000+ 1 4.09099- 2 3.19590- 4 2.90000+ 1 4.10000+ 1 1.95833- 3 3.43990- 4 3.00000+ 1 3.00000+ 1 2.65817- 3 3.26020- 4 3.00000+ 1 4.10000+ 1 4.43044- 4 3.50420- 4 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.29604- 5 1.41190- 4 2.20000+ 1 1.43323- 4 1.50480- 4 2.70000+ 1 7.28077- 5 2.75020- 4 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.96994- 2 1.30100- 4 2.10000+ 1 2.50000+ 1 5.61230- 2 1.31520- 4 2.10000+ 1 2.70000+ 1 1.15373- 2 8.12900- 5 2.10000+ 1 2.90000+ 1 8.58666- 3 1.04750- 4 2.10000+ 1 3.00000+ 1 3.10480- 2 1.11180- 4 2.10000+ 1 4.10000+ 1 7.95248- 4 1.35580- 4 2.20000+ 1 2.40000+ 1 2.60101- 1 1.39390- 4 2.20000+ 1 2.50000+ 1 2.71994- 1 1.40810- 4 2.20000+ 1 2.70000+ 1 5.97415- 2 9.05800- 5 2.20000+ 1 2.90000+ 1 5.78397- 2 1.14040- 4 2.20000+ 1 3.00000+ 1 8.02099- 2 1.20470- 4 2.20000+ 1 4.10000+ 1 4.26305- 3 1.44870- 4 2.40000+ 1 2.40000+ 1 8.06318- 4 3.12740- 4 2.40000+ 1 2.50000+ 1 2.23587- 2 3.14160- 4 2.40000+ 1 2.70000+ 1 4.44342- 3 2.63930- 4 2.40000+ 1 2.90000+ 1 1.87594- 3 2.87390- 4 2.40000+ 1 3.00000+ 1 2.65330- 2 2.93820- 4 2.40000+ 1 4.10000+ 1 2.44473- 4 3.18220- 4 2.50000+ 1 2.50000+ 1 9.14347- 3 3.15580- 4 2.50000+ 1 2.70000+ 1 9.29385- 3 2.65350- 4 2.50000+ 1 2.90000+ 1 7.34756- 3 2.88810- 4 2.50000+ 1 3.00000+ 1 3.18180- 2 2.95240- 4 2.50000+ 1 4.10000+ 1 5.62959- 4 3.19640- 4 2.70000+ 1 2.70000+ 1 1.09287- 5 2.15120- 4 2.70000+ 1 2.90000+ 1 3.14406- 4 2.38580- 4 2.70000+ 1 3.00000+ 1 5.95873- 3 2.45010- 4 2.70000+ 1 4.10000+ 1 2.52198- 6 2.69410- 4 2.90000+ 1 2.90000+ 1 2.46034- 5 2.62040- 4 2.90000+ 1 3.00000+ 1 3.89741- 3 2.68470- 4 2.90000+ 1 4.10000+ 1 1.34739- 5 2.92870- 4 3.00000+ 1 3.00000+ 1 1.24345- 2 2.74900- 4 3.00000+ 1 4.10000+ 1 7.48426- 4 2.99300- 4 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 5.18078- 5 1.82640- 4 2.90000+ 1 1.49867- 5 1.57290- 4 3.00000+ 1 2.25223- 6 1.63720- 4 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 2.40000+ 1 3.71627- 2 0.00000+ 0 2.20000+ 1 2.50000+ 1 3.95859- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 8.16340- 5 3.68000- 6 2.40000+ 1 2.40000+ 1 1.76773- 1 1.71550- 4 2.40000+ 1 2.50000+ 1 5.44377- 1 1.72970- 4 2.40000+ 1 2.70000+ 1 5.78134- 2 1.22740- 4 2.40000+ 1 2.90000+ 1 4.64905- 2 1.46200- 4 2.40000+ 1 3.00000+ 1 6.88675- 2 1.52630- 4 2.40000+ 1 4.10000+ 1 4.18715- 3 1.77030- 4 2.50000+ 1 2.50000+ 1 6.43234- 3 1.74390- 4 2.50000+ 1 2.70000+ 1 6.29285- 3 1.24160- 4 2.50000+ 1 2.90000+ 1 1.57366- 2 1.47620- 4 2.50000+ 1 3.00000+ 1 5.09632- 3 1.54050- 4 2.50000+ 1 4.10000+ 1 3.84792- 4 1.78450- 4 2.70000+ 1 2.70000+ 1 2.16970- 3 7.39300- 5 2.70000+ 1 2.90000+ 1 2.16236- 3 9.73900- 5 2.70000+ 1 3.00000+ 1 2.44743- 3 1.03820- 4 2.70000+ 1 4.10000+ 1 1.76599- 4 1.28220- 4 2.90000+ 1 2.90000+ 1 3.19355- 3 1.20850- 4 2.90000+ 1 3.00000+ 1 9.25101- 3 1.27280- 4 2.90000+ 1 4.10000+ 1 3.77418- 4 1.51680- 4 3.00000+ 1 3.00000+ 1 5.99319- 3 1.33710- 4 3.00000+ 1 4.10000+ 1 5.05496- 4 1.58110- 4 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.51291- 6 1.73350- 4 2.50000+ 1 5.17482- 5 1.74770- 4 3.00000+ 1 1.49541- 5 1.54430- 4 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.16724- 2 1.62260- 4 2.40000+ 1 2.50000+ 1 4.33584- 1 1.63680- 4 2.40000+ 1 2.70000+ 1 8.38948- 3 1.13450- 4 2.40000+ 1 2.90000+ 1 4.58888- 3 1.36910- 4 2.40000+ 1 3.00000+ 1 1.44973- 2 1.43340- 4 2.40000+ 1 4.10000+ 1 5.50098- 4 1.67740- 4 2.50000+ 1 2.50000+ 1 3.14890- 1 1.65100- 4 2.50000+ 1 2.70000+ 1 6.29519- 2 1.14870- 4 2.50000+ 1 2.90000+ 1 6.08117- 2 1.38330- 4 2.50000+ 1 3.00000+ 1 7.25656- 2 1.44760- 4 2.50000+ 1 4.10000+ 1 4.56280- 3 1.69160- 4 2.70000+ 1 2.70000+ 1 2.37571- 3 6.46400- 5 2.70000+ 1 2.90000+ 1 1.28945- 3 8.81000- 5 2.70000+ 1 3.00000+ 1 3.21248- 3 9.45300- 5 2.70000+ 1 4.10000+ 1 1.88393- 4 1.18930- 4 2.90000+ 1 2.90000+ 1 2.52797- 4 1.11560- 4 2.90000+ 1 3.00000+ 1 2.18367- 3 1.17990- 4 2.90000+ 1 4.10000+ 1 5.18417- 5 1.42390- 4 3.00000+ 1 3.00000+ 1 1.18671- 3 1.24420- 4 3.00000+ 1 4.10000+ 1 1.24996- 4 1.48820- 4 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.27962- 7 2.34600- 5 3.00000+ 1 9.57647- 7 2.98900- 5 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.16753- 1 1.78500- 5 3.00000+ 1 4.10000+ 1 5.75874- 1 2.42800- 5 4.10000+ 1 4.10000+ 1 7.37165- 3 4.86800- 5 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 1.74679- 9 3.08300- 5 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 9.97476- 1 8.20000- 7 4.10000+ 1 4.10000+ 1 2.52359- 3 2.52200- 5 1 70000 0 7 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 4.68890-10 2.44000- 5 1 70000 0 9 1.73040+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 4.10000+ 1 1.00000+ 0 1.87900- 5 1 71000 0 0 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000- 1 3.30000+ 1 6.00000- 1 4.10000+ 1 2.00000+ 0 1 71000 0 0 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.34420- 2 3.00000+ 0 1.08450- 2 5.00000+ 0 1.03730- 2 6.00000+ 0 9.24320- 3 8.00000+ 0 2.47050- 3 1.00000+ 1 2.25800- 3 1.10000+ 1 2.01610- 3 1.30000+ 1 1.65080- 3 1.40000+ 1 1.59780- 3 1.60000+ 1 4.97850- 4 1.80000+ 1 4.10190- 4 1.90000+ 1 3.55050- 4 2.10000+ 1 2.09380- 4 2.20000+ 1 1.99320- 4 2.40000+ 1 1.89600- 5 2.50000+ 1 1.73200- 5 2.70000+ 1 6.63400- 5 2.90000+ 1 4.15200- 5 3.00000+ 1 3.42200- 5 3.20000+ 1 4.45000- 6 3.30000+ 1 4.03000- 6 4.10000+ 1 6.33000- 6 1 71000 0 0 1.74967+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.50490- 2 3.00000+ 0 1.97900- 2 5.00000+ 0 1.97870- 2 6.00000+ 0 1.55390- 2 8.00000+ 0 6.22290- 3 1.00000+ 1 6.12700- 3 1.10000+ 1 5.09990- 3 1.30000+ 1 4.96290- 3 1.40000+ 1 4.73090- 3 1.60000+ 1 1.96530- 3 1.80000+ 1 1.85640- 3 1.90000+ 1 1.55350- 3 2.10000+ 1 1.34910- 3 2.20000+ 1 1.28370- 3 2.40000+ 1 8.47770- 4 2.50000+ 1 8.24210- 4 2.70000+ 1 4.03040- 4 2.90000+ 1 3.20300- 4 3.00000+ 1 2.58460- 4 3.20000+ 1 9.03100- 5 3.30000+ 1 8.09100- 5 4.10000+ 1 4.08400- 5 1 71000 0 0 1.74967+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02100-10 3.00000+ 0 4.28640-10 5.00000+ 0 3.55230-10 6.00000+ 0 3.95430-10 8.00000+ 0 1.11750- 9 1.00000+ 1 1.06270- 9 1.10000+ 1 1.13720- 9 1.30000+ 1 9.97060-10 1.40000+ 1 1.01980- 9 1.60000+ 1 2.51430- 9 1.80000+ 1 2.54750- 9 1.90000+ 1 2.71820- 9 2.10000+ 1 2.83020- 9 2.20000+ 1 2.88920- 9 2.40000+ 1 3.59320- 9 2.50000+ 1 3.65890- 9 2.70000+ 1 6.10900- 9 2.90000+ 1 6.80800- 9 3.00000+ 1 7.37950- 9 3.20000+ 1 1.30870- 8 3.30000+ 1 1.38900- 8 4.10000+ 1 1.91030- 8 1 71000 0 0 1.74967+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.14500- 5 3.00000+ 0 6.53630- 7 5.00000+ 0 1.13000- 6 6.00000+ 0 1.01510- 6 8.00000+ 0 2.15370- 8 1.00000+ 1 2.25080- 8 1.10000+ 1 2.34490- 8 1.30000+ 1 2.52330- 8 1.40000+ 1 2.36840- 8 1.60000+ 1 5.80100-10 1.80000+ 1 1.09900- 9 1.90000+ 1 6.81960-10 2.10000+ 1 8.95890-10 2.20000+ 1 8.01280-10 2.70000+ 1 2.76050-11 2.90000+ 1 5.34810-12 3.00000+ 1 4.21250-12 1 71000 0 0 1.74967+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.65700- 6 3.00000+ 0 7.98280- 6 5.00000+ 0 3.19050- 6 6.00000+ 0 3.23240- 6 8.00000+ 0 1.85540- 5 1.00000+ 1 1.06310- 5 1.10000+ 1 1.08850- 5 1.30000+ 1 2.42120- 6 1.40000+ 1 1.40920- 6 1.60000+ 1 1.40110- 5 1.80000+ 1 1.65080- 5 1.90000+ 1 9.82980- 6 2.10000+ 1 6.42020- 6 2.20000+ 1 6.19500- 6 2.70000+ 1 5.29250- 6 2.90000+ 1 5.61890- 7 3.00000+ 1 2.13010- 7 1 71000 0 0 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21810- 4 3.00000+ 0 1.63132- 4 5.00000+ 0 1.27016- 4 6.00000+ 0 1.21220- 4 8.00000+ 0 1.15041- 4 1.00000+ 1 9.70705- 5 1.10000+ 1 8.99278- 5 1.30000+ 1 6.61920- 5 1.40000+ 1 6.28537- 5 1.60000+ 1 6.00192- 5 1.80000+ 1 5.57666- 5 1.90000+ 1 4.99816- 5 2.10000+ 1 3.62730- 5 2.20000+ 1 3.52411- 5 2.40000+ 1 1.89600- 5 2.50000+ 1 1.73200- 5 2.70000+ 1 2.15637- 5 2.90000+ 1 1.89740- 5 3.00000+ 1 1.26600- 5 3.20000+ 1 4.45000- 6 3.30000+ 1 4.03000- 6 4.10000+ 1 6.33000- 6 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.18546+ 0 3.00000+ 0 2.77609- 1 5.00000+ 0 3.15045- 1 6.00000+ 0 2.56863- 1 8.00000+ 0 1.82400- 2 1.00000+ 1 1.83320- 2 1.10000+ 1 1.74268- 2 1.30000+ 1 1.78543- 2 1.40000+ 1 1.69146- 2 1.60000+ 1 6.24427- 4 1.80000+ 1 7.93179- 4 1.90000+ 1 3.17607- 4 2.10000+ 1 8.45390- 5 2.20000+ 1 8.10090- 5 2.70000+ 1 1.51094- 6 2.90000+ 1 1.12006- 8 3.00000+ 1 2.37378- 9 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.44080- 2 3.00000+ 0 2.08128- 3 5.00000+ 0 2.58485- 3 6.00000+ 0 1.84101- 3 8.00000+ 0 2.90030- 5 1.00000+ 1 2.88433- 5 1.10000+ 1 2.70915- 5 1.30000+ 1 2.75505- 5 1.40000+ 1 2.56662- 5 1.60000+ 1 1.50575- 7 1.80000+ 1 1.75512- 7 1.90000+ 1 6.17874- 8 2.10000+ 1 1.56506- 8 2.20000+ 1 1.44452- 8 2.70000+ 1 4.65073-11 2.90000+ 1 3.90158-13 3.00000+ 1 6.90467-14 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.67394+ 0 3.00000+ 0 1.06423+ 1 5.00000+ 0 8.01334+ 0 6.00000+ 0 7.59203+ 0 8.00000+ 0 7.34959+ 0 1.00000+ 1 5.96549+ 0 1.10000+ 1 5.44726+ 0 1.30000+ 1 3.55396+ 0 1.40000+ 1 3.40412+ 0 1.60000+ 1 4.29170+ 0 1.80000+ 1 3.21487+ 0 1.90000+ 1 2.82556+ 0 2.10000+ 1 1.43858+ 0 2.20000+ 1 1.42889+ 0 2.70000+ 1 2.40659+ 0 2.90000+ 1 1.99748+ 0 3.00000+ 1 1.00000+ 0 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.91217- 3 3.00000+ 0 8.60059- 3 5.00000+ 0 7.66113- 3 6.00000+ 0 7.28097- 3 8.00000+ 0 2.32646- 3 1.00000+ 1 2.13209- 3 1.10000+ 1 1.89908- 3 1.30000+ 1 1.55706- 3 1.40000+ 1 1.50928- 3 1.60000+ 1 4.37680- 4 1.80000+ 1 3.54248- 4 1.90000+ 1 3.05007- 4 2.10000+ 1 1.73091- 4 2.20000+ 1 1.64064- 4 2.70000+ 1 4.47762- 5 2.90000+ 1 2.25460- 5 3.00000+ 1 2.15600- 5 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.74342- 1 5.30690- 2 6.00000+ 0 4.81734- 1 5.41988- 2 1.00000+ 1 5.10464- 2 6.11840- 2 1.10000+ 1 9.86287- 2 6.14259- 2 1.30000+ 1 1.00211- 3 6.17912- 2 1.40000+ 1 1.28131- 3 6.18442- 2 1.80000+ 1 1.14131- 2 6.30318- 2 1.90000+ 1 2.20662- 2 6.30869- 2 2.10000+ 1 2.33342- 4 6.32326- 2 2.20000+ 1 2.96732- 4 6.32427- 2 2.90000+ 1 2.57262- 3 6.34005- 2 3.00000+ 1 5.33144- 3 6.34078- 2 3.20000+ 1 1.05901- 6 6.34375- 2 3.30000+ 1 1.25461- 6 6.34380- 2 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.83935- 3 4.17520- 2 3.00000+ 0 5.00000+ 0 6.75048- 3 4.22240- 2 3.00000+ 0 6.00000+ 0 5.17904- 3 4.33538- 2 3.00000+ 0 8.00000+ 0 1.88984- 3 5.01265- 2 3.00000+ 0 1.00000+ 1 1.42236- 3 5.03390- 2 3.00000+ 0 1.10000+ 1 1.14647- 3 5.05809- 2 3.00000+ 0 1.30000+ 1 9.02420- 5 5.09462- 2 3.00000+ 0 1.40000+ 1 7.87364- 5 5.09992- 2 3.00000+ 0 1.60000+ 1 4.50467- 4 5.20991- 2 3.00000+ 0 1.80000+ 1 3.27690- 4 5.21868- 2 3.00000+ 0 1.90000+ 1 2.61361- 4 5.22419- 2 3.00000+ 0 2.10000+ 1 2.08753- 5 5.23876- 2 3.00000+ 0 2.20000+ 1 1.79175- 5 5.23977- 2 3.00000+ 0 2.40000+ 1 8.21894- 8 5.25780- 2 3.00000+ 0 2.50000+ 1 8.21894- 8 5.25797- 2 3.00000+ 0 2.70000+ 1 7.29006- 5 5.25307- 2 3.00000+ 0 2.90000+ 1 4.29026- 5 5.25555- 2 3.00000+ 0 3.00000+ 1 3.23010- 5 5.25628- 2 3.00000+ 0 3.20000+ 1 1.64375- 7 5.25925- 2 3.00000+ 0 4.10000+ 1 5.91771- 6 5.25907- 2 5.00000+ 0 5.00000+ 0 5.17678- 4 4.26960- 2 5.00000+ 0 6.00000+ 0 9.90709- 3 4.38258- 2 5.00000+ 0 8.00000+ 0 1.12121- 3 5.05985- 2 5.00000+ 0 1.00000+ 1 1.91905- 4 5.08110- 2 5.00000+ 0 1.10000+ 1 1.82295- 3 5.10529- 2 5.00000+ 0 1.30000+ 1 9.70589- 5 5.14182- 2 5.00000+ 0 1.40000+ 1 2.85097- 4 5.14712- 2 5.00000+ 0 1.60000+ 1 2.57728- 4 5.25711- 2 5.00000+ 0 1.80000+ 1 4.30634- 5 5.26588- 2 5.00000+ 0 1.90000+ 1 3.99347- 4 5.27139- 2 5.00000+ 0 2.10000+ 1 2.17792- 5 5.28596- 2 5.00000+ 0 2.20000+ 1 6.36937- 5 5.28697- 2 5.00000+ 0 2.40000+ 1 4.10916- 7 5.30500- 2 5.00000+ 0 2.50000+ 1 6.57505- 7 5.30517- 2 5.00000+ 0 2.70000+ 1 4.13386- 5 5.30027- 2 5.00000+ 0 2.90000+ 1 5.58864- 6 5.30275- 2 5.00000+ 0 3.00000+ 1 4.89830- 5 5.30348- 2 5.00000+ 0 3.20000+ 1 1.64367- 7 5.30645- 2 5.00000+ 0 4.10000+ 1 3.36942- 6 5.30627- 2 6.00000+ 0 6.00000+ 0 4.52282- 3 4.49556- 2 6.00000+ 0 8.00000+ 0 8.03170- 4 5.17283- 2 6.00000+ 0 1.00000+ 1 1.71455- 3 5.19408- 2 6.00000+ 0 1.10000+ 1 1.71755- 3 5.21827- 2 6.00000+ 0 1.30000+ 1 3.26139- 4 5.25480- 2 6.00000+ 0 1.40000+ 1 2.83078- 4 5.26010- 2 6.00000+ 0 1.60000+ 1 1.81735- 4 5.37009- 2 6.00000+ 0 1.80000+ 1 3.79239- 4 5.37886- 2 6.00000+ 0 1.90000+ 1 3.79329- 4 5.38437- 2 6.00000+ 0 2.10000+ 1 7.36458- 5 5.39894- 2 6.00000+ 0 2.20000+ 1 6.34545- 5 5.39995- 2 6.00000+ 0 2.40000+ 1 7.39757- 7 5.41798- 2 6.00000+ 0 2.50000+ 1 8.21941- 7 5.41815- 2 6.00000+ 0 2.70000+ 1 2.90968- 5 5.41325- 2 6.00000+ 0 2.90000+ 1 4.92333- 5 5.41573- 2 6.00000+ 0 3.00000+ 1 4.65203- 5 5.41646- 2 6.00000+ 0 3.20000+ 1 5.75335- 7 5.41943- 2 6.00000+ 0 4.10000+ 1 2.38356- 6 5.41925- 2 8.00000+ 0 8.00000+ 0 1.81554- 4 5.85010- 2 8.00000+ 0 1.00000+ 1 2.37612- 4 5.87135- 2 8.00000+ 0 1.10000+ 1 1.79584- 4 5.89554- 2 8.00000+ 0 1.30000+ 1 1.36436- 5 5.93207- 2 8.00000+ 0 1.40000+ 1 1.12597- 5 5.93737- 2 8.00000+ 0 1.60000+ 1 8.62981- 5 6.04736- 2 8.00000+ 0 1.80000+ 1 5.48232- 5 6.05613- 2 8.00000+ 0 1.90000+ 1 4.10116- 5 6.06164- 2 8.00000+ 0 2.10000+ 1 3.12320- 6 6.07621- 2 8.00000+ 0 2.20000+ 1 2.54781- 6 6.07722- 2 8.00000+ 0 2.70000+ 1 1.39716- 5 6.09052- 2 8.00000+ 0 2.90000+ 1 7.15036- 6 6.09300- 2 8.00000+ 0 3.00000+ 1 5.09593- 6 6.09373- 2 8.00000+ 0 4.10000+ 1 1.15066- 6 6.09652- 2 1.00000+ 1 1.00000+ 1 1.72595- 5 5.89260- 2 1.00000+ 1 1.10000+ 1 3.23010- 4 5.91679- 2 1.00000+ 1 1.30000+ 1 1.39716- 5 5.95332- 2 1.00000+ 1 1.40000+ 1 3.77257- 5 5.95862- 2 1.00000+ 1 1.60000+ 1 5.46532- 5 6.06861- 2 1.00000+ 1 1.80000+ 1 7.72592- 6 6.07738- 2 1.00000+ 1 1.90000+ 1 7.10935- 5 6.08289- 2 1.00000+ 1 2.10000+ 1 3.12320- 6 6.09746- 2 1.00000+ 1 2.20000+ 1 8.46571- 6 6.09847- 2 1.00000+ 1 2.40000+ 1 8.21892- 8 6.11650- 2 1.00000+ 1 2.50000+ 1 8.21892- 8 6.11667- 2 1.00000+ 1 2.70000+ 1 8.79399- 6 6.11177- 2 1.00000+ 1 2.90000+ 1 9.86247- 7 6.11425- 2 1.00000+ 1 3.00000+ 1 8.71190- 6 6.11498- 2 1.00000+ 1 4.10000+ 1 7.39713- 7 6.11777- 2 1.10000+ 1 1.10000+ 1 1.64294- 4 5.94098- 2 1.10000+ 1 1.30000+ 1 4.92300- 5 5.97751- 2 1.10000+ 1 1.40000+ 1 4.15033- 5 5.98281- 2 1.10000+ 1 1.60000+ 1 4.07673- 5 6.09280- 2 1.10000+ 1 1.80000+ 1 7.17490- 5 6.10157- 2 1.10000+ 1 1.90000+ 1 7.26550- 5 6.10708- 2 1.10000+ 1 2.10000+ 1 1.11776- 5 6.12165- 2 1.10000+ 1 2.20000+ 1 9.36951- 6 6.12266- 2 1.10000+ 1 2.40000+ 1 8.21886- 8 6.14069- 2 1.10000+ 1 2.50000+ 1 8.21886- 8 6.14086- 2 1.10000+ 1 2.70000+ 1 6.49273- 6 6.13596- 2 1.10000+ 1 2.90000+ 1 9.28741- 6 6.13844- 2 1.10000+ 1 3.00000+ 1 8.95852- 6 6.13917- 2 1.10000+ 1 3.20000+ 1 8.21886- 8 6.14214- 2 1.10000+ 1 4.10000+ 1 4.93120- 7 6.14196- 2 1.30000+ 1 1.30000+ 1 8.38555- 8 6.01404- 2 1.30000+ 1 1.40000+ 1 6.12144- 6 6.01934- 2 1.30000+ 1 1.60000+ 1 3.18652- 6 6.12933- 2 1.30000+ 1 1.80000+ 1 3.01879- 6 6.13810- 2 1.30000+ 1 1.90000+ 1 1.05656- 5 6.14361- 2 1.30000+ 1 2.20000+ 1 1.34172- 6 6.15919- 2 1.30000+ 1 2.70000+ 1 5.03121- 7 6.17249- 2 1.30000+ 1 2.90000+ 1 4.19267- 7 6.17497- 2 1.30000+ 1 3.00000+ 1 1.25786- 6 6.17570- 2 1.40000+ 1 1.40000+ 1 1.39717- 6 6.02464- 2 1.40000+ 1 1.60000+ 1 2.54784- 6 6.13463- 2 1.40000+ 1 1.80000+ 1 7.89021- 6 6.14340- 2 1.40000+ 1 1.90000+ 1 8.62991- 6 6.14891- 2 1.40000+ 1 2.10000+ 1 1.31507- 6 6.16348- 2 1.40000+ 1 2.20000+ 1 5.75307- 7 6.16449- 2 1.40000+ 1 2.70000+ 1 4.10941- 7 6.17779- 2 1.40000+ 1 2.90000+ 1 9.86258- 7 6.18027- 2 1.40000+ 1 3.00000+ 1 1.06848- 6 6.18100- 2 1.60000+ 1 1.60000+ 1 1.04935- 5 6.24463- 2 1.60000+ 1 1.80000+ 1 1.29275- 5 6.25340- 2 1.60000+ 1 1.90000+ 1 9.48624- 6 6.25891- 2 1.60000+ 1 2.10000+ 1 7.55544- 7 6.27348- 2 1.60000+ 1 2.20000+ 1 5.87613- 7 6.27448- 2 1.60000+ 1 2.70000+ 1 3.35785- 6 6.28778- 2 1.60000+ 1 2.90000+ 1 1.67893- 6 6.29026- 2 1.60000+ 1 3.00000+ 1 1.17529- 6 6.29099- 2 1.60000+ 1 4.10000+ 1 2.51848- 7 6.29378- 2 1.80000+ 1 1.80000+ 1 8.21888- 7 6.26216- 2 1.80000+ 1 1.90000+ 1 1.57804- 5 6.26768- 2 1.80000+ 1 2.10000+ 1 6.57534- 7 6.28224- 2 1.80000+ 1 2.20000+ 1 1.80813- 6 6.28325- 2 1.80000+ 1 2.70000+ 1 2.05472- 6 6.29655- 2 1.80000+ 1 2.90000+ 1 2.46570- 7 6.29903- 2 1.80000+ 1 3.00000+ 1 1.97253- 6 6.29976- 2 1.80000+ 1 4.10000+ 1 1.64374- 7 6.30255- 2 1.90000+ 1 1.90000+ 1 7.94242- 6 6.27319- 2 1.90000+ 1 2.10000+ 1 2.35033- 6 6.28776- 2 1.90000+ 1 2.20000+ 1 1.94516- 6 6.28876- 2 1.90000+ 1 2.70000+ 1 1.45882- 6 6.30206- 2 1.90000+ 1 2.90000+ 1 2.02620- 6 6.30454- 2 1.90000+ 1 3.00000+ 1 1.94516- 6 6.30527- 2 1.90000+ 1 4.10000+ 1 8.10483- 8 6.30806- 2 2.10000+ 1 2.20000+ 1 2.90088- 7 6.30333- 2 2.10000+ 1 2.70000+ 1 9.66947- 8 6.31663- 2 2.10000+ 1 2.90000+ 1 9.66947- 8 6.31911- 2 2.10000+ 1 3.00000+ 1 2.90088- 7 6.31984- 2 2.20000+ 1 2.20000+ 1 9.03747- 8 6.30434- 2 2.20000+ 1 2.70000+ 1 9.03747- 8 6.31763- 2 2.20000+ 1 2.90000+ 1 2.71128- 7 6.32012- 2 2.20000+ 1 3.00000+ 1 2.71128- 7 6.32085- 2 2.70000+ 1 2.70000+ 1 3.37006- 7 6.33093- 2 2.70000+ 1 2.90000+ 1 3.37006- 7 6.33341- 2 2.70000+ 1 3.00000+ 1 2.24662- 7 6.33414- 2 2.70000+ 1 4.10000+ 1 1.12334- 7 6.33693- 2 2.90000+ 1 3.00000+ 1 2.87272- 7 6.33663- 2 3.00000+ 1 3.00000+ 1 9.63517- 8 6.33736- 2 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.34019- 5 4.72000- 4 6.00000+ 0 1.21929- 3 1.60180- 3 1.00000+ 1 2.35998- 2 8.58700- 3 1.10000+ 1 3.08577- 2 8.82890- 3 1.30000+ 1 6.27204- 4 9.19420- 3 1.40000+ 1 9.39171- 4 9.24720- 3 1.80000+ 1 5.69505- 3 1.04348- 2 1.90000+ 1 7.82273- 3 1.04899- 2 2.10000+ 1 8.62942- 5 1.06356- 2 2.20000+ 1 1.34019- 4 1.06457- 2 2.90000+ 1 7.79353- 4 1.08035- 2 3.00000+ 1 1.02859- 3 1.08108- 2 3.20000+ 1 3.62767- 7 1.08405- 2 3.30000+ 1 5.28895- 7 1.08410- 2 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 2.27738- 2 6.18100- 5 5.00000+ 0 1.90000+ 1 2.42903- 2 1.16950- 4 5.00000+ 0 2.10000+ 1 6.57268- 3 2.62620- 4 5.00000+ 0 2.20000+ 1 9.45989- 3 2.72680- 4 5.00000+ 0 2.40000+ 1 1.72795- 2 4.53040- 4 5.00000+ 0 2.50000+ 1 2.24800- 2 4.54680- 4 5.00000+ 0 2.70000+ 1 4.57764- 3 4.05660- 4 5.00000+ 0 2.90000+ 1 2.82481- 3 4.30480- 4 5.00000+ 0 3.00000+ 1 2.87938- 3 4.37780- 4 5.00000+ 0 3.20000+ 1 5.37210- 5 4.67550- 4 5.00000+ 0 4.10000+ 1 3.67203- 4 4.65670- 4 6.00000+ 0 1.40000+ 1 3.88680- 1 4.00000- 6 6.00000+ 0 1.60000+ 1 2.97648- 2 1.10395- 3 6.00000+ 0 1.80000+ 1 1.22616- 2 1.19161- 3 6.00000+ 0 1.90000+ 1 2.01331- 2 1.24675- 3 6.00000+ 0 2.10000+ 1 3.87667- 2 1.39242- 3 6.00000+ 0 2.20000+ 1 4.74164- 2 1.40248- 3 6.00000+ 0 2.40000+ 1 2.49705- 2 1.58284- 3 6.00000+ 0 2.50000+ 1 3.12422- 2 1.58448- 3 6.00000+ 0 2.70000+ 1 4.61748- 3 1.53546- 3 6.00000+ 0 2.90000+ 1 1.56176- 3 1.56028- 3 6.00000+ 0 3.00000+ 1 2.45322- 3 1.56758- 3 6.00000+ 0 3.20000+ 1 2.94840- 4 1.59735- 3 6.00000+ 0 4.10000+ 1 3.71950- 4 1.59547- 3 8.00000+ 0 8.00000+ 0 6.93787- 3 5.90400- 3 8.00000+ 0 1.00000+ 1 1.40577- 2 6.11650- 3 8.00000+ 0 1.10000+ 1 2.40009- 2 6.35840- 3 8.00000+ 0 1.30000+ 1 1.84911- 2 6.72370- 3 8.00000+ 0 1.40000+ 1 2.48364- 2 6.77670- 3 8.00000+ 0 1.60000+ 1 2.80673- 3 7.87665- 3 8.00000+ 0 1.80000+ 1 3.18056- 3 7.96431- 3 8.00000+ 0 1.90000+ 1 5.32949- 3 8.01945- 3 8.00000+ 0 2.10000+ 1 3.56192- 3 8.16512- 3 8.00000+ 0 2.20000+ 1 4.73167- 3 8.17518- 3 8.00000+ 0 2.40000+ 1 2.00358- 4 8.35554- 3 8.00000+ 0 2.50000+ 1 2.28804- 4 8.35718- 3 8.00000+ 0 2.70000+ 1 4.42755- 4 8.30816- 3 8.00000+ 0 2.90000+ 1 4.14309- 4 8.33298- 3 8.00000+ 0 3.00000+ 1 6.54487- 4 8.34028- 3 8.00000+ 0 3.20000+ 1 2.81274- 5 8.37005- 3 8.00000+ 0 4.10000+ 1 3.57115- 5 8.36817- 3 1.00000+ 1 1.00000+ 1 4.29768- 5 6.32900- 3 1.00000+ 1 1.10000+ 1 3.52357- 4 6.57090- 3 1.00000+ 1 1.30000+ 1 7.78955- 4 6.93620- 3 1.00000+ 1 1.40000+ 1 7.52437- 3 6.98920- 3 1.00000+ 1 1.60000+ 1 2.24557- 3 8.08915- 3 1.00000+ 1 1.80000+ 1 7.26820- 6 8.17681- 3 1.00000+ 1 1.90000+ 1 7.07854- 5 8.23195- 3 1.00000+ 1 2.10000+ 1 1.40628- 4 8.37762- 3 1.00000+ 1 2.20000+ 1 9.20226- 4 8.38768- 3 1.00000+ 1 2.40000+ 1 7.11013- 5 8.56804- 3 1.00000+ 1 2.50000+ 1 2.47435- 4 8.56968- 3 1.00000+ 1 2.70000+ 1 3.35918- 4 8.52066- 3 1.00000+ 1 2.90000+ 1 6.32009- 7 8.54548- 3 1.00000+ 1 3.00000+ 1 8.53227- 6 8.55278- 3 1.00000+ 1 3.20000+ 1 1.26396- 6 8.58255- 3 1.00000+ 1 4.10000+ 1 2.68598- 5 8.58067- 3 1.10000+ 1 1.10000+ 1 6.31418- 4 6.81280- 3 1.10000+ 1 1.30000+ 1 3.39846- 3 7.17810- 3 1.10000+ 1 1.40000+ 1 2.15682- 3 7.23110- 3 1.10000+ 1 1.60000+ 1 3.80901- 3 8.33105- 3 1.10000+ 1 1.80000+ 1 7.58461- 5 8.41871- 3 1.10000+ 1 1.90000+ 1 2.07618- 4 8.47385- 3 1.10000+ 1 2.10000+ 1 3.00538- 4 8.61952- 3 1.10000+ 1 2.20000+ 1 1.84868- 4 8.62958- 3 1.10000+ 1 2.40000+ 1 1.64005- 4 8.80994- 3 1.10000+ 1 2.50000+ 1 1.33985- 4 8.81158- 3 1.10000+ 1 2.70000+ 1 5.69470- 4 8.76256- 3 1.10000+ 1 2.90000+ 1 9.79691- 6 8.78738- 3 1.10000+ 1 3.00000+ 1 2.43336- 5 8.79468- 3 1.10000+ 1 3.20000+ 1 2.21208- 6 8.82445- 3 1.10000+ 1 4.10000+ 1 4.55065- 5 8.82257- 3 1.30000+ 1 1.30000+ 1 1.09334- 3 7.54340- 3 1.30000+ 1 1.40000+ 1 3.48373- 2 7.59640- 3 1.30000+ 1 1.60000+ 1 2.72587- 3 8.69635- 3 1.30000+ 1 1.80000+ 1 2.19310- 4 8.78401- 3 1.30000+ 1 1.90000+ 1 8.17192- 4 8.83915- 3 1.30000+ 1 2.10000+ 1 4.12703- 4 8.98482- 3 1.30000+ 1 2.20000+ 1 4.68127- 3 8.99488- 3 1.30000+ 1 2.40000+ 1 2.27846- 4 9.17524- 3 1.30000+ 1 2.50000+ 1 6.32956- 4 9.17688- 3 1.30000+ 1 2.70000+ 1 4.02272- 4 9.12786- 3 1.30000+ 1 2.90000+ 1 2.97040- 5 9.15268- 3 1.30000+ 1 3.00000+ 1 1.01441- 4 9.15998- 3 1.30000+ 1 3.20000+ 1 3.16006- 6 9.18975- 3 1.30000+ 1 4.10000+ 1 3.22325- 5 9.18787- 3 1.40000+ 1 1.40000+ 1 9.73886- 3 7.64940- 3 1.40000+ 1 1.60000+ 1 3.70301- 3 8.74935- 3 1.40000+ 1 1.80000+ 1 1.52253- 3 8.83701- 3 1.40000+ 1 1.90000+ 1 5.42904- 4 8.89215- 3 1.40000+ 1 2.10000+ 1 4.59225- 3 9.03782- 3 1.40000+ 1 2.20000+ 1 2.75930- 3 9.04788- 3 1.40000+ 1 2.40000+ 1 7.07543- 4 9.22824- 3 1.40000+ 1 2.50000+ 1 5.38471- 4 9.22988- 3 1.40000+ 1 2.70000+ 1 5.48591- 4 9.18086- 3 1.40000+ 1 2.90000+ 1 1.94669- 4 9.20568- 3 1.40000+ 1 3.00000+ 1 6.79410- 5 9.21298- 3 1.40000+ 1 3.20000+ 1 3.47613- 5 9.24275- 3 1.40000+ 1 4.10000+ 1 4.39246- 5 9.24087- 3 1.60000+ 1 1.60000+ 1 2.67978- 4 9.84930- 3 1.60000+ 1 1.80000+ 1 5.09728- 4 9.93696- 3 1.60000+ 1 1.90000+ 1 8.48488- 4 9.99210- 3 1.60000+ 1 2.10000+ 1 5.24893- 4 1.01378- 2 1.60000+ 1 2.20000+ 1 7.01851- 4 1.01478- 2 1.60000+ 1 2.40000+ 1 2.43325- 5 1.03282- 2 1.60000+ 1 2.50000+ 1 2.68600- 5 1.03298- 2 1.60000+ 1 2.70000+ 1 8.37424- 5 1.02808- 2 1.60000+ 1 2.90000+ 1 6.63617- 5 1.03056- 2 1.60000+ 1 3.00000+ 1 1.04291- 4 1.03129- 2 1.60000+ 1 3.20000+ 1 4.10814- 6 1.03427- 2 1.60000+ 1 4.10000+ 1 6.63617- 6 1.03408- 2 1.80000+ 1 1.80000+ 1 3.16007- 7 1.00246- 2 1.80000+ 1 1.90000+ 1 1.54840- 5 1.00798- 2 1.80000+ 1 2.10000+ 1 3.41293- 5 1.02254- 2 1.80000+ 1 2.20000+ 1 1.93083- 4 1.02355- 2 1.80000+ 1 2.40000+ 1 9.48024- 6 1.04158- 2 1.80000+ 1 2.50000+ 1 3.72897- 5 1.04175- 2 1.80000+ 1 2.70000+ 1 7.61580- 5 1.03685- 2 1.80000+ 1 3.00000+ 1 1.89593- 6 1.04006- 2 1.80000+ 1 3.20000+ 1 3.16007- 7 1.04304- 2 1.80000+ 1 4.10000+ 1 6.00401- 6 1.04285- 2 1.90000+ 1 1.90000+ 1 1.67489- 5 1.01349- 2 1.90000+ 1 2.10000+ 1 8.08981- 5 1.02806- 2 1.90000+ 1 2.20000+ 1 5.34051- 5 1.02906- 2 1.90000+ 1 2.40000+ 1 2.93896- 5 1.04710- 2 1.90000+ 1 2.50000+ 1 2.33847- 5 1.04726- 2 1.90000+ 1 2.70000+ 1 1.26718- 4 1.04236- 2 1.90000+ 1 2.90000+ 1 1.89595- 6 1.04484- 2 1.90000+ 1 3.00000+ 1 3.79210- 6 1.04557- 2 1.90000+ 1 3.20000+ 1 6.32014- 7 1.04855- 2 1.90000+ 1 4.10000+ 1 1.01121- 5 1.04836- 2 2.10000+ 1 2.10000+ 1 3.63398- 5 1.04262- 2 2.10000+ 1 2.20000+ 1 6.71824- 4 1.04363- 2 2.10000+ 1 2.40000+ 1 2.97041- 5 1.06167- 2 2.10000+ 1 2.50000+ 1 6.38335- 5 1.06183- 2 2.10000+ 1 2.70000+ 1 7.74218- 5 1.05693- 2 2.10000+ 1 2.90000+ 1 4.42403- 6 1.05941- 2 2.10000+ 1 3.00000+ 1 1.01120- 5 1.06014- 2 2.10000+ 1 3.20000+ 1 6.32007- 7 1.06312- 2 2.10000+ 1 4.10000+ 1 6.32007- 6 1.06293- 2 2.20000+ 1 2.20000+ 1 2.08882- 4 1.04464- 2 2.20000+ 1 2.40000+ 1 7.39462- 5 1.06267- 2 2.20000+ 1 2.50000+ 1 6.28853- 5 1.06284- 2 2.20000+ 1 2.70000+ 1 1.03649- 4 1.05793- 2 2.20000+ 1 2.90000+ 1 2.49643- 5 1.06042- 2 2.20000+ 1 3.00000+ 1 6.63616- 6 1.06115- 2 2.20000+ 1 3.20000+ 1 5.05605- 6 1.06412- 2 2.20000+ 1 4.10000+ 1 8.21626- 6 1.06393- 2 2.40000+ 1 2.40000+ 1 1.00141- 6 1.08071- 2 2.40000+ 1 2.50000+ 1 1.60224- 5 1.08087- 2 2.40000+ 1 2.70000+ 1 5.50787- 6 1.07597- 2 2.40000+ 1 2.90000+ 1 2.00273- 6 1.07845- 2 2.40000+ 1 3.00000+ 1 5.50787- 6 1.07918- 2 2.40000+ 1 3.20000+ 1 5.00711- 7 1.08216- 2 2.40000+ 1 4.10000+ 1 5.00711- 7 1.08197- 2 2.50000+ 1 2.50000+ 1 3.31248- 6 1.08104- 2 2.50000+ 1 2.70000+ 1 5.67872- 6 1.07613- 2 2.50000+ 1 2.90000+ 1 6.62511- 6 1.07862- 2 2.50000+ 1 3.00000+ 1 4.25903- 6 1.07935- 2 2.50000+ 1 3.20000+ 1 4.73230- 7 1.08232- 2 2.50000+ 1 4.10000+ 1 4.73230- 7 1.08213- 2 2.70000+ 1 2.70000+ 1 2.29433- 5 1.07123- 2 2.70000+ 1 2.90000+ 1 3.38695- 5 1.07371- 2 2.70000+ 1 3.00000+ 1 5.35334- 5 1.07444- 2 2.70000+ 1 3.20000+ 1 2.18506- 6 1.07742- 2 2.70000+ 1 4.10000+ 1 3.27765- 6 1.07723- 2 2.90000+ 1 3.00000+ 1 1.87588- 6 1.07693- 2 2.90000+ 1 4.10000+ 1 5.62765- 6 1.07971- 2 3.00000+ 1 3.00000+ 1 7.81029- 7 1.07766- 2 3.00000+ 1 4.10000+ 1 3.12393- 6 1.08044- 2 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.94851- 6 1.12980- 3 8.00000+ 0 6.18993- 3 7.90250- 3 1.10000+ 1 1.70411- 4 8.35690- 3 1.30000+ 1 2.09871- 1 8.72220- 3 1.60000+ 1 1.40901- 3 9.87515- 3 1.90000+ 1 4.27942- 5 1.00179- 2 2.10000+ 1 3.77672- 2 1.01636- 2 2.40000+ 1 7.76734- 5 1.03540- 2 2.70000+ 1 2.61991- 4 1.03067- 2 3.00000+ 1 9.24335- 6 1.03388- 2 3.20000+ 1 1.65551- 4 1.03685- 2 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 7.29771- 3 6.31950- 4 6.00000+ 0 1.80000+ 1 4.39535- 2 7.19610- 4 6.00000+ 0 1.90000+ 1 1.35955- 2 7.74750- 4 6.00000+ 0 2.10000+ 1 5.03050- 2 9.20420- 4 6.00000+ 0 2.20000+ 1 1.77446- 2 9.30480- 4 6.00000+ 0 2.40000+ 1 1.36932- 3 1.11084- 3 6.00000+ 0 2.50000+ 1 2.07587- 3 1.11248- 3 6.00000+ 0 2.70000+ 1 1.08139- 3 1.06346- 3 6.00000+ 0 2.90000+ 1 5.35942- 3 1.08828- 3 6.00000+ 0 3.00000+ 1 1.64395- 3 1.09558- 3 6.00000+ 0 3.20000+ 1 3.87531- 4 1.12535- 3 6.00000+ 0 4.10000+ 1 8.68907- 5 1.12347- 3 8.00000+ 0 8.00000+ 0 7.55441- 4 5.43200- 3 8.00000+ 0 1.00000+ 1 2.25759- 2 5.64450- 3 8.00000+ 0 1.10000+ 1 2.17935- 3 5.88640- 3 8.00000+ 0 1.30000+ 1 2.70133- 3 6.25170- 3 8.00000+ 0 1.40000+ 1 2.51804- 3 6.30470- 3 8.00000+ 0 1.60000+ 1 2.79086- 4 7.40465- 3 8.00000+ 0 1.80000+ 1 3.40146- 3 7.49231- 3 8.00000+ 0 1.90000+ 1 4.31288- 4 7.54745- 3 8.00000+ 0 2.10000+ 1 3.69774- 4 7.69312- 3 8.00000+ 0 2.20000+ 1 2.93023- 4 7.70318- 3 8.00000+ 0 2.40000+ 1 7.73811- 5 7.88354- 3 8.00000+ 0 2.50000+ 1 5.13759- 5 7.88518- 3 8.00000+ 0 2.70000+ 1 4.31288- 5 7.83616- 3 8.00000+ 0 2.90000+ 1 4.12899- 4 7.86098- 3 8.00000+ 0 3.00000+ 1 5.20104- 5 7.86828- 3 8.00000+ 0 3.20000+ 1 2.53697- 6 7.89805- 3 8.00000+ 0 4.10000+ 1 3.17124- 6 7.89617- 3 1.00000+ 1 1.00000+ 1 2.30656- 2 5.85700- 3 1.00000+ 1 1.10000+ 1 6.46418- 2 6.09890- 3 1.00000+ 1 1.30000+ 1 3.43069- 2 6.46420- 3 1.00000+ 1 1.40000+ 1 5.32687- 2 6.51720- 3 1.00000+ 1 1.60000+ 1 5.49969- 3 7.61715- 3 1.00000+ 1 1.80000+ 1 8.83067- 3 7.70481- 3 1.00000+ 1 1.90000+ 1 1.41046- 2 7.75995- 3 1.00000+ 1 2.10000+ 1 6.60659- 3 7.90562- 3 1.00000+ 1 2.20000+ 1 1.01970- 2 7.91568- 3 1.00000+ 1 2.40000+ 1 3.55820- 4 8.09604- 3 1.00000+ 1 2.50000+ 1 3.26663- 4 8.09768- 3 1.00000+ 1 2.70000+ 1 8.92443- 4 8.04866- 3 1.00000+ 1 2.90000+ 1 1.12272- 3 8.07348- 3 1.00000+ 1 3.00000+ 1 1.72708- 3 8.08078- 3 1.00000+ 1 3.20000+ 1 5.26443- 5 8.11055- 3 1.00000+ 1 4.10000+ 1 7.23059- 5 8.10867- 3 1.10000+ 1 1.10000+ 1 1.59132- 3 6.34080- 3 1.10000+ 1 1.30000+ 1 3.56703- 2 6.70610- 3 1.10000+ 1 1.40000+ 1 4.96740- 3 6.75910- 3 1.10000+ 1 1.60000+ 1 4.49678- 4 7.85905- 3 1.10000+ 1 1.80000+ 1 1.00280- 2 7.94671- 3 1.10000+ 1 1.90000+ 1 5.91124- 4 8.00185- 3 1.10000+ 1 2.10000+ 1 5.78586- 3 8.14752- 3 1.10000+ 1 2.20000+ 1 7.64293- 4 8.15758- 3 1.10000+ 1 2.40000+ 1 1.83301- 4 8.33794- 3 1.10000+ 1 2.50000+ 1 1.00214- 4 8.33958- 3 1.10000+ 1 2.70000+ 1 7.04028- 5 8.29056- 3 1.10000+ 1 2.90000+ 1 1.22232- 3 8.31538- 3 1.10000+ 1 3.00000+ 1 7.04028- 5 8.32268- 3 1.10000+ 1 3.20000+ 1 4.50333- 5 8.35245- 3 1.10000+ 1 4.10000+ 1 5.70841- 6 8.35057- 3 1.30000+ 1 1.30000+ 1 3.33889- 2 7.07140- 3 1.30000+ 1 1.40000+ 1 1.37099- 1 7.12440- 3 1.30000+ 1 1.60000+ 1 6.60927- 4 8.22435- 3 1.30000+ 1 1.80000+ 1 5.23396- 3 8.31201- 3 1.30000+ 1 1.90000+ 1 7.26681- 3 8.36715- 3 1.30000+ 1 2.10000+ 1 1.07580- 2 8.51282- 3 1.30000+ 1 2.20000+ 1 2.37084- 2 8.52288- 3 1.30000+ 1 2.40000+ 1 1.36747- 3 8.70324- 3 1.30000+ 1 2.50000+ 1 2.77761- 3 8.70488- 3 1.30000+ 1 2.70000+ 1 1.07822- 4 8.65586- 3 1.30000+ 1 2.90000+ 1 6.40625- 4 8.68068- 3 1.30000+ 1 3.00000+ 1 8.79139- 4 8.68798- 3 1.30000+ 1 3.20000+ 1 8.37263- 5 8.71775- 3 1.30000+ 1 4.10000+ 1 8.87991- 6 8.71587- 3 1.40000+ 1 1.40000+ 1 6.60464- 3 7.17740- 3 1.40000+ 1 1.60000+ 1 5.00431- 4 8.27735- 3 1.40000+ 1 1.80000+ 1 7.18997- 3 8.36501- 3 1.40000+ 1 1.90000+ 1 9.27895- 4 8.42015- 3 1.40000+ 1 2.10000+ 1 1.82705- 2 8.56582- 3 1.40000+ 1 2.20000+ 1 2.07338- 3 8.57588- 3 1.40000+ 1 2.40000+ 1 5.51168- 4 8.75624- 3 1.40000+ 1 2.50000+ 1 2.11840- 4 8.75788- 3 1.40000+ 1 2.70000+ 1 7.80127- 5 8.70886- 3 1.40000+ 1 2.90000+ 1 8.54349- 4 8.73368- 3 1.40000+ 1 3.00000+ 1 1.10367- 4 8.74098- 3 1.40000+ 1 3.20000+ 1 1.38263- 4 8.77075- 3 1.40000+ 1 4.10000+ 1 6.34271- 6 8.76887- 3 1.60000+ 1 1.60000+ 1 2.47360- 5 9.37730- 3 1.60000+ 1 1.80000+ 1 8.33457- 4 9.46496- 3 1.60000+ 1 1.90000+ 1 8.94284- 5 9.52010- 3 1.60000+ 1 2.10000+ 1 8.75251- 5 9.66577- 3 1.60000+ 1 2.20000+ 1 5.89862- 5 9.67583- 3 1.60000+ 1 2.40000+ 1 1.64912- 5 9.85619- 3 1.60000+ 1 2.50000+ 1 8.87970- 6 9.85783- 3 1.60000+ 1 2.70000+ 1 7.61097- 6 9.80881- 3 1.60000+ 1 2.90000+ 1 1.00841- 4 9.83363- 3 1.60000+ 1 3.00000+ 1 1.07820- 5 9.84093- 3 1.60000+ 1 3.20000+ 1 6.34275- 7 9.87070- 3 1.60000+ 1 4.10000+ 1 6.34275- 7 9.86882- 3 1.80000+ 1 1.80000+ 1 8.04224- 4 9.55262- 3 1.80000+ 1 1.90000+ 1 2.19130- 3 9.60776- 3 1.80000+ 1 2.10000+ 1 9.91327- 4 9.75343- 3 1.80000+ 1 2.20000+ 1 1.38837- 3 9.76349- 3 1.80000+ 1 2.40000+ 1 4.37627- 5 9.94385- 3 1.80000+ 1 2.50000+ 1 3.36164- 5 9.94549- 3 1.80000+ 1 2.70000+ 1 1.35100- 4 9.89647- 3 1.80000+ 1 2.90000+ 1 2.02957- 4 9.92129- 3 1.80000+ 1 3.00000+ 1 2.68286- 4 9.92859- 3 1.80000+ 1 3.20000+ 1 7.61090- 6 9.95836- 3 1.80000+ 1 4.10000+ 1 1.07819- 5 9.95648- 3 1.90000+ 1 1.90000+ 1 5.51790- 5 9.66290- 3 1.90000+ 1 2.10000+ 1 1.18796- 3 9.80857- 3 1.90000+ 1 2.20000+ 1 1.45887- 4 9.81863- 3 1.90000+ 1 2.40000+ 1 3.04440- 5 9.99899- 3 1.90000+ 1 2.50000+ 1 1.58566- 5 1.00006- 2 1.90000+ 1 2.70000+ 1 1.39541- 5 9.95161- 3 1.90000+ 1 2.90000+ 1 2.67027- 4 9.97643- 3 1.90000+ 1 3.00000+ 1 1.33197- 5 9.98373- 3 1.90000+ 1 3.20000+ 1 9.51398- 6 1.00135- 2 1.90000+ 1 4.10000+ 1 1.26852- 6 1.00116- 2 2.10000+ 1 2.10000+ 1 8.56216- 4 9.95424- 3 2.10000+ 1 2.20000+ 1 3.28295- 3 9.96430- 3 2.10000+ 1 2.40000+ 1 1.51590- 4 1.01447- 2 2.10000+ 1 2.50000+ 1 3.12695- 4 1.01463- 2 2.10000+ 1 2.70000+ 1 1.39544- 5 1.00973- 2 2.10000+ 1 2.90000+ 1 1.21145- 4 1.01221- 2 2.10000+ 1 3.00000+ 1 1.43986- 4 1.01294- 2 2.10000+ 1 3.20000+ 1 1.33200- 5 1.01592- 2 2.10000+ 1 4.10000+ 1 1.26855- 6 1.01573- 2 2.20000+ 1 2.20000+ 1 2.44985- 4 9.97436- 3 2.20000+ 1 2.40000+ 1 9.83703- 5 1.01547- 2 2.20000+ 1 2.50000+ 1 3.87795- 5 1.01564- 2 2.20000+ 1 2.70000+ 1 1.41882- 5 1.01073- 2 2.20000+ 1 2.90000+ 1 2.45932- 4 1.01322- 2 2.20000+ 1 3.00000+ 1 2.64839- 5 1.01395- 2 2.20000+ 1 3.20000+ 1 3.68886- 5 1.01692- 2 2.20000+ 1 4.10000+ 1 9.45887- 7 1.01673- 2 2.40000+ 1 2.40000+ 1 3.61626- 6 1.03351- 2 2.40000+ 1 2.50000+ 1 2.35071- 5 1.03367- 2 2.40000+ 1 2.70000+ 1 3.61626- 6 1.02877- 2 2.40000+ 1 2.90000+ 1 7.23295- 6 1.03125- 2 2.40000+ 1 3.00000+ 1 5.42446- 6 1.03198- 2 2.40000+ 1 3.20000+ 1 1.80821- 6 1.03496- 2 2.50000+ 1 2.50000+ 1 2.73736- 6 1.03384- 2 2.50000+ 1 2.70000+ 1 2.73736- 6 1.02893- 2 2.50000+ 1 2.90000+ 1 8.21186- 6 1.03142- 2 2.50000+ 1 3.00000+ 1 4.10605- 6 1.03215- 2 2.50000+ 1 3.20000+ 1 5.47449- 6 1.03512- 2 2.70000+ 1 2.70000+ 1 1.13864- 6 1.02403- 2 2.70000+ 1 2.90000+ 1 2.96047- 5 1.02651- 2 2.70000+ 1 3.00000+ 1 3.41586- 6 1.02724- 2 2.90000+ 1 2.90000+ 1 2.74336- 5 1.02900- 2 2.90000+ 1 3.00000+ 1 7.13302- 5 1.02973- 2 2.90000+ 1 3.20000+ 1 2.74336- 6 1.03270- 2 2.90000+ 1 4.10000+ 1 2.74336- 6 1.03251- 2 3.00000+ 1 3.00000+ 1 6.34275- 7 1.03046- 2 3.00000+ 1 3.20000+ 1 1.26853- 6 1.03343- 2 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.15589- 2 6.77270- 3 1.00000+ 1 9.20152- 5 6.98520- 3 1.10000+ 1 8.36613- 5 7.22710- 3 1.30000+ 1 1.87928- 2 7.59240- 3 1.40000+ 1 1.65949- 1 7.64540- 3 1.60000+ 1 1.96038- 3 8.74535- 3 1.80000+ 1 1.80548- 5 8.83301- 3 1.90000+ 1 1.76278- 5 8.88815- 3 2.10000+ 1 3.19057- 3 9.03382- 3 2.20000+ 1 2.85578- 2 9.04388- 3 2.40000+ 1 1.13799- 5 9.22424- 3 2.50000+ 1 6.38564- 5 9.22588- 3 2.70000+ 1 3.87897- 4 9.17686- 3 2.90000+ 1 3.96377- 6 9.20168- 3 3.00000+ 1 3.59747- 6 9.20898- 3 3.20000+ 1 1.38889- 5 9.23875- 3 3.30000+ 1 1.16159- 4 9.23917- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 1.00060- 3 4.30220- 3 8.00000+ 0 1.00000+ 1 5.84685- 4 4.51470- 3 8.00000+ 0 1.10000+ 1 2.44855- 2 4.75660- 3 8.00000+ 0 1.30000+ 1 2.67319- 3 5.12190- 3 8.00000+ 0 1.40000+ 1 3.71785- 3 5.17490- 3 8.00000+ 0 1.60000+ 1 3.71261- 4 6.27485- 3 8.00000+ 0 1.80000+ 1 1.02842- 4 6.36251- 3 8.00000+ 0 1.90000+ 1 3.62537- 3 6.41765- 3 8.00000+ 0 2.10000+ 1 2.50327- 4 6.56332- 3 8.00000+ 0 2.20000+ 1 3.12409- 4 6.57338- 3 8.00000+ 0 2.40000+ 1 1.30010- 4 6.75374- 3 8.00000+ 0 2.50000+ 1 2.34789- 4 6.75538- 3 8.00000+ 0 2.70000+ 1 5.75659- 5 6.70636- 3 8.00000+ 0 2.90000+ 1 1.29353- 5 6.73118- 3 8.00000+ 0 3.00000+ 1 4.15875- 4 6.73848- 3 8.00000+ 0 3.20000+ 1 1.94040- 6 6.76825- 3 8.00000+ 0 4.10000+ 1 4.52747- 6 6.76637- 3 1.00000+ 1 1.00000+ 1 1.28071- 4 4.72720- 3 1.00000+ 1 1.10000+ 1 4.10785- 2 4.96910- 3 1.00000+ 1 1.30000+ 1 2.25671- 3 5.33440- 3 1.00000+ 1 1.40000+ 1 2.00238- 2 5.38740- 3 1.00000+ 1 1.60000+ 1 1.17076- 4 6.48735- 3 1.00000+ 1 1.80000+ 1 4.91555- 5 6.57501- 3 1.00000+ 1 1.90000+ 1 6.31397- 3 6.63015- 3 1.00000+ 1 2.10000+ 1 3.93248- 4 6.77582- 3 1.00000+ 1 2.20000+ 1 2.91892- 3 6.78588- 3 1.00000+ 1 2.40000+ 1 1.39066- 4 6.96624- 3 1.00000+ 1 2.50000+ 1 3.62848- 4 6.96788- 3 1.00000+ 1 2.70000+ 1 1.87578- 5 6.91886- 3 1.00000+ 1 2.90000+ 1 6.46795- 6 6.94368- 3 1.00000+ 1 3.00000+ 1 7.28281- 4 6.95098- 3 1.00000+ 1 3.20000+ 1 3.23392- 6 6.98075- 3 1.00000+ 1 4.10000+ 1 1.29353- 6 6.97887- 3 1.10000+ 1 1.10000+ 1 5.44048- 2 5.21100- 3 1.10000+ 1 1.30000+ 1 5.66249- 2 5.57630- 3 1.10000+ 1 1.40000+ 1 8.06369- 2 5.62930- 3 1.10000+ 1 1.60000+ 1 5.88593- 3 6.72925- 3 1.10000+ 1 1.80000+ 1 8.80517- 3 6.81691- 3 1.10000+ 1 1.90000+ 1 2.01209- 2 6.87205- 3 1.10000+ 1 2.10000+ 1 1.03599- 2 7.01772- 3 1.10000+ 1 2.20000+ 1 1.44801- 2 7.02778- 3 1.10000+ 1 2.40000+ 1 5.94418- 4 7.20814- 3 1.10000+ 1 2.50000+ 1 7.50941- 4 7.20978- 3 1.10000+ 1 2.70000+ 1 9.52735- 4 7.16076- 3 1.10000+ 1 2.90000+ 1 1.13775- 3 7.18558- 3 1.10000+ 1 3.00000+ 1 2.40483- 3 7.19288- 3 1.10000+ 1 3.20000+ 1 8.14971- 5 7.22265- 3 1.10000+ 1 4.10000+ 1 7.69720- 5 7.22077- 3 1.30000+ 1 1.30000+ 1 8.11661- 3 5.94160- 3 1.30000+ 1 1.40000+ 1 1.53149- 1 5.99460- 3 1.30000+ 1 1.60000+ 1 6.14453- 4 7.09455- 3 1.30000+ 1 1.80000+ 1 4.91553- 4 7.18221- 3 1.30000+ 1 1.90000+ 1 8.01212- 3 7.23735- 3 1.30000+ 1 2.10000+ 1 2.56634- 3 7.38302- 3 1.30000+ 1 2.20000+ 1 2.03236- 2 7.39308- 3 1.30000+ 1 2.40000+ 1 3.34396- 4 7.57344- 3 1.30000+ 1 2.50000+ 1 1.13834- 3 7.57508- 3 1.30000+ 1 2.70000+ 1 9.89606- 5 7.52606- 3 1.30000+ 1 2.90000+ 1 6.33837- 5 7.55088- 3 1.30000+ 1 3.00000+ 1 9.11311- 4 7.55818- 3 1.30000+ 1 3.20000+ 1 2.00500- 5 7.58795- 3 1.30000+ 1 4.10000+ 1 7.76163- 6 7.58607- 3 1.40000+ 1 1.40000+ 1 1.02830- 1 6.04760- 3 1.40000+ 1 1.60000+ 1 8.88732- 4 7.14755- 3 1.40000+ 1 1.80000+ 1 3.93884- 3 7.23521- 3 1.40000+ 1 1.90000+ 1 1.28768- 2 7.29035- 3 1.40000+ 1 2.10000+ 1 2.45025- 2 7.43602- 3 1.40000+ 1 2.20000+ 1 3.09864- 2 7.44608- 3 1.40000+ 1 2.40000+ 1 3.56266- 3 7.62644- 3 1.40000+ 1 2.50000+ 1 3.24180- 3 7.62808- 3 1.40000+ 1 2.70000+ 1 1.44235- 4 7.57906- 3 1.40000+ 1 2.90000+ 1 5.01259- 4 7.60388- 3 1.40000+ 1 3.00000+ 1 1.50313- 3 7.61118- 3 1.40000+ 1 3.20000+ 1 1.90153- 4 7.64095- 3 1.40000+ 1 4.10000+ 1 1.16430- 5 7.63907- 3 1.60000+ 1 1.60000+ 1 3.49269- 5 8.24750- 3 1.60000+ 1 1.80000+ 1 2.13439- 5 8.33516- 3 1.60000+ 1 1.90000+ 1 8.72492- 4 8.39030- 3 1.60000+ 1 2.10000+ 1 6.27361- 5 8.53597- 3 1.60000+ 1 2.20000+ 1 8.14944- 5 8.54603- 3 1.60000+ 1 2.40000+ 1 1.87573- 5 8.72639- 3 1.60000+ 1 2.50000+ 1 3.75125- 5 8.72803- 3 1.60000+ 1 2.70000+ 1 1.09955- 5 8.67901- 3 1.60000+ 1 2.90000+ 1 2.58708- 6 8.70383- 3 1.60000+ 1 3.00000+ 1 1.00250- 4 8.71113- 3 1.60000+ 1 3.20000+ 1 6.46777- 7 8.74090- 3 1.60000+ 1 4.10000+ 1 6.46777- 7 8.73902- 3 1.80000+ 1 1.80000+ 1 3.88061- 6 8.42282- 3 1.80000+ 1 1.90000+ 1 1.34857- 3 8.47796- 3 1.80000+ 1 2.10000+ 1 8.21434- 5 8.62363- 3 1.80000+ 1 2.20000+ 1 6.01527- 4 8.63369- 3 1.80000+ 1 2.40000+ 1 2.00502- 5 8.81405- 3 1.80000+ 1 2.50000+ 1 4.91559- 5 8.81569- 3 1.80000+ 1 2.70000+ 1 3.23395- 6 8.76667- 3 1.80000+ 1 2.90000+ 1 6.46800- 7 8.79149- 3 1.80000+ 1 3.00000+ 1 1.55231- 4 8.79879- 3 1.80000+ 1 3.20000+ 1 6.46800- 7 8.82856- 3 1.90000+ 1 1.90000+ 1 1.79022- 3 8.53310- 3 1.90000+ 1 2.10000+ 1 1.47081- 3 8.67877- 3 1.90000+ 1 2.20000+ 1 2.28076- 3 8.68883- 3 1.90000+ 1 2.40000+ 1 6.93290- 5 8.86919- 3 1.90000+ 1 2.50000+ 1 9.26564- 5 8.87083- 3 1.90000+ 1 2.70000+ 1 1.41903- 4 8.82181- 3 1.90000+ 1 2.90000+ 1 1.74298- 4 8.84663- 3 1.90000+ 1 3.00000+ 1 4.25050- 4 8.85393- 3 1.90000+ 1 3.20000+ 1 1.16638- 5 8.88370- 3 1.90000+ 1 4.10000+ 1 1.16638- 5 8.88182- 3 2.10000+ 1 2.10000+ 1 1.95978- 4 8.82444- 3 2.10000+ 1 2.20000+ 1 3.37811- 3 8.83450- 3 2.10000+ 1 2.40000+ 1 3.62214- 5 9.01486- 3 2.10000+ 1 2.50000+ 1 1.17713- 4 9.01650- 3 2.10000+ 1 2.70000+ 1 1.03487- 5 8.96748- 3 2.10000+ 1 2.90000+ 1 1.03487- 5 8.99230- 3 2.10000+ 1 3.00000+ 1 1.66871- 4 8.99960- 3 2.10000+ 1 3.20000+ 1 3.23393- 6 9.02937- 3 2.10000+ 1 4.10000+ 1 6.46797- 7 9.02749- 3 2.20000+ 1 2.20000+ 1 2.77024- 3 8.84456- 3 2.20000+ 1 2.40000+ 1 4.42466- 4 9.02492- 3 2.20000+ 1 2.50000+ 1 3.97399- 4 9.02656- 3 2.20000+ 1 2.70000+ 1 1.60479- 5 8.97754- 3 2.20000+ 1 2.90000+ 1 9.09434- 5 9.00236- 3 2.20000+ 1 3.00000+ 1 3.13312- 4 9.00966- 3 2.20000+ 1 3.20000+ 1 3.13312- 5 9.03943- 3 2.20000+ 1 4.10000+ 1 1.52833- 6 9.03755- 3 2.40000+ 1 2.40000+ 1 1.16602- 6 9.20528- 3 2.40000+ 1 2.50000+ 1 4.89719- 5 9.20692- 3 2.40000+ 1 2.70000+ 1 4.66402- 6 9.15790- 3 2.40000+ 1 2.90000+ 1 4.66402- 6 9.18272- 3 2.40000+ 1 3.00000+ 1 1.39924- 5 9.19002- 3 2.50000+ 1 2.50000+ 1 1.17304- 5 9.20856- 3 2.50000+ 1 2.70000+ 1 7.03837- 6 9.15954- 3 2.50000+ 1 2.90000+ 1 7.03837- 6 9.18436- 3 2.50000+ 1 3.00000+ 1 1.25125- 5 9.19166- 3 2.50000+ 1 3.20000+ 1 7.82038- 7 9.22143- 3 2.50000+ 1 4.10000+ 1 7.82038- 7 9.21955- 3 2.70000+ 1 2.70000+ 1 1.34649- 6 9.11052- 3 2.70000+ 1 2.90000+ 1 1.34649- 6 9.13534- 3 2.70000+ 1 3.00000+ 1 3.36607- 5 9.14264- 3 2.90000+ 1 3.00000+ 1 6.37794- 5 9.16746- 3 3.00000+ 1 3.00000+ 1 1.26395- 4 9.17476- 3 3.00000+ 1 3.20000+ 1 6.48167- 6 9.20453- 3 3.00000+ 1 4.10000+ 1 6.48167- 6 9.20265- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.00911- 5 2.12500- 4 1.10000+ 1 2.01681- 4 4.54400- 4 1.80000+ 1 7.86231- 4 2.06031- 3 1.90000+ 1 7.97299- 4 2.11545- 3 2.90000+ 1 1.75210- 4 2.42898- 3 3.00000+ 1 1.69293- 4 2.43628- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 4.00386- 2 3.12000- 6 1.00000+ 1 2.20000+ 1 7.48074- 2 1.31800- 5 1.00000+ 1 2.40000+ 1 3.60470- 2 1.93540- 4 1.00000+ 1 2.50000+ 1 4.80385- 2 1.95180- 4 1.00000+ 1 2.70000+ 1 8.13315- 3 1.46160- 4 1.00000+ 1 2.90000+ 1 6.93780- 3 1.70980- 4 1.00000+ 1 3.00000+ 1 9.85240- 3 1.78280- 4 1.00000+ 1 3.20000+ 1 1.73651- 4 2.08050- 4 1.00000+ 1 3.30000+ 1 2.20073- 4 2.08470- 4 1.00000+ 1 4.10000+ 1 6.45548- 4 2.06170- 4 1.10000+ 1 1.80000+ 1 6.16514- 2 4.42100- 5 1.10000+ 1 1.90000+ 1 7.54024- 2 9.93500- 5 1.10000+ 1 2.10000+ 1 3.03607- 2 2.45020- 4 1.10000+ 1 2.20000+ 1 4.42791- 2 2.55080- 4 1.10000+ 1 2.40000+ 1 1.22419- 1 4.35440- 4 1.10000+ 1 2.50000+ 1 1.52456- 1 4.37080- 4 1.10000+ 1 2.70000+ 1 8.72953- 3 3.88060- 4 1.10000+ 1 2.90000+ 1 7.42917- 3 4.12880- 4 1.10000+ 1 3.00000+ 1 9.04778- 3 4.20180- 4 1.10000+ 1 3.20000+ 1 8.61998- 5 4.49950- 4 1.10000+ 1 3.30000+ 1 1.18636- 4 4.50370- 4 1.10000+ 1 4.10000+ 1 7.03297- 4 4.48070- 4 1.30000+ 1 1.60000+ 1 2.40328- 2 3.21850- 4 1.30000+ 1 1.80000+ 1 5.32631- 3 4.09510- 4 1.30000+ 1 1.90000+ 1 5.19803- 3 4.64650- 4 1.30000+ 1 2.10000+ 1 7.93194- 3 6.10320- 4 1.30000+ 1 2.20000+ 1 9.91475- 3 6.20380- 4 1.30000+ 1 2.40000+ 1 6.28476- 3 8.00740- 4 1.30000+ 1 2.50000+ 1 5.82649- 3 8.02380- 4 1.30000+ 1 2.70000+ 1 2.59940- 3 7.53360- 4 1.30000+ 1 2.90000+ 1 5.44911- 4 7.78180- 4 1.30000+ 1 3.00000+ 1 4.95309- 4 7.85480- 4 1.30000+ 1 3.20000+ 1 2.20346- 5 8.15250- 4 1.30000+ 1 3.30000+ 1 2.63316- 5 8.15670- 4 1.30000+ 1 4.10000+ 1 2.02049- 4 8.13370- 4 1.40000+ 1 1.60000+ 1 3.41319- 2 3.74850- 4 1.40000+ 1 1.80000+ 1 1.03489- 3 4.62510- 4 1.40000+ 1 1.90000+ 1 1.01882- 2 5.17650- 4 1.40000+ 1 2.10000+ 1 1.08787- 2 6.63320- 4 1.40000+ 1 2.20000+ 1 1.60234- 2 6.73380- 4 1.40000+ 1 2.40000+ 1 7.14257- 3 8.53740- 4 1.40000+ 1 2.50000+ 1 1.11068- 2 8.55380- 4 1.40000+ 1 2.70000+ 1 3.67203- 3 8.06360- 4 1.40000+ 1 2.90000+ 1 1.10868- 4 8.31180- 4 1.40000+ 1 3.00000+ 1 9.67445- 4 8.38480- 4 1.40000+ 1 3.20000+ 1 3.21519- 5 8.68250- 4 1.40000+ 1 3.30000+ 1 4.14375- 5 8.68670- 4 1.40000+ 1 4.10000+ 1 2.84792- 4 8.66370- 4 1.60000+ 1 1.60000+ 1 3.65846- 3 1.47480- 3 1.60000+ 1 1.80000+ 1 6.23538- 3 1.56246- 3 1.60000+ 1 1.90000+ 1 1.07631- 2 1.61760- 3 1.60000+ 1 2.10000+ 1 1.18735- 2 1.76327- 3 1.60000+ 1 2.20000+ 1 1.69243- 2 1.77333- 3 1.60000+ 1 2.40000+ 1 6.24588- 3 1.95369- 3 1.60000+ 1 2.50000+ 1 7.84340- 3 1.95533- 3 1.60000+ 1 2.70000+ 1 9.83058- 4 1.90631- 3 1.60000+ 1 2.90000+ 1 8.09728- 4 1.93113- 3 1.60000+ 1 3.00000+ 1 1.31712- 3 1.93843- 3 1.60000+ 1 3.20000+ 1 3.78687- 5 1.96820- 3 1.60000+ 1 3.30000+ 1 4.86441- 5 1.96862- 3 1.60000+ 1 4.10000+ 1 7.88166- 5 1.96632- 3 1.80000+ 1 1.80000+ 1 2.87280- 4 1.65012- 3 1.80000+ 1 1.90000+ 1 7.64126- 4 1.70526- 3 1.80000+ 1 2.10000+ 1 4.25399- 4 1.85093- 3 1.80000+ 1 2.20000+ 1 2.39750- 4 1.86099- 3 1.80000+ 1 2.40000+ 1 7.41390- 5 2.04135- 3 1.80000+ 1 2.50000+ 1 4.33784- 4 2.04299- 3 1.80000+ 1 2.70000+ 1 6.42148- 4 1.99397- 3 1.80000+ 1 2.90000+ 1 5.85947- 5 2.01879- 3 1.80000+ 1 3.00000+ 1 7.26453- 5 2.02609- 3 1.80000+ 1 3.20000+ 1 1.19574- 6 2.05586- 3 1.80000+ 1 3.30000+ 1 8.96838- 7 2.05628- 3 1.80000+ 1 4.10000+ 1 4.99254- 5 2.05398- 3 1.90000+ 1 1.90000+ 1 9.63817- 4 1.76040- 3 1.90000+ 1 2.10000+ 1 7.04005- 4 1.90607- 3 1.90000+ 1 2.20000+ 1 1.67828- 3 1.91613- 3 1.90000+ 1 2.40000+ 1 4.74418- 4 2.09649- 3 1.90000+ 1 2.50000+ 1 8.84288- 4 2.09813- 3 1.90000+ 1 2.70000+ 1 1.11269- 3 2.04911- 3 1.90000+ 1 2.90000+ 1 8.43024- 5 2.07393- 3 1.90000+ 1 3.00000+ 1 1.99996- 4 2.08123- 3 1.90000+ 1 3.20000+ 1 2.39159- 6 2.11100- 3 1.90000+ 1 3.30000+ 1 4.78316- 6 2.11142- 3 1.90000+ 1 4.10000+ 1 8.66943- 5 2.10912- 3 2.10000+ 1 2.10000+ 1 1.36295- 4 2.05174- 3 2.10000+ 1 2.20000+ 1 6.47977- 4 2.06180- 3 2.10000+ 1 2.40000+ 1 4.43676- 4 2.24216- 3 2.10000+ 1 2.50000+ 1 3.24476- 3 2.24380- 3 2.10000+ 1 2.70000+ 1 1.25251- 3 2.19478- 3 2.10000+ 1 2.90000+ 1 4.09848- 5 2.21960- 3 2.10000+ 1 3.00000+ 1 7.17221- 5 2.22690- 3 2.10000+ 1 3.20000+ 1 6.20955- 7 2.25667- 3 2.10000+ 1 3.30000+ 1 1.55237- 6 2.25709- 3 2.10000+ 1 4.10000+ 1 9.71817- 5 2.25479- 3 2.20000+ 1 2.20000+ 1 3.57316- 4 2.07186- 3 2.20000+ 1 2.40000+ 1 3.10253- 3 2.25222- 3 2.20000+ 1 2.50000+ 1 1.77563- 3 2.25386- 3 2.20000+ 1 2.70000+ 1 1.74405- 3 2.20484- 3 2.20000+ 1 2.90000+ 1 2.43072- 5 2.22966- 3 2.20000+ 1 3.00000+ 1 1.65896- 4 2.23696- 3 2.20000+ 1 3.20000+ 1 1.82301- 6 2.26673- 3 2.20000+ 1 3.30000+ 1 1.82301- 6 2.26715- 3 2.20000+ 1 4.10000+ 1 1.35210- 4 2.26485- 3 2.40000+ 1 2.40000+ 1 4.33609- 4 2.43258- 3 2.40000+ 1 2.50000+ 1 3.13309- 3 2.43422- 3 2.40000+ 1 2.70000+ 1 5.95095- 4 2.38520- 3 2.40000+ 1 2.90000+ 1 6.96903- 6 2.41002- 3 2.40000+ 1 3.00000+ 1 3.87836- 5 2.41732- 3 2.40000+ 1 3.20000+ 1 1.21197- 6 2.44709- 3 2.40000+ 1 3.30000+ 1 8.78702- 6 2.44751- 3 2.40000+ 1 4.10000+ 1 4.57541- 5 2.44521- 3 2.50000+ 1 2.50000+ 1 1.03760- 3 2.43586- 3 2.50000+ 1 2.70000+ 1 7.52918- 4 2.38684- 3 2.50000+ 1 2.90000+ 1 5.19239- 5 2.41166- 3 2.50000+ 1 3.00000+ 1 7.42243- 5 2.41896- 3 2.50000+ 1 3.20000+ 1 9.77424- 6 2.44873- 3 2.50000+ 1 3.30000+ 1 4.88711- 6 2.44915- 3 2.50000+ 1 4.10000+ 1 5.80353- 5 2.44685- 3 2.70000+ 1 2.70000+ 1 1.18835- 4 2.33782- 3 2.70000+ 1 2.90000+ 1 1.65544- 4 2.36264- 3 2.70000+ 1 3.00000+ 1 2.69594- 4 2.36994- 3 2.70000+ 1 3.20000+ 1 7.68570- 6 2.39971- 3 2.70000+ 1 3.30000+ 1 1.00504- 5 2.40013- 3 2.70000+ 1 4.10000+ 1 1.89190- 5 2.39783- 3 2.90000+ 1 2.90000+ 1 6.98072- 6 2.38746- 3 2.90000+ 1 3.00000+ 1 1.81497- 5 2.39476- 3 2.90000+ 1 4.10000+ 1 1.53577- 5 2.42265- 3 3.00000+ 1 3.00000+ 1 3.17260- 5 2.40206- 3 3.00000+ 1 3.20000+ 1 9.33133- 7 2.43183- 3 3.00000+ 1 3.30000+ 1 1.86621- 6 2.43225- 3 3.00000+ 1 4.10000+ 1 3.26589- 5 2.42995- 3 3.20000+ 1 4.10000+ 1 2.98959- 7 2.45972- 3 3.30000+ 1 4.10000+ 1 2.98959- 7 2.46014- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 6.78832- 4 6.07200- 4 1.60000+ 1 5.62522- 4 1.76015- 3 2.10000+ 1 2.90471- 3 2.04862- 3 2.70000+ 1 1.05450- 4 2.19166- 3 3.20000+ 1 1.44240- 5 2.25355- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.95010- 3 3.25200- 5 1.10000+ 1 2.20000+ 1 1.96593- 2 4.25800- 5 1.10000+ 1 2.40000+ 1 2.63723- 2 2.22940- 4 1.10000+ 1 2.50000+ 1 2.69241- 2 2.24580- 4 1.10000+ 1 2.70000+ 1 3.35903- 3 1.75560- 4 1.10000+ 1 2.90000+ 1 3.61912- 3 2.00380- 4 1.10000+ 1 3.00000+ 1 3.14389- 3 2.07680- 4 1.10000+ 1 3.20000+ 1 2.56680- 5 2.37450- 4 1.10000+ 1 3.30000+ 1 5.72091- 5 2.37870- 4 1.10000+ 1 4.10000+ 1 2.60589- 4 2.35570- 4 1.30000+ 1 1.60000+ 1 5.88407- 2 1.09350- 4 1.30000+ 1 1.80000+ 1 5.90434- 2 1.97010- 4 1.30000+ 1 1.90000+ 1 6.82399- 2 2.52150- 4 1.30000+ 1 2.10000+ 1 2.42285- 2 3.97820- 4 1.30000+ 1 2.20000+ 1 2.80262- 2 4.07880- 4 1.30000+ 1 2.40000+ 1 1.26781- 1 5.88240- 4 1.30000+ 1 2.50000+ 1 1.91151- 1 5.89880- 4 1.30000+ 1 2.70000+ 1 9.46383- 3 5.40860- 4 1.30000+ 1 2.90000+ 1 6.62469- 3 5.65680- 4 1.30000+ 1 3.00000+ 1 8.06361- 3 5.72980- 4 1.30000+ 1 3.20000+ 1 7.67865- 5 6.02750- 4 1.30000+ 1 3.30000+ 1 8.50468- 5 6.03170- 4 1.30000+ 1 4.10000+ 1 7.66987- 4 6.00870- 4 1.40000+ 1 1.60000+ 1 9.83113- 3 1.62350- 4 1.40000+ 1 1.80000+ 1 6.71481- 2 2.50010- 4 1.40000+ 1 1.90000+ 1 6.16993- 3 3.05150- 4 1.40000+ 1 2.10000+ 1 1.05320- 3 4.50820- 4 1.40000+ 1 2.20000+ 1 3.27637- 3 4.60880- 4 1.40000+ 1 2.40000+ 1 4.23147- 3 6.41240- 4 1.40000+ 1 2.50000+ 1 3.23098- 3 6.42880- 4 1.40000+ 1 2.70000+ 1 1.05363- 3 5.93860- 4 1.40000+ 1 2.90000+ 1 6.10726- 3 6.18680- 4 1.40000+ 1 3.00000+ 1 6.64932- 4 6.25980- 4 1.40000+ 1 3.20000+ 1 2.17514- 6 6.55750- 4 1.40000+ 1 3.30000+ 1 8.91737- 6 6.56170- 4 1.40000+ 1 4.10000+ 1 8.22219- 5 6.53870- 4 1.60000+ 1 1.60000+ 1 8.91457- 4 1.26230- 3 1.60000+ 1 1.80000+ 1 1.24750- 2 1.34996- 3 1.60000+ 1 1.90000+ 1 1.88254- 3 1.40510- 3 1.60000+ 1 2.10000+ 1 3.99112- 4 1.55077- 3 1.60000+ 1 2.20000+ 1 1.43906- 3 1.56083- 3 1.60000+ 1 2.40000+ 1 5.27046- 5 1.74119- 3 1.60000+ 1 2.50000+ 1 7.97617- 4 1.74283- 3 1.60000+ 1 2.70000+ 1 2.26240- 4 1.69381- 3 1.60000+ 1 2.90000+ 1 1.09326- 3 1.71863- 3 1.60000+ 1 3.00000+ 1 2.08884- 4 1.72593- 3 1.60000+ 1 3.20000+ 1 1.28543- 6 1.75570- 3 1.60000+ 1 3.30000+ 1 3.85623- 6 1.75612- 3 1.60000+ 1 4.10000+ 1 1.79962- 5 1.75382- 3 1.80000+ 1 1.80000+ 1 9.37224- 3 1.43762- 3 1.80000+ 1 1.90000+ 1 2.74090- 2 1.49276- 3 1.80000+ 1 2.10000+ 1 2.61888- 2 1.63843- 3 1.80000+ 1 2.20000+ 1 4.24626- 2 1.64849- 3 1.80000+ 1 2.40000+ 1 1.13695- 2 1.82885- 3 1.80000+ 1 2.50000+ 1 1.93547- 2 1.83049- 3 1.80000+ 1 2.70000+ 1 2.00014- 3 1.78147- 3 1.80000+ 1 2.90000+ 1 2.06504- 3 1.80629- 3 1.80000+ 1 3.00000+ 1 3.33001- 3 1.81359- 3 1.80000+ 1 3.20000+ 1 8.35534- 5 1.84336- 3 1.80000+ 1 3.30000+ 1 1.21474- 4 1.84378- 3 1.80000+ 1 4.10000+ 1 1.63249- 4 1.84148- 3 1.90000+ 1 1.90000+ 1 7.59113- 4 1.54790- 3 1.90000+ 1 2.10000+ 1 2.03562- 3 1.69357- 3 1.90000+ 1 2.20000+ 1 1.65833- 3 1.70363- 3 1.90000+ 1 2.40000+ 1 8.16943- 3 1.88399- 3 1.90000+ 1 2.50000+ 1 2.27663- 3 1.88563- 3 1.90000+ 1 2.70000+ 1 2.01828- 4 1.83661- 3 1.90000+ 1 2.90000+ 1 2.45591- 3 1.86143- 3 1.90000+ 1 3.00000+ 1 1.57475- 4 1.86873- 3 1.90000+ 1 3.20000+ 1 5.78494- 6 1.89850- 3 1.90000+ 1 3.30000+ 1 4.49922- 6 1.89892- 3 1.90000+ 1 4.10000+ 1 1.54263- 5 1.89662- 3 2.10000+ 1 2.10000+ 1 8.74127- 4 1.83924- 3 2.10000+ 1 2.20000+ 1 2.48940- 3 1.84930- 3 2.10000+ 1 2.40000+ 1 9.82109- 4 2.02966- 3 2.10000+ 1 2.50000+ 1 1.81575- 3 2.03130- 3 2.10000+ 1 2.70000+ 1 5.84899- 5 1.98228- 3 2.10000+ 1 2.90000+ 1 2.29397- 3 2.00710- 3 2.10000+ 1 3.00000+ 1 2.15961- 4 2.01440- 3 2.10000+ 1 3.20000+ 1 5.14208- 6 2.04417- 3 2.10000+ 1 3.30000+ 1 7.07004- 6 2.04459- 3 2.10000+ 1 4.10000+ 1 4.49912- 6 2.04229- 3 2.20000+ 1 2.20000+ 1 5.87487- 4 1.85936- 3 2.20000+ 1 2.40000+ 1 3.19249- 3 2.03972- 3 2.20000+ 1 2.50000+ 1 6.83218- 4 2.04136- 3 2.20000+ 1 2.70000+ 1 1.85110- 4 1.99234- 3 2.20000+ 1 2.90000+ 1 3.77231- 3 2.01716- 3 2.20000+ 1 3.00000+ 1 1.60043- 4 2.02446- 3 2.20000+ 1 3.20000+ 1 7.07000- 6 2.05423- 3 2.20000+ 1 3.30000+ 1 3.21362- 6 2.05465- 3 2.20000+ 1 4.10000+ 1 1.47832- 5 2.05235- 3 2.40000+ 1 2.40000+ 1 2.10438- 3 2.22008- 3 2.40000+ 1 2.50000+ 1 1.35899- 2 2.22172- 3 2.40000+ 1 2.70000+ 1 2.57095- 6 2.17270- 3 2.40000+ 1 2.90000+ 1 9.21701- 4 2.19752- 3 2.40000+ 1 3.00000+ 1 9.32649- 4 2.20482- 3 2.40000+ 1 3.20000+ 1 3.21368- 6 2.23459- 3 2.40000+ 1 3.30000+ 1 9.64129- 6 2.23501- 3 2.50000+ 1 2.50000+ 1 7.07000- 4 2.22336- 3 2.50000+ 1 2.70000+ 1 1.09266- 4 2.17434- 3 2.50000+ 1 2.90000+ 1 1.56058- 3 2.19916- 3 2.50000+ 1 3.00000+ 1 2.35244- 4 2.20646- 3 2.50000+ 1 3.20000+ 1 5.78478- 6 2.23623- 3 2.50000+ 1 3.30000+ 1 1.92823- 6 2.23665- 3 2.50000+ 1 4.10000+ 1 8.99842- 6 2.23435- 3 2.70000+ 1 2.70000+ 1 1.92792- 5 2.12532- 3 2.70000+ 1 2.90000+ 1 2.40109- 4 2.15014- 3 2.70000+ 1 3.00000+ 1 3.06709- 5 2.15744- 3 2.70000+ 1 3.30000+ 1 8.76330- 7 2.18763- 3 2.70000+ 1 4.10000+ 1 3.50517- 6 2.18533- 3 2.90000+ 1 2.90000+ 1 2.56906- 4 2.17496- 3 2.90000+ 1 3.00000+ 1 7.08390- 4 2.18226- 3 2.90000+ 1 3.20000+ 1 1.67212- 5 2.21203- 3 2.90000+ 1 3.30000+ 1 2.58426- 5 2.21245- 3 2.90000+ 1 4.10000+ 1 3.34437- 5 2.21015- 3 3.00000+ 1 3.00000+ 1 5.81368- 5 2.18956- 3 3.00000+ 1 3.20000+ 1 4.47212- 6 2.21933- 3 3.00000+ 1 3.30000+ 1 4.47212- 6 2.21975- 3 3.00000+ 1 4.10000+ 1 1.34162- 5 2.21745- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.73015- 5 3.65300- 4 1.40000+ 1 2.44219- 4 4.18300- 4 1.60000+ 1 8.89353- 4 1.51825- 3 2.10000+ 1 4.25544- 4 1.80672- 3 2.20000+ 1 3.37119- 3 1.81678- 3 2.70000+ 1 1.61171- 4 1.94976- 3 3.20000+ 1 2.02780- 6 2.01165- 3 3.30000+ 1 1.51289- 5 2.01207- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 5.13993- 2 1.02500- 5 1.30000+ 1 2.10000+ 1 9.12555- 3 1.55920- 4 1.30000+ 1 2.20000+ 1 8.74300- 3 1.65980- 4 1.30000+ 1 2.40000+ 1 1.27741- 2 3.46340- 4 1.30000+ 1 2.50000+ 1 1.85132- 2 3.47980- 4 1.30000+ 1 2.70000+ 1 1.79890- 3 2.98960- 4 1.30000+ 1 2.90000+ 1 1.29433- 3 3.23780- 4 1.30000+ 1 3.00000+ 1 4.75163- 3 3.31080- 4 1.30000+ 1 3.20000+ 1 2.51325- 5 3.60850- 4 1.30000+ 1 3.30000+ 1 2.17949- 5 3.61270- 4 1.30000+ 1 4.10000+ 1 1.42547- 4 3.58970- 4 1.40000+ 1 1.80000+ 1 7.49574- 2 8.11000- 6 1.40000+ 1 1.90000+ 1 1.12632- 1 6.32500- 5 1.40000+ 1 2.10000+ 1 4.08324- 2 2.08920- 4 1.40000+ 1 2.20000+ 1 5.78024- 2 2.18980- 4 1.40000+ 1 2.40000+ 1 1.27045- 1 3.99340- 4 1.40000+ 1 2.50000+ 1 1.51769- 1 4.00980- 4 1.40000+ 1 2.70000+ 1 1.05272- 2 3.51960- 4 1.40000+ 1 2.90000+ 1 8.81993- 3 3.76780- 4 1.40000+ 1 3.00000+ 1 1.22228- 2 3.84080- 4 1.40000+ 1 3.20000+ 1 1.13491- 4 4.13850- 4 1.40000+ 1 3.30000+ 1 1.51581- 4 4.14270- 4 1.40000+ 1 4.10000+ 1 8.43266- 4 4.11970- 4 1.60000+ 1 1.60000+ 1 6.19285- 4 1.02040- 3 1.60000+ 1 1.80000+ 1 9.93007- 4 1.10806- 3 1.60000+ 1 1.90000+ 1 1.56230- 2 1.16320- 3 1.60000+ 1 2.10000+ 1 9.22550- 4 1.30887- 3 1.60000+ 1 2.20000+ 1 1.02788- 3 1.31893- 3 1.60000+ 1 2.40000+ 1 1.15387- 3 1.49929- 3 1.60000+ 1 2.50000+ 1 1.82584- 3 1.50093- 3 1.60000+ 1 2.70000+ 1 1.55891- 4 1.45191- 3 1.60000+ 1 2.90000+ 1 1.03216- 4 1.47673- 3 1.60000+ 1 3.00000+ 1 1.32255- 3 1.48403- 3 1.60000+ 1 3.20000+ 1 2.84725- 6 1.51380- 3 1.60000+ 1 3.30000+ 1 2.84725- 6 1.51422- 3 1.60000+ 1 4.10000+ 1 1.21012- 5 1.51192- 3 1.80000+ 1 1.80000+ 1 9.96559- 5 1.19572- 3 1.80000+ 1 1.90000+ 1 1.86561- 2 1.25086- 3 1.80000+ 1 2.10000+ 1 4.28533- 4 1.39653- 3 1.80000+ 1 2.20000+ 1 3.56337- 3 1.40659- 3 1.80000+ 1 2.40000+ 1 1.30621- 3 1.58695- 3 1.80000+ 1 2.50000+ 1 7.47975- 3 1.58859- 3 1.80000+ 1 2.70000+ 1 1.11755- 4 1.53957- 3 1.80000+ 1 2.90000+ 1 1.92189- 5 1.56439- 3 1.80000+ 1 3.00000+ 1 1.60373- 3 1.57169- 3 1.80000+ 1 3.20000+ 1 1.42364- 6 1.60146- 3 1.80000+ 1 3.30000+ 1 8.54189- 6 1.60188- 3 1.80000+ 1 4.10000+ 1 8.54189- 6 1.59958- 3 1.90000+ 1 1.90000+ 1 2.56885- 2 1.30600- 3 1.90000+ 1 2.10000+ 1 3.59290- 2 1.45167- 3 1.90000+ 1 2.20000+ 1 4.75430- 2 1.46173- 3 1.90000+ 1 2.40000+ 1 2.23682- 2 1.64209- 3 1.90000+ 1 2.50000+ 1 2.54057- 2 1.64373- 3 1.90000+ 1 2.70000+ 1 2.45636- 3 1.59471- 3 1.90000+ 1 2.90000+ 1 2.38095- 3 1.61953- 3 1.90000+ 1 3.00000+ 1 5.30988- 3 1.62683- 3 1.90000+ 1 3.20000+ 1 1.12461- 4 1.65660- 3 1.90000+ 1 3.30000+ 1 1.35239- 4 1.65702- 3 1.90000+ 1 4.10000+ 1 2.00012- 4 1.65472- 3 2.10000+ 1 2.10000+ 1 2.32053- 4 1.59734- 3 2.10000+ 1 2.20000+ 1 4.95287- 3 1.60740- 3 2.10000+ 1 2.40000+ 1 5.46679- 4 1.78776- 3 2.10000+ 1 2.50000+ 1 6.62625- 3 1.78940- 3 2.10000+ 1 2.70000+ 1 9.46710- 5 1.74038- 3 2.10000+ 1 2.90000+ 1 2.98953- 5 1.76520- 3 2.10000+ 1 3.00000+ 1 3.05315- 3 1.77250- 3 2.10000+ 1 3.20000+ 1 1.42365- 6 1.80227- 3 2.10000+ 1 3.30000+ 1 1.28128- 5 1.80269- 3 2.10000+ 1 4.10000+ 1 7.11823- 6 1.80039- 3 2.20000+ 1 2.20000+ 1 2.30847- 3 1.61746- 3 2.20000+ 1 2.40000+ 1 5.35789- 3 1.79782- 3 2.20000+ 1 2.50000+ 1 4.57939- 3 1.79946- 3 2.20000+ 1 2.70000+ 1 1.06776- 4 1.75044- 3 2.20000+ 1 2.90000+ 1 2.78318- 4 1.77526- 3 2.20000+ 1 3.00000+ 1 3.99921- 3 1.78256- 3 2.20000+ 1 3.20000+ 1 1.42367- 5 1.81233- 3 2.20000+ 1 3.30000+ 1 1.21012- 5 1.81275- 3 2.20000+ 1 4.10000+ 1 8.54207- 6 1.81045- 3 2.40000+ 1 2.40000+ 1 6.27126- 4 1.97818- 3 2.40000+ 1 2.50000+ 1 1.69669- 2 1.97982- 3 2.40000+ 1 2.70000+ 1 1.12466- 4 1.93080- 3 2.40000+ 1 2.90000+ 1 1.40940- 4 1.95562- 3 2.40000+ 1 3.00000+ 1 1.81586- 3 1.96292- 3 2.40000+ 1 3.20000+ 1 2.13544- 6 1.99269- 3 2.40000+ 1 3.30000+ 1 1.49481- 5 1.99311- 3 2.40000+ 1 4.10000+ 1 8.54193- 6 1.99081- 3 2.50000+ 1 2.50000+ 1 6.57084- 3 1.98146- 3 2.50000+ 1 2.70000+ 1 1.45211- 4 1.93244- 3 2.50000+ 1 2.90000+ 1 8.09353- 4 1.95726- 3 2.50000+ 1 3.00000+ 1 2.12261- 3 1.96456- 3 2.50000+ 1 3.20000+ 1 2.06428- 5 1.99433- 3 2.50000+ 1 3.30000+ 1 1.35244- 5 1.99475- 3 2.50000+ 1 4.10000+ 1 1.06773- 5 1.99245- 3 2.70000+ 1 2.70000+ 1 1.78405- 5 1.88342- 3 2.70000+ 1 2.90000+ 1 2.02192- 5 1.90824- 3 2.70000+ 1 3.00000+ 1 3.48480- 4 1.91554- 3 2.70000+ 1 4.10000+ 1 2.37874- 6 1.94343- 3 2.90000+ 1 2.90000+ 1 1.41780- 6 1.93306- 3 2.90000+ 1 3.00000+ 1 4.09745- 4 1.94036- 3 2.90000+ 1 3.30000+ 1 1.41780- 6 1.97055- 3 2.90000+ 1 4.10000+ 1 1.41780- 6 1.96825- 3 3.00000+ 1 3.00000+ 1 1.38334- 3 1.94766- 3 3.00000+ 1 3.20000+ 1 4.82111- 5 1.97743- 3 3.00000+ 1 3.30000+ 1 5.93369- 5 1.97785- 3 3.00000+ 1 4.10000+ 1 8.90051- 5 1.97555- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.39770- 3 1.24061- 3 1.90000+ 1 2.64640- 4 1.29575- 3 2.40000+ 1 1.22420- 2 1.63184- 3 2.90000+ 1 5.20910- 4 1.60928- 3 3.00000+ 1 5.71670- 5 1.61658- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.10221- 1 3.40400- 5 1.40000+ 1 2.50000+ 1 1.51123- 2 3.56800- 5 1.40000+ 1 2.90000+ 1 5.29530- 4 1.14800- 5 1.40000+ 1 3.00000+ 1 1.46572- 3 1.87800- 5 1.40000+ 1 3.20000+ 1 3.72819- 4 4.85500- 5 1.40000+ 1 3.30000+ 1 4.79615- 5 4.89700- 5 1.40000+ 1 4.10000+ 1 1.10703- 4 4.66700- 5 1.60000+ 1 1.60000+ 1 3.75226- 5 6.55100- 4 1.60000+ 1 1.80000+ 1 1.89653- 3 7.42760- 4 1.60000+ 1 1.90000+ 1 1.31322- 3 7.97900- 4 1.60000+ 1 2.10000+ 1 4.68303- 2 9.43570- 4 1.60000+ 1 2.20000+ 1 5.57885- 3 9.53630- 4 1.60000+ 1 2.40000+ 1 1.41749- 2 1.13399- 3 1.60000+ 1 2.50000+ 1 4.44981- 3 1.13563- 3 1.60000+ 1 2.70000+ 1 2.04664- 5 1.08661- 3 1.60000+ 1 2.90000+ 1 1.94437- 4 1.11143- 3 1.60000+ 1 3.00000+ 1 1.09155- 4 1.11873- 3 1.60000+ 1 3.20000+ 1 1.14269- 4 1.14850- 3 1.60000+ 1 3.30000+ 1 1.19384- 5 1.14892- 3 1.60000+ 1 4.10000+ 1 1.70546- 6 1.14662- 3 1.80000+ 1 1.80000+ 1 1.09663- 3 8.30420- 4 1.80000+ 1 1.90000+ 1 6.90404- 3 8.85560- 4 1.80000+ 1 2.10000+ 1 4.07642- 2 1.03123- 3 1.80000+ 1 2.20000+ 1 3.27460- 3 1.04129- 3 1.80000+ 1 2.40000+ 1 8.84840- 3 1.22165- 3 1.80000+ 1 2.50000+ 1 4.48553- 3 1.22329- 3 1.80000+ 1 2.70000+ 1 2.06367- 4 1.17427- 3 1.80000+ 1 2.90000+ 1 2.28540- 4 1.19909- 3 1.80000+ 1 3.00000+ 1 6.42960- 4 1.20639- 3 1.80000+ 1 3.20000+ 1 9.89204- 5 1.23616- 3 1.80000+ 1 3.30000+ 1 8.52731- 6 1.23658- 3 1.80000+ 1 4.10000+ 1 1.53510- 5 1.23428- 3 1.90000+ 1 1.90000+ 1 2.48490- 3 9.40700- 4 1.90000+ 1 2.10000+ 1 8.52117- 2 1.08637- 3 1.90000+ 1 2.20000+ 1 3.20300- 3 1.09643- 3 1.90000+ 1 2.40000+ 1 4.63383- 3 1.27679- 3 1.90000+ 1 2.50000+ 1 2.49517- 3 1.27843- 3 1.90000+ 1 2.70000+ 1 1.60318- 4 1.22941- 3 1.90000+ 1 2.90000+ 1 6.08873- 4 1.25423- 3 1.90000+ 1 3.00000+ 1 4.43448- 4 1.26153- 3 1.90000+ 1 3.20000+ 1 2.08084- 4 1.29130- 3 1.90000+ 1 3.30000+ 1 6.82184- 6 1.29172- 3 1.90000+ 1 4.10000+ 1 1.19384- 5 1.28942- 3 2.10000+ 1 2.10000+ 1 7.29439- 2 1.23204- 3 2.10000+ 1 2.20000+ 1 1.46729- 1 1.24210- 3 2.10000+ 1 2.40000+ 1 5.57299- 2 1.42246- 3 2.10000+ 1 2.50000+ 1 6.92715- 2 1.42410- 3 2.10000+ 1 2.70000+ 1 6.83882- 3 1.37508- 3 2.10000+ 1 2.90000+ 1 5.23242- 3 1.39990- 3 2.10000+ 1 3.00000+ 1 1.01017- 2 1.40720- 3 2.10000+ 1 3.20000+ 1 4.07624- 4 1.43697- 3 2.10000+ 1 3.30000+ 1 4.12729- 4 1.43739- 3 2.10000+ 1 4.10000+ 1 5.52576- 4 1.43509- 3 2.20000+ 1 2.20000+ 1 2.39104- 3 1.25216- 3 2.20000+ 1 2.40000+ 1 5.88860- 2 1.43252- 3 2.20000+ 1 2.50000+ 1 3.21647- 3 1.43416- 3 2.20000+ 1 2.70000+ 1 4.69008- 4 1.38514- 3 2.20000+ 1 2.90000+ 1 2.81410- 4 1.40996- 3 2.20000+ 1 3.00000+ 1 3.13828- 4 1.41726- 3 2.20000+ 1 3.20000+ 1 3.61563- 4 1.44703- 3 2.20000+ 1 3.30000+ 1 1.19383- 5 1.44745- 3 2.20000+ 1 4.10000+ 1 3.58158- 5 1.44515- 3 2.40000+ 1 2.40000+ 1 4.37714- 2 1.61288- 3 2.40000+ 1 2.50000+ 1 1.26830- 1 1.61452- 3 2.40000+ 1 2.70000+ 1 2.12517- 3 1.56550- 3 2.40000+ 1 2.90000+ 1 9.41429- 4 1.59032- 3 2.40000+ 1 3.00000+ 1 5.42355- 4 1.59762- 3 2.40000+ 1 3.20000+ 1 1.43264- 4 1.62739- 3 2.40000+ 1 3.30000+ 1 1.60319- 4 1.62781- 3 2.40000+ 1 4.10000+ 1 1.75669- 4 1.62551- 3 2.50000+ 1 2.50000+ 1 3.24018- 3 1.61616- 3 2.50000+ 1 2.70000+ 1 5.86875- 4 1.56714- 3 2.50000+ 1 2.90000+ 1 3.38899- 4 1.59196- 3 2.50000+ 1 3.00000+ 1 3.26508- 4 1.59926- 3 2.50000+ 1 3.20000+ 1 1.94244- 4 1.62903- 3 2.50000+ 1 3.30000+ 1 1.03318- 5 1.62945- 3 2.50000+ 1 4.10000+ 1 4.54629- 5 1.62715- 3 2.70000+ 1 2.70000+ 1 1.33066- 5 1.51812- 3 2.70000+ 1 2.90000+ 1 1.72991- 4 1.54294- 3 2.70000+ 1 3.00000+ 1 1.06460- 4 1.55024- 3 2.70000+ 1 3.20000+ 1 1.33066- 4 1.58001- 3 2.70000+ 1 3.30000+ 1 1.33066- 5 1.58043- 3 2.90000+ 1 2.90000+ 1 1.05356- 4 1.56776- 3 2.90000+ 1 3.00000+ 1 5.26788- 4 1.57506- 3 2.90000+ 1 3.20000+ 1 1.05356- 4 1.60483- 3 2.90000+ 1 4.10000+ 1 1.50507- 5 1.60295- 3 3.00000+ 1 3.00000+ 1 4.57367- 4 1.58236- 3 3.00000+ 1 3.20000+ 1 5.71721- 4 1.61213- 3 3.00000+ 1 4.10000+ 1 3.81124- 5 1.61025- 3 3.20000+ 1 3.30000+ 1 1.70545- 6 1.64232- 3 3.20000+ 1 4.10000+ 1 1.70545- 6 1.64002- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.17200- 3 1.24275- 3 2.40000+ 1 6.83259- 4 1.57884- 3 2.50000+ 1 1.32480- 2 1.58048- 3 3.00000+ 1 5.76449- 4 1.56358- 3 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.68477- 6 6.02100- 4 1.60000+ 1 1.80000+ 1 4.60468- 4 6.89760- 4 1.60000+ 1 1.90000+ 1 3.35025- 3 7.44900- 4 1.60000+ 1 2.10000+ 1 5.01012- 3 8.90570- 4 1.60000+ 1 2.20000+ 1 5.56962- 2 9.00630- 4 1.60000+ 1 2.40000+ 1 4.89266- 3 1.08099- 3 1.60000+ 1 2.50000+ 1 1.66266- 2 1.08263- 3 1.60000+ 1 2.70000+ 1 1.51596- 5 1.03361- 3 1.60000+ 1 2.90000+ 1 2.27395- 5 1.05843- 3 1.60000+ 1 3.00000+ 1 2.95610- 4 1.06573- 3 1.60000+ 1 3.20000+ 1 1.13697- 5 1.09550- 3 1.60000+ 1 3.30000+ 1 1.23177- 4 1.09592- 3 1.60000+ 1 4.10000+ 1 1.89496- 6 1.09362- 3 1.80000+ 1 1.80000+ 1 7.57951- 6 7.77420- 4 1.80000+ 1 1.90000+ 1 8.37191- 3 8.32560- 4 1.80000+ 1 2.10000+ 1 4.58570- 4 9.78230- 4 1.80000+ 1 2.20000+ 1 5.64293- 2 9.88290- 4 1.80000+ 1 2.40000+ 1 2.27194- 3 1.16865- 3 1.80000+ 1 2.50000+ 1 8.30715- 3 1.17029- 3 1.80000+ 1 2.70000+ 1 4.73728- 5 1.12127- 3 1.80000+ 1 2.90000+ 1 3.78979- 6 1.14609- 3 1.80000+ 1 3.00000+ 1 7.33364- 4 1.15339- 3 1.80000+ 1 3.30000+ 1 1.25062- 4 1.18358- 3 1.80000+ 1 4.10000+ 1 3.78979- 6 1.18128- 3 1.90000+ 1 1.90000+ 1 6.20021- 3 8.87700- 4 1.90000+ 1 2.10000+ 1 5.28496- 3 1.03337- 3 1.90000+ 1 2.20000+ 1 8.81497- 2 1.04343- 3 1.90000+ 1 2.40000+ 1 3.06029- 3 1.22379- 3 1.90000+ 1 2.50000+ 1 6.72520- 3 1.22543- 3 1.90000+ 1 2.70000+ 1 4.13092- 4 1.17641- 3 1.90000+ 1 2.90000+ 1 7.21956- 4 1.20123- 3 1.90000+ 1 3.00000+ 1 1.12181- 3 1.20853- 3 1.90000+ 1 3.20000+ 1 1.51598- 5 1.23830- 3 1.90000+ 1 3.30000+ 1 1.95175- 4 1.23872- 3 1.90000+ 1 4.10000+ 1 3.22146- 5 1.23642- 3 2.10000+ 1 2.10000+ 1 1.13698- 3 1.17904- 3 2.10000+ 1 2.20000+ 1 1.16482- 1 1.18910- 3 2.10000+ 1 2.40000+ 1 2.99025- 3 1.36946- 3 2.10000+ 1 2.50000+ 1 3.99631- 2 1.37110- 3 2.10000+ 1 2.70000+ 1 4.07415- 4 1.32208- 3 2.10000+ 1 2.90000+ 1 6.25332- 5 1.34690- 3 2.10000+ 1 3.00000+ 1 4.71848- 4 1.35420- 3 2.10000+ 1 3.20000+ 1 5.68482- 6 1.38397- 3 2.10000+ 1 3.30000+ 1 2.59609- 4 1.38439- 3 2.10000+ 1 4.10000+ 1 3.03187- 5 1.38209- 3 2.20000+ 1 2.20000+ 1 1.31739- 1 1.19916- 3 2.20000+ 1 2.40000+ 1 6.75708- 2 1.37952- 3 2.20000+ 1 2.50000+ 1 1.03440- 1 1.38116- 3 2.20000+ 1 2.70000+ 1 7.86991- 3 1.33214- 3 2.20000+ 1 2.90000+ 1 6.96604- 3 1.35696- 3 2.20000+ 1 3.00000+ 1 1.05246- 2 1.36426- 3 2.20000+ 1 3.20000+ 1 3.60031- 4 1.39403- 3 2.20000+ 1 3.30000+ 1 6.65121- 4 1.39445- 3 2.20000+ 1 4.10000+ 1 6.34805- 4 1.39215- 3 2.40000+ 1 2.40000+ 1 3.82221- 3 1.55988- 3 2.40000+ 1 2.50000+ 1 1.21904- 1 1.56152- 3 2.40000+ 1 2.70000+ 1 5.66606- 4 1.51250- 3 2.40000+ 1 2.90000+ 1 2.59617- 4 1.53732- 3 2.40000+ 1 3.00000+ 1 2.88038- 4 1.54462- 3 2.40000+ 1 3.20000+ 1 9.47480- 6 1.57439- 3 2.40000+ 1 3.30000+ 1 1.44019- 4 1.57481- 3 2.40000+ 1 4.10000+ 1 4.54800- 5 1.57251- 3 2.50000+ 1 2.50000+ 1 8.26193- 2 1.56316- 3 2.50000+ 1 2.70000+ 1 2.41603- 3 1.51414- 3 2.50000+ 1 2.90000+ 1 1.01762- 3 1.53896- 3 2.50000+ 1 3.00000+ 1 7.35248- 4 1.54626- 3 2.50000+ 1 3.20000+ 1 1.19384- 4 1.57603- 3 2.50000+ 1 3.30000+ 1 2.44437- 4 1.57645- 3 2.50000+ 1 4.10000+ 1 2.00860- 4 1.57415- 3 2.70000+ 1 2.70000+ 1 2.00162- 5 1.46512- 3 2.70000+ 1 2.90000+ 1 2.00162- 5 1.48994- 3 2.70000+ 1 3.00000+ 1 4.00314- 4 1.49724- 3 2.70000+ 1 3.20000+ 1 2.00162- 5 1.52701- 3 2.70000+ 1 3.30000+ 1 1.80146- 4 1.52743- 3 2.90000+ 1 3.00000+ 1 4.68053- 4 1.52206- 3 2.90000+ 1 3.30000+ 1 1.06986- 4 1.55225- 3 3.00000+ 1 3.00000+ 1 6.03971- 4 1.52936- 3 3.00000+ 1 3.20000+ 1 2.23692- 5 1.55913- 3 3.00000+ 1 3.30000+ 1 2.68431- 4 1.55955- 3 3.00000+ 1 4.10000+ 1 4.47373- 5 1.55725- 3 3.30000+ 1 4.10000+ 1 1.89500- 6 1.58744- 3 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.81942- 5 8.76600- 5 1.90000+ 1 1.62852- 4 1.42800- 4 2.90000+ 1 8.39849- 5 4.56330- 4 3.00000+ 1 5.10072- 5 4.63630- 4 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.63895- 2 6.87000- 5 1.80000+ 1 2.50000+ 1 3.57107- 2 7.03400- 5 1.80000+ 1 2.70000+ 1 3.57355- 2 2.13200- 5 1.80000+ 1 2.90000+ 1 2.95453- 2 4.61400- 5 1.80000+ 1 3.00000+ 1 5.49763- 2 5.34400- 5 1.80000+ 1 3.20000+ 1 1.22305- 3 8.32100- 5 1.80000+ 1 3.30000+ 1 2.06847- 3 8.36300- 5 1.80000+ 1 4.10000+ 1 2.80544- 3 8.13300- 5 1.90000+ 1 2.40000+ 1 1.41485- 1 1.23840- 4 1.90000+ 1 2.50000+ 1 1.72563- 1 1.25480- 4 1.90000+ 1 2.70000+ 1 4.20095- 2 7.64600- 5 1.90000+ 1 2.90000+ 1 4.36657- 2 1.01280- 4 1.90000+ 1 3.00000+ 1 5.16283- 2 1.08580- 4 1.90000+ 1 3.20000+ 1 1.75978- 3 1.38350- 4 1.90000+ 1 3.30000+ 1 1.95921- 3 1.38770- 4 1.90000+ 1 4.10000+ 1 3.28965- 3 1.36470- 4 2.10000+ 1 2.10000+ 1 3.65089- 3 7.90900- 5 2.10000+ 1 2.20000+ 1 1.37087- 2 8.91500- 5 2.10000+ 1 2.40000+ 1 4.94173- 3 2.69510- 4 2.10000+ 1 2.50000+ 1 1.13548- 2 2.71150- 4 2.10000+ 1 2.70000+ 1 1.45133- 2 2.22130- 4 2.10000+ 1 2.90000+ 1 3.18467- 3 2.46950- 4 2.10000+ 1 3.00000+ 1 7.68046- 3 2.54250- 4 2.10000+ 1 3.20000+ 1 4.87028- 5 2.84020- 4 2.10000+ 1 3.30000+ 1 4.20547- 5 2.84440- 4 2.10000+ 1 4.10000+ 1 9.57108- 4 2.82140- 4 2.20000+ 1 2.20000+ 1 8.19603- 3 9.92100- 5 2.20000+ 1 2.40000+ 1 1.29888- 2 2.79570- 4 2.20000+ 1 2.50000+ 1 1.15191- 2 2.81210- 4 2.20000+ 1 2.70000+ 1 2.08111- 2 2.32190- 4 2.20000+ 1 2.90000+ 1 7.91750- 3 2.57010- 4 2.20000+ 1 3.00000+ 1 7.33840- 3 2.64310- 4 2.20000+ 1 3.20000+ 1 4.18883- 5 2.94080- 4 2.20000+ 1 3.30000+ 1 6.91506- 5 2.94500- 4 2.20000+ 1 4.10000+ 1 1.37163- 3 2.92200- 4 2.40000+ 1 2.40000+ 1 5.77139- 3 4.59930- 4 2.40000+ 1 2.50000+ 1 1.31181- 2 4.61570- 4 2.40000+ 1 2.70000+ 1 1.37335- 2 4.12550- 4 2.40000+ 1 2.90000+ 1 1.65008- 3 4.37370- 4 2.40000+ 1 3.00000+ 1 4.41209- 3 4.44670- 4 2.40000+ 1 3.20000+ 1 1.76194- 5 4.74440- 4 2.40000+ 1 3.30000+ 1 1.21337- 5 4.74860- 4 2.40000+ 1 4.10000+ 1 8.36951- 4 4.72560- 4 2.50000+ 1 2.50000+ 1 9.60682- 3 4.63210- 4 2.50000+ 1 2.70000+ 1 1.77414- 2 4.14190- 4 2.50000+ 1 2.90000+ 1 9.83617- 4 4.39010- 4 2.50000+ 1 3.00000+ 1 5.46476- 3 4.46310- 4 2.50000+ 1 3.20000+ 1 1.13024- 5 4.76080- 4 2.50000+ 1 3.30000+ 1 2.50990- 5 4.76500- 4 2.50000+ 1 4.10000+ 1 1.07974- 3 4.74200- 4 2.70000+ 1 2.70000+ 1 2.29163- 2 3.65170- 4 2.70000+ 1 2.90000+ 1 2.83087- 2 3.89990- 4 2.70000+ 1 3.00000+ 1 4.66252- 2 3.97290- 4 2.70000+ 1 3.20000+ 1 1.31818- 3 4.27060- 4 2.70000+ 1 3.30000+ 1 1.70618- 3 4.27480- 4 2.70000+ 1 4.10000+ 1 3.29780- 3 4.25180- 4 2.90000+ 1 2.90000+ 1 3.95307- 3 4.14810- 4 2.90000+ 1 3.00000+ 1 1.63688- 2 4.22110- 4 2.90000+ 1 3.20000+ 1 2.06635- 4 4.51880- 4 2.90000+ 1 3.30000+ 1 2.33590- 4 4.52300- 4 2.90000+ 1 4.10000+ 1 3.17140- 3 4.50000- 4 3.00000+ 1 3.00000+ 1 1.31838- 2 4.29410- 4 3.00000+ 1 3.20000+ 1 3.25762- 4 4.59180- 4 3.00000+ 1 3.30000+ 1 4.50313- 4 4.59600- 4 3.00000+ 1 4.10000+ 1 5.65252- 3 4.57300- 4 3.20000+ 1 3.30000+ 1 8.98379- 6 4.89370- 4 3.20000+ 1 4.10000+ 1 1.52720- 4 4.87070- 4 3.30000+ 1 4.10000+ 1 1.88664- 4 4.87490- 4 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.53465- 4 2.00810- 4 2.70000+ 1 1.24138- 4 3.43850- 4 3.20000+ 1 3.02680- 7 4.05740- 4 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 6.04821- 2 3.61800- 5 1.90000+ 1 2.50000+ 1 4.69378- 2 3.78200- 5 1.90000+ 1 2.90000+ 1 9.55106- 3 1.36200- 5 1.90000+ 1 3.00000+ 1 9.14282- 3 2.09200- 5 1.90000+ 1 3.20000+ 1 2.11400- 4 5.06900- 5 1.90000+ 1 3.30000+ 1 2.99700- 4 5.11100- 5 1.90000+ 1 4.10000+ 1 1.02409- 3 4.88100- 5 2.10000+ 1 2.10000+ 1 2.97995- 3 0.00000+ 0 2.10000+ 1 2.20000+ 1 1.65756- 1 1.49000- 6 2.10000+ 1 2.40000+ 1 1.21308- 1 1.81850- 4 2.10000+ 1 2.50000+ 1 2.55192- 1 1.83490- 4 2.10000+ 1 2.70000+ 1 2.57697- 2 1.34470- 4 2.10000+ 1 2.90000+ 1 1.83443- 2 1.59290- 4 2.10000+ 1 3.00000+ 1 2.99027- 2 1.66590- 4 2.10000+ 1 3.20000+ 1 5.67613- 4 1.96360- 4 2.10000+ 1 3.30000+ 1 1.00221- 3 1.96780- 4 2.10000+ 1 4.10000+ 1 2.10229- 3 1.94480- 4 2.20000+ 1 2.20000+ 1 1.19691- 2 1.15500- 5 2.20000+ 1 2.40000+ 1 3.78479- 2 1.91910- 4 2.20000+ 1 2.50000+ 1 9.86848- 3 1.93550- 4 2.20000+ 1 2.70000+ 1 5.04875- 3 1.44530- 4 2.20000+ 1 2.90000+ 1 2.06441- 2 1.69350- 4 2.20000+ 1 3.00000+ 1 4.19967- 3 1.76650- 4 2.20000+ 1 3.20000+ 1 1.28194- 4 2.06420- 4 2.20000+ 1 3.30000+ 1 6.68318- 5 2.06840- 4 2.20000+ 1 4.10000+ 1 3.52219- 4 2.04540- 4 2.40000+ 1 2.40000+ 1 2.98754- 3 3.72270- 4 2.40000+ 1 2.50000+ 1 2.05515- 2 3.73910- 4 2.40000+ 1 2.70000+ 1 3.43531- 3 3.24890- 4 2.40000+ 1 2.90000+ 1 1.35839- 2 3.49710- 4 2.40000+ 1 3.00000+ 1 3.64831- 3 3.57010- 4 2.40000+ 1 3.20000+ 1 1.31056- 4 3.86780- 4 2.40000+ 1 3.30000+ 1 4.22644- 5 3.87200- 4 2.40000+ 1 4.10000+ 1 2.72767- 4 3.84900- 4 2.50000+ 1 2.50000+ 1 1.17968- 3 3.75550- 4 2.50000+ 1 2.70000+ 1 2.68589- 3 3.26530- 4 2.50000+ 1 2.90000+ 1 3.14903- 2 3.51350- 4 2.50000+ 1 3.00000+ 1 2.09127- 3 3.58650- 4 2.50000+ 1 3.20000+ 1 3.68102- 4 3.88420- 4 2.50000+ 1 3.30000+ 1 2.30544- 5 3.88840- 4 2.50000+ 1 4.10000+ 1 1.81354- 4 3.86540- 4 2.70000+ 1 2.70000+ 1 5.00079- 4 2.77510- 4 2.70000+ 1 2.90000+ 1 7.45969- 3 3.02330- 4 2.70000+ 1 3.00000+ 1 1.23627- 3 3.09630- 4 2.70000+ 1 3.20000+ 1 7.01649- 5 3.39400- 4 2.70000+ 1 3.30000+ 1 4.00940- 5 3.39820- 4 2.70000+ 1 4.10000+ 1 6.79351- 5 3.37520- 4 2.90000+ 1 2.90000+ 1 1.56732- 2 3.27150- 4 2.90000+ 1 3.00000+ 1 4.25993- 2 3.34450- 4 2.90000+ 1 3.20000+ 1 9.84682- 4 3.64220- 4 2.90000+ 1 3.30000+ 1 1.56070- 3 3.64640- 4 2.90000+ 1 4.10000+ 1 2.26358- 3 3.62340- 4 3.00000+ 1 3.00000+ 1 2.45229- 3 3.41750- 4 3.00000+ 1 3.20000+ 1 4.62113- 4 3.71520- 4 3.00000+ 1 3.30000+ 1 1.29390- 4 3.71940- 4 3.00000+ 1 4.10000+ 1 4.49776- 4 3.69640- 4 3.20000+ 1 3.30000+ 1 2.90604- 7 4.01710- 4 3.20000+ 1 4.10000+ 1 7.26488- 7 3.99410- 4 3.30000+ 1 4.10000+ 1 2.90608- 7 3.99830- 4 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.36665- 5 1.45670- 4 2.20000+ 1 1.52920- 4 1.55730- 4 2.70000+ 1 8.06076- 5 2.88710- 4 3.20000+ 1 9.51476- 8 3.50600- 4 3.30000+ 1 4.95838- 7 3.51020- 4 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.89094- 2 1.26710- 4 2.10000+ 1 2.50000+ 1 5.41242- 2 1.28350- 4 2.10000+ 1 2.70000+ 1 1.17412- 2 7.93300- 5 2.10000+ 1 2.90000+ 1 8.85787- 3 1.04150- 4 2.10000+ 1 3.00000+ 1 3.19006- 2 1.11450- 4 2.10000+ 1 3.20000+ 1 2.67179- 4 1.41220- 4 2.10000+ 1 3.30000+ 1 5.48497- 4 1.41640- 4 2.10000+ 1 4.10000+ 1 9.10278- 4 1.39340- 4 2.20000+ 1 2.40000+ 1 2.50487- 1 1.36770- 4 2.20000+ 1 2.50000+ 1 2.64243- 1 1.38410- 4 2.20000+ 1 2.70000+ 1 6.06381- 2 8.93900- 5 2.20000+ 1 2.90000+ 1 5.97083- 2 1.14210- 4 2.20000+ 1 3.00000+ 1 8.24228- 2 1.21510- 4 2.20000+ 1 3.20000+ 1 2.33607- 3 1.51280- 4 2.20000+ 1 3.30000+ 1 2.44036- 3 1.51700- 4 2.20000+ 1 4.10000+ 1 4.90024- 3 1.49400- 4 2.40000+ 1 2.40000+ 1 8.12401- 4 3.17130- 4 2.40000+ 1 2.50000+ 1 2.25239- 2 3.18770- 4 2.40000+ 1 2.70000+ 1 4.61526- 3 2.69750- 4 2.40000+ 1 2.90000+ 1 1.99524- 3 2.94570- 4 2.40000+ 1 3.00000+ 1 2.82162- 2 3.01870- 4 2.40000+ 1 3.20000+ 1 2.77232- 5 3.31640- 4 2.40000+ 1 3.30000+ 1 1.72590- 4 3.32060- 4 2.40000+ 1 4.10000+ 1 2.85382- 4 3.29760- 4 2.50000+ 1 2.50000+ 1 9.28017- 3 3.20410- 4 2.50000+ 1 2.70000+ 1 9.70150- 3 2.71390- 4 2.50000+ 1 2.90000+ 1 7.75792- 3 2.96210- 4 2.50000+ 1 3.00000+ 1 3.40292- 2 3.03510- 4 2.50000+ 1 3.20000+ 1 3.45192- 5 3.33280- 4 2.50000+ 1 3.30000+ 1 2.02490- 4 3.33700- 4 2.50000+ 1 4.10000+ 1 6.64816- 4 3.31400- 4 2.70000+ 1 2.70000+ 1 9.59525- 6 2.22370- 4 2.70000+ 1 2.90000+ 1 3.14230- 4 2.47190- 4 2.70000+ 1 3.00000+ 1 6.02977- 3 2.54490- 4 2.70000+ 1 3.20000+ 1 2.15887- 5 2.84260- 4 2.70000+ 1 3.30000+ 1 4.23795- 5 2.84680- 4 2.70000+ 1 4.10000+ 1 2.39877- 6 2.82380- 4 2.90000+ 1 2.90000+ 1 2.38846- 5 2.72010- 4 2.90000+ 1 3.00000+ 1 4.10546- 3 2.79310- 4 2.90000+ 1 3.20000+ 1 8.53066- 6 3.09080- 4 2.90000+ 1 3.30000+ 1 3.01429- 5 3.09500- 4 2.90000+ 1 4.10000+ 1 1.53552- 5 3.07200- 4 3.00000+ 1 3.00000+ 1 1.25620- 2 2.86610- 4 3.00000+ 1 3.20000+ 1 4.42687- 4 3.16380- 4 3.00000+ 1 3.30000+ 1 5.50323- 4 3.16800- 4 3.00000+ 1 4.10000+ 1 8.36928- 4 3.14500- 4 3.20000+ 1 3.30000+ 1 5.43597- 7 3.46570- 4 3.20000+ 1 4.10000+ 1 5.43597- 7 3.44270- 4 3.30000+ 1 4.10000+ 1 1.08719- 6 3.44690- 4 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 6.44451- 5 1.90420- 4 2.90000+ 1 1.71400- 5 1.67860- 4 3.00000+ 1 2.54970- 6 1.75160- 4 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 2.69307- 3 5.61000- 6 2.20000+ 1 3.30000+ 1 4.31402- 4 6.03000- 6 2.20000+ 1 4.10000+ 1 4.56928- 4 3.73000- 6 2.40000+ 1 2.40000+ 1 1.81486- 1 1.71460- 4 2.40000+ 1 2.50000+ 1 5.63163- 1 1.73100- 4 2.40000+ 1 2.70000+ 1 5.99489- 2 1.24080- 4 2.40000+ 1 2.90000+ 1 4.85067- 2 1.48900- 4 2.40000+ 1 3.00000+ 1 7.18926- 2 1.56200- 4 2.40000+ 1 3.20000+ 1 2.73493- 3 1.85970- 4 2.40000+ 1 3.30000+ 1 2.56421- 3 1.86390- 4 2.40000+ 1 4.10000+ 1 4.97480- 3 1.84090- 4 2.50000+ 1 2.50000+ 1 6.82308- 3 1.74740- 4 2.50000+ 1 2.70000+ 1 6.55687- 3 1.25720- 4 2.50000+ 1 2.90000+ 1 1.61512- 2 1.50540- 4 2.50000+ 1 3.00000+ 1 5.38401- 3 1.57840- 4 2.50000+ 1 3.20000+ 1 3.20358- 3 1.87610- 4 2.50000+ 1 3.30000+ 1 1.11716- 4 1.88030- 4 2.50000+ 1 4.10000+ 1 4.53572- 4 1.85730- 4 2.70000+ 1 2.70000+ 1 1.76938- 3 7.67000- 5 2.70000+ 1 2.90000+ 1 1.93516- 3 1.01520- 4 2.70000+ 1 3.00000+ 1 2.16202- 3 1.08820- 4 2.70000+ 1 3.20000+ 1 3.49583- 4 1.38590- 4 2.70000+ 1 3.30000+ 1 1.23966- 4 1.39010- 4 2.70000+ 1 4.10000+ 1 1.63398- 4 1.36710- 4 2.90000+ 1 2.90000+ 1 2.27030- 3 1.26340- 4 2.90000+ 1 3.00000+ 1 6.86147- 3 1.33640- 4 2.90000+ 1 3.20000+ 1 6.07235- 4 1.63410- 4 2.90000+ 1 3.30000+ 1 1.88438- 4 1.63830- 4 2.90000+ 1 4.10000+ 1 3.12571- 4 1.61530- 4 3.00000+ 1 3.00000+ 1 3.63843- 3 1.40940- 4 3.00000+ 1 3.20000+ 1 1.49718- 3 1.70710- 4 3.00000+ 1 3.30000+ 1 1.37260- 4 1.71130- 4 3.00000+ 1 4.10000+ 1 3.31537- 4 1.68830- 4 3.20000+ 1 3.30000+ 1 1.00433- 5 2.00900- 4 3.20000+ 1 4.10000+ 1 1.84118- 5 1.98600- 4 3.30000+ 1 4.10000+ 1 2.92900- 6 1.99020- 4 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.98142- 6 1.80360- 4 2.50000+ 1 6.16355- 5 1.82000- 4 3.00000+ 1 1.62691- 5 1.65100- 4 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.14526- 2 1.61400- 4 2.40000+ 1 2.50000+ 1 4.27453- 1 1.63040- 4 2.40000+ 1 2.70000+ 1 8.29873- 3 1.14020- 4 2.40000+ 1 2.90000+ 1 4.64414- 3 1.38840- 4 2.40000+ 1 3.00000+ 1 1.41328- 2 1.46140- 4 2.40000+ 1 3.20000+ 1 1.40548- 4 1.75910- 4 2.40000+ 1 3.30000+ 1 2.54253- 3 1.76330- 4 2.40000+ 1 4.10000+ 1 6.19272- 4 1.74030- 4 2.50000+ 1 2.50000+ 1 3.10618- 1 1.64680- 4 2.50000+ 1 2.70000+ 1 6.27586- 2 1.15660- 4 2.50000+ 1 2.90000+ 1 6.15726- 2 1.40480- 4 2.50000+ 1 3.00000+ 1 7.23203- 2 1.47780- 4 2.50000+ 1 3.20000+ 1 2.33783- 3 1.77550- 4 2.50000+ 1 3.30000+ 1 4.30736- 3 1.77970- 4 2.50000+ 1 4.10000+ 1 5.20940- 3 1.75670- 4 2.70000+ 1 2.70000+ 1 2.20876- 3 6.66400- 5 2.70000+ 1 2.90000+ 1 1.31228- 3 9.14600- 5 2.70000+ 1 3.00000+ 1 3.24003- 3 9.87600- 5 2.70000+ 1 3.20000+ 1 1.14188- 4 1.28530- 4 2.70000+ 1 3.30000+ 1 3.63655- 4 1.28950- 4 2.70000+ 1 4.10000+ 1 1.97644- 4 1.26650- 4 2.90000+ 1 2.90000+ 1 2.30132- 4 1.16280- 4 2.90000+ 1 3.00000+ 1 2.07341- 3 1.23580- 4 2.90000+ 1 3.20000+ 1 1.27366- 5 1.53350- 4 2.90000+ 1 3.30000+ 1 1.92800- 4 1.53770- 4 2.90000+ 1 4.10000+ 1 5.31437- 5 1.51470- 4 3.00000+ 1 3.00000+ 1 1.02517- 3 1.30880- 4 3.00000+ 1 3.20000+ 1 4.74357- 5 1.60650- 4 3.00000+ 1 3.30000+ 1 2.88122- 4 1.61070- 4 3.00000+ 1 4.10000+ 1 1.20779- 4 1.58770- 4 3.20000+ 1 3.30000+ 1 8.34473- 6 1.90840- 4 3.20000+ 1 4.10000+ 1 3.07436- 6 1.88540- 4 3.30000+ 1 4.10000+ 1 1.97642- 5 1.88960- 4 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 2.78420- 7 2.48200- 5 3.00000+ 1 1.22650- 6 3.21200- 5 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.14870- 1 1.84900- 5 3.00000+ 1 4.10000+ 1 5.77900- 1 2.57900- 5 4.10000+ 1 4.10000+ 1 7.22810- 3 5.36800- 5 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.56388- 9 3.70700- 5 4.10000+ 1 3.26889- 9 3.51900- 5 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 9.97476- 1 9.70000- 7 4.10000+ 1 4.10000+ 1 2.52359- 3 2.88600- 5 1 71000 0 7 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.26780-10 2.97700- 5 3.30000+ 1 1.13200- 9 3.01900- 5 4.10000+ 1 1.11500- 9 2.78900- 5 1 71000 0 9 1.74967+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 4.10000+ 1 1.00000+ 0 2.15600- 5 1 72000 0 0 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 8.00000- 1 3.30000+ 1 1.20000+ 0 4.10000+ 1 2.00000+ 0 1 72000 0 0 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.54820- 2 3.00000+ 0 1.12450- 2 5.00000+ 0 1.07630- 2 6.00000+ 0 9.55830- 3 8.00000+ 0 2.57600- 3 1.00000+ 1 2.35810- 3 1.10000+ 1 2.09900- 3 1.30000+ 1 1.72550- 3 1.40000+ 1 1.66870- 3 1.60000+ 1 5.25690- 4 1.80000+ 1 4.35270- 4 1.90000+ 1 3.75820- 4 2.10000+ 1 2.25590- 4 2.20000+ 1 2.14710- 4 2.40000+ 1 2.72600- 5 2.50000+ 1 2.54000- 5 2.70000+ 1 7.25600- 5 2.90000+ 1 4.63400- 5 3.00000+ 1 3.81000- 5 3.20000+ 1 5.75000- 6 3.30000+ 1 5.18000- 6 4.10000+ 1 6.86000- 6 1 72000 0 0 1.78490+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.81330- 2 3.00000+ 0 2.05760- 2 5.00000+ 0 2.05710- 2 6.00000+ 0 1.60270- 2 8.00000+ 0 6.48350- 3 1.00000+ 1 6.38570- 3 1.10000+ 1 5.28380- 3 1.30000+ 1 5.14600- 3 1.40000+ 1 4.89860- 3 1.60000+ 1 2.05610- 3 1.80000+ 1 1.94500- 3 1.90000+ 1 1.61920- 3 2.10000+ 1 1.41270- 3 2.20000+ 1 1.34270- 3 2.40000+ 1 9.18120- 4 2.50000+ 1 8.93650- 4 2.70000+ 1 4.34420- 4 2.90000+ 1 3.49940- 4 3.00000+ 1 2.81860- 4 3.20000+ 1 1.12740- 4 3.30000+ 1 1.02340- 4 4.10000+ 1 4.69000- 5 1 72000 0 0 1.78490+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00360-10 3.00000+ 0 4.20910-10 5.00000+ 0 3.48470-10 6.00000+ 0 3.89250-10 8.00000+ 0 1.09670- 9 1.00000+ 1 1.04190- 9 1.10000+ 1 1.11750- 9 1.30000+ 1 9.78530-10 1.40000+ 1 1.00210- 9 1.60000+ 1 2.46290- 9 1.80000+ 1 2.49270- 9 1.90000+ 1 2.66450- 9 2.10000+ 1 2.76490- 9 2.20000+ 1 2.82400- 9 2.40000+ 1 3.39320- 9 2.50000+ 1 3.44880- 9 2.70000+ 1 5.91980- 9 2.90000+ 1 6.55310- 9 3.00000+ 1 7.10920- 9 3.20000+ 1 1.15690- 8 3.30000+ 1 1.21560- 8 4.10000+ 1 1.80610- 8 1 72000 0 0 1.78490+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.33460- 5 3.00000+ 0 7.01210- 7 5.00000+ 0 1.21340- 6 6.00000+ 0 1.08700- 6 8.00000+ 0 2.34660- 8 1.00000+ 1 2.46150- 8 1.10000+ 1 2.57220- 8 1.30000+ 1 2.86760- 8 1.40000+ 1 2.69310- 8 1.60000+ 1 6.52250-10 1.80000+ 1 1.20560- 9 1.90000+ 1 7.43760-10 2.10000+ 1 9.71500-10 2.20000+ 1 8.64610-10 2.70000+ 1 3.16600-11 2.90000+ 1 1.12860-11 3.00000+ 1 8.30000-12 1 72000 0 0 1.78490+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.69160- 6 3.00000+ 0 8.42960- 6 5.00000+ 0 3.22240- 6 6.00000+ 0 3.28160- 6 8.00000+ 0 1.81580- 5 1.00000+ 1 1.09390- 5 1.10000+ 1 1.12870- 5 1.30000+ 1 2.48950- 6 1.40000+ 1 1.49180- 6 1.60000+ 1 1.42100- 5 1.80000+ 1 1.42810- 5 1.90000+ 1 9.95970- 6 2.10000+ 1 6.73190- 6 2.20000+ 1 6.45500- 6 2.70000+ 1 5.46890- 6 2.90000+ 1 1.08170- 6 3.00000+ 1 4.19910- 7 1 72000 0 0 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.64197- 4 3.00000+ 0 2.21508- 4 5.00000+ 0 1.71042- 4 6.00000+ 0 1.64042- 4 8.00000+ 0 1.54837- 4 1.00000+ 1 1.31148- 4 1.10000+ 1 1.22052- 4 1.30000+ 1 9.06105- 5 1.40000+ 1 8.61129- 5 1.60000+ 1 7.82987- 5 1.80000+ 1 7.27966- 5 1.90000+ 1 6.81648- 5 2.10000+ 1 5.06420- 5 2.20000+ 1 4.93831- 5 2.40000+ 1 2.72600- 5 2.50000+ 1 2.54000- 5 2.70000+ 1 2.33170- 5 2.90000+ 1 2.05627- 5 3.00000+ 1 1.37200- 5 3.20000+ 1 5.75000- 6 3.30000+ 1 5.18000- 6 4.10000+ 1 6.86000- 6 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19805+ 0 3.00000+ 0 2.91024- 1 5.00000+ 0 3.30457- 1 6.00000+ 0 2.69177- 1 8.00000+ 0 1.95332- 2 1.00000+ 1 1.95950- 2 1.10000+ 1 1.86965- 2 1.30000+ 1 1.93736- 2 1.40000+ 1 1.83781- 2 1.60000+ 1 6.70831- 4 1.80000+ 1 8.50267- 4 1.90000+ 1 3.48630- 4 2.10000+ 1 9.85442- 5 2.20000+ 1 9.39578- 5 2.70000+ 1 1.89939- 6 2.90000+ 1 3.53862- 8 3.00000+ 1 7.50230- 9 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.63223- 2 3.00000+ 0 2.24518- 3 5.00000+ 0 2.80669- 3 6.00000+ 0 1.98848- 3 8.00000+ 0 3.23334- 5 1.00000+ 1 3.21802- 5 1.10000+ 1 3.02854- 5 1.30000+ 1 3.12731- 5 1.40000+ 1 2.91010- 5 1.60000+ 1 1.70236- 7 1.80000+ 1 1.97261- 7 1.90000+ 1 7.12629- 8 2.10000+ 1 1.91116- 8 2.20000+ 1 1.75247- 8 2.70000+ 1 6.27464-11 2.90000+ 1 1.36781-12 3.00000+ 1 2.42795-13 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.44181+ 0 3.00000+ 0 1.04055+ 1 5.00000+ 0 7.75801+ 0 6.00000+ 0 7.38039+ 0 8.00000+ 0 7.16654+ 0 1.00000+ 1 5.80936+ 0 1.10000+ 1 5.34269+ 0 1.30000+ 1 3.46525+ 0 1.40000+ 1 3.32222+ 0 1.60000+ 1 4.25855+ 0 1.80000+ 1 3.07800+ 0 1.90000+ 1 2.83790+ 0 2.10000+ 1 1.43403+ 0 2.20000+ 1 1.43597+ 0 2.70000+ 1 2.39897+ 0 2.90000+ 1 1.99748+ 0 3.00000+ 1 1.00000+ 0 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.99554- 3 3.00000+ 0 8.77831- 3 5.00000+ 0 7.78527- 3 6.00000+ 0 7.40577- 3 8.00000+ 0 2.38883- 3 1.00000+ 1 2.19477- 3 1.10000+ 1 1.94666- 3 1.30000+ 1 1.60362- 3 1.40000+ 1 1.55349- 3 1.60000+ 1 4.47221- 4 1.80000+ 1 3.62276- 4 1.90000+ 1 3.07584- 4 2.10000+ 1 1.74929- 4 2.20000+ 1 1.65309- 4 2.70000+ 1 4.92430- 5 2.90000+ 1 2.57773- 5 3.00000+ 1 2.43800- 5 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.75178- 1 5.47190- 2 6.00000+ 0 4.81456- 1 5.59237- 2 1.00000+ 1 5.12545- 2 6.31239- 2 1.10000+ 1 9.90641- 2 6.33830- 2 1.30000+ 1 1.03999- 3 6.37565- 2 1.40000+ 1 1.32379- 3 6.38133- 2 1.80000+ 1 1.15269- 2 6.50467- 2 1.90000+ 1 2.23138- 2 6.51062- 2 2.10000+ 1 2.45028- 4 6.52564- 2 2.20000+ 1 3.10357- 4 6.52673- 2 2.90000+ 1 2.60488- 3 6.54357- 2 3.00000+ 1 5.39725- 3 6.54439- 2 3.20000+ 1 2.71248- 6 6.54762- 2 3.30000+ 1 3.24977- 6 6.54768- 2 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.71668- 3 4.29920- 2 3.00000+ 0 5.00000+ 0 6.66189- 3 4.34740- 2 3.00000+ 0 6.00000+ 0 4.95767- 3 4.46787- 2 3.00000+ 0 8.00000+ 0 1.84932- 3 5.16610- 2 3.00000+ 0 1.00000+ 1 1.40814- 3 5.18789- 2 3.00000+ 0 1.10000+ 1 1.10435- 3 5.21380- 2 3.00000+ 0 1.30000+ 1 8.75191- 5 5.25115- 2 3.00000+ 0 1.40000+ 1 7.52516- 5 5.25683- 2 3.00000+ 0 1.60000+ 1 4.42740- 4 5.37113- 2 3.00000+ 0 1.80000+ 1 3.26146- 4 5.38017- 2 3.00000+ 0 1.90000+ 1 2.53168- 4 5.38612- 2 3.00000+ 0 2.10000+ 1 2.04241- 5 5.40114- 2 3.00000+ 0 2.20000+ 1 1.73182- 5 5.40223- 2 3.00000+ 0 2.40000+ 1 7.76605- 8 5.42097- 2 3.00000+ 0 2.50000+ 1 7.76605- 8 5.42116- 2 3.00000+ 0 2.70000+ 1 7.37736- 5 5.41644- 2 3.00000+ 0 2.90000+ 1 4.46530- 5 5.41907- 2 3.00000+ 0 3.00000+ 1 3.28486- 5 5.41989- 2 3.00000+ 0 3.20000+ 1 4.65939- 7 5.42312- 2 3.00000+ 0 4.10000+ 1 6.29011- 6 5.42301- 2 5.00000+ 0 5.00000+ 0 4.94665- 4 4.39560- 2 5.00000+ 0 6.00000+ 0 9.41203- 3 4.51607- 2 5.00000+ 0 8.00000+ 0 1.11267- 3 5.21430- 2 5.00000+ 0 1.00000+ 1 1.83974- 4 5.23609- 2 5.00000+ 0 1.10000+ 1 1.74215- 3 5.26200- 2 5.00000+ 0 1.30000+ 1 9.38153- 5 5.29935- 2 5.00000+ 0 1.40000+ 1 2.72813- 4 5.30503- 2 5.00000+ 0 1.60000+ 1 2.56973- 4 5.41933- 2 5.00000+ 0 1.80000+ 1 4.14709- 5 5.42837- 2 5.00000+ 0 1.90000+ 1 3.83719- 4 5.43432- 2 5.00000+ 0 2.10000+ 1 2.12784- 5 5.44934- 2 5.00000+ 0 2.20000+ 1 6.15841- 5 5.45043- 2 5.00000+ 0 2.40000+ 1 3.88279- 7 5.46917- 2 5.00000+ 0 2.50000+ 1 6.98929- 7 5.46936- 2 5.00000+ 0 2.70000+ 1 4.24787- 5 5.46464- 2 5.00000+ 0 2.90000+ 1 5.66943- 6 5.46727- 2 5.00000+ 0 3.00000+ 1 4.93895- 5 5.46809- 2 5.00000+ 0 3.20000+ 1 4.65946- 7 5.47132- 2 5.00000+ 0 4.10000+ 1 3.65000- 6 5.47121- 2 6.00000+ 0 6.00000+ 0 4.27272- 3 4.63654- 2 6.00000+ 0 8.00000+ 0 7.71152- 4 5.33477- 2 6.00000+ 0 1.00000+ 1 1.63404- 3 5.35656- 2 6.00000+ 0 1.10000+ 1 1.63274- 3 5.38247- 2 6.00000+ 0 1.30000+ 1 3.11359- 4 5.41982- 2 6.00000+ 0 1.40000+ 1 2.69258- 4 5.42550- 2 6.00000+ 0 1.60000+ 1 1.75205- 4 5.53980- 2 6.00000+ 0 1.80000+ 1 3.63311- 4 5.54884- 2 6.00000+ 0 1.90000+ 1 3.62621- 4 5.55479- 2 6.00000+ 0 2.10000+ 1 7.09839- 5 5.56981- 2 6.00000+ 0 2.20000+ 1 6.09657- 5 5.57090- 2 6.00000+ 0 2.40000+ 1 7.76662- 7 5.58964- 2 6.00000+ 0 2.50000+ 1 8.54294- 7 5.58983- 2 6.00000+ 0 2.70000+ 1 2.88899- 5 5.58511- 2 6.00000+ 0 2.90000+ 1 4.93153- 5 5.58774- 2 6.00000+ 0 3.00000+ 1 4.67543- 5 5.58856- 2 6.00000+ 0 3.20000+ 1 1.47554- 6 5.59179- 2 6.00000+ 0 4.10000+ 1 2.48517- 6 5.59168- 2 8.00000+ 0 8.00000+ 0 1.78383- 4 6.03300- 2 8.00000+ 0 1.00000+ 1 2.36390- 4 6.05479- 2 8.00000+ 0 1.10000+ 1 1.73413- 4 6.08070- 2 8.00000+ 0 1.30000+ 1 1.32794- 5 6.11805- 2 8.00000+ 0 1.40000+ 1 1.07945- 5 6.12373- 2 8.00000+ 0 1.60000+ 1 8.51145- 5 6.23803- 2 8.00000+ 0 1.80000+ 1 5.48297- 5 6.24707- 2 8.00000+ 0 1.90000+ 1 3.98384- 5 6.25302- 2 8.00000+ 0 2.10000+ 1 3.10628- 6 6.26804- 2 8.00000+ 0 2.20000+ 1 2.48500- 6 6.26913- 2 8.00000+ 0 2.70000+ 1 1.41334- 5 6.28334- 2 8.00000+ 0 2.90000+ 1 7.53288- 6 6.28597- 2 8.00000+ 0 3.00000+ 1 5.20298- 6 6.28679- 2 8.00000+ 0 3.20000+ 1 7.76608- 8 6.29002- 2 8.00000+ 0 4.10000+ 1 1.24255- 6 6.28991- 2 1.00000+ 1 1.00000+ 1 1.66191- 5 6.07658- 2 1.00000+ 1 1.10000+ 1 3.09855- 4 6.10249- 2 1.00000+ 1 1.30000+ 1 1.35903- 5 6.13984- 2 1.00000+ 1 1.40000+ 1 3.61882- 5 6.14552- 2 1.00000+ 1 1.60000+ 1 5.46702- 5 6.25982- 2 1.00000+ 1 1.80000+ 1 7.45512- 6 6.26886- 2 1.00000+ 1 1.90000+ 1 6.85695- 5 6.27481- 2 1.00000+ 1 2.10000+ 1 3.10625- 6 6.28983- 2 1.00000+ 1 2.20000+ 1 8.23139- 6 6.29092- 2 1.00000+ 1 2.40000+ 1 7.76601- 8 6.30966- 2 1.00000+ 1 2.50000+ 1 7.76601- 8 6.30985- 2 1.00000+ 1 2.70000+ 1 9.00815- 6 6.30513- 2 1.00000+ 1 2.90000+ 1 1.00955- 6 6.30776- 2 1.00000+ 1 3.00000+ 1 8.85276- 6 6.30858- 2 1.00000+ 1 3.20000+ 1 7.76601- 8 6.31181- 2 1.00000+ 1 4.10000+ 1 7.76601- 7 6.31170- 2 1.10000+ 1 1.10000+ 1 1.57256- 4 6.12840- 2 1.10000+ 1 1.30000+ 1 4.73737- 5 6.16575- 2 1.10000+ 1 1.40000+ 1 3.97620- 5 6.17143- 2 1.10000+ 1 1.60000+ 1 3.94510- 5 6.28573- 2 1.10000+ 1 1.80000+ 1 6.91931- 5 6.29477- 2 1.10000+ 1 1.90000+ 1 6.99711- 5 6.30072- 2 1.10000+ 1 2.10000+ 1 1.08727- 5 6.31574- 2 1.10000+ 1 2.20000+ 1 9.08616- 6 6.31683- 2 1.10000+ 1 2.40000+ 1 7.76620- 8 6.33557- 2 1.10000+ 1 2.50000+ 1 7.76620- 8 6.33576- 2 1.10000+ 1 2.70000+ 1 6.52342- 6 6.33104- 2 1.10000+ 1 2.90000+ 1 9.39656- 6 6.33367- 2 1.10000+ 1 3.00000+ 1 9.00837- 6 6.33449- 2 1.10000+ 1 3.20000+ 1 2.32974- 7 6.33772- 2 1.10000+ 1 4.10000+ 1 5.43625- 7 6.33761- 2 1.30000+ 1 1.30000+ 1 7.93730- 8 6.20310- 2 1.30000+ 1 1.40000+ 1 5.87325- 6 6.20878- 2 1.30000+ 1 1.60000+ 1 3.09535- 6 6.32308- 2 1.30000+ 1 1.80000+ 1 3.01605- 6 6.33212- 2 1.30000+ 1 1.90000+ 1 1.02384- 5 6.33807- 2 1.30000+ 1 2.20000+ 1 1.26994- 6 6.35418- 2 1.30000+ 1 2.70000+ 1 4.76213- 7 6.36839- 2 1.30000+ 1 2.90000+ 1 3.96835- 7 6.37102- 2 1.30000+ 1 3.00000+ 1 1.26994- 6 6.37184- 2 1.30000+ 1 4.10000+ 1 7.93730- 8 6.37496- 2 1.40000+ 1 1.40000+ 1 1.32012- 6 6.21446- 2 1.40000+ 1 1.60000+ 1 2.40736- 6 6.32876- 2 1.40000+ 1 1.80000+ 1 7.61045- 6 6.33780- 2 1.40000+ 1 1.90000+ 1 8.30901- 6 6.34375- 2 1.40000+ 1 2.10000+ 1 1.24253- 6 6.35877- 2 1.40000+ 1 2.20000+ 1 6.21283- 7 6.35986- 2 1.40000+ 1 2.70000+ 1 3.88268- 7 6.37407- 2 1.40000+ 1 2.90000+ 1 1.00954- 6 6.37670- 2 1.40000+ 1 3.00000+ 1 1.08724- 6 6.37752- 2 1.60000+ 1 1.60000+ 1 1.03755- 5 6.44306- 2 1.60000+ 1 1.80000+ 1 1.29097- 5 6.45210- 2 1.60000+ 1 1.90000+ 1 9.26637- 6 6.45805- 2 1.60000+ 1 2.10000+ 1 7.12793- 7 6.47307- 2 1.60000+ 1 2.20000+ 1 5.54407- 7 6.47416- 2 1.60000+ 1 2.70000+ 1 3.40575- 6 6.48837- 2 1.60000+ 1 2.90000+ 1 1.74234- 6 6.49100- 2 1.60000+ 1 3.00000+ 1 1.18797- 6 6.49182- 2 1.60000+ 1 4.10000+ 1 3.16793- 7 6.49494- 2 1.80000+ 1 1.80000+ 1 8.54211- 7 6.46115- 2 1.80000+ 1 1.90000+ 1 1.52979- 5 6.46709- 2 1.80000+ 1 2.10000+ 1 6.98901- 7 6.48211- 2 1.80000+ 1 2.20000+ 1 1.70838- 6 6.48320- 2 1.80000+ 1 2.70000+ 1 2.09675- 6 6.49742- 2 1.80000+ 1 2.90000+ 1 2.32964- 7 6.50004- 2 1.80000+ 1 3.00000+ 1 1.94136- 6 6.50086- 2 1.80000+ 1 4.10000+ 1 1.55309- 7 6.50399- 2 1.90000+ 1 1.90000+ 1 7.64158- 6 6.47304- 2 1.90000+ 1 2.10000+ 1 2.29235- 6 6.48806- 2 1.90000+ 1 2.20000+ 1 1.83394- 6 6.48915- 2 1.90000+ 1 2.70000+ 1 1.45178- 6 6.50336- 2 1.90000+ 1 2.90000+ 1 2.06320- 6 6.50598- 2 1.90000+ 1 3.00000+ 1 1.98675- 6 6.50681- 2 1.90000+ 1 3.20000+ 1 7.64158- 8 6.51004- 2 1.90000+ 1 4.10000+ 1 1.52824- 7 6.50993- 2 2.10000+ 1 2.20000+ 1 3.12618- 7 6.50417- 2 2.10000+ 1 2.70000+ 1 7.81584- 8 6.51838- 2 2.10000+ 1 2.90000+ 1 7.81584- 8 6.52101- 2 2.10000+ 1 3.00000+ 1 3.12618- 7 6.52183- 2 2.20000+ 1 2.20000+ 1 8.81015- 8 6.50526- 2 2.20000+ 1 2.70000+ 1 8.81015- 8 6.51947- 2 2.20000+ 1 2.90000+ 1 2.64290- 7 6.52209- 2 2.20000+ 1 3.00000+ 1 2.64290- 7 6.52292- 2 2.70000+ 1 2.70000+ 1 3.69450- 7 6.53369- 2 2.70000+ 1 2.90000+ 1 3.69450- 7 6.53631- 2 2.70000+ 1 3.00000+ 1 1.84724- 7 6.53713- 2 2.70000+ 1 4.10000+ 1 9.23670- 8 6.54026- 2 2.90000+ 1 3.00000+ 1 2.89007- 7 6.53976- 2 3.00000+ 1 3.00000+ 1 1.01819- 7 6.54058- 2 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30428- 5 4.82000- 4 6.00000+ 0 1.30358- 3 1.68670- 3 1.00000+ 1 2.40397- 2 8.88690- 3 1.10000+ 1 3.09926- 2 9.14600- 3 1.30000+ 1 6.58122- 4 9.51950- 3 1.40000+ 1 9.85138- 4 9.57630- 3 1.80000+ 1 5.83323- 3 1.08097- 2 1.90000+ 1 7.92311- 3 1.08692- 2 2.10000+ 1 9.12999- 5 1.10194- 2 2.20000+ 1 1.42078- 4 1.10303- 2 2.90000+ 1 8.34580- 4 1.11987- 2 3.00000+ 1 1.09269- 3 1.12069- 2 3.20000+ 1 9.33839- 7 1.12392- 2 3.30000+ 1 1.38618- 6 1.12398- 2 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 2.19492- 2 4.67300- 5 5.00000+ 0 1.90000+ 1 2.32340- 2 1.06180- 4 5.00000+ 0 2.10000+ 1 6.27942- 3 2.56410- 4 5.00000+ 0 2.20000+ 1 8.96461- 3 2.67290- 4 5.00000+ 0 2.40000+ 1 1.70814- 2 4.54740- 4 5.00000+ 0 2.50000+ 1 2.23945- 2 4.56600- 4 5.00000+ 0 2.70000+ 1 4.51089- 3 4.09440- 4 5.00000+ 0 2.90000+ 1 2.84357- 3 4.35660- 4 5.00000+ 0 3.00000+ 1 2.88269- 3 4.43900- 4 5.00000+ 0 3.20000+ 1 1.35107- 4 4.76250- 4 5.00000+ 0 4.10000+ 1 3.83205- 4 4.75140- 4 6.00000+ 0 1.40000+ 1 4.05914- 1 1.80000- 5 6.00000+ 0 1.60000+ 1 2.81222- 2 1.16101- 3 6.00000+ 0 1.80000+ 1 1.15486- 2 1.25143- 3 6.00000+ 0 1.90000+ 1 1.88053- 2 1.31088- 3 6.00000+ 0 2.10000+ 1 3.74871- 2 1.46111- 3 6.00000+ 0 2.20000+ 1 4.57559- 2 1.47199- 3 6.00000+ 0 2.40000+ 1 2.48944- 2 1.65944- 3 6.00000+ 0 2.50000+ 1 3.11964- 2 1.66130- 3 6.00000+ 0 2.70000+ 1 4.49054- 3 1.61414- 3 6.00000+ 0 2.90000+ 1 1.53880- 3 1.64036- 3 6.00000+ 0 3.00000+ 1 2.40850- 3 1.64860- 3 6.00000+ 0 3.20000+ 1 7.49352- 4 1.68095- 3 6.00000+ 0 4.10000+ 1 3.81993- 4 1.67984- 3 8.00000+ 0 8.00000+ 0 6.67022- 3 6.09300- 3 8.00000+ 0 1.00000+ 1 1.35394- 2 6.31090- 3 8.00000+ 0 1.10000+ 1 2.29646- 2 6.57000- 3 8.00000+ 0 1.30000+ 1 1.76457- 2 6.94350- 3 8.00000+ 0 1.40000+ 1 2.36105- 2 7.00030- 3 8.00000+ 0 1.60000+ 1 2.71230- 3 8.14331- 3 8.00000+ 0 1.80000+ 1 3.08161- 3 8.23373- 3 8.00000+ 0 1.90000+ 1 5.13102- 3 8.29318- 3 8.00000+ 0 2.10000+ 1 3.43176- 3 8.44341- 3 8.00000+ 0 2.20000+ 1 4.54207- 3 8.45429- 3 8.00000+ 0 2.40000+ 1 2.04742- 4 8.64174- 3 8.00000+ 0 2.50000+ 1 2.33447- 4 8.64360- 3 8.00000+ 0 2.70000+ 1 4.40585- 4 8.59644- 3 8.00000+ 0 2.90000+ 1 4.19663- 4 8.62266- 3 8.00000+ 0 3.00000+ 1 6.62067- 4 8.63090- 3 8.00000+ 0 3.20000+ 1 7.14384- 5 8.66325- 3 8.00000+ 0 4.10000+ 1 3.76614- 5 8.66214- 3 1.00000+ 1 1.00000+ 1 3.97550- 5 6.52880- 3 1.00000+ 1 1.10000+ 1 3.31502- 4 6.78790- 3 1.00000+ 1 1.30000+ 1 7.59234- 4 7.16140- 3 1.00000+ 1 1.40000+ 1 7.20316- 3 7.21820- 3 1.00000+ 1 1.60000+ 1 2.17186- 3 8.36121- 3 1.00000+ 1 1.80000+ 1 6.57606- 6 8.45163- 3 1.00000+ 1 1.90000+ 1 6.66573- 5 8.51108- 3 1.00000+ 1 2.10000+ 1 1.37796- 4 8.66131- 3 1.00000+ 1 2.20000+ 1 8.89858- 4 8.67219- 3 1.00000+ 1 2.40000+ 1 7.29344- 5 8.85964- 3 1.00000+ 1 2.50000+ 1 2.54679- 4 8.86150- 3 1.00000+ 1 2.70000+ 1 3.34491- 4 8.81434- 3 1.00000+ 1 2.90000+ 1 5.97815- 7 8.84056- 3 1.00000+ 1 3.00000+ 1 8.36958- 6 8.84880- 3 1.00000+ 1 3.20000+ 1 2.98913- 6 8.88115- 3 1.00000+ 1 4.10000+ 1 2.83969- 5 8.88004- 3 1.10000+ 1 1.10000+ 1 6.15147- 4 7.04700- 3 1.10000+ 1 1.30000+ 1 3.16506- 3 7.42050- 3 1.10000+ 1 1.40000+ 1 1.99967- 3 7.47730- 3 1.10000+ 1 1.60000+ 1 3.65823- 3 8.62031- 3 1.10000+ 1 1.80000+ 1 7.17363- 5 8.71073- 3 1.10000+ 1 1.90000+ 1 2.03548- 4 8.77018- 3 1.10000+ 1 2.10000+ 1 2.79184- 4 8.92041- 3 1.10000+ 1 2.20000+ 1 1.69175- 4 8.93129- 3 1.10000+ 1 2.40000+ 1 1.64100- 4 9.11874- 3 1.10000+ 1 2.50000+ 1 1.34501- 4 9.12060- 3 1.10000+ 1 2.70000+ 1 5.62540- 4 9.07344- 3 1.10000+ 1 2.90000+ 1 9.56528- 6 9.09966- 3 1.10000+ 1 3.00000+ 1 2.48081- 5 9.10790- 3 1.10000+ 1 3.20000+ 1 5.08138- 6 9.14025- 3 1.10000+ 1 4.10000+ 1 4.75249- 5 9.13914- 3 1.30000+ 1 1.30000+ 1 1.04372- 3 7.79400- 3 1.30000+ 1 1.40000+ 1 3.30546- 2 7.85080- 3 1.30000+ 1 1.60000+ 1 2.60346- 3 8.99381- 3 1.30000+ 1 1.80000+ 1 2.14609- 4 9.08423- 3 1.30000+ 1 1.90000+ 1 7.69074- 4 9.14368- 3 1.30000+ 1 2.10000+ 1 3.97836- 4 9.29391- 3 1.30000+ 1 2.20000+ 1 4.47775- 3 9.30479- 3 1.30000+ 1 2.40000+ 1 2.32252- 4 9.49224- 3 1.30000+ 1 2.50000+ 1 6.46227- 4 9.49410- 3 1.30000+ 1 2.70000+ 1 3.95158- 4 9.44694- 3 1.30000+ 1 2.90000+ 1 3.04880- 5 9.47316- 3 1.30000+ 1 3.00000+ 1 1.00430- 4 9.48140- 3 1.30000+ 1 3.20000+ 1 8.36925- 6 9.51375- 3 1.30000+ 1 4.10000+ 1 3.34779- 5 9.51264- 3 1.40000+ 1 1.40000+ 1 9.23133- 3 7.90760- 3 1.40000+ 1 1.60000+ 1 3.52472- 3 9.05061- 3 1.40000+ 1 1.80000+ 1 1.46546- 3 9.14103- 3 1.40000+ 1 1.90000+ 1 5.08136- 4 9.20048- 3 1.40000+ 1 2.10000+ 1 4.38819- 3 9.35071- 3 1.40000+ 1 2.20000+ 1 2.63777- 3 9.36159- 3 1.40000+ 1 2.40000+ 1 7.20058- 4 9.54904- 3 1.40000+ 1 2.50000+ 1 5.48787- 4 9.55090- 3 1.40000+ 1 2.70000+ 1 5.36821- 4 9.50374- 3 1.40000+ 1 2.90000+ 1 1.96075- 4 9.52996- 3 1.40000+ 1 3.00000+ 1 6.69537- 5 9.53820- 3 1.40000+ 1 3.20000+ 1 8.69794- 5 9.57055- 3 1.40000+ 1 4.10000+ 1 4.54325- 5 9.56944- 3 1.60000+ 1 1.60000+ 1 2.60028- 4 1.01936- 2 1.60000+ 1 1.80000+ 1 4.95264- 4 1.02840- 2 1.60000+ 1 1.90000+ 1 8.19271- 4 1.03435- 2 1.60000+ 1 2.10000+ 1 5.06326- 4 1.04937- 2 1.60000+ 1 2.20000+ 1 6.74893- 4 1.05046- 2 1.60000+ 1 2.40000+ 1 2.51072- 5 1.06920- 2 1.60000+ 1 2.50000+ 1 2.77972- 5 1.06939- 2 1.60000+ 1 2.70000+ 1 8.36902- 5 1.06467- 2 1.60000+ 1 2.90000+ 1 6.75495- 5 1.06730- 2 1.60000+ 1 3.00000+ 1 1.05803- 4 1.06812- 2 1.60000+ 1 3.20000+ 1 1.04610- 5 1.07136- 2 1.60000+ 1 4.10000+ 1 7.17340- 6 1.07124- 2 1.80000+ 1 1.80000+ 1 2.98906- 7 1.03745- 2 1.80000+ 1 1.90000+ 1 1.46458- 5 1.04339- 2 1.80000+ 1 2.10000+ 1 3.34784- 5 1.05841- 2 1.80000+ 1 2.20000+ 1 1.87703- 4 1.05950- 2 1.80000+ 1 2.40000+ 1 9.86357- 6 1.07825- 2 1.80000+ 1 2.50000+ 1 3.85585- 5 1.07843- 2 1.80000+ 1 2.70000+ 1 7.62205- 5 1.07372- 2 1.80000+ 1 3.00000+ 1 1.79338- 6 1.07716- 2 1.80000+ 1 3.20000+ 1 5.97801- 7 1.08040- 2 1.80000+ 1 4.10000+ 1 6.57591- 6 1.08029- 2 1.90000+ 1 1.90000+ 1 1.64402- 5 1.04934- 2 1.90000+ 1 2.10000+ 1 7.62204- 5 1.06436- 2 1.90000+ 1 2.20000+ 1 4.96187- 5 1.06545- 2 1.90000+ 1 2.40000+ 1 2.95927- 5 1.08419- 2 1.90000+ 1 2.50000+ 1 2.39127- 5 1.08438- 2 1.90000+ 1 2.70000+ 1 1.26138- 4 1.07966- 2 1.90000+ 1 2.90000+ 1 2.09227- 6 1.08228- 2 1.90000+ 1 3.00000+ 1 3.88573- 6 1.08311- 2 1.90000+ 1 3.20000+ 1 1.49458- 6 1.08634- 2 1.90000+ 1 4.10000+ 1 1.07613- 5 1.08623- 2 2.10000+ 1 2.10000+ 1 3.52708- 5 1.07938- 2 2.10000+ 1 2.20000+ 1 6.47713- 4 1.08047- 2 2.10000+ 1 2.40000+ 1 3.07864- 5 1.09921- 2 2.10000+ 1 2.50000+ 1 6.57572- 5 1.09940- 2 2.10000+ 1 2.70000+ 1 7.68171- 5 1.09468- 2 2.10000+ 1 2.90000+ 1 4.78240- 6 1.09731- 2 2.10000+ 1 3.00000+ 1 1.01623- 5 1.09813- 2 2.10000+ 1 3.20000+ 1 1.49454- 6 1.10137- 2 2.10000+ 1 4.10000+ 1 6.57572- 6 1.10125- 2 2.20000+ 1 2.20000+ 1 2.01461- 4 1.08156- 2 2.20000+ 1 2.40000+ 1 7.59203- 5 1.10030- 2 2.20000+ 1 2.50000+ 1 6.45624- 5 1.10049- 2 2.20000+ 1 2.70000+ 1 1.02526- 4 1.09577- 2 2.20000+ 1 2.90000+ 1 2.51078- 5 1.09839- 2 2.20000+ 1 3.00000+ 1 6.57579- 6 1.09922- 2 2.20000+ 1 3.20000+ 1 1.28532- 5 1.10245- 2 2.20000+ 1 4.10000+ 1 8.66813- 6 1.10234- 2 2.40000+ 1 2.40000+ 1 9.43002- 7 1.11905- 2 2.40000+ 1 2.50000+ 1 1.74470- 5 1.11923- 2 2.40000+ 1 2.70000+ 1 5.65807- 6 1.11452- 2 2.40000+ 1 2.90000+ 1 1.88596- 6 1.11714- 2 2.40000+ 1 3.00000+ 1 5.65807- 6 1.11796- 2 2.40000+ 1 3.20000+ 1 9.43002- 7 1.12120- 2 2.40000+ 1 4.10000+ 1 4.71510- 7 1.12109- 2 2.50000+ 1 2.50000+ 1 3.62630- 6 1.11942- 2 2.50000+ 1 2.70000+ 1 5.89263- 6 1.11470- 2 2.50000+ 1 2.90000+ 1 7.25261- 6 1.11733- 2 2.50000+ 1 3.00000+ 1 4.53284- 6 1.11815- 2 2.50000+ 1 3.20000+ 1 1.81306- 6 1.12138- 2 2.50000+ 1 4.10000+ 1 4.53284- 7 1.12127- 2 2.70000+ 1 2.70000+ 1 2.13897- 5 1.10999- 2 2.70000+ 1 2.90000+ 1 3.40282- 5 1.11261- 2 2.70000+ 1 3.00000+ 1 5.25004- 5 1.11343- 2 2.70000+ 1 3.20000+ 1 4.86148- 6 1.11667- 2 2.70000+ 1 4.10000+ 1 3.88889- 6 1.11656- 2 2.90000+ 1 3.00000+ 1 1.92423- 6 1.11606- 2 2.90000+ 1 4.10000+ 1 5.77268- 6 1.11918- 2 3.00000+ 1 3.00000+ 1 5.71723- 7 1.11688- 2 3.00000+ 1 3.20000+ 1 5.71723- 7 1.12011- 2 3.00000+ 1 4.10000+ 1 2.85871- 6 1.12000- 2 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.30710- 6 1.20470- 3 8.00000+ 0 6.37811- 3 8.18700- 3 1.10000+ 1 1.82880- 4 8.66400- 3 1.30000+ 1 2.19660- 1 9.03750- 3 1.60000+ 1 1.47410- 3 1.02373- 2 1.90000+ 1 4.65931- 5 1.03872- 2 2.10000+ 1 3.99631- 2 1.05374- 2 2.40000+ 1 8.98991- 5 1.07357- 2 2.70000+ 1 2.76980- 4 1.06904- 2 3.00000+ 1 9.92951- 6 1.07249- 2 3.20000+ 1 4.26951- 4 1.07572- 2 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 7.08227- 3 6.79010- 4 6.00000+ 0 1.80000+ 1 4.33470- 2 7.69430- 4 6.00000+ 0 1.90000+ 1 1.32965- 2 8.28880- 4 6.00000+ 0 2.10000+ 1 4.92081- 2 9.79110- 4 6.00000+ 0 2.20000+ 1 1.72975- 2 9.89990- 4 6.00000+ 0 2.40000+ 1 1.41763- 3 1.17744- 3 6.00000+ 0 2.50000+ 1 2.14929- 3 1.17930- 3 6.00000+ 0 2.70000+ 1 1.08114- 3 1.13214- 3 6.00000+ 0 2.90000+ 1 5.52415- 3 1.15836- 3 6.00000+ 0 3.00000+ 1 1.68929- 3 1.16660- 3 6.00000+ 0 3.20000+ 1 9.95967- 4 1.19895- 3 6.00000+ 0 4.10000+ 1 9.13853- 5 1.19784- 3 8.00000+ 0 8.00000+ 0 7.37257- 4 5.61100- 3 8.00000+ 0 1.00000+ 1 2.23428- 2 5.82890- 3 8.00000+ 0 1.10000+ 1 2.15235- 3 6.08800- 3 8.00000+ 0 1.30000+ 1 2.74257- 3 6.46150- 3 8.00000+ 0 1.40000+ 1 2.45179- 3 6.51830- 3 8.00000+ 0 1.60000+ 1 2.73512- 4 7.66131- 3 8.00000+ 0 1.80000+ 1 3.38112- 3 7.75173- 3 8.00000+ 0 1.90000+ 1 4.28488- 4 7.81118- 3 8.00000+ 0 2.10000+ 1 3.79097- 4 7.96141- 3 8.00000+ 0 2.20000+ 1 2.88328- 4 7.97229- 3 8.00000+ 0 2.40000+ 1 8.08841- 5 8.15974- 3 8.00000+ 0 2.50000+ 1 5.37163- 5 8.16160- 3 8.00000+ 0 2.70000+ 1 4.32192- 5 8.11444- 3 8.00000+ 0 2.90000+ 1 4.28488- 4 8.14066- 3 8.00000+ 0 3.00000+ 1 5.43332- 5 8.14890- 3 8.00000+ 0 3.20000+ 1 7.40912- 6 8.18125- 3 8.00000+ 0 4.10000+ 1 3.70451- 6 8.18014- 3 1.00000+ 1 1.00000+ 1 2.28690- 2 6.04680- 3 1.00000+ 1 1.10000+ 1 6.35882- 2 6.30590- 3 1.00000+ 1 1.30000+ 1 3.36875- 2 6.67940- 3 1.00000+ 1 1.40000+ 1 5.19402- 2 6.73620- 3 1.00000+ 1 1.60000+ 1 5.46571- 3 7.87921- 3 1.00000+ 1 1.80000+ 1 8.80010- 3 7.96963- 3 1.00000+ 1 1.90000+ 1 1.39499- 2 8.02908- 3 1.00000+ 1 2.10000+ 1 6.55782- 3 8.17931- 3 1.00000+ 1 2.20000+ 1 1.00512- 2 8.19019- 3 1.00000+ 1 2.40000+ 1 3.74188- 4 8.37764- 3 1.00000+ 1 2.50000+ 1 3.42693- 4 8.37950- 3 1.00000+ 1 2.70000+ 1 9.13861- 4 8.33234- 3 1.00000+ 1 2.90000+ 1 1.16943- 3 8.35856- 3 1.00000+ 1 3.00000+ 1 1.79500- 3 8.36680- 3 1.00000+ 1 3.20000+ 1 1.37073- 4 8.39915- 3 1.00000+ 1 4.10000+ 1 7.84146- 5 8.39804- 3 1.10000+ 1 1.10000+ 1 1.55711- 3 6.56500- 3 1.10000+ 1 1.30000+ 1 3.46490- 2 6.93850- 3 1.10000+ 1 1.40000+ 1 4.83951- 3 6.99530- 3 1.10000+ 1 1.60000+ 1 4.45784- 4 8.13831- 3 1.10000+ 1 1.80000+ 1 9.90035- 3 8.22873- 3 1.10000+ 1 1.90000+ 1 5.82250- 4 8.28818- 3 1.10000+ 1 2.10000+ 1 5.67908- 3 8.43841- 3 1.10000+ 1 2.20000+ 1 7.53863- 4 8.44929- 3 1.10000+ 1 2.40000+ 1 1.88937- 4 8.63674- 3 1.10000+ 1 2.50000+ 1 1.03109- 4 8.63860- 3 1.10000+ 1 2.70000+ 1 7.22408- 5 8.59144- 3 1.10000+ 1 2.90000+ 1 1.26079- 3 8.61766- 3 1.10000+ 1 3.00000+ 1 7.28578- 5 8.62590- 3 1.10000+ 1 3.20000+ 1 1.16074- 4 8.65825- 3 1.10000+ 1 4.10000+ 1 6.17438- 6 8.65714- 3 1.30000+ 1 1.30000+ 1 3.25074- 2 7.31200- 3 1.30000+ 1 1.40000+ 1 1.33126- 1 7.36880- 3 1.30000+ 1 1.60000+ 1 6.73629- 4 8.51181- 3 1.30000+ 1 1.80000+ 1 5.15571- 3 8.60223- 3 1.30000+ 1 1.90000+ 1 7.09502- 3 8.66168- 3 1.30000+ 1 2.10000+ 1 1.05688- 2 8.81191- 3 1.30000+ 1 2.20000+ 1 2.32341- 2 8.82279- 3 1.30000+ 1 2.40000+ 1 1.42698- 3 9.01024- 3 1.30000+ 1 2.50000+ 1 2.90266- 3 9.01210- 3 1.30000+ 1 2.70000+ 1 1.12995- 4 8.96494- 3 1.30000+ 1 2.90000+ 1 6.59427- 4 8.99116- 3 1.30000+ 1 3.00000+ 1 9.02083- 4 8.99940- 3 1.30000+ 1 3.20000+ 1 2.16105- 4 9.03175- 3 1.30000+ 1 4.10000+ 1 9.87920- 6 9.03064- 3 1.40000+ 1 1.40000+ 1 6.41641- 3 7.42560- 3 1.40000+ 1 1.60000+ 1 4.88404- 4 8.56861- 3 1.40000+ 1 1.80000+ 1 7.03271- 3 8.65903- 3 1.40000+ 1 1.90000+ 1 9.09470- 4 8.71848- 3 1.40000+ 1 2.10000+ 1 1.78853- 2 8.86871- 3 1.40000+ 1 2.20000+ 1 2.03322- 3 8.87959- 3 1.40000+ 1 2.40000+ 1 5.74223- 4 9.06704- 3 1.40000+ 1 2.50000+ 1 2.21047- 4 9.06890- 3 1.40000+ 1 2.70000+ 1 7.84135- 5 9.02174- 3 1.40000+ 1 2.90000+ 1 8.71804- 4 9.04796- 3 1.40000+ 1 3.00000+ 1 1.13619- 4 9.05620- 3 1.40000+ 1 3.20000+ 1 3.55642- 4 9.08855- 3 1.40000+ 1 4.10000+ 1 6.79195- 6 9.08744- 3 1.60000+ 1 1.60000+ 1 2.46978- 5 9.71162- 3 1.60000+ 1 1.80000+ 1 8.32335- 4 9.80204- 3 1.60000+ 1 1.90000+ 1 8.95285- 5 9.86149- 3 1.60000+ 1 2.10000+ 1 9.01506- 5 1.00117- 2 1.60000+ 1 2.20000+ 1 5.80408- 5 1.00226- 2 1.60000+ 1 2.40000+ 1 1.72885- 5 1.02100- 2 1.60000+ 1 2.50000+ 1 9.26146- 6 1.02119- 2 1.60000+ 1 2.70000+ 1 8.02713- 6 1.01647- 2 1.60000+ 1 2.90000+ 1 1.05587- 4 1.01910- 2 1.60000+ 1 3.00000+ 1 1.11144- 5 1.01992- 2 1.60000+ 1 3.20000+ 1 1.85236- 6 1.02316- 2 1.60000+ 1 4.10000+ 1 6.17449- 7 1.02304- 2 1.80000+ 1 1.80000+ 1 8.05774- 4 9.89246- 3 1.80000+ 1 1.90000+ 1 2.17641- 3 9.95191- 3 1.80000+ 1 2.10000+ 1 9.87251- 4 1.01021- 2 1.80000+ 1 2.20000+ 1 1.37251- 3 1.01130- 2 1.80000+ 1 2.40000+ 1 4.63073- 5 1.03005- 2 1.80000+ 1 2.50000+ 1 3.51933- 5 1.03023- 2 1.80000+ 1 2.70000+ 1 1.38931- 4 1.02552- 2 1.80000+ 1 2.90000+ 1 2.12397- 4 1.02814- 2 1.80000+ 1 3.00000+ 1 2.80327- 4 1.02896- 2 1.80000+ 1 3.20000+ 1 2.03752- 5 1.03220- 2 1.80000+ 1 4.10000+ 1 1.17311- 5 1.03209- 2 1.90000+ 1 1.90000+ 1 5.49548- 5 1.00114- 2 1.90000+ 1 2.10000+ 1 1.17256- 3 1.01616- 2 1.90000+ 1 2.20000+ 1 1.44493- 4 1.01725- 2 1.90000+ 1 2.40000+ 1 3.14895- 5 1.03599- 2 1.90000+ 1 2.50000+ 1 1.60538- 5 1.03618- 2 1.90000+ 1 2.70000+ 1 1.42017- 5 1.03146- 2 1.90000+ 1 2.90000+ 1 2.77249- 4 1.03408- 2 1.90000+ 1 3.00000+ 1 1.35837- 5 1.03491- 2 1.90000+ 1 3.20000+ 1 2.40802- 5 1.03814- 2 1.90000+ 1 4.10000+ 1 1.23487- 6 1.03803- 2 2.10000+ 1 2.10000+ 1 8.48996- 4 1.03118- 2 2.10000+ 1 2.20000+ 1 3.24459- 3 1.03227- 2 2.10000+ 1 2.40000+ 1 1.59920- 4 1.05101- 2 2.10000+ 1 2.50000+ 1 3.29089- 4 1.05120- 2 2.10000+ 1 2.70000+ 1 1.48183- 5 1.04648- 2 2.10000+ 1 2.90000+ 1 1.25959- 4 1.04911- 2 2.10000+ 1 3.00000+ 1 1.49421- 4 1.04993- 2 2.10000+ 1 3.20000+ 1 3.45768- 5 1.05317- 2 2.10000+ 1 4.10000+ 1 1.23483- 6 1.05305- 2 2.20000+ 1 2.20000+ 1 2.23814- 4 1.03336- 2 2.20000+ 1 2.40000+ 1 9.53149- 5 1.05210- 2 2.20000+ 1 2.50000+ 1 3.74461- 5 1.05229- 2 2.20000+ 1 2.70000+ 1 1.27649- 5 1.04757- 2 2.20000+ 1 2.90000+ 1 2.34884- 4 1.05019- 2 2.20000+ 1 3.00000+ 1 2.46789- 5 1.05102- 2 2.20000+ 1 3.20000+ 1 8.93563- 5 1.05425- 2 2.20000+ 1 4.10000+ 1 8.51016- 7 1.05414- 2 2.40000+ 1 2.40000+ 1 3.38642- 6 1.07085- 2 2.40000+ 1 2.50000+ 1 2.53986- 5 1.07103- 2 2.40000+ 1 2.70000+ 1 4.23299- 6 1.06632- 2 2.40000+ 1 2.90000+ 1 7.61955- 6 1.06894- 2 2.40000+ 1 3.00000+ 1 5.07956- 6 1.06976- 2 2.40000+ 1 3.20000+ 1 4.23299- 6 1.07300- 2 2.50000+ 1 2.50000+ 1 2.33152- 6 1.07122- 2 2.50000+ 1 2.70000+ 1 2.33152- 6 1.06650- 2 2.50000+ 1 2.90000+ 1 8.16047- 6 1.06913- 2 2.50000+ 1 3.00000+ 1 3.49745- 6 1.06995- 2 2.50000+ 1 3.20000+ 1 1.16581- 5 1.07318- 2 2.70000+ 1 2.70000+ 1 1.03744- 6 1.06179- 2 2.70000+ 1 2.90000+ 1 3.00852- 5 1.06441- 2 2.70000+ 1 3.00000+ 1 3.11235- 6 1.06523- 2 2.90000+ 1 2.90000+ 1 2.79571- 5 1.06703- 2 2.90000+ 1 3.00000+ 1 7.05001- 5 1.06786- 2 2.90000+ 1 3.20000+ 1 4.86203- 6 1.07109- 2 2.90000+ 1 4.10000+ 1 2.43093- 6 1.07098- 2 3.00000+ 1 3.00000+ 1 6.17442- 7 1.06868- 2 3.00000+ 1 3.20000+ 1 3.08716- 6 1.07191- 2 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.18590- 2 6.98230- 3 1.00000+ 1 9.67800- 5 7.20020- 3 1.10000+ 1 8.80020- 5 7.45930- 3 1.30000+ 1 1.96230- 2 7.83280- 3 1.40000+ 1 1.73160- 1 7.88960- 3 1.60000+ 1 2.08060- 3 9.03261- 3 1.80000+ 1 1.95090- 5 9.12303- 3 1.90000+ 1 1.90900- 5 9.18248- 3 2.10000+ 1 3.35940- 3 9.33271- 3 2.20000+ 1 3.00910- 2 9.34359- 3 2.40000+ 1 1.31890- 5 9.53104- 3 2.50000+ 1 7.40520- 5 9.53290- 3 2.70000+ 1 4.14870- 4 9.48574- 3 2.90000+ 1 4.24060- 6 9.51196- 3 3.00000+ 1 3.89810- 6 9.52020- 3 3.20000+ 1 3.55990- 5 9.55255- 3 3.30000+ 1 3.02790- 4 9.55312- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.75417- 4 4.40630- 3 8.00000+ 0 1.00000+ 1 5.62505- 4 4.62420- 3 8.00000+ 0 1.10000+ 1 2.41619- 2 4.88330- 3 8.00000+ 0 1.30000+ 1 2.66723- 3 5.25680- 3 8.00000+ 0 1.40000+ 1 3.77219- 3 5.31360- 3 8.00000+ 0 1.60000+ 1 3.63275- 4 6.45661- 3 8.00000+ 0 1.80000+ 1 9.93004- 5 6.54703- 3 8.00000+ 0 1.90000+ 1 3.59048- 3 6.60648- 3 8.00000+ 0 2.10000+ 1 2.51396- 4 6.75671- 3 8.00000+ 0 2.20000+ 1 3.19272- 4 6.76759- 3 8.00000+ 0 2.40000+ 1 1.40152- 4 6.95504- 3 8.00000+ 0 2.50000+ 1 2.52657- 4 6.95690- 3 8.00000+ 0 2.70000+ 1 5.78216- 5 6.90974- 3 8.00000+ 0 2.90000+ 1 1.25703- 5 6.93596- 3 8.00000+ 0 3.00000+ 1 4.31777- 4 6.94420- 3 8.00000+ 0 3.20000+ 1 5.02802- 6 6.97655- 3 8.00000+ 0 4.10000+ 1 5.02802- 6 6.97544- 3 1.00000+ 1 1.00000+ 1 1.18155- 4 4.84210- 3 1.00000+ 1 1.10000+ 1 4.05352- 2 5.10120- 3 1.00000+ 1 1.30000+ 1 2.19653- 3 5.47470- 3 1.00000+ 1 1.40000+ 1 1.94469- 2 5.53150- 3 1.00000+ 1 1.60000+ 1 1.12495- 4 6.67451- 3 1.00000+ 1 1.80000+ 1 4.58800- 5 6.76493- 3 1.00000+ 1 1.90000+ 1 6.25662- 3 6.82438- 3 1.00000+ 1 2.10000+ 1 3.85889- 4 6.97461- 3 1.00000+ 1 2.20000+ 1 2.85532- 3 6.98549- 3 1.00000+ 1 2.40000+ 1 1.48951- 4 7.17294- 3 1.00000+ 1 2.50000+ 1 3.87776- 4 7.17480- 3 1.00000+ 1 2.70000+ 1 1.82260- 5 7.12764- 3 1.00000+ 1 2.90000+ 1 6.28497- 6 7.15386- 3 1.00000+ 1 3.00000+ 1 7.57338- 4 7.16210- 3 1.00000+ 1 3.20000+ 1 8.17001- 6 7.19445- 3 1.00000+ 1 4.10000+ 1 1.25703- 6 7.19334- 3 1.10000+ 1 1.10000+ 1 5.34626- 2 5.36030- 3 1.10000+ 1 1.30000+ 1 5.57015- 2 5.73380- 3 1.10000+ 1 1.40000+ 1 7.89769- 2 5.79060- 3 1.10000+ 1 1.60000+ 1 5.83168- 3 6.93361- 3 1.10000+ 1 1.80000+ 1 8.73224- 3 7.02403- 3 1.10000+ 1 1.90000+ 1 1.98641- 2 7.08348- 3 1.10000+ 1 2.10000+ 1 1.02968- 2 7.23371- 3 1.10000+ 1 2.20000+ 1 1.43286- 2 7.24459- 3 1.10000+ 1 2.40000+ 1 6.29108- 4 7.43204- 3 1.10000+ 1 2.50000+ 1 7.95006- 4 7.43390- 3 1.10000+ 1 2.70000+ 1 9.72289- 4 7.38674- 3 1.10000+ 1 2.90000+ 1 1.17961- 3 7.41296- 3 1.10000+ 1 3.00000+ 1 2.49302- 3 7.42120- 3 1.10000+ 1 3.20000+ 1 2.13675- 4 7.45355- 3 1.10000+ 1 4.10000+ 1 8.29564- 5 7.45244- 3 1.30000+ 1 1.30000+ 1 7.97293- 3 6.10730- 3 1.30000+ 1 1.40000+ 1 1.50383- 1 6.16410- 3 1.30000+ 1 1.60000+ 1 6.15913- 4 7.30711- 3 1.30000+ 1 1.80000+ 1 4.82057- 4 7.39753- 3 1.30000+ 1 1.90000+ 1 7.91229- 3 7.45698- 3 1.30000+ 1 2.10000+ 1 2.54040- 3 7.60721- 3 1.30000+ 1 2.20000+ 1 2.00915- 2 7.61809- 3 1.30000+ 1 2.40000+ 1 3.53842- 4 7.80554- 3 1.30000+ 1 2.50000+ 1 1.20607- 3 7.80740- 3 1.30000+ 1 2.70000+ 1 1.01819- 4 7.76024- 3 1.30000+ 1 2.90000+ 1 6.53619- 5 7.78646- 3 1.30000+ 1 3.00000+ 1 9.44643- 4 7.79470- 3 1.30000+ 1 3.20000+ 1 5.15365- 5 7.82705- 3 1.30000+ 1 4.10000+ 1 8.79913- 6 7.82594- 3 1.40000+ 1 1.40000+ 1 1.00900- 1 6.22090- 3 1.40000+ 1 1.60000+ 1 9.03797- 4 7.36391- 3 1.40000+ 1 1.80000+ 1 3.84207- 3 7.45433- 3 1.40000+ 1 1.90000+ 1 1.26602- 2 7.51378- 3 1.40000+ 1 2.10000+ 1 2.42338- 2 7.66401- 3 1.40000+ 1 2.20000+ 1 3.06290- 2 7.67489- 3 1.40000+ 1 2.40000+ 1 3.76598- 3 7.86234- 3 1.40000+ 1 2.50000+ 1 3.43341- 3 7.86420- 3 1.40000+ 1 2.70000+ 1 1.51474- 4 7.81704- 3 1.40000+ 1 2.90000+ 1 5.10961- 4 7.84326- 3 1.40000+ 1 3.00000+ 1 1.55177- 3 7.85150- 3 1.40000+ 1 3.20000+ 1 4.93999- 4 7.88385- 3 1.40000+ 1 4.10000+ 1 1.31980- 5 7.88274- 3 1.60000+ 1 1.60000+ 1 3.39409- 5 8.50692- 3 1.60000+ 1 1.80000+ 1 2.07414- 5 8.59734- 3 1.60000+ 1 1.90000+ 1 8.68584- 4 8.65679- 3 1.60000+ 1 2.10000+ 1 6.34813- 5 8.80702- 3 1.60000+ 1 2.20000+ 1 8.35920- 5 8.81790- 3 1.60000+ 1 2.40000+ 1 2.01127- 5 9.00535- 3 1.60000+ 1 2.50000+ 1 4.02263- 5 9.00721- 3 1.60000+ 1 2.70000+ 1 1.06849- 5 8.96005- 3 1.60000+ 1 2.90000+ 1 2.51409- 6 8.98627- 3 1.60000+ 1 3.00000+ 1 1.04337- 4 8.99451- 3 1.60000+ 1 3.20000+ 1 1.25709- 6 9.02686- 3 1.60000+ 1 4.10000+ 1 6.28526- 7 9.02575- 3 1.80000+ 1 1.80000+ 1 3.77084- 6 8.68776- 3 1.80000+ 1 1.90000+ 1 1.34312- 3 8.74721- 3 1.80000+ 1 2.10000+ 1 8.10794- 5 8.89744- 3 1.80000+ 1 2.20000+ 1 5.92038- 4 8.90832- 3 1.80000+ 1 2.40000+ 1 2.13683- 5 9.09577- 3 1.80000+ 1 2.50000+ 1 5.27945- 5 9.09763- 3 1.80000+ 1 2.70000+ 1 3.14242- 6 9.05047- 3 1.80000+ 1 2.90000+ 1 6.28504- 7 9.07669- 3 1.80000+ 1 3.00000+ 1 1.62776- 4 9.08493- 3 1.80000+ 1 3.20000+ 1 1.88547- 6 9.11728- 3 1.90000+ 1 1.90000+ 1 1.77296- 3 8.80666- 3 1.90000+ 1 2.10000+ 1 1.46440- 3 8.95689- 3 1.90000+ 1 2.20000+ 1 2.26133- 3 8.96777- 3 1.90000+ 1 2.40000+ 1 7.35348- 5 9.15522- 3 1.90000+ 1 2.50000+ 1 9.80433- 5 9.15708- 3 1.90000+ 1 2.70000+ 1 1.44553- 4 9.10992- 3 1.90000+ 1 2.90000+ 1 1.81009- 4 9.13614- 3 1.90000+ 1 3.00000+ 1 4.41832- 4 9.14438- 3 1.90000+ 1 3.20000+ 1 3.01679- 5 9.17673- 3 1.90000+ 1 4.10000+ 1 1.25704- 5 9.17562- 3 2.10000+ 1 2.10000+ 1 1.95464- 4 9.10712- 3 2.10000+ 1 2.20000+ 1 3.36541- 3 9.11800- 3 2.10000+ 1 2.40000+ 1 3.83379- 5 9.30545- 3 2.10000+ 1 2.50000+ 1 1.25701- 4 9.30731- 3 2.10000+ 1 2.70000+ 1 1.06842- 5 9.26015- 3 2.10000+ 1 2.90000+ 1 1.06842- 5 9.28637- 3 2.10000+ 1 3.00000+ 1 1.74718- 4 9.29461- 3 2.10000+ 1 3.20000+ 1 8.16985- 6 9.32696- 3 2.10000+ 1 4.10000+ 1 6.28485- 7 9.32585- 3 2.20000+ 1 2.20000+ 1 2.72815- 3 9.12888- 3 2.20000+ 1 2.40000+ 1 4.65489- 4 9.31633- 3 2.20000+ 1 2.50000+ 1 4.18481- 4 9.31819- 3 2.20000+ 1 2.70000+ 1 1.68863- 5 9.27103- 3 2.20000+ 1 2.90000+ 1 9.25106- 5 9.29725- 3 2.20000+ 1 3.00000+ 1 3.23053- 4 9.30549- 3 2.20000+ 1 3.20000+ 1 8.07612- 5 9.33784- 3 2.20000+ 1 4.10000+ 1 1.46845- 6 9.33673- 3 2.40000+ 1 2.40000+ 1 2.19564- 6 9.50378- 3 2.40000+ 1 2.50000+ 1 5.48874- 5 9.50564- 3 2.40000+ 1 2.70000+ 1 5.48874- 6 9.45848- 3 2.40000+ 1 2.90000+ 1 4.39110- 6 9.48470- 3 2.40000+ 1 3.00000+ 1 1.53693- 5 9.49294- 3 2.40000+ 1 3.20000+ 1 1.09778- 6 9.52529- 3 2.50000+ 1 2.50000+ 1 1.31608- 5 9.50750- 3 2.50000+ 1 2.70000+ 1 7.74168- 6 9.46034- 3 2.50000+ 1 2.90000+ 1 8.51575- 6 9.48656- 3 2.50000+ 1 3.00000+ 1 1.39339- 5 9.49480- 3 2.50000+ 1 3.20000+ 1 3.09665- 6 9.52715- 3 2.50000+ 1 4.10000+ 1 7.74168- 7 9.52604- 3 2.70000+ 1 2.70000+ 1 1.24087- 6 9.41318- 3 2.70000+ 1 2.90000+ 1 1.24087- 6 9.43940- 3 2.70000+ 1 3.00000+ 1 3.47433- 5 9.44764- 3 2.90000+ 1 3.00000+ 1 6.51080- 5 9.47386- 3 3.00000+ 1 3.00000+ 1 1.21085- 4 9.48210- 3 3.00000+ 1 3.20000+ 1 1.65106- 5 9.51445- 3 3.00000+ 1 4.10000+ 1 5.50399- 6 9.51334- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.94654- 6 2.17900- 4 1.10000+ 1 2.14619- 4 4.77000- 4 1.80000+ 1 8.30816- 4 2.14073- 3 1.90000+ 1 8.24255- 4 2.20018- 3 2.90000+ 1 1.84813- 4 2.52966- 3 3.00000+ 1 1.76035- 4 2.53790- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.10000+ 1 2.07731- 2 0.00000+ 0 1.00000+ 1 2.20000+ 1 5.62823- 2 3.19000- 6 1.00000+ 1 2.40000+ 1 3.75611- 2 1.90640- 4 1.00000+ 1 2.50000+ 1 5.01769- 2 1.92500- 4 1.00000+ 1 2.70000+ 1 8.66724- 3 1.45340- 4 1.00000+ 1 2.90000+ 1 7.52932- 3 1.71560- 4 1.00000+ 1 3.00000+ 1 1.06417- 2 1.79800- 4 1.00000+ 1 3.20000+ 1 4.71802- 4 2.12150- 4 1.00000+ 1 3.30000+ 1 6.10648- 4 2.12720- 4 1.00000+ 1 4.10000+ 1 7.29410- 4 2.11040- 4 1.10000+ 1 1.80000+ 1 6.29442- 2 4.17300- 5 1.10000+ 1 1.90000+ 1 7.55469- 2 1.01180- 4 1.10000+ 1 2.10000+ 1 2.98392- 2 2.51410- 4 1.10000+ 1 2.20000+ 1 4.38126- 2 2.62290- 4 1.10000+ 1 2.40000+ 1 1.32511- 1 4.49740- 4 1.10000+ 1 2.50000+ 1 1.65377- 1 4.51600- 4 1.10000+ 1 2.70000+ 1 9.15950- 3 4.04440- 4 1.10000+ 1 2.90000+ 1 7.92422- 3 4.30660- 4 1.10000+ 1 3.00000+ 1 9.54900- 3 4.38900- 4 1.10000+ 1 3.20000+ 1 2.25018- 4 4.71250- 4 1.10000+ 1 3.30000+ 1 3.19767- 4 4.71820- 4 1.10000+ 1 4.10000+ 1 7.83336- 4 4.70140- 4 1.30000+ 1 1.60000+ 1 2.47496- 2 3.24810- 4 1.30000+ 1 1.80000+ 1 5.48313- 3 4.15230- 4 1.30000+ 1 1.90000+ 1 5.46012- 3 4.74680- 4 1.30000+ 1 2.10000+ 1 8.22219- 3 6.24910- 4 1.30000+ 1 2.20000+ 1 1.02695- 2 6.35790- 4 1.30000+ 1 2.40000+ 1 6.81706- 3 8.23240- 4 1.30000+ 1 2.50000+ 1 6.32151- 3 8.25100- 4 1.30000+ 1 2.70000+ 1 2.75202- 3 7.77940- 4 1.30000+ 1 2.90000+ 1 5.87300- 4 8.04160- 4 1.30000+ 1 3.00000+ 1 5.46953- 4 8.12400- 4 1.30000+ 1 3.20000+ 1 6.00273- 5 8.44750- 4 1.30000+ 1 3.30000+ 1 7.36813- 5 8.45320- 4 1.30000+ 1 4.10000+ 1 2.26444- 4 8.43640- 4 1.40000+ 1 1.60000+ 1 3.51351- 2 3.81610- 4 1.40000+ 1 1.80000+ 1 1.05226- 3 4.72030- 4 1.40000+ 1 1.90000+ 1 1.05198- 2 5.31480- 4 1.40000+ 1 2.10000+ 1 1.12982- 2 6.81710- 4 1.40000+ 1 2.20000+ 1 1.65866- 2 6.92590- 4 1.40000+ 1 2.40000+ 1 7.73740- 3 8.80040- 4 1.40000+ 1 2.50000+ 1 1.20739- 2 8.81900- 4 1.40000+ 1 2.70000+ 1 3.88258- 3 8.34740- 4 1.40000+ 1 2.90000+ 1 1.19350- 4 8.60960- 4 1.40000+ 1 3.00000+ 1 1.04875- 3 8.69200- 4 1.40000+ 1 3.20000+ 1 8.77663- 5 9.01550- 4 1.40000+ 1 3.30000+ 1 1.15358- 4 9.02120- 4 1.40000+ 1 4.10000+ 1 3.18635- 4 9.00440- 4 1.60000+ 1 1.60000+ 1 3.49903- 3 1.52462- 3 1.60000+ 1 1.80000+ 1 5.97382- 3 1.61504- 3 1.60000+ 1 1.90000+ 1 1.02677- 2 1.67449- 3 1.60000+ 1 2.10000+ 1 1.13869- 2 1.82472- 3 1.60000+ 1 2.20000+ 1 1.62097- 2 1.83560- 3 1.60000+ 1 2.40000+ 1 6.29712- 3 2.02305- 3 1.60000+ 1 2.50000+ 1 7.92363- 3 2.02491- 3 1.60000+ 1 2.70000+ 1 9.66863- 4 1.97775- 3 1.60000+ 1 2.90000+ 1 8.11594- 4 2.00397- 3 1.60000+ 1 3.00000+ 1 1.32141- 3 2.01221- 3 1.60000+ 1 3.20000+ 1 9.58396- 5 2.04456- 3 1.60000+ 1 3.30000+ 1 1.26136- 4 2.04513- 3 1.60000+ 1 4.10000+ 1 8.21502- 5 2.04345- 3 1.80000+ 1 1.80000+ 1 2.77492- 4 1.70546- 3 1.80000+ 1 1.90000+ 1 7.43446- 4 1.76491- 3 1.80000+ 1 2.10000+ 1 4.11196- 4 1.91514- 3 1.80000+ 1 2.20000+ 1 2.33400- 4 1.92602- 3 1.80000+ 1 2.40000+ 1 7.23287- 5 2.11347- 3 1.80000+ 1 2.50000+ 1 4.49241- 4 2.11533- 3 1.80000+ 1 2.70000+ 1 6.43460- 4 2.06817- 3 1.80000+ 1 2.90000+ 1 5.90722- 5 2.09439- 3 1.80000+ 1 3.00000+ 1 7.40558- 5 2.10263- 3 1.80000+ 1 3.20000+ 1 3.16984- 6 2.13498- 3 1.80000+ 1 3.30000+ 1 2.01688- 6 2.13555- 3 1.80000+ 1 4.10000+ 1 5.30207- 5 2.13387- 3 1.90000+ 1 1.90000+ 1 9.31054- 4 1.82436- 3 1.90000+ 1 2.10000+ 1 6.97633- 4 1.97459- 3 1.90000+ 1 2.20000+ 1 1.65755- 3 1.98547- 3 1.90000+ 1 2.40000+ 1 4.97078- 4 2.17292- 3 1.90000+ 1 2.50000+ 1 9.24989- 4 2.17478- 3 1.90000+ 1 2.70000+ 1 1.11026- 3 2.12762- 3 1.90000+ 1 2.90000+ 1 8.55847- 5 2.15384- 3 1.90000+ 1 3.00000+ 1 2.03154- 4 2.16208- 3 1.90000+ 1 3.20000+ 1 6.05134- 6 2.19443- 3 1.90000+ 1 3.30000+ 1 1.23915- 5 2.19500- 3 1.90000+ 1 4.10000+ 1 9.13473- 5 2.19332- 3 2.10000+ 1 2.10000+ 1 1.30644- 4 2.12482- 3 2.10000+ 1 2.20000+ 1 6.15052- 4 2.13570- 3 2.10000+ 1 2.40000+ 1 4.50040- 4 2.32315- 3 2.10000+ 1 2.50000+ 1 3.27536- 3 2.32501- 3 2.10000+ 1 2.70000+ 1 1.23093- 3 2.27785- 3 2.10000+ 1 2.90000+ 1 4.02214- 5 2.30407- 3 2.10000+ 1 3.00000+ 1 7.31004- 5 2.31231- 3 2.10000+ 1 3.20000+ 1 1.76142- 6 2.34466- 3 2.10000+ 1 3.30000+ 1 4.11003- 6 2.34523- 3 2.10000+ 1 4.10000+ 1 1.00991- 4 2.34355- 3 2.20000+ 1 2.20000+ 1 3.41143- 4 2.14658- 3 2.20000+ 1 2.40000+ 1 3.10680- 3 2.33403- 3 2.20000+ 1 2.50000+ 1 1.78941- 3 2.33589- 3 2.20000+ 1 2.70000+ 1 1.70937- 3 2.28873- 3 2.20000+ 1 2.90000+ 1 2.41014- 5 2.31495- 3 2.20000+ 1 3.00000+ 1 1.68418- 4 2.32319- 3 2.20000+ 1 3.20000+ 1 4.30364- 6 2.35554- 3 2.20000+ 1 3.30000+ 1 4.59043- 6 2.35611- 3 2.20000+ 1 4.10000+ 1 1.40013- 4 2.35443- 3 2.40000+ 1 2.40000+ 1 4.63051- 4 2.52148- 3 2.40000+ 1 2.50000+ 1 3.32118- 3 2.52334- 3 2.40000+ 1 2.70000+ 1 6.16257- 4 2.47618- 3 2.40000+ 1 2.90000+ 1 6.88565- 6 2.50240- 3 2.40000+ 1 3.00000+ 1 4.13113- 5 2.51064- 3 2.40000+ 1 3.20000+ 1 3.44274- 6 2.54299- 3 2.40000+ 1 3.30000+ 1 2.38129- 5 2.54356- 3 2.40000+ 1 4.10000+ 1 5.02063- 5 2.54188- 3 2.50000+ 1 2.50000+ 1 1.10621- 3 2.52520- 3 2.50000+ 1 2.70000+ 1 7.79430- 4 2.47804- 3 2.50000+ 1 2.90000+ 1 5.48482- 5 2.50426- 3 2.50000+ 1 3.00000+ 1 7.93859- 5 2.51250- 3 2.50000+ 1 3.20000+ 1 2.62697- 5 2.54485- 3 2.50000+ 1 3.30000+ 1 1.35677- 5 2.54542- 3 2.50000+ 1 4.10000+ 1 6.32197- 5 2.54374- 3 2.70000+ 1 2.70000+ 1 1.14658- 4 2.43088- 3 2.70000+ 1 2.90000+ 1 1.62658- 4 2.45710- 3 2.70000+ 1 3.00000+ 1 2.64525- 4 2.46534- 3 2.70000+ 1 3.20000+ 1 1.86653- 5 2.49769- 3 2.70000+ 1 3.30000+ 1 2.50650- 5 2.49826- 3 2.70000+ 1 4.10000+ 1 1.91988- 5 2.49658- 3 2.90000+ 1 2.90000+ 1 6.81535- 6 2.48332- 3 2.90000+ 1 3.00000+ 1 1.79671- 5 2.49156- 3 2.90000+ 1 3.20000+ 1 6.19560- 7 2.52391- 3 2.90000+ 1 3.30000+ 1 6.19560- 7 2.52448- 3 2.90000+ 1 4.10000+ 1 1.54890- 5 2.52280- 3 3.00000+ 1 3.00000+ 1 3.08528- 5 2.49980- 3 3.00000+ 1 3.20000+ 1 1.66766- 6 2.53215- 3 3.00000+ 1 3.30000+ 1 3.33533- 6 2.53272- 3 3.00000+ 1 4.10000+ 1 3.41869- 5 2.53104- 3 3.20000+ 1 4.10000+ 1 8.64491- 7 2.56339- 3 3.30000+ 1 4.10000+ 1 1.15256- 6 2.56396- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.07149- 4 6.32600- 4 1.60000+ 1 5.81359- 4 1.83241- 3 2.10000+ 1 3.02349- 3 2.13251- 3 2.70000+ 1 1.10280- 4 2.28554- 3 3.20000+ 1 3.66869- 5 2.35235- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.62005- 3 3.35100- 5 1.10000+ 1 2.20000+ 1 1.88531- 2 4.43900- 5 1.10000+ 1 2.40000+ 1 2.66960- 2 2.31840- 4 1.10000+ 1 2.50000+ 1 2.69948- 2 2.33700- 4 1.10000+ 1 2.70000+ 1 3.29739- 3 1.86540- 4 1.10000+ 1 2.90000+ 1 3.63368- 3 2.12760- 4 1.10000+ 1 3.00000+ 1 3.08528- 3 2.21000- 4 1.10000+ 1 3.20000+ 1 6.55441- 5 2.53350- 4 1.10000+ 1 3.30000+ 1 1.48732- 4 2.53920- 4 1.10000+ 1 4.10000+ 1 2.71217- 4 2.52240- 4 1.30000+ 1 1.60000+ 1 5.70661- 2 1.06910- 4 1.30000+ 1 1.80000+ 1 5.72251- 2 1.97330- 4 1.30000+ 1 1.90000+ 1 6.49259- 2 2.56780- 4 1.30000+ 1 2.10000+ 1 2.32903- 2 4.07010- 4 1.30000+ 1 2.20000+ 1 2.70357- 2 4.17890- 4 1.30000+ 1 2.40000+ 1 1.28928- 1 6.05340- 4 1.30000+ 1 2.50000+ 1 1.95102- 1 6.07200- 4 1.30000+ 1 2.70000+ 1 9.44013- 3 5.60040- 4 1.30000+ 1 2.90000+ 1 6.71317- 3 5.86260- 4 1.30000+ 1 3.00000+ 1 8.07338- 3 5.94500- 4 1.30000+ 1 3.20000+ 1 1.95372- 4 6.26850- 4 1.30000+ 1 3.30000+ 1 2.23321- 4 6.27420- 4 1.30000+ 1 4.10000+ 1 8.11121- 4 6.25740- 4 1.40000+ 1 1.60000+ 1 9.46972- 3 1.63710- 4 1.40000+ 1 1.80000+ 1 6.50671- 2 2.54130- 4 1.40000+ 1 1.90000+ 1 5.93733- 3 3.13580- 4 1.40000+ 1 2.10000+ 1 1.02502- 3 4.63810- 4 1.40000+ 1 2.20000+ 1 3.17679- 3 4.74690- 4 1.40000+ 1 2.40000+ 1 4.39379- 3 6.62140- 4 1.40000+ 1 2.50000+ 1 3.32594- 3 6.64000- 4 1.40000+ 1 2.70000+ 1 1.04804- 3 6.16840- 4 1.40000+ 1 2.90000+ 1 6.16806- 3 6.43060- 4 1.40000+ 1 3.00000+ 1 6.72679- 4 6.51300- 4 1.40000+ 1 3.20000+ 1 5.67223- 6 6.83650- 4 1.40000+ 1 3.30000+ 1 2.31091- 5 6.84220- 4 1.40000+ 1 4.10000+ 1 8.65553- 5 6.82540- 4 1.60000+ 1 1.60000+ 1 8.87346- 4 1.30672- 3 1.60000+ 1 1.80000+ 1 1.24425- 2 1.39714- 3 1.60000+ 1 1.90000+ 1 1.86350- 3 1.45659- 3 1.60000+ 1 2.10000+ 1 3.98963- 4 1.60682- 3 1.60000+ 1 2.20000+ 1 1.43790- 3 1.61770- 3 1.60000+ 1 2.40000+ 1 5.07421- 5 1.80515- 3 1.60000+ 1 2.50000+ 1 8.35980- 4 1.80701- 3 1.60000+ 1 2.70000+ 1 2.31508- 4 1.75985- 3 1.60000+ 1 2.90000+ 1 1.13663- 3 1.78607- 3 1.60000+ 1 3.00000+ 1 2.17555- 4 1.79431- 3 1.60000+ 1 3.20000+ 1 2.53699- 6 1.82666- 3 1.60000+ 1 3.30000+ 1 1.01481- 5 1.82723- 3 1.60000+ 1 4.10000+ 1 1.96625- 5 1.82555- 3 1.80000+ 1 1.80000+ 1 9.37596- 3 1.48756- 3 1.80000+ 1 1.90000+ 1 2.73066- 2 1.54701- 3 1.80000+ 1 2.10000+ 1 2.61876- 2 1.69724- 3 1.80000+ 1 2.20000+ 1 4.23911- 2 1.70812- 3 1.80000+ 1 2.40000+ 1 1.19493- 2 1.89557- 3 1.80000+ 1 2.50000+ 1 2.03541- 2 1.89743- 3 1.80000+ 1 2.70000+ 1 2.05558- 3 1.85027- 3 1.80000+ 1 2.90000+ 1 2.15708- 3 1.87649- 3 1.80000+ 1 3.00000+ 1 3.48680- 3 1.88473- 3 1.80000+ 1 3.20000+ 1 2.20083- 4 1.91708- 3 1.80000+ 1 3.30000+ 1 3.27267- 4 1.91765- 3 1.80000+ 1 4.10000+ 1 1.78222- 4 1.91597- 3 1.90000+ 1 1.90000+ 1 7.55385- 4 1.60646- 3 1.90000+ 1 2.10000+ 1 2.00742- 3 1.75669- 3 1.90000+ 1 2.20000+ 1 1.64591- 3 1.76757- 3 1.90000+ 1 2.40000+ 1 8.54537- 3 1.95502- 3 1.90000+ 1 2.50000+ 1 2.38171- 3 1.95688- 3 1.90000+ 1 2.70000+ 1 2.05500- 4 1.90972- 3 1.90000+ 1 2.90000+ 1 2.54790- 3 1.93594- 3 1.90000+ 1 3.00000+ 1 1.64271- 4 1.94418- 3 1.90000+ 1 3.20000+ 1 1.39537- 5 1.97653- 3 1.90000+ 1 3.30000+ 1 1.14164- 5 1.97710- 3 1.90000+ 1 4.10000+ 1 1.71250- 5 1.97542- 3 2.10000+ 1 2.10000+ 1 8.75894- 4 1.90692- 3 2.10000+ 1 2.20000+ 1 2.46909- 3 1.91780- 3 2.10000+ 1 2.40000+ 1 1.01925- 3 2.10525- 3 2.10000+ 1 2.50000+ 1 1.88751- 3 2.10711- 3 2.10000+ 1 2.70000+ 1 6.08855- 5 2.05995- 3 2.10000+ 1 2.90000+ 1 2.38914- 3 2.08617- 3 2.10000+ 1 3.00000+ 1 2.25158- 4 2.09441- 3 2.10000+ 1 3.20000+ 1 1.26848- 5 2.12676- 3 2.10000+ 1 3.30000+ 1 1.83933- 5 2.12733- 3 2.10000+ 1 4.10000+ 1 5.07404- 6 2.12565- 3 2.20000+ 1 2.20000+ 1 5.85396- 4 1.92868- 3 2.20000+ 1 2.40000+ 1 3.28089- 3 2.11613- 3 2.20000+ 1 2.50000+ 1 7.07212- 4 2.11799- 3 2.20000+ 1 2.70000+ 1 1.90274- 4 2.07083- 3 2.20000+ 1 2.90000+ 1 3.92281- 3 2.09705- 3 2.20000+ 1 3.00000+ 1 1.66808- 4 2.10529- 3 2.20000+ 1 3.20000+ 1 1.83933- 5 2.13764- 3 2.20000+ 1 3.30000+ 1 8.24531- 6 2.13821- 3 2.20000+ 1 4.10000+ 1 1.58564- 5 2.13653- 3 2.40000+ 1 2.40000+ 1 2.31884- 3 2.30358- 3 2.40000+ 1 2.50000+ 1 1.49915- 2 2.30544- 3 2.40000+ 1 2.70000+ 1 3.17133- 6 2.25828- 3 2.40000+ 1 2.90000+ 1 1.00846- 3 2.28450- 3 2.40000+ 1 3.00000+ 1 1.02623- 3 2.29274- 3 2.40000+ 1 3.20000+ 1 9.51403- 6 2.32509- 3 2.40000+ 1 3.30000+ 1 2.72744- 5 2.32566- 3 2.50000+ 1 2.50000+ 1 7.82032- 4 2.30730- 3 2.50000+ 1 2.70000+ 1 1.17971- 4 2.26014- 3 2.50000+ 1 2.90000+ 1 1.70802- 3 2.28636- 3 2.50000+ 1 3.00000+ 1 2.58760- 4 2.29460- 3 2.50000+ 1 3.20000+ 1 1.58564- 5 2.32695- 3 2.50000+ 1 3.30000+ 1 5.70856- 6 2.32752- 3 2.50000+ 1 4.10000+ 1 1.01478- 5 2.32584- 3 2.70000+ 1 2.70000+ 1 1.99405- 5 2.21298- 3 2.70000+ 1 2.90000+ 1 2.46761- 4 2.23920- 3 2.70000+ 1 3.00000+ 1 3.15717- 5 2.24744- 3 2.70000+ 1 3.20000+ 1 8.30854- 7 2.27979- 3 2.70000+ 1 3.30000+ 1 1.66167- 6 2.28036- 3 2.70000+ 1 4.10000+ 1 3.32327- 6 2.27868- 3 2.90000+ 1 2.90000+ 1 2.53040- 4 2.26542- 3 2.90000+ 1 3.00000+ 1 6.98227- 4 2.27366- 3 2.90000+ 1 3.20000+ 1 4.33008- 5 2.30601- 3 2.90000+ 1 3.30000+ 1 6.49485- 5 2.30658- 3 2.90000+ 1 4.10000+ 1 3.51818- 5 2.30490- 3 3.00000+ 1 3.00000+ 1 5.38760- 5 2.28190- 3 3.00000+ 1 3.20000+ 1 1.15447- 5 2.31425- 3 3.00000+ 1 3.30000+ 1 7.69641- 6 2.31482- 3 3.00000+ 1 4.10000+ 1 1.15447- 5 2.31314- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.71343- 5 3.73500- 4 1.40000+ 1 2.46433- 4 4.30300- 4 1.60000+ 1 9.32367- 4 1.57331- 3 2.10000+ 1 4.48212- 4 1.87341- 3 2.20000+ 1 3.54321- 3 1.88429- 3 2.70000+ 1 1.70182- 4 2.02644- 3 3.20000+ 1 5.20808- 6 2.09325- 3 3.30000+ 1 3.94018- 5 2.09382- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 5.22283- 2 0.00000+ 0 1.30000+ 1 2.10000+ 1 8.88980- 3 1.47910- 4 1.30000+ 1 2.20000+ 1 8.60905- 3 1.58790- 4 1.30000+ 1 2.40000+ 1 1.27976- 2 3.46240- 4 1.30000+ 1 2.50000+ 1 1.85879- 2 3.48100- 4 1.30000+ 1 2.70000+ 1 1.79490- 3 3.00940- 4 1.30000+ 1 2.90000+ 1 1.32084- 3 3.27160- 4 1.30000+ 1 3.00000+ 1 4.80674- 3 3.35400- 4 1.30000+ 1 3.20000+ 1 6.43132- 5 3.67750- 4 1.30000+ 1 3.30000+ 1 5.80893- 5 3.68320- 4 1.30000+ 1 4.10000+ 1 1.51067- 4 3.66640- 4 1.40000+ 1 1.80000+ 1 7.28274- 2 0.00000+ 0 1.40000+ 1 1.90000+ 1 1.08940- 1 5.44800- 5 1.40000+ 1 2.10000+ 1 3.98465- 2 2.04710- 4 1.40000+ 1 2.20000+ 1 5.61468- 2 2.15590- 4 1.40000+ 1 2.40000+ 1 1.28331- 1 4.03040- 4 1.40000+ 1 2.50000+ 1 1.53813- 1 4.04900- 4 1.40000+ 1 2.70000+ 1 1.05381- 2 3.57740- 4 1.40000+ 1 2.90000+ 1 8.99893- 3 3.83960- 4 1.40000+ 1 3.00000+ 1 1.23595- 2 3.92200- 4 1.40000+ 1 3.20000+ 1 2.91406- 4 4.24550- 4 1.40000+ 1 3.30000+ 1 3.97391- 4 4.25120- 4 1.40000+ 1 4.10000+ 1 8.91663- 4 4.23440- 4 1.60000+ 1 1.60000+ 1 5.90130- 4 1.04762- 3 1.60000+ 1 1.80000+ 1 9.58782- 4 1.13804- 3 1.60000+ 1 1.90000+ 1 1.52757- 2 1.19749- 3 1.60000+ 1 2.10000+ 1 9.00994- 4 1.34772- 3 1.60000+ 1 2.20000+ 1 1.00899- 3 1.35860- 3 1.60000+ 1 2.40000+ 1 1.20431- 3 1.54605- 3 1.60000+ 1 2.50000+ 1 1.92853- 3 1.54791- 3 1.60000+ 1 2.70000+ 1 1.53375- 4 1.50075- 3 1.60000+ 1 2.90000+ 1 1.03855- 4 1.52697- 3 1.60000+ 1 3.00000+ 1 1.35490- 3 1.53521- 3 1.60000+ 1 3.20000+ 1 6.87772- 6 1.56756- 3 1.60000+ 1 3.30000+ 1 6.87772- 6 1.56813- 3 1.60000+ 1 4.10000+ 1 1.23801- 5 1.56645- 3 1.80000+ 1 1.80000+ 1 9.14729- 5 1.22846- 3 1.80000+ 1 1.90000+ 1 1.83016- 2 1.28791- 3 1.80000+ 1 2.10000+ 1 4.16788- 4 1.43814- 3 1.80000+ 1 2.20000+ 1 3.52057- 3 1.44902- 3 1.80000+ 1 2.40000+ 1 1.35695- 3 1.63647- 3 1.80000+ 1 2.50000+ 1 7.75796- 3 1.63833- 3 1.80000+ 1 2.70000+ 1 1.11418- 4 1.59117- 3 1.80000+ 1 2.90000+ 1 1.85699- 5 1.61739- 3 1.80000+ 1 3.00000+ 1 1.64649- 3 1.62563- 3 1.80000+ 1 3.20000+ 1 3.43879- 6 1.65798- 3 1.80000+ 1 3.30000+ 1 2.33839- 5 1.65855- 3 1.80000+ 1 4.10000+ 1 8.94112- 6 1.65687- 3 1.90000+ 1 1.90000+ 1 2.50881- 2 1.34736- 3 1.90000+ 1 2.10000+ 1 3.52441- 2 1.49759- 3 1.90000+ 1 2.20000+ 1 4.65844- 2 1.50847- 3 1.90000+ 1 2.40000+ 1 2.30885- 2 1.69592- 3 1.90000+ 1 2.50000+ 1 2.62950- 2 1.69778- 3 1.90000+ 1 2.70000+ 1 2.47401- 3 1.65062- 3 1.90000+ 1 2.90000+ 1 2.44096- 3 1.67684- 3 1.90000+ 1 3.00000+ 1 5.44245- 3 1.68508- 3 1.90000+ 1 3.20000+ 1 2.89565- 4 1.71743- 3 1.90000+ 1 3.30000+ 1 3.56960- 4 1.71800- 3 1.90000+ 1 4.10000+ 1 2.13901- 4 1.71632- 3 2.10000+ 1 2.10000+ 1 2.27651- 4 1.64782- 3 2.10000+ 1 2.20000+ 1 4.92937- 3 1.65870- 3 2.10000+ 1 2.40000+ 1 5.69479- 4 1.84615- 3 2.10000+ 1 2.50000+ 1 6.90023- 3 1.84801- 3 2.10000+ 1 2.70000+ 1 9.42245- 5 1.80085- 3 2.10000+ 1 2.90000+ 1 2.95762- 5 1.82707- 3 2.10000+ 1 3.00000+ 1 3.13487- 3 1.83531- 3 2.10000+ 1 3.20000+ 1 3.43883- 6 1.86766- 3 2.10000+ 1 3.30000+ 1 3.43883- 5 1.86823- 3 2.10000+ 1 4.10000+ 1 7.56556- 6 1.86655- 3 2.20000+ 1 2.20000+ 1 2.28203- 3 1.66958- 3 2.20000+ 1 2.40000+ 1 5.58070- 3 1.85703- 3 2.20000+ 1 2.50000+ 1 4.76555- 3 1.85889- 3 2.20000+ 1 2.70000+ 1 1.07293- 4 1.81173- 3 2.20000+ 1 2.90000+ 1 2.84734- 4 1.83795- 3 2.20000+ 1 3.00000+ 1 4.10045- 3 1.84619- 3 2.20000+ 1 3.20000+ 1 3.64528- 5 1.87854- 3 2.20000+ 1 3.30000+ 1 3.16377- 5 1.87911- 3 2.20000+ 1 4.10000+ 1 8.94122- 6 1.87743- 3 2.40000+ 1 2.40000+ 1 6.82290- 4 2.04448- 3 2.40000+ 1 2.50000+ 1 1.84494- 2 2.04634- 3 2.40000+ 1 2.70000+ 1 1.19677- 4 1.99918- 3 2.40000+ 1 2.90000+ 1 1.52691- 4 2.02540- 3 2.40000+ 1 3.00000+ 1 1.96223- 3 2.03364- 3 2.40000+ 1 3.20000+ 1 5.50220- 6 2.06599- 3 2.40000+ 1 3.30000+ 1 4.12654- 5 2.06656- 3 2.40000+ 1 4.10000+ 1 9.62908- 6 2.06488- 3 2.50000+ 1 2.50000+ 1 7.17218- 3 2.04820- 3 2.50000+ 1 2.70000+ 1 1.56819- 4 2.00104- 3 2.50000+ 1 2.90000+ 1 8.75573- 4 2.02726- 3 2.50000+ 1 3.00000+ 1 2.30137- 3 2.03550- 3 2.50000+ 1 3.20000+ 1 5.63985- 5 2.06785- 3 2.50000+ 1 3.30000+ 1 3.71434- 5 2.06842- 3 2.50000+ 1 4.10000+ 1 1.23805- 5 2.06674- 3 2.70000+ 1 2.70000+ 1 1.66217- 5 1.95388- 3 2.70000+ 1 2.90000+ 1 1.99463- 5 1.98010- 3 2.70000+ 1 3.00000+ 1 3.54596- 4 1.98834- 3 2.70000+ 1 3.20000+ 1 1.10811- 6 2.02069- 3 2.70000+ 1 3.30000+ 1 1.10811- 6 2.02126- 3 2.70000+ 1 4.10000+ 1 3.32435- 6 2.01958- 3 2.90000+ 1 2.90000+ 1 1.28715- 6 2.00632- 3 2.90000+ 1 3.00000+ 1 4.13182- 4 2.01456- 3 2.90000+ 1 3.30000+ 1 3.86148- 6 2.04748- 3 2.90000+ 1 4.10000+ 1 2.57431- 6 2.04580- 3 3.00000+ 1 3.00000+ 1 1.29506- 3 2.02280- 3 3.00000+ 1 3.20000+ 1 1.18586- 4 2.05515- 3 3.00000+ 1 3.30000+ 1 1.43553- 4 2.05572- 3 3.00000+ 1 4.10000+ 1 8.73798- 5 2.05404- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.29060- 3 1.29023- 3 1.90000+ 1 2.47750- 4 1.34968- 3 2.40000+ 1 1.37540- 2 1.69824- 3 2.90000+ 1 5.09869- 4 1.67916- 3 3.00000+ 1 5.49999- 5 1.68740- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.06946- 1 2.95400- 5 1.40000+ 1 2.50000+ 1 1.45089- 2 3.14000- 5 1.40000+ 1 2.90000+ 1 5.14940- 4 1.04600- 5 1.40000+ 1 3.00000+ 1 1.48052- 3 1.87000- 5 1.40000+ 1 3.20000+ 1 9.64298- 4 5.10500- 5 1.40000+ 1 3.30000+ 1 1.26556- 4 5.16200- 5 1.40000+ 1 4.10000+ 1 1.18807- 4 4.99400- 5 1.60000+ 1 1.60000+ 1 3.72174- 5 6.74120- 4 1.60000+ 1 1.80000+ 1 1.79619- 3 7.64540- 4 1.60000+ 1 1.90000+ 1 1.25242- 3 8.23990- 4 1.60000+ 1 2.10000+ 1 4.49039- 2 9.74220- 4 1.60000+ 1 2.20000+ 1 5.31548- 3 9.85100- 4 1.60000+ 1 2.40000+ 1 1.43559- 2 1.17255- 3 1.60000+ 1 2.50000+ 1 4.46283- 3 1.17441- 3 1.60000+ 1 2.70000+ 1 2.10347- 5 1.12725- 3 1.60000+ 1 2.90000+ 1 1.92557- 4 1.15347- 3 1.60000+ 1 3.00000+ 1 1.10031- 4 1.16171- 3 1.60000+ 1 3.20000+ 1 2.86416- 4 1.19406- 3 1.60000+ 1 3.30000+ 1 3.23628- 5 1.19463- 3 1.60000+ 1 4.10000+ 1 1.61814- 6 1.19295- 3 1.80000+ 1 1.80000+ 1 1.04533- 3 8.54960- 4 1.80000+ 1 1.90000+ 1 6.56164- 3 9.14410- 4 1.80000+ 1 2.10000+ 1 3.92398- 2 1.06464- 3 1.80000+ 1 2.20000+ 1 3.11817- 3 1.07552- 3 1.80000+ 1 2.40000+ 1 8.96761- 3 1.26297- 3 1.80000+ 1 2.50000+ 1 4.52431- 3 1.26483- 3 1.80000+ 1 2.70000+ 1 2.00661- 4 1.21767- 3 1.80000+ 1 2.90000+ 1 2.26538- 4 1.24389- 3 1.80000+ 1 3.00000+ 1 6.42431- 4 1.25213- 3 1.80000+ 1 3.20000+ 1 2.49196- 4 1.28448- 3 1.80000+ 1 3.30000+ 1 2.10351- 5 1.28505- 3 1.80000+ 1 4.10000+ 1 1.61817- 5 1.28337- 3 1.90000+ 1 1.90000+ 1 2.35776- 3 9.73860- 4 1.90000+ 1 2.10000+ 1 8.16537- 2 1.12409- 3 1.90000+ 1 2.20000+ 1 3.07129- 3 1.13497- 3 1.90000+ 1 2.40000+ 1 4.51935- 3 1.32242- 3 1.90000+ 1 2.50000+ 1 2.47411- 3 1.32428- 3 1.90000+ 1 2.70000+ 1 1.56949- 4 1.27712- 3 1.90000+ 1 2.90000+ 1 6.01920- 4 1.30334- 3 1.90000+ 1 3.00000+ 1 4.41751- 4 1.31158- 3 1.90000+ 1 3.20000+ 1 5.22659- 4 1.34393- 3 1.90000+ 1 3.30000+ 1 1.94176- 5 1.34450- 3 1.90000+ 1 4.10000+ 1 1.29454- 5 1.34282- 3 2.10000+ 1 2.10000+ 1 7.02781- 2 1.27432- 3 2.10000+ 1 2.20000+ 1 1.41163- 1 1.28520- 3 2.10000+ 1 2.40000+ 1 5.65809- 2 1.47265- 3 2.10000+ 1 2.50000+ 1 7.02661- 2 1.47451- 3 2.10000+ 1 2.70000+ 1 6.75422- 3 1.42735- 3 2.10000+ 1 2.90000+ 1 5.26531- 3 1.45357- 3 2.10000+ 1 3.00000+ 1 1.01795- 2 1.46181- 3 2.10000+ 1 3.20000+ 1 1.03234- 3 1.49416- 3 2.10000+ 1 3.30000+ 1 1.07117- 3 1.49473- 3 2.10000+ 1 4.10000+ 1 5.79287- 4 1.49305- 3 2.20000+ 1 2.20000+ 1 2.29608- 3 1.29608- 3 2.20000+ 1 2.40000+ 1 6.01743- 2 1.48353- 3 2.20000+ 1 2.50000+ 1 3.26537- 3 1.48539- 3 2.20000+ 1 2.70000+ 1 4.57941- 4 1.43823- 3 2.20000+ 1 2.90000+ 1 2.79951- 4 1.46445- 3 2.20000+ 1 3.00000+ 1 3.17149- 4 1.47269- 3 2.20000+ 1 3.20000+ 1 9.07766- 4 1.50504- 3 2.20000+ 1 3.30000+ 1 2.91272- 5 1.50561- 3 2.20000+ 1 4.10000+ 1 3.72180- 5 1.50393- 3 2.40000+ 1 2.40000+ 1 4.65708- 2 1.67098- 3 2.40000+ 1 2.50000+ 1 1.35156- 1 1.67284- 3 2.40000+ 1 2.70000+ 1 2.21856- 3 1.62568- 3 2.40000+ 1 2.90000+ 1 9.98416- 4 1.65190- 3 2.40000+ 1 3.00000+ 1 5.58283- 4 1.66014- 3 2.40000+ 1 3.20000+ 1 3.80275- 4 1.69249- 3 2.40000+ 1 3.30000+ 1 4.41763- 4 1.69306- 3 2.40000+ 1 4.10000+ 1 1.95800- 4 1.69138- 3 2.50000+ 1 2.50000+ 1 3.38366- 3 1.67470- 3 2.50000+ 1 2.70000+ 1 5.94620- 4 1.62754- 3 2.50000+ 1 2.90000+ 1 3.47188- 4 1.65376- 3 2.50000+ 1 3.00000+ 1 3.31852- 4 1.66200- 3 2.50000+ 1 3.20000+ 1 5.02545- 4 1.69435- 3 2.50000+ 1 3.30000+ 1 2.68535- 5 1.69492- 3 2.50000+ 1 4.10000+ 1 4.98710- 5 1.69324- 3 2.70000+ 1 2.70000+ 1 8.75745- 6 1.58038- 3 2.70000+ 1 2.90000+ 1 1.22601- 4 1.60660- 3 2.70000+ 1 3.00000+ 1 7.88179- 5 1.61484- 3 2.70000+ 1 3.20000+ 1 2.36448- 4 1.64719- 3 2.70000+ 1 3.30000+ 1 1.75148- 5 1.64776- 3 2.90000+ 1 2.90000+ 1 8.92059- 5 1.63282- 3 2.90000+ 1 3.00000+ 1 4.23715- 4 1.64106- 3 2.90000+ 1 3.20000+ 1 2.34167- 4 1.67341- 3 2.90000+ 1 3.30000+ 1 1.11506- 5 1.67398- 3 2.90000+ 1 4.10000+ 1 1.11506- 5 1.67230- 3 3.00000+ 1 3.00000+ 1 2.68577- 4 1.64930- 3 3.00000+ 1 3.20000+ 1 8.26399- 4 1.68165- 3 3.00000+ 1 3.30000+ 1 2.06609- 5 1.68222- 3 3.00000+ 1 4.10000+ 1 2.06609- 5 1.68054- 3 3.20000+ 1 3.30000+ 1 6.47230- 6 1.71457- 3 3.20000+ 1 4.10000+ 1 3.23629- 6 1.71289- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.09000- 3 1.29288- 3 2.40000+ 1 7.57862- 4 1.64144- 3 2.50000+ 1 1.47200- 2 1.64330- 3 3.00000+ 1 5.58671- 4 1.63060- 3 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.36262- 6 6.17320- 4 1.60000+ 1 1.80000+ 1 4.27218- 4 7.07740- 4 1.60000+ 1 1.90000+ 1 3.17466- 3 7.67190- 4 1.60000+ 1 2.10000+ 1 4.77630- 3 9.17420- 4 1.60000+ 1 2.20000+ 1 5.31144- 2 9.28300- 4 1.60000+ 1 2.40000+ 1 4.88883- 3 1.11575- 3 1.60000+ 1 2.50000+ 1 1.67717- 2 1.11761- 3 1.60000+ 1 2.70000+ 1 1.43005- 5 1.07045- 3 1.60000+ 1 2.90000+ 1 2.14507- 5 1.09667- 3 1.60000+ 1 3.00000+ 1 2.93153- 4 1.10491- 3 1.60000+ 1 3.20000+ 1 3.03877- 5 1.13726- 3 1.60000+ 1 3.30000+ 1 3.14602- 4 1.13783- 3 1.60000+ 1 4.10000+ 1 1.78760- 6 1.13615- 3 1.80000+ 1 1.80000+ 1 7.14982- 6 7.98160- 4 1.80000+ 1 1.90000+ 1 7.98475- 3 8.57610- 4 1.80000+ 1 2.10000+ 1 4.32575- 4 1.00784- 3 1.80000+ 1 2.20000+ 1 5.40043- 2 1.01872- 3 1.80000+ 1 2.40000+ 1 2.28265- 3 1.20617- 3 1.80000+ 1 2.50000+ 1 8.41575- 3 1.20803- 3 1.80000+ 1 2.70000+ 1 4.64759- 5 1.16087- 3 1.80000+ 1 2.90000+ 1 3.57501- 6 1.18709- 3 1.80000+ 1 3.00000+ 1 7.32860- 4 1.19533- 3 1.80000+ 1 3.20000+ 1 1.78760- 6 1.22768- 3 1.80000+ 1 3.30000+ 1 3.21755- 4 1.22825- 3 1.80000+ 1 4.10000+ 1 3.57501- 6 1.22657- 3 1.90000+ 1 1.90000+ 1 5.87345- 3 9.17060- 4 1.90000+ 1 2.10000+ 1 5.05481- 3 1.06729- 3 1.90000+ 1 2.20000+ 1 8.40419- 2 1.07817- 3 1.90000+ 1 2.40000+ 1 3.00292- 3 1.26562- 3 1.90000+ 1 2.50000+ 1 6.55273- 3 1.26748- 3 1.90000+ 1 2.70000+ 1 4.05750- 4 1.22032- 3 1.90000+ 1 2.90000+ 1 7.14950- 4 1.24654- 3 1.90000+ 1 3.00000+ 1 1.11353- 3 1.25478- 3 1.90000+ 1 3.20000+ 1 3.75362- 5 1.28713- 3 1.90000+ 1 3.30000+ 1 4.98687- 4 1.28770- 3 1.90000+ 1 4.10000+ 1 3.39608- 5 1.28602- 3 2.10000+ 1 2.10000+ 1 1.08674- 3 1.21752- 3 2.10000+ 1 2.20000+ 1 1.11517- 1 1.22840- 3 2.10000+ 1 2.40000+ 1 3.02807- 3 1.41585- 3 2.10000+ 1 2.50000+ 1 4.06603- 2 1.41771- 3 2.10000+ 1 2.70000+ 1 3.96826- 4 1.37055- 3 2.10000+ 1 2.90000+ 1 6.25627- 5 1.39677- 3 2.10000+ 1 3.00000+ 1 4.73685- 4 1.40501- 3 2.10000+ 1 3.20000+ 1 1.43004- 5 1.43736- 3 2.10000+ 1 3.30000+ 1 6.68536- 4 1.43793- 3 2.10000+ 1 4.10000+ 1 3.21752- 5 1.43625- 3 2.20000+ 1 2.20000+ 1 1.25993- 1 1.23928- 3 2.20000+ 1 2.40000+ 1 6.81273- 2 1.42673- 3 2.20000+ 1 2.50000+ 1 1.04913- 1 1.42859- 3 2.20000+ 1 2.70000+ 1 7.72728- 3 1.38143- 3 2.20000+ 1 2.90000+ 1 6.96577- 3 1.40765- 3 2.20000+ 1 3.00000+ 1 1.05462- 2 1.41589- 3 2.20000+ 1 3.20000+ 1 9.06273- 4 1.44824- 3 2.20000+ 1 3.30000+ 1 1.71057- 3 1.44881- 3 2.20000+ 1 4.10000+ 1 6.61370- 4 1.44713- 3 2.40000+ 1 2.40000+ 1 4.05252- 3 1.61418- 3 2.40000+ 1 2.50000+ 1 1.29480- 1 1.61604- 3 2.40000+ 1 2.70000+ 1 5.84536- 4 1.56888- 3 2.40000+ 1 2.90000+ 1 2.73496- 4 1.59510- 3 2.40000+ 1 3.00000+ 1 2.98528- 4 1.60334- 3 2.40000+ 1 3.20000+ 1 2.32382- 5 1.63569- 3 2.40000+ 1 3.30000+ 1 3.89688- 4 1.63626- 3 2.40000+ 1 4.10000+ 1 4.82653- 5 1.63458- 3 2.50000+ 1 2.50000+ 1 8.80201- 2 1.61790- 3 2.50000+ 1 2.70000+ 1 2.51691- 3 1.57074- 3 2.50000+ 1 2.90000+ 1 1.07968- 3 1.59696- 3 2.50000+ 1 3.00000+ 1 7.56121- 4 1.60520- 3 2.50000+ 1 3.20000+ 1 3.16389- 4 1.63755- 3 2.50000+ 1 3.30000+ 1 6.68546- 4 1.63812- 3 2.50000+ 1 4.10000+ 1 2.23438- 4 1.63644- 3 2.70000+ 1 2.70000+ 1 1.26100- 5 1.52358- 3 2.70000+ 1 2.90000+ 1 1.26100- 5 1.54980- 3 2.70000+ 1 3.00000+ 1 2.77403- 4 1.55804- 3 2.70000+ 1 3.20000+ 1 2.52187- 5 1.59039- 3 2.70000+ 1 3.30000+ 1 3.27849- 4 1.59096- 3 2.90000+ 1 3.00000+ 1 3.73952- 4 1.58426- 3 2.90000+ 1 3.30000+ 1 2.20539- 4 1.61718- 3 3.00000+ 1 3.00000+ 1 4.29778- 4 1.59250- 3 3.00000+ 1 3.20000+ 1 2.86513- 5 1.62485- 3 3.00000+ 1 3.30000+ 1 5.01402- 4 1.62542- 3 3.00000+ 1 4.10000+ 1 2.86513- 5 1.62374- 3 3.20000+ 1 3.30000+ 1 5.36271- 6 1.65777- 3 3.30000+ 1 3.30000+ 1 1.78763- 6 1.65834- 3 3.30000+ 1 4.10000+ 1 3.57508- 6 1.65666- 3 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.83852- 5 9.04200- 5 1.90000+ 1 1.74123- 4 1.49870- 4 2.90000+ 1 9.22232- 5 4.79350- 4 3.00000+ 1 5.40121- 5 4.87590- 4 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 2.29590- 2 6.31600- 5 1.80000+ 1 2.50000+ 1 2.94396- 2 6.50200- 5 1.80000+ 1 2.70000+ 1 3.54720- 2 1.78600- 5 1.80000+ 1 2.90000+ 1 3.02450- 2 4.40800- 5 1.80000+ 1 3.00000+ 1 5.61219- 2 5.23200- 5 1.80000+ 1 3.20000+ 1 3.18392- 3 8.46700- 5 1.80000+ 1 3.30000+ 1 5.45840- 3 8.52400- 5 1.80000+ 1 4.10000+ 1 2.99567- 3 8.35600- 5 1.90000+ 1 2.40000+ 1 1.36797- 1 1.22610- 4 1.90000+ 1 2.50000+ 1 1.67904- 1 1.24470- 4 1.90000+ 1 2.70000+ 1 4.17187- 2 7.73100- 5 1.90000+ 1 2.90000+ 1 4.41507- 2 1.03530- 4 1.90000+ 1 3.00000+ 1 5.17989- 2 1.11770- 4 1.90000+ 1 3.20000+ 1 4.42598- 3 1.44120- 4 1.90000+ 1 3.30000+ 1 5.05707- 3 1.44690- 4 1.90000+ 1 4.10000+ 1 3.48044- 3 1.43010- 4 2.10000+ 1 2.10000+ 1 3.67777- 3 7.45100- 5 2.10000+ 1 2.20000+ 1 1.26771- 2 8.53900- 5 2.10000+ 1 2.40000+ 1 4.88313- 3 2.72840- 4 2.10000+ 1 2.50000+ 1 1.10867- 2 2.74700- 4 2.10000+ 1 2.70000+ 1 1.46274- 2 2.27540- 4 2.10000+ 1 2.90000+ 1 3.32781- 3 2.53760- 4 2.10000+ 1 3.00000+ 1 7.72321- 3 2.62000- 4 2.10000+ 1 3.20000+ 1 1.27088- 4 2.94350- 4 2.10000+ 1 3.30000+ 1 1.11346- 4 2.94920- 4 2.10000+ 1 4.10000+ 1 1.01318- 3 2.93240- 4 2.20000+ 1 2.20000+ 1 7.87699- 3 9.62700- 5 2.20000+ 1 2.40000+ 1 1.26173- 2 2.83720- 4 2.20000+ 1 2.50000+ 1 1.12715- 2 2.85580- 4 2.20000+ 1 2.70000+ 1 2.08919- 2 2.38420- 4 2.20000+ 1 2.90000+ 1 8.02173- 3 2.64640- 4 2.20000+ 1 3.00000+ 1 7.41949- 3 2.72880- 4 2.20000+ 1 3.20000+ 1 1.07356- 4 3.05230- 4 2.20000+ 1 3.30000+ 1 1.82200- 4 3.05800- 4 2.20000+ 1 4.10000+ 1 1.44445- 3 3.04120- 4 2.40000+ 1 2.40000+ 1 6.10001- 3 4.71170- 4 2.40000+ 1 2.50000+ 1 1.36832- 2 4.73030- 4 2.40000+ 1 2.70000+ 1 1.43318- 2 4.25870- 4 2.40000+ 1 2.90000+ 1 1.74288- 3 4.52090- 4 2.40000+ 1 3.00000+ 1 4.77129- 3 4.60330- 4 2.40000+ 1 3.20000+ 1 4.70610- 5 4.92680- 4 2.40000+ 1 3.30000+ 1 3.28444- 5 4.93250- 4 2.40000+ 1 4.10000+ 1 9.13132- 4 4.91570- 4 2.50000+ 1 2.50000+ 1 1.01811- 2 4.74890- 4 2.50000+ 1 2.70000+ 1 1.85649- 2 4.27730- 4 2.50000+ 1 2.90000+ 1 1.02937- 3 4.53950- 4 2.50000+ 1 3.00000+ 1 5.88292- 3 4.62190- 4 2.50000+ 1 3.20000+ 1 3.00671- 5 4.94540- 4 2.50000+ 1 3.30000+ 1 6.84658- 5 4.95110- 4 2.50000+ 1 4.10000+ 1 1.18128- 3 4.93430- 4 2.70000+ 1 2.70000+ 1 2.23274- 2 3.80570- 4 2.70000+ 1 2.90000+ 1 2.80673- 2 4.06790- 4 2.70000+ 1 3.00000+ 1 4.62397- 2 4.15030- 4 2.70000+ 1 3.20000+ 1 3.30209- 3 4.47380- 4 2.70000+ 1 3.30000+ 1 4.37189- 3 4.47950- 4 2.70000+ 1 4.10000+ 1 3.39472- 3 4.46270- 4 2.90000+ 1 2.90000+ 1 3.65934- 3 4.33010- 4 2.90000+ 1 3.00000+ 1 1.51549- 2 4.41250- 4 2.90000+ 1 3.20000+ 1 4.94101- 4 4.73600- 4 2.90000+ 1 3.30000+ 1 5.32646- 4 4.74170- 4 2.90000+ 1 4.10000+ 1 3.04170- 3 4.72490- 4 3.00000+ 1 3.00000+ 1 1.21479- 2 4.49490- 4 3.00000+ 1 3.20000+ 1 7.38715- 4 4.81840- 4 3.00000+ 1 3.30000+ 1 1.05061- 3 4.82410- 4 3.00000+ 1 4.10000+ 1 5.40933- 3 4.80730- 4 3.20000+ 1 3.30000+ 1 3.08785- 5 5.14760- 4 3.20000+ 1 4.10000+ 1 3.62833- 4 5.13080- 4 3.30000+ 1 4.10000+ 1 4.78644- 4 5.13650- 4 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 5.98273- 4 2.09680- 4 2.70000+ 1 1.32698- 4 3.62710- 4 3.20000+ 1 9.29750- 7 4.29520- 4 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 5.66943- 2 3.21900- 5 1.90000+ 1 2.50000+ 1 4.51214- 2 3.40500- 5 1.90000+ 1 2.90000+ 1 9.90297- 3 1.31100- 5 1.90000+ 1 3.00000+ 1 9.80176- 3 2.13500- 5 1.90000+ 1 3.20000+ 1 5.44095- 4 5.37000- 5 1.90000+ 1 3.30000+ 1 7.92029- 4 5.42700- 5 1.90000+ 1 4.10000+ 1 1.11224- 3 5.25900- 5 2.10000+ 1 2.20000+ 1 5.24038- 2 0.00000+ 0 2.10000+ 1 2.40000+ 1 1.48659- 1 1.82420- 4 2.10000+ 1 2.50000+ 1 3.14764- 1 1.84280- 4 2.10000+ 1 2.70000+ 1 3.21552- 2 1.37120- 4 2.10000+ 1 2.90000+ 1 2.32133- 2 1.63340- 4 2.10000+ 1 3.00000+ 1 3.75145- 2 1.71580- 4 2.10000+ 1 3.20000+ 1 1.78975- 3 2.03930- 4 2.10000+ 1 3.30000+ 1 3.19023- 3 2.04500- 4 2.10000+ 1 4.10000+ 1 2.77494- 3 2.02820- 4 2.20000+ 1 2.20000+ 1 8.59838- 3 5.85000- 6 2.20000+ 1 2.40000+ 1 3.94839- 2 1.93300- 4 2.20000+ 1 2.50000+ 1 1.02564- 2 1.95160- 4 2.20000+ 1 2.70000+ 1 5.24914- 3 1.48000- 4 2.20000+ 1 2.90000+ 1 2.15376- 2 1.74220- 4 2.20000+ 1 3.00000+ 1 4.41332- 3 1.82460- 4 2.20000+ 1 3.20000+ 1 3.18591- 4 2.14810- 4 2.20000+ 1 3.30000+ 1 1.79192- 4 2.15380- 4 2.20000+ 1 4.10000+ 1 3.84575- 4 2.13700- 4 2.40000+ 1 2.40000+ 1 3.04099- 3 3.80750- 4 2.40000+ 1 2.50000+ 1 2.09541- 2 3.82610- 4 2.40000+ 1 2.70000+ 1 3.57417- 3 3.35450- 4 2.40000+ 1 2.90000+ 1 1.44666- 2 3.61670- 4 2.40000+ 1 3.00000+ 1 3.75221- 3 3.69910- 4 2.40000+ 1 3.20000+ 1 3.46072- 4 4.02260- 4 2.40000+ 1 3.30000+ 1 1.18470- 4 4.02830- 4 2.40000+ 1 4.10000+ 1 3.01989- 4 4.01150- 4 2.50000+ 1 2.50000+ 1 1.18652- 3 3.84470- 4 2.50000+ 1 2.70000+ 1 2.78519- 3 3.37310- 4 2.50000+ 1 2.90000+ 1 3.30535- 2 3.63530- 4 2.50000+ 1 3.00000+ 1 2.17256- 3 3.71770- 4 2.50000+ 1 3.20000+ 1 9.60690- 4 4.04120- 4 2.50000+ 1 3.30000+ 1 6.29089- 5 4.04690- 4 2.50000+ 1 4.10000+ 1 1.98260- 4 4.03010- 4 2.70000+ 1 2.70000+ 1 5.31541- 4 2.90150- 4 2.70000+ 1 2.90000+ 1 7.89219- 3 3.16370- 4 2.70000+ 1 3.00000+ 1 1.32935- 3 3.24610- 4 2.70000+ 1 3.20000+ 1 1.83860- 4 3.56960- 4 2.70000+ 1 3.30000+ 1 1.09195- 4 3.57530- 4 2.70000+ 1 4.10000+ 1 7.57698- 5 3.55850- 4 2.90000+ 1 2.90000+ 1 1.57159- 2 3.42590- 4 2.90000+ 1 3.00000+ 1 4.27595- 2 3.50830- 4 2.90000+ 1 3.20000+ 1 2.49981- 3 3.83180- 4 2.90000+ 1 3.30000+ 1 4.04693- 3 3.83750- 4 2.90000+ 1 4.10000+ 1 2.37019- 3 3.82070- 4 3.00000+ 1 3.00000+ 1 2.20022- 3 3.59070- 4 3.00000+ 1 3.20000+ 1 1.00054- 3 3.91420- 4 3.00000+ 1 3.30000+ 1 2.96074- 4 3.91990- 4 3.00000+ 1 4.10000+ 1 4.23720- 4 3.90310- 4 3.20000+ 1 3.30000+ 1 1.84361- 6 4.24340- 4 3.20000+ 1 4.10000+ 1 2.34645- 6 4.22660- 4 3.30000+ 1 4.10000+ 1 1.17309- 6 4.23230- 4 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.44279- 5 1.50230- 4 2.20000+ 1 1.62152- 4 1.61110- 4 2.70000+ 1 8.98151- 5 3.03260- 4 3.20000+ 1 2.83094- 7 3.70070- 4 3.30000+ 1 1.51837- 6 3.70640- 4 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.80062- 2 1.22970- 4 2.10000+ 1 2.50000+ 1 5.15702- 2 1.24830- 4 2.10000+ 1 2.70000+ 1 1.19702- 2 7.76700- 5 2.10000+ 1 2.90000+ 1 9.15531- 3 1.03890- 4 2.10000+ 1 3.00000+ 1 3.26671- 2 1.12130- 4 2.10000+ 1 3.20000+ 1 6.98885- 4 1.44480- 4 2.10000+ 1 3.30000+ 1 1.42576- 3 1.45050- 4 2.10000+ 1 4.10000+ 1 9.85442- 4 1.43370- 4 2.20000+ 1 2.40000+ 1 2.40408- 1 1.33850- 4 2.20000+ 1 2.50000+ 1 2.55207- 1 1.35710- 4 2.20000+ 1 2.70000+ 1 6.16301- 2 8.85500- 5 2.20000+ 1 2.90000+ 1 6.15967- 2 1.14770- 4 2.20000+ 1 3.00000+ 1 8.46317- 2 1.23010- 4 2.20000+ 1 3.20000+ 1 6.00894- 3 1.55360- 4 2.20000+ 1 3.30000+ 1 6.46545- 3 1.55930- 4 2.20000+ 1 4.10000+ 1 5.30688- 3 1.54250- 4 2.40000+ 1 2.40000+ 1 8.06132- 4 3.21300- 4 2.40000+ 1 2.50000+ 1 2.21830- 2 3.23160- 4 2.40000+ 1 2.70000+ 1 4.78104- 3 2.76000- 4 2.40000+ 1 2.90000+ 1 2.11919- 3 3.02220- 4 2.40000+ 1 3.00000+ 1 2.99139- 2 3.10460- 4 2.40000+ 1 3.20000+ 1 7.42602- 5 3.42810- 4 2.40000+ 1 3.30000+ 1 4.53600- 4 3.43380- 4 2.40000+ 1 4.10000+ 1 3.10434- 4 3.41700- 4 2.50000+ 1 2.50000+ 1 9.19624- 3 3.25020- 4 2.50000+ 1 2.70000+ 1 1.00792- 2 2.77860- 4 2.50000+ 1 2.90000+ 1 8.16986- 3 3.04080- 4 2.50000+ 1 3.00000+ 1 3.61649- 2 3.12320- 4 2.50000+ 1 3.20000+ 1 8.87358- 5 3.44670- 4 2.50000+ 1 3.30000+ 1 5.39123- 4 3.45240- 4 2.50000+ 1 4.10000+ 1 7.29451- 4 3.43560- 4 2.70000+ 1 2.70000+ 1 8.34892- 6 2.30700- 4 2.70000+ 1 2.90000+ 1 3.12691- 4 2.56920- 4 2.70000+ 1 3.00000+ 1 6.07187- 3 2.65160- 4 2.70000+ 1 3.20000+ 1 5.46454- 5 2.97510- 4 2.70000+ 1 3.30000+ 1 1.07016- 4 2.98080- 4 2.70000+ 1 4.10000+ 1 2.27695- 6 2.96400- 4 2.90000+ 1 2.90000+ 1 2.32231- 5 2.83140- 4 2.90000+ 1 3.00000+ 1 4.30597- 3 2.91380- 4 2.90000+ 1 3.20000+ 1 2.15654- 5 3.23730- 4 2.90000+ 1 3.30000+ 1 7.74158- 5 3.24300- 4 2.90000+ 1 4.10000+ 1 1.65891- 5 3.22620- 4 3.00000+ 1 3.00000+ 1 1.20967- 2 2.99620- 4 3.00000+ 1 3.20000+ 1 1.07412- 3 3.31970- 4 3.00000+ 1 3.30000+ 1 1.36659- 3 3.32540- 4 3.00000+ 1 4.10000+ 1 8.41506- 4 3.30860- 4 3.20000+ 1 3.30000+ 1 3.21697- 6 3.64890- 4 3.20000+ 1 4.10000+ 1 1.34039- 6 3.63210- 4 3.30000+ 1 3.30000+ 1 5.36170- 7 3.65460- 4 3.30000+ 1 4.10000+ 1 3.21700- 6 3.63780- 4 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 7.54559- 5 1.98330- 4 2.90000+ 1 1.93370- 5 1.79250- 4 3.00000+ 1 2.84769- 6 1.87490- 4 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 6.59081- 3 5.13000- 6 2.20000+ 1 3.30000+ 1 1.00217- 3 5.70000- 6 2.20000+ 1 4.10000+ 1 4.83604- 4 4.02000- 6 2.40000+ 1 2.40000+ 1 1.77083- 1 1.71070- 4 2.40000+ 1 2.50000+ 1 5.51627- 1 1.72930- 4 2.40000+ 1 2.70000+ 1 6.04410- 2 1.25770- 4 2.40000+ 1 2.90000+ 1 4.90737- 2 1.51990- 4 2.40000+ 1 3.00000+ 1 7.27480- 2 1.60230- 4 2.40000+ 1 3.20000+ 1 6.89688- 3 1.92580- 4 2.40000+ 1 3.30000+ 1 6.59457- 3 1.93150- 4 2.40000+ 1 4.10000+ 1 5.31417- 3 1.91470- 4 2.50000+ 1 2.50000+ 1 6.65434- 3 1.74790- 4 2.50000+ 1 2.70000+ 1 6.43244- 3 1.27630- 4 2.50000+ 1 2.90000+ 1 1.55194- 2 1.53850- 4 2.50000+ 1 3.00000+ 1 5.33276- 3 1.62090- 4 2.50000+ 1 3.20000+ 1 8.01931- 3 1.94440- 4 2.50000+ 1 3.30000+ 1 2.86741- 4 1.95010- 4 2.50000+ 1 4.10000+ 1 4.68880- 4 1.93330- 4 2.70000+ 1 2.70000+ 1 1.42659- 3 8.04700- 5 2.70000+ 1 2.90000+ 1 1.70488- 3 1.06690- 4 2.70000+ 1 3.00000+ 1 1.88231- 3 1.14930- 4 2.70000+ 1 3.20000+ 1 7.51653- 4 1.47280- 4 2.70000+ 1 3.30000+ 1 2.68451- 4 1.47850- 4 2.70000+ 1 4.10000+ 1 1.39196- 4 1.46170- 4 2.90000+ 1 2.90000+ 1 1.54738- 3 1.32910- 4 2.90000+ 1 3.00000+ 1 4.96297- 3 1.41150- 4 2.90000+ 1 3.20000+ 1 1.10148- 3 1.73500- 4 2.90000+ 1 3.30000+ 1 3.29389- 4 1.74070- 4 2.90000+ 1 4.10000+ 1 2.34067- 4 1.72390- 4 3.00000+ 1 3.00000+ 1 2.19276- 3 1.49390- 4 3.00000+ 1 3.20000+ 1 2.26477- 3 1.81740- 4 3.00000+ 1 3.30000+ 1 2.08660- 4 1.82310- 4 3.00000+ 1 4.10000+ 1 1.98896- 4 1.80630- 4 3.20000+ 1 3.30000+ 1 6.56223- 5 2.14660- 4 3.20000+ 1 4.10000+ 1 4.73275- 5 2.12980- 4 3.30000+ 1 3.30000+ 1 3.97707- 7 2.15230- 4 3.30000+ 1 4.10000+ 1 6.76098- 6 2.13550- 4 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.47442- 6 1.87450- 4 2.50000+ 1 7.21243- 5 1.89310- 4 3.00000+ 1 1.82001- 5 1.76610- 4 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.11304- 2 1.60190- 4 2.40000+ 1 2.50000+ 1 4.15340- 1 1.62050- 4 2.40000+ 1 2.70000+ 1 8.28899- 3 1.14890- 4 2.40000+ 1 2.90000+ 1 4.72772- 3 1.41110- 4 2.40000+ 1 3.00000+ 1 1.38427- 2 1.49350- 4 2.40000+ 1 3.20000+ 1 3.58276- 4 1.81700- 4 2.40000+ 1 3.30000+ 1 6.56040- 3 1.82270- 4 2.40000+ 1 4.10000+ 1 6.53341- 4 1.80590- 4 2.50000+ 1 2.50000+ 1 3.03749- 1 1.63910- 4 2.50000+ 1 2.70000+ 1 6.35131- 2 1.16750- 4 2.50000+ 1 2.90000+ 1 6.30200- 2 1.42970- 4 2.50000+ 1 3.00000+ 1 7.29733- 2 1.51210- 4 2.50000+ 1 3.20000+ 1 5.92209- 3 1.83560- 4 2.50000+ 1 3.30000+ 1 1.11533- 2 1.84130- 4 2.50000+ 1 4.10000+ 1 5.59129- 3 1.82450- 4 2.70000+ 1 2.70000+ 1 2.06578- 3 6.95900- 5 2.70000+ 1 2.90000+ 1 1.34584- 3 9.58100- 5 2.70000+ 1 3.00000+ 1 3.28282- 3 1.04050- 4 2.70000+ 1 3.20000+ 1 2.79881- 4 1.36400- 4 2.70000+ 1 3.30000+ 1 9.19735- 4 1.36970- 4 2.70000+ 1 4.10000+ 1 1.95578- 4 1.35290- 4 2.90000+ 1 2.90000+ 1 2.22546- 4 1.22030- 4 2.90000+ 1 3.00000+ 1 2.11086- 3 1.30270- 4 2.90000+ 1 3.20000+ 1 3.16128- 5 1.62620- 4 2.90000+ 1 3.30000+ 1 4.96102- 4 1.63190- 4 2.90000+ 1 4.10000+ 1 5.47953- 5 1.61510- 4 3.00000+ 1 3.00000+ 1 9.88840- 4 1.38510- 4 3.00000+ 1 3.20000+ 1 1.12543- 4 1.70860- 4 3.00000+ 1 3.30000+ 1 7.30461- 4 1.71430- 4 3.00000+ 1 4.10000+ 1 1.20963- 4 1.69750- 4 3.20000+ 1 3.30000+ 1 5.26881- 5 2.03780- 4 3.20000+ 1 4.10000+ 1 7.58712- 6 2.02100- 4 3.30000+ 1 3.30000+ 1 1.09593- 5 2.04350- 4 3.30000+ 1 4.10000+ 1 5.22659- 5 2.02670- 4 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.34672- 7 2.62200- 5 3.00000+ 1 1.54591- 6 3.44600- 5 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 4.07183- 1 1.93600- 5 3.00000+ 1 4.10000+ 1 5.85634- 1 2.76000- 5 4.10000+ 1 4.10000+ 1 7.18075- 3 5.88400- 5 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.16439- 8 4.05900- 5 4.10000+ 1 6.25888- 9 3.94800- 5 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 9.97476- 1 1.38000- 6 4.10000+ 1 4.10000+ 1 2.52359- 3 3.26200- 5 1 72000 0 7 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.11600-10 3.23500- 5 3.30000+ 1 4.67570- 9 3.29200- 5 4.10000+ 1 2.31500- 9 3.12400- 5 1 72000 0 9 1.78490+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 4.10000+ 1 1.00000+ 0 2.43800- 5 1 73000 0 0 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 1.20000+ 0 3.30000+ 1 1.80000+ 0 4.10000+ 1 2.00000+ 0 1 73000 0 0 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.75650- 2 3.00000+ 0 1.16560- 2 5.00000+ 0 1.11630- 2 6.00000+ 0 9.87920- 3 8.00000+ 0 2.68470- 3 1.00000+ 1 2.46140- 3 1.10000+ 1 2.18410- 3 1.30000+ 1 1.80230- 3 1.40000+ 1 1.74160- 3 1.60000+ 1 5.54650- 4 1.80000+ 1 4.61410- 4 1.90000+ 1 3.97360- 4 2.10000+ 1 2.42480- 4 2.20000+ 1 2.30720- 4 2.40000+ 1 3.61400- 5 2.50000+ 1 3.40400- 5 2.70000+ 1 7.88100- 5 2.90000+ 1 5.11500- 5 3.00000+ 1 4.18900- 5 3.20000+ 1 7.01000- 6 3.30000+ 1 6.30000- 6 4.10000+ 1 7.31000- 6 1 73000 0 0 1.80948+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.13100- 2 3.00000+ 0 2.13890- 2 5.00000+ 0 2.13820- 2 6.00000+ 0 1.65250- 2 8.00000+ 0 6.75260- 3 1.00000+ 1 6.65270- 3 1.10000+ 1 5.47120- 3 1.30000+ 1 5.33270- 3 1.40000+ 1 5.06910- 3 1.60000+ 1 2.15090- 3 1.80000+ 1 2.03760- 3 1.90000+ 1 1.68730- 3 2.10000+ 1 1.47900- 3 2.20000+ 1 1.40410- 3 2.40000+ 1 9.89090- 4 2.50000+ 1 9.63420- 4 2.70000+ 1 4.67580- 4 2.90000+ 1 3.81140- 4 3.00000+ 1 3.06140- 4 3.20000+ 1 1.34100- 4 3.30000+ 1 1.22400- 4 4.10000+ 1 5.23700- 5 1 73000 0 0 1.80948+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.86250-11 3.00000+ 0 4.13580-10 5.00000+ 0 3.41910-10 6.00000+ 0 3.83340-10 8.00000+ 0 1.07620- 9 1.00000+ 1 1.02220- 9 1.10000+ 1 1.09860- 9 1.30000+ 1 9.61150-10 1.40000+ 1 9.84710-10 1.60000+ 1 2.41310- 9 1.80000+ 1 2.43940- 9 1.90000+ 1 2.61200- 9 2.10000+ 1 2.70160- 9 2.20000+ 1 2.76030- 9 2.40000+ 1 3.22480- 9 2.50000+ 1 3.27420- 9 2.70000+ 1 5.73830- 9 2.90000+ 1 6.32140- 9 3.00000+ 1 6.85820- 9 3.20000+ 1 1.05850- 8 3.30000+ 1 1.10670- 8 4.10000+ 1 1.72540- 8 1 73000 0 0 1.80948+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.53250- 5 3.00000+ 0 7.51540- 7 5.00000+ 0 1.30240- 6 6.00000+ 0 1.16320- 6 8.00000+ 0 2.55440- 8 1.00000+ 1 2.69140- 8 1.10000+ 1 2.82160- 8 1.30000+ 1 3.23760- 8 1.40000+ 1 3.04210- 8 1.60000+ 1 7.33020-10 1.80000+ 1 1.32260- 9 1.90000+ 1 8.12500-10 2.10000+ 1 1.04810- 9 2.20000+ 1 9.27600-10 2.70000+ 1 3.62150-11 2.90000+ 1 1.93890-11 3.00000+ 1 1.36740-11 1 73000 0 0 1.80948+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.72740- 6 3.00000+ 0 9.47200- 6 5.00000+ 0 3.25440- 6 6.00000+ 0 3.33150- 6 8.00000+ 0 1.75030- 5 1.00000+ 1 1.12420- 5 1.10000+ 1 1.01620- 5 1.30000+ 1 2.52410- 6 1.40000+ 1 1.57580- 6 1.60000+ 1 1.43620- 5 1.80000+ 1 1.35440- 5 1.90000+ 1 1.00190- 5 2.10000+ 1 7.00400- 6 2.20000+ 1 6.67270- 6 2.70000+ 1 5.64530- 6 2.90000+ 1 1.60160- 6 3.00000+ 1 6.26810- 7 1 73000 0 0 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.05300- 4 3.00000+ 0 2.79460- 4 5.00000+ 0 2.14339- 4 6.00000+ 0 2.05635- 4 8.00000+ 0 1.92736- 4 1.00000+ 1 1.65838- 4 1.10000+ 1 1.51305- 4 1.30000+ 1 1.15587- 4 1.40000+ 1 1.09814- 4 1.60000+ 1 9.64476- 5 1.80000+ 1 9.08713- 5 1.90000+ 1 8.65890- 5 2.10000+ 1 6.56833- 5 2.20000+ 1 6.40209- 5 2.40000+ 1 3.61400- 5 2.50000+ 1 3.40400- 5 2.70000+ 1 2.47880- 5 2.90000+ 1 2.19116- 5 3.00000+ 1 1.46200- 5 3.20000+ 1 7.01000- 6 3.30000+ 1 6.30000- 6 4.10000+ 1 7.31000- 6 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21071+ 0 3.00000+ 0 3.05463- 1 5.00000+ 0 3.46150- 1 6.00000+ 0 2.81705- 1 8.00000+ 0 2.09106- 2 1.00000+ 1 2.09668- 2 1.10000+ 1 1.98819- 2 1.30000+ 1 2.10064- 2 1.40000+ 1 1.99038- 2 1.60000+ 1 7.18920- 4 1.80000+ 1 9.10358- 4 1.90000+ 1 3.80097- 4 2.10000+ 1 1.14014- 4 2.20000+ 1 1.08215- 4 2.70000+ 1 2.35714- 6 2.90000+ 1 8.65092- 8 3.00000+ 1 1.83157- 8 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.82798- 2 3.00000+ 0 2.41341- 3 5.00000+ 0 3.04255- 3 6.00000+ 0 2.14444- 3 8.00000+ 0 3.60727- 5 1.00000+ 1 3.58993- 5 1.10000+ 1 3.36122- 5 1.30000+ 1 3.54006- 5 1.40000+ 1 3.28534- 5 1.60000+ 1 1.92063- 7 1.80000+ 1 2.21343- 7 1.90000+ 1 8.16968- 8 2.10000+ 1 2.31333- 8 2.20000+ 1 2.10820- 8 2.70000+ 1 8.35304-11 2.90000+ 1 3.65375-12 3.00000+ 1 6.46571-13 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.17202+ 0 3.00000+ 0 1.02072+ 1 5.00000+ 0 7.50007+ 0 6.00000+ 0 7.12148+ 0 8.00000+ 0 6.89454+ 0 1.00000+ 1 5.68318+ 0 1.10000+ 1 5.06411+ 0 1.30000+ 1 3.39421+ 0 1.40000+ 1 3.25421+ 0 1.60000+ 1 4.24036+ 0 1.80000+ 1 3.01521+ 0 1.90000+ 1 2.85386+ 0 2.10000+ 1 1.43530+ 0 2.20000+ 1 1.44400+ 0 2.70000+ 1 2.39097+ 0 2.90000+ 1 1.99748+ 0 3.00000+ 1 1.00000+ 0 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.07989- 3 3.00000+ 0 8.96313- 3 5.00000+ 0 7.90611- 3 6.00000+ 0 7.52913- 3 8.00000+ 0 2.45589- 3 1.00000+ 1 2.25966- 3 1.10000+ 1 1.99918- 3 1.30000+ 1 1.65131- 3 1.40000+ 1 1.59893- 3 1.60000+ 1 4.58010- 4 1.80000+ 1 3.70317- 4 1.90000+ 1 3.10689- 4 2.10000+ 1 1.76774- 4 2.20000+ 1 1.66678- 4 2.70000+ 1 5.40219- 5 2.90000+ 1 2.92384- 5 3.00000+ 1 2.72700- 5 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.76031- 1 5.64020- 2 6.00000+ 0 4.81061- 1 5.76858- 2 1.00000+ 1 5.14862- 2 6.51036- 2 1.10000+ 1 9.94843- 2 6.53809- 2 1.30000+ 1 1.07840- 3 6.57627- 2 1.40000+ 1 1.36650- 3 6.58234- 2 1.80000+ 1 1.16430- 2 6.71036- 2 1.90000+ 1 2.25561- 2 6.71676- 2 2.10000+ 1 2.57261- 4 6.73225- 2 2.20000+ 1 3.24371- 4 6.73343- 2 2.90000+ 1 2.63731- 3 6.75138- 2 3.00000+ 1 5.44342- 3 6.75231- 2 3.20000+ 1 4.93621- 6 6.75580- 2 3.30000+ 1 5.93302- 6 6.75587- 2 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.60433- 3 4.42530- 2 3.00000+ 0 5.00000+ 0 6.57680- 3 4.47460- 2 3.00000+ 0 6.00000+ 0 4.74792- 3 4.60298- 2 3.00000+ 0 8.00000+ 0 1.81079- 3 5.32243- 2 3.00000+ 0 1.00000+ 1 1.39422- 3 5.34476- 2 3.00000+ 0 1.10000+ 1 1.06354- 3 5.37249- 2 3.00000+ 0 1.30000+ 1 8.50388- 5 5.41067- 2 3.00000+ 0 1.40000+ 1 7.20374- 5 5.41674- 2 3.00000+ 0 1.60000+ 1 4.35464- 4 5.53543- 2 3.00000+ 0 1.80000+ 1 3.24791- 4 5.54476- 2 3.00000+ 0 1.90000+ 1 2.45276- 4 5.55116- 2 3.00000+ 0 2.10000+ 1 2.01208- 5 5.56665- 2 3.00000+ 0 2.20000+ 1 1.67430- 5 5.56783- 2 3.00000+ 0 2.40000+ 1 7.34355- 8 5.58729- 2 3.00000+ 0 2.50000+ 1 7.34355- 8 5.58750- 2 3.00000+ 0 2.70000+ 1 7.47554- 5 5.58302- 2 3.00000+ 0 2.90000+ 1 4.64103- 5 5.58578- 2 3.00000+ 0 3.00000+ 1 3.33400- 5 5.58671- 2 3.00000+ 0 3.20000+ 1 8.07780- 7 5.59020- 2 3.00000+ 0 4.10000+ 1 6.53570- 6 5.59017- 2 5.00000+ 0 5.00000+ 0 4.73303- 4 4.52390- 2 5.00000+ 0 6.00000+ 0 8.94892- 3 4.65228- 2 5.00000+ 0 8.00000+ 0 1.10443- 3 5.37173- 2 5.00000+ 0 1.00000+ 1 1.76405- 4 5.39406- 2 5.00000+ 0 1.10000+ 1 1.66745- 3 5.42179- 2 5.00000+ 0 1.30000+ 1 9.06273- 5 5.45997- 2 5.00000+ 0 1.40000+ 1 2.60857- 4 5.46604- 2 5.00000+ 0 1.60000+ 1 2.56387- 4 5.58473- 2 5.00000+ 0 1.80000+ 1 3.99521- 5 5.59406- 2 5.00000+ 0 1.90000+ 1 3.69491- 4 5.60046- 2 5.00000+ 0 2.10000+ 1 2.07836- 5 5.61595- 2 5.00000+ 0 2.20000+ 1 5.95587- 5 5.61713- 2 5.00000+ 0 2.40000+ 1 4.40633- 7 5.63659- 2 5.00000+ 0 2.50000+ 1 6.60998- 7 5.63680- 2 5.00000+ 0 2.70000+ 1 4.36232- 5 5.63232- 2 5.00000+ 0 2.90000+ 1 5.65466- 6 5.63508- 2 5.00000+ 0 3.00000+ 1 4.97913- 5 5.63601- 2 5.00000+ 0 3.20000+ 1 8.07851- 7 5.63950- 2 5.00000+ 0 4.10000+ 1 3.89251- 6 5.63947- 2 6.00000+ 0 6.00000+ 0 4.03959- 3 4.78066- 2 6.00000+ 0 8.00000+ 0 7.40168- 4 5.50011- 2 6.00000+ 0 1.00000+ 1 1.55926- 3 5.52244- 2 6.00000+ 0 1.10000+ 1 1.55406- 3 5.55017- 2 6.00000+ 0 1.30000+ 1 2.96841- 4 5.58835- 2 6.00000+ 0 1.40000+ 1 2.55713- 4 5.59442- 2 6.00000+ 0 1.60000+ 1 1.68825- 4 5.71311- 2 6.00000+ 0 1.80000+ 1 3.48611- 4 5.72244- 2 6.00000+ 0 1.90000+ 1 3.47201- 4 5.72884- 2 6.00000+ 0 2.10000+ 1 6.84409- 5 5.74433- 2 6.00000+ 0 2.20000+ 1 5.85994- 5 5.74551- 2 6.00000+ 0 2.40000+ 1 8.07806- 7 5.76497- 2 6.00000+ 0 2.50000+ 1 8.81233- 7 5.76518- 2 6.00000+ 0 2.70000+ 1 2.86402- 5 5.76070- 2 6.00000+ 0 2.90000+ 1 4.94256- 5 5.76346- 2 6.00000+ 0 3.00000+ 1 4.69267- 5 5.76439- 2 6.00000+ 0 3.20000+ 1 2.64373- 6 5.76788- 2 6.00000+ 0 4.10000+ 1 2.49683- 6 5.76785- 2 8.00000+ 0 8.00000+ 0 1.75226- 4 6.21956- 2 8.00000+ 0 1.00000+ 1 2.35365- 4 6.24189- 2 8.00000+ 0 1.10000+ 1 1.67436- 4 6.26962- 2 8.00000+ 0 1.30000+ 1 1.29247- 5 6.30780- 2 8.00000+ 0 1.40000+ 1 1.03547- 5 6.31387- 2 8.00000+ 0 1.60000+ 1 8.40120- 5 6.43256- 2 8.00000+ 0 1.80000+ 1 5.49308- 5 6.44189- 2 8.00000+ 0 1.90000+ 1 3.87012- 5 6.44829- 2 8.00000+ 0 2.10000+ 1 3.08422- 6 6.46378- 2 8.00000+ 0 2.20000+ 1 2.42335- 6 6.46496- 2 8.00000+ 0 2.70000+ 1 1.43937- 5 6.48015- 2 8.00000+ 0 2.90000+ 1 7.85761- 6 6.48291- 2 8.00000+ 0 3.00000+ 1 5.28749- 6 6.48384- 2 8.00000+ 0 3.20000+ 1 1.46877- 7 6.48733- 2 8.00000+ 0 4.10000+ 1 1.24837- 6 6.48730- 2 1.00000+ 1 1.00000+ 1 1.60087- 5 6.26422- 2 1.00000+ 1 1.10000+ 1 2.97713- 4 6.29195- 2 1.00000+ 1 1.30000+ 1 1.32187- 5 6.33013- 2 1.00000+ 1 1.40000+ 1 3.46613- 5 6.33620- 2 1.00000+ 1 1.60000+ 1 5.47119- 5 6.45489- 2 1.00000+ 1 1.80000+ 1 7.19652- 6 6.46422- 2 1.00000+ 1 1.90000+ 1 6.63105- 5 6.47062- 2 1.00000+ 1 2.10000+ 1 3.01083- 6 6.48611- 2 1.00000+ 1 2.20000+ 1 8.00491- 6 6.48729- 2 1.00000+ 1 2.40000+ 1 7.34383- 8 6.50675- 2 1.00000+ 1 2.50000+ 1 7.34383- 8 6.50696- 2 1.00000+ 1 2.70000+ 1 9.32657- 6 6.50248- 2 1.00000+ 1 2.90000+ 1 1.02817- 6 6.50524- 2 1.00000+ 1 3.00000+ 1 8.95918- 6 6.50617- 2 1.00000+ 1 3.20000+ 1 1.46877- 7 6.50966- 2 1.00000+ 1 4.10000+ 1 8.07811- 7 6.50963- 2 1.10000+ 1 1.10000+ 1 1.50686- 4 6.31968- 2 1.10000+ 1 1.30000+ 1 4.54558- 5 6.35786- 2 1.10000+ 1 1.40000+ 1 3.79670- 5 6.36393- 2 1.10000+ 1 1.60000+ 1 3.82610- 5 6.48262- 2 1.10000+ 1 1.80000+ 1 6.69022- 5 6.49195- 2 1.10000+ 1 1.90000+ 1 6.74151- 5 6.49835- 2 1.10000+ 1 2.10000+ 1 1.05747- 5 6.51384- 2 1.10000+ 1 2.20000+ 1 8.73916- 6 6.51502- 2 1.10000+ 1 2.40000+ 1 7.34379- 8 6.53448- 2 1.10000+ 1 2.50000+ 1 1.46876- 7 6.53469- 2 1.10000+ 1 2.70000+ 1 6.46232- 6 6.53021- 2 1.10000+ 1 2.90000+ 1 9.47343- 6 6.53297- 2 1.10000+ 1 3.00000+ 1 9.10604- 6 6.53390- 2 1.10000+ 1 3.20000+ 1 4.40609- 7 6.53739- 2 1.10000+ 1 4.10000+ 1 5.87495- 7 6.53736- 2 1.30000+ 1 1.30000+ 1 7.49844- 8 6.39604- 2 1.30000+ 1 1.40000+ 1 5.62354- 6 6.40211- 2 1.30000+ 1 1.60000+ 1 2.99927- 6 6.52080- 2 1.30000+ 1 1.80000+ 1 2.92434- 6 6.53013- 2 1.30000+ 1 1.90000+ 1 9.82281- 6 6.53653- 2 1.30000+ 1 2.10000+ 1 7.49844- 8 6.55202- 2 1.30000+ 1 2.20000+ 1 1.27466- 6 6.55320- 2 1.30000+ 1 2.70000+ 1 5.24891- 7 6.56839- 2 1.30000+ 1 2.90000+ 1 3.74903- 7 6.57115- 2 1.30000+ 1 3.00000+ 1 1.34970- 6 6.57208- 2 1.30000+ 1 4.10000+ 1 7.49844- 8 6.57554- 2 1.40000+ 1 1.40000+ 1 1.32187- 6 6.40818- 2 1.40000+ 1 1.60000+ 1 2.34994- 6 6.52687- 2 1.40000+ 1 1.80000+ 1 7.27018- 6 6.53620- 2 1.40000+ 1 1.90000+ 1 8.00487- 6 6.54260- 2 1.40000+ 1 2.10000+ 1 1.24837- 6 6.55809- 2 1.40000+ 1 2.20000+ 1 5.87495- 7 6.55927- 2 1.40000+ 1 2.70000+ 1 3.67171- 7 6.57446- 2 1.40000+ 1 2.90000+ 1 1.02816- 6 6.57722- 2 1.40000+ 1 3.00000+ 1 1.10157- 6 6.57815- 2 1.40000+ 1 3.20000+ 1 7.34379- 8 6.58164- 2 1.60000+ 1 1.60000+ 1 1.02663- 5 6.64557- 2 1.60000+ 1 1.80000+ 1 1.30399- 5 6.65489- 2 1.60000+ 1 1.90000+ 1 9.06761- 6 6.66130- 2 1.60000+ 1 2.10000+ 1 7.49393- 7 6.67679- 2 1.60000+ 1 2.20000+ 1 5.24575- 7 6.67796- 2 1.60000+ 1 2.70000+ 1 3.52207- 6 6.69315- 2 1.60000+ 1 2.90000+ 1 1.87349- 6 6.69592- 2 1.60000+ 1 3.00000+ 1 1.19899- 6 6.69685- 2 1.60000+ 1 4.10000+ 1 2.99747- 7 6.70030- 2 1.80000+ 1 1.80000+ 1 8.07811- 7 6.66422- 2 1.80000+ 1 1.90000+ 1 1.49077- 5 6.67062- 2 1.80000+ 1 2.10000+ 1 6.60965- 7 6.68611- 2 1.80000+ 1 2.20000+ 1 1.68906- 6 6.68729- 2 1.80000+ 1 2.70000+ 1 2.20315- 6 6.70248- 2 1.80000+ 1 2.90000+ 1 2.20315- 7 6.70524- 2 1.80000+ 1 3.00000+ 1 1.98276- 6 6.70617- 2 1.80000+ 1 4.10000+ 1 2.20315- 7 6.70963- 2 1.90000+ 1 1.90000+ 1 7.43749- 6 6.67703- 2 1.90000+ 1 2.10000+ 1 2.23850- 6 6.69252- 2 1.90000+ 1 2.20000+ 1 1.80527- 6 6.69369- 2 1.90000+ 1 2.70000+ 1 1.44422- 6 6.70888- 2 1.90000+ 1 2.90000+ 1 2.09406- 6 6.71165- 2 1.90000+ 1 3.00000+ 1 2.02189- 6 6.71257- 2 1.90000+ 1 3.20000+ 1 7.22107- 8 6.71606- 2 1.90000+ 1 4.10000+ 1 1.44422- 7 6.71603- 2 2.10000+ 1 2.20000+ 1 2.93743- 7 6.70918- 2 2.10000+ 1 2.70000+ 1 1.46877- 7 6.72437- 2 2.10000+ 1 2.90000+ 1 7.34384- 8 6.72714- 2 2.10000+ 1 3.00000+ 1 2.93743- 7 6.72806- 2 2.20000+ 1 2.20000+ 1 8.59101- 8 6.71036- 2 2.20000+ 1 2.70000+ 1 8.59101- 8 6.72555- 2 2.20000+ 1 2.90000+ 1 2.57731- 7 6.72831- 2 2.20000+ 1 3.00000+ 1 2.57731- 7 6.72924- 2 2.70000+ 1 2.70000+ 1 3.40330- 7 6.74074- 2 2.70000+ 1 2.90000+ 1 3.40330- 7 6.74350- 2 2.70000+ 1 3.00000+ 1 2.55257- 7 6.74443- 2 2.70000+ 1 4.10000+ 1 8.50855- 8 6.74789- 2 2.90000+ 1 3.00000+ 1 2.93741- 7 6.74720- 2 3.00000+ 1 3.00000+ 1 1.09430- 7 6.74812- 2 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.21600- 5 4.93000- 4 6.00000+ 0 1.33620- 3 1.77680- 3 1.00000+ 1 2.34400- 2 9.19460- 3 1.10000+ 1 2.97879- 2 9.47190- 3 1.30000+ 1 6.60539- 4 9.85370- 3 1.40000+ 1 9.89598- 4 9.91440- 3 1.80000+ 1 5.72079- 3 1.11946- 2 1.90000+ 1 7.68129- 3 1.12586- 2 2.10000+ 1 9.25338- 5 1.14135- 2 2.20000+ 1 1.44250- 4 1.14253- 2 2.90000+ 1 8.52368- 4 1.16048- 2 3.00000+ 1 1.10660- 3 1.16141- 2 3.20000+ 1 1.63630- 6 1.16490- 2 3.30000+ 1 2.45210- 6 1.16497- 2 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 2.00204- 2 3.15900- 5 5.00000+ 0 1.90000+ 1 2.07747- 2 9.56400- 5 5.00000+ 0 2.10000+ 1 5.67244- 3 2.50520- 4 5.00000+ 0 2.20000+ 1 8.02476- 3 2.62280- 4 5.00000+ 0 2.40000+ 1 1.58875- 2 4.56860- 4 5.00000+ 0 2.50000+ 1 2.08737- 2 4.58960- 4 5.00000+ 0 2.70000+ 1 4.19789- 3 4.14190- 4 5.00000+ 0 2.90000+ 1 2.69799- 3 4.41850- 4 5.00000+ 0 3.00000+ 1 2.71212- 3 4.51110- 4 5.00000+ 0 3.20000+ 1 2.21549- 4 4.85990- 4 5.00000+ 0 4.10000+ 1 3.66841- 4 4.85690- 4 6.00000+ 0 1.30000+ 1 8.67268- 2 0.00000+ 0 6.00000+ 0 1.40000+ 1 3.67883- 1 3.52000- 5 6.00000+ 0 1.60000+ 1 2.51085- 2 1.22215- 3 6.00000+ 0 1.80000+ 1 1.02694- 2 1.31539- 3 6.00000+ 0 1.90000+ 1 1.65941- 2 1.37944- 3 6.00000+ 0 2.10000+ 1 3.42450- 2 1.53432- 3 6.00000+ 0 2.20000+ 1 4.16776- 2 1.54608- 3 6.00000+ 0 2.40000+ 1 2.32684- 2 1.74066- 3 6.00000+ 0 2.50000+ 1 2.92044- 2 1.74276- 3 6.00000+ 0 2.70000+ 1 4.12679- 3 1.69799- 3 6.00000+ 0 2.90000+ 1 1.42902- 3 1.72565- 3 6.00000+ 0 3.00000+ 1 2.22758- 3 1.73491- 3 6.00000+ 0 3.20000+ 1 1.23709- 3 1.76979- 3 6.00000+ 0 4.10000+ 1 3.60721- 4 1.76949- 3 8.00000+ 0 8.00000+ 0 6.04670- 3 6.28660- 3 8.00000+ 0 1.00000+ 1 1.22848- 2 6.50990- 3 8.00000+ 0 1.10000+ 1 2.07009- 2 6.78720- 3 8.00000+ 0 1.30000+ 1 1.58547- 2 7.16900- 3 8.00000+ 0 1.40000+ 1 2.11297- 2 7.22970- 3 8.00000+ 0 1.60000+ 1 2.46937- 3 8.41665- 3 8.00000+ 0 1.80000+ 1 2.81295- 3 8.50989- 3 8.00000+ 0 1.90000+ 1 4.65284- 3 8.57394- 3 8.00000+ 0 2.10000+ 1 3.11936- 3 8.72882- 3 8.00000+ 0 2.20000+ 1 4.11264- 3 8.74058- 3 8.00000+ 0 2.40000+ 1 1.96492- 4 8.93516- 3 8.00000+ 0 2.50000+ 1 2.23146- 4 8.93726- 3 8.00000+ 0 2.70000+ 1 4.12978- 4 8.89249- 3 8.00000+ 0 2.90000+ 1 4.00175- 4 8.92015- 3 8.00000+ 0 3.00000+ 1 6.28921- 4 8.92941- 3 8.00000+ 0 3.20000+ 1 1.17839- 4 8.96429- 3 8.00000+ 0 4.10000+ 1 3.62592- 5 8.96399- 3 1.00000+ 1 1.00000+ 1 3.46616- 5 6.73320- 3 1.00000+ 1 1.10000+ 1 2.93293- 4 7.01050- 3 1.00000+ 1 1.30000+ 1 6.96958- 4 7.39230- 3 1.00000+ 1 1.40000+ 1 6.51529- 3 7.45300- 3 1.00000+ 1 1.60000+ 1 1.97916- 3 8.63995- 3 1.00000+ 1 1.80000+ 1 5.59898- 6 8.73319- 3 1.00000+ 1 1.90000+ 1 5.89240- 5 8.79724- 3 1.00000+ 1 2.10000+ 1 1.27193- 4 8.95212- 3 1.00000+ 1 2.20000+ 1 8.12931- 4 8.96388- 3 1.00000+ 1 2.40000+ 1 7.01216- 5 9.15846- 3 1.00000+ 1 2.50000+ 1 2.45028- 4 9.16056- 3 1.00000+ 1 2.70000+ 1 3.13558- 4 9.11579- 3 1.00000+ 1 2.90000+ 1 5.33242- 7 9.14345- 3 1.00000+ 1 3.00000+ 1 7.73212- 6 9.15271- 3 1.00000+ 1 3.20000+ 1 4.79919- 6 9.18759- 3 1.00000+ 1 4.10000+ 1 2.71956- 5 9.18729- 3 1.10000+ 1 1.10000+ 1 5.64404- 4 7.28780- 3 1.10000+ 1 1.30000+ 1 2.78421- 3 7.66960- 3 1.10000+ 1 1.40000+ 1 1.75136- 3 7.73030- 3 1.10000+ 1 1.60000+ 1 3.30920- 3 8.91725- 3 1.10000+ 1 1.80000+ 1 6.39871- 5 9.01049- 3 1.10000+ 1 1.90000+ 1 1.87958- 4 9.07454- 3 1.10000+ 1 2.10000+ 1 2.45014- 4 9.22942- 3 1.10000+ 1 2.20000+ 1 1.46377- 4 9.24118- 3 1.10000+ 1 2.40000+ 1 1.53569- 4 9.43576- 3 1.10000+ 1 2.50000+ 1 1.26374- 4 9.43786- 3 1.10000+ 1 2.70000+ 1 5.23615- 4 9.39309- 3 1.10000+ 1 2.90000+ 1 9.06462- 6 9.42075- 3 1.10000+ 1 3.00000+ 1 2.39946- 5 9.43001- 3 1.10000+ 1 3.20000+ 1 8.26487- 6 9.46489- 3 1.10000+ 1 4.10000+ 1 4.55901- 5 9.46459- 3 1.30000+ 1 1.30000+ 1 9.38174- 4 8.05140- 3 1.30000+ 1 1.40000+ 1 2.94908- 2 8.11210- 3 1.30000+ 1 1.60000+ 1 2.34566- 3 9.29905- 3 1.30000+ 1 1.80000+ 1 1.97553- 4 9.39229- 3 1.30000+ 1 1.90000+ 1 6.82792- 4 9.45634- 3 1.30000+ 1 2.10000+ 1 3.61781- 4 9.61122- 3 1.30000+ 1 2.20000+ 1 4.03722- 3 9.62298- 3 1.30000+ 1 2.40000+ 1 2.21284- 4 9.81756- 3 1.30000+ 1 2.50000+ 1 6.15609- 4 9.81966- 3 1.30000+ 1 2.70000+ 1 3.66059- 4 9.77489- 3 1.30000+ 1 2.90000+ 1 2.90601- 5 9.80255- 3 1.30000+ 1 3.00000+ 1 9.35759- 5 9.81181- 3 1.30000+ 1 3.20000+ 1 1.35969- 5 9.84669- 3 1.30000+ 1 4.10000+ 1 3.17266- 5 9.84639- 3 1.40000+ 1 1.40000+ 1 8.22982- 3 8.17280- 3 1.40000+ 1 1.60000+ 1 3.16412- 3 9.35975- 3 1.40000+ 1 1.80000+ 1 1.33173- 3 9.45299- 3 1.40000+ 1 1.90000+ 1 4.48704- 4 9.51704- 3 1.40000+ 1 2.10000+ 1 3.95244- 3 9.67192- 3 1.40000+ 1 2.20000+ 1 2.37670- 3 9.68368- 3 1.40000+ 1 2.40000+ 1 6.84380- 4 9.87826- 3 1.40000+ 1 2.50000+ 1 5.21746- 4 9.88036- 3 1.40000+ 1 2.70000+ 1 4.95883- 4 9.83559- 3 1.40000+ 1 2.90000+ 1 1.85822- 4 9.86325- 3 1.40000+ 1 3.00000+ 1 6.21193- 5 9.87251- 3 1.40000+ 1 3.20000+ 1 1.41568- 4 9.90739- 3 1.40000+ 1 4.10000+ 1 4.29231- 5 9.90709- 3 1.60000+ 1 1.60000+ 1 2.37818- 4 1.05467- 2 1.60000+ 1 1.80000+ 1 4.54321- 4 1.06399- 2 1.60000+ 1 1.90000+ 1 7.45990- 4 1.07040- 2 1.60000+ 1 2.10000+ 1 4.61513- 4 1.08589- 2 1.60000+ 1 2.20000+ 1 6.12942- 4 1.08706- 2 1.60000+ 1 2.40000+ 1 2.39952- 5 1.10652- 2 1.60000+ 1 2.50000+ 1 2.63953- 5 1.10673- 2 1.60000+ 1 2.70000+ 1 7.86521- 5 1.10225- 2 1.60000+ 1 2.90000+ 1 6.45218- 5 1.10502- 2 1.60000+ 1 3.00000+ 1 1.00783- 4 1.10595- 2 1.60000+ 1 3.20000+ 1 1.73298- 5 1.10943- 2 1.60000+ 1 4.10000+ 1 6.93200- 6 1.10940- 2 1.80000+ 1 1.80000+ 1 2.66611- 7 1.07332- 2 1.80000+ 1 1.90000+ 1 1.30631- 5 1.07972- 2 1.80000+ 1 2.10000+ 1 3.11938- 5 1.09521- 2 1.80000+ 1 2.20000+ 1 1.72492- 4 1.09639- 2 1.80000+ 1 2.40000+ 1 9.33170- 6 1.11584- 2 1.80000+ 1 2.50000+ 1 3.70588- 5 1.11605- 2 1.80000+ 1 2.70000+ 1 7.19848- 5 1.11158- 2 1.80000+ 1 3.00000+ 1 1.59961- 6 1.11527- 2 1.80000+ 1 3.20000+ 1 1.06640- 6 1.11876- 2 1.80000+ 1 4.10000+ 1 6.13208- 6 1.11873- 2 1.90000+ 1 1.90000+ 1 1.51966- 5 1.08613- 2 1.90000+ 1 2.10000+ 1 6.77181- 5 1.10162- 2 1.90000+ 1 2.20000+ 1 4.37247- 5 1.10279- 2 1.90000+ 1 2.40000+ 1 2.79941- 5 1.12225- 2 1.90000+ 1 2.50000+ 1 2.26612- 5 1.12246- 2 1.90000+ 1 2.70000+ 1 1.18109- 4 1.11798- 2 1.90000+ 1 2.90000+ 1 1.86624- 6 1.12075- 2 1.90000+ 1 3.00000+ 1 3.99904- 6 1.12167- 2 1.90000+ 1 3.20000+ 1 2.39944- 6 1.12516- 2 1.90000+ 1 4.10000+ 1 1.01311- 5 1.12513- 2 2.10000+ 1 2.10000+ 1 3.22595- 5 1.11710- 2 2.10000+ 1 2.20000+ 1 5.90006- 4 1.11828- 2 2.10000+ 1 2.40000+ 1 2.95940- 5 1.13774- 2 2.10000+ 1 2.50000+ 1 6.29193- 5 1.13795- 2 2.10000+ 1 2.70000+ 1 7.19846- 5 1.13347- 2 2.10000+ 1 2.90000+ 1 4.53236- 6 1.13624- 2 2.10000+ 1 3.00000+ 1 9.33167- 6 1.13716- 2 2.10000+ 1 3.20000+ 1 2.39946- 6 1.14065- 2 2.10000+ 1 4.10000+ 1 6.13206- 6 1.14062- 2 2.20000+ 1 2.20000+ 1 1.83691- 4 1.11946- 2 2.20000+ 1 2.40000+ 1 7.30504- 5 1.13891- 2 2.20000+ 1 2.50000+ 1 6.21199- 5 1.13912- 2 2.20000+ 1 2.70000+ 1 9.59802- 5 1.13465- 2 2.20000+ 1 2.90000+ 1 2.42610- 5 1.13741- 2 2.20000+ 1 3.00000+ 1 6.13206- 6 1.13834- 2 2.20000+ 1 3.20000+ 1 2.13301- 5 1.14183- 2 2.20000+ 1 4.10000+ 1 8.26486- 6 1.14180- 2 2.40000+ 1 2.40000+ 1 8.55279- 7 1.15837- 2 2.40000+ 1 2.50000+ 1 1.79601- 5 1.15858- 2 2.40000+ 1 2.70000+ 1 5.98717- 6 1.15410- 2 2.40000+ 1 2.90000+ 1 2.13808- 6 1.15687- 2 2.40000+ 1 3.00000+ 1 5.98717- 6 1.15780- 2 2.40000+ 1 3.20000+ 1 1.71052- 6 1.16128- 2 2.40000+ 1 4.10000+ 1 4.27647- 7 1.16125- 2 2.50000+ 1 2.50000+ 1 3.83104- 6 1.15879- 2 2.50000+ 1 2.70000+ 1 6.38501- 6 1.15431- 2 2.50000+ 1 2.90000+ 1 7.66207- 6 1.15708- 2 2.50000+ 1 3.00000+ 1 4.68253- 6 1.15801- 2 2.50000+ 1 3.20000+ 1 3.40562- 6 1.16149- 2 2.50000+ 1 4.10000+ 1 4.25678- 7 1.16146- 2 2.70000+ 1 2.70000+ 1 2.07393- 5 1.14984- 2 2.70000+ 1 2.90000+ 1 3.28368- 5 1.15260- 2 2.70000+ 1 3.00000+ 1 5.18459- 5 1.15353- 2 2.70000+ 1 3.20000+ 1 8.64130- 6 1.15702- 2 2.70000+ 1 4.10000+ 1 3.45639- 6 1.15699- 2 2.90000+ 1 3.00000+ 1 1.57850- 6 1.15630- 2 2.90000+ 1 3.20000+ 1 1.57850- 6 1.15978- 2 2.90000+ 1 4.10000+ 1 4.73549- 6 1.15975- 2 3.00000+ 1 3.00000+ 1 5.79114- 7 1.15722- 2 3.00000+ 1 3.20000+ 1 5.79114- 7 1.16071- 2 3.00000+ 1 4.10000+ 1 2.89536- 6 1.16068- 2 3.20000+ 1 4.10000+ 1 2.66610- 7 1.16417- 2 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.72138- 6 1.28380- 3 8.00000+ 0 6.56906- 3 8.47830- 3 1.10000+ 1 1.97189- 4 8.97890- 3 1.30000+ 1 2.29549- 1 9.36070- 3 1.60000+ 1 1.54129- 3 1.06083- 2 1.90000+ 1 5.06397- 5 1.07656- 2 2.10000+ 1 4.22357- 2 1.09205- 2 2.40000+ 1 1.03169- 4 1.11269- 2 2.70000+ 1 2.92588- 4 1.10842- 2 3.00000+ 1 1.06559- 5 1.11211- 2 3.20000+ 1 7.81495- 4 1.11560- 2 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 6.86258- 3 7.29150- 4 6.00000+ 0 1.80000+ 1 4.27105- 2 8.22390- 4 6.00000+ 0 1.90000+ 1 1.29757- 2 8.86440- 4 6.00000+ 0 2.10000+ 1 4.79202- 2 1.04132- 3 6.00000+ 0 2.20000+ 1 1.68143- 2 1.05308- 3 6.00000+ 0 2.40000+ 1 1.45973- 3 1.24766- 3 6.00000+ 0 2.50000+ 1 2.21489- 3 1.24976- 3 6.00000+ 0 2.70000+ 1 1.07949- 3 1.20499- 3 6.00000+ 0 2.90000+ 1 5.66761- 3 1.23265- 3 6.00000+ 0 3.00000+ 1 1.72458- 3 1.24191- 3 6.00000+ 0 3.20000+ 1 1.75587- 3 1.27679- 3 6.00000+ 0 4.10000+ 1 9.37132- 5 1.27649- 3 8.00000+ 0 8.00000+ 0 7.20236- 4 5.79360- 3 8.00000+ 0 1.00000+ 1 2.21116- 2 6.01690- 3 8.00000+ 0 1.10000+ 1 2.12646- 3 6.29420- 3 8.00000+ 0 1.30000+ 1 2.78133- 3 6.67600- 3 8.00000+ 0 1.40000+ 1 2.38066- 3 6.73670- 3 8.00000+ 0 1.60000+ 1 2.67913- 4 7.92365- 3 8.00000+ 0 1.80000+ 1 3.36508- 3 8.01689- 3 8.00000+ 0 1.90000+ 1 4.25887- 4 8.08094- 3 8.00000+ 0 2.10000+ 1 3.88645- 4 8.23582- 3 8.00000+ 0 2.20000+ 1 2.82931- 4 8.24758- 3 8.00000+ 0 2.40000+ 1 8.34963- 5 8.44216- 3 8.00000+ 0 2.50000+ 1 5.52645- 5 8.44426- 3 8.00000+ 0 2.70000+ 1 4.38520- 5 8.39949- 3 8.00000+ 0 2.90000+ 1 4.44527- 4 8.42715- 3 8.00000+ 0 3.00000+ 1 5.64666- 5 8.43641- 3 8.00000+ 0 3.20000+ 1 1.38167- 5 8.47129- 3 8.00000+ 0 4.10000+ 1 3.60410- 6 8.47099- 3 1.00000+ 1 1.00000+ 1 2.26942- 2 6.24020- 3 1.00000+ 1 1.10000+ 1 6.25703- 2 6.51750- 3 1.00000+ 1 1.30000+ 1 3.30878- 2 6.89930- 3 1.00000+ 1 1.40000+ 1 5.06627- 2 6.96000- 3 1.00000+ 1 1.60000+ 1 5.43827- 3 8.14695- 3 1.00000+ 1 1.80000+ 1 8.78227- 3 8.24019- 3 1.00000+ 1 1.90000+ 1 1.38168- 2 8.30424- 3 1.00000+ 1 2.10000+ 1 6.50982- 3 8.45912- 3 1.00000+ 1 2.20000+ 1 9.90734- 3 8.47088- 3 1.00000+ 1 2.40000+ 1 3.89273- 4 8.66546- 3 1.00000+ 1 2.50000+ 1 3.55625- 4 8.66756- 3 1.00000+ 1 2.70000+ 1 9.36493- 4 8.62279- 3 1.00000+ 1 2.90000+ 1 1.21761- 3 8.65045- 3 1.00000+ 1 3.00000+ 1 1.86221- 3 8.65971- 3 1.00000+ 1 3.20000+ 1 2.45683- 4 8.69459- 3 1.00000+ 1 4.10000+ 1 8.22980- 5 8.69429- 3 1.10000+ 1 1.10000+ 1 1.52398- 3 6.79480- 3 1.10000+ 1 1.30000+ 1 3.36655- 2 7.17660- 3 1.10000+ 1 1.40000+ 1 4.71851- 3 7.23730- 3 1.10000+ 1 1.60000+ 1 4.42117- 4 8.42425- 3 1.10000+ 1 1.80000+ 1 9.78863- 3 8.51749- 3 1.10000+ 1 1.90000+ 1 5.73662- 4 8.58154- 3 1.10000+ 1 2.10000+ 1 5.57325- 3 8.73642- 3 1.10000+ 1 2.20000+ 1 7.43073- 4 8.74818- 3 1.10000+ 1 2.40000+ 1 1.93420- 4 8.94276- 3 1.10000+ 1 2.50000+ 1 1.05120- 4 8.94486- 3 1.10000+ 1 2.70000+ 1 7.38827- 5 8.90009- 3 1.10000+ 1 2.90000+ 1 1.29936- 3 8.92775- 3 1.10000+ 1 3.00000+ 1 7.50828- 5 8.93701- 3 1.10000+ 1 3.20000+ 1 2.05441- 4 8.97189- 3 1.10000+ 1 4.10000+ 1 6.60776- 6 8.97159- 3 1.30000+ 1 1.30000+ 1 3.15576- 2 7.55840- 3 1.30000+ 1 1.40000+ 1 1.28837- 1 7.61910- 3 1.30000+ 1 1.60000+ 1 6.87192- 4 8.80605- 3 1.30000+ 1 1.80000+ 1 5.07585- 3 8.89929- 3 1.30000+ 1 1.90000+ 1 6.92464- 3 8.96334- 3 1.30000+ 1 2.10000+ 1 1.03741- 2 9.11822- 3 1.30000+ 1 2.20000+ 1 2.27447- 2 9.12998- 3 1.30000+ 1 2.40000+ 1 1.47830- 3 9.32456- 3 1.30000+ 1 2.50000+ 1 3.00820- 3 9.32666- 3 1.30000+ 1 2.70000+ 1 1.18931- 4 9.28189- 3 1.30000+ 1 2.90000+ 1 6.76369- 4 9.30955- 3 1.30000+ 1 3.00000+ 1 9.21441- 4 9.31881- 3 1.30000+ 1 3.20000+ 1 3.83848- 4 9.35369- 3 1.30000+ 1 4.10000+ 1 1.02122- 5 9.35339- 3 1.40000+ 1 1.40000+ 1 6.21647- 3 7.67980- 3 1.40000+ 1 1.60000+ 1 4.76341- 4 8.86675- 3 1.40000+ 1 1.80000+ 1 6.87194- 3 8.95999- 3 1.40000+ 1 1.90000+ 1 8.90842- 4 9.02404- 3 1.40000+ 1 2.10000+ 1 1.74838- 2 9.17892- 3 1.40000+ 1 2.20000+ 1 1.99312- 3 9.19068- 3 1.40000+ 1 2.40000+ 1 5.94076- 4 9.38526- 3 1.40000+ 1 2.50000+ 1 2.28856- 4 9.38736- 3 1.40000+ 1 2.70000+ 1 7.86880- 5 9.34259- 3 1.40000+ 1 2.90000+ 1 8.87824- 4 9.37025- 3 1.40000+ 1 3.00000+ 1 1.16537- 4 9.37951- 3 1.40000+ 1 3.20000+ 1 6.27713- 4 9.41439- 3 1.40000+ 1 4.10000+ 1 6.60768- 6 9.41409- 3 1.60000+ 1 1.60000+ 1 2.40259- 5 1.00537- 2 1.60000+ 1 1.80000+ 1 8.31910- 4 1.01469- 2 1.60000+ 1 1.90000+ 1 8.89025- 5 1.02110- 2 1.60000+ 1 2.10000+ 1 9.31052- 5 1.03659- 2 1.60000+ 1 2.20000+ 1 5.70646- 5 1.03776- 2 1.60000+ 1 2.40000+ 1 1.80206- 5 1.05722- 2 1.60000+ 1 2.50000+ 1 9.61088- 6 1.05743- 2 1.60000+ 1 2.70000+ 1 7.80912- 6 1.05295- 2 1.60000+ 1 2.90000+ 1 1.09925- 4 1.05572- 2 1.60000+ 1 3.00000+ 1 1.20135- 5 1.05665- 2 1.60000+ 1 3.20000+ 1 3.60394- 6 1.06013- 2 1.60000+ 1 4.10000+ 1 6.00684- 7 1.06010- 2 1.80000+ 1 1.80000+ 1 8.07960- 4 1.02402- 2 1.80000+ 1 1.90000+ 1 2.16440- 3 1.03042- 2 1.80000+ 1 2.10000+ 1 9.82755- 4 1.04591- 2 1.80000+ 1 2.20000+ 1 1.35582- 3 1.04709- 2 1.80000+ 1 2.40000+ 1 4.86578- 5 1.06654- 2 1.80000+ 1 2.50000+ 1 3.66438- 5 1.06675- 2 1.80000+ 1 2.70000+ 1 1.43569- 4 1.06228- 2 1.80000+ 1 2.90000+ 1 2.22264- 4 1.06504- 2 1.80000+ 1 3.00000+ 1 2.91937- 4 1.06597- 2 1.80000+ 1 3.20000+ 1 3.72442- 5 1.06946- 2 1.80000+ 1 4.10000+ 1 1.26146- 5 1.06943- 2 1.90000+ 1 1.90000+ 1 5.40621- 5 1.03683- 2 1.90000+ 1 2.10000+ 1 1.15569- 3 1.05232- 2 1.90000+ 1 2.20000+ 1 1.42958- 4 1.05349- 2 1.90000+ 1 2.40000+ 1 3.30378- 5 1.07295- 2 1.90000+ 1 2.50000+ 1 1.68196- 5 1.07316- 2 1.90000+ 1 2.70000+ 1 1.50171- 5 1.06868- 2 1.90000+ 1 2.90000+ 1 2.87135- 4 1.07145- 2 1.90000+ 1 3.00000+ 1 1.44166- 5 1.07237- 2 1.90000+ 1 3.20000+ 1 4.26493- 5 1.07586- 2 1.90000+ 1 4.10000+ 1 1.20136- 6 1.07583- 2 2.10000+ 1 2.10000+ 1 8.42796- 4 1.06780- 2 2.10000+ 1 2.20000+ 1 3.20955- 3 1.06898- 2 2.10000+ 1 2.40000+ 1 1.66995- 4 1.08844- 2 2.10000+ 1 2.50000+ 1 3.44212- 4 1.08865- 2 2.10000+ 1 2.70000+ 1 1.62186- 5 1.08417- 2 2.10000+ 1 2.90000+ 1 1.30350- 4 1.08694- 2 2.10000+ 1 3.00000+ 1 1.53778- 4 1.08786- 2 2.10000+ 1 3.20000+ 1 6.24729- 5 1.09135- 2 2.10000+ 1 4.10000+ 1 1.20140- 6 1.09132- 2 2.20000+ 1 2.20000+ 1 2.02583- 4 1.07016- 2 2.20000+ 1 2.40000+ 1 9.07121- 5 1.08961- 2 2.20000+ 1 2.50000+ 1 3.55268- 5 1.08982- 2 2.20000+ 1 2.70000+ 1 1.20944- 5 1.08535- 2 2.20000+ 1 2.90000+ 1 2.20722- 4 1.08811- 2 2.20000+ 1 3.00000+ 1 2.34330- 5 1.08904- 2 2.20000+ 1 3.20000+ 1 1.45888- 4 1.09253- 2 2.20000+ 1 4.10000+ 1 7.55906- 7 1.09250- 2 2.40000+ 1 2.40000+ 1 3.83338- 6 1.10907- 2 2.40000+ 1 2.50000+ 1 2.60672- 5 1.10928- 2 2.40000+ 1 2.70000+ 1 3.83338- 6 1.10480- 2 2.40000+ 1 2.90000+ 1 7.66702- 6 1.10757- 2 2.40000+ 1 3.00000+ 1 5.36662- 6 1.10850- 2 2.40000+ 1 3.20000+ 1 7.66702- 6 1.11198- 2 2.50000+ 1 2.50000+ 1 1.82734- 6 1.10949- 2 2.50000+ 1 2.70000+ 1 2.74107- 6 1.10501- 2 2.50000+ 1 2.90000+ 1 6.39544- 6 1.10778- 2 2.50000+ 1 3.00000+ 1 3.65451- 6 1.10871- 2 2.50000+ 1 3.20000+ 1 1.82734- 5 1.11219- 2 2.70000+ 1 2.70000+ 1 9.27380- 7 1.10054- 2 2.70000+ 1 2.90000+ 1 2.96759- 5 1.10330- 2 2.70000+ 1 3.00000+ 1 2.78216- 6 1.10423- 2 2.70000+ 1 3.20000+ 1 9.27380- 7 1.10772- 2 2.90000+ 1 2.90000+ 1 2.68119- 5 1.10607- 2 2.90000+ 1 3.00000+ 1 6.86399- 5 1.10700- 2 2.90000+ 1 3.20000+ 1 8.58004- 6 1.11048- 2 2.90000+ 1 4.10000+ 1 3.21746- 6 1.11045- 2 3.00000+ 1 3.00000+ 1 1.20141- 6 1.10792- 2 3.00000+ 1 3.20000+ 1 5.40645- 6 1.11141- 2 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.21621- 2 7.19450- 3 1.00000+ 1 1.01711- 4 7.41780- 3 1.10000+ 1 9.24925- 5 7.69510- 3 1.30000+ 1 2.04401- 2 8.07690- 3 1.40000+ 1 1.80451- 1 8.13760- 3 1.60000+ 1 2.20741- 3 9.32455- 3 1.80000+ 1 2.10321- 5 9.41779- 3 1.90000+ 1 2.06501- 5 9.48184- 3 2.10000+ 1 3.53282- 3 9.63672- 3 2.20000+ 1 3.16682- 2 9.64848- 3 2.40000+ 1 1.51571- 5 9.84306- 3 2.50000+ 1 8.51545- 5 9.84516- 3 2.70000+ 1 4.43272- 4 9.80039- 3 2.90000+ 1 4.53212- 6 9.82805- 3 3.00000+ 1 4.21882- 6 9.83731- 3 3.20000+ 1 6.47984- 5 9.87219- 3 3.30000+ 1 5.55733- 4 9.87290- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.50429- 4 4.50980- 3 8.00000+ 0 1.00000+ 1 5.41466- 4 4.73310- 3 8.00000+ 0 1.10000+ 1 2.38558- 2 5.01040- 3 8.00000+ 0 1.30000+ 1 2.65903- 3 5.39220- 3 8.00000+ 0 1.40000+ 1 3.82747- 3 5.45290- 3 8.00000+ 0 1.60000+ 1 3.55280- 4 6.63985- 3 8.00000+ 0 1.80000+ 1 9.58424- 5 6.73309- 3 8.00000+ 0 1.90000+ 1 3.56248- 3 6.79714- 3 8.00000+ 0 2.10000+ 1 2.52715- 4 6.95202- 3 8.00000+ 0 2.20000+ 1 3.27199- 4 6.96378- 3 8.00000+ 0 2.40000+ 1 1.50168- 4 7.15836- 3 8.00000+ 0 2.50000+ 1 2.70410- 4 7.16046- 3 8.00000+ 0 2.70000+ 1 5.79913- 5 7.11569- 3 8.00000+ 0 2.90000+ 1 1.28187- 5 7.14335- 3 8.00000+ 0 3.00000+ 1 4.48681- 4 7.15261- 3 8.00000+ 0 3.20000+ 1 8.54618- 6 7.18749- 3 8.00000+ 0 4.10000+ 1 4.88357- 6 7.18719- 3 1.00000+ 1 1.00000+ 1 1.08050- 4 4.95640- 3 1.00000+ 1 1.10000+ 1 4.00390- 2 5.23370- 3 1.00000+ 1 1.30000+ 1 2.13893- 3 5.61550- 3 1.00000+ 1 1.40000+ 1 1.89039- 2 5.67620- 3 1.00000+ 1 1.60000+ 1 1.08656- 4 6.86315- 3 1.00000+ 1 1.80000+ 1 4.27293- 5 6.95639- 3 1.00000+ 1 1.90000+ 1 6.20697- 3 7.02044- 3 1.00000+ 1 2.10000+ 1 3.79085- 4 7.17532- 3 1.00000+ 1 2.20000+ 1 2.79342- 3 7.18708- 3 1.00000+ 1 2.40000+ 1 1.58708- 4 7.38166- 3 1.00000+ 1 2.50000+ 1 4.11431- 4 7.38376- 3 1.00000+ 1 2.70000+ 1 1.83130- 5 7.33899- 3 1.00000+ 1 2.90000+ 1 6.10442- 6 7.36665- 3 1.00000+ 1 3.00000+ 1 7.86232- 4 7.37591- 3 1.00000+ 1 3.20000+ 1 1.40397- 5 7.41079- 3 1.00000+ 1 4.10000+ 1 1.83130- 6 7.41049- 3 1.10000+ 1 1.10000+ 1 5.25820- 2 5.51100- 3 1.10000+ 1 1.30000+ 1 5.48337- 2 5.89280- 3 1.10000+ 1 1.40000+ 1 7.74116- 2 5.95350- 3 1.10000+ 1 1.60000+ 1 5.78697- 3 7.14045- 3 1.10000+ 1 1.80000+ 1 8.66940- 3 7.23369- 3 1.10000+ 1 1.90000+ 1 1.96419- 2 7.29774- 3 1.10000+ 1 2.10000+ 1 1.02313- 2 7.45262- 3 1.10000+ 1 2.20000+ 1 1.41798- 2 7.46438- 3 1.10000+ 1 2.40000+ 1 6.61700- 4 7.65896- 3 1.10000+ 1 2.50000+ 1 8.34432- 4 7.66106- 3 1.10000+ 1 2.70000+ 1 9.93765- 4 7.61629- 3 1.10000+ 1 2.90000+ 1 1.22206- 3 7.64395- 3 1.10000+ 1 3.00000+ 1 2.58096- 3 7.65321- 3 1.10000+ 1 3.20000+ 1 3.84578- 4 7.68809- 3 1.10000+ 1 4.10000+ 1 8.72920- 5 7.68779- 3 1.30000+ 1 1.30000+ 1 7.81616- 3 6.27460- 3 1.30000+ 1 1.40000+ 1 1.47238- 1 6.33530- 3 1.30000+ 1 1.60000+ 1 6.17175- 4 7.52225- 3 1.30000+ 1 1.80000+ 1 4.73093- 4 7.61549- 3 1.30000+ 1 1.90000+ 1 7.80869- 3 7.67954- 3 1.30000+ 1 2.10000+ 1 2.51379- 3 7.83442- 3 1.30000+ 1 2.20000+ 1 1.98472- 2 7.84618- 3 1.30000+ 1 2.40000+ 1 3.71755- 4 8.04076- 3 1.30000+ 1 2.50000+ 1 1.26728- 3 8.04286- 3 1.30000+ 1 2.70000+ 1 1.04999- 4 7.99809- 3 1.30000+ 1 2.90000+ 1 6.65404- 5 8.02575- 3 1.30000+ 1 3.00000+ 1 9.74894- 4 8.03501- 3 1.30000+ 1 3.20000+ 1 9.27885- 5 8.06989- 3 1.30000+ 1 4.10000+ 1 9.15695- 6 8.06959- 3 1.40000+ 1 1.40000+ 1 9.87153- 2 6.39600- 3 1.40000+ 1 1.60000+ 1 9.20487- 4 7.58295- 3 1.40000+ 1 1.80000+ 1 3.74672- 3 7.67619- 3 1.40000+ 1 1.90000+ 1 1.24410- 2 7.74024- 3 1.40000+ 1 2.10000+ 1 2.39554- 2 7.89512- 3 1.40000+ 1 2.20000+ 1 3.02592- 2 7.90688- 3 1.40000+ 1 2.40000+ 1 3.95310- 3 8.10146- 3 1.40000+ 1 2.50000+ 1 3.60808- 3 8.10356- 3 1.40000+ 1 2.70000+ 1 1.58700- 4 8.05879- 3 1.40000+ 1 2.90000+ 1 5.20073- 4 8.08645- 3 1.40000+ 1 3.00000+ 1 1.59508- 3 8.09571- 3 1.40000+ 1 3.20000+ 1 8.83865- 4 8.13059- 3 1.40000+ 1 4.10000+ 1 1.40391- 5 8.13029- 3 1.60000+ 1 1.60000+ 1 3.35731- 5 8.76990- 3 1.60000+ 1 1.80000+ 1 2.01437- 5 8.86314- 3 1.60000+ 1 1.90000+ 1 8.64984- 4 8.92719- 3 1.60000+ 1 2.10000+ 1 6.40942- 5 9.08207- 3 1.60000+ 1 2.20000+ 1 8.60730- 5 9.09383- 3 1.60000+ 1 2.40000+ 1 2.13648- 5 9.28841- 3 1.60000+ 1 2.50000+ 1 4.27285- 5 9.29051- 3 1.60000+ 1 2.70000+ 1 1.09874- 5 9.24574- 3 1.60000+ 1 2.90000+ 1 2.44159- 6 9.27340- 3 1.60000+ 1 3.00000+ 1 1.08654- 4 9.28266- 3 1.60000+ 1 3.20000+ 1 2.44159- 6 9.31754- 3 1.60000+ 1 4.10000+ 1 1.22084- 6 9.31724- 3 1.80000+ 1 1.80000+ 1 3.05215- 6 8.95638- 3 1.80000+ 1 1.90000+ 1 1.33817- 3 9.02043- 3 1.80000+ 1 2.10000+ 1 7.99704- 5 9.17531- 3 1.80000+ 1 2.20000+ 1 5.81761- 4 9.18707- 3 1.80000+ 1 2.40000+ 1 2.25868- 5 9.38165- 3 1.80000+ 1 2.50000+ 1 5.61614- 5 9.38375- 3 1.80000+ 1 2.70000+ 1 3.05215- 6 9.33898- 3 1.80000+ 1 2.90000+ 1 6.10459- 7 9.36664- 3 1.80000+ 1 3.00000+ 1 1.69099- 4 9.37590- 3 1.80000+ 1 3.20000+ 1 3.05215- 6 9.41078- 3 1.90000+ 1 1.90000+ 1 1.76052- 3 9.08448- 3 1.90000+ 1 2.10000+ 1 1.45954- 3 9.23936- 3 1.90000+ 1 2.20000+ 1 2.24402- 3 9.25112- 3 1.90000+ 1 2.40000+ 1 7.75245- 5 9.44570- 3 1.90000+ 1 2.50000+ 1 1.03171- 4 9.44780- 3 1.90000+ 1 2.70000+ 1 1.48333- 4 9.40303- 3 1.90000+ 1 2.90000+ 1 1.88626- 4 9.43069- 3 1.90000+ 1 3.00000+ 1 4.59047- 4 9.43995- 3 1.90000+ 1 3.20000+ 1 5.49402- 5 9.47483- 3 1.90000+ 1 4.10000+ 1 1.28188- 5 9.47453- 3 2.10000+ 1 2.10000+ 1 1.94731- 4 9.39424- 3 2.10000+ 1 2.20000+ 1 3.35817- 3 9.40600- 3 2.10000+ 1 2.40000+ 1 4.02891- 5 9.60058- 3 2.10000+ 1 2.50000+ 1 1.32465- 4 9.60268- 3 2.10000+ 1 2.70000+ 1 1.09878- 5 9.55791- 3 2.10000+ 1 2.90000+ 1 1.09878- 5 9.58557- 3 2.10000+ 1 3.00000+ 1 1.82530- 4 9.59483- 3 2.10000+ 1 3.20000+ 1 1.40401- 5 9.62971- 3 2.10000+ 1 4.10000+ 1 1.22089- 6 9.62941- 3 2.20000+ 1 2.20000+ 1 2.68138- 3 9.41776- 3 2.20000+ 1 2.40000+ 1 4.84014- 4 9.61234- 3 2.20000+ 1 2.50000+ 1 4.35556- 4 9.61444- 3 2.20000+ 1 2.70000+ 1 1.75622- 5 9.56967- 3 2.20000+ 1 2.90000+ 1 9.34294- 5 9.59733- 3 2.20000+ 1 3.00000+ 1 3.30171- 4 9.60659- 3 2.20000+ 1 3.20000+ 1 1.43306- 4 9.64147- 3 2.20000+ 1 4.10000+ 1 1.40497- 6 9.64117- 3 2.40000+ 1 2.40000+ 1 2.18586- 6 9.80692- 3 2.40000+ 1 2.50000+ 1 6.22974- 5 9.80902- 3 2.40000+ 1 2.70000+ 1 5.46449- 6 9.76425- 3 2.40000+ 1 2.90000+ 1 5.46449- 6 9.79191- 3 2.40000+ 1 3.00000+ 1 1.63944- 5 9.80117- 3 2.40000+ 1 3.20000+ 1 2.18586- 6 9.83605- 3 2.50000+ 1 2.50000+ 1 1.51373- 5 9.81112- 3 2.50000+ 1 2.70000+ 1 8.32569- 6 9.76635- 3 2.50000+ 1 2.90000+ 1 9.08255- 6 9.79401- 3 2.50000+ 1 3.00000+ 1 1.58938- 5 9.80327- 3 2.50000+ 1 3.20000+ 1 6.05507- 6 9.83815- 3 2.50000+ 1 4.10000+ 1 7.56882- 7 9.83785- 3 2.70000+ 1 2.70000+ 1 1.12072- 6 9.72158- 3 2.70000+ 1 2.90000+ 1 1.12072- 6 9.74924- 3 2.70000+ 1 3.00000+ 1 3.47411- 5 9.75850- 3 2.70000+ 1 3.20000+ 1 1.12072- 6 9.79338- 3 2.90000+ 1 3.00000+ 1 6.47842- 5 9.78616- 3 2.90000+ 1 3.20000+ 1 1.66120- 6 9.82104- 3 3.00000+ 1 3.00000+ 1 1.14248- 4 9.79542- 3 3.00000+ 1 3.20000+ 1 2.56477- 5 9.83030- 3 3.00000+ 1 4.10000+ 1 6.99472- 6 9.83000- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01423- 5 2.23300- 4 1.10000+ 1 2.37332- 4 5.00600- 4 1.80000+ 1 9.07602- 4 2.22329- 3 1.90000+ 1 8.80207- 4 2.28734- 3 2.90000+ 1 2.01333- 4 2.63355- 3 3.00000+ 1 1.89198- 4 2.64281- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.20000+ 1 2.56378- 2 0.00000+ 0 1.00000+ 1 2.40000+ 1 3.93619- 2 1.87160- 4 1.00000+ 1 2.50000+ 1 5.26248- 2 1.89260- 4 1.00000+ 1 2.70000+ 1 9.44111- 3 1.44490- 4 1.00000+ 1 2.90000+ 1 8.33085- 3 1.72150- 4 1.00000+ 1 3.00000+ 1 1.16976- 2 1.81410- 4 1.00000+ 1 3.20000+ 1 8.99677- 4 2.16290- 4 1.00000+ 1 3.30000+ 1 1.17636- 3 2.17000- 4 1.00000+ 1 4.10000+ 1 8.17203- 4 2.15990- 4 1.10000+ 1 1.80000+ 1 6.53705- 2 3.91900- 5 1.10000+ 1 1.90000+ 1 7.75481- 2 1.03240- 4 1.10000+ 1 2.10000+ 1 2.99648- 2 2.58120- 4 1.10000+ 1 2.20000+ 1 4.43716- 2 2.69880- 4 1.10000+ 1 2.40000+ 1 1.44605- 1 4.64460- 4 1.10000+ 1 2.50000+ 1 1.80578- 1 4.66560- 4 1.10000+ 1 2.70000+ 1 9.78480- 3 4.21790- 4 1.10000+ 1 2.90000+ 1 8.59208- 3 4.49450- 4 1.10000+ 1 3.00000+ 1 1.02278- 2 4.58710- 4 1.10000+ 1 3.20000+ 1 4.10096- 4 4.93590- 4 1.10000+ 1 3.30000+ 1 5.95296- 4 4.94300- 4 1.10000+ 1 4.10000+ 1 8.63695- 4 4.93290- 4 1.30000+ 1 1.60000+ 1 2.59788- 2 3.27750- 4 1.30000+ 1 1.80000+ 1 5.74888- 3 4.20990- 4 1.30000+ 1 1.90000+ 1 5.84217- 3 4.85040- 4 1.30000+ 1 2.10000+ 1 8.65868- 3 6.39920- 4 1.30000+ 1 2.20000+ 1 1.08009- 2 6.51680- 4 1.30000+ 1 2.40000+ 1 7.44425- 3 8.46260- 4 1.30000+ 1 2.50000+ 1 6.89729- 3 8.48360- 4 1.30000+ 1 2.70000+ 1 2.95916- 3 8.03590- 4 1.30000+ 1 2.90000+ 1 6.41469- 4 8.31250- 4 1.30000+ 1 3.00000+ 1 6.11179- 4 8.40510- 4 1.30000+ 1 3.20000+ 1 1.14219- 4 8.75390- 4 1.30000+ 1 3.30000+ 1 1.42137- 4 8.76100- 4 1.30000+ 1 4.10000+ 1 2.50422- 4 8.75090- 4 1.40000+ 1 1.60000+ 1 3.68977- 2 3.88450- 4 1.40000+ 1 1.80000+ 1 1.08841- 3 4.81690- 4 1.40000+ 1 1.90000+ 1 1.10507- 2 5.45740- 4 1.40000+ 1 2.10000+ 1 1.19271- 2 7.00620- 4 1.40000+ 1 2.20000+ 1 1.74551- 2 7.12380- 4 1.40000+ 1 2.40000+ 1 8.44372- 3 9.06960- 4 1.40000+ 1 2.50000+ 1 1.31995- 2 9.09060- 4 1.40000+ 1 2.70000+ 1 4.16699- 3 8.64290- 4 1.40000+ 1 2.90000+ 1 1.30111- 4 8.91950- 4 1.40000+ 1 3.00000+ 1 1.15041- 3 9.01210- 4 1.40000+ 1 3.20000+ 1 1.67681- 4 9.36090- 4 1.40000+ 1 3.30000+ 1 2.22045- 4 9.36800- 4 1.40000+ 1 4.10000+ 1 3.51572- 4 9.35790- 4 1.60000+ 1 1.60000+ 1 3.33074- 3 1.57540- 3 1.60000+ 1 1.80000+ 1 5.70020- 3 1.66864- 3 1.60000+ 1 1.90000+ 1 9.74881- 3 1.73269- 3 1.60000+ 1 2.10000+ 1 1.08828- 2 1.88757- 3 1.60000+ 1 2.20000+ 1 1.54700- 2 1.89933- 3 1.60000+ 1 2.40000+ 1 6.29707- 3 2.09391- 3 1.60000+ 1 2.50000+ 1 7.92936- 3 2.09601- 3 1.60000+ 1 2.70000+ 1 9.48011- 4 2.05124- 3 1.60000+ 1 2.90000+ 1 8.09867- 4 2.07890- 3 1.60000+ 1 3.00000+ 1 1.31689- 3 2.08816- 3 1.60000+ 1 3.20000+ 1 1.65871- 4 2.12304- 3 1.60000+ 1 3.30000+ 1 2.20795- 4 2.12375- 3 1.60000+ 1 4.10000+ 1 8.32119- 5 2.12274- 3 1.80000+ 1 1.80000+ 1 2.53763- 4 1.76188- 3 1.80000+ 1 1.90000+ 1 6.84394- 4 1.82593- 3 1.80000+ 1 2.10000+ 1 3.76570- 4 1.98081- 3 1.80000+ 1 2.20000+ 1 2.15171- 4 1.99257- 3 1.80000+ 1 2.40000+ 1 6.63923- 5 2.18715- 3 1.80000+ 1 2.50000+ 1 4.35615- 4 2.18925- 3 1.80000+ 1 2.70000+ 1 6.09862- 4 2.14448- 3 1.80000+ 1 2.90000+ 1 5.61584- 5 2.17214- 3 1.80000+ 1 3.00000+ 1 7.11168- 5 2.18140- 3 1.80000+ 1 3.20000+ 1 5.24836- 6 2.21628- 3 1.80000+ 1 3.30000+ 1 3.67373- 6 2.21699- 3 1.80000+ 1 4.10000+ 1 5.16958- 5 2.21598- 3 1.90000+ 1 1.90000+ 1 8.51296- 4 1.88998- 3 1.90000+ 1 2.10000+ 1 6.55009- 4 2.04486- 3 1.90000+ 1 2.20000+ 1 1.55007- 3 2.05662- 3 1.90000+ 1 2.40000+ 1 4.90196- 4 2.25120- 3 1.90000+ 1 2.50000+ 1 9.08482- 4 2.25330- 3 1.90000+ 1 2.70000+ 1 1.04762- 3 2.20853- 3 1.90000+ 1 2.90000+ 1 8.23996- 5 2.23619- 3 1.90000+ 1 3.00000+ 1 1.94446- 4 2.24545- 3 1.90000+ 1 3.20000+ 1 1.02341- 5 2.28033- 3 1.90000+ 1 3.30000+ 1 2.12567- 5 2.28104- 3 1.90000+ 1 4.10000+ 1 8.86980- 5 2.28003- 3 2.10000+ 1 2.10000+ 1 1.25248- 4 2.19974- 3 2.10000+ 1 2.20000+ 1 5.80357- 4 2.21150- 3 2.10000+ 1 2.40000+ 1 4.52620- 4 2.40608- 3 2.10000+ 1 2.50000+ 1 3.28142- 3 2.40818- 3 2.10000+ 1 2.70000+ 1 1.20776- 3 2.36341- 3 2.10000+ 1 2.90000+ 1 3.95395- 5 2.39107- 3 2.10000+ 1 3.00000+ 1 7.43770- 5 2.40033- 3 2.10000+ 1 3.20000+ 1 3.04133- 6 2.43521- 3 2.10000+ 1 3.30000+ 1 7.18871- 6 2.43592- 3 2.10000+ 1 4.10000+ 1 1.01754- 4 2.43491- 3 2.20000+ 1 2.20000+ 1 3.23543- 4 2.22326- 3 2.20000+ 1 2.40000+ 1 3.07825- 3 2.41784- 3 2.20000+ 1 2.50000+ 1 1.78173- 3 2.41994- 3 2.20000+ 1 2.70000+ 1 1.66523- 3 2.37517- 3 2.20000+ 1 2.90000+ 1 2.39175- 5 2.40283- 3 2.20000+ 1 3.00000+ 1 1.69565- 4 2.41209- 3 2.20000+ 1 3.20000+ 1 6.98671- 6 2.44697- 3 2.20000+ 1 3.30000+ 1 7.79285- 6 2.44768- 3 2.20000+ 1 4.10000+ 1 1.40274- 4 2.44667- 3 2.40000+ 1 2.40000+ 1 4.79407- 4 2.61242- 3 2.40000+ 1 2.50000+ 1 3.41583- 3 2.61452- 3 2.40000+ 1 2.70000+ 1 6.24864- 4 2.56975- 3 2.40000+ 1 2.90000+ 1 6.95189- 6 2.59741- 3 2.40000+ 1 3.00000+ 1 4.30492- 5 2.60667- 3 2.40000+ 1 3.20000+ 1 6.14995- 6 2.64155- 3 2.40000+ 1 3.30000+ 1 4.33144- 5 2.64226- 3 2.40000+ 1 4.10000+ 1 5.21400- 5 2.64125- 3 2.50000+ 1 2.50000+ 1 1.15018- 3 2.61662- 3 2.50000+ 1 2.70000+ 1 7.95772- 4 2.57185- 3 2.50000+ 1 2.90000+ 1 5.70916- 5 2.59951- 3 2.50000+ 1 3.00000+ 1 8.33366- 5 2.60877- 3 2.50000+ 1 3.20000+ 1 4.76204- 5 2.64365- 3 2.50000+ 1 3.30000+ 1 2.46225- 5 2.64436- 3 2.50000+ 1 4.10000+ 1 6.62907- 5 2.64335- 3 2.70000+ 1 2.70000+ 1 1.09382- 4 2.52708- 3 2.70000+ 1 2.90000+ 1 1.57409- 4 2.55474- 3 2.70000+ 1 3.00000+ 1 2.56335- 4 2.56400- 3 2.70000+ 1 3.20000+ 1 3.18625- 5 2.59888- 3 2.70000+ 1 3.30000+ 1 4.23271- 5 2.59959- 3 2.70000+ 1 4.10000+ 1 1.90222- 5 2.59858- 3 2.90000+ 1 2.90000+ 1 6.68833- 6 2.58240- 3 2.90000+ 1 3.00000+ 1 1.78354- 5 2.59166- 3 2.90000+ 1 3.20000+ 1 1.11471- 6 2.62654- 3 2.90000+ 1 3.30000+ 1 1.11471- 6 2.62725- 3 2.90000+ 1 4.10000+ 1 1.56062- 5 2.62624- 3 3.00000+ 1 3.00000+ 1 2.97909- 5 2.60092- 3 3.00000+ 1 3.20000+ 1 2.90649- 6 2.63580- 3 3.00000+ 1 3.30000+ 1 6.53993- 6 2.63651- 3 3.00000+ 1 4.10000+ 1 3.34255- 5 2.63550- 3 3.20000+ 1 4.10000+ 1 1.57447- 6 2.67038- 3 3.30000+ 1 4.10000+ 1 1.83674- 6 2.67109- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.35689- 4 6.59100- 4 1.60000+ 1 5.99220- 4 1.90675- 3 2.10000+ 1 3.13560- 3 2.21892- 3 2.70000+ 1 1.15250- 4 2.38259- 3 3.20000+ 1 6.61369- 5 2.45439- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.39172- 3 3.48200- 5 1.10000+ 1 2.20000+ 1 1.82849- 2 4.65800- 5 1.10000+ 1 2.40000+ 1 2.71308- 2 2.41160- 4 1.10000+ 1 2.50000+ 1 2.71452- 2 2.43260- 4 1.10000+ 1 2.70000+ 1 3.26488- 3 1.98490- 4 1.10000+ 1 2.90000+ 1 3.66811- 3 2.26150- 4 1.10000+ 1 3.00000+ 1 3.03737- 3 2.35410- 4 1.10000+ 1 3.20000+ 1 1.16033- 4 2.70290- 4 1.10000+ 1 3.30000+ 1 2.64679- 4 2.71000- 4 1.10000+ 1 4.10000+ 1 2.76316- 4 2.69990- 4 1.30000+ 1 1.60000+ 1 5.58232- 2 1.04450- 4 1.30000+ 1 1.80000+ 1 5.58840- 2 1.97690- 4 1.30000+ 1 1.90000+ 1 6.23662- 2 2.61740- 4 1.30000+ 1 2.10000+ 1 2.25098- 2 4.16620- 4 1.30000+ 1 2.20000+ 1 2.62678- 2 4.28380- 4 1.30000+ 1 2.40000+ 1 1.30802- 1 6.22960- 4 1.30000+ 1 2.50000+ 1 1.98546- 1 6.25060- 4 1.30000+ 1 2.70000+ 1 9.46423- 3 5.80290- 4 1.30000+ 1 2.90000+ 1 6.82177- 3 6.07950- 4 1.30000+ 1 3.00000+ 1 8.09425- 3 6.17210- 4 1.30000+ 1 3.20000+ 1 3.43403- 4 6.52090- 4 1.30000+ 1 3.30000+ 1 3.99273- 4 6.52800- 4 1.30000+ 1 4.10000+ 1 8.36854- 4 6.51790- 4 1.40000+ 1 1.60000+ 1 9.22179- 3 1.65150- 4 1.40000+ 1 1.80000+ 1 6.36689- 2 2.58390- 4 1.40000+ 1 1.90000+ 1 5.75001- 3 3.22440- 4 1.40000+ 1 2.10000+ 1 1.00502- 3 4.77320- 4 1.40000+ 1 2.20000+ 1 3.09435- 3 4.89080- 4 1.40000+ 1 2.40000+ 1 4.54484- 3 6.83660- 4 1.40000+ 1 2.50000+ 1 3.40926- 3 6.85760- 4 1.40000+ 1 2.70000+ 1 1.04648- 3 6.40990- 4 1.40000+ 1 2.90000+ 1 6.24267- 3 6.68650- 4 1.40000+ 1 3.00000+ 1 6.80669- 4 6.77910- 4 1.40000+ 1 3.20000+ 1 9.78757- 6 7.12790- 4 1.40000+ 1 3.30000+ 1 4.11912- 5 7.13500- 4 1.40000+ 1 4.10000+ 1 8.89078- 5 7.12490- 4 1.60000+ 1 1.60000+ 1 8.70790- 4 1.35210- 3 1.60000+ 1 1.80000+ 1 1.22376- 2 1.44534- 3 1.60000+ 1 1.90000+ 1 1.82194- 3 1.50939- 3 1.60000+ 1 2.10000+ 1 3.94290- 4 1.66427- 3 1.60000+ 1 2.20000+ 1 1.41962- 3 1.67603- 3 1.60000+ 1 2.40000+ 1 4.88221- 5 1.87061- 3 1.60000+ 1 2.50000+ 1 8.60295- 4 1.87271- 3 1.60000+ 1 2.70000+ 1 2.34239- 4 1.82794- 3 1.60000+ 1 2.90000+ 1 1.16377- 3 1.85560- 3 1.60000+ 1 3.00000+ 1 2.23110- 4 1.86486- 3 1.60000+ 1 3.20000+ 1 4.94440- 6 1.89974- 3 1.60000+ 1 3.30000+ 1 1.91590- 5 1.90045- 3 1.60000+ 1 4.10000+ 1 2.03950- 5 1.89944- 3 1.80000+ 1 1.80000+ 1 9.25140- 3 1.53858- 3 1.80000+ 1 1.90000+ 1 2.68278- 2 1.60263- 3 1.80000+ 1 2.10000+ 1 2.58553- 2 1.75751- 3 1.80000+ 1 2.20000+ 1 4.17737- 2 1.76927- 3 1.80000+ 1 2.40000+ 1 1.23473- 2 1.96385- 3 1.80000+ 1 2.50000+ 1 2.10276- 2 1.96595- 3 1.80000+ 1 2.70000+ 1 2.08725- 3 1.92118- 3 1.80000+ 1 2.90000+ 1 2.22260- 3 1.94884- 3 1.80000+ 1 3.00000+ 1 3.59505- 3 1.95810- 3 1.80000+ 1 3.20000+ 1 3.94318- 4 1.99298- 3 1.80000+ 1 3.30000+ 1 5.91513- 4 1.99369- 3 1.80000+ 1 4.10000+ 1 1.86041- 4 1.99268- 3 1.90000+ 1 1.90000+ 1 7.41696- 4 1.66668- 3 1.90000+ 1 2.10000+ 1 1.95927- 3 1.82156- 3 1.90000+ 1 2.20000+ 1 1.61563- 3 1.83332- 3 1.90000+ 1 2.40000+ 1 8.79941- 3 2.02790- 3 1.90000+ 1 2.50000+ 1 2.45061- 3 2.03000- 3 1.90000+ 1 2.70000+ 1 2.06435- 4 1.98523- 3 1.90000+ 1 2.90000+ 1 2.60516- 3 2.01289- 3 1.90000+ 1 3.00000+ 1 1.69346- 4 2.02215- 3 1.90000+ 1 3.20000+ 1 2.47220- 5 2.05703- 3 1.90000+ 1 3.30000+ 1 2.03959- 5 2.05774- 3 1.90000+ 1 4.10000+ 1 1.73058- 5 2.05673- 3 2.10000+ 1 2.10000+ 1 8.70222- 4 1.97644- 3 2.10000+ 1 2.20000+ 1 2.42511- 3 1.98820- 3 2.10000+ 1 2.40000+ 1 1.03710- 3 2.18278- 3 2.10000+ 1 2.50000+ 1 1.91721- 3 2.18488- 3 2.10000+ 1 2.70000+ 1 6.18053- 5 2.14011- 3 2.10000+ 1 2.90000+ 1 2.45621- 3 2.16777- 3 2.10000+ 1 3.00000+ 1 2.30541- 4 2.17703- 3 2.10000+ 1 3.20000+ 1 2.28680- 5 2.21191- 3 2.10000+ 1 3.30000+ 1 3.27573- 5 2.21262- 3 2.10000+ 1 4.10000+ 1 5.56265- 6 2.21161- 3 2.20000+ 1 2.20000+ 1 5.77258- 4 1.99996- 3 2.20000+ 1 2.40000+ 1 3.30057- 3 2.19454- 3 2.20000+ 1 2.50000+ 1 7.15706- 4 2.19664- 3 2.20000+ 1 2.70000+ 1 1.94069- 4 2.15187- 3 2.20000+ 1 2.90000+ 1 4.02465- 3 2.17953- 3 2.20000+ 1 3.00000+ 1 1.71202- 4 2.18879- 3 2.20000+ 1 3.20000+ 1 3.21405- 5 2.22367- 3 2.20000+ 1 3.30000+ 1 1.42153- 5 2.22438- 3 2.20000+ 1 4.10000+ 1 1.66877- 5 2.22337- 3 2.40000+ 1 2.40000+ 1 2.49937- 3 2.38912- 3 2.40000+ 1 2.50000+ 1 1.61646- 2 2.39122- 3 2.40000+ 1 2.70000+ 1 3.09014- 6 2.34645- 3 2.40000+ 1 2.90000+ 1 1.08343- 3 2.37411- 3 2.40000+ 1 3.00000+ 1 1.10754- 3 2.38337- 3 2.40000+ 1 3.20000+ 1 1.73054- 5 2.41825- 3 2.40000+ 1 3.30000+ 1 5.06814- 5 2.41896- 3 2.50000+ 1 2.50000+ 1 8.44280- 4 2.39332- 3 2.50000+ 1 2.70000+ 1 1.24232- 4 2.34855- 3 2.50000+ 1 2.90000+ 1 1.83195- 3 2.37621- 3 2.50000+ 1 3.00000+ 1 2.78740- 4 2.38547- 3 2.50000+ 1 3.20000+ 1 2.96657- 5 2.42035- 3 2.50000+ 1 3.30000+ 1 1.05071- 5 2.42106- 3 2.50000+ 1 4.10000+ 1 1.11250- 5 2.42005- 3 2.70000+ 1 2.70000+ 1 1.97682- 5 2.30378- 3 2.70000+ 1 2.90000+ 1 2.54616- 4 2.33144- 3 2.70000+ 1 3.00000+ 1 3.24190- 5 2.34070- 3 2.70000+ 1 3.20000+ 1 7.90736- 7 2.37558- 3 2.70000+ 1 3.30000+ 1 3.16285- 6 2.37629- 3 2.70000+ 1 4.10000+ 1 3.16285- 6 2.37528- 3 2.90000+ 1 2.90000+ 1 2.47798- 4 2.35910- 3 2.90000+ 1 3.00000+ 1 6.83273- 4 2.36836- 3 2.90000+ 1 3.20000+ 1 7.33789- 5 2.40324- 3 2.90000+ 1 3.30000+ 1 1.10666- 4 2.40395- 3 2.90000+ 1 4.10000+ 1 3.48835- 5 2.40294- 3 3.00000+ 1 3.00000+ 1 5.08462- 5 2.37762- 3 3.00000+ 1 3.20000+ 1 1.58893- 5 2.41250- 3 3.00000+ 1 3.30000+ 1 1.27116- 5 2.41321- 3 3.00000+ 1 4.10000+ 1 9.53386- 6 2.41220- 3 3.20000+ 1 3.30000+ 1 6.18049- 7 2.44809- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.69538- 5 3.81800- 4 1.40000+ 1 2.48470- 4 4.42500- 4 1.60000+ 1 9.76068- 4 1.62945- 3 2.10000+ 1 4.71139- 4 1.94162- 3 2.20000+ 1 3.71493- 3 1.95338- 3 2.70000+ 1 1.79539- 4 2.10529- 3 3.20000+ 1 9.48956- 6 2.17709- 3 3.30000+ 1 7.22152- 5 2.17780- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.90000+ 1 2.77071- 2 0.00000+ 0 1.30000+ 1 2.10000+ 1 1.01694- 2 1.39320- 4 1.30000+ 1 2.20000+ 1 9.94049- 3 1.51080- 4 1.30000+ 1 2.40000+ 1 1.48244- 2 3.45660- 4 1.30000+ 1 2.50000+ 1 2.15624- 2 3.47760- 4 1.30000+ 1 2.70000+ 1 2.09423- 3 3.02990- 4 1.30000+ 1 2.90000+ 1 1.57233- 3 3.30650- 4 1.30000+ 1 3.00000+ 1 5.66654- 3 3.39910- 4 1.30000+ 1 3.20000+ 1 1.32801- 4 3.74790- 4 1.30000+ 1 3.30000+ 1 1.22657- 4 3.75500- 4 1.30000+ 1 4.10000+ 1 1.81870- 4 3.74490- 4 1.40000+ 1 1.90000+ 1 1.23289- 1 4.51400- 5 1.40000+ 1 2.10000+ 1 4.57375- 2 2.00020- 4 1.40000+ 1 2.20000+ 1 6.40716- 2 2.11780- 4 1.40000+ 1 2.40000+ 1 1.49533- 1 4.06360- 4 1.40000+ 1 2.50000+ 1 1.79714- 1 4.08460- 4 1.40000+ 1 2.70000+ 1 1.23368- 2 3.63690- 4 1.40000+ 1 2.90000+ 1 1.07181- 2 3.91350- 4 1.40000+ 1 3.00000+ 1 1.45764- 2 4.00610- 4 1.40000+ 1 3.20000+ 1 5.99946- 4 4.35490- 4 1.40000+ 1 3.30000+ 1 8.25352- 4 4.36200- 4 1.40000+ 1 4.10000+ 1 1.07300- 3 4.35190- 4 1.60000+ 1 1.60000+ 1 5.67432- 4 1.07480- 3 1.60000+ 1 1.80000+ 1 9.35441- 4 1.16804- 3 1.60000+ 1 1.90000+ 1 1.50609- 2 1.23209- 3 1.60000+ 1 2.10000+ 1 8.91106- 4 1.38697- 3 1.60000+ 1 2.20000+ 1 1.00459- 3 1.39873- 3 1.60000+ 1 2.40000+ 1 1.27119- 3 1.59331- 3 1.60000+ 1 2.50000+ 1 2.05685- 3 1.59541- 3 1.60000+ 1 2.70000+ 1 1.51764- 4 1.55064- 3 1.60000+ 1 2.90000+ 1 1.04757- 4 1.57830- 3 1.60000+ 1 3.00000+ 1 1.39544- 3 1.58756- 3 1.60000+ 1 3.20000+ 1 1.27589- 5 1.62244- 3 1.60000+ 1 3.30000+ 1 1.27589- 5 1.62315- 3 1.60000+ 1 4.10000+ 1 1.27589- 5 1.62214- 3 1.80000+ 1 1.80000+ 1 8.46100- 5 1.26128- 3 1.80000+ 1 1.90000+ 1 1.81160- 2 1.32533- 3 1.80000+ 1 2.10000+ 1 4.10312- 4 1.48021- 3 1.80000+ 1 2.20000+ 1 3.53025- 3 1.49197- 3 1.80000+ 1 2.40000+ 1 1.41761- 3 1.68655- 3 1.80000+ 1 2.50000+ 1 8.08553- 3 1.68865- 3 1.80000+ 1 2.70000+ 1 1.12147- 4 1.64388- 3 1.80000+ 1 2.90000+ 1 1.74599- 5 1.67154- 3 1.80000+ 1 3.00000+ 1 1.70233- 3 1.68080- 3 1.80000+ 1 3.20000+ 1 6.04378- 6 1.71568- 3 1.80000+ 1 3.30000+ 1 4.29777- 5 1.71639- 3 1.80000+ 1 4.10000+ 1 9.40154- 6 1.71538- 3 1.90000+ 1 1.90000+ 1 2.47263- 2 1.38938- 3 1.90000+ 1 2.10000+ 1 3.48960- 2 1.54426- 3 1.90000+ 1 2.20000+ 1 4.60620- 2 1.55602- 3 1.90000+ 1 2.40000+ 1 2.39582- 2 1.75060- 3 1.90000+ 1 2.50000+ 1 2.73388- 2 1.75270- 3 1.90000+ 1 2.70000+ 1 2.51711- 3 1.70793- 3 1.90000+ 1 2.90000+ 1 2.52442- 3 1.73559- 3 1.90000+ 1 3.00000+ 1 5.61416- 3 1.74485- 3 1.90000+ 1 3.20000+ 1 5.19772- 4 1.77973- 3 1.90000+ 1 3.30000+ 1 6.47374- 4 1.78044- 3 1.90000+ 1 4.10000+ 1 2.24298- 4 1.77943- 3 2.10000+ 1 2.10000+ 1 2.26311- 4 1.69914- 3 2.10000+ 1 2.20000+ 1 4.96952- 3 1.71090- 3 2.10000+ 1 2.40000+ 1 5.96313- 4 1.90548- 3 2.10000+ 1 2.50000+ 1 7.20896- 3 1.90758- 3 2.10000+ 1 2.70000+ 1 9.53566- 5 1.86281- 3 2.10000+ 1 2.90000+ 1 3.02204- 5 1.89047- 3 2.10000+ 1 3.00000+ 1 3.24362- 3 1.89973- 3 2.10000+ 1 3.20000+ 1 5.37264- 6 1.93461- 3 2.10000+ 1 3.30000+ 1 6.31243- 5 1.93532- 3 2.10000+ 1 4.10000+ 1 8.05845- 6 1.93431- 3 2.20000+ 1 2.20000+ 1 2.28784- 3 1.72266- 3 2.20000+ 1 2.40000+ 1 5.83465- 3 1.91724- 3 2.20000+ 1 2.50000+ 1 4.97512- 3 1.91934- 3 2.20000+ 1 2.70000+ 1 1.08784- 4 1.87457- 3 2.20000+ 1 2.90000+ 1 2.94096- 4 1.90223- 3 2.20000+ 1 3.00000+ 1 4.23604- 3 1.91149- 3 2.20000+ 1 3.20000+ 1 6.71530- 5 1.94637- 3 2.20000+ 1 3.30000+ 1 5.77505- 5 1.94708- 3 2.20000+ 1 4.10000+ 1 9.40130- 6 1.94607- 3 2.40000+ 1 2.40000+ 1 7.42712- 4 2.11182- 3 2.40000+ 1 2.50000+ 1 2.00618- 2 2.11392- 3 2.40000+ 1 2.70000+ 1 1.27589- 4 2.06915- 3 2.40000+ 1 2.90000+ 1 1.66541- 4 2.09681- 3 2.40000+ 1 3.00000+ 1 2.12672- 3 2.10607- 3 2.40000+ 1 3.20000+ 1 1.00729- 5 2.14095- 3 2.40000+ 1 3.30000+ 1 7.85689- 5 2.14166- 3 2.40000+ 1 4.10000+ 1 1.07443- 5 2.14065- 3 2.50000+ 1 2.50000+ 1 7.82117- 3 2.11602- 3 2.50000+ 1 2.70000+ 1 1.69895- 4 2.07125- 3 2.50000+ 1 2.90000+ 1 9.51563- 4 2.09891- 3 2.50000+ 1 3.00000+ 1 2.50021- 3 2.10817- 3 2.50000+ 1 3.20000+ 1 1.06772- 4 2.14305- 3 2.50000+ 1 3.30000+ 1 7.11806- 5 2.14376- 3 2.50000+ 1 4.10000+ 1 1.41020- 5 2.14275- 3 2.70000+ 1 2.70000+ 1 1.65971- 5 2.02648- 3 2.70000+ 1 2.90000+ 1 1.97092- 5 2.05414- 3 2.70000+ 1 3.00000+ 1 3.60989- 4 2.06340- 3 2.70000+ 1 3.20000+ 1 2.07463- 6 2.09828- 3 2.70000+ 1 3.30000+ 1 2.07463- 6 2.09899- 3 2.70000+ 1 4.10000+ 1 3.11200- 6 2.09798- 3 2.90000+ 1 2.90000+ 1 1.17540- 6 2.08180- 3 2.90000+ 1 3.00000+ 1 4.17258- 4 2.09106- 3 2.90000+ 1 3.20000+ 1 1.17540- 6 2.12594- 3 2.90000+ 1 3.30000+ 1 5.87657- 6 2.12665- 3 2.90000+ 1 4.10000+ 1 2.35071- 6 2.12564- 3 3.00000+ 1 3.00000+ 1 1.20636- 3 2.10032- 3 3.00000+ 1 3.20000+ 1 1.89236- 4 2.13520- 3 3.00000+ 1 3.30000+ 1 2.33919- 4 2.13591- 3 3.00000+ 1 4.10000+ 1 8.14734- 5 2.13490- 3 3.20000+ 1 3.30000+ 1 6.71554- 7 2.17079- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.24028- 3 1.34089- 3 1.90000+ 1 2.37508- 4 1.40494- 3 2.40000+ 1 1.52899- 2 1.76616- 3 2.90000+ 1 5.10726- 4 1.75115- 3 3.00000+ 1 5.41656- 5 1.76041- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.03784- 1 2.45600- 5 1.40000+ 1 2.50000+ 1 1.41195- 2 2.66600- 5 1.40000+ 1 2.90000+ 1 5.45308- 4 9.55000- 6 1.40000+ 1 3.00000+ 1 1.56207- 3 1.88100- 5 1.40000+ 1 3.20000+ 1 1.79167- 3 5.36900- 5 1.40000+ 1 3.30000+ 1 2.37861- 4 5.44000- 5 1.40000+ 1 4.10000+ 1 1.28989- 4 5.33900- 5 1.60000+ 1 1.60000+ 1 3.68896- 5 6.93000- 4 1.60000+ 1 1.80000+ 1 1.70310- 3 7.86240- 4 1.60000+ 1 1.90000+ 1 1.19435- 3 8.50290- 4 1.60000+ 1 2.10000+ 1 4.30633- 2 1.00517- 3 1.60000+ 1 2.20000+ 1 5.09700- 3 1.01693- 3 1.60000+ 1 2.40000+ 1 1.44339- 2 1.21151- 3 1.60000+ 1 2.50000+ 1 4.44685- 3 1.21361- 3 1.60000+ 1 2.70000+ 1 2.15193- 5 1.16884- 3 1.60000+ 1 2.90000+ 1 1.90600- 4 1.19650- 3 1.60000+ 1 3.00000+ 1 1.09137- 4 1.20576- 3 1.60000+ 1 3.20000+ 1 4.93410- 4 1.24064- 3 1.60000+ 1 3.30000+ 1 5.68737- 5 1.24135- 3 1.60000+ 1 4.10000+ 1 1.53702- 6 1.24034- 3 1.80000+ 1 1.80000+ 1 9.97620- 4 8.79480- 4 1.80000+ 1 1.90000+ 1 6.25448- 3 9.43530- 4 1.80000+ 1 2.10000+ 1 3.77569- 2 1.09841- 3 1.80000+ 1 2.20000+ 1 2.97126- 3 1.11017- 3 1.80000+ 1 2.40000+ 1 9.05977- 3 1.30475- 3 1.80000+ 1 2.50000+ 1 4.57461- 3 1.30685- 3 1.80000+ 1 2.70000+ 1 1.96755- 4 1.26208- 3 1.80000+ 1 2.90000+ 1 2.25958- 4 1.28974- 3 1.80000+ 1 3.00000+ 1 6.39472- 4 1.29900- 3 1.80000+ 1 3.20000+ 1 4.30396- 4 1.33388- 3 1.80000+ 1 3.30000+ 1 3.84283- 5 1.33459- 3 1.80000+ 1 4.10000+ 1 1.69085- 5 1.33358- 3 1.90000+ 1 1.90000+ 1 2.24107- 3 1.00758- 3 1.90000+ 1 2.10000+ 1 7.82715- 2 1.16246- 3 1.90000+ 1 2.20000+ 1 2.94814- 3 1.17422- 3 1.90000+ 1 2.40000+ 1 4.38540- 3 1.36880- 3 1.90000+ 1 2.50000+ 1 2.44860- 3 1.37090- 3 1.90000+ 1 2.70000+ 1 1.55248- 4 1.32613- 3 1.90000+ 1 2.90000+ 1 5.96417- 4 1.35379- 3 1.90000+ 1 3.00000+ 1 4.39609- 4 1.36305- 3 1.90000+ 1 3.20000+ 1 9.00732- 4 1.39793- 3 1.90000+ 1 3.30000+ 1 3.38184- 5 1.39864- 3 1.90000+ 1 4.10000+ 1 1.38344- 5 1.39763- 3 2.10000+ 1 2.10000+ 1 6.76820- 2 1.31734- 3 2.10000+ 1 2.20000+ 1 1.35807- 1 1.32910- 3 2.10000+ 1 2.40000+ 1 5.71799- 2 1.52368- 3 2.10000+ 1 2.50000+ 1 7.08331- 2 1.52578- 3 2.10000+ 1 2.70000+ 1 6.67606- 3 1.48101- 3 2.10000+ 1 2.90000+ 1 5.29239- 3 1.50867- 3 2.10000+ 1 3.00000+ 1 1.02236- 2 1.51793- 3 2.10000+ 1 3.20000+ 1 1.79527- 3 1.55281- 3 2.10000+ 1 3.30000+ 1 1.88755- 3 1.55352- 3 2.10000+ 1 4.10000+ 1 5.90269- 4 1.55251- 3 2.20000+ 1 2.20000+ 1 2.21189- 3 1.34086- 3 2.20000+ 1 2.40000+ 1 6.12748- 2 1.53544- 3 2.20000+ 1 2.50000+ 1 3.29705- 3 1.53754- 3 2.20000+ 1 2.70000+ 1 4.50379- 4 1.49277- 3 2.20000+ 1 2.90000+ 1 2.76674- 4 1.52043- 3 2.20000+ 1 3.00000+ 1 3.18181- 4 1.52969- 3 2.20000+ 1 3.20000+ 1 1.57241- 3 1.56457- 3 2.20000+ 1 3.30000+ 1 5.22616- 5 1.56528- 3 2.20000+ 1 4.10000+ 1 3.68900- 5 1.56427- 3 2.40000+ 1 2.40000+ 1 4.90855- 2 1.73002- 3 2.40000+ 1 2.50000+ 1 1.42605- 1 1.73212- 3 2.40000+ 1 2.70000+ 1 2.30883- 3 1.68735- 3 2.40000+ 1 2.90000+ 1 1.05452- 3 1.71501- 3 2.40000+ 1 3.00000+ 1 5.68755- 4 1.72427- 3 2.40000+ 1 3.20000+ 1 6.94776- 4 1.75915- 3 2.40000+ 1 3.30000+ 1 8.22382- 4 1.75986- 3 2.40000+ 1 4.10000+ 1 2.09049- 4 1.75885- 3 2.50000+ 1 2.50000+ 1 3.46873- 3 1.73422- 3 2.50000+ 1 2.70000+ 1 5.95216- 4 1.68945- 3 2.50000+ 1 2.90000+ 1 3.54295- 4 1.71711- 3 2.50000+ 1 3.00000+ 1 3.34805- 4 1.72637- 3 2.50000+ 1 3.20000+ 1 8.85714- 4 1.76125- 3 2.50000+ 1 3.30000+ 1 4.78294- 5 1.76196- 3 2.50000+ 1 4.10000+ 1 5.13728- 5 1.76095- 3 2.70000+ 1 2.70000+ 1 6.12800- 6 1.64468- 3 2.70000+ 1 2.90000+ 1 9.19222- 5 1.67234- 3 2.70000+ 1 3.00000+ 1 6.12800- 5 1.68160- 3 2.70000+ 1 3.20000+ 1 3.06404- 4 1.71648- 3 2.70000+ 1 3.30000+ 1 2.45125- 5 1.71719- 3 2.90000+ 1 2.90000+ 1 7.61104- 5 1.70000- 3 2.90000+ 1 3.00000+ 1 3.55158- 4 1.70926- 3 2.90000+ 1 3.20000+ 1 3.29797- 4 1.74414- 3 2.90000+ 1 3.30000+ 1 1.69129- 5 1.74485- 3 2.90000+ 1 4.10000+ 1 8.45611- 6 1.74384- 3 3.00000+ 1 3.00000+ 1 1.89628- 4 1.71852- 3 3.00000+ 1 3.20000+ 1 9.73437- 4 1.75340- 3 3.00000+ 1 3.30000+ 1 2.52842- 5 1.75411- 3 3.00000+ 1 4.10000+ 1 1.26416- 5 1.75310- 3 3.20000+ 1 3.20000+ 1 3.07417- 6 1.78828- 3 3.20000+ 1 3.30000+ 1 2.15194- 5 1.78899- 3 3.20000+ 1 4.10000+ 1 6.14823- 6 1.78798- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.00729- 3 1.34424- 3 2.40000+ 1 8.35565- 4 1.70546- 3 2.50000+ 1 1.62519- 2 1.70756- 3 3.00000+ 1 5.40177- 4 1.69971- 3 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.37925- 6 6.32300- 4 1.60000+ 1 1.80000+ 1 3.98755- 4 7.25540- 4 1.60000+ 1 1.90000+ 1 3.01271- 3 7.89590- 4 1.60000+ 1 2.10000+ 1 4.58409- 3 9.44470- 4 1.60000+ 1 2.20000+ 1 5.07490- 2 9.56230- 4 1.60000+ 1 2.40000+ 1 4.85607- 3 1.15081- 3 1.60000+ 1 2.50000+ 1 1.68019- 2 1.15291- 3 1.60000+ 1 2.70000+ 1 1.35176- 5 1.10814- 3 1.60000+ 1 2.90000+ 1 2.19655- 5 1.13580- 3 1.60000+ 1 3.00000+ 1 2.90618- 4 1.14506- 3 1.60000+ 1 3.20000+ 1 5.23787- 5 1.17994- 3 1.60000+ 1 3.30000+ 1 5.47455- 4 1.18065- 3 1.60000+ 1 4.10000+ 1 1.68967- 6 1.17964- 3 1.80000+ 1 1.80000+ 1 5.06901- 6 8.18780- 4 1.80000+ 1 1.90000+ 1 7.64077- 3 8.82830- 4 1.80000+ 1 2.10000+ 1 4.08898- 4 1.03771- 3 1.80000+ 1 2.20000+ 1 5.16805- 2 1.04947- 3 1.80000+ 1 2.40000+ 1 2.28780- 3 1.24405- 3 1.80000+ 1 2.50000+ 1 8.47728- 3 1.24615- 3 1.80000+ 1 2.70000+ 1 4.39318- 5 1.20138- 3 1.80000+ 1 2.90000+ 1 3.37925- 6 1.22904- 3 1.80000+ 1 3.00000+ 1 7.31602- 4 1.23830- 3 1.80000+ 1 3.20000+ 1 1.68967- 6 1.27318- 3 1.80000+ 1 3.30000+ 1 5.59274- 4 1.27389- 3 1.80000+ 1 4.10000+ 1 3.37925- 6 1.27288- 3 1.90000+ 1 1.90000+ 1 5.58273- 3 9.46880- 4 1.90000+ 1 2.10000+ 1 4.84097- 3 1.10176- 3 1.90000+ 1 2.20000+ 1 8.02156- 2 1.11352- 3 1.90000+ 1 2.40000+ 1 2.94850- 3 1.30810- 3 1.90000+ 1 2.50000+ 1 6.35681- 3 1.31020- 3 1.90000+ 1 2.70000+ 1 3.97073- 4 1.26543- 3 1.90000+ 1 2.90000+ 1 7.09638- 4 1.29309- 3 1.90000+ 1 3.00000+ 1 1.10501- 3 1.30235- 3 1.90000+ 1 3.20000+ 1 6.42074- 5 1.33723- 3 1.90000+ 1 3.30000+ 1 8.65121- 4 1.33794- 3 1.90000+ 1 4.10000+ 1 3.37928- 5 1.33693- 3 2.10000+ 1 2.10000+ 1 1.04419- 3 1.25664- 3 2.10000+ 1 2.20000+ 1 1.06873- 1 1.26840- 3 2.10000+ 1 2.40000+ 1 3.05497- 3 1.46298- 3 2.10000+ 1 2.50000+ 1 4.12180- 2 1.46508- 3 2.10000+ 1 2.70000+ 1 3.90327- 4 1.42031- 3 2.10000+ 1 2.90000+ 1 6.08301- 5 1.44797- 3 2.10000+ 1 3.00000+ 1 4.74807- 4 1.45723- 3 2.10000+ 1 3.20000+ 1 2.53462- 5 1.49211- 3 2.10000+ 1 3.30000+ 1 1.16587- 3 1.49282- 3 2.10000+ 1 4.10000+ 1 3.21047- 5 1.49181- 3 2.20000+ 1 2.20000+ 1 1.20603- 1 1.28016- 3 2.20000+ 1 2.40000+ 1 6.84224- 2 1.47474- 3 2.20000+ 1 2.50000+ 1 1.05892- 1 1.47684- 3 2.20000+ 1 2.70000+ 1 7.60364- 3 1.43207- 3 2.20000+ 1 2.90000+ 1 6.96342- 3 1.45973- 3 2.20000+ 1 3.00000+ 1 1.05453- 2 1.46899- 3 2.20000+ 1 3.20000+ 1 1.57467- 3 1.50387- 3 2.20000+ 1 3.30000+ 1 2.99234- 3 1.50458- 3 2.20000+ 1 4.10000+ 1 6.70819- 4 1.50357- 3 2.40000+ 1 2.40000+ 1 4.26128- 3 1.66932- 3 2.40000+ 1 2.50000+ 1 1.36384- 1 1.67142- 3 2.40000+ 1 2.70000+ 1 5.99834- 4 1.62665- 3 2.40000+ 1 2.90000+ 1 2.85555- 4 1.65431- 3 2.40000+ 1 3.00000+ 1 3.09213- 4 1.66357- 3 2.40000+ 1 3.20000+ 1 4.39323- 5 1.69845- 3 2.40000+ 1 3.30000+ 1 7.13049- 4 1.69916- 3 2.40000+ 1 4.10000+ 1 5.23792- 5 1.69815- 3 2.50000+ 1 2.50000+ 1 9.28822- 2 1.67352- 3 2.50000+ 1 2.70000+ 1 2.60715- 3 1.62875- 3 2.50000+ 1 2.90000+ 1 1.13891- 3 1.65641- 3 2.50000+ 1 3.00000+ 1 7.73889- 4 1.66567- 3 2.50000+ 1 3.20000+ 1 5.81244- 4 1.70055- 3 2.50000+ 1 3.30000+ 1 1.23346- 3 1.70126- 3 2.50000+ 1 4.10000+ 1 2.36550- 4 1.70025- 3 2.70000+ 1 2.70000+ 1 8.60294- 6 1.58398- 3 2.70000+ 1 2.90000+ 1 8.60294- 6 1.61164- 3 2.70000+ 1 3.00000+ 1 2.06468- 4 1.62090- 3 2.70000+ 1 3.20000+ 1 2.58088- 5 1.65578- 3 2.70000+ 1 3.30000+ 1 4.21534- 4 1.65649- 3 2.90000+ 1 3.00000+ 1 3.00178- 4 1.64856- 3 2.90000+ 1 3.30000+ 1 3.14139- 4 1.68415- 3 3.00000+ 1 3.00000+ 1 3.20528- 4 1.65782- 3 3.00000+ 1 3.20000+ 1 3.88509- 5 1.69270- 3 3.00000+ 1 3.30000+ 1 6.60490- 4 1.69341- 3 3.00000+ 1 4.10000+ 1 1.94255- 5 1.69240- 3 3.20000+ 1 3.30000+ 1 1.68969- 5 1.72829- 3 3.30000+ 1 3.30000+ 1 1.01374- 5 1.72900- 3 3.30000+ 1 4.10000+ 1 6.75848- 6 1.72799- 3 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.85882- 5 9.32400- 5 1.90000+ 1 1.86137- 4 1.57290- 4 2.90000+ 1 1.01210- 4 5.03500- 4 3.00000+ 1 5.71138- 5 5.12760- 4 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.93846- 2 5.71000- 5 1.80000+ 1 2.50000+ 1 2.26764- 2 5.92000- 5 1.80000+ 1 2.70000+ 1 3.51996- 2 1.44300- 5 1.80000+ 1 2.90000+ 1 3.09612- 2 4.20900- 5 1.80000+ 1 3.00000+ 1 5.69657- 2 5.13500- 5 1.80000+ 1 3.20000+ 1 5.71003- 3 8.62300- 5 1.80000+ 1 3.30000+ 1 9.77611- 3 8.69400- 5 1.80000+ 1 4.10000+ 1 3.11042- 3 8.59300- 5 1.90000+ 1 2.40000+ 1 1.30630- 1 1.21150- 4 1.90000+ 1 2.50000+ 1 1.61460- 1 1.23250- 4 1.90000+ 1 2.70000+ 1 4.14303- 2 7.84800- 5 1.90000+ 1 2.90000+ 1 4.45420- 2 1.06140- 4 1.90000+ 1 3.00000+ 1 5.18570- 2 1.15400- 4 1.90000+ 1 3.20000+ 1 7.64776- 3 1.50280- 4 1.90000+ 1 3.30000+ 1 8.86178- 3 1.50990- 4 1.90000+ 1 4.10000+ 1 3.58076- 3 1.49980- 4 2.10000+ 1 2.10000+ 1 3.73797- 3 6.96900- 5 2.10000+ 1 2.20000+ 1 1.16921- 2 8.14500- 5 2.10000+ 1 2.40000+ 1 4.83355- 3 2.76030- 4 2.10000+ 1 2.50000+ 1 1.07891- 2 2.78130- 4 2.10000+ 1 2.70000+ 1 1.48289- 2 2.33360- 4 2.10000+ 1 2.90000+ 1 3.49723- 3 2.61020- 4 2.10000+ 1 3.00000+ 1 7.78082- 3 2.70280- 4 2.10000+ 1 3.20000+ 1 2.29275- 4 3.05160- 4 2.10000+ 1 3.30000+ 1 2.02388- 4 3.05870- 4 2.10000+ 1 4.10000+ 1 1.05001- 3 3.04860- 4 2.20000+ 1 2.20000+ 1 7.61645- 3 9.32100- 5 2.20000+ 1 2.40000+ 1 1.22621- 2 2.87790- 4 2.20000+ 1 2.50000+ 1 1.10392- 2 2.89890- 4 2.20000+ 1 2.70000+ 1 2.11194- 2 2.45120- 4 2.20000+ 1 2.90000+ 1 8.17254- 3 2.72780- 4 2.20000+ 1 3.00000+ 1 7.53304- 3 2.82040- 4 2.20000+ 1 3.20000+ 1 1.91368- 4 3.16920- 4 2.20000+ 1 3.30000+ 1 3.28940- 4 3.17630- 4 2.20000+ 1 4.10000+ 1 1.49154- 3 3.16620- 4 2.40000+ 1 2.40000+ 1 6.41927- 3 4.82370- 4 2.40000+ 1 2.50000+ 1 1.41992- 2 4.84470- 4 2.40000+ 1 2.70000+ 1 1.49494- 2 4.39700- 4 2.40000+ 1 2.90000+ 1 1.83906- 3 4.67360- 4 2.40000+ 1 3.00000+ 1 5.15320- 3 4.76620- 4 2.40000+ 1 3.20000+ 1 8.65373- 5 5.11500- 4 2.40000+ 1 3.30000+ 1 6.03297- 5 5.12210- 4 2.40000+ 1 4.10000+ 1 9.68921- 4 5.11200- 4 2.50000+ 1 2.50000+ 1 1.07128- 2 4.86570- 4 2.50000+ 1 2.70000+ 1 1.93840- 2 4.41800- 4 2.50000+ 1 2.90000+ 1 1.07547- 3 4.69460- 4 2.50000+ 1 3.00000+ 1 6.31061- 3 4.78720- 4 2.50000+ 1 3.20000+ 1 5.49544- 5 5.13600- 4 2.50000+ 1 3.30000+ 1 1.26877- 4 5.14310- 4 2.50000+ 1 4.10000+ 1 1.25410- 3 5.13300- 4 2.70000+ 1 2.70000+ 1 2.17117- 2 3.97030- 4 2.70000+ 1 2.90000+ 1 2.77113- 2 4.24690- 4 2.70000+ 1 3.00000+ 1 4.56069- 2 4.33950- 4 2.70000+ 1 3.20000+ 1 5.67098- 3 4.68830- 4 2.70000+ 1 3.30000+ 1 7.58546- 3 4.69540- 4 2.70000+ 1 4.10000+ 1 3.38611- 3 4.68530- 4 2.90000+ 1 2.90000+ 1 3.47481- 3 4.52350- 4 2.90000+ 1 3.00000+ 1 1.43850- 2 4.61610- 4 2.90000+ 1 3.20000+ 1 8.20835- 4 4.96490- 4 2.90000+ 1 3.30000+ 1 8.55025- 4 4.97200- 4 2.90000+ 1 4.10000+ 1 2.92077- 3 4.96190- 4 3.00000+ 1 3.00000+ 1 1.12626- 2 4.70870- 4 3.00000+ 1 3.20000+ 1 1.15404- 3 5.05750- 4 3.00000+ 1 3.30000+ 1 1.69546- 3 5.06460- 4 3.00000+ 1 4.10000+ 1 5.08628- 3 5.05450- 4 3.20000+ 1 3.20000+ 1 6.84020- 6 5.40630- 4 3.20000+ 1 3.30000+ 1 8.89233- 5 5.41340- 4 3.20000+ 1 4.10000+ 1 6.01922- 4 5.40330- 4 3.30000+ 1 3.30000+ 1 2.73596- 5 5.42050- 4 3.30000+ 1 4.10000+ 1 8.00318- 4 5.41040- 4 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.41862- 4 2.18930- 4 2.70000+ 1 1.41427- 4 3.82600- 4 3.20000+ 1 1.98276- 6 4.54400- 4 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 5.14507- 2 2.79100- 5 1.90000+ 1 2.50000+ 1 4.19523- 2 3.00100- 5 1.90000+ 1 2.90000+ 1 1.03565- 2 1.29000- 5 1.90000+ 1 3.00000+ 1 1.05299- 2 2.21600- 5 1.90000+ 1 3.20000+ 1 9.64622- 4 5.70400- 5 1.90000+ 1 3.30000+ 1 1.42349- 3 5.77500- 5 1.90000+ 1 4.10000+ 1 1.17100- 3 5.67400- 5 2.10000+ 1 2.40000+ 1 1.58797- 1 1.82790- 4 2.10000+ 1 2.50000+ 1 3.38280- 1 1.84890- 4 2.10000+ 1 2.70000+ 1 3.51913- 2 1.40120- 4 2.10000+ 1 2.90000+ 1 2.57054- 2 1.67780- 4 2.10000+ 1 3.00000+ 1 4.11683- 2 1.77040- 4 2.10000+ 1 3.20000+ 1 3.40436- 3 2.11920- 4 2.10000+ 1 3.30000+ 1 6.04771- 3 2.12630- 4 2.10000+ 1 4.10000+ 1 3.11837- 3 2.11620- 4 2.20000+ 1 2.20000+ 1 4.38808- 3 0.00000+ 0 2.20000+ 1 2.40000+ 1 4.15020- 2 1.94550- 4 2.20000+ 1 2.50000+ 1 1.07465- 2 1.96650- 4 2.20000+ 1 2.70000+ 1 5.53340- 3 1.51880- 4 2.20000+ 1 2.90000+ 1 2.27796- 2 1.79540- 4 2.20000+ 1 3.00000+ 1 4.69734- 3 1.88800- 4 2.20000+ 1 3.20000+ 1 5.53375- 4 2.23680- 4 2.20000+ 1 3.30000+ 1 3.31494- 4 2.24390- 4 2.20000+ 1 4.10000+ 1 4.14061- 4 2.23380- 4 2.40000+ 1 2.40000+ 1 3.07762- 3 3.89130- 4 2.40000+ 1 2.50000+ 1 2.11822- 2 3.91230- 4 2.40000+ 1 2.70000+ 1 3.72419- 3 3.46460- 4 2.40000+ 1 2.90000+ 1 1.53574- 2 3.74120- 4 2.40000+ 1 3.00000+ 1 3.84466- 3 3.83380- 4 2.40000+ 1 3.20000+ 1 6.29295- 4 4.18260- 4 2.40000+ 1 3.30000+ 1 2.26674- 4 4.18970- 4 2.40000+ 1 4.10000+ 1 3.25296- 4 4.17960- 4 2.50000+ 1 2.50000+ 1 1.18231- 3 3.93330- 4 2.50000+ 1 2.70000+ 1 2.88256- 3 3.48560- 4 2.50000+ 1 2.90000+ 1 3.45047- 2 3.76220- 4 2.50000+ 1 3.00000+ 1 2.24458- 3 3.85480- 4 2.50000+ 1 3.20000+ 1 1.72352- 3 4.20360- 4 2.50000+ 1 3.30000+ 1 1.17316- 4 4.21070- 4 2.50000+ 1 4.10000+ 1 2.10482- 4 4.20060- 4 2.70000+ 1 2.70000+ 1 5.65340- 4 3.03790- 4 2.70000+ 1 2.90000+ 1 8.33666- 3 3.31450- 4 2.70000+ 1 3.00000+ 1 1.42510- 3 3.40710- 4 2.70000+ 1 3.20000+ 1 3.32294- 4 3.75590- 4 2.70000+ 1 3.30000+ 1 2.01835- 4 3.76300- 4 2.70000+ 1 4.10000+ 1 8.36327- 5 3.75290- 4 2.90000+ 1 2.90000+ 1 1.56677- 2 3.59110- 4 2.90000+ 1 3.00000+ 1 4.26186- 2 3.68370- 4 2.90000+ 1 3.20000+ 1 4.33572- 3 4.03250- 4 2.90000+ 1 3.30000+ 1 7.08892- 3 4.03960- 4 2.90000+ 1 4.10000+ 1 2.40211- 3 4.02950- 4 3.00000+ 1 3.00000+ 1 2.01351- 3 3.77630- 4 3.00000+ 1 3.20000+ 1 1.52853- 3 4.12510- 4 3.00000+ 1 3.30000+ 1 4.72000- 4 4.13220- 4 3.00000+ 1 4.10000+ 1 3.89703- 4 4.12210- 4 3.20000+ 1 3.20000+ 1 5.30418- 7 4.47390- 4 3.20000+ 1 3.30000+ 1 6.01143- 6 4.48100- 4 3.20000+ 1 4.10000+ 1 4.59701- 6 4.47090- 4 3.30000+ 1 3.30000+ 1 3.53591- 7 4.48810- 4 3.30000+ 1 4.10000+ 1 2.29837- 6 4.47800- 4 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.51616- 5 1.54880- 4 2.20000+ 1 1.70289- 4 1.66640- 4 2.70000+ 1 9.88312- 5 3.18550- 4 3.20000+ 1 5.88093- 7 3.90350- 4 3.30000+ 1 3.21129- 6 3.91060- 4 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.69513- 2 1.18740- 4 2.10000+ 1 2.50000+ 1 4.84826- 2 1.20840- 4 2.10000+ 1 2.70000+ 1 1.23031- 2 7.60700- 5 2.10000+ 1 2.90000+ 1 9.51935- 3 1.03730- 4 2.10000+ 1 3.00000+ 1 3.35729- 2 1.12990- 4 2.10000+ 1 3.20000+ 1 1.26544- 3 1.47870- 4 2.10000+ 1 3.30000+ 1 2.54048- 3 1.48580- 4 2.10000+ 1 4.10000+ 1 1.04401- 3 1.47570- 4 2.20000+ 1 2.40000+ 1 2.28765- 1 1.30500- 4 2.20000+ 1 2.50000+ 1 2.44619- 1 1.32600- 4 2.20000+ 1 2.70000+ 1 6.30448- 2 8.78300- 5 2.20000+ 1 2.90000+ 1 6.38846- 2 1.15490- 4 2.20000+ 1 3.00000+ 1 8.71212- 2 1.24750- 4 2.20000+ 1 3.20000+ 1 1.07139- 2 1.59630- 4 2.20000+ 1 3.30000+ 1 1.16998- 2 1.60340- 4 2.20000+ 1 4.10000+ 1 5.62757- 3 1.59330- 4 2.40000+ 1 2.40000+ 1 7.97090- 4 3.25080- 4 2.40000+ 1 2.50000+ 1 2.16602- 2 3.27180- 4 2.40000+ 1 2.70000+ 1 4.95629- 3 2.82410- 4 2.40000+ 1 2.90000+ 1 2.24960- 3 3.10070- 4 2.40000+ 1 3.00000+ 1 3.16050- 2 3.19330- 4 2.40000+ 1 3.20000+ 1 1.36139- 4 3.54210- 4 2.40000+ 1 3.30000+ 1 8.12817- 4 3.54920- 4 2.40000+ 1 4.10000+ 1 3.28480- 4 3.53910- 4 2.50000+ 1 2.50000+ 1 9.03065- 3 3.29280- 4 2.50000+ 1 2.70000+ 1 1.04842- 2 2.84510- 4 2.50000+ 1 2.90000+ 1 8.59596- 3 3.12170- 4 2.50000+ 1 3.00000+ 1 3.82914- 2 3.21430- 4 2.50000+ 1 3.20000+ 1 1.57455- 4 3.56310- 4 2.50000+ 1 3.30000+ 1 9.76388- 4 3.57020- 4 2.50000+ 1 4.10000+ 1 7.78445- 4 3.56010- 4 2.70000+ 1 2.70000+ 1 7.10059- 6 2.39740- 4 2.70000+ 1 2.90000+ 1 3.06018- 4 2.67400- 4 2.70000+ 1 3.00000+ 1 6.00556- 3 2.76660- 4 2.70000+ 1 3.20000+ 1 9.23047- 5 3.11540- 4 2.70000+ 1 3.30000+ 1 1.80347- 4 3.12250- 4 2.70000+ 1 4.10000+ 1 2.13010- 6 3.11240- 4 2.90000+ 1 2.90000+ 1 2.23633- 5 2.95060- 4 2.90000+ 1 3.00000+ 1 4.44715- 3 3.04320- 4 2.90000+ 1 3.20000+ 1 3.72714- 5 3.39200- 4 2.90000+ 1 3.30000+ 1 1.34716- 4 3.39910- 4 2.90000+ 1 4.10000+ 1 1.75717- 5 3.38900- 4 3.00000+ 1 3.00000+ 1 1.15387- 2 3.13580- 4 3.00000+ 1 3.20000+ 1 1.77966- 3 3.48460- 4 3.00000+ 1 3.30000+ 1 2.28771- 3 3.49170- 4 3.00000+ 1 4.10000+ 1 8.15802- 4 3.48160- 4 3.20000+ 1 3.20000+ 1 2.66427- 7 3.83340- 4 3.20000+ 1 3.30000+ 1 9.85769- 6 3.84050- 4 3.20000+ 1 4.10000+ 1 2.39781- 6 3.83040- 4 3.30000+ 1 3.30000+ 1 4.26222- 6 3.84760- 4 3.30000+ 1 4.10000+ 1 5.86072- 6 3.83750- 4 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 8.75139- 5 2.06340- 4 2.90000+ 1 2.17630- 5 1.91330- 4 3.00000+ 1 3.17310- 6 2.00590- 4 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 1.06252- 2 4.75000- 6 2.20000+ 1 3.30000+ 1 1.60650- 3 5.46000- 6 2.20000+ 1 4.10000+ 1 5.13256- 4 4.45000- 6 2.40000+ 1 2.40000+ 1 1.71824- 1 1.70200- 4 2.40000+ 1 2.50000+ 1 5.36650- 1 1.72300- 4 2.40000+ 1 2.70000+ 1 6.10593- 2 1.27530- 4 2.40000+ 1 2.90000+ 1 4.97362- 2 1.55190- 4 2.40000+ 1 3.00000+ 1 7.34702- 2 1.64450- 4 2.40000+ 1 3.20000+ 1 1.19726- 2 1.99330- 4 2.40000+ 1 3.30000+ 1 1.15502- 2 2.00040- 4 2.40000+ 1 4.10000+ 1 5.51632- 3 1.99030- 4 2.50000+ 1 2.50000+ 1 6.43579- 3 1.74400- 4 2.50000+ 1 2.70000+ 1 6.31609- 3 1.29630- 4 2.50000+ 1 2.90000+ 1 1.48644- 2 1.57290- 4 2.50000+ 1 3.00000+ 1 5.26643- 3 1.66550- 4 2.50000+ 1 3.20000+ 1 1.37670- 2 2.01430- 4 2.50000+ 1 3.30000+ 1 4.99934- 4 2.02140- 4 2.50000+ 1 4.10000+ 1 4.70311- 4 2.01130- 4 2.70000+ 1 2.70000+ 1 1.23000- 3 8.48600- 5 2.70000+ 1 2.90000+ 1 1.59855- 3 1.12520- 4 2.70000+ 1 3.00000+ 1 1.74150- 3 1.21780- 4 2.70000+ 1 3.20000+ 1 1.19383- 3 1.56660- 4 2.70000+ 1 3.30000+ 1 4.24054- 4 1.57370- 4 2.70000+ 1 4.10000+ 1 1.23350- 4 1.56360- 4 2.90000+ 1 2.90000+ 1 1.07679- 3 1.40180- 4 2.90000+ 1 3.00000+ 1 3.68833- 3 1.49440- 4 2.90000+ 1 3.20000+ 1 1.41639- 3 1.84320- 4 2.90000+ 1 3.30000+ 1 3.99162- 4 1.85030- 4 2.90000+ 1 4.10000+ 1 1.74822- 4 1.84020- 4 3.00000+ 1 3.00000+ 1 1.43317- 3 1.58700- 4 3.00000+ 1 3.20000+ 1 2.56762- 3 1.93580- 4 3.00000+ 1 3.30000+ 1 2.34746- 4 1.94290- 4 3.00000+ 1 4.10000+ 1 1.25458- 4 1.93280- 4 3.20000+ 1 3.20000+ 1 2.31732- 5 2.28460- 4 3.20000+ 1 3.30000+ 1 1.97551- 4 2.29170- 4 3.20000+ 1 4.10000+ 1 8.16757- 5 2.28160- 4 3.30000+ 1 3.30000+ 1 2.27934- 6 2.29880- 4 3.30000+ 1 4.10000+ 1 1.13966- 5 2.28870- 4 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.01191- 6 1.94580- 4 2.50000+ 1 8.35822- 5 1.96680- 4 3.00000+ 1 2.04160- 5 1.88830- 4 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.07753- 2 1.58440- 4 2.40000+ 1 2.50000+ 1 4.01114- 1 1.60540- 4 2.40000+ 1 2.70000+ 1 8.30668- 3 1.15770- 4 2.40000+ 1 2.90000+ 1 4.81467- 3 1.43430- 4 2.40000+ 1 3.00000+ 1 1.35695- 2 1.52690- 4 2.40000+ 1 3.20000+ 1 6.29981- 4 1.87570- 4 2.40000+ 1 3.30000+ 1 1.15094- 2 1.88280- 4 2.40000+ 1 4.10000+ 1 6.71562- 4 1.87270- 4 2.50000+ 1 2.50000+ 1 2.95150- 1 1.62640- 4 2.50000+ 1 2.70000+ 1 6.43531- 2 1.17870- 4 2.50000+ 1 2.90000+ 1 6.45152- 2 1.45530- 4 2.50000+ 1 3.00000+ 1 7.35274- 2 1.54790- 4 2.50000+ 1 3.20000+ 1 1.03333- 2 1.89670- 4 2.50000+ 1 3.30000+ 1 1.96467- 2 1.90380- 4 2.50000+ 1 4.10000+ 1 5.83500- 3 1.89370- 4 2.70000+ 1 2.70000+ 1 1.94456- 3 7.31000- 5 2.70000+ 1 2.90000+ 1 1.38104- 3 1.00760- 4 2.70000+ 1 3.00000+ 1 3.31421- 3 1.10020- 4 2.70000+ 1 3.20000+ 1 4.76655- 4 1.44900- 4 2.70000+ 1 3.30000+ 1 1.59275- 3 1.45610- 4 2.70000+ 1 4.10000+ 1 1.89196- 4 1.44600- 4 2.90000+ 1 2.90000+ 1 2.14886- 4 1.28420- 4 2.90000+ 1 3.00000+ 1 2.15696- 3 1.37680- 4 2.90000+ 1 3.20000+ 1 5.42293- 5 1.72560- 4 2.90000+ 1 3.30000+ 1 8.72572- 4 1.73270- 4 2.90000+ 1 4.10000+ 1 5.54544- 5 1.72260- 4 3.00000+ 1 3.00000+ 1 9.59825- 4 1.46940- 4 3.00000+ 1 3.20000+ 1 1.85114- 4 1.81820- 4 3.00000+ 1 3.30000+ 1 1.26892- 3 1.82530- 4 3.00000+ 1 4.10000+ 1 1.18242- 4 1.81520- 4 3.20000+ 1 3.20000+ 1 4.07745- 7 2.16700- 4 3.20000+ 1 3.30000+ 1 1.60652- 4 2.17410- 4 3.20000+ 1 4.10000+ 1 1.26402- 5 2.16400- 4 3.30000+ 1 3.30000+ 1 8.97071- 5 2.18120- 4 3.30000+ 1 4.10000+ 1 9.21533- 5 2.17110- 4 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.95370- 7 2.76600- 5 3.00000+ 1 1.91637- 6 3.69200- 5 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.99121- 1 2.03500- 5 3.00000+ 1 4.10000+ 1 5.93741- 1 2.96100- 5 4.10000+ 1 4.10000+ 1 7.13641- 3 6.41900- 5 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.72658- 8 4.41400- 5 4.10000+ 1 1.09740- 8 4.38400- 5 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 9.97476- 1 1.95000- 6 4.10000+ 1 4.10000+ 1 2.52359- 3 3.65300- 5 1 73000 0 7 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.36570- 9 3.48800- 5 3.30000+ 1 1.26780- 8 3.55900- 5 4.10000+ 1 4.27200- 9 3.45800- 5 1 73000 0 9 1.80948+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 4.10000+ 1 4.10000+ 1 1.00000+ 0 2.72700- 5 1 74000 0 0 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 1.60000+ 0 3.30000+ 1 2.40000+ 0 4.10000+ 1 2.00000+ 0 1 74000 0 0 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.96890- 2 3.00000+ 0 1.20770- 2 5.00000+ 0 1.15730- 2 6.00000+ 0 1.02060- 2 8.00000+ 0 2.79650- 3 1.00000+ 1 2.56780- 3 1.10000+ 1 2.27120- 3 1.30000+ 1 1.88110- 3 1.40000+ 1 1.81620- 3 1.60000+ 1 5.84700- 4 1.80000+ 1 4.88610- 4 1.90000+ 1 4.19620- 4 2.10000+ 1 2.60050- 4 2.20000+ 1 2.47340- 4 2.40000+ 1 4.56100- 5 2.50000+ 1 4.32500- 5 2.70000+ 1 8.51400- 5 2.90000+ 1 5.60200- 5 3.00000+ 1 4.56500- 5 3.20000+ 1 8.27000- 6 3.30000+ 1 7.41000- 6 4.10000+ 1 7.70000- 6 1 74000 0 0 1.83850+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.45810- 2 3.00000+ 0 2.22280- 2 5.00000+ 0 2.22210- 2 6.00000+ 0 1.70310- 2 8.00000+ 0 7.03030- 3 1.00000+ 1 6.92840- 3 1.10000+ 1 5.66250- 3 1.30000+ 1 5.52300- 3 1.40000+ 1 5.24260- 3 1.60000+ 1 2.24950- 3 1.80000+ 1 2.13400- 3 1.90000+ 1 1.75780- 3 2.10000+ 1 1.54770- 3 2.20000+ 1 1.46780- 3 2.40000+ 1 1.06090- 3 2.50000+ 1 1.03380- 3 2.70000+ 1 5.02410- 4 2.90000+ 1 4.13820- 4 3.00000+ 1 3.31240- 4 3.20000+ 1 1.55290- 4 3.30000+ 1 1.42100- 4 4.10000+ 1 5.74700- 5 1 74000 0 0 1.83850+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.69650-11 3.00000+ 0 4.05850-10 5.00000+ 0 3.35490-10 6.00000+ 0 3.77550-10 8.00000+ 0 1.05650- 9 1.00000+ 1 1.00290- 9 1.10000+ 1 1.08050- 9 1.30000+ 1 9.43770-10 1.40000+ 1 9.67710-10 1.60000+ 1 2.36450- 9 1.80000+ 1 2.38720- 9 1.90000+ 1 2.56100- 9 2.10000+ 1 2.64020- 9 2.20000+ 1 2.69850- 9 2.40000+ 1 3.08000- 9 2.50000+ 1 3.12480- 9 2.70000+ 1 5.56840- 9 2.90000+ 1 6.10130- 9 3.00000+ 1 6.63040- 9 3.20000+ 1 9.84710- 9 3.30000+ 1 1.02760- 8 4.10000+ 1 1.65890- 8 1 74000 0 0 1.83850+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.73890- 5 3.00000+ 0 8.04730- 7 5.00000+ 0 1.39730- 6 6.00000+ 0 1.24310- 6 8.00000+ 0 2.77680- 8 1.00000+ 1 2.94360- 8 1.10000+ 1 3.09540- 8 1.30000+ 1 3.63540- 8 1.40000+ 1 3.41610- 8 1.60000+ 1 8.22920-10 1.80000+ 1 1.45140- 9 1.90000+ 1 8.89140-10 2.10000+ 1 1.12620- 9 2.20000+ 1 9.91020-10 2.70000+ 1 4.13160-11 2.90000+ 1 2.99510-11 3.00000+ 1 2.04230-11 1 74000 0 0 1.83850+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.76490- 6 3.00000+ 0 1.08170- 5 5.00000+ 0 3.28890- 6 6.00000+ 0 3.38270- 6 8.00000+ 0 1.73580- 5 1.00000+ 1 1.15140- 5 1.10000+ 1 1.00870- 5 1.30000+ 1 2.47040- 6 1.40000+ 1 1.66410- 6 1.60000+ 1 1.44930- 5 1.80000+ 1 1.36030- 5 1.90000+ 1 1.00100- 5 2.10000+ 1 7.25140- 6 2.20000+ 1 6.86050- 6 2.70000+ 1 5.82170- 6 2.90000+ 1 2.12140- 6 3.00000+ 1 8.33710- 7 1 74000 0 0 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.47182- 4 3.00000+ 0 3.42461- 4 5.00000+ 0 2.57503- 4 6.00000+ 0 2.47722- 4 8.00000+ 0 2.32431- 4 1.00000+ 1 2.00897- 4 1.10000+ 1 1.82959- 4 1.30000+ 1 1.40762- 4 1.40000+ 1 1.33761- 4 1.60000+ 1 1.13831- 4 1.80000+ 1 1.09646- 4 1.90000+ 1 1.04752- 4 2.10000+ 1 8.11525- 5 2.20000+ 1 7.89130- 5 2.40000+ 1 4.56100- 5 2.50000+ 1 4.32500- 5 2.70000+ 1 2.53829- 5 2.90000+ 1 2.14872- 5 3.00000+ 1 1.55285- 5 3.20000+ 1 8.27000- 6 3.30000+ 1 7.41000- 6 4.10000+ 1 7.70000- 6 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22265+ 0 3.00000+ 0 3.20494- 1 5.00000+ 0 3.62029- 1 6.00000+ 0 2.94457- 1 8.00000+ 0 2.23019- 2 1.00000+ 1 2.23482- 2 1.10000+ 1 2.11948- 2 1.30000+ 1 2.26959- 2 1.40000+ 1 2.14920- 2 1.60000+ 1 7.68432- 4 1.80000+ 1 9.70518- 4 1.90000+ 1 4.13616- 4 2.10000+ 1 1.30953- 4 2.20000+ 1 1.23825- 4 2.70000+ 1 2.89575- 6 2.90000+ 1 1.79357- 7 3.00000+ 1 3.79800- 8 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.02154- 2 3.00000+ 0 2.59053- 3 5.00000+ 0 3.29215- 3 6.00000+ 0 2.30882- 3 8.00000+ 0 3.99801- 5 1.00000+ 1 3.98523- 5 1.10000+ 1 3.72603- 5 1.30000+ 1 3.98867- 5 1.40000+ 1 3.69344- 5 1.60000+ 1 2.15892- 7 1.80000+ 1 2.47207- 7 1.90000+ 1 9.34990- 8 2.10000+ 1 2.77615- 8 2.20000+ 1 2.51619- 8 2.70000+ 1 1.10005-10 2.90000+ 1 8.31158-12 3.00000+ 1 1.44772-12 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.88122+ 0 3.00000+ 0 9.94520+ 0 5.00000+ 0 7.18183+ 0 6.00000+ 0 6.83366+ 0 8.00000+ 0 6.62604+ 0 1.00000+ 1 5.48964+ 0 1.10000+ 1 4.86092+ 0 1.30000+ 1 3.27974+ 0 1.40000+ 1 3.14420+ 0 1.60000+ 1 4.10036+ 0 1.80000+ 1 2.91576+ 0 1.90000+ 1 2.80543+ 0 2.10000+ 1 1.40810+ 0 2.20000+ 1 1.41911+ 0 2.70000+ 1 2.24088+ 0 2.90000+ 1 1.72045+ 0 3.00000+ 1 1.00000+ 0 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.22640- 3 3.00000+ 0 9.14401- 3 5.00000+ 0 8.02335- 3 6.00000+ 0 7.64946- 3 8.00000+ 0 2.52409- 3 1.00000+ 1 2.32705- 3 1.10000+ 1 2.05098- 3 1.30000+ 1 1.70045- 3 1.40000+ 1 1.64550- 3 1.60000+ 1 4.70653- 4 1.80000+ 1 3.78717- 4 1.90000+ 1 3.14774- 4 2.10000+ 1 1.78870- 4 2.20000+ 1 1.68402- 4 2.70000+ 1 5.97570- 5 2.90000+ 1 3.45328- 5 3.00000+ 1 3.01215- 5 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.76548- 1 5.81160- 2 6.00000+ 0 4.80107- 1 5.94830- 2 1.00000+ 1 5.16247- 2 6.71212- 2 1.10000+ 1 9.97644- 2 6.74178- 2 1.30000+ 1 1.11609- 3 6.78079- 2 1.40000+ 1 1.40749- 3 6.78728- 2 1.80000+ 1 1.17459- 2 6.92004- 2 1.90000+ 1 2.27829- 2 6.92694- 2 2.10000+ 1 2.69498- 4 6.94289- 2 2.20000+ 1 3.38308- 4 6.94417- 2 2.90000+ 1 2.66968- 3 6.96330- 2 3.00000+ 1 5.46957- 3 6.96433- 2 3.20000+ 1 7.67775- 6 6.96807- 2 3.30000+ 1 9.23544- 6 6.96816- 2 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.60333- 3 4.55350- 2 3.00000+ 0 5.00000+ 0 6.65977- 3 4.60390- 2 3.00000+ 0 6.00000+ 0 4.66106- 3 4.74060- 2 3.00000+ 0 8.00000+ 0 1.81724- 3 5.48155- 2 3.00000+ 0 1.00000+ 1 1.41581- 3 5.50442- 2 3.00000+ 0 1.10000+ 1 1.05022- 3 5.53408- 2 3.00000+ 0 1.30000+ 1 8.45088- 5 5.57309- 2 3.00000+ 0 1.40000+ 1 7.05709- 5 5.57958- 2 3.00000+ 0 1.60000+ 1 4.39208- 4 5.70273- 2 3.00000+ 0 1.80000+ 1 3.31780- 4 5.71234- 2 3.00000+ 0 1.90000+ 1 2.43789- 4 5.71924- 2 3.00000+ 0 2.10000+ 1 2.02030- 5 5.73519- 2 3.00000+ 0 2.20000+ 1 1.66463- 5 5.73647- 2 3.00000+ 0 2.40000+ 1 7.11379- 8 5.75664- 2 3.00000+ 0 2.50000+ 1 7.11379- 8 5.75687- 2 3.00000+ 0 2.70000+ 1 7.75417- 5 5.75269- 2 3.00000+ 0 2.90000+ 1 4.93689- 5 5.75560- 2 3.00000+ 0 3.00000+ 1 3.45720- 5 5.75663- 2 3.00000+ 0 3.20000+ 1 1.20927- 6 5.76037- 2 3.00000+ 0 4.10000+ 1 6.90018- 6 5.76043- 2 5.00000+ 0 5.00000+ 0 4.63671- 4 4.65430- 2 5.00000+ 0 6.00000+ 0 8.71548- 3 4.79100- 2 5.00000+ 0 8.00000+ 0 1.12435- 3 5.53195- 2 5.00000+ 0 1.00000+ 1 1.73295- 4 5.55482- 2 5.00000+ 0 1.10000+ 1 1.63336- 3 5.58448- 2 5.00000+ 0 1.30000+ 1 8.97064- 5 5.62349- 2 5.00000+ 0 1.40000+ 1 2.55679- 4 5.62998- 2 5.00000+ 0 1.60000+ 1 2.62302- 4 5.75313- 2 5.00000+ 0 1.80000+ 1 3.94829- 5 5.76274- 2 5.00000+ 0 1.90000+ 1 3.64153- 4 5.76964- 2 5.00000+ 0 2.10000+ 1 2.07726- 5 5.78559- 2 5.00000+ 0 2.20000+ 1 5.91154- 5 5.78687- 2 5.00000+ 0 2.40000+ 1 4.26824- 7 5.80704- 2 5.00000+ 0 2.50000+ 1 7.11398- 7 5.80727- 2 5.00000+ 0 2.70000+ 1 4.59557- 5 5.80309- 2 5.00000+ 0 2.90000+ 1 5.83355- 6 5.80600- 2 5.00000+ 0 3.00000+ 1 5.12904- 5 5.80703- 2 5.00000+ 0 3.20000+ 1 1.20931- 6 5.81077- 2 5.00000+ 0 4.10000+ 1 4.12607- 6 5.81083- 2 6.00000+ 0 6.00000+ 0 3.91208- 3 4.92770- 2 6.00000+ 0 8.00000+ 0 7.28498- 4 5.66865- 2 6.00000+ 0 1.00000+ 1 1.52289- 3 5.69152- 2 6.00000+ 0 1.10000+ 1 1.51440- 3 5.72118- 2 6.00000+ 0 1.30000+ 1 2.90167- 4 5.76019- 2 6.00000+ 0 1.40000+ 1 2.49052- 4 5.76668- 2 6.00000+ 0 1.60000+ 1 1.66967- 4 5.88983- 2 6.00000+ 0 1.80000+ 1 3.42448- 4 5.89944- 2 6.00000+ 0 1.90000+ 1 3.40544- 4 5.90634- 2 6.00000+ 0 2.10000+ 1 6.77241- 5 5.92229- 2 6.00000+ 0 2.20000+ 1 5.77622- 5 5.92357- 2 6.00000+ 0 2.40000+ 1 8.53682- 7 5.94374- 2 6.00000+ 0 2.50000+ 1 9.24775- 7 5.94397- 2 6.00000+ 0 2.70000+ 1 2.91651- 5 5.93979- 2 6.00000+ 0 2.90000+ 1 5.05096- 5 5.94270- 2 6.00000+ 0 3.00000+ 1 4.80183- 5 5.94373- 2 6.00000+ 0 3.20000+ 1 3.98373- 6 5.94747- 2 6.00000+ 0 4.10000+ 1 2.56104- 6 5.94753- 2 8.00000+ 0 8.00000+ 0 1.76494- 4 6.40960- 2 8.00000+ 0 1.00000+ 1 2.40085- 4 6.43247- 2 8.00000+ 0 1.10000+ 1 1.65748- 4 6.46213- 2 8.00000+ 0 1.30000+ 1 1.29464- 5 6.50114- 2 8.00000+ 0 1.40000+ 1 1.01724- 5 6.50763- 2 8.00000+ 0 1.60000+ 1 8.50076- 5 6.63078- 2 8.00000+ 0 1.80000+ 1 5.63414- 5 6.64039- 2 8.00000+ 0 1.90000+ 1 3.85557- 5 6.64729- 2 8.00000+ 0 2.10000+ 1 3.05897- 6 6.66324- 2 8.00000+ 0 2.20000+ 1 2.41866- 6 6.66452- 2 8.00000+ 0 2.70000+ 1 1.50098- 5 6.68074- 2 8.00000+ 0 2.90000+ 1 8.39422- 6 6.68365- 2 8.00000+ 0 3.00000+ 1 5.47775- 6 6.68468- 2 8.00000+ 0 3.20000+ 1 2.13413- 7 6.68842- 2 8.00000+ 0 4.10000+ 1 1.35165- 6 6.68848- 2 1.00000+ 1 1.00000+ 1 1.57213- 5 6.45534- 2 1.00000+ 1 1.10000+ 1 2.92645- 4 6.48500- 2 1.00000+ 1 1.30000+ 1 1.31604- 5 6.52401- 2 1.00000+ 1 1.40000+ 1 3.40045- 5 6.53050- 2 1.00000+ 1 1.60000+ 1 5.60552- 5 6.65365- 2 1.00000+ 1 1.80000+ 1 7.11388- 6 6.66326- 2 1.00000+ 1 1.90000+ 1 6.55883- 5 6.67016- 2 1.00000+ 1 2.10000+ 1 3.05899- 6 6.68611- 2 1.00000+ 1 2.20000+ 1 7.96747- 6 6.68739- 2 1.00000+ 1 2.40000+ 1 7.11388- 8 6.70756- 2 1.00000+ 1 2.50000+ 1 7.11388- 8 6.70779- 2 1.00000+ 1 2.70000+ 1 9.81718- 6 6.70361- 2 1.00000+ 1 2.90000+ 1 1.06712- 6 6.70652- 2 1.00000+ 1 3.00000+ 1 9.24779- 6 6.70755- 2 1.00000+ 1 3.20000+ 1 2.13415- 7 6.71129- 2 1.00000+ 1 4.10000+ 1 8.53686- 7 6.71135- 2 1.10000+ 1 1.10000+ 1 1.47827- 4 6.51466- 2 1.10000+ 1 1.30000+ 1 4.47471- 5 6.55367- 2 1.10000+ 1 1.40000+ 1 3.72048- 5 6.56016- 2 1.10000+ 1 1.60000+ 1 3.80594- 5 6.68331- 2 1.10000+ 1 1.80000+ 1 6.61601- 5 6.69292- 2 1.10000+ 1 1.90000+ 1 6.65849- 5 6.69982- 2 1.10000+ 1 2.10000+ 1 1.05289- 5 6.71577- 2 1.10000+ 1 2.20000+ 1 8.67888- 6 6.71705- 2 1.10000+ 1 2.40000+ 1 1.42279- 7 6.73722- 2 1.10000+ 1 2.50000+ 1 1.42279- 7 6.73745- 2 1.10000+ 1 2.70000+ 1 6.61601- 6 6.73327- 2 1.10000+ 1 2.90000+ 1 9.74611- 6 6.73618- 2 1.10000+ 1 3.00000+ 1 9.39034- 6 6.73721- 2 1.10000+ 1 3.20000+ 1 6.40241- 7 6.74095- 2 1.10000+ 1 4.10000+ 1 5.69137- 7 6.74101- 2 1.30000+ 1 1.30000+ 1 7.11371- 8 6.59268- 2 1.30000+ 1 1.40000+ 1 5.40652- 6 6.59917- 2 1.30000+ 1 1.60000+ 1 2.98758- 6 6.72232- 2 1.30000+ 1 1.80000+ 1 2.84542- 6 6.73193- 2 1.30000+ 1 1.90000+ 1 9.53230- 6 6.73883- 2 1.30000+ 1 2.10000+ 1 7.11371- 8 6.75478- 2 1.30000+ 1 2.20000+ 1 1.20926- 6 6.75606- 2 1.30000+ 1 2.70000+ 1 4.97931- 7 6.77228- 2 1.30000+ 1 2.90000+ 1 4.26808- 7 6.77519- 2 1.30000+ 1 3.00000+ 1 1.35163- 6 6.77622- 2 1.30000+ 1 4.10000+ 1 7.11371- 8 6.78002- 2 1.40000+ 1 1.40000+ 1 1.28052- 6 6.60566- 2 1.40000+ 1 1.60000+ 1 2.27639- 6 6.72881- 2 1.40000+ 1 1.80000+ 1 7.18485- 6 6.73842- 2 1.40000+ 1 1.90000+ 1 7.89637- 6 6.74532- 2 1.40000+ 1 2.10000+ 1 1.20928- 6 6.76127- 2 1.40000+ 1 2.20000+ 1 5.69134- 7 6.76255- 2 1.40000+ 1 2.70000+ 1 4.26815- 7 6.77877- 2 1.40000+ 1 2.90000+ 1 1.06711- 6 6.78168- 2 1.40000+ 1 3.00000+ 1 1.06711- 6 6.78271- 2 1.40000+ 1 3.20000+ 1 7.11382- 8 6.78645- 2 1.40000+ 1 4.10000+ 1 7.11382- 8 6.78651- 2 1.60000+ 1 1.60000+ 1 1.01710- 5 6.85196- 2 1.60000+ 1 1.80000+ 1 1.30662- 5 6.86157- 2 1.60000+ 1 1.90000+ 1 8.82845- 6 6.86847- 2 1.60000+ 1 2.10000+ 1 7.06295- 7 6.88442- 2 1.60000+ 1 2.20000+ 1 5.65064- 7 6.88570- 2 1.60000+ 1 2.70000+ 1 3.60199- 6 6.90192- 2 1.60000+ 1 2.90000+ 1 1.97761- 6 6.90483- 2 1.60000+ 1 3.00000+ 1 1.27136- 6 6.90586- 2 1.60000+ 1 3.20000+ 1 7.06295- 8 6.90960- 2 1.60000+ 1 4.10000+ 1 3.53137- 7 6.90966- 2 1.80000+ 1 1.80000+ 1 7.82522- 7 6.87118- 2 1.80000+ 1 1.90000+ 1 1.48675- 5 6.87808- 2 1.80000+ 1 2.10000+ 1 6.40237- 7 6.89403- 2 1.80000+ 1 2.20000+ 1 1.70731- 6 6.89530- 2 1.80000+ 1 2.70000+ 1 2.27638- 6 6.91152- 2 1.80000+ 1 2.90000+ 1 2.13412- 7 6.91444- 2 1.80000+ 1 3.00000+ 1 2.06298- 6 6.91547- 2 1.80000+ 1 3.20000+ 1 7.11381- 8 6.91921- 2 1.80000+ 1 4.10000+ 1 2.13412- 7 6.91927- 2 1.90000+ 1 1.90000+ 1 7.14926- 6 6.88498- 2 1.90000+ 1 2.10000+ 1 2.17877- 6 6.90093- 2 1.90000+ 1 2.20000+ 1 1.77027- 6 6.90220- 2 1.90000+ 1 2.70000+ 1 1.49794- 6 6.91842- 2 1.90000+ 1 2.90000+ 1 2.11069- 6 6.92134- 2 1.90000+ 1 3.00000+ 1 2.04261- 6 6.92237- 2 1.90000+ 1 3.20000+ 1 1.36177- 7 6.92611- 2 1.90000+ 1 4.10000+ 1 1.36177- 7 6.92617- 2 2.10000+ 1 2.20000+ 1 3.07021- 7 6.91816- 2 2.10000+ 1 2.70000+ 1 1.53515- 7 6.93438- 2 2.10000+ 1 2.90000+ 1 7.67570- 8 6.93729- 2 2.10000+ 1 3.00000+ 1 3.07021- 7 6.93833- 2 2.20000+ 1 2.20000+ 1 7.57283- 8 6.91943- 2 2.20000+ 1 2.70000+ 1 7.57283- 8 6.93565- 2 2.20000+ 1 2.90000+ 1 2.27183- 7 6.93856- 2 2.20000+ 1 3.00000+ 1 3.02906- 7 6.93960- 2 2.70000+ 1 2.70000+ 1 3.15659- 7 6.95187- 2 2.70000+ 1 2.90000+ 1 3.94571- 7 6.95478- 2 2.70000+ 1 3.00000+ 1 2.36747- 7 6.95582- 2 2.70000+ 1 4.10000+ 1 7.89165- 8 6.95962- 2 2.90000+ 1 3.00000+ 1 3.03728- 7 6.95873- 2 3.00000+ 1 3.00000+ 1 1.21399- 7 6.95977- 2 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.12540- 5 5.04000- 4 6.00000+ 0 1.35880- 3 1.87100- 3 1.00000+ 1 2.26771- 2 9.50920- 3 1.10000+ 1 2.83871- 2 9.80580- 3 1.30000+ 1 6.58122- 4 1.01959- 2 1.40000+ 1 9.84863- 4 1.02608- 2 1.80000+ 1 5.56691- 3 1.15884- 2 1.90000+ 1 7.38562- 3 1.16574- 2 2.10000+ 1 9.30572- 5 1.18169- 2 2.20000+ 1 1.45270- 4 1.18297- 2 2.90000+ 1 8.62022- 4 1.20210- 2 3.00000+ 1 1.10780- 3 1.20313- 2 3.20000+ 1 2.46501- 6 1.20687- 2 3.30000+ 1 3.71561- 6 1.20696- 2 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 1.78267- 2 1.53900- 5 5.00000+ 0 1.90000+ 1 1.84566- 2 8.43800- 5 5.00000+ 0 2.10000+ 1 5.04976- 3 2.43950- 4 5.00000+ 0 2.20000+ 1 7.11709- 3 2.56660- 4 5.00000+ 0 2.40000+ 1 1.45102- 2 4.58390- 4 5.00000+ 0 2.50000+ 1 1.90076- 2 4.60750- 4 5.00000+ 0 2.70000+ 1 3.85251- 3 4.18860- 4 5.00000+ 0 2.90000+ 1 2.51648- 3 4.47980- 4 5.00000+ 0 3.00000+ 1 2.50548- 3 4.58350- 4 5.00000+ 0 3.20000+ 1 3.03872- 4 4.95730- 4 5.00000+ 0 4.10000+ 1 3.39937- 4 4.96300- 4 6.00000+ 0 1.30000+ 1 1.67010- 1 0.00000+ 0 6.00000+ 0 1.40000+ 1 3.39470- 1 5.48000- 5 6.00000+ 0 1.60000+ 1 2.20873- 2 1.28630- 3 6.00000+ 0 1.80000+ 1 9.00723- 3 1.38239- 3 6.00000+ 0 1.90000+ 1 1.44403- 2 1.45138- 3 6.00000+ 0 2.10000+ 1 3.08144- 2 1.61095- 3 6.00000+ 0 2.20000+ 1 3.74005- 2 1.62366- 3 6.00000+ 0 2.40000+ 1 2.12954- 2 1.82539- 3 6.00000+ 0 2.50000+ 1 2.67308- 2 1.82775- 3 6.00000+ 0 2.70000+ 1 3.73415- 3 1.78586- 3 6.00000+ 0 2.90000+ 1 1.30545- 3 1.81498- 3 6.00000+ 0 3.00000+ 1 2.02466- 3 1.82535- 3 6.00000+ 0 3.20000+ 1 1.71160- 3 1.86273- 3 6.00000+ 0 4.10000+ 1 3.30101- 4 1.86330- 3 8.00000+ 0 8.00000+ 0 5.39577- 3 6.48400- 3 8.00000+ 0 1.00000+ 1 1.09728- 2 6.71270- 3 8.00000+ 0 1.10000+ 1 1.83678- 2 7.00930- 3 8.00000+ 0 1.30000+ 1 1.39984- 2 7.39940- 3 8.00000+ 0 1.40000+ 1 1.85818- 2 7.46430- 3 8.00000+ 0 1.60000+ 1 2.21144- 3 8.69580- 3 8.00000+ 0 1.80000+ 1 2.52700- 3 8.79189- 3 8.00000+ 0 1.90000+ 1 4.15241- 3 8.86088- 3 8.00000+ 0 2.10000+ 1 2.78857- 3 9.02045- 3 8.00000+ 0 2.20000+ 1 3.66197- 3 9.03316- 3 8.00000+ 0 2.40000+ 1 1.84478- 4 9.23489- 3 8.00000+ 0 2.50000+ 1 2.09295- 4 9.23725- 3 8.00000+ 0 2.70000+ 1 3.80675- 4 9.19536- 3 8.00000+ 0 2.90000+ 1 3.74116- 4 9.22448- 3 8.00000+ 0 3.00000+ 1 5.85751- 4 9.23485- 3 8.00000+ 0 3.20000+ 1 1.62241- 4 9.27223- 3 8.00000+ 0 4.10000+ 1 3.37121- 5 9.27280- 3 1.00000+ 1 1.00000+ 1 2.92640- 5 6.94140- 3 1.00000+ 1 1.10000+ 1 2.53775- 4 7.23800- 3 1.00000+ 1 1.30000+ 1 6.32803- 4 7.62810- 3 1.00000+ 1 1.40000+ 1 5.80660- 3 7.69300- 3 1.00000+ 1 1.60000+ 1 1.77386- 3 8.92450- 3 1.00000+ 1 1.80000+ 1 4.68215- 6 9.02059- 3 1.00000+ 1 1.90000+ 1 5.12690- 5 9.08958- 3 1.00000+ 1 2.10000+ 1 1.15885- 4 9.24915- 3 1.00000+ 1 2.20000+ 1 7.33000- 4 9.26186- 3 1.00000+ 1 2.40000+ 1 6.55510- 5 9.46359- 3 1.00000+ 1 2.50000+ 1 2.29418- 4 9.46595- 3 1.00000+ 1 2.70000+ 1 2.89121- 4 9.42406- 3 1.00000+ 1 2.90000+ 1 4.68215- 7 9.45318- 3 1.00000+ 1 3.00000+ 1 7.02324- 6 9.46355- 3 1.00000+ 1 3.20000+ 1 6.78907- 6 9.50093- 3 1.00000+ 1 4.10000+ 1 2.55175- 5 9.50150- 3 1.10000+ 1 1.10000+ 1 5.07792- 4 7.53460- 3 1.10000+ 1 1.30000+ 1 2.41462- 3 7.92470- 3 1.10000+ 1 1.40000+ 1 1.51373- 3 7.98960- 3 1.10000+ 1 1.60000+ 1 2.94326- 3 9.22110- 3 1.10000+ 1 1.80000+ 1 5.61875- 5 9.31719- 3 1.10000+ 1 1.90000+ 1 1.70430- 4 9.38618- 3 1.10000+ 1 2.10000+ 1 2.12815- 4 9.54575- 3 1.10000+ 1 2.20000+ 1 1.25026- 4 9.55846- 3 1.10000+ 1 2.40000+ 1 1.39764- 4 9.76019- 3 1.10000+ 1 2.50000+ 1 1.15187- 4 9.76255- 3 1.10000+ 1 2.70000+ 1 4.78765- 4 9.72066- 3 1.10000+ 1 2.90000+ 1 8.19385- 6 9.74978- 3 1.10000+ 1 3.00000+ 1 2.27084- 5 9.76015- 3 1.10000+ 1 3.20000+ 1 1.10028- 5 9.79753- 3 1.10000+ 1 4.10000+ 1 4.21401- 5 9.79810- 3 1.30000+ 1 1.30000+ 1 8.31788- 4 8.31480- 3 1.30000+ 1 1.40000+ 1 2.58815- 2 8.37970- 3 1.30000+ 1 1.60000+ 1 2.07822- 3 9.61120- 3 1.30000+ 1 1.80000+ 1 1.79326- 4 9.70729- 3 1.30000+ 1 1.90000+ 1 5.98390- 4 9.77628- 3 1.30000+ 1 2.10000+ 1 3.23537- 4 9.93585- 3 1.30000+ 1 2.20000+ 1 3.58502- 3 9.94856- 3 1.30000+ 1 2.40000+ 1 2.06012- 4 1.01503- 2 1.30000+ 1 2.50000+ 1 5.72623- 4 1.01526- 2 1.30000+ 1 2.70000+ 1 3.33366- 4 1.01108- 2 1.30000+ 1 2.90000+ 1 2.76253- 5 1.01399- 2 1.30000+ 1 3.00000+ 1 8.56845- 5 1.01502- 2 1.30000+ 1 3.20000+ 1 1.87285- 5 1.01876- 2 1.30000+ 1 4.10000+ 1 2.92641- 5 1.01882- 2 1.40000+ 1 1.40000+ 1 7.21941- 3 8.44460- 3 1.40000+ 1 1.60000+ 1 2.79283- 3 9.67610- 3 1.40000+ 1 1.80000+ 1 1.19341- 3 9.77219- 3 1.40000+ 1 1.90000+ 1 3.91185- 4 9.84118- 3 1.40000+ 1 2.10000+ 1 3.50592- 3 1.00007- 2 1.40000+ 1 2.20000+ 1 2.10905- 3 1.00135- 2 1.40000+ 1 2.40000+ 1 6.35585- 4 1.02152- 2 1.40000+ 1 2.50000+ 1 4.84590- 4 1.02175- 2 1.40000+ 1 2.70000+ 1 4.49945- 4 1.01757- 2 1.40000+ 1 2.90000+ 1 1.73231- 4 1.02048- 2 1.40000+ 1 3.00000+ 1 5.64187- 5 1.02151- 2 1.40000+ 1 3.20000+ 1 1.92908- 4 1.02525- 2 1.40000+ 1 4.10000+ 1 3.95625- 5 1.02531- 2 1.60000+ 1 1.60000+ 1 2.13983- 4 1.09076- 2 1.60000+ 1 1.80000+ 1 4.10158- 4 1.10037- 2 1.60000+ 1 1.90000+ 1 6.68154- 4 1.10727- 2 1.60000+ 1 2.10000+ 1 4.14377- 4 1.12322- 2 1.60000+ 1 2.20000+ 1 5.48050- 4 1.12450- 2 1.60000+ 1 2.40000+ 1 2.24741- 5 1.14467- 2 1.60000+ 1 2.50000+ 1 2.48158- 5 1.14490- 2 1.60000+ 1 2.70000+ 1 7.28087- 5 1.14072- 2 1.60000+ 1 2.90000+ 1 6.08692- 5 1.14363- 2 1.60000+ 1 3.00000+ 1 9.43480- 5 1.14466- 2 1.60000+ 1 3.20000+ 1 2.41139- 5 1.14840- 2 1.60000+ 1 4.10000+ 1 6.55516- 6 1.14846- 2 1.80000+ 1 1.90000+ 1 1.14707- 5 1.11688- 2 1.80000+ 1 2.10000+ 1 2.83277- 5 1.13283- 2 1.80000+ 1 2.20000+ 1 1.56152- 4 1.13410- 2 1.80000+ 1 2.40000+ 1 8.89628- 6 1.15428- 2 1.80000+ 1 2.50000+ 1 3.51170- 5 1.15451- 2 1.80000+ 1 2.70000+ 1 6.69564- 5 1.15032- 2 1.80000+ 1 3.00000+ 1 1.63881- 6 1.15427- 2 1.80000+ 1 3.20000+ 1 1.63881- 6 1.15801- 2 1.80000+ 1 4.10000+ 1 5.85283- 6 1.15807- 2 1.90000+ 1 1.90000+ 1 1.38120- 5 1.12378- 2 1.90000+ 1 2.10000+ 1 5.94631- 5 1.13973- 2 1.90000+ 1 2.20000+ 1 3.79243- 5 1.14100- 2 1.90000+ 1 2.40000+ 1 2.59851- 5 1.16118- 2 1.90000+ 1 2.50000+ 1 2.08359- 5 1.16141- 2 1.90000+ 1 2.70000+ 1 1.08634- 4 1.15722- 2 1.90000+ 1 2.90000+ 1 1.63876- 6 1.16014- 2 1.90000+ 1 3.00000+ 1 3.74564- 6 1.16117- 2 1.90000+ 1 3.20000+ 1 3.04335- 6 1.16491- 2 1.90000+ 1 4.10000+ 1 9.59837- 6 1.16497- 2 2.10000+ 1 2.10000+ 1 2.92641- 5 1.15569- 2 2.10000+ 1 2.20000+ 1 5.29789- 4 1.15696- 2 2.10000+ 1 2.40000+ 1 2.76253- 5 1.17713- 2 2.10000+ 1 2.50000+ 1 5.92301- 5 1.17737- 2 2.10000+ 1 2.70000+ 1 6.64870- 5 1.17318- 2 2.10000+ 1 2.90000+ 1 4.21393- 6 1.17609- 2 2.10000+ 1 3.00000+ 1 8.66204- 6 1.17713- 2 2.10000+ 1 3.20000+ 1 3.27746- 6 1.18087- 2 2.10000+ 1 4.10000+ 1 5.85272- 6 1.18092- 2 2.20000+ 1 2.20000+ 1 1.64809- 4 1.15823- 2 2.20000+ 1 2.40000+ 1 6.85942- 5 1.17840- 2 2.20000+ 1 2.50000+ 1 5.82945- 5 1.17864- 2 2.20000+ 1 2.70000+ 1 8.80238- 5 1.17445- 2 2.20000+ 1 2.90000+ 1 2.27081- 5 1.17736- 2 2.20000+ 1 3.00000+ 1 5.61868- 6 1.17840- 2 2.20000+ 1 3.20000+ 1 2.94973- 5 1.18214- 2 2.20000+ 1 4.10000+ 1 7.72561- 6 1.18220- 2 2.40000+ 1 2.40000+ 1 7.99890- 7 1.19858- 2 2.40000+ 1 2.50000+ 1 1.87965- 5 1.19881- 2 2.40000+ 1 2.70000+ 1 5.99918- 6 1.19462- 2 2.40000+ 1 2.90000+ 1 1.99973- 6 1.19754- 2 2.40000+ 1 3.00000+ 1 5.99918- 6 1.19857- 2 2.40000+ 1 3.20000+ 1 2.79965- 6 1.20231- 2 2.40000+ 1 4.10000+ 1 3.99945- 7 1.20237- 2 2.50000+ 1 2.50000+ 1 3.97975- 6 1.19905- 2 2.50000+ 1 2.70000+ 1 6.36754- 6 1.19486- 2 2.50000+ 1 2.90000+ 1 8.35742- 6 1.19777- 2 2.50000+ 1 3.00000+ 1 4.77573- 6 1.19881- 2 2.50000+ 1 3.20000+ 1 5.17365- 6 1.20255- 2 2.50000+ 1 4.10000+ 1 3.97975- 7 1.20260- 2 2.70000+ 1 2.70000+ 1 1.97272- 5 1.19067- 2 2.70000+ 1 2.90000+ 1 3.18652- 5 1.19358- 2 2.70000+ 1 3.00000+ 1 5.00757- 5 1.19462- 2 2.70000+ 1 3.20000+ 1 1.28985- 5 1.19836- 2 2.70000+ 1 4.10000+ 1 3.79368- 6 1.19842- 2 2.90000+ 1 3.00000+ 1 1.34840- 6 1.19753- 2 2.90000+ 1 3.20000+ 1 1.34840- 6 1.20127- 2 2.90000+ 1 4.10000+ 1 5.39343- 6 1.20133- 2 3.00000+ 1 3.00000+ 1 4.55331- 7 1.19857- 2 3.00000+ 1 3.20000+ 1 9.10662- 7 1.20231- 2 3.00000+ 1 4.10000+ 1 2.73192- 6 1.20236- 2 3.20000+ 1 4.10000+ 1 4.38281- 7 1.20610- 2 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.19950- 6 1.36700- 3 8.00000+ 0 6.76290- 3 8.77650- 3 1.10000+ 1 2.11970- 4 9.30180- 3 1.30000+ 1 2.39390- 1 9.69190- 3 1.60000+ 1 1.61060- 3 1.09883- 2 1.90000+ 1 5.48840- 5 1.11534- 2 2.10000+ 1 4.45530- 2 1.13129- 2 2.40000+ 1 1.17470- 4 1.15274- 2 2.70000+ 1 3.08850- 4 1.14879- 2 3.00000+ 1 1.14250- 5 1.15273- 2 3.20000+ 1 1.22050- 3 1.15647- 2 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 6.65395- 3 7.82300- 4 6.00000+ 0 1.80000+ 1 4.20762- 2 8.78390- 4 6.00000+ 0 1.90000+ 1 1.26705- 2 9.47380- 4 6.00000+ 0 2.10000+ 1 4.68123- 2 1.10695- 3 6.00000+ 0 2.20000+ 1 1.63721- 2 1.11966- 3 6.00000+ 0 2.40000+ 1 1.48972- 3 1.32139- 3 6.00000+ 0 2.50000+ 1 2.25975- 3 1.32375- 3 6.00000+ 0 2.70000+ 1 1.07763- 3 1.28186- 3 6.00000+ 0 2.90000+ 1 5.81037- 3 1.31098- 3 6.00000+ 0 3.00000+ 1 1.75656- 3 1.32135- 3 6.00000+ 0 3.20000+ 1 2.63625- 3 1.35873- 3 6.00000+ 0 4.10000+ 1 9.45702- 5 1.35930- 3 8.00000+ 0 8.00000+ 0 7.01115- 4 5.98000- 3 8.00000+ 0 1.00000+ 1 2.18505- 2 6.20870- 3 8.00000+ 0 1.10000+ 1 2.09638- 3 6.50530- 3 8.00000+ 0 1.30000+ 1 2.81842- 3 6.89540- 3 8.00000+ 0 1.40000+ 1 2.31122- 3 6.96030- 3 8.00000+ 0 1.60000+ 1 2.62127- 4 8.19180- 3 8.00000+ 0 1.80000+ 1 3.34211- 3 8.28789- 3 8.00000+ 0 1.90000+ 1 4.23245- 4 8.35688- 3 8.00000+ 0 2.10000+ 1 3.98141- 4 8.51645- 3 8.00000+ 0 2.20000+ 1 2.77870- 4 8.52916- 3 8.00000+ 0 2.40000+ 1 8.58143- 5 8.73089- 3 8.00000+ 0 2.50000+ 1 5.72088- 5 8.73325- 3 8.00000+ 0 2.70000+ 1 4.37832- 5 8.69136- 3 8.00000+ 0 2.90000+ 1 4.59437- 4 8.72048- 3 8.00000+ 0 3.00000+ 1 5.83780- 5 8.73085- 3 8.00000+ 0 3.20000+ 1 2.21833- 5 8.76823- 3 8.00000+ 0 4.10000+ 1 4.08636- 6 8.76880- 3 1.00000+ 1 1.00000+ 1 2.24645- 2 6.43740- 3 1.00000+ 1 1.10000+ 1 6.14276- 2 6.73400- 3 1.00000+ 1 1.30000+ 1 3.24184- 2 7.12410- 3 1.00000+ 1 1.40000+ 1 4.92659- 2 7.18900- 3 1.00000+ 1 1.60000+ 1 5.39860- 3 8.42050- 3 1.00000+ 1 1.80000+ 1 8.74500- 3 8.51659- 3 1.00000+ 1 1.90000+ 1 1.36505- 2 8.58558- 3 1.00000+ 1 2.10000+ 1 6.45542- 3 8.74515- 3 1.00000+ 1 2.20000+ 1 9.75398- 3 8.75786- 3 1.00000+ 1 2.40000+ 1 4.03394- 4 8.95959- 3 1.00000+ 1 2.50000+ 1 3.66599- 4 8.96195- 3 1.00000+ 1 2.70000+ 1 9.56769- 4 8.92006- 3 1.00000+ 1 2.90000+ 1 1.26210- 3 8.94918- 3 1.00000+ 1 3.00000+ 1 1.92062- 3 8.95955- 3 1.00000+ 1 3.20000+ 1 3.75355- 4 8.99693- 3 1.00000+ 1 4.10000+ 1 8.52342- 5 8.99750- 3 1.10000+ 1 1.10000+ 1 1.48743- 3 7.03060- 3 1.10000+ 1 1.30000+ 1 3.26011- 2 7.42070- 3 1.10000+ 1 1.40000+ 1 4.58457- 3 7.48560- 3 1.10000+ 1 1.60000+ 1 4.37838- 4 8.71710- 3 1.10000+ 1 1.80000+ 1 9.65187- 3 8.81319- 3 1.10000+ 1 1.90000+ 1 5.63340- 4 8.88218- 3 1.10000+ 1 2.10000+ 1 5.46188- 3 9.04175- 3 1.10000+ 1 2.20000+ 1 7.31497- 4 9.05446- 3 1.10000+ 1 2.40000+ 1 1.96149- 4 9.25619- 3 1.10000+ 1 2.50000+ 1 1.06247- 4 9.25855- 3 1.10000+ 1 2.70000+ 1 7.47230- 5 9.21666- 3 1.10000+ 1 2.90000+ 1 1.33281- 3 9.24578- 3 1.10000+ 1 3.00000+ 1 7.70585- 5 9.25615- 3 1.10000+ 1 3.20000+ 1 3.09996- 4 9.29353- 3 1.10000+ 1 4.10000+ 1 6.42170- 6 9.29410- 3 1.30000+ 1 1.30000+ 1 3.06344- 2 7.81080- 3 1.30000+ 1 1.40000+ 1 1.24715- 1 7.87570- 3 1.30000+ 1 1.60000+ 1 7.00536- 4 9.10720- 3 1.30000+ 1 1.80000+ 1 4.99251- 3 9.20329- 3 1.30000+ 1 1.90000+ 1 6.74668- 3 9.27228- 3 1.30000+ 1 2.10000+ 1 1.01742- 2 9.43185- 3 1.30000+ 1 2.20000+ 1 2.22527- 2 9.44456- 3 1.30000+ 1 2.40000+ 1 1.51959- 3 9.64629- 3 1.30000+ 1 2.50000+ 1 3.09109- 3 9.64865- 3 1.30000+ 1 2.70000+ 1 1.24342- 4 9.60676- 3 1.30000+ 1 2.90000+ 1 6.91789- 4 9.63588- 3 1.30000+ 1 3.00000+ 1 9.36959- 4 9.64625- 3 1.30000+ 1 3.20000+ 1 5.79109- 4 9.68363- 3 1.30000+ 1 4.10000+ 1 1.10921- 5 9.68420- 3 1.40000+ 1 1.40000+ 1 6.02108- 3 7.94060- 3 1.40000+ 1 1.60000+ 1 4.64119- 4 9.17210- 3 1.40000+ 1 1.80000+ 1 6.70764- 3 9.26819- 3 1.40000+ 1 1.90000+ 1 8.70996- 4 9.33718- 3 1.40000+ 1 2.10000+ 1 1.70843- 2 9.49675- 3 1.40000+ 1 2.20000+ 1 1.95103- 3 9.50946- 3 1.40000+ 1 2.40000+ 1 6.10050- 4 9.71119- 3 1.40000+ 1 2.50000+ 1 2.34695- 4 9.71355- 3 1.40000+ 1 2.70000+ 1 7.88080- 5 9.67166- 3 1.40000+ 1 2.90000+ 1 9.00775- 4 9.70078- 3 1.40000+ 1 3.00000+ 1 1.19095- 4 9.71115- 3 1.40000+ 1 3.20000+ 1 9.43393- 4 9.74853- 3 1.40000+ 1 4.10000+ 1 7.00544- 6 9.74910- 3 1.60000+ 1 1.60000+ 1 2.33510- 5 1.04036- 2 1.60000+ 1 1.80000+ 1 8.30711- 4 1.04997- 2 1.60000+ 1 1.90000+ 1 8.87367- 5 1.05687- 2 1.60000+ 1 2.10000+ 1 9.57432- 5 1.07282- 2 1.60000+ 1 2.20000+ 1 5.60438- 5 1.07410- 2 1.60000+ 1 2.40000+ 1 1.86810- 5 1.09427- 2 1.60000+ 1 2.50000+ 1 9.92439- 6 1.09450- 2 1.60000+ 1 2.70000+ 1 7.58947- 6 1.09032- 2 1.60000+ 1 2.90000+ 1 1.14421- 4 1.09323- 2 1.60000+ 1 3.00000+ 1 1.22595- 5 1.09426- 2 1.60000+ 1 3.20000+ 1 5.25410- 6 1.09800- 2 1.60000+ 1 4.10000+ 1 5.83792- 7 1.09806- 2 1.80000+ 1 1.80000+ 1 8.09677- 4 1.05958- 2 1.80000+ 1 1.90000+ 1 2.14889- 3 1.06648- 2 1.80000+ 1 2.10000+ 1 9.78390- 4 1.08243- 2 1.80000+ 1 2.20000+ 1 1.33975- 3 1.08370- 2 1.80000+ 1 2.40000+ 1 5.07883- 5 1.10388- 2 1.80000+ 1 2.50000+ 1 3.73626- 5 1.10411- 2 1.80000+ 1 2.70000+ 1 1.47105- 4 1.09992- 2 1.80000+ 1 2.90000+ 1 2.31769- 4 1.10284- 2 1.80000+ 1 3.00000+ 1 3.02396- 4 1.10387- 2 1.80000+ 1 3.20000+ 1 5.66266- 5 1.10761- 2 1.80000+ 1 4.10000+ 1 1.28435- 5 1.10767- 2 1.90000+ 1 1.90000+ 1 5.37091- 5 1.07338- 2 1.90000+ 1 2.10000+ 1 1.13961- 3 1.08933- 2 1.90000+ 1 2.20000+ 1 1.41860- 4 1.09060- 2 1.90000+ 1 2.40000+ 1 3.32765- 5 1.11078- 2 1.90000+ 1 2.50000+ 1 1.69298- 5 1.11101- 2 1.90000+ 1 2.70000+ 1 1.51783- 5 1.10682- 2 1.90000+ 1 2.90000+ 1 2.96571- 4 1.10974- 2 1.90000+ 1 3.00000+ 1 1.45952- 5 1.11077- 2 1.90000+ 1 3.20000+ 1 6.48016- 5 1.11451- 2 1.90000+ 1 4.10000+ 1 1.16755- 6 1.11457- 2 2.10000+ 1 2.10000+ 1 8.35431- 4 1.10529- 2 2.10000+ 1 2.20000+ 1 3.17043- 3 1.10656- 2 2.10000+ 1 2.40000+ 1 1.73386- 4 1.12673- 2 2.10000+ 1 2.50000+ 1 3.57278- 4 1.12697- 2 2.10000+ 1 2.70000+ 1 1.69293- 5 1.12278- 2 2.10000+ 1 2.90000+ 1 1.34849- 4 1.12569- 2 2.10000+ 1 3.00000+ 1 1.58787- 4 1.12673- 2 2.10000+ 1 3.20000+ 1 9.51573- 5 1.13047- 2 2.10000+ 1 4.10000+ 1 1.75135- 6 1.13052- 2 2.20000+ 1 2.20000+ 1 1.82747- 4 1.10783- 2 2.20000+ 1 2.40000+ 1 8.63547- 5 1.12800- 2 2.20000+ 1 2.50000+ 1 3.34705- 5 1.12824- 2 2.20000+ 1 2.70000+ 1 1.07108- 5 1.12405- 2 2.20000+ 1 2.90000+ 1 2.06843- 4 1.12696- 2 2.20000+ 1 3.00000+ 1 2.20908- 5 1.12800- 2 2.20000+ 1 3.20000+ 1 2.01493- 4 1.13174- 2 2.20000+ 1 4.10000+ 1 6.69421- 7 1.13180- 2 2.40000+ 1 2.40000+ 1 3.48544- 6 1.14818- 2 2.40000+ 1 2.50000+ 1 2.64894- 5 1.14841- 2 2.40000+ 1 2.70000+ 1 4.18246- 6 1.14422- 2 2.40000+ 1 2.90000+ 1 8.36515- 6 1.14714- 2 2.40000+ 1 3.00000+ 1 5.57683- 6 1.14817- 2 2.40000+ 1 3.20000+ 1 1.11537- 5 1.15191- 2 2.50000+ 1 2.50000+ 1 1.50518- 6 1.14865- 2 2.50000+ 1 2.70000+ 1 2.25786- 6 1.14446- 2 2.50000+ 1 2.90000+ 1 6.02103- 6 1.14737- 2 2.50000+ 1 3.00000+ 1 3.01040- 6 1.14841- 2 2.50000+ 1 3.20000+ 1 2.48365- 5 1.15215- 2 2.70000+ 1 2.70000+ 1 8.18826- 7 1.14027- 2 2.70000+ 1 2.90000+ 1 2.86584- 5 1.14318- 2 2.70000+ 1 3.00000+ 1 3.27521- 6 1.14422- 2 2.70000+ 1 3.20000+ 1 1.63758- 6 1.14796- 2 2.90000+ 1 2.90000+ 1 2.62498- 5 1.14610- 2 2.90000+ 1 3.00000+ 1 6.75000- 5 1.14713- 2 2.90000+ 1 3.20000+ 1 1.21876- 5 1.15087- 2 2.90000+ 1 4.10000+ 1 2.81244- 6 1.15093- 2 3.00000+ 1 3.00000+ 1 1.16753- 6 1.14817- 2 3.00000+ 1 3.20000+ 1 8.75647- 6 1.15191- 2 3.20000+ 1 3.20000+ 1 2.91880- 6 1.15565- 2 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.25270- 2 7.40950- 3 1.00000+ 1 1.07220- 4 7.63820- 3 1.10000+ 1 9.71278- 5 7.93480- 3 1.30000+ 1 2.12730- 2 8.32490- 3 1.40000+ 1 1.87700- 1 8.38980- 3 1.60000+ 1 2.33790- 3 9.62130- 3 1.80000+ 1 2.26230- 5 9.71739- 3 1.90000+ 1 2.23060- 5 9.78638- 3 2.10000+ 1 3.71129- 3 9.94595- 3 2.20000+ 1 3.32849- 2 9.95866- 3 2.40000+ 1 1.73100- 5 1.01604- 2 2.50000+ 1 9.71988- 5 1.01627- 2 2.70000+ 1 4.73079- 4 1.01209- 2 2.90000+ 1 4.83819- 6 1.01500- 2 3.00000+ 1 4.56019- 6 1.01603- 2 3.20000+ 1 1.01660- 4 1.01977- 2 3.30000+ 1 8.69029- 4 1.01986- 2 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 9.23745- 4 4.61300- 3 8.00000+ 0 1.00000+ 1 5.19074- 4 4.84170- 3 8.00000+ 0 1.10000+ 1 2.35184- 2 5.13830- 3 8.00000+ 0 1.30000+ 1 2.65405- 3 5.52840- 3 8.00000+ 0 1.40000+ 1 3.88773- 3 5.59330- 3 8.00000+ 0 1.60000+ 1 3.46625- 4 6.82480- 3 8.00000+ 0 1.80000+ 1 9.18436- 5 6.92089- 3 8.00000+ 0 1.90000+ 1 3.52791- 3 6.98988- 3 8.00000+ 0 2.10000+ 1 2.54797- 4 7.14945- 3 8.00000+ 0 2.20000+ 1 3.36573- 4 7.16216- 3 8.00000+ 0 2.40000+ 1 1.59986- 4 7.36389- 3 8.00000+ 0 2.50000+ 1 2.87384- 4 7.36625- 3 8.00000+ 0 2.70000+ 1 5.80682- 5 7.32436- 3 8.00000+ 0 2.90000+ 1 1.30360- 5 7.35348- 3 8.00000+ 0 3.00000+ 1 4.62793- 4 7.36385- 3 8.00000+ 0 3.20000+ 1 1.36283- 5 7.40123- 3 8.00000+ 0 4.10000+ 1 5.33297- 6 7.40180- 3 1.00000+ 1 1.00000+ 1 9.83613- 5 5.07040- 3 1.00000+ 1 1.10000+ 1 3.94669- 2 5.36700- 3 1.00000+ 1 1.30000+ 1 2.07800- 3 5.75710- 3 1.00000+ 1 1.40000+ 1 1.83171- 2 5.82200- 3 1.00000+ 1 1.60000+ 1 1.04289- 4 7.05350- 3 1.00000+ 1 1.80000+ 1 3.96995- 5 7.14959- 3 1.00000+ 1 1.90000+ 1 6.14990- 3 7.21858- 3 1.00000+ 1 2.10000+ 1 3.72105- 4 7.37815- 3 1.00000+ 1 2.20000+ 1 2.72914- 3 7.39086- 3 1.00000+ 1 2.40000+ 1 1.67094- 4 7.59259- 3 1.00000+ 1 2.50000+ 1 4.33139- 4 7.59495- 3 1.00000+ 1 2.70000+ 1 1.77762- 5 7.55306- 3 1.00000+ 1 2.90000+ 1 5.92547- 6 7.58218- 3 1.00000+ 1 3.00000+ 1 8.12346- 4 7.59255- 3 1.00000+ 1 3.20000+ 1 2.13311- 5 7.62993- 3 1.00000+ 1 4.10000+ 1 1.77762- 6 7.63050- 3 1.10000+ 1 1.10000+ 1 5.16042- 2 5.66360- 3 1.10000+ 1 1.30000+ 1 5.38647- 2 6.05370- 3 1.10000+ 1 1.40000+ 1 7.56873- 2 6.11860- 3 1.10000+ 1 1.60000+ 1 5.73036- 3 7.35010- 3 1.10000+ 1 1.80000+ 1 8.59420- 3 7.44619- 3 1.10000+ 1 1.90000+ 1 1.93829- 2 7.51518- 3 1.10000+ 1 2.10000+ 1 1.01669- 2 7.67475- 3 1.10000+ 1 2.20000+ 1 1.40280- 2 7.68746- 3 1.10000+ 1 2.40000+ 1 6.90904- 4 7.88919- 3 1.10000+ 1 2.50000+ 1 8.70470- 4 7.89155- 3 1.10000+ 1 2.70000+ 1 1.01267- 3 7.84966- 3 1.10000+ 1 2.90000+ 1 1.26156- 3 7.87878- 3 1.10000+ 1 3.00000+ 1 2.65753- 3 7.88915- 3 1.10000+ 1 3.20000+ 1 5.87793- 4 7.92653- 3 1.10000+ 1 4.10000+ 1 9.00670- 5 7.92710- 3 1.30000+ 1 1.30000+ 1 7.66398- 3 6.44380- 3 1.30000+ 1 1.40000+ 1 1.44331- 1 6.50870- 3 1.30000+ 1 1.60000+ 1 6.18620- 4 7.74020- 3 1.30000+ 1 1.80000+ 1 4.63368- 4 7.83629- 3 1.30000+ 1 1.90000+ 1 7.70669- 3 7.90528- 3 1.30000+ 1 2.10000+ 1 2.48643- 3 8.06485- 3 1.30000+ 1 2.20000+ 1 1.96100- 2 8.07756- 3 1.30000+ 1 2.40000+ 1 3.87525- 4 8.27929- 3 1.30000+ 1 2.50000+ 1 1.32193- 3 8.28165- 3 1.30000+ 1 2.70000+ 1 1.08441- 4 8.23976- 3 1.30000+ 1 2.90000+ 1 6.81428- 5 8.26888- 3 1.30000+ 1 3.00000+ 1 1.00263- 3 8.27925- 3 1.30000+ 1 3.20000+ 1 1.41018- 4 8.31663- 3 1.30000+ 1 4.10000+ 1 9.48054- 6 8.31720- 3 1.40000+ 1 1.40000+ 1 9.66788- 2 6.57360- 3 1.40000+ 1 1.60000+ 1 9.37392- 4 7.80510- 3 1.40000+ 1 1.80000+ 1 3.64850- 3 7.90119- 3 1.40000+ 1 1.90000+ 1 1.22214- 2 7.97018- 3 1.40000+ 1 2.10000+ 1 2.36783- 2 8.12975- 3 1.40000+ 1 2.20000+ 1 2.98948- 2 8.14246- 3 1.40000+ 1 2.40000+ 1 4.12066- 3 8.34419- 3 1.40000+ 1 2.50000+ 1 3.76354- 3 8.34655- 3 1.40000+ 1 2.70000+ 1 1.66519- 4 8.30466- 3 1.40000+ 1 2.90000+ 1 5.26786- 4 8.33378- 3 1.40000+ 1 3.00000+ 1 1.63426- 3 8.34415- 3 1.40000+ 1 3.20000+ 1 1.34393- 3 8.38153- 3 1.40000+ 1 4.10000+ 1 1.48144- 5 8.38210- 3 1.60000+ 1 1.60000+ 1 3.25910- 5 9.03660- 3 1.60000+ 1 1.80000+ 1 1.89614- 5 9.13269- 3 1.60000+ 1 1.90000+ 1 8.60989- 4 9.20168- 3 1.60000+ 1 2.10000+ 1 6.51811- 5 9.36125- 3 1.60000+ 1 2.20000+ 1 8.82940- 5 9.37396- 3 1.60000+ 1 2.40000+ 1 2.25175- 5 9.57569- 3 1.60000+ 1 2.50000+ 1 4.56262- 5 9.57805- 3 1.60000+ 1 2.70000+ 1 1.12582- 5 9.53616- 3 1.60000+ 1 2.90000+ 1 2.96274- 6 9.56528- 3 1.60000+ 1 3.00000+ 1 1.13177- 4 9.57565- 3 1.60000+ 1 3.20000+ 1 3.55526- 6 9.61303- 3 1.60000+ 1 4.10000+ 1 1.18515- 6 9.61360- 3 1.80000+ 1 1.80000+ 1 2.96267- 6 9.22878- 3 1.80000+ 1 1.90000+ 1 1.33380- 3 9.29777- 3 1.80000+ 1 2.10000+ 1 7.94008- 5 9.45734- 3 1.80000+ 1 2.20000+ 1 5.72405- 4 9.47005- 3 1.80000+ 1 2.40000+ 1 2.42927- 5 9.67178- 3 1.80000+ 1 2.50000+ 1 5.92552- 5 9.67414- 3 1.80000+ 1 2.70000+ 1 3.55517- 6 9.63225- 3 1.80000+ 1 2.90000+ 1 5.92552- 7 9.66137- 3 1.80000+ 1 3.00000+ 1 1.75991- 4 9.67174- 3 1.80000+ 1 3.20000+ 1 4.74039- 6 9.70912- 3 1.90000+ 1 1.90000+ 1 1.74743- 3 9.36676- 3 1.90000+ 1 2.10000+ 1 1.45701- 3 9.52633- 3 1.90000+ 1 2.20000+ 1 2.22964- 3 9.53904- 3 1.90000+ 1 2.40000+ 1 8.11763- 5 9.74077- 3 1.90000+ 1 2.50000+ 1 1.07846- 4 9.74313- 3 1.90000+ 1 2.70000+ 1 1.52279- 4 9.70124- 3 1.90000+ 1 2.90000+ 1 1.95534- 4 9.73036- 3 1.90000+ 1 3.00000+ 1 4.75806- 4 9.74073- 3 1.90000+ 1 3.20000+ 1 8.41379- 5 9.77811- 3 1.90000+ 1 4.10000+ 1 1.36282- 5 9.77868- 3 2.10000+ 1 2.10000+ 1 1.94355- 4 9.68590- 3 2.10000+ 1 2.20000+ 1 3.34790- 3 9.69861- 3 2.10000+ 1 2.40000+ 1 4.26638- 5 9.90034- 3 2.10000+ 1 2.50000+ 1 1.39244- 4 9.90270- 3 2.10000+ 1 2.70000+ 1 1.12580- 5 9.86081- 3 2.10000+ 1 2.90000+ 1 1.18513- 5 9.88993- 3 2.10000+ 1 3.00000+ 1 1.89611- 4 9.90030- 3 2.10000+ 1 3.20000+ 1 2.19247- 5 9.93768- 3 2.10000+ 1 4.10000+ 1 1.18513- 6 9.93825- 3 2.20000+ 1 2.20000+ 1 2.62580- 3 9.71132- 3 2.20000+ 1 2.40000+ 1 4.99664- 4 9.91305- 3 2.20000+ 1 2.50000+ 1 4.50120- 4 9.91541- 3 2.20000+ 1 2.70000+ 1 1.80845- 5 9.87352- 3 2.20000+ 1 2.90000+ 1 9.37760- 5 9.90264- 3 2.20000+ 1 3.00000+ 1 3.36242- 4 9.91301- 3 2.20000+ 1 3.20000+ 1 2.15666- 4 9.95039- 3 2.20000+ 1 4.10000+ 1 1.33965- 6 9.95096- 3 2.40000+ 1 2.40000+ 1 2.05986- 6 1.01148- 2 2.40000+ 1 2.50000+ 1 6.69436- 5 1.01171- 2 2.40000+ 1 2.70000+ 1 6.17927- 6 1.00752- 2 2.40000+ 1 2.90000+ 1 6.17927- 6 1.01044- 2 2.40000+ 1 3.00000+ 1 1.75085- 5 1.01147- 2 2.40000+ 1 3.20000+ 1 4.11941- 6 1.01521- 2 2.40000+ 1 4.10000+ 1 1.02992- 6 1.01527- 2 2.50000+ 1 2.50000+ 1 1.68932- 5 1.01195- 2 2.50000+ 1 2.70000+ 1 9.54832- 6 1.00776- 2 2.50000+ 1 2.90000+ 1 1.02834- 5 1.01067- 2 2.50000+ 1 3.00000+ 1 1.68932- 5 1.01171- 2 2.50000+ 1 3.20000+ 1 9.54832- 6 1.01545- 2 2.50000+ 1 4.10000+ 1 7.34516- 7 1.01550- 2 2.70000+ 1 2.70000+ 1 2.05223- 6 1.00357- 2 2.70000+ 1 2.90000+ 1 1.02610- 6 1.00648- 2 2.70000+ 1 3.00000+ 1 3.48855- 5 1.00752- 2 2.70000+ 1 3.20000+ 1 1.02610- 6 1.01126- 2 2.90000+ 1 3.00000+ 1 6.62854- 5 1.01043- 2 2.90000+ 1 3.20000+ 1 1.50652- 6 1.01417- 2 3.00000+ 1 3.00000+ 1 1.07658- 4 1.01147- 2 3.00000+ 1 3.20000+ 1 3.71894- 5 1.01521- 2 3.00000+ 1 4.10000+ 1 5.87221- 6 1.01526- 2 3.20000+ 1 3.20000+ 1 5.92559- 7 1.01895- 2 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.99486- 6 2.28700- 4 1.10000+ 1 2.53380- 4 5.25300- 4 1.80000+ 1 9.57163- 4 2.30789- 3 1.90000+ 1 9.07619- 4 2.37688- 3 2.90000+ 1 2.11596- 4 2.74048- 3 3.00000+ 1 1.96392- 4 2.75085- 3 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.97490- 2 1.83090- 4 1.00000+ 1 2.50000+ 1 5.32021- 2 1.85450- 4 1.00000+ 1 2.70000+ 1 9.95388- 3 1.43560- 4 1.00000+ 1 2.90000+ 1 8.88774- 3 1.72680- 4 1.00000+ 1 3.00000+ 1 1.24028- 2 1.83050- 4 1.00000+ 1 3.20000+ 1 1.40795- 3 2.20430- 4 1.00000+ 1 3.30000+ 1 1.85048- 3 2.21290- 4 1.00000+ 1 4.10000+ 1 8.79261- 4 2.21000- 4 1.10000+ 1 1.80000+ 1 6.57511- 2 3.66900- 5 1.10000+ 1 1.90000+ 1 7.65661- 2 1.05680- 4 1.10000+ 1 2.10000+ 1 2.89562- 2 2.65250- 4 1.10000+ 1 2.20000+ 1 4.33014- 2 2.77960- 4 1.10000+ 1 2.40000+ 1 1.52896- 1 4.79690- 4 1.10000+ 1 2.50000+ 1 1.90867- 1 4.82050- 4 1.10000+ 1 2.70000+ 1 1.01299- 2 4.40160- 4 1.10000+ 1 2.90000+ 1 9.00907- 3 4.69280- 4 1.10000+ 1 3.00000+ 1 1.05729- 2 4.79650- 4 1.10000+ 1 3.20000+ 1 6.14782- 4 5.17030- 4 1.10000+ 1 3.30000+ 1 9.07259- 4 5.17890- 4 1.10000+ 1 4.10000+ 1 9.07711- 4 5.17600- 4 1.30000+ 1 1.60000+ 1 2.63648- 2 3.30700- 4 1.30000+ 1 1.80000+ 1 5.84053- 3 4.26790- 4 1.30000+ 1 1.90000+ 1 6.06441- 3 4.95780- 4 1.30000+ 1 2.10000+ 1 8.85587- 3 6.55350- 4 1.30000+ 1 2.20000+ 1 1.10350- 2 6.68060- 4 1.30000+ 1 2.40000+ 1 7.87333- 3 8.69790- 4 1.30000+ 1 2.50000+ 1 7.28906- 3 8.72150- 4 1.30000+ 1 2.70000+ 1 3.08923- 3 8.30260- 4 1.30000+ 1 2.90000+ 1 6.79442- 4 8.59380- 4 1.30000+ 1 3.00000+ 1 6.61975- 4 8.69750- 4 1.30000+ 1 3.20000+ 1 1.79250- 4 9.07130- 4 1.30000+ 1 3.30000+ 1 2.24524- 4 9.07990- 4 1.30000+ 1 4.10000+ 1 2.64523- 4 9.07700- 4 1.40000+ 1 1.60000+ 1 3.74579- 2 3.95600- 4 1.40000+ 1 1.80000+ 1 1.09152- 3 4.91690- 4 1.40000+ 1 1.90000+ 1 1.12688- 2 5.60680- 4 1.40000+ 1 2.10000+ 1 1.22086- 2 7.20250- 4 1.40000+ 1 2.20000+ 1 1.78170- 2 7.32960- 4 1.40000+ 1 2.40000+ 1 8.93083- 3 9.34690- 4 1.40000+ 1 2.50000+ 1 1.39736- 2 9.37050- 4 1.40000+ 1 2.70000+ 1 4.33921- 3 8.95160- 4 1.40000+ 1 2.90000+ 1 1.37901- 4 9.24280- 4 1.40000+ 1 3.00000+ 1 1.22326- 3 9.34650- 4 1.40000+ 1 3.20000+ 1 2.64233- 4 9.72030- 4 1.40000+ 1 3.30000+ 1 3.50558- 4 9.72890- 4 1.40000+ 1 4.10000+ 1 3.70871- 4 9.72600- 4 1.60000+ 1 1.60000+ 1 3.19328- 3 1.62710- 3 1.60000+ 1 1.80000+ 1 5.47981- 3 1.72319- 3 1.60000+ 1 1.90000+ 1 9.33251- 3 1.79218- 3 1.60000+ 1 2.10000+ 1 1.04592- 2 1.95175- 3 1.60000+ 1 2.20000+ 1 1.48532- 2 1.96446- 3 1.60000+ 1 2.40000+ 1 6.26430- 3 2.16619- 3 1.60000+ 1 2.50000+ 1 7.89126- 3 2.16855- 3 1.60000+ 1 2.70000+ 1 9.32470- 4 2.12666- 3 1.60000+ 1 2.90000+ 1 8.09727- 4 2.15578- 3 1.60000+ 1 3.00000+ 1 1.31549- 3 2.16615- 3 1.60000+ 1 3.20000+ 1 2.45464- 4 2.20353- 3 1.60000+ 1 3.30000+ 1 3.28417- 4 2.20439- 3 1.60000+ 1 4.10000+ 1 8.26889- 5 2.20410- 3 1.80000+ 1 1.80000+ 1 2.44067- 4 1.81928- 3 1.80000+ 1 1.90000+ 1 6.63727- 4 1.88827- 3 1.80000+ 1 2.10000+ 1 3.62806- 4 2.04784- 3 1.80000+ 1 2.20000+ 1 2.07425- 4 2.06055- 3 1.80000+ 1 2.40000+ 1 6.36672- 5 2.26228- 3 1.80000+ 1 2.50000+ 1 4.44662- 4 2.26464- 3 1.80000+ 1 2.70000+ 1 6.09134- 4 2.22275- 3 1.80000+ 1 2.90000+ 1 5.58352- 5 2.25187- 3 1.80000+ 1 3.00000+ 1 7.14976- 5 2.26224- 3 1.80000+ 1 3.20000+ 1 7.57946- 6 2.29962- 3 1.80000+ 1 3.30000+ 1 5.30555- 6 2.30048- 3 1.80000+ 1 4.10000+ 1 5.20467- 5 2.30019- 3 1.90000+ 1 1.90000+ 1 8.20359- 4 1.95726- 3 1.90000+ 1 2.10000+ 1 6.49575- 4 2.11683- 3 1.90000+ 1 2.20000+ 1 1.53109- 3 2.12954- 3 1.90000+ 1 2.40000+ 1 5.10366- 4 2.33127- 3 1.90000+ 1 2.50000+ 1 9.39632- 4 2.33363- 3 1.90000+ 1 2.70000+ 1 1.04269- 3 2.29174- 3 1.90000+ 1 2.90000+ 1 8.31222- 5 2.32086- 3 1.90000+ 1 3.00000+ 1 1.95304- 4 2.33123- 3 1.90000+ 1 3.20000+ 1 1.56647- 5 2.36861- 3 1.90000+ 1 3.30000+ 1 3.25925- 5 2.36947- 3 1.90000+ 1 4.10000+ 1 8.91853- 5 2.36918- 3 2.10000+ 1 2.10000+ 1 1.20497- 4 2.27640- 3 2.10000+ 1 2.20000+ 1 5.54004- 4 2.28911- 3 2.10000+ 1 2.40000+ 1 4.56948- 4 2.49084- 3 2.10000+ 1 2.50000+ 1 3.29048- 3 2.49320- 3 2.10000+ 1 2.70000+ 1 1.19500- 3 2.45131- 3 2.10000+ 1 2.90000+ 1 3.90235- 5 2.48043- 3 2.10000+ 1 3.00000+ 1 7.62025- 5 2.49080- 3 2.10000+ 1 3.20000+ 1 4.74620- 6 2.52818- 3 2.10000+ 1 3.30000+ 1 1.08105- 5 2.52904- 3 2.10000+ 1 4.10000+ 1 1.01778- 4 2.52875- 3 2.20000+ 1 2.20000+ 1 3.09346- 4 2.30182- 3 2.20000+ 1 2.40000+ 1 3.05615- 3 2.50355- 3 2.20000+ 1 2.50000+ 1 1.77761- 3 2.50591- 3 2.20000+ 1 2.70000+ 1 1.63780- 3 2.46402- 3 2.20000+ 1 2.90000+ 1 2.34624- 5 2.49314- 3 2.20000+ 1 3.00000+ 1 1.71878- 4 2.50351- 3 2.20000+ 1 3.20000+ 1 1.04555- 5 2.54089- 3 2.20000+ 1 3.30000+ 1 1.17309- 5 2.54175- 3 2.20000+ 1 4.10000+ 1 1.39492- 4 2.54146- 3 2.40000+ 1 2.40000+ 1 4.99738- 4 2.70528- 3 2.40000+ 1 2.50000+ 1 3.52361- 3 2.70764- 3 2.40000+ 1 2.70000+ 1 6.35152- 4 2.66575- 3 2.40000+ 1 2.90000+ 1 6.56879- 6 2.69487- 3 2.40000+ 1 3.00000+ 1 4.52231- 5 2.70524- 3 2.40000+ 1 3.20000+ 1 9.34796- 6 2.74262- 3 2.40000+ 1 3.30000+ 1 6.64450- 5 2.74348- 3 2.40000+ 1 4.10000+ 1 5.35606- 5 2.74319- 3 2.50000+ 1 2.50000+ 1 1.19387- 3 2.71000- 3 2.50000+ 1 2.70000+ 1 8.08319- 4 2.66811- 3 2.50000+ 1 2.90000+ 1 5.95247- 5 2.69723- 3 2.50000+ 1 3.00000+ 1 8.73724- 5 2.70760- 3 2.50000+ 1 3.20000+ 1 7.28095- 5 2.74498- 3 2.50000+ 1 3.30000+ 1 3.80655- 5 2.74584- 3 2.50000+ 1 4.10000+ 1 6.82114- 5 2.74555- 3 2.70000+ 1 2.70000+ 1 1.04521- 4 2.62622- 3 2.70000+ 1 2.90000+ 1 1.52731- 4 2.65534- 3 2.70000+ 1 3.00000+ 1 2.48299- 4 2.66571- 3 2.70000+ 1 3.20000+ 1 4.56475- 5 2.70309- 3 2.70000+ 1 3.30000+ 1 6.10041- 5 2.70395- 3 2.70000+ 1 4.10000+ 1 1.83452- 5 2.70366- 3 2.90000+ 1 2.90000+ 1 6.27319- 6 2.68446- 3 2.90000+ 1 3.00000+ 1 1.82970- 5 2.69483- 3 2.90000+ 1 3.20000+ 1 1.56830- 6 2.73221- 3 2.90000+ 1 3.30000+ 1 1.04552- 6 2.73307- 3 2.90000+ 1 4.10000+ 1 1.62058- 5 2.73278- 3 3.00000+ 1 3.00000+ 1 2.93483- 5 2.70520- 3 3.00000+ 1 3.20000+ 1 4.56512- 6 2.74258- 3 3.00000+ 1 3.30000+ 1 9.13022- 6 2.74344- 3 3.00000+ 1 4.10000+ 1 3.26074- 5 2.74315- 3 3.20000+ 1 3.30000+ 1 2.52652- 7 2.78082- 3 3.20000+ 1 4.10000+ 1 2.27392- 6 2.78053- 3 3.30000+ 1 4.10000+ 1 3.03184- 6 2.78139- 3 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.65090- 4 6.86700- 4 1.60000+ 1 6.16630- 4 1.98310- 3 2.10000+ 1 3.24490- 3 2.30775- 3 2.70000+ 1 1.20370- 4 2.48266- 3 3.20000+ 1 1.02610- 4 2.55953- 3 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.13620- 3 3.65500- 5 1.10000+ 1 2.20000+ 1 1.76020- 2 4.92600- 5 1.10000+ 1 2.40000+ 1 2.73273- 2 2.50990- 4 1.10000+ 1 2.50000+ 1 2.70381- 2 2.53350- 4 1.10000+ 1 2.70000+ 1 3.22467- 3 2.11460- 4 1.10000+ 1 2.90000+ 1 3.68803- 3 2.40580- 4 1.10000+ 1 3.00000+ 1 2.97429- 3 2.50950- 4 1.10000+ 1 3.20000+ 1 1.75607- 4 2.88330- 4 1.10000+ 1 3.30000+ 1 3.99164- 4 2.89190- 4 1.10000+ 1 4.10000+ 1 2.76679- 4 2.88900- 4 1.30000+ 1 1.60000+ 1 5.43530- 2 1.02000- 4 1.30000+ 1 1.80000+ 1 5.45169- 2 1.98090- 4 1.30000+ 1 1.90000+ 1 5.96981- 2 2.67080- 4 1.30000+ 1 2.10000+ 1 2.17836- 2 4.26650- 4 1.30000+ 1 2.20000+ 1 2.55244- 2 4.39360- 4 1.30000+ 1 2.40000+ 1 1.32360- 1 6.41090- 4 1.30000+ 1 2.50000+ 1 2.01592- 1 6.43450- 4 1.30000+ 1 2.70000+ 1 9.50875- 3 6.01560- 4 1.30000+ 1 2.90000+ 1 6.93455- 3 6.30680- 4 1.30000+ 1 3.00000+ 1 8.10545- 3 6.41050- 4 1.30000+ 1 3.20000+ 1 5.14136- 4 6.78430- 4 1.30000+ 1 3.30000+ 1 6.04506- 4 6.79290- 4 1.30000+ 1 4.10000+ 1 8.55610- 4 6.79000- 4 1.40000+ 1 1.60000+ 1 8.92435- 3 1.66900- 4 1.40000+ 1 1.80000+ 1 6.21092- 2 2.62990- 4 1.40000+ 1 1.90000+ 1 5.57754- 3 3.31980- 4 1.40000+ 1 2.10000+ 1 9.89456- 4 4.91550- 4 1.40000+ 1 2.20000+ 1 3.02167- 3 5.04260- 4 1.40000+ 1 2.40000+ 1 4.69764- 3 7.05990- 4 1.40000+ 1 2.50000+ 1 3.48672- 3 7.08350- 4 1.40000+ 1 2.70000+ 1 1.04645- 3 6.66460- 4 1.40000+ 1 2.90000+ 1 6.31198- 3 6.95580- 4 1.40000+ 1 3.00000+ 1 6.88936- 4 7.05950- 4 1.40000+ 1 3.20000+ 1 1.46661- 5 7.43330- 4 1.40000+ 1 3.30000+ 1 6.24320- 5 7.44190- 4 1.40000+ 1 4.10000+ 1 8.99912- 5 7.43900- 4 1.60000+ 1 1.60000+ 1 8.62731- 4 1.39840- 3 1.60000+ 1 1.80000+ 1 1.21964- 2 1.49449- 3 1.60000+ 1 1.90000+ 1 1.79593- 3 1.56348- 3 1.60000+ 1 2.10000+ 1 3.93696- 4 1.72305- 3 1.60000+ 1 2.20000+ 1 1.41560- 3 1.73576- 3 1.60000+ 1 2.40000+ 1 4.79935- 5 1.93749- 3 1.60000+ 1 2.50000+ 1 8.87035- 4 1.93985- 3 1.60000+ 1 2.70000+ 1 2.37545- 4 1.89796- 3 1.60000+ 1 2.90000+ 1 1.19991- 3 1.92708- 3 1.60000+ 1 3.00000+ 1 2.29036- 4 1.93745- 3 1.60000+ 1 3.20000+ 1 7.29066- 6 1.97483- 3 1.60000+ 1 3.30000+ 1 2.91634- 5 1.97569- 3 1.60000+ 1 4.10000+ 1 2.06568- 5 1.97540- 3 1.80000+ 1 1.80000+ 1 9.23228- 3 1.59058- 3 1.80000+ 1 1.90000+ 1 2.66961- 2 1.65957- 3 1.80000+ 1 2.10000+ 1 2.58172- 2 1.81914- 3 1.80000+ 1 2.20000+ 1 4.16444- 2 1.83185- 3 1.80000+ 1 2.40000+ 1 1.27671- 2 2.03358- 3 1.80000+ 1 2.50000+ 1 2.17210- 2 2.03594- 3 1.80000+ 1 2.70000+ 1 2.13854- 3 1.99405- 3 1.80000+ 1 2.90000+ 1 2.30509- 3 2.02317- 3 1.80000+ 1 3.00000+ 1 3.73455- 3 2.03354- 3 1.80000+ 1 3.20000+ 1 6.06937- 4 2.07092- 3 1.80000+ 1 3.30000+ 1 9.13745- 4 2.07178- 3 1.80000+ 1 4.10000+ 1 1.93199- 4 2.07149- 3 1.90000+ 1 1.90000+ 1 7.34510- 4 1.72856- 3 1.90000+ 1 2.10000+ 1 1.91922- 3 1.88813- 3 1.90000+ 1 2.20000+ 1 1.59479- 3 1.90084- 3 1.90000+ 1 2.40000+ 1 9.04562- 3 2.10257- 3 1.90000+ 1 2.50000+ 1 2.51649- 3 2.10493- 3 1.90000+ 1 2.70000+ 1 2.08386- 4 2.06304- 3 1.90000+ 1 2.90000+ 1 2.68275- 3 2.09216- 3 1.90000+ 1 3.00000+ 1 1.74363- 4 2.10253- 3 1.90000+ 1 3.20000+ 1 3.76699- 5 2.13991- 3 1.90000+ 1 3.30000+ 1 3.15926- 5 2.14077- 3 1.90000+ 1 4.10000+ 1 1.76185- 5 2.14048- 3 2.10000+ 1 2.10000+ 1 8.65756- 4 2.04770- 3 2.10000+ 1 2.20000+ 1 2.38599- 3 2.06041- 3 2.10000+ 1 2.40000+ 1 1.06202- 3 2.26214- 3 2.10000+ 1 2.50000+ 1 1.94966- 3 2.26450- 3 2.10000+ 1 2.70000+ 1 6.37935- 5 2.22261- 3 2.10000+ 1 2.90000+ 1 2.53603- 3 2.25173- 3 2.10000+ 1 3.00000+ 1 2.36341- 4 2.26210- 3 2.10000+ 1 3.20000+ 1 3.46327- 5 2.29948- 3 2.10000+ 1 3.30000+ 1 4.92132- 5 2.30034- 3 2.10000+ 1 4.10000+ 1 5.46824- 6 2.30005- 3 2.20000+ 1 2.20000+ 1 5.71694- 4 2.07312- 3 2.20000+ 1 2.40000+ 1 3.33748- 3 2.27485- 3 2.20000+ 1 2.50000+ 1 7.27861- 4 2.27721- 3 2.20000+ 1 2.70000+ 1 1.98671- 4 2.23532- 3 2.20000+ 1 2.90000+ 1 4.14911- 3 2.26444- 3 2.20000+ 1 3.00000+ 1 1.76191- 4 2.27481- 3 2.20000+ 1 3.20000+ 1 4.86074- 5 2.31219- 3 2.20000+ 1 3.30000+ 1 2.18721- 5 2.31305- 3 2.20000+ 1 4.10000+ 1 1.76191- 5 2.31276- 3 2.40000+ 1 2.40000+ 1 2.68001- 3 2.47658- 3 2.40000+ 1 2.50000+ 1 1.73122- 2 2.47894- 3 2.40000+ 1 2.70000+ 1 3.03777- 6 2.43705- 3 2.40000+ 1 2.90000+ 1 1.15863- 3 2.46617- 3 2.40000+ 1 3.00000+ 1 1.19022- 3 2.47654- 3 2.40000+ 1 3.20000+ 1 2.73412- 5 2.51392- 3 2.40000+ 1 3.30000+ 1 7.95906- 5 2.51478- 3 2.50000+ 1 2.50000+ 1 9.05875- 4 2.48130- 3 2.50000+ 1 2.70000+ 1 1.31234- 4 2.43941- 3 2.50000+ 1 2.90000+ 1 1.95453- 3 2.46853- 3 2.50000+ 1 3.00000+ 1 2.98935- 4 2.47890- 3 2.50000+ 1 3.20000+ 1 4.61750- 5 2.51628- 3 2.50000+ 1 3.30000+ 1 1.64043- 5 2.51714- 3 2.50000+ 1 4.10000+ 1 1.15439- 5 2.51685- 3 2.70000+ 1 2.70000+ 1 2.02460- 5 2.39752- 3 2.70000+ 1 2.90000+ 1 2.60199- 4 2.42664- 3 2.70000+ 1 3.00000+ 1 3.29974- 5 2.43701- 3 2.70000+ 1 3.20000+ 1 1.49971- 6 2.47439- 3 2.70000+ 1 3.30000+ 1 5.24875- 6 2.47525- 3 2.70000+ 1 4.10000+ 1 3.74925- 6 2.47496- 3 2.90000+ 1 2.90000+ 1 2.41636- 4 2.45576- 3 2.90000+ 1 3.00000+ 1 6.66935- 4 2.46613- 3 2.90000+ 1 3.20000+ 1 1.05246- 4 2.50351- 3 2.90000+ 1 3.30000+ 1 1.61092- 4 2.50437- 3 2.90000+ 1 4.10000+ 1 3.32917- 5 2.50408- 3 3.00000+ 1 3.00000+ 1 4.53947- 5 2.47650- 3 3.00000+ 1 3.20000+ 1 2.13635- 5 2.51388- 3 3.00000+ 1 3.30000+ 1 1.60211- 5 2.51474- 3 3.00000+ 1 4.10000+ 1 1.06808- 5 2.51445- 3 3.20000+ 1 3.30000+ 1 1.21510- 6 2.55212- 3 3.30000+ 1 4.10000+ 1 6.07570- 7 2.55269- 3 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.67441- 5 3.90100- 4 1.40000+ 1 2.50336- 4 4.55000- 4 1.60000+ 1 1.02007- 3 1.68650- 3 2.10000+ 1 4.94185- 4 2.01115- 3 2.20000+ 1 3.88694- 3 2.02386- 3 2.70000+ 1 1.89647- 4 2.18606- 3 3.20000+ 1 1.48830- 5 2.26293- 3 3.30000+ 1 1.13560- 4 2.26379- 3 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.04251- 2 1.30050- 4 1.30000+ 1 2.20000+ 1 1.02172- 2 1.42760- 4 1.30000+ 1 2.40000+ 1 1.54587- 2 3.44490- 4 1.30000+ 1 2.50000+ 1 2.25144- 2 3.46850- 4 1.30000+ 1 2.70000+ 1 2.19350- 3 3.04960- 4 1.30000+ 1 2.90000+ 1 1.67855- 3 3.34080- 4 1.30000+ 1 3.00000+ 1 5.97430- 3 3.44450- 4 1.30000+ 1 3.20000+ 1 2.09581- 4 3.81830- 4 1.30000+ 1 3.30000+ 1 1.97202- 4 3.82690- 4 1.30000+ 1 4.10000+ 1 1.93360- 4 3.82400- 4 1.40000+ 1 1.90000+ 1 1.23272- 1 3.53800- 5 1.40000+ 1 2.10000+ 1 4.68113- 2 1.94950- 4 1.40000+ 1 2.20000+ 1 6.52679- 2 2.07660- 4 1.40000+ 1 2.40000+ 1 1.56704- 1 4.09390- 4 1.40000+ 1 2.50000+ 1 1.88430- 1 4.11750- 4 1.40000+ 1 2.70000+ 1 1.29747- 2 3.69860- 4 1.40000+ 1 2.90000+ 1 1.14463- 2 3.98980- 4 1.40000+ 1 3.00000+ 1 1.53854- 2 4.09350- 4 1.40000+ 1 3.20000+ 1 9.41880- 4 4.46730- 4 1.40000+ 1 3.30000+ 1 1.29882- 3 4.47590- 4 1.40000+ 1 4.10000+ 1 1.15733- 3 4.47300- 4 1.60000+ 1 1.60000+ 1 5.40919- 4 1.10180- 3 1.60000+ 1 1.80000+ 1 9.05701- 4 1.19789- 3 1.60000+ 1 1.90000+ 1 1.48095- 2 1.26688- 3 1.60000+ 1 2.10000+ 1 8.72507- 4 1.42645- 3 1.60000+ 1 2.20000+ 1 9.88890- 4 1.43916- 3 1.60000+ 1 2.40000+ 1 1.31658- 3 1.64089- 3 1.60000+ 1 2.50000+ 1 2.15135- 3 1.64325- 3 1.60000+ 1 2.70000+ 1 1.47585- 4 1.60136- 3 1.60000+ 1 2.90000+ 1 1.04676- 4 1.63048- 3 1.60000+ 1 3.00000+ 1 1.42384- 3 1.64085- 3 1.60000+ 1 3.20000+ 1 1.88545- 5 1.67823- 3 1.60000+ 1 3.30000+ 1 1.95048- 5 1.67909- 3 1.60000+ 1 4.10000+ 1 1.30031- 5 1.67880- 3 1.80000+ 1 1.80000+ 1 7.73708- 5 1.29398- 3 1.80000+ 1 1.90000+ 1 1.78658- 2 1.36297- 3 1.80000+ 1 2.10000+ 1 3.99183- 4 1.52254- 3 1.80000+ 1 2.20000+ 1 3.49214- 3 1.53525- 3 1.80000+ 1 2.40000+ 1 1.45768- 3 1.73698- 3 1.80000+ 1 2.50000+ 1 8.28005- 3 1.73934- 3 1.80000+ 1 2.70000+ 1 1.11177- 4 1.69745- 3 1.80000+ 1 2.90000+ 1 1.62540- 5 1.72657- 3 1.80000+ 1 3.00000+ 1 1.74244- 3 1.73694- 3 1.80000+ 1 3.20000+ 1 8.45217- 6 1.77432- 3 1.80000+ 1 3.30000+ 1 6.56675- 5 1.77518- 3 1.80000+ 1 4.10000+ 1 9.75233- 6 1.77489- 3 1.90000+ 1 1.90000+ 1 2.43032- 2 1.43196- 3 1.90000+ 1 2.10000+ 1 3.43939- 2 1.59153- 3 1.90000+ 1 2.20000+ 1 4.53548- 2 1.60424- 3 1.90000+ 1 2.40000+ 1 2.44966- 2 1.80597- 3 1.90000+ 1 2.50000+ 1 2.79851- 2 1.80833- 3 1.90000+ 1 2.70000+ 1 2.54613- 3 1.76644- 3 1.90000+ 1 2.90000+ 1 2.58963- 3 1.79556- 3 1.90000+ 1 3.00000+ 1 5.74472- 3 1.80593- 3 1.90000+ 1 3.20000+ 1 7.88662- 4 1.84331- 3 1.90000+ 1 3.30000+ 1 9.87575- 4 1.84417- 3 1.90000+ 1 4.10000+ 1 2.29506- 4 1.84388- 3 2.10000+ 1 2.10000+ 1 2.21698- 4 1.75110- 3 2.10000+ 1 2.20000+ 1 4.94178- 3 1.76381- 3 2.10000+ 1 2.40000+ 1 6.16357- 4 1.96554- 3 2.10000+ 1 2.50000+ 1 7.42065- 3 1.96790- 3 2.10000+ 1 2.70000+ 1 9.49215- 5 1.92601- 3 2.10000+ 1 2.90000+ 1 2.92586- 5 1.95513- 3 2.10000+ 1 3.00000+ 1 3.31554- 3 1.96550- 3 2.10000+ 1 3.20000+ 1 8.45192- 6 2.00288- 3 2.10000+ 1 3.30000+ 1 9.75203- 5 2.00374- 3 2.10000+ 1 4.10000+ 1 7.80187- 6 2.00345- 3 2.20000+ 1 2.20000+ 1 2.26129- 3 1.77652- 3 2.20000+ 1 2.40000+ 1 6.00684- 3 1.97825- 3 2.20000+ 1 2.50000+ 1 5.11620- 3 1.98061- 3 2.20000+ 1 2.70000+ 1 1.09226- 4 1.93872- 3 2.20000+ 1 2.90000+ 1 2.99073- 4 1.96784- 3 2.20000+ 1 3.00000+ 1 4.32544- 3 1.97821- 3 2.20000+ 1 3.20000+ 1 1.02726- 4 2.01559- 3 2.20000+ 1 3.30000+ 1 8.90738- 5 2.01645- 3 2.20000+ 1 4.10000+ 1 9.10222- 6 2.01616- 3 2.40000+ 1 2.40000+ 1 7.92541- 4 2.17998- 3 2.40000+ 1 2.50000+ 1 2.13124- 2 2.18234- 3 2.40000+ 1 2.70000+ 1 1.34583- 4 2.14045- 3 2.40000+ 1 2.90000+ 1 1.78146- 4 2.16957- 3 2.40000+ 1 3.00000+ 1 2.25282- 3 2.17994- 3 2.40000+ 1 3.20000+ 1 1.62540- 5 2.21732- 3 2.40000+ 1 3.30000+ 1 1.25482- 4 2.21818- 3 2.40000+ 1 4.10000+ 1 1.17028- 5 2.21789- 3 2.50000+ 1 2.50000+ 1 8.33161- 3 2.18470- 3 2.50000+ 1 2.70000+ 1 1.81385- 4 2.14281- 3 2.50000+ 1 2.90000+ 1 1.01224- 3 2.17193- 3 2.50000+ 1 3.00000+ 1 2.65433- 3 2.18230- 3 2.50000+ 1 3.20000+ 1 1.69682- 4 2.21968- 3 2.50000+ 1 3.30000+ 1 1.13774- 4 2.22054- 3 2.50000+ 1 4.10000+ 1 1.49531- 5 2.22025- 3 2.70000+ 1 2.70000+ 1 1.56378- 5 2.10092- 3 2.70000+ 1 2.90000+ 1 1.95470- 5 2.13004- 3 2.70000+ 1 3.00000+ 1 3.68468- 4 2.14041- 3 2.70000+ 1 3.20000+ 1 2.93208- 6 2.17779- 3 2.70000+ 1 3.30000+ 1 2.93208- 6 2.17865- 3 2.70000+ 1 4.10000+ 1 2.93208- 6 2.17836- 3 2.90000+ 1 2.90000+ 1 1.07887- 6 2.15916- 3 2.90000+ 1 3.00000+ 1 4.20774- 4 2.16953- 3 2.90000+ 1 3.20000+ 1 1.07887- 6 2.20691- 3 2.90000+ 1 3.30000+ 1 9.70999- 6 2.20777- 3 2.90000+ 1 4.10000+ 1 2.15770- 6 2.20748- 3 3.00000+ 1 3.00000+ 1 1.12088- 3 2.17990- 3 3.00000+ 1 3.20000+ 1 2.60215- 4 2.21728- 3 3.00000+ 1 3.30000+ 1 3.22485- 4 2.21814- 3 3.00000+ 1 4.10000+ 1 7.56168- 5 2.21785- 3 3.20000+ 1 3.30000+ 1 1.95050- 6 2.25552- 3 3.30000+ 1 3.30000+ 1 6.50169- 7 2.25638- 3 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.18769- 3 1.39249- 3 1.90000+ 1 2.27399- 4 1.46148- 3 2.40000+ 1 1.69359- 2 1.83549- 3 2.90000+ 1 5.10618- 4 1.82508- 3 3.00000+ 1 5.38308- 5 1.83545- 3 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 9.70773- 2 1.92900- 5 1.40000+ 1 2.50000+ 1 1.41554- 2 2.16500- 5 1.40000+ 1 2.90000+ 1 5.86056- 4 8.88000- 6 1.40000+ 1 3.00000+ 1 1.78989- 3 1.92500- 5 1.40000+ 1 3.20000+ 1 3.05377- 3 5.66300- 5 1.40000+ 1 3.30000+ 1 4.07992- 4 5.74900- 5 1.40000+ 1 4.10000+ 1 1.49159- 4 5.72000- 5 1.60000+ 1 1.60000+ 1 3.66219- 5 7.11700- 4 1.60000+ 1 1.80000+ 1 1.62598- 3 8.07790- 4 1.60000+ 1 1.90000+ 1 1.14845- 3 8.76780- 4 1.60000+ 1 2.10000+ 1 4.16272- 2 1.03635- 3 1.60000+ 1 2.20000+ 1 4.88968- 3 1.04906- 3 1.60000+ 1 2.40000+ 1 1.45742- 2 1.25079- 3 1.60000+ 1 2.50000+ 1 4.42681- 3 1.25315- 3 1.60000+ 1 2.70000+ 1 2.05079- 5 1.21126- 3 1.60000+ 1 2.90000+ 1 1.88967- 4 1.24038- 3 1.60000+ 1 3.00000+ 1 1.09863- 4 1.25075- 3 1.60000+ 1 3.20000+ 1 7.29499- 4 1.28813- 3 1.60000+ 1 3.30000+ 1 8.34960- 5 1.28899- 3 1.60000+ 1 4.10000+ 1 1.46484- 6 1.28870- 3 1.80000+ 1 1.80000+ 1 9.55087- 4 9.03880- 4 1.80000+ 1 1.90000+ 1 5.98424- 3 9.72870- 4 1.80000+ 1 2.10000+ 1 3.66364- 2 1.13244- 3 1.80000+ 1 2.20000+ 1 2.84773- 3 1.14515- 3 1.80000+ 1 2.40000+ 1 9.16005- 3 1.34688- 3 1.80000+ 1 2.50000+ 1 4.58508- 3 1.34924- 3 1.80000+ 1 2.70000+ 1 1.91900- 4 1.30735- 3 1.80000+ 1 2.90000+ 1 2.24126- 4 1.33647- 3 1.80000+ 1 3.00000+ 1 6.35738- 4 1.34684- 3 1.80000+ 1 3.20000+ 1 6.38693- 4 1.38422- 3 1.80000+ 1 3.30000+ 1 5.56657- 5 1.38508- 3 1.80000+ 1 4.10000+ 1 1.61131- 5 1.38479- 3 1.90000+ 1 1.90000+ 1 2.13879- 3 1.04186- 3 1.90000+ 1 2.10000+ 1 7.56856- 2 1.20143- 3 1.90000+ 1 2.20000+ 1 2.84768- 3 1.21414- 3 1.90000+ 1 2.40000+ 1 4.26126- 3 1.41587- 3 1.90000+ 1 2.50000+ 1 2.41111- 3 1.41823- 3 1.90000+ 1 2.70000+ 1 1.53799- 4 1.37634- 3 1.90000+ 1 2.90000+ 1 5.88887- 4 1.40546- 3 1.90000+ 1 3.00000+ 1 4.36531- 4 1.41583- 3 1.90000+ 1 3.20000+ 1 1.33005- 3 1.45321- 3 1.90000+ 1 3.30000+ 1 4.98054- 5 1.45407- 3 1.90000+ 1 4.10000+ 1 1.31838- 5 1.45378- 3 2.10000+ 1 2.10000+ 1 6.56889- 2 1.36100- 3 2.10000+ 1 2.20000+ 1 1.31655- 1 1.37371- 3 2.10000+ 1 2.40000+ 1 5.76890- 2 1.57544- 3 2.10000+ 1 2.50000+ 1 7.13135- 2 1.57780- 3 2.10000+ 1 2.70000+ 1 6.63879- 3 1.53591- 3 2.10000+ 1 2.90000+ 1 5.34384- 3 1.56503- 3 2.10000+ 1 3.00000+ 1 1.03168- 2 1.57540- 3 2.10000+ 1 3.20000+ 1 2.67333- 3 1.61278- 3 2.10000+ 1 3.30000+ 1 2.83459- 3 1.61364- 3 2.10000+ 1 4.10000+ 1 5.94758- 4 1.61335- 3 2.20000+ 1 2.20000+ 1 2.13284- 3 1.38642- 3 2.20000+ 1 2.40000+ 1 6.20921- 2 1.58815- 3 2.20000+ 1 2.50000+ 1 3.31634- 3 1.59051- 3 2.20000+ 1 2.70000+ 1 4.42385- 4 1.54862- 3 2.20000+ 1 2.90000+ 1 2.73932- 4 1.57774- 3 2.20000+ 1 3.00000+ 1 3.19341- 4 1.58811- 3 2.20000+ 1 3.20000+ 1 2.32759- 3 1.62549- 3 2.20000+ 1 3.30000+ 1 7.76381- 5 1.62635- 3 2.20000+ 1 4.10000+ 1 3.66220- 5 1.62606- 3 2.40000+ 1 2.40000+ 1 5.12820- 2 1.78988- 3 2.40000+ 1 2.50000+ 1 1.48979- 1 1.79224- 3 2.40000+ 1 2.70000+ 1 2.40811- 3 1.75035- 3 2.40000+ 1 2.90000+ 1 1.11472- 3 1.77947- 3 2.40000+ 1 3.00000+ 1 5.81560- 4 1.78984- 3 2.40000+ 1 3.20000+ 1 1.07079- 3 1.82722- 3 2.40000+ 1 3.30000+ 1 1.28611- 3 1.82808- 3 2.40000+ 1 4.10000+ 1 2.16803- 4 1.82779- 3 2.50000+ 1 2.50000+ 1 3.49692- 3 1.79460- 3 2.50000+ 1 2.70000+ 1 5.87406- 4 1.75271- 3 2.50000+ 1 2.90000+ 1 3.54729- 4 1.78183- 3 2.50000+ 1 3.00000+ 1 3.33578- 4 1.79220- 3 2.50000+ 1 3.20000+ 1 1.30990- 3 1.82958- 3 2.50000+ 1 3.30000+ 1 7.15977- 5 1.83044- 3 2.50000+ 1 4.10000+ 1 5.04435- 5 1.83015- 3 2.70000+ 1 2.70000+ 1 4.56669- 6 1.71082- 3 2.70000+ 1 2.90000+ 1 7.30676- 5 1.73994- 3 2.70000+ 1 3.00000+ 1 4.56669- 5 1.75031- 3 2.70000+ 1 3.20000+ 1 3.65347- 4 1.78769- 3 2.70000+ 1 3.30000+ 1 2.73999- 5 1.78855- 3 2.90000+ 1 2.90000+ 1 5.85911- 5 1.76906- 3 2.90000+ 1 3.00000+ 1 2.92956- 4 1.77943- 3 2.90000+ 1 3.20000+ 1 4.16650- 4 1.81681- 3 2.90000+ 1 3.30000+ 1 2.60397- 5 1.81767- 3 2.90000+ 1 4.10000+ 1 6.51002- 6 1.81738- 3 3.00000+ 1 3.00000+ 1 1.38275- 4 1.78980- 3 3.00000+ 1 3.20000+ 1 1.07161- 3 1.82718- 3 3.00000+ 1 3.30000+ 1 3.45678- 5 1.82804- 3 3.00000+ 1 4.10000+ 1 8.64208- 6 1.82775- 3 3.20000+ 1 3.20000+ 1 1.31840- 5 1.86456- 3 3.20000+ 1 3.30000+ 1 4.98059- 5 1.86542- 3 3.20000+ 1 4.10000+ 1 1.02539- 5 1.86513- 3 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.92510- 3 1.39658- 3 2.40000+ 1 9.16648- 4 1.77059- 3 2.50000+ 1 1.78440- 2 1.77295- 3 3.00000+ 1 5.18729- 4 1.77055- 3 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.19517- 6 6.46800- 4 1.60000+ 1 1.80000+ 1 3.73837- 4 7.42890- 4 1.60000+ 1 1.90000+ 1 2.87402- 3 8.11880- 4 1.60000+ 1 2.10000+ 1 4.38706- 3 9.71450- 4 1.60000+ 1 2.20000+ 1 4.87342- 2 9.84160- 4 1.60000+ 1 2.40000+ 1 4.81519- 3 1.18589- 3 1.60000+ 1 2.50000+ 1 1.68353- 2 1.18825- 3 1.60000+ 1 2.70000+ 1 1.43785- 5 1.14636- 3 1.60000+ 1 2.90000+ 1 2.07687- 5 1.17548- 3 1.60000+ 1 3.00000+ 1 2.89167- 4 1.18585- 3 1.60000+ 1 3.20000+ 1 7.50865- 5 1.22323- 3 1.60000+ 1 3.30000+ 1 8.09990- 4 1.22409- 3 1.60000+ 1 4.10000+ 1 1.59759- 6 1.22380- 3 1.80000+ 1 1.80000+ 1 4.79271- 6 8.38980- 4 1.80000+ 1 1.90000+ 1 7.31543- 3 9.07970- 4 1.80000+ 1 2.10000+ 1 3.88211- 4 1.06754- 3 1.80000+ 1 2.20000+ 1 4.97308- 2 1.08025- 3 1.80000+ 1 2.40000+ 1 2.28294- 3 1.28198- 3 1.80000+ 1 2.50000+ 1 8.53893- 3 1.28434- 3 1.80000+ 1 2.70000+ 1 4.31344- 5 1.24245- 3 1.80000+ 1 2.90000+ 1 3.19514- 6 1.27157- 3 1.80000+ 1 3.00000+ 1 7.28483- 4 1.28194- 3 1.80000+ 1 3.20000+ 1 3.19514- 6 1.31932- 3 1.80000+ 1 3.30000+ 1 8.27541- 4 1.32018- 3 1.80000+ 1 4.10000+ 1 3.19514- 6 1.31989- 3 1.90000+ 1 1.90000+ 1 5.31994- 3 9.76960- 4 1.90000+ 1 2.10000+ 1 4.65212- 3 1.13653- 3 1.90000+ 1 2.20000+ 1 7.69591- 2 1.14924- 3 1.90000+ 1 2.40000+ 1 2.87399- 3 1.35097- 3 1.90000+ 1 2.50000+ 1 6.14590- 3 1.35333- 3 1.90000+ 1 2.70000+ 1 3.89815- 4 1.31144- 3 1.90000+ 1 2.90000+ 1 7.02947- 4 1.34056- 3 1.90000+ 1 3.00000+ 1 1.09277- 3 1.35093- 3 1.90000+ 1 3.20000+ 1 9.42549- 5 1.38831- 3 1.90000+ 1 3.30000+ 1 1.27643- 3 1.38917- 3 1.90000+ 1 4.10000+ 1 3.35487- 5 1.38888- 3 2.10000+ 1 2.10000+ 1 1.00003- 3 1.29610- 3 2.10000+ 1 2.20000+ 1 1.02945- 1 1.30881- 3 2.10000+ 1 2.40000+ 1 3.06412- 3 1.51054- 3 2.10000+ 1 2.50000+ 1 4.14461- 2 1.51290- 3 2.10000+ 1 2.70000+ 1 3.81818- 4 1.47101- 3 2.10000+ 1 2.90000+ 1 6.07070- 5 1.50013- 3 2.10000+ 1 3.00000+ 1 4.74473- 4 1.51050- 3 2.10000+ 1 3.20000+ 1 3.83423- 5 1.54788- 3 2.10000+ 1 3.30000+ 1 1.72708- 3 1.54874- 3 2.10000+ 1 4.10000+ 1 3.19512- 5 1.54845- 3 2.20000+ 1 2.20000+ 1 1.16057- 1 1.32152- 3 2.20000+ 1 2.40000+ 1 6.84925- 2 1.52325- 3 2.20000+ 1 2.50000+ 1 1.06396- 1 1.52561- 3 2.20000+ 1 2.70000+ 1 7.50692- 3 1.48372- 3 2.20000+ 1 2.90000+ 1 6.97488- 3 1.51284- 3 2.20000+ 1 3.00000+ 1 1.05698- 2 1.52321- 3 2.20000+ 1 3.20000+ 1 2.33409- 3 1.56059- 3 2.20000+ 1 3.30000+ 1 4.44766- 3 1.56145- 3 2.20000+ 1 4.10000+ 1 6.70957- 4 1.56116- 3 2.40000+ 1 2.40000+ 1 4.43172- 3 1.72498- 3 2.40000+ 1 2.50000+ 1 1.41762- 1 1.72734- 3 2.40000+ 1 2.70000+ 1 6.13479- 4 1.68545- 3 2.40000+ 1 2.90000+ 1 2.98749- 4 1.71457- 3 2.40000+ 1 3.00000+ 1 3.17922- 4 1.72494- 3 2.40000+ 1 3.20000+ 1 6.70960- 5 1.76232- 3 2.40000+ 1 3.30000+ 1 1.09597- 3 1.76318- 3 2.40000+ 1 4.10000+ 1 5.27203- 5 1.76289- 3 2.50000+ 1 2.50000+ 1 9.66685- 2 1.72970- 3 2.50000+ 1 2.70000+ 1 2.70010- 3 1.68781- 3 2.50000+ 1 2.90000+ 1 1.19983- 3 1.71693- 3 2.50000+ 1 3.00000+ 1 7.89257- 4 1.72730- 3 2.50000+ 1 3.20000+ 1 8.93117- 4 1.76468- 3 2.50000+ 1 3.30000+ 1 1.90608- 3 1.76554- 3 2.50000+ 1 4.10000+ 1 2.42847- 4 1.76525- 3 2.70000+ 1 2.70000+ 1 6.12961- 6 1.64592- 3 2.70000+ 1 2.90000+ 1 6.12961- 6 1.67504- 3 2.70000+ 1 3.00000+ 1 1.59370- 4 1.68541- 3 2.70000+ 1 3.20000+ 1 3.06472- 5 1.72279- 3 2.70000+ 1 3.30000+ 1 4.84232- 4 1.72365- 3 2.90000+ 1 3.00000+ 1 2.45277- 4 1.71453- 3 2.90000+ 1 3.30000+ 1 3.89251- 4 1.75277- 3 3.00000+ 1 3.00000+ 1 2.55276- 4 1.72490- 3 3.00000+ 1 3.20000+ 1 4.25450- 5 1.76228- 3 3.00000+ 1 3.30000+ 1 7.79994- 4 1.76314- 3 3.00000+ 1 4.10000+ 1 1.41819- 5 1.76285- 3 3.20000+ 1 3.30000+ 1 3.99399- 5 1.80052- 3 3.30000+ 1 3.30000+ 1 2.87560- 5 1.80138- 3 3.30000+ 1 4.10000+ 1 1.11829- 5 1.80109- 3 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.87541- 5 9.60900- 5 1.90000+ 1 1.98477- 4 1.65080- 4 2.90000+ 1 1.10697- 4 5.28680- 4 3.00000+ 1 5.96477- 5 5.39050- 4 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.60237- 2 5.04800- 5 1.80000+ 1 2.50000+ 1 1.62241- 2 5.28400- 5 1.80000+ 1 2.70000+ 1 3.48891- 2 1.09500- 5 1.80000+ 1 2.90000+ 1 3.14315- 2 4.00700- 5 1.80000+ 1 3.00000+ 1 5.73677- 2 5.04400- 5 1.80000+ 1 3.20000+ 1 8.67988- 3 8.78200- 5 1.80000+ 1 3.30000+ 1 1.47394- 2 8.86800- 5 1.80000+ 1 4.10000+ 1 3.15784- 3 8.83900- 5 1.90000+ 1 2.40000+ 1 1.23752- 1 1.19470- 4 1.90000+ 1 2.50000+ 1 1.54295- 1 1.21830- 4 1.90000+ 1 2.70000+ 1 4.13162- 2 7.99400- 5 1.90000+ 1 2.90000+ 1 4.50690- 2 1.09060- 4 1.90000+ 1 3.00000+ 1 5.18869- 2 1.19430- 4 1.90000+ 1 3.20000+ 1 1.12707- 2 1.56810- 4 1.90000+ 1 3.30000+ 1 1.31893- 2 1.57670- 4 1.90000+ 1 4.10000+ 1 3.63957- 3 1.57380- 4 2.10000+ 1 2.10000+ 1 3.80921- 3 6.46000- 5 2.10000+ 1 2.20000+ 1 1.06753- 2 7.73100- 5 2.10000+ 1 2.40000+ 1 4.77721- 3 2.79040- 4 2.10000+ 1 2.50000+ 1 1.04523- 2 2.81400- 4 2.10000+ 1 2.70000+ 1 1.50441- 2 2.39510- 4 2.10000+ 1 2.90000+ 1 3.67336- 3 2.68630- 4 2.10000+ 1 3.00000+ 1 7.81982- 3 2.79000- 4 2.10000+ 1 3.20000+ 1 3.52116- 4 3.16380- 4 2.10000+ 1 3.30000+ 1 3.12512- 4 3.17240- 4 2.10000+ 1 4.10000+ 1 1.07411- 3 3.16950- 4 2.20000+ 1 2.20000+ 1 7.36587- 3 9.00200- 5 2.20000+ 1 2.40000+ 1 1.18657- 2 2.91750- 4 2.20000+ 1 2.50000+ 1 1.07750- 2 2.94110- 4 2.20000+ 1 2.70000+ 1 2.13554- 2 2.52220- 4 2.20000+ 1 2.90000+ 1 8.31191- 3 2.81340- 4 2.20000+ 1 3.00000+ 1 7.62739- 3 2.91710- 4 2.20000+ 1 3.20000+ 1 2.90564- 4 3.29090- 4 2.20000+ 1 3.30000+ 1 5.02891- 4 3.29950- 4 2.20000+ 1 4.10000+ 1 1.51850- 3 3.29660- 4 2.40000+ 1 2.40000+ 1 6.73724- 3 4.93480- 4 2.40000+ 1 2.50000+ 1 1.46967- 2 4.95840- 4 2.40000+ 1 2.70000+ 1 1.55837- 2 4.53950- 4 2.40000+ 1 2.90000+ 1 1.93879- 3 4.83070- 4 2.40000+ 1 3.00000+ 1 5.55966- 3 4.93440- 4 2.40000+ 1 3.20000+ 1 1.35918- 4 5.30820- 4 2.40000+ 1 3.30000+ 1 9.42042- 5 5.31680- 4 2.40000+ 1 4.10000+ 1 1.01255- 3 5.31390- 4 2.50000+ 1 2.50000+ 1 1.12399- 2 4.98200- 4 2.50000+ 1 2.70000+ 1 2.02224- 2 4.56310- 4 2.50000+ 1 2.90000+ 1 1.12364- 3 4.85430- 4 2.50000+ 1 3.00000+ 1 6.75902- 3 4.95800- 4 2.50000+ 1 3.20000+ 1 8.57543- 5 5.33180- 4 2.50000+ 1 3.30000+ 1 1.99500- 4 5.34040- 4 2.50000+ 1 4.10000+ 1 1.31158- 3 5.33750- 4 2.70000+ 1 2.70000+ 1 2.09225- 2 4.14420- 4 2.70000+ 1 2.90000+ 1 2.70743- 2 4.43540- 4 2.70000+ 1 3.00000+ 1 4.44574- 2 4.53910- 4 2.70000+ 1 3.20000+ 1 8.20999- 3 4.91290- 4 2.70000+ 1 3.30000+ 1 1.10380- 2 4.92150- 4 2.70000+ 1 4.10000+ 1 3.29983- 3 4.91860- 4 2.90000+ 1 2.90000+ 1 3.30190- 3 4.72660- 4 2.90000+ 1 3.00000+ 1 1.36719- 2 4.83030- 4 2.90000+ 1 3.20000+ 1 1.15969- 3 5.20410- 4 2.90000+ 1 3.30000+ 1 1.16577- 3 5.21270- 4 2.90000+ 1 4.10000+ 1 2.77712- 3 5.20980- 4 3.00000+ 1 3.00000+ 1 1.04366- 2 4.93400- 4 3.00000+ 1 3.20000+ 1 1.53903- 3 5.30780- 4 3.00000+ 1 3.30000+ 1 2.33038- 3 5.31640- 4 3.00000+ 1 4.10000+ 1 4.72929- 3 5.31350- 4 3.20000+ 1 3.20000+ 1 3.03392- 5 5.68160- 4 3.20000+ 1 3.30000+ 1 1.88105- 4 5.69020- 4 3.20000+ 1 4.10000+ 1 8.37375- 4 5.68730- 4 3.30000+ 1 3.30000+ 1 7.88878- 5 5.69880- 4 3.30000+ 1 4.10000+ 1 1.12873- 3 5.69590- 4 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 6.79719- 4 2.28560- 4 2.70000+ 1 1.50163- 4 4.03470- 4 3.20000+ 1 3.54341- 6 4.80340- 4 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 4.52390- 2 2.33800- 5 1.90000+ 1 2.50000+ 1 3.76642- 2 2.57400- 5 1.90000+ 1 2.90000+ 1 1.08643- 2 1.29700- 5 1.90000+ 1 3.00000+ 1 1.12528- 2 2.33400- 5 1.90000+ 1 3.20000+ 1 1.44659- 3 6.07200- 5 1.90000+ 1 3.30000+ 1 2.15795- 3 6.15800- 5 1.90000+ 1 4.10000+ 1 1.20262- 3 6.12900- 5 2.10000+ 1 2.40000+ 1 1.55812- 1 1.82950- 4 2.10000+ 1 2.50000+ 1 3.33464- 1 1.85310- 4 2.10000+ 1 2.70000+ 1 3.54604- 2 1.43420- 4 2.10000+ 1 2.90000+ 1 2.61744- 2 1.72540- 4 2.10000+ 1 3.00000+ 1 4.14370- 2 1.82910- 4 2.10000+ 1 3.20000+ 1 5.07322- 3 2.20290- 4 2.10000+ 1 3.30000+ 1 8.93106- 3 2.21150- 4 2.10000+ 1 4.10000+ 1 3.17478- 3 2.20860- 4 2.20000+ 1 2.20000+ 1 1.39891- 3 0.00000+ 0 2.20000+ 1 2.40000+ 1 4.30235- 2 1.95660- 4 2.20000+ 1 2.50000+ 1 1.11046- 2 1.98020- 4 2.20000+ 1 2.70000+ 1 5.77775- 3 1.56130- 4 2.20000+ 1 2.90000+ 1 2.37958- 2 1.85250- 4 2.20000+ 1 3.00000+ 1 4.93757- 3 1.95620- 4 2.20000+ 1 3.20000+ 1 8.11382- 4 2.33000- 4 2.20000+ 1 3.30000+ 1 5.13838- 4 2.33860- 4 2.20000+ 1 4.10000+ 1 4.34550- 4 2.33570- 4 2.40000+ 1 2.40000+ 1 3.06400- 3 3.97390- 4 2.40000+ 1 2.50000+ 1 2.10300- 2 3.99750- 4 2.40000+ 1 2.70000+ 1 3.83923- 3 3.57860- 4 2.40000+ 1 2.90000+ 1 1.60586- 2 3.86980- 4 2.40000+ 1 3.00000+ 1 3.88012- 3 3.97350- 4 2.40000+ 1 3.20000+ 1 9.63615- 4 4.34730- 4 2.40000+ 1 3.30000+ 1 3.62972- 4 4.35590- 4 2.40000+ 1 4.10000+ 1 3.41303- 4 4.35300- 4 2.50000+ 1 2.50000+ 1 1.16833- 3 4.02110- 4 2.50000+ 1 2.70000+ 1 2.97271- 3 3.60220- 4 2.50000+ 1 2.90000+ 1 3.57684- 2 3.89340- 4 2.50000+ 1 3.00000+ 1 2.30289- 3 3.99710- 4 2.50000+ 1 3.20000+ 1 2.62567- 3 4.37090- 4 2.50000+ 1 3.30000+ 1 1.84518- 4 4.37950- 4 2.50000+ 1 4.10000+ 1 2.19475- 4 4.37660- 4 2.70000+ 1 2.70000+ 1 5.97376- 4 3.18330- 4 2.70000+ 1 2.90000+ 1 8.75009- 3 3.47450- 4 2.70000+ 1 3.00000+ 1 1.51509- 3 3.57820- 4 2.70000+ 1 3.20000+ 1 5.07262- 4 3.95200- 4 2.70000+ 1 3.30000+ 1 3.15927- 4 3.96060- 4 2.70000+ 1 4.10000+ 1 8.89964- 5 3.95770- 4 2.90000+ 1 2.90000+ 1 1.54654- 2 3.76570- 4 2.90000+ 1 3.00000+ 1 4.19903- 2 3.86940- 4 2.90000+ 1 3.20000+ 1 6.34949- 3 4.24320- 4 2.90000+ 1 3.30000+ 1 1.04181- 2 4.25180- 4 2.90000+ 1 4.10000+ 1 2.37605- 3 4.24890- 4 3.00000+ 1 3.00000+ 1 1.83877- 3 3.97310- 4 3.00000+ 1 3.20000+ 1 1.99811- 3 4.34690- 4 3.00000+ 1 3.30000+ 1 6.33913- 4 4.35550- 4 3.00000+ 1 4.10000+ 1 3.59592- 4 4.35260- 4 3.20000+ 1 3.20000+ 1 3.15705- 6 4.72070- 4 3.20000+ 1 3.30000+ 1 1.33296- 5 4.72930- 4 3.20000+ 1 4.10000+ 1 7.19082- 6 4.72640- 4 3.30000+ 1 3.30000+ 1 1.05239- 6 4.73790- 4 3.30000+ 1 4.10000+ 1 3.50791- 6 4.73500- 4 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.57095- 5 1.59570- 4 2.20000+ 1 1.78740- 4 1.72280- 4 2.70000+ 1 1.07774- 4 3.34480- 4 3.20000+ 1 1.04331- 6 4.11350- 4 3.30000+ 1 5.77166- 6 4.12210- 4 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.58170- 2 1.13960- 4 2.10000+ 1 2.50000+ 1 4.48269- 2 1.16320- 4 2.10000+ 1 2.70000+ 1 1.27399- 2 7.44300- 5 2.10000+ 1 2.90000+ 1 9.95129- 3 1.03550- 4 2.10000+ 1 3.00000+ 1 3.46333- 2 1.13920- 4 2.10000+ 1 3.20000+ 1 1.96465- 3 1.51300- 4 2.10000+ 1 3.30000+ 1 3.85954- 3 1.52160- 4 2.10000+ 1 4.10000+ 1 1.09629- 3 1.51870- 4 2.20000+ 1 2.40000+ 1 2.15291- 1 1.26670- 4 2.20000+ 1 2.50000+ 1 2.32669- 1 1.29030- 4 2.20000+ 1 2.70000+ 1 6.49336- 2 8.71400- 5 2.20000+ 1 2.90000+ 1 6.65870- 2 1.16260- 4 2.20000+ 1 3.00000+ 1 8.99285- 2 1.26630- 4 2.20000+ 1 3.20000+ 1 1.63522- 2 1.64010- 4 2.20000+ 1 3.30000+ 1 1.80625- 2 1.64870- 4 2.20000+ 1 4.10000+ 1 5.91012- 3 1.64580- 4 2.40000+ 1 2.40000+ 1 7.87096- 4 3.28400- 4 2.40000+ 1 2.50000+ 1 2.10257- 2 3.30760- 4 2.40000+ 1 2.70000+ 1 5.13753- 3 2.88870- 4 2.40000+ 1 2.90000+ 1 2.38315- 3 3.17990- 4 2.40000+ 1 3.00000+ 1 3.32601- 2 3.28360- 4 2.40000+ 1 3.20000+ 1 2.13135- 4 3.65740- 4 2.40000+ 1 3.30000+ 1 1.23547- 3 3.66600- 4 2.40000+ 1 4.10000+ 1 3.42195- 4 3.66310- 4 2.50000+ 1 2.50000+ 1 8.81783- 3 3.33120- 4 2.50000+ 1 2.70000+ 1 1.08997- 2 2.91230- 4 2.50000+ 1 2.90000+ 1 9.02275- 3 3.20350- 4 2.50000+ 1 3.00000+ 1 4.03470- 2 3.30720- 4 2.50000+ 1 3.20000+ 1 2.38330- 4 3.68100- 4 2.50000+ 1 3.30000+ 1 1.49914- 3 3.68960- 4 2.50000+ 1 4.10000+ 1 8.17645- 4 3.68670- 4 2.70000+ 1 2.70000+ 1 5.97196- 6 2.49340- 4 2.70000+ 1 2.90000+ 1 2.98583- 4 2.78460- 4 2.70000+ 1 3.00000+ 1 5.91067- 3 2.88830- 4 2.70000+ 1 3.20000+ 1 1.33371- 4 3.26210- 4 2.70000+ 1 3.30000+ 1 2.56790- 4 3.27070- 4 2.70000+ 1 4.10000+ 1 2.65407- 6 3.26780- 4 2.90000+ 1 2.90000+ 1 2.10032- 5 3.07580- 4 2.90000+ 1 3.00000+ 1 4.56216- 3 3.17950- 4 2.90000+ 1 3.20000+ 1 5.53325- 5 3.55330- 4 2.90000+ 1 3.30000+ 1 1.97233- 4 3.56190- 4 2.90000+ 1 4.10000+ 1 1.79308- 5 3.55900- 4 3.00000+ 1 3.00000+ 1 1.09900- 2 3.28320- 4 3.00000+ 1 3.20000+ 1 2.51369- 3 3.65700- 4 3.00000+ 1 3.30000+ 1 3.24659- 3 3.66560- 4 3.00000+ 1 4.10000+ 1 7.79535- 4 3.66270- 4 3.20000+ 1 3.20000+ 1 1.60014- 6 4.03080- 4 3.20000+ 1 3.30000+ 1 2.21359- 5 4.03940- 4 3.20000+ 1 4.10000+ 1 3.73375- 6 4.03650- 4 3.30000+ 1 3.30000+ 1 1.33344- 5 4.04800- 4 3.30000+ 1 4.10000+ 1 9.06743- 6 4.04510- 4 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.00610- 4 2.14440- 4 2.90000+ 1 2.44321- 5 2.04030- 4 3.00000+ 1 3.52741- 6 2.14400- 4 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 1.46363- 2 4.44000- 6 2.20000+ 1 3.30000+ 1 2.20545- 3 5.30000- 6 2.20000+ 1 4.10000+ 1 5.03327- 4 5.01000- 6 2.40000+ 1 2.40000+ 1 1.65999- 1 1.68830- 4 2.40000+ 1 2.50000+ 1 5.19510- 1 1.71190- 4 2.40000+ 1 2.70000+ 1 6.16832- 2 1.29300- 4 2.40000+ 1 2.90000+ 1 5.03437- 2 1.58420- 4 2.40000+ 1 3.00000+ 1 7.40773- 2 1.68790- 4 2.40000+ 1 3.20000+ 1 1.76815- 2 2.06170- 4 2.40000+ 1 3.30000+ 1 1.71547- 2 2.07030- 4 2.40000+ 1 4.10000+ 1 5.63219- 3 2.06740- 4 2.50000+ 1 2.50000+ 1 6.20507- 3 1.73550- 4 2.50000+ 1 2.70000+ 1 6.21421- 3 1.31660- 4 2.50000+ 1 2.90000+ 1 1.42560- 2 1.60780- 4 2.50000+ 1 3.00000+ 1 5.19553- 3 1.71150- 4 2.50000+ 1 3.20000+ 1 2.01167- 2 2.08530- 4 2.50000+ 1 3.30000+ 1 7.38929- 4 2.09390- 4 2.50000+ 1 4.10000+ 1 4.64649- 4 2.09100- 4 2.70000+ 1 2.70000+ 1 1.10136- 3 8.97700- 5 2.70000+ 1 2.90000+ 1 1.54843- 3 1.18890- 4 2.70000+ 1 3.00000+ 1 1.65788- 3 1.29260- 4 2.70000+ 1 3.20000+ 1 1.68009- 3 1.66640- 4 2.70000+ 1 3.30000+ 1 5.88010- 4 1.67500- 4 2.70000+ 1 4.10000+ 1 1.12446- 4 1.67210- 4 2.90000+ 1 2.90000+ 1 7.71238- 4 1.48010- 4 2.90000+ 1 3.00000+ 1 2.83140- 3 1.58380- 4 2.90000+ 1 3.20000+ 1 1.60629- 3 1.95760- 4 2.90000+ 1 3.30000+ 1 4.22821- 4 1.96620- 4 2.90000+ 1 4.10000+ 1 1.31763- 4 1.96330- 4 3.00000+ 1 3.00000+ 1 1.03377- 3 1.68750- 4 3.00000+ 1 3.20000+ 1 2.74699- 3 2.06130- 4 3.00000+ 1 3.30000+ 1 2.49130- 4 2.06990- 4 3.00000+ 1 4.10000+ 1 8.68194- 5 2.06700- 4 3.20000+ 1 3.20000+ 1 1.12697- 4 2.43510- 4 3.20000+ 1 3.30000+ 1 4.31465- 4 2.44370- 4 3.20000+ 1 4.10000+ 1 1.18899- 4 2.44080- 4 3.30000+ 1 3.30000+ 1 6.56484- 6 2.45230- 4 3.30000+ 1 4.10000+ 1 1.53182- 5 2.44940- 4 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.59460- 6 2.01730- 4 2.50000+ 1 9.60791- 5 2.04090- 4 3.00000+ 1 2.28870- 5 2.01690- 4 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 1.03943- 2 1.56120- 4 2.40000+ 1 2.50000+ 1 3.85311- 1 1.58480- 4 2.40000+ 1 2.70000+ 1 8.33104- 3 1.16590- 4 2.40000+ 1 2.90000+ 1 4.89984- 3 1.45710- 4 2.40000+ 1 3.00000+ 1 1.33004- 2 1.56080- 4 2.40000+ 1 3.20000+ 1 9.43456- 4 1.93460- 4 2.40000+ 1 3.30000+ 1 1.71005- 2 1.94320- 4 2.40000+ 1 4.10000+ 1 6.79740- 4 1.94030- 4 2.50000+ 1 2.50000+ 1 2.85387- 1 1.60840- 4 2.50000+ 1 2.70000+ 1 6.52286- 2 1.18950- 4 2.50000+ 1 2.90000+ 1 6.59317- 2 1.48070- 4 2.50000+ 1 3.00000+ 1 7.40608- 2 1.58440- 4 2.50000+ 1 3.20000+ 1 1.53613- 2 1.95820- 4 2.50000+ 1 3.30000+ 1 2.93387- 2 1.96680- 4 2.50000+ 1 4.10000+ 1 5.99195- 3 1.96390- 4 2.70000+ 1 2.70000+ 1 1.83055- 3 7.70600- 5 2.70000+ 1 2.90000+ 1 1.41344- 3 1.06180- 4 2.70000+ 1 3.00000+ 1 3.33200- 3 1.16550- 4 2.70000+ 1 3.20000+ 1 6.92830- 4 1.53930- 4 2.70000+ 1 3.30000+ 1 2.34577- 3 1.54790- 4 2.70000+ 1 4.10000+ 1 1.81225- 4 1.54500- 4 2.90000+ 1 2.90000+ 1 2.08203- 4 1.35300- 4 2.90000+ 1 3.00000+ 1 2.20974- 3 1.45670- 4 2.90000+ 1 3.20000+ 1 7.89172- 5 1.83050- 4 2.90000+ 1 3.30000+ 1 1.30632- 3 1.83910- 4 2.90000+ 1 4.10000+ 1 5.55208- 5 1.83620- 4 3.00000+ 1 3.00000+ 1 9.37502- 4 1.56040- 4 3.00000+ 1 3.20000+ 1 2.61736- 4 1.93420- 4 3.00000+ 1 3.30000+ 1 1.87494- 3 1.94280- 4 3.00000+ 1 4.10000+ 1 1.13022- 4 1.93990- 4 3.20000+ 1 3.20000+ 1 2.77595- 6 2.30800- 4 3.20000+ 1 3.30000+ 1 3.55335- 4 2.31660- 4 3.20000+ 1 4.10000+ 1 1.74493- 5 2.31370- 4 3.30000+ 1 3.30000+ 1 2.62527- 4 2.32520- 4 3.30000+ 1 4.10000+ 1 1.35633- 4 2.32230- 4 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.60828- 7 2.91200- 5 3.00000+ 1 2.34497- 6 3.94900- 5 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.30742- 1 2.08500- 5 2.90000+ 1 3.30000+ 1 1.99155- 1 2.17100- 5 2.90000+ 1 4.10000+ 1 4.57328- 2 2.14200- 5 3.00000+ 1 3.20000+ 1 3.30177- 1 3.12200- 5 3.00000+ 1 3.30000+ 1 2.16280- 1 3.20800- 5 3.00000+ 1 4.10000+ 1 4.81708- 2 3.17900- 5 3.20000+ 1 3.20000+ 1 4.48170- 4 6.86000- 5 3.20000+ 1 3.30000+ 1 1.58115- 2 6.94600- 5 3.20000+ 1 4.10000+ 1 4.81724- 3 6.91700- 5 3.30000+ 1 3.30000+ 1 1.69270- 3 7.03200- 5 4.10000+ 1 4.10000+ 1 6.97008- 3 6.97400- 5 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.32980- 7 4.77500- 5 4.10000+ 1 1.90142- 8 4.83200- 5 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 6.18242- 1 2.10000- 6 3.00000+ 1 3.30000+ 1 9.12896- 2 2.96000- 6 3.00000+ 1 4.10000+ 1 1.09161- 2 2.67000- 6 3.20000+ 1 3.20000+ 1 4.56210- 2 3.94800- 5 3.20000+ 1 3.30000+ 1 1.98355- 1 4.03400- 5 3.20000+ 1 4.10000+ 1 2.90532- 2 4.00500- 5 3.30000+ 1 3.30000+ 1 3.10523- 3 4.12000- 5 3.30000+ 1 4.10000+ 1 3.41555- 3 4.09100- 5 4.10000+ 1 4.10000+ 1 2.06879- 6 4.06200- 5 1 74000 0 7 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.96088- 9 3.73800- 5 3.30000+ 1 2.78218- 8 3.82400- 5 4.10000+ 1 7.19726- 9 3.79500- 5 1 74000 0 9 1.83850+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 3.14073- 2 2.91100- 5 3.20000+ 1 3.30000+ 1 6.45797- 1 2.99700- 5 3.20000+ 1 4.10000+ 1 5.70715- 2 2.96800- 5 3.30000+ 1 3.30000+ 1 1.53335- 1 3.08300- 5 3.30000+ 1 4.10000+ 1 1.09533- 1 3.05400- 5 4.10000+ 1 4.10000+ 1 2.85578- 3 3.02500- 5 1 75000 0 0 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 2.00000+ 0 3.30000+ 1 3.00000+ 0 4.10000+ 1 2.00000+ 0 1 75000 0 0 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.18560- 2 3.00000+ 0 1.25080- 2 5.00000+ 0 1.19930- 2 6.00000+ 0 1.05380- 2 8.00000+ 0 2.91160- 3 1.00000+ 1 2.67740- 3 1.10000+ 1 2.36050- 3 1.30000+ 1 1.96180- 3 1.40000+ 1 1.89270- 3 1.60000+ 1 6.15830- 4 1.80000+ 1 5.16830- 4 1.90000+ 1 4.42590- 4 2.10000+ 1 2.78260- 4 2.20000+ 1 2.64540- 4 2.40000+ 1 5.56400- 5 2.50000+ 1 5.29900- 5 2.70000+ 1 9.15700- 5 2.90000+ 1 6.09700- 5 3.00000+ 1 4.94000- 5 3.20000+ 1 9.52000- 6 3.30000+ 1 8.50000- 6 4.10000+ 1 8.06000- 6 1 75000 0 0 1.86207+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.79510- 2 3.00000+ 0 2.30970- 2 5.00000+ 0 2.30880- 2 6.00000+ 0 1.75460- 2 8.00000+ 0 7.31700- 3 1.00000+ 1 7.21300- 3 1.10000+ 1 5.85750- 3 1.30000+ 1 5.71710- 3 1.40000+ 1 5.41890- 3 1.60000+ 1 2.35210- 3 1.80000+ 1 2.23450- 3 1.90000+ 1 1.83070- 3 2.10000+ 1 1.61890- 3 2.20000+ 1 1.53360- 3 2.40000+ 1 1.13360- 3 2.50000+ 1 1.10490- 3 2.70000+ 1 5.38830- 4 2.90000+ 1 4.47960- 4 3.00000+ 1 3.57110- 4 3.20000+ 1 1.76650- 4 3.30000+ 1 1.61820- 4 4.10000+ 1 6.23300- 5 1 75000 0 0 1.86207+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.53430-11 3.00000+ 0 3.98900-10 5.00000+ 0 3.29240-10 6.00000+ 0 3.71910-10 8.00000+ 0 1.03760- 9 1.00000+ 1 9.83930-10 1.10000+ 1 1.06230- 9 1.30000+ 1 9.27550-10 1.40000+ 1 9.51500-10 1.60000+ 1 2.31700- 9 1.80000+ 1 2.33700- 9 1.90000+ 1 2.51160- 9 2.10000+ 1 2.58110- 9 2.20000+ 1 2.63900- 9 2.40000+ 1 2.95260- 9 2.50000+ 1 2.99430- 9 2.70000+ 1 5.40620- 9 2.90000+ 1 5.90050- 9 3.00000+ 1 6.42180- 9 3.20000+ 1 9.25620- 9 3.30000+ 1 9.64630- 9 4.10000+ 1 1.60220- 8 1 75000 0 0 1.86207+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.95320- 5 3.00000+ 0 8.60870- 7 5.00000+ 0 1.49720- 6 6.00000+ 0 1.32830- 6 8.00000+ 0 3.01480- 8 1.00000+ 1 3.21800- 8 1.10000+ 1 3.39480- 8 1.30000+ 1 4.06250- 8 1.40000+ 1 3.81590- 8 1.60000+ 1 9.22760-10 1.80000+ 1 1.59220- 9 1.90000+ 1 9.74820-10 2.10000+ 1 1.20620- 9 2.20000+ 1 1.05550- 9 2.70000+ 1 4.70170-11 2.90000+ 1 4.33030-11 3.00000+ 1 2.86510-11 1 75000 0 0 1.86207+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.80290- 6 3.00000+ 0 1.18050- 5 5.00000+ 0 3.31780- 6 6.00000+ 0 3.43440- 6 8.00000+ 0 1.76620- 5 1.00000+ 1 1.17710- 5 1.10000+ 1 1.03660- 5 1.30000+ 1 2.43140- 6 1.40000+ 1 1.75370- 6 1.60000+ 1 1.46350- 5 1.80000+ 1 1.36510- 5 1.90000+ 1 9.95190- 6 2.10000+ 1 7.47910- 6 2.20000+ 1 7.01610- 6 2.70000+ 1 8.30750- 6 2.90000+ 1 3.46150- 6 3.00000+ 1 2.15620- 6 1 75000 0 0 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.90863- 4 3.00000+ 0 4.09168- 4 5.00000+ 0 3.02373- 4 6.00000+ 0 2.91827- 4 8.00000+ 0 2.75774- 4 1.00000+ 1 2.38255- 4 1.10000+ 1 2.17204- 4 1.30000+ 1 1.67078- 4 1.40000+ 1 1.58985- 4 1.60000+ 1 1.33258- 4 1.80000+ 1 1.30083- 4 1.90000+ 1 1.24107- 4 2.10000+ 1 9.76000- 5 2.20000+ 1 9.46727- 5 2.40000+ 1 5.56400- 5 2.50000+ 1 5.29900- 5 2.70000+ 1 2.85681- 5 2.90000+ 1 2.40979- 5 3.00000+ 1 1.77052- 5 3.20000+ 1 9.52000- 6 3.30000+ 1 8.50000- 6 4.10000+ 1 8.06000- 6 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23537+ 0 3.00000+ 0 3.35097- 1 5.00000+ 0 3.78533- 1 6.00000+ 0 3.07402- 1 8.00000+ 0 2.38298- 2 1.00000+ 1 2.38421- 2 1.10000+ 1 2.25708- 2 1.30000+ 1 2.44412- 2 1.40000+ 1 2.31364- 2 1.60000+ 1 8.18786- 4 1.80000+ 1 1.03390- 3 1.90000+ 1 4.48302- 4 2.10000+ 1 1.49737- 4 2.20000+ 1 1.40837- 4 2.70000+ 1 3.51998- 6 2.90000+ 1 3.32295- 7 3.00000+ 1 7.03628- 8 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.22415- 2 3.00000+ 0 2.77761- 3 5.00000+ 0 3.56101- 3 6.00000+ 0 2.48171- 3 8.00000+ 0 4.44041- 5 1.00000+ 1 4.42482- 5 1.10000+ 1 4.12388- 5 1.30000+ 1 4.47468- 5 1.40000+ 1 4.13554- 5 1.60000+ 1 2.41667- 7 1.80000+ 1 2.75634- 7 1.90000+ 1 1.06713- 7 2.10000+ 1 3.31246- 8 2.20000+ 1 2.98144- 8 2.70000+ 1 1.43195-10 2.90000+ 1 1.66428-11 3.00000+ 1 2.87700-12 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.71490+ 0 3.00000+ 0 9.80928+ 0 5.00000+ 0 6.99146+ 0 6.00000+ 0 6.67493+ 0 8.00000+ 0 6.52909+ 0 1.00000+ 1 5.39986+ 0 1.10000+ 1 4.79206+ 0 1.30000+ 1 3.21675+ 0 1.40000+ 1 3.08668+ 0 1.60000+ 1 4.06160+ 0 1.80000+ 1 2.89300+ 0 1.90000+ 1 2.81099+ 0 2.10000+ 1 1.40861+ 0 2.20000+ 1 1.42015+ 0 2.70000+ 1 2.19831+ 0 2.90000+ 1 1.66791+ 0 3.00000+ 1 1.00000+ 0 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.32359- 3 3.00000+ 0 9.32123- 3 5.00000+ 0 8.12962- 3 6.00000+ 0 7.76446- 3 8.00000+ 0 2.59142- 3 1.00000+ 1 2.39490- 3 1.10000+ 1 2.10206- 3 1.30000+ 1 1.74997- 3 1.40000+ 1 1.69236- 3 1.60000+ 1 4.82330- 4 1.80000+ 1 3.86472- 4 1.90000+ 1 3.18376- 4 2.10000+ 1 1.80627- 4 2.20000+ 1 1.69837- 4 2.70000+ 1 6.30018- 5 2.90000+ 1 3.68721- 5 3.00000+ 1 3.16948- 5 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.77291- 1 5.98630- 2 6.00000+ 0 4.79452- 1 6.13180- 2 1.00000+ 1 5.18162- 2 6.91786- 2 1.10000+ 1 1.00130- 1 6.94955- 2 1.30000+ 1 1.15521- 3 6.98942- 2 1.40000+ 1 1.44981- 3 6.99633- 2 1.80000+ 1 1.18591- 2 7.13392- 2 1.90000+ 1 2.30381- 2 7.14134- 2 2.10000+ 1 2.82531- 4 7.15777- 2 2.20000+ 1 3.53082- 4 7.15915- 2 2.90000+ 1 2.70201- 3 7.17950- 2 3.00000+ 1 5.49572- 3 7.18066- 2 3.20000+ 1 1.12561- 5 7.18465- 2 3.30000+ 1 1.34681- 5 7.18475- 2 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.53410- 3 4.68400- 2 3.00000+ 0 5.00000+ 0 6.63637- 3 4.73550- 2 3.00000+ 0 6.00000+ 0 4.50256- 3 4.88100- 2 3.00000+ 0 8.00000+ 0 1.79508- 3 5.64364- 2 3.00000+ 0 1.00000+ 1 1.41443- 3 5.66706- 2 3.00000+ 0 1.10000+ 1 1.01995- 3 5.69875- 2 3.00000+ 0 1.30000+ 1 8.27657- 5 5.73862- 2 3.00000+ 0 1.40000+ 1 6.80444- 5 5.74553- 2 3.00000+ 0 1.60000+ 1 4.35963- 4 5.87322- 2 3.00000+ 0 1.80000+ 1 3.33513- 4 5.88312- 2 3.00000+ 0 1.90000+ 1 2.38391- 4 5.89054- 2 3.00000+ 0 2.10000+ 1 2.00809- 5 5.90697- 2 3.00000+ 0 2.20000+ 1 1.62146- 5 5.90835- 2 3.00000+ 0 2.40000+ 1 6.78424- 8 5.92924- 2 3.00000+ 0 2.50000+ 1 6.78424- 8 5.92950- 2 3.00000+ 0 2.70000+ 1 7.91735- 5 5.92564- 2 3.00000+ 0 2.90000+ 1 5.15619- 5 5.92870- 2 3.00000+ 0 3.00000+ 1 3.52093- 5 5.92986- 2 3.00000+ 0 3.20000+ 1 1.35683- 6 5.93385- 2 3.00000+ 0 3.30000+ 1 2.03529- 7 5.93395- 2 5.00000+ 0 5.00000+ 0 4.47422- 4 4.78700- 2 5.00000+ 0 6.00000+ 0 8.35673- 3 4.93250- 2 5.00000+ 0 8.00000+ 0 1.12623- 3 5.69514- 2 5.00000+ 0 1.00000+ 1 1.67508- 4 5.71856- 2 5.00000+ 0 1.10000+ 1 1.57636- 3 5.75025- 2 5.00000+ 0 1.30000+ 1 8.73833- 5 5.79012- 2 5.00000+ 0 1.40000+ 1 2.46341- 4 5.79703- 2 5.00000+ 0 1.60000+ 1 2.64190- 4 5.92472- 2 5.00000+ 0 1.80000+ 1 3.83985- 5 5.93462- 2 5.00000+ 0 1.90000+ 1 3.53792- 4 5.94204- 2 5.00000+ 0 2.10000+ 1 2.04884- 5 5.95847- 2 5.00000+ 0 2.20000+ 1 5.75998- 5 5.95985- 2 5.00000+ 0 2.40000+ 1 4.74906- 7 5.98074- 2 5.00000+ 0 2.50000+ 1 7.46267- 7 5.98100- 2 5.00000+ 0 2.70000+ 1 4.76246- 5 5.97714- 2 5.00000+ 0 2.90000+ 1 5.90250- 6 5.98020- 2 5.00000+ 0 3.00000+ 1 5.19001- 5 5.98136- 2 5.00000+ 0 3.20000+ 1 1.35686- 6 5.98535- 2 5.00000+ 0 3.30000+ 1 6.10612- 7 5.98545- 2 6.00000+ 0 6.00000+ 0 3.73042- 3 5.07800- 2 6.00000+ 0 8.00000+ 0 7.05318- 4 5.84064- 2 6.00000+ 0 1.00000+ 1 1.46517- 3 5.86406- 2 6.00000+ 0 1.10000+ 1 1.45353- 3 5.89575- 2 6.00000+ 0 1.30000+ 1 2.78772- 4 5.93562- 2 6.00000+ 0 1.40000+ 1 2.38335- 4 5.94253- 2 6.00000+ 0 1.60000+ 1 1.62345- 4 6.07022- 2 6.00000+ 0 1.80000+ 1 3.31483- 4 6.08012- 2 6.00000+ 0 1.90000+ 1 3.29040- 4 6.08754- 2 6.00000+ 0 2.10000+ 1 6.58080- 5 6.10397- 2 6.00000+ 0 2.20000+ 1 5.59729- 5 6.10535- 2 6.00000+ 0 2.40000+ 1 8.81977- 7 6.12624- 2 6.00000+ 0 2.50000+ 1 9.49805- 7 6.12650- 2 6.00000+ 0 2.70000+ 1 2.91736- 5 6.12264- 2 6.00000+ 0 2.90000+ 1 5.08162- 5 6.12570- 2 6.00000+ 0 3.00000+ 1 4.83039- 5 6.12686- 2 6.00000+ 0 3.20000+ 1 4.40983- 6 6.13085- 2 6.00000+ 0 3.30000+ 1 6.10614- 7 6.13095- 2 8.00000+ 0 8.00000+ 0 1.74836- 4 6.60328- 2 8.00000+ 0 1.00000+ 1 2.41119- 4 6.62670- 2 8.00000+ 0 1.10000+ 1 1.61336- 4 6.65839- 2 8.00000+ 0 1.30000+ 1 1.26866- 5 6.69826- 2 8.00000+ 0 1.40000+ 1 9.83755- 6 6.70517- 2 8.00000+ 0 1.60000+ 1 8.46017- 5 6.83286- 2 8.00000+ 0 1.80000+ 1 5.69212- 5 6.84276- 2 8.00000+ 0 1.90000+ 1 3.77888- 5 6.85018- 2 8.00000+ 0 2.10000+ 1 3.05299- 6 6.86661- 2 8.00000+ 0 2.20000+ 1 2.37449- 6 6.86799- 2 8.00000+ 0 2.70000+ 1 1.53330- 5 6.88528- 2 8.00000+ 0 2.90000+ 1 8.81982- 6 6.88834- 2 8.00000+ 0 3.00000+ 1 5.56310- 6 6.88950- 2 8.00000+ 0 3.20000+ 1 2.03536- 7 6.89349- 2 1.00000+ 1 1.00000+ 1 1.52648- 5 6.65012- 2 1.00000+ 1 1.10000+ 1 2.83461- 4 6.68181- 2 1.00000+ 1 1.30000+ 1 1.28896- 5 6.72168- 2 1.00000+ 1 1.40000+ 1 3.28360- 5 6.72859- 2 1.00000+ 1 1.60000+ 1 5.65841- 5 6.85628- 2 1.00000+ 1 1.80000+ 1 6.92015- 6 6.86618- 2 1.00000+ 1 1.90000+ 1 6.39779- 5 6.87360- 2 1.00000+ 1 2.10000+ 1 3.05298- 6 6.89003- 2 1.00000+ 1 2.20000+ 1 7.73425- 6 6.89141- 2 1.00000+ 1 2.40000+ 1 6.78443- 8 6.91230- 2 1.00000+ 1 2.50000+ 1 6.78443- 8 6.91256- 2 1.00000+ 1 2.70000+ 1 1.01764- 5 6.90870- 2 1.00000+ 1 2.90000+ 1 1.08554- 6 6.91176- 2 1.00000+ 1 3.00000+ 1 9.36235- 6 6.91292- 2 1.00000+ 1 3.20000+ 1 2.03535- 7 6.91691- 2 1.00000+ 1 3.30000+ 1 6.78443- 8 6.91701- 2 1.10000+ 1 1.10000+ 1 1.42821- 4 6.71350- 2 1.10000+ 1 1.30000+ 1 4.32840- 5 6.75337- 2 1.10000+ 1 1.40000+ 1 3.58221- 5 6.76028- 2 1.10000+ 1 1.60000+ 1 3.72472- 5 6.88797- 2 1.10000+ 1 1.80000+ 1 6.44510- 5 6.89787- 2 1.10000+ 1 1.90000+ 1 6.47261- 5 6.90529- 2 1.10000+ 1 2.10000+ 1 1.03124- 5 6.92172- 2 1.10000+ 1 2.20000+ 1 8.48058- 6 6.92310- 2 1.10000+ 1 2.40000+ 1 1.35689- 7 6.94399- 2 1.10000+ 1 2.50000+ 1 1.35689- 7 6.94425- 2 1.10000+ 1 2.70000+ 1 6.71664- 6 6.94039- 2 1.10000+ 1 2.90000+ 1 9.90549- 6 6.94345- 2 1.10000+ 1 3.00000+ 1 9.49823- 6 6.94461- 2 1.10000+ 1 3.20000+ 1 6.78455- 7 6.94860- 2 1.10000+ 1 3.30000+ 1 6.78455- 8 6.94870- 2 1.30000+ 1 1.30000+ 1 6.78443- 8 6.79324- 2 1.30000+ 1 1.40000+ 1 5.22373- 6 6.80015- 2 1.30000+ 1 1.60000+ 1 2.91736- 6 6.92784- 2 1.30000+ 1 1.80000+ 1 2.84934- 6 6.93774- 2 1.30000+ 1 1.90000+ 1 9.29494- 6 6.94516- 2 1.30000+ 1 2.10000+ 1 6.78443- 8 6.96159- 2 1.30000+ 1 2.20000+ 1 1.15334- 6 6.96297- 2 1.30000+ 1 2.70000+ 1 5.42777- 7 6.98026- 2 1.30000+ 1 2.90000+ 1 4.07060- 7 6.98332- 2 1.30000+ 1 3.00000+ 1 1.35687- 6 6.98448- 2 1.40000+ 1 1.40000+ 1 1.22113- 6 6.80706- 2 1.40000+ 1 1.60000+ 1 2.23883- 6 6.93475- 2 1.40000+ 1 1.80000+ 1 6.98793- 6 6.94465- 2 1.40000+ 1 1.90000+ 1 7.66620- 6 6.95207- 2 1.40000+ 1 2.10000+ 1 1.15332- 6 6.96850- 2 1.40000+ 1 2.20000+ 1 5.42767- 7 6.96988- 2 1.40000+ 1 2.70000+ 1 4.07052- 7 6.98717- 2 1.40000+ 1 2.90000+ 1 1.08552- 6 6.99023- 2 1.40000+ 1 3.00000+ 1 1.08552- 6 6.99139- 2 1.40000+ 1 3.20000+ 1 6.78430- 8 6.99538- 2 1.60000+ 1 1.60000+ 1 1.02826- 5 7.06243- 2 1.60000+ 1 1.80000+ 1 1.34158- 5 7.07233- 2 1.60000+ 1 1.90000+ 1 8.78466- 6 7.07976- 2 1.60000+ 1 2.10000+ 1 6.80985- 7 7.09619- 2 1.60000+ 1 2.20000+ 1 5.44811- 7 7.09756- 2 1.60000+ 1 2.70000+ 1 3.74544- 6 7.11486- 2 1.60000+ 1 2.90000+ 1 2.04298- 6 7.11792- 2 1.60000+ 1 3.00000+ 1 1.29379- 6 7.11908- 2 1.60000+ 1 3.20000+ 1 6.80985- 8 7.12306- 2 1.80000+ 1 1.80000+ 1 8.14136- 7 7.08223- 2 1.80000+ 1 1.90000+ 1 1.45186- 5 7.08966- 2 1.80000+ 1 2.10000+ 1 6.78432- 7 7.10609- 2 1.80000+ 1 2.20000+ 1 1.62828- 6 7.10746- 2 1.80000+ 1 2.70000+ 1 2.44236- 6 7.12476- 2 1.80000+ 1 2.90000+ 1 2.71358- 7 7.12782- 2 1.80000+ 1 3.00000+ 1 2.10313- 6 7.12898- 2 1.80000+ 1 3.20000+ 1 6.78432- 8 7.13296- 2 1.90000+ 1 1.90000+ 1 7.06789- 6 7.09708- 2 1.90000+ 1 2.10000+ 1 2.15958- 6 7.11351- 2 1.90000+ 1 2.20000+ 1 1.76695- 6 7.11489- 2 1.90000+ 1 2.70000+ 1 1.50513- 6 7.13218- 2 1.90000+ 1 2.90000+ 1 2.15958- 6 7.13524- 2 1.90000+ 1 3.00000+ 1 2.09407- 6 7.13640- 2 1.90000+ 1 3.20000+ 1 1.30881- 7 7.14039- 2 2.10000+ 1 2.20000+ 1 2.71362- 7 7.13132- 2 2.10000+ 1 2.70000+ 1 1.35686- 7 7.14862- 2 2.10000+ 1 2.90000+ 1 1.35686- 7 7.15168- 2 2.10000+ 1 3.00000+ 1 3.39209- 7 7.15283- 2 2.20000+ 1 2.20000+ 1 6.78441- 8 7.13269- 2 2.20000+ 1 2.70000+ 1 6.78441- 8 7.14999- 2 2.20000+ 1 2.90000+ 1 2.71362- 7 7.15305- 2 2.20000+ 1 3.00000+ 1 2.71362- 7 7.15421- 2 2.70000+ 1 2.70000+ 1 3.96460- 7 7.16729- 2 2.70000+ 1 2.90000+ 1 3.96460- 7 7.17035- 2 2.70000+ 1 3.00000+ 1 2.37886- 7 7.17150- 2 2.90000+ 1 3.00000+ 1 3.15911- 7 7.17456- 2 3.00000+ 1 3.00000+ 1 1.35681- 7 7.17572- 2 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.06919- 5 5.15000- 4 6.00000+ 0 1.41849- 3 1.97000- 3 1.00000+ 1 2.25049- 2 9.83060- 3 1.10000+ 1 2.77469- 2 1.01475- 2 1.30000+ 1 6.71807- 4 1.05462- 2 1.40000+ 1 1.00589- 3 1.06153- 2 1.80000+ 1 5.56097- 3 1.19912- 2 1.90000+ 1 7.28386- 3 1.20654- 2 2.10000+ 1 9.59785- 5 1.22297- 2 2.20000+ 1 1.50119- 4 1.22435- 2 2.90000+ 1 8.91715- 4 1.24470- 2 3.00000+ 1 1.13359- 3 1.24586- 2 3.20000+ 1 3.61798- 6 1.24985- 2 3.30000+ 1 5.48207- 6 1.24995- 2 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 1.69111- 2 0.00000+ 0 5.00000+ 0 1.90000+ 1 1.70899- 2 7.24100- 5 5.00000+ 0 2.10000+ 1 4.70819- 3 2.36740- 4 5.00000+ 0 2.20000+ 1 6.54740- 3 2.50460- 4 5.00000+ 0 2.40000+ 1 1.36903- 2 4.59360- 4 5.00000+ 0 2.50000+ 1 1.80053- 2 4.62010- 4 5.00000+ 0 2.70000+ 1 3.68721- 3 4.23430- 4 5.00000+ 0 2.90000+ 1 2.44318- 3 4.54030- 4 5.00000+ 0 3.00000+ 1 2.40721- 3 4.65600- 4 5.00000+ 0 3.20000+ 1 3.19465- 4 5.05480- 4 5.00000+ 0 3.30000+ 1 7.12779- 5 5.06500- 4 6.00000+ 0 1.30000+ 1 2.12875- 1 8.20000- 6 6.00000+ 0 1.40000+ 1 3.22701- 1 7.73000- 5 6.00000+ 0 1.60000+ 1 2.02492- 2 1.35417- 3 6.00000+ 0 1.80000+ 1 8.23249- 3 1.45317- 3 6.00000+ 0 1.90000+ 1 1.30981- 2 1.52741- 3 6.00000+ 0 2.10000+ 1 2.89093- 2 1.69174- 3 6.00000+ 0 2.20000+ 1 3.50091- 2 1.70546- 3 6.00000+ 0 2.40000+ 1 2.02332- 2 1.91436- 3 6.00000+ 0 2.50000+ 1 2.53647- 2 1.91701- 3 6.00000+ 0 2.70000+ 1 3.52010- 3 1.87843- 3 6.00000+ 0 2.90000+ 1 1.24115- 3 1.90903- 3 6.00000+ 0 3.00000+ 1 1.91359- 3 1.92060- 3 6.00000+ 0 3.20000+ 1 1.81746- 3 1.96048- 3 6.00000+ 0 3.30000+ 1 3.42866- 4 1.96150- 3 8.00000+ 0 8.00000+ 0 5.03037- 3 6.68480- 3 8.00000+ 0 1.00000+ 1 1.02488- 2 6.91900- 3 8.00000+ 0 1.10000+ 1 1.70300- 2 7.23590- 3 8.00000+ 0 1.30000+ 1 1.29419- 2 7.63460- 3 8.00000+ 0 1.40000+ 1 1.71099- 2 7.70370- 3 8.00000+ 0 1.60000+ 1 2.07394- 3 8.98057- 3 8.00000+ 0 1.80000+ 1 2.37643- 3 9.07957- 3 8.00000+ 0 1.90000+ 1 3.87868- 3 9.15381- 3 8.00000+ 0 2.10000+ 1 2.60707- 3 9.31814- 3 8.00000+ 0 2.20000+ 1 3.41080- 3 9.33186- 3 8.00000+ 0 2.40000+ 1 1.79474- 4 9.54076- 3 8.00000+ 0 2.50000+ 1 2.02888- 4 9.54341- 3 8.00000+ 0 2.70000+ 1 3.67112- 4 9.50483- 3 8.00000+ 0 2.90000+ 1 3.65833- 4 9.53543- 3 8.00000+ 0 3.00000+ 1 5.70219- 4 9.54700- 3 8.00000+ 0 3.20000+ 1 1.71759- 4 9.58688- 3 8.00000+ 0 3.30000+ 1 3.54241- 5 9.58790- 3 1.00000+ 1 1.00000+ 1 2.61927- 5 7.15320- 3 1.00000+ 1 1.10000+ 1 2.31868- 4 7.47010- 3 1.00000+ 1 1.30000+ 1 5.97053- 4 7.86880- 3 1.00000+ 1 1.40000+ 1 5.38573- 3 7.93790- 3 1.00000+ 1 1.60000+ 1 1.66564- 3 9.21477- 3 1.00000+ 1 1.80000+ 1 4.07914- 6 9.31377- 3 1.00000+ 1 1.90000+ 1 4.70171- 5 9.38801- 3 1.00000+ 1 2.10000+ 1 1.09923- 4 9.55234- 3 1.00000+ 1 2.20000+ 1 6.87869- 4 9.56606- 3 1.00000+ 1 2.40000+ 1 6.39782- 5 9.77496- 3 1.00000+ 1 2.50000+ 1 2.24563- 4 9.77761- 3 1.00000+ 1 2.70000+ 1 2.78885- 4 9.73903- 3 1.00000+ 1 2.90000+ 1 4.29380- 7 9.76963- 3 1.00000+ 1 3.00000+ 1 6.87010- 6 9.78120- 3 1.00000+ 1 3.20000+ 1 7.29949- 6 9.82108- 3 1.00000+ 1 3.30000+ 1 6.65545- 6 9.82210- 3 1.10000+ 1 1.10000+ 1 4.80695- 4 7.78700- 3 1.10000+ 1 1.30000+ 1 2.17889- 3 8.18570- 3 1.10000+ 1 1.40000+ 1 1.35985- 3 8.25480- 3 1.10000+ 1 1.60000+ 1 2.74178- 3 9.53167- 3 1.10000+ 1 1.80000+ 1 5.19558- 5 9.63067- 3 1.10000+ 1 1.90000+ 1 1.62956- 4 9.70491- 3 1.10000+ 1 2.10000+ 1 1.92156- 4 9.86924- 3 1.10000+ 1 2.20000+ 1 1.10783- 4 9.88296- 3 1.10000+ 1 2.40000+ 1 1.32888- 4 1.00919- 2 1.10000+ 1 2.50000+ 1 1.09703- 4 1.00945- 2 1.10000+ 1 2.70000+ 1 4.58361- 4 1.00559- 2 1.10000+ 1 2.90000+ 1 7.94366- 6 1.00865- 2 1.10000+ 1 3.00000+ 1 2.27561- 5 1.00981- 2 1.10000+ 1 3.20000+ 1 1.11642- 5 1.01380- 2 1.10000+ 1 3.30000+ 1 1.07346- 6 1.01390- 2 1.30000+ 1 1.30000+ 1 7.68184- 4 8.58440- 3 1.30000+ 1 1.40000+ 1 2.37708- 2 8.65350- 3 1.30000+ 1 1.60000+ 1 1.92479- 3 9.93037- 3 1.30000+ 1 1.80000+ 1 1.70034- 4 1.00294- 2 1.30000+ 1 1.90000+ 1 5.45756- 4 1.01036- 2 1.30000+ 1 2.10000+ 1 3.02073- 4 1.02679- 2 1.30000+ 1 2.20000+ 1 3.32582- 3 1.02817- 2 1.30000+ 1 2.40000+ 1 1.99883- 4 1.04906- 2 1.30000+ 1 2.50000+ 1 5.55200- 4 1.04932- 2 1.30000+ 1 2.70000+ 1 3.17103- 4 1.04546- 2 1.30000+ 1 2.90000+ 1 2.72663- 5 1.04852- 2 1.30000+ 1 3.00000+ 1 8.13703- 5 1.04968- 2 1.30000+ 1 3.20000+ 1 1.99664- 5 1.05367- 2 1.30000+ 1 3.30000+ 1 3.26337- 5 1.05377- 2 1.40000+ 1 1.40000+ 1 6.62313- 3 8.72260- 3 1.40000+ 1 1.60000+ 1 2.57676- 3 9.99947- 3 1.40000+ 1 1.80000+ 1 1.11384- 3 1.00985- 2 1.40000+ 1 1.90000+ 1 3.54680- 4 1.01727- 2 1.40000+ 1 2.10000+ 1 3.24900- 3 1.03370- 2 1.40000+ 1 2.20000+ 1 1.95498- 3 1.03508- 2 1.40000+ 1 2.40000+ 1 6.15315- 4 1.05597- 2 1.40000+ 1 2.50000+ 1 4.68903- 4 1.05623- 2 1.40000+ 1 2.70000+ 1 4.26382- 4 1.05237- 2 1.40000+ 1 2.90000+ 1 1.68106- 4 1.05543- 2 1.40000+ 1 3.00000+ 1 5.34598- 5 1.05659- 2 1.40000+ 1 3.20000+ 1 2.02023- 4 1.06058- 2 1.40000+ 1 3.30000+ 1 1.93229- 5 1.06068- 2 1.60000+ 1 1.60000+ 1 2.01813- 4 1.12763- 2 1.60000+ 1 1.80000+ 1 3.87307- 4 1.13753- 2 1.60000+ 1 1.90000+ 1 6.26485- 4 1.14496- 2 1.60000+ 1 2.10000+ 1 3.88176- 4 1.16139- 2 1.60000+ 1 2.20000+ 1 5.11623- 4 1.16276- 2 1.60000+ 1 2.40000+ 1 2.18991- 5 1.18365- 2 1.60000+ 1 2.50000+ 1 2.40457- 5 1.18392- 2 1.60000+ 1 2.70000+ 1 7.06350- 5 1.18006- 2 1.60000+ 1 2.90000+ 1 5.96855- 5 1.18312- 2 1.60000+ 1 3.00000+ 1 9.21015- 5 1.18428- 2 1.60000+ 1 3.20000+ 1 2.55497- 5 1.18826- 2 1.60000+ 1 3.30000+ 1 5.36745- 6 1.18837- 2 1.80000+ 1 1.90000+ 1 1.05196- 5 1.15486- 2 1.80000+ 1 2.10000+ 1 2.70500- 5 1.17129- 2 1.80000+ 1 2.20000+ 1 1.47496- 4 1.17266- 2 1.80000+ 1 2.40000+ 1 8.80203- 6 1.19355- 2 1.80000+ 1 2.50000+ 1 3.43509- 5 1.19382- 2 1.80000+ 1 2.70000+ 1 6.48365- 5 1.18996- 2 1.80000+ 1 3.00000+ 1 1.50275- 6 1.19418- 2 1.80000+ 1 3.20000+ 1 1.71760- 6 1.19816- 2 1.80000+ 1 3.30000+ 1 1.50275- 6 1.19827- 2 1.90000+ 1 1.90000+ 1 1.33114- 5 1.16228- 2 1.90000+ 1 2.10000+ 1 5.43162- 5 1.17871- 2 1.90000+ 1 2.20000+ 1 3.41355- 5 1.18009- 2 1.90000+ 1 2.40000+ 1 2.49031- 5 1.20098- 2 1.90000+ 1 2.50000+ 1 2.01805- 5 1.20124- 2 1.90000+ 1 2.70000+ 1 1.04775- 4 1.19738- 2 1.90000+ 1 2.90000+ 1 1.71757- 6 1.20044- 2 1.90000+ 1 3.00000+ 1 3.64969- 6 1.20160- 2 1.90000+ 1 3.20000+ 1 3.22030- 6 1.20559- 2 1.90000+ 1 3.30000+ 1 4.29373- 7 1.20569- 2 2.10000+ 1 2.10000+ 1 2.74813- 5 1.19515- 2 2.10000+ 1 2.20000+ 1 4.96162- 4 1.19652- 2 2.10000+ 1 2.40000+ 1 2.72664- 5 1.21741- 2 2.10000+ 1 2.50000+ 1 5.79674- 5 1.21767- 2 2.10000+ 1 2.70000+ 1 6.39793- 5 1.21382- 2 2.10000+ 1 2.90000+ 1 4.29388- 6 1.21688- 2 2.10000+ 1 3.00000+ 1 8.15834- 6 1.21803- 2 2.10000+ 1 3.20000+ 1 3.64981- 6 1.22202- 2 2.10000+ 1 3.30000+ 1 4.93803- 6 1.22212- 2 2.20000+ 1 2.20000+ 1 1.54584- 4 1.19789- 2 2.20000+ 1 2.40000+ 1 6.69837- 5 1.21878- 2 2.20000+ 1 2.50000+ 1 5.68936- 5 1.21905- 2 2.20000+ 1 2.70000+ 1 8.45895- 5 1.21519- 2 2.20000+ 1 2.90000+ 1 2.23286- 5 1.21825- 2 2.20000+ 1 3.00000+ 1 5.15264- 6 1.21941- 2 2.20000+ 1 3.20000+ 1 3.11305- 5 1.22339- 2 2.20000+ 1 3.30000+ 1 3.00572- 6 1.22350- 2 2.40000+ 1 2.40000+ 1 1.11297- 6 1.23967- 2 2.40000+ 1 2.50000+ 1 1.92920- 5 1.23994- 2 2.40000+ 1 2.70000+ 1 5.93595- 6 1.23608- 2 2.40000+ 1 2.90000+ 1 2.22588- 6 1.23914- 2 2.40000+ 1 3.00000+ 1 5.93595- 6 1.24030- 2 2.40000+ 1 3.20000+ 1 2.96806- 6 1.24428- 2 2.40000+ 1 3.30000+ 1 1.11297- 6 1.24439- 2 2.50000+ 1 2.50000+ 1 4.17428- 6 1.24020- 2 2.50000+ 1 2.70000+ 1 6.83044- 6 1.23634- 2 2.50000+ 1 2.90000+ 1 8.72797- 6 1.23940- 2 2.50000+ 1 3.00000+ 1 4.93309- 6 1.24056- 2 2.50000+ 1 3.20000+ 1 6.07164- 6 1.24455- 2 2.50000+ 1 3.30000+ 1 1.13841- 6 1.24465- 2 2.70000+ 1 2.70000+ 1 2.00971- 5 1.23249- 2 2.70000+ 1 2.90000+ 1 3.25726- 5 1.23555- 2 2.70000+ 1 3.00000+ 1 4.98978- 5 1.23670- 2 2.70000+ 1 3.20000+ 1 1.38600- 5 1.24069- 2 2.70000+ 1 3.30000+ 1 2.77193- 6 1.24079- 2 2.90000+ 1 3.00000+ 1 2.76339- 6 1.23976- 2 2.90000+ 1 3.20000+ 1 2.76339- 6 1.24375- 2 2.90000+ 1 3.30000+ 1 2.76339- 6 1.24385- 2 3.00000+ 1 3.00000+ 1 1.38066- 6 1.24092- 2 3.00000+ 1 3.20000+ 1 2.76132- 6 1.24491- 2 3.20000+ 1 3.20000+ 1 2.38565- 7 1.24890- 2 3.20000+ 1 3.30000+ 1 4.77131- 7 1.24900- 2 3.30000+ 1 3.30000+ 1 2.14689- 7 1.24910- 2 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.76046- 6 1.45500- 3 8.00000+ 0 6.95902- 3 9.08140- 3 1.10000+ 1 2.27937- 4 9.63250- 3 1.30000+ 1 2.49727- 1 1.00312- 2 1.60000+ 1 1.68178- 3 1.13772- 2 1.90000+ 1 5.95353- 5 1.15504- 2 2.10000+ 1 4.70355- 2 1.17147- 2 2.40000+ 1 1.33189- 4 1.19374- 2 2.70000+ 1 3.25726- 4 1.19014- 2 3.00000+ 1 1.22349- 5 1.19436- 2 3.20000+ 1 1.80548- 3 1.19835- 2 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 6.44477- 3 8.39170- 4 6.00000+ 0 1.80000+ 1 4.14305- 2 9.38170- 4 6.00000+ 0 1.90000+ 1 1.23479- 2 1.01241- 3 6.00000+ 0 2.10000+ 1 4.55432- 2 1.17674- 3 6.00000+ 0 2.20000+ 1 1.58994- 2 1.19046- 3 6.00000+ 0 2.40000+ 1 1.51784- 3 1.39936- 3 6.00000+ 0 2.50000+ 1 2.29971- 3 1.40201- 3 6.00000+ 0 2.70000+ 1 1.07354- 3 1.36343- 3 6.00000+ 0 2.90000+ 1 5.93350- 3 1.39403- 3 6.00000+ 0 3.00000+ 1 1.78171- 3 1.40560- 3 6.00000+ 0 3.20000+ 1 2.90586- 3 1.44548- 3 6.00000+ 0 3.30000+ 1 1.60580- 4 1.44650- 3 8.00000+ 0 8.00000+ 0 6.84333- 4 6.16980- 3 8.00000+ 0 1.00000+ 1 2.16112- 2 6.40400- 3 8.00000+ 0 1.10000+ 1 2.06884- 3 6.72090- 3 8.00000+ 0 1.30000+ 1 2.85525- 3 7.11960- 3 8.00000+ 0 1.40000+ 1 2.23975- 3 7.18870- 3 8.00000+ 0 1.60000+ 1 2.56476- 4 8.46557- 3 8.00000+ 0 1.80000+ 1 3.32577- 3 8.56457- 3 8.00000+ 0 1.90000+ 1 4.20465- 4 8.63881- 3 8.00000+ 0 2.10000+ 1 4.07985- 4 8.80314- 3 8.00000+ 0 2.20000+ 1 2.72372- 4 8.81686- 3 8.00000+ 0 2.40000+ 1 8.73847- 5 9.02576- 3 8.00000+ 0 2.50000+ 1 5.84464- 5 9.02841- 3 8.00000+ 0 2.70000+ 1 4.42596- 5 8.98983- 3 8.00000+ 0 2.90000+ 1 4.74938- 4 9.02043- 3 8.00000+ 0 3.00000+ 1 6.07157- 5 9.03200- 3 8.00000+ 0 3.20000+ 1 2.55352- 5 9.07188- 3 8.00000+ 0 3.30000+ 1 2.83718- 6 9.07290- 3 1.00000+ 1 1.00000+ 1 2.22804- 2 6.63820- 3 1.00000+ 1 1.10000+ 1 6.03823- 2 6.95510- 3 1.00000+ 1 1.30000+ 1 3.17984- 2 7.35380- 3 1.00000+ 1 1.40000+ 1 4.79705- 2 7.42290- 3 1.00000+ 1 1.60000+ 1 5.37030- 3 8.69977- 3 1.00000+ 1 1.80000+ 1 8.72404- 3 8.79877- 3 1.00000+ 1 1.90000+ 1 1.35133- 2 8.87301- 3 1.00000+ 1 2.10000+ 1 6.40323- 3 9.03734- 3 1.00000+ 1 2.20000+ 1 9.60487- 3 9.05106- 3 1.00000+ 1 2.40000+ 1 4.14808- 4 9.25996- 3 1.00000+ 1 2.50000+ 1 3.75640- 4 9.26261- 3 1.00000+ 1 2.70000+ 1 9.78822- 4 9.22403- 3 1.00000+ 1 2.90000+ 1 1.30856- 3 9.25463- 3 1.00000+ 1 3.00000+ 1 1.98041- 3 9.26620- 3 1.00000+ 1 3.20000+ 1 4.22189- 4 9.30608- 3 1.00000+ 1 3.30000+ 1 9.98754- 5 9.30710- 3 1.10000+ 1 1.10000+ 1 1.45320- 3 7.27200- 3 1.10000+ 1 1.30000+ 1 3.16073- 2 7.67070- 3 1.10000+ 1 1.40000+ 1 4.46111- 3 7.73980- 3 1.10000+ 1 1.60000+ 1 4.33520- 4 9.01667- 3 1.10000+ 1 1.80000+ 1 9.53603- 3 9.11567- 3 1.10000+ 1 1.90000+ 1 5.54943- 4 9.18991- 3 1.10000+ 1 2.10000+ 1 5.35264- 3 9.35424- 3 1.10000+ 1 2.20000+ 1 7.20647- 4 9.36796- 3 1.10000+ 1 2.40000+ 1 1.98034- 4 9.57686- 3 1.10000+ 1 2.50000+ 1 1.07246- 4 9.57951- 3 1.10000+ 1 2.70000+ 1 7.66040- 5 9.54093- 3 1.10000+ 1 2.90000+ 1 1.36695- 3 9.57153- 3 1.10000+ 1 3.00000+ 1 7.88732- 5 9.58310- 3 1.10000+ 1 3.20000+ 1 3.43877- 4 9.62298- 3 1.10000+ 1 3.30000+ 1 7.37666- 6 9.62400- 3 1.30000+ 1 1.30000+ 1 2.96774- 2 8.06940- 3 1.30000+ 1 1.40000+ 1 1.20433- 1 8.13850- 3 1.30000+ 1 1.60000+ 1 7.13821- 4 9.41537- 3 1.30000+ 1 1.80000+ 1 4.91070- 3 9.51437- 3 1.30000+ 1 1.90000+ 1 6.57440- 3 9.58861- 3 1.30000+ 1 2.10000+ 1 9.97434- 3 9.75294- 3 1.30000+ 1 2.20000+ 1 2.17571- 2 9.76666- 3 1.30000+ 1 2.40000+ 1 1.55366- 3 9.97556- 3 1.30000+ 1 2.50000+ 1 3.16024- 3 9.97821- 3 1.30000+ 1 2.70000+ 1 1.30514- 4 9.93963- 3 1.30000+ 1 2.90000+ 1 7.06492- 4 9.97023- 3 1.30000+ 1 3.00000+ 1 9.51073- 4 9.98180- 3 1.30000+ 1 3.20000+ 1 6.42921- 4 1.00217- 2 1.30000+ 1 3.30000+ 1 2.22451- 4 1.00227- 2 1.40000+ 1 1.40000+ 1 5.82090- 3 8.20760- 3 1.40000+ 1 1.60000+ 1 4.52259- 4 9.48447- 3 1.40000+ 1 1.80000+ 1 6.54557- 3 9.58347- 3 1.40000+ 1 1.90000+ 1 8.52266- 4 9.65771- 3 1.40000+ 1 2.10000+ 1 1.66772- 2 9.82204- 3 1.40000+ 1 2.20000+ 1 1.90951- 3 9.83576- 3 1.40000+ 1 2.40000+ 1 6.23048- 4 1.00447- 2 1.40000+ 1 2.50000+ 1 2.39460- 4 1.00473- 2 1.40000+ 1 2.70000+ 1 7.88756- 5 1.00087- 2 1.40000+ 1 2.90000+ 1 9.11910- 4 1.00393- 2 1.40000+ 1 3.00000+ 1 1.21436- 4 1.00509- 2 1.40000+ 1 3.20000+ 1 1.04185- 3 1.00908- 2 1.40000+ 1 3.30000+ 1 1.92930- 5 1.00918- 2 1.60000+ 1 1.60000+ 1 2.32645- 5 1.07613- 2 1.60000+ 1 1.80000+ 1 8.30724- 4 1.08603- 2 1.60000+ 1 1.90000+ 1 8.85174- 5 1.09346- 2 1.60000+ 1 2.10000+ 1 9.87371- 5 1.10989- 2 1.60000+ 1 2.20000+ 1 5.50405- 5 1.11126- 2 1.60000+ 1 2.40000+ 1 1.92924- 5 1.13215- 2 1.60000+ 1 2.50000+ 1 1.02145- 5 1.13242- 2 1.60000+ 1 2.70000+ 1 7.94406- 6 1.12856- 2 1.60000+ 1 2.90000+ 1 1.18591- 4 1.13162- 2 1.60000+ 1 3.00000+ 1 1.30509- 5 1.13278- 2 1.60000+ 1 3.20000+ 1 6.24185- 6 1.13676- 2 1.60000+ 1 3.30000+ 1 5.67434- 7 1.13687- 2 1.80000+ 1 1.80000+ 1 8.11429- 4 1.09593- 2 1.80000+ 1 1.90000+ 1 2.13639- 3 1.10336- 2 1.80000+ 1 2.10000+ 1 9.73119- 4 1.11979- 2 1.80000+ 1 2.20000+ 1 1.32268- 3 1.12116- 2 1.80000+ 1 2.40000+ 1 5.22042- 5 1.14205- 2 1.80000+ 1 2.50000+ 1 3.85850- 5 1.14232- 2 1.80000+ 1 2.70000+ 1 1.51506- 4 1.13846- 2 1.80000+ 1 2.90000+ 1 2.41172- 4 1.14152- 2 1.80000+ 1 3.00000+ 1 3.13214- 4 1.14268- 2 1.80000+ 1 3.20000+ 1 6.41197- 5 1.14666- 2 1.80000+ 1 3.30000+ 1 1.36184- 5 1.14677- 2 1.90000+ 1 1.90000+ 1 5.33375- 5 1.11078- 2 1.90000+ 1 2.10000+ 1 1.12293- 3 1.12721- 2 1.90000+ 1 2.20000+ 1 1.40718- 4 1.12859- 2 1.90000+ 1 2.40000+ 1 3.40436- 5 1.14948- 2 1.90000+ 1 2.50000+ 1 1.70228- 5 1.14974- 2 1.90000+ 1 2.70000+ 1 1.58882- 5 1.14588- 2 1.90000+ 1 2.90000+ 1 3.06418- 4 1.14894- 2 1.90000+ 1 3.00000+ 1 1.53209- 5 1.15010- 2 1.90000+ 1 3.20000+ 1 7.20632- 5 1.15409- 2 1.90000+ 1 3.30000+ 1 1.13488- 6 1.15419- 2 2.10000+ 1 2.10000+ 1 8.28450- 4 1.14365- 2 2.10000+ 1 2.20000+ 1 3.13505- 3 1.14502- 2 2.10000+ 1 2.40000+ 1 1.78748- 4 1.16591- 2 2.10000+ 1 2.50000+ 1 3.68269- 4 1.16617- 2 2.10000+ 1 2.70000+ 1 1.81579- 5 1.16232- 2 2.10000+ 1 2.90000+ 1 1.39587- 4 1.16538- 2 2.10000+ 1 3.00000+ 1 1.62852- 4 1.16653- 2 2.10000+ 1 3.20000+ 1 1.06684- 4 1.17052- 2 2.10000+ 1 3.30000+ 1 3.23436- 5 1.17062- 2 2.20000+ 1 2.20000+ 1 1.75525- 4 1.14639- 2 2.20000+ 1 2.40000+ 1 8.64979- 5 1.16728- 2 2.20000+ 1 2.50000+ 1 3.40951- 5 1.16755- 2 2.20000+ 1 2.70000+ 1 1.07330- 5 1.16369- 2 2.20000+ 1 2.90000+ 1 2.05199- 4 1.16675- 2 2.20000+ 1 3.00000+ 1 2.20974- 5 1.16791- 2 2.20000+ 1 3.20000+ 1 2.19086- 4 1.17189- 2 2.20000+ 1 3.30000+ 1 3.78803- 6 1.17200- 2 2.40000+ 1 2.40000+ 1 4.03126- 6 1.18817- 2 2.40000+ 1 2.50000+ 1 2.82197- 5 1.18844- 2 2.40000+ 1 2.70000+ 1 4.03126- 6 1.18458- 2 2.40000+ 1 2.90000+ 1 8.73486- 6 1.18764- 2 2.40000+ 1 3.00000+ 1 5.37534- 6 1.18880- 2 2.40000+ 1 3.20000+ 1 1.27669- 5 1.19278- 2 2.40000+ 1 3.30000+ 1 6.71911- 7 1.19289- 2 2.50000+ 1 2.50000+ 1 2.09520- 6 1.18870- 2 2.50000+ 1 2.70000+ 1 2.09520- 6 1.18484- 2 2.50000+ 1 2.90000+ 1 6.28557- 6 1.18790- 2 2.50000+ 1 3.00000+ 1 2.79356- 6 1.18906- 2 2.50000+ 1 3.20000+ 1 2.79356- 5 1.19305- 2 2.50000+ 1 3.30000+ 1 6.98394- 7 1.19315- 2 2.70000+ 1 2.70000+ 1 7.65854- 7 1.18099- 2 2.70000+ 1 2.90000+ 1 2.91026- 5 1.18405- 2 2.70000+ 1 3.00000+ 1 3.06340- 6 1.18520- 2 2.70000+ 1 3.20000+ 1 1.53175- 6 1.18919- 2 2.90000+ 1 2.90000+ 1 2.71362- 5 1.18711- 2 2.90000+ 1 3.00000+ 1 6.69908- 5 1.18826- 2 2.90000+ 1 3.20000+ 1 1.35678- 5 1.19225- 2 2.90000+ 1 3.30000+ 1 2.54405- 6 1.19235- 2 3.00000+ 1 3.00000+ 1 1.32854- 6 1.18942- 2 3.00000+ 1 3.20000+ 1 1.19573- 5 1.19341- 2 3.20000+ 1 3.20000+ 1 3.40447- 6 1.19740- 2 3.20000+ 1 3.30000+ 1 2.83716- 6 1.19750- 2 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.29250- 2 7.62640- 3 1.00000+ 1 1.13550- 4 7.86060- 3 1.10000+ 1 1.02810- 4 8.17750- 3 1.30000+ 1 2.20981- 2 8.57620- 3 1.40000+ 1 1.94931- 1 8.64530- 3 1.60000+ 1 2.47281- 3 9.92217- 3 1.80000+ 1 2.42861- 5 1.00212- 2 1.90000+ 1 2.40311- 5 1.00954- 2 2.10000+ 1 3.88941- 3 1.02597- 2 2.20000+ 1 3.49331- 2 1.02735- 2 2.40000+ 1 1.96281- 5 1.04824- 2 2.50000+ 1 1.10160- 4 1.04850- 2 2.70000+ 1 5.04352- 4 1.04464- 2 2.90000+ 1 5.15932- 6 1.04770- 2 3.00000+ 1 4.92282- 6 1.04886- 2 3.20000+ 1 1.48611- 4 1.05285- 2 3.30000+ 1 1.27200- 3 1.05295- 2 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.98224- 4 4.71480- 3 8.00000+ 0 1.00000+ 1 4.97972- 4 4.94900- 3 8.00000+ 0 1.10000+ 1 2.31996- 2 5.26590- 3 8.00000+ 0 1.30000+ 1 2.64697- 3 5.66460- 3 8.00000+ 0 1.40000+ 1 3.94886- 3 5.73370- 3 8.00000+ 0 1.60000+ 1 3.38131- 4 7.01057- 3 8.00000+ 0 1.80000+ 1 8.79794- 5 7.10957- 3 8.00000+ 0 1.90000+ 1 3.50028- 3 7.18381- 3 8.00000+ 0 2.10000+ 1 2.57037- 4 7.34814- 3 8.00000+ 0 2.20000+ 1 3.46172- 4 7.36186- 3 8.00000+ 0 2.40000+ 1 1.69634- 4 7.57076- 3 8.00000+ 0 2.50000+ 1 3.04193- 4 7.57341- 3 8.00000+ 0 2.70000+ 1 5.86543- 5 7.53483- 3 8.00000+ 0 2.90000+ 1 1.26516- 5 7.56543- 3 8.00000+ 0 3.00000+ 1 4.77851- 4 7.57700- 3 8.00000+ 0 3.20000+ 1 1.55262- 5 7.61688- 3 8.00000+ 0 3.30000+ 1 3.45015- 6 7.61790- 3 1.00000+ 1 1.00000+ 1 8.97061- 5 5.18320- 3 1.00000+ 1 1.10000+ 1 3.89540- 2 5.50010- 3 1.00000+ 1 1.30000+ 1 2.02133- 3 5.89880- 3 1.00000+ 1 1.40000+ 1 1.77726- 2 5.96790- 3 1.00000+ 1 1.60000+ 1 1.00629- 4 7.24477- 3 1.00000+ 1 1.80000+ 1 3.62274- 5 7.34377- 3 1.00000+ 1 1.90000+ 1 6.09991- 3 7.41801- 3 1.00000+ 1 2.10000+ 1 3.65153- 4 7.58234- 3 1.00000+ 1 2.20000+ 1 2.66648- 3 7.59606- 3 1.00000+ 1 2.40000+ 1 1.75964- 4 7.80496- 3 1.00000+ 1 2.50000+ 1 4.54267- 4 7.80761- 3 1.00000+ 1 2.70000+ 1 1.78259- 5 7.76903- 3 1.00000+ 1 2.90000+ 1 5.75046- 6 7.79963- 3 1.00000+ 1 3.00000+ 1 8.38422- 4 7.81120- 3 1.00000+ 1 3.20000+ 1 2.35759- 5 7.85108- 3 1.00000+ 1 3.30000+ 1 2.64514- 5 7.85210- 3 1.10000+ 1 1.10000+ 1 5.07007- 2 5.81700- 3 1.10000+ 1 1.30000+ 1 5.29551- 2 6.21570- 3 1.10000+ 1 1.40000+ 1 7.40638- 2 6.28480- 3 1.10000+ 1 1.60000+ 1 5.68421- 3 7.56167- 3 1.10000+ 1 1.80000+ 1 8.52696- 3 7.66067- 3 1.10000+ 1 1.90000+ 1 1.91590- 2 7.73491- 3 1.10000+ 1 2.10000+ 1 1.00959- 2 7.89924- 3 1.10000+ 1 2.20000+ 1 1.38722- 2 7.91296- 3 1.10000+ 1 2.40000+ 1 7.18203- 4 8.12186- 3 1.10000+ 1 2.50000+ 1 9.02195- 4 8.12451- 3 1.10000+ 1 2.70000+ 1 1.03334- 3 8.08593- 3 1.10000+ 1 2.90000+ 1 1.30075- 3 8.11653- 3 1.10000+ 1 3.00000+ 1 2.73476- 3 8.12810- 3 1.10000+ 1 3.20000+ 1 6.61267- 4 8.16798- 3 1.10000+ 1 3.30000+ 1 1.42606- 4 8.16900- 3 1.30000+ 1 1.30000+ 1 7.50118- 3 6.61440- 3 1.30000+ 1 1.40000+ 1 1.41084- 1 6.68350- 3 1.30000+ 1 1.60000+ 1 6.20478- 4 7.96037- 3 1.30000+ 1 1.80000+ 1 4.54282- 4 8.05937- 3 1.30000+ 1 1.90000+ 1 7.60203- 3 8.13361- 3 1.30000+ 1 2.10000+ 1 2.45842- 3 8.29794- 3 1.30000+ 1 2.20000+ 1 1.93574- 2 8.31166- 3 1.30000+ 1 2.40000+ 1 4.02526- 4 8.52056- 3 1.30000+ 1 2.50000+ 1 1.37158- 3 8.52321- 3 1.30000+ 1 2.70000+ 1 1.12137- 4 8.48463- 3 1.30000+ 1 2.90000+ 1 6.95817- 5 8.51523- 3 1.30000+ 1 3.00000+ 1 1.02877- 3 8.52680- 3 1.30000+ 1 3.20000+ 1 1.58134- 4 8.56668- 3 1.30000+ 1 3.30000+ 1 1.90343- 4 8.56770- 3 1.40000+ 1 1.40000+ 1 9.44378- 2 6.75260- 3 1.40000+ 1 1.60000+ 1 9.55118- 4 8.02947- 3 1.40000+ 1 1.80000+ 1 3.55257- 3 8.12847- 3 1.40000+ 1 1.90000+ 1 1.19992- 2 8.20271- 3 1.40000+ 1 2.10000+ 1 2.33855- 2 8.36704- 3 1.40000+ 1 2.20000+ 1 2.95160- 2 8.38076- 3 1.40000+ 1 2.40000+ 1 4.27471- 3 8.58966- 3 1.40000+ 1 2.50000+ 1 3.90382- 3 8.59231- 3 1.40000+ 1 2.70000+ 1 1.74231- 4 8.55373- 3 1.40000+ 1 2.90000+ 1 5.33051- 4 8.58433- 3 1.40000+ 1 3.00000+ 1 1.66935- 3 8.59590- 3 1.40000+ 1 3.20000+ 1 1.50257- 3 8.63578- 3 1.40000+ 1 3.30000+ 1 2.96720- 4 8.63680- 3 1.60000+ 1 1.60000+ 1 3.22037- 5 9.30634- 3 1.60000+ 1 1.80000+ 1 1.84023- 5 9.40534- 3 1.60000+ 1 1.90000+ 1 8.57968- 4 9.47958- 3 1.60000+ 1 2.10000+ 1 6.55557- 5 9.64391- 3 1.60000+ 1 2.20000+ 1 9.08557- 5 9.65763- 3 1.60000+ 1 2.40000+ 1 2.35767- 5 9.86653- 3 1.60000+ 1 2.50000+ 1 4.77302- 5 9.86918- 3 1.60000+ 1 2.70000+ 1 1.09259- 5 9.83060- 3 1.60000+ 1 2.90000+ 1 2.87522- 6 9.86120- 3 1.60000+ 1 3.00000+ 1 1.17311- 4 9.87277- 3 1.60000+ 1 3.20000+ 1 4.02528- 6 9.91265- 3 1.60000+ 1 3.30000+ 1 5.75066- 7 9.91367- 3 1.80000+ 1 1.80000+ 1 2.87515- 6 9.50434- 3 1.80000+ 1 1.90000+ 1 1.32888- 3 9.57858- 3 1.80000+ 1 2.10000+ 1 7.82038- 5 9.74291- 3 1.80000+ 1 2.20000+ 1 5.61827- 4 9.75663- 3 1.80000+ 1 2.40000+ 1 2.53024- 5 9.96553- 3 1.80000+ 1 2.50000+ 1 6.26806- 5 9.96818- 3 1.80000+ 1 2.70000+ 1 3.45018- 6 9.92960- 3 1.80000+ 1 2.90000+ 1 5.75052- 7 9.96020- 3 1.80000+ 1 3.00000+ 1 1.82287- 4 9.97177- 3 1.80000+ 1 3.20000+ 1 5.17541- 6 1.00116- 2 1.80000+ 1 3.30000+ 1 5.75052- 6 1.00127- 2 1.90000+ 1 1.90000+ 1 1.73488- 3 9.65282- 3 1.90000+ 1 2.10000+ 1 1.45196- 3 9.81715- 3 1.90000+ 1 2.20000+ 1 2.21326- 3 9.83087- 3 1.90000+ 1 2.40000+ 1 8.51044- 5 1.00398- 2 1.90000+ 1 2.50000+ 1 1.12707- 4 1.00424- 2 1.90000+ 1 2.70000+ 1 1.55834- 4 1.00038- 2 1.90000+ 1 2.90000+ 1 2.02415- 4 1.00344- 2 1.90000+ 1 3.00000+ 1 4.91659- 4 1.00460- 2 1.90000+ 1 3.20000+ 1 9.48814- 5 1.00859- 2 1.90000+ 1 3.30000+ 1 2.24255- 5 1.00869- 2 2.10000+ 1 2.10000+ 1 1.93789- 4 9.98148- 3 2.10000+ 1 2.20000+ 1 3.34095- 3 9.99520- 3 2.10000+ 1 2.40000+ 1 4.42774- 5 1.02041- 2 2.10000+ 1 2.50000+ 1 1.45478- 4 1.02067- 2 2.10000+ 1 2.70000+ 1 1.20759- 5 1.01682- 2 2.10000+ 1 2.90000+ 1 1.20759- 5 1.01988- 2 2.10000+ 1 3.00000+ 1 1.96668- 4 1.02103- 2 2.10000+ 1 3.20000+ 1 2.47274- 5 1.02502- 2 2.10000+ 1 3.30000+ 1 3.27773- 5 1.02512- 2 2.20000+ 1 2.20000+ 1 2.57448- 3 1.00089- 2 2.20000+ 1 2.40000+ 1 5.12960- 4 1.02178- 2 2.20000+ 1 2.50000+ 1 4.61862- 4 1.02205- 2 2.20000+ 1 2.70000+ 1 1.85262- 5 1.01819- 2 2.20000+ 1 2.90000+ 1 9.45440- 5 1.02125- 2 2.20000+ 1 3.00000+ 1 3.41140- 4 1.02241- 2 2.20000+ 1 3.20000+ 1 2.39558- 4 1.02639- 2 2.20000+ 1 3.30000+ 1 5.17455- 5 1.02650- 2 2.40000+ 1 2.40000+ 1 1.89115- 6 1.04267- 2 2.40000+ 1 2.50000+ 1 6.99706- 5 1.04294- 2 2.40000+ 1 2.70000+ 1 6.61857- 6 1.03908- 2 2.40000+ 1 2.90000+ 1 5.67309- 6 1.04214- 2 2.40000+ 1 3.00000+ 1 1.79649- 5 1.04330- 2 2.40000+ 1 3.20000+ 1 4.72759- 6 1.04728- 2 2.40000+ 1 3.30000+ 1 7.56455- 6 1.04739- 2 2.50000+ 1 2.50000+ 1 1.83199- 5 1.04320- 2 2.50000+ 1 2.70000+ 1 9.86409- 6 1.03934- 2 2.50000+ 1 2.90000+ 1 1.05692- 5 1.04240- 2 2.50000+ 1 3.00000+ 1 1.83199- 5 1.04356- 2 2.50000+ 1 3.20000+ 1 1.05692- 5 1.04755- 2 2.50000+ 1 3.30000+ 1 4.93198- 6 1.04765- 2 2.70000+ 1 2.70000+ 1 1.94581- 6 1.03549- 2 2.70000+ 1 2.90000+ 1 9.72883- 7 1.03855- 2 2.70000+ 1 3.00000+ 1 3.59956- 5 1.03970- 2 2.70000+ 1 3.20000+ 1 9.72883- 7 1.04369- 2 2.90000+ 1 3.00000+ 1 6.63832- 5 1.04276- 2 2.90000+ 1 3.20000+ 1 1.38305- 6 1.04675- 2 2.90000+ 1 3.30000+ 1 1.38305- 6 1.04685- 2 3.00000+ 1 3.00000+ 1 1.06633- 4 1.04392- 2 3.00000+ 1 3.20000+ 1 3.91018- 5 1.04791- 2 3.00000+ 1 3.30000+ 1 8.88607- 6 1.04801- 2 3.20000+ 1 3.20000+ 1 5.75037- 7 1.05190- 2 3.20000+ 1 3.30000+ 1 2.87508- 6 1.05200- 2 3.30000+ 1 3.30000+ 1 1.72521- 6 1.05210- 2 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.00129- 5 2.34200- 4 1.10000+ 1 2.74692- 4 5.51100- 4 1.80000+ 1 1.02578- 3 2.39477- 3 1.90000+ 1 9.49777- 4 2.46901- 3 2.90000+ 1 2.25847- 4 2.85063- 3 3.00000+ 1 2.07090- 4 2.86220- 3 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.88918- 2 1.78560- 4 1.00000+ 1 2.50000+ 1 5.21444- 2 1.81210- 4 1.00000+ 1 2.70000+ 1 1.01836- 2 1.42630- 4 1.00000+ 1 2.90000+ 1 9.21164- 3 1.73230- 4 1.00000+ 1 3.00000+ 1 1.27420- 2 1.84800- 4 1.00000+ 1 3.20000+ 1 1.95654- 3 2.24680- 4 1.00000+ 1 3.30000+ 1 2.57470- 3 2.25700- 4 1.00000+ 1 4.10000+ 1 8.98990- 4 2.26140- 4 1.10000+ 1 1.80000+ 1 6.39796- 2 3.42700- 5 1.10000+ 1 1.90000+ 1 7.36148- 2 1.08510- 4 1.10000+ 1 2.10000+ 1 2.72127- 2 2.72840- 4 1.10000+ 1 2.20000+ 1 4.11813- 2 2.86560- 4 1.10000+ 1 2.40000+ 1 1.56829- 1 4.95460- 4 1.10000+ 1 2.50000+ 1 1.95586- 1 4.98110- 4 1.10000+ 1 2.70000+ 1 1.01913- 2 4.59530- 4 1.10000+ 1 2.90000+ 1 9.16528- 3 4.90130- 4 1.10000+ 1 3.00000+ 1 1.05940- 2 5.01700- 4 1.10000+ 1 3.20000+ 1 8.20455- 4 5.41580- 4 1.10000+ 1 3.30000+ 1 1.22929- 3 5.42600- 4 1.10000+ 1 4.10000+ 1 9.17347- 4 5.43040- 4 1.30000+ 1 1.60000+ 1 2.60853- 2 3.33970- 4 1.30000+ 1 1.80000+ 1 5.77876- 3 4.32970- 4 1.30000+ 1 1.90000+ 1 6.13924- 3 5.07210- 4 1.30000+ 1 2.10000+ 1 8.82167- 3 6.71540- 4 1.30000+ 1 2.20000+ 1 1.09854- 2 6.85260- 4 1.30000+ 1 2.40000+ 1 8.06784- 3 8.94160- 4 1.30000+ 1 2.50000+ 1 7.46172- 3 8.96810- 4 1.30000+ 1 2.70000+ 1 3.13717- 3 8.58230- 4 1.30000+ 1 2.90000+ 1 6.97750- 4 8.88830- 4 1.30000+ 1 3.00000+ 1 6.96391- 4 9.00400- 4 1.30000+ 1 3.20000+ 1 2.49724- 4 9.40280- 4 1.30000+ 1 3.30000+ 1 3.14189- 4 9.41300- 4 1.30000+ 1 4.10000+ 1 2.68986- 4 9.41740- 4 1.40000+ 1 1.60000+ 1 3.70237- 2 4.03070- 4 1.40000+ 1 1.80000+ 1 1.06571- 3 5.02070- 4 1.40000+ 1 1.90000+ 1 1.11852- 2 5.76310- 4 1.40000+ 1 2.10000+ 1 1.21614- 2 7.40640- 4 1.40000+ 1 2.20000+ 1 1.76928- 2 7.54360- 4 1.40000+ 1 2.40000+ 1 9.15100- 3 9.63260- 4 1.40000+ 1 2.50000+ 1 1.43228- 2 9.65910- 4 1.40000+ 1 2.70000+ 1 4.39380- 3 9.27330- 4 1.40000+ 1 2.90000+ 1 1.41687- 4 9.57930- 4 1.40000+ 1 3.00000+ 1 1.26096- 3 9.69500- 4 1.40000+ 1 3.20000+ 1 3.69187- 4 1.00938- 3 1.40000+ 1 3.30000+ 1 4.89818- 4 1.01040- 3 1.40000+ 1 4.10000+ 1 3.76443- 4 1.01084- 3 1.60000+ 1 1.60000+ 1 3.05940- 3 1.67994- 3 1.60000+ 1 1.80000+ 1 5.26351- 3 1.77894- 3 1.60000+ 1 1.90000+ 1 8.93240- 3 1.85318- 3 1.60000+ 1 2.10000+ 1 1.00447- 2 2.01751- 3 1.60000+ 1 2.20000+ 1 1.42503- 2 2.03123- 3 1.60000+ 1 2.40000+ 1 6.20728- 3 2.24013- 3 1.60000+ 1 2.50000+ 1 7.82028- 3 2.24278- 3 1.60000+ 1 2.70000+ 1 9.16458- 4 2.20420- 3 1.60000+ 1 2.90000+ 1 8.06478- 4 2.23480- 3 1.60000+ 1 3.00000+ 1 1.30882- 3 2.24637- 3 1.60000+ 1 3.20000+ 1 3.30759- 4 2.28625- 3 1.60000+ 1 3.30000+ 1 4.43972- 4 2.28727- 3 1.60000+ 1 4.10000+ 1 8.17072- 5 2.28771- 3 1.80000+ 1 1.80000+ 1 2.32499- 4 1.87794- 3 1.80000+ 1 1.90000+ 1 6.36420- 4 1.95218- 3 1.80000+ 1 2.10000+ 1 3.45742- 4 2.11651- 3 1.80000+ 1 2.20000+ 1 1.97766- 4 2.13023- 3 1.80000+ 1 2.40000+ 1 5.98590- 5 2.33913- 3 1.80000+ 1 2.50000+ 1 4.44868- 4 2.34178- 3 1.80000+ 1 2.70000+ 1 5.99307- 4 2.30320- 3 1.80000+ 1 2.90000+ 1 5.50716- 5 2.33380- 3 1.80000+ 1 3.00000+ 1 7.11134- 5 2.34537- 3 1.80000+ 1 3.20000+ 1 1.02961- 5 2.38525- 3 1.80000+ 1 3.30000+ 1 7.18312- 6 2.38627- 3 1.80000+ 1 4.10000+ 1 5.12404- 5 2.38671- 3 1.90000+ 1 1.90000+ 1 7.80072- 4 2.02642- 3 1.90000+ 1 2.10000+ 1 6.34727- 4 2.19075- 3 1.90000+ 1 2.20000+ 1 1.49262- 3 2.20447- 3 1.90000+ 1 2.40000+ 1 5.21252- 4 2.41337- 3 1.90000+ 1 2.50000+ 1 9.52692- 4 2.41602- 3 1.90000+ 1 2.70000+ 1 1.02194- 3 2.37744- 3 1.90000+ 1 2.90000+ 1 8.26060- 5 2.40804- 3 1.90000+ 1 3.00000+ 1 1.92982- 4 2.41961- 3 1.90000+ 1 3.20000+ 1 2.13112- 5 2.45949- 3 1.90000+ 1 3.30000+ 1 4.47739- 5 2.46051- 3 1.90000+ 1 4.10000+ 1 8.76330- 5 2.46095- 3 2.10000+ 1 2.10000+ 1 1.16619- 4 2.35508- 3 2.10000+ 1 2.20000+ 1 5.26297- 4 2.36880- 3 2.10000+ 1 2.40000+ 1 4.57467- 4 2.57770- 3 2.10000+ 1 2.50000+ 1 3.27064- 3 2.58035- 3 2.10000+ 1 2.70000+ 1 1.17795- 3 2.54177- 3 2.10000+ 1 2.90000+ 1 3.82892- 5 2.57237- 3 2.10000+ 1 3.00000+ 1 7.73287- 5 2.58394- 3 2.10000+ 1 3.20000+ 1 6.25637- 6 2.62382- 3 2.10000+ 1 3.30000+ 1 1.42645- 5 2.62484- 3 2.10000+ 1 4.10000+ 1 1.00607- 4 2.62528- 3 2.20000+ 1 2.20000+ 1 2.97493- 4 2.38252- 3 2.20000+ 1 2.40000+ 1 3.02596- 3 2.59142- 3 2.20000+ 1 2.50000+ 1 1.76887- 3 2.59407- 3 2.20000+ 1 2.70000+ 1 1.61404- 3 2.55549- 3 2.20000+ 1 2.90000+ 1 2.32566- 5 2.58609- 3 2.20000+ 1 3.00000+ 1 1.74178- 4 2.59766- 3 2.20000+ 1 3.20000+ 1 1.38081- 5 2.63754- 3 2.20000+ 1 3.30000+ 1 1.57465- 5 2.63856- 3 2.20000+ 1 4.10000+ 1 1.37601- 4 2.63900- 3 2.40000+ 1 2.40000+ 1 5.16448- 4 2.80032- 3 2.40000+ 1 2.50000+ 1 3.61372- 3 2.80297- 3 2.40000+ 1 2.70000+ 1 6.45274- 4 2.76439- 3 2.40000+ 1 2.90000+ 1 6.46473- 6 2.79499- 3 2.40000+ 1 3.00000+ 1 4.71689- 5 2.80656- 3 2.40000+ 1 3.20000+ 1 1.31691- 5 2.84644- 3 2.40000+ 1 3.30000+ 1 9.24196- 5 2.84746- 3 2.40000+ 1 4.10000+ 1 5.45903- 5 2.84790- 3 2.50000+ 1 2.50000+ 1 1.22202- 3 2.80562- 3 2.50000+ 1 2.70000+ 1 8.15531- 4 2.76704- 3 2.50000+ 1 2.90000+ 1 6.15683- 5 2.79764- 3 2.50000+ 1 3.00000+ 1 9.06650- 5 2.80921- 3 2.50000+ 1 3.20000+ 1 1.00767- 4 2.84909- 3 2.50000+ 1 3.30000+ 1 5.29097- 5 2.85011- 3 2.50000+ 1 4.10000+ 1 6.90244- 5 2.85055- 3 2.70000+ 1 2.70000+ 1 9.98271- 5 2.72846- 3 2.70000+ 1 2.90000+ 1 1.47629- 4 2.75906- 3 2.70000+ 1 3.00000+ 1 2.39429- 4 2.77063- 3 2.70000+ 1 3.20000+ 1 5.96645- 5 2.81051- 3 2.70000+ 1 3.30000+ 1 7.99347- 5 2.81153- 3 2.70000+ 1 4.10000+ 1 1.75937- 5 2.81197- 3 2.90000+ 1 2.90000+ 1 6.20342- 6 2.78966- 3 2.90000+ 1 3.00000+ 1 1.81324- 5 2.80123- 3 2.90000+ 1 3.20000+ 1 2.38584- 6 2.84111- 3 2.90000+ 1 3.30000+ 1 1.90865- 6 2.84213- 3 2.90000+ 1 4.10000+ 1 1.57465- 5 2.84257- 3 3.00000+ 1 3.00000+ 1 2.85363- 5 2.81280- 3 3.00000+ 1 3.20000+ 1 5.82392- 6 2.85268- 3 3.00000+ 1 3.30000+ 1 1.28122- 5 2.85370- 3 3.00000+ 1 4.10000+ 1 3.14487- 5 2.85414- 3 3.20000+ 1 3.30000+ 1 4.78883- 7 2.89358- 3 3.20000+ 1 4.10000+ 1 3.11274- 6 2.89402- 3 3.30000+ 1 3.30000+ 1 2.39436- 7 2.89460- 3 3.30000+ 1 4.10000+ 1 4.30984- 6 2.89504- 3 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 7.95538- 4 7.15600- 4 1.60000+ 1 6.33628- 4 2.06157- 3 2.10000+ 1 3.34979- 3 2.39914- 3 2.70000+ 1 1.25580- 4 2.58583- 3 3.20000+ 1 1.48320- 4 2.66788- 3 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.91305- 3 3.86400- 5 1.10000+ 1 2.20000+ 1 1.70920- 2 5.23600- 5 1.10000+ 1 2.40000+ 1 2.75651- 2 2.61260- 4 1.10000+ 1 2.50000+ 1 2.69707- 2 2.63910- 4 1.10000+ 1 2.70000+ 1 3.20055- 3 2.25330- 4 1.10000+ 1 2.90000+ 1 3.72159- 3 2.55930- 4 1.10000+ 1 3.00000+ 1 2.91677- 3 2.67500- 4 1.10000+ 1 3.20000+ 1 2.44432- 4 3.07380- 4 1.10000+ 1 3.30000+ 1 5.51840- 4 3.08400- 4 1.10000+ 1 4.10000+ 1 2.75634- 4 3.08840- 4 1.30000+ 1 1.60000+ 1 5.30999- 2 9.97700- 5 1.30000+ 1 1.80000+ 1 5.35178- 2 1.98770- 4 1.30000+ 1 1.90000+ 1 5.74638- 2 2.73010- 4 1.30000+ 1 2.10000+ 1 2.12196- 2 4.37340- 4 1.30000+ 1 2.20000+ 1 2.50050- 2 4.51060- 4 1.30000+ 1 2.40000+ 1 1.34320- 1 6.59960- 4 1.30000+ 1 2.50000+ 1 2.05050- 1 6.62610- 4 1.30000+ 1 2.70000+ 1 9.59373- 3 6.24030- 4 1.30000+ 1 2.90000+ 1 7.07015- 3 6.54630- 4 1.30000+ 1 3.00000+ 1 8.12790- 3 6.66200- 4 1.30000+ 1 3.20000+ 1 7.06721- 4 7.06080- 4 1.30000+ 1 3.30000+ 1 8.38948- 4 7.07100- 4 1.30000+ 1 4.10000+ 1 8.64860- 4 7.07540- 4 1.40000+ 1 1.60000+ 1 8.70323- 3 1.68870- 4 1.40000+ 1 1.80000+ 1 6.09266- 2 2.67870- 4 1.40000+ 1 1.90000+ 1 5.44650- 3 3.42110- 4 1.40000+ 1 2.10000+ 1 9.82740- 4 5.06440- 4 1.40000+ 1 2.20000+ 1 2.96689- 3 5.20160- 4 1.40000+ 1 2.40000+ 1 4.86753- 3 7.29060- 4 1.40000+ 1 2.50000+ 1 3.57176- 3 7.31710- 4 1.40000+ 1 2.70000+ 1 1.05135- 3 6.93130- 4 1.40000+ 1 2.90000+ 1 6.40679- 3 7.23730- 4 1.40000+ 1 3.00000+ 1 6.98965- 4 7.35300- 4 1.40000+ 1 3.20000+ 1 1.99642- 5 7.75180- 4 1.40000+ 1 3.30000+ 1 8.66451- 5 7.76200- 4 1.40000+ 1 4.10000+ 1 9.07235- 5 7.76640- 4 1.60000+ 1 1.60000+ 1 8.44397- 4 1.44574- 3 1.60000+ 1 1.80000+ 1 1.19941- 2 1.54474- 3 1.60000+ 1 1.90000+ 1 1.75067- 3 1.61898- 3 1.60000+ 1 2.10000+ 1 3.88906- 4 1.78331- 3 1.60000+ 1 2.20000+ 1 1.39418- 3 1.79703- 3 1.60000+ 1 2.40000+ 1 4.65485- 5 2.00593- 3 1.60000+ 1 2.50000+ 1 8.97435- 4 2.00858- 3 1.60000+ 1 2.70000+ 1 2.38057- 4 1.97000- 3 1.60000+ 1 2.90000+ 1 1.21858- 3 2.00060- 3 1.60000+ 1 3.00000+ 1 2.32167- 4 2.01217- 3 1.60000+ 1 3.20000+ 1 1.00172- 5 2.05205- 3 1.60000+ 1 3.30000+ 1 4.06595- 5 2.05307- 3 1.60000+ 1 4.10000+ 1 2.12133- 5 2.05351- 3 1.80000+ 1 1.80000+ 1 9.09286- 3 1.64374- 3 1.80000+ 1 1.90000+ 1 2.61977- 2 1.71798- 3 1.80000+ 1 2.10000+ 1 2.54453- 2 1.88231- 3 1.80000+ 1 2.20000+ 1 4.09770- 2 1.89603- 3 1.80000+ 1 2.40000+ 1 1.29674- 2 2.10493- 3 1.80000+ 1 2.50000+ 1 2.20344- 2 2.10758- 3 1.80000+ 1 2.70000+ 1 2.15790- 3 2.06900- 3 1.80000+ 1 2.90000+ 1 2.35288- 3 2.09960- 3 1.80000+ 1 3.00000+ 1 3.81245- 3 2.11117- 3 1.80000+ 1 3.20000+ 1 8.39120- 4 2.15105- 3 1.80000+ 1 3.30000+ 1 1.26632- 3 2.15207- 3 1.80000+ 1 4.10000+ 1 1.96227- 4 2.15251- 3 1.90000+ 1 1.90000+ 1 7.19479- 4 1.79222- 3 1.90000+ 1 2.10000+ 1 1.86328- 3 1.95655- 3 1.90000+ 1 2.20000+ 1 1.55922- 3 1.97027- 3 1.90000+ 1 2.40000+ 1 9.15538- 3 2.17917- 3 1.90000+ 1 2.50000+ 1 2.54394- 3 2.18182- 3 1.90000+ 1 2.70000+ 1 2.08014- 4 2.14324- 3 1.90000+ 1 2.90000+ 1 2.72230- 3 2.17384- 3 1.90000+ 1 3.00000+ 1 1.77959- 4 2.18541- 3 1.90000+ 1 3.20000+ 1 5.06783- 5 2.22529- 3 1.90000+ 1 3.30000+ 1 4.30175- 5 2.22631- 3 1.90000+ 1 4.10000+ 1 1.76784- 5 2.22675- 3 2.10000+ 1 2.10000+ 1 8.55597- 4 2.12088- 3 2.10000+ 1 2.20000+ 1 2.32339- 3 2.13460- 3 2.10000+ 1 2.40000+ 1 1.06537- 3 2.34350- 3 2.10000+ 1 2.50000+ 1 1.94809- 3 2.34615- 3 2.10000+ 1 2.70000+ 1 6.48195- 5 2.30757- 3 2.10000+ 1 2.90000+ 1 2.57985- 3 2.33817- 3 2.10000+ 1 3.00000+ 1 2.39249- 4 2.34974- 3 2.10000+ 1 3.20000+ 1 4.77296- 5 2.38962- 3 2.10000+ 1 3.30000+ 1 6.71738- 5 2.39064- 3 2.10000+ 1 4.10000+ 1 5.89253- 6 2.39108- 3 2.20000+ 1 2.20000+ 1 5.60373- 4 2.14832- 3 2.20000+ 1 2.40000+ 1 3.30939- 3 2.35722- 3 2.20000+ 1 2.50000+ 1 7.25983- 4 2.35987- 3 2.20000+ 1 2.70000+ 1 2.00937- 4 2.32129- 3 2.20000+ 1 2.90000+ 1 4.21373- 3 2.35189- 3 2.20000+ 1 3.00000+ 1 1.78546- 4 2.36346- 3 2.20000+ 1 3.20000+ 1 6.65864- 5 2.40334- 3 2.20000+ 1 3.30000+ 1 3.00522- 5 2.40436- 3 2.20000+ 1 4.10000+ 1 1.76780- 5 2.40480- 3 2.40000+ 1 2.40000+ 1 2.80835- 3 2.56612- 3 2.40000+ 1 2.50000+ 1 1.81343- 2 2.56877- 3 2.40000+ 1 2.70000+ 1 2.94638- 6 2.53019- 3 2.40000+ 1 2.90000+ 1 1.21679- 3 2.56079- 3 2.40000+ 1 3.00000+ 1 1.25334- 3 2.57236- 3 2.40000+ 1 3.20000+ 1 3.82999- 5 2.61224- 3 2.40000+ 1 3.30000+ 1 1.11958- 4 2.61326- 3 2.50000+ 1 2.50000+ 1 9.49910- 4 2.57142- 3 2.50000+ 1 2.70000+ 1 1.36709- 4 2.53284- 3 2.50000+ 1 2.90000+ 1 2.04771- 3 2.56344- 3 2.50000+ 1 3.00000+ 1 3.14096- 4 2.57501- 3 2.50000+ 1 3.20000+ 1 6.54087- 5 2.61489- 3 2.50000+ 1 3.30000+ 1 2.29812- 5 2.61591- 3 2.50000+ 1 4.10000+ 1 1.23745- 5 2.61635- 3 2.70000+ 1 2.70000+ 1 2.00328- 5 2.49426- 3 2.70000+ 1 2.90000+ 1 2.67584- 4 2.52486- 3 2.70000+ 1 3.00000+ 1 3.36234- 5 2.53643- 3 2.70000+ 1 3.20000+ 1 2.14639- 6 2.57631- 3 2.70000+ 1 3.30000+ 1 7.15452- 6 2.57733- 3 2.70000+ 1 4.10000+ 1 3.57742- 6 2.57777- 3 2.90000+ 1 2.90000+ 1 2.35315- 4 2.55546- 3 2.90000+ 1 3.00000+ 1 6.48325- 4 2.56703- 3 2.90000+ 1 3.20000+ 1 1.39272- 4 2.60691- 3 2.90000+ 1 3.30000+ 1 2.13228- 4 2.60793- 3 2.90000+ 1 4.10000+ 1 3.26556- 5 2.60837- 3 3.00000+ 1 3.00000+ 1 4.43776- 5 2.57860- 3 3.00000+ 1 3.20000+ 1 2.56928- 5 2.61848- 3 3.00000+ 1 3.30000+ 1 1.86858- 5 2.61950- 3 3.00000+ 1 4.10000+ 1 9.34247- 6 2.61994- 3 3.20000+ 1 3.20000+ 1 5.89241- 7 2.65836- 3 3.20000+ 1 3.30000+ 1 1.76775- 6 2.65938- 3 3.30000+ 1 3.30000+ 1 5.32448- 7 2.66040- 3 3.30000+ 1 4.10000+ 1 5.32448- 7 2.66084- 3 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.65191- 5 3.98700- 4 1.40000+ 1 2.52006- 4 4.67800- 4 1.60000+ 1 1.06407- 3 1.74467- 3 2.10000+ 1 5.17077- 4 2.08224- 3 2.20000+ 1 4.05705- 3 2.09596- 3 2.70000+ 1 2.00810- 4 2.26893- 3 3.20000+ 1 2.18139- 5 2.35098- 3 3.30000+ 1 1.65882- 4 2.35200- 3 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.02840- 2 1.20440- 4 1.30000+ 1 2.20000+ 1 1.01077- 2 1.34160- 4 1.30000+ 1 2.40000+ 1 1.54142- 2 3.43060- 4 1.30000+ 1 2.50000+ 1 2.24654- 2 3.45710- 4 1.30000+ 1 2.70000+ 1 2.20369- 3 3.07130- 4 1.30000+ 1 2.90000+ 1 1.71565- 3 3.37730- 4 1.30000+ 1 3.00000+ 1 6.03370- 3 3.49300- 4 1.30000+ 1 3.20000+ 1 2.89182- 4 3.89180- 4 1.30000+ 1 3.30000+ 1 2.75322- 4 3.90200- 4 1.30000+ 1 4.10000+ 1 1.95268- 4 3.90640- 4 1.40000+ 1 1.90000+ 1 1.19109- 1 2.52100- 5 1.40000+ 1 2.10000+ 1 4.58862- 2 1.89540- 4 1.40000+ 1 2.20000+ 1 6.37399- 2 2.03260- 4 1.40000+ 1 2.40000+ 1 1.57105- 1 4.12160- 4 1.40000+ 1 2.50000+ 1 1.89155- 1 4.14810- 4 1.40000+ 1 2.70000+ 1 1.30684- 2 3.76230- 4 1.40000+ 1 2.90000+ 1 1.16983- 2 4.06830- 4 1.40000+ 1 3.00000+ 1 1.55381- 2 4.18400- 4 1.40000+ 1 3.20000+ 1 1.29814- 3 4.58280- 4 1.40000+ 1 3.30000+ 1 1.79430- 3 4.59300- 4 1.40000+ 1 4.10000+ 1 1.16769- 3 4.59740- 4 1.60000+ 1 1.60000+ 1 5.16571- 4 1.12884- 3 1.60000+ 1 1.80000+ 1 8.79730- 4 1.22784- 3 1.60000+ 1 1.90000+ 1 1.46007- 2 1.30208- 3 1.60000+ 1 2.10000+ 1 8.59505- 4 1.46641- 3 1.60000+ 1 2.20000+ 1 9.79488- 4 1.48013- 3 1.60000+ 1 2.40000+ 1 1.36724- 3 1.68903- 3 1.60000+ 1 2.50000+ 1 2.25580- 3 1.69168- 3 1.60000+ 1 2.70000+ 1 1.44620- 4 1.65310- 3 1.60000+ 1 2.90000+ 1 1.04835- 4 1.68370- 3 1.60000+ 1 3.00000+ 1 1.45186- 3 1.69527- 3 1.60000+ 1 3.20000+ 1 2.58913- 5 1.73515- 3 1.60000+ 1 3.30000+ 1 2.71560- 5 1.73617- 3 1.60000+ 1 4.10000+ 1 1.26304- 5 1.73661- 3 1.80000+ 1 1.80000+ 1 7.07281- 5 1.32684- 3 1.80000+ 1 1.90000+ 1 1.76489- 2 1.40108- 3 1.80000+ 1 2.10000+ 1 3.92186- 4 1.56541- 3 1.80000+ 1 2.20000+ 1 3.47582- 3 1.57913- 3 1.80000+ 1 2.40000+ 1 1.49858- 3 1.78803- 3 1.80000+ 1 2.50000+ 1 8.48473- 3 1.79068- 3 1.80000+ 1 2.70000+ 1 1.10514- 4 1.75210- 3 1.80000+ 1 2.90000+ 1 1.51561- 5 1.78270- 3 1.80000+ 1 3.00000+ 1 1.78335- 3 1.79427- 3 1.80000+ 1 3.20000+ 1 1.19985- 5 1.83415- 3 1.80000+ 1 3.30000+ 1 9.15693- 5 1.83517- 3 1.80000+ 1 4.10000+ 1 9.47262- 6 1.83561- 3 1.90000+ 1 1.90000+ 1 2.39363- 2 1.47532- 3 1.90000+ 1 2.10000+ 1 3.39925- 2 1.63965- 3 1.90000+ 1 2.20000+ 1 4.47886- 2 1.65337- 3 1.90000+ 1 2.40000+ 1 2.50142- 2 1.86227- 3 1.90000+ 1 2.50000+ 1 2.86030- 2 1.86492- 3 1.90000+ 1 2.70000+ 1 2.57646- 3 1.82634- 3 1.90000+ 1 2.90000+ 1 2.65467- 3 1.85694- 3 1.90000+ 1 3.00000+ 1 5.87410- 3 1.86851- 3 1.90000+ 1 3.20000+ 1 1.09312- 3 1.90839- 3 1.90000+ 1 3.30000+ 1 1.37414- 3 1.90941- 3 1.90000+ 1 4.10000+ 1 2.33029- 4 1.90985- 3 2.10000+ 1 2.10000+ 1 2.19136- 4 1.80398- 3 2.10000+ 1 2.20000+ 1 4.94600- 3 1.81770- 3 2.10000+ 1 2.40000+ 1 6.34685- 4 2.02660- 3 2.10000+ 1 2.50000+ 1 7.62995- 3 2.02925- 3 2.10000+ 1 2.70000+ 1 9.47273- 5 1.99067- 3 2.10000+ 1 2.90000+ 1 2.90503- 5 2.02127- 3 2.10000+ 1 3.00000+ 1 3.38922- 3 2.03284- 3 2.10000+ 1 3.20000+ 1 1.19986- 5 2.07272- 3 2.10000+ 1 3.30000+ 1 1.37038- 4 2.07374- 3 2.10000+ 1 4.10000+ 1 8.20970- 6 2.07418- 3 2.20000+ 1 2.20000+ 1 2.25144- 3 1.83142- 3 2.20000+ 1 2.40000+ 1 6.18271- 3 2.04032- 3 2.20000+ 1 2.50000+ 1 5.25319- 3 2.04297- 3 2.20000+ 1 2.70000+ 1 1.09889- 4 2.00439- 3 2.20000+ 1 2.90000+ 1 3.05671- 4 2.03499- 3 2.20000+ 1 3.00000+ 1 4.41687- 3 2.04656- 3 2.20000+ 1 3.20000+ 1 1.43360- 4 2.08644- 3 2.20000+ 1 3.30000+ 1 1.24412- 4 2.08746- 3 2.20000+ 1 4.10000+ 1 9.47308- 6 2.08790- 3 2.40000+ 1 2.40000+ 1 8.39270- 4 2.24922- 3 2.40000+ 1 2.50000+ 1 2.25214- 2 2.25187- 3 2.40000+ 1 2.70000+ 1 1.42090- 4 2.21329- 3 2.40000+ 1 2.90000+ 1 1.90086- 4 2.24389- 3 2.40000+ 1 3.00000+ 1 2.37956- 3 2.25546- 3 2.40000+ 1 3.20000+ 1 2.33662- 5 2.29534- 3 2.40000+ 1 3.30000+ 1 1.81245- 4 2.29636- 3 2.40000+ 1 4.10000+ 1 1.19987- 5 2.29680- 3 2.50000+ 1 2.50000+ 1 8.82043- 3 2.25452- 3 2.50000+ 1 2.70000+ 1 1.94514- 4 2.21594- 3 2.50000+ 1 2.90000+ 1 1.07422- 3 2.24654- 3 2.50000+ 1 3.00000+ 1 2.80981- 3 2.25811- 3 2.50000+ 1 3.20000+ 1 2.44412- 4 2.29799- 3 2.50000+ 1 3.30000+ 1 1.64830- 4 2.29901- 3 2.50000+ 1 4.10000+ 1 1.57885- 5 2.29945- 3 2.70000+ 1 2.70000+ 1 1.56039- 5 2.17736- 3 2.70000+ 1 2.90000+ 1 2.01938- 5 2.20796- 3 2.70000+ 1 3.00000+ 1 3.72670- 4 2.21953- 3 2.70000+ 1 3.20000+ 1 4.58932- 6 2.25941- 3 2.70000+ 1 3.30000+ 1 4.58932- 6 2.26043- 3 2.70000+ 1 4.10000+ 1 2.75364- 6 2.26087- 3 2.90000+ 1 2.90000+ 1 9.97169- 7 2.23856- 3 2.90000+ 1 3.00000+ 1 4.24838- 4 2.25013- 3 2.90000+ 1 3.20000+ 1 9.97169- 7 2.29001- 3 2.90000+ 1 3.30000+ 1 1.29635- 5 2.29103- 3 2.90000+ 1 4.10000+ 1 1.99438- 6 2.29147- 3 3.00000+ 1 3.00000+ 1 1.02854- 3 2.26170- 3 3.00000+ 1 3.20000+ 1 3.23513- 4 2.30158- 3 3.00000+ 1 3.30000+ 1 4.02054- 4 2.30260- 3 3.00000+ 1 4.10000+ 1 6.91906- 5 2.30304- 3 3.20000+ 1 3.30000+ 1 4.42060- 6 2.34248- 3 3.30000+ 1 3.30000+ 1 1.26300- 6 2.34350- 3 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.13300- 3 1.44497- 3 1.90000+ 1 2.21570- 4 1.51921- 3 2.40000+ 1 1.86930- 2 1.90616- 3 2.90000+ 1 5.09561- 4 1.90083- 3 3.00000+ 1 5.34281- 5 1.91240- 3 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 8.86427- 2 1.34600- 5 1.40000+ 1 2.50000+ 1 1.33898- 2 1.61100- 5 1.40000+ 1 2.90000+ 1 6.40664- 4 8.13000- 6 1.40000+ 1 3.00000+ 1 2.02185- 3 1.97000- 5 1.40000+ 1 3.20000+ 1 4.65873- 3 5.95800- 5 1.40000+ 1 3.30000+ 1 6.28287- 4 6.06000- 5 1.40000+ 1 4.10000+ 1 1.68159- 4 6.10400- 5 1.60000+ 1 1.60000+ 1 3.64421- 5 7.30140- 4 1.60000+ 1 1.80000+ 1 1.55726- 3 8.29140- 4 1.60000+ 1 1.90000+ 1 1.10724- 3 9.03380- 4 1.60000+ 1 2.10000+ 1 4.04134- 2 1.06771- 3 1.60000+ 1 2.20000+ 1 4.72066- 3 1.08143- 3 1.60000+ 1 2.40000+ 1 1.47180- 2 1.29033- 3 1.60000+ 1 2.50000+ 1 4.41226- 3 1.29298- 3 1.60000+ 1 2.70000+ 1 2.10236- 5 1.25440- 3 1.60000+ 1 2.90000+ 1 1.87812- 4 1.28500- 3 1.60000+ 1 3.00000+ 1 1.09324- 4 1.29657- 3 1.60000+ 1 3.20000+ 1 9.86708- 4 1.33645- 3 1.60000+ 1 3.30000+ 1 1.13530- 4 1.33747- 3 1.60000+ 1 4.10000+ 1 1.40165- 6 1.33791- 3 1.80000+ 1 1.80000+ 1 9.16645- 4 9.28140- 4 1.80000+ 1 1.90000+ 1 5.74945- 3 1.00238- 3 1.80000+ 1 2.10000+ 1 3.56627- 2 1.16671- 3 1.80000+ 1 2.20000+ 1 2.74001- 3 1.18043- 3 1.80000+ 1 2.40000+ 1 9.26182- 3 1.38933- 3 1.80000+ 1 2.50000+ 1 4.61544- 3 1.39198- 3 1.80000+ 1 2.70000+ 1 1.87811- 4 1.35340- 3 1.80000+ 1 2.90000+ 1 2.22853- 4 1.38400- 3 1.80000+ 1 3.00000+ 1 6.33516- 4 1.39557- 3 1.80000+ 1 3.20000+ 1 8.64773- 4 1.43545- 3 1.80000+ 1 3.30000+ 1 7.42854- 5 1.43647- 3 1.80000+ 1 4.10000+ 1 1.68189- 5 1.43691- 3 1.90000+ 1 1.90000+ 1 2.05191- 3 1.07662- 3 1.90000+ 1 2.10000+ 1 7.34615- 2 1.24095- 3 1.90000+ 1 2.20000+ 1 2.76675- 3 1.25467- 3 1.90000+ 1 2.40000+ 1 4.13336- 3 1.46357- 3 1.90000+ 1 2.50000+ 1 2.37572- 3 1.46622- 3 1.90000+ 1 2.70000+ 1 1.51370- 4 1.42764- 3 1.90000+ 1 2.90000+ 1 5.84468- 4 1.45824- 3 1.90000+ 1 3.00000+ 1 4.34500- 4 1.46981- 3 1.90000+ 1 3.20000+ 1 1.79827- 3 1.50969- 3 1.90000+ 1 3.30000+ 1 6.86765- 5 1.51071- 3 1.90000+ 1 4.10000+ 1 1.26139- 5 1.51115- 3 2.10000+ 1 2.10000+ 1 6.40053- 2 1.40528- 3 2.10000+ 1 2.20000+ 1 1.28120- 1 1.41900- 3 2.10000+ 1 2.40000+ 1 5.81952- 2 1.62790- 3 2.10000+ 1 2.50000+ 1 7.17532- 2 1.63055- 3 2.10000+ 1 2.70000+ 1 6.61852- 3 1.59197- 3 2.10000+ 1 2.90000+ 1 5.39921- 3 1.62257- 3 2.10000+ 1 3.00000+ 1 1.04126- 2 1.63414- 3 2.10000+ 1 3.20000+ 1 3.64562- 3 1.67402- 3 2.10000+ 1 3.30000+ 1 3.88525- 3 1.67504- 3 2.10000+ 1 4.10000+ 1 5.95704- 4 1.67548- 3 2.20000+ 1 2.20000+ 1 2.07013- 3 1.43272- 3 2.20000+ 1 2.40000+ 1 6.30155- 2 1.64162- 3 2.20000+ 1 2.50000+ 1 3.34140- 3 1.64427- 3 2.20000+ 1 2.70000+ 1 4.35888- 4 1.60569- 3 2.20000+ 1 2.90000+ 1 2.71913- 4 1.63629- 3 2.20000+ 1 3.00000+ 1 3.22374- 4 1.64786- 3 2.20000+ 1 3.20000+ 1 3.15498- 3 1.68774- 3 2.20000+ 1 3.30000+ 1 1.06521- 4 1.68876- 3 2.20000+ 1 4.10000+ 1 3.64419- 5 1.68920- 3 2.40000+ 1 2.40000+ 1 5.33588- 2 1.85052- 3 2.40000+ 1 2.50000+ 1 1.54985- 1 1.85317- 3 2.40000+ 1 2.70000+ 1 2.50050- 3 1.81459- 3 2.40000+ 1 2.90000+ 1 1.17173- 3 1.84519- 3 2.40000+ 1 3.00000+ 1 5.90085- 4 1.85676- 3 2.40000+ 1 3.20000+ 1 1.50949- 3 1.89664- 3 2.40000+ 1 3.30000+ 1 1.83889- 3 1.89766- 3 2.40000+ 1 4.10000+ 1 2.25653- 4 1.89810- 3 2.50000+ 1 2.50000+ 1 3.51599- 3 1.85582- 3 2.50000+ 1 2.70000+ 1 5.80978- 4 1.81724- 3 2.50000+ 1 2.90000+ 1 3.55222- 4 1.84784- 3 2.50000+ 1 3.00000+ 1 3.29625- 4 1.85941- 3 2.50000+ 1 3.20000+ 1 1.77159- 3 1.89929- 3 2.50000+ 1 3.30000+ 1 9.93409- 5 1.90031- 3 2.50000+ 1 4.10000+ 1 4.96705- 5 1.90075- 3 2.70000+ 1 2.70000+ 1 3.51388- 6 1.77866- 3 2.70000+ 1 2.90000+ 1 5.97307- 5 1.80926- 3 2.70000+ 1 3.00000+ 1 3.86532- 5 1.82083- 3 2.70000+ 1 3.20000+ 1 4.07602- 4 1.86071- 3 2.70000+ 1 3.30000+ 1 2.81109- 5 1.86173- 3 2.90000+ 1 2.90000+ 1 5.02051- 5 1.83986- 3 2.90000+ 1 3.00000+ 1 2.45990- 4 1.85143- 3 2.90000+ 1 3.20000+ 1 4.71904- 4 1.89131- 3 2.90000+ 1 3.30000+ 1 3.01212- 5 1.89233- 3 2.90000+ 1 4.10000+ 1 1.00405- 5 1.89277- 3 3.00000+ 1 3.00000+ 1 1.07308- 4 1.86300- 3 3.00000+ 1 3.20000+ 1 1.15521- 3 1.90288- 3 3.00000+ 1 3.30000+ 1 3.78744- 5 1.90390- 3 3.00000+ 1 4.10000+ 1 6.31280- 6 1.90434- 3 3.20000+ 1 3.20000+ 1 3.38295- 5 1.94276- 3 3.20000+ 1 3.30000+ 1 9.72550- 5 1.94378- 3 3.20000+ 1 4.10000+ 1 1.40957- 5 1.94422- 3 3.30000+ 1 3.30000+ 1 1.40160- 6 1.94480- 3 3.30000+ 1 4.10000+ 1 1.40160- 6 1.94524- 3 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.84402- 3 1.45011- 3 2.40000+ 1 1.00031- 3 1.83706- 3 2.50000+ 1 1.94873- 2 1.83971- 3 3.00000+ 1 4.97526- 4 1.84330- 3 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.02705- 6 6.61040- 4 1.60000+ 1 1.80000+ 1 3.51146- 4 7.60040- 4 1.60000+ 1 1.90000+ 1 2.74408- 3 8.34280- 4 1.60000+ 1 2.10000+ 1 4.21535- 3 9.98610- 4 1.60000+ 1 2.20000+ 1 4.69039- 2 1.01233- 3 1.60000+ 1 2.40000+ 1 4.77073- 3 1.22123- 3 1.60000+ 1 2.50000+ 1 1.68217- 2 1.22388- 3 1.60000+ 1 2.70000+ 1 1.36222- 5 1.18530- 3 1.60000+ 1 2.90000+ 1 1.96763- 5 1.21590- 3 1.60000+ 1 3.00000+ 1 2.86060- 4 1.22747- 3 1.60000+ 1 3.20000+ 1 1.01407- 4 1.26735- 3 1.60000+ 1 3.30000+ 1 1.08982- 3 1.26837- 3 1.60000+ 1 4.10000+ 1 1.51362- 6 1.26881- 3 1.80000+ 1 1.80000+ 1 4.54064- 6 8.59040- 4 1.80000+ 1 1.90000+ 1 7.02416- 3 9.33280- 4 1.80000+ 1 2.10000+ 1 3.69303- 4 1.09761- 3 1.80000+ 1 2.20000+ 1 4.79281- 2 1.11133- 3 1.80000+ 1 2.40000+ 1 2.27639- 3 1.32023- 3 1.80000+ 1 2.50000+ 1 8.58154- 3 1.32288- 3 1.80000+ 1 2.70000+ 1 4.08664- 5 1.28430- 3 1.80000+ 1 2.90000+ 1 3.02702- 6 1.31490- 3 1.80000+ 1 3.00000+ 1 7.24991- 4 1.32647- 3 1.80000+ 1 3.20000+ 1 4.54064- 6 1.36635- 3 1.80000+ 1 3.30000+ 1 1.11542- 3 1.36737- 3 1.80000+ 1 4.10000+ 1 3.02702- 6 1.36781- 3 1.90000+ 1 1.90000+ 1 5.07495- 3 1.00752- 3 1.90000+ 1 2.10000+ 1 4.48019- 3 1.17185- 3 1.90000+ 1 2.20000+ 1 7.39413- 2 1.18557- 3 1.90000+ 1 2.40000+ 1 2.80309- 3 1.39447- 3 1.90000+ 1 2.50000+ 1 5.92396- 3 1.39712- 3 1.90000+ 1 2.70000+ 1 3.84448- 4 1.35854- 3 1.90000+ 1 2.90000+ 1 6.96244- 4 1.38914- 3 1.90000+ 1 3.00000+ 1 1.08065- 3 1.40071- 3 1.90000+ 1 3.20000+ 1 1.27132- 4 1.44059- 3 1.90000+ 1 3.30000+ 1 1.71497- 3 1.44161- 3 1.90000+ 1 4.10000+ 1 3.32986- 5 1.44205- 3 2.10000+ 1 2.10000+ 1 9.64092- 4 1.33618- 3 2.10000+ 1 2.20000+ 1 9.93713- 2 1.34990- 3 2.10000+ 1 2.40000+ 1 3.07100- 3 1.55880- 3 2.10000+ 1 2.50000+ 1 4.16418- 2 1.56145- 3 2.10000+ 1 2.70000+ 1 3.73839- 4 1.52287- 3 2.10000+ 1 2.90000+ 1 6.05381- 5 1.55347- 3 2.10000+ 1 3.00000+ 1 4.73738- 4 1.56504- 3 2.10000+ 1 3.20000+ 1 5.14593- 5 1.60492- 3 2.10000+ 1 3.30000+ 1 2.33236- 3 1.60594- 3 2.10000+ 1 4.10000+ 1 3.17834- 5 1.60638- 3 2.20000+ 1 2.20000+ 1 1.11911- 1 1.36362- 3 2.20000+ 1 2.40000+ 1 6.83777- 2 1.57252- 3 2.20000+ 1 2.50000+ 1 1.06648- 1 1.57517- 3 2.20000+ 1 2.70000+ 1 7.41347- 3 1.53659- 3 2.20000+ 1 2.90000+ 1 6.97741- 3 1.56719- 3 2.20000+ 1 3.00000+ 1 1.05701- 2 1.57876- 3 2.20000+ 1 3.20000+ 1 3.16028- 3 1.61864- 3 2.20000+ 1 3.30000+ 1 6.02226- 3 1.61966- 3 2.20000+ 1 4.10000+ 1 6.64410- 4 1.62010- 3 2.40000+ 1 2.40000+ 1 4.57381- 3 1.78142- 3 2.40000+ 1 2.50000+ 1 1.46343- 1 1.78407- 3 2.40000+ 1 2.70000+ 1 6.25074- 4 1.74549- 3 2.40000+ 1 2.90000+ 1 3.08754- 4 1.77609- 3 2.40000+ 1 3.00000+ 1 3.23893- 4 1.78766- 3 2.40000+ 1 3.20000+ 1 9.53524- 5 1.82754- 3 2.40000+ 1 3.30000+ 1 1.52722- 3 1.82856- 3 2.40000+ 1 4.10000+ 1 5.44861- 5 1.82900- 3 2.50000+ 1 2.50000+ 1 9.98871- 2 1.78672- 3 2.50000+ 1 2.70000+ 1 2.77575- 3 1.74814- 3 2.50000+ 1 2.90000+ 1 1.25312- 3 1.77874- 3 2.50000+ 1 3.00000+ 1 7.94606- 4 1.79031- 3 2.50000+ 1 3.20000+ 1 1.25771- 3 1.83019- 3 2.50000+ 1 3.30000+ 1 2.68187- 3 1.83121- 3 2.50000+ 1 4.10000+ 1 2.51233- 4 1.83165- 3 2.70000+ 1 2.70000+ 1 4.58967- 6 1.70956- 3 2.70000+ 1 2.90000+ 1 9.17877- 6 1.74016- 3 2.70000+ 1 3.00000+ 1 1.28506- 4 1.75173- 3 2.70000+ 1 3.20000+ 1 3.21273- 5 1.79161- 3 2.70000+ 1 3.30000+ 1 5.27787- 4 1.79263- 3 2.90000+ 1 3.00000+ 1 2.06030- 4 1.78233- 3 2.90000+ 1 3.20000+ 1 4.12085- 6 1.82221- 3 2.90000+ 1 3.30000+ 1 4.45028- 4 1.82323- 3 3.00000+ 1 3.00000+ 1 2.07199- 4 1.79390- 3 3.00000+ 1 3.20000+ 1 4.78171- 5 1.83378- 3 3.00000+ 1 3.30000+ 1 8.65973- 4 1.83480- 3 3.00000+ 1 4.10000+ 1 1.06257- 5 1.83524- 3 3.20000+ 1 3.30000+ 1 7.41634- 5 1.87468- 3 3.20000+ 1 4.10000+ 1 1.51362- 6 1.87512- 3 3.30000+ 1 3.30000+ 1 6.35667- 5 1.87570- 3 3.30000+ 1 4.10000+ 1 1.51363- 5 1.87614- 3 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.88799- 5 9.90000- 5 1.90000+ 1 2.11297- 4 1.73240- 4 2.90000+ 1 1.19992- 4 5.54860- 4 3.00000+ 1 6.21263- 5 5.66430- 4 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.32144- 2 4.33600- 5 1.80000+ 1 2.50000+ 1 1.07922- 2 4.60100- 5 1.80000+ 1 2.70000+ 1 3.41726- 2 7.43000- 6 1.80000+ 1 2.90000+ 1 3.13552- 2 3.80300- 5 1.80000+ 1 3.00000+ 1 5.66436- 2 4.96000- 5 1.80000+ 1 3.20000+ 1 1.18491- 2 8.94800- 5 1.80000+ 1 3.30000+ 1 2.00066- 2 9.05000- 5 1.80000+ 1 4.10000+ 1 3.13057- 3 9.09400- 5 1.90000+ 1 2.40000+ 1 1.16577- 1 1.17600- 4 1.90000+ 1 2.50000+ 1 1.46631- 1 1.20250- 4 1.90000+ 1 2.70000+ 1 4.13187- 2 8.16700- 5 1.90000+ 1 2.90000+ 1 4.55922- 2 1.12270- 4 1.90000+ 1 3.00000+ 1 5.19150- 2 1.23840- 4 1.90000+ 1 3.20000+ 1 1.51807- 2 1.63720- 4 1.90000+ 1 3.30000+ 1 1.78669- 2 1.64740- 4 1.90000+ 1 4.10000+ 1 3.66919- 3 1.65180- 4 2.10000+ 1 2.10000+ 1 3.87473- 3 5.93100- 5 2.10000+ 1 2.20000+ 1 9.61222- 3 7.30300- 5 2.10000+ 1 2.40000+ 1 4.72300- 3 2.81930- 4 2.10000+ 1 2.50000+ 1 1.01009- 2 2.84580- 4 2.10000+ 1 2.70000+ 1 1.52848- 2 2.46000- 4 2.10000+ 1 2.90000+ 1 3.85831- 3 2.76600- 4 2.10000+ 1 3.00000+ 1 7.84571- 3 2.88170- 4 2.10000+ 1 3.20000+ 1 4.93726- 4 3.28050- 4 2.10000+ 1 3.30000+ 1 4.40509- 4 3.29070- 4 2.10000+ 1 4.10000+ 1 1.09047- 3 3.29510- 4 2.20000+ 1 2.20000+ 1 7.12986- 3 8.67500- 5 2.20000+ 1 2.40000+ 1 1.14362- 2 2.95650- 4 2.20000+ 1 2.50000+ 1 1.04958- 2 2.98300- 4 2.20000+ 1 2.70000+ 1 2.15915- 2 2.59720- 4 2.20000+ 1 2.90000+ 1 8.44250- 3 2.90320- 4 2.20000+ 1 3.00000+ 1 7.70520- 3 3.01890- 4 2.20000+ 1 3.20000+ 1 4.03498- 4 3.41770- 4 2.20000+ 1 3.30000+ 1 7.00265- 4 3.42790- 4 2.20000+ 1 4.10000+ 1 1.53278- 3 3.43230- 4 2.40000+ 1 2.40000+ 1 7.05761- 3 5.04550- 4 2.40000+ 1 2.50000+ 1 1.51880- 2 5.07200- 4 2.40000+ 1 2.70000+ 1 1.62318- 2 4.68620- 4 2.40000+ 1 2.90000+ 1 2.04167- 3 4.99220- 4 2.40000+ 1 3.00000+ 1 5.98928- 3 5.10790- 4 2.40000+ 1 3.20000+ 1 1.94996- 4 5.50670- 4 2.40000+ 1 3.30000+ 1 1.33912- 4 5.51690- 4 2.40000+ 1 4.10000+ 1 1.04883- 3 5.52130- 4 2.50000+ 1 2.50000+ 1 1.17673- 2 5.09850- 4 2.50000+ 1 2.70000+ 1 2.10784- 2 4.71270- 4 2.50000+ 1 2.90000+ 1 1.17300- 3 5.01870- 4 2.50000+ 1 3.00000+ 1 7.22922- 3 5.13440- 4 2.50000+ 1 3.20000+ 1 1.22368- 4 5.53320- 4 2.50000+ 1 3.30000+ 1 2.85961- 4 5.54340- 4 2.50000+ 1 4.10000+ 1 1.35973- 3 5.54780- 4 2.70000+ 1 2.70000+ 1 2.01441- 2 4.32690- 4 2.70000+ 1 2.90000+ 1 2.63810- 2 4.63290- 4 2.70000+ 1 3.00000+ 1 4.31725- 2 4.74860- 4 2.70000+ 1 3.20000+ 1 1.08313- 2 5.14740- 4 2.70000+ 1 3.30000+ 1 1.45951- 2 5.15760- 4 2.70000+ 1 4.10000+ 1 3.17882- 3 5.16200- 4 2.90000+ 1 2.90000+ 1 3.13990- 3 4.93890- 4 2.90000+ 1 3.00000+ 1 1.29813- 2 5.05460- 4 2.90000+ 1 3.20000+ 1 1.49342- 3 5.45340- 4 2.90000+ 1 3.30000+ 1 1.46060- 3 5.46360- 4 2.90000+ 1 4.10000+ 1 2.62032- 3 5.46800- 4 3.00000+ 1 3.00000+ 1 9.69425- 3 5.17030- 4 3.00000+ 1 3.20000+ 1 1.87398- 3 5.56910- 4 3.00000+ 1 3.30000+ 1 2.92362- 3 5.57930- 4 3.00000+ 1 4.10000+ 1 4.37459- 3 5.58370- 4 3.20000+ 1 3.20000+ 1 7.21796- 5 5.96790- 4 3.20000+ 1 3.30000+ 1 3.33121- 4 5.97810- 4 3.20000+ 1 4.10000+ 1 1.09383- 3 5.98250- 4 3.30000+ 1 3.30000+ 1 1.61709- 4 5.98830- 4 3.30000+ 1 4.10000+ 1 1.48323- 3 5.99270- 4 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 7.20480- 4 2.38570- 4 2.70000+ 1 1.57589- 4 4.25260- 4 3.20000+ 1 5.85672- 6 5.07310- 4 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 3.83708- 2 1.86000- 5 1.90000+ 1 2.50000+ 1 3.31339- 2 2.12500- 5 1.90000+ 1 2.90000+ 1 1.12969- 2 1.32700- 5 1.90000+ 1 3.00000+ 1 1.21038- 2 2.48400- 5 1.90000+ 1 3.20000+ 1 1.99260- 3 6.47200- 5 1.90000+ 1 3.30000+ 1 2.99734- 3 6.57400- 5 1.90000+ 1 4.10000+ 1 1.22349- 3 6.61800- 5 2.10000+ 1 2.40000+ 1 1.53156- 1 1.82930- 4 2.10000+ 1 2.50000+ 1 3.29283- 1 1.85580- 4 2.10000+ 1 2.70000+ 1 3.58369- 2 1.47000- 4 2.10000+ 1 2.90000+ 1 2.66699- 2 1.77600- 4 2.10000+ 1 3.00000+ 1 4.17514- 2 1.89170- 4 2.10000+ 1 3.20000+ 1 6.91328- 3 2.29050- 4 2.10000+ 1 3.30000+ 1 1.20423- 2 2.30070- 4 2.10000+ 1 4.10000+ 1 3.20991- 3 2.30510- 4 2.20000+ 1 2.40000+ 1 4.38093- 2 1.96650- 4 2.20000+ 1 2.50000+ 1 1.12757- 2 1.99300- 4 2.20000+ 1 2.70000+ 1 5.93022- 3 1.60720- 4 2.20000+ 1 2.90000+ 1 2.44256- 2 1.91320- 4 2.20000+ 1 3.00000+ 1 5.09771- 3 2.02890- 4 2.20000+ 1 3.20000+ 1 1.07077- 3 2.42770- 4 2.20000+ 1 3.30000+ 1 7.14585- 4 2.43790- 4 2.20000+ 1 4.10000+ 1 4.44069- 4 2.44230- 4 2.40000+ 1 2.40000+ 1 3.04730- 3 4.05550- 4 2.40000+ 1 2.50000+ 1 2.08480- 2 4.08200- 4 2.40000+ 1 2.70000+ 1 3.96922- 3 3.69620- 4 2.40000+ 1 2.90000+ 1 1.67791- 2 4.00220- 4 2.40000+ 1 3.00000+ 1 3.91217- 3 4.11790- 4 2.40000+ 1 3.20000+ 1 1.35180- 3 4.51670- 4 2.40000+ 1 3.30000+ 1 5.31061- 4 4.52690- 4 2.40000+ 1 4.10000+ 1 3.55779- 4 4.53130- 4 2.50000+ 1 2.50000+ 1 1.13384- 3 4.10850- 4 2.50000+ 1 2.70000+ 1 3.01919- 3 3.72270- 4 2.50000+ 1 2.90000+ 1 3.64134- 2 4.02870- 4 2.50000+ 1 3.00000+ 1 2.32070- 3 4.14440- 4 2.50000+ 1 3.20000+ 1 3.60182- 3 4.54320- 4 2.50000+ 1 3.30000+ 1 2.60211- 4 4.55340- 4 2.50000+ 1 4.10000+ 1 2.23322- 4 4.55780- 4 2.70000+ 1 2.70000+ 1 6.32065- 4 3.33690- 4 2.70000+ 1 2.90000+ 1 9.18116- 3 3.64290- 4 2.70000+ 1 3.00000+ 1 1.60673- 3 3.75860- 4 2.70000+ 1 3.20000+ 1 7.09889- 4 4.15740- 4 2.70000+ 1 3.30000+ 1 4.48424- 4 4.16760- 4 2.70000+ 1 4.10000+ 1 9.45804- 5 4.17200- 4 2.90000+ 1 2.90000+ 1 1.51157- 2 3.94890- 4 2.90000+ 1 3.00000+ 1 4.09338- 2 4.06460- 4 2.90000+ 1 3.20000+ 1 8.41331- 3 4.46340- 4 2.90000+ 1 3.30000+ 1 1.38225- 2 4.47360- 4 2.90000+ 1 4.10000+ 1 2.30782- 3 4.47800- 4 3.00000+ 1 3.00000+ 1 1.71352- 3 4.18030- 4 3.00000+ 1 3.20000+ 1 2.44002- 3 4.57910- 4 3.00000+ 1 3.30000+ 1 7.98117- 4 4.58930- 4 3.00000+ 1 4.10000+ 1 3.32277- 4 4.59370- 4 3.20000+ 1 3.20000+ 1 8.02245- 6 4.97790- 4 3.20000+ 1 3.30000+ 1 2.47651- 5 4.98810- 4 3.20000+ 1 4.10000+ 1 9.94092- 6 4.99250- 4 3.30000+ 1 3.30000+ 1 2.44160- 6 4.99830- 4 3.30000+ 1 4.10000+ 1 4.88321- 6 5.00270- 4 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.61550- 5 1.64330- 4 2.20000+ 1 1.86197- 4 1.78050- 4 2.70000+ 1 1.16563- 4 3.51020- 4 3.20000+ 1 1.70511- 6 4.33070- 4 3.30000+ 1 9.51033- 6 4.34090- 4 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.46253- 2 1.08690- 4 2.10000+ 1 2.50000+ 1 4.08718- 2 1.11340- 4 2.10000+ 1 2.70000+ 1 1.32853- 2 7.27600- 5 2.10000+ 1 2.90000+ 1 1.04393- 2 1.03360- 4 2.10000+ 1 3.00000+ 1 3.58122- 2 1.14930- 4 2.10000+ 1 3.20000+ 1 2.79557- 3 1.54810- 4 2.10000+ 1 3.30000+ 1 5.37585- 3 1.55830- 4 2.10000+ 1 4.10000+ 1 1.14495- 3 1.56270- 4 2.20000+ 1 2.40000+ 1 2.00274- 1 1.22410- 4 2.20000+ 1 2.50000+ 1 2.18995- 1 1.25060- 4 2.20000+ 1 2.70000+ 1 6.72071- 2 8.64800- 5 2.20000+ 1 2.90000+ 1 6.96554- 2 1.17080- 4 2.20000+ 1 3.00000+ 1 9.30273- 2 1.28650- 4 2.20000+ 1 3.20000+ 1 2.29007- 2 1.68530- 4 2.20000+ 1 3.30000+ 1 2.54698- 2 1.69550- 4 2.20000+ 1 4.10000+ 1 6.17263- 3 1.69990- 4 2.40000+ 1 2.40000+ 1 7.78697- 4 3.31310- 4 2.40000+ 1 2.50000+ 1 2.03316- 2 3.33960- 4 2.40000+ 1 2.70000+ 1 5.33426- 3 2.95380- 4 2.40000+ 1 2.90000+ 1 2.52291- 3 3.25980- 4 2.40000+ 1 3.00000+ 1 3.49315- 2 3.37550- 4 2.40000+ 1 3.20000+ 1 3.05003- 4 3.77430- 4 2.40000+ 1 3.30000+ 1 1.71500- 3 3.78450- 4 2.40000+ 1 4.10000+ 1 3.54193- 4 3.78890- 4 2.50000+ 1 2.50000+ 1 8.59263- 3 3.36610- 4 2.50000+ 1 2.70000+ 1 1.13596- 2 2.98030- 4 2.50000+ 1 2.90000+ 1 9.47015- 3 3.28630- 4 2.50000+ 1 3.00000+ 1 4.23998- 2 3.40200- 4 2.50000+ 1 3.20000+ 1 3.30179- 4 3.80080- 4 2.50000+ 1 3.30000+ 1 2.10231- 3 3.81100- 4 2.50000+ 1 4.10000+ 1 8.52424- 4 3.81540- 4 2.70000+ 1 2.70000+ 1 4.97886- 6 2.59450- 4 2.70000+ 1 2.90000+ 1 2.90623- 4 2.90050- 4 2.70000+ 1 3.00000+ 1 5.81723- 3 3.01620- 4 2.70000+ 1 3.20000+ 1 1.74881- 4 3.41500- 4 2.70000+ 1 3.30000+ 1 3.34214- 4 3.42520- 4 2.70000+ 1 4.10000+ 1 2.48943- 6 3.42960- 4 2.90000+ 1 2.90000+ 1 1.98143- 5 3.20650- 4 2.90000+ 1 3.00000+ 1 4.67815- 3 3.32220- 4 2.90000+ 1 3.20000+ 1 7.47978- 5 3.72100- 4 2.90000+ 1 3.30000+ 1 2.64020- 4 3.73120- 4 2.90000+ 1 4.10000+ 1 1.83286- 5 3.73560- 4 3.00000+ 1 3.00000+ 1 1.03576- 2 3.43790- 4 3.00000+ 1 3.20000+ 1 3.21190- 3 3.83670- 4 3.00000+ 1 3.30000+ 1 4.16087- 3 3.84690- 4 3.00000+ 1 4.10000+ 1 7.32691- 4 3.85130- 4 3.20000+ 1 3.20000+ 1 4.36044- 6 4.23550- 4 3.20000+ 1 3.30000+ 1 4.30601- 5 4.24570- 4 3.20000+ 1 4.10000+ 1 5.45058- 6 4.25010- 4 3.30000+ 1 3.30000+ 1 2.95234- 5 4.25590- 4 3.30000+ 1 4.10000+ 1 1.28827- 5 4.26030- 4 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.15051- 4 2.22620- 4 2.90000+ 1 2.73821- 5 2.17290- 4 3.00000+ 1 3.91522- 6 2.28860- 4 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 1.85984- 2 4.20000- 6 2.20000+ 1 3.30000+ 1 2.80192- 3 5.22000- 6 2.20000+ 1 4.10000+ 1 5.24821- 4 5.66000- 6 2.40000+ 1 2.40000+ 1 1.59618- 1 1.66980- 4 2.40000+ 1 2.50000+ 1 5.00493- 1 1.69630- 4 2.40000+ 1 2.70000+ 1 6.21868- 2 1.31050- 4 2.40000+ 1 2.90000+ 1 5.09074- 2 1.61650- 4 2.40000+ 1 3.00000+ 1 7.43793- 2 1.73220- 4 2.40000+ 1 3.20000+ 1 2.38175- 2 2.13100- 4 2.40000+ 1 3.30000+ 1 2.31786- 2 2.14120- 4 2.40000+ 1 4.10000+ 1 5.68465- 3 2.14560- 4 2.50000+ 1 2.50000+ 1 6.01719- 3 1.72280- 4 2.50000+ 1 2.70000+ 1 6.16088- 3 1.33700- 4 2.50000+ 1 2.90000+ 1 1.37705- 2 1.64300- 4 2.50000+ 1 3.00000+ 1 5.15912- 3 1.75870- 4 2.50000+ 1 3.20000+ 1 2.70359- 2 2.15750- 4 2.50000+ 1 3.30000+ 1 1.00146- 3 2.16770- 4 2.50000+ 1 4.10000+ 1 4.58251- 4 2.17210- 4 2.70000+ 1 2.70000+ 1 1.04479- 3 9.51200- 5 2.70000+ 1 2.90000+ 1 1.57935- 3 1.25720- 4 2.70000+ 1 3.00000+ 1 1.65982- 3 1.37290- 4 2.70000+ 1 3.20000+ 1 2.28910- 3 1.77170- 4 2.70000+ 1 3.30000+ 1 7.86328- 4 1.78190- 4 2.70000+ 1 4.10000+ 1 1.07442- 4 1.78630- 4 2.90000+ 1 2.90000+ 1 5.85466- 4 1.56320- 4 2.90000+ 1 3.00000+ 1 2.30135- 3 1.67890- 4 2.90000+ 1 3.20000+ 1 1.76676- 3 2.07770- 4 2.90000+ 1 3.30000+ 1 4.32518- 4 2.08790- 4 2.90000+ 1 4.10000+ 1 1.03539- 4 2.09230- 4 3.00000+ 1 3.00000+ 1 8.24574- 4 1.79460- 4 3.00000+ 1 3.20000+ 1 2.98499- 3 2.19340- 4 3.00000+ 1 3.30000+ 1 2.68664- 4 2.20360- 4 3.00000+ 1 4.10000+ 1 6.56965- 5 2.20800- 4 3.20000+ 1 3.20000+ 1 2.75874- 4 2.59220- 4 3.20000+ 1 3.30000+ 1 7.93284- 4 2.60240- 4 3.20000+ 1 4.10000+ 1 1.57948- 4 2.60680- 4 3.30000+ 1 3.30000+ 1 1.38117- 5 2.61260- 4 3.30000+ 1 4.10000+ 1 1.91245- 5 2.61700- 4 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 5.22250- 6 2.08900- 4 2.50000+ 1 1.09670- 4 2.11550- 4 3.00000+ 1 2.56050- 5 2.15140- 4 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 9.97849- 3 1.53260- 4 2.40000+ 1 2.50000+ 1 3.68129- 1 1.55910- 4 2.40000+ 1 2.70000+ 1 8.37404- 3 1.17330- 4 2.40000+ 1 2.90000+ 1 4.98678- 3 1.47930- 4 2.40000+ 1 3.00000+ 1 1.30610- 2 1.59500- 4 2.40000+ 1 3.20000+ 1 1.29360- 3 1.99380- 4 2.40000+ 1 3.30000+ 1 2.31839- 2 2.00400- 4 2.40000+ 1 4.10000+ 1 6.83256- 4 2.00840- 4 2.50000+ 1 2.50000+ 1 2.74576- 1 1.58560- 4 2.50000+ 1 2.70000+ 1 6.62063- 2 1.19980- 4 2.50000+ 1 2.90000+ 1 6.73492- 2 1.50580- 4 2.50000+ 1 3.00000+ 1 7.45743- 2 1.62150- 4 2.50000+ 1 3.20000+ 1 2.09054- 2 2.02030- 4 2.50000+ 1 3.30000+ 1 3.99368- 2 2.03050- 4 2.50000+ 1 4.10000+ 1 6.10222- 3 2.03490- 4 2.70000+ 1 2.70000+ 1 1.73489- 3 8.14000- 5 2.70000+ 1 2.90000+ 1 1.44289- 3 1.12000- 4 2.70000+ 1 3.00000+ 1 3.33479- 3 1.23570- 4 2.70000+ 1 3.20000+ 1 9.22501- 4 1.63450- 4 2.70000+ 1 3.30000+ 1 3.15999- 3 1.64470- 4 2.70000+ 1 4.10000+ 1 1.72939- 4 1.64910- 4 2.90000+ 1 2.90000+ 1 2.02032- 4 1.42600- 4 2.90000+ 1 3.00000+ 1 2.26692- 3 1.54170- 4 2.90000+ 1 3.20000+ 1 1.05471- 4 1.94050- 4 2.90000+ 1 3.30000+ 1 1.78962- 3 1.95070- 4 2.90000+ 1 4.10000+ 1 5.50645- 5 1.95510- 4 3.00000+ 1 3.00000+ 1 9.21737- 4 1.65740- 4 3.00000+ 1 3.20000+ 1 3.41641- 4 2.05620- 4 3.00000+ 1 3.30000+ 1 2.53680- 3 2.06640- 4 3.00000+ 1 4.10000+ 1 1.07021- 4 2.07080- 4 3.20000+ 1 3.20000+ 1 6.59224- 6 2.45500- 4 3.20000+ 1 3.30000+ 1 6.56524- 4 2.46520- 4 3.20000+ 1 4.10000+ 1 2.21034- 5 2.46960- 4 3.30000+ 1 3.30000+ 1 5.57628- 4 2.47540- 4 3.30000+ 1 4.10000+ 1 1.82252- 4 2.47980- 4 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 5.29510- 7 3.06000- 5 3.00000+ 1 2.82950- 6 4.21700- 5 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.24135- 1 2.10800- 5 2.90000+ 1 3.30000+ 1 1.89092- 1 2.21000- 5 2.90000+ 1 4.10000+ 1 4.34222- 2 2.25400- 5 3.00000+ 1 3.20000+ 1 3.35075- 1 3.26500- 5 3.00000+ 1 3.30000+ 1 2.19489- 1 3.36700- 5 3.00000+ 1 4.10000+ 1 4.88854- 2 3.41100- 5 3.20000+ 1 3.20000+ 1 6.43522- 4 7.25300- 5 3.20000+ 1 3.30000+ 1 2.27034- 2 7.35500- 5 3.20000+ 1 4.10000+ 1 6.91701- 3 7.39900- 5 3.30000+ 1 3.30000+ 1 2.75910- 3 7.45700- 5 4.10000+ 1 4.10000+ 1 6.87429- 3 7.54500- 5 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.56166- 7 5.14500- 5 4.10000+ 1 2.91337- 8 5.29100- 5 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 5.73156- 1 2.05000- 6 3.00000+ 1 3.30000+ 1 8.46330- 2 3.07000- 6 3.00000+ 1 4.10000+ 1 1.01200- 2 3.51000- 6 3.20000+ 1 3.20000+ 1 5.42414- 2 4.19300- 5 3.20000+ 1 3.30000+ 1 2.35835- 1 4.29500- 5 3.20000+ 1 4.10000+ 1 3.45429- 2 4.33900- 5 3.30000+ 1 3.30000+ 1 3.55677- 3 4.39700- 5 3.30000+ 1 4.10000+ 1 3.91222- 3 4.44100- 5 4.10000+ 1 4.10000+ 1 2.36960- 6 4.48500- 5 1 75000 0 7 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.63252- 9 3.98800- 5 3.30000+ 1 5.35792- 8 4.09000- 5 4.10000+ 1 1.11510- 8 4.13400- 5 1 75000 0 9 1.86207+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 3.14071- 2 3.03600- 5 3.20000+ 1 3.30000+ 1 6.45804- 1 3.13800- 5 3.20000+ 1 4.10000+ 1 5.70723- 2 3.18200- 5 3.30000+ 1 3.30000+ 1 1.53331- 1 3.24000- 5 3.30000+ 1 4.10000+ 1 1.09530- 1 3.28400- 5 4.10000+ 1 4.10000+ 1 2.85571- 3 3.32800- 5 1 76000 0 0 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 2.40000+ 0 3.30000+ 1 3.60000+ 0 4.10000+ 1 2.00000+ 0 1 76000 0 0 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.40660- 2 3.00000+ 0 1.29500- 2 5.00000+ 0 1.24240- 2 6.00000+ 0 1.08770- 2 8.00000+ 0 3.03000- 3 1.00000+ 1 2.79020- 3 1.10000+ 1 2.45170- 3 1.30000+ 1 2.04450- 3 1.40000+ 1 1.97090- 3 1.60000+ 1 6.48030- 4 1.80000+ 1 5.46070- 4 1.90000+ 1 4.66230- 4 2.10000+ 1 2.97080- 4 2.20000+ 1 2.82290- 4 2.40000+ 1 6.62100- 5 2.50000+ 1 6.32600- 5 2.70000+ 1 9.81200- 5 2.90000+ 1 6.60100- 5 3.00000+ 1 5.31500- 5 3.20000+ 1 1.07900- 5 3.30000+ 1 9.60000- 6 4.10000+ 1 8.39000- 6 1 76000 0 0 1.90200+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01420- 1 3.00000+ 0 2.39940- 2 5.00000+ 0 2.39840- 2 6.00000+ 0 1.80690- 2 8.00000+ 0 7.61300- 3 1.00000+ 1 7.50690- 3 1.10000+ 1 6.05630- 3 1.30000+ 1 5.91500- 3 1.40000+ 1 5.59820- 3 1.60000+ 1 2.45870- 3 1.80000+ 1 2.33890- 3 1.90000+ 1 1.90590- 3 2.10000+ 1 1.69230- 3 2.20000+ 1 1.60140- 3 2.40000+ 1 1.20730- 3 2.50000+ 1 1.17690- 3 2.70000+ 1 5.76810- 4 2.90000+ 1 4.83530- 4 3.00000+ 1 3.83710- 4 3.20000+ 1 1.98330- 4 3.30000+ 1 1.81700- 4 4.10000+ 1 6.70100- 5 1 76000 0 0 1.90200+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.37210-11 3.00000+ 0 3.91950-10 5.00000+ 0 3.23140-10 6.00000+ 0 3.66430-10 8.00000+ 0 1.01910- 9 1.00000+ 1 9.65400-10 1.10000+ 1 1.04530- 9 1.30000+ 1 9.11340-10 1.40000+ 1 9.36050-10 1.60000+ 1 2.27100- 9 1.80000+ 1 2.28800- 9 1.90000+ 1 2.46330- 9 2.10000+ 1 2.52390- 9 2.20000+ 1 2.58190- 9 2.40000+ 1 2.83870- 9 2.50000+ 1 2.87800- 9 2.70000+ 1 5.25180- 9 2.90000+ 1 5.71130- 9 3.00000+ 1 6.22490- 9 3.20000+ 1 8.76580- 9 3.30000+ 1 9.12880- 9 4.10000+ 1 1.55240- 8 1 76000 0 0 1.90200+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.17720- 5 3.00000+ 0 9.19990- 7 5.00000+ 0 1.60300- 6 6.00000+ 0 1.41730- 6 8.00000+ 0 3.27030- 8 1.00000+ 1 3.51620- 8 1.10000+ 1 3.72170- 8 1.30000+ 1 4.51960- 8 1.40000+ 1 4.24420- 8 1.60000+ 1 1.03320- 9 1.80000+ 1 1.74720- 9 1.90000+ 1 1.07090- 9 2.10000+ 1 1.28940- 9 2.20000+ 1 1.12050- 9 2.70000+ 1 5.33690-11 2.90000+ 1 5.98220-11 3.00000+ 1 3.84750-11 1 76000 0 0 1.90200+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.84350- 6 3.00000+ 0 1.21950- 5 5.00000+ 0 3.34940- 6 6.00000+ 0 3.48820- 6 8.00000+ 0 1.79480- 5 1.00000+ 1 1.20260- 5 1.10000+ 1 1.06800- 5 1.30000+ 1 2.35410- 6 1.40000+ 1 1.84350- 6 1.60000+ 1 1.48480- 5 1.80000+ 1 1.36940- 5 1.90000+ 1 9.85430- 6 2.10000+ 1 7.68000- 6 2.20000+ 1 7.13330- 6 2.70000+ 1 1.07930- 5 2.90000+ 1 4.80170- 6 3.00000+ 1 3.47880- 6 1 76000 0 0 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.33461- 4 3.00000+ 0 4.71079- 4 5.00000+ 0 3.45935- 4 6.00000+ 0 3.35020- 4 8.00000+ 0 3.19312- 4 1.00000+ 1 2.75489- 4 1.10000+ 1 2.51650- 4 1.30000+ 1 1.93203- 4 1.40000+ 1 1.84175- 4 1.60000+ 1 1.52076- 4 1.80000+ 1 1.50469- 4 1.90000+ 1 1.43031- 4 2.10000+ 1 1.14331- 4 2.20000+ 1 1.10560- 4 2.40000+ 1 6.62100- 5 2.50000+ 1 6.32600- 5 2.70000+ 1 3.15885- 5 2.90000+ 1 2.63993- 5 3.00000+ 1 1.99027- 5 3.20000+ 1 1.07900- 5 3.30000+ 1 9.60000- 6 4.10000+ 1 8.39000- 6 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.24812+ 0 3.00000+ 0 3.49309- 1 5.00000+ 0 3.95219- 1 6.00000+ 0 3.20525- 1 8.00000+ 0 2.53737- 2 1.00000+ 1 2.53758- 2 1.10000+ 1 2.40116- 2 1.30000+ 1 2.62878- 2 1.40000+ 1 2.48346- 2 1.60000+ 1 8.69443- 4 1.80000+ 1 1.09627- 3 1.90000+ 1 4.84624- 4 2.10000+ 1 1.70280- 4 2.20000+ 1 1.59299- 4 2.70000+ 1 4.23829- 6 2.90000+ 1 5.66975- 7 3.00000+ 1 1.20040- 7 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.43100- 2 3.00000+ 0 2.97796- 3 5.00000+ 0 3.84537- 3 6.00000+ 0 2.66386- 3 8.00000+ 0 4.90830- 5 1.00000+ 1 4.89706- 5 1.10000+ 1 4.55563- 5 1.30000+ 1 5.00790- 5 1.40000+ 1 4.61245- 5 1.60000+ 1 2.69553- 7 1.80000+ 1 3.05957- 7 1.90000+ 1 1.21643- 7 2.10000+ 1 3.92563- 8 2.20000+ 1 3.50868- 8 2.70000+ 1 1.84479-10 2.90000+ 1 3.05849-11 3.00000+ 1 5.23595-12 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.54935+ 0 3.00000+ 0 9.61885+ 0 5.00000+ 0 6.80078+ 0 6.00000+ 0 6.51674+ 0 8.00000+ 0 6.44041+ 0 1.00000+ 1 5.31043+ 0 1.10000+ 1 4.73163+ 0 1.30000+ 1 3.15349+ 0 1.40000+ 1 3.02757+ 0 1.60000+ 1 4.01220+ 0 1.80000+ 1 2.86353+ 0 1.90000+ 1 2.81294+ 0 2.10000+ 1 1.40997+ 0 2.20000+ 1 1.41922+ 0 2.70000+ 1 2.14541+ 0 2.90000+ 1 1.59295+ 0 3.00000+ 1 1.00000+ 0 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.42251- 3 3.00000+ 0 9.50096- 3 5.00000+ 0 8.23270- 3 6.00000+ 0 7.87812- 3 8.00000+ 0 2.66161- 3 1.00000+ 1 2.46574- 3 1.10000+ 1 2.15449- 3 1.30000+ 1 1.80122- 3 1.40000+ 1 1.74060- 3 1.60000+ 1 4.95684- 4 1.80000+ 1 3.95295- 4 1.90000+ 1 3.23078- 4 2.10000+ 1 1.82709- 4 2.20000+ 1 1.71695- 4 2.70000+ 1 6.65313- 5 2.90000+ 1 3.96106- 5 3.00000+ 1 3.32473- 5 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.77960- 1 6.16420- 2 6.00000+ 0 4.78841- 1 6.31890- 2 1.00000+ 1 5.19851- 2 7.12758- 2 1.10000+ 1 1.00480- 1 7.16143- 2 1.30000+ 1 1.19460- 3 7.20215- 2 1.40000+ 1 1.49180- 3 7.20951- 2 1.80000+ 1 1.19700- 2 7.35199- 2 1.90000+ 1 2.32740- 2 7.35998- 2 2.10000+ 1 2.95820- 4 7.37689- 2 2.20000+ 1 3.67951- 4 7.37837- 2 2.90000+ 1 2.73420- 3 7.40000- 2 3.00000+ 1 5.52131- 3 7.40128- 2 3.20000+ 1 1.55170- 5 7.40552- 2 3.30000+ 1 1.86500- 5 7.40564- 2 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.46689- 3 4.81660- 2 3.00000+ 0 5.00000+ 0 6.62378- 3 4.86920- 2 3.00000+ 0 6.00000+ 0 4.35371- 3 5.02390- 2 3.00000+ 0 8.00000+ 0 1.77472- 3 5.80860- 2 3.00000+ 0 1.00000+ 1 1.41507- 3 5.83258- 2 3.00000+ 0 1.10000+ 1 9.91826- 4 5.86643- 2 3.00000+ 0 1.30000+ 1 8.09714- 5 5.90715- 2 3.00000+ 0 1.40000+ 1 6.56289- 5 5.91451- 2 3.00000+ 0 1.60000+ 1 4.33193- 4 6.04680- 2 3.00000+ 0 1.80000+ 1 3.35711- 4 6.05699- 2 3.00000+ 0 1.90000+ 1 2.33387- 4 6.06498- 2 3.00000+ 0 2.10000+ 1 1.98697- 5 6.08189- 2 3.00000+ 0 2.20000+ 1 1.58572- 5 6.08337- 2 3.00000+ 0 2.40000+ 1 6.47253- 8 6.10498- 2 3.00000+ 0 2.50000+ 1 6.47253- 8 6.10527- 2 3.00000+ 0 2.70000+ 1 8.07744- 5 6.10179- 2 3.00000+ 0 2.90000+ 1 5.37852- 5 6.10500- 2 3.00000+ 0 3.00000+ 1 3.58575- 5 6.10628- 2 3.00000+ 0 3.20000+ 1 1.48862- 6 6.11052- 2 3.00000+ 0 3.30000+ 1 3.88326- 7 6.11064- 2 5.00000+ 0 5.00000+ 0 4.31781- 4 4.92180- 2 5.00000+ 0 6.00000+ 0 8.01639- 3 5.07650- 2 5.00000+ 0 8.00000+ 0 1.12985- 3 5.86120- 2 5.00000+ 0 1.00000+ 1 1.62075- 4 5.88518- 2 5.00000+ 0 1.10000+ 1 1.52064- 3 5.91903- 2 5.00000+ 0 1.30000+ 1 8.51809- 5 5.95975- 2 5.00000+ 0 1.40000+ 1 2.37546- 4 5.96711- 2 5.00000+ 0 1.60000+ 1 2.66490- 4 6.09940- 2 5.00000+ 0 1.80000+ 1 3.73478- 5 6.10959- 2 5.00000+ 0 1.90000+ 1 3.43622- 4 6.11758- 2 5.00000+ 0 2.10000+ 1 2.01944- 5 6.13449- 2 5.00000+ 0 2.20000+ 1 5.62475- 5 6.13597- 2 5.00000+ 0 2.40000+ 1 5.17835- 7 6.15758- 2 5.00000+ 0 2.50000+ 1 7.76732- 7 6.15787- 2 5.00000+ 0 2.70000+ 1 4.93238- 5 6.15439- 2 5.00000+ 0 2.90000+ 1 5.95496- 6 6.15760- 2 5.00000+ 0 3.00000+ 1 5.22970- 5 6.15888- 2 5.00000+ 0 3.20000+ 1 1.48869- 6 6.16312- 2 5.00000+ 0 3.30000+ 1 1.29448- 6 6.16324- 2 6.00000+ 0 6.00000+ 0 3.55825- 3 5.23120- 2 6.00000+ 0 8.00000+ 0 6.83756- 4 6.01590- 2 6.00000+ 0 1.00000+ 1 1.40909- 3 6.03988- 2 6.00000+ 0 1.10000+ 1 1.39478- 3 6.07373- 2 6.00000+ 0 1.30000+ 1 2.68144- 4 6.11445- 2 6.00000+ 0 1.40000+ 1 2.28351- 4 6.12181- 2 6.00000+ 0 1.60000+ 1 1.58192- 4 6.25410- 2 6.00000+ 0 1.80000+ 1 3.20720- 4 6.26429- 2 6.00000+ 0 1.90000+ 1 3.17929- 4 6.27228- 2 6.00000+ 0 2.10000+ 1 6.40787- 5 6.28919- 2 6.00000+ 0 2.20000+ 1 5.42421- 5 6.29067- 2 6.00000+ 0 2.40000+ 1 8.41439- 7 6.31228- 2 6.00000+ 0 2.50000+ 1 9.06161- 7 6.31257- 2 6.00000+ 0 2.70000+ 1 2.91268- 5 6.30909- 2 6.00000+ 0 2.90000+ 1 5.09411- 5 6.31230- 2 6.00000+ 0 3.00000+ 1 4.84804- 5 6.31358- 2 6.00000+ 0 3.20000+ 1 4.78974- 6 6.31782- 2 6.00000+ 0 3.30000+ 1 1.29446- 6 6.31794- 2 8.00000+ 0 8.00000+ 0 1.73400- 4 6.80060- 2 8.00000+ 0 1.00000+ 1 2.42272- 4 6.82458- 2 8.00000+ 0 1.10000+ 1 1.57217- 4 6.85843- 2 8.00000+ 0 1.30000+ 1 1.24270- 5 6.89915- 2 8.00000+ 0 1.40000+ 1 9.51456- 6 6.90651- 2 8.00000+ 0 1.60000+ 1 8.44022- 5 7.03880- 2 8.00000+ 0 1.80000+ 1 5.75401- 5 7.04899- 2 8.00000+ 0 1.90000+ 1 3.70878- 5 7.05698- 2 8.00000+ 0 2.10000+ 1 3.04205- 6 7.07389- 2 8.00000+ 0 2.20000+ 1 2.26536- 6 7.07537- 2 8.00000+ 0 2.70000+ 1 1.57279- 5 7.09379- 2 8.00000+ 0 2.90000+ 1 9.25541- 6 7.09700- 2 8.00000+ 0 3.00000+ 1 5.69571- 6 7.09828- 2 8.00000+ 0 3.20000+ 1 2.58891- 7 7.10252- 2 8.00000+ 0 3.30000+ 1 6.47271- 8 7.10264- 2 1.00000+ 1 1.00000+ 1 1.48225- 5 6.84856- 2 1.00000+ 1 1.10000+ 1 2.74383- 4 6.88241- 2 1.00000+ 1 1.30000+ 1 1.26864- 5 6.92313- 2 1.00000+ 1 1.40000+ 1 3.17146- 5 6.93049- 2 1.00000+ 1 1.60000+ 1 5.71508- 5 7.06278- 2 1.00000+ 1 1.80000+ 1 6.79596- 6 7.07297- 2 1.00000+ 1 1.90000+ 1 6.23295- 5 7.08096- 2 1.00000+ 1 2.10000+ 1 3.04209- 6 7.09787- 2 1.00000+ 1 2.20000+ 1 7.57307- 6 7.09935- 2 1.00000+ 1 2.40000+ 1 6.47280- 8 7.12096- 2 1.00000+ 1 2.50000+ 1 6.47280- 8 7.12125- 2 1.00000+ 1 2.70000+ 1 1.06148- 5 7.11777- 2 1.00000+ 1 2.90000+ 1 1.10038- 6 7.12098- 2 1.00000+ 1 3.00000+ 1 9.51469- 6 7.12226- 2 1.00000+ 1 3.20000+ 1 2.58895- 7 7.12650- 2 1.00000+ 1 3.30000+ 1 1.94172- 7 7.12662- 2 1.10000+ 1 1.10000+ 1 1.37931- 4 6.91626- 2 1.10000+ 1 1.30000+ 1 4.18763- 5 6.95698- 2 1.10000+ 1 1.40000+ 1 3.45648- 5 6.96434- 2 1.10000+ 1 1.60000+ 1 3.64404- 5 7.09663- 2 1.10000+ 1 1.80000+ 1 6.27798- 5 7.10682- 2 1.10000+ 1 1.90000+ 1 6.29779- 5 7.11481- 2 1.10000+ 1 2.10000+ 1 1.00969- 5 7.13172- 2 1.10000+ 1 2.20000+ 1 8.28501- 6 7.13320- 2 1.10000+ 1 2.40000+ 1 1.29445- 7 7.15481- 2 1.10000+ 1 2.50000+ 1 1.29445- 7 7.15510- 2 1.10000+ 1 2.70000+ 1 6.73142- 6 7.15162- 2 1.10000+ 1 2.90000+ 1 9.96757- 6 7.15483- 2 1.10000+ 1 3.00000+ 1 9.57947- 6 7.15611- 2 1.10000+ 1 3.20000+ 1 7.76714- 7 7.16035- 2 1.10000+ 1 3.30000+ 1 1.94169- 7 7.16047- 2 1.30000+ 1 1.30000+ 1 6.47253- 8 6.99770- 2 1.30000+ 1 1.40000+ 1 4.98339- 6 7.00506- 2 1.30000+ 1 1.60000+ 1 2.91260- 6 7.13735- 2 1.30000+ 1 1.80000+ 1 2.78314- 6 7.14754- 2 1.30000+ 1 1.90000+ 1 9.06137- 6 7.15553- 2 1.30000+ 1 2.10000+ 1 6.47253- 8 7.17244- 2 1.30000+ 1 2.20000+ 1 1.16506- 6 7.17392- 2 1.30000+ 1 2.70000+ 1 5.17811- 7 7.19234- 2 1.30000+ 1 2.90000+ 1 4.53048- 7 7.19555- 2 1.30000+ 1 3.00000+ 1 1.35916- 6 7.19683- 2 1.40000+ 1 1.40000+ 1 1.16506- 6 7.01242- 2 1.40000+ 1 1.60000+ 1 2.20057- 6 7.14471- 2 1.40000+ 1 1.80000+ 1 6.79568- 6 7.15490- 2 1.40000+ 1 1.90000+ 1 7.44288- 6 7.16289- 2 1.40000+ 1 2.10000+ 1 1.16506- 6 7.17980- 2 1.40000+ 1 2.20000+ 1 5.17811- 7 7.18128- 2 1.40000+ 1 2.70000+ 1 3.88327- 7 7.19970- 2 1.40000+ 1 2.90000+ 1 1.03558- 6 7.20291- 2 1.40000+ 1 3.00000+ 1 1.10034- 6 7.20419- 2 1.40000+ 1 3.20000+ 1 6.47253- 8 7.20843- 2 1.60000+ 1 1.60000+ 1 1.02434- 5 7.27699- 2 1.60000+ 1 1.80000+ 1 1.36141- 5 7.28719- 2 1.60000+ 1 1.90000+ 1 8.62221- 6 7.29517- 2 1.60000+ 1 2.10000+ 1 7.13154- 7 7.31209- 2 1.60000+ 1 2.20000+ 1 5.18669- 7 7.31357- 2 1.60000+ 1 2.70000+ 1 3.82487- 6 7.33198- 2 1.60000+ 1 2.90000+ 1 2.20422- 6 7.33520- 2 1.60000+ 1 3.00000+ 1 1.29657- 6 7.33648- 2 1.60000+ 1 3.20000+ 1 6.48326- 8 7.34072- 2 1.80000+ 1 1.80000+ 1 7.76722- 7 7.29739- 2 1.80000+ 1 1.90000+ 1 1.43047- 5 7.30537- 2 1.80000+ 1 2.10000+ 1 6.47275- 7 7.32228- 2 1.80000+ 1 2.20000+ 1 1.61814- 6 7.32376- 2 1.80000+ 1 2.70000+ 1 2.52420- 6 7.34218- 2 1.80000+ 1 2.90000+ 1 2.58893- 7 7.34539- 2 1.80000+ 1 3.00000+ 1 2.20065- 6 7.34668- 2 1.80000+ 1 3.20000+ 1 6.47275- 8 7.35091- 2 1.80000+ 1 3.30000+ 1 6.47275- 8 7.35103- 2 1.90000+ 1 1.90000+ 1 6.91472- 6 7.31335- 2 1.90000+ 1 2.10000+ 1 2.11804- 6 7.33027- 2 1.90000+ 1 2.20000+ 1 1.74431- 6 7.33175- 2 1.90000+ 1 2.70000+ 1 1.55740- 6 7.35016- 2 1.90000+ 1 2.90000+ 1 2.18034- 6 7.35338- 2 1.90000+ 1 3.00000+ 1 2.11804- 6 7.35466- 2 1.90000+ 1 3.20000+ 1 1.86882- 7 7.35890- 2 1.90000+ 1 3.30000+ 1 6.22978- 8 7.35902- 2 2.10000+ 1 2.20000+ 1 2.75154- 7 7.34866- 2 2.10000+ 1 2.70000+ 1 1.37577- 7 7.36708- 2 2.10000+ 1 2.90000+ 1 1.37577- 7 7.37029- 2 2.10000+ 1 3.00000+ 1 3.43943- 7 7.37158- 2 2.20000+ 1 2.20000+ 1 6.90517- 8 7.35014- 2 2.20000+ 1 2.70000+ 1 6.90517- 8 7.36856- 2 2.20000+ 1 2.90000+ 1 2.76189- 7 7.37177- 2 2.20000+ 1 3.00000+ 1 2.76189- 7 7.37306- 2 2.70000+ 1 2.70000+ 1 3.88351- 7 7.38698- 2 2.70000+ 1 2.90000+ 1 3.88351- 7 7.39019- 2 2.70000+ 1 3.00000+ 1 2.58900- 7 7.39147- 2 2.90000+ 1 3.00000+ 1 3.33071- 7 7.39468- 2 3.00000+ 1 3.00000+ 1 1.56280- 7 7.39597- 2 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.05399- 5 5.26000- 4 6.00000+ 0 1.53689- 3 2.07300- 3 1.00000+ 1 2.31599- 2 1.01598- 2 1.10000+ 1 2.81029- 2 1.04983- 2 1.30000+ 1 7.11366- 4 1.09055- 2 1.40000+ 1 1.06509- 3 1.09791- 2 1.80000+ 1 5.75727- 3 1.24039- 2 1.90000+ 1 7.44516- 3 1.24838- 2 2.10000+ 1 1.02629- 4 1.26529- 2 2.20000+ 1 1.60809- 4 1.26677- 2 2.90000+ 1 9.53485- 4 1.28840- 2 3.00000+ 1 1.19919- 3 1.28968- 2 3.20000+ 1 5.12707- 6 1.29392- 2 3.30000+ 1 7.80356- 6 1.29404- 2 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.80000+ 1 1.55937- 2 0.00000+ 0 5.00000+ 0 1.90000+ 1 1.65725- 2 5.97700- 5 5.00000+ 0 2.10000+ 1 4.60884- 3 2.28920- 4 5.00000+ 0 2.20000+ 1 6.38056- 3 2.43710- 4 5.00000+ 0 2.40000+ 1 1.35792- 2 4.59790- 4 5.00000+ 0 2.50000+ 1 1.79322- 2 4.62740- 4 5.00000+ 0 2.70000+ 1 3.71073- 3 4.27880- 4 5.00000+ 0 2.90000+ 1 2.49428- 3 4.59990- 4 5.00000+ 0 3.00000+ 1 2.43239- 3 4.72850- 4 5.00000+ 0 3.20000+ 1 3.46628- 4 5.15210- 4 5.00000+ 0 3.30000+ 1 1.54547- 4 5.16400- 4 6.00000+ 0 1.30000+ 1 2.26824- 1 2.85000- 5 6.00000+ 0 1.40000+ 1 3.14425- 1 1.02100- 4 6.00000+ 0 1.60000+ 1 1.96010- 2 1.42497- 3 6.00000+ 0 1.80000+ 1 7.93677- 3 1.52693- 3 6.00000+ 0 1.90000+ 1 1.25404- 2 1.60677- 3 6.00000+ 0 2.10000+ 1 2.85901- 2 1.77592- 3 6.00000+ 0 2.20000+ 1 3.45449- 2 1.79071- 3 6.00000+ 0 2.40000+ 1 2.01879- 2 2.00679- 3 6.00000+ 0 2.50000+ 1 2.52938- 2 2.00974- 3 6.00000+ 0 2.70000+ 1 3.49738- 3 1.97488- 3 6.00000+ 0 2.90000+ 1 1.24155- 3 2.00699- 3 6.00000+ 0 3.00000+ 1 1.90281- 3 2.01985- 3 6.00000+ 0 3.20000+ 1 1.98929- 3 2.06221- 3 6.00000+ 0 3.30000+ 1 7.51546- 4 2.06340- 3 8.00000+ 0 8.00000+ 0 4.94094- 3 6.89000- 3 8.00000+ 0 1.00000+ 1 1.00728- 2 7.12980- 3 8.00000+ 0 1.10000+ 1 1.66224- 2 7.46830- 3 8.00000+ 0 1.30000+ 1 1.25773- 2 7.87550- 3 8.00000+ 0 1.40000+ 1 1.65584- 2 7.94910- 3 8.00000+ 0 1.60000+ 1 2.04596- 3 9.27197- 3 8.00000+ 0 1.80000+ 1 2.35030- 3 9.37393- 3 8.00000+ 0 1.90000+ 1 3.80948- 3 9.45377- 3 8.00000+ 0 2.10000+ 1 2.56605- 3 9.62292- 3 8.00000+ 0 2.20000+ 1 3.34349- 3 9.63771- 3 8.00000+ 0 2.40000+ 1 1.83791- 4 9.85379- 3 8.00000+ 0 2.50000+ 1 2.06805- 4 9.85674- 3 8.00000+ 0 2.70000+ 1 3.71941- 4 9.82188- 3 8.00000+ 0 2.90000+ 1 3.75249- 4 9.85399- 3 8.00000+ 0 3.00000+ 1 5.81236- 4 9.86685- 3 8.00000+ 0 3.20000+ 1 1.87520- 4 9.90921- 3 8.00000+ 0 3.30000+ 1 7.69575- 5 9.91040- 3 1.00000+ 1 1.00000+ 1 2.48927- 5 7.36960- 3 1.00000+ 1 1.10000+ 1 2.22582- 4 7.70810- 3 1.00000+ 1 1.30000+ 1 5.93063- 4 8.11530- 3 1.00000+ 1 1.40000+ 1 5.27227- 3 8.18890- 3 1.00000+ 1 1.60000+ 1 1.64554- 3 9.51177- 3 1.00000+ 1 1.80000+ 1 3.73390- 6 9.61373- 3 1.00000+ 1 1.90000+ 1 4.50134- 5 9.69357- 3 1.00000+ 1 2.10000+ 1 1.09727- 4 9.86272- 3 1.00000+ 1 2.20000+ 1 6.81224- 4 9.87751- 3 1.00000+ 1 2.40000+ 1 6.55500- 5 1.00936- 2 1.00000+ 1 2.50000+ 1 2.29841- 4 1.00965- 2 1.00000+ 1 2.70000+ 1 2.82739- 4 1.00617- 2 1.00000+ 1 2.90000+ 1 4.14871- 7 1.00938- 2 1.00000+ 1 3.00000+ 1 6.63797- 6 1.01066- 2 1.00000+ 1 3.20000+ 1 8.08996- 6 1.01490- 2 1.00000+ 1 3.30000+ 1 1.47289- 5 1.01502- 2 1.10000+ 1 1.10000+ 1 4.79180- 4 8.04660- 3 1.10000+ 1 1.30000+ 1 2.07446- 3 8.45380- 3 1.10000+ 1 1.40000+ 1 1.28963- 3 8.52740- 3 1.10000+ 1 1.60000+ 1 2.68734- 3 9.85027- 3 1.10000+ 1 1.80000+ 1 5.04075- 5 9.95223- 3 1.10000+ 1 1.90000+ 1 1.63666- 4 1.00321- 2 1.10000+ 1 2.10000+ 1 1.82962- 4 1.02012- 2 1.10000+ 1 2.20000+ 1 1.03708- 4 1.02160- 2 1.10000+ 1 2.40000+ 1 1.32342- 4 1.04321- 2 1.10000+ 1 2.50000+ 1 1.09317- 4 1.04350- 2 1.10000+ 1 2.70000+ 1 4.60924- 4 1.04002- 2 1.10000+ 1 2.90000+ 1 7.88255- 6 1.04323- 2 1.10000+ 1 3.00000+ 1 2.36480- 5 1.04451- 2 1.10000+ 1 3.20000+ 1 1.16166- 5 1.04875- 2 1.10000+ 1 3.30000+ 1 2.07446- 6 1.04887- 2 1.30000+ 1 1.30000+ 1 7.46790- 4 8.86100- 3 1.30000+ 1 1.40000+ 1 2.29344- 2 8.93460- 3 1.30000+ 1 1.60000+ 1 1.87733- 3 1.02575- 2 1.30000+ 1 1.80000+ 1 1.69476- 4 1.03594- 2 1.30000+ 1 1.90000+ 1 5.24825- 4 1.04393- 2 1.30000+ 1 2.10000+ 1 2.97260- 4 1.06084- 2 1.30000+ 1 2.20000+ 1 3.24704- 3 1.06232- 2 1.30000+ 1 2.40000+ 1 2.02670- 4 1.08393- 2 1.30000+ 1 2.50000+ 1 5.62997- 4 1.08422- 2 1.30000+ 1 2.70000+ 1 3.17176- 4 1.08074- 2 1.30000+ 1 2.90000+ 1 2.80044- 5 1.08395- 2 1.30000+ 1 3.00000+ 1 8.13197- 5 1.08523- 2 1.30000+ 1 3.20000+ 1 2.15737- 5 1.08947- 2 1.30000+ 1 3.30000+ 1 7.09447- 5 1.08959- 2 1.40000+ 1 1.40000+ 1 6.38432- 3 9.00820- 3 1.40000+ 1 1.60000+ 1 2.50364- 3 1.03311- 2 1.40000+ 1 1.80000+ 1 1.09610- 3 1.04330- 2 1.40000+ 1 1.90000+ 1 3.38958- 4 1.05129- 2 1.40000+ 1 2.10000+ 1 3.16822- 3 1.06820- 2 1.40000+ 1 2.20000+ 1 1.90724- 3 1.06968- 2 1.40000+ 1 2.40000+ 1 6.23366- 4 1.09129- 2 1.40000+ 1 2.50000+ 1 4.74423- 4 1.09158- 2 1.40000+ 1 2.70000+ 1 4.25052- 4 1.08810- 2 1.40000+ 1 2.90000+ 1 1.71349- 4 1.09131- 2 1.40000+ 1 3.00000+ 1 5.31053- 5 1.09259- 2 1.40000+ 1 3.20000+ 1 2.18020- 4 1.09683- 2 1.40000+ 1 3.30000+ 1 4.21113- 5 1.09695- 2 1.60000+ 1 1.60000+ 1 2.00179- 4 1.16539- 2 1.60000+ 1 1.80000+ 1 3.85421- 4 1.17559- 2 1.60000+ 1 1.90000+ 1 6.18583- 4 1.18357- 2 1.60000+ 1 2.10000+ 1 3.83561- 4 1.20049- 2 1.60000+ 1 2.20000+ 1 5.03447- 4 1.20197- 2 1.60000+ 1 2.40000+ 1 2.26114- 5 1.22358- 2 1.60000+ 1 2.50000+ 1 2.46849- 5 1.22387- 2 1.60000+ 1 2.70000+ 1 7.19812- 5 1.22038- 2 1.60000+ 1 2.90000+ 1 6.16093- 5 1.22360- 2 1.60000+ 1 3.00000+ 1 9.43886- 5 1.22488- 2 1.60000+ 1 3.20000+ 1 2.80043- 5 1.22912- 2 1.60000+ 1 3.30000+ 1 1.16166- 5 1.22924- 2 1.80000+ 1 1.90000+ 1 1.01638- 5 1.19377- 2 1.80000+ 1 2.10000+ 1 2.73820- 5 1.21068- 2 1.80000+ 1 2.20000+ 1 1.46868- 4 1.21216- 2 1.80000+ 1 2.40000+ 1 8.92006- 6 1.23377- 2 1.80000+ 1 2.50000+ 1 3.54713- 5 1.23407- 2 1.80000+ 1 2.70000+ 1 6.61727- 5 1.23058- 2 1.80000+ 1 3.00000+ 1 1.45199- 6 1.23508- 2 1.80000+ 1 3.20000+ 1 1.86690- 6 1.23931- 2 1.80000+ 1 3.30000+ 1 3.11152- 6 1.23943- 2 1.90000+ 1 1.90000+ 1 1.34843- 5 1.20175- 2 1.90000+ 1 2.10000+ 1 5.22756- 5 1.21867- 2 1.90000+ 1 2.20000+ 1 3.25685- 5 1.22015- 2 1.90000+ 1 2.40000+ 1 2.51000- 5 1.24176- 2 1.90000+ 1 2.50000+ 1 2.03290- 5 1.24205- 2 1.90000+ 1 2.70000+ 1 1.06219- 4 1.23856- 2 1.90000+ 1 2.90000+ 1 1.65957- 6 1.24178- 2 1.90000+ 1 3.00000+ 1 3.94132- 6 1.24306- 2 1.90000+ 1 3.20000+ 1 3.31904- 6 1.24730- 2 1.90000+ 1 3.30000+ 1 6.22317- 7 1.24742- 2 2.10000+ 1 2.10000+ 1 2.73824- 5 1.23558- 2 2.10000+ 1 2.20000+ 1 4.89760- 4 1.23706- 2 2.10000+ 1 2.40000+ 1 2.80043- 5 1.25867- 2 2.10000+ 1 2.50000+ 1 5.93278- 5 1.25897- 2 2.10000+ 1 2.70000+ 1 6.47207- 5 1.25548- 2 2.10000+ 1 2.90000+ 1 4.35621- 6 1.25869- 2 2.10000+ 1 3.00000+ 1 8.29730- 6 1.25998- 2 2.10000+ 1 3.20000+ 1 3.94129- 6 1.26421- 2 2.10000+ 1 3.30000+ 1 1.07868- 5 1.26433- 2 2.20000+ 1 2.20000+ 1 1.52465- 4 1.23854- 2 2.20000+ 1 2.40000+ 1 6.86606- 5 1.26015- 2 2.20000+ 1 2.50000+ 1 5.82899- 5 1.26044- 2 2.20000+ 1 2.70000+ 1 8.52588- 5 1.25696- 2 2.20000+ 1 2.90000+ 1 2.30258- 5 1.26017- 2 2.20000+ 1 3.00000+ 1 5.18594- 6 1.26146- 2 2.20000+ 1 3.20000+ 1 3.42263- 5 1.26569- 2 2.20000+ 1 3.30000+ 1 6.84536- 6 1.26581- 2 2.40000+ 1 2.40000+ 1 1.02797- 6 1.28176- 2 2.40000+ 1 2.50000+ 1 1.95325- 5 1.28205- 2 2.40000+ 1 2.70000+ 1 6.16795- 6 1.27857- 2 2.40000+ 1 2.90000+ 1 2.05599- 6 1.28178- 2 2.40000+ 1 3.00000+ 1 6.16795- 6 1.28306- 2 2.40000+ 1 3.20000+ 1 3.08389- 6 1.28730- 2 2.40000+ 1 3.30000+ 1 2.39851- 6 1.28742- 2 2.50000+ 1 2.50000+ 1 4.32606- 6 1.28235- 2 2.50000+ 1 2.70000+ 1 6.84946- 6 1.27886- 2 2.50000+ 1 2.90000+ 1 9.01267- 6 1.28207- 2 2.50000+ 1 3.00000+ 1 5.04714- 6 1.28336- 2 2.50000+ 1 3.20000+ 1 6.84946- 6 1.28759- 2 2.50000+ 1 3.30000+ 1 2.16304- 6 1.28771- 2 2.70000+ 1 2.70000+ 1 1.93528- 5 1.27538- 2 2.70000+ 1 2.90000+ 1 3.18369- 5 1.27859- 2 2.70000+ 1 3.00000+ 1 4.86927- 5 1.27987- 2 2.70000+ 1 3.20000+ 1 1.43586- 5 1.28411- 2 2.70000+ 1 3.30000+ 1 5.61847- 6 1.28423- 2 2.90000+ 1 3.00000+ 1 1.69854- 6 1.28308- 2 2.90000+ 1 3.20000+ 1 3.39691- 6 1.28732- 2 2.90000+ 1 3.30000+ 1 3.39691- 6 1.28744- 2 3.00000+ 1 3.00000+ 1 8.37239- 7 1.28437- 2 3.00000+ 1 3.20000+ 1 2.51160- 6 1.28861- 2 3.00000+ 1 3.30000+ 1 8.37239- 7 1.28872- 2 3.20000+ 1 3.20000+ 1 2.23932- 7 1.29284- 2 3.20000+ 1 3.30000+ 1 8.95663- 7 1.29296- 2 3.30000+ 1 3.30000+ 1 3.10338- 7 1.29308- 2 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.40747- 6 1.54700- 3 8.00000+ 0 7.15755- 3 9.39400- 3 1.10000+ 1 2.44538- 4 9.97230- 3 1.30000+ 1 2.59988- 1 1.03795- 2 1.60000+ 1 1.75479- 3 1.17760- 2 1.90000+ 1 6.44366- 5 1.19578- 2 2.10000+ 1 4.95537- 2 1.21269- 2 2.40000+ 1 1.49999- 4 1.23578- 2 2.70000+ 1 3.43268- 4 1.23259- 2 3.00000+ 1 1.30909- 5 1.23708- 2 3.20000+ 1 2.51868- 3 1.24132- 2 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 6.24825- 3 8.98970- 4 6.00000+ 0 1.80000+ 1 4.07851- 2 1.00093- 3 6.00000+ 0 1.90000+ 1 1.20449- 2 1.08077- 3 6.00000+ 0 2.10000+ 1 4.44378- 2 1.24992- 3 6.00000+ 0 2.20000+ 1 1.54691- 2 1.26471- 3 6.00000+ 0 2.40000+ 1 1.53377- 3 1.48079- 3 6.00000+ 0 2.50000+ 1 2.32155- 3 1.48374- 3 6.00000+ 0 2.70000+ 1 1.06934- 3 1.44888- 3 6.00000+ 0 2.90000+ 1 6.05234- 3 1.48099- 3 6.00000+ 0 3.00000+ 1 1.80308- 3 1.49385- 3 6.00000+ 0 3.20000+ 1 3.13731- 3 1.53621- 3 6.00000+ 0 3.30000+ 1 3.46528- 4 1.53740- 3 8.00000+ 0 8.00000+ 0 6.63819- 4 6.36400- 3 8.00000+ 0 1.00000+ 1 2.13346- 2 6.60380- 3 8.00000+ 0 1.10000+ 1 2.03540- 3 6.94230- 3 8.00000+ 0 1.30000+ 1 2.90596- 3 7.34950- 3 8.00000+ 0 1.40000+ 1 2.17105- 3 7.42310- 3 8.00000+ 0 1.60000+ 1 2.50101- 4 8.74597- 3 8.00000+ 0 1.80000+ 1 3.29919- 3 8.84793- 3 8.00000+ 0 1.90000+ 1 4.16455- 4 8.92777- 3 8.00000+ 0 2.10000+ 1 4.19784- 4 9.09692- 3 8.00000+ 0 2.20000+ 1 2.66634- 4 9.11171- 3 8.00000+ 0 2.40000+ 1 8.81448- 5 9.32779- 3 8.00000+ 0 2.50000+ 1 5.94970- 5 9.33074- 3 8.00000+ 0 2.70000+ 1 4.46223- 5 9.29588- 3 8.00000+ 0 2.90000+ 1 4.87521- 4 9.32799- 3 8.00000+ 0 3.00000+ 1 6.22492- 5 9.34085- 3 8.00000+ 0 3.20000+ 1 2.91980- 5 9.38321- 3 8.00000+ 0 3.30000+ 1 5.50896- 6 9.38440- 3 1.00000+ 1 1.00000+ 1 2.20266- 2 6.84360- 3 1.00000+ 1 1.10000+ 1 5.91891- 2 7.18210- 3 1.00000+ 1 1.30000+ 1 3.11008- 2 7.58930- 3 1.00000+ 1 1.40000+ 1 4.65195- 2 7.66290- 3 1.00000+ 1 1.60000+ 1 5.32628- 3 8.98577- 3 1.00000+ 1 1.80000+ 1 8.67849- 3 9.08773- 3 1.00000+ 1 1.90000+ 1 1.33342- 2 9.16757- 3 1.00000+ 1 2.10000+ 1 6.34259- 3 9.33672- 3 1.00000+ 1 2.20000+ 1 9.43654- 3 9.35151- 3 1.00000+ 1 2.40000+ 1 4.25823- 4 9.56759- 3 1.00000+ 1 2.50000+ 1 3.83406- 4 9.57054- 3 1.00000+ 1 2.70000+ 1 9.97022- 4 9.53568- 3 1.00000+ 1 2.90000+ 1 1.34907- 3 9.56779- 3 1.00000+ 1 3.00000+ 1 2.02830- 3 9.58065- 3 1.00000+ 1 3.20000+ 1 4.63270- 4 9.62301- 3 1.00000+ 1 3.30000+ 1 2.17579- 4 9.62420- 3 1.10000+ 1 1.10000+ 1 1.41421- 3 7.52060- 3 1.10000+ 1 1.30000+ 1 3.05239- 2 7.92780- 3 1.10000+ 1 1.40000+ 1 4.32623- 3 8.00140- 3 1.10000+ 1 1.60000+ 1 4.28593- 4 9.32427- 3 1.10000+ 1 1.80000+ 1 9.38889- 3 9.42623- 3 1.10000+ 1 1.90000+ 1 5.44277- 4 9.50607- 3 1.10000+ 1 2.10000+ 1 5.23953- 3 9.67522- 3 1.10000+ 1 2.20000+ 1 7.09018- 4 9.69001- 3 1.10000+ 1 2.40000+ 1 1.98320- 4 9.90609- 3 1.10000+ 1 2.50000+ 1 1.06869- 4 9.90904- 3 1.10000+ 1 2.70000+ 1 7.76755- 5 9.87418- 3 1.10000+ 1 2.90000+ 1 1.39375- 3 9.90629- 3 1.10000+ 1 3.00000+ 1 8.04287- 5 9.91915- 3 1.10000+ 1 3.20000+ 1 3.72957- 4 9.96151- 3 1.10000+ 1 3.30000+ 1 1.59759- 5 9.96270- 3 1.30000+ 1 1.30000+ 1 2.87767- 2 8.33500- 3 1.30000+ 1 1.40000+ 1 1.16423- 1 8.40860- 3 1.30000+ 1 1.60000+ 1 7.25475- 4 9.73147- 3 1.30000+ 1 1.80000+ 1 4.82233- 3 9.83343- 3 1.30000+ 1 1.90000+ 1 6.40444- 3 9.91327- 3 1.30000+ 1 2.10000+ 1 9.76910- 3 1.00824- 2 1.30000+ 1 2.20000+ 1 2.12573- 2 1.00972- 2 1.30000+ 1 2.40000+ 1 1.57389- 3 1.03133- 2 1.30000+ 1 2.50000+ 1 3.20011- 3 1.03162- 2 1.30000+ 1 2.70000+ 1 1.36064- 4 1.02814- 2 1.30000+ 1 2.90000+ 1 7.18357- 4 1.03135- 2 1.30000+ 1 3.00000+ 1 9.61861- 4 1.03263- 2 1.30000+ 1 3.20000+ 1 6.97402- 4 1.03687- 2 1.30000+ 1 3.30000+ 1 4.83126- 4 1.03699- 2 1.40000+ 1 1.40000+ 1 5.62773- 3 8.48220- 3 1.40000+ 1 1.60000+ 1 4.39059- 4 9.80507- 3 1.40000+ 1 1.80000+ 1 6.37708- 3 9.90703- 3 1.40000+ 1 1.90000+ 1 8.33511- 4 9.98687- 3 1.40000+ 1 2.10000+ 1 1.62907- 2 1.01560- 2 1.40000+ 1 2.20000+ 1 1.86639- 3 1.01708- 2 1.40000+ 1 2.40000+ 1 6.31872- 4 1.03869- 2 1.40000+ 1 2.50000+ 1 2.42934- 4 1.03898- 2 1.40000+ 1 2.70000+ 1 7.87740- 5 1.03550- 2 1.40000+ 1 2.90000+ 1 9.19425- 4 1.03871- 2 1.40000+ 1 3.00000+ 1 1.23403- 4 1.03999- 2 1.40000+ 1 3.20000+ 1 1.12604- 3 1.04423- 2 1.40000+ 1 3.30000+ 1 4.18675- 5 1.04435- 2 1.60000+ 1 1.60000+ 1 2.25862- 5 1.11279- 2 1.60000+ 1 1.80000+ 1 8.28559- 4 1.12299- 2 1.60000+ 1 1.90000+ 1 8.81459- 5 1.13097- 2 1.60000+ 1 2.10000+ 1 1.01365- 4 1.14789- 2 1.60000+ 1 2.20000+ 1 5.45389- 5 1.14937- 2 1.60000+ 1 2.40000+ 1 1.92805- 5 1.17098- 2 1.60000+ 1 2.50000+ 1 1.04674- 5 1.17127- 2 1.60000+ 1 2.70000+ 1 8.26324- 6 1.16778- 2 1.60000+ 1 2.90000+ 1 1.22300- 4 1.17100- 2 1.60000+ 1 3.00000+ 1 1.32216- 5 1.17228- 2 1.60000+ 1 3.20000+ 1 7.16135- 6 1.17652- 2 1.60000+ 1 3.30000+ 1 1.10179- 6 1.17664- 2 1.80000+ 1 1.80000+ 1 8.13097- 4 1.13319- 2 1.80000+ 1 1.90000+ 1 2.11985- 3 1.14117- 2 1.80000+ 1 2.10000+ 1 9.67912- 4 1.15808- 2 1.80000+ 1 2.20000+ 1 1.30562- 3 1.15956- 2 1.80000+ 1 2.40000+ 1 5.34359- 5 1.18117- 2 1.80000+ 1 2.50000+ 1 3.91134- 5 1.18147- 2 1.80000+ 1 2.70000+ 1 1.55347- 4 1.17798- 2 1.80000+ 1 2.90000+ 1 2.50655- 4 1.18119- 2 1.80000+ 1 3.00000+ 1 3.22814- 4 1.18248- 2 1.80000+ 1 3.20000+ 1 7.05145- 5 1.18671- 2 1.80000+ 1 3.30000+ 1 3.02992- 5 1.18683- 2 1.90000+ 1 1.90000+ 1 5.28835- 5 1.14915- 2 1.90000+ 1 2.10000+ 1 1.10787- 3 1.16607- 2 1.90000+ 1 2.20000+ 1 1.39372- 4 1.16755- 2 1.90000+ 1 2.40000+ 1 3.47062- 5 1.18916- 2 1.90000+ 1 2.50000+ 1 1.76278- 5 1.18945- 2 1.90000+ 1 2.70000+ 1 1.59755- 5 1.18596- 2 1.90000+ 1 2.90000+ 1 3.14547- 4 1.18918- 2 1.90000+ 1 3.00000+ 1 1.54241- 5 1.19046- 2 1.90000+ 1 3.20000+ 1 7.87726- 5 1.19470- 2 1.90000+ 1 3.30000+ 1 3.30519- 6 1.19482- 2 2.10000+ 1 2.10000+ 1 8.19722- 4 1.18298- 2 2.10000+ 1 2.20000+ 1 3.09380- 3 1.18446- 2 2.10000+ 1 2.40000+ 1 1.83435- 4 1.20607- 2 2.10000+ 1 2.50000+ 1 3.77337- 4 1.20637- 2 2.10000+ 1 2.70000+ 1 1.87295- 5 1.20288- 2 2.10000+ 1 2.90000+ 1 1.43782- 4 1.20609- 2 2.10000+ 1 3.00000+ 1 1.66360- 4 1.20738- 2 2.10000+ 1 3.20000+ 1 1.16782- 4 1.21161- 2 2.10000+ 1 3.30000+ 1 7.05125- 5 1.21173- 2 2.20000+ 1 2.20000+ 1 1.69386- 4 1.18594- 2 2.20000+ 1 2.40000+ 1 8.67897- 5 1.20755- 2 2.20000+ 1 2.50000+ 1 3.41167- 5 1.20784- 2 2.20000+ 1 2.70000+ 1 1.07736- 5 1.20436- 2 2.20000+ 1 2.90000+ 1 2.04714- 4 1.20757- 2 2.20000+ 1 3.00000+ 1 2.27448- 5 1.20886- 2 2.20000+ 1 3.20000+ 1 2.33429- 4 1.21309- 2 2.20000+ 1 3.30000+ 1 7.78090- 6 1.21321- 2 2.40000+ 1 2.40000+ 1 3.88455- 6 1.22916- 2 2.40000+ 1 2.50000+ 1 2.91358- 5 1.22945- 2 2.40000+ 1 2.70000+ 1 3.88455- 6 1.22597- 2 2.40000+ 1 2.90000+ 1 9.06445- 6 1.22918- 2 2.40000+ 1 3.00000+ 1 5.82706- 6 1.23046- 2 2.40000+ 1 3.20000+ 1 1.42439- 5 1.23470- 2 2.40000+ 1 3.30000+ 1 1.94228- 6 1.23482- 2 2.50000+ 1 2.50000+ 1 2.00330- 6 1.22975- 2 2.50000+ 1 2.70000+ 1 2.00330- 6 1.22626- 2 2.50000+ 1 2.90000+ 1 6.67800- 6 1.22947- 2 2.50000+ 1 3.00000+ 1 3.33875- 6 1.23076- 2 2.50000+ 1 3.20000+ 1 3.07185- 5 1.23499- 2 2.50000+ 1 3.30000+ 1 6.67800- 7 1.23511- 2 2.70000+ 1 2.70000+ 1 7.04869- 7 1.22278- 2 2.70000+ 1 2.90000+ 1 2.96028- 5 1.22599- 2 2.70000+ 1 3.00000+ 1 2.81942- 6 1.22727- 2 2.70000+ 1 3.20000+ 1 1.40971- 6 1.23151- 2 2.90000+ 1 2.90000+ 1 2.62443- 5 1.22920- 2 2.90000+ 1 3.00000+ 1 6.52379- 5 1.23048- 2 2.90000+ 1 3.20000+ 1 1.42480- 5 1.23472- 2 2.90000+ 1 3.30000+ 1 5.99905- 6 1.23484- 2 3.00000+ 1 3.00000+ 1 1.33047- 6 1.23177- 2 3.00000+ 1 3.20000+ 1 1.46352- 5 1.23601- 2 3.00000+ 1 3.30000+ 1 6.65244- 7 1.23612- 2 3.20000+ 1 3.20000+ 1 4.40720- 6 1.24024- 2 3.20000+ 1 3.30000+ 1 4.95803- 6 1.24036- 2 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.33289- 2 7.84700- 3 1.00000+ 1 1.20159- 4 8.08680- 3 1.10000+ 1 1.08769- 4 8.42530- 3 1.30000+ 1 2.29258- 2 8.83250- 3 1.40000+ 1 2.02138- 1 8.90610- 3 1.60000+ 1 2.61217- 3 1.02290- 2 1.80000+ 1 2.60167- 5 1.03309- 2 1.90000+ 1 2.58597- 5 1.04108- 2 2.10000+ 1 4.07416- 3 1.05799- 2 2.20000+ 1 3.66146- 2 1.05947- 2 2.40000+ 1 2.21258- 5 1.08108- 2 2.50000+ 1 1.24149- 4 1.08137- 2 2.70000+ 1 5.37164- 4 1.07789- 2 2.90000+ 1 5.49644- 6 1.08110- 2 3.00000+ 1 5.30834- 6 1.08238- 2 3.20000+ 1 2.06268- 4 1.08662- 2 3.30000+ 1 1.76708- 3 1.08674- 2 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.70396- 4 4.81700- 3 8.00000+ 0 1.00000+ 1 4.76185- 4 5.05680- 3 8.00000+ 0 1.10000+ 1 2.28503- 2 5.39530- 3 8.00000+ 0 1.30000+ 1 2.64298- 3 5.80250- 3 8.00000+ 0 1.40000+ 1 4.01407- 3 5.87610- 3 8.00000+ 0 1.60000+ 1 3.28974- 4 7.19897- 3 8.00000+ 0 1.80000+ 1 8.41948- 5 7.30093- 3 8.00000+ 0 1.90000+ 1 3.46434- 3 7.38077- 3 8.00000+ 0 2.10000+ 1 2.59282- 4 7.54992- 3 8.00000+ 0 2.20000+ 1 3.56304- 4 7.56471- 3 8.00000+ 0 2.40000+ 1 1.78987- 4 7.78079- 3 8.00000+ 0 2.50000+ 1 3.20057- 4 7.78374- 3 8.00000+ 0 2.70000+ 1 5.85471- 5 7.74888- 3 8.00000+ 0 2.90000+ 1 1.28244- 5 7.78099- 3 8.00000+ 0 3.00000+ 1 4.90670- 4 7.79385- 3 8.00000+ 0 3.20000+ 1 1.72855- 5 7.83621- 3 8.00000+ 0 3.30000+ 1 7.24862- 6 7.83740- 3 1.00000+ 1 1.00000+ 1 8.02907- 5 5.29660- 3 1.00000+ 1 1.10000+ 1 3.83540- 2 5.63510- 3 1.00000+ 1 1.30000+ 1 1.96154- 3 6.04230- 3 1.00000+ 1 1.40000+ 1 1.71827- 2 6.11590- 3 1.00000+ 1 1.60000+ 1 9.64663- 5 7.43877- 3 1.00000+ 1 1.80000+ 1 3.34548- 5 7.54073- 3 1.00000+ 1 1.90000+ 1 6.04020- 3 7.62057- 3 1.00000+ 1 2.10000+ 1 3.57406- 4 7.78972- 3 1.00000+ 1 2.20000+ 1 2.59992- 3 7.80451- 3 1.00000+ 1 2.40000+ 1 1.84010- 4 8.02059- 3 1.00000+ 1 2.50000+ 1 4.73396- 4 8.02354- 3 1.00000+ 1 2.70000+ 1 1.72853- 5 7.98868- 3 1.00000+ 1 2.90000+ 1 5.57590- 6 8.02079- 3 1.00000+ 1 3.00000+ 1 8.60877- 4 8.03365- 3 1.00000+ 1 3.20000+ 1 2.56494- 5 8.07601- 3 1.00000+ 1 3.30000+ 1 5.74306- 5 8.07720- 3 1.10000+ 1 1.10000+ 1 4.97023- 2 5.97360- 3 1.10000+ 1 1.30000+ 1 5.19470- 2 6.38080- 3 1.10000+ 1 1.40000+ 1 7.22934- 2 6.45440- 3 1.10000+ 1 1.60000+ 1 5.62493- 3 7.77727- 3 1.10000+ 1 1.80000+ 1 8.44665- 3 7.87923- 3 1.10000+ 1 1.90000+ 1 1.88929- 2 7.95907- 3 1.10000+ 1 2.10000+ 1 1.00220- 2 8.12822- 3 1.10000+ 1 2.20000+ 1 1.37100- 2 8.14301- 3 1.10000+ 1 2.40000+ 1 7.42737- 4 8.35909- 3 1.10000+ 1 2.50000+ 1 9.30660- 4 8.36204- 3 1.10000+ 1 2.70000+ 1 1.04994- 3 8.32718- 3 1.10000+ 1 2.90000+ 1 1.33542- 3 8.35929- 3 1.10000+ 1 3.00000+ 1 2.79849- 3 8.37215- 3 1.10000+ 1 3.20000+ 1 7.27659- 4 8.41451- 3 1.10000+ 1 3.30000+ 1 3.13353- 4 8.41570- 3 1.30000+ 1 1.30000+ 1 7.34159- 3 6.78800- 3 1.30000+ 1 1.40000+ 1 1.38064- 1 6.86160- 3 1.30000+ 1 1.60000+ 1 6.22270- 4 8.18447- 3 1.30000+ 1 1.80000+ 1 4.44952- 4 8.28643- 3 1.30000+ 1 1.90000+ 1 7.49599- 3 8.36627- 3 1.30000+ 1 2.10000+ 1 2.42786- 3 8.53542- 3 1.30000+ 1 2.20000+ 1 1.91038- 2 8.55021- 3 1.30000+ 1 2.40000+ 1 4.15409- 4 8.76629- 3 1.30000+ 1 2.50000+ 1 1.41462- 3 8.76924- 3 1.30000+ 1 2.70000+ 1 1.15427- 4 8.73438- 3 1.30000+ 1 2.90000+ 1 7.02555- 5 8.76649- 3 1.30000+ 1 3.00000+ 1 1.05104- 3 8.77935- 3 1.30000+ 1 3.20000+ 1 1.72854- 4 8.82171- 3 1.30000+ 1 3.30000+ 1 4.17641- 4 8.82290- 3 1.40000+ 1 1.40000+ 1 9.23302- 2 6.93520- 3 1.40000+ 1 1.60000+ 1 9.73553- 4 8.25807- 3 1.40000+ 1 1.80000+ 1 3.45272- 3 8.36003- 3 1.40000+ 1 1.90000+ 1 1.17731- 2 8.43987- 3 1.40000+ 1 2.10000+ 1 2.30818- 2 8.60902- 3 1.40000+ 1 2.20000+ 1 2.91231- 2 8.62381- 3 1.40000+ 1 2.40000+ 1 4.40848- 3 8.83989- 3 1.40000+ 1 2.50000+ 1 4.02519- 3 8.84284- 3 1.40000+ 1 2.70000+ 1 1.82336- 4 8.80798- 3 1.40000+ 1 2.90000+ 1 5.36966- 4 8.84009- 3 1.40000+ 1 3.00000+ 1 1.69841- 3 8.85295- 3 1.40000+ 1 3.20000+ 1 1.64223- 3 8.89531- 3 1.40000+ 1 3.30000+ 1 6.50164- 4 8.89650- 3 1.60000+ 1 1.60000+ 1 3.12261- 5 9.58094- 3 1.60000+ 1 1.80000+ 1 1.78437- 5 9.68290- 3 1.60000+ 1 1.90000+ 1 8.53682- 4 9.76274- 3 1.60000+ 1 2.10000+ 1 6.69123- 5 9.93189- 3 1.60000+ 1 2.20000+ 1 9.42321- 5 9.94668- 3 1.60000+ 1 2.40000+ 1 2.45344- 5 1.01628- 2 1.60000+ 1 2.50000+ 1 5.01844- 5 1.01657- 2 1.60000+ 1 2.70000+ 1 1.11519- 5 1.01308- 2 1.60000+ 1 2.90000+ 1 2.78797- 6 1.01630- 2 1.60000+ 1 3.00000+ 1 1.20998- 4 1.01758- 2 1.60000+ 1 3.20000+ 1 4.46096- 6 1.02182- 2 1.60000+ 1 3.30000+ 1 1.67278- 6 1.02194- 2 1.80000+ 1 1.80000+ 1 2.23024- 6 9.78486- 3 1.80000+ 1 1.90000+ 1 1.32425- 3 9.86470- 3 1.80000+ 1 2.10000+ 1 7.69474- 5 1.00338- 2 1.80000+ 1 2.20000+ 1 5.52028- 4 1.00486- 2 1.80000+ 1 2.40000+ 1 2.67645- 5 1.02647- 2 1.80000+ 1 2.50000+ 1 6.52397- 5 1.02677- 2 1.80000+ 1 2.70000+ 1 3.34552- 6 1.02328- 2 1.80000+ 1 2.90000+ 1 5.57597- 7 1.02649- 2 1.80000+ 1 3.00000+ 1 1.88466- 4 1.02778- 2 1.80000+ 1 3.20000+ 1 5.57597- 6 1.03201- 2 1.80000+ 1 3.30000+ 1 1.22675- 5 1.03213- 2 1.90000+ 1 1.90000+ 1 1.72181- 3 9.94454- 3 1.90000+ 1 2.10000+ 1 1.44860- 3 1.01137- 2 1.90000+ 1 2.20000+ 1 2.19756- 3 1.01285- 2 1.90000+ 1 2.40000+ 1 8.80969- 5 1.03446- 2 1.90000+ 1 2.50000+ 1 1.16543- 4 1.03475- 2 1.90000+ 1 2.70000+ 1 1.59465- 4 1.03126- 2 1.90000+ 1 2.90000+ 1 2.09092- 4 1.03448- 2 1.90000+ 1 3.00000+ 1 5.06290- 4 1.03576- 2 1.90000+ 1 3.20000+ 1 1.05385- 4 1.04000- 2 1.90000+ 1 3.30000+ 1 5.01837- 5 1.04012- 2 2.10000+ 1 2.10000+ 1 1.93479- 4 1.02828- 2 2.10000+ 1 2.20000+ 1 3.32818- 3 1.02976- 2 2.10000+ 1 2.40000+ 1 4.62798- 5 1.05137- 2 2.10000+ 1 2.50000+ 1 1.51100- 4 1.05167- 2 2.10000+ 1 2.70000+ 1 1.22673- 5 1.04818- 2 2.10000+ 1 2.90000+ 1 1.22673- 5 1.05139- 2 2.10000+ 1 3.00000+ 1 2.03520- 4 1.05268- 2 2.10000+ 1 3.20000+ 1 2.73210- 5 1.05691- 2 2.10000+ 1 3.30000+ 1 7.30429- 5 1.05703- 2 2.20000+ 1 2.20000+ 1 2.52008- 3 1.03124- 2 2.20000+ 1 2.40000+ 1 5.24713- 4 1.05285- 2 2.20000+ 1 2.50000+ 1 4.72369- 4 1.05314- 2 2.20000+ 1 2.70000+ 1 1.94793- 5 1.04966- 2 2.20000+ 1 2.90000+ 1 9.43487- 5 1.05287- 2 2.20000+ 1 3.00000+ 1 3.45131- 4 1.05416- 2 2.20000+ 1 3.20000+ 1 2.59920- 4 1.05839- 2 2.20000+ 1 3.30000+ 1 1.12611- 4 1.05851- 2 2.40000+ 1 2.40000+ 1 2.53042- 6 1.07446- 2 2.40000+ 1 2.50000+ 1 7.00096- 5 1.07475- 2 2.40000+ 1 2.70000+ 1 5.90416- 6 1.07127- 2 2.40000+ 1 2.90000+ 1 5.90416- 6 1.07448- 2 2.40000+ 1 3.00000+ 1 1.85573- 5 1.07576- 2 2.40000+ 1 3.20000+ 1 5.06084- 6 1.08000- 2 2.40000+ 1 3.30000+ 1 1.51821- 5 1.08012- 2 2.50000+ 1 2.50000+ 1 1.88721- 5 1.07505- 2 2.50000+ 1 2.70000+ 1 1.04122- 5 1.07156- 2 2.50000+ 1 2.90000+ 1 1.10629- 5 1.07477- 2 2.50000+ 1 3.00000+ 1 1.88721- 5 1.07606- 2 2.50000+ 1 3.20000+ 1 1.17136- 5 1.08029- 2 2.50000+ 1 3.30000+ 1 1.04122- 5 1.08041- 2 2.70000+ 1 2.70000+ 1 1.81307- 6 1.06808- 2 2.70000+ 1 2.90000+ 1 9.06554- 7 1.07129- 2 2.70000+ 1 3.00000+ 1 3.62598- 5 1.07257- 2 2.70000+ 1 3.20000+ 1 9.06554- 7 1.07681- 2 2.70000+ 1 3.30000+ 1 9.06554- 7 1.07693- 2 2.90000+ 1 3.00000+ 1 6.40893- 5 1.07578- 2 2.90000+ 1 3.20000+ 1 2.41839- 6 1.08002- 2 2.90000+ 1 3.30000+ 1 3.62759- 6 1.08014- 2 3.00000+ 1 3.00000+ 1 9.97725- 5 1.07707- 2 3.00000+ 1 3.20000+ 1 3.87170- 5 1.08131- 2 3.00000+ 1 3.30000+ 1 1.93588- 5 1.08142- 2 3.20000+ 1 3.20000+ 1 1.55198- 6 1.08554- 2 3.20000+ 1 3.30000+ 1 6.98403- 6 1.08566- 2 3.30000+ 1 3.30000+ 1 3.34546- 6 1.08578- 2 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 9.86163- 6 2.39800- 4 1.10000+ 1 2.92478- 4 5.78300- 4 1.80000+ 1 1.08018- 3 2.48393- 3 1.90000+ 1 9.75962- 4 2.56377- 3 2.90000+ 1 2.36828- 4 2.96399- 3 3.00000+ 1 2.14563- 4 2.97685- 3 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.78321- 2 1.73590- 4 1.00000+ 1 2.50000+ 1 5.07778- 2 1.76540- 4 1.00000+ 1 2.70000+ 1 1.04462- 2 1.41680- 4 1.00000+ 1 2.90000+ 1 9.54484- 3 1.73790- 4 1.00000+ 1 3.00000+ 1 1.31175- 2 1.86650- 4 1.00000+ 1 3.20000+ 1 2.57192- 3 2.29010- 4 1.00000+ 1 3.30000+ 1 3.38283- 3 2.30200- 4 1.00000+ 1 4.10000+ 1 9.16331- 4 2.31410- 4 1.10000+ 1 1.80000+ 1 6.32738- 2 3.22300- 5 1.10000+ 1 1.90000+ 1 7.12582- 2 1.12070- 4 1.10000+ 1 2.10000+ 1 2.56973- 2 2.81220- 4 1.10000+ 1 2.20000+ 1 3.94161- 2 2.96010- 4 1.10000+ 1 2.40000+ 1 1.59776- 1 5.12090- 4 1.10000+ 1 2.50000+ 1 1.99061- 1 5.15040- 4 1.10000+ 1 2.70000+ 1 1.02549- 2 4.80180- 4 1.10000+ 1 2.90000+ 1 9.31654- 3 5.12290- 4 1.10000+ 1 3.00000+ 1 1.05941- 2 5.25150- 4 1.10000+ 1 3.20000+ 1 1.03043- 3 5.67510- 4 1.10000+ 1 3.30000+ 1 1.56925- 3 5.68700- 4 1.10000+ 1 4.10000+ 1 9.19992- 4 5.69910- 4 1.30000+ 1 1.60000+ 1 2.59284- 2 3.37470- 4 1.30000+ 1 1.80000+ 1 5.73363- 3 4.39430- 4 1.30000+ 1 1.90000+ 1 6.22688- 3 5.19270- 4 1.30000+ 1 2.10000+ 1 8.78253- 3 6.88420- 4 1.30000+ 1 2.20000+ 1 1.09265- 2 7.03210- 4 1.30000+ 1 2.40000+ 1 8.21673- 3 9.19290- 4 1.30000+ 1 2.50000+ 1 7.58803- 3 9.22240- 4 1.30000+ 1 2.70000+ 1 3.18000- 3 8.87380- 4 1.30000+ 1 2.90000+ 1 7.14417- 4 9.19490- 4 1.30000+ 1 3.00000+ 1 7.29189- 4 9.32350- 4 1.30000+ 1 3.20000+ 1 3.27527- 4 9.74710- 4 1.30000+ 1 3.30000+ 1 4.13798- 4 9.75900- 4 1.30000+ 1 4.10000+ 1 2.71093- 4 9.77110- 4 1.40000+ 1 1.60000+ 1 3.66720- 2 4.11070- 4 1.40000+ 1 1.80000+ 1 1.04241- 3 5.13030- 4 1.40000+ 1 1.90000+ 1 1.11109- 2 5.92870- 4 1.40000+ 1 2.10000+ 1 1.21158- 2 7.62020- 4 1.40000+ 1 2.20000+ 1 1.75659- 2 7.76810- 4 1.40000+ 1 2.40000+ 1 9.31225- 3 9.92890- 4 1.40000+ 1 2.50000+ 1 1.45737- 2 9.95840- 4 1.40000+ 1 2.70000+ 1 4.43955- 3 9.60980- 4 1.40000+ 1 2.90000+ 1 1.45051- 4 9.93090- 4 1.40000+ 1 3.00000+ 1 1.29360- 3 1.00595- 3 1.40000+ 1 3.20000+ 1 4.86312- 4 1.04831- 3 1.40000+ 1 3.30000+ 1 6.43479- 4 1.04950- 3 1.40000+ 1 4.10000+ 1 3.78710- 4 1.05071- 3 1.60000+ 1 1.60000+ 1 2.93260- 3 1.73394- 3 1.60000+ 1 1.80000+ 1 5.05828- 3 1.83590- 3 1.60000+ 1 1.90000+ 1 8.54777- 3 1.91574- 3 1.60000+ 1 2.10000+ 1 9.66679- 3 2.08489- 3 1.60000+ 1 2.20000+ 1 1.36962- 2 2.09968- 3 1.60000+ 1 2.40000+ 1 6.16419- 3 2.31576- 3 1.60000+ 1 2.50000+ 1 7.76323- 3 2.31871- 3 1.60000+ 1 2.70000+ 1 9.02547- 4 2.28385- 3 1.60000+ 1 2.90000+ 1 8.04691- 4 2.31596- 3 1.60000+ 1 3.00000+ 1 1.30060- 3 2.32882- 3 1.60000+ 1 3.20000+ 1 4.21385- 4 2.37118- 3 1.60000+ 1 3.30000+ 1 5.66442- 4 2.37237- 3 1.60000+ 1 4.10000+ 1 8.01188- 5 2.37358- 3 1.80000+ 1 1.80000+ 1 2.26108- 4 1.93786- 3 1.80000+ 1 1.90000+ 1 6.24077- 4 2.01770- 3 1.80000+ 1 2.10000+ 1 3.37192- 4 2.18685- 3 1.80000+ 1 2.20000+ 1 1.93191- 4 2.20164- 3 1.80000+ 1 2.40000+ 1 5.75146- 5 2.41772- 3 1.80000+ 1 2.50000+ 1 4.53151- 4 2.42067- 3 1.80000+ 1 2.70000+ 1 6.02026- 4 2.38581- 3 1.80000+ 1 2.90000+ 1 5.51931- 5 2.41792- 3 1.80000+ 1 3.00000+ 1 7.18918- 5 2.43078- 3 1.80000+ 1 3.20000+ 1 1.32188- 5 2.47314- 3 1.80000+ 1 3.30000+ 1 9.27617- 6 2.47433- 3 1.80000+ 1 4.10000+ 1 5.12517- 5 2.47554- 3 1.90000+ 1 1.90000+ 1 7.57872- 4 2.09754- 3 1.90000+ 1 2.10000+ 1 6.34944- 4 2.26669- 3 1.90000+ 1 2.20000+ 1 1.48813- 3 2.28148- 3 1.90000+ 1 2.40000+ 1 5.41959- 4 2.49756- 3 1.90000+ 1 2.50000+ 1 9.82825- 4 2.50051- 3 1.90000+ 1 2.70000+ 1 1.02151- 3 2.46565- 3 1.90000+ 1 2.90000+ 1 8.39502- 5 2.49776- 3 1.90000+ 1 3.00000+ 1 1.94568- 4 2.51062- 3 1.90000+ 1 3.20000+ 1 2.82923- 5 2.55298- 3 1.90000+ 1 3.30000+ 1 5.91364- 5 2.55417- 3 1.90000+ 1 4.10000+ 1 8.71941- 5 2.55538- 3 2.10000+ 1 2.10000+ 1 1.12739- 4 2.43584- 3 2.10000+ 1 2.20000+ 1 4.98674- 4 2.45063- 3 2.10000+ 1 2.40000+ 1 4.57614- 4 2.66671- 3 2.10000+ 1 2.50000+ 1 3.24524- 3 2.66966- 3 2.10000+ 1 2.70000+ 1 1.16019- 3 2.63480- 3 2.10000+ 1 2.90000+ 1 3.77377- 5 2.66691- 3 2.10000+ 1 3.00000+ 1 7.83252- 5 2.67977- 3 2.10000+ 1 3.20000+ 1 8.06981- 6 2.72213- 3 2.10000+ 1 3.30000+ 1 1.78007- 5 2.72332- 3 2.10000+ 1 4.10000+ 1 9.84941- 5 2.72453- 3 2.20000+ 1 2.20000+ 1 2.87203- 4 2.46542- 3 2.20000+ 1 2.40000+ 1 3.00084- 3 2.68150- 3 2.20000+ 1 2.50000+ 1 1.76267- 3 2.68445- 3 2.20000+ 1 2.70000+ 1 1.59348- 3 2.64959- 3 2.20000+ 1 2.90000+ 1 2.30668- 5 2.68170- 3 2.20000+ 1 3.00000+ 1 1.76466- 4 2.69456- 3 2.20000+ 1 3.20000+ 1 1.70704- 5 2.73692- 3 2.20000+ 1 3.30000+ 1 2.00685- 5 2.73811- 3 2.20000+ 1 4.10000+ 1 1.35411- 4 2.73932- 3 2.40000+ 1 2.40000+ 1 5.28566- 4 2.89758- 3 2.40000+ 1 2.50000+ 1 3.67313- 3 2.90053- 3 2.40000+ 1 2.70000+ 1 6.53602- 4 2.86567- 3 2.40000+ 1 2.90000+ 1 6.35443- 6 2.89778- 3 2.40000+ 1 3.00000+ 1 4.92471- 5 2.91064- 3 2.40000+ 1 3.20000+ 1 1.74748- 5 2.95300- 3 2.40000+ 1 3.30000+ 1 1.21192- 4 2.95419- 3 2.40000+ 1 4.10000+ 1 5.49201- 5 2.95540- 3 2.50000+ 1 2.50000+ 1 1.24763- 3 2.90348- 3 2.50000+ 1 2.70000+ 1 8.26374- 4 2.86862- 3 2.50000+ 1 2.90000+ 1 6.34087- 5 2.90073- 3 2.50000+ 1 3.00000+ 1 9.42020- 5 2.91359- 3 2.50000+ 1 3.20000+ 1 1.32065- 4 2.95595- 3 2.50000+ 1 3.30000+ 1 6.93395- 5 2.95714- 3 2.50000+ 1 4.10000+ 1 6.95687- 5 2.95835- 3 2.70000+ 1 2.70000+ 1 9.56810- 5 2.83376- 3 2.70000+ 1 2.90000+ 1 1.42827- 4 2.86587- 3 2.70000+ 1 3.00000+ 1 2.30929- 4 2.87873- 3 2.70000+ 1 3.20000+ 1 7.36550- 5 2.92109- 3 2.70000+ 1 3.30000+ 1 9.87810- 5 2.92228- 3 2.70000+ 1 4.10000+ 1 1.68645- 5 2.92349- 3 2.90000+ 1 2.90000+ 1 6.29895- 6 2.89798- 3 2.90000+ 1 3.00000+ 1 1.84465- 5 2.91084- 3 2.90000+ 1 3.20000+ 1 2.69948- 6 2.95320- 3 2.90000+ 1 3.30000+ 1 2.24958- 6 2.95439- 3 2.90000+ 1 4.10000+ 1 1.57473- 5 2.95560- 3 3.00000+ 1 3.00000+ 1 2.74406- 5 2.92370- 3 3.00000+ 1 3.20000+ 1 7.91555- 6 2.96606- 3 3.00000+ 1 3.30000+ 1 1.63584- 5 2.96725- 3 3.00000+ 1 4.10000+ 1 3.00782- 5 2.96846- 3 3.20000+ 1 3.30000+ 1 6.95726- 7 3.00961- 3 3.20000+ 1 4.10000+ 1 4.17426- 6 3.01082- 3 3.30000+ 1 3.30000+ 1 2.31899- 7 3.01080- 3 3.30000+ 1 4.10000+ 1 5.56588- 6 3.01201- 3 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 8.27133- 4 7.45700- 4 1.60000+ 1 6.50222- 4 2.14217- 3 2.10000+ 1 3.45051- 3 2.49312- 3 2.70000+ 1 1.30870- 4 2.69208- 3 3.20000+ 1 2.03151- 4 2.77941- 3 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.76417- 3 4.14200- 5 1.10000+ 1 2.20000+ 1 1.66480- 2 5.62100- 5 1.10000+ 1 2.40000+ 1 2.77905- 2 2.72290- 4 1.10000+ 1 2.50000+ 1 2.69075- 2 2.75240- 4 1.10000+ 1 2.70000+ 1 3.17766- 3 2.40380- 4 1.10000+ 1 2.90000+ 1 3.74985- 3 2.72490- 4 1.10000+ 1 3.00000+ 1 2.85089- 3 2.85350- 4 1.10000+ 1 3.20000+ 1 3.21350- 4 3.27710- 4 1.10000+ 1 3.30000+ 1 7.18586- 4 3.28900- 4 1.10000+ 1 4.10000+ 1 2.72877- 4 3.30110- 4 1.30000+ 1 1.60000+ 1 5.21123- 2 9.76700- 5 1.30000+ 1 1.80000+ 1 5.27479- 2 1.99630- 4 1.30000+ 1 1.90000+ 1 5.54110- 2 2.79470- 4 1.30000+ 1 2.10000+ 1 2.06616- 2 4.48620- 4 1.30000+ 1 2.20000+ 1 2.45487- 2 4.63410- 4 1.30000+ 1 2.40000+ 1 1.35439- 1 6.79490- 4 1.30000+ 1 2.50000+ 1 2.07112- 1 6.82440- 4 1.30000+ 1 2.70000+ 1 9.65431- 3 6.47580- 4 1.30000+ 1 2.90000+ 1 7.17618- 3 6.79690- 4 1.30000+ 1 3.00000+ 1 8.10863- 3 6.92550- 4 1.30000+ 1 3.20000+ 1 9.11381- 4 7.34910- 4 1.30000+ 1 3.30000+ 1 1.09277- 3 7.36100- 4 1.30000+ 1 4.10000+ 1 8.66720- 4 7.37310- 4 1.40000+ 1 1.60000+ 1 8.52959- 3 1.71270- 4 1.40000+ 1 1.80000+ 1 5.99346- 2 2.73230- 4 1.40000+ 1 1.90000+ 1 5.31810- 3 3.53070- 4 1.40000+ 1 2.10000+ 1 9.78275- 4 5.22220- 4 1.40000+ 1 2.20000+ 1 2.90789- 3 5.37010- 4 1.40000+ 1 2.40000+ 1 5.00956- 3 7.53090- 4 1.40000+ 1 2.50000+ 1 3.63553- 3 7.56040- 4 1.40000+ 1 2.70000+ 1 1.05223- 3 7.21180- 4 1.40000+ 1 2.90000+ 1 6.47541- 3 7.53290- 4 1.40000+ 1 3.00000+ 1 7.04812- 4 7.66150- 4 1.40000+ 1 3.20000+ 1 2.57532- 5 8.08510- 4 1.40000+ 1 3.30000+ 1 1.12289- 4 8.09700- 4 1.40000+ 1 4.10000+ 1 9.03320- 5 8.10910- 4 1.60000+ 1 1.60000+ 1 8.30591- 4 1.49414- 3 1.60000+ 1 1.80000+ 1 1.18449- 2 1.59610- 3 1.60000+ 1 1.90000+ 1 1.71639- 3 1.67594- 3 1.60000+ 1 2.10000+ 1 3.86224- 4 1.84509- 3 1.60000+ 1 2.20000+ 1 1.37970- 3 1.85988- 3 1.60000+ 1 2.40000+ 1 4.54702- 5 2.07596- 3 1.60000+ 1 2.50000+ 1 9.11187- 4 2.07891- 3 1.60000+ 1 2.70000+ 1 2.40595- 4 2.04405- 3 1.60000+ 1 2.90000+ 1 1.24154- 3 2.07616- 3 1.60000+ 1 3.00000+ 1 2.36576- 4 2.08902- 3 1.60000+ 1 3.20000+ 1 1.26631- 5 2.13138- 3 1.60000+ 1 3.30000+ 1 5.29530- 5 2.13257- 3 1.60000+ 1 4.10000+ 1 2.12969- 5 2.13378- 3 1.80000+ 1 1.80000+ 1 9.00276- 3 1.69806- 3 1.80000+ 1 1.90000+ 1 2.58124- 2 1.77790- 3 1.80000+ 1 2.10000+ 1 2.52126- 2 1.94705- 3 1.80000+ 1 2.20000+ 1 4.05337- 2 1.96184- 3 1.80000+ 1 2.40000+ 1 1.32414- 2 2.17792- 3 1.80000+ 1 2.50000+ 1 2.24666- 2 2.18087- 3 1.80000+ 1 2.70000+ 1 2.18956- 3 2.14601- 3 1.80000+ 1 2.90000+ 1 2.41229- 3 2.17812- 3 1.80000+ 1 3.00000+ 1 3.89952- 3 2.19098- 3 1.80000+ 1 3.20000+ 1 1.10053- 3 2.23334- 3 1.80000+ 1 3.30000+ 1 1.66061- 3 2.23453- 3 1.80000+ 1 4.10000+ 1 1.98578- 4 2.23574- 3 1.90000+ 1 1.90000+ 1 7.08554- 4 1.85774- 3 1.90000+ 1 2.10000+ 1 1.82346- 3 2.02689- 3 1.90000+ 1 2.20000+ 1 1.53509- 3 2.04168- 3 1.90000+ 1 2.40000+ 1 9.32105- 3 2.25776- 3 1.90000+ 1 2.50000+ 1 2.58655- 3 2.26071- 3 1.90000+ 1 2.70000+ 1 2.08362- 4 2.22585- 3 1.90000+ 1 2.90000+ 1 2.77026- 3 2.25796- 3 1.90000+ 1 3.00000+ 1 1.81885- 4 2.27082- 3 1.90000+ 1 3.20000+ 1 6.56177- 5 2.31318- 3 1.90000+ 1 3.30000+ 1 5.64046- 5 2.31437- 3 1.90000+ 1 4.10000+ 1 1.78430- 5 2.31558- 3 2.10000+ 1 2.10000+ 1 8.53026- 4 2.19604- 3 2.10000+ 1 2.20000+ 1 2.28327- 3 2.21083- 3 2.10000+ 1 2.40000+ 1 1.07061- 3 2.42691- 3 2.10000+ 1 2.50000+ 1 1.94668- 3 2.42986- 3 2.10000+ 1 2.70000+ 1 6.67669- 5 2.39500- 3 2.10000+ 1 2.90000+ 1 2.63814- 3 2.42711- 3 2.10000+ 1 3.00000+ 1 2.43476- 4 2.43997- 3 2.10000+ 1 3.20000+ 1 6.33149- 5 2.48233- 3 2.10000+ 1 3.30000+ 1 8.74918- 5 2.48352- 3 2.10000+ 1 4.10000+ 1 5.75588- 6 2.48473- 3 2.20000+ 1 2.20000+ 1 5.54285- 4 2.22562- 3 2.20000+ 1 2.40000+ 1 3.28416- 3 2.44170- 3 2.20000+ 1 2.50000+ 1 7.25254- 4 2.44465- 3 2.20000+ 1 2.70000+ 1 2.04337- 4 2.40979- 3 2.20000+ 1 2.90000+ 1 4.30164- 3 2.44190- 3 2.20000+ 1 3.00000+ 1 1.82464- 4 2.45476- 3 2.20000+ 1 3.20000+ 1 8.63387- 5 2.49712- 3 2.20000+ 1 3.30000+ 1 3.97150- 5 2.49831- 3 2.20000+ 1 4.10000+ 1 1.78433- 5 2.49952- 3 2.40000+ 1 2.40000+ 1 2.95091- 3 2.65778- 3 2.40000+ 1 2.50000+ 1 1.90455- 2 2.66073- 3 2.40000+ 1 2.70000+ 1 3.45328- 6 2.62587- 3 2.40000+ 1 2.90000+ 1 1.28183- 3 2.65798- 3 2.40000+ 1 3.00000+ 1 1.32327- 3 2.67084- 3 2.40000+ 1 3.20000+ 1 5.12290- 5 2.71320- 3 2.40000+ 1 3.30000+ 1 1.47928- 4 2.71439- 3 2.50000+ 1 2.50000+ 1 9.96938- 4 2.66368- 3 2.50000+ 1 2.70000+ 1 1.41594- 4 2.62882- 3 2.50000+ 1 2.90000+ 1 2.15211- 3 2.66093- 3 2.50000+ 1 3.00000+ 1 3.30962- 4 2.67379- 3 2.50000+ 1 3.20000+ 1 8.63375- 5 2.71615- 3 2.50000+ 1 3.30000+ 1 3.05064- 5 2.71734- 3 2.50000+ 1 4.10000+ 1 1.26631- 5 2.71855- 3 2.70000+ 1 2.70000+ 1 2.05066- 5 2.59396- 3 2.70000+ 1 2.90000+ 1 2.74095- 4 2.62607- 3 2.70000+ 1 3.00000+ 1 3.41777- 5 2.63893- 3 2.70000+ 1 3.20000+ 1 2.73416- 6 2.68129- 3 2.70000+ 1 3.30000+ 1 9.57006- 6 2.68248- 3 2.70000+ 1 4.10000+ 1 3.41777- 6 2.68369- 3 2.90000+ 1 2.90000+ 1 2.29831- 4 2.65818- 3 2.90000+ 1 3.00000+ 1 6.31636- 4 2.67104- 3 2.90000+ 1 3.20000+ 1 1.73673- 4 2.71340- 3 2.90000+ 1 3.30000+ 1 2.65259- 4 2.71459- 3 2.90000+ 1 4.10000+ 1 3.11058- 5 2.71580- 3 3.00000+ 1 3.00000+ 1 4.03528- 5 2.68390- 3 3.00000+ 1 3.20000+ 1 3.02646- 5 2.72626- 3 3.00000+ 1 3.30000+ 1 2.42125- 5 2.72745- 3 3.00000+ 1 4.10000+ 1 8.07039- 6 2.72866- 3 3.20000+ 1 3.20000+ 1 1.07029- 6 2.76862- 3 3.20000+ 1 3.30000+ 1 3.21063- 6 2.76981- 3 3.30000+ 1 3.30000+ 1 9.26453- 7 2.77100- 3 3.30000+ 1 4.10000+ 1 9.26453- 7 2.77221- 3 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.62828- 5 4.07200- 4 1.40000+ 1 2.53502- 4 4.80800- 4 1.60000+ 1 1.10834- 3 1.80367- 3 2.10000+ 1 5.39917- 4 2.15462- 3 2.20000+ 1 4.22536- 3 2.16941- 3 2.70000+ 1 2.12359- 4 2.35358- 3 3.20000+ 1 3.00550- 5 2.44091- 3 3.30000+ 1 2.29717- 4 2.44210- 3 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.01659- 2 1.10120- 4 1.30000+ 1 2.20000+ 1 1.00801- 2 1.24910- 4 1.30000+ 1 2.40000+ 1 1.52088- 2 3.40990- 4 1.30000+ 1 2.50000+ 1 2.21522- 2 3.43940- 4 1.30000+ 1 2.70000+ 1 2.21435- 3 3.09080- 4 1.30000+ 1 2.90000+ 1 1.75003- 3 3.41190- 4 1.30000+ 1 3.00000+ 1 6.08365- 3 3.54050- 4 1.30000+ 1 3.20000+ 1 3.75264- 4 3.96410- 4 1.30000+ 1 3.30000+ 1 3.61658- 4 3.97600- 4 1.30000+ 1 4.10000+ 1 1.95137- 4 3.98810- 4 1.40000+ 1 1.90000+ 1 1.19137- 1 1.45700- 5 1.40000+ 1 2.10000+ 1 4.51132- 2 1.83720- 4 1.40000+ 1 2.20000+ 1 6.25047- 2 1.98510- 4 1.40000+ 1 2.40000+ 1 1.56052- 1 4.14590- 4 1.40000+ 1 2.50000+ 1 1.88136- 1 4.17540- 4 1.40000+ 1 2.70000+ 1 1.31269- 2 3.82680- 4 1.40000+ 1 2.90000+ 1 1.19074- 2 4.14790- 4 1.40000+ 1 3.00000+ 1 1.56250- 2 4.27650- 4 1.40000+ 1 3.20000+ 1 1.68058- 3 4.70010- 4 1.40000+ 1 3.30000+ 1 2.32684- 3 4.71200- 4 1.40000+ 1 4.10000+ 1 1.17064- 3 4.72410- 4 1.60000+ 1 1.60000+ 1 4.89930- 4 1.15564- 3 1.60000+ 1 1.80000+ 1 8.50643- 4 1.25760- 3 1.60000+ 1 1.90000+ 1 1.43254- 2 1.33744- 3 1.60000+ 1 2.10000+ 1 8.45143- 4 1.50659- 3 1.60000+ 1 2.20000+ 1 9.70066- 4 1.52138- 3 1.60000+ 1 2.40000+ 1 1.42261- 3 1.73746- 3 1.60000+ 1 2.50000+ 1 2.37060- 3 1.74041- 3 1.60000+ 1 2.70000+ 1 1.40857- 4 1.70555- 3 1.60000+ 1 2.90000+ 1 1.04111- 4 1.73766- 3 1.60000+ 1 3.00000+ 1 1.46981- 3 1.75052- 3 1.60000+ 1 3.20000+ 1 3.30704- 5 1.79288- 3 1.60000+ 1 3.30000+ 1 3.55211- 5 1.79407- 3 1.60000+ 1 4.10000+ 1 1.22481- 5 1.79528- 3 1.80000+ 1 1.80000+ 1 6.36916- 5 1.35956- 3 1.80000+ 1 1.90000+ 1 1.73579- 2 1.43940- 3 1.80000+ 1 2.10000+ 1 3.85226- 4 1.60855- 3 1.80000+ 1 2.20000+ 1 3.46945- 3 1.62334- 3 1.80000+ 1 2.40000+ 1 1.53534- 3 1.83942- 3 1.80000+ 1 2.50000+ 1 8.65375- 3 1.84237- 3 1.80000+ 1 2.70000+ 1 1.10237- 4 1.80751- 3 1.80000+ 1 2.90000+ 1 1.40860- 5 1.83962- 3 1.80000+ 1 3.00000+ 1 1.81279- 3 1.85248- 3 1.80000+ 1 3.20000+ 1 1.53106- 5 1.89484- 3 1.80000+ 1 3.30000+ 1 1.20035- 4 1.89603- 3 1.80000+ 1 4.10000+ 1 9.18636- 6 1.89724- 3 1.90000+ 1 1.90000+ 1 2.34441- 2 1.51924- 3 1.90000+ 1 2.10000+ 1 3.34819- 2 1.68839- 3 1.90000+ 1 2.20000+ 1 4.40540- 2 1.70318- 3 1.90000+ 1 2.40000+ 1 2.54400- 2 1.91926- 3 1.90000+ 1 2.50000+ 1 2.91114- 2 1.92221- 3 1.90000+ 1 2.70000+ 1 2.59779- 3 1.88735- 3 1.90000+ 1 2.90000+ 1 2.70852- 3 1.91946- 3 1.90000+ 1 3.00000+ 1 5.96214- 3 1.93232- 3 1.90000+ 1 3.20000+ 1 1.42383- 3 1.97468- 3 1.90000+ 1 3.30000+ 1 1.79188- 3 1.97587- 3 1.90000+ 1 4.10000+ 1 2.34555- 4 1.97708- 3 2.10000+ 1 2.10000+ 1 2.16799- 4 1.85754- 3 2.10000+ 1 2.20000+ 1 4.94954- 3 1.87233- 3 2.10000+ 1 2.40000+ 1 6.51625- 4 2.08841- 3 2.10000+ 1 2.50000+ 1 7.80027- 3 2.09136- 3 2.10000+ 1 2.70000+ 1 9.49265- 5 2.05650- 3 2.10000+ 1 2.90000+ 1 2.87821- 5 2.08861- 3 2.10000+ 1 3.00000+ 1 3.44652- 3 2.10147- 3 2.10000+ 1 3.20000+ 1 1.53105- 5 2.14383- 3 2.10000+ 1 3.30000+ 1 1.81278- 4 2.14502- 3 2.10000+ 1 4.10000+ 1 7.96164- 6 2.14623- 3 2.20000+ 1 2.20000+ 1 2.24195- 3 1.88712- 3 2.20000+ 1 2.40000+ 1 6.32732- 3 2.10320- 3 2.20000+ 1 2.50000+ 1 5.36440- 3 2.10615- 3 2.20000+ 1 2.70000+ 1 1.10844- 4 2.07129- 3 2.20000+ 1 2.90000+ 1 3.10479- 4 2.10340- 3 2.20000+ 1 3.00000+ 1 4.48448- 3 2.11626- 3 2.20000+ 1 3.20000+ 1 1.89230- 4 2.15862- 3 2.20000+ 1 3.30000+ 1 1.64121- 4 2.15981- 3 2.20000+ 1 4.10000+ 1 9.18582- 6 2.16102- 3 2.40000+ 1 2.40000+ 1 8.83094- 4 2.31928- 3 2.40000+ 1 2.50000+ 1 2.36365- 2 2.32223- 3 2.40000+ 1 2.70000+ 1 1.48818- 4 2.28737- 3 2.40000+ 1 2.90000+ 1 2.01486- 4 2.31948- 3 2.40000+ 1 3.00000+ 1 2.50044- 3 2.33234- 3 2.40000+ 1 3.20000+ 1 3.18476- 5 2.37470- 3 2.40000+ 1 3.30000+ 1 2.44979- 4 2.37589- 3 2.40000+ 1 4.10000+ 1 1.28606- 5 2.37710- 3 2.50000+ 1 2.50000+ 1 9.27255- 3 2.32518- 3 2.50000+ 1 2.70000+ 1 2.07007- 4 2.29032- 3 2.50000+ 1 2.90000+ 1 1.13302- 3 2.32243- 3 2.50000+ 1 3.00000+ 1 2.95623- 3 2.33529- 3 2.50000+ 1 3.20000+ 1 3.30119- 4 2.37765- 3 2.50000+ 1 3.30000+ 1 2.22931- 4 2.37884- 3 2.50000+ 1 4.10000+ 1 1.71484- 5 2.38005- 3 2.70000+ 1 2.70000+ 1 1.56417- 5 2.25546- 3 2.70000+ 1 2.90000+ 1 1.99867- 5 2.28757- 3 2.70000+ 1 3.00000+ 1 3.78858- 4 2.30043- 3 2.70000+ 1 3.20000+ 1 5.21377- 6 2.34279- 3 2.70000+ 1 3.30000+ 1 6.08278- 6 2.34398- 3 2.70000+ 1 4.10000+ 1 2.60696- 6 2.34519- 3 2.90000+ 1 2.90000+ 1 9.21561- 7 2.31968- 3 2.90000+ 1 3.00000+ 1 4.27605- 4 2.33254- 3 2.90000+ 1 3.20000+ 1 1.84301- 6 2.37490- 3 2.90000+ 1 3.30000+ 1 1.65873- 5 2.37609- 3 2.90000+ 1 4.10000+ 1 1.84301- 6 2.37730- 3 3.00000+ 1 3.00000+ 1 9.48377- 4 2.34540- 3 3.00000+ 1 3.20000+ 1 3.81896- 4 2.38776- 3 3.00000+ 1 3.30000+ 1 4.75771- 4 2.38895- 3 3.00000+ 1 4.10000+ 1 6.20567- 5 2.39016- 3 3.20000+ 1 3.30000+ 1 7.65922- 6 2.43131- 3 3.20000+ 1 4.10000+ 1 6.38289- 7 2.43252- 3 3.30000+ 1 3.30000+ 1 1.86640- 6 2.43250- 3 3.30000+ 1 4.10000+ 1 4.66602- 7 2.43371- 3 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.10190- 3 1.49843- 3 1.90000+ 1 2.15420- 4 1.57827- 3 2.40000+ 1 2.05490- 2 1.97829- 3 2.90000+ 1 5.07211- 4 1.97849- 3 3.00000+ 1 5.28991- 5 1.99135- 3 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 7.93696- 2 7.39000- 6 1.40000+ 1 2.50000+ 1 1.17665- 2 1.03400- 5 1.40000+ 1 2.90000+ 1 8.03452- 4 7.59000- 6 1.40000+ 1 3.00000+ 1 2.49300- 3 2.04500- 5 1.40000+ 1 3.20000+ 1 7.34870- 3 6.28100- 5 1.40000+ 1 3.30000+ 1 9.93372- 4 6.40000- 5 1.40000+ 1 4.10000+ 1 2.05605- 4 6.52100- 5 1.60000+ 1 1.60000+ 1 3.49535- 5 7.48440- 4 1.60000+ 1 1.80000+ 1 1.49098- 3 8.50400- 4 1.60000+ 1 1.90000+ 1 1.06877- 3 9.30240- 4 1.60000+ 1 2.10000+ 1 3.92445- 2 1.09939- 3 1.60000+ 1 2.20000+ 1 4.58956- 3 1.11418- 3 1.60000+ 1 2.40000+ 1 1.48114- 2 1.33026- 3 1.60000+ 1 2.50000+ 1 4.38793- 3 1.33321- 3 1.60000+ 1 2.70000+ 1 2.15100- 5 1.29835- 3 1.60000+ 1 2.90000+ 1 1.86864- 4 1.33046- 3 1.60000+ 1 3.00000+ 1 1.10237- 4 1.34332- 3 1.60000+ 1 3.20000+ 1 1.25687- 3 1.38568- 3 1.60000+ 1 3.30000+ 1 1.45198- 4 1.38687- 3 1.60000+ 1 4.10000+ 1 1.34435- 6 1.38808- 3 1.80000+ 1 1.80000+ 1 8.79192- 4 9.52360- 4 1.80000+ 1 1.90000+ 1 5.53478- 3 1.03220- 3 1.80000+ 1 2.10000+ 1 3.46712- 2 1.20135- 3 1.80000+ 1 2.20000+ 1 2.63344- 3 1.21614- 3 1.80000+ 1 2.40000+ 1 9.37939- 3 1.43222- 3 1.80000+ 1 2.50000+ 1 4.68499- 3 1.43517- 3 1.80000+ 1 2.70000+ 1 1.84173- 4 1.40031- 3 1.80000+ 1 2.90000+ 1 2.21821- 4 1.43242- 3 1.80000+ 1 3.00000+ 1 6.31831- 4 1.44528- 3 1.80000+ 1 3.20000+ 1 1.10368- 3 1.48764- 3 1.80000+ 1 3.30000+ 1 9.54488- 5 1.48883- 3 1.80000+ 1 4.10000+ 1 1.61318- 5 1.49004- 3 1.90000+ 1 1.90000+ 1 1.97484- 3 1.11204- 3 1.90000+ 1 2.10000+ 1 7.12071- 2 1.28119- 3 1.90000+ 1 2.20000+ 1 2.68596- 3 1.29598- 3 1.90000+ 1 2.40000+ 1 4.00469- 3 1.51206- 3 1.90000+ 1 2.50000+ 1 2.34587- 3 1.51501- 3 1.90000+ 1 2.70000+ 1 1.50568- 4 1.48015- 3 1.90000+ 1 2.90000+ 1 5.79427- 4 1.51226- 3 1.90000+ 1 3.00000+ 1 4.32879- 4 1.52512- 3 1.90000+ 1 3.20000+ 1 2.28802- 3 1.56748- 3 1.90000+ 1 3.30000+ 1 8.73812- 5 1.56867- 3 1.90000+ 1 4.10000+ 1 1.34435- 5 1.56988- 3 2.10000+ 1 2.10000+ 1 6.23529- 2 1.45034- 3 2.10000+ 1 2.20000+ 1 1.24643- 1 1.46513- 3 2.10000+ 1 2.40000+ 1 5.86321- 2 1.68121- 3 2.10000+ 1 2.50000+ 1 7.20659- 2 1.68416- 3 2.10000+ 1 2.70000+ 1 6.59649- 3 1.64930- 3 2.10000+ 1 2.90000+ 1 5.44583- 3 1.68141- 3 2.10000+ 1 3.00000+ 1 1.04707- 2 1.69427- 3 2.10000+ 1 3.20000+ 1 4.68234- 3 1.73663- 3 2.10000+ 1 3.30000+ 1 5.01009- 3 1.73782- 3 2.10000+ 1 4.10000+ 1 5.91513- 4 1.73903- 3 2.20000+ 1 2.20000+ 1 2.01646- 3 1.47992- 3 2.20000+ 1 2.40000+ 1 6.39494- 2 1.69600- 3 2.20000+ 1 2.50000+ 1 3.35810- 3 1.69895- 3 2.20000+ 1 2.70000+ 1 4.32882- 4 1.66409- 3 2.20000+ 1 2.90000+ 1 2.70210- 4 1.69620- 3 2.20000+ 1 3.00000+ 1 3.23979- 4 1.70906- 3 2.20000+ 1 3.20000+ 1 4.03163- 3 1.75142- 3 2.20000+ 1 3.30000+ 1 1.37126- 4 1.75261- 3 2.20000+ 1 4.10000+ 1 3.62967- 5 1.75382- 3 2.40000+ 1 2.40000+ 1 5.53435- 2 1.91208- 3 2.40000+ 1 2.50000+ 1 1.60727- 1 1.91503- 3 2.40000+ 1 2.70000+ 1 2.59043- 3 1.88017- 3 2.40000+ 1 2.90000+ 1 1.22735- 3 1.91228- 3 2.40000+ 1 3.00000+ 1 5.94200- 4 1.92514- 3 2.40000+ 1 3.20000+ 1 2.00308- 3 1.96750- 3 2.40000+ 1 3.30000+ 1 2.47094- 3 1.96869- 3 2.40000+ 1 4.10000+ 1 2.33914- 4 1.96990- 3 2.50000+ 1 2.50000+ 1 3.51892- 3 1.91798- 3 2.50000+ 1 2.70000+ 1 5.74861- 4 1.88312- 3 2.50000+ 1 2.90000+ 1 3.57196- 4 1.91523- 3 2.50000+ 1 3.00000+ 1 3.26487- 4 1.92809- 3 2.50000+ 1 3.20000+ 1 2.25614- 3 1.97045- 3 2.50000+ 1 3.30000+ 1 1.26968- 4 1.97164- 3 2.50000+ 1 4.10000+ 1 4.88346- 5 1.97285- 3 2.70000+ 1 2.70000+ 1 2.79901- 6 1.84826- 3 2.70000+ 1 2.90000+ 1 5.03800- 5 1.88037- 3 2.70000+ 1 3.00000+ 1 3.35874- 5 1.89323- 3 2.70000+ 1 3.20000+ 1 4.42246- 4 1.93559- 3 2.70000+ 1 3.30000+ 1 3.07886- 5 1.93678- 3 2.90000+ 1 2.90000+ 1 4.42064- 5 1.91248- 3 2.90000+ 1 3.00000+ 1 2.08984- 4 1.92534- 3 2.90000+ 1 3.20000+ 1 5.22433- 4 1.96770- 3 2.90000+ 1 3.30000+ 1 3.21507- 5 1.96889- 3 2.90000+ 1 4.10000+ 1 8.03758- 6 1.97010- 3 3.00000+ 1 3.00000+ 1 8.72882- 5 1.93820- 3 3.00000+ 1 3.20000+ 1 1.22207- 3 1.98056- 3 3.00000+ 1 3.30000+ 1 3.87966- 5 1.98175- 3 3.00000+ 1 4.10000+ 1 4.84955- 6 1.98296- 3 3.20000+ 1 3.20000+ 1 6.97432- 5 2.02292- 3 3.20000+ 1 3.30000+ 1 1.68789- 4 2.02411- 3 3.20000+ 1 4.10000+ 1 1.95283- 5 2.02532- 3 3.30000+ 1 3.30000+ 1 2.52906- 6 2.02530- 3 3.30000+ 1 4.10000+ 1 1.26454- 6 2.02651- 3 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.76721- 3 1.50467- 3 2.40000+ 1 1.08621- 3 1.90469- 3 2.50000+ 1 2.11771- 2 1.90764- 3 3.00000+ 1 4.76642- 4 1.91775- 3 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.87513- 6 6.74840- 4 1.60000+ 1 1.80000+ 1 3.32079- 4 7.76800- 4 1.60000+ 1 1.90000+ 1 2.62366- 3 8.56640- 4 1.60000+ 1 2.10000+ 1 4.07552- 3 1.02579- 3 1.60000+ 1 2.20000+ 1 4.51510- 2 1.04058- 3 1.60000+ 1 2.40000+ 1 4.71098- 3 1.25666- 3 1.60000+ 1 2.50000+ 1 1.67474- 2 1.25961- 3 1.60000+ 1 2.70000+ 1 1.29384- 5 1.22475- 3 1.60000+ 1 2.90000+ 1 1.86883- 5 1.25686- 3 1.60000+ 1 3.00000+ 1 2.81764- 4 1.26972- 3 1.60000+ 1 3.20000+ 1 1.29384- 4 1.31208- 3 1.60000+ 1 3.30000+ 1 1.37863- 3 1.31327- 3 1.60000+ 1 4.10000+ 1 1.43762- 6 1.31448- 3 1.80000+ 1 1.80000+ 1 2.87514- 6 8.78760- 4 1.80000+ 1 1.90000+ 1 6.76507- 3 9.58600- 4 1.80000+ 1 2.10000+ 1 3.52207- 4 1.12775- 3 1.80000+ 1 2.20000+ 1 4.61675- 2 1.14254- 3 1.80000+ 1 2.40000+ 1 2.27426- 3 1.35862- 3 1.80000+ 1 2.50000+ 1 8.60940- 3 1.36157- 3 1.80000+ 1 2.70000+ 1 4.02523- 5 1.32671- 3 1.80000+ 1 2.90000+ 1 2.87514- 6 1.35882- 3 1.80000+ 1 3.00000+ 1 7.23106- 4 1.37168- 3 1.80000+ 1 3.20000+ 1 5.75019- 6 1.41404- 3 1.80000+ 1 3.30000+ 1 1.41321- 3 1.41523- 3 1.80000+ 1 4.10000+ 1 2.87514- 6 1.41644- 3 1.90000+ 1 1.90000+ 1 4.84895- 3 1.03844- 3 1.90000+ 1 2.10000+ 1 4.31274- 3 1.20759- 3 1.90000+ 1 2.20000+ 1 7.09837- 2 1.22238- 3 1.90000+ 1 2.40000+ 1 2.74151- 3 1.43846- 3 1.90000+ 1 2.50000+ 1 5.71318- 3 1.44141- 3 1.90000+ 1 2.70000+ 1 3.76644- 4 1.40655- 3 1.90000+ 1 2.90000+ 1 6.90031- 4 1.43866- 3 1.90000+ 1 3.00000+ 1 1.06667- 3 1.45152- 3 1.90000+ 1 3.20000+ 1 1.61007- 4 1.49388- 3 1.90000+ 1 3.30000+ 1 2.16493- 3 1.49507- 3 1.90000+ 1 4.10000+ 1 3.30643- 5 1.49628- 3 2.10000+ 1 2.10000+ 1 9.32962- 4 1.37674- 3 2.10000+ 1 2.20000+ 1 9.59274- 2 1.39153- 3 2.10000+ 1 2.40000+ 1 3.07188- 3 1.60761- 3 2.10000+ 1 2.50000+ 1 4.17896- 2 1.61056- 3 2.10000+ 1 2.70000+ 1 3.69446- 4 1.57570- 3 2.10000+ 1 2.90000+ 1 6.03725- 5 1.60781- 3 2.10000+ 1 3.00000+ 1 4.72941- 4 1.62067- 3 2.10000+ 1 3.20000+ 1 6.46893- 5 1.66303- 3 2.10000+ 1 3.30000+ 1 2.96128- 3 1.66422- 3 2.10000+ 1 4.10000+ 1 3.01877- 5 1.66543- 3 2.20000+ 1 2.20000+ 1 1.07911- 1 1.40632- 3 2.20000+ 1 2.40000+ 1 6.81352- 2 1.62240- 3 2.20000+ 1 2.50000+ 1 1.06666- 1 1.62535- 3 2.20000+ 1 2.70000+ 1 7.31706- 3 1.59049- 3 2.20000+ 1 2.90000+ 1 6.96516- 3 1.62260- 3 2.20000+ 1 3.00000+ 1 1.05321- 2 1.63546- 3 2.20000+ 1 3.20000+ 1 4.03230- 3 1.67782- 3 2.20000+ 1 3.30000+ 1 7.66938- 3 1.67901- 3 2.20000+ 1 4.10000+ 1 6.54093- 4 1.68022- 3 2.40000+ 1 2.40000+ 1 4.70673- 3 1.83848- 3 2.40000+ 1 2.50000+ 1 1.50667- 1 1.84143- 3 2.40000+ 1 2.70000+ 1 6.36833- 4 1.80657- 3 2.40000+ 1 2.90000+ 1 3.19149- 4 1.83868- 3 2.40000+ 1 3.00000+ 1 3.29201- 4 1.85154- 3 2.40000+ 1 3.20000+ 1 1.25071- 4 1.89390- 3 2.40000+ 1 3.30000+ 1 2.00255- 3 1.89509- 3 2.40000+ 1 4.10000+ 1 5.46275- 5 1.89630- 3 2.50000+ 1 2.50000+ 1 1.02924- 1 1.84438- 3 2.50000+ 1 2.70000+ 1 2.84791- 3 1.80952- 3 2.50000+ 1 2.90000+ 1 1.30394- 3 1.84163- 3 2.50000+ 1 3.00000+ 1 7.97879- 4 1.85449- 3 2.50000+ 1 3.20000+ 1 1.66622- 3 1.89685- 3 2.50000+ 1 3.30000+ 1 3.54367- 3 1.89804- 3 2.50000+ 1 4.10000+ 1 2.57341- 4 1.89925- 3 2.70000+ 1 2.70000+ 1 3.62632- 6 1.77466- 3 2.70000+ 1 2.90000+ 1 7.25236- 6 1.80677- 3 2.70000+ 1 3.00000+ 1 1.05160- 4 1.81963- 3 2.70000+ 1 3.20000+ 1 3.26365- 5 1.86199- 3 2.70000+ 1 3.30000+ 1 5.69318- 4 1.86318- 3 2.90000+ 1 3.00000+ 1 1.78119- 4 1.85174- 3 2.90000+ 1 3.20000+ 1 3.29852- 6 1.89410- 3 2.90000+ 1 3.30000+ 1 4.94766- 4 1.89529- 3 3.00000+ 1 3.00000+ 1 1.74592- 4 1.86460- 3 3.00000+ 1 3.20000+ 1 5.40426- 5 1.90696- 3 3.00000+ 1 3.30000+ 1 9.31200- 4 1.90815- 3 3.00000+ 1 4.10000+ 1 1.24716- 5 1.90936- 3 3.20000+ 1 3.20000+ 1 1.43678- 6 1.94932- 3 3.20000+ 1 3.30000+ 1 1.24997- 4 1.95051- 3 3.20000+ 1 4.10000+ 1 1.43678- 6 1.95172- 3 3.30000+ 1 3.30000+ 1 1.16444- 4 1.95170- 3 3.30000+ 1 4.10000+ 1 2.01264- 5 1.95291- 3 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.89475- 5 1.01960- 4 1.90000+ 1 2.24368- 4 1.81800- 4 2.90000+ 1 1.29501- 4 5.82020- 4 3.00000+ 1 6.44815- 5 5.94880- 4 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 1.10176- 2 3.57500- 5 1.80000+ 1 2.50000+ 1 6.69323- 3 3.87000- 5 1.80000+ 1 2.70000+ 1 3.45612- 2 3.84000- 6 1.80000+ 1 2.90000+ 1 3.05086- 2 3.59500- 5 1.80000+ 1 3.00000+ 1 5.42693- 2 4.88100- 5 1.80000+ 1 3.20000+ 1 1.48453- 2 9.11700- 5 1.80000+ 1 3.30000+ 1 2.48463- 2 9.23600- 5 1.80000+ 1 4.10000+ 1 3.00167- 3 9.35700- 5 1.90000+ 1 2.40000+ 1 1.09227- 1 1.15590- 4 1.90000+ 1 2.50000+ 1 1.38858- 1 1.18540- 4 1.90000+ 1 2.70000+ 1 4.13372- 2 8.36800- 5 1.90000+ 1 2.90000+ 1 4.60619- 2 1.15790- 4 1.90000+ 1 3.00000+ 1 5.17882- 2 1.28650- 4 1.90000+ 1 3.20000+ 1 1.92613- 2 1.71010- 4 1.90000+ 1 3.30000+ 1 2.27602- 2 1.72200- 4 1.90000+ 1 4.10000+ 1 3.67449- 3 1.73410- 4 2.10000+ 1 2.10000+ 1 3.92300- 3 5.38700- 5 2.10000+ 1 2.20000+ 1 8.50102- 3 6.86600- 5 2.10000+ 1 2.40000+ 1 4.67720- 3 2.84740- 4 2.10000+ 1 2.50000+ 1 9.74291- 3 2.87690- 4 2.10000+ 1 2.70000+ 1 1.55478- 2 2.52830- 4 2.10000+ 1 2.90000+ 1 4.05067- 3 2.84940- 4 2.10000+ 1 3.00000+ 1 7.85810- 3 2.97800- 4 2.10000+ 1 3.20000+ 1 6.52750- 4 3.40160- 4 2.10000+ 1 3.30000+ 1 5.86104- 4 3.41350- 4 2.10000+ 1 4.10000+ 1 1.10249- 3 3.42560- 4 2.20000+ 1 2.20000+ 1 6.88656- 3 8.34500- 5 2.20000+ 1 2.40000+ 1 1.09979- 2 2.99530- 4 2.20000+ 1 2.50000+ 1 1.02036- 2 3.02480- 4 2.20000+ 1 2.70000+ 1 2.18204- 2 2.67620- 4 2.20000+ 1 2.90000+ 1 8.56493- 3 2.99730- 4 2.20000+ 1 3.00000+ 1 7.76538- 3 3.12590- 4 2.20000+ 1 3.20000+ 1 5.28936- 4 3.54950- 4 2.20000+ 1 3.30000+ 1 9.17590- 4 3.56140- 4 2.20000+ 1 4.10000+ 1 1.53889- 3 3.57350- 4 2.40000+ 1 2.40000+ 1 7.37835- 3 5.15610- 4 2.40000+ 1 2.50000+ 1 1.56755- 2 5.18560- 4 2.40000+ 1 2.70000+ 1 1.68874- 2 4.83700- 4 2.40000+ 1 2.90000+ 1 2.14726- 3 5.15810- 4 2.40000+ 1 3.00000+ 1 6.44125- 3 5.28670- 4 2.40000+ 1 3.20000+ 1 2.64058- 4 5.71030- 4 2.40000+ 1 3.30000+ 1 1.79715- 4 5.72220- 4 2.40000+ 1 4.10000+ 1 1.08039- 3 5.73430- 4 2.50000+ 1 2.50000+ 1 1.22978- 2 5.21510- 4 2.50000+ 1 2.70000+ 1 2.19476- 2 4.86650- 4 2.50000+ 1 2.90000+ 1 1.22282- 3 5.18760- 4 2.50000+ 1 3.00000+ 1 7.71960- 3 5.31620- 4 2.50000+ 1 3.20000+ 1 1.64898- 4 5.73980- 4 2.50000+ 1 3.30000+ 1 3.86103- 4 5.75170- 4 2.50000+ 1 4.10000+ 1 1.40100- 3 5.76380- 4 2.70000+ 1 2.70000+ 1 1.93926- 2 4.51790- 4 2.70000+ 1 2.90000+ 1 2.56770- 2 4.83900- 4 2.70000+ 1 3.00000+ 1 4.18472- 2 4.96760- 4 2.70000+ 1 3.20000+ 1 1.34676- 2 5.39120- 4 2.70000+ 1 3.30000+ 1 1.81721- 2 5.40310- 4 2.70000+ 1 4.10000+ 1 3.04566- 3 5.41520- 4 2.90000+ 1 2.90000+ 1 2.98589- 3 5.16010- 4 2.90000+ 1 3.00000+ 1 1.23329- 2 5.28870- 4 2.90000+ 1 3.20000+ 1 1.81822- 3 5.71230- 4 2.90000+ 1 3.30000+ 1 1.71965- 3 5.72420- 4 2.90000+ 1 4.10000+ 1 2.45871- 3 5.73630- 4 3.00000+ 1 3.00000+ 1 9.01552- 3 5.41730- 4 3.00000+ 1 3.20000+ 1 2.16962- 3 5.84090- 4 3.00000+ 1 3.30000+ 1 3.46424- 3 5.85280- 4 3.00000+ 1 4.10000+ 1 4.04096- 3 5.86490- 4 3.20000+ 1 3.20000+ 1 1.35799- 4 6.26450- 4 3.20000+ 1 3.30000+ 1 5.37969- 4 6.27640- 4 3.20000+ 1 4.10000+ 1 1.37367- 3 6.28850- 4 3.30000+ 1 3.30000+ 1 2.87257- 4 6.28830- 4 3.30000+ 1 4.10000+ 1 1.84888- 3 6.30040- 4 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 7.58924- 4 2.48990- 4 2.70000+ 1 1.64678- 4 4.47950- 4 3.20000+ 1 8.98150- 6 5.35280- 4 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 3.09684- 2 1.36300- 5 1.90000+ 1 2.50000+ 1 2.82294- 2 1.65800- 5 1.90000+ 1 2.90000+ 1 1.17171- 2 1.38300- 5 1.90000+ 1 3.00000+ 1 1.30561- 2 2.66900- 5 1.90000+ 1 3.20000+ 1 2.60186- 3 6.90500- 5 1.90000+ 1 3.30000+ 1 3.93073- 3 7.02400- 5 1.90000+ 1 4.10000+ 1 1.23678- 3 7.14500- 5 2.10000+ 1 2.40000+ 1 1.50785- 1 1.82780- 4 2.10000+ 1 2.50000+ 1 3.25589- 1 1.85730- 4 2.10000+ 1 2.70000+ 1 3.62215- 2 1.50870- 4 2.10000+ 1 2.90000+ 1 2.71799- 2 1.82980- 4 2.10000+ 1 3.00000+ 1 4.20024- 2 1.95840- 4 2.10000+ 1 3.20000+ 1 8.88480- 3 2.38200- 4 2.10000+ 1 3.30000+ 1 1.52978- 2 2.39390- 4 2.10000+ 1 4.10000+ 1 3.22957- 3 2.40600- 4 2.20000+ 1 2.40000+ 1 4.40062- 2 1.97570- 4 2.20000+ 1 2.50000+ 1 1.12920- 2 2.00520- 4 2.20000+ 1 2.70000+ 1 6.00496- 3 1.65660- 4 2.20000+ 1 2.90000+ 1 2.47138- 2 1.97770- 4 2.20000+ 1 3.00000+ 1 5.18213- 3 2.10630- 4 2.20000+ 1 3.20000+ 1 1.31784- 3 2.52990- 4 2.20000+ 1 3.30000+ 1 9.22798- 4 2.54180- 4 2.20000+ 1 4.10000+ 1 4.44696- 4 2.55390- 4 2.40000+ 1 2.40000+ 1 3.01433- 3 4.13650- 4 2.40000+ 1 2.50000+ 1 2.05077- 2 4.16600- 4 2.40000+ 1 2.70000+ 1 4.08772- 3 3.81740- 4 2.40000+ 1 2.90000+ 1 1.74040- 2 4.13850- 4 2.40000+ 1 3.00000+ 1 3.91624- 3 4.26710- 4 2.40000+ 1 3.20000+ 1 1.78063- 3 4.69070- 4 2.40000+ 1 3.30000+ 1 7.28490- 4 4.70260- 4 2.40000+ 1 4.10000+ 1 3.66952- 4 4.71470- 4 2.50000+ 1 2.50000+ 1 1.09941- 3 4.19550- 4 2.50000+ 1 2.70000+ 1 3.06722- 3 3.84690- 4 2.50000+ 1 2.90000+ 1 3.69942- 2 4.16800- 4 2.50000+ 1 3.00000+ 1 2.33361- 3 4.29660- 4 2.50000+ 1 3.20000+ 1 4.66825- 3 4.72020- 4 2.50000+ 1 3.30000+ 1 3.45861- 4 4.73210- 4 2.50000+ 1 4.10000+ 1 2.25571- 4 4.74420- 4 2.70000+ 1 2.70000+ 1 6.69080- 4 3.49830- 4 2.70000+ 1 2.90000+ 1 9.63676- 3 3.81940- 4 2.70000+ 1 3.00000+ 1 1.70331- 3 3.94800- 4 2.70000+ 1 3.20000+ 1 9.37141- 4 4.37160- 4 2.70000+ 1 3.30000+ 1 6.02064- 4 4.38350- 4 2.70000+ 1 4.10000+ 1 9.94148- 5 4.39560- 4 2.90000+ 1 2.90000+ 1 1.46982- 2 4.14050- 4 2.90000+ 1 3.00000+ 1 3.96587- 2 4.26910- 4 2.90000+ 1 3.20000+ 1 1.04632- 2 4.69270- 4 2.90000+ 1 3.30000+ 1 1.71792- 2 4.70460- 4 2.90000+ 1 4.10000+ 1 2.21933- 3 4.71670- 4 3.00000+ 1 3.00000+ 1 1.62438- 3 4.39770- 4 3.00000+ 1 3.20000+ 1 2.86240- 3 4.82130- 4 3.00000+ 1 3.30000+ 1 9.62880- 4 4.83320- 4 3.00000+ 1 4.10000+ 1 3.13138- 4 4.84530- 4 3.20000+ 1 3.20000+ 1 1.61890- 5 5.24490- 4 3.20000+ 1 3.30000+ 1 4.22700- 5 5.25680- 4 3.20000+ 1 4.10000+ 1 1.33108- 5 5.26890- 4 3.30000+ 1 3.30000+ 1 4.74065- 6 5.26870- 4 3.30000+ 1 4.10000+ 1 7.01615- 6 5.28080- 4 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.65692- 5 1.69150- 4 2.20000+ 1 1.92514- 4 1.83940- 4 2.70000+ 1 1.25661- 4 3.68110- 4 3.20000+ 1 2.59860- 6 4.55440- 4 3.30000+ 1 1.45002- 5 4.56630- 4 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.34439- 2 1.02940- 4 2.10000+ 1 2.50000+ 1 3.66675- 2 1.05890- 4 2.10000+ 1 2.70000+ 1 1.39193- 2 7.10300- 5 2.10000+ 1 2.90000+ 1 1.09724- 2 1.03140- 4 2.10000+ 1 3.00000+ 1 3.70869- 2 1.16000- 4 2.10000+ 1 3.20000+ 1 3.76341- 3 1.58360- 4 2.10000+ 1 3.30000+ 1 7.07486- 3 1.59550- 4 2.10000+ 1 4.10000+ 1 1.19066- 3 1.60760- 4 2.20000+ 1 2.40000+ 1 1.83692- 1 1.17730- 4 2.20000+ 1 2.50000+ 1 2.03593- 1 1.20680- 4 2.20000+ 1 2.70000+ 1 6.98549- 2 8.58200- 5 2.20000+ 1 2.90000+ 1 7.30101- 2 1.17930- 4 2.20000+ 1 3.00000+ 1 9.63939- 2 1.30790- 4 2.20000+ 1 3.20000+ 1 3.03141- 2 1.73150- 4 2.20000+ 1 3.30000+ 1 3.39417- 2 1.74340- 4 2.20000+ 1 4.10000+ 1 6.42400- 3 1.75550- 4 2.40000+ 1 2.40000+ 1 7.72136- 4 3.33810- 4 2.40000+ 1 2.50000+ 1 1.95858- 2 3.36760- 4 2.40000+ 1 2.70000+ 1 5.54634- 3 3.01900- 4 2.40000+ 1 2.90000+ 1 2.67003- 3 3.34010- 4 2.40000+ 1 3.00000+ 1 3.65997- 2 3.46870- 4 2.40000+ 1 3.20000+ 1 4.12509- 4 3.89230- 4 2.40000+ 1 3.30000+ 1 2.24713- 3 3.90420- 4 2.40000+ 1 4.10000+ 1 3.64756- 4 3.91630- 4 2.50000+ 1 2.50000+ 1 8.35115- 3 3.39710- 4 2.50000+ 1 2.70000+ 1 1.18604- 2 3.04850- 4 2.50000+ 1 2.90000+ 1 9.94169- 3 3.36960- 4 2.50000+ 1 3.00000+ 1 4.44477- 2 3.49820- 4 2.50000+ 1 3.20000+ 1 4.32408- 4 3.92180- 4 2.50000+ 1 3.30000+ 1 2.78293- 3 3.93370- 4 2.50000+ 1 4.10000+ 1 8.85039- 4 3.94580- 4 2.70000+ 1 2.70000+ 1 4.09909- 6 2.69990- 4 2.70000+ 1 2.90000+ 1 2.83440- 4 3.02100- 4 2.70000+ 1 3.00000+ 1 5.72391- 3 3.14960- 4 2.70000+ 1 3.20000+ 1 2.17245- 4 3.57320- 4 2.70000+ 1 3.30000+ 1 4.10503- 4 3.58510- 4 2.70000+ 1 4.10000+ 1 2.34233- 6 3.59720- 4 2.90000+ 1 2.90000+ 1 1.82874- 5 3.34210- 4 2.90000+ 1 3.00000+ 1 4.79701- 3 3.47070- 4 2.90000+ 1 3.20000+ 1 9.57643- 5 3.89430- 4 2.90000+ 1 3.30000+ 1 3.33502- 4 3.90620- 4 2.90000+ 1 4.10000+ 1 1.82874- 5 3.91830- 4 3.00000+ 1 3.00000+ 1 9.75488- 3 3.59930- 4 3.00000+ 1 3.20000+ 1 3.87469- 3 4.02290- 4 3.00000+ 1 3.30000+ 1 5.02440- 3 4.03480- 4 3.00000+ 1 4.10000+ 1 6.84853- 4 4.04690- 4 3.20000+ 1 3.20000+ 1 8.99820- 6 4.44650- 4 3.20000+ 1 3.30000+ 1 7.47969- 5 4.45840- 4 3.20000+ 1 4.10000+ 1 7.31104- 6 4.47050- 4 3.30000+ 1 3.30000+ 1 5.47844- 5 4.47030- 4 3.30000+ 1 4.10000+ 1 1.68149- 5 4.48240- 4 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.30475- 4 2.30870- 4 2.90000+ 1 3.05840- 5 2.31070- 4 3.00000+ 1 4.33149- 6 2.43930- 4 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 2.41461- 2 4.00000- 6 2.20000+ 1 3.30000+ 1 3.56238- 3 5.19000- 6 2.20000+ 1 4.10000+ 1 5.89565- 4 6.40000- 6 2.40000+ 1 2.40000+ 1 1.52460- 1 1.64660- 4 2.40000+ 1 2.50000+ 1 4.78766- 1 1.67610- 4 2.40000+ 1 2.70000+ 1 6.25028- 2 1.32750- 4 2.40000+ 1 2.90000+ 1 5.13315- 2 1.64860- 4 2.40000+ 1 3.00000+ 1 7.44510- 2 1.77720- 4 2.40000+ 1 3.20000+ 1 3.02023- 2 2.20080- 4 2.40000+ 1 3.30000+ 1 2.94365- 2 2.21270- 4 2.40000+ 1 4.10000+ 1 5.69096- 3 2.22480- 4 2.50000+ 1 2.50000+ 1 5.88933- 3 1.70560- 4 2.50000+ 1 2.70000+ 1 6.18078- 3 1.35700- 4 2.50000+ 1 2.90000+ 1 1.34767- 2 1.67810- 4 2.50000+ 1 3.00000+ 1 5.17901- 3 1.80670- 4 2.50000+ 1 3.20000+ 1 3.46141- 2 2.23030- 4 2.50000+ 1 3.30000+ 1 1.29263- 3 2.24220- 4 2.50000+ 1 4.10000+ 1 4.54500- 4 2.25430- 4 2.70000+ 1 2.70000+ 1 9.92923- 4 1.00840- 4 2.70000+ 1 2.90000+ 1 1.60510- 3 1.32950- 4 2.70000+ 1 3.00000+ 1 1.65294- 3 1.45810- 4 2.70000+ 1 3.20000+ 1 2.94808- 3 1.88170- 4 2.70000+ 1 3.30000+ 1 9.88897- 4 1.89360- 4 2.70000+ 1 4.10000+ 1 1.02475- 4 1.90570- 4 2.90000+ 1 2.90000+ 1 4.68973- 4 1.65060- 4 2.90000+ 1 3.00000+ 1 1.97216- 3 1.77920- 4 2.90000+ 1 3.20000+ 1 1.93698- 3 2.20280- 4 2.90000+ 1 3.30000+ 1 4.40601- 4 2.21470- 4 2.90000+ 1 4.10000+ 1 8.50868- 5 2.22680- 4 3.00000+ 1 3.00000+ 1 7.03697- 4 1.90780- 4 3.00000+ 1 3.20000+ 1 3.28797- 3 2.33140- 4 3.00000+ 1 3.30000+ 1 2.93443- 4 2.34330- 4 3.00000+ 1 4.10000+ 1 5.30960- 5 2.35540- 4 3.20000+ 1 3.20000+ 1 5.27875- 4 2.75500- 4 3.20000+ 1 3.30000+ 1 1.30253- 3 2.76690- 4 3.20000+ 1 4.10000+ 1 1.98693- 4 2.77900- 4 3.30000+ 1 3.30000+ 1 2.42625- 5 2.77880- 4 3.30000+ 1 4.10000+ 1 2.25046- 5 2.79090- 4 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 5.90060- 6 2.16080- 4 2.50000+ 1 1.24370- 4 2.19030- 4 3.00000+ 1 2.85920- 5 2.29140- 4 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 9.53189- 3 1.49870- 4 2.40000+ 1 2.50000+ 1 3.49124- 1 1.52820- 4 2.40000+ 1 2.70000+ 1 8.44136- 3 1.17960- 4 2.40000+ 1 2.90000+ 1 5.08581- 3 1.50070- 4 2.40000+ 1 3.00000+ 1 1.28619- 2 1.62930- 4 2.40000+ 1 3.20000+ 1 1.67727- 3 2.05290- 4 2.40000+ 1 3.30000+ 1 2.96635- 2 2.06480- 4 2.40000+ 1 4.10000+ 1 6.84598- 4 2.07690- 4 2.50000+ 1 2.50000+ 1 2.62975- 1 1.55770- 4 2.50000+ 1 2.70000+ 1 6.73379- 2 1.20910- 4 2.50000+ 1 2.90000+ 1 6.89398- 2 1.53020- 4 2.50000+ 1 3.00000+ 1 7.51837- 2 1.65880- 4 2.50000+ 1 3.20000+ 1 2.69285- 2 2.08240- 4 2.50000+ 1 3.30000+ 1 5.13131- 2 2.09430- 4 2.50000+ 1 4.10000+ 1 6.19230- 3 2.10640- 4 2.70000+ 1 2.70000+ 1 1.65142- 3 8.60500- 5 2.70000+ 1 2.90000+ 1 1.47112- 3 1.18160- 4 2.70000+ 1 3.00000+ 1 3.32774- 3 1.31020- 4 2.70000+ 1 3.20000+ 1 1.16252- 3 1.73380- 4 2.70000+ 1 3.30000+ 1 4.02806- 3 1.74570- 4 2.70000+ 1 4.10000+ 1 1.65142- 4 1.75780- 4 2.90000+ 1 2.90000+ 1 1.97567- 4 1.50270- 4 2.90000+ 1 3.00000+ 1 2.32946- 3 1.63130- 4 2.90000+ 1 3.20000+ 1 1.33868- 4 2.05490- 4 2.90000+ 1 3.30000+ 1 2.31966- 3 2.06680- 4 2.90000+ 1 4.10000+ 1 5.45401- 5 2.07890- 4 3.00000+ 1 3.00000+ 1 9.13059- 4 1.75990- 4 3.00000+ 1 3.20000+ 1 4.25632- 4 2.18350- 4 3.00000+ 1 3.30000+ 1 3.25184- 3 2.19540- 4 3.00000+ 1 4.10000+ 1 1.01069- 4 2.20750- 4 3.20000+ 1 3.20000+ 1 1.27555- 5 2.60710- 4 3.20000+ 1 3.30000+ 1 1.09809- 3 2.61900- 4 3.20000+ 1 4.10000+ 1 2.70573- 5 2.63110- 4 3.30000+ 1 3.30000+ 1 1.00040- 3 2.63090- 4 3.30000+ 1 4.10000+ 1 2.29599- 4 2.64300- 4 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 6.00987- 7 3.21100- 5 3.00000+ 1 3.37351- 6 4.49700- 5 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.16986- 1 2.13200- 5 2.90000+ 1 3.30000+ 1 1.78203- 1 2.25100- 5 2.90000+ 1 4.10000+ 1 4.09213- 2 2.37200- 5 3.00000+ 1 3.20000+ 1 3.38712- 1 3.41800- 5 3.00000+ 1 3.30000+ 1 2.21872- 1 3.53700- 5 3.00000+ 1 4.10000+ 1 4.94160- 2 3.65800- 5 3.20000+ 1 3.20000+ 1 9.13143- 4 7.65400- 5 3.20000+ 1 3.30000+ 1 3.22158- 2 7.77300- 5 3.20000+ 1 4.10000+ 1 9.81509- 3 7.89400- 5 3.30000+ 1 3.30000+ 1 4.38880- 3 7.89200- 5 4.10000+ 1 4.10000+ 1 6.55350- 3 8.13400- 5 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.53166- 7 5.52200- 5 4.10000+ 1 4.26301- 8 5.76200- 5 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 5.08834- 1 2.07000- 6 3.00000+ 1 3.30000+ 1 7.51354- 2 3.26000- 6 3.00000+ 1 4.10000+ 1 8.98433- 3 4.47000- 6 3.20000+ 1 3.20000+ 1 6.64948- 2 4.44300- 5 3.20000+ 1 3.30000+ 1 2.89112- 1 4.56200- 5 3.20000+ 1 4.10000+ 1 4.23463- 2 4.68300- 5 3.30000+ 1 3.30000+ 1 4.32883- 3 4.68100- 5 3.30000+ 1 4.10000+ 1 4.76144- 3 4.80200- 5 4.10000+ 1 4.10000+ 1 2.61882- 6 4.92300- 5 1 76000 0 7 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 9.72894- 9 4.23600- 5 3.30000+ 1 9.39754- 8 4.35500- 5 4.10000+ 1 1.63361- 8 4.47600- 5 1 76000 0 9 1.90200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 3.14072- 2 3.15700- 5 3.20000+ 1 3.30000+ 1 6.45804- 1 3.27600- 5 3.20000+ 1 4.10000+ 1 5.70724- 2 3.39700- 5 3.30000+ 1 3.30000+ 1 1.53331- 1 3.39500- 5 3.30000+ 1 4.10000+ 1 1.09530- 1 3.51600- 5 4.10000+ 1 4.10000+ 1 2.85571- 3 3.63700- 5 1 77000 0 0 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 3.60000+ 0 3.30000+ 1 5.40000+ 0 1 77000 0 0 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.63140- 2 3.00000+ 0 1.33960- 2 5.00000+ 0 1.28590- 2 6.00000+ 0 1.12140- 2 8.00000+ 0 3.14570- 3 1.00000+ 1 2.90020- 3 1.10000+ 1 2.53900- 3 1.30000+ 1 2.12320- 3 1.40000+ 1 2.04480- 3 1.60000+ 1 6.75320- 4 1.80000+ 1 5.70350- 4 1.90000+ 1 4.84550- 4 2.10000+ 1 3.10520- 4 2.20000+ 1 2.94580- 4 2.40000+ 1 7.13300- 5 2.50000+ 1 6.80600- 5 2.70000+ 1 9.91400- 5 2.90000+ 1 6.56800- 5 3.00000+ 1 5.16600- 5 3.20000+ 1 7.99000- 6 3.30000+ 1 6.79000- 6 1 77000 0 0 1.92220+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05000- 1 3.00000+ 0 2.49230- 2 5.00000+ 0 2.49120- 2 6.00000+ 0 1.86010- 2 8.00000+ 0 7.91870- 3 1.00000+ 1 7.81050- 3 1.10000+ 1 6.25890- 3 1.30000+ 1 6.11640- 3 1.40000+ 1 5.78020- 3 1.60000+ 1 2.56950- 3 1.80000+ 1 2.44750- 3 1.90000+ 1 1.98340- 3 2.10000+ 1 1.76820- 3 2.20000+ 1 1.67130- 3 2.40000+ 1 1.28150- 3 2.50000+ 1 1.24910- 3 2.70000+ 1 6.11610- 4 2.90000+ 1 5.13720- 4 3.00000+ 1 4.02920- 4 3.20000+ 1 1.97000- 4 3.30000+ 1 1.76510- 4 1 77000 0 0 1.92220+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.21760-11 3.00000+ 0 3.85080-10 5.00000+ 0 3.17190-10 6.00000+ 0 3.61100-10 8.00000+ 0 1.00090- 9 1.00000+ 1 9.47630-10 1.10000+ 1 1.02830- 9 1.30000+ 1 8.95890-10 1.40000+ 1 9.20600-10 1.60000+ 1 2.22620- 9 1.80000+ 1 2.24090- 9 1.90000+ 1 2.41660- 9 2.10000+ 1 2.46870- 9 2.20000+ 1 2.52660- 9 2.40000+ 1 2.73860- 9 2.50000+ 1 2.77610- 9 2.70000+ 1 5.12820- 9 2.90000+ 1 5.56840- 9 3.00000+ 1 6.09750- 9 3.20000+ 1 8.98210- 9 3.30000+ 1 9.51880- 9 1 77000 0 0 1.92220+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.40960- 5 3.00000+ 0 9.81870- 7 5.00000+ 0 1.71780- 6 6.00000+ 0 1.51300- 6 8.00000+ 0 3.53400- 8 1.00000+ 1 3.85490- 8 1.10000+ 1 4.08640- 8 1.30000+ 1 5.00620- 8 1.40000+ 1 4.69720- 8 1.60000+ 1 1.14680- 9 1.80000+ 1 1.88660- 9 1.90000+ 1 1.14320- 9 2.10000+ 1 1.37230- 9 2.20000+ 1 1.18440- 9 2.70000+ 1 5.94430-11 2.90000+ 1 8.62920-11 3.00000+ 1 5.05370-11 1 77000 0 0 1.92220+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.88530- 6 3.00000+ 0 1.21610- 5 5.00000+ 0 3.37940- 6 6.00000+ 0 3.54570- 6 8.00000+ 0 1.81720- 5 1.00000+ 1 1.22230- 5 1.10000+ 1 1.09390- 5 1.30000+ 1 2.22870- 6 1.40000+ 1 1.93990- 6 1.60000+ 1 1.50350- 5 1.80000+ 1 1.37060- 5 1.90000+ 1 9.74500- 6 2.10000+ 1 7.94070- 6 2.20000+ 1 7.21750- 6 2.70000+ 1 1.32790- 5 2.90000+ 1 6.14180- 6 3.00000+ 1 4.80130- 6 1 77000 0 0 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.35569- 4 3.00000+ 0 4.75091- 4 5.00000+ 0 3.47521- 4 6.00000+ 0 3.37763- 4 8.00000+ 0 3.24318- 4 1.00000+ 1 2.79800- 4 1.10000+ 1 2.55882- 4 1.30000+ 1 1.96547- 4 1.40000+ 1 1.87957- 4 1.60000+ 1 1.46990- 4 1.80000+ 1 1.51421- 4 1.90000+ 1 1.42249- 4 2.10000+ 1 1.18344- 4 2.20000+ 1 1.13296- 4 2.40000+ 1 7.13300- 5 2.50000+ 1 6.80600- 5 2.70000+ 1 2.26889- 5 2.90000+ 1 1.84698- 5 3.00000+ 1 1.44666- 5 3.20000+ 1 7.99000- 6 3.30000+ 1 6.79000- 6 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.26075+ 0 3.00000+ 0 3.63907- 1 5.00000+ 0 4.11581- 1 6.00000+ 0 3.33736- 1 8.00000+ 0 2.70688- 2 1.00000+ 1 2.69815- 2 1.10000+ 1 2.54926- 2 1.30000+ 1 2.81026- 2 1.40000+ 1 2.65831- 2 1.60000+ 1 9.23973- 4 1.80000+ 1 1.15716- 3 1.90000+ 1 5.23362- 4 2.10000+ 1 1.92368- 4 2.20000+ 1 1.79243- 4 2.70000+ 1 5.05971- 6 2.90000+ 1 9.07349- 7 3.00000+ 1 1.92269- 7 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.64227- 2 3.00000+ 0 3.19000- 3 5.00000+ 0 4.14058- 3 6.00000+ 0 2.85415- 3 8.00000+ 0 5.43561- 5 1.00000+ 1 5.41062- 5 1.10000+ 1 5.01811- 5 1.30000+ 1 5.56607- 5 1.40000+ 1 5.12410- 5 1.60000+ 1 3.00520- 7 1.80000+ 1 3.37578- 7 1.90000+ 1 1.38717- 7 2.10000+ 1 4.61419- 8 2.20000+ 1 4.10026- 8 2.70000+ 1 2.32921-10 2.90000+ 1 5.11591-11 3.00000+ 1 8.60562-12 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.36369+ 0 3.00000+ 0 9.35918+ 0 5.00000+ 0 6.59111+ 0 6.00000+ 0 6.33915+ 0 8.00000+ 0 6.32798+ 0 1.00000+ 1 5.20364+ 0 1.10000+ 1 4.65084+ 0 1.30000+ 1 3.07994+ 0 1.40000+ 1 2.96247+ 0 1.60000+ 1 3.93639+ 0 1.80000+ 1 2.80871+ 0 1.90000+ 1 2.80027+ 0 2.10000+ 1 1.40310+ 0 2.20000+ 1 1.41140+ 0 2.70000+ 1 2.08510+ 0 2.90000+ 1 1.47695+ 0 3.00000+ 1 1.00000+ 0 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.55574- 3 3.00000+ 0 9.73091- 3 5.00000+ 0 8.37090- 3 6.00000+ 0 8.02208- 3 8.00000+ 0 2.76703- 3 1.00000+ 1 2.56629- 3 1.10000+ 1 2.23294- 3 1.30000+ 1 1.87099- 3 1.40000+ 1 1.80560- 3 1.60000+ 1 5.28030- 4 1.80000+ 1 4.18591- 4 1.90000+ 1 3.42162- 4 2.10000+ 1 1.92129- 4 2.20000+ 1 1.81243- 4 2.70000+ 1 7.64508- 5 2.90000+ 1 4.72101- 5 3.00000+ 1 3.71934- 5 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.78730- 1 6.34550- 2 6.00000+ 0 4.78070- 1 6.51000- 2 1.00000+ 1 5.21380- 2 7.34138- 2 1.10000+ 1 1.00820- 1 7.37750- 2 1.30000+ 1 1.23440- 3 7.41908- 2 1.40000+ 1 1.53320- 3 7.42692- 2 1.80000+ 1 1.20800- 2 7.57436- 2 1.90000+ 1 2.35250- 2 7.58294- 2 2.10000+ 1 3.09490- 4 7.60035- 2 2.20000+ 1 3.83160- 4 7.60194- 2 2.90000+ 1 2.76620- 3 7.62483- 2 3.00000+ 1 5.54620- 3 7.62623- 2 3.20000+ 1 2.05020- 5 7.63060- 2 3.30000+ 1 2.44360- 5 7.63072- 2 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.40800- 3 4.95220- 2 3.00000+ 0 5.00000+ 0 6.61414- 3 5.00590- 2 3.00000+ 0 6.00000+ 0 4.21206- 3 5.17040- 2 3.00000+ 0 8.00000+ 0 1.75589- 3 5.97723- 2 3.00000+ 0 1.00000+ 1 1.41635- 3 6.00178- 2 3.00000+ 0 1.10000+ 1 9.64465- 4 6.03790- 2 3.00000+ 0 1.30000+ 1 7.92971- 5 6.07948- 2 3.00000+ 0 1.40000+ 1 6.32902- 5 6.08732- 2 3.00000+ 0 1.60000+ 1 4.30868- 4 6.22427- 2 3.00000+ 0 1.80000+ 1 3.38070- 4 6.23476- 2 3.00000+ 0 1.90000+ 1 2.28615- 4 6.24334- 2 3.00000+ 0 2.10000+ 1 1.97157- 5 6.26075- 2 3.00000+ 0 2.20000+ 1 1.54512- 5 6.26234- 2 3.00000+ 0 2.40000+ 1 6.18040- 8 6.28467- 2 3.00000+ 0 2.50000+ 1 6.18040- 8 6.28499- 2 3.00000+ 0 2.70000+ 1 8.20157- 5 6.28189- 2 3.00000+ 0 2.90000+ 1 5.55603- 5 6.28523- 2 3.00000+ 0 3.00000+ 1 3.57851- 5 6.28663- 2 3.00000+ 0 3.20000+ 1 1.42157- 6 6.29100- 2 3.00000+ 0 3.30000+ 1 8.65297- 7 6.29112- 2 5.00000+ 0 5.00000+ 0 4.17156- 4 5.05960- 2 5.00000+ 0 6.00000+ 0 7.69614- 3 5.22410- 2 5.00000+ 0 8.00000+ 0 1.13375- 3 6.03093- 2 5.00000+ 0 1.00000+ 1 1.56851- 4 6.05548- 2 5.00000+ 0 1.10000+ 1 1.46930- 3 6.09160- 2 5.00000+ 0 1.30000+ 1 8.29989- 5 6.13318- 2 5.00000+ 0 1.40000+ 1 2.28985- 4 6.14102- 2 5.00000+ 0 1.60000+ 1 2.68889- 4 6.27797- 2 5.00000+ 0 1.80000+ 1 3.64008- 5 6.28846- 2 5.00000+ 0 1.90000+ 1 3.34412- 4 6.29704- 2 5.00000+ 0 2.10000+ 1 1.99002- 5 6.31445- 2 5.00000+ 0 2.20000+ 1 5.48807- 5 6.31604- 2 5.00000+ 0 2.40000+ 1 4.94428- 7 6.33837- 2 5.00000+ 0 2.50000+ 1 7.41615- 7 6.33869- 2 5.00000+ 0 2.70000+ 1 5.07993- 5 6.33559- 2 5.00000+ 0 2.90000+ 1 5.93287- 6 6.33893- 2 5.00000+ 0 3.00000+ 1 5.19126- 5 6.34033- 2 5.00000+ 0 3.20000+ 1 1.42147- 6 6.34470- 2 5.00000+ 0 3.30000+ 1 3.02820- 6 6.34482- 2 6.00000+ 0 6.00000+ 0 3.39749- 3 5.38860- 2 6.00000+ 0 8.00000+ 0 6.62831- 4 6.19543- 2 6.00000+ 0 1.00000+ 1 1.35702- 3 6.21998- 2 6.00000+ 0 1.10000+ 1 1.34020- 3 6.25610- 2 6.00000+ 0 1.30000+ 1 2.57658- 4 6.29768- 2 6.00000+ 0 1.40000+ 1 2.18545- 4 6.30552- 2 6.00000+ 0 1.60000+ 1 1.54083- 4 6.44247- 2 6.00000+ 0 1.80000+ 1 3.10767- 4 6.45296- 2 6.00000+ 0 1.90000+ 1 3.07654- 4 6.46154- 2 6.00000+ 0 2.10000+ 1 6.23007- 5 6.47895- 2 6.00000+ 0 2.20000+ 1 5.25969- 5 6.48054- 2 6.00000+ 0 2.40000+ 1 8.65292- 7 6.50287- 2 6.00000+ 0 2.50000+ 1 9.27079- 7 6.50319- 2 6.00000+ 0 2.70000+ 1 2.89868- 5 6.50009- 2 6.00000+ 0 2.90000+ 1 5.06188- 5 6.50343- 2 6.00000+ 0 3.00000+ 1 4.78354- 5 6.50483- 2 6.00000+ 0 3.20000+ 1 4.51168- 6 6.50920- 2 6.00000+ 0 3.30000+ 1 2.90484- 6 6.50932- 2 8.00000+ 0 8.00000+ 0 1.72066- 4 7.00226- 2 8.00000+ 0 1.00000+ 1 2.43693- 4 7.02681- 2 8.00000+ 0 1.10000+ 1 1.53278- 4 7.06293- 2 8.00000+ 0 1.30000+ 1 1.22373- 5 7.10451- 2 8.00000+ 0 1.40000+ 1 9.20899- 6 7.11235- 2 8.00000+ 0 1.60000+ 1 8.41169- 5 7.24930- 2 8.00000+ 0 1.80000+ 1 5.82185- 5 7.25979- 2 8.00000+ 0 1.90000+ 1 3.64029- 5 7.26837- 2 8.00000+ 0 2.10000+ 1 3.02837- 6 7.28578- 2 8.00000+ 0 2.20000+ 1 2.22501- 6 7.28737- 2 8.00000+ 0 2.70000+ 1 1.60077- 5 7.30692- 2 8.00000+ 0 2.90000+ 1 9.57986- 6 7.31026- 2 8.00000+ 0 3.00000+ 1 5.68619- 6 7.31166- 2 8.00000+ 0 3.20000+ 1 2.47212- 7 7.31603- 2 8.00000+ 0 3.30000+ 1 1.23606- 7 7.31615- 2 1.00000+ 1 1.00000+ 1 1.43388- 5 7.05136- 2 1.00000+ 1 1.10000+ 1 2.65992- 4 7.08748- 2 1.00000+ 1 1.30000+ 1 1.24223- 5 7.12906- 2 1.00000+ 1 1.40000+ 1 3.05931- 5 7.13690- 2 1.00000+ 1 1.60000+ 1 5.78471- 5 7.27385- 2 1.00000+ 1 1.80000+ 1 6.61284- 6 7.28434- 2 1.00000+ 1 1.90000+ 1 6.08792- 5 7.29292- 2 1.00000+ 1 2.10000+ 1 3.02839- 6 7.31033- 2 1.00000+ 1 2.20000+ 1 7.41662- 6 7.31192- 2 1.00000+ 1 2.40000+ 1 6.18035- 8 7.33425- 2 1.00000+ 1 2.50000+ 1 6.18035- 8 7.33457- 2 1.00000+ 1 2.70000+ 1 1.09392- 5 7.33147- 2 1.00000+ 1 2.90000+ 1 1.05069- 6 7.33481- 2 1.00000+ 1 3.00000+ 1 9.45616- 6 7.33621- 2 1.00000+ 1 3.20000+ 1 2.47213- 7 7.34058- 2 1.00000+ 1 3.30000+ 1 4.32618- 7 7.34070- 2 1.10000+ 1 1.10000+ 1 1.33371- 4 7.12360- 2 1.10000+ 1 1.30000+ 1 4.05428- 5 7.16518- 2 1.10000+ 1 1.40000+ 1 3.33134- 5 7.17302- 2 1.10000+ 1 1.60000+ 1 3.57239- 5 7.30997- 2 1.10000+ 1 1.80000+ 1 6.11865- 5 7.32046- 2 1.10000+ 1 1.90000+ 1 6.13108- 5 7.32904- 2 1.10000+ 1 2.10000+ 1 9.88854- 6 7.34645- 2 1.10000+ 1 2.20000+ 1 8.09655- 6 7.34804- 2 1.10000+ 1 2.40000+ 1 1.23606- 7 7.37037- 2 1.10000+ 1 2.50000+ 1 1.23606- 7 7.37069- 2 1.10000+ 1 2.70000+ 1 6.73652- 6 7.36759- 2 1.10000+ 1 2.90000+ 1 9.95068- 6 7.37093- 2 1.10000+ 1 3.00000+ 1 9.51767- 6 7.37233- 2 1.10000+ 1 3.20000+ 1 7.41653- 7 7.37670- 2 1.10000+ 1 3.30000+ 1 4.32613- 7 7.37682- 2 1.30000+ 1 1.30000+ 1 6.18048- 8 7.20676- 2 1.30000+ 1 1.40000+ 1 4.82093- 6 7.21460- 2 1.30000+ 1 1.60000+ 1 2.84306- 6 7.35155- 2 1.30000+ 1 1.80000+ 1 2.78134- 6 7.36204- 2 1.30000+ 1 1.90000+ 1 8.83806- 6 7.37062- 2 1.30000+ 1 2.10000+ 1 6.18048- 8 7.38803- 2 1.30000+ 1 2.20000+ 1 1.11253- 6 7.38962- 2 1.30000+ 1 2.70000+ 1 5.56258- 7 7.40917- 2 1.30000+ 1 2.90000+ 1 4.32628- 7 7.41251- 2 1.30000+ 1 3.00000+ 1 1.35975- 6 7.41391- 2 1.30000+ 1 3.30000+ 1 6.18048- 8 7.41840- 2 1.40000+ 1 1.40000+ 1 1.11251- 6 7.22244- 2 1.40000+ 1 1.60000+ 1 2.10137- 6 7.35939- 2 1.40000+ 1 1.80000+ 1 6.55124- 6 7.36989- 2 1.40000+ 1 1.90000+ 1 7.23126- 6 7.37846- 2 1.40000+ 1 2.10000+ 1 1.11251- 6 7.39587- 2 1.40000+ 1 2.20000+ 1 5.56248- 7 7.39746- 2 1.40000+ 1 2.70000+ 1 3.70822- 7 7.41701- 2 1.40000+ 1 2.90000+ 1 1.05069- 6 7.42035- 2 1.40000+ 1 3.00000+ 1 1.11251- 6 7.42175- 2 1.40000+ 1 3.20000+ 1 6.18037- 8 7.42612- 2 1.60000+ 1 1.60000+ 1 1.02588- 5 7.49634- 2 1.60000+ 1 1.80000+ 1 1.38437- 5 7.50683- 2 1.60000+ 1 1.90000+ 1 8.46676- 6 7.51541- 2 1.60000+ 1 2.10000+ 1 6.79822- 7 7.53282- 2 1.60000+ 1 2.20000+ 1 4.94421- 7 7.53441- 2 1.60000+ 1 2.70000+ 1 3.89350- 6 7.55395- 2 1.60000+ 1 2.90000+ 1 2.28657- 6 7.55730- 2 1.60000+ 1 3.00000+ 1 1.35962- 6 7.55870- 2 1.60000+ 1 3.20000+ 1 6.17988- 8 7.56307- 2 1.80000+ 1 1.80000+ 1 7.41667- 7 7.51733- 2 1.80000+ 1 1.90000+ 1 1.40298- 5 7.52591- 2 1.80000+ 1 2.10000+ 1 6.79879- 7 7.54331- 2 1.80000+ 1 2.20000+ 1 1.60695- 6 7.54491- 2 1.80000+ 1 2.70000+ 1 2.59570- 6 7.56445- 2 1.80000+ 1 2.90000+ 1 2.47215- 7 7.56780- 2 1.80000+ 1 3.00000+ 1 2.16321- 6 7.56920- 2 1.80000+ 1 3.20000+ 1 6.18039- 8 7.57357- 2 1.80000+ 1 3.30000+ 1 6.18039- 8 7.57369- 2 1.90000+ 1 1.90000+ 1 6.84810- 6 7.53449- 2 1.90000+ 1 2.10000+ 1 2.10251- 6 7.55189- 2 1.90000+ 1 2.20000+ 1 1.68195- 6 7.55349- 2 1.90000+ 1 2.70000+ 1 1.56186- 6 7.57303- 2 1.90000+ 1 2.90000+ 1 2.22260- 6 7.57638- 2 1.90000+ 1 3.00000+ 1 2.16261- 6 7.57778- 2 1.90000+ 1 3.20000+ 1 1.80214- 7 7.58215- 2 1.90000+ 1 3.30000+ 1 1.20140- 7 7.58227- 2 2.10000+ 1 2.20000+ 1 2.78948- 7 7.57089- 2 2.10000+ 1 2.70000+ 1 1.39475- 7 7.59043- 2 2.10000+ 1 2.90000+ 1 1.39475- 7 7.59378- 2 2.10000+ 1 3.00000+ 1 3.48691- 7 7.59518- 2 2.20000+ 1 2.20000+ 1 6.38737- 8 7.57248- 2 2.20000+ 1 2.70000+ 1 1.27748- 7 7.59203- 2 2.20000+ 1 2.90000+ 1 2.55494- 7 7.59537- 2 2.20000+ 1 3.00000+ 1 2.55494- 7 7.59678- 2 2.70000+ 1 2.70000+ 1 3.81249- 7 7.61157- 2 2.70000+ 1 2.90000+ 1 4.44785- 7 7.61492- 2 2.70000+ 1 3.00000+ 1 2.54166- 7 7.61632- 2 2.90000+ 1 3.00000+ 1 3.50930- 7 7.61967- 2 3.00000+ 1 3.00000+ 1 1.79680- 7 7.62107- 2 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.09590- 5 5.37000- 4 6.00000+ 0 1.75530- 3 2.18200- 3 1.00000+ 1 2.51260- 2 1.04958- 2 1.10000+ 1 2.99970- 2 1.08570- 2 1.30000+ 1 7.93300- 4 1.12728- 2 1.40000+ 1 1.18740- 3 1.13512- 2 1.80000+ 1 6.28030- 3 1.28256- 2 1.90000+ 1 8.02480- 3 1.29114- 2 2.10000+ 1 1.15680- 4 1.30855- 2 2.20000+ 1 1.81540- 4 1.31014- 2 2.90000+ 1 1.05870- 3 1.33303- 2 3.00000+ 1 1.30580- 3 1.33443- 2 3.20000+ 1 6.98380- 6 1.33880- 2 3.30000+ 1 1.06720- 5 1.33892- 2 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90000+ 1 1.67143- 2 5.24500- 5 5.00000+ 0 2.10000+ 1 4.63490- 3 2.26480- 4 5.00000+ 0 2.20000+ 1 6.37684- 3 2.42420- 4 5.00000+ 0 2.40000+ 1 1.38592- 2 4.65670- 4 5.00000+ 0 2.50000+ 1 1.82183- 2 4.68940- 4 5.00000+ 0 2.70000+ 1 3.82091- 3 4.37860- 4 5.00000+ 0 2.90000+ 1 2.59647- 3 4.71320- 4 5.00000+ 0 3.00000+ 1 2.48811- 3 4.85340- 4 5.00000+ 0 3.20000+ 1 3.38051- 4 5.29010- 4 5.00000+ 0 3.30000+ 1 3.63896- 4 5.30210- 4 6.00000+ 0 1.30000+ 1 2.31106- 1 5.88000- 5 6.00000+ 0 1.40000+ 1 3.14483- 1 1.37200- 4 6.00000+ 0 1.60000+ 1 1.95544- 2 1.50668- 3 6.00000+ 0 1.80000+ 1 7.89099- 3 1.61165- 3 6.00000+ 0 1.90000+ 1 1.23593- 2 1.69745- 3 6.00000+ 0 2.10000+ 1 2.91684- 2 1.87148- 3 6.00000+ 0 2.20000+ 1 3.51313- 2 1.88742- 3 6.00000+ 0 2.40000+ 1 2.06520- 2 2.11067- 3 6.00000+ 0 2.50000+ 1 2.58789- 2 2.11394- 3 6.00000+ 0 2.70000+ 1 3.55608- 3 2.08286- 3 6.00000+ 0 2.90000+ 1 1.26559- 3 2.11632- 3 6.00000+ 0 3.00000+ 1 1.91480- 3 2.13034- 3 6.00000+ 0 3.20000+ 1 1.95634- 3 2.17401- 3 6.00000+ 0 3.30000+ 1 1.79277- 3 2.17521- 3 8.00000+ 0 8.00000+ 0 5.00787- 3 7.10460- 3 8.00000+ 0 1.00000+ 1 1.02300- 2 7.35010- 3 8.00000+ 0 1.10000+ 1 1.67482- 2 7.71130- 3 8.00000+ 0 1.30000+ 1 1.26328- 2 8.12710- 3 8.00000+ 0 1.40000+ 1 1.65585- 2 8.20550- 3 8.00000+ 0 1.60000+ 1 2.08665- 3 9.57498- 3 8.00000+ 0 1.80000+ 1 2.40372- 3 9.67995- 3 8.00000+ 0 1.90000+ 1 3.86813- 3 9.76575- 3 8.00000+ 0 2.10000+ 1 2.60705- 3 9.93978- 3 8.00000+ 0 2.20000+ 1 3.38359- 3 9.95572- 3 8.00000+ 0 2.40000+ 1 1.92497- 4 1.01790- 2 8.00000+ 0 2.50000+ 1 2.15855- 4 1.01822- 2 8.00000+ 0 2.70000+ 1 3.87053- 4 1.01512- 2 8.00000+ 0 2.90000+ 1 3.93254- 4 1.01846- 2 8.00000+ 0 3.00000+ 1 6.01879- 4 1.01986- 2 8.00000+ 0 3.20000+ 1 1.83810- 4 1.02423- 2 8.00000+ 0 3.30000+ 1 1.83191- 4 1.02435- 2 1.00000+ 1 1.00000+ 1 2.41909- 5 7.59560- 3 1.00000+ 1 1.10000+ 1 2.21647- 4 7.95680- 3 1.00000+ 1 1.30000+ 1 6.07658- 4 8.37260- 3 1.00000+ 1 1.40000+ 1 5.31244- 3 8.45100- 3 1.00000+ 1 1.60000+ 1 1.68051- 3 9.82048- 3 1.00000+ 1 1.80000+ 1 3.72161- 6 9.92545- 3 1.00000+ 1 1.90000+ 1 4.48657- 5 1.00112- 2 1.00000+ 1 2.10000+ 1 1.13305- 4 1.01853- 2 1.00000+ 1 2.20000+ 1 6.95119- 4 1.02012- 2 1.00000+ 1 2.40000+ 1 6.90564- 5 1.04245- 2 1.00000+ 1 2.50000+ 1 2.42109- 4 1.04277- 2 1.00000+ 1 2.70000+ 1 2.94627- 4 1.03967- 2 1.00000+ 1 2.90000+ 1 4.13514- 7 1.04301- 2 1.00000+ 1 3.00000+ 1 6.82297- 6 1.04441- 2 1.00000+ 1 3.20000+ 1 8.06337- 6 1.04878- 2 1.00000+ 1 3.30000+ 1 3.53546- 5 1.04890- 2 1.10000+ 1 1.10000+ 1 4.93739- 4 8.31800- 3 1.10000+ 1 1.30000+ 1 2.03434- 3 8.73380- 3 1.10000+ 1 1.40000+ 1 1.25969- 3 8.81220- 3 1.10000+ 1 1.60000+ 1 2.72120- 3 1.01817- 2 1.10000+ 1 1.80000+ 1 5.04494- 5 1.02866- 2 1.10000+ 1 1.90000+ 1 1.70369- 4 1.03724- 2 1.10000+ 1 2.10000+ 1 1.79886- 4 1.05465- 2 1.10000+ 1 2.20000+ 1 9.98738- 5 1.05624- 2 1.10000+ 1 2.40000+ 1 1.35226- 4 1.07857- 2 1.10000+ 1 2.50000+ 1 1.12058- 4 1.07889- 2 1.10000+ 1 2.70000+ 1 4.75963- 4 1.07579- 2 1.10000+ 1 2.90000+ 1 8.27016- 6 1.07913- 2 1.10000+ 1 3.00000+ 1 2.50180- 5 1.08053- 2 1.10000+ 1 3.20000+ 1 1.09582- 5 1.08490- 2 1.10000+ 1 3.30000+ 1 4.75553- 6 1.08502- 2 1.30000+ 1 1.30000+ 1 7.48680- 4 9.14960- 3 1.30000+ 1 1.40000+ 1 2.28678- 2 9.22800- 3 1.30000+ 1 1.60000+ 1 1.88903- 3 1.05975- 2 1.30000+ 1 1.80000+ 1 1.74503- 4 1.07024- 2 1.30000+ 1 1.90000+ 1 5.20201- 4 1.07882- 2 1.30000+ 1 2.10000+ 1 3.01659- 4 1.09623- 2 1.30000+ 1 2.20000+ 1 3.27214- 3 1.09782- 2 1.30000+ 1 2.40000+ 1 2.11721- 4 1.12015- 2 1.30000+ 1 2.50000+ 1 5.87190- 4 1.12047- 2 1.30000+ 1 2.70000+ 1 3.25228- 4 1.11737- 2 1.30000+ 1 2.90000+ 1 2.95656- 5 1.12071- 2 1.30000+ 1 3.00000+ 1 8.22909- 5 1.12211- 2 1.30000+ 1 3.20000+ 1 2.12960- 5 1.12648- 2 1.30000+ 1 3.30000+ 1 1.67682- 4 1.12660- 2 1.40000+ 1 1.40000+ 1 6.35757- 3 9.30640- 3 1.40000+ 1 1.60000+ 1 2.50916- 3 1.06759- 2 1.40000+ 1 1.80000+ 1 1.11148- 3 1.07808- 2 1.40000+ 1 1.90000+ 1 3.34123- 4 1.08666- 2 1.40000+ 1 2.10000+ 1 3.18863- 3 1.10407- 2 1.40000+ 1 2.20000+ 1 1.92017- 3 1.10566- 2 1.40000+ 1 2.40000+ 1 6.49629- 4 1.12799- 2 1.40000+ 1 2.50000+ 1 4.93932- 4 1.12831- 2 1.40000+ 1 2.70000+ 1 4.34184- 4 1.12521- 2 1.40000+ 1 2.90000+ 1 1.78016- 4 1.12855- 2 1.40000+ 1 3.00000+ 1 5.33438- 5 1.12995- 2 1.40000+ 1 3.20000+ 1 2.11520- 4 1.13432- 2 1.40000+ 1 3.30000+ 1 9.92399- 5 1.13444- 2 1.60000+ 1 1.60000+ 1 2.05108- 4 1.20454- 2 1.60000+ 1 1.80000+ 1 3.95935- 4 1.21503- 2 1.60000+ 1 1.90000+ 1 6.30602- 4 1.22361- 2 1.60000+ 1 2.10000+ 1 3.90563- 4 1.24102- 2 1.60000+ 1 2.20000+ 1 5.10687- 4 1.24261- 2 1.60000+ 1 2.40000+ 1 2.37772- 5 1.26493- 2 1.60000+ 1 2.50000+ 1 2.58434- 5 1.26526- 2 1.60000+ 1 2.70000+ 1 7.52595- 5 1.26215- 2 1.60000+ 1 2.90000+ 1 6.47149- 5 1.26550- 2 1.60000+ 1 3.00000+ 1 9.82049- 5 1.26690- 2 1.60000+ 1 3.20000+ 1 2.74991- 5 1.27127- 2 1.60000+ 1 3.30000+ 1 2.77048- 5 1.27139- 2 1.80000+ 1 1.90000+ 1 1.03379- 5 1.23411- 2 1.80000+ 1 2.10000+ 1 2.83264- 5 1.25151- 2 1.80000+ 1 2.20000+ 1 1.50935- 4 1.25311- 2 1.80000+ 1 2.40000+ 1 9.51105- 6 1.27543- 2 1.80000+ 1 2.50000+ 1 3.74231- 5 1.27576- 2 1.80000+ 1 2.70000+ 1 6.94713- 5 1.27265- 2 1.80000+ 1 3.00000+ 1 1.65415- 6 1.27740- 2 1.80000+ 1 3.20000+ 1 1.86077- 6 1.28177- 2 1.80000+ 1 3.30000+ 1 7.65019- 6 1.28189- 2 1.90000+ 1 1.90000+ 1 1.42670- 5 1.24269- 2 1.90000+ 1 2.10000+ 1 5.21044- 5 1.26009- 2 1.90000+ 1 2.20000+ 1 3.18415- 5 1.26169- 2 1.90000+ 1 2.40000+ 1 2.60522- 5 1.28401- 2 1.90000+ 1 2.50000+ 1 2.10898- 5 1.28434- 2 1.90000+ 1 2.70000+ 1 1.10413- 4 1.28123- 2 1.90000+ 1 2.90000+ 1 1.65420- 6 1.28458- 2 1.90000+ 1 3.00000+ 1 4.13528- 6 1.28598- 2 1.90000+ 1 3.20000+ 1 3.30819- 6 1.29035- 2 1.90000+ 1 3.30000+ 1 1.65420- 6 1.29047- 2 2.10000+ 1 2.10000+ 1 2.81187- 5 1.27750- 2 2.10000+ 1 2.20000+ 1 4.98493- 4 1.27909- 2 2.10000+ 1 2.40000+ 1 2.95658- 5 1.30141- 2 2.10000+ 1 2.50000+ 1 6.24412- 5 1.30174- 2 2.10000+ 1 2.70000+ 1 6.71967- 5 1.29863- 2 2.10000+ 1 2.90000+ 1 4.75553- 6 1.30198- 2 2.10000+ 1 3.00000+ 1 8.47679- 6 1.30338- 2 2.10000+ 1 3.20000+ 1 3.92847- 6 1.30775- 2 2.10000+ 1 3.30000+ 1 2.58438- 5 1.30787- 2 2.20000+ 1 2.20000+ 1 1.55276- 4 1.28068- 2 2.20000+ 1 2.40000+ 1 7.23644- 5 1.30301- 2 2.20000+ 1 2.50000+ 1 6.14065- 5 1.30334- 2 2.20000+ 1 2.70000+ 1 8.82855- 5 1.30023- 2 2.20000+ 1 2.90000+ 1 2.43974- 5 1.30357- 2 2.20000+ 1 3.00000+ 1 5.16899- 6 1.30498- 2 2.20000+ 1 3.20000+ 1 3.34940- 5 1.30934- 2 2.20000+ 1 3.30000+ 1 1.61268- 5 1.30946- 2 2.40000+ 1 2.40000+ 1 9.26496- 7 1.32533- 2 2.40000+ 1 2.50000+ 1 1.91484- 5 1.32566- 2 2.40000+ 1 2.70000+ 1 5.86787- 6 1.32255- 2 2.40000+ 1 2.90000+ 1 2.16185- 6 1.32590- 2 2.40000+ 1 3.00000+ 1 5.86787- 6 1.32730- 2 2.40000+ 1 3.20000+ 1 3.08832- 6 1.33167- 2 2.40000+ 1 3.30000+ 1 5.25017- 6 1.33179- 2 2.50000+ 1 2.50000+ 1 4.34471- 6 1.32599- 2 2.50000+ 1 2.70000+ 1 7.01810- 6 1.32288- 2 2.50000+ 1 2.90000+ 1 9.02340- 6 1.32623- 2 2.50000+ 1 3.00000+ 1 5.01296- 6 1.32763- 2 2.50000+ 1 3.20000+ 1 6.34984- 6 1.33199- 2 2.50000+ 1 3.30000+ 1 5.01296- 6 1.33211- 2 2.70000+ 1 2.70000+ 1 1.82774- 5 1.31977- 2 2.70000+ 1 2.90000+ 1 3.04647- 5 1.32312- 2 2.70000+ 1 3.00000+ 1 4.59697- 5 1.32452- 2 2.70000+ 1 3.20000+ 1 1.27390- 5 1.32889- 2 2.70000+ 1 3.30000+ 1 1.27390- 5 1.32901- 2 2.90000+ 1 3.00000+ 1 9.66332- 7 1.32787- 2 2.90000+ 1 3.20000+ 1 1.93266- 6 1.33223- 2 2.90000+ 1 3.30000+ 1 5.79781- 6 1.33235- 2 3.00000+ 1 3.00000+ 1 8.46040- 7 1.32927- 2 3.00000+ 1 3.20000+ 1 2.53812- 6 1.33363- 2 3.00000+ 1 3.30000+ 1 8.46040- 7 1.33375- 2 3.20000+ 1 3.20000+ 1 1.87959- 7 1.33800- 2 3.20000+ 1 3.30000+ 1 1.50374- 6 1.33812- 2 3.30000+ 1 3.30000+ 1 4.46430- 7 1.33824- 2 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.14475- 6 1.64500- 3 8.00000+ 0 7.36658- 3 9.71330- 3 1.10000+ 1 2.61433- 4 1.03200- 2 1.30000+ 1 2.69903- 1 1.07358- 2 1.60000+ 1 1.83212- 3 1.21837- 2 1.90000+ 1 6.94897- 5 1.23744- 2 2.10000+ 1 5.20525- 2 1.25485- 2 2.40000+ 1 1.67682- 4 1.27877- 2 2.70000+ 1 3.61874- 4 1.27599- 2 3.00000+ 1 1.40081- 5 1.28073- 2 3.20000+ 1 3.36594- 3 1.28510- 2 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 6.06754- 3 9.69680- 4 6.00000+ 0 1.80000+ 1 4.01917- 2 1.07465- 3 6.00000+ 0 1.90000+ 1 1.17396- 2 1.16045- 3 6.00000+ 0 2.10000+ 1 4.33456- 2 1.33448- 3 6.00000+ 0 2.20000+ 1 1.50519- 2 1.35042- 3 6.00000+ 0 2.40000+ 1 1.54558- 3 1.57367- 3 6.00000+ 0 2.50000+ 1 2.33481- 3 1.57694- 3 6.00000+ 0 2.70000+ 1 1.05981- 3 1.54586- 3 6.00000+ 0 2.90000+ 1 6.10603- 3 1.57932- 3 6.00000+ 0 3.00000+ 1 1.79282- 3 1.59334- 3 6.00000+ 0 3.20000+ 1 2.95314- 3 1.63701- 3 6.00000+ 0 3.30000+ 1 7.92871- 4 1.63821- 3 8.00000+ 0 8.00000+ 0 6.45752- 4 6.56760- 3 8.00000+ 0 1.00000+ 1 2.10778- 2 6.81310- 3 8.00000+ 0 1.10000+ 1 2.00415- 3 7.17430- 3 8.00000+ 0 1.30000+ 1 2.94042- 3 7.59010- 3 8.00000+ 0 1.40000+ 1 2.10327- 3 7.66850- 3 8.00000+ 0 1.60000+ 1 2.44492- 4 9.03798- 3 8.00000+ 0 1.80000+ 1 3.27807- 3 9.14295- 3 8.00000+ 0 1.90000+ 1 4.13577- 4 9.22875- 3 8.00000+ 0 2.10000+ 1 4.29612- 4 9.40278- 3 8.00000+ 0 2.20000+ 1 2.61619- 4 9.41872- 3 8.00000+ 0 2.40000+ 1 8.93503- 5 9.64197- 3 8.00000+ 0 2.50000+ 1 6.04570- 5 9.64524- 3 8.00000+ 0 2.70000+ 1 4.44064- 5 9.61416- 3 8.00000+ 0 2.90000+ 1 4.95950- 4 9.64762- 3 8.00000+ 0 3.00000+ 1 6.31320- 5 9.66164- 3 8.00000+ 0 3.20000+ 1 2.88910- 5 9.70531- 3 8.00000+ 0 3.30000+ 1 1.33757- 5 9.70651- 3 1.00000+ 1 1.00000+ 1 2.17961- 2 7.05860- 3 1.00000+ 1 1.10000+ 1 5.80597- 2 7.41980- 3 1.00000+ 1 1.30000+ 1 3.04264- 2 7.83560- 3 1.00000+ 1 1.40000+ 1 4.51335- 2 7.91400- 3 1.00000+ 1 1.60000+ 1 5.28610- 3 9.28348- 3 1.00000+ 1 1.80000+ 1 8.64167- 3 9.38845- 3 1.00000+ 1 1.90000+ 1 1.31667- 2 9.47425- 3 1.00000+ 1 2.10000+ 1 6.28455- 3 9.64828- 3 1.00000+ 1 2.20000+ 1 9.27689- 3 9.66422- 3 1.00000+ 1 2.40000+ 1 4.34979- 4 9.88747- 3 1.00000+ 1 2.50000+ 1 3.89497- 4 9.89074- 3 1.00000+ 1 2.70000+ 1 1.01017- 3 9.85966- 3 1.00000+ 1 2.90000+ 1 1.37660- 3 9.89312- 3 1.00000+ 1 3.00000+ 1 2.04281- 3 9.90714- 3 1.00000+ 1 3.20000+ 1 4.43548- 4 9.95081- 3 1.00000+ 1 3.30000+ 1 5.02932- 4 9.95201- 3 1.10000+ 1 1.10000+ 1 1.37765- 3 7.78100- 3 1.10000+ 1 1.30000+ 1 2.94853- 2 8.19680- 3 1.10000+ 1 1.40000+ 1 4.19509- 3 8.27520- 3 1.10000+ 1 1.60000+ 1 4.23728- 4 9.64468- 3 1.10000+ 1 1.80000+ 1 9.25533- 3 9.74965- 3 1.10000+ 1 1.90000+ 1 5.34475- 4 9.83545- 3 1.10000+ 1 2.10000+ 1 5.12646- 3 1.00095- 2 1.10000+ 1 2.20000+ 1 6.97687- 4 1.00254- 2 1.10000+ 1 2.40000+ 1 1.97959- 4 1.02487- 2 1.10000+ 1 2.50000+ 1 1.06465- 4 1.02519- 2 1.10000+ 1 2.70000+ 1 7.81142- 5 1.02209- 2 1.10000+ 1 2.90000+ 1 1.40652- 3 1.02543- 2 1.10000+ 1 3.00000+ 1 8.07851- 5 1.02683- 2 1.10000+ 1 3.20000+ 1 3.52050- 4 1.03120- 2 1.10000+ 1 3.30000+ 1 3.69158- 5 1.03132- 2 1.30000+ 1 1.30000+ 1 2.78611- 2 8.61260- 3 1.30000+ 1 1.40000+ 1 1.12411- 1 8.69100- 3 1.30000+ 1 1.60000+ 1 7.37828- 4 1.00605- 2 1.30000+ 1 1.80000+ 1 4.73878- 3 1.01655- 2 1.30000+ 1 1.90000+ 1 6.22922- 3 1.02512- 2 1.30000+ 1 2.10000+ 1 9.56178- 3 1.04253- 2 1.30000+ 1 2.20000+ 1 2.07555- 2 1.04412- 2 1.30000+ 1 2.40000+ 1 1.59165- 3 1.06645- 2 1.30000+ 1 2.50000+ 1 3.23302- 3 1.06677- 2 1.30000+ 1 2.70000+ 1 1.41246- 4 1.06367- 2 1.30000+ 1 2.90000+ 1 7.22284- 4 1.06701- 2 1.30000+ 1 3.00000+ 1 9.53392- 4 1.06841- 2 1.30000+ 1 3.20000+ 1 6.58080- 4 1.07278- 2 1.30000+ 1 3.30000+ 1 1.10697- 3 1.07290- 2 1.40000+ 1 1.40000+ 1 5.43571- 3 8.76940- 3 1.40000+ 1 1.60000+ 1 4.27473- 4 1.01389- 2 1.40000+ 1 1.80000+ 1 6.21532- 3 1.02438- 2 1.40000+ 1 1.90000+ 1 8.14290- 4 1.03296- 2 1.40000+ 1 2.10000+ 1 1.58892- 2 1.05037- 2 1.40000+ 1 2.20000+ 1 1.82384- 3 1.05196- 2 1.40000+ 1 2.40000+ 1 6.38811- 4 1.07429- 2 1.40000+ 1 2.50000+ 1 2.45572- 4 1.07461- 2 1.40000+ 1 2.70000+ 1 7.81136- 5 1.07151- 2 1.40000+ 1 2.90000+ 1 9.17016- 4 1.07485- 2 1.40000+ 1 3.00000+ 1 1.22520- 4 1.07625- 2 1.40000+ 1 3.20000+ 1 1.05824- 3 1.08062- 2 1.40000+ 1 3.30000+ 1 9.62999- 5 1.08074- 2 1.60000+ 1 1.60000+ 1 2.24691- 5 1.15084- 2 1.60000+ 1 1.80000+ 1 8.27629- 4 1.16133- 2 1.60000+ 1 1.90000+ 1 8.82779- 5 1.16991- 2 1.60000+ 1 2.10000+ 1 1.04327- 4 1.18732- 2 1.60000+ 1 2.20000+ 1 5.35008- 5 1.18891- 2 1.60000+ 1 2.40000+ 1 1.97952- 5 1.21123- 2 1.60000+ 1 2.50000+ 1 1.07004- 5 1.21156- 2 1.60000+ 1 2.70000+ 1 8.02513- 6 1.20845- 2 1.60000+ 1 2.90000+ 1 1.25184- 4 1.21180- 2 1.60000+ 1 3.00000+ 1 1.33752- 5 1.21320- 2 1.60000+ 1 3.20000+ 1 6.95469- 6 1.21757- 2 1.60000+ 1 3.30000+ 1 2.67493- 6 1.21769- 2 1.80000+ 1 1.80000+ 1 8.15379- 4 1.17183- 2 1.80000+ 1 1.90000+ 1 2.10523- 3 1.18041- 2 1.80000+ 1 2.10000+ 1 9.63562- 4 1.19781- 2 1.80000+ 1 2.20000+ 1 1.28939- 3 1.19941- 2 1.80000+ 1 2.40000+ 1 5.51075- 5 1.22173- 2 1.80000+ 1 2.50000+ 1 4.01270- 5 1.22206- 2 1.80000+ 1 2.70000+ 1 1.58375- 4 1.21895- 2 1.80000+ 1 2.90000+ 1 2.57346- 4 1.22230- 2 1.80000+ 1 3.00000+ 1 3.26912- 4 1.22370- 2 1.80000+ 1 3.20000+ 1 6.79493- 5 1.22807- 2 1.80000+ 1 3.30000+ 1 7.00892- 5 1.22819- 2 1.90000+ 1 1.90000+ 1 5.18971- 5 1.18899- 2 1.90000+ 1 2.10000+ 1 1.09144- 3 1.20639- 2 1.90000+ 1 2.20000+ 1 1.38039- 4 1.20799- 2 1.90000+ 1 2.40000+ 1 3.47768- 5 1.23031- 2 1.90000+ 1 2.50000+ 1 1.76555- 5 1.23064- 2 1.90000+ 1 2.70000+ 1 1.60510- 5 1.22753- 2 1.90000+ 1 2.90000+ 1 3.19945- 4 1.23088- 2 1.90000+ 1 3.00000+ 1 1.55158- 5 1.23228- 2 1.90000+ 1 3.20000+ 1 7.49066- 5 1.23665- 2 1.90000+ 1 3.30000+ 1 7.49066- 6 1.23677- 2 2.10000+ 1 2.10000+ 1 8.11656- 4 1.22380- 2 2.10000+ 1 2.20000+ 1 3.05182- 3 1.22539- 2 2.10000+ 1 2.40000+ 1 1.87791- 4 1.24771- 2 2.10000+ 1 2.50000+ 1 3.85753- 4 1.24804- 2 2.10000+ 1 2.70000+ 1 1.97963- 5 1.24493- 2 2.10000+ 1 2.90000+ 1 1.46066- 4 1.24828- 2 2.10000+ 1 3.00000+ 1 1.67464- 4 1.24968- 2 2.10000+ 1 3.20000+ 1 1.11289- 4 1.25405- 2 2.10000+ 1 3.30000+ 1 1.63716- 4 1.25417- 2 2.20000+ 1 2.20000+ 1 1.70077- 4 1.22698- 2 2.20000+ 1 2.40000+ 1 8.97597- 5 1.24931- 2 2.20000+ 1 2.50000+ 1 3.54301- 5 1.24964- 2 2.20000+ 1 2.70000+ 1 1.06291- 5 1.24653- 2 2.20000+ 1 2.90000+ 1 2.10232- 4 1.24987- 2 2.20000+ 1 3.00000+ 1 2.30298- 5 1.25128- 2 2.20000+ 1 3.20000+ 1 2.25575- 4 1.25564- 2 2.20000+ 1 3.30000+ 1 1.77157- 5 1.25576- 2 2.40000+ 1 2.40000+ 1 4.25520- 6 1.27163- 2 2.40000+ 1 2.50000+ 1 2.97875- 5 1.27196- 2 2.40000+ 1 2.70000+ 1 4.25520- 6 1.26885- 2 2.40000+ 1 2.90000+ 1 9.11873- 6 1.27220- 2 2.40000+ 1 3.00000+ 1 6.07914- 6 1.27360- 2 2.40000+ 1 3.20000+ 1 1.39817- 5 1.27797- 2 2.40000+ 1 3.30000+ 1 4.86329- 6 1.27809- 2 2.50000+ 1 2.50000+ 1 2.04392- 6 1.27229- 2 2.50000+ 1 2.70000+ 1 2.72518- 6 1.26918- 2 2.50000+ 1 2.90000+ 1 6.81313- 6 1.27253- 2 2.50000+ 1 3.00000+ 1 3.40642- 6 1.27393- 2 2.50000+ 1 3.20000+ 1 3.20209- 5 1.27829- 2 2.50000+ 1 3.30000+ 1 2.04392- 6 1.27841- 2 2.70000+ 1 2.70000+ 1 6.48262- 7 1.26607- 2 2.70000+ 1 2.90000+ 1 2.91721- 5 1.26942- 2 2.70000+ 1 3.00000+ 1 3.24118- 6 1.27082- 2 2.70000+ 1 3.20000+ 1 1.29655- 6 1.27519- 2 2.70000+ 1 3.30000+ 1 6.48262- 7 1.27531- 2 2.90000+ 1 2.90000+ 1 2.57860- 5 1.27276- 2 2.90000+ 1 3.00000+ 1 6.31104- 5 1.27417- 2 2.90000+ 1 3.20000+ 1 1.28924- 5 1.27853- 2 2.90000+ 1 3.30000+ 1 1.28924- 5 1.27865- 2 3.00000+ 1 3.00000+ 1 1.56716- 6 1.27557- 2 3.00000+ 1 3.20000+ 1 1.64539- 5 1.27993- 2 3.00000+ 1 3.30000+ 1 1.56716- 6 1.28005- 2 3.20000+ 1 3.20000+ 1 3.74511- 6 1.28430- 2 3.20000+ 1 3.30000+ 1 1.07010- 5 1.28442- 2 3.30000+ 1 3.30000+ 1 5.35026- 7 1.28454- 2 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.37481- 2 8.06830- 3 1.00000+ 1 1.27131- 4 8.31380- 3 1.10000+ 1 1.15071- 4 8.67500- 3 1.30000+ 1 2.37431- 2 9.09080- 3 1.40000+ 1 2.09331- 1 9.16920- 3 1.60000+ 1 2.75612- 3 1.05387- 2 1.80000+ 1 2.78182- 5 1.06436- 2 1.90000+ 1 2.77672- 5 1.07294- 2 2.10000+ 1 4.25822- 3 1.09035- 2 2.20000+ 1 3.83162- 2 1.09194- 2 2.40000+ 1 2.47901- 5 1.11427- 2 2.50000+ 1 1.38961- 4 1.11459- 2 2.70000+ 1 5.72073- 4 1.11149- 2 2.90000+ 1 5.85503- 6 1.11483- 2 3.00000+ 1 5.72263- 6 1.11623- 2 3.20000+ 1 2.71372- 4 1.12060- 2 3.30000+ 1 2.33251- 3 1.12072- 2 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.43104- 4 4.92260- 3 8.00000+ 0 1.00000+ 1 4.54736- 4 5.16810- 3 8.00000+ 0 1.10000+ 1 2.25018- 2 5.52930- 3 8.00000+ 0 1.30000+ 1 2.63504- 3 5.94510- 3 8.00000+ 0 1.40000+ 1 4.07665- 3 6.02350- 3 8.00000+ 0 1.60000+ 1 3.20273- 4 7.39298- 3 8.00000+ 0 1.80000+ 1 8.04748- 5 7.49795- 3 8.00000+ 0 1.90000+ 1 3.43215- 3 7.58375- 3 8.00000+ 0 2.10000+ 1 2.61405- 4 7.75778- 3 8.00000+ 0 2.20000+ 1 3.67243- 4 7.77372- 3 8.00000+ 0 2.40000+ 1 1.87949- 4 7.99697- 3 8.00000+ 0 2.50000+ 1 3.35394- 4 8.00024- 3 8.00000+ 0 2.70000+ 1 5.77883- 5 7.96916- 3 8.00000+ 0 2.90000+ 1 1.24221- 5 8.00262- 3 8.00000+ 0 3.00000+ 1 4.94717- 4 8.01664- 3 8.00000+ 0 3.20000+ 1 1.67426- 5 8.06031- 3 8.00000+ 0 3.30000+ 1 1.72828- 5 8.06151- 3 1.00000+ 1 1.00000+ 1 7.18331- 5 5.41360- 3 1.00000+ 1 1.10000+ 1 3.77861- 2 5.77480- 3 1.00000+ 1 1.30000+ 1 1.90442- 3 6.19060- 3 1.00000+ 1 1.40000+ 1 1.66203- 2 6.26900- 3 1.00000+ 1 1.60000+ 1 9.23552- 5 7.63848- 3 1.00000+ 1 1.80000+ 1 3.02446- 5 7.74345- 3 1.00000+ 1 1.90000+ 1 5.98214- 3 7.82925- 3 1.00000+ 1 2.10000+ 1 3.49988- 4 8.00328- 3 1.00000+ 1 2.20000+ 1 2.53306- 3 8.01922- 3 1.00000+ 1 2.40000+ 1 1.91738- 4 8.24247- 3 1.00000+ 1 2.50000+ 1 4.91492- 4 8.24574- 3 1.00000+ 1 2.70000+ 1 1.72830- 5 8.21466- 3 1.00000+ 1 2.90000+ 1 4.86090- 6 8.24812- 3 1.00000+ 1 3.00000+ 1 8.68449- 4 8.26214- 3 1.00000+ 1 3.20000+ 1 2.43045- 5 8.30581- 3 1.00000+ 1 3.30000+ 1 1.31784- 4 8.30701- 3 1.10000+ 1 1.10000+ 1 4.87317- 2 6.13600- 3 1.10000+ 1 1.30000+ 1 5.09555- 2 6.55180- 3 1.10000+ 1 1.40000+ 1 7.05657- 2 6.63020- 3 1.10000+ 1 1.60000+ 1 5.56977- 3 7.99968- 3 1.10000+ 1 1.80000+ 1 8.36555- 3 8.10465- 3 1.10000+ 1 1.90000+ 1 1.86412- 2 8.19045- 3 1.10000+ 1 2.10000+ 1 9.93276- 3 8.36448- 3 1.10000+ 1 2.20000+ 1 1.35285- 2 8.38042- 3 1.10000+ 1 2.40000+ 1 7.63640- 4 8.60367- 3 1.10000+ 1 2.50000+ 1 9.54852- 4 8.60694- 3 1.10000+ 1 2.70000+ 1 1.06178- 3 8.57586- 3 1.10000+ 1 2.90000+ 1 1.35506- 3 8.60932- 3 1.10000+ 1 3.00000+ 1 2.81386- 3 8.62334- 3 1.10000+ 1 3.20000+ 1 6.95616- 4 8.66701- 3 1.10000+ 1 3.30000+ 1 7.25848- 4 8.66821- 3 1.30000+ 1 1.30000+ 1 7.16697- 3 6.96760- 3 1.30000+ 1 1.40000+ 1 1.34612- 1 7.04600- 3 1.30000+ 1 1.60000+ 1 6.23783- 4 8.41548- 3 1.30000+ 1 1.80000+ 1 4.35845- 4 8.52045- 3 1.30000+ 1 1.90000+ 1 7.37952- 3 8.60625- 3 1.30000+ 1 2.10000+ 1 2.39465- 3 8.78028- 3 1.30000+ 1 2.20000+ 1 1.88178- 2 8.79622- 3 1.30000+ 1 2.40000+ 1 4.26658- 4 9.01947- 3 1.30000+ 1 2.50000+ 1 1.45164- 3 9.02274- 3 1.30000+ 1 2.70000+ 1 1.18277- 4 8.99166- 3 1.30000+ 1 2.90000+ 1 7.07480- 5 9.02512- 3 1.30000+ 1 3.00000+ 1 1.05374- 3 9.03914- 3 1.30000+ 1 3.20000+ 1 1.64725- 4 9.08281- 3 1.30000+ 1 3.30000+ 1 9.64556- 4 9.08401- 3 1.40000+ 1 1.40000+ 1 8.99637- 2 7.12440- 3 1.40000+ 1 1.60000+ 1 9.92183- 4 8.49388- 3 1.40000+ 1 1.80000+ 1 3.35282- 3 8.59885- 3 1.40000+ 1 1.90000+ 1 1.15339- 2 8.68465- 3 1.40000+ 1 2.10000+ 1 2.27445- 2 8.85868- 3 1.40000+ 1 2.20000+ 1 2.86896- 2 8.87462- 3 1.40000+ 1 2.40000+ 1 4.52388- 3 9.09787- 3 1.40000+ 1 2.50000+ 1 4.12958- 3 9.10114- 3 1.40000+ 1 2.70000+ 1 1.89581- 4 9.07006- 3 1.40000+ 1 2.90000+ 1 5.33619- 4 9.10352- 3 1.40000+ 1 3.00000+ 1 1.69429- 3 9.11754- 3 1.40000+ 1 3.20000+ 1 1.56035- 3 9.16121- 3 1.40000+ 1 3.30000+ 1 1.50300- 3 9.16241- 3 1.60000+ 1 1.60000+ 1 3.07844- 5 9.86336- 3 1.60000+ 1 1.80000+ 1 1.72828- 5 9.96833- 3 1.60000+ 1 1.90000+ 1 8.49573- 4 1.00541- 2 1.60000+ 1 2.10000+ 1 6.75098- 5 1.02282- 2 1.60000+ 1 2.20000+ 1 9.72168- 5 1.02441- 2 1.60000+ 1 2.40000+ 1 2.59238- 5 1.04673- 2 1.60000+ 1 2.50000+ 1 5.23877- 5 1.04706- 2 1.60000+ 1 2.70000+ 1 1.13418- 5 1.04395- 2 1.60000+ 1 2.90000+ 1 2.70042- 6 1.04730- 2 1.60000+ 1 3.00000+ 1 1.22605- 4 1.04870- 2 1.60000+ 1 3.20000+ 1 4.32075- 6 1.05307- 2 1.60000+ 1 3.30000+ 1 4.86085- 6 1.05319- 2 1.80000+ 1 1.80000+ 1 2.16028- 6 1.00733- 2 1.80000+ 1 1.90000+ 1 1.31786- 3 1.01591- 2 1.80000+ 1 2.10000+ 1 7.61556- 5 1.03331- 2 1.80000+ 1 2.20000+ 1 5.40638- 4 1.03491- 2 1.80000+ 1 2.40000+ 1 2.80862- 5 1.05723- 2 1.80000+ 1 2.50000+ 1 6.80516- 5 1.05756- 2 1.80000+ 1 2.70000+ 1 3.24057- 6 1.05445- 2 1.80000+ 1 2.90000+ 1 5.40105- 7 1.05780- 2 1.80000+ 1 3.00000+ 1 1.91197- 4 1.05920- 2 1.80000+ 1 3.20000+ 1 5.40105- 6 1.06357- 2 1.80000+ 1 3.30000+ 1 2.80862- 5 1.06369- 2 1.90000+ 1 1.90000+ 1 1.70771- 3 1.02449- 2 1.90000+ 1 2.10000+ 1 1.44203- 3 1.04189- 2 1.90000+ 1 2.20000+ 1 2.17711- 3 1.04349- 2 1.90000+ 1 2.40000+ 1 9.12781- 5 1.06581- 2 1.90000+ 1 2.50000+ 1 1.20437- 4 1.06614- 2 1.90000+ 1 2.70000+ 1 1.62026- 4 1.06303- 2 1.90000+ 1 2.90000+ 1 2.13333- 4 1.06638- 2 1.90000+ 1 3.00000+ 1 5.11468- 4 1.06778- 2 1.90000+ 1 3.20000+ 1 1.00998- 4 1.07215- 2 1.90000+ 1 3.30000+ 1 1.16651- 4 1.07227- 2 2.10000+ 1 2.10000+ 1 1.92268- 4 1.05930- 2 2.10000+ 1 2.20000+ 1 3.31511- 3 1.06089- 2 2.10000+ 1 2.40000+ 1 4.80696- 5 1.08321- 2 2.10000+ 1 2.50000+ 1 1.56092- 4 1.08354- 2 2.10000+ 1 2.70000+ 1 1.29613- 5 1.08043- 2 2.10000+ 1 2.90000+ 1 1.24222- 5 1.08378- 2 2.10000+ 1 3.00000+ 1 2.05763- 4 1.08518- 2 2.10000+ 1 3.20000+ 1 2.64631- 5 1.08955- 2 2.10000+ 1 3.30000+ 1 1.70671- 4 1.08967- 2 2.20000+ 1 2.20000+ 1 2.44735- 3 1.06248- 2 2.20000+ 1 2.40000+ 1 5.28874- 4 1.08481- 2 2.20000+ 1 2.50000+ 1 4.75406- 4 1.08514- 2 2.20000+ 1 2.70000+ 1 2.01207- 5 1.08203- 2 2.20000+ 1 2.90000+ 1 9.25558- 5 1.08537- 2 2.20000+ 1 3.00000+ 1 3.39167- 4 1.08678- 2 2.20000+ 1 3.20000+ 1 2.43164- 4 1.09114- 2 2.20000+ 1 3.30000+ 1 2.56384- 4 1.09126- 2 2.40000+ 1 2.40000+ 1 2.14621- 6 1.10713- 2 2.40000+ 1 2.50000+ 1 6.58172- 5 1.10746- 2 2.40000+ 1 2.70000+ 1 5.72333- 6 1.10435- 2 2.40000+ 1 2.90000+ 1 5.72333- 6 1.10770- 2 2.40000+ 1 3.00000+ 1 1.64545- 5 1.10910- 2 2.40000+ 1 3.20000+ 1 4.29241- 6 1.11347- 2 2.40000+ 1 3.30000+ 1 3.21937- 5 1.11359- 2 2.50000+ 1 2.50000+ 1 1.87475- 5 1.10779- 2 2.50000+ 1 2.70000+ 1 9.65740- 6 1.10468- 2 2.50000+ 1 2.90000+ 1 1.07936- 5 1.10803- 2 2.50000+ 1 3.00000+ 1 1.76111- 5 1.10943- 2 2.50000+ 1 3.20000+ 1 1.02259- 5 1.11379- 2 2.50000+ 1 3.30000+ 1 2.32920- 5 1.11391- 2 2.70000+ 1 2.70000+ 1 1.66837- 6 1.10157- 2 2.70000+ 1 2.90000+ 1 8.34199- 7 1.10492- 2 2.70000+ 1 3.00000+ 1 3.58719- 5 1.10632- 2 2.70000+ 1 3.20000+ 1 1.66837- 6 1.11069- 2 2.70000+ 1 3.30000+ 1 1.66837- 6 1.11081- 2 2.90000+ 1 3.00000+ 1 6.03240- 5 1.10967- 2 2.90000+ 1 3.20000+ 1 2.11665- 6 1.11403- 2 2.90000+ 1 3.30000+ 1 8.46679- 6 1.11415- 2 3.00000+ 1 3.00000+ 1 8.76746- 5 1.11107- 2 3.00000+ 1 3.20000+ 1 3.33416- 5 1.11543- 2 3.00000+ 1 3.30000+ 1 3.95147- 5 1.11555- 2 3.20000+ 1 3.20000+ 1 1.08017- 6 1.11980- 2 3.20000+ 1 3.30000+ 1 1.13419- 5 1.11992- 2 3.30000+ 1 3.30000+ 1 7.02114- 6 1.12004- 2 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.00671- 5 2.45500- 4 1.10000+ 1 3.24142- 4 6.06700- 4 1.80000+ 1 1.17487- 3 2.57535- 3 1.90000+ 1 1.03542- 3 2.66115- 3 2.90000+ 1 2.55881- 4 3.08002- 3 3.00000+ 1 2.29100- 4 3.09404- 3 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.67887- 2 1.74170- 4 1.00000+ 1 2.50000+ 1 4.94262- 2 1.77440- 4 1.00000+ 1 2.70000+ 1 1.05787- 2 1.46360- 4 1.00000+ 1 2.90000+ 1 9.75215- 3 1.79820- 4 1.00000+ 1 3.00000+ 1 1.32198- 2 1.93840- 4 1.00000+ 1 3.20000+ 1 3.66598- 3 2.37510- 4 1.00000+ 1 3.30000+ 1 4.68110- 3 2.38710- 4 1.10000+ 1 1.80000+ 1 6.27989- 2 3.63500- 5 1.10000+ 1 1.90000+ 1 6.89724- 2 1.22150- 4 1.10000+ 1 2.10000+ 1 2.42545- 2 2.96180- 4 1.10000+ 1 2.20000+ 1 3.77440- 2 3.12120- 4 1.10000+ 1 2.40000+ 1 1.63040- 1 5.35370- 4 1.10000+ 1 2.50000+ 1 2.02938- 1 5.38640- 4 1.10000+ 1 2.70000+ 1 1.03039- 2 5.07560- 4 1.10000+ 1 2.90000+ 1 9.39547- 3 5.41020- 4 1.10000+ 1 3.00000+ 1 1.04327- 2 5.55040- 4 1.10000+ 1 3.20000+ 1 1.40902- 3 5.98710- 4 1.10000+ 1 3.30000+ 1 2.11668- 3 5.99910- 4 1.30000+ 1 1.60000+ 1 2.58917- 2 3.47180- 4 1.30000+ 1 1.80000+ 1 5.69405- 3 4.52150- 4 1.30000+ 1 1.90000+ 1 6.34056- 3 5.37950- 4 1.30000+ 1 2.10000+ 1 8.78082- 3 7.11980- 4 1.30000+ 1 2.20000+ 1 1.09112- 2 7.27920- 4 1.30000+ 1 2.40000+ 1 8.40036- 3 9.51170- 4 1.30000+ 1 2.50000+ 1 7.75761- 3 9.54440- 4 1.30000+ 1 2.70000+ 1 3.21708- 3 9.23360- 4 1.30000+ 1 2.90000+ 1 7.27434- 4 9.56820- 4 1.30000+ 1 3.00000+ 1 7.54950- 4 9.70840- 4 1.30000+ 1 3.20000+ 1 4.68964- 4 1.01451- 3 1.30000+ 1 3.30000+ 1 5.76700- 4 1.01571- 3 1.40000+ 1 1.60000+ 1 3.63558- 2 4.25580- 4 1.40000+ 1 1.80000+ 1 1.02317- 3 5.30550- 4 1.40000+ 1 1.90000+ 1 1.10881- 2 6.16350- 4 1.40000+ 1 2.10000+ 1 1.21470- 2 7.90380- 4 1.40000+ 1 2.20000+ 1 1.75366- 2 8.06320- 4 1.40000+ 1 2.40000+ 1 9.52861- 3 1.02957- 3 1.40000+ 1 2.50000+ 1 1.49032- 2 1.03284- 3 1.40000+ 1 2.70000+ 1 4.48997- 3 1.00176- 3 1.40000+ 1 2.90000+ 1 1.47968- 4 1.03522- 3 1.40000+ 1 3.00000+ 1 1.31206- 3 1.04924- 3 1.40000+ 1 3.20000+ 1 6.97286- 4 1.09291- 3 1.40000+ 1 3.30000+ 1 8.93743- 4 1.09411- 3 1.60000+ 1 1.60000+ 1 2.81920- 3 1.79506- 3 1.60000+ 1 1.80000+ 1 4.87383- 3 1.90003- 3 1.60000+ 1 1.90000+ 1 8.19924- 3 1.98583- 3 1.60000+ 1 2.10000+ 1 9.31670- 3 2.15986- 3 1.60000+ 1 2.20000+ 1 1.31841- 2 2.17580- 3 1.60000+ 1 2.40000+ 1 6.08851- 3 2.39905- 3 1.60000+ 1 2.50000+ 1 7.66260- 3 2.40232- 3 1.60000+ 1 2.70000+ 1 8.83351- 4 2.37124- 3 1.60000+ 1 2.90000+ 1 7.93078- 4 2.40470- 3 1.60000+ 1 3.00000+ 1 1.26942- 3 2.41872- 3 1.60000+ 1 3.20000+ 1 5.82835- 4 2.46239- 3 1.60000+ 1 3.30000+ 1 7.60920- 4 2.46359- 3 1.80000+ 1 1.80000+ 1 2.12919- 4 2.00500- 3 1.80000+ 1 1.90000+ 1 5.92229- 4 2.09080- 3 1.80000+ 1 2.10000+ 1 3.17967- 4 2.26483- 3 1.80000+ 1 2.20000+ 1 1.82051- 4 2.28077- 3 1.80000+ 1 2.40000+ 1 5.30681- 5 2.50402- 3 1.80000+ 1 2.50000+ 1 4.46081- 4 2.50729- 3 1.80000+ 1 2.70000+ 1 5.81794- 4 2.47621- 3 1.80000+ 1 2.90000+ 1 5.30681- 5 2.50967- 3 1.80000+ 1 3.00000+ 1 6.91630- 5 2.52369- 3 1.80000+ 1 3.20000+ 1 1.76171- 5 2.56736- 3 1.80000+ 1 3.30000+ 1 1.23972- 5 2.56856- 3 1.90000+ 1 1.90000+ 1 7.12715- 4 2.17660- 3 1.90000+ 1 2.10000+ 1 6.13984- 4 2.35063- 3 1.90000+ 1 2.20000+ 1 1.43544- 3 2.36657- 3 1.90000+ 1 2.40000+ 1 5.45263- 4 2.58982- 3 1.90000+ 1 2.50000+ 1 9.79147- 4 2.59309- 3 1.90000+ 1 2.70000+ 1 9.83295- 4 2.56201- 3 1.90000+ 1 2.90000+ 1 8.15595- 5 2.59547- 3 1.90000+ 1 3.00000+ 1 1.85951- 4 2.60949- 3 1.90000+ 1 3.20000+ 1 3.89322- 5 2.65316- 3 1.90000+ 1 3.30000+ 1 7.93837- 5 2.65436- 3 2.10000+ 1 2.10000+ 1 1.11459- 4 2.52466- 3 2.10000+ 1 2.20000+ 1 4.82377- 4 2.54060- 3 2.10000+ 1 2.40000+ 1 4.63986- 4 2.76385- 3 2.10000+ 1 2.50000+ 1 3.26091- 3 2.76712- 3 2.10000+ 1 2.70000+ 1 1.15758- 3 2.73604- 3 2.10000+ 1 2.90000+ 1 3.74593- 5 2.76950- 3 2.10000+ 1 3.00000+ 1 7.95166- 5 2.78352- 3 2.10000+ 1 3.20000+ 1 1.12607- 5 2.82719- 3 2.10000+ 1 3.30000+ 1 2.41295- 5 2.82839- 3 2.20000+ 1 2.20000+ 1 2.83493- 4 2.55654- 3 2.20000+ 1 2.40000+ 1 3.02146- 3 2.77979- 3 2.20000+ 1 2.50000+ 1 1.78401- 3 2.78306- 3 2.20000+ 1 2.70000+ 1 1.59837- 3 2.75198- 3 2.20000+ 1 2.90000+ 1 2.31563- 5 2.78544- 3 2.20000+ 1 3.00000+ 1 1.79632- 4 2.79946- 3 2.20000+ 1 3.20000+ 1 2.38303- 5 2.84313- 3 2.20000+ 1 3.30000+ 1 2.76513- 5 2.84433- 3 2.40000+ 1 2.40000+ 1 5.43522- 4 3.00304- 3 2.40000+ 1 2.50000+ 1 3.75019- 3 3.00631- 3 2.40000+ 1 2.70000+ 1 6.61623- 4 2.97523- 3 2.40000+ 1 2.90000+ 1 6.08983- 6 3.00869- 3 2.40000+ 1 3.00000+ 1 5.06758- 5 3.02271- 3 2.40000+ 1 3.20000+ 1 2.52288- 5 3.06638- 3 2.40000+ 1 3.30000+ 1 1.67673- 4 3.06758- 3 2.50000+ 1 2.50000+ 1 1.29149- 3 3.00958- 3 2.50000+ 1 2.70000+ 1 8.44282- 4 2.97850- 3 2.50000+ 1 2.90000+ 1 6.57778- 5 3.01196- 3 2.50000+ 1 3.00000+ 1 9.75619- 5 3.02598- 3 2.50000+ 1 3.20000+ 1 1.90491- 4 3.06965- 3 2.50000+ 1 3.30000+ 1 9.73432- 5 3.07085- 3 2.70000+ 1 2.70000+ 1 9.06400- 5 2.94742- 3 2.70000+ 1 2.90000+ 1 1.36425- 4 2.98088- 3 2.70000+ 1 3.00000+ 1 2.18367- 4 2.99490- 3 2.70000+ 1 3.20000+ 1 9.84288- 5 3.03857- 3 2.70000+ 1 3.30000+ 1 1.28331- 4 3.03977- 3 2.90000+ 1 2.90000+ 1 9.40023- 6 3.01434- 3 2.90000+ 1 3.00000+ 1 2.69489- 5 3.02836- 3 2.90000+ 1 3.20000+ 1 5.64033- 6 3.07203- 3 2.90000+ 1 3.30000+ 1 4.38683- 6 3.07323- 3 3.00000+ 1 3.00000+ 1 3.81549- 5 3.04238- 3 3.00000+ 1 3.20000+ 1 1.55446- 5 3.08605- 3 3.00000+ 1 3.30000+ 1 3.10897- 5 3.08725- 3 3.20000+ 1 3.20000+ 1 1.06580- 6 3.12972- 3 3.20000+ 1 3.30000+ 1 5.32864- 6 3.13092- 3 3.30000+ 1 3.30000+ 1 7.21608- 6 3.13212- 3 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 8.60582- 4 7.77000- 4 1.60000+ 1 6.66841- 4 2.22488- 3 2.10000+ 1 3.54821- 3 2.58968- 3 2.70000+ 1 1.36830- 4 2.80106- 3 3.20000+ 1 2.64131- 4 2.89221- 3 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.65147- 3 5.06800- 5 1.10000+ 1 2.20000+ 1 1.62870- 2 6.66200- 5 1.10000+ 1 2.40000+ 1 2.81718- 2 2.89870- 4 1.10000+ 1 2.50000+ 1 2.69674- 2 2.93140- 4 1.10000+ 1 2.70000+ 1 3.16211- 3 2.62060- 4 1.10000+ 1 2.90000+ 1 3.75838- 3 2.95520- 4 1.10000+ 1 3.00000+ 1 2.75699- 3 3.09540- 4 1.10000+ 1 3.20000+ 1 4.63602- 4 3.53210- 4 1.10000+ 1 3.30000+ 1 9.95404- 4 3.54410- 4 1.30000+ 1 1.60000+ 1 5.13659- 2 1.01680- 4 1.30000+ 1 1.80000+ 1 5.24147- 2 2.06650- 4 1.30000+ 1 1.90000+ 1 5.35644- 2 2.92450- 4 1.30000+ 1 2.10000+ 1 2.03094- 2 4.66480- 4 1.30000+ 1 2.20000+ 1 2.43219- 2 4.82420- 4 1.30000+ 1 2.40000+ 1 1.37215- 1 7.05670- 4 1.30000+ 1 2.50000+ 1 2.10265- 1 7.08940- 4 1.30000+ 1 2.70000+ 1 9.73774- 3 6.77860- 4 1.30000+ 1 2.90000+ 1 7.27157- 3 7.11320- 4 1.30000+ 1 3.00000+ 1 8.01362- 3 7.25340- 4 1.30000+ 1 3.20000+ 1 1.29220- 3 7.69010- 4 1.30000+ 1 3.30000+ 1 1.51894- 3 7.70210- 4 1.40000+ 1 1.60000+ 1 8.41403- 3 1.80080- 4 1.40000+ 1 1.80000+ 1 5.91032- 2 2.85050- 4 1.40000+ 1 1.90000+ 1 5.25052- 3 3.70850- 4 1.40000+ 1 2.10000+ 1 9.88488- 4 5.44880- 4 1.40000+ 1 2.20000+ 1 2.88172- 3 5.60820- 4 1.40000+ 1 2.40000+ 1 5.20868- 3 7.84070- 4 1.40000+ 1 2.50000+ 1 3.73528- 3 7.87340- 4 1.40000+ 1 2.70000+ 1 1.05869- 3 7.56260- 4 1.40000+ 1 2.90000+ 1 6.54588- 3 7.89720- 4 1.40000+ 1 3.00000+ 1 7.06210- 4 8.03740- 4 1.40000+ 1 3.20000+ 1 3.64237- 5 8.47410- 4 1.40000+ 1 3.30000+ 1 1.55032- 4 8.48610- 4 1.60000+ 1 1.60000+ 1 8.08919- 4 1.54956- 3 1.60000+ 1 1.80000+ 1 1.15836- 2 1.65453- 3 1.60000+ 1 1.90000+ 1 1.66340- 3 1.74033- 3 1.60000+ 1 2.10000+ 1 3.80564- 4 1.91436- 3 1.60000+ 1 2.20000+ 1 1.35113- 3 1.93030- 3 1.60000+ 1 2.40000+ 1 4.50013- 5 2.15355- 3 1.60000+ 1 2.50000+ 1 9.09462- 4 2.15682- 3 1.60000+ 1 2.70000+ 1 2.38332- 4 2.12574- 3 1.60000+ 1 2.90000+ 1 1.23725- 3 2.15920- 3 1.60000+ 1 3.00000+ 1 2.33330- 4 2.17322- 3 1.60000+ 1 3.20000+ 1 1.77781- 5 2.21689- 3 1.60000+ 1 3.30000+ 1 7.22246- 5 2.21809- 3 1.80000+ 1 1.80000+ 1 8.82520- 3 1.75950- 3 1.80000+ 1 1.90000+ 1 2.52081- 2 1.84530- 3 1.80000+ 1 2.10000+ 1 2.47174- 2 2.01933- 3 1.80000+ 1 2.20000+ 1 3.96660- 2 2.03527- 3 1.80000+ 1 2.40000+ 1 1.32970- 2 2.25852- 3 1.80000+ 1 2.50000+ 1 2.25164- 2 2.26179- 3 1.80000+ 1 2.70000+ 1 2.18406- 3 2.23071- 3 1.80000+ 1 2.90000+ 1 2.41559- 3 2.26417- 3 1.80000+ 1 3.00000+ 1 3.87450- 3 2.27819- 3 1.80000+ 1 3.20000+ 1 1.54836- 3 2.32186- 3 1.80000+ 1 3.30000+ 1 2.26776- 3 2.32306- 3 1.90000+ 1 1.90000+ 1 6.89997- 4 1.93110- 3 1.90000+ 1 2.10000+ 1 1.76109- 3 2.10513- 3 1.90000+ 1 2.20000+ 1 1.49330- 3 2.12107- 3 1.90000+ 1 2.40000+ 1 9.31280- 3 2.34432- 3 1.90000+ 1 2.50000+ 1 2.58105- 3 2.34759- 3 1.90000+ 1 2.70000+ 1 2.05555- 4 2.31651- 3 1.90000+ 1 2.90000+ 1 2.75503- 3 2.34997- 3 1.90000+ 1 3.00000+ 1 1.79997- 4 2.36399- 3 1.90000+ 1 3.20000+ 1 9.05544- 5 2.40766- 3 1.90000+ 1 3.30000+ 1 7.66653- 5 2.40886- 3 2.10000+ 1 2.10000+ 1 8.39442- 4 2.27916- 3 2.10000+ 1 2.20000+ 1 2.20892- 3 2.29510- 3 2.10000+ 1 2.40000+ 1 1.06055- 3 2.51835- 3 2.10000+ 1 2.50000+ 1 1.91559- 3 2.52162- 3 2.10000+ 1 2.70000+ 1 6.72209- 5 2.49054- 3 2.10000+ 1 2.90000+ 1 2.63218- 3 2.52400- 3 2.10000+ 1 3.00000+ 1 2.40001- 4 2.53802- 3 2.10000+ 1 3.20000+ 1 8.88886- 5 2.58169- 3 2.10000+ 1 3.30000+ 1 1.18334- 4 2.58289- 3 2.20000+ 1 2.20000+ 1 5.39998- 4 2.31104- 3 2.20000+ 1 2.40000+ 1 3.21345- 3 2.53429- 3 2.20000+ 1 2.50000+ 1 7.13885- 4 2.53756- 3 2.20000+ 1 2.70000+ 1 2.03886- 4 2.50648- 3 2.20000+ 1 2.90000+ 1 4.28443- 3 2.53994- 3 2.20000+ 1 3.00000+ 1 1.79998- 4 2.55396- 3 2.20000+ 1 3.20000+ 1 1.18890- 4 2.59763- 3 2.20000+ 1 3.30000+ 1 5.38870- 5 2.59883- 3 2.40000+ 1 2.40000+ 1 3.03175- 3 2.75754- 3 2.40000+ 1 2.50000+ 1 1.95477- 2 2.76081- 3 2.40000+ 1 2.70000+ 1 3.33344- 6 2.72973- 3 2.40000+ 1 2.90000+ 1 1.31114- 3 2.76319- 3 2.40000+ 1 3.00000+ 1 1.34559- 3 2.77721- 3 2.40000+ 1 3.20000+ 1 7.27770- 5 2.82088- 3 2.40000+ 1 3.30000+ 1 2.02782- 4 2.82208- 3 2.50000+ 1 2.50000+ 1 1.02389- 3 2.76408- 3 2.50000+ 1 2.70000+ 1 1.43890- 4 2.73300- 3 2.50000+ 1 2.90000+ 1 2.19441- 3 2.76646- 3 2.50000+ 1 3.00000+ 1 3.35565- 4 2.78048- 3 2.50000+ 1 3.20000+ 1 1.22224- 4 2.82415- 3 2.50000+ 1 3.30000+ 1 4.22236- 5 2.82535- 3 2.70000+ 1 2.70000+ 1 2.13956- 5 2.70192- 3 2.70000+ 1 2.90000+ 1 2.82160- 4 2.73538- 3 2.70000+ 1 3.00000+ 1 3.47696- 5 2.74940- 3 2.70000+ 1 3.20000+ 1 3.34288- 6 2.79307- 3 2.70000+ 1 3.30000+ 1 1.33724- 5 2.79427- 3 2.90000+ 1 2.90000+ 1 2.20135- 4 2.76884- 3 2.90000+ 1 3.00000+ 1 5.97935- 4 2.78286- 3 2.90000+ 1 3.20000+ 1 2.32627- 4 2.82653- 3 2.90000+ 1 3.30000+ 1 3.45805- 4 2.82773- 3 3.00000+ 1 3.00000+ 1 3.77544- 5 2.79688- 3 3.00000+ 1 3.20000+ 1 3.95530- 5 2.84055- 3 3.00000+ 1 3.30000+ 1 3.05628- 5 2.84175- 3 3.20000+ 1 3.20000+ 1 1.80595- 6 2.88422- 3 3.20000+ 1 3.30000+ 1 5.41807- 6 2.88542- 3 3.30000+ 1 3.30000+ 1 3.17301- 6 2.88662- 3 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.60470- 5 4.15800- 4 1.40000+ 1 2.55055- 4 4.94200- 4 1.60000+ 1 1.15355- 3 1.86368- 3 2.10000+ 1 5.62842- 4 2.22848- 3 2.20000+ 1 4.39409- 3 2.24442- 3 2.70000+ 1 2.24874- 4 2.43986- 3 3.20000+ 1 3.95855- 5 2.53101- 3 3.30000+ 1 3.01751- 4 2.53221- 3 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 9.92736- 3 1.05280- 4 1.30000+ 1 2.20000+ 1 9.96280- 3 1.21220- 4 1.30000+ 1 2.40000+ 1 1.50985- 2 3.44470- 4 1.30000+ 1 2.50000+ 1 2.20004- 2 3.47740- 4 1.30000+ 1 2.70000+ 1 2.22468- 3 3.16660- 4 1.30000+ 1 2.90000+ 1 1.77541- 3 3.50120- 4 1.30000+ 1 3.00000+ 1 6.06750- 3 3.64140- 4 1.30000+ 1 3.20000+ 1 5.31144- 4 4.07810- 4 1.30000+ 1 3.30000+ 1 5.02478- 4 4.09010- 4 1.40000+ 1 1.90000+ 1 1.16542- 1 9.65000- 6 1.40000+ 1 2.10000+ 1 4.43642- 2 1.83680- 4 1.40000+ 1 2.20000+ 1 6.12321- 2 1.99620- 4 1.40000+ 1 2.40000+ 1 1.56983- 1 4.22870- 4 1.40000+ 1 2.50000+ 1 1.89150- 1 4.26140- 4 1.40000+ 1 2.70000+ 1 1.31592- 2 3.95060- 4 1.40000+ 1 2.90000+ 1 1.20288- 2 4.28520- 4 1.40000+ 1 3.00000+ 1 1.54708- 2 4.42540- 4 1.40000+ 1 3.20000+ 1 2.37641- 3 4.86210- 4 1.40000+ 1 3.30000+ 1 3.19695- 3 4.87410- 4 1.60000+ 1 1.60000+ 1 4.63684- 4 1.18836- 3 1.60000+ 1 1.80000+ 1 8.22848- 4 1.29333- 3 1.60000+ 1 1.90000+ 1 1.40811- 2 1.37913- 3 1.60000+ 1 2.10000+ 1 8.30586- 4 1.55316- 3 1.60000+ 1 2.20000+ 1 9.59996- 4 1.56910- 3 1.60000+ 1 2.40000+ 1 1.47236- 3 1.79235- 3 1.60000+ 1 2.50000+ 1 2.47555- 3 1.79562- 3 1.60000+ 1 2.70000+ 1 1.35955- 4 1.76454- 3 1.60000+ 1 2.90000+ 1 1.02112- 4 1.79800- 3 1.60000+ 1 3.00000+ 1 1.46404- 3 1.81202- 3 1.60000+ 1 3.20000+ 1 4.69003- 5 1.85569- 3 1.60000+ 1 3.30000+ 1 4.86825- 5 1.85689- 3 1.80000+ 1 1.80000+ 1 5.69910- 5 1.39830- 3 1.80000+ 1 1.90000+ 1 1.71260- 2 1.48410- 3 1.80000+ 1 2.10000+ 1 3.77576- 4 1.65813- 3 1.80000+ 1 2.20000+ 1 3.44686- 3 1.67407- 3 1.80000+ 1 2.40000+ 1 1.56489- 3 1.89732- 3 1.80000+ 1 2.50000+ 1 8.77800- 3 1.90059- 3 1.80000+ 1 2.70000+ 1 1.08642- 4 1.86951- 3 1.80000+ 1 2.90000+ 1 1.30607- 5 1.90297- 3 1.80000+ 1 3.00000+ 1 1.81187- 3 1.91699- 3 1.80000+ 1 3.20000+ 1 2.19658- 5 1.96066- 3 1.80000+ 1 3.30000+ 1 1.66819- 4 1.96186- 3 1.90000+ 1 1.90000+ 1 2.30492- 2 1.56990- 3 1.90000+ 1 2.10000+ 1 3.30211- 2 1.74393- 3 1.90000+ 1 2.20000+ 1 4.34036- 2 1.75987- 3 1.90000+ 1 2.40000+ 1 2.57598- 2 1.98312- 3 1.90000+ 1 2.50000+ 1 2.94802- 2 1.98639- 3 1.90000+ 1 2.70000+ 1 2.60569- 3 1.95531- 3 1.90000+ 1 2.90000+ 1 2.73194- 3 1.98877- 3 1.90000+ 1 3.00000+ 1 5.94948- 3 2.00279- 3 1.90000+ 1 3.20000+ 1 2.01383- 3 2.04646- 3 1.90000+ 1 3.30000+ 1 2.46341- 3 2.04766- 3 2.10000+ 1 2.10000+ 1 2.14324- 4 1.91796- 3 2.10000+ 1 2.20000+ 1 4.93826- 3 1.93390- 3 2.10000+ 1 2.40000+ 1 6.65514- 4 2.15715- 3 2.10000+ 1 2.50000+ 1 7.94423- 3 2.16042- 3 2.10000+ 1 2.70000+ 1 9.43979- 5 2.12934- 3 2.10000+ 1 2.90000+ 1 2.79036- 5 2.16280- 3 2.10000+ 1 3.00000+ 1 3.44150- 3 2.17682- 3 2.10000+ 1 3.20000+ 1 2.19667- 5 2.22049- 3 2.10000+ 1 3.30000+ 1 2.51726- 4 2.22169- 3 2.20000+ 1 2.20000+ 1 2.22518- 3 1.94984- 3 2.20000+ 1 2.40000+ 1 6.44994- 3 2.17309- 3 2.20000+ 1 2.50000+ 1 5.45606- 3 2.17636- 3 2.20000+ 1 2.70000+ 1 1.11018- 4 2.14528- 3 2.20000+ 1 2.90000+ 1 3.11682- 4 2.17874- 3 2.20000+ 1 3.00000+ 1 4.47318- 3 2.19276- 3 2.20000+ 1 3.20000+ 1 2.69545- 4 2.23643- 3 2.20000+ 1 3.30000+ 1 2.26185- 4 2.23763- 3 2.40000+ 1 2.40000+ 1 9.19613- 4 2.39634- 3 2.40000+ 1 2.50000+ 1 2.45497- 2 2.39961- 3 2.40000+ 1 2.70000+ 1 1.54952- 4 2.36853- 3 2.40000+ 1 2.90000+ 1 2.09572- 4 2.40199- 3 2.40000+ 1 3.00000+ 1 2.56300- 3 2.41601- 3 2.40000+ 1 3.20000+ 1 4.63064- 5 2.45968- 3 2.40000+ 1 3.30000+ 1 3.48509- 4 2.46088- 3 2.50000+ 1 2.50000+ 1 9.64545- 3 2.40288- 3 2.50000+ 1 2.70000+ 1 2.18491- 4 2.37180- 3 2.50000+ 1 2.90000+ 1 1.17195- 3 2.40526- 3 2.50000+ 1 3.00000+ 1 3.03259- 3 2.41928- 3 2.50000+ 1 3.20000+ 1 4.81493- 4 2.46295- 3 2.50000+ 1 3.30000+ 1 3.15860- 4 2.46415- 3 2.70000+ 1 2.70000+ 1 1.51650- 5 2.34072- 3 2.70000+ 1 2.90000+ 1 2.02202- 5 2.37418- 3 2.70000+ 1 3.00000+ 1 3.85032- 4 2.38820- 3 2.70000+ 1 3.20000+ 1 7.58270- 6 2.43187- 3 2.70000+ 1 3.30000+ 1 8.42509- 6 2.43307- 3 2.90000+ 1 2.90000+ 1 8.78270- 7 2.40764- 3 2.90000+ 1 3.00000+ 1 4.29477- 4 2.42166- 3 2.90000+ 1 3.20000+ 1 2.63481- 6 2.46533- 3 2.90000+ 1 3.30000+ 1 2.28351- 5 2.46653- 3 3.00000+ 1 3.00000+ 1 8.46452- 4 2.43568- 3 3.00000+ 1 3.20000+ 1 4.83134- 4 2.47935- 3 3.00000+ 1 3.30000+ 1 5.83794- 4 2.48055- 3 3.20000+ 1 3.20000+ 1 5.54075- 7 2.52302- 3 3.20000+ 1 3.30000+ 1 1.32978- 5 2.52422- 3 3.30000+ 1 3.30000+ 1 4.12716- 6 2.52542- 3 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.06890- 3 1.55285- 3 1.90000+ 1 2.12160- 4 1.63865- 3 2.40000+ 1 2.25270- 2 2.05187- 3 2.90000+ 1 5.04271- 4 2.05752- 3 3.00000+ 1 5.23141- 5 2.07154- 3 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 5.81662- 2 7.07000- 6 1.40000+ 1 2.50000+ 1 1.12037- 2 1.03400- 5 1.40000+ 1 2.90000+ 1 1.15626- 3 1.27200- 5 1.40000+ 1 3.00000+ 1 3.52955- 3 2.67400- 5 1.40000+ 1 3.20000+ 1 1.46305- 2 7.04100- 5 1.40000+ 1 3.30000+ 1 1.92291- 3 7.16100- 5 1.60000+ 1 1.60000+ 1 3.36762- 5 7.72560- 4 1.60000+ 1 1.80000+ 1 1.43383- 3 8.77530- 4 1.60000+ 1 1.90000+ 1 1.04137- 3 9.63330- 4 1.60000+ 1 2.10000+ 1 3.83546- 2 1.13736- 3 1.60000+ 1 2.20000+ 1 4.46472- 3 1.15330- 3 1.60000+ 1 2.40000+ 1 1.49804- 2 1.37655- 3 1.60000+ 1 2.50000+ 1 4.37664- 3 1.37982- 3 1.60000+ 1 2.70000+ 1 2.07242- 5 1.34874- 3 1.60000+ 1 2.90000+ 1 1.83930- 4 1.38220- 3 1.60000+ 1 3.00000+ 1 1.08812- 4 1.39622- 3 1.60000+ 1 3.20000+ 1 1.75252- 3 1.43989- 3 1.60000+ 1 3.30000+ 1 1.96882- 4 1.44109- 3 1.80000+ 1 1.80000+ 1 8.47127- 4 9.82500- 4 1.80000+ 1 1.90000+ 1 5.35333- 3 1.06830- 3 1.80000+ 1 2.10000+ 1 3.40260- 2 1.24233- 3 1.80000+ 1 2.20000+ 1 2.55050- 3 1.25827- 3 1.80000+ 1 2.40000+ 1 9.52420- 3 1.48152- 3 1.80000+ 1 2.50000+ 1 4.74337- 3 1.48479- 3 1.80000+ 1 2.70000+ 1 1.80050- 4 1.45371- 3 1.80000+ 1 2.90000+ 1 2.17604- 4 1.48717- 3 1.80000+ 1 3.00000+ 1 6.20443- 4 1.50119- 3 1.80000+ 1 3.20000+ 1 1.54525- 3 1.54486- 3 1.80000+ 1 3.30000+ 1 1.28231- 4 1.54606- 3 1.90000+ 1 1.90000+ 1 1.90525- 3 1.15410- 3 1.90000+ 1 2.10000+ 1 6.95595- 2 1.32813- 3 1.90000+ 1 2.20000+ 1 2.62553- 3 1.34407- 3 1.90000+ 1 2.40000+ 1 3.89229- 3 1.56732- 3 1.90000+ 1 2.50000+ 1 2.31333- 3 1.57059- 3 1.90000+ 1 2.70000+ 1 1.48947- 4 1.53951- 3 1.90000+ 1 2.90000+ 1 5.69926- 4 1.57297- 3 1.90000+ 1 3.00000+ 1 4.23550- 4 1.58699- 3 1.90000+ 1 3.20000+ 1 3.18775- 3 1.63066- 3 1.90000+ 1 3.30000+ 1 1.19159- 4 1.63186- 3 2.10000+ 1 2.10000+ 1 6.11888- 2 1.50216- 3 2.10000+ 1 2.20000+ 1 1.22190- 1 1.51810- 3 2.10000+ 1 2.40000+ 1 5.91126- 2 1.74135- 3 2.10000+ 1 2.50000+ 1 7.24510- 2 1.74462- 3 2.10000+ 1 2.70000+ 1 6.57102- 3 1.71354- 3 2.10000+ 1 2.90000+ 1 5.45946- 3 1.74700- 3 2.10000+ 1 3.00000+ 1 1.04026- 2 1.76102- 3 2.10000+ 1 3.20000+ 1 6.57482- 3 1.80469- 3 2.10000+ 1 3.30000+ 1 6.85090- 3 1.80589- 3 2.20000+ 1 2.20000+ 1 1.97142- 3 1.53404- 3 2.20000+ 1 2.40000+ 1 6.48333- 2 1.75729- 3 2.20000+ 1 2.50000+ 1 3.38063- 3 1.76056- 3 2.20000+ 1 2.70000+ 1 4.27444- 4 1.72948- 3 2.20000+ 1 2.90000+ 1 2.65524- 4 1.76294- 3 2.20000+ 1 3.00000+ 1 3.21228- 4 1.77696- 3 2.20000+ 1 3.20000+ 1 5.63310- 3 1.82063- 3 2.20000+ 1 3.30000+ 1 1.86523- 4 1.82183- 3 2.40000+ 1 2.40000+ 1 5.71444- 2 1.98054- 3 2.40000+ 1 2.50000+ 1 1.65836- 1 1.98381- 3 2.40000+ 1 2.70000+ 1 2.67476- 3 1.95273- 3 2.40000+ 1 2.90000+ 1 1.27447- 3 1.98619- 3 2.40000+ 1 3.00000+ 1 5.89343- 4 2.00021- 3 2.40000+ 1 3.20000+ 1 2.88717- 3 2.04388- 3 2.40000+ 1 3.30000+ 1 3.49462- 3 2.04508- 3 2.50000+ 1 2.50000+ 1 3.34138- 3 1.98708- 3 2.50000+ 1 2.70000+ 1 5.38553- 4 1.95600- 3 2.50000+ 1 2.90000+ 1 3.39209- 4 1.98946- 3 2.50000+ 1 3.00000+ 1 3.02071- 4 2.00348- 3 2.50000+ 1 3.20000+ 1 2.97375- 3 2.04715- 3 2.50000+ 1 3.30000+ 1 1.64653- 4 2.04835- 3 2.70000+ 1 2.70000+ 1 4.10531- 6 1.92492- 3 2.70000+ 1 2.90000+ 1 3.90005- 5 1.95838- 3 2.70000+ 1 3.00000+ 1 2.66853- 5 1.97240- 3 2.70000+ 1 3.20000+ 1 4.80327- 4 2.01607- 3 2.70000+ 1 3.30000+ 1 3.28429- 5 2.01727- 3 2.90000+ 1 2.90000+ 1 3.38154- 5 1.99184- 3 2.90000+ 1 3.00000+ 1 1.66003- 4 2.00586- 3 2.90000+ 1 3.20000+ 1 5.90218- 4 2.04953- 3 2.90000+ 1 3.30000+ 1 3.38154- 5 2.05073- 3 3.00000+ 1 3.00000+ 1 6.58365- 5 2.01988- 3 3.00000+ 1 3.20000+ 1 1.28208- 3 2.06355- 3 3.00000+ 1 3.30000+ 1 4.15821- 5 2.06475- 3 3.20000+ 1 3.20000+ 1 1.42472- 4 2.10722- 3 3.20000+ 1 3.30000+ 1 2.72689- 4 2.10842- 3 3.30000+ 1 3.30000+ 1 5.11701- 6 2.10962- 3 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.71470- 3 1.56025- 3 2.40000+ 1 1.17350- 3 1.97347- 3 2.50000+ 1 2.28901- 2 1.97674- 3 3.00000+ 1 4.55831- 4 1.99314- 3 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.72808- 6 6.94160- 4 1.60000+ 1 1.80000+ 1 3.15098- 4 7.99130- 4 1.60000+ 1 1.90000+ 1 2.50438- 3 8.84930- 4 1.60000+ 1 2.10000+ 1 3.93391- 3 1.05896- 3 1.60000+ 1 2.20000+ 1 4.34744- 2 1.07490- 3 1.60000+ 1 2.40000+ 1 4.64863- 3 1.29815- 3 1.60000+ 1 2.50000+ 1 1.66786- 2 1.30142- 3 1.60000+ 1 2.70000+ 1 1.22774- 5 1.27034- 3 1.60000+ 1 2.90000+ 1 1.77324- 5 1.30380- 3 1.60000+ 1 3.00000+ 1 2.72808- 4 1.31782- 3 1.60000+ 1 3.20000+ 1 1.77324- 4 1.36149- 3 1.60000+ 1 3.30000+ 1 1.84425- 3 1.36269- 3 1.80000+ 1 1.80000+ 1 2.72806- 6 9.04100- 4 1.80000+ 1 1.90000+ 1 6.51464- 3 9.89900- 4 1.80000+ 1 2.10000+ 1 3.36917- 4 1.16393- 3 1.80000+ 1 2.20000+ 1 4.45975- 2 1.17987- 3 1.80000+ 1 2.40000+ 1 2.25746- 3 1.40312- 3 1.80000+ 1 2.50000+ 1 8.62370- 3 1.40639- 3 1.80000+ 1 2.70000+ 1 3.81934- 5 1.37531- 3 1.80000+ 1 2.90000+ 1 2.72806- 6 1.40877- 3 1.80000+ 1 3.00000+ 1 7.05216- 4 1.42279- 3 1.80000+ 1 3.20000+ 1 6.82000- 6 1.46646- 3 1.80000+ 1 3.30000+ 1 1.89324- 3 1.46766- 3 1.90000+ 1 1.90000+ 1 4.63092- 3 1.07570- 3 1.90000+ 1 2.10000+ 1 4.16171- 3 1.24973- 3 1.90000+ 1 2.20000+ 1 6.83562- 2 1.26567- 3 1.90000+ 1 2.40000+ 1 2.66395- 3 1.48892- 3 1.90000+ 1 2.50000+ 1 5.48915- 3 1.49219- 3 1.90000+ 1 2.70000+ 1 3.68293- 4 1.46111- 3 1.90000+ 1 2.90000+ 1 6.73841- 4 1.49457- 3 1.90000+ 1 3.00000+ 1 1.03402- 3 1.50859- 3 1.90000+ 1 3.20000+ 1 2.22342- 4 1.55226- 3 1.90000+ 1 3.30000+ 1 2.89183- 3 1.55346- 3 2.10000+ 1 2.10000+ 1 8.98909- 4 1.42376- 3 2.10000+ 1 2.20000+ 1 9.26776- 2 1.43970- 3 2.10000+ 1 2.40000+ 1 3.05950- 3 1.66295- 3 2.10000+ 1 2.50000+ 1 4.16812- 2 1.66622- 3 2.10000+ 1 2.70000+ 1 3.60112- 4 1.63514- 3 2.10000+ 1 2.90000+ 1 5.86554- 5 1.66860- 3 2.10000+ 1 3.00000+ 1 4.63772- 4 1.68262- 3 2.10000+ 1 3.20000+ 1 9.00253- 5 1.72629- 3 2.10000+ 1 3.30000+ 1 3.97071- 3 1.72749- 3 2.20000+ 1 2.20000+ 1 1.04136- 1 1.45564- 3 2.20000+ 1 2.40000+ 1 6.76470- 2 1.67889- 3 2.20000+ 1 2.50000+ 1 1.06218- 1 1.68216- 3 2.20000+ 1 2.70000+ 1 7.18021- 3 1.65108- 3 2.20000+ 1 2.90000+ 1 6.87296- 3 1.68454- 3 2.20000+ 1 3.00000+ 1 1.03070- 2 1.69856- 3 2.20000+ 1 3.20000+ 1 5.58569- 3 1.74223- 3 2.20000+ 1 3.30000+ 1 1.03040- 2 1.74343- 3 2.40000+ 1 2.40000+ 1 4.79867- 3 1.90214- 3 2.40000+ 1 2.50000+ 1 1.53532- 1 1.90541- 3 2.40000+ 1 2.70000+ 1 6.41108- 4 1.87433- 3 2.40000+ 1 2.90000+ 1 3.23278- 4 1.90779- 3 2.40000+ 1 3.00000+ 1 3.27371- 4 1.92181- 3 2.40000+ 1 3.20000+ 1 1.80055- 4 1.96548- 3 2.40000+ 1 3.30000+ 1 2.75819- 3 1.96668- 3 2.50000+ 1 2.50000+ 1 1.04937- 1 1.90868- 3 2.50000+ 1 2.70000+ 1 2.89584- 3 1.87760- 3 2.50000+ 1 2.90000+ 1 1.33821- 3 1.91106- 3 2.50000+ 1 3.00000+ 1 7.82978- 4 1.92508- 3 2.50000+ 1 3.20000+ 1 2.38300- 3 1.96875- 3 2.50000+ 1 3.30000+ 1 4.91342- 3 1.96995- 3 2.70000+ 1 2.70000+ 1 2.69853- 6 1.84652- 3 2.70000+ 1 2.90000+ 1 5.39728- 6 1.87998- 3 2.70000+ 1 3.00000+ 1 8.36577- 5 1.89400- 3 2.70000+ 1 3.20000+ 1 3.50820- 5 1.93767- 3 2.70000+ 1 3.30000+ 1 6.07197- 4 1.93887- 3 2.90000+ 1 3.00000+ 1 1.45133- 4 1.92746- 3 2.90000+ 1 3.20000+ 1 2.54610- 6 1.97113- 3 2.90000+ 1 3.30000+ 1 5.49993- 4 1.97233- 3 3.00000+ 1 3.00000+ 1 1.36302- 4 1.94148- 3 3.00000+ 1 3.20000+ 1 6.02228- 5 1.98515- 3 3.00000+ 1 3.30000+ 1 1.01748- 3 1.98635- 3 3.20000+ 1 3.20000+ 1 2.25114- 6 2.02882- 3 3.20000+ 1 3.30000+ 1 1.98099- 4 2.03002- 3 3.30000+ 1 3.30000+ 1 2.44161- 4 2.03122- 3 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.88917- 5 1.04970- 4 1.90000+ 1 2.40505- 4 1.90770- 4 2.90000+ 1 1.39788- 4 6.09640- 4 3.00000+ 1 6.69734- 5 6.23660- 4 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 9.88323- 3 3.36400- 5 1.80000+ 1 2.50000+ 1 4.35391- 3 3.69100- 5 1.80000+ 1 2.70000+ 1 3.15607- 2 5.83000- 6 1.80000+ 1 2.90000+ 1 2.93622- 2 3.92900- 5 1.80000+ 1 3.00000+ 1 5.08345- 2 5.33100- 5 1.80000+ 1 3.20000+ 1 2.02344- 2 9.69800- 5 1.80000+ 1 3.30000+ 1 3.26152- 2 9.81800- 5 1.90000+ 1 2.40000+ 1 1.00931- 1 1.19440- 4 1.90000+ 1 2.50000+ 1 1.29586- 1 1.22710- 4 1.90000+ 1 2.70000+ 1 4.10246- 2 9.16300- 5 1.90000+ 1 2.90000+ 1 4.59400- 2 1.25090- 4 1.90000+ 1 3.00000+ 1 5.05132- 2 1.39110- 4 1.90000+ 1 3.20000+ 1 2.65685- 2 1.82780- 4 1.90000+ 1 3.30000+ 1 3.05662- 2 1.83980- 4 2.10000+ 1 2.10000+ 1 4.05089- 3 5.42800- 5 2.10000+ 1 2.20000+ 1 7.54087- 3 7.02200- 5 2.10000+ 1 2.40000+ 1 4.75688- 3 2.93470- 4 2.10000+ 1 2.50000+ 1 9.61783- 3 2.96740- 4 2.10000+ 1 2.70000+ 1 1.61272- 2 2.65660- 4 2.10000+ 1 2.90000+ 1 4.29978- 3 2.99120- 4 2.10000+ 1 3.00000+ 1 7.93091- 3 3.13140- 4 2.10000+ 1 3.20000+ 1 9.61226- 4 3.56810- 4 2.10000+ 1 3.30000+ 1 8.44730- 4 3.58010- 4 2.20000+ 1 2.20000+ 1 6.78949- 3 8.61600- 5 2.20000+ 1 2.40000+ 1 1.08376- 2 3.09410- 4 2.20000+ 1 2.50000+ 1 1.01861- 2 3.12680- 4 2.20000+ 1 2.70000+ 1 2.25461- 2 2.81600- 4 2.20000+ 1 2.90000+ 1 8.85316- 3 3.15060- 4 2.20000+ 1 3.00000+ 1 7.90633- 3 3.29080- 4 2.20000+ 1 3.20000+ 1 7.78037- 4 3.72750- 4 2.20000+ 1 3.30000+ 1 1.30778- 3 3.73950- 4 2.40000+ 1 2.40000+ 1 7.90488- 3 5.32660- 4 2.40000+ 1 2.50000+ 1 1.65981- 2 5.35930- 4 2.40000+ 1 2.70000+ 1 1.79562- 2 5.04850- 4 2.40000+ 1 2.90000+ 1 2.30122- 3 5.38310- 4 2.40000+ 1 3.00000+ 1 7.00459- 3 5.52330- 4 2.40000+ 1 3.20000+ 1 4.02178- 4 5.96000- 4 2.40000+ 1 3.30000+ 1 2.63979- 4 5.97200- 4 2.50000+ 1 2.50000+ 1 1.33102- 2 5.39200- 4 2.50000+ 1 2.70000+ 1 2.35920- 2 5.08120- 4 2.50000+ 1 2.90000+ 1 1.30980- 3 5.41580- 4 2.50000+ 1 3.00000+ 1 8.42889- 3 5.55600- 4 2.50000+ 1 3.20000+ 1 2.52610- 4 5.99270- 4 2.50000+ 1 3.30000+ 1 5.75559- 4 6.00470- 4 2.70000+ 1 2.70000+ 1 1.85765- 2 4.77040- 4 2.70000+ 1 2.90000+ 1 2.47407- 2 5.10500- 4 2.70000+ 1 3.00000+ 1 3.98796- 2 5.24520- 4 2.70000+ 1 3.20000+ 1 1.82140- 2 5.68190- 4 2.70000+ 1 3.30000+ 1 2.38721- 2 5.69390- 4 2.90000+ 1 2.90000+ 1 3.11928- 3 5.43960- 4 2.90000+ 1 3.00000+ 1 1.28158- 2 5.57980- 4 2.90000+ 1 3.20000+ 1 2.67078- 3 6.01650- 4 2.90000+ 1 3.30000+ 1 2.39666- 3 6.02850- 4 3.00000+ 1 3.00000+ 1 1.00399- 2 5.72000- 4 3.00000+ 1 3.20000+ 1 3.32691- 3 6.15670- 4 3.00000+ 1 3.30000+ 1 5.27563- 3 6.16870- 4 3.20000+ 1 3.20000+ 1 6.56534- 4 6.59340- 4 3.20000+ 1 3.30000+ 1 2.03923- 3 6.60540- 4 3.30000+ 1 3.30000+ 1 2.70116- 3 6.61740- 4 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 7.97424- 4 2.59830- 4 2.70000+ 1 1.69566- 4 4.71210- 4 3.20000+ 1 1.27289- 5 5.62360- 4 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 2.27619- 2 1.44700- 5 1.90000+ 1 2.50000+ 1 2.25779- 2 1.77400- 5 1.90000+ 1 2.90000+ 1 1.21894- 2 2.01200- 5 1.90000+ 1 3.00000+ 1 1.37405- 2 3.41400- 5 1.90000+ 1 3.20000+ 1 3.70702- 3 7.78100- 5 1.90000+ 1 3.30000+ 1 5.45760- 3 7.90100- 5 2.10000+ 1 2.40000+ 1 1.49021- 1 1.88500- 4 2.10000+ 1 2.50000+ 1 3.23815- 1 1.91770- 4 2.10000+ 1 2.70000+ 1 3.63551- 2 1.60690- 4 2.10000+ 1 2.90000+ 1 2.73653- 2 1.94150- 4 2.10000+ 1 3.00000+ 1 4.15449- 2 2.08170- 4 2.10000+ 1 3.20000+ 1 1.24197- 2 2.51840- 4 2.10000+ 1 3.30000+ 1 2.05561- 2 2.53040- 4 2.20000+ 1 2.40000+ 1 4.45693- 2 2.04440- 4 2.20000+ 1 2.50000+ 1 1.14148- 2 2.07710- 4 2.20000+ 1 2.70000+ 1 6.09490- 3 1.76630- 4 2.20000+ 1 2.90000+ 1 2.48902- 2 2.10090- 4 2.20000+ 1 3.00000+ 1 5.22158- 3 2.24110- 4 2.20000+ 1 3.20000+ 1 1.79392- 3 2.67780- 4 2.20000+ 1 3.30000+ 1 1.26913- 3 2.68980- 4 2.40000+ 1 2.40000+ 1 2.99408- 3 4.27690- 4 2.40000+ 1 2.50000+ 1 2.02225- 2 4.30960- 4 2.40000+ 1 2.70000+ 1 4.21400- 3 3.99880- 4 2.40000+ 1 2.90000+ 1 1.79521- 2 4.33340- 4 2.40000+ 1 3.00000+ 1 3.86926- 3 4.47360- 4 2.40000+ 1 3.20000+ 1 2.57564- 3 4.91030- 4 2.40000+ 1 3.30000+ 1 1.05928- 3 4.92230- 4 2.50000+ 1 2.50000+ 1 1.05605- 3 4.34230- 4 2.50000+ 1 2.70000+ 1 3.07308- 3 4.03150- 4 2.50000+ 1 2.90000+ 1 3.69012- 2 4.36610- 4 2.50000+ 1 3.00000+ 1 2.28531- 3 4.50630- 4 2.50000+ 1 3.20000+ 1 6.55922- 3 4.94300- 4 2.50000+ 1 3.30000+ 1 4.80987- 4 4.95500- 4 2.70000+ 1 2.70000+ 1 7.09475- 4 3.72070- 4 2.70000+ 1 2.90000+ 1 1.00187- 2 4.05530- 4 2.70000+ 1 3.00000+ 1 1.77776- 3 4.19550- 4 2.70000+ 1 3.20000+ 1 1.36022- 3 4.63220- 4 2.70000+ 1 3.30000+ 1 8.55475- 4 4.64420- 4 2.90000+ 1 2.90000+ 1 1.40472- 2 4.38990- 4 2.90000+ 1 3.00000+ 1 3.75060- 2 4.53010- 4 2.90000+ 1 3.20000+ 1 1.40550- 2 4.96680- 4 2.90000+ 1 3.30000+ 1 2.23838- 2 4.97880- 4 3.00000+ 1 3.00000+ 1 1.44845- 3 4.67030- 4 3.00000+ 1 3.20000+ 1 3.53761- 3 5.10700- 4 3.00000+ 1 3.30000+ 1 1.17840- 3 5.11900- 4 3.20000+ 1 3.20000+ 1 3.87465- 5 5.54370- 4 3.20000+ 1 3.30000+ 1 7.71509- 5 5.55570- 4 3.30000+ 1 3.30000+ 1 1.88026- 5 5.56770- 4 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.69324- 5 1.74030- 4 2.20000+ 1 1.97363- 4 1.89970- 4 2.70000+ 1 1.35895- 4 3.85410- 4 3.20000+ 1 3.74345- 6 4.76560- 4 3.30000+ 1 2.09857- 5 4.77760- 4 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.21853- 2 1.02700- 4 2.10000+ 1 2.50000+ 1 3.20602- 2 1.05970- 4 2.10000+ 1 2.70000+ 1 1.45298- 2 7.48900- 5 2.10000+ 1 2.90000+ 1 1.14293- 2 1.08350- 4 2.10000+ 1 3.00000+ 1 3.79768- 2 1.22370- 4 2.10000+ 1 3.20000+ 1 5.55091- 3 1.66040- 4 2.10000+ 1 3.30000+ 1 9.96734- 3 1.67240- 4 2.20000+ 1 2.40000+ 1 1.65717- 1 1.18640- 4 2.20000+ 1 2.50000+ 1 1.86603- 1 1.21910- 4 2.20000+ 1 2.70000+ 1 7.25851- 2 9.08300- 5 2.20000+ 1 2.90000+ 1 7.60121- 2 1.24290- 4 2.20000+ 1 3.00000+ 1 9.82383- 2 1.38310- 4 2.20000+ 1 3.20000+ 1 4.40010- 2 1.81980- 4 2.20000+ 1 3.30000+ 1 4.80515- 2 1.83180- 4 2.40000+ 1 2.40000+ 1 7.71213- 4 3.41890- 4 2.40000+ 1 2.50000+ 1 1.88616- 2 3.45160- 4 2.40000+ 1 2.70000+ 1 5.79405- 3 3.14080- 4 2.40000+ 1 2.90000+ 1 2.81927- 3 3.47540- 4 2.40000+ 1 3.00000+ 1 3.79614- 2 3.61560- 4 2.40000+ 1 3.20000+ 1 6.15098- 4 4.05230- 4 2.40000+ 1 3.30000+ 1 3.16317- 3 4.06430- 4 2.50000+ 1 2.50000+ 1 8.18604- 3 3.48430- 4 2.50000+ 1 2.70000+ 1 1.25159- 2 3.17350- 4 2.50000+ 1 2.90000+ 1 1.04652- 2 3.50810- 4 2.50000+ 1 3.00000+ 1 4.64390- 2 3.64830- 4 2.50000+ 1 3.20000+ 1 6.28585- 4 4.08500- 4 2.50000+ 1 3.30000+ 1 3.98408- 3 4.09700- 4 2.70000+ 1 2.70000+ 1 3.30777- 6 2.86270- 4 2.70000+ 1 2.90000+ 1 2.73455- 4 3.19730- 4 2.70000+ 1 3.00000+ 1 5.53543- 3 3.33750- 4 2.70000+ 1 3.20000+ 1 2.93853- 4 3.77420- 4 2.70000+ 1 3.30000+ 1 5.36442- 4 3.78620- 4 2.90000+ 1 2.90000+ 1 1.68965- 5 3.53190- 4 2.90000+ 1 3.00000+ 1 4.81663- 3 3.67210- 4 2.90000+ 1 3.20000+ 1 1.32826- 4 4.10880- 4 2.90000+ 1 3.30000+ 1 4.46831- 4 4.12080- 4 3.00000+ 1 3.00000+ 1 8.89620- 3 3.81230- 4 3.00000+ 1 3.20000+ 1 4.99908- 3 4.24900- 4 3.00000+ 1 3.30000+ 1 6.29868- 3 4.26100- 4 3.20000+ 1 3.20000+ 1 1.93244- 5 4.68570- 4 3.20000+ 1 3.30000+ 1 1.24295- 4 4.69770- 4 3.30000+ 1 3.30000+ 1 1.19100- 4 4.70970- 4 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.46468- 4 2.39190- 4 2.90000+ 1 3.42276- 5 2.44840- 4 3.00000+ 1 4.78723- 6 2.58860- 4 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 3.09802- 2 7.95000- 6 2.20000+ 1 3.30000+ 1 4.77571- 3 9.15000- 6 2.40000+ 1 2.40000+ 1 1.44166- 1 1.67860- 4 2.40000+ 1 2.50000+ 1 4.54913- 1 1.71130- 4 2.40000+ 1 2.70000+ 1 6.22817- 2 1.40050- 4 2.40000+ 1 2.90000+ 1 5.11347- 2 1.73510- 4 2.40000+ 1 3.00000+ 1 7.30908- 2 1.87530- 4 2.40000+ 1 3.20000+ 1 4.18403- 2 2.31200- 4 2.40000+ 1 3.30000+ 1 3.95623- 2 2.32400- 4 2.50000+ 1 2.50000+ 1 5.36167- 3 1.74400- 4 2.50000+ 1 2.70000+ 1 5.77813- 3 1.43320- 4 2.50000+ 1 2.90000+ 1 1.22013- 2 1.76780- 4 2.50000+ 1 3.00000+ 1 4.78654- 3 1.90800- 4 2.50000+ 1 3.20000+ 1 4.53645- 2 2.34470- 4 2.50000+ 1 3.30000+ 1 1.65082- 3 2.35670- 4 2.70000+ 1 2.70000+ 1 8.95254- 4 1.12240- 4 2.70000+ 1 2.90000+ 1 1.51941- 3 1.45700- 4 2.70000+ 1 3.00000+ 1 1.53514- 3 1.59720- 4 2.70000+ 1 3.20000+ 1 3.94921- 3 2.03390- 4 2.70000+ 1 3.30000+ 1 1.26287- 3 2.04590- 4 2.90000+ 1 2.90000+ 1 3.69237- 4 1.79160- 4 2.90000+ 1 3.00000+ 1 1.65481- 3 1.93180- 4 2.90000+ 1 3.20000+ 1 2.31521- 3 2.36850- 4 2.90000+ 1 3.30000+ 1 4.75137- 4 2.38050- 4 3.00000+ 1 3.00000+ 1 5.80383- 4 2.07200- 4 3.00000+ 1 3.20000+ 1 3.87592- 3 2.50870- 4 3.00000+ 1 3.30000+ 1 3.34887- 4 2.52070- 4 3.20000+ 1 3.20000+ 1 1.05410- 3 2.94540- 4 3.20000+ 1 3.30000+ 1 2.04170- 3 2.95740- 4 3.30000+ 1 3.30000+ 1 6.34859- 5 2.96940- 4 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 6.62731- 6 2.23250- 4 2.50000+ 1 1.40240- 4 2.26520- 4 3.00000+ 1 3.18190- 5 2.42920- 4 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 8.94852- 3 1.51920- 4 2.40000+ 1 2.50000+ 1 3.25166- 1 1.55190- 4 2.40000+ 1 2.70000+ 1 8.45846- 3 1.24110- 4 2.40000+ 1 2.90000+ 1 5.12847- 3 1.57570- 4 2.40000+ 1 3.00000+ 1 1.24670- 2 1.71590- 4 2.40000+ 1 3.20000+ 1 2.37368- 3 2.15260- 4 2.40000+ 1 3.30000+ 1 4.03982- 2 2.16460- 4 2.50000+ 1 2.50000+ 1 2.47829- 1 1.58460- 4 2.50000+ 1 2.70000+ 1 6.79356- 2 1.27380- 4 2.50000+ 1 2.90000+ 1 6.97021- 2 1.60840- 4 2.50000+ 1 3.00000+ 1 7.44197- 2 1.74860- 4 2.50000+ 1 3.20000+ 1 3.78200- 2 2.18530- 4 2.50000+ 1 3.30000+ 1 7.00442- 2 2.19730- 4 2.70000+ 1 2.70000+ 1 1.56673- 3 9.63000- 5 2.70000+ 1 2.90000+ 1 1.47670- 3 1.29760- 4 2.70000+ 1 3.00000+ 1 3.26699- 3 1.43780- 4 2.70000+ 1 3.20000+ 1 1.61385- 3 1.87450- 4 2.70000+ 1 3.30000+ 1 5.50075- 3 1.88650- 4 2.90000+ 1 2.90000+ 1 1.90410- 4 1.63220- 4 2.90000+ 1 3.00000+ 1 2.34044- 3 1.77240- 4 2.90000+ 1 3.20000+ 1 1.86649- 4 2.20910- 4 2.90000+ 1 3.30000+ 1 3.20021- 3 2.22110- 4 3.00000+ 1 3.00000+ 1 8.89122- 4 1.91260- 4 3.00000+ 1 3.20000+ 1 5.80294- 4 2.34930- 4 3.00000+ 1 3.30000+ 1 4.41859- 3 2.36130- 4 3.20000+ 1 3.20000+ 1 2.52987- 5 2.78600- 4 3.20000+ 1 3.30000+ 1 1.75420- 3 2.79800- 4 3.30000+ 1 3.30000+ 1 2.11990- 3 2.81000- 4 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 6.80282- 7 3.34600- 5 3.00000+ 1 3.97419- 6 4.74800- 5 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.24992- 1 2.54700- 5 2.90000+ 1 3.30000+ 1 1.90397- 1 2.66700- 5 3.00000+ 1 3.20000+ 1 3.74182- 1 3.94900- 5 3.00000+ 1 3.30000+ 1 2.45106- 1 4.06900- 5 3.20000+ 1 3.20000+ 1 1.61404- 3 8.31600- 5 3.20000+ 1 3.30000+ 1 5.69437- 2 8.43600- 5 3.30000+ 1 3.30000+ 1 6.76147- 3 8.55600- 5 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.15647- 7 5.76900- 5 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 4.15585- 1 6.03000- 6 3.00000+ 1 3.30000+ 1 6.13653- 2 7.23000- 6 3.20000+ 1 3.20000+ 1 9.58043- 2 4.97000- 5 3.20000+ 1 3.30000+ 1 4.16546- 1 5.09000- 5 3.30000+ 1 3.30000+ 1 1.06990- 2 5.21000- 5 1 77000 0 7 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.79090- 8 4.36700- 5 3.30000+ 1 1.74360- 7 4.48700- 5 1 77000 0 9 1.92220+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 3.27470- 2 3.56800- 5 3.20000+ 1 3.30000+ 1 6.73353- 1 3.68800- 5 3.30000+ 1 3.30000+ 1 2.93900- 1 3.80800- 5 1 78000 0 0 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 3.60000+ 0 3.30000+ 1 5.40000+ 0 4.10000+ 1 1.00000+ 0 1 78000 0 0 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.86150- 2 3.00000+ 0 1.38620- 2 5.00000+ 0 1.33130- 2 6.00000+ 0 1.15670- 2 8.00000+ 0 3.27320- 3 1.00000+ 1 3.02200- 3 1.10000+ 1 2.63690- 3 1.30000+ 1 2.21240- 3 1.40000+ 1 2.12900- 3 1.60000+ 1 7.12210- 4 1.80000+ 1 6.04190- 4 1.90000+ 1 5.12040- 4 2.10000+ 1 3.33100- 4 2.20000+ 1 3.15960- 4 2.40000+ 1 8.54900- 5 2.50000+ 1 8.18700- 5 2.70000+ 1 1.08440- 4 2.90000+ 1 7.33400- 5 3.00000+ 1 5.77400- 5 3.20000+ 1 1.10200- 5 3.30000+ 1 9.54000- 6 4.10000+ 1 8.07000- 6 1 78000 0 0 1.95090+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.08690- 1 3.00000+ 0 2.58840- 2 5.00000+ 0 2.58710- 2 6.00000+ 0 1.91420- 2 8.00000+ 0 8.23460- 3 1.00000+ 1 8.12410- 3 1.10000+ 1 6.46560- 3 1.30000+ 1 6.32200- 3 1.40000+ 1 5.96540- 3 1.60000+ 1 2.68440- 3 1.80000+ 1 2.56020- 3 1.90000+ 1 2.06300- 3 2.10000+ 1 1.84600- 3 2.20000+ 1 1.74290- 3 2.40000+ 1 1.35780- 3 2.50000+ 1 1.32330- 3 2.70000+ 1 6.54640- 4 2.90000+ 1 5.55100- 4 3.00000+ 1 4.34370- 4 3.20000+ 1 2.31050- 4 3.30000+ 1 2.09610- 4 4.10000+ 1 6.67900- 5 1 78000 0 0 1.95090+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.06320-11 3.00000+ 0 3.78400-10 5.00000+ 0 3.11360-10 6.00000+ 0 3.55880-10 8.00000+ 0 9.83160-10 1.00000+ 1 9.30640-10 1.10000+ 1 1.01210- 9 1.30000+ 1 8.81210-10 1.40000+ 1 9.05930-10 1.60000+ 1 2.18300- 9 1.80000+ 1 2.19490- 9 1.90000+ 1 2.37180- 9 2.10000+ 1 2.41580- 9 2.20000+ 1 2.47370- 9 2.40000+ 1 2.64440- 9 2.50000+ 1 2.68030- 9 2.70000+ 1 4.98150- 9 2.90000+ 1 5.38310- 9 3.00000+ 1 5.90050- 9 3.20000+ 1 8.22130- 9 3.30000+ 1 8.61520- 9 4.10000+ 1 1.54540- 8 1 78000 0 0 1.95090+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.65220- 5 3.00000+ 0 1.04780- 6 5.00000+ 0 1.83580- 6 6.00000+ 0 1.61180- 6 8.00000+ 0 3.82800- 8 1.00000+ 1 4.20050- 8 1.10000+ 1 4.47120- 8 1.30000+ 1 5.52960- 8 1.40000+ 1 5.18500- 8 1.60000+ 1 1.28410- 9 1.80000+ 1 2.08530- 9 1.90000+ 1 1.27790- 9 2.10000+ 1 1.46250- 9 2.20000+ 1 1.25360- 9 2.40000+ 1 6.70570-12 2.50000+ 1 5.96480-12 2.70000+ 1 6.76780-11 2.90000+ 1 1.07800-10 3.00000+ 1 6.34570-11 1 78000 0 0 1.95090+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.92960- 6 3.00000+ 0 1.23340- 5 5.00000+ 0 3.40860- 6 6.00000+ 0 3.59970- 6 8.00000+ 0 1.84210- 5 1.00000+ 1 1.24480- 5 1.10000+ 1 1.11490- 5 1.30000+ 1 2.13380- 6 1.40000+ 1 2.03130- 6 1.60000+ 1 1.53500- 5 1.80000+ 1 1.36450- 5 1.90000+ 1 9.63710- 6 2.10000+ 1 8.03710- 6 2.20000+ 1 7.25740- 6 2.40000+ 1 3.63610- 7 2.50000+ 1 3.11960- 7 2.70000+ 1 1.57650- 5 2.90000+ 1 7.48190- 6 3.00000+ 1 6.12380- 6 1 78000 0 0 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.31412- 4 3.00000+ 0 1.86017- 4 5.00000+ 0 1.35570- 4 6.00000+ 0 1.31799- 4 8.00000+ 0 1.29823- 4 1.00000+ 1 1.11124- 4 1.10000+ 1 1.01147- 4 1.30000+ 1 7.56233- 5 1.40000+ 1 7.31130- 5 1.60000+ 1 7.23116- 5 1.80000+ 1 6.42250- 5 1.90000+ 1 6.22182- 5 2.10000+ 1 4.58614- 5 2.20000+ 1 4.45775- 5 2.40000+ 1 2.40467- 5 2.50000+ 1 2.32322- 5 2.70000+ 1 3.07987- 5 2.90000+ 1 2.46257- 5 3.00000+ 1 2.00833- 5 3.20000+ 1 1.10200- 5 3.30000+ 1 9.54000- 6 4.10000+ 1 8.07000- 6 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.27337+ 0 3.00000+ 0 3.78728- 1 5.00000+ 0 4.27987- 1 6.00000+ 0 3.47082- 1 8.00000+ 0 2.87464- 2 1.00000+ 1 2.86038- 2 1.10000+ 1 2.70115- 2 1.30000+ 1 3.00641- 2 1.40000+ 1 2.83766- 2 1.60000+ 1 9.80442- 4 1.80000+ 1 1.22036- 3 1.90000+ 1 5.63849- 4 2.10000+ 1 2.16668- 4 2.20000+ 1 2.00735- 4 2.40000+ 1 7.60842- 7 2.50000+ 1 7.08864- 7 2.70000+ 1 5.99971- 6 2.90000+ 1 1.38432- 6 3.00000+ 1 2.93062- 7 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.85783- 2 3.00000+ 0 3.41878- 3 5.00000+ 0 4.45028- 3 6.00000+ 0 3.05387- 3 8.00000+ 0 5.98620- 5 1.00000+ 1 5.95590- 5 1.10000+ 1 5.51353- 5 1.30000+ 1 6.18477- 5 1.40000+ 1 5.67222- 5 1.60000+ 1 3.36030- 7 1.80000+ 1 3.74940- 7 1.90000+ 1 1.58970- 7 2.10000+ 1 5.38587- 8 2.20000+ 1 4.75071- 8 2.40000+ 1 5.44410-11 2.50000+ 1 4.88692-11 2.70000+ 1 2.96278-10 2.90000+ 1 8.49344-11 3.00000+ 1 1.41350-11 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19570+ 1 3.00000+ 0 1.73426+ 1 5.00000+ 0 1.23311+ 1 6.00000+ 0 1.20109+ 1 8.00000+ 0 1.18154+ 1 1.00000+ 1 9.91801+ 0 1.10000+ 1 9.02315+ 0 1.30000+ 1 6.40716+ 0 1.40000+ 1 6.22734+ 0 1.60000+ 1 6.11969+ 0 1.80000+ 1 5.29090+ 0 1.90000+ 1 5.14349+ 0 2.10000+ 1 3.46355+ 0 2.20000+ 1 3.42312+ 0 2.40000+ 1 1.29668+ 0 2.50000+ 1 1.34025+ 0 2.70000+ 1 2.02494+ 0 2.90000+ 1 1.37878+ 0 3.00000+ 1 1.00000+ 0 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.90526- 3 3.00000+ 0 1.02572- 2 5.00000+ 0 8.72715- 3 6.00000+ 0 8.38133- 3 8.00000+ 0 3.08352- 3 1.00000+ 1 2.85132- 3 1.10000+ 1 2.48062- 3 1.30000+ 1 2.07493- 3 1.40000+ 1 1.99916- 3 1.60000+ 1 6.39562- 4 1.80000+ 1 5.39590- 4 1.90000+ 1 4.49663- 4 2.10000+ 1 2.87185- 4 2.20000+ 1 2.71335- 4 2.40000+ 1 6.14433- 5 2.50000+ 1 5.86377- 5 2.70000+ 1 7.76410- 5 2.90000+ 1 4.87142- 5 3.00000+ 1 3.76567- 5 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.79391- 1 6.53020- 2 6.00000+ 0 4.77361- 1 6.70480- 2 1.00000+ 1 5.22921- 2 7.55930- 2 1.10000+ 1 1.01120- 1 7.59781- 2 1.30000+ 1 1.27450- 3 7.64026- 2 1.40000+ 1 1.57530- 3 7.64860- 2 1.80000+ 1 1.21850- 2 7.80108- 2 1.90000+ 1 2.37720- 2 7.81030- 2 2.10000+ 1 3.23481- 4 7.82819- 2 2.20000+ 1 3.98521- 4 7.82990- 2 2.90000+ 1 2.79851- 3 7.85417- 2 3.00000+ 1 5.57171- 3 7.85573- 2 3.20000+ 1 2.59221- 5 7.86040- 2 3.30000+ 1 3.07991- 5 7.86055- 2 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.35054- 3 5.08910- 2 3.00000+ 0 5.00000+ 0 6.61587- 3 5.14400- 2 3.00000+ 0 6.00000+ 0 4.07904- 3 5.31860- 2 3.00000+ 0 8.00000+ 0 1.73917- 3 6.14798- 2 3.00000+ 0 1.00000+ 1 1.41951- 3 6.17310- 2 3.00000+ 0 1.10000+ 1 9.39261- 4 6.21161- 2 3.00000+ 0 1.30000+ 1 7.76599- 5 6.25406- 2 3.00000+ 0 1.40000+ 1 6.10662- 5 6.26240- 2 3.00000+ 0 1.60000+ 1 4.28987- 4 6.40408- 2 3.00000+ 0 1.80000+ 1 3.40946- 4 6.41488- 2 3.00000+ 0 1.90000+ 1 2.24251- 4 6.42410- 2 3.00000+ 0 2.10000+ 1 1.95483- 5 6.44199- 2 3.00000+ 0 2.20000+ 1 1.51194- 5 6.44370- 2 3.00000+ 0 2.40000+ 1 5.90601- 8 6.46675- 2 3.00000+ 0 2.50000+ 1 5.90601- 8 6.46711- 2 3.00000+ 0 2.70000+ 1 8.38035- 5 6.46446- 2 3.00000+ 0 2.90000+ 1 5.79971- 5 6.46797- 2 3.00000+ 0 3.00000+ 1 3.64971- 5 6.46953- 2 3.00000+ 0 3.20000+ 1 1.65357- 6 6.47420- 2 3.00000+ 0 3.30000+ 1 1.00396- 6 6.47435- 2 5.00000+ 0 5.00000+ 0 4.03607- 4 5.19890- 2 5.00000+ 0 6.00000+ 0 7.40087- 3 5.37350- 2 5.00000+ 0 8.00000+ 0 1.13951- 3 6.20288- 2 5.00000+ 0 1.00000+ 1 1.51899- 4 6.22800- 2 5.00000+ 0 1.10000+ 1 1.42068- 3 6.26651- 2 5.00000+ 0 1.30000+ 1 8.09682- 5 6.30896- 2 5.00000+ 0 1.40000+ 1 2.20814- 4 6.31730- 2 5.00000+ 0 1.60000+ 1 2.71781- 4 6.45898- 2 5.00000+ 0 1.80000+ 1 3.54345- 5 6.46978- 2 5.00000+ 0 1.90000+ 1 3.25586- 4 6.47900- 2 5.00000+ 0 2.10000+ 1 1.96662- 5 6.49689- 2 5.00000+ 0 2.20000+ 1 5.36242- 5 6.49860- 2 5.00000+ 0 2.40000+ 1 5.31511- 7 6.52165- 2 5.00000+ 0 2.50000+ 1 7.67762- 7 6.52201- 2 5.00000+ 0 2.70000+ 1 5.26822- 5 6.51936- 2 5.00000+ 0 2.90000+ 1 5.96515- 6 6.52287- 2 5.00000+ 0 3.00000+ 1 5.25024- 5 6.52443- 2 5.00000+ 0 3.20000+ 1 1.65359- 6 6.52910- 2 5.00000+ 0 3.30000+ 1 3.48435- 6 6.52925- 2 6.00000+ 0 6.00000+ 0 3.24923- 3 5.54810- 2 6.00000+ 0 8.00000+ 0 6.43610- 4 6.37748- 2 6.00000+ 0 1.00000+ 1 1.30686- 3 6.40260- 2 6.00000+ 0 1.10000+ 1 1.28824- 3 6.44111- 2 6.00000+ 0 1.30000+ 1 2.47987- 4 6.48356- 2 6.00000+ 0 1.40000+ 1 2.09293- 4 6.49190- 2 6.00000+ 0 1.60000+ 1 1.50359- 4 6.63358- 2 6.00000+ 0 1.80000+ 1 3.01002- 4 6.64438- 2 6.00000+ 0 1.90000+ 1 2.97763- 4 6.65360- 2 6.00000+ 0 2.10000+ 1 6.07125- 5 6.67149- 2 6.00000+ 0 2.20000+ 1 5.10264- 5 6.67320- 2 6.00000+ 0 2.40000+ 1 8.85832- 7 6.69625- 2 6.00000+ 0 2.50000+ 1 9.44882- 7 6.69661- 2 6.00000+ 0 2.70000+ 1 2.89961- 5 6.69396- 2 6.00000+ 0 2.90000+ 1 5.07878- 5 6.69747- 2 6.00000+ 0 3.00000+ 1 4.81328- 5 6.69903- 2 6.00000+ 0 3.20000+ 1 5.07878- 6 6.70370- 2 6.00000+ 0 3.30000+ 1 3.30716- 6 6.70385- 2 8.00000+ 0 8.00000+ 0 1.70967- 4 7.20686- 2 8.00000+ 0 1.00000+ 1 2.45316- 4 7.23198- 2 8.00000+ 0 1.10000+ 1 1.49528- 4 7.27049- 2 8.00000+ 0 1.30000+ 1 1.19888- 5 7.31294- 2 8.00000+ 0 1.40000+ 1 8.85829- 6 7.32128- 2 8.00000+ 0 1.60000+ 1 8.40354- 5 7.46296- 2 8.00000+ 0 1.80000+ 1 5.89952- 5 7.47376- 2 8.00000+ 0 1.90000+ 1 3.57886- 5 7.48298- 2 8.00000+ 0 2.10000+ 1 3.01179- 6 7.50087- 2 8.00000+ 0 2.20000+ 1 2.18514- 6 7.50258- 2 8.00000+ 0 2.70000+ 1 1.64174- 5 7.52334- 2 8.00000+ 0 2.90000+ 1 1.00393- 5 7.52685- 2 8.00000+ 0 3.00000+ 1 5.84684- 6 7.52841- 2 8.00000+ 0 3.20000+ 1 2.36221- 7 7.53308- 2 8.00000+ 0 3.30000+ 1 1.18111- 7 7.53323- 2 1.00000+ 1 1.00000+ 1 1.38783- 5 7.25710- 2 1.00000+ 1 1.10000+ 1 2.57663- 4 7.29561- 2 1.00000+ 1 1.30000+ 1 1.22243- 5 7.33806- 2 1.00000+ 1 1.40000+ 1 2.95273- 5 7.34640- 2 1.00000+ 1 1.60000+ 1 5.85268- 5 7.48808- 2 1.00000+ 1 1.80000+ 1 6.43739- 6 7.49888- 2 1.00000+ 1 1.90000+ 1 5.93522- 5 7.50810- 2 1.00000+ 1 2.10000+ 1 3.01182- 6 7.52599- 2 1.00000+ 1 2.20000+ 1 7.26406- 6 7.52770- 2 1.00000+ 1 2.40000+ 1 5.90588- 8 7.55075- 2 1.00000+ 1 2.50000+ 1 5.90588- 8 7.55111- 2 1.00000+ 1 2.70000+ 1 1.13391- 5 7.54846- 2 1.00000+ 1 2.90000+ 1 1.06304- 6 7.55197- 2 1.00000+ 1 3.00000+ 1 9.56706- 6 7.55353- 2 1.00000+ 1 3.20000+ 1 2.36223- 7 7.55820- 2 1.00000+ 1 3.30000+ 1 4.72446- 7 7.55835- 2 1.10000+ 1 1.10000+ 1 1.28920- 4 7.33412- 2 1.10000+ 1 1.30000+ 1 3.93313- 5 7.37657- 2 1.10000+ 1 1.40000+ 1 3.21277- 5 7.38491- 2 1.10000+ 1 1.60000+ 1 3.50214- 5 7.52659- 2 1.10000+ 1 1.80000+ 1 5.96500- 5 7.53739- 2 1.10000+ 1 1.90000+ 1 5.97089- 5 7.54661- 2 1.10000+ 1 2.10000+ 1 9.68560- 6 7.56450- 2 1.10000+ 1 2.20000+ 1 7.91369- 6 7.56621- 2 1.10000+ 1 2.40000+ 1 1.18112- 7 7.58926- 2 1.10000+ 1 2.50000+ 1 1.18112- 7 7.58962- 2 1.10000+ 1 2.70000+ 1 6.73268- 6 7.58697- 2 1.10000+ 1 2.90000+ 1 1.00985- 5 7.59048- 2 1.10000+ 1 3.00000+ 1 9.62609- 6 7.59204- 2 1.10000+ 1 3.20000+ 1 8.26791- 7 7.59671- 2 1.10000+ 1 3.30000+ 1 5.31498- 7 7.59686- 2 1.30000+ 1 1.30000+ 1 5.90578- 8 7.41902- 2 1.30000+ 1 1.40000+ 1 4.66538- 6 7.42736- 2 1.30000+ 1 1.60000+ 1 2.83461- 6 7.56904- 2 1.30000+ 1 1.80000+ 1 2.71653- 6 7.57984- 2 1.30000+ 1 1.90000+ 1 8.62206- 6 7.58906- 2 1.30000+ 1 2.10000+ 1 5.90578- 8 7.60695- 2 1.30000+ 1 2.20000+ 1 1.12211- 6 7.60866- 2 1.30000+ 1 2.70000+ 1 5.31486- 7 7.62942- 2 1.30000+ 1 2.90000+ 1 4.72437- 7 7.63293- 2 1.30000+ 1 3.00000+ 1 1.35826- 6 7.63449- 2 1.30000+ 1 3.30000+ 1 5.90578- 8 7.63931- 2 1.40000+ 1 1.40000+ 1 1.12215- 6 7.43570- 2 1.40000+ 1 1.60000+ 1 2.06701- 6 7.57738- 2 1.40000+ 1 1.80000+ 1 6.37842- 6 7.58818- 2 1.40000+ 1 1.90000+ 1 7.02803- 6 7.59740- 2 1.40000+ 1 2.10000+ 1 1.12215- 6 7.61529- 2 1.40000+ 1 2.20000+ 1 5.31505- 7 7.61700- 2 1.40000+ 1 2.70000+ 1 4.13392- 7 7.63776- 2 1.40000+ 1 2.90000+ 1 1.06306- 6 7.64127- 2 1.40000+ 1 3.00000+ 1 1.12215- 6 7.64283- 2 1.40000+ 1 3.20000+ 1 1.18114- 7 7.64750- 2 1.40000+ 1 3.30000+ 1 5.90599- 8 7.64765- 2 1.60000+ 1 1.60000+ 1 1.02793- 5 7.71906- 2 1.60000+ 1 1.80000+ 1 1.39791- 5 7.72986- 2 1.60000+ 1 1.90000+ 1 8.34065- 6 7.73907- 2 1.60000+ 1 2.10000+ 1 7.04860- 7 7.75697- 2 1.60000+ 1 2.20000+ 1 5.28624- 7 7.75868- 2 1.60000+ 1 2.70000+ 1 3.99407- 6 7.77943- 2 1.60000+ 1 2.90000+ 1 2.40814- 6 7.78294- 2 1.60000+ 1 3.00000+ 1 1.35094- 6 7.78450- 2 1.60000+ 1 3.20000+ 1 5.87398- 8 7.78918- 2 1.60000+ 1 3.30000+ 1 5.87398- 8 7.78932- 2 1.80000+ 1 1.80000+ 1 7.67758- 7 7.74066- 2 1.80000+ 1 1.90000+ 1 1.37608- 5 7.74988- 2 1.80000+ 1 2.10000+ 1 6.49653- 7 7.76777- 2 1.80000+ 1 2.20000+ 1 1.59459- 6 7.76948- 2 1.80000+ 1 2.70000+ 1 2.71664- 6 7.79024- 2 1.80000+ 1 2.90000+ 1 2.36228- 7 7.79375- 2 1.80000+ 1 3.00000+ 1 2.24420- 6 7.79531- 2 1.80000+ 1 3.20000+ 1 5.90602- 8 7.79998- 2 1.80000+ 1 3.30000+ 1 1.18115- 7 7.80013- 2 1.90000+ 1 1.90000+ 1 6.78608- 6 7.75909- 2 1.90000+ 1 2.10000+ 1 2.08803- 6 7.77699- 2 1.90000+ 1 2.20000+ 1 1.68199- 6 7.77870- 2 1.90000+ 1 2.70000+ 1 1.56602- 6 7.79945- 2 1.90000+ 1 2.90000+ 1 2.26192- 6 7.80296- 2 1.90000+ 1 3.00000+ 1 2.20400- 6 7.80452- 2 1.90000+ 1 3.20000+ 1 1.74003- 7 7.80919- 2 1.90000+ 1 3.30000+ 1 1.15999- 7 7.80934- 2 2.10000+ 1 2.20000+ 1 2.61031- 7 7.79659- 2 2.10000+ 1 2.70000+ 1 1.30516- 7 7.81735- 2 2.10000+ 1 2.90000+ 1 1.30516- 7 7.82086- 2 2.10000+ 1 3.00000+ 1 3.91548- 7 7.82242- 2 2.20000+ 1 2.20000+ 1 5.95776- 8 7.79831- 2 2.20000+ 1 2.70000+ 1 1.19149- 7 7.81906- 2 2.20000+ 1 2.90000+ 1 2.38298- 7 7.82257- 2 2.20000+ 1 3.00000+ 1 2.97867- 7 7.82413- 2 2.70000+ 1 2.70000+ 1 4.14913- 7 7.83981- 2 2.70000+ 1 2.90000+ 1 4.74193- 7 7.84332- 2 2.70000+ 1 3.00000+ 1 2.37096- 7 7.84488- 2 2.90000+ 1 3.00000+ 1 3.74951- 7 7.84839- 2 3.00000+ 1 3.00000+ 1 2.06220- 7 7.84995- 2 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.10460- 5 5.49000- 4 6.00000+ 0 1.94330- 3 2.29500- 3 1.00000+ 1 2.64019- 2 1.08400- 2 1.10000+ 1 3.09979- 2 1.12251- 2 1.30000+ 1 8.56638- 4 1.16496- 2 1.40000+ 1 1.28270- 3 1.17330- 2 1.80000+ 1 6.64049- 3 1.32578- 2 1.90000+ 1 8.36628- 3 1.33500- 2 2.10000+ 1 1.26270- 4 1.35289- 2 2.20000+ 1 1.98460- 4 1.35460- 2 2.90000+ 1 1.15800- 3 1.37887- 2 3.00000+ 1 1.41490- 3 1.38043- 2 3.20000+ 1 9.25318- 6 1.38510- 2 3.30000+ 1 1.41950- 5 1.38525- 2 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90000+ 1 1.64959- 2 3.69600- 5 5.00000+ 0 2.10000+ 1 4.59915- 3 2.15900- 4 5.00000+ 0 2.20000+ 1 6.28679- 3 2.33040- 4 5.00000+ 0 2.40000+ 1 1.38535- 2 4.63510- 4 5.00000+ 0 2.50000+ 1 1.82775- 2 4.67130- 4 5.00000+ 0 2.70000+ 1 3.90437- 3 4.40560- 4 5.00000+ 0 2.90000+ 1 2.69349- 3 4.75660- 4 5.00000+ 0 3.00000+ 1 2.55727- 3 4.91260- 4 5.00000+ 0 3.20000+ 1 3.87051- 4 5.37980- 4 5.00000+ 0 3.30000+ 1 4.22794- 4 5.39460- 4 6.00000+ 0 1.30000+ 1 2.34117- 1 8.26000- 5 6.00000+ 0 1.40000+ 1 3.08447- 1 1.66000- 4 6.00000+ 0 1.60000+ 1 1.92503- 2 1.58279- 3 6.00000+ 0 1.80000+ 1 7.73366- 3 1.69081- 3 6.00000+ 0 1.90000+ 1 1.20349- 2 1.78296- 3 6.00000+ 0 2.10000+ 1 2.93138- 2 1.96190- 3 6.00000+ 0 2.20000+ 1 3.52259- 2 1.97904- 3 6.00000+ 0 2.40000+ 1 2.08082- 2 2.20951- 3 6.00000+ 0 2.50000+ 1 2.60282- 2 2.21313- 3 6.00000+ 0 2.70000+ 1 3.58840- 3 2.18656- 3 6.00000+ 0 2.90000+ 1 1.28618- 3 2.22166- 3 6.00000+ 0 3.00000+ 1 1.93802- 3 2.23726- 3 6.00000+ 0 3.20000+ 1 2.26157- 3 2.28398- 3 6.00000+ 0 3.30000+ 1 2.10519- 3 2.28546- 3 8.00000+ 0 8.00000+ 0 5.00122- 3 7.31560- 3 8.00000+ 0 1.00000+ 1 1.02273- 2 7.56680- 3 8.00000+ 0 1.10000+ 1 1.66149- 2 7.95190- 3 8.00000+ 0 1.30000+ 1 1.24823- 2 8.37640- 3 8.00000+ 0 1.40000+ 1 1.62892- 2 8.45980- 3 8.00000+ 0 1.60000+ 1 2.09431- 3 9.87659- 3 8.00000+ 0 1.80000+ 1 2.41916- 3 9.98461- 3 8.00000+ 0 1.90000+ 1 3.86413- 3 1.00768- 2 8.00000+ 0 2.10000+ 1 2.60841- 3 1.02557- 2 8.00000+ 0 2.20000+ 1 3.37109- 3 1.02728- 2 8.00000+ 0 2.40000+ 1 1.98395- 4 1.05033- 2 8.00000+ 0 2.50000+ 1 2.21544- 4 1.05069- 2 8.00000+ 0 2.70000+ 1 3.98417- 4 1.04804- 2 8.00000+ 0 2.90000+ 1 4.09991- 4 1.05155- 2 8.00000+ 0 3.00000+ 1 6.24635- 4 1.05311- 2 8.00000+ 0 3.20000+ 1 2.11797- 4 1.05778- 2 8.00000+ 0 3.30000+ 1 2.14034- 4 1.05793- 2 1.00000+ 1 1.00000+ 1 2.31499- 5 7.81800- 3 1.00000+ 1 1.10000+ 1 2.16880- 4 8.20310- 3 1.00000+ 1 1.30000+ 1 6.13058- 4 8.62760- 3 1.00000+ 1 1.40000+ 1 5.28571- 3 8.71100- 3 1.00000+ 1 1.60000+ 1 1.68884- 3 1.01278- 2 1.00000+ 1 1.80000+ 1 3.45206- 6 1.02358- 2 1.00000+ 1 1.90000+ 1 4.38631- 5 1.03280- 2 1.00000+ 1 2.10000+ 1 1.14936- 4 1.05069- 2 1.00000+ 1 2.20000+ 1 6.99371- 4 1.05240- 2 1.00000+ 1 2.40000+ 1 7.14800- 5 1.07545- 2 1.00000+ 1 2.50000+ 1 2.49974- 4 1.07581- 2 1.00000+ 1 2.70000+ 1 3.03592- 4 1.07316- 2 1.00000+ 1 2.90000+ 1 4.06125- 7 1.07667- 2 1.00000+ 1 3.00000+ 1 6.90423- 6 1.07823- 2 1.00000+ 1 3.20000+ 1 9.34087- 6 1.08290- 2 1.00000+ 1 3.30000+ 1 4.16292- 5 1.08305- 2 1.10000+ 1 1.10000+ 1 5.00967- 4 8.58820- 3 1.10000+ 1 1.30000+ 1 1.96965- 3 9.01270- 3 1.10000+ 1 1.40000+ 1 1.21517- 3 9.09610- 3 1.10000+ 1 1.60000+ 1 2.71075- 3 1.05129- 2 1.10000+ 1 1.80000+ 1 4.99548- 5 1.06209- 2 1.10000+ 1 1.90000+ 1 1.74435- 4 1.07131- 2 1.10000+ 1 2.10000+ 1 1.74435- 4 1.08920- 2 1.10000+ 1 2.20000+ 1 9.50382- 5 1.09091- 2 1.10000+ 1 2.40000+ 1 1.35648- 4 1.11396- 2 1.10000+ 1 2.50000+ 1 1.12499- 4 1.11432- 2 1.10000+ 1 2.70000+ 1 4.85936- 4 1.11167- 2 1.10000+ 1 2.90000+ 1 8.32549- 6 1.11518- 2 1.10000+ 1 3.00000+ 1 2.68049- 5 1.11674- 2 1.10000+ 1 3.20000+ 1 1.21847- 5 1.12141- 2 1.10000+ 1 3.30000+ 1 5.27980- 6 1.12156- 2 1.30000+ 1 1.30000+ 1 7.38754- 4 9.43720- 3 1.30000+ 1 1.40000+ 1 2.24055- 2 9.52060- 3 1.30000+ 1 1.60000+ 1 1.87306- 3 1.09374- 2 1.30000+ 1 1.80000+ 1 1.76660- 4 1.10454- 2 1.30000+ 1 1.90000+ 1 5.08068- 4 1.11376- 2 1.30000+ 1 2.10000+ 1 3.01139- 4 1.13165- 2 1.30000+ 1 2.20000+ 1 3.24498- 3 1.13336- 2 1.30000+ 1 2.40000+ 1 2.16475- 4 1.15641- 2 1.30000+ 1 2.50000+ 1 6.00053- 4 1.15677- 2 1.30000+ 1 2.70000+ 1 3.30379- 4 1.15412- 2 1.30000+ 1 2.90000+ 1 3.10686- 5 1.15763- 2 1.30000+ 1 3.00000+ 1 8.36640- 5 1.15919- 2 1.30000+ 1 3.20000+ 1 2.43678- 5 1.16386- 2 1.30000+ 1 3.30000+ 1 1.94735- 4 1.16401- 2 1.40000+ 1 1.40000+ 1 6.22278- 3 9.60400- 3 1.40000+ 1 1.60000+ 1 2.47744- 3 1.10208- 2 1.40000+ 1 1.80000+ 1 1.11150- 3 1.11288- 2 1.40000+ 1 1.90000+ 1 3.24291- 4 1.12210- 2 1.40000+ 1 2.10000+ 1 3.15822- 3 1.13999- 2 1.40000+ 1 2.20000+ 1 1.90233- 3 1.14170- 2 1.40000+ 1 2.40000+ 1 6.63202- 4 1.16475- 2 1.40000+ 1 2.50000+ 1 5.03608- 4 1.16511- 2 1.40000+ 1 2.70000+ 1 4.39235- 4 1.16246- 2 1.40000+ 1 2.90000+ 1 1.84380- 4 1.16597- 2 1.40000+ 1 3.00000+ 1 5.38111- 5 1.16753- 2 1.40000+ 1 3.20000+ 1 2.40834- 4 1.17220- 2 1.40000+ 1 3.30000+ 1 1.15344- 4 1.17235- 2 1.60000+ 1 1.60000+ 1 2.07133- 4 1.24376- 2 1.60000+ 1 1.80000+ 1 4.00852- 4 1.25456- 2 1.60000+ 1 1.90000+ 1 6.33170- 4 1.26377- 2 1.60000+ 1 2.10000+ 1 3.92123- 4 1.28167- 2 1.60000+ 1 2.20000+ 1 5.10725- 4 1.28338- 2 1.60000+ 1 2.40000+ 1 2.45710- 5 1.30643- 2 1.60000+ 1 2.50000+ 1 2.63985- 5 1.30679- 2 1.60000+ 1 2.70000+ 1 7.79793- 5 1.30413- 2 1.60000+ 1 2.90000+ 1 6.80276- 5 1.30764- 2 1.60000+ 1 3.00000+ 1 1.02343- 4 1.30920- 2 1.60000+ 1 3.20000+ 1 3.18821- 5 1.31388- 2 1.60000+ 1 3.30000+ 1 3.24903- 5 1.31402- 2 1.80000+ 1 1.90000+ 1 1.01522- 5 1.27458- 2 1.80000+ 1 2.10000+ 1 2.90384- 5 1.29247- 2 1.80000+ 1 2.20000+ 1 1.52703- 4 1.29418- 2 1.80000+ 1 2.40000+ 1 9.74664- 6 1.31723- 2 1.80000+ 1 2.50000+ 1 3.87852- 5 1.31759- 2 1.80000+ 1 2.70000+ 1 7.20879- 5 1.31494- 2 1.80000+ 1 3.00000+ 1 1.62449- 6 1.32001- 2 1.80000+ 1 3.20000+ 1 2.23377- 6 1.32468- 2 1.80000+ 1 3.30000+ 1 9.13806- 6 1.32483- 2 1.90000+ 1 1.90000+ 1 1.46204- 5 1.28379- 2 1.90000+ 1 2.10000+ 1 5.09694- 5 1.30169- 2 1.90000+ 1 2.20000+ 1 3.06636- 5 1.30340- 2 1.90000+ 1 2.40000+ 1 2.63984- 5 1.32645- 2 1.90000+ 1 2.50000+ 1 2.15251- 5 1.32681- 2 1.90000+ 1 2.70000+ 1 1.13518- 4 1.32415- 2 1.90000+ 1 2.90000+ 1 1.62452- 6 1.32766- 2 1.90000+ 1 3.00000+ 1 4.46749- 6 1.32922- 2 1.90000+ 1 3.20000+ 1 3.65518- 6 1.33389- 2 1.90000+ 1 3.30000+ 1 1.82764- 6 1.33404- 2 2.10000+ 1 2.10000+ 1 2.84298- 5 1.31958- 2 2.10000+ 1 2.20000+ 1 4.99948- 4 1.32129- 2 2.10000+ 1 2.40000+ 1 3.04600- 5 1.34434- 2 2.10000+ 1 2.50000+ 1 6.43725- 5 1.34470- 2 2.10000+ 1 2.70000+ 1 6.92458- 5 1.34205- 2 2.10000+ 1 2.90000+ 1 5.07667- 6 1.34556- 2 2.10000+ 1 3.00000+ 1 8.52843- 6 1.34712- 2 2.10000+ 1 3.20000+ 1 4.46749- 6 1.35179- 2 2.10000+ 1 3.30000+ 1 3.04600- 5 1.35194- 2 2.20000+ 1 2.20000+ 1 1.55750- 4 1.32301- 2 2.20000+ 1 2.40000+ 1 7.47323- 5 1.34605- 2 2.20000+ 1 2.50000+ 1 6.33568- 5 1.34642- 2 2.20000+ 1 2.70000+ 1 9.03664- 5 1.34376- 2 2.20000+ 1 2.90000+ 1 2.53828- 5 1.34727- 2 2.20000+ 1 3.00000+ 1 5.27980- 6 1.34883- 2 2.20000+ 1 3.20000+ 1 3.85821- 5 1.35350- 2 2.20000+ 1 3.30000+ 1 1.90883- 5 1.35365- 2 2.40000+ 1 2.40000+ 1 8.63966- 7 1.36910- 2 2.40000+ 1 2.50000+ 1 1.95831- 5 1.36946- 2 2.40000+ 1 2.70000+ 1 6.04769- 6 1.36681- 2 2.40000+ 1 2.90000+ 1 2.01595- 6 1.37032- 2 2.40000+ 1 3.00000+ 1 5.75962- 6 1.37188- 2 2.40000+ 1 3.20000+ 1 3.45588- 6 1.37655- 2 2.40000+ 1 3.30000+ 1 6.04769- 6 1.37670- 2 2.50000+ 1 2.50000+ 1 4.47742- 6 1.36983- 2 2.50000+ 1 2.70000+ 1 7.03588- 6 1.36717- 2 2.50000+ 1 2.90000+ 1 9.59435- 6 1.37068- 2 2.50000+ 1 3.00000+ 1 5.11691- 6 1.37224- 2 2.50000+ 1 3.20000+ 1 7.35579- 6 1.37691- 2 2.50000+ 1 3.30000+ 1 5.75657- 6 1.37706- 2 2.70000+ 1 2.70000+ 1 1.79311- 5 1.36451- 2 2.70000+ 1 2.90000+ 1 2.98869- 5 1.36802- 2 2.70000+ 1 3.00000+ 1 4.48289- 5 1.36958- 2 2.70000+ 1 3.20000+ 1 1.39464- 5 1.37425- 2 2.70000+ 1 3.30000+ 1 1.39464- 5 1.37440- 2 2.90000+ 1 3.00000+ 1 8.87824- 7 1.37309- 2 2.90000+ 1 3.20000+ 1 1.77551- 6 1.37776- 2 2.90000+ 1 3.30000+ 1 6.21455- 6 1.37791- 2 3.00000+ 1 3.00000+ 1 1.42463- 6 1.37465- 2 3.00000+ 1 3.20000+ 1 2.13700- 6 1.37932- 2 3.00000+ 1 3.30000+ 1 7.12369- 7 1.37947- 2 3.20000+ 1 3.20000+ 1 2.03079- 7 1.38400- 2 3.20000+ 1 3.30000+ 1 2.23382- 6 1.38414- 2 3.30000+ 1 3.30000+ 1 6.31969- 7 1.38429- 2 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.98913- 6 1.74600- 3 8.00000+ 0 7.59664- 3 1.00398- 2 1.10000+ 1 2.79001- 4 1.06761- 2 1.30000+ 1 2.79741- 1 1.11006- 2 1.60000+ 1 1.90861- 3 1.26008- 2 1.90000+ 1 7.47974- 5 1.28010- 2 2.10000+ 1 5.45853- 2 1.29799- 2 2.40000+ 1 1.86621- 4 1.32275- 2 2.70000+ 1 3.80622- 4 1.32046- 2 3.00000+ 1 1.49531- 5 1.32553- 2 3.20000+ 1 4.26002- 3 1.33020- 2 4.10000+ 1 1.62461- 5 1.33049- 2 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.87261- 3 1.03379- 3 6.00000+ 0 1.80000+ 1 3.94906- 2 1.14181- 3 6.00000+ 0 1.90000+ 1 1.14249- 2 1.23396- 3 6.00000+ 0 2.10000+ 1 4.21022- 2 1.41290- 3 6.00000+ 0 2.20000+ 1 1.45832- 2 1.43004- 3 6.00000+ 0 2.40000+ 1 1.55616- 3 1.66051- 3 6.00000+ 0 2.50000+ 1 2.34744- 3 1.66413- 3 6.00000+ 0 2.70000+ 1 1.05267- 3 1.63756- 3 6.00000+ 0 2.90000+ 1 6.21039- 3 1.67266- 3 6.00000+ 0 3.00000+ 1 1.80921- 3 1.68826- 3 6.00000+ 0 3.20000+ 1 3.30086- 3 1.73498- 3 6.00000+ 0 3.30000+ 1 9.00383- 4 1.73646- 3 8.00000+ 0 8.00000+ 0 6.29713- 4 6.76660- 3 8.00000+ 0 1.00000+ 1 2.08338- 2 7.01780- 3 8.00000+ 0 1.10000+ 1 1.97554- 3 7.40290- 3 8.00000+ 0 1.30000+ 1 2.97353- 3 7.82740- 3 8.00000+ 0 1.40000+ 1 2.03261- 3 7.91080- 3 8.00000+ 0 1.60000+ 1 2.39001- 4 9.32759- 3 8.00000+ 0 1.80000+ 1 3.26243- 3 9.43561- 3 8.00000+ 0 1.90000+ 1 4.10450- 4 9.52776- 3 8.00000+ 0 2.10000+ 1 4.39551- 4 9.70670- 3 8.00000+ 0 2.20000+ 1 2.55634- 4 9.72384- 3 8.00000+ 0 2.40000+ 1 8.98885- 5 9.95431- 3 8.00000+ 0 2.50000+ 1 6.07904- 5 9.95793- 3 8.00000+ 0 2.70000+ 1 4.46831- 5 9.93136- 3 8.00000+ 0 2.90000+ 1 5.10739- 4 9.96646- 3 8.00000+ 0 3.00000+ 1 6.49460- 5 9.98206- 3 8.00000+ 0 3.20000+ 1 3.37719- 5 1.00288- 2 8.00000+ 0 3.30000+ 1 1.50680- 5 1.00303- 2 1.00000+ 1 1.00000+ 1 2.16027- 2 7.26900- 3 1.00000+ 1 1.10000+ 1 5.69966- 2 7.65410- 3 1.00000+ 1 1.30000+ 1 2.98041- 2 8.07860- 3 1.00000+ 1 1.40000+ 1 4.38596- 2 8.16200- 3 1.00000+ 1 1.60000+ 1 5.25646- 3 9.57879- 3 1.00000+ 1 1.80000+ 1 8.61978- 3 9.68681- 3 1.00000+ 1 1.90000+ 1 1.30240- 2 9.77896- 3 1.00000+ 1 2.10000+ 1 6.22648- 3 9.95790- 3 1.00000+ 1 2.20000+ 1 9.11966- 3 9.97504- 3 1.00000+ 1 2.40000+ 1 4.41630- 4 1.02055- 2 1.00000+ 1 2.50000+ 1 3.93323- 4 1.02091- 2 1.00000+ 1 2.70000+ 1 1.03083- 3 1.01826- 2 1.00000+ 1 2.90000+ 1 1.42147- 3 1.02177- 2 1.00000+ 1 3.00000+ 1 2.09849- 3 1.02333- 2 1.00000+ 1 3.20000+ 1 5.06049- 4 1.02800- 2 1.00000+ 1 3.30000+ 1 5.79829- 4 1.02815- 2 1.10000+ 1 1.10000+ 1 1.34307- 3 8.03920- 3 1.10000+ 1 1.30000+ 1 2.85177- 2 8.46370- 3 1.10000+ 1 1.40000+ 1 4.07456- 3 8.54710- 3 1.10000+ 1 1.60000+ 1 4.19813- 4 9.96389- 3 1.10000+ 1 1.80000+ 1 9.13598- 3 1.00719- 2 1.10000+ 1 1.90000+ 1 5.25292- 4 1.01641- 2 1.10000+ 1 2.10000+ 1 5.01498- 3 1.03430- 2 1.10000+ 1 2.20000+ 1 6.85803- 4 1.03601- 2 1.10000+ 1 2.40000+ 1 1.97435- 4 1.05906- 2 1.10000+ 1 2.50000+ 1 1.05467- 4 1.05942- 2 1.10000+ 1 2.70000+ 1 7.94956- 5 1.05677- 2 1.10000+ 1 2.90000+ 1 1.43611- 3 1.06028- 2 1.10000+ 1 3.00000+ 1 8.20921- 5 1.06184- 2 1.10000+ 1 3.20000+ 1 3.96441- 4 1.06651- 2 1.10000+ 1 3.30000+ 1 4.20865- 5 1.06666- 2 1.30000+ 1 1.30000+ 1 2.69176- 2 8.88820- 3 1.30000+ 1 1.40000+ 1 1.08241- 1 8.97160- 3 1.30000+ 1 1.60000+ 1 7.50756- 4 1.03884- 2 1.30000+ 1 1.80000+ 1 4.65600- 3 1.04964- 2 1.30000+ 1 1.90000+ 1 6.05824- 3 1.05886- 2 1.30000+ 1 2.10000+ 1 9.34880- 3 1.07675- 2 1.30000+ 1 2.20000+ 1 2.02341- 2 1.07846- 2 1.30000+ 1 2.40000+ 1 1.60545- 3 1.10151- 2 1.30000+ 1 2.50000+ 1 3.25774- 3 1.10187- 2 1.30000+ 1 2.70000+ 1 1.47556- 4 1.09922- 2 1.30000+ 1 2.90000+ 1 7.34163- 4 1.10273- 2 1.30000+ 1 3.00000+ 1 9.62740- 4 1.10429- 2 1.30000+ 1 3.20000+ 1 7.40932- 4 1.10896- 2 1.30000+ 1 3.30000+ 1 1.26568- 3 1.10911- 2 1.40000+ 1 1.40000+ 1 5.24051- 3 9.05500- 3 1.40000+ 1 1.60000+ 1 4.15138- 4 1.04718- 2 1.40000+ 1 1.80000+ 1 6.05503- 3 1.05798- 2 1.40000+ 1 1.90000+ 1 7.95478- 4 1.06720- 2 1.40000+ 1 2.10000+ 1 1.54726- 2 1.08509- 2 1.40000+ 1 2.20000+ 1 1.78059- 3 1.08680- 2 1.40000+ 1 2.40000+ 1 6.43757- 4 1.10985- 2 1.40000+ 1 2.50000+ 1 2.47314- 4 1.11021- 2 1.40000+ 1 2.70000+ 1 7.79336- 5 1.10756- 2 1.40000+ 1 2.90000+ 1 9.23303- 4 1.11107- 2 1.40000+ 1 3.00000+ 1 1.24174- 4 1.11263- 2 1.40000+ 1 3.20000+ 1 1.18516- 3 1.11730- 2 1.40000+ 1 3.30000+ 1 1.10154- 4 1.11745- 2 1.60000+ 1 1.60000+ 1 2.18216- 5 1.18886- 2 1.60000+ 1 1.80000+ 1 8.28225- 4 1.19966- 2 1.60000+ 1 1.90000+ 1 8.78076- 5 1.20887- 2 1.60000+ 1 2.10000+ 1 1.07552- 4 1.22677- 2 1.60000+ 1 2.20000+ 1 5.24780- 5 1.22848- 2 1.60000+ 1 2.40000+ 1 1.97438- 5 1.25153- 2 1.60000+ 1 2.50000+ 1 1.09115- 5 1.25189- 2 1.60000+ 1 2.70000+ 1 8.31350- 6 1.24923- 2 1.60000+ 1 2.90000+ 1 1.29894- 4 1.25274- 2 1.60000+ 1 3.00000+ 1 1.40289- 5 1.25430- 2 1.60000+ 1 3.20000+ 1 8.31350- 6 1.25898- 2 1.60000+ 1 3.30000+ 1 3.11739- 6 1.25912- 2 1.80000+ 1 1.80000+ 1 8.17800- 4 1.21046- 2 1.80000+ 1 1.90000+ 1 2.09272- 3 1.21968- 2 1.80000+ 1 2.10000+ 1 9.57534- 4 1.23757- 2 1.80000+ 1 2.20000+ 1 1.27088- 3 1.23928- 2 1.80000+ 1 2.40000+ 1 5.61153- 5 1.26233- 2 1.80000+ 1 2.50000+ 1 4.05266- 5 1.26269- 2 1.80000+ 1 2.70000+ 1 1.62628- 4 1.26004- 2 1.80000+ 1 2.90000+ 1 2.67054- 4 1.26355- 2 1.80000+ 1 3.00000+ 1 3.37210- 4 1.26511- 2 1.80000+ 1 3.20000+ 1 7.74190- 5 1.26978- 2 1.80000+ 1 3.30000+ 1 8.10511- 5 1.26993- 2 1.90000+ 1 1.90000+ 1 5.14390- 5 1.22889- 2 1.90000+ 1 2.10000+ 1 1.07351- 3 1.24679- 2 1.90000+ 1 2.20000+ 1 1.36131- 4 1.24850- 2 1.90000+ 1 2.40000+ 1 3.53304- 5 1.27155- 2 1.90000+ 1 2.50000+ 1 1.76658- 5 1.27191- 2 1.90000+ 1 2.70000+ 1 1.66263- 5 1.26925- 2 1.90000+ 1 2.90000+ 1 3.28880- 4 1.27276- 2 1.90000+ 1 3.00000+ 1 1.61066- 5 1.27432- 2 1.90000+ 1 3.20000+ 1 8.52100- 5 1.27899- 2 1.90000+ 1 3.30000+ 1 8.31341- 6 1.27914- 2 2.10000+ 1 2.10000+ 1 8.03288- 4 1.26468- 2 2.10000+ 1 2.20000+ 1 3.01053- 3 1.26639- 2 2.10000+ 1 2.40000+ 1 1.91218- 4 1.28944- 2 2.10000+ 1 2.50000+ 1 3.92281- 4 1.28980- 2 2.10000+ 1 2.70000+ 1 2.07821- 5 1.28715- 2 2.10000+ 1 2.90000+ 1 1.50162- 4 1.29066- 2 2.10000+ 1 3.00000+ 1 1.70941- 4 1.29222- 2 2.10000+ 1 3.20000+ 1 1.27300- 4 1.29689- 2 2.10000+ 1 3.30000+ 1 1.89125- 4 1.29704- 2 2.20000+ 1 2.20000+ 1 1.63268- 4 1.26811- 2 2.20000+ 1 2.40000+ 1 8.88558- 5 1.29115- 2 2.20000+ 1 2.50000+ 1 3.44312- 5 1.29152- 2 2.20000+ 1 2.70000+ 1 1.05516- 5 1.28886- 2 2.20000+ 1 2.90000+ 1 2.07696- 4 1.29237- 2 2.20000+ 1 3.00000+ 1 2.27678- 5 1.29393- 2 2.20000+ 1 3.20000+ 1 2.47682- 4 1.29860- 2 2.20000+ 1 3.30000+ 1 1.99925- 5 1.29875- 2 2.40000+ 1 2.40000+ 1 4.71629- 6 1.31420- 2 2.40000+ 1 2.50000+ 1 3.12458- 5 1.31456- 2 2.40000+ 1 2.70000+ 1 4.12649- 6 1.31191- 2 2.40000+ 1 2.90000+ 1 9.43258- 6 1.31542- 2 2.40000+ 1 3.00000+ 1 5.89524- 6 1.31698- 2 2.40000+ 1 3.20000+ 1 1.59173- 5 1.32165- 2 2.40000+ 1 3.30000+ 1 5.30577- 6 1.32180- 2 2.50000+ 1 2.50000+ 1 1.87373- 6 1.31493- 2 2.50000+ 1 2.70000+ 1 2.49808- 6 1.31227- 2 2.50000+ 1 2.90000+ 1 6.87015- 6 1.31578- 2 2.50000+ 1 3.00000+ 1 3.12271- 6 1.31734- 2 2.50000+ 1 3.20000+ 1 3.49755- 5 1.32201- 2 2.50000+ 1 3.30000+ 1 2.49808- 6 1.32216- 2 2.70000+ 1 2.70000+ 1 6.02985- 7 1.30961- 2 2.70000+ 1 2.90000+ 1 2.95453- 5 1.31312- 2 2.70000+ 1 3.00000+ 1 3.01486- 6 1.31468- 2 2.70000+ 1 3.20000+ 1 1.80902- 6 1.31935- 2 2.70000+ 1 3.30000+ 1 6.02985- 7 1.31950- 2 2.90000+ 1 2.90000+ 1 2.59491- 5 1.31663- 2 2.90000+ 1 3.00000+ 1 6.30220- 5 1.31819- 2 2.90000+ 1 3.20000+ 1 1.42114- 5 1.32286- 2 2.90000+ 1 3.30000+ 1 1.48282- 5 1.32301- 2 3.00000+ 1 3.00000+ 1 1.42789- 6 1.31975- 2 3.00000+ 1 3.20000+ 1 1.85623- 5 1.32442- 2 3.00000+ 1 3.30000+ 1 2.14189- 6 1.32457- 2 3.20000+ 1 3.20000+ 1 5.19567- 6 1.32910- 2 3.20000+ 1 3.30000+ 1 1.40284- 5 1.32924- 2 3.30000+ 1 3.30000+ 1 7.07284- 7 1.32939- 2 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.41620- 2 8.29380- 3 1.00000+ 1 1.34280- 4 8.54500- 3 1.10000+ 1 1.21510- 4 8.93010- 3 1.30000+ 1 2.45640- 2 9.35460- 3 1.40000+ 1 2.16490- 1 9.43800- 3 1.60000+ 1 2.90581- 3 1.08548- 2 1.80000+ 1 2.96801- 5 1.09628- 2 1.90000+ 1 2.97541- 5 1.10550- 2 2.10000+ 1 4.44591- 3 1.12339- 2 2.20000+ 1 4.00381- 2 1.12510- 2 2.40000+ 1 2.76761- 5 1.14815- 2 2.50000+ 1 1.55130- 4 1.14851- 2 2.70000+ 1 6.08131- 4 1.14586- 2 2.90000+ 1 6.22561- 6 1.14937- 2 3.00000+ 1 6.15701- 6 1.15093- 2 3.20000+ 1 3.41741- 4 1.15560- 2 3.30000+ 1 2.95111- 3 1.15575- 2 4.10000+ 1 2.45760- 5 1.15589- 2 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 8.15163- 4 5.02060- 3 8.00000+ 0 1.00000+ 1 4.33480- 4 5.27180- 3 8.00000+ 0 1.10000+ 1 2.21574- 2 5.65690- 3 8.00000+ 0 1.30000+ 1 2.63396- 3 6.08140- 3 8.00000+ 0 1.40000+ 1 4.15061- 3 6.16480- 3 8.00000+ 0 1.60000+ 1 3.10972- 4 7.58159- 3 8.00000+ 0 1.80000+ 1 7.69591- 5 7.68961- 3 8.00000+ 0 1.90000+ 1 3.39719- 3 7.78176- 3 8.00000+ 0 2.10000+ 1 2.64378- 4 7.96070- 3 8.00000+ 0 2.20000+ 1 3.79045- 4 7.97784- 3 8.00000+ 0 2.40000+ 1 1.96848- 4 8.20831- 3 8.00000+ 0 2.50000+ 1 3.50759- 4 8.21193- 3 8.00000+ 0 2.70000+ 1 5.75892- 5 8.18536- 3 8.00000+ 0 2.90000+ 1 1.20412- 5 8.22046- 3 8.00000+ 0 3.00000+ 1 5.08362- 4 8.23606- 3 8.00000+ 0 3.20000+ 1 1.93709- 5 8.28278- 3 8.00000+ 0 3.30000+ 1 2.09411- 5 8.28426- 3 1.00000+ 1 1.00000+ 1 6.33467- 5 5.52300- 3 1.00000+ 1 1.10000+ 1 3.71946- 2 5.90810- 3 1.00000+ 1 1.30000+ 1 1.84756- 3 6.33260- 3 1.00000+ 1 1.40000+ 1 1.60480- 2 6.41600- 3 1.00000+ 1 1.60000+ 1 8.84770- 5 7.83279- 3 1.00000+ 1 1.80000+ 1 2.77483- 5 7.94081- 3 1.00000+ 1 1.90000+ 1 5.92377- 3 8.03296- 3 1.00000+ 1 2.10000+ 1 3.42918- 4 8.21190- 3 1.00000+ 1 2.20000+ 1 2.46631- 3 8.22904- 3 1.00000+ 1 2.40000+ 1 1.99464- 4 8.45951- 3 1.00000+ 1 2.50000+ 1 5.08362- 4 8.46313- 3 1.00000+ 1 2.70000+ 1 1.67529- 5 8.43656- 3 1.00000+ 1 2.90000+ 1 4.71183- 6 8.47166- 3 1.00000+ 1 3.00000+ 1 8.92110- 4 8.48726- 3 1.00000+ 1 3.20000+ 1 2.77483- 5 8.53398- 3 1.00000+ 1 3.30000+ 1 1.50253- 4 8.53546- 3 1.10000+ 1 1.10000+ 1 4.77504- 2 6.29320- 3 1.10000+ 1 1.30000+ 1 4.99533- 2 6.71770- 3 1.10000+ 1 1.40000+ 1 6.88241- 2 6.80110- 3 1.10000+ 1 1.60000+ 1 5.51132- 3 8.21789- 3 1.10000+ 1 1.80000+ 1 8.28469- 3 8.32591- 3 1.10000+ 1 1.90000+ 1 1.83795- 2 8.41806- 3 1.10000+ 1 2.10000+ 1 9.85409- 3 8.59700- 3 1.10000+ 1 2.20000+ 1 1.33588- 2 8.61414- 3 1.10000+ 1 2.40000+ 1 7.84280- 4 8.84461- 3 1.10000+ 1 2.50000+ 1 9.76887- 4 8.84823- 3 1.10000+ 1 2.70000+ 1 1.07749- 3 8.82166- 3 1.10000+ 1 2.90000+ 1 1.39003- 3 8.85676- 3 1.10000+ 1 3.00000+ 1 2.88044- 3 8.87236- 3 1.10000+ 1 3.20000+ 1 7.94738- 4 8.91908- 3 1.10000+ 1 3.30000+ 1 8.40240- 4 8.92056- 3 1.30000+ 1 1.30000+ 1 7.00887- 3 7.14220- 3 1.30000+ 1 1.40000+ 1 1.31602- 1 7.22560- 3 1.30000+ 1 1.60000+ 1 6.26147- 4 8.64239- 3 1.30000+ 1 1.80000+ 1 4.26682- 4 8.75041- 3 1.30000+ 1 1.90000+ 1 7.27408- 3 8.84256- 3 1.30000+ 1 2.10000+ 1 2.36323- 3 9.02150- 3 1.30000+ 1 2.20000+ 1 1.85567- 2 9.03864- 3 1.30000+ 1 2.40000+ 1 4.36629- 4 9.26911- 3 1.30000+ 1 2.50000+ 1 1.48529- 3 9.27273- 3 1.30000+ 1 2.70000+ 1 1.21455- 4 9.24616- 3 1.30000+ 1 2.90000+ 1 7.17230- 5 9.28126- 3 1.30000+ 1 3.00000+ 1 1.07748- 3 9.29686- 3 1.30000+ 1 3.20000+ 1 1.86901- 4 9.34358- 3 1.30000+ 1 3.30000+ 1 1.11307- 3 9.34506- 3 1.40000+ 1 1.40000+ 1 8.78586- 2 7.30900- 3 1.40000+ 1 1.60000+ 1 1.01199- 3 8.72579- 3 1.40000+ 1 1.80000+ 1 3.25415- 3 8.83381- 3 1.40000+ 1 1.90000+ 1 1.13070- 2 8.92596- 3 1.40000+ 1 2.10000+ 1 2.24276- 2 9.10490- 3 1.40000+ 1 2.20000+ 1 2.82842- 2 9.12204- 3 1.40000+ 1 2.40000+ 1 4.62901- 3 9.35251- 3 1.40000+ 1 2.50000+ 1 4.22322- 3 9.35613- 3 1.40000+ 1 2.70000+ 1 1.98418- 4 9.32956- 3 1.40000+ 1 2.90000+ 1 5.36607- 4 9.36466- 3 1.40000+ 1 3.00000+ 1 1.72349- 3 9.38026- 3 1.40000+ 1 3.20000+ 1 1.77051- 3 9.42698- 3 1.40000+ 1 3.30000+ 1 1.73552- 3 9.42846- 3 1.60000+ 1 1.60000+ 1 2.98425- 5 1.01426- 2 1.60000+ 1 1.80000+ 1 1.62304- 5 1.02506- 2 1.60000+ 1 1.90000+ 1 8.45540- 4 1.03427- 2 1.60000+ 1 2.10000+ 1 6.85863- 5 1.05217- 2 1.60000+ 1 2.20000+ 1 1.00525- 4 1.05388- 2 1.60000+ 1 2.40000+ 1 2.72264- 5 1.07693- 2 1.60000+ 1 2.50000+ 1 5.44497- 5 1.07729- 2 1.60000+ 1 2.70000+ 1 1.09940- 5 1.07463- 2 1.60000+ 1 2.90000+ 1 2.61775- 6 1.07814- 2 1.60000+ 1 3.00000+ 1 1.26696- 4 1.07970- 2 1.60000+ 1 3.20000+ 1 5.23571- 6 1.08438- 2 1.60000+ 1 3.30000+ 1 5.75923- 6 1.08452- 2 1.80000+ 1 1.80000+ 1 2.09403- 6 1.03586- 2 1.80000+ 1 1.90000+ 1 1.31296- 3 1.04508- 2 1.80000+ 1 2.10000+ 1 7.48647- 5 1.06297- 2 1.80000+ 1 2.20000+ 1 5.30310- 4 1.06468- 2 1.80000+ 1 2.40000+ 1 2.87930- 5 1.08773- 2 1.80000+ 1 2.50000+ 1 7.01482- 5 1.08809- 2 1.80000+ 1 2.70000+ 1 3.14099- 6 1.08544- 2 1.80000+ 1 2.90000+ 1 5.23522- 7 1.08895- 2 1.80000+ 1 3.00000+ 1 1.97351- 4 1.09051- 2 1.80000+ 1 3.20000+ 1 5.75870- 6 1.09518- 2 1.80000+ 1 3.30000+ 1 3.24586- 5 1.09533- 2 1.90000+ 1 1.90000+ 1 1.69463- 3 1.05429- 2 1.90000+ 1 2.10000+ 1 1.43813- 3 1.07219- 2 1.90000+ 1 2.20000+ 1 2.16058- 3 1.07390- 2 1.90000+ 1 2.40000+ 1 9.42308- 5 1.09695- 2 1.90000+ 1 2.50000+ 1 1.23550- 4 1.09731- 2 1.90000+ 1 2.70000+ 1 1.65432- 4 1.09465- 2 1.90000+ 1 2.90000+ 1 2.19868- 4 1.09816- 2 1.90000+ 1 3.00000+ 1 5.26678- 4 1.09972- 2 1.90000+ 1 3.20000+ 1 1.16220- 4 1.10439- 2 1.90000+ 1 3.30000+ 1 1.35592- 4 1.10454- 2 2.10000+ 1 2.10000+ 1 1.91611- 4 1.09008- 2 2.10000+ 1 2.20000+ 1 3.29930- 3 1.09179- 2 2.10000+ 1 2.40000+ 1 4.92112- 5 1.11484- 2 2.10000+ 1 2.50000+ 1 1.60729- 4 1.11520- 2 2.10000+ 1 2.70000+ 1 1.36113- 5 1.11255- 2 2.10000+ 1 2.90000+ 1 1.25645- 5 1.11606- 2 2.10000+ 1 3.00000+ 1 2.13078- 4 1.11762- 2 2.10000+ 1 3.20000+ 1 3.03640- 5 1.12229- 2 2.10000+ 1 3.30000+ 1 1.98941- 4 1.12244- 2 2.20000+ 1 2.20000+ 1 2.40513- 3 1.09351- 2 2.20000+ 1 2.40000+ 1 5.39218- 4 1.11655- 2 2.20000+ 1 2.50000+ 1 4.84198- 4 1.11692- 2 2.20000+ 1 2.70000+ 1 2.09089- 5 1.11426- 2 2.20000+ 1 2.90000+ 1 9.24356- 5 1.11777- 2 2.20000+ 1 3.00000+ 1 3.44988- 4 1.11933- 2 2.20000+ 1 3.20000+ 1 2.75109- 4 1.12400- 2 2.20000+ 1 3.30000+ 1 2.94921- 4 1.12415- 2 2.40000+ 1 2.40000+ 1 2.01060- 6 1.13960- 2 2.40000+ 1 2.50000+ 1 6.76896- 5 1.13996- 2 2.40000+ 1 2.70000+ 1 6.03180- 6 1.13731- 2 2.40000+ 1 2.90000+ 1 6.03180- 6 1.14082- 2 2.40000+ 1 3.00000+ 1 1.74246- 5 1.14238- 2 2.40000+ 1 3.20000+ 1 4.69123- 6 1.14705- 2 2.40000+ 1 3.30000+ 1 3.82006- 5 1.14720- 2 2.50000+ 1 2.50000+ 1 1.95954- 5 1.14033- 2 2.50000+ 1 2.70000+ 1 1.03414- 5 1.13767- 2 2.50000+ 1 2.90000+ 1 1.14296- 5 1.14118- 2 2.50000+ 1 3.00000+ 1 1.85060- 5 1.14274- 2 2.50000+ 1 3.20000+ 1 1.25190- 5 1.14741- 2 2.50000+ 1 3.30000+ 1 2.77589- 5 1.14756- 2 2.70000+ 1 2.70000+ 1 1.57892- 6 1.13501- 2 2.70000+ 1 2.90000+ 1 7.89524- 7 1.13852- 2 2.70000+ 1 3.00000+ 1 3.71068- 5 1.14008- 2 2.70000+ 1 3.20000+ 1 1.57892- 6 1.14475- 2 2.70000+ 1 3.30000+ 1 1.57892- 6 1.14490- 2 2.90000+ 1 3.00000+ 1 6.02014- 5 1.14359- 2 2.90000+ 1 3.20000+ 1 1.91099- 6 1.14826- 2 2.90000+ 1 3.30000+ 1 9.55574- 6 1.14841- 2 3.00000+ 1 3.00000+ 1 8.48602- 5 1.14515- 2 3.00000+ 1 3.20000+ 1 3.59020- 5 1.14982- 2 3.00000+ 1 3.30000+ 1 4.24280- 5 1.14997- 2 3.20000+ 1 3.20000+ 1 1.06341- 6 1.15450- 2 3.20000+ 1 3.30000+ 1 1.54206- 5 1.15464- 2 3.30000+ 1 3.30000+ 1 9.94652- 6 1.15479- 2 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01376- 5 2.51200- 4 1.10000+ 1 3.54051- 4 6.36300- 4 1.80000+ 1 1.25450- 3 2.66901- 3 1.90000+ 1 1.07742- 3 2.76116- 3 2.90000+ 1 2.72281- 4 3.19986- 3 3.00000+ 1 2.40946- 4 3.21546- 3 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.53291- 2 1.65710- 4 1.00000+ 1 2.50000+ 1 4.75290- 2 1.69330- 4 1.00000+ 1 2.70000+ 1 1.08009- 2 1.42760- 4 1.00000+ 1 2.90000+ 1 1.00921- 2 1.77860- 4 1.00000+ 1 3.00000+ 1 1.35691- 2 1.93460- 4 1.00000+ 1 3.20000+ 1 4.17645- 3 2.40180- 4 1.00000+ 1 3.30000+ 1 5.41781- 3 2.41660- 4 1.00000+ 1 4.10000+ 1 4.19363- 4 2.43130- 4 1.10000+ 1 1.80000+ 1 6.11423- 2 3.21100- 5 1.10000+ 1 1.90000+ 1 6.62917- 2 1.24260- 4 1.10000+ 1 2.10000+ 1 2.27618- 2 3.03200- 4 1.10000+ 1 2.20000+ 1 3.60269- 2 3.20340- 4 1.10000+ 1 2.40000+ 1 1.66249- 1 5.50810- 4 1.10000+ 1 2.50000+ 1 2.06673- 1 5.54430- 4 1.10000+ 1 2.70000+ 1 1.03695- 2 5.27860- 4 1.10000+ 1 2.90000+ 1 9.55397- 3 5.62960- 4 1.10000+ 1 3.00000+ 1 1.04405- 2 5.78560- 4 1.10000+ 1 3.20000+ 1 1.54005- 3 6.25280- 4 1.10000+ 1 3.30000+ 1 2.39007- 3 6.26760- 4 1.10000+ 1 4.10000+ 1 4.12102- 4 6.28230- 4 1.30000+ 1 1.60000+ 1 2.57184- 2 3.48590- 4 1.30000+ 1 1.80000+ 1 5.64753- 3 4.56610- 4 1.30000+ 1 1.90000+ 1 6.45134- 3 5.48760- 4 1.30000+ 1 2.10000+ 1 8.76799- 3 7.27700- 4 1.30000+ 1 2.20000+ 1 1.08861- 2 7.44840- 4 1.30000+ 1 2.40000+ 1 8.55496- 3 9.75310- 4 1.30000+ 1 2.50000+ 1 7.89962- 3 9.78930- 4 1.30000+ 1 2.70000+ 1 3.27145- 3 9.52360- 4 1.30000+ 1 2.90000+ 1 7.47450- 4 9.87460- 4 1.30000+ 1 3.00000+ 1 7.96845- 4 1.00306- 3 1.30000+ 1 3.20000+ 1 5.36613- 4 1.04978- 3 1.30000+ 1 3.30000+ 1 6.71487- 4 1.05126- 3 1.30000+ 1 4.10000+ 1 1.23398- 4 1.05273- 3 1.40000+ 1 1.60000+ 1 3.60424- 2 4.31990- 4 1.40000+ 1 1.80000+ 1 1.00212- 3 5.40010- 4 1.40000+ 1 1.90000+ 1 1.10515- 2 6.32160- 4 1.40000+ 1 2.10000+ 1 1.21313- 2 8.11100- 4 1.40000+ 1 2.20000+ 1 1.74449- 2 8.28240- 4 1.40000+ 1 2.40000+ 1 9.70771- 3 1.05871- 3 1.40000+ 1 2.50000+ 1 1.51658- 2 1.06233- 3 1.40000+ 1 2.70000+ 1 4.55353- 3 1.03576- 3 1.40000+ 1 2.90000+ 1 1.52153- 4 1.07086- 3 1.40000+ 1 3.00000+ 1 1.35491- 3 1.08646- 3 1.40000+ 1 3.20000+ 1 7.99191- 4 1.13318- 3 1.40000+ 1 3.30000+ 1 1.03795- 3 1.13466- 3 1.40000+ 1 4.10000+ 1 1.71195- 4 1.13613- 3 1.60000+ 1 1.60000+ 1 2.73456- 3 1.84878- 3 1.60000+ 1 1.80000+ 1 4.73614- 3 1.95680- 3 1.60000+ 1 1.90000+ 1 7.92987- 3 2.04895- 3 1.60000+ 1 2.10000+ 1 9.05661- 3 2.22789- 3 1.60000+ 1 2.20000+ 1 1.28005- 2 2.24503- 3 1.60000+ 1 2.40000+ 1 6.04537- 3 2.47550- 3 1.60000+ 1 2.50000+ 1 7.60393- 3 2.47912- 3 1.60000+ 1 2.70000+ 1 8.76869- 4 2.45255- 3 1.60000+ 1 2.90000+ 1 7.97668- 4 2.48765- 3 1.60000+ 1 3.00000+ 1 1.27497- 3 2.50325- 3 1.60000+ 1 3.20000+ 1 6.51173- 4 2.54997- 3 1.60000+ 1 3.30000+ 1 8.64311- 4 2.55145- 3 1.60000+ 1 4.10000+ 1 3.43944- 5 2.55292- 3 1.80000+ 1 1.80000+ 1 2.05196- 4 2.06482- 3 1.80000+ 1 1.90000+ 1 5.75272- 4 2.15697- 3 1.80000+ 1 2.10000+ 1 3.07051- 4 2.33591- 3 1.80000+ 1 2.20000+ 1 1.75134- 4 2.35305- 3 1.80000+ 1 2.40000+ 1 4.98892- 5 2.58352- 3 1.80000+ 1 2.50000+ 1 4.48583- 4 2.58714- 3 1.80000+ 1 2.70000+ 1 5.78826- 4 2.56057- 3 1.80000+ 1 2.90000+ 1 5.26025- 5 2.59567- 3 1.80000+ 1 3.00000+ 1 6.95096- 5 2.61127- 3 1.80000+ 1 3.20000+ 1 1.96204- 5 2.65799- 3 1.80000+ 1 3.30000+ 1 1.39852- 5 2.65947- 3 1.80000+ 1 4.10000+ 1 2.17090- 5 2.66094- 3 1.90000+ 1 1.90000+ 1 6.85918- 4 2.24912- 3 1.90000+ 1 2.10000+ 1 6.07440- 4 2.42806- 3 1.90000+ 1 2.20000+ 1 1.41648- 3 2.44520- 3 1.90000+ 1 2.40000+ 1 5.60881- 4 2.67567- 3 1.90000+ 1 2.50000+ 1 9.96722- 4 2.67929- 3 1.90000+ 1 2.70000+ 1 9.74408- 4 2.65272- 3 1.90000+ 1 2.90000+ 1 8.22439- 5 2.68782- 3 1.90000+ 1 3.00000+ 1 1.85786- 4 2.70342- 3 1.90000+ 1 3.20000+ 1 4.44625- 5 2.75014- 3 1.90000+ 1 3.30000+ 1 9.18489- 5 2.75162- 3 1.90000+ 1 4.10000+ 1 3.67394- 5 2.75309- 3 2.10000+ 1 2.10000+ 1 1.07781- 4 2.60700- 3 2.10000+ 1 2.20000+ 1 4.55961- 4 2.62414- 3 2.10000+ 1 2.40000+ 1 4.58781- 4 2.85461- 3 2.10000+ 1 2.50000+ 1 3.19636- 3 2.85823- 3 2.10000+ 1 2.70000+ 1 1.13664- 3 2.83166- 3 2.10000+ 1 2.90000+ 1 3.65812- 5 2.86676- 3 2.10000+ 1 3.00000+ 1 8.03499- 5 2.88236- 3 2.10000+ 1 3.20000+ 1 1.26292- 5 2.92908- 3 2.10000+ 1 3.30000+ 1 2.65662- 5 2.93056- 3 2.10000+ 1 4.10000+ 1 4.26788- 5 2.93203- 3 2.20000+ 1 2.20000+ 1 2.73169- 4 2.64128- 3 2.20000+ 1 2.40000+ 1 2.95892- 3 2.87175- 3 2.20000+ 1 2.50000+ 1 1.75584- 3 2.87537- 3 2.20000+ 1 2.70000+ 1 1.57255- 3 2.84880- 3 2.20000+ 1 2.90000+ 1 2.26565- 5 2.88390- 3 2.20000+ 1 3.00000+ 1 1.81688- 4 2.89950- 3 2.20000+ 1 3.20000+ 1 2.58641- 5 2.94622- 3 2.20000+ 1 3.30000+ 1 3.09928- 5 2.94770- 3 2.20000+ 1 4.10000+ 1 5.89953- 5 2.94917- 3 2.40000+ 1 2.40000+ 1 5.57135- 4 3.10222- 3 2.40000+ 1 2.50000+ 1 3.81644- 3 3.10584- 3 2.40000+ 1 2.70000+ 1 6.72784- 4 3.07927- 3 2.40000+ 1 2.90000+ 1 6.05351- 6 3.11437- 3 2.40000+ 1 3.00000+ 1 5.34379- 5 3.12997- 3 2.40000+ 1 3.20000+ 1 2.90151- 5 3.17669- 3 2.40000+ 1 3.30000+ 1 1.94128- 4 3.17817- 3 2.40000+ 1 4.10000+ 1 2.50487- 5 3.17964- 3 2.50000+ 1 2.50000+ 1 1.30317- 3 3.10946- 3 2.50000+ 1 2.70000+ 1 8.47551- 4 3.08289- 3 2.50000+ 1 2.90000+ 1 6.73868- 5 3.11799- 3 2.50000+ 1 3.00000+ 1 1.01083- 4 3.13359- 3 2.50000+ 1 3.20000+ 1 2.14912- 4 3.18031- 3 2.50000+ 1 3.30000+ 1 1.11966- 4 3.18179- 3 2.50000+ 1 4.10000+ 1 3.16008- 5 3.18326- 3 2.70000+ 1 2.70000+ 1 8.79406- 5 3.05632- 3 2.70000+ 1 2.90000+ 1 1.34042- 4 3.09142- 3 2.70000+ 1 3.00000+ 1 2.13741- 4 3.10702- 3 2.70000+ 1 3.20000+ 1 1.07288- 4 3.15374- 3 2.70000+ 1 3.30000+ 1 1.42015- 4 3.15522- 3 2.70000+ 1 4.10000+ 1 6.83041- 6 3.15669- 3 2.90000+ 1 2.90000+ 1 7.58431- 6 3.12652- 3 2.90000+ 1 3.00000+ 1 2.18049- 5 3.14212- 3 2.90000+ 1 3.20000+ 1 5.21410- 6 3.18884- 3 2.90000+ 1 3.30000+ 1 4.26613- 6 3.19032- 3 2.90000+ 1 4.10000+ 1 8.53228- 6 3.19179- 3 3.00000+ 1 3.00000+ 1 3.07245- 5 3.15772- 3 3.00000+ 1 3.20000+ 1 1.40606- 5 3.20444- 3 3.00000+ 1 3.30000+ 1 2.86424- 5 3.20592- 3 3.00000+ 1 4.10000+ 1 1.45813- 5 3.20739- 3 3.20000+ 1 3.20000+ 1 7.19728- 7 3.25116- 3 3.20000+ 1 3.30000+ 1 2.51912- 6 3.25264- 3 3.20000+ 1 4.10000+ 1 5.03825- 6 3.25411- 3 3.30000+ 1 3.30000+ 1 1.56026- 6 3.25412- 3 3.30000+ 1 4.10000+ 1 7.41140- 6 3.25559- 3 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 8.94952- 4 8.09600- 4 1.60000+ 1 6.83032- 4 2.30979- 3 2.10000+ 1 3.64151- 3 2.68890- 3 2.70000+ 1 1.42140- 4 2.91356- 3 3.20000+ 1 3.29531- 4 3.01098- 3 4.10000+ 1 5.90462- 6 3.01393- 3 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.45743- 3 5.20000- 5 1.10000+ 1 2.20000+ 1 1.58692- 2 6.91400- 5 1.10000+ 1 2.40000+ 1 2.81517- 2 2.99610- 4 1.10000+ 1 2.50000+ 1 2.66531- 2 3.03230- 4 1.10000+ 1 2.70000+ 1 3.13441- 3 2.76660- 4 1.10000+ 1 2.90000+ 1 3.79112- 3 3.11760- 4 1.10000+ 1 3.00000+ 1 2.69641- 3 3.27360- 4 1.10000+ 1 3.20000+ 1 5.35433- 4 3.74080- 4 1.10000+ 1 3.30000+ 1 1.15109- 3 3.75560- 4 1.10000+ 1 4.10000+ 1 1.19388- 4 3.77030- 4 1.30000+ 1 1.60000+ 1 5.04379- 2 9.73900- 5 1.30000+ 1 1.80000+ 1 5.15727- 2 2.05410- 4 1.30000+ 1 1.90000+ 1 5.15962- 2 2.97560- 4 1.30000+ 1 2.10000+ 1 1.98253- 2 4.76500- 4 1.30000+ 1 2.20000+ 1 2.39405- 2 4.93640- 4 1.30000+ 1 2.40000+ 1 1.38139- 1 7.24110- 4 1.30000+ 1 2.50000+ 1 2.12257- 1 7.27730- 4 1.30000+ 1 2.70000+ 1 9.82485- 3 7.01160- 4 1.30000+ 1 2.90000+ 1 7.40851- 3 7.36260- 4 1.30000+ 1 3.00000+ 1 8.02696- 3 7.51860- 4 1.30000+ 1 3.20000+ 1 1.45704- 3 7.98580- 4 1.30000+ 1 3.30000+ 1 1.75710- 3 8.00060- 4 1.30000+ 1 4.10000+ 1 3.88572- 4 8.01530- 4 1.40000+ 1 1.60000+ 1 8.21541- 3 1.80790- 4 1.40000+ 1 1.80000+ 1 5.81320- 2 2.88810- 4 1.40000+ 1 1.90000+ 1 5.14348- 3 3.80960- 4 1.40000+ 1 2.10000+ 1 9.93743- 4 5.59900- 4 1.40000+ 1 2.20000+ 1 2.83558- 3 5.77040- 4 1.40000+ 1 2.40000+ 1 5.36454- 3 8.07510- 4 1.40000+ 1 2.50000+ 1 3.80074- 3 8.11130- 4 1.40000+ 1 2.70000+ 1 1.06368- 3 7.84560- 4 1.40000+ 1 2.90000+ 1 6.63918- 3 8.19660- 4 1.40000+ 1 3.00000+ 1 7.16694- 4 8.35260- 4 1.40000+ 1 3.20000+ 1 4.12007- 5 8.81980- 4 1.40000+ 1 3.30000+ 1 1.78720- 4 8.83460- 4 1.40000+ 1 4.10000+ 1 4.02853- 5 8.84930- 4 1.60000+ 1 1.60000+ 1 7.98382- 4 1.59758- 3 1.60000+ 1 1.80000+ 1 1.14831- 2 1.70560- 3 1.60000+ 1 1.90000+ 1 1.63481- 3 1.79775- 3 1.60000+ 1 2.10000+ 1 3.79907- 4 1.97669- 3 1.60000+ 1 2.20000+ 1 1.34077- 3 1.99383- 3 1.60000+ 1 2.40000+ 1 4.51104- 5 2.22430- 3 1.60000+ 1 2.50000+ 1 9.17953- 4 2.22792- 3 1.60000+ 1 2.70000+ 1 2.40755- 4 2.20135- 3 1.60000+ 1 2.90000+ 1 1.26468- 3 2.23645- 3 1.60000+ 1 3.00000+ 1 2.38040- 4 2.25205- 3 1.60000+ 1 3.20000+ 1 2.06521- 5 2.29877- 3 1.60000+ 1 3.30000+ 1 8.36950- 5 2.30025- 3 1.60000+ 1 4.10000+ 1 9.23914- 6 2.30172- 3 1.80000+ 1 1.80000+ 1 8.77459- 3 1.81362- 3 1.80000+ 1 1.90000+ 1 2.49686- 2 1.90577- 3 1.80000+ 1 2.10000+ 1 2.45505- 2 2.08471- 3 1.80000+ 1 2.20000+ 1 3.93276- 2 2.10185- 3 1.80000+ 1 2.40000+ 1 1.35012- 2 2.33232- 3 1.80000+ 1 2.50000+ 1 2.28191- 2 2.33594- 3 1.80000+ 1 2.70000+ 1 2.22179- 3 2.30937- 3 1.80000+ 1 2.90000+ 1 2.48205- 3 2.34447- 3 1.80000+ 1 3.00000+ 1 3.98366- 3 2.36007- 3 1.80000+ 1 3.20000+ 1 1.76957- 3 2.40679- 3 1.80000+ 1 3.30000+ 1 2.63257- 3 2.40827- 3 1.80000+ 1 4.10000+ 1 8.91306- 5 2.40974- 3 1.90000+ 1 1.90000+ 1 6.80462- 4 1.99792- 3 1.90000+ 1 2.10000+ 1 1.72396- 3 2.17686- 3 1.90000+ 1 2.20000+ 1 1.47236- 3 2.19400- 3 1.90000+ 1 2.40000+ 1 9.40290- 3 2.42447- 3 1.90000+ 1 2.50000+ 1 2.60349- 3 2.42809- 3 1.90000+ 1 2.70000+ 1 2.06529- 4 2.40152- 3 1.90000+ 1 2.90000+ 1 2.80982- 3 2.43662- 3 1.90000+ 1 3.00000+ 1 1.84246- 4 2.45222- 3 1.90000+ 1 3.20000+ 1 1.01633- 4 2.49894- 3 1.90000+ 1 3.30000+ 1 8.80466- 5 2.50042- 3 1.90000+ 1 4.10000+ 1 7.60890- 6 2.50189- 3 2.10000+ 1 2.10000+ 1 8.37533- 4 2.35580- 3 2.10000+ 1 2.20000+ 1 2.16370- 3 2.37294- 3 2.10000+ 1 2.40000+ 1 1.06253- 3 2.60341- 3 2.10000+ 1 2.50000+ 1 1.90276- 3 2.60703- 3 2.10000+ 1 2.70000+ 1 6.90248- 5 2.58046- 3 2.10000+ 1 2.90000+ 1 2.69373- 3 2.61556- 3 2.10000+ 1 3.00000+ 1 2.45114- 4 2.63116- 3 2.10000+ 1 3.20000+ 1 1.01630- 4 2.67788- 3 2.10000+ 1 3.30000+ 1 1.34785- 4 2.67936- 3 2.10000+ 1 4.10000+ 1 2.71744- 6 2.68083- 3 2.20000+ 1 2.20000+ 1 5.33184- 4 2.39008- 3 2.20000+ 1 2.40000+ 1 3.17619- 3 2.62055- 3 2.20000+ 1 2.50000+ 1 7.09806- 4 2.62417- 3 2.20000+ 1 2.70000+ 1 2.07064- 4 2.59760- 3 2.20000+ 1 2.90000+ 1 4.37613- 3 2.63270- 3 2.20000+ 1 3.00000+ 1 1.84241- 4 2.64830- 3 2.20000+ 1 3.20000+ 1 1.33697- 4 2.69502- 3 2.20000+ 1 3.30000+ 1 6.19573- 5 2.69650- 3 2.20000+ 1 4.10000+ 1 8.15229- 6 2.69797- 3 2.40000+ 1 2.40000+ 1 3.14072- 3 2.85102- 3 2.40000+ 1 2.50000+ 1 2.02365- 2 2.85464- 3 2.40000+ 1 2.70000+ 1 3.80403- 6 2.82807- 3 2.40000+ 1 2.90000+ 1 1.37009- 3 2.86317- 3 2.40000+ 1 3.00000+ 1 1.41087- 3 2.87877- 3 2.40000+ 1 3.20000+ 1 8.42405- 5 2.92549- 3 2.40000+ 1 3.30000+ 1 2.35860- 4 2.92697- 3 2.50000+ 1 2.50000+ 1 1.06033- 3 2.85826- 3 2.50000+ 1 2.70000+ 1 1.48914- 4 2.83169- 3 2.50000+ 1 2.90000+ 1 2.28694- 3 2.86679- 3 2.50000+ 1 3.00000+ 1 3.51075- 4 2.88239- 3 2.50000+ 1 3.20000+ 1 1.40220- 4 2.92911- 3 2.50000+ 1 3.30000+ 1 4.94568- 5 2.93059- 3 2.50000+ 1 4.10000+ 1 5.97847- 6 2.93206- 3 2.70000+ 1 2.70000+ 1 2.10294- 5 2.80512- 3 2.70000+ 1 2.90000+ 1 2.88036- 4 2.84022- 3 2.70000+ 1 3.00000+ 1 3.56859- 5 2.85582- 3 2.70000+ 1 3.20000+ 1 3.82338- 6 2.90254- 3 2.70000+ 1 3.30000+ 1 1.52942- 5 2.90402- 3 2.70000+ 1 4.10000+ 1 1.91178- 6 2.90549- 3 2.90000+ 1 2.90000+ 1 2.18182- 4 2.87532- 3 2.90000+ 1 3.00000+ 1 5.91092- 4 2.89092- 3 2.90000+ 1 3.20000+ 1 2.55969- 4 2.93764- 3 2.90000+ 1 3.30000+ 1 3.85727- 4 2.93912- 3 2.90000+ 1 4.10000+ 1 1.28338- 5 2.94059- 3 3.00000+ 1 3.00000+ 1 3.61039- 5 2.90652- 3 3.00000+ 1 3.20000+ 1 4.23823- 5 2.95324- 3 3.00000+ 1 3.30000+ 1 3.13946- 5 2.95472- 3 3.00000+ 1 4.10000+ 1 3.13946- 6 2.95619- 3 3.20000+ 1 3.20000+ 1 2.73623- 6 2.99996- 3 3.20000+ 1 3.30000+ 1 8.75580- 6 3.00144- 3 3.30000+ 1 3.30000+ 1 3.98326- 6 3.00292- 3 3.30000+ 1 4.10000+ 1 1.32775- 6 3.00439- 3 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.57760- 5 4.24500- 4 1.40000+ 1 2.56180- 4 5.07900- 4 1.60000+ 1 1.19760- 3 1.92469- 3 2.10000+ 1 5.84899- 4 2.30380- 3 2.20000+ 1 4.55569- 3 2.32094- 3 2.70000+ 1 2.36910- 4 2.52846- 3 3.20000+ 1 4.95819- 5 2.62588- 3 3.30000+ 1 3.78290- 4 2.62736- 3 4.10000+ 1 1.00340- 5 2.62883- 3 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 9.80425- 3 9.14000- 5 1.30000+ 1 2.20000+ 1 9.87899- 3 1.08540- 4 1.30000+ 1 2.40000+ 1 1.50573- 2 3.39010- 4 1.30000+ 1 2.50000+ 1 2.19628- 2 3.42630- 4 1.30000+ 1 2.70000+ 1 2.25692- 3 3.16060- 4 1.30000+ 1 2.90000+ 1 1.83003- 3 3.51160- 4 1.30000+ 1 3.00000+ 1 6.19012- 3 3.66760- 4 1.30000+ 1 3.20000+ 1 6.05970- 4 4.13480- 4 1.30000+ 1 3.30000+ 1 5.87997- 4 4.14960- 4 1.30000+ 1 4.10000+ 1 8.75813- 5 4.16430- 4 1.40000+ 1 1.90000+ 1 1.10581- 1 0.00000+ 0 1.40000+ 1 2.10000+ 1 4.38365- 2 1.74800- 4 1.40000+ 1 2.20000+ 1 6.03087- 2 1.91940- 4 1.40000+ 1 2.40000+ 1 1.57973- 1 4.22410- 4 1.40000+ 1 2.50000+ 1 1.90593- 1 4.26030- 4 1.40000+ 1 2.70000+ 1 1.33691- 2 3.99460- 4 1.40000+ 1 2.90000+ 1 1.23858- 2 4.34560- 4 1.40000+ 1 3.00000+ 1 1.57493- 2 4.50160- 4 1.40000+ 1 3.20000+ 1 2.70496- 3 4.96880- 4 1.40000+ 1 3.30000+ 1 3.70017- 3 4.98360- 4 1.40000+ 1 4.10000+ 1 5.27565- 4 4.99830- 4 1.60000+ 1 1.60000+ 1 4.38596- 4 1.21248- 3 1.60000+ 1 1.80000+ 1 7.94866- 4 1.32050- 3 1.60000+ 1 1.90000+ 1 1.38529- 2 1.41265- 3 1.60000+ 1 2.10000+ 1 8.17311- 4 1.59159- 3 1.60000+ 1 2.20000+ 1 9.50851- 4 1.60873- 3 1.60000+ 1 2.40000+ 1 1.52356- 3 1.83920- 3 1.60000+ 1 2.50000+ 1 2.58483- 3 1.84282- 3 1.60000+ 1 2.70000+ 1 1.31808- 4 1.81625- 3 1.60000+ 1 2.90000+ 1 1.01303- 4 1.85135- 3 1.60000+ 1 3.00000+ 1 1.48844- 3 1.86695- 3 1.60000+ 1 3.20000+ 1 5.29517- 5 1.91367- 3 1.60000+ 1 3.30000+ 1 5.64062- 5 1.91515- 3 1.60000+ 1 4.10000+ 1 5.18011- 6 1.91662- 3 1.80000+ 1 1.80000+ 1 5.06507- 5 1.42852- 3 1.80000+ 1 1.90000+ 1 1.69089- 2 1.52067- 3 1.80000+ 1 2.10000+ 1 3.70077- 4 1.69961- 3 1.80000+ 1 2.20000+ 1 3.42422- 3 1.71675- 3 1.80000+ 1 2.40000+ 1 1.59204- 3 1.94722- 3 1.80000+ 1 2.50000+ 1 8.88256- 3 1.95084- 3 1.80000+ 1 2.70000+ 1 1.08211- 4 1.92427- 3 1.80000+ 1 2.90000+ 1 1.20870- 5 1.95937- 3 1.80000+ 1 3.00000+ 1 1.84759- 3 1.97497- 3 1.80000+ 1 3.20000+ 1 2.47499- 5 2.02169- 3 1.80000+ 1 3.30000+ 1 1.92821- 4 2.02317- 3 1.80000+ 1 4.10000+ 1 4.02895- 6 2.02464- 3 1.90000+ 1 1.90000+ 1 2.26530- 2 1.61282- 3 1.90000+ 1 2.10000+ 1 3.25713- 2 1.79176- 3 1.90000+ 1 2.20000+ 1 4.27762- 2 1.80890- 3 1.90000+ 1 2.40000+ 1 2.60148- 2 2.03937- 3 1.90000+ 1 2.50000+ 1 2.97820- 2 2.04299- 3 1.90000+ 1 2.70000+ 1 2.62871- 3 2.01642- 3 1.90000+ 1 2.90000+ 1 2.78876- 3 2.05152- 3 1.90000+ 1 3.00000+ 1 6.05749- 3 2.06712- 3 1.90000+ 1 3.20000+ 1 2.28284- 3 2.11384- 3 1.90000+ 1 3.30000+ 1 2.83943- 3 2.11532- 3 1.90000+ 1 4.10000+ 1 1.05335- 4 2.11679- 3 2.10000+ 1 2.10000+ 1 2.11236- 4 1.97070- 3 2.10000+ 1 2.20000+ 1 4.92297- 3 1.98784- 3 2.10000+ 1 2.40000+ 1 6.78589- 4 2.21831- 3 2.10000+ 1 2.50000+ 1 8.06944- 3 2.22193- 3 2.10000+ 1 2.70000+ 1 9.43940- 5 2.19536- 3 2.10000+ 1 2.90000+ 1 2.76267- 5 2.23046- 3 2.10000+ 1 3.00000+ 1 3.50755- 3 2.24606- 3 2.10000+ 1 3.20000+ 1 2.47498- 5 2.29278- 3 2.10000+ 1 3.30000+ 1 2.92961- 4 2.29426- 3 2.10000+ 1 4.10000+ 1 3.45358- 6 2.29573- 3 2.20000+ 1 2.20000+ 1 2.20736- 3 2.00498- 3 2.20000+ 1 2.40000+ 1 6.55600- 3 2.23545- 3 2.20000+ 1 2.50000+ 1 5.53194- 3 2.23907- 3 2.20000+ 1 2.70000+ 1 1.12242- 4 2.21250- 3 2.20000+ 1 2.90000+ 1 3.16578- 4 2.24760- 3 2.20000+ 1 3.00000+ 1 4.55427- 3 2.26320- 3 2.20000+ 1 3.20000+ 1 3.08527- 4 2.30992- 3 2.20000+ 1 3.30000+ 1 2.63042- 4 2.31140- 3 2.20000+ 1 4.10000+ 1 4.02910- 6 2.31287- 3 2.40000+ 1 2.40000+ 1 9.53769- 4 2.46592- 3 2.40000+ 1 2.50000+ 1 2.53876- 2 2.46954- 3 2.40000+ 1 2.70000+ 1 1.62317- 4 2.44297- 3 2.40000+ 1 2.90000+ 1 2.19866- 4 2.47807- 3 2.40000+ 1 3.00000+ 1 2.67254- 3 2.49367- 3 2.40000+ 1 3.20000+ 1 5.46795- 5 2.54039- 3 2.40000+ 1 3.30000+ 1 4.13844- 4 2.54187- 3 2.40000+ 1 4.10000+ 1 6.33170- 6 2.54334- 3 2.50000+ 1 2.50000+ 1 9.98745- 3 2.47316- 3 2.50000+ 1 2.70000+ 1 2.31957- 4 2.44659- 3 2.50000+ 1 2.90000+ 1 1.22368- 3 2.48169- 3 2.50000+ 1 3.00000+ 1 3.16564- 3 2.49729- 3 2.50000+ 1 3.20000+ 1 5.62357- 4 2.54401- 3 2.50000+ 1 3.30000+ 1 3.75260- 4 2.54549- 3 2.50000+ 1 4.10000+ 1 8.63363- 6 2.54696- 3 2.70000+ 1 2.70000+ 1 1.51103- 5 2.42002- 3 2.70000+ 1 2.90000+ 1 1.98818- 5 2.45512- 3 2.70000+ 1 3.00000+ 1 3.90451- 4 2.47072- 3 2.70000+ 1 3.20000+ 1 8.74824- 6 2.51744- 3 2.70000+ 1 3.30000+ 1 9.54320- 6 2.51892- 3 2.70000+ 1 4.10000+ 1 7.95298- 7 2.52039- 3 2.90000+ 1 2.90000+ 1 8.13549- 7 2.49022- 3 2.90000+ 1 3.00000+ 1 4.32779- 4 2.50582- 3 2.90000+ 1 3.20000+ 1 2.44058- 6 2.55254- 3 2.90000+ 1 3.30000+ 1 2.60325- 5 2.55402- 3 2.90000+ 1 4.10000+ 1 8.13549- 7 2.55549- 3 3.00000+ 1 3.00000+ 1 8.01678- 4 2.52142- 3 3.00000+ 1 3.20000+ 1 5.08725- 4 2.56814- 3 3.00000+ 1 3.30000+ 1 6.24977- 4 2.56962- 3 3.00000+ 1 4.10000+ 1 2.37180- 5 2.57109- 3 3.20000+ 1 3.20000+ 1 5.93215- 7 2.61486- 3 3.20000+ 1 3.30000+ 1 2.01688- 5 2.61634- 3 3.30000+ 1 3.30000+ 1 6.94159- 6 2.61782- 3 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.05439- 3 1.60821- 3 1.90000+ 1 2.09139- 4 1.70036- 3 2.40000+ 1 2.46219- 2 2.12691- 3 2.90000+ 1 5.00568- 4 2.13906- 3 3.00000+ 1 5.17158- 5 2.15466- 3 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 3.22710- 2 0.00000+ 0 1.40000+ 1 2.50000+ 1 7.07838- 3 1.53000- 6 1.40000+ 1 2.90000+ 1 1.88360- 3 1.00600- 5 1.40000+ 1 3.00000+ 1 6.26401- 3 2.56600- 5 1.40000+ 1 3.20000+ 1 2.84571- 2 7.23800- 5 1.40000+ 1 3.30000+ 1 3.80847- 3 7.38600- 5 1.40000+ 1 4.10000+ 1 2.23044- 4 7.53300- 5 1.60000+ 1 1.60000+ 1 3.25413- 5 7.87980- 4 1.60000+ 1 1.80000+ 1 1.38425- 3 8.96000- 4 1.60000+ 1 1.90000+ 1 1.01624- 3 9.88150- 4 1.60000+ 1 2.10000+ 1 3.76312- 2 1.16709- 3 1.60000+ 1 2.20000+ 1 4.36182- 3 1.18423- 3 1.60000+ 1 2.40000+ 1 1.51737- 2 1.41470- 3 1.60000+ 1 2.50000+ 1 4.37178- 3 1.41832- 3 1.60000+ 1 2.70000+ 1 2.12765- 5 1.39175- 3 1.60000+ 1 2.90000+ 1 1.83988- 4 1.42685- 3 1.60000+ 1 3.00000+ 1 1.10142- 4 1.44245- 3 1.60000+ 1 3.20000+ 1 1.96382- 3 1.48917- 3 1.60000+ 1 3.30000+ 1 2.22783- 4 1.49065- 3 1.60000+ 1 4.10000+ 1 1.25165- 6 1.49212- 3 1.80000+ 1 1.80000+ 1 8.17310- 4 1.00402- 3 1.80000+ 1 1.90000+ 1 5.19162- 3 1.09617- 3 1.80000+ 1 2.10000+ 1 3.34679- 2 1.27511- 3 1.80000+ 1 2.20000+ 1 2.47443- 3 1.29225- 3 1.80000+ 1 2.40000+ 1 9.69240- 3 1.52272- 3 1.80000+ 1 2.50000+ 1 4.81634- 3 1.52634- 3 1.80000+ 1 2.70000+ 1 1.76477- 4 1.49977- 3 1.80000+ 1 2.90000+ 1 2.17779- 4 1.53487- 3 1.80000+ 1 3.00000+ 1 6.24543- 4 1.55047- 3 1.80000+ 1 3.20000+ 1 1.73476- 3 1.59719- 3 1.80000+ 1 3.30000+ 1 1.43935- 4 1.59867- 3 1.80000+ 1 4.10000+ 1 6.25782- 6 1.60014- 3 1.90000+ 1 1.90000+ 1 1.84609- 3 1.18832- 3 1.90000+ 1 2.10000+ 1 6.81056- 2 1.36726- 3 1.90000+ 1 2.20000+ 1 2.57325- 3 1.38440- 3 1.90000+ 1 2.40000+ 1 3.78351- 3 1.61487- 3 1.90000+ 1 2.50000+ 1 2.28408- 3 1.61849- 3 1.90000+ 1 2.70000+ 1 1.48936- 4 1.59192- 3 1.90000+ 1 2.90000+ 1 5.69465- 4 1.62702- 3 1.90000+ 1 3.00000+ 1 4.25533- 4 1.64262- 3 1.90000+ 1 3.20000+ 1 3.56451- 3 1.68934- 3 1.90000+ 1 3.30000+ 1 1.36420- 4 1.69082- 3 1.90000+ 1 4.10000+ 1 6.25769- 6 1.69229- 3 2.10000+ 1 2.10000+ 1 6.02420- 2 1.54620- 3 2.10000+ 1 2.20000+ 1 1.20141- 1 1.56334- 3 2.10000+ 1 2.40000+ 1 5.96206- 2 1.79381- 3 2.10000+ 1 2.50000+ 1 7.28621- 2 1.79743- 3 2.10000+ 1 2.70000+ 1 6.60737- 3 1.77086- 3 2.10000+ 1 2.90000+ 1 5.55951- 3 1.80596- 3 2.10000+ 1 3.00000+ 1 1.05833- 2 1.82156- 3 2.10000+ 1 3.20000+ 1 7.41822- 3 1.86828- 3 2.10000+ 1 3.30000+ 1 7.88149- 3 1.86976- 3 2.10000+ 1 4.10000+ 1 2.62837- 4 1.87123- 3 2.20000+ 1 2.20000+ 1 1.93250- 3 1.58048- 3 2.20000+ 1 2.40000+ 1 6.57459- 2 1.81095- 3 2.20000+ 1 2.50000+ 1 3.40304- 3 1.81457- 3 2.20000+ 1 2.70000+ 1 4.25536- 4 1.78800- 3 2.20000+ 1 2.90000+ 1 2.65332- 4 1.82310- 3 2.20000+ 1 3.00000+ 1 3.26660- 4 1.83870- 3 2.20000+ 1 3.20000+ 1 6.32167- 3 1.88542- 3 2.20000+ 1 3.30000+ 1 2.12764- 4 1.88690- 3 2.20000+ 1 4.10000+ 1 1.62702- 5 1.88837- 3 2.40000+ 1 2.40000+ 1 5.88574- 2 2.04142- 3 2.40000+ 1 2.50000+ 1 1.70710- 1 2.04504- 3 2.40000+ 1 2.70000+ 1 2.77985- 3 2.01847- 3 2.40000+ 1 2.90000+ 1 1.33918- 3 2.05357- 3 2.40000+ 1 3.00000+ 1 5.95754- 4 2.06917- 3 2.40000+ 1 3.20000+ 1 3.33052- 3 2.11589- 3 2.40000+ 1 3.30000+ 1 4.13654- 3 2.11737- 3 2.40000+ 1 4.10000+ 1 1.10144- 4 2.11884- 3 2.50000+ 1 2.50000+ 1 3.37681- 3 2.04866- 3 2.50000+ 1 2.70000+ 1 5.41641- 4 2.02209- 3 2.50000+ 1 2.90000+ 1 3.46613- 4 2.05719- 3 2.50000+ 1 3.00000+ 1 3.04314- 4 2.07279- 3 2.50000+ 1 3.20000+ 1 3.34627- 3 2.11951- 3 2.50000+ 1 3.30000+ 1 1.90340- 4 2.12099- 3 2.50000+ 1 4.10000+ 1 1.99735- 5 2.12246- 3 2.70000+ 1 2.70000+ 1 3.66386- 6 1.99552- 3 2.70000+ 1 2.90000+ 1 3.66386- 5 2.03062- 3 2.70000+ 1 3.00000+ 1 2.38142- 5 2.04622- 3 2.70000+ 1 3.20000+ 1 5.07435- 4 2.09294- 3 2.70000+ 1 3.30000+ 1 3.48053- 5 2.09442- 3 2.90000+ 1 2.90000+ 1 3.16681- 5 2.06572- 3 2.90000+ 1 3.00000+ 1 1.53065- 4 2.08132- 3 2.90000+ 1 3.20000+ 1 6.09627- 4 2.12804- 3 2.90000+ 1 3.30000+ 1 3.43073- 5 2.12952- 3 2.90000+ 1 4.10000+ 1 2.63922- 6 2.13099- 3 3.00000+ 1 3.00000+ 1 5.92719- 5 2.09692- 3 3.00000+ 1 3.20000+ 1 1.31880- 3 2.14364- 3 3.00000+ 1 3.30000+ 1 4.44543- 5 2.14512- 3 3.00000+ 1 4.10000+ 1 2.96370- 6 2.14659- 3 3.20000+ 1 3.20000+ 1 2.03808- 4 2.19036- 3 3.20000+ 1 3.30000+ 1 3.94585- 4 2.19184- 3 3.20000+ 1 4.10000+ 1 1.30349- 5 2.19331- 3 3.30000+ 1 3.30000+ 1 5.72549- 6 2.19332- 3 3.30000+ 1 4.10000+ 1 1.14518- 6 2.19479- 3 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.66310- 3 1.61696- 3 2.40000+ 1 1.26290- 3 2.04351- 3 2.50000+ 1 2.46420- 2 2.04713- 3 3.00000+ 1 4.35831- 4 2.07126- 3 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.30047- 6 7.04580- 4 1.60000+ 1 1.80000+ 1 3.00394- 4 8.12600- 4 1.60000+ 1 1.90000+ 1 2.40452- 3 9.04750- 4 1.60000+ 1 2.10000+ 1 3.81280- 3 1.08369- 3 1.60000+ 1 2.20000+ 1 4.20922- 2 1.10083- 3 1.60000+ 1 2.40000+ 1 4.60078- 3 1.33130- 3 1.60000+ 1 2.50000+ 1 1.66514- 2 1.33492- 3 1.60000+ 1 2.70000+ 1 1.30047- 5 1.30835- 3 1.60000+ 1 2.90000+ 1 1.69053- 5 1.34345- 3 1.60000+ 1 3.00000+ 1 2.70488- 4 1.35905- 3 1.60000+ 1 3.20000+ 1 1.96360- 4 1.40577- 3 1.60000+ 1 3.30000+ 1 2.07291- 3 1.40725- 3 1.80000+ 1 1.80000+ 1 1.30047- 6 9.20620- 4 1.80000+ 1 1.90000+ 1 6.30544- 3 1.01277- 3 1.80000+ 1 2.10000+ 1 3.23799- 4 1.19171- 3 1.80000+ 1 2.20000+ 1 4.32969- 2 1.20885- 3 1.80000+ 1 2.40000+ 1 2.24972- 3 1.43932- 3 1.80000+ 1 2.50000+ 1 8.66865- 3 1.44294- 3 1.80000+ 1 2.70000+ 1 3.64117- 5 1.41637- 3 1.80000+ 1 2.90000+ 1 2.60074- 6 1.45147- 3 1.80000+ 1 3.00000+ 1 7.04802- 4 1.46707- 3 1.80000+ 1 3.20000+ 1 7.80224- 6 1.51379- 3 1.80000+ 1 3.30000+ 1 2.13533- 3 1.51527- 3 1.80000+ 1 4.10000+ 1 1.30047- 6 1.51674- 3 1.90000+ 1 1.90000+ 1 4.44347- 3 1.10492- 3 1.90000+ 1 2.10000+ 1 4.03379- 3 1.28386- 3 1.90000+ 1 2.20000+ 1 6.60886- 2 1.30100- 3 1.90000+ 1 2.40000+ 1 2.59815- 3 1.53147- 3 1.90000+ 1 2.50000+ 1 5.28887- 3 1.53509- 3 1.90000+ 1 2.70000+ 1 3.64116- 4 1.50852- 3 1.90000+ 1 2.90000+ 1 6.69726- 4 1.54362- 3 1.90000+ 1 3.00000+ 1 1.02729- 3 1.55922- 3 1.90000+ 1 3.20000+ 1 2.47072- 4 1.60594- 3 1.90000+ 1 3.30000+ 1 3.24972- 3 1.60742- 3 1.90000+ 1 4.10000+ 1 1.43037- 5 1.60889- 3 2.10000+ 1 2.10000+ 1 8.71240- 4 1.46280- 3 2.10000+ 1 2.20000+ 1 8.99772- 2 1.47994- 3 2.10000+ 1 2.40000+ 1 3.05206- 3 1.71041- 3 2.10000+ 1 2.50000+ 1 4.16416- 2 1.71403- 3 2.10000+ 1 2.70000+ 1 3.55003- 4 1.68746- 3 2.10000+ 1 2.90000+ 1 5.85176- 5 1.72256- 3 2.10000+ 1 3.00000+ 1 4.65535- 4 1.73816- 3 2.10000+ 1 3.20000+ 1 9.88314- 5 1.78488- 3 2.10000+ 1 3.30000+ 1 4.47715- 3 1.78636- 3 2.10000+ 1 4.10000+ 1 1.30044- 5 1.78783- 3 2.20000+ 1 2.20000+ 1 1.00996- 1 1.49708- 3 2.20000+ 1 2.40000+ 1 6.72978- 2 1.72755- 3 2.20000+ 1 2.50000+ 1 1.05973- 1 1.73117- 3 2.20000+ 1 2.70000+ 1 7.12101- 3 1.70460- 3 2.20000+ 1 2.90000+ 1 6.89842- 3 1.73970- 3 2.20000+ 1 3.00000+ 1 1.03465- 2 1.75530- 3 2.20000+ 1 3.20000+ 1 6.23270- 3 1.80202- 3 2.20000+ 1 3.30000+ 1 1.16526- 2 1.80350- 3 2.20000+ 1 4.10000+ 1 2.82182- 4 1.80497- 3 2.40000+ 1 2.40000+ 1 4.89099- 3 1.95802- 3 2.40000+ 1 2.50000+ 1 1.56396- 1 1.96164- 3 2.40000+ 1 2.70000+ 1 6.51548- 4 1.93507- 3 2.40000+ 1 2.90000+ 1 3.34216- 4 1.97017- 3 2.40000+ 1 3.00000+ 1 3.34216- 4 1.98577- 3 2.40000+ 1 3.20000+ 1 2.05468- 4 2.03249- 3 2.40000+ 1 3.30000+ 1 3.18356- 3 2.03397- 3 2.40000+ 1 4.10000+ 1 2.47083- 5 2.03544- 3 2.50000+ 1 2.50000+ 1 1.06911- 1 1.96526- 3 2.50000+ 1 2.70000+ 1 2.96984- 3 1.93869- 3 2.50000+ 1 2.90000+ 1 1.39263- 3 1.97379- 3 2.50000+ 1 3.00000+ 1 7.85354- 4 1.98939- 3 2.50000+ 1 3.20000+ 1 2.73192- 3 2.03611- 3 2.50000+ 1 3.30000+ 1 5.71091- 3 2.03759- 3 2.50000+ 1 4.10000+ 1 1.18330- 4 2.03906- 3 2.70000+ 1 2.70000+ 1 2.31530- 6 1.91212- 3 2.70000+ 1 2.90000+ 1 4.63026- 6 1.94722- 3 2.70000+ 1 3.00000+ 1 7.63999- 5 1.96282- 3 2.70000+ 1 3.20000+ 1 3.70436- 5 2.00954- 3 2.70000+ 1 3.30000+ 1 6.29722- 4 2.01102- 3 2.90000+ 1 3.00000+ 1 1.34213- 4 1.99792- 3 2.90000+ 1 3.20000+ 1 2.20026- 6 2.04464- 3 2.90000+ 1 3.30000+ 1 5.83038- 4 2.04612- 3 3.00000+ 1 3.00000+ 1 1.24833- 4 2.01352- 3 3.00000+ 1 3.20000+ 1 6.24163- 5 2.06024- 3 3.00000+ 1 3.30000+ 1 1.06654- 3 2.06172- 3 3.00000+ 1 4.10000+ 1 2.71391- 6 2.06319- 3 3.20000+ 1 3.20000+ 1 2.38617- 6 2.10696- 3 3.20000+ 1 3.30000+ 1 2.86351- 4 2.10844- 3 3.20000+ 1 4.10000+ 1 1.19317- 6 2.10991- 3 3.30000+ 1 3.30000+ 1 3.22497- 4 2.10992- 3 3.30000+ 1 4.10000+ 1 1.43039- 5 2.11139- 3 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.89024- 5 1.08020- 4 1.90000+ 1 2.55826- 4 2.00170- 4 2.90000+ 1 1.51326- 4 6.38870- 4 3.00000+ 1 6.97940- 5 6.54470- 4 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 9.10387- 3 2.25300- 5 1.80000+ 1 2.50000+ 1 2.78534- 3 2.61500- 5 1.80000+ 1 2.70000+ 1 3.20569- 2 0.00000+ 0 1.80000+ 1 2.90000+ 1 2.81925- 2 3.46800- 5 1.80000+ 1 3.00000+ 1 4.82866- 2 5.02800- 5 1.80000+ 1 3.20000+ 1 2.17511- 2 9.70000- 5 1.80000+ 1 3.30000+ 1 3.53215- 2 9.84800- 5 1.80000+ 1 4.10000+ 1 1.20478- 3 9.99500- 5 1.90000+ 1 2.40000+ 1 9.32031- 2 1.14680- 4 1.90000+ 1 2.50000+ 1 1.21300- 1 1.18300- 4 1.90000+ 1 2.70000+ 1 4.07270- 2 9.17300- 5 1.90000+ 1 2.90000+ 1 4.60864- 2 1.26830- 4 1.90000+ 1 3.00000+ 1 5.01072- 2 1.42430- 4 1.90000+ 1 3.20000+ 1 2.89842- 2 1.89150- 4 1.90000+ 1 3.30000+ 1 3.39649- 2 1.90630- 4 1.90000+ 1 4.10000+ 1 1.61346- 3 1.92100- 4 2.10000+ 1 2.10000+ 1 4.07217- 3 4.60100- 5 2.10000+ 1 2.20000+ 1 6.49386- 3 6.31500- 5 2.10000+ 1 2.40000+ 1 4.67887- 3 2.93620- 4 2.10000+ 1 2.50000+ 1 9.18958- 3 2.97240- 4 2.10000+ 1 2.70000+ 1 1.62720- 2 2.70670- 4 2.10000+ 1 2.90000+ 1 4.47270- 3 3.05770- 4 2.10000+ 1 3.00000+ 1 7.88080- 3 3.21370- 4 2.10000+ 1 3.20000+ 1 1.09269- 3 3.68090- 4 2.10000+ 1 3.30000+ 1 9.86886- 4 3.69570- 4 2.10000+ 1 4.10000+ 1 5.10307- 4 3.71040- 4 2.20000+ 1 2.20000+ 1 6.44850- 3 8.02900- 5 2.20000+ 1 2.40000+ 1 1.03320- 2 3.10760- 4 2.20000+ 1 2.50000+ 1 9.83709- 3 3.14380- 4 2.20000+ 1 2.70000+ 1 2.26529- 2 2.87810- 4 2.20000+ 1 2.90000+ 1 8.92411- 3 3.22910- 4 2.20000+ 1 3.00000+ 1 7.92435- 3 3.38510- 4 2.20000+ 1 3.20000+ 1 8.83269- 4 3.85230- 4 2.20000+ 1 3.30000+ 1 1.50155- 3 3.86710- 4 2.20000+ 1 4.10000+ 1 7.08224- 4 3.88180- 4 2.40000+ 1 2.40000+ 1 8.17373- 3 5.41230- 4 2.40000+ 1 2.50000+ 1 1.69747- 2 5.44850- 4 2.40000+ 1 2.70000+ 1 1.85459- 2 5.18280- 4 2.40000+ 1 2.90000+ 1 2.40509- 3 5.53380- 4 2.40000+ 1 3.00000+ 1 7.50498- 3 5.68980- 4 2.40000+ 1 3.20000+ 1 4.70778- 4 6.15700- 4 2.40000+ 1 3.30000+ 1 3.11031- 4 6.17180- 4 2.40000+ 1 4.10000+ 1 5.24526- 4 6.18650- 4 2.50000+ 1 2.50000+ 1 1.37000- 2 5.48470- 4 2.50000+ 1 2.70000+ 1 2.42723- 2 5.21900- 4 2.50000+ 1 2.90000+ 1 1.35070- 3 5.57000- 4 2.50000+ 1 3.00000+ 1 8.92431- 3 5.72600- 4 2.50000+ 1 3.20000+ 1 2.93163- 4 6.19320- 4 2.50000+ 1 3.30000+ 1 6.79268- 4 6.20800- 4 2.50000+ 1 4.10000+ 1 6.84998- 4 6.22270- 4 2.70000+ 1 2.70000+ 1 1.80528- 2 4.95330- 4 2.70000+ 1 2.90000+ 1 2.43012- 2 5.30430- 4 2.70000+ 1 3.00000+ 1 3.90847- 2 5.46030- 4 2.70000+ 1 3.20000+ 1 1.98972- 2 5.92750- 4 2.70000+ 1 3.30000+ 1 2.64891- 2 5.94230- 4 2.70000+ 1 4.10000+ 1 1.24686- 3 5.95700- 4 2.90000+ 1 2.90000+ 1 2.84792- 3 5.65530- 4 2.90000+ 1 3.00000+ 1 1.17196- 2 5.81130- 4 2.90000+ 1 3.20000+ 1 2.71448- 3 6.27850- 4 2.90000+ 1 3.30000+ 1 2.39558- 3 6.29330- 4 2.90000+ 1 4.10000+ 1 1.02978- 3 6.30800- 4 3.00000+ 1 3.00000+ 1 8.65919- 3 5.96730- 4 3.00000+ 1 3.20000+ 1 3.09716- 3 6.43450- 4 3.00000+ 1 3.30000+ 1 5.11492- 3 6.44930- 4 3.00000+ 1 4.10000+ 1 1.73002- 3 6.46400- 4 3.20000+ 1 3.20000+ 1 5.33602- 4 6.90170- 4 3.20000+ 1 3.30000+ 1 1.66828- 3 6.91650- 4 3.20000+ 1 4.10000+ 1 1.20827- 3 6.93120- 4 3.30000+ 1 3.30000+ 1 1.29162- 3 6.93130- 4 3.30000+ 1 4.10000+ 1 2.05553- 3 6.94600- 4 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.27299- 4 2.71090- 4 2.70000+ 1 1.76511- 4 4.95750- 4 3.20000+ 1 1.72545- 5 5.93170- 4 4.10000+ 1 7.45710- 6 5.96120- 4 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 1.25194- 2 6.66000- 6 1.90000+ 1 2.50000+ 1 1.53697- 2 1.02800- 5 1.90000+ 1 2.90000+ 1 1.28106- 2 1.88100- 5 1.90000+ 1 3.00000+ 1 1.52272- 2 3.44100- 5 1.90000+ 1 3.20000+ 1 4.29104- 3 8.11300- 5 1.90000+ 1 3.30000+ 1 6.44390- 3 8.26100- 5 1.90000+ 1 4.10000+ 1 5.66728- 4 8.40800- 5 2.10000+ 1 2.40000+ 1 1.47159- 1 1.85600- 4 2.10000+ 1 2.50000+ 1 3.21071- 1 1.89220- 4 2.10000+ 1 2.70000+ 1 3.70360- 2 1.62650- 4 2.10000+ 1 2.90000+ 1 2.80909- 2 1.97750- 4 2.10000+ 1 3.00000+ 1 4.21391- 2 2.13350- 4 2.10000+ 1 3.20000+ 1 1.39633- 2 2.60070- 4 2.10000+ 1 3.30000+ 1 2.31886- 2 2.61550- 4 2.10000+ 1 4.10000+ 1 1.45974- 3 2.63020- 4 2.20000+ 1 2.40000+ 1 4.48969- 2 2.02740- 4 2.20000+ 1 2.50000+ 1 1.14836- 2 2.06360- 4 2.20000+ 1 2.70000+ 1 6.18203- 3 1.79790- 4 2.20000+ 1 2.90000+ 1 2.53110- 2 2.14890- 4 2.20000+ 1 3.00000+ 1 5.33733- 3 2.30490- 4 2.20000+ 1 3.20000+ 1 1.93462- 3 2.77210- 4 2.20000+ 1 3.30000+ 1 1.45441- 3 2.78690- 4 2.20000+ 1 4.10000+ 1 2.00105- 4 2.80160- 4 2.40000+ 1 2.40000+ 1 2.98500- 3 4.33210- 4 2.40000+ 1 2.50000+ 1 2.00112- 2 4.36830- 4 2.40000+ 1 2.70000+ 1 4.38597- 3 4.10260- 4 2.40000+ 1 2.90000+ 1 1.87487- 2 4.45360- 4 2.40000+ 1 3.00000+ 1 3.91355- 3 4.60960- 4 2.40000+ 1 3.20000+ 1 2.97814- 3 5.07680- 4 2.40000+ 1 3.30000+ 1 1.29637- 3 5.09160- 4 2.40000+ 1 4.10000+ 1 1.74872- 4 5.10630- 4 2.50000+ 1 2.50000+ 1 1.01698- 3 4.40450- 4 2.50000+ 1 2.70000+ 1 3.10101- 3 4.13880- 4 2.50000+ 1 2.90000+ 1 3.71607- 2 4.48980- 4 2.50000+ 1 3.00000+ 1 2.28512- 3 4.64580- 4 2.50000+ 1 3.20000+ 1 7.34512- 3 5.11300- 4 2.50000+ 1 3.30000+ 1 5.60330- 4 5.12780- 4 2.50000+ 1 4.10000+ 1 1.00646- 4 5.14250- 4 2.70000+ 1 2.70000+ 1 7.53164- 4 3.87310- 4 2.70000+ 1 2.90000+ 1 1.06007- 2 4.22410- 4 2.70000+ 1 3.00000+ 1 1.89612- 3 4.38010- 4 2.70000+ 1 3.20000+ 1 1.57494- 3 4.84730- 4 2.70000+ 1 3.30000+ 1 1.02058- 3 4.86210- 4 2.70000+ 1 4.10000+ 1 4.91469- 5 4.87680- 4 2.90000+ 1 2.90000+ 1 1.38579- 2 4.57510- 4 2.90000+ 1 3.00000+ 1 3.69255- 2 4.73110- 4 2.90000+ 1 3.20000+ 1 1.54231- 2 5.19830- 4 2.90000+ 1 3.30000+ 1 2.49384- 2 5.21310- 4 2.90000+ 1 4.10000+ 1 9.18100- 4 5.22780- 4 3.00000+ 1 3.00000+ 1 1.42349- 3 4.88710- 4 3.00000+ 1 3.20000+ 1 3.75378- 3 5.35430- 4 3.00000+ 1 3.30000+ 1 1.30146- 3 5.36910- 4 3.00000+ 1 4.10000+ 1 1.22022- 4 5.38380- 4 3.20000+ 1 3.20000+ 1 5.82354- 5 5.82150- 4 3.20000+ 1 3.30000+ 1 1.14868- 4 5.83630- 4 3.20000+ 1 4.10000+ 1 1.08431- 5 5.85100- 4 3.30000+ 1 3.30000+ 1 2.18608- 5 5.85110- 4 3.30000+ 1 4.10000+ 1 8.08557- 6 5.86580- 4 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.69027- 5 1.78940- 4 2.20000+ 1 1.98271- 4 1.96080- 4 2.70000+ 1 1.43893- 4 4.03600- 4 3.20000+ 1 5.01732- 6 5.01020- 4 3.30000+ 1 2.80724- 5 5.02500- 4 4.10000+ 1 6.20823- 6 5.03970- 4 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 1.08676- 2 9.34500- 5 2.10000+ 1 2.50000+ 1 2.71990- 2 9.70700- 5 2.10000+ 1 2.70000+ 1 1.52251- 2 7.05000- 5 2.10000+ 1 2.90000+ 1 1.20053- 2 1.05600- 4 2.10000+ 1 3.00000+ 1 3.93772- 2 1.21200- 4 2.10000+ 1 3.20000+ 1 6.48180- 3 1.67920- 4 2.10000+ 1 3.30000+ 1 1.15724- 2 1.69400- 4 2.10000+ 1 4.10000+ 1 5.70623- 4 1.70870- 4 2.20000+ 1 2.40000+ 1 1.47400- 1 1.10590- 4 2.20000+ 1 2.50000+ 1 1.69614- 1 1.14210- 4 2.20000+ 1 2.70000+ 1 7.55483- 2 8.76400- 5 2.20000+ 1 2.90000+ 1 7.97330- 2 1.22740- 4 2.20000+ 1 3.00000+ 1 1.02098- 1 1.38340- 4 2.20000+ 1 3.20000+ 1 5.06133- 2 1.85060- 4 2.20000+ 1 3.30000+ 1 5.63813- 2 1.86540- 4 2.20000+ 1 4.10000+ 1 3.08641- 3 1.88010- 4 2.40000+ 1 2.40000+ 1 7.66590- 4 3.41060- 4 2.40000+ 1 2.50000+ 1 1.79565- 2 3.44680- 4 2.40000+ 1 2.70000+ 1 6.02336- 3 3.18110- 4 2.40000+ 1 2.90000+ 1 2.98047- 3 3.53210- 4 2.40000+ 1 3.00000+ 1 3.97248- 2 3.68810- 4 2.40000+ 1 3.20000+ 1 7.21982- 4 4.15530- 4 2.40000+ 1 3.30000+ 1 3.65422- 3 4.17010- 4 2.40000+ 1 4.10000+ 1 1.74567- 4 4.18480- 4 2.50000+ 1 2.50000+ 1 7.86509- 3 3.48300- 4 2.50000+ 1 2.70000+ 1 1.30323- 2 3.21730- 4 2.50000+ 1 2.90000+ 1 1.09514- 2 3.56830- 4 2.50000+ 1 3.00000+ 1 4.84644- 2 3.72430- 4 2.50000+ 1 3.20000+ 1 7.14611- 4 4.19150- 4 2.50000+ 1 3.30000+ 1 4.63360- 3 4.20630- 4 2.50000+ 1 4.10000+ 1 4.30941- 4 4.22100- 4 2.70000+ 1 2.70000+ 1 2.60963- 6 2.95160- 4 2.70000+ 1 2.90000+ 1 2.68284- 4 3.30260- 4 2.70000+ 1 3.00000+ 1 5.48771- 3 3.45860- 4 2.70000+ 1 3.20000+ 1 3.18925- 4 3.92580- 4 2.70000+ 1 3.30000+ 1 5.84602- 4 3.94060- 4 2.70000+ 1 4.10000+ 1 5.21963- 7 3.95530- 4 2.90000+ 1 2.90000+ 1 1.53143- 5 3.65360- 4 2.90000+ 1 3.00000+ 1 4.88879- 3 3.80960- 4 2.90000+ 1 3.20000+ 1 1.46837- 4 4.27680- 4 2.90000+ 1 3.30000+ 1 4.91414- 4 4.29160- 4 2.90000+ 1 4.10000+ 1 8.10745- 6 4.30630- 4 3.00000+ 1 3.00000+ 1 8.60481- 3 3.96560- 4 3.00000+ 1 3.20000+ 1 5.37687- 3 4.43280- 4 3.00000+ 1 3.30000+ 1 6.88864- 3 4.44760- 4 3.00000+ 1 4.10000+ 1 2.66525- 4 4.46230- 4 3.20000+ 1 3.20000+ 1 2.76733- 5 4.90000- 4 3.20000+ 1 3.30000+ 1 1.77908- 4 4.91480- 4 3.20000+ 1 4.10000+ 1 5.00758- 6 4.92950- 4 3.30000+ 1 3.30000+ 1 1.60175- 4 4.92960- 4 3.30000+ 1 4.10000+ 1 1.21932- 5 4.94430- 4 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.63684- 4 2.47610- 4 2.90000+ 1 3.82870- 5 2.59760- 4 3.00000+ 1 5.28190- 6 2.75360- 4 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 3.31876- 2 6.12000- 6 2.20000+ 1 3.30000+ 1 4.84326- 3 7.60000- 6 2.20000+ 1 4.10000+ 1 2.48175- 4 9.07000- 6 2.40000+ 1 2.40000+ 1 1.36801- 1 1.62120- 4 2.40000+ 1 2.50000+ 1 4.32853- 1 1.65740- 4 2.40000+ 1 2.70000+ 1 6.34706- 2 1.39170- 4 2.40000+ 1 2.90000+ 1 5.23581- 2 1.74270- 4 2.40000+ 1 3.00000+ 1 7.42738- 2 1.89870- 4 2.40000+ 1 3.20000+ 1 4.66386- 2 2.36590- 4 2.40000+ 1 3.30000+ 1 4.50179- 2 2.38070- 4 2.40000+ 1 4.10000+ 1 2.56649- 3 2.39540- 4 2.50000+ 1 2.50000+ 1 5.31566- 3 1.69360- 4 2.50000+ 1 2.70000+ 1 5.94132- 3 1.42790- 4 2.50000+ 1 2.90000+ 1 1.23028- 2 1.77890- 4 2.50000+ 1 3.00000+ 1 4.94398- 3 1.93490- 4 2.50000+ 1 3.20000+ 1 5.16323- 2 2.40210- 4 2.50000+ 1 3.30000+ 1 1.92766- 3 2.41690- 4 2.50000+ 1 4.10000+ 1 1.90279- 4 2.43160- 4 2.70000+ 1 2.70000+ 1 8.90986- 4 1.16220- 4 2.70000+ 1 2.90000+ 1 1.60124- 3 1.51320- 4 2.70000+ 1 3.00000+ 1 1.58341- 3 1.66920- 4 2.70000+ 1 3.20000+ 1 4.59675- 3 2.13640- 4 2.70000+ 1 3.30000+ 1 1.44920- 3 2.15120- 4 2.70000+ 1 4.10000+ 1 4.14190- 5 2.16590- 4 2.90000+ 1 2.90000+ 1 3.39492- 4 1.86420- 4 2.90000+ 1 3.00000+ 1 1.61403- 3 2.02020- 4 2.90000+ 1 3.20000+ 1 2.51203- 3 2.48740- 4 2.90000+ 1 3.30000+ 1 4.90817- 4 2.50220- 4 2.90000+ 1 4.10000+ 1 2.90260- 5 2.51690- 4 3.00000+ 1 3.00000+ 1 6.04295- 4 2.17620- 4 3.00000+ 1 3.20000+ 1 4.54972- 3 2.64340- 4 3.00000+ 1 3.30000+ 1 3.97298- 4 2.65820- 4 3.00000+ 1 4.10000+ 1 1.87892- 5 2.67290- 4 3.20000+ 1 3.20000+ 1 1.46741- 3 3.11060- 4 3.20000+ 1 3.30000+ 1 2.88663- 3 3.12540- 4 3.20000+ 1 4.10000+ 1 1.23360- 4 3.14010- 4 3.30000+ 1 3.30000+ 1 6.92929- 5 3.14020- 4 3.30000+ 1 4.10000+ 1 1.46651- 5 3.15490- 4 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 7.35007- 6 2.30470- 4 2.50000+ 1 1.56179- 4 2.34090- 4 3.00000+ 1 3.53969- 5 2.58220- 4 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 8.46028- 3 1.44980- 4 2.40000+ 1 2.50000+ 1 3.04151- 1 1.48600- 4 2.40000+ 1 2.70000+ 1 8.62410- 3 1.22030- 4 2.40000+ 1 2.90000+ 1 5.28774- 3 1.57130- 4 2.40000+ 1 3.00000+ 1 1.24834- 2 1.72730- 4 2.40000+ 1 3.20000+ 1 2.70348- 3 2.19450- 4 2.40000+ 1 3.30000+ 1 4.59498- 2 2.20930- 4 2.40000+ 1 4.10000+ 1 3.08552- 4 2.22400- 4 2.50000+ 1 2.50000+ 1 2.34656- 1 1.52220- 4 2.50000+ 1 2.70000+ 1 6.98819- 2 1.25650- 4 2.50000+ 1 2.90000+ 1 7.21511- 2 1.60750- 4 2.50000+ 1 3.00000+ 1 7.61575- 2 1.76350- 4 2.50000+ 1 3.20000+ 1 4.27998- 2 2.23070- 4 2.50000+ 1 3.30000+ 1 8.01890- 2 2.24550- 4 2.50000+ 1 4.10000+ 1 2.86242- 3 2.26020- 4 2.70000+ 1 2.70000+ 1 1.51919- 3 9.90800- 5 2.70000+ 1 2.90000+ 1 1.51499- 3 1.34180- 4 2.70000+ 1 3.00000+ 1 3.27490- 3 1.49780- 4 2.70000+ 1 3.20000+ 1 1.78041- 3 1.96500- 4 2.70000+ 1 3.30000+ 1 6.23185- 3 1.97980- 4 2.70000+ 1 4.10000+ 1 6.86103- 5 1.99450- 4 2.90000+ 1 2.90000+ 1 1.89708- 4 1.69280- 4 2.90000+ 1 3.00000+ 1 2.44144- 3 1.84880- 4 2.90000+ 1 3.20000+ 1 2.07700- 4 2.31600- 4 2.90000+ 1 3.30000+ 1 3.70106- 3 2.33080- 4 2.90000+ 1 4.10000+ 1 2.43694- 5 2.34550- 4 3.00000+ 1 3.00000+ 1 9.02408- 4 2.00480- 4 3.00000+ 1 3.20000+ 1 6.48603- 4 2.47200- 4 3.00000+ 1 3.30000+ 1 5.07470- 3 2.48680- 4 3.00000+ 1 4.10000+ 1 4.08659- 5 2.50150- 4 3.20000+ 1 3.20000+ 1 3.52472- 5 2.93920- 4 3.20000+ 1 3.30000+ 1 2.54232- 3 2.95400- 4 3.20000+ 1 4.10000+ 1 1.60210- 5 2.96870- 4 3.30000+ 1 3.30000+ 1 2.76348- 3 2.96880- 4 3.30000+ 1 4.10000+ 1 1.56707- 4 2.98350- 4 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.31778- 7 7.44700- 5 3.30000+ 1 4.21188- 8 7.59500- 5 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 2.58737- 1 1.67300- 5 3.00000+ 1 3.30000+ 1 3.67670- 2 1.82100- 5 3.00000+ 1 4.10000+ 1 1.17493- 3 1.96800- 5 3.20000+ 1 3.20000+ 1 3.06195- 1 6.34500- 5 3.20000+ 1 3.30000+ 1 3.72977- 1 6.49300- 5 3.20000+ 1 4.10000+ 1 7.59571- 3 6.64000- 5 3.30000+ 1 3.30000+ 1 1.59468- 2 6.64100- 5 3.30000+ 1 4.10000+ 1 6.06152- 4 6.78800- 5 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 6.09150- 7 7.23300- 5 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 6.77769- 2 1.31100- 5 3.00000+ 1 3.30000+ 1 2.70458- 1 1.45900- 5 3.00000+ 1 4.10000+ 1 2.01496- 3 1.60600- 5 3.20000+ 1 3.20000+ 1 1.02844- 2 5.98300- 5 3.20000+ 1 3.30000+ 1 3.03061- 1 6.13100- 5 3.20000+ 1 4.10000+ 1 4.44847- 4 6.27800- 5 3.30000+ 1 3.30000+ 1 3.38188- 1 6.27900- 5 3.30000+ 1 4.10000+ 1 7.77187- 3 6.42600- 5 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 7.54853- 7 3.51000- 5 3.00000+ 1 4.65751- 6 5.07000- 5 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 9.50146- 2 2.40800- 5 2.90000+ 1 3.30000+ 1 1.91010- 1 2.55600- 5 2.90000+ 1 4.10000+ 1 6.72412- 3 2.70300- 5 3.00000+ 1 3.20000+ 1 3.54760- 1 3.96800- 5 3.00000+ 1 3.30000+ 1 2.58025- 1 4.11600- 5 3.00000+ 1 4.10000+ 1 8.52305- 3 4.26300- 5 3.20000+ 1 3.20000+ 1 2.13259- 3 8.64000- 5 3.20000+ 1 3.30000+ 1 7.08952- 2 8.78800- 5 3.20000+ 1 4.10000+ 1 3.12896- 3 8.93500- 5 3.30000+ 1 3.30000+ 1 7.90246- 3 8.93600- 5 3.30000+ 1 4.10000+ 1 1.87791- 3 9.08300- 5 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.19630- 6 6.23200- 5 4.10000+ 1 7.70189- 8 6.52700- 5 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 3.22947- 1 4.58000- 6 3.00000+ 1 3.30000+ 1 5.32899- 2 6.06000- 6 3.00000+ 1 4.10000+ 1 2.54219- 3 7.53000- 6 3.20000+ 1 3.20000+ 1 1.31477- 1 5.13000- 5 3.20000+ 1 3.30000+ 1 4.66256- 1 5.27800- 5 3.20000+ 1 4.10000+ 1 1.02758- 2 5.42500- 5 3.30000+ 1 3.30000+ 1 1.22769- 2 5.42600- 5 3.30000+ 1 4.10000+ 1 9.33049- 4 5.57300- 5 1 78000 0 7 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.41070- 8 4.67200- 5 3.30000+ 1 2.38260- 7 4.82000- 5 4.10000+ 1 3.06950- 8 4.96700- 5 1 78000 0 9 1.95090+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 3.59504- 2 3.57000- 5 3.20000+ 1 3.30000+ 1 6.24528- 1 3.71800- 5 3.20000+ 1 4.10000+ 1 7.48100- 3 3.86500- 5 3.30000+ 1 3.30000+ 1 3.13309- 1 3.86600- 5 3.30000+ 1 4.10000+ 1 1.87307- 2 4.01300- 5 1 79000 0 0 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 1.00000+ 0 1 79000 0 0 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.09600- 2 3.00000+ 0 1.43360- 2 5.00000+ 0 1.37760- 2 6.00000+ 0 1.19220- 2 8.00000+ 0 3.40140- 3 1.00000+ 1 3.14430- 3 1.10000+ 1 2.73400- 3 1.30000+ 1 2.30070- 3 1.40000+ 1 2.21220- 3 1.60000+ 1 7.47400- 4 1.80000+ 1 6.36280- 4 1.90000+ 1 5.37390- 4 2.10000+ 1 3.53480- 4 2.20000+ 1 3.35050- 4 2.40000+ 1 9.73700- 5 2.50000+ 1 9.33900- 5 2.70000+ 1 1.15230- 4 2.90000+ 1 7.85500- 5 3.00000+ 1 6.13700- 5 3.20000+ 1 1.21600- 5 3.30000+ 1 1.04600- 5 4.10000+ 1 8.30000- 6 1 79000 0 0 1.96966+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.12490- 1 3.00000+ 0 2.68780- 2 5.00000+ 0 2.68640- 2 6.00000+ 0 1.96920- 2 8.00000+ 0 8.56100- 3 1.00000+ 1 8.44820- 3 1.10000+ 1 6.67610- 3 1.30000+ 1 6.53130- 3 1.40000+ 1 6.15350- 3 1.60000+ 1 2.80360- 3 1.80000+ 1 2.67720- 3 1.90000+ 1 2.14480- 3 2.10000+ 1 1.92610- 3 2.20000+ 1 1.81650- 3 2.40000+ 1 1.43510- 3 2.50000+ 1 1.39840- 3 2.70000+ 1 6.97240- 4 2.90000+ 1 5.94990- 4 3.00000+ 1 4.62910- 4 3.20000+ 1 2.53890- 4 3.30000+ 1 2.30140- 4 4.10000+ 1 7.05200- 5 1 79000 0 0 1.96966+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.91640-11 3.00000+ 0 3.71870-10 5.00000+ 0 3.05640-10 6.00000+ 0 3.50830-10 8.00000+ 0 9.66170-10 1.00000+ 1 9.13650-10 1.10000+ 1 9.96290-10 1.30000+ 1 8.66540-10 1.40000+ 1 8.91640-10 1.60000+ 1 2.14090- 9 1.80000+ 1 2.15010- 9 1.90000+ 1 2.32780- 9 2.10000+ 1 2.36480- 9 2.20000+ 1 2.42240- 9 2.40000+ 1 2.55910- 9 2.50000+ 1 2.59380- 9 2.70000+ 1 4.85020- 9 2.90000+ 1 5.22470- 9 3.00000+ 1 5.73830- 9 3.20000+ 1 7.86610- 9 3.30000+ 1 8.24060- 9 4.10000+ 1 1.50760- 8 1 79000 0 0 1.96966+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.90410- 5 3.00000+ 0 1.11700- 6 5.00000+ 0 1.96180- 6 6.00000+ 0 1.71610- 6 8.00000+ 0 4.13820- 8 1.00000+ 1 4.58100- 8 1.10000+ 1 4.89240- 8 1.30000+ 1 6.08720- 8 1.40000+ 1 5.70280- 8 1.60000+ 1 1.43180- 9 1.80000+ 1 2.28870- 9 1.90000+ 1 1.41160- 9 2.10000+ 1 1.55460- 9 2.20000+ 1 1.32310- 9 2.40000+ 1 9.79040-12 2.50000+ 1 8.71480-12 2.70000+ 1 7.63470-11 2.90000+ 1 1.37000-10 3.00000+ 1 7.86390-11 1 79000 0 0 1.96966+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.97520- 6 3.00000+ 0 1.24780- 5 5.00000+ 0 3.43870- 6 6.00000+ 0 3.65570- 6 8.00000+ 0 1.86250- 5 1.00000+ 1 1.26620- 5 1.10000+ 1 1.08160- 5 1.30000+ 1 2.17470- 6 1.40000+ 1 2.12520- 6 1.60000+ 1 1.55980- 5 1.80000+ 1 1.36080- 5 1.90000+ 1 9.51060- 6 2.10000+ 1 8.12080- 6 2.20000+ 1 7.27590- 6 2.40000+ 1 3.89670- 7 2.50000+ 1 3.34920- 7 2.70000+ 1 1.84250- 5 2.90000+ 1 8.49010- 6 3.00000+ 1 8.30670- 6 1 79000 0 0 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.40533- 4 3.00000+ 0 1.99619- 4 5.00000+ 0 1.45221- 4 6.00000+ 0 1.40916- 4 8.00000+ 0 1.39755- 4 1.00000+ 1 1.20598- 4 1.10000+ 1 1.07780- 4 1.30000+ 1 8.22569- 5 1.40000+ 1 7.90726- 5 1.60000+ 1 7.78513- 5 1.80000+ 1 7.00368- 5 1.90000+ 1 6.73710- 5 2.10000+ 1 5.09321- 5 2.20000+ 1 4.83534- 5 2.40000+ 1 2.77358- 5 2.50000+ 1 2.51213- 5 2.70000+ 1 3.31404- 5 2.90000+ 1 2.60659- 5 3.00000+ 1 2.19987- 5 3.20000+ 1 1.21600- 5 3.30000+ 1 1.04600- 5 4.10000+ 1 8.30000- 6 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.28593+ 0 3.00000+ 0 3.92856- 1 5.00000+ 0 4.44393- 1 6.00000+ 0 3.60475- 1 8.00000+ 0 3.04623- 2 1.00000+ 1 3.02734- 2 1.10000+ 1 2.85475- 2 1.30000+ 1 3.20480- 2 1.40000+ 1 3.02100- 2 1.60000+ 1 1.03492- 3 1.80000+ 1 1.28226- 3 1.90000+ 1 6.04691- 4 2.10000+ 1 2.43234- 4 2.20000+ 1 2.24014- 4 2.40000+ 1 1.64557- 6 2.50000+ 1 1.26191- 6 2.70000+ 1 7.07660- 6 2.90000+ 1 2.02595- 6 3.00000+ 1 4.29061- 7 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.07812- 2 3.00000+ 0 3.64929- 3 5.00000+ 0 4.77534- 3 6.00000+ 0 3.26201- 3 8.00000+ 0 6.57650- 5 1.00000+ 1 6.54090- 5 1.10000+ 1 6.04235- 5 1.30000+ 1 6.84276- 5 1.40000+ 1 6.25767- 5 1.60000+ 1 3.72792- 7 1.80000+ 1 4.13845- 7 1.90000+ 1 1.80736- 7 2.10000+ 1 6.26583- 8 2.20000+ 1 5.48666- 8 2.40000+ 1 1.31165-10 2.50000+ 1 1.00390-10 2.70000+ 1 3.72496-10 2.90000+ 1 1.33002-10 3.00000+ 1 2.18806-11 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16619+ 1 3.00000+ 0 1.69799+ 1 5.00000+ 0 1.20379+ 1 6.00000+ 0 1.17127+ 1 8.00000+ 0 1.16210+ 1 1.00000+ 1 9.81377+ 0 1.10000+ 1 8.80189+ 0 1.30000+ 1 6.35063+ 0 1.40000+ 1 6.13172+ 0 1.60000+ 1 6.00126+ 0 1.80000+ 1 5.25450+ 0 1.90000+ 1 5.06869+ 0 2.10000+ 1 3.51915+ 0 2.20000+ 1 3.37803+ 0 2.40000+ 1 1.41711+ 0 2.50000+ 1 1.31094+ 0 2.70000+ 1 1.97190+ 0 2.90000+ 1 1.29183+ 0 3.00000+ 1 1.00000+ 0 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00383- 2 3.00000+ 0 1.04871- 2 5.00000+ 0 8.85544- 3 6.00000+ 0 8.51908- 3 8.00000+ 0 3.19588- 3 1.00000+ 1 2.95829- 3 1.10000+ 1 2.56580- 3 1.30000+ 1 2.15002- 3 1.40000+ 1 2.07055- 3 1.60000+ 1 6.69176- 4 1.80000+ 1 5.65829- 4 1.90000+ 1 4.69838- 4 2.10000+ 1 3.02485- 4 2.20000+ 1 2.86642- 4 2.40000+ 1 6.96341- 5 2.50000+ 1 6.82686- 5 2.70000+ 1 8.20892- 5 2.90000+ 1 5.24840- 5 3.00000+ 1 3.93713- 5 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.80091- 1 6.71840- 2 6.00000+ 0 4.76571- 1 6.90380- 2 1.00000+ 1 5.24202- 2 7.78157- 2 1.10000+ 1 1.01430- 1 7.82260- 2 1.30000+ 1 1.31510- 3 7.86593- 2 1.40000+ 1 1.61690- 3 7.87478- 2 1.80000+ 1 1.22910- 2 8.03237- 2 1.90000+ 1 2.40161- 2 8.04226- 2 2.10000+ 1 3.37751- 4 8.06065- 2 2.20000+ 1 4.14171- 4 8.06249- 2 2.90000+ 1 2.83061- 3 8.08814- 2 3.00000+ 1 5.59672- 3 8.08986- 2 3.20000+ 1 3.16611- 5 8.09478- 2 3.30000+ 1 3.77531- 5 8.09495- 2 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.30255- 3 5.22880- 2 3.00000+ 0 5.00000+ 0 6.62149- 3 5.28480- 2 3.00000+ 0 6.00000+ 0 3.95301- 3 5.47020- 2 3.00000+ 0 8.00000+ 0 1.72408- 3 6.32226- 2 3.00000+ 0 1.00000+ 1 1.42367- 3 6.34797- 2 3.00000+ 0 1.10000+ 1 9.14830- 4 6.38900- 2 3.00000+ 0 1.30000+ 1 7.61366- 5 6.43233- 2 3.00000+ 0 1.40000+ 1 5.89658- 5 6.44118- 2 3.00000+ 0 1.60000+ 1 4.27459- 4 6.58766- 2 3.00000+ 0 1.80000+ 1 3.44093- 4 6.59877- 2 3.00000+ 0 1.90000+ 1 2.20003- 4 6.60866- 2 3.00000+ 0 2.10000+ 1 1.93733- 5 6.62705- 2 3.00000+ 0 2.20000+ 1 1.47990- 5 6.62889- 2 3.00000+ 0 2.40000+ 1 5.64817- 8 6.65266- 2 3.00000+ 0 2.50000+ 1 5.64817- 8 6.65306- 2 3.00000+ 0 2.70000+ 1 8.54028- 5 6.65088- 2 3.00000+ 0 2.90000+ 1 6.02661- 5 6.65454- 2 3.00000+ 0 3.00000+ 1 3.68258- 5 6.65626- 2 3.00000+ 0 3.20000+ 1 1.75097- 6 6.66118- 2 3.00000+ 0 3.30000+ 1 1.24260- 6 6.66135- 2 5.00000+ 0 5.00000+ 0 3.90627- 4 5.34080- 2 5.00000+ 0 6.00000+ 0 7.11707- 3 5.52620- 2 5.00000+ 0 8.00000+ 0 1.14611- 3 6.37826- 2 5.00000+ 0 1.00000+ 1 1.47247- 4 6.40397- 2 5.00000+ 0 1.10000+ 1 1.37484- 3 6.44500- 2 5.00000+ 0 1.30000+ 1 7.90179- 5 6.48833- 2 5.00000+ 0 1.40000+ 1 2.12991- 4 6.49718- 2 5.00000+ 0 1.60000+ 1 2.74882- 4 6.64366- 2 5.00000+ 0 1.80000+ 1 3.45667- 5 6.65477- 2 5.00000+ 0 1.90000+ 1 3.17310- 4 6.66466- 2 5.00000+ 0 2.10000+ 1 1.93730- 5 6.68305- 2 5.00000+ 0 2.20000+ 1 5.23556- 5 6.68489- 2 5.00000+ 0 2.40000+ 1 5.08352- 7 6.70866- 2 5.00000+ 0 2.50000+ 1 7.90750- 7 6.70906- 2 5.00000+ 0 2.70000+ 1 5.45041- 5 6.70688- 2 5.00000+ 0 2.90000+ 1 5.98714- 6 6.71054- 2 5.00000+ 0 3.00000+ 1 5.26966- 5 6.71226- 2 5.00000+ 0 3.20000+ 1 1.75094- 6 6.71718- 2 5.00000+ 0 3.30000+ 1 4.40542- 6 6.71735- 2 6.00000+ 0 6.00000+ 0 3.10723- 3 5.71160- 2 6.00000+ 0 8.00000+ 0 6.25059- 4 6.56366- 2 6.00000+ 0 1.00000+ 1 1.26020- 3 6.58937- 2 6.00000+ 0 1.10000+ 1 1.23976- 3 6.63040- 2 6.00000+ 0 1.30000+ 1 2.38591- 4 6.67373- 2 6.00000+ 0 1.40000+ 1 2.00566- 4 6.68258- 2 6.00000+ 0 1.60000+ 1 1.46689- 4 6.82906- 2 6.00000+ 0 1.80000+ 1 2.92076- 4 6.84017- 2 6.00000+ 0 1.90000+ 1 2.88635- 4 6.85006- 2 6.00000+ 0 2.10000+ 1 5.91395- 5 6.86845- 2 6.00000+ 0 2.20000+ 1 4.94792- 5 6.87029- 2 6.00000+ 0 2.40000+ 1 9.03740- 7 6.89406- 2 6.00000+ 0 2.50000+ 1 9.60189- 7 6.89446- 2 6.00000+ 0 2.70000+ 1 2.89196- 5 6.89228- 2 6.00000+ 0 2.90000+ 1 5.06642- 5 6.89594- 2 6.00000+ 0 3.00000+ 1 4.80116- 5 6.89766- 2 6.00000+ 0 3.20000+ 1 5.30954- 6 6.90258- 2 6.00000+ 0 3.30000+ 1 4.12347- 6 6.90275- 2 8.00000+ 0 8.00000+ 0 1.69965- 4 7.41572- 2 8.00000+ 0 1.00000+ 1 2.47222- 4 7.44143- 2 8.00000+ 0 1.10000+ 1 1.45949- 4 7.48246- 2 8.00000+ 0 1.30000+ 1 1.18046- 5 7.52579- 2 8.00000+ 0 1.40000+ 1 8.58559- 6 7.53464- 2 8.00000+ 0 1.60000+ 1 8.39901- 5 7.68112- 2 8.00000+ 0 1.80000+ 1 5.98164- 5 7.69223- 2 8.00000+ 0 1.90000+ 1 3.51884- 5 7.70212- 2 8.00000+ 0 2.10000+ 1 2.99362- 6 7.72051- 2 8.00000+ 0 2.20000+ 1 2.14640- 6 7.72235- 2 8.00000+ 0 2.70000+ 1 1.67751- 5 7.74434- 2 8.00000+ 0 2.90000+ 1 1.04495- 5 7.74800- 2 8.00000+ 0 3.00000+ 1 5.87416- 6 7.74972- 2 8.00000+ 0 3.20000+ 1 2.82410- 7 7.75464- 2 8.00000+ 0 3.30000+ 1 1.69446- 7 7.75481- 2 1.00000+ 1 1.00000+ 1 1.35002- 5 7.46714- 2 1.00000+ 1 1.10000+ 1 2.50117- 4 7.50817- 2 1.00000+ 1 1.30000+ 1 1.20314- 5 7.55150- 2 1.00000+ 1 1.40000+ 1 2.85241- 5 7.56035- 2 1.00000+ 1 1.60000+ 1 5.93090- 5 7.70683- 2 1.00000+ 1 1.80000+ 1 6.32609- 6 7.71794- 2 1.00000+ 1 1.90000+ 1 5.80659- 5 7.72783- 2 1.00000+ 1 2.10000+ 1 2.99367- 6 7.74622- 2 1.00000+ 1 2.20000+ 1 7.06045- 6 7.74806- 2 1.00000+ 1 2.40000+ 1 5.64838- 8 7.77183- 2 1.00000+ 1 2.50000+ 1 1.12965- 7 7.77223- 2 1.00000+ 1 2.70000+ 1 1.17486- 5 7.77005- 2 1.00000+ 1 2.90000+ 1 1.07321- 6 7.77371- 2 1.00000+ 1 3.00000+ 1 9.65872- 6 7.77543- 2 1.00000+ 1 3.20000+ 1 2.82414- 7 7.78035- 2 1.00000+ 1 3.30000+ 1 6.21332- 7 7.78052- 2 1.10000+ 1 1.10000+ 1 1.24835- 4 7.54920- 2 1.10000+ 1 1.30000+ 1 3.80699- 5 7.59253- 2 1.10000+ 1 1.40000+ 1 3.10101- 5 7.60138- 2 1.10000+ 1 1.60000+ 1 3.43425- 5 7.74786- 2 1.10000+ 1 1.80000+ 1 5.82908- 5 7.75897- 2 1.10000+ 1 1.90000+ 1 5.82336- 5 7.76886- 2 1.10000+ 1 2.10000+ 1 9.54585- 6 7.78725- 2 1.10000+ 1 2.20000+ 1 7.68196- 6 7.78909- 2 1.10000+ 1 2.40000+ 1 1.12964- 7 7.81286- 2 1.10000+ 1 2.50000+ 1 1.12964- 7 7.81326- 2 1.10000+ 1 2.70000+ 1 6.77787- 6 7.81108- 2 1.10000+ 1 2.90000+ 1 1.01105- 5 7.81474- 2 1.10000+ 1 3.00000+ 1 9.65862- 6 7.81646- 2 1.10000+ 1 3.20000+ 1 8.47243- 7 7.82138- 2 1.10000+ 1 3.30000+ 1 6.21325- 7 7.82155- 2 1.30000+ 1 1.30000+ 1 5.64825- 8 7.63586- 2 1.30000+ 1 1.40000+ 1 4.46209- 6 7.64471- 2 1.30000+ 1 1.60000+ 1 2.76763- 6 7.79119- 2 1.30000+ 1 1.80000+ 1 2.71119- 6 7.80230- 2 1.30000+ 1 1.90000+ 1 8.41620- 6 7.81219- 2 1.30000+ 1 2.10000+ 1 5.64825- 8 7.83058- 2 1.30000+ 1 2.20000+ 1 1.07318- 6 7.83242- 2 1.30000+ 1 2.70000+ 1 5.64825- 7 7.85441- 2 1.30000+ 1 2.90000+ 1 4.51863- 7 7.85807- 2 1.30000+ 1 3.00000+ 1 1.41215- 6 7.85979- 2 1.30000+ 1 3.30000+ 1 1.12962- 7 7.86488- 2 1.40000+ 1 1.40000+ 1 1.07315- 6 7.65356- 2 1.40000+ 1 1.60000+ 1 1.97679- 6 7.80004- 2 1.40000+ 1 1.80000+ 1 6.21298- 6 7.81115- 2 1.40000+ 1 1.90000+ 1 6.83411- 6 7.82104- 2 1.40000+ 1 2.10000+ 1 1.07315- 6 7.83943- 2 1.40000+ 1 2.20000+ 1 5.08349- 7 7.84127- 2 1.40000+ 1 2.70000+ 1 3.95358- 7 7.86326- 2 1.40000+ 1 2.90000+ 1 1.07315- 6 7.86692- 2 1.40000+ 1 3.00000+ 1 1.12959- 6 7.86864- 2 1.40000+ 1 3.20000+ 1 1.12959- 7 7.87356- 2 1.40000+ 1 3.30000+ 1 5.64807- 8 7.87373- 2 1.60000+ 1 1.60000+ 1 1.03447- 5 7.94652- 2 1.60000+ 1 1.80000+ 1 1.42806- 5 7.95763- 2 1.60000+ 1 1.90000+ 1 8.26456- 6 7.96752- 2 1.60000+ 1 2.10000+ 1 7.30880- 7 7.98591- 2 1.60000+ 1 2.20000+ 1 5.06012- 7 7.98775- 2 1.60000+ 1 2.70000+ 1 4.10436- 6 8.00974- 2 1.60000+ 1 2.90000+ 1 2.53000- 6 8.01340- 2 1.60000+ 1 3.00000+ 1 1.40561- 6 8.01512- 2 1.60000+ 1 3.20000+ 1 5.62210- 8 8.02004- 2 1.60000+ 1 3.30000+ 1 5.62210- 8 8.02021- 2 1.80000+ 1 1.80000+ 1 7.34271- 7 7.96874- 2 1.80000+ 1 1.90000+ 1 1.35559- 5 7.97863- 2 1.80000+ 1 2.10000+ 1 6.77770- 7 7.99702- 2 1.80000+ 1 2.20000+ 1 1.52501- 6 7.99887- 2 1.80000+ 1 2.70000+ 1 2.82404- 6 8.02085- 2 1.80000+ 1 2.90000+ 1 2.82404- 7 8.02452- 2 1.80000+ 1 3.00000+ 1 2.25923- 6 8.02623- 2 1.80000+ 1 3.20000+ 1 5.64818- 8 8.03116- 2 1.80000+ 1 3.30000+ 1 1.12961- 7 8.03133- 2 1.90000+ 1 1.90000+ 1 6.66161- 6 7.98852- 2 1.90000+ 1 2.10000+ 1 2.05401- 6 8.00691- 2 1.90000+ 1 2.20000+ 1 1.66541- 6 8.00876- 2 1.90000+ 1 2.70000+ 1 1.60993- 6 8.03074- 2 1.90000+ 1 2.90000+ 1 2.33148- 6 8.03441- 2 1.90000+ 1 3.00000+ 1 2.22053- 6 8.03612- 2 1.90000+ 1 3.20000+ 1 1.66541- 7 8.04104- 2 1.90000+ 1 3.30000+ 1 1.66541- 7 8.04121- 2 2.10000+ 1 2.20000+ 1 3.05395- 7 8.02715- 2 2.10000+ 1 2.70000+ 1 1.22157- 7 8.04913- 2 2.10000+ 1 2.90000+ 1 1.22157- 7 8.05280- 2 2.10000+ 1 3.00000+ 1 3.66473- 7 8.05451- 2 2.20000+ 1 2.20000+ 1 5.64827- 8 8.02899- 2 2.20000+ 1 2.70000+ 1 1.12963- 7 8.05097- 2 2.20000+ 1 2.90000+ 1 2.82408- 7 8.05464- 2 2.20000+ 1 3.00000+ 1 2.82408- 7 8.05636- 2 2.70000+ 1 2.70000+ 1 3.99191- 7 8.07295- 2 2.70000+ 1 2.90000+ 1 5.13277- 7 8.07662- 2 2.70000+ 1 3.00000+ 1 2.85136- 7 8.07834- 2 2.90000+ 1 3.00000+ 1 4.02811- 7 8.08201- 2 3.00000+ 1 3.00000+ 1 1.77187- 7 8.08373- 2 3.00000+ 1 3.20000+ 1 5.90633- 8 8.08865- 2 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.10171- 5 5.60000- 4 6.00000+ 0 2.12981- 3 2.41400- 3 1.00000+ 1 2.74491- 2 1.11917- 2 1.10000+ 1 3.16762- 2 1.16020- 2 1.30000+ 1 9.15155- 4 1.20353- 2 1.40000+ 1 1.36981- 3 1.21238- 2 1.80000+ 1 6.94594- 3 1.36997- 2 1.90000+ 1 8.63255- 3 1.37986- 2 2.10000+ 1 1.36301- 4 1.39825- 2 2.20000+ 1 2.14631- 4 1.40009- 2 2.90000+ 1 1.24331- 3 1.42574- 2 3.00000+ 1 1.49921- 3 1.42746- 2 3.20000+ 1 1.18361- 5 1.43238- 2 3.30000+ 1 1.82301- 5 1.43255- 2 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90000+ 1 1.64737- 2 2.26100- 5 5.00000+ 0 2.10000+ 1 4.59767- 3 2.06520- 4 5.00000+ 0 2.20000+ 1 6.23593- 3 2.24950- 4 5.00000+ 0 2.40000+ 1 1.39012- 2 4.62630- 4 5.00000+ 0 2.50000+ 1 1.84133- 2 4.66610- 4 5.00000+ 0 2.70000+ 1 3.98750- 3 4.44770- 4 5.00000+ 0 2.90000+ 1 2.78283- 3 4.81450- 4 5.00000+ 0 3.00000+ 1 2.60677- 3 4.98630- 4 5.00000+ 0 3.20000+ 1 4.14216- 4 5.47840- 4 5.00000+ 0 3.30000+ 1 5.39291- 4 5.49540- 4 6.00000+ 0 1.30000+ 1 2.34701- 1 1.13300- 4 6.00000+ 0 1.40000+ 1 3.04226- 1 2.01800- 4 6.00000+ 0 1.60000+ 1 1.89840- 2 1.66660- 3 6.00000+ 0 1.80000+ 1 7.60389- 3 1.77772- 3 6.00000+ 0 1.90000+ 1 1.17365- 2 1.87661- 3 6.00000+ 0 2.10000+ 1 2.95208- 2 2.06052- 3 6.00000+ 0 2.20000+ 1 3.53865- 2 2.07895- 3 6.00000+ 0 2.40000+ 1 2.09135- 2 2.31663- 3 6.00000+ 0 2.50000+ 1 2.61345- 2 2.32061- 3 6.00000+ 0 2.70000+ 1 3.61403- 3 2.29877- 3 6.00000+ 0 2.90000+ 1 1.30272- 3 2.33545- 3 6.00000+ 0 3.00000+ 1 1.94729- 3 2.35263- 3 6.00000+ 0 3.20000+ 1 2.44209- 3 2.40184- 3 6.00000+ 0 3.30000+ 1 2.72152- 3 2.40354- 3 8.00000+ 0 8.00000+ 0 5.01351- 3 7.53320- 3 8.00000+ 0 1.00000+ 1 1.02720- 2 7.79030- 3 8.00000+ 0 1.10000+ 1 1.65488- 2 8.20060- 3 8.00000+ 0 1.30000+ 1 1.23896- 2 8.63390- 3 8.00000+ 0 1.40000+ 1 1.60938- 2 8.72240- 3 8.00000+ 0 1.60000+ 1 2.11258- 3 1.01872- 2 8.00000+ 0 1.80000+ 1 2.44682- 3 1.02983- 2 8.00000+ 0 1.90000+ 1 3.87904- 3 1.03972- 2 8.00000+ 0 2.10000+ 1 2.61818- 3 1.05811- 2 8.00000+ 0 2.20000+ 1 3.36984- 3 1.05995- 2 8.00000+ 0 2.40000+ 1 2.04110- 4 1.08372- 2 8.00000+ 0 2.50000+ 1 2.26916- 4 1.08412- 2 8.00000+ 0 2.70000+ 1 4.11019- 4 1.08194- 2 8.00000+ 0 2.90000+ 1 4.26826- 4 1.08560- 2 8.00000+ 0 3.00000+ 1 6.45542- 4 1.08732- 2 8.00000+ 0 3.20000+ 1 2.28125- 4 1.09224- 2 8.00000+ 0 3.30000+ 1 2.75746- 4 1.09241- 2 1.00000+ 1 1.00000+ 1 2.24114- 5 8.04740- 3 1.00000+ 1 1.10000+ 1 2.13916- 4 8.45770- 3 1.00000+ 1 1.30000+ 1 6.20723- 4 8.89100- 3 1.00000+ 1 1.40000+ 1 5.26352- 3 8.97950- 3 1.00000+ 1 1.60000+ 1 1.70595- 3 1.04443- 2 1.00000+ 1 1.80000+ 1 3.20164- 6 1.05554- 2 1.00000+ 1 1.90000+ 1 4.32221- 5 1.06543- 2 1.00000+ 1 2.10000+ 1 1.17256- 4 1.08382- 2 1.00000+ 1 2.20000+ 1 7.05375- 4 1.08566- 2 1.00000+ 1 2.40000+ 1 7.38409- 5 1.10943- 2 1.00000+ 1 2.50000+ 1 2.58527- 4 1.10983- 2 1.00000+ 1 2.70000+ 1 3.13166- 4 1.10765- 2 1.00000+ 1 2.90000+ 1 4.00208- 7 1.11131- 2 1.00000+ 1 3.00000+ 1 7.00357- 6 1.11303- 2 1.00000+ 1 3.20000+ 1 1.02049- 5 1.11795- 2 1.00000+ 1 3.30000+ 1 5.40290- 5 1.11812- 2 1.10000+ 1 1.10000+ 1 5.11481- 4 8.86800- 3 1.10000+ 1 1.30000+ 1 1.90963- 3 9.30130- 3 1.10000+ 1 1.40000+ 1 1.17407- 3 9.38980- 3 1.10000+ 1 1.60000+ 1 2.71348- 3 1.08546- 2 1.10000+ 1 1.80000+ 1 4.98274- 5 1.09657- 2 1.10000+ 1 1.90000+ 1 1.79885- 4 1.10646- 2 1.10000+ 1 2.10000+ 1 1.69897- 4 1.12485- 2 1.10000+ 1 2.20000+ 1 9.06455- 5 1.12669- 2 1.10000+ 1 2.40000+ 1 1.35874- 4 1.15046- 2 1.10000+ 1 2.50000+ 1 1.13058- 4 1.15086- 2 1.10000+ 1 2.70000+ 1 4.96864- 4 1.14868- 2 1.10000+ 1 2.90000+ 1 8.60494- 6 1.15234- 2 1.10000+ 1 3.00000+ 1 2.84155- 5 1.15406- 2 1.10000+ 1 3.20000+ 1 1.28065- 5 1.15898- 2 1.10000+ 1 3.30000+ 1 6.40347- 6 1.15915- 2 1.30000+ 1 1.30000+ 1 7.31586- 4 9.73460- 3 1.30000+ 1 1.40000+ 1 2.20656- 2 9.82310- 3 1.30000+ 1 1.60000+ 1 1.86244- 3 1.12879- 2 1.30000+ 1 1.80000+ 1 1.79694- 4 1.13990- 2 1.30000+ 1 1.90000+ 1 4.97862- 4 1.14979- 2 1.30000+ 1 2.10000+ 1 3.01760- 4 1.16818- 2 1.30000+ 1 2.20000+ 1 3.22996- 3 1.17002- 2 1.30000+ 1 2.40000+ 1 2.21916- 4 1.19379- 2 1.30000+ 1 2.50000+ 1 6.14328- 4 1.19419- 2 1.30000+ 1 2.70000+ 1 3.35374- 4 1.19201- 2 1.30000+ 1 2.90000+ 1 3.26176- 5 1.19567- 2 1.30000+ 1 3.00000+ 1 8.44453- 5 1.19739- 2 1.30000+ 1 3.20000+ 1 2.62138- 5 1.20231- 2 1.30000+ 1 3.30000+ 1 2.49340- 4 1.20248- 2 1.40000+ 1 1.40000+ 1 6.11995- 3 9.91160- 3 1.40000+ 1 1.60000+ 1 2.45316- 3 1.13764- 2 1.40000+ 1 1.80000+ 1 1.11415- 3 1.14875- 2 1.40000+ 1 1.90000+ 1 3.15961- 4 1.15864- 2 1.40000+ 1 2.10000+ 1 3.13961- 3 1.17703- 2 1.40000+ 1 2.20000+ 1 1.89148- 3 1.17887- 2 1.40000+ 1 2.40000+ 1 6.78551- 4 1.20264- 2 1.40000+ 1 2.50000+ 1 5.14467- 4 1.20304- 2 1.40000+ 1 2.70000+ 1 4.43822- 4 1.20086- 2 1.40000+ 1 2.90000+ 1 1.90098- 4 1.20452- 2 1.40000+ 1 3.00000+ 1 5.40281- 5 1.20624- 2 1.40000+ 1 3.20000+ 1 2.56334- 4 1.21116- 2 1.40000+ 1 3.30000+ 1 1.47477- 4 1.21133- 2 1.60000+ 1 1.60000+ 1 2.09913- 4 1.28412- 2 1.60000+ 1 1.80000+ 1 4.07400- 4 1.29523- 2 1.60000+ 1 1.90000+ 1 6.38329- 4 1.30512- 2 1.60000+ 1 2.10000+ 1 3.94603- 4 1.32351- 2 1.60000+ 1 2.20000+ 1 5.11667- 4 1.32535- 2 1.60000+ 1 2.40000+ 1 2.54134- 5 1.34912- 2 1.60000+ 1 2.50000+ 1 2.72140- 5 1.34952- 2 1.60000+ 1 2.70000+ 1 8.06422- 5 1.34734- 2 1.60000+ 1 2.90000+ 1 7.10364- 5 1.35100- 2 1.60000+ 1 3.00000+ 1 1.06256- 4 1.35272- 2 1.60000+ 1 3.20000+ 1 3.44164- 5 1.35764- 2 1.60000+ 1 3.30000+ 1 4.18218- 5 1.35781- 2 1.80000+ 1 1.90000+ 1 1.02048- 5 1.31623- 2 1.80000+ 1 2.10000+ 1 2.98157- 5 1.33462- 2 1.80000+ 1 2.20000+ 1 1.55077- 4 1.33647- 2 1.80000+ 1 2.40000+ 1 1.02048- 5 1.36023- 2 1.80000+ 1 2.50000+ 1 4.02214- 5 1.36063- 2 1.80000+ 1 2.70000+ 1 7.48401- 5 1.35845- 2 1.80000+ 1 3.00000+ 1 1.60086- 6 1.36383- 2 1.80000+ 1 3.20000+ 1 2.60134- 6 1.36876- 2 1.80000+ 1 3.30000+ 1 1.20054- 5 1.36893- 2 1.90000+ 1 1.90000+ 1 1.52081- 5 1.32612- 2 1.90000+ 1 2.10000+ 1 5.02273- 5 1.34451- 2 1.90000+ 1 2.20000+ 1 2.98163- 5 1.34636- 2 1.90000+ 1 2.40000+ 1 2.68138- 5 1.37012- 2 1.90000+ 1 2.50000+ 1 2.18118- 5 1.37052- 2 1.90000+ 1 2.70000+ 1 1.16867- 4 1.36834- 2 1.90000+ 1 2.90000+ 1 1.80105- 6 1.37201- 2 1.90000+ 1 3.00000+ 1 4.80259- 6 1.37372- 2 1.90000+ 1 3.20000+ 1 3.80207- 6 1.37864- 2 1.90000+ 1 3.30000+ 1 2.20118- 6 1.37881- 2 2.10000+ 1 2.10000+ 1 2.88152- 5 1.36290- 2 2.10000+ 1 2.20000+ 1 5.02658- 4 1.36475- 2 2.10000+ 1 2.40000+ 1 3.16167- 5 1.38851- 2 2.10000+ 1 2.50000+ 1 6.66356- 5 1.38891- 2 2.10000+ 1 2.70000+ 1 7.10377- 5 1.38673- 2 2.10000+ 1 2.90000+ 1 5.20276- 6 1.39040- 2 2.10000+ 1 3.00000+ 1 8.60487- 6 1.39211- 2 2.10000+ 1 3.20000+ 1 5.00270- 6 1.39704- 2 2.10000+ 1 3.30000+ 1 3.92201- 5 1.39721- 2 2.20000+ 1 2.20000+ 1 1.56679- 4 1.36659- 2 2.20000+ 1 2.40000+ 1 7.74443- 5 1.39036- 2 2.20000+ 1 2.50000+ 1 6.54338- 5 1.39076- 2 2.20000+ 1 2.70000+ 1 9.24444- 5 1.38857- 2 2.20000+ 1 2.90000+ 1 2.66137- 5 1.39224- 2 2.20000+ 1 3.00000+ 1 5.20276- 6 1.39396- 2 2.20000+ 1 3.20000+ 1 4.16216- 5 1.39888- 2 2.20000+ 1 3.30000+ 1 2.46131- 5 1.39905- 2 2.40000+ 1 2.40000+ 1 1.06508- 6 1.41413- 2 2.40000+ 1 2.50000+ 1 1.94386- 5 1.41452- 2 2.40000+ 1 2.70000+ 1 5.85802- 6 1.41234- 2 2.40000+ 1 2.90000+ 1 2.13024- 6 1.41601- 2 2.40000+ 1 3.00000+ 1 5.59181- 6 1.41773- 2 2.40000+ 1 3.20000+ 1 3.46157- 6 1.42265- 2 2.40000+ 1 3.30000+ 1 7.72193- 6 1.42282- 2 2.50000+ 1 2.50000+ 1 4.49948- 6 1.41492- 2 2.50000+ 1 2.70000+ 1 6.89925- 6 1.41274- 2 2.50000+ 1 2.90000+ 1 9.59892- 6 1.41641- 2 2.50000+ 1 3.00000+ 1 5.09927- 6 1.41812- 2 2.50000+ 1 3.20000+ 1 7.79910- 6 1.42304- 2 2.50000+ 1 3.30000+ 1 7.49920- 6 1.42321- 2 2.70000+ 1 2.70000+ 1 1.74577- 5 1.41055- 2 2.70000+ 1 2.90000+ 1 2.90954- 5 1.41422- 2 2.70000+ 1 3.00000+ 1 4.34206- 5 1.41594- 2 2.70000+ 1 3.20000+ 1 1.38767- 5 1.42086- 2 2.70000+ 1 3.30000+ 1 1.70102- 5 1.42103- 2 2.90000+ 1 3.00000+ 1 6.94947- 7 1.41961- 2 2.90000+ 1 3.20000+ 1 1.38993- 6 1.42453- 2 2.90000+ 1 3.30000+ 1 6.94947- 6 1.42470- 2 3.00000+ 1 3.00000+ 1 1.23363- 6 1.42133- 2 3.00000+ 1 3.20000+ 1 1.85046- 6 1.42625- 2 3.00000+ 1 3.30000+ 1 1.23363- 6 1.42642- 2 3.20000+ 1 3.20000+ 1 1.93580- 7 1.43117- 2 3.20000+ 1 3.30000+ 1 3.09734- 6 1.43134- 2 3.30000+ 1 3.30000+ 1 8.71345- 7 1.43151- 2 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.95607- 6 1.85400- 3 8.00000+ 0 7.85037- 3 1.03746- 2 1.10000+ 1 2.97149- 4 1.10420- 2 1.30000+ 1 2.89469- 1 1.14753- 2 1.60000+ 1 1.98829- 3 1.30286- 2 1.90000+ 1 8.03546- 5 1.32386- 2 2.10000+ 1 5.71418- 2 1.34225- 2 2.40000+ 1 2.06709- 4 1.36786- 2 2.70000+ 1 4.01948- 4 1.36608- 2 3.00000+ 1 1.59679- 5 1.37146- 2 3.20000+ 1 5.22218- 3 1.37638- 2 4.10000+ 1 2.93019- 5 1.37677- 2 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.69511- 3 1.10660- 3 6.00000+ 0 1.80000+ 1 3.88984- 2 1.21772- 3 6.00000+ 0 1.90000+ 1 1.11258- 2 1.31661- 3 6.00000+ 0 2.10000+ 1 4.09799- 2 1.50052- 3 6.00000+ 0 2.20000+ 1 1.41641- 2 1.51895- 3 6.00000+ 0 2.40000+ 1 1.55811- 3 1.75663- 3 6.00000+ 0 2.50000+ 1 2.34316- 3 1.76061- 3 6.00000+ 0 2.70000+ 1 1.04423- 3 1.73877- 3 6.00000+ 0 2.90000+ 1 6.28504- 3 1.77545- 3 6.00000+ 0 3.00000+ 1 1.81168- 3 1.79263- 3 6.00000+ 0 3.20000+ 1 3.44643- 3 1.84184- 3 6.00000+ 0 3.30000+ 1 1.12750- 3 1.84354- 3 8.00000+ 0 8.00000+ 0 6.12147- 4 6.97320- 3 8.00000+ 0 1.00000+ 1 2.05751- 2 7.23030- 3 8.00000+ 0 1.10000+ 1 1.94332- 3 7.64060- 3 8.00000+ 0 1.30000+ 1 3.00619- 3 8.07390- 3 8.00000+ 0 1.40000+ 1 1.96554- 3 8.16240- 3 8.00000+ 0 1.60000+ 1 2.33471- 4 9.62720- 3 8.00000+ 0 1.80000+ 1 3.23976- 3 9.73832- 3 8.00000+ 0 1.90000+ 1 4.07418- 4 9.83721- 3 8.00000+ 0 2.10000+ 1 4.49779- 4 1.00211- 2 8.00000+ 0 2.20000+ 1 2.50604- 4 1.00395- 2 8.00000+ 0 2.40000+ 1 8.97505- 5 1.02772- 2 8.00000+ 0 2.50000+ 1 6.15169- 5 1.02812- 2 8.00000+ 0 2.70000+ 1 4.43724- 5 1.02594- 2 8.00000+ 0 2.90000+ 1 5.21381- 4 1.02960- 2 8.00000+ 0 3.00000+ 1 6.60533- 5 1.03132- 2 8.00000+ 0 3.20000+ 1 3.73132- 5 1.03624- 2 8.00000+ 0 3.30000+ 1 1.91611- 5 1.03641- 2 1.00000+ 1 1.00000+ 1 2.13726- 2 7.48740- 3 1.00000+ 1 1.10000+ 1 5.58632- 2 7.89770- 3 1.00000+ 1 1.30000+ 1 2.91386- 2 8.33100- 3 1.00000+ 1 1.40000+ 1 4.25129- 2 8.41950- 3 1.00000+ 1 1.60000+ 1 5.21754- 3 9.88430- 3 1.00000+ 1 1.80000+ 1 8.58293- 3 9.99542- 3 1.00000+ 1 1.90000+ 1 1.28550- 2 1.00943- 2 1.00000+ 1 2.10000+ 1 6.16307- 3 1.02782- 2 1.00000+ 1 2.20000+ 1 8.95382- 3 1.02966- 2 1.00000+ 1 2.40000+ 1 4.46776- 4 1.05343- 2 1.00000+ 1 2.50000+ 1 3.95837- 4 1.05383- 2 1.00000+ 1 2.70000+ 1 1.04631- 3 1.05165- 2 1.00000+ 1 2.90000+ 1 1.45683- 3 1.05531- 2 1.00000+ 1 3.00000+ 1 2.13246- 3 1.05703- 2 1.00000+ 1 3.20000+ 1 5.37546- 4 1.06195- 2 1.00000+ 1 3.30000+ 1 7.33719- 4 1.06212- 2 1.10000+ 1 1.10000+ 1 1.30649- 3 8.30800- 3 1.10000+ 1 1.30000+ 1 2.74997- 2 8.74130- 3 1.10000+ 1 1.40000+ 1 3.94567- 3 8.82980- 3 1.10000+ 1 1.60000+ 1 4.14983- 4 1.02946- 2 1.10000+ 1 1.80000+ 1 8.99756- 3 1.04057- 2 1.10000+ 1 1.90000+ 1 5.15338- 4 1.05046- 2 1.10000+ 1 2.10000+ 1 4.89818- 3 1.06885- 2 1.10000+ 1 2.20000+ 1 6.73668- 4 1.07069- 2 1.10000+ 1 2.40000+ 1 1.95658- 4 1.09446- 2 1.10000+ 1 2.50000+ 1 1.04378- 4 1.09486- 2 1.10000+ 1 2.70000+ 1 8.01753- 5 1.09268- 2 1.10000+ 1 2.90000+ 1 1.45380- 3 1.09634- 2 1.10000+ 1 3.00000+ 1 8.32026- 5 1.09806- 2 1.10000+ 1 3.20000+ 1 4.15503- 4 1.10298- 2 1.10000+ 1 3.30000+ 1 5.34492- 5 1.10315- 2 1.30000+ 1 1.30000+ 1 2.60131- 2 9.17460- 3 1.30000+ 1 1.40000+ 1 1.04296- 1 9.26310- 3 1.30000+ 1 1.60000+ 1 7.62929- 4 1.07279- 2 1.30000+ 1 1.80000+ 1 4.57135- 3 1.08390- 2 1.30000+ 1 1.90000+ 1 5.88242- 3 1.09379- 2 1.30000+ 1 2.10000+ 1 9.13188- 3 1.11218- 2 1.30000+ 1 2.20000+ 1 1.97145- 2 1.11402- 2 1.30000+ 1 2.40000+ 1 1.61109- 3 1.13779- 2 1.30000+ 1 2.50000+ 1 3.26549- 3 1.13819- 2 1.30000+ 1 2.70000+ 1 1.53283- 4 1.13601- 2 1.30000+ 1 2.90000+ 1 7.40753- 4 1.13967- 2 1.30000+ 1 3.00000+ 1 9.62054- 4 1.14139- 2 1.30000+ 1 3.20000+ 1 7.75998- 4 1.14631- 2 1.30000+ 1 3.30000+ 1 1.58838- 3 1.14648- 2 1.40000+ 1 1.40000+ 1 5.05195- 3 9.35160- 3 1.40000+ 1 1.60000+ 1 4.02879- 4 1.08164- 2 1.40000+ 1 1.80000+ 1 5.89358- 3 1.09275- 2 1.40000+ 1 1.90000+ 1 7.76005- 4 1.10264- 2 1.40000+ 1 2.10000+ 1 1.50633- 2 1.12103- 2 1.40000+ 1 2.20000+ 1 1.73609- 3 1.12287- 2 1.40000+ 1 2.40000+ 1 6.45439- 4 1.14664- 2 1.40000+ 1 2.50000+ 1 2.47575- 4 1.14704- 2 1.40000+ 1 2.70000+ 1 7.76516- 5 1.14486- 2 1.40000+ 1 2.90000+ 1 9.23263- 4 1.14852- 2 1.40000+ 1 3.00000+ 1 1.25052- 4 1.15024- 2 1.40000+ 1 3.20000+ 1 1.23591- 3 1.15516- 2 1.40000+ 1 3.30000+ 1 1.38164- 4 1.15533- 2 1.60000+ 1 1.60000+ 1 2.16823- 5 1.22812- 2 1.60000+ 1 1.80000+ 1 8.26949- 4 1.23923- 2 1.60000+ 1 1.90000+ 1 8.77344- 5 1.24912- 2 1.60000+ 1 2.10000+ 1 1.10927- 4 1.26751- 2 1.60000+ 1 2.20000+ 1 5.14311- 5 1.26935- 2 1.60000+ 1 2.40000+ 1 2.01682- 5 1.29312- 2 1.60000+ 1 2.50000+ 1 1.10927- 5 1.29352- 2 1.60000+ 1 2.70000+ 1 8.06745- 6 1.29134- 2 1.60000+ 1 2.90000+ 1 1.33114- 4 1.29500- 2 1.60000+ 1 3.00000+ 1 1.41179- 5 1.29672- 2 1.60000+ 1 3.20000+ 1 9.07614- 6 1.30164- 2 1.60000+ 1 3.30000+ 1 4.03383- 6 1.30181- 2 1.80000+ 1 1.80000+ 1 8.19386- 4 1.25034- 2 1.80000+ 1 1.90000+ 1 2.07692- 3 1.26023- 2 1.80000+ 1 2.10000+ 1 9.51981- 4 1.27862- 2 1.80000+ 1 2.20000+ 1 1.25301- 3 1.28047- 2 1.80000+ 1 2.40000+ 1 5.69785- 5 1.30423- 2 1.80000+ 1 2.50000+ 1 4.08437- 5 1.30463- 2 1.80000+ 1 2.70000+ 1 1.65892- 4 1.30245- 2 1.80000+ 1 2.90000+ 1 2.75311- 4 1.30612- 2 1.80000+ 1 3.00000+ 1 3.44389- 4 1.30783- 2 1.80000+ 1 3.20000+ 1 8.26971- 5 1.31276- 2 1.80000+ 1 3.30000+ 1 1.02865- 4 1.31293- 2 1.90000+ 1 1.90000+ 1 5.09279- 5 1.27012- 2 1.90000+ 1 2.10000+ 1 1.05586- 3 1.28851- 2 1.90000+ 1 2.20000+ 1 1.34629- 4 1.29036- 2 1.90000+ 1 2.40000+ 1 3.52955- 5 1.31412- 2 1.90000+ 1 2.50000+ 1 1.76479- 5 1.31452- 2 1.90000+ 1 2.70000+ 1 1.71445- 5 1.31234- 2 1.90000+ 1 2.90000+ 1 3.35813- 4 1.31601- 2 1.90000+ 1 3.00000+ 1 1.66391- 5 1.31772- 2 1.90000+ 1 3.20000+ 1 8.97499- 5 1.32264- 2 1.90000+ 1 3.30000+ 1 1.05887- 5 1.32281- 2 2.10000+ 1 2.10000+ 1 7.93138- 4 1.30690- 2 2.10000+ 1 2.20000+ 1 2.96350- 3 1.30875- 2 2.10000+ 1 2.40000+ 1 1.94125- 4 1.33251- 2 2.10000+ 1 2.50000+ 1 3.97836- 4 1.33291- 2 2.10000+ 1 2.70000+ 1 2.21875- 5 1.33073- 2 2.10000+ 1 2.90000+ 1 1.53795- 4 1.33440- 2 2.10000+ 1 3.00000+ 1 1.72949- 4 1.33611- 2 2.10000+ 1 3.20000+ 1 1.34631- 4 1.34104- 2 2.10000+ 1 3.30000+ 1 2.40019- 4 1.34121- 2 2.20000+ 1 2.20000+ 1 1.58840- 4 1.31059- 2 2.20000+ 1 2.40000+ 1 8.90158- 5 1.33436- 2 2.20000+ 1 2.50000+ 1 3.46475- 5 1.33476- 2 2.20000+ 1 2.70000+ 1 1.06601- 5 1.33257- 2 2.20000+ 1 2.90000+ 1 2.07883- 4 1.33624- 2 2.20000+ 1 3.00000+ 1 2.29210- 5 1.33796- 2 2.20000+ 1 3.20000+ 1 2.58514- 4 1.34288- 2 2.20000+ 1 3.30000+ 1 2.55848- 5 1.34305- 2 2.40000+ 1 2.40000+ 1 4.38635- 6 1.35813- 2 2.40000+ 1 2.50000+ 1 3.12518- 5 1.35852- 2 2.40000+ 1 2.70000+ 1 4.38635- 6 1.35634- 2 2.40000+ 1 2.90000+ 1 9.86931- 6 1.36001- 2 2.40000+ 1 3.00000+ 1 6.03120- 6 1.36173- 2 2.40000+ 1 3.20000+ 1 1.69970- 5 1.36665- 2 2.40000+ 1 3.30000+ 1 7.12763- 6 1.36682- 2 2.50000+ 1 2.50000+ 1 2.34108- 6 1.35892- 2 2.50000+ 1 2.70000+ 1 2.34108- 6 1.35674- 2 2.50000+ 1 2.90000+ 1 7.02343- 6 1.36041- 2 2.50000+ 1 3.00000+ 1 2.92639- 6 1.36212- 2 2.50000+ 1 3.20000+ 1 3.68734- 5 1.36704- 2 2.50000+ 1 3.30000+ 1 2.92639- 6 1.36721- 2 2.70000+ 1 2.70000+ 1 1.11207- 6 1.35455- 2 2.70000+ 1 2.90000+ 1 2.94723- 5 1.35822- 2 2.70000+ 1 3.00000+ 1 2.78025- 6 1.35994- 2 2.70000+ 1 3.20000+ 1 2.22416- 6 1.36486- 2 2.70000+ 1 3.30000+ 1 5.56061- 7 1.36503- 2 2.90000+ 1 2.90000+ 1 2.60952- 5 1.36189- 2 2.90000+ 1 3.00000+ 1 6.24019- 5 1.36361- 2 2.90000+ 1 3.20000+ 1 1.47489- 5 1.36853- 2 2.90000+ 1 3.30000+ 1 1.81535- 5 1.36870- 2 3.00000+ 1 3.00000+ 1 2.02534- 6 1.36533- 2 3.00000+ 1 3.20000+ 1 1.95782- 5 1.37025- 2 3.00000+ 1 3.30000+ 1 2.02534- 6 1.37042- 2 3.20000+ 1 3.20000+ 1 5.54684- 6 1.37517- 2 3.20000+ 1 3.30000+ 1 1.96660- 5 1.37534- 2 3.30000+ 1 3.30000+ 1 9.31626- 7 1.37551- 2 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.45879- 2 8.52060- 3 1.00000+ 1 1.41799- 4 8.77770- 3 1.10000+ 1 1.28289- 4 9.18800- 3 1.30000+ 1 2.53848- 2 9.62130- 3 1.40000+ 1 2.23628- 1 9.70980- 3 1.60000+ 1 3.06008- 3 1.11746- 2 1.80000+ 1 3.16198- 5 1.12857- 2 1.90000+ 1 3.18628- 5 1.13846- 2 2.10000+ 1 4.63507- 3 1.15685- 2 2.20000+ 1 4.17767- 2 1.15869- 2 2.40000+ 1 3.07468- 5 1.18246- 2 2.50000+ 1 1.72179- 4 1.18286- 2 2.70000+ 1 6.46205- 4 1.18068- 2 2.90000+ 1 6.61705- 6 1.18434- 2 3.00000+ 1 6.62065- 6 1.18606- 2 3.20000+ 1 4.15557- 4 1.19098- 2 3.30000+ 1 3.60947- 3 1.19115- 2 4.10000+ 1 4.87647- 5 1.19137- 2 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 7.87602- 4 5.11920- 3 8.00000+ 0 1.00000+ 1 4.12845- 4 5.37630- 3 8.00000+ 0 1.10000+ 1 2.18256- 2 5.78660- 3 8.00000+ 0 1.30000+ 1 2.63012- 3 6.21990- 3 8.00000+ 0 1.40000+ 1 4.22427- 3 6.30840- 3 8.00000+ 0 1.60000+ 1 3.01759- 4 7.77320- 3 8.00000+ 0 1.80000+ 1 7.35408- 5 7.88432- 3 8.00000+ 0 1.90000+ 1 3.36711- 3 7.98321- 3 8.00000+ 0 2.10000+ 1 2.67277- 4 8.16712- 3 8.00000+ 0 2.20000+ 1 3.91539- 4 8.18555- 3 8.00000+ 0 2.40000+ 1 2.05921- 4 8.42323- 3 8.00000+ 0 2.50000+ 1 3.66167- 4 8.42721- 3 8.00000+ 0 2.70000+ 1 5.73100- 5 8.40537- 3 8.00000+ 0 2.90000+ 1 1.21719- 5 8.44205- 3 8.00000+ 0 3.00000+ 1 5.17812- 4 8.45923- 3 8.00000+ 0 3.20000+ 1 2.07934- 5 8.50844- 3 8.00000+ 0 3.30000+ 1 2.78951- 5 8.51014- 3 1.00000+ 1 1.00000+ 1 5.52808- 5 5.63340- 3 1.00000+ 1 1.10000+ 1 3.66482- 2 6.04370- 3 1.00000+ 1 1.30000+ 1 1.79387- 3 6.47700- 3 1.00000+ 1 1.40000+ 1 1.55118- 2 6.56550- 3 1.00000+ 1 1.60000+ 1 8.41896- 5 8.03030- 3 1.00000+ 1 1.80000+ 1 2.48510- 5 8.14142- 3 1.00000+ 1 1.90000+ 1 5.86880- 3 8.24031- 3 1.00000+ 1 2.10000+ 1 3.35726- 4 8.42422- 3 1.00000+ 1 2.20000+ 1 2.39930- 3 8.44265- 3 1.00000+ 1 2.40000+ 1 2.06419- 4 8.68033- 3 1.00000+ 1 2.50000+ 1 5.24914- 4 8.68431- 3 1.00000+ 1 2.70000+ 1 1.62297- 5 8.66247- 3 1.00000+ 1 2.90000+ 1 4.56452- 6 8.69915- 3 1.00000+ 1 3.00000+ 1 9.08327- 4 8.71633- 3 1.00000+ 1 3.20000+ 1 2.89080- 5 8.76554- 3 1.00000+ 1 3.30000+ 1 1.88148- 4 8.76724- 3 1.10000+ 1 1.10000+ 1 4.68191- 2 6.45400- 3 1.10000+ 1 1.30000+ 1 4.90007- 2 6.88730- 3 1.10000+ 1 1.40000+ 1 6.71664- 2 6.97580- 3 1.10000+ 1 1.60000+ 1 5.45854- 3 8.44060- 3 1.10000+ 1 1.80000+ 1 8.20692- 3 8.55172- 3 1.10000+ 1 1.90000+ 1 1.81358- 2 8.65061- 3 1.10000+ 1 2.10000+ 1 9.76319- 3 8.83452- 3 1.10000+ 1 2.20000+ 1 1.31758- 2 8.85295- 3 1.10000+ 1 2.40000+ 1 8.01279- 4 9.09063- 3 1.10000+ 1 2.50000+ 1 9.96072- 4 9.09461- 3 1.10000+ 1 2.70000+ 1 1.09141- 3 9.07277- 3 1.10000+ 1 2.90000+ 1 1.41650- 3 9.10945- 3 1.10000+ 1 3.00000+ 1 2.92430- 3 9.12663- 3 1.10000+ 1 3.20000+ 1 8.44401- 4 9.17584- 3 1.10000+ 1 3.30000+ 1 1.06808- 3 9.17754- 3 1.30000+ 1 1.30000+ 1 6.83961- 3 7.32060- 3 1.30000+ 1 1.40000+ 1 1.28276- 1 7.40910- 3 1.30000+ 1 1.60000+ 1 6.28383- 4 8.87390- 3 1.30000+ 1 1.80000+ 1 4.18418- 4 8.98502- 3 1.30000+ 1 1.90000+ 1 7.16190- 3 9.08391- 3 1.30000+ 1 2.10000+ 1 2.33003- 3 9.26782- 3 1.30000+ 1 2.20000+ 1 1.82702- 2 9.28625- 3 1.30000+ 1 2.40000+ 1 4.45291- 4 9.52393- 3 1.30000+ 1 2.50000+ 1 1.51384- 3 9.52791- 3 1.30000+ 1 2.70000+ 1 1.24762- 4 9.50607- 3 1.30000+ 1 2.90000+ 1 7.25250- 5 9.54275- 3 1.30000+ 1 3.00000+ 1 1.08992- 3 9.55993- 3 1.30000+ 1 3.20000+ 1 1.97290- 4 9.60914- 3 1.30000+ 1 3.30000+ 1 1.41042- 3 9.61084- 3 1.40000+ 1 1.40000+ 1 8.55786- 2 7.49760- 3 1.40000+ 1 1.60000+ 1 1.03303- 3 8.96240- 3 1.40000+ 1 1.80000+ 1 3.15749- 3 9.07352- 3 1.40000+ 1 1.90000+ 1 1.10743- 2 9.17241- 3 1.40000+ 1 2.10000+ 1 2.20864- 2 9.35632- 3 1.40000+ 1 2.20000+ 1 2.78474- 2 9.37475- 3 1.40000+ 1 2.40000+ 1 4.72005- 3 9.61243- 3 1.40000+ 1 2.50000+ 1 4.30317- 3 9.61641- 3 1.40000+ 1 2.70000+ 1 2.07428- 4 9.59457- 3 1.40000+ 1 2.90000+ 1 5.35572- 4 9.63125- 3 1.40000+ 1 3.00000+ 1 1.73548- 3 9.64843- 3 1.40000+ 1 3.20000+ 1 1.86934- 3 9.69764- 3 1.40000+ 1 3.30000+ 1 2.20054- 3 9.69934- 3 1.60000+ 1 1.60000+ 1 2.94137- 5 1.04272- 2 1.60000+ 1 1.80000+ 1 1.57210- 5 1.05383- 2 1.60000+ 1 1.90000+ 1 8.41843- 4 1.06372- 2 1.60000+ 1 2.10000+ 1 6.94746- 5 1.08211- 2 1.60000+ 1 2.20000+ 1 1.03958- 4 1.08395- 2 1.60000+ 1 2.40000+ 1 2.78930- 5 1.10772- 2 1.60000+ 1 2.50000+ 1 5.62915- 5 1.10812- 2 1.60000+ 1 2.70000+ 1 1.11568- 5 1.10594- 2 1.60000+ 1 2.90000+ 1 2.53560- 6 1.10960- 2 1.60000+ 1 3.00000+ 1 1.29318- 4 1.11132- 2 1.60000+ 1 3.20000+ 1 5.57849- 6 1.11624- 2 1.60000+ 1 3.30000+ 1 7.60690- 6 1.11641- 2 1.80000+ 1 1.80000+ 1 1.52144- 6 1.06494- 2 1.80000+ 1 1.90000+ 1 1.30687- 3 1.07483- 2 1.80000+ 1 2.10000+ 1 7.40434- 5 1.09322- 2 1.80000+ 1 2.20000+ 1 5.18826- 4 1.09507- 2 1.80000+ 1 2.40000+ 1 2.99221- 5 1.11883- 2 1.80000+ 1 2.50000+ 1 7.30281- 5 1.11923- 2 1.80000+ 1 2.70000+ 1 3.04288- 6 1.11705- 2 1.80000+ 1 2.90000+ 1 5.07162- 7 1.12072- 2 1.80000+ 1 3.00000+ 1 2.01853- 4 1.12243- 2 1.80000+ 1 3.20000+ 1 6.08594- 6 1.12736- 2 1.80000+ 1 3.30000+ 1 4.10806- 5 1.12753- 2 1.90000+ 1 1.90000+ 1 1.68123- 3 1.08472- 2 1.90000+ 1 2.10000+ 1 1.43063- 3 1.10311- 2 1.90000+ 1 2.20000+ 1 2.13968- 3 1.10496- 2 1.90000+ 1 2.40000+ 1 9.68700- 5 1.12872- 2 1.90000+ 1 2.50000+ 1 1.26793- 4 1.12912- 2 1.90000+ 1 2.70000+ 1 1.68384- 4 1.12694- 2 1.90000+ 1 2.90000+ 1 2.25192- 4 1.13061- 2 1.90000+ 1 3.00000+ 1 5.37579- 4 1.13232- 2 1.90000+ 1 3.20000+ 1 1.23749- 4 1.13724- 2 1.90000+ 1 3.30000+ 1 1.72939- 4 1.13741- 2 2.10000+ 1 2.10000+ 1 1.90688- 4 1.12150- 2 2.10000+ 1 2.20000+ 1 3.28383- 3 1.12335- 2 2.10000+ 1 2.40000+ 1 5.07157- 5 1.14711- 2 2.10000+ 1 2.50000+ 1 1.64828- 4 1.14751- 2 2.10000+ 1 2.70000+ 1 1.42000- 5 1.14533- 2 2.10000+ 1 2.90000+ 1 1.26792- 5 1.14900- 2 2.10000+ 1 3.00000+ 1 2.18081- 4 1.15071- 2 2.10000+ 1 3.20000+ 1 3.19513- 5 1.15564- 2 2.10000+ 1 3.30000+ 1 2.55096- 4 1.15581- 2 2.20000+ 1 2.20000+ 1 2.35579- 3 1.12519- 2 2.20000+ 1 2.40000+ 1 5.45112- 4 1.14896- 2 2.20000+ 1 2.50000+ 1 4.88974- 4 1.14936- 2 2.20000+ 1 2.70000+ 1 2.20343- 5 1.14717- 2 2.20000+ 1 2.90000+ 1 9.18154- 5 1.15084- 2 2.20000+ 1 3.00000+ 1 3.45751- 4 1.15256- 2 2.20000+ 1 3.20000+ 1 2.89076- 4 1.15748- 2 2.20000+ 1 3.30000+ 1 3.72515- 4 1.15765- 2 2.40000+ 1 2.40000+ 1 2.42982- 6 1.17273- 2 2.40000+ 1 2.50000+ 1 6.74279- 5 1.17312- 2 2.40000+ 1 2.70000+ 1 6.07458- 6 1.17094- 2 2.40000+ 1 2.90000+ 1 6.07458- 6 1.17461- 2 2.40000+ 1 3.00000+ 1 1.70084- 5 1.17633- 2 2.40000+ 1 3.20000+ 1 4.85979- 6 1.18125- 2 2.40000+ 1 3.30000+ 1 4.67739- 5 1.18142- 2 2.50000+ 1 2.50000+ 1 1.98876- 5 1.17352- 2 2.50000+ 1 2.70000+ 1 1.07095- 5 1.17134- 2 2.50000+ 1 2.90000+ 1 1.17292- 5 1.17501- 2 2.50000+ 1 3.00000+ 1 1.88679- 5 1.17672- 2 2.50000+ 1 3.20000+ 1 1.32594- 5 1.18164- 2 2.50000+ 1 3.30000+ 1 3.51857- 5 1.18181- 2 2.70000+ 1 2.70000+ 1 1.47682- 6 1.16915- 2 2.70000+ 1 2.90000+ 1 7.38413- 7 1.17282- 2 2.70000+ 1 3.00000+ 1 3.76575- 5 1.17454- 2 2.70000+ 1 3.20000+ 1 1.47682- 6 1.17946- 2 2.70000+ 1 3.30000+ 1 2.21517- 6 1.17963- 2 2.90000+ 1 3.00000+ 1 5.87984- 5 1.17821- 2 2.90000+ 1 3.20000+ 1 1.70434- 6 1.18313- 2 2.90000+ 1 3.30000+ 1 1.19308- 5 1.18330- 2 3.00000+ 1 3.00000+ 1 8.05647- 5 1.17993- 2 3.00000+ 1 3.20000+ 1 3.50692- 5 1.18485- 2 3.00000+ 1 3.30000+ 1 5.02349- 5 1.18502- 2 3.20000+ 1 3.20000+ 1 1.42141- 6 1.18977- 2 3.20000+ 1 3.30000+ 1 2.03744- 5 1.18994- 2 3.30000+ 1 3.30000+ 1 1.41999- 5 1.19011- 2 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01988- 5 2.57100- 4 1.10000+ 1 3.85919- 4 6.67400- 4 1.80000+ 1 1.33870- 3 2.76512- 3 1.90000+ 1 1.11950- 3 2.86401- 3 2.90000+ 1 2.90393- 4 3.32285- 3 3.00000+ 1 2.53015- 4 3.34003- 3 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.36047- 2 1.59730- 4 1.00000+ 1 2.50000+ 1 4.51776- 2 1.63710- 4 1.00000+ 1 2.70000+ 1 1.10308- 2 1.41870- 4 1.00000+ 1 2.90000+ 1 1.04051- 2 1.78550- 4 1.00000+ 1 3.00000+ 1 1.38740- 2 1.95730- 4 1.00000+ 1 3.20000+ 1 4.94418- 3 2.44940- 4 1.00000+ 1 3.30000+ 1 6.40380- 3 2.46640- 4 1.00000+ 1 4.10000+ 1 4.22118- 4 2.48800- 4 1.10000+ 1 1.80000+ 1 6.09743- 2 3.11200- 5 1.10000+ 1 1.90000+ 1 6.43419- 2 1.30010- 4 1.10000+ 1 2.10000+ 1 2.15048- 2 3.13920- 4 1.10000+ 1 2.20000+ 1 3.46820- 2 3.32350- 4 1.10000+ 1 2.40000+ 1 1.68679- 1 5.70030- 4 1.10000+ 1 2.50000+ 1 2.09441- 1 5.74010- 4 1.10000+ 1 2.70000+ 1 1.04307- 2 5.52170- 4 1.10000+ 1 2.90000+ 1 9.68680- 3 5.88850- 4 1.10000+ 1 3.00000+ 1 1.03850- 2 6.06030- 4 1.10000+ 1 3.20000+ 1 1.74295- 3 6.55240- 4 1.10000+ 1 3.30000+ 1 2.75761- 3 6.56940- 4 1.10000+ 1 4.10000+ 1 4.07475- 4 6.59100- 4 1.30000+ 1 1.60000+ 1 2.56743- 2 3.53300- 4 1.30000+ 1 1.80000+ 1 5.61926- 3 4.64420- 4 1.30000+ 1 1.90000+ 1 6.57813- 3 5.63310- 4 1.30000+ 1 2.10000+ 1 8.75449- 3 7.47220- 4 1.30000+ 1 2.20000+ 1 1.08522- 2 7.65650- 4 1.30000+ 1 2.40000+ 1 8.67157- 3 1.00333- 3 1.30000+ 1 2.50000+ 1 8.00253- 3 1.00731- 3 1.30000+ 1 2.70000+ 1 3.31462- 3 9.85470- 4 1.30000+ 1 2.90000+ 1 7.63765- 4 1.02215- 3 1.30000+ 1 3.00000+ 1 8.32119- 4 1.03933- 3 1.30000+ 1 3.20000+ 1 6.35184- 4 1.08854- 3 1.30000+ 1 3.30000+ 1 7.96243- 4 1.09024- 3 1.30000+ 1 4.10000+ 1 1.22721- 4 1.09240- 3 1.40000+ 1 1.60000+ 1 3.59233- 2 4.41800- 4 1.40000+ 1 1.80000+ 1 9.84687- 4 5.52920- 4 1.40000+ 1 1.90000+ 1 1.10450- 2 6.51810- 4 1.40000+ 1 2.10000+ 1 1.21283- 2 8.35720- 4 1.40000+ 1 2.20000+ 1 1.73829- 2 8.54150- 4 1.40000+ 1 2.40000+ 1 9.85368- 3 1.09183- 3 1.40000+ 1 2.50000+ 1 1.53799- 2 1.09581- 3 1.40000+ 1 2.70000+ 1 4.60446- 3 1.07397- 3 1.40000+ 1 2.90000+ 1 1.55920- 4 1.11065- 3 1.40000+ 1 3.00000+ 1 1.38694- 3 1.12783- 3 1.40000+ 1 3.20000+ 1 9.49915- 4 1.17704- 3 1.40000+ 1 3.30000+ 1 1.22839- 3 1.17874- 3 1.40000+ 1 4.10000+ 1 1.69830- 4 1.18090- 3 1.60000+ 1 1.60000+ 1 2.64750- 3 1.90660- 3 1.60000+ 1 1.80000+ 1 4.59836- 3 2.01772- 3 1.60000+ 1 1.90000+ 1 7.66302- 3 2.11661- 3 1.60000+ 1 2.10000+ 1 8.79626- 3 2.30052- 3 1.60000+ 1 2.20000+ 1 1.24140- 2 2.31895- 3 1.60000+ 1 2.40000+ 1 6.00351- 3 2.55663- 3 1.60000+ 1 2.50000+ 1 7.54652- 3 2.56061- 3 1.60000+ 1 2.70000+ 1 8.68490- 4 2.53877- 3 1.60000+ 1 2.90000+ 1 7.98073- 4 2.57545- 3 1.60000+ 1 3.00000+ 1 1.26854- 3 2.59263- 3 1.60000+ 1 3.20000+ 1 7.52781- 4 2.64184- 3 1.60000+ 1 3.30000+ 1 9.98027- 4 2.64354- 3 1.60000+ 1 4.10000+ 1 3.35602- 5 2.64570- 3 1.80000+ 1 1.80000+ 1 1.97430- 4 2.12884- 3 1.80000+ 1 1.90000+ 1 5.58335- 4 2.22773- 3 1.80000+ 1 2.10000+ 1 2.96160- 4 2.41164- 3 1.80000+ 1 2.20000+ 1 1.68259- 4 2.43007- 3 1.80000+ 1 2.40000+ 1 4.67612- 5 2.66775- 3 1.80000+ 1 2.50000+ 1 4.48023- 4 2.67173- 3 1.80000+ 1 2.70000+ 1 5.72729- 4 2.64989- 3 1.80000+ 1 2.90000+ 1 5.19582- 5 2.68657- 3 1.80000+ 1 3.00000+ 1 6.89430- 5 2.70375- 3 1.80000+ 1 3.20000+ 1 2.23819- 5 2.75296- 3 1.80000+ 1 3.30000+ 1 1.59868- 5 2.75466- 3 1.80000+ 1 4.10000+ 1 2.11824- 5 2.75682- 3 1.90000+ 1 1.90000+ 1 6.58062- 4 2.32662- 3 1.90000+ 1 2.10000+ 1 6.00923- 4 2.51053- 3 1.90000+ 1 2.20000+ 1 1.39705- 3 2.52896- 3 1.90000+ 1 2.40000+ 1 5.74136- 4 2.76664- 3 1.90000+ 1 2.50000+ 1 1.00937- 3 2.77062- 3 1.90000+ 1 2.70000+ 1 9.58982- 4 2.74878- 3 1.90000+ 1 2.90000+ 1 8.21360- 5 2.78546- 3 1.90000+ 1 3.00000+ 1 1.83657- 4 2.80264- 3 1.90000+ 1 3.20000+ 1 5.19590- 5 2.85185- 3 1.90000+ 1 3.30000+ 1 1.07510- 4 2.85355- 3 1.90000+ 1 4.10000+ 1 3.55701- 5 2.85571- 3 2.10000+ 1 2.10000+ 1 1.05259- 4 2.69444- 3 2.10000+ 1 2.20000+ 1 4.33102- 4 2.71287- 3 2.10000+ 1 2.40000+ 1 4.57647- 4 2.95055- 3 2.10000+ 1 2.50000+ 1 3.15804- 3 2.95453- 3 2.10000+ 1 2.70000+ 1 1.12269- 3 2.93269- 3 2.10000+ 1 2.90000+ 1 3.59869- 5 2.96937- 3 2.10000+ 1 3.00000+ 1 8.13304- 5 2.98655- 3 2.10000+ 1 3.20000+ 1 1.45609- 5 3.03576- 3 2.10000+ 1 3.30000+ 1 2.99538- 5 3.03746- 3 2.10000+ 1 4.10000+ 1 4.13952- 5 3.03962- 3 2.20000+ 1 2.20000+ 1 2.65548- 4 2.73130- 3 2.20000+ 1 2.40000+ 1 2.92305- 3 2.96898- 3 2.20000+ 1 2.50000+ 1 1.74313- 3 2.97296- 3 2.20000+ 1 2.70000+ 1 1.55745- 3 2.95112- 3 2.20000+ 1 2.90000+ 1 2.25557- 5 2.98780- 3 2.20000+ 1 3.00000+ 1 1.84343- 4 3.00498- 3 2.20000+ 1 3.20000+ 1 2.91179- 5 3.05419- 3 2.20000+ 1 3.30000+ 1 3.56800- 5 3.05589- 3 2.20000+ 1 4.10000+ 1 5.74142- 5 3.05805- 3 2.40000+ 1 2.40000+ 1 5.64729- 4 3.20666- 3 2.40000+ 1 2.50000+ 1 3.84747- 3 3.21064- 3 2.40000+ 1 2.70000+ 1 6.78855- 4 3.18880- 3 2.40000+ 1 2.90000+ 1 5.79520- 6 3.22548- 3 2.40000+ 1 3.00000+ 1 5.55545- 5 3.24266- 3 2.40000+ 1 3.20000+ 1 3.43718- 5 3.29187- 3 2.40000+ 1 3.30000+ 1 2.27811- 4 3.29357- 3 2.40000+ 1 4.10000+ 1 2.47798- 5 3.29573- 3 2.50000+ 1 2.50000+ 1 1.32113- 3 3.21462- 3 2.50000+ 1 2.70000+ 1 8.56954- 4 3.19278- 3 2.50000+ 1 2.90000+ 1 6.93215- 5 3.22946- 3 2.50000+ 1 3.00000+ 1 1.04687- 4 3.24664- 3 2.50000+ 1 3.20000+ 1 2.53580- 4 3.29585- 3 2.50000+ 1 3.30000+ 1 1.32216- 4 3.29755- 3 2.50000+ 1 4.10000+ 1 3.13444- 5 3.29971- 3 2.70000+ 1 2.70000+ 1 8.51226- 5 3.17094- 3 2.70000+ 1 2.90000+ 1 1.30822- 4 3.20762- 3 2.70000+ 1 3.00000+ 1 2.07854- 4 3.22480- 3 2.70000+ 1 3.20000+ 1 1.21160- 4 3.27401- 3 2.70000+ 1 3.30000+ 1 1.60060- 4 3.27571- 3 2.70000+ 1 4.10000+ 1 6.52794- 6 3.27787- 3 2.90000+ 1 2.90000+ 1 7.55117- 6 3.24430- 3 2.90000+ 1 3.00000+ 1 2.17644- 5 3.26148- 3 2.90000+ 1 3.20000+ 1 5.77444- 6 3.31069- 3 2.90000+ 1 3.30000+ 1 4.88592- 6 3.31239- 3 2.90000+ 1 4.10000+ 1 8.43909- 6 3.31455- 3 3.00000+ 1 3.00000+ 1 2.90203- 5 3.27866- 3 3.00000+ 1 3.20000+ 1 1.59140- 5 3.32787- 3 3.00000+ 1 3.30000+ 1 3.27636- 5 3.32957- 3 3.00000+ 1 4.10000+ 1 1.35736- 5 3.33173- 3 3.20000+ 1 3.20000+ 1 7.21162- 7 3.37708- 3 3.20000+ 1 3.30000+ 1 3.60605- 6 3.37878- 3 3.20000+ 1 4.10000+ 1 6.13015- 6 3.38094- 3 3.30000+ 1 3.30000+ 1 2.30050- 6 3.38048- 3 3.30000+ 1 4.10000+ 1 8.81882- 6 3.38264- 3 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 9.33341- 4 8.43600- 4 1.60000+ 1 7.00061- 4 2.39690- 3 2.10000+ 1 3.73501- 3 2.79082- 3 2.70000+ 1 1.48000- 4 3.02907- 3 3.20000+ 1 3.96431- 4 3.13214- 3 4.10000+ 1 1.07680- 5 3.13600- 3 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.33658- 3 5.68200- 5 1.10000+ 1 2.20000+ 1 1.55844- 2 7.52500- 5 1.10000+ 1 2.40000+ 1 2.83063- 2 3.12930- 4 1.10000+ 1 2.50000+ 1 2.65118- 2 3.16910- 4 1.10000+ 1 2.70000+ 1 3.11674- 3 2.95070- 4 1.10000+ 1 2.90000+ 1 3.81956- 3 3.31750- 4 1.10000+ 1 3.00000+ 1 2.62420- 3 3.48930- 4 1.10000+ 1 3.20000+ 1 6.40341- 4 3.98140- 4 1.10000+ 1 3.30000+ 1 1.35740- 3 3.99840- 4 1.10000+ 1 4.10000+ 1 1.16804- 4 4.02000- 4 1.30000+ 1 1.60000+ 1 4.99221- 2 9.62000- 5 1.30000+ 1 1.80000+ 1 5.11106- 2 2.07320- 4 1.30000+ 1 1.90000+ 1 4.99490- 2 3.06210- 4 1.30000+ 1 2.10000+ 1 1.93818- 2 4.90120- 4 1.30000+ 1 2.20000+ 1 2.36726- 2 5.08550- 4 1.30000+ 1 2.40000+ 1 1.38849- 1 7.46230- 4 1.30000+ 1 2.50000+ 1 2.13696- 1 7.50210- 4 1.30000+ 1 2.70000+ 1 9.88842- 3 7.28370- 4 1.30000+ 1 2.90000+ 1 7.50756- 3 7.65050- 4 1.30000+ 1 3.00000+ 1 7.96924- 3 7.82230- 4 1.30000+ 1 3.20000+ 1 1.69856- 3 8.31440- 4 1.30000+ 1 3.30000+ 1 2.07022- 3 8.33140- 4 1.30000+ 1 4.10000+ 1 3.84964- 4 8.35300- 4 1.40000+ 1 1.60000+ 1 8.10752- 3 1.84700- 4 1.40000+ 1 1.80000+ 1 5.75218- 2 2.95820- 4 1.40000+ 1 1.90000+ 1 5.05575- 3 3.94710- 4 1.40000+ 1 2.10000+ 1 1.00557- 3 5.78620- 4 1.40000+ 1 2.20000+ 1 2.79927- 3 5.97050- 4 1.40000+ 1 2.40000+ 1 5.50827- 3 8.34730- 4 1.40000+ 1 2.50000+ 1 3.85974- 3 8.38710- 4 1.40000+ 1 2.70000+ 1 1.06558- 3 8.16870- 4 1.40000+ 1 2.90000+ 1 6.70993- 3 8.53550- 4 1.40000+ 1 3.00000+ 1 7.21524- 4 8.70730- 4 1.40000+ 1 3.20000+ 1 4.82327- 5 9.19940- 4 1.40000+ 1 3.30000+ 1 2.09308- 4 9.21640- 4 1.40000+ 1 4.10000+ 1 3.95949- 5 9.23800- 4 1.60000+ 1 1.60000+ 1 7.84984- 4 1.64950- 3 1.60000+ 1 1.80000+ 1 1.13338- 2 1.76062- 3 1.60000+ 1 1.90000+ 1 1.60071- 3 1.85951- 3 1.60000+ 1 2.10000+ 1 3.77910- 4 2.04342- 3 1.60000+ 1 2.20000+ 1 1.32508- 3 2.06185- 3 1.60000+ 1 2.40000+ 1 4.50536- 5 2.29953- 3 1.60000+ 1 2.50000+ 1 9.21202- 4 2.30351- 3 1.60000+ 1 2.70000+ 1 2.41696- 4 2.28167- 3 1.60000+ 1 2.90000+ 1 1.27951- 3 2.31835- 3 1.60000+ 1 3.00000+ 1 2.39571- 4 2.33553- 3 1.60000+ 1 3.20000+ 1 2.43820- 5 2.38474- 3 1.60000+ 1 3.30000+ 1 9.80586- 5 2.38644- 3 1.60000+ 1 4.10000+ 1 9.01053- 6 2.38860- 3 1.80000+ 1 1.80000+ 1 8.67788- 3 1.87174- 3 1.80000+ 1 1.90000+ 1 2.45756- 2 1.97063- 3 1.80000+ 1 2.10000+ 1 2.42912- 2 2.15454- 3 1.80000+ 1 2.20000+ 1 3.88394- 2 2.17297- 3 1.80000+ 1 2.40000+ 1 1.36411- 2 2.41065- 3 1.80000+ 1 2.50000+ 1 2.30133- 2 2.41463- 3 1.80000+ 1 2.70000+ 1 2.24326- 3 2.39279- 3 1.80000+ 1 2.90000+ 1 2.52616- 3 2.42947- 3 1.80000+ 1 3.00000+ 1 4.03793- 3 2.44665- 3 1.80000+ 1 3.20000+ 1 2.08258- 3 2.49586- 3 1.80000+ 1 3.30000+ 1 3.09330- 3 2.49756- 3 1.80000+ 1 4.10000+ 1 8.85215- 5 2.49972- 3 1.90000+ 1 1.90000+ 1 6.68932- 4 2.06952- 3 1.90000+ 1 2.10000+ 1 1.68453- 3 2.25343- 3 1.90000+ 1 2.20000+ 1 1.44703- 3 2.27186- 3 1.90000+ 1 2.40000+ 1 9.46726- 3 2.50954- 3 1.90000+ 1 2.50000+ 1 2.61900- 3 2.51352- 3 1.90000+ 1 2.70000+ 1 2.06193- 4 2.49168- 3 1.90000+ 1 2.90000+ 1 2.83758- 3 2.52836- 3 1.90000+ 1 3.00000+ 1 1.86050- 4 2.54554- 3 1.90000+ 1 3.20000+ 1 1.17672- 4 2.59475- 3 1.90000+ 1 3.30000+ 1 1.03362- 4 2.59645- 3 1.90000+ 1 4.10000+ 1 7.42080- 6 2.59861- 3 2.10000+ 1 2.10000+ 1 8.34817- 4 2.43734- 3 2.10000+ 1 2.20000+ 1 2.11698- 3 2.45577- 3 2.10000+ 1 2.40000+ 1 1.05532- 3 2.69345- 3 2.10000+ 1 2.50000+ 1 1.87157- 3 2.69743- 3 2.10000+ 1 2.70000+ 1 7.04957- 5 2.67559- 3 2.10000+ 1 2.90000+ 1 2.73131- 3 2.71227- 3 2.10000+ 1 3.00000+ 1 2.46990- 4 2.72945- 3 2.10000+ 1 3.20000+ 1 1.19788- 4 2.77866- 3 2.10000+ 1 3.30000+ 1 1.56894- 4 2.78036- 3 2.10000+ 1 4.10000+ 1 2.65011- 6 2.78252- 3 2.20000+ 1 2.20000+ 1 5.25790- 4 2.47420- 3 2.20000+ 1 2.40000+ 1 3.11003- 3 2.71188- 3 2.20000+ 1 2.50000+ 1 7.00177- 4 2.71586- 3 2.20000+ 1 2.70000+ 1 2.09361- 4 2.69402- 3 2.20000+ 1 2.90000+ 1 4.42841- 3 2.73070- 3 2.20000+ 1 3.00000+ 1 1.85513- 4 2.74788- 3 2.20000+ 1 3.20000+ 1 1.54772- 4 2.79709- 3 2.20000+ 1 3.30000+ 1 7.26169- 5 2.79879- 3 2.20000+ 1 4.10000+ 1 7.95062- 6 2.80095- 3 2.40000+ 1 2.40000+ 1 3.23595- 3 2.94956- 3 2.40000+ 1 2.50000+ 1 2.08284- 2 2.95354- 3 2.40000+ 1 2.70000+ 1 4.24017- 6 2.93170- 3 2.40000+ 1 2.90000+ 1 1.41838- 3 2.96838- 3 2.40000+ 1 3.00000+ 1 1.46127- 3 2.98556- 3 2.40000+ 1 3.20000+ 1 9.96435- 5 3.03477- 3 2.40000+ 1 3.30000+ 1 2.76170- 4 3.03647- 3 2.50000+ 1 2.50000+ 1 1.09084- 3 2.95752- 3 2.50000+ 1 2.70000+ 1 1.52123- 4 2.93568- 3 2.50000+ 1 2.90000+ 1 2.36027- 3 2.97236- 3 2.50000+ 1 3.00000+ 1 3.63057- 4 2.98954- 3 2.50000+ 1 3.20000+ 1 1.64312- 4 3.03875- 3 2.50000+ 1 3.30000+ 1 5.77745- 5 3.04045- 3 2.50000+ 1 4.10000+ 1 5.83044- 6 3.04261- 3 2.70000+ 1 2.70000+ 1 2.13855- 5 2.91384- 3 2.70000+ 1 2.90000+ 1 2.93285- 4 2.95052- 3 2.70000+ 1 3.00000+ 1 3.60486- 5 2.96770- 3 2.70000+ 1 3.20000+ 1 4.88807- 6 3.01691- 3 2.70000+ 1 3.30000+ 1 1.83305- 5 3.01861- 3 2.70000+ 1 4.10000+ 1 1.83305- 6 3.02077- 3 2.90000+ 1 2.90000+ 1 2.14482- 4 2.98720- 3 2.90000+ 1 3.00000+ 1 5.78679- 4 3.00438- 3 2.90000+ 1 3.20000+ 1 2.90350- 4 3.05359- 3 2.90000+ 1 3.30000+ 1 4.37467- 4 3.05529- 3 2.90000+ 1 4.10000+ 1 1.24244- 5 3.05745- 3 3.00000+ 1 3.00000+ 1 3.38116- 5 3.02156- 3 3.00000+ 1 3.20000+ 1 4.64908- 5 3.07077- 3 3.00000+ 1 3.30000+ 1 3.52202- 5 3.07247- 3 3.00000+ 1 4.10000+ 1 2.81762- 6 3.07463- 3 3.20000+ 1 3.20000+ 1 4.43372- 6 3.11998- 3 3.20000+ 1 3.30000+ 1 1.27473- 5 3.12168- 3 3.30000+ 1 3.30000+ 1 7.18728- 6 3.12338- 3 3.30000+ 1 4.10000+ 1 1.43753- 6 3.12554- 3 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.55410- 5 4.33300- 4 1.40000+ 1 2.57859- 4 5.21800- 4 1.60000+ 1 1.24560- 3 1.98660- 3 2.10000+ 1 6.08299- 4 2.38052- 3 2.20000+ 1 4.72619- 3 2.39895- 3 2.70000+ 1 2.50079- 4 2.61877- 3 3.20000+ 1 6.01279- 5 2.72184- 3 3.30000+ 1 4.59549- 4 2.72354- 3 4.10000+ 1 1.82220- 5 2.72570- 3 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.03838- 2 7.98200- 5 1.30000+ 1 2.20000+ 1 1.04663- 2 9.82500- 5 1.30000+ 1 2.40000+ 1 1.58169- 2 3.35930- 4 1.30000+ 1 2.50000+ 1 2.30581- 2 3.39910- 4 1.30000+ 1 2.70000+ 1 2.41551- 3 3.18070- 4 1.30000+ 1 2.90000+ 1 1.98553- 3 3.54750- 4 1.30000+ 1 3.00000+ 1 6.63396- 3 3.71930- 4 1.30000+ 1 3.20000+ 1 7.56488- 4 4.21140- 4 1.30000+ 1 3.30000+ 1 7.41036- 4 4.22840- 4 1.30000+ 1 4.10000+ 1 9.22270- 5 4.25000- 4 1.40000+ 1 1.90000+ 1 7.34547- 2 0.00000+ 0 1.40000+ 1 2.10000+ 1 4.62801- 2 1.68320- 4 1.40000+ 1 2.20000+ 1 6.34233- 2 1.86750- 4 1.40000+ 1 2.40000+ 1 1.66943- 1 4.24430- 4 1.40000+ 1 2.50000+ 1 2.01482- 1 4.28410- 4 1.40000+ 1 2.70000+ 1 1.43501- 2 4.06570- 4 1.40000+ 1 2.90000+ 1 1.34338- 2 4.43250- 4 1.40000+ 1 3.00000+ 1 1.68393- 2 4.60430- 4 1.40000+ 1 3.20000+ 1 3.36319- 3 5.09640- 4 1.40000+ 1 3.30000+ 1 4.60227- 3 5.11340- 4 1.40000+ 1 4.10000+ 1 5.55977- 4 5.13500- 4 1.60000+ 1 1.60000+ 1 4.14059- 4 1.23920- 3 1.60000+ 1 1.80000+ 1 7.69356- 4 1.35032- 3 1.60000+ 1 1.90000+ 1 1.36335- 2 1.44921- 3 1.60000+ 1 2.10000+ 1 8.06846- 4 1.63312- 3 1.60000+ 1 2.20000+ 1 9.46722- 4 1.65155- 3 1.60000+ 1 2.40000+ 1 1.58570- 3 1.88923- 3 1.60000+ 1 2.50000+ 1 2.71430- 3 1.89321- 3 1.60000+ 1 2.70000+ 1 1.27573- 4 1.87137- 3 1.60000+ 1 2.90000+ 1 9.95964- 5 1.90805- 3 1.60000+ 1 3.00000+ 1 1.49955- 3 1.92523- 3 1.60000+ 1 3.20000+ 1 6.21074- 5 1.97444- 3 1.60000+ 1 3.30000+ 1 6.65846- 5 1.97614- 3 1.60000+ 1 4.10000+ 1 5.03580- 6 1.97830- 3 1.80000+ 1 1.80000+ 1 4.53211- 5 1.46144- 3 1.80000+ 1 1.90000+ 1 1.66792- 2 1.56033- 3 1.80000+ 1 2.10000+ 1 3.65926- 4 1.74424- 3 1.80000+ 1 2.20000+ 1 3.42826- 3 1.76267- 3 1.80000+ 1 2.40000+ 1 1.62091- 3 2.00035- 3 1.80000+ 1 2.50000+ 1 8.99648- 3 2.00433- 3 1.80000+ 1 2.70000+ 1 1.07429- 4 1.98249- 3 1.80000+ 1 2.90000+ 1 1.06308- 5 2.01917- 3 1.80000+ 1 3.00000+ 1 1.86990- 3 2.03635- 3 1.80000+ 1 3.20000+ 1 2.90947- 5 2.08556- 3 1.80000+ 1 3.30000+ 1 2.28841- 4 2.08726- 3 1.80000+ 1 4.10000+ 1 3.91664- 6 2.08942- 3 1.90000+ 1 1.90000+ 1 2.22639- 2 1.65922- 3 1.90000+ 1 2.10000+ 1 3.21592- 2 1.84313- 3 1.90000+ 1 2.20000+ 1 4.21775- 2 1.86156- 3 1.90000+ 1 2.40000+ 1 2.62966- 2 2.09924- 3 1.90000+ 1 2.50000+ 1 3.01083- 2 2.10322- 3 1.90000+ 1 2.70000+ 1 2.64754- 3 2.08138- 3 1.90000+ 1 2.90000+ 1 2.83544- 3 2.11806- 3 1.90000+ 1 3.00000+ 1 6.11791- 3 2.13524- 3 1.90000+ 1 3.20000+ 1 2.67859- 3 2.18445- 3 1.90000+ 1 3.30000+ 1 3.33054- 3 2.18615- 3 1.90000+ 1 4.10000+ 1 1.04074- 4 2.18831- 3 2.10000+ 1 2.10000+ 1 2.10374- 4 2.02704- 3 2.10000+ 1 2.20000+ 1 4.92978- 3 2.04547- 3 2.10000+ 1 2.40000+ 1 6.91547- 4 2.28315- 3 2.10000+ 1 2.50000+ 1 8.19114- 3 2.28713- 3 2.10000+ 1 2.70000+ 1 9.40000- 5 2.26529- 3 2.10000+ 1 2.90000+ 1 2.74173- 5 2.30197- 3 2.10000+ 1 3.00000+ 1 3.54621- 3 2.31915- 3 2.10000+ 1 3.20000+ 1 2.90949- 5 2.36836- 3 2.10000+ 1 3.30000+ 1 3.48032- 4 2.37006- 3 2.10000+ 1 4.10000+ 1 3.35698- 6 2.37222- 3 2.20000+ 1 2.20000+ 1 2.20168- 3 2.06390- 3 2.20000+ 1 2.40000+ 1 6.65669- 3 2.30158- 3 2.20000+ 1 2.50000+ 1 5.60551- 3 2.30556- 3 2.20000+ 1 2.70000+ 1 1.13027- 4 2.28372- 3 2.20000+ 1 2.90000+ 1 3.20068- 4 2.32040- 3 2.20000+ 1 3.00000+ 1 4.59703- 3 2.33758- 3 2.20000+ 1 3.20000+ 1 3.65935- 4 2.38679- 3 2.20000+ 1 3.30000+ 1 3.11088- 4 2.38849- 3 2.20000+ 1 4.10000+ 1 3.91674- 6 2.39065- 3 2.40000+ 1 2.40000+ 1 9.87542- 4 2.53926- 3 2.40000+ 1 2.50000+ 1 2.62332- 2 2.54324- 3 2.40000+ 1 2.70000+ 1 1.69534- 4 2.52140- 3 2.40000+ 1 2.90000+ 1 2.30518- 4 2.55808- 3 2.40000+ 1 3.00000+ 1 2.76741- 3 2.57526- 3 2.40000+ 1 3.20000+ 1 6.60226- 5 2.62447- 3 2.40000+ 1 3.30000+ 1 4.98543- 4 2.62617- 3 2.40000+ 1 4.10000+ 1 6.15477- 6 2.62833- 3 2.50000+ 1 2.50000+ 1 1.03337- 2 2.54722- 3 2.50000+ 1 2.70000+ 1 2.46200- 4 2.52538- 3 2.50000+ 1 2.90000+ 1 1.27236- 3 2.56206- 3 2.50000+ 1 3.00000+ 1 3.28173- 3 2.57924- 3 2.50000+ 1 3.20000+ 1 6.77028- 4 2.62845- 3 2.50000+ 1 3.30000+ 1 4.50982- 4 2.63015- 3 2.50000+ 1 4.10000+ 1 8.95234- 6 2.63231- 3 2.70000+ 1 2.70000+ 1 1.44065- 5 2.50354- 3 2.70000+ 1 2.90000+ 1 1.97144- 5 2.54022- 3 2.70000+ 1 3.00000+ 1 3.95801- 4 2.55740- 3 2.70000+ 1 3.20000+ 1 1.06156- 5 2.60661- 3 2.70000+ 1 3.30000+ 1 1.13734- 5 2.60831- 3 2.70000+ 1 4.10000+ 1 7.58259- 7 2.61047- 3 2.90000+ 1 2.90000+ 1 7.61698- 7 2.57690- 3 2.90000+ 1 3.00000+ 1 4.34911- 4 2.59408- 3 2.90000+ 1 3.20000+ 1 3.04681- 6 2.64329- 3 2.90000+ 1 3.30000+ 1 3.04681- 5 2.64499- 3 2.90000+ 1 4.10000+ 1 7.61698- 7 2.64715- 3 3.00000+ 1 3.00000+ 1 7.51860- 4 2.61126- 3 3.00000+ 1 3.20000+ 1 5.52707- 4 2.66047- 3 3.00000+ 1 3.30000+ 1 6.78829- 4 2.66217- 3 3.00000+ 1 4.10000+ 1 2.18984- 5 2.66433- 3 3.20000+ 1 3.20000+ 1 1.10297- 6 2.70968- 3 3.20000+ 1 3.30000+ 1 2.70235- 5 2.71138- 3 3.20000+ 1 4.10000+ 1 5.51496- 7 2.71354- 3 3.30000+ 1 3.30000+ 1 1.07514- 5 2.71308- 3 3.30000+ 1 4.10000+ 1 5.37580- 7 2.71524- 3 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.04491- 3 1.66442- 3 1.90000+ 1 2.05971- 4 1.76331- 3 2.40000+ 1 2.68511- 2 2.20333- 3 2.90000+ 1 4.96431- 4 2.22215- 3 3.00000+ 1 5.14311- 5 2.23933- 3 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.40000+ 1 1.31356- 2 0.00000+ 0 1.40000+ 1 2.50000+ 1 2.20663- 3 0.00000+ 0 1.40000+ 1 2.90000+ 1 2.08638- 3 9.95000- 6 1.40000+ 1 3.00000+ 1 7.06982- 3 2.71300- 5 1.40000+ 1 3.20000+ 1 3.69012- 2 7.63400- 5 1.40000+ 1 3.30000+ 1 4.95334- 3 7.80400- 5 1.40000+ 1 4.10000+ 1 2.45174- 4 8.02000- 5 1.60000+ 1 1.60000+ 1 3.15576- 5 8.05900- 4 1.60000+ 1 1.80000+ 1 1.33870- 3 9.17020- 4 1.60000+ 1 1.90000+ 1 9.94073- 4 1.01591- 3 1.60000+ 1 2.10000+ 1 3.69653- 2 1.19982- 3 1.60000+ 1 2.20000+ 1 4.29542- 3 1.21825- 3 1.60000+ 1 2.40000+ 1 1.53535- 2 1.45593- 3 1.60000+ 1 2.50000+ 1 4.36463- 3 1.45991- 3 1.60000+ 1 2.70000+ 1 2.06335- 5 1.43807- 3 1.60000+ 1 2.90000+ 1 1.83271- 4 1.47475- 3 1.60000+ 1 3.00000+ 1 1.10446- 4 1.49193- 3 1.60000+ 1 3.20000+ 1 2.27575- 3 1.54114- 3 1.60000+ 1 3.30000+ 1 2.59744- 4 1.54284- 3 1.60000+ 1 4.10000+ 1 1.21376- 6 1.54500- 3 1.80000+ 1 1.80000+ 1 7.90127- 4 1.02814- 3 1.80000+ 1 1.90000+ 1 5.05994- 3 1.12703- 3 1.80000+ 1 2.10000+ 1 3.29395- 2 1.31094- 3 1.80000+ 1 2.20000+ 1 2.40438- 3 1.32937- 3 1.80000+ 1 2.40000+ 1 9.87955- 3 1.56705- 3 1.80000+ 1 2.50000+ 1 4.93510- 3 1.57103- 3 1.80000+ 1 2.70000+ 1 1.73568- 4 1.54919- 3 1.80000+ 1 2.90000+ 1 2.16037- 4 1.58587- 3 1.80000+ 1 3.00000+ 1 6.23849- 4 1.60305- 3 1.80000+ 1 3.20000+ 1 2.01478- 3 1.65226- 3 1.80000+ 1 3.30000+ 1 1.66278- 4 1.65396- 3 1.80000+ 1 4.10000+ 1 6.06847- 6 1.65612- 3 1.90000+ 1 1.90000+ 1 1.79641- 3 1.22592- 3 1.90000+ 1 2.10000+ 1 6.68365- 2 1.40983- 3 1.90000+ 1 2.20000+ 1 2.52823- 3 1.42826- 3 1.90000+ 1 2.40000+ 1 3.67767- 3 1.66594- 3 1.90000+ 1 2.50000+ 1 2.26368- 3 1.66992- 3 1.90000+ 1 2.70000+ 1 1.49287- 4 1.64808- 3 1.90000+ 1 2.90000+ 1 5.68040- 4 1.68476- 3 1.90000+ 1 3.00000+ 1 4.24795- 4 1.70194- 3 1.90000+ 1 3.20000+ 1 4.12669- 3 1.75115- 3 1.90000+ 1 3.30000+ 1 1.57782- 4 1.75285- 3 1.90000+ 1 4.10000+ 1 6.06850- 6 1.75501- 3 2.10000+ 1 2.10000+ 1 5.93165- 2 1.59374- 3 2.10000+ 1 2.20000+ 1 1.18166- 1 1.61217- 3 2.10000+ 1 2.40000+ 1 6.01901- 2 1.84985- 3 2.10000+ 1 2.50000+ 1 7.33140- 2 1.85383- 3 2.10000+ 1 2.70000+ 1 6.63327- 3 1.83199- 3 2.10000+ 1 2.90000+ 1 5.63190- 3 1.86867- 3 2.10000+ 1 3.00000+ 1 1.06759- 2 1.88585- 3 2.10000+ 1 3.20000+ 1 8.65756- 3 1.93506- 3 2.10000+ 1 3.30000+ 1 9.21728- 3 1.93676- 3 2.10000+ 1 4.10000+ 1 2.58530- 4 1.93892- 3 2.20000+ 1 2.20000+ 1 1.90310- 3 1.63060- 3 2.20000+ 1 2.40000+ 1 6.68004- 2 1.86828- 3 2.20000+ 1 2.50000+ 1 3.42757- 3 1.87226- 3 2.20000+ 1 2.70000+ 1 4.24794- 4 1.85042- 3 2.20000+ 1 2.90000+ 1 2.63383- 4 1.88710- 3 2.20000+ 1 3.00000+ 1 3.30133- 4 1.90428- 3 2.20000+ 1 3.20000+ 1 7.33927- 3 1.95349- 3 2.20000+ 1 3.30000+ 1 2.48814- 4 1.95519- 3 2.20000+ 1 4.10000+ 1 1.57781- 5 1.95735- 3 2.40000+ 1 2.40000+ 1 6.06835- 2 2.10596- 3 2.40000+ 1 2.50000+ 1 1.75947- 1 2.10994- 3 2.40000+ 1 2.70000+ 1 2.88136- 3 2.08810- 3 2.40000+ 1 2.90000+ 1 1.40308- 3 2.12478- 3 2.40000+ 1 3.00000+ 1 5.97163- 4 2.14196- 3 2.40000+ 1 3.20000+ 1 3.98212- 3 2.19117- 3 2.40000+ 1 3.30000+ 1 4.99433- 3 2.19287- 3 2.40000+ 1 4.10000+ 1 1.11670- 4 2.19503- 3 2.50000+ 1 2.50000+ 1 3.35629- 3 2.11392- 3 2.50000+ 1 2.70000+ 1 5.33880- 4 2.09208- 3 2.50000+ 1 2.90000+ 1 3.50054- 4 2.12876- 3 2.50000+ 1 3.00000+ 1 2.99417- 4 2.14594- 3 2.50000+ 1 3.20000+ 1 3.83851- 3 2.19515- 3 2.50000+ 1 3.30000+ 1 2.19062- 4 2.19685- 3 2.50000+ 1 4.10000+ 1 1.98144- 5 2.19901- 3 2.70000+ 1 2.70000+ 1 3.16095- 6 2.07024- 3 2.70000+ 1 2.90000+ 1 3.31884- 5 2.10692- 3 2.70000+ 1 3.00000+ 1 2.21257- 5 2.12410- 3 2.70000+ 1 3.20000+ 1 5.35766- 4 2.17331- 3 2.70000+ 1 3.30000+ 1 3.63502- 5 2.17501- 3 2.90000+ 1 2.90000+ 1 2.90066- 5 2.14360- 3 2.90000+ 1 3.00000+ 1 1.36114- 4 2.16078- 3 2.90000+ 1 3.20000+ 1 6.35939- 4 2.20999- 3 2.90000+ 1 3.30000+ 1 3.57018- 5 2.21169- 3 2.90000+ 1 4.10000+ 1 2.23137- 6 2.21385- 3 3.00000+ 1 3.00000+ 1 5.22745- 5 2.17796- 3 3.00000+ 1 3.20000+ 1 1.36163- 3 2.22717- 3 3.00000+ 1 3.30000+ 1 4.48076- 5 2.22887- 3 3.00000+ 1 4.10000+ 1 2.48937- 6 2.23103- 3 3.20000+ 1 3.20000+ 1 2.88572- 4 2.27638- 3 3.20000+ 1 3.30000+ 1 5.38511- 4 2.27808- 3 3.20000+ 1 4.10000+ 1 1.47687- 5 2.28024- 3 3.30000+ 1 3.30000+ 1 8.04446- 6 2.27978- 3 3.30000+ 1 4.10000+ 1 1.14926- 6 2.28194- 3 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.61229- 3 1.67481- 3 2.40000+ 1 1.35389- 3 2.11483- 3 2.50000+ 1 2.64308- 2 2.11881- 3 3.00000+ 1 4.16596- 4 2.15083- 3 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.24085- 6 7.17400- 4 1.60000+ 1 1.80000+ 1 2.86618- 4 8.28520- 4 1.60000+ 1 1.90000+ 1 2.30784- 3 9.27410- 4 1.60000+ 1 2.10000+ 1 3.71617- 3 1.11132- 3 1.60000+ 1 2.20000+ 1 4.07568- 2 1.12975- 3 1.60000+ 1 2.40000+ 1 4.53888- 3 1.36743- 3 1.60000+ 1 2.50000+ 1 1.65628- 2 1.37141- 3 1.60000+ 1 2.70000+ 1 1.24085- 5 1.34957- 3 1.60000+ 1 2.90000+ 1 1.61299- 5 1.38625- 3 1.60000+ 1 3.00000+ 1 2.66767- 4 1.40343- 3 1.60000+ 1 3.20000+ 1 2.24586- 4 1.45264- 3 1.60000+ 1 3.30000+ 1 2.37113- 3 1.45434- 3 1.80000+ 1 1.80000+ 1 1.24086- 6 9.39640- 4 1.80000+ 1 1.90000+ 1 6.10714- 3 1.03853- 3 1.80000+ 1 2.10000+ 1 3.10203- 4 1.22244- 3 1.80000+ 1 2.20000+ 1 4.19054- 2 1.24087- 3 1.80000+ 1 2.40000+ 1 2.24329- 3 1.47855- 3 1.80000+ 1 2.50000+ 1 8.69313- 3 1.48253- 3 1.80000+ 1 2.70000+ 1 3.59827- 5 1.46069- 3 1.80000+ 1 2.90000+ 1 2.48160- 6 1.49737- 3 1.80000+ 1 3.00000+ 1 7.01047- 4 1.51455- 3 1.80000+ 1 3.20000+ 1 7.44452- 6 1.56376- 3 1.80000+ 1 3.30000+ 1 2.44191- 3 1.56546- 3 1.80000+ 1 4.10000+ 1 1.24086- 6 1.56762- 3 1.90000+ 1 1.90000+ 1 4.27080- 3 1.13742- 3 1.90000+ 1 2.10000+ 1 3.90352- 3 1.32133- 3 1.90000+ 1 2.20000+ 1 6.37974- 2 1.33976- 3 1.90000+ 1 2.40000+ 1 2.53870- 3 1.57744- 3 1.90000+ 1 2.50000+ 1 5.08477- 3 1.58142- 3 1.90000+ 1 2.70000+ 1 3.56103- 4 1.55958- 3 1.90000+ 1 2.90000+ 1 6.62601- 4 1.59626- 3 1.90000+ 1 3.00000+ 1 1.01008- 3 1.61344- 3 1.90000+ 1 3.20000+ 1 2.84140- 4 1.66265- 3 1.90000+ 1 3.30000+ 1 3.70253- 3 1.66435- 3 1.90000+ 1 4.10000+ 1 1.36483- 5 1.66651- 3 2.10000+ 1 2.10000+ 1 8.46241- 4 1.50524- 3 2.10000+ 1 2.20000+ 1 8.72372- 2 1.52367- 3 2.10000+ 1 2.40000+ 1 3.03876- 3 1.76135- 3 2.10000+ 1 2.50000+ 1 4.15722- 2 1.76533- 3 2.10000+ 1 2.70000+ 1 3.51151- 4 1.74349- 3 2.10000+ 1 2.90000+ 1 5.83173- 5 1.78017- 3 2.10000+ 1 3.00000+ 1 4.61565- 4 1.79735- 3 2.10000+ 1 3.20000+ 1 1.14154- 4 1.84656- 3 2.10000+ 1 3.30000+ 1 5.12682- 3 1.84826- 3 2.10000+ 1 4.10000+ 1 1.24086- 5 1.85042- 3 2.20000+ 1 2.20000+ 1 9.77912- 2 1.54210- 3 2.20000+ 1 2.40000+ 1 6.68092- 2 1.77978- 3 2.20000+ 1 2.50000+ 1 1.05529- 1 1.78376- 3 2.20000+ 1 2.70000+ 1 7.03656- 3 1.76192- 3 2.20000+ 1 2.90000+ 1 6.87516- 3 1.79860- 3 2.20000+ 1 3.00000+ 1 1.02763- 2 1.81578- 3 2.20000+ 1 3.20000+ 1 7.17796- 3 1.86499- 3 2.20000+ 1 3.30000+ 1 1.33780- 2 1.86669- 3 2.20000+ 1 4.10000+ 1 2.74227- 4 1.86885- 3 2.40000+ 1 2.40000+ 1 4.97197- 3 2.01746- 3 2.40000+ 1 2.50000+ 1 1.59018- 1 2.02144- 3 2.40000+ 1 2.70000+ 1 6.57657- 4 1.99960- 3 2.40000+ 1 2.90000+ 1 3.42476- 4 2.03628- 3 2.40000+ 1 3.00000+ 1 3.36277- 4 2.05346- 3 2.40000+ 1 3.20000+ 1 2.43204- 4 2.10267- 3 2.40000+ 1 3.30000+ 1 3.73375- 3 2.10437- 3 2.40000+ 1 4.10000+ 1 2.48170- 5 2.10653- 3 2.50000+ 1 2.50000+ 1 1.08747- 1 2.02542- 3 2.50000+ 1 2.70000+ 1 3.02647- 3 2.00358- 3 2.50000+ 1 2.90000+ 1 1.43934- 3 2.04026- 3 2.50000+ 1 3.00000+ 1 7.79251- 4 2.05744- 3 2.50000+ 1 3.20000+ 1 3.23494- 3 2.10665- 3 2.50000+ 1 3.30000+ 1 6.74275- 3 2.10835- 3 2.50000+ 1 4.10000+ 1 1.19127- 4 2.11051- 3 2.70000+ 1 2.70000+ 1 1.96514- 6 1.98174- 3 2.70000+ 1 2.90000+ 1 3.93010- 6 2.01842- 3 2.70000+ 1 3.00000+ 1 6.87750- 5 2.03560- 3 2.70000+ 1 3.20000+ 1 3.73360- 5 2.08481- 3 2.70000+ 1 3.30000+ 1 6.54357- 4 2.08651- 3 2.90000+ 1 3.00000+ 1 1.22355- 4 2.07228- 3 2.90000+ 1 3.20000+ 1 3.76475- 6 2.12149- 3 2.90000+ 1 3.30000+ 1 6.15534- 4 2.12319- 3 3.00000+ 1 3.00000+ 1 1.13331- 4 2.08946- 3 3.00000+ 1 3.20000+ 1 6.70739- 5 2.13867- 3 3.00000+ 1 3.30000+ 1 1.11717- 3 2.14037- 3 3.00000+ 1 4.10000+ 1 2.31303- 6 2.14253- 3 3.20000+ 1 3.20000+ 1 3.42389- 6 2.18788- 3 3.20000+ 1 3.30000+ 1 3.90321- 4 2.18958- 3 3.20000+ 1 4.10000+ 1 1.14133- 6 2.19174- 3 3.30000+ 1 3.30000+ 1 4.47936- 4 2.19128- 3 3.30000+ 1 4.10000+ 1 1.61302- 5 2.19344- 3 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.87822- 5 1.11120- 4 1.90000+ 1 2.70140- 4 2.10010- 4 2.90000+ 1 1.62493- 4 6.68850- 4 3.00000+ 1 7.15811- 5 6.86030- 4 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 8.88051- 3 1.37500- 5 1.80000+ 1 2.50000+ 1 2.21224- 3 1.77300- 5 1.80000+ 1 2.70000+ 1 2.90198- 2 0.00000+ 0 1.80000+ 1 2.90000+ 1 2.73534- 2 3.25700- 5 1.80000+ 1 3.00000+ 1 4.63423- 2 4.97500- 5 1.80000+ 1 3.20000+ 1 2.46865- 2 9.89600- 5 1.80000+ 1 3.30000+ 1 3.97039- 2 1.00660- 4 1.80000+ 1 4.10000+ 1 1.14393- 3 1.02820- 4 1.90000+ 1 2.40000+ 1 8.52841- 2 1.12640- 4 1.90000+ 1 2.50000+ 1 1.12901- 1 1.16620- 4 1.90000+ 1 2.70000+ 1 4.04776- 2 9.47800- 5 1.90000+ 1 2.90000+ 1 4.60849- 2 1.31460- 4 1.90000+ 1 3.00000+ 1 4.93896- 2 1.48640- 4 1.90000+ 1 3.20000+ 1 3.28103- 2 1.97850- 4 1.90000+ 1 3.30000+ 1 3.85107- 2 1.99550- 4 1.90000+ 1 4.10000+ 1 1.57785- 3 2.01710- 4 2.10000+ 1 2.10000+ 1 4.13088- 3 4.04400- 5 2.10000+ 1 2.20000+ 1 5.62225- 3 5.88700- 5 2.10000+ 1 2.40000+ 1 4.63970- 3 2.96550- 4 2.10000+ 1 2.50000+ 1 8.83274- 3 3.00530- 4 2.10000+ 1 2.70000+ 1 1.64973- 2 2.78690- 4 2.10000+ 1 2.90000+ 1 4.64466- 3 3.15370- 4 2.10000+ 1 3.00000+ 1 7.81821- 3 3.32550- 4 2.10000+ 1 3.20000+ 1 1.29058- 3 3.81760- 4 2.10000+ 1 3.30000+ 1 1.18191- 3 3.83460- 4 2.10000+ 1 4.10000+ 1 5.06622- 4 3.85620- 4 2.20000+ 1 2.20000+ 1 6.15926- 3 7.73000- 5 2.20000+ 1 2.40000+ 1 9.95405- 3 3.14980- 4 2.20000+ 1 2.50000+ 1 9.61070- 3 3.18960- 4 2.20000+ 1 2.70000+ 1 2.29473- 2 2.97120- 4 2.20000+ 1 2.90000+ 1 9.05077- 3 3.33800- 4 2.20000+ 1 3.00000+ 1 7.95212- 3 3.50980- 4 2.20000+ 1 3.20000+ 1 1.04979- 3 4.00190- 4 2.20000+ 1 3.30000+ 1 1.77174- 3 4.01890- 4 2.20000+ 1 4.10000+ 1 7.03292- 4 4.04050- 4 2.40000+ 1 2.40000+ 1 8.45089- 3 5.52660- 4 2.40000+ 1 2.50000+ 1 1.73709- 2 5.56640- 4 2.40000+ 1 2.70000+ 1 1.91370- 2 5.34800- 4 2.40000+ 1 2.90000+ 1 2.50337- 3 5.71480- 4 2.40000+ 1 3.00000+ 1 7.98164- 3 5.88660- 4 2.40000+ 1 3.20000+ 1 5.72211- 4 6.37870- 4 2.40000+ 1 3.30000+ 1 3.75031- 4 6.39570- 4 2.40000+ 1 4.10000+ 1 5.29826- 4 6.41730- 4 2.50000+ 1 2.50000+ 1 1.41213- 2 5.60620- 4 2.50000+ 1 2.70000+ 1 2.49874- 2 5.38780- 4 2.50000+ 1 2.90000+ 1 1.38937- 3 5.75460- 4 2.50000+ 1 3.00000+ 1 9.39525- 3 5.92640- 4 2.50000+ 1 3.20000+ 1 3.53932- 4 6.41850- 4 2.50000+ 1 3.30000+ 1 8.20410- 4 6.43550- 4 2.50000+ 1 4.10000+ 1 6.90147- 4 6.45710- 4 2.70000+ 1 2.70000+ 1 1.75033- 2 5.16940- 4 2.70000+ 1 2.90000+ 1 2.37706- 2 5.53620- 4 2.70000+ 1 3.00000+ 1 3.80143- 2 5.70800- 4 2.70000+ 1 3.20000+ 1 2.24967- 2 6.20010- 4 2.70000+ 1 3.30000+ 1 2.99279- 2 6.21710- 4 2.70000+ 1 4.10000+ 1 1.18910- 3 6.23870- 4 2.90000+ 1 2.90000+ 1 2.71440- 3 5.90300- 4 2.90000+ 1 3.00000+ 1 1.11684- 2 6.07480- 4 2.90000+ 1 3.20000+ 1 2.99789- 3 6.56690- 4 2.90000+ 1 3.30000+ 1 2.57278- 3 6.58390- 4 2.90000+ 1 4.10000+ 1 9.59876- 4 6.60550- 4 3.00000+ 1 3.00000+ 1 8.12933- 3 6.24660- 4 3.00000+ 1 3.20000+ 1 3.27935- 3 6.73870- 4 3.00000+ 1 3.30000+ 1 5.54325- 3 6.75570- 4 3.00000+ 1 4.10000+ 1 1.60334- 3 6.77730- 4 3.20000+ 1 3.20000+ 1 7.18594- 4 7.23080- 4 3.20000+ 1 3.30000+ 1 2.14442- 3 7.24780- 4 3.20000+ 1 4.10000+ 1 1.31265- 3 7.26940- 4 3.30000+ 1 3.30000+ 1 1.73619- 3 7.26480- 4 3.30000+ 1 4.10000+ 1 2.27327- 3 7.28640- 4 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.55859- 4 2.82800- 4 2.70000+ 1 1.82849- 4 5.21050- 4 3.20000+ 1 2.21081- 5 6.24120- 4 4.10000+ 1 1.32991- 5 6.27980- 4 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 5.07629- 3 1.52000- 6 1.90000+ 1 2.50000+ 1 8.27433- 3 5.50000- 6 1.90000+ 1 2.90000+ 1 1.35643- 2 2.03400- 5 1.90000+ 1 3.00000+ 1 1.65285- 2 3.75200- 5 1.90000+ 1 3.20000+ 1 5.11520- 3 8.67300- 5 1.90000+ 1 3.30000+ 1 7.69220- 3 8.84300- 5 1.90000+ 1 4.10000+ 1 5.64810- 4 9.05900- 5 2.10000+ 1 2.40000+ 1 1.44797- 1 1.85430- 4 2.10000+ 1 2.50000+ 1 3.17803- 1 1.89410- 4 2.10000+ 1 2.70000+ 1 3.74923- 2 1.67570- 4 2.10000+ 1 2.90000+ 1 2.86162- 2 2.04250- 4 2.10000+ 1 3.00000+ 1 4.22948- 2 2.21430- 4 2.10000+ 1 3.20000+ 1 1.61876- 2 2.70640- 4 2.10000+ 1 3.30000+ 1 2.65560- 2 2.72340- 4 2.10000+ 1 4.10000+ 1 1.45749- 3 2.74500- 4 2.20000+ 1 2.40000+ 1 4.52167- 2 2.03860- 4 2.20000+ 1 2.50000+ 1 1.15579- 2 2.07840- 4 2.20000+ 1 2.70000+ 1 6.25452- 3 1.86000- 4 2.20000+ 1 2.90000+ 1 2.55506- 2 2.22680- 4 2.20000+ 1 3.00000+ 1 5.40886- 3 2.39860- 4 2.20000+ 1 3.20000+ 1 2.16757- 3 2.89070- 4 2.20000+ 1 3.30000+ 1 1.69458- 3 2.90770- 4 2.20000+ 1 4.10000+ 1 1.97799- 4 2.92930- 4 2.40000+ 1 2.40000+ 1 2.96398- 3 4.41540- 4 2.40000+ 1 2.50000+ 1 1.96859- 2 4.45520- 4 2.40000+ 1 2.70000+ 1 4.53524- 3 4.23680- 4 2.40000+ 1 2.90000+ 1 1.93698- 2 4.60360- 4 2.40000+ 1 3.00000+ 1 3.90485- 3 4.77540- 4 2.40000+ 1 3.20000+ 1 3.55578- 3 5.26750- 4 2.40000+ 1 3.30000+ 1 1.60612- 3 5.28450- 4 2.40000+ 1 4.10000+ 1 1.77947- 4 5.30610- 4 2.50000+ 1 2.50000+ 1 9.75391- 4 4.49500- 4 2.50000+ 1 2.70000+ 1 3.10477- 3 4.27660- 4 2.50000+ 1 2.90000+ 1 3.70386- 2 4.64340- 4 2.50000+ 1 3.00000+ 1 2.25447- 3 4.81520- 4 2.50000+ 1 3.20000+ 1 8.50078- 3 5.30730- 4 2.50000+ 1 3.30000+ 1 6.60718- 4 5.32430- 4 2.50000+ 1 4.10000+ 1 9.89347- 5 5.34590- 4 2.70000+ 1 2.70000+ 1 7.97047- 4 4.05820- 4 2.70000+ 1 2.90000+ 1 1.11222- 2 4.42500- 4 2.70000+ 1 3.00000+ 1 2.00062- 3 4.59680- 4 2.70000+ 1 3.20000+ 1 1.88622- 3 5.08890- 4 2.70000+ 1 3.30000+ 1 1.23361- 3 5.10590- 4 2.70000+ 1 4.10000+ 1 5.08254- 5 5.12750- 4 2.90000+ 1 2.90000+ 1 1.35576- 2 4.79180- 4 2.90000+ 1 3.00000+ 1 3.59351- 2 4.96360- 4 2.90000+ 1 3.20000+ 1 1.74443- 2 5.45570- 4 2.90000+ 1 3.30000+ 1 2.81525- 2 5.47270- 4 2.90000+ 1 4.10000+ 1 8.79126- 4 5.49430- 4 3.00000+ 1 3.00000+ 1 1.37280- 3 5.13540- 4 3.00000+ 1 3.20000+ 1 4.09838- 3 5.62750- 4 3.00000+ 1 3.30000+ 1 1.45071- 3 5.64450- 4 3.00000+ 1 4.10000+ 1 1.17926- 4 5.66610- 4 3.20000+ 1 3.20000+ 1 9.24911- 5 6.11960- 4 3.20000+ 1 3.30000+ 1 1.71384- 4 6.13660- 4 3.20000+ 1 4.10000+ 1 1.38184- 5 6.15820- 4 3.30000+ 1 3.30000+ 1 3.62481- 5 6.15360- 4 3.30000+ 1 4.10000+ 1 1.10167- 5 6.17520- 4 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.66734- 5 1.83910- 4 2.20000+ 1 1.98739- 4 2.02340- 4 2.70000+ 1 1.51764- 4 4.22160- 4 3.20000+ 1 6.35757- 6 5.25230- 4 3.30000+ 1 3.59177- 5 5.26930- 4 4.10000+ 1 1.15196- 5 5.29090- 4 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 9.49640- 3 8.65400- 5 2.10000+ 1 2.50000+ 1 2.19563- 2 9.05200- 5 2.10000+ 1 2.70000+ 1 1.59047- 2 6.86800- 5 2.10000+ 1 2.90000+ 1 1.25598- 2 1.05360- 4 2.10000+ 1 3.00000+ 1 4.06679- 2 1.22540- 4 2.10000+ 1 3.20000+ 1 7.86242- 3 1.71750- 4 2.10000+ 1 3.30000+ 1 1.37883- 2 1.73450- 4 2.10000+ 1 4.10000+ 1 5.84071- 4 1.75610- 4 2.20000+ 1 2.40000+ 1 1.27466- 1 1.04970- 4 2.20000+ 1 2.50000+ 1 1.51194- 1 1.08950- 4 2.20000+ 1 2.70000+ 1 7.87924- 2 8.71100- 5 2.20000+ 1 2.90000+ 1 8.35252- 2 1.23790- 4 2.20000+ 1 3.00000+ 1 1.05536- 1 1.40970- 4 2.20000+ 1 3.20000+ 1 6.05510- 2 1.90180- 4 2.20000+ 1 3.30000+ 1 6.77243- 2 1.91880- 4 2.20000+ 1 4.10000+ 1 3.16205- 3 1.94040- 4 2.40000+ 1 2.40000+ 1 7.67640- 4 3.42650- 4 2.40000+ 1 2.50000+ 1 1.70716- 2 3.46630- 4 2.40000+ 1 2.70000+ 1 6.27676- 3 3.24790- 4 2.40000+ 1 2.90000+ 1 3.14687- 3 3.61470- 4 2.40000+ 1 3.00000+ 1 4.13526- 2 3.78650- 4 2.40000+ 1 3.20000+ 1 8.82258- 4 4.27860- 4 2.40000+ 1 3.30000+ 1 4.32814- 3 4.29560- 4 2.40000+ 1 4.10000+ 1 1.78143- 4 4.31720- 4 2.50000+ 1 2.50000+ 1 7.58962- 3 3.50610- 4 2.50000+ 1 2.70000+ 1 1.36446- 2 3.28770- 4 2.50000+ 1 2.90000+ 1 1.14871- 2 3.65450- 4 2.50000+ 1 3.00000+ 1 5.04813- 2 3.82630- 4 2.50000+ 1 3.20000+ 1 8.48324- 4 4.31840- 4 2.50000+ 1 3.30000+ 1 5.54451- 3 4.33540- 4 2.50000+ 1 4.10000+ 1 4.43496- 4 4.35700- 4 2.70000+ 1 2.70000+ 1 1.48501- 6 3.06930- 4 2.70000+ 1 2.90000+ 1 2.62359- 4 3.43610- 4 2.70000+ 1 3.00000+ 1 5.40277- 3 3.60790- 4 2.70000+ 1 3.20000+ 1 3.59382- 4 4.10000- 4 2.70000+ 1 3.30000+ 1 6.51904- 4 4.11700- 4 2.70000+ 1 4.10000+ 1 4.95010- 7 4.13860- 4 2.90000+ 1 2.90000+ 1 1.34968- 5 3.80290- 4 2.90000+ 1 3.00000+ 1 4.94206- 3 3.97470- 4 2.90000+ 1 3.20000+ 1 1.68052- 4 4.46680- 4 2.90000+ 1 3.30000+ 1 5.54246- 4 4.48380- 4 2.90000+ 1 4.10000+ 1 7.83680- 6 4.50540- 4 3.00000+ 1 3.00000+ 1 8.15090- 3 4.14650- 4 3.00000+ 1 3.20000+ 1 5.90647- 3 4.63860- 4 3.00000+ 1 3.30000+ 1 7.56205- 3 4.65560- 4 3.00000+ 1 4.10000+ 1 2.47566- 4 4.67720- 4 3.20000+ 1 3.20000+ 1 4.01060- 5 5.13070- 4 3.20000+ 1 3.30000+ 1 2.46210- 4 5.14770- 4 3.20000+ 1 4.10000+ 1 5.84339- 6 5.16930- 4 3.30000+ 1 3.30000+ 1 2.28972- 4 5.16470- 4 3.30000+ 1 4.10000+ 1 1.43276- 5 5.18630- 4 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.82513- 4 2.56110- 4 2.90000+ 1 4.27590- 5 2.74930- 4 3.00000+ 1 5.81921- 6 2.92110- 4 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 3.49920- 2 6.27000- 6 2.20000+ 1 3.30000+ 1 5.57340- 3 7.97000- 6 2.20000+ 1 4.10000+ 1 2.45785- 4 1.01300- 5 2.40000+ 1 2.40000+ 1 1.28969- 1 1.58740- 4 2.40000+ 1 2.50000+ 1 4.09623- 1 1.62720- 4 2.40000+ 1 2.70000+ 1 6.46179- 2 1.40880- 4 2.40000+ 1 2.90000+ 1 5.34818- 2 1.77560- 4 2.40000+ 1 3.00000+ 1 7.50043- 2 1.94740- 4 2.40000+ 1 3.20000+ 1 5.40772- 2 2.43950- 4 2.40000+ 1 3.30000+ 1 5.22952- 2 2.45650- 4 2.40000+ 1 4.10000+ 1 2.57525- 3 2.47810- 4 2.50000+ 1 2.50000+ 1 5.07441- 3 1.66700- 4 2.50000+ 1 2.70000+ 1 5.90976- 3 1.44860- 4 2.50000+ 1 2.90000+ 1 1.19778- 2 1.81540- 4 2.50000+ 1 3.00000+ 1 4.91619- 3 1.98720- 4 2.50000+ 1 3.20000+ 1 5.91647- 2 2.47930- 4 2.50000+ 1 3.30000+ 1 2.22297- 3 2.49630- 4 2.50000+ 1 4.10000+ 1 1.84597- 4 2.51790- 4 2.70000+ 1 2.70000+ 1 8.42645- 4 1.23020- 4 2.70000+ 1 2.90000+ 1 1.58635- 3 1.59700- 4 2.70000+ 1 3.00000+ 1 1.53549- 3 1.76880- 4 2.70000+ 1 3.20000+ 1 5.27807- 3 2.26090- 4 2.70000+ 1 3.30000+ 1 1.61385- 3 2.27790- 4 2.70000+ 1 4.10000+ 1 3.86536- 5 2.29950- 4 2.90000+ 1 2.90000+ 1 3.19875- 4 1.96380- 4 2.90000+ 1 3.00000+ 1 1.59970- 3 2.13560- 4 2.90000+ 1 3.20000+ 1 2.90586- 3 2.62770- 4 2.90000+ 1 3.30000+ 1 5.32806- 4 2.64470- 4 2.90000+ 1 4.10000+ 1 2.73807- 5 2.66630- 4 3.00000+ 1 3.00000+ 1 5.97407- 4 2.30740- 4 3.00000+ 1 3.20000+ 1 5.30803- 3 2.79950- 4 3.00000+ 1 3.30000+ 1 4.61309- 4 2.81650- 4 3.00000+ 1 4.10000+ 1 1.73847- 5 2.83810- 4 3.20000+ 1 3.20000+ 1 2.05802- 3 3.29160- 4 3.20000+ 1 3.30000+ 1 3.89375- 3 3.30860- 4 3.20000+ 1 4.10000+ 1 1.39662- 4 3.33020- 4 3.30000+ 1 3.30000+ 1 9.21827- 5 3.32560- 4 3.30000+ 1 4.10000+ 1 1.49478- 5 3.34720- 4 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 8.14040- 6 2.37680- 4 2.50000+ 1 1.73650- 4 2.41660- 4 3.00000+ 1 3.93080- 5 2.73680- 4 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 7.92691- 3 1.40310- 4 2.40000+ 1 2.50000+ 1 2.80523- 1 1.44290- 4 2.40000+ 1 2.70000+ 1 8.77691- 3 1.22450- 4 2.40000+ 1 2.90000+ 1 5.42942- 3 1.59130- 4 2.40000+ 1 3.00000+ 1 1.24294- 2 1.76310- 4 2.40000+ 1 3.20000+ 1 3.19357- 3 2.25520- 4 2.40000+ 1 3.30000+ 1 5.34232- 2 2.27220- 4 2.40000+ 1 4.10000+ 1 3.08146- 4 2.29380- 4 2.50000+ 1 2.50000+ 1 2.19400- 1 1.48270- 4 2.50000+ 1 2.70000+ 1 7.17389- 2 1.26430- 4 2.50000+ 1 2.90000+ 1 7.43663- 2 1.63110- 4 2.50000+ 1 3.00000+ 1 7.72617- 2 1.80290- 4 2.50000+ 1 3.20000+ 1 5.02560- 2 2.29500- 4 2.50000+ 1 3.30000+ 1 9.36640- 2 2.31200- 4 2.50000+ 1 4.10000+ 1 2.89340- 3 2.33360- 4 2.70000+ 1 2.70000+ 1 1.47081- 3 1.04590- 4 2.70000+ 1 2.90000+ 1 1.54182- 3 1.41270- 4 2.70000+ 1 3.00000+ 1 3.25426- 3 1.58450- 4 2.70000+ 1 3.20000+ 1 2.04229- 3 2.07660- 4 2.70000+ 1 3.30000+ 1 7.23402- 3 2.09360- 4 2.70000+ 1 4.10000+ 1 6.58183- 5 2.11520- 4 2.90000+ 1 2.90000+ 1 1.88483- 4 1.77950- 4 2.90000+ 1 3.00000+ 1 2.51522- 3 1.95130- 4 2.90000+ 1 3.20000+ 1 2.41210- 4 2.44340- 4 2.90000+ 1 3.30000+ 1 4.38096- 3 2.46040- 4 2.90000+ 1 4.10000+ 1 2.39340- 5 2.48200- 4 3.00000+ 1 3.00000+ 1 9.08364- 4 2.12310- 4 3.00000+ 1 3.20000+ 1 7.54654- 4 2.61520- 4 3.00000+ 1 3.30000+ 1 5.95314- 3 2.63220- 4 3.00000+ 1 4.10000+ 1 3.81438- 5 2.65380- 4 3.20000+ 1 3.20000+ 1 4.85421- 5 3.10730- 4 3.20000+ 1 3.30000+ 1 3.47993- 3 3.12430- 4 3.20000+ 1 4.10000+ 1 1.71324- 5 3.14590- 4 3.30000+ 1 3.30000+ 1 3.85141- 3 3.14130- 4 3.30000+ 1 4.10000+ 1 1.78393- 4 3.16290- 4 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.17090- 6 8.52100- 5 3.30000+ 1 7.75693- 8 8.69100- 5 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 8.65877- 2 6.66000- 6 2.90000+ 1 3.30000+ 1 6.09695- 2 8.36000- 6 2.90000+ 1 4.10000+ 1 6.63366- 4 1.05200- 5 3.00000+ 1 3.20000+ 1 1.91039- 1 2.38400- 5 3.00000+ 1 3.30000+ 1 3.33034- 2 2.55400- 5 3.00000+ 1 4.10000+ 1 1.29885- 3 2.77000- 5 3.20000+ 1 3.20000+ 1 2.43995- 1 7.30500- 5 3.20000+ 1 3.30000+ 1 3.56277- 1 7.47500- 5 3.20000+ 1 4.10000+ 1 5.80982- 3 7.69100- 5 3.30000+ 1 3.30000+ 1 1.95034- 2 7.64500- 5 3.30000+ 1 4.10000+ 1 5.51651- 4 7.86100- 5 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.12850- 6 8.29300- 5 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 5.16886- 2 1.98600- 5 3.00000+ 1 3.30000+ 1 2.55616- 1 2.15600- 5 3.00000+ 1 4.10000+ 1 3.63489- 3 2.37200- 5 3.20000+ 1 3.20000+ 1 9.41406- 3 6.90700- 5 3.20000+ 1 3.30000+ 1 3.03431- 1 7.07700- 5 3.20000+ 1 4.10000+ 1 3.64372- 4 7.29300- 5 3.30000+ 1 3.30000+ 1 3.69271- 1 7.24700- 5 3.30000+ 1 4.10000+ 1 6.57809- 3 7.46300- 5 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 8.36091- 7 3.66800- 5 3.00000+ 1 5.42434- 6 5.38600- 5 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 7.68317- 2 2.45200- 5 2.90000+ 1 3.30000+ 1 1.89185- 1 2.62200- 5 2.90000+ 1 4.10000+ 1 5.21272- 3 2.83800- 5 3.00000+ 1 3.20000+ 1 3.29447- 1 4.17000- 5 3.00000+ 1 3.30000+ 1 2.84763- 1 4.34000- 5 3.00000+ 1 4.10000+ 1 7.30844- 3 4.55600- 5 3.20000+ 1 3.20000+ 1 2.19424- 3 9.09100- 5 3.20000+ 1 3.30000+ 1 8.87296- 2 9.26100- 5 3.20000+ 1 4.10000+ 1 3.05983- 3 9.47700- 5 3.30000+ 1 3.30000+ 1 1.12495- 2 9.43100- 5 3.30000+ 1 4.10000+ 1 2.01348- 3 9.64700- 5 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.79027- 6 6.63900- 5 4.10000+ 1 1.10471- 7 7.02500- 5 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 2.43609- 1 5.02000- 6 3.00000+ 1 3.30000+ 1 4.60674- 2 6.72000- 6 3.00000+ 1 4.10000+ 1 2.15309- 3 8.88000- 6 3.20000+ 1 3.20000+ 1 1.27254- 1 5.42300- 5 3.20000+ 1 3.30000+ 1 5.54498- 1 5.59300- 5 3.20000+ 1 4.10000+ 1 9.67738- 3 5.80900- 5 3.30000+ 1 3.30000+ 1 1.59110- 2 5.76300- 5 3.30000+ 1 4.10000+ 1 8.27972- 4 5.97900- 5 1 79000 0 7 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.48030- 8 4.92100- 5 3.30000+ 1 3.49670- 7 5.09100- 5 4.10000+ 1 4.45880- 8 5.30700- 5 1 79000 0 9 1.96966+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.84373- 2 3.70500- 5 3.20000+ 1 3.30000+ 1 5.99375- 1 3.87500- 5 3.20000+ 1 4.10000+ 1 5.41715- 3 4.09100- 5 3.30000+ 1 3.30000+ 1 3.50811- 1 4.04500- 5 3.30000+ 1 4.10000+ 1 1.59591- 2 4.26100- 5 1 80000 0 0 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 1 80000 0 0 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.33530- 2 3.00000+ 0 1.48260- 2 5.00000+ 0 1.42540- 2 6.00000+ 0 1.22870- 2 8.00000+ 0 3.53680- 3 1.00000+ 1 3.27390- 3 1.10000+ 1 2.83690- 3 1.30000+ 1 2.39480- 3 1.40000+ 1 2.30080- 3 1.60000+ 1 7.87440- 4 1.80000+ 1 6.73170- 4 1.90000+ 1 5.67130- 4 2.10000+ 1 3.78210- 4 2.20000+ 1 3.58420- 4 2.40000+ 1 1.13500- 4 2.50000+ 1 1.09130- 4 2.70000+ 1 1.25730- 4 2.90000+ 1 8.73400- 5 3.00000+ 1 6.83000- 5 3.20000+ 1 1.59800- 5 3.30000+ 1 1.39600- 5 4.10000+ 1 9.55000- 6 1 80000 0 0 2.00590+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16410- 1 3.00000+ 0 2.79070- 2 5.00000+ 0 2.78930- 2 6.00000+ 0 2.02510- 2 8.00000+ 0 8.89830- 3 1.00000+ 1 8.78320- 3 1.10000+ 1 6.89080- 3 1.30000+ 1 6.74470- 3 1.40000+ 1 6.34460- 3 1.60000+ 1 2.92730- 3 1.80000+ 1 2.79860- 3 1.90000+ 1 2.22890- 3 2.10000+ 1 2.00850- 3 2.20000+ 1 1.89190- 3 2.40000+ 1 1.51400- 3 2.50000+ 1 1.47500- 3 2.70000+ 1 7.44480- 4 2.90000+ 1 6.40620- 4 3.00000+ 1 4.97150- 4 3.20000+ 1 2.89670- 4 3.30000+ 1 2.64310- 4 4.10000+ 1 8.47700- 5 1 80000 0 0 2.00590+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.76970-11 3.00000+ 0 3.65500-10 5.00000+ 0 3.00080-10 6.00000+ 0 3.45920-10 8.00000+ 0 9.49180-10 1.00000+ 1 8.97430-10 1.10000+ 1 9.80840-10 1.30000+ 1 8.52250-10 1.40000+ 1 8.77740-10 1.60000+ 1 2.09990- 9 1.80000+ 1 2.10690- 9 1.90000+ 1 2.28530- 9 2.10000+ 1 2.31580- 9 2.20000+ 1 2.37330- 9 2.40000+ 1 2.47950- 9 2.50000+ 1 2.51310- 9 2.70000+ 1 4.71890- 9 2.90000+ 1 5.06250- 9 3.00000+ 1 5.56070- 9 3.20000+ 1 7.34860- 9 3.30000+ 1 7.66140- 9 4.10000+ 1 1.39670- 8 1 80000 0 0 2.00590+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.16530- 5 3.00000+ 0 1.19000- 6 5.00000+ 0 2.09280- 6 6.00000+ 0 1.82510- 6 8.00000+ 0 4.47400- 8 1.00000+ 1 4.98170- 8 1.10000+ 1 5.34190- 8 1.30000+ 1 6.68280- 8 1.40000+ 1 6.25500- 8 1.60000+ 1 1.60050- 9 1.80000+ 1 2.53470- 9 1.90000+ 1 1.58820- 9 2.10000+ 1 1.65290- 9 2.20000+ 1 1.39570- 9 2.40000+ 1 1.32720-11 2.50000+ 1 1.19070-11 2.70000+ 1 8.67200-11 2.90000+ 1 1.66990-10 3.00000+ 1 9.63110-11 1 80000 0 0 2.00590+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.02320- 6 3.00000+ 0 1.25850- 5 5.00000+ 0 3.46740- 6 6.00000+ 0 3.71120- 6 8.00000+ 0 1.88330- 5 1.00000+ 1 1.28770- 5 1.10000+ 1 1.00570- 5 1.30000+ 1 2.23800- 6 1.40000+ 1 2.21790- 6 1.60000+ 1 1.51370- 5 1.80000+ 1 1.36640- 5 1.90000+ 1 9.36000- 6 2.10000+ 1 8.14640- 6 2.20000+ 1 7.26940- 6 2.40000+ 1 3.32220- 7 2.50000+ 1 3.10310- 7 2.70000+ 1 2.07600- 5 2.90000+ 1 8.92160- 6 3.00000+ 1 9.82970- 6 1 80000 0 0 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.81675- 4 3.00000+ 0 2.58840- 4 5.00000+ 0 1.87381- 4 6.00000+ 0 1.82467- 4 8.00000+ 0 1.81750- 4 1.00000+ 1 1.57448- 4 1.10000+ 1 1.39551- 4 1.30000+ 1 1.07294- 4 1.40000+ 1 1.03932- 4 1.60000+ 1 1.00528- 4 1.80000+ 1 9.15351- 5 1.90000+ 1 8.81402- 5 2.10000+ 1 6.69171- 5 2.20000+ 1 6.40289- 5 2.40000+ 1 3.65087- 5 2.50000+ 1 3.42241- 5 2.70000+ 1 4.27633- 5 2.90000+ 1 3.28929- 5 3.00000+ 1 2.89954- 5 3.20000+ 1 1.59800- 5 3.30000+ 1 1.39600- 5 4.10000+ 1 9.55000- 6 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.29846+ 0 3.00000+ 0 4.07788- 1 5.00000+ 0 4.60779- 1 6.00000+ 0 3.73919- 1 8.00000+ 0 3.22269- 2 1.00000+ 1 3.20566- 2 1.10000+ 1 3.01160- 2 1.30000+ 1 3.41207- 2 1.40000+ 1 3.20793- 2 1.60000+ 1 1.09269- 3 1.80000+ 1 1.34385- 3 1.90000+ 1 6.48602- 4 2.10000+ 1 2.71332- 4 2.20000+ 1 2.49113- 4 2.40000+ 1 2.74961- 6 2.50000+ 1 2.32323- 6 2.70000+ 1 8.25426- 6 2.90000+ 1 2.86675- 6 3.00000+ 1 6.07678- 7 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.30286- 2 3.00000+ 0 3.90031- 3 5.00000+ 0 5.11533- 3 6.00000+ 0 3.47891- 3 8.00000+ 0 7.21133- 5 1.00000+ 1 7.18239- 5 1.10000+ 1 6.60959- 5 1.30000+ 1 7.55571- 5 1.40000+ 1 6.87914- 5 1.60000+ 1 4.13626- 7 1.80000+ 1 4.55592- 7 1.90000+ 1 2.04854- 7 2.10000+ 1 7.23936- 8 2.20000+ 1 6.30704- 8 2.40000+ 1 2.49894-10 2.50000+ 1 2.08730-10 2.70000+ 1 4.65460-10 2.90000+ 1 2.03729-10 3.00000+ 1 3.32182-11 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13554+ 1 3.00000+ 0 1.66111+ 1 5.00000+ 0 1.17152+ 1 6.00000+ 0 1.14249+ 1 8.00000+ 0 1.13678+ 1 1.00000+ 1 9.68107+ 0 1.10000+ 1 8.50761+ 0 1.30000+ 1 6.25465+ 0 1.40000+ 1 6.09593+ 0 1.60000+ 1 5.84876+ 0 1.80000+ 1 5.19776+ 0 1.90000+ 1 5.01615+ 0 2.10000+ 1 3.50275+ 0 2.20000+ 1 3.38706+ 0 2.40000+ 1 1.41698+ 0 2.50000+ 1 1.37391+ 0 2.70000+ 1 1.91940+ 0 2.90000+ 1 1.19372+ 0 3.00000+ 1 9.99999- 1 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01428- 2 3.00000+ 0 1.06669- 2 5.00000+ 0 8.95129- 3 6.00000+ 0 8.62563- 3 8.00000+ 0 3.28294- 3 1.00000+ 1 3.04463- 3 1.10000+ 1 2.63125- 3 1.30000+ 1 2.21195- 3 1.40000+ 1 2.12808- 3 1.60000+ 1 6.86499- 4 1.80000+ 1 5.81179- 4 1.90000+ 1 4.78785- 4 2.10000+ 1 3.11221- 4 2.20000+ 1 2.94328- 4 2.40000+ 1 7.69910- 5 2.50000+ 1 7.49057- 5 2.70000+ 1 8.29662- 5 2.90000+ 1 5.44469- 5 3.00000+ 1 3.93045- 5 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.80731- 1 6.90990- 2 6.00000+ 0 4.75791- 1 7.10660- 2 1.00000+ 1 5.25591- 2 8.00791- 2 1.10000+ 1 1.01720- 1 8.05161- 2 1.30000+ 1 1.35610- 3 8.09582- 2 1.40000+ 1 1.65880- 3 8.10522- 2 1.80000+ 1 1.23900- 2 8.26798- 2 1.90000+ 1 2.42651- 2 8.27859- 2 2.10000+ 1 3.52391- 4 8.29748- 2 2.20000+ 1 4.30141- 4 8.29946- 2 2.90000+ 1 2.86281- 3 8.32657- 2 3.00000+ 1 5.62191- 3 8.32847- 2 3.20000+ 1 3.75921- 5 8.33370- 2 3.30000+ 1 4.43981- 5 8.33390- 2 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.25534- 3 5.37010- 2 3.00000+ 0 5.00000+ 0 6.63839- 3 5.42730- 2 3.00000+ 0 6.00000+ 0 3.83425- 3 5.62400- 2 3.00000+ 0 8.00000+ 0 1.71069- 3 6.49902- 2 3.00000+ 0 1.00000+ 1 1.42989- 3 6.52531- 2 3.00000+ 0 1.10000+ 1 8.92185- 4 6.56901- 2 3.00000+ 0 1.30000+ 1 7.46286- 5 6.61322- 2 3.00000+ 0 1.40000+ 1 5.69014- 5 6.62262- 2 3.00000+ 0 1.60000+ 1 4.26387- 4 6.77396- 2 3.00000+ 0 1.80000+ 1 3.47681- 4 6.78538- 2 3.00000+ 0 1.90000+ 1 2.16109- 4 6.79599- 2 3.00000+ 0 2.10000+ 1 1.92380- 5 6.81488- 2 3.00000+ 0 2.20000+ 1 1.44279- 5 6.81686- 2 3.00000+ 0 2.40000+ 1 5.40412- 8 6.84135- 2 3.00000+ 0 2.50000+ 1 5.40412- 8 6.84179- 2 3.00000+ 0 2.70000+ 1 8.72175- 5 6.84013- 2 3.00000+ 0 2.90000+ 1 6.28489- 5 6.84397- 2 3.00000+ 0 3.00000+ 1 3.74492- 5 6.84587- 2 3.00000+ 0 3.20000+ 1 1.94543- 6 6.85110- 2 3.00000+ 0 3.30000+ 1 1.35101- 6 6.85130- 2 5.00000+ 0 5.00000+ 0 3.78117- 4 5.48450- 2 5.00000+ 0 6.00000+ 0 6.84710- 3 5.68120- 2 5.00000+ 0 8.00000+ 0 1.15445- 3 6.55622- 2 5.00000+ 0 1.00000+ 1 1.42886- 4 6.58251- 2 5.00000+ 0 1.10000+ 1 1.33004- 3 6.62621- 2 5.00000+ 0 1.30000+ 1 7.72789- 5 6.67042- 2 5.00000+ 0 1.40000+ 1 2.05732- 4 6.67982- 2 5.00000+ 0 1.60000+ 1 2.78417- 4 6.83116- 2 5.00000+ 0 1.80000+ 1 3.37211- 5 6.84258- 2 5.00000+ 0 1.90000+ 1 3.09163- 4 6.85319- 2 5.00000+ 0 2.10000+ 1 1.91841- 5 6.87208- 2 5.00000+ 0 2.20000+ 1 5.11781- 5 6.87406- 2 5.00000+ 0 2.40000+ 1 5.40427- 7 6.89855- 2 5.00000+ 0 2.50000+ 1 8.10602- 7 6.89899- 2 5.00000+ 0 2.70000+ 1 5.64734- 5 6.89733- 2 5.00000+ 0 2.90000+ 1 6.05234- 6 6.90117- 2 5.00000+ 0 3.00000+ 1 5.31226- 5 6.90307- 2 5.00000+ 0 3.20000+ 1 1.89144- 6 6.90830- 2 5.00000+ 0 3.30000+ 1 4.86388- 6 6.90850- 2 6.00000+ 0 6.00000+ 0 2.97247- 3 5.87790- 2 6.00000+ 0 8.00000+ 0 6.07693- 4 6.75292- 2 6.00000+ 0 1.00000+ 1 1.21481- 3 6.77921- 2 6.00000+ 0 1.10000+ 1 1.19284- 3 6.82291- 2 6.00000+ 0 1.30000+ 1 2.29785- 4 6.86712- 2 6.00000+ 0 1.40000+ 1 1.92440- 4 6.87652- 2 6.00000+ 0 1.60000+ 1 1.43378- 4 7.02786- 2 6.00000+ 0 1.80000+ 1 2.83228- 4 7.03928- 2 6.00000+ 0 1.90000+ 1 2.79710- 4 7.04989- 2 6.00000+ 0 2.10000+ 1 5.76072- 5 7.06878- 2 6.00000+ 0 2.20000+ 1 4.80401- 5 7.07076- 2 6.00000+ 0 2.40000+ 1 8.64651- 7 7.09525- 2 6.00000+ 0 2.50000+ 1 9.72742- 7 7.09569- 2 6.00000+ 0 2.70000+ 1 2.89123- 5 7.09403- 2 6.00000+ 0 2.90000+ 1 5.07448- 5 7.09787- 2 6.00000+ 0 3.00000+ 1 4.81531- 5 7.09977- 2 6.00000+ 0 3.20000+ 1 5.72821- 6 7.10500- 2 6.00000+ 0 3.30000+ 1 4.53962- 6 7.10520- 2 8.00000+ 0 8.00000+ 0 1.69092- 4 7.62794- 2 8.00000+ 0 1.00000+ 1 2.49284- 4 7.65423- 2 8.00000+ 0 1.10000+ 1 1.42611- 4 7.69793- 2 8.00000+ 0 1.30000+ 1 1.15649- 5 7.74214- 2 8.00000+ 0 1.40000+ 1 8.32219- 6 7.75154- 2 8.00000+ 0 1.60000+ 1 8.40343- 5 7.90288- 2 8.00000+ 0 1.80000+ 1 6.06892- 5 7.91430- 2 8.00000+ 0 1.90000+ 1 3.46404- 5 7.92491- 2 8.00000+ 0 2.10000+ 1 2.97226- 6 7.94380- 2 8.00000+ 0 2.20000+ 1 2.10755- 6 7.94578- 2 8.00000+ 0 2.70000+ 1 1.71853- 5 7.96905- 2 8.00000+ 0 2.90000+ 1 1.09700- 5 7.97289- 2 8.00000+ 0 3.00000+ 1 5.99856- 6 7.97479- 2 8.00000+ 0 3.20000+ 1 3.24240- 7 7.98002- 2 8.00000+ 0 3.30000+ 1 2.16160- 7 7.98022- 2 1.00000+ 1 1.00000+ 1 1.31322- 5 7.68052- 2 1.00000+ 1 1.10000+ 1 2.42591- 4 7.72422- 2 1.00000+ 1 1.30000+ 1 1.18347- 5 7.76843- 2 1.00000+ 1 1.40000+ 1 2.75608- 5 7.77783- 2 1.00000+ 1 1.60000+ 1 6.01514- 5 7.92917- 2 1.00000+ 1 1.80000+ 1 6.16056- 6 7.94059- 2 1.00000+ 1 1.90000+ 1 5.67441- 5 7.95120- 2 1.00000+ 1 2.10000+ 1 2.97229- 6 7.97009- 2 1.00000+ 1 2.20000+ 1 6.91759- 6 7.97207- 2 1.00000+ 1 2.40000+ 1 5.40438- 8 7.99656- 2 1.00000+ 1 2.50000+ 1 1.08081- 7 7.99700- 2 1.00000+ 1 2.70000+ 1 1.22133- 5 7.99534- 2 1.00000+ 1 2.90000+ 1 1.08081- 6 7.99918- 2 1.00000+ 1 3.00000+ 1 9.78133- 6 8.00108- 2 1.00000+ 1 3.20000+ 1 2.70203- 7 8.00631- 2 1.00000+ 1 3.30000+ 1 6.48529- 7 8.00651- 2 1.10000+ 1 1.10000+ 1 1.20832- 4 7.76792- 2 1.10000+ 1 1.30000+ 1 3.69640- 5 7.81213- 2 1.10000+ 1 1.40000+ 1 2.99405- 5 7.82153- 2 1.10000+ 1 1.60000+ 1 3.37220- 5 7.97287- 2 1.10000+ 1 1.80000+ 1 5.68523- 5 7.98429- 2 1.10000+ 1 1.90000+ 1 5.67968- 5 7.99490- 2 1.10000+ 1 2.10000+ 1 9.34942- 6 8.01379- 2 1.10000+ 1 2.20000+ 1 7.51188- 6 8.01577- 2 1.10000+ 1 2.40000+ 1 1.08082- 7 8.04026- 2 1.10000+ 1 2.50000+ 1 1.08082- 7 8.04070- 2 1.10000+ 1 2.70000+ 1 6.80912- 6 8.03904- 2 1.10000+ 1 2.90000+ 1 1.02137- 5 8.04288- 2 1.10000+ 1 3.00000+ 1 9.78141- 6 8.04478- 2 1.10000+ 1 3.20000+ 1 9.18705- 7 8.05001- 2 1.10000+ 1 3.30000+ 1 7.02532- 7 8.05021- 2 1.30000+ 1 1.30000+ 1 5.40420- 8 7.85634- 2 1.30000+ 1 1.40000+ 1 4.32331- 6 7.86574- 2 1.30000+ 1 1.60000+ 1 2.75599- 6 8.01708- 2 1.30000+ 1 1.80000+ 1 2.70194- 6 8.02850- 2 1.30000+ 1 1.90000+ 1 8.21401- 6 8.03911- 2 1.30000+ 1 2.10000+ 1 5.40420- 8 8.05800- 2 1.30000+ 1 2.20000+ 1 1.02676- 6 8.05998- 2 1.30000+ 1 2.70000+ 1 5.40420- 7 8.08325- 2 1.30000+ 1 2.90000+ 1 4.86381- 7 8.08709- 2 1.30000+ 1 3.00000+ 1 1.40507- 6 8.08899- 2 1.30000+ 1 3.30000+ 1 1.08078- 7 8.09442- 2 1.40000+ 1 1.40000+ 1 1.02674- 6 7.87514- 2 1.40000+ 1 1.60000+ 1 1.94543- 6 8.02648- 2 1.40000+ 1 1.80000+ 1 6.05216- 6 8.03790- 2 1.40000+ 1 1.90000+ 1 6.59264- 6 8.04851- 2 1.40000+ 1 2.10000+ 1 1.02674- 6 8.06740- 2 1.40000+ 1 2.20000+ 1 4.86374- 7 8.06938- 2 1.40000+ 1 2.70000+ 1 3.78266- 7 8.09265- 2 1.40000+ 1 2.90000+ 1 1.08076- 6 8.09649- 2 1.40000+ 1 3.00000+ 1 1.13481- 6 8.09839- 2 1.40000+ 1 3.20000+ 1 1.08076- 7 8.10362- 2 1.40000+ 1 3.30000+ 1 5.40412- 8 8.10382- 2 1.60000+ 1 1.60000+ 1 1.04303- 5 8.17781- 2 1.60000+ 1 1.80000+ 1 1.46450- 5 8.18924- 2 1.60000+ 1 1.90000+ 1 8.16034- 6 8.19984- 2 1.60000+ 1 2.10000+ 1 7.02527- 7 8.21873- 2 1.60000+ 1 2.20000+ 1 4.86397- 7 8.22071- 2 1.60000+ 1 2.70000+ 1 4.26930- 6 8.24398- 2 1.60000+ 1 2.90000+ 1 2.64798- 6 8.24782- 2 1.60000+ 1 3.00000+ 1 1.40512- 6 8.24973- 2 1.60000+ 1 3.20000+ 1 5.40438- 8 8.25496- 2 1.60000+ 1 3.30000+ 1 5.40438- 8 8.25516- 2 1.80000+ 1 1.80000+ 1 7.02497- 7 8.20067- 2 1.80000+ 1 1.90000+ 1 1.32937- 5 8.21127- 2 1.80000+ 1 2.10000+ 1 6.48502- 7 8.23016- 2 1.80000+ 1 2.20000+ 1 1.51316- 6 8.23214- 2 1.80000+ 1 2.70000+ 1 2.97216- 6 8.25541- 2 1.80000+ 1 2.90000+ 1 2.70192- 7 8.25925- 2 1.80000+ 1 3.00000+ 1 2.26963- 6 8.26115- 2 1.80000+ 1 3.20000+ 1 5.40415- 8 8.26638- 2 1.80000+ 1 3.30000+ 1 1.62126- 7 8.26659- 2 1.90000+ 1 1.90000+ 1 6.50587- 6 8.22187- 2 1.90000+ 1 2.10000+ 1 2.06279- 6 8.24077- 2 1.90000+ 1 2.20000+ 1 1.63967- 6 8.24274- 2 1.90000+ 1 2.50000+ 1 5.28953- 8 8.26767- 2 1.90000+ 1 2.70000+ 1 1.63967- 6 8.26601- 2 1.90000+ 1 2.90000+ 1 2.32740- 6 8.26985- 2 1.90000+ 1 3.00000+ 1 2.27449- 6 8.27176- 2 1.90000+ 1 3.20000+ 1 2.11569- 7 8.27699- 2 1.90000+ 1 3.30000+ 1 1.58687- 7 8.27719- 2 2.10000+ 1 2.20000+ 1 2.70197- 7 8.26164- 2 2.10000+ 1 2.70000+ 1 1.62129- 7 8.28491- 2 2.10000+ 1 2.90000+ 1 1.08079- 7 8.28874- 2 2.10000+ 1 3.00000+ 1 3.78276- 7 8.29065- 2 2.20000+ 1 2.20000+ 1 5.80772- 8 8.26362- 2 2.20000+ 1 2.70000+ 1 1.16147- 7 8.28688- 2 2.20000+ 1 2.90000+ 1 2.90369- 7 8.29072- 2 2.20000+ 1 3.00000+ 1 2.90369- 7 8.29263- 2 2.70000+ 1 2.70000+ 1 4.44317- 7 8.31015- 2 2.70000+ 1 2.90000+ 1 5.55402- 7 8.31399- 2 2.70000+ 1 3.00000+ 1 2.77684- 7 8.31590- 2 2.90000+ 1 3.00000+ 1 4.32341- 7 8.31974- 2 3.00000+ 1 3.00000+ 1 2.16158- 7 8.32164- 2 3.00000+ 1 3.20000+ 1 5.40427- 8 8.32687- 2 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.11470- 5 5.72000- 4 6.00000+ 0 2.36709- 3 2.53900- 3 1.00000+ 1 2.89369- 2 1.15521- 2 1.10000+ 1 3.28029- 2 1.19891- 2 1.30000+ 1 9.90946- 4 1.24312- 2 1.40000+ 1 1.48369- 3 1.25252- 2 1.80000+ 1 7.36307- 3 1.41528- 2 1.90000+ 1 9.02656- 3 1.42589- 2 2.10000+ 1 1.49179- 4 1.44478- 2 2.20000+ 1 2.35229- 4 1.44676- 2 2.90000+ 1 1.35989- 3 1.47387- 2 3.00000+ 1 1.62369- 3 1.47577- 2 3.20000+ 1 1.48249- 5 1.48100- 2 3.30000+ 1 2.29299- 5 1.48120- 2 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90000+ 1 1.64303- 2 4.87000- 6 5.00000+ 0 2.10000+ 1 4.57643- 3 1.93790- 4 5.00000+ 0 2.20000+ 1 6.16876- 3 2.13580- 4 5.00000+ 0 2.40000+ 1 1.39465- 2 4.58500- 4 5.00000+ 0 2.50000+ 1 1.83741- 2 4.62870- 4 5.00000+ 0 2.70000+ 1 4.09188- 3 4.46270- 4 5.00000+ 0 2.90000+ 1 2.89181- 3 4.84660- 4 5.00000+ 0 3.00000+ 1 2.67853- 3 5.03700- 4 5.00000+ 0 3.20000+ 1 4.61003- 4 5.56020- 4 5.00000+ 0 3.30000+ 1 6.04398- 4 5.58040- 4 6.00000+ 0 1.30000+ 1 2.32807- 1 1.44200- 4 6.00000+ 0 1.40000+ 1 3.01210- 1 2.38200- 4 6.00000+ 0 1.60000+ 1 1.87711- 2 1.75156- 3 6.00000+ 0 1.80000+ 1 7.50052- 3 1.86583- 3 6.00000+ 0 1.90000+ 1 1.14928- 2 1.97187- 3 6.00000+ 0 2.10000+ 1 2.97691- 2 2.16079- 3 6.00000+ 0 2.20000+ 1 3.55725- 2 2.18058- 3 6.00000+ 0 2.40000+ 1 2.10198- 2 2.42550- 3 6.00000+ 0 2.50000+ 1 2.62554- 2 2.42987- 3 6.00000+ 0 2.70000+ 1 3.65854- 3 2.41327- 3 6.00000+ 0 2.90000+ 1 1.32596- 3 2.45166- 3 6.00000+ 0 3.00000+ 1 1.97340- 3 2.47070- 3 6.00000+ 0 3.20000+ 1 2.74503- 3 2.52302- 3 6.00000+ 0 3.30000+ 1 3.08569- 3 2.52504- 3 8.00000+ 0 8.00000+ 0 5.03358- 3 7.75240- 3 8.00000+ 0 1.00000+ 1 1.03249- 2 8.01530- 3 8.00000+ 0 1.10000+ 1 1.64963- 2 8.45230- 3 8.00000+ 0 1.30000+ 1 1.22987- 2 8.89440- 3 8.00000+ 0 1.40000+ 1 1.58993- 2 8.98840- 3 8.00000+ 0 1.60000+ 1 2.13158- 3 1.05018- 2 8.00000+ 0 1.80000+ 1 2.47595- 3 1.06160- 2 8.00000+ 0 1.90000+ 1 3.89420- 3 1.07221- 2 8.00000+ 0 2.10000+ 1 2.63133- 3 1.09110- 2 8.00000+ 0 2.20000+ 1 3.37146- 3 1.09308- 2 8.00000+ 0 2.40000+ 1 2.10158- 4 1.11757- 2 8.00000+ 0 2.50000+ 1 2.32487- 4 1.11801- 2 8.00000+ 0 2.70000+ 1 4.24467- 4 1.11635- 2 8.00000+ 0 2.90000+ 1 4.45794- 4 1.12019- 2 8.00000+ 0 3.00000+ 1 6.70971- 4 1.12209- 2 8.00000+ 0 3.20000+ 1 2.55984- 4 1.12732- 2 8.00000+ 0 3.30000+ 1 3.11478- 4 1.12752- 2 1.00000+ 1 1.00000+ 1 2.15296- 5 8.27820- 3 1.00000+ 1 1.10000+ 1 2.10947- 4 8.71520- 3 1.00000+ 1 1.30000+ 1 6.29091- 4 9.15730- 3 1.00000+ 1 1.40000+ 1 5.26123- 3 9.25130- 3 1.00000+ 1 1.60000+ 1 1.72411- 3 1.07647- 2 1.00000+ 1 1.80000+ 1 3.16026- 6 1.08789- 2 1.00000+ 1 1.90000+ 1 4.26634- 5 1.09850- 2 1.00000+ 1 2.10000+ 1 1.19497- 4 1.11739- 2 1.00000+ 1 2.20000+ 1 7.13230- 4 1.11937- 2 1.00000+ 1 2.40000+ 1 7.64415- 5 1.14386- 2 1.00000+ 1 2.50000+ 1 2.66442- 4 1.14430- 2 1.00000+ 1 2.70000+ 1 3.23735- 4 1.14264- 2 1.00000+ 1 2.90000+ 1 3.95027- 7 1.14648- 2 1.00000+ 1 3.00000+ 1 7.11060- 6 1.14838- 2 1.00000+ 1 3.20000+ 1 1.16537- 5 1.15361- 2 1.00000+ 1 3.30000+ 1 6.14273- 5 1.15381- 2 1.10000+ 1 1.10000+ 1 5.22222- 4 9.15220- 3 1.10000+ 1 1.30000+ 1 1.85879- 3 9.59430- 3 1.10000+ 1 1.40000+ 1 1.13947- 3 9.68830- 3 1.10000+ 1 1.60000+ 1 2.71620- 3 1.12017- 2 1.10000+ 1 1.80000+ 1 4.95765- 5 1.13159- 2 1.10000+ 1 1.90000+ 1 1.85469- 4 1.14220- 2 1.10000+ 1 2.10000+ 1 1.66111- 4 1.16109- 2 1.10000+ 1 2.20000+ 1 8.67056- 5 1.16307- 2 1.10000+ 1 2.40000+ 1 1.35895- 4 1.18756- 2 1.10000+ 1 2.50000+ 1 1.13177- 4 1.18800- 2 1.10000+ 1 2.70000+ 1 5.08603- 4 1.18634- 2 1.10000+ 1 2.90000+ 1 8.88834- 6 1.19018- 2 1.10000+ 1 3.00000+ 1 3.02197- 5 1.19208- 2 1.10000+ 1 3.20000+ 1 1.38264- 5 1.19731- 2 1.10000+ 1 3.30000+ 1 6.71544- 6 1.19751- 2 1.30000+ 1 1.30000+ 1 7.24889- 4 1.00364- 2 1.30000+ 1 1.40000+ 1 2.17079- 2 1.01304- 2 1.30000+ 1 1.60000+ 1 1.85532- 3 1.16438- 2 1.30000+ 1 1.80000+ 1 1.82902- 4 1.17580- 2 1.30000+ 1 1.90000+ 1 4.88664- 4 1.18641- 2 1.30000+ 1 2.10000+ 1 3.02602- 4 1.20530- 2 1.30000+ 1 2.20000+ 1 3.21640- 3 1.20728- 2 1.30000+ 1 2.40000+ 1 2.26758- 4 1.23177- 2 1.30000+ 1 2.50000+ 1 6.26730- 4 1.23221- 2 1.30000+ 1 2.70000+ 1 3.41508- 4 1.23055- 2 1.30000+ 1 2.90000+ 1 3.41718- 5 1.23439- 2 1.30000+ 1 3.00000+ 1 8.57192- 5 1.23629- 2 1.30000+ 1 3.20000+ 1 2.94303- 5 1.24152- 2 1.30000+ 1 3.30000+ 1 2.79884- 4 1.24172- 2 1.40000+ 1 1.40000+ 1 6.01386- 3 1.02244- 2 1.40000+ 1 1.60000+ 1 2.43241- 3 1.17378- 2 1.40000+ 1 1.80000+ 1 1.11926- 3 1.18520- 2 1.40000+ 1 1.90000+ 1 3.08122- 4 1.19581- 2 1.40000+ 1 2.10000+ 1 3.12242- 3 1.21470- 2 1.40000+ 1 2.20000+ 1 1.88126- 3 1.21668- 2 1.40000+ 1 2.40000+ 1 6.91694- 4 1.24117- 2 1.40000+ 1 2.50000+ 1 5.23606- 4 1.24161- 2 1.40000+ 1 2.70000+ 1 4.49935- 4 1.23995- 2 1.40000+ 1 2.90000+ 1 1.97115- 4 1.24379- 2 1.40000+ 1 3.00000+ 1 5.45143- 5 1.24569- 2 1.40000+ 1 3.20000+ 1 2.84215- 4 1.25092- 2 1.40000+ 1 3.30000+ 1 1.65519- 4 1.25112- 2 1.60000+ 1 1.60000+ 1 2.13117- 4 1.32511- 2 1.60000+ 1 1.80000+ 1 4.14786- 4 1.33654- 2 1.60000+ 1 1.90000+ 1 6.43911- 4 1.34714- 2 1.60000+ 1 2.10000+ 1 3.97998- 4 1.36603- 2 1.60000+ 1 2.20000+ 1 5.13935- 4 1.36801- 2 1.60000+ 1 2.40000+ 1 2.62703- 5 1.39251- 2 1.60000+ 1 2.50000+ 1 2.80481- 5 1.39294- 2 1.60000+ 1 2.70000+ 1 8.37445- 5 1.39128- 2 1.60000+ 1 2.90000+ 1 7.46638- 5 1.39512- 2 1.60000+ 1 3.00000+ 1 1.10998- 4 1.39703- 2 1.60000+ 1 3.20000+ 1 3.87129- 5 1.40226- 2 1.60000+ 1 3.30000+ 1 4.74040- 5 1.40246- 2 1.80000+ 1 1.90000+ 1 1.00727- 5 1.35857- 2 1.80000+ 1 2.10000+ 1 3.06153- 5 1.37746- 2 1.80000+ 1 2.20000+ 1 1.57810- 4 1.37944- 2 1.80000+ 1 2.40000+ 1 1.06657- 5 1.40393- 2 1.80000+ 1 2.50000+ 1 4.16759- 5 1.40437- 2 1.80000+ 1 2.70000+ 1 7.78202- 5 1.40271- 2 1.80000+ 1 3.00000+ 1 1.77768- 6 1.40845- 2 1.80000+ 1 3.20000+ 1 2.96264- 6 1.41368- 2 1.80000+ 1 3.30000+ 1 1.36283- 5 1.41389- 2 1.90000+ 1 1.90000+ 1 1.58025- 5 1.36917- 2 1.90000+ 1 2.10000+ 1 4.93793- 5 1.38807- 2 1.90000+ 1 2.20000+ 1 2.88383- 5 1.39004- 2 1.90000+ 1 2.40000+ 1 2.72574- 5 1.41454- 2 1.90000+ 1 2.50000+ 1 2.21218- 5 1.41497- 2 1.90000+ 1 2.70000+ 1 1.20688- 4 1.41331- 2 1.90000+ 1 2.90000+ 1 1.77773- 6 1.41715- 2 1.90000+ 1 3.00000+ 1 5.13551- 6 1.41906- 2 1.90000+ 1 3.20000+ 1 4.14790- 6 1.42429- 2 1.90000+ 1 3.30000+ 1 2.37028- 6 1.42449- 2 2.10000+ 1 2.10000+ 1 2.92328- 5 1.40696- 2 2.10000+ 1 2.20000+ 1 5.06234- 4 1.40894- 2 2.10000+ 1 2.40000+ 1 3.25904- 5 1.43343- 2 2.10000+ 1 2.50000+ 1 6.87351- 5 1.43387- 2 2.10000+ 1 2.70000+ 1 7.32766- 5 1.43221- 2 2.10000+ 1 2.90000+ 1 5.53048- 6 1.43604- 2 2.10000+ 1 3.00000+ 1 8.88834- 6 1.43795- 2 2.10000+ 1 3.20000+ 1 5.53048- 6 1.44318- 2 2.10000+ 1 3.30000+ 1 4.46390- 5 1.44338- 2 2.20000+ 1 2.20000+ 1 1.57813- 4 1.41092- 2 2.20000+ 1 2.40000+ 1 7.97952- 5 1.43541- 2 2.20000+ 1 2.50000+ 1 6.73527- 5 1.43584- 2 2.20000+ 1 2.70000+ 1 9.48042- 5 1.43418- 2 2.20000+ 1 2.90000+ 1 2.80480- 5 1.43802- 2 2.20000+ 1 3.00000+ 1 5.33293- 6 1.43993- 2 2.20000+ 1 3.20000+ 1 4.66140- 5 1.44516- 2 2.20000+ 1 3.30000+ 1 2.80480- 5 1.44536- 2 2.40000+ 1 2.40000+ 1 1.00087- 6 1.45990- 2 2.40000+ 1 2.50000+ 1 1.95175- 5 1.46034- 2 2.40000+ 1 2.70000+ 1 6.00537- 6 1.45868- 2 2.40000+ 1 2.90000+ 1 2.25209- 6 1.46252- 2 2.40000+ 1 3.00000+ 1 5.75520- 6 1.46442- 2 2.40000+ 1 3.20000+ 1 3.75328- 6 1.46965- 2 2.40000+ 1 3.30000+ 1 8.50750- 6 1.46985- 2 2.50000+ 1 2.50000+ 1 4.77434- 6 1.46077- 2 2.50000+ 1 2.70000+ 1 7.02089- 6 1.45911- 2 2.50000+ 1 2.90000+ 1 9.82929- 6 1.46295- 2 2.50000+ 1 3.00000+ 1 5.33590- 6 1.46486- 2 2.50000+ 1 3.20000+ 1 8.42510- 6 1.47009- 2 2.50000+ 1 3.30000+ 1 8.14431- 6 1.47029- 2 2.70000+ 1 2.70000+ 1 1.70792- 5 1.45745- 2 2.70000+ 1 2.90000+ 1 2.88752- 5 1.46129- 2 2.70000+ 1 3.00000+ 1 4.27013- 5 1.46320- 2 2.70000+ 1 3.20000+ 1 1.46401- 5 1.46843- 2 2.70000+ 1 3.30000+ 1 1.78936- 5 1.46863- 2 2.90000+ 1 3.00000+ 1 1.08132- 6 1.46704- 2 2.90000+ 1 3.20000+ 1 1.62199- 6 1.47227- 2 2.90000+ 1 3.30000+ 1 6.48815- 6 1.47247- 2 3.00000+ 1 3.00000+ 1 1.09035- 6 1.46894- 2 3.00000+ 1 3.20000+ 1 2.18067- 6 1.47417- 2 3.00000+ 1 3.30000+ 1 1.09035- 6 1.47437- 2 3.20000+ 1 3.20000+ 1 1.92278- 7 1.47940- 2 3.20000+ 1 3.30000+ 1 4.03781- 6 1.47961- 2 3.30000+ 1 3.30000+ 1 1.17230- 6 1.47981- 2 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.06327- 6 1.96700- 3 8.00000+ 0 8.10577- 3 1.07172- 2 1.10000+ 1 3.15963- 4 1.14171- 2 1.30000+ 1 2.99143- 1 1.18592- 2 1.60000+ 1 2.06932- 3 1.34666- 2 1.90000+ 1 8.62068- 5 1.36869- 2 2.10000+ 1 5.97505- 2 1.38758- 2 2.40000+ 1 2.28002- 4 1.41405- 2 2.70000+ 1 4.25784- 4 1.41283- 2 3.00000+ 1 1.71942- 5 1.41857- 2 3.20000+ 1 6.19976- 3 1.42380- 2 4.10000+ 1 4.11624- 5 1.42444- 2 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.50930- 3 1.17956- 3 6.00000+ 0 1.80000+ 1 3.82629- 2 1.29383- 3 6.00000+ 0 1.90000+ 1 1.07945- 2 1.39987- 3 6.00000+ 0 2.10000+ 1 3.98028- 2 1.58879- 3 6.00000+ 0 2.20000+ 1 1.37273- 2 1.60858- 3 6.00000+ 0 2.40000+ 1 1.55912- 3 1.85350- 3 6.00000+ 0 2.50000+ 1 2.34067- 3 1.85787- 3 6.00000+ 0 2.70000+ 1 1.03405- 3 1.84127- 3 6.00000+ 0 2.90000+ 1 6.36615- 3 1.87966- 3 6.00000+ 0 3.00000+ 1 1.82030- 3 1.89870- 3 6.00000+ 0 3.20000+ 1 3.73080- 3 1.95102- 3 6.00000+ 0 3.30000+ 1 1.23324- 3 1.95304- 3 8.00000+ 0 8.00000+ 0 5.96032- 4 7.18040- 3 8.00000+ 0 1.00000+ 1 2.03303- 2 7.44330- 3 8.00000+ 0 1.10000+ 1 1.91384- 3 7.88030- 3 8.00000+ 0 1.30000+ 1 3.03745- 3 8.32240- 3 8.00000+ 0 1.40000+ 1 1.89674- 3 8.41640- 3 8.00000+ 0 1.60000+ 1 2.28522- 4 9.92976- 3 8.00000+ 0 1.80000+ 1 3.22334- 3 1.00440- 2 8.00000+ 0 1.90000+ 1 4.04198- 4 1.01501- 2 8.00000+ 0 2.10000+ 1 4.59503- 4 1.03390- 2 8.00000+ 0 2.20000+ 1 2.44670- 4 1.03588- 2 8.00000+ 0 2.40000+ 1 9.00428- 5 1.06037- 2 8.00000+ 0 2.50000+ 1 6.16570- 5 1.06081- 2 8.00000+ 0 2.70000+ 1 4.45314- 5 1.05915- 2 8.00000+ 0 2.90000+ 1 5.34858- 4 1.06299- 2 8.00000+ 0 3.00000+ 1 6.80186- 5 1.06489- 2 8.00000+ 0 3.20000+ 1 4.25726- 5 1.07012- 2 8.00000+ 0 3.30000+ 1 2.10423- 5 1.07032- 2 1.00000+ 1 1.00000+ 1 2.11793- 2 7.70620- 3 1.00000+ 1 1.10000+ 1 5.47978- 2 8.14320- 3 1.00000+ 1 1.30000+ 1 2.85147- 2 8.58530- 3 1.00000+ 1 1.40000+ 1 4.12508- 2 8.67930- 3 1.00000+ 1 1.60000+ 1 5.18710- 3 1.01927- 2 1.00000+ 1 1.80000+ 1 8.55903- 3 1.03069- 2 1.00000+ 1 1.90000+ 1 1.27070- 2 1.04130- 2 1.00000+ 1 2.10000+ 1 6.09882- 3 1.06019- 2 1.00000+ 1 2.20000+ 1 8.78851- 3 1.06217- 2 1.00000+ 1 2.40000+ 1 4.50695- 4 1.08666- 2 1.00000+ 1 2.50000+ 1 3.96379- 4 1.08710- 2 1.00000+ 1 2.70000+ 1 1.06482- 3 1.08544- 2 1.00000+ 1 2.90000+ 1 1.49839- 3 1.08928- 2 1.00000+ 1 3.00000+ 1 2.18193- 3 1.09118- 2 1.00000+ 1 3.20000+ 1 5.93593- 4 1.09641- 2 1.00000+ 1 3.30000+ 1 8.12817- 4 1.09661- 2 1.10000+ 1 1.10000+ 1 1.27182- 3 8.58020- 3 1.10000+ 1 1.30000+ 1 2.65511- 2 9.02230- 3 1.10000+ 1 1.40000+ 1 3.82674- 3 9.11630- 3 1.10000+ 1 1.60000+ 1 4.10572- 4 1.06297- 2 1.10000+ 1 1.80000+ 1 8.87528- 3 1.07439- 2 1.10000+ 1 1.90000+ 1 5.05506- 4 1.08500- 2 1.10000+ 1 2.10000+ 1 4.78307- 3 1.10389- 2 1.10000+ 1 2.20000+ 1 6.61604- 4 1.10587- 2 1.10000+ 1 2.40000+ 1 1.93296- 4 1.13036- 2 1.10000+ 1 2.50000+ 1 1.02763- 4 1.13080- 2 1.10000+ 1 2.70000+ 1 8.12324- 5 1.12914- 2 1.10000+ 1 2.90000+ 1 1.47840- 3 1.13298- 2 1.10000+ 1 3.00000+ 1 8.41692- 5 1.13488- 2 1.10000+ 1 3.20000+ 1 4.52658- 4 1.14011- 2 1.10000+ 1 3.30000+ 1 5.92118- 5 1.14031- 2 1.30000+ 1 1.30000+ 1 2.50821- 2 9.46440- 3 1.30000+ 1 1.40000+ 1 1.00239- 1 9.55840- 3 1.30000+ 1 1.60000+ 1 7.76062- 4 1.10718- 2 1.30000+ 1 1.80000+ 1 4.48709- 3 1.11860- 2 1.30000+ 1 1.90000+ 1 5.71105- 3 1.12921- 2 1.30000+ 1 2.10000+ 1 8.91099- 3 1.14810- 2 1.30000+ 1 2.20000+ 1 1.91827- 2 1.15008- 2 1.30000+ 1 2.40000+ 1 1.61282- 3 1.17457- 2 1.30000+ 1 2.50000+ 1 3.26432- 3 1.17501- 2 1.30000+ 1 2.70000+ 1 1.59522- 4 1.17335- 2 1.30000+ 1 2.90000+ 1 7.49684- 4 1.17719- 2 1.30000+ 1 3.00000+ 1 9.66430- 4 1.17909- 2 1.30000+ 1 3.20000+ 1 8.45084- 4 1.18432- 2 1.30000+ 1 3.30000+ 1 1.74450- 3 1.18452- 2 1.40000+ 1 1.40000+ 1 4.86075- 3 9.65240- 3 1.40000+ 1 1.60000+ 1 3.90993- 4 1.11658- 2 1.40000+ 1 1.80000+ 1 5.73269- 3 1.12800- 2 1.40000+ 1 1.90000+ 1 7.57016- 4 1.13861- 2 1.40000+ 1 2.10000+ 1 1.46410- 2 1.15750- 2 1.40000+ 1 2.20000+ 1 1.69118- 3 1.15948- 2 1.40000+ 1 2.40000+ 1 6.44955- 4 1.18397- 2 1.40000+ 1 2.50000+ 1 2.47622- 4 1.18441- 2 1.40000+ 1 2.70000+ 1 7.68296- 5 1.18275- 2 1.40000+ 1 2.90000+ 1 9.24875- 4 1.18659- 2 1.40000+ 1 3.00000+ 1 1.25772- 4 1.18849- 2 1.40000+ 1 3.20000+ 1 1.33941- 3 1.19372- 2 1.40000+ 1 3.30000+ 1 1.52190- 4 1.19392- 2 1.60000+ 1 1.60000+ 1 2.10434- 5 1.26791- 2 1.60000+ 1 1.80000+ 1 8.27008- 4 1.27934- 2 1.60000+ 1 1.90000+ 1 8.71096- 5 1.28994- 2 1.60000+ 1 2.10000+ 1 1.14027- 4 1.30883- 2 1.60000+ 1 2.20000+ 1 5.04057- 5 1.31081- 2 1.60000+ 1 2.40000+ 1 2.00634- 5 1.33531- 2 1.60000+ 1 2.50000+ 1 1.12557- 5 1.33574- 2 1.60000+ 1 2.70000+ 1 8.31938- 6 1.33408- 2 1.60000+ 1 2.90000+ 1 1.37517- 4 1.33792- 2 1.60000+ 1 3.00000+ 1 1.46816- 5 1.33983- 2 1.60000+ 1 3.20000+ 1 1.02768- 5 1.34506- 2 1.60000+ 1 3.30000+ 1 4.40448- 6 1.34526- 2 1.80000+ 1 1.80000+ 1 8.21618- 4 1.29077- 2 1.80000+ 1 1.90000+ 1 2.06316- 3 1.30137- 2 1.80000+ 1 2.10000+ 1 9.45459- 4 1.32026- 2 1.80000+ 1 2.20000+ 1 1.23323- 3 1.32224- 2 1.80000+ 1 2.40000+ 1 5.77442- 5 1.34673- 2 1.80000+ 1 2.50000+ 1 4.11064- 5 1.34717- 2 1.80000+ 1 2.70000+ 1 1.69809- 4 1.34551- 2 1.80000+ 1 2.90000+ 1 2.84812- 4 1.34935- 2 1.80000+ 1 3.00000+ 1 3.54298- 4 1.35125- 2 1.80000+ 1 3.20000+ 1 9.20022- 5 1.35648- 2 1.80000+ 1 3.30000+ 1 1.14023- 4 1.35669- 2 1.90000+ 1 1.90000+ 1 5.04009- 5 1.31197- 2 1.90000+ 1 2.10000+ 1 1.03638- 3 1.33087- 2 1.90000+ 1 2.20000+ 1 1.33104- 4 1.33284- 2 1.90000+ 1 2.40000+ 1 3.52327- 5 1.35734- 2 1.90000+ 1 2.50000+ 1 1.71269- 5 1.35777- 2 1.90000+ 1 2.70000+ 1 1.71269- 5 1.35611- 2 1.90000+ 1 2.90000+ 1 3.43508- 4 1.35995- 2 1.90000+ 1 3.00000+ 1 1.66370- 5 1.36186- 2 1.90000+ 1 3.20000+ 1 9.83570- 5 1.36709- 2 1.90000+ 1 3.30000+ 1 1.17436- 5 1.36729- 2 2.10000+ 1 2.10000+ 1 7.83455- 4 1.34976- 2 2.10000+ 1 2.20000+ 1 2.91759- 3 1.35174- 2 2.10000+ 1 2.40000+ 1 1.96225- 4 1.37623- 2 2.10000+ 1 2.50000+ 1 4.01762- 4 1.37667- 2 2.10000+ 1 2.70000+ 1 2.34883- 5 1.37501- 2 2.10000+ 1 2.90000+ 1 1.57079- 4 1.37884- 2 2.10000+ 1 3.00000+ 1 1.75678- 4 1.38075- 2 2.10000+ 1 3.20000+ 1 1.48270- 4 1.38598- 2 2.10000+ 1 3.30000+ 1 2.66701- 4 1.38618- 2 2.20000+ 1 2.20000+ 1 1.53448- 4 1.35372- 2 2.20000+ 1 2.40000+ 1 8.81219- 5 1.37821- 2 2.20000+ 1 2.50000+ 1 3.44378- 5 1.37864- 2 2.20000+ 1 2.70000+ 1 1.01287- 5 1.37698- 2 2.20000+ 1 2.90000+ 1 2.06132- 4 1.38082- 2 2.20000+ 1 3.00000+ 1 2.27906- 5 1.38273- 2 2.20000+ 1 3.20000+ 1 2.78044- 4 1.38796- 2 2.20000+ 1 3.30000+ 1 2.78541- 5 1.38816- 2 2.40000+ 1 2.40000+ 1 4.70085- 6 1.40270- 2 2.40000+ 1 2.50000+ 1 3.18619- 5 1.40314- 2 2.40000+ 1 2.70000+ 1 4.17854- 6 1.40148- 2 2.40000+ 1 2.90000+ 1 9.92350- 6 1.40532- 2 2.40000+ 1 3.00000+ 1 6.26769- 6 1.40722- 2 2.40000+ 1 3.20000+ 1 1.88030- 5 1.41245- 2 2.40000+ 1 3.30000+ 1 7.83422- 6 1.41265- 2 2.50000+ 1 2.50000+ 1 2.15552- 6 1.40357- 2 2.50000+ 1 2.70000+ 1 2.15552- 6 1.40191- 2 2.50000+ 1 2.90000+ 1 7.00571- 6 1.40575- 2 2.50000+ 1 3.00000+ 1 3.23334- 6 1.40766- 2 2.50000+ 1 3.20000+ 1 3.93391- 5 1.41289- 2 2.50000+ 1 3.30000+ 1 3.23334- 6 1.41309- 2 2.70000+ 1 2.70000+ 1 1.02751- 6 1.40025- 2 2.70000+ 1 2.90000+ 1 2.97978- 5 1.40409- 2 2.70000+ 1 3.00000+ 1 3.08255- 6 1.40600- 2 2.70000+ 1 3.20000+ 1 2.05499- 6 1.41123- 2 2.70000+ 1 3.30000+ 1 1.02751- 6 1.41143- 2 2.90000+ 1 2.90000+ 1 2.61957- 5 1.40793- 2 2.90000+ 1 3.00000+ 1 6.33946- 5 1.40984- 2 2.90000+ 1 3.20000+ 1 1.62416- 5 1.41507- 2 2.90000+ 1 3.30000+ 1 1.99093- 5 1.41527- 2 3.00000+ 1 3.00000+ 1 1.82013- 6 1.41174- 2 3.00000+ 1 3.20000+ 1 2.06274- 5 1.41697- 2 3.00000+ 1 3.30000+ 1 2.42670- 6 1.41717- 2 3.20000+ 1 3.20000+ 1 6.85109- 6 1.42220- 2 3.20000+ 1 3.30000+ 1 2.44672- 5 1.42241- 2 3.30000+ 1 3.30000+ 1 1.20551- 6 1.42261- 2 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.50160- 2 8.75020- 3 1.00000+ 1 1.49590- 4 9.01310- 3 1.10000+ 1 1.35310- 4 9.45010- 3 1.30000+ 1 2.61959- 2 9.89220- 3 1.40000+ 1 2.30739- 1 9.98620- 3 1.60000+ 1 3.21879- 3 1.14996- 2 1.80000+ 1 3.36059- 5 1.16138- 2 1.90000+ 1 3.40449- 5 1.17199- 2 2.10000+ 1 4.82529- 3 1.19088- 2 2.20000+ 1 4.35509- 2 1.19286- 2 2.40000+ 1 3.40449- 5 1.21735- 2 2.50000+ 1 1.90439- 4 1.21779- 2 2.70000+ 1 6.85938- 4 1.21613- 2 2.90000+ 1 7.02558- 6 1.21997- 2 3.00000+ 1 7.11068- 6 1.22187- 2 3.20000+ 1 4.89959- 4 1.22710- 2 3.30000+ 1 4.28479- 3 1.22730- 2 4.10000+ 1 6.35008- 5 1.22774- 2 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 7.56609- 4 5.21340- 3 8.00000+ 0 1.00000+ 1 3.90608- 4 5.47630- 3 8.00000+ 0 1.10000+ 1 2.14763- 2 5.91330- 3 8.00000+ 0 1.30000+ 1 2.63695- 3 6.35540- 3 8.00000+ 0 1.40000+ 1 4.31923- 3 6.44940- 3 8.00000+ 0 1.60000+ 1 2.91845- 4 7.96276- 3 8.00000+ 0 1.80000+ 1 6.97710- 5 8.07703- 3 8.00000+ 0 1.90000+ 1 3.32859- 3 8.18307- 3 8.00000+ 0 2.10000+ 1 2.71202- 4 8.37199- 3 8.00000+ 0 2.20000+ 1 4.06813- 4 8.39178- 3 8.00000+ 0 2.40000+ 1 2.13733- 4 8.63670- 3 8.00000+ 0 2.50000+ 1 3.79312- 4 8.64107- 3 8.00000+ 0 2.70000+ 1 5.65017- 5 8.62447- 3 8.00000+ 0 2.90000+ 1 1.17918- 5 8.66286- 3 8.00000+ 0 3.00000+ 1 5.29159- 4 8.68190- 3 8.00000+ 0 3.20000+ 1 2.35835- 5 8.73422- 3 8.00000+ 0 3.30000+ 1 3.29181- 5 8.73624- 3 1.00000+ 1 1.00000+ 1 4.76574- 5 5.73920- 3 1.00000+ 1 1.10000+ 1 3.60397- 2 6.17620- 3 1.00000+ 1 1.30000+ 1 1.74316- 3 6.61830- 3 1.00000+ 1 1.40000+ 1 1.49505- 2 6.71230- 3 1.00000+ 1 1.60000+ 1 8.00827- 5 8.22566- 3 1.00000+ 1 1.80000+ 1 2.26007- 5 8.33993- 3 1.00000+ 1 1.90000+ 1 5.80647- 3 8.44597- 3 1.00000+ 1 2.10000+ 1 3.28210- 4 8.63489- 3 1.00000+ 1 2.20000+ 1 2.33374- 3 8.65468- 3 1.00000+ 1 2.40000+ 1 2.12732- 4 8.89960- 3 1.00000+ 1 2.50000+ 1 5.38972- 4 8.90397- 3 1.00000+ 1 2.70000+ 1 1.62141- 5 8.88737- 3 1.00000+ 1 2.90000+ 1 4.42197- 6 8.92576- 3 1.00000+ 1 3.00000+ 1 9.29548- 4 8.94480- 3 1.00000+ 1 3.20000+ 1 3.14445- 5 8.99712- 3 1.00000+ 1 3.30000+ 1 2.06344- 4 8.99914- 3 1.10000+ 1 1.10000+ 1 4.58199- 2 6.61320- 3 1.10000+ 1 1.30000+ 1 4.79581- 2 7.05530- 3 1.10000+ 1 1.40000+ 1 6.53971- 2 7.14930- 3 1.10000+ 1 1.60000+ 1 5.39581- 3 8.66266- 3 1.10000+ 1 1.80000+ 1 8.11897- 3 8.77693- 3 1.10000+ 1 1.90000+ 1 1.78567- 2 8.88297- 3 1.10000+ 1 2.10000+ 1 9.67360- 3 9.07189- 3 1.10000+ 1 2.20000+ 1 1.29944- 2 9.09168- 3 1.10000+ 1 2.40000+ 1 8.17595- 4 9.33660- 3 1.10000+ 1 2.50000+ 1 1.01315- 3 9.34097- 3 1.10000+ 1 2.70000+ 1 1.10451- 3 9.32437- 3 1.10000+ 1 2.90000+ 1 1.44649- 3 9.36276- 3 1.10000+ 1 3.00000+ 1 2.97946- 3 9.38180- 3 1.10000+ 1 3.20000+ 1 9.34522- 4 9.43412- 3 1.10000+ 1 3.30000+ 1 1.18898- 3 9.43614- 3 1.30000+ 1 1.30000+ 1 6.68779- 3 7.49740- 3 1.30000+ 1 1.40000+ 1 1.25375- 1 7.59140- 3 1.30000+ 1 1.60000+ 1 6.30363- 4 9.10476- 3 1.30000+ 1 1.80000+ 1 4.09771- 4 9.21903- 3 1.30000+ 1 1.90000+ 1 7.05416- 3 9.32507- 3 1.30000+ 1 2.10000+ 1 2.29597- 3 9.51399- 3 1.30000+ 1 2.20000+ 1 1.80125- 2 9.53378- 3 1.30000+ 1 2.40000+ 1 4.52506- 4 9.77870- 3 1.30000+ 1 2.50000+ 1 1.53685- 3 9.78307- 3 1.30000+ 1 2.70000+ 1 1.28234- 4 9.76647- 3 1.30000+ 1 2.90000+ 1 7.32077- 5 9.80486- 3 1.30000+ 1 3.00000+ 1 1.10940- 3 9.82390- 3 1.30000+ 1 3.20000+ 1 2.17162- 4 9.87622- 3 1.30000+ 1 3.30000+ 1 1.56683- 3 9.87824- 3 1.40000+ 1 1.40000+ 1 8.35788- 2 7.68540- 3 1.40000+ 1 1.60000+ 1 1.05139- 3 9.19876- 3 1.40000+ 1 1.80000+ 1 3.06332- 3 9.31303- 3 1.40000+ 1 1.90000+ 1 1.08498- 2 9.41907- 3 1.40000+ 1 2.10000+ 1 2.17576- 2 9.60799- 3 1.40000+ 1 2.20000+ 1 2.74334- 2 9.62778- 3 1.40000+ 1 2.40000+ 1 4.78784- 3 9.87270- 3 1.40000+ 1 2.50000+ 1 4.36030- 3 9.87707- 3 1.40000+ 1 2.70000+ 1 2.15677- 4 9.86047- 3 1.40000+ 1 2.90000+ 1 5.36023- 4 9.89886- 3 1.40000+ 1 3.00000+ 1 1.75842- 3 9.91790- 3 1.40000+ 1 3.20000+ 1 2.05311- 3 9.97022- 3 1.40000+ 1 3.30000+ 1 2.44386- 3 9.97224- 3 1.60000+ 1 1.60000+ 1 2.84950- 5 1.07121- 2 1.60000+ 1 1.80000+ 1 1.52306- 5 1.08264- 2 1.60000+ 1 1.90000+ 1 8.37640- 4 1.09324- 2 1.60000+ 1 2.10000+ 1 7.07444- 5 1.11213- 2 1.60000+ 1 2.20000+ 1 1.07105- 4 1.11411- 2 1.60000+ 1 2.40000+ 1 2.89858- 5 1.13861- 2 1.60000+ 1 2.50000+ 1 5.84645- 5 1.13904- 2 1.60000+ 1 2.70000+ 1 1.13003- 5 1.13738- 2 1.60000+ 1 2.90000+ 1 2.45647- 6 1.14122- 2 1.60000+ 1 3.00000+ 1 1.33144- 4 1.14313- 2 1.60000+ 1 3.20000+ 1 6.38682- 6 1.14836- 2 1.60000+ 1 3.30000+ 1 8.84339- 6 1.14856- 2 1.80000+ 1 1.80000+ 1 1.47397- 6 1.09407- 2 1.80000+ 1 1.90000+ 1 1.30153- 3 1.10467- 2 1.80000+ 1 2.10000+ 1 7.27190- 5 1.12356- 2 1.80000+ 1 2.20000+ 1 5.09007- 4 1.12554- 2 1.80000+ 1 2.40000+ 1 3.09539- 5 1.15003- 2 1.80000+ 1 2.50000+ 1 7.51721- 5 1.15047- 2 1.80000+ 1 2.70000+ 1 2.94794- 6 1.14881- 2 1.80000+ 1 2.90000+ 1 4.91332- 7 1.15265- 2 1.80000+ 1 3.00000+ 1 2.08315- 4 1.15455- 2 1.80000+ 1 3.20000+ 1 6.87854- 6 1.15978- 2 1.80000+ 1 3.30000+ 1 4.52017- 5 1.15999- 2 1.90000+ 1 1.90000+ 1 1.66660- 3 1.11527- 2 1.90000+ 1 2.10000+ 1 1.42629- 3 1.13417- 2 1.90000+ 1 2.20000+ 1 2.12254- 3 1.13614- 2 1.90000+ 1 2.40000+ 1 9.87594- 5 1.16064- 2 1.90000+ 1 2.50000+ 1 1.29214- 4 1.16107- 2 1.90000+ 1 2.70000+ 1 1.71468- 4 1.15941- 2 1.90000+ 1 2.90000+ 1 2.31407- 4 1.16325- 2 1.90000+ 1 3.00000+ 1 5.51252- 4 1.16516- 2 1.90000+ 1 3.20000+ 1 1.37571- 4 1.17039- 2 1.90000+ 1 3.30000+ 1 1.93581- 4 1.17059- 2 2.10000+ 1 2.10000+ 1 1.89154- 4 1.15306- 2 2.10000+ 1 2.20000+ 1 3.26296- 3 1.15504- 2 2.10000+ 1 2.40000+ 1 5.20808- 5 1.17953- 2 2.10000+ 1 2.50000+ 1 1.68521- 4 1.17997- 2 2.10000+ 1 2.70000+ 1 1.47398- 5 1.17831- 2 2.10000+ 1 2.90000+ 1 1.27745- 5 1.18214- 2 2.10000+ 1 3.00000+ 1 2.24531- 4 1.18405- 2 2.10000+ 1 3.20000+ 1 3.53765- 5 1.18928- 2 2.10000+ 1 3.30000+ 1 2.85450- 4 1.18948- 2 2.20000+ 1 2.20000+ 1 2.31891- 3 1.15702- 2 2.20000+ 1 2.40000+ 1 5.53392- 4 1.18151- 2 2.20000+ 1 2.50000+ 1 4.95990- 4 1.18194- 2 2.20000+ 1 2.70000+ 1 2.26594- 5 1.18028- 2 2.20000+ 1 2.90000+ 1 9.21476- 5 1.18412- 2 2.20000+ 1 3.00000+ 1 3.51467- 4 1.18603- 2 2.20000+ 1 3.20000+ 1 3.17230- 4 1.19126- 2 2.20000+ 1 3.30000+ 1 4.12894- 4 1.19146- 2 2.40000+ 1 2.40000+ 1 2.28458- 6 1.20600- 2 2.40000+ 1 2.50000+ 1 6.91091- 5 1.20644- 2 2.40000+ 1 2.70000+ 1 6.28259- 6 1.20478- 2 2.40000+ 1 2.90000+ 1 5.71155- 6 1.20862- 2 2.40000+ 1 3.00000+ 1 1.77061- 5 1.21052- 2 2.40000+ 1 3.20000+ 1 5.14041- 6 1.21575- 2 2.40000+ 1 3.30000+ 1 5.25452- 5 1.21595- 2 2.50000+ 1 2.50000+ 1 2.11732- 5 1.20687- 2 2.50000+ 1 2.70000+ 1 1.08325- 5 1.20521- 2 2.50000+ 1 2.90000+ 1 1.23092- 5 1.20905- 2 2.50000+ 1 3.00000+ 1 2.01874- 5 1.21096- 2 2.50000+ 1 3.20000+ 1 1.47716- 5 1.21619- 2 2.50000+ 1 3.30000+ 1 4.03757- 5 1.21639- 2 2.70000+ 1 2.70000+ 1 1.36930- 6 1.20355- 2 2.70000+ 1 2.90000+ 1 6.84677- 7 1.20739- 2 2.70000+ 1 3.00000+ 1 3.76572- 5 1.20930- 2 2.70000+ 1 3.20000+ 1 2.05399- 6 1.21453- 2 2.70000+ 1 3.30000+ 1 2.73866- 6 1.21473- 2 2.90000+ 1 3.00000+ 1 5.83990- 5 1.21314- 2 2.90000+ 1 3.20000+ 1 2.33593- 6 1.21837- 2 2.90000+ 1 3.30000+ 1 1.24579- 5 1.21857- 2 3.00000+ 1 3.00000+ 1 7.79906- 5 1.21504- 2 3.00000+ 1 3.20000+ 1 3.68984- 5 1.22027- 2 3.00000+ 1 3.30000+ 1 5.36705- 5 1.22047- 2 3.20000+ 1 3.20000+ 1 1.45869- 6 1.22550- 2 3.20000+ 1 3.30000+ 1 2.67432- 5 1.22571- 2 3.30000+ 1 3.30000+ 1 1.81789- 5 1.22591- 2 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.02595- 5 2.62900- 4 1.10000+ 1 4.20289- 4 6.99900- 4 1.80000+ 1 1.42626- 3 2.86363- 3 1.90000+ 1 1.16024- 3 2.96967- 3 2.90000+ 1 3.11010- 4 3.44946- 3 3.00000+ 1 2.65567- 4 3.46850- 3 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 3.18141- 2 1.49400- 4 1.00000+ 1 2.50000+ 1 4.28563- 2 1.53770- 4 1.00000+ 1 2.70000+ 1 1.13045- 2 1.37170- 4 1.00000+ 1 2.90000+ 1 1.07699- 2 1.75560- 4 1.00000+ 1 3.00000+ 1 1.42360- 2 1.94600- 4 1.00000+ 1 3.20000+ 1 5.48485- 3 2.46920- 4 1.00000+ 1 3.30000+ 1 7.15039- 3 2.48940- 4 1.00000+ 1 4.10000+ 1 9.46191- 4 2.53350- 4 1.10000+ 1 1.80000+ 1 5.90589- 2 2.67300- 5 1.10000+ 1 1.90000+ 1 6.18704- 2 1.32770- 4 1.10000+ 1 2.10000+ 1 2.01795- 2 3.21690- 4 1.10000+ 1 2.20000+ 1 3.32194- 2 3.41480- 4 1.10000+ 1 2.40000+ 1 1.71838- 1 5.86400- 4 1.10000+ 1 2.50000+ 1 2.13033- 1 5.90770- 4 1.10000+ 1 2.70000+ 1 1.04771- 2 5.74170- 4 1.10000+ 1 2.90000+ 1 9.82637- 3 6.12560- 4 1.10000+ 1 3.00000+ 1 1.03590- 2 6.31600- 4 1.10000+ 1 3.20000+ 1 1.85455- 3 6.83920- 4 1.10000+ 1 3.30000+ 1 3.02313- 3 6.85940- 4 1.10000+ 1 4.10000+ 1 9.03691- 4 6.90350- 4 1.30000+ 1 1.60000+ 1 2.55651- 2 3.54560- 4 1.30000+ 1 1.80000+ 1 5.59168- 3 4.68830- 4 1.30000+ 1 1.90000+ 1 6.71711- 3 5.74870- 4 1.30000+ 1 2.10000+ 1 8.75981- 3 7.63790- 4 1.30000+ 1 2.20000+ 1 1.08437- 2 7.83580- 4 1.30000+ 1 2.40000+ 1 8.81348- 3 1.02850- 3 1.30000+ 1 2.50000+ 1 8.13248- 3 1.03287- 3 1.30000+ 1 2.70000+ 1 3.37476- 3 1.01627- 3 1.30000+ 1 2.90000+ 1 7.83173- 4 1.05466- 3 1.30000+ 1 3.00000+ 1 8.78098- 4 1.07370- 3 1.30000+ 1 3.20000+ 1 7.05299- 4 1.12602- 3 1.30000+ 1 3.30000+ 1 8.93854- 4 1.12804- 3 1.30000+ 1 4.10000+ 1 2.73347- 4 1.13245- 3 1.40000+ 1 1.60000+ 1 3.56939- 2 4.48560- 4 1.40000+ 1 1.80000+ 1 9.66684- 4 5.62830- 4 1.40000+ 1 1.90000+ 1 1.10408- 2 6.68870- 4 1.40000+ 1 2.10000+ 1 1.21130- 2 8.57790- 4 1.40000+ 1 2.20000+ 1 1.72978- 2 8.77580- 4 1.40000+ 1 2.40000+ 1 1.00205- 2 1.12250- 3 1.40000+ 1 2.50000+ 1 1.56091- 2 1.12687- 3 1.40000+ 1 2.70000+ 1 4.66626- 3 1.11027- 3 1.40000+ 1 2.90000+ 1 1.60432- 4 1.14866- 3 1.40000+ 1 3.00000+ 1 1.43127- 3 1.16770- 3 1.40000+ 1 3.20000+ 1 1.05794- 3 1.22002- 3 1.40000+ 1 3.30000+ 1 1.37761- 3 1.22204- 3 1.40000+ 1 4.10000+ 1 3.77816- 4 1.22645- 3 1.60000+ 1 1.60000+ 1 2.57267- 3 1.96192- 3 1.60000+ 1 1.80000+ 1 4.47270- 3 2.07619- 3 1.60000+ 1 1.90000+ 1 7.42167- 3 2.18223- 3 1.60000+ 1 2.10000+ 1 8.56302- 3 2.37115- 3 1.60000+ 1 2.20000+ 1 1.20696- 2 2.39094- 3 1.60000+ 1 2.40000+ 1 5.93988- 3 2.63586- 3 1.60000+ 1 2.50000+ 1 7.45955- 3 2.64023- 3 1.60000+ 1 2.70000+ 1 8.62172- 4 2.62363- 3 1.60000+ 1 2.90000+ 1 8.01697- 4 2.66202- 3 1.60000+ 1 3.00000+ 1 1.27217- 3 2.68106- 3 1.60000+ 1 3.20000+ 1 8.17104- 4 2.73338- 3 1.60000+ 1 3.30000+ 1 1.09432- 3 2.73540- 3 1.60000+ 1 4.10000+ 1 7.31131- 5 2.73981- 3 1.80000+ 1 1.80000+ 1 1.90543- 4 2.19046- 3 1.80000+ 1 1.90000+ 1 5.44152- 4 2.29650- 3 1.80000+ 1 2.10000+ 1 2.86380- 4 2.48542- 3 1.80000+ 1 2.20000+ 1 1.61533- 4 2.50521- 3 1.80000+ 1 2.40000+ 1 4.37933- 5 2.75013- 3 1.80000+ 1 2.50000+ 1 4.49461- 4 2.75450- 3 1.80000+ 1 2.70000+ 1 5.69884- 4 2.73790- 3 1.80000+ 1 2.90000+ 1 5.14756- 5 2.77629- 3 1.80000+ 1 3.00000+ 1 6.93386- 5 2.79533- 3 1.80000+ 1 3.20000+ 1 2.40088- 5 2.84765- 3 1.80000+ 1 3.30000+ 1 1.74792- 5 2.84967- 3 1.80000+ 1 4.10000+ 1 4.60987- 5 2.85408- 3 1.90000+ 1 1.90000+ 1 6.33641- 4 2.40254- 3 1.90000+ 1 2.10000+ 1 5.95611- 4 2.59146- 3 1.90000+ 1 2.20000+ 1 1.38129- 3 2.61125- 3 1.90000+ 1 2.40000+ 1 5.90041- 4 2.85617- 3 1.90000+ 1 2.50000+ 1 1.02491- 3 2.86054- 3 1.90000+ 1 2.70000+ 1 9.49809- 4 2.84394- 3 1.90000+ 1 2.90000+ 1 8.25937- 5 2.88233- 3 1.90000+ 1 3.00000+ 1 1.82849- 4 2.90137- 3 1.90000+ 1 3.20000+ 1 5.74290- 5 2.95369- 3 1.90000+ 1 3.30000+ 1 1.19848- 4 2.95571- 3 1.90000+ 1 4.10000+ 1 7.70171- 5 2.96012- 3 2.10000+ 1 2.10000+ 1 1.02293- 4 2.78038- 3 2.10000+ 1 2.20000+ 1 4.09564- 4 2.80017- 3 2.10000+ 1 2.40000+ 1 4.51705- 4 3.04509- 3 2.10000+ 1 2.50000+ 1 3.08741- 3 3.04946- 3 2.10000+ 1 2.70000+ 1 1.10364- 3 3.03286- 3 2.10000+ 1 2.90000+ 1 3.54164- 5 3.07125- 3 2.10000+ 1 3.00000+ 1 8.23121- 5 3.09029- 3 2.10000+ 1 3.20000+ 1 1.58296- 5 3.14261- 3 2.10000+ 1 3.30000+ 1 3.18557- 5 3.14463- 3 2.10000+ 1 4.10000+ 1 8.92332- 5 3.14904- 3 2.20000+ 1 2.20000+ 1 2.56626- 4 2.81996- 3 2.20000+ 1 2.40000+ 1 2.85457- 3 3.06488- 3 2.20000+ 1 2.50000+ 1 1.71166- 3 3.06925- 3 2.20000+ 1 2.70000+ 1 1.53457- 3 3.05265- 3 2.20000+ 1 2.90000+ 1 2.21182- 5 3.09104- 3 2.20000+ 1 3.00000+ 1 1.86741- 4 3.11008- 3 2.20000+ 1 3.20000+ 1 3.05366- 5 3.16240- 3 2.20000+ 1 3.30000+ 1 3.87567- 5 3.16442- 3 2.20000+ 1 4.10000+ 1 1.23904- 4 3.16883- 3 2.40000+ 1 2.40000+ 1 5.73147- 4 3.30980- 3 2.40000+ 1 2.50000+ 1 3.88286- 3 3.31417- 3 2.40000+ 1 2.70000+ 1 6.86077- 4 3.29757- 3 2.40000+ 1 2.90000+ 1 5.57009- 6 3.33596- 3 2.40000+ 1 3.00000+ 1 5.83900- 5 3.35500- 3 2.40000+ 1 3.20000+ 1 3.82223- 5 3.40732- 3 2.40000+ 1 3.30000+ 1 2.53152- 4 3.40934- 3 2.40000+ 1 4.10000+ 1 5.47401- 5 3.41375- 3 2.50000+ 1 2.50000+ 1 1.32976- 3 3.31854- 3 2.50000+ 1 2.70000+ 1 8.60662- 4 3.30194- 3 2.50000+ 1 2.90000+ 1 7.12567- 5 3.34033- 3 2.50000+ 1 3.00000+ 1 1.08518- 4 3.35937- 3 2.50000+ 1 3.20000+ 1 2.78110- 4 3.41169- 3 2.50000+ 1 3.30000+ 1 1.46551- 4 3.41371- 3 2.50000+ 1 4.10000+ 1 6.87608- 5 3.41812- 3 2.70000+ 1 2.70000+ 1 8.31841- 5 3.28534- 3 2.70000+ 1 2.90000+ 1 1.29000- 4 3.32373- 3 2.70000+ 1 3.00000+ 1 2.04464- 4 3.34277- 3 2.70000+ 1 3.20000+ 1 1.29000- 4 3.39509- 3 2.70000+ 1 3.30000+ 1 1.72162- 4 3.39711- 3 2.70000+ 1 4.10000+ 1 1.39845- 5 3.40152- 3 2.90000+ 1 2.90000+ 1 6.26879- 6 3.36212- 3 2.90000+ 1 3.00000+ 1 1.84585- 5 3.38116- 3 2.90000+ 1 3.20000+ 1 5.22401- 6 3.43348- 3 2.90000+ 1 3.30000+ 1 4.52744- 6 3.43550- 3 2.90000+ 1 4.10000+ 1 1.49762- 5 3.43991- 3 3.00000+ 1 3.00000+ 1 2.44828- 5 3.40020- 3 3.00000+ 1 3.20000+ 1 1.46162- 5 3.45252- 3 3.00000+ 1 3.30000+ 1 3.03307- 5 3.45454- 3 3.00000+ 1 4.10000+ 1 2.52135- 5 3.45895- 3 3.20000+ 1 3.20000+ 1 6.75659- 7 3.50484- 3 3.20000+ 1 3.30000+ 1 2.70266- 6 3.50686- 3 3.20000+ 1 4.10000+ 1 9.68487- 6 3.51127- 3 3.30000+ 1 3.30000+ 1 1.48061- 6 3.50888- 3 3.30000+ 1 4.10000+ 1 1.22675- 5 3.51329- 3 4.10000+ 1 4.10000+ 1 3.84136- 7 3.51770- 3 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 9.74879- 4 8.79100- 4 1.60000+ 1 7.18009- 4 2.48646- 3 2.10000+ 1 3.83120- 3 2.89569- 3 2.70000+ 1 1.53860- 4 3.14817- 3 3.20000+ 1 4.63519- 4 3.25792- 3 4.10000+ 1 1.44890- 5 3.26435- 3 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.22618- 3 5.87900- 5 1.10000+ 1 2.20000+ 1 1.53025- 2 7.85800- 5 1.10000+ 1 2.40000+ 1 2.82644- 2 3.23500- 4 1.10000+ 1 2.50000+ 1 2.62010- 2 3.27870- 4 1.10000+ 1 2.70000+ 1 3.10716- 3 3.11270- 4 1.10000+ 1 2.90000+ 1 3.85716- 3 3.49660- 4 1.10000+ 1 3.00000+ 1 2.56443- 3 3.68700- 4 1.10000+ 1 3.20000+ 1 7.22297- 4 4.21020- 4 1.10000+ 1 3.30000+ 1 1.52115- 3 4.23040- 4 1.10000+ 1 4.10000+ 1 2.54590- 4 4.27450- 4 1.30000+ 1 1.60000+ 1 4.92532- 2 9.16600- 5 1.30000+ 1 1.80000+ 1 5.04937- 2 2.05930- 4 1.30000+ 1 1.90000+ 1 4.83283- 2 3.11970- 4 1.30000+ 1 2.10000+ 1 1.90047- 2 5.00890- 4 1.30000+ 1 2.20000+ 1 2.34576- 2 5.20680- 4 1.30000+ 1 2.40000+ 1 1.40087- 1 7.65600- 4 1.30000+ 1 2.50000+ 1 2.15971- 1 7.69970- 4 1.30000+ 1 2.70000+ 1 1.00005- 2 7.53370- 4 1.30000+ 1 2.90000+ 1 7.65353- 3 7.91760- 4 1.30000+ 1 3.00000+ 1 7.97340- 3 8.10800- 4 1.30000+ 1 3.20000+ 1 1.86510- 3 8.63120- 4 1.30000+ 1 3.30000+ 1 2.31856- 3 8.65140- 4 1.30000+ 1 4.10000+ 1 8.52913- 4 8.69550- 4 1.40000+ 1 1.60000+ 1 7.95984- 3 1.85660- 4 1.40000+ 1 1.80000+ 1 5.70173- 2 2.99930- 4 1.40000+ 1 1.90000+ 1 4.97523- 3 4.05970- 4 1.40000+ 1 2.10000+ 1 1.02187- 3 5.94890- 4 1.40000+ 1 2.20000+ 1 2.76840- 3 6.14680- 4 1.40000+ 1 2.40000+ 1 5.66652- 3 8.59600- 4 1.40000+ 1 2.50000+ 1 3.92285- 3 8.63970- 4 1.40000+ 1 2.70000+ 1 1.07207- 3 8.47370- 4 1.40000+ 1 2.90000+ 1 6.80927- 3 8.85760- 4 1.40000+ 1 3.00000+ 1 7.32724- 4 9.04800- 4 1.40000+ 1 3.20000+ 1 5.33637- 5 9.57120- 4 1.40000+ 1 3.30000+ 1 2.33845- 4 9.59140- 4 1.40000+ 1 4.10000+ 1 8.75834- 5 9.63550- 4 1.60000+ 1 1.60000+ 1 7.67093- 4 1.69902- 3 1.60000+ 1 1.80000+ 1 1.11449- 2 1.81329- 3 1.60000+ 1 1.90000+ 1 1.55986- 3 1.91933- 3 1.60000+ 1 2.10000+ 1 3.74565- 4 2.10825- 3 1.60000+ 1 2.20000+ 1 1.30191- 3 2.12804- 3 1.60000+ 1 2.40000+ 1 4.52110- 5 2.37296- 3 1.60000+ 1 2.50000+ 1 9.16619- 4 2.37733- 3 1.60000+ 1 2.70000+ 1 2.41477- 4 2.36073- 3 1.60000+ 1 2.90000+ 1 1.29218- 3 2.39912- 3 1.60000+ 1 3.00000+ 1 2.41477- 4 2.41816- 3 1.60000+ 1 3.20000+ 1 2.67194- 5 2.47048- 3 1.60000+ 1 3.30000+ 1 1.08922- 4 2.47250- 3 1.60000+ 1 4.10000+ 1 2.00371- 5 2.47691- 3 1.80000+ 1 1.80000+ 1 8.55760- 3 1.92756- 3 1.80000+ 1 1.90000+ 1 2.41174- 2 2.03360- 3 1.80000+ 1 2.10000+ 1 2.39099- 2 2.22252- 3 1.80000+ 1 2.20000+ 1 3.81648- 2 2.24231- 3 1.80000+ 1 2.40000+ 1 1.36491- 2 2.48723- 3 1.80000+ 1 2.50000+ 1 2.29753- 2 2.49160- 3 1.80000+ 1 2.70000+ 1 2.25616- 3 2.47500- 3 1.80000+ 1 2.90000+ 1 2.56231- 3 2.51339- 3 1.80000+ 1 3.00000+ 1 4.09817- 3 2.53243- 3 1.80000+ 1 3.20000+ 1 2.28598- 3 2.58475- 3 1.80000+ 1 3.30000+ 1 3.42739- 3 2.58677- 3 1.80000+ 1 4.10000+ 1 1.95765- 4 2.59118- 3 1.90000+ 1 1.90000+ 1 6.53041- 4 2.13964- 3 1.90000+ 1 2.10000+ 1 1.63393- 3 2.32856- 3 1.90000+ 1 2.20000+ 1 1.41351- 3 2.34835- 3 1.90000+ 1 2.40000+ 1 9.41878- 3 2.59327- 3 1.90000+ 1 2.50000+ 1 2.60396- 3 2.59764- 3 1.90000+ 1 2.70000+ 1 2.05009- 4 2.58104- 3 1.90000+ 1 2.90000+ 1 2.85830- 3 2.61943- 3 1.90000+ 1 3.00000+ 1 1.88055- 4 2.63847- 3 1.90000+ 1 3.20000+ 1 1.26398- 4 2.69079- 3 1.90000+ 1 3.30000+ 1 1.13554- 4 2.69281- 3 1.90000+ 1 4.10000+ 1 1.64417- 5 2.69722- 3 2.10000+ 1 2.10000+ 1 8.25167- 4 2.51748- 3 2.10000+ 1 2.20000+ 1 2.05120- 3 2.53727- 3 2.10000+ 1 2.40000+ 1 1.04148- 3 2.78219- 3 2.10000+ 1 2.50000+ 1 1.82708- 3 2.78656- 3 2.10000+ 1 2.70000+ 1 7.14206- 5 2.76996- 3 2.10000+ 1 2.90000+ 1 2.76064- 3 2.80835- 3 2.10000+ 1 3.00000+ 1 2.48702- 4 2.82739- 3 2.10000+ 1 3.20000+ 1 1.31532- 4 2.87971- 3 2.10000+ 1 3.30000+ 1 1.71100- 4 2.88173- 3 2.10000+ 1 4.10000+ 1 6.16568- 6 2.88614- 3 2.20000+ 1 2.20000+ 1 5.13829- 4 2.55706- 3 2.20000+ 1 2.40000+ 1 3.02353- 3 2.80198- 3 2.20000+ 1 2.50000+ 1 6.85401- 4 2.80635- 3 2.20000+ 1 2.70000+ 1 2.10653- 4 2.78975- 3 2.20000+ 1 2.90000+ 1 4.46756- 3 2.82814- 3 2.20000+ 1 3.00000+ 1 1.87541- 4 2.84718- 3 2.20000+ 1 3.20000+ 1 1.65961- 4 2.89950- 3 2.20000+ 1 3.30000+ 1 7.96411- 5 2.90152- 3 2.20000+ 1 4.10000+ 1 1.74692- 5 2.90593- 3 2.40000+ 1 2.40000+ 1 3.28932- 3 3.04690- 3 2.40000+ 1 2.50000+ 1 2.11538- 2 3.05127- 3 2.40000+ 1 2.70000+ 1 4.62447- 6 3.03467- 3 2.40000+ 1 2.90000+ 1 1.45715- 3 3.07306- 3 2.40000+ 1 3.00000+ 1 1.50492- 3 3.09210- 3 2.40000+ 1 3.20000+ 1 1.09954- 4 3.14442- 3 2.40000+ 1 3.30000+ 1 3.04694- 4 3.14644- 3 2.40000+ 1 4.10000+ 1 5.13827- 7 3.15085- 3 2.50000+ 1 2.50000+ 1 1.10775- 3 3.05564- 3 2.50000+ 1 2.70000+ 1 1.54655- 4 3.03904- 3 2.50000+ 1 2.90000+ 1 2.41698- 3 3.07743- 3 2.50000+ 1 3.00000+ 1 3.73018- 4 3.09647- 3 2.50000+ 1 3.20000+ 1 1.79318- 4 3.14879- 3 2.50000+ 1 3.30000+ 1 6.42250- 5 3.15081- 3 2.50000+ 1 4.10000+ 1 1.28453- 5 3.15522- 3 2.70000+ 1 2.70000+ 1 2.15035- 5 3.02244- 3 2.70000+ 1 2.90000+ 1 2.97544- 4 3.06083- 3 2.70000+ 1 3.00000+ 1 3.60329- 5 3.07987- 3 2.70000+ 1 3.20000+ 1 5.23085- 6 3.13219- 3 2.70000+ 1 3.30000+ 1 2.03411- 5 3.13421- 3 2.70000+ 1 4.10000+ 1 3.48707- 6 3.13862- 3 2.90000+ 1 2.90000+ 1 2.13933- 4 3.09922- 3 2.90000+ 1 3.00000+ 1 5.76333- 4 3.11826- 3 2.90000+ 1 3.20000+ 1 3.12725- 4 3.17058- 3 2.90000+ 1 3.30000+ 1 4.75741- 4 3.17260- 3 2.90000+ 1 4.10000+ 1 2.66664- 5 3.17701- 3 3.00000+ 1 3.00000+ 1 3.28532- 5 3.13730- 3 3.00000+ 1 3.20000+ 1 4.80154- 5 3.18962- 3 3.00000+ 1 3.30000+ 1 3.66439- 5 3.19164- 3 3.00000+ 1 4.10000+ 1 6.31728- 6 3.19605- 3 3.20000+ 1 3.20000+ 1 6.25380- 6 3.24194- 3 3.20000+ 1 3.30000+ 1 1.75098- 5 3.24396- 3 3.20000+ 1 4.10000+ 1 6.25380- 7 3.24837- 3 3.30000+ 1 3.30000+ 1 9.09801- 6 3.24598- 3 3.30000+ 1 4.10000+ 1 4.54897- 6 3.25039- 3 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.53331- 5 4.42100- 4 1.40000+ 1 2.60042- 4 5.36100- 4 1.60000+ 1 1.29521- 3 2.04946- 3 2.10000+ 1 6.32726- 4 2.45869- 3 2.20000+ 1 4.90364- 3 2.47848- 3 2.70000+ 1 2.65282- 4 2.71117- 3 3.20000+ 1 7.09166- 5 2.82092- 3 3.30000+ 1 5.42275- 4 2.82294- 3 4.10000+ 1 2.52632- 5 2.82735- 3 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.14684- 2 6.38900- 5 1.30000+ 1 2.20000+ 1 1.15481- 2 8.36800- 5 1.30000+ 1 2.40000+ 1 1.74811- 2 3.28600- 4 1.30000+ 1 2.50000+ 1 2.54919- 2 3.32970- 4 1.30000+ 1 2.70000+ 1 2.72598- 3 3.16370- 4 1.30000+ 1 2.90000+ 1 2.27267- 3 3.54760- 4 1.30000+ 1 3.00000+ 1 7.51130- 3 3.73800- 4 1.30000+ 1 3.20000+ 1 9.31818- 4 4.26120- 4 1.30000+ 1 3.30000+ 1 9.28839- 4 4.28140- 4 1.30000+ 1 4.10000+ 1 2.28564- 4 4.32550- 4 1.40000+ 1 2.10000+ 1 5.07799- 2 1.57890- 4 1.40000+ 1 2.20000+ 1 6.93731- 2 1.77680- 4 1.40000+ 1 2.40000+ 1 1.86800- 1 4.22600- 4 1.40000+ 1 2.50000+ 1 2.25312- 1 4.26970- 4 1.40000+ 1 2.70000+ 1 1.61974- 2 4.10370- 4 1.40000+ 1 2.90000+ 1 1.53521- 2 4.48760- 4 1.40000+ 1 3.00000+ 1 1.90302- 2 4.67800- 4 1.40000+ 1 3.20000+ 1 4.12958- 3 5.20120- 4 1.40000+ 1 3.30000+ 1 5.71276- 3 5.22140- 4 1.40000+ 1 4.10000+ 1 1.37814- 3 5.26550- 4 1.60000+ 1 1.60000+ 1 3.90072- 4 1.26202- 3 1.60000+ 1 1.80000+ 1 7.42679- 4 1.37629- 3 1.60000+ 1 1.90000+ 1 1.34473- 2 1.48233- 3 1.60000+ 1 2.10000+ 1 7.95367- 4 1.67125- 3 1.60000+ 1 2.20000+ 1 9.40450- 4 1.69104- 3 1.60000+ 1 2.40000+ 1 1.64344- 3 1.93596- 3 1.60000+ 1 2.50000+ 1 2.83528- 3 1.94033- 3 1.60000+ 1 2.70000+ 1 1.22784- 4 1.92373- 3 1.60000+ 1 2.90000+ 1 9.83327- 5 1.96212- 3 1.60000+ 1 3.00000+ 1 1.52284- 3 1.98116- 3 1.60000+ 1 3.20000+ 1 6.79089- 5 2.03348- 3 1.60000+ 1 3.30000+ 1 7.44314- 5 2.03550- 3 1.60000+ 1 4.10000+ 1 1.03224- 5 2.03991- 3 1.80000+ 1 1.80000+ 1 3.96623- 5 1.49056- 3 1.80000+ 1 1.90000+ 1 1.65032- 2 1.59660- 3 1.80000+ 1 2.10000+ 1 3.59639- 4 1.78552- 3 1.80000+ 1 2.20000+ 1 3.41146- 3 1.80531- 3 1.80000+ 1 2.40000+ 1 1.64405- 3 2.05023- 3 1.80000+ 1 2.50000+ 1 9.07021- 3 2.05460- 3 1.80000+ 1 2.70000+ 1 1.06487- 4 2.03800- 3 1.80000+ 1 2.90000+ 1 9.77939- 6 2.07639- 3 1.80000+ 1 3.00000+ 1 1.90317- 3 2.09543- 3 1.80000+ 1 3.20000+ 1 3.20555- 5 2.14775- 3 1.80000+ 1 3.30000+ 1 2.55898- 4 2.14977- 3 1.80000+ 1 4.10000+ 1 8.69269- 6 2.15418- 3 1.90000+ 1 1.90000+ 1 2.19101- 2 1.70264- 3 1.90000+ 1 2.10000+ 1 3.17834- 2 1.89156- 3 1.90000+ 1 2.20000+ 1 4.16465- 2 1.91135- 3 1.90000+ 1 2.40000+ 1 2.64604- 2 2.15627- 3 1.90000+ 1 2.50000+ 1 3.02937- 2 2.16064- 3 1.90000+ 1 2.70000+ 1 2.67086- 3 2.14404- 3 1.90000+ 1 2.90000+ 1 2.89029- 3 2.18243- 3 1.90000+ 1 3.00000+ 1 6.21938- 3 2.20147- 3 1.90000+ 1 3.20000+ 1 2.94983- 3 2.25379- 3 1.90000+ 1 3.30000+ 1 3.70622- 3 2.25581- 3 1.90000+ 1 4.10000+ 1 2.30890- 4 2.26022- 3 2.10000+ 1 2.10000+ 1 2.08085- 4 2.08048- 3 2.10000+ 1 2.20000+ 1 4.91632- 3 2.10027- 3 2.10000+ 1 2.40000+ 1 7.01920- 4 2.34519- 3 2.10000+ 1 2.50000+ 1 8.29055- 3 2.34956- 3 2.10000+ 1 2.70000+ 1 9.39902- 5 2.33296- 3 2.10000+ 1 2.90000+ 1 2.66206- 5 2.37135- 3 2.10000+ 1 3.00000+ 1 3.60841- 3 2.39039- 3 2.10000+ 1 3.20000+ 1 3.20547- 5 2.44271- 3 2.10000+ 1 3.30000+ 1 3.90616- 4 2.44473- 3 2.10000+ 1 4.10000+ 1 7.60603- 6 2.44914- 3 2.20000+ 1 2.20000+ 1 2.18592- 3 2.12006- 3 2.20000+ 1 2.40000+ 1 6.73706- 3 2.36498- 3 2.20000+ 1 2.50000+ 1 5.65864- 3 2.36935- 3 2.20000+ 1 2.70000+ 1 1.14095- 4 2.35275- 3 2.20000+ 1 2.90000+ 1 3.24357- 4 2.39114- 3 2.20000+ 1 3.00000+ 1 4.67186- 3 2.41018- 3 2.20000+ 1 3.20000+ 1 4.05289- 4 2.46250- 3 2.20000+ 1 3.30000+ 1 3.47736- 4 2.46452- 3 2.20000+ 1 4.10000+ 1 9.23632- 6 2.46893- 3 2.40000+ 1 2.40000+ 1 1.01596- 3 2.60990- 3 2.40000+ 1 2.50000+ 1 2.69136- 2 2.61427- 3 2.40000+ 1 2.70000+ 1 1.77114- 4 2.59767- 3 2.40000+ 1 2.90000+ 1 2.40672- 4 2.63606- 3 2.40000+ 1 3.00000+ 1 2.86760- 3 2.65510- 3 2.40000+ 1 3.20000+ 1 7.49753- 5 2.70742- 3 2.40000+ 1 3.30000+ 1 5.68290- 4 2.70944- 3 2.40000+ 1 4.10000+ 1 1.41256- 5 2.71385- 3 2.50000+ 1 2.50000+ 1 1.06127- 2 2.61864- 3 2.50000+ 1 2.70000+ 1 2.60782- 4 2.60204- 3 2.50000+ 1 2.90000+ 1 1.31914- 3 2.64043- 3 2.50000+ 1 3.00000+ 1 3.40259- 3 2.65947- 3 2.50000+ 1 3.20000+ 1 7.63871- 4 2.71179- 3 2.50000+ 1 3.30000+ 1 5.13951- 4 2.71381- 3 2.50000+ 1 4.10000+ 1 2.01028- 5 2.71822- 3 2.70000+ 1 2.70000+ 1 1.35920- 5 2.58544- 3 2.70000+ 1 2.90000+ 1 1.93151- 5 2.62383- 3 2.70000+ 1 3.00000+ 1 3.99194- 4 2.64287- 3 2.70000+ 1 3.20000+ 1 1.14458- 5 2.69519- 3 2.70000+ 1 3.30000+ 1 1.21614- 5 2.69721- 3 2.70000+ 1 4.10000+ 1 2.14610- 6 2.70162- 3 2.90000+ 1 2.90000+ 1 7.10972- 7 2.66222- 3 2.90000+ 1 3.00000+ 1 4.38662- 4 2.68126- 3 2.90000+ 1 3.20000+ 1 2.84383- 6 2.73358- 3 2.90000+ 1 3.30000+ 1 3.34155- 5 2.73560- 3 2.90000+ 1 4.10000+ 1 1.42191- 6 2.74001- 3 3.00000+ 1 3.00000+ 1 7.22039- 4 2.70030- 3 3.00000+ 1 3.20000+ 1 5.73741- 4 2.75262- 3 3.00000+ 1 3.30000+ 1 7.11848- 4 2.75464- 3 3.00000+ 1 4.10000+ 1 4.44902- 5 2.75905- 3 3.20000+ 1 3.20000+ 1 1.14603- 6 2.80494- 3 3.20000+ 1 3.30000+ 1 3.61003- 5 2.80696- 3 3.20000+ 1 4.10000+ 1 5.73026- 7 2.81137- 3 3.30000+ 1 3.30000+ 1 1.67692- 5 2.80898- 3 3.30000+ 1 4.10000+ 1 6.44975- 7 2.81339- 3 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.03380- 3 1.72163- 3 1.90000+ 1 2.02720- 4 1.82767- 3 2.40000+ 1 2.91480- 2 2.28130- 3 2.90000+ 1 4.97890- 4 2.30746- 3 3.00000+ 1 5.11050- 5 2.32650- 3 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 2.01130- 3 6.66000- 6 1.40000+ 1 3.00000+ 1 7.11173- 3 2.57000- 5 1.40000+ 1 3.20000+ 1 4.00675- 2 7.80200- 5 1.40000+ 1 3.30000+ 1 5.43488- 3 8.00400- 5 1.40000+ 1 4.10000+ 1 5.36650- 4 8.44500- 5 1.60000+ 1 1.60000+ 1 2.94227- 5 8.19920- 4 1.60000+ 1 1.80000+ 1 1.29693- 3 9.34190- 4 1.60000+ 1 1.90000+ 1 9.74455- 4 1.04023- 3 1.60000+ 1 2.10000+ 1 3.64398- 2 1.22915- 3 1.60000+ 1 2.20000+ 1 4.22037- 3 1.24894- 3 1.60000+ 1 2.40000+ 1 1.55681- 2 1.49386- 3 1.60000+ 1 2.50000+ 1 4.36143- 3 1.49823- 3 1.60000+ 1 2.70000+ 1 2.11836- 5 1.48163- 3 1.60000+ 1 2.90000+ 1 1.83595- 4 1.52002- 3 1.60000+ 1 3.00000+ 1 1.11800- 4 1.53906- 3 1.60000+ 1 3.20000+ 1 2.48442- 3 1.59138- 3 1.60000+ 1 3.30000+ 1 2.87159- 4 1.59340- 3 1.60000+ 1 4.10000+ 1 2.35372- 6 1.59781- 3 1.80000+ 1 1.80000+ 1 7.62662- 4 1.04846- 3 1.80000+ 1 1.90000+ 1 4.92206- 3 1.15450- 3 1.80000+ 1 2.10000+ 1 3.24996- 2 1.34342- 3 1.80000+ 1 2.20000+ 1 2.33731- 3 1.36321- 3 1.80000+ 1 2.40000+ 1 1.00775- 2 1.60813- 3 1.80000+ 1 2.50000+ 1 5.03231- 3 1.61250- 3 1.80000+ 1 2.70000+ 1 1.70658- 4 1.59590- 3 1.80000+ 1 2.90000+ 1 2.15379- 4 1.63429- 3 1.80000+ 1 3.00000+ 1 6.27275- 4 1.65333- 3 1.80000+ 1 3.20000+ 1 2.20084- 3 1.70565- 3 1.80000+ 1 3.30000+ 1 1.81245- 4 1.70767- 3 1.80000+ 1 4.10000+ 1 1.41229- 5 1.71208- 3 1.90000+ 1 1.90000+ 1 1.74762- 3 1.26054- 3 1.90000+ 1 2.10000+ 1 6.56633- 2 1.44946- 3 1.90000+ 1 2.20000+ 1 2.48792- 3 1.46925- 3 1.90000+ 1 2.40000+ 1 3.57062- 3 1.71417- 3 1.90000+ 1 2.50000+ 1 2.23371- 3 1.71854- 3 1.90000+ 1 2.70000+ 1 1.49461- 4 1.70194- 3 1.90000+ 1 2.90000+ 1 5.67284- 4 1.74033- 3 1.90000+ 1 3.00000+ 1 4.26035- 4 1.75937- 3 1.90000+ 1 3.20000+ 1 4.48984- 3 1.81169- 3 1.90000+ 1 3.30000+ 1 1.75361- 4 1.81371- 3 1.90000+ 1 4.10000+ 1 1.29454- 5 1.81812- 3 2.10000+ 1 2.10000+ 1 5.86177- 2 1.63838- 3 2.10000+ 1 2.20000+ 1 1.16595- 1 1.65817- 3 2.10000+ 1 2.40000+ 1 6.06344- 2 1.90309- 3 2.10000+ 1 2.50000+ 1 7.36826- 2 1.90746- 3 2.10000+ 1 2.70000+ 1 6.68709- 3 1.89086- 3 2.10000+ 1 2.90000+ 1 5.74065- 3 1.92925- 3 2.10000+ 1 3.00000+ 1 1.08710- 2 1.94829- 3 2.10000+ 1 3.20000+ 1 9.51176- 3 2.00061- 3 2.10000+ 1 3.30000+ 1 1.02569- 2 2.00263- 3 2.10000+ 1 4.10000+ 1 5.73158- 4 2.00704- 3 2.20000+ 1 2.20000+ 1 1.87126- 3 1.67796- 3 2.20000+ 1 2.40000+ 1 6.76409- 2 1.92288- 3 2.20000+ 1 2.50000+ 1 3.44595- 3 1.92725- 3 2.20000+ 1 2.70000+ 1 4.23689- 4 1.91065- 3 2.20000+ 1 2.90000+ 1 2.62451- 4 1.94904- 3 2.20000+ 1 3.00000+ 1 3.35414- 4 1.96808- 3 2.20000+ 1 3.20000+ 1 8.01709- 3 2.02040- 3 2.20000+ 1 3.30000+ 1 2.75390- 4 2.02242- 3 2.20000+ 1 4.10000+ 1 3.29531- 5 2.02683- 3 2.40000+ 1 2.40000+ 1 6.21571- 2 2.16780- 3 2.40000+ 1 2.50000+ 1 1.80061- 1 2.17217- 3 2.40000+ 1 2.70000+ 1 2.98822- 3 2.15557- 3 2.40000+ 1 2.90000+ 1 1.47113- 3 2.19396- 3 2.40000+ 1 3.00000+ 1 6.01423- 4 2.21300- 3 2.40000+ 1 3.20000+ 1 4.45109- 3 2.26532- 3 2.40000+ 1 3.30000+ 1 5.69631- 3 2.26734- 3 2.40000+ 1 4.10000+ 1 2.54221- 4 2.27175- 3 2.50000+ 1 2.50000+ 1 3.40492- 3 2.17654- 3 2.50000+ 1 2.70000+ 1 5.41194- 4 2.15994- 3 2.50000+ 1 2.90000+ 1 3.61134- 4 2.19833- 3 2.50000+ 1 3.00000+ 1 3.02896- 4 2.21737- 3 2.50000+ 1 3.20000+ 1 4.22682- 3 2.26969- 3 2.50000+ 1 3.30000+ 1 2.46766- 4 2.27171- 3 2.50000+ 1 4.10000+ 1 4.44776- 5 2.27612- 3 2.70000+ 1 2.70000+ 1 2.87402- 6 2.14334- 3 2.70000+ 1 2.90000+ 1 3.16141- 5 2.18173- 3 2.70000+ 1 3.00000+ 1 2.15548- 5 2.20077- 3 2.70000+ 1 3.20000+ 1 5.60428- 4 2.25309- 3 2.70000+ 1 3.30000+ 1 3.87994- 5 2.25511- 3 2.90000+ 1 2.90000+ 1 2.73464- 5 2.22012- 3 2.90000+ 1 3.00000+ 1 1.26967- 4 2.23916- 3 2.90000+ 1 3.20000+ 1 6.48518- 4 2.29148- 3 2.90000+ 1 3.30000+ 1 3.71132- 5 2.29350- 3 2.90000+ 1 4.10000+ 1 3.90655- 6 2.29791- 3 3.00000+ 1 3.00000+ 1 5.00210- 5 2.25820- 3 3.00000+ 1 3.20000+ 1 1.38103- 3 2.31052- 3 3.00000+ 1 3.30000+ 1 4.56717- 5 2.31254- 3 3.00000+ 1 4.10000+ 1 2.17470- 6 2.31695- 3 3.20000+ 1 3.20000+ 1 3.62567- 4 2.36284- 3 3.20000+ 1 3.30000+ 1 6.84227- 4 2.36486- 3 3.20000+ 1 4.10000+ 1 3.75073- 5 2.36927- 3 3.30000+ 1 3.30000+ 1 1.00262- 5 2.36688- 3 3.30000+ 1 4.10000+ 1 2.22783- 6 2.37129- 3 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.58750- 3 1.73367- 3 2.40000+ 1 1.44520- 3 2.18730- 3 2.50000+ 1 2.82240- 2 2.19167- 3 3.00000+ 1 3.99810- 4 2.23250- 3 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.18677- 6 7.25920- 4 1.60000+ 1 1.80000+ 1 2.76530- 4 8.40190- 4 1.60000+ 1 1.90000+ 1 2.22643- 3 9.46230- 4 1.60000+ 1 2.10000+ 1 3.61619- 3 1.13515- 3 1.60000+ 1 2.20000+ 1 3.96332- 2 1.15494- 3 1.60000+ 1 2.40000+ 1 4.49115- 3 1.39986- 3 1.60000+ 1 2.50000+ 1 1.65304- 2 1.40423- 3 1.60000+ 1 2.70000+ 1 1.18677- 5 1.38763- 3 1.60000+ 1 2.90000+ 1 1.66150- 5 1.42602- 3 1.60000+ 1 3.00000+ 1 2.64665- 4 1.44506- 3 1.60000+ 1 3.20000+ 1 2.42107- 4 1.49738- 3 1.60000+ 1 3.30000+ 1 2.58249- 3 1.49940- 3 1.60000+ 1 4.10000+ 1 1.18677- 6 1.50381- 3 1.80000+ 1 1.80000+ 1 1.18677- 6 9.54460- 4 1.80000+ 1 1.90000+ 1 5.93387- 3 1.06050- 3 1.80000+ 1 2.10000+ 1 3.00264- 4 1.24942- 3 1.80000+ 1 2.20000+ 1 4.08458- 2 1.26921- 3 1.80000+ 1 2.40000+ 1 2.23718- 3 1.51413- 3 1.80000+ 1 2.50000+ 1 8.75020- 3 1.51850- 3 1.80000+ 1 2.70000+ 1 3.44176- 5 1.50190- 3 1.80000+ 1 2.90000+ 1 2.37365- 6 1.54029- 3 1.80000+ 1 3.00000+ 1 7.02605- 4 1.55933- 3 1.80000+ 1 3.20000+ 1 8.30740- 6 1.61165- 3 1.80000+ 1 3.30000+ 1 2.66436- 3 1.61367- 3 1.80000+ 1 4.10000+ 1 2.37365- 6 1.61808- 3 1.90000+ 1 1.90000+ 1 4.10992- 3 1.16654- 3 1.90000+ 1 2.10000+ 1 3.79185- 3 1.35546- 3 1.90000+ 1 2.20000+ 1 6.18597- 2 1.37525- 3 1.90000+ 1 2.40000+ 1 2.48045- 3 1.62017- 3 1.90000+ 1 2.50000+ 1 4.89795- 3 1.62454- 3 1.90000+ 1 2.70000+ 1 3.52489- 4 1.60794- 3 1.90000+ 1 2.90000+ 1 6.59863- 4 1.64633- 3 1.90000+ 1 3.00000+ 1 1.00396- 3 1.66537- 3 1.90000+ 1 3.20000+ 1 3.07383- 4 1.71769- 3 1.90000+ 1 3.30000+ 1 4.01971- 3 1.71971- 3 1.90000+ 1 4.10000+ 1 2.96701- 5 1.72412- 3 2.10000+ 1 2.10000+ 1 8.22485- 4 1.54438- 3 2.10000+ 1 2.20000+ 1 8.50445- 2 1.56417- 3 2.10000+ 1 2.40000+ 1 3.02519- 3 1.80909- 3 2.10000+ 1 2.50000+ 1 4.14237- 2 1.81346- 3 2.10000+ 1 2.70000+ 1 3.46551- 4 1.79686- 3 2.10000+ 1 2.90000+ 1 5.93401- 5 1.83525- 3 2.10000+ 1 3.00000+ 1 4.64039- 4 1.85429- 3 2.10000+ 1 3.20000+ 1 1.23434- 4 1.90661- 3 2.10000+ 1 3.30000+ 1 5.59345- 3 1.90863- 3 2.10000+ 1 4.10000+ 1 2.72978- 5 1.91304- 3 2.20000+ 1 2.20000+ 1 9.52470- 2 1.58396- 3 2.20000+ 1 2.40000+ 1 6.63654- 2 1.82888- 3 2.20000+ 1 2.50000+ 1 1.05061- 1 1.83325- 3 2.20000+ 1 2.70000+ 1 6.99381- 3 1.81665- 3 2.20000+ 1 2.90000+ 1 6.90479- 3 1.85504- 3 2.20000+ 1 3.00000+ 1 1.03201- 2 1.87408- 3 2.20000+ 1 3.20000+ 1 7.79844- 3 1.92640- 3 2.20000+ 1 3.30000+ 1 1.46407- 2 1.92842- 3 2.20000+ 1 4.10000+ 1 5.98141- 4 1.93283- 3 2.40000+ 1 2.40000+ 1 5.03566- 3 2.07380- 3 2.40000+ 1 2.50000+ 1 1.60914- 1 2.07817- 3 2.40000+ 1 2.70000+ 1 6.66944- 4 2.06157- 3 2.40000+ 1 2.90000+ 1 3.51286- 4 2.09996- 3 2.40000+ 1 3.00000+ 1 3.40603- 4 2.11900- 3 2.40000+ 1 3.20000+ 1 2.69391- 4 2.17132- 3 2.40000+ 1 3.30000+ 1 4.14659- 3 2.17334- 3 2.40000+ 1 4.10000+ 1 5.57780- 5 2.17775- 3 2.50000+ 1 2.50000+ 1 1.10076- 1 2.08254- 3 2.50000+ 1 2.70000+ 1 3.09648- 3 2.06594- 3 2.50000+ 1 2.90000+ 1 1.49304- 3 2.10433- 3 2.50000+ 1 3.00000+ 1 7.77370- 4 2.12337- 3 2.50000+ 1 3.20000+ 1 3.58891- 3 2.17569- 3 2.50000+ 1 3.30000+ 1 7.54126- 3 2.17771- 3 2.50000+ 1 4.10000+ 1 2.67037- 4 2.18212- 3 2.70000+ 1 2.70000+ 1 1.74317- 6 2.04934- 3 2.70000+ 1 2.90000+ 1 3.48649- 6 2.08773- 3 2.70000+ 1 3.00000+ 1 6.44998- 5 2.10677- 3 2.70000+ 1 3.20000+ 1 3.83521- 5 2.15909- 3 2.70000+ 1 3.30000+ 1 6.74668- 4 2.16111- 3 2.90000+ 1 3.00000+ 1 1.17311- 4 2.14516- 3 2.90000+ 1 3.20000+ 1 3.35189- 6 2.19748- 3 2.90000+ 1 3.30000+ 1 6.43566- 4 2.19950- 3 3.00000+ 1 3.00000+ 1 1.07529- 4 2.16420- 3 3.00000+ 1 3.20000+ 1 6.89791- 5 2.21652- 3 3.00000+ 1 3.30000+ 1 1.15030- 3 2.21854- 3 3.00000+ 1 4.10000+ 1 6.08639- 6 2.22295- 3 3.20000+ 1 3.20000+ 1 4.59571- 6 2.26884- 3 3.20000+ 1 3.30000+ 1 4.98636- 4 2.27086- 3 3.20000+ 1 4.10000+ 1 2.29795- 6 2.27527- 3 3.30000+ 1 3.30000+ 1 5.49516- 4 2.27288- 3 3.30000+ 1 4.10000+ 1 3.91640- 5 2.27729- 3 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.86711- 5 1.14270- 4 1.90000+ 1 2.85634- 4 2.20310- 4 2.90000+ 1 1.75086- 4 7.00100- 4 3.00000+ 1 7.35052- 5 7.19140- 4 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40000+ 1 9.41679- 3 7.70000- 7 1.80000+ 1 2.50000+ 1 2.36385- 3 5.14000- 6 1.80000+ 1 2.90000+ 1 3.13090- 2 2.69300- 5 1.80000+ 1 3.00000+ 1 5.29706- 2 4.59700- 5 1.80000+ 1 3.20000+ 1 3.10855- 2 9.82900- 5 1.80000+ 1 3.30000+ 1 5.00835- 2 1.00310- 4 1.80000+ 1 4.10000+ 1 2.87362- 3 1.04720- 4 1.90000+ 1 2.40000+ 1 7.75020- 2 1.06810- 4 1.90000+ 1 2.50000+ 1 1.04574- 1 1.11180- 4 1.90000+ 1 2.70000+ 1 4.03083- 2 9.45800- 5 1.90000+ 1 2.90000+ 1 4.62985- 2 1.32970- 4 1.90000+ 1 3.00000+ 1 4.91585- 2 1.52010- 4 1.90000+ 1 3.20000+ 1 3.48975- 2 2.04330- 4 1.90000+ 1 3.30000+ 1 4.14448- 2 2.06350- 4 1.90000+ 1 4.10000+ 1 3.45358- 3 2.10760- 4 2.10000+ 1 2.10000+ 1 4.10937- 3 3.10200- 5 2.10000+ 1 2.20000+ 1 4.79686- 3 5.08100- 5 2.10000+ 1 2.40000+ 1 4.54068- 3 2.95730- 4 2.10000+ 1 2.50000+ 1 8.37220- 3 3.00100- 4 2.10000+ 1 2.70000+ 1 1.65550- 2 2.83500- 4 2.10000+ 1 2.90000+ 1 4.79011- 3 3.21890- 4 2.10000+ 1 3.00000+ 1 7.71187- 3 3.40930- 4 2.10000+ 1 3.20000+ 1 1.41240- 3 3.93250- 4 2.10000+ 1 3.30000+ 1 1.33072- 3 3.95270- 4 2.10000+ 1 4.10000+ 1 1.10866- 3 3.99680- 4 2.20000+ 1 2.20000+ 1 5.83061- 3 7.06000- 5 2.20000+ 1 2.40000+ 1 9.44803- 3 3.15520- 4 2.20000+ 1 2.50000+ 1 9.26174- 3 3.19890- 4 2.20000+ 1 2.70000+ 1 2.30213- 2 3.03290- 4 2.20000+ 1 2.90000+ 1 9.09155- 3 3.41680- 4 2.20000+ 1 3.00000+ 1 7.93334- 3 3.60720- 4 2.20000+ 1 3.20000+ 1 1.15854- 3 4.13040- 4 2.20000+ 1 3.30000+ 1 1.95661- 3 4.15060- 4 2.20000+ 1 4.10000+ 1 1.53345- 3 4.19470- 4 2.40000+ 1 2.40000+ 1 8.59274- 3 5.60440- 4 2.40000+ 1 2.50000+ 1 1.74860- 2 5.64810- 4 2.40000+ 1 2.70000+ 1 1.94659- 2 5.48210- 4 2.40000+ 1 2.90000+ 1 2.56901- 3 5.86600- 4 2.40000+ 1 3.00000+ 1 8.40839- 3 6.05640- 4 2.40000+ 1 3.20000+ 1 6.39712- 4 6.57960- 4 2.40000+ 1 3.30000+ 1 4.19942- 4 6.59980- 4 2.40000+ 1 4.10000+ 1 1.16725- 3 6.64390- 4 2.50000+ 1 2.50000+ 1 1.43054- 2 5.69180- 4 2.50000+ 1 2.70000+ 1 2.53393- 2 5.52580- 4 2.50000+ 1 2.90000+ 1 1.40999- 3 5.90970- 4 2.50000+ 1 3.00000+ 1 9.78449- 3 6.10010- 4 2.50000+ 1 3.20000+ 1 3.92690- 4 6.62330- 4 2.50000+ 1 3.30000+ 1 9.19886- 4 6.64350- 4 2.50000+ 1 4.10000+ 1 1.51509- 3 6.68760- 4 2.70000+ 1 2.70000+ 1 1.71146- 2 5.35980- 4 2.70000+ 1 2.90000+ 1 2.34636- 2 5.74370- 4 2.70000+ 1 3.00000+ 1 3.74404- 2 5.93410- 4 2.70000+ 1 3.20000+ 1 2.40312- 2 6.45730- 4 2.70000+ 1 3.30000+ 1 3.22810- 2 6.47750- 4 2.70000+ 1 4.10000+ 1 2.55138- 3 6.52160- 4 2.90000+ 1 2.90000+ 1 2.49029- 3 6.12760- 4 2.90000+ 1 3.00000+ 1 1.02492- 2 6.31800- 4 2.90000+ 1 3.20000+ 1 2.98121- 3 6.84120- 4 2.90000+ 1 3.30000+ 1 2.50404- 3 6.86140- 4 2.90000+ 1 4.10000+ 1 1.91664- 3 6.90550- 4 3.00000+ 1 3.00000+ 1 7.12694- 3 6.50840- 4 3.00000+ 1 3.20000+ 1 3.02003- 3 7.03160- 4 3.00000+ 1 3.30000+ 1 5.29868- 3 7.05180- 4 3.00000+ 1 4.10000+ 1 3.07766- 3 7.09590- 4 3.20000+ 1 3.20000+ 1 6.43639- 4 7.55480- 4 3.20000+ 1 3.30000+ 1 1.93085- 3 7.57500- 4 3.20000+ 1 4.10000+ 1 2.35720- 3 7.61910- 4 3.30000+ 1 3.30000+ 1 1.31521- 3 7.59520- 4 3.30000+ 1 4.10000+ 1 3.40277- 3 7.63930- 4 4.10000+ 1 4.10000+ 1 1.31892- 4 7.68340- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 8.79437- 4 2.94960- 4 2.70000+ 1 1.90803- 4 5.47440- 4 3.20000+ 1 2.73151- 5 6.57190- 4 4.10000+ 1 1.84451- 5 6.63620- 4 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.40000+ 1 1.35773- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 2.79183- 3 0.00000+ 0 1.90000+ 1 2.90000+ 1 1.40415- 2 1.87000- 5 1.90000+ 1 3.00000+ 1 1.81834- 2 3.77400- 5 1.90000+ 1 3.20000+ 1 5.69994- 3 9.00600- 5 1.90000+ 1 3.30000+ 1 8.68484- 3 9.20800- 5 1.90000+ 1 4.10000+ 1 1.24039- 3 9.64900- 5 2.10000+ 1 2.40000+ 1 1.41790- 1 1.81460- 4 2.10000+ 1 2.50000+ 1 3.12306- 1 1.85830- 4 2.10000+ 1 2.70000+ 1 3.79131- 2 1.69230- 4 2.10000+ 1 2.90000+ 1 2.91381- 2 2.07620- 4 2.10000+ 1 3.00000+ 1 4.24573- 2 2.26660- 4 2.10000+ 1 3.20000+ 1 1.74791- 2 2.78980- 4 2.10000+ 1 3.30000+ 1 2.86187- 2 2.81000- 4 2.10000+ 1 4.10000+ 1 3.25047- 3 2.85410- 4 2.20000+ 1 2.40000+ 1 4.51178- 2 2.01250- 4 2.20000+ 1 2.50000+ 1 1.15264- 2 2.05620- 4 2.20000+ 1 2.70000+ 1 6.28120- 3 1.89020- 4 2.20000+ 1 2.90000+ 1 2.57408- 2 2.27410- 4 2.20000+ 1 3.00000+ 1 5.46962- 3 2.46450- 4 2.20000+ 1 3.20000+ 1 2.26164- 3 2.98770- 4 2.20000+ 1 3.30000+ 1 1.85870- 3 3.00790- 4 2.20000+ 1 4.10000+ 1 4.33129- 4 3.05200- 4 2.40000+ 1 2.40000+ 1 2.89391- 3 4.46170- 4 2.40000+ 1 2.50000+ 1 1.90170- 2 4.50540- 4 2.40000+ 1 2.70000+ 1 4.62268- 3 4.33940- 4 2.40000+ 1 2.90000+ 1 1.97377- 2 4.72330- 4 2.40000+ 1 3.00000+ 1 3.85786- 3 4.91370- 4 2.40000+ 1 3.20000+ 1 3.92187- 3 5.43690- 4 2.40000+ 1 3.30000+ 1 1.86195- 3 5.45710- 4 2.40000+ 1 4.10000+ 1 4.01539- 4 5.50120- 4 2.50000+ 1 2.50000+ 1 9.33691- 4 4.54910- 4 2.50000+ 1 2.70000+ 1 3.11075- 3 4.38310- 4 2.50000+ 1 2.90000+ 1 3.69190- 2 4.76700- 4 2.50000+ 1 3.00000+ 1 2.23601- 3 4.95740- 4 2.50000+ 1 3.20000+ 1 9.22157- 3 5.48060- 4 2.50000+ 1 3.30000+ 1 7.38473- 4 5.50080- 4 2.50000+ 1 4.10000+ 1 2.17073- 4 5.54490- 4 2.70000+ 1 2.70000+ 1 8.37089- 4 4.21710- 4 2.70000+ 1 2.90000+ 1 1.16675- 2 4.60100- 4 2.70000+ 1 3.00000+ 1 2.11078- 3 4.79140- 4 2.70000+ 1 3.20000+ 1 2.10729- 3 5.31460- 4 2.70000+ 1 3.30000+ 1 1.40675- 3 5.33480- 4 2.70000+ 1 4.10000+ 1 1.18100- 4 5.37890- 4 2.90000+ 1 2.90000+ 1 1.33540- 2 4.98490- 4 2.90000+ 1 3.00000+ 1 3.53244- 2 5.17530- 4 2.90000+ 1 3.20000+ 1 1.85660- 2 5.69850- 4 2.90000+ 1 3.30000+ 1 3.02437- 2 5.71870- 4 2.90000+ 1 4.10000+ 1 1.87615- 3 5.76280- 4 3.00000+ 1 3.00000+ 1 1.35783- 3 5.36570- 4 3.00000+ 1 3.20000+ 1 4.28099- 3 5.88890- 4 3.00000+ 1 3.30000+ 1 1.56545- 3 5.90910- 4 3.00000+ 1 4.10000+ 1 2.51824- 4 5.95320- 4 3.20000+ 1 3.20000+ 1 1.30418- 4 6.41210- 4 3.20000+ 1 3.30000+ 1 2.38473- 4 6.43230- 4 3.20000+ 1 4.10000+ 1 3.94876- 5 6.47640- 4 3.30000+ 1 3.30000+ 1 4.58935- 5 6.45250- 4 3.30000+ 1 4.10000+ 1 2.78245- 5 6.49660- 4 4.10000+ 1 4.10000+ 1 6.97391- 7 6.54070- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.63004- 5 1.88920- 4 2.20000+ 1 2.00792- 4 2.08710- 4 2.70000+ 1 1.60456- 4 4.41400- 4 3.20000+ 1 7.89725- 6 5.51150- 4 3.30000+ 1 4.47004- 5 5.53170- 4 4.10000+ 1 1.54153- 5 5.57580- 4 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 8.24993- 3 7.54200- 5 2.10000+ 1 2.50000+ 1 1.68862- 2 7.97900- 5 2.10000+ 1 2.70000+ 1 1.66143- 2 6.31900- 5 2.10000+ 1 2.90000+ 1 1.31284- 2 1.01580- 4 2.10000+ 1 3.00000+ 1 4.18804- 2 1.20620- 4 2.10000+ 1 3.20000+ 1 8.86806- 3 1.72940- 4 2.10000+ 1 3.30000+ 1 1.54005- 2 1.74960- 4 2.10000+ 1 4.10000+ 1 1.33133- 3 1.79370- 4 2.20000+ 1 2.40000+ 1 1.06804- 1 9.52100- 5 2.20000+ 1 2.50000+ 1 1.31655- 1 9.95800- 5 2.20000+ 1 2.70000+ 1 8.22940- 2 8.29800- 5 2.20000+ 1 2.90000+ 1 8.77362- 2 1.21370- 4 2.20000+ 1 3.00000+ 1 1.09938- 1 1.40410- 4 2.20000+ 1 3.20000+ 1 6.79382- 2 1.92730- 4 2.20000+ 1 3.30000+ 1 7.70322- 2 1.94750- 4 2.20000+ 1 4.10000+ 1 7.25773- 3 1.99160- 4 2.40000+ 1 2.40000+ 1 7.69791- 4 3.40130- 4 2.40000+ 1 2.50000+ 1 1.61455- 2 3.44500- 4 2.40000+ 1 2.70000+ 1 6.53706- 3 3.27900- 4 2.40000+ 1 2.90000+ 1 3.32179- 3 3.66290- 4 2.40000+ 1 3.00000+ 1 4.32337- 2 3.85330- 4 2.40000+ 1 3.20000+ 1 1.00464- 3 4.37650- 4 2.40000+ 1 3.30000+ 1 4.83900- 3 4.39670- 4 2.40000+ 1 4.10000+ 1 4.02866- 4 4.44080- 4 2.50000+ 1 2.50000+ 1 7.28548- 3 3.48870- 4 2.50000+ 1 2.70000+ 1 1.42491- 2 3.32270- 4 2.50000+ 1 2.90000+ 1 1.20446- 2 3.70660- 4 2.50000+ 1 3.00000+ 1 5.26179- 2 3.89700- 4 2.50000+ 1 3.20000+ 1 9.39882- 4 4.42020- 4 2.50000+ 1 3.30000+ 1 6.23830- 3 4.44040- 4 2.50000+ 1 4.10000+ 1 1.01001- 3 4.48450- 4 2.70000+ 1 2.70000+ 1 9.45093- 7 3.15670- 4 2.70000+ 1 2.90000+ 1 2.58482- 4 3.54060- 4 2.70000+ 1 3.00000+ 1 5.37821- 3 3.73100- 4 2.70000+ 1 3.20000+ 1 3.82284- 4 4.25420- 4 2.70000+ 1 3.30000+ 1 6.91814- 4 4.27440- 4 2.70000+ 1 4.10000+ 1 1.41766- 6 4.31850- 4 2.90000+ 1 2.90000+ 1 1.17921- 5 3.92450- 4 2.90000+ 1 3.00000+ 1 5.03613- 3 4.11490- 4 2.90000+ 1 3.20000+ 1 1.81520- 4 4.63810- 4 2.90000+ 1 3.30000+ 1 5.92128- 4 4.65830- 4 2.90000+ 1 4.10000+ 1 1.76869- 5 4.70240- 4 3.00000+ 1 3.00000+ 1 7.89712- 3 4.30530- 4 3.00000+ 1 3.20000+ 1 6.19758- 3 4.82850- 4 3.00000+ 1 3.30000+ 1 8.01558- 3 4.84870- 4 3.00000+ 1 4.10000+ 1 5.25563- 4 4.89280- 4 3.20000+ 1 3.20000+ 1 5.23933- 5 5.35170- 4 3.20000+ 1 3.30000+ 1 3.19751- 4 5.37190- 4 3.20000+ 1 4.10000+ 1 1.52933- 5 5.41600- 4 3.30000+ 1 3.30000+ 1 2.89273- 4 5.39210- 4 3.30000+ 1 4.10000+ 1 3.55145- 5 5.43620- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.02565- 4 2.64710- 4 2.90000+ 1 4.77014- 5 2.90870- 4 3.00000+ 1 6.40518- 6 3.09910- 4 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 3.37050- 2 3.81000- 6 2.20000+ 1 3.30000+ 1 5.58687- 3 5.83000- 6 2.20000+ 1 4.10000+ 1 5.77981- 4 1.02400- 5 2.40000+ 1 2.40000+ 1 1.21822- 1 1.51210- 4 2.40000+ 1 2.50000+ 1 3.88051- 1 1.55580- 4 2.40000+ 1 2.70000+ 1 6.65499- 2 1.38980- 4 2.40000+ 1 2.90000+ 1 5.53274- 2 1.77370- 4 2.40000+ 1 3.00000+ 1 7.68835- 2 1.96410- 4 2.40000+ 1 3.20000+ 1 5.91818- 2 2.48730- 4 2.40000+ 1 3.30000+ 1 5.79934- 2 2.50750- 4 2.40000+ 1 4.10000+ 1 5.80852- 3 2.55160- 4 2.50000+ 1 2.50000+ 1 4.94618- 3 1.59950- 4 2.50000+ 1 2.70000+ 1 6.01423- 3 1.43350- 4 2.50000+ 1 2.90000+ 1 1.20130- 2 1.81740- 4 2.50000+ 1 3.00000+ 1 5.02680- 3 2.00780- 4 2.50000+ 1 3.20000+ 1 6.47840- 2 2.53100- 4 2.50000+ 1 3.30000+ 1 2.48109- 3 2.55120- 4 2.50000+ 1 4.10000+ 1 4.08293- 4 2.59530- 4 2.70000+ 1 2.70000+ 1 8.06259- 4 1.26750- 4 2.70000+ 1 2.90000+ 1 1.58809- 3 1.65140- 4 2.70000+ 1 3.00000+ 1 1.50305- 3 1.84180- 4 2.70000+ 1 3.20000+ 1 5.72910- 3 2.36500- 4 2.70000+ 1 3.30000+ 1 1.70167- 3 2.38520- 4 2.70000+ 1 4.10000+ 1 8.17848- 5 2.42930- 4 2.90000+ 1 2.90000+ 1 3.09760- 4 2.03530- 4 2.90000+ 1 3.00000+ 1 1.61032- 3 2.22570- 4 2.90000+ 1 3.20000+ 1 3.20867- 3 2.74890- 4 2.90000+ 1 3.30000+ 1 5.59632- 4 2.76910- 4 2.90000+ 1 4.10000+ 1 5.86031- 5 2.81320- 4 3.00000+ 1 3.00000+ 1 6.22706- 4 2.41610- 4 3.00000+ 1 3.20000+ 1 6.14306- 3 2.93930- 4 3.00000+ 1 3.30000+ 1 5.35523- 4 2.95950- 4 3.00000+ 1 4.10000+ 1 3.79861- 5 3.00360- 4 3.20000+ 1 3.20000+ 1 2.61151- 3 3.46250- 4 3.20000+ 1 3.30000+ 1 4.98748- 3 3.48270- 4 3.20000+ 1 4.10000+ 1 3.51081- 4 3.52680- 4 3.30000+ 1 3.30000+ 1 1.03806- 4 3.50290- 4 3.30000+ 1 4.10000+ 1 3.09435- 5 3.54700- 4 4.10000+ 1 4.10000+ 1 1.60999- 6 3.59110- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 8.96290- 6 2.44920- 4 2.50000+ 1 1.91890- 4 2.49290- 4 3.00000+ 1 4.36260- 5 2.90120- 4 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 7.38144- 3 1.31420- 4 2.40000+ 1 2.50000+ 1 2.56891- 1 1.35790- 4 2.40000+ 1 2.70000+ 1 9.00679- 3 1.19190- 4 2.40000+ 1 2.90000+ 1 5.61990- 3 1.57580- 4 2.40000+ 1 3.00000+ 1 1.25675- 2 1.76620- 4 2.40000+ 1 3.20000+ 1 3.55637- 3 2.28940- 4 2.40000+ 1 3.30000+ 1 5.90490- 2 2.30960- 4 2.40000+ 1 4.10000+ 1 6.88217- 4 2.35370- 4 2.50000+ 1 2.50000+ 1 2.04569- 1 1.40160- 4 2.50000+ 1 2.70000+ 1 7.42502- 2 1.23560- 4 2.50000+ 1 2.90000+ 1 7.73330- 2 1.61950- 4 2.50000+ 1 3.00000+ 1 7.95630- 2 1.80990- 4 2.50000+ 1 3.20000+ 1 5.56782- 2 2.33310- 4 2.50000+ 1 3.30000+ 1 1.04255- 1 2.35330- 4 2.50000+ 1 4.10000+ 1 6.55167- 3 2.39740- 4 2.70000+ 1 2.70000+ 1 1.43769- 3 1.06960- 4 2.70000+ 1 2.90000+ 1 1.58229- 3 1.45350- 4 2.70000+ 1 3.00000+ 1 3.24367- 3 1.64390- 4 2.70000+ 1 3.20000+ 1 2.18325- 3 2.16710- 4 2.70000+ 1 3.30000+ 1 7.92903- 3 2.18730- 4 2.70000+ 1 4.10000+ 1 1.41070- 4 2.23140- 4 2.90000+ 1 2.90000+ 1 1.90481- 4 1.83740- 4 2.90000+ 1 3.00000+ 1 2.61618- 3 2.02780- 4 2.90000+ 1 3.20000+ 1 2.64208- 4 2.55100- 4 2.90000+ 1 3.30000+ 1 4.94067- 3 2.57120- 4 2.90000+ 1 4.10000+ 1 5.27666- 5 2.61530- 4 3.00000+ 1 3.00000+ 1 9.23602- 4 2.21820- 4 3.00000+ 1 3.20000+ 1 8.37156- 4 2.74140- 4 3.00000+ 1 3.30000+ 1 6.67813- 3 2.76160- 4 3.00000+ 1 4.10000+ 1 7.97128- 5 2.80570- 4 3.20000+ 1 3.20000+ 1 5.95027- 5 3.26460- 4 3.20000+ 1 3.30000+ 1 4.43023- 3 3.28480- 4 3.20000+ 1 4.10000+ 1 3.96685- 5 3.32890- 4 3.30000+ 1 3.30000+ 1 4.73321- 3 3.30500- 4 3.30000+ 1 4.10000+ 1 4.29993- 4 3.34910- 4 4.10000+ 1 4.10000+ 1 2.61950- 6 3.39320- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.99739- 6 9.75200- 5 3.30000+ 1 1.32449- 7 9.95400- 5 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.01316- 1 1.01800- 5 2.90000+ 1 3.30000+ 1 6.47458- 2 1.22000- 5 2.90000+ 1 4.10000+ 1 5.03739- 3 1.66100- 5 3.00000+ 1 3.20000+ 1 1.75209- 1 2.92200- 5 3.00000+ 1 3.30000+ 1 3.40737- 2 3.12400- 5 3.00000+ 1 4.10000+ 1 3.45637- 3 3.56500- 5 3.20000+ 1 3.20000+ 1 2.38537- 1 8.15400- 5 3.20000+ 1 3.30000+ 1 3.45451- 1 8.35600- 5 3.20000+ 1 4.10000+ 1 1.12783- 2 8.79700- 5 3.30000+ 1 3.30000+ 1 1.97717- 2 8.55800- 5 3.30000+ 1 4.10000+ 1 1.12214- 3 8.99900- 5 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.92522- 6 9.51700- 5 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.00217- 2 5.81000- 6 2.90000+ 1 3.30000+ 1 6.91938- 2 7.83000- 6 2.90000+ 1 4.10000+ 1 5.42401- 4 1.22400- 5 3.00000+ 1 3.20000+ 1 4.70499- 2 2.48500- 5 3.00000+ 1 3.30000+ 1 2.22372- 1 2.68700- 5 3.00000+ 1 4.10000+ 1 9.28068- 3 3.12800- 5 3.20000+ 1 3.20000+ 1 9.45910- 3 7.71700- 5 3.20000+ 1 3.30000+ 1 2.72819- 1 7.91900- 5 3.20000+ 1 4.10000+ 1 7.45318- 4 8.36000- 5 3.30000+ 1 3.30000+ 1 3.45849- 1 8.12100- 5 3.30000+ 1 4.10000+ 1 1.26646- 2 8.56200- 5 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 9.10135- 7 3.83900- 5 3.00000+ 1 6.24911- 6 5.74300- 5 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 6.36012- 2 2.24100- 5 2.90000+ 1 3.30000+ 1 1.76731- 1 2.44300- 5 2.90000+ 1 4.10000+ 1 1.01172- 2 2.88400- 5 3.00000+ 1 3.20000+ 1 3.11312- 1 4.14500- 5 3.00000+ 1 3.30000+ 1 2.93406- 1 4.34700- 5 3.00000+ 1 4.10000+ 1 1.57208- 2 4.78800- 5 3.20000+ 1 3.20000+ 1 2.18822- 3 9.37700- 5 3.20000+ 1 3.30000+ 1 9.87720- 2 9.57900- 5 3.20000+ 1 4.10000+ 1 6.44953- 3 1.00200- 4 3.30000+ 1 3.30000+ 1 1.23988- 2 9.78100- 5 3.30000+ 1 4.10000+ 1 4.23820- 3 1.02220- 4 4.10000+ 1 4.10000+ 1 5.05809- 3 1.06630- 4 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.57445- 6 7.13600- 5 4.10000+ 1 1.74582- 7 7.77900- 5 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 1.57819- 1 3.06000- 6 3.00000+ 1 3.30000+ 1 3.19737- 2 5.08000- 6 3.00000+ 1 4.10000+ 1 3.92708- 3 9.49000- 6 3.20000+ 1 3.20000+ 1 1.42154- 1 5.53800- 5 3.20000+ 1 3.30000+ 1 6.18749- 1 5.74000- 5 3.20000+ 1 4.10000+ 1 2.35475- 2 6.18100- 5 3.30000+ 1 3.30000+ 1 1.97569- 2 5.94200- 5 3.30000+ 1 4.10000+ 1 2.06713- 3 6.38300- 5 4.10000+ 1 4.10000+ 1 1.85200- 6 6.82400- 5 1 80000 0 7 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.84358- 8 5.23200- 5 3.30000+ 1 4.92398- 7 5.43400- 5 4.10000+ 1 6.68447- 8 5.87500- 5 1 80000 0 9 2.00590+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.62862- 2 3.63400- 5 3.20000+ 1 3.30000+ 1 5.70985- 1 3.83600- 5 3.20000+ 1 4.10000+ 1 1.06861- 2 4.27700- 5 3.30000+ 1 3.30000+ 1 3.56345- 1 4.03800- 5 3.30000+ 1 4.10000+ 1 3.54335- 2 4.47900- 5 4.10000+ 1 4.10000+ 1 2.64359- 4 4.92000- 5 1 81000 0 0 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 3.30000- 1 4.40000+ 1 6.70000- 1 1 81000 0 0 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.57980- 2 3.00000+ 0 1.53300- 2 5.00000+ 0 1.47460- 2 6.00000+ 0 1.26600- 2 8.00000+ 0 3.67870- 3 1.00000+ 1 3.40970- 3 1.10000+ 1 2.94460- 3 1.30000+ 1 2.49370- 3 1.40000+ 1 2.39390- 3 1.60000+ 1 8.31430- 4 1.80000+ 1 7.13970- 4 1.90000+ 1 6.00320- 4 2.10000+ 1 4.06350- 4 2.20000+ 1 3.85130- 4 2.40000+ 1 1.32950- 4 2.50000+ 1 1.28160- 4 2.70000+ 1 1.39160- 4 2.90000+ 1 9.90300- 5 3.00000+ 1 7.79600- 5 3.20000+ 1 2.24000- 5 3.30000+ 1 2.00100- 5 4.10000+ 1 1.23600- 5 4.30000+ 1 5.46000- 6 4.40000+ 1 4.30000- 6 1 81000 0 0 2.04370+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.20450- 1 3.00000+ 0 2.89720- 2 5.00000+ 0 2.89580- 2 6.00000+ 0 2.08190- 2 8.00000+ 0 9.24690- 3 1.00000+ 1 9.12960- 3 1.10000+ 1 7.10960- 3 1.30000+ 1 6.96210- 3 1.40000+ 1 6.53880- 3 1.60000+ 1 3.05560- 3 1.80000+ 1 2.92470- 3 1.90000+ 1 2.31520- 3 2.10000+ 1 2.09310- 3 2.20000+ 1 1.96930- 3 2.40000+ 1 1.59440- 3 2.50000+ 1 1.55300- 3 2.70000+ 1 7.94060- 4 2.90000+ 1 6.88750- 4 3.00000+ 1 5.33340- 4 3.20000+ 1 3.29170- 4 3.30000+ 1 3.02300- 4 4.10000+ 1 1.08020- 4 4.30000+ 1 5.37400- 5 4.40000+ 1 3.20500- 5 1 81000 0 0 2.04370+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.62680-11 3.00000+ 0 3.59280-10 5.00000+ 0 2.94640-10 6.00000+ 0 3.41130-10 8.00000+ 0 9.32960-10 1.00000+ 1 8.81210-10 1.10000+ 1 9.66170-10 1.30000+ 1 8.38740-10 1.40000+ 1 8.64610-10 1.60000+ 1 2.05980- 9 1.80000+ 1 2.06480- 9 1.90000+ 1 2.24440- 9 2.10000+ 1 2.26870- 9 2.20000+ 1 2.32580- 9 2.40000+ 1 2.40620- 9 2.50000+ 1 2.43860- 9 2.70000+ 1 4.59140- 9 2.90000+ 1 4.90420- 9 3.00000+ 1 5.39080- 9 3.20000+ 1 6.88140- 9 3.30000+ 1 7.14010- 9 4.10000+ 1 1.25890- 8 4.30000+ 1 1.75240- 8 4.40000+ 1 2.13470- 8 1 81000 0 0 2.04370+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.43750- 5 3.00000+ 0 1.26740- 6 5.00000+ 0 2.23150- 6 6.00000+ 0 1.93970- 6 8.00000+ 0 4.83910- 8 1.00000+ 1 5.40790- 8 1.10000+ 1 5.82170- 8 1.30000+ 1 7.31830- 8 1.40000+ 1 6.84280- 8 1.60000+ 1 1.79530- 9 1.80000+ 1 2.79090- 9 1.90000+ 1 1.76830- 9 2.10000+ 1 1.75850- 9 2.20000+ 1 1.47290- 9 2.40000+ 1 1.75990-11 2.50000+ 1 1.59160-11 2.70000+ 1 9.87930-11 2.90000+ 1 1.98690-10 3.00000+ 1 1.13190-10 1 81000 0 0 2.04370+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.07290- 6 3.00000+ 0 1.26360- 5 5.00000+ 0 3.49690- 6 6.00000+ 0 3.76670- 6 8.00000+ 0 1.89950- 5 1.00000+ 1 1.30790- 5 1.10000+ 1 1.02690- 5 1.30000+ 1 2.33660- 6 1.40000+ 1 2.31130- 6 1.60000+ 1 1.51500- 5 1.80000+ 1 1.37430- 5 1.90000+ 1 9.22560- 6 2.10000+ 1 8.09530- 6 2.20000+ 1 7.23690- 6 2.40000+ 1 2.90090- 7 2.50000+ 1 2.66620- 7 2.70000+ 1 2.34100- 5 2.90000+ 1 9.16920- 6 3.00000+ 1 1.15500- 5 1 81000 0 0 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.49660- 4 3.00000+ 0 3.55899- 4 5.00000+ 0 2.56835- 4 6.00000+ 0 2.50968- 4 8.00000+ 0 2.52064- 4 1.00000+ 1 2.18374- 4 1.10000+ 1 1.93782- 4 1.30000+ 1 1.48674- 4 1.40000+ 1 1.44219- 4 1.60000+ 1 1.38336- 4 1.80000+ 1 1.27103- 4 1.90000+ 1 1.22027- 4 2.10000+ 1 9.31407- 5 2.20000+ 1 8.94003- 5 2.40000+ 1 5.11930- 5 2.50000+ 1 4.86321- 5 2.70000+ 1 5.95556- 5 2.90000+ 1 4.47052- 5 3.00000+ 1 4.10588- 5 3.20000+ 1 2.24000- 5 3.30000+ 1 2.00100- 5 4.10000+ 1 1.23600- 5 4.30000+ 1 5.46000- 6 4.40000+ 1 4.30000- 6 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.31091+ 0 3.00000+ 0 4.22714- 1 5.00000+ 0 4.77089- 1 6.00000+ 0 3.87368- 1 8.00000+ 0 3.40158- 2 1.00000+ 1 3.39082- 2 1.10000+ 1 3.17967- 2 1.30000+ 1 3.61932- 2 1.40000+ 1 3.39761- 2 1.60000+ 1 1.15238- 3 1.80000+ 1 1.40775- 3 1.90000+ 1 6.94376- 4 2.10000+ 1 3.01515- 4 2.20000+ 1 2.75768- 4 2.40000+ 1 4.34023- 6 2.50000+ 1 3.69357- 6 2.70000+ 1 9.61793- 6 2.90000+ 1 3.94827- 6 3.00000+ 1 8.37010- 7 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.53257- 2 3.00000+ 0 4.16223- 3 5.00000+ 0 5.46988- 3 6.00000+ 0 3.70394- 3 8.00000+ 0 7.87341- 5 1.00000+ 1 7.86782- 5 1.10000+ 1 7.22012- 5 1.30000+ 1 8.30058- 5 1.40000+ 1 7.53774- 5 1.60000+ 1 4.59251- 7 1.80000+ 1 5.00557- 7 1.90000+ 1 2.31491- 7 2.10000+ 1 8.33080- 8 2.20000+ 1 7.21648- 8 2.40000+ 1 4.46114-10 2.50000+ 1 3.76238-10 2.70000+ 1 5.82668-10 2.90000+ 1 3.03406-10 3.00000+ 1 4.91138-11 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10369+ 1 3.00000+ 0 1.61767+ 1 5.00000+ 0 1.13594+ 1 6.00000+ 0 1.11122+ 1 8.00000+ 0 1.11599+ 1 1.00000+ 1 9.50738+ 0 1.10000+ 1 8.35660+ 0 1.30000+ 1 6.13324+ 0 1.40000+ 1 5.97498+ 0 1.60000+ 1 5.68662+ 0 1.80000+ 1 5.10689+ 0 1.90000+ 1 4.90303+ 0 2.10000+ 1 3.45197+ 0 2.20000+ 1 3.33618+ 0 2.40000+ 1 1.41428+ 0 2.50000+ 1 1.38051+ 0 2.70000+ 1 1.88373+ 0 2.90000+ 1 1.12269+ 0 3.00000+ 1 9.99999- 1 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.02226- 2 3.00000+ 0 1.08119- 2 5.00000+ 0 9.01928- 3 6.00000+ 0 8.70509- 3 8.00000+ 0 3.34790- 3 1.00000+ 1 3.11265- 3 1.10000+ 1 2.67862- 3 1.30000+ 1 2.26202- 3 1.40000+ 1 2.17430- 3 1.60000+ 1 6.92634- 4 1.80000+ 1 5.86367- 4 1.90000+ 1 4.78061- 4 2.10000+ 1 3.13126- 4 2.20000+ 1 2.95658- 4 2.40000+ 1 8.17565- 5 2.50000+ 1 7.95275- 5 2.70000+ 1 7.96038- 5 2.90000+ 1 5.43245- 5 3.00000+ 1 3.69012- 5 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.81469- 1 7.10520- 2 6.00000+ 0 4.74849- 1 7.31380- 2 1.00000+ 1 5.26839- 2 8.23883- 2 1.10000+ 1 1.01990- 1 8.28534- 2 1.30000+ 1 1.39750- 3 8.33043- 2 1.40000+ 1 1.70040- 3 8.34041- 2 1.80000+ 1 1.24890- 2 8.50840- 2 1.90000+ 1 2.45019- 2 8.51977- 2 2.10000+ 1 3.67359- 4 8.53916- 2 2.20000+ 1 4.46179- 4 8.54129- 2 2.90000+ 1 2.89499- 3 8.56990- 2 3.00000+ 1 5.64679- 3 8.57200- 2 3.20000+ 1 4.35579- 5 8.57756- 2 3.30000+ 1 5.14009- 5 8.57780- 2 4.30000+ 1 2.45709- 5 8.57925- 2 4.40000+ 1 3.49709- 5 8.57937- 2 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.21482- 3 5.51380- 2 3.00000+ 0 5.00000+ 0 6.65537- 3 5.57220- 2 3.00000+ 0 6.00000+ 0 3.72017- 3 5.78080- 2 3.00000+ 0 8.00000+ 0 1.69819- 3 6.67893- 2 3.00000+ 0 1.00000+ 1 1.43611- 3 6.70583- 2 3.00000+ 0 1.10000+ 1 8.69796- 4 6.75234- 2 3.00000+ 0 1.30000+ 1 7.31477- 5 6.79743- 2 3.00000+ 0 1.40000+ 1 5.49401- 5 6.80741- 2 3.00000+ 0 1.60000+ 1 4.25421- 4 6.96366- 2 3.00000+ 0 1.80000+ 1 3.51367- 4 6.97540- 2 3.00000+ 0 1.90000+ 1 2.12201- 4 6.98677- 2 3.00000+ 0 2.10000+ 1 1.90897- 5 7.00616- 2 3.00000+ 0 2.20000+ 1 1.41228- 5 7.00829- 2 3.00000+ 0 2.40000+ 1 5.17323- 8 7.03350- 2 3.00000+ 0 2.50000+ 1 5.17323- 8 7.03398- 2 3.00000+ 0 2.70000+ 1 8.89780- 5 7.03288- 2 3.00000+ 0 2.90000+ 1 6.54901- 5 7.03690- 2 3.00000+ 0 3.00000+ 1 3.80228- 5 7.03900- 2 3.00000+ 0 3.20000+ 1 2.12083- 6 7.04456- 2 3.00000+ 0 3.30000+ 1 1.50018- 6 7.04480- 2 5.00000+ 0 5.00000+ 0 3.66376- 4 5.63060- 2 5.00000+ 0 6.00000+ 0 6.59202- 3 5.83920- 2 5.00000+ 0 8.00000+ 0 1.16287- 3 6.73733- 2 5.00000+ 0 1.00000+ 1 1.38643- 4 6.76423- 2 5.00000+ 0 1.10000+ 1 1.28845- 3 6.81074- 2 5.00000+ 0 1.30000+ 1 7.54775- 5 6.85583- 2 5.00000+ 0 1.40000+ 1 1.98541- 4 6.86581- 2 5.00000+ 0 1.60000+ 1 2.82029- 4 7.02206- 2 5.00000+ 0 1.80000+ 1 3.29530- 5 7.03380- 2 5.00000+ 0 1.90000+ 1 3.01658- 4 7.04517- 2 5.00000+ 0 2.10000+ 1 1.89344- 5 7.06456- 2 5.00000+ 0 2.20000+ 1 4.99749- 5 7.06669- 2 5.00000+ 0 2.40000+ 1 5.17329- 7 7.09190- 2 5.00000+ 0 2.50000+ 1 8.27724- 7 7.09238- 2 5.00000+ 0 2.70000+ 1 5.85630- 5 7.09128- 2 5.00000+ 0 2.90000+ 1 6.10455- 6 7.09530- 2 5.00000+ 0 3.00000+ 1 5.35928- 5 7.09740- 2 5.00000+ 0 3.20000+ 1 2.12086- 6 7.10296- 2 5.00000+ 0 3.30000+ 1 5.32816- 6 7.10320- 2 6.00000+ 0 6.00000+ 0 2.84532- 3 6.04780- 2 6.00000+ 0 8.00000+ 0 5.90713- 4 6.94593- 2 6.00000+ 0 1.00000+ 1 1.17232- 3 6.97283- 2 6.00000+ 0 1.10000+ 1 1.14882- 3 7.01934- 2 6.00000+ 0 1.30000+ 1 2.21103- 4 7.06443- 2 6.00000+ 0 1.40000+ 1 1.84430- 4 7.07441- 2 6.00000+ 0 1.60000+ 1 1.40040- 4 7.23066- 2 6.00000+ 0 1.80000+ 1 2.74948- 4 7.24240- 2 6.00000+ 0 1.90000+ 1 2.71331- 4 7.25377- 2 6.00000+ 0 2.10000+ 1 5.60769- 5 7.27316- 2 6.00000+ 0 2.20000+ 1 4.66097- 5 7.27529- 2 6.00000+ 0 2.40000+ 1 8.79431- 7 7.30050- 2 6.00000+ 0 2.50000+ 1 9.31174- 7 7.30098- 2 6.00000+ 0 2.70000+ 1 2.89190- 5 7.29988- 2 6.00000+ 0 2.90000+ 1 5.07481- 5 7.30390- 2 6.00000+ 0 3.00000+ 1 4.83161- 5 7.30600- 2 6.00000+ 0 3.20000+ 1 6.20786- 6 7.31156- 2 6.00000+ 0 3.30000+ 1 4.96609- 6 7.31180- 2 8.00000+ 0 8.00000+ 0 1.68288- 4 7.84406- 2 8.00000+ 0 1.00000+ 1 2.51529- 4 7.87096- 2 8.00000+ 0 1.10000+ 1 1.39310- 4 7.91747- 2 8.00000+ 0 1.30000+ 1 1.13808- 5 7.96256- 2 8.00000+ 0 1.40000+ 1 8.01874- 6 7.97254- 2 8.00000+ 0 1.60000+ 1 8.40138- 5 8.12879- 2 8.00000+ 0 1.80000+ 1 6.16137- 5 8.14053- 2 8.00000+ 0 1.90000+ 1 3.40405- 5 8.15190- 2 8.00000+ 0 2.10000+ 1 3.00041- 6 8.17129- 2 8.00000+ 0 2.20000+ 1 2.06924- 6 8.17342- 2 8.00000+ 0 2.70000+ 1 1.75371- 5 8.19801- 2 8.00000+ 0 2.90000+ 1 1.14849- 5 8.20203- 2 8.00000+ 0 3.00000+ 1 6.10459- 6 8.20413- 2 8.00000+ 0 3.20000+ 1 3.10387- 7 8.20969- 2 8.00000+ 0 3.30000+ 1 2.06924- 7 8.20993- 2 1.00000+ 1 1.00000+ 1 1.27258- 5 7.89786- 2 1.00000+ 1 1.10000+ 1 2.35637- 4 7.94437- 2 1.00000+ 1 1.30000+ 1 1.16396- 5 7.98946- 2 1.00000+ 1 1.40000+ 1 2.66428- 5 7.99944- 2 1.00000+ 1 1.60000+ 1 6.10466- 5 8.15569- 2 1.00000+ 1 1.80000+ 1 6.00098- 6 8.16743- 2 1.00000+ 1 1.90000+ 1 5.55095- 5 8.17880- 2 1.00000+ 1 2.10000+ 1 2.94870- 6 8.19819- 2 1.00000+ 1 2.20000+ 1 6.77696- 6 8.20032- 2 1.00000+ 1 2.40000+ 1 5.17338- 8 8.22553- 2 1.00000+ 1 2.50000+ 1 1.03464- 7 8.22601- 2 1.00000+ 1 2.70000+ 1 1.26743- 5 8.22491- 2 1.00000+ 1 2.90000+ 1 1.08636- 6 8.22893- 2 1.00000+ 1 3.00000+ 1 9.88095- 6 8.23103- 2 1.00000+ 1 3.20000+ 1 3.10390- 7 8.23659- 2 1.00000+ 1 3.30000+ 1 7.24243- 7 8.23683- 2 1.10000+ 1 1.10000+ 1 1.17127- 4 7.99088- 2 1.10000+ 1 1.30000+ 1 3.57993- 5 8.03597- 2 1.10000+ 1 1.40000+ 1 2.88680- 5 8.04595- 2 1.10000+ 1 1.60000+ 1 3.31096- 5 8.20220- 2 1.10000+ 1 1.80000+ 1 5.55616- 5 8.21394- 2 1.10000+ 1 1.90000+ 1 5.54070- 5 8.22531- 2 1.10000+ 1 2.10000+ 1 9.15670- 6 8.24470- 2 1.10000+ 1 2.20000+ 1 7.34618- 6 8.24683- 2 1.10000+ 1 2.40000+ 1 1.03465- 7 8.27204- 2 1.10000+ 1 2.50000+ 1 1.55197- 7 8.27252- 2 1.10000+ 1 2.70000+ 1 6.82864- 6 8.27142- 2 1.10000+ 1 2.90000+ 1 1.02948- 5 8.27544- 2 1.10000+ 1 3.00000+ 1 9.88105- 6 8.27754- 2 1.10000+ 1 3.20000+ 1 1.03465- 6 8.28310- 2 1.10000+ 1 3.30000+ 1 7.75993- 7 8.28334- 2 1.30000+ 1 1.30000+ 1 1.03460- 7 8.08106- 2 1.30000+ 1 1.40000+ 1 4.13871- 6 8.09104- 2 1.30000+ 1 1.60000+ 1 2.69006- 6 8.24729- 2 1.30000+ 1 1.80000+ 1 2.69006- 6 8.25903- 2 1.30000+ 1 1.90000+ 1 8.01855- 6 8.27040- 2 1.30000+ 1 2.10000+ 1 5.17320- 8 8.28979- 2 1.30000+ 1 2.20000+ 1 1.03460- 6 8.29192- 2 1.30000+ 1 2.70000+ 1 5.69028- 7 8.31651- 2 1.30000+ 1 2.90000+ 1 4.65579- 7 8.32053- 2 1.30000+ 1 3.00000+ 1 1.39671- 6 8.32263- 2 1.30000+ 1 3.30000+ 1 1.03460- 7 8.32843- 2 1.40000+ 1 1.40000+ 1 9.82904- 7 8.10102- 2 1.40000+ 1 1.60000+ 1 1.86228- 6 8.25727- 2 1.40000+ 1 1.80000+ 1 5.84550- 6 8.26901- 2 1.40000+ 1 1.90000+ 1 6.41464- 6 8.28038- 2 1.40000+ 1 2.10000+ 1 1.03461- 6 8.29977- 2 1.40000+ 1 2.20000+ 1 4.65581- 7 8.30190- 2 1.40000+ 1 2.70000+ 1 4.13873- 7 8.32649- 2 1.40000+ 1 2.90000+ 1 1.08632- 6 8.33051- 2 1.40000+ 1 3.00000+ 1 1.13805- 6 8.33261- 2 1.40000+ 1 3.20000+ 1 1.03461- 7 8.33817- 2 1.40000+ 1 3.30000+ 1 5.17323- 8 8.33841- 2 1.60000+ 1 1.60000+ 1 1.05018- 5 8.41351- 2 1.60000+ 1 1.80000+ 1 1.49509- 5 8.42526- 2 1.60000+ 1 1.90000+ 1 8.07055- 6 8.43662- 2 1.60000+ 1 2.10000+ 1 7.24252- 7 8.45602- 2 1.60000+ 1 2.20000+ 1 4.65601- 7 8.45814- 2 1.60000+ 1 2.70000+ 1 4.39746- 6 8.48274- 2 1.60000+ 1 2.90000+ 1 2.79365- 6 8.48675- 2 1.60000+ 1 3.00000+ 1 1.44851- 6 8.48886- 2 1.60000+ 1 3.20000+ 1 1.03465- 7 8.49442- 2 1.60000+ 1 3.30000+ 1 5.17344- 8 8.49466- 2 1.80000+ 1 1.80000+ 1 7.24238- 7 8.43701- 2 1.80000+ 1 1.90000+ 1 1.30885- 5 8.44837- 2 1.80000+ 1 2.10000+ 1 6.72527- 7 8.46777- 2 1.80000+ 1 2.20000+ 1 1.50021- 6 8.46989- 2 1.80000+ 1 2.70000+ 1 3.10387- 6 8.49449- 2 1.80000+ 1 2.90000+ 1 2.58656- 7 8.49850- 2 1.80000+ 1 3.00000+ 1 2.32801- 6 8.50061- 2 1.80000+ 1 3.20000+ 1 5.17334- 8 8.50616- 2 1.80000+ 1 3.30000+ 1 1.55194- 7 8.50640- 2 1.90000+ 1 1.90000+ 1 6.45374- 6 8.45974- 2 1.90000+ 1 2.10000+ 1 2.03260- 6 8.47913- 2 1.90000+ 1 2.20000+ 1 1.62609- 6 8.48125- 2 1.90000+ 1 2.40000+ 1 5.08173- 8 8.50647- 2 1.90000+ 1 2.50000+ 1 5.08173- 8 8.50695- 2 1.90000+ 1 2.70000+ 1 1.62609- 6 8.50585- 2 1.90000+ 1 2.90000+ 1 2.38831- 6 8.50986- 2 1.90000+ 1 3.00000+ 1 2.28678- 6 8.51197- 2 1.90000+ 1 3.20000+ 1 2.03260- 7 8.51753- 2 1.90000+ 1 3.30000+ 1 1.52446- 7 8.51777- 2 2.10000+ 1 2.20000+ 1 2.58657- 7 8.50065- 2 2.10000+ 1 2.70000+ 1 1.55195- 7 8.52525- 2 2.10000+ 1 2.90000+ 1 1.03463- 7 8.52926- 2 2.10000+ 1 3.00000+ 1 3.62120- 7 8.53137- 2 2.10000+ 1 3.30000+ 1 5.17335- 8 8.53716- 2 2.20000+ 1 2.20000+ 1 5.17337- 8 8.50277- 2 2.20000+ 1 2.70000+ 1 1.03463- 7 8.52737- 2 2.20000+ 1 2.90000+ 1 2.58658- 7 8.53138- 2 2.20000+ 1 3.00000+ 1 3.10389- 7 8.53349- 2 2.20000+ 1 3.20000+ 1 5.17337- 8 8.53905- 2 2.70000+ 1 2.70000+ 1 4.71260- 7 8.55197- 2 2.70000+ 1 2.90000+ 1 5.75971- 7 8.55598- 2 2.70000+ 1 3.00000+ 1 3.14166- 7 8.55809- 2 2.90000+ 1 3.00000+ 1 4.16321- 7 8.56210- 2 2.90000+ 1 3.30000+ 1 5.20382- 8 8.56790- 2 3.00000+ 1 3.00000+ 1 1.97463- 7 8.56421- 2 3.00000+ 1 3.20000+ 1 4.93680- 8 8.56976- 2 3.00000+ 1 3.30000+ 1 4.93680- 8 8.57000- 2 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.13340- 5 5.84000- 4 6.00000+ 0 2.64349- 3 2.67000- 3 1.00000+ 1 3.06439- 2 1.19203- 2 1.10000+ 1 3.40989- 2 1.23854- 2 1.30000+ 1 1.07750- 3 1.28363- 2 1.40000+ 1 1.61289- 3 1.29361- 2 1.80000+ 1 7.83957- 3 1.46160- 2 1.90000+ 1 9.47767- 3 1.47297- 2 2.10000+ 1 1.63889- 4 1.49236- 2 2.20000+ 1 2.58849- 4 1.49449- 2 2.90000+ 1 1.49219- 3 1.52310- 2 3.00000+ 1 1.76339- 3 1.52520- 2 3.20000+ 1 1.79209- 5 1.53076- 2 3.30000+ 1 2.78549- 5 1.53100- 2 4.30000+ 1 1.56649- 5 1.53245- 2 4.40000+ 1 1.39220- 5 1.53257- 2 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.90000+ 1 1.51778- 2 0.00000+ 0 5.00000+ 0 2.10000+ 1 4.59782- 3 1.77650- 4 5.00000+ 0 2.20000+ 1 6.16508- 3 1.98870- 4 5.00000+ 0 2.40000+ 1 1.39319- 2 4.51050- 4 5.00000+ 0 2.50000+ 1 1.85015- 2 4.55840- 4 5.00000+ 0 2.70000+ 1 4.19595- 3 4.44840- 4 5.00000+ 0 2.90000+ 1 3.00095- 3 4.84970- 4 5.00000+ 0 3.00000+ 1 2.75477- 3 5.06040- 4 5.00000+ 0 3.20000+ 1 5.12897- 4 5.61600- 4 5.00000+ 0 3.30000+ 1 6.73174- 4 5.63990- 4 6.00000+ 0 1.30000+ 1 2.32469- 1 1.76300- 4 6.00000+ 0 1.40000+ 1 2.95853- 1 2.76100- 4 6.00000+ 0 1.60000+ 1 1.86103- 2 1.83857- 3 6.00000+ 0 1.80000+ 1 7.41813- 3 1.95603- 3 6.00000+ 0 1.90000+ 1 1.12769- 2 2.06968- 3 6.00000+ 0 2.10000+ 1 3.01282- 2 2.26365- 3 6.00000+ 0 2.20000+ 1 3.59127- 2 2.28487- 3 6.00000+ 0 2.40000+ 1 2.11481- 2 2.53705- 3 6.00000+ 0 2.50000+ 1 2.63596- 2 2.54184- 3 6.00000+ 0 2.70000+ 1 3.70776- 3 2.53084- 3 6.00000+ 0 2.90000+ 1 1.35278- 3 2.57097- 3 6.00000+ 0 3.00000+ 1 2.00392- 3 2.59204- 3 6.00000+ 0 3.20000+ 1 3.07862- 3 2.64760- 3 6.00000+ 0 3.30000+ 1 3.48858- 3 2.64999- 3 8.00000+ 0 8.00000+ 0 5.07524- 3 7.97260- 3 8.00000+ 0 1.00000+ 1 1.04330- 2 8.24160- 3 8.00000+ 0 1.10000+ 1 1.65165- 2 8.70670- 3 8.00000+ 0 1.30000+ 1 1.22678- 2 9.15760- 3 8.00000+ 0 1.40000+ 1 1.57836- 2 9.25740- 3 8.00000+ 0 1.60000+ 1 2.16261- 3 1.08199- 2 8.00000+ 0 1.80000+ 1 2.51857- 3 1.09373- 2 8.00000+ 0 1.90000+ 1 3.92984- 3 1.10510- 2 8.00000+ 0 2.10000+ 1 2.65366- 3 1.12449- 2 8.00000+ 0 2.20000+ 1 3.38549- 3 1.12662- 2 8.00000+ 0 2.40000+ 1 2.16241- 4 1.15183- 2 8.00000+ 0 2.50000+ 1 2.38148- 4 1.15231- 2 8.00000+ 0 2.70000+ 1 4.40300- 4 1.15121- 2 8.00000+ 0 2.90000+ 1 4.67308- 4 1.15523- 2 8.00000+ 0 3.00000+ 1 7.00177- 4 1.15733- 2 8.00000+ 0 3.20000+ 1 2.86484- 4 1.16289- 2 8.00000+ 0 3.30000+ 1 3.50678- 4 1.16313- 2 1.00000+ 1 1.00000+ 1 2.09390- 5 8.51060- 3 1.00000+ 1 1.10000+ 1 2.09780- 4 8.97570- 3 1.00000+ 1 1.30000+ 1 6.40088- 4 9.42660- 3 1.00000+ 1 1.40000+ 1 5.26599- 3 9.52640- 3 1.00000+ 1 1.60000+ 1 1.75183- 3 1.10889- 2 1.00000+ 1 1.80000+ 1 2.93531- 6 1.12063- 2 1.00000+ 1 1.90000+ 1 4.24639- 5 1.13200- 2 1.00000+ 1 2.10000+ 1 1.22308- 4 1.15139- 2 1.00000+ 1 2.20000+ 1 7.23040- 4 1.15352- 2 1.00000+ 1 2.40000+ 1 7.90573- 5 1.17873- 2 1.00000+ 1 2.50000+ 1 2.75533- 4 1.17921- 2 1.00000+ 1 2.70000+ 1 3.36197- 4 1.17811- 2 1.00000+ 1 2.90000+ 1 3.91372- 7 1.18213- 2 1.00000+ 1 3.00000+ 1 7.24050- 6 1.18423- 2 1.00000+ 1 3.20000+ 1 1.31107- 5 1.18979- 2 1.00000+ 1 3.30000+ 1 6.98603- 5 1.19003- 2 1.10000+ 1 1.10000+ 1 5.36581- 4 9.44080- 3 1.10000+ 1 1.30000+ 1 1.81304- 3 9.89170- 3 1.10000+ 1 1.40000+ 1 1.10839- 3 9.99150- 3 1.10000+ 1 1.60000+ 1 2.73315- 3 1.15540- 2 1.10000+ 1 1.80000+ 1 4.97045- 5 1.16714- 2 1.10000+ 1 1.90000+ 1 1.92553- 4 1.17851- 2 1.10000+ 1 2.10000+ 1 1.63206- 4 1.19790- 2 1.10000+ 1 2.20000+ 1 8.33654- 5 1.20003- 2 1.10000+ 1 2.40000+ 1 1.36008- 4 1.22524- 2 1.10000+ 1 2.50000+ 1 1.13499- 4 1.22572- 2 1.10000+ 1 2.70000+ 1 5.22882- 4 1.22462- 2 1.10000+ 1 2.90000+ 1 9.19756- 6 1.22864- 2 1.10000+ 1 3.00000+ 1 3.24850- 5 1.23074- 2 1.10000+ 1 3.20000+ 1 1.50687- 5 1.23630- 2 1.10000+ 1 3.30000+ 1 7.24054- 6 1.23654- 2 1.30000+ 1 1.30000+ 1 7.21312- 4 1.03426- 2 1.30000+ 1 1.40000+ 1 2.14727- 2 1.04424- 2 1.30000+ 1 1.60000+ 1 1.85390- 3 1.20049- 2 1.30000+ 1 1.80000+ 1 1.87070- 4 1.21223- 2 1.30000+ 1 1.90000+ 1 4.81188- 4 1.22360- 2 1.30000+ 1 2.10000+ 1 3.04687- 4 1.24299- 2 1.30000+ 1 2.20000+ 1 3.21555- 3 1.24512- 2 1.30000+ 1 2.40000+ 1 2.32275- 4 1.27033- 2 1.30000+ 1 2.50000+ 1 6.41260- 4 1.27081- 2 1.30000+ 1 2.70000+ 1 3.48322- 4 1.26971- 2 1.30000+ 1 2.90000+ 1 3.60061- 5 1.27373- 2 1.30000+ 1 3.00000+ 1 8.74705- 5 1.27583- 2 1.30000+ 1 3.20000+ 1 3.28754- 5 1.28139- 2 1.30000+ 1 3.30000+ 1 3.13286- 4 1.28163- 2 1.40000+ 1 1.40000+ 1 5.94054- 3 1.05422- 2 1.40000+ 1 1.60000+ 1 2.41967- 3 1.21047- 2 1.40000+ 1 1.80000+ 1 1.12759- 3 1.22221- 2 1.40000+ 1 1.90000+ 1 3.01562- 4 1.23358- 2 1.40000+ 1 2.10000+ 1 3.11771- 3 1.25297- 2 1.40000+ 1 2.20000+ 1 1.87863- 3 1.25510- 2 1.40000+ 1 2.40000+ 1 7.07214- 4 1.28031- 2 1.40000+ 1 2.50000+ 1 5.34620- 4 1.28079- 2 1.40000+ 1 2.70000+ 1 4.57128- 4 1.27969- 2 1.40000+ 1 2.90000+ 1 2.04691- 4 1.28371- 2 1.40000+ 1 3.00000+ 1 5.51838- 5 1.28581- 2 1.40000+ 1 3.20000+ 1 3.14280- 4 1.29137- 2 1.40000+ 1 3.30000+ 1 1.85123- 4 1.29161- 2 1.60000+ 1 1.60000+ 1 2.17213- 4 1.36671- 2 1.60000+ 1 1.80000+ 1 4.23868- 4 1.37846- 2 1.60000+ 1 1.90000+ 1 6.52439- 4 1.38982- 2 1.60000+ 1 2.10000+ 1 4.02339- 4 1.40922- 2 1.60000+ 1 2.20000+ 1 5.17410- 4 1.41134- 2 1.60000+ 1 2.40000+ 1 2.72009- 5 1.43656- 2 1.60000+ 1 2.50000+ 1 2.87668- 5 1.43704- 2 1.60000+ 1 2.70000+ 1 8.72782- 5 1.43594- 2 1.60000+ 1 2.90000+ 1 7.86709- 5 1.43995- 2 1.60000+ 1 3.00000+ 1 1.16241- 4 1.44206- 2 1.60000+ 1 3.20000+ 1 4.34437- 5 1.44762- 2 1.60000+ 1 3.30000+ 1 5.36199- 5 1.44786- 2 1.80000+ 1 1.90000+ 1 1.01761- 5 1.40157- 2 1.80000+ 1 2.10000+ 1 3.15062- 5 1.42097- 2 1.80000+ 1 2.20000+ 1 1.61056- 4 1.42309- 2 1.80000+ 1 2.40000+ 1 1.09590- 5 1.44831- 2 1.80000+ 1 2.50000+ 1 4.32482- 5 1.44879- 2 1.80000+ 1 2.70000+ 1 8.14097- 5 1.44769- 2 1.80000+ 1 3.00000+ 1 1.76125- 6 1.45381- 2 1.80000+ 1 3.20000+ 1 3.32670- 6 1.45936- 2 1.80000+ 1 3.30000+ 1 1.56556- 5 1.45960- 2 1.90000+ 1 1.90000+ 1 1.66332- 5 1.41294- 2 1.90000+ 1 2.10000+ 1 4.89216- 5 1.43233- 2 1.90000+ 1 2.20000+ 1 2.81778- 5 1.43445- 2 1.90000+ 1 2.40000+ 1 2.75909- 5 1.45967- 2 1.90000+ 1 2.50000+ 1 2.25035- 5 1.46015- 2 1.90000+ 1 2.70000+ 1 1.24846- 4 1.45905- 2 1.90000+ 1 2.90000+ 1 1.95688- 6 1.46306- 2 1.90000+ 1 3.00000+ 1 5.47919- 6 1.46517- 2 1.90000+ 1 3.20000+ 1 4.69648- 6 1.47073- 2 1.90000+ 1 3.30000+ 1 2.54392- 6 1.47097- 2 2.10000+ 1 2.10000+ 1 2.97444- 5 1.45173- 2 2.10000+ 1 2.20000+ 1 5.10946- 4 1.45385- 2 2.10000+ 1 2.40000+ 1 3.38550- 5 1.47907- 2 2.10000+ 1 2.50000+ 1 7.10358- 5 1.47955- 2 2.10000+ 1 2.70000+ 1 7.55334- 5 1.47845- 2 2.10000+ 1 2.90000+ 1 5.87069- 6 1.48246- 2 2.10000+ 1 3.00000+ 1 9.00171- 6 1.48457- 2 2.10000+ 1 3.20000+ 1 6.26205- 6 1.49012- 2 2.10000+ 1 3.30000+ 1 5.04886- 5 1.49036- 2 2.20000+ 1 2.20000+ 1 1.59296- 4 1.45597- 2 2.20000+ 1 2.40000+ 1 8.25813- 5 1.48119- 2 2.20000+ 1 2.50000+ 1 6.94695- 5 1.48167- 2 2.20000+ 1 2.70000+ 1 9.74549- 5 1.48057- 2 2.20000+ 1 2.90000+ 1 2.93532- 5 1.48458- 2 2.20000+ 1 3.00000+ 1 5.28361- 6 1.48669- 2 2.20000+ 1 3.20000+ 1 5.22491- 5 1.49225- 2 2.20000+ 1 3.30000+ 1 3.17010- 5 1.49249- 2 2.40000+ 1 2.40000+ 1 9.57380- 7 1.50641- 2 2.40000+ 1 2.50000+ 1 1.98668- 5 1.50689- 2 2.40000+ 1 2.70000+ 1 5.98387- 6 1.50579- 2 2.40000+ 1 2.90000+ 1 2.15423- 6 1.50980- 2 2.40000+ 1 3.00000+ 1 5.74453- 6 1.51191- 2 2.40000+ 1 3.20000+ 1 4.30833- 6 1.51746- 2 2.40000+ 1 3.30000+ 1 9.33470- 6 1.51770- 2 2.50000+ 1 2.50000+ 1 4.77302- 6 1.50737- 2 2.50000+ 1 2.70000+ 1 6.89445- 6 1.50627- 2 2.50000+ 1 2.90000+ 1 1.00764- 5 1.51028- 2 2.50000+ 1 3.00000+ 1 5.30334- 6 1.51239- 2 2.50000+ 1 3.20000+ 1 9.28090- 6 1.51794- 2 2.50000+ 1 3.30000+ 1 9.01574- 6 1.51818- 2 2.70000+ 1 2.70000+ 1 1.65698- 5 1.50517- 2 2.70000+ 1 2.90000+ 1 2.83534- 5 1.50918- 2 2.70000+ 1 3.00000+ 1 4.19749- 5 1.51129- 2 2.70000+ 1 3.20000+ 1 1.54641- 5 1.51684- 2 2.70000+ 1 3.30000+ 1 1.91473- 5 1.51708- 2 2.90000+ 1 3.00000+ 1 9.34939- 7 1.51530- 2 2.90000+ 1 3.20000+ 1 1.40242- 6 1.52086- 2 2.90000+ 1 3.30000+ 1 7.01211- 6 1.52110- 2 3.00000+ 1 3.00000+ 1 1.10126- 6 1.51741- 2 3.00000+ 1 3.20000+ 1 2.20247- 6 1.52296- 2 3.00000+ 1 3.30000+ 1 1.10126- 6 1.52320- 2 3.20000+ 1 3.20000+ 1 3.82229- 7 1.52852- 2 3.20000+ 1 3.30000+ 1 4.96905- 6 1.52876- 2 3.30000+ 1 3.30000+ 1 1.53629- 6 1.52900- 2 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 9.32514- 6 2.08600- 3 8.00000+ 0 8.38444- 3 1.10673- 2 1.10000+ 1 3.35482- 4 1.18014- 2 1.30000+ 1 3.08781- 1 1.22523- 2 1.60000+ 1 2.15241- 3 1.39146- 2 1.90000+ 1 9.23234- 5 1.41457- 2 2.10000+ 1 6.23623- 2 1.43396- 2 2.40000+ 1 2.50451- 4 1.46130- 2 2.70000+ 1 4.50832- 4 1.46068- 2 3.00000+ 1 1.85021- 5 1.46680- 2 3.20000+ 1 7.11523- 3 1.47236- 2 4.10000+ 1 5.23082- 5 1.47336- 2 4.40000+ 1 1.35411- 7 1.47417- 2 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.34000- 3 1.25457- 3 6.00000+ 0 1.80000+ 1 3.76652- 2 1.37203- 3 6.00000+ 0 1.90000+ 1 1.04942- 2 1.48568- 3 6.00000+ 0 2.10000+ 1 3.86803- 2 1.67965- 3 6.00000+ 0 2.20000+ 1 1.33128- 2 1.70087- 3 6.00000+ 0 2.40000+ 1 1.55249- 3 1.95305- 3 6.00000+ 0 2.50000+ 1 2.32364- 3 1.95784- 3 6.00000+ 0 2.70000+ 1 1.02514- 3 1.94684- 3 6.00000+ 0 2.90000+ 1 6.44707- 3 1.98697- 3 6.00000+ 0 3.00000+ 1 1.82776- 3 2.00804- 3 6.00000+ 0 3.20000+ 1 4.02151- 3 2.06360- 3 6.00000+ 0 3.30000+ 1 1.34037- 3 2.06599- 3 8.00000+ 0 8.00000+ 0 5.79540- 4 7.38860- 3 8.00000+ 0 1.00000+ 1 2.00749- 2 7.65760- 3 8.00000+ 0 1.10000+ 1 1.88110- 3 8.12270- 3 8.00000+ 0 1.30000+ 1 3.06725- 3 8.57360- 3 8.00000+ 0 1.40000+ 1 1.83173- 3 8.67340- 3 8.00000+ 0 1.60000+ 1 2.23082- 4 1.02359- 2 8.00000+ 0 1.80000+ 1 3.20095- 3 1.03533- 2 8.00000+ 0 1.90000+ 1 4.00601- 4 1.04670- 2 8.00000+ 0 2.10000+ 1 4.69407- 4 1.06609- 2 8.00000+ 0 2.20000+ 1 2.39219- 4 1.06822- 2 8.00000+ 0 2.40000+ 1 8.97077- 5 1.09343- 2 8.00000+ 0 2.50000+ 1 6.17039- 5 1.09391- 2 8.00000+ 0 2.70000+ 1 4.41418- 5 1.09281- 2 8.00000+ 0 2.90000+ 1 5.46796- 4 1.09683- 2 8.00000+ 0 3.00000+ 1 6.97746- 5 1.09893- 2 8.00000+ 0 3.20000+ 1 4.79388- 5 1.10449- 2 8.00000+ 0 3.30000+ 1 2.32565- 5 1.10473- 2 1.00000+ 1 1.00000+ 1 2.09497- 2 7.92660- 3 1.00000+ 1 1.10000+ 1 5.36723- 2 8.39170- 3 1.00000+ 1 1.30000+ 1 2.78553- 2 8.84260- 3 1.00000+ 1 1.40000+ 1 3.99289- 2 8.94240- 3 1.00000+ 1 1.60000+ 1 5.14760- 3 1.05049- 2 1.00000+ 1 1.80000+ 1 8.52017- 3 1.06223- 2 1.00000+ 1 1.90000+ 1 1.25343- 2 1.07360- 2 1.00000+ 1 2.10000+ 1 6.03041- 3 1.09299- 2 1.00000+ 1 2.20000+ 1 8.61470- 3 1.09512- 2 1.00000+ 1 2.40000+ 1 4.53288- 4 1.12033- 2 1.00000+ 1 2.50000+ 1 3.96331- 4 1.12081- 2 1.00000+ 1 2.70000+ 1 1.08076- 3 1.11971- 2 1.00000+ 1 2.90000+ 1 1.53690- 3 1.12373- 2 1.00000+ 1 3.00000+ 1 2.22566- 3 1.12583- 2 1.00000+ 1 3.20000+ 1 6.51214- 4 1.13139- 2 1.00000+ 1 3.30000+ 1 8.93317- 4 1.13163- 2 1.10000+ 1 1.10000+ 1 1.23555- 3 8.85680- 3 1.10000+ 1 1.30000+ 1 2.55624- 2 9.30770- 3 1.10000+ 1 1.40000+ 1 3.70136- 3 9.40750- 3 1.10000+ 1 1.60000+ 1 4.05359- 4 1.09700- 2 1.10000+ 1 1.80000+ 1 8.73440- 3 1.10874- 2 1.10000+ 1 1.90000+ 1 4.95071- 4 1.12011- 2 1.10000+ 1 2.10000+ 1 4.66442- 3 1.13950- 2 1.10000+ 1 2.20000+ 1 6.48843- 4 1.14163- 2 1.10000+ 1 2.40000+ 1 1.90323- 4 1.16684- 2 1.10000+ 1 2.50000+ 1 1.00633- 4 1.16732- 2 1.10000+ 1 2.70000+ 1 8.21160- 5 1.16622- 2 1.10000+ 1 2.90000+ 1 1.49795- 3 1.17024- 2 1.10000+ 1 3.00000+ 1 8.54404- 5 1.17234- 2 1.10000+ 1 3.20000+ 1 4.89365- 4 1.17790- 2 1.10000+ 1 3.30000+ 1 6.50302- 5 1.17814- 2 1.30000+ 1 1.30000+ 1 2.42016- 2 9.75860- 3 1.30000+ 1 1.40000+ 1 9.64351- 2 9.85840- 3 1.30000+ 1 1.60000+ 1 7.87890- 4 1.14209- 2 1.30000+ 1 1.80000+ 1 4.40287- 3 1.15383- 2 1.30000+ 1 1.90000+ 1 5.53668- 3 1.16520- 2 1.30000+ 1 2.10000+ 1 8.68956- 3 1.18459- 2 1.30000+ 1 2.20000+ 1 1.86541- 2 1.18672- 2 1.30000+ 1 2.40000+ 1 1.60761- 3 1.21193- 2 1.30000+ 1 2.50000+ 1 3.24980- 3 1.21241- 2 1.30000+ 1 2.70000+ 1 1.66127- 4 1.21131- 2 1.30000+ 1 2.90000+ 1 7.57025- 4 1.21533- 2 1.30000+ 1 3.00000+ 1 9.68258- 4 1.21743- 2 1.30000+ 1 3.20000+ 1 9.13182- 4 1.22299- 2 1.30000+ 1 3.30000+ 1 1.90097- 3 1.22323- 2 1.40000+ 1 1.40000+ 1 4.67828- 3 9.95820- 3 1.40000+ 1 1.60000+ 1 3.79254- 4 1.15207- 2 1.40000+ 1 1.80000+ 1 5.57250- 3 1.16381- 2 1.40000+ 1 1.90000+ 1 7.37603- 4 1.17518- 2 1.40000+ 1 2.10000+ 1 1.42283- 2 1.19457- 2 1.40000+ 1 2.20000+ 1 1.64615- 3 1.19670- 2 1.40000+ 1 2.40000+ 1 6.42686- 4 1.22191- 2 1.40000+ 1 2.50000+ 1 2.46344- 4 1.22239- 2 1.40000+ 1 2.70000+ 1 7.64194- 5 1.22129- 2 1.40000+ 1 2.90000+ 1 9.25114- 4 1.22531- 2 1.40000+ 1 3.00000+ 1 1.26735- 4 1.22741- 2 1.40000+ 1 3.20000+ 1 1.44112- 3 1.23297- 2 1.40000+ 1 3.30000+ 1 1.65654- 4 1.23321- 2 1.60000+ 1 1.60000+ 1 2.08847- 5 1.30831- 2 1.60000+ 1 1.80000+ 1 8.25909- 4 1.32006- 2 1.60000+ 1 1.90000+ 1 8.68606- 5 1.33142- 2 1.60000+ 1 2.10000+ 1 1.17240- 4 1.35082- 2 1.60000+ 1 2.20000+ 1 4.93637- 5 1.35294- 2 1.60000+ 1 2.40000+ 1 1.99344- 5 1.37816- 2 1.60000+ 1 2.50000+ 1 1.13922- 5 1.37864- 2 1.60000+ 1 2.70000+ 1 8.06873- 6 1.37754- 2 1.60000+ 1 2.90000+ 1 1.41451- 4 1.38155- 2 1.60000+ 1 3.00000+ 1 1.51891- 5 1.38366- 2 1.60000+ 1 3.20000+ 1 1.18669- 5 1.38922- 2 1.60000+ 1 3.30000+ 1 4.74652- 6 1.38946- 2 1.80000+ 1 1.80000+ 1 8.23529- 4 1.33181- 2 1.80000+ 1 1.90000+ 1 2.04580- 3 1.34317- 2 1.80000+ 1 2.10000+ 1 9.38881- 4 1.36257- 2 1.80000+ 1 2.20000+ 1 1.21366- 3 1.36469- 2 1.80000+ 1 2.40000+ 1 5.83816- 5 1.38991- 2 1.80000+ 1 2.50000+ 1 4.08193- 5 1.39039- 2 1.80000+ 1 2.70000+ 1 1.73724- 4 1.38929- 2 1.80000+ 1 2.90000+ 1 2.94290- 4 1.39330- 2 1.80000+ 1 3.00000+ 1 3.63578- 4 1.39541- 2 1.80000+ 1 3.20000+ 1 1.01102- 4 1.40096- 2 1.80000+ 1 3.30000+ 1 1.26262- 4 1.40120- 2 1.90000+ 1 1.90000+ 1 4.98370- 5 1.35454- 2 1.90000+ 1 2.10000+ 1 1.01758- 3 1.37393- 2 1.90000+ 1 2.20000+ 1 1.31474- 4 1.37605- 2 1.90000+ 1 2.40000+ 1 3.51238- 5 1.40127- 2 1.90000+ 1 2.50000+ 1 1.70872- 5 1.40175- 2 1.90000+ 1 2.70000+ 1 1.75619- 5 1.40065- 2 1.90000+ 1 2.90000+ 1 3.50768- 4 1.40466- 2 1.90000+ 1 3.00000+ 1 1.70872- 5 1.40677- 2 1.90000+ 1 3.20000+ 1 1.06794- 4 1.41233- 2 1.90000+ 1 3.30000+ 1 1.32903- 5 1.41257- 2 2.10000+ 1 2.10000+ 1 7.72716- 4 1.39333- 2 2.10000+ 1 2.20000+ 1 2.86646- 3 1.39545- 2 2.10000+ 1 2.40000+ 1 1.97935- 4 1.42067- 2 2.10000+ 1 2.50000+ 1 4.04404- 4 1.42115- 2 2.10000+ 1 2.70000+ 1 2.46826- 5 1.42005- 2 2.10000+ 1 2.90000+ 1 1.60424- 4 1.42406- 2 2.10000+ 1 3.00000+ 1 1.78470- 4 1.42617- 2 2.10000+ 1 3.20000+ 1 1.62333- 4 1.43172- 2 2.10000+ 1 3.30000+ 1 2.93800- 4 1.43196- 2 2.20000+ 1 2.20000+ 1 1.48374- 4 1.39757- 2 2.20000+ 1 2.40000+ 1 8.71893- 5 1.42279- 2 2.20000+ 1 2.50000+ 1 3.42029- 5 1.42327- 2 2.20000+ 1 2.70000+ 1 1.01162- 5 1.42217- 2 2.20000+ 1 2.90000+ 1 2.04739- 4 1.42618- 2 2.20000+ 1 3.00000+ 1 2.31227- 5 1.42829- 2 2.20000+ 1 3.20000+ 1 2.96262- 4 1.43385- 2 2.20000+ 1 3.30000+ 1 2.98676- 5 1.43409- 2 2.40000+ 1 2.40000+ 1 4.49939- 6 1.44801- 2 2.40000+ 1 2.50000+ 1 3.24961- 5 1.44849- 2 2.40000+ 1 2.70000+ 1 4.49939- 6 1.44739- 2 2.40000+ 1 2.90000+ 1 9.99871- 6 1.45140- 2 2.40000+ 1 3.00000+ 1 6.49913- 6 1.45351- 2 2.40000+ 1 3.20000+ 1 2.04962- 5 1.45906- 2 2.40000+ 1 3.30000+ 1 8.49844- 6 1.45930- 2 2.50000+ 1 2.50000+ 1 2.01363- 6 1.44897- 2 2.50000+ 1 2.70000+ 1 2.51704- 6 1.44787- 2 2.50000+ 1 2.90000+ 1 6.54464- 6 1.45188- 2 2.50000+ 1 3.00000+ 1 3.02045- 6 1.45399- 2 2.50000+ 1 3.20000+ 1 4.22885- 5 1.45954- 2 2.50000+ 1 3.30000+ 1 3.52397- 6 1.45978- 2 2.70000+ 1 2.70000+ 1 9.79490- 7 1.44677- 2 2.70000+ 1 2.90000+ 1 3.08543- 5 1.45078- 2 2.70000+ 1 3.00000+ 1 2.93830- 6 1.45289- 2 2.70000+ 1 3.20000+ 1 2.44858- 6 1.45844- 2 2.70000+ 1 3.30000+ 1 9.79490- 7 1.45868- 2 2.90000+ 1 2.90000+ 1 2.71564- 5 1.45479- 2 2.90000+ 1 3.00000+ 1 6.46835- 5 1.45690- 2 2.90000+ 1 3.20000+ 1 1.77754- 5 1.46246- 2 2.90000+ 1 3.30000+ 1 2.17253- 5 1.46270- 2 3.00000+ 1 3.00000+ 1 1.67031- 6 1.45901- 2 3.00000+ 1 3.20000+ 1 2.17140- 5 1.46456- 2 3.00000+ 1 3.30000+ 1 2.78384- 6 1.46480- 2 3.20000+ 1 3.20000+ 1 8.54384- 6 1.47012- 2 3.20000+ 1 3.30000+ 1 2.99033- 5 1.47036- 2 3.30000+ 1 3.30000+ 1 1.52581- 6 1.47060- 2 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.54549- 2 8.98130- 3 1.00000+ 1 1.57709- 4 9.25030- 3 1.10000+ 1 1.42639- 4 9.71540- 3 1.30000+ 1 2.70068- 2 1.01663- 2 1.40000+ 1 2.37828- 1 1.02661- 2 1.60000+ 1 3.38207- 3 1.18286- 2 1.80000+ 1 3.56507- 5 1.19460- 2 1.90000+ 1 3.63297- 5 1.20597- 2 2.10000+ 1 5.01666- 3 1.22536- 2 2.20000+ 1 4.53096- 2 1.22749- 2 2.40000+ 1 3.75367- 5 1.25270- 2 2.50000+ 1 2.09748- 4 1.25318- 2 2.70000+ 1 7.27674- 4 1.25208- 2 2.90000+ 1 7.45494- 6 1.25610- 2 3.00000+ 1 7.63134- 6 1.25820- 2 3.20000+ 1 5.64385- 4 1.26376- 2 3.30000+ 1 4.96856- 3 1.26400- 2 4.10000+ 1 8.15033- 5 1.26476- 2 4.30000+ 1 6.91944- 8 1.26545- 2 4.40000+ 1 5.23656- 8 1.26557- 2 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 7.29131- 4 5.30260- 3 8.00000+ 0 1.00000+ 1 3.71239- 4 5.57160- 3 8.00000+ 0 1.10000+ 1 2.11570- 2 6.03670- 3 8.00000+ 0 1.30000+ 1 2.63711- 3 6.48760- 3 8.00000+ 0 1.40000+ 1 4.40149- 3 6.58740- 3 8.00000+ 0 1.60000+ 1 2.82716- 4 8.14987- 3 8.00000+ 0 1.80000+ 1 6.61600- 5 8.26733- 3 8.00000+ 0 1.90000+ 1 3.30027- 3 8.38098- 3 8.00000+ 0 2.10000+ 1 2.74631- 4 8.57495- 3 8.00000+ 0 2.20000+ 1 4.21204- 4 8.59617- 3 8.00000+ 0 2.40000+ 1 2.23217- 4 8.84835- 3 8.00000+ 0 2.50000+ 1 3.94575- 4 8.85314- 3 8.00000+ 0 2.70000+ 1 5.56867- 5 8.84214- 3 8.00000+ 0 2.90000+ 1 1.14223- 5 8.88227- 3 8.00000+ 0 3.00000+ 1 5.41637- 4 8.90334- 3 8.00000+ 0 3.20000+ 1 2.61774- 5 8.95890- 3 8.00000+ 0 3.30000+ 1 3.80771- 5 8.96129- 3 1.00000+ 1 1.00000+ 1 4.09315- 5 5.84060- 3 1.00000+ 1 1.10000+ 1 3.55178- 2 6.30570- 3 1.00000+ 1 1.30000+ 1 1.69389- 3 6.75660- 3 1.00000+ 1 1.40000+ 1 1.44386- 2 6.85640- 3 1.00000+ 1 1.60000+ 1 7.66289- 5 8.41887- 3 1.00000+ 1 1.80000+ 1 1.99891- 5 8.53633- 3 1.00000+ 1 1.90000+ 1 5.75420- 3 8.64998- 3 1.00000+ 1 2.10000+ 1 3.21263- 4 8.84395- 3 1.00000+ 1 2.20000+ 1 2.26791- 3 8.86517- 3 1.00000+ 1 2.40000+ 1 2.19884- 4 9.11735- 3 1.00000+ 1 2.50000+ 1 5.54002- 4 9.12214- 3 1.00000+ 1 2.70000+ 1 1.57063- 5 9.11114- 3 1.00000+ 1 2.90000+ 1 3.80769- 6 9.15127- 3 1.00000+ 1 3.00000+ 1 9.51419- 4 9.17234- 3 1.00000+ 1 3.20000+ 1 3.42681- 5 9.22790- 3 1.00000+ 1 3.30000+ 1 2.24165- 4 9.23029- 3 1.10000+ 1 1.10000+ 1 4.49235- 2 6.77080- 3 1.10000+ 1 1.30000+ 1 4.70325- 2 7.22170- 3 1.10000+ 1 1.40000+ 1 6.37890- 2 7.32150- 3 1.10000+ 1 1.60000+ 1 5.34535- 3 8.88397- 3 1.10000+ 1 1.80000+ 1 8.04377- 3 9.00143- 3 1.10000+ 1 1.90000+ 1 1.76208- 2 9.11508- 3 1.10000+ 1 2.10000+ 1 9.58148- 3 9.30905- 3 1.10000+ 1 2.20000+ 1 1.28099- 2 9.33027- 3 1.10000+ 1 2.40000+ 1 8.30997- 4 9.58245- 3 1.10000+ 1 2.50000+ 1 1.02717- 3 9.58724- 3 1.10000+ 1 2.70000+ 1 1.11849- 3 9.57624- 3 1.10000+ 1 2.90000+ 1 1.47642- 3 9.61637- 3 1.10000+ 1 3.00000+ 1 3.03849- 3 9.63744- 3 1.10000+ 1 3.20000+ 1 1.02617- 3 9.69300- 3 1.10000+ 1 3.30000+ 1 1.31413- 3 9.69539- 3 1.30000+ 1 1.30000+ 1 6.52247- 3 7.67260- 3 1.30000+ 1 1.40000+ 1 1.22139- 1 7.77240- 3 1.30000+ 1 1.60000+ 1 6.32535- 4 9.33487- 3 1.30000+ 1 1.80000+ 1 4.02171- 4 9.45233- 3 1.30000+ 1 1.90000+ 1 6.94547- 3 9.56598- 3 1.30000+ 1 2.10000+ 1 2.26123- 3 9.75995- 3 1.30000+ 1 2.20000+ 1 1.77225- 2 9.78117- 3 1.30000+ 1 2.40000+ 1 4.59292- 4 1.00333- 2 1.30000+ 1 2.50000+ 1 1.55826- 3 1.00381- 2 1.30000+ 1 2.70000+ 1 1.31362- 4 1.00271- 2 1.30000+ 1 2.90000+ 1 7.42507- 5 1.00673- 2 1.30000+ 1 3.00000+ 1 1.12757- 3 1.00883- 2 1.30000+ 1 3.20000+ 1 2.37022- 4 1.01439- 2 1.30000+ 1 3.30000+ 1 1.72534- 3 1.01463- 2 1.40000+ 1 1.40000+ 1 8.13750- 2 7.87220- 3 1.40000+ 1 1.60000+ 1 1.07369- 3 9.43467- 3 1.40000+ 1 1.80000+ 1 2.96986- 3 9.55213- 3 1.40000+ 1 1.90000+ 1 1.06221- 2 9.66578- 3 1.40000+ 1 2.10000+ 1 2.14100- 2 9.85975- 3 1.40000+ 1 2.20000+ 1 2.69895- 2 9.88097- 3 1.40000+ 1 2.40000+ 1 4.85723- 3 1.01331- 2 1.40000+ 1 2.50000+ 1 4.42065- 3 1.01379- 2 1.40000+ 1 2.70000+ 1 2.25139- 4 1.01269- 2 1.40000+ 1 2.90000+ 1 5.34980- 4 1.01671- 2 1.40000+ 1 3.00000+ 1 1.77767- 3 1.01881- 2 1.40000+ 1 3.20000+ 1 2.23941- 3 1.02437- 2 1.40000+ 1 3.30000+ 1 2.69346- 3 1.02461- 2 1.60000+ 1 1.60000+ 1 2.80801- 5 1.09971- 2 1.60000+ 1 1.80000+ 1 1.42781- 5 1.11146- 2 1.60000+ 1 1.90000+ 1 8.33889- 4 1.12282- 2 1.60000+ 1 2.10000+ 1 7.18666- 5 1.14222- 2 1.60000+ 1 2.20000+ 1 1.10891- 4 1.14434- 2 1.60000+ 1 2.40000+ 1 2.99856- 5 1.16956- 2 1.60000+ 1 2.50000+ 1 6.04462- 5 1.17004- 2 1.60000+ 1 2.70000+ 1 1.09464- 5 1.16894- 2 1.60000+ 1 2.90000+ 1 2.37962- 6 1.17295- 2 1.60000+ 1 3.00000+ 1 1.36593- 4 1.17506- 2 1.60000+ 1 3.20000+ 1 7.13915- 6 1.18062- 2 1.60000+ 1 3.30000+ 1 9.99416- 6 1.18086- 2 1.80000+ 1 1.80000+ 1 1.42784- 6 1.12321- 2 1.80000+ 1 1.90000+ 1 1.29598- 3 1.13457- 2 1.80000+ 1 2.10000+ 1 7.18680- 5 1.15397- 2 1.80000+ 1 2.20000+ 1 4.97373- 4 1.15609- 2 1.80000+ 1 2.40000+ 1 3.23647- 5 1.18131- 2 1.80000+ 1 2.50000+ 1 7.71052- 5 1.18179- 2 1.80000+ 1 2.70000+ 1 2.85568- 6 1.18069- 2 1.80000+ 1 2.90000+ 1 4.75973- 7 1.18470- 2 1.80000+ 1 3.00000+ 1 2.13712- 4 1.18681- 2 1.80000+ 1 3.20000+ 1 7.61500- 6 1.19236- 2 1.80000+ 1 3.30000+ 1 4.94998- 5 1.19260- 2 1.90000+ 1 1.90000+ 1 1.65335- 3 1.14594- 2 1.90000+ 1 2.10000+ 1 1.41880- 3 1.16533- 2 1.90000+ 1 2.20000+ 1 2.10031- 3 1.16745- 2 1.90000+ 1 2.40000+ 1 1.00898- 4 1.19267- 2 1.90000+ 1 2.50000+ 1 1.31360- 4 1.19315- 2 1.90000+ 1 2.70000+ 1 1.74667- 4 1.19205- 2 1.90000+ 1 2.90000+ 1 2.37498- 4 1.19606- 2 1.90000+ 1 3.00000+ 1 5.65414- 4 1.19817- 2 1.90000+ 1 3.20000+ 1 1.51831- 4 1.20373- 2 1.90000+ 1 3.30000+ 1 2.15120- 4 1.20397- 2 2.10000+ 1 2.10000+ 1 1.88463- 4 1.18473- 2 2.10000+ 1 2.20000+ 1 3.24406- 3 1.18685- 2 2.10000+ 1 2.40000+ 1 5.33060- 5 1.21207- 2 2.10000+ 1 2.50000+ 1 1.71814- 4 1.21255- 2 2.10000+ 1 2.70000+ 1 1.52301- 5 1.21145- 2 2.10000+ 1 2.90000+ 1 1.33258- 5 1.21546- 2 2.10000+ 1 3.00000+ 1 2.30364- 4 1.21757- 2 2.10000+ 1 3.20000+ 1 3.90281- 5 1.22312- 2 2.10000+ 1 3.30000+ 1 3.17469- 4 1.22336- 2 2.20000+ 1 2.20000+ 1 2.28367- 3 1.18897- 2 2.20000+ 1 2.40000+ 1 5.60046- 4 1.21419- 2 2.20000+ 1 2.50000+ 1 5.01575- 4 1.21467- 2 2.20000+ 1 2.70000+ 1 2.36767- 5 1.21357- 2 2.20000+ 1 2.90000+ 1 9.18121- 5 1.21758- 2 2.20000+ 1 3.00000+ 1 3.55644- 4 1.21969- 2 2.20000+ 1 3.20000+ 1 3.46463- 4 1.22525- 2 2.20000+ 1 3.30000+ 1 4.55671- 4 1.22549- 2 2.40000+ 1 2.40000+ 1 2.14750- 6 1.23941- 2 2.40000+ 1 2.50000+ 1 7.03305- 5 1.23989- 2 2.40000+ 1 2.70000+ 1 6.44252- 6 1.23879- 2 2.40000+ 1 2.90000+ 1 6.44252- 6 1.24280- 2 2.40000+ 1 3.00000+ 1 1.77169- 5 1.24491- 2 2.40000+ 1 3.20000+ 1 5.90571- 6 1.25046- 2 2.40000+ 1 3.30000+ 1 5.79830- 5 1.25070- 2 2.50000+ 1 2.50000+ 1 2.23696- 5 1.24037- 2 2.50000+ 1 2.70000+ 1 1.14223- 5 1.23927- 2 2.50000+ 1 2.90000+ 1 1.28507- 5 1.24328- 2 2.50000+ 1 3.00000+ 1 2.09424- 5 1.24539- 2 2.50000+ 1 3.20000+ 1 1.66574- 5 1.25094- 2 2.50000+ 1 3.30000+ 1 4.61666- 5 1.25118- 2 2.70000+ 1 2.70000+ 1 1.28029- 6 1.23817- 2 2.70000+ 1 2.90000+ 1 6.40171- 7 1.24218- 2 2.70000+ 1 3.00000+ 1 3.84082- 5 1.24429- 2 2.70000+ 1 3.20000+ 1 1.92041- 6 1.24984- 2 2.70000+ 1 3.30000+ 1 3.20059- 6 1.25008- 2 2.90000+ 1 3.00000+ 1 5.83078- 5 1.24830- 2 2.90000+ 1 3.20000+ 1 2.13312- 6 1.25386- 2 2.90000+ 1 3.30000+ 1 1.35105- 5 1.25410- 2 3.00000+ 1 3.00000+ 1 7.58596- 5 1.25041- 2 3.00000+ 1 3.20000+ 1 3.90574- 5 1.25596- 2 3.00000+ 1 3.30000+ 1 5.63315- 5 1.25620- 2 3.20000+ 1 3.20000+ 1 1.90379- 6 1.26152- 2 3.20000+ 1 3.30000+ 1 3.33149- 5 1.26176- 2 3.30000+ 1 3.30000+ 1 2.23698- 5 1.26200- 2 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01481- 5 2.69000- 4 1.10000+ 1 4.49533- 4 7.34100- 4 1.80000+ 1 1.49081- 3 2.96473- 3 1.90000+ 1 1.17801- 3 3.07838- 3 2.90000+ 1 3.27172- 4 3.57967- 3 3.00000+ 1 2.73882- 4 3.60074- 3 4.30000+ 1 3.28602- 6 3.67324- 3 4.40000+ 1 2.07531- 6 3.67440- 3 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 2.99846- 2 1.36050- 4 1.00000+ 1 2.50000+ 1 4.04235- 2 1.40840- 4 1.00000+ 1 2.70000+ 1 1.16366- 2 1.29840- 4 1.00000+ 1 2.90000+ 1 1.11536- 2 1.69970- 4 1.00000+ 1 3.00000+ 1 1.46232- 2 1.91040- 4 1.00000+ 1 3.20000+ 1 6.05566- 3 2.46600- 4 1.00000+ 1 3.30000+ 1 7.96945- 3 2.48990- 4 1.00000+ 1 4.10000+ 1 1.15358- 3 2.56640- 4 1.00000+ 1 4.30000+ 1 9.45708- 5 2.63540- 4 1.00000+ 1 4.40000+ 1 9.61056- 5 2.64700- 4 1.10000+ 1 1.80000+ 1 5.77114- 2 2.01300- 5 1.10000+ 1 1.90000+ 1 6.02123- 2 1.33780- 4 1.10000+ 1 2.10000+ 1 1.90586- 2 3.27750- 4 1.10000+ 1 2.20000+ 1 3.20902- 2 3.48970- 4 1.10000+ 1 2.40000+ 1 1.74006- 1 6.01150- 4 1.10000+ 1 2.50000+ 1 2.15525- 1 6.05940- 4 1.10000+ 1 2.70000+ 1 1.05778- 2 5.94940- 4 1.10000+ 1 2.90000+ 1 1.00058- 2 6.35070- 4 1.10000+ 1 3.00000+ 1 1.03636- 2 6.56140- 4 1.10000+ 1 3.20000+ 1 1.96363- 3 7.11700- 4 1.10000+ 1 3.30000+ 1 3.30570- 3 7.14090- 4 1.10000+ 1 4.10000+ 1 1.07420- 3 7.21740- 4 1.10000+ 1 4.30000+ 1 8.78669- 5 7.28640- 4 1.10000+ 1 4.40000+ 1 7.12387- 5 7.29800- 4 1.30000+ 1 1.60000+ 1 2.55165- 2 3.53570- 4 1.30000+ 1 1.80000+ 1 5.56894- 3 4.71030- 4 1.30000+ 1 1.90000+ 1 6.86769- 3 5.84680- 4 1.30000+ 1 2.10000+ 1 8.76190- 3 7.78650- 4 1.30000+ 1 2.20000+ 1 1.08280- 2 7.99870- 4 1.30000+ 1 2.40000+ 1 8.92105- 3 1.05205- 3 1.30000+ 1 2.50000+ 1 8.23419- 3 1.05684- 3 1.30000+ 1 2.70000+ 1 3.43013- 3 1.04584- 3 1.30000+ 1 2.90000+ 1 8.03193- 4 1.08597- 3 1.30000+ 1 3.00000+ 1 9.24611- 4 1.10704- 3 1.30000+ 1 3.20000+ 1 7.81118- 4 1.16260- 3 1.30000+ 1 3.30000+ 1 1.00175- 3 1.16499- 3 1.30000+ 1 4.10000+ 1 3.27429- 4 1.17264- 3 1.30000+ 1 4.30000+ 1 6.84451- 6 1.17954- 3 1.30000+ 1 4.40000+ 1 6.14641- 6 1.18070- 3 1.40000+ 1 1.60000+ 1 3.57114- 2 4.53370- 4 1.40000+ 1 1.80000+ 1 9.52001- 4 5.70830- 4 1.40000+ 1 1.90000+ 1 1.10630- 2 6.84480- 4 1.40000+ 1 2.10000+ 1 1.21355- 2 8.78450- 4 1.40000+ 1 2.20000+ 1 1.72603- 2 8.99670- 4 1.40000+ 1 2.40000+ 1 1.01597- 2 1.15185- 3 1.40000+ 1 2.50000+ 1 1.57958- 2 1.15664- 3 1.40000+ 1 2.70000+ 1 4.73122- 3 1.14564- 3 1.40000+ 1 2.90000+ 1 1.65261- 4 1.18577- 3 1.40000+ 1 3.00000+ 1 1.47654- 3 1.20684- 3 1.40000+ 1 3.20000+ 1 1.17630- 3 1.26240- 3 1.40000+ 1 3.30000+ 1 1.54067- 3 1.26479- 3 1.40000+ 1 4.10000+ 1 4.51622- 4 1.27244- 3 1.40000+ 1 4.30000+ 1 1.53666- 6 1.27934- 3 1.40000+ 1 4.40000+ 1 9.77739- 6 1.28050- 3 1.60000+ 1 1.60000+ 1 2.50263- 3 2.01584- 3 1.60000+ 1 1.80000+ 1 4.36468- 3 2.13330- 3 1.60000+ 1 1.90000+ 1 7.20321- 3 2.24695- 3 1.60000+ 1 2.10000+ 1 8.35037- 3 2.44092- 3 1.60000+ 1 2.20000+ 1 1.17519- 2 2.46214- 3 1.60000+ 1 2.40000+ 1 5.89514- 3 2.71432- 3 1.60000+ 1 2.50000+ 1 7.39631- 3 2.71911- 3 1.60000+ 1 2.70000+ 1 8.58114- 4 2.70811- 3 1.60000+ 1 2.90000+ 1 8.06906- 4 2.74824- 3 1.60000+ 1 3.00000+ 1 1.27729- 3 2.76931- 3 1.60000+ 1 3.20000+ 1 8.85484- 4 2.82487- 3 1.60000+ 1 3.30000+ 1 1.19739- 3 2.82726- 3 1.60000+ 1 4.10000+ 1 8.60951- 5 2.83491- 3 1.60000+ 1 4.30000+ 1 7.12735- 6 2.84181- 3 1.60000+ 1 4.40000+ 1 8.62801- 6 2.84297- 3 1.80000+ 1 1.80000+ 1 1.85899- 4 2.25076- 3 1.80000+ 1 1.90000+ 1 5.35500- 4 2.36441- 3 1.80000+ 1 2.10000+ 1 2.80245- 4 2.55838- 3 1.80000+ 1 2.20000+ 1 1.57178- 4 2.57960- 3 1.80000+ 1 2.40000+ 1 4.13934- 5 2.83178- 3 1.80000+ 1 2.50000+ 1 4.53839- 4 2.83657- 3 1.80000+ 1 2.70000+ 1 5.72234- 4 2.82557- 3 1.80000+ 1 2.90000+ 1 5.16487- 5 2.86570- 3 1.80000+ 1 3.00000+ 1 7.01069- 5 2.88677- 3 1.80000+ 1 3.20000+ 1 2.61037- 5 2.94233- 3 1.80000+ 1 3.30000+ 1 1.92044- 5 2.94472- 3 1.80000+ 1 4.10000+ 1 5.46317- 5 2.95237- 3 1.80000+ 1 4.30000+ 1 3.72907- 7 2.95927- 3 1.80000+ 1 4.40000+ 1 5.59380- 7 2.96043- 3 1.90000+ 1 1.90000+ 1 6.16219- 4 2.47806- 3 1.90000+ 1 2.10000+ 1 5.97572- 4 2.67203- 3 1.90000+ 1 2.20000+ 1 1.38134- 3 2.69325- 3 1.90000+ 1 2.40000+ 1 6.11743- 4 2.94543- 3 1.90000+ 1 2.50000+ 1 1.04955- 3 2.95022- 3 1.90000+ 1 2.70000+ 1 9.49017- 4 2.93922- 3 1.90000+ 1 2.90000+ 1 8.39041- 5 2.97935- 3 1.90000+ 1 3.00000+ 1 1.84028- 4 3.00042- 3 1.90000+ 1 3.20000+ 1 6.37659- 5 3.05598- 3 1.90000+ 1 3.30000+ 1 1.34443- 4 3.05837- 3 1.90000+ 1 4.10000+ 1 9.08045- 5 3.06602- 3 1.90000+ 1 4.30000+ 1 7.45780- 7 3.07292- 3 1.90000+ 1 4.40000+ 1 1.30501- 6 3.07408- 3 2.10000+ 1 2.10000+ 1 1.00333- 4 2.86600- 3 2.10000+ 1 2.20000+ 1 3.88257- 4 2.88722- 3 2.10000+ 1 2.40000+ 1 4.48657- 4 3.13940- 3 2.10000+ 1 2.50000+ 1 3.03879- 3 3.14419- 3 2.10000+ 1 2.70000+ 1 1.09211- 3 3.13319- 3 2.10000+ 1 2.90000+ 1 3.50221- 5 3.17332- 3 2.10000+ 1 3.00000+ 1 8.40531- 5 3.19439- 3 2.10000+ 1 3.20000+ 1 1.70374- 5 3.24995- 3 2.10000+ 1 3.30000+ 1 3.36959- 5 3.25234- 3 2.10000+ 1 4.10000+ 1 1.03930- 4 3.25999- 3 2.10000+ 1 4.30000+ 1 3.78599- 7 3.26689- 3 2.10000+ 1 4.40000+ 1 5.67918- 7 3.26805- 3 2.20000+ 1 2.20000+ 1 2.49883- 4 2.90844- 3 2.20000+ 1 2.40000+ 1 2.80832- 3 3.16062- 3 2.20000+ 1 2.50000+ 1 1.69233- 3 3.16541- 3 2.20000+ 1 2.70000+ 1 1.52179- 3 3.15441- 3 2.20000+ 1 2.90000+ 1 2.18105- 5 3.19454- 3 2.20000+ 1 3.00000+ 1 1.90458- 4 3.21561- 3 2.20000+ 1 3.20000+ 1 3.19635- 5 3.27117- 3 2.20000+ 1 3.30000+ 1 4.23050- 5 3.27356- 3 2.20000+ 1 4.10000+ 1 1.44772- 4 3.28121- 3 2.20000+ 1 4.30000+ 1 1.88024- 7 3.28811- 3 2.20000+ 1 4.40000+ 1 1.31599- 6 3.28927- 3 2.40000+ 1 2.40000+ 1 5.83974- 4 3.41280- 3 2.40000+ 1 2.50000+ 1 3.93812- 3 3.41759- 3 2.40000+ 1 2.70000+ 1 6.99183- 4 3.40659- 3 2.40000+ 1 2.90000+ 1 5.59363- 6 3.44672- 3 2.40000+ 1 3.00000+ 1 6.19022- 5 3.46779- 3 2.40000+ 1 3.20000+ 1 4.25105- 5 3.52335- 3 2.40000+ 1 3.30000+ 1 2.82860- 4 3.52574- 3 2.40000+ 1 4.10000+ 1 6.58169- 5 3.53339- 3 2.40000+ 1 4.40000+ 1 3.72896- 7 3.54145- 3 2.50000+ 1 2.50000+ 1 1.33816- 3 3.42238- 3 2.50000+ 1 2.70000+ 1 8.67572- 4 3.41138- 3 2.50000+ 1 2.90000+ 1 7.31118- 5 3.45151- 3 2.50000+ 1 3.00000+ 1 1.12812- 4 3.47258- 3 2.50000+ 1 3.20000+ 1 3.05195- 4 3.52814- 3 2.50000+ 1 3.30000+ 1 1.62671- 4 3.53053- 3 2.50000+ 1 4.10000+ 1 8.16080- 5 3.53818- 3 2.50000+ 1 4.30000+ 1 5.53911- 7 3.54508- 3 2.50000+ 1 4.40000+ 1 7.38509- 7 3.54624- 3 2.70000+ 1 2.70000+ 1 8.14441- 5 3.40038- 3 2.70000+ 1 2.90000+ 1 1.27757- 4 3.44051- 3 2.70000+ 1 3.00000+ 1 2.02049- 4 3.46158- 3 2.70000+ 1 3.20000+ 1 1.37378- 4 3.51714- 3 2.70000+ 1 3.30000+ 1 1.85496- 4 3.51953- 3 2.70000+ 1 4.10000+ 1 1.61100- 5 3.52718- 3 2.70000+ 1 4.30000+ 1 1.11871- 6 3.53408- 3 2.70000+ 1 4.40000+ 1 1.34244- 6 3.53524- 3 2.90000+ 1 2.90000+ 1 5.88978- 6 3.48064- 3 2.90000+ 1 3.00000+ 1 1.76690- 5 3.50171- 3 2.90000+ 1 3.20000+ 1 5.26974- 6 3.55727- 3 2.90000+ 1 3.30000+ 1 4.64976- 6 3.55966- 3 2.90000+ 1 4.10000+ 1 1.70491- 5 3.56731- 3 3.00000+ 1 3.00000+ 1 2.28450- 5 3.52278- 3 3.00000+ 1 3.20000+ 1 1.54443- 5 3.57834- 3 3.00000+ 1 3.30000+ 1 3.18547- 5 3.58073- 3 3.00000+ 1 4.10000+ 1 2.76728- 5 3.58838- 3 3.00000+ 1 4.40000+ 1 3.21767- 7 3.59644- 3 3.20000+ 1 3.20000+ 1 8.16861- 7 3.63390- 3 3.20000+ 1 3.30000+ 1 3.06333- 6 3.63629- 3 3.20000+ 1 4.10000+ 1 1.20489- 5 3.64394- 3 3.30000+ 1 3.30000+ 1 1.71531- 6 3.63868- 3 3.30000+ 1 4.10000+ 1 1.50562- 5 3.64633- 3 3.30000+ 1 4.40000+ 1 1.90592- 7 3.65439- 3 4.10000+ 1 4.10000+ 1 7.45780- 7 3.65398- 3 4.10000+ 1 4.40000+ 1 1.86456- 7 3.66204- 3 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.02140- 3 9.16000- 4 1.60000+ 1 7.38061- 4 2.57827- 3 2.10000+ 1 3.93400- 3 3.00335- 3 2.70000+ 1 1.60140- 4 3.27054- 3 3.20000+ 1 5.22540- 4 3.38730- 3 4.10000+ 1 1.82030- 5 3.39734- 3 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.21123- 3 5.87500- 5 1.10000+ 1 2.20000+ 1 1.50742- 2 7.99700- 5 1.10000+ 1 2.40000+ 1 2.85272- 2 3.32150- 4 1.10000+ 1 2.50000+ 1 2.61464- 2 3.36940- 4 1.10000+ 1 2.70000+ 1 3.10802- 3 3.25940- 4 1.10000+ 1 2.90000+ 1 3.90938- 3 3.66070- 4 1.10000+ 1 3.00000+ 1 2.51901- 3 3.87140- 4 1.10000+ 1 3.20000+ 1 8.14733- 4 4.42700- 4 1.10000+ 1 3.30000+ 1 1.70640- 3 4.45090- 4 1.10000+ 1 4.10000+ 1 3.01187- 4 4.52740- 4 1.10000+ 1 4.30000+ 1 3.20637- 5 4.59640- 4 1.10000+ 1 4.40000+ 1 1.62945- 5 4.60800- 4 1.30000+ 1 1.60000+ 1 4.91978- 2 8.45700- 5 1.30000+ 1 1.80000+ 1 5.01585- 2 2.02030- 4 1.30000+ 1 1.90000+ 1 4.69136- 2 3.15680- 4 1.30000+ 1 2.10000+ 1 1.86641- 2 5.09650- 4 1.30000+ 1 2.20000+ 1 2.33760- 2 5.30870- 4 1.30000+ 1 2.40000+ 1 1.40965- 1 7.83050- 4 1.30000+ 1 2.50000+ 1 2.17667- 1 7.87840- 4 1.30000+ 1 2.70000+ 1 1.01287- 2 7.76840- 4 1.30000+ 1 2.90000+ 1 7.81184- 3 8.16970- 4 1.30000+ 1 3.00000+ 1 7.99087- 3 8.38040- 4 1.30000+ 1 3.20000+ 1 2.04036- 3 8.93600- 4 1.30000+ 1 3.30000+ 1 2.59435- 3 8.95990- 4 1.30000+ 1 4.10000+ 1 1.02292- 3 9.03640- 4 1.30000+ 1 4.30000+ 1 6.69266- 5 9.10540- 4 1.30000+ 1 4.40000+ 1 5.27378- 5 9.11700- 4 1.40000+ 1 1.60000+ 1 7.89490- 3 1.84370- 4 1.40000+ 1 1.80000+ 1 5.67633- 2 3.01830- 4 1.40000+ 1 1.90000+ 1 4.91828- 3 4.15480- 4 1.40000+ 1 2.10000+ 1 1.04704- 3 6.09450- 4 1.40000+ 1 2.20000+ 1 2.74683- 3 6.30670- 4 1.40000+ 1 2.40000+ 1 5.83328- 3 8.82850- 4 1.40000+ 1 2.50000+ 1 3.99226- 3 8.87640- 4 1.40000+ 1 2.70000+ 1 1.08036- 3 8.76640- 4 1.40000+ 1 2.90000+ 1 6.92836- 3 9.16770- 4 1.40000+ 1 3.00000+ 1 7.44796- 4 9.37840- 4 1.40000+ 1 3.20000+ 1 5.90457- 5 9.93400- 4 1.40000+ 1 3.30000+ 1 2.59833- 4 9.95790- 4 1.40000+ 1 4.10000+ 1 1.03900- 4 1.00344- 3 1.40000+ 1 4.30000+ 1 5.79938- 5 1.01034- 3 1.40000+ 1 4.40000+ 1 4.90592- 6 1.01150- 3 1.60000+ 1 1.60000+ 1 7.45240- 4 1.74684- 3 1.60000+ 1 1.80000+ 1 1.08763- 2 1.86430- 3 1.60000+ 1 1.90000+ 1 1.50880- 3 1.97795- 3 1.60000+ 1 2.10000+ 1 3.69882- 4 2.17192- 3 1.60000+ 1 2.20000+ 1 1.27112- 3 2.19314- 3 1.60000+ 1 2.40000+ 1 4.55564- 5 2.44532- 3 1.60000+ 1 2.50000+ 1 9.05687- 4 2.45011- 3 1.60000+ 1 2.70000+ 1 2.39649- 4 2.43911- 3 1.60000+ 1 2.90000+ 1 1.29540- 3 2.47924- 3 1.60000+ 1 3.00000+ 1 2.41656- 4 2.50031- 3 1.60000+ 1 3.20000+ 1 2.87188- 5 2.55587- 3 1.60000+ 1 3.30000+ 1 1.18842- 4 2.55826- 3 1.60000+ 1 4.10000+ 1 2.37682- 5 2.56591- 3 1.60000+ 1 4.30000+ 1 1.08940- 5 2.57281- 3 1.60000+ 1 4.40000+ 1 1.48552- 6 2.57397- 3 1.80000+ 1 1.80000+ 1 8.36508- 3 1.98176- 3 1.80000+ 1 1.90000+ 1 2.34667- 2 2.09541- 3 1.80000+ 1 2.10000+ 1 2.33701- 2 2.28938- 3 1.80000+ 1 2.20000+ 1 3.72279- 2 2.31060- 3 1.80000+ 1 2.40000+ 1 1.35775- 2 2.56278- 3 1.80000+ 1 2.50000+ 1 2.28023- 2 2.56757- 3 1.80000+ 1 2.70000+ 1 2.25511- 3 2.55657- 3 1.80000+ 1 2.90000+ 1 2.58343- 3 2.59670- 3 1.80000+ 1 3.00000+ 1 4.12933- 3 2.61777- 3 1.80000+ 1 3.20000+ 1 2.48330- 3 2.67333- 3 1.80000+ 1 3.30000+ 1 3.75695- 3 2.67572- 3 1.80000+ 1 4.10000+ 1 2.31754- 4 2.68337- 3 1.80000+ 1 4.30000+ 1 2.22836- 5 2.69027- 3 1.80000+ 1 4.40000+ 1 2.82246- 5 2.69143- 3 1.90000+ 1 1.90000+ 1 6.34348- 4 2.20906- 3 1.90000+ 1 2.10000+ 1 1.57624- 3 2.40303- 3 1.90000+ 1 2.20000+ 1 1.37219- 3 2.42425- 3 1.90000+ 1 2.40000+ 1 9.32692- 3 2.67643- 3 1.90000+ 1 2.50000+ 1 2.57662- 3 2.68122- 3 1.90000+ 1 2.70000+ 1 2.02535- 4 2.67022- 3 1.90000+ 1 2.90000+ 1 2.85793- 3 2.71035- 3 1.90000+ 1 3.00000+ 1 1.88667- 4 2.73142- 3 1.90000+ 1 3.20000+ 1 1.35190- 4 2.78698- 3 1.90000+ 1 3.30000+ 1 1.23803- 4 2.78937- 3 1.90000+ 1 4.10000+ 1 1.93128- 5 2.79702- 3 1.90000+ 1 4.30000+ 1 2.37694- 5 2.80392- 3 1.90000+ 1 4.40000+ 1 1.48560- 6 2.80508- 3 2.10000+ 1 2.10000+ 1 8.13582- 4 2.59700- 3 2.10000+ 1 2.20000+ 1 1.97867- 3 2.61822- 3 2.10000+ 1 2.40000+ 1 1.01810- 3 2.87040- 3 2.10000+ 1 2.50000+ 1 1.76287- 3 2.87519- 3 2.10000+ 1 2.70000+ 1 7.22973- 5 2.86419- 3 2.10000+ 1 2.90000+ 1 2.77010- 3 2.90432- 3 2.10000+ 1 3.00000+ 1 2.49094- 4 2.92539- 3 2.10000+ 1 3.20000+ 1 1.43602- 4 2.98095- 3 2.10000+ 1 3.30000+ 1 1.85202- 4 2.98334- 3 2.10000+ 1 4.10000+ 1 7.42764- 6 2.99099- 3 2.10000+ 1 4.30000+ 1 2.32735- 5 2.99789- 3 2.10000+ 1 4.40000+ 1 1.48554- 6 2.99905- 3 2.20000+ 1 2.20000+ 1 5.00119- 4 2.63944- 3 2.20000+ 1 2.40000+ 1 2.90727- 3 2.89162- 3 2.20000+ 1 2.50000+ 1 6.64054- 4 2.89641- 3 2.20000+ 1 2.70000+ 1 2.09950- 4 2.88541- 3 2.20000+ 1 2.90000+ 1 4.47418- 3 2.92554- 3 2.20000+ 1 3.00000+ 1 1.87677- 4 2.94661- 3 2.20000+ 1 3.20000+ 1 1.77276- 4 3.00217- 3 2.20000+ 1 3.30000+ 1 8.66569- 5 3.00456- 3 2.20000+ 1 4.10000+ 1 2.07969- 5 3.01221- 3 2.20000+ 1 4.30000+ 1 3.76338- 5 3.01911- 3 2.20000+ 1 4.40000+ 1 1.48554- 6 3.02027- 3 2.40000+ 1 2.40000+ 1 3.32102- 3 3.14380- 3 2.40000+ 1 2.50000+ 1 2.13481- 2 3.14859- 3 2.40000+ 1 2.70000+ 1 4.95175- 6 3.13759- 3 2.40000+ 1 2.90000+ 1 1.48555- 3 3.17772- 3 2.40000+ 1 3.00000+ 1 1.54002- 3 3.19879- 3 2.40000+ 1 3.20000+ 1 1.19338- 4 3.25435- 3 2.40000+ 1 3.30000+ 1 3.30787- 4 3.25674- 3 2.40000+ 1 4.10000+ 1 4.95175- 7 3.26439- 3 2.40000+ 1 4.30000+ 1 1.23799- 5 3.27129- 3 2.40000+ 1 4.40000+ 1 1.03987- 5 3.27245- 3 2.50000+ 1 2.50000+ 1 1.11714- 3 3.15338- 3 2.50000+ 1 2.70000+ 1 1.55488- 4 3.14238- 3 2.50000+ 1 2.90000+ 1 2.45602- 3 3.18251- 3 2.50000+ 1 3.00000+ 1 3.81289- 4 3.20358- 3 2.50000+ 1 3.20000+ 1 1.92625- 4 3.25914- 3 2.50000+ 1 3.30000+ 1 6.98209- 5 3.26153- 3 2.50000+ 1 4.10000+ 1 1.53507- 5 3.26918- 3 2.50000+ 1 4.30000+ 1 2.03017- 5 3.27608- 3 2.50000+ 1 4.40000+ 1 2.47587- 6 3.27724- 3 2.70000+ 1 2.70000+ 1 2.14446- 5 3.13138- 3 2.70000+ 1 2.90000+ 1 2.99664- 4 3.17151- 3 2.70000+ 1 3.00000+ 1 3.62909- 5 3.19258- 3 2.70000+ 1 3.20000+ 1 6.04873- 6 3.24814- 3 2.70000+ 1 3.30000+ 1 2.19942- 5 3.25053- 3 2.70000+ 1 4.10000+ 1 4.39900- 6 3.25818- 3 2.70000+ 1 4.30000+ 1 2.74927- 6 3.26508- 3 2.90000+ 1 2.90000+ 1 2.13903- 4 3.21164- 3 2.90000+ 1 3.00000+ 1 5.74714- 4 3.23271- 3 2.90000+ 1 3.20000+ 1 3.36060- 4 3.28827- 3 2.90000+ 1 3.30000+ 1 5.15622- 4 3.29066- 3 2.90000+ 1 4.10000+ 1 3.15221- 5 3.29831- 3 2.90000+ 1 4.30000+ 1 3.94038- 6 3.30521- 3 2.90000+ 1 4.40000+ 1 3.94038- 6 3.30637- 3 3.00000+ 1 3.00000+ 1 2.99715- 5 3.25378- 3 3.00000+ 1 3.20000+ 1 4.70992- 5 3.30934- 3 3.00000+ 1 3.30000+ 1 3.63932- 5 3.31173- 3 3.00000+ 1 4.10000+ 1 6.42241- 6 3.31938- 3 3.00000+ 1 4.30000+ 1 9.63381- 6 3.32628- 3 3.20000+ 1 3.20000+ 1 7.91274- 6 3.36490- 3 3.20000+ 1 3.30000+ 1 2.13033- 5 3.36729- 3 3.20000+ 1 4.10000+ 1 6.08660- 7 3.37494- 3 3.20000+ 1 4.30000+ 1 3.04330- 6 3.38184- 3 3.30000+ 1 3.30000+ 1 8.35327- 6 3.36968- 3 3.30000+ 1 4.10000+ 1 4.17648- 6 3.37733- 3 3.30000+ 1 4.30000+ 1 8.35327- 6 3.38423- 3 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.51340- 5 4.50900- 4 1.40000+ 1 2.62440- 4 5.50700- 4 1.60000+ 1 1.34830- 3 2.11317- 3 2.10000+ 1 6.58210- 4 2.53825- 3 2.20000+ 1 5.08680- 3 2.55947- 3 2.70000+ 1 2.81400- 4 2.80544- 3 3.20000+ 1 8.17410- 5 2.92220- 3 3.30000+ 1 6.26610- 4 2.92459- 3 4.10000+ 1 3.20800- 5 2.93224- 3 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.13851- 2 4.45500- 5 1.30000+ 1 2.20000+ 1 1.15949- 2 6.57700- 5 1.30000+ 1 2.40000+ 1 1.72803- 2 3.17950- 4 1.30000+ 1 2.50000+ 1 2.52065- 2 3.22740- 4 1.30000+ 1 2.70000+ 1 2.75550- 3 3.11740- 4 1.30000+ 1 2.90000+ 1 2.33368- 3 3.51870- 4 1.30000+ 1 3.00000+ 1 7.63727- 3 3.72940- 4 1.30000+ 1 3.20000+ 1 1.02707- 3 4.28500- 4 1.30000+ 1 3.30000+ 1 1.04320- 3 4.30890- 4 1.30000+ 1 4.10000+ 1 2.74089- 4 4.38540- 4 1.30000+ 1 4.30000+ 1 2.01999- 5 4.45440- 4 1.30000+ 1 4.40000+ 1 5.01824- 5 4.46600- 4 1.40000+ 1 2.10000+ 1 5.02476- 2 1.44350- 4 1.40000+ 1 2.20000+ 1 6.86478- 2 1.65570- 4 1.40000+ 1 2.40000+ 1 1.85851- 1 4.17750- 4 1.40000+ 1 2.50000+ 1 2.24450- 1 4.22540- 4 1.40000+ 1 2.70000+ 1 1.64830- 2 4.11540- 4 1.40000+ 1 2.90000+ 1 1.57929- 2 4.51670- 4 1.40000+ 1 3.00000+ 1 1.93421- 2 4.72740- 4 1.40000+ 1 3.20000+ 1 4.52652- 3 5.28300- 4 1.40000+ 1 3.30000+ 1 6.33217- 3 5.30690- 4 1.40000+ 1 4.10000+ 1 1.65499- 3 5.38340- 4 1.40000+ 1 4.30000+ 1 1.34808- 4 5.45240- 4 1.40000+ 1 4.40000+ 1 1.26948- 4 5.46400- 4 1.60000+ 1 1.60000+ 1 3.63612- 4 1.28174- 3 1.60000+ 1 1.80000+ 1 7.13048- 4 1.39920- 3 1.60000+ 1 1.90000+ 1 1.31552- 2 1.51285- 3 1.60000+ 1 2.10000+ 1 7.81789- 4 1.70682- 3 1.60000+ 1 2.20000+ 1 9.32373- 4 1.72804- 3 1.60000+ 1 2.40000+ 1 1.70000- 3 1.98022- 3 1.60000+ 1 2.50000+ 1 2.95450- 3 1.98501- 3 1.60000+ 1 2.70000+ 1 1.17006- 4 1.97401- 3 1.60000+ 1 2.90000+ 1 9.60189- 5 2.01414- 3 1.60000+ 1 3.00000+ 1 1.53261- 3 2.03521- 3 1.60000+ 1 3.20000+ 1 7.34574- 5 2.09077- 3 1.60000+ 1 3.30000+ 1 8.23785- 5 2.09316- 3 1.60000+ 1 4.10000+ 1 1.15432- 5 2.10081- 3 1.60000+ 1 4.30000+ 1 5.24711- 7 2.10771- 3 1.60000+ 1 4.40000+ 1 9.96889- 6 2.10887- 3 1.80000+ 1 1.80000+ 1 3.41050- 5 1.51666- 3 1.80000+ 1 1.90000+ 1 1.61813- 2 1.63031- 3 1.80000+ 1 2.10000+ 1 3.53634- 4 1.82428- 3 1.80000+ 1 2.20000+ 1 3.39297- 3 1.84550- 3 1.80000+ 1 2.40000+ 1 1.65749- 3 2.09768- 3 1.80000+ 1 2.50000+ 1 9.08907- 3 2.10247- 3 1.80000+ 1 2.70000+ 1 1.04936- 4 2.09147- 3 1.80000+ 1 2.90000+ 1 8.39492- 6 2.13160- 3 1.80000+ 1 3.00000+ 1 1.92403- 3 2.15267- 3 1.80000+ 1 3.20000+ 1 3.51543- 5 2.20823- 3 1.80000+ 1 3.30000+ 1 2.84378- 4 2.21062- 3 1.80000+ 1 4.10000+ 1 9.96883- 6 2.21827- 3 1.80000+ 1 4.40000+ 1 1.25925- 5 2.22633- 3 1.90000+ 1 1.90000+ 1 2.13981- 2 1.74396- 3 1.90000+ 1 2.10000+ 1 3.11693- 2 1.93793- 3 1.90000+ 1 2.20000+ 1 4.07851- 2 1.95915- 3 1.90000+ 1 2.40000+ 1 2.64739- 2 2.21133- 3 1.90000+ 1 2.50000+ 1 3.03111- 2 2.21612- 3 1.90000+ 1 2.70000+ 1 2.67587- 3 2.20512- 3 1.90000+ 1 2.90000+ 1 2.92516- 3 2.24525- 3 1.90000+ 1 3.00000+ 1 6.27288- 3 2.26632- 3 1.90000+ 1 3.20000+ 1 3.21171- 3 2.32188- 3 1.90000+ 1 3.30000+ 1 4.07533- 3 2.32427- 3 1.90000+ 1 4.10000+ 1 2.73878- 4 2.33192- 3 1.90000+ 1 4.30000+ 1 2.57093- 5 2.33882- 3 1.90000+ 1 4.40000+ 1 4.19760- 5 2.33998- 3 2.10000+ 1 2.10000+ 1 2.05677- 4 2.13190- 3 2.10000+ 1 2.20000+ 1 4.88472- 3 2.15312- 3 2.10000+ 1 2.40000+ 1 7.07271- 4 2.40530- 3 2.10000+ 1 2.50000+ 1 8.32182- 3 2.41009- 3 2.10000+ 1 2.70000+ 1 9.33916- 5 2.39909- 3 2.10000+ 1 2.90000+ 1 2.62326- 5 2.43922- 3 2.10000+ 1 3.00000+ 1 3.64179- 3 2.46029- 3 2.10000+ 1 3.20000+ 1 3.51534- 5 2.51585- 3 2.10000+ 1 3.30000+ 1 4.34411- 4 2.51824- 3 2.10000+ 1 4.10000+ 1 8.91937- 6 2.52589- 3 2.10000+ 1 4.40000+ 1 2.36102- 5 2.53395- 3 2.20000+ 1 2.20000+ 1 2.16413- 3 2.17434- 3 2.20000+ 1 2.40000+ 1 6.76165- 3 2.42652- 3 2.20000+ 1 2.50000+ 1 5.66723- 3 2.43131- 3 2.20000+ 1 2.70000+ 1 1.14906- 4 2.42031- 3 2.20000+ 1 2.90000+ 1 3.26353- 4 2.46044- 3 2.20000+ 1 3.00000+ 1 4.70803- 3 2.48151- 3 2.20000+ 1 3.20000+ 1 4.45455- 4 2.53707- 3 2.20000+ 1 3.30000+ 1 3.86171- 4 2.53946- 3 2.20000+ 1 4.10000+ 1 1.10183- 5 2.54711- 3 2.20000+ 1 4.30000+ 1 2.62333- 6 2.55401- 3 2.20000+ 1 4.40000+ 1 3.04310- 5 2.55517- 3 2.40000+ 1 2.40000+ 1 1.03676- 3 2.67870- 3 2.40000+ 1 2.50000+ 1 2.74180- 2 2.68349- 3 2.40000+ 1 2.70000+ 1 1.83638- 4 2.67249- 3 2.40000+ 1 2.90000+ 1 2.49228- 4 2.71262- 3 2.40000+ 1 3.00000+ 1 2.95067- 3 2.73369- 3 2.40000+ 1 3.20000+ 1 8.34245- 5 2.78925- 3 2.40000+ 1 3.30000+ 1 6.38005- 4 2.79164- 3 2.40000+ 1 4.10000+ 1 1.73143- 5 2.79929- 3 2.40000+ 1 4.30000+ 1 2.09860- 6 2.80619- 3 2.40000+ 1 4.40000+ 1 1.88885- 5 2.80735- 3 2.50000+ 1 2.50000+ 1 1.08221- 2 2.68828- 3 2.50000+ 1 2.70000+ 1 2.74934- 4 2.67728- 3 2.50000+ 1 2.90000+ 1 1.35840- 3 2.71741- 3 2.50000+ 1 3.00000+ 1 3.50423- 3 2.73848- 3 2.50000+ 1 3.20000+ 1 8.49452- 4 2.79404- 3 2.50000+ 1 3.30000+ 1 5.76631- 4 2.79643- 3 2.50000+ 1 4.10000+ 1 2.51836- 5 2.80408- 3 2.50000+ 1 4.30000+ 1 1.15430- 5 2.81098- 3 2.50000+ 1 4.40000+ 1 2.25629- 5 2.81214- 3 2.70000+ 1 2.70000+ 1 1.33993- 5 2.66628- 3 2.70000+ 1 2.90000+ 1 1.87593- 5 2.70641- 3 2.70000+ 1 3.00000+ 1 3.99303- 4 2.72748- 3 2.70000+ 1 3.20000+ 1 1.20595- 5 2.78304- 3 2.70000+ 1 3.30000+ 1 1.33993- 5 2.78543- 3 2.70000+ 1 4.10000+ 1 2.67974- 6 2.79308- 3 2.70000+ 1 4.40000+ 1 2.67974- 6 2.80114- 3 2.90000+ 1 2.90000+ 1 6.61431- 7 2.74654- 3 2.90000+ 1 3.00000+ 1 4.40509- 4 2.76761- 3 2.90000+ 1 3.20000+ 1 2.64547- 6 2.82317- 3 2.90000+ 1 3.30000+ 1 3.57146- 5 2.82556- 3 2.90000+ 1 4.10000+ 1 1.98422- 6 2.83321- 3 2.90000+ 1 4.40000+ 1 2.64547- 6 2.84127- 3 3.00000+ 1 3.00000+ 1 6.92736- 4 2.78868- 3 3.00000+ 1 3.20000+ 1 5.92837- 4 2.84424- 3 3.00000+ 1 3.30000+ 1 7.43126- 4 2.84663- 3 3.00000+ 1 4.10000+ 1 5.03656- 5 2.85428- 3 3.00000+ 1 4.30000+ 1 4.95383- 6 2.86118- 3 3.00000+ 1 4.40000+ 1 9.08229- 6 2.86234- 3 3.20000+ 1 3.20000+ 1 1.59628- 6 2.89980- 3 3.20000+ 1 3.30000+ 1 4.25692- 5 2.90219- 3 3.20000+ 1 4.10000+ 1 1.06417- 6 2.90984- 3 3.20000+ 1 4.40000+ 1 2.66036- 6 2.91790- 3 3.30000+ 1 3.30000+ 1 2.07870- 5 2.90458- 3 3.30000+ 1 4.10000+ 1 1.22275- 6 2.91223- 3 3.30000+ 1 4.40000+ 1 3.66821- 6 2.92029- 3 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.01869- 3 1.77973- 3 1.90000+ 1 2.02339- 4 1.89338- 3 2.40000+ 1 3.09889- 2 2.36075- 3 2.90000+ 1 4.98318- 4 2.39467- 3 3.00000+ 1 5.06808- 5 2.41574- 3 4.30000+ 1 2.62909- 6 2.48824- 3 4.40000+ 1 2.04749- 7 2.48940- 3 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 2.03215- 3 7.70000- 7 1.40000+ 1 3.00000+ 1 7.31717- 3 2.18400- 5 1.40000+ 1 3.20000+ 1 4.25872- 2 7.74000- 5 1.40000+ 1 3.30000+ 1 5.85541- 3 7.97900- 5 1.40000+ 1 4.10000+ 1 6.21107- 4 8.74400- 5 1.40000+ 1 4.30000+ 1 3.15062- 5 9.43400- 5 1.40000+ 1 4.40000+ 1 5.51343- 5 9.55000- 5 1.60000+ 1 1.60000+ 1 2.81297- 5 8.30840- 4 1.60000+ 1 1.80000+ 1 1.23544- 3 9.48300- 4 1.60000+ 1 1.90000+ 1 9.40651- 4 1.06195- 3 1.60000+ 1 2.10000+ 1 3.53223- 2 1.25592- 3 1.60000+ 1 2.20000+ 1 4.10252- 3 1.27714- 3 1.60000+ 1 2.40000+ 1 1.54924- 2 1.52932- 3 1.60000+ 1 2.50000+ 1 4.28229- 3 1.53411- 3 1.60000+ 1 2.70000+ 1 2.02525- 5 1.52311- 3 1.60000+ 1 2.90000+ 1 1.81161- 4 1.56324- 3 1.60000+ 1 3.00000+ 1 1.11397- 4 1.58431- 3 1.60000+ 1 3.20000+ 1 2.65205- 3 1.63987- 3 1.60000+ 1 3.30000+ 1 3.11680- 4 1.64226- 3 1.60000+ 1 4.10000+ 1 2.25036- 6 1.64991- 3 1.60000+ 1 4.30000+ 1 1.12513- 6 1.65681- 3 1.60000+ 1 4.40000+ 1 1.12513- 6 1.65797- 3 1.80000+ 1 1.80000+ 1 7.24631- 4 1.06576- 3 1.80000+ 1 1.90000+ 1 4.73009- 3 1.17941- 3 1.80000+ 1 2.10000+ 1 3.15416- 2 1.37338- 3 1.80000+ 1 2.20000+ 1 2.23689- 3 1.39460- 3 1.80000+ 1 2.40000+ 1 1.01163- 2 1.64678- 3 1.80000+ 1 2.50000+ 1 5.08702- 3 1.65157- 3 1.80000+ 1 2.70000+ 1 1.65406- 4 1.64057- 3 1.80000+ 1 2.90000+ 1 2.11532- 4 1.68070- 3 1.80000+ 1 3.00000+ 1 6.22252- 4 1.70177- 3 1.80000+ 1 3.20000+ 1 2.35388- 3 1.75733- 3 1.80000+ 1 3.30000+ 1 1.94662- 4 1.75972- 3 1.80000+ 1 4.10000+ 1 1.57524- 5 1.76737- 3 1.80000+ 1 4.30000+ 1 2.25035- 6 1.77427- 3 1.80000+ 1 4.40000+ 1 4.50060- 6 1.77543- 3 1.90000+ 1 1.90000+ 1 1.67769- 3 1.29306- 3 1.90000+ 1 2.10000+ 1 6.35230- 2 1.48703- 3 1.90000+ 1 2.20000+ 1 2.41010- 3 1.50825- 3 1.90000+ 1 2.40000+ 1 3.40827- 3 1.76043- 3 1.90000+ 1 2.50000+ 1 2.17612- 3 1.76522- 3 1.90000+ 1 2.70000+ 1 1.47400- 4 1.75422- 3 1.90000+ 1 2.90000+ 1 5.58123- 4 1.79435- 3 1.90000+ 1 3.00000+ 1 4.21952- 4 1.81542- 3 1.90000+ 1 3.20000+ 1 4.78641- 3 1.87098- 3 1.90000+ 1 3.30000+ 1 1.90160- 4 1.87337- 3 1.90000+ 1 4.10000+ 1 1.46274- 5 1.88102- 3 1.90000+ 1 4.30000+ 1 4.50063- 6 1.88792- 3 1.90000+ 1 4.40000+ 1 2.25036- 6 1.88908- 3 2.10000+ 1 2.10000+ 1 5.68956- 2 1.68100- 3 2.10000+ 1 2.20000+ 1 1.13031- 1 1.70222- 3 2.10000+ 1 2.40000+ 1 6.00873- 2 1.95440- 3 2.10000+ 1 2.50000+ 1 7.27745- 2 1.95919- 3 2.10000+ 1 2.70000+ 1 6.62277- 3 1.94819- 3 2.10000+ 1 2.90000+ 1 5.74287- 3 1.98832- 3 2.10000+ 1 3.00000+ 1 1.08646- 2 2.00939- 3 2.10000+ 1 3.20000+ 1 1.02180- 2 2.06495- 3 2.10000+ 1 3.30000+ 1 1.11556- 2 2.06734- 3 2.10000+ 1 4.10000+ 1 6.71754- 4 2.07499- 3 2.10000+ 1 4.30000+ 1 5.06346- 5 2.08189- 3 2.10000+ 1 4.40000+ 1 7.31382- 5 2.08305- 3 2.20000+ 1 2.20000+ 1 1.81598- 3 1.72344- 3 2.20000+ 1 2.40000+ 1 6.74349- 2 1.97562- 3 2.20000+ 1 2.50000+ 1 3.40825- 3 1.98041- 3 2.20000+ 1 2.70000+ 1 4.17435- 4 1.96941- 3 2.20000+ 1 2.90000+ 1 2.57669- 4 2.00954- 3 2.20000+ 1 3.00000+ 1 3.35304- 4 2.03061- 3 2.20000+ 1 3.20000+ 1 8.56504- 3 2.08617- 3 2.20000+ 1 3.30000+ 1 2.98177- 4 2.08856- 3 2.20000+ 1 4.10000+ 1 3.93809- 5 2.09621- 3 2.20000+ 1 4.30000+ 1 2.25035- 6 2.10311- 3 2.20000+ 1 4.40000+ 1 2.25035- 6 2.10427- 3 2.40000+ 1 2.40000+ 1 6.26795- 2 2.22780- 3 2.40000+ 1 2.50000+ 1 1.81508- 1 2.23259- 3 2.40000+ 1 2.70000+ 1 3.04812- 3 2.22159- 3 2.40000+ 1 2.90000+ 1 1.51903- 3 2.26172- 3 2.40000+ 1 3.00000+ 1 5.95205- 4 2.28279- 3 2.40000+ 1 3.20000+ 1 4.87645- 3 2.33835- 3 2.40000+ 1 3.30000+ 1 6.36839- 3 2.34074- 3 2.40000+ 1 4.10000+ 1 3.08300- 4 2.34839- 3 2.40000+ 1 4.30000+ 1 1.23772- 5 2.35529- 3 2.40000+ 1 4.40000+ 1 3.37555- 6 2.35645- 3 2.50000+ 1 2.50000+ 1 3.45667- 3 2.23738- 3 2.50000+ 1 2.70000+ 1 5.48529- 4 2.22638- 3 2.50000+ 1 2.90000+ 1 3.75917- 4 2.26651- 3 2.50000+ 1 3.00000+ 1 3.07454- 4 2.28758- 3 2.50000+ 1 3.20000+ 1 4.63837- 3 2.34314- 3 2.50000+ 1 3.30000+ 1 2.75793- 4 2.34553- 3 2.50000+ 1 4.10000+ 1 5.31179- 5 2.35318- 3 2.50000+ 1 4.30000+ 1 3.06441- 6 2.36008- 3 2.50000+ 1 4.40000+ 1 2.04292- 6 2.36124- 3 2.70000+ 1 2.70000+ 1 2.62717- 6 2.21538- 3 2.70000+ 1 2.90000+ 1 3.02131- 5 2.25551- 3 2.70000+ 1 3.00000+ 1 2.10169- 5 2.27658- 3 2.70000+ 1 3.20000+ 1 5.85868- 4 2.33214- 3 2.70000+ 1 3.30000+ 1 4.07215- 5 2.33453- 3 2.90000+ 1 2.90000+ 1 2.58561- 5 2.29564- 3 2.90000+ 1 3.00000+ 1 1.20654- 4 2.31671- 3 2.90000+ 1 3.20000+ 1 6.60187- 4 2.37227- 3 2.90000+ 1 3.30000+ 1 3.79217- 5 2.37466- 3 2.90000+ 1 4.10000+ 1 3.44733- 6 2.38231- 3 3.00000+ 1 3.00000+ 1 4.58054- 5 2.33778- 3 3.00000+ 1 3.20000+ 1 1.39705- 3 2.39334- 3 3.00000+ 1 3.30000+ 1 4.77137- 5 2.39573- 3 3.00000+ 1 4.10000+ 1 3.81706- 6 2.40338- 3 3.00000+ 1 4.30000+ 1 1.90844- 6 2.41028- 3 3.20000+ 1 3.20000+ 1 4.41386- 4 2.44890- 3 3.20000+ 1 3.30000+ 1 8.40483- 4 2.45129- 3 3.20000+ 1 4.10000+ 1 5.00304- 5 2.45894- 3 3.20000+ 1 4.30000+ 1 3.33532- 6 2.46584- 3 3.20000+ 1 4.40000+ 1 5.55876- 6 2.46700- 3 3.30000+ 1 3.30000+ 1 1.27843- 5 2.45368- 3 3.30000+ 1 4.10000+ 1 3.48659- 6 2.46133- 3 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.56240- 3 1.79358- 3 2.40000+ 1 1.53760- 3 2.26095- 3 2.50000+ 1 3.00370- 2 2.26574- 3 3.00000+ 1 3.87590- 4 2.31594- 3 4.40000+ 1 1.50530- 6 2.38960- 3 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 2.66013- 4 8.48500- 4 1.60000+ 1 1.90000+ 1 2.14514- 3 9.62150- 4 1.60000+ 1 2.10000+ 1 3.54335- 3 1.15612- 3 1.60000+ 1 2.20000+ 1 3.85365- 2 1.17734- 3 1.60000+ 1 2.40000+ 1 4.43593- 3 1.42952- 3 1.60000+ 1 2.50000+ 1 1.64607- 2 1.43431- 3 1.60000+ 1 2.70000+ 1 1.13675- 5 1.42331- 3 1.60000+ 1 2.90000+ 1 1.59149- 5 1.46344- 3 1.60000+ 1 3.00000+ 1 2.62603- 4 1.48451- 3 1.60000+ 1 3.20000+ 1 2.61460- 4 1.54007- 3 1.60000+ 1 3.30000+ 1 2.79872- 3 1.54246- 3 1.60000+ 1 4.10000+ 1 1.13675- 6 1.55011- 3 1.60000+ 1 4.40000+ 1 2.27359- 6 1.55817- 3 1.80000+ 1 1.90000+ 1 5.77694- 3 1.07961- 3 1.80000+ 1 2.10000+ 1 2.89876- 4 1.27358- 3 1.80000+ 1 2.20000+ 1 3.97129- 2 1.29480- 3 1.80000+ 1 2.40000+ 1 2.23602- 3 1.54698- 3 1.80000+ 1 2.50000+ 1 8.79292- 3 1.55177- 3 1.80000+ 1 2.70000+ 1 3.41037- 5 1.54077- 3 1.80000+ 1 2.90000+ 1 2.27361- 6 1.58090- 3 1.80000+ 1 3.00000+ 1 7.04821- 4 1.60197- 3 1.80000+ 1 3.20000+ 1 7.95740- 6 1.65753- 3 1.80000+ 1 3.30000+ 1 2.88523- 3 1.65992- 3 1.80000+ 1 4.10000+ 1 3.41037- 6 1.66757- 3 1.80000+ 1 4.40000+ 1 4.54712- 6 1.67563- 3 1.90000+ 1 1.90000+ 1 3.96510- 3 1.19326- 3 1.90000+ 1 2.10000+ 1 3.68324- 3 1.38723- 3 1.90000+ 1 2.20000+ 1 5.99502- 2 1.40845- 3 1.90000+ 1 2.40000+ 1 2.42700- 3 1.66063- 3 1.90000+ 1 2.50000+ 1 4.71332- 3 1.66542- 3 1.90000+ 1 2.70000+ 1 3.46721- 4 1.65442- 3 1.90000+ 1 2.90000+ 1 6.55942- 4 1.69455- 3 1.90000+ 1 3.00000+ 1 9.96971- 4 1.71562- 3 1.90000+ 1 3.20000+ 1 3.29671- 4 1.77118- 3 1.90000+ 1 3.30000+ 1 4.33812- 3 1.77357- 3 1.90000+ 1 4.10000+ 1 3.52398- 5 1.78122- 3 1.90000+ 1 4.30000+ 1 5.68375- 6 1.78812- 3 1.90000+ 1 4.40000+ 1 6.82050- 6 1.78928- 3 2.10000+ 1 2.10000+ 1 8.02574- 4 1.58120- 3 2.10000+ 1 2.20000+ 1 8.27478- 2 1.60242- 3 2.10000+ 1 2.40000+ 1 3.01019- 3 1.85460- 3 2.10000+ 1 2.50000+ 1 4.13192- 2 1.85939- 3 2.10000+ 1 2.70000+ 1 3.43301- 4 1.84839- 3 2.10000+ 1 2.90000+ 1 5.91141- 5 1.88852- 3 2.10000+ 1 3.00000+ 1 4.64940- 4 1.90959- 3 2.10000+ 1 3.20000+ 1 1.33012- 4 1.96515- 3 2.10000+ 1 3.30000+ 1 6.06471- 3 1.96754- 3 2.10000+ 1 4.10000+ 1 3.18297- 5 1.97519- 3 2.10000+ 1 4.40000+ 1 3.41034- 6 1.98325- 3 2.20000+ 1 2.20000+ 1 9.25480- 2 1.62364- 3 2.20000+ 1 2.40000+ 1 6.58812- 2 1.87582- 3 2.20000+ 1 2.50000+ 1 1.04588- 1 1.88061- 3 2.20000+ 1 2.70000+ 1 6.94455- 3 1.86961- 3 2.20000+ 1 2.90000+ 1 6.92068- 3 1.90974- 3 2.20000+ 1 3.00000+ 1 1.03425- 2 1.93081- 3 2.20000+ 1 3.20000+ 1 8.41682- 3 1.98637- 3 2.20000+ 1 3.30000+ 1 1.59168- 2 1.98876- 3 2.20000+ 1 4.10000+ 1 7.01393- 4 1.99641- 3 2.20000+ 1 4.30000+ 1 6.02501- 5 2.00331- 3 2.20000+ 1 4.40000+ 1 7.04813- 5 2.00447- 3 2.40000+ 1 2.40000+ 1 5.09961- 3 2.12800- 3 2.40000+ 1 2.50000+ 1 1.63021- 1 2.13279- 3 2.40000+ 1 2.70000+ 1 6.75231- 4 2.12179- 3 2.40000+ 1 2.90000+ 1 3.61484- 4 2.16192- 3 2.40000+ 1 3.00000+ 1 3.45577- 4 2.18299- 3 2.40000+ 1 3.20000+ 1 2.97829- 4 2.23855- 3 2.40000+ 1 3.30000+ 1 4.58783- 3 2.24094- 3 2.40000+ 1 4.10000+ 1 6.59304- 5 2.24859- 3 2.40000+ 1 4.30000+ 1 3.41025- 6 2.25549- 3 2.40000+ 1 4.40000+ 1 2.27353- 6 2.25665- 3 2.50000+ 1 2.50000+ 1 1.11507- 1 2.13758- 3 2.50000+ 1 2.70000+ 1 3.16248- 3 2.12658- 3 2.50000+ 1 2.90000+ 1 1.54932- 3 2.16671- 3 2.50000+ 1 3.00000+ 1 7.75301- 4 2.18778- 3 2.50000+ 1 3.20000+ 1 3.96509- 3 2.24334- 3 2.50000+ 1 3.30000+ 1 8.39844- 3 2.24573- 3 2.50000+ 1 4.10000+ 1 3.22840- 4 2.25338- 3 2.50000+ 1 4.30000+ 1 1.36421- 5 2.26028- 3 2.50000+ 1 4.40000+ 1 5.68373- 6 2.26144- 3 2.70000+ 1 2.70000+ 1 1.55504- 6 2.11558- 3 2.70000+ 1 2.90000+ 1 3.11021- 6 2.15571- 3 2.70000+ 1 3.00000+ 1 6.06470- 5 2.17678- 3 2.70000+ 1 3.20000+ 1 3.88773- 5 2.23234- 3 2.70000+ 1 3.30000+ 1 6.95101- 4 2.23473- 3 2.90000+ 1 3.00000+ 1 1.12463- 4 2.21691- 3 2.90000+ 1 3.20000+ 1 2.99907- 6 2.27247- 3 2.90000+ 1 3.30000+ 1 6.71759- 4 2.27486- 3 3.00000+ 1 3.00000+ 1 9.99645- 5 2.23798- 3 3.00000+ 1 3.20000+ 1 6.96158- 5 2.29354- 3 3.00000+ 1 3.30000+ 1 1.17991- 3 2.29593- 3 3.00000+ 1 4.10000+ 1 7.14018- 6 2.30358- 3 3.00000+ 1 4.30000+ 1 1.78501- 6 2.31048- 3 3.00000+ 1 4.40000+ 1 1.78501- 6 2.31164- 3 3.20000+ 1 3.20000+ 1 5.62069- 6 2.34910- 3 3.20000+ 1 3.30000+ 1 6.13791- 4 2.35149- 3 3.20000+ 1 4.10000+ 1 2.24837- 6 2.35914- 3 3.30000+ 1 3.30000+ 1 6.68441- 4 2.35388- 3 3.30000+ 1 4.10000+ 1 5.11557- 5 2.36153- 3 3.30000+ 1 4.30000+ 1 4.54710- 6 2.36843- 3 3.30000+ 1 4.40000+ 1 4.54710- 6 2.36959- 3 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.84268- 5 1.17460- 4 1.90000+ 1 3.00003- 4 2.31110- 4 2.90000+ 1 1.87519- 4 7.32400- 4 3.00000+ 1 7.53318- 5 7.53470- 4 4.30000+ 1 2.17219- 6 8.25970- 4 4.40000+ 1 7.25239- 7 8.27130- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.50000+ 1 1.74172- 3 0.00000+ 0 1.80000+ 1 2.90000+ 1 3.13741- 2 1.84300- 5 1.80000+ 1 3.00000+ 1 5.34711- 2 3.95000- 5 1.80000+ 1 3.20000+ 1 3.46682- 2 9.50600- 5 1.80000+ 1 3.30000+ 1 5.60739- 2 9.74500- 5 1.80000+ 1 4.10000+ 1 3.46340- 3 1.05100- 4 1.80000+ 1 4.30000+ 1 2.62240- 4 1.12000- 4 1.80000+ 1 4.40000+ 1 3.37402- 4 1.13160- 4 1.90000+ 1 2.40000+ 1 6.90248- 2 9.81600- 5 1.90000+ 1 2.50000+ 1 9.53997- 2 1.02950- 4 1.90000+ 1 2.70000+ 1 4.01515- 2 9.19500- 5 1.90000+ 1 2.90000+ 1 4.65742- 2 1.32080- 4 1.90000+ 1 3.00000+ 1 4.90354- 2 1.53150- 4 1.90000+ 1 3.20000+ 1 3.69604- 2 2.08710- 4 1.90000+ 1 3.30000+ 1 4.44276- 2 2.11100- 4 1.90000+ 1 4.10000+ 1 4.06890- 3 2.18750- 4 1.90000+ 1 4.30000+ 1 3.86412- 4 2.25650- 4 1.90000+ 1 4.40000+ 1 3.25649- 4 2.26810- 4 2.10000+ 1 2.10000+ 1 4.05277- 3 1.87300- 5 2.10000+ 1 2.20000+ 1 4.12946- 3 3.99500- 5 2.10000+ 1 2.40000+ 1 4.47464- 3 2.92130- 4 2.10000+ 1 2.50000+ 1 7.98926- 3 2.96920- 4 2.10000+ 1 2.70000+ 1 1.67419- 2 2.85920- 4 2.10000+ 1 2.90000+ 1 4.93907- 3 3.26050- 4 2.10000+ 1 3.00000+ 1 7.63826- 3 3.47120- 4 2.10000+ 1 3.20000+ 1 1.54041- 3 4.02680- 4 2.10000+ 1 3.30000+ 1 1.49605- 3 4.05070- 4 2.10000+ 1 4.10000+ 1 1.30984- 3 4.12720- 4 2.10000+ 1 4.30000+ 1 4.22745- 5 4.19620- 4 2.10000+ 1 4.40000+ 1 4.47220- 5 4.20780- 4 2.20000+ 1 2.20000+ 1 5.56831- 3 6.11700- 5 2.20000+ 1 2.40000+ 1 9.07021- 3 3.13350- 4 2.20000+ 1 2.50000+ 1 9.03011- 3 3.18140- 4 2.20000+ 1 2.70000+ 1 2.32639- 2 3.07140- 4 2.20000+ 1 2.90000+ 1 9.20772- 3 3.47270- 4 2.20000+ 1 3.00000+ 1 7.95247- 3 3.68340- 4 2.20000+ 1 3.20000+ 1 1.28029- 3 4.23900- 4 2.20000+ 1 3.30000+ 1 2.16356- 3 4.26290- 4 2.20000+ 1 4.10000+ 1 1.81682- 3 4.33940- 4 2.20000+ 1 4.30000+ 1 7.00626- 5 4.40840- 4 2.20000+ 1 4.40000+ 1 5.03435- 5 4.42000- 4 2.40000+ 1 2.40000+ 1 8.80634- 3 5.65530- 4 2.40000+ 1 2.50000+ 1 1.77641- 2 5.70320- 4 2.40000+ 1 2.70000+ 1 1.99593- 2 5.59320- 4 2.40000+ 1 2.90000+ 1 2.66270- 3 5.99450- 4 2.40000+ 1 3.00000+ 1 8.92807- 3 6.20520- 4 2.40000+ 1 3.20000+ 1 7.21844- 4 6.76080- 4 2.40000+ 1 3.30000+ 1 4.75274- 4 6.78470- 4 2.40000+ 1 4.10000+ 1 1.40080- 3 6.86120- 4 2.40000+ 1 4.30000+ 1 1.95088- 5 6.93020- 4 2.40000+ 1 4.40000+ 1 5.18007- 5 6.94180- 4 2.50000+ 1 2.50000+ 1 1.46550- 2 5.75110- 4 2.50000+ 1 2.70000+ 1 2.59939- 2 5.64110- 4 2.50000+ 1 2.90000+ 1 1.44580- 3 6.04240- 4 2.50000+ 1 3.00000+ 1 1.03163- 2 6.25310- 4 2.50000+ 1 3.20000+ 1 4.41563- 4 6.80870- 4 2.50000+ 1 3.30000+ 1 1.04523- 3 6.83260- 4 2.50000+ 1 4.10000+ 1 1.81897- 3 6.90910- 4 2.50000+ 1 4.30000+ 1 1.04458- 5 6.97810- 4 2.50000+ 1 4.40000+ 1 5.84597- 5 6.98970- 4 2.70000+ 1 2.70000+ 1 1.68362- 2 5.53110- 4 2.70000+ 1 2.90000+ 1 2.33136- 2 5.93240- 4 2.70000+ 1 3.00000+ 1 3.71356- 2 6.14310- 4 2.70000+ 1 3.20000+ 1 2.57383- 2 6.69870- 4 2.70000+ 1 3.30000+ 1 3.49099- 2 6.72260- 4 2.70000+ 1 4.10000+ 1 2.94861- 3 6.79910- 4 2.70000+ 1 4.30000+ 1 2.07816- 4 6.86810- 4 2.70000+ 1 4.40000+ 1 2.51826- 4 6.87970- 4 2.90000+ 1 2.90000+ 1 2.36200- 3 6.33370- 4 2.90000+ 1 3.00000+ 1 9.78460- 3 6.54440- 4 2.90000+ 1 3.20000+ 1 3.05306- 3 7.10000- 4 2.90000+ 1 3.30000+ 1 2.52385- 3 7.12390- 4 2.90000+ 1 4.10000+ 1 2.11937- 3 7.20040- 4 2.90000+ 1 4.30000+ 1 3.73461- 5 7.26940- 4 2.90000+ 1 4.40000+ 1 5.60185- 5 7.28100- 4 3.00000+ 1 3.00000+ 1 6.66996- 3 6.75510- 4 3.00000+ 1 3.20000+ 1 2.96374- 3 7.31070- 4 3.00000+ 1 3.30000+ 1 5.37665- 3 7.33460- 4 3.00000+ 1 4.10000+ 1 3.37765- 3 7.41110- 4 3.00000+ 1 4.30000+ 1 7.60710- 5 7.48010- 4 3.00000+ 1 4.40000+ 1 8.21569- 5 7.49170- 4 3.20000+ 1 3.20000+ 1 7.16858- 4 7.86630- 4 3.20000+ 1 3.30000+ 1 2.15821- 3 7.89020- 4 3.20000+ 1 4.10000+ 1 2.83370- 3 7.96670- 4 3.20000+ 1 4.30000+ 1 2.61351- 5 8.03570- 4 3.20000+ 1 4.40000+ 1 1.86677- 5 8.04730- 4 3.30000+ 1 3.30000+ 1 1.42203- 3 7.91410- 4 3.30000+ 1 4.10000+ 1 3.94041- 3 7.99060- 4 3.30000+ 1 4.30000+ 1 2.29978- 5 8.05960- 4 3.30000+ 1 4.40000+ 1 3.83306- 5 8.07120- 4 4.10000+ 1 4.10000+ 1 1.74351- 4 8.06710- 4 4.10000+ 1 4.30000+ 1 2.09222- 5 8.13610- 4 4.10000+ 1 4.40000+ 1 2.44094- 5 8.14770- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.02713- 4 3.07620- 4 2.70000+ 1 1.98150- 4 5.74810- 4 3.20000+ 1 3.24862- 5 6.91570- 4 4.10000+ 1 2.30728- 5 7.01610- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.46227- 2 1.46200- 5 1.90000+ 1 3.00000+ 1 2.00622- 2 3.56900- 5 1.90000+ 1 3.20000+ 1 6.28206- 3 9.12500- 5 1.90000+ 1 3.30000+ 1 9.67803- 3 9.36400- 5 1.90000+ 1 4.10000+ 1 1.43186- 3 1.01290- 4 1.90000+ 1 4.30000+ 1 1.32927- 4 1.08190- 4 1.90000+ 1 4.40000+ 1 1.17315- 4 1.09350- 4 2.10000+ 1 2.40000+ 1 1.38055- 1 1.74670- 4 2.10000+ 1 2.50000+ 1 3.05382- 1 1.79460- 4 2.10000+ 1 2.70000+ 1 3.81329- 2 1.68460- 4 2.10000+ 1 2.90000+ 1 2.95459- 2 2.08590- 4 2.10000+ 1 3.00000+ 1 4.25193- 2 2.29660- 4 2.10000+ 1 3.20000+ 1 1.87881- 2 2.85220- 4 2.10000+ 1 3.30000+ 1 3.06935- 2 2.87610- 4 2.10000+ 1 4.10000+ 1 3.89186- 3 2.95260- 4 2.10000+ 1 4.30000+ 1 2.46460- 4 3.02160- 4 2.10000+ 1 4.40000+ 1 2.83652- 4 3.03320- 4 2.20000+ 1 2.40000+ 1 4.47478- 2 1.95890- 4 2.20000+ 1 2.50000+ 1 1.14388- 2 2.00680- 4 2.20000+ 1 2.70000+ 1 6.29794- 3 1.89680- 4 2.20000+ 1 2.90000+ 1 2.57119- 2 2.29810- 4 2.20000+ 1 3.00000+ 1 5.52167- 3 2.50880- 4 2.20000+ 1 3.20000+ 1 2.34997- 3 3.06440- 4 2.20000+ 1 3.30000+ 1 2.02495- 3 3.08830- 4 2.20000+ 1 4.10000+ 1 5.08156- 4 3.16480- 4 2.20000+ 1 4.30000+ 1 1.71276- 4 3.23380- 4 2.20000+ 1 4.40000+ 1 3.20821- 5 3.24540- 4 2.40000+ 1 2.40000+ 1 2.79708- 3 4.48070- 4 2.40000+ 1 2.50000+ 1 1.81695- 2 4.52860- 4 2.40000+ 1 2.70000+ 1 4.66458- 3 4.41860- 4 2.40000+ 1 2.90000+ 1 1.98624- 2 4.81990- 4 2.40000+ 1 3.00000+ 1 3.76397- 3 5.03060- 4 2.40000+ 1 3.20000+ 1 4.24192- 3 5.58620- 4 2.40000+ 1 3.30000+ 1 2.11683- 3 5.61010- 4 2.40000+ 1 4.10000+ 1 4.78099- 4 5.68660- 4 2.40000+ 1 4.30000+ 1 1.31226- 4 5.75560- 4 2.40000+ 1 4.40000+ 1 2.34871- 5 5.76720- 4 2.50000+ 1 2.50000+ 1 8.85979- 4 4.57650- 4 2.50000+ 1 2.70000+ 1 3.08036- 3 4.46650- 4 2.50000+ 1 2.90000+ 1 3.64184- 2 4.86780- 4 2.50000+ 1 3.00000+ 1 2.18956- 3 5.07850- 4 2.50000+ 1 3.20000+ 1 9.82603- 3 5.63410- 4 2.50000+ 1 3.30000+ 1 8.09622- 4 5.65800- 4 2.50000+ 1 4.10000+ 1 2.52058- 4 5.73450- 4 2.50000+ 1 4.30000+ 1 2.36026- 4 5.80350- 4 2.50000+ 1 4.40000+ 1 1.30576- 5 5.81510- 4 2.70000+ 1 2.70000+ 1 8.77742- 4 4.35650- 4 2.70000+ 1 2.90000+ 1 1.21214- 2 4.75780- 4 2.70000+ 1 3.00000+ 1 2.21116- 3 4.96850- 4 2.70000+ 1 3.20000+ 1 2.33033- 3 5.52410- 4 2.70000+ 1 3.30000+ 1 1.58549- 3 5.54800- 4 2.70000+ 1 4.10000+ 1 1.45714- 4 5.62450- 4 2.70000+ 1 4.30000+ 1 7.86378- 5 5.69350- 4 2.70000+ 1 4.40000+ 1 1.38774- 5 5.70510- 4 2.90000+ 1 2.90000+ 1 1.31050- 2 5.15910- 4 2.90000+ 1 3.00000+ 1 3.46154- 2 5.36980- 4 2.90000+ 1 3.20000+ 1 1.96695- 2 5.92540- 4 2.90000+ 1 3.30000+ 1 3.23107- 2 5.94930- 4 2.90000+ 1 4.10000+ 1 2.16723- 3 6.02580- 4 2.90000+ 1 4.30000+ 1 2.02557- 4 6.09480- 4 2.90000+ 1 4.40000+ 1 2.35985- 4 6.10640- 4 3.00000+ 1 3.00000+ 1 1.31349- 3 5.58050- 4 3.00000+ 1 3.20000+ 1 4.36348- 3 6.13610- 4 3.00000+ 1 3.30000+ 1 1.64534- 3 6.16000- 4 3.00000+ 1 4.10000+ 1 2.87141- 4 6.23650- 4 3.00000+ 1 4.30000+ 1 2.25053- 4 6.30550- 4 3.00000+ 1 4.40000+ 1 1.55214- 5 6.31710- 4 3.20000+ 1 3.20000+ 1 1.76390- 4 6.69170- 4 3.20000+ 1 3.30000+ 1 3.18264- 4 6.71560- 4 3.20000+ 1 4.10000+ 1 5.79193- 5 6.79210- 4 3.20000+ 1 4.30000+ 1 1.95985- 5 6.86110- 4 3.20000+ 1 4.40000+ 1 4.38786- 6 6.87270- 4 3.30000+ 1 3.30000+ 1 4.75185- 5 6.73950- 4 3.30000+ 1 4.10000+ 1 3.12692- 5 6.81600- 4 3.30000+ 1 4.30000+ 1 3.34155- 5 6.88500- 4 3.30000+ 1 4.40000+ 1 1.53276- 6 6.89660- 4 4.10000+ 1 4.10000+ 1 8.57581- 7 6.89250- 4 4.10000+ 1 4.30000+ 1 1.20062- 6 6.96150- 4 4.10000+ 1 4.40000+ 1 1.71520- 7 6.97310- 4 4.30000+ 1 4.40000+ 1 1.71524- 7 7.04210- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.60540- 5 1.93970- 4 2.20000+ 1 2.02434- 4 2.15190- 4 2.70000+ 1 1.69448- 4 4.61160- 4 3.20000+ 1 9.43067- 6 5.77920- 4 3.30000+ 1 5.41753- 5 5.80310- 4 4.10000+ 1 1.94975- 5 5.87960- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 7.16114- 3 6.10200- 5 2.10000+ 1 2.50000+ 1 1.21560- 2 6.58100- 5 2.10000+ 1 2.70000+ 1 1.71652- 2 5.48100- 5 2.10000+ 1 2.90000+ 1 1.35648- 2 9.49400- 5 2.10000+ 1 3.00000+ 1 4.28792- 2 1.16010- 4 2.10000+ 1 3.20000+ 1 9.90889- 3 1.71570- 4 2.10000+ 1 3.30000+ 1 1.71012- 2 1.73960- 4 2.10000+ 1 4.10000+ 1 1.61484- 3 1.81610- 4 2.10000+ 1 4.30000+ 1 1.10732- 4 1.88510- 4 2.10000+ 1 4.40000+ 1 2.47767- 4 1.89670- 4 2.20000+ 1 2.40000+ 1 8.53124- 2 8.22400- 5 2.20000+ 1 2.50000+ 1 1.10524- 1 8.70300- 5 2.20000+ 1 2.70000+ 1 8.55358- 2 7.60300- 5 2.20000+ 1 2.90000+ 1 9.20681- 2 1.16160- 4 2.20000+ 1 3.00000+ 1 1.15072- 1 1.37230- 4 2.20000+ 1 3.20000+ 1 7.63925- 2 1.92790- 4 2.20000+ 1 3.30000+ 1 8.77129- 2 1.95180- 4 2.20000+ 1 4.10000+ 1 8.95272- 3 2.02830- 4 2.20000+ 1 4.30000+ 1 7.71746- 4 2.09730- 4 2.20000+ 1 4.40000+ 1 7.25090- 4 2.10890- 4 2.40000+ 1 2.40000+ 1 7.77656- 4 3.34420- 4 2.40000+ 1 2.50000+ 1 1.52394- 2 3.39210- 4 2.40000+ 1 2.70000+ 1 6.80301- 3 3.28210- 4 2.40000+ 1 2.90000+ 1 3.50460- 3 3.68340- 4 2.40000+ 1 3.00000+ 1 4.49547- 2 3.89410- 4 2.40000+ 1 3.20000+ 1 1.14178- 3 4.44970- 4 2.40000+ 1 3.30000+ 1 5.37474- 3 4.47360- 4 2.40000+ 1 4.10000+ 1 4.91187- 4 4.55010- 4 2.40000+ 1 4.30000+ 1 2.74506- 5 4.61910- 4 2.40000+ 1 4.40000+ 1 2.34211- 4 4.63070- 4 2.50000+ 1 2.50000+ 1 7.00690- 3 3.44000- 4 2.50000+ 1 2.70000+ 1 1.48926- 2 3.33000- 4 2.50000+ 1 2.90000+ 1 1.26245- 2 3.73130- 4 2.50000+ 1 3.00000+ 1 5.46950- 2 3.94200- 4 2.50000+ 1 3.20000+ 1 1.03970- 3 4.49760- 4 2.50000+ 1 3.30000+ 1 6.99741- 3 4.52150- 4 2.50000+ 1 4.10000+ 1 1.24554- 3 4.59800- 4 2.50000+ 1 4.30000+ 1 1.00875- 4 4.66700- 4 2.50000+ 1 4.40000+ 1 2.87193- 4 4.67860- 4 2.70000+ 1 2.70000+ 1 4.47321- 7 3.22000- 4 2.70000+ 1 2.90000+ 1 2.53187- 4 3.62130- 4 2.70000+ 1 3.00000+ 1 5.33466- 3 3.83200- 4 2.70000+ 1 3.20000+ 1 4.02133- 4 4.38760- 4 2.70000+ 1 3.30000+ 1 7.26887- 4 4.41150- 4 2.70000+ 1 4.10000+ 1 1.78935- 6 4.48800- 4 2.70000+ 1 4.30000+ 1 1.78935- 6 4.55700- 4 2.70000+ 1 4.40000+ 1 2.72876- 5 4.56860- 4 2.90000+ 1 2.90000+ 1 1.05362- 5 4.02260- 4 2.90000+ 1 3.00000+ 1 5.11653- 3 4.23330- 4 2.90000+ 1 3.20000+ 1 1.93307- 4 4.78890- 4 2.90000+ 1 3.30000+ 1 6.27702- 4 4.81280- 4 2.90000+ 1 4.10000+ 1 2.06665- 5 4.88930- 4 2.90000+ 1 4.40000+ 1 2.67444- 5 4.96990- 4 3.00000+ 1 3.00000+ 1 7.69616- 3 4.44400- 4 3.00000+ 1 3.20000+ 1 6.49555- 3 4.99960- 4 3.00000+ 1 3.30000+ 1 8.48748- 3 5.02350- 4 3.00000+ 1 4.10000+ 1 5.99827- 4 5.10000- 4 3.00000+ 1 4.30000+ 1 5.27852- 5 5.16900- 4 3.00000+ 1 4.40000+ 1 9.21341- 5 5.18060- 4 3.20000+ 1 3.20000+ 1 6.50170- 5 5.55520- 4 3.20000+ 1 3.30000+ 1 3.97096- 4 5.57910- 4 3.20000+ 1 4.10000+ 1 2.04085- 5 5.65560- 4 3.20000+ 1 4.30000+ 1 1.16626- 6 5.72460- 4 3.20000+ 1 4.40000+ 1 2.07011- 5 5.73620- 4 3.30000+ 1 3.30000+ 1 3.60945- 4 5.60300- 4 3.30000+ 1 4.10000+ 1 4.72309- 5 5.67950- 4 3.30000+ 1 4.30000+ 1 3.49862- 6 5.74850- 4 3.30000+ 1 4.40000+ 1 2.71144- 5 5.76010- 4 4.10000+ 1 4.40000+ 1 1.74929- 6 5.83660- 4 4.30000+ 1 4.40000+ 1 2.91559- 7 5.90560- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.24460- 4 2.73400- 4 2.90000+ 1 5.31301- 5 3.07320- 4 3.00000+ 1 7.04031- 6 3.28390- 4 4.30000+ 1 3.68711- 7 4.00890- 4 4.40000+ 1 3.56241- 8 4.02050- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.20000+ 1 2.79853- 2 0.00000+ 0 2.20000+ 1 3.30000+ 1 5.28696- 3 1.21000- 6 2.20000+ 1 4.10000+ 1 7.10963- 4 8.86000- 6 2.20000+ 1 4.30000+ 1 3.19747- 5 1.57600- 5 2.20000+ 1 4.40000+ 1 6.88458- 5 1.69200- 5 2.40000+ 1 2.40000+ 1 1.15286- 1 1.40450- 4 2.40000+ 1 2.50000+ 1 3.68474- 1 1.45240- 4 2.40000+ 1 2.70000+ 1 6.91243- 2 1.34240- 4 2.40000+ 1 2.90000+ 1 5.75927- 2 1.74370- 4 2.40000+ 1 3.00000+ 1 7.89173- 2 1.95440- 4 2.40000+ 1 3.20000+ 1 6.45195- 2 2.51000- 4 2.40000+ 1 3.30000+ 1 6.41583- 2 2.53390- 4 2.40000+ 1 4.10000+ 1 7.14432- 3 2.61040- 4 2.40000+ 1 4.30000+ 1 4.97674- 4 2.67940- 4 2.40000+ 1 4.40000+ 1 5.16951- 4 2.69100- 4 2.50000+ 1 2.50000+ 1 4.85042- 3 1.50030- 4 2.50000+ 1 2.70000+ 1 6.14218- 3 1.39030- 4 2.50000+ 1 2.90000+ 1 1.21204- 2 1.79160- 4 2.50000+ 1 3.00000+ 1 5.15869- 3 2.00230- 4 2.50000+ 1 3.20000+ 1 7.07982- 2 2.55790- 4 2.50000+ 1 3.30000+ 1 2.76539- 3 2.58180- 4 2.50000+ 1 4.10000+ 1 4.87489- 4 2.65830- 4 2.50000+ 1 4.30000+ 1 7.79852- 5 2.72730- 4 2.50000+ 1 4.40000+ 1 2.93666- 5 2.73890- 4 2.70000+ 1 2.70000+ 1 7.85014- 4 1.28030- 4 2.70000+ 1 2.90000+ 1 1.59867- 3 1.68160- 4 2.70000+ 1 3.00000+ 1 1.49828- 3 1.89230- 4 2.70000+ 1 3.20000+ 1 6.31352- 3 2.44790- 4 2.70000+ 1 3.30000+ 1 1.82294- 3 2.47180- 4 2.70000+ 1 4.10000+ 1 9.39677- 5 2.54830- 4 2.70000+ 1 4.30000+ 1 9.78856- 6 2.61730- 4 2.70000+ 1 4.40000+ 1 7.83063- 6 2.62890- 4 2.90000+ 1 2.90000+ 1 3.03118- 4 2.08290- 4 2.90000+ 1 3.00000+ 1 1.64743- 3 2.29360- 4 2.90000+ 1 3.20000+ 1 3.57206- 3 2.84920- 4 2.90000+ 1 3.30000+ 1 5.95136- 4 2.87310- 4 2.90000+ 1 4.10000+ 1 6.75401- 5 2.94960- 4 2.90000+ 1 4.30000+ 1 3.58915- 6 3.01860- 4 2.90000+ 1 4.40000+ 1 7.83075- 6 3.03020- 4 3.00000+ 1 3.00000+ 1 6.57780- 4 2.50430- 4 3.00000+ 1 3.20000+ 1 7.11820- 3 3.05990- 4 3.00000+ 1 3.30000+ 1 6.23526- 4 3.08380- 4 3.00000+ 1 4.10000+ 1 4.43744- 5 3.16030- 4 3.00000+ 1 4.30000+ 1 8.15708- 6 3.22930- 4 3.00000+ 1 4.40000+ 1 5.87302- 6 3.24090- 4 3.20000+ 1 3.20000+ 1 3.23428- 3 3.61550- 4 3.20000+ 1 3.30000+ 1 6.23304- 3 3.63940- 4 3.20000+ 1 4.10000+ 1 4.70649- 4 3.71590- 4 3.20000+ 1 4.30000+ 1 3.07583- 5 3.78490- 4 3.20000+ 1 4.40000+ 1 4.72952- 5 3.79650- 4 3.30000+ 1 3.30000+ 1 1.24193- 4 3.66330- 4 3.30000+ 1 4.10000+ 1 3.64909- 5 3.73980- 4 3.30000+ 1 4.30000+ 1 2.00859- 6 3.80880- 4 3.30000+ 1 4.40000+ 1 3.34775- 6 3.82040- 4 4.10000+ 1 4.10000+ 1 1.95764- 6 3.81630- 4 4.10000+ 1 4.30000+ 1 3.26283- 7 3.88530- 4 4.10000+ 1 4.40000+ 1 3.26283- 7 3.89690- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 9.79450- 6 2.52180- 4 2.50000+ 1 2.10560- 4 2.56970- 4 3.00000+ 1 4.83430- 5 3.07170- 4 4.40000+ 1 2.56990- 7 3.80830- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 6.81135- 3 1.19230- 4 2.40000+ 1 2.50000+ 1 2.31924- 1 1.24020- 4 2.40000+ 1 2.70000+ 1 9.30958- 3 1.13020- 4 2.40000+ 1 2.90000+ 1 5.85321- 3 1.53150- 4 2.40000+ 1 3.00000+ 1 1.27422- 2 1.74220- 4 2.40000+ 1 3.20000+ 1 3.95064- 3 2.29780- 4 2.40000+ 1 3.30000+ 1 6.49457- 2 2.32170- 4 2.40000+ 1 4.10000+ 1 8.32234- 4 2.39820- 4 2.40000+ 1 4.30000+ 1 4.81159- 5 2.46720- 4 2.40000+ 1 4.40000+ 1 7.25492- 5 2.47880- 4 2.50000+ 1 2.50000+ 1 1.89078- 1 1.28810- 4 2.50000+ 1 2.70000+ 1 7.75100- 2 1.17810- 4 2.50000+ 1 2.90000+ 1 8.09478- 2 1.57940- 4 2.50000+ 1 3.00000+ 1 8.20097- 2 1.79010- 4 2.50000+ 1 3.20000+ 1 6.14121- 2 2.34570- 4 2.50000+ 1 3.30000+ 1 1.15323- 1 2.36960- 4 2.50000+ 1 4.10000+ 1 8.06638- 3 2.44610- 4 2.50000+ 1 4.30000+ 1 6.74367- 4 2.51510- 4 2.50000+ 1 4.40000+ 1 5.38296- 4 2.52670- 4 2.70000+ 1 2.70000+ 1 1.39873- 3 1.06810- 4 2.70000+ 1 2.90000+ 1 1.60783- 3 1.46940- 4 2.70000+ 1 3.00000+ 1 3.22154- 3 1.68010- 4 2.70000+ 1 3.20000+ 1 2.32649- 3 2.23570- 4 2.70000+ 1 3.30000+ 1 8.72258- 3 2.25960- 4 2.70000+ 1 4.10000+ 1 1.62772- 4 2.33610- 4 2.70000+ 1 4.30000+ 1 1.01495- 5 2.40510- 4 2.70000+ 1 4.40000+ 1 1.69162- 5 2.41670- 4 2.90000+ 1 2.90000+ 1 1.93207- 4 1.87070- 4 2.90000+ 1 3.00000+ 1 2.70382- 3 2.08140- 4 2.90000+ 1 3.20000+ 1 2.87190- 4 2.63700- 4 2.90000+ 1 3.30000+ 1 5.57693- 3 2.66090- 4 2.90000+ 1 4.10000+ 1 6.16478- 5 2.73740- 4 2.90000+ 1 4.30000+ 1 2.25534- 6 2.80640- 4 2.90000+ 1 4.40000+ 1 1.31561- 5 2.81800- 4 3.00000+ 1 3.00000+ 1 9.45398- 4 2.29210- 4 3.00000+ 1 3.20000+ 1 9.28099- 4 2.84770- 4 3.00000+ 1 3.30000+ 1 7.50331- 3 2.87160- 4 3.00000+ 1 4.10000+ 1 8.87122- 5 2.94810- 4 3.00000+ 1 4.30000+ 1 1.20292- 5 3.01710- 4 3.00000+ 1 4.40000+ 1 8.64573- 6 3.02870- 4 3.20000+ 1 3.20000+ 1 6.84139- 5 3.40330- 4 3.20000+ 1 3.30000+ 1 5.33858- 3 3.42720- 4 3.20000+ 1 4.10000+ 1 4.66112- 5 3.50370- 4 3.20000+ 1 4.30000+ 1 1.87948- 6 3.57270- 4 3.20000+ 1 4.40000+ 1 4.51083- 6 3.58430- 4 3.30000+ 1 3.30000+ 1 5.77304- 3 3.45110- 4 3.30000+ 1 4.10000+ 1 5.57455- 4 3.52760- 4 3.30000+ 1 4.30000+ 1 4.54842- 5 3.59660- 4 3.30000+ 1 4.40000+ 1 4.96189- 5 3.60820- 4 4.10000+ 1 4.10000+ 1 3.38319- 6 3.60410- 4 4.10000+ 1 4.30000+ 1 3.75907- 7 3.67310- 4 4.10000+ 1 4.40000+ 1 3.75907- 7 3.68470- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20191- 6 1.10550- 4 3.30000+ 1 2.12893- 7 1.12940- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.08924- 1 1.15200- 5 2.90000+ 1 3.30000+ 1 6.94136- 2 1.39100- 5 2.90000+ 1 4.10000+ 1 9.93297- 3 2.15600- 5 2.90000+ 1 4.30000+ 1 2.22042- 3 2.84600- 5 2.90000+ 1 4.40000+ 1 1.84880- 3 2.96200- 5 3.00000+ 1 3.20000+ 1 1.57951- 1 3.25900- 5 3.00000+ 1 3.30000+ 1 3.45541- 2 3.49800- 5 3.00000+ 1 4.10000+ 1 4.69833- 3 4.26300- 5 3.00000+ 1 4.30000+ 1 8.24059- 4 4.95300- 5 3.00000+ 1 4.40000+ 1 3.22042- 4 5.06900- 5 3.20000+ 1 3.20000+ 1 2.33873- 1 8.81500- 5 3.20000+ 1 3.30000+ 1 3.37595- 1 9.05400- 5 3.20000+ 1 4.10000+ 1 1.19911- 2 9.81900- 5 3.20000+ 1 4.30000+ 1 1.54387- 3 1.05090- 4 3.20000+ 1 4.40000+ 1 1.32604- 3 1.06250- 4 3.30000+ 1 3.30000+ 1 2.07146- 2 9.29300- 5 3.30000+ 1 4.10000+ 1 1.31651- 3 1.00580- 4 3.30000+ 1 4.30000+ 1 6.25135- 4 1.07480- 4 3.30000+ 1 4.40000+ 1 2.74683- 4 1.08640- 4 4.10000+ 1 4.30000+ 1 2.84151- 5 1.15130- 4 4.10000+ 1 4.40000+ 1 1.89438- 5 1.16290- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 3.08379- 6 1.08150- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.37055- 2 6.73000- 6 2.90000+ 1 3.30000+ 1 8.17800- 2 9.12000- 6 2.90000+ 1 4.10000+ 1 1.02082- 3 1.67700- 5 2.90000+ 1 4.30000+ 1 3.03226- 5 2.36700- 5 2.90000+ 1 4.40000+ 1 2.83012- 4 2.48300- 5 3.00000+ 1 3.20000+ 1 4.79813- 2 2.78000- 5 3.00000+ 1 3.30000+ 1 2.07574- 1 3.01900- 5 3.00000+ 1 4.10000+ 1 1.33827- 2 3.78400- 5 3.00000+ 1 4.30000+ 1 1.67789- 3 4.47400- 5 3.00000+ 1 4.40000+ 1 1.20277- 3 4.59000- 5 3.20000+ 1 3.20000+ 1 1.04230- 2 8.33600- 5 3.20000+ 1 3.30000+ 1 2.62289- 1 8.57500- 5 3.20000+ 1 4.10000+ 1 8.90432- 4 9.34000- 5 3.20000+ 1 4.30000+ 1 1.15233- 4 1.00300- 4 3.20000+ 1 4.40000+ 1 4.71417- 4 1.01460- 4 3.30000+ 1 3.30000+ 1 3.40320- 1 8.81400- 5 3.30000+ 1 4.10000+ 1 1.36452- 2 9.57900- 5 3.30000+ 1 4.30000+ 1 1.21287- 3 1.02690- 4 3.30000+ 1 4.40000+ 1 1.95084- 3 1.03850- 4 4.10000+ 1 4.30000+ 1 1.01072- 5 1.10340- 4 4.10000+ 1 4.40000+ 1 3.03226- 5 1.11500- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 9.86223- 7 4.01300- 5 3.00000+ 1 7.17726- 6 6.12000- 5 4.30000+ 1 2.81530- 8 1.33700- 4 4.40000+ 1 3.14645-10 1.34860- 4 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 5.55416- 2 1.77300- 5 2.90000+ 1 3.30000+ 1 1.61263- 1 2.01200- 5 2.90000+ 1 4.10000+ 1 9.83932- 3 2.77700- 5 2.90000+ 1 4.30000+ 1 4.73060- 4 3.46700- 5 2.90000+ 1 4.40000+ 1 9.91635- 4 3.58300- 5 3.00000+ 1 3.20000+ 1 3.14388- 1 3.88000- 5 3.00000+ 1 3.30000+ 1 2.94167- 1 4.11900- 5 3.00000+ 1 4.10000+ 1 1.63309- 2 4.88400- 5 3.00000+ 1 4.30000+ 1 1.49683- 3 5.57400- 5 3.00000+ 1 4.40000+ 1 1.25376- 3 5.69000- 5 3.20000+ 1 3.20000+ 1 2.31666- 3 9.43600- 5 3.20000+ 1 3.30000+ 1 1.08492- 1 9.67500- 5 3.20000+ 1 4.10000+ 1 7.26471- 3 1.04400- 4 3.20000+ 1 4.30000+ 1 7.54294- 5 1.11300- 4 3.20000+ 1 4.40000+ 1 6.20654- 4 1.12460- 4 3.30000+ 1 3.30000+ 1 1.43621- 2 9.91400- 5 3.30000+ 1 4.10000+ 1 5.05398- 3 1.06790- 4 3.30000+ 1 4.30000+ 1 2.01990- 4 1.13690- 4 3.30000+ 1 4.40000+ 1 2.02807- 4 1.14850- 4 4.10000+ 1 4.10000+ 1 3.81121- 3 1.14440- 4 4.10000+ 1 4.30000+ 1 4.32514- 4 1.21340- 4 4.10000+ 1 4.40000+ 1 5.65444- 4 1.22500- 4 4.30000+ 1 4.40000+ 1 8.47365- 4 1.29400- 4 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.57725- 6 7.66300- 5 4.10000+ 1 2.68329- 7 8.66700- 5 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.20000+ 1 9.44001- 2 0.00000+ 0 3.00000+ 1 3.30000+ 1 2.21872- 2 1.06000- 6 3.00000+ 1 4.10000+ 1 3.94914- 3 8.71000- 6 3.00000+ 1 4.30000+ 1 1.12657- 3 1.56100- 5 3.00000+ 1 4.40000+ 1 1.02768- 3 1.67700- 5 3.20000+ 1 3.20000+ 1 1.52361- 1 5.42300- 5 3.20000+ 1 3.30000+ 1 6.65579- 1 5.66200- 5 3.20000+ 1 4.10000+ 1 2.71697- 2 6.42700- 5 3.20000+ 1 4.30000+ 1 1.91385- 3 7.11700- 5 3.20000+ 1 4.40000+ 1 2.81032- 3 7.23300- 5 3.30000+ 1 3.30000+ 1 2.30666- 2 5.90100- 5 3.30000+ 1 4.10000+ 1 2.27004- 3 6.66600- 5 3.30000+ 1 4.30000+ 1 1.68374- 3 7.35600- 5 3.30000+ 1 4.40000+ 1 3.09750- 4 7.47200- 5 4.10000+ 1 4.10000+ 1 5.03979- 6 7.43100- 5 4.10000+ 1 4.30000+ 1 1.10281- 4 8.12100- 5 4.10000+ 1 4.40000+ 1 1.42300- 5 8.23700- 5 4.30000+ 1 4.40000+ 1 1.12651- 5 8.92700- 5 1 81000 0 7 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.59445- 8 5.55600- 5 3.30000+ 1 6.70845- 7 5.79500- 5 4.10000+ 1 1.00221- 7 6.56000- 5 1 81000 0 9 2.04370+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.56195- 2 3.31600- 5 3.20000+ 1 3.30000+ 1 5.67330- 1 3.55500- 5 3.20000+ 1 4.10000+ 1 1.02142- 2 4.32000- 5 3.20000+ 1 4.30000+ 1 3.67746- 4 5.01000- 5 3.20000+ 1 4.40000+ 1 1.22342- 3 5.12600- 5 3.30000+ 1 3.30000+ 1 3.53734- 1 3.79400- 5 3.30000+ 1 4.10000+ 1 3.53824- 2 4.55900- 5 3.30000+ 1 4.30000+ 1 2.71984- 3 5.24900- 5 3.30000+ 1 4.40000+ 1 2.96694- 3 5.36500- 5 4.10000+ 1 4.10000+ 1 2.56313- 4 5.32400- 5 4.10000+ 1 4.30000+ 1 4.21685- 5 6.01400- 5 4.10000+ 1 4.40000+ 1 1.34762- 4 6.13000- 5 4.30000+ 1 4.40000+ 1 8.24566- 6 6.82000- 5 1 82000 0 0 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 6.70000- 1 4.40000+ 1 1.33000+ 0 1 82000 0 0 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.82900- 2 3.00000+ 0 1.58470- 2 5.00000+ 0 1.52510- 2 6.00000+ 0 1.30400- 2 8.00000+ 0 3.82430- 3 1.00000+ 1 3.54930- 3 1.10000+ 1 3.05460- 3 1.30000+ 1 2.59470- 3 1.40000+ 1 2.48900- 3 1.60000+ 1 8.76720- 4 1.80000+ 1 7.56020- 4 1.90000+ 1 6.34300- 4 2.10000+ 1 4.35230- 4 2.20000+ 1 4.12490- 4 2.40000+ 1 1.53040- 4 2.50000+ 1 1.47810- 4 2.70000+ 1 1.52830- 4 2.90000+ 1 1.10910- 4 3.00000+ 1 8.76400- 5 3.20000+ 1 2.88100- 5 3.30000+ 1 2.60300- 5 4.10000+ 1 1.50500- 5 4.30000+ 1 7.00000- 6 4.40000+ 1 5.29000- 6 1 82000 0 0 2.07200+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.24620- 1 3.00000+ 0 3.00760- 2 5.00000+ 0 3.00610- 2 6.00000+ 0 2.13960- 2 8.00000+ 0 9.60740- 3 1.00000+ 1 9.48780- 3 1.10000+ 1 7.33250- 3 1.30000+ 1 7.18360- 3 1.40000+ 1 6.73600- 3 1.60000+ 1 3.18880- 3 1.80000+ 1 3.05550- 3 1.90000+ 1 2.40390- 3 2.10000+ 1 2.17990- 3 2.20000+ 1 2.04860- 3 2.40000+ 1 1.67640- 3 2.50000+ 1 1.63240- 3 2.70000+ 1 8.46340- 4 2.90000+ 1 7.39650- 4 3.00000+ 1 5.71480- 4 3.20000+ 1 3.69220- 4 3.30000+ 1 3.40320- 4 4.10000+ 1 1.28190- 4 4.30000+ 1 7.37700- 5 4.40000+ 1 4.67900- 5 1 82000 0 0 2.07200+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.48390-11 3.00000+ 0 3.53180-10 5.00000+ 0 2.89310-10 6.00000+ 0 3.36460-10 8.00000+ 0 9.17130-10 1.00000+ 1 8.65770-10 1.10000+ 1 9.51500-10 1.30000+ 1 8.25610-10 1.40000+ 1 8.51480-10 1.60000+ 1 2.02120- 9 1.80000+ 1 2.02420- 9 1.90000+ 1 2.20460- 9 2.10000+ 1 2.22270- 9 2.20000+ 1 2.27990- 9 2.40000+ 1 2.33740- 9 2.50000+ 1 2.36910- 9 2.70000+ 1 4.46790- 9 2.90000+ 1 4.75750- 9 3.00000+ 1 5.22860- 9 3.20000+ 1 6.51060- 9 3.30000+ 1 6.73850- 9 4.10000+ 1 1.17280- 8 4.30000+ 1 1.52380- 8 4.40000+ 1 1.82810- 8 1 82000 0 0 2.07200+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.72040- 5 3.00000+ 0 1.34930- 6 5.00000+ 0 2.37750- 6 6.00000+ 0 2.05900- 6 8.00000+ 0 5.23620- 8 1.00000+ 1 5.86020- 8 1.10000+ 1 6.33330- 8 1.30000+ 1 7.99380- 8 1.40000+ 1 7.46860- 8 1.60000+ 1 2.01950- 9 1.80000+ 1 3.06990- 9 1.90000+ 1 1.96390- 9 2.10000+ 1 1.87220- 9 2.20000+ 1 1.55470- 9 2.40000+ 1 2.27150-11 2.50000+ 1 2.06350-11 2.70000+ 1 1.12880-10 2.90000+ 1 2.33030-10 3.00000+ 1 1.30750-10 1 82000 0 0 2.07200+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.12540- 6 3.00000+ 0 1.25040- 5 5.00000+ 0 3.52370- 6 6.00000+ 0 3.82220- 6 8.00000+ 0 1.91500- 5 1.00000+ 1 1.32650- 5 1.10000+ 1 1.05210- 5 1.30000+ 1 2.43190- 6 1.40000+ 1 2.40510- 6 1.60000+ 1 1.53060- 5 1.80000+ 1 1.39580- 5 1.90000+ 1 9.13710- 6 2.10000+ 1 7.80070- 6 2.20000+ 1 7.14240- 6 2.40000+ 1 2.56000- 7 2.50000+ 1 2.32040- 7 2.70000+ 1 2.61940- 5 2.90000+ 1 8.00390- 6 3.00000+ 1 1.33670- 5 1 82000 0 0 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.12752- 4 3.00000+ 0 4.46211- 4 5.00000+ 0 3.20830- 4 6.00000+ 0 3.14694- 4 8.00000+ 0 3.18632- 4 1.00000+ 1 2.75998- 4 1.10000+ 1 2.45307- 4 1.30000+ 1 1.87761- 4 1.40000+ 1 1.82575- 4 1.60000+ 1 1.73940- 4 1.80000+ 1 1.60905- 4 1.90000+ 1 1.53924- 4 2.10000+ 1 1.17685- 4 2.20000+ 1 1.13718- 4 2.40000+ 1 6.55754- 5 2.50000+ 1 6.29147- 5 2.70000+ 1 7.58069- 5 2.90000+ 1 5.58260- 5 3.00000+ 1 5.29838- 5 3.20000+ 1 2.88100- 5 3.30000+ 1 2.60300- 5 4.10000+ 1 1.50500- 5 4.30000+ 1 7.00000- 6 4.40000+ 1 5.29000- 6 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32323+ 0 3.00000+ 0 4.37397- 1 5.00000+ 0 4.93266- 1 6.00000+ 0 4.00810- 1 8.00000+ 0 3.58669- 2 1.00000+ 1 3.57448- 2 1.10000+ 1 3.34781- 2 1.30000+ 1 3.83113- 2 1.40000+ 1 3.58965- 2 1.60000+ 1 1.21157- 3 1.80000+ 1 1.46991- 3 1.90000+ 1 7.40627- 4 2.10000+ 1 3.34850- 4 2.20000+ 1 3.04091- 4 2.40000+ 1 6.53010- 6 2.50000+ 1 5.60552- 6 2.70000+ 1 1.11244- 5 2.90000+ 1 5.31784- 6 3.00000+ 1 1.12580- 6 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.76695- 2 3.00000+ 0 4.42345- 3 5.00000+ 0 5.84013- 3 6.00000+ 0 3.93797- 3 8.00000+ 0 8.58594- 5 1.00000+ 1 8.58448- 5 1.10000+ 1 7.86049- 5 1.30000+ 1 9.09345- 5 1.40000+ 1 8.23416- 5 1.60000+ 1 5.08657- 7 1.80000+ 1 5.47321- 7 1.90000+ 1 2.60464- 7 2.10000+ 1 9.58533- 8 2.20000+ 1 8.22334- 8 2.40000+ 1 7.52864-10 2.50000+ 1 6.41264-10 2.70000+ 1 7.25708-10 2.90000+ 1 4.40087-10 3.00000+ 1 7.07486-11 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07478+ 1 3.00000+ 0 1.57658+ 1 5.00000+ 0 1.10309+ 1 6.00000+ 0 1.08311+ 1 8.00000+ 0 1.09768+ 1 1.00000+ 1 9.35085+ 0 1.10000+ 1 8.22669+ 0 1.30000+ 1 6.02196+ 0 1.40000+ 1 5.87614+ 0 1.60000+ 1 5.55415+ 0 1.80000+ 1 5.03021+ 0 1.90000+ 1 4.80149+ 0 2.10000+ 1 3.38629+ 0 2.20000+ 1 3.29378+ 0 2.40000+ 1 1.41674+ 0 2.50000+ 1 1.39229+ 0 2.70000+ 1 1.85988+ 0 2.90000+ 1 1.08307+ 0 3.00000+ 1 9.99999- 1 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03077- 2 3.00000+ 0 1.09773- 2 5.00000+ 0 9.09004- 3 6.00000+ 0 8.78734- 3 8.00000+ 0 3.41981- 3 1.00000+ 1 3.18746- 3 1.10000+ 1 2.73069- 3 1.30000+ 1 2.31600- 3 1.40000+ 1 2.22408- 3 1.60000+ 1 7.02272- 4 1.80000+ 1 5.94568- 4 1.90000+ 1 4.80116- 4 2.10000+ 1 3.17449- 4 2.20000+ 1 2.98690- 4 2.40000+ 1 8.74638- 5 2.50000+ 1 8.48946- 5 2.70000+ 1 7.70224- 5 2.90000+ 1 5.50835- 5 3.00000+ 1 3.46561- 5 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.82159- 1 7.30390- 2 6.00000+ 0 4.73888- 1 7.52500- 2 1.00000+ 1 5.27888- 2 8.47407- 2 1.10000+ 1 1.02250- 1 8.52354- 2 1.30000+ 1 1.43899- 3 8.56953- 2 1.40000+ 1 1.74159- 3 8.58010- 2 1.80000+ 1 1.25889- 2 8.75340- 2 1.90000+ 1 2.47379- 2 8.76557- 2 2.10000+ 1 3.82558- 4 8.78548- 2 2.20000+ 1 4.62298- 4 8.78775- 2 2.90000+ 1 2.92719- 3 8.81791- 2 3.00000+ 1 5.67158- 3 8.82024- 2 3.20000+ 1 4.95638- 5 8.82612- 2 3.30000+ 1 5.79148- 5 8.82640- 2 4.30000+ 1 6.57457- 5 8.82830- 2 4.40000+ 1 1.00830- 4 8.82847- 2 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.17498- 3 5.65960- 2 3.00000+ 0 5.00000+ 0 6.68324- 3 5.71920- 2 3.00000+ 0 6.00000+ 0 3.61246- 3 5.94030- 2 3.00000+ 0 8.00000+ 0 1.68714- 3 6.86187- 2 3.00000+ 0 1.00000+ 1 1.44411- 3 6.88937- 2 3.00000+ 0 1.10000+ 1 8.48931- 4 6.93884- 2 3.00000+ 0 1.30000+ 1 7.17231- 5 6.98483- 2 3.00000+ 0 1.40000+ 1 5.30003- 5 6.99540- 2 3.00000+ 0 1.60000+ 1 4.24886- 4 7.15663- 2 3.00000+ 0 1.80000+ 1 3.55435- 4 7.16870- 2 3.00000+ 0 1.90000+ 1 2.08571- 4 7.18087- 2 3.00000+ 0 2.10000+ 1 1.89204- 5 7.20078- 2 3.00000+ 0 2.20000+ 1 1.37704- 5 7.20305- 2 3.00000+ 0 2.40000+ 1 4.95342- 8 7.22900- 2 3.00000+ 0 2.50000+ 1 4.95342- 8 7.22952- 2 3.00000+ 0 2.70000+ 1 9.08435- 5 7.22902- 2 3.00000+ 0 2.90000+ 1 6.82064- 5 7.23321- 2 3.00000+ 0 3.00000+ 1 3.86348- 5 7.23554- 2 3.00000+ 0 3.20000+ 1 2.32798- 6 7.24142- 2 3.00000+ 0 3.30000+ 1 1.63454- 6 7.24170- 2 5.00000+ 0 5.00000+ 0 3.54949- 4 5.77880- 2 5.00000+ 0 6.00000+ 0 6.34745- 3 5.99990- 2 5.00000+ 0 8.00000+ 0 1.17280- 3 6.92147- 2 5.00000+ 0 1.00000+ 1 1.34626- 4 6.94897- 2 5.00000+ 0 1.10000+ 1 1.24743- 3 6.99844- 2 5.00000+ 0 1.30000+ 1 7.38544- 5 7.04443- 2 5.00000+ 0 1.40000+ 1 1.91851- 4 7.05500- 2 5.00000+ 0 1.60000+ 1 2.85995- 4 7.21623- 2 5.00000+ 0 1.80000+ 1 3.21962- 5 7.22830- 2 5.00000+ 0 1.90000+ 1 2.94128- 4 7.24047- 2 5.00000+ 0 2.10000+ 1 1.87239- 5 7.26038- 2 5.00000+ 0 2.20000+ 1 4.88376- 5 7.26265- 2 5.00000+ 0 2.40000+ 1 5.44866- 7 7.28860- 2 5.00000+ 0 2.50000+ 1 7.92518- 7 7.28912- 2 5.00000+ 0 2.70000+ 1 6.06769- 5 7.28862- 2 5.00000+ 0 2.90000+ 1 6.14201- 6 7.29281- 2 5.00000+ 0 3.00000+ 1 5.39909- 5 7.29514- 2 5.00000+ 0 3.20000+ 1 2.27852- 6 7.30102- 2 5.00000+ 0 3.30000+ 1 5.69623- 6 7.30130- 2 6.00000+ 0 6.00000+ 0 2.72418- 3 6.22100- 2 6.00000+ 0 8.00000+ 0 5.74896- 4 7.14257- 2 6.00000+ 0 1.00000+ 1 1.13078- 3 7.17007- 2 6.00000+ 0 1.10000+ 1 1.10615- 3 7.21954- 2 6.00000+ 0 1.30000+ 1 2.13032- 4 7.26553- 2 6.00000+ 0 1.40000+ 1 1.76935- 4 7.27610- 2 6.00000+ 0 1.60000+ 1 1.36959- 4 7.43733- 2 6.00000+ 0 1.80000+ 1 2.66790- 4 7.44940- 2 6.00000+ 0 1.90000+ 1 2.63118- 4 7.46157- 2 6.00000+ 0 2.10000+ 1 5.46337- 5 7.48148- 2 6.00000+ 0 2.20000+ 1 4.52248- 5 7.48375- 2 6.00000+ 0 2.40000+ 1 8.91568- 7 7.50970- 2 6.00000+ 0 2.50000+ 1 9.41135- 7 7.51022- 2 6.00000+ 0 2.70000+ 1 2.88781- 5 7.50972- 2 6.00000+ 0 2.90000+ 1 5.07226- 5 7.51391- 2 6.00000+ 0 3.00000+ 1 4.83928- 5 7.51624- 2 6.00000+ 0 3.20000+ 1 6.63726- 6 7.52212- 2 6.00000+ 0 3.30000+ 1 5.30006- 6 7.52240- 2 8.00000+ 0 8.00000+ 0 1.67667- 4 8.06414- 2 8.00000+ 0 1.00000+ 1 2.53904- 4 8.09164- 2 8.00000+ 0 1.10000+ 1 1.36214- 4 8.14111- 2 8.00000+ 0 1.30000+ 1 1.11944- 5 8.18710- 2 8.00000+ 0 1.40000+ 1 7.77667- 6 8.19767- 2 8.00000+ 0 1.60000+ 1 8.41578- 5 8.35890- 2 8.00000+ 0 1.80000+ 1 6.25618- 5 8.37097- 2 8.00000+ 0 1.90000+ 1 3.35345- 5 8.38314- 2 8.00000+ 0 2.10000+ 1 2.97185- 6 8.40305- 2 8.00000+ 0 2.20000+ 1 2.03074- 6 8.40532- 2 8.00000+ 0 2.70000+ 1 1.79808- 5 8.43129- 2 8.00000+ 0 2.90000+ 1 1.19872- 5 8.43548- 2 8.00000+ 0 3.00000+ 1 6.19149- 6 8.43781- 2 8.00000+ 0 3.20000+ 1 3.46719- 7 8.44369- 2 8.00000+ 0 3.30000+ 1 2.47661- 7 8.44397- 2 1.00000+ 1 1.00000+ 1 1.23824- 5 8.11914- 2 1.00000+ 1 1.10000+ 1 2.28681- 4 8.16861- 2 1.00000+ 1 1.30000+ 1 1.14913- 5 8.21460- 2 1.00000+ 1 1.40000+ 1 2.57574- 5 8.22517- 2 1.00000+ 1 1.60000+ 1 6.19143- 5 8.38640- 2 1.00000+ 1 1.80000+ 1 5.89427- 6 8.39847- 2 1.00000+ 1 1.90000+ 1 5.42389- 5 8.41064- 2 1.00000+ 1 2.10000+ 1 2.92235- 6 8.43055- 2 1.00000+ 1 2.20000+ 1 6.63718- 6 8.43282- 2 1.00000+ 1 2.40000+ 1 4.95339- 8 8.45877- 2 1.00000+ 1 2.50000+ 1 9.90636- 8 8.45929- 2 1.00000+ 1 2.70000+ 1 1.31266- 5 8.45879- 2 1.00000+ 1 2.90000+ 1 1.13919- 6 8.46298- 2 1.00000+ 1 3.00000+ 1 9.95593- 6 8.46531- 2 1.00000+ 1 3.20000+ 1 3.46715- 7 8.47119- 2 1.00000+ 1 3.30000+ 1 7.92511- 7 8.47147- 2 1.10000+ 1 1.10000+ 1 1.13478- 4 8.21808- 2 1.10000+ 1 1.30000+ 1 3.47226- 5 8.26407- 2 1.10000+ 1 1.40000+ 1 2.78876- 5 8.27464- 2 1.10000+ 1 1.60000+ 1 3.24932- 5 8.43587- 2 1.10000+ 1 1.80000+ 1 5.42889- 5 8.44794- 2 1.10000+ 1 1.90000+ 1 5.40880- 5 8.46011- 2 1.10000+ 1 2.10000+ 1 8.96520- 6 8.48002- 2 1.10000+ 1 2.20000+ 1 7.18236- 6 8.48229- 2 1.10000+ 1 2.40000+ 1 9.90642- 8 8.50824- 2 1.10000+ 1 2.50000+ 1 1.48602- 7 8.50876- 2 1.10000+ 1 2.70000+ 1 6.88522- 6 8.50826- 2 1.10000+ 1 2.90000+ 1 1.03026- 5 8.51245- 2 1.10000+ 1 3.00000+ 1 9.95599- 6 8.51478- 2 1.10000+ 1 3.20000+ 1 1.08973- 6 8.52066- 2 1.10000+ 1 3.30000+ 1 8.42039- 7 8.52094- 2 1.30000+ 1 1.30000+ 1 9.90629- 8 8.31006- 2 1.30000+ 1 1.40000+ 1 4.01204- 6 8.32063- 2 1.30000+ 1 1.60000+ 1 2.67476- 6 8.48186- 2 1.30000+ 1 1.80000+ 1 2.62520- 6 8.49393- 2 1.30000+ 1 1.90000+ 1 7.82601- 6 8.50610- 2 1.30000+ 1 2.10000+ 1 4.95336- 8 8.52601- 2 1.30000+ 1 2.20000+ 1 9.90629- 7 8.52828- 2 1.30000+ 1 2.70000+ 1 5.44858- 7 8.55425- 2 1.30000+ 1 2.90000+ 1 4.95336- 7 8.55844- 2 1.30000+ 1 3.00000+ 1 1.43643- 6 8.56077- 2 1.30000+ 1 3.30000+ 1 9.90629- 8 8.56693- 2 1.40000+ 1 1.40000+ 1 9.41131- 7 8.33120- 2 1.40000+ 1 1.60000+ 1 1.83275- 6 8.49243- 2 1.40000+ 1 1.80000+ 1 5.69623- 6 8.50450- 2 1.40000+ 1 1.90000+ 1 6.24105- 6 8.51667- 2 1.40000+ 1 2.10000+ 1 9.90644- 7 8.53658- 2 1.40000+ 1 2.20000+ 1 4.95343- 7 8.53885- 2 1.40000+ 1 2.70000+ 1 3.96263- 7 8.56482- 2 1.40000+ 1 2.90000+ 1 1.08973- 6 8.56901- 2 1.40000+ 1 3.00000+ 1 1.13920- 6 8.57134- 2 1.40000+ 1 3.20000+ 1 9.90644- 8 8.57722- 2 1.40000+ 1 3.30000+ 1 4.95343- 8 8.57750- 2 1.60000+ 1 1.60000+ 1 1.05506- 5 8.65366- 2 1.60000+ 1 1.80000+ 1 1.52557- 5 8.66573- 2 1.60000+ 1 1.90000+ 1 8.02428- 6 8.67790- 2 1.60000+ 1 2.10000+ 1 6.93475- 7 8.69780- 2 1.60000+ 1 2.20000+ 1 4.95346- 7 8.70008- 2 1.60000+ 1 2.70000+ 1 4.50737- 6 8.72604- 2 1.60000+ 1 2.90000+ 1 2.92239- 6 8.73024- 2 1.60000+ 1 3.00000+ 1 1.48604- 6 8.73256- 2 1.60000+ 1 3.20000+ 1 9.90651- 8 8.73845- 2 1.60000+ 1 3.30000+ 1 4.95346- 8 8.73872- 2 1.80000+ 1 1.80000+ 1 6.93476- 7 8.67780- 2 1.80000+ 1 1.90000+ 1 1.28784- 5 8.68997- 2 1.80000+ 1 2.10000+ 1 6.93476- 7 8.70987- 2 1.80000+ 1 2.20000+ 1 1.48604- 6 8.71215- 2 1.80000+ 1 2.70000+ 1 3.21965- 6 8.73811- 2 1.80000+ 1 2.90000+ 1 2.47662- 7 8.74231- 2 1.80000+ 1 3.00000+ 1 2.37757- 6 8.74463- 2 1.80000+ 1 3.20000+ 1 9.90651- 8 8.75052- 2 1.80000+ 1 3.30000+ 1 1.48604- 7 8.75079- 2 1.90000+ 1 1.90000+ 1 6.31977- 6 8.70214- 2 1.90000+ 1 2.10000+ 1 1.99309- 6 8.72205- 2 1.90000+ 1 2.20000+ 1 1.60424- 6 8.72432- 2 1.90000+ 1 2.40000+ 1 4.86160- 8 8.75027- 2 1.90000+ 1 2.50000+ 1 4.86160- 8 8.75079- 2 1.90000+ 1 2.70000+ 1 1.65290- 6 8.75029- 2 1.90000+ 1 2.90000+ 1 2.43069- 6 8.75448- 2 1.90000+ 1 3.00000+ 1 2.33348- 6 8.75681- 2 1.90000+ 1 3.20000+ 1 2.43069- 7 8.76269- 2 1.90000+ 1 3.30000+ 1 1.94454- 7 8.76297- 2 2.10000+ 1 2.20000+ 1 2.47663- 7 8.74423- 2 2.10000+ 1 2.70000+ 1 1.48604- 7 8.77019- 2 2.10000+ 1 2.90000+ 1 1.48604- 7 8.77439- 2 2.10000+ 1 3.00000+ 1 3.46721- 7 8.77671- 2 2.10000+ 1 3.30000+ 1 4.95347- 8 8.78287- 2 2.20000+ 1 2.20000+ 1 4.95340- 8 8.74650- 2 2.20000+ 1 2.70000+ 1 9.90638- 8 8.77247- 2 2.20000+ 1 2.90000+ 1 2.97183- 7 8.77666- 2 2.20000+ 1 3.00000+ 1 2.97183- 7 8.77899- 2 2.20000+ 1 3.20000+ 1 4.95340- 8 8.78487- 2 2.70000+ 1 2.70000+ 1 4.99947- 7 8.79843- 2 2.70000+ 1 2.90000+ 1 6.49900- 7 8.80263- 2 2.70000+ 1 3.00000+ 1 2.99947- 7 8.80495- 2 2.90000+ 1 2.90000+ 1 4.60816- 8 8.80682- 2 2.90000+ 1 3.00000+ 1 4.14715- 7 8.80914- 2 2.90000+ 1 3.30000+ 1 4.60816- 8 8.81531- 2 3.00000+ 1 3.00000+ 1 2.14155- 7 8.81147- 2 3.00000+ 1 3.20000+ 1 5.35417- 8 8.81735- 2 3.00000+ 1 3.30000+ 1 5.35417- 8 8.81763- 2 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.17560- 5 5.96000- 4 6.00000+ 0 3.01181- 3 2.80700- 3 1.00000+ 1 3.30911- 2 1.22977- 2 1.10000+ 1 3.61361- 2 1.27924- 2 1.30000+ 1 1.19470- 3 1.32523- 2 1.40000+ 1 1.78780- 3 1.33580- 2 1.80000+ 1 8.51602- 3 1.50910- 2 1.90000+ 1 1.01380- 2 1.52127- 2 2.10000+ 1 1.83580- 4 1.54118- 2 2.20000+ 1 2.90471- 4 1.54345- 2 2.90000+ 1 1.66820- 3 1.57361- 2 3.00000+ 1 1.95110- 3 1.57594- 2 3.20000+ 1 2.14110- 5 1.58182- 2 3.30000+ 1 3.34501- 5 1.58210- 2 4.30000+ 1 4.51921- 5 1.58400- 2 4.40000+ 1 4.25931- 5 1.58417- 2 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.64959- 3 1.60770- 4 5.00000+ 0 2.20000+ 1 6.19632- 3 1.83510- 4 5.00000+ 0 2.40000+ 1 1.41965- 2 4.42960- 4 5.00000+ 0 2.50000+ 1 1.88094- 2 4.48190- 4 5.00000+ 0 2.70000+ 1 4.35745- 3 4.43170- 4 5.00000+ 0 2.90000+ 1 3.15890- 3 4.85090- 4 5.00000+ 0 3.00000+ 1 2.86876- 3 5.08360- 4 5.00000+ 0 3.20000+ 1 5.68727- 4 5.67190- 4 5.00000+ 0 3.30000+ 1 7.48469- 4 5.69970- 4 6.00000+ 0 1.30000+ 1 2.33464- 1 2.12300- 4 6.00000+ 0 1.40000+ 1 2.96649- 1 3.18000- 4 6.00000+ 0 1.60000+ 1 1.87226- 2 1.93028- 3 6.00000+ 0 1.80000+ 1 7.43065- 3 2.05098- 3 6.00000+ 0 1.90000+ 1 1.12261- 2 2.17270- 3 6.00000+ 0 2.10000+ 1 3.08268- 2 2.37177- 3 6.00000+ 0 2.20000+ 1 3.66516- 2 2.39451- 3 6.00000+ 0 2.40000+ 1 2.15040- 2 2.65396- 3 6.00000+ 0 2.50000+ 1 2.67664- 2 2.65919- 3 6.00000+ 0 2.70000+ 1 3.80864- 3 2.65417- 3 6.00000+ 0 2.90000+ 1 1.39688- 3 2.69609- 3 6.00000+ 0 3.00000+ 1 2.06118- 3 2.71936- 3 6.00000+ 0 3.20000+ 1 3.44057- 3 2.77819- 3 6.00000+ 0 3.30000+ 1 3.91355- 3 2.78097- 3 8.00000+ 0 8.00000+ 0 5.17910- 3 8.19840- 3 8.00000+ 0 1.00000+ 1 1.06584- 2 8.47340- 3 8.00000+ 0 1.10000+ 1 1.67262- 2 8.96810- 3 8.00000+ 0 1.30000+ 1 1.23670- 2 9.42800- 3 8.00000+ 0 1.40000+ 1 1.58330- 2 9.53370- 3 8.00000+ 0 1.60000+ 1 2.21783- 3 1.11460- 2 8.00000+ 0 1.80000+ 1 2.59010- 3 1.12667- 2 8.00000+ 0 1.90000+ 1 4.00773- 3 1.13884- 2 8.00000+ 0 2.10000+ 1 2.70799- 3 1.15875- 2 8.00000+ 0 2.20000+ 1 3.43824- 3 1.16102- 2 8.00000+ 0 2.40000+ 1 2.25100- 4 1.18697- 2 8.00000+ 0 2.50000+ 1 2.46681- 4 1.18749- 2 8.00000+ 0 2.70000+ 1 4.61570- 4 1.18699- 2 8.00000+ 0 2.90000+ 1 4.94930- 4 1.19118- 2 8.00000+ 0 3.00000+ 1 7.37714- 4 1.19351- 2 8.00000+ 0 3.20000+ 1 3.19485- 4 1.19939- 2 8.00000+ 0 3.30000+ 1 3.92091- 4 1.19967- 2 1.00000+ 1 1.00000+ 1 2.04100- 5 8.74840- 3 1.00000+ 1 1.10000+ 1 2.10964- 4 9.24310- 3 1.00000+ 1 1.30000+ 1 6.58798- 4 9.70300- 3 1.00000+ 1 1.40000+ 1 5.34638- 3 9.80870- 3 1.00000+ 1 1.60000+ 1 1.80001- 3 1.14210- 2 1.00000+ 1 1.80000+ 1 2.74747- 6 1.15417- 2 1.00000+ 1 1.90000+ 1 4.25855- 5 1.16634- 2 1.00000+ 1 2.10000+ 1 1.26578- 4 1.18625- 2 1.00000+ 1 2.20000+ 1 7.42625- 4 1.18852- 2 1.00000+ 1 2.40000+ 1 8.24193- 5 1.21447- 2 1.00000+ 1 2.50000+ 1 2.87106- 4 1.21499- 2 1.00000+ 1 2.70000+ 1 3.52848- 4 1.21449- 2 1.00000+ 1 2.90000+ 1 3.92494- 7 1.21868- 2 1.00000+ 1 3.00000+ 1 7.65345- 6 1.22101- 2 1.00000+ 1 3.20000+ 1 1.49149- 5 1.22689- 2 1.00000+ 1 3.30000+ 1 7.86916- 5 1.22717- 2 1.10000+ 1 1.10000+ 1 5.57539- 4 9.73780- 3 1.10000+ 1 1.30000+ 1 1.79442- 3 1.01977- 2 1.10000+ 1 1.40000+ 1 1.09463- 3 1.03034- 2 1.10000+ 1 1.60000+ 1 2.77925- 3 1.19157- 2 1.10000+ 1 1.80000+ 1 5.06324- 5 1.20364- 2 1.10000+ 1 1.90000+ 1 2.02133- 4 1.21581- 2 1.10000+ 1 2.10000+ 1 1.62697- 4 1.23572- 2 1.10000+ 1 2.20000+ 1 8.14393- 5 1.23799- 2 1.10000+ 1 2.40000+ 1 1.37369- 4 1.26394- 2 1.10000+ 1 2.50000+ 1 1.14999- 4 1.26446- 2 1.10000+ 1 2.70000+ 1 5.43012- 4 1.26396- 2 1.10000+ 1 2.90000+ 1 9.61592- 6 1.26815- 2 1.10000+ 1 3.00000+ 1 3.51281- 5 1.27048- 2 1.10000+ 1 3.20000+ 1 1.62887- 5 1.27636- 2 1.10000+ 1 3.30000+ 1 7.65346- 6 1.27664- 2 1.30000+ 1 1.30000+ 1 7.25522- 4 1.06576- 2 1.30000+ 1 1.40000+ 1 2.14416- 2 1.07633- 2 1.30000+ 1 1.60000+ 1 1.87540- 3 1.23756- 2 1.30000+ 1 1.80000+ 1 1.93095- 4 1.24963- 2 1.30000+ 1 1.90000+ 1 4.79814- 4 1.26180- 2 1.30000+ 1 2.10000+ 1 3.10059- 4 1.28171- 2 1.30000+ 1 2.20000+ 1 3.25015- 3 1.28398- 2 1.30000+ 1 2.40000+ 1 2.39802- 4 1.30993- 2 1.30000+ 1 2.50000+ 1 6.60940- 4 1.31045- 2 1.30000+ 1 2.70000+ 1 3.59713- 4 1.30995- 2 1.30000+ 1 2.90000+ 1 3.82672- 5 1.31414- 2 1.30000+ 1 3.00000+ 1 9.00772- 5 1.31647- 2 1.30000+ 1 3.20000+ 1 3.65009- 5 1.32235- 2 1.30000+ 1 3.30000+ 1 3.48134- 4 1.32263- 2 1.40000+ 1 1.40000+ 1 5.92516- 3 1.08690- 2 1.40000+ 1 1.60000+ 1 2.43627- 3 1.24813- 2 1.40000+ 1 1.80000+ 1 1.15064- 3 1.26020- 2 1.40000+ 1 1.90000+ 1 2.98901- 4 1.27237- 2 1.40000+ 1 2.10000+ 1 3.14767- 3 1.29228- 2 1.40000+ 1 2.20000+ 1 1.89682- 3 1.29455- 2 1.40000+ 1 2.40000+ 1 7.28533- 4 1.32050- 2 1.40000+ 1 2.50000+ 1 5.49901- 4 1.32102- 2 1.40000+ 1 2.70000+ 1 4.69838- 4 1.32052- 2 1.40000+ 1 2.90000+ 1 2.14901- 4 1.32471- 2 1.40000+ 1 3.00000+ 1 5.67176- 5 1.32704- 2 1.40000+ 1 3.20000+ 1 3.46201- 4 1.33292- 2 1.40000+ 1 3.30000+ 1 2.05489- 4 1.33320- 2 1.60000+ 1 1.60000+ 1 2.24117- 4 1.40936- 2 1.60000+ 1 1.80000+ 1 4.38623- 4 1.42143- 2 1.60000+ 1 1.90000+ 1 6.68624- 4 1.43360- 2 1.60000+ 1 2.10000+ 1 4.12125- 4 1.45350- 2 1.60000+ 1 2.20000+ 1 5.27525- 4 1.45578- 2 1.60000+ 1 2.40000+ 1 2.84574- 5 1.48172- 2 1.60000+ 1 2.50000+ 1 2.98293- 5 1.48225- 2 1.60000+ 1 2.70000+ 1 9.20396- 5 1.48174- 2 1.60000+ 1 2.90000+ 1 8.37998- 5 1.48594- 2 1.60000+ 1 3.00000+ 1 1.23243- 4 1.48826- 2 1.60000+ 1 3.20000+ 1 4.86701- 5 1.49415- 2 1.60000+ 1 3.30000+ 1 6.00522- 5 1.49442- 2 1.80000+ 1 1.90000+ 1 1.02049- 5 1.44567- 2 1.80000+ 1 2.10000+ 1 3.27728- 5 1.46557- 2 1.80000+ 1 2.20000+ 1 1.66222- 4 1.46785- 2 1.80000+ 1 2.40000+ 1 1.15777- 5 1.49379- 2 1.80000+ 1 2.50000+ 1 4.53327- 5 1.49432- 2 1.80000+ 1 2.70000+ 1 8.59535- 5 1.49381- 2 1.80000+ 1 3.00000+ 1 1.76623- 6 1.50033- 2 1.80000+ 1 3.20000+ 1 3.72867- 6 1.50622- 2 1.80000+ 1 3.30000+ 1 1.76623- 5 1.50649- 2 1.90000+ 1 1.90000+ 1 1.76628- 5 1.45784- 2 1.90000+ 1 2.10000+ 1 4.90627- 5 1.47775- 2 1.90000+ 1 2.20000+ 1 2.76712- 5 1.48002- 2 1.90000+ 1 2.40000+ 1 2.82596- 5 1.50597- 2 1.90000+ 1 2.50000+ 1 2.29613- 5 1.50649- 2 1.90000+ 1 2.70000+ 1 1.30697- 4 1.50599- 2 1.90000+ 1 2.90000+ 1 1.96251- 6 1.51018- 2 1.90000+ 1 3.00000+ 1 6.08365- 6 1.51251- 2 1.90000+ 1 3.20000+ 1 5.10250- 6 1.51839- 2 1.90000+ 1 3.30000+ 1 2.74753- 6 1.51867- 2 2.10000+ 1 2.10000+ 1 3.06148- 5 1.49765- 2 2.10000+ 1 2.20000+ 1 5.22216- 4 1.49993- 2 2.10000+ 1 2.40000+ 1 3.53236- 5 1.52587- 2 2.10000+ 1 2.50000+ 1 7.39814- 5 1.52640- 2 2.10000+ 1 2.70000+ 1 7.90868- 5 1.52589- 2 2.10000+ 1 2.90000+ 1 6.27982- 6 1.53009- 2 2.10000+ 1 3.00000+ 1 9.41934- 6 1.53241- 2 2.10000+ 1 3.20000+ 1 7.06493- 6 1.53830- 2 2.10000+ 1 3.30000+ 1 5.67146- 5 1.53857- 2 2.20000+ 1 2.20000+ 1 1.62886- 4 1.50220- 2 2.20000+ 1 2.40000+ 1 8.61488- 5 1.52815- 2 2.20000+ 1 2.50000+ 1 7.24169- 5 1.52867- 2 2.20000+ 1 2.70000+ 1 1.01459- 4 1.52817- 2 2.20000+ 1 2.90000+ 1 3.12033- 5 1.53236- 2 2.20000+ 1 3.00000+ 1 5.49483- 6 1.53469- 2 2.20000+ 1 3.20000+ 1 5.82854- 5 1.54057- 2 2.20000+ 1 3.30000+ 1 3.57164- 5 1.54085- 2 2.40000+ 1 2.40000+ 1 1.12974- 6 1.55409- 2 2.40000+ 1 2.50000+ 1 1.98849- 5 1.55461- 2 2.40000+ 1 2.70000+ 1 6.10099- 6 1.55411- 2 2.40000+ 1 2.90000+ 1 2.25964- 6 1.55830- 2 2.40000+ 1 3.00000+ 1 5.87505- 6 1.56063- 2 2.40000+ 1 3.20000+ 1 4.51928- 6 1.56651- 2 2.40000+ 1 3.30000+ 1 1.01685- 5 1.56679- 2 2.50000+ 1 2.50000+ 1 4.76200- 6 1.55514- 2 2.50000+ 1 2.70000+ 1 7.01758- 6 1.55464- 2 2.50000+ 1 2.90000+ 1 1.00250- 5 1.55883- 2 2.50000+ 1 3.00000+ 1 5.26321- 6 1.56115- 2 2.50000+ 1 3.20000+ 1 1.00250- 5 1.56704- 2 2.50000+ 1 3.30000+ 1 9.77437- 6 1.56732- 2 2.70000+ 1 2.70000+ 1 1.61539- 5 1.55413- 2 2.70000+ 1 2.90000+ 1 2.82720- 5 1.55833- 2 2.70000+ 1 3.00000+ 1 4.13952- 5 1.56065- 2 2.70000+ 1 3.20000+ 1 1.61539- 5 1.56654- 2 2.70000+ 1 3.30000+ 1 1.98554- 5 1.56681- 2 2.90000+ 1 3.00000+ 1 8.26630- 7 1.56484- 2 2.90000+ 1 3.20000+ 1 1.65322- 6 1.57073- 2 2.90000+ 1 3.30000+ 1 7.02627- 6 1.57101- 2 3.00000+ 1 3.00000+ 1 1.21323- 6 1.56717- 2 3.00000+ 1 3.20000+ 1 2.02195- 6 1.57305- 2 3.00000+ 1 3.30000+ 1 1.21323- 6 1.57333- 2 3.20000+ 1 3.20000+ 1 3.84939- 7 1.57894- 2 3.20000+ 1 3.30000+ 1 6.15898- 6 1.57922- 2 3.30000+ 1 3.30000+ 1 1.91780- 6 1.57949- 2 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.07629- 5 2.21100- 3 8.00000+ 0 8.66321- 3 1.14267- 2 1.10000+ 1 3.55496- 4 1.21964- 2 1.30000+ 1 3.18407- 1 1.26563- 2 1.60000+ 1 2.23628- 3 1.43743- 2 1.90000+ 1 9.87070- 5 1.46167- 2 2.10000+ 1 6.50193- 2 1.48158- 2 2.40000+ 1 2.74127- 4 1.50980- 2 2.70000+ 1 4.77005- 4 1.50982- 2 3.00000+ 1 1.98928- 5 1.51634- 2 3.20000+ 1 8.04632- 3 1.52222- 2 4.10000+ 1 6.19034- 5 1.52359- 2 4.40000+ 1 4.13726- 7 1.52457- 2 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.16666- 3 1.33428- 3 6.00000+ 0 1.80000+ 1 3.69674- 2 1.45498- 3 6.00000+ 0 1.90000+ 1 1.01814- 2 1.57670- 3 6.00000+ 0 2.10000+ 1 3.74657- 2 1.77577- 3 6.00000+ 0 2.20000+ 1 1.28738- 2 1.79851- 3 6.00000+ 0 2.40000+ 1 1.54722- 3 2.05796- 3 6.00000+ 0 2.50000+ 1 2.30851- 3 2.06319- 3 6.00000+ 0 2.70000+ 1 1.01354- 3 2.05817- 3 6.00000+ 0 2.90000+ 1 6.51066- 3 2.10009- 3 6.00000+ 0 3.00000+ 1 1.83004- 3 2.12336- 3 6.00000+ 0 3.20000+ 1 4.25638- 3 2.18219- 3 6.00000+ 0 3.30000+ 1 1.42748- 3 2.18497- 3 8.00000+ 0 8.00000+ 0 5.64111- 4 7.60240- 3 8.00000+ 0 1.00000+ 1 1.98426- 2 7.87740- 3 8.00000+ 0 1.10000+ 1 1.85164- 3 8.37210- 3 8.00000+ 0 1.30000+ 1 3.09679- 3 8.83200- 3 8.00000+ 0 1.40000+ 1 1.76515- 3 8.93770- 3 8.00000+ 0 1.60000+ 1 2.18280- 4 1.05500- 2 8.00000+ 0 1.80000+ 1 3.18537- 3 1.06707- 2 8.00000+ 0 1.90000+ 1 3.97412- 4 1.07924- 2 8.00000+ 0 2.10000+ 1 4.79842- 4 1.09915- 2 8.00000+ 0 2.20000+ 1 2.33021- 4 1.10142- 2 8.00000+ 0 2.40000+ 1 8.88769- 5 1.12737- 2 8.00000+ 0 2.50000+ 1 6.17080- 5 1.12789- 2 8.00000+ 0 2.70000+ 1 4.42073- 5 1.12739- 2 8.00000+ 0 2.90000+ 1 5.59967- 4 1.13158- 2 8.00000+ 0 3.00000+ 1 7.13803- 5 1.13391- 2 8.00000+ 0 3.20000+ 1 5.34171- 5 1.13979- 2 8.00000+ 0 3.30000+ 1 2.48681- 5 1.14007- 2 1.00000+ 1 1.00000+ 1 2.07638- 2 8.15240- 3 1.00000+ 1 1.10000+ 1 5.26286- 2 8.64710- 3 1.00000+ 1 1.30000+ 1 2.72480- 2 9.10700- 3 1.00000+ 1 1.40000+ 1 3.87025- 2 9.21270- 3 1.00000+ 1 1.60000+ 1 5.11835- 3 1.08250- 2 1.00000+ 1 1.80000+ 1 8.49685- 3 1.09457- 2 1.00000+ 1 1.90000+ 1 1.23862- 2 1.10674- 2 1.00000+ 1 2.10000+ 1 5.96280- 3 1.12665- 2 1.00000+ 1 2.20000+ 1 8.44493- 3 1.12892- 2 1.00000+ 1 2.40000+ 1 4.54492- 4 1.15487- 2 1.00000+ 1 2.50000+ 1 3.95093- 4 1.15539- 2 1.00000+ 1 2.70000+ 1 1.09871- 3 1.15489- 2 1.00000+ 1 2.90000+ 1 1.57756- 3 1.15908- 2 1.00000+ 1 3.00000+ 1 2.27202- 3 1.16141- 2 1.00000+ 1 3.20000+ 1 7.04064- 4 1.16729- 2 1.00000+ 1 3.30000+ 1 9.64231- 4 1.16757- 2 1.10000+ 1 1.10000+ 1 1.20138- 3 9.14180- 3 1.10000+ 1 1.30000+ 1 2.46448- 2 9.60170- 3 1.10000+ 1 1.40000+ 1 3.58634- 3 9.70740- 3 1.10000+ 1 1.60000+ 1 4.00619- 4 1.13197- 2 1.10000+ 1 1.80000+ 1 8.61136- 3 1.14404- 2 1.10000+ 1 1.90000+ 1 4.84894- 4 1.15621- 2 1.10000+ 1 2.10000+ 1 4.54735- 3 1.17612- 2 1.10000+ 1 2.20000+ 1 6.36859- 4 1.17839- 2 1.10000+ 1 2.40000+ 1 1.86968- 4 1.20434- 2 1.10000+ 1 2.50000+ 1 9.85469- 5 1.20486- 2 1.10000+ 1 2.70000+ 1 8.28880- 5 1.20436- 2 1.10000+ 1 2.90000+ 1 1.51865- 3 1.20855- 2 1.10000+ 1 3.00000+ 1 8.61136- 5 1.21088- 2 1.10000+ 1 3.20000+ 1 5.21275- 4 1.21676- 2 1.10000+ 1 3.30000+ 1 7.04548- 5 1.21704- 2 1.30000+ 1 1.30000+ 1 2.33075- 2 1.00616- 2 1.30000+ 1 1.40000+ 1 9.25515- 2 1.01673- 2 1.30000+ 1 1.60000+ 1 8.00819- 4 1.17796- 2 1.30000+ 1 1.80000+ 1 4.31993- 3 1.19003- 2 1.30000+ 1 1.90000+ 1 5.36767- 3 1.20220- 2 1.30000+ 1 2.10000+ 1 8.46739- 3 1.22211- 2 1.30000+ 1 2.20000+ 1 1.81232- 2 1.22438- 2 1.30000+ 1 2.40000+ 1 1.59980- 3 1.25033- 2 1.30000+ 1 2.50000+ 1 3.22956- 3 1.25085- 2 1.30000+ 1 2.70000+ 1 1.72234- 4 1.25035- 2 1.30000+ 1 2.90000+ 1 7.63488- 4 1.25454- 2 1.30000+ 1 3.00000+ 1 9.69349- 4 1.25687- 2 1.30000+ 1 3.20000+ 1 9.72565- 4 1.26275- 2 1.30000+ 1 3.30000+ 1 2.03324- 3 1.26303- 2 1.40000+ 1 1.40000+ 1 4.49452- 3 1.02730- 2 1.40000+ 1 1.60000+ 1 3.67472- 4 1.18853- 2 1.40000+ 1 1.80000+ 1 5.41411- 3 1.20060- 2 1.40000+ 1 1.90000+ 1 7.18814- 4 1.21277- 2 1.40000+ 1 2.10000+ 1 1.38077- 2 1.23268- 2 1.40000+ 1 2.20000+ 1 1.60117- 3 1.23495- 2 1.40000+ 1 2.40000+ 1 6.38730- 4 1.26090- 2 1.40000+ 1 2.50000+ 1 2.44525- 4 1.26142- 2 1.40000+ 1 2.70000+ 1 7.55244- 5 1.26092- 2 1.40000+ 1 2.90000+ 1 9.23291- 4 1.26511- 2 1.40000+ 1 3.00000+ 1 1.27561- 4 1.26744- 2 1.40000+ 1 3.20000+ 1 1.52697- 3 1.27332- 2 1.40000+ 1 3.30000+ 1 1.77284- 4 1.27360- 2 1.60000+ 1 1.60000+ 1 2.02631- 5 1.34976- 2 1.60000+ 1 1.80000+ 1 8.26150- 4 1.36183- 2 1.60000+ 1 1.90000+ 1 8.65748- 5 1.37400- 2 1.60000+ 1 2.10000+ 1 1.20650- 4 1.39390- 2 1.60000+ 1 2.20000+ 1 4.83517- 5 1.39618- 2 1.60000+ 1 2.40000+ 1 2.02631- 5 1.42212- 2 1.60000+ 1 2.50000+ 1 1.10513- 5 1.42265- 2 1.60000+ 1 2.70000+ 1 8.28897- 6 1.42214- 2 1.60000+ 1 2.90000+ 1 1.45517- 4 1.42634- 2 1.60000+ 1 3.00000+ 1 1.56562- 5 1.42866- 2 1.60000+ 1 3.20000+ 1 1.33543- 5 1.43455- 2 1.60000+ 1 3.30000+ 1 5.06545- 6 1.43482- 2 1.80000+ 1 1.80000+ 1 8.25653- 4 1.37390- 2 1.80000+ 1 1.90000+ 1 2.03125- 3 1.38607- 2 1.80000+ 1 2.10000+ 1 9.31559- 4 1.40597- 2 1.80000+ 1 2.20000+ 1 1.19308- 3 1.40825- 2 1.80000+ 1 2.40000+ 1 5.89423- 5 1.43419- 2 1.80000+ 1 2.50000+ 1 4.09835- 5 1.43472- 2 1.80000+ 1 2.70000+ 1 1.77280- 4 1.43421- 2 1.80000+ 1 2.90000+ 1 3.03459- 4 1.43841- 2 1.80000+ 1 3.00000+ 1 3.72526- 4 1.44073- 2 1.80000+ 1 3.20000+ 1 1.09592- 4 1.44662- 2 1.80000+ 1 3.30000+ 1 1.36306- 4 1.44689- 2 1.90000+ 1 1.90000+ 1 4.92715- 5 1.39824- 2 1.90000+ 1 2.10000+ 1 9.97875- 4 1.41815- 2 1.90000+ 1 2.20000+ 1 1.29855- 4 1.42042- 2 1.90000+ 1 2.40000+ 1 3.49968- 5 1.44637- 2 1.90000+ 1 2.50000+ 1 1.70381- 5 1.44689- 2 1.90000+ 1 2.70000+ 1 1.79588- 5 1.44639- 2 1.90000+ 1 2.90000+ 1 3.58257- 4 1.45058- 2 1.90000+ 1 3.00000+ 1 1.74984- 5 1.45291- 2 1.90000+ 1 3.20000+ 1 1.14656- 4 1.45879- 2 1.90000+ 1 3.30000+ 1 1.42748- 5 1.45907- 2 2.10000+ 1 2.10000+ 1 7.62081- 4 1.43805- 2 2.10000+ 1 2.20000+ 1 2.81676- 3 1.44033- 2 2.10000+ 1 2.40000+ 1 1.98929- 4 1.46627- 2 2.10000+ 1 2.50000+ 1 4.05688- 4 1.46680- 2 2.10000+ 1 2.70000+ 1 2.57868- 5 1.46629- 2 2.10000+ 1 2.90000+ 1 1.63927- 4 1.47049- 2 2.10000+ 1 3.00000+ 1 1.80514- 4 1.47281- 2 2.10000+ 1 3.20000+ 1 1.74532- 4 1.47870- 2 2.10000+ 1 3.30000+ 1 3.17727- 4 1.47897- 2 2.20000+ 1 2.20000+ 1 1.44135- 4 1.44260- 2 2.20000+ 1 2.40000+ 1 8.65731- 5 1.46855- 2 2.20000+ 1 2.50000+ 1 3.36155- 5 1.46907- 2 2.20000+ 1 2.70000+ 1 1.01303- 5 1.46857- 2 2.20000+ 1 2.90000+ 1 2.03985- 4 1.47276- 2 2.20000+ 1 3.00000+ 1 2.30240- 5 1.47509- 2 2.20000+ 1 3.20000+ 1 3.13586- 4 1.48097- 2 2.20000+ 1 3.30000+ 1 3.17730- 5 1.48125- 2 2.40000+ 1 2.40000+ 1 4.75693- 6 1.49449- 2 2.40000+ 1 2.50000+ 1 3.23466- 5 1.49501- 2 2.40000+ 1 2.70000+ 1 4.28124- 6 1.49451- 2 2.40000+ 1 2.90000+ 1 1.04648- 5 1.49870- 2 2.40000+ 1 3.00000+ 1 6.18409- 6 1.50103- 2 2.40000+ 1 3.20000+ 1 2.18819- 5 1.50691- 2 2.40000+ 1 3.30000+ 1 9.51354- 6 1.50719- 2 2.50000+ 1 2.50000+ 1 1.90280- 6 1.49554- 2 2.50000+ 1 2.70000+ 1 2.37852- 6 1.49504- 2 2.50000+ 1 2.90000+ 1 6.65992- 6 1.49923- 2 2.50000+ 1 3.00000+ 1 2.85421- 6 1.50155- 2 2.50000+ 1 3.20000+ 1 4.51922- 5 1.50744- 2 2.50000+ 1 3.30000+ 1 3.80571- 6 1.50772- 2 2.70000+ 1 2.70000+ 1 9.27859- 7 1.49453- 2 2.70000+ 1 2.90000+ 1 3.15477- 5 1.49873- 2 2.70000+ 1 3.00000+ 1 3.24754- 6 1.50105- 2 2.70000+ 1 3.20000+ 1 2.78361- 6 1.50694- 2 2.70000+ 1 3.30000+ 1 9.27859- 7 1.50721- 2 2.90000+ 1 2.90000+ 1 2.77938- 5 1.50292- 2 2.90000+ 1 3.00000+ 1 6.62446- 5 1.50524- 2 2.90000+ 1 3.20000+ 1 1.94555- 5 1.51113- 2 2.90000+ 1 3.30000+ 1 2.36247- 5 1.51141- 2 3.00000+ 1 3.00000+ 1 1.52828- 6 1.50757- 2 3.00000+ 1 3.20000+ 1 2.29259- 5 1.51345- 2 3.00000+ 1 3.30000+ 1 3.05656- 6 1.51373- 2 3.20000+ 1 3.20000+ 1 1.01304- 5 1.51934- 2 3.20000+ 1 3.30000+ 1 3.54572- 5 1.51962- 2 3.30000+ 1 3.30000+ 1 1.86968- 6 1.51989- 2 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.59011- 2 9.21570- 3 1.00000+ 1 1.67061- 4 9.49070- 3 1.10000+ 1 1.51021- 4 9.98540- 3 1.30000+ 1 2.78162- 2 1.04453- 2 1.40000+ 1 2.44872- 1 1.05510- 2 1.60000+ 1 3.55203- 3 1.21633- 2 1.80000+ 1 3.77753- 5 1.22840- 2 1.90000+ 1 3.87143- 5 1.24057- 2 2.10000+ 1 5.21024- 3 1.26048- 2 2.20000+ 1 4.71253- 2 1.26275- 2 2.40000+ 1 4.12713- 5 1.28870- 2 2.50000+ 1 2.30402- 4 1.28922- 2 2.70000+ 1 7.71456- 4 1.28872- 2 2.90000+ 1 7.90536- 6 1.29291- 2 3.00000+ 1 8.18356- 6 1.29524- 2 3.20000+ 1 6.35505- 4 1.30112- 2 3.30000+ 1 5.63074- 3 1.30140- 2 4.10000+ 1 9.74327- 5 1.30249- 2 4.30000+ 1 1.94301- 7 1.30330- 2 4.40000+ 1 1.59431- 7 1.30347- 2 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 7.00738- 4 5.39140- 3 8.00000+ 0 1.00000+ 1 3.51754- 4 5.66640- 3 8.00000+ 0 1.10000+ 1 2.08211- 2 6.16110- 3 8.00000+ 0 1.30000+ 1 2.64249- 3 6.62100- 3 8.00000+ 0 1.40000+ 1 4.49024- 3 6.72670- 3 8.00000+ 0 1.60000+ 1 2.72927- 4 8.33898- 3 8.00000+ 0 1.80000+ 1 6.26984- 5 8.45968- 3 8.00000+ 0 1.90000+ 1 3.26685- 3 8.58140- 3 8.00000+ 0 2.10000+ 1 2.78448- 4 8.78047- 3 8.00000+ 0 2.20000+ 1 4.36111- 4 8.80321- 3 8.00000+ 0 2.40000+ 1 2.31885- 4 9.06266- 3 8.00000+ 0 2.50000+ 1 4.08460- 4 9.06789- 3 8.00000+ 0 2.70000+ 1 5.53220- 5 9.06287- 3 8.00000+ 0 2.90000+ 1 1.10642- 5 9.10479- 3 8.00000+ 0 3.00000+ 1 5.53220- 4 9.12806- 3 8.00000+ 0 3.20000+ 1 2.90445- 5 9.18689- 3 8.00000+ 0 3.30000+ 1 4.28748- 5 9.18967- 3 1.00000+ 1 1.00000+ 1 3.41151- 5 5.94140- 3 1.00000+ 1 1.10000+ 1 3.49371- 2 6.43610- 3 1.00000+ 1 1.30000+ 1 1.64398- 3 6.89600- 3 1.00000+ 1 1.40000+ 1 1.39070- 2 7.00170- 3 1.00000+ 1 1.60000+ 1 7.23792- 5 8.61398- 3 1.00000+ 1 1.80000+ 1 1.79793- 5 8.73468- 3 1.00000+ 1 1.90000+ 1 5.69668- 3 8.85640- 3 1.00000+ 1 2.10000+ 1 3.13939- 4 9.05547- 3 1.00000+ 1 2.20000+ 1 2.20048- 3 9.07821- 3 1.00000+ 1 2.40000+ 1 2.25896- 4 9.33766- 3 1.00000+ 1 2.50000+ 1 5.67048- 4 9.34289- 3 1.00000+ 1 2.70000+ 1 1.52133- 5 9.33787- 3 1.00000+ 1 2.90000+ 1 3.68821- 6 9.37979- 3 1.00000+ 1 3.00000+ 1 9.71810- 4 9.40306- 3 1.00000+ 1 3.20000+ 1 3.68821- 5 9.46189- 3 1.00000+ 1 3.30000+ 1 2.39258- 4 9.46467- 3 1.10000+ 1 1.10000+ 1 4.39724- 2 6.93080- 3 1.10000+ 1 1.30000+ 1 4.60420- 2 7.39070- 3 1.10000+ 1 1.40000+ 1 6.20944- 2 7.49640- 3 1.10000+ 1 1.60000+ 1 5.28426- 3 9.10868- 3 1.10000+ 1 1.80000+ 1 7.95877- 3 9.22938- 3 1.10000+ 1 1.90000+ 1 1.73548- 2 9.35110- 3 1.10000+ 1 2.10000+ 1 9.49227- 3 9.55017- 3 1.10000+ 1 2.20000+ 1 1.26247- 2 9.57291- 3 1.10000+ 1 2.40000+ 1 8.44572- 4 9.83236- 3 1.10000+ 1 2.50000+ 1 1.04097- 3 9.83759- 3 1.10000+ 1 2.70000+ 1 1.13045- 3 9.83257- 3 1.10000+ 1 2.90000+ 1 1.50431- 3 9.87449- 3 1.10000+ 1 3.00000+ 1 3.09021- 3 9.89776- 3 1.10000+ 1 3.20000+ 1 1.11152- 3 9.95659- 3 1.10000+ 1 3.30000+ 1 1.42589- 3 9.95937- 3 1.30000+ 1 1.30000+ 1 6.36652- 3 7.85060- 3 1.30000+ 1 1.40000+ 1 1.19210- 1 7.95630- 3 1.30000+ 1 1.60000+ 1 6.35735- 4 9.56858- 3 1.30000+ 1 1.80000+ 1 3.94157- 4 9.68928- 3 1.30000+ 1 1.90000+ 1 6.84021- 3 9.81100- 3 1.30000+ 1 2.10000+ 1 2.22676- 3 1.00101- 2 1.30000+ 1 2.20000+ 1 1.74420- 2 1.00328- 2 1.30000+ 1 2.40000+ 1 4.64692- 4 1.02923- 2 1.30000+ 1 2.50000+ 1 1.57571- 3 1.02975- 2 1.30000+ 1 2.70000+ 1 1.35072- 4 1.02925- 2 1.30000+ 1 2.90000+ 1 7.46833- 5 1.03344- 2 1.30000+ 1 3.00000+ 1 1.14557- 3 1.03577- 2 1.30000+ 1 3.20000+ 1 2.54471- 4 1.04165- 2 1.30000+ 1 3.30000+ 1 1.86567- 3 1.04193- 2 1.40000+ 1 1.40000+ 1 7.93381- 2 8.06200- 3 1.40000+ 1 1.60000+ 1 1.09672- 3 9.67428- 3 1.40000+ 1 1.80000+ 1 2.87486- 3 9.79498- 3 1.40000+ 1 1.90000+ 1 1.03963- 2 9.91670- 3 1.40000+ 1 2.10000+ 1 2.10636- 2 1.01158- 2 1.40000+ 1 2.20000+ 1 2.65496- 2 1.01385- 2 1.40000+ 1 2.40000+ 1 4.91247- 3 1.03980- 2 1.40000+ 1 2.50000+ 1 4.46709- 3 1.04032- 2 1.40000+ 1 2.70000+ 1 2.35096- 4 1.03982- 2 1.40000+ 1 2.90000+ 1 5.32926- 4 1.04401- 2 1.40000+ 1 3.00000+ 1 1.79569- 3 1.04634- 2 1.40000+ 1 3.20000+ 1 2.40557- 3 1.05222- 2 1.40000+ 1 3.30000+ 1 2.91303- 3 1.05250- 2 1.60000+ 1 1.60000+ 1 2.71989- 5 1.12866- 2 1.60000+ 1 1.80000+ 1 1.38301- 5 1.14073- 2 1.60000+ 1 1.90000+ 1 8.29788- 4 1.15290- 2 1.60000+ 1 2.10000+ 1 7.28383- 5 1.17280- 2 1.60000+ 1 2.20000+ 1 1.14796- 4 1.17508- 2 1.60000+ 1 2.40000+ 1 3.08876- 5 1.20102- 2 1.60000+ 1 2.50000+ 1 6.22356- 5 1.20155- 2 1.60000+ 1 2.70000+ 1 1.10641- 5 1.20104- 2 1.60000+ 1 2.90000+ 1 2.30500- 6 1.20524- 2 1.60000+ 1 3.00000+ 1 1.40604- 4 1.20756- 2 1.60000+ 1 3.20000+ 1 7.83684- 6 1.21345- 2 1.60000+ 1 3.30000+ 1 1.15254- 5 1.21372- 2 1.80000+ 1 1.80000+ 1 9.21995- 7 1.15280- 2 1.80000+ 1 1.90000+ 1 1.29084- 3 1.16497- 2 1.80000+ 1 2.10000+ 1 7.05319- 5 1.18487- 2 1.80000+ 1 2.20000+ 1 4.85892- 4 1.18715- 2 1.80000+ 1 2.40000+ 1 3.31929- 5 1.21309- 2 1.80000+ 1 2.50000+ 1 7.92932- 5 1.21362- 2 1.80000+ 1 2.70000+ 1 2.76599- 6 1.21311- 2 1.80000+ 1 2.90000+ 1 4.61013- 7 1.21731- 2 1.80000+ 1 3.00000+ 1 2.19906- 4 1.21963- 2 1.80000+ 1 3.20000+ 1 8.29779- 6 1.22552- 2 1.80000+ 1 3.30000+ 1 5.30153- 5 1.22579- 2 1.90000+ 1 1.90000+ 1 1.63981- 3 1.17714- 2 1.90000+ 1 2.10000+ 1 1.41302- 3 1.19705- 2 1.90000+ 1 2.20000+ 1 2.08102- 3 1.19932- 2 1.90000+ 1 2.40000+ 1 1.03269- 4 1.22527- 2 1.90000+ 1 2.50000+ 1 1.33689- 4 1.22579- 2 1.90000+ 1 2.70000+ 1 1.77492- 4 1.22529- 2 1.90000+ 1 2.90000+ 1 2.43414- 4 1.22948- 2 1.90000+ 1 3.00000+ 1 5.79037- 4 1.23181- 2 1.90000+ 1 3.20000+ 1 1.65505- 4 1.23769- 2 1.90000+ 1 3.30000+ 1 2.34197- 4 1.23797- 2 2.10000+ 1 2.10000+ 1 1.86707- 4 1.21695- 2 2.10000+ 1 2.20000+ 1 3.22017- 3 1.21923- 2 2.10000+ 1 2.40000+ 1 5.43996- 5 1.24517- 2 2.10000+ 1 2.50000+ 1 1.75178- 4 1.24570- 2 2.10000+ 1 2.70000+ 1 1.56744- 5 1.24519- 2 2.10000+ 1 2.90000+ 1 1.33688- 5 1.24939- 2 2.10000+ 1 3.00000+ 1 2.36954- 4 1.25171- 2 2.10000+ 1 3.20000+ 1 4.24129- 5 1.25760- 2 2.10000+ 1 3.30000+ 1 3.46668- 4 1.25787- 2 2.20000+ 1 2.20000+ 1 2.25132- 3 1.22150- 2 2.20000+ 1 2.40000+ 1 5.67931- 4 1.24745- 2 2.20000+ 1 2.50000+ 1 5.07972- 4 1.24797- 2 2.20000+ 1 2.70000+ 1 2.50976- 5 1.24747- 2 2.20000+ 1 2.90000+ 1 9.15603- 5 1.25166- 2 2.20000+ 1 3.00000+ 1 3.61122- 4 1.25399- 2 2.20000+ 1 3.20000+ 1 3.73196- 4 1.25987- 2 2.20000+ 1 3.30000+ 1 4.94039- 4 1.26015- 2 2.40000+ 1 2.40000+ 1 2.50488- 6 1.27339- 2 2.40000+ 1 2.50000+ 1 7.11398- 5 1.27391- 2 2.40000+ 1 2.70000+ 1 6.51291- 6 1.27341- 2 2.40000+ 1 2.90000+ 1 6.51291- 6 1.27760- 2 2.40000+ 1 3.00000+ 1 1.80354- 5 1.27993- 2 2.40000+ 1 3.20000+ 1 6.51291- 6 1.28581- 2 2.40000+ 1 3.30000+ 1 6.26224- 5 1.28609- 2 2.50000+ 1 2.50000+ 1 2.30503- 5 1.27444- 2 2.50000+ 1 2.70000+ 1 1.19870- 5 1.27394- 2 2.50000+ 1 2.90000+ 1 1.38303- 5 1.27813- 2 2.50000+ 1 3.00000+ 1 2.21286- 5 1.28045- 2 2.50000+ 1 3.20000+ 1 1.84409- 5 1.28634- 2 2.50000+ 1 3.30000+ 1 5.16338- 5 1.28662- 2 2.70000+ 1 2.70000+ 1 1.20528- 6 1.27343- 2 2.70000+ 1 2.90000+ 1 6.02661- 7 1.27763- 2 2.70000+ 1 3.00000+ 1 3.91726- 5 1.27995- 2 2.70000+ 1 3.20000+ 1 2.41062- 6 1.28584- 2 2.70000+ 1 3.30000+ 1 3.01318- 6 1.28611- 2 2.90000+ 1 3.00000+ 1 5.84667- 5 1.28414- 2 2.90000+ 1 3.20000+ 1 1.94884- 6 1.29003- 2 2.90000+ 1 3.30000+ 1 1.42920- 5 1.29031- 2 3.00000+ 1 3.00000+ 1 7.48404- 5 1.28647- 2 3.00000+ 1 3.20000+ 1 4.04534- 5 1.29235- 2 3.00000+ 1 3.30000+ 1 5.86575- 5 1.29263- 2 3.20000+ 1 3.20000+ 1 2.30495- 6 1.29824- 2 3.20000+ 1 3.30000+ 1 3.96464- 5 1.29852- 2 3.30000+ 1 3.30000+ 1 2.67372- 5 1.29879- 2 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.01990- 5 2.75000- 4 1.10000+ 1 4.91298- 4 7.69700- 4 1.80000+ 1 1.58009- 3 3.06828- 3 1.90000+ 1 1.21280- 3 3.19000- 3 2.90000+ 1 3.49469- 4 3.71339- 3 3.00000+ 1 2.86859- 4 3.73666- 3 4.30000+ 1 9.26166- 6 3.81730- 3 4.40000+ 1 6.13987- 6 3.81901- 3 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 2.78737- 2 1.21960- 4 1.00000+ 1 2.50000+ 1 3.75182- 2 1.27190- 4 1.00000+ 1 2.70000+ 1 1.18281- 2 1.22170- 4 1.00000+ 1 2.90000+ 1 1.14932- 2 1.64090- 4 1.00000+ 1 3.00000+ 1 1.49626- 2 1.87360- 4 1.00000+ 1 3.20000+ 1 6.58591- 3 2.46190- 4 1.00000+ 1 3.30000+ 1 8.69352- 3 2.48970- 4 1.00000+ 1 4.10000+ 1 1.32069- 3 2.59950- 4 1.00000+ 1 4.30000+ 1 2.54208- 4 2.68000- 4 1.00000+ 1 4.40000+ 1 2.69337- 4 2.69710- 4 1.10000+ 1 1.80000+ 1 5.63983- 2 1.36800- 5 1.10000+ 1 1.90000+ 1 5.80249- 2 1.35400- 4 1.10000+ 1 2.10000+ 1 1.79005- 2 3.34470- 4 1.10000+ 1 2.20000+ 1 3.09162- 2 3.57210- 4 1.10000+ 1 2.40000+ 1 1.76870- 1 6.16660- 4 1.10000+ 1 2.50000+ 1 2.18518- 1 6.21890- 4 1.10000+ 1 2.70000+ 1 1.06468- 2 6.16870- 4 1.10000+ 1 2.90000+ 1 1.01650- 2 6.58790- 4 1.10000+ 1 3.00000+ 1 1.03482- 2 6.82060- 4 1.10000+ 1 3.20000+ 1 2.05132- 3 7.40890- 4 1.10000+ 1 3.30000+ 1 3.55306- 3 7.43670- 4 1.10000+ 1 4.10000+ 1 1.21696- 3 7.54650- 4 1.10000+ 1 4.30000+ 1 2.33267- 4 7.62700- 4 1.10000+ 1 4.40000+ 1 1.95388- 4 7.64410- 4 1.30000+ 1 1.60000+ 1 2.55399- 2 3.52880- 4 1.30000+ 1 1.80000+ 1 5.55571- 3 4.73580- 4 1.30000+ 1 1.90000+ 1 7.02944- 3 5.95300- 4 1.30000+ 1 2.10000+ 1 8.76956- 3 7.94370- 4 1.30000+ 1 2.20000+ 1 1.08083- 2 8.17110- 4 1.30000+ 1 2.40000+ 1 9.04749- 3 1.07656- 3 1.30000+ 1 2.50000+ 1 8.35903- 3 1.08179- 3 1.30000+ 1 2.70000+ 1 3.49057- 3 1.07677- 3 1.30000+ 1 2.90000+ 1 8.24827- 4 1.11869- 3 1.30000+ 1 3.00000+ 1 9.77110- 4 1.14196- 3 1.30000+ 1 3.20000+ 1 8.52874- 4 1.20079- 3 1.30000+ 1 3.30000+ 1 1.10141- 3 1.20357- 3 1.30000+ 1 4.10000+ 1 3.74392- 4 1.21455- 3 1.30000+ 1 4.30000+ 1 1.84557- 5 1.22260- 3 1.30000+ 1 4.40000+ 1 1.76244- 5 1.22431- 3 1.40000+ 1 1.60000+ 1 3.55464- 2 4.58580- 4 1.40000+ 1 1.80000+ 1 9.36733- 4 5.79280- 4 1.40000+ 1 1.90000+ 1 1.11038- 2 7.01000- 4 1.40000+ 1 2.10000+ 1 1.21489- 2 9.00070- 4 1.40000+ 1 2.20000+ 1 1.72218- 2 9.22810- 4 1.40000+ 1 2.40000+ 1 1.03350- 2 1.18226- 3 1.40000+ 1 2.50000+ 1 1.60320- 2 1.18749- 3 1.40000+ 1 2.70000+ 1 4.80753- 3 1.18247- 3 1.40000+ 1 2.90000+ 1 1.70280- 4 1.22439- 3 1.40000+ 1 3.00000+ 1 1.52621- 3 1.24766- 3 1.40000+ 1 3.20000+ 1 1.28559- 3 1.30649- 3 1.40000+ 1 3.30000+ 1 1.68889- 3 1.30927- 3 1.40000+ 1 4.10000+ 1 5.14698- 4 1.32025- 3 1.40000+ 1 4.30000+ 1 4.02445- 6 1.32830- 3 1.40000+ 1 4.40000+ 1 2.76167- 5 1.33001- 3 1.60000+ 1 1.60000+ 1 2.45676- 3 2.07086- 3 1.60000+ 1 1.80000+ 1 4.29301- 3 2.19156- 3 1.60000+ 1 1.90000+ 1 7.05037- 3 2.31328- 3 1.60000+ 1 2.10000+ 1 8.20737- 3 2.51235- 3 1.60000+ 1 2.20000+ 1 1.15362- 2 2.53509- 3 1.60000+ 1 2.40000+ 1 5.86812- 3 2.79454- 3 1.60000+ 1 2.50000+ 1 7.35558- 3 2.79977- 3 1.60000+ 1 2.70000+ 1 8.59514- 4 2.79475- 3 1.60000+ 1 2.90000+ 1 8.16982- 4 2.83667- 3 1.60000+ 1 3.00000+ 1 1.29157- 3 2.85994- 3 1.60000+ 1 3.20000+ 1 9.51643- 4 2.91877- 3 1.60000+ 1 3.30000+ 1 1.29465- 3 2.92155- 3 1.60000+ 1 4.10000+ 1 9.69998- 5 2.93253- 3 1.60000+ 1 4.30000+ 1 1.88905- 5 2.94058- 3 1.60000+ 1 4.40000+ 1 2.41575- 5 2.94229- 3 1.80000+ 1 1.80000+ 1 1.81471- 4 2.31226- 3 1.80000+ 1 1.90000+ 1 5.27593- 4 2.43398- 3 1.80000+ 1 2.10000+ 1 2.74021- 4 2.63305- 3 1.80000+ 1 2.20000+ 1 1.52137- 4 2.65579- 3 1.80000+ 1 2.40000+ 1 3.89400- 5 2.91524- 3 1.80000+ 1 2.50000+ 1 4.58598- 4 2.92047- 3 1.80000+ 1 2.70000+ 1 5.74499- 4 2.91545- 3 1.80000+ 1 2.90000+ 1 5.16179- 5 2.95737- 3 1.80000+ 1 3.00000+ 1 7.10009- 5 2.98064- 3 1.80000+ 1 3.20000+ 1 2.77114- 5 3.03947- 3 1.80000+ 1 3.30000+ 1 2.04657- 5 3.04225- 3 1.80000+ 1 4.10000+ 1 6.15798- 5 3.05323- 3 1.80000+ 1 4.30000+ 1 1.08666- 6 3.06128- 3 1.80000+ 1 4.40000+ 1 1.26778- 6 3.06299- 3 1.90000+ 1 1.90000+ 1 5.98942- 4 2.55570- 3 1.90000+ 1 2.10000+ 1 5.98762- 4 2.75477- 3 1.90000+ 1 2.20000+ 1 1.38089- 3 2.77751- 3 1.90000+ 1 2.40000+ 1 6.34615- 4 3.03696- 3 1.90000+ 1 2.50000+ 1 1.07434- 3 3.04219- 3 1.90000+ 1 2.70000+ 1 9.48347- 4 3.03717- 3 1.90000+ 1 2.90000+ 1 8.51234- 5 3.07909- 3 1.90000+ 1 3.00000+ 1 1.84727- 4 3.10236- 3 1.90000+ 1 3.20000+ 1 6.97280- 5 3.16119- 3 1.90000+ 1 3.30000+ 1 1.47789- 4 3.16397- 3 1.90000+ 1 4.10000+ 1 1.01784- 4 3.17495- 3 1.90000+ 1 4.30000+ 1 1.99220- 6 3.18300- 3 1.90000+ 1 4.40000+ 1 3.44109- 6 3.18471- 3 2.10000+ 1 2.10000+ 1 9.86370- 5 2.95384- 3 2.10000+ 1 2.20000+ 1 3.69980- 4 2.97658- 3 2.10000+ 1 2.40000+ 1 4.45868- 4 3.23603- 3 2.10000+ 1 2.50000+ 1 2.98547- 3 3.24126- 3 2.10000+ 1 2.70000+ 1 1.08353- 3 3.23624- 3 2.10000+ 1 2.90000+ 1 3.45771- 5 3.27816- 3 2.10000+ 1 3.00000+ 1 8.57141- 5 3.30143- 3 2.10000+ 1 3.20000+ 1 1.83808- 5 3.36026- 3 2.10000+ 1 3.30000+ 1 3.53066- 5 3.36304- 3 2.10000+ 1 4.10000+ 1 1.15745- 4 3.37402- 3 2.10000+ 1 4.30000+ 1 7.27938- 7 3.38207- 3 2.10000+ 1 4.40000+ 1 1.63786- 6 3.38378- 3 2.20000+ 1 2.20000+ 1 2.44320- 4 2.99932- 3 2.20000+ 1 2.40000+ 1 2.75779- 3 3.25877- 3 2.20000+ 1 2.50000+ 1 1.67184- 3 3.26400- 3 2.20000+ 1 2.70000+ 1 1.51417- 3 3.25898- 3 2.20000+ 1 2.90000+ 1 2.14181- 5 3.30090- 3 2.20000+ 1 3.00000+ 1 1.94930- 4 3.32417- 3 2.20000+ 1 3.20000+ 1 3.32166- 5 3.38300- 3 2.20000+ 1 3.30000+ 1 4.53774- 5 3.38578- 3 2.20000+ 1 4.10000+ 1 1.61715- 4 3.39676- 3 2.20000+ 1 4.30000+ 1 5.44527- 7 3.40481- 3 2.20000+ 1 4.40000+ 1 3.44859- 6 3.40652- 3 2.40000+ 1 2.40000+ 1 5.94239- 4 3.51822- 3 2.40000+ 1 2.50000+ 1 3.98585- 3 3.52345- 3 2.40000+ 1 2.70000+ 1 7.09999- 4 3.51843- 3 2.40000+ 1 2.90000+ 1 5.43344- 6 3.56035- 3 2.40000+ 1 3.00000+ 1 6.57443- 5 3.58362- 3 2.40000+ 1 3.20000+ 1 4.67283- 5 3.64245- 3 2.40000+ 1 3.30000+ 1 3.08437- 4 3.64523- 3 2.40000+ 1 4.10000+ 1 7.49788- 5 3.65621- 3 2.40000+ 1 4.30000+ 1 1.81111- 7 3.66426- 3 2.40000+ 1 4.40000+ 1 1.08665- 6 3.66597- 3 2.50000+ 1 2.50000+ 1 1.34958- 3 3.52868- 3 2.50000+ 1 2.70000+ 1 8.74875- 4 3.52366- 3 2.50000+ 1 2.90000+ 1 7.54183- 5 3.56558- 3 2.50000+ 1 3.00000+ 1 1.17850- 4 3.58885- 3 2.50000+ 1 3.20000+ 1 3.29669- 4 3.64768- 3 2.50000+ 1 3.30000+ 1 1.77223- 4 3.65046- 3 2.50000+ 1 4.10000+ 1 9.23558- 5 3.66144- 3 2.50000+ 1 4.30000+ 1 1.78291- 6 3.66949- 3 2.50000+ 1 4.40000+ 1 2.13950- 6 3.67120- 3 2.70000+ 1 2.70000+ 1 8.01752- 5 3.51864- 3 2.70000+ 1 2.90000+ 1 1.26942- 4 3.56056- 3 2.70000+ 1 3.00000+ 1 2.00446- 4 3.58383- 3 2.70000+ 1 3.20000+ 1 1.44899- 4 3.64266- 3 2.70000+ 1 3.30000+ 1 1.96467- 4 3.64544- 3 2.70000+ 1 4.10000+ 1 1.79566- 5 3.65642- 3 2.70000+ 1 4.30000+ 1 2.92313- 6 3.66447- 3 2.70000+ 1 4.40000+ 1 3.75814- 6 3.66618- 3 2.90000+ 1 2.90000+ 1 5.60692- 6 3.60248- 3 2.90000+ 1 3.00000+ 1 1.71018- 5 3.62575- 3 2.90000+ 1 3.20000+ 1 5.32657- 6 3.68458- 3 2.90000+ 1 3.30000+ 1 4.76587- 6 3.68736- 3 2.90000+ 1 4.10000+ 1 1.82229- 5 3.69834- 3 2.90000+ 1 4.30000+ 1 2.80346- 7 3.70639- 3 2.90000+ 1 4.40000+ 1 2.80346- 7 3.70810- 3 3.00000+ 1 3.00000+ 1 2.18292- 5 3.64902- 3 3.00000+ 1 3.20000+ 1 1.57983- 5 3.70785- 3 3.00000+ 1 3.30000+ 1 3.33185- 5 3.71063- 3 3.00000+ 1 4.10000+ 1 2.95846- 5 3.72161- 3 3.00000+ 1 4.30000+ 1 2.87232- 7 3.72966- 3 3.00000+ 1 4.40000+ 1 8.61716- 7 3.73137- 3 3.20000+ 1 3.20000+ 1 7.88313- 7 3.76668- 3 3.20000+ 1 3.30000+ 1 3.54742- 6 3.76946- 3 3.20000+ 1 4.10000+ 1 1.45841- 5 3.78044- 3 3.20000+ 1 4.40000+ 1 1.97079- 7 3.79020- 3 3.30000+ 1 3.30000+ 1 2.01305- 6 3.77224- 3 3.30000+ 1 4.10000+ 1 1.84839- 5 3.78322- 3 3.30000+ 1 4.40000+ 1 3.66010- 7 3.79298- 3 4.10000+ 1 4.10000+ 1 9.05547- 7 3.79420- 3 4.10000+ 1 4.30000+ 1 3.62223- 7 3.80225- 3 4.10000+ 1 4.40000+ 1 3.62223- 7 3.80396- 3 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.07090- 3 9.54600- 4 1.60000+ 1 7.58418- 4 2.67258- 3 2.10000+ 1 4.03439- 3 3.11407- 3 2.70000+ 1 1.66440- 4 3.39647- 3 3.20000+ 1 5.87569- 4 3.52049- 3 4.10000+ 1 2.12990- 5 3.53425- 3 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.06199- 3 5.94700- 5 1.10000+ 1 2.20000+ 1 1.47641- 2 8.22100- 5 1.10000+ 1 2.40000+ 1 2.84209- 2 3.41660- 4 1.10000+ 1 2.50000+ 1 2.57864- 2 3.46890- 4 1.10000+ 1 2.70000+ 1 3.10155- 3 3.41870- 4 1.10000+ 1 2.90000+ 1 3.94896- 3 3.83790- 4 1.10000+ 1 3.00000+ 1 2.46154- 3 4.07060- 4 1.10000+ 1 3.20000+ 1 9.06147- 4 4.65890- 4 1.10000+ 1 3.30000+ 1 1.87670- 3 4.68670- 4 1.10000+ 1 4.10000+ 1 3.37278- 4 4.79650- 4 1.10000+ 1 4.30000+ 1 8.46227- 5 4.87700- 4 1.10000+ 1 4.40000+ 1 4.36078- 5 4.89410- 4 1.30000+ 1 1.60000+ 1 4.88658- 2 7.78800- 5 1.30000+ 1 1.80000+ 1 4.98317- 2 1.98580- 4 1.30000+ 1 1.90000+ 1 4.54035- 2 3.20300- 4 1.30000+ 1 2.10000+ 1 1.83298- 2 5.19370- 4 1.30000+ 1 2.20000+ 1 2.32462- 2 5.42110- 4 1.30000+ 1 2.40000+ 1 1.41803- 1 8.01560- 4 1.30000+ 1 2.50000+ 1 2.19386- 1 8.06790- 4 1.30000+ 1 2.70000+ 1 1.02368- 2 8.01770- 4 1.30000+ 1 2.90000+ 1 7.96474- 3 8.43690- 4 1.30000+ 1 3.00000+ 1 7.99329- 3 8.66960- 4 1.30000+ 1 3.20000+ 1 2.20395- 3 9.25790- 4 1.30000+ 1 3.30000+ 1 2.85480- 3 9.28570- 4 1.30000+ 1 4.10000+ 1 1.16561- 3 9.39550- 4 1.30000+ 1 4.30000+ 1 1.78409- 4 9.47600- 4 1.30000+ 1 4.40000+ 1 1.44838- 4 9.49310- 4 1.40000+ 1 1.60000+ 1 7.79039- 3 1.83580- 4 1.40000+ 1 1.80000+ 1 5.61858- 2 3.04280- 4 1.40000+ 1 1.90000+ 1 4.85370- 3 4.26000- 4 1.40000+ 1 2.10000+ 1 1.07467- 3 6.25070- 4 1.40000+ 1 2.20000+ 1 2.72884- 3 6.47810- 4 1.40000+ 1 2.40000+ 1 6.00294- 3 9.07260- 4 1.40000+ 1 2.50000+ 1 4.05966- 3 9.12490- 4 1.40000+ 1 2.70000+ 1 1.08907- 3 9.07470- 4 1.40000+ 1 2.90000+ 1 7.05075- 3 9.49390- 4 1.40000+ 1 3.00000+ 1 7.57796- 4 9.72660- 4 1.40000+ 1 3.20000+ 1 6.43711- 5 1.03149- 3 1.40000+ 1 3.30000+ 1 2.83798- 4 1.03427- 3 1.40000+ 1 4.10000+ 1 1.17669- 4 1.04525- 3 1.40000+ 1 4.30000+ 1 1.53495- 4 1.05330- 3 1.40000+ 1 4.40000+ 1 1.38446- 5 1.05501- 3 1.60000+ 1 1.60000+ 1 7.30685- 4 1.79586- 3 1.60000+ 1 1.80000+ 1 1.07209- 2 1.91656- 3 1.60000+ 1 1.90000+ 1 1.47242- 3 2.03828- 3 1.60000+ 1 2.10000+ 1 3.68451- 4 2.23735- 3 1.60000+ 1 2.20000+ 1 1.25210- 3 2.26009- 3 1.60000+ 1 2.40000+ 1 4.66576- 5 2.51954- 3 1.60000+ 1 2.50000+ 1 8.99047- 4 2.52477- 3 1.60000+ 1 2.70000+ 1 2.39541- 4 2.51975- 3 1.60000+ 1 2.90000+ 1 1.30839- 3 2.56167- 3 1.60000+ 1 3.00000+ 1 2.43405- 4 2.58494- 3 1.60000+ 1 3.20000+ 1 3.12653- 5 2.64377- 3 1.60000+ 1 3.30000+ 1 1.28914- 4 2.64655- 3 1.60000+ 1 4.10000+ 1 2.64556- 5 2.65753- 3 1.60000+ 1 4.30000+ 1 2.83798- 5 2.66558- 3 1.60000+ 1 4.40000+ 1 4.32942- 6 2.66729- 3 1.80000+ 1 1.80000+ 1 8.26277- 3 2.03726- 3 1.80000+ 1 1.90000+ 1 2.30820- 2 2.15898- 3 1.80000+ 1 2.10000+ 1 2.30467- 2 2.35805- 3 1.80000+ 1 2.20000+ 1 3.66452- 2 2.38079- 3 1.80000+ 1 2.40000+ 1 1.35610- 2 2.64024- 3 1.80000+ 1 2.50000+ 1 2.27233- 2 2.64547- 3 1.80000+ 1 2.70000+ 1 2.27089- 3 2.64045- 3 1.80000+ 1 2.90000+ 1 2.62180- 3 2.68237- 3 1.80000+ 1 3.00000+ 1 4.19355- 3 2.70564- 3 1.80000+ 1 3.20000+ 1 2.67857- 3 2.76447- 3 1.80000+ 1 3.30000+ 1 4.07319- 3 2.76725- 3 1.80000+ 1 4.10000+ 1 2.62649- 4 2.77823- 3 1.80000+ 1 4.30000+ 1 5.96481- 5 2.78628- 3 1.80000+ 1 4.40000+ 1 7.84067- 5 2.78799- 3 1.90000+ 1 1.90000+ 1 6.20547- 4 2.28070- 3 1.90000+ 1 2.10000+ 1 1.53115- 3 2.47977- 3 1.90000+ 1 2.20000+ 1 1.34212- 3 2.50251- 3 1.90000+ 1 2.40000+ 1 9.26055- 3 2.76196- 3 1.90000+ 1 2.50000+ 1 2.55780- 3 2.76719- 3 1.90000+ 1 2.70000+ 1 2.01075- 4 2.76217- 3 1.90000+ 1 2.90000+ 1 2.87908- 3 2.80409- 3 1.90000+ 1 3.00000+ 1 1.90485- 4 2.82736- 3 1.90000+ 1 3.20000+ 1 1.42869- 4 2.88619- 3 1.90000+ 1 3.30000+ 1 1.33252- 4 2.88897- 3 1.90000+ 1 4.10000+ 1 2.16473- 5 2.89995- 3 1.90000+ 1 4.30000+ 1 6.30182- 5 2.90800- 3 1.90000+ 1 4.40000+ 1 3.36738- 6 2.90971- 3 2.10000+ 1 2.10000+ 1 8.06711- 4 2.67884- 3 2.10000+ 1 2.20000+ 1 1.91793- 3 2.70158- 3 2.10000+ 1 2.40000+ 1 1.00253- 3 2.96103- 3 2.10000+ 1 2.50000+ 1 1.71252- 3 2.96626- 3 2.10000+ 1 2.70000+ 1 7.40803- 5 2.96124- 3 2.10000+ 1 2.90000+ 1 2.79761- 3 3.00316- 3 2.10000+ 1 3.00000+ 1 2.50625- 4 3.02643- 3 2.10000+ 1 3.20000+ 1 1.55380- 4 3.08526- 3 2.10000+ 1 3.30000+ 1 1.97718- 4 3.08804- 3 2.10000+ 1 4.10000+ 1 8.65879- 6 3.09902- 3 2.10000+ 1 4.30000+ 1 6.06116- 5 3.10707- 3 2.10000+ 1 4.40000+ 1 4.81063- 6 3.10878- 3 2.20000+ 1 2.20000+ 1 4.88737- 4 2.72432- 3 2.20000+ 1 2.40000+ 1 2.81548- 3 2.98377- 3 2.20000+ 1 2.50000+ 1 6.48436- 4 2.98900- 3 2.20000+ 1 2.70000+ 1 2.11168- 4 2.98398- 3 2.20000+ 1 2.90000+ 1 4.50908- 3 3.02590- 3 2.20000+ 1 3.00000+ 1 1.89530- 4 3.04917- 3 2.20000+ 1 3.20000+ 1 1.86648- 4 3.10800- 3 2.20000+ 1 3.30000+ 1 9.33240- 5 3.11078- 3 2.20000+ 1 4.10000+ 1 2.35711- 5 3.12176- 3 2.20000+ 1 4.30000+ 1 9.81340- 5 3.12981- 3 2.20000+ 1 4.40000+ 1 3.36738- 6 3.13152- 3 2.40000+ 1 2.40000+ 1 3.35633- 3 3.24322- 3 2.40000+ 1 2.50000+ 1 2.15520- 2 3.24845- 3 2.40000+ 1 2.70000+ 1 5.29158- 6 3.24343- 3 2.40000+ 1 2.90000+ 1 1.52009- 3 3.28535- 3 2.40000+ 1 3.00000+ 1 1.57976- 3 3.30862- 3 2.40000+ 1 3.20000+ 1 1.28920- 4 3.36745- 3 2.40000+ 1 3.30000+ 1 3.54994- 4 3.37023- 3 2.40000+ 1 4.10000+ 1 4.81061- 7 3.38121- 3 2.40000+ 1 4.30000+ 1 3.27105- 5 3.38926- 3 2.40000+ 1 4.40000+ 1 2.93445- 5 3.39097- 3 2.50000+ 1 2.50000+ 1 1.12756- 3 3.25368- 3 2.50000+ 1 2.70000+ 1 1.57782- 4 3.24866- 3 2.50000+ 1 2.90000+ 1 2.50432- 3 3.29058- 3 2.50000+ 1 3.00000+ 1 3.90607- 4 3.31385- 3 2.50000+ 1 3.20000+ 1 2.05407- 4 3.37268- 3 2.50000+ 1 3.30000+ 1 7.55235- 5 3.37546- 3 2.50000+ 1 4.10000+ 1 1.77986- 5 3.38644- 3 2.50000+ 1 4.30000+ 1 5.38765- 5 3.39449- 3 2.50000+ 1 4.40000+ 1 7.21553- 6 3.39620- 3 2.70000+ 1 2.70000+ 1 2.13567- 5 3.24364- 3 2.70000+ 1 2.90000+ 1 3.01623- 4 3.28556- 3 2.70000+ 1 3.00000+ 1 3.59447- 5 3.30883- 3 2.70000+ 1 3.20000+ 1 6.25078- 6 3.36766- 3 2.70000+ 1 3.30000+ 1 2.39623- 5 3.37044- 3 2.70000+ 1 4.10000+ 1 4.68849- 6 3.38142- 3 2.70000+ 1 4.30000+ 1 6.77190- 6 3.38947- 3 2.70000+ 1 4.40000+ 1 5.20935- 7 3.39118- 3 2.90000+ 1 2.90000+ 1 2.14572- 4 3.32748- 3 2.90000+ 1 3.00000+ 1 5.76744- 4 3.35075- 3 2.90000+ 1 3.20000+ 1 3.57968- 4 3.40958- 3 2.90000+ 1 3.30000+ 1 5.51961- 4 3.41236- 3 2.90000+ 1 4.10000+ 1 3.53191- 5 3.42334- 3 2.90000+ 1 4.30000+ 1 9.48935- 6 3.43139- 3 2.90000+ 1 4.40000+ 1 1.05436- 5 3.43310- 3 3.00000+ 1 3.00000+ 1 2.70760- 5 3.37402- 3 3.00000+ 1 3.20000+ 1 4.42242- 5 3.43285- 3 3.00000+ 1 3.30000+ 1 3.51980- 5 3.43563- 3 3.00000+ 1 4.10000+ 1 6.31790- 6 3.44661- 3 3.00000+ 1 4.30000+ 1 2.16611- 5 3.45466- 3 3.00000+ 1 4.40000+ 1 9.02565- 7 3.45637- 3 3.20000+ 1 3.20000+ 1 8.70540- 6 3.49168- 3 3.20000+ 1 3.30000+ 1 2.43743- 5 3.49446- 3 3.20000+ 1 4.10000+ 1 5.80387- 7 3.50544- 3 3.20000+ 1 4.30000+ 1 8.70540- 6 3.51349- 3 3.20000+ 1 4.40000+ 1 5.80387- 7 3.51520- 3 3.30000+ 1 3.30000+ 1 7.86267- 6 3.49724- 3 3.30000+ 1 4.10000+ 1 3.93112- 6 3.50822- 3 3.30000+ 1 4.30000+ 1 1.80839- 5 3.51627- 3 3.30000+ 1 4.40000+ 1 7.86267- 7 3.51798- 3 4.10000+ 1 4.30000+ 1 4.81059- 7 3.52725- 3 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.49610- 5 4.59900- 4 1.40000+ 1 2.65420- 4 5.65600- 4 1.60000+ 1 1.40470- 3 2.17788- 3 2.10000+ 1 6.84789- 4 2.61937- 3 2.20000+ 1 5.27899- 3 2.64211- 3 2.70000+ 1 2.98390- 4 2.90177- 3 3.20000+ 1 9.27029- 5 3.02579- 3 3.30000+ 1 7.10009- 4 3.02857- 3 4.10000+ 1 3.80030- 5 3.03955- 3 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.12296- 2 2.46700- 5 1.30000+ 1 2.20000+ 1 1.14581- 2 4.74100- 5 1.30000+ 1 2.40000+ 1 1.70430- 2 3.06860- 4 1.30000+ 1 2.50000+ 1 2.48590- 2 3.12090- 4 1.30000+ 1 2.70000+ 1 2.77753- 3 3.07070- 4 1.30000+ 1 2.90000+ 1 2.38433- 3 3.48990- 4 1.30000+ 1 3.00000+ 1 7.73350- 3 3.72260- 4 1.30000+ 1 3.20000+ 1 1.10763- 3 4.31090- 4 1.30000+ 1 3.30000+ 1 1.14041- 3 4.33870- 4 1.30000+ 1 4.10000+ 1 3.10116- 4 4.44850- 4 1.30000+ 1 4.30000+ 1 5.37607- 5 4.52900- 4 1.30000+ 1 4.40000+ 1 1.38861- 4 4.54610- 4 1.40000+ 1 2.10000+ 1 4.93087- 2 1.30370- 4 1.40000+ 1 2.20000+ 1 6.72875- 2 1.53110- 4 1.40000+ 1 2.40000+ 1 1.85562- 1 4.12560- 4 1.40000+ 1 2.50000+ 1 2.24085- 1 4.17790- 4 1.40000+ 1 2.70000+ 1 1.65844- 2 4.12770- 4 1.40000+ 1 2.90000+ 1 1.60864- 2 4.54690- 4 1.40000+ 1 3.00000+ 1 1.94880- 2 4.77960- 4 1.40000+ 1 3.20000+ 1 4.86191- 3 5.36790- 4 1.40000+ 1 3.30000+ 1 6.84922- 3 5.39570- 4 1.40000+ 1 4.10000+ 1 1.87565- 3 5.50550- 4 1.40000+ 1 4.30000+ 1 3.59514- 4 5.58600- 4 1.40000+ 1 4.40000+ 1 3.50995- 4 5.60310- 4 1.60000+ 1 1.60000+ 1 3.38960- 4 1.30116- 3 1.60000+ 1 1.80000+ 1 6.86537- 4 1.42186- 3 1.60000+ 1 1.90000+ 1 1.29383- 2 1.54358- 3 1.60000+ 1 2.10000+ 1 7.69855- 4 1.74265- 3 1.60000+ 1 2.20000+ 1 9.25359- 4 1.76539- 3 1.60000+ 1 2.40000+ 1 1.75721- 3 2.02484- 3 1.60000+ 1 2.50000+ 1 3.07471- 3 2.03007- 3 1.60000+ 1 2.70000+ 1 1.11795- 4 2.02505- 3 1.60000+ 1 2.90000+ 1 9.40086- 5 2.06697- 3 1.60000+ 1 3.00000+ 1 1.54938- 3 2.09024- 3 1.60000+ 1 3.20000+ 1 7.92726- 5 2.14907- 3 1.60000+ 1 3.30000+ 1 8.99445- 5 2.15185- 3 1.60000+ 1 4.10000+ 1 1.21957- 5 2.16283- 3 1.60000+ 1 4.30000+ 1 2.03261- 6 2.17088- 3 1.60000+ 1 4.40000+ 1 2.74402- 5 2.17259- 3 1.80000+ 1 1.80000+ 1 2.89668- 5 1.54256- 3 1.80000+ 1 1.90000+ 1 1.59687- 2 1.66428- 3 1.80000+ 1 2.10000+ 1 3.48101- 4 1.86335- 3 1.80000+ 1 2.20000+ 1 3.36951- 3 1.88609- 3 1.80000+ 1 2.40000+ 1 1.67187- 3 2.14554- 3 1.80000+ 1 2.50000+ 1 9.10574- 3 2.15077- 3 1.80000+ 1 2.70000+ 1 1.03667- 4 2.14575- 3 1.80000+ 1 2.90000+ 1 7.62260- 6 2.18767- 3 1.80000+ 1 3.00000+ 1 1.95195- 3 2.21094- 3 1.80000+ 1 3.20000+ 1 3.81130- 5 2.26977- 3 1.80000+ 1 3.30000+ 1 3.10009- 4 2.27255- 3 1.80000+ 1 4.10000+ 1 1.11797- 5 2.28353- 3 1.80000+ 1 4.40000+ 1 3.45550- 5 2.29329- 3 1.90000+ 1 1.90000+ 1 2.10244- 2 1.78600- 3 1.90000+ 1 2.10000+ 1 3.07142- 2 1.98507- 3 1.90000+ 1 2.20000+ 1 4.01567- 2 2.00781- 3 1.90000+ 1 2.40000+ 1 2.64880- 2 2.26726- 3 1.90000+ 1 2.50000+ 1 3.03228- 2 2.27249- 3 1.90000+ 1 2.70000+ 1 2.69070- 3 2.26747- 3 1.90000+ 1 2.90000+ 1 2.96921- 3 2.30939- 3 1.90000+ 1 3.00000+ 1 6.35315- 3 2.33266- 3 1.90000+ 1 3.20000+ 1 3.45867- 3 2.39149- 3 1.90000+ 1 3.30000+ 1 4.41695- 3 2.39427- 3 1.90000+ 1 4.10000+ 1 3.10008- 4 2.40525- 3 1.90000+ 1 4.30000+ 1 6.86018- 5 2.41330- 3 1.90000+ 1 4.40000+ 1 1.16371- 4 2.41501- 3 2.10000+ 1 2.10000+ 1 2.03263- 4 2.18414- 3 2.10000+ 1 2.20000+ 1 4.85259- 3 2.20688- 3 2.10000+ 1 2.40000+ 1 7.13469- 4 2.46633- 3 2.10000+ 1 2.50000+ 1 8.36441- 3 2.47156- 3 2.10000+ 1 2.70000+ 1 9.29957- 5 2.46654- 3 2.10000+ 1 2.90000+ 1 2.54085- 5 2.50846- 3 2.10000+ 1 3.00000+ 1 3.68791- 3 2.53173- 3 2.10000+ 1 3.20000+ 1 3.81127- 5 2.59056- 3 2.10000+ 1 3.30000+ 1 4.74112- 4 2.59334- 3 2.10000+ 1 4.10000+ 1 1.01632- 5 2.60432- 3 2.10000+ 1 4.30000+ 1 5.08169- 7 2.61237- 3 2.10000+ 1 4.40000+ 1 6.50453- 5 2.61408- 3 2.20000+ 1 2.20000+ 1 2.14156- 3 2.22962- 3 2.20000+ 1 2.40000+ 1 6.79279- 3 2.48907- 3 2.20000+ 1 2.50000+ 1 5.67873- 3 2.49430- 3 2.20000+ 1 2.70000+ 1 1.15354- 4 2.48928- 3 2.20000+ 1 2.90000+ 1 3.28788- 4 2.53120- 3 2.20000+ 1 3.00000+ 1 4.76212- 3 2.55447- 3 2.20000+ 1 3.20000+ 1 4.81745- 4 2.61330- 3 2.20000+ 1 3.30000+ 1 4.19736- 4 2.61608- 3 2.20000+ 1 4.10000+ 1 1.21960- 5 2.62706- 3 2.20000+ 1 4.30000+ 1 7.11441- 6 2.63511- 3 2.20000+ 1 4.40000+ 1 8.38485- 5 2.63682- 3 2.40000+ 1 2.40000+ 1 1.05598- 3 2.74852- 3 2.40000+ 1 2.50000+ 1 2.78478- 2 2.75375- 3 2.40000+ 1 2.70000+ 1 1.91066- 4 2.74873- 3 2.40000+ 1 2.90000+ 1 2.58137- 4 2.79065- 3 2.40000+ 1 3.00000+ 1 3.03246- 3 2.81392- 3 2.40000+ 1 3.20000+ 1 9.24839- 5 2.87275- 3 2.40000+ 1 3.30000+ 1 7.04812- 4 2.87553- 3 2.40000+ 1 4.10000+ 1 2.03264- 5 2.88651- 3 2.40000+ 1 4.30000+ 1 5.58993- 6 2.89456- 3 2.40000+ 1 4.40000+ 1 5.33552- 5 2.89627- 3 2.50000+ 1 2.50000+ 1 1.10018- 2 2.75898- 3 2.50000+ 1 2.70000+ 1 2.90162- 4 2.75396- 3 2.50000+ 1 2.90000+ 1 1.39544- 3 2.79588- 3 2.50000+ 1 3.00000+ 1 3.60337- 3 2.81915- 3 2.50000+ 1 3.20000+ 1 9.33483- 4 2.87798- 3 2.50000+ 1 3.30000+ 1 6.36739- 4 2.88076- 3 2.50000+ 1 4.10000+ 1 2.94728- 5 2.89174- 3 2.50000+ 1 4.30000+ 1 3.15069- 5 2.89979- 3 2.50000+ 1 4.40000+ 1 6.40276- 5 2.90150- 3 2.70000+ 1 2.70000+ 1 1.25462- 5 2.74894- 3 2.70000+ 1 2.90000+ 1 1.81920- 5 2.79086- 3 2.70000+ 1 3.00000+ 1 3.98970- 4 2.81413- 3 2.70000+ 1 3.20000+ 1 1.25462- 5 2.87296- 3 2.70000+ 1 3.30000+ 1 1.44283- 5 2.87574- 3 2.70000+ 1 4.10000+ 1 2.50923- 6 2.88672- 3 2.70000+ 1 4.30000+ 1 6.27320- 7 2.89477- 3 2.70000+ 1 4.40000+ 1 6.90060- 6 2.89648- 3 2.90000+ 1 2.90000+ 1 6.12614- 7 2.83278- 3 2.90000+ 1 3.00000+ 1 4.39850- 4 2.85605- 3 2.90000+ 1 3.20000+ 1 3.06308- 6 2.91488- 3 2.90000+ 1 3.30000+ 1 3.79823- 5 2.91766- 3 2.90000+ 1 4.10000+ 1 1.83782- 6 2.92864- 3 2.90000+ 1 4.40000+ 1 7.96389- 6 2.93840- 3 3.00000+ 1 3.00000+ 1 6.66111- 4 2.87932- 3 3.00000+ 1 3.20000+ 1 6.04972- 4 2.93815- 3 3.00000+ 1 3.30000+ 1 7.62679- 4 2.94093- 3 3.00000+ 1 4.10000+ 1 5.37927- 5 2.95191- 3 3.00000+ 1 4.30000+ 1 1.25268- 5 2.95996- 3 3.00000+ 1 4.40000+ 1 2.43168- 5 2.96167- 3 3.20000+ 1 3.20000+ 1 2.03265- 6 2.99698- 3 3.20000+ 1 3.30000+ 1 4.97994- 5 2.99976- 3 3.20000+ 1 4.10000+ 1 1.01633- 6 3.01074- 3 3.20000+ 1 4.40000+ 1 7.62260- 6 3.02050- 3 3.30000+ 1 3.30000+ 1 2.44133- 5 3.00254- 3 3.30000+ 1 4.10000+ 1 1.16256- 6 3.01352- 3 3.30000+ 1 4.30000+ 1 5.81288- 7 3.02157- 3 3.30000+ 1 4.40000+ 1 1.04629- 5 3.02328- 3 4.10000+ 1 4.40000+ 1 5.08169- 7 3.03426- 3 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.01990- 3 1.83868- 3 1.90000+ 1 2.01990- 4 1.96040- 3 2.40000+ 1 3.29020- 2 2.44166- 3 2.90000+ 1 4.98390- 4 2.48379- 3 3.00000+ 1 5.02290- 5 2.50706- 3 4.30000+ 1 7.33799- 6 2.58770- 3 4.40000+ 1 6.05180- 7 2.58941- 3 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 2.90000+ 1 1.58399- 3 0.00000+ 0 1.40000+ 1 3.00000+ 1 7.35349- 3 1.80600- 5 1.40000+ 1 3.20000+ 1 4.41271- 2 7.68900- 5 1.40000+ 1 3.30000+ 1 6.12658- 3 7.96700- 5 1.40000+ 1 4.10000+ 1 6.78724- 4 9.06500- 5 1.40000+ 1 4.30000+ 1 8.30838- 5 9.87000- 5 1.40000+ 1 4.40000+ 1 1.49982- 4 1.00410- 4 1.60000+ 1 1.60000+ 1 2.58960- 5 8.41260- 4 1.60000+ 1 1.80000+ 1 1.18150- 3 9.61960- 4 1.60000+ 1 1.90000+ 1 9.12839- 4 1.08368- 3 1.60000+ 1 2.10000+ 1 3.44101- 2 1.28275- 3 1.60000+ 1 2.20000+ 1 3.98604- 3 1.30549- 3 1.60000+ 1 2.40000+ 1 1.55013- 2 1.56494- 3 1.60000+ 1 2.50000+ 1 4.22120- 3 1.57017- 3 1.60000+ 1 2.70000+ 1 1.94227- 5 1.56515- 3 1.60000+ 1 2.90000+ 1 1.78031- 4 1.60707- 3 1.60000+ 1 3.00000+ 1 1.11138- 4 1.63034- 3 1.60000+ 1 3.20000+ 1 2.80653- 3 1.68917- 3 1.60000+ 1 3.30000+ 1 3.32338- 4 1.69195- 3 1.60000+ 1 4.10000+ 1 2.15801- 6 1.70293- 3 1.60000+ 1 4.30000+ 1 4.31602- 6 1.71098- 3 1.60000+ 1 4.40000+ 1 2.15801- 6 1.71269- 3 1.80000+ 1 1.80000+ 1 6.88405- 4 1.08266- 3 1.80000+ 1 1.90000+ 1 4.55669- 3 1.20438- 3 1.80000+ 1 2.10000+ 1 3.08196- 2 1.40345- 3 1.80000+ 1 2.20000+ 1 2.15155- 3 1.42619- 3 1.80000+ 1 2.40000+ 1 1.01916- 2 1.68564- 3 1.80000+ 1 2.50000+ 1 5.13092- 3 1.69087- 3 1.80000+ 1 2.70000+ 1 1.59696- 4 1.68585- 3 1.80000+ 1 2.90000+ 1 2.07177- 4 1.72777- 3 1.80000+ 1 3.00000+ 1 6.17227- 4 1.75104- 3 1.80000+ 1 3.20000+ 1 2.49578- 3 1.80987- 3 1.80000+ 1 3.30000+ 1 2.05015- 4 1.81265- 3 1.80000+ 1 4.10000+ 1 1.72644- 5 1.82363- 3 1.80000+ 1 4.30000+ 1 4.31605- 6 1.83168- 3 1.80000+ 1 4.40000+ 1 1.07902- 5 1.83339- 3 1.90000+ 1 1.90000+ 1 1.61317- 3 1.32610- 3 1.90000+ 1 2.10000+ 1 6.17767- 2 1.52517- 3 1.90000+ 1 2.20000+ 1 2.34585- 3 1.54791- 3 1.90000+ 1 2.40000+ 1 3.26180- 3 1.80736- 3 1.90000+ 1 2.50000+ 1 2.11925- 3 1.81259- 3 1.90000+ 1 2.70000+ 1 1.45660- 4 1.80757- 3 1.90000+ 1 2.90000+ 1 5.50286- 4 1.84949- 3 1.90000+ 1 3.00000+ 1 4.17595- 4 1.87276- 3 1.90000+ 1 3.20000+ 1 5.05515- 3 1.93159- 3 1.90000+ 1 3.30000+ 1 2.02851- 4 1.93437- 3 1.90000+ 1 4.10000+ 1 1.61855- 5 1.94535- 3 1.90000+ 1 4.30000+ 1 1.18686- 5 1.95340- 3 1.90000+ 1 4.40000+ 1 7.55289- 6 1.95511- 3 2.10000+ 1 2.10000+ 1 5.55598- 2 1.72424- 3 2.10000+ 1 2.20000+ 1 1.10221- 1 1.74698- 3 2.10000+ 1 2.40000+ 1 5.96126- 2 2.00643- 3 2.10000+ 1 2.50000+ 1 7.20321- 2 2.01166- 3 2.10000+ 1 2.70000+ 1 6.59055- 3 2.00664- 3 2.10000+ 1 2.90000+ 1 5.77361- 3 2.04856- 3 2.10000+ 1 3.00000+ 1 1.09146- 2 2.07183- 3 2.10000+ 1 3.20000+ 1 1.08757- 2 2.13066- 3 2.10000+ 1 3.30000+ 1 1.19803- 2 2.13344- 3 2.10000+ 1 4.10000+ 1 7.53151- 4 2.14442- 3 2.10000+ 1 4.30000+ 1 1.33797- 4 2.15247- 3 2.10000+ 1 4.40000+ 1 2.02852- 4 2.15418- 3 2.20000+ 1 2.20000+ 1 1.76527- 3 1.76972- 3 2.20000+ 1 2.40000+ 1 6.72103- 2 2.02917- 3 2.20000+ 1 2.50000+ 1 3.37406- 3 2.03440- 3 2.20000+ 1 2.70000+ 1 4.12168- 4 2.02938- 3 2.20000+ 1 2.90000+ 1 2.52495- 4 2.07130- 3 2.20000+ 1 3.00000+ 1 3.35573- 4 2.09457- 3 2.20000+ 1 3.20000+ 1 9.06579- 3 2.15340- 3 2.20000+ 1 3.30000+ 1 3.18312- 4 2.15618- 3 2.20000+ 1 4.10000+ 1 4.31600- 5 2.16716- 3 2.20000+ 1 4.30000+ 1 5.39491- 6 2.17521- 3 2.20000+ 1 4.40000+ 1 6.47391- 6 2.17692- 3 2.40000+ 1 2.40000+ 1 6.30683- 2 2.28862- 3 2.40000+ 1 2.50000+ 1 1.82429- 1 2.29385- 3 2.40000+ 1 2.70000+ 1 3.11611- 3 2.28883- 3 2.40000+ 1 2.90000+ 1 1.57001- 3 2.33075- 3 2.40000+ 1 3.00000+ 1 5.89130- 4 2.35402- 3 2.40000+ 1 3.20000+ 1 5.26322- 3 2.41285- 3 2.40000+ 1 3.30000+ 1 6.98332- 3 2.41563- 3 2.40000+ 1 4.10000+ 1 3.54988- 4 2.42661- 3 2.40000+ 1 4.30000+ 1 3.45277- 5 2.43466- 3 2.40000+ 1 4.40000+ 1 1.07898- 5 2.43637- 3 2.50000+ 1 2.50000+ 1 3.51577- 3 2.29908- 3 2.50000+ 1 2.70000+ 1 5.58523- 4 2.29406- 3 2.50000+ 1 2.90000+ 1 3.91841- 4 2.33598- 3 2.50000+ 1 3.00000+ 1 3.13482- 4 2.35925- 3 2.50000+ 1 3.20000+ 1 5.03542- 3 2.41808- 3 2.50000+ 1 3.30000+ 1 3.03556- 4 2.42086- 3 2.50000+ 1 4.10000+ 1 6.05161- 5 2.43184- 3 2.50000+ 1 4.30000+ 1 7.93637- 6 2.43989- 3 2.50000+ 1 4.40000+ 1 5.95198- 6 2.44160- 3 2.70000+ 1 2.70000+ 1 2.43065- 6 2.28904- 3 2.70000+ 1 2.90000+ 1 2.91676- 5 2.33096- 3 2.70000+ 1 3.00000+ 1 2.06616- 5 2.35423- 3 2.70000+ 1 3.20000+ 1 6.10107- 4 2.41306- 3 2.70000+ 1 3.30000+ 1 4.25369- 5 2.41584- 3 2.70000+ 1 4.30000+ 1 1.21533- 6 2.43487- 3 2.90000+ 1 2.90000+ 1 2.30739- 5 2.37288- 3 2.90000+ 1 3.00000+ 1 1.13830- 4 2.39615- 3 2.90000+ 1 3.20000+ 1 6.69158- 4 2.45498- 3 2.90000+ 1 3.30000+ 1 3.84561- 5 2.45776- 3 2.90000+ 1 4.10000+ 1 4.61479- 6 2.46874- 3 2.90000+ 1 4.30000+ 1 1.53822- 6 2.47679- 3 2.90000+ 1 4.40000+ 1 1.53822- 6 2.47850- 3 3.00000+ 1 3.00000+ 1 4.40649- 5 2.41942- 3 3.00000+ 1 3.20000+ 1 1.41181- 3 2.47825- 3 3.00000+ 1 3.30000+ 1 4.91495- 5 2.48103- 3 3.00000+ 1 4.10000+ 1 3.38958- 6 2.49201- 3 3.00000+ 1 4.30000+ 1 3.38958- 6 2.50006- 3 3.00000+ 1 4.40000+ 1 1.69480- 6 2.50177- 3 3.20000+ 1 3.20000+ 1 5.16859- 4 2.53708- 3 3.20000+ 1 3.30000+ 1 9.90580- 4 2.53986- 3 3.20000+ 1 4.10000+ 1 6.15049- 5 2.55084- 3 3.20000+ 1 4.30000+ 1 1.07902- 5 2.55889- 3 3.20000+ 1 4.40000+ 1 1.72645- 5 2.56060- 3 3.30000+ 1 3.30000+ 1 1.46825- 5 2.54264- 3 3.30000+ 1 4.10000+ 1 4.51766- 6 2.55362- 3 3.30000+ 1 4.30000+ 1 1.12942- 6 2.56167- 3 3.30000+ 1 4.40000+ 1 1.12942- 6 2.56338- 3 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.53741- 3 1.85470- 3 2.40000+ 1 1.63041- 3 2.33596- 3 2.50000+ 1 3.18692- 2 2.34119- 3 3.00000+ 1 3.75762- 4 2.40136- 3 4.40000+ 1 4.46532- 6 2.48371- 3 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 2.58432- 4 8.56260- 4 1.60000+ 1 1.90000+ 1 2.07295- 3 9.77980- 4 1.60000+ 1 2.10000+ 1 3.46874- 3 1.17705- 3 1.60000+ 1 2.20000+ 1 3.75902- 2 1.19979- 3 1.60000+ 1 2.40000+ 1 4.39461- 3 1.45924- 3 1.60000+ 1 2.50000+ 1 1.64574- 2 1.46447- 3 1.60000+ 1 2.70000+ 1 1.19944- 5 1.45945- 3 1.60000+ 1 2.90000+ 1 1.52668- 5 1.50137- 3 1.60000+ 1 3.00000+ 1 2.60618- 4 1.52464- 3 1.60000+ 1 3.20000+ 1 2.78058- 4 1.58347- 3 1.60000+ 1 3.30000+ 1 2.98569- 3 1.58625- 3 1.60000+ 1 4.10000+ 1 1.09043- 6 1.59723- 3 1.60000+ 1 4.40000+ 1 4.36172- 6 1.60699- 3 1.80000+ 1 1.90000+ 1 5.63119- 3 1.09868- 3 1.80000+ 1 2.10000+ 1 2.81336- 4 1.29775- 3 1.80000+ 1 2.20000+ 1 3.87993- 2 1.32049- 3 1.80000+ 1 2.40000+ 1 2.23203- 3 1.57994- 3 1.80000+ 1 2.50000+ 1 8.86200- 3 1.58517- 3 1.80000+ 1 2.70000+ 1 3.38038- 5 1.58015- 3 1.80000+ 1 2.90000+ 1 2.18085- 6 1.62207- 3 1.80000+ 1 3.00000+ 1 7.06623- 4 1.64534- 3 1.80000+ 1 3.20000+ 1 8.72369- 6 1.70417- 3 1.80000+ 1 3.30000+ 1 3.08276- 3 1.70695- 3 1.80000+ 1 4.10000+ 1 3.27137- 6 1.71793- 3 1.80000+ 1 4.40000+ 1 1.30855- 5 1.72769- 3 1.90000+ 1 1.90000+ 1 3.83184- 3 1.22040- 3 1.90000+ 1 2.10000+ 1 3.59295- 3 1.41947- 3 1.90000+ 1 2.20000+ 1 5.83592- 2 1.44221- 3 1.90000+ 1 2.40000+ 1 2.37055- 3 1.70166- 3 1.90000+ 1 2.50000+ 1 4.53720- 3 1.70689- 3 1.90000+ 1 2.70000+ 1 3.43494- 4 1.70187- 3 1.90000+ 1 2.90000+ 1 6.52078- 4 1.74379- 3 1.90000+ 1 3.00000+ 1 9.92334- 4 1.76706- 3 1.90000+ 1 3.20000+ 1 3.51126- 4 1.82589- 3 1.90000+ 1 3.30000+ 1 4.61689- 3 1.82867- 3 1.90000+ 1 4.10000+ 1 3.81654- 5 1.83965- 3 1.90000+ 1 4.30000+ 1 1.41756- 5 1.84770- 3 1.90000+ 1 4.40000+ 1 1.74471- 5 1.84941- 3 2.10000+ 1 2.10000+ 1 7.81811- 4 1.61854- 3 2.10000+ 1 2.20000+ 1 8.08213- 2 1.64128- 3 2.10000+ 1 2.40000+ 1 2.99417- 3 1.90073- 3 2.10000+ 1 2.50000+ 1 4.11266- 2 1.90596- 3 2.10000+ 1 2.70000+ 1 3.40198- 4 1.90094- 3 2.10000+ 1 2.90000+ 1 5.88819- 5 1.94286- 3 2.10000+ 1 3.00000+ 1 4.66684- 4 1.96613- 3 2.10000+ 1 3.20000+ 1 1.40656- 4 2.02496- 3 2.10000+ 1 3.30000+ 1 6.47564- 3 2.02774- 3 2.10000+ 1 4.10000+ 1 3.48923- 5 2.03872- 3 2.10000+ 1 4.30000+ 1 1.09037- 6 2.04677- 3 2.10000+ 1 4.40000+ 1 8.72326- 6 2.04848- 3 2.20000+ 1 2.20000+ 1 9.03078- 2 1.66402- 3 2.20000+ 1 2.40000+ 1 6.54293- 2 1.92347- 3 2.20000+ 1 2.50000+ 1 1.04056- 1 1.92870- 3 2.20000+ 1 2.70000+ 1 6.91359- 3 1.92368- 3 2.20000+ 1 2.90000+ 1 6.95493- 3 1.96560- 3 2.20000+ 1 3.00000+ 1 1.03976- 2 1.98887- 3 2.20000+ 1 3.20000+ 1 8.98427- 3 2.04770- 3 2.20000+ 1 3.30000+ 1 1.70487- 2 2.05048- 3 2.20000+ 1 4.10000+ 1 7.86223- 4 2.06146- 3 2.20000+ 1 4.30000+ 1 1.59199- 4 2.06951- 3 2.20000+ 1 4.40000+ 1 1.94100- 4 2.07122- 3 2.40000+ 1 2.40000+ 1 5.14589- 3 2.18292- 3 2.40000+ 1 2.50000+ 1 1.64392- 1 2.18815- 3 2.40000+ 1 2.70000+ 1 6.83689- 4 2.18313- 3 2.40000+ 1 2.90000+ 1 3.70737- 4 2.22505- 3 2.40000+ 1 3.00000+ 1 3.50028- 4 2.24832- 3 2.40000+ 1 3.20000+ 1 3.22761- 4 2.30715- 3 2.40000+ 1 3.30000+ 1 4.97547- 3 2.30993- 3 2.40000+ 1 4.10000+ 1 7.52385- 5 2.32091- 3 2.40000+ 1 4.30000+ 1 8.72358- 6 2.32896- 3 2.40000+ 1 4.40000+ 1 6.54235- 6 2.33067- 3 2.50000+ 1 2.50000+ 1 1.12461- 1 2.19338- 3 2.50000+ 1 2.70000+ 1 3.23319- 3 2.18836- 3 2.50000+ 1 2.90000+ 1 1.60736- 3 2.23028- 3 2.50000+ 1 3.00000+ 1 7.73098- 4 2.25355- 3 2.50000+ 1 3.20000+ 1 4.30711- 3 2.31238- 3 2.50000+ 1 3.30000+ 1 9.16603- 3 2.31516- 3 2.50000+ 1 4.10000+ 1 3.71833- 4 2.32614- 3 2.50000+ 1 4.30000+ 1 3.70739- 5 2.33419- 3 2.50000+ 1 4.40000+ 1 1.41755- 5 2.33590- 3 2.70000+ 1 2.70000+ 1 1.40435- 6 2.18334- 3 2.70000+ 1 2.90000+ 1 2.80870- 6 2.22526- 3 2.70000+ 1 3.00000+ 1 5.75780- 5 2.24853- 3 2.70000+ 1 3.20000+ 1 3.93226- 5 2.30736- 3 2.70000+ 1 3.30000+ 1 7.13426- 4 2.31014- 3 2.70000+ 1 4.40000+ 1 1.40435- 6 2.33088- 3 2.90000+ 1 3.00000+ 1 1.08625- 4 2.29045- 3 2.90000+ 1 3.20000+ 1 4.07340- 6 2.34928- 3 2.90000+ 1 3.30000+ 1 6.96539- 4 2.35206- 3 2.90000+ 1 4.40000+ 1 1.35776- 6 2.37280- 3 3.00000+ 1 3.00000+ 1 9.54665- 5 2.31372- 3 3.00000+ 1 3.20000+ 1 7.16033- 5 2.37255- 3 3.00000+ 1 3.30000+ 1 1.20612- 3 2.37533- 3 3.00000+ 1 4.10000+ 1 7.95554- 6 2.38631- 3 3.00000+ 1 4.30000+ 1 3.18227- 6 2.39436- 3 3.00000+ 1 4.40000+ 1 3.18227- 6 2.39607- 3 3.20000+ 1 3.20000+ 1 6.54249- 6 2.43138- 3 3.20000+ 1 3.30000+ 1 7.24060- 4 2.43416- 3 3.20000+ 1 4.10000+ 1 3.27140- 6 2.44514- 3 3.20000+ 1 4.40000+ 1 1.09043- 6 2.45490- 3 3.30000+ 1 3.30000+ 1 7.85136- 4 2.43694- 3 3.30000+ 1 4.10000+ 1 6.32458- 5 2.44792- 3 3.30000+ 1 4.30000+ 1 1.30856- 5 2.45597- 3 3.30000+ 1 4.40000+ 1 1.52669- 5 2.45768- 3 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.81236- 5 1.20700- 4 1.90000+ 1 3.13135- 4 2.42420- 4 2.90000+ 1 1.99141- 4 7.65810- 4 3.00000+ 1 7.69016- 5 7.89080- 4 4.30000+ 1 6.00834- 6 8.69720- 4 4.40000+ 1 2.09158- 6 8.71430- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.90000+ 1 3.00342- 2 9.79000- 6 1.80000+ 1 3.00000+ 1 5.19712- 2 3.30600- 5 1.80000+ 1 3.20000+ 1 3.64156- 2 9.18900- 5 1.80000+ 1 3.30000+ 1 5.87919- 2 9.46700- 5 1.80000+ 1 4.10000+ 1 3.81723- 3 1.05650- 4 1.80000+ 1 4.30000+ 1 6.74570- 4 1.13700- 4 1.80000+ 1 4.40000+ 1 9.04936- 4 1.15410- 4 1.90000+ 1 2.40000+ 1 6.12833- 2 8.93800- 5 1.90000+ 1 2.50000+ 1 8.72905- 2 9.46100- 5 1.90000+ 1 2.70000+ 1 4.03372- 2 8.95900- 5 1.90000+ 1 2.90000+ 1 4.69303- 2 1.31510- 4 1.90000+ 1 3.00000+ 1 4.85081- 2 1.54780- 4 1.90000+ 1 3.20000+ 1 3.82351- 2 2.13610- 4 1.90000+ 1 3.30000+ 1 4.63225- 2 2.16390- 4 1.90000+ 1 4.10000+ 1 4.57584- 3 2.27370- 4 1.90000+ 1 4.30000+ 1 1.01649- 3 2.35420- 4 1.90000+ 1 4.40000+ 1 8.89738- 4 2.37130- 4 2.10000+ 1 2.10000+ 1 3.93925- 3 6.26000- 6 2.10000+ 1 2.20000+ 1 3.56261- 3 2.90000- 5 2.10000+ 1 2.40000+ 1 4.39391- 3 2.88450- 4 2.10000+ 1 2.50000+ 1 7.58446- 3 2.93680- 4 2.10000+ 1 2.70000+ 1 1.67267- 2 2.88660- 4 2.10000+ 1 2.90000+ 1 5.07758- 3 3.30580- 4 2.10000+ 1 3.00000+ 1 7.49306- 3 3.53850- 4 2.10000+ 1 3.20000+ 1 1.64640- 3 4.12680- 4 2.10000+ 1 3.30000+ 1 1.64905- 3 4.15460- 4 2.10000+ 1 4.10000+ 1 1.46500- 3 4.26440- 4 2.10000+ 1 4.30000+ 1 1.12861- 4 4.34490- 4 2.10000+ 1 4.40000+ 1 1.19973- 4 4.36200- 4 2.20000+ 1 2.20000+ 1 5.29382- 3 5.17400- 5 2.20000+ 1 2.40000+ 1 8.68389- 3 3.11190- 4 2.20000+ 1 2.50000+ 1 8.78460- 3 3.16420- 4 2.20000+ 1 2.70000+ 1 2.34850- 2 3.11400- 4 2.20000+ 1 2.90000+ 1 9.31325- 3 3.53320- 4 2.20000+ 1 3.00000+ 1 7.99311- 3 3.76590- 4 2.20000+ 1 3.20000+ 1 1.40436- 3 4.35420- 4 2.20000+ 1 3.30000+ 1 2.35778- 3 4.38200- 4 2.20000+ 1 4.10000+ 1 2.04800- 3 4.49180- 4 2.20000+ 1 4.30000+ 1 1.84452- 4 4.57230- 4 2.20000+ 1 4.40000+ 1 1.38616- 4 4.58940- 4 2.40000+ 1 2.40000+ 1 9.01888- 3 5.70640- 4 2.40000+ 1 2.50000+ 1 1.80337- 2 5.75870- 4 2.40000+ 1 2.70000+ 1 2.04745- 2 5.70850- 4 2.40000+ 1 2.90000+ 1 2.74851- 3 6.12770- 4 2.40000+ 1 3.00000+ 1 9.45662- 3 6.36040- 4 2.40000+ 1 3.20000+ 1 7.99881- 4 6.94870- 4 2.40000+ 1 3.30000+ 1 5.26345- 4 6.97650- 4 2.40000+ 1 4.10000+ 1 1.59357- 3 7.08630- 4 2.40000+ 1 4.30000+ 1 5.19778- 5 7.16680- 4 2.40000+ 1 4.40000+ 1 1.48870- 4 7.18390- 4 2.50000+ 1 2.50000+ 1 1.50156- 2 5.81100- 4 2.50000+ 1 2.70000+ 1 2.66811- 2 5.76080- 4 2.50000+ 1 2.90000+ 1 1.48142- 3 6.18000- 4 2.50000+ 1 3.00000+ 1 1.08456- 2 6.41270- 4 2.50000+ 1 3.20000+ 1 4.87690- 4 7.00100- 4 2.50000+ 1 3.30000+ 1 1.16275- 3 7.02880- 4 2.50000+ 1 4.10000+ 1 2.07089- 3 7.13860- 4 2.50000+ 1 4.30000+ 1 2.73275- 5 7.21910- 4 2.50000+ 1 4.40000+ 1 1.66497- 4 7.23620- 4 2.70000+ 1 2.70000+ 1 1.65956- 2 5.71060- 4 2.70000+ 1 2.90000+ 1 2.32232- 2 6.12980- 4 2.70000+ 1 3.00000+ 1 3.69499- 2 6.36250- 4 2.70000+ 1 3.20000+ 1 2.73144- 2 6.95080- 4 2.70000+ 1 3.30000+ 1 3.72645- 2 6.97860- 4 2.70000+ 1 4.10000+ 1 3.26478- 3 7.08840- 4 2.70000+ 1 4.30000+ 1 5.40238- 4 7.16890- 4 2.70000+ 1 4.40000+ 1 6.86951- 4 7.18600- 4 2.90000+ 1 2.90000+ 1 2.25791- 3 6.54900- 4 2.90000+ 1 3.00000+ 1 9.37785- 3 6.78170- 4 2.90000+ 1 3.20000+ 1 3.10035- 3 7.37000- 4 2.90000+ 1 3.30000+ 1 2.51883- 3 7.39780- 4 2.90000+ 1 4.10000+ 1 2.24658- 3 7.50760- 4 2.90000+ 1 4.30000+ 1 9.07694- 5 7.58810- 4 2.90000+ 1 4.40000+ 1 1.44660- 4 7.60520- 4 3.00000+ 1 3.00000+ 1 6.29772- 3 7.01440- 4 3.00000+ 1 3.20000+ 1 2.89344- 3 7.60270- 4 3.00000+ 1 3.30000+ 1 5.40604- 3 7.63050- 4 3.00000+ 1 4.10000+ 1 3.56444- 3 7.74030- 4 3.00000+ 1 4.30000+ 1 1.90493- 4 7.82080- 4 3.00000+ 1 4.40000+ 1 2.09830- 4 7.83790- 4 3.20000+ 1 3.20000+ 1 7.86711- 4 8.19100- 4 3.20000+ 1 3.30000+ 1 2.37046- 3 8.21880- 4 3.20000+ 1 4.10000+ 1 3.23684- 3 8.32860- 4 3.20000+ 1 4.30000+ 1 7.24614- 5 8.40910- 4 3.20000+ 1 4.40000+ 1 4.83102- 5 8.42620- 4 3.30000+ 1 3.30000+ 1 1.54394- 3 8.24660- 4 3.30000+ 1 4.10000+ 1 4.42751- 3 8.35640- 4 3.30000+ 1 4.30000+ 1 5.53877- 5 8.43690- 4 3.30000+ 1 4.40000+ 1 1.03852- 4 8.45400- 4 4.10000+ 1 4.10000+ 1 2.11949- 4 8.46620- 4 4.10000+ 1 4.30000+ 1 5.86970- 5 8.54670- 4 4.10000+ 1 4.40000+ 1 7.82632- 5 8.56380- 4 4.30000+ 1 4.40000+ 1 3.26119- 6 8.64430- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.22136- 4 3.20790- 4 2.70000+ 1 2.04515- 4 6.03190- 4 3.20000+ 1 3.76556- 5 7.27210- 4 4.10000+ 1 2.67291- 5 7.40970- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.51175- 2 1.08100- 5 1.90000+ 1 3.00000+ 1 2.16948- 2 3.40800- 5 1.90000+ 1 3.20000+ 1 6.71215- 3 9.29100- 5 1.90000+ 1 3.30000+ 1 1.04269- 2 9.56900- 5 1.90000+ 1 4.10000+ 1 1.56892- 3 1.06670- 4 1.90000+ 1 4.30000+ 1 3.48434- 4 1.14720- 4 1.90000+ 1 4.40000+ 1 3.21618- 4 1.16430- 4 2.10000+ 1 2.40000+ 1 1.33801- 1 1.67750- 4 2.10000+ 1 2.50000+ 1 2.97990- 1 1.72980- 4 2.10000+ 1 2.70000+ 1 3.82490- 2 1.67960- 4 2.10000+ 1 2.90000+ 1 2.98588- 2 2.09880- 4 2.10000+ 1 3.00000+ 1 4.25340- 2 2.33150- 4 2.10000+ 1 3.20000+ 1 1.97963- 2 2.91980- 4 2.10000+ 1 3.30000+ 1 3.21402- 2 2.94760- 4 2.10000+ 1 4.10000+ 1 4.39648- 3 3.05740- 4 2.10000+ 1 4.30000+ 1 6.48315- 4 3.13790- 4 2.10000+ 1 4.40000+ 1 7.77300- 4 3.15500- 4 2.20000+ 1 2.40000+ 1 4.42613- 2 1.90490- 4 2.20000+ 1 2.50000+ 1 1.13240- 2 1.95720- 4 2.20000+ 1 2.70000+ 1 6.24528- 3 1.90700- 4 2.20000+ 1 2.90000+ 1 2.56466- 2 2.32620- 4 2.20000+ 1 3.00000+ 1 5.49130- 3 2.55890- 4 2.20000+ 1 3.20000+ 1 2.38834- 3 3.14720- 4 2.20000+ 1 3.30000+ 1 2.14393- 3 3.17500- 4 2.20000+ 1 4.10000+ 1 5.61346- 4 3.28480- 4 2.20000+ 1 4.30000+ 1 4.36738- 4 3.36530- 4 2.20000+ 1 4.40000+ 1 8.65049- 5 3.38240- 4 2.40000+ 1 2.40000+ 1 2.69217- 3 4.49940- 4 2.40000+ 1 2.50000+ 1 1.72569- 2 4.55170- 4 2.40000+ 1 2.70000+ 1 4.68002- 3 4.50150- 4 2.40000+ 1 2.90000+ 1 1.98760- 2 4.92070- 4 2.40000+ 1 3.00000+ 1 3.65700- 3 5.15340- 4 2.40000+ 1 3.20000+ 1 4.52462- 3 5.74170- 4 2.40000+ 1 3.30000+ 1 2.36425- 3 5.76950- 4 2.40000+ 1 4.10000+ 1 5.42488- 4 5.87930- 4 2.40000+ 1 4.30000+ 1 3.39570- 4 5.95980- 4 2.40000+ 1 4.40000+ 1 6.22690- 5 5.97690- 4 2.50000+ 1 2.50000+ 1 8.27518- 4 4.60400- 4 2.50000+ 1 2.70000+ 1 3.00423- 3 4.55380- 4 2.50000+ 1 2.90000+ 1 3.53030- 2 4.97300- 4 2.50000+ 1 3.00000+ 1 2.11449- 3 5.20570- 4 2.50000+ 1 3.20000+ 1 1.02174- 2 5.79400- 4 2.50000+ 1 3.30000+ 1 8.61489- 4 5.82180- 4 2.50000+ 1 4.10000+ 1 2.75467- 4 5.93160- 4 2.50000+ 1 4.30000+ 1 5.90504- 4 6.01210- 4 2.50000+ 1 4.40000+ 1 3.43160- 5 6.02920- 4 2.70000+ 1 2.70000+ 1 9.11896- 4 4.50360- 4 2.70000+ 1 2.90000+ 1 1.25600- 2 4.92280- 4 2.70000+ 1 3.00000+ 1 2.30378- 3 5.15550- 4 2.70000+ 1 3.20000+ 1 2.52892- 3 5.74380- 4 2.70000+ 1 3.30000+ 1 1.74454- 3 5.77160- 4 2.70000+ 1 4.10000+ 1 1.68827- 4 5.88140- 4 2.70000+ 1 4.30000+ 1 2.07869- 4 5.96190- 4 2.70000+ 1 4.40000+ 1 4.01956- 5 5.97900- 4 2.90000+ 1 2.90000+ 1 1.28980- 2 5.34200- 4 2.90000+ 1 3.00000+ 1 3.40227- 2 5.57470- 4 2.90000+ 1 3.20000+ 1 2.05509- 2 6.16300- 4 2.90000+ 1 3.30000+ 1 3.39338- 2 6.19080- 4 2.90000+ 1 4.10000+ 1 2.38247- 3 6.30060- 4 2.90000+ 1 4.30000+ 1 5.19623- 4 6.38110- 4 2.90000+ 1 4.40000+ 1 6.37552- 4 6.39820- 4 3.00000+ 1 3.00000+ 1 1.26230- 3 5.80740- 4 3.00000+ 1 3.20000+ 1 4.36781- 3 6.39570- 4 3.00000+ 1 3.30000+ 1 1.69315- 3 6.42350- 4 3.00000+ 1 4.10000+ 1 3.09313- 4 6.53330- 4 3.00000+ 1 4.30000+ 1 5.57818- 4 6.61380- 4 3.00000+ 1 4.40000+ 1 4.11216- 5 6.63090- 4 3.20000+ 1 3.20000+ 1 2.30150- 4 6.98400- 4 3.20000+ 1 3.30000+ 1 4.08334- 4 7.01180- 4 3.20000+ 1 4.10000+ 1 7.94443- 5 7.12160- 4 3.20000+ 1 4.30000+ 1 6.27717- 5 7.20210- 4 3.20000+ 1 4.40000+ 1 1.47121- 5 7.21920- 4 3.30000+ 1 3.30000+ 1 5.00170- 5 7.03960- 4 3.30000+ 1 4.10000+ 1 3.42503- 5 7.14940- 4 3.30000+ 1 4.30000+ 1 8.56270- 5 7.22990- 4 3.30000+ 1 4.40000+ 1 4.07746- 6 7.24700- 4 4.10000+ 1 4.10000+ 1 1.16584- 6 7.25920- 4 4.10000+ 1 4.30000+ 1 3.66424- 6 7.33970- 4 4.10000+ 1 4.40000+ 1 4.99663- 7 7.35680- 4 4.30000+ 1 4.40000+ 1 9.99282- 7 7.43730- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.58221- 5 1.99070- 4 2.20000+ 1 2.02243- 4 2.21810- 4 2.70000+ 1 1.79367- 4 4.81470- 4 3.20000+ 1 1.10738- 5 6.05490- 4 3.30000+ 1 6.44873- 5 6.08270- 4 4.10000+ 1 2.29658- 5 6.19250- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 6.20982- 3 4.60300- 5 2.10000+ 1 2.50000+ 1 7.88507- 3 5.12600- 5 2.10000+ 1 2.70000+ 1 1.75793- 2 4.62400- 5 2.10000+ 1 2.90000+ 1 1.38968- 2 8.81600- 5 2.10000+ 1 3.00000+ 1 4.37703- 2 1.11430- 4 2.10000+ 1 3.20000+ 1 1.08451- 2 1.70260- 4 2.10000+ 1 3.30000+ 1 1.85267- 2 1.73040- 4 2.10000+ 1 4.10000+ 1 1.85822- 3 1.84020- 4 2.10000+ 1 4.30000+ 1 2.95745- 4 1.92070- 4 2.10000+ 1 4.40000+ 1 6.82866- 4 1.93780- 4 2.20000+ 1 2.40000+ 1 6.41495- 2 6.87700- 5 2.20000+ 1 2.50000+ 1 8.94308- 2 7.40000- 5 2.20000+ 1 2.70000+ 1 8.93583- 2 6.89800- 5 2.20000+ 1 2.90000+ 1 9.67718- 2 1.10900- 4 2.20000+ 1 3.00000+ 1 1.19636- 1 1.34170- 4 2.20000+ 1 3.20000+ 1 8.36360- 2 1.93000- 4 2.20000+ 1 3.30000+ 1 9.69952- 2 1.95780- 4 2.20000+ 1 4.10000+ 1 1.05333- 2 2.06760- 4 2.20000+ 1 4.30000+ 1 2.11112- 3 2.14810- 4 2.20000+ 1 4.40000+ 1 2.05782- 3 2.16520- 4 2.40000+ 1 2.40000+ 1 7.82580- 4 3.28220- 4 2.40000+ 1 2.50000+ 1 1.41891- 2 3.33450- 4 2.40000+ 1 2.70000+ 1 7.07303- 3 3.28430- 4 2.40000+ 1 2.90000+ 1 3.67974- 3 3.70350- 4 2.40000+ 1 3.00000+ 1 4.67759- 2 3.93620- 4 2.40000+ 1 3.20000+ 1 1.27102- 3 4.52450- 4 2.40000+ 1 3.30000+ 1 5.86433- 3 4.55230- 4 2.40000+ 1 4.10000+ 1 5.66840- 4 4.66210- 4 2.40000+ 1 4.30000+ 1 7.47710- 5 4.74260- 4 2.40000+ 1 4.40000+ 1 6.54614- 4 4.75970- 4 2.50000+ 1 2.50000+ 1 6.69419- 3 3.38680- 4 2.50000+ 1 2.70000+ 1 1.55985- 2 3.33660- 4 2.50000+ 1 2.90000+ 1 1.32322- 2 3.75580- 4 2.50000+ 1 3.00000+ 1 5.70092- 2 3.98850- 4 2.50000+ 1 3.20000+ 1 1.13522- 3 4.57680- 4 2.50000+ 1 3.30000+ 1 7.71468- 3 4.60460- 4 2.50000+ 1 4.10000+ 1 1.45702- 3 4.71440- 4 2.50000+ 1 4.30000+ 1 2.74549- 4 4.79490- 4 2.50000+ 1 4.40000+ 1 8.04451- 4 4.81200- 4 2.70000+ 1 2.90000+ 1 2.49078- 4 3.70560- 4 2.70000+ 1 3.00000+ 1 5.28617- 3 3.93830- 4 2.70000+ 1 3.20000+ 1 4.18556- 4 4.52660- 4 2.70000+ 1 3.30000+ 1 7.53670- 4 4.55440- 4 2.70000+ 1 4.10000+ 1 2.12898- 6 4.66420- 4 2.70000+ 1 4.30000+ 1 4.25809- 6 4.74470- 4 2.70000+ 1 4.40000+ 1 7.32361- 5 4.76180- 4 2.90000+ 1 2.90000+ 1 8.60144- 6 4.12480- 4 2.90000+ 1 3.00000+ 1 5.19220- 3 4.35750- 4 2.90000+ 1 3.20000+ 1 2.04479- 4 4.94580- 4 2.90000+ 1 3.30000+ 1 6.55259- 4 4.97360- 4 2.90000+ 1 4.10000+ 1 2.34575- 5 5.08340- 4 2.90000+ 1 4.30000+ 1 3.90981- 7 5.16390- 4 2.90000+ 1 4.40000+ 1 7.31118- 5 5.18100- 4 3.00000+ 1 3.00000+ 1 7.53523- 3 4.59020- 4 3.00000+ 1 3.20000+ 1 6.77064- 3 5.17850- 4 3.00000+ 1 3.30000+ 1 8.90019- 3 5.20630- 4 3.00000+ 1 4.10000+ 1 6.56807- 4 5.31610- 4 3.00000+ 1 4.30000+ 1 1.34933- 4 5.39660- 4 3.00000+ 1 4.40000+ 1 2.46192- 4 5.41370- 4 3.20000+ 1 3.20000+ 1 7.71353- 5 5.76680- 4 3.20000+ 1 3.30000+ 1 4.71381- 4 5.79460- 4 3.20000+ 1 4.10000+ 1 2.54163- 5 5.90440- 4 3.20000+ 1 4.30000+ 1 3.25094- 6 5.98490- 4 3.20000+ 1 4.40000+ 1 6.32459- 5 6.00200- 4 3.30000+ 1 3.30000+ 1 4.32663- 4 5.82240- 4 3.30000+ 1 4.10000+ 1 5.88113- 5 5.93220- 4 3.30000+ 1 4.30000+ 1 1.03439- 5 6.01270- 4 3.30000+ 1 4.40000+ 1 8.39320- 5 6.02980- 4 4.10000+ 1 4.30000+ 1 2.95543- 7 6.12250- 4 4.10000+ 1 4.40000+ 1 5.91065- 6 6.13960- 4 4.30000+ 1 4.40000+ 1 1.18210- 6 6.22010- 4 4.40000+ 1 4.40000+ 1 2.95550- 7 6.23720- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.54189- 4 2.82190- 4 2.90000+ 1 5.94327- 5 3.24320- 4 3.00000+ 1 7.77306- 6 3.47590- 4 4.30000+ 1 1.16289- 6 4.28230- 4 4.40000+ 1 1.19399- 7 4.29940- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.30000+ 1 4.53079- 3 0.00000+ 0 2.20000+ 1 4.10000+ 1 8.76435- 4 7.69000- 6 2.20000+ 1 4.30000+ 1 9.13598- 5 1.57400- 5 2.20000+ 1 4.40000+ 1 2.05991- 4 1.74500- 5 2.40000+ 1 2.40000+ 1 1.10155- 1 1.29150- 4 2.40000+ 1 2.50000+ 1 3.53394- 1 1.34380- 4 2.40000+ 1 2.70000+ 1 7.30966- 2 1.29360- 4 2.40000+ 1 2.90000+ 1 6.13234- 2 1.71280- 4 2.40000+ 1 3.00000+ 1 8.34356- 2 1.94550- 4 2.40000+ 1 3.20000+ 1 7.16605- 2 2.53380- 4 2.40000+ 1 3.30000+ 1 7.20108- 2 2.56160- 4 2.40000+ 1 4.10000+ 1 8.51790- 3 2.67140- 4 2.40000+ 1 4.30000+ 1 1.38948- 3 2.75190- 4 2.40000+ 1 4.40000+ 1 1.50206- 3 2.76900- 4 2.50000+ 1 2.50000+ 1 4.93745- 3 1.39610- 4 2.50000+ 1 2.70000+ 1 6.59400- 3 1.34590- 4 2.50000+ 1 2.90000+ 1 1.28558- 2 1.76510- 4 2.50000+ 1 3.00000+ 1 5.59749- 3 1.99780- 4 2.50000+ 1 3.20000+ 1 8.06536- 2 2.58610- 4 2.50000+ 1 3.30000+ 1 3.19694- 3 2.61390- 4 2.50000+ 1 4.10000+ 1 5.85348- 4 2.72370- 4 2.50000+ 1 4.30000+ 1 2.12601- 4 2.80420- 4 2.50000+ 1 4.40000+ 1 8.61522- 5 2.82130- 4 2.70000+ 1 2.70000+ 1 8.14587- 4 1.29570- 4 2.70000+ 1 2.90000+ 1 1.71117- 3 1.71490- 4 2.70000+ 1 3.00000+ 1 1.56803- 3 1.94760- 4 2.70000+ 1 3.20000+ 1 7.15148- 3 2.53590- 4 2.70000+ 1 3.30000+ 1 1.99326- 3 2.56370- 4 2.70000+ 1 4.10000+ 1 1.09071- 4 2.67350- 4 2.70000+ 1 4.30000+ 1 2.67478- 5 2.75400- 4 2.70000+ 1 4.40000+ 1 2.25802- 5 2.77110- 4 2.90000+ 1 2.90000+ 1 3.15765- 4 2.13410- 4 2.90000+ 1 3.00000+ 1 1.76852- 3 2.36680- 4 2.90000+ 1 3.20000+ 1 4.13051- 3 2.95510- 4 2.90000+ 1 3.30000+ 1 6.58960- 4 2.98290- 4 2.90000+ 1 4.10000+ 1 7.85053- 5 3.09270- 4 2.90000+ 1 4.30000+ 1 1.00743- 5 3.17320- 4 2.90000+ 1 4.40000+ 1 2.29256- 5 3.19030- 4 3.00000+ 1 3.00000+ 1 6.97857- 4 2.59950- 4 3.00000+ 1 3.20000+ 1 8.29169- 3 3.18780- 4 3.00000+ 1 3.30000+ 1 7.27730- 4 3.21560- 4 3.00000+ 1 4.10000+ 1 5.03693- 5 3.32540- 4 3.00000+ 1 4.30000+ 1 2.25799- 5 3.40590- 4 3.00000+ 1 4.40000+ 1 1.70208- 5 3.42300- 4 3.20000+ 1 3.20000+ 1 3.92751- 3 3.77610- 4 3.20000+ 1 3.30000+ 1 7.60928- 3 3.80390- 4 3.20000+ 1 4.10000+ 1 5.91389- 4 3.91370- 4 3.20000+ 1 4.30000+ 1 9.10888- 5 3.99420- 4 3.20000+ 1 4.40000+ 1 1.47664- 4 4.01130- 4 3.30000+ 1 3.30000+ 1 1.48666- 4 3.83170- 4 3.30000+ 1 4.10000+ 1 4.16853- 5 3.94150- 4 3.30000+ 1 4.30000+ 1 6.25275- 6 4.02200- 4 3.30000+ 1 4.40000+ 1 1.00745- 5 4.03910- 4 4.10000+ 1 4.10000+ 1 2.43154- 6 4.05130- 4 4.10000+ 1 4.30000+ 1 1.04210- 6 4.13180- 4 4.10000+ 1 4.40000+ 1 6.94738- 7 4.14890- 4 4.30000+ 1 4.40000+ 1 3.47378- 7 4.22940- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.06281- 5 2.59450- 4 2.50000+ 1 2.29472- 4 2.64680- 4 3.00000+ 1 5.34864- 5 3.24850- 4 4.40000+ 1 8.36806- 7 4.07200- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 6.23593- 3 1.06410- 4 2.40000+ 1 2.50000+ 1 2.06104- 1 1.11640- 4 2.40000+ 1 2.70000+ 1 9.63438- 3 1.06620- 4 2.40000+ 1 2.90000+ 1 6.10685- 3 1.48540- 4 2.40000+ 1 3.00000+ 1 1.29610- 2 1.71810- 4 2.40000+ 1 3.20000+ 1 4.34378- 3 2.30640- 4 2.40000+ 1 3.30000+ 1 7.05807- 2 2.33420- 4 2.40000+ 1 4.10000+ 1 9.62068- 4 2.44400- 4 2.40000+ 1 4.30000+ 1 1.31400- 4 2.52450- 4 2.40000+ 1 4.40000+ 1 2.01864- 4 2.54160- 4 2.50000+ 1 2.50000+ 1 1.72828- 1 1.16870- 4 2.50000+ 1 2.70000+ 1 8.08544- 2 1.11850- 4 2.50000+ 1 2.90000+ 1 8.46181- 2 1.53770- 4 2.50000+ 1 3.00000+ 1 8.48241- 2 1.77040- 4 2.50000+ 1 3.20000+ 1 6.72233- 2 2.35870- 4 2.50000+ 1 3.30000+ 1 1.26251- 1 2.38650- 4 2.50000+ 1 4.10000+ 1 9.45684- 3 2.49630- 4 2.50000+ 1 4.30000+ 1 1.84987- 3 2.57680- 4 2.50000+ 1 4.40000+ 1 1.53829- 3 2.59390- 4 2.70000+ 1 2.70000+ 1 1.39021- 3 1.06830- 4 2.70000+ 1 2.90000+ 1 1.65269- 3 1.48750- 4 2.70000+ 1 3.00000+ 1 3.25840- 3 1.72020- 4 2.70000+ 1 3.20000+ 1 2.47684- 3 2.30850- 4 2.70000+ 1 3.30000+ 1 9.47441- 3 2.33630- 4 2.70000+ 1 4.10000+ 1 1.82439- 4 2.44610- 4 2.70000+ 1 4.30000+ 1 2.70423- 5 2.52660- 4 2.70000+ 1 4.40000+ 1 4.60852- 5 2.54370- 4 2.90000+ 1 2.90000+ 1 1.97289- 4 1.90670- 4 2.90000+ 1 3.00000+ 1 2.84214- 3 2.13940- 4 2.90000+ 1 3.20000+ 1 3.12692- 4 2.72770- 4 2.90000+ 1 3.30000+ 1 6.21235- 3 2.75550- 4 2.90000+ 1 4.10000+ 1 7.04610- 5 2.86530- 4 2.90000+ 1 4.30000+ 1 6.09396- 6 2.94580- 4 2.90000+ 1 4.40000+ 1 3.69439- 5 2.96290- 4 3.00000+ 1 3.00000+ 1 9.76153- 4 2.37210- 4 3.00000+ 1 3.20000+ 1 1.03212- 3 2.96040- 4 3.00000+ 1 3.30000+ 1 8.33974- 3 2.98820- 4 3.00000+ 1 4.10000+ 1 9.52165- 5 3.09800- 4 3.00000+ 1 4.30000+ 1 3.12305- 5 3.17850- 4 3.00000+ 1 4.40000+ 1 2.36141- 5 3.19560- 4 3.20000+ 1 3.20000+ 1 7.76982- 5 3.54870- 4 3.20000+ 1 3.30000+ 1 6.31450- 3 3.57650- 4 3.20000+ 1 4.10000+ 1 5.21797- 5 3.68630- 4 3.20000+ 1 4.30000+ 1 4.95139- 6 3.76680- 4 3.20000+ 1 4.40000+ 1 1.37111- 5 3.78390- 4 3.30000+ 1 3.30000+ 1 6.87788- 3 3.60430- 4 3.30000+ 1 4.10000+ 1 6.82918- 4 3.71410- 4 3.30000+ 1 4.30000+ 1 1.31784- 4 3.79460- 4 3.30000+ 1 4.40000+ 1 1.51973- 4 3.81170- 4 4.10000+ 1 4.10000+ 1 4.18952- 6 3.82390- 4 4.10000+ 1 4.30000+ 1 1.14263- 6 3.90440- 4 4.10000+ 1 4.40000+ 1 1.52350- 6 3.92150- 4 4.30000+ 1 4.40000+ 1 3.80873- 7 4.00200- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.87959- 6 1.24230- 4 3.30000+ 1 3.24210- 7 1.27010- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.18092- 1 1.33200- 5 2.90000+ 1 3.30000+ 1 6.96875- 2 1.61000- 5 2.90000+ 1 4.10000+ 1 1.36715- 2 2.70800- 5 2.90000+ 1 4.30000+ 1 4.69367- 3 3.51300- 5 2.90000+ 1 4.40000+ 1 2.98603- 3 3.68400- 5 3.00000+ 1 3.20000+ 1 1.44721- 1 3.65900- 5 3.00000+ 1 3.30000+ 1 3.62036- 2 3.93700- 5 3.00000+ 1 4.10000+ 1 6.13849- 3 5.03500- 5 3.00000+ 1 4.30000+ 1 2.31020- 3 5.84000- 5 3.00000+ 1 4.40000+ 1 8.67663- 4 6.01100- 5 3.20000+ 1 3.20000+ 1 2.26753- 1 9.54200- 5 3.20000+ 1 3.30000+ 1 3.27405- 1 9.82000- 5 3.20000+ 1 4.10000+ 1 1.24520- 2 1.09180- 4 3.20000+ 1 4.30000+ 1 4.22995- 3 1.17230- 4 3.20000+ 1 4.40000+ 1 3.47080- 3 1.18940- 4 3.30000+ 1 3.30000+ 1 2.15834- 2 1.00980- 4 3.30000+ 1 4.10000+ 1 1.57279- 3 1.11960- 4 3.30000+ 1 4.30000+ 1 2.10416- 3 1.20010- 4 3.30000+ 1 4.40000+ 1 8.67699- 4 1.21720- 4 4.10000+ 1 4.10000+ 1 1.08457- 5 1.22940- 4 4.10000+ 1 4.30000+ 1 9.76162- 5 1.30990- 4 4.10000+ 1 4.40000+ 1 5.42285- 5 1.32700- 4 4.30000+ 1 4.40000+ 1 2.16931- 5 1.40750- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 4.70021- 6 1.21780- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.80583- 2 8.09000- 6 2.90000+ 1 3.30000+ 1 9.23586- 2 1.08700- 5 2.90000+ 1 4.10000+ 1 1.36837- 3 2.18500- 5 2.90000+ 1 4.30000+ 1 9.35664- 5 2.99000- 5 2.90000+ 1 4.40000+ 1 1.25137- 3 3.16100- 5 3.00000+ 1 3.20000+ 1 5.01626- 2 3.13600- 5 3.00000+ 1 3.30000+ 1 1.95901- 1 3.41400- 5 3.00000+ 1 4.10000+ 1 1.75204- 2 4.51200- 5 3.00000+ 1 4.30000+ 1 2.88879- 3 5.31700- 5 3.00000+ 1 4.40000+ 1 3.29802- 3 5.48800- 5 3.20000+ 1 3.20000+ 1 1.14011- 2 9.01900- 5 3.20000+ 1 3.30000+ 1 2.50883- 1 9.29700- 5 3.20000+ 1 4.10000+ 1 1.09879- 3 1.03950- 4 3.20000+ 1 4.30000+ 1 2.95379- 4 1.12000- 4 3.20000+ 1 4.40000+ 1 1.64229- 3 1.13710- 4 3.30000+ 1 3.30000+ 1 3.28723- 1 9.57500- 5 3.30000+ 1 4.10000+ 1 1.42209- 2 1.06730- 4 3.30000+ 1 4.30000+ 1 2.97056- 3 1.14780- 4 3.30000+ 1 4.40000+ 1 5.69567- 3 1.16490- 4 4.10000+ 1 4.30000+ 1 3.50854- 5 1.25760- 4 4.10000+ 1 4.40000+ 1 1.16955- 4 1.27470- 4 4.30000+ 1 4.40000+ 1 1.16960- 5 1.35520- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.05707- 6 4.19200- 5 3.00000+ 1 8.16475- 6 6.51900- 5 4.30000+ 1 9.38118- 8 1.45830- 4 4.40000+ 1 1.05418- 9 1.47540- 4 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 4.69167- 2 1.31100- 5 2.90000+ 1 3.30000+ 1 1.45917- 1 1.58900- 5 2.90000+ 1 4.10000+ 1 8.84901- 3 2.68700- 5 2.90000+ 1 4.30000+ 1 1.02632- 3 3.49200- 5 2.90000+ 1 4.40000+ 1 2.16169- 3 3.66300- 5 3.00000+ 1 3.20000+ 1 3.20333- 1 3.63800- 5 3.00000+ 1 3.30000+ 1 2.94773- 1 3.91600- 5 3.00000+ 1 4.10000+ 1 1.61948- 2 5.01400- 5 3.00000+ 1 4.30000+ 1 3.56146- 3 5.81900- 5 3.00000+ 1 4.40000+ 1 3.13002- 3 5.99000- 5 3.20000+ 1 3.20000+ 1 2.36807- 3 9.52100- 5 3.20000+ 1 3.30000+ 1 1.14328- 1 9.79900- 5 3.20000+ 1 4.10000+ 1 7.78495- 3 1.08970- 4 3.20000+ 1 4.30000+ 1 1.93172- 4 1.17020- 4 3.20000+ 1 4.40000+ 1 1.58656- 3 1.18730- 4 3.30000+ 1 3.30000+ 1 1.60710- 2 1.00770- 4 3.30000+ 1 4.10000+ 1 5.73308- 3 1.11750- 4 3.30000+ 1 4.30000+ 1 5.37527- 4 1.19800- 4 3.30000+ 1 4.40000+ 1 5.40555- 4 1.21510- 4 4.10000+ 1 4.10000+ 1 2.78561- 3 1.22730- 4 4.10000+ 1 4.30000+ 1 7.42194- 4 1.30780- 4 4.10000+ 1 4.40000+ 1 1.01382- 3 1.32490- 4 4.30000+ 1 4.40000+ 1 2.64871- 3 1.40540- 4 4.40000+ 1 4.40000+ 1 7.93544- 4 1.42250- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.83964- 6 8.21000- 5 4.10000+ 1 3.84673- 7 9.58600- 5 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.30000+ 1 5.09035- 2 0.00000+ 0 3.00000+ 1 4.10000+ 1 1.49963- 2 8.22000- 6 3.00000+ 1 4.30000+ 1 8.99874- 3 1.62700- 5 3.00000+ 1 4.40000+ 1 8.17476- 3 1.79800- 5 3.20000+ 1 3.20000+ 1 1.56830- 1 5.32900- 5 3.20000+ 1 3.30000+ 1 6.84714- 1 5.60700- 5 3.20000+ 1 4.10000+ 1 2.98728- 2 6.70500- 5 3.20000+ 1 4.30000+ 1 4.90197- 3 7.51000- 5 3.20000+ 1 4.40000+ 1 7.51452- 3 7.68100- 5 3.30000+ 1 3.30000+ 1 2.49674- 2 5.88500- 5 3.30000+ 1 4.10000+ 1 2.37140- 3 6.98300- 5 3.30000+ 1 4.30000+ 1 4.39540- 3 7.78800- 5 3.30000+ 1 4.40000+ 1 8.83964- 4 7.95900- 5 4.10000+ 1 4.10000+ 1 1.16269- 5 8.08100- 5 4.10000+ 1 4.30000+ 1 3.28521- 4 8.88600- 5 4.10000+ 1 4.40000+ 1 4.48435- 5 9.05700- 5 4.30000+ 1 4.40000+ 1 8.40423- 5 9.86200- 5 4.40000+ 1 4.40000+ 1 9.96554- 7 1.00330- 4 1 82000 0 7 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.64774- 8 5.88300- 5 3.30000+ 1 8.91024- 7 6.16100- 5 4.10000+ 1 1.48301- 7 7.25900- 5 1 82000 0 9 2.07200+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.53700- 2 3.00200- 5 3.20000+ 1 3.30000+ 1 5.66051- 1 3.28000- 5 3.20000+ 1 4.10000+ 1 9.16592- 3 4.37800- 5 3.20000+ 1 4.30000+ 1 8.62501- 4 5.18300- 5 3.20000+ 1 4.40000+ 1 2.85310- 3 5.35400- 5 3.30000+ 1 3.30000+ 1 3.48570- 1 3.55800- 5 3.30000+ 1 4.10000+ 1 3.29950- 2 4.65600- 5 3.30000+ 1 4.30000+ 1 6.30369- 3 5.46100- 5 3.30000+ 1 4.40000+ 1 7.13379- 3 5.63200- 5 4.10000+ 1 4.10000+ 1 2.25552- 4 5.75400- 5 4.10000+ 1 4.30000+ 1 9.14061- 5 6.55900- 5 4.10000+ 1 4.40000+ 1 3.14114- 4 6.73000- 5 4.30000+ 1 4.40000+ 1 4.70252- 5 7.53500- 5 4.40000+ 1 4.40000+ 1 1.58781- 5 7.70600- 5 1 83000 0 0 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 1.00000+ 0 4.40000+ 1 2.00000+ 0 1 83000 0 0 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.08320- 2 3.00000+ 0 1.63760- 2 5.00000+ 0 1.57680- 2 6.00000+ 0 1.34250- 2 8.00000+ 0 3.97390- 3 1.00000+ 1 3.69270- 3 1.10000+ 1 3.16690- 3 1.30000+ 1 2.69800- 3 1.40000+ 1 2.58600- 3 1.60000+ 1 9.23430- 4 1.80000+ 1 7.99430- 4 1.90000+ 1 6.69160- 4 2.10000+ 1 4.64950- 4 2.20000+ 1 4.40610- 4 2.40000+ 1 1.73870- 4 2.50000+ 1 1.68170- 4 2.70000+ 1 1.66860- 4 2.90000+ 1 1.23120- 4 3.00000+ 1 9.74600- 5 3.20000+ 1 3.53700- 5 3.30000+ 1 3.21700- 5 4.10000+ 1 1.76900- 5 4.30000+ 1 8.60000- 6 4.40000+ 1 6.35000- 6 1 83000 0 0 2.08980+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.28930- 1 3.00000+ 0 3.12190- 2 5.00000+ 0 3.12050- 2 6.00000+ 0 2.19820- 2 8.00000+ 0 9.98030- 3 1.00000+ 1 9.85840- 3 1.10000+ 1 7.55950- 3 1.30000+ 1 7.40920- 3 1.40000+ 1 6.93620- 3 1.60000+ 1 3.32690- 3 1.80000+ 1 3.19120- 3 1.90000+ 1 2.49480- 3 2.10000+ 1 2.26910- 3 2.20000+ 1 2.12980- 3 2.40000+ 1 1.75990- 3 2.50000+ 1 1.71320- 3 2.70000+ 1 9.01150- 4 2.90000+ 1 7.93050- 4 3.00000+ 1 6.11180- 4 3.20000+ 1 4.10020- 4 3.30000+ 1 3.78830- 4 4.10000+ 1 1.48070- 4 4.30000+ 1 9.23200- 5 4.40000+ 1 6.06300- 5 1 83000 0 0 2.08980+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.34880-11 3.00000+ 0 3.47230-10 5.00000+ 0 2.84100-10 6.00000+ 0 3.31900-10 8.00000+ 0 9.01680-10 1.00000+ 1 8.50320-10 1.10000+ 1 9.37210-10 1.30000+ 1 8.12480-10 1.40000+ 1 8.38740-10 1.60000+ 1 1.98330- 9 1.80000+ 1 1.98450- 9 1.90000+ 1 2.16560- 9 2.10000+ 1 2.17870- 9 2.20000+ 1 2.23590- 9 2.40000+ 1 2.27330- 9 2.50000+ 1 2.30420- 9 2.70000+ 1 4.34820- 9 2.90000+ 1 4.61460- 9 3.00000+ 1 5.07410- 9 3.20000+ 1 6.19010- 9 3.30000+ 1 6.39870- 9 4.10000+ 1 1.10600- 8 4.30000+ 1 1.38210- 8 4.40000+ 1 1.63460- 8 1 83000 0 0 2.08980+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.01450- 5 3.00000+ 0 1.43580- 6 5.00000+ 0 2.53050- 6 6.00000+ 0 2.18460- 6 8.00000+ 0 5.66600- 8 1.00000+ 1 6.34040- 8 1.10000+ 1 6.87900- 8 1.30000+ 1 8.71210- 8 1.40000+ 1 8.12840- 8 1.60000+ 1 2.27400- 9 1.80000+ 1 3.37420- 9 1.90000+ 1 2.17980- 9 2.10000+ 1 1.99370- 9 2.20000+ 1 1.64140- 9 2.40000+ 1 2.86570-11 2.50000+ 1 2.61050-11 2.70000+ 1 1.29270-10 2.90000+ 1 2.70790-10 3.00000+ 1 1.49390-10 1 83000 0 0 2.08980+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.17970- 6 3.00000+ 0 1.26010- 5 5.00000+ 0 3.55140- 6 6.00000+ 0 3.87790- 6 8.00000+ 0 1.92850- 5 1.00000+ 1 1.34400- 5 1.10000+ 1 1.07530- 5 1.30000+ 1 2.52450- 6 1.40000+ 1 2.49930- 6 1.60000+ 1 1.54270- 5 1.80000+ 1 1.41460- 5 1.90000+ 1 9.08180- 6 2.10000+ 1 7.69270- 6 2.20000+ 1 7.00840- 6 2.40000+ 1 2.18800- 7 2.50000+ 1 2.00330- 7 2.70000+ 1 2.81550- 5 2.90000+ 1 8.17310- 6 3.00000+ 1 1.50690- 5 1 83000 0 0 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.74088- 4 3.00000+ 0 5.34739- 4 5.00000+ 0 3.82816- 4 6.00000+ 0 3.76665- 4 8.00000+ 0 3.84465- 4 1.00000+ 1 3.33198- 4 1.10000+ 1 2.96293- 4 1.30000+ 1 2.26630- 4 1.40000+ 1 2.20508- 4 1.60000+ 1 2.08715- 4 1.80000+ 1 1.94708- 4 1.90000+ 1 1.85055- 4 2.10000+ 1 1.42549- 4 2.20000+ 1 1.37655- 4 2.40000+ 1 8.01562- 5 2.50000+ 1 7.74635- 5 2.70000+ 1 9.21307- 5 2.90000+ 1 6.71627- 5 3.00000+ 1 6.50283- 5 3.20000+ 1 3.53700- 5 3.30000+ 1 3.21700- 5 4.10000+ 1 1.76900- 5 4.30000+ 1 8.60000- 6 4.40000+ 1 6.35000- 6 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.33538+ 0 3.00000+ 0 4.51879- 1 5.00000+ 0 5.09294- 1 6.00000+ 0 4.14172- 1 8.00000+ 0 3.77604- 2 1.00000+ 1 3.76291- 2 1.10000+ 1 3.51935- 2 1.30000+ 1 4.04663- 2 1.40000+ 1 3.78332- 2 1.60000+ 1 1.27462- 3 1.80000+ 1 1.53042- 3 1.90000+ 1 7.90242- 4 2.10000+ 1 3.69427- 4 2.20000+ 1 3.34068- 4 2.40000+ 1 9.43987- 6 2.50000+ 1 8.12530- 6 2.70000+ 1 1.28142- 5 2.90000+ 1 7.00557- 6 3.00000+ 1 1.48363- 6 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.00631- 2 3.00000+ 0 4.70048- 3 5.00000+ 0 6.22507- 3 6.00000+ 0 4.17952- 3 8.00000+ 0 9.34284- 5 1.00000+ 1 9.34761- 5 1.10000+ 1 8.53881- 5 1.30000+ 1 9.93478- 5 1.40000+ 1 8.96658- 5 1.60000+ 1 5.64124- 7 1.80000+ 1 5.96344- 7 1.90000+ 1 2.92833- 7 2.10000+ 1 1.09498- 7 2.20000+ 1 9.33807- 8 2.40000+ 1 1.21201- 9 2.50000+ 1 1.03720- 9 2.70000+ 1 9.00692-10 2.90000+ 1 6.22461-10 3.00000+ 1 9.96564-11 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05168+ 1 3.00000+ 0 1.54666+ 1 5.00000+ 0 1.07665+ 1 6.00000+ 0 1.06052+ 1 8.00000+ 0 1.08455+ 1 1.00000+ 1 9.24457+ 0 1.10000+ 1 8.13361+ 0 1.30000+ 1 5.94812+ 0 1.40000+ 1 5.80473+ 0 1.60000+ 1 5.44763+ 0 1.80000+ 1 4.98492+ 0 1.90000+ 1 4.71593+ 0 2.10000+ 1 3.35675+ 0 2.20000+ 1 3.25762+ 0 2.40000+ 1 1.42721+ 0 2.50000+ 1 1.41052+ 0 2.70000+ 1 1.84336+ 0 2.90000+ 1 1.06273+ 0 3.00000+ 1 9.99999- 1 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03948- 2 3.00000+ 0 1.11408- 2 5.00000+ 0 9.16011- 3 6.00000+ 0 8.86882- 3 8.00000+ 0 3.49601- 3 1.00000+ 1 3.26603- 3 1.10000+ 1 2.78522- 3 1.30000+ 1 2.37202- 3 1.40000+ 1 2.27583- 3 1.60000+ 1 7.14151- 4 1.80000+ 1 6.04126- 4 1.90000+ 1 4.83812- 4 2.10000+ 1 3.22291- 4 2.20000+ 1 3.02862- 4 2.40000+ 1 9.37126- 5 2.50000+ 1 9.07054- 5 2.70000+ 1 7.47284- 5 2.90000+ 1 5.59567- 5 3.00000+ 1 3.24316- 5 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.82810- 1 7.50640- 2 6.00000+ 0 4.72910- 1 7.74070- 2 1.00000+ 1 5.28820- 2 8.71393- 2 1.10000+ 1 1.02490- 1 8.76651- 2 1.30000+ 1 1.48030- 3 8.81340- 2 1.40000+ 1 1.78200- 3 8.82460- 2 1.80000+ 1 1.26800- 2 9.00326- 2 1.90000+ 1 2.49800- 2 9.01628- 2 2.10000+ 1 3.98030- 4 9.03670- 2 2.20000+ 1 4.78580- 4 9.03914- 2 2.90000+ 1 2.95940- 3 9.07089- 2 3.00000+ 1 5.69621- 3 9.07345- 2 3.20000+ 1 5.54281- 5 9.07966- 2 3.30000+ 1 6.51581- 5 9.07998- 2 4.30000+ 1 1.19860- 4 9.08234- 2 4.40000+ 1 1.92300- 4 9.08256- 2 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.14149- 3 5.80800- 2 3.00000+ 0 5.00000+ 0 6.71230- 3 5.86880- 2 3.00000+ 0 6.00000+ 0 3.50886- 3 6.10310- 2 3.00000+ 0 8.00000+ 0 1.67712- 3 7.04821- 2 3.00000+ 0 1.00000+ 1 1.45261- 3 7.07633- 2 3.00000+ 0 1.10000+ 1 8.28439- 4 7.12891- 2 3.00000+ 0 1.30000+ 1 7.03356- 5 7.17580- 2 3.00000+ 0 1.40000+ 1 5.12118- 5 7.18700- 2 3.00000+ 0 1.60000+ 1 4.24565- 4 7.35326- 2 3.00000+ 0 1.80000+ 1 3.59713- 4 7.36566- 2 3.00000+ 0 1.90000+ 1 2.04981- 4 7.37868- 2 3.00000+ 0 2.10000+ 1 1.87945- 5 7.39910- 2 3.00000+ 0 2.20000+ 1 1.34791- 5 7.40154- 2 3.00000+ 0 2.40000+ 1 4.74630- 8 7.42821- 2 3.00000+ 0 2.50000+ 1 4.74630- 8 7.42878- 2 3.00000+ 0 2.70000+ 1 9.26952- 5 7.42891- 2 3.00000+ 0 2.90000+ 1 7.09554- 5 7.43329- 2 3.00000+ 0 3.00000+ 1 3.92013- 5 7.43585- 2 3.00000+ 0 3.20000+ 1 2.46807- 6 7.44206- 2 3.00000+ 0 3.30000+ 1 1.70865- 6 7.44238- 2 5.00000+ 0 5.00000+ 0 3.44309- 4 5.92960- 2 5.00000+ 0 6.00000+ 0 6.11717- 3 6.16390- 2 5.00000+ 0 8.00000+ 0 1.18325- 3 7.10901- 2 5.00000+ 0 1.00000+ 1 1.30762- 4 7.13713- 2 5.00000+ 0 1.10000+ 1 1.20966- 3 7.18971- 2 5.00000+ 0 1.30000+ 1 7.22398- 5 7.23660- 2 5.00000+ 0 1.40000+ 1 1.85212- 4 7.24780- 2 5.00000+ 0 1.60000+ 1 2.90197- 4 7.41406- 2 5.00000+ 0 1.80000+ 1 3.14204- 5 7.42646- 2 5.00000+ 0 1.90000+ 1 2.87305- 4 7.43948- 2 5.00000+ 0 2.10000+ 1 1.85103- 5 7.45990- 2 5.00000+ 0 2.20000+ 1 4.77007- 5 7.46234- 2 5.00000+ 0 2.40000+ 1 5.22107- 7 7.48901- 2 5.00000+ 0 2.50000+ 1 8.06877- 7 7.48958- 2 5.00000+ 0 2.70000+ 1 6.28906- 5 7.48971- 2 5.00000+ 0 2.90000+ 1 6.17033- 6 7.49409- 2 5.00000+ 0 3.00000+ 1 5.43927- 5 7.49665- 2 5.00000+ 0 3.20000+ 1 2.42054- 6 7.50286- 2 5.00000+ 0 3.30000+ 1 6.07531- 6 7.50318- 2 6.00000+ 0 6.00000+ 0 2.61009- 3 6.39820- 2 6.00000+ 0 8.00000+ 0 5.59384- 4 7.34331- 2 6.00000+ 0 1.00000+ 1 1.09201- 3 7.37143- 2 6.00000+ 0 1.10000+ 1 1.06638- 3 7.42401- 2 6.00000+ 0 1.30000+ 1 2.05093- 4 7.47090- 2 6.00000+ 0 1.40000+ 1 1.69628- 4 7.48210- 2 6.00000+ 0 1.60000+ 1 1.33945- 4 7.64836- 2 6.00000+ 0 1.80000+ 1 2.59193- 4 7.66076- 2 6.00000+ 0 1.90000+ 1 2.55497- 4 7.67378- 2 6.00000+ 0 2.10000+ 1 5.32052- 5 7.69420- 2 6.00000+ 0 2.20000+ 1 4.38561- 5 7.69664- 2 6.00000+ 0 2.40000+ 1 9.01793- 7 7.72331- 2 6.00000+ 0 2.50000+ 1 9.49239- 7 7.72388- 2 6.00000+ 0 2.70000+ 1 2.88570- 5 7.72401- 2 6.00000+ 0 2.90000+ 1 5.06426- 5 7.72839- 2 6.00000+ 0 3.00000+ 1 4.85051- 5 7.73095- 2 6.00000+ 0 3.20000+ 1 6.97700- 6 7.73716- 2 6.00000+ 0 3.30000+ 1 5.60069- 6 7.73748- 2 8.00000+ 0 8.00000+ 0 1.67017- 4 8.28842- 2 8.00000+ 0 1.00000+ 1 2.56528- 4 8.31654- 2 8.00000+ 0 1.10000+ 1 1.33183- 4 8.36912- 2 8.00000+ 0 1.30000+ 1 1.10114- 5 8.41601- 2 8.00000+ 0 1.40000+ 1 7.49896- 6 8.42721- 2 8.00000+ 0 1.60000+ 1 8.42939- 5 8.59347- 2 8.00000+ 0 1.80000+ 1 6.35499- 5 8.60587- 2 8.00000+ 0 1.90000+ 1 3.30340- 5 8.61889- 2 8.00000+ 0 2.10000+ 1 2.94277- 6 8.63931- 2 8.00000+ 0 2.20000+ 1 1.99330- 6 8.64175- 2 8.00000+ 0 2.70000+ 1 1.83684- 5 8.66912- 2 8.00000+ 0 2.90000+ 1 1.25301- 5 8.67350- 2 8.00000+ 0 3.00000+ 1 6.31237- 6 8.67606- 2 8.00000+ 0 3.20000+ 1 3.79699- 7 8.68227- 2 8.00000+ 0 3.30000+ 1 2.37306- 7 8.68259- 2 1.00000+ 1 1.00000+ 1 1.20083- 5 8.34466- 2 1.00000+ 1 1.10000+ 1 2.22271- 4 8.39724- 2 1.00000+ 1 1.30000+ 1 1.12963- 5 8.44413- 2 1.00000+ 1 1.40000+ 1 2.48691- 5 8.45533- 2 1.00000+ 1 1.60000+ 1 6.29336- 5 8.62159- 2 1.00000+ 1 1.80000+ 1 5.74291- 6 8.63399- 2 1.00000+ 1 1.90000+ 1 5.31096- 5 8.64701- 2 1.00000+ 1 2.10000+ 1 2.94278- 6 8.66743- 2 1.00000+ 1 2.20000+ 1 6.45503- 6 8.66987- 2 1.00000+ 1 2.40000+ 1 4.74636- 8 8.69654- 2 1.00000+ 1 2.50000+ 1 9.49240- 8 8.69711- 2 1.00000+ 1 2.70000+ 1 1.36217- 5 8.69724- 2 1.00000+ 1 2.90000+ 1 1.13908- 6 8.70162- 2 1.00000+ 1 3.00000+ 1 1.00620- 5 8.70418- 2 1.00000+ 1 3.20000+ 1 3.79700- 7 8.71039- 2 1.00000+ 1 3.30000+ 1 8.06858- 7 8.71071- 2 1.10000+ 1 1.10000+ 1 1.10073- 4 8.44982- 2 1.10000+ 1 1.30000+ 1 3.36511- 5 8.49671- 2 1.10000+ 1 1.40000+ 1 2.69113- 5 8.50791- 2 1.10000+ 1 1.60000+ 1 3.19430- 5 8.67417- 2 1.10000+ 1 1.80000+ 1 5.30647- 5 8.68657- 2 1.10000+ 1 1.90000+ 1 5.28255- 5 8.69959- 2 1.10000+ 1 2.10000+ 1 8.78083- 6 8.72001- 2 1.10000+ 1 2.20000+ 1 7.02462- 6 8.72245- 2 1.10000+ 1 2.40000+ 1 1.42395- 7 8.74912- 2 1.10000+ 1 2.50000+ 1 1.42395- 7 8.74969- 2 1.10000+ 1 2.70000+ 1 6.88209- 6 8.74982- 2 1.10000+ 1 2.90000+ 1 1.03945- 5 8.75420- 2 1.10000+ 1 3.00000+ 1 1.00145- 5 8.75676- 2 1.10000+ 1 3.20000+ 1 1.13910- 6 8.76297- 2 1.10000+ 1 3.30000+ 1 9.01807- 7 8.76329- 2 1.30000+ 1 1.30000+ 1 9.49258- 8 8.54360- 2 1.30000+ 1 1.40000+ 1 3.84458- 6 8.55480- 2 1.30000+ 1 1.60000+ 1 2.65798- 6 8.72106- 2 1.30000+ 1 1.80000+ 1 2.61046- 6 8.73346- 2 1.30000+ 1 1.90000+ 1 7.64134- 6 8.74648- 2 1.30000+ 1 2.10000+ 1 4.74645- 8 8.76690- 2 1.30000+ 1 2.20000+ 1 9.49258- 7 8.76934- 2 1.30000+ 1 2.70000+ 1 5.69551- 7 8.79671- 2 1.30000+ 1 2.90000+ 1 5.22104- 7 8.80109- 2 1.30000+ 1 3.00000+ 1 1.42396- 6 8.80365- 2 1.30000+ 1 3.30000+ 1 1.42396- 7 8.81018- 2 1.40000+ 1 1.40000+ 1 9.01799- 7 8.56600- 2 1.40000+ 1 1.60000+ 1 1.80360- 6 8.73226- 2 1.40000+ 1 1.80000+ 1 5.50571- 6 8.74466- 2 1.40000+ 1 1.90000+ 1 6.07519- 6 8.75768- 2 1.40000+ 1 2.10000+ 1 9.49245- 7 8.77810- 2 1.40000+ 1 2.20000+ 1 4.74639- 7 8.78054- 2 1.40000+ 1 2.70000+ 1 3.79702- 7 8.80791- 2 1.40000+ 1 2.90000+ 1 1.04419- 6 8.81229- 2 1.40000+ 1 3.00000+ 1 1.13909- 6 8.81485- 2 1.40000+ 1 3.20000+ 1 1.42394- 7 8.82106- 2 1.40000+ 1 3.30000+ 1 4.74639- 8 8.82138- 2 1.60000+ 1 1.60000+ 1 1.06316- 5 8.89851- 2 1.60000+ 1 1.80000+ 1 1.56148- 5 8.91091- 2 1.60000+ 1 1.90000+ 1 7.92645- 6 8.92394- 2 1.60000+ 1 2.10000+ 1 7.11929- 7 8.94436- 2 1.60000+ 1 2.20000+ 1 4.74641- 7 8.94680- 2 1.60000+ 1 2.70000+ 1 4.65139- 6 8.97417- 2 1.60000+ 1 2.90000+ 1 3.08513- 6 8.97854- 2 1.60000+ 1 3.00000+ 1 1.51875- 6 8.98111- 2 1.60000+ 1 3.20000+ 1 9.49250- 8 8.98732- 2 1.60000+ 1 3.30000+ 1 4.74641- 8 8.98764- 2 1.80000+ 1 1.80000+ 1 6.64466- 7 8.92331- 2 1.80000+ 1 1.90000+ 1 1.26724- 5 8.93634- 2 1.80000+ 1 2.10000+ 1 6.64466- 7 8.95676- 2 1.80000+ 1 2.20000+ 1 1.42391- 6 8.95920- 2 1.80000+ 1 2.70000+ 1 3.36979- 6 8.98657- 2 1.80000+ 1 2.90000+ 1 2.84761- 7 8.99094- 2 1.80000+ 1 3.00000+ 1 2.42045- 6 8.99351- 2 1.80000+ 1 3.20000+ 1 9.49227- 8 8.99972- 2 1.80000+ 1 3.30000+ 1 1.89836- 7 9.00004- 2 1.90000+ 1 1.90000+ 1 6.27830- 6 8.94937- 2 1.90000+ 1 2.10000+ 1 1.96774- 6 8.96979- 2 1.90000+ 1 2.20000+ 1 1.54615- 6 8.97222- 2 1.90000+ 1 2.40000+ 1 4.68546- 8 8.99890- 2 1.90000+ 1 2.50000+ 1 4.68546- 8 8.99947- 2 1.90000+ 1 2.70000+ 1 1.68675- 6 8.99960- 2 1.90000+ 1 2.90000+ 1 2.43643- 6 9.00397- 2 1.90000+ 1 3.00000+ 1 2.38943- 6 9.00654- 2 1.90000+ 1 3.20000+ 1 2.81111- 7 9.01275- 2 1.90000+ 1 3.30000+ 1 1.87403- 7 9.01307- 2 2.10000+ 1 2.20000+ 1 2.37308- 7 8.99264- 2 2.10000+ 1 2.70000+ 1 1.42394- 7 9.02002- 2 2.10000+ 1 2.90000+ 1 1.42394- 7 9.02439- 2 2.10000+ 1 3.00000+ 1 3.79702- 7 9.02696- 2 2.10000+ 1 3.30000+ 1 4.74638- 8 9.03349- 2 2.20000+ 1 2.20000+ 1 5.01368- 8 8.99508- 2 2.20000+ 1 2.70000+ 1 1.00270- 7 9.02245- 2 2.20000+ 1 2.90000+ 1 3.00803- 7 9.02683- 2 2.20000+ 1 3.00000+ 1 3.00803- 7 9.02939- 2 2.20000+ 1 3.20000+ 1 5.01368- 8 9.03560- 2 2.70000+ 1 2.70000+ 1 5.30344- 7 9.04983- 2 2.70000+ 1 2.90000+ 1 6.74975- 7 9.05420- 2 2.70000+ 1 3.00000+ 1 3.37483- 7 9.05677- 2 2.90000+ 1 2.90000+ 1 4.56709- 8 9.05858- 2 2.90000+ 1 3.00000+ 1 4.56709- 7 9.06114- 2 2.90000+ 1 3.30000+ 1 4.56709- 8 9.06767- 2 3.00000+ 1 3.00000+ 1 2.43247- 7 9.06371- 2 3.00000+ 1 3.20000+ 1 4.86517- 8 9.06992- 2 3.00000+ 1 3.30000+ 1 4.86517- 8 9.07024- 2 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.18120- 5 6.08000- 4 6.00000+ 0 3.32370- 3 2.95100- 3 1.00000+ 1 3.46070- 2 1.26833- 2 1.10000+ 1 3.70550- 2 1.32091- 2 1.30000+ 1 1.28210- 3 1.36780- 2 1.40000+ 1 1.91790- 3 1.37900- 2 1.80000+ 1 8.95660- 3 1.55766- 2 1.90000+ 1 1.04990- 2 1.57068- 2 2.10000+ 1 1.99110- 4 1.59110- 2 2.20000+ 1 3.15490- 4 1.59354- 2 2.90000+ 1 1.80350- 3 1.62529- 2 3.00000+ 1 2.08580- 3 1.62785- 2 3.20000+ 1 2.48950- 5 1.63406- 2 3.30000+ 1 3.91230- 5 1.63438- 2 4.30000+ 1 8.60050- 5 1.63674- 2 4.40000+ 1 8.34250- 5 1.63697- 2 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.65666- 3 1.43050- 4 5.00000+ 0 2.20000+ 1 6.16915- 3 1.67390- 4 5.00000+ 0 2.40000+ 1 1.40990- 2 4.34130- 4 5.00000+ 0 2.50000+ 1 1.86836- 2 4.39830- 4 5.00000+ 0 2.70000+ 1 4.45468- 3 4.41140- 4 5.00000+ 0 2.90000+ 1 3.27266- 3 4.84880- 4 5.00000+ 0 3.00000+ 1 2.94068- 3 5.10540- 4 5.00000+ 0 3.20000+ 1 6.12915- 4 5.72630- 4 5.00000+ 0 3.30000+ 1 8.05627- 4 5.75830- 4 6.00000+ 0 1.30000+ 1 2.33072- 1 2.53000- 4 6.00000+ 0 1.40000+ 1 2.92387- 1 3.65000- 4 6.00000+ 0 1.60000+ 1 1.85206- 2 2.02757- 3 6.00000+ 0 1.80000+ 1 7.32957- 3 2.15157- 3 6.00000+ 0 1.90000+ 1 1.09852- 2 2.28184- 3 6.00000+ 0 2.10000+ 1 3.10826- 2 2.48605- 3 6.00000+ 0 2.20000+ 1 3.68251- 2 2.51039- 3 6.00000+ 0 2.40000+ 1 2.14603- 2 2.77713- 3 6.00000+ 0 2.50000+ 1 2.66939- 2 2.78283- 3 6.00000+ 0 2.70000+ 1 3.84420- 3 2.78414- 3 6.00000+ 0 2.90000+ 1 1.41849- 3 2.82788- 3 6.00000+ 0 3.00000+ 1 2.08263- 3 2.85354- 3 6.00000+ 0 3.20000+ 1 3.74981- 3 2.91563- 3 6.00000+ 0 3.30000+ 1 4.27857- 3 2.91883- 3 8.00000+ 0 8.00000+ 0 5.20847- 3 8.42820- 3 8.00000+ 0 1.00000+ 1 1.07421- 2 8.70940- 3 8.00000+ 0 1.10000+ 1 1.66946- 2 9.23520- 3 8.00000+ 0 1.30000+ 1 1.22950- 2 9.70410- 3 8.00000+ 0 1.40000+ 1 1.56597- 2 9.81610- 3 8.00000+ 0 1.60000+ 1 2.24411- 3 1.14787- 2 8.00000+ 0 1.80000+ 1 2.62748- 3 1.16027- 2 8.00000+ 0 1.90000+ 1 4.03146- 3 1.17329- 2 8.00000+ 0 2.10000+ 1 2.72107- 3 1.19372- 2 8.00000+ 0 2.20000+ 1 3.43891- 3 1.19615- 2 8.00000+ 0 2.40000+ 1 2.29890- 4 1.22282- 2 8.00000+ 0 2.50000+ 1 2.50629- 4 1.22339- 2 8.00000+ 0 2.70000+ 1 4.76840- 4 1.22352- 2 8.00000+ 0 2.90000+ 1 5.16197- 4 1.22790- 2 8.00000+ 0 3.00000+ 1 7.65861- 4 1.23046- 2 8.00000+ 0 3.20000+ 1 3.47551- 4 1.23667- 2 8.00000+ 0 3.30000+ 1 4.27024- 4 1.23699- 2 1.00000+ 1 1.00000+ 1 1.97716- 5 8.99060- 3 1.00000+ 1 1.10000+ 1 2.09735- 4 9.51640- 3 1.00000+ 1 1.30000+ 1 6.68164- 4 9.98530- 3 1.00000+ 1 1.40000+ 1 5.33323- 3 1.00973- 2 1.00000+ 1 1.60000+ 1 1.82448- 3 1.17599- 2 1.00000+ 1 1.80000+ 1 2.71381- 6 1.18839- 2 1.00000+ 1 1.90000+ 1 4.24510- 5 1.20141- 2 1.00000+ 1 2.10000+ 1 1.29301- 4 1.22183- 2 1.00000+ 1 2.20000+ 1 7.50341- 4 1.22427- 2 1.00000+ 1 2.40000+ 1 8.47077- 5 1.25094- 2 1.00000+ 1 2.50000+ 1 2.94629- 4 1.25151- 2 1.00000+ 1 2.70000+ 1 3.65004- 4 1.25164- 2 1.00000+ 1 2.90000+ 1 3.87673- 7 1.25602- 2 1.00000+ 1 3.00000+ 1 7.75351- 6 1.25858- 2 1.00000+ 1 3.20000+ 1 1.64759- 5 1.26479- 2 1.00000+ 1 3.30000+ 1 8.64536- 5 1.26511- 2 1.10000+ 1 1.10000+ 1 5.71631- 4 1.00422- 2 1.10000+ 1 1.30000+ 1 1.74689- 3 1.05111- 2 1.10000+ 1 1.40000+ 1 1.06363- 3 1.06231- 2 1.10000+ 1 1.60000+ 1 2.78761- 3 1.22857- 2 1.10000+ 1 1.80000+ 1 5.07866- 5 1.24097- 2 1.10000+ 1 1.90000+ 1 2.09345- 4 1.25399- 2 1.10000+ 1 2.10000+ 1 1.59920- 4 1.27442- 2 1.10000+ 1 2.20000+ 1 7.83112- 5 1.27685- 2 1.10000+ 1 2.40000+ 1 1.36271- 4 1.30352- 2 1.10000+ 1 2.50000+ 1 1.14173- 4 1.30409- 2 1.10000+ 1 2.70000+ 1 5.55743- 4 1.30422- 2 1.10000+ 1 2.90000+ 1 9.88589- 6 1.30860- 2 1.10000+ 1 3.00000+ 1 3.76055- 5 1.31116- 2 1.10000+ 1 3.20000+ 1 1.72519- 5 1.31737- 2 1.10000+ 1 3.30000+ 1 7.94732- 6 1.31769- 2 1.30000+ 1 1.30000+ 1 7.18912- 4 1.09800- 2 1.30000+ 1 1.40000+ 1 2.11261- 2 1.10920- 2 1.30000+ 1 1.60000+ 1 1.86763- 3 1.27546- 2 1.30000+ 1 1.80000+ 1 1.96743- 4 1.28786- 2 1.30000+ 1 1.90000+ 1 4.70830- 4 1.30088- 2 1.30000+ 1 2.10000+ 1 3.10723- 4 1.32130- 2 1.30000+ 1 2.20000+ 1 3.23652- 3 1.32374- 2 1.30000+ 1 2.40000+ 1 2.43649- 4 1.35041- 2 1.30000+ 1 2.50000+ 1 6.70673- 4 1.35098- 2 1.30000+ 1 2.70000+ 1 3.65188- 4 1.35111- 2 1.30000+ 1 2.90000+ 1 4.01245- 5 1.35549- 2 1.30000+ 1 3.00000+ 1 9.14867- 5 1.35805- 2 1.30000+ 1 3.20000+ 1 3.95436- 5 1.36426- 2 1.30000+ 1 3.30000+ 1 3.76827- 4 1.36458- 2 1.40000+ 1 1.40000+ 1 5.82878- 3 1.12040- 2 1.40000+ 1 1.60000+ 1 2.41411- 3 1.28666- 2 1.40000+ 1 1.80000+ 1 1.15516- 3 1.29906- 2 1.40000+ 1 1.90000+ 1 2.91739- 4 1.31208- 2 1.40000+ 1 2.10000+ 1 3.12998- 3 1.33250- 2 1.40000+ 1 2.20000+ 1 1.88592- 3 1.33494- 2 1.40000+ 1 2.40000+ 1 7.38966- 4 1.36161- 2 1.40000+ 1 2.50000+ 1 5.56730- 4 1.36218- 2 1.40000+ 1 2.70000+ 1 4.74722- 4 1.36231- 2 1.40000+ 1 2.90000+ 1 2.21761- 4 1.36669- 2 1.40000+ 1 3.00000+ 1 5.69908- 5 1.36925- 2 1.40000+ 1 3.20000+ 1 3.71986- 4 1.37546- 2 1.40000+ 1 3.30000+ 1 2.22151- 4 1.37578- 2 1.60000+ 1 1.60000+ 1 2.27954- 4 1.45291- 2 1.60000+ 1 1.80000+ 1 4.47189- 4 1.46531- 2 1.60000+ 1 1.90000+ 1 6.75533- 4 1.47834- 2 1.60000+ 1 2.10000+ 1 4.15011- 4 1.49876- 2 1.60000+ 1 2.20000+ 1 5.28793- 4 1.50120- 2 1.60000+ 1 2.40000+ 1 2.92699- 5 1.52787- 2 1.60000+ 1 2.50000+ 1 3.04328- 5 1.52844- 2 1.60000+ 1 2.70000+ 1 9.55638- 5 1.52857- 2 1.60000+ 1 2.90000+ 1 8.78075- 5 1.53294- 2 1.60000+ 1 3.00000+ 1 1.28321- 4 1.53551- 2 1.60000+ 1 3.20000+ 1 5.31123- 5 1.54172- 2 1.60000+ 1 3.30000+ 1 6.57114- 5 1.54204- 2 1.80000+ 1 1.90000+ 1 1.02733- 5 1.49074- 2 1.80000+ 1 2.10000+ 1 3.37276- 5 1.51116- 2 1.80000+ 1 2.20000+ 1 1.69228- 4 1.51360- 2 1.80000+ 1 2.40000+ 1 1.18252- 5 1.54027- 2 1.80000+ 1 2.50000+ 1 4.65227- 5 1.54084- 2 1.80000+ 1 2.70000+ 1 8.95522- 5 1.54097- 2 1.80000+ 1 3.00000+ 1 1.93846- 6 1.54791- 2 1.80000+ 1 3.20000+ 1 4.26450- 6 1.55412- 2 1.80000+ 1 3.30000+ 1 1.95776- 5 1.55444- 2 1.90000+ 1 1.90000+ 1 1.84146- 5 1.50377- 2 1.90000+ 1 2.10000+ 1 4.84603- 5 1.52419- 2 1.90000+ 1 2.20000+ 1 2.67499- 5 1.52662- 2 1.90000+ 1 2.40000+ 1 2.83008- 5 1.55330- 2 1.90000+ 1 2.50000+ 1 2.32602- 5 1.55387- 2 1.90000+ 1 2.70000+ 1 1.34720- 4 1.55400- 2 1.90000+ 1 2.90000+ 1 1.93845- 6 1.55837- 2 1.90000+ 1 3.00000+ 1 6.59050- 6 1.56094- 2 1.90000+ 1 3.20000+ 1 5.42749- 6 1.56715- 2 1.90000+ 1 3.30000+ 1 2.90757- 6 1.56747- 2 2.10000+ 1 2.10000+ 1 3.10146- 5 1.54461- 2 2.10000+ 1 2.20000+ 1 5.25110- 4 1.54704- 2 2.10000+ 1 2.40000+ 1 3.64412- 5 1.57372- 2 2.10000+ 1 2.50000+ 1 7.57887- 5 1.57429- 2 2.10000+ 1 2.70000+ 1 8.12173- 5 1.57442- 2 2.10000+ 1 2.90000+ 1 6.78439- 6 1.57879- 2 2.10000+ 1 3.00000+ 1 9.69191- 6 1.58136- 2 2.10000+ 1 3.20000+ 1 7.75345- 6 1.58757- 2 2.10000+ 1 3.30000+ 1 6.20282- 5 1.58789- 2 2.20000+ 1 2.20000+ 1 1.63789- 4 1.54948- 2 2.20000+ 1 2.40000+ 1 8.83905- 5 1.57615- 2 2.20000+ 1 2.50000+ 1 7.40432- 5 1.57672- 2 2.20000+ 1 2.70000+ 1 1.03903- 4 1.57685- 2 2.20000+ 1 2.90000+ 1 3.27587- 5 1.58123- 2 2.20000+ 1 3.00000+ 1 5.42753- 6 1.58379- 2 2.20000+ 1 3.20000+ 1 6.33855- 5 1.59000- 2 2.20000+ 1 3.30000+ 1 3.89623- 5 1.59032- 2 2.40000+ 1 2.40000+ 1 1.08770- 6 1.60283- 2 2.40000+ 1 2.50000+ 1 2.02320- 5 1.60340- 2 2.40000+ 1 2.70000+ 1 6.09114- 6 1.60353- 2 2.40000+ 1 2.90000+ 1 2.39295- 6 1.60790- 2 2.40000+ 1 3.00000+ 1 5.87366- 6 1.61047- 2 2.40000+ 1 3.20000+ 1 4.78592- 6 1.61668- 2 2.40000+ 1 3.30000+ 1 1.10946- 5 1.61700- 2 2.50000+ 1 2.50000+ 1 4.79406- 6 1.60397- 2 2.50000+ 1 2.70000+ 1 6.95144- 6 1.60410- 2 2.50000+ 1 2.90000+ 1 1.03079- 5 1.60847- 2 2.50000+ 1 3.00000+ 1 5.27359- 6 1.61104- 2 2.50000+ 1 3.20000+ 1 1.05475- 5 1.61725- 2 2.50000+ 1 3.30000+ 1 1.05475- 5 1.61757- 2 2.70000+ 1 2.70000+ 1 1.60801- 5 1.60423- 2 2.70000+ 1 2.90000+ 1 2.81419- 5 1.60860- 2 2.70000+ 1 3.00000+ 1 4.08192- 5 1.61117- 2 2.70000+ 1 3.20000+ 1 1.66991- 5 1.61738- 2 2.70000+ 1 3.30000+ 1 2.04097- 5 1.61770- 2 2.90000+ 1 3.00000+ 1 7.43337- 7 1.61554- 2 2.90000+ 1 3.20000+ 1 1.48668- 6 1.62175- 2 2.90000+ 1 3.30000+ 1 7.43337- 6 1.62207- 2 3.00000+ 1 3.00000+ 1 1.12296- 6 1.61811- 2 3.00000+ 1 3.20000+ 1 2.24588- 6 1.62432- 2 3.00000+ 1 3.30000+ 1 1.12296- 6 1.62464- 2 3.20000+ 1 3.20000+ 1 5.67508- 7 1.63053- 2 3.20000+ 1 3.30000+ 1 7.37749- 6 1.63085- 2 3.30000+ 1 3.30000+ 1 2.32600- 6 1.63117- 2 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.24020- 5 2.34300- 3 8.00000+ 0 8.94229- 3 1.17941- 2 1.10000+ 1 3.76200- 4 1.26011- 2 1.30000+ 1 3.27820- 1 1.30700- 2 1.60000+ 1 2.32000- 3 1.48446- 2 1.90000+ 1 1.05370- 4 1.50988- 2 2.10000+ 1 6.76889- 2 1.53030- 2 2.40000+ 1 2.99050- 4 1.55941- 2 2.70000+ 1 5.04370- 4 1.56011- 2 3.00000+ 1 2.13840- 5 1.56705- 2 3.20000+ 1 8.99449- 3 1.57326- 2 4.10000+ 1 7.12399- 5 1.57503- 2 4.40000+ 1 8.34879- 7 1.57616- 2 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 5.01037- 3 1.41957- 3 6.00000+ 0 1.80000+ 1 3.63688- 2 1.54357- 3 6.00000+ 0 1.90000+ 1 9.88233- 3 1.67384- 3 6.00000+ 0 2.10000+ 1 3.64027- 2 1.87805- 3 6.00000+ 0 2.20000+ 1 1.24713- 2 1.90239- 3 6.00000+ 0 2.40000+ 1 1.53438- 3 2.16913- 3 6.00000+ 0 2.50000+ 1 2.28227- 3 2.17483- 3 6.00000+ 0 2.70000+ 1 1.00390- 3 2.17614- 3 6.00000+ 0 2.90000+ 1 6.57600- 3 2.21988- 3 6.00000+ 0 3.00000+ 1 1.83052- 3 2.24554- 3 6.00000+ 0 3.20000+ 1 4.47190- 3 2.30763- 3 6.00000+ 0 3.30000+ 1 1.50534- 3 2.31083- 3 8.00000+ 0 8.00000+ 0 5.47962- 4 7.82020- 3 8.00000+ 0 1.00000+ 1 1.95976- 2 8.10140- 3 8.00000+ 0 1.10000+ 1 1.81942- 3 8.62720- 3 8.00000+ 0 1.30000+ 1 3.12560- 3 9.09610- 3 8.00000+ 0 1.40000+ 1 1.70274- 3 9.20810- 3 8.00000+ 0 1.60000+ 1 2.12564- 4 1.08707- 2 8.00000+ 0 1.80000+ 1 3.16403- 3 1.09947- 2 8.00000+ 0 1.90000+ 1 3.93439- 4 1.11249- 2 8.00000+ 0 2.10000+ 1 4.89889- 4 1.13291- 2 8.00000+ 0 2.20000+ 1 2.27748- 4 1.13535- 2 8.00000+ 0 2.40000+ 1 8.79746- 5 1.16202- 2 8.00000+ 0 2.50000+ 1 6.16305- 5 1.16259- 2 8.00000+ 0 2.70000+ 1 4.42119- 5 1.16272- 2 8.00000+ 0 2.90000+ 1 5.71169- 4 1.16710- 2 8.00000+ 0 3.00000+ 1 7.32410- 5 1.16966- 2 8.00000+ 0 3.20000+ 1 5.93917- 5 1.17587- 2 8.00000+ 0 3.30000+ 1 2.63481- 5 1.17619- 2 1.00000+ 1 1.00000+ 1 2.05440- 2 8.38260- 3 1.00000+ 1 1.10000+ 1 5.15368- 2 8.90840- 3 1.00000+ 1 1.30000+ 1 2.66069- 2 9.37730- 3 1.00000+ 1 1.40000+ 1 3.74259- 2 9.48930- 3 1.00000+ 1 1.60000+ 1 5.07981- 3 1.11519- 2 1.00000+ 1 1.80000+ 1 8.46008- 3 1.12759- 2 1.00000+ 1 1.90000+ 1 1.22145- 2 1.14061- 2 1.00000+ 1 2.10000+ 1 5.89261- 3 1.16103- 2 1.00000+ 1 2.20000+ 1 8.26892- 3 1.16347- 2 1.00000+ 1 2.40000+ 1 4.55519- 4 1.19014- 2 1.00000+ 1 2.50000+ 1 3.92984- 4 1.19071- 2 1.00000+ 1 2.70000+ 1 1.11374- 3 1.19084- 2 1.00000+ 1 2.90000+ 1 1.61481- 3 1.19522- 2 1.00000+ 1 3.00000+ 1 2.31193- 3 1.19778- 2 1.00000+ 1 3.20000+ 1 7.53398- 4 1.20399- 2 1.00000+ 1 3.30000+ 1 1.02800- 3 1.20431- 2 1.10000+ 1 1.10000+ 1 1.16551- 3 9.43420- 3 1.10000+ 1 1.30000+ 1 2.36986- 2 9.90310- 3 1.10000+ 1 1.40000+ 1 3.46579- 3 1.00151- 2 1.10000+ 1 1.60000+ 1 3.95667- 4 1.16777- 2 1.10000+ 1 1.80000+ 1 8.47209- 3 1.18017- 2 1.10000+ 1 1.90000+ 1 4.74259- 4 1.19319- 2 1.10000+ 1 2.10000+ 1 4.42869- 3 1.21361- 2 1.10000+ 1 2.20000+ 1 6.23868- 4 1.21605- 2 1.10000+ 1 2.40000+ 1 1.82646- 4 1.24272- 2 1.10000+ 1 2.50000+ 1 9.55675- 5 1.24329- 2 1.10000+ 1 2.70000+ 1 8.35082- 5 1.24342- 2 1.10000+ 1 2.90000+ 1 1.53442- 3 1.24780- 2 1.10000+ 1 3.00000+ 1 8.70815- 5 1.25036- 2 1.10000+ 1 3.20000+ 1 5.49279- 4 1.25657- 2 1.10000+ 1 3.30000+ 1 7.50221- 5 1.25689- 2 1.30000+ 1 1.30000+ 1 2.24585- 2 1.03720- 2 1.30000+ 1 1.40000+ 1 8.89134- 2 1.04840- 2 1.30000+ 1 1.60000+ 1 8.12784- 4 1.21466- 2 1.30000+ 1 1.80000+ 1 4.23725- 3 1.22706- 2 1.30000+ 1 1.90000+ 1 5.19737- 3 1.24008- 2 1.30000+ 1 2.10000+ 1 8.24384- 3 1.26050- 2 1.30000+ 1 2.20000+ 1 1.75954- 2 1.26294- 2 1.30000+ 1 2.40000+ 1 1.58627- 3 1.28961- 2 1.30000+ 1 2.50000+ 1 3.19707- 3 1.29018- 2 1.30000+ 1 2.70000+ 1 1.78629- 4 1.29031- 2 1.30000+ 1 2.90000+ 1 7.69016- 4 1.29469- 2 1.30000+ 1 3.00000+ 1 9.68177- 4 1.29725- 2 1.30000+ 1 3.20000+ 1 1.02451- 3 1.30346- 2 1.30000+ 1 3.30000+ 1 2.14772- 3 1.30378- 2 1.40000+ 1 1.40000+ 1 4.31972- 3 1.05960- 2 1.40000+ 1 1.60000+ 1 3.55924- 4 1.22586- 2 1.40000+ 1 1.80000+ 1 5.25697- 3 1.23826- 2 1.40000+ 1 1.90000+ 1 6.99761- 4 1.25128- 2 1.40000+ 1 2.10000+ 1 1.33980- 2 1.27170- 2 1.40000+ 1 2.20000+ 1 1.55579- 3 1.27414- 2 1.40000+ 1 2.40000+ 1 6.33255- 4 1.30081- 2 1.40000+ 1 2.50000+ 1 2.42037- 4 1.30138- 2 1.40000+ 1 2.70000+ 1 7.45804- 5 1.30151- 2 1.40000+ 1 2.90000+ 1 9.20357- 4 1.30589- 2 1.40000+ 1 3.00000+ 1 1.28171- 4 1.30845- 2 1.40000+ 1 3.20000+ 1 1.60091- 3 1.31466- 2 1.40000+ 1 3.30000+ 1 1.87548- 4 1.31498- 2 1.60000+ 1 1.60000+ 1 1.96504- 5 1.39211- 2 1.60000+ 1 1.80000+ 1 8.25250- 4 1.40451- 2 1.60000+ 1 1.90000+ 1 8.61902- 5 1.41754- 2 1.60000+ 1 2.10000+ 1 1.24148- 4 1.43796- 2 1.60000+ 1 2.20000+ 1 4.73356- 5 1.44040- 2 1.60000+ 1 2.40000+ 1 2.00965- 5 1.46707- 2 1.60000+ 1 2.50000+ 1 1.11642- 5 1.46764- 2 1.60000+ 1 2.70000+ 1 8.03860- 6 1.46777- 2 1.60000+ 1 2.90000+ 1 1.49151- 4 1.47214- 2 1.60000+ 1 3.00000+ 1 1.60770- 5 1.47471- 2 1.60000+ 1 3.20000+ 1 1.47375- 5 1.48092- 2 1.60000+ 1 3.30000+ 1 5.35890- 6 1.48124- 2 1.80000+ 1 1.80000+ 1 8.27924- 4 1.41691- 2 1.80000+ 1 1.90000+ 1 2.01353- 3 1.42994- 2 1.80000+ 1 2.10000+ 1 9.24384- 4 1.45036- 2 1.80000+ 1 2.20000+ 1 1.17271- 3 1.45280- 2 1.80000+ 1 2.40000+ 1 5.93911- 5 1.47947- 2 1.80000+ 1 2.50000+ 1 4.06381- 5 1.48004- 2 1.80000+ 1 2.70000+ 1 1.81311- 4 1.48017- 2 1.80000+ 1 2.90000+ 1 3.12596- 4 1.48454- 2 1.80000+ 1 3.00000+ 1 3.81378- 4 1.48711- 2 1.80000+ 1 3.20000+ 1 1.17900- 4 1.49332- 2 1.80000+ 1 3.30000+ 1 1.46027- 4 1.49364- 2 1.90000+ 1 1.90000+ 1 4.86783- 5 1.44297- 2 1.90000+ 1 2.10000+ 1 9.78499- 4 1.46339- 2 1.90000+ 1 2.20000+ 1 1.28174- 4 1.46582- 2 1.90000+ 1 2.40000+ 1 3.43866- 5 1.49250- 2 1.90000+ 1 2.50000+ 1 1.65235- 5 1.49307- 2 1.90000+ 1 2.70000+ 1 1.83093- 5 1.49320- 2 1.90000+ 1 2.90000+ 1 3.64858- 4 1.49757- 2 1.90000+ 1 3.00000+ 1 1.78631- 5 1.50014- 2 1.90000+ 1 3.20000+ 1 1.21476- 4 1.50635- 2 1.90000+ 1 3.30000+ 1 1.56302- 5 1.50667- 2 2.10000+ 1 2.10000+ 1 7.49834- 4 1.48381- 2 2.10000+ 1 2.20000+ 1 2.76296- 3 1.48624- 2 2.10000+ 1 2.40000+ 1 1.99618- 4 1.51292- 2 2.10000+ 1 2.50000+ 1 4.06384- 4 1.51349- 2 2.10000+ 1 2.70000+ 1 2.72423- 5 1.51362- 2 2.10000+ 1 2.90000+ 1 1.67029- 4 1.51799- 2 2.10000+ 1 3.00000+ 1 1.82649- 4 1.52056- 2 2.10000+ 1 3.20000+ 1 1.85784- 4 1.52677- 2 2.10000+ 1 3.30000+ 1 3.39398- 4 1.52709- 2 2.20000+ 1 2.20000+ 1 1.41565- 4 1.48868- 2 2.20000+ 1 2.40000+ 1 8.66324- 5 1.51535- 2 2.20000+ 1 2.50000+ 1 3.39393- 5 1.51592- 2 2.20000+ 1 2.70000+ 1 9.82487- 6 1.51605- 2 2.20000+ 1 2.90000+ 1 2.05873- 4 1.52043- 2 2.20000+ 1 3.00000+ 1 2.36686- 5 1.52299- 2 2.20000+ 1 3.20000+ 1 3.32246- 4 1.52920- 2 2.20000+ 1 3.30000+ 1 3.39393- 5 1.52952- 2 2.40000+ 1 2.40000+ 1 4.52728- 6 1.54203- 2 2.40000+ 1 2.50000+ 1 3.25969- 5 1.54260- 2 2.40000+ 1 2.70000+ 1 4.52728- 6 1.54273- 2 2.40000+ 1 2.90000+ 1 1.04133- 5 1.54710- 2 2.40000+ 1 3.00000+ 1 6.33825- 6 1.54967- 2 2.40000+ 1 3.20000+ 1 2.35426- 5 1.55588- 2 2.40000+ 1 3.30000+ 1 9.96030- 6 1.55620- 2 2.50000+ 1 2.50000+ 1 2.25270- 6 1.54317- 2 2.50000+ 1 2.70000+ 1 2.25270- 6 1.54330- 2 2.50000+ 1 2.90000+ 1 6.75819- 6 1.54767- 2 2.50000+ 1 3.00000+ 1 3.15377- 6 1.55024- 2 2.50000+ 1 3.20000+ 1 4.73076- 5 1.55645- 2 2.50000+ 1 3.30000+ 1 4.05495- 6 1.55677- 2 2.70000+ 1 2.70000+ 1 8.80183- 7 1.54343- 2 2.70000+ 1 2.90000+ 1 3.21271- 5 1.54780- 2 2.70000+ 1 3.00000+ 1 3.52079- 6 1.55037- 2 2.70000+ 1 3.20000+ 1 3.08061- 6 1.55658- 2 2.70000+ 1 3.30000+ 1 1.32026- 6 1.55690- 2 2.90000+ 1 2.90000+ 1 2.91234- 5 1.55218- 2 2.90000+ 1 3.00000+ 1 6.83946- 5 1.55474- 2 2.90000+ 1 3.20000+ 1 2.11800- 5 1.56095- 2 2.90000+ 1 3.30000+ 1 2.51518- 5 1.56127- 2 3.00000+ 1 3.00000+ 1 1.89549- 6 1.55731- 2 3.00000+ 1 3.20000+ 1 2.41672- 5 1.56352- 2 3.00000+ 1 3.30000+ 1 2.84325- 6 1.56384- 2 3.20000+ 1 3.20000+ 1 1.16104- 5 1.56973- 2 3.20000+ 1 3.30000+ 1 4.10856- 5 1.57005- 2 3.30000+ 1 3.30000+ 1 2.23280- 6 1.57037- 2 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.63541- 2 9.45110- 3 1.00000+ 1 1.76691- 4 9.73230- 3 1.10000+ 1 1.59651- 4 1.02581- 2 1.30000+ 1 2.86032- 2 1.07270- 2 1.40000+ 1 2.51881- 1 1.08390- 2 1.60000+ 1 3.72472- 3 1.25016- 2 1.80000+ 1 3.99312- 5 1.26256- 2 1.90000+ 1 4.11832- 5 1.27558- 2 2.10000+ 1 5.40263- 3 1.29600- 2 2.20000+ 1 4.89093- 2 1.29844- 2 2.40000+ 1 4.52112- 5 1.32511- 2 2.50000+ 1 2.52191- 4 1.32568- 2 2.70000+ 1 8.17274- 4 1.32581- 2 2.90000+ 1 8.37674- 6 1.33019- 2 3.00000+ 1 8.76815- 6 1.33275- 2 3.20000+ 1 7.06844- 4 1.33896- 2 3.30000+ 1 6.29773- 3 1.33928- 2 4.10000+ 1 1.13281- 4 1.34073- 2 4.30000+ 1 3.71132- 7 1.34164- 2 4.40000+ 1 3.20292- 7 1.34186- 2 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.73318- 4 5.47720- 3 8.00000+ 0 1.00000+ 1 3.33092- 4 5.75840- 3 8.00000+ 0 1.10000+ 1 2.05136- 2 6.28420- 3 8.00000+ 0 1.30000+ 1 2.64737- 3 6.75310- 3 8.00000+ 0 1.40000+ 1 4.58174- 3 6.86510- 3 8.00000+ 0 1.60000+ 1 2.63433- 4 8.52767- 3 8.00000+ 0 1.80000+ 1 5.93860- 5 8.65167- 3 8.00000+ 0 1.90000+ 1 3.23861- 3 8.78194- 3 8.00000+ 0 2.10000+ 1 2.82634- 4 8.98615- 3 8.00000+ 0 2.20000+ 1 4.52304- 4 9.01049- 3 8.00000+ 0 2.40000+ 1 2.41119- 4 9.27723- 3 8.00000+ 0 2.50000+ 1 4.23295- 4 9.28293- 3 8.00000+ 0 2.70000+ 1 5.44745- 5 9.28424- 3 8.00000+ 0 2.90000+ 1 1.07164- 5 9.32798- 3 8.00000+ 0 3.00000+ 1 5.65288- 4 9.35364- 3 8.00000+ 0 3.20000+ 1 3.21493- 5 9.41573- 3 8.00000+ 0 3.30000+ 1 4.86706- 5 9.41893- 3 1.00000+ 1 1.00000+ 1 2.81305- 5 6.03960- 3 1.00000+ 1 1.10000+ 1 3.44288- 2 6.56540- 3 1.00000+ 1 1.30000+ 1 1.59853- 3 7.03430- 3 1.00000+ 1 1.40000+ 1 1.34196- 2 7.14630- 3 1.00000+ 1 1.60000+ 1 6.87643- 5 8.80887- 3 1.00000+ 1 1.80000+ 1 1.60749- 5 8.93287- 3 1.00000+ 1 1.90000+ 1 5.64519- 3 9.06314- 3 1.00000+ 1 2.10000+ 1 3.07210- 4 9.26735- 3 1.00000+ 1 2.20000+ 1 2.13476- 3 9.29169- 3 1.00000+ 1 2.40000+ 1 2.32189- 4 9.55843- 3 1.00000+ 1 2.50000+ 1 5.80029- 4 9.56413- 3 1.00000+ 1 2.70000+ 1 1.47348- 5 9.56544- 3 1.00000+ 1 2.90000+ 1 3.57222- 6 9.60918- 3 1.00000+ 1 3.00000+ 1 9.92583- 4 9.63484- 3 1.00000+ 1 3.20000+ 1 3.88460- 5 9.69693- 3 1.00000+ 1 3.30000+ 1 2.52284- 4 9.70013- 3 1.10000+ 1 1.10000+ 1 4.31018- 2 7.09120- 3 1.10000+ 1 1.30000+ 1 4.51464- 2 7.56010- 3 1.10000+ 1 1.40000+ 1 6.05424- 2 7.67210- 3 1.10000+ 1 1.60000+ 1 5.23524- 3 9.33467- 3 1.10000+ 1 1.80000+ 1 7.88413- 3 9.45867- 3 1.10000+ 1 1.90000+ 1 1.71221- 2 9.58894- 3 1.10000+ 1 2.10000+ 1 9.39747- 3 9.79315- 3 1.10000+ 1 2.20000+ 1 1.24372- 2 9.81749- 3 1.10000+ 1 2.40000+ 1 8.55101- 4 1.00842- 2 1.10000+ 1 2.50000+ 1 1.05071- 3 1.00899- 2 1.10000+ 1 2.70000+ 1 1.14403- 3 1.00912- 2 1.10000+ 1 2.90000+ 1 1.53164- 3 1.01350- 2 1.10000+ 1 3.00000+ 1 3.14406- 3 1.01606- 2 1.10000+ 1 3.20000+ 1 1.19049- 3 1.02227- 2 1.10000+ 1 3.30000+ 1 1.52845- 3 1.02259- 2 1.30000+ 1 1.30000+ 1 6.20562- 3 8.02900- 3 1.30000+ 1 1.40000+ 1 1.16070- 1 8.14100- 3 1.30000+ 1 1.60000+ 1 6.38966- 4 9.80357- 3 1.30000+ 1 1.80000+ 1 3.87138- 4 9.92757- 3 1.30000+ 1 1.90000+ 1 6.73269- 3 1.00578- 2 1.30000+ 1 2.10000+ 1 2.19107- 3 1.02620- 2 1.30000+ 1 2.20000+ 1 1.71443- 2 1.02864- 2 1.30000+ 1 2.40000+ 1 4.69741- 4 1.05531- 2 1.30000+ 1 2.50000+ 1 1.59047- 3 1.05588- 2 1.30000+ 1 2.70000+ 1 1.38425- 4 1.05601- 2 1.30000+ 1 2.90000+ 1 7.59105- 5 1.06039- 2 1.30000+ 1 3.00000+ 1 1.16139- 3 1.06295- 2 1.30000+ 1 3.20000+ 1 2.71038- 4 1.06916- 2 1.30000+ 1 3.30000+ 1 1.99379- 3 1.06948- 2 1.40000+ 1 1.40000+ 1 7.71854- 2 8.25300- 3 1.40000+ 1 1.60000+ 1 1.12114- 3 9.91557- 3 1.40000+ 1 1.80000+ 1 2.78395- 3 1.00396- 2 1.40000+ 1 1.90000+ 1 1.01718- 2 1.01698- 2 1.40000+ 1 2.10000+ 1 2.07078- 2 1.03740- 2 1.40000+ 1 2.20000+ 1 2.60946- 2 1.03984- 2 1.40000+ 1 2.40000+ 1 4.96097- 3 1.06651- 2 1.40000+ 1 2.50000+ 1 4.50834- 3 1.06708- 2 1.40000+ 1 2.70000+ 1 2.45129- 4 1.06721- 2 1.40000+ 1 2.90000+ 1 5.30428- 4 1.07159- 2 1.40000+ 1 3.00000+ 1 1.80955- 3 1.07415- 2 1.40000+ 1 3.20000+ 1 2.55743- 3 1.08036- 2 1.40000+ 1 3.30000+ 1 3.11422- 3 1.08068- 2 1.60000+ 1 1.60000+ 1 2.63450- 5 1.15781- 2 1.60000+ 1 1.80000+ 1 1.29496- 5 1.17021- 2 1.60000+ 1 1.90000+ 1 8.26536- 4 1.18324- 2 1.60000+ 1 2.10000+ 1 7.41263- 5 1.20366- 2 1.60000+ 1 2.20000+ 1 1.18782- 4 1.20610- 2 1.60000+ 1 2.40000+ 1 3.21514- 5 1.23277- 2 1.60000+ 1 2.50000+ 1 6.38550- 5 1.23334- 2 1.60000+ 1 2.70000+ 1 1.11638- 5 1.23347- 2 1.60000+ 1 2.90000+ 1 2.23267- 6 1.23784- 2 1.60000+ 1 3.00000+ 1 1.44232- 4 1.24041- 2 1.60000+ 1 3.20000+ 1 8.48433- 6 1.24662- 2 1.60000+ 1 3.30000+ 1 1.29496- 5 1.24694- 2 1.80000+ 1 1.80000+ 1 8.92999- 7 1.18261- 2 1.80000+ 1 1.90000+ 1 1.28466- 3 1.19564- 2 1.80000+ 1 2.10000+ 1 6.96557- 5 1.21606- 2 1.80000+ 1 2.20000+ 1 4.74207- 4 1.21850- 2 1.80000+ 1 2.40000+ 1 3.43812- 5 1.24517- 2 1.80000+ 1 2.50000+ 1 8.12625- 5 1.24574- 2 1.80000+ 1 2.70000+ 1 2.67904- 6 1.24587- 2 1.80000+ 1 2.90000+ 1 4.46520- 7 1.25024- 2 1.80000+ 1 3.00000+ 1 2.25484- 4 1.25281- 2 1.80000+ 1 3.20000+ 1 8.48390- 6 1.25902- 2 1.80000+ 1 3.30000+ 1 5.62600- 5 1.25934- 2 1.90000+ 1 1.90000+ 1 1.62669- 3 1.20867- 2 1.90000+ 1 2.10000+ 1 1.40474- 3 1.22909- 2 1.90000+ 1 2.20000+ 1 2.05796- 3 1.23152- 2 1.90000+ 1 2.40000+ 1 1.04927- 4 1.25820- 2 1.90000+ 1 2.50000+ 1 1.35738- 4 1.25877- 2 1.90000+ 1 2.70000+ 1 1.80397- 4 1.25890- 2 1.90000+ 1 2.90000+ 1 2.49162- 4 1.26327- 2 1.90000+ 1 3.00000+ 1 5.92079- 4 1.26584- 2 1.90000+ 1 3.20000+ 1 1.78160- 4 1.27205- 2 1.90000+ 1 3.30000+ 1 2.52286- 4 1.27237- 2 2.10000+ 1 2.10000+ 1 1.85760- 4 1.24951- 2 2.10000+ 1 2.20000+ 1 3.19837- 3 1.25194- 2 2.10000+ 1 2.40000+ 1 5.53678- 5 1.27862- 2 2.10000+ 1 2.50000+ 1 1.77712- 4 1.27919- 2 2.10000+ 1 2.70000+ 1 1.65216- 5 1.27932- 2 2.10000+ 1 2.90000+ 1 1.33958- 5 1.28369- 2 2.10000+ 1 3.00000+ 1 2.42457- 4 1.28626- 2 2.10000+ 1 3.20000+ 1 4.55456- 5 1.29247- 2 2.10000+ 1 3.30000+ 1 3.74196- 4 1.29279- 2 2.20000+ 1 2.20000+ 1 2.22460- 3 1.25438- 2 2.20000+ 1 2.40000+ 1 5.74600- 4 1.28105- 2 2.20000+ 1 2.50000+ 1 5.13702- 4 1.28162- 2 2.20000+ 1 2.70000+ 1 2.64230- 5 1.28175- 2 2.20000+ 1 2.90000+ 1 9.13618- 5 1.28613- 2 2.20000+ 1 3.00000+ 1 3.65901- 4 1.28869- 2 2.20000+ 1 3.20000+ 1 3.98610- 4 1.29490- 2 2.20000+ 1 3.30000+ 1 5.30726- 4 1.29522- 2 2.40000+ 1 2.40000+ 1 2.36790- 6 1.30773- 2 2.40000+ 1 2.50000+ 1 7.24602- 5 1.30830- 2 2.40000+ 1 2.70000+ 1 6.63023- 6 1.30843- 2 2.40000+ 1 2.90000+ 1 6.63023- 6 1.31280- 2 2.40000+ 1 3.00000+ 1 1.84696- 5 1.31537- 2 2.40000+ 1 3.20000+ 1 6.63023- 6 1.32158- 2 2.40000+ 1 3.30000+ 1 6.77225- 5 1.32190- 2 2.50000+ 1 2.50000+ 1 2.41136- 5 1.30887- 2 2.50000+ 1 2.70000+ 1 1.29497- 5 1.30900- 2 2.50000+ 1 2.90000+ 1 1.42899- 5 1.31337- 2 2.50000+ 1 3.00000+ 1 2.27725- 5 1.31594- 2 2.50000+ 1 3.20000+ 1 2.00943- 5 1.32215- 2 2.50000+ 1 3.30000+ 1 5.67108- 5 1.32247- 2 2.70000+ 1 2.70000+ 1 1.67180- 6 1.30913- 2 2.70000+ 1 2.90000+ 1 5.57263- 7 1.31350- 2 2.70000+ 1 3.00000+ 1 3.95658- 5 1.31607- 2 2.70000+ 1 3.20000+ 1 2.22890- 6 1.32228- 2 2.70000+ 1 3.30000+ 1 3.34348- 6 1.32260- 2 2.90000+ 1 3.00000+ 1 5.86919- 5 1.32044- 2 2.90000+ 1 3.20000+ 1 2.39549- 6 1.32665- 2 2.90000+ 1 3.30000+ 1 1.43740- 5 1.32697- 2 3.00000+ 1 3.00000+ 1 7.33545- 5 1.32301- 2 3.00000+ 1 3.20000+ 1 4.21782- 5 1.32922- 2 3.00000+ 1 3.30000+ 1 6.11282- 5 1.32954- 2 3.20000+ 1 3.20000+ 1 2.67906- 6 1.33543- 2 3.20000+ 1 3.30000+ 1 4.64382- 5 1.33575- 2 3.30000+ 1 3.30000+ 1 3.17032- 5 1.33607- 2 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.02441- 5 2.81200- 4 1.10000+ 1 5.36543- 4 8.07000- 4 1.80000+ 1 1.67191- 3 3.17447- 3 1.90000+ 1 1.24441- 3 3.30474- 3 2.90000+ 1 3.73512- 4 3.85078- 3 3.00000+ 1 3.00142- 4 3.87644- 3 4.30000+ 1 1.77451- 5 3.96530- 3 4.40000+ 1 1.19811- 5 3.96755- 3 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 2.54802- 2 1.07330- 4 1.00000+ 1 2.50000+ 1 3.42967- 2 1.13030- 4 1.00000+ 1 2.70000+ 1 1.21048- 2 1.14340- 4 1.00000+ 1 2.90000+ 1 1.18753- 2 1.58080- 4 1.00000+ 1 3.00000+ 1 1.53413- 2 1.83740- 4 1.00000+ 1 3.20000+ 1 7.08077- 3 2.45830- 4 1.00000+ 1 3.30000+ 1 9.37236- 3 2.49030- 4 1.00000+ 1 4.10000+ 1 1.49263- 3 2.63510- 4 1.00000+ 1 4.30000+ 1 4.74367- 4 2.72600- 4 1.00000+ 1 4.40000+ 1 5.12187- 4 2.74850- 4 1.10000+ 1 1.80000+ 1 5.58492- 2 7.57000- 6 1.10000+ 1 1.90000+ 1 5.58286- 2 1.37840- 4 1.10000+ 1 2.10000+ 1 1.68029- 2 3.42050- 4 1.10000+ 1 2.20000+ 1 2.98032- 2 3.66390- 4 1.10000+ 1 2.40000+ 1 1.79457- 1 6.33130- 4 1.10000+ 1 2.50000+ 1 2.21200- 1 6.38830- 4 1.10000+ 1 2.70000+ 1 1.07422- 2 6.40140- 4 1.10000+ 1 2.90000+ 1 1.03409- 2 6.83880- 4 1.10000+ 1 3.00000+ 1 1.03203- 2 7.09540- 4 1.10000+ 1 3.20000+ 1 2.12429- 3 7.71630- 4 1.10000+ 1 3.30000+ 1 3.77848- 3 7.74830- 4 1.10000+ 1 4.10000+ 1 1.34398- 3 7.89310- 4 1.10000+ 1 4.30000+ 1 4.20807- 4 7.98400- 4 1.10000+ 1 4.40000+ 1 3.51939- 4 8.00650- 4 1.30000+ 1 1.60000+ 1 2.55145- 2 3.52470- 4 1.30000+ 1 1.80000+ 1 5.53523- 3 4.76470- 4 1.30000+ 1 1.90000+ 1 7.20188- 3 6.06740- 4 1.30000+ 1 2.10000+ 1 8.78594- 3 8.10950- 4 1.30000+ 1 2.20000+ 1 1.08040- 2 8.35290- 4 1.30000+ 1 2.40000+ 1 9.18051- 3 1.10203- 3 1.30000+ 1 2.50000+ 1 8.49065- 3 1.10773- 3 1.30000+ 1 2.70000+ 1 3.55552- 3 1.10904- 3 1.30000+ 1 2.90000+ 1 8.46837- 4 1.15278- 3 1.30000+ 1 3.00000+ 1 1.03155- 3 1.17844- 3 1.30000+ 1 3.20000+ 1 9.21248- 4 1.24053- 3 1.30000+ 1 3.30000+ 1 1.19399- 3 1.24373- 3 1.30000+ 1 4.10000+ 1 4.18328- 4 1.25821- 3 1.30000+ 1 4.30000+ 1 3.40895- 5 1.26730- 3 1.30000+ 1 4.40000+ 1 3.42279- 5 1.26955- 3 1.40000+ 1 1.60000+ 1 3.54584- 2 4.64470- 4 1.40000+ 1 1.80000+ 1 9.22950- 4 5.88470- 4 1.40000+ 1 1.90000+ 1 1.11497- 2 7.18740- 4 1.40000+ 1 2.10000+ 1 1.21641- 2 9.22950- 4 1.40000+ 1 2.20000+ 1 1.71686- 2 9.47290- 4 1.40000+ 1 2.40000+ 1 1.05101- 2 1.21403- 3 1.40000+ 1 2.50000+ 1 1.62591- 2 1.21973- 3 1.40000+ 1 2.70000+ 1 4.87959- 3 1.22104- 3 1.40000+ 1 2.90000+ 1 1.75697- 4 1.26478- 3 1.40000+ 1 3.00000+ 1 1.57901- 3 1.29044- 3 1.40000+ 1 3.20000+ 1 1.39064- 3 1.35253- 3 1.40000+ 1 3.30000+ 1 1.82889- 3 1.35573- 3 1.40000+ 1 4.10000+ 1 5.74036- 4 1.37021- 3 1.40000+ 1 4.30000+ 1 7.45330- 6 1.37930- 3 1.40000+ 1 4.40000+ 1 5.24473- 5 1.38155- 3 1.60000+ 1 1.60000+ 1 2.41699- 3 2.12704- 3 1.60000+ 1 1.80000+ 1 4.23039- 3 2.25104- 3 1.60000+ 1 1.90000+ 1 6.91372- 3 2.38131- 3 1.60000+ 1 2.10000+ 1 8.07689- 3 2.58552- 3 1.60000+ 1 2.20000+ 1 1.13384- 2 2.60986- 3 1.60000+ 1 2.40000+ 1 5.82121- 3 2.87660- 3 1.60000+ 1 2.50000+ 1 7.28885- 3 2.88230- 3 1.60000+ 1 2.70000+ 1 8.60570- 4 2.88361- 3 1.60000+ 1 2.90000+ 1 8.26834- 4 2.92735- 3 1.60000+ 1 3.00000+ 1 1.30635- 3 2.95301- 3 1.60000+ 1 3.20000+ 1 1.01120- 3 3.01510- 3 1.60000+ 1 3.30000+ 1 1.38175- 3 3.01830- 3 1.60000+ 1 4.10000+ 1 1.06785- 4 3.03278- 3 1.60000+ 1 4.30000+ 1 3.43036- 5 3.04187- 3 1.60000+ 1 4.40000+ 1 4.50347- 5 3.04412- 3 1.80000+ 1 1.80000+ 1 1.76448- 4 2.37504- 3 1.80000+ 1 1.90000+ 1 5.19142- 4 2.50531- 3 1.80000+ 1 2.10000+ 1 2.67042- 4 2.70952- 3 1.80000+ 1 2.20000+ 1 1.45838- 4 2.73386- 3 1.80000+ 1 2.40000+ 1 3.64140- 5 3.00060- 3 1.80000+ 1 2.50000+ 1 4.61959- 4 3.00630- 3 1.80000+ 1 2.70000+ 1 5.75437- 4 3.00761- 3 1.80000+ 1 2.90000+ 1 5.11926- 5 3.05135- 3 1.80000+ 1 3.00000+ 1 7.14258- 5 3.07701- 3 1.80000+ 1 3.20000+ 1 2.90275- 5 3.13910- 3 1.80000+ 1 3.30000+ 1 2.14624- 5 3.14230- 3 1.80000+ 1 4.10000+ 1 6.77285- 5 3.15678- 3 1.80000+ 1 4.30000+ 1 2.11098- 6 3.16587- 3 1.80000+ 1 4.40000+ 1 2.28691- 6 3.16812- 3 1.90000+ 1 1.90000+ 1 5.81409- 4 2.63558- 3 1.90000+ 1 2.10000+ 1 6.00778- 4 2.83979- 3 1.90000+ 1 2.20000+ 1 1.38087- 3 2.86413- 3 1.90000+ 1 2.40000+ 1 6.59512- 4 3.13087- 3 1.90000+ 1 2.50000+ 1 1.09985- 3 3.13657- 3 1.90000+ 1 2.70000+ 1 9.45915- 4 3.13788- 3 1.90000+ 1 2.90000+ 1 8.58495- 5 3.18162- 3 1.90000+ 1 3.00000+ 1 1.84540- 4 3.20728- 3 1.90000+ 1 3.20000+ 1 7.54682- 5 3.26937- 3 1.90000+ 1 3.30000+ 1 1.60432- 4 3.27257- 3 1.90000+ 1 4.10000+ 1 1.11536- 4 3.28705- 3 1.90000+ 1 4.30000+ 1 3.51839- 6 3.29614- 3 1.90000+ 1 4.40000+ 1 6.15721- 6 3.29839- 3 2.10000+ 1 2.10000+ 1 9.66075- 5 3.04400- 3 2.10000+ 1 2.20000+ 1 3.51999- 4 3.06834- 3 2.10000+ 1 2.40000+ 1 4.42990- 4 3.33508- 3 2.10000+ 1 2.50000+ 1 2.93267- 3 3.34078- 3 2.10000+ 1 2.70000+ 1 1.07692- 3 3.34209- 3 2.10000+ 1 2.90000+ 1 3.40762- 5 3.38583- 3 2.10000+ 1 3.00000+ 1 8.80039- 5 3.41149- 3 2.10000+ 1 3.20000+ 1 1.93210- 5 3.47358- 3 2.10000+ 1 3.30000+ 1 3.65359- 5 3.47678- 3 2.10000+ 1 4.10000+ 1 1.26115- 4 3.49126- 3 2.10000+ 1 4.30000+ 1 1.40522- 6 3.50035- 3 2.10000+ 1 4.40000+ 1 2.98611- 6 3.50260- 3 2.20000+ 1 2.20000+ 1 2.38376- 4 3.09268- 3 2.20000+ 1 2.40000+ 1 2.70738- 3 3.35942- 3 2.20000+ 1 2.50000+ 1 1.65098- 3 3.36512- 3 2.20000+ 1 2.70000+ 1 1.50892- 3 3.36643- 3 2.20000+ 1 2.90000+ 1 2.11103- 5 3.41017- 3 2.20000+ 1 3.00000+ 1 1.99848- 4 3.43583- 3 2.20000+ 1 3.20000+ 1 3.43041- 5 3.49792- 3 2.20000+ 1 3.30000+ 1 4.80265- 5 3.50112- 3 2.20000+ 1 4.10000+ 1 1.76628- 4 3.51560- 3 2.20000+ 1 4.30000+ 1 8.79588- 7 3.52469- 3 2.20000+ 1 4.40000+ 1 6.68498- 6 3.52694- 3 2.40000+ 1 2.40000+ 1 6.03752- 4 3.62616- 3 2.40000+ 1 2.50000+ 1 4.02006- 3 3.63186- 3 2.40000+ 1 2.70000+ 1 7.16141- 4 3.63317- 3 2.40000+ 1 2.90000+ 1 5.27762- 6 3.67691- 3 2.40000+ 1 3.00000+ 1 6.96612- 5 3.70257- 3 2.40000+ 1 3.20000+ 1 5.04892- 5 3.76466- 3 2.40000+ 1 3.30000+ 1 3.30731- 4 3.76786- 3 2.40000+ 1 4.10000+ 1 8.28570- 5 3.78234- 3 2.40000+ 1 4.30000+ 1 1.75925- 7 3.79143- 3 2.40000+ 1 4.40000+ 1 2.28693- 6 3.79368- 3 2.50000+ 1 2.50000+ 1 1.36544- 3 3.63756- 3 2.50000+ 1 2.70000+ 1 8.81215- 4 3.63887- 3 2.50000+ 1 2.90000+ 1 7.82652- 5 3.68261- 3 2.50000+ 1 3.00000+ 1 1.23117- 4 3.70827- 3 2.50000+ 1 3.20000+ 1 3.52551- 4 3.77036- 3 2.50000+ 1 3.30000+ 1 1.90639- 4 3.77356- 3 2.50000+ 1 4.10000+ 1 1.01988- 4 3.78804- 3 2.50000+ 1 4.30000+ 1 3.11687- 6 3.79713- 3 2.50000+ 1 4.40000+ 1 3.98262- 6 3.79938- 3 2.70000+ 1 2.70000+ 1 7.91387- 5 3.64018- 3 2.70000+ 1 2.90000+ 1 1.26466- 4 3.68392- 3 2.70000+ 1 3.00000+ 1 1.99518- 4 3.70958- 3 2.70000+ 1 3.20000+ 1 1.51600- 4 3.77167- 3 2.70000+ 1 3.30000+ 1 2.06385- 4 3.77487- 3 2.70000+ 1 4.10000+ 1 1.94409- 5 3.78935- 3 2.70000+ 1 4.30000+ 1 5.30201- 6 3.79844- 3 2.70000+ 1 4.40000+ 1 6.87301- 6 3.80069- 3 2.90000+ 1 2.90000+ 1 5.36708- 6 3.72766- 3 2.90000+ 1 3.00000+ 1 1.66124- 5 3.75332- 3 2.90000+ 1 3.20000+ 1 5.36708- 6 3.81541- 3 2.90000+ 1 3.30000+ 1 4.85587- 6 3.81861- 3 2.90000+ 1 4.10000+ 1 1.94236- 5 3.83309- 3 2.90000+ 1 4.30000+ 1 5.11148- 7 3.84218- 3 2.90000+ 1 4.40000+ 1 5.11148- 7 3.84443- 3 3.00000+ 1 3.00000+ 1 2.08243- 5 3.77898- 3 3.00000+ 1 3.20000+ 1 1.63990- 5 3.84107- 3 3.00000+ 1 3.30000+ 1 3.46196- 5 3.84427- 3 3.00000+ 1 4.10000+ 1 3.12354- 5 3.85875- 3 3.00000+ 1 4.30000+ 1 7.80903- 7 3.86784- 3 3.00000+ 1 4.40000+ 1 1.30146- 6 3.87009- 3 3.20000+ 1 3.20000+ 1 9.49002- 7 3.90316- 3 3.20000+ 1 3.30000+ 1 3.98592- 6 3.90636- 3 3.20000+ 1 4.10000+ 1 1.70828- 5 3.92084- 3 3.20000+ 1 4.30000+ 1 1.89811- 7 3.92993- 3 3.20000+ 1 4.40000+ 1 3.79610- 7 3.93218- 3 3.30000+ 1 3.30000+ 1 2.35985- 6 3.90956- 3 3.30000+ 1 4.10000+ 1 2.23277- 5 3.92404- 3 3.30000+ 1 4.30000+ 1 1.81535- 7 3.93313- 3 3.30000+ 1 4.40000+ 1 7.26101- 7 3.93538- 3 4.10000+ 1 4.10000+ 1 1.05549- 6 3.93852- 3 4.10000+ 1 4.30000+ 1 5.27763- 7 3.94761- 3 4.10000+ 1 4.40000+ 1 7.03664- 7 3.94986- 3 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.12521- 3 9.94700- 4 1.60000+ 1 7.79744- 4 2.76927- 3 2.10000+ 1 4.13682- 3 3.22775- 3 2.70000+ 1 1.74831- 4 3.52584- 3 3.20000+ 1 6.48994- 4 3.65733- 3 4.10000+ 1 2.42851- 5 3.67501- 3 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 5.95425- 3 6.08500- 5 1.10000+ 1 2.20000+ 1 1.45843- 2 8.51900- 5 1.10000+ 1 2.40000+ 1 2.84277- 2 3.51930- 4 1.10000+ 1 2.50000+ 1 2.55248- 2 3.57630- 4 1.10000+ 1 2.70000+ 1 3.09890- 3 3.58940- 4 1.10000+ 1 2.90000+ 1 3.98873- 3 4.02680- 4 1.10000+ 1 3.00000+ 1 2.40840- 3 4.28340- 4 1.10000+ 1 3.20000+ 1 9.99752- 4 4.90430- 4 1.10000+ 1 3.30000+ 1 2.04249- 3 4.93630- 4 1.10000+ 1 4.10000+ 1 3.70812- 4 5.08110- 4 1.10000+ 1 4.30000+ 1 1.53047- 4 5.17200- 4 1.10000+ 1 4.40000+ 1 7.82361- 5 5.19450- 4 1.30000+ 1 1.60000+ 1 4.83854- 2 7.12700- 5 1.30000+ 1 1.80000+ 1 4.94329- 2 1.95270- 4 1.30000+ 1 1.90000+ 1 4.38844- 2 3.25540- 4 1.30000+ 1 2.10000+ 1 1.80232- 2 5.29750- 4 1.30000+ 1 2.20000+ 1 2.31801- 2 5.54090- 4 1.30000+ 1 2.40000+ 1 1.42623- 1 8.20830- 4 1.30000+ 1 2.50000+ 1 2.20918- 1 8.26530- 4 1.30000+ 1 2.70000+ 1 1.03781- 2 8.27840- 4 1.30000+ 1 2.90000+ 1 8.13379- 3 8.71580- 4 1.30000+ 1 3.00000+ 1 7.99914- 3 8.97240- 4 1.30000+ 1 3.20000+ 1 2.35547- 3 9.59330- 4 1.30000+ 1 3.30000+ 1 3.09959- 3 9.62530- 4 1.30000+ 1 4.10000+ 1 1.30746- 3 9.77010- 4 1.30000+ 1 4.30000+ 1 3.29388- 4 9.86100- 4 1.30000+ 1 4.40000+ 1 2.73064- 4 9.88350- 4 1.40000+ 1 1.60000+ 1 7.67888- 3 1.83270- 4 1.40000+ 1 1.80000+ 1 5.58132- 2 3.07270- 4 1.40000+ 1 1.90000+ 1 4.80160- 3 4.37540- 4 1.40000+ 1 2.10000+ 1 1.10867- 3 6.41750- 4 1.40000+ 1 2.20000+ 1 2.71264- 3 6.66090- 4 1.40000+ 1 2.40000+ 1 6.17840- 3 9.32830- 4 1.40000+ 1 2.50000+ 1 4.12714- 3 9.38530- 4 1.40000+ 1 2.70000+ 1 1.09830- 3 9.39840- 4 1.40000+ 1 2.90000+ 1 7.16362- 3 9.83580- 4 1.40000+ 1 3.00000+ 1 7.70717- 4 1.00924- 3 1.40000+ 1 3.20000+ 1 7.00195- 5 1.07133- 3 1.40000+ 1 3.30000+ 1 3.06612- 4 1.07453- 3 1.40000+ 1 4.10000+ 1 1.30449- 4 1.08901- 3 1.40000+ 1 4.30000+ 1 2.79401- 4 1.09810- 3 1.40000+ 1 4.40000+ 1 2.58512- 5 1.10035- 3 1.60000+ 1 1.60000+ 1 7.15582- 4 1.84584- 3 1.60000+ 1 1.80000+ 1 1.05764- 2 1.96984- 3 1.60000+ 1 1.90000+ 1 1.43491- 3 2.10011- 3 1.60000+ 1 2.10000+ 1 3.67358- 4 2.30432- 3 1.60000+ 1 2.20000+ 1 1.23232- 3 2.32866- 3 1.60000+ 1 2.40000+ 1 4.90126- 5 2.59540- 3 1.60000+ 1 2.50000+ 1 8.91555- 4 2.60110- 3 1.60000+ 1 2.70000+ 1 2.38519- 4 2.60241- 3 1.60000+ 1 2.90000+ 1 1.31822- 3 2.64615- 3 1.60000+ 1 3.00000+ 1 2.44125- 4 2.67181- 3 1.60000+ 1 3.20000+ 1 3.31431- 5 2.73390- 3 1.60000+ 1 3.30000+ 1 1.37235- 4 2.73710- 3 1.60000+ 1 4.10000+ 1 2.89411- 5 2.75158- 3 1.60000+ 1 4.30000+ 1 5.13477- 5 2.76067- 3 1.60000+ 1 4.40000+ 1 8.40224- 6 2.76292- 3 1.80000+ 1 1.80000+ 1 8.16342- 3 2.09384- 3 1.80000+ 1 1.90000+ 1 2.27237- 2 2.22411- 3 1.80000+ 1 2.10000+ 1 2.27285- 2 2.42832- 3 1.80000+ 1 2.20000+ 1 3.60689- 2 2.45266- 3 1.80000+ 1 2.40000+ 1 1.34927- 2 2.71940- 3 1.80000+ 1 2.50000+ 1 2.25451- 2 2.72510- 3 1.80000+ 1 2.70000+ 1 2.28488- 3 2.72641- 3 1.80000+ 1 2.90000+ 1 2.65399- 3 2.77015- 3 1.80000+ 1 3.00000+ 1 4.25544- 3 2.79581- 3 1.80000+ 1 3.20000+ 1 2.85388- 3 2.85790- 3 1.80000+ 1 3.30000+ 1 4.35505- 3 2.86110- 3 1.80000+ 1 4.10000+ 1 2.90807- 4 2.87558- 3 1.80000+ 1 4.30000+ 1 1.07822- 4 2.88467- 3 1.80000+ 1 4.40000+ 1 1.46564- 4 2.88692- 3 1.90000+ 1 1.90000+ 1 6.05827- 4 2.35438- 3 1.90000+ 1 2.10000+ 1 1.48055- 3 2.55859- 3 1.90000+ 1 2.20000+ 1 1.30877- 3 2.58293- 3 1.90000+ 1 2.40000+ 1 9.14693- 3 2.84967- 3 1.90000+ 1 2.50000+ 1 2.52582- 3 2.85537- 3 1.90000+ 1 2.70000+ 1 1.98839- 4 2.85668- 3 1.90000+ 1 2.90000+ 1 2.89480- 3 2.90042- 3 1.90000+ 1 3.00000+ 1 1.91363- 4 2.92608- 3 1.90000+ 1 3.20000+ 1 1.48427- 4 2.98817- 3 1.90000+ 1 3.30000+ 1 1.40957- 4 2.99137- 3 1.90000+ 1 4.10000+ 1 2.33357- 5 3.00585- 3 1.90000+ 1 4.30000+ 1 1.12954- 4 3.01494- 3 1.90000+ 1 4.40000+ 1 6.53474- 6 3.01719- 3 2.10000+ 1 2.10000+ 1 7.95844- 4 2.76280- 3 2.10000+ 1 2.20000+ 1 1.84935- 3 2.78714- 3 2.10000+ 1 2.40000+ 1 9.85799- 4 3.05388- 3 2.10000+ 1 2.50000+ 1 1.65188- 3 3.05958- 3 2.10000+ 1 2.70000+ 1 7.56167- 5 3.06089- 3 2.10000+ 1 2.90000+ 1 2.81472- 3 3.10463- 3 2.10000+ 1 3.00000+ 1 2.50180- 4 3.13029- 3 2.10000+ 1 3.20000+ 1 1.64768- 4 3.19238- 3 2.10000+ 1 3.30000+ 1 2.06770- 4 3.19558- 3 2.10000+ 1 4.10000+ 1 9.80195- 6 3.21006- 3 2.10000+ 1 4.30000+ 1 1.09221- 4 3.21915- 3 2.10000+ 1 4.40000+ 1 8.40176- 6 3.22140- 3 2.20000+ 1 2.20000+ 1 4.76109- 4 2.81148- 3 2.20000+ 1 2.40000+ 1 2.71512- 3 3.07822- 3 2.20000+ 1 2.50000+ 1 6.30116- 4 3.08392- 3 2.20000+ 1 2.70000+ 1 2.11437- 4 3.08523- 3 2.20000+ 1 2.90000+ 1 4.52875- 3 3.12897- 3 2.20000+ 1 3.00000+ 1 1.89977- 4 3.15463- 3 2.20000+ 1 3.20000+ 1 1.92773- 4 3.21672- 3 2.20000+ 1 3.30000+ 1 9.80194- 5 3.21992- 3 2.20000+ 1 4.10000+ 1 2.61389- 5 3.23440- 3 2.20000+ 1 4.30000+ 1 1.76443- 4 3.24349- 3 2.20000+ 1 4.40000+ 1 6.06792- 6 3.24574- 3 2.40000+ 1 2.40000+ 1 3.37643- 3 3.34496- 3 2.40000+ 1 2.50000+ 1 2.16430- 2 3.35066- 3 2.40000+ 1 2.70000+ 1 5.60122- 6 3.35197- 3 2.40000+ 1 2.90000+ 1 1.54405- 3 3.39571- 3 2.40000+ 1 3.00000+ 1 1.61127- 3 3.42137- 3 2.40000+ 1 3.20000+ 1 1.37228- 4 3.48346- 3 2.40000+ 1 3.30000+ 1 3.75261- 4 3.48666- 3 2.40000+ 1 4.10000+ 1 4.66775- 7 3.50114- 3 2.40000+ 1 4.30000+ 1 5.97459- 5 3.51023- 3 2.40000+ 1 4.40000+ 1 5.50786- 5 3.51248- 3 2.50000+ 1 2.50000+ 1 1.13335- 3 3.35636- 3 2.50000+ 1 2.70000+ 1 1.59168- 4 3.35767- 3 2.50000+ 1 2.90000+ 1 2.53218- 3 3.40141- 3 2.50000+ 1 3.00000+ 1 3.97710- 4 3.42707- 3 2.50000+ 1 3.20000+ 1 2.15179- 4 3.48916- 3 2.50000+ 1 3.30000+ 1 7.98174- 5 3.49236- 3 2.50000+ 1 4.10000+ 1 1.96036- 5 3.50684- 3 2.50000+ 1 4.30000+ 1 9.70876- 5 3.51593- 3 2.50000+ 1 4.40000+ 1 1.35365- 5 3.51818- 3 2.70000+ 1 2.70000+ 1 2.07579- 5 3.35898- 3 2.70000+ 1 2.90000+ 1 3.02983- 4 3.40272- 3 2.70000+ 1 3.00000+ 1 3.60816- 5 3.42838- 3 2.70000+ 1 3.20000+ 1 6.91981- 6 3.49047- 3 2.70000+ 1 3.30000+ 1 2.52065- 5 3.49367- 3 2.70000+ 1 4.10000+ 1 4.94268- 6 3.50815- 3 2.70000+ 1 4.30000+ 1 1.18625- 5 3.51724- 3 2.70000+ 1 4.40000+ 1 9.88509- 7 3.51949- 3 2.90000+ 1 2.90000+ 1 2.15046- 4 3.44646- 3 2.90000+ 1 3.00000+ 1 5.77884- 4 3.47212- 3 2.90000+ 1 3.20000+ 1 3.76213- 4 3.53421- 3 2.90000+ 1 3.30000+ 1 5.81833- 4 3.53741- 3 2.90000+ 1 4.10000+ 1 3.85584- 5 3.55189- 3 2.90000+ 1 4.30000+ 1 1.73019- 5 3.56098- 3 2.90000+ 1 4.40000+ 1 1.97732- 5 3.56323- 3 3.00000+ 1 3.00000+ 1 2.42036- 5 3.49778- 3 3.00000+ 1 3.20000+ 1 4.08441- 5 3.55987- 3 3.00000+ 1 3.30000+ 1 3.32806- 5 3.56307- 3 3.00000+ 1 4.10000+ 1 6.80708- 6 3.57755- 3 3.00000+ 1 4.30000+ 1 3.47928- 5 3.58664- 3 3.00000+ 1 4.40000+ 1 1.51271- 6 3.58889- 3 3.20000+ 1 3.20000+ 1 9.58135- 6 3.62196- 3 3.20000+ 1 3.30000+ 1 2.60821- 5 3.62516- 3 3.20000+ 1 4.10000+ 1 1.06459- 6 3.63964- 3 3.20000+ 1 4.30000+ 1 1.59687- 5 3.64873- 3 3.20000+ 1 4.40000+ 1 1.06459- 6 3.65098- 3 3.30000+ 1 3.30000+ 1 7.47785- 6 3.62836- 3 3.30000+ 1 4.10000+ 1 4.07878- 6 3.64284- 3 3.30000+ 1 4.30000+ 1 3.12708- 5 3.65193- 3 3.30000+ 1 4.40000+ 1 6.79809- 7 3.65418- 3 4.10000+ 1 4.10000+ 1 4.66764- 7 3.65732- 3 4.10000+ 1 4.30000+ 1 1.40025- 6 3.66641- 3 4.30000+ 1 4.40000+ 1 9.33515- 7 3.67775- 3 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.48011- 5 4.68900- 4 1.40000+ 1 2.68661- 4 5.80900- 4 1.60000+ 1 1.46431- 3 2.24347- 3 2.10000+ 1 7.12362- 4 2.70195- 3 2.20000+ 1 5.47702- 3 2.72629- 3 2.70000+ 1 3.17151- 4 3.00004- 3 3.20000+ 1 1.03570- 4 3.13153- 3 3.30000+ 1 7.94993- 4 3.13473- 3 4.10000+ 1 4.38502- 5 3.14921- 3 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 1.09254- 2 3.95000- 6 1.30000+ 1 2.20000+ 1 1.15085- 2 2.82900- 5 1.30000+ 1 2.40000+ 1 1.68262- 2 2.95030- 4 1.30000+ 1 2.50000+ 1 2.45429- 2 3.00730- 4 1.30000+ 1 2.70000+ 1 2.80177- 3 3.02040- 4 1.30000+ 1 2.90000+ 1 2.43909- 3 3.45780- 4 1.30000+ 1 3.00000+ 1 7.82576- 3 3.71440- 4 1.30000+ 1 3.20000+ 1 1.18433- 3 4.33530- 4 1.30000+ 1 3.30000+ 1 1.23398- 3 4.36730- 4 1.30000+ 1 4.10000+ 1 3.43420- 4 4.51210- 4 1.30000+ 1 4.30000+ 1 9.84106- 5 4.60300- 4 1.30000+ 1 4.40000+ 1 2.57414- 4 4.62550- 4 1.40000+ 1 2.10000+ 1 4.83989- 2 1.15950- 4 1.40000+ 1 2.20000+ 1 6.58564- 2 1.40290- 4 1.40000+ 1 2.40000+ 1 1.85177- 1 4.07030- 4 1.40000+ 1 2.50000+ 1 2.23748- 1 4.12730- 4 1.40000+ 1 2.70000+ 1 1.67637- 2 4.14040- 4 1.40000+ 1 2.90000+ 1 1.64378- 2 4.57780- 4 1.40000+ 1 3.00000+ 1 1.96788- 2 4.83440- 4 1.40000+ 1 3.20000+ 1 5.17443- 3 5.45530- 4 1.40000+ 1 3.30000+ 1 7.32143- 3 5.48730- 4 1.40000+ 1 4.10000+ 1 2.09937- 3 5.63210- 4 1.40000+ 1 4.30000+ 1 6.66295- 4 5.72300- 4 1.40000+ 1 4.40000+ 1 6.60190- 4 5.74550- 4 1.60000+ 1 1.60000+ 1 3.15758- 4 1.32004- 3 1.60000+ 1 1.80000+ 1 6.60524- 4 1.44404- 3 1.60000+ 1 1.90000+ 1 1.27651- 2 1.57431- 3 1.60000+ 1 2.10000+ 1 7.57913- 4 1.77852- 3 1.60000+ 1 2.20000+ 1 9.18227- 4 1.80286- 3 1.60000+ 1 2.40000+ 1 1.80947- 3 2.06960- 3 1.60000+ 1 2.50000+ 1 3.18652- 3 2.07530- 3 1.60000+ 1 2.70000+ 1 1.06233- 4 2.07661- 3 1.60000+ 1 2.90000+ 1 9.14802- 5 2.12035- 3 1.60000+ 1 3.00000+ 1 1.56645- 3 2.14601- 3 1.60000+ 1 3.20000+ 1 8.36094- 5 2.20810- 3 1.60000+ 1 3.30000+ 1 9.59047- 5 2.21130- 3 1.60000+ 1 4.10000+ 1 1.27876- 5 2.22578- 3 1.60000+ 1 4.30000+ 1 3.44257- 6 2.23487- 3 1.60000+ 1 4.40000+ 1 5.06566- 5 2.23712- 3 1.80000+ 1 1.80000+ 1 2.40978- 5 1.56804- 3 1.80000+ 1 1.90000+ 1 1.57844- 2 1.69831- 3 1.80000+ 1 2.10000+ 1 3.41813- 4 1.90252- 3 1.80000+ 1 2.20000+ 1 3.33654- 3 1.92686- 3 1.80000+ 1 2.40000+ 1 1.68056- 3 2.19360- 3 1.80000+ 1 2.50000+ 1 9.08894- 3 2.19930- 3 1.80000+ 1 2.70000+ 1 1.02299- 4 2.20061- 3 1.80000+ 1 2.90000+ 1 6.39379- 6 2.24435- 3 1.80000+ 1 3.00000+ 1 1.97810- 3 2.27001- 3 1.80000+ 1 3.20000+ 1 4.08200- 5 2.33210- 3 1.80000+ 1 3.30000+ 1 3.32969- 4 2.33530- 3 1.80000+ 1 4.10000+ 1 1.22956- 5 2.34978- 3 1.80000+ 1 4.30000+ 1 4.91818- 7 2.35887- 3 1.80000+ 1 4.40000+ 1 6.44287- 5 2.36112- 3 1.90000+ 1 1.90000+ 1 2.06998- 2 1.82858- 3 1.90000+ 1 2.10000+ 1 3.03036- 2 2.03279- 3 1.90000+ 1 2.20000+ 1 3.95788- 2 2.05713- 3 1.90000+ 1 2.40000+ 1 2.64405- 2 2.32387- 3 1.90000+ 1 2.50000+ 1 3.02624- 2 2.32957- 3 1.90000+ 1 2.70000+ 1 2.70782- 3 2.33088- 3 1.90000+ 1 2.90000+ 1 3.01275- 3 2.37462- 3 1.90000+ 1 3.00000+ 1 6.43627- 3 2.40028- 3 1.90000+ 1 3.20000+ 1 3.68425- 3 2.46237- 3 1.90000+ 1 3.30000+ 1 4.72932- 3 2.46557- 3 1.90000+ 1 4.10000+ 1 3.43760- 4 2.48005- 3 1.90000+ 1 4.30000+ 1 1.24919- 4 2.48914- 3 1.90000+ 1 4.40000+ 1 2.16407- 4 2.49139- 3 2.10000+ 1 2.10000+ 1 1.99687- 4 2.23700- 3 2.10000+ 1 2.20000+ 1 4.80179- 3 2.26134- 3 2.10000+ 1 2.40000+ 1 7.18067- 4 2.52808- 3 2.10000+ 1 2.50000+ 1 8.37421- 3 2.53378- 3 2.10000+ 1 2.70000+ 1 9.19710- 5 2.53509- 3 2.10000+ 1 2.90000+ 1 2.45907- 5 2.57883- 3 2.10000+ 1 3.00000+ 1 3.72755- 3 2.60449- 3 2.10000+ 1 3.20000+ 1 3.98399- 5 2.66658- 3 2.10000+ 1 3.30000+ 1 5.07563- 4 2.66978- 3 2.10000+ 1 4.10000+ 1 1.08202- 5 2.68426- 3 2.10000+ 1 4.30000+ 1 9.83632- 7 2.69335- 3 2.10000+ 1 4.40000+ 1 1.20986- 4 2.69560- 3 2.20000+ 1 2.20000+ 1 2.11090- 3 2.28568- 3 2.20000+ 1 2.40000+ 1 6.78612- 3 2.55242- 3 2.20000+ 1 2.50000+ 1 5.66279- 3 2.55812- 3 2.20000+ 1 2.70000+ 1 1.15578- 4 2.55943- 3 2.20000+ 1 2.90000+ 1 3.29505- 4 2.60317- 3 2.20000+ 1 3.00000+ 1 4.80919- 3 2.62883- 3 2.20000+ 1 3.20000+ 1 5.12979- 4 2.69092- 3 2.20000+ 1 3.30000+ 1 4.48041- 4 2.69412- 3 2.20000+ 1 4.10000+ 1 1.37710- 5 2.70860- 3 2.20000+ 1 4.30000+ 1 1.22955- 5 2.71769- 3 2.20000+ 1 4.40000+ 1 1.55908- 4 2.71994- 3 2.40000+ 1 2.40000+ 1 1.07215- 3 2.81916- 3 2.40000+ 1 2.50000+ 1 2.81484- 2 2.82486- 3 2.40000+ 1 2.70000+ 1 1.98688- 4 2.82617- 3 2.40000+ 1 2.90000+ 1 2.66071- 4 2.86991- 3 2.40000+ 1 3.00000+ 1 3.09592- 3 2.89557- 3 2.40000+ 1 3.20000+ 1 1.00823- 4 2.95766- 3 2.40000+ 1 3.30000+ 1 7.65277- 4 2.96086- 3 2.40000+ 1 4.10000+ 1 2.31137- 5 2.97534- 3 2.40000+ 1 4.30000+ 1 1.08201- 5 2.98443- 3 2.40000+ 1 4.40000+ 1 9.98389- 5 2.98668- 3 2.50000+ 1 2.50000+ 1 1.11371- 2 2.83056- 3 2.50000+ 1 2.70000+ 1 3.05922- 4 2.83187- 3 2.50000+ 1 2.90000+ 1 1.42581- 3 2.87561- 3 2.50000+ 1 3.00000+ 1 3.68204- 3 2.90127- 3 2.50000+ 1 3.20000+ 1 1.01070- 3 2.96336- 3 2.50000+ 1 3.30000+ 1 6.91514- 4 2.96656- 3 2.50000+ 1 4.10000+ 1 3.44262- 5 2.98104- 3 2.50000+ 1 4.30000+ 1 5.75464- 5 2.99013- 3 2.50000+ 1 4.40000+ 1 1.20006- 4 2.99238- 3 2.70000+ 1 2.70000+ 1 1.17489- 5 2.83318- 3 2.70000+ 1 2.90000+ 1 1.76233- 5 2.87692- 3 2.70000+ 1 3.00000+ 1 3.97710- 4 2.90258- 3 2.70000+ 1 3.20000+ 1 1.29241- 5 2.96467- 3 2.70000+ 1 3.30000+ 1 1.46863- 5 2.96787- 3 2.70000+ 1 4.10000+ 1 2.93721- 6 2.98235- 3 2.70000+ 1 4.30000+ 1 5.87445- 7 2.99144- 3 2.70000+ 1 4.40000+ 1 1.29241- 5 2.99369- 3 2.90000+ 1 2.90000+ 1 5.69044- 7 2.92066- 3 2.90000+ 1 3.00000+ 1 4.38734- 4 2.94632- 3 2.90000+ 1 3.20000+ 1 2.84520- 6 3.00841- 3 2.90000+ 1 3.30000+ 1 3.98313- 5 3.01161- 3 2.90000+ 1 4.10000+ 1 2.27626- 6 3.02609- 3 2.90000+ 1 4.40000+ 1 1.42263- 5 3.03743- 3 3.00000+ 1 3.00000+ 1 6.43911- 4 2.97198- 3 3.00000+ 1 3.20000+ 1 6.13374- 4 3.03407- 3 3.00000+ 1 3.30000+ 1 7.77174- 4 3.03727- 3 3.00000+ 1 4.10000+ 1 5.70281- 5 3.05175- 3 3.00000+ 1 4.30000+ 1 2.12196- 5 3.06084- 3 3.00000+ 1 4.40000+ 1 4.31004- 5 3.06309- 3 3.20000+ 1 3.20000+ 1 1.96735- 6 3.09616- 3 3.20000+ 1 3.30000+ 1 5.75459- 5 3.09936- 3 3.20000+ 1 4.10000+ 1 1.47546- 6 3.11384- 3 3.20000+ 1 4.40000+ 1 1.47546- 5 3.12518- 3 3.30000+ 1 3.30000+ 1 2.68607- 5 3.10256- 3 3.30000+ 1 4.10000+ 1 1.61165- 6 3.11704- 3 3.30000+ 1 4.30000+ 1 1.61165- 6 3.12613- 3 3.30000+ 1 4.40000+ 1 2.04142- 5 3.12838- 3 4.10000+ 1 4.40000+ 1 1.20180- 6 3.14286- 3 4.30000+ 1 4.40000+ 1 4.91822- 7 3.15195- 3 4.40000+ 1 4.40000+ 1 4.91822- 7 3.15420- 3 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.02959- 3 1.89857- 3 1.90000+ 1 2.01549- 4 2.02884- 3 2.40000+ 1 3.48728- 2 2.52413- 3 2.90000+ 1 4.98248- 4 2.57488- 3 3.00000+ 1 4.97658- 5 2.60054- 3 4.30000+ 1 1.39629- 5 2.68940- 3 4.40000+ 1 1.18269- 6 2.69165- 3 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 7.52022- 3 1.45400- 5 1.40000+ 1 3.20000+ 1 4.55644- 2 7.66300- 5 1.40000+ 1 3.30000+ 1 6.39070- 3 7.98300- 5 1.40000+ 1 4.10000+ 1 7.32311- 4 9.43100- 5 1.40000+ 1 4.30000+ 1 1.47289- 4 1.03400- 4 1.40000+ 1 4.40000+ 1 2.72795- 4 1.05650- 4 1.60000+ 1 1.60000+ 1 2.38570- 5 8.51140- 4 1.60000+ 1 1.80000+ 1 1.13580- 3 9.75140- 4 1.60000+ 1 1.90000+ 1 8.89966- 4 1.10541- 3 1.60000+ 1 2.10000+ 1 3.36889- 2 1.30962- 3 1.60000+ 1 2.20000+ 1 3.88248- 3 1.33396- 3 1.60000+ 1 2.40000+ 1 1.55442- 2 1.60070- 3 1.60000+ 1 2.50000+ 1 4.16262- 3 1.60640- 3 1.60000+ 1 2.70000+ 1 1.97077- 5 1.60771- 3 1.60000+ 1 2.90000+ 1 1.76338- 4 1.65145- 3 1.60000+ 1 3.00000+ 1 1.10982- 4 1.67711- 3 1.60000+ 1 3.20000+ 1 2.94578- 3 1.73920- 3 1.60000+ 1 3.30000+ 1 3.49552- 4 1.74240- 3 1.60000+ 1 4.10000+ 1 2.07449- 6 1.75688- 3 1.60000+ 1 4.30000+ 1 7.26062- 6 1.76597- 3 1.60000+ 1 4.40000+ 1 4.14888- 6 1.76822- 3 1.80000+ 1 1.80000+ 1 6.57643- 4 1.09914- 3 1.80000+ 1 1.90000+ 1 4.40437- 3 1.22941- 3 1.80000+ 1 2.10000+ 1 3.02276- 2 1.43362- 3 1.80000+ 1 2.20000+ 1 2.07561- 3 1.45796- 3 1.80000+ 1 2.40000+ 1 1.02859- 2 1.72470- 3 1.80000+ 1 2.50000+ 1 5.17401- 3 1.73040- 3 1.80000+ 1 2.70000+ 1 1.54547- 4 1.73171- 3 1.80000+ 1 2.90000+ 1 2.03300- 4 1.77545- 3 1.80000+ 1 3.00000+ 1 6.13043- 4 1.80111- 3 1.80000+ 1 3.20000+ 1 2.62534- 3 1.86320- 3 1.80000+ 1 3.30000+ 1 2.13673- 4 1.86640- 3 1.80000+ 1 4.10000+ 1 1.86704- 5 1.88088- 3 1.80000+ 1 4.30000+ 1 8.29832- 6 1.88997- 3 1.80000+ 1 4.40000+ 1 1.97078- 5 1.89222- 3 1.90000+ 1 1.90000+ 1 1.55592- 3 1.35968- 3 1.90000+ 1 2.10000+ 1 6.03586- 2 1.56389- 3 1.90000+ 1 2.20000+ 1 2.29024- 3 1.58823- 3 1.90000+ 1 2.40000+ 1 3.12530- 3 1.85497- 3 1.90000+ 1 2.50000+ 1 2.06515- 3 1.86067- 3 1.90000+ 1 2.70000+ 1 1.45219- 4 1.86198- 3 1.90000+ 1 2.90000+ 1 5.43506- 4 1.90572- 3 1.90000+ 1 3.00000+ 1 4.14890- 4 1.93138- 3 1.90000+ 1 3.20000+ 1 5.29826- 3 1.99347- 3 1.90000+ 1 3.30000+ 1 2.14718- 4 1.99667- 3 1.90000+ 1 4.10000+ 1 1.76339- 5 2.01115- 3 1.90000+ 1 4.30000+ 1 2.07451- 5 2.02024- 3 1.90000+ 1 4.40000+ 1 1.34845- 5 2.02249- 3 2.10000+ 1 2.10000+ 1 5.44386- 2 1.76810- 3 2.10000+ 1 2.20000+ 1 1.07858- 1 1.79244- 3 2.10000+ 1 2.40000+ 1 5.91734- 2 2.05918- 3 2.10000+ 1 2.50000+ 1 7.13678- 2 2.06488- 3 2.10000+ 1 2.70000+ 1 6.58145- 3 2.06619- 3 2.10000+ 1 2.90000+ 1 5.82017- 3 2.10993- 3 2.10000+ 1 3.00000+ 1 1.10018- 2 2.13559- 3 2.10000+ 1 3.20000+ 1 1.14817- 2 2.19768- 3 2.10000+ 1 3.30000+ 1 1.27401- 2 2.20088- 3 2.10000+ 1 4.10000+ 1 8.27738- 4 2.21536- 3 2.10000+ 1 4.30000+ 1 2.41679- 4 2.22445- 3 2.10000+ 1 4.40000+ 1 3.76526- 4 2.22670- 3 2.20000+ 1 2.20000+ 1 1.71868- 3 1.81678- 3 2.20000+ 1 2.40000+ 1 6.69190- 2 2.08352- 3 2.20000+ 1 2.50000+ 1 3.33993- 3 2.08922- 3 2.20000+ 1 2.70000+ 1 4.06626- 4 2.09053- 3 2.20000+ 1 2.90000+ 1 2.47908- 4 2.13427- 3 2.20000+ 1 3.00000+ 1 3.37119- 4 2.15993- 3 2.20000+ 1 3.20000+ 1 9.51583- 3 2.22202- 3 2.20000+ 1 3.30000+ 1 3.36073- 4 2.22522- 3 2.20000+ 1 4.10000+ 1 4.66777- 5 2.23970- 3 2.20000+ 1 4.30000+ 1 9.33544- 6 2.24879- 3 2.20000+ 1 4.40000+ 1 1.14108- 5 2.25104- 3 2.40000+ 1 2.40000+ 1 6.33675- 2 2.35026- 3 2.40000+ 1 2.50000+ 1 1.83071- 1 2.35596- 3 2.40000+ 1 2.70000+ 1 3.19999- 3 2.35727- 3 2.40000+ 1 2.90000+ 1 1.63060- 3 2.40101- 3 2.40000+ 1 3.00000+ 1 5.86059- 4 2.42667- 3 2.40000+ 1 3.20000+ 1 5.61350- 3 2.48876- 3 2.40000+ 1 3.30000+ 1 7.54814- 3 2.49196- 3 2.40000+ 1 4.10000+ 1 4.04530- 4 2.50644- 3 2.40000+ 1 4.30000+ 1 6.63861- 5 2.51553- 3 2.40000+ 1 4.40000+ 1 2.07452- 5 2.51778- 3 2.50000+ 1 2.50000+ 1 3.58400- 3 2.36166- 3 2.50000+ 1 2.70000+ 1 5.69567- 4 2.36297- 3 2.50000+ 1 2.90000+ 1 4.08771- 4 2.40671- 3 2.50000+ 1 3.00000+ 1 3.20619- 4 2.43237- 3 2.50000+ 1 3.20000+ 1 5.41873- 3 2.49446- 3 2.50000+ 1 3.30000+ 1 3.30305- 4 2.49766- 3 2.50000+ 1 4.10000+ 1 6.78033- 5 2.51214- 3 2.50000+ 1 4.30000+ 1 1.54986- 5 2.52123- 3 2.50000+ 1 4.40000+ 1 1.06560- 5 2.52348- 3 2.70000+ 1 2.70000+ 1 2.26194- 6 2.36428- 3 2.70000+ 1 2.90000+ 1 2.82748- 5 2.40802- 3 2.70000+ 1 3.00000+ 1 2.03573- 5 2.43368- 3 2.70000+ 1 3.20000+ 1 6.32222- 4 2.49577- 3 2.70000+ 1 3.30000+ 1 4.41078- 5 2.49897- 3 2.70000+ 1 4.10000+ 1 1.13098- 6 2.51345- 3 2.70000+ 1 4.30000+ 1 1.13098- 6 2.52254- 3 2.70000+ 1 4.40000+ 1 1.13098- 6 2.52479- 3 2.90000+ 1 2.90000+ 1 2.22059- 5 2.45176- 3 2.90000+ 1 3.00000+ 1 1.08250- 4 2.47742- 3 2.90000+ 1 3.20000+ 1 6.78645- 4 2.53951- 3 2.90000+ 1 3.30000+ 1 3.74707- 5 2.54271- 3 2.90000+ 1 4.10000+ 1 4.16347- 6 2.55719- 3 2.90000+ 1 4.30000+ 1 1.38783- 6 2.56628- 3 2.90000+ 1 4.40000+ 1 4.16347- 6 2.56853- 3 3.00000+ 1 3.00000+ 1 4.26040- 5 2.50308- 3 3.00000+ 1 3.20000+ 1 1.42425- 3 2.56517- 3 3.00000+ 1 3.30000+ 1 4.86924- 5 2.56837- 3 3.00000+ 1 4.10000+ 1 3.04316- 6 2.58285- 3 3.00000+ 1 4.30000+ 1 4.56475- 6 2.59194- 3 3.00000+ 1 4.40000+ 1 3.04316- 6 2.59419- 3 3.20000+ 1 3.20000+ 1 5.87089- 4 2.62726- 3 3.20000+ 1 3.30000+ 1 1.12956- 3 2.63046- 3 3.20000+ 1 4.10000+ 1 7.26079- 5 2.64494- 3 3.20000+ 1 4.30000+ 1 2.07454- 5 2.65403- 3 3.20000+ 1 4.40000+ 1 3.31939- 5 2.65628- 3 3.30000+ 1 3.30000+ 1 2.03987- 5 2.63366- 3 3.30000+ 1 4.10000+ 1 5.09937- 6 2.64814- 3 3.30000+ 1 4.30000+ 1 1.27488- 6 2.65723- 3 3.30000+ 1 4.40000+ 1 1.27488- 6 2.65948- 3 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.52409- 3 1.91684- 3 2.40000+ 1 1.72439- 3 2.41213- 3 2.50000+ 1 3.36987- 2 2.41783- 3 3.00000+ 1 3.66307- 4 2.48854- 3 4.40000+ 1 8.75463- 6 2.57965- 3 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 2.52425- 4 8.63140- 4 1.60000+ 1 1.90000+ 1 2.01201- 3 9.93410- 4 1.60000+ 1 2.10000+ 1 3.39666- 3 1.19762- 3 1.60000+ 1 2.20000+ 1 3.67964- 2 1.22196- 3 1.60000+ 1 2.40000+ 1 4.35380- 3 1.48870- 3 1.60000+ 1 2.50000+ 1 1.64618- 2 1.49440- 3 1.60000+ 1 2.70000+ 1 1.15212- 5 1.49571- 3 1.60000+ 1 2.90000+ 1 1.57109- 5 1.53945- 3 1.60000+ 1 3.00000+ 1 2.59756- 4 1.56511- 3 1.60000+ 1 3.20000+ 1 2.92216- 4 1.62720- 3 1.60000+ 1 3.30000+ 1 3.15261- 3 1.63040- 3 1.60000+ 1 4.10000+ 1 2.09476- 6 1.64488- 3 1.60000+ 1 4.30000+ 1 1.04733- 6 1.65397- 3 1.60000+ 1 4.40000+ 1 8.37920- 6 1.65622- 3 1.80000+ 1 1.90000+ 1 5.50186- 3 1.11741- 3 1.80000+ 1 2.10000+ 1 2.73360- 4 1.32162- 3 1.80000+ 1 2.20000+ 1 3.80394- 2 1.34596- 3 1.80000+ 1 2.40000+ 1 2.22871- 3 1.61270- 3 1.80000+ 1 2.50000+ 1 8.95062- 3 1.61840- 3 1.80000+ 1 2.70000+ 1 3.35152- 5 1.61971- 3 1.80000+ 1 2.90000+ 1 1.04732- 6 1.66345- 3 1.80000+ 1 3.00000+ 1 7.09081- 4 1.68911- 3 1.80000+ 1 3.20000+ 1 8.37908- 6 1.75120- 3 1.80000+ 1 3.30000+ 1 3.25626- 3 1.75440- 3 1.80000+ 1 4.10000+ 1 4.18924- 6 1.76888- 3 1.80000+ 1 4.40000+ 1 2.30421- 5 1.78022- 3 1.90000+ 1 1.90000+ 1 3.71496- 3 1.24768- 3 1.90000+ 1 2.10000+ 1 3.51076- 3 1.45189- 3 1.90000+ 1 2.20000+ 1 5.69588- 2 1.47623- 3 1.90000+ 1 2.40000+ 1 2.31673- 3 1.74297- 3 1.90000+ 1 2.50000+ 1 4.36636- 3 1.74867- 3 1.90000+ 1 2.70000+ 1 3.40398- 4 1.74998- 3 1.90000+ 1 2.90000+ 1 6.49378- 4 1.79372- 3 1.90000+ 1 3.00000+ 1 9.87679- 4 1.81938- 3 1.90000+ 1 3.20000+ 1 3.69719- 4 1.88147- 3 1.90000+ 1 3.30000+ 1 4.86409- 3 1.88467- 3 1.90000+ 1 4.10000+ 1 4.18926- 5 1.89915- 3 1.90000+ 1 4.30000+ 1 2.51370- 5 1.90824- 3 1.90000+ 1 4.40000+ 1 3.24684- 5 1.91049- 3 2.10000+ 1 2.10000+ 1 7.62453- 4 1.65610- 3 2.10000+ 1 2.20000+ 1 7.91585- 2 1.68044- 3 2.10000+ 1 2.40000+ 1 2.97345- 3 1.94718- 3 2.10000+ 1 2.50000+ 1 4.08611- 2 1.95288- 3 2.10000+ 1 2.70000+ 1 3.36192- 4 1.95419- 3 2.10000+ 1 2.90000+ 1 5.96984- 5 1.99793- 3 2.10000+ 1 3.00000+ 1 4.69201- 4 2.02359- 3 2.10000+ 1 3.20000+ 1 1.47679- 4 2.08568- 3 2.10000+ 1 3.30000+ 1 6.83508- 3 2.08888- 3 2.10000+ 1 4.10000+ 1 3.77055- 5 2.10336- 3 2.10000+ 1 4.30000+ 1 2.09471- 6 2.11245- 3 2.10000+ 1 4.40000+ 1 1.57105- 5 2.11470- 3 2.20000+ 1 2.20000+ 1 8.83421- 2 1.70478- 3 2.20000+ 1 2.40000+ 1 6.50006- 2 1.97152- 3 2.20000+ 1 2.50000+ 1 1.03512- 1 1.97722- 3 2.20000+ 1 2.70000+ 1 6.89916- 3 1.97853- 3 2.20000+ 1 2.90000+ 1 6.99860- 3 2.02227- 3 2.20000+ 1 3.00000+ 1 1.04744- 2 2.04793- 3 2.20000+ 1 3.20000+ 1 9.50201- 3 2.11002- 3 2.20000+ 1 3.30000+ 1 1.80581- 2 2.11322- 3 2.20000+ 1 4.10000+ 1 8.63049- 4 2.12770- 3 2.20000+ 1 4.30000+ 1 2.88028- 4 2.13679- 3 2.20000+ 1 4.40000+ 1 3.59257- 4 2.13904- 3 2.40000+ 1 2.40000+ 1 5.18359- 3 2.23826- 3 2.40000+ 1 2.50000+ 1 1.65333- 1 2.24396- 3 2.40000+ 1 2.70000+ 1 6.92295- 4 2.24527- 3 2.40000+ 1 2.90000+ 1 3.81245- 4 2.28901- 3 2.40000+ 1 3.00000+ 1 3.55063- 4 2.31467- 3 2.40000+ 1 3.20000+ 1 3.46680- 4 2.37676- 3 2.40000+ 1 3.30000+ 1 5.31530- 3 2.37996- 3 2.40000+ 1 4.10000+ 1 8.37921- 5 2.39444- 3 2.40000+ 1 4.30000+ 1 1.57109- 5 2.40353- 3 2.40000+ 1 4.40000+ 1 1.15212- 5 2.40578- 3 2.50000+ 1 2.50000+ 1 1.13095- 1 2.24966- 3 2.50000+ 1 2.70000+ 1 3.31498- 3 2.25097- 3 2.50000+ 1 2.90000+ 1 1.67367- 3 2.29471- 3 2.50000+ 1 3.00000+ 1 7.71897- 4 2.32037- 3 2.50000+ 1 3.20000+ 1 4.60931- 3 2.38246- 3 2.50000+ 1 3.30000+ 1 9.85084- 3 2.38566- 3 2.50000+ 1 4.10000+ 1 4.17891- 4 2.40014- 3 2.50000+ 1 4.30000+ 1 6.91252- 5 2.40923- 3 2.50000+ 1 4.40000+ 1 2.61838- 5 2.41148- 3 2.70000+ 1 2.70000+ 1 1.28704- 6 2.25228- 3 2.70000+ 1 2.90000+ 1 2.57419- 6 2.29602- 3 2.70000+ 1 3.00000+ 1 5.66336- 5 2.32168- 3 2.70000+ 1 3.20000+ 1 3.99000- 5 2.38377- 3 2.70000+ 1 3.30000+ 1 7.31071- 4 2.38697- 3 2.70000+ 1 4.40000+ 1 1.28704- 6 2.41279- 3 2.90000+ 1 3.00000+ 1 1.05695- 4 2.36542- 3 2.90000+ 1 3.20000+ 1 3.73040- 6 2.42751- 3 2.90000+ 1 3.30000+ 1 7.21208- 4 2.43071- 3 2.90000+ 1 4.40000+ 1 3.73040- 6 2.45653- 3 3.00000+ 1 3.00000+ 1 9.21318- 5 2.39108- 3 3.00000+ 1 3.20000+ 1 7.19758- 5 2.45317- 3 3.00000+ 1 3.30000+ 1 1.23371- 3 2.45637- 3 3.00000+ 1 4.10000+ 1 7.19758- 6 2.47085- 3 3.00000+ 1 4.30000+ 1 4.31860- 6 2.47994- 3 3.00000+ 1 4.40000+ 1 5.75794- 6 2.48219- 3 3.20000+ 1 3.20000+ 1 7.33141- 6 2.51526- 3 3.20000+ 1 3.30000+ 1 8.25318- 4 2.51846- 3 3.20000+ 1 4.10000+ 1 4.18926- 6 2.53294- 3 3.20000+ 1 4.40000+ 1 2.09473- 6 2.54428- 3 3.30000+ 1 3.30000+ 1 8.98620- 4 2.52166- 3 3.30000+ 1 4.10000+ 1 7.43623- 5 2.53614- 3 3.30000+ 1 4.30000+ 1 2.51364- 5 2.54523- 3 3.30000+ 1 4.40000+ 1 3.03729- 5 2.54748- 3 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.78548- 5 1.24000- 4 1.90000+ 1 3.26674- 4 2.54270- 4 2.90000+ 1 2.11632- 4 8.00310- 4 3.00000+ 1 7.83378- 5 8.25970- 4 4.30000+ 1 1.13017- 5 9.14830- 4 4.40000+ 1 3.97585- 6 9.17080- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.90000+ 1 2.78560- 2 8.80000- 7 1.80000+ 1 3.00000+ 1 5.01366- 2 2.65400- 5 1.80000+ 1 3.20000+ 1 3.78718- 2 8.86300- 5 1.80000+ 1 3.30000+ 1 6.09700- 2 9.18300- 5 1.80000+ 1 4.10000+ 1 4.12099- 3 1.06310- 4 1.80000+ 1 4.30000+ 1 1.20016- 3 1.15400- 4 1.80000+ 1 4.40000+ 1 1.63451- 3 1.17650- 4 1.90000+ 1 2.40000+ 1 5.39389- 2 8.04000- 5 1.90000+ 1 2.50000+ 1 7.93551- 2 8.61000- 5 1.90000+ 1 2.70000+ 1 4.04029- 2 8.74100- 5 1.90000+ 1 2.90000+ 1 4.72275- 2 1.31150- 4 1.90000+ 1 3.00000+ 1 4.81173- 2 1.56810- 4 1.90000+ 1 3.20000+ 1 3.93141- 2 2.18900- 4 1.90000+ 1 3.30000+ 1 4.79469- 2 2.22100- 4 1.90000+ 1 4.10000+ 1 5.03208- 3 2.36580- 4 1.90000+ 1 4.30000+ 1 1.83619- 3 2.45670- 4 1.90000+ 1 4.40000+ 1 1.62924- 3 2.47920- 4 2.10000+ 1 2.10000+ 1 3.73446- 3 0.00000+ 0 2.10000+ 1 2.20000+ 1 3.08647- 3 1.78700- 5 2.10000+ 1 2.40000+ 1 4.30760- 3 2.84610- 4 2.10000+ 1 2.50000+ 1 7.18522- 3 2.90310- 4 2.10000+ 1 2.70000+ 1 1.67411- 2 2.91620- 4 2.10000+ 1 2.90000+ 1 5.19664- 3 3.35360- 4 2.10000+ 1 3.00000+ 1 7.34868- 3 3.61020- 4 2.10000+ 1 3.20000+ 1 1.73433- 3 4.23110- 4 2.10000+ 1 3.30000+ 1 1.79300- 3 4.26310- 4 2.10000+ 1 4.10000+ 1 1.60178- 3 4.40790- 4 2.10000+ 1 4.30000+ 1 2.06966- 4 4.49880- 4 2.10000+ 1 4.40000+ 1 2.14770- 4 4.52130- 4 2.20000+ 1 2.20000+ 1 5.02947- 3 4.22100- 5 2.20000+ 1 2.40000+ 1 8.30679- 3 3.08950- 4 2.20000+ 1 2.50000+ 1 8.54626- 3 3.14650- 4 2.20000+ 1 2.70000+ 1 2.37041- 2 3.15960- 4 2.20000+ 1 2.90000+ 1 9.40757- 3 3.59700- 4 2.20000+ 1 3.00000+ 1 7.99941- 3 3.85360- 4 2.20000+ 1 3.20000+ 1 1.52019- 3 4.47450- 4 2.20000+ 1 3.30000+ 1 2.52822- 3 4.50650- 4 2.20000+ 1 4.10000+ 1 2.25779- 3 4.65130- 4 2.20000+ 1 4.30000+ 1 3.32585- 4 4.74220- 4 2.20000+ 1 4.40000+ 1 2.54660- 4 4.76470- 4 2.40000+ 1 2.40000+ 1 9.21737- 3 5.75690- 4 2.40000+ 1 2.50000+ 1 1.82851- 2 5.81390- 4 2.40000+ 1 2.70000+ 1 2.09572- 2 5.82700- 4 2.40000+ 1 2.90000+ 1 2.83716- 3 6.26440- 4 2.40000+ 1 3.00000+ 1 1.00053- 2 6.52100- 4 2.40000+ 1 3.20000+ 1 8.76598- 4 7.14190- 4 2.40000+ 1 3.30000+ 1 5.75514- 4 7.17390- 4 2.40000+ 1 4.10000+ 1 1.77521- 3 7.31870- 4 2.40000+ 1 4.30000+ 1 9.53560- 5 7.40960- 4 2.40000+ 1 4.40000+ 1 2.87250- 4 7.43210- 4 2.50000+ 1 2.50000+ 1 1.52262- 2 5.87090- 4 2.50000+ 1 2.70000+ 1 2.71026- 2 5.88400- 4 2.50000+ 1 2.90000+ 1 1.50139- 3 6.32140- 4 2.50000+ 1 3.00000+ 1 1.13066- 2 6.57800- 4 2.50000+ 1 3.20000+ 1 5.28315- 4 7.19890- 4 2.50000+ 1 3.30000+ 1 1.26567- 3 7.23090- 4 2.50000+ 1 4.10000+ 1 2.28919- 3 7.37570- 4 2.50000+ 1 4.30000+ 1 4.93240- 5 7.46660- 4 2.50000+ 1 4.40000+ 1 3.15749- 4 7.48910- 4 2.70000+ 1 2.70000+ 1 1.64429- 2 5.89710- 4 2.70000+ 1 2.90000+ 1 2.32125- 2 6.33450- 4 2.70000+ 1 3.00000+ 1 3.68915- 2 6.59110- 4 2.70000+ 1 3.20000+ 1 2.87315- 2 7.21200- 4 2.70000+ 1 3.30000+ 1 3.93550- 2 7.24400- 4 2.70000+ 1 4.10000+ 1 3.53660- 3 7.38880- 4 2.70000+ 1 4.30000+ 1 9.65888- 4 7.47970- 4 2.70000+ 1 4.40000+ 1 1.26429- 3 7.50220- 4 2.90000+ 1 2.90000+ 1 2.17901- 3 6.77190- 4 2.90000+ 1 3.00000+ 1 9.11990- 3 7.02850- 4 2.90000+ 1 3.20000+ 1 3.15030- 3 7.64940- 4 2.90000+ 1 3.30000+ 1 2.51483- 3 7.68140- 4 2.90000+ 1 4.10000+ 1 2.35748- 3 7.82620- 4 2.90000+ 1 4.30000+ 1 1.54874- 4 7.91710- 4 2.90000+ 1 4.40000+ 1 2.54623- 4 7.93960- 4 3.00000+ 1 3.00000+ 1 5.97112- 3 7.28510- 4 3.00000+ 1 3.20000+ 1 2.80509- 3 7.90600- 4 3.00000+ 1 3.30000+ 1 5.40057- 3 7.93800- 4 3.00000+ 1 4.10000+ 1 3.70391- 3 8.08280- 4 3.00000+ 1 4.30000+ 1 3.28228- 4 8.17370- 4 3.00000+ 1 4.40000+ 1 3.66096- 4 8.19620- 4 3.20000+ 1 3.20000+ 1 8.43018- 4 8.52690- 4 3.20000+ 1 3.30000+ 1 2.53230- 3 8.55890- 4 3.20000+ 1 4.10000+ 1 3.57568- 3 8.70370- 4 3.20000+ 1 4.30000+ 1 1.33606- 4 8.79460- 4 3.20000+ 1 4.40000+ 1 8.58925- 5 8.81710- 4 3.30000+ 1 3.30000+ 1 1.65477- 3 8.59090- 4 3.30000+ 1 4.10000+ 1 4.87555- 3 8.73570- 4 3.30000+ 1 4.30000+ 1 9.51023- 5 8.82660- 4 3.30000+ 1 4.40000+ 1 1.90184- 4 8.84910- 4 4.10000+ 1 4.10000+ 1 2.49308- 4 8.88050- 4 4.10000+ 1 4.30000+ 1 1.13877- 4 8.97140- 4 4.10000+ 1 4.40000+ 1 1.53885- 4 8.99390- 4 4.30000+ 1 4.40000+ 1 1.23100- 5 9.08480- 4 4.40000+ 1 4.40000+ 1 3.07770- 6 9.10730- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.38972- 4 3.34480- 4 2.70000+ 1 2.11249- 4 6.32570- 4 3.20000+ 1 4.26803- 5 7.64060- 4 4.10000+ 1 3.00349- 5 7.81740- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.50133- 2 7.15000- 6 1.90000+ 1 3.00000+ 1 2.31496- 2 3.28100- 5 1.90000+ 1 3.20000+ 1 7.18705- 3 9.49000- 5 1.90000+ 1 3.30000+ 1 1.12201- 2 9.81000- 5 1.90000+ 1 4.10000+ 1 1.68901- 3 1.12580- 4 1.90000+ 1 4.30000+ 1 6.24993- 4 1.21670- 4 1.90000+ 1 4.40000+ 1 5.88352- 4 1.23920- 4 2.10000+ 1 2.40000+ 1 1.30061- 1 1.60610- 4 2.10000+ 1 2.50000+ 1 2.90987- 1 1.66310- 4 2.10000+ 1 2.70000+ 1 3.84418- 2 1.67620- 4 2.10000+ 1 2.90000+ 1 3.01956- 2 2.11360- 4 2.10000+ 1 3.00000+ 1 4.24472- 2 2.37020- 4 2.10000+ 1 3.20000+ 1 2.05999- 2 2.99110- 4 2.10000+ 1 3.30000+ 1 3.32046- 2 3.02310- 4 2.10000+ 1 4.10000+ 1 4.86784- 3 3.16790- 4 2.10000+ 1 4.30000+ 1 1.17727- 3 3.25880- 4 2.10000+ 1 4.40000+ 1 1.43275- 3 3.28130- 4 2.20000+ 1 2.40000+ 1 4.36165- 2 1.84950- 4 2.20000+ 1 2.50000+ 1 1.11676- 2 1.90650- 4 2.20000+ 1 2.70000+ 1 6.17281- 3 1.91960- 4 2.20000+ 1 2.90000+ 1 2.54517- 2 2.35700- 4 2.20000+ 1 3.00000+ 1 5.45047- 3 2.61360- 4 2.20000+ 1 3.20000+ 1 2.40369- 3 3.23450- 4 2.20000+ 1 3.30000+ 1 2.23781- 3 3.26650- 4 2.20000+ 1 4.10000+ 1 6.06083- 4 3.41130- 4 2.20000+ 1 4.30000+ 1 7.66925- 4 3.50220- 4 2.20000+ 1 4.40000+ 1 1.56225- 4 3.52470- 4 2.40000+ 1 2.40000+ 1 2.59329- 3 4.51690- 4 2.40000+ 1 2.50000+ 1 1.63872- 2 4.57390- 4 2.40000+ 1 2.70000+ 1 4.70206- 3 4.58700- 4 2.40000+ 1 2.90000+ 1 1.98806- 2 5.02440- 4 2.40000+ 1 3.00000+ 1 3.54787- 3 5.28100- 4 2.40000+ 1 3.20000+ 1 4.76069- 3 5.90190- 4 2.40000+ 1 3.30000+ 1 2.59800- 3 5.93390- 4 2.40000+ 1 4.10000+ 1 6.00152- 4 6.07870- 4 2.40000+ 1 4.30000+ 1 6.01287- 4 6.16960- 4 2.40000+ 1 4.40000+ 1 1.10490- 4 6.19210- 4 2.50000+ 1 2.50000+ 1 7.75275- 4 4.63090- 4 2.50000+ 1 2.70000+ 1 2.93305- 3 4.64400- 4 2.50000+ 1 2.90000+ 1 3.42750- 2 5.08140- 4 2.50000+ 1 3.00000+ 1 2.04085- 3 5.33800- 4 2.50000+ 1 3.20000+ 1 1.04953- 2 5.95890- 4 2.50000+ 1 3.30000+ 1 9.03394- 4 5.99090- 4 2.50000+ 1 4.10000+ 1 2.93850- 4 6.13570- 4 2.50000+ 1 4.30000+ 1 1.01256- 3 6.22660- 4 2.50000+ 1 4.40000+ 1 6.04414- 5 6.24910- 4 2.70000+ 1 2.70000+ 1 9.50751- 4 4.65710- 4 2.70000+ 1 2.90000+ 1 1.30046- 2 5.09450- 4 2.70000+ 1 3.00000+ 1 2.40148- 3 5.35110- 4 2.70000+ 1 3.20000+ 1 2.72417- 3 5.97200- 4 2.70000+ 1 3.30000+ 1 1.89925- 3 6.00400- 4 2.70000+ 1 4.10000+ 1 1.92215- 4 6.14880- 4 2.70000+ 1 4.30000+ 1 3.80992- 4 6.23970- 4 2.70000+ 1 4.40000+ 1 7.66562- 5 6.26220- 4 2.90000+ 1 2.90000+ 1 1.27286- 2 5.53190- 4 2.90000+ 1 3.00000+ 1 3.35505- 2 5.78850- 4 2.90000+ 1 3.20000+ 1 2.13652- 2 6.40940- 4 2.90000+ 1 3.30000+ 1 3.53845- 2 6.44140- 4 2.90000+ 1 4.10000+ 1 2.56884- 3 6.58620- 4 2.90000+ 1 4.30000+ 1 9.18248- 4 6.67710- 4 2.90000+ 1 4.40000+ 1 1.15950- 3 6.69960- 4 3.00000+ 1 3.00000+ 1 1.21338- 3 6.04510- 4 3.00000+ 1 3.20000+ 1 4.34155- 3 6.66600- 4 3.00000+ 1 3.30000+ 1 1.72173- 3 6.69800- 4 3.00000+ 1 4.10000+ 1 3.26850- 4 6.84280- 4 3.00000+ 1 4.30000+ 1 9.55789- 4 6.93370- 4 3.00000+ 1 4.40000+ 1 7.26343- 5 6.95620- 4 3.20000+ 1 3.20000+ 1 2.91388- 4 7.28690- 4 3.20000+ 1 3.30000+ 1 5.08411- 4 7.31890- 4 3.20000+ 1 4.10000+ 1 1.04513- 4 7.46370- 4 3.20000+ 1 4.30000+ 1 1.36444- 4 7.55460- 4 3.20000+ 1 4.40000+ 1 3.22976- 5 7.57710- 4 3.30000+ 1 3.30000+ 1 5.54510- 5 7.35090- 4 3.30000+ 1 4.10000+ 1 3.91579- 5 7.49570- 4 3.30000+ 1 4.30000+ 1 1.62153- 4 7.58660- 4 3.30000+ 1 4.40000+ 1 8.14686- 6 7.60910- 4 4.10000+ 1 4.10000+ 1 1.62745- 6 7.64050- 4 4.10000+ 1 4.30000+ 1 7.95623- 6 7.73140- 4 4.10000+ 1 4.40000+ 1 1.08485- 6 7.75390- 4 4.30000+ 1 4.40000+ 1 3.24436- 6 7.84480- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.56389- 5 2.04210- 4 2.20000+ 1 2.02360- 4 2.28550- 4 2.70000+ 1 1.90555- 4 5.02300- 4 3.20000+ 1 1.28654- 5 6.33790- 4 3.30000+ 1 7.53648- 5 6.36990- 4 4.10000+ 1 2.64383- 5 6.51470- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 5.53778- 3 3.03400- 5 2.10000+ 1 2.50000+ 1 4.51185- 3 3.60400- 5 2.10000+ 1 2.70000+ 1 1.81732- 2 3.73500- 5 2.10000+ 1 2.90000+ 1 1.41075- 2 8.10900- 5 2.10000+ 1 3.00000+ 1 4.40035- 2 1.06750- 4 2.10000+ 1 3.20000+ 1 1.15766- 2 1.68840- 4 2.10000+ 1 3.30000+ 1 1.95506- 2 1.72040- 4 2.10000+ 1 4.10000+ 1 2.06468- 3 1.86520- 4 2.10000+ 1 4.30000+ 1 5.38898- 4 1.95610- 4 2.10000+ 1 4.40000+ 1 1.25577- 3 1.97860- 4 2.20000+ 1 2.40000+ 1 4.42527- 2 5.46800- 5 2.20000+ 1 2.50000+ 1 6.92403- 2 6.03800- 5 2.20000+ 1 2.70000+ 1 9.26945- 2 6.16900- 5 2.20000+ 1 2.90000+ 1 1.00950- 1 1.05430- 4 2.20000+ 1 3.00000+ 1 1.23606- 1 1.31090- 4 2.20000+ 1 3.20000+ 1 9.03042- 2 1.93180- 4 2.20000+ 1 3.30000+ 1 1.05519- 1 1.96380- 4 2.20000+ 1 4.10000+ 1 1.20363- 2 2.10860- 4 2.20000+ 1 4.30000+ 1 3.95479- 3 2.19950- 4 2.20000+ 1 4.40000+ 1 3.90471- 3 2.22200- 4 2.40000+ 1 2.40000+ 1 7.91922- 4 3.21420- 4 2.40000+ 1 2.50000+ 1 1.31787- 2 3.27120- 4 2.40000+ 1 2.70000+ 1 7.34388- 3 3.28430- 4 2.40000+ 1 2.90000+ 1 3.85646- 3 3.72170- 4 2.40000+ 1 3.00000+ 1 4.84681- 2 3.97830- 4 2.40000+ 1 3.20000+ 1 1.39869- 3 4.59920- 4 2.40000+ 1 3.30000+ 1 6.30105- 3 4.63120- 4 2.40000+ 1 4.10000+ 1 6.40102- 4 4.77600- 4 2.40000+ 1 4.30000+ 1 1.39869- 4 4.86690- 4 2.40000+ 1 4.40000+ 1 1.22849- 3 4.88940- 4 2.50000+ 1 2.50000+ 1 6.37112- 3 3.32820- 4 2.50000+ 1 2.70000+ 1 1.62347- 2 3.34130- 4 2.50000+ 1 2.90000+ 1 1.37791- 2 3.77870- 4 2.50000+ 1 3.00000+ 1 5.88716- 2 4.03530- 4 2.50000+ 1 3.20000+ 1 1.21885- 3 4.65620- 4 2.50000+ 1 3.30000+ 1 8.33808- 3 4.68820- 4 2.50000+ 1 4.10000+ 1 1.65966- 3 4.83300- 4 2.50000+ 1 4.30000+ 1 5.11330- 4 4.92390- 4 2.50000+ 1 4.40000+ 1 1.50587- 3 4.94640- 4 2.70000+ 1 2.90000+ 1 2.44977- 4 3.79180- 4 2.70000+ 1 3.00000+ 1 5.24519- 3 4.04840- 4 2.70000+ 1 3.20000+ 1 4.30839- 4 4.66930- 4 2.70000+ 1 3.30000+ 1 7.71389- 4 4.70130- 4 2.70000+ 1 4.10000+ 1 2.42963- 6 4.84610- 4 2.70000+ 1 4.30000+ 1 7.28875- 6 4.93700- 4 2.70000+ 1 4.40000+ 1 1.31604- 4 4.95950- 4 2.90000+ 1 2.90000+ 1 7.16490- 6 4.22920- 4 2.90000+ 1 3.00000+ 1 5.26972- 3 4.48580- 4 2.90000+ 1 3.20000+ 1 2.13438- 4 5.10670- 4 2.90000+ 1 3.30000+ 1 6.75386- 4 5.13870- 4 2.90000+ 1 4.10000+ 1 2.60194- 5 5.28350- 4 2.90000+ 1 4.30000+ 1 7.54194- 7 5.37440- 4 2.90000+ 1 4.40000+ 1 1.34239- 4 5.39690- 4 3.00000+ 1 3.00000+ 1 7.43674- 3 4.74240- 4 3.00000+ 1 3.20000+ 1 7.01882- 3 5.36330- 4 3.00000+ 1 3.30000+ 1 9.26483- 3 5.39530- 4 3.00000+ 1 4.10000+ 1 7.07717- 4 5.54010- 4 3.00000+ 1 4.30000+ 1 2.38975- 4 5.63100- 4 3.00000+ 1 4.40000+ 1 4.43996- 4 5.65350- 4 3.20000+ 1 3.20000+ 1 8.96511- 5 5.98420- 4 3.20000+ 1 3.30000+ 1 5.44776- 4 6.01620- 4 3.20000+ 1 4.10000+ 1 3.01833- 5 6.16100- 4 3.20000+ 1 4.30000+ 1 6.27560- 6 6.25190- 4 3.20000+ 1 4.40000+ 1 1.27906- 4 6.27440- 4 3.30000+ 1 3.30000+ 1 5.04441- 4 6.04820- 4 3.30000+ 1 4.10000+ 1 7.05255- 5 6.19300- 4 3.30000+ 1 4.30000+ 1 2.03207- 5 6.28390- 4 3.30000+ 1 4.40000+ 1 1.70635- 4 6.30640- 4 4.10000+ 1 4.30000+ 1 5.97622- 7 6.42870- 4 4.10000+ 1 4.40000+ 1 1.25494- 5 6.45120- 4 4.30000+ 1 4.40000+ 1 4.48251- 6 6.54210- 4 4.40000+ 1 4.40000+ 1 2.98841- 6 6.56460- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.77161- 4 2.91080- 4 2.90000+ 1 6.60173- 5 3.41830- 4 3.00000+ 1 8.51754- 6 3.67490- 4 4.30000+ 1 2.40751- 6 4.56350- 4 4.40000+ 1 2.54771- 7 4.58600- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.10000+ 1 1.08520- 3 6.65000- 6 2.20000+ 1 4.30000+ 1 1.74673- 4 1.57400- 5 2.20000+ 1 4.40000+ 1 4.01332- 4 1.79900- 5 2.40000+ 1 2.40000+ 1 1.01831- 1 1.17210- 4 2.40000+ 1 2.50000+ 1 3.29061- 1 1.22910- 4 2.40000+ 1 2.70000+ 1 7.62383- 2 1.24220- 4 2.40000+ 1 2.90000+ 1 6.42944- 2 1.67960- 4 2.40000+ 1 3.00000+ 1 8.66135- 2 1.93620- 4 2.40000+ 1 3.20000+ 1 7.72412- 2 2.55710- 4 2.40000+ 1 3.30000+ 1 7.82482- 2 2.58910- 4 2.40000+ 1 4.10000+ 1 9.77484- 3 2.73390- 4 2.40000+ 1 4.30000+ 1 2.61807- 3 2.82480- 4 2.40000+ 1 4.40000+ 1 2.87325- 3 2.84730- 4 2.50000+ 1 2.50000+ 1 4.79505- 3 1.28610- 4 2.50000+ 1 2.70000+ 1 6.77766- 3 1.29920- 4 2.50000+ 1 2.90000+ 1 1.31008- 2 1.73660- 4 2.50000+ 1 3.00000+ 1 5.79976- 3 1.99320- 4 2.50000+ 1 3.20000+ 1 8.68049- 2 2.61410- 4 2.50000+ 1 3.30000+ 1 3.48258- 3 2.64610- 4 2.50000+ 1 4.10000+ 1 6.55209- 4 2.79090- 4 2.50000+ 1 4.30000+ 1 3.82245- 4 2.88180- 4 2.50000+ 1 4.40000+ 1 1.62305- 4 2.90430- 4 2.70000+ 1 2.70000+ 1 8.05881- 4 1.31230- 4 2.70000+ 1 2.90000+ 1 1.73871- 3 1.74970- 4 2.70000+ 1 3.00000+ 1 1.56152- 3 2.00630- 4 2.70000+ 1 3.20000+ 1 7.69083- 3 2.62720- 4 2.70000+ 1 3.30000+ 1 2.05690- 3 2.65920- 4 2.70000+ 1 4.10000+ 1 1.18105- 4 2.80400- 4 2.70000+ 1 4.30000+ 1 4.80917- 5 2.89490- 4 2.70000+ 1 4.40000+ 1 4.10180- 5 2.91740- 4 2.90000+ 1 2.90000+ 1 3.16482- 4 2.18710- 4 2.90000+ 1 3.00000+ 1 1.80544- 3 2.44370- 4 2.90000+ 1 3.20000+ 1 4.53020- 3 3.06460- 4 2.90000+ 1 3.30000+ 1 6.91639- 4 3.09660- 4 2.90000+ 1 4.10000+ 1 8.52175- 5 3.24140- 4 2.90000+ 1 4.30000+ 1 1.80324- 5 3.33230- 4 2.90000+ 1 4.40000+ 1 4.17253- 5 3.35480- 4 3.00000+ 1 3.00000+ 1 7.07562- 4 2.70030- 4 3.00000+ 1 3.20000+ 1 9.13676- 3 3.32120- 4 3.00000+ 1 3.30000+ 1 8.00555- 4 3.35320- 4 3.00000+ 1 4.10000+ 1 5.37466- 5 3.49800- 4 3.00000+ 1 4.30000+ 1 4.03098- 5 3.58890- 4 3.00000+ 1 4.40000+ 1 3.11164- 5 3.61140- 4 3.20000+ 1 3.20000+ 1 4.57203- 3 3.94210- 4 3.20000+ 1 3.30000+ 1 8.89071- 3 3.97410- 4 3.20000+ 1 4.10000+ 1 7.09674- 4 4.11890- 4 3.20000+ 1 4.30000+ 1 1.81746- 4 4.20980- 4 3.20000+ 1 4.40000+ 1 3.00906- 4 4.23230- 4 3.30000+ 1 3.30000+ 1 1.70446- 4 4.00610- 4 3.30000+ 1 4.10000+ 1 4.52611- 5 4.15090- 4 3.30000+ 1 4.30000+ 1 1.16690- 5 4.24180- 4 3.30000+ 1 4.40000+ 1 2.01554- 5 4.26430- 4 4.10000+ 1 4.10000+ 1 2.82888- 6 4.29570- 4 4.10000+ 1 4.30000+ 1 2.12155- 6 4.38660- 4 4.10000+ 1 4.40000+ 1 1.41440- 6 4.40910- 4 4.30000+ 1 4.40000+ 1 1.06080- 6 4.50000- 4 4.40000+ 1 4.40000+ 1 3.53612- 7 4.52250- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.14580- 5 2.66740- 4 2.50000+ 1 2.48521- 4 2.72440- 4 3.00000+ 1 5.90911- 5 3.43150- 4 4.40000+ 1 1.79110- 6 4.34260- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 5.60001- 3 9.28700- 5 2.40000+ 1 2.50000+ 1 1.77185- 1 9.85700- 5 2.40000+ 1 2.70000+ 1 1.00511- 2 9.98800- 5 2.40000+ 1 2.90000+ 1 6.41393- 3 1.43620- 4 2.40000+ 1 3.00000+ 1 1.33208- 2 1.69280- 4 2.40000+ 1 3.20000+ 1 4.76208- 3 2.31370- 4 2.40000+ 1 3.30000+ 1 7.63562- 2 2.34570- 4 2.40000+ 1 4.10000+ 1 1.09490- 3 2.49050- 4 2.40000+ 1 4.30000+ 1 2.47238- 4 2.58140- 4 2.40000+ 1 4.40000+ 1 3.79207- 4 2.60390- 4 2.50000+ 1 2.50000+ 1 1.54437- 1 1.04270- 4 2.50000+ 1 2.70000+ 1 8.50002- 2 1.05580- 4 2.50000+ 1 2.90000+ 1 8.92408- 2 1.49320- 4 2.50000+ 1 3.00000+ 1 8.85619- 2 1.74980- 4 2.50000+ 1 3.20000+ 1 7.33723- 2 2.37070- 4 2.50000+ 1 3.30000+ 1 1.37608- 1 2.40270- 4 2.50000+ 1 4.10000+ 1 1.09160- 2 2.54750- 4 2.50000+ 1 4.30000+ 1 3.49708- 3 2.63840- 4 2.50000+ 1 4.40000+ 1 2.95873- 3 2.66090- 4 2.70000+ 1 2.70000+ 1 1.39379- 3 1.06890- 4 2.70000+ 1 2.90000+ 1 1.70967- 3 1.50630- 4 2.70000+ 1 3.00000+ 1 3.29644- 3 1.76290- 4 2.70000+ 1 3.20000+ 1 2.60520- 3 2.38380- 4 2.70000+ 1 3.30000+ 1 1.02122- 2 2.41580- 4 2.70000+ 1 4.10000+ 1 2.01054- 4 2.56060- 4 2.70000+ 1 4.30000+ 1 4.92931- 5 2.65150- 4 2.70000+ 1 4.40000+ 1 8.53902- 5 2.67400- 4 2.90000+ 1 2.90000+ 1 2.03773- 4 1.94370- 4 2.90000+ 1 3.00000+ 1 2.98086- 3 2.20030- 4 2.90000+ 1 3.20000+ 1 3.38842- 4 2.82120- 4 2.90000+ 1 3.30000+ 1 6.90142- 3 2.85320- 4 2.90000+ 1 4.10000+ 1 7.87913- 5 2.99800- 4 2.90000+ 1 4.30000+ 1 1.08672- 5 3.08890- 4 2.90000+ 1 4.40000+ 1 6.94761- 5 3.11140- 4 3.00000+ 1 3.00000+ 1 1.00993- 3 2.45690- 4 3.00000+ 1 3.20000+ 1 1.14382- 3 3.07780- 4 3.00000+ 1 3.30000+ 1 9.24116- 3 3.10980- 4 3.00000+ 1 4.10000+ 1 1.00143- 4 3.25460- 4 3.00000+ 1 4.30000+ 1 5.47272- 5 3.34550- 4 3.00000+ 1 4.40000+ 1 4.42480- 5 3.36800- 4 3.20000+ 1 3.20000+ 1 8.69424- 5 3.69870- 4 3.20000+ 1 3.30000+ 1 7.33566- 3 3.73070- 4 3.20000+ 1 4.10000+ 1 5.66681- 5 3.87550- 4 3.20000+ 1 4.30000+ 1 9.70335- 6 3.96640- 4 3.20000+ 1 4.40000+ 1 2.79457- 5 3.98890- 4 3.30000+ 1 3.30000+ 1 8.03120- 3 3.76270- 4 3.30000+ 1 4.10000+ 1 8.14299- 4 3.90750- 4 3.30000+ 1 4.30000+ 1 2.61988- 4 3.99840- 4 3.30000+ 1 4.40000+ 1 3.09734- 4 4.02090- 4 4.10000+ 1 4.10000+ 1 5.04556- 6 4.05230- 4 4.10000+ 1 4.30000+ 1 2.32871- 6 4.14320- 4 4.10000+ 1 4.40000+ 1 2.71676- 6 4.16570- 4 4.30000+ 1 4.40000+ 1 1.16440- 6 4.25660- 4 4.40000+ 1 4.40000+ 1 3.88141- 7 4.27910- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 7.13966- 6 1.38500- 4 3.30000+ 1 4.73347- 7 1.41700- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.18742- 1 1.53800- 5 2.90000+ 1 3.30000+ 1 7.19226- 2 1.85800- 5 2.90000+ 1 4.10000+ 1 1.90115- 2 3.30600- 5 2.90000+ 1 4.30000+ 1 6.38963- 3 4.21500- 5 2.90000+ 1 4.40000+ 1 3.69279- 3 4.44000- 5 3.00000+ 1 3.20000+ 1 1.39332- 1 4.10400- 5 3.00000+ 1 3.30000+ 1 4.03647- 2 4.42400- 5 3.00000+ 1 4.10000+ 1 7.86241- 3 5.87200- 5 3.00000+ 1 4.30000+ 1 4.36955- 3 6.78100- 5 3.00000+ 1 4.40000+ 1 1.74028- 3 7.00600- 5 3.20000+ 1 3.20000+ 1 2.17395- 1 1.03130- 4 3.20000+ 1 3.30000+ 1 3.10451- 1 1.06330- 4 3.20000+ 1 4.10000+ 1 1.27199- 2 1.20810- 4 3.20000+ 1 4.30000+ 1 8.27565- 3 1.29900- 4 3.20000+ 1 4.40000+ 1 6.38504- 3 1.32150- 4 3.30000+ 1 3.30000+ 1 2.22732- 2 1.09530- 4 3.30000+ 1 4.10000+ 1 1.89053- 3 1.24010- 4 3.30000+ 1 4.30000+ 1 4.84554- 3 1.33100- 4 3.30000+ 1 4.40000+ 1 1.89053- 3 1.35350- 4 4.10000+ 1 4.10000+ 1 1.25195- 5 1.38490- 4 4.10000+ 1 4.30000+ 1 2.12834- 4 1.47580- 4 4.10000+ 1 4.40000+ 1 1.25195- 4 1.49830- 4 4.30000+ 1 4.40000+ 1 7.51186- 5 1.58920- 4 4.40000+ 1 4.40000+ 1 1.25199- 5 1.61170- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 6.88169- 6 1.36000- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 2.25820- 2 9.68000- 6 2.90000+ 1 3.30000+ 1 8.92782- 2 1.28800- 5 2.90000+ 1 4.10000+ 1 1.77316- 3 2.73600- 5 2.90000+ 1 4.30000+ 1 1.84408- 4 3.64500- 5 2.90000+ 1 4.40000+ 1 3.06389- 3 3.87000- 5 3.00000+ 1 3.20000+ 1 5.55977- 2 3.53400- 5 3.00000+ 1 3.30000+ 1 1.97921- 1 3.85400- 5 3.00000+ 1 4.10000+ 1 2.20304- 2 5.30200- 5 3.00000+ 1 4.30000+ 1 3.69651- 3 6.21100- 5 3.00000+ 1 4.40000+ 1 7.06812- 3 6.43600- 5 3.20000+ 1 3.20000+ 1 1.22300- 2 9.74300- 5 3.20000+ 1 3.30000+ 1 2.36910- 1 1.00630- 4 3.20000+ 1 4.10000+ 1 1.38285- 3 1.15110- 4 3.20000+ 1 4.30000+ 1 5.77318- 4 1.24200- 4 3.20000+ 1 4.40000+ 1 3.85317- 3 1.26450- 4 3.30000+ 1 3.30000+ 1 3.10119- 1 1.03830- 4 3.30000+ 1 4.10000+ 1 1.46371- 2 1.18310- 4 3.30000+ 1 4.30000+ 1 5.09120- 3 1.27400- 4 3.30000+ 1 4.40000+ 1 1.15772- 2 1.29650- 4 4.10000+ 1 4.10000+ 1 1.35405- 5 1.32790- 4 4.10000+ 1 4.30000+ 1 6.77033- 5 1.41880- 4 4.10000+ 1 4.40000+ 1 2.57281- 4 1.44130- 4 4.30000+ 1 4.40000+ 1 4.06225- 5 1.53220- 4 4.40000+ 1 4.40000+ 1 4.06225- 5 1.55470- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.13076- 6 4.37400- 5 3.00000+ 1 9.27515- 6 6.94000- 5 4.30000+ 1 2.08903- 7 1.58260- 4 4.40000+ 1 3.22207- 9 1.60510- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 3.31306- 2 8.37000- 6 2.90000+ 1 3.30000+ 1 1.28414- 1 1.15700- 5 2.90000+ 1 4.10000+ 1 7.79119- 3 2.60500- 5 2.90000+ 1 4.30000+ 1 1.51931- 3 3.51400- 5 2.90000+ 1 4.40000+ 1 3.20459- 3 3.73900- 5 3.00000+ 1 3.20000+ 1 3.31328- 1 3.40300- 5 3.00000+ 1 3.30000+ 1 2.99006- 1 3.72300- 5 3.00000+ 1 4.10000+ 1 1.65603- 2 5.17100- 5 3.00000+ 1 4.30000+ 1 6.02352- 3 6.08000- 5 3.00000+ 1 4.40000+ 1 5.46024- 3 6.30500- 5 3.20000+ 1 3.20000+ 1 2.34641- 3 9.61200- 5 3.20000+ 1 3.30000+ 1 1.18405- 1 9.93200- 5 3.20000+ 1 4.10000+ 1 8.02003- 3 1.13800- 4 3.20000+ 1 4.30000+ 1 3.38814- 4 1.22890- 4 3.20000+ 1 4.40000+ 1 2.67913- 3 1.25140- 4 3.30000+ 1 3.30000+ 1 1.73974- 2 1.02520- 4 3.30000+ 1 4.10000+ 1 6.22139- 3 1.17000- 4 3.30000+ 1 4.30000+ 1 9.64225- 4 1.26090- 4 3.30000+ 1 4.40000+ 1 9.50912- 4 1.28340- 4 4.10000+ 1 4.10000+ 1 2.09515- 3 1.31480- 4 4.10000+ 1 4.30000+ 1 9.15570- 4 1.40570- 4 4.10000+ 1 4.40000+ 1 1.27847- 3 1.42820- 4 4.30000+ 1 4.40000+ 1 4.33279- 3 1.51910- 4 4.40000+ 1 4.40000+ 1 1.60630- 3 1.54160- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.36737- 6 8.77500- 5 4.10000+ 1 5.45118- 7 1.05430- 4 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 2.23175- 2 7.97000- 6 3.00000+ 1 4.30000+ 1 2.17826- 2 1.70600- 5 3.00000+ 1 4.40000+ 1 1.86380- 2 1.93100- 5 3.20000+ 1 3.20000+ 1 1.57403- 1 5.23800- 5 3.20000+ 1 3.30000+ 1 6.87751- 1 5.55800- 5 3.20000+ 1 4.10000+ 1 3.18616- 2 7.00600- 5 3.20000+ 1 4.30000+ 1 8.48023- 3 7.91500- 5 3.20000+ 1 4.40000+ 1 1.32856- 2 8.14000- 5 3.30000+ 1 3.30000+ 1 2.58241- 2 5.87800- 5 3.30000+ 1 4.10000+ 1 2.43532- 3 7.32600- 5 3.30000+ 1 4.30000+ 1 7.65437- 3 8.23500- 5 3.30000+ 1 4.40000+ 1 1.61926- 3 8.46000- 5 4.10000+ 1 4.10000+ 1 1.91569- 5 8.77400- 5 4.10000+ 1 4.30000+ 1 5.80265- 4 9.68300- 5 4.10000+ 1 4.40000+ 1 8.05288- 5 9.90800- 5 4.30000+ 1 4.40000+ 1 2.54250- 4 1.08170- 4 4.40000+ 1 4.40000+ 1 6.81901- 6 1.10420- 4 1 83000 0 7 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.10601- 7 6.20900- 5 3.30000+ 1 1.15591- 6 6.52900- 5 4.10000+ 1 2.17122- 7 7.97700- 5 1 83000 0 9 2.08980+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.50034- 2 2.67200- 5 3.20000+ 1 3.30000+ 1 5.60037- 1 2.99200- 5 3.20000+ 1 4.10000+ 1 8.16069- 3 4.44000- 5 3.20000+ 1 4.30000+ 1 1.39165- 3 5.34900- 5 3.20000+ 1 4.40000+ 1 4.53287- 3 5.57400- 5 3.30000+ 1 3.30000+ 1 3.46477- 1 3.31200- 5 3.30000+ 1 4.10000+ 1 3.13297- 2 4.76000- 5 3.30000+ 1 4.30000+ 1 1.02865- 2 5.66900- 5 3.30000+ 1 4.40000+ 1 1.17302- 2 5.89400- 5 4.10000+ 1 4.10000+ 1 1.99552- 4 6.20800- 5 4.10000+ 1 4.30000+ 1 1.36078- 4 7.11700- 5 4.10000+ 1 4.40000+ 1 4.98237- 4 7.34200- 5 4.30000+ 1 4.40000+ 1 1.28541- 4 8.25100- 5 4.40000+ 1 4.40000+ 1 8.74908- 5 8.47600- 5 1 84000 0 0 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 1.33000+ 0 4.40000+ 1 2.67000+ 0 1 84000 0 0 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.34240- 2 3.00000+ 0 1.69180- 2 5.00000+ 0 1.62970- 2 6.00000+ 0 1.38170- 2 8.00000+ 0 4.12760- 3 1.00000+ 1 3.84020- 3 1.10000+ 1 3.28150- 3 1.30000+ 1 2.80350- 3 1.40000+ 1 2.68510- 3 1.60000+ 1 9.71640- 4 1.80000+ 1 8.44300- 4 1.90000+ 1 7.04960- 4 2.10000+ 1 4.95560- 4 2.20000+ 1 4.69540- 4 2.40000+ 1 1.95500- 4 2.50000+ 1 1.89300- 4 2.70000+ 1 1.81340- 4 2.90000+ 1 1.35730- 4 3.00000+ 1 1.07520- 4 3.20000+ 1 4.21600- 5 3.30000+ 1 3.85100- 5 4.10000+ 1 2.03300- 5 4.30000+ 1 1.02500- 5 4.40000+ 1 7.44000- 6 1 84000 0 0 2.09000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.33380- 1 3.00000+ 0 3.24050- 2 5.00000+ 0 3.23910- 2 6.00000+ 0 2.25780- 2 8.00000+ 0 1.03660- 2 1.00000+ 1 1.02420- 2 1.10000+ 1 7.79090- 3 1.30000+ 1 7.63890- 3 1.40000+ 1 7.13950- 3 1.60000+ 1 3.47010- 3 1.80000+ 1 3.33200- 3 1.90000+ 1 2.58810- 3 2.10000+ 1 2.36050- 3 2.20000+ 1 2.21290- 3 2.40000+ 1 1.84500- 3 2.50000+ 1 1.79550- 3 2.70000+ 1 9.58450- 4 2.90000+ 1 8.48890- 4 3.00000+ 1 6.52300- 4 3.20000+ 1 4.51700- 4 3.30000+ 1 4.18020- 4 4.10000+ 1 1.68470- 4 4.30000+ 1 1.10720- 4 4.40000+ 1 7.40200- 5 1 84000 0 0 2.09000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.21360-11 3.00000+ 0 3.41360-10 5.00000+ 0 2.78960-10 6.00000+ 0 3.27420-10 8.00000+ 0 8.86230-10 1.00000+ 1 8.35650-10 1.10000+ 1 9.23690-10 1.30000+ 1 8.00120-10 1.40000+ 1 8.26380-10 1.60000+ 1 1.94660- 9 1.80000+ 1 1.94590- 9 1.90000+ 1 2.12810- 9 2.10000+ 1 2.13620- 9 2.20000+ 1 2.19340- 9 2.40000+ 1 2.21310- 9 2.50000+ 1 2.24320- 9 2.70000+ 1 4.23620- 9 2.90000+ 1 4.47940- 9 3.00000+ 1 4.93130- 9 3.20000+ 1 5.91600- 9 3.30000+ 1 6.10900- 9 4.10000+ 1 1.05000- 8 4.30000+ 1 1.27900- 8 4.40000+ 1 1.49980- 8 1 84000 0 0 2.09000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.31880- 5 3.00000+ 0 1.52700- 6 5.00000+ 0 2.69120- 6 6.00000+ 0 2.31500- 6 8.00000+ 0 6.12790- 8 1.00000+ 1 6.84870- 8 1.10000+ 1 7.46000- 8 1.30000+ 1 9.47990- 8 1.40000+ 1 8.83090- 8 1.60000+ 1 2.56080- 9 1.80000+ 1 3.70600- 9 1.90000+ 1 2.41700- 9 2.10000+ 1 2.12420- 9 2.20000+ 1 1.73250- 9 2.40000+ 1 3.54730-11 2.50000+ 1 3.23710-11 2.70000+ 1 1.48350-10 2.90000+ 1 3.12270-10 3.00000+ 1 1.69390-10 1 84000 0 0 2.09000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.23650- 6 3.00000+ 0 1.26660- 5 5.00000+ 0 3.57700- 6 6.00000+ 0 3.93430- 6 8.00000+ 0 1.93910- 5 1.00000+ 1 1.36310- 5 1.10000+ 1 1.09120- 5 1.30000+ 1 2.62170- 6 1.40000+ 1 2.59080- 6 1.60000+ 1 1.51110- 5 1.80000+ 1 1.43320- 5 1.90000+ 1 9.08380- 6 2.10000+ 1 7.57300- 6 2.20000+ 1 6.84540- 6 2.40000+ 1 1.90230- 7 2.50000+ 1 1.77520- 7 2.70000+ 1 2.95130- 5 2.90000+ 1 8.52950- 6 3.00000+ 1 1.67390- 5 1 84000 0 0 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.34572- 4 3.00000+ 0 6.21932- 4 5.00000+ 0 4.43791- 4 6.00000+ 0 4.37784- 4 8.00000+ 0 4.50578- 4 1.00000+ 1 3.90987- 4 1.10000+ 1 3.47358- 4 1.30000+ 1 2.65810- 4 1.40000+ 1 2.58607- 4 1.60000+ 1 2.42909- 4 1.80000+ 1 2.28910- 4 1.90000+ 1 2.16255- 4 2.10000+ 1 1.67784- 4 2.20000+ 1 1.61740- 4 2.40000+ 1 9.51714- 5 2.50000+ 1 9.26540- 5 2.70000+ 1 1.08999- 4 2.90000+ 1 7.94848- 5 3.00000+ 1 7.73424- 5 3.20000+ 1 4.21600- 5 3.30000+ 1 3.85100- 5 4.10000+ 1 2.03300- 5 4.30000+ 1 1.02500- 5 4.40000+ 1 7.44000- 6 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.34741+ 0 3.00000+ 0 4.66894- 1 5.00000+ 0 5.25200- 1 6.00000+ 0 4.27471- 1 8.00000+ 0 3.97325- 2 1.00000+ 1 3.96155- 2 1.10000+ 1 3.69898- 2 1.30000+ 1 4.27071- 2 1.40000+ 1 3.97778- 2 1.60000+ 1 1.33440- 3 1.80000+ 1 1.58912- 3 1.90000+ 1 8.40748- 4 2.10000+ 1 4.07167- 4 2.20000+ 1 3.65728- 4 2.40000+ 1 1.32347- 5 2.50000+ 1 1.14135- 5 2.70000+ 1 1.46564- 5 2.90000+ 1 9.06516- 6 3.00000+ 1 1.92065- 6 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.25081- 2 3.00000+ 0 4.99802- 3 5.00000+ 0 6.62537- 3 6.00000+ 0 4.42947- 3 8.00000+ 0 1.01554- 4 1.00000+ 1 1.01731- 4 1.10000+ 1 9.26779- 5 1.30000+ 1 1.08379- 4 1.40000+ 1 9.73483- 5 1.60000+ 1 6.22393- 7 1.80000+ 1 6.47406- 7 1.90000+ 1 3.27556- 7 2.10000+ 1 1.24979- 7 2.20000+ 1 1.05714- 7 2.40000+ 1 1.87997- 9 2.50000+ 1 1.61418- 9 2.70000+ 1 1.11055- 9 2.90000+ 1 8.62584-10 3.00000+ 1 1.37764-10 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03132+ 1 3.00000+ 0 1.51939+ 1 5.00000+ 0 1.05346+ 1 6.00000+ 0 1.04052+ 1 8.00000+ 0 1.07407+ 1 1.00000+ 1 9.16654+ 0 1.10000+ 1 8.05700+ 0 1.30000+ 1 5.89245+ 0 1.40000+ 1 5.74672+ 0 1.60000+ 1 5.34271+ 0 1.80000+ 1 4.94954+ 0 1.90000+ 1 4.64456+ 0 2.10000+ 1 3.33821+ 0 2.20000+ 1 3.22739+ 0 2.40000+ 1 1.44328+ 0 2.50000+ 1 1.43721+ 0 2.70000+ 1 1.83161+ 0 2.90000+ 1 1.05381+ 0 3.00000+ 1 9.99998- 1 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04813- 2 3.00000+ 0 1.12981- 2 5.00000+ 0 9.22783- 3 6.00000+ 0 8.94975- 3 8.00000+ 0 3.57547- 3 1.00000+ 1 3.34748- 3 1.10000+ 1 2.84146- 3 1.30000+ 1 2.42931- 3 1.40000+ 1 2.32914- 3 1.60000+ 1 7.28109- 4 1.80000+ 1 6.14742- 4 1.90000+ 1 4.88378- 4 2.10000+ 1 3.27651- 4 2.20000+ 1 3.07695- 4 2.40000+ 1 1.00327- 4 2.50000+ 1 9.66444- 5 2.70000+ 1 7.23397- 5 2.90000+ 1 5.62444- 5 3.00000+ 1 3.01775- 5 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.83449- 1 7.71270- 2 6.00000+ 0 4.71838- 1 7.96070- 2 1.00000+ 1 5.29628- 2 8.95838- 2 1.10000+ 1 1.02770- 1 9.01425- 2 1.30000+ 1 1.52239- 3 9.06205- 2 1.40000+ 1 1.82179- 3 9.07389- 2 1.80000+ 1 1.27699- 2 9.25797- 2 1.90000+ 1 2.52079- 2 9.27190- 2 2.10000+ 1 4.13858- 4 9.29284- 2 2.20000+ 1 4.94968- 4 9.29545- 2 2.90000+ 1 2.99139- 3 9.32883- 2 3.00000+ 1 5.75317- 3 9.33165- 2 3.20000+ 1 6.14157- 5 9.33818- 2 3.30000+ 1 7.21227- 5 9.33855- 2 4.30000+ 1 1.85779- 4 9.34137- 2 4.40000+ 1 3.06379- 4 9.34166- 2 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.10923- 3 5.95880- 2 3.00000+ 0 5.00000+ 0 6.74392- 3 6.02090- 2 3.00000+ 0 6.00000+ 0 3.40843- 3 6.26890- 2 3.00000+ 0 8.00000+ 0 1.66758- 3 7.23784- 2 3.00000+ 0 1.00000+ 1 1.46165- 3 7.26658- 2 3.00000+ 0 1.10000+ 1 8.08472- 4 7.32245- 2 3.00000+ 0 1.30000+ 1 6.89943- 5 7.37025- 2 3.00000+ 0 1.40000+ 1 4.94357- 5 7.38209- 2 3.00000+ 0 1.60000+ 1 4.24233- 4 7.55344- 2 3.00000+ 0 1.80000+ 1 3.64105- 4 7.56617- 2 3.00000+ 0 1.90000+ 1 2.01514- 4 7.58010- 2 3.00000+ 0 2.10000+ 1 1.86455- 5 7.60104- 2 3.00000+ 0 2.20000+ 1 1.31433- 5 7.60365- 2 3.00000+ 0 2.40000+ 1 4.54811- 8 7.63105- 2 3.00000+ 0 2.50000+ 1 4.54811- 8 7.63167- 2 3.00000+ 0 2.70000+ 1 9.45516- 5 7.63247- 2 3.00000+ 0 2.90000+ 1 7.37670- 5 7.63703- 2 3.00000+ 0 3.00000+ 1 3.97023- 5 7.63985- 2 3.00000+ 0 3.20000+ 1 2.63775- 6 7.64638- 2 3.00000+ 0 3.30000+ 1 1.81905- 6 7.64675- 2 5.00000+ 0 5.00000+ 0 3.33942- 4 6.08300- 2 5.00000+ 0 6.00000+ 0 5.89549- 3 6.33100- 2 5.00000+ 0 8.00000+ 0 1.19421- 3 7.29994- 2 5.00000+ 0 1.00000+ 1 1.27021- 4 7.32868- 2 5.00000+ 0 1.10000+ 1 1.17310- 3 7.38455- 2 5.00000+ 0 1.30000+ 1 7.06247- 5 7.43235- 2 5.00000+ 0 1.40000+ 1 1.78728- 4 7.44419- 2 5.00000+ 0 1.60000+ 1 2.94518- 4 7.61554- 2 5.00000+ 0 1.80000+ 1 3.06974- 5 7.62827- 2 5.00000+ 0 1.90000+ 1 2.80596- 4 7.64220- 2 5.00000+ 0 2.10000+ 1 1.83277- 5 7.66314- 2 5.00000+ 0 2.20000+ 1 4.65709- 5 7.66575- 2 5.00000+ 0 2.40000+ 1 5.45739- 7 7.69315- 2 5.00000+ 0 2.50000+ 1 8.18570- 7 7.69377- 2 5.00000+ 0 2.70000+ 1 6.51228- 5 7.69457- 2 5.00000+ 0 2.90000+ 1 6.18518- 6 7.69913- 2 5.00000+ 0 3.00000+ 1 5.47576- 5 7.70195- 2 5.00000+ 0 3.20000+ 1 2.59216- 6 7.70848- 2 5.00000+ 0 3.30000+ 1 6.41244- 6 7.70885- 2 6.00000+ 0 6.00000+ 0 2.50128- 3 6.57900- 2 6.00000+ 0 8.00000+ 0 5.44360- 4 7.54794- 2 6.00000+ 0 1.00000+ 1 1.05467- 3 7.57668- 2 6.00000+ 0 1.10000+ 1 1.02801- 3 7.63255- 2 6.00000+ 0 1.30000+ 1 1.97329- 4 7.68035- 2 6.00000+ 0 1.40000+ 1 1.62541- 4 7.69219- 2 6.00000+ 0 1.60000+ 1 1.30968- 4 7.86354- 2 6.00000+ 0 1.80000+ 1 2.51768- 4 7.87627- 2 6.00000+ 0 1.90000+ 1 2.48072- 4 7.89020- 2 6.00000+ 0 2.10000+ 1 5.17523- 5 7.91114- 2 6.00000+ 0 2.20000+ 1 4.25223- 5 7.91375- 2 6.00000+ 0 2.40000+ 1 8.64062- 7 7.94115- 2 6.00000+ 0 2.50000+ 1 9.55006- 7 7.94177- 2 6.00000+ 0 2.70000+ 1 2.87868- 5 7.94257- 2 6.00000+ 0 2.90000+ 1 5.05252- 5 7.94713- 2 6.00000+ 0 3.00000+ 1 4.85261- 5 7.94995- 2 6.00000+ 0 3.20000+ 1 7.27624- 6 7.95648- 2 6.00000+ 0 3.30000+ 1 5.86671- 6 7.95685- 2 8.00000+ 0 8.00000+ 0 1.66445- 4 8.51688- 2 8.00000+ 0 1.00000+ 1 2.59270- 4 8.54562- 2 8.00000+ 0 1.10000+ 1 1.30203- 4 8.60149- 2 8.00000+ 0 1.30000+ 1 1.08236- 5 8.64929- 2 8.00000+ 0 1.40000+ 1 7.27624- 6 8.66113- 2 8.00000+ 0 1.60000+ 1 8.44059- 5 8.83248- 2 8.00000+ 0 1.80000+ 1 6.46217- 5 8.84521- 2 8.00000+ 0 1.90000+ 1 3.25170- 5 8.85914- 2 8.00000+ 0 2.10000+ 1 2.91061- 6 8.88008- 2 8.00000+ 0 2.20000+ 1 1.90997- 6 8.88269- 2 8.00000+ 0 2.70000+ 1 1.87826- 5 8.91151- 2 8.00000+ 0 2.90000+ 1 1.30968- 5 8.91607- 2 8.00000+ 0 3.00000+ 1 6.41242- 6 8.91889- 2 8.00000+ 0 3.20000+ 1 4.09300- 7 8.92542- 2 8.00000+ 0 3.30000+ 1 2.72863- 7 8.92579- 2 1.00000+ 1 1.00000+ 1 1.16875- 5 8.57436- 2 1.00000+ 1 1.10000+ 1 2.16024- 4 8.63023- 2 1.00000+ 1 1.30000+ 1 1.11418- 5 8.67803- 2 1.00000+ 1 1.40000+ 1 2.40127- 5 8.68987- 2 1.00000+ 1 1.60000+ 1 6.39430- 5 8.86122- 2 1.00000+ 1 1.80000+ 1 5.59400- 6 8.87395- 2 1.00000+ 1 1.90000+ 1 5.19810- 5 8.88788- 2 1.00000+ 1 2.10000+ 1 2.91068- 6 8.90882- 2 1.00000+ 1 2.20000+ 1 6.32136- 6 8.91143- 2 1.00000+ 1 2.40000+ 1 4.54805- 8 8.93883- 2 1.00000+ 1 2.50000+ 1 9.09577- 8 8.93945- 2 1.00000+ 1 2.70000+ 1 1.41438- 5 8.94025- 2 1.00000+ 1 2.90000+ 1 1.13692- 6 8.94481- 2 1.00000+ 1 3.00000+ 1 1.01416- 5 8.94763- 2 1.00000+ 1 3.20000+ 1 4.09311- 7 8.95416- 2 1.00000+ 1 3.30000+ 1 8.64082- 7 8.95453- 2 1.10000+ 1 1.10000+ 1 1.06737- 4 8.68610- 2 1.10000+ 1 1.30000+ 1 3.26068- 5 8.73390- 2 1.10000+ 1 1.40000+ 1 2.59216- 5 8.74574- 2 1.10000+ 1 1.60000+ 1 3.13786- 5 8.91709- 2 1.10000+ 1 1.80000+ 1 5.18452- 5 8.92982- 2 1.10000+ 1 1.90000+ 1 5.16178- 5 8.94375- 2 1.10000+ 1 2.10000+ 1 8.64063- 6 8.96469- 2 1.10000+ 1 2.20000+ 1 6.82176- 6 8.96730- 2 1.10000+ 1 2.40000+ 1 1.36426- 7 8.99470- 2 1.10000+ 1 2.50000+ 1 1.36426- 7 8.99532- 2 1.10000+ 1 2.70000+ 1 6.91264- 6 8.99612- 2 1.10000+ 1 2.90000+ 1 1.04143- 5 9.00068- 2 1.10000+ 1 3.00000+ 1 1.00962- 5 9.00350- 2 1.10000+ 1 3.20000+ 1 1.22789- 6 9.01003- 2 1.10000+ 1 3.30000+ 1 9.55007- 7 9.01040- 2 1.30000+ 1 1.30000+ 1 9.09581- 8 8.78170- 2 1.30000+ 1 1.40000+ 1 3.72927- 6 8.79354- 2 1.30000+ 1 1.60000+ 1 2.59223- 6 8.96489- 2 1.30000+ 1 1.80000+ 1 2.59223- 6 8.97762- 2 1.30000+ 1 1.90000+ 1 7.45854- 6 8.99155- 2 1.30000+ 1 2.10000+ 1 4.54806- 8 9.01249- 2 1.30000+ 1 2.20000+ 1 9.55032- 7 9.01510- 2 1.30000+ 1 2.70000+ 1 5.91205- 7 9.04392- 2 1.30000+ 1 2.90000+ 1 5.00258- 7 9.04848- 2 1.30000+ 1 3.00000+ 1 1.45528- 6 9.05130- 2 1.30000+ 1 3.30000+ 1 1.36430- 7 9.05820- 2 1.40000+ 1 1.40000+ 1 8.64054- 7 8.80538- 2 1.40000+ 1 1.60000+ 1 1.72808- 6 8.97673- 2 1.40000+ 1 1.80000+ 1 5.36657- 6 8.98946- 2 1.40000+ 1 1.90000+ 1 5.91183- 6 9.00339- 2 1.40000+ 1 2.10000+ 1 9.54998- 7 9.02433- 2 1.40000+ 1 2.20000+ 1 4.54790- 7 9.02694- 2 1.40000+ 1 2.70000+ 1 3.63826- 7 9.05576- 2 1.40000+ 1 2.90000+ 1 1.04598- 6 9.06032- 2 1.40000+ 1 3.00000+ 1 1.13689- 6 9.06314- 2 1.40000+ 1 3.20000+ 1 1.36425- 7 9.06967- 2 1.40000+ 1 3.30000+ 1 4.54790- 8 9.07004- 2 1.60000+ 1 1.60000+ 1 1.06874- 5 9.14807- 2 1.60000+ 1 1.80000+ 1 1.59176- 5 9.16081- 2 1.60000+ 1 1.90000+ 1 7.82224- 6 9.17474- 2 1.60000+ 1 2.10000+ 1 7.27641- 7 9.19568- 2 1.60000+ 1 2.20000+ 1 4.54804- 7 9.19828- 2 1.60000+ 1 2.70000+ 1 4.77529- 6 9.22710- 2 1.60000+ 1 2.90000+ 1 3.22903- 6 9.23166- 2 1.60000+ 1 3.00000+ 1 1.54626- 6 9.23448- 2 1.60000+ 1 3.20000+ 1 9.09577- 8 9.24102- 2 1.60000+ 1 3.30000+ 1 4.54804- 8 9.24138- 2 1.80000+ 1 1.80000+ 1 6.82199- 7 9.17354- 2 1.80000+ 1 1.90000+ 1 1.25068- 5 9.18747- 2 1.80000+ 1 2.10000+ 1 6.82199- 7 9.20841- 2 1.80000+ 1 2.20000+ 1 1.40980- 6 9.21102- 2 1.80000+ 1 2.70000+ 1 3.54731- 6 9.23984- 2 1.80000+ 1 2.90000+ 1 2.72873- 7 9.24440- 2 1.80000+ 1 3.00000+ 1 2.45587- 6 9.24722- 2 1.80000+ 1 3.20000+ 1 9.09588- 8 9.25375- 2 1.80000+ 1 3.30000+ 1 1.81905- 7 9.25412- 2 1.90000+ 1 1.90000+ 1 6.16133- 6 9.20141- 2 1.90000+ 1 2.10000+ 1 1.97887- 6 9.22235- 2 1.90000+ 1 2.20000+ 1 1.52908- 6 9.22495- 2 1.90000+ 1 2.40000+ 1 4.49749- 8 9.25235- 2 1.90000+ 1 2.50000+ 1 4.49749- 8 9.25297- 2 1.90000+ 1 2.70000+ 1 1.70893- 6 9.25377- 2 1.90000+ 1 2.90000+ 1 2.47353- 6 9.25833- 2 1.90000+ 1 3.00000+ 1 2.42854- 6 9.26115- 2 1.90000+ 1 3.20000+ 1 2.69837- 7 9.26769- 2 1.90000+ 1 3.30000+ 1 2.24859- 7 9.26805- 2 2.10000+ 1 2.20000+ 1 2.40470- 7 9.24589- 2 2.10000+ 1 2.70000+ 1 1.44279- 7 9.27471- 2 2.10000+ 1 2.90000+ 1 1.44279- 7 9.27927- 2 2.10000+ 1 3.00000+ 1 3.84771- 7 9.28209- 2 2.10000+ 1 3.30000+ 1 4.80972- 8 9.28899- 2 2.20000+ 1 2.20000+ 1 4.77538- 8 9.24849- 2 2.20000+ 1 2.70000+ 1 9.55042- 8 9.27731- 2 2.20000+ 1 2.90000+ 1 2.86509- 7 9.28187- 2 2.20000+ 1 3.00000+ 1 3.34255- 7 9.28469- 2 2.20000+ 1 3.20000+ 1 4.77538- 8 9.29123- 2 2.70000+ 1 2.70000+ 1 5.62468- 7 9.30613- 2 2.70000+ 1 2.90000+ 1 7.49930- 7 9.31069- 2 2.70000+ 1 3.00000+ 1 3.28094- 7 9.31351- 2 2.90000+ 1 2.90000+ 1 4.55405- 8 9.31525- 2 2.90000+ 1 3.00000+ 1 5.00916- 7 9.31807- 2 2.90000+ 1 3.30000+ 1 4.55405- 8 9.32498- 2 3.00000+ 1 3.00000+ 1 2.57544- 7 9.32090- 2 3.00000+ 1 3.20000+ 1 5.15123- 8 9.32743- 2 3.00000+ 1 3.30000+ 1 5.15123- 8 9.32780- 2 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.19790- 5 6.21000- 4 6.00000+ 0 3.70189- 3 3.10100- 3 1.00000+ 1 3.65129- 2 1.30778- 2 1.10000+ 1 3.83129- 2 1.36365- 2 1.30000+ 1 1.38799- 3 1.41145- 2 1.40000+ 1 2.07579- 3 1.42329- 2 1.80000+ 1 9.49786- 3 1.60737- 2 1.90000+ 1 1.09630- 2 1.62130- 2 2.10000+ 1 2.17789- 4 1.64224- 2 2.20000+ 1 3.45599- 4 1.64485- 2 2.90000+ 1 1.96419- 3 1.67823- 2 3.00000+ 1 2.24479- 3 1.68105- 2 3.20000+ 1 2.89539- 5 1.68758- 2 3.30000+ 1 4.57428- 5 1.68795- 2 4.30000+ 1 1.40579- 4 1.69077- 2 4.40000+ 1 1.37649- 4 1.69106- 2 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.64308- 3 1.25440- 4 5.00000+ 0 2.20000+ 1 6.09838- 3 1.51460- 4 5.00000+ 0 2.40000+ 1 1.40430- 2 4.25500- 4 5.00000+ 0 2.50000+ 1 1.86927- 2 4.31700- 4 5.00000+ 0 2.70000+ 1 4.55548- 3 4.39660- 4 5.00000+ 0 2.90000+ 1 3.38576- 3 4.85270- 4 5.00000+ 0 3.00000+ 1 3.00959- 3 5.13480- 4 5.00000+ 0 3.20000+ 1 6.56974- 4 5.78840- 4 5.00000+ 0 3.30000+ 1 8.63820- 4 5.82490- 4 6.00000+ 0 1.30000+ 1 2.30307- 1 2.97500- 4 6.00000+ 0 1.40000+ 1 2.89083- 1 4.15900- 4 6.00000+ 0 1.60000+ 1 1.83639- 2 2.12936- 3 6.00000+ 0 1.80000+ 1 7.24968- 3 2.25670- 3 6.00000+ 0 1.90000+ 1 1.07864- 2 2.39604- 3 6.00000+ 0 2.10000+ 1 3.13442- 2 2.60544- 3 6.00000+ 0 2.20000+ 1 3.70418- 2 2.63146- 3 6.00000+ 0 2.40000+ 1 2.14337- 2 2.90550- 3 6.00000+ 0 2.50000+ 1 2.66095- 2 2.91170- 3 6.00000+ 0 2.70000+ 1 3.88958- 3 2.91966- 3 6.00000+ 0 2.90000+ 1 1.44152- 3 2.96527- 3 6.00000+ 0 3.00000+ 1 2.10837- 3 2.99348- 3 6.00000+ 0 3.20000+ 1 4.05007- 3 3.05884- 3 6.00000+ 0 3.30000+ 1 4.62803- 3 3.06249- 3 8.00000+ 0 8.00000+ 0 5.24381- 3 8.66280- 3 8.00000+ 0 1.00000+ 1 1.08284- 2 8.95020- 3 8.00000+ 0 1.10000+ 1 1.66680- 2 9.50890- 3 8.00000+ 0 1.30000+ 1 1.22203- 2 9.98690- 3 8.00000+ 0 1.40000+ 1 1.54811- 2 1.01053- 2 8.00000+ 0 1.60000+ 1 2.27048- 3 1.18188- 2 8.00000+ 0 1.80000+ 1 2.66565- 3 1.19461- 2 8.00000+ 0 1.90000+ 1 4.05387- 3 1.20854- 2 8.00000+ 0 2.10000+ 1 2.73655- 3 1.22948- 2 8.00000+ 0 2.20000+ 1 3.44160- 3 1.23209- 2 8.00000+ 0 2.40000+ 1 2.34847- 4 1.25949- 2 8.00000+ 0 2.50000+ 1 2.54776- 4 1.26011- 2 8.00000+ 0 2.70000+ 1 4.92302- 4 1.26091- 2 8.00000+ 0 2.90000+ 1 5.38120- 4 1.26547- 2 8.00000+ 0 3.00000+ 1 7.93525- 4 1.26829- 2 8.00000+ 0 3.20000+ 1 3.74979- 4 1.27482- 2 8.00000+ 0 3.30000+ 1 4.60294- 4 1.27519- 2 1.00000+ 1 1.00000+ 1 1.89799- 5 9.23760- 3 1.00000+ 1 1.10000+ 1 2.08768- 4 9.79630- 3 1.00000+ 1 1.30000+ 1 6.77881- 4 1.02743- 2 1.00000+ 1 1.40000+ 1 5.33790- 3 1.03927- 2 1.00000+ 1 1.60000+ 1 1.84959- 3 1.21062- 2 1.00000+ 1 1.80000+ 1 2.49216- 6 1.22335- 2 1.00000+ 1 1.90000+ 1 4.21766- 5 1.23728- 2 1.00000+ 1 2.10000+ 1 1.31902- 4 1.25822- 2 1.00000+ 1 2.20000+ 1 7.59916- 4 1.26083- 2 1.00000+ 1 2.40000+ 1 8.68410- 5 1.28823- 2 1.00000+ 1 2.50000+ 1 3.01553- 4 1.28885- 2 1.00000+ 1 2.70000+ 1 3.77479- 4 1.28965- 2 1.00000+ 1 2.90000+ 1 3.83408- 7 1.29421- 2 1.00000+ 1 3.00000+ 1 7.85974- 6 1.29703- 2 1.00000+ 1 3.20000+ 1 1.80199- 5 1.30356- 2 1.00000+ 1 3.30000+ 1 9.41255- 5 1.30393- 2 1.10000+ 1 1.10000+ 1 5.86435- 4 1.03550- 2 1.10000+ 1 1.30000+ 1 1.70690- 3 1.08330- 2 1.10000+ 1 1.40000+ 1 1.03824- 3 1.09514- 2 1.10000+ 1 1.60000+ 1 2.79484- 3 1.26649- 2 1.10000+ 1 1.80000+ 1 5.09939- 5 1.27922- 2 1.10000+ 1 1.90000+ 1 2.16817- 4 1.29315- 2 1.10000+ 1 2.10000+ 1 1.58161- 4 1.31409- 2 1.10000+ 1 2.20000+ 1 7.59135- 5 1.31670- 2 1.10000+ 1 2.40000+ 1 1.34772- 4 1.34410- 2 1.10000+ 1 2.50000+ 1 1.13304- 4 1.34472- 2 1.10000+ 1 2.70000+ 1 5.68026- 4 1.34552- 2 1.10000+ 1 2.90000+ 1 1.01604- 5 1.35008- 2 1.10000+ 1 3.00000+ 1 4.02586- 5 1.35290- 2 1.10000+ 1 3.20000+ 1 1.82119- 5 1.35943- 2 1.10000+ 1 3.30000+ 1 8.24382- 6 1.35980- 2 1.30000+ 1 1.30000+ 1 7.12557- 4 1.13110- 2 1.30000+ 1 1.40000+ 1 2.07854- 2 1.14294- 2 1.30000+ 1 1.60000+ 1 1.86256- 3 1.31429- 2 1.30000+ 1 1.80000+ 1 2.00335- 4 1.32702- 2 1.30000+ 1 1.90000+ 1 4.62966- 4 1.34095- 2 1.30000+ 1 2.10000+ 1 3.11517- 4 1.36189- 2 1.30000+ 1 2.20000+ 1 3.22316- 3 1.36450- 2 1.30000+ 1 2.40000+ 1 2.46912- 4 1.39190- 2 1.30000+ 1 2.50000+ 1 6.78450- 4 1.39252- 2 1.30000+ 1 2.70000+ 1 3.71142- 4 1.39332- 2 1.30000+ 1 2.90000+ 1 4.19829- 5 1.39788- 2 1.30000+ 1 3.00000+ 1 9.25981- 5 1.40070- 2 1.30000+ 1 3.20000+ 1 4.25589- 5 1.40723- 2 1.30000+ 1 3.30000+ 1 4.03730- 4 1.40760- 2 1.40000+ 1 1.40000+ 1 5.72702- 3 1.15478- 2 1.40000+ 1 1.60000+ 1 2.39515- 3 1.32613- 2 1.40000+ 1 1.80000+ 1 1.16193- 3 1.33886- 2 1.40000+ 1 1.90000+ 1 2.85071- 4 1.35279- 2 1.40000+ 1 2.10000+ 1 3.11309- 3 1.37373- 2 1.40000+ 1 2.20000+ 1 1.87567- 3 1.37634- 2 1.40000+ 1 2.40000+ 1 7.46871- 4 1.40374- 2 1.40000+ 1 2.50000+ 1 5.61703- 4 1.40436- 2 1.40000+ 1 2.70000+ 1 4.80038- 4 1.40516- 2 1.40000+ 1 2.90000+ 1 2.29095- 4 1.40972- 2 1.40000+ 1 3.00000+ 1 5.75122- 5 1.41254- 2 1.40000+ 1 3.20000+ 1 3.96064- 4 1.41907- 2 1.40000+ 1 3.30000+ 1 2.37715- 4 1.41944- 2 1.60000+ 1 1.60000+ 1 2.31772- 4 1.49747- 2 1.60000+ 1 1.80000+ 1 4.56444- 4 1.51021- 2 1.60000+ 1 1.90000+ 1 6.82467- 4 1.52414- 2 1.60000+ 1 2.10000+ 1 4.19067- 4 1.54508- 2 1.60000+ 1 2.20000+ 1 5.31219- 4 1.54768- 2 1.60000+ 1 2.40000+ 1 2.99057- 5 1.57509- 2 1.60000+ 1 2.50000+ 1 3.10566- 5 1.57571- 2 1.60000+ 1 2.70000+ 1 9.92992- 5 1.57650- 2 1.60000+ 1 2.90000+ 1 9.22057- 5 1.58106- 2 1.60000+ 1 3.00000+ 1 1.33620- 4 1.58388- 2 1.60000+ 1 3.20000+ 1 5.75115- 5 1.59042- 2 1.60000+ 1 3.30000+ 1 7.11214- 5 1.59078- 2 1.80000+ 1 1.90000+ 1 1.03522- 5 1.53687- 2 1.80000+ 1 2.10000+ 1 3.46983- 5 1.55781- 2 1.80000+ 1 2.20000+ 1 1.72336- 4 1.56042- 2 1.80000+ 1 2.40000+ 1 1.20781- 5 1.58782- 2 1.80000+ 1 2.50000+ 1 4.79263- 5 1.58844- 2 1.80000+ 1 2.70000+ 1 9.31688- 5 1.58924- 2 1.80000+ 1 3.00000+ 1 1.91715- 6 1.59662- 2 1.80000+ 1 3.20000+ 1 4.60094- 6 1.60315- 2 1.80000+ 1 3.30000+ 1 2.14703- 5 1.60352- 2 1.90000+ 1 1.90000+ 1 1.91720- 5 1.55081- 2 1.90000+ 1 2.10000+ 1 4.79274- 5 1.57175- 2 1.90000+ 1 2.20000+ 1 2.60726- 5 1.57435- 2 1.90000+ 1 2.40000+ 1 2.85645- 5 1.60175- 2 1.90000+ 1 2.50000+ 1 2.33888- 5 1.60237- 2 1.90000+ 1 2.70000+ 1 1.38803- 4 1.60317- 2 1.90000+ 1 2.90000+ 1 2.10878- 6 1.60773- 2 1.90000+ 1 3.00000+ 1 7.09333- 6 1.61055- 2 1.90000+ 1 3.20000+ 1 5.75130- 6 1.61709- 2 1.90000+ 1 3.30000+ 1 3.06734- 6 1.61745- 2 2.10000+ 1 2.10000+ 1 3.14403- 5 1.59269- 2 2.10000+ 1 2.20000+ 1 5.28732- 4 1.59529- 2 2.10000+ 1 2.40000+ 1 3.71920- 5 1.62269- 2 2.10000+ 1 2.50000+ 1 7.74498- 5 1.62331- 2 2.10000+ 1 2.70000+ 1 8.35866- 5 1.62411- 2 2.10000+ 1 2.90000+ 1 7.09332- 6 1.62867- 2 2.10000+ 1 3.00000+ 1 9.77668- 6 1.63149- 2 2.10000+ 1 3.20000+ 1 8.43545- 6 1.63803- 2 2.10000+ 1 3.30000+ 1 6.72904- 5 1.63839- 2 2.20000+ 1 2.20000+ 1 1.64869- 4 1.59789- 2 2.20000+ 1 2.40000+ 1 9.02881- 5 1.62530- 2 2.20000+ 1 2.50000+ 1 7.55320- 5 1.62592- 2 2.20000+ 1 2.70000+ 1 1.06203- 4 1.62671- 2 2.20000+ 1 2.90000+ 1 3.41237- 5 1.63127- 2 2.20000+ 1 3.00000+ 1 5.36775- 6 1.63409- 2 2.20000+ 1 3.20000+ 1 6.82476- 5 1.64063- 2 2.20000+ 1 3.30000+ 1 4.21762- 5 1.64099- 2 2.40000+ 1 2.40000+ 1 1.04503- 6 1.65270- 2 2.40000+ 1 2.50000+ 1 2.04832- 5 1.65332- 2 2.40000+ 1 2.70000+ 1 6.27057- 6 1.65412- 2 2.40000+ 1 2.90000+ 1 2.29918- 6 1.65868- 2 2.40000+ 1 3.00000+ 1 5.85247- 6 1.66150- 2 2.40000+ 1 3.20000+ 1 5.22547- 6 1.66803- 2 2.40000+ 1 3.30000+ 1 1.17058- 5 1.66840- 2 2.50000+ 1 2.50000+ 1 4.81724- 6 1.65394- 2 2.50000+ 1 2.70000+ 1 7.11117- 6 1.65474- 2 2.50000+ 1 2.90000+ 1 1.05521- 5 1.65930- 2 2.50000+ 1 3.00000+ 1 5.27610- 6 1.66212- 2 2.50000+ 1 3.20000+ 1 1.12404- 5 1.66865- 2 2.50000+ 1 3.30000+ 1 1.10108- 5 1.66902- 2 2.70000+ 1 2.70000+ 1 1.57005- 5 1.65553- 2 2.70000+ 1 2.90000+ 1 2.79735- 5 1.66009- 2 2.70000+ 1 3.00000+ 1 4.05340- 5 1.66291- 2 2.70000+ 1 3.20000+ 1 1.71269- 5 1.66945- 2 2.70000+ 1 3.30000+ 1 2.11246- 5 1.66981- 2 2.90000+ 1 3.00000+ 1 6.77319- 7 1.66747- 2 2.90000+ 1 3.20000+ 1 1.69323- 6 1.67401- 2 2.90000+ 1 3.30000+ 1 7.45081- 6 1.67438- 2 3.00000+ 1 3.00000+ 1 1.14173- 6 1.67030- 2 3.00000+ 1 3.20000+ 1 2.28342- 6 1.67683- 2 3.00000+ 1 3.30000+ 1 1.14173- 6 1.67720- 2 3.20000+ 1 3.20000+ 1 5.82016- 7 1.68337- 2 3.20000+ 1 3.30000+ 1 8.73035- 6 1.68373- 2 3.30000+ 1 3.30000+ 1 2.68389- 6 1.68410- 2 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.42510- 5 2.48000- 3 8.00000+ 0 9.22361- 3 1.21694- 2 1.10000+ 1 3.97631- 4 1.30155- 2 1.30000+ 1 3.37160- 1 1.34935- 2 1.60000+ 1 2.40580- 3 1.53254- 2 1.90000+ 1 1.12280- 4 1.55920- 2 2.10000+ 1 7.03941- 2 1.58014- 2 2.40000+ 1 3.25160- 4 1.61015- 2 2.70000+ 1 5.35061- 4 1.61157- 2 3.00000+ 1 2.31910- 5 1.61895- 2 3.20000+ 1 9.95871- 3 1.62548- 2 4.10000+ 1 8.07161- 5 1.62767- 2 4.40000+ 1 1.40610- 6 1.62896- 2 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 4.84218- 3 1.50836- 3 6.00000+ 0 1.80000+ 1 3.57471- 2 1.63570- 3 6.00000+ 0 1.90000+ 1 9.56403- 3 1.77504- 3 6.00000+ 0 2.10000+ 1 3.52403- 2 1.98444- 3 6.00000+ 0 2.20000+ 1 1.20561- 2 2.01046- 3 6.00000+ 0 2.40000+ 1 1.52379- 3 2.28450- 3 6.00000+ 0 2.50000+ 1 2.25886- 3 2.29070- 3 6.00000+ 0 2.70000+ 1 9.91015- 4 2.29866- 3 6.00000+ 0 2.90000+ 1 6.62539- 3 2.34427- 3 6.00000+ 0 3.00000+ 1 1.82613- 3 2.37248- 3 6.00000+ 0 3.20000+ 1 4.63814- 3 2.43784- 3 6.00000+ 0 3.30000+ 1 1.56710- 3 2.44149- 3 8.00000+ 0 8.00000+ 0 5.33620- 4 8.04180- 3 8.00000+ 0 1.00000+ 1 1.93731- 2 8.32920- 3 8.00000+ 0 1.10000+ 1 1.79065- 3 8.88790- 3 8.00000+ 0 1.30000+ 1 3.15404- 3 9.36590- 3 8.00000+ 0 1.40000+ 1 1.63858- 3 9.48430- 3 8.00000+ 0 1.60000+ 1 2.07898- 4 1.11978- 2 8.00000+ 0 1.80000+ 1 3.14885- 3 1.13251- 2 8.00000+ 0 1.90000+ 1 3.90254- 4 1.14644- 2 8.00000+ 0 2.10000+ 1 5.00254- 4 1.16738- 2 8.00000+ 0 2.20000+ 1 2.21767- 4 1.16999- 2 8.00000+ 0 2.40000+ 1 8.70624- 5 1.19739- 2 8.00000+ 0 2.50000+ 1 6.10704- 5 1.19801- 2 8.00000+ 0 2.70000+ 1 4.37467- 5 1.19881- 2 8.00000+ 0 2.90000+ 1 5.83436- 4 1.20337- 2 8.00000+ 0 3.00000+ 1 7.44958- 5 1.20619- 2 8.00000+ 0 3.20000+ 1 6.49705- 5 1.21272- 2 8.00000+ 0 3.30000+ 1 2.72870- 5 1.21309- 2 1.00000+ 1 1.00000+ 1 2.03666- 2 8.61660- 3 1.00000+ 1 1.10000+ 1 5.05158- 2 9.17530- 3 1.00000+ 1 1.30000+ 1 2.60157- 2 9.65330- 3 1.00000+ 1 1.40000+ 1 3.62394- 2 9.77170- 3 1.00000+ 1 1.60000+ 1 5.05158- 3 1.14852- 2 1.00000+ 1 1.80000+ 1 8.43796- 3 1.16125- 2 1.00000+ 1 1.90000+ 1 1.20635- 2 1.17518- 2 1.00000+ 1 2.10000+ 1 5.82232- 3 1.19612- 2 1.00000+ 1 2.20000+ 1 8.09464- 3 1.19873- 2 1.00000+ 1 2.40000+ 1 4.54353- 4 1.22613- 2 1.00000+ 1 2.50000+ 1 3.89372- 4 1.22675- 2 1.00000+ 1 2.70000+ 1 1.13043- 3 1.22755- 2 1.00000+ 1 2.90000+ 1 1.65363- 3 1.23211- 2 1.00000+ 1 3.00000+ 1 2.35273- 3 1.23493- 2 1.00000+ 1 3.20000+ 1 7.98249- 4 1.24146- 2 1.00000+ 1 3.30000+ 1 1.08413- 3 1.24183- 2 1.10000+ 1 1.10000+ 1 1.13183- 3 9.73400- 3 1.10000+ 1 1.30000+ 1 2.28182- 2 1.02120- 2 1.10000+ 1 1.40000+ 1 3.35469- 3 1.03304- 2 1.10000+ 1 1.60000+ 1 3.91113- 4 1.20439- 2 1.10000+ 1 1.80000+ 1 8.34926- 3 1.21712- 2 1.10000+ 1 1.90000+ 1 4.64317- 4 1.23105- 2 1.10000+ 1 2.10000+ 1 4.31232- 3 1.25199- 2 1.10000+ 1 2.20000+ 1 6.11613- 4 1.25460- 2 1.10000+ 1 2.40000+ 1 1.78885- 4 1.28200- 2 1.10000+ 1 2.50000+ 1 9.31257- 5 1.28262- 2 1.10000+ 1 2.70000+ 1 8.40274- 5 1.28342- 2 1.10000+ 1 2.90000+ 1 1.55148- 3 1.28798- 2 1.10000+ 1 3.00000+ 1 8.79276- 5 1.29080- 2 1.10000+ 1 3.20000+ 1 5.73010- 4 1.29733- 2 1.10000+ 1 3.30000+ 1 7.92622- 5 1.29770- 2 1.30000+ 1 1.30000+ 1 2.15965- 2 1.06900- 2 1.30000+ 1 1.40000+ 1 8.51986- 2 1.08084- 2 1.30000+ 1 1.60000+ 1 8.25507- 4 1.25219- 2 1.30000+ 1 1.80000+ 1 4.15587- 3 1.26492- 2 1.30000+ 1 1.90000+ 1 5.03167- 3 1.27885- 2 1.30000+ 1 2.10000+ 1 8.01992- 3 1.29979- 2 1.30000+ 1 2.20000+ 1 1.70669- 2 1.30240- 2 1.30000+ 1 2.40000+ 1 1.57010- 3 1.32980- 2 1.30000+ 1 2.50000+ 1 3.15955- 3 1.33042- 2 1.30000+ 1 2.70000+ 1 1.85376- 4 1.33122- 2 1.30000+ 1 2.90000+ 1 7.73526- 4 1.33578- 2 1.30000+ 1 3.00000+ 1 9.65457- 4 1.33860- 2 1.30000+ 1 3.20000+ 1 1.06815- 3 1.34513- 2 1.30000+ 1 3.30000+ 1 2.24306- 3 1.34550- 2 1.40000+ 1 1.40000+ 1 4.14373- 3 1.09268- 2 1.40000+ 1 1.60000+ 1 3.44351- 4 1.26403- 2 1.40000+ 1 1.80000+ 1 5.10176- 3 1.27676- 2 1.40000+ 1 1.90000+ 1 6.81308- 4 1.29069- 2 1.40000+ 1 2.10000+ 1 1.29826- 2 1.31163- 2 1.40000+ 1 2.20000+ 1 1.51078- 3 1.31424- 2 1.40000+ 1 2.40000+ 1 6.26313- 4 1.34164- 2 1.40000+ 1 2.50000+ 1 2.39090- 4 1.34226- 2 1.40000+ 1 2.70000+ 1 7.36315- 5 1.34306- 2 1.40000+ 1 2.90000+ 1 9.15211- 4 1.34762- 2 1.40000+ 1 3.00000+ 1 1.28639- 4 1.35044- 2 1.40000+ 1 3.20000+ 1 1.66144- 3 1.35697- 2 1.40000+ 1 3.30000+ 1 1.96196- 4 1.35734- 2 1.60000+ 1 1.60000+ 1 1.94904- 5 1.43537- 2 1.60000+ 1 1.80000+ 1 8.25112- 4 1.44811- 2 1.60000+ 1 1.90000+ 1 8.57568- 5 1.46204- 2 1.60000+ 1 2.10000+ 1 1.27338- 4 1.48298- 2 1.60000+ 1 2.20000+ 1 4.63430- 5 1.48558- 2 1.60000+ 1 2.40000+ 1 1.99234- 5 1.51299- 2 1.60000+ 1 2.50000+ 1 1.12613- 5 1.51361- 2 1.60000+ 1 2.70000+ 1 8.22947- 6 1.51440- 2 1.60000+ 1 2.90000+ 1 1.52900- 4 1.51896- 2 1.60000+ 1 3.00000+ 1 1.64584- 5 1.52178- 2 1.60000+ 1 3.20000+ 1 1.64584- 5 1.52832- 2 1.60000+ 1 3.30000+ 1 5.63062- 6 1.52868- 2 1.80000+ 1 1.80000+ 1 8.29913- 4 1.46084- 2 1.80000+ 1 1.90000+ 1 1.99798- 3 1.47477- 2 1.80000+ 1 2.10000+ 1 9.16519- 4 1.49571- 2 1.80000+ 1 2.20000+ 1 1.15130- 3 1.49832- 2 1.80000+ 1 2.40000+ 1 5.97728- 5 1.52572- 2 1.80000+ 1 2.50000+ 1 4.02809- 5 1.52634- 2 1.80000+ 1 2.70000+ 1 1.84952- 4 1.52714- 2 1.80000+ 1 2.90000+ 1 3.21822- 4 1.53170- 2 1.80000+ 1 3.00000+ 1 3.89829- 4 1.53452- 2 1.80000+ 1 3.20000+ 1 1.25606- 4 1.54105- 2 1.80000+ 1 3.30000+ 1 1.54630- 4 1.54142- 2 1.90000+ 1 1.90000+ 1 4.76462- 5 1.48871- 2 1.90000+ 1 2.10000+ 1 9.58103- 4 1.50965- 2 1.90000+ 1 2.20000+ 1 1.26047- 4 1.51225- 2 1.90000+ 1 2.40000+ 1 3.42173- 5 1.53965- 2 1.90000+ 1 2.50000+ 1 1.64592- 5 1.54027- 2 1.90000+ 1 2.70000+ 1 1.86253- 5 1.54107- 2 1.90000+ 1 2.90000+ 1 3.71208- 4 1.54563- 2 1.90000+ 1 3.00000+ 1 1.81913- 5 1.54845- 2 1.90000+ 1 3.20000+ 1 1.27345- 4 1.55499- 2 1.90000+ 1 3.30000+ 1 1.64592- 5 1.55535- 2 2.10000+ 1 2.10000+ 1 7.38476- 4 1.53059- 2 2.10000+ 1 2.20000+ 1 2.71045- 3 1.53319- 2 2.10000+ 1 2.40000+ 1 1.99667- 4 1.56059- 2 2.10000+ 1 2.50000+ 1 4.05411- 4 1.56121- 2 2.10000+ 1 2.70000+ 1 2.85863- 5 1.56201- 2 2.10000+ 1 2.90000+ 1 1.69795- 4 1.56657- 2 2.10000+ 1 3.00000+ 1 1.84093- 4 1.56939- 2 2.10000+ 1 3.20000+ 1 1.96195- 4 1.57593- 2 2.10000+ 1 3.30000+ 1 3.58627- 4 1.57629- 2 2.20000+ 1 2.20000+ 1 1.39035- 4 1.53579- 2 2.20000+ 1 2.40000+ 1 8.66233- 5 1.56320- 2 2.20000+ 1 2.50000+ 1 3.37833- 5 1.56382- 2 2.20000+ 1 2.70000+ 1 9.96217- 6 1.56461- 2 2.20000+ 1 2.90000+ 1 2.07039- 4 1.56917- 2 2.20000+ 1 3.00000+ 1 2.38219- 5 1.57199- 2 2.20000+ 1 3.20000+ 1 3.49107- 4 1.57853- 2 2.20000+ 1 3.30000+ 1 3.59494- 5 1.57889- 2 2.40000+ 1 2.40000+ 1 4.76455- 6 1.59060- 2 2.40000+ 1 2.50000+ 1 3.24847- 5 1.59122- 2 2.40000+ 1 2.70000+ 1 4.33142- 6 1.59202- 2 2.40000+ 1 2.90000+ 1 1.08285- 5 1.59658- 2 2.40000+ 1 3.00000+ 1 6.49714- 6 1.59940- 2 2.40000+ 1 3.20000+ 1 2.46883- 5 1.60593- 2 2.40000+ 1 3.30000+ 1 1.08285- 5 1.60630- 2 2.50000+ 1 2.50000+ 1 2.16560- 6 1.59184- 2 2.50000+ 1 2.70000+ 1 2.16560- 6 1.59264- 2 2.50000+ 1 2.90000+ 1 6.93041- 6 1.59720- 2 2.50000+ 1 3.00000+ 1 3.03183- 6 1.60002- 2 2.50000+ 1 3.20000+ 1 5.02432- 5 1.60655- 2 2.50000+ 1 3.30000+ 1 4.33139- 6 1.60692- 2 2.70000+ 1 2.70000+ 1 8.61770- 7 1.59343- 2 2.70000+ 1 2.90000+ 1 3.40400- 5 1.59799- 2 2.70000+ 1 3.00000+ 1 3.44727- 6 1.60081- 2 2.70000+ 1 3.20000+ 1 3.44727- 6 1.60735- 2 2.70000+ 1 3.30000+ 1 1.29275- 6 1.60771- 2 2.90000+ 1 2.90000+ 1 3.08354- 5 1.60255- 2 2.90000+ 1 3.00000+ 1 7.15190- 5 1.60537- 2 2.90000+ 1 3.20000+ 1 2.31267- 5 1.61191- 2 2.90000+ 1 3.30000+ 1 2.74092- 5 1.61228- 2 3.00000+ 1 3.00000+ 1 1.78546- 6 1.60820- 2 3.00000+ 1 3.20000+ 1 2.54430- 5 1.61473- 2 3.00000+ 1 3.30000+ 1 3.12454- 6 1.61510- 2 3.20000+ 1 3.20000+ 1 1.29944- 5 1.62127- 2 3.20000+ 1 3.30000+ 1 4.63436- 5 1.62163- 2 3.30000+ 1 3.30000+ 1 2.55080- 6 1.62200- 2 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.68141- 2 9.68940- 3 1.00000+ 1 1.86501- 4 9.97680- 3 1.10000+ 1 1.68661- 4 1.05355- 2 1.30000+ 1 2.93981- 2 1.10135- 2 1.40000+ 1 2.58731- 1 1.11319- 2 1.60000+ 1 3.90222- 3 1.28454- 2 1.80000+ 1 4.21452- 5 1.29727- 2 1.90000+ 1 4.37582- 5 1.31120- 2 2.10000+ 1 5.59743- 3 1.33214- 2 2.20000+ 1 5.07262- 2 1.33475- 2 2.40000+ 1 4.93882- 5 1.36215- 2 2.50000+ 1 2.75191- 4 1.36277- 2 2.70000+ 1 8.73494- 4 1.36357- 2 2.90000+ 1 8.87004- 6 1.36813- 2 3.00000+ 1 9.38665- 6 1.37095- 2 3.20000+ 1 7.79054- 4 1.37748- 2 3.30000+ 1 6.97283- 3 1.37785- 2 4.10000+ 1 1.29581- 4 1.37967- 2 4.30000+ 1 6.02093- 7 1.38067- 2 4.40000+ 1 5.37213- 7 1.38096- 2 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.44730- 4 5.56180- 3 8.00000+ 0 1.00000+ 1 3.14370- 4 5.84920- 3 8.00000+ 0 1.10000+ 1 2.01900- 2 6.40790- 3 8.00000+ 0 1.30000+ 1 2.65718- 3 6.88590- 3 8.00000+ 0 1.40000+ 1 4.68104- 3 7.00430- 3 8.00000+ 0 1.60000+ 1 2.53393- 4 8.71776- 3 8.00000+ 0 1.80000+ 1 5.57822- 5 8.84510- 3 8.00000+ 0 1.90000+ 1 3.20517- 3 8.98444- 3 8.00000+ 0 2.10000+ 1 2.87556- 4 9.19384- 3 8.00000+ 0 2.20000+ 1 4.69614- 4 9.21986- 3 8.00000+ 0 2.40000+ 1 2.49947- 4 9.49390- 3 8.00000+ 0 2.50000+ 1 4.37179- 4 9.50010- 3 8.00000+ 0 2.70000+ 1 5.31872- 5 9.50806- 3 8.00000+ 0 2.90000+ 1 1.03780- 5 9.55367- 3 8.00000+ 0 3.00000+ 1 5.75987- 4 9.58188- 3 8.00000+ 0 3.20000+ 1 3.45942- 5 9.64724- 3 8.00000+ 0 3.30000+ 1 5.40512- 5 9.65089- 3 1.00000+ 1 1.00000+ 1 2.29189- 5 6.13660- 3 1.00000+ 1 1.10000+ 1 3.38738- 2 6.69530- 3 1.00000+ 1 1.30000+ 1 1.55282- 3 7.17330- 3 1.00000+ 1 1.40000+ 1 1.29124- 2 7.29170- 3 1.00000+ 1 1.60000+ 1 6.52976- 5 9.00516- 3 1.00000+ 1 1.80000+ 1 1.42700- 5 9.13250- 3 1.00000+ 1 1.90000+ 1 5.58849- 3 9.27184- 3 1.00000+ 1 2.10000+ 1 3.00086- 4 9.48124- 3 1.00000+ 1 2.20000+ 1 2.06774- 3 9.50726- 3 1.00000+ 1 2.40000+ 1 2.38255- 4 9.78130- 3 1.00000+ 1 2.50000+ 1 5.91970- 4 9.78750- 3 1.00000+ 1 2.70000+ 1 1.42700- 5 9.79546- 3 1.00000+ 1 2.90000+ 1 3.02688- 6 9.84107- 3 1.00000+ 1 3.00000+ 1 1.01137- 3 9.86928- 3 1.00000+ 1 3.20000+ 1 4.06467- 5 9.93464- 3 1.00000+ 1 3.30000+ 1 2.62915- 4 9.93829- 3 1.10000+ 1 1.10000+ 1 4.21817- 2 7.25400- 3 1.10000+ 1 1.30000+ 1 4.41957- 2 7.73200- 3 1.10000+ 1 1.40000+ 1 5.89211- 2 7.85040- 3 1.10000+ 1 1.60000+ 1 5.17744- 3 9.56386- 3 1.10000+ 1 1.80000+ 1 7.80111- 3 9.69120- 3 1.10000+ 1 1.90000+ 1 1.68616- 2 9.83054- 3 1.10000+ 1 2.10000+ 1 9.30353- 3 1.00399- 2 1.10000+ 1 2.20000+ 1 1.22495- 2 1.00660- 2 1.10000+ 1 2.40000+ 1 8.64827- 4 1.03400- 2 1.10000+ 1 2.50000+ 1 1.05898- 3 1.03462- 2 1.10000+ 1 2.70000+ 1 1.15463- 3 1.03542- 2 1.10000+ 1 2.90000+ 1 1.55675- 3 1.03998- 2 1.10000+ 1 3.00000+ 1 3.18916- 3 1.04280- 2 1.10000+ 1 3.20000+ 1 1.26397- 3 1.04933- 2 1.10000+ 1 3.30000+ 1 1.62110- 3 1.04970- 2 1.30000+ 1 1.30000+ 1 6.05387- 3 8.21000- 3 1.30000+ 1 1.40000+ 1 1.13224- 1 8.32840- 3 1.30000+ 1 1.60000+ 1 6.42161- 4 1.00419- 2 1.30000+ 1 1.80000+ 1 3.80091- 4 1.01692- 2 1.30000+ 1 1.90000+ 1 6.62858- 3 1.03085- 2 1.30000+ 1 2.10000+ 1 2.15513- 3 1.05179- 2 1.30000+ 1 2.20000+ 1 1.68620- 2 1.05440- 2 1.30000+ 1 2.40000+ 1 4.73929- 4 1.08180- 2 1.30000+ 1 2.50000+ 1 1.60168- 3 1.08242- 2 1.30000+ 1 2.70000+ 1 1.42263- 4 1.08322- 2 1.30000+ 1 2.90000+ 1 7.65385- 5 1.08778- 2 1.30000+ 1 3.00000+ 1 1.17664- 3 1.09060- 2 1.30000+ 1 3.20000+ 1 2.85825- 4 1.09713- 2 1.30000+ 1 3.30000+ 1 2.10757- 3 1.09750- 2 1.40000+ 1 1.40000+ 1 7.52171- 2 8.44680- 3 1.40000+ 1 1.60000+ 1 1.14542- 3 1.01603- 2 1.40000+ 1 1.80000+ 1 2.69212- 3 1.02876- 2 1.40000+ 1 1.90000+ 1 9.94954- 3 1.04269- 2 1.40000+ 1 2.10000+ 1 2.03540- 2 1.06363- 2 1.40000+ 1 2.20000+ 1 2.56490- 2 1.06624- 2 1.40000+ 1 2.40000+ 1 4.99723- 3 1.09364- 2 1.40000+ 1 2.50000+ 1 4.53665- 3 1.09426- 2 1.40000+ 1 2.70000+ 1 2.55557- 4 1.09506- 2 1.40000+ 1 2.90000+ 1 5.26675- 4 1.09962- 2 1.40000+ 1 3.00000+ 1 1.82219- 3 1.10244- 2 1.40000+ 1 3.20000+ 1 2.69251- 3 1.10897- 2 1.40000+ 1 3.30000+ 1 3.29272- 3 1.10934- 2 1.60000+ 1 1.60000+ 1 2.55119- 5 1.18737- 2 1.60000+ 1 1.80000+ 1 1.25400- 5 1.20011- 2 1.60000+ 1 1.90000+ 1 8.22470- 4 1.21404- 2 1.60000+ 1 2.10000+ 1 7.56765- 5 1.23498- 2 1.60000+ 1 2.20000+ 1 1.23234- 4 1.23758- 2 1.60000+ 1 2.40000+ 1 3.32957- 5 1.26499- 2 1.60000+ 1 2.50000+ 1 6.57287- 5 1.26561- 2 1.60000+ 1 2.70000+ 1 1.08109- 5 1.26640- 2 1.60000+ 1 2.90000+ 1 2.59438- 6 1.27096- 2 1.60000+ 1 3.00000+ 1 1.47893- 4 1.27378- 2 1.60000+ 1 3.20000+ 1 9.08065- 6 1.28032- 2 1.60000+ 1 3.30000+ 1 1.42700- 5 1.28068- 2 1.80000+ 1 1.80000+ 1 8.64801- 7 1.21284- 2 1.80000+ 1 1.90000+ 1 1.27952- 3 1.22677- 2 1.80000+ 1 2.10000+ 1 6.87550- 5 1.24771- 2 1.80000+ 1 2.20000+ 1 4.62680- 4 1.25032- 2 1.80000+ 1 2.40000+ 1 3.54591- 5 1.27772- 2 1.80000+ 1 2.50000+ 1 8.30230- 5 1.27834- 2 1.80000+ 1 2.70000+ 1 2.59439- 6 1.27914- 2 1.80000+ 1 2.90000+ 1 4.32420- 7 1.28370- 2 1.80000+ 1 3.00000+ 1 2.31355- 4 1.28652- 2 1.80000+ 1 3.20000+ 1 9.08070- 6 1.29305- 2 1.80000+ 1 3.30000+ 1 5.92421- 5 1.29342- 2 1.90000+ 1 1.90000+ 1 1.61251- 3 1.24071- 2 1.90000+ 1 2.10000+ 1 1.39839- 3 1.26165- 2 1.90000+ 1 2.20000+ 1 2.03666- 3 1.26425- 2 1.90000+ 1 2.40000+ 1 1.06808- 4 1.29165- 2 1.90000+ 1 2.50000+ 1 1.37506- 4 1.29227- 2 1.90000+ 1 2.70000+ 1 1.83337- 4 1.29307- 2 1.90000+ 1 2.90000+ 1 2.55118- 4 1.29763- 2 1.90000+ 1 3.00000+ 1 6.04523- 4 1.30045- 2 1.90000+ 1 3.20000+ 1 1.89822- 4 1.30699- 2 1.90000+ 1 3.30000+ 1 2.68962- 4 1.30735- 2 2.10000+ 1 2.10000+ 1 1.84213- 4 1.28259- 2 2.10000+ 1 2.20000+ 1 3.17131- 3 1.28519- 2 2.10000+ 1 2.40000+ 1 5.62153- 5 1.31259- 2 2.10000+ 1 2.50000+ 1 1.80321- 4 1.31321- 2 2.10000+ 1 2.70000+ 1 1.68641- 5 1.31401- 2 2.10000+ 1 2.90000+ 1 1.38371- 5 1.31857- 2 2.10000+ 1 3.00000+ 1 2.48210- 4 1.32139- 2 2.10000+ 1 3.20000+ 1 4.84314- 5 1.32793- 2 2.10000+ 1 3.30000+ 1 3.99115- 4 1.32829- 2 2.20000+ 1 2.20000+ 1 2.19926- 3 1.28779- 2 2.20000+ 1 2.40000+ 1 5.82475- 4 1.31520- 2 2.20000+ 1 2.50000+ 1 5.19769- 4 1.31582- 2 2.20000+ 1 2.70000+ 1 2.76752- 5 1.31661- 2 2.20000+ 1 2.90000+ 1 9.16768- 5 1.32117- 2 2.20000+ 1 3.00000+ 1 3.71456- 4 1.32399- 2 2.20000+ 1 3.20000+ 1 4.22473- 4 1.33053- 2 2.20000+ 1 3.30000+ 1 5.64738- 4 1.33089- 2 2.40000+ 1 2.40000+ 1 2.25076- 6 1.34260- 2 2.40000+ 1 2.50000+ 1 7.38303- 5 1.34322- 2 2.40000+ 1 2.70000+ 1 6.75227- 6 1.34402- 2 2.40000+ 1 2.90000+ 1 6.75227- 6 1.34858- 2 2.40000+ 1 3.00000+ 1 1.89066- 5 1.35140- 2 2.40000+ 1 3.20000+ 1 7.20272- 6 1.35793- 2 2.40000+ 1 3.30000+ 1 7.24760- 5 1.35830- 2 2.50000+ 1 2.50000+ 1 2.50799- 5 1.34384- 2 2.50000+ 1 2.70000+ 1 1.34051- 5 1.34464- 2 2.50000+ 1 2.90000+ 1 1.51350- 5 1.34920- 2 2.50000+ 1 3.00000+ 1 2.37830- 5 1.35202- 2 2.50000+ 1 3.20000+ 1 2.20530- 5 1.35855- 2 2.50000+ 1 3.30000+ 1 6.18349- 5 1.35892- 2 2.70000+ 1 2.70000+ 1 1.55939- 6 1.34543- 2 2.70000+ 1 2.90000+ 1 5.19778- 7 1.34999- 2 2.70000+ 1 3.00000+ 1 3.95020- 5 1.35281- 2 2.70000+ 1 3.20000+ 1 2.59878- 6 1.35935- 2 2.70000+ 1 3.30000+ 1 4.15828- 6 1.35971- 2 2.90000+ 1 3.00000+ 1 5.90923- 5 1.35737- 2 2.90000+ 1 3.20000+ 1 2.20900- 6 1.36391- 2 2.90000+ 1 3.30000+ 1 1.49111- 5 1.36428- 2 3.00000+ 1 3.00000+ 1 7.29786- 5 1.36020- 2 3.00000+ 1 3.20000+ 1 4.34519- 5 1.36673- 2 3.00000+ 1 3.30000+ 1 6.29503- 5 1.36710- 2 3.20000+ 1 3.20000+ 1 3.02692- 6 1.37327- 2 3.20000+ 1 3.30000+ 1 5.31874- 5 1.37363- 2 3.30000+ 1 3.30000+ 1 3.63232- 5 1.37400- 2 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.02800- 5 2.87400- 4 1.10000+ 1 5.84788- 4 8.46100- 4 1.80000+ 1 1.76509- 3 3.28330- 3 1.90000+ 1 1.27280- 3 3.42264- 3 2.90000+ 1 4.01408- 4 3.99187- 3 3.00000+ 1 3.13589- 4 4.02008- 3 4.30000+ 1 2.88859- 5 4.11735- 3 4.40000+ 1 1.94869- 5 4.12016- 3 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 2.29217- 2 9.19000- 5 1.00000+ 1 2.50000+ 1 3.08463- 2 9.81000- 5 1.00000+ 1 2.70000+ 1 1.24358- 2 1.06060- 4 1.00000+ 1 2.90000+ 1 1.22933- 2 1.51670- 4 1.00000+ 1 3.00000+ 1 1.57734- 2 1.79880- 4 1.00000+ 1 3.20000+ 1 7.58040- 3 2.45240- 4 1.00000+ 1 3.30000+ 1 1.00308- 2 2.48890- 4 1.00000+ 1 4.10000+ 1 1.65793- 3 2.67070- 4 1.00000+ 1 4.30000+ 1 7.47385- 4 2.77150- 4 1.00000+ 1 4.40000+ 1 8.12568- 4 2.79960- 4 1.10000+ 1 1.80000+ 1 5.50420- 2 1.80000- 6 1.10000+ 1 1.90000+ 1 5.41879- 2 1.41140- 4 1.10000+ 1 2.10000+ 1 1.58595- 2 3.50540- 4 1.10000+ 1 2.20000+ 1 2.89868- 2 3.76560- 4 1.10000+ 1 2.40000+ 1 1.81632- 1 6.50600- 4 1.10000+ 1 2.50000+ 1 2.23519- 1 6.56800- 4 1.10000+ 1 2.70000+ 1 1.08364- 2 6.64760- 4 1.10000+ 1 2.90000+ 1 1.05092- 2 7.10370- 4 1.10000+ 1 3.00000+ 1 1.02831- 2 7.38580- 4 1.10000+ 1 3.20000+ 1 2.17769- 3 8.03940- 4 1.10000+ 1 3.30000+ 1 3.98921- 3 8.07590- 4 1.10000+ 1 4.10000+ 1 1.46890- 3 8.25770- 4 1.10000+ 1 4.30000+ 1 6.52631- 4 8.35850- 4 1.10000+ 1 4.40000+ 1 5.43039- 4 8.38660- 4 1.30000+ 1 1.60000+ 1 2.56014- 2 3.52460- 4 1.30000+ 1 1.80000+ 1 5.53500- 3 4.79800- 4 1.30000+ 1 1.90000+ 1 7.39743- 3 6.19140- 4 1.30000+ 1 2.10000+ 1 8.80305- 3 8.28540- 4 1.30000+ 1 2.20000+ 1 1.08022- 2 8.54560- 4 1.30000+ 1 2.40000+ 1 9.27549- 3 1.12860- 3 1.30000+ 1 2.50000+ 1 8.58319- 3 1.13480- 3 1.30000+ 1 2.70000+ 1 3.61803- 3 1.14276- 3 1.30000+ 1 2.90000+ 1 8.67666- 4 1.18837- 3 1.30000+ 1 3.00000+ 1 1.08611- 3 1.21658- 3 1.30000+ 1 3.20000+ 1 9.86449- 4 1.28194- 3 1.30000+ 1 3.30000+ 1 1.28385- 3 1.28559- 3 1.30000+ 1 4.10000+ 1 4.59877- 4 1.30377- 3 1.30000+ 1 4.30000+ 1 5.33441- 5 1.31385- 3 1.30000+ 1 4.40000+ 1 5.56793- 5 1.31666- 3 1.40000+ 1 1.60000+ 1 3.55117- 2 4.70860- 4 1.40000+ 1 1.80000+ 1 9.12326- 4 5.98200- 4 1.40000+ 1 1.90000+ 1 1.12079- 2 7.37540- 4 1.40000+ 1 2.10000+ 1 1.21839- 2 9.46940- 4 1.40000+ 1 2.20000+ 1 1.71292- 2 9.72960- 4 1.40000+ 1 2.40000+ 1 1.06498- 2 1.24700- 3 1.40000+ 1 2.50000+ 1 1.64235- 2 1.25320- 3 1.40000+ 1 2.70000+ 1 4.95254- 3 1.26116- 3 1.40000+ 1 2.90000+ 1 1.81209- 4 1.30677- 3 1.40000+ 1 3.00000+ 1 1.62948- 3 1.33498- 3 1.40000+ 1 3.20000+ 1 1.49307- 3 1.40034- 3 1.40000+ 1 3.30000+ 1 1.96097- 3 1.40399- 3 1.40000+ 1 4.10000+ 1 6.28679- 4 1.42217- 3 1.40000+ 1 4.30000+ 1 1.16855- 5 1.43225- 3 1.40000+ 1 4.40000+ 1 8.35884- 5 1.43506- 3 1.60000+ 1 1.60000+ 1 2.37340- 3 2.18432- 3 1.60000+ 1 1.80000+ 1 4.16124- 3 2.31166- 3 1.60000+ 1 1.90000+ 1 6.76560- 3 2.45100- 3 1.60000+ 1 2.10000+ 1 7.94028- 3 2.66040- 3 1.60000+ 1 2.20000+ 1 1.11283- 2 2.68642- 3 1.60000+ 1 2.40000+ 1 5.79673- 3 2.96046- 3 1.60000+ 1 2.50000+ 1 7.24997- 3 2.96666- 3 1.60000+ 1 2.70000+ 1 8.62313- 4 2.97462- 3 1.60000+ 1 2.90000+ 1 8.36703- 4 3.02023- 3 1.60000+ 1 3.00000+ 1 1.31836- 3 3.04844- 3 1.60000+ 1 3.20000+ 1 1.06570- 3 3.11380- 3 1.60000+ 1 3.30000+ 1 1.45984- 3 3.11745- 3 1.60000+ 1 4.10000+ 1 1.15945- 4 3.13563- 3 1.60000+ 1 4.30000+ 1 5.31054- 5 3.14571- 3 1.60000+ 1 4.40000+ 1 7.03549- 5 3.14852- 3 1.80000+ 1 1.80000+ 1 1.72124- 4 2.43900- 3 1.80000+ 1 1.90000+ 1 5.11107- 4 2.57834- 3 1.80000+ 1 2.10000+ 1 2.61088- 4 2.78774- 3 1.80000+ 1 2.20000+ 1 1.41044- 4 2.81376- 3 1.80000+ 1 2.40000+ 1 3.41536- 5 3.08780- 3 1.80000+ 1 2.50000+ 1 4.64830- 4 3.09400- 3 1.80000+ 1 2.70000+ 1 5.76501- 4 3.10196- 3 1.80000+ 1 2.90000+ 1 5.10582- 5 3.14757- 3 1.80000+ 1 3.00000+ 1 7.20621- 5 3.17578- 3 1.80000+ 1 3.20000+ 1 3.03962- 5 3.24114- 3 1.80000+ 1 3.30000+ 1 2.25408- 5 3.24479- 3 1.80000+ 1 4.10000+ 1 7.32547- 5 3.26297- 3 1.80000+ 1 4.30000+ 1 3.07367- 6 3.27305- 3 1.80000+ 1 4.40000+ 1 3.75692- 6 3.27586- 3 1.90000+ 1 1.90000+ 1 5.63503- 4 2.71768- 3 1.90000+ 1 2.10000+ 1 6.02785- 4 2.92708- 3 1.90000+ 1 2.20000+ 1 1.38087- 3 2.95310- 3 1.90000+ 1 2.40000+ 1 6.82022- 4 3.22714- 3 1.90000+ 1 2.50000+ 1 1.12175- 3 3.23334- 3 1.90000+ 1 2.70000+ 1 9.42459- 4 3.24130- 3 1.90000+ 1 2.90000+ 1 8.70866- 5 3.28691- 3 1.90000+ 1 3.00000+ 1 1.84596- 4 3.31512- 3 1.90000+ 1 3.20000+ 1 8.07718- 5 3.38048- 3 1.90000+ 1 3.30000+ 1 1.72463- 4 3.38413- 3 1.90000+ 1 4.10000+ 1 1.20044- 4 3.40231- 3 1.90000+ 1 4.30000+ 1 5.46437- 6 3.41239- 3 1.90000+ 1 4.40000+ 1 9.56252- 6 3.41520- 3 2.10000+ 1 2.10000+ 1 9.53490- 5 3.13648- 3 2.10000+ 1 2.20000+ 1 3.34395- 4 3.16250- 3 2.10000+ 1 2.40000+ 1 4.40223- 4 3.43654- 3 2.10000+ 1 2.50000+ 1 2.88289- 3 3.44274- 3 2.10000+ 1 2.70000+ 1 1.06861- 3 3.45070- 3 2.10000+ 1 2.90000+ 1 3.36413- 5 3.49631- 3 2.10000+ 1 3.00000+ 1 8.99373- 5 3.52452- 3 2.10000+ 1 3.20000+ 1 2.02873- 5 3.58988- 3 2.10000+ 1 3.30000+ 1 3.71931- 5 3.59353- 3 2.10000+ 1 4.10000+ 1 1.35257- 4 3.61171- 3 2.10000+ 1 4.30000+ 1 2.02873- 6 3.62179- 3 2.10000+ 1 4.40000+ 1 4.56454- 6 3.62460- 3 2.20000+ 1 2.20000+ 1 2.34449- 4 3.18852- 3 2.20000+ 1 2.40000+ 1 2.67152- 3 3.46256- 3 2.20000+ 1 2.50000+ 1 1.63868- 3 3.46876- 3 2.20000+ 1 2.70000+ 1 1.50733- 3 3.47672- 3 2.20000+ 1 2.90000+ 1 2.08326- 5 3.52233- 3 2.20000+ 1 3.00000+ 1 2.05250- 4 3.55054- 3 2.20000+ 1 3.20000+ 1 3.48353- 5 3.61590- 3 2.20000+ 1 3.30000+ 1 5.07167- 5 3.61955- 3 2.20000+ 1 4.10000+ 1 1.90576- 4 3.63773- 3 2.20000+ 1 4.30000+ 1 1.19530- 6 3.64781- 3 2.20000+ 1 4.40000+ 1 1.05874- 5 3.65062- 3 2.40000+ 1 2.40000+ 1 6.08267- 4 3.73660- 3 2.40000+ 1 2.50000+ 1 4.03725- 3 3.74280- 3 2.40000+ 1 2.70000+ 1 7.24381- 4 3.75076- 3 2.40000+ 1 2.90000+ 1 5.12283- 6 3.79637- 3 2.40000+ 1 3.00000+ 1 7.34305- 5 3.82458- 3 2.40000+ 1 3.20000+ 1 5.39602- 5 3.88994- 3 2.40000+ 1 3.30000+ 1 3.51429- 4 3.89359- 3 2.40000+ 1 4.10000+ 1 9.05058- 5 3.91177- 3 2.40000+ 1 4.30000+ 1 3.41531- 7 3.92185- 3 2.40000+ 1 4.40000+ 1 3.58595- 6 3.92466- 3 2.50000+ 1 2.50000+ 1 1.37594- 3 3.74900- 3 2.50000+ 1 2.70000+ 1 8.92332- 4 3.75696- 3 2.50000+ 1 2.90000+ 1 8.08568- 5 3.80257- 3 2.50000+ 1 3.00000+ 1 1.28695- 4 3.83078- 3 2.50000+ 1 3.20000+ 1 3.75305- 4 3.89614- 3 2.50000+ 1 3.30000+ 1 2.03994- 4 3.89979- 3 2.50000+ 1 4.10000+ 1 1.11513- 4 3.91797- 3 2.50000+ 1 4.30000+ 1 5.05359- 6 3.92805- 3 2.50000+ 1 4.40000+ 1 6.40123- 6 3.93086- 3 2.70000+ 1 2.70000+ 1 7.86440- 5 3.76492- 3 2.70000+ 1 2.90000+ 1 1.26872- 4 3.81053- 3 2.70000+ 1 3.00000+ 1 1.99583- 4 3.83874- 3 2.70000+ 1 3.20000+ 1 1.58214- 4 3.90410- 3 2.70000+ 1 3.30000+ 1 2.15905- 4 3.90775- 3 2.70000+ 1 4.10000+ 1 2.09595- 5 3.92593- 3 2.70000+ 1 4.30000+ 1 7.97617- 6 3.93601- 3 2.70000+ 1 4.40000+ 1 1.05725- 5 3.93882- 3 2.90000+ 1 2.90000+ 1 5.16017- 6 3.85614- 3 2.90000+ 1 3.00000+ 1 1.64179- 5 3.88435- 3 2.90000+ 1 3.20000+ 1 5.39456- 6 3.94971- 3 2.90000+ 1 3.30000+ 1 4.69104- 6 3.95336- 3 2.90000+ 1 4.10000+ 1 2.04053- 5 3.97154- 3 2.90000+ 1 4.30000+ 1 7.03638- 7 3.98162- 3 2.90000+ 1 4.40000+ 1 9.38157- 7 3.98443- 3 3.00000+ 1 3.00000+ 1 2.01323- 5 3.91256- 3 3.00000+ 1 3.20000+ 1 1.70541- 5 3.97792- 3 3.00000+ 1 3.30000+ 1 3.57655- 5 3.98157- 3 3.00000+ 1 4.10000+ 1 3.24485- 5 3.99975- 3 3.00000+ 1 4.30000+ 1 9.47402- 7 4.00983- 3 3.00000+ 1 4.40000+ 1 2.13175- 6 4.01264- 3 3.20000+ 1 3.20000+ 1 1.11232- 6 4.04328- 3 3.20000+ 1 3.30000+ 1 4.26401- 6 4.04693- 3 3.20000+ 1 4.10000+ 1 2.00226- 5 4.06511- 3 3.20000+ 1 4.30000+ 1 1.85396- 7 4.07519- 3 3.20000+ 1 4.40000+ 1 7.41545- 7 4.07800- 3 3.30000+ 1 3.30000+ 1 2.68875- 6 4.05058- 3 3.30000+ 1 4.10000+ 1 2.63507- 5 4.06876- 3 3.30000+ 1 4.30000+ 1 1.79256- 7 4.07884- 3 3.30000+ 1 4.40000+ 1 1.43415- 6 4.08165- 3 4.10000+ 1 4.10000+ 1 1.19528- 6 4.08694- 3 4.10000+ 1 4.30000+ 1 1.02452- 6 4.09702- 3 4.10000+ 1 4.40000+ 1 1.19528- 6 4.09983- 3 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.18350- 3 1.03670- 3 1.60000+ 1 8.02252- 4 2.86856- 3 2.10000+ 1 4.23881- 3 3.34464- 3 2.70000+ 1 1.83540- 4 3.65886- 3 3.20000+ 1 7.11612- 4 3.79804- 3 4.10000+ 1 2.72901- 5 3.81987- 3 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 5.90826- 3 6.31400- 5 1.10000+ 1 2.20000+ 1 1.45488- 2 8.91600- 5 1.10000+ 1 2.40000+ 1 2.85059- 2 3.63200- 4 1.10000+ 1 2.50000+ 1 2.53206- 2 3.69400- 4 1.10000+ 1 2.70000+ 1 3.09545- 3 3.77360- 4 1.10000+ 1 2.90000+ 1 4.04133- 3 4.22970- 4 1.10000+ 1 3.00000+ 1 2.35403- 3 4.51180- 4 1.10000+ 1 3.20000+ 1 1.08963- 3 5.16540- 4 1.10000+ 1 3.30000+ 1 2.19690- 3 5.20190- 4 1.10000+ 1 4.10000+ 1 4.00859- 4 5.38370- 4 1.10000+ 1 4.30000+ 1 2.35241- 4 5.48450- 4 1.10000+ 1 4.40000+ 1 1.18205- 4 5.51260- 4 1.30000+ 1 1.60000+ 1 4.82608- 2 6.50600- 5 1.30000+ 1 1.80000+ 1 4.92926- 2 1.92400- 4 1.30000+ 1 1.90000+ 1 4.26218- 2 3.31740- 4 1.30000+ 1 2.10000+ 1 1.77385- 2 5.41140- 4 1.30000+ 1 2.20000+ 1 2.32369- 2 5.67160- 4 1.30000+ 1 2.40000+ 1 1.43178- 1 8.41200- 4 1.30000+ 1 2.50000+ 1 2.22138- 1 8.47400- 4 1.30000+ 1 2.70000+ 1 1.05015- 2 8.55360- 4 1.30000+ 1 2.90000+ 1 8.27896- 3 9.00970- 4 1.30000+ 1 3.00000+ 1 7.97399- 3 9.29180- 4 1.30000+ 1 3.20000+ 1 2.49029- 3 9.94540- 4 1.30000+ 1 3.30000+ 1 3.33582- 3 9.98190- 4 1.30000+ 1 4.10000+ 1 1.43229- 3 1.01637- 3 1.30000+ 1 4.30000+ 1 5.11280- 4 1.02645- 3 1.30000+ 1 4.40000+ 1 4.21017- 4 1.02926- 3 1.40000+ 1 1.60000+ 1 7.60117- 3 1.83460- 4 1.40000+ 1 1.80000+ 1 5.56014- 2 3.10800- 4 1.40000+ 1 1.90000+ 1 4.74796- 3 4.50140- 4 1.40000+ 1 2.10000+ 1 1.14803- 3 6.59540- 4 1.40000+ 1 2.20000+ 1 2.69268- 3 6.85560- 4 1.40000+ 1 2.40000+ 1 6.33080- 3 9.59600- 4 1.40000+ 1 2.50000+ 1 4.18174- 3 9.65800- 4 1.40000+ 1 2.70000+ 1 1.10421- 3 9.73760- 4 1.40000+ 1 2.90000+ 1 7.27190- 3 1.01937- 3 1.40000+ 1 3.00000+ 1 7.81586- 4 1.04758- 3 1.40000+ 1 3.20000+ 1 7.55317- 5 1.11294- 3 1.40000+ 1 3.30000+ 1 3.26683- 4 1.11659- 3 1.40000+ 1 4.10000+ 1 1.41753- 4 1.13477- 3 1.40000+ 1 4.30000+ 1 4.31168- 4 1.14485- 3 1.40000+ 1 4.40000+ 1 4.06451- 5 1.14766- 3 1.60000+ 1 1.60000+ 1 6.97251- 4 1.89692- 3 1.60000+ 1 1.80000+ 1 1.03571- 2 2.02426- 3 1.60000+ 1 1.90000+ 1 1.39270- 3 2.16360- 3 1.60000+ 1 2.10000+ 1 3.64437- 4 2.37300- 3 1.60000+ 1 2.20000+ 1 1.20574- 3 2.39902- 3 1.60000+ 1 2.40000+ 1 5.05756- 5 2.67306- 3 1.60000+ 1 2.50000+ 1 8.78788- 4 2.67926- 3 1.60000+ 1 2.70000+ 1 2.36623- 4 2.68722- 3 1.60000+ 1 2.90000+ 1 1.32134- 3 2.73283- 3 1.60000+ 1 3.00000+ 1 2.44307- 4 2.76104- 3 1.60000+ 1 3.20000+ 1 3.52229- 5 2.82640- 3 1.60000+ 1 3.30000+ 1 1.44056- 4 2.83005- 3 1.60000+ 1 4.10000+ 1 3.11580- 5 2.84823- 3 1.60000+ 1 4.30000+ 1 7.81255- 5 2.85831- 3 1.60000+ 1 4.40000+ 1 1.26443- 5 2.86112- 3 1.80000+ 1 1.80000+ 1 8.01601- 3 2.15160- 3 1.80000+ 1 1.90000+ 1 2.21919- 2 2.29094- 3 1.80000+ 1 2.10000+ 1 2.22815- 2 2.50034- 3 1.80000+ 1 2.20000+ 1 3.52931- 2 2.52636- 3 1.80000+ 1 2.40000+ 1 1.33925- 2 2.80040- 3 1.80000+ 1 2.50000+ 1 2.23197- 2 2.80660- 3 1.80000+ 1 2.70000+ 1 2.28732- 3 2.81456- 3 1.80000+ 1 2.90000+ 1 2.67654- 3 2.86017- 3 1.80000+ 1 3.00000+ 1 4.28638- 3 2.88838- 3 1.80000+ 1 3.20000+ 1 2.99984- 3 2.95374- 3 1.80000+ 1 3.30000+ 1 4.58558- 3 2.95739- 3 1.80000+ 1 4.10000+ 1 3.15649- 4 2.97557- 3 1.80000+ 1 4.30000+ 1 1.66190- 4 2.98565- 3 1.80000+ 1 4.40000+ 1 2.28050- 4 2.98846- 3 1.90000+ 1 1.90000+ 1 5.89309- 4 2.43028- 3 1.90000+ 1 2.10000+ 1 1.43148- 3 2.63968- 3 1.90000+ 1 2.20000+ 1 1.27387- 3 2.66570- 3 1.90000+ 1 2.40000+ 1 9.04036- 3 2.93974- 3 1.90000+ 1 2.50000+ 1 2.49619- 3 2.94594- 3 1.90000+ 1 2.70000+ 1 1.96884- 4 2.95390- 3 1.90000+ 1 2.90000+ 1 2.89402- 3 2.99951- 3 1.90000+ 1 3.00000+ 1 1.91924- 4 3.02772- 3 1.90000+ 1 3.20000+ 1 1.53081- 4 3.09308- 3 1.90000+ 1 3.30000+ 1 1.47664- 4 3.09673- 3 1.90000+ 1 4.10000+ 1 2.52870- 5 3.11491- 3 1.90000+ 1 4.30000+ 1 1.72043- 4 3.12499- 3 1.90000+ 1 4.40000+ 1 9.93471- 6 3.12780- 3 2.10000+ 1 2.10000+ 1 7.87084- 4 2.84908- 3 2.10000+ 1 2.20000+ 1 1.78652- 3 2.87510- 3 2.10000+ 1 2.40000+ 1 9.62750- 4 3.14914- 3 2.10000+ 1 2.50000+ 1 1.58549- 3 3.15534- 3 2.10000+ 1 2.70000+ 1 7.67690- 5 3.16330- 3 2.10000+ 1 2.90000+ 1 2.82383- 3 3.20891- 3 2.10000+ 1 3.00000+ 1 2.50622- 4 3.23712- 3 2.10000+ 1 3.20000+ 1 1.74302- 4 3.30248- 3 2.10000+ 1 3.30000+ 1 2.14495- 4 3.30613- 3 2.10000+ 1 4.10000+ 1 1.03864- 5 3.32431- 3 2.10000+ 1 4.30000+ 1 1.67083- 4 3.33439- 3 2.10000+ 1 4.40000+ 1 1.30956- 5 3.33720- 3 2.20000+ 1 2.20000+ 1 4.63775- 4 2.90112- 3 2.20000+ 1 2.40000+ 1 2.60032- 3 3.17516- 3 2.20000+ 1 2.50000+ 1 6.08725- 4 3.18136- 3 2.20000+ 1 2.70000+ 1 2.11340- 4 3.18932- 3 2.20000+ 1 2.90000+ 1 4.53293- 3 3.23493- 3 2.20000+ 1 3.00000+ 1 1.90116- 4 3.26314- 3 2.20000+ 1 3.20000+ 1 1.97784- 4 3.32850- 3 2.20000+ 1 3.30000+ 1 1.02508- 4 3.33215- 3 2.20000+ 1 4.10000+ 1 2.79969- 5 3.35033- 3 2.20000+ 1 4.30000+ 1 2.68694- 4 3.36041- 3 2.20000+ 1 4.40000+ 1 9.93477- 6 3.36322- 3 2.40000+ 1 2.40000+ 1 3.38850- 3 3.44920- 3 2.40000+ 1 2.50000+ 1 2.17066- 2 3.45540- 3 2.40000+ 1 2.70000+ 1 6.32187- 6 3.46336- 3 2.40000+ 1 2.90000+ 1 1.56694- 3 3.50897- 3 2.40000+ 1 3.00000+ 1 1.64010- 3 3.53718- 3 2.40000+ 1 3.20000+ 1 1.43599- 4 3.60254- 3 2.40000+ 1 3.30000+ 1 3.89252- 4 3.60619- 3 2.40000+ 1 4.10000+ 1 9.03153- 7 3.62437- 3 2.40000+ 1 4.30000+ 1 9.21203- 5 3.63445- 3 2.40000+ 1 4.40000+ 1 8.67028- 5 3.63726- 3 2.50000+ 1 2.50000+ 1 1.13572- 3 3.46160- 3 2.50000+ 1 2.70000+ 1 1.59859- 4 3.46956- 3 2.50000+ 1 2.90000+ 1 2.56034- 3 3.51517- 3 2.50000+ 1 3.00000+ 1 4.04171- 4 3.54338- 3 2.50000+ 1 3.20000+ 1 2.21716- 4 3.60874- 3 2.50000+ 1 3.30000+ 1 8.30918- 5 3.61239- 3 2.50000+ 1 4.10000+ 1 2.12240- 5 3.63057- 3 2.50000+ 1 4.30000+ 1 1.49018- 4 3.64065- 3 2.50000+ 1 4.40000+ 1 2.07726- 5 3.64346- 3 2.70000+ 1 2.70000+ 1 2.05252- 5 3.47752- 3 2.70000+ 1 2.90000+ 1 3.03204- 4 3.52313- 3 2.70000+ 1 3.00000+ 1 3.59168- 5 3.55134- 3 2.70000+ 1 3.20000+ 1 6.99689- 6 3.61670- 3 2.70000+ 1 3.30000+ 1 2.65888- 5 3.62035- 3 2.70000+ 1 4.10000+ 1 5.59769- 6 3.63853- 3 2.70000+ 1 4.30000+ 1 1.77259- 5 3.64861- 3 2.70000+ 1 4.40000+ 1 1.86584- 6 3.65142- 3 2.90000+ 1 2.90000+ 1 2.16205- 4 3.56874- 3 2.90000+ 1 3.00000+ 1 5.78877- 4 3.59695- 3 2.90000+ 1 3.20000+ 1 3.93347- 4 3.66231- 3 2.90000+ 1 3.30000+ 1 6.09542- 4 3.66596- 3 2.90000+ 1 4.10000+ 1 4.18463- 5 3.68414- 3 2.90000+ 1 4.30000+ 1 2.65024- 5 3.69422- 3 2.90000+ 1 4.40000+ 1 3.06854- 5 3.69703- 3 3.00000+ 1 3.00000+ 1 2.22812- 5 3.62516- 3 3.00000+ 1 3.20000+ 1 3.81936- 5 3.69052- 3 3.00000+ 1 3.30000+ 1 3.11933- 5 3.69417- 3 3.00000+ 1 4.10000+ 1 6.36603- 6 3.71235- 3 3.00000+ 1 4.30000+ 1 4.71098- 5 3.72243- 3 3.00000+ 1 4.40000+ 1 2.54638- 6 3.72524- 3 3.20000+ 1 3.20000+ 1 1.03968- 5 3.75588- 3 3.20000+ 1 3.30000+ 1 2.77237- 5 3.75953- 3 3.20000+ 1 4.10000+ 1 9.90177- 7 3.77771- 3 3.20000+ 1 4.30000+ 1 2.47533- 5 3.78779- 3 3.20000+ 1 4.40000+ 1 1.48525- 6 3.79060- 3 3.30000+ 1 3.30000+ 1 7.56698- 6 3.76318- 3 3.30000+ 1 4.10000+ 1 4.65677- 6 3.78136- 3 3.30000+ 1 4.30000+ 1 4.54011- 5 3.79144- 3 3.30000+ 1 4.40000+ 1 1.74625- 6 3.79425- 3 4.10000+ 1 4.10000+ 1 4.51579- 7 3.79954- 3 4.10000+ 1 4.30000+ 1 2.25785- 6 3.80962- 3 4.10000+ 1 4.40000+ 1 4.51579- 7 3.81243- 3 4.30000+ 1 4.30000+ 1 4.51566- 7 3.81970- 3 4.30000+ 1 4.40000+ 1 1.80624- 6 3.82251- 3 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.46499- 5 4.78000- 4 1.40000+ 1 2.72189- 4 5.96400- 4 1.60000+ 1 1.52689- 3 2.30986- 3 2.10000+ 1 7.40876- 4 2.78594- 3 2.20000+ 1 5.68137- 3 2.81196- 3 2.70000+ 1 3.36938- 4 3.10016- 3 3.20000+ 1 1.14659- 4 3.23934- 3 3.30000+ 1 8.81836- 4 3.24299- 3 4.10000+ 1 4.98558- 5 3.26117- 3 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.10000+ 1 6.19650- 3 0.00000+ 0 1.30000+ 1 2.20000+ 1 1.22859- 2 8.46000- 6 1.30000+ 1 2.40000+ 1 1.66754- 2 2.82500- 4 1.30000+ 1 2.50000+ 1 2.43076- 2 2.88700- 4 1.30000+ 1 2.70000+ 1 2.86223- 3 2.96660- 4 1.30000+ 1 2.90000+ 1 2.52253- 3 3.42270- 4 1.30000+ 1 3.00000+ 1 8.01784- 3 3.70480- 4 1.30000+ 1 3.20000+ 1 1.26890- 3 4.35840- 4 1.30000+ 1 3.30000+ 1 1.33637- 3 4.39490- 4 1.30000+ 1 4.10000+ 1 3.79086- 4 4.57670- 4 1.30000+ 1 4.30000+ 1 1.55016- 4 4.67750- 4 1.30000+ 1 4.40000+ 1 4.07277- 4 4.70560- 4 1.40000+ 1 2.10000+ 1 4.84369- 2 1.00840- 4 1.40000+ 1 2.20000+ 1 6.56762- 2 1.26860- 4 1.40000+ 1 2.40000+ 1 1.85734- 1 4.00900- 4 1.40000+ 1 2.50000+ 1 2.24541- 1 4.07100- 4 1.40000+ 1 2.70000+ 1 1.71460- 2 4.15060- 4 1.40000+ 1 2.90000+ 1 1.69883- 2 4.60670- 4 1.40000+ 1 3.00000+ 1 2.00854- 2 4.88880- 4 1.40000+ 1 3.20000+ 1 5.51397- 3 5.54240- 4 1.40000+ 1 3.30000+ 1 7.84401- 3 5.57890- 4 1.40000+ 1 4.10000+ 1 2.32246- 3 5.76070- 4 1.40000+ 1 4.30000+ 1 1.04812- 3 5.86150- 4 1.40000+ 1 4.40000+ 1 1.04112- 3 5.88960- 4 1.60000+ 1 1.60000+ 1 2.90253- 4 1.33822- 3 1.60000+ 1 1.80000+ 1 6.30777- 4 1.46556- 3 1.60000+ 1 1.90000+ 1 1.24662- 2 1.60490- 3 1.60000+ 1 2.10000+ 1 7.44603- 4 1.81430- 3 1.60000+ 1 2.20000+ 1 9.11092- 4 1.84032- 3 1.60000+ 1 2.40000+ 1 1.87335- 3 2.11436- 3 1.60000+ 1 2.50000+ 1 3.31846- 3 2.12056- 3 1.60000+ 1 2.70000+ 1 9.95962- 5 2.12852- 3 1.60000+ 1 2.90000+ 1 8.82137- 5 2.17413- 3 1.60000+ 1 3.00000+ 1 1.56889- 3 2.20234- 3 1.60000+ 1 3.20000+ 1 8.72676- 5 2.26770- 3 1.60000+ 1 3.30000+ 1 1.01969- 4 2.27135- 3 1.60000+ 1 4.10000+ 1 1.32796- 5 2.28953- 3 1.60000+ 1 4.30000+ 1 5.21699- 6 2.29961- 3 1.60000+ 1 4.40000+ 1 7.87288- 5 2.30242- 3 1.80000+ 1 1.80000+ 1 1.94446- 5 1.59290- 3 1.80000+ 1 1.90000+ 1 1.54587- 2 1.73224- 3 1.80000+ 1 2.10000+ 1 3.36250- 4 1.94164- 3 1.80000+ 1 2.20000+ 1 3.31233- 3 1.96766- 3 1.80000+ 1 2.40000+ 1 1.68461- 3 2.24170- 3 1.80000+ 1 2.50000+ 1 9.04330- 3 2.24790- 3 1.80000+ 1 2.70000+ 1 1.00546- 4 2.25586- 3 1.80000+ 1 2.90000+ 1 5.21698- 6 2.30147- 3 1.80000+ 1 3.00000+ 1 1.98813- 3 2.32968- 3 1.80000+ 1 3.20000+ 1 4.31598- 5 2.39504- 3 1.80000+ 1 3.30000+ 1 3.53812- 4 2.39869- 3 1.80000+ 1 4.10000+ 1 1.28053- 5 2.41687- 3 1.80000+ 1 4.30000+ 1 4.74284- 7 2.42695- 3 1.80000+ 1 4.40000+ 1 1.00073- 4 2.42976- 3 1.90000+ 1 1.90000+ 1 2.01976- 2 1.87158- 3 1.90000+ 1 2.10000+ 1 2.96441- 2 2.08098- 3 1.90000+ 1 2.20000+ 1 3.86794- 2 2.10700- 3 1.90000+ 1 2.40000+ 1 2.62527- 2 2.38104- 3 1.90000+ 1 2.50000+ 1 3.00405- 2 2.38724- 3 1.90000+ 1 2.70000+ 1 2.70207- 3 2.39520- 3 1.90000+ 1 2.90000+ 1 3.03297- 3 2.44081- 3 1.90000+ 1 3.00000+ 1 6.45701- 3 2.46902- 3 1.90000+ 1 3.20000+ 1 3.86162- 3 2.53438- 3 1.90000+ 1 3.30000+ 1 4.97194- 3 2.53803- 3 1.90000+ 1 4.10000+ 1 3.71818- 4 2.55621- 3 1.90000+ 1 4.30000+ 1 1.91615- 4 2.56629- 3 1.90000+ 1 4.40000+ 1 3.35776- 4 2.56910- 3 2.10000+ 1 2.10000+ 1 1.97314- 4 2.29038- 3 2.10000+ 1 2.20000+ 1 4.75001- 3 2.31640- 3 2.10000+ 1 2.40000+ 1 7.18984- 4 2.59044- 3 2.10000+ 1 2.50000+ 1 8.35259- 3 2.59664- 3 2.10000+ 1 2.70000+ 1 9.10593- 5 2.60460- 3 2.10000+ 1 2.90000+ 1 2.37127- 5 2.65021- 3 2.10000+ 1 3.00000+ 1 3.74065- 3 2.67842- 3 2.10000+ 1 3.20000+ 1 4.22091- 5 2.74378- 3 2.10000+ 1 3.30000+ 1 5.39247- 4 2.74743- 3 2.10000+ 1 4.10000+ 1 1.13824- 5 2.76561- 3 2.10000+ 1 4.30000+ 1 1.42280- 6 2.77569- 3 2.10000+ 1 4.40000+ 1 1.87331- 4 2.77850- 3 2.20000+ 1 2.20000+ 1 2.08114- 3 2.34242- 3 2.20000+ 1 2.40000+ 1 6.76159- 3 2.61646- 3 2.20000+ 1 2.50000+ 1 5.62987- 3 2.62266- 3 2.20000+ 1 2.70000+ 1 1.15718- 4 2.63062- 3 2.20000+ 1 2.90000+ 1 3.29595- 4 2.67623- 3 2.20000+ 1 3.00000+ 1 4.81852- 3 2.70444- 3 2.20000+ 1 3.20000+ 1 5.41617- 4 2.76980- 3 2.20000+ 1 3.30000+ 1 4.74269- 4 2.77345- 3 2.20000+ 1 4.10000+ 1 1.47020- 5 2.79163- 3 2.20000+ 1 4.30000+ 1 1.89697- 5 2.80171- 3 2.20000+ 1 4.40000+ 1 2.40916- 4 2.80452- 3 2.40000+ 1 2.40000+ 1 1.08185- 3 2.89050- 3 2.40000+ 1 2.50000+ 1 2.83650- 2 2.89670- 3 2.40000+ 1 2.70000+ 1 2.05842- 4 2.90466- 3 2.40000+ 1 2.90000+ 1 2.73193- 4 2.95027- 3 2.40000+ 1 3.00000+ 1 3.15495- 3 2.97848- 3 2.40000+ 1 3.20000+ 1 1.08135- 4 3.04384- 3 2.40000+ 1 3.30000+ 1 8.17648- 4 3.04749- 3 2.40000+ 1 4.10000+ 1 2.56112- 5 3.06567- 3 2.40000+ 1 4.30000+ 1 1.65996- 5 3.07575- 3 2.40000+ 1 4.40000+ 1 1.56986- 4 3.07856- 3 2.50000+ 1 2.50000+ 1 1.12291- 2 2.90290- 3 2.50000+ 1 2.70000+ 1 3.21558- 4 2.91086- 3 2.50000+ 1 2.90000+ 1 1.45316- 3 2.95647- 3 2.50000+ 1 3.00000+ 1 3.75369- 3 2.98468- 3 2.50000+ 1 3.20000+ 1 1.07706- 3 3.05004- 3 2.50000+ 1 3.30000+ 1 7.37964- 4 3.05369- 3 2.50000+ 1 4.10000+ 1 3.88889- 5 3.07187- 3 2.50000+ 1 4.30000+ 1 8.91621- 5 3.08195- 3 2.50000+ 1 4.40000+ 1 1.88290- 4 3.08476- 3 2.70000+ 1 2.70000+ 1 1.09957- 5 2.91882- 3 2.70000+ 1 2.90000+ 1 1.70433- 5 2.96443- 3 2.70000+ 1 3.00000+ 1 3.95269- 4 2.99264- 3 2.70000+ 1 3.20000+ 1 1.31949- 5 3.05800- 3 2.70000+ 1 3.30000+ 1 1.53939- 5 3.06165- 3 2.70000+ 1 4.10000+ 1 2.74887- 6 3.07983- 3 2.70000+ 1 4.30000+ 1 1.09957- 6 3.08991- 3 2.70000+ 1 4.40000+ 1 1.97924- 5 3.09272- 3 2.90000+ 1 2.90000+ 1 5.29831- 7 3.01004- 3 2.90000+ 1 3.00000+ 1 4.38163- 4 3.03825- 3 2.90000+ 1 3.20000+ 1 3.17892- 6 3.10361- 3 2.90000+ 1 3.30000+ 1 4.13242- 5 3.10726- 3 2.90000+ 1 4.10000+ 1 2.11921- 6 3.12544- 3 2.90000+ 1 4.40000+ 1 2.22525- 5 3.13833- 3 3.00000+ 1 3.00000+ 1 6.24648- 4 3.06646- 3 3.00000+ 1 3.20000+ 1 6.19842- 4 3.13182- 3 3.00000+ 1 3.30000+ 1 7.87583- 4 3.13547- 3 3.00000+ 1 4.10000+ 1 5.95229- 5 3.15365- 3 3.00000+ 1 4.30000+ 1 3.12639- 5 3.16373- 3 3.00000+ 1 4.40000+ 1 6.43292- 5 3.16654- 3 3.20000+ 1 3.20000+ 1 2.37130- 6 3.19718- 3 3.20000+ 1 3.30000+ 1 6.54496- 5 3.20083- 3 3.20000+ 1 4.10000+ 1 1.42282- 6 3.21901- 3 3.20000+ 1 4.40000+ 1 2.46628- 5 3.23190- 3 3.30000+ 1 3.30000+ 1 3.01238- 5 3.20448- 3 3.30000+ 1 4.10000+ 1 2.00819- 6 3.22266- 3 3.30000+ 1 4.30000+ 1 2.00819- 6 3.23274- 3 3.30000+ 1 4.40000+ 1 3.26335- 5 3.23555- 3 4.10000+ 1 4.40000+ 1 2.37129- 6 3.25373- 3 4.30000+ 1 4.40000+ 1 1.06409- 6 3.26381- 3 4.40000+ 1 4.40000+ 1 1.05369- 6 3.26662- 3 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.03840- 3 1.95920- 3 1.90000+ 1 2.01030- 4 2.09854- 3 2.40000+ 1 3.68349- 2 2.60800- 3 2.90000+ 1 5.00849- 4 2.66777- 3 3.00000+ 1 4.95599- 5 2.69598- 3 4.30000+ 1 2.25450- 5 2.79325- 3 4.40000+ 1 1.92700- 6 2.79606- 3 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 8.23646- 3 1.08800- 5 1.40000+ 1 3.20000+ 1 4.71025- 2 7.62400- 5 1.40000+ 1 3.30000+ 1 6.61673- 3 7.98900- 5 1.40000+ 1 4.10000+ 1 7.80383- 4 9.80700- 5 1.40000+ 1 4.30000+ 1 2.21263- 4 1.08150- 4 1.40000+ 1 4.40000+ 1 4.15614- 4 1.10960- 4 1.60000+ 1 1.60000+ 1 2.19265- 5 8.60220- 4 1.60000+ 1 1.80000+ 1 1.08543- 3 9.87560- 4 1.60000+ 1 1.90000+ 1 8.64129- 4 1.12690- 3 1.60000+ 1 2.10000+ 1 3.28337- 2 1.33630- 3 1.60000+ 1 2.20000+ 1 3.80017- 3 1.36232- 3 1.60000+ 1 2.40000+ 1 1.55148- 2 1.63636- 3 1.60000+ 1 2.50000+ 1 4.09319- 3 1.64256- 3 1.60000+ 1 2.70000+ 1 1.89366- 5 1.65052- 3 1.60000+ 1 2.90000+ 1 1.73426- 4 1.69613- 3 1.60000+ 1 3.00000+ 1 1.10633- 4 1.72434- 3 1.60000+ 1 3.20000+ 1 3.05482- 3 1.78970- 3 1.60000+ 1 3.30000+ 1 3.65778- 4 1.79335- 3 1.60000+ 1 4.10000+ 1 2.98995- 6 1.81153- 3 1.60000+ 1 4.30000+ 1 1.09638- 5 1.82161- 3 1.60000+ 1 4.40000+ 1 5.97989- 6 1.82442- 3 1.80000+ 1 1.80000+ 1 6.23902- 4 1.11490- 3 1.80000+ 1 1.90000+ 1 4.25049- 3 1.25424- 3 1.80000+ 1 2.10000+ 1 2.94888- 2 1.46364- 3 1.80000+ 1 2.20000+ 1 1.99331- 3 1.48966- 3 1.80000+ 1 2.40000+ 1 1.03814- 2 1.76370- 3 1.80000+ 1 2.50000+ 1 5.26734- 3 1.76990- 3 1.80000+ 1 2.70000+ 1 1.49503- 4 1.77786- 3 1.80000+ 1 2.90000+ 1 1.97331- 4 1.82347- 3 1.80000+ 1 3.00000+ 1 6.07973- 4 1.85168- 3 1.80000+ 1 3.20000+ 1 2.72382- 3 1.91704- 3 1.80000+ 1 3.30000+ 1 2.20265- 4 1.92069- 3 1.80000+ 1 4.10000+ 1 1.89361- 5 1.93887- 3 1.80000+ 1 4.30000+ 1 1.19594- 5 1.94895- 3 1.80000+ 1 4.40000+ 1 3.08957- 5 1.95176- 3 1.90000+ 1 1.90000+ 1 1.49994- 3 1.39358- 3 1.90000+ 1 2.10000+ 1 5.86962- 2 1.60298- 3 1.90000+ 1 2.20000+ 1 2.22857- 3 1.62900- 3 1.90000+ 1 2.40000+ 1 2.98695- 3 1.90304- 3 1.90000+ 1 2.50000+ 1 2.01624- 3 1.90924- 3 1.90000+ 1 2.70000+ 1 1.43517- 4 1.91720- 3 1.90000+ 1 2.90000+ 1 5.35203- 4 1.96281- 3 1.90000+ 1 3.00000+ 1 4.10632- 4 1.99102- 3 1.90000+ 1 3.20000+ 1 5.47362- 3 2.05638- 3 1.90000+ 1 3.30000+ 1 2.24250- 4 2.06003- 3 1.90000+ 1 4.10000+ 1 1.89365- 5 2.07821- 3 1.90000+ 1 4.30000+ 1 3.18933- 5 2.08829- 3 1.90000+ 1 4.40000+ 1 2.09295- 5 2.09110- 3 2.10000+ 1 2.10000+ 1 5.30956- 2 1.81238- 3 2.10000+ 1 2.20000+ 1 1.05080- 1 1.83840- 3 2.10000+ 1 2.40000+ 1 5.85900- 2 2.11244- 3 2.10000+ 1 2.50000+ 1 7.04601- 2 2.11864- 3 2.10000+ 1 2.70000+ 1 6.54215- 3 2.12660- 3 2.10000+ 1 2.90000+ 1 5.83551- 3 2.17221- 3 2.10000+ 1 3.00000+ 1 1.10165- 2 2.20042- 3 2.10000+ 1 3.20000+ 1 1.19617- 2 2.26578- 3 2.10000+ 1 3.30000+ 1 1.33438- 2 2.26943- 3 2.10000+ 1 4.10000+ 1 8.90018- 4 2.28761- 3 2.10000+ 1 4.30000+ 1 3.69758- 4 2.29769- 3 2.10000+ 1 4.40000+ 1 5.84029- 4 2.30050- 3 2.20000+ 1 2.20000+ 1 1.67634- 3 1.86442- 3 2.20000+ 1 2.40000+ 1 6.66584- 2 2.13846- 3 2.20000+ 1 2.50000+ 1 3.30193- 3 2.14466- 3 2.20000+ 1 2.70000+ 1 4.01653- 4 2.15262- 3 2.20000+ 1 2.90000+ 1 2.42187- 4 2.19823- 3 2.20000+ 1 3.00000+ 1 3.37865- 4 2.22644- 3 2.20000+ 1 3.20000+ 1 9.85793- 3 2.29180- 3 2.20000+ 1 3.30000+ 1 3.50819- 4 2.29545- 3 2.20000+ 1 4.10000+ 1 4.98315- 5 2.31363- 3 2.20000+ 1 4.30000+ 1 1.49505- 5 2.32371- 3 2.20000+ 1 4.40000+ 1 1.69425- 5 2.32652- 3 2.40000+ 1 2.40000+ 1 6.36398- 2 2.41250- 3 2.40000+ 1 2.50000+ 1 1.83782- 1 2.41870- 3 2.40000+ 1 2.70000+ 1 3.26502- 3 2.42666- 3 2.40000+ 1 2.90000+ 1 1.68440- 3 2.47227- 3 2.40000+ 1 3.00000+ 1 5.78052- 4 2.50048- 3 2.40000+ 1 3.20000+ 1 5.93325- 3 2.56584- 3 2.40000+ 1 3.30000+ 1 8.08300- 3 2.56949- 3 2.40000+ 1 4.10000+ 1 4.47511- 4 2.58767- 3 2.40000+ 1 4.30000+ 1 1.05646- 4 2.59775- 3 2.40000+ 1 4.40000+ 1 3.08961- 5 2.60056- 3 2.50000+ 1 2.50000+ 1 3.66231- 3 2.42490- 3 2.50000+ 1 2.70000+ 1 5.82826- 4 2.43286- 3 2.50000+ 1 2.90000+ 1 4.30974- 4 2.47847- 3 2.50000+ 1 3.00000+ 1 3.27491- 4 2.50668- 3 2.50000+ 1 3.20000+ 1 5.80078- 3 2.57204- 3 2.50000+ 1 3.30000+ 1 3.57853- 4 2.57569- 3 2.50000+ 1 4.10000+ 1 7.49898- 5 2.59387- 3 2.50000+ 1 4.30000+ 1 2.46806- 5 2.60395- 3 2.50000+ 1 4.40000+ 1 1.70862- 5 2.60676- 3 2.70000+ 1 2.70000+ 1 2.13146- 6 2.44082- 3 2.70000+ 1 2.90000+ 1 2.77088- 5 2.48643- 3 2.70000+ 1 3.00000+ 1 2.02485- 5 2.51464- 3 2.70000+ 1 3.20000+ 1 6.55431- 4 2.58000- 3 2.70000+ 1 3.30000+ 1 4.58264- 5 2.58365- 3 2.70000+ 1 4.10000+ 1 1.06573- 6 2.60183- 3 2.70000+ 1 4.30000+ 1 2.13146- 6 2.61191- 3 2.70000+ 1 4.40000+ 1 1.06573- 6 2.61472- 3 2.90000+ 1 2.90000+ 1 2.14750- 5 2.53204- 3 2.90000+ 1 3.00000+ 1 1.03591- 4 2.56025- 3 2.90000+ 1 3.20000+ 1 6.85946- 4 2.62561- 3 2.90000+ 1 3.30000+ 1 3.78980- 5 2.62926- 3 2.90000+ 1 4.10000+ 1 3.78980- 6 2.64744- 3 2.90000+ 1 4.30000+ 1 2.52661- 6 2.65752- 3 2.90000+ 1 4.40000+ 1 5.05297- 6 2.66033- 3 3.00000+ 1 3.00000+ 1 3.97420- 5 2.58846- 3 3.00000+ 1 3.20000+ 1 1.42255- 3 2.65382- 3 3.00000+ 1 3.30000+ 1 4.93351- 5 2.65747- 3 3.00000+ 1 4.10000+ 1 4.11115- 6 2.67565- 3 3.00000+ 1 4.30000+ 1 6.85187- 6 2.68573- 3 3.00000+ 1 4.40000+ 1 4.11115- 6 2.68854- 3 3.20000+ 1 3.20000+ 1 6.51820- 4 2.71918- 3 3.20000+ 1 3.30000+ 1 1.25775- 3 2.72283- 3 3.20000+ 1 4.10000+ 1 8.37196- 5 2.74101- 3 3.20000+ 1 4.30000+ 1 3.38871- 5 2.75109- 3 3.20000+ 1 4.40000+ 1 5.48164- 5 2.75390- 3 3.30000+ 1 3.30000+ 1 2.43586- 5 2.72648- 3 3.30000+ 1 4.10000+ 1 6.76622- 6 2.74466- 3 3.30000+ 1 4.30000+ 1 2.70659- 6 2.75474- 3 3.30000+ 1 4.40000+ 1 2.70659- 6 2.75755- 3 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.52230- 3 1.98014- 3 2.40000+ 1 1.81680- 3 2.48960- 3 2.50000+ 1 3.55220- 2 2.49580- 3 3.00000+ 1 3.59330- 4 2.57758- 3 4.40000+ 1 1.43110- 5 2.67766- 3 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 2.47074- 4 8.69160- 4 1.60000+ 1 1.90000+ 1 1.94937- 3 1.00850- 3 1.60000+ 1 2.10000+ 1 3.34916- 3 1.21790- 3 1.60000+ 1 2.20000+ 1 3.59957- 2 1.24392- 3 1.60000+ 1 2.40000+ 1 4.31138- 3 1.51796- 3 1.60000+ 1 2.50000+ 1 1.64455- 2 1.52416- 3 1.60000+ 1 2.70000+ 1 1.10927- 5 1.53212- 3 1.60000+ 1 2.90000+ 1 1.51269- 5 1.57773- 3 1.60000+ 1 3.00000+ 1 2.58175- 4 1.60594- 3 1.60000+ 1 3.20000+ 1 3.06578- 4 1.67130- 3 1.60000+ 1 3.30000+ 1 3.29167- 3 1.67495- 3 1.60000+ 1 4.10000+ 1 2.01698- 6 1.69313- 3 1.60000+ 1 4.30000+ 1 1.00849- 6 1.70321- 3 1.60000+ 1 4.40000+ 1 1.31104- 5 1.70602- 3 1.80000+ 1 1.90000+ 1 5.38840- 3 1.13584- 3 1.80000+ 1 2.10000+ 1 2.66238- 4 1.34524- 3 1.80000+ 1 2.20000+ 1 3.71764- 2 1.37126- 3 1.80000+ 1 2.40000+ 1 2.23483- 3 1.64530- 3 1.80000+ 1 2.50000+ 1 9.03385- 3 1.65150- 3 1.80000+ 1 2.70000+ 1 3.22714- 5 1.65946- 3 1.80000+ 1 2.90000+ 1 1.00849- 6 1.70507- 3 1.80000+ 1 3.00000+ 1 7.12995- 4 1.73328- 3 1.80000+ 1 3.20000+ 1 8.06805- 6 1.79864- 3 1.80000+ 1 3.30000+ 1 3.39961- 3 1.80229- 3 1.80000+ 1 4.10000+ 1 4.03378- 6 1.82047- 3 1.80000+ 1 4.40000+ 1 3.63056- 5 1.83336- 3 1.90000+ 1 1.90000+ 1 3.60231- 3 1.27518- 3 1.90000+ 1 2.10000+ 1 3.42685- 3 1.48458- 3 1.90000+ 1 2.20000+ 1 5.55149- 2 1.51060- 3 1.90000+ 1 2.40000+ 1 2.27407- 3 1.78464- 3 1.90000+ 1 2.50000+ 1 4.21026- 3 1.79084- 3 1.90000+ 1 2.70000+ 1 3.35823- 4 1.79880- 3 1.90000+ 1 2.90000+ 1 6.47441- 4 1.84441- 3 1.90000+ 1 3.00000+ 1 9.82272- 4 1.87262- 3 1.90000+ 1 3.20000+ 1 3.85231- 4 1.93798- 3 1.90000+ 1 3.30000+ 1 5.05871- 3 1.94163- 3 1.90000+ 1 4.10000+ 1 4.43744- 5 1.95981- 3 1.90000+ 1 4.30000+ 1 3.83227- 5 1.96989- 3 1.90000+ 1 4.40000+ 1 4.94155- 5 1.97270- 3 2.10000+ 1 2.10000+ 1 7.47304- 4 1.69398- 3 2.10000+ 1 2.20000+ 1 7.73577- 2 1.72000- 3 2.10000+ 1 2.40000+ 1 2.95587- 3 1.99404- 3 2.10000+ 1 2.50000+ 1 4.06945- 2 2.00024- 3 2.10000+ 1 2.70000+ 1 3.34828- 4 2.00820- 3 2.10000+ 1 2.90000+ 1 5.95017- 5 2.05381- 3 2.10000+ 1 3.00000+ 1 4.70950- 4 2.08202- 3 2.10000+ 1 3.20000+ 1 1.54292- 4 2.14738- 3 2.10000+ 1 3.30000+ 1 7.13534- 3 2.15103- 3 2.10000+ 1 4.10000+ 1 4.13478- 5 2.16921- 3 2.10000+ 1 4.30000+ 1 4.03390- 6 2.17929- 3 2.10000+ 1 4.40000+ 1 2.42038- 5 2.18210- 3 2.20000+ 1 2.20000+ 1 8.62289- 2 1.74602- 3 2.20000+ 1 2.40000+ 1 6.44920- 2 2.02006- 3 2.20000+ 1 2.50000+ 1 1.02916- 1 2.02626- 3 2.20000+ 1 2.70000+ 1 6.87099- 3 2.03422- 3 2.20000+ 1 2.90000+ 1 7.02399- 3 2.07983- 3 2.20000+ 1 3.00000+ 1 1.05120- 2 2.10804- 3 2.20000+ 1 3.20000+ 1 9.94211- 3 2.17340- 3 2.20000+ 1 3.30000+ 1 1.89031- 2 2.17705- 3 2.20000+ 1 4.10000+ 1 9.30820- 4 2.19523- 3 2.20000+ 1 4.30000+ 1 4.41709- 4 2.20531- 3 2.20000+ 1 4.40000+ 1 5.57712- 4 2.20812- 3 2.40000+ 1 2.40000+ 1 5.22917- 3 2.29410- 3 2.40000+ 1 2.50000+ 1 1.66802- 1 2.30030- 3 2.40000+ 1 2.70000+ 1 7.00889- 4 2.30826- 3 2.40000+ 1 2.90000+ 1 3.92307- 4 2.35387- 3 2.40000+ 1 3.00000+ 1 3.59034- 4 2.38208- 3 2.40000+ 1 3.20000+ 1 3.68099- 4 2.44744- 3 2.40000+ 1 3.30000+ 1 5.63349- 3 2.45109- 3 2.40000+ 1 4.10000+ 1 9.17746- 5 2.46927- 3 2.40000+ 1 4.30000+ 1 2.42037- 5 2.47935- 3 2.40000+ 1 4.40000+ 1 1.91615- 5 2.48216- 3 2.50000+ 1 2.50000+ 1 1.14089- 1 2.30650- 3 2.50000+ 1 2.70000+ 1 3.38762- 3 2.31446- 3 2.50000+ 1 2.90000+ 1 1.73666- 3 2.36007- 3 2.50000+ 1 3.00000+ 1 7.67474- 4 2.38828- 3 2.50000+ 1 3.20000+ 1 4.90821- 3 2.45364- 3 2.50000+ 1 3.30000+ 1 1.05064- 2 2.45729- 3 2.50000+ 1 4.10000+ 1 4.62919- 4 2.47547- 3 2.50000+ 1 4.30000+ 1 1.09929- 4 2.48555- 3 2.50000+ 1 4.40000+ 1 4.13481- 5 2.48836- 3 2.70000+ 1 2.70000+ 1 1.19172- 6 2.32242- 3 2.70000+ 1 2.90000+ 1 2.38342- 6 2.36803- 3 2.70000+ 1 3.00000+ 1 5.48186- 5 2.39624- 3 2.70000+ 1 3.20000+ 1 4.05174- 5 2.46160- 3 2.70000+ 1 3.30000+ 1 7.48375- 4 2.46525- 3 2.70000+ 1 4.40000+ 1 2.38342- 6 2.49632- 3 2.90000+ 1 3.00000+ 1 1.03852- 4 2.44185- 3 2.90000+ 1 3.20000+ 1 3.46164- 6 2.50721- 3 2.90000+ 1 3.30000+ 1 7.45417- 4 2.51086- 3 2.90000+ 1 4.40000+ 1 5.76936- 6 2.54193- 3 3.00000+ 1 3.00000+ 1 8.82785- 5 2.47006- 3 3.00000+ 1 3.20000+ 1 7.37856- 5 2.53542- 3 3.00000+ 1 3.30000+ 1 1.25702- 3 2.53907- 3 3.00000+ 1 4.10000+ 1 7.90536- 6 2.55725- 3 3.00000+ 1 4.30000+ 1 6.58788- 6 2.56733- 3 3.00000+ 1 4.40000+ 1 9.22299- 6 2.57014- 3 3.20000+ 1 3.20000+ 1 8.06818- 6 2.60078- 3 3.20000+ 1 3.30000+ 1 9.22782- 4 2.60443- 3 3.20000+ 1 4.10000+ 1 4.03385- 6 2.62261- 3 3.20000+ 1 4.40000+ 1 3.02543- 6 2.63550- 3 3.30000+ 1 3.30000+ 1 1.00740- 3 2.60808- 3 3.30000+ 1 4.10000+ 1 8.57201- 5 2.62626- 3 3.30000+ 1 4.30000+ 1 4.13464- 5 2.63634- 3 3.30000+ 1 4.40000+ 1 5.14313- 5 2.63915- 3 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.74612- 5 1.27340- 4 1.90000+ 1 3.37932- 4 2.66680- 4 2.90000+ 1 2.23060- 4 8.35910- 4 3.00000+ 1 7.88919- 5 8.64120- 4 4.30000+ 1 1.79111- 5 9.61390- 4 4.40000+ 1 6.23493- 6 9.64200- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.90000+ 1 1.19491- 2 0.00000+ 0 1.80000+ 1 3.00000+ 1 5.30115- 2 1.98200- 5 1.80000+ 1 3.20000+ 1 4.25619- 2 8.51800- 5 1.80000+ 1 3.30000+ 1 6.82552- 2 8.88300- 5 1.80000+ 1 4.10000+ 1 4.78517- 3 1.07010- 4 1.80000+ 1 4.30000+ 1 1.98420- 3 1.17090- 4 1.80000+ 1 4.40000+ 1 2.71312- 3 1.19900- 4 1.90000+ 1 2.40000+ 1 4.68875- 2 7.11800- 5 1.90000+ 1 2.50000+ 1 7.18114- 2 7.73800- 5 1.90000+ 1 2.70000+ 1 4.05998- 2 8.53400- 5 1.90000+ 1 2.90000+ 1 4.76355- 2 1.30950- 4 1.90000+ 1 3.00000+ 1 4.78707- 2 1.59160- 4 1.90000+ 1 3.20000+ 1 4.02570- 2 2.24520- 4 1.90000+ 1 3.30000+ 1 4.93330- 2 2.28170- 4 1.90000+ 1 4.10000+ 1 5.46575- 3 2.46350- 4 1.90000+ 1 4.30000+ 1 2.82575- 3 2.56430- 4 1.90000+ 1 4.40000+ 1 2.51384- 3 2.59240- 4 2.10000+ 1 2.20000+ 1 2.94815- 3 6.54000- 6 2.10000+ 1 2.40000+ 1 4.52258- 3 2.80580- 4 2.10000+ 1 2.50000+ 1 7.28942- 3 2.86780- 4 2.10000+ 1 2.70000+ 1 1.79412- 2 2.94740- 4 2.10000+ 1 2.90000+ 1 5.68431- 3 3.40350- 4 2.10000+ 1 3.00000+ 1 7.70184- 3 3.68560- 4 2.10000+ 1 3.20000+ 1 1.93545- 3 4.33920- 4 2.10000+ 1 3.30000+ 1 2.06903- 3 4.37570- 4 2.10000+ 1 4.10000+ 1 1.84680- 3 4.55750- 4 2.10000+ 1 4.30000+ 1 3.44462- 4 4.65830- 4 2.10000+ 1 4.40000+ 1 3.45811- 4 4.68640- 4 2.20000+ 1 2.20000+ 1 4.75210- 3 3.25600- 5 2.20000+ 1 2.40000+ 1 7.90187- 3 3.06600- 4 2.20000+ 1 2.50000+ 1 8.27251- 3 3.12800- 4 2.20000+ 1 2.70000+ 1 2.37760- 2 3.20760- 4 2.20000+ 1 2.90000+ 1 9.44287- 3 3.66370- 4 2.20000+ 1 3.00000+ 1 7.94253- 3 3.94580- 4 2.20000+ 1 3.20000+ 1 1.62376- 3 4.59940- 4 2.20000+ 1 3.30000+ 1 2.66772- 3 4.63590- 4 2.20000+ 1 4.10000+ 1 2.43624- 3 4.81770- 4 2.20000+ 1 4.30000+ 1 5.06830- 4 4.91850- 4 2.20000+ 1 4.40000+ 1 3.90634- 4 4.94660- 4 2.40000+ 1 2.40000+ 1 9.28500- 3 5.80640- 4 2.40000+ 1 2.50000+ 1 1.82859- 2 5.86840- 4 2.40000+ 1 2.70000+ 1 2.11449- 2 5.94800- 4 2.40000+ 1 2.90000+ 1 2.88652- 3 6.40410- 4 2.40000+ 1 3.00000+ 1 1.04351- 2 6.68620- 4 2.40000+ 1 3.20000+ 1 9.38116- 4 7.33980- 4 2.40000+ 1 3.30000+ 1 6.14029- 4 7.37630- 4 2.40000+ 1 4.10000+ 1 1.91778- 3 7.55810- 4 2.40000+ 1 4.30000+ 1 1.46256- 4 7.65890- 4 2.40000+ 1 4.40000+ 1 4.58439- 4 7.68700- 4 2.50000+ 1 2.50000+ 1 1.53452- 2 5.93040- 4 2.50000+ 1 2.70000+ 1 2.73740- 2 6.01000- 4 2.50000+ 1 2.90000+ 1 1.51165- 3 6.46610- 4 2.50000+ 1 3.00000+ 1 1.17140- 2 6.74820- 4 2.50000+ 1 3.20000+ 1 5.63578- 4 7.40180- 4 2.50000+ 1 3.30000+ 1 1.35564- 3 7.43830- 4 2.50000+ 1 4.10000+ 1 2.47483- 3 7.62010- 4 2.50000+ 1 4.30000+ 1 7.49099- 5 7.72090- 4 2.50000+ 1 4.40000+ 1 4.99292- 4 7.74900- 4 2.70000+ 1 2.70000+ 1 1.63503- 2 6.08960- 4 2.70000+ 1 2.90000+ 1 2.32585- 2 6.54570- 4 2.70000+ 1 3.00000+ 1 3.69218- 2 6.82780- 4 2.70000+ 1 3.20000+ 1 3.00396- 2 7.48140- 4 2.70000+ 1 3.30000+ 1 4.12664- 2 7.51790- 4 2.70000+ 1 4.10000+ 1 3.78811- 3 7.69970- 4 2.70000+ 1 4.30000+ 1 1.47936- 3 7.80050- 4 2.70000+ 1 4.40000+ 1 1.95598- 3 7.82860- 4 2.90000+ 1 2.90000+ 1 2.10927- 3 7.00180- 4 2.90000+ 1 3.00000+ 1 8.89904- 3 7.28390- 4 2.90000+ 1 3.20000+ 1 3.19209- 3 7.93750- 4 2.90000+ 1 3.30000+ 1 2.49795- 3 7.97400- 4 2.90000+ 1 4.10000+ 1 2.44907- 3 8.15580- 4 2.90000+ 1 4.30000+ 1 2.29744- 4 8.25660- 4 2.90000+ 1 4.40000+ 1 3.78845- 4 8.28470- 4 3.00000+ 1 3.00000+ 1 5.68779- 3 7.56600- 4 3.00000+ 1 3.20000+ 1 2.71585- 3 8.21960- 4 3.00000+ 1 3.30000+ 1 5.37834- 3 8.25610- 4 3.00000+ 1 4.10000+ 1 3.81203- 3 8.43790- 4 3.00000+ 1 4.30000+ 1 4.84072- 4 8.53870- 4 3.00000+ 1 4.40000+ 1 5.39927- 4 8.56680- 4 3.20000+ 1 3.20000+ 1 9.04437- 4 8.87320- 4 3.20000+ 1 3.30000+ 1 2.71028- 3 8.90970- 4 3.20000+ 1 4.10000+ 1 3.92327- 3 9.09150- 4 3.20000+ 1 4.30000+ 1 2.03642- 4 9.19230- 4 3.20000+ 1 4.40000+ 1 1.31775- 4 9.22040- 4 3.30000+ 1 3.30000+ 1 1.75404- 3 8.94620- 4 3.30000+ 1 4.10000+ 1 5.27697- 3 9.12800- 4 3.30000+ 1 4.30000+ 1 1.40793- 4 9.22880- 4 3.30000+ 1 4.40000+ 1 2.90397- 4 9.25690- 4 4.10000+ 1 4.10000+ 1 2.67372- 4 9.30980- 4 4.10000+ 1 4.30000+ 1 1.75464- 4 9.41060- 4 4.10000+ 1 4.40000+ 1 2.39525- 4 9.43870- 4 4.30000+ 1 4.30000+ 1 2.78529- 6 9.51140- 4 4.30000+ 1 4.40000+ 1 2.50667- 5 9.53950- 4 4.40000+ 1 4.40000+ 1 1.11400- 5 9.56760- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.53331- 4 3.48740- 4 2.70000+ 1 2.17541- 4 6.62960- 4 3.20000+ 1 4.74996- 5 8.02140- 4 4.10000+ 1 3.31185- 5 8.23970- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.44460- 2 3.61000- 6 1.90000+ 1 3.00000+ 1 2.44388- 2 3.18200- 5 1.90000+ 1 3.20000+ 1 7.72895- 3 9.71800- 5 1.90000+ 1 3.30000+ 1 1.20996- 2 1.00830- 4 1.90000+ 1 4.10000+ 1 1.79926- 3 1.19010- 4 1.90000+ 1 4.30000+ 1 9.56366- 4 1.29090- 4 1.90000+ 1 4.40000+ 1 9.07010- 4 1.31900- 4 2.10000+ 1 2.40000+ 1 1.26109- 1 1.53240- 4 2.10000+ 1 2.50000+ 1 2.83740- 1 1.59440- 4 2.10000+ 1 2.70000+ 1 3.84996- 2 1.67400- 4 2.10000+ 1 2.90000+ 1 3.04057- 2 2.13010- 4 2.10000+ 1 3.00000+ 1 4.21291- 2 2.41220- 4 2.10000+ 1 3.20000+ 1 2.11626- 2 3.06580- 4 2.10000+ 1 3.30000+ 1 3.38323- 2 3.10230- 4 2.10000+ 1 4.10000+ 1 5.27776- 3 3.28410- 4 2.10000+ 1 4.30000+ 1 1.80875- 3 3.38490- 4 2.10000+ 1 4.40000+ 1 2.20625- 3 3.41300- 4 2.20000+ 1 2.40000+ 1 4.30104- 2 1.79260- 4 2.20000+ 1 2.50000+ 1 1.10138- 2 1.85460- 4 2.20000+ 1 2.70000+ 1 6.08974- 3 1.93420- 4 2.20000+ 1 2.90000+ 1 2.52098- 2 2.39030- 4 2.20000+ 1 3.00000+ 1 5.40063- 3 2.67240- 4 2.20000+ 1 3.20000+ 1 2.40343- 3 3.32600- 4 2.20000+ 1 3.30000+ 1 2.31184- 3 3.36250- 4 2.20000+ 1 4.10000+ 1 6.44113- 4 3.54430- 4 2.20000+ 1 4.30000+ 1 1.14328- 3 3.64510- 4 2.20000+ 1 4.40000+ 1 2.36331- 4 3.67320- 4 2.40000+ 1 2.40000+ 1 2.51559- 3 4.53300- 4 2.40000+ 1 2.50000+ 1 1.56535- 2 4.59500- 4 2.40000+ 1 2.70000+ 1 4.75195- 3 4.67460- 4 2.40000+ 1 2.90000+ 1 1.99846- 2 5.13070- 4 2.40000+ 1 3.00000+ 1 3.45615- 3 5.41280- 4 2.40000+ 1 3.20000+ 1 4.99234- 3 6.06640- 4 2.40000+ 1 3.30000+ 1 2.83986- 3 6.10290- 4 2.40000+ 1 4.10000+ 1 6.57675- 4 6.28470- 4 2.40000+ 1 4.30000+ 1 9.10230- 4 6.38550- 4 2.40000+ 1 4.40000+ 1 1.65373- 4 6.41360- 4 2.50000+ 1 2.50000+ 1 7.32999- 4 4.65700- 4 2.50000+ 1 2.70000+ 1 2.88429- 3 4.73660- 4 2.50000+ 1 2.90000+ 1 3.34984- 2 5.19270- 4 2.50000+ 1 3.00000+ 1 1.98149- 3 5.47480- 4 2.50000+ 1 3.20000+ 1 1.07664- 2 6.12840- 4 2.50000+ 1 3.30000+ 1 9.43953- 4 6.16490- 4 2.50000+ 1 4.10000+ 1 3.10807- 4 6.34670- 4 2.50000+ 1 4.30000+ 1 1.48697- 3 6.44750- 4 2.50000+ 1 4.40000+ 1 9.01816- 5 6.47560- 4 2.70000+ 1 2.70000+ 1 9.95827- 4 4.81620- 4 2.70000+ 1 2.90000+ 1 1.35433- 2 5.27230- 4 2.70000+ 1 3.00000+ 1 2.51758- 3 5.55440- 4 2.70000+ 1 3.20000+ 1 2.93441- 3 6.20800- 4 2.70000+ 1 3.30000+ 1 2.06159- 3 6.24450- 4 2.70000+ 1 4.10000+ 1 2.17069- 4 6.42630- 4 2.70000+ 1 4.30000+ 1 5.97247- 4 6.52710- 4 2.70000+ 1 4.40000+ 1 1.22889- 4 6.55520- 4 2.90000+ 1 2.90000+ 1 1.26781- 2 5.72840- 4 2.90000+ 1 3.00000+ 1 3.34061- 2 6.01050- 4 2.90000+ 1 3.20000+ 1 2.22379- 2 6.66410- 4 2.90000+ 1 3.30000+ 1 3.69221- 2 6.70060- 4 2.90000+ 1 4.10000+ 1 2.74702- 3 6.88240- 4 2.90000+ 1 4.30000+ 1 1.38675- 3 6.98320- 4 2.90000+ 1 4.40000+ 1 1.78676- 3 7.01130- 4 3.00000+ 1 3.00000+ 1 1.17731- 3 6.29260- 4 3.00000+ 1 3.20000+ 1 4.32394- 3 6.94620- 4 3.00000+ 1 3.30000+ 1 1.75045- 3 6.98270- 4 3.00000+ 1 4.10000+ 1 3.42094- 4 7.16450- 4 3.00000+ 1 4.30000+ 1 1.40226- 3 7.26530- 4 3.00000+ 1 4.40000+ 1 1.09410- 4 7.29340- 4 3.20000+ 1 3.20000+ 1 3.64199- 4 7.59980- 4 3.20000+ 1 3.30000+ 1 6.24305- 4 7.63630- 4 3.20000+ 1 4.10000+ 1 1.34908- 4 7.81810- 4 3.20000+ 1 4.30000+ 1 2.49970- 4 7.91890- 4 3.20000+ 1 4.40000+ 1 5.91502- 5 7.94700- 4 3.30000+ 1 3.30000+ 1 6.30074- 5 7.67280- 4 3.30000+ 1 4.10000+ 1 4.57268- 5 7.85460- 4 3.30000+ 1 4.30000+ 1 2.69839- 4 7.95540- 4 3.30000+ 1 4.40000+ 1 1.35581- 5 7.98350- 4 4.10000+ 1 4.10000+ 1 2.28525- 6 8.03640- 4 4.10000+ 1 4.30000+ 1 1.51656- 5 8.13720- 4 4.10000+ 1 4.40000+ 1 2.28525- 6 8.16530- 4 4.30000+ 1 4.30000+ 1 1.74977- 6 8.23800- 4 4.30000+ 1 4.40000+ 1 7.79448- 6 8.26610- 4 4.40000+ 1 4.40000+ 1 1.59072- 7 8.29420- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.53794- 5 2.09400- 4 2.20000+ 1 2.02274- 4 2.35420- 4 2.70000+ 1 2.01057- 4 5.23620- 4 3.20000+ 1 1.47042- 5 6.62800- 4 3.30000+ 1 8.65286- 5 6.66450- 4 4.10000+ 1 2.98280- 5 6.84630- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 5.01166- 3 1.39000- 5 2.10000+ 1 2.50000+ 1 2.44004- 3 2.01000- 5 2.10000+ 1 2.70000+ 1 1.86061- 2 2.80600- 5 2.10000+ 1 2.90000+ 1 1.40818- 2 7.36700- 5 2.10000+ 1 3.00000+ 1 4.34456- 2 1.01880- 4 2.10000+ 1 3.20000+ 1 1.20325- 2 1.67240- 4 2.10000+ 1 3.30000+ 1 2.00826- 2 1.70890- 4 2.10000+ 1 4.10000+ 1 2.21910- 3 1.89070- 4 2.10000+ 1 4.30000+ 1 8.21481- 4 1.99150- 4 2.10000+ 1 4.40000+ 1 1.90889- 3 2.01960- 4 2.20000+ 1 2.40000+ 1 2.68064- 2 3.99200- 5 2.20000+ 1 2.50000+ 1 5.01917- 2 4.61200- 5 2.20000+ 1 2.70000+ 1 9.58687- 2 5.40800- 5 2.20000+ 1 2.90000+ 1 1.04632- 1 9.96900- 5 2.20000+ 1 3.00000+ 1 1.27151- 1 1.27900- 4 2.20000+ 1 3.20000+ 1 9.62417- 2 1.93260- 4 2.20000+ 1 3.30000+ 1 1.13157- 1 1.96910- 4 2.20000+ 1 4.10000+ 1 1.34660- 2 2.15090- 4 2.20000+ 1 4.30000+ 1 6.26476- 3 2.25170- 4 2.20000+ 1 4.40000+ 1 6.20001- 3 2.27980- 4 2.40000+ 1 2.40000+ 1 7.96277- 4 3.13960- 4 2.40000+ 1 2.50000+ 1 1.20495- 2 3.20160- 4 2.40000+ 1 2.70000+ 1 7.53617- 3 3.28120- 4 2.40000+ 1 2.90000+ 1 3.98941- 3 3.73730- 4 2.40000+ 1 3.00000+ 1 4.95190- 2 4.01940- 4 2.40000+ 1 3.20000+ 1 1.50564- 3 4.67300- 4 2.40000+ 1 3.30000+ 1 6.62164- 3 4.70950- 4 2.40000+ 1 4.10000+ 1 7.03418- 4 4.89130- 4 2.40000+ 1 4.30000+ 1 2.19445- 4 4.99210- 4 2.40000+ 1 4.40000+ 1 1.91540- 3 5.02020- 4 2.50000+ 1 2.50000+ 1 6.04359- 3 3.26360- 4 2.50000+ 1 2.70000+ 1 1.68351- 2 3.34320- 4 2.50000+ 1 2.90000+ 1 1.42828- 2 3.79930- 4 2.50000+ 1 3.00000+ 1 6.04189- 2 4.08140- 4 2.50000+ 1 3.20000+ 1 1.29283- 3 4.73500- 4 2.50000+ 1 3.30000+ 1 8.88674- 3 4.77150- 4 2.50000+ 1 4.10000+ 1 1.85340- 3 4.95330- 4 2.50000+ 1 4.30000+ 1 8.06187- 4 5.05410- 4 2.50000+ 1 4.40000+ 1 2.36035- 3 5.08220- 4 2.70000+ 1 2.70000+ 1 3.84149- 7 3.42280- 4 2.70000+ 1 2.90000+ 1 2.40087- 4 3.87890- 4 2.70000+ 1 3.00000+ 1 5.18577- 3 4.16100- 4 2.70000+ 1 3.20000+ 1 4.37920- 4 4.81460- 4 2.70000+ 1 3.30000+ 1 7.79804- 4 4.85110- 4 2.70000+ 1 4.10000+ 1 2.68884- 6 5.03290- 4 2.70000+ 1 4.30000+ 1 1.03718- 5 5.13370- 4 2.70000+ 1 4.40000+ 1 1.97065- 4 5.16180- 4 2.90000+ 1 2.90000+ 1 5.78193- 6 4.33500- 4 2.90000+ 1 3.00000+ 1 5.30129- 3 4.61710- 4 2.90000+ 1 3.20000+ 1 2.19356- 4 5.27070- 4 2.90000+ 1 3.30000+ 1 6.84793- 4 5.30720- 4 2.90000+ 1 4.10000+ 1 2.78253- 5 5.48900- 4 2.90000+ 1 4.30000+ 1 1.08412- 6 5.58980- 4 2.90000+ 1 4.40000+ 1 2.05261- 4 5.61790- 4 3.00000+ 1 3.00000+ 1 7.34105- 3 4.89920- 4 3.00000+ 1 3.20000+ 1 7.21724- 3 5.55280- 4 3.00000+ 1 3.30000+ 1 9.55633- 3 5.58930- 4 3.00000+ 1 4.10000+ 1 7.51453- 4 5.77110- 4 3.00000+ 1 4.30000+ 1 3.60150- 4 5.87190- 4 3.00000+ 1 4.40000+ 1 6.73751- 4 5.90000- 4 3.20000+ 1 3.20000+ 1 1.01100- 4 6.20640- 4 3.20000+ 1 3.30000+ 1 6.11397- 4 6.24290- 4 3.20000+ 1 4.10000+ 1 3.49965- 5 6.42470- 4 3.20000+ 1 4.30000+ 1 1.04686- 5 6.52550- 4 3.20000+ 1 4.40000+ 1 2.13567- 4 6.55360- 4 3.30000+ 1 3.30000+ 1 5.71015- 4 6.27940- 4 3.30000+ 1 4.10000+ 1 8.13598- 5 6.46120- 4 3.30000+ 1 4.30000+ 1 3.29030- 5 6.56200- 4 3.30000+ 1 4.40000+ 1 2.86261- 4 6.59010- 4 4.10000+ 1 4.30000+ 1 8.97370- 7 6.74380- 4 4.10000+ 1 4.40000+ 1 2.18366- 5 6.77190- 4 4.30000+ 1 4.40000+ 1 1.04690- 5 6.87270- 4 4.40000+ 1 4.40000+ 1 9.57189- 6 6.90080- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.99710- 4 3.00060- 4 2.90000+ 1 7.31780- 5 3.59830- 4 3.00000+ 1 9.30390- 6 3.88040- 4 4.30000+ 1 4.20310- 6 4.85310- 4 4.40000+ 1 4.50200- 7 4.88120- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.10000+ 1 1.19675- 3 5.69000- 6 2.20000+ 1 4.30000+ 1 2.94522- 4 1.57700- 5 2.20000+ 1 4.40000+ 1 6.72725- 4 1.85800- 5 2.40000+ 1 2.40000+ 1 9.19922- 2 1.04560- 4 2.40000+ 1 2.50000+ 1 3.01019- 1 1.10760- 4 2.40000+ 1 2.70000+ 1 7.96756- 2 1.18720- 4 2.40000+ 1 2.90000+ 1 6.75518- 2 1.64330- 4 2.40000+ 1 3.00000+ 1 9.00754- 2 1.92540- 4 2.40000+ 1 3.20000+ 1 8.27152- 2 2.57900- 4 2.40000+ 1 3.30000+ 1 8.44050- 2 2.61550- 4 2.40000+ 1 4.10000+ 1 1.10619- 2 2.79730- 4 2.40000+ 1 4.30000+ 1 4.19945- 3 2.89810- 4 2.40000+ 1 4.40000+ 1 4.62440- 3 2.92620- 4 2.50000+ 1 2.50000+ 1 4.59902- 3 1.16960- 4 2.50000+ 1 2.70000+ 1 6.95292- 3 1.24920- 4 2.50000+ 1 2.90000+ 1 1.33420- 2 1.70530- 4 2.50000+ 1 3.00000+ 1 5.99441- 3 1.98740- 4 2.50000+ 1 3.20000+ 1 9.23644- 2 2.64100- 4 2.50000+ 1 3.30000+ 1 3.74589- 3 2.67750- 4 2.50000+ 1 4.10000+ 1 7.20521- 4 2.85930- 4 2.50000+ 1 4.30000+ 1 5.84031- 4 2.96010- 4 2.50000+ 1 4.40000+ 1 2.56818- 4 2.98820- 4 2.70000+ 1 2.70000+ 1 7.96643- 4 1.32880- 4 2.70000+ 1 2.90000+ 1 1.76073- 3 1.78490- 4 2.70000+ 1 3.00000+ 1 1.55025- 3 2.06700- 4 2.70000+ 1 3.20000+ 1 8.19390- 3 2.72060- 4 2.70000+ 1 3.30000+ 1 2.09720- 3 2.75710- 4 2.70000+ 1 4.10000+ 1 1.26428- 4 2.93890- 4 2.70000+ 1 4.30000+ 1 7.39899- 5 3.03970- 4 2.70000+ 1 4.40000+ 1 6.28559- 5 3.06780- 4 2.90000+ 1 2.90000+ 1 3.18228- 4 2.24100- 4 2.90000+ 1 3.00000+ 1 1.83571- 3 2.52310- 4 2.90000+ 1 3.20000+ 1 4.91820- 3 3.17670- 4 2.90000+ 1 3.30000+ 1 7.20858- 4 3.21320- 4 2.90000+ 1 4.10000+ 1 9.08709- 5 3.39500- 4 2.90000+ 1 4.30000+ 1 2.76561- 5 3.49580- 4 2.90000+ 1 4.40000+ 1 6.35736- 5 3.52390- 4 3.00000+ 1 3.00000+ 1 7.14785- 4 2.80520- 4 3.00000+ 1 3.20000+ 1 9.95167- 3 3.45880- 4 3.00000+ 1 3.30000+ 1 8.70675- 4 3.49530- 4 3.00000+ 1 4.10000+ 1 5.63925- 5 3.67710- 4 3.00000+ 1 4.30000+ 1 6.10622- 5 3.77790- 4 3.00000+ 1 4.40000+ 1 4.74129- 5 3.80600- 4 3.20000+ 1 3.20000+ 1 5.18475- 3 4.11240- 4 3.20000+ 1 3.30000+ 1 1.01062- 2 4.14890- 4 3.20000+ 1 4.10000+ 1 8.25400- 4 4.33070- 4 3.20000+ 1 4.30000+ 1 3.03145- 4 4.43150- 4 3.20000+ 1 4.40000+ 1 5.07527- 4 4.45960- 4 3.30000+ 1 3.30000+ 1 1.91082- 4 4.18540- 4 3.30000+ 1 4.10000+ 1 4.84882- 5 4.36720- 4 3.30000+ 1 4.30000+ 1 1.90372- 5 4.46800- 4 3.30000+ 1 4.40000+ 1 3.34027- 5 4.49610- 4 4.10000+ 1 4.10000+ 1 3.23266- 6 4.54900- 4 4.10000+ 1 4.30000+ 1 3.23266- 6 4.64980- 4 4.10000+ 1 4.40000+ 1 2.15497- 6 4.67790- 4 4.30000+ 1 4.40000+ 1 2.15500- 6 4.77870- 4 4.40000+ 1 4.40000+ 1 7.18350- 7 4.80680- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.22829- 5 2.74040- 4 2.50000+ 1 2.67569- 4 2.80240- 4 3.00000+ 1 6.51817- 5 3.62020- 4 4.40000+ 1 3.18318- 6 4.62100- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 4.94977- 3 7.85400- 5 2.40000+ 1 2.50000+ 1 1.46406- 1 8.47400- 5 2.40000+ 1 2.70000+ 1 1.05210- 2 9.27000- 5 2.40000+ 1 2.90000+ 1 6.76121- 3 1.38310- 4 2.40000+ 1 3.00000+ 1 1.37697- 2 1.66520- 4 2.40000+ 1 3.20000+ 1 5.19954- 3 2.31880- 4 2.40000+ 1 3.30000+ 1 8.22208- 2 2.35530- 4 2.40000+ 1 4.10000+ 1 1.23188- 3 2.53710- 4 2.40000+ 1 4.30000+ 1 3.96965- 4 2.63790- 4 2.40000+ 1 4.40000+ 1 6.01617- 4 2.66600- 4 2.50000+ 1 2.50000+ 1 1.33987- 1 9.09400- 5 2.50000+ 1 2.70000+ 1 8.97711- 2 9.89000- 5 2.50000+ 1 2.90000+ 1 9.44267- 2 1.44510- 4 2.50000+ 1 3.00000+ 1 9.28298- 2 1.72720- 4 2.50000+ 1 3.20000+ 1 7.97570- 2 2.38080- 4 2.50000+ 1 3.30000+ 1 1.49186- 1 2.41730- 4 2.50000+ 1 4.10000+ 1 1.24588- 2 2.59910- 4 2.50000+ 1 4.30000+ 1 5.63990- 3 2.69990- 4 2.50000+ 1 4.40000+ 1 4.80027- 3 2.72800- 4 2.70000+ 1 2.70000+ 1 1.40934- 3 1.06860- 4 2.70000+ 1 2.90000+ 1 1.77580- 3 1.52470- 4 2.70000+ 1 3.00000+ 1 3.33673- 3 1.80680- 4 2.70000+ 1 3.20000+ 1 2.72390- 3 2.46040- 4 2.70000+ 1 3.30000+ 1 1.09518- 2 2.49690- 4 2.70000+ 1 4.10000+ 1 2.18946- 4 2.67870- 4 2.70000+ 1 4.30000+ 1 7.78835- 5 2.77950- 4 2.70000+ 1 4.40000+ 1 1.33514- 4 2.80760- 4 2.90000+ 1 2.90000+ 1 2.12202- 4 1.98080- 4 2.90000+ 1 3.00000+ 1 3.12293- 3 2.26290- 4 2.90000+ 1 3.20000+ 1 3.66369- 4 2.91650- 4 2.90000+ 1 3.30000+ 1 7.63146- 3 2.95300- 4 2.90000+ 1 4.10000+ 1 8.70236- 5 3.13480- 4 2.90000+ 1 4.30000+ 1 1.74856- 5 3.23560- 4 2.90000+ 1 4.40000+ 1 1.10470- 4 3.26370- 4 3.00000+ 1 3.00000+ 1 1.04701- 3 2.54500- 4 3.00000+ 1 3.20000+ 1 1.26410- 3 3.19860- 4 3.00000+ 1 3.30000+ 1 1.01921- 2 3.23510- 4 3.00000+ 1 4.10000+ 1 1.04501- 4 3.41690- 4 3.00000+ 1 4.30000+ 1 8.22568- 5 3.51770- 4 3.00000+ 1 4.40000+ 1 6.99386- 5 3.54580- 4 3.20000+ 1 3.20000+ 1 9.61630- 5 3.85220- 4 3.20000+ 1 3.30000+ 1 8.40352- 3 3.88870- 4 3.20000+ 1 4.10000+ 1 6.07974- 5 4.07050- 4 3.20000+ 1 4.30000+ 1 1.58945- 5 4.17130- 4 3.20000+ 1 4.40000+ 1 4.76845- 5 4.19940- 4 3.30000+ 1 3.30000+ 1 9.23617- 3 3.92520- 4 3.30000+ 1 4.10000+ 1 9.54434- 4 4.10700- 4 3.30000+ 1 4.30000+ 1 4.40261- 4 4.20780- 4 3.30000+ 1 4.40000+ 1 5.28080- 4 4.23590- 4 4.10000+ 1 4.10000+ 1 5.56331- 6 4.28880- 4 4.10000+ 1 4.30000+ 1 3.57644- 6 4.38960- 4 4.10000+ 1 4.40000+ 1 4.37119- 6 4.41770- 4 4.30000+ 1 4.40000+ 1 2.78159- 6 4.51850- 4 4.40000+ 1 4.40000+ 1 1.19209- 6 4.54660- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.01130- 5 1.53340- 4 3.30000+ 1 6.68807- 7 1.56990- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.18314- 1 1.76100- 5 2.90000+ 1 3.30000+ 1 7.20072- 2 2.12600- 5 2.90000+ 1 4.10000+ 1 2.43642- 2 3.94400- 5 2.90000+ 1 4.30000+ 1 7.18211- 3 4.95200- 5 2.90000+ 1 4.40000+ 1 5.59118- 3 5.23300- 5 3.00000+ 1 3.20000+ 1 1.36896- 1 4.58200- 5 3.00000+ 1 3.30000+ 1 4.67180- 2 4.94700- 5 3.00000+ 1 4.10000+ 1 9.81496- 3 6.76500- 5 3.00000+ 1 4.30000+ 1 7.07040- 3 7.77300- 5 3.00000+ 1 4.40000+ 1 3.08961- 3 8.05400- 5 3.20000+ 1 3.20000+ 1 2.03705- 1 1.11180- 4 3.20000+ 1 3.30000+ 1 2.89807- 1 1.14830- 4 3.20000+ 1 4.10000+ 1 1.28616- 2 1.33010- 4 3.20000+ 1 4.30000+ 1 1.38673- 2 1.43090- 4 3.20000+ 1 4.40000+ 1 1.00873- 2 1.45900- 4 3.30000+ 1 3.30000+ 1 2.28633- 2 1.18480- 4 3.30000+ 1 4.10000+ 1 2.28482- 3 1.36660- 4 3.30000+ 1 4.30000+ 1 9.12522- 3 1.46740- 4 3.30000+ 1 4.40000+ 1 3.43451- 3 1.49550- 4 4.10000+ 1 4.10000+ 1 1.43695- 5 1.54840- 4 4.10000+ 1 4.30000+ 1 4.02361- 4 1.64920- 4 4.10000+ 1 4.40000+ 1 2.44297- 4 1.67730- 4 4.30000+ 1 4.30000+ 1 2.87397- 5 1.75000- 4 4.30000+ 1 4.40000+ 1 1.86809- 4 1.77810- 4 4.40000+ 1 4.40000+ 1 2.87409- 5 1.80620- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 9.74627- 6 1.50790- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 2.43101- 2 1.14100- 5 2.90000+ 1 3.30000+ 1 8.62044- 2 1.50600- 5 2.90000+ 1 4.10000+ 1 2.11536- 3 3.32400- 5 2.90000+ 1 4.30000+ 1 2.75906- 4 4.33200- 5 2.90000+ 1 4.40000+ 1 4.61377- 3 4.61300- 5 3.00000+ 1 3.20000+ 1 6.39374- 2 3.96200- 5 3.00000+ 1 3.30000+ 1 2.05617- 1 4.32700- 5 3.00000+ 1 4.10000+ 1 2.59967- 2 6.14500- 5 3.00000+ 1 4.30000+ 1 4.81316- 3 7.15300- 5 3.00000+ 1 4.40000+ 1 1.30143- 2 7.43400- 5 3.20000+ 1 3.20000+ 1 1.29832- 2 1.04980- 4 3.20000+ 1 3.30000+ 1 2.22879- 1 1.08630- 4 3.20000+ 1 4.10000+ 1 1.76280- 3 1.26810- 4 3.20000+ 1 4.30000+ 1 9.81020- 4 1.36890- 4 3.20000+ 1 4.40000+ 1 7.37278- 3 1.39700- 4 3.30000+ 1 3.30000+ 1 2.80731- 1 1.12280- 4 3.30000+ 1 4.10000+ 1 1.46071- 2 1.30460- 4 3.30000+ 1 4.30000+ 1 7.31169- 3 1.40540- 4 3.30000+ 1 4.40000+ 1 1.95890- 2 1.43350- 4 4.10000+ 1 4.10000+ 1 1.53284- 5 1.48640- 4 4.10000+ 1 4.30000+ 1 1.37952- 4 1.58720- 4 4.10000+ 1 4.40000+ 1 4.75177- 4 1.61530- 4 4.30000+ 1 4.40000+ 1 1.07300- 4 1.71610- 4 4.40000+ 1 4.40000+ 1 1.37950- 4 1.74420- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.20277- 6 4.56100- 5 3.00000+ 1 1.04889- 5 7.38200- 5 4.30000+ 1 3.88572- 7 1.71090- 4 4.40000+ 1 8.53792- 9 1.73900- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 1.90049- 2 3.45000- 6 2.90000+ 1 3.30000+ 1 1.06472- 1 7.10000- 6 2.90000+ 1 4.10000+ 1 6.56478- 3 2.52800- 5 2.90000+ 1 4.30000+ 1 1.87936- 3 3.53600- 5 2.90000+ 1 4.40000+ 1 3.88851- 3 3.81700- 5 3.00000+ 1 3.20000+ 1 3.45918- 1 3.16600- 5 3.00000+ 1 3.30000+ 1 3.06255- 1 3.53100- 5 3.00000+ 1 4.10000+ 1 1.71947- 2 5.34900- 5 3.00000+ 1 4.30000+ 1 8.88802- 3 6.35700- 5 3.00000+ 1 4.40000+ 1 8.13091- 3 6.63800- 5 3.20000+ 1 3.20000+ 1 2.31361- 3 9.70200- 5 3.20000+ 1 3.30000+ 1 1.22019- 1 1.00670- 4 3.20000+ 1 4.10000+ 1 8.14773- 3 1.18850- 4 3.20000+ 1 4.30000+ 1 5.12091- 4 1.28930- 4 3.20000+ 1 4.40000+ 1 3.82714- 3 1.31740- 4 3.30000+ 1 3.30000+ 1 1.88869- 2 1.04320- 4 3.30000+ 1 4.10000+ 1 6.67486- 3 1.22500- 4 3.30000+ 1 4.30000+ 1 1.48189- 3 1.32580- 4 3.30000+ 1 4.40000+ 1 1.43017- 3 1.35390- 4 4.10000+ 1 4.10000+ 1 1.66251- 3 1.40680- 4 4.10000+ 1 4.30000+ 1 1.02816- 3 1.50760- 4 4.10000+ 1 4.40000+ 1 1.44921- 3 1.53570- 4 4.30000+ 1 4.30000+ 1 2.89422- 4 1.60840- 4 4.30000+ 1 4.40000+ 1 3.79606- 3 1.63650- 4 4.40000+ 1 4.40000+ 1 2.27399- 3 1.66460- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.20070- 6 9.35700- 5 4.10000+ 1 7.61089- 7 1.15400- 4 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.69368- 2 7.88000- 6 3.00000+ 1 4.30000+ 1 2.05788- 2 1.79600- 5 3.00000+ 1 4.40000+ 1 1.63064- 2 2.07700- 5 3.20000+ 1 3.20000+ 1 1.56176- 1 5.14100- 5 3.20000+ 1 3.30000+ 1 6.81235- 1 5.50600- 5 3.20000+ 1 4.10000+ 1 3.37732- 2 7.32400- 5 3.20000+ 1 4.30000+ 1 1.25569- 2 8.33200- 5 3.20000+ 1 4.40000+ 1 1.97681- 2 8.61300- 5 3.30000+ 1 3.30000+ 1 2.52327- 2 5.87100- 5 3.30000+ 1 4.10000+ 1 2.46190- 3 7.68900- 5 3.30000+ 1 4.30000+ 1 1.08971- 2 8.69700- 5 3.30000+ 1 4.40000+ 1 2.38121- 3 8.97800- 5 4.10000+ 1 4.10000+ 1 2.72127- 5 9.50700- 5 4.10000+ 1 4.30000+ 1 8.50796- 4 1.05150- 4 4.10000+ 1 4.40000+ 1 1.19801- 4 1.07960- 4 4.30000+ 1 4.30000+ 1 1.27297- 4 1.15230- 4 4.30000+ 1 4.40000+ 1 5.42993- 4 1.18040- 4 4.40000+ 1 4.40000+ 1 1.84540- 5 1.20850- 4 1 84000 0 7 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.38390- 7 6.53600- 5 3.30000+ 1 1.46730- 6 6.90100- 5 4.10000+ 1 3.14951- 7 8.71900- 5 1 84000 0 9 2.09000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.48997- 2 2.32000- 5 3.20000+ 1 3.30000+ 1 5.50909- 1 2.68500- 5 3.20000+ 1 4.10000+ 1 7.18462- 3 4.50300- 5 3.20000+ 1 4.30000+ 1 1.91186- 3 5.51100- 5 3.20000+ 1 4.40000+ 1 6.07617- 3 5.79200- 5 3.30000+ 1 3.30000+ 1 3.46163- 1 3.05000- 5 3.30000+ 1 4.10000+ 1 3.02109- 2 4.86800- 5 3.30000+ 1 4.30000+ 1 1.45804- 2 5.87600- 5 3.30000+ 1 4.40000+ 1 1.65766- 2 6.15700- 5 4.10000+ 1 4.10000+ 1 1.76771- 4 6.68600- 5 4.10000+ 1 4.30000+ 1 1.72638- 4 7.69400- 5 4.10000+ 1 4.40000+ 1 6.63694- 4 7.97500- 5 4.30000+ 1 4.40000+ 1 2.54761- 4 8.98300- 5 4.40000+ 1 4.40000+ 1 2.17271- 4 9.26400- 5 1 85000 0 0 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 1.67000+ 0 4.40000+ 1 3.33000+ 0 1 85000 0 0 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.60680- 2 3.00000+ 0 1.74730- 2 5.00000+ 0 1.68400- 2 6.00000+ 0 1.42150- 2 8.00000+ 0 4.28550- 3 1.00000+ 1 3.99180- 3 1.10000+ 1 3.39850- 3 1.30000+ 1 2.91140- 3 1.40000+ 1 2.78620- 3 1.60000+ 1 1.02140- 3 1.80000+ 1 8.90650- 4 1.90000+ 1 7.41710- 4 2.10000+ 1 5.27080- 4 2.20000+ 1 4.99280- 4 2.40000+ 1 2.17930- 4 2.50000+ 1 2.11200- 4 2.70000+ 1 1.96270- 4 2.90000+ 1 1.48780- 4 3.00000+ 1 1.17820- 4 3.20000+ 1 4.92000- 5 3.30000+ 1 4.50600- 5 4.10000+ 1 2.30100- 5 4.30000+ 1 1.19400- 5 4.40000+ 1 8.54000- 6 1 85000 0 0 2.10000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.37970- 1 3.00000+ 0 3.36340- 2 5.00000+ 0 3.36210- 2 6.00000+ 0 2.31830- 2 8.00000+ 0 1.07650- 2 1.00000+ 1 1.06390- 2 1.10000+ 1 8.02650- 3 1.30000+ 1 7.87290- 3 1.40000+ 1 7.34590- 3 1.60000+ 1 3.61860- 3 1.80000+ 1 3.47810- 3 1.90000+ 1 2.68360- 3 2.10000+ 1 2.45420- 3 2.20000+ 1 2.29790- 3 2.40000+ 1 1.93170- 3 2.50000+ 1 1.87910- 3 2.70000+ 1 1.01830- 3 2.90000+ 1 9.07160- 4 3.00000+ 1 6.94800- 4 3.20000+ 1 4.94290- 4 3.30000+ 1 4.57940- 4 4.10000+ 1 1.89630- 4 4.30000+ 1 1.29520- 4 4.40000+ 1 8.73200- 5 1 85000 0 0 2.10000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.08230-11 3.00000+ 0 3.35650-10 5.00000+ 0 2.73940-10 6.00000+ 0 3.23100-10 8.00000+ 0 8.71560-10 1.00000+ 1 8.20970-10 1.10000+ 1 9.10180-10 1.30000+ 1 7.87760-10 1.40000+ 1 8.14800-10 1.60000+ 1 1.91070- 9 1.80000+ 1 1.90840- 9 1.90000+ 1 2.09180- 9 2.10000+ 1 2.09530- 9 2.20000+ 1 2.15210- 9 2.40000+ 1 2.15630- 9 2.50000+ 1 2.18600- 9 2.70000+ 1 4.12800- 9 2.90000+ 1 4.35200- 9 3.00000+ 1 4.79610- 9 3.20000+ 1 5.67270- 9 3.30000+ 1 5.85420- 9 4.10000+ 1 1.00090- 8 4.30000+ 1 1.19750- 8 4.40000+ 1 1.39750- 8 1 85000 0 0 2.10000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.63430- 5 3.00000+ 0 1.62330- 6 5.00000+ 0 2.85950- 6 6.00000+ 0 2.45180- 6 8.00000+ 0 6.62700- 8 1.00000+ 1 7.38830- 8 1.10000+ 1 8.07750- 8 1.30000+ 1 1.02910- 7 1.40000+ 1 9.57680- 8 1.60000+ 1 2.88550- 9 1.80000+ 1 4.06840- 9 1.90000+ 1 2.67640- 9 2.10000+ 1 2.26450- 9 2.20000+ 1 1.82920- 9 2.40000+ 1 4.32270-11 2.50000+ 1 3.94730-11 2.70000+ 1 1.70540-10 2.90000+ 1 3.58000-10 3.00000+ 1 1.90920-10 1 85000 0 0 2.10000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.29650- 6 3.00000+ 0 1.27300- 5 5.00000+ 0 3.60260- 6 6.00000+ 0 3.99040- 6 8.00000+ 0 1.94900- 5 1.00000+ 1 1.37930- 5 1.10000+ 1 1.10430- 5 1.30000+ 1 2.71800- 6 1.40000+ 1 2.68390- 6 1.60000+ 1 1.49710- 5 1.80000+ 1 1.45010- 5 1.90000+ 1 9.20010- 6 2.10000+ 1 7.39380- 6 2.20000+ 1 6.67460- 6 2.40000+ 1 1.71350- 7 2.50000+ 1 1.61210- 7 2.70000+ 1 2.62290- 5 2.90000+ 1 8.76000- 6 3.00000+ 1 1.83400- 5 1 85000 0 0 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 4.94470- 4 3.00000+ 0 7.08776- 4 5.00000+ 0 5.03847- 4 6.00000+ 0 4.98396- 4 8.00000+ 0 5.16946- 4 1.00000+ 1 4.49366- 4 1.10000+ 1 3.98740- 4 1.30000+ 1 3.05380- 4 1.40000+ 1 2.97113- 4 1.60000+ 1 2.77266- 4 1.80000+ 1 2.63014- 4 1.90000+ 1 2.47381- 4 2.10000+ 1 1.93108- 4 2.20000+ 1 1.85824- 4 2.40000+ 1 1.10725- 4 2.50000+ 1 1.08480- 4 2.70000+ 1 1.26199- 4 2.90000+ 1 9.20478- 5 3.00000+ 1 8.98699- 5 3.20000+ 1 4.92000- 5 3.30000+ 1 4.50600- 5 4.10000+ 1 2.30100- 5 4.30000+ 1 1.19400- 5 4.40000+ 1 8.54000- 6 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.35928+ 0 3.00000+ 0 4.81307- 1 5.00000+ 0 5.40845- 1 6.00000+ 0 4.40633- 1 8.00000+ 0 4.17802- 2 1.00000+ 1 4.17161- 2 1.10000+ 1 3.88191- 2 1.30000+ 1 4.49097- 2 1.40000+ 1 4.17253- 2 1.60000+ 1 1.40165- 3 1.80000+ 1 1.64853- 3 1.90000+ 1 8.92533- 4 2.10000+ 1 4.46678- 4 2.20000+ 1 3.99199- 4 2.40000+ 1 1.82705- 5 2.50000+ 1 1.56000- 5 2.70000+ 1 1.67122- 5 2.90000+ 1 1.15508- 5 3.00000+ 1 2.44757- 6 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.50033- 2 3.00000+ 0 5.29867- 3 5.00000+ 0 7.04049- 3 6.00000+ 0 4.68700- 3 8.00000+ 0 1.10247- 4 1.00000+ 1 1.10675- 4 1.10000+ 1 1.00373- 4 1.30000+ 1 1.17732- 4 1.40000+ 1 1.05381- 4 1.60000+ 1 6.88582- 7 1.80000+ 1 7.01544- 7 1.90000+ 1 3.64920- 7 2.10000+ 1 1.42038- 7 2.20000+ 1 1.19388- 7 2.40000+ 1 2.84022- 9 2.50000+ 1 2.42970- 9 2.70000+ 1 1.36975- 9 2.90000+ 1 1.17417- 9 3.00000+ 1 1.87187-10 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01669+ 1 3.00000+ 0 1.50091+ 1 5.00000+ 0 1.03629+ 1 6.00000+ 0 1.02621+ 1 8.00000+ 0 1.06904+ 1 1.00000+ 1 9.14021+ 0 1.10000+ 1 8.01902+ 0 1.30000+ 1 5.87496+ 0 1.40000+ 1 5.72123+ 0 1.60000+ 1 5.26964+ 0 1.80000+ 1 4.93084+ 0 1.90000+ 1 4.59368+ 0 2.10000+ 1 3.33765+ 0 2.20000+ 1 3.20745+ 0 2.40000+ 1 1.48154+ 0 2.50000+ 1 1.47238+ 0 2.70000+ 1 1.82767+ 0 2.90000+ 1 1.04947+ 0 3.00000+ 1 9.99998- 1 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.05703- 2 3.00000+ 0 1.14656- 2 5.00000+ 0 9.29566- 3 6.00000+ 0 9.02961- 3 8.00000+ 0 3.65831- 3 1.00000+ 1 3.43176- 3 1.10000+ 1 2.89939- 3 1.30000+ 1 2.48829- 3 1.40000+ 1 2.38371- 3 1.60000+ 1 7.43446- 4 1.80000+ 1 6.26934- 4 1.90000+ 1 4.93964- 4 2.10000+ 1 3.33830- 4 2.20000+ 1 3.13337- 4 2.40000+ 1 1.07203- 4 2.50000+ 1 1.02717- 4 2.70000+ 1 7.00695- 5 2.90000+ 1 5.67311- 5 3.00000+ 1 2.79500- 5 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.84130- 1 7.92280- 2 6.00000+ 0 4.70780- 1 8.18530- 2 1.00000+ 1 5.30450- 2 9.20762- 2 1.10000+ 1 1.02920- 1 9.26695- 2 1.30000+ 1 1.56390- 3 9.31566- 2 1.40000+ 1 1.86170- 3 9.32818- 2 1.80000+ 1 1.28500- 2 9.51773- 2 1.90000+ 1 2.54420- 2 9.53263- 2 2.10000+ 1 4.29920- 4 9.55409- 2 2.20000+ 1 5.11550- 4 9.55687- 2 2.90000+ 1 3.02330- 3 9.59192- 2 3.00000+ 1 5.81000- 3 9.59502- 2 3.20000+ 1 6.75561- 5 9.60188- 2 3.30000+ 1 7.91091- 5 9.60229- 2 4.30000+ 1 2.63210- 4 9.60561- 2 4.40000+ 1 4.41850- 4 9.60595- 2 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.07818- 3 6.11220- 2 3.00000+ 0 5.00000+ 0 6.78526- 3 6.17550- 2 3.00000+ 0 6.00000+ 0 3.31334- 3 6.43800- 2 3.00000+ 0 8.00000+ 0 1.65941- 3 7.43095- 2 3.00000+ 0 1.00000+ 1 1.47211- 3 7.46032- 2 3.00000+ 0 1.10000+ 1 7.89704- 4 7.51965- 2 3.00000+ 0 1.30000+ 1 6.76351- 5 7.56836- 2 3.00000+ 0 1.40000+ 1 4.76786- 5 7.58088- 2 3.00000+ 0 1.60000+ 1 4.24340- 4 7.75736- 2 3.00000+ 0 1.80000+ 1 3.68796- 4 7.77043- 2 3.00000+ 0 1.90000+ 1 1.98193- 4 7.78533- 2 3.00000+ 0 2.10000+ 1 1.84772- 5 7.80679- 2 3.00000+ 0 2.20000+ 1 1.28568- 5 7.80957- 2 3.00000+ 0 2.40000+ 1 4.35806- 8 7.83771- 2 3.00000+ 0 2.50000+ 1 4.35806- 8 7.83838- 2 3.00000+ 0 2.70000+ 1 9.64419- 5 7.83987- 2 3.00000+ 0 2.90000+ 1 7.66576- 5 7.84462- 2 3.00000+ 0 3.00000+ 1 4.01783- 5 7.84772- 2 3.00000+ 0 3.20000+ 1 2.78911- 6 7.85458- 2 3.00000+ 0 3.30000+ 1 1.87399- 6 7.85499- 2 5.00000+ 0 5.00000+ 0 3.23871- 4 6.23880- 2 5.00000+ 0 6.00000+ 0 5.68169- 3 6.50130- 2 5.00000+ 0 8.00000+ 0 1.20628- 3 7.49425- 2 5.00000+ 0 1.00000+ 1 1.23453- 4 7.52362- 2 5.00000+ 0 1.10000+ 1 1.13681- 3 7.58295- 2 5.00000+ 0 1.30000+ 1 6.91157- 5 7.63166- 2 5.00000+ 0 1.40000+ 1 1.72707- 4 7.64418- 2 5.00000+ 0 1.60000+ 1 2.99084- 4 7.82066- 2 5.00000+ 0 1.80000+ 1 3.00249- 5 7.83373- 2 5.00000+ 0 1.90000+ 1 2.73846- 4 7.84863- 2 5.00000+ 0 2.10000+ 1 1.81292- 5 7.87009- 2 5.00000+ 0 2.20000+ 1 4.54962- 5 7.87287- 2 5.00000+ 0 2.40000+ 1 5.66509- 7 7.90101- 2 5.00000+ 0 2.50000+ 1 8.27976- 7 7.90168- 2 5.00000+ 0 2.70000+ 1 6.74604- 5 7.90317- 2 5.00000+ 0 2.90000+ 1 6.18810- 6 7.90792- 2 5.00000+ 0 3.00000+ 1 5.49955- 5 7.91102- 2 5.00000+ 0 3.20000+ 1 2.70197- 6 7.91788- 2 5.00000+ 0 3.30000+ 1 6.66735- 6 7.91829- 2 6.00000+ 0 6.00000+ 0 2.39658- 3 6.76380- 2 6.00000+ 0 8.00000+ 0 5.30243- 4 7.75675- 2 6.00000+ 0 1.00000+ 1 1.01778- 3 7.78612- 2 6.00000+ 0 1.10000+ 1 9.90598- 4 7.84545- 2 6.00000+ 0 1.30000+ 1 1.90052- 4 7.89416- 2 6.00000+ 0 1.40000+ 1 1.55877- 4 7.90668- 2 6.00000+ 0 1.60000+ 1 1.28211- 4 8.08316- 2 6.00000+ 0 1.80000+ 1 2.44341- 4 8.09623- 2 6.00000+ 0 1.90000+ 1 2.40769- 4 8.11113- 2 6.00000+ 0 2.10000+ 1 5.03763- 5 8.13259- 2 6.00000+ 0 2.20000+ 1 4.12255- 5 8.13537- 2 6.00000+ 0 2.40000+ 1 8.71554- 7 8.16351- 2 6.00000+ 0 2.50000+ 1 9.15137- 7 8.16418- 2 6.00000+ 0 2.70000+ 1 2.87177- 5 8.16567- 2 6.00000+ 0 2.90000+ 1 5.02884- 5 8.17042- 2 6.00000+ 0 3.00000+ 1 4.84605- 5 8.17352- 2 6.00000+ 0 3.20000+ 1 7.53894- 6 8.18038- 2 6.00000+ 0 3.30000+ 1 6.05748- 6 8.18079- 2 8.00000+ 0 8.00000+ 0 1.66023- 4 8.74970- 2 8.00000+ 0 1.00000+ 1 2.62039- 4 8.77907- 2 8.00000+ 0 1.10000+ 1 1.27376- 4 8.83840- 2 8.00000+ 0 1.30000+ 1 1.06331- 5 8.88711- 2 8.00000+ 0 1.40000+ 1 7.01596- 6 8.89963- 2 8.00000+ 0 1.60000+ 1 8.46285- 5 9.07611- 2 8.00000+ 0 1.80000+ 1 6.56729- 5 9.08918- 2 8.00000+ 0 1.90000+ 1 3.20297- 5 9.10408- 2 8.00000+ 0 2.10000+ 1 2.91970- 6 9.12554- 2 8.00000+ 0 2.20000+ 1 1.87392- 6 9.12832- 2 8.00000+ 0 2.70000+ 1 1.92184- 5 9.15862- 2 8.00000+ 0 2.90000+ 1 1.36400- 5 9.16337- 2 8.00000+ 0 3.00000+ 1 6.49299- 6 9.16647- 2 8.00000+ 0 3.20000+ 1 4.35790- 7 9.17333- 2 8.00000+ 0 3.30000+ 1 2.61468- 7 9.17374- 2 1.00000+ 1 1.00000+ 1 1.13736- 5 8.80844- 2 1.00000+ 1 1.10000+ 1 2.09785- 4 8.86777- 2 1.00000+ 1 1.30000+ 1 1.09819- 5 8.91648- 2 1.00000+ 1 1.40000+ 1 2.31835- 5 8.92900- 2 1.00000+ 1 1.60000+ 1 6.49745- 5 9.10548- 2 1.00000+ 1 1.80000+ 1 5.49079- 6 9.11855- 2 1.00000+ 1 1.90000+ 1 5.08551- 5 9.13345- 2 1.00000+ 1 2.10000+ 1 2.87620- 6 9.15491- 2 1.00000+ 1 2.20000+ 1 6.18813- 6 9.15769- 2 1.00000+ 1 2.40000+ 1 8.71564- 8 9.18583- 2 1.00000+ 1 2.50000+ 1 8.71564- 8 9.18650- 2 1.00000+ 1 2.70000+ 1 1.46426- 5 9.18799- 2 1.00000+ 1 2.90000+ 1 1.13307- 6 9.19274- 2 1.00000+ 1 3.00000+ 1 1.02408- 5 9.19584- 2 1.00000+ 1 3.20000+ 1 4.35794- 7 9.20270- 2 1.00000+ 1 3.30000+ 1 9.15148- 7 9.20311- 2 1.10000+ 1 1.10000+ 1 1.03499- 4 8.92710- 2 1.10000+ 1 1.30000+ 1 3.15951- 5 8.97581- 2 1.10000+ 1 1.40000+ 1 2.50579- 5 8.98833- 2 1.10000+ 1 1.60000+ 1 3.08531- 5 9.16481- 2 1.10000+ 1 1.80000+ 1 5.06831- 5 9.17788- 2 1.10000+ 1 1.90000+ 1 5.04215- 5 9.19278- 2 1.10000+ 1 2.10000+ 1 8.45424- 6 9.21424- 2 1.10000+ 1 2.20000+ 1 6.66746- 6 9.21702- 2 1.10000+ 1 2.40000+ 1 1.30742- 7 9.24516- 2 1.10000+ 1 2.50000+ 1 1.30742- 7 9.24583- 2 1.10000+ 1 2.70000+ 1 6.92894- 6 9.24732- 2 1.10000+ 1 2.90000+ 1 1.04591- 5 9.25207- 2 1.10000+ 1 3.00000+ 1 1.01538- 5 9.25517- 2 1.10000+ 1 3.20000+ 1 1.26379- 6 9.26203- 2 1.10000+ 1 3.30000+ 1 1.00233- 6 9.26244- 2 1.30000+ 1 1.30000+ 1 8.71564- 8 9.02452- 2 1.30000+ 1 1.40000+ 1 3.57343- 6 9.03704- 2 1.30000+ 1 1.60000+ 1 2.57107- 6 9.21352- 2 1.30000+ 1 1.80000+ 1 2.57107- 6 9.22659- 2 1.30000+ 1 1.90000+ 1 7.32128- 6 9.24149- 2 1.30000+ 1 2.10000+ 1 4.35795- 8 9.26295- 2 1.30000+ 1 2.20000+ 1 9.15148- 7 9.26573- 2 1.30000+ 1 2.70000+ 1 5.66512- 7 9.29603- 2 1.30000+ 1 2.90000+ 1 5.22929- 7 9.30078- 2 1.30000+ 1 3.00000+ 1 1.43810- 6 9.30388- 2 1.30000+ 1 3.30000+ 1 1.30740- 7 9.31115- 2 1.40000+ 1 1.40000+ 1 8.71561- 7 9.04956- 2 1.40000+ 1 1.60000+ 1 1.69948- 6 9.22604- 2 1.40000+ 1 1.80000+ 1 5.22927- 6 9.23911- 2 1.40000+ 1 1.90000+ 1 5.75227- 6 9.25401- 2 1.40000+ 1 2.10000+ 1 9.15145- 7 9.27547- 2 1.40000+ 1 2.20000+ 1 4.35793- 7 9.27825- 2 1.40000+ 1 2.70000+ 1 3.92208- 7 9.30855- 2 1.40000+ 1 2.90000+ 1 1.04589- 6 9.31330- 2 1.40000+ 1 3.00000+ 1 1.13307- 6 9.31640- 2 1.40000+ 1 3.20000+ 1 1.30740- 7 9.32326- 2 1.40000+ 1 3.30000+ 1 4.35793- 8 9.32367- 2 1.60000+ 1 1.60000+ 1 1.07639- 5 9.40252- 2 1.60000+ 1 1.80000+ 1 1.62991- 5 9.41559- 2 1.60000+ 1 1.90000+ 1 7.75714- 6 9.43049- 2 1.60000+ 1 2.10000+ 1 6.97262- 7 9.45195- 2 1.60000+ 1 2.20000+ 1 4.35795- 7 9.45473- 2 1.60000+ 1 2.70000+ 1 4.88063- 6 9.48503- 2 1.60000+ 1 2.90000+ 1 3.39911- 6 9.48978- 2 1.60000+ 1 3.00000+ 1 1.56880- 6 9.49288- 2 1.60000+ 1 3.20000+ 1 8.71565- 8 9.49974- 2 1.60000+ 1 3.30000+ 1 8.71565- 8 9.50015- 2 1.80000+ 1 1.80000+ 1 6.53689- 7 9.42867- 2 1.80000+ 1 1.90000+ 1 1.22894- 5 9.44356- 2 1.80000+ 1 2.10000+ 1 6.97270- 7 9.46503- 2 1.80000+ 1 2.20000+ 1 1.39448- 6 9.46781- 2 1.80000+ 1 2.70000+ 1 3.66065- 6 9.49811- 2 1.80000+ 1 2.90000+ 1 2.61474- 7 9.50286- 2 1.80000+ 1 3.00000+ 1 2.48403- 6 9.50595- 2 1.80000+ 1 3.20000+ 1 8.71575- 8 9.51281- 2 1.80000+ 1 3.30000+ 1 2.17889- 7 9.51323- 2 1.90000+ 1 1.90000+ 1 6.09649- 6 9.45846- 2 1.90000+ 1 2.10000+ 1 1.94582- 6 9.47992- 2 1.90000+ 1 2.20000+ 1 1.51338- 6 9.48270- 2 1.90000+ 1 2.40000+ 1 4.32397- 8 9.51084- 2 1.90000+ 1 2.50000+ 1 4.32397- 8 9.51151- 2 1.90000+ 1 2.70000+ 1 1.72954- 6 9.51300- 2 1.90000+ 1 2.90000+ 1 2.50782- 6 9.51775- 2 1.90000+ 1 3.00000+ 1 2.46463- 6 9.52085- 2 1.90000+ 1 3.20000+ 1 3.02665- 7 9.52771- 2 1.90000+ 1 3.30000+ 1 2.16187- 7 9.52812- 2 2.10000+ 1 2.20000+ 1 2.21484- 7 9.50416- 2 2.10000+ 1 2.70000+ 1 1.77192- 7 9.53446- 2 2.10000+ 1 2.90000+ 1 1.32899- 7 9.53921- 2 2.10000+ 1 3.00000+ 1 3.98687- 7 9.54231- 2 2.10000+ 1 3.30000+ 1 4.42991- 8 9.54959- 2 2.20000+ 1 2.20000+ 1 4.83209- 8 9.50694- 2 2.20000+ 1 2.70000+ 1 9.66389- 8 9.53724- 2 2.20000+ 1 2.90000+ 1 2.89918- 7 9.54199- 2 2.20000+ 1 3.00000+ 1 3.38232- 7 9.54509- 2 2.20000+ 1 3.20000+ 1 4.83209- 8 9.55195- 2 2.70000+ 1 2.70000+ 1 5.66504- 7 9.56755- 2 2.70000+ 1 2.90000+ 1 7.84385- 7 9.57229- 2 2.70000+ 1 3.00000+ 1 3.48633- 7 9.57539- 2 2.70000+ 1 3.20000+ 1 4.35789- 8 9.58225- 2 2.90000+ 1 2.90000+ 1 4.51476- 8 9.57704- 2 2.90000+ 1 3.00000+ 1 5.41745- 7 9.58014- 2 2.90000+ 1 3.30000+ 1 4.51476- 8 9.58742- 2 3.00000+ 1 3.00000+ 1 2.80056- 7 9.58324- 2 3.00000+ 1 3.20000+ 1 4.66771- 8 9.59010- 2 3.00000+ 1 3.30000+ 1 4.66771- 8 9.59051- 2 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.20540- 5 6.33000- 4 6.00000+ 0 4.09030- 3 3.25800- 3 1.00000+ 1 3.82090- 2 1.34812- 2 1.10000+ 1 3.92700- 2 1.40745- 2 1.30000+ 1 1.48980- 3 1.45616- 2 1.40000+ 1 2.22770- 3 1.46868- 2 1.80000+ 1 9.99610- 3 1.65823- 2 1.90000+ 1 1.13470- 2 1.67313- 2 2.10000+ 1 2.36190- 4 1.69459- 2 2.20000+ 1 3.75400- 4 1.69737- 2 2.90000+ 1 2.11800- 3 1.73242- 2 3.00000+ 1 2.39110- 3 1.73552- 2 3.20000+ 1 3.31730- 5 1.74238- 2 3.30000+ 1 5.26650- 5 1.74279- 2 4.30000+ 1 2.08150- 4 1.74611- 2 4.40000+ 1 2.03780- 4 1.74645- 2 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.60282- 3 1.05920- 4 5.00000+ 0 2.20000+ 1 6.03279- 3 1.33720- 4 5.00000+ 0 2.40000+ 1 1.40535- 2 4.15070- 4 5.00000+ 0 2.50000+ 1 1.85666- 2 4.21800- 4 5.00000+ 0 2.70000+ 1 4.65306- 3 4.36730- 4 5.00000+ 0 2.90000+ 1 3.50113- 3 4.84220- 4 5.00000+ 0 3.00000+ 1 3.07775- 3 5.15180- 4 5.00000+ 0 3.20000+ 1 6.98093- 4 5.83800- 4 5.00000+ 0 3.30000+ 1 9.17249- 4 5.87940- 4 6.00000+ 0 1.30000+ 1 2.28684- 1 3.46600- 4 6.00000+ 0 1.40000+ 1 2.85296- 1 4.71800- 4 6.00000+ 0 1.60000+ 1 1.82433- 2 2.23660- 3 6.00000+ 0 1.80000+ 1 7.18660- 3 2.36735- 3 6.00000+ 0 1.90000+ 1 1.06114- 2 2.51629- 3 6.00000+ 0 2.10000+ 1 3.16152- 2 2.73092- 3 6.00000+ 0 2.20000+ 1 3.72613- 2 2.75872- 3 6.00000+ 0 2.40000+ 1 2.13911- 2 3.04007- 3 6.00000+ 0 2.50000+ 1 2.65046- 2 3.04680- 3 6.00000+ 0 2.70000+ 1 3.93762- 3 3.06173- 3 6.00000+ 0 2.90000+ 1 1.46621- 3 3.10922- 3 6.00000+ 0 3.00000+ 1 2.13580- 3 3.14018- 3 6.00000+ 0 3.20000+ 1 4.34328- 3 3.20880- 3 6.00000+ 0 3.30000+ 1 4.96353- 3 3.21294- 3 8.00000+ 0 8.00000+ 0 5.28356- 3 8.90200- 3 8.00000+ 0 1.00000+ 1 1.09246- 2 9.19570- 3 8.00000+ 0 1.10000+ 1 1.66567- 2 9.78900- 3 8.00000+ 0 1.30000+ 1 1.21347- 2 1.02761- 2 8.00000+ 0 1.40000+ 1 1.52885- 2 1.04013- 2 8.00000+ 0 1.60000+ 1 2.29703- 3 1.21661- 2 8.00000+ 0 1.80000+ 1 2.70560- 3 1.22968- 2 8.00000+ 0 1.90000+ 1 4.07690- 3 1.24458- 2 8.00000+ 0 2.10000+ 1 2.75054- 3 1.26604- 2 8.00000+ 0 2.20000+ 1 3.44084- 3 1.26882- 2 8.00000+ 0 2.40000+ 1 2.40212- 4 1.29696- 2 8.00000+ 0 2.50000+ 1 2.59379- 4 1.29763- 2 8.00000+ 0 2.70000+ 1 5.07757- 4 1.29912- 2 8.00000+ 0 2.90000+ 1 5.60114- 4 1.30387- 2 8.00000+ 0 3.00000+ 1 8.21016- 4 1.30697- 2 8.00000+ 0 3.20000+ 1 4.00934- 4 1.31383- 2 8.00000+ 0 3.30000+ 1 4.91623- 4 1.31424- 2 1.00000+ 1 1.00000+ 1 1.78358- 5 9.48940- 3 1.00000+ 1 1.10000+ 1 2.07003- 4 1.00827- 2 1.00000+ 1 1.30000+ 1 6.91421- 4 1.05698- 2 1.00000+ 1 1.40000+ 1 5.35214- 3 1.06950- 2 1.00000+ 1 1.60000+ 1 1.87506- 3 1.24598- 2 1.00000+ 1 1.80000+ 1 2.27692- 6 1.25905- 2 1.00000+ 1 1.90000+ 1 4.21233- 5 1.27395- 2 1.00000+ 1 2.10000+ 1 1.34908- 4 1.29541- 2 1.00000+ 1 2.20000+ 1 7.71713- 4 1.29819- 2 1.00000+ 1 2.40000+ 1 8.82311- 5 1.32633- 2 1.00000+ 1 2.50000+ 1 3.07193- 4 1.32700- 2 1.00000+ 1 2.70000+ 1 3.90115- 4 1.32849- 2 1.00000+ 1 2.90000+ 1 3.79486- 7 1.33324- 2 1.00000+ 1 3.00000+ 1 8.15923- 6 1.33634- 2 1.00000+ 1 3.20000+ 1 1.95433- 5 1.34320- 2 1.00000+ 1 3.30000+ 1 1.01890- 4 1.34361- 2 1.10000+ 1 1.10000+ 1 6.00355- 4 1.06760- 2 1.10000+ 1 1.30000+ 1 1.67308- 3 1.11631- 2 1.10000+ 1 1.40000+ 1 1.01800- 3 1.12883- 2 1.10000+ 1 1.60000+ 1 2.80041- 3 1.30531- 2 1.10000+ 1 1.80000+ 1 5.14208- 5 1.31838- 2 1.10000+ 1 1.90000+ 1 2.24270- 4 1.33328- 2 1.10000+ 1 2.10000+ 1 1.57480- 4 1.35474- 2 1.10000+ 1 2.20000+ 1 7.43832- 5 1.35752- 2 1.10000+ 1 2.40000+ 1 1.32447- 4 1.38566- 2 1.10000+ 1 2.50000+ 1 1.11569- 4 1.38633- 2 1.10000+ 1 2.70000+ 1 5.79867- 4 1.38782- 2 1.10000+ 1 2.90000+ 1 1.06254- 5 1.39257- 2 1.10000+ 1 3.00000+ 1 4.26931- 5 1.39567- 2 1.10000+ 1 3.20000+ 1 1.93542- 5 1.40253- 2 1.10000+ 1 3.30000+ 1 8.53872- 6 1.40294- 2 1.30000+ 1 1.30000+ 1 7.08122- 4 1.16502- 2 1.30000+ 1 1.40000+ 1 2.04500- 2 1.17754- 2 1.30000+ 1 1.60000+ 1 1.85663- 3 1.35402- 2 1.30000+ 1 1.80000+ 1 2.04350- 4 1.36709- 2 1.30000+ 1 1.90000+ 1 4.56522- 4 1.38199- 2 1.30000+ 1 2.10000+ 1 3.12324- 4 1.40345- 2 1.30000+ 1 2.20000+ 1 3.21183- 3 1.40623- 2 1.30000+ 1 2.40000+ 1 2.49510- 4 1.43437- 2 1.30000+ 1 2.50000+ 1 6.84591- 4 1.43504- 2 1.30000+ 1 2.70000+ 1 3.76832- 4 1.43653- 2 1.30000+ 1 2.90000+ 1 4.38306- 5 1.44128- 2 1.30000+ 1 3.00000+ 1 9.41116- 5 1.44438- 2 1.30000+ 1 3.20000+ 1 4.53489- 5 1.45124- 2 1.30000+ 1 3.30000+ 1 4.29008- 4 1.45165- 2 1.40000+ 1 1.40000+ 1 5.62956- 3 1.19006- 2 1.40000+ 1 1.60000+ 1 2.37463- 3 1.36654- 2 1.40000+ 1 1.80000+ 1 1.17145- 3 1.37961- 2 1.40000+ 1 1.90000+ 1 2.79692- 4 1.39451- 2 1.40000+ 1 2.10000+ 1 3.09829- 3 1.41597- 2 1.40000+ 1 2.20000+ 1 1.86618- 3 1.41875- 2 1.40000+ 1 2.40000+ 1 7.53117- 4 1.44689- 2 1.40000+ 1 2.50000+ 1 5.65448- 4 1.44756- 2 1.40000+ 1 2.70000+ 1 4.84996- 4 1.44905- 2 1.40000+ 1 2.90000+ 1 2.36612- 4 1.45380- 2 1.40000+ 1 3.00000+ 1 5.80623- 5 1.45690- 2 1.40000+ 1 3.20000+ 1 4.18768- 4 1.46376- 2 1.40000+ 1 3.30000+ 1 2.52177- 4 1.46417- 2 1.60000+ 1 1.60000+ 1 2.35844- 4 1.54302- 2 1.60000+ 1 1.80000+ 1 4.66194- 4 1.55609- 2 1.60000+ 1 1.90000+ 1 6.89126- 4 1.57099- 2 1.60000+ 1 2.10000+ 1 4.23127- 4 1.59245- 2 1.60000+ 1 2.20000+ 1 5.33742- 4 1.59523- 2 1.60000+ 1 2.40000+ 1 3.05485- 5 1.62337- 2 1.60000+ 1 2.50000+ 1 3.14973- 5 1.62404- 2 1.60000+ 1 2.70000+ 1 1.03018- 4 1.62553- 2 1.60000+ 1 2.90000+ 1 9.65785- 5 1.63028- 2 1.60000+ 1 3.00000+ 1 1.38879- 4 1.63338- 2 1.60000+ 1 3.20000+ 1 6.16654- 5 1.64024- 2 1.60000+ 1 3.30000+ 1 7.62780- 5 1.64065- 2 1.80000+ 1 1.90000+ 1 1.04352- 5 1.58406- 2 1.80000+ 1 2.10000+ 1 3.54825- 5 1.60553- 2 1.80000+ 1 2.20000+ 1 1.75695- 4 1.60831- 2 1.80000+ 1 2.40000+ 1 1.25230- 5 1.63644- 2 1.80000+ 1 2.50000+ 1 4.91436- 5 1.63711- 2 1.80000+ 1 2.70000+ 1 9.69619- 5 1.63861- 2 1.80000+ 1 3.00000+ 1 2.08725- 6 1.64645- 2 1.80000+ 1 3.20000+ 1 4.93338- 6 1.65331- 2 1.80000+ 1 3.30000+ 1 2.33377- 5 1.65373- 2 1.90000+ 1 1.90000+ 1 2.01115- 5 1.59896- 2 1.90000+ 1 2.10000+ 1 4.76256- 5 1.62042- 2 1.90000+ 1 2.20000+ 1 2.54251- 5 1.62320- 2 1.90000+ 1 2.40000+ 1 2.84619- 5 1.65134- 2 1.90000+ 1 2.50000+ 1 2.33373- 5 1.65201- 2 1.90000+ 1 2.70000+ 1 1.42884- 4 1.65350- 2 1.90000+ 1 2.90000+ 1 2.08722- 6 1.65825- 2 1.90000+ 1 3.00000+ 1 7.58941- 6 1.66135- 2 1.90000+ 1 3.20000+ 1 5.88202- 6 1.66821- 2 1.90000+ 1 3.30000+ 1 3.03584- 6 1.66862- 2 2.10000+ 1 2.10000+ 1 3.18773- 5 1.64188- 2 2.10000+ 1 2.20000+ 1 5.32992- 4 1.64466- 2 2.10000+ 1 2.40000+ 1 3.81388- 5 1.67280- 2 2.10000+ 1 2.50000+ 1 7.89359- 5 1.67347- 2 2.10000+ 1 2.70000+ 1 8.59511- 5 1.67496- 2 2.10000+ 1 2.90000+ 1 7.39995- 6 1.67971- 2 2.10000+ 1 3.00000+ 1 1.00569- 5 1.68281- 2 2.10000+ 1 3.20000+ 1 9.10766- 6 1.68967- 2 2.10000+ 1 3.30000+ 1 7.22899- 5 1.69009- 2 2.20000+ 1 2.20000+ 1 1.66026- 4 1.64744- 2 2.20000+ 1 2.40000+ 1 9.22122- 5 1.67558- 2 2.20000+ 1 2.50000+ 1 7.68438- 5 1.67625- 2 2.20000+ 1 2.70000+ 1 1.08726- 4 1.67774- 2 2.20000+ 1 2.90000+ 1 3.56715- 5 1.68249- 2 2.20000+ 1 3.00000+ 1 5.50256- 6 1.68559- 2 2.20000+ 1 3.20000+ 1 7.32386- 5 1.69245- 2 2.20000+ 1 3.30000+ 1 4.53491- 5 1.69287- 2 2.40000+ 1 2.40000+ 1 1.00620- 6 1.70371- 2 2.40000+ 1 2.50000+ 1 2.05278- 5 1.70439- 2 2.40000+ 1 2.70000+ 1 6.44001- 6 1.70588- 2 2.40000+ 1 2.90000+ 1 2.41500- 6 1.71063- 2 2.40000+ 1 3.00000+ 1 5.83628- 6 1.71372- 2 2.40000+ 1 3.20000+ 1 5.43383- 6 1.72059- 2 2.40000+ 1 3.30000+ 1 1.24778- 5 1.72100- 2 2.50000+ 1 2.50000+ 1 4.85539- 6 1.70506- 2 2.50000+ 1 2.70000+ 1 7.06231- 6 1.70655- 2 2.50000+ 1 2.90000+ 1 1.08144- 5 1.71130- 2 2.50000+ 1 3.00000+ 1 5.29686- 6 1.71440- 2 2.50000+ 1 3.20000+ 1 1.16975- 5 1.72126- 2 2.50000+ 1 3.30000+ 1 1.16975- 5 1.72167- 2 2.70000+ 1 2.70000+ 1 1.55774- 5 1.70805- 2 2.70000+ 1 2.90000+ 1 2.79851- 5 1.71279- 2 2.70000+ 1 3.00000+ 1 4.01310- 5 1.71589- 2 2.70000+ 1 3.20000+ 1 1.74255- 5 1.72275- 2 2.70000+ 1 3.30000+ 1 2.16510- 5 1.72317- 2 2.90000+ 1 3.00000+ 1 6.04845- 7 1.72064- 2 2.90000+ 1 3.20000+ 1 1.81444- 6 1.72750- 2 2.90000+ 1 3.30000+ 1 7.56061- 6 1.72792- 2 3.00000+ 1 3.00000+ 1 1.23797- 6 1.72374- 2 3.00000+ 1 3.20000+ 1 2.16645- 6 1.73060- 2 3.00000+ 1 3.30000+ 1 1.23797- 6 1.73101- 2 3.20000+ 1 3.20000+ 1 5.84505- 7 1.73746- 2 3.20000+ 1 3.30000+ 1 1.01315- 5 1.73787- 2 3.30000+ 1 3.30000+ 1 3.01660- 6 1.73829- 2 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.63579- 5 2.62500- 3 8.00000+ 0 9.50116- 3 1.25545- 2 1.10000+ 1 4.19438- 4 1.34415- 2 1.30000+ 1 3.46269- 1 1.39286- 2 1.60000+ 1 2.49089- 3 1.58186- 2 1.90000+ 1 1.19540- 4 1.60983- 2 2.10000+ 1 7.30847- 2 1.63129- 2 2.40000+ 1 3.52299- 4 1.66221- 2 2.70000+ 1 5.68868- 4 1.66437- 2 3.00000+ 1 2.51249- 5 1.67222- 2 3.20000+ 1 1.09330- 2 1.67908- 2 4.10000+ 1 9.03737- 5 1.68170- 2 4.40000+ 1 2.14059- 6 1.68315- 2 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 4.69509- 3 1.60360- 3 6.00000+ 0 1.80000+ 1 3.51534- 2 1.73435- 3 6.00000+ 0 1.90000+ 1 9.27146- 3 1.88329- 3 6.00000+ 0 2.10000+ 1 3.42068- 2 2.09792- 3 6.00000+ 0 2.20000+ 1 1.16729- 2 2.12572- 3 6.00000+ 0 2.40000+ 1 1.50575- 3 2.40707- 3 6.00000+ 0 2.50000+ 1 2.22495- 3 2.41380- 3 6.00000+ 0 2.70000+ 1 9.79923- 4 2.42873- 3 6.00000+ 0 2.90000+ 1 6.67495- 3 2.47622- 3 6.00000+ 0 3.00000+ 1 1.81916- 3 2.50718- 3 6.00000+ 0 3.20000+ 1 4.78585- 3 2.57580- 3 6.00000+ 0 3.30000+ 1 1.61927- 3 2.57994- 3 8.00000+ 0 8.00000+ 0 5.18327- 4 8.26900- 3 8.00000+ 0 1.00000+ 1 1.91427- 2 8.56270- 3 8.00000+ 0 1.10000+ 1 1.75915- 3 9.15600- 3 8.00000+ 0 1.30000+ 1 3.18222- 3 9.64310- 3 8.00000+ 0 1.40000+ 1 1.57930- 3 9.76830- 3 8.00000+ 0 1.60000+ 1 2.02888- 4 1.15331- 2 8.00000+ 0 1.80000+ 1 3.12925- 3 1.16638- 2 8.00000+ 0 1.90000+ 1 3.86434- 4 1.18128- 2 8.00000+ 0 2.10000+ 1 5.10766- 4 1.20274- 2 8.00000+ 0 2.20000+ 1 2.15896- 4 1.20552- 2 8.00000+ 0 2.40000+ 1 8.56870- 5 1.23366- 2 8.00000+ 0 2.50000+ 1 6.04834- 5 1.23433- 2 8.00000+ 0 2.70000+ 1 4.36840- 5 1.23582- 2 8.00000+ 0 2.90000+ 1 5.94330- 4 1.24057- 2 8.00000+ 0 3.00000+ 1 7.60269- 5 1.24367- 2 8.00000+ 0 3.20000+ 1 7.01494- 5 1.25053- 2 8.00000+ 0 3.30000+ 1 2.85623- 5 1.25094- 2 1.00000+ 1 1.00000+ 1 2.01622- 2 8.85640- 3 1.00000+ 1 1.10000+ 1 4.94618- 2 9.44970- 3 1.00000+ 1 1.30000+ 1 2.54022- 2 9.93680- 3 1.00000+ 1 1.40000+ 1 3.50196- 2 1.00620- 2 1.00000+ 1 1.60000+ 1 5.01570- 3 1.18268- 2 1.00000+ 1 1.80000+ 1 8.40472- 3 1.19575- 2 1.00000+ 1 1.90000+ 1 1.18937- 2 1.21065- 2 1.00000+ 1 2.10000+ 1 5.75090- 3 1.23211- 2 1.00000+ 1 2.20000+ 1 7.91752- 3 1.23489- 2 1.00000+ 1 2.40000+ 1 4.53220- 4 1.26303- 2 1.00000+ 1 2.50000+ 1 3.85587- 4 1.26370- 2 1.00000+ 1 2.70000+ 1 1.14498- 3 1.26519- 2 1.00000+ 1 2.90000+ 1 1.68893- 3 1.26994- 2 1.00000+ 1 3.00000+ 1 2.38710- 3 1.27304- 2 1.00000+ 1 3.20000+ 1 8.38796- 4 1.27990- 2 1.00000+ 1 3.30000+ 1 1.13240- 3 1.28031- 2 1.10000+ 1 1.10000+ 1 1.09669- 3 1.00430- 2 1.10000+ 1 1.30000+ 1 2.19200- 2 1.05301- 2 1.10000+ 1 1.40000+ 1 3.23981- 3 1.06553- 2 1.10000+ 1 1.60000+ 1 3.86029- 4 1.24201- 2 1.10000+ 1 1.80000+ 1 8.21236- 3 1.25508- 2 1.10000+ 1 1.90000+ 1 4.53652- 4 1.26998- 2 1.10000+ 1 2.10000+ 1 4.19457- 3 1.29144- 2 1.10000+ 1 2.20000+ 1 5.98556- 4 1.29422- 2 1.10000+ 1 2.40000+ 1 1.73892- 4 1.32236- 2 1.10000+ 1 2.50000+ 1 9.03093- 5 1.32303- 2 1.10000+ 1 2.70000+ 1 8.44309- 5 1.32452- 2 1.10000+ 1 2.90000+ 1 1.56345- 3 1.32927- 2 1.10000+ 1 3.00000+ 1 8.82075- 5 1.33237- 2 1.10000+ 1 3.20000+ 1 5.93109- 4 1.33923- 2 1.10000+ 1 3.30000+ 1 8.27460- 5 1.33964- 2 1.30000+ 1 1.30000+ 1 2.07892- 2 1.10172- 2 1.30000+ 1 1.40000+ 1 8.17582- 2 1.11424- 2 1.30000+ 1 1.60000+ 1 8.37155- 4 1.29072- 2 1.30000+ 1 1.80000+ 1 4.07585- 3 1.30379- 2 1.30000+ 1 1.90000+ 1 4.86660- 3 1.31869- 2 1.30000+ 1 2.10000+ 1 7.79873- 3 1.34015- 2 1.30000+ 1 2.20000+ 1 1.65457- 2 1.34293- 2 1.30000+ 1 2.40000+ 1 1.54962- 3 1.37107- 2 1.30000+ 1 2.50000+ 1 3.11349- 3 1.37174- 2 1.30000+ 1 2.70000+ 1 1.91961- 4 1.37323- 2 1.30000+ 1 2.90000+ 1 7.77090- 4 1.37798- 2 1.30000+ 1 3.00000+ 1 9.60672- 4 1.38108- 2 1.30000+ 1 3.20000+ 1 1.10429- 3 1.38794- 2 1.30000+ 1 3.30000+ 1 2.32083- 3 1.38835- 2 1.40000+ 1 1.40000+ 1 3.97782- 3 1.12676- 2 1.40000+ 1 1.60000+ 1 3.33501- 4 1.30324- 2 1.40000+ 1 1.80000+ 1 4.94921- 3 1.31631- 2 1.40000+ 1 1.90000+ 1 6.63223- 4 1.33121- 2 1.40000+ 1 2.10000+ 1 1.25809- 2 1.35267- 2 1.40000+ 1 2.20000+ 1 1.46596- 3 1.35545- 2 1.40000+ 1 2.40000+ 1 6.17846- 4 1.38359- 2 1.40000+ 1 2.50000+ 1 2.36054- 4 1.38426- 2 1.40000+ 1 2.70000+ 1 7.26675- 5 1.38575- 2 1.40000+ 1 2.90000+ 1 9.08972- 4 1.39050- 2 1.40000+ 1 3.00000+ 1 1.28532- 4 1.39360- 2 1.40000+ 1 3.20000+ 1 1.71036- 3 1.40046- 2 1.40000+ 1 3.30000+ 1 2.02886- 4 1.40087- 2 1.60000+ 1 1.60000+ 1 1.89017- 5 1.47972- 2 1.60000+ 1 1.80000+ 1 8.24536- 4 1.49279- 2 1.60000+ 1 1.90000+ 1 8.52675- 5 1.50769- 2 1.60000+ 1 2.10000+ 1 1.31043- 4 1.52915- 2 1.60000+ 1 2.20000+ 1 4.53634- 5 1.53193- 2 1.60000+ 1 2.40000+ 1 1.97416- 5 1.56007- 2 1.60000+ 1 2.50000+ 1 1.13407- 5 1.56074- 2 1.60000+ 1 2.70000+ 1 7.98062- 6 1.56223- 2 1.60000+ 1 2.90000+ 1 1.56678- 4 1.56698- 2 1.60000+ 1 3.00000+ 1 1.68009- 5 1.57008- 2 1.60000+ 1 3.20000+ 1 1.80618- 5 1.57694- 2 1.60000+ 1 3.30000+ 1 5.88029- 6 1.57735- 2 1.80000+ 1 1.80000+ 1 8.32081- 4 1.50587- 2 1.80000+ 1 1.90000+ 1 1.98052- 3 1.52076- 2 1.80000+ 1 2.10000+ 1 9.09380- 4 1.54223- 2 1.80000+ 1 2.20000+ 1 1.13030- 3 1.54501- 2 1.80000+ 1 2.40000+ 1 5.96452- 5 1.57314- 2 1.80000+ 1 2.50000+ 1 3.99038- 5 1.57381- 2 1.80000+ 1 2.70000+ 1 1.88606- 4 1.57531- 2 1.80000+ 1 2.90000+ 1 3.30994- 4 1.58006- 2 1.80000+ 1 3.00000+ 1 3.97791- 4 1.58315- 2 1.80000+ 1 3.20000+ 1 1.32315- 4 1.59001- 2 1.80000+ 1 3.30000+ 1 1.62131- 4 1.59043- 2 1.90000+ 1 1.90000+ 1 4.70453- 5 1.53566- 2 1.90000+ 1 2.10000+ 1 9.38413- 4 1.55712- 2 1.90000+ 1 2.20000+ 1 1.24335- 4 1.55990- 2 1.90000+ 1 2.40000+ 1 3.36043- 5 1.58804- 2 1.90000+ 1 2.50000+ 1 1.59618- 5 1.58871- 2 1.90000+ 1 2.70000+ 1 1.89025- 5 1.59020- 2 1.90000+ 1 2.90000+ 1 3.77194- 4 1.59495- 2 1.90000+ 1 3.00000+ 1 1.84826- 5 1.59805- 2 1.90000+ 1 3.20000+ 1 1.32735- 4 1.60491- 2 1.90000+ 1 3.30000+ 1 1.72207- 5 1.60532- 2 2.10000+ 1 2.10000+ 1 7.25863- 4 1.57858- 2 2.10000+ 1 2.20000+ 1 2.65466- 3 1.58136- 2 2.10000+ 1 2.40000+ 1 1.99519- 4 1.60950- 2 2.10000+ 1 2.50000+ 1 4.03657- 4 1.61017- 2 2.10000+ 1 2.70000+ 1 2.98235- 5 1.61166- 2 2.10000+ 1 2.90000+ 1 1.72645- 4 1.61641- 2 2.10000+ 1 3.00000+ 1 1.85653- 4 1.61951- 2 2.10000+ 1 3.20000+ 1 2.04985- 4 1.62637- 2 2.10000+ 1 3.30000+ 1 3.74678- 4 1.62679- 2 2.20000+ 1 2.20000+ 1 1.36514- 4 1.58414- 2 2.20000+ 1 2.40000+ 1 8.65277- 5 1.61228- 2 2.20000+ 1 2.50000+ 1 3.36041- 5 1.61295- 2 2.20000+ 1 2.70000+ 1 1.00811- 5 1.61444- 2 2.20000+ 1 2.90000+ 1 2.07918- 4 1.61919- 2 2.20000+ 1 3.00000+ 1 2.43619- 5 1.62229- 2 2.20000+ 1 3.20000+ 1 3.63335- 4 1.62915- 2 2.20000+ 1 3.30000+ 1 3.78049- 5 1.62957- 2 2.40000+ 1 2.40000+ 1 4.62048- 6 1.64041- 2 2.40000+ 1 2.50000+ 1 3.31829- 5 1.64109- 2 2.40000+ 1 2.70000+ 1 4.20042- 6 1.64258- 2 2.40000+ 1 2.90000+ 1 1.09209- 5 1.64733- 2 2.40000+ 1 3.00000+ 1 6.30033- 6 1.65042- 2 2.40000+ 1 3.20000+ 1 2.60436- 5 1.65729- 2 2.40000+ 1 3.30000+ 1 1.13410- 5 1.65770- 2 2.50000+ 1 2.50000+ 1 2.10011- 6 1.64176- 2 2.50000+ 1 2.70000+ 1 2.52017- 6 1.64325- 2 2.50000+ 1 2.90000+ 1 6.72077- 6 1.64800- 2 2.50000+ 1 3.00000+ 1 2.94022- 6 1.65110- 2 2.50000+ 1 3.20000+ 1 5.33450- 5 1.65796- 2 2.50000+ 1 3.30000+ 1 4.62047- 6 1.65837- 2 2.70000+ 1 2.70000+ 1 8.31861- 7 1.64475- 2 2.70000+ 1 2.90000+ 1 3.53534- 5 1.64949- 2 2.70000+ 1 3.00000+ 1 3.74346- 6 1.65259- 2 2.70000+ 1 3.20000+ 1 4.15931- 6 1.65945- 2 2.70000+ 1 3.30000+ 1 1.24776- 6 1.65987- 2 2.90000+ 1 2.90000+ 1 3.25617- 5 1.65424- 2 2.90000+ 1 3.00000+ 1 7.51407- 5 1.65734- 2 2.90000+ 1 3.20000+ 1 2.50469- 5 1.66420- 2 2.90000+ 1 3.30000+ 1 2.96400- 5 1.66462- 2 3.00000+ 1 3.00000+ 1 1.72175- 6 1.66044- 2 3.00000+ 1 3.20000+ 1 2.66885- 5 1.66730- 2 3.00000+ 1 3.30000+ 1 3.44360- 6 1.66771- 2 3.20000+ 1 3.20000+ 1 1.42819- 5 1.67416- 2 3.20000+ 1 3.30000+ 1 5.12458- 5 1.67457- 2 3.30000+ 1 3.30000+ 1 2.79869- 6 1.67499- 2 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.72798- 2 9.92950- 3 1.00000+ 1 1.96498- 4 1.02232- 2 1.10000+ 1 1.77798- 4 1.08165- 2 1.30000+ 1 3.01666- 2 1.13036- 2 1.40000+ 1 2.65507- 1 1.14288- 2 1.60000+ 1 4.08365- 3 1.31936- 2 1.80000+ 1 4.43815- 5 1.33243- 2 1.90000+ 1 4.64164- 5 1.34733- 2 2.10000+ 1 5.78833- 3 1.36879- 2 2.20000+ 1 5.25234- 2 1.37157- 2 2.40000+ 1 5.37703- 5 1.39971- 2 2.50000+ 1 2.99176- 4 1.40038- 2 2.70000+ 1 9.31519- 4 1.40187- 2 2.90000+ 1 9.38549- 6 1.40662- 2 3.00000+ 1 1.00399- 5 1.40972- 2 3.20000+ 1 8.51470- 4 1.41658- 2 3.30000+ 1 7.65211- 3 1.41699- 2 4.10000+ 1 1.46598- 4 1.41920- 2 4.30000+ 1 8.90849- 7 1.42031- 2 4.40000+ 1 8.14190- 7 1.42065- 2 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 6.17309- 4 5.64400- 3 8.00000+ 0 1.00000+ 1 2.96519- 4 5.93770- 3 8.00000+ 0 1.10000+ 1 1.98961- 2 6.53100- 3 8.00000+ 0 1.30000+ 1 2.66654- 3 7.01810- 3 8.00000+ 0 1.40000+ 1 4.78287- 3 7.14330- 3 8.00000+ 0 1.60000+ 1 2.43750- 4 8.90810- 3 8.00000+ 0 1.80000+ 1 5.27694- 5 9.03885- 3 8.00000+ 0 1.90000+ 1 3.17837- 3 9.18779- 3 8.00000+ 0 2.10000+ 1 2.92741- 4 9.40242- 3 8.00000+ 0 2.20000+ 1 4.87905- 4 9.43022- 3 8.00000+ 0 2.40000+ 1 2.59663- 4 9.71157- 3 8.00000+ 0 2.50000+ 1 4.52318- 4 9.71830- 3 8.00000+ 0 2.70000+ 1 5.23511- 5 9.73323- 3 8.00000+ 0 2.90000+ 1 1.00512- 5 9.78072- 3 8.00000+ 0 3.00000+ 1 5.86750- 4 9.81168- 3 8.00000+ 0 3.20000+ 1 3.76932- 5 9.88030- 3 8.00000+ 0 3.30000+ 1 5.98897- 5 9.88444- 3 1.00000+ 1 1.00000+ 1 1.80089- 5 6.23140- 3 1.00000+ 1 1.10000+ 1 3.33865- 2 6.82470- 3 1.00000+ 1 1.30000+ 1 1.51187- 3 7.31180- 3 1.00000+ 1 1.40000+ 1 1.24525- 2 7.43700- 3 1.00000+ 1 1.60000+ 1 6.15635- 5 9.20180- 3 1.00000+ 1 1.80000+ 1 1.25635- 5 9.33255- 3 1.00000+ 1 1.90000+ 1 5.53863- 3 9.48149- 3 1.00000+ 1 2.10000+ 1 2.93589- 4 9.69612- 3 1.00000+ 1 2.20000+ 1 2.00316- 3 9.72392- 3 1.00000+ 1 2.40000+ 1 2.44172- 4 1.00053- 2 1.00000+ 1 2.50000+ 1 6.03499- 4 1.00120- 2 1.00000+ 1 2.70000+ 1 1.38208- 5 1.00269- 2 1.00000+ 1 2.90000+ 1 2.93153- 6 1.00744- 2 1.00000+ 1 3.00000+ 1 1.02979- 3 1.01054- 2 1.00000+ 1 3.20000+ 1 4.22993- 5 1.01740- 2 1.00000+ 1 3.30000+ 1 2.71390- 4 1.01781- 2 1.10000+ 1 1.10000+ 1 4.13410- 2 7.41800- 3 1.10000+ 1 1.30000+ 1 4.33270- 2 7.90510- 3 1.10000+ 1 1.40000+ 1 5.74233- 2 8.03030- 3 1.10000+ 1 1.60000+ 1 5.12898- 3 9.79510- 3 1.10000+ 1 1.80000+ 1 7.72674- 3 9.92585- 3 1.10000+ 1 1.90000+ 1 1.66336- 2 1.00748- 2 1.10000+ 1 2.10000+ 1 9.20558- 3 1.02894- 2 1.10000+ 1 2.20000+ 1 1.20587- 2 1.03172- 2 1.10000+ 1 2.40000+ 1 8.72351- 4 1.05986- 2 1.10000+ 1 2.50000+ 1 1.06459- 3 1.06053- 2 1.10000+ 1 2.70000+ 1 1.16681- 3 1.06202- 2 1.10000+ 1 2.90000+ 1 1.58047- 3 1.06677- 2 1.10000+ 1 3.00000+ 1 3.23491- 3 1.06987- 2 1.10000+ 1 3.20000+ 1 1.33011- 3 1.07673- 2 1.10000+ 1 3.30000+ 1 1.70331- 3 1.07714- 2 1.30000+ 1 1.30000+ 1 5.89804- 3 8.39220- 3 1.30000+ 1 1.40000+ 1 1.10197- 1 8.51740- 3 1.30000+ 1 1.60000+ 1 6.46221- 4 1.02822- 2 1.30000+ 1 1.80000+ 1 3.73990- 4 1.04129- 2 1.30000+ 1 1.90000+ 1 6.52299- 3 1.05619- 2 1.30000+ 1 2.10000+ 1 2.11926- 3 1.07765- 2 1.30000+ 1 2.20000+ 1 1.65652- 2 1.08043- 2 1.30000+ 1 2.40000+ 1 4.77435- 4 1.10857- 2 1.30000+ 1 2.50000+ 1 1.61071- 3 1.10924- 2 1.30000+ 1 2.70000+ 1 1.45743- 4 1.11073- 2 1.30000+ 1 2.90000+ 1 7.70587- 5 1.11548- 2 1.30000+ 1 3.00000+ 1 1.18892- 3 1.11858- 2 1.30000+ 1 3.20000+ 1 2.98596- 4 1.12544- 2 1.30000+ 1 3.30000+ 1 2.20701- 3 1.12585- 2 1.40000+ 1 1.40000+ 1 7.31573- 2 8.64260- 3 1.40000+ 1 1.60000+ 1 1.17184- 3 1.04074- 2 1.40000+ 1 1.80000+ 1 2.60516- 3 1.05381- 2 1.40000+ 1 1.90000+ 1 9.72951- 3 1.06871- 2 1.40000+ 1 2.10000+ 1 1.99961- 2 1.09017- 2 1.40000+ 1 2.20000+ 1 2.51969- 2 1.09295- 2 1.40000+ 1 2.40000+ 1 5.02886- 3 1.12109- 2 1.40000+ 1 2.50000+ 1 4.56143- 3 1.12176- 2 1.40000+ 1 2.70000+ 1 2.66367- 4 1.12325- 2 1.40000+ 1 2.90000+ 1 5.22281- 4 1.12800- 2 1.40000+ 1 3.00000+ 1 1.83024- 3 1.13110- 2 1.40000+ 1 3.20000+ 1 2.81200- 3 1.13796- 2 1.40000+ 1 3.30000+ 1 3.45028- 3 1.13837- 2 1.60000+ 1 1.60000+ 1 2.47097- 5 1.21722- 2 1.60000+ 1 1.80000+ 1 1.17271- 5 1.23029- 2 1.60000+ 1 1.90000+ 1 8.19208- 4 1.24519- 2 1.60000+ 1 2.10000+ 1 7.70621- 5 1.26665- 2 1.60000+ 1 2.20000+ 1 1.28159- 4 1.26943- 2 1.60000+ 1 2.40000+ 1 3.39243- 5 1.29757- 2 1.60000+ 1 2.50000+ 1 6.74320- 5 1.29824- 2 1.60000+ 1 2.70000+ 1 1.08893- 5 1.29973- 2 1.60000+ 1 2.90000+ 1 2.51282- 6 1.30448- 2 1.60000+ 1 3.00000+ 1 1.51193- 4 1.30758- 2 1.60000+ 1 3.20000+ 1 1.00515- 5 1.31444- 2 1.60000+ 1 3.30000+ 1 1.59145- 5 1.31485- 2 1.80000+ 1 1.80000+ 1 4.18803- 7 1.24337- 2 1.80000+ 1 1.90000+ 1 1.27319- 3 1.25826- 2 1.80000+ 1 2.10000+ 1 6.78459- 5 1.27973- 2 1.80000+ 1 2.20000+ 1 4.51048- 4 1.28251- 2 1.80000+ 1 2.40000+ 1 3.64350- 5 1.31064- 2 1.80000+ 1 2.50000+ 1 8.46006- 5 1.31131- 2 1.80000+ 1 2.70000+ 1 2.51269- 6 1.31281- 2 1.80000+ 1 2.90000+ 1 4.18803- 7 1.31756- 2 1.80000+ 1 3.00000+ 1 2.36207- 4 1.32065- 2 1.80000+ 1 3.20000+ 1 9.63241- 6 1.32751- 2 1.80000+ 1 3.30000+ 1 6.15627- 5 1.32793- 2 1.90000+ 1 1.90000+ 1 1.59902- 3 1.27316- 2 1.90000+ 1 2.10000+ 1 1.38961- 3 1.29462- 2 1.90000+ 1 2.20000+ 1 2.01239- 3 1.29740- 2 1.90000+ 1 2.40000+ 1 1.08472- 4 1.32554- 2 1.90000+ 1 2.50000+ 1 1.39040- 4 1.32621- 2 1.90000+ 1 2.70000+ 1 1.86375- 4 1.32770- 2 1.90000+ 1 2.90000+ 1 2.60077- 4 1.33245- 2 1.90000+ 1 3.00000+ 1 6.16071- 4 1.33555- 2 1.90000+ 1 3.20000+ 1 2.01021- 4 1.34241- 2 1.90000+ 1 3.30000+ 1 2.83535- 4 1.34282- 2 2.10000+ 1 2.10000+ 1 1.82598- 4 1.31608- 2 2.10000+ 1 2.20000+ 1 3.14639- 3 1.31886- 2 2.10000+ 1 2.40000+ 1 5.69577- 5 1.34700- 2 2.10000+ 1 2.50000+ 1 1.82182- 4 1.34767- 2 2.10000+ 1 2.70000+ 1 1.75885- 5 1.34916- 2 2.10000+ 1 2.90000+ 1 1.38207- 5 1.35391- 2 2.10000+ 1 3.00000+ 1 2.53363- 4 1.35701- 2 2.10000+ 1 3.20000+ 1 5.10940- 5 1.36387- 2 2.10000+ 1 3.30000+ 1 4.22149- 4 1.36429- 2 2.20000+ 1 2.20000+ 1 2.18203- 3 1.32164- 2 2.20000+ 1 2.40000+ 1 5.90092- 4 1.34978- 2 2.20000+ 1 2.50000+ 1 5.26020- 4 1.35045- 2 2.20000+ 1 2.70000+ 1 2.93152- 5 1.35194- 2 2.20000+ 1 2.90000+ 1 9.13010- 5 1.35669- 2 2.20000+ 1 3.00000+ 1 3.77342- 4 1.35979- 2 2.20000+ 1 3.20000+ 1 4.45608- 4 1.36665- 2 2.20000+ 1 3.30000+ 1 5.97637- 4 1.36707- 2 2.40000+ 1 2.40000+ 1 2.56817- 6 1.37791- 2 2.40000+ 1 2.50000+ 1 7.53384- 5 1.37859- 2 2.40000+ 1 2.70000+ 1 6.84837- 6 1.38008- 2 2.40000+ 1 2.90000+ 1 6.84837- 6 1.38483- 2 2.40000+ 1 3.00000+ 1 1.96903- 5 1.38792- 2 2.40000+ 1 3.20000+ 1 7.70460- 6 1.39479- 2 2.40000+ 1 3.30000+ 1 7.66193- 5 1.39520- 2 2.50000+ 1 2.50000+ 1 2.59656- 5 1.37926- 2 2.50000+ 1 2.70000+ 1 1.38206- 5 1.38075- 2 2.50000+ 1 2.90000+ 1 1.59136- 5 1.38550- 2 2.50000+ 1 3.00000+ 1 2.47084- 5 1.38860- 2 2.50000+ 1 3.20000+ 1 2.34530- 5 1.39546- 2 2.50000+ 1 3.30000+ 1 6.65867- 5 1.39587- 2 2.70000+ 1 2.70000+ 1 1.47932- 6 1.38225- 2 2.70000+ 1 2.90000+ 1 4.93135- 7 1.38699- 2 2.70000+ 1 3.00000+ 1 4.04371- 5 1.39009- 2 2.70000+ 1 3.20000+ 1 2.46562- 6 1.39695- 2 2.70000+ 1 3.30000+ 1 4.43821- 6 1.39737- 2 2.90000+ 1 3.00000+ 1 5.90032- 5 1.39484- 2 2.90000+ 1 3.20000+ 1 2.56534- 6 1.40170- 2 2.90000+ 1 3.30000+ 1 1.53915- 5 1.40212- 2 3.00000+ 1 3.00000+ 1 7.23262- 5 1.39794- 2 3.00000+ 1 3.20000+ 1 4.46264- 5 1.40480- 2 3.00000+ 1 3.30000+ 1 6.51453- 5 1.40521- 2 3.20000+ 1 3.20000+ 1 3.76927- 6 1.41166- 2 3.20000+ 1 3.30000+ 1 5.98889- 5 1.41207- 2 3.30000+ 1 3.30000+ 1 4.10415- 5 1.41249- 2 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.03110- 5 2.93700- 4 1.10000+ 1 6.37258- 4 8.87000- 4 1.80000+ 1 1.86070- 3 3.39485- 3 1.90000+ 1 1.29810- 3 3.54379- 3 2.90000+ 1 4.30839- 4 4.13672- 3 3.00000+ 1 3.27339- 4 4.16768- 3 4.30000+ 1 4.28869- 5 4.27356- 3 4.40000+ 1 2.85999- 5 4.27696- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 2.01341- 2 7.57700- 5 1.00000+ 1 2.50000+ 1 2.68977- 2 8.25000- 5 1.00000+ 1 2.70000+ 1 1.27860- 2 9.74300- 5 1.00000+ 1 2.90000+ 1 1.27131- 2 1.44920- 4 1.00000+ 1 3.00000+ 1 1.61174- 2 1.75880- 4 1.00000+ 1 3.20000+ 1 8.01529- 3 2.44500- 4 1.00000+ 1 3.30000+ 1 1.06194- 2 2.48640- 4 1.00000+ 1 4.10000+ 1 1.81381- 3 2.70690- 4 1.00000+ 1 4.30000+ 1 1.07387- 3 2.81760- 4 1.00000+ 1 4.40000+ 1 1.16889- 3 2.85160- 4 1.10000+ 1 1.80000+ 1 5.46682- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 5.23086- 2 1.45290- 4 1.10000+ 1 2.10000+ 1 1.49459- 2 3.59920- 4 1.10000+ 1 2.20000+ 1 2.81985- 2 3.87720- 4 1.10000+ 1 2.40000+ 1 1.84389- 1 6.69070- 4 1.10000+ 1 2.50000+ 1 2.26455- 1 6.75800- 4 1.10000+ 1 2.70000+ 1 1.09335- 2 6.90730- 4 1.10000+ 1 2.90000+ 1 1.06840- 2 7.38220- 4 1.10000+ 1 3.00000+ 1 1.02405- 2 7.69180- 4 1.10000+ 1 3.20000+ 1 2.22010- 3 8.37800- 4 1.10000+ 1 3.30000+ 1 4.18088- 3 8.41940- 4 1.10000+ 1 4.10000+ 1 1.58684- 3 8.63990- 4 1.10000+ 1 4.30000+ 1 9.25572- 4 8.75060- 4 1.10000+ 1 4.40000+ 1 7.61526- 4 8.78460- 4 1.30000+ 1 1.60000+ 1 2.56694- 2 3.52700- 4 1.30000+ 1 1.80000+ 1 5.53277- 3 4.83450- 4 1.30000+ 1 1.90000+ 1 7.61330- 3 6.32390- 4 1.30000+ 1 2.10000+ 1 8.83696- 3 8.47020- 4 1.30000+ 1 2.20000+ 1 1.08073- 2 8.74820- 4 1.30000+ 1 2.40000+ 1 9.40694- 3 1.15617- 3 1.30000+ 1 2.50000+ 1 8.72352- 3 1.16290- 3 1.30000+ 1 2.70000+ 1 3.69193- 3 1.17783- 3 1.30000+ 1 2.90000+ 1 8.90851- 4 1.22532- 3 1.30000+ 1 3.00000+ 1 1.14864- 3 1.25628- 3 1.30000+ 1 3.20000+ 1 1.04938- 3 1.32490- 3 1.30000+ 1 3.30000+ 1 1.36784- 3 1.32904- 3 1.30000+ 1 4.10000+ 1 5.00960- 4 1.35109- 3 1.30000+ 1 4.30000+ 1 7.62484- 5 1.36216- 3 1.30000+ 1 4.40000+ 1 8.26944- 5 1.36556- 3 1.40000+ 1 1.60000+ 1 3.54911- 2 4.77900- 4 1.40000+ 1 1.80000+ 1 9.02341- 4 6.08650- 4 1.40000+ 1 1.90000+ 1 1.13024- 2 7.57590- 4 1.40000+ 1 2.10000+ 1 1.22219- 2 9.72220- 4 1.40000+ 1 2.20000+ 1 1.71173- 2 1.00002- 3 1.40000+ 1 2.40000+ 1 1.08363- 2 1.28137- 3 1.40000+ 1 2.50000+ 1 1.66609- 2 1.28810- 3 1.40000+ 1 2.70000+ 1 5.03829- 3 1.30303- 3 1.40000+ 1 2.90000+ 1 1.86912- 4 1.35052- 3 1.40000+ 1 3.00000+ 1 1.68520- 3 1.38148- 3 1.40000+ 1 3.20000+ 1 1.58961- 3 1.45010- 3 1.40000+ 1 3.30000+ 1 2.08584- 3 1.45424- 3 1.40000+ 1 4.10000+ 1 6.83320- 4 1.47629- 3 1.40000+ 1 4.30000+ 1 1.70039- 5 1.48736- 3 1.40000+ 1 4.40000+ 1 1.21352- 4 1.49076- 3 1.60000+ 1 1.60000+ 1 2.30422- 3 2.24270- 3 1.60000+ 1 1.80000+ 1 4.04778- 3 2.37345- 3 1.60000+ 1 1.90000+ 1 6.55016- 3 2.52239- 3 1.60000+ 1 2.10000+ 1 7.71001- 3 2.73702- 3 1.60000+ 1 2.20000+ 1 1.07932- 2 2.76482- 3 1.60000+ 1 2.40000+ 1 5.66468- 3 3.04617- 3 1.60000+ 1 2.50000+ 1 7.07629- 3 3.05290- 3 1.60000+ 1 2.70000+ 1 8.51548- 4 3.06783- 3 1.60000+ 1 2.90000+ 1 8.33047- 4 3.11532- 3 1.60000+ 1 3.00000+ 1 1.31174- 3 3.14628- 3 1.60000+ 1 3.20000+ 1 1.09800- 3 3.21490- 3 1.60000+ 1 3.30000+ 1 1.50768- 3 3.21904- 3 1.60000+ 1 4.10000+ 1 1.22423- 4 3.24109- 3 1.60000+ 1 4.30000+ 1 7.37125- 5 3.25216- 3 1.60000+ 1 4.40000+ 1 9.83932- 5 3.25556- 3 1.80000+ 1 1.80000+ 1 1.65406- 4 2.50420- 3 1.80000+ 1 1.90000+ 1 4.96536- 4 2.65314- 3 1.80000+ 1 2.10000+ 1 2.51863- 4 2.86777- 3 1.80000+ 1 2.20000+ 1 1.33855- 4 2.89557- 3 1.80000+ 1 2.40000+ 1 3.15448- 5 3.17692- 3 1.80000+ 1 2.50000+ 1 4.60920- 4 3.18365- 3 1.80000+ 1 2.70000+ 1 5.69107- 4 3.19858- 3 1.80000+ 1 2.90000+ 1 5.01776- 5 3.24607- 3 1.80000+ 1 3.00000+ 1 7.15874- 5 3.27703- 3 1.80000+ 1 3.20000+ 1 3.10537- 5 3.34565- 3 1.80000+ 1 3.30000+ 1 2.28828- 5 3.34979- 3 1.80000+ 1 4.10000+ 1 7.71436- 5 3.37184- 3 1.80000+ 1 4.30000+ 1 4.24952- 6 3.38291- 3 1.80000+ 1 4.40000+ 1 5.06686- 6 3.38631- 3 1.90000+ 1 1.90000+ 1 5.38857- 4 2.80208- 3 1.90000+ 1 2.10000+ 1 5.95897- 4 3.01671- 3 1.90000+ 1 2.20000+ 1 1.36129- 3 3.04451- 3 1.90000+ 1 2.40000+ 1 6.96096- 4 3.32586- 3 1.90000+ 1 2.50000+ 1 1.12838- 3 3.33259- 3 1.90000+ 1 2.70000+ 1 9.25891- 4 3.34752- 3 1.90000+ 1 2.90000+ 1 8.67876- 5 3.39501- 3 1.90000+ 1 3.00000+ 1 1.81423- 4 3.42597- 3 1.90000+ 1 3.20000+ 1 8.46602- 5 3.49459- 3 1.90000+ 1 3.30000+ 1 1.81095- 4 3.49873- 3 1.90000+ 1 4.10000+ 1 1.25851- 4 3.52078- 3 1.90000+ 1 4.30000+ 1 7.51832- 6 3.53185- 3 1.90000+ 1 4.40000+ 1 1.32395- 5 3.53525- 3 2.10000+ 1 2.10000+ 1 9.44706- 5 3.23134- 3 2.10000+ 1 2.20000+ 1 3.18555- 4 3.25914- 3 2.10000+ 1 2.40000+ 1 4.37372- 4 3.54049- 3 2.10000+ 1 2.50000+ 1 2.82846- 3 3.54722- 3 2.10000+ 1 2.70000+ 1 1.06303- 3 3.56215- 3 2.10000+ 1 2.90000+ 1 3.33427- 5 3.60964- 3 2.10000+ 1 3.00000+ 1 9.20202- 5 3.64060- 3 2.10000+ 1 3.20000+ 1 2.12484- 5 3.70922- 3 2.10000+ 1 3.30000+ 1 3.77558- 5 3.71336- 3 2.10000+ 1 4.10000+ 1 1.43659- 4 3.73541- 3 2.10000+ 1 4.30000+ 1 2.77854- 6 3.74648- 3 2.10000+ 1 4.40000+ 1 6.70084- 6 3.74988- 3 2.20000+ 1 2.20000+ 1 2.27178- 4 3.28694- 3 2.20000+ 1 2.40000+ 1 2.58246- 3 3.56829- 3 2.20000+ 1 2.50000+ 1 1.59458- 3 3.57502- 3 2.20000+ 1 2.70000+ 1 1.48240- 3 3.58995- 3 2.20000+ 1 2.90000+ 1 2.01028- 5 3.63744- 3 2.20000+ 1 3.00000+ 1 2.07408- 4 3.66840- 3 2.20000+ 1 3.20000+ 1 3.46497- 5 3.73702- 3 2.20000+ 1 3.30000+ 1 5.21367- 5 3.74116- 3 2.20000+ 1 4.10000+ 1 2.00054- 4 3.76321- 3 2.20000+ 1 4.30000+ 1 1.63440- 6 3.77428- 3 2.20000+ 1 4.40000+ 1 1.48733- 5 3.77768- 3 2.40000+ 1 2.40000+ 1 6.12417- 4 3.84964- 3 2.40000+ 1 2.50000+ 1 4.04981- 3 3.85637- 3 2.40000+ 1 2.70000+ 1 7.29301- 4 3.87130- 3 2.40000+ 1 2.90000+ 1 4.97490- 6 3.91879- 3 2.40000+ 1 3.00000+ 1 7.76103- 5 3.94975- 3 2.40000+ 1 3.20000+ 1 5.72110- 5 4.01837- 3 2.40000+ 1 3.30000+ 1 3.68310- 4 4.02251- 3 2.40000+ 1 4.10000+ 1 9.73445- 5 4.04456- 3 2.40000+ 1 4.30000+ 1 4.97490- 7 4.05563- 3 2.40000+ 1 4.40000+ 1 5.30658- 6 4.05903- 3 2.50000+ 1 2.50000+ 1 1.39032- 3 3.86310- 3 2.50000+ 1 2.70000+ 1 9.02609- 4 3.87803- 3 2.50000+ 1 2.90000+ 1 8.37773- 5 3.92552- 3 2.50000+ 1 3.00000+ 1 1.34797- 4 3.95648- 3 2.50000+ 1 3.20000+ 1 3.95849- 4 4.02510- 3 2.50000+ 1 3.30000+ 1 2.15948- 4 4.02924- 3 2.50000+ 1 4.10000+ 1 1.20471- 4 4.05129- 3 2.50000+ 1 4.30000+ 1 7.24235- 6 4.06236- 3 2.50000+ 1 4.40000+ 1 9.38181- 6 4.06576- 3 2.70000+ 1 2.70000+ 1 7.88447- 5 3.89296- 3 2.70000+ 1 2.90000+ 1 1.28100- 4 3.94045- 3 2.70000+ 1 3.00000+ 1 2.01087- 4 3.97141- 3 2.70000+ 1 3.20000+ 1 1.65128- 4 4.04003- 3 2.70000+ 1 3.30000+ 1 2.25906- 4 4.04417- 3 2.70000+ 1 4.10000+ 1 2.23232- 5 4.06622- 3 2.70000+ 1 4.30000+ 1 1.13392- 5 4.07729- 3 2.70000+ 1 4.40000+ 1 1.50598- 5 4.08069- 3 2.90000+ 1 2.90000+ 1 5.01864- 6 3.98794- 3 2.90000+ 1 3.00000+ 1 1.61464- 5 4.01890- 3 2.90000+ 1 3.20000+ 1 5.45508- 6 4.08752- 3 2.90000+ 1 3.30000+ 1 4.80051- 6 4.09166- 3 2.90000+ 1 4.10000+ 1 2.13844- 5 4.11371- 3 2.90000+ 1 4.30000+ 1 8.72782- 7 4.12478- 3 2.90000+ 1 4.40000+ 1 1.09098- 6 4.12818- 3 3.00000+ 1 3.00000+ 1 1.95818- 5 4.04986- 3 3.00000+ 1 3.20000+ 1 1.76257- 5 4.11848- 3 3.00000+ 1 3.30000+ 1 3.69903- 5 4.12262- 3 3.00000+ 1 4.10000+ 1 3.35076- 5 4.14467- 3 3.00000+ 1 4.30000+ 1 1.30550- 6 4.15574- 3 3.00000+ 1 4.40000+ 1 2.82877- 6 4.15914- 3 3.20000+ 1 3.20000+ 1 1.26540- 6 4.18710- 3 3.20000+ 1 3.30000+ 1 4.70016- 6 4.19124- 3 3.20000+ 1 4.10000+ 1 2.27772- 5 4.21329- 3 3.20000+ 1 4.30000+ 1 3.61555- 7 4.22436- 3 3.20000+ 1 4.40000+ 1 1.08464- 6 4.22776- 3 3.30000+ 1 3.30000+ 1 3.22718- 6 4.19538- 3 3.30000+ 1 4.10000+ 1 3.08377- 5 4.21743- 3 3.30000+ 1 4.30000+ 1 3.58579- 7 4.22850- 3 3.30000+ 1 4.40000+ 1 2.15149- 6 4.23190- 3 4.10000+ 1 4.10000+ 1 1.47089- 6 4.23948- 3 4.10000+ 1 4.30000+ 1 1.47089- 6 4.25055- 3 4.10000+ 1 4.40000+ 1 1.96131- 6 4.25395- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.24710- 3 1.08040- 3 1.60000+ 1 8.25237- 4 2.97040- 3 2.10000+ 1 4.34088- 3 3.46472- 3 2.70000+ 1 1.92519- 4 3.79553- 3 3.20000+ 1 7.74397- 4 3.94260- 3 4.10000+ 1 3.03619- 5 3.96879- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 5.91898- 3 6.62200- 5 1.10000+ 1 2.20000+ 1 1.46017- 2 9.40200- 5 1.10000+ 1 2.40000+ 1 2.85512- 2 3.75370- 4 1.10000+ 1 2.50000+ 1 2.51069- 2 3.82100- 4 1.10000+ 1 2.70000+ 1 3.10397- 3 3.97030- 4 1.10000+ 1 2.90000+ 1 4.10227- 3 4.44520- 4 1.10000+ 1 3.00000+ 1 2.30719- 3 4.75480- 4 1.10000+ 1 3.20000+ 1 1.18865- 3 5.44100- 4 1.10000+ 1 3.30000+ 1 2.35908- 3 5.48240- 4 1.10000+ 1 4.10000+ 1 4.30327- 4 5.70290- 4 1.10000+ 1 4.30000+ 1 3.32568- 4 5.81360- 4 1.10000+ 1 4.40000+ 1 1.62826- 4 5.84760- 4 1.30000+ 1 1.60000+ 1 4.79078- 2 5.90000- 5 1.30000+ 1 1.80000+ 1 4.91388- 2 1.89750- 4 1.30000+ 1 1.90000+ 1 4.13917- 2 3.38690- 4 1.30000+ 1 2.10000+ 1 1.75679- 2 5.53320- 4 1.30000+ 1 2.20000+ 1 2.34073- 2 5.81120- 4 1.30000+ 1 2.40000+ 1 1.44472- 1 8.62470- 4 1.30000+ 1 2.50000+ 1 2.24615- 1 8.69200- 4 1.30000+ 1 2.70000+ 1 1.06764- 2 8.84130- 4 1.30000+ 1 2.90000+ 1 8.47659- 3 9.31620- 4 1.30000+ 1 3.00000+ 1 7.98912- 3 9.62580- 4 1.30000+ 1 3.20000+ 1 2.63149- 3 1.03120- 3 1.30000+ 1 3.30000+ 1 3.58436- 3 1.03534- 3 1.30000+ 1 4.10000+ 1 1.55871- 3 1.05739- 3 1.30000+ 1 4.30000+ 1 7.29035- 4 1.06846- 3 1.30000+ 1 4.40000+ 1 5.91811- 4 1.07186- 3 1.40000+ 1 1.60000+ 1 7.55607- 3 1.84200- 4 1.40000+ 1 1.80000+ 1 5.54994- 2 3.14950- 4 1.40000+ 1 1.90000+ 1 4.72283- 3 4.63890- 4 1.40000+ 1 2.10000+ 1 1.19939- 3 6.78520- 4 1.40000+ 1 2.20000+ 1 2.69453- 3 7.06320- 4 1.40000+ 1 2.40000+ 1 6.53708- 3 9.87670- 4 1.40000+ 1 2.50000+ 1 4.26569- 3 9.94400- 4 1.40000+ 1 2.70000+ 1 1.11856- 3 1.00933- 3 1.40000+ 1 2.90000+ 1 7.42285- 3 1.05682- 3 1.40000+ 1 3.00000+ 1 7.96735- 4 1.08778- 3 1.40000+ 1 3.20000+ 1 8.17489- 5 1.15640- 3 1.40000+ 1 3.30000+ 1 3.48075- 4 1.16054- 3 1.40000+ 1 4.10000+ 1 1.53387- 4 1.18259- 3 1.40000+ 1 4.30000+ 1 6.12193- 4 1.19366- 3 1.40000+ 1 4.40000+ 1 5.81518- 5 1.19706- 3 1.60000+ 1 1.60000+ 1 6.73073- 4 1.94900- 3 1.60000+ 1 1.80000+ 1 1.00619- 2 2.07975- 3 1.60000+ 1 1.90000+ 1 1.33707- 3 2.22869- 3 1.60000+ 1 2.10000+ 1 3.58781- 4 2.44332- 3 1.60000+ 1 2.20000+ 1 1.16914- 3 2.47112- 3 1.60000+ 1 2.40000+ 1 5.18092- 5 2.75247- 3 1.60000+ 1 2.50000+ 1 8.54849- 4 2.75920- 3 1.60000+ 1 2.70000+ 1 2.32248- 4 2.77413- 3 1.60000+ 1 2.90000+ 1 1.30989- 3 2.82162- 3 1.60000+ 1 3.00000+ 1 2.40918- 4 2.85258- 3 1.60000+ 1 3.20000+ 1 3.62674- 5 2.92120- 3 1.60000+ 1 3.30000+ 1 1.48517- 4 2.92534- 3 1.60000+ 1 4.10000+ 1 3.28109- 5 2.94739- 3 1.60000+ 1 4.30000+ 1 1.07935- 4 2.95846- 3 1.60000+ 1 4.40000+ 1 1.77007- 5 2.96186- 3 1.80000+ 1 1.80000+ 1 7.79471- 3 2.21050- 3 1.80000+ 1 1.90000+ 1 2.15039- 2 2.35944- 3 1.80000+ 1 2.10000+ 1 2.16183- 2 2.57407- 3 1.80000+ 1 2.20000+ 1 3.41801- 2 2.60187- 3 1.80000+ 1 2.40000+ 1 1.30852- 2 2.88322- 3 1.80000+ 1 2.50000+ 1 2.17530- 2 2.88995- 3 1.80000+ 1 2.70000+ 1 2.26084- 3 2.90488- 3 1.80000+ 1 2.90000+ 1 2.66175- 3 2.95237- 3 1.80000+ 1 3.00000+ 1 4.26689- 3 2.98333- 3 1.80000+ 1 3.20000+ 1 3.09038- 3 3.05195- 3 1.80000+ 1 3.30000+ 1 4.73007- 3 3.05609- 3 1.80000+ 1 4.10000+ 1 3.34210- 4 3.07814- 3 1.80000+ 1 4.30000+ 1 2.30574- 4 3.08921- 3 1.80000+ 1 4.40000+ 1 3.19513- 4 3.09261- 3 1.90000+ 1 1.90000+ 1 5.66886- 4 2.50838- 3 1.90000+ 1 2.10000+ 1 1.36735- 3 2.72301- 3 1.90000+ 1 2.20000+ 1 1.22573- 3 2.75081- 3 1.90000+ 1 2.40000+ 1 8.78657- 3 3.03216- 3 1.90000+ 1 2.50000+ 1 2.42728- 3 3.03889- 3 1.90000+ 1 2.70000+ 1 1.92131- 4 3.05382- 3 1.90000+ 1 2.90000+ 1 2.86073- 3 3.10131- 3 1.90000+ 1 3.00000+ 1 1.89973- 4 3.13227- 3 1.90000+ 1 3.20000+ 1 1.54998- 4 3.20089- 3 1.90000+ 1 3.30000+ 1 1.51544- 4 3.20503- 3 1.90000+ 1 4.10000+ 1 2.63389- 5 3.22708- 3 1.90000+ 1 4.30000+ 1 2.36589- 4 3.23815- 3 1.90000+ 1 4.40000+ 1 1.38160- 5 3.24155- 3 2.10000+ 1 2.10000+ 1 7.68106- 4 2.93764- 3 2.10000+ 1 2.20000+ 1 1.70033- 3 2.96544- 3 2.10000+ 1 2.40000+ 1 9.28284- 4 3.24679- 3 2.10000+ 1 2.50000+ 1 1.50206- 3 3.25352- 3 2.10000+ 1 2.70000+ 1 7.72835- 5 3.26845- 3 2.10000+ 1 2.90000+ 1 2.79431- 3 3.31594- 3 2.10000+ 1 3.00000+ 1 2.46538- 4 3.34690- 3 2.10000+ 1 3.20000+ 1 1.80044- 4 3.41552- 3 2.10000+ 1 3.30000+ 1 2.17173- 4 3.41966- 3 2.10000+ 1 4.10000+ 1 1.12257- 5 3.44171- 3 2.10000+ 1 4.30000+ 1 2.29683- 4 3.45278- 3 2.10000+ 1 4.40000+ 1 1.81329- 5 3.45618- 3 2.20000+ 1 2.20000+ 1 4.45991- 4 2.99324- 3 2.20000+ 1 2.40000+ 1 2.45747- 3 3.27459- 3 2.20000+ 1 2.50000+ 1 5.80713- 4 3.28132- 3 2.20000+ 1 2.70000+ 1 2.08541- 4 3.29625- 3 2.20000+ 1 2.90000+ 1 4.47642- 3 3.34374- 3 2.20000+ 1 3.00000+ 1 1.87820- 4 3.37470- 3 2.20000+ 1 3.20000+ 1 1.98608- 4 3.44332- 3 2.20000+ 1 3.30000+ 1 1.04917- 4 3.44746- 3 2.20000+ 1 4.10000+ 1 2.97891- 5 3.46951- 3 2.20000+ 1 4.30000+ 1 3.68719- 4 3.48058- 3 2.20000+ 1 4.40000+ 1 1.33843- 5 3.48398- 3 2.40000+ 1 2.40000+ 1 3.33886- 3 3.55594- 3 2.40000+ 1 2.50000+ 1 2.13665- 2 3.56267- 3 2.40000+ 1 2.70000+ 1 6.90809- 6 3.57760- 3 2.40000+ 1 2.90000+ 1 1.56294- 3 3.62509- 3 2.40000+ 1 3.00000+ 1 1.63986- 3 3.65605- 3 2.40000+ 1 3.20000+ 1 1.47227- 4 3.72467- 3 2.40000+ 1 3.30000+ 1 3.94636- 4 3.72881- 3 2.40000+ 1 4.10000+ 1 8.63506- 7 3.75086- 3 2.40000+ 1 4.30000+ 1 1.27367- 4 3.76193- 3 2.40000+ 1 4.40000+ 1 1.21755- 4 3.76533- 3 2.50000+ 1 2.50000+ 1 1.11783- 3 3.56940- 3 2.50000+ 1 2.70000+ 1 1.58021- 4 3.58433- 3 2.50000+ 1 2.90000+ 1 2.54436- 3 3.63182- 3 2.50000+ 1 3.00000+ 1 4.03702- 4 3.66278- 3 2.50000+ 1 3.20000+ 1 2.24073- 4 3.73140- 3 2.50000+ 1 3.30000+ 1 8.46239- 5 3.73554- 3 2.50000+ 1 4.10000+ 1 2.24514- 5 3.75759- 3 2.50000+ 1 4.30000+ 1 2.05954- 4 3.76866- 3 2.50000+ 1 4.40000+ 1 2.93600- 5 3.77206- 3 2.70000+ 1 2.70000+ 1 2.03205- 5 3.59926- 3 2.70000+ 1 2.90000+ 1 3.03054- 4 3.64675- 3 2.70000+ 1 3.00000+ 1 3.53413- 5 3.67771- 3 2.70000+ 1 3.20000+ 1 7.50972- 6 3.74633- 3 2.70000+ 1 3.30000+ 1 2.73900- 5 3.75047- 3 2.70000+ 1 4.10000+ 1 5.74277- 6 3.77252- 3 2.70000+ 1 4.30000+ 1 2.51794- 5 3.78359- 3 2.70000+ 1 4.40000+ 1 2.65054- 6 3.78699- 3 2.90000+ 1 2.90000+ 1 2.17732- 4 3.69424- 3 2.90000+ 1 3.00000+ 1 5.82391- 4 3.72520- 3 2.90000+ 1 3.20000+ 1 4.09072- 4 3.79382- 3 2.90000+ 1 3.30000+ 1 6.34733- 4 3.79796- 3 2.90000+ 1 4.10000+ 1 4.44285- 5 3.82001- 3 2.90000+ 1 4.30000+ 1 3.73900- 5 3.83108- 3 2.90000+ 1 4.40000+ 1 4.35477- 5 3.83448- 3 3.00000+ 1 3.00000+ 1 2.02229- 5 3.75616- 3 3.00000+ 1 3.20000+ 1 3.55268- 5 3.82478- 3 3.00000+ 1 3.30000+ 1 2.95135- 5 3.82892- 3 3.00000+ 1 4.10000+ 1 6.01214- 6 3.85097- 3 3.00000+ 1 4.30000+ 1 6.01214- 5 3.86204- 3 3.00000+ 1 4.40000+ 1 2.73274- 6 3.86544- 3 3.20000+ 1 3.20000+ 1 1.08823- 5 3.89340- 3 3.20000+ 1 3.30000+ 1 2.81136- 5 3.89754- 3 3.20000+ 1 4.10000+ 1 9.06840- 7 3.91959- 3 3.20000+ 1 4.30000+ 1 3.49140- 5 3.93066- 3 3.20000+ 1 4.40000+ 1 2.26703- 6 3.93406- 3 3.30000+ 1 3.30000+ 1 7.88916- 6 3.90168- 3 3.30000+ 1 4.10000+ 1 4.73366- 6 3.92373- 3 3.30000+ 1 4.30000+ 1 6.25902- 5 3.93480- 3 3.30000+ 1 4.40000+ 1 2.10375- 6 3.93820- 3 4.10000+ 1 4.10000+ 1 4.31754- 7 3.94578- 3 4.10000+ 1 4.30000+ 1 3.45418- 6 3.95685- 3 4.10000+ 1 4.40000+ 1 4.31754- 7 3.96025- 3 4.30000+ 1 4.30000+ 1 1.29525- 6 3.96792- 3 4.30000+ 1 4.40000+ 1 3.45413- 6 3.97132- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.45061- 5 4.87100- 4 1.40000+ 1 2.76041- 4 6.12300- 4 1.60000+ 1 1.59151- 3 2.37710- 3 2.10000+ 1 7.70053- 4 2.87142- 3 2.20000+ 1 5.88952- 3 2.89922- 3 2.70000+ 1 3.57531- 4 3.20223- 3 3.20000+ 1 1.26150- 4 3.34930- 3 3.30000+ 1 9.70653- 4 3.35344- 3 4.10000+ 1 5.60782- 5 3.37549- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.20000+ 1 1.18845- 2 0.00000+ 0 1.30000+ 1 2.40000+ 1 1.66053- 2 2.69170- 4 1.30000+ 1 2.50000+ 1 2.41937- 2 2.75900- 4 1.30000+ 1 2.70000+ 1 2.92151- 3 2.90830- 4 1.30000+ 1 2.90000+ 1 2.61027- 3 3.38320- 4 1.30000+ 1 3.00000+ 1 8.22687- 3 3.69280- 4 1.30000+ 1 3.20000+ 1 1.35250- 3 4.37900- 4 1.30000+ 1 3.30000+ 1 1.43829- 3 4.42040- 4 1.30000+ 1 4.10000+ 1 4.14720- 4 4.64090- 4 1.30000+ 1 4.30000+ 1 2.23674- 4 4.75160- 4 1.30000+ 1 4.40000+ 1 5.85938- 4 4.78560- 4 1.40000+ 1 2.10000+ 1 4.88184- 2 8.52200- 5 1.40000+ 1 2.20000+ 1 6.51618- 2 1.13020- 4 1.40000+ 1 2.40000+ 1 1.87715- 1 3.94370- 4 1.40000+ 1 2.50000+ 1 2.26827- 1 4.01100- 4 1.40000+ 1 2.70000+ 1 1.75485- 2 4.16030- 4 1.40000+ 1 2.90000+ 1 1.75550- 2 4.63520- 4 1.40000+ 1 3.00000+ 1 2.05093- 2 4.94480- 4 1.40000+ 1 3.20000+ 1 5.85008- 3 5.63100- 4 1.40000+ 1 3.30000+ 1 8.35793- 3 5.67240- 4 1.40000+ 1 4.10000+ 1 2.54562- 3 5.89290- 4 1.40000+ 1 4.30000+ 1 1.51049- 3 6.00360- 4 1.40000+ 1 4.40000+ 1 1.49297- 3 6.03760- 4 1.60000+ 1 1.60000+ 1 2.65556- 4 1.35570- 3 1.60000+ 1 1.80000+ 1 6.01801- 4 1.48645- 3 1.60000+ 1 1.90000+ 1 1.21962- 2 1.63539- 3 1.60000+ 1 2.10000+ 1 7.30007- 4 1.85002- 3 1.60000+ 1 2.20000+ 1 9.00647- 4 1.87782- 3 1.60000+ 1 2.40000+ 1 1.92442- 3 2.15917- 3 1.60000+ 1 2.50000+ 1 3.42642- 3 2.16590- 3 1.60000+ 1 2.70000+ 1 9.30769- 5 2.18083- 3 1.60000+ 1 2.90000+ 1 8.48628- 5 2.22832- 3 1.60000+ 1 3.00000+ 1 1.56907- 3 2.25928- 3 1.60000+ 1 3.20000+ 1 9.07941- 5 2.32790- 3 1.60000+ 1 3.30000+ 1 1.07220- 4 2.33204- 3 1.60000+ 1 4.10000+ 1 1.32314- 5 2.35409- 3 1.60000+ 1 4.30000+ 1 6.84388- 6 2.36516- 3 1.60000+ 1 4.40000+ 1 1.09958- 4 2.36856- 3 1.80000+ 1 1.80000+ 1 1.55129- 5 1.61720- 3 1.80000+ 1 1.90000+ 1 1.51643- 2 1.76614- 3 1.80000+ 1 2.10000+ 1 3.29873- 4 1.98077- 3 1.80000+ 1 2.20000+ 1 3.26740- 3 2.00857- 3 1.80000+ 1 2.40000+ 1 1.68132- 3 2.28992- 3 1.80000+ 1 2.50000+ 1 8.96004- 3 2.29665- 3 1.80000+ 1 2.70000+ 1 9.80962- 5 2.31158- 3 1.80000+ 1 2.90000+ 1 4.56275- 6 2.35907- 3 1.80000+ 1 3.00000+ 1 1.99517- 3 2.39003- 3 1.80000+ 1 3.20000+ 1 4.51704- 5 2.45865- 3 1.80000+ 1 3.30000+ 1 3.70943- 4 2.46279- 3 1.80000+ 1 4.10000+ 1 1.36878- 5 2.48484- 3 1.80000+ 1 4.30000+ 1 4.56275- 7 2.49591- 3 1.80000+ 1 4.40000+ 1 1.40531- 4 2.49931- 3 1.90000+ 1 1.90000+ 1 1.97238- 2 1.91508- 3 1.90000+ 1 2.10000+ 1 2.90217- 2 2.12971- 3 1.90000+ 1 2.20000+ 1 3.78307- 2 2.15751- 3 1.90000+ 1 2.40000+ 1 2.59499- 2 2.43886- 3 1.90000+ 1 2.50000+ 1 2.96893- 2 2.44559- 3 1.90000+ 1 2.70000+ 1 2.69141- 3 2.46052- 3 1.90000+ 1 2.90000+ 1 3.04298- 3 2.50801- 3 1.90000+ 1 3.00000+ 1 6.47056- 3 2.53897- 3 1.90000+ 1 3.20000+ 1 4.00782- 3 2.60759- 3 1.90000+ 1 3.30000+ 1 5.17446- 3 2.61173- 3 1.90000+ 1 4.10000+ 1 3.96493- 4 2.63378- 3 1.90000+ 1 4.30000+ 1 2.68282- 4 2.64485- 3 1.90000+ 1 4.40000+ 1 4.73129- 4 2.64825- 3 2.10000+ 1 2.10000+ 1 1.93921- 4 2.34434- 3 2.10000+ 1 2.20000+ 1 4.67860- 3 2.37214- 3 2.10000+ 1 2.40000+ 1 7.15889- 4 2.65349- 3 2.10000+ 1 2.50000+ 1 8.29404- 3 2.66022- 3 2.10000+ 1 2.70000+ 1 8.98843- 5 2.67515- 3 2.10000+ 1 2.90000+ 1 2.28130- 5 2.72264- 3 2.10000+ 1 3.00000+ 1 3.74321- 3 2.75360- 3 2.10000+ 1 3.20000+ 1 4.37998- 5 2.82222- 3 2.10000+ 1 3.30000+ 1 5.64419- 4 2.82636- 3 2.10000+ 1 4.10000+ 1 1.18631- 5 2.84841- 3 2.10000+ 1 4.30000+ 1 1.82501- 6 2.85948- 3 2.10000+ 1 4.40000+ 1 2.62803- 4 2.86288- 3 2.20000+ 1 2.20000+ 1 2.04273- 3 2.39994- 3 2.20000+ 1 2.40000+ 1 6.70209- 3 2.68129- 3 2.20000+ 1 2.50000+ 1 5.56788- 3 2.68802- 3 2.20000+ 1 2.70000+ 1 1.15891- 4 2.70295- 3 2.20000+ 1 2.90000+ 1 3.28044- 4 2.75044- 3 2.20000+ 1 3.00000+ 1 4.81827- 3 2.78140- 3 2.20000+ 1 3.20000+ 1 5.64416- 4 2.85002- 3 2.20000+ 1 3.30000+ 1 4.95051- 4 2.85416- 3 2.20000+ 1 4.10000+ 1 1.55129- 5 2.87621- 3 2.20000+ 1 4.30000+ 1 2.60079- 5 2.88728- 3 2.20000+ 1 4.40000+ 1 3.37183- 4 2.89068- 3 2.40000+ 1 2.40000+ 1 1.08458- 3 2.96264- 3 2.40000+ 1 2.50000+ 1 2.83810- 2 2.96937- 3 2.40000+ 1 2.70000+ 1 2.12167- 4 2.98430- 3 2.40000+ 1 2.90000+ 1 2.78792- 4 3.03179- 3 2.40000+ 1 3.00000+ 1 3.18708- 3 3.06275- 3 2.40000+ 1 3.20000+ 1 1.14525- 4 3.13137- 3 2.40000+ 1 3.30000+ 1 8.63718- 4 3.13551- 3 2.40000+ 1 4.10000+ 1 2.82896- 5 3.15756- 3 2.40000+ 1 4.30000+ 1 2.37274- 5 3.16863- 3 2.40000+ 1 4.40000+ 1 2.22221- 4 3.17203- 3 2.50000+ 1 2.50000+ 1 1.12434- 2 2.97610- 3 2.50000+ 1 2.70000+ 1 3.36713- 4 2.99103- 3 2.50000+ 1 2.90000+ 1 1.46868- 3 3.03852- 3 2.50000+ 1 3.00000+ 1 3.79518- 3 3.06948- 3 2.50000+ 1 3.20000+ 1 1.13609- 3 3.13810- 3 2.50000+ 1 3.30000+ 1 7.78376- 4 3.14224- 3 2.50000+ 1 4.10000+ 1 4.33436- 5 3.16429- 3 2.50000+ 1 4.30000+ 1 1.25928- 4 3.17536- 3 2.50000+ 1 4.40000+ 1 2.67348- 4 3.17876- 3 2.70000+ 1 2.70000+ 1 1.02875- 5 3.00596- 3 2.70000+ 1 2.90000+ 1 1.64604- 5 3.05345- 3 2.70000+ 1 3.00000+ 1 3.91448- 4 3.08441- 3 2.70000+ 1 3.20000+ 1 1.33741- 5 3.15303- 3 2.70000+ 1 3.30000+ 1 1.64604- 5 3.15717- 3 2.70000+ 1 4.10000+ 1 3.08622- 6 3.17922- 3 2.70000+ 1 4.30000+ 1 1.54314- 6 3.19029- 3 2.70000+ 1 4.40000+ 1 2.72622- 5 3.19369- 3 2.90000+ 1 2.90000+ 1 4.97313- 7 3.10094- 3 2.90000+ 1 3.00000+ 1 4.38622- 4 3.13190- 3 2.90000+ 1 3.20000+ 1 2.98372- 6 3.20052- 3 2.90000+ 1 3.30000+ 1 4.27664- 5 3.20466- 3 2.90000+ 1 4.10000+ 1 1.98914- 6 3.22671- 3 2.90000+ 1 4.40000+ 1 3.08333- 5 3.24118- 3 3.00000+ 1 3.00000+ 1 6.08014- 4 3.16286- 3 3.00000+ 1 3.20000+ 1 6.23881- 4 3.23148- 3 3.00000+ 1 3.30000+ 1 7.94386- 4 3.23562- 3 3.00000+ 1 4.10000+ 1 6.14019- 5 3.25767- 3 3.00000+ 1 4.30000+ 1 4.27605- 5 3.26874- 3 3.00000+ 1 4.40000+ 1 8.82640- 5 3.27214- 3 3.20000+ 1 3.20000+ 1 2.73757- 6 3.30010- 3 3.20000+ 1 3.30000+ 1 7.30039- 5 3.30424- 3 3.20000+ 1 4.10000+ 1 1.82504- 6 3.32629- 3 3.20000+ 1 4.40000+ 1 3.65039- 5 3.34076- 3 3.30000+ 1 3.30000+ 1 3.22027- 5 3.30838- 3 3.30000+ 1 4.10000+ 1 1.86678- 6 3.33043- 3 3.30000+ 1 4.30000+ 1 3.26702- 6 3.34150- 3 3.30000+ 1 4.40000+ 1 4.76048- 5 3.34490- 3 4.10000+ 1 4.40000+ 1 3.65031- 6 3.36695- 3 4.30000+ 1 4.40000+ 1 2.28131- 6 3.37802- 3 4.40000+ 1 4.40000+ 1 2.28131- 6 3.38142- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.05719- 3 2.02075- 3 1.90000+ 1 2.00419- 4 2.16969- 3 2.40000+ 1 3.87588- 2 2.69347- 3 2.90000+ 1 5.04937- 4 2.76262- 3 3.00000+ 1 4.93287- 5 2.79358- 3 4.30000+ 1 3.32138- 5 2.89946- 3 4.40000+ 1 2.83528- 6 2.90286- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 8.91392- 3 7.38000- 6 1.40000+ 1 3.20000+ 1 4.80515- 2 7.60000- 5 1.40000+ 1 3.30000+ 1 6.78730- 3 8.01400- 5 1.40000+ 1 4.10000+ 1 8.19169- 4 1.02190- 4 1.40000+ 1 4.30000+ 1 3.03113- 4 1.13260- 4 1.40000+ 1 4.40000+ 1 5.74565- 4 1.16660- 4 1.60000+ 1 1.60000+ 1 2.01434- 5 8.68600- 4 1.60000+ 1 1.80000+ 1 1.04164- 3 9.99350- 4 1.60000+ 1 1.90000+ 1 8.44094- 4 1.14829- 3 1.60000+ 1 2.10000+ 1 3.21549- 2 1.36292- 3 1.60000+ 1 2.20000+ 1 3.71119- 3 1.39072- 3 1.60000+ 1 2.40000+ 1 1.55474- 2 1.67207- 3 1.60000+ 1 2.50000+ 1 4.03845- 3 1.67880- 3 1.60000+ 1 2.70000+ 1 1.82243- 5 1.69373- 3 1.60000+ 1 2.90000+ 1 1.71692- 4 1.74122- 3 1.60000+ 1 3.00000+ 1 1.11264- 4 1.77218- 3 1.60000+ 1 3.20000+ 1 3.15482- 3 1.84080- 3 1.60000+ 1 3.30000+ 1 3.78886- 4 1.84494- 3 1.60000+ 1 4.10000+ 1 2.87758- 6 1.86699- 3 1.60000+ 1 4.30000+ 1 1.43880- 5 1.87806- 3 1.60000+ 1 4.40000+ 1 7.67386- 6 1.88146- 3 1.80000+ 1 1.80000+ 1 5.91842- 4 1.13010- 3 1.80000+ 1 1.90000+ 1 4.11218- 3 1.27904- 3 1.80000+ 1 2.10000+ 1 2.89373- 2 1.49367- 3 1.80000+ 1 2.20000+ 1 1.92229- 3 1.52147- 3 1.80000+ 1 2.40000+ 1 1.04881- 2 1.80282- 3 1.80000+ 1 2.50000+ 1 5.33987- 3 1.80955- 3 1.80000+ 1 2.70000+ 1 1.44846- 4 1.82448- 3 1.80000+ 1 2.90000+ 1 1.92805- 4 1.87197- 3 1.80000+ 1 3.00000+ 1 6.04312- 4 1.90293- 3 1.80000+ 1 3.20000+ 1 2.81815- 3 1.97155- 3 1.80000+ 1 3.30000+ 1 2.25412- 4 1.97569- 3 1.80000+ 1 4.10000+ 1 2.01437- 5 1.99774- 3 1.80000+ 1 4.30000+ 1 1.63064- 5 2.00881- 3 1.80000+ 1 4.40000+ 1 4.31653- 5 2.01221- 3 1.90000+ 1 1.90000+ 1 1.44935- 3 1.42798- 3 1.90000+ 1 2.10000+ 1 5.73223- 2 1.64261- 3 1.90000+ 1 2.20000+ 1 2.17843- 3 1.67041- 3 1.90000+ 1 2.40000+ 1 2.85463- 3 1.95176- 3 1.90000+ 1 2.50000+ 1 1.96543- 3 1.95849- 3 1.90000+ 1 2.70000+ 1 1.41971- 4 1.97342- 3 1.90000+ 1 2.90000+ 1 5.27569- 4 2.02091- 3 1.90000+ 1 3.00000+ 1 4.06701- 4 2.05187- 3 1.90000+ 1 3.20000+ 1 5.64402- 3 2.12049- 3 1.90000+ 1 3.30000+ 1 2.33088- 4 2.12463- 3 1.90000+ 1 4.10000+ 1 2.01435- 5 2.14668- 3 1.90000+ 1 4.30000+ 1 4.31651- 5 2.15775- 3 1.90000+ 1 4.40000+ 1 2.87760- 5 2.16115- 3 2.10000+ 1 2.10000+ 1 5.20265- 2 1.85724- 3 2.10000+ 1 2.20000+ 1 1.02811- 1 1.88504- 3 2.10000+ 1 2.40000+ 1 5.80437- 2 2.16639- 3 2.10000+ 1 2.50000+ 1 6.96382- 2 2.17312- 3 2.10000+ 1 2.70000+ 1 6.51853- 3 2.18805- 3 2.10000+ 1 2.90000+ 1 5.85975- 3 2.23554- 3 2.10000+ 1 3.00000+ 1 1.10636- 2 2.26650- 3 2.10000+ 1 3.20000+ 1 1.24090- 2 2.33512- 3 2.10000+ 1 3.30000+ 1 1.39046- 2 2.33926- 3 2.10000+ 1 4.10000+ 1 9.50579- 4 2.36131- 3 2.10000+ 1 4.30000+ 1 5.17979- 4 2.37238- 3 2.10000+ 1 4.40000+ 1 8.24909- 4 2.37578- 3 2.20000+ 1 2.20000+ 1 1.63539- 3 1.91284- 3 2.20000+ 1 2.40000+ 1 6.63363- 2 2.19419- 3 2.20000+ 1 2.50000+ 1 3.26709- 3 2.20092- 3 2.20000+ 1 2.70000+ 1 3.97103- 4 2.21585- 3 2.20000+ 1 2.90000+ 1 2.37879- 4 2.26334- 3 2.20000+ 1 3.00000+ 1 3.38602- 4 2.29430- 3 2.20000+ 1 3.20000+ 1 1.01747- 2 2.36292- 3 2.20000+ 1 3.30000+ 1 3.64497- 4 2.36706- 3 2.20000+ 1 4.10000+ 1 5.27567- 5 2.38911- 3 2.20000+ 1 4.30000+ 1 2.01435- 5 2.40018- 3 2.20000+ 1 4.40000+ 1 2.39799- 5 2.40358- 3 2.40000+ 1 2.40000+ 1 6.37326- 2 2.47554- 3 2.40000+ 1 2.50000+ 1 1.83809- 1 2.48227- 3 2.40000+ 1 2.70000+ 1 3.33520- 3 2.49720- 3 2.40000+ 1 2.90000+ 1 1.73815- 3 2.54469- 3 2.40000+ 1 3.00000+ 1 5.68831- 4 2.57565- 3 2.40000+ 1 3.20000+ 1 6.21206- 3 2.64427- 3 2.40000+ 1 3.30000+ 1 8.56020- 3 2.64841- 3 2.40000+ 1 4.10000+ 1 4.89198- 4 2.67046- 3 2.40000+ 1 4.30000+ 1 1.50606- 4 2.68153- 3 2.40000+ 1 4.40000+ 1 4.22074- 5 2.68493- 3 2.50000+ 1 2.50000+ 1 3.75073- 3 2.48900- 3 2.50000+ 1 2.70000+ 1 5.99200- 4 2.50393- 3 2.50000+ 1 2.90000+ 1 4.55963- 4 2.55142- 3 2.50000+ 1 3.00000+ 1 3.37045- 4 2.58238- 3 2.50000+ 1 3.20000+ 1 6.18195- 3 2.65100- 3 2.50000+ 1 3.30000+ 1 3.85731- 4 2.65514- 3 2.50000+ 1 4.10000+ 1 8.23882- 5 2.67719- 3 2.50000+ 1 4.30000+ 1 3.55769- 5 2.68826- 3 2.50000+ 1 4.40000+ 1 2.43423- 5 2.69166- 3 2.70000+ 1 2.70000+ 1 2.02348- 6 2.51886- 3 2.70000+ 1 2.90000+ 1 2.73168- 5 2.56635- 3 2.70000+ 1 3.00000+ 1 2.02348- 5 2.59731- 3 2.70000+ 1 3.20000+ 1 6.79910- 4 2.66593- 3 2.70000+ 1 3.30000+ 1 4.75528- 5 2.67007- 3 2.70000+ 1 4.10000+ 1 1.01172- 6 2.69212- 3 2.70000+ 1 4.30000+ 1 2.02348- 6 2.70319- 3 2.70000+ 1 4.40000+ 1 1.01172- 6 2.70659- 3 2.90000+ 1 2.90000+ 1 2.08232- 5 2.61384- 3 2.90000+ 1 3.00000+ 1 9.94884- 5 2.64480- 3 2.90000+ 1 3.20000+ 1 6.91786- 4 2.71342- 3 2.90000+ 1 3.30000+ 1 3.70185- 5 2.71756- 3 2.90000+ 1 4.10000+ 1 4.62722- 6 2.73961- 3 2.90000+ 1 4.30000+ 1 3.47050- 6 2.75068- 3 2.90000+ 1 4.40000+ 1 6.94089- 6 2.75408- 3 3.00000+ 1 3.00000+ 1 3.85539- 5 2.67576- 3 3.00000+ 1 3.20000+ 1 1.42158- 3 2.74438- 3 3.00000+ 1 3.30000+ 1 4.97450- 5 2.74852- 3 3.00000+ 1 4.10000+ 1 3.73097- 6 2.77057- 3 3.00000+ 1 4.30000+ 1 8.70548- 6 2.78164- 3 3.00000+ 1 4.40000+ 1 4.97450- 6 2.78504- 3 3.20000+ 1 3.20000+ 1 7.15572- 4 2.81300- 3 3.20000+ 1 3.30000+ 1 1.38314- 3 2.81714- 3 3.20000+ 1 4.10000+ 1 9.40021- 5 2.83919- 3 3.20000+ 1 4.30000+ 1 5.08405- 5 2.85026- 3 3.20000+ 1 4.40000+ 1 8.15342- 5 2.85366- 3 3.30000+ 1 3.30000+ 1 3.01937- 5 2.82128- 3 3.30000+ 1 4.10000+ 1 8.62646- 6 2.84333- 3 3.30000+ 1 4.30000+ 1 4.31330- 6 2.85440- 3 3.30000+ 1 4.40000+ 1 4.31330- 6 2.85780- 3 4.30000+ 1 4.40000+ 1 9.59184- 7 2.89092- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.52019- 3 2.04449- 3 2.40000+ 1 1.90899- 3 2.56827- 3 2.50000+ 1 3.73388- 2 2.57500- 3 3.00000+ 1 3.57458- 4 2.66838- 3 4.40000+ 1 2.11389- 5 2.77766- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.80000+ 1 2.43883- 4 8.74150- 4 1.60000+ 1 1.90000+ 1 1.89371- 3 1.02309- 3 1.60000+ 1 2.10000+ 1 3.29977- 3 1.23772- 3 1.60000+ 1 2.20000+ 1 3.53104- 2 1.26552- 3 1.60000+ 1 2.40000+ 1 4.27933- 3 1.54687- 3 1.60000+ 1 2.50000+ 1 1.64745- 2 1.55360- 3 1.60000+ 1 2.70000+ 1 1.16597- 5 1.56853- 3 1.60000+ 1 2.90000+ 1 1.55465- 5 1.61602- 3 1.60000+ 1 3.00000+ 1 2.57481- 4 1.64698- 3 1.60000+ 1 3.20000+ 1 3.18692- 4 1.71560- 3 1.60000+ 1 3.30000+ 1 3.42027- 3 1.71974- 3 1.60000+ 1 4.10000+ 1 1.94334- 6 1.74179- 3 1.60000+ 1 4.30000+ 1 9.71689- 7 1.75286- 3 1.60000+ 1 4.40000+ 1 1.84607- 5 1.75626- 3 1.80000+ 1 1.90000+ 1 5.28090- 3 1.15384- 3 1.80000+ 1 2.10000+ 1 2.59424- 4 1.36847- 3 1.80000+ 1 2.20000+ 1 3.65221- 2 1.39627- 3 1.80000+ 1 2.40000+ 1 2.23673- 3 1.67762- 3 1.80000+ 1 2.50000+ 1 9.13738- 3 1.68435- 3 1.80000+ 1 2.70000+ 1 3.20636- 5 1.69928- 3 1.80000+ 1 2.90000+ 1 9.71683- 7 1.74677- 3 1.80000+ 1 3.00000+ 1 7.17063- 4 1.77773- 3 1.80000+ 1 3.20000+ 1 7.77331- 6 1.84635- 3 1.80000+ 1 3.30000+ 1 3.53191- 3 1.85049- 3 1.80000+ 1 4.10000+ 1 4.85817- 6 1.87254- 3 1.80000+ 1 4.40000+ 1 5.05271- 5 1.88701- 3 1.90000+ 1 1.90000+ 1 3.49885- 3 1.30278- 3 1.90000+ 1 2.10000+ 1 3.35701- 3 1.51741- 3 1.90000+ 1 2.20000+ 1 5.43126- 2 1.54521- 3 1.90000+ 1 2.40000+ 1 2.22799- 3 1.82656- 3 1.90000+ 1 2.50000+ 1 4.05567- 3 1.83329- 3 1.90000+ 1 2.70000+ 1 3.33270- 4 1.84822- 3 1.90000+ 1 2.90000+ 1 6.44208- 4 1.89571- 3 1.90000+ 1 3.00000+ 1 9.78391- 4 1.92667- 3 1.90000+ 1 3.20000+ 1 4.00327- 4 1.99529- 3 1.90000+ 1 3.30000+ 1 5.23622- 3 1.99943- 3 1.90000+ 1 4.10000+ 1 4.76099- 5 2.02148- 3 1.90000+ 1 4.30000+ 1 5.24694- 5 2.03255- 3 1.90000+ 1 4.40000+ 1 6.99592- 5 2.03595- 3 2.10000+ 1 2.10000+ 1 7.30688- 4 1.73204- 3 2.10000+ 1 2.20000+ 1 7.59145- 2 1.75984- 3 2.10000+ 1 2.40000+ 1 2.93936- 3 2.04119- 3 2.10000+ 1 2.50000+ 1 4.04799- 2 2.04792- 3 2.10000+ 1 2.70000+ 1 3.33283- 4 2.06285- 3 2.10000+ 1 2.90000+ 1 6.02454- 5 2.11034- 3 2.10000+ 1 3.00000+ 1 4.73219- 4 2.14130- 3 2.10000+ 1 3.20000+ 1 1.59351- 4 2.20992- 3 2.10000+ 1 3.30000+ 1 7.40614- 3 2.21406- 3 2.10000+ 1 4.10000+ 1 4.37257- 5 2.23611- 3 2.10000+ 1 4.30000+ 1 4.85835- 6 2.24718- 3 2.10000+ 1 4.40000+ 1 3.40092- 5 2.25058- 3 2.20000+ 1 2.20000+ 1 8.45334- 2 1.78764- 3 2.20000+ 1 2.40000+ 1 6.40230- 2 2.06899- 3 2.20000+ 1 2.50000+ 1 1.02354- 1 2.07572- 3 2.20000+ 1 2.70000+ 1 6.85709- 3 2.09065- 3 2.20000+ 1 2.90000+ 1 7.05997- 3 2.13814- 3 2.20000+ 1 3.00000+ 1 1.05778- 2 2.16910- 3 2.20000+ 1 3.20000+ 1 1.03475- 2 2.23772- 3 2.20000+ 1 3.30000+ 1 1.96728- 2 2.24186- 3 2.20000+ 1 4.10000+ 1 9.94061- 4 2.26391- 3 2.20000+ 1 4.30000+ 1 6.18938- 4 2.27498- 3 2.20000+ 1 4.40000+ 1 7.89949- 4 2.27838- 3 2.40000+ 1 2.40000+ 1 5.25576- 3 2.35034- 3 2.40000+ 1 2.50000+ 1 1.67549- 1 2.35707- 3 2.40000+ 1 2.70000+ 1 7.09325- 4 2.37200- 3 2.40000+ 1 2.90000+ 1 4.02268- 4 2.41949- 3 2.40000+ 1 3.00000+ 1 3.63417- 4 2.45045- 3 2.40000+ 1 3.20000+ 1 3.88659- 4 2.51907- 3 2.40000+ 1 3.30000+ 1 5.90989- 3 2.52321- 3 2.40000+ 1 4.10000+ 1 9.91081- 5 2.54526- 3 2.40000+ 1 4.30000+ 1 3.49809- 5 2.55633- 3 2.40000+ 1 4.40000+ 1 2.62352- 5 2.55973- 3 2.50000+ 1 2.50000+ 1 1.14558- 1 2.36380- 3 2.50000+ 1 2.70000+ 1 3.46283- 3 2.37873- 3 2.50000+ 1 2.90000+ 1 1.80044- 3 2.42622- 3 2.50000+ 1 3.00000+ 1 7.60774- 4 2.45718- 3 2.50000+ 1 3.20000+ 1 5.17396- 3 2.52580- 3 2.50000+ 1 3.30000+ 1 1.10895- 2 2.52994- 3 2.50000+ 1 4.10000+ 1 5.07183- 4 2.55199- 3 2.50000+ 1 4.30000+ 1 1.59341- 4 2.56306- 3 2.50000+ 1 4.40000+ 1 5.73235- 5 2.56646- 3 2.70000+ 1 2.70000+ 1 1.11125- 6 2.39366- 3 2.70000+ 1 2.90000+ 1 2.22245- 6 2.44115- 3 2.70000+ 1 3.00000+ 1 5.44483- 5 2.47211- 3 2.70000+ 1 3.20000+ 1 4.11152- 5 2.54073- 3 2.70000+ 1 3.30000+ 1 7.64515- 4 2.54487- 3 2.70000+ 1 4.40000+ 1 3.33362- 6 2.58139- 3 2.90000+ 1 3.00000+ 1 1.03510- 4 2.51960- 3 2.90000+ 1 3.20000+ 1 3.23476- 6 2.58822- 3 2.90000+ 1 3.30000+ 1 7.68783- 4 2.59236- 3 2.90000+ 1 4.40000+ 1 7.54751- 6 2.62888- 3 3.00000+ 1 3.00000+ 1 8.57119- 5 2.55056- 3 3.00000+ 1 3.20000+ 1 7.48476- 5 2.61918- 3 3.00000+ 1 3.30000+ 1 1.27115- 3 2.62332- 3 3.00000+ 1 4.10000+ 1 8.45010- 6 2.64537- 3 3.00000+ 1 4.30000+ 1 9.65774- 6 2.65644- 3 3.00000+ 1 4.40000+ 1 1.20724- 5 2.65984- 3 3.20000+ 1 3.20000+ 1 8.74526- 6 2.68780- 3 3.20000+ 1 3.30000+ 1 1.01640- 3 2.69194- 3 3.20000+ 1 4.10000+ 1 4.85830- 6 2.71399- 3 3.20000+ 1 4.40000+ 1 3.88657- 6 2.72846- 3 3.30000+ 1 3.30000+ 1 1.11255- 3 2.69608- 3 3.30000+ 1 4.10000+ 1 9.71679- 5 2.71813- 3 3.30000+ 1 4.30000+ 1 6.12147- 5 2.72920- 3 3.30000+ 1 4.40000+ 1 7.67581- 5 2.73260- 3 4.30000+ 1 4.40000+ 1 9.71695- 7 2.76572- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.71908- 5 1.30750- 4 1.90000+ 1 3.51647- 4 2.79690- 4 2.90000+ 1 2.35468- 4 8.72620- 4 3.00000+ 1 7.96233- 5 9.03580- 4 4.30000+ 1 2.60208- 5 1.00946- 3 4.40000+ 1 8.86522- 6 1.01286- 3 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.00000+ 1 5.45643- 2 1.29300- 5 1.80000+ 1 3.20000+ 1 4.61469- 2 8.15500- 5 1.80000+ 1 3.30000+ 1 7.38165- 2 8.56900- 5 1.80000+ 1 4.10000+ 1 5.35078- 3 1.07740- 4 1.80000+ 1 4.30000+ 1 2.90719- 3 1.18810- 4 1.80000+ 1 4.40000+ 1 3.97260- 3 1.22210- 4 1.90000+ 1 2.40000+ 1 3.97324- 2 6.17600- 5 1.90000+ 1 2.50000+ 1 6.45104- 2 6.84900- 5 1.90000+ 1 2.70000+ 1 4.08392- 2 8.34200- 5 1.90000+ 1 2.90000+ 1 4.82372- 2 1.30910- 4 1.90000+ 1 3.00000+ 1 4.78183- 2 1.61870- 4 1.90000+ 1 3.20000+ 1 4.09660- 2 2.30490- 4 1.90000+ 1 3.30000+ 1 5.03812- 2 2.34630- 4 1.90000+ 1 4.10000+ 1 5.89576- 3 2.56680- 4 1.90000+ 1 4.30000+ 1 3.99442- 3 2.67750- 4 1.90000+ 1 4.40000+ 1 3.54189- 3 2.71150- 4 2.10000+ 1 2.20000+ 1 2.82615- 3 0.00000+ 0 2.10000+ 1 2.40000+ 1 4.39926- 3 2.76390- 4 2.10000+ 1 2.50000+ 1 6.85059- 3 2.83120- 4 2.10000+ 1 2.70000+ 1 1.77730- 2 2.98050- 4 2.10000+ 1 2.90000+ 1 5.74342- 3 3.45540- 4 2.10000+ 1 3.00000+ 1 7.44464- 3 3.76500- 4 2.10000+ 1 3.20000+ 1 1.98057- 3 4.45120- 4 2.10000+ 1 3.30000+ 1 2.19473- 3 4.49260- 4 2.10000+ 1 4.10000+ 1 1.94684- 3 4.71310- 4 2.10000+ 1 4.30000+ 1 4.83909- 4 4.82380- 4 2.10000+ 1 4.40000+ 1 4.68412- 4 4.85780- 4 2.20000+ 1 2.20000+ 1 4.45303- 3 2.28400- 5 2.20000+ 1 2.40000+ 1 7.51047- 3 3.04190- 4 2.20000+ 1 2.50000+ 1 8.00056- 3 3.10920- 4 2.20000+ 1 2.70000+ 1 2.37156- 2 3.25850- 4 2.20000+ 1 2.90000+ 1 9.41897- 3 3.73340- 4 2.20000+ 1 3.00000+ 1 7.84229- 3 4.04300- 4 2.20000+ 1 3.20000+ 1 1.71969- 3 4.72920- 4 2.20000+ 1 3.30000+ 1 2.78373- 3 4.77060- 4 2.20000+ 1 4.10000+ 1 2.58674- 3 4.99110- 4 2.20000+ 1 4.30000+ 1 7.03411- 4 5.10180- 4 2.20000+ 1 4.40000+ 1 5.41836- 4 5.13580- 4 2.40000+ 1 2.40000+ 1 9.34221- 3 5.85540- 4 2.40000+ 1 2.50000+ 1 1.82742- 2 5.92270- 4 2.40000+ 1 2.70000+ 1 2.13451- 2 6.07200- 4 2.40000+ 1 2.90000+ 1 2.92920- 3 6.54690- 4 2.40000+ 1 3.00000+ 1 1.08556- 2 6.85650- 4 2.40000+ 1 3.20000+ 1 9.96030- 4 7.54270- 4 2.40000+ 1 3.30000+ 1 6.49731- 4 7.58410- 4 2.40000+ 1 4.10000+ 1 2.04824- 3 7.80460- 4 2.40000+ 1 4.30000+ 1 2.05005- 4 7.91530- 4 2.40000+ 1 4.40000+ 1 6.64076- 4 7.94930- 4 2.50000+ 1 2.50000+ 1 1.54597- 2 5.99000- 4 2.50000+ 1 2.70000+ 1 2.76605- 2 6.13930- 4 2.50000+ 1 2.90000+ 1 1.51973- 3 6.61420- 4 2.50000+ 1 3.00000+ 1 1.21020- 2 6.92380- 4 2.50000+ 1 3.20000+ 1 5.96351- 4 7.61000- 4 2.50000+ 1 3.30000+ 1 1.43948- 3 7.65140- 4 2.50000+ 1 4.10000+ 1 2.64579- 3 7.87190- 4 2.50000+ 1 4.30000+ 1 1.03919- 4 7.98260- 4 2.50000+ 1 4.40000+ 1 7.16893- 4 8.01660- 4 2.70000+ 1 2.70000+ 1 1.62487- 2 6.28860- 4 2.70000+ 1 2.90000+ 1 2.33083- 2 6.76350- 4 2.70000+ 1 3.00000+ 1 3.69768- 2 7.07310- 4 2.70000+ 1 3.20000+ 1 3.12734- 2 7.75930- 4 2.70000+ 1 3.30000+ 1 4.30496- 2 7.80070- 4 2.70000+ 1 4.10000+ 1 4.01123- 3 8.02120- 4 2.70000+ 1 4.30000+ 1 2.06534- 3 8.13190- 4 2.70000+ 1 4.40000+ 1 2.75521- 3 8.16590- 4 2.90000+ 1 2.90000+ 1 2.04675- 3 7.23840- 4 2.90000+ 1 3.00000+ 1 8.70811- 3 7.54800- 4 2.90000+ 1 3.20000+ 1 3.21168- 3 8.23420- 4 2.90000+ 1 3.30000+ 1 2.47391- 3 8.27560- 4 2.90000+ 1 4.10000+ 1 2.51501- 3 8.49610- 4 2.90000+ 1 4.30000+ 1 3.06096- 4 8.60680- 4 2.90000+ 1 4.40000+ 1 5.16253- 4 8.64080- 4 3.00000+ 1 3.00000+ 1 5.47171- 3 7.85760- 4 3.00000+ 1 3.20000+ 1 2.63491- 3 8.54380- 4 3.00000+ 1 3.30000+ 1 5.36294- 3 8.58520- 4 3.00000+ 1 4.10000+ 1 3.91644- 3 8.80570- 4 3.00000+ 1 4.30000+ 1 6.58160- 4 8.91640- 4 3.00000+ 1 4.40000+ 1 7.27669- 4 8.95040- 4 3.20000+ 1 3.20000+ 1 9.44652- 4 9.23000- 4 3.20000+ 1 3.30000+ 1 2.82266- 3 9.27140- 4 3.20000+ 1 4.10000+ 1 4.17441- 3 9.49190- 4 3.20000+ 1 4.30000+ 1 2.84230- 4 9.60260- 4 3.20000+ 1 4.40000+ 1 1.75568- 4 9.63660- 4 3.30000+ 1 3.30000+ 1 1.84032- 3 9.31280- 4 3.30000+ 1 4.10000+ 1 5.63293- 3 9.53330- 4 3.30000+ 1 4.30000+ 1 1.91406- 4 9.64400- 4 3.30000+ 1 4.40000+ 1 4.01970- 4 9.67800- 4 4.10000+ 1 4.10000+ 1 2.86950- 4 9.75380- 4 4.10000+ 1 4.30000+ 1 2.48530- 4 9.86450- 4 4.10000+ 1 4.40000+ 1 3.40752- 4 9.89850- 4 4.30000+ 1 4.30000+ 1 1.02483- 5 9.97520- 4 4.30000+ 1 4.40000+ 1 4.61182- 5 1.00092- 3 4.40000+ 1 4.40000+ 1 2.56208- 5 1.00432- 3 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.68383- 4 3.63570- 4 2.70000+ 1 2.23713- 4 6.94380- 4 3.20000+ 1 5.21165- 5 8.41450- 4 4.10000+ 1 3.61055- 5 8.67640- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.22934- 2 1.60000- 7 1.90000+ 1 3.00000+ 1 2.56679- 2 3.11200- 5 1.90000+ 1 3.20000+ 1 8.40276- 3 9.97400- 5 1.90000+ 1 3.30000+ 1 1.31593- 2 1.03880- 4 1.90000+ 1 4.10000+ 1 1.92491- 3 1.25930- 4 1.90000+ 1 4.30000+ 1 1.35987- 3 1.37000- 4 1.90000+ 1 4.40000+ 1 1.28978- 3 1.40400- 4 2.10000+ 1 2.40000+ 1 1.22438- 1 1.45640- 4 2.10000+ 1 2.50000+ 1 2.76613- 1 1.52370- 4 2.10000+ 1 2.70000+ 1 3.83002- 2 1.67300- 4 2.10000+ 1 2.90000+ 1 3.04544- 2 2.14790- 4 2.10000+ 1 3.00000+ 1 4.16835- 2 2.45750- 4 2.10000+ 1 3.20000+ 1 2.15259- 2 3.14370- 4 2.10000+ 1 3.30000+ 1 3.41014- 2 3.18510- 4 2.10000+ 1 4.10000+ 1 5.63369- 3 3.40560- 4 2.10000+ 1 4.30000+ 1 2.52628- 3 3.51630- 4 2.10000+ 1 4.40000+ 1 3.06596- 3 3.55030- 4 2.20000+ 1 2.40000+ 1 4.25083- 2 1.73440- 4 2.20000+ 1 2.50000+ 1 1.08989- 2 1.80170- 4 2.20000+ 1 2.70000+ 1 6.04332- 3 1.95100- 4 2.20000+ 1 2.90000+ 1 2.51246- 2 2.42590- 4 2.20000+ 1 3.00000+ 1 5.36657- 3 2.73550- 4 2.20000+ 1 3.20000+ 1 2.40509- 3 3.42170- 4 2.20000+ 1 3.30000+ 1 2.38267- 3 3.46310- 4 2.20000+ 1 4.10000+ 1 6.80026- 4 3.68360- 4 2.20000+ 1 4.30000+ 1 1.56640- 3 3.79430- 4 2.20000+ 1 4.40000+ 1 3.26578- 4 3.82830- 4 2.40000+ 1 2.40000+ 1 2.45606- 3 4.54790- 4 2.40000+ 1 2.50000+ 1 1.50315- 2 4.61520- 4 2.40000+ 1 2.70000+ 1 4.81307- 3 4.76450- 4 2.40000+ 1 2.90000+ 1 2.01149- 2 5.23940- 4 2.40000+ 1 3.00000+ 1 3.37038- 3 5.54900- 4 2.40000+ 1 3.20000+ 1 5.22103- 3 6.23520- 4 2.40000+ 1 3.30000+ 1 3.09196- 3 6.27660- 4 2.40000+ 1 4.10000+ 1 7.14480- 4 6.49710- 4 2.40000+ 1 4.30000+ 1 1.26483- 3 6.60780- 4 2.40000+ 1 4.40000+ 1 2.26030- 4 6.64180- 4 2.50000+ 1 2.50000+ 1 6.98301- 4 4.68250- 4 2.50000+ 1 2.70000+ 1 2.84919- 3 4.83180- 4 2.50000+ 1 2.90000+ 1 3.28524- 2 5.30670- 4 2.50000+ 1 3.00000+ 1 1.93237- 3 5.61630- 4 2.50000+ 1 3.20000+ 1 1.10439- 2 6.30250- 4 2.50000+ 1 3.30000+ 1 9.84196- 4 6.34390- 4 2.50000+ 1 4.10000+ 1 3.26862- 4 6.56440- 4 2.50000+ 1 4.30000+ 1 2.00930- 3 6.67510- 4 2.50000+ 1 4.40000+ 1 1.22947- 4 6.70910- 4 2.70000+ 1 2.70000+ 1 1.04631- 3 4.98110- 4 2.70000+ 1 2.90000+ 1 1.41631- 2 5.45600- 4 2.70000+ 1 3.00000+ 1 2.64657- 3 5.76560- 4 2.70000+ 1 3.20000+ 1 3.15289- 3 6.45180- 4 2.70000+ 1 3.30000+ 1 2.22828- 3 6.49320- 4 2.70000+ 1 4.10000+ 1 2.43334- 4 6.71370- 4 2.70000+ 1 4.30000+ 1 8.58597- 4 6.82440- 4 2.70000+ 1 4.40000+ 1 1.80769- 4 6.85840- 4 2.90000+ 1 2.90000+ 1 1.27163- 2 5.93090- 4 2.90000+ 1 3.00000+ 1 3.34871- 2 6.24050- 4 2.90000+ 1 3.20000+ 1 2.31330- 2 6.92670- 4 2.90000+ 1 3.30000+ 1 3.84660- 2 6.96810- 4 2.90000+ 1 4.10000+ 1 2.93003- 3 7.18860- 4 2.90000+ 1 4.30000+ 1 1.92893- 3 7.29930- 4 2.90000+ 1 4.40000+ 1 2.52321- 3 7.33330- 4 3.00000+ 1 3.00000+ 1 1.14551- 3 6.55010- 4 3.00000+ 1 3.20000+ 1 4.31057- 3 7.23630- 4 3.00000+ 1 3.30000+ 1 1.77993- 3 7.27770- 4 3.00000+ 1 4.10000+ 1 3.57153- 4 7.49820- 4 3.00000+ 1 4.30000+ 1 1.89609- 3 7.60890- 4 3.00000+ 1 4.40000+ 1 1.48095- 4 7.64290- 4 3.20000+ 1 3.20000+ 1 4.44239- 4 7.92250- 4 3.20000+ 1 3.30000+ 1 7.49023- 4 7.96390- 4 3.20000+ 1 4.10000+ 1 1.69447- 4 8.18440- 4 3.20000+ 1 4.30000+ 1 4.12385- 4 8.29510- 4 3.20000+ 1 4.40000+ 1 9.77177- 5 8.32910- 4 3.30000+ 1 3.30000+ 1 7.40290- 5 8.00530- 4 3.30000+ 1 4.10000+ 1 5.50991- 5 8.22580- 4 3.30000+ 1 4.30000+ 1 4.28068- 4 8.33650- 4 3.30000+ 1 4.40000+ 1 2.17559- 5 8.37050- 4 4.10000+ 1 4.10000+ 1 2.92042- 6 8.44630- 4 4.10000+ 1 4.30000+ 1 2.72568- 5 8.55700- 4 4.10000+ 1 4.40000+ 1 4.13717- 6 8.59100- 4 4.30000+ 1 4.30000+ 1 6.51325- 6 8.66770- 4 4.30000+ 1 4.40000+ 1 1.82376- 5 8.70170- 4 4.40000+ 1 4.40000+ 1 4.70558- 7 8.73570- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.50814- 5 2.14630- 4 2.20000+ 1 2.02418- 4 2.42430- 4 2.70000+ 1 2.11198- 4 5.45440- 4 3.20000+ 1 1.65832- 5 6.92510- 4 3.30000+ 1 9.79035- 5 6.96650- 4 4.10000+ 1 3.32330- 5 7.18700- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.40000+ 1 4.88706- 3 0.00000+ 0 2.10000+ 1 2.50000+ 1 1.51632- 3 3.43000- 6 2.10000+ 1 2.70000+ 1 1.90197- 2 1.83600- 5 2.10000+ 1 2.90000+ 1 1.38995- 2 6.58500- 5 2.10000+ 1 3.00000+ 1 4.21313- 2 9.68100- 5 2.10000+ 1 3.20000+ 1 1.22397- 2 1.65430- 4 2.10000+ 1 3.30000+ 1 2.02138- 2 1.69570- 4 2.10000+ 1 4.10000+ 1 2.32572- 3 1.91620- 4 2.10000+ 1 4.30000+ 1 1.12723- 3 2.02690- 4 2.10000+ 1 4.40000+ 1 2.59795- 3 2.06090- 4 2.20000+ 1 2.40000+ 1 1.46308- 2 2.45000- 5 2.20000+ 1 2.50000+ 1 3.49200- 2 3.12300- 5 2.20000+ 1 2.70000+ 1 9.77503- 2 4.61600- 5 2.20000+ 1 2.90000+ 1 1.06224- 1 9.36500- 5 2.20000+ 1 3.00000+ 1 1.28516- 1 1.24610- 4 2.20000+ 1 3.20000+ 1 1.00385- 1 1.93230- 4 2.20000+ 1 3.30000+ 1 1.18617- 1 1.97370- 4 2.20000+ 1 4.10000+ 1 1.46732- 2 2.19420- 4 2.20000+ 1 4.30000+ 1 8.92027- 3 2.30490- 4 2.20000+ 1 4.40000+ 1 8.79382- 3 2.33890- 4 2.40000+ 1 2.40000+ 1 8.03854- 4 3.05850- 4 2.40000+ 1 2.50000+ 1 1.09713- 2 3.12580- 4 2.40000+ 1 2.70000+ 1 7.71721- 3 3.27510- 4 2.40000+ 1 2.90000+ 1 4.11214- 3 3.75000- 4 2.40000+ 1 3.00000+ 1 5.04467- 2 4.05960- 4 2.40000+ 1 3.20000+ 1 1.60430- 3 4.74580- 4 2.40000+ 1 3.30000+ 1 6.90623- 3 4.78720- 4 2.40000+ 1 4.10000+ 1 7.63058- 4 5.00770- 4 2.40000+ 1 4.30000+ 1 3.13910- 4 5.11840- 4 2.40000+ 1 4.40000+ 1 2.70698- 3 5.15240- 4 2.50000+ 1 2.50000+ 1 5.73876- 3 3.19310- 4 2.50000+ 1 2.70000+ 1 1.74326- 2 3.34240- 4 2.50000+ 1 2.90000+ 1 1.47588- 2 3.81730- 4 2.50000+ 1 3.00000+ 1 6.18915- 2 4.12690- 4 2.50000+ 1 3.20000+ 1 1.36171- 3 4.81310- 4 2.50000+ 1 3.30000+ 1 9.39604- 3 4.85450- 4 2.50000+ 1 4.10000+ 1 2.04338- 3 5.07500- 4 2.50000+ 1 4.30000+ 1 1.15964- 3 5.18570- 4 2.50000+ 1 4.40000+ 1 3.35572- 3 5.21970- 4 2.70000+ 1 2.70000+ 1 7.30696- 7 3.49170- 4 2.70000+ 1 2.90000+ 1 2.36020- 4 3.96660- 4 2.70000+ 1 3.00000+ 1 5.12112- 3 4.27620- 4 2.70000+ 1 3.20000+ 1 4.42804- 4 4.96240- 4 2.70000+ 1 3.30000+ 1 7.83680- 4 5.00380- 4 2.70000+ 1 4.10000+ 1 3.28816- 6 5.22430- 4 2.70000+ 1 4.30000+ 1 1.42495- 5 5.33500- 4 2.70000+ 1 4.40000+ 1 2.70001- 4 5.36900- 4 2.90000+ 1 2.90000+ 1 4.51050- 6 4.44150- 4 2.90000+ 1 3.00000+ 1 5.32582- 3 4.75110- 4 2.90000+ 1 3.20000+ 1 2.24140- 4 5.43730- 4 2.90000+ 1 3.30000+ 1 6.90456- 4 5.47870- 4 2.90000+ 1 4.10000+ 1 2.98385- 5 5.69920- 4 2.90000+ 1 4.30000+ 1 1.38784- 6 5.80990- 4 2.90000+ 1 4.40000+ 1 2.86250- 4 5.84390- 4 3.00000+ 1 3.00000+ 1 7.25731- 3 5.06070- 4 3.00000+ 1 3.20000+ 1 7.39874- 3 5.74690- 4 3.00000+ 1 3.30000+ 1 9.81987- 3 5.78830- 4 3.00000+ 1 4.10000+ 1 7.90117- 4 6.00880- 4 3.00000+ 1 4.30000+ 1 4.96439- 4 6.11950- 4 3.00000+ 1 4.40000+ 1 9.32122- 4 6.15350- 4 3.20000+ 1 3.20000+ 1 1.10852- 4 6.43310- 4 3.20000+ 1 3.30000+ 1 6.68659- 4 6.47450- 4 3.20000+ 1 4.10000+ 1 3.90200- 5 6.69500- 4 3.20000+ 1 4.30000+ 1 1.53721- 5 6.80570- 4 3.20000+ 1 4.40000+ 1 3.17480- 4 6.83970- 4 3.30000+ 1 3.30000+ 1 6.27826- 4 6.51590- 4 3.30000+ 1 4.10000+ 1 9.07446- 5 6.73640- 4 3.30000+ 1 4.30000+ 1 4.81793- 5 6.84710- 4 3.30000+ 1 4.40000+ 1 4.26532- 4 6.88110- 4 4.10000+ 1 4.30000+ 1 1.47793- 6 7.06760- 4 4.10000+ 1 4.40000+ 1 3.31066- 5 7.10160- 4 4.30000+ 1 4.40000+ 1 2.12827- 5 7.21230- 4 4.40000+ 1 4.40000+ 1 2.15777- 5 7.24630- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.21329- 4 3.09150- 4 2.90000+ 1 8.09398- 5 3.78300- 4 3.00000+ 1 1.01430- 5 4.09260- 4 4.30000+ 1 6.64378- 6 5.15140- 4 4.40000+ 1 7.13448- 7 5.18540- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.10000+ 1 1.38834- 3 4.79000- 6 2.20000+ 1 4.30000+ 1 4.70875- 4 1.58600- 5 2.20000+ 1 4.40000+ 1 1.03188- 3 1.92600- 5 2.40000+ 1 2.40000+ 1 8.12992- 2 9.12200- 5 2.40000+ 1 2.50000+ 1 2.68258- 1 9.79500- 5 2.40000+ 1 2.70000+ 1 8.42669- 2 1.12880- 4 2.40000+ 1 2.90000+ 1 7.15995- 2 1.60370- 4 2.40000+ 1 3.00000+ 1 9.41356- 2 1.91330- 4 2.40000+ 1 3.20000+ 1 8.85064- 2 2.59950- 4 2.40000+ 1 3.30000+ 1 9.09061- 2 2.64090- 4 2.40000+ 1 4.10000+ 1 1.24525- 2 2.86140- 4 2.40000+ 1 4.30000+ 1 6.20316- 3 2.97210- 4 2.40000+ 1 4.40000+ 1 6.82089- 3 3.00610- 4 2.50000+ 1 2.50000+ 1 4.37070- 3 1.04680- 4 2.50000+ 1 2.70000+ 1 7.19006- 3 1.19610- 4 2.50000+ 1 2.90000+ 1 1.37237- 2 1.67100- 4 2.50000+ 1 3.00000+ 1 6.22813- 3 1.98060- 4 2.50000+ 1 3.20000+ 1 9.82481- 2 2.66680- 4 2.50000+ 1 3.30000+ 1 4.02423- 3 2.70820- 4 2.50000+ 1 4.10000+ 1 7.89818- 4 2.92870- 4 2.50000+ 1 4.30000+ 1 8.22925- 4 3.03940- 4 2.50000+ 1 4.40000+ 1 3.71926- 4 3.07340- 4 2.70000+ 1 2.70000+ 1 7.96785- 4 1.34540- 4 2.70000+ 1 2.90000+ 1 1.79739- 3 1.82030- 4 2.70000+ 1 3.00000+ 1 1.55561- 3 2.12990- 4 2.70000+ 1 3.20000+ 1 8.73085- 3 2.81610- 4 2.70000+ 1 3.30000+ 1 2.13545- 3 2.85750- 4 2.70000+ 1 4.10000+ 1 1.35004- 4 3.07800- 4 2.70000+ 1 4.30000+ 1 1.05208- 4 3.18870- 4 2.70000+ 1 4.40000+ 1 8.86554- 5 3.22270- 4 2.90000+ 1 2.90000+ 1 3.24453- 4 2.29520- 4 2.90000+ 1 3.00000+ 1 1.88090- 3 2.60480- 4 2.90000+ 1 3.20000+ 1 5.34700- 3 3.29100- 4 2.90000+ 1 3.30000+ 1 7.55234- 4 3.33240- 4 2.90000+ 1 4.10000+ 1 9.71151- 5 3.55290- 4 2.90000+ 1 4.30000+ 1 3.93605- 5 3.66360- 4 2.90000+ 1 4.40000+ 1 8.90240- 5 3.69760- 4 3.00000+ 1 3.00000+ 1 7.24705- 4 2.91440- 4 3.00000+ 1 3.20000+ 1 1.08551- 2 3.60060- 4 3.00000+ 1 3.30000+ 1 9.47646- 4 3.64200- 4 3.00000+ 1 4.10000+ 1 5.95947- 5 3.86250- 4 3.00000+ 1 4.30000+ 1 8.53464- 5 3.97320- 4 3.00000+ 1 4.40000+ 1 6.65852- 5 4.00720- 4 3.20000+ 1 3.20000+ 1 5.86216- 3 4.28680- 4 3.20000+ 1 3.30000+ 1 1.14406- 2 4.32820- 4 3.20000+ 1 4.10000+ 1 9.50178- 4 4.54870- 4 3.20000+ 1 4.30000+ 1 4.62041- 4 4.65940- 4 3.20000+ 1 4.40000+ 1 7.78020- 4 4.69340- 4 3.30000+ 1 3.30000+ 1 2.13717- 4 4.36960- 4 3.30000+ 1 4.10000+ 1 5.18683- 5 4.59010- 4 3.30000+ 1 4.30000+ 1 2.86928- 5 4.70080- 4 3.30000+ 1 4.40000+ 1 5.00305- 5 4.73480- 4 4.10000+ 1 4.10000+ 1 3.31087- 6 4.81060- 4 4.10000+ 1 4.30000+ 1 4.78223- 6 4.92130- 4 4.10000+ 1 4.40000+ 1 3.31087- 6 4.95530- 4 4.30000+ 1 4.30000+ 1 3.67866- 7 5.03200- 4 4.30000+ 1 4.40000+ 1 4.04652- 6 5.06600- 4 4.40000+ 1 4.40000+ 1 1.47140- 6 5.10000- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.30970- 5 2.81350- 4 2.50000+ 1 2.86550- 4 2.88080- 4 3.00000+ 1 7.17951- 5 3.81460- 4 4.40000+ 1 5.09341- 6 4.90740- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 4.28513- 3 6.34200- 5 2.40000+ 1 2.50000+ 1 1.14450- 1 7.01500- 5 2.40000+ 1 2.70000+ 1 1.10221- 2 8.50800- 5 2.40000+ 1 2.90000+ 1 7.14099- 3 1.32570- 4 2.40000+ 1 3.00000+ 1 1.42868- 2 1.63530- 4 2.40000+ 1 3.20000+ 1 5.63892- 3 2.32150- 4 2.40000+ 1 3.30000+ 1 8.77965- 2 2.36290- 4 2.40000+ 1 4.10000+ 1 1.37299- 3 2.58340- 4 2.40000+ 1 4.30000+ 1 5.83580- 4 2.69410- 4 2.40000+ 1 4.40000+ 1 8.72915- 4 2.72810- 4 2.50000+ 1 2.50000+ 1 1.12407- 1 7.68800- 5 2.50000+ 1 2.70000+ 1 9.49684- 2 9.18100- 5 2.50000+ 1 2.90000+ 1 1.00349- 1 1.39300- 4 2.50000+ 1 3.00000+ 1 9.74281- 2 1.70260- 4 2.50000+ 1 3.20000+ 1 8.60554- 2 2.38880- 4 2.50000+ 1 3.30000+ 1 1.60342- 1 2.43020- 4 2.50000+ 1 4.10000+ 1 1.40724- 2 2.65070- 4 2.50000+ 1 4.30000+ 1 8.33656- 3 2.76140- 4 2.50000+ 1 4.40000+ 1 7.10110- 3 2.79540- 4 2.70000+ 1 2.70000+ 1 1.42634- 3 1.06740- 4 2.70000+ 1 2.90000+ 1 1.84029- 3 1.54230- 4 2.70000+ 1 3.00000+ 1 3.38691- 3 1.85190- 4 2.70000+ 1 3.20000+ 1 2.83587- 3 2.53810- 4 2.70000+ 1 3.30000+ 1 1.16837- 2 2.57950- 4 2.70000+ 1 4.10000+ 1 2.37982- 4 2.80000- 4 2.70000+ 1 4.30000+ 1 1.11657- 4 2.91070- 4 2.70000+ 1 4.40000+ 1 1.90308- 4 2.94470- 4 2.90000+ 1 2.90000+ 1 2.21688- 4 2.01720- 4 2.90000+ 1 3.00000+ 1 3.27173- 3 2.32680- 4 2.90000+ 1 3.20000+ 1 3.94053- 4 3.01300- 4 2.90000+ 1 3.30000+ 1 8.37259- 3 3.05440- 4 2.90000+ 1 4.10000+ 1 9.57632- 5 3.27490- 4 2.90000+ 1 4.30000+ 1 2.52653- 5 3.38560- 4 2.90000+ 1 4.40000+ 1 1.58927- 4 3.41960- 4 3.00000+ 1 3.00000+ 1 1.08687- 3 2.63640- 4 3.00000+ 1 3.20000+ 1 1.39163- 3 3.32260- 4 3.00000+ 1 3.30000+ 1 1.11606- 2 3.36400- 4 3.00000+ 1 4.10000+ 1 1.08397- 4 3.58450- 4 3.00000+ 1 4.30000+ 1 1.13286- 4 3.69520- 4 3.00000+ 1 4.40000+ 1 1.00248- 4 3.72920- 4 3.20000+ 1 3.20000+ 1 1.05549- 4 4.00880- 4 3.20000+ 1 3.30000+ 1 9.52079- 3 4.05020- 4 3.20000+ 1 4.10000+ 1 6.47951- 5 4.27070- 4 3.20000+ 1 4.30000+ 1 2.32285- 5 4.38140- 4 3.20000+ 1 4.40000+ 1 7.33532- 5 4.41540- 4 3.30000+ 1 3.30000+ 1 1.04979- 2 4.09160- 4 3.30000+ 1 4.10000+ 1 1.09989- 3 4.31210- 4 3.30000+ 1 4.30000+ 1 6.71998- 4 4.42280- 4 3.30000+ 1 4.40000+ 1 8.14223- 4 4.45680- 4 4.10000+ 1 4.10000+ 1 6.11280- 6 4.53260- 4 4.10000+ 1 4.30000+ 1 5.29788- 6 4.64330- 4 4.10000+ 1 4.40000+ 1 6.52035- 6 4.67730- 4 4.30000+ 1 4.30000+ 1 4.07526- 7 4.75400- 4 4.30000+ 1 4.40000+ 1 5.70518- 6 4.78800- 4 4.40000+ 1 4.40000+ 1 2.44500- 6 4.82200- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.39320- 5 1.68730- 4 3.30000+ 1 9.18612- 7 1.72870- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 3.82822- 3 9.72000- 6 2.70000+ 1 4.40000+ 1 7.41781- 3 1.31200- 5 2.90000+ 1 3.20000+ 1 1.12936- 1 1.99500- 5 2.90000+ 1 3.30000+ 1 7.31755- 2 2.40900- 5 2.90000+ 1 4.10000+ 1 2.93533- 2 4.61400- 5 2.90000+ 1 4.30000+ 1 8.72020- 3 5.72100- 5 2.90000+ 1 4.40000+ 1 1.00059- 2 6.06100- 5 3.00000+ 1 3.20000+ 1 1.33861- 1 5.09100- 5 3.00000+ 1 3.30000+ 1 5.46418- 2 5.50500- 5 3.00000+ 1 4.10000+ 1 1.17863- 2 7.71000- 5 3.00000+ 1 4.30000+ 1 1.01024- 2 8.81700- 5 3.00000+ 1 4.40000+ 1 4.82885- 3 9.15700- 5 3.20000+ 1 3.20000+ 1 1.83863- 1 1.19530- 4 3.20000+ 1 3.30000+ 1 2.61333- 1 1.23670- 4 3.20000+ 1 4.10000+ 1 1.25484- 2 1.45720- 4 3.20000+ 1 4.30000+ 1 2.04903- 2 1.56790- 4 3.20000+ 1 4.40000+ 1 1.42163- 2 1.60190- 4 3.30000+ 1 3.30000+ 1 2.27550- 2 1.27810- 4 3.30000+ 1 4.10000+ 1 2.66869- 3 1.49860- 4 3.30000+ 1 4.30000+ 1 1.44485- 2 1.60930- 4 3.30000+ 1 4.40000+ 1 5.36892- 3 1.64330- 4 4.10000+ 1 4.10000+ 1 3.17672- 5 1.71910- 4 4.10000+ 1 4.30000+ 1 6.35344- 4 1.82980- 4 4.10000+ 1 4.40000+ 1 4.12991- 4 1.86380- 4 4.30000+ 1 4.30000+ 1 1.27075- 4 1.94050- 4 4.30000+ 1 4.40000+ 1 3.65336- 4 1.97450- 4 4.40000+ 1 4.40000+ 1 6.35341- 5 2.00850- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.34241- 5 1.66140- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 2.53513- 2 1.32200- 5 2.90000+ 1 3.30000+ 1 7.91907- 2 1.73600- 5 2.90000+ 1 4.10000+ 1 2.59925- 3 3.94100- 5 2.90000+ 1 4.30000+ 1 4.55715- 4 5.04800- 5 2.90000+ 1 4.40000+ 1 5.92425- 3 5.38800- 5 3.00000+ 1 3.20000+ 1 7.52283- 2 4.41800- 5 3.00000+ 1 3.30000+ 1 2.21331- 1 4.83200- 5 3.00000+ 1 4.10000+ 1 2.91827- 2 7.03700- 5 3.00000+ 1 4.30000+ 1 6.56580- 3 8.14400- 5 3.00000+ 1 4.40000+ 1 2.09458- 2 8.48400- 5 3.20000+ 1 3.20000+ 1 1.32330- 2 1.12800- 4 3.20000+ 1 3.30000+ 1 2.03335- 1 1.16940- 4 3.20000+ 1 4.10000+ 1 2.14357- 3 1.38990- 4 3.20000+ 1 4.30000+ 1 1.50213- 3 1.50060- 4 3.20000+ 1 4.40000+ 1 1.18486- 2 1.53460- 4 3.30000+ 1 3.30000+ 1 2.46716- 1 1.21080- 4 3.30000+ 1 4.10000+ 1 1.42112- 2 1.43130- 4 3.30000+ 1 4.30000+ 1 9.45195- 3 1.54200- 4 3.30000+ 1 4.40000+ 1 2.92336- 2 1.57600- 4 4.10000+ 1 4.10000+ 1 1.68792- 5 1.65180- 4 4.10000+ 1 4.30000+ 1 2.19425- 4 1.76250- 4 4.10000+ 1 4.40000+ 1 7.59557- 4 1.79650- 4 4.30000+ 1 4.30000+ 1 1.68786- 5 1.87320- 4 4.30000+ 1 4.40000+ 1 2.02544- 4 1.90720- 4 4.40000+ 1 4.40000+ 1 3.20693- 4 1.94120- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.26394- 6 4.74900- 5 3.00000+ 1 1.17251- 5 7.84500- 5 4.30000+ 1 6.46238- 7 1.84330- 4 4.40000+ 1 1.80373- 8 1.87730- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.20000+ 1 7.09456- 3 0.00000+ 0 2.90000+ 1 3.30000+ 1 8.38859- 2 2.43000- 6 2.90000+ 1 4.10000+ 1 1.10907- 2 2.44800- 5 2.90000+ 1 4.30000+ 1 4.27021- 3 3.55500- 5 2.90000+ 1 4.40000+ 1 8.66880- 3 3.89500- 5 3.00000+ 1 3.20000+ 1 3.57556- 1 2.92500- 5 3.00000+ 1 3.30000+ 1 3.08570- 1 3.33900- 5 3.00000+ 1 4.10000+ 1 1.77142- 2 5.54400- 5 3.00000+ 1 4.30000+ 1 1.20494- 2 6.65100- 5 3.00000+ 1 4.40000+ 1 1.10815- 2 6.99100- 5 3.20000+ 1 3.20000+ 1 2.23470- 3 9.78700- 5 3.20000+ 1 3.30000+ 1 1.23070- 1 1.02010- 4 3.20000+ 1 4.10000+ 1 8.04814- 3 1.24060- 4 3.20000+ 1 4.30000+ 1 7.04163- 4 1.35130- 4 3.20000+ 1 4.40000+ 1 4.90273- 3 1.38530- 4 3.30000+ 1 3.30000+ 1 1.98547- 2 1.06150- 4 3.30000+ 1 4.10000+ 1 6.90701- 3 1.28200- 4 3.30000+ 1 4.30000+ 1 2.03034- 3 1.39270- 4 3.30000+ 1 4.40000+ 1 1.91599- 3 1.42670- 4 4.10000+ 1 4.10000+ 1 1.31052- 3 1.50250- 4 4.10000+ 1 4.30000+ 1 1.06216- 3 1.61320- 4 4.10000+ 1 4.40000+ 1 1.50212- 3 1.64720- 4 4.30000+ 1 4.30000+ 1 3.08261- 4 1.72390- 4 4.30000+ 1 4.40000+ 1 2.43814- 3 1.75790- 4 4.40000+ 1 4.40000+ 1 1.71590- 3 1.79190- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.04090- 5 9.95800- 5 4.10000+ 1 1.02070- 6 1.25770- 4 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.60869- 2 7.95000- 6 3.00000+ 1 4.30000+ 1 1.96552- 2 1.90200- 5 3.00000+ 1 4.40000+ 1 1.37410- 2 2.24200- 5 3.20000+ 1 3.20000+ 1 1.54039- 1 5.03800- 5 3.20000+ 1 3.30000+ 1 6.69298- 1 5.45200- 5 3.20000+ 1 4.10000+ 1 3.55014- 2 7.65700- 5 3.20000+ 1 4.30000+ 1 1.71218- 2 8.76400- 5 3.20000+ 1 4.40000+ 1 2.69820- 2 9.10400- 5 3.30000+ 1 3.30000+ 1 2.46265- 2 5.86600- 5 3.30000+ 1 4.10000+ 1 2.56303- 3 8.07100- 5 3.30000+ 1 4.30000+ 1 1.43991- 2 9.17800- 5 3.30000+ 1 4.40000+ 1 3.21846- 3 9.51800- 5 4.10000+ 1 4.10000+ 1 3.61018- 5 1.02760- 4 4.10000+ 1 4.30000+ 1 1.16169- 3 1.13830- 4 4.10000+ 1 4.40000+ 1 1.65213- 4 1.17230- 4 4.30000+ 1 4.30000+ 1 3.67468- 4 1.24900- 4 4.30000+ 1 4.40000+ 1 9.86835- 4 1.28300- 4 4.40000+ 1 4.40000+ 1 3.85501- 5 1.31700- 4 1 85000 0 7 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.70330- 7 6.86200- 5 3.30000+ 1 1.83250- 6 7.27600- 5 4.10000+ 1 4.44741- 7 9.48100- 5 1 85000 0 9 2.10000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.48229- 2 1.94200- 5 3.20000+ 1 3.30000+ 1 5.32732- 1 2.35600- 5 3.20000+ 1 4.10000+ 1 6.34982- 3 4.56100- 5 3.20000+ 1 4.30000+ 1 2.40404- 3 5.66800- 5 3.20000+ 1 4.40000+ 1 7.45266- 3 6.00800- 5 3.30000+ 1 3.30000+ 1 3.52778- 1 2.77000- 5 3.30000+ 1 4.10000+ 1 2.99094- 2 4.97500- 5 3.30000+ 1 4.30000+ 1 1.94669- 2 6.08200- 5 3.30000+ 1 4.40000+ 1 2.20466- 2 6.42200- 5 4.10000+ 1 4.10000+ 1 1.60383- 4 7.18000- 5 4.10000+ 1 4.30000+ 1 2.06631- 4 8.28700- 5 4.10000+ 1 4.40000+ 1 8.25088- 4 8.62700- 5 4.30000+ 1 4.30000+ 1 1.44091- 7 9.39400- 5 4.30000+ 1 4.40000+ 1 4.31837- 4 9.73400- 5 4.40000+ 1 4.40000+ 1 4.11811- 4 1.00740- 4 1 86000 0 0 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 1 86000 0 0 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.87640- 2 3.00000+ 0 1.80420- 2 5.00000+ 0 1.73960- 2 6.00000+ 0 1.46190- 2 8.00000+ 0 4.44770- 3 1.00000+ 1 4.14760- 3 1.10000+ 1 3.51790- 3 1.30000+ 1 3.02160- 3 1.40000+ 1 2.88930- 3 1.60000+ 1 1.07270- 3 1.80000+ 1 9.38510- 4 1.90000+ 1 7.79390- 4 2.10000+ 1 5.59500- 4 2.20000+ 1 5.29820- 4 2.40000+ 1 2.41160- 4 2.50000+ 1 2.33870- 4 2.70000+ 1 2.11690- 4 2.90000+ 1 1.62290- 4 3.00000+ 1 1.28370- 4 3.20000+ 1 5.64900- 5 3.30000+ 1 5.18400- 5 4.10000+ 1 2.57200- 5 4.30000+ 1 1.36900- 5 4.40000+ 1 9.64000- 6 1 86000 0 0 2.22000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42710- 1 3.00000+ 0 3.49080- 2 5.00000+ 0 3.48980- 2 6.00000+ 0 2.37970- 2 8.00000+ 0 1.11780- 2 1.00000+ 1 1.10500- 2 1.10000+ 1 8.26640- 3 1.30000+ 1 8.11110- 3 1.40000+ 1 7.55530- 3 1.60000+ 1 3.77260- 3 1.80000+ 1 3.62970- 3 1.90000+ 1 2.78150- 3 2.10000+ 1 2.55020- 3 2.20000+ 1 2.38480- 3 2.40000+ 1 2.01990- 3 2.50000+ 1 1.96420- 3 2.70000+ 1 1.08060- 3 2.90000+ 1 9.67880- 4 3.00000+ 1 7.38600- 4 3.20000+ 1 5.37840- 4 3.30000+ 1 4.98630- 4 4.10000+ 1 2.11630- 4 4.30000+ 1 1.48930- 4 4.40000+ 1 1.00710- 4 1 86000 0 0 2.22000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.95100-11 3.00000+ 0 3.30050-10 5.00000+ 0 2.69040-10 6.00000+ 0 3.18850-10 8.00000+ 0 8.56890-10 1.00000+ 1 8.07070-10 1.10000+ 1 8.97050-10 1.30000+ 1 7.75790-10 1.40000+ 1 8.02820-10 1.60000+ 1 1.87600- 9 1.80000+ 1 1.87210- 9 1.90000+ 1 2.05630- 9 2.10000+ 1 2.05550- 9 2.20000+ 1 2.11230- 9 2.40000+ 1 2.10300- 9 2.50000+ 1 2.13240- 9 2.70000+ 1 4.02760- 9 2.90000+ 1 4.23230- 9 3.00000+ 1 4.66870- 9 3.20000+ 1 5.45260- 9 3.30000+ 1 5.62630- 9 4.10000+ 1 9.57670- 9 4.30000+ 1 1.12990- 8 4.40000+ 1 1.31530- 8 1 86000 0 0 2.22000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.96140- 5 3.00000+ 0 1.72480- 6 5.00000+ 0 3.03650- 6 6.00000+ 0 2.59440- 6 8.00000+ 0 7.16410- 8 1.00000+ 1 7.96010- 8 1.10000+ 1 8.73300- 8 1.30000+ 1 1.11520- 7 1.40000+ 1 1.03590- 7 1.60000+ 1 3.25040- 9 1.80000+ 1 4.46310- 9 1.90000+ 1 2.96030- 9 2.10000+ 1 2.41540- 9 2.20000+ 1 1.93240- 9 2.40000+ 1 5.19560-11 2.50000+ 1 4.74510-11 2.70000+ 1 1.96400-10 2.90000+ 1 4.08380-10 3.00000+ 1 2.13940-10 1 86000 0 0 2.22000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.35880- 6 3.00000+ 0 1.27730- 5 5.00000+ 0 3.62600- 6 6.00000+ 0 4.04690- 6 8.00000+ 0 1.96020- 5 1.00000+ 1 1.39700- 5 1.10000+ 1 1.10900- 5 1.30000+ 1 2.81100- 6 1.40000+ 1 2.77440- 6 1.60000+ 1 1.50720- 5 1.80000+ 1 1.46710- 5 1.90000+ 1 9.39260- 6 2.10000+ 1 7.20350- 6 2.20000+ 1 6.47800- 6 2.40000+ 1 1.57770- 7 2.50000+ 1 1.52640- 7 2.70000+ 1 2.39260- 5 2.90000+ 1 8.87160- 6 3.00000+ 1 1.98940- 5 1 86000 0 0 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 5.52726- 4 3.00000+ 0 7.93436- 4 5.00000+ 0 5.61840- 4 6.00000+ 0 5.57506- 4 8.00000+ 0 5.82931- 4 1.00000+ 1 5.07241- 4 1.10000+ 1 4.49766- 4 1.30000+ 1 3.44456- 4 1.40000+ 1 3.35500- 4 1.60000+ 1 3.10788- 4 1.80000+ 1 2.96452- 4 1.90000+ 1 2.78240- 4 2.10000+ 1 2.17993- 4 2.20000+ 1 2.09606- 4 2.40000+ 1 1.26339- 4 2.50000+ 1 1.25344- 4 2.70000+ 1 1.42525- 4 2.90000+ 1 1.04746- 4 3.00000+ 1 1.02587- 4 3.20000+ 1 5.64900- 5 3.30000+ 1 5.18400- 5 4.10000+ 1 2.57200- 5 4.30000+ 1 1.36900- 5 4.40000+ 1 9.64000- 6 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.37088+ 0 3.00000+ 0 4.95514- 1 5.00000+ 0 5.56215- 1 6.00000+ 0 4.53623- 1 8.00000+ 0 4.38031- 2 1.00000+ 1 4.37566- 2 1.10000+ 1 4.06586- 2 1.30000+ 1 4.71314- 2 1.40000+ 1 4.36665- 2 1.60000+ 1 1.46429- 3 1.80000+ 1 1.70226- 3 1.90000+ 1 9.45532- 4 2.10000+ 1 4.89428- 4 2.20000+ 1 4.35364- 4 2.40000+ 1 2.44708- 5 2.50000+ 1 2.09604- 5 2.70000+ 1 1.89825- 5 2.90000+ 1 1.45098- 5 3.00000+ 1 3.07637- 6 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.75516- 2 3.00000+ 0 5.61013- 3 5.00000+ 0 7.47068- 3 6.00000+ 0 4.95166- 3 8.00000+ 0 1.19263- 4 1.00000+ 1 1.19866- 4 1.10000+ 1 1.08416- 4 1.30000+ 1 1.27564- 4 1.40000+ 1 1.13752- 4 1.60000+ 1 7.56868- 7 1.80000+ 1 7.55651- 7 1.90000+ 1 4.05298- 7 2.10000+ 1 1.61374- 7 2.20000+ 1 1.34819- 7 2.40000+ 1 4.15676- 9 2.50000+ 1 3.56507- 9 2.70000+ 1 1.68784- 9 2.90000+ 1 1.57290- 9 3.00000+ 1 2.50613-10 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.00335+ 1 3.00000+ 0 1.48415+ 1 5.00000+ 0 1.02015+ 1 6.00000+ 0 1.01347+ 1 8.00000+ 0 1.06587+ 1 1.00000+ 1 9.12113+ 0 1.10000+ 1 7.99058+ 0 1.30000+ 1 5.85803+ 0 1.40000+ 1 5.70809+ 0 1.60000+ 1 5.20840+ 0 1.80000+ 1 4.90884+ 0 1.90000+ 1 4.55507+ 0 2.10000+ 1 3.33133+ 0 2.20000+ 1 3.19087+ 0 2.40000+ 1 1.51339+ 0 2.50000+ 1 1.52594+ 0 2.70000+ 1 1.82586+ 0 2.90000+ 1 1.04455+ 0 3.00000+ 1 9.99997- 1 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06597- 2 3.00000+ 0 1.16384- 2 5.00000+ 0 9.36348- 3 6.00000+ 0 9.10983- 3 8.00000+ 0 3.74551- 3 1.00000+ 1 3.52049- 3 1.10000+ 1 2.95972- 3 1.30000+ 1 2.54958- 3 1.40000+ 1 2.44005- 3 1.60000+ 1 7.61155- 4 1.80000+ 1 6.41303- 4 1.90000+ 1 5.00745- 4 2.10000+ 1 3.41346- 4 2.20000+ 1 3.20080- 4 2.40000+ 1 1.14817- 4 2.50000+ 1 1.08522- 4 2.70000+ 1 6.91637- 5 2.90000+ 1 5.75428- 5 3.00000+ 1 2.57823- 5 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.84828- 1 8.13680- 2 6.00000+ 0 4.69587- 1 8.41450- 2 1.00000+ 1 5.31046- 2 9.46164- 2 1.10000+ 1 1.03169- 1 9.52461- 2 1.30000+ 1 1.60619- 3 9.57424- 2 1.40000+ 1 1.90129- 3 9.58747- 2 1.80000+ 1 1.29309- 2 9.78255- 2 1.90000+ 1 2.56678- 2 9.79846- 2 2.10000+ 1 4.46187- 4 9.82045- 2 2.20000+ 1 5.28136- 4 9.82342- 2 2.90000+ 1 3.05528- 3 9.86017- 2 3.00000+ 1 5.86666- 3 9.86356- 2 3.20000+ 1 7.38115- 5 9.87075- 2 3.30000+ 1 8.61674- 5 9.87122- 2 4.30000+ 1 3.51658- 4 9.87503- 2 4.40000+ 1 5.97606- 4 9.87544- 2 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.04888- 3 6.26800- 2 3.00000+ 0 5.00000+ 0 6.82253- 3 6.33260- 2 3.00000+ 0 6.00000+ 0 3.21917- 3 6.61030- 2 3.00000+ 0 8.00000+ 0 1.65057- 3 7.62743- 2 3.00000+ 0 1.00000+ 1 1.48211- 3 7.65744- 2 3.00000+ 0 1.10000+ 1 7.70725- 4 7.72041- 2 3.00000+ 0 1.30000+ 1 6.63133- 5 7.77004- 2 3.00000+ 0 1.40000+ 1 4.60198- 5 7.78327- 2 3.00000+ 0 1.60000+ 1 4.24153- 4 7.96493- 2 3.00000+ 0 1.80000+ 1 3.73427- 4 7.97835- 2 3.00000+ 0 1.90000+ 1 1.94816- 4 7.99426- 2 3.00000+ 0 2.10000+ 1 1.83317- 5 8.01625- 2 3.00000+ 0 2.20000+ 1 1.25278- 5 8.01922- 2 3.00000+ 0 2.40000+ 1 4.17591- 8 8.04808- 2 3.00000+ 0 2.50000+ 1 4.17591- 8 8.04881- 2 3.00000+ 0 2.70000+ 1 9.82199- 5 8.05103- 2 3.00000+ 0 2.90000+ 1 7.95116- 5 8.05597- 2 3.00000+ 0 3.00000+ 1 4.05904- 5 8.05936- 2 3.00000+ 0 3.20000+ 1 2.92312- 6 8.06655- 2 3.00000+ 0 3.30000+ 1 1.96274- 6 8.06702- 2 5.00000+ 0 5.00000+ 0 3.14241- 4 6.39720- 2 5.00000+ 0 6.00000+ 0 5.47734- 3 6.67490- 2 5.00000+ 0 8.00000+ 0 1.21821- 3 7.69203- 2 5.00000+ 0 1.00000+ 1 1.19932- 4 7.72204- 2 5.00000+ 0 1.10000+ 1 1.10274- 3 7.78501- 2 5.00000+ 0 1.30000+ 1 6.76096- 5 7.83464- 2 5.00000+ 0 1.40000+ 1 1.66626- 4 7.84787- 2 5.00000+ 0 1.60000+ 1 3.03682- 4 8.02953- 2 5.00000+ 0 1.80000+ 1 2.93574- 5 8.04295- 2 5.00000+ 0 1.90000+ 1 2.67516- 4 8.05886- 2 5.00000+ 0 2.10000+ 1 1.79142- 5 8.08085- 2 5.00000+ 0 2.20000+ 1 4.43919- 5 8.08382- 2 5.00000+ 0 2.40000+ 1 5.42884- 7 8.11268- 2 5.00000+ 0 2.50000+ 1 8.35200- 7 8.11341- 2 5.00000+ 0 2.70000+ 1 6.97824- 5 8.11563- 2 5.00000+ 0 2.90000+ 1 6.22233- 6 8.12057- 2 5.00000+ 0 3.00000+ 1 5.52075- 5 8.12396- 2 5.00000+ 0 3.20000+ 1 2.83965- 6 8.13115- 2 5.00000+ 0 3.30000+ 1 6.93218- 6 8.13162- 2 6.00000+ 0 6.00000+ 0 2.29714- 3 6.95260- 2 6.00000+ 0 8.00000+ 0 5.16130- 4 7.96973- 2 6.00000+ 0 1.00000+ 1 9.82971- 4 7.99974- 2 6.00000+ 0 1.10000+ 1 9.55277- 4 8.06271- 2 6.00000+ 0 1.30000+ 1 1.82832- 4 8.11234- 2 6.00000+ 0 1.40000+ 1 1.49294- 4 8.12557- 2 6.00000+ 0 1.60000+ 1 1.25368- 4 8.30723- 2 6.00000+ 0 1.80000+ 1 2.37281- 4 8.32065- 2 6.00000+ 0 1.90000+ 1 2.33779- 4 8.33656- 2 6.00000+ 0 2.10000+ 1 4.89850- 5 8.35855- 2 6.00000+ 0 2.20000+ 1 3.99213- 5 8.36152- 2 6.00000+ 0 2.40000+ 1 8.76967- 7 8.39038- 2 6.00000+ 0 2.50000+ 1 9.18746- 7 8.39111- 2 6.00000+ 0 2.70000+ 1 2.86483- 5 8.39333- 2 6.00000+ 0 2.90000+ 1 5.00278- 5 8.39827- 2 6.00000+ 0 3.00000+ 1 4.83157- 5 8.40166- 2 6.00000+ 0 3.20000+ 1 7.76731- 6 8.40885- 2 6.00000+ 0 3.30000+ 1 6.22234- 6 8.40932- 2 8.00000+ 0 8.00000+ 0 1.65500- 4 8.98686- 2 8.00000+ 0 1.00000+ 1 2.64920- 4 9.01687- 2 8.00000+ 0 1.10000+ 1 1.24527- 4 9.07984- 2 8.00000+ 0 1.30000+ 1 1.04400- 5 9.12947- 2 8.00000+ 0 1.40000+ 1 6.80702- 6 9.14270- 2 8.00000+ 0 1.60000+ 1 8.47727- 5 9.32436- 2 8.00000+ 0 1.80000+ 1 6.67734- 5 9.33778- 2 8.00000+ 0 1.90000+ 1 3.15291- 5 9.35369- 2 8.00000+ 0 2.10000+ 1 2.88140- 6 9.37568- 2 8.00000+ 0 2.20000+ 1 1.83749- 6 9.37865- 2 8.00000+ 0 2.70000+ 1 1.96276- 5 9.41046- 2 8.00000+ 0 2.90000+ 1 1.42401- 5 9.41540- 2 8.00000+ 0 3.00000+ 1 6.55649- 6 9.41879- 2 8.00000+ 0 3.20000+ 1 4.59373- 7 9.42598- 2 8.00000+ 0 3.30000+ 1 2.92315- 7 9.42645- 2 1.00000+ 1 1.00000+ 1 1.10247- 5 9.04688- 2 1.00000+ 1 1.10000+ 1 2.03866- 4 9.10985- 2 1.00000+ 1 1.30000+ 1 1.08161- 5 9.15948- 2 1.00000+ 1 1.40000+ 1 2.23838- 5 9.17271- 2 1.00000+ 1 1.60000+ 1 6.60214- 5 9.35437- 2 1.00000+ 1 1.80000+ 1 5.34525- 6 9.36779- 2 1.00000+ 1 1.90000+ 1 4.97783- 5 9.38370- 2 1.00000+ 1 2.10000+ 1 2.88141- 6 9.40569- 2 1.00000+ 1 2.20000+ 1 6.01346- 6 9.40866- 2 1.00000+ 1 2.40000+ 1 8.35204- 8 9.43752- 2 1.00000+ 1 2.50000+ 1 8.35204- 8 9.43825- 2 1.00000+ 1 2.70000+ 1 1.51593- 5 9.44047- 2 1.00000+ 1 2.90000+ 1 1.12753- 6 9.44541- 2 1.00000+ 1 3.00000+ 1 1.02732- 5 9.44880- 2 1.00000+ 1 3.20000+ 1 4.59375- 7 9.45599- 2 1.00000+ 1 3.30000+ 1 9.60494- 7 9.45646- 2 1.10000+ 1 1.10000+ 1 1.00391- 4 9.17282- 2 1.10000+ 1 1.30000+ 1 3.06084- 5 9.22245- 2 1.10000+ 1 1.40000+ 1 2.41375- 5 9.23568- 2 1.10000+ 1 1.60000+ 1 3.03168- 5 9.41734- 2 1.10000+ 1 1.80000+ 1 4.95276- 5 9.43076- 2 1.10000+ 1 1.90000+ 1 4.92337- 5 9.44667- 2 1.10000+ 1 2.10000+ 1 8.26824- 6 9.46866- 2 1.10000+ 1 2.20000+ 1 6.51439- 6 9.47163- 2 1.10000+ 1 2.40000+ 1 1.25277- 7 9.50049- 2 1.10000+ 1 2.50000+ 1 1.25277- 7 9.50122- 2 1.10000+ 1 2.70000+ 1 6.93206- 6 9.50344- 2 1.10000+ 1 2.90000+ 1 1.04399- 5 9.50838- 2 1.10000+ 1 3.00000+ 1 1.01893- 5 9.51177- 2 1.10000+ 1 3.20000+ 1 1.33628- 6 9.51896- 2 1.10000+ 1 3.30000+ 1 1.00224- 6 9.51943- 2 1.30000+ 1 1.30000+ 1 8.35198- 8 9.27208- 2 1.30000+ 1 1.40000+ 1 3.42432- 6 9.28531- 2 1.30000+ 1 1.60000+ 1 2.54745- 6 9.46697- 2 1.30000+ 1 1.80000+ 1 2.54745- 6 9.48039- 2 1.30000+ 1 1.90000+ 1 7.14105- 6 9.49630- 2 1.30000+ 1 2.10000+ 1 4.17593- 8 9.51829- 2 1.30000+ 1 2.20000+ 1 8.76963- 7 9.52126- 2 1.30000+ 1 2.70000+ 1 5.84618- 7 9.55307- 2 1.30000+ 1 2.90000+ 1 5.42883- 7 9.55801- 2 1.30000+ 1 3.00000+ 1 1.46157- 6 9.56140- 2 1.30000+ 1 3.30000+ 1 1.25279- 7 9.56906- 2 1.40000+ 1 1.40000+ 1 8.35204- 7 9.29854- 2 1.40000+ 1 1.60000+ 1 1.62860- 6 9.48020- 2 1.40000+ 1 1.80000+ 1 5.05317- 6 9.49362- 2 1.40000+ 1 1.90000+ 1 5.55414- 6 9.50953- 2 1.40000+ 1 2.10000+ 1 8.76970- 7 9.53152- 2 1.40000+ 1 2.20000+ 1 4.17596- 7 9.53449- 2 1.40000+ 1 2.70000+ 1 3.75862- 7 9.56630- 2 1.40000+ 1 2.90000+ 1 1.04401- 6 9.57124- 2 1.40000+ 1 3.00000+ 1 1.12753- 6 9.57463- 2 1.40000+ 1 3.20000+ 1 1.25280- 7 9.58182- 2 1.40000+ 1 3.30000+ 1 8.35204- 8 9.58229- 2 1.60000+ 1 1.60000+ 1 1.08577- 5 9.66186- 2 1.60000+ 1 1.80000+ 1 1.66627- 5 9.67528- 2 1.60000+ 1 1.90000+ 1 7.68370- 6 9.69119- 2 1.60000+ 1 2.10000+ 1 7.09911- 7 9.71318- 2 1.60000+ 1 2.20000+ 1 4.59374- 7 9.71615- 2 1.60000+ 1 2.70000+ 1 5.01107- 6 9.74796- 2 1.60000+ 1 2.90000+ 1 3.54961- 6 9.75290- 2 1.60000+ 1 3.00000+ 1 1.58685- 6 9.75629- 2 1.60000+ 1 3.20000+ 1 1.25280- 7 9.76348- 2 1.60000+ 1 3.30000+ 1 8.35203- 8 9.76395- 2 1.80000+ 1 1.80000+ 1 6.68183- 7 9.68870- 2 1.80000+ 1 1.90000+ 1 1.21105- 5 9.70461- 2 1.80000+ 1 2.10000+ 1 6.68183- 7 9.72660- 2 1.80000+ 1 2.20000+ 1 1.37808- 6 9.72957- 2 1.80000+ 1 2.70000+ 1 3.84193- 6 9.76138- 2 1.80000+ 1 2.90000+ 1 2.92318- 7 9.76632- 2 1.80000+ 1 3.00000+ 1 2.50561- 6 9.76971- 2 1.80000+ 1 3.20000+ 1 1.25281- 7 9.77690- 2 1.80000+ 1 3.30000+ 1 2.08794- 7 9.77736- 2 1.90000+ 1 1.90000+ 1 6.03652- 6 9.72052- 2 1.90000+ 1 2.10000+ 1 1.91511- 6 9.74251- 2 1.90000+ 1 2.20000+ 1 1.49873- 6 9.74548- 2 1.90000+ 1 2.40000+ 1 4.16314- 8 9.77434- 2 1.90000+ 1 2.50000+ 1 4.16314- 8 9.77507- 2 1.90000+ 1 2.70000+ 1 1.74849- 6 9.77729- 2 1.90000+ 1 2.90000+ 1 2.53965- 6 9.78223- 2 1.90000+ 1 3.00000+ 1 2.49791- 6 9.78562- 2 1.90000+ 1 3.20000+ 1 2.91419- 7 9.79281- 2 1.90000+ 1 3.30000+ 1 2.49791- 7 9.79328- 2 2.10000+ 1 2.20000+ 1 2.57537- 7 9.76747- 2 2.10000+ 1 2.70000+ 1 1.71687- 7 9.79928- 2 2.10000+ 1 2.90000+ 1 1.28768- 7 9.80422- 2 2.10000+ 1 3.00000+ 1 3.86328- 7 9.80761- 2 2.10000+ 1 3.30000+ 1 4.29224- 8 9.81527- 2 2.20000+ 1 2.20000+ 1 4.61242- 8 9.77044- 2 2.20000+ 1 2.70000+ 1 9.22497- 8 9.80225- 2 2.20000+ 1 2.90000+ 1 3.22868- 7 9.80719- 2 2.20000+ 1 3.00000+ 1 3.22868- 7 9.81058- 2 2.20000+ 1 3.20000+ 1 4.61242- 8 9.81777- 2 2.70000+ 1 2.70000+ 1 5.83139- 7 9.83406- 2 2.70000+ 1 2.90000+ 1 8.33086- 7 9.83900- 2 2.70000+ 1 3.00000+ 1 3.74909- 7 9.84239- 2 2.70000+ 1 3.20000+ 1 4.16537- 8 9.84958- 2 2.90000+ 1 2.90000+ 1 4.17596- 8 9.84394- 2 2.90000+ 1 3.00000+ 1 5.42887- 7 9.84733- 2 2.90000+ 1 3.20000+ 1 4.17596- 8 9.85452- 2 2.90000+ 1 3.30000+ 1 4.17596- 8 9.85499- 2 3.00000+ 1 3.00000+ 1 2.57692- 7 9.85073- 2 3.00000+ 1 3.20000+ 1 8.58976- 8 9.85791- 2 3.00000+ 1 3.30000+ 1 4.29482- 8 9.85838- 2 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.21420- 5 6.46000- 4 6.00000+ 0 4.52499- 3 3.42300- 3 1.00000+ 1 4.00399- 2 1.38944- 2 1.10000+ 1 4.02679- 2 1.45241- 2 1.30000+ 1 1.60100- 3 1.50204- 2 1.40000+ 1 2.39269- 3 1.51527- 2 1.80000+ 1 1.05260- 2 1.71035- 2 1.90000+ 1 1.17490- 2 1.72626- 2 2.10000+ 1 2.56459- 4 1.74825- 2 2.20000+ 1 4.08179- 4 1.75122- 2 2.90000+ 1 2.28359- 3 1.78797- 2 3.00000+ 1 2.54459- 3 1.79136- 2 3.20000+ 1 3.78329- 5 1.79855- 2 3.30000+ 1 6.02888- 5 1.79902- 2 4.30000+ 1 2.91149- 4 1.80283- 2 4.40000+ 1 2.83279- 4 1.80324- 2 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.61007- 3 8.65000- 5 5.00000+ 0 2.20000+ 1 6.01910- 3 1.16180- 4 5.00000+ 0 2.40000+ 1 1.39089- 2 4.04840- 4 5.00000+ 0 2.50000+ 1 1.85666- 2 4.12130- 4 5.00000+ 0 2.70000+ 1 4.76726- 3 4.34310- 4 5.00000+ 0 2.90000+ 1 3.62064- 3 4.83710- 4 5.00000+ 0 3.00000+ 1 3.14365- 3 5.17630- 4 5.00000+ 0 3.20000+ 1 7.37830- 4 5.89510- 4 5.00000+ 0 3.30000+ 1 9.64849- 4 5.94160- 4 6.00000+ 0 1.30000+ 1 2.26564- 1 4.01400- 4 6.00000+ 0 1.40000+ 1 2.81305- 1 5.33700- 4 6.00000+ 0 1.60000+ 1 1.81149- 2 2.35030- 3 6.00000+ 0 1.80000+ 1 7.11639- 3 2.48449- 3 6.00000+ 0 1.90000+ 1 1.04344- 2 2.64361- 3 6.00000+ 0 2.10000+ 1 3.19147- 2 2.86350- 3 6.00000+ 0 2.20000+ 1 3.74790- 2 2.89318- 3 6.00000+ 0 2.40000+ 1 2.12929- 2 3.18184- 3 6.00000+ 0 2.50000+ 1 2.63573- 2 3.18913- 3 6.00000+ 0 2.70000+ 1 3.97933- 3 3.21131- 3 6.00000+ 0 2.90000+ 1 1.48887- 3 3.26071- 3 6.00000+ 0 3.00000+ 1 2.15703- 3 3.29463- 3 6.00000+ 0 3.20000+ 1 4.63125- 3 3.36651- 3 6.00000+ 0 3.30000+ 1 5.29279- 3 3.37116- 3 8.00000+ 0 8.00000+ 0 5.33324- 3 9.14660- 3 8.00000+ 0 1.00000+ 1 1.10545- 2 9.44670- 3 8.00000+ 0 1.10000+ 1 1.66720- 2 1.00764- 2 8.00000+ 0 1.30000+ 1 1.21005- 2 1.05727- 2 8.00000+ 0 1.40000+ 1 1.51612- 2 1.07050- 2 8.00000+ 0 1.60000+ 1 2.33285- 3 1.25216- 2 8.00000+ 0 1.80000+ 1 2.75533- 3 1.26558- 2 8.00000+ 0 1.90000+ 1 4.11286- 3 1.28149- 2 8.00000+ 0 2.10000+ 1 2.77106- 3 1.30348- 2 8.00000+ 0 2.20000+ 1 3.44942- 3 1.30645- 2 8.00000+ 0 2.40000+ 1 2.44646- 4 1.33531- 2 8.00000+ 0 2.50000+ 1 2.62690- 4 1.33604- 2 8.00000+ 0 2.70000+ 1 5.25568- 4 1.33826- 2 8.00000+ 0 2.90000+ 1 5.84428- 4 1.34320- 2 8.00000+ 0 3.00000+ 1 8.51090- 4 1.34659- 2 8.00000+ 0 3.20000+ 1 4.27035- 4 1.35378- 2 8.00000+ 0 3.30000+ 1 5.22362- 4 1.35425- 2 1.00000+ 1 1.00000+ 1 1.72983- 5 9.74680- 3 1.00000+ 1 1.10000+ 1 2.07958- 4 1.03765- 2 1.00000+ 1 1.30000+ 1 7.02695- 4 1.08728- 2 1.00000+ 1 1.40000+ 1 5.35643- 3 1.10051- 2 1.00000+ 1 1.60000+ 1 1.90857- 3 1.28217- 2 1.00000+ 1 1.80000+ 1 2.25640- 6 1.29559- 2 1.00000+ 1 1.90000+ 1 4.23068- 5 1.31150- 2 1.00000+ 1 2.10000+ 1 1.38021- 4 1.33349- 2 1.00000+ 1 2.20000+ 1 7.82017- 4 1.33646- 2 1.00000+ 1 2.40000+ 1 9.04428- 5 1.36532- 2 1.00000+ 1 2.50000+ 1 3.14381- 4 1.36605- 2 1.00000+ 1 2.70000+ 1 4.04263- 4 1.36827- 2 1.00000+ 1 2.90000+ 1 3.76052- 7 1.37321- 2 1.00000+ 1 3.00000+ 1 8.46151- 6 1.37660- 2 1.00000+ 1 3.20000+ 1 2.10592- 5 1.38379- 2 1.00000+ 1 3.30000+ 1 1.09438- 4 1.38426- 2 1.10000+ 1 1.10000+ 1 6.18459- 4 1.10062- 2 1.10000+ 1 1.30000+ 1 1.63874- 3 1.15025- 2 1.10000+ 1 1.40000+ 1 9.96797- 4 1.16348- 2 1.10000+ 1 1.60000+ 1 2.81723- 3 1.34514- 2 1.10000+ 1 1.80000+ 1 5.20877- 5 1.35856- 2 1.10000+ 1 1.90000+ 1 2.33354- 4 1.37447- 2 1.10000+ 1 2.10000+ 1 1.56821- 4 1.39646- 2 1.10000+ 1 2.20000+ 1 7.27740- 5 1.39943- 2 1.10000+ 1 2.40000+ 1 1.30683- 4 1.42829- 2 1.10000+ 1 2.50000+ 1 1.10565- 4 1.42902- 2 1.10000+ 1 2.70000+ 1 5.93823- 4 1.43124- 2 1.10000+ 1 2.90000+ 1 1.10946- 5 1.43618- 2 1.10000+ 1 3.00000+ 1 4.56929- 5 1.43957- 2 1.10000+ 1 3.20000+ 1 2.03088- 5 1.44676- 2 1.10000+ 1 3.30000+ 1 8.64981- 6 1.44723- 2 1.30000+ 1 1.30000+ 1 7.03091- 4 1.19988- 2 1.30000+ 1 1.40000+ 1 2.01930- 2 1.21311- 2 1.30000+ 1 1.60000+ 1 1.85469- 3 1.39477- 2 1.30000+ 1 1.80000+ 1 2.08542- 4 1.40819- 2 1.30000+ 1 1.90000+ 1 4.49804- 4 1.42410- 2 1.30000+ 1 2.10000+ 1 3.13278- 4 1.44609- 2 1.30000+ 1 2.20000+ 1 3.20482- 3 1.44906- 2 1.30000+ 1 2.40000+ 1 2.52915- 4 1.47792- 2 1.30000+ 1 2.50000+ 1 6.92581- 4 1.47865- 2 1.30000+ 1 2.70000+ 1 3.82859- 4 1.48087- 2 1.30000+ 1 2.90000+ 1 4.58821- 5 1.48581- 2 1.30000+ 1 3.00000+ 1 9.51533- 5 1.48920- 2 1.30000+ 1 3.20000+ 1 4.81384- 5 1.49639- 2 1.30000+ 1 3.30000+ 1 4.53181- 4 1.49686- 2 1.40000+ 1 1.40000+ 1 5.54895- 3 1.22634- 2 1.40000+ 1 1.60000+ 1 2.35946- 3 1.40800- 2 1.40000+ 1 1.80000+ 1 1.17937- 3 1.42142- 2 1.40000+ 1 1.90000+ 1 2.73966- 4 1.43733- 2 1.40000+ 1 2.10000+ 1 3.08720- 3 1.45932- 2 1.40000+ 1 2.20000+ 1 1.85893- 3 1.46229- 2 1.40000+ 1 2.40000+ 1 7.61383- 4 1.49115- 2 1.40000+ 1 2.50000+ 1 5.70684- 4 1.49188- 2 1.40000+ 1 2.70000+ 1 4.90214- 4 1.49410- 2 1.40000+ 1 2.90000+ 1 2.44061- 4 1.49904- 2 1.40000+ 1 3.00000+ 1 5.82907- 5 1.50243- 2 1.40000+ 1 3.20000+ 1 4.40372- 4 1.50962- 2 1.40000+ 1 3.30000+ 1 2.66071- 4 1.51009- 2 1.60000+ 1 1.60000+ 1 2.40881- 4 1.58966- 2 1.60000+ 1 1.80000+ 1 4.77254- 4 1.60308- 2 1.60000+ 1 1.90000+ 1 6.98378- 4 1.61899- 2 1.60000+ 1 2.10000+ 1 4.27230- 4 1.64098- 2 1.60000+ 1 2.20000+ 1 5.36104- 4 1.64395- 2 1.60000+ 1 2.40000+ 1 3.12154- 5 1.67281- 2 1.60000+ 1 2.50000+ 1 3.21552- 5 1.67354- 2 1.60000+ 1 2.70000+ 1 1.07181- 4 1.67576- 2 1.60000+ 1 2.90000+ 1 1.01159- 4 1.68070- 2 1.60000+ 1 3.00000+ 1 1.44600- 4 1.68409- 2 1.60000+ 1 3.20000+ 1 6.60026- 5 1.69128- 2 1.60000+ 1 3.30000+ 1 8.12326- 5 1.69175- 2 1.80000+ 1 1.90000+ 1 1.05305- 5 1.63241- 2 1.80000+ 1 2.10000+ 1 3.66681- 5 1.65440- 2 1.80000+ 1 2.20000+ 1 1.79203- 4 1.65737- 2 1.80000+ 1 2.40000+ 1 1.27867- 5 1.68623- 2 1.80000+ 1 2.50000+ 1 5.03946- 5 1.68696- 2 1.80000+ 1 2.70000+ 1 1.01157- 4 1.68918- 2 1.80000+ 1 3.00000+ 1 2.06845- 6 1.69751- 2 1.80000+ 1 3.20000+ 1 5.45314- 6 1.70470- 2 1.80000+ 1 3.30000+ 1 2.51968- 5 1.70516- 2 1.90000+ 1 1.90000+ 1 2.12484- 5 1.64832- 2 1.90000+ 1 2.10000+ 1 4.71974- 5 1.67031- 2 1.90000+ 1 2.20000+ 1 2.46327- 5 1.67328- 2 1.90000+ 1 2.40000+ 1 2.85820- 5 1.70214- 2 1.90000+ 1 2.50000+ 1 2.35046- 5 1.70287- 2 1.90000+ 1 2.70000+ 1 1.47232- 4 1.70509- 2 1.90000+ 1 2.90000+ 1 2.25648- 6 1.71003- 2 1.90000+ 1 3.00000+ 1 8.27378- 6 1.71342- 2 1.90000+ 1 3.20000+ 1 6.20519- 6 1.72061- 2 1.90000+ 1 3.30000+ 1 3.19663- 6 1.72108- 2 2.10000+ 1 2.10000+ 1 3.23423- 5 1.69230- 2 2.10000+ 1 2.20000+ 1 5.36671- 4 1.69527- 2 2.10000+ 1 2.40000+ 1 3.89246- 5 1.72413- 2 2.10000+ 1 2.50000+ 1 8.06660- 5 1.72486- 2 2.10000+ 1 2.70000+ 1 8.81910- 5 1.72708- 2 2.10000+ 1 2.90000+ 1 7.89730- 6 1.73202- 2 2.10000+ 1 3.00000+ 1 1.01539- 5 1.73541- 2 2.10000+ 1 3.20000+ 1 9.77828- 6 1.74260- 2 2.10000+ 1 3.30000+ 1 7.70934- 5 1.74307- 2 2.20000+ 1 2.20000+ 1 1.67162- 4 1.69824- 2 2.20000+ 1 2.40000+ 1 9.43930- 5 1.72710- 2 2.20000+ 1 2.50000+ 1 7.85996- 5 1.72783- 2 2.20000+ 1 2.70000+ 1 1.11137- 4 1.73005- 2 2.20000+ 1 2.90000+ 1 3.74200- 5 1.73499- 2 2.20000+ 1 3.00000+ 1 5.45320- 6 1.73838- 2 2.20000+ 1 3.20000+ 1 7.78472- 5 1.74557- 2 2.20000+ 1 3.30000+ 1 4.83263- 5 1.74603- 2 2.40000+ 1 2.40000+ 1 1.15829- 6 1.75597- 2 2.40000+ 1 2.50000+ 1 2.06561- 5 1.75670- 2 2.40000+ 1 2.70000+ 1 6.37075- 6 1.75891- 2 2.40000+ 1 2.90000+ 1 2.50965- 6 1.76385- 2 2.40000+ 1 3.00000+ 1 5.79166- 6 1.76725- 2 2.40000+ 1 3.20000+ 1 5.79166- 6 1.77443- 2 2.40000+ 1 3.30000+ 1 1.31278- 5 1.77490- 2 2.50000+ 1 2.50000+ 1 4.81290- 6 1.75743- 2 2.50000+ 1 2.70000+ 1 7.11462- 6 1.75964- 2 2.50000+ 1 2.90000+ 1 1.08815- 5 1.76458- 2 2.50000+ 1 3.00000+ 1 5.23144- 6 1.76798- 2 2.50000+ 1 3.20000+ 1 1.21367- 5 1.77516- 2 2.50000+ 1 3.30000+ 1 1.21367- 5 1.77563- 2 2.70000+ 1 2.70000+ 1 1.55821- 5 1.76186- 2 2.70000+ 1 2.90000+ 1 2.81981- 5 1.76680- 2 2.70000+ 1 3.00000+ 1 4.00691- 5 1.77019- 2 2.70000+ 1 3.20000+ 1 1.78094- 5 1.77738- 2 2.70000+ 1 3.30000+ 1 2.22610- 5 1.77785- 2 2.90000+ 1 3.00000+ 1 5.63267- 7 1.77513- 2 2.90000+ 1 3.20000+ 1 1.68979- 6 1.78232- 2 2.90000+ 1 3.30000+ 1 7.88592- 6 1.78279- 2 3.00000+ 1 3.00000+ 1 1.25821- 6 1.77853- 2 3.00000+ 1 3.20000+ 1 2.20187- 6 1.78571- 2 3.00000+ 1 3.30000+ 1 1.25821- 6 1.78618- 2 3.20000+ 1 3.20000+ 1 7.58064- 7 1.79290- 2 3.20000+ 1 3.30000+ 1 1.13709- 5 1.79337- 2 3.30000+ 1 3.30000+ 1 3.38579- 6 1.79383- 2 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.87351- 5 2.77700- 3 8.00000+ 0 9.77885- 3 1.29483- 2 1.10000+ 1 4.41872- 4 1.38781- 2 1.30000+ 1 3.55292- 1 1.43744- 2 1.60000+ 1 2.57791- 3 1.63233- 2 1.90000+ 1 1.27011- 4 1.66166- 2 2.10000+ 1 7.57814- 2 1.68365- 2 2.40000+ 1 3.80652- 4 1.71548- 2 2.70000+ 1 6.04373- 4 1.71843- 2 3.00000+ 1 2.74231- 5 1.72676- 2 3.20000+ 1 1.19291- 2 1.73395- 2 4.10000+ 1 1.00271- 4 1.73703- 2 4.40000+ 1 3.05152- 6 1.73864- 2 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 4.54197- 3 1.70430- 3 6.00000+ 0 1.80000+ 1 3.45072- 2 1.83849- 3 6.00000+ 0 1.90000+ 1 8.96915- 3 1.99761- 3 6.00000+ 0 2.10000+ 1 3.30599- 2 2.21750- 3 6.00000+ 0 2.20000+ 1 1.12707- 2 2.24718- 3 6.00000+ 0 2.40000+ 1 1.49079- 3 2.53584- 3 6.00000+ 0 2.50000+ 1 2.19358- 3 2.54313- 3 6.00000+ 0 2.70000+ 1 9.65588- 4 2.56531- 3 6.00000+ 0 2.90000+ 1 6.70405- 3 2.61471- 3 6.00000+ 0 3.00000+ 1 1.80742- 3 2.64863- 3 6.00000+ 0 3.20000+ 1 4.89164- 3 2.72051- 3 6.00000+ 0 3.30000+ 1 1.65858- 3 2.72516- 3 8.00000+ 0 8.00000+ 0 5.04430- 4 8.50060- 3 8.00000+ 0 1.00000+ 1 1.89379- 2 8.80070- 3 8.00000+ 0 1.10000+ 1 1.73128- 3 9.43040- 3 8.00000+ 0 1.30000+ 1 3.20957- 3 9.92670- 3 8.00000+ 0 1.40000+ 1 1.51899- 3 1.00590- 2 8.00000+ 0 1.60000+ 1 1.98010- 4 1.18756- 2 8.00000+ 0 1.80000+ 1 3.11630- 3 1.20098- 2 8.00000+ 0 1.90000+ 1 3.83407- 4 1.21689- 2 8.00000+ 0 2.10000+ 1 5.21120- 4 1.23888- 2 8.00000+ 0 2.20000+ 1 2.10250- 4 1.24185- 2 8.00000+ 0 2.40000+ 1 8.47494- 5 1.27071- 2 8.00000+ 0 2.50000+ 1 5.98985- 5 1.27144- 2 8.00000+ 0 2.70000+ 1 4.31892- 5 1.27366- 2 8.00000+ 0 2.90000+ 1 6.05499- 4 1.27860- 2 8.00000+ 0 3.00000+ 1 7.74138- 5 1.28199- 2 8.00000+ 0 3.20000+ 1 7.57847- 5 1.28918- 2 8.00000+ 0 3.30000+ 1 2.93373- 5 1.28965- 2 1.00000+ 1 1.00000+ 1 1.99998- 2 9.10080- 3 1.00000+ 1 1.10000+ 1 4.84890- 2 9.73050- 3 1.00000+ 1 1.30000+ 1 2.48381- 2 1.02268- 2 1.00000+ 1 1.40000+ 1 3.38861- 2 1.03591- 2 1.00000+ 1 1.60000+ 1 4.98996- 3 1.21757- 2 1.00000+ 1 1.80000+ 1 8.38606- 3 1.23099- 2 1.00000+ 1 1.90000+ 1 1.17467- 2 1.24690- 2 1.00000+ 1 2.10000+ 1 5.68068- 3 1.26889- 2 1.00000+ 1 2.20000+ 1 7.74381- 3 1.27186- 2 1.00000+ 1 2.40000+ 1 4.50621- 4 1.30072- 2 1.00000+ 1 2.50000+ 1 3.80950- 4 1.30145- 2 1.00000+ 1 2.70000+ 1 1.16080- 3 1.30367- 2 1.00000+ 1 2.90000+ 1 1.72584- 3 1.30861- 2 1.00000+ 1 3.00000+ 1 2.42225- 3 1.31200- 2 1.00000+ 1 3.20000+ 1 8.76016- 4 1.31919- 2 1.00000+ 1 3.30000+ 1 1.17427- 3 1.31966- 2 1.10000+ 1 1.10000+ 1 1.06387- 3 1.03602- 2 1.10000+ 1 1.30000+ 1 2.10876- 2 1.08565- 2 1.10000+ 1 1.40000+ 1 3.13401- 3 1.09888- 2 1.10000+ 1 1.60000+ 1 3.81367- 4 1.28054- 2 1.10000+ 1 1.80000+ 1 8.09204- 3 1.29396- 2 1.10000+ 1 1.90000+ 1 4.43299- 4 1.30987- 2 1.10000+ 1 2.10000+ 1 4.07973- 3 1.33186- 2 1.10000+ 1 2.20000+ 1 5.86327- 4 1.33483- 2 1.10000+ 1 2.40000+ 1 1.69086- 4 1.36369- 2 1.10000+ 1 2.50000+ 1 8.71964- 5 1.36442- 2 1.10000+ 1 2.70000+ 1 8.51553- 5 1.36664- 2 1.10000+ 1 2.90000+ 1 1.57604- 3 1.37158- 2 1.10000+ 1 3.00000+ 1 8.84185- 5 1.37497- 2 1.10000+ 1 3.20000+ 1 6.09122- 4 1.38216- 2 1.10000+ 1 3.30000+ 1 8.59694- 5 1.38263- 2 1.30000+ 1 1.30000+ 1 1.99727- 2 1.13528- 2 1.30000+ 1 1.40000+ 1 7.82667- 2 1.14851- 2 1.30000+ 1 1.60000+ 1 8.49938- 4 1.33017- 2 1.30000+ 1 1.80000+ 1 3.99753- 3 1.34359- 2 1.30000+ 1 1.90000+ 1 4.70746- 3 1.35950- 2 1.30000+ 1 2.10000+ 1 7.57805- 3 1.38149- 2 1.30000+ 1 2.20000+ 1 1.60291- 2 1.38446- 2 1.30000+ 1 2.40000+ 1 1.52718- 3 1.41332- 2 1.30000+ 1 2.50000+ 1 3.06325- 3 1.41405- 2 1.30000+ 1 2.70000+ 1 1.98441- 4 1.41627- 2 1.30000+ 1 2.90000+ 1 7.79844- 4 1.42121- 2 1.30000+ 1 3.00000+ 1 9.53862- 4 1.42460- 2 1.30000+ 1 3.20000+ 1 1.13392- 3 1.43179- 2 1.30000+ 1 3.30000+ 1 2.38286- 3 1.43226- 2 1.40000+ 1 1.40000+ 1 3.81206- 3 1.16174- 2 1.40000+ 1 1.60000+ 1 3.22697- 4 1.34340- 2 1.40000+ 1 1.80000+ 1 4.79890- 3 1.35682- 2 1.40000+ 1 1.90000+ 1 6.45013- 4 1.37273- 2 1.40000+ 1 2.10000+ 1 1.21769- 2 1.39472- 2 1.40000+ 1 2.20000+ 1 1.42160- 3 1.39769- 2 1.40000+ 1 2.40000+ 1 6.08311- 4 1.42655- 2 1.40000+ 1 2.50000+ 1 2.32243- 4 1.42728- 2 1.40000+ 1 2.70000+ 1 7.17111- 5 1.42950- 2 1.40000+ 1 2.90000+ 1 9.00841- 4 1.43444- 2 1.40000+ 1 3.00000+ 1 1.28343- 4 1.43783- 2 1.40000+ 1 3.20000+ 1 1.74791- 3 1.44502- 2 1.40000+ 1 3.30000+ 1 2.08610- 4 1.44549- 2 1.60000+ 1 1.60000+ 1 1.87434- 5 1.52506- 2 1.60000+ 1 1.80000+ 1 8.25115- 4 1.53848- 2 1.60000+ 1 1.90000+ 1 8.47492- 5 1.55439- 2 1.60000+ 1 2.10000+ 1 1.34460- 4 1.57638- 2 1.60000+ 1 2.20000+ 1 4.44122- 5 1.57935- 2 1.60000+ 1 2.40000+ 1 1.95574- 5 1.60821- 2 1.60000+ 1 2.50000+ 1 1.10009- 5 1.60894- 2 1.60000+ 1 2.70000+ 1 8.14909- 6 1.61116- 2 1.60000+ 1 2.90000+ 1 1.60538- 4 1.61610- 2 1.60000+ 1 3.00000+ 1 1.71123- 5 1.61949- 2 1.60000+ 1 3.20000+ 1 1.95574- 5 1.62668- 2 1.60000+ 1 3.30000+ 1 6.11193- 6 1.62715- 2 1.80000+ 1 1.80000+ 1 8.34891- 4 1.55190- 2 1.80000+ 1 1.90000+ 1 1.96522- 3 1.56781- 2 1.80000+ 1 2.10000+ 1 9.01293- 4 1.58980- 2 1.80000+ 1 2.20000+ 1 1.10827- 3 1.59277- 2 1.80000+ 1 2.40000+ 1 5.98982- 5 1.62163- 2 1.80000+ 1 2.50000+ 1 3.95218- 5 1.62236- 2 1.80000+ 1 2.70000+ 1 1.91903- 4 1.62458- 2 1.80000+ 1 2.90000+ 1 3.39820- 4 1.62952- 2 1.80000+ 1 3.00000+ 1 4.05414- 4 1.63291- 2 1.80000+ 1 3.20000+ 1 1.38530- 4 1.64010- 2 1.80000+ 1 3.30000+ 1 1.68279- 4 1.64056- 2 1.90000+ 1 1.90000+ 1 4.64500- 5 1.58372- 2 1.90000+ 1 2.10000+ 1 9.17597- 4 1.60571- 2 1.90000+ 1 2.20000+ 1 1.22641- 4 1.60868- 2 1.90000+ 1 2.40000+ 1 3.30049- 5 1.63754- 2 1.90000+ 1 2.50000+ 1 1.54833- 5 1.63827- 2 1.90000+ 1 2.70000+ 1 1.91507- 5 1.64049- 2 1.90000+ 1 2.90000+ 1 3.82603- 4 1.64543- 2 1.90000+ 1 3.00000+ 1 1.83356- 5 1.64882- 2 1.90000+ 1 3.20000+ 1 1.37315- 4 1.65601- 2 1.90000+ 1 3.30000+ 1 1.79286- 5 1.65648- 2 2.10000+ 1 2.10000+ 1 7.13424- 4 1.62770- 2 2.10000+ 1 2.20000+ 1 2.60039- 3 1.63067- 2 2.10000+ 1 2.40000+ 1 1.98436- 4 1.65953- 2 2.10000+ 1 2.50000+ 1 4.00920- 4 1.66026- 2 2.10000+ 1 2.70000+ 1 3.13731- 5 1.66248- 2 2.10000+ 1 2.90000+ 1 1.74792- 4 1.66742- 2 2.10000+ 1 3.00000+ 1 1.86195- 4 1.67081- 2 2.10000+ 1 3.20000+ 1 2.13090- 4 1.67800- 2 2.10000+ 1 3.30000+ 1 3.89109- 4 1.67847- 2 2.20000+ 1 2.20000+ 1 1.34051- 4 1.63364- 2 2.20000+ 1 2.40000+ 1 8.59701- 5 1.66250- 2 2.20000+ 1 2.50000+ 1 3.34114- 5 1.66323- 2 2.20000+ 1 2.70000+ 1 9.77898- 6 1.66545- 2 2.20000+ 1 2.90000+ 1 2.08613- 4 1.67039- 2 2.20000+ 1 3.00000+ 1 2.44457- 5 1.67378- 2 2.20000+ 1 3.20000+ 1 3.75664- 4 1.68097- 2 2.20000+ 1 3.30000+ 1 3.95217- 5 1.68143- 2 2.40000+ 1 2.40000+ 1 4.88933- 6 1.69137- 2 2.40000+ 1 2.50000+ 1 3.34107- 5 1.69210- 2 2.40000+ 1 2.70000+ 1 4.48191- 6 1.69431- 2 2.40000+ 1 2.90000+ 1 1.14086- 5 1.69925- 2 2.40000+ 1 3.00000+ 1 6.51902- 6 1.70265- 2 2.40000+ 1 3.20000+ 1 2.77054- 5 1.70983- 2 2.40000+ 1 3.30000+ 1 1.18156- 5 1.71030- 2 2.50000+ 1 2.50000+ 1 2.03715- 6 1.69283- 2 2.50000+ 1 2.70000+ 1 2.44458- 6 1.69504- 2 2.50000+ 1 2.90000+ 1 6.92641- 6 1.69998- 2 2.50000+ 1 3.00000+ 1 2.85212- 6 1.70338- 2 2.50000+ 1 3.20000+ 1 5.58201- 5 1.71056- 2 2.50000+ 1 3.30000+ 1 4.48202- 6 1.71103- 2 2.70000+ 1 2.70000+ 1 8.14895- 7 1.69726- 2 2.70000+ 1 2.90000+ 1 3.74850- 5 1.70220- 2 2.70000+ 1 3.00000+ 1 3.66709- 6 1.70559- 2 2.70000+ 1 3.20000+ 1 4.48194- 6 1.71278- 2 2.70000+ 1 3.30000+ 1 1.22228- 6 1.71325- 2 2.90000+ 1 2.90000+ 1 3.46327- 5 1.70714- 2 2.90000+ 1 3.00000+ 1 7.90461- 5 1.71053- 2 2.90000+ 1 3.20000+ 1 2.68914- 5 1.71772- 2 2.90000+ 1 3.30000+ 1 3.17807- 5 1.71819- 2 3.00000+ 1 3.00000+ 1 2.03714- 6 1.71393- 2 3.00000+ 1 3.20000+ 1 2.77059- 5 1.72111- 2 3.00000+ 1 3.30000+ 1 3.66713- 6 1.72158- 2 3.20000+ 1 3.20000+ 1 1.54786- 5 1.72830- 2 3.20000+ 1 3.30000+ 1 5.47718- 5 1.72877- 2 3.30000+ 1 3.30000+ 1 3.00392- 6 1.72923- 2 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.78480- 2 1.01713- 2 1.00000+ 1 2.06789- 4 1.04714- 2 1.10000+ 1 1.87110- 4 1.11011- 2 1.30000+ 1 3.09219- 2 1.15974- 2 1.40000+ 1 2.72069- 1 1.17297- 2 1.60000+ 1 4.26739- 3 1.35463- 2 1.80000+ 1 4.66469- 5 1.36805- 2 1.90000+ 1 4.91499- 5 1.38396- 2 2.10000+ 1 5.97738- 3 1.40595- 2 2.20000+ 1 5.43029- 2 1.40892- 2 2.40000+ 1 5.83608- 5 1.43778- 2 2.50000+ 1 3.24379- 4 1.43851- 2 2.70000+ 1 9.91337- 4 1.44073- 2 2.90000+ 1 9.92197- 6 1.44567- 2 3.00000+ 1 1.07280- 5 1.44906- 2 3.20000+ 1 9.24038- 4 1.45625- 2 3.30000+ 1 8.33348- 3 1.45672- 2 4.10000+ 1 1.64100- 4 1.45933- 2 4.30000+ 1 1.24030- 6 1.46053- 2 4.40000+ 1 1.15590- 6 1.46094- 2 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.88940- 4 5.72360- 3 8.00000+ 0 1.00000+ 1 2.78656- 4 6.02370- 3 8.00000+ 0 1.10000+ 1 1.95885- 2 6.65340- 3 8.00000+ 0 1.30000+ 1 2.68073- 3 7.14970- 3 8.00000+ 0 1.40000+ 1 4.89112- 3 7.28200- 3 8.00000+ 0 1.60000+ 1 2.33622- 4 9.09860- 3 8.00000+ 0 1.80000+ 1 4.94835- 5 9.23279- 3 8.00000+ 0 1.90000+ 1 3.14591- 3 9.39191- 3 8.00000+ 0 2.10000+ 1 2.98118- 4 9.61180- 3 8.00000+ 0 2.20000+ 1 5.06992- 4 9.64148- 3 8.00000+ 0 2.40000+ 1 2.68498- 4 9.93014- 3 8.00000+ 0 2.50000+ 1 4.66442- 4 9.93743- 3 8.00000+ 0 2.70000+ 1 5.11050- 5 9.95961- 3 8.00000+ 0 2.90000+ 1 9.73433- 6 1.00090- 2 8.00000+ 0 3.00000+ 1 5.95841- 4 1.00429- 2 8.00000+ 0 3.20000+ 1 4.05609- 5 1.01148- 2 8.00000+ 0 3.30000+ 1 6.57041- 5 1.01195- 2 1.00000+ 1 1.00000+ 1 1.33847- 5 6.32380- 3 1.00000+ 1 1.10000+ 1 3.28568- 2 6.95350- 3 1.00000+ 1 1.30000+ 1 1.47152- 3 7.44980- 3 1.00000+ 1 1.40000+ 1 1.19759- 2 7.58210- 3 1.00000+ 1 1.60000+ 1 5.80016- 5 9.39870- 3 1.00000+ 1 1.80000+ 1 1.09513- 5 9.53289- 3 1.00000+ 1 1.90000+ 1 5.48388- 3 9.69201- 3 1.00000+ 1 2.10000+ 1 2.87167- 4 9.91190- 3 1.00000+ 1 2.20000+ 1 1.93771- 3 9.94158- 3 1.00000+ 1 2.40000+ 1 2.49458- 4 1.02302- 2 1.00000+ 1 2.50000+ 1 6.14113- 4 1.02375- 2 1.00000+ 1 2.70000+ 1 1.29798- 5 1.02597- 2 1.00000+ 1 2.90000+ 1 2.83921- 6 1.03091- 2 1.00000+ 1 3.00000+ 1 1.04642- 3 1.03430- 2 1.00000+ 1 3.20000+ 1 4.38071- 5 1.04149- 2 1.00000+ 1 3.30000+ 1 2.77842- 4 1.04196- 2 1.10000+ 1 1.10000+ 1 4.04666- 2 7.58320- 3 1.10000+ 1 1.30000+ 1 4.24110- 2 8.07950- 3 1.10000+ 1 1.40000+ 1 5.58652- 2 8.21180- 3 1.10000+ 1 1.60000+ 1 5.07350- 3 1.00284- 2 1.10000+ 1 1.80000+ 1 7.64633- 3 1.01626- 2 1.10000+ 1 1.90000+ 1 1.63788- 2 1.03217- 2 1.10000+ 1 2.10000+ 1 9.11046- 3 1.05416- 2 1.10000+ 1 2.20000+ 1 1.18702- 2 1.05713- 2 1.10000+ 1 2.40000+ 1 8.79376- 4 1.08599- 2 1.10000+ 1 2.50000+ 1 1.07000- 3 1.08672- 2 1.10000+ 1 2.70000+ 1 1.17583- 3 1.08894- 2 1.10000+ 1 2.90000+ 1 1.60213- 3 1.09388- 2 1.10000+ 1 3.00000+ 1 3.27129- 3 1.09727- 2 1.10000+ 1 3.20000+ 1 1.39126- 3 1.10446- 2 1.10000+ 1 3.30000+ 1 1.77747- 3 1.10493- 2 1.30000+ 1 1.30000+ 1 5.75196- 3 8.57580- 3 1.30000+ 1 1.40000+ 1 1.07473- 1 8.70810- 3 1.30000+ 1 1.60000+ 1 6.50189- 4 1.05247- 2 1.30000+ 1 1.80000+ 1 3.67882- 4 1.06589- 2 1.30000+ 1 1.90000+ 1 6.42159- 3 1.08180- 2 1.30000+ 1 2.10000+ 1 2.08314- 3 1.10379- 2 1.30000+ 1 2.20000+ 1 1.62824- 2 1.10676- 2 1.30000+ 1 2.40000+ 1 4.79840- 4 1.13562- 2 1.30000+ 1 2.50000+ 1 1.61626- 3 1.13635- 2 1.30000+ 1 2.70000+ 1 1.49271- 4 1.13857- 2 1.30000+ 1 2.90000+ 1 7.78798- 5 1.14351- 2 1.30000+ 1 3.00000+ 1 1.20056- 3 1.14690- 2 1.30000+ 1 3.20000+ 1 3.09887- 4 1.15409- 2 1.30000+ 1 3.30000+ 1 2.29540- 3 1.15456- 2 1.40000+ 1 1.40000+ 1 7.12733- 2 8.84040- 3 1.40000+ 1 1.60000+ 1 1.19818- 3 1.06570- 2 1.40000+ 1 1.80000+ 1 2.51725- 3 1.07912- 2 1.40000+ 1 1.90000+ 1 9.51201- 3 1.09503- 2 1.40000+ 1 2.10000+ 1 1.96403- 2 1.11702- 2 1.40000+ 1 2.20000+ 1 2.47507- 2 1.11999- 2 1.40000+ 1 2.40000+ 1 5.04865- 3 1.14885- 2 1.40000+ 1 2.50000+ 1 4.57414- 3 1.14958- 2 1.40000+ 1 2.70000+ 1 2.77435- 4 1.15180- 2 1.40000+ 1 2.90000+ 1 5.16745- 4 1.15674- 2 1.40000+ 1 3.00000+ 1 1.83614- 3 1.16013- 2 1.40000+ 1 3.20000+ 1 2.91631- 3 1.16732- 2 1.40000+ 1 3.30000+ 1 3.58841- 3 1.16779- 2 1.60000+ 1 1.60000+ 1 2.39302- 5 1.24736- 2 1.60000+ 1 1.80000+ 1 1.13568- 5 1.26078- 2 1.60000+ 1 1.90000+ 1 8.15260- 4 1.27669- 2 1.60000+ 1 2.10000+ 1 7.82810- 5 1.29868- 2 1.60000+ 1 2.20000+ 1 1.33041- 4 1.30165- 2 1.60000+ 1 2.40000+ 1 3.48812- 5 1.33051- 2 1.60000+ 1 2.50000+ 1 6.89485- 5 1.33124- 2 1.60000+ 1 2.70000+ 1 1.05460- 5 1.33346- 2 1.60000+ 1 2.90000+ 1 2.43352- 6 1.33840- 2 1.60000+ 1 3.00000+ 1 1.54127- 4 1.34179- 2 1.60000+ 1 3.20000+ 1 1.09509- 5 1.34898- 2 1.60000+ 1 3.30000+ 1 1.74411- 5 1.34945- 2 1.80000+ 1 1.80000+ 1 4.05618- 7 1.27420- 2 1.80000+ 1 1.90000+ 1 1.26797- 3 1.29011- 2 1.80000+ 1 2.10000+ 1 6.69243- 5 1.31210- 2 1.80000+ 1 2.20000+ 1 4.39673- 4 1.31507- 2 1.80000+ 1 2.40000+ 1 3.73166- 5 1.34393- 2 1.80000+ 1 2.50000+ 1 8.59933- 5 1.34466- 2 1.80000+ 1 2.70000+ 1 2.43359- 6 1.34688- 2 1.80000+ 1 3.00000+ 1 2.41755- 4 1.35521- 2 1.80000+ 1 3.20000+ 1 1.01404- 5 1.36240- 2 1.80000+ 1 3.30000+ 1 6.36790- 5 1.36286- 2 1.90000+ 1 1.90000+ 1 1.58517- 3 1.30602- 2 1.90000+ 1 2.10000+ 1 1.38271- 3 1.32801- 2 1.90000+ 1 2.20000+ 1 1.99027- 3 1.33098- 2 1.90000+ 1 2.40000+ 1 1.09513- 4 1.35984- 2 1.90000+ 1 2.50000+ 1 1.40341- 4 1.36057- 2 1.90000+ 1 2.70000+ 1 1.89008- 4 1.36279- 2 1.90000+ 1 2.90000+ 1 2.65268- 4 1.36773- 2 1.90000+ 1 3.00000+ 1 6.27078- 4 1.37112- 2 1.90000+ 1 3.20000+ 1 2.11323- 4 1.37831- 2 1.90000+ 1 3.30000+ 1 2.97304- 4 1.37878- 2 2.10000+ 1 2.10000+ 1 1.80900- 4 1.35000- 2 2.10000+ 1 2.20000+ 1 3.11706- 3 1.35297- 2 2.10000+ 1 2.40000+ 1 5.75962- 5 1.38183- 2 2.10000+ 1 2.50000+ 1 1.84157- 4 1.38256- 2 2.10000+ 1 2.70000+ 1 1.82533- 5 1.38478- 2 2.10000+ 1 2.90000+ 1 1.37905- 5 1.38972- 2 2.10000+ 1 3.00000+ 1 2.58772- 4 1.39311- 2 2.10000+ 1 3.20000+ 1 5.35403- 5 1.40030- 2 2.10000+ 1 3.30000+ 1 4.42522- 4 1.40077- 2 2.20000+ 1 2.20000+ 1 2.16180- 3 1.35594- 2 2.20000+ 1 2.40000+ 1 5.97448- 4 1.38480- 2 2.20000+ 1 2.50000+ 1 5.32149- 4 1.38553- 2 2.20000+ 1 2.70000+ 1 3.12316- 5 1.38775- 2 2.20000+ 1 2.90000+ 1 9.12636- 5 1.39269- 2 2.20000+ 1 3.00000+ 1 3.82891- 4 1.39608- 2 2.20000+ 1 3.20000+ 1 4.66038- 4 1.40327- 2 2.20000+ 1 3.30000+ 1 6.27067- 4 1.40373- 2 2.40000+ 1 2.40000+ 1 2.46385- 6 1.41367- 2 2.40000+ 1 2.50000+ 1 7.67890- 5 1.41440- 2 2.40000+ 1 2.70000+ 1 6.98079- 6 1.41661- 2 2.40000+ 1 2.90000+ 1 7.39183- 6 1.42155- 2 2.40000+ 1 3.00000+ 1 2.01221- 5 1.42495- 2 2.40000+ 1 3.20000+ 1 8.21271- 6 1.43213- 2 2.40000+ 1 3.30000+ 1 8.13092- 5 1.43260- 2 2.50000+ 1 2.50000+ 1 2.67705- 5 1.41513- 2 2.50000+ 1 2.70000+ 1 1.46025- 5 1.41734- 2 2.50000+ 1 2.90000+ 1 1.62241- 5 1.42228- 2 2.50000+ 1 3.00000+ 1 2.55548- 5 1.42568- 2 2.50000+ 1 3.20000+ 1 2.51489- 5 1.43286- 2 2.50000+ 1 3.30000+ 1 7.13887- 5 1.43333- 2 2.70000+ 1 2.70000+ 1 1.39714- 6 1.41956- 2 2.70000+ 1 2.90000+ 1 4.65737- 7 1.42450- 2 2.70000+ 1 3.00000+ 1 4.09833- 5 1.42789- 2 2.70000+ 1 3.20000+ 1 2.79429- 6 1.43508- 2 2.70000+ 1 3.30000+ 1 4.65737- 6 1.43555- 2 2.90000+ 1 3.00000+ 1 5.95913- 5 1.43283- 2 2.90000+ 1 3.20000+ 1 2.38362- 6 1.44002- 2 2.90000+ 1 3.30000+ 1 1.57319- 5 1.44049- 2 3.00000+ 1 3.00000+ 1 7.23274- 5 1.43623- 2 3.00000+ 1 3.20000+ 1 4.58559- 5 1.44341- 2 3.00000+ 1 3.30000+ 1 6.66562- 5 1.44388- 2 3.20000+ 1 3.20000+ 1 4.05619- 6 1.45060- 2 3.20000+ 1 3.30000+ 1 6.61166- 5 1.45107- 2 3.30000+ 1 3.30000+ 1 4.54289- 5 1.45153- 2 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.03291- 5 3.00100- 4 1.10000+ 1 6.93054- 4 9.29800- 4 1.80000+ 1 1.95671- 3 3.50919- 3 1.90000+ 1 1.31931- 3 3.66831- 3 2.90000+ 1 4.63683- 4 4.28541- 3 3.00000+ 1 3.43432- 4 4.31933- 3 4.30000+ 1 5.99254- 5 4.43401- 3 4.40000+ 1 3.92582- 5 4.43806- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 1.73805- 2 5.89400- 5 1.00000+ 1 2.50000+ 1 2.30149- 2 6.62300- 5 1.00000+ 1 2.70000+ 1 1.30860- 2 8.84100- 5 1.00000+ 1 2.90000+ 1 1.31028- 2 1.37810- 4 1.00000+ 1 3.00000+ 1 1.65295- 2 1.71730- 4 1.00000+ 1 3.20000+ 1 8.45394- 3 2.43610- 4 1.00000+ 1 3.30000+ 1 1.11737- 2 2.48260- 4 1.00000+ 1 4.10000+ 1 1.96760- 3 2.74380- 4 1.00000+ 1 4.30000+ 1 1.45018- 3 2.86410- 4 1.00000+ 1 4.40000+ 1 1.57151- 3 2.90460- 4 1.10000+ 1 1.80000+ 1 5.55780- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 5.05951- 2 1.50410- 4 1.10000+ 1 2.10000+ 1 1.40897- 2 3.70300- 4 1.10000+ 1 2.20000+ 1 2.75358- 2 3.99980- 4 1.10000+ 1 2.40000+ 1 1.86126- 1 6.88640- 4 1.10000+ 1 2.50000+ 1 2.28284- 1 6.95930- 4 1.10000+ 1 2.70000+ 1 1.09965- 2 7.18110- 4 1.10000+ 1 2.90000+ 1 1.08208- 2 7.67510- 4 1.10000+ 1 3.00000+ 1 1.01484- 2 8.01430- 4 1.10000+ 1 3.20000+ 1 2.24463- 3 8.73310- 4 1.10000+ 1 3.30000+ 1 4.35862- 3 8.77960- 4 1.10000+ 1 4.10000+ 1 1.69331- 3 9.04080- 4 1.10000+ 1 4.30000+ 1 1.22998- 3 9.16110- 4 1.10000+ 1 4.40000+ 1 9.92823- 4 9.20160- 4 1.30000+ 1 1.60000+ 1 2.57559- 2 3.53400- 4 1.30000+ 1 1.80000+ 1 5.52872- 3 4.87590- 4 1.30000+ 1 1.90000+ 1 7.81503- 3 6.46710- 4 1.30000+ 1 2.10000+ 1 8.84429- 3 8.66600- 4 1.30000+ 1 2.20000+ 1 1.07853- 2 8.96280- 4 1.30000+ 1 2.40000+ 1 9.47518- 3 1.18494- 3 1.30000+ 1 2.50000+ 1 8.80115- 3 1.19223- 3 1.30000+ 1 2.70000+ 1 3.74860- 3 1.21441- 3 1.30000+ 1 2.90000+ 1 9.09823- 4 1.26381- 3 1.30000+ 1 3.00000+ 1 1.20589- 3 1.29773- 3 1.30000+ 1 3.20000+ 1 1.10716- 3 1.36961- 3 1.30000+ 1 3.30000+ 1 1.44591- 3 1.37426- 3 1.30000+ 1 4.10000+ 1 5.38418- 4 1.40038- 3 1.30000+ 1 4.30000+ 1 1.01998- 4 1.41241- 3 1.30000+ 1 4.40000+ 1 1.14162- 4 1.41646- 3 1.40000+ 1 1.60000+ 1 3.55291- 2 4.85700- 4 1.40000+ 1 1.80000+ 1 8.91910- 4 6.19890- 4 1.40000+ 1 1.90000+ 1 1.13612- 2 7.79010- 4 1.40000+ 1 2.10000+ 1 1.22181- 2 9.98900- 4 1.40000+ 1 2.20000+ 1 1.70438- 2 1.02858- 3 1.40000+ 1 2.40000+ 1 1.09535- 2 1.31724- 3 1.40000+ 1 2.50000+ 1 1.67862- 2 1.32453- 3 1.40000+ 1 2.70000+ 1 5.10437- 3 1.34671- 3 1.40000+ 1 2.90000+ 1 1.92119- 4 1.39611- 3 1.40000+ 1 3.00000+ 1 1.73399- 3 1.43003- 3 1.40000+ 1 3.20000+ 1 1.67980- 3 1.50191- 3 1.40000+ 1 3.30000+ 1 2.19831- 3 1.50656- 3 1.40000+ 1 4.10000+ 1 7.31482- 4 1.53268- 3 1.40000+ 1 4.30000+ 1 2.29398- 5 1.54471- 3 1.40000+ 1 4.40000+ 1 1.63853- 4 1.54876- 3 1.60000+ 1 1.60000+ 1 2.26586- 3 2.30230- 3 1.60000+ 1 1.80000+ 1 3.98717- 3 2.43649- 3 1.60000+ 1 1.90000+ 1 6.41703- 3 2.59561- 3 1.60000+ 1 2.10000+ 1 7.58683- 3 2.81550- 3 1.60000+ 1 2.20000+ 1 1.06015- 2 2.84518- 3 1.60000+ 1 2.40000+ 1 5.63268- 3 3.13384- 3 1.60000+ 1 2.50000+ 1 7.02589- 3 3.14113- 3 1.60000+ 1 2.70000+ 1 8.53208- 4 3.16331- 3 1.60000+ 1 2.90000+ 1 8.41941- 4 3.21271- 3 1.60000+ 1 3.00000+ 1 1.32106- 3 3.24663- 3 1.60000+ 1 3.20000+ 1 1.14212- 3 3.31851- 3 1.60000+ 1 3.30000+ 1 1.56960- 3 3.32316- 3 1.60000+ 1 4.10000+ 1 1.30106- 4 3.34928- 3 1.60000+ 1 4.30000+ 1 9.78549- 5 3.36131- 3 1.60000+ 1 4.40000+ 1 1.30417- 4 3.36536- 3 1.80000+ 1 1.80000+ 1 1.61394- 4 2.57068- 3 1.80000+ 1 1.90000+ 1 4.90063- 4 2.72980- 3 1.80000+ 1 2.10000+ 1 2.46697- 4 2.94969- 3 1.80000+ 1 2.20000+ 1 1.29143- 4 2.97937- 3 1.80000+ 1 2.40000+ 1 2.95465- 5 3.26803- 3 1.80000+ 1 2.50000+ 1 4.63692- 4 3.27532- 3 1.80000+ 1 2.70000+ 1 5.70117- 4 3.29750- 3 1.80000+ 1 2.90000+ 1 4.98803- 5 3.34690- 3 1.80000+ 1 3.00000+ 1 7.21210- 5 3.38082- 3 1.80000+ 1 3.20000+ 1 3.20893- 5 3.45270- 3 1.80000+ 1 3.30000+ 1 2.35109- 5 3.45735- 3 1.80000+ 1 4.10000+ 1 8.19697- 5 3.48347- 3 1.80000+ 1 4.30000+ 1 5.55990- 6 3.49550- 3 1.80000+ 1 4.40000+ 1 6.83089- 6 3.49955- 3 1.90000+ 1 1.90000+ 1 5.22318- 4 2.88892- 3 1.90000+ 1 2.10000+ 1 5.99031- 4 3.10881- 3 1.90000+ 1 2.20000+ 1 1.36300- 3 3.13849- 3 1.90000+ 1 2.40000+ 1 7.19470- 4 3.42715- 3 1.90000+ 1 2.50000+ 1 1.14994- 3 3.43444- 3 1.90000+ 1 2.70000+ 1 9.22339- 4 3.45662- 3 1.90000+ 1 2.90000+ 1 8.78498- 5 3.50602- 3 1.90000+ 1 3.00000+ 1 1.80772- 4 3.53994- 3 1.90000+ 1 3.20000+ 1 8.95957- 5 3.61182- 3 1.90000+ 1 3.30000+ 1 1.91901- 4 3.61647- 3 1.90000+ 1 4.10000+ 1 1.32647- 4 3.64259- 3 1.90000+ 1 4.30000+ 1 1.00080- 5 3.65462- 3 1.90000+ 1 4.40000+ 1 1.74741- 5 3.65867- 3 2.10000+ 1 2.10000+ 1 9.40427- 5 3.32870- 3 2.10000+ 1 2.20000+ 1 3.04677- 4 3.35838- 3 2.10000+ 1 2.40000+ 1 4.37325- 4 3.64704- 3 2.10000+ 1 2.50000+ 1 2.79616- 3 3.65433- 3 2.10000+ 1 2.70000+ 1 1.06338- 3 3.67651- 3 2.10000+ 1 2.90000+ 1 3.33598- 5 3.72591- 3 2.10000+ 1 3.00000+ 1 9.46788- 5 3.75983- 3 2.10000+ 1 3.20000+ 1 2.23993- 5 3.83171- 3 2.10000+ 1 3.30000+ 1 3.81263- 5 3.83636- 3 2.10000+ 1 4.10000+ 1 1.52034- 4 3.86248- 3 2.10000+ 1 4.30000+ 1 3.65367- 6 3.87451- 3 2.10000+ 1 4.40000+ 1 8.89592- 6 3.87856- 3 2.20000+ 1 2.20000+ 1 2.23672- 4 3.38806- 3 2.20000+ 1 2.40000+ 1 2.54050- 3 3.67672- 3 2.20000+ 1 2.50000+ 1 1.57858- 3 3.68401- 3 2.20000+ 1 2.70000+ 1 1.48003- 3 3.70619- 3 2.20000+ 1 2.90000+ 1 1.98574- 5 3.75559- 3 2.20000+ 1 3.00000+ 1 2.12701- 4 3.78951- 3 2.20000+ 1 3.20000+ 1 3.47889- 5 3.86139- 3 2.20000+ 1 3.30000+ 1 5.43293- 5 3.86604- 3 2.20000+ 1 4.10000+ 1 2.11438- 4 3.89216- 3 2.20000+ 1 4.30000+ 1 2.22397- 6 3.90419- 3 2.20000+ 1 4.40000+ 1 2.00147- 5 3.90824- 3 2.40000+ 1 2.40000+ 1 6.15699- 4 3.96538- 3 2.40000+ 1 2.50000+ 1 4.06116- 3 3.97267- 3 2.40000+ 1 2.70000+ 1 7.37183- 4 3.99485- 3 2.40000+ 1 2.90000+ 1 4.84673- 6 4.04425- 3 2.40000+ 1 3.00000+ 1 8.19115- 5 4.07817- 3 2.40000+ 1 3.20000+ 1 6.04240- 5 4.15005- 3 2.40000+ 1 3.30000+ 1 3.85313- 4 4.15470- 3 2.40000+ 1 4.10000+ 1 1.03880- 4 4.18082- 3 2.40000+ 1 4.30000+ 1 6.46221- 7 4.19285- 3 2.40000+ 1 4.40000+ 1 7.27020- 6 4.19690- 3 2.50000+ 1 2.50000+ 1 1.39754- 3 3.97996- 3 2.50000+ 1 2.70000+ 1 9.12807- 4 4.00214- 3 2.50000+ 1 2.90000+ 1 8.64267- 5 4.05154- 3 2.50000+ 1 3.00000+ 1 1.40731- 4 4.08546- 3 2.50000+ 1 3.20000+ 1 4.15279- 4 4.15734- 3 2.50000+ 1 3.30000+ 1 2.27311- 4 4.16199- 3 2.50000+ 1 4.10000+ 1 1.28673- 4 4.18811- 3 2.50000+ 1 4.30000+ 1 9.79978- 6 4.20014- 3 2.50000+ 1 4.40000+ 1 1.28522- 5 4.20419- 3 2.70000+ 1 2.70000+ 1 7.91739- 5 4.02432- 3 2.70000+ 1 2.90000+ 1 1.29520- 4 4.07372- 3 2.70000+ 1 3.00000+ 1 2.02765- 4 4.10764- 3 2.70000+ 1 3.20000+ 1 1.71922- 4 4.17952- 3 2.70000+ 1 3.30000+ 1 2.35323- 4 4.18417- 3 2.70000+ 1 4.10000+ 1 2.39063- 5 4.21029- 3 2.70000+ 1 4.30000+ 1 1.50899- 5 4.22232- 3 2.70000+ 1 4.40000+ 1 2.00054- 5 4.22637- 3 2.90000+ 1 2.90000+ 1 4.85630- 6 4.12312- 3 2.90000+ 1 3.00000+ 1 1.59843- 5 4.15704- 3 2.90000+ 1 3.20000+ 1 5.46314- 6 4.22892- 3 2.90000+ 1 3.30000+ 1 4.85630- 6 4.23357- 3 2.90000+ 1 4.10000+ 1 2.22574- 5 4.25969- 3 2.90000+ 1 4.30000+ 1 1.01167- 6 4.27172- 3 2.90000+ 1 4.40000+ 1 1.41634- 6 4.27577- 3 3.00000+ 1 3.00000+ 1 1.90776- 5 4.19096- 3 3.00000+ 1 3.20000+ 1 1.80729- 5 4.26284- 3 3.00000+ 1 3.30000+ 1 3.81568- 5 4.26749- 3 3.00000+ 1 4.10000+ 1 3.45414- 5 4.29361- 3 3.00000+ 1 4.30000+ 1 1.80729- 6 4.30564- 3 3.00000+ 1 4.40000+ 1 3.61473- 6 4.30969- 3 3.20000+ 1 3.20000+ 1 1.42582- 6 4.33472- 3 3.20000+ 1 3.30000+ 1 4.99018- 6 4.33937- 3 3.20000+ 1 4.10000+ 1 2.58427- 5 4.36549- 3 3.20000+ 1 4.30000+ 1 5.34661- 7 4.37752- 3 3.20000+ 1 4.40000+ 1 1.60390- 6 4.38157- 3 3.30000+ 1 3.30000+ 1 3.56351- 6 4.34402- 3 3.30000+ 1 4.10000+ 1 3.52782- 5 4.37014- 3 3.30000+ 1 4.30000+ 1 5.34513- 7 4.38217- 3 3.30000+ 1 4.40000+ 1 3.20706- 6 4.38622- 3 4.10000+ 1 4.10000+ 1 1.74742- 6 4.39626- 3 4.10000+ 1 4.30000+ 1 2.06511- 6 4.40829- 3 4.10000+ 1 4.40000+ 1 2.70051- 6 4.41234- 3 4.30000+ 1 4.40000+ 1 1.58851- 7 4.42437- 3 4.40000+ 1 4.40000+ 1 1.58851- 7 4.42842- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.31590- 3 1.12600- 3 1.60000+ 1 8.49768- 4 3.07490- 3 2.10000+ 1 4.44249- 3 3.58810- 3 2.70000+ 1 2.01819- 4 3.93591- 3 3.20000+ 1 8.37028- 4 4.09111- 3 4.10000+ 1 3.35009- 5 4.12188- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 5.97714- 3 7.02000- 5 1.10000+ 1 2.20000+ 1 1.47543- 2 9.98800- 5 1.10000+ 1 2.40000+ 1 2.85828- 2 3.88540- 4 1.10000+ 1 2.50000+ 1 2.48810- 2 3.95830- 4 1.10000+ 1 2.70000+ 1 3.09962- 3 4.18010- 4 1.10000+ 1 2.90000+ 1 4.15596- 3 4.67410- 4 1.10000+ 1 3.00000+ 1 2.25038- 3 5.01330- 4 1.10000+ 1 3.20000+ 1 1.27895- 3 5.73210- 4 1.10000+ 1 3.30000+ 1 2.50096- 3 5.77860- 4 1.10000+ 1 4.10000+ 1 4.55227- 4 6.03980- 4 1.10000+ 1 4.30000+ 1 4.39687- 4 6.16010- 4 1.10000+ 1 4.40000+ 1 2.08730- 4 6.20060- 4 1.30000+ 1 1.60000+ 1 4.75948- 2 5.33000- 5 1.30000+ 1 1.80000+ 1 4.91014- 2 1.87490- 4 1.30000+ 1 1.90000+ 1 4.02293- 2 3.46610- 4 1.30000+ 1 2.10000+ 1 1.73301- 2 5.66500- 4 1.30000+ 1 2.20000+ 1 2.35731- 2 5.96180- 4 1.30000+ 1 2.40000+ 1 1.45007- 1 8.84840- 4 1.30000+ 1 2.50000+ 1 2.25826- 1 8.92130- 4 1.30000+ 1 2.70000+ 1 1.08024- 2 9.14310- 4 1.30000+ 1 2.90000+ 1 8.62118- 3 9.63710- 4 1.30000+ 1 3.00000+ 1 7.94058- 3 9.97630- 4 1.30000+ 1 3.20000+ 1 2.74940- 3 1.06951- 3 1.30000+ 1 3.30000+ 1 3.81282- 3 1.07416- 3 1.30000+ 1 4.10000+ 1 1.67322- 3 1.10028- 3 1.30000+ 1 4.30000+ 1 9.72465- 4 1.11231- 3 1.30000+ 1 4.40000+ 1 7.74592- 4 1.11636- 3 1.40000+ 1 1.60000+ 1 7.49279- 3 1.85600- 4 1.40000+ 1 1.80000+ 1 5.54501- 2 3.19790- 4 1.40000+ 1 1.90000+ 1 4.67714- 3 4.78910- 4 1.40000+ 1 2.10000+ 1 1.25246- 3 6.98800- 4 1.40000+ 1 2.20000+ 1 2.68079- 3 7.28480- 4 1.40000+ 1 2.40000+ 1 6.69869- 3 1.01714- 3 1.40000+ 1 2.50000+ 1 4.32102- 3 1.02443- 3 1.40000+ 1 2.70000+ 1 1.12502- 3 1.04661- 3 1.40000+ 1 2.90000+ 1 7.53274- 3 1.09601- 3 1.40000+ 1 3.00000+ 1 8.07014- 4 1.12993- 3 1.40000+ 1 3.20000+ 1 8.79101- 5 1.20181- 3 1.40000+ 1 3.30000+ 1 3.65817- 4 1.20646- 3 1.40000+ 1 4.10000+ 1 1.63274- 4 1.23258- 3 1.40000+ 1 4.30000+ 1 8.11552- 4 1.24461- 3 1.40000+ 1 4.40000+ 1 7.73784- 5 1.24866- 3 1.60000+ 1 1.60000+ 1 6.54492- 4 2.00220- 3 1.60000+ 1 1.80000+ 1 9.83534- 3 2.13639- 3 1.60000+ 1 1.90000+ 1 1.29480- 3 2.29551- 3 1.60000+ 1 2.10000+ 1 3.56013- 4 2.51540- 3 1.60000+ 1 2.20000+ 1 1.14142- 3 2.54508- 3 1.60000+ 1 2.40000+ 1 5.33610- 5 2.83374- 3 1.60000+ 1 2.50000+ 1 8.38761- 4 2.84103- 3 1.60000+ 1 2.70000+ 1 2.30117- 4 2.86321- 3 1.60000+ 1 2.90000+ 1 1.30816- 3 2.91261- 3 1.60000+ 1 3.00000+ 1 2.39715- 4 2.94653- 3 1.60000+ 1 3.20000+ 1 3.75191- 5 3.01841- 3 1.60000+ 1 3.30000+ 1 1.53417- 4 3.02306- 3 1.60000+ 1 4.10000+ 1 3.46003- 5 3.04918- 3 1.60000+ 1 4.30000+ 1 1.40903- 4 3.06121- 3 1.60000+ 1 4.40000+ 1 2.33454- 5 3.06526- 3 1.80000+ 1 1.80000+ 1 7.64027- 3 2.27058- 3 1.80000+ 1 1.90000+ 1 2.09586- 2 2.42970- 3 1.80000+ 1 2.10000+ 1 2.11425- 2 2.64959- 3 1.80000+ 1 2.20000+ 1 3.33615- 2 2.67927- 3 1.80000+ 1 2.40000+ 1 1.29268- 2 2.96793- 3 1.80000+ 1 2.50000+ 1 2.14309- 2 2.97522- 3 1.80000+ 1 2.70000+ 1 2.25537- 3 2.99740- 3 1.80000+ 1 2.90000+ 1 2.67252- 3 3.04680- 3 1.80000+ 1 3.00000+ 1 4.27614- 3 3.08072- 3 1.80000+ 1 3.20000+ 1 3.19494- 3 3.15260- 3 1.80000+ 1 3.30000+ 1 4.89176- 3 3.15725- 3 1.80000+ 1 4.10000+ 1 3.53935- 4 3.18337- 3 1.80000+ 1 4.30000+ 1 3.03070- 4 3.19540- 3 1.80000+ 1 4.40000+ 1 4.21457- 4 3.19945- 3 1.90000+ 1 1.90000+ 1 5.49463- 4 2.58882- 3 1.90000+ 1 2.10000+ 1 1.31818- 3 2.80871- 3 1.90000+ 1 2.20000+ 1 1.18936- 3 2.83839- 3 1.90000+ 1 2.40000+ 1 8.63984- 3 3.12705- 3 1.90000+ 1 2.50000+ 1 2.38667- 3 3.13434- 3 1.90000+ 1 2.70000+ 1 1.89270- 4 3.15652- 3 1.90000+ 1 2.90000+ 1 2.84730- 3 3.20592- 3 1.90000+ 1 3.00000+ 1 1.89270- 4 3.23984- 3 1.90000+ 1 3.20000+ 1 1.57159- 4 3.31172- 3 1.90000+ 1 3.30000+ 1 1.55917- 4 3.31637- 3 1.90000+ 1 4.10000+ 1 2.75131- 5 3.34249- 3 1.90000+ 1 4.30000+ 1 3.07654- 4 3.35452- 3 1.90000+ 1 4.40000+ 1 1.83435- 5 3.35857- 3 2.10000+ 1 2.10000+ 1 7.58715- 4 3.02860- 3 2.10000+ 1 2.20000+ 1 1.63717- 3 3.05828- 3 2.10000+ 1 2.40000+ 1 9.02975- 4 3.34694- 3 2.10000+ 1 2.50000+ 1 1.43075- 3 3.35423- 3 2.10000+ 1 2.70000+ 1 7.83747- 5 3.37641- 3 2.10000+ 1 2.90000+ 1 2.79006- 3 3.42581- 3 2.10000+ 1 3.00000+ 1 2.45128- 4 3.45973- 3 2.10000+ 1 3.20000+ 1 1.87602- 4 3.53161- 3 2.10000+ 1 3.30000+ 1 2.20976- 4 3.53626- 3 2.10000+ 1 4.10000+ 1 1.20898- 5 3.56238- 3 2.10000+ 1 4.30000+ 1 3.00166- 4 3.57441- 3 2.10000+ 1 4.40000+ 1 2.37615- 5 3.57846- 3 2.20000+ 1 2.20000+ 1 4.33147- 4 3.08796- 3 2.20000+ 1 2.40000+ 1 2.33525- 3 3.37662- 3 2.20000+ 1 2.50000+ 1 5.57367- 4 3.38391- 3 2.20000+ 1 2.70000+ 1 2.07198- 4 3.40609- 3 2.20000+ 1 2.90000+ 1 4.45933- 3 3.45549- 3 2.20000+ 1 3.00000+ 1 1.86759- 4 3.48941- 3 2.20000+ 1 3.20000+ 1 2.00103- 4 3.56129- 3 2.20000+ 1 3.30000+ 1 1.07973- 4 3.56594- 3 2.20000+ 1 4.10000+ 1 3.12650- 5 3.59206- 3 2.20000+ 1 4.30000+ 1 4.80675- 4 3.60409- 3 2.20000+ 1 4.40000+ 1 1.75087- 5 3.60814- 3 2.40000+ 1 2.40000+ 1 3.32565- 3 3.66528- 3 2.40000+ 1 2.50000+ 1 2.12701- 2 3.67257- 3 2.40000+ 1 2.70000+ 1 7.50395- 6 3.69475- 3 2.40000+ 1 2.90000+ 1 1.57454- 3 3.74415- 3 2.40000+ 1 3.00000+ 1 1.65543- 3 3.77807- 3 2.40000+ 1 3.20000+ 1 1.50916- 4 3.84995- 3 2.40000+ 1 3.30000+ 1 4.00220- 4 3.85460- 3 2.40000+ 1 4.10000+ 1 1.25068- 6 3.88072- 3 2.40000+ 1 4.30000+ 1 1.68010- 4 3.89275- 3 2.40000+ 1 4.40000+ 1 1.61346- 4 3.89680- 3 2.50000+ 1 2.50000+ 1 1.11183- 3 3.67986- 3 2.50000+ 1 2.70000+ 1 1.57586- 4 3.70204- 3 2.50000+ 1 2.90000+ 1 2.55347- 3 3.75144- 3 2.50000+ 1 3.00000+ 1 4.07289- 4 3.78536- 3 2.50000+ 1 3.20000+ 1 2.25944- 4 3.85724- 3 2.50000+ 1 3.30000+ 1 8.62945- 5 3.86189- 3 2.50000+ 1 4.10000+ 1 2.37611- 5 3.88801- 3 2.50000+ 1 4.30000+ 1 2.69726- 4 3.90004- 3 2.50000+ 1 4.40000+ 1 3.91856- 5 3.90409- 3 2.70000+ 1 2.70000+ 1 2.00669- 5 3.72422- 3 2.70000+ 1 2.90000+ 1 3.02677- 4 3.77362- 3 2.70000+ 1 3.00000+ 1 3.51159- 5 3.80754- 3 2.70000+ 1 3.20000+ 1 7.94315- 6 3.87942- 3 2.70000+ 1 3.30000+ 1 2.84286- 5 3.88407- 3 2.70000+ 1 4.10000+ 1 5.85301- 6 3.91019- 3 2.70000+ 1 4.30000+ 1 3.26098- 5 3.92222- 3 2.70000+ 1 4.40000+ 1 3.34473- 6 3.92627- 3 2.90000+ 1 2.90000+ 1 2.19622- 4 3.82302- 3 2.90000+ 1 3.00000+ 1 5.85765- 4 3.85694- 3 2.90000+ 1 3.20000+ 1 4.24607- 4 3.92882- 3 2.90000+ 1 3.30000+ 1 6.58821- 4 3.93347- 3 2.90000+ 1 4.10000+ 1 4.75955- 5 3.95959- 3 2.90000+ 1 4.30000+ 1 4.92660- 5 3.97162- 3 2.90000+ 1 4.40000+ 1 5.76173- 5 3.97567- 3 3.00000+ 1 3.00000+ 1 1.84422- 5 3.89086- 3 3.00000+ 1 3.20000+ 1 3.35768- 5 3.96274- 3 3.00000+ 1 3.30000+ 1 2.79001- 5 3.96739- 3 3.00000+ 1 4.10000+ 1 5.67475- 6 3.99351- 3 3.00000+ 1 4.30000+ 1 7.18756- 5 4.00554- 3 3.00000+ 1 4.40000+ 1 3.31007- 6 4.00959- 3 3.20000+ 1 3.20000+ 1 1.12558- 5 4.03462- 3 3.20000+ 1 3.30000+ 1 2.87639- 5 4.03927- 3 3.20000+ 1 4.10000+ 1 1.25067- 6 4.06539- 3 3.20000+ 1 4.30000+ 1 4.54413- 5 4.07742- 3 3.20000+ 1 4.40000+ 1 2.91815- 6 4.08147- 3 3.30000+ 1 3.30000+ 1 8.04607- 6 4.04392- 3 3.30000+ 1 4.10000+ 1 4.73322- 6 4.07004- 3 3.30000+ 1 4.30000+ 1 8.04607- 5 4.08207- 3 3.30000+ 1 4.40000+ 1 2.83972- 6 4.08612- 3 4.10000+ 1 4.10000+ 1 4.16894- 7 4.09616- 3 4.10000+ 1 4.30000+ 1 5.00280- 6 4.10819- 3 4.10000+ 1 4.40000+ 1 4.16894- 7 4.11224- 3 4.30000+ 1 4.30000+ 1 2.91815- 6 4.12022- 3 4.30000+ 1 4.40000+ 1 6.25323- 6 4.12427- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.43640- 5 4.96300- 4 1.40000+ 1 2.79990- 4 6.28600- 4 1.60000+ 1 1.65870- 3 2.44520- 3 2.10000+ 1 7.99651- 4 2.95840- 3 2.20000+ 1 6.10141- 3 2.98808- 3 2.70000+ 1 3.79020- 4 3.30621- 3 3.20000+ 1 1.37780- 4 3.46141- 3 3.30000+ 1 1.06060- 3 3.46606- 3 4.10000+ 1 6.25411- 5 3.49218- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.66146- 2 2.55140- 4 1.30000+ 1 2.50000+ 1 2.41941- 2 2.62430- 4 1.30000+ 1 2.70000+ 1 3.02048- 3 2.84610- 4 1.30000+ 1 2.90000+ 1 2.73028- 3 3.34010- 4 1.30000+ 1 3.00000+ 1 8.52216- 3 3.67930- 4 1.30000+ 1 3.20000+ 1 1.44758- 3 4.39810- 4 1.30000+ 1 3.30000+ 1 1.55341- 3 4.44460- 4 1.30000+ 1 4.10000+ 1 4.54101- 4 4.70580- 4 1.30000+ 1 4.30000+ 1 3.06286- 4 4.82610- 4 1.30000+ 1 4.40000+ 1 7.97025- 4 4.86660- 4 1.40000+ 1 2.10000+ 1 4.97448- 2 6.91000- 5 1.40000+ 1 2.20000+ 1 6.61105- 2 9.87800- 5 1.40000+ 1 2.40000+ 1 1.90662- 1 3.87440- 4 1.40000+ 1 2.50000+ 1 2.30464- 1 3.94730- 4 1.40000+ 1 2.70000+ 1 1.81691- 2 4.16910- 4 1.40000+ 1 2.90000+ 1 1.83491- 2 4.66310- 4 1.40000+ 1 3.00000+ 1 2.11554- 2 5.00230- 4 1.40000+ 1 3.20000+ 1 6.22287- 3 5.72110- 4 1.40000+ 1 3.30000+ 1 8.93178- 3 5.76760- 4 1.40000+ 1 4.10000+ 1 2.79211- 3 6.02880- 4 1.40000+ 1 4.30000+ 1 2.06696- 3 6.14910- 4 1.40000+ 1 4.40000+ 1 2.02210- 3 6.18960- 4 1.60000+ 1 1.60000+ 1 2.41021- 4 1.37250- 3 1.60000+ 1 1.80000+ 1 5.71556- 4 1.50669- 3 1.60000+ 1 1.90000+ 1 1.18850- 2 1.66581- 3 1.60000+ 1 2.10000+ 1 7.16860- 4 1.88570- 3 1.60000+ 1 2.20000+ 1 8.92912- 4 1.91538- 3 1.60000+ 1 2.40000+ 1 1.99007- 3 2.20404- 3 1.60000+ 1 2.50000+ 1 3.55924- 3 2.21133- 3 1.60000+ 1 2.70000+ 1 8.64798- 5 2.23351- 3 1.60000+ 1 2.90000+ 1 8.12126- 5 2.28291- 3 1.60000+ 1 3.00000+ 1 1.56368- 3 2.31683- 3 1.60000+ 1 3.20000+ 1 9.35054- 5 2.38871- 3 1.60000+ 1 3.30000+ 1 1.11942- 4 2.39336- 3 1.60000+ 1 4.10000+ 1 1.27305- 5 2.41948- 3 1.60000+ 1 4.30000+ 1 8.77981- 6 2.43151- 3 1.60000+ 1 4.40000+ 1 1.43987- 4 2.43556- 3 1.80000+ 1 1.80000+ 1 1.18531- 5 1.64088- 3 1.80000+ 1 1.90000+ 1 1.48152- 2 1.80000- 3 1.80000+ 1 2.10000+ 1 3.24868- 4 2.01989- 3 1.80000+ 1 2.20000+ 1 3.23732- 3 2.04957- 3 1.80000+ 1 2.40000+ 1 1.67788- 3 2.33823- 3 1.80000+ 1 2.50000+ 1 8.87107- 3 2.34552- 3 1.80000+ 1 2.70000+ 1 9.61404- 5 2.36770- 3 1.80000+ 1 2.90000+ 1 3.51214- 6 2.41710- 3 1.80000+ 1 3.00000+ 1 1.99575- 3 2.45102- 3 1.80000+ 1 3.20000+ 1 4.69728- 5 2.52290- 3 1.80000+ 1 3.30000+ 1 3.87640- 4 2.52755- 3 1.80000+ 1 4.10000+ 1 1.40482- 5 2.55367- 3 1.80000+ 1 4.30000+ 1 4.38999- 7 2.56570- 3 1.80000+ 1 4.40000+ 1 1.84372- 4 2.56975- 3 1.90000+ 1 1.90000+ 1 1.91973- 2 1.95912- 3 1.90000+ 1 2.10000+ 1 2.83088- 2 2.17901- 3 1.90000+ 1 2.20000+ 1 3.68596- 2 2.20869- 3 1.90000+ 1 2.40000+ 1 2.56400- 2 2.49735- 3 1.90000+ 1 2.50000+ 1 2.93222- 2 2.50464- 3 1.90000+ 1 2.70000+ 1 2.67455- 3 2.52682- 3 1.90000+ 1 2.90000+ 1 3.04782- 3 2.57622- 3 1.90000+ 1 3.00000+ 1 6.45663- 3 2.61014- 3 1.90000+ 1 3.20000+ 1 4.13083- 3 2.68202- 3 1.90000+ 1 3.30000+ 1 5.34115- 3 2.68667- 3 1.90000+ 1 4.10000+ 1 4.17914- 4 2.71279- 3 1.90000+ 1 4.30000+ 1 3.52945- 4 2.72482- 3 1.90000+ 1 4.40000+ 1 6.20291- 4 2.72887- 3 2.10000+ 1 2.10000+ 1 1.90968- 4 2.39890- 3 2.10000+ 1 2.20000+ 1 4.61110- 3 2.42858- 3 2.10000+ 1 2.40000+ 1 7.12919- 4 2.71724- 3 2.10000+ 1 2.50000+ 1 8.22992- 3 2.72453- 3 2.10000+ 1 2.70000+ 1 8.86774- 5 2.74671- 3 2.10000+ 1 2.90000+ 1 2.19494- 5 2.79611- 3 2.10000+ 1 3.00000+ 1 3.73635- 3 2.83003- 3 2.10000+ 1 3.20000+ 1 4.56549- 5 2.90191- 3 2.10000+ 1 3.30000+ 1 5.87810- 4 2.90656- 3 2.10000+ 1 4.10000+ 1 1.27307- 5 2.93268- 3 2.10000+ 1 4.30000+ 1 2.19494- 6 2.94471- 3 2.10000+ 1 4.40000+ 1 3.43738- 4 2.94876- 3 2.20000+ 1 2.20000+ 1 2.00750- 3 2.45826- 3 2.20000+ 1 2.40000+ 1 6.64014- 3 2.74692- 3 2.20000+ 1 2.50000+ 1 5.50402- 3 2.75421- 3 2.20000+ 1 2.70000+ 1 1.16338- 4 2.77639- 3 2.20000+ 1 2.90000+ 1 3.26209- 4 2.82579- 3 2.20000+ 1 3.00000+ 1 4.80179- 3 2.85971- 3 2.20000+ 1 3.20000+ 1 5.85640- 4 2.93159- 3 2.20000+ 1 3.30000+ 1 5.14102- 4 2.93624- 3 2.20000+ 1 4.10000+ 1 1.66825- 5 2.96236- 3 2.20000+ 1 4.30000+ 1 3.38021- 5 2.97439- 3 2.20000+ 1 4.40000+ 1 4.40792- 4 2.97844- 3 2.40000+ 1 2.40000+ 1 1.08697- 3 3.03558- 3 2.40000+ 1 2.50000+ 1 2.83934- 2 3.04287- 3 2.40000+ 1 2.70000+ 1 2.19501- 4 3.06505- 3 2.40000+ 1 2.90000+ 1 2.84492- 4 3.11445- 3 2.40000+ 1 3.00000+ 1 3.22307- 3 3.14837- 3 2.40000+ 1 3.20000+ 1 1.20287- 4 3.22025- 3 2.40000+ 1 3.30000+ 1 9.03030- 4 3.22490- 3 2.40000+ 1 4.10000+ 1 3.07304- 5 3.25102- 3 2.40000+ 1 4.30000+ 1 3.20467- 5 3.26305- 3 2.40000+ 1 4.40000+ 1 2.94554- 4 3.26710- 3 2.50000+ 1 2.50000+ 1 1.12551- 2 3.05016- 3 2.50000+ 1 2.70000+ 1 3.52505- 4 3.07234- 3 2.50000+ 1 2.90000+ 1 1.48511- 3 3.12174- 3 2.50000+ 1 3.00000+ 1 3.83900- 3 3.15566- 3 2.50000+ 1 3.20000+ 1 1.18791- 3 3.22754- 3 2.50000+ 1 3.30000+ 1 8.13460- 4 3.23219- 3 2.50000+ 1 4.10000+ 1 4.78516- 5 3.25831- 3 2.50000+ 1 4.30000+ 1 1.66381- 4 3.27034- 3 2.50000+ 1 4.40000+ 1 3.54704- 4 3.27439- 3 2.70000+ 1 2.70000+ 1 9.62818- 6 3.09452- 3 2.70000+ 1 2.90000+ 1 1.58861- 5 3.14392- 3 2.70000+ 1 3.00000+ 1 3.87548- 4 3.17784- 3 2.70000+ 1 3.20000+ 1 1.39606- 5 3.24972- 3 2.70000+ 1 3.30000+ 1 1.68492- 5 3.25437- 3 2.70000+ 1 4.10000+ 1 2.88831- 6 3.28049- 3 2.70000+ 1 4.30000+ 1 1.92556- 6 3.29252- 3 2.70000+ 1 4.40000+ 1 3.56244- 5 3.29657- 3 2.90000+ 1 3.00000+ 1 4.38442- 4 3.22724- 3 2.90000+ 1 3.20000+ 1 2.79547- 6 3.29912- 3 2.90000+ 1 3.30000+ 1 4.37982- 5 3.30377- 3 2.90000+ 1 4.10000+ 1 2.32964- 6 3.32989- 3 2.90000+ 1 4.40000+ 1 4.05350- 5 3.34597- 3 3.00000+ 1 3.00000+ 1 5.92360- 4 3.26116- 3 3.00000+ 1 3.20000+ 1 6.27083- 4 3.33304- 3 3.00000+ 1 3.30000+ 1 7.99541- 4 3.33769- 3 3.00000+ 1 4.10000+ 1 6.33591- 5 3.36381- 3 3.00000+ 1 4.30000+ 1 5.48133- 5 3.37584- 3 3.00000+ 1 4.40000+ 1 1.13145- 4 3.37989- 3 3.20000+ 1 3.20000+ 1 2.63388- 6 3.40492- 3 3.20000+ 1 3.30000+ 1 7.98965- 5 3.40957- 3 3.20000+ 1 4.10000+ 1 1.75594- 6 3.43569- 3 3.20000+ 1 4.30000+ 1 4.38992- 7 3.44772- 3 3.20000+ 1 4.40000+ 1 5.04849- 5 3.45177- 3 3.30000+ 1 3.30000+ 1 3.46808- 5 3.41422- 3 3.30000+ 1 4.10000+ 1 2.19497- 6 3.44034- 3 3.30000+ 1 4.30000+ 1 4.38992- 6 3.45237- 3 3.30000+ 1 4.40000+ 1 6.40944- 5 3.45642- 3 4.10000+ 1 4.30000+ 1 4.38988- 7 3.47849- 3 4.10000+ 1 4.40000+ 1 5.26792- 6 3.48254- 3 4.30000+ 1 4.40000+ 1 4.38990- 6 3.49457- 3 4.40000+ 1 4.40000+ 1 4.82900- 6 3.49862- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.08950- 3 2.08309- 3 1.90000+ 1 2.00810- 4 2.24221- 3 2.40000+ 1 4.07020- 2 2.78044- 3 2.90000+ 1 5.08760- 4 2.85931- 3 3.00000+ 1 4.90800- 5 2.89323- 3 4.30000+ 1 4.61020- 5 3.00791- 3 4.40000+ 1 3.91230- 6 3.01196- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 9.26532- 3 3.93000- 6 1.40000+ 1 3.20000+ 1 4.87239- 2 7.58100- 5 1.40000+ 1 3.30000+ 1 6.94926- 3 8.04600- 5 1.40000+ 1 4.10000+ 1 8.56855- 4 1.06580- 4 1.40000+ 1 4.30000+ 1 3.90496- 4 1.18610- 4 1.40000+ 1 4.40000+ 1 7.42114- 4 1.22660- 4 1.60000+ 1 1.60000+ 1 1.85068- 5 8.76200- 4 1.60000+ 1 1.80000+ 1 9.98435- 4 1.01039- 3 1.60000+ 1 1.90000+ 1 8.22623- 4 1.16951- 3 1.60000+ 1 2.10000+ 1 3.14708- 2 1.38940- 3 1.60000+ 1 2.20000+ 1 3.64958- 3 1.41908- 3 1.60000+ 1 2.40000+ 1 1.55649- 2 1.70774- 3 1.60000+ 1 2.50000+ 1 3.98082- 3 1.71503- 3 1.60000+ 1 2.70000+ 1 1.85068- 5 1.73721- 3 1.60000+ 1 2.90000+ 1 1.69334- 4 1.78661- 3 1.60000+ 1 3.00000+ 1 1.11045- 4 1.82053- 3 1.60000+ 1 3.20000+ 1 3.23970- 3 1.89241- 3 1.60000+ 1 3.30000+ 1 3.93281- 4 1.89706- 3 1.60000+ 1 4.10000+ 1 2.77607- 6 1.92318- 3 1.60000+ 1 4.30000+ 1 1.85068- 5 1.93521- 3 1.60000+ 1 4.40000+ 1 1.01792- 5 1.93926- 3 1.80000+ 1 1.80000+ 1 5.59808- 4 1.14458- 3 1.80000+ 1 1.90000+ 1 3.98445- 3 1.30370- 3 1.80000+ 1 2.10000+ 1 2.83358- 2 1.52359- 3 1.80000+ 1 2.20000+ 1 1.85165- 3 1.55327- 3 1.80000+ 1 2.40000+ 1 1.06283- 2 1.84193- 3 1.80000+ 1 2.50000+ 1 5.46679- 3 1.84922- 3 1.80000+ 1 2.70000+ 1 1.38801- 4 1.87140- 3 1.80000+ 1 2.90000+ 1 1.87838- 4 1.92080- 3 1.80000+ 1 3.00000+ 1 5.99632- 4 1.95472- 3 1.80000+ 1 3.20000+ 1 2.89530- 3 2.02660- 3 1.80000+ 1 3.30000+ 1 2.28556- 4 2.03125- 3 1.80000+ 1 4.10000+ 1 2.03571- 5 2.05737- 3 1.80000+ 1 4.30000+ 1 2.12824- 5 2.06940- 3 1.80000+ 1 4.40000+ 1 5.64459- 5 2.07345- 3 1.90000+ 1 1.90000+ 1 1.40284- 3 1.46282- 3 1.90000+ 1 2.10000+ 1 5.59506- 2 1.68271- 3 1.90000+ 1 2.20000+ 1 2.12736- 3 1.71239- 3 1.90000+ 1 2.40000+ 1 2.73075- 3 2.00105- 3 1.90000+ 1 2.50000+ 1 1.92283- 3 2.00834- 3 1.90000+ 1 2.70000+ 1 1.41575- 4 2.03052- 3 1.90000+ 1 2.90000+ 1 5.20974- 4 2.07992- 3 1.90000+ 1 3.00000+ 1 4.03449- 4 2.11384- 3 1.90000+ 1 3.20000+ 1 5.77326- 3 2.18572- 3 1.90000+ 1 3.30000+ 1 2.40585- 4 2.19037- 3 1.90000+ 1 4.10000+ 1 2.12826- 5 2.21649- 3 1.90000+ 1 4.30000+ 1 5.55183- 5 2.22852- 3 1.90000+ 1 4.40000+ 1 3.79369- 5 2.23257- 3 2.10000+ 1 2.10000+ 1 5.09173- 2 1.90260- 3 2.10000+ 1 2.20000+ 1 1.00509- 1 1.93228- 3 2.10000+ 1 2.40000+ 1 5.75424- 2 2.22094- 3 2.10000+ 1 2.50000+ 1 6.88286- 2 2.22823- 3 2.10000+ 1 2.70000+ 1 6.49486- 3 2.25041- 3 2.10000+ 1 2.90000+ 1 5.88344- 3 2.29981- 3 2.10000+ 1 3.00000+ 1 1.10885- 2 2.33373- 3 2.10000+ 1 3.20000+ 1 1.27930- 2 2.40561- 3 2.10000+ 1 3.30000+ 1 1.43890- 2 2.41026- 3 2.10000+ 1 4.10000+ 1 1.00400- 3 2.43638- 3 2.10000+ 1 4.30000+ 1 6.81955- 4 2.44841- 3 2.10000+ 1 4.40000+ 1 1.08728- 3 2.45246- 3 2.20000+ 1 2.20000+ 1 1.59992- 3 1.96196- 3 2.20000+ 1 2.40000+ 1 6.61416- 2 2.25062- 3 2.20000+ 1 2.50000+ 1 3.23493- 3 2.25791- 3 2.20000+ 1 2.70000+ 1 3.93281- 4 2.28009- 3 2.20000+ 1 2.90000+ 1 2.32266- 4 2.32949- 3 2.20000+ 1 3.00000+ 1 3.38679- 4 2.36341- 3 2.20000+ 1 3.20000+ 1 1.04326- 2 2.43529- 3 2.20000+ 1 3.30000+ 1 3.75701- 4 2.43994- 3 2.20000+ 1 4.10000+ 1 5.45940- 5 2.46606- 3 2.20000+ 1 4.30000+ 1 2.49848- 5 2.47809- 3 2.20000+ 1 4.40000+ 1 3.23871- 5 2.48214- 3 2.40000+ 1 2.40000+ 1 6.39420- 2 2.53928- 3 2.40000+ 1 2.50000+ 1 1.84331- 1 2.54657- 3 2.40000+ 1 2.70000+ 1 3.40606- 3 2.56875- 3 2.40000+ 1 2.90000+ 1 1.79611- 3 2.61815- 3 2.40000+ 1 3.00000+ 1 5.58898- 4 2.65207- 3 2.40000+ 1 3.20000+ 1 6.48295- 3 2.72395- 3 2.40000+ 1 3.30000+ 1 9.03131- 3 2.72860- 3 2.40000+ 1 4.10000+ 1 5.31139- 4 2.75472- 3 2.40000+ 1 4.30000+ 1 2.04507- 4 2.76675- 3 2.40000+ 1 4.40000+ 1 5.55181- 5 2.77080- 3 2.50000+ 1 2.50000+ 1 3.84595- 3 2.55386- 3 2.50000+ 1 2.70000+ 1 6.17233- 4 2.57604- 3 2.50000+ 1 2.90000+ 1 4.83952- 4 2.62544- 3 2.50000+ 1 3.00000+ 1 3.46091- 4 2.65936- 3 2.50000+ 1 3.20000+ 1 6.56709- 3 2.73124- 3 2.50000+ 1 3.30000+ 1 4.13635- 4 2.73589- 3 2.50000+ 1 4.10000+ 1 8.97588- 5 2.76201- 3 2.50000+ 1 4.30000+ 1 4.99696- 5 2.77404- 3 2.50000+ 1 4.40000+ 1 3.33131- 5 2.77809- 3 2.70000+ 1 2.70000+ 1 1.92845- 6 2.59822- 3 2.70000+ 1 2.90000+ 1 2.69989- 5 2.64762- 3 2.70000+ 1 3.00000+ 1 2.12128- 5 2.68154- 3 2.70000+ 1 3.20000+ 1 7.02934- 4 2.75342- 3 2.70000+ 1 3.30000+ 1 4.82097- 5 2.75807- 3 2.70000+ 1 4.10000+ 1 9.64234- 7 2.78419- 3 2.70000+ 1 4.30000+ 1 2.89273- 6 2.79622- 3 2.70000+ 1 4.40000+ 1 1.92845- 6 2.80027- 3 2.90000+ 1 2.90000+ 1 1.91935- 5 2.69702- 3 2.90000+ 1 3.00000+ 1 9.70342- 5 2.73094- 3 2.90000+ 1 3.20000+ 1 6.96314- 4 2.80282- 3 2.90000+ 1 3.30000+ 1 3.73210- 5 2.80747- 3 2.90000+ 1 4.10000+ 1 4.26510- 6 2.83359- 3 2.90000+ 1 4.30000+ 1 4.26510- 6 2.84562- 3 2.90000+ 1 4.40000+ 1 9.59691- 6 2.84967- 3 3.00000+ 1 3.00000+ 1 3.64551- 5 2.76486- 3 3.00000+ 1 3.20000+ 1 1.41947- 3 2.83674- 3 3.00000+ 1 3.30000+ 1 5.01260- 5 2.84139- 3 3.00000+ 1 4.10000+ 1 3.41768- 6 2.86751- 3 3.00000+ 1 4.30000+ 1 1.13922- 5 2.87954- 3 3.00000+ 1 4.40000+ 1 6.83499- 6 2.88359- 3 3.20000+ 1 3.20000+ 1 7.76368- 4 2.90862- 3 3.20000+ 1 3.30000+ 1 1.50184- 3 2.91327- 3 3.20000+ 1 4.10000+ 1 1.04567- 4 2.93939- 3 3.20000+ 1 4.30000+ 1 7.03258- 5 2.95142- 3 3.20000+ 1 4.40000+ 1 1.12895- 4 2.95547- 3 3.30000+ 1 3.30000+ 1 3.77977- 5 2.91792- 3 3.30000+ 1 4.10000+ 1 1.10242- 5 2.94404- 3 3.30000+ 1 4.30000+ 1 6.29952- 6 2.95607- 3 3.30000+ 1 4.40000+ 1 6.29952- 6 2.96012- 3 4.30000+ 1 4.40000+ 1 1.24770- 6 2.99827- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.51779- 3 2.10991- 3 2.40000+ 1 2.00159- 3 2.64814- 3 2.50000+ 1 3.91468- 2 2.65543- 3 3.00000+ 1 3.55578- 4 2.76093- 3 4.40000+ 1 2.92778- 5 2.87966- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 9.38188- 7 7.43900- 4 1.60000+ 1 1.80000+ 1 2.41117- 4 8.78090- 4 1.60000+ 1 1.90000+ 1 1.83881- 3 1.03721- 3 1.60000+ 1 2.10000+ 1 3.26670- 3 1.25710- 3 1.60000+ 1 2.20000+ 1 3.46427- 2 1.28678- 3 1.60000+ 1 2.40000+ 1 4.24321- 3 1.57544- 3 1.60000+ 1 2.50000+ 1 1.64818- 2 1.58273- 3 1.60000+ 1 2.70000+ 1 1.12575- 5 1.60491- 3 1.60000+ 1 2.90000+ 1 1.59490- 5 1.65431- 3 1.60000+ 1 3.00000+ 1 2.55187- 4 1.68823- 3 1.60000+ 1 3.20000+ 1 3.31176- 4 1.76011- 3 1.60000+ 1 3.30000+ 1 3.52748- 3 1.76476- 3 1.60000+ 1 4.10000+ 1 1.87632- 6 1.79088- 3 1.60000+ 1 4.30000+ 1 1.87632- 6 1.80291- 3 1.60000+ 1 4.40000+ 1 2.34537- 5 1.80696- 3 1.80000+ 1 1.80000+ 1 9.38176- 7 1.01228- 3 1.80000+ 1 1.90000+ 1 5.18881- 3 1.17140- 3 1.80000+ 1 2.10000+ 1 2.53308- 4 1.39129- 3 1.80000+ 1 2.20000+ 1 3.57913- 2 1.42097- 3 1.80000+ 1 2.40000+ 1 2.24681- 3 1.70963- 3 1.80000+ 1 2.50000+ 1 9.24651- 3 1.71692- 3 1.80000+ 1 2.70000+ 1 3.18976- 5 1.73910- 3 1.80000+ 1 2.90000+ 1 9.38176- 7 1.78850- 3 1.80000+ 1 3.00000+ 1 7.21443- 4 1.82242- 3 1.80000+ 1 3.20000+ 1 7.50546- 6 1.89430- 3 1.80000+ 1 3.30000+ 1 3.64085- 3 1.89895- 3 1.80000+ 1 4.10000+ 1 4.69067- 6 1.92507- 3 1.80000+ 1 4.40000+ 1 6.66104- 5 1.94115- 3 1.90000+ 1 1.90000+ 1 3.40179- 3 1.33052- 3 1.90000+ 1 2.10000+ 1 3.28351- 3 1.55041- 3 1.90000+ 1 2.20000+ 1 5.30636- 2 1.58009- 3 1.90000+ 1 2.40000+ 1 2.18964- 3 1.86875- 3 1.90000+ 1 2.50000+ 1 3.91380- 3 1.87604- 3 1.90000+ 1 2.70000+ 1 3.28351- 4 1.89822- 3 1.90000+ 1 2.90000+ 1 6.42623- 4 1.94762- 3 1.90000+ 1 3.00000+ 1 9.72809- 4 1.98154- 3 1.90000+ 1 3.20000+ 1 4.11830- 4 2.05342- 3 1.90000+ 1 3.30000+ 1 5.37741- 3 2.05807- 3 1.90000+ 1 4.10000+ 1 4.97235- 5 2.08419- 3 1.90000+ 1 4.30000+ 1 6.84863- 5 2.09622- 3 1.90000+ 1 4.40000+ 1 9.10000- 5 2.10027- 3 2.10000+ 1 2.10000+ 1 7.17688- 4 1.77030- 3 2.10000+ 1 2.20000+ 1 7.43548- 2 1.79998- 3 2.10000+ 1 2.40000+ 1 2.92049- 3 2.08864- 3 2.10000+ 1 2.50000+ 1 4.02976- 2 2.09593- 3 2.10000+ 1 2.70000+ 1 3.32107- 4 2.11811- 3 2.10000+ 1 2.90000+ 1 6.00441- 5 2.16751- 3 2.10000+ 1 3.00000+ 1 4.73756- 4 2.20143- 3 2.10000+ 1 3.20000+ 1 1.65125- 4 2.27331- 3 2.10000+ 1 3.30000+ 1 7.63095- 3 2.27796- 3 2.10000+ 1 4.10000+ 1 4.59694- 5 2.30408- 3 2.10000+ 1 4.30000+ 1 6.56703- 6 2.31611- 3 2.10000+ 1 4.40000+ 1 4.40941- 5 2.32016- 3 2.20000+ 1 2.20000+ 1 8.26946- 2 1.82966- 3 2.20000+ 1 2.40000+ 1 6.35358- 2 2.11832- 3 2.20000+ 1 2.50000+ 1 1.01768- 1 2.12561- 3 2.20000+ 1 2.70000+ 1 6.83562- 3 2.14779- 3 2.20000+ 1 2.90000+ 1 7.08518- 3 2.19719- 3 2.20000+ 1 3.00000+ 1 1.06094- 2 2.23111- 3 2.20000+ 1 3.20000+ 1 1.07008- 2 2.30299- 3 2.20000+ 1 3.30000+ 1 2.03199- 2 2.30764- 3 2.20000+ 1 4.10000+ 1 1.05161- 3 2.33376- 3 2.20000+ 1 4.30000+ 1 8.15258- 4 2.34579- 3 2.20000+ 1 4.40000+ 1 1.04229- 3 2.34984- 3 2.40000+ 1 2.40000+ 1 5.29154- 3 2.40698- 3 2.40000+ 1 2.50000+ 1 1.68694- 1 2.41427- 3 2.40000+ 1 2.70000+ 1 7.17713- 4 2.43645- 3 2.40000+ 1 2.90000+ 1 4.11851- 4 2.48585- 3 2.40000+ 1 3.00000+ 1 3.66830- 4 2.51977- 3 2.40000+ 1 3.20000+ 1 4.07168- 4 2.59165- 3 2.40000+ 1 3.30000+ 1 6.17142- 3 2.59630- 3 2.40000+ 1 4.10000+ 1 1.06019- 4 2.62242- 3 2.40000+ 1 4.30000+ 1 4.69088- 5 2.63445- 3 2.40000+ 1 4.40000+ 1 3.56509- 5 2.63850- 3 2.50000+ 1 2.50000+ 1 1.15331- 1 2.42156- 3 2.50000+ 1 2.70000+ 1 3.53774- 3 2.44374- 3 2.50000+ 1 2.90000+ 1 1.86686- 3 2.49314- 3 2.50000+ 1 3.00000+ 1 7.53329- 4 2.52706- 3 2.50000+ 1 3.20000+ 1 5.43088- 3 2.59894- 3 2.50000+ 1 3.30000+ 1 1.16482- 2 2.60359- 3 2.50000+ 1 4.10000+ 1 5.50709- 4 2.62971- 3 2.50000+ 1 4.30000+ 1 2.16712- 4 2.64174- 3 2.50000+ 1 4.40000+ 1 7.41124- 5 2.64579- 3 2.70000+ 1 2.70000+ 1 1.04362- 6 2.46592- 3 2.70000+ 1 2.90000+ 1 2.08718- 6 2.51532- 3 2.70000+ 1 3.00000+ 1 5.32219- 5 2.54924- 3 2.70000+ 1 3.20000+ 1 4.17435- 5 2.62112- 3 2.70000+ 1 3.30000+ 1 7.80630- 4 2.62577- 3 2.70000+ 1 4.40000+ 1 5.21788- 6 2.66797- 3 2.90000+ 1 3.00000+ 1 1.03490- 4 2.59864- 3 2.90000+ 1 3.20000+ 1 4.05829- 6 2.67052- 3 2.90000+ 1 3.30000+ 1 7.91355- 4 2.67517- 3 2.90000+ 1 4.40000+ 1 9.13141- 6 2.71737- 3 3.00000+ 1 3.00000+ 1 8.31613- 5 2.63256- 3 3.00000+ 1 3.20000+ 1 7.53987- 5 2.70444- 3 3.00000+ 1 3.30000+ 1 1.27634- 3 2.70909- 3 3.00000+ 1 4.10000+ 1 8.87086- 6 2.73521- 3 3.00000+ 1 4.30000+ 1 1.21982- 5 2.74724- 3 3.00000+ 1 4.40000+ 1 1.55242- 5 2.75129- 3 3.20000+ 1 3.20000+ 1 9.38151- 6 2.77632- 3 3.20000+ 1 3.30000+ 1 1.10605- 3 2.78097- 3 3.20000+ 1 4.10000+ 1 5.62863- 6 2.80709- 3 3.20000+ 1 4.40000+ 1 5.62863- 6 2.82317- 3 3.30000+ 1 3.30000+ 1 1.21205- 3 2.78562- 3 3.30000+ 1 4.10000+ 1 1.07889- 4 2.81174- 3 3.30000+ 1 4.30000+ 1 8.44351- 5 2.82377- 3 3.30000+ 1 4.40000+ 1 1.06014- 4 2.82782- 3 4.10000+ 1 4.40000+ 1 9.38174- 7 2.85394- 3 4.30000+ 1 4.40000+ 1 1.44579- 6 2.86597- 3 4.40000+ 1 4.40000+ 1 9.38174- 7 2.87002- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.68140- 5 1.34190- 4 1.90000+ 1 3.63170- 4 2.93310- 4 2.90000+ 1 2.46230- 4 9.10410- 4 3.00000+ 1 7.93551- 5 9.44330- 4 4.30000+ 1 3.53580- 5 1.05901- 3 4.40000+ 1 1.16940- 5 1.06306- 3 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.00000+ 1 5.45548- 2 5.82000- 6 1.80000+ 1 3.20000+ 1 4.64067- 2 7.77000- 5 1.80000+ 1 3.30000+ 1 7.39183- 2 8.23500- 5 1.80000+ 1 4.10000+ 1 5.54035- 3 1.08470- 4 1.80000+ 1 4.30000+ 1 3.75394- 3 1.20500- 4 1.80000+ 1 4.40000+ 1 5.09601- 3 1.24550- 4 1.90000+ 1 2.40000+ 1 3.17645- 2 5.21500- 5 1.90000+ 1 2.50000+ 1 5.63314- 2 5.94400- 5 1.90000+ 1 2.70000+ 1 4.11053- 2 8.16200- 5 1.90000+ 1 2.90000+ 1 4.87255- 2 1.31020- 4 1.90000+ 1 3.00000+ 1 4.75897- 2 1.64940- 4 1.90000+ 1 3.20000+ 1 4.14784- 2 2.36820- 4 1.90000+ 1 3.30000+ 1 5.11892- 2 2.41470- 4 1.90000+ 1 4.10000+ 1 6.29042- 3 2.67590- 4 1.90000+ 1 4.30000+ 1 5.29489- 3 2.79620- 4 1.90000+ 1 4.40000+ 1 4.65106- 3 2.83670- 4 2.10000+ 1 2.20000+ 1 2.38007- 3 0.00000+ 0 2.10000+ 1 2.40000+ 1 4.31202- 3 2.72040- 4 2.10000+ 1 2.50000+ 1 6.48633- 3 2.79330- 4 2.10000+ 1 2.70000+ 1 1.77561- 2 3.01510- 4 2.10000+ 1 2.90000+ 1 5.83964- 3 3.50910- 4 2.10000+ 1 3.00000+ 1 7.25433- 3 3.84830- 4 2.10000+ 1 3.20000+ 1 2.02850- 3 4.56710- 4 2.10000+ 1 3.30000+ 1 2.33571- 3 4.61360- 4 2.10000+ 1 4.10000+ 1 2.05171- 3 4.87480- 4 2.10000+ 1 4.30000+ 1 6.43624- 4 4.99510- 4 2.10000+ 1 4.40000+ 1 5.97016- 4 5.03560- 4 2.20000+ 1 2.20000+ 1 4.17756- 3 1.30600- 5 2.20000+ 1 2.40000+ 1 7.12921- 3 3.01720- 4 2.20000+ 1 2.50000+ 1 7.73522- 3 3.09010- 4 2.20000+ 1 2.70000+ 1 2.37080- 2 3.31190- 4 2.20000+ 1 2.90000+ 1 9.41545- 3 3.80590- 4 2.20000+ 1 3.00000+ 1 7.73633- 3 4.14510- 4 2.20000+ 1 3.20000+ 1 1.81479- 3 4.86390- 4 2.20000+ 1 3.30000+ 1 2.88972- 3 4.91040- 4 2.20000+ 1 4.10000+ 1 2.72647- 3 5.17160- 4 2.20000+ 1 4.30000+ 1 9.18935- 4 5.29190- 4 2.20000+ 1 4.40000+ 1 7.02346- 4 5.33240- 4 2.40000+ 1 2.40000+ 1 9.41594- 3 5.90380- 4 2.40000+ 1 2.50000+ 1 1.82994- 2 5.97670- 4 2.40000+ 1 2.70000+ 1 2.15555- 2 6.19850- 4 2.40000+ 1 2.90000+ 1 2.97635- 3 6.69250- 4 2.40000+ 1 3.00000+ 1 1.13004- 2 7.03170- 4 2.40000+ 1 3.20000+ 1 1.05218- 3 7.75050- 4 2.40000+ 1 3.30000+ 1 6.84202- 4 7.79700- 4 2.40000+ 1 4.10000+ 1 2.16894- 3 8.05820- 4 2.40000+ 1 4.30000+ 1 2.70118- 4 8.17850- 4 2.40000+ 1 4.40000+ 1 8.98998- 4 8.21900- 4 2.50000+ 1 2.50000+ 1 1.56019- 2 6.04960- 4 2.50000+ 1 2.70000+ 1 2.79796- 2 6.27140- 4 2.50000+ 1 2.90000+ 1 1.52772- 3 6.76540- 4 2.50000+ 1 3.00000+ 1 1.25271- 2 7.10460- 4 2.50000+ 1 3.20000+ 1 6.28317- 4 7.82340- 4 2.50000+ 1 3.30000+ 1 1.52119- 3 7.86990- 4 2.50000+ 1 4.10000+ 1 2.80566- 3 8.13110- 4 2.50000+ 1 4.30000+ 1 1.35569- 4 8.25140- 4 2.50000+ 1 4.40000+ 1 9.62954- 4 8.29190- 4 2.70000+ 1 2.70000+ 1 1.62364- 2 6.49320- 4 2.70000+ 1 2.90000+ 1 2.34387- 2 6.98720- 4 2.70000+ 1 3.00000+ 1 3.71478- 2 7.32640- 4 2.70000+ 1 3.20000+ 1 3.24663- 2 8.04520- 4 2.70000+ 1 3.30000+ 1 4.47714- 2 8.09170- 4 2.70000+ 1 4.10000+ 1 4.23017- 3 8.35290- 4 2.70000+ 1 4.30000+ 1 2.72571- 3 8.47320- 4 2.70000+ 1 4.40000+ 1 3.64360- 3 8.51370- 4 2.90000+ 1 2.90000+ 1 1.99116- 3 7.48120- 4 2.90000+ 1 3.00000+ 1 8.54306- 3 7.82040- 4 2.90000+ 1 3.20000+ 1 3.23074- 3 8.53920- 4 2.90000+ 1 3.30000+ 1 2.44445- 3 8.58570- 4 2.90000+ 1 4.10000+ 1 2.57120- 3 8.84690- 4 2.90000+ 1 4.30000+ 1 3.88804- 4 8.96720- 4 2.90000+ 1 4.40000+ 1 6.61610- 4 9.00770- 4 3.00000+ 1 3.00000+ 1 5.33973- 3 8.15960- 4 3.00000+ 1 3.20000+ 1 2.58410- 3 8.87840- 4 3.00000+ 1 3.30000+ 1 5.40771- 3 8.92490- 4 3.00000+ 1 4.10000+ 1 4.05479- 3 9.18610- 4 3.00000+ 1 4.30000+ 1 8.55146- 4 9.30640- 4 3.00000+ 1 4.40000+ 1 9.29543- 4 9.34690- 4 3.20000+ 1 3.20000+ 1 9.85701- 4 9.59720- 4 3.20000+ 1 3.30000+ 1 2.95445- 3 9.64370- 4 3.20000+ 1 4.10000+ 1 4.43551- 3 9.90490- 4 3.20000+ 1 4.30000+ 1 3.71591- 4 1.00252- 3 3.20000+ 1 4.40000+ 1 2.18760- 4 1.00657- 3 3.30000+ 1 3.30000+ 1 1.93066- 3 9.69020- 4 3.30000+ 1 4.10000+ 1 5.99355- 3 9.95140- 4 3.30000+ 1 4.30000+ 1 2.45528- 4 1.00717- 3 3.30000+ 1 4.40000+ 1 5.24667- 4 1.01122- 3 4.10000+ 1 4.10000+ 1 3.18270- 4 1.02126- 3 4.10000+ 1 4.30000+ 1 3.45613- 4 1.03329- 3 4.10000+ 1 4.40000+ 1 4.72418- 4 1.03734- 3 4.30000+ 1 4.30000+ 1 2.23774- 5 1.04532- 3 4.30000+ 1 4.40000+ 1 7.70807- 5 1.04937- 3 4.40000+ 1 4.40000+ 1 4.72420- 5 1.05342- 3 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.79262- 4 3.79010- 4 2.70000+ 1 2.28444- 4 7.26820- 4 3.20000+ 1 5.62368- 5 8.82020- 4 4.10000+ 1 3.86337- 5 9.12790- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.02004- 2 0.00000+ 0 1.90000+ 1 3.00000+ 1 2.56167- 2 3.07500- 5 1.90000+ 1 3.20000+ 1 8.95115- 3 1.02630- 4 1.90000+ 1 3.30000+ 1 1.39994- 2 1.07280- 4 1.90000+ 1 4.10000+ 1 1.99727- 3 1.33400- 4 1.90000+ 1 4.30000+ 1 1.77892- 3 1.45430- 4 1.90000+ 1 4.40000+ 1 1.67679- 3 1.49480- 4 2.10000+ 1 2.40000+ 1 1.18699- 1 1.37850- 4 2.10000+ 1 2.50000+ 1 2.69620- 1 1.45140- 4 2.10000+ 1 2.70000+ 1 3.81541- 2 1.67320- 4 2.10000+ 1 2.90000+ 1 3.04824- 2 2.16720- 4 2.10000+ 1 3.00000+ 1 4.10749- 2 2.50640- 4 2.10000+ 1 3.20000+ 1 2.16901- 2 3.22520- 4 2.10000+ 1 3.30000+ 1 3.40627- 2 3.27170- 4 2.10000+ 1 4.10000+ 1 5.94448- 3 3.53290- 4 2.10000+ 1 4.30000+ 1 3.31492- 3 3.65320- 4 2.10000+ 1 4.40000+ 1 3.98000- 3 3.69370- 4 2.20000+ 1 2.40000+ 1 4.23893- 2 1.67530- 4 2.20000+ 1 2.50000+ 1 1.08621- 2 1.74820- 4 2.20000+ 1 2.70000+ 1 6.00013- 3 1.97000- 4 2.20000+ 1 2.90000+ 1 2.50509- 2 2.46400- 4 2.20000+ 1 3.00000+ 1 5.33505- 3 2.80320- 4 2.20000+ 1 3.20000+ 1 2.40403- 3 3.52200- 4 2.20000+ 1 3.30000+ 1 2.44491- 3 3.56850- 4 2.20000+ 1 4.10000+ 1 7.13612- 4 3.82970- 4 2.20000+ 1 4.30000+ 1 2.02242- 3 3.95000- 4 2.20000+ 1 4.40000+ 1 4.21937- 4 3.99050- 4 2.40000+ 1 2.40000+ 1 2.40099- 3 4.56190- 4 2.40000+ 1 2.50000+ 1 1.44431- 2 4.63480- 4 2.40000+ 1 2.70000+ 1 4.88629- 3 4.85660- 4 2.40000+ 1 2.90000+ 1 2.02817- 2 5.35060- 4 2.40000+ 1 3.00000+ 1 3.28838- 3 5.68980- 4 2.40000+ 1 3.20000+ 1 5.43020- 3 6.40860- 4 2.40000+ 1 3.30000+ 1 3.34317- 3 6.45510- 4 2.40000+ 1 4.10000+ 1 7.69476- 4 6.71630- 4 2.40000+ 1 4.30000+ 1 1.65335- 3 6.83660- 4 2.40000+ 1 4.40000+ 1 2.88621- 4 6.87710- 4 2.50000+ 1 2.50000+ 1 6.69626- 4 4.70770- 4 2.50000+ 1 2.70000+ 1 2.83026- 3 4.92950- 4 2.50000+ 1 2.90000+ 1 3.24237- 2 5.42350- 4 2.50000+ 1 3.00000+ 1 1.89231- 3 5.76270- 4 2.50000+ 1 3.20000+ 1 1.13125- 2 6.48150- 4 2.50000+ 1 3.30000+ 1 1.02356- 3 6.52800- 4 2.50000+ 1 4.10000+ 1 3.41983- 4 6.78920- 4 2.50000+ 1 4.30000+ 1 2.56523- 3 6.90950- 4 2.50000+ 1 4.40000+ 1 1.57331- 4 6.95000- 4 2.70000+ 1 2.70000+ 1 1.10450- 3 5.15130- 4 2.70000+ 1 2.90000+ 1 1.48764- 2 5.64530- 4 2.70000+ 1 3.00000+ 1 2.79415- 3 5.98450- 4 2.70000+ 1 3.20000+ 1 3.39589- 3 6.70330- 4 2.70000+ 1 3.30000+ 1 2.40912- 3 6.74980- 4 2.70000+ 1 4.10000+ 1 2.70830- 4 7.01100- 4 2.70000+ 1 4.30000+ 1 1.16573- 3 7.13130- 4 2.70000+ 1 4.40000+ 1 2.49632- 4 7.17180- 4 2.90000+ 1 2.90000+ 1 1.28411- 2 6.13930- 4 2.90000+ 1 3.00000+ 1 3.38111- 2 6.47850- 4 2.90000+ 1 3.20000+ 1 2.41187- 2 7.19730- 4 2.90000+ 1 3.30000+ 1 4.01610- 2 7.24380- 4 2.90000+ 1 4.10000+ 1 3.10861- 3 7.50500- 4 2.90000+ 1 4.30000+ 1 2.53716- 3 7.62530- 4 2.90000+ 1 4.40000+ 1 3.34430- 3 7.66580- 4 3.00000+ 1 3.00000+ 1 1.12429- 3 6.81770- 4 3.00000+ 1 3.20000+ 1 4.31884- 3 7.53650- 4 3.00000+ 1 3.30000+ 1 1.81435- 3 7.58300- 4 3.00000+ 1 4.10000+ 1 3.70621- 4 7.84420- 4 3.00000+ 1 4.30000+ 1 2.42976- 3 7.96450- 4 3.00000+ 1 4.40000+ 1 1.89460- 4 8.00500- 4 3.20000+ 1 3.20000+ 1 5.36619- 4 8.25530- 4 3.20000+ 1 3.30000+ 1 8.89739- 4 8.30180- 4 3.20000+ 1 4.10000+ 1 2.10369- 4 8.56300- 4 3.20000+ 1 4.30000+ 1 6.36614- 4 8.68330- 4 3.20000+ 1 4.40000+ 1 1.49698- 4 8.72380- 4 3.30000+ 1 3.30000+ 1 8.79352- 5 8.34830- 4 3.30000+ 1 4.10000+ 1 6.67192- 5 8.60950- 4 3.30000+ 1 4.30000+ 1 6.48754- 4 8.72980- 4 3.30000+ 1 4.40000+ 1 3.32063- 5 8.77030- 4 4.10000+ 1 4.10000+ 1 3.99532- 6 8.87070- 4 4.10000+ 1 4.30000+ 1 4.50909- 5 8.99100- 4 4.10000+ 1 4.40000+ 1 6.84906- 6 9.03150- 4 4.30000+ 1 4.30000+ 1 1.70770- 5 9.11130- 4 4.30000+ 1 4.40000+ 1 3.85893- 5 9.15180- 4 4.40000+ 1 4.40000+ 1 1.20082- 6 9.19230- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.47595- 5 2.19890- 4 2.20000+ 1 2.01115- 4 2.49570- 4 2.70000+ 1 2.21326- 4 5.67700- 4 3.20000+ 1 1.85067- 5 7.22900- 4 3.30000+ 1 1.09567- 4 7.27550- 4 4.10000+ 1 3.67072- 5 7.53670- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.50000+ 1 1.44131- 3 0.00000+ 0 2.10000+ 1 2.70000+ 1 2.09528- 2 8.20000- 6 2.10000+ 1 2.90000+ 1 1.40562- 2 5.76000- 5 2.10000+ 1 3.00000+ 1 4.20775- 2 9.15200- 5 2.10000+ 1 3.20000+ 1 1.27109- 2 1.63400- 4 2.10000+ 1 3.30000+ 1 2.07527- 2 1.68050- 4 2.10000+ 1 4.10000+ 1 2.47824- 3 1.94170- 4 2.10000+ 1 4.30000+ 1 1.49569- 3 2.06200- 4 2.10000+ 1 4.40000+ 1 3.40429- 3 2.10250- 4 2.20000+ 1 2.40000+ 1 8.26668- 3 8.41000- 6 2.20000+ 1 2.50000+ 1 2.53074- 2 1.57000- 5 2.20000+ 1 2.70000+ 1 9.83363- 2 3.78800- 5 2.20000+ 1 2.90000+ 1 1.06378- 1 8.72800- 5 2.20000+ 1 3.00000+ 1 1.27369- 1 1.21200- 4 2.20000+ 1 3.20000+ 1 1.02081- 1 1.93080- 4 2.20000+ 1 3.30000+ 1 1.21096- 1 1.97730- 4 2.20000+ 1 4.10000+ 1 1.55319- 2 2.23850- 4 2.20000+ 1 4.30000+ 1 1.17331- 2 2.35880- 4 2.20000+ 1 4.40000+ 1 1.14691- 2 2.39930- 4 2.40000+ 1 2.40000+ 1 8.14158- 4 2.97070- 4 2.40000+ 1 2.50000+ 1 9.93098- 3 3.04360- 4 2.40000+ 1 2.70000+ 1 7.91267- 3 3.26540- 4 2.40000+ 1 2.90000+ 1 4.23750- 3 3.75940- 4 2.40000+ 1 3.00000+ 1 5.13493- 2 4.09860- 4 2.40000+ 1 3.20000+ 1 1.69994- 3 4.81740- 4 2.40000+ 1 3.30000+ 1 7.15067- 3 4.86390- 4 2.40000+ 1 4.10000+ 1 8.20693- 4 5.12510- 4 2.40000+ 1 4.30000+ 1 4.22231- 4 5.24540- 4 2.40000+ 1 4.40000+ 1 3.58170- 3 5.28590- 4 2.50000+ 1 2.50000+ 1 5.39920- 3 3.11650- 4 2.50000+ 1 2.70000+ 1 1.79044- 2 3.33830- 4 2.50000+ 1 2.90000+ 1 1.51202- 2 3.83230- 4 2.50000+ 1 3.00000+ 1 6.27395- 2 4.17150- 4 2.50000+ 1 3.20000+ 1 1.41338- 3 4.89030- 4 2.50000+ 1 3.30000+ 1 9.77266- 3 4.93680- 4 2.50000+ 1 4.10000+ 1 2.21254- 3 5.19800- 4 2.50000+ 1 4.30000+ 1 1.55490- 3 5.31830- 4 2.50000+ 1 4.40000+ 1 4.42302- 3 5.35880- 4 2.70000+ 1 2.70000+ 1 1.74017- 6 3.56010- 4 2.70000+ 1 2.90000+ 1 2.32509- 4 4.05410- 4 2.70000+ 1 3.00000+ 1 5.06526- 3 4.39330- 4 2.70000+ 1 3.20000+ 1 4.45512- 4 5.11210- 4 2.70000+ 1 3.30000+ 1 7.83814- 4 5.15860- 4 2.70000+ 1 4.10000+ 1 3.82864- 6 5.41980- 4 2.70000+ 1 4.30000+ 1 1.80988- 5 5.54010- 4 2.70000+ 1 4.40000+ 1 3.44923- 4 5.58060- 4 2.90000+ 1 2.90000+ 1 3.33940- 6 4.54810- 4 2.90000+ 1 3.00000+ 1 5.35523- 3 4.88730- 4 2.90000+ 1 3.20000+ 1 2.28414- 4 5.60610- 4 2.90000+ 1 3.30000+ 1 6.93237- 4 5.65260- 4 2.90000+ 1 4.10000+ 1 3.13888- 5 5.91380- 4 2.90000+ 1 4.30000+ 1 1.66958- 6 6.03410- 4 2.90000+ 1 4.40000+ 1 3.73005- 4 6.07460- 4 3.00000+ 1 3.00000+ 1 7.20748- 3 5.22650- 4 3.00000+ 1 3.20000+ 1 7.57003- 3 5.94530- 4 3.00000+ 1 3.30000+ 1 1.00658- 2 5.99180- 4 3.00000+ 1 4.10000+ 1 8.27029- 4 6.25300- 4 3.00000+ 1 4.30000+ 1 6.46952- 4 6.37330- 4 3.00000+ 1 4.40000+ 1 1.21164- 3 6.41380- 4 3.20000+ 1 3.20000+ 1 1.19494- 4 6.66410- 4 3.20000+ 1 3.30000+ 1 7.16673- 4 6.71060- 4 3.20000+ 1 4.10000+ 1 4.26349- 5 6.97180- 4 3.20000+ 1 4.30000+ 1 2.11727- 5 7.09210- 4 3.20000+ 1 4.40000+ 1 4.35623- 4 7.13260- 4 3.30000+ 1 3.30000+ 1 6.77172- 4 6.75710- 4 3.30000+ 1 4.10000+ 1 9.91845- 5 7.01830- 4 3.30000+ 1 4.30000+ 1 6.52528- 5 7.13860- 4 3.30000+ 1 4.40000+ 1 5.86688- 4 7.17910- 4 4.10000+ 1 4.30000+ 1 1.74005- 6 7.39980- 4 4.10000+ 1 4.40000+ 1 4.61129- 5 7.44030- 4 4.30000+ 1 4.40000+ 1 3.68329- 5 7.56060- 4 4.40000+ 1 4.40000+ 1 4.03119- 5 7.60110- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.43322- 4 3.18340- 4 2.90000+ 1 8.94024- 5 3.97210- 4 3.00000+ 1 1.10430- 5 4.31130- 4 4.30000+ 1 9.86914- 6 5.45810- 4 4.40000+ 1 1.05650- 6 5.49860- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.10000+ 1 1.70061- 3 3.96000- 6 2.20000+ 1 4.30000+ 1 7.29085- 4 1.59900- 5 2.20000+ 1 4.40000+ 1 1.46343- 3 2.00400- 5 2.40000+ 1 2.40000+ 1 6.98310- 2 7.71800- 5 2.40000+ 1 2.50000+ 1 2.32964- 1 8.44700- 5 2.40000+ 1 2.70000+ 1 8.89388- 2 1.06650- 4 2.40000+ 1 2.90000+ 1 7.59833- 2 1.56050- 4 2.40000+ 1 3.00000+ 1 9.87237- 2 1.89970- 4 2.40000+ 1 3.20000+ 1 9.45992- 2 2.61850- 4 2.40000+ 1 3.30000+ 1 9.76339- 2 2.66500- 4 2.40000+ 1 4.10000+ 1 1.39254- 2 2.92620- 4 2.40000+ 1 4.30000+ 1 8.62741- 3 3.04650- 4 2.40000+ 1 4.40000+ 1 9.40683- 3 3.08700- 4 2.50000+ 1 2.50000+ 1 4.10307- 3 9.17600- 5 2.50000+ 1 2.70000+ 1 7.44691- 3 1.13940- 4 2.50000+ 1 2.90000+ 1 1.41835- 2 1.63340- 4 2.50000+ 1 3.00000+ 1 6.49812- 3 1.97260- 4 2.50000+ 1 3.20000+ 1 1.04359- 1 2.69140- 4 2.50000+ 1 3.30000+ 1 4.30994- 3 2.73790- 4 2.50000+ 1 4.10000+ 1 8.58980- 4 2.99910- 4 2.50000+ 1 4.30000+ 1 1.09649- 3 3.11940- 4 2.50000+ 1 4.40000+ 1 5.04816- 4 3.15990- 4 2.70000+ 1 2.70000+ 1 8.00439- 4 1.36120- 4 2.70000+ 1 2.90000+ 1 1.83614- 3 1.85520- 4 2.70000+ 1 3.00000+ 1 1.56158- 3 2.19440- 4 2.70000+ 1 3.20000+ 1 9.29300- 3 2.91320- 4 2.70000+ 1 3.30000+ 1 2.16720- 3 2.95970- 4 2.70000+ 1 4.10000+ 1 1.44220- 4 3.22090- 4 2.70000+ 1 4.30000+ 1 1.40440- 4 3.34120- 4 2.70000+ 1 4.40000+ 1 1.17044- 4 3.38170- 4 2.90000+ 1 2.90000+ 1 3.33774- 4 2.34920- 4 2.90000+ 1 3.00000+ 1 1.92489- 3 2.68840- 4 2.90000+ 1 3.20000+ 1 5.79648- 3 3.40720- 4 2.90000+ 1 3.30000+ 1 7.90635- 4 3.45370- 4 2.90000+ 1 4.10000+ 1 1.03830- 4 3.71490- 4 2.90000+ 1 4.30000+ 1 5.28604- 5 3.83520- 4 2.90000+ 1 4.40000+ 1 1.16668- 4 3.87570- 4 3.00000+ 1 3.00000+ 1 7.36277- 4 3.02760- 4 3.00000+ 1 3.20000+ 1 1.17869- 2 3.74640- 4 3.00000+ 1 3.30000+ 1 1.02711- 3 3.79290- 4 3.00000+ 1 4.10000+ 1 6.23009- 5 4.05410- 4 3.00000+ 1 4.30000+ 1 1.12519- 4 4.17440- 4 3.00000+ 1 4.40000+ 1 8.79754- 5 4.21490- 4 3.20000+ 1 3.20000+ 1 6.56416- 3 4.46520- 4 3.20000+ 1 3.30000+ 1 1.28206- 2 4.51170- 4 3.20000+ 1 4.10000+ 1 1.08128- 3 4.77290- 4 3.20000+ 1 4.30000+ 1 6.60386- 4 4.89320- 4 3.20000+ 1 4.40000+ 1 1.11268- 3 4.93370- 4 3.30000+ 1 3.30000+ 1 2.36735- 4 4.55820- 4 3.30000+ 1 4.10000+ 1 5.47490- 5 4.81940- 4 3.30000+ 1 4.30000+ 1 4.03995- 5 4.93970- 4 3.30000+ 1 4.40000+ 1 7.02284- 5 4.98020- 4 4.10000+ 1 4.10000+ 1 3.77571- 6 5.08060- 4 4.10000+ 1 4.30000+ 1 6.41855- 6 5.20090- 4 4.10000+ 1 4.40000+ 1 4.53080- 6 5.24140- 4 4.30000+ 1 4.30000+ 1 7.55146- 7 5.32120- 4 4.30000+ 1 4.40000+ 1 6.41869- 6 5.36170- 4 4.40000+ 1 4.40000+ 1 2.64291- 6 5.40220- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.39249- 5 2.88660- 4 2.50000+ 1 3.06218- 4 2.95950- 4 3.00000+ 1 7.89895- 5 4.01450- 4 4.40000+ 1 7.61995- 6 5.20180- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 3.60330- 3 4.75000- 5 2.40000+ 1 2.50000+ 1 7.90580- 2 5.47900- 5 2.40000+ 1 2.70000+ 1 1.15677- 2 7.69700- 5 2.40000+ 1 2.90000+ 1 7.55564- 3 1.26370- 4 2.40000+ 1 3.00000+ 1 1.48754- 2 1.60290- 4 2.40000+ 1 3.20000+ 1 6.11391- 3 2.32170- 4 2.40000+ 1 3.30000+ 1 9.38653- 2 2.36820- 4 2.40000+ 1 4.10000+ 1 1.52163- 3 2.62940- 4 2.40000+ 1 4.30000+ 1 8.09097- 4 2.74970- 4 2.40000+ 1 4.40000+ 1 1.18867- 3 2.79020- 4 2.50000+ 1 2.50000+ 1 8.87341- 2 6.20800- 5 2.50000+ 1 2.70000+ 1 1.00599- 1 8.42600- 5 2.50000+ 1 2.90000+ 1 1.06648- 1 1.33660- 4 2.50000+ 1 3.00000+ 1 1.02599- 1 1.67580- 4 2.50000+ 1 3.20000+ 1 9.29806- 2 2.39460- 4 2.50000+ 1 3.30000+ 1 1.72560- 1 2.44110- 4 2.50000+ 1 4.10000+ 1 1.58052- 2 2.70230- 4 2.50000+ 1 4.30000+ 1 1.16077- 2 2.82260- 4 2.50000+ 1 4.40000+ 1 9.84190- 3 2.86310- 4 2.70000+ 1 2.70000+ 1 1.45992- 3 1.06440- 4 2.70000+ 1 2.90000+ 1 1.92215- 3 1.55840- 4 2.70000+ 1 3.00000+ 1 3.44295- 3 1.89760- 4 2.70000+ 1 3.20000+ 1 2.94282- 3 2.61640- 4 2.70000+ 1 3.30000+ 1 1.24504- 2 2.66290- 4 2.70000+ 1 4.10000+ 1 2.57377- 4 2.92410- 4 2.70000+ 1 4.30000+ 1 1.52410- 4 3.04440- 4 2.70000+ 1 4.40000+ 1 2.54857- 4 3.08490- 4 2.90000+ 1 2.90000+ 1 2.33444- 4 2.05240- 4 2.90000+ 1 3.00000+ 1 3.42453- 3 2.39160- 4 2.90000+ 1 3.20000+ 1 4.24494- 4 3.11040- 4 2.90000+ 1 3.30000+ 1 9.18650- 3 3.15690- 4 2.90000+ 1 4.10000+ 1 1.04549- 4 3.41810- 4 2.90000+ 1 4.30000+ 1 3.52691- 5 3.53840- 4 2.90000+ 1 4.40000+ 1 2.14137- 4 3.57890- 4 3.00000+ 1 3.00000+ 1 1.13080- 3 2.73080- 4 3.00000+ 1 3.20000+ 1 1.53045- 3 3.44960- 4 3.00000+ 1 3.30000+ 1 1.22149- 2 3.49610- 4 3.00000+ 1 4.10000+ 1 1.12530- 4 3.75730- 4 3.00000+ 1 4.30000+ 1 1.46547- 4 3.87760- 4 3.00000+ 1 4.40000+ 1 1.35628- 4 3.91810- 4 3.20000+ 1 3.20000+ 1 1.14631- 4 4.16840- 4 3.20000+ 1 3.30000+ 1 1.07021- 2 4.21490- 4 3.20000+ 1 4.10000+ 1 6.84415- 5 4.47610- 4 3.20000+ 1 4.30000+ 1 3.19104- 5 4.59640- 4 3.20000+ 1 4.40000+ 1 1.05811- 4 4.63690- 4 3.30000+ 1 3.30000+ 1 1.18264- 2 4.26140- 4 3.30000+ 1 4.10000+ 1 1.25703- 3 4.52260- 4 3.30000+ 1 4.30000+ 1 9.64427- 4 4.64290- 4 3.30000+ 1 4.40000+ 1 1.17304- 3 4.68340- 4 4.10000+ 1 4.10000+ 1 7.13790- 6 4.78380- 4 4.10000+ 1 4.30000+ 1 7.55765- 6 4.90410- 4 4.10000+ 1 4.40000+ 1 8.81731- 6 4.94460- 4 4.30000+ 1 4.30000+ 1 8.39744- 7 5.02440- 4 4.30000+ 1 4.40000+ 1 9.65719- 6 5.06490- 4 4.40000+ 1 4.40000+ 1 4.19867- 6 5.10540- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.87438- 5 1.84670- 4 3.30000+ 1 1.23108- 6 1.89320- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 5.65841- 3 1.57800- 5 2.70000+ 1 4.40000+ 1 9.57439- 3 1.98300- 5 2.90000+ 1 3.20000+ 1 1.05096- 1 2.23800- 5 2.90000+ 1 3.30000+ 1 7.36818- 2 2.70300- 5 2.90000+ 1 4.10000+ 1 3.33120- 2 5.31500- 5 2.90000+ 1 4.30000+ 1 1.14021- 2 6.51800- 5 2.90000+ 1 4.40000+ 1 1.66651- 2 6.92300- 5 3.00000+ 1 3.20000+ 1 1.34754- 1 5.63000- 5 3.00000+ 1 3.30000+ 1 6.60244- 2 6.09500- 5 3.00000+ 1 4.10000+ 1 1.38536- 2 8.70700- 5 3.00000+ 1 4.30000+ 1 1.32833- 2 9.91000- 5 3.00000+ 1 4.40000+ 1 6.83126- 3 1.03150- 4 3.20000+ 1 3.20000+ 1 1.62716- 1 1.28180- 4 3.20000+ 1 3.30000+ 1 2.32124- 1 1.32830- 4 3.20000+ 1 4.10000+ 1 1.20243- 2 1.58950- 4 3.20000+ 1 4.30000+ 1 2.77227- 2 1.70980- 4 3.20000+ 1 4.40000+ 1 1.85968- 2 1.75030- 4 3.30000+ 1 3.30000+ 1 2.26984- 2 1.37480- 4 3.30000+ 1 4.10000+ 1 3.07564- 3 1.63600- 4 3.30000+ 1 4.30000+ 1 2.05499- 2 1.75630- 4 3.30000+ 1 4.40000+ 1 7.66336- 3 1.79680- 4 4.10000+ 1 4.10000+ 1 5.17539- 5 1.89720- 4 4.10000+ 1 4.30000+ 1 9.31581- 4 2.01750- 4 4.10000+ 1 4.40000+ 1 6.21044- 4 2.05800- 4 4.30000+ 1 4.30000+ 1 2.93274- 4 2.13780- 4 4.30000+ 1 4.40000+ 1 6.55534- 4 2.17830- 4 4.40000+ 1 4.40000+ 1 1.18858- 4 2.21880- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.80560- 5 1.82030- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 5.34789- 5 8.49000- 6 2.70000+ 1 4.40000+ 1 8.59251- 3 1.25400- 5 2.90000+ 1 3.20000+ 1 2.31560- 2 1.50900- 5 2.90000+ 1 3.30000+ 1 6.99132- 2 1.97400- 5 2.90000+ 1 4.10000+ 1 3.08390- 3 4.58600- 5 2.90000+ 1 4.30000+ 1 7.13005- 4 5.78900- 5 2.90000+ 1 4.40000+ 1 6.77386- 3 6.19400- 5 3.00000+ 1 3.20000+ 1 8.85771- 2 4.90100- 5 3.00000+ 1 3.30000+ 1 2.44035- 1 5.36600- 5 3.00000+ 1 4.10000+ 1 3.09815- 2 7.97800- 5 3.00000+ 1 4.30000+ 1 8.82370- 3 9.18100- 5 3.00000+ 1 4.40000+ 1 2.95020- 2 9.58600- 5 3.20000+ 1 3.20000+ 1 1.28709- 2 1.20890- 4 3.20000+ 1 3.30000+ 1 1.78963- 1 1.25540- 4 3.20000+ 1 4.10000+ 1 2.47795- 3 1.51660- 4 3.20000+ 1 4.30000+ 1 2.10364- 3 1.63690- 4 3.20000+ 1 4.40000+ 1 1.64539- 2 1.67740- 4 3.30000+ 1 3.30000+ 1 2.07411- 1 1.30190- 4 3.30000+ 1 4.10000+ 1 1.32989- 2 1.56310- 4 3.30000+ 1 4.30000+ 1 1.11423- 2 1.68340- 4 3.30000+ 1 4.40000+ 1 3.86473- 2 1.72390- 4 4.10000+ 1 4.10000+ 1 3.56530- 5 1.82430- 4 4.10000+ 1 4.30000+ 1 3.38705- 4 1.94460- 4 4.10000+ 1 4.40000+ 1 1.08754- 3 1.98510- 4 4.30000+ 1 4.30000+ 1 1.78271- 5 2.06490- 4 4.30000+ 1 4.40000+ 1 3.56523- 4 2.10540- 4 4.40000+ 1 4.40000+ 1 5.70440- 4 2.14590- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.31087- 6 4.94000- 5 3.00000+ 1 1.29394- 5 8.33200- 5 4.30000+ 1 9.91051- 7 1.98000- 4 4.40000+ 1 2.84205- 8 2.02050- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.30000+ 1 3.72211- 2 0.00000+ 0 2.90000+ 1 4.10000+ 1 2.68289- 2 2.36800- 5 2.90000+ 1 4.30000+ 1 1.32606- 2 3.57100- 5 2.90000+ 1 4.40000+ 1 2.64396- 2 3.97600- 5 3.00000+ 1 3.20000+ 1 3.61928- 1 2.68300- 5 3.00000+ 1 3.30000+ 1 3.07599- 1 3.14800- 5 3.00000+ 1 4.10000+ 1 1.83087- 2 5.76000- 5 3.00000+ 1 4.30000+ 1 1.54700- 2 6.96300- 5 3.00000+ 1 4.40000+ 1 1.41858- 2 7.36800- 5 3.20000+ 1 3.20000+ 1 2.13338- 3 9.87100- 5 3.20000+ 1 3.30000+ 1 1.22781- 1 1.03360- 4 3.20000+ 1 4.10000+ 1 7.82827- 3 1.29480- 4 3.20000+ 1 4.30000+ 1 9.04897- 4 1.41510- 4 3.20000+ 1 4.40000+ 1 5.85283- 3 1.45560- 4 3.30000+ 1 3.30000+ 1 2.08289- 2 1.08010- 4 3.30000+ 1 4.10000+ 1 7.09094- 3 1.34130- 4 3.30000+ 1 4.30000+ 1 2.62221- 3 1.46160- 4 3.30000+ 1 4.40000+ 1 2.41799- 3 1.50210- 4 4.10000+ 1 4.10000+ 1 1.05379- 3 1.60250- 4 4.10000+ 1 4.30000+ 1 1.06198- 3 1.72280- 4 4.10000+ 1 4.40000+ 1 1.49964- 3 1.76330- 4 4.30000+ 1 4.30000+ 1 2.35090- 4 1.84310- 4 4.30000+ 1 4.40000+ 1 1.43571- 3 1.88360- 4 4.40000+ 1 4.40000+ 1 9.96522- 4 1.92410- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.30370- 5 1.05800- 4 4.10000+ 1 1.33570- 6 1.36570- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.59248- 2 8.20000- 6 3.00000+ 1 4.30000+ 1 1.73588- 2 2.02300- 5 3.00000+ 1 4.40000+ 1 1.12803- 2 2.42800- 5 3.20000+ 1 3.20000+ 1 1.51371- 1 4.93100- 5 3.20000+ 1 3.30000+ 1 6.56219- 1 5.39600- 5 3.20000+ 1 4.10000+ 1 3.74495- 2 8.00800- 5 3.20000+ 1 4.30000+ 1 2.22190- 2 9.21100- 5 3.20000+ 1 4.40000+ 1 3.48601- 2 9.61600- 5 3.30000+ 1 3.30000+ 1 2.41142- 2 5.86100- 5 3.30000+ 1 4.10000+ 1 2.74022- 3 8.47300- 5 3.30000+ 1 4.30000+ 1 1.81736- 2 9.67600- 5 3.30000+ 1 4.40000+ 1 4.09491- 3 1.00810- 4 4.10000+ 1 4.10000+ 1 4.54534- 5 1.10850- 4 4.10000+ 1 4.30000+ 1 1.50569- 3 1.22880- 4 4.10000+ 1 4.40000+ 1 2.16349- 4 1.26930- 4 4.30000+ 1 4.30000+ 1 7.44535- 4 1.34910- 4 4.30000+ 1 4.40000+ 1 1.59986- 3 1.38960- 4 4.40000+ 1 4.40000+ 1 6.81789- 5 1.43010- 4 1 86000 0 7 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.06500- 7 7.18800- 5 3.30000+ 1 2.25200- 6 7.65300- 5 4.10000+ 1 6.17869- 7 1.02650- 4 1 86000 0 9 2.22000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.52197- 2 1.53900- 5 3.20000+ 1 3.30000+ 1 5.07317- 1 2.00400- 5 3.20000+ 1 4.10000+ 1 5.51592- 3 4.61600- 5 3.20000+ 1 4.30000+ 1 2.79504- 3 5.81900- 5 3.20000+ 1 4.40000+ 1 8.43135- 3 6.22400- 5 3.30000+ 1 3.30000+ 1 3.63842- 1 2.46900- 5 3.30000+ 1 4.10000+ 1 3.05509- 2 5.08100- 5 3.30000+ 1 4.30000+ 1 2.53067- 2 6.28400- 5 3.30000+ 1 4.40000+ 1 2.83496- 2 6.68900- 5 4.10000+ 1 4.10000+ 1 1.47427- 4 7.69300- 5 4.10000+ 1 4.30000+ 1 2.35722- 4 8.89600- 5 4.10000+ 1 4.40000+ 1 9.68249- 4 9.30100- 5 4.30000+ 1 4.30000+ 1 1.31986- 7 1.00990- 4 4.30000+ 1 4.40000+ 1 6.51977- 4 1.05040- 4 4.40000+ 1 4.40000+ 1 6.64389- 4 1.09090- 4 1 87000 0 0 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 1.00000+ 0 1 87000 0 0 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01520- 1 3.00000+ 0 1.86300- 2 5.00000+ 0 1.79710- 2 6.00000+ 0 1.50340- 2 8.00000+ 0 4.61910- 3 1.00000+ 1 4.31250- 3 1.10000+ 1 3.64450- 3 1.30000+ 1 3.13890- 3 1.40000+ 1 2.99920- 3 1.60000+ 1 1.13030- 3 1.80000+ 1 9.92690- 4 1.90000+ 1 8.22800- 4 2.10000+ 1 5.97600- 4 2.20000+ 1 5.65950- 4 2.40000+ 1 2.69950- 4 2.50000+ 1 2.62070- 4 2.70000+ 1 2.32340- 4 2.90000+ 1 1.81000- 4 3.00000+ 1 1.43910- 4 3.20000+ 1 6.87300- 5 3.30000+ 1 6.35200- 5 4.10000+ 1 3.26400- 5 4.30000+ 1 1.92800- 5 4.40000+ 1 1.41400- 5 5.80000+ 1 3.80000- 6 1 87000 0 0 2.23000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.47600- 1 3.00000+ 0 3.62290- 2 5.00000+ 0 3.62230- 2 6.00000+ 0 2.44210- 2 8.00000+ 0 1.16050- 2 1.00000+ 1 1.14750- 2 1.10000+ 1 8.51080- 3 1.30000+ 1 8.35360- 3 1.40000+ 1 7.76790- 3 1.60000+ 1 3.93220- 3 1.80000+ 1 3.78690- 3 1.90000+ 1 2.88180- 3 2.10000+ 1 2.64850- 3 2.20000+ 1 2.47360- 3 2.40000+ 1 2.10980- 3 2.50000+ 1 2.05080- 3 2.70000+ 1 1.14560- 3 2.90000+ 1 1.03130- 3 3.00000+ 1 7.84030- 4 3.20000+ 1 5.83450- 4 3.30000+ 1 5.41340- 4 4.10000+ 1 2.41170- 4 4.30000+ 1 1.79810- 4 4.40000+ 1 1.27390- 4 5.80000+ 1 1.95000- 5 1 87000 0 0 2.23000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.82360-11 3.00000+ 0 3.24530-10 5.00000+ 0 2.64210-10 6.00000+ 0 3.14720-10 8.00000+ 0 8.42990-10 1.00000+ 1 7.93170-10 1.10000+ 1 8.84300-10 1.30000+ 1 7.64210-10 1.40000+ 1 7.91630-10 1.60000+ 1 1.84200- 9 1.80000+ 1 1.83700- 9 1.90000+ 1 2.02190- 9 2.10000+ 1 2.01730- 9 2.20000+ 1 2.07410- 9 2.40000+ 1 2.05240- 9 2.50000+ 1 2.08140- 9 2.70000+ 1 3.92720- 9 2.90000+ 1 4.12030- 9 3.00000+ 1 4.54510- 9 3.20000+ 1 5.25180- 9 3.30000+ 1 5.41390- 9 4.10000+ 1 9.07470- 9 4.30000+ 1 1.04110- 8 4.40000+ 1 1.18320- 8 5.80000+ 1 2.93480- 8 1 87000 0 0 2.23000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.29930- 5 3.00000+ 0 1.83120- 6 5.00000+ 0 3.22240- 6 6.00000+ 0 2.74310- 6 8.00000+ 0 7.72930- 8 1.00000+ 1 8.56780- 8 1.10000+ 1 9.43520- 8 1.30000+ 1 1.20620- 7 1.40000+ 1 1.11920- 7 1.60000+ 1 3.63950- 9 1.80000+ 1 4.90410- 9 1.90000+ 1 3.28610- 9 2.10000+ 1 2.57120- 9 2.20000+ 1 2.03930- 9 2.40000+ 1 6.18550-11 2.50000+ 1 5.64950-11 2.70000+ 1 2.25130-10 2.90000+ 1 4.67140-10 3.00000+ 1 2.42280-10 1 87000 0 0 2.23000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.42460- 6 3.00000+ 0 1.28080- 5 5.00000+ 0 3.65040- 6 6.00000+ 0 4.10350- 6 8.00000+ 0 1.96630- 5 1.00000+ 1 1.41350- 5 1.10000+ 1 1.13070- 5 1.30000+ 1 2.89560- 6 1.40000+ 1 2.86590- 6 1.60000+ 1 1.52380- 5 1.80000+ 1 1.46750- 5 1.90000+ 1 9.61960- 6 2.10000+ 1 6.96010- 6 2.20000+ 1 6.29520- 6 2.40000+ 1 1.49930- 7 2.50000+ 1 1.51660- 7 2.70000+ 1 2.32340- 5 2.90000+ 1 8.96140- 6 3.00000+ 1 2.11630- 5 1 87000 0 0 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.61873- 4 3.00000+ 0 9.50937- 4 5.00000+ 0 6.70572- 4 6.00000+ 0 6.68268- 4 8.00000+ 0 7.03623- 4 1.00000+ 1 6.13085- 4 1.10000+ 1 5.44433- 4 1.30000+ 1 4.15483- 4 1.40000+ 1 4.06055- 4 1.60000+ 1 3.72264- 4 1.80000+ 1 3.56818- 4 1.90000+ 1 3.34646- 4 2.10000+ 1 2.62787- 4 2.20000+ 1 2.53057- 4 2.40000+ 1 1.54349- 4 2.50000+ 1 1.55604- 4 2.70000+ 1 1.72026- 4 2.90000+ 1 1.27210- 4 3.00000+ 1 1.24801- 4 3.20000+ 1 6.87300- 5 3.30000+ 1 6.35200- 5 4.10000+ 1 3.26400- 5 4.30000+ 1 1.92800- 5 4.40000+ 1 1.41400- 5 5.80000+ 1 3.80000- 6 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.38234+ 0 3.00000+ 0 5.10130- 1 5.00000+ 0 5.71341- 1 6.00000+ 0 4.66462- 1 8.00000+ 0 4.58533- 2 1.00000+ 1 4.59491- 2 1.10000+ 1 4.25868- 2 1.30000+ 1 4.93836- 2 1.40000+ 1 4.55956- 2 1.60000+ 1 1.52936- 3 1.80000+ 1 1.75870- 3 1.90000+ 1 1.00046- 3 2.10000+ 1 5.33954- 4 2.20000+ 1 4.72615- 4 2.40000+ 1 3.21491- 5 2.50000+ 1 2.75612- 5 2.70000+ 1 2.14655- 5 2.90000+ 1 1.80328- 5 3.00000+ 1 3.81909- 6 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.01548- 2 3.00000+ 0 5.94157- 3 5.00000+ 0 7.91582- 3 6.00000+ 0 5.22386- 3 8.00000+ 0 1.28786- 4 1.00000+ 1 1.29920- 4 1.10000+ 1 1.17099- 4 1.30000+ 1 1.37943- 4 1.40000+ 1 1.22447- 4 1.60000+ 1 8.29546- 7 1.80000+ 1 8.14775- 7 1.90000+ 1 4.49594- 7 2.10000+ 1 1.82472- 7 2.20000+ 1 1.51633- 7 2.40000+ 1 5.94497- 9 2.50000+ 1 5.10360- 9 2.70000+ 1 2.06403- 9 2.90000+ 1 2.08663- 9 3.00000+ 1 3.33225-10 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.91587+ 0 3.00000+ 0 1.46857+ 1 5.00000+ 0 1.00486+ 1 6.00000+ 0 1.00249+ 1 8.00000+ 0 1.06345+ 1 1.00000+ 1 9.11091+ 0 1.10000+ 1 7.99025+ 0 1.30000+ 1 5.83993+ 0 1.40000+ 1 5.70372+ 0 1.60000+ 1 5.14789+ 0 1.80000+ 1 4.87588+ 0 1.90000+ 1 4.51837+ 0 2.10000+ 1 3.31851+ 0 2.20000+ 1 3.17282+ 0 2.40000+ 1 1.54984+ 0 2.50000+ 1 1.58568+ 0 2.70000+ 1 1.82247+ 0 2.90000+ 1 1.04146+ 0 3.00000+ 1 9.99996- 1 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07033- 2 3.00000+ 0 1.17375- 2 5.00000+ 0 9.38461- 3 6.00000+ 0 9.14187- 3 8.00000+ 0 3.78669- 3 1.00000+ 1 3.56949- 3 1.10000+ 1 2.98297- 3 1.30000+ 1 2.58547- 3 1.40000+ 1 2.47070- 3 1.60000+ 1 7.57207- 4 1.80000+ 1 6.35057- 4 1.90000+ 1 4.87705- 4 2.10000+ 1 3.34631- 4 2.20000+ 1 3.12741- 4 2.40000+ 1 1.15595- 4 2.50000+ 1 1.06461- 4 2.70000+ 1 6.03121- 5 2.90000+ 1 5.37874- 5 3.00000+ 1 1.91087- 5 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.85481- 1 8.35490- 2 6.00000+ 0 4.68502- 1 8.64860- 2 1.00000+ 1 5.31692- 2 9.72075- 2 1.10000+ 1 1.03330- 1 9.78755- 2 1.30000+ 1 1.64941- 3 9.83811- 2 1.40000+ 1 1.94061- 3 9.85208- 2 1.80000+ 1 1.30100- 2 1.00527- 1 1.90000+ 1 2.58971- 2 1.00697- 1 2.10000+ 1 4.62762- 4 1.00922- 1 2.20000+ 1 5.44812- 4 1.00954- 1 2.90000+ 1 3.09051- 3 1.01339- 1 3.00000+ 1 5.93622- 3 1.01376- 1 3.20000+ 1 8.03703- 5 1.01451- 1 3.30000+ 1 9.35093- 5 1.01456- 1 4.30000+ 1 4.32212- 4 1.01501- 1 4.40000+ 1 7.39993- 4 1.01506- 1 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 4.01906- 3 6.42600- 2 3.00000+ 0 5.00000+ 0 6.86636- 3 6.49190- 2 3.00000+ 0 6.00000+ 0 3.12856- 3 6.78560- 2 3.00000+ 0 8.00000+ 0 1.64265- 3 7.82709- 2 3.00000+ 0 1.00000+ 1 1.49288- 3 7.85775- 2 3.00000+ 0 1.10000+ 1 7.52572- 4 7.92455- 2 3.00000+ 0 1.30000+ 1 6.49178- 5 7.97511- 2 3.00000+ 0 1.40000+ 1 4.43176- 5 7.98908- 2 3.00000+ 0 1.60000+ 1 4.24220- 4 8.17597- 2 3.00000+ 0 1.80000+ 1 3.78205- 4 8.18973- 2 3.00000+ 0 1.90000+ 1 1.91502- 4 8.20672- 2 3.00000+ 0 2.10000+ 1 1.81591- 5 8.22924- 2 3.00000+ 0 2.20000+ 1 1.21997- 5 8.23240- 2 3.00000+ 0 2.40000+ 1 3.99988- 8 8.26200- 2 3.00000+ 0 2.50000+ 1 3.99988- 8 8.26279- 2 3.00000+ 0 2.70000+ 1 1.00034- 4 8.26577- 2 3.00000+ 0 2.90000+ 1 8.23952- 5 8.27090- 2 3.00000+ 0 3.00000+ 1 4.09178- 5 8.27461- 2 3.00000+ 0 3.20000+ 1 3.03976- 6 8.28213- 2 3.00000+ 0 3.30000+ 1 1.99982- 6 8.28265- 2 5.00000+ 0 5.00000+ 0 3.04744- 4 6.55780- 2 5.00000+ 0 6.00000+ 0 5.27720- 3 6.85150- 2 5.00000+ 0 8.00000+ 0 1.23073- 3 7.89299- 2 5.00000+ 0 1.00000+ 1 1.16599- 4 7.92365- 2 5.00000+ 0 1.10000+ 1 1.06836- 3 7.99045- 2 5.00000+ 0 1.30000+ 1 6.61590- 5 8.04101- 2 5.00000+ 0 1.40000+ 1 1.60830- 4 8.05498- 2 5.00000+ 0 1.60000+ 1 3.08380- 4 8.24187- 2 5.00000+ 0 1.80000+ 1 2.87184- 5 8.25563- 2 5.00000+ 0 1.90000+ 1 2.60945- 4 8.27262- 2 5.00000+ 0 2.10000+ 1 1.76793- 5 8.29514- 2 5.00000+ 0 2.20000+ 1 4.33171- 5 8.29830- 2 5.00000+ 0 2.40000+ 1 5.59979- 7 8.32790- 2 5.00000+ 0 2.50000+ 1 7.99939- 7 8.32869- 2 5.00000+ 0 2.70000+ 1 7.21962- 5 8.33167- 2 5.00000+ 0 2.90000+ 1 6.19964- 6 8.33680- 2 5.00000+ 0 3.00000+ 1 5.52385- 5 8.34051- 2 5.00000+ 0 3.20000+ 1 2.95986- 6 8.34803- 2 5.00000+ 0 3.30000+ 1 7.11985- 6 8.34855- 2 6.00000+ 0 6.00000+ 0 2.20037- 3 7.14520- 2 6.00000+ 0 8.00000+ 0 5.02631- 4 8.18669- 2 6.00000+ 0 1.00000+ 1 9.48093- 4 8.21735- 2 6.00000+ 0 1.10000+ 1 9.20157- 4 8.28415- 2 6.00000+ 0 1.30000+ 1 1.75872- 4 8.33471- 2 6.00000+ 0 1.40000+ 1 1.43070- 4 8.34868- 2 6.00000+ 0 1.60000+ 1 1.22673- 4 8.53557- 2 6.00000+ 0 1.80000+ 1 2.30104- 4 8.54933- 2 6.00000+ 0 1.90000+ 1 2.26778- 4 8.56632- 2 6.00000+ 0 2.10000+ 1 4.76369- 5 8.58884- 2 6.00000+ 0 2.20000+ 1 3.86798- 5 8.59200- 2 6.00000+ 0 2.40000+ 1 8.39964- 7 8.62160- 2 6.00000+ 0 2.50000+ 1 9.19980- 7 8.62239- 2 6.00000+ 0 2.70000+ 1 2.85177- 5 8.62537- 2 6.00000+ 0 2.90000+ 1 4.96357- 5 8.63050- 2 6.00000+ 0 3.00000+ 1 4.81181- 5 8.63421- 2 6.00000+ 0 3.20000+ 1 7.95944- 6 8.64173- 2 6.00000+ 0 3.30000+ 1 6.35956- 6 8.64225- 2 8.00000+ 0 8.00000+ 0 1.65075- 4 9.22818- 2 8.00000+ 0 1.00000+ 1 2.67705- 4 9.25884- 2 8.00000+ 0 1.10000+ 1 1.21753- 4 9.32564- 2 8.00000+ 0 1.30000+ 1 1.02394- 5 9.37620- 2 8.00000+ 0 1.40000+ 1 6.55988- 6 9.39017- 2 8.00000+ 0 1.60000+ 1 8.49552- 5 9.57706- 2 8.00000+ 0 1.80000+ 1 6.78369- 5 9.59082- 2 8.00000+ 0 1.90000+ 1 3.10396- 5 9.60781- 2 8.00000+ 0 2.10000+ 1 2.87992- 6 9.63033- 2 8.00000+ 0 2.20000+ 1 1.79996- 6 9.63349- 2 8.00000+ 0 2.70000+ 1 2.00394- 5 9.66686- 2 8.00000+ 0 2.90000+ 1 1.47992- 5 9.67199- 2 8.00000+ 0 3.00000+ 1 6.63969- 6 9.67570- 2 8.00000+ 0 3.20000+ 1 4.79961- 7 9.68322- 2 8.00000+ 0 3.30000+ 1 2.79977- 7 9.68374- 2 1.00000+ 1 1.00000+ 1 1.07195- 5 9.28950- 2 1.00000+ 1 1.10000+ 1 1.97912- 4 9.35630- 2 1.00000+ 1 1.30000+ 1 1.06393- 5 9.40686- 2 1.00000+ 1 1.40000+ 1 2.15993- 5 9.42083- 2 1.00000+ 1 1.60000+ 1 6.70749- 5 9.60772- 2 1.00000+ 1 1.80000+ 1 5.23986- 6 9.62148- 2 1.00000+ 1 1.90000+ 1 4.86773- 5 9.63847- 2 1.00000+ 1 2.10000+ 1 2.87995- 6 9.66099- 2 1.00000+ 1 2.20000+ 1 5.87995- 6 9.66415- 2 1.00000+ 1 2.40000+ 1 7.99942- 8 9.69375- 2 1.00000+ 1 2.50000+ 1 7.99942- 8 9.69454- 2 1.00000+ 1 2.70000+ 1 1.56796- 5 9.69752- 2 1.00000+ 1 2.90000+ 1 1.11998- 6 9.70265- 2 1.00000+ 1 3.00000+ 1 1.03196- 5 9.70636- 2 1.00000+ 1 3.20000+ 1 4.79965- 7 9.71388- 2 1.00000+ 1 3.30000+ 1 9.59975- 7 9.71440- 2 1.10000+ 1 1.10000+ 1 9.72768- 5 9.42310- 2 1.10000+ 1 1.30000+ 1 2.96387- 5 9.47366- 2 1.10000+ 1 1.40000+ 1 2.32800- 5 9.48763- 2 1.10000+ 1 1.60000+ 1 2.97596- 5 9.67452- 2 1.10000+ 1 1.80000+ 1 4.83181- 5 9.68828- 2 1.10000+ 1 1.90000+ 1 4.80399- 5 9.70527- 2 1.10000+ 1 2.10000+ 1 8.11959- 6 9.72779- 2 1.10000+ 1 2.20000+ 1 6.31972- 6 9.73095- 2 1.10000+ 1 2.40000+ 1 1.19992- 7 9.76055- 2 1.10000+ 1 2.50000+ 1 1.19992- 7 9.76134- 2 1.10000+ 1 2.70000+ 1 6.91990- 6 9.76432- 2 1.10000+ 1 2.90000+ 1 1.04394- 5 9.76945- 2 1.10000+ 1 3.00000+ 1 1.01996- 5 9.77316- 2 1.10000+ 1 3.20000+ 1 1.35989- 6 9.78068- 2 1.10000+ 1 3.30000+ 1 1.03994- 6 9.78120- 2 1.30000+ 1 1.30000+ 1 7.99927- 8 9.52422- 2 1.30000+ 1 1.40000+ 1 3.31977- 6 9.53819- 2 1.30000+ 1 1.60000+ 1 2.51995- 6 9.72508- 2 1.30000+ 1 1.80000+ 1 2.51995- 6 9.73884- 2 1.30000+ 1 1.90000+ 1 6.95967- 6 9.75583- 2 1.30000+ 1 2.10000+ 1 3.99986- 8 9.77835- 2 1.30000+ 1 2.20000+ 1 8.79941- 7 9.78151- 2 1.30000+ 1 2.70000+ 1 5.99955- 7 9.81488- 2 1.30000+ 1 2.90000+ 1 5.59971- 7 9.82001- 2 1.30000+ 1 3.00000+ 1 1.43989- 6 9.82372- 2 1.30000+ 1 3.30000+ 1 1.59986- 7 9.83176- 2 1.40000+ 1 1.40000+ 1 7.99924- 7 9.55216- 2 1.40000+ 1 1.60000+ 1 1.59985- 6 9.73905- 2 1.40000+ 1 1.80000+ 1 4.87981- 6 9.75281- 2 1.40000+ 1 1.90000+ 1 5.39970- 6 9.76980- 2 1.40000+ 1 2.10000+ 1 8.79938- 7 9.79232- 2 1.40000+ 1 2.20000+ 1 3.99985- 7 9.79548- 2 1.40000+ 1 2.70000+ 1 3.59999- 7 9.82885- 2 1.40000+ 1 2.90000+ 1 1.03992- 6 9.83398- 2 1.40000+ 1 3.00000+ 1 1.11996- 6 9.83769- 2 1.40000+ 1 3.20000+ 1 1.59985- 7 9.84521- 2 1.40000+ 1 3.30000+ 1 7.99924- 8 9.84573- 2 1.60000+ 1 1.60000+ 1 1.09195- 5 9.92594- 2 1.60000+ 1 1.80000+ 1 1.69999- 5 9.93970- 2 1.60000+ 1 1.90000+ 1 7.59955- 6 9.95669- 2 1.60000+ 1 2.10000+ 1 7.19968- 7 9.97921- 2 1.60000+ 1 2.20000+ 1 4.39980- 7 9.98237- 2 1.60000+ 1 2.70000+ 1 5.15959- 6 1.00157- 1 1.60000+ 1 2.90000+ 1 3.71980- 6 1.00209- 1 1.60000+ 1 3.00000+ 1 1.63991- 6 1.00246- 1 1.60000+ 1 3.20000+ 1 1.19991- 7 1.00321- 1 1.60000+ 1 3.30000+ 1 7.99941- 8 1.00326- 1 1.80000+ 1 1.80000+ 1 6.39949- 7 9.95346- 2 1.80000+ 1 1.90000+ 1 1.19193- 5 9.97045- 2 1.80000+ 1 2.10000+ 1 6.79979- 7 9.99297- 2 1.80000+ 1 2.20000+ 1 1.31997- 6 9.99614- 2 1.80000+ 1 2.70000+ 1 3.96000- 6 1.00295- 1 1.80000+ 1 2.90000+ 1 2.79978- 7 1.00346- 1 1.80000+ 1 3.00000+ 1 2.51998- 6 1.00383- 1 1.80000+ 1 3.20000+ 1 1.19991- 7 1.00459- 1 1.80000+ 1 3.30000+ 1 2.39981- 7 1.00464- 1 1.90000+ 1 1.90000+ 1 5.94082- 6 9.98744- 2 1.90000+ 1 2.10000+ 1 1.92673- 6 1.00100- 1 1.90000+ 1 2.20000+ 1 1.48518- 6 1.00131- 1 1.90000+ 1 2.40000+ 1 4.01410- 8 1.00427- 1 1.90000+ 1 2.50000+ 1 4.01410- 8 1.00435- 1 1.90000+ 1 2.70000+ 1 1.76619- 6 1.00465- 1 1.90000+ 1 2.90000+ 1 2.56898- 6 1.00516- 1 1.90000+ 1 3.00000+ 1 2.52892- 6 1.00553- 1 1.90000+ 1 3.20000+ 1 3.21122- 7 1.00628- 1 1.90000+ 1 3.30000+ 1 2.40833- 7 1.00634- 1 2.10000+ 1 2.20000+ 1 2.39980- 7 1.00356- 1 2.10000+ 1 2.70000+ 1 1.59987- 7 1.00690- 1 2.10000+ 1 2.90000+ 1 1.59987- 7 1.00741- 1 2.10000+ 1 3.00000+ 1 3.99990- 7 1.00778- 1 2.10000+ 1 3.30000+ 1 3.99990- 8 1.00859- 1 2.20000+ 1 2.20000+ 1 4.15416- 8 1.00388- 1 2.20000+ 1 2.70000+ 1 1.24618- 7 1.00722- 1 2.20000+ 1 2.90000+ 1 2.90775- 7 1.00773- 1 2.20000+ 1 3.00000+ 1 3.32326- 7 1.00810- 1 2.20000+ 1 3.20000+ 1 4.15416- 8 1.00885- 1 2.70000+ 1 2.70000+ 1 6.14640- 7 1.01055- 1 2.70000+ 1 2.90000+ 1 9.01478- 7 1.01107- 1 2.70000+ 1 3.00000+ 1 3.68811- 7 1.01144- 1 2.70000+ 1 3.20000+ 1 4.09776- 8 1.01219- 1 2.90000+ 1 2.90000+ 1 4.05807- 8 1.01158- 1 2.90000+ 1 3.00000+ 1 5.68120- 7 1.01195- 1 2.90000+ 1 3.20000+ 1 4.05807- 8 1.01270- 1 2.90000+ 1 3.30000+ 1 4.05807- 8 1.01275- 1 3.00000+ 1 3.00000+ 1 2.79979- 7 1.01232- 1 3.00000+ 1 3.20000+ 1 7.99937- 8 1.01307- 1 3.00000+ 1 3.30000+ 1 3.99991- 8 1.01313- 1 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.22910- 5 6.59000- 4 6.00000+ 0 5.03599- 3 3.59600- 3 1.00000+ 1 4.22069- 2 1.43175- 2 1.10000+ 1 4.15149- 2 1.49855- 2 1.30000+ 1 1.73010- 3 1.54911- 2 1.40000+ 1 2.58449- 3 1.56308- 2 1.80000+ 1 1.11530- 2 1.76373- 2 1.90000+ 1 1.22340- 2 1.78072- 2 2.10000+ 1 2.79979- 4 1.80324- 2 2.20000+ 1 4.46459- 4 1.80640- 2 2.90000+ 1 2.47419- 3 1.84490- 2 3.00000+ 1 2.71909- 3 1.84861- 2 3.20000+ 1 4.32649- 5 1.85613- 2 3.30000+ 1 6.92278- 5 1.85665- 2 4.30000+ 1 3.73249- 4 1.86107- 2 4.40000+ 1 3.62439- 4 1.86159- 2 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.62937- 3 6.14000- 5 5.00000+ 0 2.20000+ 1 6.02166- 3 9.30500- 5 5.00000+ 0 2.40000+ 1 1.38867- 2 3.89050- 4 5.00000+ 0 2.50000+ 1 1.83559- 2 3.96930- 4 5.00000+ 0 2.70000+ 1 4.86225- 3 4.26660- 4 5.00000+ 0 2.90000+ 1 3.74184- 3 4.78000- 4 5.00000+ 0 3.00000+ 1 3.20834- 3 5.15090- 4 5.00000+ 0 3.20000+ 1 7.77278- 4 5.90270- 4 5.00000+ 0 3.30000+ 1 1.01250- 3 5.95480- 4 6.00000+ 0 1.30000+ 1 2.23894- 1 4.57100- 4 6.00000+ 0 1.40000+ 1 2.77365- 1 5.96800- 4 6.00000+ 0 1.60000+ 1 1.79983- 2 2.46570- 3 6.00000+ 0 1.80000+ 1 7.05552- 3 2.60331- 3 6.00000+ 0 1.90000+ 1 1.02713- 2 2.77320- 3 6.00000+ 0 2.10000+ 1 3.21717- 2 2.99840- 3 6.00000+ 0 2.20000+ 1 3.76771- 2 3.03005- 3 6.00000+ 0 2.40000+ 1 2.11890- 2 3.32605- 3 6.00000+ 0 2.50000+ 1 2.61733- 2 3.33393- 3 6.00000+ 0 2.70000+ 1 4.02424- 3 3.36366- 3 6.00000+ 0 2.90000+ 1 1.51143- 3 3.41500- 3 6.00000+ 0 3.00000+ 1 2.18002- 3 3.45209- 3 6.00000+ 0 3.20000+ 1 4.91008- 3 3.52727- 3 6.00000+ 0 3.30000+ 1 5.60702- 3 3.53248- 3 8.00000+ 0 8.00000+ 0 5.38156- 3 9.39180- 3 8.00000+ 0 1.00000+ 1 1.11682- 2 9.69840- 3 8.00000+ 0 1.10000+ 1 1.66706- 2 1.03664- 2 8.00000+ 0 1.30000+ 1 1.20309- 2 1.08720- 2 8.00000+ 0 1.40000+ 1 1.49870- 2 1.10117- 2 8.00000+ 0 1.60000+ 1 2.36441- 3 1.28806- 2 8.00000+ 0 1.80000+ 1 2.79971- 3 1.30182- 2 8.00000+ 0 1.90000+ 1 4.13828- 3 1.31881- 2 8.00000+ 0 2.10000+ 1 2.78749- 3 1.34133- 2 8.00000+ 0 2.20000+ 1 3.45086- 3 1.34449- 2 8.00000+ 0 2.40000+ 1 2.49408- 4 1.37409- 2 8.00000+ 0 2.50000+ 1 2.66363- 4 1.37488- 2 8.00000+ 0 2.70000+ 1 5.42215- 4 1.37786- 2 8.00000+ 0 2.90000+ 1 6.07791- 4 1.38299- 2 8.00000+ 0 3.00000+ 1 8.78832- 4 1.38670- 2 8.00000+ 0 3.20000+ 1 4.52448- 4 1.39422- 2 8.00000+ 0 3.30000+ 1 5.51714- 4 1.39474- 2 1.00000+ 1 1.00000+ 1 1.65793- 5 1.00050- 2 1.00000+ 1 1.10000+ 1 2.08264- 4 1.06730- 2 1.00000+ 1 1.30000+ 1 7.13802- 4 1.11786- 2 1.00000+ 1 1.40000+ 1 5.36834- 3 1.13183- 2 1.00000+ 1 1.60000+ 1 1.93984- 3 1.31872- 2 1.00000+ 1 1.80000+ 1 2.04907- 6 1.33248- 2 1.00000+ 1 1.90000+ 1 4.24716- 5 1.34947- 2 1.00000+ 1 2.10000+ 1 1.41010- 4 1.37199- 2 1.00000+ 1 2.20000+ 1 7.93000- 4 1.37515- 2 1.00000+ 1 2.40000+ 1 9.23948- 5 1.40475- 2 1.00000+ 1 2.50000+ 1 3.20394- 4 1.40554- 2 1.00000+ 1 2.70000+ 1 4.18372- 4 1.40852- 2 1.00000+ 1 2.90000+ 1 3.72555- 7 1.41365- 2 1.00000+ 1 3.00000+ 1 8.56877- 6 1.41736- 2 1.00000+ 1 3.20000+ 1 2.25391- 5 1.42488- 2 1.00000+ 1 3.30000+ 1 1.16979- 4 1.42540- 2 1.10000+ 1 1.10000+ 1 6.36096- 4 1.13410- 2 1.10000+ 1 1.30000+ 1 1.60802- 3 1.18466- 2 1.10000+ 1 1.40000+ 1 9.78768- 4 1.19863- 2 1.10000+ 1 1.60000+ 1 2.82825- 3 1.38552- 2 1.10000+ 1 1.80000+ 1 5.27129- 5 1.39928- 2 1.10000+ 1 1.90000+ 1 2.42511- 4 1.41627- 2 1.10000+ 1 2.10000+ 1 1.56643- 4 1.43879- 2 1.10000+ 1 2.20000+ 1 7.17112- 5 1.44195- 2 1.10000+ 1 2.40000+ 1 1.28515- 4 1.47155- 2 1.10000+ 1 2.50000+ 1 1.08955- 4 1.47234- 2 1.10000+ 1 2.70000+ 1 6.06474- 4 1.47532- 2 1.10000+ 1 2.90000+ 1 1.13625- 5 1.48045- 2 1.10000+ 1 3.00000+ 1 4.88008- 5 1.48416- 2 1.10000+ 1 3.20000+ 1 2.14203- 5 1.49168- 2 1.10000+ 1 3.30000+ 1 8.94076- 6 1.49220- 2 1.30000+ 1 1.30000+ 1 6.96996- 4 1.23522- 2 1.30000+ 1 1.40000+ 1 1.98703- 2 1.24919- 2 1.30000+ 1 1.60000+ 1 1.85113- 3 1.43608- 2 1.30000+ 1 1.80000+ 1 2.12341- 4 1.44984- 2 1.30000+ 1 1.90000+ 1 4.43130- 4 1.46683- 2 1.30000+ 1 2.10000+ 1 3.14041- 4 1.48935- 2 1.30000+ 1 2.20000+ 1 3.19132- 3 1.49251- 2 1.30000+ 1 2.40000+ 1 2.55000- 4 1.52211- 2 1.30000+ 1 2.50000+ 1 6.97407- 4 1.52290- 2 1.30000+ 1 2.70000+ 1 3.88556- 4 1.52588- 2 1.30000+ 1 2.90000+ 1 4.78703- 5 1.53101- 2 1.30000+ 1 3.00000+ 1 9.62994- 5 1.53472- 2 1.30000+ 1 3.20000+ 1 5.08504- 5 1.54224- 2 1.30000+ 1 3.30000+ 1 4.75726- 4 1.54276- 2 1.40000+ 1 1.40000+ 1 5.45190- 3 1.26316- 2 1.40000+ 1 1.60000+ 1 2.34132- 3 1.45005- 2 1.40000+ 1 1.80000+ 1 1.18763- 3 1.46381- 2 1.40000+ 1 1.90000+ 1 2.68402- 4 1.48080- 2 1.40000+ 1 2.10000+ 1 3.07022- 3 1.50332- 2 1.40000+ 1 2.20000+ 1 1.84800- 3 1.50648- 2 1.40000+ 1 2.40000+ 1 7.66245- 4 1.53608- 2 1.40000+ 1 2.50000+ 1 5.73129- 4 1.53687- 2 1.40000+ 1 2.70000+ 1 4.94716- 4 1.53985- 2 1.40000+ 1 2.90000+ 1 2.51267- 4 1.54498- 2 1.40000+ 1 3.00000+ 1 5.86736- 5 1.54869- 2 1.40000+ 1 3.20000+ 1 4.60436- 4 1.55621- 2 1.40000+ 1 3.30000+ 1 2.79023- 4 1.55673- 2 1.60000+ 1 1.60000+ 1 2.45499- 4 1.63694- 2 1.60000+ 1 1.80000+ 1 4.88201- 4 1.65070- 2 1.60000+ 1 1.90000+ 1 7.06303- 4 1.66769- 2 1.60000+ 1 2.10000+ 1 4.31573- 4 1.69021- 2 1.60000+ 1 2.20000+ 1 5.38675- 4 1.69337- 2 1.60000+ 1 2.40000+ 1 3.20374- 5 1.72297- 2 1.60000+ 1 2.50000+ 1 3.25965- 5 1.72376- 2 1.60000+ 1 2.70000+ 1 1.11200- 4 1.72674- 2 1.60000+ 1 2.90000+ 1 1.05990- 4 1.73187- 2 1.60000+ 1 3.00000+ 1 1.50131- 4 1.73558- 2 1.60000+ 1 3.20000+ 1 7.00341- 5 1.74310- 2 1.60000+ 1 3.30000+ 1 8.60522- 5 1.74362- 2 1.80000+ 1 1.90000+ 1 1.08036- 5 1.68145- 2 1.80000+ 1 2.10000+ 1 3.76268- 5 1.70397- 2 1.80000+ 1 2.20000+ 1 1.82732- 4 1.70714- 2 1.80000+ 1 2.40000+ 1 1.30383- 5 1.73674- 2 1.80000+ 1 2.50000+ 1 5.15969- 5 1.73752- 2 1.80000+ 1 2.70000+ 1 1.05240- 4 1.74050- 2 1.80000+ 1 3.00000+ 1 2.23528- 6 1.74934- 2 1.80000+ 1 3.20000+ 1 5.96068- 6 1.75686- 2 1.80000+ 1 3.30000+ 1 2.71960- 5 1.75738- 2 1.90000+ 1 1.90000+ 1 2.21663- 5 1.69844- 2 1.90000+ 1 2.10000+ 1 4.69401- 5 1.72096- 2 1.90000+ 1 2.20000+ 1 2.40293- 5 1.72412- 2 1.90000+ 1 2.40000+ 1 2.84986- 5 1.75372- 2 1.90000+ 1 2.50000+ 1 2.34701- 5 1.75451- 2 1.90000+ 1 2.70000+ 1 1.51627- 4 1.75749- 2 1.90000+ 1 2.90000+ 1 2.42147- 6 1.76262- 2 1.90000+ 1 3.00000+ 1 8.94096- 6 1.76633- 2 1.90000+ 1 3.20000+ 1 6.51943- 6 1.77385- 2 1.90000+ 1 3.30000+ 1 3.16652- 6 1.77437- 2 2.10000+ 1 2.10000+ 1 3.27828- 5 1.74348- 2 2.10000+ 1 2.20000+ 1 5.40168- 4 1.74664- 2 2.10000+ 1 2.40000+ 1 3.98616- 5 1.77624- 2 2.10000+ 1 2.50000+ 1 8.19587- 5 1.77703- 2 2.10000+ 1 2.70000+ 1 9.07146- 5 1.78001- 2 2.10000+ 1 2.90000+ 1 8.38205- 6 1.78514- 2 2.10000+ 1 3.00000+ 1 1.04316- 5 1.78885- 2 2.10000+ 1 3.20000+ 1 1.04316- 5 1.79637- 2 2.10000+ 1 3.30000+ 1 8.17673- 5 1.79689- 2 2.20000+ 1 2.20000+ 1 1.68198- 4 1.74981- 2 2.20000+ 1 2.40000+ 1 9.61158- 5 1.77941- 2 2.20000+ 1 2.50000+ 1 7.97201- 5 1.78020- 2 2.20000+ 1 2.70000+ 1 1.13625- 4 1.78317- 2 2.20000+ 1 2.90000+ 1 3.89296- 5 1.78830- 2 2.20000+ 1 3.00000+ 1 5.40168- 6 1.79201- 2 2.20000+ 1 3.20000+ 1 8.23285- 5 1.79953- 2 2.20000+ 1 3.30000+ 1 5.14094- 5 1.80005- 2 2.40000+ 1 2.40000+ 1 1.12997- 6 1.80901- 2 2.40000+ 1 2.50000+ 1 2.09063- 5 1.80980- 2 2.40000+ 1 2.70000+ 1 6.59196- 6 1.81277- 2 2.40000+ 1 2.90000+ 1 2.44841- 6 1.81790- 2 2.40000+ 1 3.00000+ 1 5.83861- 6 1.82161- 2 2.40000+ 1 3.20000+ 1 6.02697- 6 1.82913- 2 2.40000+ 1 3.30000+ 1 1.37487- 5 1.82965- 2 2.50000+ 1 2.50000+ 1 4.63580- 6 1.81059- 2 2.50000+ 1 2.70000+ 1 7.05438- 6 1.81356- 2 2.50000+ 1 2.90000+ 1 1.10850- 5 1.81869- 2 2.50000+ 1 3.00000+ 1 5.24041- 6 1.82240- 2 2.50000+ 1 3.20000+ 1 1.26985- 5 1.82992- 2 2.50000+ 1 3.30000+ 1 1.24968- 5 1.83044- 2 2.70000+ 1 2.70000+ 1 1.55730- 5 1.81653- 2 2.70000+ 1 2.90000+ 1 2.85913- 5 1.82167- 2 2.70000+ 1 3.00000+ 1 4.02139- 5 1.82537- 2 2.70000+ 1 3.20000+ 1 1.83642- 5 1.83289- 2 2.70000+ 1 3.30000+ 1 2.25473- 5 1.83341- 2 2.90000+ 1 3.00000+ 1 7.53587- 7 1.83051- 2 2.90000+ 1 3.20000+ 1 1.75828- 6 1.83803- 2 2.90000+ 1 3.30000+ 1 7.78710- 6 1.83855- 2 3.00000+ 1 3.00000+ 1 1.41005- 6 1.83422- 2 3.00000+ 1 3.20000+ 1 2.25634- 6 1.84174- 2 3.00000+ 1 3.30000+ 1 1.12810- 6 1.84226- 2 3.20000+ 1 3.20000+ 1 7.56657- 7 1.84925- 2 3.20000+ 1 3.30000+ 1 1.26733- 5 1.84977- 2 3.30000+ 1 3.30000+ 1 3.78199- 6 1.85030- 2 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.14170- 5 2.93700- 3 8.00000+ 0 1.00500- 2 1.33519- 2 1.10000+ 1 4.64630- 4 1.43265- 2 1.30000+ 1 3.64010- 1 1.48321- 2 1.60000+ 1 2.66290- 3 1.68407- 2 1.90000+ 1 1.34680- 4 1.71482- 2 2.10000+ 1 7.84550- 2 1.73734- 2 2.40000+ 1 4.09910- 4 1.77010- 2 2.70000+ 1 6.35580- 4 1.77387- 2 3.00000+ 1 2.98450- 5 1.78271- 2 3.20000+ 1 1.29500- 2 1.79023- 2 4.10000+ 1 1.13360- 4 1.79384- 2 4.40000+ 1 3.97600- 6 1.79569- 2 5.80000+ 1 3.95970- 6 1.79672- 2 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.60000+ 1 4.40279- 3 1.80670- 3 6.00000+ 0 1.80000+ 1 3.39405- 2 1.94431- 3 6.00000+ 0 1.90000+ 1 8.68243- 3 2.11420- 3 6.00000+ 0 2.10000+ 1 3.20672- 2 2.33940- 3 6.00000+ 0 2.20000+ 1 1.09069- 2 2.37105- 3 6.00000+ 0 2.40000+ 1 1.46813- 3 2.66705- 3 6.00000+ 0 2.50000+ 1 2.15385- 3 2.67493- 3 6.00000+ 0 2.70000+ 1 9.53431- 4 2.70466- 3 6.00000+ 0 2.90000+ 1 6.73767- 3 2.75600- 3 6.00000+ 0 3.00000+ 1 1.79388- 3 2.79309- 3 6.00000+ 0 3.20000+ 1 4.98961- 3 2.86827- 3 6.00000+ 0 3.30000+ 1 1.69357- 3 2.87348- 3 8.00000+ 0 8.00000+ 0 4.88763- 4 8.73280- 3 8.00000+ 0 1.00000+ 1 1.87199- 2 9.03940- 3 8.00000+ 0 1.10000+ 1 1.70024- 3 9.70740- 3 8.00000+ 0 1.30000+ 1 3.25058- 3 1.02130- 2 8.00000+ 0 1.40000+ 1 1.46301- 3 1.03527- 2 8.00000+ 0 1.60000+ 1 1.93207- 4 1.22216- 2 8.00000+ 0 1.80000+ 1 3.09580- 3 1.23592- 2 8.00000+ 0 1.90000+ 1 3.79308- 4 1.25291- 2 8.00000+ 0 2.10000+ 1 5.33393- 4 1.27543- 2 8.00000+ 0 2.20000+ 1 2.04663- 4 1.27859- 2 8.00000+ 0 2.40000+ 1 8.29748- 5 1.30819- 2 8.00000+ 0 2.50000+ 1 5.88730- 5 1.30898- 2 8.00000+ 0 2.70000+ 1 4.30671- 5 1.31196- 2 8.00000+ 0 2.90000+ 1 6.15186- 4 1.31709- 2 8.00000+ 0 3.00000+ 1 7.86287- 5 1.32080- 2 8.00000+ 0 3.20000+ 1 8.13950- 5 1.32832- 2 8.00000+ 0 3.30000+ 1 3.00278- 5 1.32884- 2 1.00000+ 1 1.00000+ 1 1.98019- 2 9.34600- 3 1.00000+ 1 1.10000+ 1 4.74637- 2 1.00140- 2 1.00000+ 1 1.30000+ 1 2.42469- 2 1.05196- 2 1.00000+ 1 1.40000+ 1 3.26917- 2 1.06593- 2 1.00000+ 1 1.60000+ 1 4.95444- 3 1.25282- 2 1.00000+ 1 1.80000+ 1 8.35374- 3 1.26658- 2 1.00000+ 1 1.90000+ 1 1.15735- 2 1.28357- 2 1.00000+ 1 2.10000+ 1 5.60703- 3 1.30609- 2 1.00000+ 1 2.20000+ 1 7.56076- 3 1.30925- 2 1.00000+ 1 2.40000+ 1 4.48449- 4 1.33885- 2 1.00000+ 1 2.50000+ 1 3.75748- 4 1.33964- 2 1.00000+ 1 2.70000+ 1 1.17352- 3 1.34262- 2 1.00000+ 1 2.90000+ 1 1.75864- 3 1.34775- 2 1.00000+ 1 3.00000+ 1 2.44894- 3 1.35146- 2 1.00000+ 1 3.20000+ 1 9.10333- 4 1.35898- 2 1.00000+ 1 3.30000+ 1 1.21064- 3 1.35950- 2 1.10000+ 1 1.10000+ 1 1.02850- 3 1.06820- 2 1.10000+ 1 1.30000+ 1 2.02207- 2 1.11876- 2 1.10000+ 1 1.40000+ 1 3.02423- 3 1.13273- 2 1.10000+ 1 1.60000+ 1 3.76152- 4 1.31962- 2 1.10000+ 1 1.80000+ 1 7.95246- 3 1.33338- 2 1.10000+ 1 1.90000+ 1 4.32656- 4 1.35037- 2 1.10000+ 1 2.10000+ 1 3.96500- 3 1.37289- 2 1.10000+ 1 2.20000+ 1 5.74107- 4 1.37605- 2 1.10000+ 1 2.40000+ 1 1.63965- 4 1.40565- 2 1.10000+ 1 2.50000+ 1 8.37648- 5 1.40644- 2 1.10000+ 1 2.70000+ 1 8.53435- 5 1.40942- 2 1.10000+ 1 2.90000+ 1 1.58317- 3 1.41455- 2 1.10000+ 1 3.00000+ 1 8.85032- 5 1.41826- 2 1.10000+ 1 3.20000+ 1 6.23507- 4 1.42578- 2 1.10000+ 1 3.30000+ 1 8.89004- 5 1.42630- 2 1.30000+ 1 1.30000+ 1 1.92245- 2 1.16932- 2 1.30000+ 1 1.40000+ 1 7.50866- 2 1.18329- 2 1.30000+ 1 1.60000+ 1 8.60529- 4 1.37018- 2 1.30000+ 1 1.80000+ 1 3.91745- 3 1.38394- 2 1.30000+ 1 1.90000+ 1 4.55352- 3 1.40093- 2 1.30000+ 1 2.10000+ 1 7.36186- 3 1.42345- 2 1.30000+ 1 2.20000+ 1 1.55270- 2 1.42661- 2 1.30000+ 1 2.40000+ 1 1.49633- 3 1.45621- 2 1.30000+ 1 2.50000+ 1 2.99724- 3 1.45700- 2 1.30000+ 1 2.70000+ 1 2.04270- 4 1.45998- 2 1.30000+ 1 2.90000+ 1 7.80704- 4 1.46511- 2 1.30000+ 1 3.00000+ 1 9.47091- 4 1.46882- 2 1.30000+ 1 3.20000+ 1 1.15852- 3 1.47634- 2 1.30000+ 1 3.30000+ 1 2.43430- 3 1.47686- 2 1.40000+ 1 1.40000+ 1 3.65709- 3 1.19726- 2 1.40000+ 1 1.60000+ 1 3.11740- 4 1.38415- 2 1.40000+ 1 1.80000+ 1 4.64875- 3 1.39791- 2 1.40000+ 1 1.90000+ 1 6.27841- 4 1.41490- 2 1.40000+ 1 2.10000+ 1 1.18008- 2 1.43742- 2 1.40000+ 1 2.20000+ 1 1.37817- 3 1.44058- 2 1.40000+ 1 2.40000+ 1 5.97423- 4 1.47018- 2 1.40000+ 1 2.50000+ 1 2.27573- 4 1.47097- 2 1.40000+ 1 2.70000+ 1 7.03266- 5 1.47395- 2 1.40000+ 1 2.90000+ 1 8.91758- 4 1.47908- 2 1.40000+ 1 3.00000+ 1 1.28406- 4 1.48279- 2 1.40000+ 1 3.20000+ 1 1.78075- 3 1.49031- 2 1.40000+ 1 3.30000+ 1 2.13363- 4 1.49083- 2 1.60000+ 1 1.60000+ 1 1.81754- 5 1.57104- 2 1.60000+ 1 1.80000+ 1 8.24254- 4 1.58480- 2 1.60000+ 1 1.90000+ 1 8.45559- 5 1.60179- 2 1.60000+ 1 2.10000+ 1 1.37901- 4 1.62431- 2 1.60000+ 1 2.20000+ 1 4.34631- 5 1.62747- 2 1.60000+ 1 2.40000+ 1 1.89657- 5 1.65707- 2 1.60000+ 1 2.50000+ 1 1.10637- 5 1.65786- 2 1.60000+ 1 2.70000+ 1 7.90223- 6 1.66084- 2 1.60000+ 1 2.90000+ 1 1.63968- 4 1.66597- 2 1.60000+ 1 3.00000+ 1 1.73859- 5 1.66968- 2 1.60000+ 1 3.20000+ 1 2.09418- 5 1.67720- 2 1.60000+ 1 3.30000+ 1 6.32213- 6 1.67772- 2 1.80000+ 1 1.80000+ 1 8.37620- 4 1.59856- 2 1.80000+ 1 1.90000+ 1 1.94627- 3 1.61555- 2 1.80000+ 1 2.10000+ 1 8.93325- 4 1.63807- 2 1.80000+ 1 2.20000+ 1 1.08695- 3 1.64124- 2 1.80000+ 1 2.40000+ 1 5.96612- 5 1.67084- 2 1.80000+ 1 2.50000+ 1 3.91148- 5 1.67162- 2 1.80000+ 1 2.70000+ 1 1.95565- 4 1.67460- 2 1.80000+ 1 2.90000+ 1 3.48866- 4 1.67973- 2 1.80000+ 1 3.00000+ 1 4.12094- 4 1.68344- 2 1.80000+ 1 3.20000+ 1 1.44600- 4 1.69096- 2 1.80000+ 1 3.30000+ 1 1.74238- 4 1.69148- 2 1.90000+ 1 1.90000+ 1 4.54377- 5 1.63254- 2 1.90000+ 1 2.10000+ 1 8.98875- 4 1.65506- 2 1.90000+ 1 2.20000+ 1 1.20905- 4 1.65822- 2 1.90000+ 1 2.40000+ 1 3.24003- 5 1.68782- 2 1.90000+ 1 2.50000+ 1 1.50145- 5 1.68861- 2 1.90000+ 1 2.70000+ 1 1.93608- 5 1.69159- 2 1.90000+ 1 2.90000+ 1 3.87613- 4 1.69672- 2 1.90000+ 1 3.00000+ 1 1.85703- 5 1.70043- 2 1.90000+ 1 3.20000+ 1 1.41452- 4 1.70795- 2 1.90000+ 1 3.30000+ 1 1.85703- 5 1.70847- 2 2.10000+ 1 2.10000+ 1 6.99708- 4 1.67758- 2 2.10000+ 1 2.20000+ 1 2.54296- 3 1.68074- 2 2.10000+ 1 2.40000+ 1 1.97155- 4 1.71034- 2 2.10000+ 1 2.50000+ 1 3.97082- 4 1.71113- 2 2.10000+ 1 2.70000+ 1 3.23993- 5 1.71411- 2 2.10000+ 1 2.90000+ 1 1.77006- 4 1.71924- 2 2.10000+ 1 3.00000+ 1 1.87285- 4 1.72295- 2 2.10000+ 1 3.20000+ 1 2.19678- 4 1.73047- 2 2.10000+ 1 3.30000+ 1 4.01422- 4 1.73099- 2 2.20000+ 1 2.20000+ 1 1.31179- 4 1.68391- 2 2.20000+ 1 2.40000+ 1 8.57340- 5 1.71351- 2 2.20000+ 1 2.50000+ 1 3.31886- 5 1.71430- 2 2.20000+ 1 2.70000+ 1 9.87731- 6 1.71727- 2 2.20000+ 1 2.90000+ 1 2.09000- 4 1.72240- 2 2.20000+ 1 3.00000+ 1 2.48917- 5 1.72611- 2 2.20000+ 1 3.20000+ 1 3.86413- 4 1.73363- 2 2.20000+ 1 3.30000+ 1 4.06960- 5 1.73415- 2 2.40000+ 1 2.40000+ 1 4.74138- 6 1.74311- 2 2.40000+ 1 2.50000+ 1 3.31897- 5 1.74390- 2 2.40000+ 1 2.70000+ 1 4.34628- 6 1.74687- 2 2.40000+ 1 2.90000+ 1 1.14588- 5 1.75200- 2 2.40000+ 1 3.00000+ 1 6.71698- 6 1.75571- 2 2.40000+ 1 3.20000+ 1 2.88435- 5 1.76323- 2 2.40000+ 1 3.30000+ 1 1.26433- 5 1.76375- 2 2.50000+ 1 2.50000+ 1 1.97543- 6 1.74469- 2 2.50000+ 1 2.70000+ 1 2.37062- 6 1.74766- 2 2.50000+ 1 2.90000+ 1 7.11164- 6 1.75279- 2 2.50000+ 1 3.00000+ 1 3.16088- 6 1.75650- 2 2.50000+ 1 3.20000+ 1 5.80822- 5 1.76402- 2 2.50000+ 1 3.30000+ 1 4.74122- 6 1.76454- 2 2.70000+ 1 2.70000+ 1 7.90190- 7 1.75063- 2 2.70000+ 1 2.90000+ 1 3.87192- 5 1.75577- 2 2.70000+ 1 3.00000+ 1 3.95106- 6 1.75947- 2 2.70000+ 1 3.20000+ 1 4.74122- 6 1.76699- 2 2.70000+ 1 3.30000+ 1 1.58034- 6 1.76751- 2 2.90000+ 1 2.90000+ 1 3.63501- 5 1.76090- 2 2.90000+ 1 3.00000+ 1 8.21835- 5 1.76461- 2 2.90000+ 1 3.20000+ 1 2.88425- 5 1.77213- 2 2.90000+ 1 3.30000+ 1 3.35838- 5 1.77265- 2 3.00000+ 1 3.00000+ 1 1.97546- 6 1.76832- 2 3.00000+ 1 3.20000+ 1 2.96334- 5 1.77584- 2 3.00000+ 1 3.30000+ 1 3.95112- 6 1.77636- 2 3.20000+ 1 3.20000+ 1 1.66380- 5 1.78335- 2 3.20000+ 1 3.30000+ 1 5.86099- 5 1.78387- 2 3.30000+ 1 3.30000+ 1 3.16090- 6 1.78440- 2 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.84281- 2 1.04149- 2 1.00000+ 1 2.17261- 4 1.07215- 2 1.10000+ 1 1.96661- 4 1.13895- 2 1.30000+ 1 3.16611- 2 1.18951- 2 1.40000+ 1 2.78451- 1 1.20348- 2 1.60000+ 1 4.45431- 3 1.39037- 2 1.80000+ 1 4.89351- 5 1.40413- 2 1.90000+ 1 5.19622- 5 1.42112- 2 2.10000+ 1 6.16542- 3 1.44364- 2 2.20000+ 1 5.60822- 2 1.44680- 2 2.40000+ 1 6.31762- 5 1.47640- 2 2.50000+ 1 3.50771- 4 1.47719- 2 2.70000+ 1 1.05310- 3 1.48017- 2 2.90000+ 1 1.04820- 5 1.48530- 2 3.00000+ 1 1.14540- 5 1.48901- 2 3.20000+ 1 9.98413- 4 1.49653- 2 3.30000+ 1 9.03953- 3 1.49705- 2 4.10000+ 1 1.87481- 4 1.50014- 2 4.30000+ 1 1.50990- 6 1.50147- 2 4.40000+ 1 1.50010- 6 1.50199- 2 5.80000+ 1 6.54622- 6 1.50302- 2 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.61430- 4 5.79580- 3 8.00000+ 0 1.00000+ 1 2.62056- 4 6.10240- 3 8.00000+ 0 1.10000+ 1 1.93114- 2 6.77040- 3 8.00000+ 0 1.30000+ 1 2.69559- 3 7.27600- 3 8.00000+ 0 1.40000+ 1 5.00386- 3 7.41570- 3 8.00000+ 0 1.60000+ 1 2.23948- 4 9.28460- 3 8.00000+ 0 1.80000+ 1 4.59687- 5 9.42221- 3 8.00000+ 0 1.90000+ 1 3.12038- 3 9.59210- 3 8.00000+ 0 2.10000+ 1 3.03704- 4 9.81730- 3 8.00000+ 0 2.20000+ 1 5.27256- 4 9.84895- 3 8.00000+ 0 2.40000+ 1 2.78546- 4 1.01449- 2 8.00000+ 0 2.50000+ 1 4.81673- 4 1.01528- 2 8.00000+ 0 2.70000+ 1 4.98973- 5 1.01826- 2 8.00000+ 0 2.90000+ 1 9.03671- 6 1.02339- 2 8.00000+ 0 3.00000+ 1 6.05825- 4 1.02710- 2 8.00000+ 0 3.20000+ 1 4.32176- 5 1.03462- 2 8.00000+ 0 3.30000+ 1 7.22900- 5 1.03514- 2 1.00000+ 1 1.00000+ 1 9.42962- 6 6.40900- 3 1.00000+ 1 1.10000+ 1 3.23961- 2 7.07700- 3 1.00000+ 1 1.30000+ 1 1.43519- 3 7.58260- 3 1.00000+ 1 1.40000+ 1 1.15414- 2 7.72230- 3 1.00000+ 1 1.60000+ 1 5.50045- 5 9.59120- 3 1.00000+ 1 1.80000+ 1 9.82248- 6 9.72881- 3 1.00000+ 1 1.90000+ 1 5.43679- 3 9.89870- 3 1.00000+ 1 2.10000+ 1 2.80919- 4 1.01239- 2 1.00000+ 1 2.20000+ 1 1.87441- 3 1.01555- 2 1.00000+ 1 2.40000+ 1 2.54990- 4 1.04515- 2 1.00000+ 1 2.50000+ 1 6.25087- 4 1.04594- 2 1.00000+ 1 2.70000+ 1 1.25725- 5 1.04892- 2 1.00000+ 1 2.90000+ 1 2.75018- 6 1.05405- 2 1.00000+ 1 3.00000+ 1 1.06320- 3 1.05776- 2 1.00000+ 1 3.20000+ 1 4.51822- 5 1.06528- 2 1.00000+ 1 3.30000+ 1 2.83272- 4 1.06580- 2 1.10000+ 1 1.10000+ 1 3.96679- 2 7.74500- 3 1.10000+ 1 1.30000+ 1 4.15818- 2 8.25060- 3 1.10000+ 1 1.40000+ 1 5.44389- 2 8.39030- 3 1.10000+ 1 1.60000+ 1 5.02781- 3 1.02592- 2 1.10000+ 1 1.80000+ 1 7.57385- 3 1.03968- 2 1.10000+ 1 1.90000+ 1 1.61560- 2 1.05667- 2 1.10000+ 1 2.10000+ 1 9.01253- 3 1.07919- 2 1.10000+ 1 2.20000+ 1 1.16808- 2 1.08235- 2 1.10000+ 1 2.40000+ 1 8.85189- 4 1.11195- 2 1.10000+ 1 2.50000+ 1 1.07299- 3 1.11274- 2 1.10000+ 1 2.70000+ 1 1.18657- 3 1.11572- 2 1.10000+ 1 2.90000+ 1 1.62332- 3 1.12085- 2 1.10000+ 1 3.00000+ 1 3.30940- 3 1.12456- 2 1.10000+ 1 3.20000+ 1 1.44814- 3 1.13208- 2 1.10000+ 1 3.30000+ 1 1.84545- 3 1.13260- 2 1.30000+ 1 1.30000+ 1 5.60217- 3 8.75620- 3 1.30000+ 1 1.40000+ 1 1.04558- 1 8.89590- 3 1.30000+ 1 1.60000+ 1 6.54513- 4 1.07648- 2 1.30000+ 1 1.80000+ 1 3.62627- 4 1.09024- 2 1.30000+ 1 1.90000+ 1 6.31945- 3 1.10723- 2 1.30000+ 1 2.10000+ 1 2.04687- 3 1.12975- 2 1.30000+ 1 2.20000+ 1 1.59877- 2 1.13291- 2 1.30000+ 1 2.40000+ 1 4.81667- 4 1.16251- 2 1.30000+ 1 2.50000+ 1 1.62052- 3 1.16330- 2 1.30000+ 1 2.70000+ 1 1.53224- 4 1.16628- 2 1.30000+ 1 2.90000+ 1 7.85753- 5 1.17141- 2 1.30000+ 1 3.00000+ 1 1.21008- 3 1.17512- 2 1.30000+ 1 3.20000+ 1 3.20199- 4 1.18264- 2 1.30000+ 1 3.30000+ 1 2.37497- 3 1.18316- 2 1.40000+ 1 1.40000+ 1 6.92903- 2 9.03560- 3 1.40000+ 1 1.60000+ 1 1.22697- 3 1.09045- 2 1.40000+ 1 1.80000+ 1 2.43436- 3 1.10421- 2 1.40000+ 1 1.90000+ 1 9.29718- 3 1.12120- 2 1.40000+ 1 2.10000+ 1 1.92813- 2 1.14372- 2 1.40000+ 1 2.20000+ 1 2.42971- 2 1.14688- 2 1.40000+ 1 2.40000+ 1 5.06455- 3 1.17648- 2 1.40000+ 1 2.50000+ 1 4.58373- 3 1.17727- 2 1.40000+ 1 2.70000+ 1 2.89156- 4 1.18025- 2 1.40000+ 1 2.90000+ 1 5.11131- 4 1.18538- 2 1.40000+ 1 3.00000+ 1 1.83897- 3 1.18909- 2 1.40000+ 1 3.20000+ 1 3.01098- 3 1.19661- 2 1.40000+ 1 3.30000+ 1 3.71471- 3 1.19713- 2 1.60000+ 1 1.60000+ 1 2.31798- 5 1.27734- 2 1.60000+ 1 1.80000+ 1 1.06083- 5 1.29110- 2 1.60000+ 1 1.90000+ 1 8.11719- 4 1.30809- 2 1.60000+ 1 2.10000+ 1 7.97562- 5 1.33061- 2 1.60000+ 1 2.20000+ 1 1.37904- 4 1.33377- 2 1.60000+ 1 2.40000+ 1 3.61457- 5 1.36337- 2 1.60000+ 1 2.50000+ 1 7.03291- 5 1.36416- 2 1.60000+ 1 2.70000+ 1 1.02148- 5 1.36714- 2 1.60000+ 1 2.90000+ 1 1.96446- 6 1.37227- 2 1.60000+ 1 3.00000+ 1 1.57537- 4 1.37598- 2 1.60000+ 1 3.20000+ 1 1.13941- 5 1.38350- 2 1.60000+ 1 3.30000+ 1 1.92513- 5 1.38402- 2 1.80000+ 1 1.80000+ 1 3.92895- 7 1.30486- 2 1.80000+ 1 1.90000+ 1 1.26200- 3 1.32185- 2 1.80000+ 1 2.10000+ 1 6.60044- 5 1.34437- 2 1.80000+ 1 2.20000+ 1 4.27850- 4 1.34754- 2 1.80000+ 1 2.40000+ 1 3.81101- 5 1.37714- 2 1.80000+ 1 2.50000+ 1 8.76127- 5 1.37792- 2 1.80000+ 1 2.70000+ 1 2.35723- 6 1.38090- 2 1.80000+ 1 3.00000+ 1 2.46341- 4 1.38974- 2 1.80000+ 1 3.20000+ 1 1.02148- 5 1.39726- 2 1.80000+ 1 3.30000+ 1 6.52225- 5 1.39778- 2 1.90000+ 1 1.90000+ 1 1.57150- 3 1.33884- 2 1.90000+ 1 2.10000+ 1 1.37349- 3 1.36136- 2 1.90000+ 1 2.20000+ 1 1.96563- 3 1.36452- 2 1.90000+ 1 2.40000+ 1 1.10796- 4 1.39412- 2 1.90000+ 1 2.50000+ 1 1.41442- 4 1.39491- 2 1.90000+ 1 2.70000+ 1 1.91730- 4 1.39789- 2 1.90000+ 1 2.90000+ 1 2.69914- 4 1.40302- 2 1.90000+ 1 3.00000+ 1 6.37635- 4 1.40673- 2 1.90000+ 1 3.20000+ 1 2.20793- 4 1.41425- 2 1.90000+ 1 3.30000+ 1 3.09595- 4 1.41477- 2 2.10000+ 1 2.10000+ 1 1.79160- 4 1.38388- 2 2.10000+ 1 2.20000+ 1 3.09009- 3 1.38704- 2 2.10000+ 1 2.40000+ 1 5.81479- 5 1.41664- 2 2.10000+ 1 2.50000+ 1 1.85446- 4 1.41743- 2 2.10000+ 1 2.70000+ 1 1.88590- 5 1.42041- 2 2.10000+ 1 2.90000+ 1 1.41445- 5 1.42554- 2 2.10000+ 1 3.00000+ 1 2.63238- 4 1.42925- 2 2.10000+ 1 3.20000+ 1 5.57912- 5 1.43677- 2 2.10000+ 1 3.30000+ 1 4.62436- 4 1.43729- 2 2.20000+ 1 2.20000+ 1 2.14308- 3 1.39021- 2 2.20000+ 1 2.40000+ 1 6.03451- 4 1.41981- 2 2.20000+ 1 2.50000+ 1 5.36289- 4 1.42060- 2 2.20000+ 1 2.70000+ 1 3.30027- 5 1.42357- 2 2.20000+ 1 2.90000+ 1 9.07581- 5 1.42870- 2 2.20000+ 1 3.00000+ 1 3.87383- 4 1.43241- 2 2.20000+ 1 3.20000+ 1 4.86001- 4 1.43993- 2 2.20000+ 1 3.30000+ 1 6.55350- 4 1.44045- 2 2.40000+ 1 2.40000+ 1 2.37672- 6 1.44941- 2 2.40000+ 1 2.50000+ 1 7.88329- 5 1.45020- 2 2.40000+ 1 2.70000+ 1 7.52656- 6 1.45317- 2 2.40000+ 1 2.90000+ 1 7.52656- 6 1.45830- 2 2.40000+ 1 3.00000+ 1 2.05995- 5 1.46201- 2 2.40000+ 1 3.20000+ 1 8.31878- 6 1.46953- 2 2.40000+ 1 3.30000+ 1 8.59597- 5 1.47005- 2 2.50000+ 1 2.50000+ 1 2.78964- 5 1.45099- 2 2.50000+ 1 2.70000+ 1 1.49294- 5 1.45396- 2 2.50000+ 1 2.90000+ 1 1.72871- 5 1.45909- 2 2.50000+ 1 3.00000+ 1 2.67161- 5 1.46280- 2 2.50000+ 1 3.20000+ 1 2.63236- 5 1.47032- 2 2.50000+ 1 3.30000+ 1 7.58281- 5 1.47084- 2 2.70000+ 1 2.70000+ 1 1.30402- 6 1.45693- 2 2.70000+ 1 2.90000+ 1 4.34680- 7 1.46207- 2 2.70000+ 1 3.00000+ 1 4.12937- 5 1.46577- 2 2.70000+ 1 3.20000+ 1 3.04267- 6 1.47329- 2 2.70000+ 1 3.30000+ 1 5.21608- 6 1.47381- 2 2.90000+ 1 3.00000+ 1 6.00722- 5 1.47091- 2 2.90000+ 1 3.20000+ 1 2.68969- 6 1.47843- 2 2.90000+ 1 3.30000+ 1 1.56904- 5 1.47895- 2 3.00000+ 1 3.00000+ 1 7.20418- 5 1.47462- 2 3.00000+ 1 3.20000+ 1 4.74428- 5 1.48214- 2 3.00000+ 1 3.30000+ 1 6.80860- 5 1.48266- 2 3.20000+ 1 3.20000+ 1 4.32176- 6 1.48965- 2 3.20000+ 1 3.30000+ 1 7.26875- 5 1.49017- 2 3.30000+ 1 3.30000+ 1 4.98972- 5 1.49070- 2 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.03460- 5 3.06600- 4 1.10000+ 1 7.54612- 4 9.74600- 4 1.80000+ 1 2.05901- 3 3.62641- 3 1.90000+ 1 1.33990- 3 3.79630- 3 2.90000+ 1 4.99112- 4 4.43810- 3 3.00000+ 1 3.59761- 4 4.47519- 3 4.30000+ 1 7.33982- 5 4.59982- 3 4.40000+ 1 4.93412- 5 4.60496- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 1.47142- 2 3.66500- 5 1.00000+ 1 2.50000+ 1 1.87802- 2 4.45300- 5 1.00000+ 1 2.70000+ 1 1.32314- 2 7.42600- 5 1.00000+ 1 2.90000+ 1 1.34715- 2 1.25600- 4 1.00000+ 1 3.00000+ 1 1.69368- 2 1.62690- 4 1.00000+ 1 3.20000+ 1 8.85470- 3 2.37870- 4 1.00000+ 1 3.30000+ 1 1.16933- 2 2.43080- 4 1.00000+ 1 4.10000+ 1 2.16935- 3 2.73960- 4 1.00000+ 1 4.30000+ 1 1.70999- 3 2.87320- 4 1.00000+ 1 4.40000+ 1 1.93403- 3 2.92460- 4 1.00000+ 1 5.80000+ 1 7.47603- 5 3.02800- 4 1.10000+ 1 1.80000+ 1 5.36522- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 4.88375- 2 1.51800- 4 1.10000+ 1 2.10000+ 1 1.32771- 2 3.77000- 4 1.10000+ 1 2.20000+ 1 2.69116- 2 4.08650- 4 1.10000+ 1 2.40000+ 1 1.88793- 1 7.04650- 4 1.10000+ 1 2.50000+ 1 2.30886- 1 7.12530- 4 1.10000+ 1 2.70000+ 1 1.10641- 2 7.42260- 4 1.10000+ 1 2.90000+ 1 1.09702- 2 7.93600- 4 1.10000+ 1 3.00000+ 1 1.00654- 2 8.30690- 4 1.10000+ 1 3.20000+ 1 2.26637- 3 9.05870- 4 1.10000+ 1 3.30000+ 1 4.53077- 3 9.11080- 4 1.10000+ 1 4.10000+ 1 1.83834- 3 9.41960- 4 1.10000+ 1 4.30000+ 1 1.42817- 3 9.55320- 4 1.10000+ 1 4.40000+ 1 1.18801- 3 9.60460- 4 1.10000+ 1 5.80000+ 1 6.35903- 5 9.70800- 4 1.30000+ 1 1.60000+ 1 2.57953- 2 3.49900- 4 1.30000+ 1 1.80000+ 1 5.51687- 3 4.87510- 4 1.30000+ 1 1.90000+ 1 8.05660- 3 6.57400- 4 1.30000+ 1 2.10000+ 1 8.86833- 3 8.82600- 4 1.30000+ 1 2.20000+ 1 1.07787- 2 9.14250- 4 1.30000+ 1 2.40000+ 1 9.58592- 3 1.21025- 3 1.30000+ 1 2.50000+ 1 8.92238- 3 1.21813- 3 1.30000+ 1 2.70000+ 1 3.81784- 3 1.24786- 3 1.30000+ 1 2.90000+ 1 9.31574- 4 1.29920- 3 1.30000+ 1 3.00000+ 1 1.27208- 3 1.33629- 3 1.30000+ 1 3.20000+ 1 1.16539- 3 1.41147- 3 1.30000+ 1 3.30000+ 1 1.52182- 3 1.41668- 3 1.30000+ 1 4.10000+ 1 5.90323- 4 1.44756- 3 1.30000+ 1 4.30000+ 1 1.19690- 4 1.46092- 3 1.30000+ 1 4.40000+ 1 1.45159- 4 1.46606- 3 1.30000+ 1 5.80000+ 1 2.02899- 5 1.47640- 3 1.40000+ 1 1.60000+ 1 3.55718- 2 4.89600- 4 1.40000+ 1 1.80000+ 1 8.82909- 4 6.27210- 4 1.40000+ 1 1.90000+ 1 1.14591- 2 7.97100- 4 1.40000+ 1 2.10000+ 1 1.22326- 2 1.02230- 3 1.40000+ 1 2.20000+ 1 1.69932- 2 1.05395- 3 1.40000+ 1 2.40000+ 1 1.11331- 2 1.34995- 3 1.40000+ 1 2.50000+ 1 1.69892- 2 1.35783- 3 1.40000+ 1 2.70000+ 1 5.18695- 3 1.38756- 3 1.40000+ 1 2.90000+ 1 1.97987- 4 1.43890- 3 1.40000+ 1 3.00000+ 1 1.78990- 3 1.47599- 3 1.40000+ 1 3.20000+ 1 1.76698- 3 1.55117- 3 1.40000+ 1 3.30000+ 1 2.30873- 3 1.55638- 3 1.40000+ 1 4.10000+ 1 7.99435- 4 1.58726- 3 1.40000+ 1 4.30000+ 1 2.72342- 5 1.60062- 3 1.40000+ 1 4.40000+ 1 2.03983- 4 1.60576- 3 1.40000+ 1 5.80000+ 1 2.73706- 5 1.61610- 3 1.60000+ 1 1.60000+ 1 2.27182- 3 2.35850- 3 1.60000+ 1 1.80000+ 1 4.00685- 3 2.49611- 3 1.60000+ 1 1.90000+ 1 6.41274- 3 2.66600- 3 1.60000+ 1 2.10000+ 1 7.60772- 3 2.89120- 3 1.60000+ 1 2.20000+ 1 1.06146- 2 2.92285- 3 1.60000+ 1 2.40000+ 1 5.68194- 3 3.21885- 3 1.60000+ 1 2.50000+ 1 7.07869- 3 3.22673- 3 1.60000+ 1 2.70000+ 1 8.69881- 4 3.25646- 3 1.60000+ 1 2.90000+ 1 8.65139- 4 3.30780- 3 1.60000+ 1 3.00000+ 1 1.35400- 3 3.34489- 3 1.60000+ 1 3.20000+ 1 1.20454- 3 3.42007- 3 1.60000+ 1 3.30000+ 1 1.65729- 3 3.42528- 3 1.60000+ 1 4.10000+ 1 1.43177- 4 3.45616- 3 1.60000+ 1 4.30000+ 1 1.15357- 4 3.46952- 3 1.60000+ 1 4.40000+ 1 1.61556- 4 3.47466- 3 1.60000+ 1 5.80000+ 1 4.87198- 6 3.48500- 3 1.80000+ 1 1.80000+ 1 1.60297- 4 2.63372- 3 1.80000+ 1 1.90000+ 1 4.92061- 4 2.80361- 3 1.80000+ 1 2.10000+ 1 2.45631- 4 3.02881- 3 1.80000+ 1 2.20000+ 1 1.26196- 4 3.06046- 3 1.80000+ 1 2.40000+ 1 2.79742- 5 3.35646- 3 1.80000+ 1 2.50000+ 1 4.75234- 4 3.36434- 3 1.80000+ 1 2.70000+ 1 5.81010- 4 3.39407- 3 1.80000+ 1 2.90000+ 1 5.06038- 5 3.44541- 3 1.80000+ 1 3.00000+ 1 7.40189- 5 3.48250- 3 1.80000+ 1 3.20000+ 1 3.34740- 5 3.55768- 3 1.80000+ 1 3.30000+ 1 2.43591- 5 3.56289- 3 1.80000+ 1 4.10000+ 1 8.97337- 5 3.59377- 3 1.80000+ 1 4.30000+ 1 6.44307- 6 3.60713- 3 1.80000+ 1 4.40000+ 1 8.32934- 6 3.61227- 3 1.80000+ 1 5.80000+ 1 3.14309- 6 3.62261- 3 1.90000+ 1 1.90000+ 1 5.14696- 4 2.97350- 3 1.90000+ 1 2.10000+ 1 6.12164- 4 3.19870- 3 1.90000+ 1 2.20000+ 1 1.38763- 3 3.23035- 3 1.90000+ 1 2.40000+ 1 7.57530- 4 3.52635- 3 1.90000+ 1 2.50000+ 1 1.19268- 3 3.53423- 3 1.90000+ 1 2.70000+ 1 9.34783- 4 3.56396- 3 1.90000+ 1 2.90000+ 1 9.03658- 5 3.61530- 3 1.90000+ 1 3.00000+ 1 1.82932- 4 3.65239- 3 1.90000+ 1 3.20000+ 1 9.60253- 5 3.72757- 3 1.90000+ 1 3.30000+ 1 2.05883- 4 3.73278- 3 1.90000+ 1 4.10000+ 1 1.44739- 4 3.76366- 3 1.90000+ 1 4.30000+ 1 1.17865- 5 3.77702- 3 1.90000+ 1 4.40000+ 1 2.13738- 5 3.78216- 3 1.90000+ 1 5.80000+ 1 5.02906- 6 3.79250- 3 2.10000+ 1 2.10000+ 1 9.52412- 5 3.42390- 3 2.10000+ 1 2.20000+ 1 2.96720- 4 3.45555- 3 2.10000+ 1 2.40000+ 1 4.43343- 4 3.75155- 3 2.10000+ 1 2.50000+ 1 2.79709- 3 3.75943- 3 2.10000+ 1 2.70000+ 1 1.08082- 3 3.78916- 3 2.10000+ 1 2.90000+ 1 3.37902- 5 3.84050- 3 2.10000+ 1 3.00000+ 1 9.90128- 5 3.87759- 3 2.10000+ 1 3.20000+ 1 2.37308- 5 3.95277- 3 2.10000+ 1 3.30000+ 1 3.91328- 5 3.95798- 3 2.10000+ 1 4.10000+ 1 1.66279- 4 3.98886- 3 2.10000+ 1 4.30000+ 1 4.08613- 6 4.00222- 3 2.10000+ 1 4.40000+ 1 1.13158- 5 4.00736- 3 2.10000+ 1 5.80000+ 1 5.65781- 6 4.01770- 3 2.20000+ 1 2.20000+ 1 2.23796- 4 3.48720- 3 2.20000+ 1 2.40000+ 1 2.52870- 3 3.78320- 3 2.20000+ 1 2.50000+ 1 1.58251- 3 3.79108- 3 2.20000+ 1 2.70000+ 1 1.50167- 3 3.82081- 3 2.20000+ 1 2.90000+ 1 1.98017- 5 3.87215- 3 2.20000+ 1 3.00000+ 1 2.21448- 4 3.90924- 3 2.20000+ 1 3.20000+ 1 3.53612- 5 3.98442- 3 2.20000+ 1 3.30000+ 1 5.72061- 5 3.98963- 3 2.20000+ 1 4.10000+ 1 2.30718- 4 4.02051- 3 2.20000+ 1 4.30000+ 1 2.51457- 6 4.03387- 3 2.20000+ 1 4.40000+ 1 2.51457- 5 4.03901- 3 2.20000+ 1 5.80000+ 1 7.85790- 6 4.04935- 3 2.40000+ 1 2.40000+ 1 6.19213- 4 4.07920- 3 2.40000+ 1 2.50000+ 1 4.07162- 3 4.08708- 3 2.40000+ 1 2.70000+ 1 7.43070- 4 4.11681- 3 2.40000+ 1 2.90000+ 1 4.72679- 6 4.16815- 3 2.40000+ 1 3.00000+ 1 8.66571- 5 4.20524- 3 2.40000+ 1 3.20000+ 1 6.33409- 5 4.28042- 3 2.40000+ 1 3.30000+ 1 3.99732- 4 4.28563- 3 2.40000+ 1 4.10000+ 1 1.12656- 4 4.31651- 3 2.40000+ 1 4.30000+ 1 6.30220- 7 4.32987- 3 2.40000+ 1 4.40000+ 1 9.29573- 6 4.33501- 3 2.40000+ 1 5.80000+ 1 3.78140- 6 4.34535- 3 2.50000+ 1 2.50000+ 1 1.40294- 3 4.09496- 3 2.50000+ 1 2.70000+ 1 9.19391- 4 4.12469- 3 2.50000+ 1 2.90000+ 1 8.91796- 5 4.17603- 3 2.50000+ 1 3.00000+ 1 1.46696- 4 4.21312- 3 2.50000+ 1 3.20000+ 1 4.31481- 4 4.28830- 3 2.50000+ 1 3.30000+ 1 2.37134- 4 4.29351- 3 2.50000+ 1 4.10000+ 1 1.39499- 4 4.32439- 3 2.50000+ 1 4.30000+ 1 1.15986- 5 4.33775- 3 2.50000+ 1 4.40000+ 1 1.59863- 5 4.34289- 3 2.50000+ 1 5.80000+ 1 4.70196- 6 4.35323- 3 2.70000+ 1 2.70000+ 1 7.97568- 5 4.15442- 3 2.70000+ 1 2.90000+ 1 1.31292- 4 4.20576- 3 2.70000+ 1 3.00000+ 1 2.05019- 4 4.24285- 3 2.70000+ 1 3.20000+ 1 1.78763- 4 4.31803- 3 2.70000+ 1 3.30000+ 1 2.44822- 4 4.32324- 3 2.70000+ 1 4.10000+ 1 2.59329- 5 4.35412- 3 2.70000+ 1 4.30000+ 1 1.76160- 5 4.36748- 3 2.70000+ 1 4.40000+ 1 2.44657- 5 4.37262- 3 2.70000+ 1 5.80000+ 1 8.15494- 7 4.38296- 3 2.90000+ 1 2.90000+ 1 4.62185- 6 4.25710- 3 2.90000+ 1 3.00000+ 1 1.55291- 5 4.29419- 3 2.90000+ 1 3.20000+ 1 5.36122- 6 4.36937- 3 2.90000+ 1 3.30000+ 1 4.80652- 6 4.37458- 3 2.90000+ 1 4.10000+ 1 2.31080- 5 4.40546- 3 2.90000+ 1 4.30000+ 1 1.10918- 6 4.41882- 3 2.90000+ 1 4.40000+ 1 1.66382- 6 4.42396- 3 2.90000+ 1 5.80000+ 1 7.39466- 7 4.43430- 3 3.00000+ 1 3.00000+ 1 1.83907- 5 4.33128- 3 3.00000+ 1 3.20000+ 1 1.83907- 5 4.40646- 3 3.00000+ 1 3.30000+ 1 3.86183- 5 4.41167- 3 3.00000+ 1 4.10000+ 1 3.58608- 5 4.44255- 3 3.00000+ 1 4.30000+ 1 2.02291- 6 4.45591- 3 3.00000+ 1 4.40000+ 1 4.22978- 6 4.46105- 3 3.00000+ 1 5.80000+ 1 1.28726- 6 4.47139- 3 3.20000+ 1 3.20000+ 1 1.50751- 6 4.48164- 3 3.20000+ 1 3.30000+ 1 5.02511- 6 4.48685- 3 3.20000+ 1 4.10000+ 1 2.83080- 5 4.51773- 3 3.20000+ 1 4.30000+ 1 6.69995- 7 4.53109- 3 3.20000+ 1 4.40000+ 1 1.84253- 6 4.53623- 3 3.20000+ 1 5.80000+ 1 1.00497- 6 4.54657- 3 3.30000+ 1 3.30000+ 1 3.76814- 6 4.49206- 3 3.30000+ 1 4.10000+ 1 3.95652- 5 4.52294- 3 3.30000+ 1 4.30000+ 1 5.13843- 7 4.53630- 3 3.30000+ 1 4.40000+ 1 4.11071- 6 4.54144- 3 3.30000+ 1 5.80000+ 1 1.37028- 6 4.55178- 3 4.10000+ 1 4.10000+ 1 2.04309- 6 4.55382- 3 4.10000+ 1 4.30000+ 1 2.67174- 6 4.56718- 3 4.10000+ 1 4.40000+ 1 3.61473- 6 4.57232- 3 4.10000+ 1 5.80000+ 1 1.57165- 7 4.58266- 3 4.30000+ 1 4.40000+ 1 2.04331- 7 4.58568- 3 4.30000+ 1 5.80000+ 1 2.04331- 7 4.59602- 3 4.40000+ 1 4.40000+ 1 1.94551- 7 4.59082- 3 4.40000+ 1 5.80000+ 1 1.94551- 7 4.60116- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.39000- 3 1.17360- 3 1.60000+ 1 8.74160- 4 3.18220- 3 2.10000+ 1 4.54130- 3 3.71490- 3 2.70000+ 1 2.11390- 4 4.08016- 3 3.20000+ 1 9.01060- 4 4.24377- 3 4.10000+ 1 3.77350- 5 4.27986- 3 5.80000+ 1 1.31790- 6 4.30870- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.16299- 3 7.04000- 5 1.10000+ 1 2.20000+ 1 1.49738- 2 1.02050- 4 1.10000+ 1 2.40000+ 1 2.85942- 2 3.98050- 4 1.10000+ 1 2.50000+ 1 2.46325- 2 4.05930- 4 1.10000+ 1 2.70000+ 1 3.10136- 3 4.35660- 4 1.10000+ 1 2.90000+ 1 4.21641- 3 4.87000- 4 1.10000+ 1 3.00000+ 1 2.19670- 3 5.24090- 4 1.10000+ 1 3.20000+ 1 1.37924- 3 5.99270- 4 1.10000+ 1 3.30000+ 1 2.65485- 3 6.04480- 4 1.10000+ 1 4.10000+ 1 4.92075- 4 6.35360- 4 1.10000+ 1 4.30000+ 1 5.10366- 4 6.48720- 4 1.10000+ 1 4.40000+ 1 2.46533- 4 6.53860- 4 1.10000+ 1 5.80000+ 1 1.69682- 5 6.64200- 4 1.30000+ 1 1.60000+ 1 4.78061- 2 4.33000- 5 1.30000+ 1 1.80000+ 1 4.89458- 2 1.80910- 4 1.30000+ 1 1.90000+ 1 3.89971- 2 3.50800- 4 1.30000+ 1 2.10000+ 1 1.71974- 2 5.76000- 4 1.30000+ 1 2.20000+ 1 2.38643- 2 6.07650- 4 1.30000+ 1 2.40000+ 1 1.46164- 1 9.03650- 4 1.30000+ 1 2.50000+ 1 2.27786- 1 9.11530- 4 1.30000+ 1 2.70000+ 1 1.09589- 2 9.41260- 4 1.30000+ 1 2.90000+ 1 8.80729- 3 9.92600- 4 1.30000+ 1 3.00000+ 1 7.92180- 3 1.02969- 3 1.30000+ 1 3.20000+ 1 2.87649- 3 1.10487- 3 1.30000+ 1 3.30000+ 1 4.05958- 3 1.11008- 3 1.30000+ 1 4.10000+ 1 1.83266- 3 1.14096- 3 1.30000+ 1 4.30000+ 1 1.13737- 3 1.15432- 3 1.30000+ 1 4.40000+ 1 9.32453- 4 1.15946- 3 1.30000+ 1 5.80000+ 1 6.32128- 5 1.16980- 3 1.40000+ 1 1.60000+ 1 7.42971- 3 1.83000- 4 1.40000+ 1 1.80000+ 1 5.53668- 2 3.20610- 4 1.40000+ 1 1.90000+ 1 4.65176- 3 4.90500- 4 1.40000+ 1 2.10000+ 1 1.31656- 3 7.15700- 4 1.40000+ 1 2.20000+ 1 2.68345- 3 7.47350- 4 1.40000+ 1 2.40000+ 1 6.90036- 3 1.04335- 3 1.40000+ 1 2.50000+ 1 4.39765- 3 1.05123- 3 1.40000+ 1 2.70000+ 1 1.13808- 3 1.08096- 3 1.40000+ 1 2.90000+ 1 7.67304- 3 1.13230- 3 1.40000+ 1 3.00000+ 1 8.20430- 4 1.16939- 3 1.40000+ 1 3.20000+ 1 9.51591- 5 1.24457- 3 1.40000+ 1 3.30000+ 1 3.85777- 4 1.24978- 3 1.40000+ 1 4.10000+ 1 1.77827- 4 1.28066- 3 1.40000+ 1 4.30000+ 1 9.44376- 4 1.29402- 3 1.40000+ 1 4.40000+ 1 9.48205- 5 1.29916- 3 1.40000+ 1 5.80000+ 1 6.15506- 6 1.30950- 3 1.60000+ 1 1.60000+ 1 6.31042- 4 2.05190- 3 1.60000+ 1 1.80000+ 1 9.55763- 3 2.18951- 3 1.60000+ 1 1.90000+ 1 1.24257- 3 2.35940- 3 1.60000+ 1 2.10000+ 1 3.50637- 4 2.58460- 3 1.60000+ 1 2.20000+ 1 1.10536- 3 2.61625- 3 1.60000+ 1 2.40000+ 1 5.54474- 5 2.91225- 3 1.60000+ 1 2.50000+ 1 8.13343- 4 2.92013- 3 1.60000+ 1 2.70000+ 1 2.25370- 4 2.94986- 3 1.60000+ 1 2.90000+ 1 1.29481- 3 3.00120- 3 1.60000+ 1 3.00000+ 1 2.36149- 4 3.03829- 3 1.60000+ 1 3.20000+ 1 3.86911- 5 3.11347- 3 1.60000+ 1 3.30000+ 1 1.56374- 4 3.11868- 3 1.60000+ 1 4.10000+ 1 3.63000- 5 3.14956- 3 1.60000+ 1 4.30000+ 1 1.59555- 4 3.16292- 3 1.60000+ 1 4.40000+ 1 2.75235- 5 3.16806- 3 1.60000+ 1 5.80000+ 1 1.19669- 6 3.17840- 3 1.80000+ 1 1.80000+ 1 7.43177- 3 2.32712- 3 1.80000+ 1 1.90000+ 1 2.02928- 2 2.49701- 3 1.80000+ 1 2.10000+ 1 2.05125- 2 2.72221- 3 1.80000+ 1 2.20000+ 1 3.23009- 2 2.75386- 3 1.80000+ 1 2.40000+ 1 1.26216- 2 3.04986- 3 1.80000+ 1 2.50000+ 1 2.08625- 2 3.05774- 3 1.80000+ 1 2.70000+ 1 2.22926- 3 3.08747- 3 1.80000+ 1 2.90000+ 1 2.65577- 3 3.13881- 3 1.80000+ 1 3.00000+ 1 4.24673- 3 3.17590- 3 1.80000+ 1 3.20000+ 1 3.26009- 3 3.25108- 3 1.80000+ 1 3.30000+ 1 4.99468- 3 3.25629- 3 1.80000+ 1 4.10000+ 1 3.77332- 4 3.28717- 3 1.80000+ 1 4.30000+ 1 3.45041- 4 3.30053- 3 1.80000+ 1 4.40000+ 1 5.05784- 4 3.30567- 3 1.80000+ 1 5.80000+ 1 1.31632- 5 3.31601- 3 1.90000+ 1 1.90000+ 1 5.28117- 4 2.66690- 3 1.90000+ 1 2.10000+ 1 1.25771- 3 2.89210- 3 1.90000+ 1 2.20000+ 1 1.14361- 3 2.92375- 3 1.90000+ 1 2.40000+ 1 8.37699- 3 3.21975- 3 1.90000+ 1 2.50000+ 1 2.31621- 3 3.22763- 3 1.90000+ 1 2.70000+ 1 1.84284- 4 3.25736- 3 1.90000+ 1 2.90000+ 1 2.80818- 3 3.30870- 3 1.90000+ 1 3.00000+ 1 1.86277- 4 3.34579- 3 1.90000+ 1 3.20000+ 1 1.57164- 4 3.42097- 3 1.90000+ 1 3.30000+ 1 1.58365- 4 3.42618- 3 1.90000+ 1 4.10000+ 1 2.87198- 5 3.45706- 3 1.90000+ 1 4.30000+ 1 3.47024- 4 3.47042- 3 1.90000+ 1 4.40000+ 1 2.15402- 5 3.47556- 3 1.90000+ 1 5.80000+ 1 7.97780- 7 3.48590- 3 2.10000+ 1 2.10000+ 1 7.41100- 4 3.11730- 3 2.10000+ 1 2.20000+ 1 1.55723- 3 3.14895- 3 2.10000+ 1 2.40000+ 1 8.70360- 4 3.44495- 3 2.10000+ 1 2.50000+ 1 1.35102- 3 3.45283- 3 2.10000+ 1 2.70000+ 1 7.85793- 5 3.48256- 3 2.10000+ 1 2.90000+ 1 2.75599- 3 3.53390- 3 2.10000+ 1 3.00000+ 1 2.40912- 4 3.57099- 3 2.10000+ 1 3.20000+ 1 1.92267- 4 3.64617- 3 2.10000+ 1 3.30000+ 1 2.21797- 4 3.65138- 3 2.10000+ 1 4.10000+ 1 1.31630- 5 3.68226- 3 2.10000+ 1 4.30000+ 1 3.38261- 4 3.69562- 3 2.10000+ 1 4.40000+ 1 2.83229- 5 3.70076- 3 2.10000+ 1 5.80000+ 1 3.98879- 7 3.71110- 3 2.20000+ 1 2.20000+ 1 4.16036- 4 3.18060- 3 2.20000+ 1 2.40000+ 1 2.19901- 3 3.47660- 3 2.20000+ 1 2.50000+ 1 5.30519- 4 3.48448- 3 2.20000+ 1 2.70000+ 1 2.04230- 4 3.51421- 3 2.20000+ 1 2.90000+ 1 4.39444- 3 3.56555- 3 2.20000+ 1 3.00000+ 1 1.83882- 4 3.60264- 3 2.20000+ 1 3.20000+ 1 1.98644- 4 3.67782- 3 2.20000+ 1 3.30000+ 1 1.08893- 4 3.68303- 3 2.20000+ 1 4.10000+ 1 3.31090- 5 3.71391- 3 2.20000+ 1 4.30000+ 1 5.40901- 4 3.72727- 3 2.20000+ 1 4.40000+ 1 2.11415- 5 3.73241- 3 2.20000+ 1 5.80000+ 1 1.19664- 6 3.74275- 3 2.40000+ 1 2.40000+ 1 3.26274- 3 3.77260- 3 2.40000+ 1 2.50000+ 1 2.08559- 2 3.78048- 3 2.40000+ 1 2.70000+ 1 7.97758- 6 3.81021- 3 2.40000+ 1 2.90000+ 1 1.56559- 3 3.86155- 3 2.40000+ 1 3.00000+ 1 1.64739- 3 3.89864- 3 2.40000+ 1 3.20000+ 1 1.52777- 4 3.97382- 3 2.40000+ 1 3.30000+ 1 4.00485- 4 3.97903- 3 2.40000+ 1 4.10000+ 1 1.19664- 6 4.00991- 3 2.40000+ 1 4.30000+ 1 1.90670- 4 4.02327- 3 2.40000+ 1 4.40000+ 1 1.94262- 4 4.02841- 3 2.50000+ 1 2.50000+ 1 1.08974- 3 3.78836- 3 2.50000+ 1 2.70000+ 1 1.55166- 4 3.81809- 3 2.50000+ 1 2.90000+ 1 2.52896- 3 3.86943- 3 2.50000+ 1 3.00000+ 1 4.05256- 4 3.90652- 3 2.50000+ 1 3.20000+ 1 2.24986- 4 3.98170- 3 2.50000+ 1 3.30000+ 1 8.69544- 5 3.98691- 3 2.50000+ 1 4.10000+ 1 2.51293- 5 4.01779- 3 2.50000+ 1 4.30000+ 1 3.04741- 4 4.03115- 3 2.50000+ 1 4.40000+ 1 4.70691- 5 4.03629- 3 2.50000+ 1 5.80000+ 1 7.97755- 7 4.04663- 3 2.70000+ 1 2.70000+ 1 1.99331- 5 3.84782- 3 2.70000+ 1 2.90000+ 1 3.03811- 4 3.89916- 3 2.70000+ 1 3.00000+ 1 3.50835- 5 3.93625- 3 2.70000+ 1 3.20000+ 1 8.37194- 6 4.01143- 3 2.70000+ 1 3.30000+ 1 2.95017- 5 4.01664- 3 2.70000+ 1 4.10000+ 1 6.37871- 6 4.04752- 3 2.70000+ 1 4.30000+ 1 3.74751- 5 4.06088- 3 2.70000+ 1 4.40000+ 1 3.98669- 6 4.06602- 3 2.70000+ 1 5.80000+ 1 3.98669- 7 4.07636- 3 2.90000+ 1 2.90000+ 1 2.22561- 4 3.95050- 3 2.90000+ 1 3.00000+ 1 5.91933- 4 3.98759- 3 2.90000+ 1 3.20000+ 1 4.40369- 4 4.06277- 3 2.90000+ 1 3.30000+ 1 6.83649- 4 4.06798- 3 2.90000+ 1 4.10000+ 1 5.14534- 5 4.09886- 3 2.90000+ 1 4.30000+ 1 5.70378- 5 4.11222- 3 2.90000+ 1 4.40000+ 1 7.06015- 5 4.11736- 3 2.90000+ 1 5.80000+ 1 1.59543- 6 4.12770- 3 3.00000+ 1 3.00000+ 1 1.77137- 5 4.02468- 3 3.00000+ 1 3.20000+ 1 3.28369- 5 4.09986- 3 3.00000+ 1 3.30000+ 1 2.76528- 5 4.10507- 3 3.00000+ 1 4.10000+ 1 6.04897- 6 4.13595- 3 3.00000+ 1 4.30000+ 1 7.94990- 5 4.14931- 3 3.00000+ 1 4.40000+ 1 3.88859- 6 4.15445- 3 3.20000+ 1 3.20000+ 1 1.19668- 5 4.17504- 3 3.20000+ 1 3.30000+ 1 3.03165- 5 4.18025- 3 3.20000+ 1 4.10000+ 1 1.19668- 6 4.21113- 3 3.20000+ 1 4.30000+ 1 5.42499- 5 4.22449- 3 3.20000+ 1 4.40000+ 1 3.59013- 6 4.22963- 3 3.30000+ 1 3.30000+ 1 8.61955- 6 4.18546- 3 3.30000+ 1 4.10000+ 1 5.44385- 6 4.21634- 3 3.30000+ 1 4.30000+ 1 9.57212- 5 4.22970- 3 3.30000+ 1 4.40000+ 1 3.17545- 6 4.23484- 3 4.10000+ 1 4.10000+ 1 3.98879- 7 4.24722- 3 4.10000+ 1 4.30000+ 1 6.38206- 6 4.26058- 3 4.10000+ 1 4.40000+ 1 7.97757- 7 4.26572- 3 4.30000+ 1 4.30000+ 1 3.59019- 6 4.27394- 3 4.30000+ 1 4.40000+ 1 8.77591- 6 4.27908- 3 4.30000+ 1 5.80000+ 1 3.98898- 7 4.28942- 3 4.40000+ 1 4.40000+ 1 3.98880- 7 4.28422- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.42340- 5 5.05600- 4 1.40000+ 1 2.84209- 4 6.45300- 4 1.60000+ 1 1.72739- 3 2.51420- 3 2.10000+ 1 8.30457- 4 3.04690- 3 2.20000+ 1 6.31508- 3 3.07855- 3 2.70000+ 1 4.01249- 4 3.41216- 3 3.20000+ 1 1.49960- 4 3.57577- 3 3.30000+ 1 1.15520- 3 3.58098- 3 4.10000+ 1 6.87438- 5 3.61186- 3 5.80000+ 1 2.48379- 6 3.64070- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.64442- 2 2.35650- 4 1.30000+ 1 2.50000+ 1 2.39592- 2 2.43530- 4 1.30000+ 1 2.70000+ 1 3.05881- 3 2.73260- 4 1.30000+ 1 2.90000+ 1 2.79812- 3 3.24600- 4 1.30000+ 1 3.00000+ 1 8.64460- 3 3.61690- 4 1.30000+ 1 3.20000+ 1 1.51564- 3 4.36870- 4 1.30000+ 1 3.30000+ 1 1.63835- 3 4.42080- 4 1.30000+ 1 4.10000+ 1 4.96535- 4 4.72960- 4 1.30000+ 1 4.30000+ 1 3.59946- 4 4.86320- 4 1.30000+ 1 4.40000+ 1 9.76346- 4 4.91460- 4 1.30000+ 1 5.80000+ 1 1.70738- 5 5.01800- 4 1.40000+ 1 2.10000+ 1 4.90664- 2 4.77000- 5 1.40000+ 1 2.20000+ 1 6.50731- 2 7.93500- 5 1.40000+ 1 2.40000+ 1 1.91303- 1 3.75350- 4 1.40000+ 1 2.50000+ 1 2.31183- 1 3.83230- 4 1.40000+ 1 2.70000+ 1 1.84565- 2 4.12960- 4 1.40000+ 1 2.90000+ 1 1.88042- 2 4.64300- 4 1.40000+ 1 3.00000+ 1 2.13963- 2 5.01390- 4 1.40000+ 1 3.20000+ 1 6.47894- 3 5.76570- 4 1.40000+ 1 3.30000+ 1 9.33335- 3 5.81780- 4 1.40000+ 1 4.10000+ 1 3.06249- 3 6.12660- 4 1.40000+ 1 4.30000+ 1 2.42570- 3 6.26020- 4 1.40000+ 1 4.40000+ 1 2.46705- 3 6.31160- 4 1.40000+ 1 5.80000+ 1 1.07411- 4 6.41500- 4 1.60000+ 1 1.60000+ 1 2.16610- 4 1.38390- 3 1.60000+ 1 1.80000+ 1 5.41554- 4 1.52151- 3 1.60000+ 1 1.90000+ 1 1.15858- 2 1.69140- 3 1.60000+ 1 2.10000+ 1 7.02102- 4 1.91660- 3 1.60000+ 1 2.20000+ 1 8.82473- 4 1.94825- 3 1.60000+ 1 2.40000+ 1 2.04514- 3 2.24425- 3 1.60000+ 1 2.50000+ 1 3.67359- 3 2.25213- 3 1.60000+ 1 2.70000+ 1 7.96516- 5 2.28186- 3 1.60000+ 1 2.90000+ 1 7.71232- 5 2.33320- 3 1.60000+ 1 3.00000+ 1 1.55638- 3 2.37029- 3 1.60000+ 1 3.20000+ 1 9.60856- 5 2.44547- 3 1.60000+ 1 3.30000+ 1 1.16319- 4 2.45068- 3 1.60000+ 1 4.10000+ 1 1.26432- 5 2.48156- 3 1.60000+ 1 4.30000+ 1 9.69297- 6 2.49492- 3 1.60000+ 1 4.40000+ 1 1.72365- 4 2.50006- 3 1.60000+ 1 5.80000+ 1 4.21445- 7 2.51040- 3 1.80000+ 1 1.80000+ 1 8.42870- 6 1.65912- 3 1.80000+ 1 1.90000+ 1 1.44900- 2 1.82901- 3 1.80000+ 1 2.10000+ 1 3.18182- 4 2.05421- 3 1.80000+ 1 2.20000+ 1 3.18482- 3 2.08586- 3 1.80000+ 1 2.40000+ 1 1.66883- 3 2.38186- 3 1.80000+ 1 2.50000+ 1 8.74813- 3 2.38974- 3 1.80000+ 1 2.70000+ 1 9.35590- 5 2.41947- 3 1.80000+ 1 2.90000+ 1 2.94996- 6 2.47081- 3 1.80000+ 1 3.00000+ 1 1.99376- 3 2.50790- 3 1.80000+ 1 3.20000+ 1 4.88864- 5 2.58308- 3 1.80000+ 1 3.30000+ 1 4.02057- 4 2.58829- 3 1.80000+ 1 4.10000+ 1 1.47502- 5 2.61917- 3 1.80000+ 1 4.30000+ 1 4.21446- 7 2.63253- 3 1.80000+ 1 4.40000+ 1 2.21679- 4 2.63767- 3 1.80000+ 1 5.80000+ 1 4.21446- 7 2.64801- 3 1.90000+ 1 1.90000+ 1 1.86874- 2 1.99890- 3 1.90000+ 1 2.10000+ 1 2.76331- 2 2.22410- 3 1.90000+ 1 2.20000+ 1 3.59447- 2 2.25575- 3 1.90000+ 1 2.40000+ 1 2.52563- 2 2.55175- 3 1.90000+ 1 2.50000+ 1 2.88710- 2 2.55963- 3 1.90000+ 1 2.70000+ 1 2.65648- 3 2.58936- 3 1.90000+ 1 2.90000+ 1 3.04689- 3 2.64070- 3 1.90000+ 1 3.00000+ 1 6.43617- 3 2.67779- 3 1.90000+ 1 3.20000+ 1 4.23633- 3 2.75297- 3 1.90000+ 1 3.30000+ 1 5.48705- 3 2.75818- 3 1.90000+ 1 4.10000+ 1 4.47983- 4 2.78906- 3 1.90000+ 1 4.30000+ 1 4.04158- 4 2.80242- 3 1.90000+ 1 4.40000+ 1 7.46349- 4 2.80756- 3 1.90000+ 1 5.80000+ 1 1.55931- 5 2.81790- 3 2.10000+ 1 2.10000+ 1 1.86701- 4 2.44930- 3 2.10000+ 1 2.20000+ 1 4.52548- 3 2.48095- 3 2.10000+ 1 2.40000+ 1 7.07181- 4 2.77695- 3 2.10000+ 1 2.50000+ 1 8.13517- 3 2.78483- 3 2.10000+ 1 2.70000+ 1 8.72388- 5 2.81456- 3 2.10000+ 1 2.90000+ 1 2.10699- 5 2.86590- 3 2.10000+ 1 3.00000+ 1 3.72043- 3 2.90299- 3 2.10000+ 1 3.20000+ 1 4.72026- 5 2.97817- 3 2.10000+ 1 3.30000+ 1 6.06864- 4 2.98338- 3 2.10000+ 1 4.10000+ 1 1.34862- 5 3.01426- 3 2.10000+ 1 4.30000+ 1 2.52868- 6 3.02762- 3 2.10000+ 1 4.40000+ 1 4.12163- 4 3.03276- 3 2.10000+ 1 5.80000+ 1 4.21452- 7 3.04310- 3 2.20000+ 1 2.20000+ 1 1.96222- 3 2.51260- 3 2.20000+ 1 2.40000+ 1 6.55078- 3 2.80860- 3 2.20000+ 1 2.50000+ 1 5.41728- 3 2.81648- 3 2.20000+ 1 2.70000+ 1 1.16322- 4 2.84621- 3 2.20000+ 1 2.90000+ 1 3.23258- 4 2.89755- 3 2.20000+ 1 3.00000+ 1 4.77576- 3 2.93464- 3 2.20000+ 1 3.20000+ 1 6.02262- 4 3.00982- 3 2.20000+ 1 3.30000+ 1 5.29350- 4 3.01503- 3 2.20000+ 1 4.10000+ 1 1.76990- 5 3.04591- 3 2.20000+ 1 4.30000+ 1 3.79307- 5 3.05927- 3 2.20000+ 1 4.40000+ 1 5.27655- 4 3.06441- 3 2.20000+ 1 5.80000+ 1 4.21458- 7 3.07475- 3 2.40000+ 1 2.40000+ 1 1.08269- 3 3.10460- 3 2.40000+ 1 2.50000+ 1 2.82180- 2 3.11248- 3 2.40000+ 1 2.70000+ 1 2.26309- 4 3.14221- 3 2.40000+ 1 2.90000+ 1 2.88273- 4 3.19355- 3 2.40000+ 1 3.00000+ 1 3.23800- 3 3.23064- 3 2.40000+ 1 3.20000+ 1 1.25591- 4 3.30582- 3 2.40000+ 1 3.30000+ 1 9.38958- 4 3.31103- 3 2.40000+ 1 4.10000+ 1 3.41371- 5 3.34191- 3 2.40000+ 1 4.30000+ 1 3.70860- 5 3.35527- 3 2.40000+ 1 4.40000+ 1 3.56540- 4 3.36041- 3 2.40000+ 1 5.80000+ 1 1.26434- 6 3.37075- 3 2.50000+ 1 2.50000+ 1 1.11936- 2 3.12036- 3 2.50000+ 1 2.70000+ 1 3.68330- 4 3.15009- 3 2.50000+ 1 2.90000+ 1 1.49105- 3 3.20143- 3 2.50000+ 1 3.00000+ 1 3.85863- 3 3.23852- 3 2.50000+ 1 3.20000+ 1 1.23439- 3 3.31370- 3 2.50000+ 1 3.30000+ 1 8.44970- 4 3.31891- 3 2.50000+ 1 4.10000+ 1 5.39435- 5 3.34979- 3 2.50000+ 1 4.30000+ 1 1.91341- 4 3.36315- 3 2.50000+ 1 4.40000+ 1 4.29003- 4 3.36829- 3 2.50000+ 1 5.80000+ 1 1.68570- 6 3.37863- 3 2.70000+ 1 2.70000+ 1 8.57639- 6 3.17982- 3 2.70000+ 1 2.90000+ 1 1.53474- 5 3.23116- 3 2.70000+ 1 3.00000+ 1 3.83693- 4 3.26825- 3 2.70000+ 1 3.20000+ 1 1.39932- 5 3.34343- 3 2.70000+ 1 3.30000+ 1 1.71530- 5 3.34864- 3 2.70000+ 1 4.10000+ 1 2.70839- 6 3.37952- 3 2.70000+ 1 4.30000+ 1 1.80553- 6 3.39288- 3 2.70000+ 1 4.40000+ 1 4.24319- 5 3.39802- 3 2.90000+ 1 3.00000+ 1 4.39331- 4 3.31959- 3 2.90000+ 1 3.20000+ 1 3.07514- 6 3.39477- 3 2.90000+ 1 3.30000+ 1 4.48110- 5 3.39998- 3 2.90000+ 1 4.10000+ 1 2.19637- 6 3.43086- 3 2.90000+ 1 4.40000+ 1 4.87650- 5 3.44936- 3 3.00000+ 1 3.00000+ 1 5.80448- 4 3.35668- 3 3.00000+ 1 3.20000+ 1 6.31032- 4 3.43186- 3 3.00000+ 1 3.30000+ 1 8.05942- 4 3.43707- 3 3.00000+ 1 4.10000+ 1 6.68127- 5 3.46795- 3 3.00000+ 1 4.30000+ 1 6.17094- 5 3.48131- 3 3.00000+ 1 4.40000+ 1 1.33629- 4 3.48645- 3 3.00000+ 1 5.80000+ 1 2.31969- 6 3.49679- 3 3.20000+ 1 3.20000+ 1 2.94995- 6 3.50704- 3 3.20000+ 1 3.30000+ 1 8.68153- 5 3.51225- 3 3.20000+ 1 4.10000+ 1 2.10696- 6 3.54313- 3 3.20000+ 1 4.30000+ 1 4.21445- 7 3.55649- 3 3.20000+ 1 4.40000+ 1 6.36358- 5 3.56163- 3 3.30000+ 1 3.30000+ 1 3.75118- 5 3.51746- 3 3.30000+ 1 4.10000+ 1 2.52881- 6 3.54834- 3 3.30000+ 1 4.30000+ 1 5.05760- 6 3.56170- 3 3.30000+ 1 4.40000+ 1 8.09214- 5 3.56684- 3 4.10000+ 1 4.10000+ 1 4.21449- 7 3.57922- 3 4.10000+ 1 4.30000+ 1 4.21449- 7 3.59258- 3 4.10000+ 1 4.40000+ 1 6.74298- 6 3.59772- 3 4.30000+ 1 4.40000+ 1 6.32138- 6 3.61108- 3 4.40000+ 1 4.40000+ 1 7.16443- 6 3.61622- 3 4.40000+ 1 5.80000+ 1 4.21447- 7 3.62656- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.12229- 3 2.14621- 3 1.90000+ 1 2.02219- 4 2.31610- 3 2.40000+ 1 4.28048- 2 2.86895- 3 2.90000+ 1 5.13507- 4 2.95790- 3 3.00000+ 1 4.88378- 5 2.99499- 3 4.30000+ 1 5.61597- 5 3.11962- 3 4.40000+ 1 4.95168- 6 3.12476- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 5.69635- 3 0.00000+ 0 1.40000+ 1 3.20000+ 1 5.02590- 2 7.09700- 5 1.40000+ 1 3.30000+ 1 7.13975- 3 7.61800- 5 1.40000+ 1 4.10000+ 1 9.13114- 4 1.07060- 4 1.40000+ 1 4.30000+ 1 4.41762- 4 1.20420- 4 1.40000+ 1 4.40000+ 1 8.85312- 4 1.25560- 4 1.40000+ 1 5.80000+ 1 3.13623- 5 1.35900- 4 1.60000+ 1 1.60000+ 1 1.61293- 5 8.78300- 4 1.60000+ 1 1.80000+ 1 9.62399- 4 1.01591- 3 1.60000+ 1 1.90000+ 1 8.07354- 4 1.18580- 3 1.60000+ 1 2.10000+ 1 3.09806- 2 1.41100- 3 1.60000+ 1 2.20000+ 1 3.59140- 3 1.44265- 3 1.60000+ 1 2.40000+ 1 1.56844- 2 1.73865- 3 1.60000+ 1 2.50000+ 1 3.94639- 3 1.74653- 3 1.60000+ 1 2.70000+ 1 1.79202- 5 1.77626- 3 1.60000+ 1 2.90000+ 1 1.67561- 4 1.82760- 3 1.60000+ 1 3.00000+ 1 1.11999- 4 1.86469- 3 1.60000+ 1 3.20000+ 1 3.33515- 3 1.93987- 3 1.60000+ 1 3.30000+ 1 4.06825- 4 1.94508- 3 1.60000+ 1 4.10000+ 1 3.58415- 6 1.97596- 3 1.60000+ 1 4.30000+ 1 2.15058- 5 1.98932- 3 1.60000+ 1 4.40000+ 1 1.25447- 5 1.99446- 3 1.80000+ 1 1.80000+ 1 5.30474- 4 1.15352- 3 1.80000+ 1 1.90000+ 1 3.87457- 3 1.32341- 3 1.80000+ 1 2.10000+ 1 2.79521- 2 1.54861- 3 1.80000+ 1 2.20000+ 1 1.79202- 3 1.58026- 3 1.80000+ 1 2.40000+ 1 1.08144- 2 1.87626- 3 1.80000+ 1 2.50000+ 1 5.59228- 3 1.88414- 3 1.80000+ 1 2.70000+ 1 1.34406- 4 1.91387- 3 1.80000+ 1 2.90000+ 1 1.82797- 4 1.96521- 3 1.80000+ 1 3.00000+ 1 5.96764- 4 2.00230- 3 1.80000+ 1 3.20000+ 1 2.98204- 3 2.07748- 3 1.80000+ 1 3.30000+ 1 2.32082- 4 2.08269- 3 1.80000+ 1 4.10000+ 1 2.15057- 5 2.11357- 3 1.80000+ 1 4.30000+ 1 2.32976- 5 2.12693- 3 1.80000+ 1 4.40000+ 1 6.81001- 5 2.13207- 3 1.80000+ 1 5.80000+ 1 8.96069- 7 2.14241- 3 1.90000+ 1 1.90000+ 1 1.36105- 3 1.49330- 3 1.90000+ 1 2.10000+ 1 5.49251- 2 1.71850- 3 1.90000+ 1 2.20000+ 1 2.08872- 3 1.75015- 3 1.90000+ 1 2.40000+ 1 2.62100- 3 2.04615- 3 1.90000+ 1 2.50000+ 1 1.88082- 3 2.05403- 3 1.90000+ 1 2.70000+ 1 1.40685- 4 2.08376- 3 1.90000+ 1 2.90000+ 1 5.15232- 4 2.13510- 3 1.90000+ 1 3.00000+ 1 4.00531- 4 2.17219- 3 1.90000+ 1 3.20000+ 1 5.92557- 3 2.24737- 3 1.90000+ 1 3.30000+ 1 2.48214- 4 2.25258- 3 1.90000+ 1 4.10000+ 1 2.24018- 5 2.28346- 3 1.90000+ 1 4.30000+ 1 6.36220- 5 2.29682- 3 1.90000+ 1 4.40000+ 1 4.48019- 5 2.30196- 3 1.90000+ 1 5.80000+ 1 8.96076- 7 2.31230- 3 2.10000+ 1 2.10000+ 1 5.01669- 2 1.94370- 3 2.10000+ 1 2.20000+ 1 9.88726- 2 1.97535- 3 2.10000+ 1 2.40000+ 1 5.72340- 2 2.27135- 3 2.10000+ 1 2.50000+ 1 6.83258- 2 2.27923- 3 2.10000+ 1 2.70000+ 1 6.50381- 3 2.30896- 3 2.10000+ 1 2.90000+ 1 5.93179- 3 2.36030- 3 2.10000+ 1 3.00000+ 1 1.11653- 2 2.39739- 3 2.10000+ 1 3.20000+ 1 1.32085- 2 2.47257- 3 2.10000+ 1 3.30000+ 1 1.49149- 2 2.47778- 3 2.10000+ 1 4.10000+ 1 1.08514- 3 2.50866- 3 2.10000+ 1 4.30000+ 1 7.88534- 4 2.52202- 3 2.10000+ 1 4.40000+ 1 1.32352- 3 2.52716- 3 2.10000+ 1 5.80000+ 1 3.76339- 5 2.53750- 3 2.20000+ 1 2.20000+ 1 1.56905- 3 2.00700- 3 2.20000+ 1 2.40000+ 1 6.60456- 2 2.30300- 3 2.20000+ 1 2.50000+ 1 3.21071- 3 2.31088- 3 2.20000+ 1 2.70000+ 1 3.90698- 4 2.34061- 3 2.20000+ 1 2.90000+ 1 2.27595- 4 2.39195- 3 2.20000+ 1 3.00000+ 1 3.40508- 4 2.42904- 3 2.20000+ 1 3.20000+ 1 1.07162- 2 2.50422- 3 2.20000+ 1 3.30000+ 1 3.87996- 4 2.50943- 3 2.20000+ 1 4.10000+ 1 5.82445- 5 2.54031- 3 2.20000+ 1 4.30000+ 1 2.86734- 5 2.55367- 3 2.20000+ 1 4.40000+ 1 3.85324- 5 2.55881- 3 2.20000+ 1 5.80000+ 1 1.79203- 6 2.56915- 3 2.40000+ 1 2.40000+ 1 6.41692- 2 2.59900- 3 2.40000+ 1 2.50000+ 1 1.84746- 1 2.60688- 3 2.40000+ 1 2.70000+ 1 3.49298- 3 2.63661- 3 2.40000+ 1 2.90000+ 1 1.86106- 3 2.68795- 3 2.40000+ 1 3.00000+ 1 5.51098- 4 2.72504- 3 2.40000+ 1 3.20000+ 1 6.74648- 3 2.80022- 3 2.40000+ 1 3.30000+ 1 9.49650- 3 2.80543- 3 2.40000+ 1 4.10000+ 1 5.86924- 4 2.83631- 3 2.40000+ 1 4.30000+ 1 2.42840- 4 2.84967- 3 2.40000+ 1 4.40000+ 1 6.54138- 5 2.85481- 3 2.40000+ 1 5.80000+ 1 2.06101- 5 2.86515- 3 2.50000+ 1 2.50000+ 1 3.95503- 3 2.61476- 3 2.50000+ 1 2.70000+ 1 6.37706- 4 2.64449- 3 2.50000+ 1 2.90000+ 1 5.15325- 4 2.69583- 3 2.50000+ 1 3.00000+ 1 3.56140- 4 2.73292- 3 2.50000+ 1 3.20000+ 1 6.97704- 3 2.80810- 3 2.50000+ 1 3.30000+ 1 4.43566- 4 2.81331- 3 2.50000+ 1 4.10000+ 1 1.00303- 4 2.84419- 3 2.50000+ 1 4.30000+ 1 6.07340- 5 2.85755- 3 2.50000+ 1 4.40000+ 1 4.14098- 5 2.86269- 3 2.50000+ 1 5.80000+ 1 3.68075- 6 2.87303- 3 2.70000+ 1 2.70000+ 1 1.84405- 6 2.67422- 3 2.70000+ 1 2.90000+ 1 2.67399- 5 2.72556- 3 2.70000+ 1 3.00000+ 1 2.12083- 5 2.76265- 3 2.70000+ 1 3.20000+ 1 7.25672- 4 2.83783- 3 2.70000+ 1 3.30000+ 1 5.07151- 5 2.84304- 3 2.70000+ 1 4.10000+ 1 9.22087- 7 2.87392- 3 2.70000+ 1 4.30000+ 1 3.68821- 6 2.88728- 3 2.70000+ 1 4.40000+ 1 2.76628- 6 2.89242- 3 2.90000+ 1 2.90000+ 1 1.88681- 5 2.77690- 3 2.90000+ 1 3.00000+ 1 9.43396- 5 2.81399- 3 2.90000+ 1 3.20000+ 1 7.05081- 4 2.88917- 3 2.90000+ 1 3.30000+ 1 3.67434- 5 2.89438- 3 2.90000+ 1 4.10000+ 1 4.96510- 6 2.92526- 3 2.90000+ 1 4.30000+ 1 4.96510- 6 2.93862- 3 2.90000+ 1 4.40000+ 1 1.09235- 5 2.94376- 3 3.00000+ 1 3.00000+ 1 3.55836- 5 2.85108- 3 3.00000+ 1 3.20000+ 1 1.41705- 3 2.92626- 3 3.00000+ 1 3.30000+ 1 5.02356- 5 2.93147- 3 3.00000+ 1 4.10000+ 1 4.18620- 6 2.96235- 3 3.00000+ 1 4.30000+ 1 1.25591- 5 2.97571- 3 3.00000+ 1 4.40000+ 1 8.37286- 6 2.98085- 3 3.20000+ 1 3.20000+ 1 8.39590- 4 3.00144- 3 3.20000+ 1 3.30000+ 1 1.62634- 3 3.00665- 3 3.20000+ 1 4.10000+ 1 1.17382- 4 3.03753- 3 3.20000+ 1 4.30000+ 1 8.42292- 5 3.05089- 3 3.20000+ 1 4.40000+ 1 1.44269- 4 3.05603- 3 3.20000+ 1 5.80000+ 1 4.48014- 6 3.06637- 3 3.30000+ 1 3.30000+ 1 4.62532- 5 3.01186- 3 3.30000+ 1 4.10000+ 1 1.37051- 5 3.04274- 3 3.30000+ 1 4.30000+ 1 8.56517- 6 3.05610- 3 3.30000+ 1 4.40000+ 1 1.02781- 5 3.06124- 3 4.10000+ 1 4.30000+ 1 8.96085- 7 3.08698- 3 4.30000+ 1 4.40000+ 1 1.61809- 6 3.10548- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.51529- 3 2.17640- 3 2.40000+ 1 2.09229- 3 2.72925- 3 2.50000+ 1 4.09419- 2 2.73713- 3 3.00000+ 1 3.53679- 4 2.85529- 3 4.40000+ 1 3.70469- 5 2.98506- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.81296- 6 7.38600- 4 1.60000+ 1 1.80000+ 1 2.41137- 4 8.76210- 4 1.60000+ 1 1.90000+ 1 1.78955- 3 1.04610- 3 1.60000+ 1 2.10000+ 1 3.23080- 3 1.27130- 3 1.60000+ 1 2.20000+ 1 3.40719- 2 1.30295- 3 1.60000+ 1 2.40000+ 1 4.22265- 3 1.59895- 3 1.60000+ 1 2.50000+ 1 1.65562- 2 1.60683- 3 1.60000+ 1 2.70000+ 1 1.17846- 5 1.63656- 3 1.60000+ 1 2.90000+ 1 1.54104- 5 1.68790- 3 1.60000+ 1 3.00000+ 1 2.53825- 4 1.72499- 3 1.60000+ 1 3.20000+ 1 3.41750- 4 1.80017- 3 1.60000+ 1 3.30000+ 1 3.63437- 3 1.80538- 3 1.60000+ 1 4.10000+ 1 2.71960- 6 1.83626- 3 1.60000+ 1 4.30000+ 1 1.81296- 6 1.84962- 3 1.60000+ 1 4.40000+ 1 2.81027- 5 1.85476- 3 1.80000+ 1 1.80000+ 1 1.81297- 6 1.01382- 3 1.80000+ 1 1.90000+ 1 5.10025- 3 1.18371- 3 1.80000+ 1 2.10000+ 1 2.48390- 4 1.40891- 3 1.80000+ 1 2.20000+ 1 3.52110- 2 1.44056- 3 1.80000+ 1 2.40000+ 1 2.25454- 3 1.73656- 3 1.80000+ 1 2.50000+ 1 9.38454- 3 1.74444- 3 1.80000+ 1 2.70000+ 1 3.17289- 5 1.77417- 3 1.80000+ 1 2.90000+ 1 9.06549- 7 1.82551- 3 1.80000+ 1 3.00000+ 1 7.25241- 4 1.86260- 3 1.80000+ 1 3.20000+ 1 7.25241- 6 1.93778- 3 1.80000+ 1 3.30000+ 1 3.75493- 3 1.94299- 3 1.80000+ 1 4.10000+ 1 4.53260- 6 1.97387- 3 1.80000+ 1 4.40000+ 1 8.06828- 5 1.99237- 3 1.90000+ 1 1.90000+ 1 3.31066- 3 1.35360- 3 1.90000+ 1 2.10000+ 1 3.22277- 3 1.57880- 3 1.90000+ 1 2.20000+ 1 5.20011- 2 1.61045- 3 1.90000+ 1 2.40000+ 1 2.14758- 3 1.90645- 3 1.90000+ 1 2.50000+ 1 3.77564- 3 1.91433- 3 1.90000+ 1 2.70000+ 1 3.25442- 4 1.94406- 3 1.90000+ 1 2.90000+ 1 6.40020- 4 1.99540- 3 1.90000+ 1 3.00000+ 1 9.68130- 4 2.03249- 3 1.90000+ 1 3.20000+ 1 4.24269- 4 2.10767- 3 1.90000+ 1 3.30000+ 1 5.51798- 3 2.11288- 3 1.90000+ 1 4.10000+ 1 5.25786- 5 2.14376- 3 1.90000+ 1 4.30000+ 1 7.79611- 5 2.15712- 3 1.90000+ 1 4.40000+ 1 1.08789- 4 2.16226- 3 1.90000+ 1 5.80000+ 1 1.81296- 6 2.17260- 3 2.10000+ 1 2.10000+ 1 7.03444- 4 1.80400- 3 2.10000+ 1 2.20000+ 1 7.30396- 2 1.83565- 3 2.10000+ 1 2.40000+ 1 2.90259- 3 2.13165- 3 2.10000+ 1 2.50000+ 1 4.00587- 2 2.13953- 3 2.10000+ 1 2.70000+ 1 3.29958- 4 2.16926- 3 2.10000+ 1 2.90000+ 1 6.07330- 5 2.22060- 3 2.10000+ 1 3.00000+ 1 4.75920- 4 2.25769- 3 2.10000+ 1 3.20000+ 1 1.69512- 4 2.33287- 3 2.10000+ 1 3.30000+ 1 7.85670- 3 2.33808- 3 2.10000+ 1 4.10000+ 1 4.89500- 5 2.36896- 3 2.10000+ 1 4.30000+ 1 8.15848- 6 2.38232- 3 2.10000+ 1 4.40000+ 1 5.34815- 5 2.38746- 3 2.10000+ 1 5.80000+ 1 1.81287- 6 2.39780- 3 2.20000+ 1 2.20000+ 1 8.11535- 2 1.86730- 3 2.20000+ 1 2.40000+ 1 6.31060- 2 2.16330- 3 2.20000+ 1 2.50000+ 1 1.01230- 1 2.17118- 3 2.20000+ 1 2.70000+ 1 6.83172- 3 2.20091- 3 2.20000+ 1 2.90000+ 1 7.12726- 3 2.25225- 3 2.20000+ 1 3.00000+ 1 1.06687- 2 2.28934- 3 2.20000+ 1 3.20000+ 1 1.10516- 2 2.36452- 3 2.20000+ 1 3.30000+ 1 2.09721- 2 2.36973- 3 2.20000+ 1 4.10000+ 1 1.13314- 3 2.40061- 3 2.20000+ 1 4.30000+ 1 9.39174- 4 2.41397- 3 2.20000+ 1 4.40000+ 1 1.26647- 3 2.41911- 3 2.20000+ 1 5.80000+ 1 3.89831- 5 2.42945- 3 2.40000+ 1 2.40000+ 1 5.31132- 3 2.45930- 3 2.40000+ 1 2.50000+ 1 1.69171- 1 2.46718- 3 2.40000+ 1 2.70000+ 1 7.27017- 4 2.49691- 3 2.40000+ 1 2.90000+ 1 4.22425- 4 2.54825- 3 2.40000+ 1 3.00000+ 1 3.69858- 4 2.58534- 3 2.40000+ 1 3.20000+ 1 4.25163- 4 2.66052- 3 2.40000+ 1 3.30000+ 1 6.41535- 3 2.66573- 3 2.40000+ 1 4.10000+ 1 1.16028- 4 2.69661- 3 2.40000+ 1 4.30000+ 1 5.52986- 5 2.70997- 3 2.40000+ 1 4.40000+ 1 4.26056- 5 2.71511- 3 2.40000+ 1 5.80000+ 1 3.62596- 6 2.72545- 3 2.50000+ 1 2.50000+ 1 1.15648- 1 2.47506- 3 2.50000+ 1 2.70000+ 1 3.61925- 3 2.50479- 3 2.50000+ 1 2.90000+ 1 1.93646- 3 2.55613- 3 2.50000+ 1 3.00000+ 1 7.46092- 4 2.59322- 3 2.50000+ 1 3.20000+ 1 5.66781- 3 2.66840- 3 2.50000+ 1 3.30000+ 1 1.21770- 2 2.67361- 3 2.50000+ 1 4.10000+ 1 6.07387- 4 2.70449- 3 2.50000+ 1 4.30000+ 1 2.57467- 4 2.71785- 3 2.50000+ 1 4.40000+ 1 8.88417- 5 2.72299- 3 2.50000+ 1 5.80000+ 1 2.08508- 5 2.73333- 3 2.70000+ 1 2.70000+ 1 9.83945- 7 2.53452- 3 2.70000+ 1 2.90000+ 1 1.96776- 6 2.58586- 3 2.70000+ 1 3.00000+ 1 5.21491- 5 2.62295- 3 2.70000+ 1 3.20000+ 1 4.32939- 5 2.69813- 3 2.70000+ 1 3.30000+ 1 7.96999- 4 2.70334- 3 2.70000+ 1 4.40000+ 1 5.90339- 6 2.75272- 3 2.90000+ 1 3.00000+ 1 1.02538- 4 2.67429- 3 2.90000+ 1 3.20000+ 1 3.83327- 6 2.74947- 3 2.90000+ 1 3.30000+ 1 8.15535- 4 2.75468- 3 2.90000+ 1 4.40000+ 1 1.15006- 5 2.80406- 3 3.00000+ 1 3.00000+ 1 8.08592- 5 2.71138- 3 3.00000+ 1 3.20000+ 1 7.57447- 5 2.78656- 3 3.00000+ 1 3.30000+ 1 1.28355- 3 2.79177- 3 3.00000+ 1 4.10000+ 1 9.21221- 6 2.82265- 3 3.00000+ 1 4.30000+ 1 1.33060- 5 2.83601- 3 3.00000+ 1 4.40000+ 1 1.84237- 5 2.84115- 3 3.20000+ 1 3.20000+ 1 9.97216- 6 2.86174- 3 3.20000+ 1 3.30000+ 1 1.19662- 3 2.86695- 3 3.20000+ 1 4.10000+ 1 6.34558- 6 2.89783- 3 3.20000+ 1 4.30000+ 1 9.06549- 7 2.91119- 3 3.20000+ 1 4.40000+ 1 7.25240- 6 2.91633- 3 3.30000+ 1 3.30000+ 1 1.31359- 3 2.87216- 3 3.30000+ 1 4.10000+ 1 1.21479- 4 2.90304- 3 3.30000+ 1 4.30000+ 1 1.01528- 4 2.91640- 3 3.30000+ 1 4.40000+ 1 1.35069- 4 2.92154- 3 3.30000+ 1 5.80000+ 1 4.53264- 6 2.93188- 3 4.10000+ 1 4.40000+ 1 1.39490- 6 2.95242- 3 4.30000+ 1 4.40000+ 1 2.07719- 6 2.96578- 3 4.40000+ 1 4.40000+ 1 1.40130- 6 2.97092- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.64711- 5 1.37610- 4 1.90000+ 1 3.77862- 4 3.07500- 4 2.90000+ 1 2.58456- 4 9.49300- 4 3.00000+ 1 7.92489- 5 9.86390- 4 4.30000+ 1 4.23158- 5 1.11102- 3 4.40000+ 1 1.42094- 5 1.11616- 3 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.00000+ 1 5.96412- 2 0.00000+ 0 1.80000+ 1 3.20000+ 1 4.50947- 2 6.88800- 5 1.80000+ 1 3.30000+ 1 7.14586- 2 7.40900- 5 1.80000+ 1 4.10000+ 1 5.67428- 3 1.04970- 4 1.80000+ 1 4.30000+ 1 4.12154- 3 1.18330- 4 1.80000+ 1 4.40000+ 1 5.82479- 3 1.23470- 4 1.80000+ 1 5.80000+ 1 1.93825- 4 1.33810- 4 1.90000+ 1 2.40000+ 1 2.43028- 2 3.75500- 5 1.90000+ 1 2.50000+ 1 4.76647- 2 4.54300- 5 1.90000+ 1 2.70000+ 1 4.12304- 2 7.51600- 5 1.90000+ 1 2.90000+ 1 4.92390- 2 1.26500- 4 1.90000+ 1 3.00000+ 1 4.77717- 2 1.63590- 4 1.90000+ 1 3.20000+ 1 4.20023- 2 2.38770- 4 1.90000+ 1 3.30000+ 1 5.19677- 2 2.43980- 4 1.90000+ 1 4.10000+ 1 6.86194- 3 2.74860- 4 1.90000+ 1 4.30000+ 1 6.16793- 3 2.88220- 4 1.90000+ 1 4.40000+ 1 5.63613- 3 2.93360- 4 1.90000+ 1 5.80000+ 1 2.33711- 4 3.03700- 4 2.10000+ 1 2.40000+ 1 4.36590- 3 2.62750- 4 2.10000+ 1 2.50000+ 1 6.34643- 3 2.70630- 4 2.10000+ 1 2.70000+ 1 1.83336- 2 3.00360- 4 2.10000+ 1 2.90000+ 1 6.12580- 3 3.51700- 4 2.10000+ 1 3.00000+ 1 7.29010- 3 3.88790- 4 2.10000+ 1 3.20000+ 1 2.13669- 3 4.63970- 4 2.10000+ 1 3.30000+ 1 2.56337- 3 4.69180- 4 2.10000+ 1 4.10000+ 1 2.27403- 3 5.00060- 4 2.10000+ 1 4.30000+ 1 7.71178- 4 5.13420- 4 2.10000+ 1 4.40000+ 1 7.21591- 4 5.18560- 4 2.10000+ 1 5.80000+ 1 7.60602- 5 5.28900- 4 2.20000+ 1 2.20000+ 1 4.03196- 3 0.00000+ 0 2.20000+ 1 2.40000+ 1 6.76792- 3 2.94400- 4 2.20000+ 1 2.50000+ 1 7.48178- 3 3.02280- 4 2.20000+ 1 2.70000+ 1 2.36500- 2 3.32010- 4 2.20000+ 1 2.90000+ 1 9.38746- 3 3.83350- 4 2.20000+ 1 3.00000+ 1 7.60724- 3 4.20440- 4 2.20000+ 1 3.20000+ 1 1.91054- 3 4.95620- 4 2.20000+ 1 3.30000+ 1 2.98799- 3 5.00830- 4 2.20000+ 1 4.10000+ 1 2.91498- 3 5.31710- 4 2.20000+ 1 4.30000+ 1 1.04745- 3 5.45070- 4 2.20000+ 1 4.40000+ 1 8.33053- 4 5.50210- 4 2.20000+ 1 5.80000+ 1 9.72566- 5 5.60550- 4 2.40000+ 1 2.40000+ 1 9.45176- 3 5.90400- 4 2.40000+ 1 2.50000+ 1 1.82578- 2 5.98280- 4 2.40000+ 1 2.70000+ 1 2.16978- 2 6.28010- 4 2.40000+ 1 2.90000+ 1 3.01539- 3 6.79350- 4 2.40000+ 1 3.00000+ 1 1.17341- 2 7.16440- 4 2.40000+ 1 3.20000+ 1 1.10425- 3 7.91620- 4 2.40000+ 1 3.30000+ 1 7.15709- 4 7.96830- 4 2.40000+ 1 4.10000+ 1 2.32866- 3 8.27710- 4 2.40000+ 1 4.30000+ 1 3.10138- 4 8.41070- 4 2.40000+ 1 4.40000+ 1 1.11166- 3 8.46210- 4 2.40000+ 1 5.80000+ 1 7.63646- 5 8.56550- 4 2.50000+ 1 2.50000+ 1 1.56129- 2 6.06160- 4 2.50000+ 1 2.70000+ 1 2.81020- 2 6.35890- 4 2.50000+ 1 2.90000+ 1 1.52607- 3 6.87230- 4 2.50000+ 1 3.00000+ 1 1.28737- 2 7.24320- 4 2.50000+ 1 3.20000+ 1 6.54745- 4 7.99500- 4 2.50000+ 1 3.30000+ 1 1.59136- 3 8.04710- 4 2.50000+ 1 4.10000+ 1 3.00473- 3 8.35590- 4 2.50000+ 1 4.30000+ 1 1.53004- 4 8.48950- 4 2.50000+ 1 4.40000+ 1 1.17664- 3 8.54090- 4 2.50000+ 1 5.80000+ 1 9.85104- 5 8.64430- 4 2.70000+ 1 2.70000+ 1 1.62394- 2 6.65620- 4 2.70000+ 1 2.90000+ 1 2.36008- 2 7.16960- 4 2.70000+ 1 3.00000+ 1 3.74016- 2 7.54050- 4 2.70000+ 1 3.20000+ 1 3.37661- 2 8.29230- 4 2.70000+ 1 3.30000+ 1 4.66301- 2 8.34440- 4 2.70000+ 1 4.10000+ 1 4.54386- 3 8.65320- 4 2.70000+ 1 4.30000+ 1 3.14701- 3 8.78680- 4 2.70000+ 1 4.40000+ 1 4.43505- 3 8.83820- 4 2.70000+ 1 5.80000+ 1 1.55418- 4 8.94160- 4 2.90000+ 1 2.90000+ 1 1.94053- 3 7.68300- 4 2.90000+ 1 3.00000+ 1 8.39856- 3 8.05390- 4 2.90000+ 1 3.20000+ 1 3.23899- 3 8.80570- 4 2.90000+ 1 3.30000+ 1 2.41866- 3 8.85780- 4 2.90000+ 1 4.10000+ 1 2.67179- 3 9.16660- 4 2.90000+ 1 4.30000+ 1 4.29430- 4 9.30020- 4 2.90000+ 1 4.40000+ 1 7.75838- 4 9.35160- 4 2.90000+ 1 5.80000+ 1 8.71045- 5 9.45500- 4 3.00000+ 1 3.00000+ 1 5.20139- 3 8.42480- 4 3.00000+ 1 3.20000+ 1 2.52106- 3 9.17660- 4 3.00000+ 1 3.30000+ 1 5.42141- 3 9.22870- 4 3.00000+ 1 4.10000+ 1 4.25614- 3 9.53750- 4 3.00000+ 1 4.30000+ 1 9.68744- 4 9.67110- 4 3.00000+ 1 4.40000+ 1 1.08667- 3 9.72250- 4 3.00000+ 1 5.80000+ 1 1.41479- 4 9.82590- 4 3.20000+ 1 3.20000+ 1 9.98285- 4 9.92840- 4 3.20000+ 1 3.30000+ 1 2.98504- 3 9.98050- 4 3.20000+ 1 4.10000+ 1 4.64648- 3 1.02893- 3 3.20000+ 1 4.30000+ 1 4.12909- 4 1.04229- 3 3.20000+ 1 4.40000+ 1 2.45324- 4 1.04743- 3 3.20000+ 1 5.80000+ 1 1.53015- 4 1.05777- 3 3.30000+ 1 3.30000+ 1 1.93980- 3 1.00326- 3 3.30000+ 1 4.10000+ 1 6.23277- 3 1.03414- 3 3.30000+ 1 4.30000+ 1 2.64319- 4 1.04750- 3 3.30000+ 1 4.40000+ 1 6.04161- 4 1.05264- 3 3.30000+ 1 5.80000+ 1 2.05307- 4 1.06298- 3 4.10000+ 1 4.10000+ 1 3.60709- 4 1.06502- 3 4.10000+ 1 4.30000+ 1 4.15287- 4 1.07838- 3 4.10000+ 1 4.40000+ 1 6.00366- 4 1.08352- 3 4.10000+ 1 5.80000+ 1 2.37305- 5 1.09386- 3 4.30000+ 1 4.30000+ 1 2.69318- 5 1.09174- 3 4.30000+ 1 4.40000+ 1 1.10178- 4 1.09688- 3 4.30000+ 1 5.80000+ 1 1.46892- 5 1.10722- 3 4.40000+ 1 4.40000+ 1 6.85531- 5 1.10202- 3 4.40000+ 1 5.80000+ 1 1.95874- 5 1.11236- 3 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 9.91169- 4 3.95090- 4 2.70000+ 1 2.33253- 4 7.60350- 4 3.20000+ 1 6.01522- 5 9.23960- 4 4.10000+ 1 4.11581- 5 9.60050- 4 5.80000+ 1 1.49092- 6 9.88890- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 2.85801- 2 2.59800- 5 1.90000+ 1 3.20000+ 1 1.12640- 2 1.01160- 4 1.90000+ 1 3.30000+ 1 1.75036- 2 1.06370- 4 1.90000+ 1 4.10000+ 1 2.47109- 3 1.37250- 4 1.90000+ 1 4.30000+ 1 2.39152- 3 1.50610- 4 1.90000+ 1 4.40000+ 1 2.34222- 3 1.55750- 4 1.90000+ 1 5.80000+ 1 8.26135- 5 1.66090- 4 2.10000+ 1 2.40000+ 1 1.14056- 1 1.25140- 4 2.10000+ 1 2.50000+ 1 2.62427- 1 1.33020- 4 2.10000+ 1 2.70000+ 1 3.76914- 2 1.62750- 4 2.10000+ 1 2.90000+ 1 3.02382- 2 2.14090- 4 2.10000+ 1 3.00000+ 1 4.02399- 2 2.51180- 4 2.10000+ 1 3.20000+ 1 2.16713- 2 3.26360- 4 2.10000+ 1 3.30000+ 1 3.37322- 2 3.31570- 4 2.10000+ 1 4.10000+ 1 6.33769- 3 3.62450- 4 2.10000+ 1 4.30000+ 1 3.77320- 3 3.75810- 4 2.10000+ 1 4.40000+ 1 4.70861- 3 3.80950- 4 2.10000+ 1 5.80000+ 1 2.21321- 4 3.91290- 4 2.20000+ 1 2.40000+ 1 4.27077- 2 1.56790- 4 2.20000+ 1 2.50000+ 1 1.09131- 2 1.64670- 4 2.20000+ 1 2.70000+ 1 5.98094- 3 1.94400- 4 2.20000+ 1 2.90000+ 1 2.50774- 2 2.45740- 4 2.20000+ 1 3.00000+ 1 5.31734- 3 2.82830- 4 2.20000+ 1 3.20000+ 1 2.41062- 3 3.58010- 4 2.20000+ 1 3.30000+ 1 2.51139- 3 3.63220- 4 2.20000+ 1 4.10000+ 1 7.64223- 4 3.94100- 4 2.20000+ 1 4.30000+ 1 2.28661- 3 4.07460- 4 2.20000+ 1 4.40000+ 1 5.01098- 4 4.12600- 4 2.20000+ 1 5.80000+ 1 2.56933- 5 4.22940- 4 2.40000+ 1 2.40000+ 1 2.34303- 3 4.52790- 4 2.40000+ 1 2.50000+ 1 1.38422- 2 4.60670- 4 2.40000+ 1 2.70000+ 1 4.94656- 3 4.90400- 4 2.40000+ 1 2.90000+ 1 2.03715- 2 5.41740- 4 2.40000+ 1 3.00000+ 1 3.19003- 3 5.78830- 4 2.40000+ 1 3.20000+ 1 5.61017- 3 6.54010- 4 2.40000+ 1 3.30000+ 1 3.58897- 3 6.59220- 4 2.40000+ 1 4.10000+ 1 8.40483- 4 6.90100- 4 2.40000+ 1 4.30000+ 1 1.88154- 3 7.03460- 4 2.40000+ 1 4.40000+ 1 3.36919- 4 7.08600- 4 2.40000+ 1 5.80000+ 1 2.91330- 5 7.18940- 4 2.50000+ 1 2.50000+ 1 6.51367- 4 4.68550- 4 2.50000+ 1 2.70000+ 1 2.84600- 3 4.98280- 4 2.50000+ 1 2.90000+ 1 3.23734- 2 5.49620- 4 2.50000+ 1 3.00000+ 1 1.87263- 3 5.86710- 4 2.50000+ 1 3.20000+ 1 1.16941- 2 6.61890- 4 2.50000+ 1 3.30000+ 1 1.07380- 3 6.67100- 4 2.50000+ 1 4.10000+ 1 3.68485- 4 6.97980- 4 2.50000+ 1 4.30000+ 1 2.89659- 3 7.11340- 4 2.50000+ 1 4.40000+ 1 1.87096- 4 7.16480- 4 2.50000+ 1 5.80000+ 1 1.23600- 5 7.26820- 4 2.70000+ 1 2.70000+ 1 1.17618- 3 5.28010- 4 2.70000+ 1 2.90000+ 1 1.58172- 2 5.79350- 4 2.70000+ 1 3.00000+ 1 2.98335- 3 6.16440- 4 2.70000+ 1 3.20000+ 1 3.68597- 3 6.91620- 4 2.70000+ 1 3.30000+ 1 2.62361- 3 6.96830- 4 2.70000+ 1 4.10000+ 1 3.08875- 4 7.27710- 4 2.70000+ 1 4.30000+ 1 1.39542- 3 7.41070- 4 2.70000+ 1 4.40000+ 1 3.19776- 4 7.46210- 4 2.70000+ 1 5.80000+ 1 1.09019- 5 7.56550- 4 2.90000+ 1 2.90000+ 1 1.31184- 2 6.30690- 4 2.90000+ 1 3.00000+ 1 3.45160- 2 6.67780- 4 2.90000+ 1 3.20000+ 1 2.52982- 2 7.42960- 4 2.90000+ 1 3.30000+ 1 4.21819- 2 7.48170- 4 2.90000+ 1 4.10000+ 1 3.39822- 3 7.79050- 4 2.90000+ 1 4.30000+ 1 2.95035- 3 7.92410- 4 2.90000+ 1 4.40000+ 1 4.12139- 3 7.97550- 4 2.90000+ 1 5.80000+ 1 1.18010- 4 8.07890- 4 3.00000+ 1 3.00000+ 1 1.13646- 3 7.04870- 4 3.00000+ 1 3.20000+ 1 4.45980- 3 7.80050- 4 3.00000+ 1 3.30000+ 1 1.90447- 3 7.85260- 4 3.00000+ 1 4.10000+ 1 4.06552- 4 8.16140- 4 3.00000+ 1 4.30000+ 1 2.81586- 3 8.29500- 4 3.00000+ 1 4.40000+ 1 2.30560- 4 8.34640- 4 3.00000+ 1 5.80000+ 1 1.36433- 5 8.44980- 4 3.20000+ 1 3.20000+ 1 6.57235- 4 8.55230- 4 3.20000+ 1 3.30000+ 1 1.07412- 3 8.60440- 4 3.20000+ 1 4.10000+ 1 2.70788- 4 8.91320- 4 3.20000+ 1 4.30000+ 1 8.72712- 4 9.04680- 4 3.20000+ 1 4.40000+ 1 2.14932- 4 9.09820- 4 3.20000+ 1 5.80000+ 1 9.02626- 6 9.20160- 4 3.30000+ 1 3.30000+ 1 1.14060- 4 8.65650- 4 3.30000+ 1 4.10000+ 1 9.04351- 5 8.96530- 4 3.30000+ 1 4.30000+ 1 9.42741- 4 9.09890- 4 3.30000+ 1 4.40000+ 1 5.09387- 5 9.15030- 4 3.30000+ 1 5.80000+ 1 2.95295- 6 9.25370- 4 4.10000+ 1 4.10000+ 1 5.83419- 6 9.27410- 4 4.10000+ 1 4.30000+ 1 6.82953- 5 9.40770- 4 4.10000+ 1 4.40000+ 1 1.09822- 5 9.45910- 4 4.10000+ 1 5.80000+ 1 3.43208- 7 9.56250- 4 4.30000+ 1 4.30000+ 1 3.15761- 5 9.54130- 4 4.30000+ 1 4.40000+ 1 7.54116- 5 9.59270- 4 4.30000+ 1 5.80000+ 1 2.14581- 6 9.69610- 4 4.40000+ 1 4.40000+ 1 2.36721- 6 9.64410- 4 4.40000+ 1 5.80000+ 1 2.63029- 7 9.74750- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.44072- 5 2.25200- 4 2.20000+ 1 1.99411- 4 2.56850- 4 2.70000+ 1 2.31043- 4 5.90460- 4 3.20000+ 1 2.04977- 5 7.54070- 4 3.30000+ 1 1.21577- 4 7.59280- 4 4.10000+ 1 4.00290- 5 7.90160- 4 5.80000+ 1 1.42807- 6 8.19000- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.70000+ 1 1.46071- 2 0.00000+ 0 2.10000+ 1 2.90000+ 1 1.47673- 2 4.42000- 5 2.10000+ 1 3.00000+ 1 4.44942- 2 8.12900- 5 2.10000+ 1 3.20000+ 1 1.37506- 2 1.56470- 4 2.10000+ 1 3.30000+ 1 2.22031- 2 1.61680- 4 2.10000+ 1 4.10000+ 1 2.81273- 3 1.92560- 4 2.10000+ 1 4.30000+ 1 1.81605- 3 2.05920- 4 2.10000+ 1 4.40000+ 1 4.28074- 3 2.11060- 4 2.10000+ 1 5.80000+ 1 9.69876- 5 2.21400- 4 2.20000+ 1 2.40000+ 1 7.26320- 3 0.00000+ 0 2.20000+ 1 2.50000+ 1 2.14787- 2 0.00000+ 0 2.20000+ 1 2.70000+ 1 9.65326- 2 2.45100- 5 2.20000+ 1 2.90000+ 1 1.05732- 1 7.58500- 5 2.20000+ 1 3.00000+ 1 1.23409- 1 1.12940- 4 2.20000+ 1 3.20000+ 1 1.02131- 1 1.88120- 4 2.20000+ 1 3.30000+ 1 1.21673- 1 1.93330- 4 2.20000+ 1 4.10000+ 1 1.64802- 2 2.24210- 4 2.20000+ 1 4.30000+ 1 1.32524- 2 2.37570- 4 2.20000+ 1 4.40000+ 1 1.34902- 2 2.42710- 4 2.20000+ 1 5.80000+ 1 5.71283- 4 2.53050- 4 2.40000+ 1 2.40000+ 1 8.28679- 4 2.82900- 4 2.40000+ 1 2.50000+ 1 8.95217- 3 2.90780- 4 2.40000+ 1 2.70000+ 1 8.12771- 3 3.20510- 4 2.40000+ 1 2.90000+ 1 4.36909- 3 3.71850- 4 2.40000+ 1 3.00000+ 1 5.22905- 2 4.08940- 4 2.40000+ 1 3.20000+ 1 1.79719- 3 4.84120- 4 2.40000+ 1 3.30000+ 1 7.39070- 3 4.89330- 4 2.40000+ 1 4.10000+ 1 8.99638- 4 5.20210- 4 2.40000+ 1 4.30000+ 1 4.96434- 4 5.33570- 4 2.40000+ 1 4.40000+ 1 4.35029- 3 5.38710- 4 2.40000+ 1 5.80000+ 1 2.96911- 5 5.49050- 4 2.50000+ 1 2.50000+ 1 5.07859- 3 2.98660- 4 2.50000+ 1 2.70000+ 1 1.83622- 2 3.28390- 4 2.50000+ 1 2.90000+ 1 1.54616- 2 3.79730- 4 2.50000+ 1 3.00000+ 1 6.34031- 2 4.16820- 4 2.50000+ 1 3.20000+ 1 1.46078- 3 4.92000- 4 2.50000+ 1 3.30000+ 1 1.01158- 2 4.97210- 4 2.50000+ 1 4.10000+ 1 2.43235- 3 5.28090- 4 2.50000+ 1 4.30000+ 1 1.81856- 3 5.41450- 4 2.50000+ 1 4.40000+ 1 5.33386- 3 5.46590- 4 2.50000+ 1 5.80000+ 1 8.18460- 5 5.56930- 4 2.70000+ 1 2.70000+ 1 2.99848- 6 3.58120- 4 2.70000+ 1 2.90000+ 1 2.30213- 4 4.09460- 4 2.70000+ 1 3.00000+ 1 5.02526- 3 4.46550- 4 2.70000+ 1 3.20000+ 1 4.47774- 4 5.21730- 4 2.70000+ 1 3.30000+ 1 7.83627- 4 5.26940- 4 2.70000+ 1 4.10000+ 1 4.66436- 6 5.57820- 4 2.70000+ 1 4.30000+ 1 2.03233- 5 5.71180- 4 2.70000+ 1 4.40000+ 1 4.06135- 4 5.76320- 4 2.70000+ 1 5.80000+ 1 3.33168- 7 5.86660- 4 2.90000+ 1 2.90000+ 1 2.26160- 6 4.60800- 4 2.90000+ 1 3.00000+ 1 5.39548- 3 4.97890- 4 2.90000+ 1 3.20000+ 1 2.33279- 4 5.73070- 4 2.90000+ 1 3.30000+ 1 6.97254- 4 5.78280- 4 2.90000+ 1 4.10000+ 1 3.39258- 5 6.09160- 4 2.90000+ 1 4.30000+ 1 1.93858- 6 6.22520- 4 2.90000+ 1 4.40000+ 1 4.47498- 4 6.27660- 4 2.90000+ 1 5.80000+ 1 1.29231- 6 6.38000- 4 3.00000+ 1 3.00000+ 1 7.17860- 3 5.34980- 4 3.00000+ 1 3.20000+ 1 7.76238- 3 6.10160- 4 3.00000+ 1 3.30000+ 1 1.03402- 2 6.15370- 4 3.00000+ 1 4.10000+ 1 8.83747- 4 6.46250- 4 3.00000+ 1 4.30000+ 1 7.39215- 4 6.59610- 4 3.00000+ 1 4.40000+ 1 1.45299- 3 6.64750- 4 3.00000+ 1 5.80000+ 1 3.05320- 5 6.75090- 4 3.20000+ 1 3.20000+ 1 1.27117- 4 6.85340- 4 3.20000+ 1 3.30000+ 1 7.62421- 4 6.90550- 4 3.20000+ 1 4.10000+ 1 4.71019- 5 7.21430- 4 3.20000+ 1 4.30000+ 1 2.52549- 5 7.34790- 4 3.20000+ 1 4.40000+ 1 5.43087- 4 7.39930- 4 3.20000+ 1 5.80000+ 1 1.70245- 6 7.50270- 4 3.30000+ 1 3.30000+ 1 7.22964- 4 6.95760- 4 3.30000+ 1 4.10000+ 1 1.09233- 4 7.26640- 4 3.30000+ 1 4.30000+ 1 7.66092- 5 7.40000- 4 3.30000+ 1 4.40000+ 1 7.32888- 4 7.45140- 4 3.30000+ 1 5.80000+ 1 3.68866- 6 7.55480- 4 4.10000+ 1 4.30000+ 1 2.26996- 6 7.70880- 4 4.10000+ 1 4.40000+ 1 5.98694- 5 7.76020- 4 4.30000+ 1 4.40000+ 1 5.10735- 5 7.89380- 4 4.40000+ 1 4.40000+ 1 5.90173- 5 7.94520- 4 4.40000+ 1 5.80000+ 1 1.98608- 6 8.04860- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.65368- 4 3.27650- 4 2.90000+ 1 9.85984- 5 4.16600- 4 3.00000+ 1 1.20089- 5 4.53690- 4 4.30000+ 1 1.27769- 5 5.78320- 4 4.40000+ 1 1.42519- 6 5.83460- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.10000+ 1 2.26790- 3 0.00000+ 0 2.20000+ 1 4.30000+ 1 9.18272- 4 1.23700- 5 2.20000+ 1 4.40000+ 1 1.87606- 3 1.75100- 5 2.20000+ 1 5.80000+ 1 5.35341- 5 2.78500- 5 2.40000+ 1 2.40000+ 1 5.63089- 2 5.77000- 5 2.40000+ 1 2.50000+ 1 1.92865- 1 6.55800- 5 2.40000+ 1 2.70000+ 1 9.39352- 2 9.53100- 5 2.40000+ 1 2.90000+ 1 8.14509- 2 1.46650- 4 2.40000+ 1 3.00000+ 1 1.04397- 1 1.83740- 4 2.40000+ 1 3.20000+ 1 1.01418- 1 2.58920- 4 2.40000+ 1 3.30000+ 1 1.05217- 1 2.64130- 4 2.40000+ 1 4.10000+ 1 1.59491- 2 2.95010- 4 2.40000+ 1 4.30000+ 1 1.05627- 2 3.08370- 4 2.40000+ 1 4.40000+ 1 1.19975- 2 3.13510- 4 2.40000+ 1 5.80000+ 1 5.44321- 4 3.23850- 4 2.50000+ 1 2.50000+ 1 3.83530- 3 7.34600- 5 2.50000+ 1 2.70000+ 1 7.80002- 3 1.03190- 4 2.50000+ 1 2.90000+ 1 1.48805- 2 1.54530- 4 2.50000+ 1 3.00000+ 1 6.82392- 3 1.91620- 4 2.50000+ 1 3.20000+ 1 1.11238- 1 2.66800- 4 2.50000+ 1 3.30000+ 1 4.63082- 3 2.72010- 4 2.50000+ 1 4.10000+ 1 9.58554- 4 3.02890- 4 2.50000+ 1 4.30000+ 1 1.28557- 3 3.16250- 4 2.50000+ 1 4.40000+ 1 6.33827- 4 3.21390- 4 2.50000+ 1 5.80000+ 1 3.20427- 5 3.31730- 4 2.70000+ 1 2.70000+ 1 8.08461- 4 1.32920- 4 2.70000+ 1 2.90000+ 1 1.89015- 3 1.84260- 4 2.70000+ 1 3.00000+ 1 1.58799- 3 2.21350- 4 2.70000+ 1 3.20000+ 1 9.93097- 3 2.96530- 4 2.70000+ 1 3.30000+ 1 2.20730- 3 3.01740- 4 2.70000+ 1 4.10000+ 1 1.58249- 4 3.32620- 4 2.70000+ 1 4.30000+ 1 1.65288- 4 3.45980- 4 2.70000+ 1 4.40000+ 1 1.43410- 4 3.51120- 4 2.70000+ 1 5.80000+ 1 5.07981- 6 3.61460- 4 2.90000+ 1 2.90000+ 1 3.47772- 4 2.35600- 4 2.90000+ 1 3.00000+ 1 1.98653- 3 2.72690- 4 2.90000+ 1 3.20000+ 1 6.31334- 3 3.47870- 4 2.90000+ 1 3.30000+ 1 8.35417- 4 3.53080- 4 2.90000+ 1 4.10000+ 1 1.14104- 4 3.83960- 4 2.90000+ 1 4.30000+ 1 6.29104- 5 3.97320- 4 2.90000+ 1 4.40000+ 1 1.41061- 4 4.02460- 4 2.90000+ 1 5.80000+ 1 3.90755- 6 4.12800- 4 3.00000+ 1 3.00000+ 1 7.51828- 4 3.09780- 4 3.00000+ 1 3.20000+ 1 1.28586- 2 3.84960- 4 3.00000+ 1 3.30000+ 1 1.11837- 3 3.90170- 4 3.00000+ 1 4.10000+ 1 6.72107- 5 4.21050- 4 3.00000+ 1 4.30000+ 1 1.30906- 4 4.34410- 4 3.00000+ 1 4.40000+ 1 1.07068- 4 4.39550- 4 3.00000+ 1 5.80000+ 1 1.95379- 6 4.49890- 4 3.20000+ 1 3.20000+ 1 7.37624- 3 4.60140- 4 3.20000+ 1 3.30000+ 1 1.44239- 2 4.65350- 4 3.20000+ 1 4.10000+ 1 1.25662- 3 4.96230- 4 3.20000+ 1 4.30000+ 1 8.27222- 4 5.09590- 4 3.20000+ 1 4.40000+ 1 1.46689- 3 5.14730- 4 3.20000+ 1 5.80000+ 1 4.29827- 5 5.25070- 4 3.30000+ 1 3.30000+ 1 2.62977- 4 4.70560- 4 3.30000+ 1 4.10000+ 1 5.97844- 5 5.01440- 4 3.30000+ 1 4.30000+ 1 5.00166- 5 5.14800- 4 3.30000+ 1 4.40000+ 1 9.06555- 5 5.19940- 4 3.30000+ 1 5.80000+ 1 1.95375- 6 5.30280- 4 4.10000+ 1 4.10000+ 1 4.29844- 6 5.32320- 4 4.10000+ 1 4.30000+ 1 7.81519- 6 5.45680- 4 4.10000+ 1 4.40000+ 1 5.86149- 6 5.50820- 4 4.10000+ 1 5.80000+ 1 3.90768- 7 5.61160- 4 4.30000+ 1 4.30000+ 1 1.17239- 6 5.59040- 4 4.30000+ 1 4.40000+ 1 8.98777- 6 5.64180- 4 4.30000+ 1 5.80000+ 1 3.90773- 7 5.74520- 4 4.40000+ 1 4.40000+ 1 3.90758- 6 5.69320- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.47311- 5 2.96000- 4 2.50000+ 1 3.25421- 4 3.03880- 4 3.00000+ 1 8.67734- 5 4.22040- 4 4.40000+ 1 1.03780- 5 5.51810- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 3.05154- 3 2.60500- 5 2.40000+ 1 2.50000+ 1 4.53186- 2 3.39300- 5 2.40000+ 1 2.70000+ 1 1.21326- 2 6.36600- 5 2.40000+ 1 2.90000+ 1 7.93056- 3 1.15000- 4 2.40000+ 1 3.00000+ 1 1.55411- 2 1.52090- 4 2.40000+ 1 3.20000+ 1 6.60292- 3 2.27270- 4 2.40000+ 1 3.30000+ 1 9.99161- 2 2.32480- 4 2.40000+ 1 4.10000+ 1 1.71379- 3 2.63360- 4 2.40000+ 1 4.30000+ 1 9.79004- 4 2.76720- 4 2.40000+ 1 4.40000+ 1 1.48622- 3 2.81860- 4 2.40000+ 1 5.80000+ 1 5.83261- 5 2.92200- 4 2.50000+ 1 2.50000+ 1 6.29943- 2 4.18100- 5 2.50000+ 1 2.70000+ 1 1.05709- 1 7.15400- 5 2.50000+ 1 2.90000+ 1 1.12538- 1 1.22880- 4 2.50000+ 1 3.00000+ 1 1.08449- 1 1.59970- 4 2.50000+ 1 3.20000+ 1 9.99433- 2 2.35150- 4 2.50000+ 1 3.30000+ 1 1.84680- 1 2.40360- 4 2.50000+ 1 4.10000+ 1 1.80360- 2 2.71240- 4 2.50000+ 1 4.30000+ 1 1.41145- 2 2.84600- 4 2.50000+ 1 4.40000+ 1 1.25137- 2 2.89740- 4 2.50000+ 1 5.80000+ 1 6.14805- 4 3.00080- 4 2.70000+ 1 2.70000+ 1 1.50317- 3 1.01270- 4 2.70000+ 1 2.90000+ 1 1.99872- 3 1.52610- 4 2.70000+ 1 3.00000+ 1 3.49699- 3 1.89700- 4 2.70000+ 1 3.20000+ 1 3.04773- 3 2.64880- 4 2.70000+ 1 3.30000+ 1 1.32168- 2 2.70090- 4 2.70000+ 1 4.10000+ 1 2.84295- 4 3.00970- 4 2.70000+ 1 4.30000+ 1 1.81033- 4 3.14330- 4 2.70000+ 1 4.40000+ 1 3.12822- 4 3.19470- 4 2.70000+ 1 5.80000+ 1 9.50535- 6 3.29810- 4 2.90000+ 1 2.90000+ 1 2.45846- 4 2.03950- 4 2.90000+ 1 3.00000+ 1 3.57485- 3 2.41040- 4 2.90000+ 1 3.20000+ 1 4.55385- 4 3.16220- 4 2.90000+ 1 3.30000+ 1 1.00181- 2 3.21430- 4 2.90000+ 1 4.10000+ 1 1.16659- 4 3.52310- 4 2.90000+ 1 4.30000+ 1 4.27748- 5 3.65670- 4 2.90000+ 1 4.40000+ 1 2.63565- 4 3.70810- 4 2.90000+ 1 5.80000+ 1 3.88853- 6 3.81150- 4 3.00000+ 1 3.00000+ 1 1.17475- 3 2.78130- 4 3.00000+ 1 3.20000+ 1 1.67668- 3 3.53310- 4 3.00000+ 1 3.30000+ 1 1.32973- 2 3.58520- 4 3.00000+ 1 4.10000+ 1 1.18374- 4 3.89400- 4 3.00000+ 1 4.30000+ 1 1.65468- 4 4.02760- 4 3.00000+ 1 4.40000+ 1 1.68058- 4 4.07900- 4 3.00000+ 1 5.80000+ 1 3.45635- 6 4.18240- 4 3.20000+ 1 3.20000+ 1 1.24439- 4 4.28490- 4 3.20000+ 1 3.30000+ 1 1.19479- 2 4.33700- 4 3.20000+ 1 4.10000+ 1 7.38811- 5 4.64580- 4 3.20000+ 1 4.30000+ 1 3.80204- 5 4.77940- 4 3.20000+ 1 4.40000+ 1 1.38687- 4 4.83080- 4 3.20000+ 1 5.80000+ 1 2.16029- 6 4.93420- 4 3.30000+ 1 3.30000+ 1 1.32340- 2 4.38910- 4 3.30000+ 1 4.10000+ 1 1.45479- 3 4.69790- 4 3.30000+ 1 4.30000+ 1 1.20161- 3 4.83150- 4 3.30000+ 1 4.40000+ 1 1.54598- 3 4.88290- 4 3.30000+ 1 5.80000+ 1 4.96862- 5 4.98630- 4 4.10000+ 1 4.10000+ 1 8.20903- 6 5.00670- 4 4.10000+ 1 4.30000+ 1 9.50520- 6 5.14030- 4 4.10000+ 1 4.40000+ 1 1.16658- 5 5.19170- 4 4.10000+ 1 5.80000+ 1 4.32065- 7 5.29510- 4 4.30000+ 1 4.30000+ 1 1.29618- 6 5.27390- 4 4.30000+ 1 4.40000+ 1 1.29618- 5 5.32530- 4 4.30000+ 1 5.80000+ 1 4.32071- 7 5.42870- 4 4.40000+ 1 4.40000+ 1 6.48076- 6 5.37670- 4 4.40000+ 1 5.80000+ 1 4.32068- 7 5.48010- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.47062- 5 2.01220- 4 3.30000+ 1 1.61712- 6 2.06430- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 5.80000+ 1 8.14148- 4 4.08000- 6 2.70000+ 1 4.30000+ 1 6.31398- 3 1.83300- 5 2.70000+ 1 4.40000+ 1 1.11618- 2 2.34700- 5 2.70000+ 1 5.80000+ 1 6.69382- 4 3.38100- 5 2.90000+ 1 3.20000+ 1 9.56340- 2 2.02200- 5 2.90000+ 1 3.30000+ 1 7.43724- 2 2.54300- 5 2.90000+ 1 4.10000+ 1 3.57482- 2 5.63100- 5 2.90000+ 1 4.30000+ 1 1.41106- 2 6.96700- 5 2.90000+ 1 4.40000+ 1 2.41516- 2 7.48100- 5 2.90000+ 1 5.80000+ 1 1.08547- 3 8.51500- 5 3.00000+ 1 3.20000+ 1 1.39229- 1 5.73100- 5 3.00000+ 1 3.30000+ 1 8.16847- 2 6.25200- 5 3.00000+ 1 4.10000+ 1 1.59921- 2 9.34000- 5 3.00000+ 1 4.30000+ 1 1.44544- 2 1.06760- 4 3.00000+ 1 4.40000+ 1 8.35785- 3 1.11900- 4 3.00000+ 1 5.80000+ 1 5.24647- 4 1.22240- 4 3.20000+ 1 3.20000+ 1 1.41057- 1 1.32490- 4 3.20000+ 1 3.30000+ 1 2.02755- 1 1.37700- 4 3.20000+ 1 4.10000+ 1 1.14880- 2 1.68580- 4 3.20000+ 1 4.30000+ 1 3.16239- 2 1.81940- 4 3.20000+ 1 4.40000+ 1 2.17823- 2 1.87080- 4 3.20000+ 1 5.80000+ 1 3.98021- 4 1.97420- 4 3.30000+ 1 3.30000+ 1 2.35858- 2 1.42910- 4 3.30000+ 1 4.10000+ 1 3.71504- 3 1.73790- 4 3.30000+ 1 4.30000+ 1 2.54331- 2 1.87150- 4 3.30000+ 1 4.40000+ 1 1.01353- 2 1.92290- 4 3.30000+ 1 5.80000+ 1 1.14306- 4 2.02630- 4 4.10000+ 1 4.10000+ 1 7.23647- 5 2.04670- 4 4.10000+ 1 4.30000+ 1 1.17593- 3 2.18030- 4 4.10000+ 1 4.40000+ 1 8.32225- 4 2.23170- 4 4.30000+ 1 4.30000+ 1 3.98027- 4 2.31390- 4 4.30000+ 1 4.40000+ 1 8.68402- 4 2.36530- 4 4.30000+ 1 5.80000+ 1 3.61837- 5 2.46870- 4 4.40000+ 1 4.40000+ 1 1.80929- 4 2.41670- 4 4.40000+ 1 5.80000+ 1 1.80929- 5 2.52010- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 2.37940- 5 1.98550- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 4.82627- 3 1.04500- 5 2.70000+ 1 4.40000+ 1 9.81379- 3 1.55900- 5 2.70000+ 1 5.80000+ 1 9.50918- 4 2.59300- 5 2.90000+ 1 3.20000+ 1 2.24989- 2 1.23400- 5 2.90000+ 1 3.30000+ 1 5.85977- 2 1.75500- 5 2.90000+ 1 4.10000+ 1 3.62428- 3 4.84300- 5 2.90000+ 1 4.30000+ 1 9.50924- 4 6.17900- 5 2.90000+ 1 4.40000+ 1 6.96155- 3 6.69300- 5 2.90000+ 1 5.80000+ 1 1.61476- 4 7.72700- 5 3.00000+ 1 3.20000+ 1 1.04355- 1 4.94300- 5 3.00000+ 1 3.30000+ 1 2.78304- 1 5.46400- 5 3.00000+ 1 4.10000+ 1 3.24019- 2 8.55200- 5 3.00000+ 1 4.30000+ 1 1.00294- 2 9.88800- 5 3.00000+ 1 4.40000+ 1 3.45007- 2 1.04020- 4 3.00000+ 1 5.80000+ 1 1.05846- 3 1.14360- 4 3.20000+ 1 3.20000+ 1 1.20934- 2 1.24610- 4 3.20000+ 1 3.30000+ 1 1.53917- 1 1.29820- 4 3.20000+ 1 4.10000+ 1 2.78102- 3 1.60700- 4 3.20000+ 1 4.30000+ 1 2.51192- 3 1.74060- 4 3.20000+ 1 4.40000+ 1 1.93771- 2 1.79200- 4 3.20000+ 1 5.80000+ 1 8.97069- 5 1.89540- 4 3.30000+ 1 3.30000+ 1 1.68961- 1 1.35030- 4 3.30000+ 1 4.10000+ 1 1.22724- 2 1.65910- 4 3.30000+ 1 4.30000+ 1 1.11950- 2 1.79270- 4 3.30000+ 1 4.40000+ 1 4.42088- 2 1.84410- 4 3.30000+ 1 5.80000+ 1 4.12668- 4 1.94750- 4 4.10000+ 1 4.10000+ 1 5.38236- 5 1.96790- 4 4.10000+ 1 4.30000+ 1 4.30598- 4 2.10150- 4 4.10000+ 1 4.40000+ 1 1.36357- 3 2.15290- 4 4.30000+ 1 4.30000+ 1 3.58824- 5 2.23510- 4 4.30000+ 1 4.40000+ 1 4.48546- 4 2.28650- 4 4.30000+ 1 5.80000+ 1 1.79412- 5 2.38990- 4 4.40000+ 1 4.40000+ 1 7.35576- 4 2.33790- 4 4.40000+ 1 5.80000+ 1 3.58824- 5 2.44130- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.34995- 6 5.13400- 5 3.00000+ 1 1.42006- 5 8.84300- 5 4.30000+ 1 1.32340- 6 2.13060- 4 4.40000+ 1 3.61979- 8 2.18200- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.71451- 2 1.87000- 5 2.90000+ 1 4.30000+ 1 2.06240- 2 3.20600- 5 2.90000+ 1 4.40000+ 1 4.16416- 2 3.72000- 5 2.90000+ 1 5.80000+ 1 1.20021- 3 4.75400- 5 3.00000+ 1 3.20000+ 1 3.61905- 1 1.97000- 5 3.00000+ 1 3.30000+ 1 2.99805- 1 2.49100- 5 3.00000+ 1 4.10000+ 1 2.01278- 2 5.57900- 5 3.00000+ 1 4.30000+ 1 1.79282- 2 6.91500- 5 3.00000+ 1 4.40000+ 1 1.72422- 2 7.42900- 5 3.00000+ 1 5.80000+ 1 6.78441- 4 8.46300- 5 3.20000+ 1 3.20000+ 1 2.04066- 3 9.48800- 5 3.20000+ 1 3.30000+ 1 1.23656- 1 1.00090- 4 3.20000+ 1 4.10000+ 1 7.67716- 3 1.30970- 4 3.20000+ 1 4.30000+ 1 1.02641- 3 1.44330- 4 3.20000+ 1 4.40000+ 1 6.35160- 3 1.49470- 4 3.20000+ 1 5.80000+ 1 2.19064- 4 1.59810- 4 3.30000+ 1 3.30000+ 1 2.21681- 2 1.05300- 4 3.30000+ 1 4.10000+ 1 7.42450- 3 1.36180- 4 3.30000+ 1 4.30000+ 1 2.96844- 3 1.49540- 4 3.30000+ 1 4.40000+ 1 2.80798- 3 1.54680- 4 3.30000+ 1 5.80000+ 1 2.11357- 4 1.65020- 4 4.10000+ 1 4.10000+ 1 9.07246- 4 1.67060- 4 4.10000+ 1 4.30000+ 1 9.77507- 4 1.80420- 4 4.10000+ 1 4.40000+ 1 1.44998- 3 1.85560- 4 4.10000+ 1 5.80000+ 1 5.53966- 5 1.95900- 4 4.30000+ 1 4.30000+ 1 1.46053- 4 1.93780- 4 4.30000+ 1 4.40000+ 1 9.12248- 4 1.98920- 4 4.30000+ 1 5.80000+ 1 4.65096- 5 2.09260- 4 4.40000+ 1 4.40000+ 1 5.49873- 4 2.04060- 4 4.40000+ 1 5.80000+ 1 8.87232- 5 2.14400- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.60910- 5 1.12270- 4 4.10000+ 1 1.72511- 6 1.48360- 4 5.80000+ 1 5.82672- 8 1.77200- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.70287- 2 4.45000- 6 3.00000+ 1 4.30000+ 1 1.46947- 2 1.78100- 5 3.00000+ 1 4.40000+ 1 9.37038- 3 2.29500- 5 3.00000+ 1 5.80000+ 1 3.84410- 4 3.32900- 5 3.20000+ 1 3.20000+ 1 1.47686- 1 4.35400- 5 3.20000+ 1 3.30000+ 1 6.44675- 1 4.87500- 5 3.20000+ 1 4.10000+ 1 3.97365- 2 7.96300- 5 3.20000+ 1 4.30000+ 1 2.51338- 2 9.29900- 5 3.20000+ 1 4.40000+ 1 4.11632- 2 9.81300- 5 3.20000+ 1 5.80000+ 1 1.42830- 3 1.08470- 4 3.30000+ 1 3.30000+ 1 2.46539- 2 5.39600- 5 3.30000+ 1 4.10000+ 1 3.08569- 3 8.48400- 5 3.30000+ 1 4.30000+ 1 2.06982- 2 9.82000- 5 3.30000+ 1 4.40000+ 1 4.89065- 3 1.03340- 4 3.30000+ 1 5.80000+ 1 9.07637- 5 1.13680- 4 4.10000+ 1 4.10000+ 1 5.80533- 5 1.15720- 4 4.10000+ 1 4.30000+ 1 1.74794- 3 1.29080- 4 4.10000+ 1 4.40000+ 1 2.67104- 4 1.34220- 4 4.10000+ 1 5.80000+ 1 3.60951- 6 1.44560- 4 4.30000+ 1 4.30000+ 1 9.27051- 4 1.42440- 4 4.30000+ 1 4.40000+ 1 2.09499- 3 1.47580- 4 4.30000+ 1 5.80000+ 1 6.16640- 5 1.57920- 4 4.40000+ 1 4.40000+ 1 9.47520- 5 1.52720- 4 4.40000+ 1 5.80000+ 1 6.91834- 6 1.63060- 4 1 87000 0 7 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.44951- 7 7.51800- 5 3.30000+ 1 2.70991- 6 8.03900- 5 4.10000+ 1 8.36594- 7 1.11270- 4 5.80000+ 1 2.76331- 8 1.40110- 4 1 87000 0 9 2.23000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.62162- 2 6.45000- 6 3.20000+ 1 3.30000+ 1 4.77113- 1 1.16600- 5 3.20000+ 1 4.10000+ 1 4.92696- 3 4.25400- 5 3.20000+ 1 4.30000+ 1 2.80124- 3 5.59000- 5 3.20000+ 1 4.40000+ 1 8.65351- 3 6.10400- 5 3.20000+ 1 5.80000+ 1 1.31258- 4 7.13800- 5 3.30000+ 1 3.30000+ 1 3.78663- 1 1.68700- 5 3.30000+ 1 4.10000+ 1 3.34703- 2 4.77500- 5 3.30000+ 1 4.30000+ 1 2.94503- 2 6.11100- 5 3.30000+ 1 4.40000+ 1 3.43352- 2 6.62500- 5 3.30000+ 1 5.80000+ 1 1.10308- 3 7.65900- 5 4.10000+ 1 4.10000+ 1 1.43753- 4 7.86300- 5 4.10000+ 1 4.30000+ 1 2.43809- 4 9.19900- 5 4.10000+ 1 4.40000+ 1 1.07005- 3 9.71300- 5 4.10000+ 1 5.80000+ 1 8.49192- 6 1.07470- 4 4.30000+ 1 4.30000+ 1 1.23074- 7 1.05350- 4 4.30000+ 1 4.40000+ 1 7.88750- 4 1.10490- 4 4.30000+ 1 5.80000+ 1 4.43062- 6 1.20830- 4 4.40000+ 1 4.40000+ 1 8.39581- 4 1.15630- 4 4.40000+ 1 5.80000+ 1 3.29825- 5 1.25970- 4 1 88000 0 0 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 88000 0 0 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04320- 1 3.00000+ 0 1.92320- 2 5.00000+ 0 1.85600- 2 6.00000+ 0 1.54560- 2 8.00000+ 0 4.79510- 3 1.00000+ 1 4.48200- 3 1.10000+ 1 3.77370- 3 1.30000+ 1 3.25870- 3 1.40000+ 1 3.11130- 3 1.60000+ 1 1.18970- 3 1.80000+ 1 1.04860- 3 1.90000+ 1 8.67310- 4 2.10000+ 1 6.36770- 4 2.20000+ 1 6.03060- 4 2.40000+ 1 2.99700- 4 2.50000+ 1 2.91190- 4 2.70000+ 1 2.53630- 4 2.90000+ 1 2.00320- 4 3.00000+ 1 1.59830- 4 3.20000+ 1 8.13200- 5 3.30000+ 1 7.55200- 5 4.10000+ 1 3.95400- 5 4.30000+ 1 2.48800- 5 4.40000+ 1 1.86200- 5 5.80000+ 1 4.73000- 6 1 88000 0 0 2.26000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.52660- 1 3.00000+ 0 3.76000- 2 5.00000+ 0 3.75990- 2 6.00000+ 0 2.50550- 2 8.00000+ 0 1.20480- 2 1.00000+ 1 1.19160- 2 1.10000+ 1 8.75960- 3 1.30000+ 1 8.60050- 3 1.40000+ 1 7.98360- 3 1.60000+ 1 4.09770- 3 1.80000+ 1 3.95010- 3 1.90000+ 1 2.98440- 3 2.10000+ 1 2.74910- 3 2.20000+ 1 2.56430- 3 2.40000+ 1 2.20150- 3 2.50000+ 1 2.13890- 3 2.70000+ 1 1.21350- 3 2.90000+ 1 1.09760- 3 3.00000+ 1 8.31040- 4 3.20000+ 1 6.30580- 4 3.30000+ 1 5.85430- 4 4.10000+ 1 2.72570- 4 4.30000+ 1 2.10690- 4 4.40000+ 1 1.51580- 4 5.80000+ 1 3.20300- 5 1 88000 0 0 2.26000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.70000-11 3.00000+ 0 3.19120-10 5.00000+ 0 2.59460-10 6.00000+ 0 3.10660-10 8.00000+ 0 8.29080-10 1.00000+ 1 7.79660-10 1.10000+ 1 8.71950-10 1.30000+ 1 7.53010-10 1.40000+ 1 7.80810-10 1.60000+ 1 1.80920- 9 1.80000+ 1 1.80220- 9 1.90000+ 1 1.98870- 9 2.10000+ 1 1.98020- 9 2.20000+ 1 2.03700- 9 2.40000+ 1 2.00460- 9 2.50000+ 1 2.03350- 9 2.70000+ 1 3.83420- 9 2.90000+ 1 4.00830- 9 3.00000+ 1 4.42920- 9 3.20000+ 1 5.06250- 9 3.30000+ 1 5.21700- 9 4.10000+ 1 8.64220- 9 4.30000+ 1 9.75820- 9 4.40000+ 1 1.10170- 8 5.80000+ 1 2.47260- 8 1 88000 0 0 2.26000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.64880- 5 3.00000+ 0 1.94310- 6 5.00000+ 0 3.41720- 6 6.00000+ 0 2.89850- 6 8.00000+ 0 8.32940- 8 1.00000+ 1 9.21360- 8 1.10000+ 1 1.01850- 7 1.30000+ 1 1.30230- 7 1.40000+ 1 1.20670- 7 1.60000+ 1 4.06450- 9 1.80000+ 1 5.39260- 9 1.90000+ 1 3.65390- 9 2.10000+ 1 2.73630- 9 2.20000+ 1 2.15030- 9 2.40000+ 1 7.29210-11 2.50000+ 1 6.66120-11 2.70000+ 1 2.57720-10 2.90000+ 1 5.34630-10 3.00000+ 1 2.75880-10 1 88000 0 0 2.26000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.52180- 6 3.00000+ 0 1.34490- 5 5.00000+ 0 4.04510- 6 6.00000+ 0 4.16080- 6 8.00000+ 0 1.86850- 5 1.00000+ 1 1.42760- 5 1.10000+ 1 1.15360- 5 1.30000+ 1 2.96650- 6 1.40000+ 1 2.95720- 6 1.60000+ 1 1.38550- 5 1.80000+ 1 1.48310- 5 1.90000+ 1 9.52290- 6 2.10000+ 1 6.66630- 6 2.20000+ 1 6.21110- 6 2.40000+ 1 1.45970- 7 2.50000+ 1 1.56210- 7 2.70000+ 1 2.23330- 5 2.90000+ 1 8.83500- 6 3.00000+ 1 2.03720- 5 1 88000 0 0 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.75446- 4 3.00000+ 0 1.11782- 3 5.00000+ 0 7.96078- 4 6.00000+ 0 7.77688- 4 8.00000+ 0 8.14907- 4 1.00000+ 1 7.19185- 4 1.10000+ 1 6.40300- 4 1.30000+ 1 4.86224- 4 1.40000+ 1 4.77824- 4 1.60000+ 1 4.28862- 4 1.80000+ 1 4.16652- 4 1.90000+ 1 3.89682- 4 2.10000+ 1 3.06872- 4 2.20000+ 1 2.97499- 4 2.40000+ 1 1.83366- 4 2.50000+ 1 1.87990- 4 2.70000+ 1 2.02066- 4 2.90000+ 1 1.49835- 4 3.00000+ 1 1.46558- 4 3.20000+ 1 8.13200- 5 3.30000+ 1 7.55200- 5 4.10000+ 1 3.95400- 5 4.30000+ 1 2.48800- 5 4.40000+ 1 1.86200- 5 5.80000+ 1 4.73000- 6 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.39411+ 0 3.00000+ 0 5.25691- 1 5.00000+ 0 5.88220- 1 6.00000+ 0 4.79031- 1 8.00000+ 0 4.79100- 2 1.00000+ 1 4.81306- 2 1.10000+ 1 4.44738- 2 1.30000+ 1 5.15802- 2 1.40000+ 1 4.75036- 2 1.60000+ 1 1.59636- 3 1.80000+ 1 1.81125- 3 1.90000+ 1 1.05901- 3 2.10000+ 1 5.81790- 4 2.20000+ 1 5.11493- 4 2.40000+ 1 4.14751- 5 2.50000+ 1 3.56515- 5 2.70000+ 1 2.41604- 5 2.90000+ 1 2.21156- 5 3.00000+ 1 4.68889- 6 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.27857- 2 3.00000+ 0 6.27564- 3 5.00000+ 0 8.32483- 3 6.00000+ 0 5.50278- 3 8.00000+ 0 1.38950- 4 1.00000+ 1 1.40411- 4 1.10000+ 1 1.26038- 4 1.30000+ 1 1.48645- 4 1.40000+ 1 1.31440- 4 1.60000+ 1 9.07222- 7 1.80000+ 1 8.75072- 7 1.90000+ 1 4.98857- 7 2.10000+ 1 2.06165- 7 2.20000+ 1 1.70031- 7 2.40000+ 1 8.31336- 9 2.50000+ 1 7.15770- 9 2.70000+ 1 2.51213- 9 2.90000+ 1 2.73024- 9 3.00000+ 1 4.40807-10 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.88767+ 0 3.00000+ 0 1.46938+ 1 5.00000+ 0 1.01739+ 1 6.00000+ 0 9.91871+ 0 8.00000+ 0 1.04570+ 1 1.00000+ 1 9.10124+ 0 1.10000+ 1 7.99980+ 0 1.30000+ 1 5.81992+ 0 1.40000+ 1 5.71176+ 0 1.60000+ 1 5.02516+ 0 1.80000+ 1 4.84214+ 0 1.90000+ 1 4.46209+ 0 2.10000+ 1 3.29769+ 0 2.20000+ 1 3.16958+ 0 2.40000+ 1 1.59429+ 0 2.50000+ 1 1.65414+ 0 2.70000+ 1 1.81860+ 0 2.90000+ 1 1.03996+ 0 3.00000+ 1 9.99995- 1 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07589- 2 3.00000+ 0 1.18385- 2 5.00000+ 0 9.43910- 3 6.00000+ 0 9.17553- 3 8.00000+ 0 3.84124- 3 1.00000+ 1 3.62240- 3 1.10000+ 1 3.00736- 3 1.30000+ 1 2.62383- 3 1.40000+ 1 2.50204- 3 1.60000+ 1 7.59931- 4 1.80000+ 1 6.31073- 4 1.90000+ 1 4.77129- 4 2.10000+ 1 3.29692- 4 2.20000+ 1 3.05391- 4 2.40000+ 1 1.16326- 4 2.50000+ 1 1.03193- 4 2.70000+ 1 5.15613- 5 2.90000+ 1 5.04823- 5 3.00000+ 1 1.32711- 5 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.86148- 1 8.57600- 2 6.00000+ 0 4.67317- 1 8.88640- 2 1.00000+ 1 5.32217- 2 9.98380- 2 1.10000+ 1 1.03579- 1 1.00546- 1 1.30000+ 1 1.69219- 3 1.01061- 1 1.40000+ 1 1.97859- 3 1.01209- 1 1.80000+ 1 1.30879- 2 1.03271- 1 1.90000+ 1 2.61248- 2 1.03453- 1 2.10000+ 1 4.79687- 4 1.03683- 1 2.20000+ 1 5.61606- 4 1.03717- 1 2.90000+ 1 3.12578- 3 1.04120- 1 3.00000+ 1 6.04326- 3 1.04160- 1 3.20000+ 1 8.71414- 5 1.04239- 1 3.30000+ 1 1.01089- 4 1.04244- 1 4.30000+ 1 4.90797- 4 1.04295- 1 4.40000+ 1 8.61444- 4 1.04301- 1 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.97507- 3 6.58560- 2 3.00000+ 0 5.00000+ 0 6.88726- 3 6.65280- 2 3.00000+ 0 6.00000+ 0 3.02821- 3 6.96320- 2 3.00000+ 0 8.00000+ 0 1.63918- 3 8.02929- 2 3.00000+ 0 1.00000+ 1 1.51030- 3 8.06060- 2 3.00000+ 0 1.10000+ 1 7.35932- 4 8.13143- 2 3.00000+ 0 1.30000+ 1 6.38188- 5 8.18293- 2 3.00000+ 0 1.40000+ 1 4.28746- 5 8.19767- 2 3.00000+ 0 1.60000+ 1 4.26393- 4 8.38983- 2 3.00000+ 0 1.80000+ 1 3.85741- 4 8.40394- 2 3.00000+ 0 1.90000+ 1 1.88945- 4 8.42207- 2 3.00000+ 0 2.10000+ 1 1.80665- 5 8.44512- 2 3.00000+ 0 2.20000+ 1 1.19681- 5 8.44849- 2 3.00000+ 0 2.40000+ 1 3.78725- 8 8.47883- 2 3.00000+ 0 2.50000+ 1 3.78725- 8 8.47968- 2 3.00000+ 0 2.70000+ 1 1.02372- 4 8.48344- 2 3.00000+ 0 2.90000+ 1 8.59736- 5 8.48877- 2 3.00000+ 0 3.00000+ 1 4.14353- 5 8.49282- 2 3.00000+ 0 3.20000+ 1 3.18137- 6 8.50067- 2 3.00000+ 0 3.30000+ 1 2.08309- 6 8.50125- 2 5.00000+ 0 5.00000+ 0 2.94714- 4 6.72000- 2 5.00000+ 0 6.00000+ 0 5.06679- 3 7.03040- 2 5.00000+ 0 8.00000+ 0 1.24776- 3 8.09649- 2 5.00000+ 0 1.00000+ 1 1.13659- 4 8.12780- 2 5.00000+ 0 1.10000+ 1 1.04024- 3 8.19863- 2 5.00000+ 0 1.30000+ 1 6.39327- 5 8.25013- 2 5.00000+ 0 1.40000+ 1 1.54047- 4 8.26487- 2 5.00000+ 0 1.60000+ 1 3.15221- 4 8.45703- 2 5.00000+ 0 1.80000+ 1 2.82166- 5 8.47114- 2 5.00000+ 0 1.90000+ 1 2.56412- 4 8.48927- 2 5.00000+ 0 2.10000+ 1 1.73479- 5 8.51232- 2 5.00000+ 0 2.20000+ 1 4.20049- 5 8.51569- 2 5.00000+ 0 2.40000+ 1 5.30233- 7 8.54603- 2 5.00000+ 0 2.50000+ 1 7.95342- 7 8.54688- 2 5.00000+ 0 2.70000+ 1 7.51435- 5 8.55064- 2 5.00000+ 0 2.90000+ 1 6.24933- 6 8.55597- 2 5.00000+ 0 3.00000+ 1 5.56766- 5 8.56002- 2 5.00000+ 0 3.20000+ 1 3.03005- 6 8.56787- 2 5.00000+ 0 3.30000+ 1 7.27221- 6 8.56845- 2 6.00000+ 0 6.00000+ 0 2.10369- 3 7.34080- 2 6.00000+ 0 8.00000+ 0 4.90948- 4 8.40689- 2 6.00000+ 0 1.00000+ 1 9.19096- 4 8.43820- 2 6.00000+ 0 1.10000+ 1 8.91474- 4 8.50903- 2 6.00000+ 0 1.30000+ 1 1.67715- 4 8.56053- 2 6.00000+ 0 1.40000+ 1 1.35551- 4 8.57527- 2 6.00000+ 0 1.60000+ 1 1.20706- 4 8.76743- 2 6.00000+ 0 1.80000+ 1 2.24708- 4 8.78154- 2 6.00000+ 0 1.90000+ 1 2.21673- 4 8.79967- 2 6.00000+ 0 2.10000+ 1 4.60939- 5 8.82272- 2 6.00000+ 0 2.20000+ 1 3.71540- 5 8.82609- 2 6.00000+ 0 2.40000+ 1 8.33249- 7 8.85643- 2 6.00000+ 0 2.50000+ 1 9.08991- 7 8.85728- 2 6.00000+ 0 2.70000+ 1 2.85572- 5 8.86104- 2 6.00000+ 0 2.90000+ 1 4.95402- 5 8.86637- 2 6.00000+ 0 3.00000+ 1 4.82139- 5 8.87042- 2 6.00000+ 0 3.20000+ 1 8.06715- 6 8.87827- 2 6.00000+ 0 3.30000+ 1 6.43839- 6 8.87885- 2 8.00000+ 0 8.00000+ 0 1.67064- 4 9.47298- 2 8.00000+ 0 1.00000+ 1 2.75342- 4 9.50429- 2 8.00000+ 0 1.10000+ 1 1.20749- 4 9.57512- 2 8.00000+ 0 1.30000+ 1 1.01881- 5 9.62662- 2 8.00000+ 0 1.40000+ 1 6.40084- 6 9.64136- 2 8.00000+ 0 1.60000+ 1 8.67704- 5 9.83352- 2 8.00000+ 0 1.80000+ 1 7.04457- 5 9.84763- 2 8.00000+ 0 1.90000+ 1 3.10949- 5 9.86576- 2 8.00000+ 0 2.10000+ 1 2.87845- 6 9.88881- 2 8.00000+ 0 2.20000+ 1 1.78005- 6 9.89218- 2 8.00000+ 0 2.70000+ 1 2.08311- 5 9.92713- 2 8.00000+ 0 2.90000+ 1 1.57168- 5 9.93246- 2 8.00000+ 0 3.00000+ 1 6.81717- 6 9.93651- 2 8.00000+ 0 3.20000+ 1 4.92352- 7 9.94436- 2 8.00000+ 0 3.30000+ 1 3.02999- 7 9.94494- 2 1.00000+ 1 1.00000+ 1 1.05668- 5 9.53560- 2 1.00000+ 1 1.10000+ 1 1.94818- 4 9.60643- 2 1.00000+ 1 1.30000+ 1 1.04531- 5 9.65793- 2 1.00000+ 1 1.40000+ 1 2.08684- 5 9.67267- 2 1.00000+ 1 1.60000+ 1 6.96100- 5 9.86483- 2 1.00000+ 1 1.80000+ 1 5.18886- 6 9.87894- 2 1.00000+ 1 1.90000+ 1 4.83643- 5 9.89707- 2 1.00000+ 1 2.10000+ 1 2.87845- 6 9.92012- 2 1.00000+ 1 2.20000+ 1 5.75681- 6 9.92349- 2 1.00000+ 1 2.40000+ 1 7.57458- 8 9.95383- 2 1.00000+ 1 2.50000+ 1 7.57458- 8 9.95468- 2 1.00000+ 1 2.70000+ 1 1.65887- 5 9.95844- 2 1.00000+ 1 2.90000+ 1 1.13624- 6 9.96377- 2 1.00000+ 1 3.00000+ 1 1.05289- 5 9.96782- 2 1.00000+ 1 3.20000+ 1 4.92352- 7 9.97567- 2 1.00000+ 1 3.30000+ 1 9.84736- 7 9.97625- 2 1.10000+ 1 1.10000+ 1 9.55555- 5 9.67726- 2 1.10000+ 1 1.30000+ 1 2.87843- 5 9.72876- 2 1.10000+ 1 1.40000+ 1 2.23846- 5 9.74350- 2 1.10000+ 1 1.60000+ 1 2.97695- 5 9.93566- 2 1.10000+ 1 1.80000+ 1 4.79492- 5 9.94977- 2 1.10000+ 1 1.90000+ 1 4.76446- 5 9.96790- 2 1.10000+ 1 2.10000+ 1 7.99147- 6 9.99095- 2 1.10000+ 1 2.20000+ 1 6.17338- 6 9.99432- 2 1.10000+ 1 2.40000+ 1 1.13623- 7 1.00247- 1 1.10000+ 1 2.50000+ 1 1.13623- 7 1.00255- 1 1.10000+ 1 2.70000+ 1 7.04450- 6 1.00293- 1 1.10000+ 1 2.90000+ 1 1.06047- 5 1.00346- 1 1.10000+ 1 3.00000+ 1 1.03772- 5 1.00386- 1 1.10000+ 1 3.20000+ 1 1.40133- 6 1.00465- 1 1.10000+ 1 3.30000+ 1 1.06047- 6 1.00471- 1 1.30000+ 1 1.30000+ 1 7.57452- 8 9.78026- 2 1.30000+ 1 1.40000+ 1 3.21920- 6 9.79500- 2 1.30000+ 1 1.60000+ 1 2.49962- 6 9.98716- 2 1.30000+ 1 1.80000+ 1 2.53745- 6 1.00013- 1 1.30000+ 1 1.90000+ 1 6.81711- 6 1.00194- 1 1.30000+ 1 2.10000+ 1 3.78725- 8 1.00425- 1 1.30000+ 1 2.20000+ 1 8.33236- 7 1.00458- 1 1.30000+ 1 2.70000+ 1 6.05959- 7 1.00808- 1 1.30000+ 1 2.90000+ 1 5.68088- 7 1.00861- 1 1.30000+ 1 3.00000+ 1 1.47710- 6 1.00901- 1 1.30000+ 1 3.30000+ 1 1.51492- 7 1.00986- 1 1.40000+ 1 1.40000+ 1 7.57466- 7 9.80974- 2 1.40000+ 1 1.60000+ 1 1.55278- 6 1.00019- 1 1.40000+ 1 1.80000+ 1 4.77226- 6 1.00160- 1 1.40000+ 1 1.90000+ 1 5.26468- 6 1.00341- 1 1.40000+ 1 2.10000+ 1 8.33252- 7 1.00572- 1 1.40000+ 1 2.20000+ 1 4.16604- 7 1.00606- 1 1.40000+ 1 2.70000+ 1 3.78733- 7 1.00955- 1 1.40000+ 1 2.90000+ 1 1.02262- 6 1.01008- 1 1.40000+ 1 3.00000+ 1 1.13625- 6 1.01049- 1 1.40000+ 1 3.20000+ 1 1.51495- 7 1.01127- 1 1.40000+ 1 3.30000+ 1 7.57466- 8 1.01133- 1 1.60000+ 1 1.60000+ 1 1.12491- 5 1.01941- 1 1.60000+ 1 1.80000+ 1 1.78005- 5 1.02082- 1 1.60000+ 1 1.90000+ 1 7.68827- 6 1.02263- 1 1.60000+ 1 2.10000+ 1 7.19587- 7 1.02494- 1 1.60000+ 1 2.20000+ 1 4.16599- 7 1.02527- 1 1.60000+ 1 2.70000+ 1 5.41592- 6 1.02877- 1 1.60000+ 1 2.90000+ 1 3.97686- 6 1.02930- 1 1.60000+ 1 3.00000+ 1 1.66646- 6 1.02970- 1 1.60000+ 1 3.20000+ 1 1.13624- 7 1.03049- 1 1.60000+ 1 3.30000+ 1 7.57457- 8 1.03055- 1 1.80000+ 1 1.80000+ 1 6.43823- 7 1.02223- 1 1.80000+ 1 1.90000+ 1 1.19307- 5 1.02404- 1 1.80000+ 1 2.10000+ 1 6.81704- 7 1.02635- 1 1.80000+ 1 2.20000+ 1 1.32556- 6 1.02668- 1 1.80000+ 1 2.70000+ 1 4.24178- 6 1.03018- 1 1.80000+ 1 2.90000+ 1 2.65101- 7 1.03071- 1 1.80000+ 1 3.00000+ 1 2.57535- 6 1.03112- 1 1.80000+ 1 3.20000+ 1 1.13622- 7 1.03190- 1 1.80000+ 1 3.30000+ 1 2.27231- 7 1.03196- 1 1.90000+ 1 1.90000+ 1 5.89439- 6 1.02585- 1 1.90000+ 1 2.10000+ 1 1.87712- 6 1.02816- 1 1.90000+ 1 2.20000+ 1 1.42662- 6 1.02850- 1 1.90000+ 1 2.40000+ 1 3.75424- 8 1.03153- 1 1.90000+ 1 2.50000+ 1 3.75424- 8 1.03161- 1 1.90000+ 1 2.70000+ 1 1.80213- 6 1.03199- 1 1.90000+ 1 2.90000+ 1 2.62793- 6 1.03252- 1 1.90000+ 1 3.00000+ 1 2.55293- 6 1.03293- 1 1.90000+ 1 3.20000+ 1 3.37895- 7 1.03371- 1 1.90000+ 1 3.30000+ 1 2.62793- 7 1.03377- 1 2.10000+ 1 2.20000+ 1 2.31204- 7 1.03080- 1 2.10000+ 1 2.70000+ 1 1.54140- 7 1.03430- 1 2.10000+ 1 2.90000+ 1 1.54140- 7 1.03483- 1 2.10000+ 1 3.00000+ 1 4.23876- 7 1.03523- 1 2.10000+ 1 3.30000+ 1 3.85344- 8 1.03608- 1 2.20000+ 1 2.20000+ 1 3.95869- 8 1.03114- 1 2.20000+ 1 2.70000+ 1 1.18766- 7 1.03463- 1 2.20000+ 1 2.90000+ 1 3.16712- 7 1.03517- 1 2.20000+ 1 3.00000+ 1 3.16712- 7 1.03557- 1 2.20000+ 1 3.20000+ 1 3.95869- 8 1.03636- 1 2.70000+ 1 2.70000+ 1 6.36759- 7 1.03813- 1 2.70000+ 1 2.90000+ 1 9.36450- 7 1.03866- 1 2.70000+ 1 3.00000+ 1 4.12021- 7 1.03907- 1 2.70000+ 1 3.20000+ 1 3.74567- 8 1.03985- 1 2.90000+ 1 2.90000+ 1 3.95370- 8 1.03919- 1 2.90000+ 1 3.00000+ 1 5.93054- 7 1.03960- 1 2.90000+ 1 3.20000+ 1 3.95370- 8 1.04038- 1 2.90000+ 1 3.30000+ 1 3.95370- 8 1.04044- 1 3.00000+ 1 3.00000+ 1 2.86906- 7 1.04000- 1 3.00000+ 1 3.20000+ 1 8.19745- 8 1.04079- 1 3.00000+ 1 3.30000+ 1 4.09872- 8 1.04085- 1 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.21330- 5 6.72000- 4 6.00000+ 0 5.46801- 3 3.77600- 3 1.00000+ 1 4.33931- 2 1.47500- 2 1.10000+ 1 4.16861- 2 1.54583- 2 1.30000+ 1 1.82200- 3 1.59733- 2 1.40000+ 1 2.72070- 3 1.61207- 2 1.80000+ 1 1.15170- 2 1.81834- 2 1.90000+ 1 1.24070- 2 1.83647- 2 2.10000+ 1 2.97901- 4 1.85952- 2 2.20000+ 1 4.75401- 4 1.86289- 2 2.90000+ 1 2.60990- 3 1.90317- 2 3.00000+ 1 2.82751- 3 1.90722- 2 3.20000+ 1 4.80531- 5 1.91507- 2 3.30000+ 1 7.72071- 5 1.91565- 2 4.30000+ 1 4.45681- 4 1.92071- 2 4.40000+ 1 4.33091- 4 1.92134- 2 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.45507- 3 3.52300- 5 5.00000+ 0 2.20000+ 1 5.63654- 3 6.89400- 5 5.00000+ 0 2.40000+ 1 1.31357- 2 3.72300- 4 5.00000+ 0 2.50000+ 1 1.75635- 2 3.80810- 4 5.00000+ 0 2.70000+ 1 4.75676- 3 4.18370- 4 5.00000+ 0 2.90000+ 1 3.68790- 3 4.71680- 4 5.00000+ 0 3.00000+ 1 3.12590- 3 5.12170- 4 5.00000+ 0 3.20000+ 1 7.77998- 4 5.90680- 4 5.00000+ 0 3.30000+ 1 1.00877- 3 5.96480- 4 6.00000+ 0 1.10000+ 1 3.88805- 2 2.30000- 6 6.00000+ 0 1.30000+ 1 2.12282- 1 5.17300- 4 6.00000+ 0 1.40000+ 1 2.62359- 1 6.64700- 4 6.00000+ 0 1.60000+ 1 1.71143- 2 2.58630- 3 6.00000+ 0 1.80000+ 1 6.69743- 3 2.72740- 3 6.00000+ 0 1.90000+ 1 9.67041- 3 2.90869- 3 6.00000+ 0 2.10000+ 1 3.10667- 2 3.13923- 3 6.00000+ 0 2.20000+ 1 3.62636- 2 3.17294- 3 6.00000+ 0 2.40000+ 1 2.01532- 2 3.47630- 3 6.00000+ 0 2.50000+ 1 2.48370- 2 3.48481- 3 6.00000+ 0 2.70000+ 1 3.89015- 3 3.52237- 3 6.00000+ 0 2.90000+ 1 1.46765- 3 3.57568- 3 6.00000+ 0 3.00000+ 1 2.10452- 3 3.61617- 3 6.00000+ 0 3.20000+ 1 4.96650- 3 3.69468- 3 6.00000+ 0 3.30000+ 1 5.66818- 3 3.70048- 3 8.00000+ 0 8.00000+ 0 5.20524- 3 9.64180- 3 8.00000+ 0 1.00000+ 1 1.08297- 2 9.95490- 3 8.00000+ 0 1.10000+ 1 1.59786- 2 1.06632- 2 8.00000+ 0 1.30000+ 1 1.14857- 2 1.11782- 2 8.00000+ 0 1.40000+ 1 1.42236- 2 1.13256- 2 8.00000+ 0 1.60000+ 1 2.30083- 3 1.32472- 2 8.00000+ 0 1.80000+ 1 2.73222- 3 1.33883- 2 8.00000+ 0 1.90000+ 1 3.99728- 3 1.35696- 2 8.00000+ 0 2.10000+ 1 2.68822- 3 1.38001- 2 8.00000+ 0 2.20000+ 1 3.31041- 3 1.38338- 2 8.00000+ 0 2.40000+ 1 2.42553- 4 1.41372- 2 8.00000+ 0 2.50000+ 1 2.57392- 4 1.41457- 2 8.00000+ 0 2.70000+ 1 5.36894- 4 1.41833- 2 8.00000+ 0 2.90000+ 1 6.06193- 4 1.42366- 2 8.00000+ 0 3.00000+ 1 8.70125- 4 1.42771- 2 8.00000+ 0 3.20000+ 1 4.57167- 4 1.43556- 2 8.00000+ 0 3.30000+ 1 5.55984- 4 1.43614- 2 1.00000+ 1 1.00000+ 1 1.53796- 5 1.02680- 2 1.00000+ 1 1.10000+ 1 2.01004- 4 1.09763- 2 1.00000+ 1 1.30000+ 1 6.94579- 4 1.14913- 2 1.00000+ 1 1.40000+ 1 5.14354- 3 1.16387- 2 1.00000+ 1 1.60000+ 1 1.89224- 3 1.35603- 2 1.00000+ 1 1.80000+ 1 1.94454- 6 1.37014- 2 1.00000+ 1 1.90000+ 1 4.10138- 5 1.38827- 2 1.00000+ 1 2.10000+ 1 1.38066- 4 1.41132- 2 1.00000+ 1 2.20000+ 1 7.69347- 4 1.41469- 2 1.00000+ 1 2.40000+ 1 9.03353- 5 1.44503- 2 1.00000+ 1 2.50000+ 1 3.13080- 4 1.44588- 2 1.00000+ 1 2.70000+ 1 4.14908- 4 1.44964- 2 1.00000+ 1 2.90000+ 1 3.53570- 7 1.45497- 2 1.00000+ 1 3.00000+ 1 8.48545- 6 1.45902- 2 1.00000+ 1 3.20000+ 1 2.31583- 5 1.46687- 2 1.00000+ 1 3.30000+ 1 1.18977- 4 1.46745- 2 1.10000+ 1 1.10000+ 1 6.27748- 4 1.16846- 2 1.10000+ 1 1.30000+ 1 1.51165- 3 1.21996- 2 1.10000+ 1 1.40000+ 1 9.21347- 4 1.23470- 2 1.10000+ 1 1.60000+ 1 2.72420- 3 1.42686- 2 1.10000+ 1 1.80000+ 1 5.12672- 5 1.44097- 2 1.10000+ 1 1.90000+ 1 2.41841- 4 1.45910- 2 1.10000+ 1 2.10000+ 1 1.50435- 4 1.48215- 2 1.10000+ 1 2.20000+ 1 6.80606- 5 1.48552- 2 1.10000+ 1 2.40000+ 1 1.20916- 4 1.51586- 2 1.10000+ 1 2.50000+ 1 1.02886- 4 1.51671- 2 1.10000+ 1 2.70000+ 1 5.93989- 4 1.52047- 2 1.10000+ 1 2.90000+ 1 1.13136- 5 1.52580- 2 1.10000+ 1 3.00000+ 1 4.98522- 5 1.52985- 2 1.10000+ 1 3.20000+ 1 2.15672- 5 1.53770- 2 1.10000+ 1 3.30000+ 1 8.83869- 6 1.53828- 2 1.30000+ 1 1.30000+ 1 6.62028- 4 1.27146- 2 1.30000+ 1 1.40000+ 1 1.87717- 2 1.28620- 2 1.30000+ 1 1.60000+ 1 1.77017- 3 1.47836- 2 1.30000+ 1 1.80000+ 1 2.07366- 4 1.49247- 2 1.30000+ 1 1.90000+ 1 4.18092- 4 1.51060- 2 1.30000+ 1 2.10000+ 1 3.01594- 4 1.53365- 2 1.30000+ 1 2.20000+ 1 3.04644- 3 1.53702- 2 1.30000+ 1 2.40000+ 1 2.46615- 4 1.56736- 2 1.30000+ 1 2.50000+ 1 6.73208- 4 1.56821- 2 1.30000+ 1 2.70000+ 1 3.77433- 4 1.57197- 2 1.30000+ 1 2.90000+ 1 4.77321- 5 1.57730- 2 1.30000+ 1 3.00000+ 1 9.31673- 5 1.58135- 2 1.30000+ 1 3.20000+ 1 5.10910- 5 1.58920- 2 1.30000+ 1 3.30000+ 1 4.76441- 4 1.58978- 2 1.40000+ 1 1.40000+ 1 5.14100- 3 1.30094- 2 1.40000+ 1 1.60000+ 1 2.22607- 3 1.49310- 2 1.40000+ 1 1.80000+ 1 1.14444- 3 1.50721- 2 1.40000+ 1 1.90000+ 1 2.51905- 4 1.52534- 2 1.40000+ 1 2.10000+ 1 2.92673- 3 1.54839- 2 1.40000+ 1 2.20000+ 1 1.76110- 3 1.55176- 2 1.40000+ 1 2.40000+ 1 7.39317- 4 1.58210- 2 1.40000+ 1 2.50000+ 1 5.51728- 4 1.58295- 2 1.40000+ 1 2.70000+ 1 4.77652- 4 1.58671- 2 1.40000+ 1 2.90000+ 1 2.47485- 4 1.59204- 2 1.40000+ 1 3.00000+ 1 5.63918- 5 1.59609- 2 1.40000+ 1 3.20000+ 1 4.59263- 4 1.60394- 2 1.40000+ 1 3.30000+ 1 2.78954- 4 1.60452- 2 1.60000+ 1 1.60000+ 1 2.40076- 4 1.68526- 2 1.60000+ 1 1.80000+ 1 4.78731- 4 1.69937- 2 1.60000+ 1 1.90000+ 1 6.85227- 4 1.71750- 2 1.60000+ 1 2.10000+ 1 4.17043- 4 1.74055- 2 1.60000+ 1 2.20000+ 1 5.17620- 4 1.74392- 2 1.60000+ 1 2.40000+ 1 3.12904- 5 1.77426- 2 1.60000+ 1 2.50000+ 1 3.16444- 5 1.77511- 2 1.60000+ 1 2.70000+ 1 1.10668- 4 1.77887- 2 1.60000+ 1 2.90000+ 1 1.06248- 4 1.78420- 2 1.60000+ 1 3.00000+ 1 1.49208- 4 1.78825- 2 1.60000+ 1 3.20000+ 1 7.10697- 5 1.79610- 2 1.60000+ 1 3.30000+ 1 8.69804- 5 1.79668- 2 1.80000+ 1 1.90000+ 1 1.04295- 5 1.73161- 2 1.80000+ 1 2.10000+ 1 3.71234- 5 1.75466- 2 1.80000+ 1 2.20000+ 1 1.78372- 4 1.75803- 2 1.80000+ 1 2.40000+ 1 1.29045- 5 1.78837- 2 1.80000+ 1 2.50000+ 1 5.05597- 5 1.78922- 2 1.80000+ 1 2.70000+ 1 1.05005- 4 1.79298- 2 1.80000+ 1 3.00000+ 1 2.12141- 6 1.80236- 2 1.80000+ 1 3.20000+ 1 6.01053- 6 1.81021- 2 1.80000+ 1 3.30000+ 1 2.77547- 5 1.81079- 2 1.90000+ 1 1.90000+ 1 2.24516- 5 1.74974- 2 1.90000+ 1 2.10000+ 1 4.47262- 5 1.77279- 2 1.90000+ 1 2.20000+ 1 2.24516- 5 1.77616- 2 1.90000+ 1 2.40000+ 1 2.70475- 5 1.80650- 2 1.90000+ 1 2.50000+ 1 2.24516- 5 1.80735- 2 1.90000+ 1 2.70000+ 1 1.49388- 4 1.81111- 2 1.90000+ 1 2.90000+ 1 2.29826- 6 1.81644- 2 1.90000+ 1 3.00000+ 1 9.19274- 6 1.82049- 2 1.90000+ 1 3.20000+ 1 6.54109- 6 1.82834- 2 1.90000+ 1 3.30000+ 1 3.18214- 6 1.82892- 2 2.10000+ 1 2.10000+ 1 3.16438- 5 1.79585- 2 2.10000+ 1 2.20000+ 1 5.20451- 4 1.79922- 2 2.10000+ 1 2.40000+ 1 3.88926- 5 1.82955- 2 2.10000+ 1 2.50000+ 1 8.00792- 5 1.83040- 2 2.10000+ 1 2.70000+ 1 8.89198- 5 1.83416- 2 2.10000+ 1 2.90000+ 1 8.30871- 6 1.83949- 2 2.10000+ 1 3.00000+ 1 1.02536- 5 1.84354- 2 2.10000+ 1 3.20000+ 1 1.06066- 5 1.85139- 2 2.10000+ 1 3.30000+ 1 8.27361- 5 1.85197- 2 2.20000+ 1 2.20000+ 1 1.61923- 4 1.80259- 2 2.20000+ 1 2.40000+ 1 9.38729- 5 1.83292- 2 2.20000+ 1 2.50000+ 1 7.76036- 5 1.83377- 2 2.20000+ 1 2.70000+ 1 1.11016- 4 1.83753- 2 2.20000+ 1 2.90000+ 1 3.88923- 5 1.84286- 2 2.20000+ 1 3.00000+ 1 5.30346- 6 1.84691- 2 2.20000+ 1 3.20000+ 1 8.30864- 5 1.85476- 2 2.20000+ 1 3.30000+ 1 5.19737- 5 1.85534- 2 2.40000+ 1 2.40000+ 1 1.09757- 6 1.86326- 2 2.40000+ 1 2.50000+ 1 2.10378- 5 1.86411- 2 2.40000+ 1 2.70000+ 1 6.58564- 6 1.86787- 2 2.40000+ 1 2.90000+ 1 2.56104- 6 1.87320- 2 2.40000+ 1 3.00000+ 1 5.85386- 6 1.87725- 2 2.40000+ 1 3.20000+ 1 6.40270- 6 1.88510- 2 2.40000+ 1 3.30000+ 1 1.44515- 5 1.88568- 2 2.50000+ 1 2.50000+ 1 4.67139- 6 1.86496- 2 2.50000+ 1 2.70000+ 1 7.00715- 6 1.86872- 2 2.50000+ 1 2.90000+ 1 1.10946- 5 1.87405- 2 2.50000+ 1 3.00000+ 1 5.25536- 6 1.87810- 2 2.50000+ 1 3.20000+ 1 1.30413- 5 1.88595- 2 2.50000+ 1 3.30000+ 1 1.30413- 5 1.88653- 2 2.70000+ 1 2.70000+ 1 1.57498- 5 1.87247- 2 2.70000+ 1 2.90000+ 1 2.88739- 5 1.87780- 2 2.70000+ 1 3.00000+ 1 4.02486- 5 1.88185- 2 2.70000+ 1 3.20000+ 1 1.88109- 5 1.88970- 2 2.70000+ 1 3.30000+ 1 2.29670- 5 1.89028- 2 2.90000+ 1 3.00000+ 1 6.97332- 7 1.88718- 2 2.90000+ 1 3.20000+ 1 1.85966- 6 1.89504- 2 2.90000+ 1 3.30000+ 1 7.90302- 6 1.89562- 2 3.00000+ 1 3.00000+ 1 1.43256- 6 1.89123- 2 3.00000+ 1 3.20000+ 1 2.29236- 6 1.89908- 2 3.00000+ 1 3.30000+ 1 1.14608- 6 1.89966- 2 3.20000+ 1 3.20000+ 1 9.20217- 7 1.90694- 2 3.20000+ 1 3.30000+ 1 1.38038- 5 1.90752- 2 3.30000+ 1 3.30000+ 1 4.13551- 6 1.90810- 2 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.35220- 5 3.10400- 3 8.00000+ 0 9.93459- 3 1.37649- 2 1.10000+ 1 4.69690- 4 1.47863- 2 1.30000+ 1 3.58640- 1 1.53013- 2 1.60000+ 1 2.64580- 3 1.73703- 2 1.90000+ 1 1.37290- 4 1.76927- 2 2.10000+ 1 7.81020- 2 1.79232- 2 2.40000+ 1 4.23800- 4 1.82603- 2 2.70000+ 1 6.42440- 4 1.83064- 2 3.00000+ 1 3.11920- 5 1.84002- 2 3.20000+ 1 1.34790- 2 1.84787- 2 4.10000+ 1 1.22350- 4 1.85205- 2 4.40000+ 1 4.68570- 6 1.85414- 2 5.80000+ 1 6.08220- 6 1.85553- 2 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.40000+ 1 4.93225- 2 0.00000+ 0 6.00000+ 0 1.60000+ 1 3.99994- 3 1.91430- 3 6.00000+ 0 1.80000+ 1 3.13133- 2 2.05540- 3 6.00000+ 0 1.90000+ 1 7.87829- 3 2.23669- 3 6.00000+ 0 2.10000+ 1 2.91099- 2 2.46723- 3 6.00000+ 0 2.20000+ 1 9.89194- 3 2.50094- 3 6.00000+ 0 2.40000+ 1 1.36202- 3 2.80430- 3 6.00000+ 0 2.50000+ 1 1.98895- 3 2.81281- 3 6.00000+ 0 2.70000+ 1 8.81621- 4 2.85037- 3 6.00000+ 0 2.90000+ 1 6.34453- 3 2.90368- 3 6.00000+ 0 3.00000+ 1 1.66808- 3 2.94417- 3 6.00000+ 0 3.20000+ 1 4.74548- 3 3.02268- 3 6.00000+ 0 3.30000+ 1 1.61337- 3 3.02848- 3 8.00000+ 0 8.00000+ 0 4.46899- 4 8.96980- 3 8.00000+ 0 1.00000+ 1 1.74092- 2 9.28290- 3 8.00000+ 0 1.10000+ 1 1.57164- 3 9.99120- 3 8.00000+ 0 1.30000+ 1 3.07898- 3 1.05062- 2 8.00000+ 0 1.40000+ 1 1.32089- 3 1.06536- 2 8.00000+ 0 1.60000+ 1 1.77183- 4 1.25752- 2 8.00000+ 0 1.80000+ 1 2.89775- 3 1.27163- 2 8.00000+ 0 1.90000+ 1 3.53277- 4 1.28976- 2 8.00000+ 0 2.10000+ 1 5.11004- 4 1.31281- 2 8.00000+ 0 2.20000+ 1 1.86901- 4 1.31618- 2 8.00000+ 0 2.40000+ 1 7.63448- 5 1.34652- 2 8.00000+ 0 2.50000+ 1 5.47387- 5 1.34737- 2 8.00000+ 0 2.70000+ 1 4.03328- 5 1.35113- 2 8.00000+ 0 2.90000+ 1 5.88065- 4 1.35646- 2 8.00000+ 0 3.00000+ 1 7.52635- 5 1.36051- 2 8.00000+ 0 3.20000+ 1 8.17460- 5 1.36836- 2 8.00000+ 0 3.30000+ 1 2.88096- 5 1.36894- 2 1.00000+ 1 1.00000+ 1 1.84694- 2 9.59600- 3 1.00000+ 1 1.10000+ 1 4.37142- 2 1.03043- 2 1.00000+ 1 1.30000+ 1 2.22743- 2 1.08193- 2 1.00000+ 1 1.40000+ 1 2.97027- 2 1.09667- 2 1.00000+ 1 1.60000+ 1 4.63311- 3 1.28883- 2 1.00000+ 1 1.80000+ 1 7.83605- 3 1.30294- 2 1.00000+ 1 1.90000+ 1 1.07387- 2 1.32107- 2 1.00000+ 1 2.10000+ 1 5.20135- 3 1.34412- 2 1.00000+ 1 2.20000+ 1 6.94153- 3 1.34749- 2 1.00000+ 1 2.40000+ 1 4.17360- 4 1.37783- 2 1.00000+ 1 2.50000+ 1 3.47145- 4 1.37868- 2 1.00000+ 1 2.70000+ 1 1.11673- 3 1.38244- 2 1.00000+ 1 2.90000+ 1 1.68566- 3 1.38777- 2 1.00000+ 1 3.00000+ 1 2.32915- 3 1.39182- 2 1.00000+ 1 3.20000+ 1 8.85153- 4 1.39967- 2 1.00000+ 1 3.30000+ 1 1.16749- 3 1.40025- 2 1.10000+ 1 1.10000+ 1 9.36682- 4 1.10126- 2 1.10000+ 1 1.30000+ 1 1.82625- 2 1.15276- 2 1.10000+ 1 1.40000+ 1 2.74725- 3 1.16750- 2 1.10000+ 1 1.60000+ 1 3.48953- 4 1.35966- 2 1.10000+ 1 1.80000+ 1 7.36195- 3 1.37377- 2 1.10000+ 1 1.90000+ 1 3.96851- 4 1.39190- 2 1.10000+ 1 2.10000+ 1 3.61989- 3 1.41495- 2 1.10000+ 1 2.20000+ 1 5.27578- 4 1.41832- 2 1.10000+ 1 2.40000+ 1 1.49086- 4 1.44866- 2 1.10000+ 1 2.50000+ 1 7.59857- 5 1.44951- 2 1.10000+ 1 2.70000+ 1 8.06649- 5 1.45327- 2 1.10000+ 1 2.90000+ 1 1.49629- 3 1.45860- 2 1.10000+ 1 3.00000+ 1 8.31861- 5 1.46265- 2 1.10000+ 1 3.20000+ 1 5.96372- 4 1.47050- 2 1.10000+ 1 3.30000+ 1 8.57073- 5 1.47108- 2 1.30000+ 1 1.30000+ 1 1.73358- 2 1.20426- 2 1.30000+ 1 1.40000+ 1 6.74569- 2 1.21900- 2 1.30000+ 1 1.60000+ 1 8.19642- 4 1.41116- 2 1.30000+ 1 1.80000+ 1 3.60976- 3 1.42527- 2 1.30000+ 1 1.90000+ 1 4.13406- 3 1.44340- 2 1.30000+ 1 2.10000+ 1 6.71142- 3 1.46645- 2 1.30000+ 1 2.20000+ 1 1.41094- 2 1.46982- 2 1.30000+ 1 2.40000+ 1 1.37993- 3 1.50016- 2 1.30000+ 1 2.50000+ 1 2.75986- 3 1.50101- 2 1.30000+ 1 2.70000+ 1 1.98057- 4 1.50477- 2 1.30000+ 1 2.90000+ 1 7.34257- 4 1.51010- 2 1.30000+ 1 3.00000+ 1 8.80830- 4 1.51415- 2 1.30000+ 1 3.20000+ 1 1.10667- 3 1.52200- 2 1.30000+ 1 3.30000+ 1 2.32335- 3 1.52258- 2 1.40000+ 1 1.40000+ 1 3.28898- 3 1.23374- 2 1.40000+ 1 1.60000+ 1 2.83046- 4 1.42590- 2 1.40000+ 1 1.80000+ 1 4.23242- 3 1.44001- 2 1.40000+ 1 1.90000+ 1 5.73657- 4 1.45814- 2 1.40000+ 1 2.10000+ 1 1.07171- 2 1.48119- 2 1.40000+ 1 2.20000+ 1 1.25352- 3 1.48456- 2 1.40000+ 1 2.40000+ 1 5.50588- 4 1.51490- 2 1.40000+ 1 2.50000+ 1 2.09591- 4 1.51575- 2 1.40000+ 1 2.70000+ 1 6.51814- 5 1.51951- 2 1.40000+ 1 2.90000+ 1 8.28260- 4 1.52484- 2 1.40000+ 1 3.00000+ 1 1.19920- 4 1.52889- 2 1.40000+ 1 3.20000+ 1 1.69289- 3 1.53674- 2 1.40000+ 1 3.30000+ 1 2.03823- 4 1.53732- 2 1.60000+ 1 1.60000+ 1 1.69255- 5 1.61806- 2 1.60000+ 1 1.80000+ 1 7.75341- 4 1.63217- 2 1.60000+ 1 1.90000+ 1 7.88674- 5 1.65030- 2 1.60000+ 1 2.10000+ 1 1.32891- 4 1.67335- 2 1.60000+ 1 2.20000+ 1 3.96144- 5 1.67672- 2 1.60000+ 1 2.40000+ 1 1.76454- 5 1.70706- 2 1.60000+ 1 2.50000+ 1 1.00833- 5 1.70791- 2 1.60000+ 1 2.70000+ 1 7.56231- 6 1.71167- 2 1.60000+ 1 2.90000+ 1 1.57374- 4 1.71700- 2 1.60000+ 1 3.00000+ 1 1.69255- 5 1.72105- 2 1.60000+ 1 3.20000+ 1 2.12472- 5 1.72890- 2 1.60000+ 1 3.30000+ 1 6.12220- 6 1.72948- 2 1.80000+ 1 1.80000+ 1 7.89733- 4 1.64628- 2 1.80000+ 1 1.90000+ 1 1.81352- 3 1.66441- 2 1.80000+ 1 2.10000+ 1 8.31172- 4 1.68746- 2 1.80000+ 1 2.20000+ 1 1.00003- 3 1.69083- 2 1.80000+ 1 2.40000+ 1 5.58204- 5 1.72117- 2 1.80000+ 1 2.50000+ 1 3.60123- 5 1.72202- 2 1.80000+ 1 2.70000+ 1 1.86902- 4 1.72578- 2 1.80000+ 1 2.90000+ 1 3.35996- 4 1.73111- 2 1.80000+ 1 3.00000+ 1 3.93602- 4 1.73516- 2 1.80000+ 1 3.20000+ 1 1.41166- 4 1.74301- 2 1.80000+ 1 3.30000+ 1 1.68543- 4 1.74359- 2 1.90000+ 1 1.90000+ 1 4.21343- 5 1.68254- 2 1.90000+ 1 2.10000+ 1 8.25384- 4 1.70559- 2 1.90000+ 1 2.20000+ 1 1.11636- 4 1.70896- 2 1.90000+ 1 2.40000+ 1 2.98903- 5 1.73930- 2 1.90000+ 1 2.50000+ 1 1.40445- 5 1.74015- 2 1.90000+ 1 2.70000+ 1 1.83653- 5 1.74391- 2 1.90000+ 1 2.90000+ 1 3.68764- 4 1.74924- 2 1.90000+ 1 3.00000+ 1 1.76453- 5 1.75329- 2 1.90000+ 1 3.20000+ 1 1.36129- 4 1.76114- 2 1.90000+ 1 3.30000+ 1 1.80058- 5 1.76172- 2 2.10000+ 1 2.10000+ 1 6.44981- 4 1.72865- 2 2.10000+ 1 2.20000+ 1 2.33643- 3 1.73202- 2 2.10000+ 1 2.40000+ 1 1.83652- 4 1.76235- 2 2.10000+ 1 2.50000+ 1 3.69119- 4 1.76320- 2 2.10000+ 1 2.70000+ 1 3.20509- 5 1.76696- 2 2.10000+ 1 2.90000+ 1 1.68176- 4 1.77229- 2 2.10000+ 1 3.00000+ 1 1.76097- 4 1.77634- 2 2.10000+ 1 3.20000+ 1 2.12103- 4 1.78419- 2 2.10000+ 1 3.30000+ 1 3.87488- 4 1.78477- 2 2.20000+ 1 2.20000+ 1 1.20642- 4 1.73539- 2 2.20000+ 1 2.40000+ 1 7.99475- 5 1.76572- 2 2.20000+ 1 2.50000+ 1 3.09695- 5 1.76657- 2 2.20000+ 1 2.70000+ 1 9.00274- 6 1.77033- 2 2.20000+ 1 2.90000+ 1 1.96261- 4 1.77566- 2 2.20000+ 1 3.00000+ 1 2.34076- 5 1.77971- 2 2.20000+ 1 3.20000+ 1 3.71635- 4 1.78756- 2 2.20000+ 1 3.30000+ 1 3.92532- 5 1.78814- 2 2.40000+ 1 2.40000+ 1 4.68152- 6 1.79606- 2 2.40000+ 1 2.50000+ 1 3.13300- 5 1.79691- 2 2.40000+ 1 2.70000+ 1 4.32136- 6 1.80067- 2 2.40000+ 1 2.90000+ 1 1.08042- 5 1.80600- 2 2.40000+ 1 3.00000+ 1 6.12210- 6 1.81005- 2 2.40000+ 1 3.20000+ 1 2.80887- 5 1.81790- 2 2.40000+ 1 3.30000+ 1 1.22441- 5 1.81848- 2 2.50000+ 1 2.50000+ 1 1.80057- 6 1.79776- 2 2.50000+ 1 2.70000+ 1 2.16063- 6 1.80152- 2 2.50000+ 1 2.90000+ 1 6.48191- 6 1.80685- 2 2.50000+ 1 3.00000+ 1 2.88098- 6 1.81090- 2 2.50000+ 1 3.20000+ 1 5.65373- 5 1.81875- 2 2.50000+ 1 3.30000+ 1 4.68154- 6 1.81933- 2 2.70000+ 1 2.70000+ 1 7.20240- 7 1.80527- 2 2.70000+ 1 2.90000+ 1 3.78114- 5 1.81060- 2 2.70000+ 1 3.00000+ 1 3.96137- 6 1.81465- 2 2.70000+ 1 3.20000+ 1 5.04158- 6 1.82250- 2 2.70000+ 1 3.30000+ 1 1.44038- 6 1.82308- 2 2.90000+ 1 2.90000+ 1 3.56518- 5 1.81594- 2 2.90000+ 1 3.00000+ 1 7.99481- 5 1.81998- 2 2.90000+ 1 3.20000+ 1 2.84484- 5 1.82784- 2 2.90000+ 1 3.30000+ 1 3.31315- 5 1.82842- 2 3.00000+ 1 3.00000+ 1 1.80056- 6 1.82403- 2 3.00000+ 1 3.20000+ 1 2.91700- 5 1.83188- 2 3.00000+ 1 3.30000+ 1 3.96137- 6 1.83246- 2 3.20000+ 1 3.20000+ 1 1.71651- 5 1.83974- 2 3.20000+ 1 3.30000+ 1 6.11499- 5 1.84032- 2 3.30000+ 1 3.30000+ 1 3.26690- 6 1.84090- 2 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.90201- 2 1.06609- 2 1.00000+ 1 2.27791- 4 1.09740- 2 1.10000+ 1 2.06361- 4 1.16823- 2 1.30000+ 1 3.23722- 2 1.21973- 2 1.40000+ 1 2.84672- 1 1.23447- 2 1.60000+ 1 4.64402- 3 1.42663- 2 1.80000+ 1 5.12363- 5 1.44074- 2 1.90000+ 1 5.48593- 5 1.45887- 2 2.10000+ 1 6.34933- 3 1.48192- 2 2.20000+ 1 5.78233- 2 1.48529- 2 2.40000+ 1 6.81984- 5 1.51563- 2 2.50000+ 1 3.78132- 4 1.51648- 2 2.70000+ 1 1.11671- 3 1.52024- 2 2.90000+ 1 1.11951- 5 1.52557- 2 3.00000+ 1 1.22201- 5 1.52962- 2 3.20000+ 1 1.07401- 3 1.53747- 2 3.30000+ 1 9.75435- 3 1.53805- 2 4.10000+ 1 2.12241- 4 1.54165- 2 4.30000+ 1 1.78031- 6 1.54311- 2 4.40000+ 1 1.82761- 6 1.54374- 2 5.80000+ 1 1.45241- 5 1.54513- 2 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.33532- 4 5.86580- 3 8.00000+ 0 1.00000+ 1 2.45465- 4 6.17890- 3 8.00000+ 0 1.10000+ 1 1.90218- 2 6.88720- 3 8.00000+ 0 1.30000+ 1 2.71480- 3 7.40220- 3 8.00000+ 0 1.40000+ 1 5.12503- 3 7.54960- 3 8.00000+ 0 1.60000+ 1 2.13863- 4 9.47120- 3 8.00000+ 0 1.80000+ 1 4.30027- 5 9.61230- 3 8.00000+ 0 1.90000+ 1 3.08967- 3 9.79359- 3 8.00000+ 0 2.10000+ 1 3.10161- 4 1.00241- 2 8.00000+ 0 2.20000+ 1 5.49141- 4 1.00578- 2 8.00000+ 0 2.40000+ 1 2.88086- 4 1.03612- 2 8.00000+ 0 2.50000+ 1 4.95868- 4 1.03697- 2 8.00000+ 0 2.70000+ 1 4.83309- 5 1.04073- 2 8.00000+ 0 2.90000+ 1 8.75256- 6 1.04606- 2 8.00000+ 0 3.00000+ 1 6.13856- 4 1.05011- 2 8.00000+ 0 3.20000+ 1 4.60474- 5 1.05796- 2 8.00000+ 0 3.30000+ 1 7.87735- 5 1.05854- 2 1.00000+ 1 1.00000+ 1 6.46965- 6 6.49200- 3 1.00000+ 1 1.10000+ 1 3.18937- 2 7.20030- 3 1.00000+ 1 1.30000+ 1 1.39964- 3 7.71530- 3 1.00000+ 1 1.40000+ 1 1.10969- 2 7.86270- 3 1.00000+ 1 1.60000+ 1 5.13733- 5 9.78430- 3 1.00000+ 1 1.80000+ 1 8.75250- 6 9.92540- 3 1.00000+ 1 1.90000+ 1 5.38406- 3 1.01067- 2 1.00000+ 1 2.10000+ 1 2.74756- 4 1.03372- 2 1.00000+ 1 2.20000+ 1 1.81065- 3 1.03709- 2 1.00000+ 1 2.40000+ 1 2.60303- 4 1.06743- 2 1.00000+ 1 2.50000+ 1 6.34397- 4 1.06828- 2 1.00000+ 1 2.70000+ 1 1.21779- 5 1.07204- 2 1.00000+ 1 2.90000+ 1 2.28325- 6 1.07737- 2 1.00000+ 1 3.00000+ 1 1.07849- 3 1.08142- 2 1.00000+ 1 3.20000+ 1 4.64271- 5 1.08927- 2 1.00000+ 1 3.30000+ 1 2.86939- 4 1.08985- 2 1.10000+ 1 1.10000+ 1 3.88325- 2 7.90860- 3 1.10000+ 1 1.30000+ 1 4.07053- 2 8.42360- 3 1.10000+ 1 1.40000+ 1 5.29502- 2 8.57100- 3 1.10000+ 1 1.60000+ 1 4.97455- 3 1.04926- 2 1.10000+ 1 1.80000+ 1 7.49539- 3 1.06337- 2 1.10000+ 1 1.90000+ 1 1.59076- 2 1.08150- 2 1.10000+ 1 2.10000+ 1 8.91644- 3 1.10455- 2 1.10000+ 1 2.20000+ 1 1.14906- 2 1.10792- 2 1.10000+ 1 2.40000+ 1 8.89719- 4 1.13826- 2 1.10000+ 1 2.50000+ 1 1.07501- 3 1.13911- 2 1.10000+ 1 2.70000+ 1 1.19448- 3 1.14287- 2 1.10000+ 1 2.90000+ 1 1.64199- 3 1.14820- 2 1.10000+ 1 3.00000+ 1 3.33847- 3 1.15225- 2 1.10000+ 1 3.20000+ 1 1.50160- 3 1.16010- 2 1.10000+ 1 3.30000+ 1 1.90728- 3 1.16068- 2 1.30000+ 1 1.30000+ 1 5.46248- 3 8.93860- 3 1.30000+ 1 1.40000+ 1 1.01955- 1 9.08600- 3 1.30000+ 1 1.60000+ 1 6.59478- 4 1.10076- 2 1.30000+ 1 1.80000+ 1 3.57343- 4 1.11487- 2 1.30000+ 1 1.90000+ 1 6.22061- 3 1.13300- 2 1.30000+ 1 2.10000+ 1 2.01126- 3 1.15605- 2 1.30000+ 1 2.20000+ 1 1.57086- 2 1.15942- 2 1.30000+ 1 2.40000+ 1 4.82914- 4 1.18976- 2 1.30000+ 1 2.50000+ 1 1.62150- 3 1.19061- 2 1.30000+ 1 2.70000+ 1 1.56789- 4 1.19437- 2 1.30000+ 1 2.90000+ 1 7.91575- 5 1.19970- 2 1.30000+ 1 3.00000+ 1 1.21928- 3 1.20375- 2 1.30000+ 1 3.20000+ 1 3.29552- 4 1.21160- 2 1.30000+ 1 3.30000+ 1 2.44665- 3 1.21218- 2 1.40000+ 1 1.40000+ 1 6.74903- 2 9.23340- 3 1.40000+ 1 1.60000+ 1 1.25582- 3 1.11550- 2 1.40000+ 1 1.80000+ 1 2.35070- 3 1.12961- 2 1.40000+ 1 1.90000+ 1 9.08602- 3 1.14774- 2 1.40000+ 1 2.10000+ 1 1.89311- 2 1.17079- 2 1.40000+ 1 2.20000+ 1 2.38566- 2 1.17416- 2 1.40000+ 1 2.40000+ 1 5.06977- 3 1.20450- 2 1.40000+ 1 2.50000+ 1 4.58354- 3 1.20535- 2 1.40000+ 1 2.70000+ 1 3.01022- 4 1.20911- 2 1.40000+ 1 2.90000+ 1 5.04232- 4 1.21444- 2 1.40000+ 1 3.00000+ 1 1.83999- 3 1.21849- 2 1.40000+ 1 3.20000+ 1 3.09472- 3 1.22634- 2 1.40000+ 1 3.30000+ 1 3.82689- 3 1.22692- 2 1.60000+ 1 1.60000+ 1 2.24527- 5 1.30766- 2 1.60000+ 1 1.80000+ 1 9.89449- 6 1.32177- 2 1.60000+ 1 1.90000+ 1 8.08335- 4 1.33990- 2 1.60000+ 1 2.10000+ 1 8.14387- 5 1.36295- 2 1.60000+ 1 2.20000+ 1 1.43461- 4 1.36632- 2 1.60000+ 1 2.40000+ 1 3.69134- 5 1.39666- 2 1.60000+ 1 2.50000+ 1 7.19243- 5 1.39751- 2 1.60000+ 1 2.70000+ 1 1.02746- 5 1.40127- 2 1.60000+ 1 2.90000+ 1 1.90278- 6 1.40660- 2 1.60000+ 1 3.00000+ 1 1.60601- 4 1.41065- 2 1.60000+ 1 3.20000+ 1 1.21781- 5 1.41850- 2 1.60000+ 1 3.30000+ 1 2.09313- 5 1.41908- 2 1.80000+ 1 1.90000+ 1 1.25702- 3 1.35401- 2 1.80000+ 1 2.10000+ 1 6.50764- 5 1.37706- 2 1.80000+ 1 2.20000+ 1 4.16342- 4 1.38043- 2 1.80000+ 1 2.40000+ 1 3.88174- 5 1.41077- 2 1.80000+ 1 2.50000+ 1 8.90519- 5 1.41162- 2 1.80000+ 1 2.70000+ 1 2.28331- 6 1.41538- 2 1.80000+ 1 3.00000+ 1 2.51167- 4 1.42476- 2 1.80000+ 1 3.20000+ 1 1.06558- 5 1.43261- 2 1.80000+ 1 3.30000+ 1 6.66008- 5 1.43319- 2 1.90000+ 1 1.90000+ 1 1.55755- 3 1.37214- 2 1.90000+ 1 2.10000+ 1 1.36660- 3 1.39519- 2 1.90000+ 1 2.20000+ 1 1.94279- 3 1.39856- 2 1.90000+ 1 2.40000+ 1 1.11889- 4 1.42890- 2 1.90000+ 1 2.50000+ 1 1.42327- 4 1.42975- 2 1.90000+ 1 2.70000+ 1 1.94082- 4 1.43351- 2 1.90000+ 1 2.90000+ 1 2.74762- 4 1.43884- 2 1.90000+ 1 3.00000+ 1 6.47324- 4 1.44289- 2 1.90000+ 1 3.20000+ 1 2.30235- 4 1.45074- 2 1.90000+ 1 3.30000+ 1 3.21579- 4 1.45132- 2 2.10000+ 1 2.10000+ 1 1.77337- 4 1.41825- 2 2.10000+ 1 2.20000+ 1 3.05901- 3 1.42162- 2 2.10000+ 1 2.40000+ 1 5.89895- 5 1.45195- 2 2.10000+ 1 2.50000+ 1 1.86469- 4 1.45280- 2 2.10000+ 1 2.70000+ 1 1.97903- 5 1.45656- 2 2.10000+ 1 2.90000+ 1 1.40807- 5 1.46189- 2 2.10000+ 1 3.00000+ 1 2.67910- 4 1.46594- 2 2.10000+ 1 3.20000+ 1 5.78442- 5 1.47379- 2 2.10000+ 1 3.30000+ 1 4.79891- 4 1.47437- 2 2.20000+ 1 2.20000+ 1 2.12208- 3 1.42499- 2 2.20000+ 1 2.40000+ 1 6.09278- 4 1.45532- 2 2.20000+ 1 2.50000+ 1 5.40779- 4 1.45617- 2 2.20000+ 1 2.70000+ 1 3.46313- 5 1.45993- 2 2.20000+ 1 2.90000+ 1 9.05703- 5 1.46526- 2 2.20000+ 1 3.00000+ 1 3.91974- 4 1.46931- 2 2.20000+ 1 3.20000+ 1 5.03864- 4 1.47716- 2 2.20000+ 1 3.30000+ 1 6.80847- 4 1.47774- 2 2.40000+ 1 2.40000+ 1 2.66392- 6 1.48566- 2 2.40000+ 1 2.50000+ 1 8.02997- 5 1.48651- 2 2.40000+ 1 2.70000+ 1 7.61096- 6 1.49027- 2 2.40000+ 1 2.90000+ 1 7.99157- 6 1.49560- 2 2.40000+ 1 3.00000+ 1 2.13117- 5 1.49965- 2 2.40000+ 1 3.20000+ 1 8.75276- 6 1.50750- 2 2.40000+ 1 3.30000+ 1 9.05706- 5 1.50808- 2 2.50000+ 1 2.50000+ 1 2.85428- 5 1.48736- 2 2.50000+ 1 2.70000+ 1 1.56023- 5 1.49112- 2 2.50000+ 1 2.90000+ 1 1.78869- 5 1.49645- 2 2.50000+ 1 3.00000+ 1 2.74015- 5 1.50050- 2 2.50000+ 1 3.20000+ 1 2.77816- 5 1.50835- 2 2.50000+ 1 3.30000+ 1 7.99159- 5 1.50893- 2 2.70000+ 1 2.70000+ 1 1.24503- 6 1.49487- 2 2.70000+ 1 2.90000+ 1 4.15005- 7 1.50020- 2 2.70000+ 1 3.00000+ 1 4.19161- 5 1.50425- 2 2.70000+ 1 3.20000+ 1 3.32007- 6 1.51210- 2 2.70000+ 1 3.30000+ 1 5.39508- 6 1.51268- 2 2.90000+ 1 3.00000+ 1 6.06591- 5 1.50958- 2 2.90000+ 1 3.20000+ 1 2.52740- 6 1.51744- 2 2.90000+ 1 3.30000+ 1 1.60080- 5 1.51802- 2 3.00000+ 1 3.00000+ 1 7.20305- 5 1.51363- 2 3.00000+ 1 3.20000+ 1 4.87027- 5 1.52148- 2 3.00000+ 1 3.30000+ 1 6.95778- 5 1.52206- 2 3.20000+ 1 3.20000+ 1 4.56665- 6 1.52934- 2 3.20000+ 1 3.30000+ 1 7.91578- 5 1.52992- 2 3.30000+ 1 3.30000+ 1 5.44193- 5 1.53050- 2 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.04000- 5 3.13100- 4 1.10000+ 1 8.22150- 4 1.02140- 3 1.80000+ 1 2.16650- 3 3.74650- 3 1.90000+ 1 1.35890- 3 3.92779- 3 2.90000+ 1 5.36700- 4 4.59478- 3 3.00000+ 1 3.76000- 4 4.63527- 3 4.30000+ 1 8.71820- 5 4.77022- 3 4.40000+ 1 5.82500- 5 4.77648- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 1.33826- 2 1.34000- 5 1.00000+ 1 2.50000+ 1 1.61847- 2 2.19100- 5 1.00000+ 1 2.70000+ 1 1.44737- 2 5.94700- 5 1.00000+ 1 2.90000+ 1 1.46753- 2 1.12780- 4 1.00000+ 1 3.00000+ 1 1.82823- 2 1.53270- 4 1.00000+ 1 3.20000+ 1 9.79199- 3 2.31780- 4 1.00000+ 1 3.30000+ 1 1.29016- 2 2.37580- 4 1.00000+ 1 4.10000+ 1 2.51306- 3 2.73560- 4 1.00000+ 1 4.30000+ 1 2.07784- 3 2.88220- 4 1.00000+ 1 4.40000+ 1 2.39331- 3 2.94480- 4 1.00000+ 1 5.80000+ 1 2.43614- 4 3.08370- 4 1.10000+ 1 1.90000+ 1 4.98420- 2 1.54090- 4 1.10000+ 1 2.10000+ 1 1.32928- 2 3.84630- 4 1.10000+ 1 2.20000+ 1 2.80125- 2 4.18340- 4 1.10000+ 1 2.40000+ 1 2.02467- 1 7.21700- 4 1.10000+ 1 2.50000+ 1 2.46955- 1 7.30210- 4 1.10000+ 1 2.70000+ 1 1.18022- 2 7.67770- 4 1.10000+ 1 2.90000+ 1 1.17824- 2 8.21080- 4 1.10000+ 1 3.00000+ 1 1.05591- 2 8.61570- 4 1.10000+ 1 3.20000+ 1 2.42076- 3 9.40080- 4 1.10000+ 1 3.30000+ 1 4.98579- 3 9.45880- 4 1.10000+ 1 4.10000+ 1 2.10059- 3 9.81860- 4 1.10000+ 1 4.30000+ 1 1.71056- 3 9.96520- 4 1.10000+ 1 4.40000+ 1 1.42458- 3 1.00278- 3 1.10000+ 1 5.80000+ 1 2.05161- 4 1.01667- 3 1.30000+ 1 1.60000+ 1 2.74013- 2 3.46700- 4 1.30000+ 1 1.80000+ 1 5.84368- 3 4.87800- 4 1.30000+ 1 1.90000+ 1 8.78971- 3 6.69090- 4 1.30000+ 1 2.10000+ 1 9.42976- 3 8.99630- 4 1.30000+ 1 2.20000+ 1 1.14128- 2 9.33340- 4 1.30000+ 1 2.40000+ 1 1.02758- 2 1.23670- 3 1.30000+ 1 2.50000+ 1 9.59183- 3 1.24521- 3 1.30000+ 1 2.70000+ 1 4.12070- 3 1.28277- 3 1.30000+ 1 2.90000+ 1 1.01079- 3 1.33608- 3 1.30000+ 1 3.00000+ 1 1.42270- 3 1.37657- 3 1.30000+ 1 3.20000+ 1 1.29490- 3 1.45508- 3 1.30000+ 1 3.30000+ 1 1.68990- 3 1.46088- 3 1.30000+ 1 4.10000+ 1 6.80737- 4 1.49686- 3 1.30000+ 1 4.30000+ 1 1.44794- 4 1.51152- 3 1.30000+ 1 4.40000+ 1 1.85565- 4 1.51778- 3 1.30000+ 1 5.80000+ 1 6.49753- 5 1.53167- 3 1.40000+ 1 1.60000+ 1 3.76693- 2 4.94100- 4 1.40000+ 1 1.80000+ 1 9.26351- 4 6.35200- 4 1.40000+ 1 1.90000+ 1 1.22613- 2 8.16490- 4 1.40000+ 1 2.10000+ 1 1.29788- 2 1.04703- 3 1.40000+ 1 2.20000+ 1 1.79543- 2 1.08074- 3 1.40000+ 1 2.40000+ 1 1.19970- 2 1.38410- 3 1.40000+ 1 2.50000+ 1 1.82315- 2 1.39261- 3 1.40000+ 1 2.70000+ 1 5.58690- 3 1.43017- 3 1.40000+ 1 2.90000+ 1 2.16110- 4 1.48348- 3 1.40000+ 1 3.00000+ 1 1.95789- 3 1.52397- 3 1.40000+ 1 3.20000+ 1 1.96346- 3 1.60248- 3 1.40000+ 1 3.30000+ 1 2.56057- 3 1.60828- 3 1.40000+ 1 4.10000+ 1 9.20159- 4 1.64426- 3 1.40000+ 1 4.30000+ 1 3.32812- 5 1.65892- 3 1.40000+ 1 4.40000+ 1 2.55292- 4 1.66518- 3 1.40000+ 1 5.80000+ 1 8.77370- 5 1.67907- 3 1.60000+ 1 1.60000+ 1 2.25956- 3 2.41570- 3 1.60000+ 1 1.80000+ 1 3.99180- 3 2.55680- 3 1.60000+ 1 1.90000+ 1 6.35394- 3 2.73809- 3 1.60000+ 1 2.10000+ 1 7.56219- 3 2.96863- 3 1.60000+ 1 2.20000+ 1 1.05359- 2 3.00234- 3 1.60000+ 1 2.40000+ 1 5.67643- 3 3.30570- 3 1.60000+ 1 2.50000+ 1 7.06135- 3 3.31421- 3 1.60000+ 1 2.70000+ 1 8.79019- 4 3.35177- 3 1.60000+ 1 2.90000+ 1 8.80720- 4 3.40508- 3 1.60000+ 1 3.00000+ 1 1.37483- 3 3.44557- 3 1.60000+ 1 3.20000+ 1 1.25363- 3 3.52408- 3 1.60000+ 1 3.30000+ 1 1.72651- 3 3.52988- 3 1.60000+ 1 4.10000+ 1 1.54908- 4 3.56586- 3 1.60000+ 1 4.30000+ 1 1.31168- 4 3.58052- 3 1.60000+ 1 4.40000+ 1 1.88045- 4 3.58678- 3 1.60000+ 1 5.80000+ 1 1.49507- 5 3.60067- 3 1.80000+ 1 1.80000+ 1 1.57845- 4 2.69790- 3 1.80000+ 1 1.90000+ 1 4.89999- 4 2.87919- 3 1.80000+ 1 2.10000+ 1 2.42767- 4 3.10973- 3 1.80000+ 1 2.20000+ 1 1.22080- 4 3.14344- 3 1.80000+ 1 2.40000+ 1 2.63573- 5 3.44680- 3 1.80000+ 1 2.50000+ 1 4.82302- 4 3.45531- 3 1.80000+ 1 2.70000+ 1 5.86629- 4 3.49287- 3 1.80000+ 1 2.90000+ 1 5.07105- 5 3.54618- 3 1.80000+ 1 3.00000+ 1 7.50670- 5 3.58667- 3 1.80000+ 1 3.20000+ 1 3.45265- 5 3.66518- 3 1.80000+ 1 3.30000+ 1 2.49699- 5 3.67098- 3 1.80000+ 1 4.10000+ 1 9.67964- 5 3.70696- 3 1.80000+ 1 4.30000+ 1 7.09037- 6 3.72162- 3 1.80000+ 1 4.40000+ 1 9.71090- 6 3.72788- 3 1.80000+ 1 5.80000+ 1 9.24801- 6 3.74177- 3 1.90000+ 1 1.90000+ 1 5.02631- 4 3.06048- 3 1.90000+ 1 2.10000+ 1 6.20266- 4 3.29102- 3 1.90000+ 1 2.20000+ 1 1.40077- 3 3.32473- 3 1.90000+ 1 2.40000+ 1 7.90088- 4 3.62809- 3 1.90000+ 1 2.50000+ 1 1.22525- 3 3.63660- 3 1.90000+ 1 2.70000+ 1 9.38658- 4 3.67416- 3 1.90000+ 1 2.90000+ 1 9.21723- 5 3.72747- 3 1.90000+ 1 3.00000+ 1 1.83112- 4 3.76796- 3 1.90000+ 1 3.20000+ 1 1.01575- 4 3.84647- 3 1.90000+ 1 3.30000+ 1 2.17950- 4 3.85227- 3 1.90000+ 1 4.10000+ 1 1.55364- 4 3.88825- 3 1.90000+ 1 4.30000+ 1 1.34102- 5 3.90291- 3 1.90000+ 1 4.40000+ 1 2.43539- 5 3.90917- 3 1.90000+ 1 5.80000+ 1 1.47966- 5 3.92306- 3 2.10000+ 1 2.10000+ 1 9.57197- 5 3.52156- 3 2.10000+ 1 2.20000+ 1 2.85768- 4 3.55527- 3 2.10000+ 1 2.40000+ 1 4.44983- 4 3.85863- 3 2.10000+ 1 2.50000+ 1 2.76848- 3 3.86714- 3 2.10000+ 1 2.70000+ 1 1.08821- 3 3.90470- 3 2.10000+ 1 2.90000+ 1 3.39106- 5 3.95801- 3 2.10000+ 1 3.00000+ 1 1.02500- 4 3.99850- 3 2.10000+ 1 3.20000+ 1 2.49696- 5 4.07701- 3 2.10000+ 1 3.30000+ 1 3.96131- 5 4.08281- 3 2.10000+ 1 4.10000+ 1 1.78796- 4 4.11879- 3 2.10000+ 1 4.30000+ 1 4.62408- 6 4.13345- 3 2.10000+ 1 4.40000+ 1 1.34103- 5 4.13971- 3 2.10000+ 1 5.80000+ 1 1.71089- 5 4.15360- 3 2.20000+ 1 2.20000+ 1 2.22121- 4 3.58898- 3 2.20000+ 1 2.40000+ 1 2.49018- 3 3.89234- 3 2.20000+ 1 2.50000+ 1 1.56982- 3 3.90085- 3 2.20000+ 1 2.70000+ 1 1.50923- 3 3.93841- 3 2.20000+ 1 2.90000+ 1 1.94213- 5 3.99172- 3 2.20000+ 1 3.00000+ 1 2.28277- 4 4.03221- 3 2.20000+ 1 3.20000+ 1 3.56065- 5 4.11072- 3 2.20000+ 1 3.30000+ 1 5.94951- 5 4.11652- 3 2.20000+ 1 4.10000+ 1 2.47699- 4 4.15250- 3 2.20000+ 1 4.30000+ 1 2.77446- 6 4.16716- 3 2.20000+ 1 4.40000+ 1 2.95944- 5 4.17342- 3 2.20000+ 1 5.80000+ 1 2.35824- 5 4.18731- 3 2.40000+ 1 2.40000+ 1 6.22165- 4 4.19570- 3 2.40000+ 1 2.50000+ 1 4.07943- 3 4.20421- 3 2.40000+ 1 2.70000+ 1 7.48630- 4 4.24177- 3 2.40000+ 1 2.90000+ 1 4.76926- 6 4.29508- 3 2.40000+ 1 3.00000+ 1 9.16958- 5 4.33557- 3 2.40000+ 1 3.20000+ 1 6.63092- 5 4.41408- 3 2.40000+ 1 3.30000+ 1 4.12622- 4 4.41988- 3 2.40000+ 1 4.10000+ 1 1.21235- 4 4.45586- 3 2.40000+ 1 4.30000+ 1 7.69217- 7 4.47052- 3 2.40000+ 1 4.40000+ 1 1.12311- 5 4.47678- 3 2.40000+ 1 5.80000+ 1 1.15388- 5 4.49067- 3 2.50000+ 1 2.50000+ 1 1.40728- 3 4.21272- 3 2.50000+ 1 2.70000+ 1 9.25160- 4 4.25028- 3 2.50000+ 1 2.90000+ 1 9.20269- 5 4.30359- 3 2.50000+ 1 3.00000+ 1 1.52811- 4 4.34408- 3 2.50000+ 1 3.20000+ 1 4.46347- 4 4.42259- 3 2.50000+ 1 3.30000+ 1 2.46064- 4 4.42839- 3 2.50000+ 1 4.10000+ 1 1.49758- 4 4.46437- 3 2.50000+ 1 4.30000+ 1 1.33219- 5 4.47903- 3 2.50000+ 1 4.40000+ 1 1.89869- 5 4.48529- 3 2.50000+ 1 5.80000+ 1 1.42408- 5 4.49918- 3 2.70000+ 1 2.70000+ 1 8.04487- 5 4.28784- 3 2.70000+ 1 2.90000+ 1 1.33341- 4 4.34115- 3 2.70000+ 1 3.00000+ 1 2.07493- 4 4.38164- 3 2.70000+ 1 3.20000+ 1 1.85613- 4 4.46015- 3 2.70000+ 1 3.30000+ 1 2.54248- 4 4.46595- 3 2.70000+ 1 4.10000+ 1 2.78659- 5 4.50193- 3 2.70000+ 1 4.30000+ 1 1.98361- 5 4.51659- 3 2.70000+ 1 4.40000+ 1 2.83371- 5 4.52285- 3 2.70000+ 1 5.80000+ 1 2.67626- 6 4.53674- 3 2.90000+ 1 2.90000+ 1 4.38657- 6 4.39446- 3 2.90000+ 1 3.00000+ 1 1.50149- 5 4.43495- 3 2.90000+ 1 3.20000+ 1 5.23011- 6 4.51346- 3 2.90000+ 1 3.30000+ 1 4.55519- 6 4.51926- 3 2.90000+ 1 4.10000+ 1 2.36191- 5 4.55524- 3 2.90000+ 1 4.30000+ 1 1.18100- 6 4.56990- 3 2.90000+ 1 4.40000+ 1 1.85583- 6 4.57616- 3 2.90000+ 1 5.80000+ 1 2.19329- 6 4.59005- 3 3.00000+ 1 3.00000+ 1 1.75308- 5 4.47544- 3 3.00000+ 1 3.20000+ 1 1.85424- 5 4.55395- 3 3.00000+ 1 3.30000+ 1 3.91079- 5 4.55975- 3 3.00000+ 1 4.10000+ 1 3.67476- 5 4.59573- 3 3.00000+ 1 4.30000+ 1 2.19141- 6 4.61039- 3 3.00000+ 1 4.40000+ 1 4.72000- 6 4.61665- 3 3.00000+ 1 5.80000+ 1 3.53988- 6 4.63054- 3 3.20000+ 1 3.20000+ 1 1.57047- 6 4.63246- 3 3.20000+ 1 3.30000+ 1 5.02566- 6 4.63826- 3 3.20000+ 1 4.10000+ 1 3.04681- 5 4.67424- 3 3.20000+ 1 4.30000+ 1 6.28189- 7 4.68890- 3 3.20000+ 1 4.40000+ 1 2.19864- 6 4.69516- 3 3.20000+ 1 5.80000+ 1 2.82692- 6 4.70905- 3 3.30000+ 1 3.30000+ 1 3.96230- 6 4.64406- 3 3.30000+ 1 4.10000+ 1 4.20007- 5 4.68004- 3 3.30000+ 1 4.30000+ 1 6.33950- 7 4.69470- 3 3.30000+ 1 4.40000+ 1 4.75474- 6 4.70096- 3 3.30000+ 1 5.80000+ 1 3.96230- 6 4.71485- 3 4.10000+ 1 4.10000+ 1 2.31200- 6 4.71602- 3 4.10000+ 1 4.30000+ 1 3.23668- 6 4.73068- 3 4.10000+ 1 4.40000+ 1 4.62392- 6 4.73694- 3 4.10000+ 1 5.80000+ 1 4.62392- 7 4.75083- 3 4.30000+ 1 4.30000+ 1 1.54132- 7 4.74534- 3 4.30000+ 1 4.40000+ 1 3.08274- 7 4.75160- 3 4.30000+ 1 5.80000+ 1 3.08274- 7 4.76549- 3 4.40000+ 1 4.40000+ 1 3.08274- 7 4.75786- 3 4.40000+ 1 5.80000+ 1 4.62406- 7 4.77175- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.46950- 3 1.22330- 3 1.60000+ 1 8.99638- 4 3.29230- 3 2.10000+ 1 4.63839- 3 3.84523- 3 2.70000+ 1 2.21320- 4 4.22837- 3 3.20000+ 1 9.66148- 4 4.40068- 3 4.10000+ 1 4.21799- 5 4.44246- 3 5.80000+ 1 2.86829- 6 4.47727- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.36859- 3 7.15300- 5 1.10000+ 1 2.20000+ 1 1.54056- 2 1.05240- 4 1.10000+ 1 2.40000+ 1 2.85685- 2 4.08600- 4 1.10000+ 1 2.50000+ 1 2.43653- 2 4.17110- 4 1.10000+ 1 2.70000+ 1 3.11416- 3 4.54670- 4 1.10000+ 1 2.90000+ 1 4.27478- 3 5.07980- 4 1.10000+ 1 3.00000+ 1 2.14768- 3 5.48470- 4 1.10000+ 1 3.20000+ 1 1.48389- 3 6.26980- 4 1.10000+ 1 3.30000+ 1 2.81069- 3 6.32780- 4 1.10000+ 1 4.10000+ 1 5.28094- 4 6.68760- 4 1.10000+ 1 4.30000+ 1 5.76541- 4 6.83420- 4 1.10000+ 1 4.40000+ 1 2.76242- 4 6.89680- 4 1.10000+ 1 5.80000+ 1 5.07682- 5 7.03570- 4 1.30000+ 1 1.60000+ 1 4.70862- 2 3.36000- 5 1.30000+ 1 1.80000+ 1 4.89942- 2 1.74700- 4 1.30000+ 1 1.90000+ 1 3.78262- 2 3.55990- 4 1.30000+ 1 2.10000+ 1 1.70585- 2 5.86530- 4 1.30000+ 1 2.20000+ 1 2.41660- 2 6.20240- 4 1.30000+ 1 2.40000+ 1 1.47282- 1 9.23600- 4 1.30000+ 1 2.50000+ 1 2.29956- 1 9.32110- 4 1.30000+ 1 2.70000+ 1 1.11364- 2 9.69670- 4 1.30000+ 1 2.90000+ 1 9.00054- 3 1.02298- 3 1.30000+ 1 3.00000+ 1 7.89642- 3 1.06347- 3 1.30000+ 1 3.20000+ 1 3.00390- 3 1.14198- 3 1.30000+ 1 3.30000+ 1 4.31606- 3 1.14778- 3 1.30000+ 1 4.10000+ 1 1.99758- 3 1.18376- 3 1.30000+ 1 4.30000+ 1 1.29849- 3 1.19842- 3 1.30000+ 1 4.40000+ 1 1.06922- 3 1.20468- 3 1.30000+ 1 5.80000+ 1 1.90962- 4 1.21857- 3 1.40000+ 1 1.60000+ 1 7.38130- 3 1.81000- 4 1.40000+ 1 1.80000+ 1 5.55209- 2 3.22100- 4 1.40000+ 1 1.90000+ 1 4.63142- 3 5.03390- 4 1.40000+ 1 2.10000+ 1 1.39163- 3 7.33930- 4 1.40000+ 1 2.20000+ 1 2.68953- 3 7.67640- 4 1.40000+ 1 2.40000+ 1 7.10937- 3 1.07100- 3 1.40000+ 1 2.50000+ 1 4.47654- 3 1.07951- 3 1.40000+ 1 2.70000+ 1 1.15177- 3 1.11707- 3 1.40000+ 1 2.90000+ 1 7.82460- 3 1.17038- 3 1.40000+ 1 3.00000+ 1 8.34533- 4 1.21087- 3 1.40000+ 1 3.20000+ 1 1.03192- 4 1.28938- 3 1.40000+ 1 3.30000+ 1 4.05479- 4 1.29518- 3 1.40000+ 1 4.10000+ 1 1.92446- 4 1.33116- 3 1.40000+ 1 4.30000+ 1 1.07143- 3 1.34582- 3 1.40000+ 1 4.40000+ 1 1.10333- 4 1.35208- 3 1.40000+ 1 5.80000+ 1 1.84158- 5 1.36597- 3 1.60000+ 1 1.60000+ 1 6.09077- 4 2.10260- 3 1.60000+ 1 1.80000+ 1 9.28518- 3 2.24370- 3 1.60000+ 1 1.90000+ 1 1.19258- 3 2.42499- 3 1.60000+ 1 2.10000+ 1 3.46122- 4 2.65553- 3 1.60000+ 1 2.20000+ 1 1.07047- 3 2.68924- 3 1.60000+ 1 2.40000+ 1 5.72442- 5 2.99260- 3 1.60000+ 1 2.50000+ 1 7.87680- 4 3.00111- 3 1.60000+ 1 2.70000+ 1 2.20960- 4 3.03867- 3 1.60000+ 1 2.90000+ 1 1.28075- 3 3.09198- 3 1.60000+ 1 3.00000+ 1 2.32407- 4 3.13247- 3 1.60000+ 1 3.20000+ 1 3.96883- 5 3.21098- 3 1.60000+ 1 3.30000+ 1 1.58369- 4 3.21678- 3 1.60000+ 1 4.10000+ 1 3.81627- 5 3.25276- 3 1.60000+ 1 4.30000+ 1 1.75550- 4 3.26742- 3 1.60000+ 1 4.40000+ 1 3.09124- 5 3.27368- 3 1.60000+ 1 5.80000+ 1 3.81627- 6 3.28757- 3 1.80000+ 1 1.80000+ 1 7.23276- 3 2.38480- 3 1.80000+ 1 1.90000+ 1 1.96469- 2 2.56609- 3 1.80000+ 1 2.10000+ 1 1.99023- 2 2.79663- 3 1.80000+ 1 2.20000+ 1 3.12763- 2 2.83034- 3 1.80000+ 1 2.40000+ 1 1.23094- 2 3.13370- 3 1.80000+ 1 2.50000+ 1 2.02860- 2 3.14221- 3 1.80000+ 1 2.70000+ 1 2.20269- 3 3.17977- 3 1.80000+ 1 2.90000+ 1 2.63675- 3 3.23308- 3 1.80000+ 1 3.00000+ 1 4.21314- 3 3.27357- 3 1.80000+ 1 3.20000+ 1 3.31241- 3 3.35208- 3 1.80000+ 1 3.30000+ 1 5.07521- 3 3.35788- 3 1.80000+ 1 4.10000+ 1 3.99934- 4 3.39386- 3 1.80000+ 1 4.30000+ 1 3.82383- 4 3.40852- 3 1.80000+ 1 4.40000+ 1 5.75107- 4 3.41478- 3 1.80000+ 1 5.80000+ 1 3.85445- 5 3.42867- 3 1.90000+ 1 1.90000+ 1 5.07204- 4 2.74738- 3 1.90000+ 1 2.10000+ 1 1.19910- 3 2.97792- 3 1.90000+ 1 2.20000+ 1 1.09911- 3 3.01163- 3 1.90000+ 1 2.40000+ 1 8.11196- 3 3.31499- 3 1.90000+ 1 2.50000+ 1 2.24452- 3 3.32350- 3 1.90000+ 1 2.70000+ 1 1.79750- 4 3.36106- 3 1.90000+ 1 2.90000+ 1 2.76705- 3 3.41437- 3 1.90000+ 1 3.00000+ 1 1.83562- 4 3.45486- 3 1.90000+ 1 3.20000+ 1 1.56465- 4 3.53337- 3 1.90000+ 1 3.30000+ 1 1.59901- 4 3.53917- 3 1.90000+ 1 4.10000+ 1 2.97685- 5 3.57515- 3 1.90000+ 1 4.30000+ 1 3.80488- 4 3.58981- 3 1.90000+ 1 4.40000+ 1 2.44262- 5 3.59607- 3 1.90000+ 1 5.80000+ 1 2.67135- 6 3.60996- 3 2.10000+ 1 2.10000+ 1 7.23940- 4 3.20846- 3 2.10000+ 1 2.20000+ 1 1.48103- 3 3.24217- 3 2.10000+ 1 2.40000+ 1 8.38825- 4 3.54553- 3 2.10000+ 1 2.50000+ 1 1.27313- 3 3.55404- 3 2.10000+ 1 2.70000+ 1 7.89957- 5 3.59160- 3 2.10000+ 1 2.90000+ 1 2.71882- 3 3.64491- 3 2.10000+ 1 3.00000+ 1 2.36619- 4 3.68540- 3 2.10000+ 1 3.20000+ 1 1.96152- 4 3.76391- 3 2.10000+ 1 3.30000+ 1 2.20960- 4 3.76971- 3 2.10000+ 1 4.10000+ 1 1.45018- 5 3.80569- 3 2.10000+ 1 4.30000+ 1 3.71330- 4 3.82035- 3 2.10000+ 1 4.40000+ 1 3.20569- 5 3.82661- 3 2.10000+ 1 5.80000+ 1 1.52648- 6 3.84050- 3 2.20000+ 1 2.20000+ 1 3.99180- 4 3.27588- 3 2.20000+ 1 2.40000+ 1 2.06511- 3 3.57924- 3 2.20000+ 1 2.50000+ 1 5.03746- 4 3.58775- 3 2.20000+ 1 2.70000+ 1 2.00743- 4 3.62531- 3 2.20000+ 1 2.90000+ 1 4.32673- 3 3.67862- 3 2.20000+ 1 3.00000+ 1 1.80894- 4 3.71911- 3 2.20000+ 1 3.20000+ 1 1.95773- 4 3.79762- 3 2.20000+ 1 3.30000+ 1 1.09527- 4 3.80342- 3 2.20000+ 1 4.10000+ 1 3.47291- 5 3.83940- 3 2.20000+ 1 4.30000+ 1 5.92655- 4 3.85406- 3 2.20000+ 1 4.40000+ 1 2.36619- 5 3.86032- 3 2.20000+ 1 5.80000+ 1 3.43462- 6 3.87421- 3 2.40000+ 1 2.40000+ 1 3.19464- 3 3.88260- 3 2.40000+ 1 2.50000+ 1 2.04015- 2 3.89111- 3 2.40000+ 1 2.70000+ 1 8.39598- 6 3.92867- 3 2.40000+ 1 2.90000+ 1 1.55327- 3 3.98198- 3 2.40000+ 1 3.00000+ 1 1.63490- 3 4.02247- 3 2.40000+ 1 3.20000+ 1 1.53799- 4 4.10098- 3 2.40000+ 1 3.30000+ 1 3.97671- 4 4.10678- 3 2.40000+ 1 4.10000+ 1 1.52649- 6 4.14276- 3 2.40000+ 1 4.30000+ 1 2.10664- 4 4.15742- 3 2.40000+ 1 4.40000+ 1 2.20580- 4 4.16368- 3 2.50000+ 1 2.50000+ 1 1.06588- 3 3.89962- 3 2.50000+ 1 2.70000+ 1 1.52646- 4 3.93718- 3 2.50000+ 1 2.90000+ 1 2.49813- 3 3.99049- 3 2.50000+ 1 3.00000+ 1 4.01834- 4 4.03098- 3 2.50000+ 1 3.20000+ 1 2.22488- 4 4.10949- 3 2.50000+ 1 3.30000+ 1 8.66279- 5 4.11529- 3 2.50000+ 1 4.10000+ 1 2.67125- 5 4.15127- 3 2.50000+ 1 4.30000+ 1 3.35074- 4 4.16593- 3 2.50000+ 1 4.40000+ 1 5.34268- 5 4.17219- 3 2.50000+ 1 5.80000+ 1 2.67125- 6 4.18608- 3 2.70000+ 1 2.70000+ 1 1.98693- 5 3.97474- 3 2.70000+ 1 2.90000+ 1 3.06049- 4 4.02805- 3 2.70000+ 1 3.00000+ 1 3.51524- 5 4.06854- 3 2.70000+ 1 3.20000+ 1 8.40607- 6 4.14705- 3 2.70000+ 1 3.30000+ 1 3.01852- 5 4.15285- 3 2.70000+ 1 4.10000+ 1 6.87753- 6 4.18883- 3 2.70000+ 1 4.30000+ 1 4.20301- 5 4.20349- 3 2.70000+ 1 4.40000+ 1 4.58496- 6 4.20975- 3 2.70000+ 1 5.80000+ 1 7.64181- 7 4.22364- 3 2.90000+ 1 2.90000+ 1 2.25156- 4 4.08136- 3 2.90000+ 1 3.00000+ 1 5.97641- 4 4.12185- 3 2.90000+ 1 3.20000+ 1 4.55269- 4 4.20036- 3 2.90000+ 1 3.30000+ 1 7.06399- 4 4.20616- 3 2.90000+ 1 4.10000+ 1 5.57197- 5 4.24214- 3 2.90000+ 1 4.30000+ 1 6.44977- 5 4.25680- 3 2.90000+ 1 4.40000+ 1 8.16711- 5 4.26306- 3 2.90000+ 1 5.80000+ 1 5.34284- 6 4.27695- 3 3.00000+ 1 3.00000+ 1 1.71898- 5 4.16234- 3 3.00000+ 1 3.20000+ 1 3.27791- 5 4.24085- 3 3.00000+ 1 3.30000+ 1 2.75822- 5 4.24665- 3 3.00000+ 1 4.10000+ 1 5.99623- 6 4.28263- 3 3.00000+ 1 4.30000+ 1 8.63455- 5 4.29729- 3 3.00000+ 1 4.40000+ 1 4.39726- 6 4.30355- 3 3.00000+ 1 5.80000+ 1 3.99747- 7 4.31744- 3 3.20000+ 1 3.20000+ 1 1.29755- 5 4.31936- 3 3.20000+ 1 3.30000+ 1 3.12936- 5 4.32516- 3 3.20000+ 1 4.10000+ 1 1.52650- 6 4.36114- 3 3.20000+ 1 4.30000+ 1 6.22062- 5 4.37580- 3 3.20000+ 1 4.40000+ 1 4.19799- 6 4.38206- 3 3.30000+ 1 3.30000+ 1 8.96374- 6 4.33096- 3 3.30000+ 1 4.10000+ 1 5.97590- 6 4.36694- 3 3.30000+ 1 4.30000+ 1 1.08422- 4 4.38160- 3 3.30000+ 1 4.40000+ 1 3.84164- 6 4.38786- 3 3.30000+ 1 5.80000+ 1 4.26851- 7 4.40175- 3 4.10000+ 1 4.10000+ 1 7.63257- 7 4.40292- 3 4.10000+ 1 4.30000+ 1 7.63257- 6 4.41758- 3 4.10000+ 1 4.40000+ 1 7.63257- 7 4.42384- 3 4.30000+ 1 4.30000+ 1 4.57945- 6 4.43224- 3 4.30000+ 1 4.40000+ 1 1.10673- 5 4.43850- 3 4.30000+ 1 5.80000+ 1 7.63262- 7 4.45239- 3 4.40000+ 1 4.40000+ 1 3.81619- 7 4.44476- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.40970- 5 5.15000- 4 1.40000+ 1 2.88751- 4 6.62400- 4 1.60000+ 1 1.80030- 3 2.58400- 3 2.10000+ 1 8.61062- 4 3.13693- 3 2.20000+ 1 6.53411- 3 3.17064- 3 2.70000+ 1 4.24541- 4 3.52007- 3 3.20000+ 1 1.62600- 4 3.69238- 3 3.30000+ 1 1.25240- 3 3.69818- 3 4.10000+ 1 7.54922- 5 3.73416- 3 5.80000+ 1 6.55791- 6 3.76897- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.62080- 2 2.15300- 4 1.30000+ 1 2.50000+ 1 2.36232- 2 2.23810- 4 1.30000+ 1 2.70000+ 1 3.08687- 3 2.61370- 4 1.30000+ 1 2.90000+ 1 2.85756- 3 3.14680- 4 1.30000+ 1 3.00000+ 1 8.73185- 3 3.55170- 4 1.30000+ 1 3.20000+ 1 1.57390- 3 4.33680- 4 1.30000+ 1 3.30000+ 1 1.71427- 3 4.39480- 4 1.30000+ 1 4.10000+ 1 5.35590- 4 4.75460- 4 1.30000+ 1 4.30000+ 1 4.09515- 4 4.90120- 4 1.30000+ 1 4.40000+ 1 1.12691- 3 4.96380- 4 1.30000+ 1 5.80000+ 1 5.14088- 5 5.10270- 4 1.40000+ 1 2.10000+ 1 4.83250- 2 2.56300- 5 1.40000+ 1 2.20000+ 1 6.46410- 2 5.93400- 5 1.40000+ 1 2.40000+ 1 1.91466- 1 3.62700- 4 1.40000+ 1 2.50000+ 1 2.31335- 1 3.71210- 4 1.40000+ 1 2.70000+ 1 1.86909- 2 4.08770- 4 1.40000+ 1 2.90000+ 1 1.91884- 2 4.62080- 4 1.40000+ 1 3.00000+ 1 2.15023- 2 5.02570- 4 1.40000+ 1 3.20000+ 1 6.69099- 3 5.81080- 4 1.40000+ 1 3.30000+ 1 9.67572- 3 5.86880- 4 1.40000+ 1 4.10000+ 1 3.31303- 3 6.22860- 4 1.40000+ 1 4.30000+ 1 2.75851- 3 6.37520- 4 1.40000+ 1 4.40000+ 1 2.84018- 3 6.43780- 4 1.40000+ 1 5.80000+ 1 3.24480- 4 6.57670- 4 1.60000+ 1 1.60000+ 1 1.94285- 4 1.39430- 3 1.60000+ 1 1.80000+ 1 5.15359- 4 1.53540- 3 1.60000+ 1 1.90000+ 1 1.13494- 2 1.71669- 3 1.60000+ 1 2.10000+ 1 6.91358- 4 1.94723- 3 1.60000+ 1 2.20000+ 1 8.76291- 4 1.98094- 3 1.60000+ 1 2.40000+ 1 2.11233- 3 2.28430- 3 1.60000+ 1 2.50000+ 1 3.80764- 3 2.29281- 3 1.60000+ 1 2.70000+ 1 7.31599- 5 2.33037- 3 1.60000+ 1 2.90000+ 1 7.35649- 5 2.38368- 3 1.60000+ 1 3.00000+ 1 1.55506- 3 2.42417- 3 1.60000+ 1 3.20000+ 1 9.87660- 5 2.50268- 3 1.60000+ 1 3.30000+ 1 1.21121- 4 2.50848- 3 1.60000+ 1 4.10000+ 1 1.25996- 5 2.54446- 3 1.60000+ 1 4.30000+ 1 1.01611- 5 2.55912- 3 1.60000+ 1 4.40000+ 1 1.96720- 4 2.56538- 3 1.60000+ 1 5.80000+ 1 1.21931- 6 2.57927- 3 1.80000+ 1 1.80000+ 1 5.69031- 6 1.67650- 3 1.80000+ 1 1.90000+ 1 1.42371- 2 1.85779- 3 1.80000+ 1 2.10000+ 1 3.13797- 4 2.08833- 3 1.80000+ 1 2.20000+ 1 3.14961- 3 2.12204- 3 1.80000+ 1 2.40000+ 1 1.66728- 3 2.42540- 3 1.80000+ 1 2.50000+ 1 8.65930- 3 2.43391- 3 1.80000+ 1 2.70000+ 1 9.18583- 5 2.47147- 3 1.80000+ 1 2.90000+ 1 2.43867- 6 2.52478- 3 1.80000+ 1 3.00000+ 1 1.99903- 3 2.56527- 3 1.80000+ 1 3.20000+ 1 5.08051- 5 2.64378- 3 1.80000+ 1 3.30000+ 1 4.16600- 4 2.64958- 3 1.80000+ 1 4.10000+ 1 1.54451- 5 2.68556- 3 1.80000+ 1 4.30000+ 1 4.06464- 7 2.70022- 3 1.80000+ 1 4.40000+ 1 2.54035- 4 2.70648- 3 1.80000+ 1 5.80000+ 1 1.62578- 6 2.72037- 3 1.90000+ 1 1.90000+ 1 1.82714- 2 2.03908- 3 1.90000+ 1 2.10000+ 1 2.70861- 2 2.26962- 3 1.90000+ 1 2.20000+ 1 3.51971- 2 2.30333- 3 1.90000+ 1 2.40000+ 1 2.49638- 2 2.60669- 3 1.90000+ 1 2.50000+ 1 2.85271- 2 2.61520- 3 1.90000+ 1 2.70000+ 1 2.64882- 3 2.65276- 3 1.90000+ 1 2.90000+ 1 3.05784- 3 2.70607- 3 1.90000+ 1 3.00000+ 1 6.43989- 3 2.74656- 3 1.90000+ 1 3.20000+ 1 4.34645- 3 2.82507- 3 1.90000+ 1 3.30000+ 1 5.63870- 3 2.83087- 3 1.90000+ 1 4.10000+ 1 4.78798- 4 2.86685- 3 1.90000+ 1 4.30000+ 1 4.53193- 4 2.88151- 3 1.90000+ 1 4.40000+ 1 8.54775- 4 2.88777- 3 1.90000+ 1 5.80000+ 1 4.63362- 5 2.90166- 3 2.10000+ 1 2.10000+ 1 1.83726- 4 2.50016- 3 2.10000+ 1 2.20000+ 1 4.45849- 3 2.53387- 3 2.10000+ 1 2.40000+ 1 7.03193- 4 2.83723- 3 2.10000+ 1 2.50000+ 1 8.06571- 3 2.84574- 3 2.10000+ 1 2.70000+ 1 8.65763- 5 2.88330- 3 2.10000+ 1 2.90000+ 1 2.03230- 5 2.93661- 3 2.10000+ 1 3.00000+ 1 3.71813- 3 2.97710- 3 2.10000+ 1 3.20000+ 1 4.83692- 5 3.05561- 3 2.10000+ 1 3.30000+ 1 6.26359- 4 3.06141- 3 2.10000+ 1 4.10000+ 1 1.42260- 5 3.09739- 3 2.10000+ 1 4.30000+ 1 2.43873- 6 3.11205- 3 2.10000+ 1 4.40000+ 1 4.70273- 4 3.11831- 3 2.10000+ 1 5.80000+ 1 1.21937- 6 3.13220- 3 2.20000+ 1 2.20000+ 1 1.92570- 3 2.56758- 3 2.20000+ 1 2.40000+ 1 6.48011- 3 2.87094- 3 2.20000+ 1 2.50000+ 1 5.34655- 3 2.87945- 3 2.20000+ 1 2.70000+ 1 1.16653- 4 2.91701- 3 2.20000+ 1 2.90000+ 1 3.21102- 4 2.97032- 3 2.20000+ 1 3.00000+ 1 4.76768- 3 3.01081- 3 2.20000+ 1 3.20000+ 1 6.19450- 4 3.08932- 3 2.20000+ 1 3.30000+ 1 5.44632- 4 3.09512- 3 2.20000+ 1 4.10000+ 1 1.91042- 5 3.13110- 3 2.20000+ 1 4.30000+ 1 4.18638- 5 3.14576- 3 2.20000+ 1 4.40000+ 1 6.01163- 4 3.15202- 3 2.20000+ 1 5.80000+ 1 2.03228- 6 3.16591- 3 2.40000+ 1 2.40000+ 1 1.08158- 3 3.17430- 3 2.40000+ 1 2.50000+ 1 2.81206- 2 3.18281- 3 2.40000+ 1 2.70000+ 1 2.34534- 4 3.22037- 3 2.40000+ 1 2.90000+ 1 2.92644- 4 3.27368- 3 2.40000+ 1 3.00000+ 1 3.26177- 3 3.31417- 3 2.40000+ 1 3.20000+ 1 1.30879- 4 3.39268- 3 2.40000+ 1 3.30000+ 1 9.75073- 4 3.39848- 3 2.40000+ 1 4.10000+ 1 3.77996- 5 3.43446- 3 2.40000+ 1 4.30000+ 1 4.18638- 5 3.44912- 3 2.40000+ 1 4.40000+ 1 4.09704- 4 3.45538- 3 2.40000+ 1 5.80000+ 1 3.65811- 6 3.46927- 3 2.50000+ 1 2.50000+ 1 1.11648- 2 3.19132- 3 2.50000+ 1 2.70000+ 1 3.86541- 4 3.22888- 3 2.50000+ 1 2.90000+ 1 1.50064- 3 3.28219- 3 2.50000+ 1 3.00000+ 1 3.88784- 3 3.32268- 3 2.50000+ 1 3.20000+ 1 1.28201- 3 3.40119- 3 2.50000+ 1 3.30000+ 1 8.75924- 4 3.40699- 3 2.50000+ 1 4.10000+ 1 6.01575- 5 3.44297- 3 2.50000+ 1 4.30000+ 1 2.14619- 4 3.45763- 3 2.50000+ 1 4.40000+ 1 4.93851- 4 3.46389- 3 2.50000+ 1 5.80000+ 1 5.69052- 6 3.47778- 3 2.70000+ 1 2.70000+ 1 8.03190- 6 3.26644- 3 2.70000+ 1 2.90000+ 1 1.43728- 5 3.31975- 3 2.70000+ 1 3.00000+ 1 3.78778- 4 3.36024- 3 2.70000+ 1 3.20000+ 1 1.39502- 5 3.43875- 3 2.70000+ 1 3.30000+ 1 1.77540- 5 3.44455- 3 2.70000+ 1 4.10000+ 1 2.95921- 6 3.48053- 3 2.70000+ 1 4.30000+ 1 2.11366- 6 3.49519- 3 2.70000+ 1 4.40000+ 1 4.77690- 5 3.50145- 3 2.70000+ 1 5.80000+ 1 4.22746- 7 3.51534- 3 2.90000+ 1 3.00000+ 1 4.40993- 4 3.41355- 3 2.90000+ 1 3.20000+ 1 2.90680- 6 3.49206- 3 2.90000+ 1 3.30000+ 1 4.56780- 5 3.49786- 3 2.90000+ 1 4.10000+ 1 2.49143- 6 3.53384- 3 2.90000+ 1 4.40000+ 1 5.60565- 5 3.55476- 3 2.90000+ 1 5.80000+ 1 4.15259- 7 3.56865- 3 3.00000+ 1 3.00000+ 1 5.71066- 4 3.45404- 3 3.00000+ 1 3.20000+ 1 6.35257- 4 3.53255- 3 3.00000+ 1 3.30000+ 1 8.12266- 4 3.53835- 3 3.00000+ 1 4.10000+ 1 6.97699- 5 3.57433- 3 3.00000+ 1 4.30000+ 1 6.80476- 5 3.58899- 3 3.00000+ 1 4.40000+ 1 1.50307- 4 3.59525- 3 3.00000+ 1 5.80000+ 1 6.89096- 6 3.60914- 3 3.20000+ 1 3.20000+ 1 3.25171- 6 3.61106- 3 3.20000+ 1 3.30000+ 1 9.34853- 5 3.61686- 3 3.20000+ 1 4.10000+ 1 2.03228- 6 3.65284- 3 3.20000+ 1 4.30000+ 1 4.06470- 7 3.66750- 3 3.20000+ 1 4.40000+ 1 7.60082- 5 3.67376- 3 3.20000+ 1 5.80000+ 1 4.06470- 7 3.68765- 3 3.30000+ 1 3.30000+ 1 4.06485- 5 3.62266- 3 3.30000+ 1 4.10000+ 1 2.84539- 6 3.65864- 3 3.30000+ 1 4.30000+ 1 5.69060- 6 3.67330- 3 3.30000+ 1 4.40000+ 1 9.67393- 5 3.67956- 3 3.30000+ 1 5.80000+ 1 4.06485- 7 3.69345- 3 4.10000+ 1 4.10000+ 1 4.06469- 7 3.69462- 3 4.10000+ 1 4.30000+ 1 4.06469- 7 3.70928- 3 4.10000+ 1 4.40000+ 1 8.53548- 6 3.71554- 3 4.30000+ 1 4.40000+ 1 8.12912- 6 3.73020- 3 4.40000+ 1 4.40000+ 1 9.34815- 6 3.73646- 3 4.40000+ 1 5.80000+ 1 8.12876- 7 3.75035- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.15489- 3 2.21010- 3 1.90000+ 1 2.03609- 4 2.39139- 3 2.40000+ 1 4.50269- 2 2.95900- 3 2.90000+ 1 5.22178- 4 3.05838- 3 3.00000+ 1 4.85959- 5 3.09887- 3 4.30000+ 1 6.65138- 5 3.23382- 3 4.40000+ 1 5.90818- 6 3.24008- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 5.02772- 2 6.60800- 5 1.40000+ 1 3.30000+ 1 7.24449- 3 7.18800- 5 1.40000+ 1 4.10000+ 1 9.72613- 4 1.07860- 4 1.40000+ 1 4.30000+ 1 4.84148- 4 1.22520- 4 1.40000+ 1 4.40000+ 1 9.99725- 4 1.28780- 4 1.40000+ 1 5.80000+ 1 9.15936- 5 1.42670- 4 1.60000+ 1 1.60000+ 1 1.39574- 5 8.79300- 4 1.60000+ 1 1.80000+ 1 9.30786- 4 1.02040- 3 1.60000+ 1 1.90000+ 1 7.97327- 4 1.20169- 3 1.60000+ 1 2.10000+ 1 3.06579- 2 1.43223- 3 1.60000+ 1 2.20000+ 1 3.55393- 3 1.46594- 3 1.60000+ 1 2.40000+ 1 1.58854- 2 1.76930- 3 1.60000+ 1 2.50000+ 1 3.93257- 3 1.77781- 3 1.60000+ 1 2.70000+ 1 1.74461- 5 1.81537- 3 1.60000+ 1 2.90000+ 1 1.66608- 4 1.86868- 3 1.60000+ 1 3.00000+ 1 1.12531- 4 1.90917- 3 1.60000+ 1 3.20000+ 1 3.43699- 3 1.98768- 3 1.60000+ 1 3.30000+ 1 4.21343- 4 1.99348- 3 1.60000+ 1 4.10000+ 1 3.48921- 6 2.02946- 3 1.60000+ 1 4.30000+ 1 2.35526- 5 2.04412- 3 1.60000+ 1 4.40000+ 1 1.39574- 5 2.05038- 3 1.80000+ 1 1.80000+ 1 5.04206- 4 1.16150- 3 1.80000+ 1 1.90000+ 1 3.78571- 3 1.34279- 3 1.80000+ 1 2.10000+ 1 2.77240- 2 1.57333- 3 1.80000+ 1 2.20000+ 1 1.74290- 3 1.60704- 3 1.80000+ 1 2.40000+ 1 1.10634- 2 1.91040- 3 1.80000+ 1 2.50000+ 1 5.75289- 3 1.91891- 3 1.80000+ 1 2.70000+ 1 1.30846- 4 1.95647- 3 1.80000+ 1 2.90000+ 1 1.78827- 4 2.00978- 3 1.80000+ 1 3.00000+ 1 5.96662- 4 2.05027- 3 1.80000+ 1 3.20000+ 1 3.07757- 3 2.12878- 3 1.80000+ 1 3.30000+ 1 2.36408- 4 2.13458- 3 1.80000+ 1 4.10000+ 1 2.18081- 5 2.17056- 3 1.80000+ 1 4.30000+ 1 2.52967- 5 2.18522- 3 1.80000+ 1 4.40000+ 1 7.76382- 5 2.19148- 3 1.80000+ 1 5.80000+ 1 1.74459- 6 2.20537- 3 1.90000+ 1 1.90000+ 1 1.32775- 3 1.52408- 3 1.90000+ 1 2.10000+ 1 5.41911- 2 1.75462- 3 1.90000+ 1 2.20000+ 1 2.06221- 3 1.78833- 3 1.90000+ 1 2.40000+ 1 2.52544- 3 2.09169- 3 1.90000+ 1 2.50000+ 1 1.84936- 3 2.10020- 3 1.90000+ 1 2.70000+ 1 1.41312- 4 2.13776- 3 1.90000+ 1 2.90000+ 1 5.12068- 4 2.19107- 3 1.90000+ 1 3.00000+ 1 3.99546- 4 2.23156- 3 1.90000+ 1 3.20000+ 1 6.08725- 3 2.31007- 3 1.90000+ 1 3.30000+ 1 2.56466- 4 2.31587- 3 1.90000+ 1 4.10000+ 1 2.44254- 5 2.35185- 3 1.90000+ 1 4.30000+ 1 6.97887- 5 2.36651- 3 1.90000+ 1 4.40000+ 1 5.14669- 5 2.37277- 3 1.90000+ 1 5.80000+ 1 2.61708- 6 2.38666- 3 2.10000+ 1 2.10000+ 1 4.96586- 2 1.98516- 3 2.10000+ 1 2.20000+ 1 9.77365- 2 2.01887- 3 2.10000+ 1 2.40000+ 1 5.71471- 2 2.32223- 3 2.10000+ 1 2.50000+ 1 6.80854- 2 2.33074- 3 2.10000+ 1 2.70000+ 1 6.54338- 3 2.36830- 3 2.10000+ 1 2.90000+ 1 6.00877- 3 2.42161- 3 2.10000+ 1 3.00000+ 1 1.12918- 2 2.46210- 3 2.10000+ 1 3.20000+ 1 1.36596- 2 2.54061- 3 2.10000+ 1 3.30000+ 1 1.54714- 2 2.54641- 3 2.10000+ 1 4.10000+ 1 1.16889- 3 2.58239- 3 2.10000+ 1 4.30000+ 1 8.91502- 4 2.59705- 3 2.10000+ 1 4.40000+ 1 1.53354- 3 2.60331- 3 2.10000+ 1 5.80000+ 1 1.12531- 4 2.61720- 3 2.20000+ 1 2.20000+ 1 1.54665- 3 2.05258- 3 2.20000+ 1 2.40000+ 1 6.62195- 2 2.35594- 3 2.20000+ 1 2.50000+ 1 3.20063- 3 2.36445- 3 2.20000+ 1 2.70000+ 1 3.89934- 4 2.40201- 3 2.20000+ 1 2.90000+ 1 2.24200- 4 2.45532- 3 2.20000+ 1 3.00000+ 1 3.44564- 4 2.49581- 3 2.20000+ 1 3.20000+ 1 1.10228- 2 2.57432- 3 2.20000+ 1 3.30000+ 1 4.00408- 4 2.58012- 3 2.20000+ 1 4.10000+ 1 6.19377- 5 2.61610- 3 2.20000+ 1 4.30000+ 1 3.05320- 5 2.63076- 3 2.20000+ 1 4.40000+ 1 4.44885- 5 2.63702- 3 2.20000+ 1 5.80000+ 1 6.10620- 6 2.65091- 3 2.40000+ 1 2.40000+ 1 6.45782- 2 2.65930- 3 2.40000+ 1 2.50000+ 1 1.85769- 1 2.66781- 3 2.40000+ 1 2.70000+ 1 3.59763- 3 2.70537- 3 2.40000+ 1 2.90000+ 1 1.93741- 3 2.75868- 3 2.40000+ 1 3.00000+ 1 5.44320- 4 2.79917- 3 2.40000+ 1 3.20000+ 1 7.02231- 3 2.87768- 3 2.40000+ 1 3.30000+ 1 9.98234- 3 2.88348- 3 2.40000+ 1 4.10000+ 1 6.47261- 4 2.91946- 3 2.40000+ 1 4.30000+ 1 2.81771- 4 2.93412- 3 2.40000+ 1 4.40000+ 1 7.41475- 5 2.94038- 3 2.40000+ 1 5.80000+ 1 6.45524- 5 2.95427- 3 2.50000+ 1 2.50000+ 1 4.07050- 3 2.67632- 3 2.50000+ 1 2.70000+ 1 6.59706- 4 2.71388- 3 2.50000+ 1 2.90000+ 1 5.50520- 4 2.76719- 3 2.50000+ 1 3.00000+ 1 3.67921- 4 2.80768- 3 2.50000+ 1 3.20000+ 1 7.39561- 3 2.88619- 3 2.50000+ 1 3.30000+ 1 4.74382- 4 2.89199- 3 2.50000+ 1 4.10000+ 1 1.10105- 4 2.92797- 3 2.50000+ 1 4.30000+ 1 7.15689- 5 2.94263- 3 2.50000+ 1 4.40000+ 1 4.86318- 5 2.94889- 3 2.50000+ 1 5.80000+ 1 1.10105- 5 2.96278- 3 2.70000+ 1 2.70000+ 1 1.77440- 6 2.75144- 3 2.70000+ 1 2.90000+ 1 2.66175- 5 2.80475- 3 2.70000+ 1 3.00000+ 1 2.12932- 5 2.84524- 3 2.70000+ 1 3.20000+ 1 7.51469- 4 2.92375- 3 2.70000+ 1 3.30000+ 1 5.23453- 5 2.92955- 3 2.70000+ 1 4.10000+ 1 8.87237- 7 2.96553- 3 2.70000+ 1 4.30000+ 1 3.54879- 6 2.98019- 3 2.70000+ 1 4.40000+ 1 2.66175- 6 2.98645- 3 2.90000+ 1 2.90000+ 1 1.85722- 5 2.85806- 3 2.90000+ 1 3.00000+ 1 9.28652- 5 2.89855- 3 2.90000+ 1 3.20000+ 1 7.14119- 4 2.97706- 3 2.90000+ 1 3.30000+ 1 3.71444- 5 2.98286- 3 2.90000+ 1 4.10000+ 1 4.64310- 6 3.01884- 3 2.90000+ 1 4.30000+ 1 5.57166- 6 3.03350- 3 2.90000+ 1 4.40000+ 1 1.20715- 5 3.03976- 3 3.00000+ 1 3.00000+ 1 3.47632- 5 2.93904- 3 3.00000+ 1 3.20000+ 1 1.41274- 3 3.01755- 3 3.00000+ 1 3.30000+ 1 5.02160- 5 3.02335- 3 3.00000+ 1 4.10000+ 1 3.86250- 6 3.05933- 3 3.00000+ 1 4.30000+ 1 1.35197- 5 3.07399- 3 3.00000+ 1 4.40000+ 1 8.69102- 6 3.08025- 3 3.20000+ 1 3.20000+ 1 9.05471- 4 3.09606- 3 3.20000+ 1 3.30000+ 1 1.75589- 3 3.10186- 3 3.20000+ 1 4.10000+ 1 1.31718- 4 3.13784- 3 3.20000+ 1 4.30000+ 1 9.94437- 5 3.15250- 3 3.20000+ 1 4.40000+ 1 1.73583- 4 3.15876- 3 3.20000+ 1 5.80000+ 1 1.30845- 5 3.17265- 3 3.30000+ 1 3.30000+ 1 5.67234- 5 3.10766- 3 3.30000+ 1 4.10000+ 1 1.70168- 5 3.14364- 3 3.30000+ 1 4.30000+ 1 1.13440- 5 3.15830- 3 3.30000+ 1 4.40000+ 1 1.32348- 5 3.16456- 3 3.30000+ 1 5.80000+ 1 1.89075- 6 3.17845- 3 4.10000+ 1 4.30000+ 1 8.11548- 7 3.19428- 3 4.10000+ 1 4.40000+ 1 8.11548- 7 3.20054- 3 4.30000+ 1 4.40000+ 1 2.04689- 6 3.21520- 3 4.40000+ 1 4.40000+ 1 8.72337- 7 3.22146- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.52420- 3 2.24399- 3 2.40000+ 1 2.18160- 3 2.81160- 3 2.50000+ 1 4.26990- 2 2.82011- 3 3.00000+ 1 3.56630- 4 2.95147- 3 4.40000+ 1 4.40200- 5 3.09268- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.50746- 6 7.31900- 4 1.60000+ 1 1.80000+ 1 2.42027- 4 8.73000- 4 1.60000+ 1 1.90000+ 1 1.74153- 3 1.05429- 3 1.60000+ 1 2.10000+ 1 3.19977- 3 1.28483- 3 1.60000+ 1 2.20000+ 1 3.35540- 2 1.31854- 3 1.60000+ 1 2.40000+ 1 4.20396- 3 1.62190- 3 1.60000+ 1 2.50000+ 1 1.66427- 2 1.63041- 3 1.60000+ 1 2.70000+ 1 1.22764- 5 1.66797- 3 1.60000+ 1 2.90000+ 1 1.66615- 5 1.72128- 3 1.60000+ 1 3.00000+ 1 2.52540- 4 1.76177- 3 1.60000+ 1 3.20000+ 1 3.52521- 4 1.84028- 3 1.60000+ 1 3.30000+ 1 3.73470- 3 1.84608- 3 1.60000+ 1 4.10000+ 1 2.63074- 6 1.88206- 3 1.60000+ 1 4.30000+ 1 1.75383- 6 1.89672- 3 1.60000+ 1 4.40000+ 1 3.24461- 5 1.90298- 3 1.80000+ 1 1.80000+ 1 2.63075- 6 1.01410- 3 1.80000+ 1 1.90000+ 1 5.02018- 3 1.19539- 3 1.80000+ 1 2.10000+ 1 2.44656- 4 1.42593- 3 1.80000+ 1 2.20000+ 1 3.46660- 2 1.45964- 3 1.80000+ 1 2.40000+ 1 2.26415- 3 1.76300- 3 1.80000+ 1 2.50000+ 1 9.53670- 3 1.77151- 3 1.80000+ 1 2.70000+ 1 3.15694- 5 1.80907- 3 1.80000+ 1 2.90000+ 1 1.75383- 6 1.86238- 3 1.80000+ 1 3.00000+ 1 7.28701- 4 1.90287- 3 1.80000+ 1 3.20000+ 1 7.01544- 6 1.98138- 3 1.80000+ 1 3.30000+ 1 3.85651- 3 1.98718- 3 1.80000+ 1 4.10000+ 1 5.26131- 6 2.02316- 3 1.80000+ 1 4.40000+ 1 9.29508- 5 2.04408- 3 1.80000+ 1 5.80000+ 1 8.76908- 7 2.05797- 3 1.90000+ 1 1.90000+ 1 3.22516- 3 1.37668- 3 1.90000+ 1 2.10000+ 1 3.16565- 3 1.60722- 3 1.90000+ 1 2.20000+ 1 5.09979- 2 1.64093- 3 1.90000+ 1 2.40000+ 1 2.10713- 3 1.94429- 3 1.90000+ 1 2.50000+ 1 3.64185- 3 1.95280- 3 1.90000+ 1 2.70000+ 1 3.22715- 4 1.99036- 3 1.90000+ 1 2.90000+ 1 6.38369- 4 2.04367- 3 1.90000+ 1 3.00000+ 1 9.63763- 4 2.08416- 3 1.90000+ 1 3.20000+ 1 4.35828- 4 2.16267- 3 1.90000+ 1 3.30000+ 1 5.64386- 3 2.16847- 3 1.90000+ 1 4.10000+ 1 5.61221- 5 2.20445- 3 1.90000+ 1 4.30000+ 1 8.68145- 5 2.21911- 3 1.90000+ 1 4.40000+ 1 1.24519- 4 2.22537- 3 1.90000+ 1 5.80000+ 1 5.26128- 6 2.23926- 3 2.10000+ 1 2.10000+ 1 6.90970- 4 1.83776- 3 2.10000+ 1 2.20000+ 1 7.18612- 2 1.87147- 3 2.10000+ 1 2.40000+ 1 2.88573- 3 2.17483- 3 2.10000+ 1 2.50000+ 1 3.98239- 2 2.18334- 3 2.10000+ 1 2.70000+ 1 3.28821- 4 2.22090- 3 2.10000+ 1 2.90000+ 1 6.13784- 5 2.27421- 3 2.10000+ 1 3.00000+ 1 4.77893- 4 2.31470- 3 2.10000+ 1 3.20000+ 1 1.73620- 4 2.39321- 3 2.10000+ 1 3.30000+ 1 8.05843- 3 2.39901- 3 2.10000+ 1 4.10000+ 1 5.17339- 5 2.43499- 3 2.10000+ 1 4.30000+ 1 8.76868- 6 2.44965- 3 2.10000+ 1 4.40000+ 1 6.22582- 5 2.45591- 3 2.10000+ 1 5.80000+ 1 5.26107- 6 2.46980- 3 2.20000+ 1 2.20000+ 1 7.97361- 2 1.90518- 3 2.20000+ 1 2.40000+ 1 6.27143- 2 2.20854- 3 2.20000+ 1 2.50000+ 1 1.00696- 1 2.21705- 3 2.20000+ 1 2.70000+ 1 6.83017- 3 2.25461- 3 2.20000+ 1 2.90000+ 1 7.16789- 3 2.30792- 3 2.20000+ 1 3.00000+ 1 1.07233- 2 2.34841- 3 2.20000+ 1 3.20000+ 1 1.13790- 2 2.42692- 3 2.20000+ 1 3.30000+ 1 2.15676- 2 2.43272- 3 2.20000+ 1 4.10000+ 1 1.21367- 3 2.46870- 3 2.20000+ 1 4.30000+ 1 1.05487- 3 2.48336- 3 2.20000+ 1 4.40000+ 1 1.45917- 3 2.48962- 3 2.20000+ 1 5.80000+ 1 1.17509- 4 2.50351- 3 2.40000+ 1 2.40000+ 1 5.32635- 3 2.51190- 3 2.40000+ 1 2.50000+ 1 1.69490- 1 2.52041- 3 2.40000+ 1 2.70000+ 1 7.35729- 4 2.55797- 3 2.40000+ 1 2.90000+ 1 4.33179- 4 2.61128- 3 2.40000+ 1 3.00000+ 1 3.72694- 4 2.65177- 3 2.40000+ 1 3.20000+ 1 4.41946- 4 2.73028- 3 2.40000+ 1 3.30000+ 1 6.63987- 3 2.73608- 3 2.40000+ 1 4.10000+ 1 1.25392- 4 2.77206- 3 2.40000+ 1 4.30000+ 1 6.31374- 5 2.78672- 3 2.40000+ 1 4.40000+ 1 4.91064- 5 2.79298- 3 2.40000+ 1 5.80000+ 1 1.22763- 5 2.80687- 3 2.50000+ 1 2.50000+ 1 1.15829- 1 2.52892- 3 2.50000+ 1 2.70000+ 1 3.70151- 3 2.56648- 3 2.50000+ 1 2.90000+ 1 2.00811- 3 2.61979- 3 2.50000+ 1 3.00000+ 1 7.36584- 4 2.66028- 3 2.50000+ 1 3.20000+ 1 5.88828- 3 2.73879- 3 2.50000+ 1 3.30000+ 1 1.26690- 2 2.74459- 3 2.50000+ 1 4.10000+ 1 6.64695- 4 2.78057- 3 2.50000+ 1 4.30000+ 1 2.97261- 4 2.79523- 3 2.50000+ 1 4.40000+ 1 9.99694- 5 2.80149- 3 2.50000+ 1 5.80000+ 1 6.57663- 5 2.81538- 3 2.70000+ 1 2.70000+ 1 9.30887- 7 2.60404- 3 2.70000+ 1 2.90000+ 1 1.86179- 6 2.65735- 3 2.70000+ 1 3.00000+ 1 5.21295- 5 2.69784- 3 2.70000+ 1 3.20000+ 1 4.37514- 5 2.77635- 3 2.70000+ 1 3.30000+ 1 8.13590- 4 2.78215- 3 2.70000+ 1 4.40000+ 1 6.51596- 6 2.83905- 3 2.90000+ 1 3.00000+ 1 1.02839- 4 2.75115- 3 2.90000+ 1 3.20000+ 1 3.64009- 6 2.82966- 3 2.90000+ 1 3.30000+ 1 8.39070- 4 2.83546- 3 2.90000+ 1 4.40000+ 1 1.36506- 5 2.89236- 3 3.00000+ 1 3.00000+ 1 7.88058- 5 2.79164- 3 3.00000+ 1 3.20000+ 1 7.59598- 5 2.87015- 3 3.00000+ 1 3.30000+ 1 1.29036- 3 2.87595- 3 3.00000+ 1 4.10000+ 1 9.49474- 6 2.91193- 3 3.00000+ 1 4.30000+ 1 1.51911- 5 2.92659- 3 3.00000+ 1 4.40000+ 1 1.99391- 5 2.93285- 3 3.00000+ 1 5.80000+ 1 9.49474- 7 2.94674- 3 3.20000+ 1 3.20000+ 1 1.05223- 5 2.94866- 3 3.20000+ 1 3.30000+ 1 1.28372- 3 2.95446- 3 3.20000+ 1 4.10000+ 1 6.13782- 6 2.99044- 3 3.20000+ 1 4.30000+ 1 8.76865- 7 3.00510- 3 3.20000+ 1 4.40000+ 1 8.76865- 6 3.01136- 3 3.20000+ 1 5.80000+ 1 8.76865- 7 3.02525- 3 3.30000+ 1 3.30000+ 1 1.41094- 3 2.96026- 3 3.30000+ 1 4.10000+ 1 1.35926- 4 2.99624- 3 3.30000+ 1 4.30000+ 1 1.19252- 4 3.01090- 3 3.30000+ 1 4.40000+ 1 1.62230- 4 3.01716- 3 3.30000+ 1 5.80000+ 1 1.31532- 5 3.03105- 3 4.10000+ 1 4.40000+ 1 1.97860- 6 3.05314- 3 4.30000+ 1 4.40000+ 1 2.78790- 6 3.06780- 3 4.40000+ 1 4.40000+ 1 1.99020- 6 3.07406- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.60634- 5 1.41100- 4 1.90000+ 1 3.93419- 4 3.22390- 4 2.90000+ 1 2.71174- 4 9.89380- 4 3.00000+ 1 7.88150- 5 1.02987- 3 4.30000+ 1 4.91513- 5 1.16482- 3 4.40000+ 1 1.61875- 5 1.17108- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.55898- 2 5.97800- 5 1.80000+ 1 3.30000+ 1 1.03803- 1 6.55800- 5 1.80000+ 1 4.10000+ 1 8.62401- 3 1.01560- 4 1.80000+ 1 4.30000+ 1 6.58631- 3 1.16220- 4 1.80000+ 1 4.40000+ 1 9.46307- 3 1.22480- 4 1.80000+ 1 5.80000+ 1 8.16219- 4 1.36370- 4 1.90000+ 1 2.40000+ 1 1.70593- 2 2.26900- 5 1.90000+ 1 2.50000+ 1 3.89223- 2 3.12000- 5 1.90000+ 1 2.70000+ 1 4.20332- 2 6.87600- 5 1.90000+ 1 2.90000+ 1 4.99517- 2 1.22070- 4 1.90000+ 1 3.00000+ 1 4.77858- 2 1.62560- 4 1.90000+ 1 3.20000+ 1 4.24246- 2 2.41070- 4 1.90000+ 1 3.30000+ 1 5.26464- 2 2.46870- 4 1.90000+ 1 4.10000+ 1 7.43840- 3 2.82850- 4 1.90000+ 1 4.30000+ 1 6.99798- 3 2.97510- 4 1.90000+ 1 4.40000+ 1 6.47303- 3 3.03770- 4 1.90000+ 1 5.80000+ 1 7.10473- 4 3.17660- 4 2.10000+ 1 2.40000+ 1 4.21635- 3 2.53230- 4 2.10000+ 1 2.50000+ 1 5.92319- 3 2.61740- 4 2.10000+ 1 2.70000+ 1 1.80233- 2 2.99300- 4 2.10000+ 1 2.90000+ 1 6.10933- 3 3.52610- 4 2.10000+ 1 3.00000+ 1 6.96574- 3 3.93100- 4 2.10000+ 1 3.20000+ 1 2.13264- 3 4.71610- 4 2.10000+ 1 3.30000+ 1 2.67351- 3 4.77410- 4 2.10000+ 1 4.10000+ 1 2.37539- 3 5.13390- 4 2.10000+ 1 4.30000+ 1 8.56072- 4 5.28050- 4 2.10000+ 1 4.40000+ 1 7.85506- 4 5.34310- 4 2.10000+ 1 5.80000+ 1 2.20509- 4 5.48200- 4 2.20000+ 1 2.20000+ 1 3.78800- 3 0.00000+ 0 2.20000+ 1 2.40000+ 1 6.43371- 3 2.86940- 4 2.20000+ 1 2.50000+ 1 7.24817- 3 2.95450- 4 2.20000+ 1 2.70000+ 1 2.36438- 2 3.33010- 4 2.20000+ 1 2.90000+ 1 9.36853- 3 3.86320- 4 2.20000+ 1 3.00000+ 1 7.47535- 3 4.26810- 4 2.20000+ 1 3.20000+ 1 2.01129- 3 5.05320- 4 2.20000+ 1 3.30000+ 1 3.08221- 3 5.11120- 4 2.20000+ 1 4.10000+ 1 3.09448- 3 5.47100- 4 2.20000+ 1 4.30000+ 1 1.16077- 3 5.61760- 4 2.20000+ 1 4.40000+ 1 9.36089- 4 5.68020- 4 2.20000+ 1 5.80000+ 1 2.87334- 4 5.81910- 4 2.40000+ 1 2.40000+ 1 9.37073- 3 5.90300- 4 2.40000+ 1 2.50000+ 1 1.80083- 2 5.98810- 4 2.40000+ 1 2.70000+ 1 2.15923- 2 6.36370- 4 2.40000+ 1 2.90000+ 1 3.00836- 3 6.89680- 4 2.40000+ 1 3.00000+ 1 1.19845- 2 7.30170- 4 2.40000+ 1 3.20000+ 1 1.13934- 3 8.08680- 4 2.40000+ 1 3.30000+ 1 7.36386- 4 8.14480- 4 2.40000+ 1 4.10000+ 1 2.44865- 3 8.50460- 4 2.40000+ 1 4.30000+ 1 3.41761- 4 8.65120- 4 2.40000+ 1 4.40000+ 1 1.28537- 3 8.71380- 4 2.40000+ 1 5.80000+ 1 2.22060- 4 8.85270- 4 2.50000+ 1 2.50000+ 1 1.54865- 2 6.07320- 4 2.50000+ 1 2.70000+ 1 2.79503- 2 6.44880- 4 2.50000+ 1 2.90000+ 1 1.50283- 3 6.98190- 4 2.50000+ 1 3.00000+ 1 1.30489- 2 7.38680- 4 2.50000+ 1 3.20000+ 1 6.72360- 4 8.17190- 4 2.50000+ 1 3.30000+ 1 1.63898- 3 8.22990- 4 2.50000+ 1 4.10000+ 1 3.15809- 3 8.58970- 4 2.50000+ 1 4.30000+ 1 1.66353- 4 8.73630- 4 2.50000+ 1 4.40000+ 1 1.34702- 3 8.79890- 4 2.50000+ 1 5.80000+ 1 2.86228- 4 8.93780- 4 2.70000+ 1 2.70000+ 1 1.63291- 2 6.82440- 4 2.70000+ 1 2.90000+ 1 2.38647- 2 7.35750- 4 2.70000+ 1 3.00000+ 1 3.77774- 2 7.76240- 4 2.70000+ 1 3.20000+ 1 3.50417- 2 8.54750- 4 2.70000+ 1 3.30000+ 1 4.84658- 2 8.60550- 4 2.70000+ 1 4.10000+ 1 4.86400- 3 8.96530- 4 2.70000+ 1 4.30000+ 1 3.54926- 3 9.11190- 4 2.70000+ 1 4.40000+ 1 5.13003- 3 9.17450- 4 2.70000+ 1 5.80000+ 1 4.59807- 4 9.31340- 4 2.90000+ 1 2.90000+ 1 1.91557- 3 7.89060- 4 2.90000+ 1 3.00000+ 1 8.36854- 3 8.29550- 4 2.90000+ 1 3.20000+ 1 3.28184- 3 9.08060- 4 2.90000+ 1 3.30000+ 1 2.41633- 3 9.13860- 4 2.90000+ 1 4.10000+ 1 2.79472- 3 9.49840- 4 2.90000+ 1 4.30000+ 1 4.69674- 4 9.64500- 4 2.90000+ 1 4.40000+ 1 8.75304- 4 9.70760- 4 2.90000+ 1 5.80000+ 1 2.54236- 4 9.84650- 4 3.00000+ 1 3.00000+ 1 5.08432- 3 8.70040- 4 3.00000+ 1 3.20000+ 1 2.46112- 3 9.48550- 4 3.00000+ 1 3.30000+ 1 5.44216- 3 9.54350- 4 3.00000+ 1 4.10000+ 1 4.46101- 3 9.90330- 4 3.00000+ 1 4.30000+ 1 1.07523- 3 1.00499- 3 3.00000+ 1 4.40000+ 1 1.21074- 3 1.01125- 3 3.00000+ 1 5.80000+ 1 4.08628- 4 1.02514- 3 3.20000+ 1 3.20000+ 1 9.96517- 4 1.02706- 3 3.20000+ 1 3.30000+ 1 2.99174- 3 1.03286- 3 3.20000+ 1 4.10000+ 1 4.79943- 3 1.06884- 3 3.20000+ 1 4.30000+ 1 4.44631- 4 1.08350- 3 3.20000+ 1 4.40000+ 1 2.56944- 4 1.08976- 3 3.20000+ 1 5.80000+ 1 4.37940- 4 1.10365- 3 3.30000+ 1 3.30000+ 1 1.91377- 3 1.03866- 3 3.30000+ 1 4.10000+ 1 6.34133- 3 1.07464- 3 3.30000+ 1 4.30000+ 1 2.75528- 4 1.08930- 3 3.30000+ 1 4.40000+ 1 6.51415- 4 1.09556- 3 3.30000+ 1 5.80000+ 1 5.76664- 4 1.10945- 3 4.10000+ 1 4.10000+ 1 3.88278- 4 1.11062- 3 4.10000+ 1 4.30000+ 1 4.72108- 4 1.12528- 3 4.10000+ 1 4.40000+ 1 6.97130- 4 1.13154- 3 4.10000+ 1 5.80000+ 1 7.28007- 5 1.14543- 3 4.30000+ 1 4.30000+ 1 3.08110- 5 1.13994- 3 4.30000+ 1 4.40000+ 1 1.27646- 4 1.14620- 3 4.30000+ 1 5.80000+ 1 4.18147- 5 1.16009- 3 4.40000+ 1 4.40000+ 1 7.03406- 5 1.15246- 3 4.40000+ 1 5.80000+ 1 5.51307- 5 1.16635- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.00004- 3 4.11830- 4 2.70000+ 1 2.36853- 4 7.94970- 4 3.20000+ 1 6.35180- 5 9.67280- 4 4.10000+ 1 4.37445- 5 1.00906- 3 5.80000+ 1 3.38688- 6 1.04387- 3 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 2.64311- 2 2.14600- 5 1.90000+ 1 3.20000+ 1 1.14212- 2 9.99700- 5 1.90000+ 1 3.30000+ 1 1.77067- 2 1.05770- 4 1.90000+ 1 4.10000+ 1 2.48585- 3 1.41750- 4 1.90000+ 1 4.30000+ 1 2.55270- 3 1.56410- 4 1.90000+ 1 4.40000+ 1 2.53023- 3 1.62670- 4 1.90000+ 1 5.80000+ 1 2.31516- 4 1.76560- 4 2.10000+ 1 2.40000+ 1 1.10193- 1 1.12130- 4 2.10000+ 1 2.50000+ 1 2.54680- 1 1.20640- 4 2.10000+ 1 2.70000+ 1 3.74768- 2 1.58200- 4 2.10000+ 1 2.90000+ 1 3.01261- 2 2.11510- 4 2.10000+ 1 3.00000+ 1 3.94985- 2 2.52000- 4 2.10000+ 1 3.20000+ 1 2.16011- 2 3.30510- 4 2.10000+ 1 3.30000+ 1 3.33298- 2 3.36310- 4 2.10000+ 1 4.10000+ 1 6.71871- 3 3.72290- 4 2.10000+ 1 4.30000+ 1 4.19040- 3 3.86950- 4 2.10000+ 1 4.40000+ 1 5.29041- 3 3.93210- 4 2.10000+ 1 5.80000+ 1 6.54891- 4 4.07100- 4 2.20000+ 1 2.40000+ 1 4.26013- 2 1.45840- 4 2.20000+ 1 2.50000+ 1 1.09119- 2 1.54350- 4 2.20000+ 1 2.70000+ 1 5.90453- 3 1.91910- 4 2.20000+ 1 2.90000+ 1 2.49004- 2 2.45220- 4 2.20000+ 1 3.00000+ 1 5.24529- 3 2.85710- 4 2.20000+ 1 3.20000+ 1 2.39346- 3 3.64220- 4 2.20000+ 1 3.30000+ 1 2.54811- 3 3.70020- 4 2.20000+ 1 4.10000+ 1 8.05687- 4 4.06000- 4 2.20000+ 1 4.30000+ 1 2.49934- 3 4.20660- 4 2.20000+ 1 4.40000+ 1 5.59456- 4 4.26920- 4 2.20000+ 1 5.80000+ 1 7.52859- 5 4.40810- 4 2.40000+ 1 2.40000+ 1 2.29373- 3 4.49200- 4 2.40000+ 1 2.50000+ 1 1.33065- 2 4.57710- 4 2.40000+ 1 2.70000+ 1 5.00065- 3 4.95270- 4 2.40000+ 1 2.90000+ 1 2.04236- 2 5.48580- 4 2.40000+ 1 3.00000+ 1 3.09577- 3 5.89070- 4 2.40000+ 1 3.20000+ 1 5.78189- 3 6.67580- 4 2.40000+ 1 3.30000+ 1 3.84060- 3 6.73380- 4 2.40000+ 1 4.10000+ 1 9.10243- 4 7.09360- 4 2.40000+ 1 4.30000+ 1 2.08267- 3 7.24020- 4 2.40000+ 1 4.40000+ 1 3.72245- 4 7.30280- 4 2.40000+ 1 5.80000+ 1 8.78685- 5 7.44170- 4 2.50000+ 1 2.50000+ 1 6.34878- 4 4.66220- 4 2.50000+ 1 2.70000+ 1 2.85557- 3 5.03780- 4 2.50000+ 1 2.90000+ 1 3.22151- 2 5.57090- 4 2.50000+ 1 3.00000+ 1 1.85356- 3 5.97580- 4 2.50000+ 1 3.20000+ 1 1.20495- 2 6.76090- 4 2.50000+ 1 3.30000+ 1 1.12005- 3 6.81890- 4 2.50000+ 1 4.10000+ 1 3.92963- 4 7.17870- 4 2.50000+ 1 4.30000+ 1 3.17617- 3 7.32530- 4 2.50000+ 1 4.40000+ 1 2.10623- 4 7.38790- 4 2.50000+ 1 5.80000+ 1 3.65891- 5 7.52680- 4 2.70000+ 1 2.70000+ 1 1.25950- 3 5.41340- 4 2.70000+ 1 2.90000+ 1 1.68114- 2 5.94650- 4 2.70000+ 1 3.00000+ 1 3.18696- 3 6.35140- 4 2.70000+ 1 3.20000+ 1 4.00368- 3 7.13650- 4 2.70000+ 1 3.30000+ 1 2.85301- 3 7.19450- 4 2.70000+ 1 4.10000+ 1 3.51464- 4 7.55430- 4 2.70000+ 1 4.30000+ 1 1.63095- 3 7.70090- 4 2.70000+ 1 4.40000+ 1 3.90233- 4 7.76350- 4 2.70000+ 1 5.80000+ 1 3.25202- 5 7.90240- 4 2.90000+ 1 2.90000+ 1 1.35345- 2 6.47960- 4 2.90000+ 1 3.00000+ 1 3.56430- 2 6.88450- 4 2.90000+ 1 3.20000+ 1 2.68296- 2 7.66960- 4 2.90000+ 1 3.30000+ 1 4.47870- 2 7.72760- 4 2.90000+ 1 4.10000+ 1 3.73081- 3 8.08740- 4 2.90000+ 1 4.30000+ 1 3.38095- 3 8.23400- 4 2.90000+ 1 4.40000+ 1 4.87238- 3 8.29660- 4 2.90000+ 1 5.80000+ 1 3.61922- 4 8.43550- 4 3.00000+ 1 3.00000+ 1 1.15618- 3 7.28940- 4 3.00000+ 1 3.20000+ 1 4.62622- 3 8.07450- 4 3.00000+ 1 3.30000+ 1 2.00709- 3 8.13250- 4 3.00000+ 1 4.10000+ 1 4.43761- 4 8.49230- 4 3.00000+ 1 4.30000+ 1 3.19183- 3 8.63890- 4 3.00000+ 1 4.40000+ 1 2.67344- 4 8.70150- 4 3.00000+ 1 5.80000+ 1 4.07122- 5 8.84040- 4 3.20000+ 1 3.20000+ 1 8.06835- 4 8.85960- 4 3.20000+ 1 3.30000+ 1 1.29918- 3 8.91760- 4 3.20000+ 1 4.10000+ 1 3.47433- 4 9.27740- 4 3.20000+ 1 4.30000+ 1 1.17173- 3 9.42400- 4 3.20000+ 1 4.40000+ 1 2.94386- 4 9.48660- 4 3.20000+ 1 5.80000+ 1 3.36446- 5 9.62550- 4 3.30000+ 1 3.30000+ 1 1.46449- 4 8.97560- 4 3.30000+ 1 4.10000+ 1 1.21154- 4 9.33540- 4 3.30000+ 1 4.30000+ 1 1.32781- 3 9.48200- 4 3.30000+ 1 4.40000+ 1 7.36687- 5 9.54460- 4 3.30000+ 1 5.80000+ 1 1.10945- 5 9.68350- 4 4.10000+ 1 4.10000+ 1 8.20069- 6 9.69520- 4 4.10000+ 1 4.30000+ 1 9.88190- 5 9.84180- 4 4.10000+ 1 4.40000+ 1 1.64010- 5 9.90440- 4 4.10000+ 1 5.80000+ 1 1.64010- 6 1.00433- 3 4.30000+ 1 4.30000+ 1 5.26844- 5 9.98840- 4 4.30000+ 1 4.40000+ 1 1.29101- 4 1.00510- 3 4.30000+ 1 5.80000+ 1 9.25036- 6 1.01899- 3 4.40000+ 1 4.40000+ 1 3.68289- 6 1.01136- 3 4.40000+ 1 5.80000+ 1 1.33914- 6 1.02525- 3 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.41035- 5 2.30540- 4 2.20000+ 1 1.98320- 4 2.64250- 4 2.70000+ 1 2.41577- 4 6.13680- 4 3.20000+ 1 2.26075- 5 7.85990- 4 3.30000+ 1 1.34353- 4 7.91790- 4 4.10000+ 1 4.35285- 5 8.27770- 4 5.80000+ 1 3.32724- 6 8.62580- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.90000+ 1 1.66713- 2 3.02200- 5 2.10000+ 1 3.00000+ 1 4.91068- 2 7.07100- 5 2.10000+ 1 3.20000+ 1 1.58295- 2 1.49220- 4 2.10000+ 1 3.30000+ 1 2.52580- 2 1.55020- 4 2.10000+ 1 4.10000+ 1 3.37071- 3 1.91000- 4 2.10000+ 1 4.30000+ 1 2.28301- 3 2.05660- 4 2.10000+ 1 4.40000+ 1 5.43688- 3 2.11920- 4 2.10000+ 1 5.80000+ 1 3.23328- 4 2.25810- 4 2.20000+ 1 2.70000+ 1 9.94385- 2 1.06200- 5 2.20000+ 1 2.90000+ 1 1.07689- 1 6.39300- 5 2.20000+ 1 3.00000+ 1 1.26329- 1 1.04420- 4 2.20000+ 1 3.20000+ 1 1.05723- 1 1.82930- 4 2.20000+ 1 3.30000+ 1 1.26486- 1 1.88730- 4 2.20000+ 1 4.10000+ 1 1.80883- 2 2.24710- 4 2.20000+ 1 4.30000+ 1 1.52232- 2 2.39370- 4 2.20000+ 1 4.40000+ 1 1.57208- 2 2.45630- 4 2.20000+ 1 5.80000+ 1 1.73884- 3 2.59520- 4 2.40000+ 1 2.40000+ 1 8.47760- 4 2.67910- 4 2.40000+ 1 2.50000+ 1 8.03126- 3 2.76420- 4 2.40000+ 1 2.70000+ 1 8.37100- 3 3.13980- 4 2.40000+ 1 2.90000+ 1 4.50743- 3 3.67290- 4 2.40000+ 1 3.00000+ 1 5.32185- 2 4.07780- 4 2.40000+ 1 3.20000+ 1 1.89161- 3 4.86290- 4 2.40000+ 1 3.30000+ 1 7.62807- 3 4.92090- 4 2.40000+ 1 4.10000+ 1 9.79358- 4 5.28070- 4 2.40000+ 1 4.30000+ 1 5.68251- 4 5.42730- 4 2.40000+ 1 4.40000+ 1 5.00195- 3 5.48990- 4 2.40000+ 1 5.80000+ 1 8.94101- 5 5.62880- 4 2.50000+ 1 2.50000+ 1 4.78756- 3 2.84930- 4 2.50000+ 1 2.70000+ 1 1.88813- 2 3.22490- 4 2.50000+ 1 2.90000+ 1 1.58325- 2 3.75800- 4 2.50000+ 1 3.00000+ 1 6.40420- 2 4.16290- 4 2.50000+ 1 3.20000+ 1 1.50649- 3 4.94800- 4 2.50000+ 1 3.30000+ 1 1.04450- 2 5.00600- 4 2.50000+ 1 4.10000+ 1 2.65591- 3 5.36580- 4 2.50000+ 1 4.30000+ 1 2.06939- 3 5.51240- 4 2.50000+ 1 4.40000+ 1 6.09008- 3 5.57500- 4 2.50000+ 1 5.80000+ 1 2.49181- 4 5.71390- 4 2.70000+ 1 2.70000+ 1 5.12921- 6 3.60050- 4 2.70000+ 1 2.90000+ 1 2.29535- 4 4.13360- 4 2.70000+ 1 3.00000+ 1 4.99048- 3 4.53850- 4 2.70000+ 1 3.20000+ 1 4.51383- 4 5.32360- 4 2.70000+ 1 3.30000+ 1 7.85734- 4 5.38160- 4 2.70000+ 1 4.10000+ 1 5.44988- 6 5.74140- 4 2.70000+ 1 4.30000+ 1 2.21196- 5 5.88800- 4 2.70000+ 1 4.40000+ 1 4.54895- 4 5.95060- 4 2.70000+ 1 5.80000+ 1 6.41163- 7 6.08950- 4 2.90000+ 1 2.90000+ 1 1.25535- 6 4.66670- 4 2.90000+ 1 3.00000+ 1 5.44487- 3 5.07160- 4 2.90000+ 1 3.20000+ 1 2.37896- 4 5.85670- 4 2.90000+ 1 3.30000+ 1 7.03313- 4 5.91470- 4 2.90000+ 1 4.10000+ 1 3.67200- 5 6.27450- 4 2.90000+ 1 4.30000+ 1 2.51082- 6 6.42110- 4 2.90000+ 1 4.40000+ 1 5.09051- 4 6.48370- 4 2.90000+ 1 5.80000+ 1 3.45235- 6 6.62260- 4 3.00000+ 1 3.00000+ 1 7.17852- 3 5.47650- 4 3.00000+ 1 3.20000+ 1 7.95798- 3 6.26160- 4 3.00000+ 1 3.30000+ 1 1.06145- 2 6.31960- 4 3.00000+ 1 4.10000+ 1 9.39147- 4 6.67940- 4 3.00000+ 1 4.30000+ 1 8.23144- 4 6.82600- 4 3.00000+ 1 4.40000+ 1 1.65268- 3 6.88860- 4 3.00000+ 1 5.80000+ 1 9.09177- 5 7.02750- 4 3.20000+ 1 3.20000+ 1 1.38682- 4 7.04670- 4 3.20000+ 1 3.30000+ 1 8.30651- 4 7.10470- 4 3.20000+ 1 4.10000+ 1 5.31175- 5 7.46450- 4 3.20000+ 1 4.30000+ 1 3.01470- 5 7.61110- 4 3.20000+ 1 4.40000+ 1 6.61814- 4 7.67370- 4 3.20000+ 1 5.80000+ 1 4.88111- 6 7.81260- 4 3.30000+ 1 3.30000+ 1 7.60628- 4 7.16270- 4 3.30000+ 1 4.10000+ 1 1.18676- 4 7.52250- 4 3.30000+ 1 4.30000+ 1 8.72134- 5 7.66910- 4 3.30000+ 1 4.40000+ 1 8.60259- 4 7.73170- 4 3.30000+ 1 5.80000+ 1 1.13149- 5 7.87060- 4 4.10000+ 1 4.30000+ 1 2.58408- 6 8.02890- 4 4.10000+ 1 4.40000+ 1 7.52246- 5 8.09150- 4 4.30000+ 1 4.40000+ 1 6.74726- 5 8.23810- 4 4.30000+ 1 5.80000+ 1 2.87118- 7 8.37700- 4 4.40000+ 1 4.40000+ 1 8.01057- 5 8.30070- 4 4.40000+ 1 5.80000+ 1 7.17788- 6 8.43960- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 3.89717- 4 3.37070- 4 2.90000+ 1 1.08709- 4 4.36450- 4 3.00000+ 1 1.30569- 5 4.76940- 4 4.30000+ 1 1.60799- 5 6.11890- 4 4.40000+ 1 1.81148- 6 6.18150- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.30000+ 1 1.02076- 3 8.83000- 6 2.20000+ 1 4.40000+ 1 2.17684- 3 1.50900- 5 2.20000+ 1 5.80000+ 1 1.64871- 4 2.89800- 5 2.40000+ 1 2.40000+ 1 4.19608- 2 3.73700- 5 2.40000+ 1 2.50000+ 1 1.46135- 1 4.58800- 5 2.40000+ 1 2.70000+ 1 1.01224- 1 8.34400- 5 2.40000+ 1 2.90000+ 1 8.74845- 2 1.36750- 4 2.40000+ 1 3.00000+ 1 1.11486- 1 1.77240- 4 2.40000+ 1 3.20000+ 1 1.09536- 1 2.55750- 4 2.40000+ 1 3.30000+ 1 1.14166- 1 2.61550- 4 2.40000+ 1 4.10000+ 1 1.83053- 2 2.97530- 4 2.40000+ 1 4.30000+ 1 1.27080- 2 3.12190- 4 2.40000+ 1 4.40000+ 1 1.46445- 2 3.18450- 4 2.40000+ 1 5.80000+ 1 1.75401- 3 3.32340- 4 2.50000+ 1 2.50000+ 1 3.47422- 3 5.43900- 5 2.50000+ 1 2.70000+ 1 8.16941- 3 9.19500- 5 2.50000+ 1 2.90000+ 1 1.56296- 2 1.45260- 4 2.50000+ 1 3.00000+ 1 7.25169- 3 1.85750- 4 2.50000+ 1 3.20000+ 1 1.19468- 1 2.64260- 4 2.50000+ 1 3.30000+ 1 5.00667- 3 2.70060- 4 2.50000+ 1 4.10000+ 1 1.07175- 3 3.06040- 4 2.50000+ 1 4.30000+ 1 1.48555- 3 3.20700- 4 2.50000+ 1 4.40000+ 1 7.61938- 4 3.26960- 4 2.50000+ 1 5.80000+ 1 9.99823- 5 3.40850- 4 2.70000+ 1 2.70000+ 1 8.32932- 4 1.29510- 4 2.70000+ 1 2.90000+ 1 1.96711- 3 1.82820- 4 2.70000+ 1 3.00000+ 1 1.62914- 3 2.23310- 4 2.70000+ 1 3.20000+ 1 1.06892- 2 3.01820- 4 2.70000+ 1 3.30000+ 1 2.26216- 3 3.07620- 4 2.70000+ 1 4.10000+ 1 1.74666- 4 3.43600- 4 2.70000+ 1 4.30000+ 1 1.91809- 4 3.58260- 4 2.70000+ 1 4.40000+ 1 1.68545- 4 3.64520- 4 2.70000+ 1 5.80000+ 1 1.63234- 5 3.78410- 4 2.90000+ 1 2.90000+ 1 3.68921- 4 2.36130- 4 2.90000+ 1 3.00000+ 1 2.06516- 3 2.76620- 4 2.90000+ 1 3.20000+ 1 6.90812- 3 3.55130- 4 2.90000+ 1 3.30000+ 1 8.88846- 4 3.60930- 4 2.90000+ 1 4.10000+ 1 1.26107- 4 3.96910- 4 2.90000+ 1 4.30000+ 1 7.42744- 5 4.11570- 4 2.90000+ 1 4.40000+ 1 1.64057- 4 4.17830- 4 2.90000+ 1 5.80000+ 1 1.14265- 5 4.31720- 4 3.00000+ 1 3.00000+ 1 7.58506- 4 3.17110- 4 3.00000+ 1 3.20000+ 1 1.38113- 2 3.95620- 4 3.00000+ 1 3.30000+ 1 1.19974- 3 4.01420- 4 3.00000+ 1 4.10000+ 1 7.11345- 5 4.37400- 4 3.00000+ 1 4.30000+ 1 1.45872- 4 4.52060- 4 3.00000+ 1 4.40000+ 1 1.22285- 4 4.58320- 4 3.00000+ 1 5.80000+ 1 5.99450- 6 4.72210- 4 3.20000+ 1 3.20000+ 1 8.32042- 3 4.74130- 4 3.20000+ 1 3.30000+ 1 1.62796- 2 4.79930- 4 3.20000+ 1 4.10000+ 1 1.45903- 3 5.15910- 4 3.20000+ 1 4.30000+ 1 1.01452- 3 5.30570- 4 3.20000+ 1 4.40000+ 1 1.84100- 3 5.36830- 4 3.20000+ 1 5.80000+ 1 1.39159- 4 5.50720- 4 3.30000+ 1 3.30000+ 1 2.93686- 4 4.85730- 4 3.30000+ 1 4.10000+ 1 6.58551- 5 5.21710- 4 3.30000+ 1 4.30000+ 1 6.09468- 5 5.36370- 4 3.30000+ 1 4.40000+ 1 1.12071- 4 5.42630- 4 3.30000+ 1 5.80000+ 1 5.72655- 6 5.56520- 4 4.10000+ 1 4.10000+ 1 4.72905- 6 5.57690- 4 4.10000+ 1 4.30000+ 1 9.06403- 6 5.72350- 4 4.10000+ 1 4.40000+ 1 7.09358- 6 5.78610- 4 4.10000+ 1 5.80000+ 1 7.88162- 7 5.92500- 4 4.30000+ 1 4.30000+ 1 1.22426- 6 5.87010- 4 4.30000+ 1 4.40000+ 1 1.14264- 5 5.93270- 4 4.30000+ 1 5.80000+ 1 8.16198- 7 6.07160- 4 4.40000+ 1 4.40000+ 1 4.89734- 6 5.99530- 4 4.40000+ 1 5.80000+ 1 4.08115- 7 6.13420- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.55180- 5 3.03360- 4 2.50000+ 1 3.44391- 4 3.11870- 4 3.00000+ 1 9.51962- 5 4.43230- 4 4.40000+ 1 1.32340- 5 5.84440- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 2.80256- 3 3.66000- 6 2.40000+ 1 2.50000+ 1 1.95139- 2 1.21700- 5 2.40000+ 1 2.70000+ 1 1.24338- 2 4.97300- 5 2.40000+ 1 2.90000+ 1 8.27242- 3 1.03040- 4 2.40000+ 1 3.00000+ 1 1.58578- 2 1.43530- 4 2.40000+ 1 3.20000+ 1 6.99306- 3 2.22040- 4 2.40000+ 1 3.30000+ 1 1.04393- 1 2.27840- 4 2.40000+ 1 4.10000+ 1 1.88661- 3 2.63820- 4 2.40000+ 1 4.30000+ 1 1.13441- 3 2.78480- 4 2.40000+ 1 4.40000+ 1 1.73464- 3 2.84740- 4 2.40000+ 1 5.80000+ 1 1.78204- 4 2.98630- 4 2.50000+ 1 2.50000+ 1 3.99919- 2 2.06800- 5 2.50000+ 1 2.70000+ 1 1.10220- 1 5.82400- 5 2.50000+ 1 2.90000+ 1 1.17727- 1 1.11550- 4 2.50000+ 1 3.00000+ 1 1.11959- 1 1.52040- 4 2.50000+ 1 3.20000+ 1 1.05531- 1 2.30550- 4 2.50000+ 1 3.30000+ 1 1.94156- 1 2.36350- 4 2.50000+ 1 4.10000+ 1 2.00944- 2 2.72330- 4 2.50000+ 1 4.30000+ 1 1.64294- 2 2.86990- 4 2.50000+ 1 4.40000+ 1 1.48349- 2 2.93250- 4 2.50000+ 1 5.80000+ 1 1.91727- 3 3.07140- 4 2.70000+ 1 2.70000+ 1 1.53043- 3 9.58000- 5 2.70000+ 1 2.90000+ 1 2.07367- 3 1.49110- 4 2.70000+ 1 3.00000+ 1 3.52180- 3 1.89600- 4 2.70000+ 1 3.20000+ 1 3.11138- 3 2.68110- 4 2.70000+ 1 3.30000+ 1 1.38493- 2 2.73910- 4 2.70000+ 1 4.10000+ 1 3.09337- 4 3.09890- 4 2.70000+ 1 4.30000+ 1 2.07981- 4 3.24550- 4 2.70000+ 1 4.40000+ 1 3.60913- 4 3.30810- 4 2.70000+ 1 5.80000+ 1 2.82018- 5 3.44700- 4 2.90000+ 1 2.90000+ 1 2.56620- 4 2.02420- 4 2.90000+ 1 3.00000+ 1 3.66355- 3 2.42910- 4 2.90000+ 1 3.20000+ 1 4.80401- 4 3.21420- 4 2.90000+ 1 3.30000+ 1 1.07177- 2 3.27220- 4 2.90000+ 1 4.10000+ 1 1.27875- 4 3.63200- 4 2.90000+ 1 4.30000+ 1 4.99231- 5 3.77860- 4 2.90000+ 1 4.40000+ 1 3.02618- 4 3.84120- 4 2.90000+ 1 5.80000+ 1 1.13856- 5 3.98010- 4 3.00000+ 1 3.00000+ 1 1.20058- 3 2.83400- 4 3.00000+ 1 3.20000+ 1 1.80113- 3 3.61910- 4 3.00000+ 1 3.30000+ 1 1.41822- 2 3.67710- 4 3.00000+ 1 4.10000+ 1 1.22158- 4 4.03690- 4 3.00000+ 1 4.30000+ 1 1.79073- 4 4.18350- 4 3.00000+ 1 4.40000+ 1 1.95269- 4 4.24610- 4 3.00000+ 1 5.80000+ 1 9.63234- 6 4.38500- 4 3.20000+ 1 3.20000+ 1 1.31788- 4 4.40420- 4 3.20000+ 1 3.30000+ 1 1.30718- 2 4.46220- 4 3.20000+ 1 4.10000+ 1 7.74970- 5 4.82200- 4 3.20000+ 1 4.30000+ 1 4.33463- 5 4.96860- 4 3.20000+ 1 4.40000+ 1 1.69448- 4 5.03120- 4 3.20000+ 1 5.80000+ 1 6.12970- 6 5.17010- 4 3.30000+ 1 3.30000+ 1 1.45071- 2 4.52020- 4 3.30000+ 1 4.10000+ 1 1.63566- 3 4.88000- 4 3.30000+ 1 4.30000+ 1 1.42601- 3 5.02660- 4 3.30000+ 1 4.40000+ 1 1.88840- 3 5.08920- 4 3.30000+ 1 5.80000+ 1 1.55868- 4 5.22810- 4 4.10000+ 1 4.10000+ 1 9.11314- 6 5.23980- 4 4.10000+ 1 4.30000+ 1 1.08485- 5 5.38640- 4 4.10000+ 1 4.40000+ 1 1.34526- 5 5.44900- 4 4.10000+ 1 5.80000+ 1 1.73579- 6 5.58790- 4 4.30000+ 1 4.30000+ 1 1.75975- 6 5.53300- 4 4.30000+ 1 4.40000+ 1 1.58384- 5 5.59560- 4 4.30000+ 1 5.80000+ 1 8.79905- 7 5.73450- 4 4.40000+ 1 4.40000+ 1 8.75638- 6 5.65820- 4 4.40000+ 1 5.80000+ 1 8.75638- 7 5.79710- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.18990- 5 2.18380- 4 3.30000+ 1 2.08110- 6 2.24180- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 5.80000+ 1 2.40830- 3 3.78000- 6 2.70000+ 1 4.30000+ 1 7.87726- 3 2.11900- 5 2.70000+ 1 4.40000+ 1 1.45608- 2 2.74500- 5 2.70000+ 1 5.80000+ 1 1.45398- 3 4.13400- 5 2.90000+ 1 3.20000+ 1 8.77507- 2 1.80600- 5 2.90000+ 1 3.30000+ 1 7.16638- 2 2.38600- 5 2.90000+ 1 4.10000+ 1 3.81294- 2 5.98400- 5 2.90000+ 1 4.30000+ 1 1.65092- 2 7.45000- 5 2.90000+ 1 4.40000+ 1 3.02428- 2 8.07600- 5 2.90000+ 1 5.80000+ 1 3.25408- 3 9.46500- 5 3.00000+ 1 3.20000+ 1 1.47514- 1 5.85500- 5 3.00000+ 1 3.30000+ 1 9.85702- 2 6.43500- 5 3.00000+ 1 4.10000+ 1 1.75199- 2 1.00330- 4 3.00000+ 1 4.30000+ 1 1.49448- 2 1.14990- 4 3.00000+ 1 4.40000+ 1 9.35709- 3 1.21250- 4 3.00000+ 1 5.80000+ 1 1.54421- 3 1.35140- 4 3.20000+ 1 3.20000+ 1 1.18114- 1 1.37060- 4 3.20000+ 1 3.30000+ 1 1.72519- 1 1.42860- 4 3.20000+ 1 4.10000+ 1 1.06264- 2 1.78840- 4 3.20000+ 1 4.30000+ 1 3.36236- 2 1.93500- 4 3.20000+ 1 4.40000+ 1 2.34205- 2 1.99760- 4 3.20000+ 1 5.80000+ 1 1.06629- 3 2.13650- 4 3.30000+ 1 3.30000+ 1 2.50534- 2 1.48660- 4 3.30000+ 1 4.10000+ 1 4.52795- 3 1.84640- 4 3.30000+ 1 4.30000+ 1 3.01576- 2 1.99300- 4 3.30000+ 1 4.40000+ 1 1.26653- 2 2.05560- 4 3.30000+ 1 5.80000+ 1 4.05796- 4 2.19450- 4 4.10000+ 1 4.10000+ 1 9.19194- 5 2.20620- 4 4.10000+ 1 4.30000+ 1 1.37879- 3 2.35280- 4 4.10000+ 1 4.40000+ 1 1.02950- 3 2.41540- 4 4.10000+ 1 5.80000+ 1 1.83849- 5 2.55430- 4 4.30000+ 1 4.30000+ 1 4.96391- 4 2.49940- 4 4.30000+ 1 4.40000+ 1 1.02952- 3 2.56200- 4 4.30000+ 1 5.80000+ 1 1.28686- 4 2.70090- 4 4.40000+ 1 4.40000+ 1 2.20611- 4 2.62460- 4 4.40000+ 1 5.80000+ 1 9.19187- 5 2.76350- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 3.08021- 5 2.15670- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 7.75064- 3 1.26800- 5 2.70000+ 1 4.40000+ 1 1.46203- 2 1.89400- 5 2.70000+ 1 5.80000+ 1 2.18913- 3 3.28300- 5 2.90000+ 1 3.20000+ 1 2.01877- 2 9.55000- 6 2.90000+ 1 3.30000+ 1 4.89943- 2 1.53500- 5 2.90000+ 1 4.10000+ 1 4.10092- 3 5.13300- 5 2.90000+ 1 4.30000+ 1 1.11695- 3 6.59900- 5 2.90000+ 1 4.40000+ 1 6.18460- 3 7.22500- 5 2.90000+ 1 5.80000+ 1 5.16789- 4 8.61400- 5 3.00000+ 1 3.20000+ 1 1.24855- 1 5.00400- 5 3.00000+ 1 3.30000+ 1 3.17698- 1 5.58400- 5 3.00000+ 1 4.10000+ 1 3.22917- 2 9.18200- 5 3.00000+ 1 4.30000+ 1 1.08211- 2 1.06480- 4 3.00000+ 1 4.40000+ 1 3.65748- 2 1.12740- 4 3.00000+ 1 5.80000+ 1 2.93086- 3 1.26630- 4 3.20000+ 1 3.20000+ 1 1.08555- 2 1.28550- 4 3.20000+ 1 3.30000+ 1 1.28187- 1 1.34350- 4 3.20000+ 1 4.10000+ 1 2.96543- 3 1.70330- 4 3.20000+ 1 4.30000+ 1 2.80945- 3 1.84990- 4 3.20000+ 1 4.40000+ 1 2.02729- 2 1.91250- 4 3.20000+ 1 5.80000+ 1 2.60128- 4 2.05140- 4 3.30000+ 1 3.30000+ 1 1.32094- 1 1.40150- 4 3.30000+ 1 4.10000+ 1 1.08737- 2 1.76130- 4 3.30000+ 1 4.30000+ 1 1.06127- 2 1.90790- 4 3.30000+ 1 4.40000+ 1 4.54020- 2 1.97050- 4 3.30000+ 1 5.80000+ 1 1.05789- 3 2.10940- 4 4.10000+ 1 4.10000+ 1 6.93705- 5 2.12110- 4 4.10000+ 1 4.30000+ 1 5.02947- 4 2.26770- 4 4.10000+ 1 4.40000+ 1 1.56084- 3 2.33030- 4 4.10000+ 1 5.80000+ 1 1.73426- 5 2.46920- 4 4.30000+ 1 4.30000+ 1 5.20268- 5 2.41430- 4 4.30000+ 1 4.40000+ 1 5.20268- 4 2.47690- 4 4.30000+ 1 5.80000+ 1 5.20268- 5 2.61580- 4 4.40000+ 1 4.40000+ 1 8.32425- 4 2.53950- 4 4.40000+ 1 5.80000+ 1 1.38737- 4 2.67840- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.37699- 6 5.33100- 5 3.00000+ 1 1.54441- 5 9.38000- 5 4.30000+ 1 1.68863- 6 2.28750- 4 4.40000+ 1 3.98560- 8 2.35010- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.53425- 2 1.37700- 5 2.90000+ 1 4.30000+ 1 2.10835- 2 2.84300- 5 2.90000+ 1 4.40000+ 1 4.31270- 2 3.46900- 5 2.90000+ 1 5.80000+ 1 3.25732- 3 4.85800- 5 3.00000+ 1 3.20000+ 1 3.50174- 1 1.24800- 5 3.00000+ 1 3.30000+ 1 2.95968- 1 1.82800- 5 3.00000+ 1 4.10000+ 1 2.21755- 2 5.42600- 5 3.00000+ 1 4.30000+ 1 2.08578- 2 6.89200- 5 3.00000+ 1 4.40000+ 1 2.03823- 2 7.51800- 5 3.00000+ 1 5.80000+ 1 2.12470- 3 8.90700- 5 3.20000+ 1 3.20000+ 1 1.98134- 3 9.09900- 5 3.20000+ 1 3.30000+ 1 1.24394- 1 9.67900- 5 3.20000+ 1 4.10000+ 1 7.68887- 3 1.32770- 4 3.20000+ 1 4.30000+ 1 1.14938- 3 1.47430- 4 3.20000+ 1 4.40000+ 1 6.70874- 3 1.53690- 4 3.20000+ 1 5.80000+ 1 5.98067- 4 1.67580- 4 3.30000+ 1 3.30000+ 1 2.35403- 2 1.02590- 4 3.30000+ 1 4.10000+ 1 7.86789- 3 1.38570- 4 3.30000+ 1 4.30000+ 1 3.32640- 3 1.53230- 4 3.30000+ 1 4.40000+ 1 3.15506- 3 1.59490- 4 3.30000+ 1 5.80000+ 1 6.11424- 4 1.73380- 4 4.10000+ 1 4.10000+ 1 7.96503- 4 1.74550- 4 4.10000+ 1 4.30000+ 1 8.98725- 4 1.89210- 4 4.10000+ 1 4.40000+ 1 1.36265- 3 1.95470- 4 4.10000+ 1 5.80000+ 1 1.33732- 4 2.09360- 4 4.30000+ 1 4.30000+ 1 1.00943- 4 2.03870- 4 4.30000+ 1 4.40000+ 1 6.29324- 4 2.10130- 4 4.30000+ 1 5.80000+ 1 8.30750- 5 2.24020- 4 4.40000+ 1 4.40000+ 1 3.25529- 4 2.16390- 4 4.40000+ 1 5.80000+ 1 1.36693- 4 2.30280- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.95950- 5 1.19000- 4 4.10000+ 1 2.16950- 6 1.60780- 4 5.80000+ 1 1.63630- 7 1.95590- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.75843- 2 9.50000- 7 3.00000+ 1 4.30000+ 1 1.26681- 2 1.56100- 5 3.00000+ 1 4.40000+ 1 8.59059- 3 2.18700- 5 3.00000+ 1 5.80000+ 1 1.13996- 3 3.57600- 5 3.20000+ 1 3.20000+ 1 1.45613- 1 3.76800- 5 3.20000+ 1 3.30000+ 1 6.27275- 1 4.34800- 5 3.20000+ 1 4.10000+ 1 4.32122- 2 7.94600- 5 3.20000+ 1 4.30000+ 1 2.81519- 2 9.41200- 5 3.20000+ 1 4.40000+ 1 4.71211- 2 1.00380- 4 3.20000+ 1 5.80000+ 1 4.27509- 3 1.14270- 4 3.30000+ 1 3.30000+ 1 2.50438- 2 4.92800- 5 3.30000+ 1 4.10000+ 1 3.63570- 3 8.52600- 5 3.30000+ 1 4.30000+ 1 2.35928- 2 9.99200- 5 3.30000+ 1 4.40000+ 1 5.64827- 3 1.06180- 4 3.30000+ 1 5.80000+ 1 2.90342- 4 1.20070- 4 4.10000+ 1 4.10000+ 1 7.30314- 5 1.21240- 4 4.10000+ 1 4.30000+ 1 2.01600- 3 1.35900- 4 4.10000+ 1 4.40000+ 1 3.21285- 4 1.42160- 4 4.10000+ 1 5.80000+ 1 1.22736- 5 1.56050- 4 4.30000+ 1 4.30000+ 1 1.02479- 3 1.50560- 4 4.30000+ 1 4.40000+ 1 2.37471- 3 1.56820- 4 4.30000+ 1 5.80000+ 1 1.81198- 4 1.70710- 4 4.40000+ 1 4.40000+ 1 1.11927- 4 1.63080- 4 4.40000+ 1 5.80000+ 1 2.11431- 5 1.76970- 4 1 88000 0 7 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.84769- 7 7.85100- 5 3.30000+ 1 3.19699- 6 8.43100- 5 4.10000+ 1 1.10070- 6 1.20290- 4 5.80000+ 1 1.06440- 7 1.55100- 4 1 88000 0 9 2.26000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.20000+ 1 2.95280- 2 0.00000+ 0 3.20000+ 1 3.30000+ 1 4.34374- 1 2.99000- 6 3.20000+ 1 4.10000+ 1 4.82460- 3 3.89700- 5 3.20000+ 1 4.30000+ 1 3.02734- 3 5.36300- 5 3.20000+ 1 4.40000+ 1 9.29385- 3 5.98900- 5 3.20000+ 1 5.80000+ 1 3.60701- 4 7.37800- 5 3.30000+ 1 3.30000+ 1 3.89621- 1 8.79000- 6 3.30000+ 1 4.10000+ 1 3.98955- 2 4.47700- 5 3.30000+ 1 4.30000+ 1 3.76389- 2 5.94300- 5 3.30000+ 1 4.40000+ 1 4.41124- 2 6.56900- 5 3.30000+ 1 5.80000+ 1 3.76993- 3 7.95800- 5 4.10000+ 1 4.10000+ 1 1.45535- 4 8.07500- 5 4.10000+ 1 4.30000+ 1 2.54661- 4 9.54100- 5 4.10000+ 1 4.40000+ 1 1.17376- 3 1.01670- 4 4.10000+ 1 5.80000+ 1 2.38374- 5 1.15560- 4 4.30000+ 1 4.30000+ 1 1.15167- 7 1.10070- 4 4.30000+ 1 4.40000+ 1 8.90595- 4 1.16330- 4 4.30000+ 1 5.80000+ 1 1.19771- 5 1.30220- 4 4.40000+ 1 4.40000+ 1 9.52664- 4 1.22590- 4 4.40000+ 1 5.80000+ 1 9.57323- 5 1.36480- 4 1 89000 0 0 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 89000 0 0 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.07190- 1 3.00000+ 0 1.98480- 2 5.00000+ 0 1.91630- 2 6.00000+ 0 1.58830- 2 8.00000+ 0 4.97430- 3 1.00000+ 1 4.65470- 3 1.10000+ 1 3.90390- 3 1.30000+ 1 3.37960- 3 1.40000+ 1 3.22410- 3 1.60000+ 1 1.24950- 3 1.80000+ 1 1.10480- 3 1.90000+ 1 9.11440- 4 2.10000+ 1 6.75510- 4 2.20000+ 1 6.39620- 4 2.40000+ 1 3.28900- 4 2.50000+ 1 3.19740- 4 2.70000+ 1 2.74100- 4 2.90000+ 1 2.18790- 4 3.00000+ 1 1.74660- 4 3.20000+ 1 9.28200- 5 3.30000+ 1 8.63800- 5 4.10000+ 1 4.51700- 5 4.30000+ 1 2.93100- 5 4.40000+ 1 2.19500- 5 4.60000+ 1 4.49000- 6 4.70000+ 1 4.00000- 6 5.80000+ 1 5.41000- 6 1 89000 0 0 2.27000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.57890- 1 3.00000+ 0 3.90250- 2 5.00000+ 0 3.90300- 2 6.00000+ 0 2.56980- 2 8.00000+ 0 1.25070- 2 1.00000+ 1 1.23730- 2 1.10000+ 1 9.01290- 3 1.30000+ 1 8.85180- 3 1.40000+ 1 8.20230- 3 1.60000+ 1 4.26940- 3 1.80000+ 1 4.11940- 3 1.90000+ 1 3.08940- 3 2.10000+ 1 2.85210- 3 2.20000+ 1 2.65690- 3 2.40000+ 1 2.29470- 3 2.50000+ 1 2.22850- 3 2.70000+ 1 1.28410- 3 2.90000+ 1 1.16660- 3 3.00000+ 1 8.79520- 4 3.20000+ 1 6.78960- 4 3.30000+ 1 6.30550- 4 4.10000+ 1 3.03560- 4 4.30000+ 1 2.39960- 4 4.40000+ 1 1.73010- 4 4.60000+ 1 7.00300- 5 4.70000+ 1 6.14300- 5 5.80000+ 1 4.03300- 5 1 89000 0 0 2.27000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.57640-11 3.00000+ 0 3.13830-10 5.00000+ 0 2.54830-10 6.00000+ 0 3.06730-10 8.00000+ 0 8.15570-10 1.00000+ 1 7.66530-10 1.10000+ 1 8.59980-10 1.30000+ 1 7.42200-10 1.40000+ 1 7.70000-10 1.60000+ 1 1.77670- 9 1.80000+ 1 1.76860- 9 1.90000+ 1 1.95630- 9 2.10000+ 1 1.94430- 9 2.20000+ 1 2.00110- 9 2.40000+ 1 1.95940- 9 2.50000+ 1 1.98760- 9 2.70000+ 1 3.74340- 9 2.90000+ 1 3.90790- 9 3.00000+ 1 4.32110- 9 3.20000+ 1 4.89260- 9 3.30000+ 1 5.03940- 9 4.10000+ 1 8.27920- 9 4.30000+ 1 9.26010- 9 4.40000+ 1 1.04380- 8 4.60000+ 1 1.65580- 8 4.70000+ 1 1.76170- 8 5.80000+ 1 2.25670- 8 1 89000 0 0 2.27000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.01030- 5 3.00000+ 0 2.05990- 6 5.00000+ 0 3.62190- 6 6.00000+ 0 3.06080- 6 8.00000+ 0 8.96340- 8 1.00000+ 1 9.90210- 8 1.10000+ 1 1.09870- 7 1.30000+ 1 1.40390- 7 1.40000+ 1 1.29850- 7 1.60000+ 1 4.52490- 9 1.80000+ 1 5.91730- 9 1.90000+ 1 4.05070- 9 2.10000+ 1 2.91000- 9 2.20000+ 1 2.26490- 9 2.40000+ 1 8.58990-11 2.50000+ 1 7.83660-11 2.70000+ 1 2.94440-10 2.90000+ 1 6.07310-10 3.00000+ 1 3.09300-10 1 89000 0 0 2.27000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.59520- 6 3.00000+ 0 1.34810- 5 5.00000+ 0 4.06620- 6 6.00000+ 0 4.21810- 6 8.00000+ 0 1.87830- 5 1.00000+ 1 1.44310- 5 1.10000+ 1 1.17270- 5 1.30000+ 1 3.05980- 6 1.40000+ 1 3.04840- 6 1.60000+ 1 1.37860- 5 1.80000+ 1 1.50100- 5 1.90000+ 1 9.80280- 6 2.10000+ 1 6.38840- 6 2.20000+ 1 6.29130- 6 2.40000+ 1 1.47480- 7 2.50000+ 1 1.66550- 7 2.70000+ 1 2.11750- 5 2.90000+ 1 8.72070- 6 3.00000+ 1 1.26250- 5 1 89000 0 0 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.60889- 4 3.00000+ 0 1.24206- 3 5.00000+ 0 8.80397- 4 6.00000+ 0 8.64518- 4 8.00000+ 0 9.12769- 4 1.00000+ 1 8.05224- 4 1.10000+ 1 7.18642- 4 1.30000+ 1 5.43343- 4 1.40000+ 1 5.36304- 4 1.60000+ 1 4.74688- 4 1.80000+ 1 4.62650- 4 1.90000+ 1 4.34637- 4 2.10000+ 1 3.40478- 4 2.20000+ 1 3.34320- 4 2.40000+ 1 2.08177- 4 2.50000+ 1 2.15569- 4 2.70000+ 1 2.24066- 4 2.90000+ 1 1.69624- 4 3.00000+ 1 1.60716- 4 3.20000+ 1 9.28200- 5 3.30000+ 1 8.63800- 5 4.10000+ 1 4.51700- 5 4.30000+ 1 2.93100- 5 4.40000+ 1 2.19500- 5 4.60000+ 1 4.49000- 6 4.70000+ 1 4.00000- 6 5.80000+ 1 5.41000- 6 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.40516+ 0 3.00000+ 0 5.39929- 1 5.00000+ 0 6.02828- 1 6.00000+ 0 4.91389- 1 8.00000+ 0 5.00039- 2 1.00000+ 1 5.03734- 2 1.10000+ 1 4.64572- 2 1.30000+ 1 5.38987- 2 1.40000+ 1 4.93809- 2 1.60000+ 1 1.66830- 3 1.80000+ 1 1.86225- 3 1.90000+ 1 1.11594- 3 2.10000+ 1 6.32026- 4 2.20000+ 1 5.52405- 4 2.40000+ 1 5.26255- 5 2.50000+ 1 4.54500- 5 2.70000+ 1 2.71680- 5 2.90000+ 1 2.69138- 5 3.00000+ 1 5.69940- 6 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.55018- 2 3.00000+ 0 6.62767- 3 5.00000+ 0 8.79883- 3 6.00000+ 0 5.78826- 3 8.00000+ 0 1.49439- 4 1.00000+ 1 1.51518- 4 1.10000+ 1 1.35630- 4 1.30000+ 1 1.60136- 4 1.40000+ 1 1.40707- 4 1.60000+ 1 9.92310- 7 1.80000+ 1 9.36995- 7 1.90000+ 1 5.49434- 7 2.10000+ 1 2.32296- 7 2.20000+ 1 1.90113- 7 2.40000+ 1 1.14009- 8 2.50000+ 1 9.85382- 9 2.70000+ 1 3.04627- 9 2.90000+ 1 3.53977- 9 3.00000+ 1 5.73213-10 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.82030+ 0 3.00000+ 0 1.46118+ 1 5.00000+ 0 1.00572+ 1 6.00000+ 0 9.86638+ 0 8.00000+ 0 1.04951+ 1 1.00000+ 1 9.12604+ 0 1.10000+ 1 8.04636+ 0 1.30000+ 1 5.82303+ 0 1.40000+ 1 5.74270+ 0 1.60000+ 1 4.97414+ 0 1.80000+ 1 4.80376+ 0 1.90000+ 1 4.46235+ 0 2.10000+ 1 3.26728+ 0 2.20000+ 1 3.19137+ 0 2.40000+ 1 1.64344+ 0 2.50000+ 1 1.72338+ 0 2.70000+ 1 1.81250+ 0 2.90000+ 1 1.04185+ 0 3.00000+ 1 9.99994- 1 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.08273- 2 3.00000+ 0 1.19783- 2 5.00000+ 0 9.48377- 3 6.00000+ 0 9.23022- 3 8.00000+ 0 3.91209- 3 1.00000+ 1 3.69796- 3 1.10000+ 1 3.04963- 3 1.30000+ 1 2.67612- 3 1.40000+ 1 2.54709- 3 1.60000+ 1 7.73819- 4 1.80000+ 1 6.41213- 4 1.90000+ 1 4.76253- 4 2.10000+ 1 3.34800- 4 2.20000+ 1 3.05110- 4 2.40000+ 1 1.20712- 4 2.50000+ 1 1.04161- 4 2.70000+ 1 5.00314- 5 2.90000+ 1 4.91622- 5 3.00000+ 1 1.39436- 5 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.86898- 1 8.80270- 2 6.00000+ 0 4.66207- 1 9.13070- 2 1.00000+ 1 5.32646- 2 1.02535- 1 1.10000+ 1 1.03729- 1 1.03286- 1 1.30000+ 1 1.73589- 3 1.03810- 1 1.40000+ 1 2.01729- 3 1.03966- 1 1.80000+ 1 1.31559- 2 1.06085- 1 1.90000+ 1 2.63428- 2 1.06279- 1 2.10000+ 1 4.96797- 4 1.06514- 1 2.20000+ 1 5.78396- 4 1.06550- 1 2.90000+ 1 3.16098- 3 1.06971- 1 3.00000+ 1 6.15126- 3 1.07015- 1 3.20000+ 1 9.40484- 5 1.07097- 1 3.30000+ 1 1.08639- 4 1.07104- 1 4.30000+ 1 5.33056- 4 1.07161- 1 4.40000+ 1 9.56563- 4 1.07168- 1 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.94536- 3 6.74940- 2 3.00000+ 0 5.00000+ 0 6.93109- 3 6.81790- 2 3.00000+ 0 6.00000+ 0 2.94089- 3 7.14590- 2 3.00000+ 0 8.00000+ 0 1.63129- 3 8.23677- 2 3.00000+ 0 1.00000+ 1 1.52069- 3 8.26873- 2 3.00000+ 0 1.10000+ 1 7.17994- 4 8.34381- 2 3.00000+ 0 1.30000+ 1 6.23796- 5 8.39624- 2 3.00000+ 0 1.40000+ 1 4.12481- 5 8.41179- 2 3.00000+ 0 1.60000+ 1 4.26373- 4 8.60925- 2 3.00000+ 0 1.80000+ 1 3.90416- 4 8.62372- 2 3.00000+ 0 1.90000+ 1 1.85580- 4 8.64306- 2 3.00000+ 0 2.10000+ 1 1.78695- 5 8.66665- 2 3.00000+ 0 2.20000+ 1 1.16354- 5 8.67024- 2 3.00000+ 0 2.40000+ 1 3.62457- 8 8.70131- 2 3.00000+ 0 2.50000+ 1 3.62457- 8 8.70223- 2 3.00000+ 0 2.70000+ 1 1.04097- 4 8.70679- 2 3.00000+ 0 2.90000+ 1 8.88383- 5 8.71232- 2 3.00000+ 0 3.00000+ 1 4.16447- 5 8.71673- 2 3.00000+ 0 3.20000+ 1 3.29837- 6 8.72492- 2 3.00000+ 0 3.30000+ 1 2.10224- 6 8.72556- 2 5.00000+ 0 5.00000+ 0 2.85627- 4 6.88640- 2 5.00000+ 0 6.00000+ 0 4.87958- 3 7.21440- 2 5.00000+ 0 8.00000+ 0 1.26041- 3 8.30527- 2 5.00000+ 0 1.00000+ 1 1.10409- 4 8.33723- 2 5.00000+ 0 1.10000+ 1 1.00700- 3 8.41231- 2 5.00000+ 0 1.30000+ 1 6.25997- 5 8.46474- 2 5.00000+ 0 1.40000+ 1 1.48438- 4 8.48029- 2 5.00000+ 0 1.60000+ 1 3.20021- 4 8.67775- 2 5.00000+ 0 1.80000+ 1 2.75470- 5 8.69222- 2 5.00000+ 0 1.90000+ 1 2.49923- 4 8.71156- 2 5.00000+ 0 2.10000+ 1 1.71452- 5 8.73515- 2 5.00000+ 0 2.20000+ 1 4.09245- 5 8.73874- 2 5.00000+ 0 2.40000+ 1 5.43713- 7 8.76981- 2 5.00000+ 0 2.50000+ 1 7.97425- 7 8.77073- 2 5.00000+ 0 2.70000+ 1 7.75679- 5 8.77529- 2 5.00000+ 0 2.90000+ 1 6.23441- 6 8.78082- 2 5.00000+ 0 3.00000+ 1 5.55677- 5 8.78523- 2 5.00000+ 0 3.20000+ 1 3.11725- 6 8.79342- 2 5.00000+ 0 3.30000+ 1 7.39456- 6 8.79406- 2 6.00000+ 0 6.00000+ 0 2.01396- 3 7.54240- 2 6.00000+ 0 8.00000+ 0 4.77692- 4 8.63327- 2 6.00000+ 0 1.00000+ 1 8.85649- 4 8.66523- 2 6.00000+ 0 1.10000+ 1 8.58030- 4 8.74031- 2 6.00000+ 0 1.30000+ 1 1.61327- 4 8.79274- 2 6.00000+ 0 1.40000+ 1 1.29732- 4 8.80829- 2 6.00000+ 0 1.60000+ 1 1.17988- 4 9.00575- 2 6.00000+ 0 1.80000+ 1 2.17710- 4 9.02022- 2 6.00000+ 0 1.90000+ 1 2.14836- 4 9.03956- 2 6.00000+ 0 2.10000+ 1 4.47650- 5 9.06315- 2 6.00000+ 0 2.20000+ 1 3.59219- 5 9.06674- 2 6.00000+ 0 2.40000+ 1 8.33695- 7 9.09781- 2 6.00000+ 0 2.50000+ 1 8.69917- 7 9.09873- 2 6.00000+ 0 2.70000+ 1 2.83821- 5 9.10329- 2 6.00000+ 0 2.90000+ 1 4.90063- 5 9.10882- 2 6.00000+ 0 3.00000+ 1 4.78452- 5 9.11323- 2 6.00000+ 0 3.20000+ 1 8.19174- 6 9.12142- 2 6.00000+ 0 3.30000+ 1 6.52437- 6 9.12206- 2 8.00000+ 0 8.00000+ 0 1.66593- 4 9.72414- 2 8.00000+ 0 1.00000+ 1 2.78124- 4 9.75610- 2 8.00000+ 0 1.10000+ 1 1.17955- 4 9.83118- 2 8.00000+ 0 1.30000+ 1 9.96792- 6 9.88361- 2 8.00000+ 0 1.40000+ 1 6.19804- 6 9.89916- 2 8.00000+ 0 1.60000+ 1 8.69198- 5 1.00966- 1 8.00000+ 0 1.80000+ 1 7.15527- 5 1.01111- 1 8.00000+ 0 1.90000+ 1 3.05931- 5 1.01304- 1 8.00000+ 0 2.10000+ 1 2.86342- 6 1.01540- 1 8.00000+ 0 2.20000+ 1 1.73986- 6 1.01576- 1 8.00000+ 0 2.70000+ 1 2.12048- 5 1.01942- 1 8.00000+ 0 2.90000+ 1 1.62760- 5 1.01997- 1 8.00000+ 0 3.00000+ 1 6.88702- 6 1.02041- 1 8.00000+ 0 3.20000+ 1 5.43713- 7 1.02123- 1 8.00000+ 0 3.30000+ 1 3.26223- 7 1.02129- 1 1.00000+ 1 1.00000+ 1 1.02579- 5 9.78806- 2 1.00000+ 1 1.10000+ 1 1.89001- 4 9.86314- 2 1.00000+ 1 1.30000+ 1 1.03305- 5 9.91557- 2 1.00000+ 1 1.40000+ 1 2.01174- 5 9.93112- 2 1.00000+ 1 1.60000+ 1 7.06812- 5 1.01286- 1 1.00000+ 1 1.80000+ 1 5.07457- 6 1.01430- 1 1.00000+ 1 1.90000+ 1 4.72292- 5 1.01624- 1 1.00000+ 1 2.10000+ 1 2.86342- 6 1.01860- 1 1.00000+ 1 2.20000+ 1 5.61834- 6 1.01896- 1 1.00000+ 1 2.40000+ 1 7.24934- 8 1.02206- 1 1.00000+ 1 2.50000+ 1 7.24934- 8 1.02216- 1 1.00000+ 1 2.70000+ 1 1.71452- 5 1.02261- 1 1.00000+ 1 2.90000+ 1 1.15993- 6 1.02317- 1 1.00000+ 1 3.00000+ 1 1.05116- 5 1.02361- 1 1.00000+ 1 3.20000+ 1 5.07457- 7 1.02442- 1 1.00000+ 1 3.30000+ 1 1.01490- 6 1.02449- 1 1.10000+ 1 1.10000+ 1 9.25726- 5 9.93822- 2 1.10000+ 1 1.30000+ 1 2.78735- 5 9.99065- 2 1.10000+ 1 1.40000+ 1 2.15655- 5 1.00062- 1 1.10000+ 1 1.60000+ 1 2.92142- 5 1.02037- 1 1.10000+ 1 1.80000+ 1 4.67930- 5 1.02181- 1 1.10000+ 1 1.90000+ 1 4.65022- 5 1.02375- 1 1.10000+ 1 2.10000+ 1 7.82921- 6 1.02611- 1 1.10000+ 1 2.20000+ 1 6.01680- 6 1.02646- 1 1.10000+ 1 2.40000+ 1 1.08738- 7 1.02957- 1 1.10000+ 1 2.50000+ 1 1.08738- 7 1.02966- 1 1.10000+ 1 2.70000+ 1 7.03173- 6 1.03012- 1 1.10000+ 1 2.90000+ 1 1.05477- 5 1.03067- 1 1.10000+ 1 3.00000+ 1 1.03666- 5 1.03111- 1 1.10000+ 1 3.20000+ 1 1.44976- 6 1.03193- 1 1.10000+ 1 3.30000+ 1 1.08738- 6 1.03200- 1 1.30000+ 1 1.30000+ 1 7.24925- 8 1.00431- 1 1.30000+ 1 1.40000+ 1 3.08096- 6 1.00586- 1 1.30000+ 1 1.60000+ 1 2.46470- 6 1.02561- 1 1.30000+ 1 1.80000+ 1 2.50095- 6 1.02706- 1 1.30000+ 1 1.90000+ 1 6.66945- 6 1.02899- 1 1.30000+ 1 2.10000+ 1 3.62463- 8 1.03135- 1 1.30000+ 1 2.20000+ 1 8.33680- 7 1.03171- 1 1.30000+ 1 2.70000+ 1 5.79939- 7 1.03536- 1 1.30000+ 1 2.90000+ 1 5.43705- 7 1.03592- 1 1.30000+ 1 3.00000+ 1 1.44977- 6 1.03636- 1 1.30000+ 1 3.30000+ 1 1.44977- 7 1.03724- 1 1.40000+ 1 1.40000+ 1 7.24912- 7 1.00742- 1 1.40000+ 1 1.60000+ 1 1.52223- 6 1.02716- 1 1.40000+ 1 1.80000+ 1 4.60325- 6 1.02861- 1 1.40000+ 1 1.90000+ 1 5.11066- 6 1.03054- 1 1.40000+ 1 2.10000+ 1 8.33665- 7 1.03290- 1 1.40000+ 1 2.20000+ 1 3.98722- 7 1.03326- 1 1.40000+ 1 2.70000+ 1 3.62457- 7 1.03692- 1 1.40000+ 1 2.90000+ 1 1.01487- 6 1.03747- 1 1.40000+ 1 3.00000+ 1 1.12366- 6 1.03791- 1 1.40000+ 1 3.20000+ 1 1.44974- 7 1.03873- 1 1.40000+ 1 3.30000+ 1 7.24912- 8 1.03880- 1 1.60000+ 1 1.60000+ 1 1.13461- 5 1.04691- 1 1.60000+ 1 1.80000+ 1 1.81961- 5 1.04836- 1 1.60000+ 1 1.90000+ 1 7.57566- 6 1.05029- 1 1.60000+ 1 2.10000+ 1 7.24935- 7 1.05265- 1 1.60000+ 1 2.20000+ 1 4.34957- 7 1.05301- 1 1.60000+ 1 2.70000+ 1 5.54575- 6 1.05666- 1 1.60000+ 1 2.90000+ 1 4.13210- 6 1.05722- 1 1.60000+ 1 3.00000+ 1 1.70361- 6 1.05766- 1 1.60000+ 1 3.20000+ 1 1.44979- 7 1.05848- 1 1.60000+ 1 3.30000+ 1 7.24935- 8 1.05854- 1 1.80000+ 1 1.80000+ 1 6.16213- 7 1.04980- 1 1.80000+ 1 1.90000+ 1 1.17073- 5 1.05174- 1 1.80000+ 1 2.10000+ 1 6.88701- 7 1.05410- 1 1.80000+ 1 2.20000+ 1 1.30492- 6 1.05446- 1 1.80000+ 1 2.50000+ 1 3.62468- 8 1.05765- 1 1.80000+ 1 2.70000+ 1 4.42217- 6 1.05811- 1 1.80000+ 1 2.90000+ 1 2.89978- 7 1.05866- 1 1.80000+ 1 3.00000+ 1 2.60982- 6 1.05911- 1 1.80000+ 1 3.20000+ 1 1.44979- 7 1.05992- 1 1.80000+ 1 3.30000+ 1 2.17478- 7 1.05999- 1 1.90000+ 1 1.90000+ 1 5.83568- 6 1.05367- 1 1.90000+ 1 2.10000+ 1 1.88493- 6 1.05603- 1 1.90000+ 1 2.20000+ 1 1.41364- 6 1.05639- 1 1.90000+ 1 2.40000+ 1 3.62466- 8 1.05950- 1 1.90000+ 1 2.50000+ 1 3.62466- 8 1.05959- 1 1.90000+ 1 2.70000+ 1 1.81233- 6 1.06004- 1 1.90000+ 1 2.90000+ 1 2.64606- 6 1.06060- 1 1.90000+ 1 3.00000+ 1 2.60981- 6 1.06104- 1 1.90000+ 1 3.20000+ 1 3.26221- 7 1.06186- 1 1.90000+ 1 3.30000+ 1 2.53721- 7 1.06192- 1 2.10000+ 1 2.20000+ 1 2.23083- 7 1.05875- 1 2.10000+ 1 2.70000+ 1 1.85905- 7 1.06240- 1 2.10000+ 1 2.90000+ 1 1.48715- 7 1.06296- 1 2.10000+ 1 3.00000+ 1 4.09010- 7 1.06340- 1 2.10000+ 1 3.30000+ 1 3.71809- 8 1.06428- 1 2.20000+ 1 2.20000+ 1 3.61699- 8 1.05911- 1 2.20000+ 1 2.70000+ 1 1.08510- 7 1.06276- 1 2.20000+ 1 2.90000+ 1 2.89364- 7 1.06332- 1 2.20000+ 1 3.00000+ 1 3.25531- 7 1.06376- 1 2.20000+ 1 3.20000+ 1 3.61699- 8 1.06458- 1 2.20000+ 1 3.30000+ 1 3.61699- 8 1.06464- 1 2.70000+ 1 2.70000+ 1 6.72346- 7 1.06642- 1 2.70000+ 1 2.90000+ 1 9.90803- 7 1.06697- 1 2.70000+ 1 3.00000+ 1 3.89265- 7 1.06741- 1 2.70000+ 1 3.20000+ 1 3.53860- 8 1.06823- 1 2.70000+ 1 3.30000+ 1 3.53860- 8 1.06830- 1 2.90000+ 1 2.90000+ 1 3.78961- 8 1.06752- 1 2.90000+ 1 3.00000+ 1 6.06337- 7 1.06797- 1 2.90000+ 1 3.20000+ 1 3.78961- 8 1.06878- 1 2.90000+ 1 3.30000+ 1 3.78961- 8 1.06885- 1 3.00000+ 1 3.00000+ 1 2.79926- 7 1.06841- 1 3.00000+ 1 3.20000+ 1 6.99804- 8 1.06923- 1 3.00000+ 1 3.30000+ 1 6.99804- 8 1.06929- 1 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.22830- 5 6.85000- 4 6.00000+ 0 6.08238- 3 3.96500- 3 1.00000+ 1 4.56809- 2 1.51933- 2 1.10000+ 1 4.28469- 2 1.59441- 2 1.30000+ 1 1.96559- 3 1.64684- 2 1.40000+ 1 2.93369- 3 1.66239- 2 1.80000+ 1 1.21820- 2 1.87432- 2 1.90000+ 1 1.28790- 2 1.89366- 2 2.10000+ 1 3.24719- 4 1.91725- 2 2.20000+ 1 5.18998- 4 1.92084- 2 2.90000+ 1 2.81749- 3 1.96292- 2 3.00000+ 1 3.00689- 3 1.96733- 2 3.20000+ 1 5.44788- 5 1.97552- 2 3.30000+ 1 8.78517- 5 1.97616- 2 4.30000+ 1 4.99588- 4 1.98187- 2 4.40000+ 1 4.97338- 4 1.98260- 2 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.40902- 3 9.49000- 6 5.00000+ 0 2.20000+ 1 5.62150- 3 4.53800- 5 5.00000+ 0 2.40000+ 1 1.30898- 2 3.56100- 4 5.00000+ 0 2.50000+ 1 1.73404- 2 3.65260- 4 5.00000+ 0 2.70000+ 1 4.85808- 3 4.10900- 4 5.00000+ 0 2.90000+ 1 3.80114- 3 4.66210- 4 5.00000+ 0 3.00000+ 1 3.17995- 3 5.10340- 4 5.00000+ 0 3.20000+ 1 8.09904- 4 5.92180- 4 5.00000+ 0 3.30000+ 1 1.04905- 3 5.98620- 4 6.00000+ 0 1.10000+ 1 3.79871- 2 6.11000- 5 6.00000+ 0 1.30000+ 1 2.10513- 1 5.85400- 4 6.00000+ 0 1.40000+ 1 2.58631- 1 7.40900- 4 6.00000+ 0 1.60000+ 1 1.70127- 2 2.71550- 3 6.00000+ 0 1.80000+ 1 6.64276- 3 2.86020- 3 6.00000+ 0 1.90000+ 1 9.52782- 3 3.05356- 3 6.00000+ 0 2.10000+ 1 3.12820- 2 3.28949- 3 6.00000+ 0 2.20000+ 1 3.63889- 2 3.32538- 3 6.00000+ 0 2.40000+ 1 1.99821- 2 3.63610- 3 6.00000+ 0 2.50000+ 1 2.45999- 2 3.64526- 3 6.00000+ 0 2.70000+ 1 3.92993- 3 3.69090- 3 6.00000+ 0 2.90000+ 1 1.48724- 3 3.74621- 3 6.00000+ 0 3.00000+ 1 2.12293- 3 3.79034- 3 6.00000+ 0 3.20000+ 1 5.21563- 3 3.87218- 3 6.00000+ 0 3.30000+ 1 5.94535- 3 3.87862- 3 8.00000+ 0 8.00000+ 0 5.25517- 3 9.89940- 3 8.00000+ 0 1.00000+ 1 1.09515- 2 1.02190- 2 8.00000+ 0 1.10000+ 1 1.59763- 2 1.09698- 2 8.00000+ 0 1.30000+ 1 1.14266- 2 1.14941- 2 8.00000+ 0 1.40000+ 1 1.40620- 2 1.16496- 2 8.00000+ 0 1.60000+ 1 2.33373- 3 1.36242- 2 8.00000+ 0 1.80000+ 1 2.77921- 3 1.37689- 2 8.00000+ 0 1.90000+ 1 4.02329- 3 1.39623- 2 8.00000+ 0 2.10000+ 1 2.70368- 3 1.41982- 2 8.00000+ 0 2.20000+ 1 3.31049- 3 1.42341- 2 8.00000+ 0 2.40000+ 1 2.46035- 4 1.45448- 2 8.00000+ 0 2.50000+ 1 2.59687- 4 1.45540- 2 8.00000+ 0 2.70000+ 1 5.53530- 4 1.45996- 2 8.00000+ 0 2.90000+ 1 6.29711- 4 1.46549- 2 8.00000+ 0 3.00000+ 1 8.96551- 4 1.46990- 2 8.00000+ 0 3.20000+ 1 4.80329- 4 1.47809- 2 8.00000+ 0 3.30000+ 1 5.81894- 4 1.47873- 2 1.00000+ 1 1.00000+ 1 1.47101- 5 1.05386- 2 1.00000+ 1 1.10000+ 1 2.02260- 4 1.12894- 2 1.00000+ 1 1.30000+ 1 7.05003- 4 1.18137- 2 1.00000+ 1 1.40000+ 1 5.15456- 3 1.19692- 2 1.00000+ 1 1.60000+ 1 1.92458- 3 1.39438- 2 1.00000+ 1 1.80000+ 1 1.75116- 6 1.40885- 2 1.00000+ 1 1.90000+ 1 4.13271- 5 1.42819- 2 1.00000+ 1 2.10000+ 1 1.40970- 4 1.45178- 2 1.00000+ 1 2.20000+ 1 7.79974- 4 1.45537- 2 1.00000+ 1 2.40000+ 1 9.19365- 5 1.48644- 2 1.00000+ 1 2.50000+ 1 3.18187- 4 1.48736- 2 1.00000+ 1 2.70000+ 1 4.29023- 4 1.49192- 2 1.00000+ 1 2.90000+ 1 3.50222- 7 1.49745- 2 1.00000+ 1 3.00000+ 1 8.75559- 6 1.50186- 2 1.00000+ 1 3.20000+ 1 2.46916- 5 1.51005- 2 1.00000+ 1 3.30000+ 1 1.26088- 4 1.51069- 2 1.10000+ 1 1.10000+ 1 6.45996- 4 1.20402- 2 1.10000+ 1 1.30000+ 1 1.48772- 3 1.25645- 2 1.10000+ 1 1.40000+ 1 9.08697- 4 1.27200- 2 1.10000+ 1 1.60000+ 1 2.73412- 3 1.46946- 2 1.10000+ 1 1.80000+ 1 5.21838- 5 1.48393- 2 1.10000+ 1 1.90000+ 1 2.51467- 4 1.50327- 2 1.10000+ 1 2.10000+ 1 1.51472- 4 1.52686- 2 1.10000+ 1 2.20000+ 1 6.81192- 5 1.53045- 2 1.10000+ 1 2.40000+ 1 1.18198- 4 1.56152- 2 1.10000+ 1 2.50000+ 1 1.01225- 4 1.56244- 2 1.10000+ 1 2.70000+ 1 6.05541- 4 1.56700- 2 1.10000+ 1 2.90000+ 1 1.19077- 5 1.57253- 2 1.10000+ 1 3.00000+ 1 5.30590- 5 1.57694- 2 1.10000+ 1 3.20000+ 1 2.25903- 5 1.58513- 2 1.10000+ 1 3.30000+ 1 9.28130- 6 1.58577- 2 1.30000+ 1 1.30000+ 1 6.55654- 4 1.30888- 2 1.30000+ 1 1.40000+ 1 1.84559- 2 1.32443- 2 1.30000+ 1 1.60000+ 1 1.76658- 3 1.52189- 2 1.30000+ 1 1.80000+ 1 2.11013- 4 1.53636- 2 1.30000+ 1 1.90000+ 1 4.12056- 4 1.55570- 2 1.30000+ 1 2.10000+ 1 3.01898- 4 1.57929- 2 1.30000+ 1 2.20000+ 1 3.03078- 3 1.58288- 2 1.30000+ 1 2.40000+ 1 2.47789- 4 1.61395- 2 1.30000+ 1 2.50000+ 1 6.75408- 4 1.61487- 2 1.30000+ 1 2.70000+ 1 3.82451- 4 1.61943- 2 1.30000+ 1 2.90000+ 1 4.95569- 5 1.62496- 2 1.30000+ 1 3.00000+ 1 9.40380- 5 1.62937- 2 1.30000+ 1 3.20000+ 1 5.34105- 5 1.63756- 2 1.30000+ 1 3.30000+ 1 4.95399- 4 1.63820- 2 1.40000+ 1 1.40000+ 1 5.04614- 3 1.33998- 2 1.40000+ 1 1.60000+ 1 2.20778- 3 1.53744- 2 1.40000+ 1 1.80000+ 1 1.15184- 3 1.55191- 2 1.40000+ 1 1.90000+ 1 2.47081- 4 1.57125- 2 1.40000+ 1 2.10000+ 1 2.90787- 3 1.59484- 2 1.40000+ 1 2.20000+ 1 1.74882- 3 1.59843- 2 1.40000+ 1 2.40000+ 1 7.41224- 4 1.62950- 2 1.40000+ 1 2.50000+ 1 5.51950- 4 1.63042- 2 1.40000+ 1 2.70000+ 1 4.81202- 4 1.63498- 2 1.40000+ 1 2.90000+ 1 2.54262- 4 1.64051- 2 1.40000+ 1 3.00000+ 1 5.65602- 5 1.64492- 2 1.40000+ 1 3.20000+ 1 4.75770- 4 1.65311- 2 1.40000+ 1 3.30000+ 1 2.89447- 4 1.65375- 2 1.60000+ 1 1.60000+ 1 2.44985- 4 1.73490- 2 1.60000+ 1 1.80000+ 1 4.90141- 4 1.74937- 2 1.60000+ 1 1.90000+ 1 6.92770- 4 1.76871- 2 1.60000+ 1 2.10000+ 1 4.20971- 4 1.79230- 2 1.60000+ 1 2.20000+ 1 5.19565- 4 1.79589- 2 1.60000+ 1 2.40000+ 1 3.18706- 5 1.82696- 2 1.60000+ 1 2.50000+ 1 3.18706- 5 1.82788- 2 1.60000+ 1 2.70000+ 1 1.14706- 4 1.83244- 2 1.60000+ 1 2.90000+ 1 1.11026- 4 1.83797- 2 1.60000+ 1 3.00000+ 1 1.54632- 4 1.84238- 2 1.60000+ 1 3.20000+ 1 7.49467- 5 1.85057- 2 1.60000+ 1 3.30000+ 1 9.14072- 5 1.85121- 2 1.80000+ 1 1.90000+ 1 1.06826- 5 1.78318- 2 1.80000+ 1 2.10000+ 1 3.79996- 5 1.80677- 2 1.80000+ 1 2.20000+ 1 1.81596- 4 1.81036- 2 1.80000+ 1 2.40000+ 1 1.31329- 5 1.84143- 2 1.80000+ 1 2.50000+ 1 5.14826- 5 1.84235- 2 1.80000+ 1 2.70000+ 1 1.09265- 4 1.84691- 2 1.80000+ 1 3.00000+ 1 2.27653- 6 1.85685- 2 1.80000+ 1 3.20000+ 1 6.47925- 6 1.86504- 2 1.80000+ 1 3.30000+ 1 2.95934- 5 1.86568- 2 1.90000+ 1 1.90000+ 1 2.34653- 5 1.80251- 2 1.90000+ 1 2.10000+ 1 4.46533- 5 1.82610- 2 1.90000+ 1 2.20000+ 1 2.20640- 5 1.82969- 2 1.90000+ 1 2.40000+ 1 2.69667- 5 1.86077- 2 1.90000+ 1 2.50000+ 1 2.24141- 5 1.86168- 2 1.90000+ 1 2.70000+ 1 1.53582- 4 1.86625- 2 1.90000+ 1 2.90000+ 1 2.45154- 6 1.87178- 2 1.90000+ 1 3.00000+ 1 9.80617- 6 1.87619- 2 1.90000+ 1 3.20000+ 1 6.65423- 6 1.88437- 2 1.90000+ 1 3.30000+ 1 3.15195- 6 1.88502- 2 2.10000+ 1 2.10000+ 1 3.20458- 5 1.84970- 2 2.10000+ 1 2.20000+ 1 5.23246- 4 1.85329- 2 2.10000+ 1 2.40000+ 1 3.95748- 5 1.88436- 2 2.10000+ 1 2.50000+ 1 8.10798- 5 1.88527- 2 2.10000+ 1 2.70000+ 1 9.12344- 5 1.88984- 2 2.10000+ 1 2.90000+ 1 8.75558- 6 1.89537- 2 2.10000+ 1 3.00000+ 1 1.03315- 5 1.89978- 2 2.10000+ 1 3.20000+ 1 1.12076- 5 1.90797- 2 2.10000+ 1 3.30000+ 1 8.68618- 5 1.90861- 2 2.20000+ 1 2.20000+ 1 1.62674- 4 1.85688- 2 2.20000+ 1 2.40000+ 1 9.50865- 5 1.88795- 2 2.20000+ 1 2.50000+ 1 7.86289- 5 1.88886- 2 2.20000+ 1 2.70000+ 1 1.13127- 4 1.89343- 2 2.20000+ 1 2.90000+ 1 4.04522- 5 1.89896- 2 2.20000+ 1 3.00000+ 1 5.25350- 6 1.90337- 2 2.20000+ 1 3.20000+ 1 8.70353- 5 1.91156- 2 2.20000+ 1 3.30000+ 1 5.44603- 5 1.91220- 2 2.40000+ 1 2.40000+ 1 1.06849- 6 1.91902- 2 2.40000+ 1 2.50000+ 1 2.11918- 5 1.91994- 2 2.40000+ 1 2.70000+ 1 6.76725- 6 1.92450- 2 2.40000+ 1 2.90000+ 1 2.67128- 6 1.93003- 2 2.40000+ 1 3.00000+ 1 5.87685- 6 1.93444- 2 2.40000+ 1 3.20000+ 1 6.58925- 6 1.94263- 2 2.40000+ 1 3.30000+ 1 1.51379- 5 1.94327- 2 2.50000+ 1 2.50000+ 1 4.67813- 6 1.92085- 2 2.50000+ 1 2.70000+ 1 7.11072- 6 1.92542- 2 2.50000+ 1 2.90000+ 1 1.12272- 5 1.93095- 2 2.50000+ 1 3.00000+ 1 5.05241- 6 1.93536- 2 2.50000+ 1 3.20000+ 1 1.34737- 5 1.94354- 2 2.50000+ 1 3.30000+ 1 1.34737- 5 1.94419- 2 2.70000+ 1 2.70000+ 1 1.57196- 5 1.92998- 2 2.70000+ 1 2.90000+ 1 2.91640- 5 1.93551- 2 2.70000+ 1 3.00000+ 1 4.05389- 5 1.93992- 2 2.70000+ 1 3.20000+ 1 1.92351- 5 1.94811- 2 2.70000+ 1 3.30000+ 1 2.33721- 5 1.94875- 2 2.90000+ 1 3.00000+ 1 6.37268- 7 1.94545- 2 2.90000+ 1 3.20000+ 1 1.91178- 6 1.95364- 2 2.90000+ 1 3.30000+ 1 8.07191- 6 1.95428- 2 3.00000+ 1 3.00000+ 1 1.56244- 6 1.94987- 2 3.00000+ 1 3.20000+ 1 2.34372- 6 1.95805- 2 3.00000+ 1 3.30000+ 1 1.04162- 6 1.95870- 2 3.20000+ 1 3.20000+ 1 1.06651- 6 1.96624- 2 3.20000+ 1 3.30000+ 1 1.47534- 5 1.96688- 2 3.30000+ 1 3.30000+ 1 4.51749- 6 1.96752- 2 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 2.68371- 5 3.28000- 3 8.00000+ 0 1.02130- 2 1.41887- 2 1.10000+ 1 4.93271- 4 1.52591- 2 1.30000+ 1 3.67091- 1 1.57834- 2 1.60000+ 1 2.73141- 3 1.79135- 2 1.90000+ 1 1.45430- 4 1.82516- 2 2.10000+ 1 8.07702- 2 1.84875- 2 2.40000+ 1 4.54471- 4 1.88341- 2 2.70000+ 1 6.74262- 4 1.88889- 2 3.00000+ 1 3.38301- 5 1.89883- 2 3.20000+ 1 1.45160- 2 1.90702- 2 4.10000+ 1 1.35270- 4 1.91178- 2 4.40000+ 1 5.23421- 6 1.91410- 2 5.80000+ 1 8.99822- 6 1.91576- 2 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.40000+ 1 4.77943- 2 5.59000- 5 6.00000+ 0 1.60000+ 1 3.88427- 3 2.03050- 3 6.00000+ 0 1.80000+ 1 3.08259- 2 2.17520- 3 6.00000+ 0 1.90000+ 1 7.62504- 3 2.36856- 3 6.00000+ 0 2.10000+ 1 2.82425- 2 2.60449- 3 6.00000+ 0 2.20000+ 1 9.57786- 3 2.64038- 3 6.00000+ 0 2.40000+ 1 1.34117- 3 2.95110- 3 6.00000+ 0 2.50000+ 1 1.95004- 3 2.96026- 3 6.00000+ 0 2.70000+ 1 8.70235- 4 3.00590- 3 6.00000+ 0 2.90000+ 1 6.37054- 3 3.06121- 3 6.00000+ 0 3.00000+ 1 1.65128- 3 3.10534- 3 6.00000+ 0 3.20000+ 1 4.80344- 3 3.18718- 3 6.00000+ 0 3.30000+ 1 1.63379- 3 3.19362- 3 8.00000+ 0 8.00000+ 0 4.34786- 4 9.21440- 3 8.00000+ 0 1.00000+ 1 1.72485- 2 9.53400- 3 8.00000+ 0 1.10000+ 1 1.54647- 3 1.02848- 2 8.00000+ 0 1.30000+ 1 3.10647- 3 1.08091- 2 8.00000+ 0 1.40000+ 1 1.27252- 3 1.09646- 2 8.00000+ 0 1.60000+ 1 1.73137- 4 1.29392- 2 8.00000+ 0 1.80000+ 1 2.88815- 3 1.30839- 2 8.00000+ 0 1.90000+ 1 3.50139- 4 1.32773- 2 8.00000+ 0 2.10000+ 1 5.21527- 4 1.35132- 2 8.00000+ 0 2.20000+ 1 1.81894- 4 1.35491- 2 8.00000+ 0 2.40000+ 1 7.48566- 5 1.38598- 2 8.00000+ 0 2.50000+ 1 5.38645- 5 1.38690- 2 8.00000+ 0 2.70000+ 1 3.98753- 5 1.39146- 2 8.00000+ 0 2.90000+ 1 5.98129- 4 1.39699- 2 8.00000+ 0 3.00000+ 1 7.62521- 5 1.40140- 2 8.00000+ 0 3.20000+ 1 8.70985- 5 1.40959- 2 8.00000+ 0 3.30000+ 1 2.93826- 5 1.41023- 2 1.00000+ 1 1.00000+ 1 1.83330- 2 9.85360- 3 1.00000+ 1 1.10000+ 1 4.28695- 2 1.06044- 2 1.00000+ 1 1.30000+ 1 2.17752- 2 1.11287- 2 1.00000+ 1 1.40000+ 1 2.86961- 2 1.12842- 2 1.00000+ 1 1.60000+ 1 4.60991- 3 1.32588- 2 1.00000+ 1 1.80000+ 1 7.82497- 3 1.34035- 2 1.00000+ 1 1.90000+ 1 1.05975- 2 1.35969- 2 1.00000+ 1 2.10000+ 1 5.14124- 3 1.38328- 2 1.00000+ 1 2.20000+ 1 6.78536- 3 1.38687- 2 1.00000+ 1 2.40000+ 1 4.14858- 4 1.41794- 2 1.00000+ 1 2.50000+ 1 3.42446- 4 1.41886- 2 1.00000+ 1 2.70000+ 1 1.13013- 3 1.42342- 2 1.00000+ 1 2.90000+ 1 1.71856- 3 1.42895- 2 1.00000+ 1 3.00000+ 1 2.35334- 3 1.43336- 2 1.00000+ 1 3.20000+ 1 9.13655- 4 1.44155- 2 1.00000+ 1 3.30000+ 1 1.19456- 3 1.44219- 2 1.10000+ 1 1.10000+ 1 9.06985- 4 1.13552- 2 1.10000+ 1 1.30000+ 1 1.75359- 2 1.18795- 2 1.10000+ 1 1.40000+ 1 2.65449- 3 1.20350- 2 1.10000+ 1 1.60000+ 1 3.44886- 4 1.40096- 2 1.10000+ 1 1.80000+ 1 7.25133- 3 1.41543- 2 1.10000+ 1 1.90000+ 1 3.87204- 4 1.43477- 2 1.10000+ 1 2.10000+ 1 3.51982- 3 1.45836- 2 1.10000+ 1 2.20000+ 1 5.16974- 4 1.46195- 2 1.10000+ 1 2.40000+ 1 1.44110- 4 1.49302- 2 1.10000+ 1 2.50000+ 1 7.31043- 5 1.49394- 2 1.10000+ 1 2.70000+ 1 8.07979- 5 1.49850- 2 1.10000+ 1 2.90000+ 1 1.50336- 3 1.50403- 2 1.10000+ 1 3.00000+ 1 8.32497- 5 1.50844- 2 1.10000+ 1 3.20000+ 1 6.05127- 4 1.51663- 2 1.10000+ 1 3.30000+ 1 8.77970- 5 1.51727- 2 1.30000+ 1 1.30000+ 1 1.66756- 2 1.24038- 2 1.30000+ 1 1.40000+ 1 6.46754- 2 1.25593- 2 1.30000+ 1 1.60000+ 1 8.31112- 4 1.45339- 2 1.30000+ 1 1.80000+ 1 3.54554- 3 1.46786- 2 1.30000+ 1 1.90000+ 1 3.99610- 3 1.48720- 2 1.30000+ 1 2.10000+ 1 6.51824- 3 1.51079- 2 1.30000+ 1 2.20000+ 1 1.36583- 2 1.51438- 2 1.30000+ 1 2.40000+ 1 1.35338- 3 1.54545- 2 1.30000+ 1 2.50000+ 1 2.70153- 3 1.54637- 2 1.30000+ 1 2.70000+ 1 2.04272- 4 1.55093- 2 1.30000+ 1 2.90000+ 1 7.35614- 4 1.55646- 2 1.30000+ 1 3.00000+ 1 8.71307- 4 1.56087- 2 1.30000+ 1 3.20000+ 1 1.12143- 3 1.56906- 2 1.30000+ 1 3.30000+ 1 2.35236- 3 1.56970- 2 1.40000+ 1 1.40000+ 1 3.15366- 3 1.27148- 2 1.40000+ 1 1.60000+ 1 2.73887- 4 1.46894- 2 1.40000+ 1 1.80000+ 1 4.10490- 3 1.48341- 2 1.40000+ 1 1.90000+ 1 5.57944- 4 1.50275- 2 1.40000+ 1 2.10000+ 1 1.03742- 2 1.52634- 2 1.40000+ 1 2.20000+ 1 1.21482- 3 1.52993- 2 1.40000+ 1 2.40000+ 1 5.39749- 4 1.56100- 2 1.40000+ 1 2.50000+ 1 2.05329- 4 1.56192- 2 1.40000+ 1 2.70000+ 1 6.40111- 5 1.56648- 2 1.40000+ 1 2.90000+ 1 8.18884- 4 1.57201- 2 1.40000+ 1 3.00000+ 1 1.19624- 4 1.57642- 2 1.40000+ 1 3.20000+ 1 1.70867- 3 1.58461- 2 1.40000+ 1 3.30000+ 1 2.06376- 4 1.58525- 2 1.60000+ 1 1.60000+ 1 1.64400- 5 1.66640- 2 1.60000+ 1 1.80000+ 1 7.76520- 4 1.68087- 2 1.60000+ 1 1.90000+ 1 7.87036- 5 1.70021- 2 1.60000+ 1 2.10000+ 1 1.36412- 4 1.72380- 2 1.60000+ 1 2.20000+ 1 3.88265- 5 1.72739- 2 1.60000+ 1 2.40000+ 1 1.74886- 5 1.75846- 2 1.60000+ 1 2.50000+ 1 1.01437- 5 1.75938- 2 1.60000+ 1 2.70000+ 1 7.69523- 6 1.76394- 2 1.60000+ 1 2.90000+ 1 1.60901- 4 1.76947- 2 1.60000+ 1 3.00000+ 1 1.71397- 5 1.77388- 2 1.60000+ 1 3.20000+ 1 2.27363- 5 1.78207- 2 1.60000+ 1 3.30000+ 1 6.29593- 6 1.78271- 2 1.80000+ 1 1.80000+ 1 7.93663- 4 1.69534- 2 1.80000+ 1 1.90000+ 1 1.79964- 3 1.71468- 2 1.80000+ 1 2.10000+ 1 8.25130- 4 1.73827- 2 1.80000+ 1 2.20000+ 1 9.81160- 4 1.74186- 2 1.80000+ 1 2.40000+ 1 5.56151- 5 1.77293- 2 1.80000+ 1 2.50000+ 1 3.53279- 5 1.77385- 2 1.80000+ 1 2.70000+ 1 1.90638- 4 1.77841- 2 1.80000+ 1 2.90000+ 1 3.44888- 4 1.78394- 2 1.80000+ 1 3.00000+ 1 3.99807- 4 1.78835- 2 1.80000+ 1 3.20000+ 1 1.46205- 4 1.79654- 2 1.80000+ 1 3.30000+ 1 1.73135- 4 1.79718- 2 1.90000+ 1 1.90000+ 1 4.16254- 5 1.73401- 2 1.90000+ 1 2.10000+ 1 8.07336- 4 1.75760- 2 1.90000+ 1 2.20000+ 1 1.09840- 4 1.76119- 2 1.90000+ 1 2.40000+ 1 2.90333- 5 1.79227- 2 1.90000+ 1 2.50000+ 1 1.36416- 5 1.79318- 2 1.90000+ 1 2.70000+ 1 1.85396- 5 1.79775- 2 1.90000+ 1 2.90000+ 1 3.73233- 4 1.80328- 2 1.90000+ 1 3.00000+ 1 1.78389- 5 1.80769- 2 1.90000+ 1 3.20000+ 1 1.38877- 4 1.81587- 2 1.90000+ 1 3.30000+ 1 1.85396- 5 1.81652- 2 2.10000+ 1 2.10000+ 1 6.33090- 4 1.78120- 2 2.10000+ 1 2.20000+ 1 2.28381- 3 1.78479- 2 2.10000+ 1 2.40000+ 1 1.82238- 4 1.81586- 2 2.10000+ 1 2.50000+ 1 3.65524- 4 1.81677- 2 2.10000+ 1 2.70000+ 1 3.32289- 5 1.82134- 2 2.10000+ 1 2.90000+ 1 1.70349- 4 1.82687- 2 2.10000+ 1 3.00000+ 1 1.76289- 4 1.83128- 2 2.10000+ 1 3.20000+ 1 2.17223- 4 1.83947- 2 2.10000+ 1 3.30000+ 1 3.95963- 4 1.84011- 2 2.20000+ 1 2.20000+ 1 1.18229- 4 1.78838- 2 2.20000+ 1 2.40000+ 1 7.90539- 5 1.81945- 2 2.20000+ 1 2.50000+ 1 3.07801- 5 1.82036- 2 2.20000+ 1 2.70000+ 1 9.09451- 6 1.82493- 2 2.20000+ 1 2.90000+ 1 1.96224- 4 1.83046- 2 2.20000+ 1 3.00000+ 1 2.37851- 5 1.83487- 2 2.20000+ 1 3.20000+ 1 3.78810- 4 1.84306- 2 2.20000+ 1 3.30000+ 1 4.02252- 5 1.84370- 2 2.40000+ 1 2.40000+ 1 4.54729- 6 1.85052- 2 2.40000+ 1 2.50000+ 1 3.11319- 5 1.85144- 2 2.40000+ 1 2.70000+ 1 4.19744- 6 1.85600- 2 2.40000+ 1 2.90000+ 1 1.11933- 5 1.86153- 2 2.40000+ 1 3.00000+ 1 6.29596- 6 1.86594- 2 2.40000+ 1 3.20000+ 1 2.90327- 5 1.87413- 2 2.40000+ 1 3.30000+ 1 1.25927- 5 1.87477- 2 2.50000+ 1 2.50000+ 1 2.09861- 6 1.85235- 2 2.50000+ 1 2.70000+ 1 2.44846- 6 1.85692- 2 2.50000+ 1 2.90000+ 1 6.64556- 6 1.86245- 2 2.50000+ 1 3.00000+ 1 2.79830- 6 1.86686- 2 2.50000+ 1 3.20000+ 1 5.80672- 5 1.87504- 2 2.50000+ 1 3.30000+ 1 4.89701- 6 1.87569- 2 2.70000+ 1 2.70000+ 1 6.99585- 7 1.86148- 2 2.70000+ 1 2.90000+ 1 3.95254- 5 1.86701- 2 2.70000+ 1 3.00000+ 1 4.19744- 6 1.87142- 2 2.70000+ 1 3.20000+ 1 5.59655- 6 1.87961- 2 2.70000+ 1 3.30000+ 1 1.39911- 6 1.88025- 2 2.90000+ 1 2.90000+ 1 3.74268- 5 1.87254- 2 2.90000+ 1 3.00000+ 1 8.29021- 5 1.87695- 2 2.90000+ 1 3.20000+ 1 3.00816- 5 1.88514- 2 2.90000+ 1 3.30000+ 1 3.46299- 5 1.88578- 2 3.00000+ 1 3.00000+ 1 1.74889- 6 1.88137- 2 3.00000+ 1 3.20000+ 1 3.04315- 5 1.88955- 2 3.00000+ 1 3.30000+ 1 3.84772- 6 1.89020- 2 3.20000+ 1 3.20000+ 1 1.78055- 5 1.89774- 2 3.20000+ 1 3.30000+ 1 6.31587- 5 1.89838- 2 3.30000+ 1 3.30000+ 1 3.37531- 6 1.89902- 2 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 1.96259- 2 1.09087- 2 1.00000+ 1 2.38568- 4 1.12283- 2 1.10000+ 1 2.16288- 4 1.19791- 2 1.30000+ 1 3.30698- 2 1.25034- 2 1.40000+ 1 2.90678- 1 1.26589- 2 1.60000+ 1 4.83686- 3 1.46335- 2 1.80000+ 1 5.35436- 5 1.47782- 2 1.90000+ 1 5.78316- 5 1.49716- 2 2.10000+ 1 6.53045- 3 1.52075- 2 2.20000+ 1 5.95616- 2 1.52434- 2 2.40000+ 1 7.34324- 5 1.55541- 2 2.50000+ 1 4.06637- 4 1.55633- 2 2.70000+ 1 1.18179- 3 1.56089- 2 2.90000+ 1 1.19199- 5 1.56642- 2 3.00000+ 1 1.31709- 5 1.57083- 2 3.20000+ 1 1.14959- 3 1.57902- 2 3.30000+ 1 1.04739- 2 1.57966- 2 4.10000+ 1 2.34838- 4 1.58378- 2 4.30000+ 1 2.03408- 6 1.58537- 2 4.40000+ 1 2.13158- 6 1.58610- 2 5.80000+ 1 2.28378- 5 1.58776- 2 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 5.06219- 4 5.93440- 3 8.00000+ 0 1.00000+ 1 2.29701- 4 6.25400- 3 8.00000+ 0 1.10000+ 1 1.87607- 2 7.00480- 3 8.00000+ 0 1.30000+ 1 2.73540- 3 7.52910- 3 8.00000+ 0 1.40000+ 1 5.24959- 3 7.68460- 3 8.00000+ 0 1.60000+ 1 2.04265- 4 9.65920- 3 8.00000+ 0 1.80000+ 1 3.98204- 5 9.80390- 3 8.00000+ 0 1.90000+ 1 3.06580- 3 9.99726- 3 8.00000+ 0 2.10000+ 1 3.17084- 4 1.02332- 2 8.00000+ 0 2.20000+ 1 5.71826- 4 1.02691- 2 8.00000+ 0 2.40000+ 1 2.98275- 4 1.05798- 2 8.00000+ 0 2.50000+ 1 5.11752- 4 1.05890- 2 8.00000+ 0 2.70000+ 1 4.68258- 5 1.06346- 2 8.00000+ 0 2.90000+ 1 8.11133- 6 1.06899- 2 8.00000+ 0 3.00000+ 1 6.23092- 4 1.07340- 2 8.00000+ 0 3.20000+ 1 4.94049- 5 1.08159- 2 8.00000+ 0 3.30000+ 1 8.59085- 5 1.08223- 2 1.00000+ 1 1.00000+ 1 3.68707- 6 6.57360- 3 1.00000+ 1 1.10000+ 1 3.14601- 2 7.32440- 3 1.00000+ 1 1.30000+ 1 1.36865- 3 7.84870- 3 1.00000+ 1 1.40000+ 1 1.06922- 2 8.00420- 3 1.00000+ 1 1.60000+ 1 4.82997- 5 9.97880- 3 1.00000+ 1 1.80000+ 1 7.74272- 6 1.01235- 2 1.00000+ 1 1.90000+ 1 5.33957- 3 1.03169- 2 1.00000+ 1 2.10000+ 1 2.69519- 4 1.05528- 2 1.00000+ 1 2.20000+ 1 1.74945- 3 1.05887- 2 1.00000+ 1 2.40000+ 1 2.65830- 4 1.08994- 2 1.00000+ 1 2.50000+ 1 6.44134- 4 1.09086- 2 1.00000+ 1 2.70000+ 1 1.14299- 5 1.09542- 2 1.00000+ 1 2.90000+ 1 2.21220- 6 1.10095- 2 1.00000+ 1 3.00000+ 1 1.09319- 3 1.10536- 2 1.00000+ 1 3.20000+ 1 4.71940- 5 1.11355- 2 1.00000+ 1 3.30000+ 1 2.89421- 4 1.11419- 2 1.10000+ 1 1.10000+ 1 3.80691- 2 8.07520- 3 1.10000+ 1 1.30000+ 1 3.99163- 2 8.59950- 3 1.10000+ 1 1.40000+ 1 5.15952- 2 8.75500- 3 1.10000+ 1 1.60000+ 1 4.93111- 3 1.07296- 2 1.10000+ 1 1.80000+ 1 7.42683- 3 1.08743- 2 1.10000+ 1 1.90000+ 1 1.56927- 2 1.10677- 2 1.10000+ 1 2.10000+ 1 8.81909- 3 1.13036- 2 1.10000+ 1 2.20000+ 1 1.13031- 2 1.13395- 2 1.10000+ 1 2.40000+ 1 8.93339- 4 1.16502- 2 1.10000+ 1 2.50000+ 1 1.07547- 3 1.16594- 2 1.10000+ 1 2.70000+ 1 1.20378- 3 1.17050- 2 1.10000+ 1 2.90000+ 1 1.66059- 3 1.17603- 2 1.10000+ 1 3.00000+ 1 3.36981- 3 1.18044- 2 1.10000+ 1 3.20000+ 1 1.54994- 3 1.18863- 2 1.10000+ 1 3.30000+ 1 1.96219- 3 1.18927- 2 1.30000+ 1 1.30000+ 1 5.32025- 3 9.12380- 3 1.30000+ 1 1.40000+ 1 9.91950- 2 9.27930- 3 1.30000+ 1 1.60000+ 1 6.64805- 4 1.12539- 2 1.30000+ 1 1.80000+ 1 3.53233- 4 1.13986- 2 1.30000+ 1 1.90000+ 1 6.12273- 3 1.15920- 2 1.30000+ 1 2.10000+ 1 1.97551- 3 1.18279- 2 1.30000+ 1 2.20000+ 1 1.54183- 2 1.18638- 2 1.30000+ 1 2.40000+ 1 4.83755- 4 1.21745- 2 1.30000+ 1 2.50000+ 1 1.62162- 3 1.21837- 2 1.30000+ 1 2.70000+ 1 1.60761- 4 1.22293- 2 1.30000+ 1 2.90000+ 1 8.00099- 5 1.22846- 2 1.30000+ 1 3.00000+ 1 1.22640- 3 1.23287- 2 1.30000+ 1 3.20000+ 1 3.37748- 4 1.24106- 2 1.30000+ 1 3.30000+ 1 2.50883- 3 1.24170- 2 1.40000+ 1 1.40000+ 1 6.56155- 2 9.43480- 3 1.40000+ 1 1.60000+ 1 1.28683- 3 1.14094- 2 1.40000+ 1 1.80000+ 1 2.27302- 3 1.15541- 2 1.40000+ 1 1.90000+ 1 8.87925- 3 1.17475- 2 1.40000+ 1 2.10000+ 1 1.85759- 2 1.19834- 2 1.40000+ 1 2.20000+ 1 2.34098- 2 1.20193- 2 1.40000+ 1 2.40000+ 1 5.07391- 3 1.23300- 2 1.40000+ 1 2.50000+ 1 4.58224- 3 1.23392- 2 1.40000+ 1 2.70000+ 1 3.13406- 4 1.23848- 2 1.40000+ 1 2.90000+ 1 4.97755- 4 1.24401- 2 1.40000+ 1 3.00000+ 1 1.83806- 3 1.24842- 2 1.40000+ 1 3.20000+ 1 3.16789- 3 1.25661- 2 1.40000+ 1 3.30000+ 1 3.92537- 3 1.25725- 2 1.60000+ 1 1.60000+ 1 2.13847- 5 1.33840- 2 1.60000+ 1 1.80000+ 1 9.21756- 6 1.35287- 2 1.60000+ 1 1.90000+ 1 8.05265- 4 1.37221- 2 1.60000+ 1 2.10000+ 1 8.33276- 5 1.39580- 2 1.60000+ 1 2.20000+ 1 1.48949- 4 1.39939- 2 1.60000+ 1 2.40000+ 1 3.79770- 5 1.43046- 2 1.60000+ 1 2.50000+ 1 7.37428- 5 1.43138- 2 1.60000+ 1 2.70000+ 1 9.95560- 6 1.43594- 2 1.60000+ 1 2.90000+ 1 1.84348- 6 1.44147- 2 1.60000+ 1 3.00000+ 1 1.63330- 4 1.44588- 2 1.60000+ 1 3.20000+ 1 1.29046- 5 1.45407- 2 1.60000+ 1 3.30000+ 1 2.24923- 5 1.45471- 2 1.80000+ 1 1.90000+ 1 1.25097- 3 1.38668- 2 1.80000+ 1 2.10000+ 1 6.41550- 5 1.41027- 2 1.80000+ 1 2.20000+ 1 4.04819- 4 1.41386- 2 1.80000+ 1 2.40000+ 1 3.98201- 5 1.44493- 2 1.80000+ 1 2.50000+ 1 9.06973- 5 1.44585- 2 1.80000+ 1 2.70000+ 1 2.21217- 6 1.45041- 2 1.80000+ 1 3.00000+ 1 2.55875- 4 1.46035- 2 1.80000+ 1 3.20000+ 1 1.10609- 5 1.46854- 2 1.80000+ 1 3.30000+ 1 6.74699- 5 1.46918- 2 1.90000+ 1 1.90000+ 1 1.54460- 3 1.40601- 2 1.90000+ 1 2.10000+ 1 1.35711- 3 1.42960- 2 1.90000+ 1 2.20000+ 1 1.91761- 3 1.43319- 2 1.90000+ 1 2.40000+ 1 1.12819- 4 1.46427- 2 1.90000+ 1 2.50000+ 1 1.43058- 4 1.46518- 2 1.90000+ 1 2.70000+ 1 1.96515- 4 1.46975- 2 1.90000+ 1 2.90000+ 1 2.79114- 4 1.47528- 2 1.90000+ 1 3.00000+ 1 6.56649- 4 1.47969- 2 1.90000+ 1 3.20000+ 1 2.38549- 4 1.48787- 2 1.90000+ 1 3.30000+ 1 3.31830- 4 1.48852- 2 2.10000+ 1 2.10000+ 1 1.75871- 4 1.45320- 2 2.10000+ 1 2.20000+ 1 3.03002- 3 1.45679- 2 2.10000+ 1 2.40000+ 1 5.93606- 5 1.48786- 2 2.10000+ 1 2.50000+ 1 1.87303- 4 1.48877- 2 2.10000+ 1 2.70000+ 1 2.02786- 5 1.49334- 2 2.10000+ 1 2.90000+ 1 1.43788- 5 1.49887- 2 2.10000+ 1 3.00000+ 1 2.72092- 4 1.50328- 2 2.10000+ 1 3.20000+ 1 5.97265- 5 1.51147- 2 2.10000+ 1 3.30000+ 1 4.96636- 4 1.51211- 2 2.20000+ 1 2.20000+ 1 2.10193- 3 1.46038- 2 2.20000+ 1 2.40000+ 1 6.13497- 4 1.49145- 2 2.20000+ 1 2.50000+ 1 5.43837- 4 1.49236- 2 2.20000+ 1 2.70000+ 1 3.68706- 5 1.49693- 2 2.20000+ 1 2.90000+ 1 8.95953- 5 1.50246- 2 2.20000+ 1 3.00000+ 1 3.95611- 4 1.50687- 2 2.20000+ 1 3.20000+ 1 5.20975- 4 1.51506- 2 2.20000+ 1 3.30000+ 1 7.04943- 4 1.51570- 2 2.40000+ 1 2.40000+ 1 2.58070- 6 1.52252- 2 2.40000+ 1 2.50000+ 1 8.25858- 5 1.52344- 2 2.40000+ 1 2.70000+ 1 8.11114- 6 1.52800- 2 2.40000+ 1 2.90000+ 1 8.11114- 6 1.53353- 2 2.40000+ 1 3.00000+ 1 2.17525- 5 1.53794- 2 2.40000+ 1 3.20000+ 1 9.21711- 6 1.54613- 2 2.40000+ 1 3.30000+ 1 9.51199- 5 1.54677- 2 2.50000+ 1 2.50000+ 1 2.91264- 5 1.52435- 2 2.50000+ 1 2.70000+ 1 1.62231- 5 1.52892- 2 2.50000+ 1 2.90000+ 1 1.84343- 5 1.53445- 2 2.50000+ 1 3.00000+ 1 2.80208- 5 1.53886- 2 2.50000+ 1 3.20000+ 1 2.91264- 5 1.54704- 2 2.50000+ 1 3.30000+ 1 8.36974- 5 1.54769- 2 2.70000+ 1 2.70000+ 1 1.17571- 6 1.53348- 2 2.70000+ 1 2.90000+ 1 3.91908- 7 1.53901- 2 2.70000+ 1 3.00000+ 1 4.23264- 5 1.54342- 2 2.70000+ 1 3.20000+ 1 3.52711- 6 1.55161- 2 2.70000+ 1 3.30000+ 1 5.87852- 6 1.55225- 2 2.90000+ 1 3.00000+ 1 6.10349- 5 1.54895- 2 2.90000+ 1 3.20000+ 1 2.75624- 6 1.55714- 2 2.90000+ 1 3.30000+ 1 1.61442- 5 1.55778- 2 3.00000+ 1 3.00000+ 1 7.22557- 5 1.55337- 2 3.00000+ 1 3.20000+ 1 4.97004- 5 1.56155- 2 3.00000+ 1 3.30000+ 1 7.11124- 5 1.56220- 2 3.20000+ 1 3.20000+ 1 5.16180- 6 1.56974- 2 3.20000+ 1 3.30000+ 1 8.55375- 5 1.57038- 2 3.30000+ 1 3.30000+ 1 5.89896- 5 1.57102- 2 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.04640- 5 3.19600- 4 1.10000+ 1 8.97017- 4 1.07040- 3 1.80000+ 1 2.27979- 3 3.86950- 3 1.90000+ 1 1.37560- 3 4.06286- 3 2.90000+ 1 5.76138- 4 4.75551- 3 3.00000+ 1 3.92029- 4 4.79964- 3 4.30000+ 1 1.00620- 4 4.94499- 3 4.40000+ 1 6.58118- 5 4.95235- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.40000+ 1 1.22196- 2 0.00000+ 0 1.00000+ 1 2.50000+ 1 1.29779- 2 0.00000+ 0 1.00000+ 1 2.70000+ 1 1.45439- 2 4.55000- 5 1.00000+ 1 2.90000+ 1 1.51024- 2 1.00810- 4 1.00000+ 1 3.00000+ 1 1.86022- 2 1.44940- 4 1.00000+ 1 3.20000+ 1 1.01785- 2 2.26780- 4 1.00000+ 1 3.30000+ 1 1.33734- 2 2.33220- 4 1.00000+ 1 4.10000+ 1 2.71441- 3 2.74430- 4 1.00000+ 1 4.30000+ 1 2.31982- 3 2.90290- 4 1.00000+ 1 4.40000+ 1 2.68500- 3 2.97650- 4 1.00000+ 1 4.60000+ 1 5.73082- 5 3.15110- 4 1.00000+ 1 4.70000+ 1 6.94870- 5 3.15600- 4 1.00000+ 1 5.80000+ 1 2.95857- 4 3.14190- 4 1.10000+ 1 1.90000+ 1 4.80280- 2 1.58960- 4 1.10000+ 1 2.10000+ 1 1.25386- 2 3.94890- 4 1.10000+ 1 2.20000+ 1 2.75257- 2 4.30780- 4 1.10000+ 1 2.40000+ 1 2.03433- 1 7.41500- 4 1.10000+ 1 2.50000+ 1 2.47563- 1 7.50660- 4 1.10000+ 1 2.70000+ 1 1.18381- 2 7.96300- 4 1.10000+ 1 2.90000+ 1 1.18897- 2 8.51610- 4 1.10000+ 1 3.00000+ 1 1.03892- 2 8.95740- 4 1.10000+ 1 3.20000+ 1 2.41988- 3 9.77580- 4 1.10000+ 1 3.30000+ 1 5.15059- 3 9.84020- 4 1.10000+ 1 4.10000+ 1 2.23068- 3 1.02523- 3 1.10000+ 1 4.30000+ 1 1.87751- 3 1.04109- 3 1.10000+ 1 4.40000+ 1 1.54582- 3 1.04845- 3 1.10000+ 1 4.60000+ 1 1.46145- 5 1.06591- 3 1.10000+ 1 4.70000+ 1 2.83685- 5 1.06640- 3 1.10000+ 1 5.80000+ 1 2.45426- 4 1.06499- 3 1.30000+ 1 1.60000+ 1 2.74473- 2 3.45200- 4 1.30000+ 1 1.80000+ 1 5.82931- 3 4.89900- 4 1.30000+ 1 1.90000+ 1 9.02439- 3 6.83260- 4 1.30000+ 1 2.10000+ 1 9.40606- 3 9.19190- 4 1.30000+ 1 2.20000+ 1 1.13412- 2 9.55080- 4 1.30000+ 1 2.40000+ 1 1.03027- 2 1.26580- 3 1.30000+ 1 2.50000+ 1 9.64197- 3 1.27496- 3 1.30000+ 1 2.70000+ 1 4.17319- 3 1.32060- 3 1.30000+ 1 2.90000+ 1 1.02829- 3 1.37591- 3 1.30000+ 1 3.00000+ 1 1.48888- 3 1.42004- 3 1.30000+ 1 3.20000+ 1 1.34619- 3 1.50188- 3 1.30000+ 1 3.30000+ 1 1.75718- 3 1.50832- 3 1.30000+ 1 4.10000+ 1 7.28570- 4 1.54953- 3 1.30000+ 1 4.30000+ 1 1.60186- 4 1.56539- 3 1.30000+ 1 4.40000+ 1 2.13619- 4 1.57275- 3 1.30000+ 1 4.60000+ 1 8.02343- 6 1.59021- 3 1.30000+ 1 4.70000+ 1 9.59924- 6 1.59070- 3 1.30000+ 1 5.80000+ 1 7.80859- 5 1.58929- 3 1.40000+ 1 1.60000+ 1 3.76364- 2 5.00700- 4 1.40000+ 1 1.80000+ 1 9.16002- 4 6.45400- 4 1.40000+ 1 1.90000+ 1 1.23315- 2 8.38760- 4 1.40000+ 1 2.10000+ 1 1.29248- 2 1.07469- 3 1.40000+ 1 2.20000+ 1 1.78130- 2 1.11058- 3 1.40000+ 1 2.40000+ 1 1.20821- 2 1.42130- 3 1.40000+ 1 2.50000+ 1 1.82891- 2 1.43046- 3 1.40000+ 1 2.70000+ 1 5.63945- 3 1.47610- 3 1.40000+ 1 2.90000+ 1 2.21379- 4 1.53141- 3 1.40000+ 1 3.00000+ 1 2.00708- 3 1.57554- 3 1.40000+ 1 3.20000+ 1 2.04396- 3 1.65738- 3 1.40000+ 1 3.30000+ 1 2.65650- 3 1.66382- 3 1.40000+ 1 4.10000+ 1 9.81190- 4 1.70503- 3 1.40000+ 1 4.30000+ 1 3.72530- 5 1.72089- 3 1.40000+ 1 4.40000+ 1 2.87850- 4 1.72825- 3 1.40000+ 1 4.60000+ 1 1.23226- 5 1.74571- 3 1.40000+ 1 4.70000+ 1 1.44721- 5 1.74620- 3 1.40000+ 1 5.80000+ 1 1.05180- 4 1.74479- 3 1.60000+ 1 1.60000+ 1 2.27709- 3 2.47530- 3 1.60000+ 1 1.80000+ 1 4.03027- 3 2.62000- 3 1.60000+ 1 1.90000+ 1 6.37518- 3 2.81336- 3 1.60000+ 1 2.10000+ 1 7.62136- 3 3.04929- 3 1.60000+ 1 2.20000+ 1 1.05971- 2 3.08518- 3 1.60000+ 1 2.40000+ 1 5.76088- 3 3.39590- 3 1.60000+ 1 2.50000+ 1 7.15654- 3 3.40506- 3 1.60000+ 1 2.70000+ 1 9.00916- 4 3.45070- 3 1.60000+ 1 2.90000+ 1 9.09485- 4 3.50601- 3 1.60000+ 1 3.00000+ 1 1.41356- 3 3.55014- 3 1.60000+ 1 3.20000+ 1 1.31998- 3 3.63198- 3 1.60000+ 1 3.30000+ 1 1.81780- 3 3.63842- 3 1.60000+ 1 4.10000+ 1 1.68248- 4 3.67963- 3 1.60000+ 1 4.30000+ 1 1.47680- 4 3.69549- 3 1.60000+ 1 4.40000+ 1 2.13368- 4 3.70285- 3 1.60000+ 1 4.60000+ 1 7.98240- 6 3.72031- 3 1.60000+ 1 4.70000+ 1 1.01312- 5 3.72080- 3 1.60000+ 1 5.80000+ 1 1.82675- 5 3.71939- 3 1.80000+ 1 1.80000+ 1 1.57804- 4 2.76470- 3 1.80000+ 1 1.90000+ 1 4.95974- 4 2.95806- 3 1.80000+ 1 2.10000+ 1 2.43765- 4 3.19399- 3 1.80000+ 1 2.20000+ 1 1.20190- 4 3.22988- 3 1.80000+ 1 2.40000+ 1 2.53283- 5 3.54060- 3 1.80000+ 1 2.50000+ 1 4.96281- 4 3.54976- 3 1.80000+ 1 2.70000+ 1 6.01258- 4 3.59540- 3 1.80000+ 1 2.90000+ 1 5.15775- 5 3.65071- 3 1.80000+ 1 3.00000+ 1 7.73648- 5 3.69484- 3 1.80000+ 1 3.20000+ 1 3.60729- 5 3.77668- 3 1.80000+ 1 3.30000+ 1 2.57882- 5 3.78312- 3 1.80000+ 1 4.10000+ 1 1.04996- 4 3.82433- 3 1.80000+ 1 4.30000+ 1 7.82846- 6 3.84019- 3 1.80000+ 1 4.40000+ 1 1.10522- 5 3.84755- 3 1.80000+ 1 4.60000+ 1 1.53503- 7 3.86501- 3 1.80000+ 1 4.70000+ 1 1.53503- 7 3.86550- 3 1.80000+ 1 5.80000+ 1 1.12066- 5 3.86409- 3 1.90000+ 1 1.90000+ 1 4.97666- 4 3.15142- 3 1.90000+ 1 2.10000+ 1 6.39224- 4 3.38735- 3 1.90000+ 1 2.20000+ 1 1.43719- 3 3.42324- 3 1.90000+ 1 2.40000+ 1 8.35368- 4 3.73396- 3 1.90000+ 1 2.50000+ 1 1.27642- 3 3.74312- 3 1.90000+ 1 2.70000+ 1 9.55704- 4 3.78876- 3 1.90000+ 1 2.90000+ 1 9.54788- 5 3.84407- 3 1.90000+ 1 3.00000+ 1 1.86050- 4 3.88820- 3 1.90000+ 1 3.20000+ 1 1.08989- 4 3.97004- 3 1.90000+ 1 3.30000+ 1 2.33789- 4 3.97648- 3 1.90000+ 1 4.10000+ 1 1.67323- 4 4.01769- 3 1.90000+ 1 4.30000+ 1 1.50438- 5 4.03355- 3 1.90000+ 1 4.40000+ 1 2.73245- 5 4.04091- 3 1.90000+ 1 4.60000+ 1 6.14001- 7 4.05837- 3 1.90000+ 1 4.70000+ 1 1.22808- 6 4.05886- 3 1.90000+ 1 5.80000+ 1 1.79608- 5 4.05745- 3 2.10000+ 1 2.10000+ 1 9.77834- 5 3.62328- 3 2.10000+ 1 2.20000+ 1 2.78926- 4 3.65917- 3 2.10000+ 1 2.40000+ 1 4.54226- 4 3.96989- 3 2.10000+ 1 2.50000+ 1 2.78820- 3 3.97905- 3 2.10000+ 1 2.70000+ 1 1.11280- 3 4.02469- 3 2.10000+ 1 2.90000+ 1 3.45395- 5 4.08000- 3 2.10000+ 1 3.00000+ 1 1.07916- 4 4.12413- 3 2.10000+ 1 3.20000+ 1 2.65574- 5 4.20597- 3 2.10000+ 1 3.30000+ 1 4.03729- 5 4.21241- 3 2.10000+ 1 4.10000+ 1 1.93261- 4 4.25362- 3 2.10000+ 1 4.30000+ 1 5.06577- 6 4.26948- 3 2.10000+ 1 4.40000+ 1 1.55051- 5 4.27684- 3 2.10000+ 1 4.60000+ 1 1.53506- 7 4.29430- 3 2.10000+ 1 4.70000+ 1 1.53506- 7 4.29479- 3 2.10000+ 1 5.80000+ 1 2.07230- 5 4.29338- 3 2.20000+ 1 2.20000+ 1 2.23965- 4 3.69506- 3 2.20000+ 1 2.40000+ 1 2.49474- 3 4.00578- 3 2.20000+ 1 2.50000+ 1 1.58446- 3 4.01494- 3 2.20000+ 1 2.70000+ 1 1.53994- 3 4.06058- 3 2.20000+ 1 2.90000+ 1 1.94963- 5 4.11589- 3 2.20000+ 1 3.00000+ 1 2.39157- 4 4.16002- 3 2.20000+ 1 3.20000+ 1 3.59201- 5 4.24186- 3 2.20000+ 1 3.30000+ 1 6.27839- 5 4.24830- 3 2.20000+ 1 4.10000+ 1 2.67095- 4 4.28951- 3 2.20000+ 1 4.30000+ 1 3.07010- 6 4.30537- 3 2.20000+ 1 4.40000+ 1 3.42325- 5 4.31273- 3 2.20000+ 1 4.60000+ 1 1.53505- 7 4.33019- 3 2.20000+ 1 4.70000+ 1 3.07010- 7 4.33068- 3 2.20000+ 1 5.80000+ 1 2.85524- 5 4.32927- 3 2.40000+ 1 2.40000+ 1 6.24403- 4 4.31650- 3 2.40000+ 1 2.50000+ 1 4.08844- 3 4.32566- 3 2.40000+ 1 2.70000+ 1 7.56790- 4 4.37130- 3 2.40000+ 1 2.90000+ 1 4.67429- 6 4.42661- 3 2.40000+ 1 3.00000+ 1 9.71057- 5 4.47074- 3 2.40000+ 1 3.20000+ 1 6.92107- 5 4.55258- 3 2.40000+ 1 3.30000+ 1 4.26277- 4 4.55902- 3 2.40000+ 1 4.10000+ 1 1.29376- 4 4.60023- 3 2.40000+ 1 4.30000+ 1 7.53904- 7 4.61609- 3 2.40000+ 1 4.40000+ 1 1.31175- 5 4.62345- 3 2.40000+ 1 4.60000+ 1 4.52358- 7 4.64091- 3 2.40000+ 1 4.70000+ 1 2.41255- 6 4.64140- 3 2.40000+ 1 5.80000+ 1 1.38725- 5 4.63999- 3 2.50000+ 1 2.50000+ 1 1.41042- 3 4.33482- 3 2.50000+ 1 2.70000+ 1 9.34265- 4 4.38046- 3 2.50000+ 1 2.90000+ 1 9.48821- 5 4.43577- 3 2.50000+ 1 3.00000+ 1 1.59442- 4 4.47990- 3 2.50000+ 1 3.20000+ 1 4.62256- 4 4.56174- 3 2.50000+ 1 3.30000+ 1 2.55530- 4 4.56818- 3 2.50000+ 1 4.10000+ 1 1.59742- 4 4.60939- 3 2.50000+ 1 4.30000+ 1 1.50132- 5 4.62525- 3 2.50000+ 1 4.40000+ 1 2.17690- 5 4.63261- 3 2.50000+ 1 4.60000+ 1 2.70232- 6 4.65007- 3 2.50000+ 1 4.70000+ 1 1.35117- 6 4.65056- 3 2.50000+ 1 5.80000+ 1 1.71155- 5 4.64915- 3 2.70000+ 1 2.70000+ 1 8.13390- 5 4.42610- 3 2.70000+ 1 2.90000+ 1 1.35614- 4 4.48141- 3 2.70000+ 1 3.00000+ 1 2.09953- 4 4.52554- 3 2.70000+ 1 3.20000+ 1 1.92164- 4 4.60738- 3 2.70000+ 1 3.30000+ 1 2.63320- 4 4.61382- 3 2.70000+ 1 4.10000+ 1 2.99498- 5 4.65503- 3 2.70000+ 1 4.30000+ 1 2.20445- 5 4.67089- 3 2.70000+ 1 4.40000+ 1 3.17739- 5 4.67825- 3 2.70000+ 1 4.60000+ 1 1.21631- 6 4.69571- 3 2.70000+ 1 4.70000+ 1 1.52032- 6 4.69620- 3 2.70000+ 1 5.80000+ 1 3.19269- 6 4.69479- 3 2.90000+ 1 2.90000+ 1 4.23614- 6 4.53672- 3 2.90000+ 1 3.00000+ 1 1.47480- 5 4.58085- 3 2.90000+ 1 3.20000+ 1 5.17751- 6 4.66269- 3 2.90000+ 1 3.30000+ 1 4.54986- 6 4.66913- 3 2.90000+ 1 4.10000+ 1 2.44762- 5 4.71034- 3 2.90000+ 1 4.30000+ 1 1.25520- 6 4.72620- 3 2.90000+ 1 4.40000+ 1 2.03966- 6 4.73356- 3 2.90000+ 1 5.80000+ 1 2.66721- 6 4.75010- 3 3.00000+ 1 3.00000+ 1 1.71303- 5 4.62498- 3 3.00000+ 1 3.20000+ 1 1.90160- 5 4.70682- 3 3.00000+ 1 3.30000+ 1 4.00747- 5 4.71326- 3 3.00000+ 1 4.10000+ 1 3.80319- 5 4.75447- 3 3.00000+ 1 4.30000+ 1 2.35733- 6 4.77033- 3 3.00000+ 1 4.40000+ 1 5.02899- 6 4.77769- 3 3.00000+ 1 4.60000+ 1 1.57155- 7 4.79515- 3 3.00000+ 1 4.70000+ 1 1.57155- 7 4.79564- 3 3.00000+ 1 5.80000+ 1 4.08606- 6 4.79423- 3 3.20000+ 1 3.20000+ 1 1.66829- 6 4.78866- 3 3.20000+ 1 3.30000+ 1 5.15641- 6 4.79510- 3 3.20000+ 1 4.10000+ 1 3.33657- 5 4.83631- 3 3.20000+ 1 4.30000+ 1 7.58290- 7 4.85217- 3 3.20000+ 1 4.40000+ 1 2.57826- 6 4.85953- 3 3.20000+ 1 5.80000+ 1 3.63993- 6 4.87607- 3 3.30000+ 1 3.30000+ 1 4.29813- 6 4.80154- 3 3.30000+ 1 4.10000+ 1 4.62062- 5 4.84275- 3 3.30000+ 1 4.30000+ 1 7.67520- 7 4.85861- 3 3.30000+ 1 4.40000+ 1 5.67978- 6 4.86597- 3 3.30000+ 1 5.80000+ 1 4.91224- 6 4.88251- 3 4.10000+ 1 4.10000+ 1 2.60431- 6 4.88396- 3 4.10000+ 1 4.30000+ 1 3.61715- 6 4.89982- 3 4.10000+ 1 4.40000+ 1 5.20871- 6 4.90718- 3 4.10000+ 1 4.60000+ 1 1.44686- 7 4.92464- 3 4.10000+ 1 4.70000+ 1 2.89373- 7 4.92513- 3 4.10000+ 1 5.80000+ 1 5.78734- 7 4.92372- 3 4.30000+ 1 4.30000+ 1 1.59415- 7 4.91568- 3 4.30000+ 1 4.40000+ 1 3.18829- 7 4.92304- 3 4.30000+ 1 5.80000+ 1 4.78253- 7 4.93958- 3 4.40000+ 1 4.40000+ 1 3.48104- 7 4.93040- 3 4.40000+ 1 5.80000+ 1 6.96193- 7 4.94694- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.55601- 3 1.27510- 3 1.60000+ 1 9.26383- 4 3.40520- 3 2.10000+ 1 4.73432- 3 3.97919- 3 2.70000+ 1 2.31601- 4 4.38060- 3 3.20000+ 1 1.03140- 3 4.56188- 3 4.10000+ 1 4.58282- 5 4.60953- 3 5.80000+ 1 4.51492- 6 4.64929- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 6.73697- 3 7.52900- 5 1.10000+ 1 2.20000+ 1 1.58698- 2 1.11180- 4 1.10000+ 1 2.40000+ 1 2.85488- 2 4.21900- 4 1.10000+ 1 2.50000+ 1 2.41344- 2 4.31060- 4 1.10000+ 1 2.70000+ 1 3.11796- 3 4.76700- 4 1.10000+ 1 2.90000+ 1 4.33914- 3 5.32010- 4 1.10000+ 1 3.00000+ 1 2.09278- 3 5.76140- 4 1.10000+ 1 3.20000+ 1 1.57842- 3 6.57980- 4 1.10000+ 1 3.30000+ 1 2.94816- 3 6.64420- 4 1.10000+ 1 4.10000+ 1 5.60537- 4 7.05630- 4 1.10000+ 1 4.30000+ 1 6.34322- 4 7.21490- 4 1.10000+ 1 4.40000+ 1 2.96702- 4 7.28850- 4 1.10000+ 1 4.60000+ 1 9.57566- 6 7.46310- 4 1.10000+ 1 4.70000+ 1 1.63458- 5 7.46800- 4 1.10000+ 1 5.80000+ 1 6.04292- 5 7.45390- 4 1.30000+ 1 1.60000+ 1 4.70433- 2 2.56000- 5 1.30000+ 1 1.80000+ 1 4.91276- 2 1.70300- 4 1.30000+ 1 1.90000+ 1 3.67652- 2 3.63660- 4 1.30000+ 1 2.10000+ 1 1.69019- 2 5.99590- 4 1.30000+ 1 2.20000+ 1 2.45440- 2 6.35480- 4 1.30000+ 1 2.40000+ 1 1.47816- 1 9.46200- 4 1.30000+ 1 2.50000+ 1 2.31201- 1 9.55360- 4 1.30000+ 1 2.70000+ 1 1.12850- 2 1.00100- 3 1.30000+ 1 2.90000+ 1 9.15844- 3 1.05631- 3 1.30000+ 1 3.00000+ 1 7.83152- 3 1.10044- 3 1.30000+ 1 3.20000+ 1 3.11105- 3 1.18228- 3 1.30000+ 1 3.30000+ 1 4.56152- 3 1.18872- 3 1.30000+ 1 4.10000+ 1 2.14336- 3 1.22993- 3 1.30000+ 1 4.30000+ 1 1.43689- 3 1.24579- 3 1.30000+ 1 4.40000+ 1 1.16994- 3 1.25315- 3 1.30000+ 1 4.60000+ 1 1.91518- 5 1.27061- 3 1.30000+ 1 4.70000+ 1 2.57571- 5 1.27110- 3 1.30000+ 1 5.80000+ 1 2.30319- 4 1.26969- 3 1.40000+ 1 1.60000+ 1 7.34198- 3 1.81100- 4 1.40000+ 1 1.80000+ 1 5.55937- 2 3.25800- 4 1.40000+ 1 1.90000+ 1 4.59757- 3 5.19160- 4 1.40000+ 1 2.10000+ 1 1.47034- 3 7.55090- 4 1.40000+ 1 2.20000+ 1 2.69046- 3 7.90980- 4 1.40000+ 1 2.40000+ 1 7.28670- 3 1.10170- 3 1.40000+ 1 2.50000+ 1 4.53761- 3 1.11086- 3 1.40000+ 1 2.70000+ 1 1.16044- 3 1.15650- 3 1.40000+ 1 2.90000+ 1 7.94575- 3 1.21181- 3 1.40000+ 1 3.00000+ 1 8.44203- 4 1.25594- 3 1.40000+ 1 3.20000+ 1 1.11609- 4 1.33778- 3 1.40000+ 1 3.30000+ 1 4.22842- 4 1.34422- 3 1.40000+ 1 4.10000+ 1 2.05063- 4 1.38543- 3 1.40000+ 1 4.30000+ 1 1.18019- 3 1.40129- 3 1.40000+ 1 4.40000+ 1 1.23000- 4 1.40865- 3 1.40000+ 1 4.60000+ 1 6.60413- 7 1.42611- 3 1.40000+ 1 4.70000+ 1 2.31152- 6 1.42660- 3 1.40000+ 1 5.80000+ 1 2.19594- 5 1.42519- 3 1.60000+ 1 1.60000+ 1 5.89569- 4 2.15570- 3 1.60000+ 1 1.80000+ 1 9.04049- 3 2.30040- 3 1.60000+ 1 1.90000+ 1 1.14903- 3 2.49376- 3 1.60000+ 1 2.10000+ 1 3.43026- 4 2.72969- 3 1.60000+ 1 2.20000+ 1 1.03969- 3 2.76558- 3 1.60000+ 1 2.40000+ 1 5.94329- 5 3.07630- 3 1.60000+ 1 2.50000+ 1 7.66018- 4 3.08546- 3 1.60000+ 1 2.70000+ 1 2.17197- 4 3.13110- 3 1.60000+ 1 2.90000+ 1 1.27007- 3 3.18641- 3 1.60000+ 1 3.00000+ 1 2.29304- 4 3.23054- 3 1.60000+ 1 3.20000+ 1 4.07222- 5 3.31238- 3 1.60000+ 1 3.30000+ 1 1.60683- 4 3.31882- 3 1.60000+ 1 4.10000+ 1 3.96212- 5 3.36003- 3 1.60000+ 1 4.30000+ 1 1.88943- 4 3.37589- 3 1.60000+ 1 4.40000+ 1 3.37521- 5 3.38325- 3 1.60000+ 1 4.60000+ 1 3.66887- 7 3.40071- 3 1.60000+ 1 4.70000+ 1 7.33732- 7 3.40120- 3 1.60000+ 1 5.80000+ 1 4.40252- 6 3.39979- 3 1.80000+ 1 1.80000+ 1 7.05826- 3 2.44510- 3 1.80000+ 1 1.90000+ 1 1.90631- 2 2.63846- 3 1.80000+ 1 2.10000+ 1 1.93612- 2 2.87439- 3 1.80000+ 1 2.20000+ 1 3.03614- 2 2.91028- 3 1.80000+ 1 2.40000+ 1 1.20633- 2 3.22100- 3 1.80000+ 1 2.50000+ 1 1.98218- 2 3.23016- 3 1.80000+ 1 2.70000+ 1 2.18377- 3 3.27580- 3 1.80000+ 1 2.90000+ 1 2.62748- 3 3.33111- 3 1.80000+ 1 3.00000+ 1 4.18729- 3 3.37524- 3 1.80000+ 1 3.20000+ 1 3.36663- 3 3.45708- 3 1.80000+ 1 3.30000+ 1 5.15525- 3 3.46352- 3 1.80000+ 1 4.10000+ 1 4.20433- 4 3.50473- 3 1.80000+ 1 4.30000+ 1 4.14928- 4 3.52059- 3 1.80000+ 1 4.40000+ 1 6.31011- 4 3.52795- 3 1.80000+ 1 4.60000+ 1 2.01783- 5 3.54541- 3 1.80000+ 1 4.70000+ 1 2.86160- 5 3.54590- 3 1.80000+ 1 5.80000+ 1 4.58576- 5 3.54449- 3 1.90000+ 1 1.90000+ 1 4.88665- 4 2.83182- 3 1.90000+ 1 2.10000+ 1 1.14972- 3 3.06775- 3 1.90000+ 1 2.20000+ 1 1.06059- 3 3.10364- 3 1.90000+ 1 2.40000+ 1 7.90679- 3 3.41436- 3 1.90000+ 1 2.50000+ 1 2.18935- 3 3.42352- 3 1.90000+ 1 2.70000+ 1 1.75726- 4 3.46916- 3 1.90000+ 1 2.90000+ 1 2.73336- 3 3.52447- 3 1.90000+ 1 3.00000+ 1 1.80863- 4 3.56860- 3 1.90000+ 1 3.20000+ 1 1.56285- 4 3.65044- 3 1.90000+ 1 3.30000+ 1 1.61786- 4 3.65688- 3 1.90000+ 1 4.10000+ 1 3.08165- 5 3.69809- 3 1.90000+ 1 4.30000+ 1 4.07935- 4 3.71395- 3 1.90000+ 1 4.40000+ 1 2.64148- 5 3.72131- 3 1.90000+ 1 4.60000+ 1 7.33712- 7 3.73877- 3 1.90000+ 1 4.70000+ 1 7.33712- 7 3.73926- 3 1.90000+ 1 5.80000+ 1 3.30164- 6 3.73785- 3 2.10000+ 1 2.10000+ 1 7.12075- 4 3.30368- 3 2.10000+ 1 2.20000+ 1 1.41900- 3 3.33957- 3 2.10000+ 1 2.40000+ 1 8.10377- 4 3.65029- 3 2.10000+ 1 2.50000+ 1 1.19963- 3 3.65945- 3 2.10000+ 1 2.70000+ 1 7.99759- 5 3.70509- 3 2.10000+ 1 2.90000+ 1 2.69284- 3 3.76040- 3 2.10000+ 1 3.00000+ 1 2.32943- 4 3.80453- 3 2.10000+ 1 3.20000+ 1 2.01032- 4 3.88637- 3 2.10000+ 1 3.30000+ 1 2.21228- 4 3.89281- 3 2.10000+ 1 4.10000+ 1 1.54075- 5 3.93402- 3 2.10000+ 1 4.30000+ 1 3.99498- 4 3.94988- 3 2.10000+ 1 4.40000+ 1 3.48525- 5 3.95724- 3 2.10000+ 1 4.60000+ 1 1.10058- 6 3.97470- 3 2.10000+ 1 4.70000+ 1 1.10058- 6 3.97519- 3 2.10000+ 1 5.80000+ 1 1.46741- 6 3.97378- 3 2.20000+ 1 2.20000+ 1 3.85198- 4 3.37546- 3 2.20000+ 1 2.40000+ 1 1.93957- 3 3.68618- 3 2.20000+ 1 2.50000+ 1 4.79111- 4 3.69534- 3 2.20000+ 1 2.70000+ 1 1.98114- 4 3.74098- 3 2.20000+ 1 2.90000+ 1 4.27376- 3 3.79629- 3 2.20000+ 1 3.00000+ 1 1.78667- 4 3.84042- 3 2.20000+ 1 3.20000+ 1 1.93700- 4 3.92226- 3 2.20000+ 1 3.30000+ 1 1.10424- 4 3.92870- 3 2.20000+ 1 4.10000+ 1 3.63197- 5 3.96991- 3 2.20000+ 1 4.30000+ 1 6.35421- 4 3.98577- 3 2.20000+ 1 4.40000+ 1 2.56786- 5 3.99313- 3 2.20000+ 1 4.60000+ 1 1.10058- 6 4.01059- 3 2.20000+ 1 4.70000+ 1 7.33722- 7 4.01108- 3 2.20000+ 1 5.80000+ 1 4.03554- 6 4.00967- 3 2.40000+ 1 2.40000+ 1 3.14541- 3 3.99690- 3 2.40000+ 1 2.50000+ 1 2.00799- 2 4.00606- 3 2.40000+ 1 2.70000+ 1 9.17173- 6 4.05170- 3 2.40000+ 1 2.90000+ 1 1.54737- 3 4.10701- 3 2.40000+ 1 3.00000+ 1 1.63069- 3 4.15114- 3 2.40000+ 1 3.20000+ 1 1.54455- 4 4.23298- 3 2.40000+ 1 3.30000+ 1 3.93644- 4 4.23942- 3 2.40000+ 1 4.10000+ 1 1.46743- 6 4.28063- 3 2.40000+ 1 4.30000+ 1 2.27814- 4 4.29649- 3 2.40000+ 1 4.40000+ 1 2.42860- 4 4.30385- 3 2.40000+ 1 4.60000+ 1 1.10060- 6 4.32131- 3 2.40000+ 1 4.70000+ 1 2.20115- 6 4.32180- 3 2.50000+ 1 2.50000+ 1 1.04777- 3 4.01522- 3 2.50000+ 1 2.70000+ 1 1.50789- 4 4.06086- 3 2.50000+ 1 2.90000+ 1 2.47936- 3 4.11617- 3 2.50000+ 1 3.00000+ 1 4.00621- 4 4.16030- 3 2.50000+ 1 3.20000+ 1 2.19019- 4 4.24214- 3 2.50000+ 1 3.30000+ 1 8.62130- 5 4.24858- 3 2.50000+ 1 4.10000+ 1 2.78808- 5 4.28979- 3 2.50000+ 1 4.30000+ 1 3.60266- 4 4.30565- 3 2.50000+ 1 4.40000+ 1 5.83319- 5 4.31301- 3 2.50000+ 1 4.60000+ 1 1.46744- 6 4.33047- 3 2.50000+ 1 4.70000+ 1 3.66888- 7 4.33096- 3 2.50000+ 1 5.80000+ 1 2.93501- 6 4.32955- 3 2.70000+ 1 2.70000+ 1 1.98116- 5 4.10650- 3 2.70000+ 1 2.90000+ 1 3.08899- 4 4.16181- 3 2.70000+ 1 3.00000+ 1 3.52193- 5 4.20594- 3 2.70000+ 1 3.20000+ 1 8.80480- 6 4.28778- 3 2.70000+ 1 3.30000+ 1 3.11836- 5 4.29422- 3 2.70000+ 1 4.10000+ 1 7.33730- 6 4.33543- 3 2.70000+ 1 4.30000+ 1 4.58567- 5 4.35129- 3 2.70000+ 1 4.40000+ 1 5.13615- 6 4.35865- 3 2.70000+ 1 5.80000+ 1 7.33730- 7 4.37519- 3 2.90000+ 1 2.90000+ 1 2.28906- 4 4.21712- 3 2.90000+ 1 3.00000+ 1 6.04932- 4 4.26125- 3 2.90000+ 1 3.20000+ 1 4.71056- 4 4.34309- 3 2.90000+ 1 3.30000+ 1 7.30424- 4 4.34953- 3 2.90000+ 1 4.10000+ 1 5.94314- 5 4.39074- 3 2.90000+ 1 4.30000+ 1 7.15378- 5 4.40660- 3 2.90000+ 1 4.40000+ 1 9.13471- 5 4.41396- 3 2.90000+ 1 4.60000+ 1 2.93493- 6 4.43142- 3 2.90000+ 1 4.70000+ 1 4.03549- 6 4.43191- 3 2.90000+ 1 5.80000+ 1 6.60351- 6 4.43050- 3 3.00000+ 1 3.00000+ 1 1.68485- 5 4.30538- 3 3.00000+ 1 3.20000+ 1 3.25722- 5 4.38722- 3 3.00000+ 1 3.30000+ 1 2.77059- 5 4.39366- 3 3.00000+ 1 4.10000+ 1 6.36489- 6 4.43487- 3 3.00000+ 1 4.30000+ 1 9.24786- 5 4.45073- 3 3.00000+ 1 4.40000+ 1 4.86723- 6 4.45809- 3 3.00000+ 1 4.60000+ 1 3.74425- 7 4.47555- 3 3.00000+ 1 5.80000+ 1 7.48808- 7 4.47463- 3 3.20000+ 1 3.20000+ 1 1.35740- 5 4.46906- 3 3.20000+ 1 3.30000+ 1 3.22844- 5 4.47550- 3 3.20000+ 1 4.10000+ 1 1.83428- 6 4.51671- 3 3.20000+ 1 4.30000+ 1 7.00717- 5 4.53257- 3 3.20000+ 1 4.40000+ 1 4.76920- 6 4.53993- 3 3.20000+ 1 5.80000+ 1 3.66884- 7 4.55647- 3 3.30000+ 1 3.30000+ 1 8.95832- 6 4.48194- 3 3.30000+ 1 4.10000+ 1 6.23170- 6 4.52315- 3 3.30000+ 1 4.30000+ 1 1.15288- 4 4.53901- 3 3.30000+ 1 4.40000+ 1 4.28439- 6 4.54637- 3 3.30000+ 1 4.60000+ 1 3.89505- 7 4.56383- 3 3.30000+ 1 5.80000+ 1 7.78966- 7 4.56291- 3 4.10000+ 1 4.10000+ 1 7.39642- 7 4.56436- 3 4.10000+ 1 4.30000+ 1 8.87575- 6 4.58022- 3 4.10000+ 1 4.40000+ 1 7.39642- 7 4.58758- 3 4.30000+ 1 4.30000+ 1 5.03760- 6 4.59608- 3 4.30000+ 1 4.40000+ 1 1.24264- 5 4.60344- 3 4.30000+ 1 4.60000+ 1 3.35865- 7 4.62090- 3 4.30000+ 1 4.70000+ 1 6.71692- 7 4.62139- 3 4.30000+ 1 5.80000+ 1 1.00754- 6 4.61998- 3 4.40000+ 1 4.40000+ 1 3.66881- 7 4.61080- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.39770- 5 5.24300- 4 1.40000+ 1 2.93490- 4 6.79800- 4 1.60000+ 1 1.87550- 3 2.65440- 3 2.10000+ 1 8.93499- 4 3.22839- 3 2.20000+ 1 6.75720- 3 3.26428- 3 2.70000+ 1 4.48810- 4 3.62980- 3 3.20000+ 1 1.75560- 4 3.81108- 3 3.30000+ 1 1.35280- 3 3.81752- 3 4.10000+ 1 8.26399- 5 3.85873- 3 5.80000+ 1 1.05710- 5 3.89849- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.59089- 2 1.95400- 4 1.30000+ 1 2.50000+ 1 2.31962- 2 2.04560- 4 1.30000+ 1 2.70000+ 1 3.14369- 3 2.50200- 4 1.30000+ 1 2.90000+ 1 2.93996- 3 3.05510- 4 1.30000+ 1 3.00000+ 1 8.90228- 3 3.49640- 4 1.30000+ 1 3.20000+ 1 1.64122- 3 4.31480- 4 1.30000+ 1 3.30000+ 1 1.80178- 3 4.37920- 4 1.30000+ 1 4.10000+ 1 5.77028- 4 4.79130- 4 1.30000+ 1 4.30000+ 1 4.57663- 4 4.94990- 4 1.30000+ 1 4.40000+ 1 1.26244- 3 5.02350- 4 1.30000+ 1 4.60000+ 1 9.68785- 6 5.19810- 4 1.30000+ 1 4.70000+ 1 9.88164- 6 5.20300- 4 1.30000+ 1 5.80000+ 1 6.21978- 5 5.18890- 4 1.40000+ 1 2.10000+ 1 4.88959- 2 4.29000- 6 1.40000+ 1 2.20000+ 1 6.42728- 2 4.01800- 5 1.40000+ 1 2.40000+ 1 1.91571- 1 3.50900- 4 1.40000+ 1 2.50000+ 1 2.31529- 1 3.60060- 4 1.40000+ 1 2.70000+ 1 1.90568- 2 4.05700- 4 1.40000+ 1 2.90000+ 1 1.97259- 2 4.61010- 4 1.40000+ 1 3.00000+ 1 2.18087- 2 5.05140- 4 1.40000+ 1 3.20000+ 1 6.93003- 3 5.86980- 4 1.40000+ 1 3.30000+ 1 1.00695- 2 5.93420- 4 1.40000+ 1 4.10000+ 1 3.57737- 3 6.34630- 4 1.40000+ 1 4.30000+ 1 3.08321- 3 6.50490- 4 1.40000+ 1 4.40000+ 1 3.17145- 3 6.57850- 4 1.40000+ 1 4.60000+ 1 4.04952- 5 6.75310- 4 1.40000+ 1 4.70000+ 1 5.44469- 5 6.75800- 4 1.40000+ 1 5.80000+ 1 3.93145- 4 6.74390- 4 1.60000+ 1 1.60000+ 1 1.72057- 4 1.40490- 3 1.60000+ 1 1.80000+ 1 4.86908- 4 1.54960- 3 1.60000+ 1 1.90000+ 1 1.10370- 2 1.74296- 3 1.60000+ 1 2.10000+ 1 6.79263- 4 1.97889- 3 1.60000+ 1 2.20000+ 1 8.70039- 4 2.01478- 3 1.60000+ 1 2.40000+ 1 2.18439- 3 2.32550- 3 1.60000+ 1 2.50000+ 1 3.94942- 3 2.33466- 3 1.60000+ 1 2.70000+ 1 6.63259- 5 2.38030- 3 1.60000+ 1 2.90000+ 1 6.94469- 5 2.43561- 3 1.60000+ 1 3.00000+ 1 1.54107- 3 2.47974- 3 1.60000+ 1 3.20000+ 1 1.01050- 4 2.56158- 3 1.60000+ 1 3.30000+ 1 1.25239- 4 2.56802- 3 1.60000+ 1 4.10000+ 1 1.20948- 5 2.60923- 3 1.60000+ 1 4.30000+ 1 1.01440- 5 2.62509- 3 1.60000+ 1 4.40000+ 1 2.14197- 4 2.63245- 3 1.60000+ 1 4.60000+ 1 3.90156- 7 2.64991- 3 1.60000+ 1 4.70000+ 1 7.80293- 7 2.65040- 3 1.60000+ 1 5.80000+ 1 1.17045- 6 2.64899- 3 1.80000+ 1 1.80000+ 1 3.51135- 6 1.69430- 3 1.80000+ 1 1.90000+ 1 1.38816- 2 1.88766- 3 1.80000+ 1 2.10000+ 1 3.09776- 4 2.12359- 3 1.80000+ 1 2.20000+ 1 3.11490- 3 2.15948- 3 1.80000+ 1 2.40000+ 1 1.65619- 3 2.47020- 3 1.80000+ 1 2.50000+ 1 8.52448- 3 2.47936- 3 1.80000+ 1 2.70000+ 1 8.93450- 5 2.52500- 3 1.80000+ 1 2.90000+ 1 1.95068- 6 2.58031- 3 1.80000+ 1 3.00000+ 1 1.98852- 3 2.62444- 3 1.80000+ 1 3.20000+ 1 5.26685- 5 2.70628- 3 1.80000+ 1 3.30000+ 1 4.29559- 4 2.71272- 3 1.80000+ 1 4.10000+ 1 1.59955- 5 2.75393- 3 1.80000+ 1 4.30000+ 1 3.90152- 7 2.76979- 3 1.80000+ 1 4.40000+ 1 2.77785- 4 2.77715- 3 1.80000+ 1 4.60000+ 1 3.90152- 7 2.79461- 3 1.80000+ 1 4.70000+ 1 2.34083- 6 2.79510- 3 1.80000+ 1 5.80000+ 1 1.56056- 6 2.79369- 3 1.90000+ 1 1.90000+ 1 1.77376- 2 2.08102- 3 1.90000+ 1 2.10000+ 1 2.63544- 2 2.31695- 3 1.90000+ 1 2.20000+ 1 3.41990- 2 2.35284- 3 1.90000+ 1 2.40000+ 1 2.45367- 2 2.66356- 3 1.90000+ 1 2.50000+ 1 2.80211- 2 2.67272- 3 1.90000+ 1 2.70000+ 1 2.62203- 3 2.71836- 3 1.90000+ 1 2.90000+ 1 3.04650- 3 2.77367- 3 1.90000+ 1 3.00000+ 1 6.38814- 3 2.81780- 3 1.90000+ 1 3.20000+ 1 4.41380- 3 2.89964- 3 1.90000+ 1 3.30000+ 1 5.72963- 3 2.90608- 3 1.90000+ 1 4.10000+ 1 5.02544- 4 2.94729- 3 1.90000+ 1 4.30000+ 1 4.91615- 4 2.96315- 3 1.90000+ 1 4.40000+ 1 9.34063- 4 2.97051- 3 1.90000+ 1 4.60000+ 1 2.65326- 5 2.98797- 3 1.90000+ 1 4.70000+ 1 3.16056- 5 2.98846- 3 1.90000+ 1 5.80000+ 1 5.46249- 5 2.98705- 3 2.10000+ 1 2.10000+ 1 1.80642- 4 2.55288- 3 2.10000+ 1 2.20000+ 1 4.37585- 3 2.58877- 3 2.10000+ 1 2.40000+ 1 6.96020- 4 2.89949- 3 2.10000+ 1 2.50000+ 1 7.95744- 3 2.90865- 3 2.10000+ 1 2.70000+ 1 8.54412- 5 2.95429- 3 2.10000+ 1 2.90000+ 1 1.91164- 5 3.00960- 3 2.10000+ 1 3.00000+ 1 3.68886- 3 3.05373- 3 2.10000+ 1 3.20000+ 1 4.95507- 5 3.13557- 3 2.10000+ 1 3.30000+ 1 6.41797- 4 3.14201- 3 2.10000+ 1 4.10000+ 1 1.44355- 5 3.18322- 3 2.10000+ 1 4.30000+ 1 2.73083- 6 3.19908- 3 2.10000+ 1 4.40000+ 1 5.12647- 4 3.20644- 3 2.10000+ 1 4.60000+ 1 3.90151- 7 3.22390- 3 2.10000+ 1 4.70000+ 1 3.51133- 6 3.22439- 3 2.10000+ 1 5.80000+ 1 1.56055- 6 3.22298- 3 2.20000+ 1 2.20000+ 1 1.88564- 3 2.62466- 3 2.20000+ 1 2.40000+ 1 6.37767- 3 2.93538- 3 2.20000+ 1 2.50000+ 1 5.25046- 3 2.94454- 3 2.20000+ 1 2.70000+ 1 1.17042- 4 2.99018- 3 2.20000+ 1 2.90000+ 1 3.17595- 4 3.04549- 3 2.20000+ 1 3.00000+ 1 4.72299- 3 3.08962- 3 2.20000+ 1 3.20000+ 1 6.32421- 4 3.17146- 3 2.20000+ 1 3.30000+ 1 5.56748- 4 3.17790- 3 2.20000+ 1 4.10000+ 1 2.02888- 5 3.21911- 3 2.20000+ 1 4.30000+ 1 4.44774- 5 3.23497- 3 2.20000+ 1 4.40000+ 1 6.54670- 4 3.24233- 3 2.20000+ 1 4.60000+ 1 3.51129- 6 3.25979- 3 2.20000+ 1 4.70000+ 1 3.12129- 6 3.26028- 3 2.20000+ 1 5.80000+ 1 2.34079- 6 3.25887- 3 2.40000+ 1 2.40000+ 1 1.07448- 3 3.24610- 3 2.40000+ 1 2.50000+ 1 2.79062- 2 3.25526- 3 2.40000+ 1 2.70000+ 1 2.41894- 4 3.30090- 3 2.40000+ 1 2.90000+ 1 2.96509- 4 3.35621- 3 2.40000+ 1 3.00000+ 1 3.26922- 3 3.40034- 3 2.40000+ 1 3.20000+ 1 1.34992- 4 3.48218- 3 2.40000+ 1 3.30000+ 1 1.00074- 3 3.48862- 3 2.40000+ 1 4.10000+ 1 4.09658- 5 3.52983- 3 2.40000+ 1 4.30000+ 1 4.60383- 5 3.54569- 3 2.40000+ 1 4.40000+ 1 4.51407- 4 3.55305- 3 2.40000+ 1 4.60000+ 1 7.80295- 7 3.57051- 3 2.40000+ 1 4.70000+ 1 5.46226- 6 3.57100- 3 2.40000+ 1 5.80000+ 1 4.29175- 6 3.56959- 3 2.50000+ 1 2.50000+ 1 1.10823- 2 3.26442- 3 2.50000+ 1 2.70000+ 1 4.03787- 4 3.31006- 3 2.50000+ 1 2.90000+ 1 1.50316- 3 3.36537- 3 2.50000+ 1 3.00000+ 1 3.89837- 3 3.40950- 3 2.50000+ 1 3.20000+ 1 1.31672- 3 3.49134- 3 2.50000+ 1 3.30000+ 1 8.98096- 4 3.49778- 3 2.50000+ 1 4.10000+ 1 6.63237- 5 3.53899- 3 2.50000+ 1 4.30000+ 1 2.33689- 4 3.55485- 3 2.50000+ 1 4.40000+ 1 5.44627- 4 3.56221- 3 2.50000+ 1 4.60000+ 1 7.80267- 6 3.57967- 3 2.50000+ 1 4.70000+ 1 5.07172- 6 3.58016- 3 2.50000+ 1 5.80000+ 1 7.02235- 6 3.57875- 3 2.70000+ 1 2.70000+ 1 7.16699- 6 3.35570- 3 2.70000+ 1 2.90000+ 1 1.39360- 5 3.41101- 3 2.70000+ 1 3.00000+ 1 3.75490- 4 3.45514- 3 2.70000+ 1 3.20000+ 1 1.43344- 5 3.53698- 3 2.70000+ 1 3.30000+ 1 1.83163- 5 3.54342- 3 2.70000+ 1 4.10000+ 1 2.78702- 6 3.58463- 3 2.70000+ 1 4.30000+ 1 1.99081- 6 3.60049- 3 2.70000+ 1 4.40000+ 1 5.21603- 5 3.60785- 3 2.70000+ 1 5.80000+ 1 3.98179- 7 3.62439- 3 2.90000+ 1 3.00000+ 1 4.44098- 4 3.51045- 3 2.90000+ 1 3.20000+ 1 2.76301- 6 3.59229- 3 2.90000+ 1 3.30000+ 1 4.69749- 5 3.59873- 3 2.90000+ 1 4.10000+ 1 2.36841- 6 3.63994- 3 2.90000+ 1 4.40000+ 1 6.19757- 5 3.66316- 3 2.90000+ 1 4.70000+ 1 3.94748- 7 3.68111- 3 2.90000+ 1 5.80000+ 1 3.94748- 7 3.67970- 3 3.00000+ 1 3.00000+ 1 5.62451- 4 3.55458- 3 3.00000+ 1 3.20000+ 1 6.39571- 4 3.63642- 3 3.00000+ 1 3.30000+ 1 8.17961- 4 3.64286- 3 3.00000+ 1 4.10000+ 1 7.27140- 5 3.68407- 3 3.00000+ 1 4.30000+ 1 7.31160- 5 3.69993- 3 3.00000+ 1 4.40000+ 1 1.63115- 4 3.70729- 3 3.00000+ 1 4.60000+ 1 4.01746- 6 3.72475- 3 3.00000+ 1 4.70000+ 1 4.41923- 6 3.72524- 3 3.00000+ 1 5.80000+ 1 8.03473- 6 3.72383- 3 3.20000+ 1 3.20000+ 1 3.51130- 6 3.71826- 3 3.20000+ 1 3.30000+ 1 9.98761- 5 3.72470- 3 3.20000+ 1 4.10000+ 1 2.34080- 6 3.76591- 3 3.20000+ 1 4.30000+ 1 3.90147- 7 3.78177- 3 3.20000+ 1 4.40000+ 1 8.62212- 5 3.78913- 3 3.20000+ 1 4.70000+ 1 3.90147- 7 3.80708- 3 3.20000+ 1 5.80000+ 1 3.90147- 7 3.80567- 3 3.30000+ 1 3.30000+ 1 4.33087- 5 3.73114- 3 3.30000+ 1 4.10000+ 1 3.12144- 6 3.77235- 3 3.30000+ 1 4.30000+ 1 6.63274- 6 3.78821- 3 3.30000+ 1 4.40000+ 1 1.10026- 4 3.79557- 3 3.30000+ 1 4.60000+ 1 7.80310- 7 3.81303- 3 3.30000+ 1 4.70000+ 1 3.90164- 7 3.81352- 3 3.30000+ 1 5.80000+ 1 3.90164- 7 3.81211- 3 4.10000+ 1 4.10000+ 1 3.90145- 7 3.81356- 3 4.10000+ 1 4.30000+ 1 3.90145- 7 3.82942- 3 4.10000+ 1 4.40000+ 1 9.75370- 6 3.83678- 3 4.30000+ 1 4.40000+ 1 9.75389- 6 3.85264- 3 4.40000+ 1 4.40000+ 1 1.13142- 5 3.86000- 3 4.40000+ 1 4.60000+ 1 3.90145- 7 3.87746- 3 4.40000+ 1 4.70000+ 1 7.80271- 7 3.87795- 3 4.40000+ 1 5.80000+ 1 1.17042- 6 3.87654- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.18699- 3 2.27480- 3 1.90000+ 1 2.04919- 4 2.46816- 3 2.40000+ 1 4.70577- 2 3.05070- 3 2.90000+ 1 5.30717- 4 3.16081- 3 3.00000+ 1 4.83407- 5 3.20494- 3 4.30000+ 1 7.61155- 5 3.35029- 3 4.40000+ 1 6.71226- 6 3.35765- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 5.12528- 2 6.26800- 5 1.40000+ 1 3.30000+ 1 7.33769- 3 6.91200- 5 1.40000+ 1 4.10000+ 1 1.01653- 3 1.10330- 4 1.40000+ 1 4.30000+ 1 5.17121- 4 1.26190- 4 1.40000+ 1 4.40000+ 1 1.08409- 3 1.33550- 4 1.40000+ 1 4.60000+ 1 2.97794- 4 1.51010- 4 1.40000+ 1 4.70000+ 1 3.96490- 5 1.51500- 4 1.40000+ 1 5.80000+ 1 1.07982- 4 1.50090- 4 1.60000+ 1 1.60000+ 1 1.26544- 5 8.80600- 4 1.60000+ 1 1.80000+ 1 8.93358- 4 1.02530- 3 1.60000+ 1 1.90000+ 1 7.80327- 4 1.21866- 3 1.60000+ 1 2.10000+ 1 3.00918- 2 1.45459- 3 1.60000+ 1 2.20000+ 1 3.50861- 3 1.49048- 3 1.60000+ 1 2.40000+ 1 1.59274- 2 1.80120- 3 1.60000+ 1 2.50000+ 1 3.88055- 3 1.81036- 3 1.60000+ 1 2.70000+ 1 1.68719- 5 1.85600- 3 1.60000+ 1 2.90000+ 1 1.63659- 4 1.91131- 3 1.60000+ 1 3.00000+ 1 1.12199- 4 1.95544- 3 1.60000+ 1 3.20000+ 1 3.50008- 3 2.03728- 3 1.60000+ 1 3.30000+ 1 4.33603- 4 2.04372- 3 1.60000+ 1 4.10000+ 1 3.37427- 6 2.08493- 3 1.60000+ 1 4.30000+ 1 2.53079- 5 2.10079- 3 1.60000+ 1 4.40000+ 1 1.60286- 5 2.10815- 3 1.60000+ 1 4.60000+ 1 2.02471- 5 2.12561- 3 1.60000+ 1 4.70000+ 1 2.53079- 6 2.12610- 3 1.80000+ 1 1.80000+ 1 4.74099- 4 1.17000- 3 1.80000+ 1 1.90000+ 1 3.67812- 3 1.36336- 3 1.80000+ 1 2.10000+ 1 2.72221- 2 1.59929- 3 1.80000+ 1 2.20000+ 1 1.68047- 3 1.63518- 3 1.80000+ 1 2.40000+ 1 1.12508- 2 1.94590- 3 1.80000+ 1 2.50000+ 1 5.92372- 3 1.95506- 3 1.80000+ 1 2.70000+ 1 1.25703- 4 2.00070- 3 1.80000+ 1 2.90000+ 1 1.72938- 4 2.05601- 3 1.80000+ 1 3.00000+ 1 5.92223- 4 2.10014- 3 1.80000+ 1 3.20000+ 1 3.13414- 3 2.18198- 3 1.80000+ 1 3.30000+ 1 2.37059- 4 2.18842- 3 1.80000+ 1 4.10000+ 1 2.19340- 5 2.22963- 3 1.80000+ 1 4.30000+ 1 2.69959- 5 2.24549- 3 1.80000+ 1 4.40000+ 1 8.43618- 5 2.25285- 3 1.80000+ 1 4.60000+ 1 1.77155- 5 2.27031- 3 1.80000+ 1 4.70000+ 1 1.68722- 6 2.27080- 3 1.80000+ 1 5.80000+ 1 2.53083- 6 2.26939- 3 1.90000+ 1 1.90000+ 1 1.28816- 3 1.55672- 3 1.90000+ 1 2.10000+ 1 5.30117- 2 1.79265- 3 1.90000+ 1 2.20000+ 1 2.01786- 3 1.82854- 3 1.90000+ 1 2.40000+ 1 2.41352- 3 2.13926- 3 1.90000+ 1 2.50000+ 1 1.81042- 3 2.14842- 3 1.90000+ 1 2.70000+ 1 1.40037- 4 2.19406- 3 1.90000+ 1 2.90000+ 1 5.05305- 4 2.24937- 3 1.90000+ 1 3.00000+ 1 3.95646- 4 2.29350- 3 1.90000+ 1 3.20000+ 1 6.17097- 3 2.37534- 3 1.90000+ 1 3.30000+ 1 2.62355- 4 2.38178- 3 1.90000+ 1 4.10000+ 1 2.53080- 5 2.42299- 3 1.90000+ 1 4.30000+ 1 7.50815- 5 2.43885- 3 1.90000+ 1 4.40000+ 1 5.65198- 5 2.44621- 3 1.90000+ 1 4.60000+ 1 3.54294- 5 2.46367- 3 1.90000+ 1 4.70000+ 1 1.68720- 6 2.46416- 3 1.90000+ 1 5.80000+ 1 2.53080- 6 2.46275- 3 2.10000+ 1 2.10000+ 1 4.86928- 2 2.02858- 3 2.10000+ 1 2.20000+ 1 9.56860- 2 2.06447- 3 2.10000+ 1 2.40000+ 1 5.65891- 2 2.37519- 3 2.10000+ 1 2.50000+ 1 6.72456- 2 2.38435- 3 2.10000+ 1 2.70000+ 1 6.52267- 3 2.42999- 3 2.10000+ 1 2.90000+ 1 6.02660- 3 2.48530- 3 2.10000+ 1 3.00000+ 1 1.13014- 2 2.52943- 3 2.10000+ 1 3.20000+ 1 1.39424- 2 2.61127- 3 2.10000+ 1 3.30000+ 1 1.58354- 2 2.61771- 3 2.10000+ 1 4.10000+ 1 1.23500- 3 2.65892- 3 2.10000+ 1 4.30000+ 1 9.74321- 4 2.67478- 3 2.10000+ 1 4.40000+ 1 1.69307- 3 2.68214- 3 2.10000+ 1 4.60000+ 1 8.26722- 5 2.69960- 3 2.10000+ 1 4.70000+ 1 8.68917- 5 2.70009- 3 2.10000+ 1 5.80000+ 1 1.34136- 4 2.69868- 3 2.20000+ 1 2.20000+ 1 1.51508- 3 2.10036- 3 2.20000+ 1 2.40000+ 1 6.59051- 2 2.41108- 3 2.20000+ 1 2.50000+ 1 3.16499- 3 2.42024- 3 2.20000+ 1 2.70000+ 1 3.87217- 4 2.46588- 3 2.20000+ 1 2.90000+ 1 2.18496- 4 2.52119- 3 2.20000+ 1 3.00000+ 1 3.44189- 4 2.56532- 3 2.20000+ 1 3.20000+ 1 1.11913- 2 2.64716- 3 2.20000+ 1 3.30000+ 1 4.09143- 4 2.65360- 3 2.20000+ 1 4.10000+ 1 6.49566- 5 2.69481- 3 2.20000+ 1 4.30000+ 1 3.29000- 5 2.71067- 3 2.20000+ 1 4.40000+ 1 4.97721- 5 2.71803- 3 2.20000+ 1 4.60000+ 1 6.41133- 5 2.73549- 3 2.20000+ 1 4.70000+ 1 2.53083- 6 2.73598- 3 2.20000+ 1 5.80000+ 1 6.74895- 6 2.73457- 3 2.40000+ 1 2.40000+ 1 6.46092- 2 2.72180- 3 2.40000+ 1 2.50000+ 1 1.85676- 1 2.73096- 3 2.40000+ 1 2.70000+ 1 3.67047- 3 2.77660- 3 2.40000+ 1 2.90000+ 1 2.00023- 3 2.83191- 3 2.40000+ 1 3.00000+ 1 5.32325- 4 2.87604- 3 2.40000+ 1 3.20000+ 1 7.23289- 3 2.95788- 3 2.40000+ 1 3.30000+ 1 1.03817- 2 2.96432- 3 2.40000+ 1 4.10000+ 1 7.00192- 4 3.00553- 3 2.40000+ 1 4.30000+ 1 3.17183- 4 3.02139- 3 2.40000+ 1 4.40000+ 1 8.01419- 5 3.02875- 3 2.40000+ 1 4.60000+ 1 4.21792- 5 3.04621- 3 2.40000+ 1 4.70000+ 1 5.73637- 5 3.04670- 3 2.40000+ 1 5.80000+ 1 7.84553- 5 3.04529- 3 2.50000+ 1 2.50000+ 1 4.18222- 3 2.74012- 3 2.50000+ 1 2.70000+ 1 6.81780- 4 2.78576- 3 2.50000+ 1 2.90000+ 1 5.88582- 4 2.84107- 3 2.50000+ 1 3.00000+ 1 3.78358- 4 2.88520- 3 2.50000+ 1 3.20000+ 1 7.79953- 3 2.96704- 3 2.50000+ 1 3.30000+ 1 5.04478- 4 2.97348- 3 2.50000+ 1 4.10000+ 1 1.20638- 4 3.01469- 3 2.50000+ 1 4.30000+ 1 8.31674- 5 3.03055- 3 2.50000+ 1 4.40000+ 1 5.57498- 5 3.03791- 3 2.50000+ 1 4.60000+ 1 4.38676- 5 3.05537- 3 2.50000+ 1 4.70000+ 1 2.74177- 6 3.05586- 3 2.50000+ 1 5.80000+ 1 1.27947- 5 3.05445- 3 2.70000+ 1 2.70000+ 1 1.70460- 6 2.83140- 3 2.70000+ 1 2.90000+ 1 2.64220- 5 2.88671- 3 2.70000+ 1 3.00000+ 1 2.13079- 5 2.93084- 3 2.70000+ 1 3.20000+ 1 7.72191- 4 3.01268- 3 2.70000+ 1 3.30000+ 1 5.36948- 5 3.01912- 3 2.70000+ 1 4.10000+ 1 8.52308- 7 3.06033- 3 2.70000+ 1 4.30000+ 1 4.26139- 6 3.07619- 3 2.70000+ 1 4.40000+ 1 3.40909- 6 3.08355- 3 2.70000+ 1 4.60000+ 1 4.26139- 6 3.10101- 3 2.90000+ 1 2.90000+ 1 1.74266- 5 2.94202- 3 2.90000+ 1 3.00000+ 1 9.06181- 5 2.98615- 3 2.90000+ 1 3.20000+ 1 7.20582- 4 3.06799- 3 2.90000+ 1 3.30000+ 1 3.65942- 5 3.07443- 3 2.90000+ 1 4.10000+ 1 5.22788- 6 3.11564- 3 2.90000+ 1 4.30000+ 1 5.22788- 6 3.13150- 3 2.90000+ 1 4.40000+ 1 1.30705- 5 3.13886- 3 2.90000+ 1 4.60000+ 1 4.35655- 6 3.15632- 3 2.90000+ 1 5.80000+ 1 8.71340- 7 3.15540- 3 3.00000+ 1 3.00000+ 1 3.28736- 5 3.03028- 3 3.00000+ 1 3.20000+ 1 1.39574- 3 3.11212- 3 3.00000+ 1 3.30000+ 1 4.97534- 5 3.11856- 3 3.00000+ 1 4.10000+ 1 4.44215- 6 3.15977- 3 3.00000+ 1 4.30000+ 1 1.42155- 5 3.17563- 3 3.00000+ 1 4.40000+ 1 9.77306- 6 3.18299- 3 3.00000+ 1 4.60000+ 1 7.99616- 6 3.20045- 3 3.20000+ 1 3.20000+ 1 9.60840- 4 3.19396- 3 3.20000+ 1 3.30000+ 1 1.86439- 3 3.20040- 3 3.20000+ 1 4.10000+ 1 1.45098- 4 3.24161- 3 3.20000+ 1 4.30000+ 1 1.13042- 4 3.25747- 3 3.20000+ 1 4.40000+ 1 1.99089- 4 3.26483- 3 3.20000+ 1 4.60000+ 1 1.09669- 5 3.28229- 3 3.20000+ 1 4.70000+ 1 1.01237- 5 3.28278- 3 3.20000+ 1 5.80000+ 1 1.60287- 5 3.28137- 3 3.30000+ 1 3.30000+ 1 5.82400- 5 3.20684- 3 3.30000+ 1 4.10000+ 1 1.94135- 5 3.24805- 3 3.30000+ 1 4.30000+ 1 1.05888- 5 3.26391- 3 3.30000+ 1 4.40000+ 1 1.41189- 5 3.27127- 3 3.30000+ 1 4.60000+ 1 2.29431- 5 3.28873- 3 3.30000+ 1 5.80000+ 1 1.76486- 6 3.28781- 3 4.10000+ 1 4.30000+ 1 8.43628- 7 3.30512- 3 4.10000+ 1 4.40000+ 1 8.43628- 7 3.31248- 3 4.10000+ 1 4.60000+ 1 8.43628- 7 3.32994- 3 4.30000+ 1 4.40000+ 1 1.68725- 6 3.32834- 3 4.30000+ 1 4.60000+ 1 8.43633- 7 3.34580- 3 4.40000+ 1 4.40000+ 1 8.43595- 7 3.33570- 3 4.40000+ 1 4.60000+ 1 8.43595- 7 3.35316- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.53950- 3 2.31266- 3 2.40000+ 1 2.26960- 3 2.89520- 3 2.50000+ 1 4.44190- 2 2.90436- 3 3.00000+ 1 3.59920- 4 3.04944- 3 4.40000+ 1 5.01001- 5 3.20215- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.09452- 6 7.25100- 4 1.60000+ 1 1.80000+ 1 2.44546- 4 8.69800- 4 1.60000+ 1 1.90000+ 1 1.69487- 3 1.06316- 3 1.60000+ 1 2.10000+ 1 3.18413- 3 1.29909- 3 1.60000+ 1 2.20000+ 1 3.30305- 2 1.33498- 3 1.60000+ 1 2.40000+ 1 4.17522- 3 1.64570- 3 1.60000+ 1 2.50000+ 1 1.66800- 2 1.65486- 3 1.60000+ 1 2.70000+ 1 1.18876- 5 1.70050- 3 1.60000+ 1 2.90000+ 1 1.69814- 5 1.75581- 3 1.60000+ 1 3.00000+ 1 2.51339- 4 1.79994- 3 1.60000+ 1 3.20000+ 1 3.63420- 4 1.88178- 3 1.60000+ 1 3.30000+ 1 3.81917- 3 1.88822- 3 1.60000+ 1 4.10000+ 1 2.54740- 6 1.92943- 3 1.60000+ 1 4.30000+ 1 2.54740- 6 1.94529- 3 1.60000+ 1 4.40000+ 1 3.48127- 5 1.95265- 3 1.60000+ 1 4.60000+ 1 1.69814- 6 1.97011- 3 1.60000+ 1 4.70000+ 1 2.03793- 5 1.97060- 3 1.80000+ 1 1.80000+ 1 3.39637- 6 1.01450- 3 1.80000+ 1 1.90000+ 1 4.94951- 3 1.20786- 3 1.80000+ 1 2.10000+ 1 2.40300- 4 1.44379- 3 1.80000+ 1 2.20000+ 1 3.40787- 2 1.47968- 3 1.80000+ 1 2.40000+ 1 2.27903- 3 1.79040- 3 1.80000+ 1 2.50000+ 1 9.68003- 3 1.79956- 3 1.80000+ 1 2.70000+ 1 3.22658- 5 1.84520- 3 1.80000+ 1 2.90000+ 1 1.69814- 6 1.90051- 3 1.80000+ 1 3.00000+ 1 7.34477- 4 1.94464- 3 1.80000+ 1 3.20000+ 1 6.79304- 6 2.02648- 3 1.80000+ 1 3.30000+ 1 3.93908- 3 2.03292- 3 1.80000+ 1 4.10000+ 1 5.94368- 6 2.07413- 3 1.80000+ 1 4.40000+ 1 1.03592- 4 2.09735- 3 1.80000+ 1 4.70000+ 1 2.03793- 5 2.11530- 3 1.80000+ 1 5.80000+ 1 8.49118- 7 2.11389- 3 1.90000+ 1 1.90000+ 1 3.14604- 3 1.40122- 3 1.90000+ 1 2.10000+ 1 3.10261- 3 1.63715- 3 1.90000+ 1 2.20000+ 1 4.99494- 2 1.67304- 3 1.90000+ 1 2.40000+ 1 2.07353- 3 1.98376- 3 1.90000+ 1 2.50000+ 1 3.51707- 3 1.99292- 3 1.90000+ 1 2.70000+ 1 3.18413- 4 2.03856- 3 1.90000+ 1 2.90000+ 1 6.35993- 4 2.09387- 3 1.90000+ 1 3.00000+ 1 9.58681- 4 2.13800- 3 1.90000+ 1 3.20000+ 1 4.44925- 4 2.21984- 3 1.90000+ 1 3.30000+ 1 5.74165- 3 2.22628- 3 1.90000+ 1 4.10000+ 1 5.85878- 5 2.26749- 3 1.90000+ 1 4.30000+ 1 9.42515- 5 2.28335- 3 1.90000+ 1 4.40000+ 1 1.35855- 4 2.29071- 3 1.90000+ 1 4.60000+ 1 2.54740- 6 2.30817- 3 1.90000+ 1 4.70000+ 1 3.05688- 5 2.30866- 3 1.90000+ 1 5.80000+ 1 5.94368- 6 2.30725- 3 2.10000+ 1 2.10000+ 1 6.80140- 4 1.87308- 3 2.10000+ 1 2.20000+ 1 7.05510- 2 1.90897- 3 2.10000+ 1 2.40000+ 1 2.86484- 3 2.21969- 3 2.10000+ 1 2.50000+ 1 3.96055- 2 2.22885- 3 2.10000+ 1 2.70000+ 1 3.28615- 4 2.27449- 3 2.10000+ 1 2.90000+ 1 6.19849- 5 2.32980- 3 2.10000+ 1 3.00000+ 1 4.78056- 4 2.37393- 3 2.10000+ 1 3.20000+ 1 1.77469- 4 2.45577- 3 2.10000+ 1 3.30000+ 1 8.22083- 3 2.46221- 3 2.10000+ 1 4.10000+ 1 5.43424- 5 2.50342- 3 2.10000+ 1 4.30000+ 1 9.34014- 6 2.51928- 3 2.10000+ 1 4.40000+ 1 6.79297- 5 2.52664- 3 2.10000+ 1 4.60000+ 1 8.49109- 7 2.54410- 3 2.10000+ 1 4.70000+ 1 4.33029- 5 2.54459- 3 2.10000+ 1 5.80000+ 1 5.94361- 6 2.54318- 3 2.20000+ 1 2.20000+ 1 7.81799- 2 1.94486- 3 2.20000+ 1 2.40000+ 1 6.22192- 2 2.25558- 3 2.20000+ 1 2.50000+ 1 1.00080- 1 2.26474- 3 2.20000+ 1 2.70000+ 1 6.81579- 3 2.31038- 3 2.20000+ 1 2.90000+ 1 7.19118- 3 2.36569- 3 2.20000+ 1 3.00000+ 1 1.07449- 2 2.40982- 3 2.20000+ 1 3.20000+ 1 1.16524- 2 2.49166- 3 2.20000+ 1 3.30000+ 1 2.20492- 2 2.49810- 3 2.20000+ 1 4.10000+ 1 1.28386- 3 2.53931- 3 2.20000+ 1 4.30000+ 1 1.15314- 3 2.55517- 3 2.20000+ 1 4.40000+ 1 1.61244- 3 2.56253- 3 2.20000+ 1 4.60000+ 1 6.96278- 5 2.57999- 3 2.20000+ 1 4.70000+ 1 1.19728- 4 2.58048- 3 2.20000+ 1 5.80000+ 1 1.39255- 4 2.57907- 3 2.40000+ 1 2.40000+ 1 5.34847- 3 2.56630- 3 2.40000+ 1 2.50000+ 1 1.70229- 1 2.57546- 3 2.40000+ 1 2.70000+ 1 7.44676- 4 2.62110- 3 2.40000+ 1 2.90000+ 1 4.44068- 4 2.67641- 3 2.40000+ 1 3.00000+ 1 3.75299- 4 2.72054- 3 2.40000+ 1 3.20000+ 1 4.56812- 4 2.80238- 3 2.40000+ 1 3.30000+ 1 6.84882- 3 2.80882- 3 2.40000+ 1 4.10000+ 1 1.35011- 4 2.85003- 3 2.40000+ 1 4.30000+ 1 7.04757- 5 2.86589- 3 2.40000+ 1 4.40000+ 1 5.51925- 5 2.87325- 3 2.40000+ 1 4.60000+ 1 2.54738- 6 2.89071- 3 2.40000+ 1 4.70000+ 1 3.56604- 5 2.89120- 3 2.40000+ 1 5.80000+ 1 1.44353- 5 2.88979- 3 2.50000+ 1 2.50000+ 1 1.16290- 1 2.58462- 3 2.50000+ 1 2.70000+ 1 3.77899- 3 2.63026- 3 2.50000+ 1 2.90000+ 1 2.08106- 3 2.68557- 3 2.50000+ 1 3.00000+ 1 7.26789- 4 2.72970- 3 2.50000+ 1 3.20000+ 1 6.09964- 3 2.81154- 3 2.50000+ 1 3.30000+ 1 1.31325- 2 2.81798- 3 2.50000+ 1 4.10000+ 1 7.20016- 4 2.85919- 3 2.50000+ 1 4.30000+ 1 3.35373- 4 2.87505- 3 2.50000+ 1 4.40000+ 1 1.08684- 4 2.88241- 3 2.50000+ 1 4.60000+ 1 3.65105- 5 2.89987- 3 2.50000+ 1 4.70000+ 1 7.04724- 5 2.90036- 3 2.50000+ 1 5.80000+ 1 7.98116- 5 2.89895- 3 2.70000+ 1 2.70000+ 1 8.83417- 7 2.67590- 3 2.70000+ 1 2.90000+ 1 1.76674- 6 2.73121- 3 2.70000+ 1 3.00000+ 1 5.12364- 5 2.77534- 3 2.70000+ 1 3.20000+ 1 4.41692- 5 2.85718- 3 2.70000+ 1 3.30000+ 1 8.26871- 4 2.86362- 3 2.70000+ 1 4.40000+ 1 7.06743- 6 2.92805- 3 2.70000+ 1 4.70000+ 1 4.41692- 6 2.94600- 3 2.90000+ 1 3.00000+ 1 1.02951- 4 2.83065- 3 2.90000+ 1 3.20000+ 1 3.46054- 6 2.91249- 3 2.90000+ 1 3.30000+ 1 8.59945- 4 2.91893- 3 2.90000+ 1 4.40000+ 1 1.47081- 5 2.98336- 3 2.90000+ 1 4.70000+ 1 4.32564- 6 3.00131- 3 3.00000+ 1 3.00000+ 1 7.68666- 5 2.87478- 3 3.00000+ 1 3.20000+ 1 7.59833- 5 2.95662- 3 3.00000+ 1 3.30000+ 1 1.29081- 3 2.96306- 3 3.00000+ 1 4.10000+ 1 9.71886- 6 3.00427- 3 3.00000+ 1 4.30000+ 1 1.59029- 5 3.02013- 3 3.00000+ 1 4.40000+ 1 2.20887- 5 3.02749- 3 3.00000+ 1 4.60000+ 1 8.83538- 7 3.04495- 3 3.00000+ 1 4.70000+ 1 7.06840- 6 3.04544- 3 3.00000+ 1 5.80000+ 1 8.83538- 7 3.04403- 3 3.20000+ 1 3.20000+ 1 1.10386- 5 3.03846- 3 3.20000+ 1 3.30000+ 1 1.36709- 3 3.04490- 3 3.20000+ 1 4.10000+ 1 6.79310- 6 3.08611- 3 3.20000+ 1 4.30000+ 1 8.49126- 7 3.10197- 3 3.20000+ 1 4.40000+ 1 1.01896- 5 3.10933- 3 3.20000+ 1 4.70000+ 1 6.79310- 6 3.12728- 3 3.20000+ 1 5.80000+ 1 8.49126- 7 3.12587- 3 3.30000+ 1 3.30000+ 1 1.50285- 3 3.05134- 3 3.30000+ 1 4.10000+ 1 1.49442- 4 3.09255- 3 3.30000+ 1 4.30000+ 1 1.35854- 4 3.10841- 3 3.30000+ 1 4.40000+ 1 1.86803- 4 3.11577- 3 3.30000+ 1 4.60000+ 1 8.49114- 6 3.13323- 3 3.30000+ 1 4.70000+ 1 1.61333- 5 3.13372- 3 3.30000+ 1 5.80000+ 1 1.61333- 5 3.13231- 3 4.10000+ 1 4.40000+ 1 1.69810- 6 3.15698- 3 4.10000+ 1 4.70000+ 1 8.49099- 7 3.17493- 3 4.30000+ 1 4.40000+ 1 2.54739- 6 3.17284- 3 4.30000+ 1 4.70000+ 1 8.49114- 7 3.19079- 3 4.40000+ 1 4.40000+ 1 1.69810- 6 3.18020- 3 4.40000+ 1 4.70000+ 1 8.49099- 7 3.19815- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.57767- 5 1.44700- 4 1.90000+ 1 4.13877- 4 3.38060- 4 2.90000+ 1 2.86614- 4 1.03071- 3 3.00000+ 1 7.87333- 5 1.07484- 3 4.30000+ 1 5.59176- 5 1.22019- 3 4.40000+ 1 1.77760- 5 1.22755- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.56574- 2 5.18800- 5 1.80000+ 1 3.30000+ 1 1.03792- 1 5.83200- 5 1.80000+ 1 4.10000+ 1 9.05271- 3 9.95300- 5 1.80000+ 1 4.30000+ 1 7.15050- 3 1.15390- 4 1.80000+ 1 4.40000+ 1 1.03049- 2 1.22750- 4 1.80000+ 1 4.60000+ 1 3.26234- 4 1.40210- 4 1.80000+ 1 4.70000+ 1 4.72689- 4 1.40700- 4 1.80000+ 1 5.80000+ 1 9.62054- 4 1.39290- 4 1.90000+ 1 2.40000+ 1 1.04132- 2 9.16000- 6 1.90000+ 1 2.50000+ 1 3.04998- 2 1.83200- 5 1.90000+ 1 2.70000+ 1 4.25549- 2 6.39600- 5 1.90000+ 1 2.90000+ 1 5.07776- 2 1.19270- 4 1.90000+ 1 3.00000+ 1 4.78068- 2 1.63400- 4 1.90000+ 1 3.20000+ 1 4.27136- 2 2.45240- 4 1.90000+ 1 3.30000+ 1 5.31390- 2 2.51680- 4 1.90000+ 1 4.10000+ 1 7.98193- 3 2.92890- 4 1.90000+ 1 4.30000+ 1 7.75201- 3 3.08750- 4 1.90000+ 1 4.40000+ 1 7.15826- 3 3.16110- 4 1.90000+ 1 4.60000+ 1 2.38965- 4 3.33570- 4 1.90000+ 1 4.70000+ 1 2.81042- 4 3.34060- 4 1.90000+ 1 5.80000+ 1 8.60648- 4 3.32650- 4 2.10000+ 1 2.40000+ 1 4.08386- 3 2.45090- 4 2.10000+ 1 2.50000+ 1 5.54764- 3 2.54250- 4 2.10000+ 1 2.70000+ 1 1.77553- 2 2.99890- 4 2.10000+ 1 2.90000+ 1 6.10074- 3 3.55200- 4 2.10000+ 1 3.00000+ 1 6.65939- 3 3.99330- 4 2.10000+ 1 3.20000+ 1 2.12196- 3 4.81170- 4 2.10000+ 1 3.30000+ 1 2.79167- 3 4.87610- 4 2.10000+ 1 4.10000+ 1 2.46388- 3 5.28820- 4 2.10000+ 1 4.30000+ 1 9.27500- 4 5.44680- 4 2.10000+ 1 4.40000+ 1 8.24091- 4 5.52040- 4 2.10000+ 1 4.60000+ 1 1.16918- 5 5.69500- 4 2.10000+ 1 4.70000+ 1 1.46536- 5 5.69990- 4 2.10000+ 1 5.80000+ 1 2.56280- 4 5.68580- 4 2.20000+ 1 2.40000+ 1 6.43231- 3 2.80980- 4 2.20000+ 1 2.50000+ 1 7.38587- 3 2.90140- 4 2.20000+ 1 2.70000+ 1 2.48065- 2 3.35780- 4 2.20000+ 1 2.90000+ 1 9.80855- 3 3.91090- 4 2.20000+ 1 3.00000+ 1 7.70756- 3 4.35220- 4 2.20000+ 1 3.20000+ 1 2.22134- 3 5.17060- 4 2.20000+ 1 3.30000+ 1 3.33134- 3 5.23500- 4 2.20000+ 1 4.10000+ 1 3.41897- 3 5.64710- 4 2.20000+ 1 4.30000+ 1 1.31953- 3 5.80570- 4 2.20000+ 1 4.40000+ 1 1.06250- 3 5.87930- 4 2.20000+ 1 4.60000+ 1 1.25707- 5 6.05390- 4 2.20000+ 1 4.70000+ 1 1.73818- 5 6.05880- 4 2.20000+ 1 5.80000+ 1 3.55085- 4 6.04470- 4 2.40000+ 1 2.40000+ 1 9.31328- 3 5.91700- 4 2.40000+ 1 2.50000+ 1 1.78035- 2 6.00860- 4 2.40000+ 1 2.70000+ 1 2.15029- 2 6.46500- 4 2.40000+ 1 2.90000+ 1 3.00706- 3 7.01810- 4 2.40000+ 1 3.00000+ 1 1.22647- 2 7.45940- 4 2.40000+ 1 3.20000+ 1 1.17415- 3 8.27780- 4 2.40000+ 1 3.30000+ 1 7.57012- 4 8.34220- 4 2.40000+ 1 4.10000+ 1 2.55435- 3 8.75430- 4 2.40000+ 1 4.30000+ 1 3.68059- 4 8.91290- 4 2.40000+ 1 4.40000+ 1 1.43336- 3 8.98650- 4 2.40000+ 1 4.60000+ 1 6.64452- 6 9.16110- 4 2.40000+ 1 4.70000+ 1 3.86297- 6 9.16600- 4 2.40000+ 1 5.80000+ 1 2.58513- 4 9.15190- 4 2.50000+ 1 2.50000+ 1 1.54046- 2 6.10020- 4 2.50000+ 1 2.70000+ 1 2.78567- 2 6.55660- 4 2.50000+ 1 2.90000+ 1 1.48421- 3 7.10970- 4 2.50000+ 1 3.00000+ 1 1.32645- 2 7.55100- 4 2.50000+ 1 3.20000+ 1 6.90469- 4 8.36940- 4 2.50000+ 1 3.30000+ 1 1.68882- 3 8.43380- 4 2.50000+ 1 4.10000+ 1 3.29729- 3 8.84590- 4 2.50000+ 1 4.30000+ 1 1.76826- 4 9.00450- 4 2.50000+ 1 4.40000+ 1 1.48899- 3 9.07810- 4 2.50000+ 1 4.60000+ 1 4.01882- 6 9.25270- 4 2.50000+ 1 4.70000+ 1 8.65606- 6 9.25760- 4 2.50000+ 1 5.80000+ 1 3.33402- 4 9.24350- 4 2.70000+ 1 2.70000+ 1 1.64096- 2 7.01300- 4 2.70000+ 1 2.90000+ 1 2.41244- 2 7.56610- 4 2.70000+ 1 3.00000+ 1 3.81939- 2 8.00740- 4 2.70000+ 1 3.20000+ 1 3.63041- 2 8.82580- 4 2.70000+ 1 3.30000+ 1 5.02640- 2 8.89020- 4 2.70000+ 1 4.10000+ 1 5.15806- 3 9.30230- 4 2.70000+ 1 4.30000+ 1 3.90391- 3 9.46090- 4 2.70000+ 1 4.40000+ 1 5.71336- 3 9.53450- 4 2.70000+ 1 4.60000+ 1 2.19891- 4 9.70910- 4 2.70000+ 1 4.70000+ 1 2.79520- 4 9.71400- 4 2.70000+ 1 5.80000+ 1 5.47858- 4 9.69990- 4 2.90000+ 1 2.90000+ 1 1.90571- 3 8.11920- 4 2.90000+ 1 3.00000+ 1 8.41108- 3 8.56050- 4 2.90000+ 1 3.20000+ 1 3.33822- 3 9.37890- 4 2.90000+ 1 3.30000+ 1 2.42392- 3 9.44330- 4 2.90000+ 1 4.10000+ 1 2.91964- 3 9.85540- 4 2.90000+ 1 4.30000+ 1 5.05058- 4 1.00140- 3 2.90000+ 1 4.40000+ 1 9.57519- 4 1.00876- 3 2.90000+ 1 4.60000+ 1 1.87755- 5 1.02622- 3 2.90000+ 1 4.70000+ 1 1.12650- 5 1.02671- 3 2.90000+ 1 5.80000+ 1 2.96656- 4 1.02530- 3 3.00000+ 1 3.00000+ 1 5.11695- 3 9.00180- 4 3.00000+ 1 3.20000+ 1 2.46619- 3 9.82020- 4 3.00000+ 1 3.30000+ 1 5.61463- 3 9.88460- 4 3.00000+ 1 4.10000+ 1 4.77023- 3 1.02967- 3 3.00000+ 1 4.30000+ 1 1.20233- 3 1.04553- 3 3.00000+ 1 4.40000+ 1 1.33838- 3 1.05289- 3 3.00000+ 1 4.60000+ 1 1.49132- 5 1.07035- 3 3.00000+ 1 4.70000+ 1 2.98255- 5 1.07084- 3 3.00000+ 1 5.80000+ 1 4.88397- 4 1.06943- 3 3.20000+ 1 3.20000+ 1 1.00607- 3 1.06386- 3 3.20000+ 1 3.30000+ 1 3.03914- 3 1.07030- 3 3.20000+ 1 4.10000+ 1 4.97365- 3 1.11151- 3 3.20000+ 1 4.30000+ 1 4.73689- 4 1.12737- 3 3.20000+ 1 4.40000+ 1 2.64091- 4 1.13473- 3 3.20000+ 1 4.60000+ 1 1.04796- 5 1.15219- 3 3.20000+ 1 4.70000+ 1 1.46714- 5 1.15268- 3 3.20000+ 1 5.80000+ 1 5.05131- 4 1.15127- 3 3.30000+ 1 3.30000+ 1 1.94461- 3 1.07674- 3 3.30000+ 1 4.10000+ 1 6.58852- 3 1.11795- 3 3.30000+ 1 4.30000+ 1 2.86984- 4 1.13381- 3 3.30000+ 1 4.40000+ 1 6.98384- 4 1.14117- 3 3.30000+ 1 4.60000+ 1 1.60553- 5 1.15863- 3 3.30000+ 1 4.70000+ 1 2.00686- 5 1.15912- 3 3.30000+ 1 5.80000+ 1 6.70295- 4 1.15771- 3 4.10000+ 1 4.10000+ 1 3.98670- 4 1.15916- 3 4.10000+ 1 4.30000+ 1 5.00337- 4 1.17502- 3 4.10000+ 1 4.40000+ 1 7.49477- 4 1.18238- 3 4.10000+ 1 4.60000+ 1 2.79071- 5 1.19984- 3 4.10000+ 1 4.70000+ 1 3.58796- 5 1.20033- 3 4.10000+ 1 5.80000+ 1 8.37162- 5 1.19892- 3 4.30000+ 1 4.30000+ 1 3.46384- 5 1.19088- 3 4.30000+ 1 4.40000+ 1 1.46705- 4 1.19824- 3 4.30000+ 1 4.60000+ 1 2.03758- 6 1.21570- 3 4.30000+ 1 4.70000+ 1 2.03758- 6 1.21619- 3 4.30000+ 1 5.80000+ 1 5.09393- 5 1.21478- 3 4.40000+ 1 4.40000+ 1 8.29828- 5 1.20560- 3 4.40000+ 1 4.60000+ 1 1.84406- 6 1.22306- 3 4.40000+ 1 4.70000+ 1 3.68813- 6 1.22355- 3 4.40000+ 1 5.80000+ 1 7.00738- 5 1.22214- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.00955- 3 4.29290- 4 2.70000+ 1 2.40217- 4 8.30700- 4 3.20000+ 1 6.64650- 5 1.01198- 3 4.10000+ 1 4.55758- 5 1.05963- 3 5.80000+ 1 5.08246- 6 1.09939- 3 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 2.40563- 2 1.87000- 5 1.90000+ 1 3.20000+ 1 1.16120- 2 1.00540- 4 1.90000+ 1 3.30000+ 1 1.78444- 2 1.06980- 4 1.90000+ 1 4.10000+ 1 2.49971- 3 1.48190- 4 1.90000+ 1 4.30000+ 1 2.66329- 3 1.64050- 4 1.90000+ 1 4.40000+ 1 2.63554- 3 1.71410- 4 1.90000+ 1 4.60000+ 1 5.60822- 5 1.88870- 4 1.90000+ 1 4.70000+ 1 8.13995- 5 1.89360- 4 1.90000+ 1 5.80000+ 1 2.60221- 4 1.87950- 4 2.10000+ 1 2.40000+ 1 1.06130- 1 1.00390- 4 2.10000+ 1 2.50000+ 1 2.46738- 1 1.09550- 4 2.10000+ 1 2.70000+ 1 3.68111- 2 1.55190- 4 2.10000+ 1 2.90000+ 1 2.97246- 2 2.10500- 4 2.10000+ 1 3.00000+ 1 3.83634- 2 2.54630- 4 2.10000+ 1 3.20000+ 1 2.12655- 2 3.36470- 4 2.10000+ 1 3.30000+ 1 3.25229- 2 3.42910- 4 2.10000+ 1 4.10000+ 1 6.98684- 3 3.84120- 4 2.10000+ 1 4.30000+ 1 4.49550- 3 3.99980- 4 2.10000+ 1 4.40000+ 1 5.66886- 3 4.07340- 4 2.10000+ 1 4.60000+ 1 1.25100- 4 4.24800- 4 2.10000+ 1 4.70000+ 1 1.71809- 4 4.25290- 4 2.10000+ 1 5.80000+ 1 7.61876- 4 4.23880- 4 2.20000+ 1 2.40000+ 1 4.27408- 2 1.36280- 4 2.20000+ 1 2.50000+ 1 1.09579- 2 1.45440- 4 2.20000+ 1 2.70000+ 1 5.86307- 3 1.91080- 4 2.20000+ 1 2.90000+ 1 2.48588- 2 2.46390- 4 2.20000+ 1 3.00000+ 1 5.19176- 3 2.90520- 4 2.20000+ 1 3.20000+ 1 2.38508- 3 3.72360- 4 2.20000+ 1 3.30000+ 1 2.58824- 3 3.78800- 4 2.20000+ 1 4.10000+ 1 8.44600- 4 4.20010- 4 2.20000+ 1 4.30000+ 1 2.68346- 3 4.35870- 4 2.20000+ 1 4.40000+ 1 6.03627- 4 4.43230- 4 2.20000+ 1 4.60000+ 1 1.23461- 5 4.60690- 4 2.20000+ 1 4.70000+ 1 1.33886- 5 4.61180- 4 2.20000+ 1 5.80000+ 1 8.85080- 5 4.59770- 4 2.40000+ 1 2.40000+ 1 2.25252- 3 4.47000- 4 2.40000+ 1 2.50000+ 1 1.28195- 2 4.56160- 4 2.40000+ 1 2.70000+ 1 5.06537- 3 5.01800- 4 2.40000+ 1 2.90000+ 1 2.05209- 2 5.57110- 4 2.40000+ 1 3.00000+ 1 3.00498- 3 6.01240- 4 2.40000+ 1 3.20000+ 1 5.94492- 3 6.83080- 4 2.40000+ 1 3.30000+ 1 4.09601- 3 6.89520- 4 2.40000+ 1 4.10000+ 1 9.76446- 4 7.30730- 4 2.40000+ 1 4.30000+ 1 2.25301- 3 7.46590- 4 2.40000+ 1 4.40000+ 1 3.96119- 4 7.53950- 4 2.40000+ 1 4.60000+ 1 2.92445- 5 7.71410- 4 2.40000+ 1 4.70000+ 1 2.23719- 5 7.71900- 4 2.40000+ 1 5.80000+ 1 1.05868- 4 7.70490- 4 2.50000+ 1 2.50000+ 1 6.22368- 4 4.65320- 4 2.50000+ 1 2.70000+ 1 2.87875- 3 5.10960- 4 2.50000+ 1 2.90000+ 1 3.22483- 2 5.66270- 4 2.50000+ 1 3.00000+ 1 1.84136- 3 6.10400- 4 2.50000+ 1 3.20000+ 1 1.24278- 2 6.92240- 4 2.50000+ 1 3.30000+ 1 1.16915- 3 6.98680- 4 2.50000+ 1 4.10000+ 1 4.16496- 4 7.39890- 4 2.50000+ 1 4.30000+ 1 3.41502- 3 7.55750- 4 2.50000+ 1 4.40000+ 1 2.29069- 4 7.63110- 4 2.50000+ 1 4.60000+ 1 6.08372- 5 7.80570- 4 2.50000+ 1 4.70000+ 1 5.94976- 6 7.81060- 4 2.50000+ 1 5.80000+ 1 4.32856- 5 7.79650- 4 2.70000+ 1 2.70000+ 1 1.35328- 3 5.56600- 4 2.70000+ 1 2.90000+ 1 1.79619- 2 6.11910- 4 2.70000+ 1 3.00000+ 1 3.42157- 3 6.56040- 4 2.70000+ 1 3.20000+ 1 4.35748- 3 7.37880- 4 2.70000+ 1 3.30000+ 1 3.10565- 3 7.44320- 4 2.70000+ 1 4.10000+ 1 3.96492- 4 7.85530- 4 2.70000+ 1 4.30000+ 1 1.87065- 3 8.01390- 4 2.70000+ 1 4.40000+ 1 4.61487- 4 8.08750- 4 2.70000+ 1 4.60000+ 1 2.07993- 5 8.26210- 4 2.70000+ 1 4.70000+ 1 1.69002- 5 8.26700- 4 2.70000+ 1 5.80000+ 1 4.15992- 5 8.25290- 4 2.90000+ 1 2.90000+ 1 1.41218- 2 6.67220- 4 2.90000+ 1 3.00000+ 1 3.71775- 2 7.11350- 4 2.90000+ 1 3.20000+ 1 2.86178- 2 7.93190- 4 2.90000+ 1 3.30000+ 1 4.78206- 2 7.99630- 4 2.90000+ 1 4.10000+ 1 4.09341- 3 8.40840- 4 2.90000+ 1 4.30000+ 1 3.81496- 3 8.56700- 4 2.90000+ 1 4.40000+ 1 5.60085- 3 8.64060- 4 2.90000+ 1 4.60000+ 1 1.73410- 4 8.81520- 4 2.90000+ 1 4.70000+ 1 2.64672- 4 8.82010- 4 2.90000+ 1 5.80000+ 1 4.45687- 4 8.80600- 4 3.00000+ 1 3.00000+ 1 1.18547- 3 7.55480- 4 3.00000+ 1 3.20000+ 1 4.84306- 3 8.37320- 4 3.00000+ 1 3.30000+ 1 2.13032- 3 8.43760- 4 3.00000+ 1 4.10000+ 1 4.85393- 4 8.84970- 4 3.00000+ 1 4.30000+ 1 3.56735- 3 9.00830- 4 3.00000+ 1 4.40000+ 1 3.00808- 4 9.08190- 4 3.00000+ 1 4.60000+ 1 2.32447- 5 9.25650- 4 3.00000+ 1 4.70000+ 1 1.09386- 5 9.26140- 4 3.00000+ 1 5.80000+ 1 5.05903- 5 9.24730- 4 3.20000+ 1 3.20000+ 1 9.85054- 4 9.19160- 4 3.20000+ 1 3.30000+ 1 1.56432- 3 9.25600- 4 3.20000+ 1 4.10000+ 1 4.41537- 4 9.66810- 4 3.20000+ 1 4.30000+ 1 1.53153- 3 9.82670- 4 3.20000+ 1 4.40000+ 1 3.87184- 4 9.90030- 4 3.20000+ 1 4.60000+ 1 1.11683- 5 1.00749- 3 3.20000+ 1 4.70000+ 1 8.93465- 6 1.00798- 3 3.20000+ 1 5.80000+ 1 4.76500- 5 1.00657- 3 3.30000+ 1 3.30000+ 1 1.86671- 4 9.32040- 4 3.30000+ 1 4.10000+ 1 1.59470- 4 9.73250- 4 3.30000+ 1 4.30000+ 1 1.81447- 3 9.89110- 4 3.30000+ 1 4.40000+ 1 1.01870- 4 9.96470- 4 3.30000+ 1 4.60000+ 1 5.33352- 6 1.01393- 3 3.30000+ 1 4.70000+ 1 2.13335- 6 1.01442- 3 3.30000+ 1 5.80000+ 1 1.60003- 5 1.01301- 3 4.10000+ 1 4.10000+ 1 1.10773- 5 1.01446- 3 4.10000+ 1 4.30000+ 1 1.35337- 4 1.03032- 3 4.10000+ 1 4.40000+ 1 2.31177- 5 1.03768- 3 4.10000+ 1 4.60000+ 1 1.44485- 6 1.05514- 3 4.10000+ 1 4.70000+ 1 9.63256- 7 1.05563- 3 4.10000+ 1 5.80000+ 1 2.40808- 6 1.05422- 3 4.30000+ 1 4.30000+ 1 7.76876- 5 1.04618- 3 4.30000+ 1 4.40000+ 1 1.92020- 4 1.05354- 3 4.30000+ 1 4.60000+ 1 5.86303- 6 1.07100- 3 4.30000+ 1 4.70000+ 1 9.28294- 6 1.07149- 3 4.30000+ 1 5.80000+ 1 1.51463- 5 1.07008- 3 4.40000+ 1 4.40000+ 1 5.39111- 6 1.06090- 3 4.40000+ 1 4.60000+ 1 7.70169- 7 1.07836- 3 4.40000+ 1 4.70000+ 1 3.85084- 7 1.07885- 3 4.40000+ 1 5.80000+ 1 1.92538- 6 1.07744- 3 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.36744- 5 2.35930- 4 2.20000+ 1 1.95457- 4 2.71820- 4 2.70000+ 1 2.50175- 4 6.37340- 4 3.20000+ 1 2.45684- 5 8.18620- 4 3.30000+ 1 1.46231- 4 8.25060- 4 4.10000+ 1 4.70118- 5 8.66270- 4 5.80000+ 1 5.27941- 6 9.06030- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.90000+ 1 1.63336- 2 1.71400- 5 2.10000+ 1 3.00000+ 1 4.78265- 2 6.12700- 5 2.10000+ 1 3.20000+ 1 1.58881- 2 1.43110- 4 2.10000+ 1 3.30000+ 1 2.50864- 2 1.49550- 4 2.10000+ 1 4.10000+ 1 3.50354- 3 1.90760- 4 2.10000+ 1 4.30000+ 1 2.45018- 3 2.06620- 4 2.10000+ 1 4.40000+ 1 5.82443- 3 2.13980- 4 2.10000+ 1 4.60000+ 1 8.69668- 5 2.31440- 4 2.10000+ 1 4.70000+ 1 1.22479- 4 2.31930- 4 2.10000+ 1 5.80000+ 1 3.76668- 4 2.30520- 4 2.20000+ 1 2.70000+ 1 9.33982- 2 0.00000+ 0 2.20000+ 1 2.90000+ 1 1.07023- 1 5.30300- 5 2.20000+ 1 3.00000+ 1 1.24190- 1 9.71600- 5 2.20000+ 1 3.20000+ 1 1.05584- 1 1.79000- 4 2.20000+ 1 3.30000+ 1 1.26728- 1 1.85440- 4 2.20000+ 1 4.10000+ 1 1.89567- 2 2.26650- 4 2.20000+ 1 4.30000+ 1 1.64571- 2 2.42510- 4 2.20000+ 1 4.40000+ 1 1.70115- 2 2.49870- 4 2.20000+ 1 4.60000+ 1 5.71025- 4 2.67330- 4 2.20000+ 1 4.70000+ 1 6.47936- 4 2.67820- 4 2.20000+ 1 5.80000+ 1 2.03795- 3 2.66410- 4 2.40000+ 1 2.40000+ 1 8.58881- 4 2.53640- 4 2.40000+ 1 2.50000+ 1 7.07442- 3 2.62800- 4 2.40000+ 1 2.70000+ 1 8.51426- 3 3.08440- 4 2.40000+ 1 2.90000+ 1 4.58582- 3 3.63750- 4 2.40000+ 1 3.00000+ 1 5.34873- 2 4.07880- 4 2.40000+ 1 3.20000+ 1 1.95773- 3 4.89720- 4 2.40000+ 1 3.30000+ 1 7.74692- 3 4.96160- 4 2.40000+ 1 4.10000+ 1 1.04286- 3 5.37370- 4 2.40000+ 1 4.30000+ 1 6.26191- 4 5.53230- 4 2.40000+ 1 4.40000+ 1 5.47373- 3 5.60590- 4 2.40000+ 1 4.60000+ 1 1.05637- 5 5.78050- 4 2.40000+ 1 4.70000+ 1 3.40381- 5 5.78540- 4 2.40000+ 1 5.80000+ 1 1.06516- 4 5.77130- 4 2.50000+ 1 2.50000+ 1 4.52367- 3 2.71960- 4 2.50000+ 1 2.70000+ 1 1.94169- 2 3.17600- 4 2.50000+ 1 2.90000+ 1 1.61976- 2 3.72910- 4 2.50000+ 1 3.00000+ 1 6.47029- 2 4.17040- 4 2.50000+ 1 3.20000+ 1 1.54893- 3 4.98880- 4 2.50000+ 1 3.30000+ 1 1.07444- 2 5.05320- 4 2.50000+ 1 4.10000+ 1 2.87271- 3 5.46530- 4 2.50000+ 1 4.30000+ 1 2.29819- 3 5.62390- 4 2.50000+ 1 4.40000+ 1 6.70354- 3 5.69750- 4 2.50000+ 1 4.60000+ 1 9.32912- 6 5.87210- 4 2.50000+ 1 4.70000+ 1 4.86862- 5 5.87700- 4 2.50000+ 1 5.80000+ 1 3.02023- 4 5.86290- 4 2.70000+ 1 2.70000+ 1 7.40912- 6 3.63240- 4 2.70000+ 1 2.90000+ 1 2.29061- 4 4.18550- 4 2.70000+ 1 3.00000+ 1 4.95385- 3 4.62680- 4 2.70000+ 1 3.20000+ 1 4.53494- 4 5.44520- 4 2.70000+ 1 3.30000+ 1 7.84749- 4 5.50960- 4 2.70000+ 1 4.10000+ 1 6.79162- 6 5.92170- 4 2.70000+ 1 4.30000+ 1 2.37706- 5 6.08030- 4 2.70000+ 1 4.40000+ 1 4.89922- 4 6.15390- 4 2.70000+ 1 4.60000+ 1 2.46974- 6 6.32850- 4 2.70000+ 1 4.70000+ 1 3.39576- 6 6.33340- 4 2.70000+ 1 5.80000+ 1 9.26125- 7 6.31930- 4 2.90000+ 1 2.90000+ 1 6.10110- 7 4.73860- 4 2.90000+ 1 3.00000+ 1 5.49431- 3 5.17990- 4 2.90000+ 1 3.20000+ 1 2.42216- 4 5.99830- 4 2.90000+ 1 3.30000+ 1 7.06816- 4 6.06270- 4 2.90000+ 1 4.10000+ 1 3.93520- 5 6.47480- 4 2.90000+ 1 4.30000+ 1 2.74562- 6 6.63340- 4 2.90000+ 1 4.40000+ 1 5.57941- 4 6.70700- 4 2.90000+ 1 4.60000+ 1 1.22015- 6 6.88160- 4 2.90000+ 1 4.70000+ 1 3.05060- 6 6.88650- 4 2.90000+ 1 5.80000+ 1 4.27075- 6 6.87240- 4 3.00000+ 1 3.00000+ 1 7.18189- 3 5.62120- 4 3.00000+ 1 3.20000+ 1 8.13212- 3 6.43960- 4 3.00000+ 1 3.30000+ 1 1.08614- 2 6.50400- 4 3.00000+ 1 4.10000+ 1 9.87148- 4 6.91610- 4 3.00000+ 1 4.30000+ 1 8.93924- 4 7.07470- 4 3.00000+ 1 4.40000+ 1 1.81199- 3 7.14830- 4 3.00000+ 1 4.60000+ 1 4.89649- 5 7.32290- 4 3.00000+ 1 4.70000+ 1 5.99502- 5 7.32780- 4 3.00000+ 1 5.80000+ 1 1.07346- 4 7.31370- 4 3.20000+ 1 3.20000+ 1 1.48032- 4 7.25800- 4 3.20000+ 1 3.30000+ 1 8.86763- 4 7.32240- 4 3.20000+ 1 4.10000+ 1 5.78391- 5 7.73450- 4 3.20000+ 1 4.30000+ 1 3.46453- 5 7.89310- 4 3.20000+ 1 4.40000+ 1 7.61064- 4 7.96670- 4 3.20000+ 1 4.60000+ 1 1.71786- 6 8.14130- 4 3.20000+ 1 4.70000+ 1 4.00855- 6 8.14620- 4 3.20000+ 1 5.80000+ 1 6.01290- 6 8.13210- 4 3.30000+ 1 3.30000+ 1 8.08725- 4 7.38680- 4 3.30000+ 1 4.10000+ 1 1.29043- 4 7.79890- 4 3.30000+ 1 4.30000+ 1 9.84267- 5 7.95750- 4 3.30000+ 1 4.40000+ 1 9.84267- 4 8.03110- 4 3.30000+ 1 4.60000+ 1 4.64796- 6 8.20570- 4 3.30000+ 1 4.70000+ 1 7.92880- 6 8.21060- 4 3.30000+ 1 5.80000+ 1 1.39429- 5 8.19650- 4 4.10000+ 1 4.30000+ 1 3.08127- 6 8.36960- 4 4.10000+ 1 4.40000+ 1 8.71176- 5 8.44320- 4 4.10000+ 1 4.60000+ 1 2.80121- 7 8.61780- 4 4.10000+ 1 4.70000+ 1 5.60233- 7 8.62270- 4 4.30000+ 1 4.40000+ 1 8.18515- 5 8.60180- 4 4.30000+ 1 4.60000+ 1 2.85200- 7 8.77640- 4 4.30000+ 1 4.70000+ 1 5.70390- 7 8.78130- 4 4.30000+ 1 5.80000+ 1 2.85200- 7 8.76720- 4 4.40000+ 1 4.40000+ 1 9.30818- 5 8.67540- 4 4.40000+ 1 4.60000+ 1 4.29199- 6 8.85000- 4 4.40000+ 1 4.70000+ 1 5.36492- 6 8.85490- 4 4.40000+ 1 5.80000+ 1 9.12033- 6 8.84080- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.13502- 4 3.46610- 4 2.90000+ 1 1.19651- 4 4.56720- 4 3.00000+ 1 1.41721- 5 5.00850- 4 4.30000+ 1 1.95311- 5 6.46200- 4 4.40000+ 1 2.19341- 6 6.53560- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.30000+ 1 1.09502- 3 6.58000- 6 2.20000+ 1 4.40000+ 1 2.47836- 3 1.39400- 5 2.20000+ 1 4.60000+ 1 4.09878- 4 3.14000- 5 2.20000+ 1 4.70000+ 1 7.54129- 5 3.18900- 5 2.20000+ 1 5.80000+ 1 2.06645- 4 3.04800- 5 2.40000+ 1 2.40000+ 1 2.80510- 2 1.77100- 5 2.40000+ 1 2.50000+ 1 9.27675- 2 2.68700- 5 2.40000+ 1 2.70000+ 1 1.08731- 1 7.25100- 5 2.40000+ 1 2.90000+ 1 9.41886- 2 1.27820- 4 2.40000+ 1 3.00000+ 1 1.18619- 1 1.71950- 4 2.40000+ 1 3.20000+ 1 1.17968- 1 2.53790- 4 2.40000+ 1 3.30000+ 1 1.23463- 1 2.60230- 4 2.40000+ 1 4.10000+ 1 2.07585- 2 3.01440- 4 2.40000+ 1 4.30000+ 1 1.48871- 2 3.17300- 4 2.40000+ 1 4.40000+ 1 1.71778- 2 3.24660- 4 2.40000+ 1 4.60000+ 1 6.05423- 4 3.42120- 4 2.40000+ 1 4.70000+ 1 6.44221- 4 3.42610- 4 2.40000+ 1 5.80000+ 1 2.24237- 3 3.41200- 4 2.50000+ 1 2.50000+ 1 3.01095- 3 3.60300- 5 2.50000+ 1 2.70000+ 1 8.60394- 3 8.16700- 5 2.50000+ 1 2.90000+ 1 1.64933- 2 1.36980- 4 2.50000+ 1 3.00000+ 1 7.68716- 3 1.81110- 4 2.50000+ 1 3.20000+ 1 1.27956- 1 2.62950- 4 2.50000+ 1 3.30000+ 1 5.39224- 3 2.69390- 4 2.50000+ 1 4.10000+ 1 1.18579- 3 3.10600- 4 2.50000+ 1 4.30000+ 1 1.67695- 3 3.26460- 4 2.50000+ 1 4.40000+ 1 8.81531- 4 3.33820- 4 2.50000+ 1 4.60000+ 1 5.91802- 4 3.51280- 4 2.50000+ 1 4.70000+ 1 2.68431- 5 3.51770- 4 2.50000+ 1 5.80000+ 1 1.24404- 4 3.50360- 4 2.70000+ 1 2.70000+ 1 8.60236- 4 1.27310- 4 2.70000+ 1 2.90000+ 1 2.05539- 3 1.82620- 4 2.70000+ 1 3.00000+ 1 1.67149- 3 2.26750- 4 2.70000+ 1 3.20000+ 1 1.14599- 2 3.08590- 4 2.70000+ 1 3.30000+ 1 2.30848- 3 3.15030- 4 2.70000+ 1 4.10000+ 1 1.90867- 4 3.56240- 4 2.70000+ 1 4.30000+ 1 2.17728- 4 3.72100- 4 2.70000+ 1 4.40000+ 1 1.90867- 4 3.79460- 4 2.70000+ 1 4.60000+ 1 5.11296- 5 3.96920- 4 2.70000+ 1 4.70000+ 1 9.37366- 6 3.97410- 4 2.70000+ 1 5.80000+ 1 1.95991- 5 3.96000- 4 2.90000+ 1 2.90000+ 1 3.94135- 4 2.37930- 4 2.90000+ 1 3.00000+ 1 2.14321- 3 2.82060- 4 2.90000+ 1 3.20000+ 1 7.53663- 3 3.63900- 4 2.90000+ 1 3.30000+ 1 9.44627- 4 3.70340- 4 2.90000+ 1 4.10000+ 1 1.38480- 4 4.11550- 4 2.90000+ 1 4.30000+ 1 8.60699- 5 4.27410- 4 2.90000+ 1 4.40000+ 1 1.83647- 4 4.34770- 4 2.90000+ 1 4.60000+ 1 3.45136- 5 4.52230- 4 2.90000+ 1 4.70000+ 1 5.11309- 6 4.52720- 4 2.90000+ 1 5.80000+ 1 1.36348- 5 4.51310- 4 3.00000+ 1 3.00000+ 1 7.62419- 4 3.26190- 4 3.00000+ 1 3.20000+ 1 1.47727- 2 4.08030- 4 3.00000+ 1 3.30000+ 1 1.27808- 3 4.14470- 4 3.00000+ 1 4.10000+ 1 7.46504- 5 4.55680- 4 3.00000+ 1 4.30000+ 1 1.58276- 4 4.71540- 4 3.00000+ 1 4.40000+ 1 1.34620- 4 4.78900- 4 3.00000+ 1 4.60000+ 1 6.77162- 5 4.96360- 4 3.00000+ 1 4.70000+ 1 5.71095- 6 4.96850- 4 3.00000+ 1 5.80000+ 1 6.93470- 6 4.95440- 4 3.20000+ 1 3.20000+ 1 9.30184- 3 4.89870- 4 3.20000+ 1 3.30000+ 1 1.82089- 2 4.96310- 4 3.20000+ 1 4.10000+ 1 1.67098- 3 5.37520- 4 3.20000+ 1 4.30000+ 1 1.20873- 3 5.53380- 4 3.20000+ 1 4.40000+ 1 2.21820- 3 5.60740- 4 3.20000+ 1 4.60000+ 1 9.88489- 5 5.78200- 4 3.20000+ 1 4.70000+ 1 9.97005- 5 5.78690- 4 3.20000+ 1 5.80000+ 1 1.78947- 4 5.77280- 4 3.30000+ 1 3.30000+ 1 2.90811- 4 5.02750- 4 3.30000+ 1 4.10000+ 1 6.44973- 5 5.43960- 4 3.30000+ 1 4.30000+ 1 6.41154- 5 5.59820- 4 3.30000+ 1 4.40000+ 1 1.18308- 4 5.67180- 4 3.30000+ 1 4.60000+ 1 7.51834- 5 5.84640- 4 3.30000+ 1 4.70000+ 1 2.67137- 6 5.85130- 4 3.30000+ 1 5.80000+ 1 6.10622- 6 5.83720- 4 4.10000+ 1 4.10000+ 1 3.98823- 6 5.85170- 4 4.10000+ 1 4.30000+ 1 7.66997- 6 6.01030- 4 4.10000+ 1 4.40000+ 1 6.13565- 6 6.08390- 4 4.10000+ 1 4.60000+ 1 5.52215- 6 6.25850- 4 4.10000+ 1 4.70000+ 1 3.06790- 7 6.26340- 4 4.10000+ 1 5.80000+ 1 9.20335- 7 6.24930- 4 4.30000+ 1 4.30000+ 1 1.19710- 6 6.16890- 4 4.30000+ 1 4.40000+ 1 9.57734- 6 6.24250- 4 4.30000+ 1 4.60000+ 1 3.89078- 6 6.41710- 4 4.30000+ 1 4.70000+ 1 2.99293- 7 6.42200- 4 4.30000+ 1 5.80000+ 1 5.98573- 7 6.40790- 4 4.40000+ 1 4.40000+ 1 2.35097- 6 6.31610- 4 4.40000+ 1 4.60000+ 1 3.76158- 6 6.49070- 4 4.40000+ 1 4.70000+ 1 1.56732- 7 6.49560- 4 4.40000+ 1 5.80000+ 1 3.13457- 7 6.48150- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.62819- 5 3.10720- 4 2.50000+ 1 3.63028- 4 3.19880- 4 3.00000+ 1 1.04030- 4 4.64960- 4 4.40000+ 1 1.61099- 5 6.17670- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.40000+ 1 2.61556- 3 0.00000+ 0 2.40000+ 1 2.50000+ 1 9.85494- 3 0.00000+ 0 2.40000+ 1 2.70000+ 1 1.23571- 2 3.66200- 5 2.40000+ 1 2.90000+ 1 8.25693- 3 9.19300- 5 2.40000+ 1 3.00000+ 1 1.56217- 2 1.36060- 4 2.40000+ 1 3.20000+ 1 7.09565- 3 2.17900- 4 2.40000+ 1 3.30000+ 1 1.04510- 1 2.24340- 4 2.40000+ 1 4.10000+ 1 1.97569- 3 2.65550- 4 2.40000+ 1 4.30000+ 1 1.23226- 3 2.81410- 4 2.40000+ 1 4.40000+ 1 1.87667- 3 2.88770- 4 2.40000+ 1 4.60000+ 1 3.92669- 5 3.06230- 4 2.40000+ 1 4.70000+ 1 4.53694- 4 3.06720- 4 2.40000+ 1 5.80000+ 1 2.09987- 4 3.05310- 4 2.50000+ 1 2.50000+ 1 2.57599- 2 1.40000- 7 2.50000+ 1 2.70000+ 1 1.11301- 1 4.57800- 5 2.50000+ 1 2.90000+ 1 1.20108- 1 1.01090- 4 2.50000+ 1 3.00000+ 1 1.12833- 1 1.45220- 4 2.50000+ 1 3.20000+ 1 1.08230- 1 2.27060- 4 2.50000+ 1 3.30000+ 1 1.98305- 1 2.33500- 4 2.50000+ 1 4.10000+ 1 2.15819- 2 2.74710- 4 2.50000+ 1 4.30000+ 1 1.81723- 2 2.90570- 4 2.50000+ 1 4.40000+ 1 1.64911- 2 2.97930- 4 2.50000+ 1 4.60000+ 1 5.98838- 4 3.15390- 4 2.50000+ 1 4.70000+ 1 9.44531- 4 3.15880- 4 2.50000+ 1 5.80000+ 1 2.32170- 3 3.14470- 4 2.70000+ 1 2.70000+ 1 1.56145- 3 9.14200- 5 2.70000+ 1 2.90000+ 1 2.14736- 3 1.46730- 4 2.70000+ 1 3.00000+ 1 3.56392- 3 1.90860- 4 2.70000+ 1 3.20000+ 1 3.16721- 3 2.72700- 4 2.70000+ 1 3.30000+ 1 1.44745- 2 2.79140- 4 2.70000+ 1 4.10000+ 1 3.34591- 4 3.20350- 4 2.70000+ 1 4.30000+ 1 2.33395- 4 3.36210- 4 2.70000+ 1 4.40000+ 1 4.02032- 4 3.43570- 4 2.70000+ 1 4.60000+ 1 1.34906- 5 3.61030- 4 2.70000+ 1 4.70000+ 1 5.93624- 5 3.61520- 4 2.70000+ 1 5.80000+ 1 3.46271- 5 3.60110- 4 2.90000+ 1 2.90000+ 1 2.68231- 4 2.02040- 4 2.90000+ 1 3.00000+ 1 3.75638- 3 2.46170- 4 2.90000+ 1 3.20000+ 1 5.06636- 4 3.28010- 4 2.90000+ 1 3.30000+ 1 1.14362- 2 3.34450- 4 2.90000+ 1 4.10000+ 1 1.38776- 4 3.75660- 4 2.90000+ 1 4.30000+ 1 5.73816- 5 3.91520- 4 2.90000+ 1 4.40000+ 1 3.35834- 4 3.98880- 4 2.90000+ 1 4.60000+ 1 1.77922- 6 4.16340- 4 2.90000+ 1 4.70000+ 1 4.89300- 5 4.16830- 4 2.90000+ 1 5.80000+ 1 1.37891- 5 4.15420- 4 3.00000+ 1 3.00000+ 1 1.19509- 3 2.90300- 4 3.00000+ 1 3.20000+ 1 1.88220- 3 3.72140- 4 3.00000+ 1 3.30000+ 1 1.47109- 2 3.78580- 4 3.00000+ 1 4.10000+ 1 1.22021- 4 4.19790- 4 3.00000+ 1 4.30000+ 1 1.84747- 4 4.35650- 4 3.00000+ 1 4.40000+ 1 2.12878- 4 4.43010- 4 3.00000+ 1 4.60000+ 1 9.95170- 6 4.60470- 4 3.00000+ 1 4.70000+ 1 6.23052- 5 4.60960- 4 3.00000+ 1 5.80000+ 1 1.08171- 5 4.59550- 4 3.20000+ 1 3.20000+ 1 1.35430- 4 4.53980- 4 3.20000+ 1 3.30000+ 1 1.38531- 2 4.60420- 4 3.20000+ 1 4.10000+ 1 7.87468- 5 5.01630- 4 3.20000+ 1 4.30000+ 1 4.71626- 5 5.17490- 4 3.20000+ 1 4.40000+ 1 1.93402- 4 5.24850- 4 3.20000+ 1 4.60000+ 1 1.29796- 6 5.42310- 4 3.20000+ 1 4.70000+ 1 5.84108- 5 5.42800- 4 3.20000+ 1 5.80000+ 1 7.35549- 6 5.41390- 4 3.30000+ 1 3.30000+ 1 1.53993- 2 4.66860- 4 3.30000+ 1 4.10000+ 1 1.77391- 3 5.08070- 4 3.30000+ 1 4.30000+ 1 1.60568- 3 5.23930- 4 3.30000+ 1 4.40000+ 1 2.16000- 3 5.31290- 4 3.30000+ 1 4.60000+ 1 8.17762- 5 5.48750- 4 3.30000+ 1 4.70000+ 1 1.49280- 4 5.49240- 4 3.30000+ 1 5.80000+ 1 1.89940- 4 5.47830- 4 4.10000+ 1 4.10000+ 1 8.33869- 6 5.49280- 4 4.10000+ 1 4.30000+ 1 1.05144- 5 5.65140- 4 4.10000+ 1 4.40000+ 1 1.26896- 5 5.72500- 4 4.10000+ 1 4.60000+ 1 3.62558- 7 5.89960- 4 4.10000+ 1 4.70000+ 1 6.16334- 6 5.90450- 4 4.10000+ 1 5.80000+ 1 1.45017- 6 5.89040- 4 4.30000+ 1 4.30000+ 1 1.65636- 6 5.81000- 4 4.30000+ 1 4.40000+ 1 1.35822- 5 5.88360- 4 4.30000+ 1 4.70000+ 1 5.30054- 6 6.06310- 4 4.30000+ 1 5.80000+ 1 9.93803- 7 6.04900- 4 4.40000+ 1 4.40000+ 1 5.71230- 6 5.95720- 4 4.40000+ 1 4.60000+ 1 4.76050- 7 6.13180- 4 4.40000+ 1 4.70000+ 1 4.99855- 6 6.13670- 4 4.40000+ 1 5.80000+ 1 7.14042- 7 6.12260- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.04950- 5 2.36080- 4 3.30000+ 1 2.63050- 6 2.42520- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 4.60000+ 1 2.05419- 3 4.67000- 6 2.50000+ 1 4.70000+ 1 2.10694- 3 5.16000- 6 2.50000+ 1 5.80000+ 1 2.82678- 3 3.75000- 6 2.70000+ 1 4.10000+ 1 1.03626- 2 9.63000- 6 2.70000+ 1 4.30000+ 1 6.71398- 3 2.54900- 5 2.70000+ 1 4.40000+ 1 1.28982- 2 3.28500- 5 2.70000+ 1 4.60000+ 1 1.82438- 4 5.03100- 5 2.70000+ 1 4.70000+ 1 3.28388- 4 5.08000- 5 2.70000+ 1 5.80000+ 1 1.00341- 3 4.93900- 5 2.90000+ 1 3.20000+ 1 7.57113- 2 1.72900- 5 2.90000+ 1 3.30000+ 1 6.76330- 2 2.37300- 5 2.90000+ 1 4.10000+ 1 3.85061- 2 6.49400- 5 2.90000+ 1 4.30000+ 1 1.85653- 2 8.08000- 5 2.90000+ 1 4.40000+ 1 3.44022- 2 8.81600- 5 2.90000+ 1 4.60000+ 1 1.03047- 3 1.05620- 4 2.90000+ 1 4.70000+ 1 1.24743- 3 1.06110- 4 2.90000+ 1 5.80000+ 1 3.81444- 3 1.04700- 4 3.00000+ 1 3.20000+ 1 1.59574- 1 6.14200- 5 3.00000+ 1 3.30000+ 1 1.17889- 1 6.78600- 5 3.00000+ 1 4.10000+ 1 1.81858- 2 1.09070- 4 3.00000+ 1 4.30000+ 1 1.46428- 2 1.24930- 4 3.00000+ 1 4.40000+ 1 9.76209- 3 1.32290- 4 3.00000+ 1 4.60000+ 1 9.21937- 4 1.49750- 4 3.00000+ 1 4.70000+ 1 7.05020- 4 1.50240- 4 3.00000+ 1 5.80000+ 1 1.69927- 3 1.48830- 4 3.20000+ 1 3.20000+ 1 9.62805- 2 1.43260- 4 3.20000+ 1 3.30000+ 1 1.43909- 1 1.49700- 4 3.20000+ 1 4.10000+ 1 9.49119- 3 1.90910- 4 3.20000+ 1 4.30000+ 1 3.34445- 2 2.06770- 4 3.20000+ 1 4.40000+ 1 2.34829- 2 2.14130- 4 3.20000+ 1 4.60000+ 1 6.68879- 4 2.31590- 4 3.20000+ 1 4.70000+ 1 6.50801- 4 2.32080- 4 3.20000+ 1 5.80000+ 1 1.10273- 3 2.30670- 4 3.30000+ 1 3.30000+ 1 2.68940- 2 1.56140- 4 3.30000+ 1 4.10000+ 1 5.44105- 3 1.97350- 4 3.30000+ 1 4.30000+ 1 3.41738- 2 2.13210- 4 3.30000+ 1 4.40000+ 1 1.50822- 2 2.20570- 4 3.30000+ 1 4.60000+ 1 4.29559- 4 2.38030- 4 3.30000+ 1 4.70000+ 1 2.14780- 4 2.38520- 4 3.30000+ 1 5.80000+ 1 5.72732- 4 2.37110- 4 4.10000+ 1 4.10000+ 1 1.08466- 4 2.38560- 4 4.10000+ 1 4.30000+ 1 1.53660- 3 2.54420- 4 4.10000+ 1 4.40000+ 1 1.15691- 3 2.61780- 4 4.10000+ 1 4.60000+ 1 1.80776- 5 2.79240- 4 4.10000+ 1 4.70000+ 1 1.80776- 5 2.79730- 4 4.10000+ 1 5.80000+ 1 1.80776- 5 2.78320- 4 4.30000+ 1 4.30000+ 1 5.60437- 4 2.70280- 4 4.30000+ 1 4.40000+ 1 1.12090- 3 2.77640- 4 4.30000+ 1 4.60000+ 1 1.08472- 4 2.95100- 4 4.30000+ 1 4.70000+ 1 9.03891- 5 2.95590- 4 4.30000+ 1 5.80000+ 1 1.62708- 4 2.94180- 4 4.40000+ 1 4.40000+ 1 2.35015- 4 2.85000- 4 4.40000+ 1 4.60000+ 1 7.23096- 5 3.02460- 4 4.40000+ 1 4.70000+ 1 3.61563- 5 3.02950- 4 4.40000+ 1 5.80000+ 1 1.08469- 4 3.01540- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 3.92548- 5 2.33360- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 1.10763- 2 1.63300- 5 2.70000+ 1 4.40000+ 1 1.93246- 2 2.36900- 5 2.70000+ 1 4.60000+ 1 5.65446- 4 4.11500- 5 2.70000+ 1 4.70000+ 1 5.98708- 4 4.16400- 5 2.70000+ 1 5.80000+ 1 2.39479- 3 4.02300- 5 2.90000+ 1 3.20000+ 1 1.71599- 2 8.13000- 6 2.90000+ 1 3.30000+ 1 4.15105- 2 1.45700- 5 2.90000+ 1 4.10000+ 1 4.83147- 3 5.57800- 5 2.90000+ 1 4.30000+ 1 1.30029- 3 7.16400- 5 2.90000+ 1 4.40000+ 1 5.66622- 3 7.90000- 5 2.90000+ 1 4.60000+ 1 1.76564- 4 9.64600- 5 2.90000+ 1 4.70000+ 1 2.08678- 4 9.69500- 5 2.90000+ 1 5.80000+ 1 6.74141- 4 9.55400- 5 3.00000+ 1 3.20000+ 1 1.43633- 1 5.22600- 5 3.00000+ 1 3.30000+ 1 3.60262- 1 5.87000- 5 3.00000+ 1 4.10000+ 1 3.09315- 2 9.99100- 5 3.00000+ 1 4.30000+ 1 1.07547- 2 1.15770- 4 3.00000+ 1 4.40000+ 1 3.52654- 2 1.23130- 4 3.00000+ 1 4.60000+ 1 1.12364- 3 1.40590- 4 3.00000+ 1 4.70000+ 1 2.29536- 3 1.41080- 4 3.00000+ 1 5.80000+ 1 3.08195- 3 1.39670- 4 3.20000+ 1 3.20000+ 1 9.40561- 3 1.34100- 4 3.20000+ 1 3.30000+ 1 1.04447- 1 1.40540- 4 3.20000+ 1 4.10000+ 1 2.98549- 3 1.81750- 4 3.20000+ 1 4.30000+ 1 2.92130- 3 1.97610- 4 3.20000+ 1 4.40000+ 1 1.91978- 2 2.04970- 4 3.20000+ 1 4.60000+ 1 8.02533- 5 2.22430- 4 3.20000+ 1 4.70000+ 1 2.56813- 4 2.22920- 4 3.20000+ 1 5.80000+ 1 3.04967- 4 2.21510- 4 3.30000+ 1 3.30000+ 1 9.99901- 2 1.46980- 4 3.30000+ 1 4.10000+ 1 9.21385- 3 1.88190- 4 3.30000+ 1 4.30000+ 1 9.53471- 3 2.04050- 4 3.30000+ 1 4.40000+ 1 4.24733- 2 2.11410- 4 3.30000+ 1 4.60000+ 1 5.45760- 4 2.28870- 4 3.30000+ 1 4.70000+ 1 6.58106- 4 2.29360- 4 3.30000+ 1 5.80000+ 1 1.04335- 3 2.27950- 4 4.10000+ 1 4.10000+ 1 8.02531- 5 2.29400- 4 4.10000+ 1 4.30000+ 1 5.45728- 4 2.45260- 4 4.10000+ 1 4.40000+ 1 1.62115- 3 2.52620- 4 4.10000+ 1 4.60000+ 1 1.60514- 5 2.70080- 4 4.10000+ 1 4.70000+ 1 1.60514- 5 2.70570- 4 4.10000+ 1 5.80000+ 1 1.60514- 5 2.69160- 4 4.30000+ 1 4.30000+ 1 4.81538- 5 2.61120- 4 4.30000+ 1 4.40000+ 1 5.29694- 4 2.68480- 4 4.30000+ 1 4.60000+ 1 1.60519- 5 2.85940- 4 4.30000+ 1 4.70000+ 1 3.21029- 5 2.86430- 4 4.30000+ 1 5.80000+ 1 4.81538- 5 2.85020- 4 4.40000+ 1 4.40000+ 1 7.51262- 4 2.75840- 4 4.40000+ 1 4.60000+ 1 7.22332- 5 2.93300- 4 4.40000+ 1 4.70000+ 1 1.30026- 4 2.93790- 4 4.40000+ 1 5.80000+ 1 1.44473- 4 2.92380- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.39707- 6 5.53100- 5 3.00000+ 1 1.67191- 5 9.94400- 5 4.30000+ 1 2.06674- 6 2.44790- 4 4.40000+ 1 4.05049- 8 2.52150- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.52029- 2 1.01400- 5 2.90000+ 1 4.30000+ 1 2.25148- 2 2.60000- 5 2.90000+ 1 4.40000+ 1 4.58188- 2 3.33600- 5 2.90000+ 1 4.60000+ 1 9.43241- 4 5.08200- 5 2.90000+ 1 4.70000+ 1 2.11392- 3 5.13100- 5 2.90000+ 1 5.80000+ 1 3.70629- 3 4.99000- 5 3.00000+ 1 3.20000+ 1 3.30833- 1 6.62000- 6 3.00000+ 1 3.30000+ 1 2.88936- 1 1.30600- 5 3.00000+ 1 4.10000+ 1 2.48327- 2 5.42700- 5 3.00000+ 1 4.30000+ 1 2.40917- 2 7.01300- 5 3.00000+ 1 4.40000+ 1 2.37303- 2 7.74900- 5 3.00000+ 1 4.60000+ 1 1.27614- 3 9.49500- 5 3.00000+ 1 4.70000+ 1 1.22102- 3 9.54400- 5 3.00000+ 1 5.80000+ 1 2.66926- 3 9.40300- 5 3.20000+ 1 3.20000+ 1 1.94651- 3 8.84600- 5 3.20000+ 1 3.30000+ 1 1.27019- 1 9.49000- 5 3.20000+ 1 4.10000+ 1 7.71815- 3 1.36110- 4 3.20000+ 1 4.30000+ 1 1.26529- 3 1.51970- 4 3.20000+ 1 4.40000+ 1 6.88167- 3 1.59330- 4 3.20000+ 1 4.60000+ 1 2.85025- 5 1.76790- 4 3.20000+ 1 4.70000+ 1 3.36529- 4 1.77280- 4 3.20000+ 1 5.80000+ 1 6.64758- 4 1.75870- 4 3.30000+ 1 3.30000+ 1 2.54252- 2 1.01340- 4 3.30000+ 1 4.10000+ 1 8.43092- 3 1.42550- 4 3.30000+ 1 4.30000+ 1 3.68732- 3 1.58410- 4 3.30000+ 1 4.40000+ 1 3.47665- 3 1.65770- 4 3.30000+ 1 4.60000+ 1 2.58025- 4 1.83230- 4 3.30000+ 1 4.70000+ 1 1.42485- 4 1.83720- 4 3.30000+ 1 5.80000+ 1 7.24370- 4 1.82310- 4 4.10000+ 1 4.10000+ 1 7.12557- 4 1.83760- 4 4.10000+ 1 4.30000+ 1 8.29862- 4 1.99620- 4 4.10000+ 1 4.40000+ 1 1.26956- 3 2.06980- 4 4.10000+ 1 4.60000+ 1 4.32398- 5 2.24440- 4 4.10000+ 1 4.70000+ 1 5.60957- 5 2.24930- 4 4.10000+ 1 5.80000+ 1 1.33083- 4 2.23520- 4 4.30000+ 1 4.30000+ 1 7.94320- 5 2.15480- 4 4.30000+ 1 4.40000+ 1 4.89837- 4 2.22840- 4 4.30000+ 1 4.60000+ 1 4.72814- 6 2.40300- 4 4.30000+ 1 4.70000+ 1 1.48145- 5 2.40790- 4 4.30000+ 1 5.80000+ 1 6.93480- 5 2.39380- 4 4.40000+ 1 4.40000+ 1 2.35197- 4 2.30200- 4 4.40000+ 1 4.60000+ 1 2.35197- 5 2.47660- 4 4.40000+ 1 4.70000+ 1 1.64335- 5 2.48150- 4 4.40000+ 1 5.80000+ 1 1.06890- 4 2.46740- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.36709- 5 1.25970- 4 4.10000+ 1 2.69389- 6 1.73620- 4 5.80000+ 1 3.10369- 7 2.13380- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.86633- 2 0.00000+ 0 3.00000+ 1 4.30000+ 1 1.18184- 2 1.48200- 5 3.00000+ 1 4.40000+ 1 8.76772- 3 2.21800- 5 3.00000+ 1 4.60000+ 1 5.95897- 4 3.96400- 5 3.00000+ 1 4.70000+ 1 6.49594- 4 4.01300- 5 3.00000+ 1 5.80000+ 1 1.37991- 3 3.87200- 5 3.20000+ 1 3.20000+ 1 1.42011- 1 3.31500- 5 3.20000+ 1 3.30000+ 1 6.08760- 1 3.95900- 5 3.20000+ 1 4.10000+ 1 4.62044- 2 8.08000- 5 3.20000+ 1 4.30000+ 1 3.07856- 2 9.66600- 5 3.20000+ 1 4.40000+ 1 5.17998- 2 1.04020- 4 3.20000+ 1 4.60000+ 1 1.16475- 3 1.21480- 4 3.20000+ 1 4.70000+ 1 2.60924- 3 1.21970- 4 3.20000+ 1 5.80000+ 1 5.09155- 3 1.20560- 4 3.30000+ 1 3.30000+ 1 2.53430- 2 4.60300- 5 3.30000+ 1 4.10000+ 1 4.16256- 3 8.72400- 5 3.30000+ 1 4.30000+ 1 2.59328- 2 1.03100- 4 3.30000+ 1 4.40000+ 1 6.18900- 3 1.10460- 4 3.30000+ 1 4.60000+ 1 7.31659- 4 1.27920- 4 3.30000+ 1 4.70000+ 1 1.79205- 4 1.28410- 4 3.30000+ 1 5.80000+ 1 3.70494- 4 1.27000- 4 4.10000+ 1 4.10000+ 1 8.57524- 5 1.28450- 4 4.10000+ 1 4.30000+ 1 2.14443- 3 1.44310- 4 4.10000+ 1 4.40000+ 1 3.51941- 4 1.51670- 4 4.10000+ 1 4.60000+ 1 5.21062- 5 1.69130- 4 4.10000+ 1 4.70000+ 1 1.57814- 5 1.69620- 4 4.10000+ 1 5.80000+ 1 1.54837- 5 1.68210- 4 4.30000+ 1 4.30000+ 1 1.06116- 3 1.60170- 4 4.30000+ 1 4.40000+ 1 2.48999- 3 1.67530- 4 4.30000+ 1 4.60000+ 1 7.24632- 5 1.84990- 4 4.30000+ 1 4.70000+ 1 1.11244- 4 1.85480- 4 4.30000+ 1 5.80000+ 1 2.04627- 4 1.84070- 4 4.40000+ 1 4.40000+ 1 9.07638- 5 1.74890- 4 4.40000+ 1 4.60000+ 1 4.16653- 5 1.92350- 4 4.40000+ 1 4.70000+ 1 7.43310- 6 1.92840- 4 4.40000+ 1 5.80000+ 1 1.83872- 5 1.91430- 4 1 89000 0 7 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.32019- 7 8.18400- 5 3.30000+ 1 3.78178- 6 8.82800- 5 4.10000+ 1 1.41289- 6 1.29490- 4 5.80000+ 1 1.72699- 7 1.69250- 4 1 89000 0 9 2.27000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.30000+ 1 3.34737- 1 0.00000+ 0 3.20000+ 1 4.10000+ 1 8.52764- 3 3.66700- 5 3.20000+ 1 4.30000+ 1 5.75256- 3 5.25300- 5 3.20000+ 1 4.40000+ 1 1.74284- 2 5.98900- 5 3.20000+ 1 4.60000+ 1 1.92498- 4 7.73500- 5 3.20000+ 1 4.70000+ 1 6.77896- 4 7.78400- 5 3.20000+ 1 5.80000+ 1 7.32779- 4 7.64300- 5 3.30000+ 1 3.30000+ 1 4.41675- 1 1.90000- 6 3.30000+ 1 4.10000+ 1 5.58142- 2 4.31100- 5 3.30000+ 1 4.30000+ 1 5.49509- 2 5.89700- 5 3.30000+ 1 4.40000+ 1 6.41941- 2 6.63300- 5 3.30000+ 1 4.60000+ 1 2.73324- 3 8.37900- 5 3.30000+ 1 4.70000+ 1 2.59040- 3 8.42800- 5 3.30000+ 1 5.80000+ 1 6.02918- 3 8.28700- 5 4.10000+ 1 4.10000+ 1 1.45202- 4 8.43200- 5 4.10000+ 1 4.30000+ 1 2.59527- 4 1.00180- 4 4.10000+ 1 4.40000+ 1 1.23466- 3 1.07540- 4 4.10000+ 1 4.60000+ 1 2.00169- 5 1.25000- 4 4.10000+ 1 4.70000+ 1 3.34388- 5 1.25490- 4 4.10000+ 1 5.80000+ 1 2.61491- 5 1.24080- 4 4.30000+ 1 4.40000+ 1 9.76434- 4 1.23400- 4 4.30000+ 1 4.60000+ 1 4.40012- 6 1.40860- 4 4.30000+ 1 4.70000+ 1 1.93609- 5 1.41350- 4 4.30000+ 1 5.80000+ 1 1.32004- 5 1.39940- 4 4.40000+ 1 4.40000+ 1 1.01766- 3 1.30760- 4 4.40000+ 1 4.60000+ 1 4.34424- 5 1.48220- 4 4.40000+ 1 4.70000+ 1 5.63918- 5 1.48710- 4 4.40000+ 1 5.80000+ 1 1.08501- 4 1.47300- 4 1 90000 0 0 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 8.00000- 1 4.70000+ 1 1.20000+ 0 5.80000+ 1 2.00000+ 0 1 90000 0 0 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.10110- 1 3.00000+ 0 2.04780- 2 5.00000+ 0 1.97800- 2 6.00000+ 0 1.63150- 2 8.00000+ 0 5.15790- 3 1.00000+ 1 4.83160- 3 1.10000+ 1 4.03620- 3 1.30000+ 1 3.50240- 3 1.40000+ 1 3.33860- 3 1.60000+ 1 1.31060- 3 1.80000+ 1 1.16230- 3 1.90000+ 1 9.56160- 4 2.10000+ 1 7.14810- 4 2.20000+ 1 6.76640- 4 2.40000+ 1 3.58550- 4 2.50000+ 1 3.48690- 4 2.70000+ 1 2.94760- 4 2.90000+ 1 2.37430- 4 3.00000+ 1 1.89410- 4 3.20000+ 1 1.04230- 4 3.30000+ 1 9.71100- 5 4.10000+ 1 5.05500- 5 4.30000+ 1 3.35200- 5 4.40000+ 1 2.50100- 5 4.60000+ 1 5.62000- 6 4.70000+ 1 4.98000- 6 5.80000+ 1 5.97000- 6 1 90000 0 0 2.32038+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.63300- 1 3.00000+ 0 4.05030- 2 5.00000+ 0 4.05170- 2 6.00000+ 0 2.63510- 2 8.00000+ 0 1.29820- 2 1.00000+ 1 1.28470- 2 1.10000+ 1 9.27070- 3 1.30000+ 1 9.10750- 3 1.40000+ 1 8.42420- 3 1.60000+ 1 4.44730- 3 1.80000+ 1 4.29510- 3 1.90000+ 1 3.19690- 3 2.10000+ 1 2.95750- 3 2.20000+ 1 2.75130- 3 2.40000+ 1 2.38960- 3 2.50000+ 1 2.31960- 3 2.70000+ 1 1.35760- 3 2.90000+ 1 1.23840- 3 3.00000+ 1 9.29330- 4 3.20000+ 1 7.28380- 4 3.30000+ 1 6.76510- 4 4.10000+ 1 3.35130- 4 4.30000+ 1 2.69550- 4 4.40000+ 1 1.94150- 4 4.60000+ 1 8.76500- 5 4.70000+ 1 7.77100- 5 5.80000+ 1 4.74400- 5 1 90000 0 0 2.32038+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.45290-11 3.00000+ 0 3.08620-10 5.00000+ 0 2.50230-10 6.00000+ 0 3.02860-10 8.00000+ 0 8.02050-10 1.00000+ 1 7.53400-10 1.10000+ 1 8.48010-10 1.30000+ 1 7.31390-10 1.40000+ 1 7.59570-10 1.60000+ 1 1.74540- 9 1.80000+ 1 1.73620- 9 1.90000+ 1 1.92460- 9 2.10000+ 1 1.90960- 9 2.20000+ 1 1.96630- 9 2.40000+ 1 1.91610- 9 2.50000+ 1 1.94430- 9 2.70000+ 1 3.65650- 9 2.90000+ 1 3.80710- 9 3.00000+ 1 4.21690- 9 3.20000+ 1 4.73430- 9 3.30000+ 1 4.87720- 9 4.10000+ 1 7.95490- 9 4.30000+ 1 8.83150- 9 4.40000+ 1 9.95520- 9 4.60000+ 1 1.48860- 8 4.70000+ 1 1.57280- 8 5.80000+ 1 2.11270- 8 1 90000 0 0 2.32038+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.38340- 5 3.00000+ 0 2.18270- 6 5.00000+ 0 3.83590- 6 6.00000+ 0 3.23070- 6 8.00000+ 0 9.63850- 8 1.00000+ 1 1.06330- 7 1.10000+ 1 1.18370- 7 1.30000+ 1 1.51060- 7 1.40000+ 1 1.39550- 7 1.60000+ 1 5.02730- 9 1.80000+ 1 6.48840- 9 1.90000+ 1 4.48530- 9 2.10000+ 1 3.09300- 9 2.20000+ 1 2.38510- 9 2.40000+ 1 1.00540-10 2.50000+ 1 9.16000-11 2.70000+ 1 3.35740-10 2.90000+ 1 6.87120-10 3.00000+ 1 3.45010-10 1 90000 0 0 2.32038+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.67120- 6 3.00000+ 0 1.34980- 5 5.00000+ 0 4.08110- 6 6.00000+ 0 4.27560- 6 8.00000+ 0 1.87140- 5 1.00000+ 1 1.45780- 5 1.10000+ 1 1.18610- 5 1.30000+ 1 3.15080- 6 1.40000+ 1 3.14060- 6 1.60000+ 1 1.38010- 5 1.80000+ 1 1.51940- 5 1.90000+ 1 9.17540- 6 2.10000+ 1 6.19910- 6 2.20000+ 1 6.38480- 6 2.40000+ 1 1.50700- 7 2.50000+ 1 1.83300- 7 2.70000+ 1 1.87580- 5 2.90000+ 1 8.56250- 6 3.00000+ 1 4.19560- 6 1 90000 0 0 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.77589- 4 3.00000+ 0 1.26761- 3 5.00000+ 0 8.96358- 4 6.00000+ 0 8.81873- 4 8.00000+ 0 9.36157- 4 1.00000+ 1 8.30634- 4 1.10000+ 1 7.36983- 4 1.30000+ 1 5.61236- 4 1.40000+ 1 5.52086- 4 1.60000+ 1 4.82416- 4 1.80000+ 1 4.75960- 4 1.90000+ 1 4.35934- 4 2.10000+ 1 3.51188- 4 2.20000+ 1 3.45003- 4 2.40000+ 1 2.20789- 4 2.50000+ 1 2.22866- 4 2.70000+ 1 2.25478- 4 2.90000+ 1 1.87322- 4 3.00000+ 1 1.47364- 4 3.20000+ 1 1.04230- 4 3.30000+ 1 9.71100- 5 4.10000+ 1 5.05500- 5 4.30000+ 1 3.35200- 5 4.40000+ 1 2.50100- 5 4.60000+ 1 5.62000- 6 4.70000+ 1 4.98000- 6 5.80000+ 1 5.97000- 6 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.41587+ 0 3.00000+ 0 5.53413- 1 5.00000+ 0 6.17014- 1 6.00000+ 0 5.03436- 1 8.00000+ 0 5.21545- 2 1.00000+ 1 5.26606- 2 1.10000+ 1 4.83804- 2 1.30000+ 1 5.61303- 2 1.40000+ 1 5.12229- 2 1.60000+ 1 1.73621- 3 1.80000+ 1 1.91522- 3 1.90000+ 1 1.17541- 3 2.10000+ 1 6.84858- 4 2.20000+ 1 5.95938- 4 2.40000+ 1 6.60106- 5 2.50000+ 1 5.70477- 5 2.70000+ 1 3.03748- 5 2.90000+ 1 3.24189- 5 3.00000+ 1 6.86505- 6 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.82685- 2 3.00000+ 0 6.98167- 3 5.00000+ 0 9.28835- 3 6.00000+ 0 6.07920- 3 8.00000+ 0 1.60499- 4 1.00000+ 1 1.63232- 4 1.10000+ 1 1.45443- 4 1.30000+ 1 1.71834- 4 1.40000+ 1 1.50232- 4 1.60000+ 1 1.07660- 6 1.80000+ 1 1.00158- 6 1.90000+ 1 6.03953- 7 2.10000+ 1 2.60887- 7 2.20000+ 1 2.12238- 7 2.40000+ 1 1.53999- 8 2.50000+ 1 1.33267- 8 2.70000+ 1 3.65559- 9 2.90000+ 1 4.52808- 9 3.00000+ 1 7.33159-10 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.66843+ 0 3.00000+ 0 1.44138+ 1 5.00000+ 0 9.86647+ 0 6.00000+ 0 9.72769+ 0 8.00000+ 0 1.04280+ 1 1.00000+ 1 9.08551+ 0 1.10000+ 1 8.00169+ 0 1.30000+ 1 5.78978+ 0 1.40000+ 1 5.72147+ 0 1.60000+ 1 4.87997+ 0 1.80000+ 1 4.74061+ 0 1.90000+ 1 4.32275+ 0 2.10000+ 1 3.22688+ 0 2.20000+ 1 3.18357+ 0 2.40000+ 1 1.68890+ 0 2.50000+ 1 1.75825+ 0 2.70000+ 1 1.80788+ 0 2.90000+ 1 1.04687+ 0 3.00000+ 1 9.99993- 1 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.09639- 2 3.00000+ 0 1.22287- 2 5.00000+ 0 9.59530- 3 6.00000+ 0 9.35393- 3 8.00000+ 0 4.06124- 3 1.00000+ 1 3.83773- 3 1.10000+ 1 3.15377- 3 1.30000+ 1 2.76933- 3 1.40000+ 1 2.63628- 3 1.60000+ 1 8.27108- 4 1.80000+ 1 6.85338- 4 1.90000+ 1 5.19623- 4 2.10000+ 1 3.63361- 4 2.20000+ 1 3.31425- 4 2.40000+ 1 1.37745- 4 2.50000+ 1 1.25811- 4 2.70000+ 1 6.92783- 5 2.90000+ 1 5.01038- 5 3.00000+ 1 4.20448- 5 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.87670- 1 9.03300- 2 6.00000+ 0 4.65020- 1 9.37950- 2 1.00000+ 1 5.33040- 2 1.05278- 1 1.10000+ 1 1.03960- 1 1.06074- 1 1.30000+ 1 1.77890- 3 1.06608- 1 1.40000+ 1 2.05490- 3 1.06771- 1 1.80000+ 1 1.32230- 2 1.08948- 1 1.90000+ 1 2.65690- 2 1.09154- 1 2.10000+ 1 5.14230- 4 1.09395- 1 2.20000+ 1 5.95300- 4 1.09433- 1 2.90000+ 1 3.19630- 3 1.09873- 1 3.00000+ 1 6.26000- 3 1.09921- 1 3.20000+ 1 1.01160- 4 1.10006- 1 3.30000+ 1 1.16310- 4 1.10013- 1 4.30000+ 1 5.58750- 4 1.10076- 1 4.40000+ 1 1.02900- 3 1.10085- 1 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.91736- 3 6.91540- 2 3.00000+ 0 5.00000+ 0 6.97025- 3 6.98520- 2 3.00000+ 0 6.00000+ 0 2.85409- 3 7.33170- 2 3.00000+ 0 8.00000+ 0 1.62199- 3 8.44741- 2 3.00000+ 0 1.00000+ 1 1.53069- 3 8.48004- 2 3.00000+ 0 1.10000+ 1 6.99881- 4 8.55958- 2 3.00000+ 0 1.30000+ 1 6.10125- 5 8.61296- 2 3.00000+ 0 1.40000+ 1 3.96808- 5 8.62934- 2 3.00000+ 0 1.60000+ 1 4.25962- 4 8.83214- 2 3.00000+ 0 1.80000+ 1 3.95176- 4 8.84697- 2 3.00000+ 0 1.90000+ 1 1.82124- 4 8.86758- 2 3.00000+ 0 2.10000+ 1 1.76544- 5 8.89172- 2 3.00000+ 0 2.20000+ 1 1.13077- 5 8.89554- 2 3.00000+ 0 2.40000+ 1 6.93684- 8 8.92734- 2 3.00000+ 0 2.50000+ 1 6.93684- 8 8.92833- 2 3.00000+ 0 2.70000+ 1 1.05652- 4 8.93372- 2 3.00000+ 0 2.90000+ 1 9.16749- 5 8.93946- 2 3.00000+ 0 3.00000+ 1 4.17956- 5 8.94426- 2 3.00000+ 0 3.20000+ 1 3.39912- 6 8.95278- 2 3.00000+ 0 3.30000+ 1 2.15049- 6 8.95349- 2 5.00000+ 0 5.00000+ 0 2.76838- 4 7.05500- 2 5.00000+ 0 6.00000+ 0 4.69894- 3 7.40150- 2 5.00000+ 0 8.00000+ 0 1.27271- 3 8.51721- 2 5.00000+ 0 1.00000+ 1 1.07146- 4 8.54984- 2 5.00000+ 0 1.10000+ 1 9.75779- 4 8.62938- 2 5.00000+ 0 1.30000+ 1 6.11509- 5 8.68276- 2 5.00000+ 0 1.40000+ 1 1.42829- 4 8.69914- 2 5.00000+ 0 1.60000+ 1 3.24838- 4 8.90194- 2 5.00000+ 0 1.80000+ 1 2.69175- 5 8.91677- 2 5.00000+ 0 1.90000+ 1 2.43801- 4 8.93738- 2 5.00000+ 0 2.10000+ 1 1.69272- 5 8.96152- 2 5.00000+ 0 2.20000+ 1 3.97845- 5 8.96534- 2 5.00000+ 0 2.40000+ 1 5.54987- 7 8.99714- 2 5.00000+ 0 2.50000+ 1 7.97796- 7 8.99813- 2 5.00000+ 0 2.70000+ 1 7.99881- 5 9.00352- 2 5.00000+ 0 2.90000+ 1 6.20872- 6 9.00926- 2 5.00000+ 0 3.00000+ 1 5.54303- 5 9.01406- 2 5.00000+ 0 3.20000+ 1 3.22587- 6 9.02258- 2 5.00000+ 0 3.30000+ 1 7.52686- 6 9.02329- 2 6.00000+ 0 6.00000+ 0 1.92809- 3 7.74800- 2 6.00000+ 0 8.00000+ 0 4.64404- 4 8.86371- 2 6.00000+ 0 1.00000+ 1 8.53762- 4 8.89634- 2 6.00000+ 0 1.10000+ 1 8.26217- 4 8.97588- 2 6.00000+ 0 1.30000+ 1 1.54801- 4 9.02926- 2 6.00000+ 0 1.40000+ 1 1.23895- 4 9.04564- 2 6.00000+ 0 1.60000+ 1 1.15228- 4 9.24844- 2 6.00000+ 0 1.80000+ 1 2.10926- 4 9.26327- 2 6.00000+ 0 1.90000+ 1 2.08246- 4 9.28388- 2 6.00000+ 0 2.10000+ 1 4.33926- 5 9.30802- 2 6.00000+ 0 2.20000+ 1 3.46862- 5 9.31184- 2 6.00000+ 0 2.40000+ 1 7.97779- 7 9.34364- 2 6.00000+ 0 2.50000+ 1 8.67137- 7 9.34463- 2 6.00000+ 0 2.70000+ 1 2.81640- 5 9.35002- 2 6.00000+ 0 2.90000+ 1 4.84219- 5 9.35576- 2 6.00000+ 0 3.00000+ 1 4.74482- 5 9.36056- 2 6.00000+ 0 3.20000+ 1 8.29007- 6 9.36908- 2 6.00000+ 0 3.30000+ 1 6.55560- 6 9.36979- 2 8.00000+ 0 8.00000+ 0 1.66006- 4 9.97942- 2 8.00000+ 0 1.00000+ 1 2.81125- 4 1.00120- 1 8.00000+ 0 1.10000+ 1 1.15196- 4 1.00916- 1 8.00000+ 0 1.30000+ 1 9.74676- 6 1.01450- 1 8.00000+ 0 1.40000+ 1 5.96585- 6 1.01613- 1 8.00000+ 0 1.60000+ 1 8.70276- 5 1.03641- 1 8.00000+ 0 1.80000+ 1 7.26654- 5 1.03790- 1 8.00000+ 0 1.90000+ 1 3.00730- 5 1.03996- 1 8.00000+ 0 2.10000+ 1 2.84422- 6 1.04237- 1 8.00000+ 0 2.20000+ 1 1.69953- 6 1.04275- 1 8.00000+ 0 2.70000+ 1 2.15746- 5 1.04657- 1 8.00000+ 0 2.90000+ 1 1.68564- 5 1.04715- 1 8.00000+ 0 3.00000+ 1 6.90256- 6 1.04763- 1 8.00000+ 0 3.20000+ 1 5.54981- 7 1.04848- 1 8.00000+ 0 3.30000+ 1 3.12175- 7 1.04855- 1 1.00000+ 1 1.00000+ 1 9.92008- 6 1.00447- 1 1.00000+ 1 1.10000+ 1 1.83273- 4 1.01242- 1 1.00000+ 1 1.30000+ 1 1.01629- 5 1.01776- 1 1.00000+ 1 1.40000+ 1 1.93550- 5 1.01940- 1 1.00000+ 1 1.60000+ 1 7.18007- 5 1.03968- 1 1.00000+ 1 1.80000+ 1 4.92537- 6 1.04116- 1 1.00000+ 1 1.90000+ 1 4.61310- 5 1.04322- 1 1.00000+ 1 2.10000+ 1 2.84421- 6 1.04564- 1 1.00000+ 1 2.20000+ 1 5.48033- 6 1.04602- 1 1.00000+ 1 2.40000+ 1 6.93694- 8 1.04920- 1 1.00000+ 1 2.50000+ 1 6.93694- 8 1.04930- 1 1.00000+ 1 2.70000+ 1 1.76889- 5 1.04984- 1 1.00000+ 1 2.90000+ 1 1.14467- 6 1.05041- 1 1.00000+ 1 3.00000+ 1 1.05097- 5 1.05089- 1 1.00000+ 1 3.20000+ 1 5.54980- 7 1.05174- 1 1.00000+ 1 3.30000+ 1 1.04055- 6 1.05181- 1 1.10000+ 1 1.10000+ 1 8.96260- 5 1.02038- 1 1.10000+ 1 1.30000+ 1 2.69854- 5 1.02571- 1 1.10000+ 1 1.40000+ 1 2.07420- 5 1.02735- 1 1.10000+ 1 1.60000+ 1 2.86504- 5 1.04763- 1 1.10000+ 1 1.80000+ 1 4.56124- 5 1.04912- 1 1.10000+ 1 1.90000+ 1 4.53334- 5 1.05118- 1 1.10000+ 1 2.10000+ 1 7.63092- 6 1.05359- 1 1.10000+ 1 2.20000+ 1 5.86204- 6 1.05397- 1 1.10000+ 1 2.40000+ 1 1.04055- 7 1.05715- 1 1.10000+ 1 2.50000+ 1 1.38736- 7 1.05725- 1 1.10000+ 1 2.70000+ 1 7.00638- 6 1.05779- 1 1.10000+ 1 2.90000+ 1 1.04750- 5 1.05836- 1 1.10000+ 1 3.00000+ 1 1.03365- 5 1.05884- 1 1.10000+ 1 3.20000+ 1 1.45672- 6 1.05970- 1 1.10000+ 1 3.30000+ 1 1.10994- 6 1.05977- 1 1.30000+ 1 1.30000+ 1 6.93693- 8 1.03105- 1 1.30000+ 1 1.40000+ 1 2.94830- 6 1.03269- 1 1.30000+ 1 1.60000+ 1 2.42793- 6 1.05297- 1 1.30000+ 1 1.80000+ 1 2.46267- 6 1.05445- 1 1.30000+ 1 1.90000+ 1 6.48617- 6 1.05651- 1 1.30000+ 1 2.10000+ 1 3.46864- 8 1.05893- 1 1.30000+ 1 2.20000+ 1 7.97783- 7 1.05931- 1 1.30000+ 1 2.70000+ 1 5.89635- 7 1.06313- 1 1.30000+ 1 2.90000+ 1 5.54979- 7 1.06370- 1 1.30000+ 1 3.00000+ 1 1.45672- 6 1.06418- 1 1.30000+ 1 3.30000+ 1 1.38736- 7 1.06510- 1 1.40000+ 1 1.40000+ 1 6.93674- 7 1.03433- 1 1.40000+ 1 1.60000+ 1 1.45668- 6 1.05461- 1 1.40000+ 1 1.80000+ 1 4.47435- 6 1.05609- 1 1.40000+ 1 1.90000+ 1 4.92522- 6 1.05815- 1 1.40000+ 1 2.10000+ 1 7.97761- 7 1.06057- 1 1.40000+ 1 2.20000+ 1 3.81553- 7 1.06095- 1 1.40000+ 1 2.70000+ 1 3.46854- 7 1.06477- 1 1.40000+ 1 2.90000+ 1 1.00587- 6 1.06534- 1 1.40000+ 1 3.00000+ 1 1.10991- 6 1.06582- 1 1.40000+ 1 3.20000+ 1 1.38732- 7 1.06667- 1 1.40000+ 1 3.30000+ 1 6.93674- 8 1.06674- 1 1.60000+ 1 1.60000+ 1 1.14115- 5 1.07489- 1 1.60000+ 1 1.80000+ 1 1.85567- 5 1.07637- 1 1.60000+ 1 1.90000+ 1 7.49203- 6 1.07843- 1 1.60000+ 1 2.10000+ 1 6.93696- 7 1.08085- 1 1.60000+ 1 2.20000+ 1 4.16221- 7 1.08123- 1 1.60000+ 1 2.70000+ 1 5.65368- 6 1.08505- 1 1.60000+ 1 2.90000+ 1 4.30081- 6 1.08562- 1 1.60000+ 1 3.00000+ 1 1.73427- 6 1.08610- 1 1.60000+ 1 3.20000+ 1 1.38737- 7 1.08695- 1 1.60000+ 1 3.30000+ 1 6.93696- 8 1.08702- 1 1.80000+ 1 1.80000+ 1 6.24331- 7 1.07785- 1 1.80000+ 1 1.90000+ 1 1.14808- 5 1.07992- 1 1.80000+ 1 2.10000+ 1 6.93688- 7 1.08233- 1 1.80000+ 1 2.20000+ 1 1.24875- 6 1.08271- 1 1.80000+ 1 2.50000+ 1 3.46861- 8 1.08599- 1 1.80000+ 1 2.70000+ 1 4.57831- 6 1.08653- 1 1.80000+ 1 2.90000+ 1 2.77493- 7 1.08710- 1 1.80000+ 1 3.00000+ 1 2.60136- 6 1.08758- 1 1.80000+ 1 3.20000+ 1 1.38735- 7 1.08843- 1 1.80000+ 1 3.30000+ 1 2.42792- 7 1.08851- 1 1.90000+ 1 1.90000+ 1 5.72297- 6 1.08198- 1 1.90000+ 1 2.10000+ 1 1.83831- 6 1.08439- 1 1.90000+ 1 2.20000+ 1 1.38733- 6 1.08477- 1 1.90000+ 1 2.40000+ 1 3.46855- 8 1.08795- 1 1.90000+ 1 2.50000+ 1 3.46855- 8 1.08805- 1 1.90000+ 1 2.70000+ 1 1.83831- 6 1.08859- 1 1.90000+ 1 2.90000+ 1 2.63605- 6 1.08916- 1 1.90000+ 1 3.00000+ 1 2.60132- 6 1.08964- 1 1.90000+ 1 3.20000+ 1 3.46855- 7 1.09050- 1 1.90000+ 1 3.30000+ 1 2.77488- 7 1.09057- 1 2.10000+ 1 2.20000+ 1 2.08112- 7 1.08719- 1 2.10000+ 1 2.70000+ 1 1.73433- 7 1.09100- 1 2.10000+ 1 2.90000+ 1 1.73433- 7 1.09158- 1 2.10000+ 1 3.00000+ 1 4.16235- 7 1.09206- 1 2.10000+ 1 3.30000+ 1 3.46876- 8 1.09298- 1 2.20000+ 1 2.20000+ 1 6.93696- 8 1.08757- 1 2.20000+ 1 2.70000+ 1 1.04056- 7 1.09139- 1 2.20000+ 1 2.90000+ 1 2.77497- 7 1.09196- 1 2.20000+ 1 3.00000+ 1 3.12175- 7 1.09244- 1 2.20000+ 1 3.20000+ 1 3.46865- 8 1.09329- 1 2.20000+ 1 3.30000+ 1 3.46865- 8 1.09336- 1 2.70000+ 1 2.70000+ 1 6.79958- 7 1.09520- 1 2.70000+ 1 2.90000+ 1 1.05396- 6 1.09578- 1 2.70000+ 1 3.00000+ 1 4.07979- 7 1.09626- 1 2.70000+ 1 3.20000+ 1 3.39996- 8 1.09711- 1 2.70000+ 1 3.30000+ 1 3.39996- 8 1.09718- 1 2.90000+ 1 2.90000+ 1 3.46870- 8 1.09635- 1 2.90000+ 1 3.00000+ 1 5.89645- 7 1.09683- 1 2.90000+ 1 3.20000+ 1 3.46870- 8 1.09768- 1 2.90000+ 1 3.30000+ 1 6.93705- 8 1.09775- 1 3.00000+ 1 3.00000+ 1 2.97723- 7 1.09731- 1 3.00000+ 1 3.20000+ 1 6.61583- 8 1.09816- 1 3.00000+ 1 3.30000+ 1 6.61583- 8 1.09823- 1 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.23570- 5 6.98000- 4 6.00000+ 0 6.73288- 3 4.16300- 3 1.00000+ 1 4.78298- 2 1.56464- 2 1.10000+ 1 4.38299- 2 1.64418- 2 1.30000+ 1 2.10939- 3 1.69756- 2 1.40000+ 1 3.14739- 3 1.71394- 2 1.80000+ 1 1.28230- 2 1.93157- 2 1.90000+ 1 1.32990- 2 1.95218- 2 2.10000+ 1 3.52099- 4 1.97632- 2 2.20000+ 1 5.63288- 4 1.98014- 2 2.90000+ 1 3.02269- 3 2.02406- 2 3.00000+ 1 3.17559- 3 2.02886- 2 3.20000+ 1 6.12458- 5 2.03738- 2 3.30000+ 1 9.90727- 5 2.03809- 2 4.30000+ 1 5.51618- 4 2.04445- 2 4.40000+ 1 5.49958- 4 2.04530- 2 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.35854- 3 0.00000+ 0 5.00000+ 0 2.20000+ 1 5.51228- 3 2.13600- 5 5.00000+ 0 2.40000+ 1 1.28792- 2 3.39450- 4 5.00000+ 0 2.50000+ 1 1.72604- 2 3.49310- 4 5.00000+ 0 2.70000+ 1 4.94181- 3 4.03240- 4 5.00000+ 0 2.90000+ 1 3.92162- 3 4.60570- 4 5.00000+ 0 3.00000+ 1 3.23452- 3 5.08590- 4 5.00000+ 0 3.20000+ 1 8.41369- 4 5.93770- 4 5.00000+ 0 3.30000+ 1 1.08408- 3 6.00890- 4 6.00000+ 0 1.10000+ 1 3.71889- 2 1.26800- 4 6.00000+ 0 1.30000+ 1 2.08697- 1 6.60600- 4 6.00000+ 0 1.40000+ 1 2.54942- 1 8.24400- 4 6.00000+ 0 1.60000+ 1 1.69110- 2 2.85240- 3 6.00000+ 0 1.80000+ 1 6.59596- 3 3.00070- 3 6.00000+ 0 1.90000+ 1 9.38254- 3 3.20684- 3 6.00000+ 0 2.10000+ 1 3.15404- 2 3.44819- 3 6.00000+ 0 2.20000+ 1 3.65842- 2 3.48636- 3 6.00000+ 0 2.40000+ 1 1.98104- 2 3.80445- 3 6.00000+ 0 2.50000+ 1 2.43218- 2 3.81431- 3 6.00000+ 0 2.70000+ 1 3.96608- 3 3.86824- 3 6.00000+ 0 2.90000+ 1 1.50778- 3 3.92557- 3 6.00000+ 0 3.00000+ 1 2.13853- 3 3.97359- 3 6.00000+ 0 3.20000+ 1 5.46943- 3 4.05877- 3 6.00000+ 0 3.30000+ 1 6.22161- 3 4.06589- 3 8.00000+ 0 8.00000+ 0 5.31615- 3 1.01622- 2 8.00000+ 0 1.00000+ 1 1.11101- 2 1.04885- 2 8.00000+ 0 1.10000+ 1 1.60049- 2 1.12839- 2 8.00000+ 0 1.30000+ 1 1.14005- 2 1.18177- 2 8.00000+ 0 1.40000+ 1 1.39425- 2 1.19815- 2 8.00000+ 0 1.60000+ 1 2.37491- 3 1.40095- 2 8.00000+ 0 1.80000+ 1 2.83615- 3 1.41578- 2 8.00000+ 0 1.90000+ 1 4.06108- 3 1.43639- 2 8.00000+ 0 2.10000+ 1 2.72392- 3 1.46053- 2 8.00000+ 0 2.20000+ 1 3.31652- 3 1.46435- 2 8.00000+ 0 2.40000+ 1 2.49295- 4 1.49615- 2 8.00000+ 0 2.50000+ 1 2.61470- 4 1.49714- 2 8.00000+ 0 2.70000+ 1 5.72443- 4 1.50253- 2 8.00000+ 0 2.90000+ 1 6.55320- 4 1.50827- 2 8.00000+ 0 3.00000+ 1 9.25668- 4 1.51307- 2 8.00000+ 0 3.20000+ 1 5.03292- 4 1.52159- 2 8.00000+ 0 3.30000+ 1 6.07533- 4 1.52230- 2 1.00000+ 1 1.00000+ 1 1.42460- 5 1.08148- 2 1.00000+ 1 1.10000+ 1 2.04834- 4 1.16102- 2 1.00000+ 1 1.30000+ 1 7.16809- 4 1.21440- 2 1.00000+ 1 1.40000+ 1 5.16252- 3 1.23078- 2 1.00000+ 1 1.60000+ 1 1.96384- 3 1.43358- 2 1.00000+ 1 1.80000+ 1 1.73738- 6 1.44841- 2 1.00000+ 1 1.90000+ 1 4.18697- 5 1.46902- 2 1.00000+ 1 2.10000+ 1 1.44202- 4 1.49316- 2 1.00000+ 1 2.20000+ 1 7.90807- 4 1.49698- 2 1.00000+ 1 2.40000+ 1 9.38173- 5 1.52878- 2 1.00000+ 1 2.50000+ 1 3.24007- 4 1.52977- 2 1.00000+ 1 2.70000+ 1 4.44579- 4 1.53516- 2 1.00000+ 1 2.90000+ 1 3.47464- 7 1.54090- 2 1.00000+ 1 3.00000+ 1 9.03442- 6 1.54570- 2 1.00000+ 1 3.20000+ 1 2.62343- 5 1.55422- 2 1.00000+ 1 3.30000+ 1 1.33079- 4 1.55493- 2 1.10000+ 1 1.10000+ 1 6.66741- 4 1.24056- 2 1.10000+ 1 1.30000+ 1 1.46633- 3 1.29394- 2 1.10000+ 1 1.40000+ 1 8.97831- 4 1.31032- 2 1.10000+ 1 1.60000+ 1 2.75204- 3 1.51312- 2 1.10000+ 1 1.80000+ 1 5.33345- 5 1.52795- 2 1.10000+ 1 1.90000+ 1 2.62159- 4 1.54856- 2 1.10000+ 1 2.10000+ 1 1.53231- 4 1.57270- 2 1.10000+ 1 2.20000+ 1 6.84491- 5 1.57652- 2 1.10000+ 1 2.40000+ 1 1.15697- 4 1.60832- 2 1.10000+ 1 2.50000+ 1 9.95476- 5 1.60931- 2 1.10000+ 1 2.70000+ 1 6.18644- 4 1.61470- 2 1.10000+ 1 2.90000+ 1 1.23355- 5 1.62044- 2 1.10000+ 1 3.00000+ 1 5.66354- 5 1.62524- 2 1.10000+ 1 3.20000+ 1 2.39742- 5 1.63376- 2 1.10000+ 1 3.30000+ 1 9.72890- 6 1.63447- 2 1.30000+ 1 1.30000+ 1 6.50576- 4 1.34732- 2 1.30000+ 1 1.40000+ 1 1.82083- 2 1.36370- 2 1.30000+ 1 1.60000+ 1 1.76506- 3 1.56650- 2 1.30000+ 1 1.80000+ 1 2.15252- 4 1.58133- 2 1.30000+ 1 1.90000+ 1 4.06864- 4 1.60194- 2 1.30000+ 1 2.10000+ 1 3.02634- 4 1.62608- 2 1.30000+ 1 2.20000+ 1 3.02094- 3 1.62990- 2 1.30000+ 1 2.40000+ 1 2.49472- 4 1.66170- 2 1.30000+ 1 2.50000+ 1 6.79119- 4 1.66269- 2 1.30000+ 1 2.70000+ 1 3.87411- 4 1.66808- 2 1.30000+ 1 2.90000+ 1 5.15980- 5 1.67382- 2 1.30000+ 1 3.00000+ 1 9.50304- 5 1.67862- 2 1.30000+ 1 3.20000+ 1 5.57658- 5 1.68714- 2 1.30000+ 1 3.30000+ 1 5.13877- 4 1.68785- 2 1.40000+ 1 1.40000+ 1 4.96908- 3 1.38008- 2 1.40000+ 1 1.60000+ 1 2.19260- 3 1.58288- 2 1.40000+ 1 1.80000+ 1 1.16003- 3 1.59771- 2 1.40000+ 1 1.90000+ 1 2.42889- 4 1.61832- 2 1.40000+ 1 2.10000+ 1 2.89476- 3 1.64246- 2 1.40000+ 1 2.20000+ 1 1.73984- 3 1.64628- 2 1.40000+ 1 2.40000+ 1 7.44801- 4 1.67808- 2 1.40000+ 1 2.50000+ 1 5.53527- 4 1.67907- 2 1.40000+ 1 2.70000+ 1 4.84734- 4 1.68446- 2 1.40000+ 1 2.90000+ 1 2.61131- 4 1.69020- 2 1.40000+ 1 3.00000+ 1 5.68126- 5 1.69500- 2 1.40000+ 1 3.20000+ 1 4.91862- 4 1.70352- 2 1.40000+ 1 3.30000+ 1 2.99879- 4 1.70423- 2 1.60000+ 1 1.60000+ 1 2.50517- 4 1.78568- 2 1.60000+ 1 1.80000+ 1 5.02603- 4 1.80051- 2 1.60000+ 1 1.90000+ 1 7.02247- 4 1.82112- 2 1.60000+ 1 2.10000+ 1 4.24942- 4 1.84526- 2 1.60000+ 1 2.20000+ 1 5.21545- 4 1.84908- 2 1.60000+ 1 2.40000+ 1 3.24875- 5 1.88088- 2 1.60000+ 1 2.50000+ 1 3.23143- 5 1.88187- 2 1.60000+ 1 2.70000+ 1 1.19182- 4 1.88726- 2 1.60000+ 1 2.90000+ 1 1.16228- 4 1.89300- 2 1.60000+ 1 3.00000+ 1 1.60180- 4 1.89780- 2 1.60000+ 1 3.20000+ 1 7.86967- 5 1.90632- 2 1.60000+ 1 3.30000+ 1 9.55487- 5 1.90703- 2 1.80000+ 1 1.90000+ 1 1.09450- 5 1.83595- 2 1.80000+ 1 2.10000+ 1 3.92635- 5 1.86009- 2 1.80000+ 1 2.20000+ 1 1.85371- 4 1.86391- 2 1.80000+ 1 2.40000+ 1 1.33769- 5 1.89571- 2 1.80000+ 1 2.50000+ 1 5.26403- 5 1.89670- 2 1.80000+ 1 2.70000+ 1 1.13795- 4 1.90209- 2 1.80000+ 1 3.00000+ 1 2.43220- 6 1.91263- 2 1.80000+ 1 3.20000+ 1 6.94912- 6 1.92115- 2 1.80000+ 1 3.30000+ 1 3.14455- 5 1.92186- 2 1.90000+ 1 1.90000+ 1 2.48428- 5 1.85657- 2 1.90000+ 1 2.10000+ 1 4.46476- 5 1.88070- 2 1.90000+ 1 2.20000+ 1 2.17152- 5 1.88452- 2 1.90000+ 1 2.40000+ 1 2.67540- 5 1.91633- 2 1.90000+ 1 2.50000+ 1 2.22367- 5 1.91731- 2 1.90000+ 1 2.70000+ 1 1.57923- 4 1.92271- 2 1.90000+ 1 2.90000+ 1 2.60593- 6 1.92844- 2 1.90000+ 1 3.00000+ 1 1.05973- 5 1.93324- 2 1.90000+ 1 3.20000+ 1 6.94891- 6 1.94176- 2 1.90000+ 1 3.30000+ 1 3.12703- 6 1.94247- 2 2.10000+ 1 2.10000+ 1 3.24872- 5 1.90484- 2 2.10000+ 1 2.20000+ 1 5.26055- 4 1.90865- 2 2.10000+ 1 2.40000+ 1 4.03053- 5 1.94046- 2 2.10000+ 1 2.50000+ 1 8.23482- 5 1.94145- 2 2.10000+ 1 2.70000+ 1 9.32901- 5 1.94684- 2 2.10000+ 1 2.90000+ 1 9.20747- 6 1.95258- 2 2.10000+ 1 3.00000+ 1 1.05975- 5 1.95738- 2 2.10000+ 1 3.20000+ 1 1.18139- 5 1.96590- 2 2.10000+ 1 3.30000+ 1 9.10324- 5 1.96661- 2 2.20000+ 1 2.20000+ 1 1.63474- 4 1.91247- 2 2.20000+ 1 2.40000+ 1 9.67645- 5 1.94428- 2 2.20000+ 1 2.50000+ 1 7.95721- 5 1.94527- 2 2.20000+ 1 2.70000+ 1 1.15187- 4 1.95066- 2 2.20000+ 1 2.90000+ 1 4.20429- 5 1.95639- 2 2.20000+ 1 3.00000+ 1 5.21196- 6 1.96119- 2 2.20000+ 1 3.20000+ 1 9.08615- 5 1.96971- 2 2.20000+ 1 3.30000+ 1 5.69835- 5 1.97042- 2 2.40000+ 1 2.40000+ 1 1.21615- 6 1.97609- 2 2.40000+ 1 2.50000+ 1 2.11953- 5 1.97708- 2 2.40000+ 1 2.70000+ 1 6.94913- 6 1.98247- 2 2.40000+ 1 2.90000+ 1 2.77971- 6 1.98820- 2 2.40000+ 1 3.00000+ 1 5.90678- 6 1.99300- 2 2.40000+ 1 3.20000+ 1 6.94913- 6 2.00152- 2 2.40000+ 1 3.30000+ 1 1.56356- 5 2.00223- 2 2.50000+ 1 2.50000+ 1 4.72113- 6 1.97806- 2 2.50000+ 1 2.70000+ 1 7.08153- 6 1.98345- 2 2.50000+ 1 2.90000+ 1 1.14395- 5 1.98919- 2 2.50000+ 1 3.00000+ 1 5.08423- 6 1.99399- 2 2.50000+ 1 3.20000+ 1 1.38002- 5 2.00251- 2 2.50000+ 1 3.30000+ 1 1.38002- 5 2.00322- 2 2.70000+ 1 2.70000+ 1 1.59041- 5 1.98885- 2 2.70000+ 1 2.90000+ 1 2.96483- 5 1.99458- 2 2.70000+ 1 3.00000+ 1 4.06416- 5 1.99938- 2 2.70000+ 1 3.20000+ 1 1.94378- 5 2.00790- 2 2.70000+ 1 3.30000+ 1 2.37578- 5 2.00861- 2 2.90000+ 1 3.00000+ 1 6.10378- 7 2.00512- 2 2.90000+ 1 3.20000+ 1 1.83110- 6 2.01363- 2 2.90000+ 1 3.30000+ 1 8.34148- 6 2.01435- 2 3.00000+ 1 3.00000+ 1 1.59891- 6 2.00992- 2 3.00000+ 1 3.20000+ 1 2.28417- 6 2.01844- 2 3.00000+ 1 3.30000+ 1 1.14201- 6 2.01915- 2 3.20000+ 1 3.20000+ 1 1.04239- 6 2.02695- 2 3.20000+ 1 3.30000+ 1 1.58106- 5 2.02767- 2 3.30000+ 1 3.30000+ 1 4.91878- 6 2.02838- 2 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.05831- 5 3.46500- 3 8.00000+ 0 1.04830- 2 1.46221- 2 1.10000+ 1 5.17682- 4 1.57438- 2 1.30000+ 1 3.75571- 1 1.62776- 2 1.60000+ 1 2.81931- 3 1.84694- 2 1.90000+ 1 1.53880- 4 1.88238- 2 2.10000+ 1 8.34752- 2 1.90652- 2 2.40000+ 1 4.86391- 4 1.94214- 2 2.70000+ 1 7.06982- 4 1.94852- 2 3.00000+ 1 3.66071- 5 1.95906- 2 3.20000+ 1 1.55650- 2 1.96758- 2 4.10000+ 1 1.48240- 4 1.97294- 2 4.40000+ 1 5.78382- 6 1.97550- 2 5.80000+ 1 1.23700- 5 1.97740- 2 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.40000+ 1 4.57800- 2 1.26400- 4 6.00000+ 0 1.60000+ 1 3.76318- 3 2.15440- 3 6.00000+ 0 1.80000+ 1 3.03294- 2 2.30270- 3 6.00000+ 0 1.90000+ 1 7.36735- 3 2.50884- 3 6.00000+ 0 2.10000+ 1 2.73187- 2 2.75019- 3 6.00000+ 0 2.20000+ 1 9.25335- 3 2.78836- 3 6.00000+ 0 2.40000+ 1 1.32315- 3 3.10645- 3 6.00000+ 0 2.50000+ 1 1.91547- 3 3.11631- 3 6.00000+ 0 2.70000+ 1 8.56892- 4 3.17024- 3 6.00000+ 0 2.90000+ 1 6.38305- 3 3.22757- 3 6.00000+ 0 3.00000+ 1 1.63152- 3 3.27559- 3 6.00000+ 0 3.20000+ 1 4.83265- 3 3.36077- 3 6.00000+ 0 3.30000+ 1 1.64576- 3 3.36789- 3 8.00000+ 0 8.00000+ 0 4.24367- 4 9.46420- 3 8.00000+ 0 1.00000+ 1 1.71205- 2 9.79050- 3 8.00000+ 0 1.10000+ 1 1.52467- 3 1.05859- 2 8.00000+ 0 1.30000+ 1 3.13610- 3 1.11197- 2 8.00000+ 0 1.40000+ 1 1.22411- 3 1.12835- 2 8.00000+ 0 1.60000+ 1 1.69681- 4 1.33115- 2 8.00000+ 0 1.80000+ 1 2.88561- 3 1.34598- 2 8.00000+ 0 1.90000+ 1 3.47863- 4 1.36659- 2 8.00000+ 0 2.10000+ 1 5.32483- 4 1.39073- 2 8.00000+ 0 2.20000+ 1 1.76824- 4 1.39455- 2 8.00000+ 0 2.40000+ 1 7.34496- 5 1.42635- 2 8.00000+ 0 2.50000+ 1 5.33859- 5 1.42734- 2 8.00000+ 0 2.70000+ 1 3.97854- 5 1.43273- 2 8.00000+ 0 2.90000+ 1 6.08672- 4 1.43847- 2 8.00000+ 0 3.00000+ 1 7.75286- 5 1.44327- 2 8.00000+ 0 3.20000+ 1 9.24925- 5 1.45179- 2 8.00000+ 0 3.30000+ 1 2.95832- 5 1.45250- 2 1.00000+ 1 1.00000+ 1 1.82501- 2 1.01168- 2 1.00000+ 1 1.10000+ 1 4.21118- 2 1.09122- 2 1.00000+ 1 1.30000+ 1 2.13358- 2 1.14460- 2 1.00000+ 1 1.40000+ 1 2.77873- 2 1.16098- 2 1.00000+ 1 1.60000+ 1 4.60029- 3 1.36378- 2 1.00000+ 1 1.80000+ 1 7.83292- 3 1.37861- 2 1.00000+ 1 1.90000+ 1 1.04859- 2 1.39922- 2 1.00000+ 1 2.10000+ 1 5.08486- 3 1.42336- 2 1.00000+ 1 2.20000+ 1 6.63752- 3 1.42718- 2 1.00000+ 1 2.40000+ 1 4.10414- 4 1.45898- 2 1.00000+ 1 2.50000+ 1 3.35957- 4 1.45997- 2 1.00000+ 1 2.70000+ 1 1.14594- 3 1.46536- 2 1.00000+ 1 2.90000+ 1 1.75358- 3 1.47110- 2 1.00000+ 1 3.00000+ 1 2.38092- 3 1.47590- 2 1.00000+ 1 3.20000+ 1 9.39853- 4 1.48442- 2 1.00000+ 1 3.30000+ 1 1.21737- 3 1.48513- 2 1.10000+ 1 1.10000+ 1 8.79685- 4 1.17076- 2 1.10000+ 1 1.30000+ 1 1.68769- 2 1.22414- 2 1.10000+ 1 1.40000+ 1 2.57067- 3 1.24052- 2 1.10000+ 1 1.60000+ 1 3.41054- 4 1.44332- 2 1.10000+ 1 1.80000+ 1 7.15821- 3 1.45815- 2 1.10000+ 1 1.90000+ 1 3.78470- 4 1.47876- 2 1.10000+ 1 2.10000+ 1 3.42379- 3 1.50290- 2 1.10000+ 1 2.20000+ 1 5.06321- 4 1.50672- 2 1.10000+ 1 2.40000+ 1 1.39406- 4 1.53852- 2 1.10000+ 1 2.50000+ 1 7.03889- 5 1.53951- 2 1.10000+ 1 2.70000+ 1 8.12666- 5 1.54490- 2 1.10000+ 1 2.90000+ 1 1.51179- 3 1.55064- 2 1.10000+ 1 3.00000+ 1 8.33066- 5 1.55544- 2 1.10000+ 1 3.20000+ 1 6.12041- 4 1.56396- 2 1.10000+ 1 3.30000+ 1 8.97681- 5 1.56467- 2 1.30000+ 1 1.30000+ 1 1.60177- 2 1.27752- 2 1.30000+ 1 1.40000+ 1 6.18993- 2 1.29390- 2 1.30000+ 1 1.60000+ 1 8.43645- 4 1.49670- 2 1.30000+ 1 1.80000+ 1 3.48453- 3 1.51153- 2 1.30000+ 1 1.90000+ 1 3.86504- 3 1.53214- 2 1.30000+ 1 2.10000+ 1 6.32913- 3 1.55628- 2 1.30000+ 1 2.20000+ 1 1.32189- 2 1.56010- 2 1.30000+ 1 2.40000+ 1 1.32654- 3 1.59190- 2 1.30000+ 1 2.50000+ 1 2.64317- 3 1.59289- 2 1.30000+ 1 2.70000+ 1 2.10832- 4 1.59828- 2 1.30000+ 1 2.90000+ 1 7.36191- 4 1.60402- 2 1.30000+ 1 3.00000+ 1 8.61346- 4 1.60882- 2 1.30000+ 1 3.20000+ 1 1.13232- 3 1.61734- 2 1.30000+ 1 3.30000+ 1 2.37179- 3 1.61805- 2 1.40000+ 1 1.40000+ 1 3.02125- 3 1.31028- 2 1.40000+ 1 1.60000+ 1 2.64878- 4 1.51308- 2 1.40000+ 1 1.80000+ 1 3.98140- 3 1.52791- 2 1.40000+ 1 1.90000+ 1 5.43380- 4 1.54852- 2 1.40000+ 1 2.10000+ 1 1.00356- 2 1.57266- 2 1.40000+ 1 2.20000+ 1 1.17679- 3 1.57648- 2 1.40000+ 1 2.40000+ 1 5.28748- 4 1.60828- 2 1.40000+ 1 2.50000+ 1 2.00958- 4 1.60927- 2 1.40000+ 1 2.70000+ 1 6.29054- 5 1.61466- 2 1.40000+ 1 2.90000+ 1 8.08268- 4 1.62040- 2 1.40000+ 1 3.00000+ 1 1.19005- 4 1.62520- 2 1.40000+ 1 3.20000+ 1 1.71744- 3 1.63372- 2 1.40000+ 1 3.30000+ 1 2.08437- 4 1.63443- 2 1.60000+ 1 1.60000+ 1 1.63215- 5 1.71588- 2 1.60000+ 1 1.80000+ 1 7.79344- 4 1.73071- 2 1.60000+ 1 1.90000+ 1 7.82045- 5 1.75132- 2 1.60000+ 1 2.10000+ 1 1.40094- 4 1.77546- 2 1.60000+ 1 2.20000+ 1 3.80833- 5 1.77928- 2 1.60000+ 1 2.40000+ 1 1.70012- 5 1.81108- 2 1.60000+ 1 2.50000+ 1 9.86090- 6 1.81207- 2 1.60000+ 1 2.70000+ 1 7.48082- 6 1.81746- 2 1.60000+ 1 2.90000+ 1 1.64570- 4 1.82320- 2 1.60000+ 1 3.00000+ 1 1.73405- 5 1.82800- 2 1.60000+ 1 3.20000+ 1 2.41420- 5 1.83652- 2 1.60000+ 1 3.30000+ 1 6.46037- 6 1.83723- 2 1.80000+ 1 1.80000+ 1 7.98395- 4 1.74554- 2 1.80000+ 1 1.90000+ 1 1.78822- 3 1.76615- 2 1.80000+ 1 2.10000+ 1 8.18795- 4 1.79029- 2 1.80000+ 1 2.20000+ 1 9.61637- 4 1.79411- 2 1.80000+ 1 2.40000+ 1 5.54257- 5 1.82591- 2 1.80000+ 1 2.50000+ 1 3.50237- 5 1.82690- 2 1.80000+ 1 2.70000+ 1 1.94157- 4 1.83229- 2 1.80000+ 1 2.90000+ 1 3.53640- 4 1.83803- 2 1.80000+ 1 3.00000+ 1 4.06014- 4 1.84283- 2 1.80000+ 1 3.20000+ 1 1.50982- 4 1.85135- 2 1.80000+ 1 3.30000+ 1 1.76823- 4 1.85206- 2 1.90000+ 1 1.90000+ 1 4.08058- 5 1.78677- 2 1.90000+ 1 2.10000+ 1 7.89581- 4 1.81090- 2 1.90000+ 1 2.20000+ 1 1.08472- 4 1.81472- 2 1.90000+ 1 2.40000+ 1 2.85635- 5 1.84653- 2 1.90000+ 1 2.50000+ 1 1.32613- 5 1.84751- 2 1.90000+ 1 2.70000+ 1 1.87026- 5 1.85291- 2 1.90000+ 1 2.90000+ 1 3.77785- 4 1.85864- 2 1.90000+ 1 3.00000+ 1 1.80230- 5 1.86344- 2 1.90000+ 1 3.20000+ 1 1.41467- 4 1.87196- 2 1.90000+ 1 3.30000+ 1 1.90420- 5 1.87267- 2 2.10000+ 1 2.10000+ 1 6.21583- 4 1.83504- 2 2.10000+ 1 2.20000+ 1 2.23402- 3 1.83885- 2 2.10000+ 1 2.40000+ 1 1.80228- 4 1.87066- 2 2.10000+ 1 2.50000+ 1 3.61130- 4 1.87165- 2 2.10000+ 1 2.70000+ 1 3.46843- 5 1.87704- 2 2.10000+ 1 2.90000+ 1 1.72066- 4 1.88278- 2 2.10000+ 1 3.00000+ 1 1.76132- 4 1.88758- 2 2.10000+ 1 3.20000+ 1 2.22047- 4 1.89610- 2 2.10000+ 1 3.30000+ 1 4.03621- 4 1.89681- 2 2.20000+ 1 2.20000+ 1 1.15951- 4 1.84267- 2 2.20000+ 1 2.40000+ 1 7.85488- 5 1.87448- 2 2.20000+ 1 2.50000+ 1 3.06043- 5 1.87547- 2 2.20000+ 1 2.70000+ 1 8.84126- 6 1.88086- 2 2.20000+ 1 2.90000+ 1 1.95859- 4 1.88659- 2 2.20000+ 1 3.00000+ 1 2.38016- 5 1.89139- 2 2.20000+ 1 3.20000+ 1 3.85271- 4 1.89991- 2 2.20000+ 1 3.30000+ 1 4.11448- 5 1.90062- 2 2.40000+ 1 2.40000+ 1 4.42049- 6 1.90629- 2 2.40000+ 1 2.50000+ 1 3.12840- 5 1.90728- 2 2.40000+ 1 2.70000+ 1 4.08055- 6 1.91267- 2 2.40000+ 1 2.90000+ 1 1.12212- 5 1.91840- 2 2.40000+ 1 3.00000+ 1 6.12048- 6 1.92320- 2 2.40000+ 1 3.20000+ 1 2.99227- 5 1.93172- 2 2.40000+ 1 3.30000+ 1 1.29209- 5 1.93243- 2 2.50000+ 1 2.50000+ 1 2.04022- 6 1.90826- 2 2.50000+ 1 2.70000+ 1 2.38016- 6 1.91365- 2 2.50000+ 1 2.90000+ 1 6.46061- 6 1.91939- 2 2.50000+ 1 3.00000+ 1 2.72040- 6 1.92419- 2 2.50000+ 1 3.20000+ 1 5.98484- 5 1.93271- 2 2.50000+ 1 3.30000+ 1 5.10046- 6 1.93342- 2 2.70000+ 1 2.70000+ 1 1.02010- 6 1.91905- 2 2.70000+ 1 2.90000+ 1 4.11441- 5 1.92478- 2 2.70000+ 1 3.00000+ 1 4.08047- 6 1.92958- 2 2.70000+ 1 3.20000+ 1 6.12037- 6 1.93810- 2 2.70000+ 1 3.30000+ 1 1.36011- 6 1.93881- 2 2.90000+ 1 2.90000+ 1 3.91047- 5 1.93051- 2 2.90000+ 1 3.00000+ 1 8.56888- 5 1.93532- 2 2.90000+ 1 3.20000+ 1 3.16232- 5 1.94383- 2 2.90000+ 1 3.30000+ 1 3.60438- 5 1.94455- 2 3.00000+ 1 3.00000+ 1 2.04022- 6 1.94012- 2 3.00000+ 1 3.20000+ 1 3.16233- 5 1.94864- 2 3.00000+ 1 3.30000+ 1 4.08055- 6 1.94935- 2 3.20000+ 1 3.20000+ 1 1.81153- 5 1.95715- 2 3.20000+ 1 3.30000+ 1 6.40289- 5 1.95787- 2 3.30000+ 1 3.30000+ 1 3.44321- 6 1.95858- 2 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.02469- 2 1.11571- 2 1.00000+ 1 2.49359- 4 1.14834- 2 1.10000+ 1 2.26319- 4 1.22788- 2 1.30000+ 1 3.37349- 2 1.28126- 2 1.40000+ 1 2.96529- 1 1.29764- 2 1.60000+ 1 5.03129- 3 1.50044- 2 1.80000+ 1 5.58329- 5 1.51527- 2 1.90000+ 1 6.08598- 5 1.53588- 2 2.10000+ 1 6.70758- 3 1.56002- 2 2.20000+ 1 6.12548- 2 1.56384- 2 2.40000+ 1 7.88558- 5 1.59564- 2 2.50000+ 1 4.36209- 4 1.59663- 2 2.70000+ 1 1.24770- 3 1.60202- 2 2.90000+ 1 1.26380- 5 1.60776- 2 3.00000+ 1 1.41650- 5 1.61256- 2 3.20000+ 1 1.22370- 3 1.62108- 2 3.30000+ 1 1.11920- 2 1.62179- 2 4.10000+ 1 2.53889- 4 1.62644- 2 4.30000+ 1 2.24949- 6 1.62815- 2 4.40000+ 1 2.37549- 6 1.62900- 2 5.80000+ 1 2.77519- 5 1.63090- 2 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.79115- 4 5.99920- 3 8.00000+ 0 1.00000+ 1 2.14731- 4 6.32550- 3 8.00000+ 0 1.10000+ 1 1.85123- 2 7.12090- 3 8.00000+ 0 1.30000+ 1 2.75827- 3 7.65470- 3 8.00000+ 0 1.40000+ 1 5.38034- 3 7.81850- 3 8.00000+ 0 1.60000+ 1 1.94368- 4 9.84650- 3 8.00000+ 0 1.80000+ 1 3.68000- 5 9.99480- 3 8.00000+ 0 1.90000+ 1 3.04291- 3 1.02009- 2 8.00000+ 0 2.10000+ 1 3.24052- 4 1.04423- 2 8.00000+ 0 2.20000+ 1 5.96311- 4 1.04805- 2 8.00000+ 0 2.40000+ 1 3.09042- 4 1.07985- 2 8.00000+ 0 2.50000+ 1 5.27695- 4 1.08084- 2 8.00000+ 0 2.70000+ 1 4.53755- 5 1.08623- 2 8.00000+ 0 2.90000+ 1 7.86008- 6 1.09197- 2 8.00000+ 0 3.00000+ 1 6.31290- 4 1.09677- 2 8.00000+ 0 3.20000+ 1 5.21633- 5 1.10529- 2 8.00000+ 0 3.30000+ 1 9.32476- 5 1.10600- 2 1.00000+ 1 1.00000+ 1 1.78635- 6 6.65180- 3 1.00000+ 1 1.10000+ 1 3.10426- 2 7.44720- 3 1.00000+ 1 1.30000+ 1 1.34038- 3 7.98100- 3 1.00000+ 1 1.40000+ 1 1.03032- 2 8.14480- 3 1.00000+ 1 1.60000+ 1 4.53747- 5 1.01728- 2 1.00000+ 1 1.80000+ 1 7.50287- 6 1.03211- 2 1.00000+ 1 1.90000+ 1 5.29577- 3 1.05272- 2 1.00000+ 1 2.10000+ 1 2.64379- 4 1.07686- 2 1.00000+ 1 2.20000+ 1 1.68917- 3 1.08068- 2 1.00000+ 1 2.40000+ 1 2.71170- 4 1.11248- 2 1.00000+ 1 2.50000+ 1 6.53444- 4 1.11347- 2 1.00000+ 1 2.70000+ 1 1.10759- 5 1.11886- 2 1.00000+ 1 2.90000+ 1 2.14362- 6 1.12460- 2 1.00000+ 1 3.00000+ 1 1.10719- 3 1.12940- 2 1.00000+ 1 3.20000+ 1 4.82310- 5 1.13792- 2 1.00000+ 1 3.30000+ 1 2.90458- 4 1.13863- 2 1.10000+ 1 1.10000+ 1 3.73341- 2 8.24260- 3 1.10000+ 1 1.30000+ 1 3.91456- 2 8.77640- 3 1.10000+ 1 1.40000+ 1 5.02768- 2 8.94020- 3 1.10000+ 1 1.60000+ 1 4.88902- 3 1.09682- 2 1.10000+ 1 1.80000+ 1 7.35870- 3 1.11165- 2 1.10000+ 1 1.90000+ 1 1.54836- 2 1.13226- 2 1.10000+ 1 2.10000+ 1 8.72176- 3 1.15640- 2 1.10000+ 1 2.20000+ 1 1.11175- 2 1.16022- 2 1.10000+ 1 2.40000+ 1 8.96037- 4 1.19202- 2 1.10000+ 1 2.50000+ 1 1.07508- 3 1.19301- 2 1.10000+ 1 2.70000+ 1 1.21257- 3 1.19840- 2 1.10000+ 1 2.90000+ 1 1.67708- 3 1.20414- 2 1.10000+ 1 3.00000+ 1 3.39742- 3 1.20894- 2 1.10000+ 1 3.20000+ 1 1.59409- 3 1.21746- 2 1.10000+ 1 3.30000+ 1 2.01011- 3 1.21817- 2 1.30000+ 1 1.30000+ 1 5.18104- 3 9.31020- 3 1.30000+ 1 1.40000+ 1 9.65123- 2 9.47400- 3 1.30000+ 1 1.60000+ 1 6.70274- 4 1.15020- 2 1.30000+ 1 1.80000+ 1 3.49779- 4 1.16503- 2 1.30000+ 1 1.90000+ 1 6.02512- 3 1.18564- 2 1.30000+ 1 2.10000+ 1 1.94000- 3 1.20978- 2 1.30000+ 1 2.20000+ 1 1.51333- 2 1.21360- 2 1.30000+ 1 2.40000+ 1 4.84138- 4 1.24540- 2 1.30000+ 1 2.50000+ 1 1.62027- 3 1.24639- 2 1.30000+ 1 2.70000+ 1 1.64708- 4 1.25178- 2 1.30000+ 1 2.90000+ 1 8.07482- 5 1.25752- 2 1.30000+ 1 3.00000+ 1 1.23154- 3 1.26232- 2 1.30000+ 1 3.20000+ 1 3.44782- 4 1.27084- 2 1.30000+ 1 3.30000+ 1 2.56173- 3 1.27155- 2 1.40000+ 1 1.40000+ 1 6.37946- 2 9.63780- 3 1.40000+ 1 1.60000+ 1 1.31908- 3 1.16658- 2 1.40000+ 1 1.80000+ 1 2.19749- 3 1.18141- 2 1.40000+ 1 1.90000+ 1 8.67560- 3 1.20202- 2 1.40000+ 1 2.10000+ 1 1.82265- 2 1.22616- 2 1.40000+ 1 2.20000+ 1 2.29694- 2 1.22998- 2 1.40000+ 1 2.40000+ 1 5.07073- 3 1.26178- 2 1.40000+ 1 2.50000+ 1 4.57515- 3 1.26277- 2 1.40000+ 1 2.70000+ 1 3.26208- 4 1.26816- 2 1.40000+ 1 2.90000+ 1 4.90209- 4 1.27390- 2 1.40000+ 1 3.00000+ 1 1.83329- 3 1.27870- 2 1.40000+ 1 3.20000+ 1 3.23113- 3 1.28722- 2 1.40000+ 1 3.30000+ 1 4.01028- 3 1.28793- 2 1.60000+ 1 1.60000+ 1 2.07231- 5 1.36938- 2 1.60000+ 1 1.80000+ 1 8.57515- 6 1.38421- 2 1.60000+ 1 1.90000+ 1 8.02161- 4 1.40482- 2 1.60000+ 1 2.10000+ 1 8.50379- 5 1.42896- 2 1.60000+ 1 2.20000+ 1 1.55061- 4 1.43278- 2 1.60000+ 1 2.40000+ 1 3.89456- 5 1.46458- 2 1.60000+ 1 2.50000+ 1 7.50338- 5 1.46557- 2 1.60000+ 1 2.70000+ 1 9.64683- 6 1.47096- 2 1.60000+ 1 2.90000+ 1 1.78647- 6 1.47670- 2 1.60000+ 1 3.00000+ 1 1.66139- 4 1.48150- 2 1.60000+ 1 3.20000+ 1 1.39340- 5 1.49002- 2 1.60000+ 1 3.30000+ 1 2.46528- 5 1.49073- 2 1.80000+ 1 1.90000+ 1 1.24506- 3 1.41965- 2 1.80000+ 1 2.10000+ 1 6.35925- 5 1.44379- 2 1.80000+ 1 2.20000+ 1 3.93349- 4 1.44761- 2 1.80000+ 1 2.40000+ 1 4.07284- 5 1.47941- 2 1.80000+ 1 2.50000+ 1 9.18190- 5 1.48040- 2 1.80000+ 1 2.70000+ 1 2.14360- 6 1.48579- 2 1.80000+ 1 3.00000+ 1 2.59735- 4 1.49633- 2 1.80000+ 1 3.20000+ 1 1.14325- 5 1.50485- 2 1.80000+ 1 3.30000+ 1 6.82355- 5 1.50556- 2 1.90000+ 1 1.90000+ 1 1.53142- 3 1.44027- 2 1.90000+ 1 2.10000+ 1 1.34770- 3 1.46440- 2 1.90000+ 1 2.20000+ 1 1.89214- 3 1.46822- 2 1.90000+ 1 2.40000+ 1 1.13974- 4 1.50003- 2 1.90000+ 1 2.50000+ 1 1.43985- 4 1.50101- 2 1.90000+ 1 2.70000+ 1 1.99001- 4 1.50641- 2 1.90000+ 1 2.90000+ 1 2.83328- 4 1.51214- 2 1.90000+ 1 3.00000+ 1 6.64911- 4 1.51694- 2 1.90000+ 1 3.20000+ 1 2.46516- 4 1.52546- 2 1.90000+ 1 3.30000+ 1 3.41203- 4 1.52617- 2 2.10000+ 1 2.10000+ 1 1.73996- 4 1.48854- 2 2.10000+ 1 2.20000+ 1 3.00112- 3 1.49235- 2 2.10000+ 1 2.40000+ 1 5.96646- 5 1.52416- 2 2.10000+ 1 2.50000+ 1 1.87932- 4 1.52515- 2 2.10000+ 1 2.70000+ 1 2.10788- 5 1.53054- 2 2.10000+ 1 2.90000+ 1 1.46479- 5 1.53628- 2 2.10000+ 1 3.00000+ 1 2.75827- 4 1.54108- 2 2.10000+ 1 3.20000+ 1 6.14495- 5 1.54960- 2 2.10000+ 1 3.30000+ 1 5.11974- 4 1.55031- 2 2.20000+ 1 2.20000+ 1 2.08158- 3 1.49617- 2 2.20000+ 1 2.40000+ 1 6.17033- 4 1.52798- 2 2.20000+ 1 2.50000+ 1 5.46287- 4 1.52897- 2 2.20000+ 1 2.70000+ 1 3.89439- 5 1.53436- 2 2.20000+ 1 2.90000+ 1 8.89648- 5 1.54009- 2 2.20000+ 1 3.00000+ 1 3.98369- 4 1.54489- 2 2.20000+ 1 3.20000+ 1 5.36273- 4 1.55341- 2 2.20000+ 1 3.30000+ 1 7.26731- 4 1.55412- 2 2.40000+ 1 2.40000+ 1 2.85832- 6 1.55979- 2 2.40000+ 1 2.50000+ 1 8.43153- 5 1.56078- 2 2.40000+ 1 2.70000+ 1 8.21766- 6 1.56617- 2 2.40000+ 1 2.90000+ 1 8.57474- 6 1.57190- 2 2.40000+ 1 3.00000+ 1 2.25090- 5 1.57670- 2 2.40000+ 1 3.20000+ 1 9.64636- 6 1.58522- 2 2.40000+ 1 3.30000+ 1 9.93181- 5 1.58593- 2 2.50000+ 1 2.50000+ 1 3.00104- 5 1.56176- 2 2.50000+ 1 2.70000+ 1 1.64343- 5 1.56715- 2 2.50000+ 1 2.90000+ 1 1.89356- 5 1.57289- 2 2.50000+ 1 3.00000+ 1 2.89391- 5 1.57769- 2 2.50000+ 1 3.20000+ 1 3.00104- 5 1.58621- 2 2.50000+ 1 3.30000+ 1 8.75297- 5 1.58692- 2 2.70000+ 1 2.70000+ 1 1.11605- 6 1.57255- 2 2.70000+ 1 2.90000+ 1 3.72026- 7 1.57828- 2 2.70000+ 1 3.00000+ 1 4.27813- 5 1.58308- 2 2.70000+ 1 3.20000+ 1 3.72026- 6 1.59160- 2 2.70000+ 1 3.30000+ 1 6.32427- 6 1.59231- 2 2.90000+ 1 3.00000+ 1 6.20004- 5 1.58882- 2 2.90000+ 1 3.20000+ 1 2.61435- 6 1.59733- 2 2.90000+ 1 3.30000+ 1 1.60600- 5 1.59805- 2 3.00000+ 1 3.00000+ 1 7.28364- 5 1.59362- 2 3.00000+ 1 3.20000+ 1 5.08397- 5 1.60214- 2 3.00000+ 1 3.30000+ 1 7.24734- 5 1.60285- 2 3.20000+ 1 3.20000+ 1 5.35915- 6 1.61065- 2 3.20000+ 1 3.30000+ 1 9.14616- 5 1.61137- 2 3.30000+ 1 3.30000+ 1 6.35938- 5 1.61208- 2 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.05280- 5 3.26300- 4 1.10000+ 1 9.78718- 4 1.12170- 3 1.80000+ 1 2.39950- 3 3.99560- 3 1.90000+ 1 1.39140- 3 4.20174- 3 2.90000+ 1 6.18539- 4 4.92047- 3 3.00000+ 1 4.07779- 4 4.96849- 3 4.30000+ 1 1.12660- 4 5.12438- 3 4.40000+ 1 7.10299- 5 5.13289- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.50000+ 1 1.21617- 2 0.00000+ 0 1.00000+ 1 2.70000+ 1 1.50973- 2 3.15400- 5 1.00000+ 1 2.90000+ 1 1.56685- 2 8.88700- 5 1.00000+ 1 3.00000+ 1 1.90129- 2 1.36890- 4 1.00000+ 1 3.20000+ 1 1.06401- 2 2.22070- 4 1.00000+ 1 3.30000+ 1 1.39625- 2 2.29190- 4 1.00000+ 1 4.10000+ 1 2.93031- 3 2.75750- 4 1.00000+ 1 4.30000+ 1 2.57005- 3 2.92780- 4 1.00000+ 1 4.40000+ 1 2.96700- 3 3.01290- 4 1.00000+ 1 4.60000+ 1 1.50145- 4 3.20680- 4 1.00000+ 1 4.70000+ 1 1.84336- 4 3.21320- 4 1.00000+ 1 5.80000+ 1 3.38967- 4 3.20330- 4 1.10000+ 1 1.90000+ 1 4.65565- 2 1.65540- 4 1.10000+ 1 2.10000+ 1 1.19605- 2 4.06890- 4 1.10000+ 1 2.20000+ 1 2.73670- 2 4.45060- 4 1.10000+ 1 2.40000+ 1 2.07031- 1 7.63150- 4 1.10000+ 1 2.50000+ 1 2.51433- 1 7.73010- 4 1.10000+ 1 2.70000+ 1 1.19933- 2 8.26940- 4 1.10000+ 1 2.90000+ 1 1.21249- 2 8.84270- 4 1.10000+ 1 3.00000+ 1 1.03282- 2 9.32290- 4 1.10000+ 1 3.20000+ 1 2.44533- 3 1.01747- 3 1.10000+ 1 3.30000+ 1 5.36500- 3 1.02459- 3 1.10000+ 1 4.10000+ 1 2.37584- 3 1.07115- 3 1.10000+ 1 4.30000+ 1 2.05068- 3 1.08818- 3 1.10000+ 1 4.40000+ 1 1.65672- 3 1.09669- 3 1.10000+ 1 4.60000+ 1 3.70699- 5 1.11608- 3 1.10000+ 1 4.70000+ 1 7.54371- 5 1.11672- 3 1.10000+ 1 5.80000+ 1 2.77808- 4 1.11573- 3 1.30000+ 1 1.60000+ 1 2.78045- 2 3.44900- 4 1.30000+ 1 1.80000+ 1 5.87380- 3 4.93200- 4 1.30000+ 1 1.90000+ 1 9.38085- 3 6.99340- 4 1.30000+ 1 2.10000+ 1 9.50389- 3 9.40690- 4 1.30000+ 1 2.20000+ 1 1.14100- 2 9.78860- 4 1.30000+ 1 2.40000+ 1 1.04966- 2 1.29695- 3 1.30000+ 1 2.50000+ 1 9.85270- 3 1.30681- 3 1.30000+ 1 2.70000+ 1 4.28191- 3 1.36074- 3 1.30000+ 1 2.90000+ 1 1.05874- 3 1.41807- 3 1.30000+ 1 3.00000+ 1 1.58043- 3 1.46609- 3 1.30000+ 1 3.20000+ 1 1.41212- 3 1.55127- 3 1.30000+ 1 3.30000+ 1 1.83937- 3 1.55839- 3 1.30000+ 1 4.10000+ 1 7.83522- 4 1.60495- 3 1.30000+ 1 4.30000+ 1 1.76549- 4 1.62198- 3 1.30000+ 1 4.40000+ 1 2.44204- 4 1.63049- 3 1.30000+ 1 4.60000+ 1 2.10590- 5 1.64988- 3 1.30000+ 1 4.70000+ 1 2.58192- 5 1.65052- 3 1.30000+ 1 5.80000+ 1 8.87103- 5 1.64953- 3 1.40000+ 1 1.60000+ 1 3.80112- 2 5.08700- 4 1.40000+ 1 1.80000+ 1 9.15357- 4 6.57000- 4 1.40000+ 1 1.90000+ 1 1.25627- 2 8.63140- 4 1.40000+ 1 2.10000+ 1 1.30264- 2 1.10449- 3 1.40000+ 1 2.20000+ 1 1.78784- 2 1.14266- 3 1.40000+ 1 2.40000+ 1 1.23743- 2 1.46075- 3 1.40000+ 1 2.50000+ 1 1.86411- 2 1.47061- 3 1.40000+ 1 2.70000+ 1 5.77114- 3 1.52454- 3 1.40000+ 1 2.90000+ 1 2.29626- 4 1.58187- 3 1.40000+ 1 3.00000+ 1 2.08568- 3 1.62989- 3 1.40000+ 1 3.20000+ 1 2.14122- 3 1.71507- 3 1.40000+ 1 3.30000+ 1 2.77638- 3 1.72219- 3 1.40000+ 1 4.10000+ 1 1.05246- 3 1.76875- 3 1.40000+ 1 4.30000+ 1 4.15411- 5 1.78578- 3 1.40000+ 1 4.40000+ 1 3.22100- 4 1.79429- 3 1.40000+ 1 4.60000+ 1 3.23097- 5 1.81368- 3 1.40000+ 1 4.70000+ 1 3.86564- 5 1.81432- 3 1.40000+ 1 5.80000+ 1 1.19006- 4 1.81333- 3 1.60000+ 1 1.60000+ 1 2.22517- 3 2.53670- 3 1.60000+ 1 1.80000+ 1 3.94595- 3 2.68500- 3 1.60000+ 1 1.90000+ 1 6.20351- 3 2.89114- 3 1.60000+ 1 2.10000+ 1 7.43967- 3 3.13249- 3 1.60000+ 1 2.20000+ 1 1.03279- 2 3.17066- 3 1.60000+ 1 2.40000+ 1 5.64159- 3 3.48875- 3 1.60000+ 1 2.50000+ 1 6.99714- 3 3.49861- 3 1.60000+ 1 2.70000+ 1 8.93225- 4 3.55254- 3 1.60000+ 1 2.90000+ 1 9.07845- 4 3.60987- 3 1.60000+ 1 3.00000+ 1 1.40608- 3 3.65789- 3 1.60000+ 1 3.20000+ 1 1.33932- 3 3.74307- 3 1.60000+ 1 3.30000+ 1 1.84450- 3 3.75019- 3 1.60000+ 1 4.10000+ 1 1.75269- 4 3.79675- 3 1.60000+ 1 4.30000+ 1 1.57958- 4 3.81378- 3 1.60000+ 1 4.40000+ 1 2.29111- 4 3.82229- 3 1.60000+ 1 4.60000+ 1 2.04112- 5 3.84168- 3 1.60000+ 1 4.70000+ 1 2.61788- 5 3.84232- 3 1.60000+ 1 5.80000+ 1 2.01157- 5 3.84133- 3 1.80000+ 1 1.80000+ 1 1.52483- 4 2.83330- 3 1.80000+ 1 1.90000+ 1 4.85699- 4 3.03944- 3 1.80000+ 1 2.10000+ 1 2.36791- 4 3.28079- 3 1.80000+ 1 2.20000+ 1 1.14030- 4 3.31896- 3 1.80000+ 1 2.40000+ 1 2.33684- 5 3.63705- 3 1.80000+ 1 2.50000+ 1 4.94287- 4 3.64691- 3 1.80000+ 1 2.70000+ 1 5.95608- 4 3.70084- 3 1.80000+ 1 2.90000+ 1 5.05820- 5 3.75817- 3 1.80000+ 1 3.00000+ 1 7.70575- 5 3.80619- 3 1.80000+ 1 3.20000+ 1 3.63837- 5 3.89137- 3 1.80000+ 1 3.30000+ 1 2.57343- 5 3.89849- 3 1.80000+ 1 4.10000+ 1 1.08999- 4 3.94505- 3 1.80000+ 1 4.30000+ 1 8.28249- 6 3.96208- 3 1.80000+ 1 4.40000+ 1 1.18314- 5 3.97059- 3 1.80000+ 1 4.60000+ 1 5.91590- 7 3.98998- 3 1.80000+ 1 4.70000+ 1 4.43697- 7 3.99062- 3 1.80000+ 1 5.80000+ 1 1.24234- 5 3.98963- 3 1.90000+ 1 1.90000+ 1 4.76398- 4 3.24558- 3 1.90000+ 1 2.10000+ 1 6.36554- 4 3.48693- 3 1.90000+ 1 2.20000+ 1 1.42518- 3 3.52510- 3 1.90000+ 1 2.40000+ 1 8.54896- 4 3.84319- 3 1.90000+ 1 2.50000+ 1 1.28643- 3 3.85305- 3 1.90000+ 1 2.70000+ 1 9.41549- 4 3.90698- 3 1.90000+ 1 2.90000+ 1 9.53981- 5 3.96431- 3 1.90000+ 1 3.00000+ 1 1.82221- 4 4.01233- 3 1.90000+ 1 3.20000+ 1 1.12407- 4 4.09751- 3 1.90000+ 1 3.30000+ 1 2.41379- 4 4.10463- 3 1.90000+ 1 4.10000+ 1 1.72609- 4 4.15119- 3 1.90000+ 1 4.30000+ 1 1.61219- 5 4.16822- 3 1.90000+ 1 4.40000+ 1 2.88421- 5 4.17673- 3 1.90000+ 1 4.60000+ 1 1.77486- 6 4.19612- 3 1.90000+ 1 4.70000+ 1 3.40188- 6 4.19676- 3 1.90000+ 1 5.80000+ 1 1.95236- 5 4.19577- 3 2.10000+ 1 2.10000+ 1 9.65826- 5 3.72828- 3 2.10000+ 1 2.20000+ 1 2.63268- 4 3.76645- 3 2.10000+ 1 2.40000+ 1 4.46662- 4 4.08454- 3 2.10000+ 1 2.50000+ 1 2.70138- 3 4.09440- 3 2.10000+ 1 2.70000+ 1 1.09882- 3 4.14833- 3 2.10000+ 1 2.90000+ 1 3.40186- 5 4.20566- 3 2.10000+ 1 3.00000+ 1 1.09451- 4 4.25368- 3 2.10000+ 1 3.20000+ 1 2.72143- 5 4.33886- 3 2.10000+ 1 3.30000+ 1 3.96379- 5 4.34598- 3 2.10000+ 1 4.10000+ 1 1.99815- 4 4.39254- 3 2.10000+ 1 4.30000+ 1 5.32456- 6 4.40957- 3 2.10000+ 1 4.40000+ 1 1.68610- 5 4.41808- 3 2.10000+ 1 4.60000+ 1 4.43707- 7 4.43747- 3 2.10000+ 1 4.70000+ 1 5.91603- 7 4.43811- 3 2.10000+ 1 5.80000+ 1 2.26286- 5 4.43712- 3 2.20000+ 1 2.20000+ 1 2.18299- 4 3.80462- 3 2.20000+ 1 2.40000+ 1 2.40436- 3 4.12271- 3 2.20000+ 1 2.50000+ 1 1.53947- 3 4.13257- 3 2.20000+ 1 2.70000+ 1 1.51780- 3 4.18650- 3 2.20000+ 1 2.90000+ 1 1.87831- 5 4.24383- 3 2.20000+ 1 3.00000+ 1 2.41673- 4 4.29185- 3 2.20000+ 1 3.20000+ 1 3.50520- 5 4.37703- 3 2.20000+ 1 3.30000+ 1 6.37476- 5 4.38415- 3 2.20000+ 1 4.10000+ 1 2.75842- 4 4.43071- 3 2.20000+ 1 4.30000+ 1 3.10584- 6 4.44774- 3 2.20000+ 1 4.40000+ 1 3.71235- 5 4.45625- 3 2.20000+ 1 4.60000+ 1 4.43704- 7 4.47564- 3 2.20000+ 1 4.70000+ 1 8.87389- 7 4.47628- 3 2.20000+ 1 5.80000+ 1 3.12076- 5 4.47529- 3 2.40000+ 1 2.40000+ 1 6.27258- 4 4.44080- 3 2.40000+ 1 2.50000+ 1 4.09897- 3 4.45066- 3 2.40000+ 1 2.70000+ 1 7.62876- 4 4.50459- 3 2.40000+ 1 2.90000+ 1 4.73289- 6 4.56192- 3 2.40000+ 1 3.00000+ 1 1.02940- 4 4.60994- 3 2.40000+ 1 3.20000+ 1 7.20311- 5 4.69512- 3 2.40000+ 1 3.30000+ 1 4.36910- 4 4.70224- 3 2.40000+ 1 4.10000+ 1 1.36660- 4 4.74880- 3 2.40000+ 1 4.30000+ 1 8.87399- 7 4.76583- 3 2.40000+ 1 4.40000+ 1 1.47896- 5 4.77434- 3 2.40000+ 1 4.60000+ 1 1.03532- 6 4.79373- 3 2.40000+ 1 4.70000+ 1 6.21175- 6 4.79437- 3 2.40000+ 1 5.80000+ 1 1.53816- 5 4.79338- 3 2.50000+ 1 2.50000+ 1 1.41647- 3 4.46052- 3 2.50000+ 1 2.70000+ 1 9.41828- 4 4.51445- 3 2.50000+ 1 2.90000+ 1 9.79457- 5 4.57178- 3 2.50000+ 1 3.00000+ 1 1.66681- 4 4.61980- 3 2.50000+ 1 3.20000+ 1 4.75569- 4 4.70498- 3 2.50000+ 1 3.30000+ 1 2.63899- 4 4.71210- 3 2.50000+ 1 4.10000+ 1 1.68751- 4 4.75866- 3 2.50000+ 1 4.30000+ 1 1.65213- 5 4.77569- 3 2.50000+ 1 4.40000+ 1 2.44861- 5 4.78420- 3 2.50000+ 1 4.60000+ 1 7.22776- 6 4.80359- 3 2.50000+ 1 4.70000+ 1 3.68776- 6 4.80423- 3 2.50000+ 1 5.80000+ 1 1.90287- 5 4.80324- 3 2.70000+ 1 2.70000+ 1 8.22935- 5 4.56838- 3 2.70000+ 1 2.90000+ 1 1.37885- 4 4.62571- 3 2.70000+ 1 3.00000+ 1 2.12806- 4 4.67373- 3 2.70000+ 1 3.20000+ 1 1.98504- 4 4.75891- 3 2.70000+ 1 3.30000+ 1 2.72088- 4 4.76603- 3 2.70000+ 1 4.10000+ 1 3.17079- 5 4.81259- 3 2.70000+ 1 4.30000+ 1 2.40383- 5 4.82962- 3 2.70000+ 1 4.40000+ 1 3.46573- 5 4.83813- 3 2.70000+ 1 4.60000+ 1 3.09688- 6 4.85752- 3 2.70000+ 1 4.70000+ 1 3.83437- 6 4.85816- 3 2.70000+ 1 5.80000+ 1 3.68695- 6 4.85717- 3 2.90000+ 1 2.90000+ 1 4.13470- 6 4.68304- 3 2.90000+ 1 3.00000+ 1 1.46191- 5 4.73106- 3 2.90000+ 1 3.20000+ 1 5.16836- 6 4.81624- 3 2.90000+ 1 3.30000+ 1 4.57773- 6 4.82336- 3 2.90000+ 1 4.10000+ 1 2.52518- 5 4.86992- 3 2.90000+ 1 4.30000+ 1 1.32899- 6 4.88695- 3 2.90000+ 1 4.40000+ 1 2.21495- 6 4.89546- 3 2.90000+ 1 4.60000+ 1 1.47660- 7 4.91485- 3 2.90000+ 1 5.80000+ 1 2.80561- 6 4.91450- 3 3.00000+ 1 3.00000+ 1 1.67128- 5 4.77908- 3 3.00000+ 1 3.20000+ 1 1.95234- 5 4.86426- 3 3.00000+ 1 3.30000+ 1 4.12645- 5 4.87138- 3 3.00000+ 1 4.10000+ 1 3.90458- 5 4.91794- 3 3.00000+ 1 4.30000+ 1 2.51428- 6 4.93497- 3 3.00000+ 1 4.40000+ 1 5.32454- 6 4.94348- 3 3.00000+ 1 4.60000+ 1 2.95801- 7 4.96287- 3 3.00000+ 1 4.70000+ 1 5.91601- 7 4.96351- 3 3.00000+ 1 5.80000+ 1 4.43706- 6 4.96252- 3 3.20000+ 1 3.20000+ 1 1.77487- 6 4.94944- 3 3.20000+ 1 3.30000+ 1 5.32462- 6 4.95656- 3 3.20000+ 1 4.10000+ 1 3.62367- 5 5.00312- 3 3.20000+ 1 4.30000+ 1 8.87405- 7 5.02015- 3 3.20000+ 1 4.40000+ 1 2.95805- 6 5.02866- 3 3.20000+ 1 4.70000+ 1 1.47897- 7 5.04869- 3 3.20000+ 1 5.80000+ 1 4.14133- 6 5.04770- 3 3.30000+ 1 3.30000+ 1 4.43705- 6 4.96368- 3 3.30000+ 1 4.10000+ 1 4.96953- 5 5.01024- 3 3.30000+ 1 4.30000+ 1 7.39495- 7 5.02727- 3 3.30000+ 1 4.40000+ 1 6.35994- 6 5.03578- 3 3.30000+ 1 4.60000+ 1 1.47894- 7 5.05517- 3 3.30000+ 1 4.70000+ 1 1.47894- 7 5.05581- 3 3.30000+ 1 5.80000+ 1 5.62031- 6 5.05482- 3 4.10000+ 1 4.10000+ 1 2.67216- 6 5.05680- 3 4.10000+ 1 4.30000+ 1 3.81748- 6 5.07383- 3 4.10000+ 1 4.40000+ 1 5.47187- 6 5.08234- 3 4.10000+ 1 4.60000+ 1 5.08992- 7 5.10173- 3 4.10000+ 1 4.70000+ 1 6.36236- 7 5.10237- 3 4.10000+ 1 5.80000+ 1 6.36236- 7 5.10138- 3 4.30000+ 1 4.30000+ 1 1.47893- 7 5.09086- 3 4.30000+ 1 4.40000+ 1 4.43702- 7 5.09937- 3 4.30000+ 1 5.80000+ 1 4.43702- 7 5.11841- 3 4.40000+ 1 4.40000+ 1 3.62571- 7 5.10788- 3 4.40000+ 1 4.70000+ 1 1.20851- 7 5.12791- 3 4.40000+ 1 5.80000+ 1 6.04275- 7 5.12692- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.64939- 3 1.32920- 3 1.60000+ 1 9.54227- 4 3.52100- 3 2.10000+ 1 4.82878- 3 4.11679- 3 2.70000+ 1 2.42229- 4 4.53684- 3 3.20000+ 1 1.09670- 3 4.72737- 3 4.10000+ 1 4.97688- 5 4.78105- 3 5.80000+ 1 5.45038- 6 4.82563- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.21777- 3 8.05900- 5 1.10000+ 1 2.20000+ 1 1.64103- 2 1.18760- 4 1.10000+ 1 2.40000+ 1 2.85269- 2 4.36850- 4 1.10000+ 1 2.50000+ 1 2.38856- 2 4.46710- 4 1.10000+ 1 2.70000+ 1 3.12338- 3 5.00640- 4 1.10000+ 1 2.90000+ 1 4.39867- 3 5.57970- 4 1.10000+ 1 3.00000+ 1 2.04000- 3 6.05990- 4 1.10000+ 1 3.20000+ 1 1.68272- 3 6.91170- 4 1.10000+ 1 3.30000+ 1 3.09200- 3 6.98290- 4 1.10000+ 1 4.10000+ 1 5.89880- 4 7.44850- 4 1.10000+ 1 4.30000+ 1 6.87391- 4 7.61880- 4 1.10000+ 1 4.40000+ 1 3.12480- 4 7.70390- 4 1.10000+ 1 4.60000+ 1 2.58617- 5 7.89780- 4 1.10000+ 1 4.70000+ 1 4.36516- 5 7.90420- 4 1.10000+ 1 5.80000+ 1 6.72074- 5 7.89430- 4 1.30000+ 1 1.60000+ 1 4.72075- 2 1.86000- 5 1.30000+ 1 1.80000+ 1 4.91694- 2 1.66900- 4 1.30000+ 1 1.90000+ 1 3.56474- 2 3.73040- 4 1.30000+ 1 2.10000+ 1 1.68015- 2 6.14390- 4 1.30000+ 1 2.20000+ 1 2.49558- 2 6.52560- 4 1.30000+ 1 2.40000+ 1 1.48821- 1 9.70650- 4 1.30000+ 1 2.50000+ 1 2.33033- 1 9.80510- 4 1.30000+ 1 2.70000+ 1 1.14499- 2 1.03444- 3 1.30000+ 1 2.90000+ 1 9.34390- 3 1.09177- 3 1.30000+ 1 3.00000+ 1 7.77771- 3 1.13979- 3 1.30000+ 1 3.20000+ 1 3.22427- 3 1.22497- 3 1.30000+ 1 3.30000+ 1 4.81782- 3 1.23209- 3 1.30000+ 1 4.10000+ 1 2.28632- 3 1.27865- 3 1.30000+ 1 4.30000+ 1 1.56965- 3 1.29568- 3 1.30000+ 1 4.40000+ 1 1.25459- 3 1.30419- 3 1.30000+ 1 4.60000+ 1 5.02407- 5 1.32358- 3 1.30000+ 1 4.70000+ 1 6.95133- 5 1.32422- 3 1.30000+ 1 5.80000+ 1 2.58786- 4 1.32323- 3 1.40000+ 1 1.60000+ 1 7.30072- 3 1.82400- 4 1.40000+ 1 1.80000+ 1 5.56172- 2 3.30700- 4 1.40000+ 1 1.90000+ 1 4.57595- 3 5.36840- 4 1.40000+ 1 2.10000+ 1 1.56226- 3 7.78190- 4 1.40000+ 1 2.20000+ 1 2.69863- 3 8.16360- 4 1.40000+ 1 2.40000+ 1 7.49744- 3 1.13445- 3 1.40000+ 1 2.50000+ 1 4.61239- 3 1.14431- 3 1.40000+ 1 2.70000+ 1 1.17308- 3 1.19824- 3 1.40000+ 1 2.90000+ 1 8.08460- 3 1.25557- 3 1.40000+ 1 3.00000+ 1 8.56046- 4 1.30359- 3 1.40000+ 1 3.20000+ 1 1.21565- 4 1.38877- 3 1.40000+ 1 3.30000+ 1 4.41131- 4 1.39589- 3 1.40000+ 1 4.10000+ 1 2.17272- 4 1.44245- 3 1.40000+ 1 4.30000+ 1 1.28242- 3 1.45948- 3 1.40000+ 1 4.40000+ 1 1.34420- 4 1.46799- 3 1.40000+ 1 4.60000+ 1 1.64725- 6 1.48738- 3 1.40000+ 1 4.70000+ 1 6.25946- 6 1.48802- 3 1.40000+ 1 5.80000+ 1 2.47088- 5 1.48703- 3 1.60000+ 1 1.60000+ 1 5.67341- 4 2.21040- 3 1.60000+ 1 1.80000+ 1 8.76658- 3 2.35870- 3 1.60000+ 1 1.90000+ 1 1.09968- 3 2.56484- 3 1.60000+ 1 2.10000+ 1 3.38310- 4 2.80619- 3 1.60000+ 1 2.20000+ 1 1.00407- 3 2.84436- 3 1.60000+ 1 2.40000+ 1 6.16386- 5 3.16245- 3 1.60000+ 1 2.50000+ 1 7.38592- 4 3.17231- 3 1.60000+ 1 2.70000+ 1 2.12230- 4 3.22624- 3 1.60000+ 1 2.90000+ 1 1.25133- 3 3.28357- 3 1.60000+ 1 3.00000+ 1 2.24136- 4 3.33159- 3 1.60000+ 1 3.20000+ 1 4.13249- 5 3.41677- 3 1.60000+ 1 3.30000+ 1 1.61100- 4 3.42389- 3 1.60000+ 1 4.10000+ 1 4.06237- 5 3.47045- 3 1.60000+ 1 4.30000+ 1 1.98924- 4 3.48748- 3 1.60000+ 1 4.40000+ 1 3.57211- 5 3.49599- 3 1.60000+ 1 4.60000+ 1 7.00435- 7 3.51538- 3 1.60000+ 1 4.70000+ 1 2.10132- 6 3.51602- 3 1.60000+ 1 5.80000+ 1 4.55284- 6 3.51503- 3 1.80000+ 1 1.80000+ 1 6.85360- 3 2.50700- 3 1.80000+ 1 1.90000+ 1 1.84152- 2 2.71314- 3 1.80000+ 1 2.10000+ 1 1.87333- 2 2.95449- 3 1.80000+ 1 2.20000+ 1 2.93179- 2 2.99266- 3 1.80000+ 1 2.40000+ 1 1.17121- 2 3.31075- 3 1.80000+ 1 2.50000+ 1 1.91837- 2 3.32061- 3 1.80000+ 1 2.70000+ 1 2.15011- 3 3.37454- 3 1.80000+ 1 2.90000+ 1 2.59801- 3 3.43187- 3 1.80000+ 1 3.00000+ 1 4.13497- 3 3.47989- 3 1.80000+ 1 3.20000+ 1 3.38654- 3 3.56507- 3 1.80000+ 1 3.30000+ 1 5.18281- 3 3.57219- 3 1.80000+ 1 4.10000+ 1 4.34968- 4 3.61875- 3 1.80000+ 1 4.30000+ 1 4.39165- 4 3.63578- 3 1.80000+ 1 4.40000+ 1 6.72411- 4 3.64429- 3 1.80000+ 1 4.60000+ 1 5.14823- 5 3.66368- 3 1.80000+ 1 4.70000+ 1 7.31946- 5 3.66432- 3 1.80000+ 1 5.80000+ 1 5.00817- 5 3.66333- 3 1.90000+ 1 1.90000+ 1 4.67870- 4 2.91928- 3 1.90000+ 1 2.10000+ 1 1.09267- 3 3.16063- 3 1.90000+ 1 2.20000+ 1 1.01597- 3 3.19880- 3 1.90000+ 1 2.40000+ 1 7.61935- 3 3.51689- 3 1.90000+ 1 2.50000+ 1 2.11228- 3 3.52675- 3 1.90000+ 1 2.70000+ 1 1.70908- 4 3.58068- 3 1.90000+ 1 2.90000+ 1 2.68228- 3 3.63801- 3 1.90000+ 1 3.00000+ 1 1.77215- 4 3.68603- 3 1.90000+ 1 3.20000+ 1 1.54099- 4 3.77121- 3 1.90000+ 1 3.30000+ 1 1.61447- 4 3.77833- 3 1.90000+ 1 4.10000+ 1 3.15196- 5 3.82489- 3 1.90000+ 1 4.30000+ 1 4.27613- 4 3.84192- 3 1.90000+ 1 4.40000+ 1 2.80173- 5 3.85043- 3 1.90000+ 1 4.60000+ 1 2.10132- 6 3.86982- 3 1.90000+ 1 4.70000+ 1 2.10132- 6 3.87046- 3 1.90000+ 1 5.80000+ 1 3.50216- 6 3.86947- 3 2.10000+ 1 2.10000+ 1 6.94474- 4 3.40198- 3 2.10000+ 1 2.20000+ 1 1.34688- 3 3.44015- 3 2.10000+ 1 2.40000+ 1 7.78864- 4 3.75824- 3 2.10000+ 1 2.50000+ 1 1.12382- 3 3.76810- 3 2.10000+ 1 2.70000+ 1 8.01978- 5 3.82203- 3 2.10000+ 1 2.90000+ 1 2.64370- 3 3.87936- 3 2.10000+ 1 3.00000+ 1 2.27291- 4 3.92738- 3 2.10000+ 1 3.20000+ 1 2.03817- 4 4.01256- 3 2.10000+ 1 3.30000+ 1 2.18540- 4 4.01968- 3 2.10000+ 1 4.10000+ 1 1.61099- 5 4.06624- 3 2.10000+ 1 4.30000+ 1 4.18500- 4 4.08327- 3 2.10000+ 1 4.40000+ 1 3.64219- 5 4.09178- 3 2.10000+ 1 4.60000+ 1 3.15193- 6 4.11117- 3 2.10000+ 1 4.70000+ 1 3.15193- 6 4.11181- 3 2.10000+ 1 5.80000+ 1 1.75101- 6 4.11082- 3 2.20000+ 1 2.20000+ 1 3.68431- 4 3.47832- 3 2.20000+ 1 2.40000+ 1 1.80816- 3 3.79641- 3 2.20000+ 1 2.50000+ 1 4.52460- 4 3.80627- 3 2.20000+ 1 2.70000+ 1 1.93667- 4 3.86020- 3 2.20000+ 1 2.90000+ 1 4.18704- 3 3.91753- 3 2.20000+ 1 3.00000+ 1 1.74405- 4 3.96555- 3 2.20000+ 1 3.20000+ 1 1.89112- 4 4.05073- 3 2.20000+ 1 3.30000+ 1 1.09966- 4 4.05785- 3 2.20000+ 1 4.10000+ 1 3.74706- 5 4.10441- 3 2.20000+ 1 4.30000+ 1 6.64687- 4 4.12144- 3 2.20000+ 1 4.40000+ 1 2.69660- 5 4.12995- 3 2.20000+ 1 4.60000+ 1 2.80168- 6 4.14934- 3 2.20000+ 1 4.70000+ 1 1.40081- 6 4.14998- 3 2.20000+ 1 5.80000+ 1 4.20254- 6 4.14899- 3 2.40000+ 1 2.40000+ 1 3.05946- 3 4.11450- 3 2.40000+ 1 2.50000+ 1 1.95178- 2 4.12436- 3 2.40000+ 1 2.70000+ 1 9.45568- 6 4.17829- 3 2.40000+ 1 2.90000+ 1 1.52512- 3 4.23562- 3 2.40000+ 1 3.00000+ 1 1.60671- 3 4.28364- 3 2.40000+ 1 3.20000+ 1 1.53388- 4 4.36882- 3 2.40000+ 1 3.30000+ 1 3.85231- 4 4.37594- 3 2.40000+ 1 4.10000+ 1 1.75099- 6 4.42250- 3 2.40000+ 1 4.30000+ 1 2.39534- 4 4.43953- 3 2.40000+ 1 4.40000+ 1 2.58092- 4 4.44804- 3 2.40000+ 1 4.60000+ 1 2.45127- 6 4.46743- 3 2.40000+ 1 4.70000+ 1 5.60337- 6 4.46807- 3 2.40000+ 1 5.80000+ 1 3.50209- 7 4.46708- 3 2.50000+ 1 2.50000+ 1 1.01808- 3 4.13422- 3 2.50000+ 1 2.70000+ 1 1.47443- 4 4.18815- 3 2.50000+ 1 2.90000+ 1 2.43258- 3 4.24548- 3 2.50000+ 1 3.00000+ 1 3.94685- 4 4.29350- 3 2.50000+ 1 3.20000+ 1 2.13626- 4 4.37868- 3 2.50000+ 1 3.30000+ 1 8.51001- 5 4.38580- 3 2.50000+ 1 4.10000+ 1 2.83667- 5 4.43236- 3 2.50000+ 1 4.30000+ 1 3.77164- 4 4.44939- 3 2.50000+ 1 4.40000+ 1 6.19876- 5 4.45790- 3 2.50000+ 1 4.60000+ 1 3.15192- 6 4.47729- 3 2.50000+ 1 4.70000+ 1 1.05063- 6 4.47793- 3 2.50000+ 1 5.80000+ 1 3.15192- 6 4.47694- 3 2.70000+ 1 2.70000+ 1 1.96104- 5 4.24208- 3 2.70000+ 1 2.90000+ 1 3.08895- 4 4.29941- 3 2.70000+ 1 3.00000+ 1 3.46713- 5 4.34743- 3 2.70000+ 1 3.20000+ 1 9.10527- 6 4.43261- 3 2.70000+ 1 3.30000+ 1 3.18685- 5 4.43973- 3 2.70000+ 1 4.10000+ 1 7.35422- 6 4.48629- 3 2.70000+ 1 4.30000+ 1 4.90294- 5 4.50332- 3 2.70000+ 1 4.40000+ 1 5.60337- 6 4.51183- 3 2.70000+ 1 4.70000+ 1 3.50209- 7 4.53186- 3 2.70000+ 1 5.80000+ 1 7.00421- 7 4.53087- 3 2.90000+ 1 2.90000+ 1 2.30080- 4 4.35674- 3 2.90000+ 1 3.00000+ 1 6.06560- 4 4.40476- 3 2.90000+ 1 3.20000+ 1 4.80822- 4 4.48994- 3 2.90000+ 1 3.30000+ 1 7.45225- 4 4.49706- 3 2.90000+ 1 4.10000+ 1 6.26859- 5 4.54362- 3 2.90000+ 1 4.30000+ 1 7.70454- 5 4.56065- 3 2.90000+ 1 4.40000+ 1 9.87592- 5 4.56916- 3 2.90000+ 1 4.60000+ 1 7.35416- 6 4.58855- 3 2.90000+ 1 4.70000+ 1 1.05061- 5 4.58919- 3 2.90000+ 1 5.80000+ 1 7.35416- 6 4.58820- 3 3.00000+ 1 3.00000+ 1 1.67361- 5 4.45278- 3 3.00000+ 1 3.20000+ 1 3.27611- 5 4.53796- 3 3.00000+ 1 3.30000+ 1 2.81297- 5 4.54508- 3 3.00000+ 1 4.10000+ 1 6.40965- 6 4.59164- 3 3.00000+ 1 4.30000+ 1 9.86371- 5 4.60867- 3 3.00000+ 1 4.40000+ 1 5.34136- 6 4.61718- 3 3.00000+ 1 4.60000+ 1 3.56090- 7 4.63657- 3 3.00000+ 1 4.70000+ 1 3.56090- 7 4.63721- 3 3.00000+ 1 5.80000+ 1 7.12182- 7 4.63622- 3 3.20000+ 1 3.20000+ 1 1.43581- 5 4.62314- 3 3.20000+ 1 3.30000+ 1 3.29199- 5 4.63026- 3 3.20000+ 1 4.10000+ 1 1.75103- 6 4.67682- 3 3.20000+ 1 4.30000+ 1 7.63466- 5 4.69385- 3 3.20000+ 1 4.40000+ 1 5.25326- 6 4.70236- 3 3.20000+ 1 4.60000+ 1 3.50216- 7 4.72175- 3 3.20000+ 1 4.70000+ 1 3.50216- 7 4.72239- 3 3.20000+ 1 5.80000+ 1 3.50216- 7 4.72140- 3 3.30000+ 1 3.30000+ 1 8.49454- 6 4.63738- 3 3.30000+ 1 4.10000+ 1 6.37092- 6 4.68394- 3 3.30000+ 1 4.30000+ 1 1.19631- 4 4.70097- 3 3.30000+ 1 4.40000+ 1 4.24727- 6 4.70948- 3 3.30000+ 1 4.60000+ 1 3.53938- 7 4.72887- 3 3.30000+ 1 4.70000+ 1 3.53938- 7 4.72951- 3 3.30000+ 1 5.80000+ 1 7.07879- 7 4.72852- 3 4.10000+ 1 4.10000+ 1 6.69706- 7 4.73050- 3 4.10000+ 1 4.30000+ 1 9.37571- 6 4.74753- 3 4.10000+ 1 4.40000+ 1 1.00455- 6 4.75604- 3 4.30000+ 1 4.30000+ 1 5.23532- 6 4.76456- 3 4.30000+ 1 4.40000+ 1 1.30883- 5 4.77307- 3 4.30000+ 1 4.60000+ 1 8.72541- 7 4.79246- 3 4.30000+ 1 4.70000+ 1 1.45420- 6 4.79310- 3 4.30000+ 1 5.80000+ 1 8.72541- 7 4.79211- 3 4.40000+ 1 4.40000+ 1 3.50209- 7 4.78158- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.38730- 5 5.33800- 4 1.40000+ 1 2.98839- 4 6.97600- 4 1.60000+ 1 1.95530- 3 2.72560- 3 2.10000+ 1 9.27158- 4 3.32139- 3 2.20000+ 1 6.98828- 3 3.35956- 3 2.70000+ 1 4.74519- 4 3.74144- 3 3.20000+ 1 1.89010- 4 3.93197- 3 3.30000+ 1 1.45590- 3 3.93909- 3 4.10000+ 1 8.90218- 5 3.98565- 3 5.80000+ 1 1.21490- 5 4.03023- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.57711- 2 1.75250- 4 1.30000+ 1 2.50000+ 1 2.29802- 2 1.85110- 4 1.30000+ 1 2.70000+ 1 3.21118- 3 2.39040- 4 1.30000+ 1 2.90000+ 1 3.02648- 3 2.96370- 4 1.30000+ 1 3.00000+ 1 9.07743- 3 3.44390- 4 1.30000+ 1 3.20000+ 1 1.71043- 3 4.29570- 4 1.30000+ 1 3.30000+ 1 1.88920- 3 4.36690- 4 1.30000+ 1 4.10000+ 1 6.18035- 4 4.83250- 4 1.30000+ 1 4.30000+ 1 5.04612- 4 5.00280- 4 1.30000+ 1 4.40000+ 1 1.38730- 3 5.08790- 4 1.30000+ 1 4.60000+ 1 2.54625- 5 5.28180- 4 1.30000+ 1 4.70000+ 1 2.66192- 5 5.28820- 4 1.30000+ 1 5.80000+ 1 6.98288- 5 5.27830- 4 1.40000+ 1 2.10000+ 1 4.40432- 2 0.00000+ 0 1.40000+ 1 2.20000+ 1 6.35763- 2 2.09600- 5 1.40000+ 1 2.40000+ 1 1.93691- 1 3.39050- 4 1.40000+ 1 2.50000+ 1 2.33757- 1 3.48910- 4 1.40000+ 1 2.70000+ 1 1.94345- 2 4.02840- 4 1.40000+ 1 2.90000+ 1 2.03007- 2 4.60170- 4 1.40000+ 1 3.00000+ 1 2.21333- 2 5.08190- 4 1.40000+ 1 3.20000+ 1 7.17254- 3 5.93370- 4 1.40000+ 1 3.30000+ 1 1.04632- 2 6.00490- 4 1.40000+ 1 4.10000+ 1 3.83586- 3 6.47050- 4 1.40000+ 1 4.30000+ 1 3.39689- 3 6.64080- 4 1.40000+ 1 4.40000+ 1 3.46711- 3 6.72590- 4 1.40000+ 1 4.60000+ 1 1.05320- 4 6.91980- 4 1.40000+ 1 4.70000+ 1 1.44478- 4 6.92620- 4 1.40000+ 1 5.80000+ 1 4.46929- 4 6.91630- 4 1.60000+ 1 1.60000+ 1 1.51563- 4 1.41500- 3 1.60000+ 1 1.80000+ 1 4.61466- 4 1.56330- 3 1.60000+ 1 1.90000+ 1 1.08045- 2 1.76944- 3 1.60000+ 1 2.10000+ 1 6.70168- 4 2.01079- 3 1.60000+ 1 2.20000+ 1 8.65726- 4 2.04896- 3 1.60000+ 1 2.40000+ 1 2.25791- 3 2.36705- 3 1.60000+ 1 2.50000+ 1 4.09111- 3 2.37691- 3 1.60000+ 1 2.70000+ 1 6.01721- 5 2.43084- 3 1.60000+ 1 2.90000+ 1 6.54390- 5 2.48817- 3 1.60000+ 1 3.00000+ 1 1.53595- 3 2.53619- 3 1.60000+ 1 3.20000+ 1 1.03045- 4 2.62137- 3 1.60000+ 1 3.30000+ 1 1.29749- 4 2.62849- 3 1.60000+ 1 4.10000+ 1 1.16585- 5 2.67505- 3 1.60000+ 1 4.30000+ 1 1.01542- 5 2.69208- 3 1.60000+ 1 4.40000+ 1 2.29798- 4 2.70059- 3 1.60000+ 1 4.60000+ 1 1.50429- 6 2.71998- 3 1.60000+ 1 4.70000+ 1 1.50429- 6 2.72062- 3 1.60000+ 1 5.80000+ 1 1.50429- 6 2.71963- 3 1.80000+ 1 1.80000+ 1 1.88038- 6 1.71160- 3 1.80000+ 1 1.90000+ 1 1.36364- 2 1.91774- 3 1.80000+ 1 2.10000+ 1 3.06503- 4 2.15909- 3 1.80000+ 1 2.20000+ 1 3.07927- 3 2.19726- 3 1.80000+ 1 2.40000+ 1 1.65131- 3 2.51535- 3 1.80000+ 1 2.50000+ 1 8.41688- 3 2.52521- 3 1.80000+ 1 2.70000+ 1 8.76259- 5 2.57914- 3 1.80000+ 1 2.90000+ 1 1.88038- 6 2.63647- 3 1.80000+ 1 3.00000+ 1 1.98915- 3 2.68449- 3 1.80000+ 1 3.20000+ 1 5.45303- 5 2.76967- 3 1.80000+ 1 3.30000+ 1 4.41904- 4 2.77679- 3 1.80000+ 1 4.10000+ 1 1.65474- 5 2.82335- 3 1.80000+ 1 4.30000+ 1 3.76074- 7 2.84038- 3 1.80000+ 1 4.40000+ 1 2.98985- 4 2.84889- 3 1.80000+ 1 4.60000+ 1 7.52148- 7 2.86828- 3 1.80000+ 1 4.70000+ 1 6.01711- 6 2.86892- 3 1.80000+ 1 5.80000+ 1 1.88038- 6 2.86793- 3 1.90000+ 1 1.90000+ 1 1.73301- 2 2.12388- 3 1.90000+ 1 2.10000+ 1 2.58086- 2 2.36523- 3 1.90000+ 1 2.20000+ 1 3.34630- 2 2.40340- 3 1.90000+ 1 2.40000+ 1 2.41977- 2 2.72149- 3 1.90000+ 1 2.50000+ 1 2.76249- 2 2.73135- 3 1.90000+ 1 2.70000+ 1 2.60967- 3 2.78528- 3 1.90000+ 1 2.90000+ 1 3.04910- 3 2.84261- 3 1.90000+ 1 3.00000+ 1 6.37219- 3 2.89063- 3 1.90000+ 1 3.20000+ 1 4.49136- 3 2.97581- 3 1.90000+ 1 3.30000+ 1 5.83460- 3 2.98293- 3 1.90000+ 1 4.10000+ 1 5.25744- 4 3.02949- 3 1.90000+ 1 4.30000+ 1 5.27252- 4 3.04652- 3 1.90000+ 1 4.40000+ 1 1.00450- 3 3.05503- 3 1.90000+ 1 4.60000+ 1 6.80682- 5 3.07442- 3 1.90000+ 1 4.70000+ 1 8.23599- 5 3.07506- 3 1.90000+ 1 5.80000+ 1 6.05464- 5 3.07407- 3 2.10000+ 1 2.10000+ 1 1.77885- 4 2.60658- 3 2.10000+ 1 2.20000+ 1 4.30457- 3 2.64475- 3 2.10000+ 1 2.40000+ 1 6.90466- 4 2.96284- 3 2.10000+ 1 2.50000+ 1 7.86892- 3 2.97270- 3 2.10000+ 1 2.70000+ 1 8.46165- 5 3.02663- 3 2.10000+ 1 2.90000+ 1 1.84277- 5 3.08396- 3 2.10000+ 1 3.00000+ 1 3.67542- 3 3.13198- 3 2.10000+ 1 3.20000+ 1 5.07697- 5 3.21716- 3 2.10000+ 1 3.30000+ 1 6.55480- 4 3.22428- 3 2.10000+ 1 4.10000+ 1 1.50425- 5 3.27084- 3 2.10000+ 1 4.30000+ 1 2.63235- 6 3.28787- 3 2.10000+ 1 4.40000+ 1 5.49071- 4 3.29638- 3 2.10000+ 1 4.60000+ 1 7.52139- 7 3.31577- 3 2.10000+ 1 4.70000+ 1 9.02575- 6 3.31641- 3 2.10000+ 1 5.80000+ 1 1.88036- 6 3.31542- 3 2.20000+ 1 2.20000+ 1 1.84771- 3 2.68292- 3 2.20000+ 1 2.40000+ 1 6.28868- 3 3.00101- 3 2.20000+ 1 2.50000+ 1 5.16533- 3 3.01087- 3 2.20000+ 1 2.70000+ 1 1.17711- 4 3.06480- 3 2.20000+ 1 2.90000+ 1 3.14758- 4 3.12213- 3 2.20000+ 1 3.00000+ 1 4.70008- 3 3.17015- 3 2.20000+ 1 3.20000+ 1 6.44580- 4 3.25533- 3 2.20000+ 1 3.30000+ 1 5.67493- 4 3.26245- 3 2.20000+ 1 4.10000+ 1 2.14358- 5 3.30901- 3 2.20000+ 1 4.30000+ 1 4.70090- 5 3.32604- 3 2.20000+ 1 4.40000+ 1 7.00227- 4 3.33455- 3 2.20000+ 1 4.60000+ 1 9.40182- 6 3.35394- 3 2.20000+ 1 4.70000+ 1 7.89732- 6 3.35458- 3 2.20000+ 1 5.80000+ 1 2.63232- 6 3.35359- 3 2.40000+ 1 2.40000+ 1 1.06881- 3 3.31910- 3 2.40000+ 1 2.50000+ 1 2.76963- 2 3.32896- 3 2.40000+ 1 2.70000+ 1 2.50852- 4 3.38289- 3 2.40000+ 1 2.90000+ 1 2.99730- 4 3.44022- 3 2.40000+ 1 3.00000+ 1 3.27794- 3 3.48824- 3 2.40000+ 1 3.20000+ 1 1.39522- 4 3.57342- 3 2.40000+ 1 3.30000+ 1 1.02705- 3 3.58054- 3 2.40000+ 1 4.10000+ 1 4.43773- 5 3.62710- 3 2.40000+ 1 4.30000+ 1 4.96426- 5 3.64413- 3 2.40000+ 1 4.40000+ 1 4.86260- 4 3.65264- 3 2.40000+ 1 4.60000+ 1 2.25636- 6 3.67203- 3 2.40000+ 1 4.70000+ 1 1.42907- 5 3.67267- 3 2.40000+ 1 5.80000+ 1 4.88892- 6 3.67168- 3 2.50000+ 1 2.50000+ 1 1.10073- 2 3.33882- 3 2.50000+ 1 2.70000+ 1 4.23076- 4 3.39275- 3 2.50000+ 1 2.90000+ 1 1.50509- 3 3.45008- 3 2.50000+ 1 3.00000+ 1 3.90891- 3 3.49810- 3 2.50000+ 1 3.20000+ 1 1.35313- 3 3.58328- 3 2.50000+ 1 3.30000+ 1 9.20628- 4 3.59040- 3 2.50000+ 1 4.10000+ 1 7.25836- 5 3.63696- 3 2.50000+ 1 4.30000+ 1 2.50075- 4 3.65399- 3 2.50000+ 1 4.40000+ 1 5.87420- 4 3.66250- 3 2.50000+ 1 4.60000+ 1 2.03086- 5 3.68189- 3 2.50000+ 1 4.70000+ 1 1.31626- 5 3.68253- 3 2.50000+ 1 5.80000+ 1 8.27363- 6 3.68154- 3 2.70000+ 1 2.70000+ 1 6.76935- 6 3.44668- 3 2.70000+ 1 2.90000+ 1 1.31627- 5 3.50401- 3 2.70000+ 1 3.00000+ 1 3.72681- 4 3.55203- 3 2.70000+ 1 3.20000+ 1 1.42908- 5 3.63721- 3 2.70000+ 1 3.30000+ 1 1.84280- 5 3.64433- 3 2.70000+ 1 4.10000+ 1 2.63239- 6 3.69089- 3 2.70000+ 1 4.30000+ 1 2.25638- 6 3.70792- 3 2.70000+ 1 4.40000+ 1 5.56597- 5 3.71643- 3 2.70000+ 1 4.60000+ 1 3.76076- 7 3.73582- 3 2.70000+ 1 4.70000+ 1 3.76076- 7 3.73646- 3 2.70000+ 1 5.80000+ 1 3.76076- 7 3.73547- 3 2.90000+ 1 3.00000+ 1 4.47618- 4 3.60936- 3 2.90000+ 1 3.20000+ 1 3.00931- 6 3.69454- 3 2.90000+ 1 3.30000+ 1 4.77707- 5 3.70166- 3 2.90000+ 1 4.10000+ 1 2.63288- 6 3.74822- 3 2.90000+ 1 4.40000+ 1 6.73298- 5 3.77376- 3 2.90000+ 1 4.70000+ 1 7.52290- 7 3.79379- 3 2.90000+ 1 5.80000+ 1 3.76145- 7 3.79280- 3 3.00000+ 1 3.00000+ 1 5.55456- 4 3.65738- 3 3.00000+ 1 3.20000+ 1 6.42728- 4 3.74256- 3 3.00000+ 1 3.30000+ 1 8.22851- 4 3.74968- 3 3.00000+ 1 4.10000+ 1 7.52153- 5 3.79624- 3 3.00000+ 1 4.30000+ 1 7.74720- 5 3.81327- 3 3.00000+ 1 4.40000+ 1 1.73385- 4 3.82178- 3 3.00000+ 1 4.60000+ 1 9.77809- 6 3.84117- 3 3.00000+ 1 4.70000+ 1 1.16584- 5 3.84181- 3 3.00000+ 1 5.80000+ 1 8.64988- 6 3.84082- 3 3.20000+ 1 3.20000+ 1 3.76076- 6 3.82774- 3 3.20000+ 1 3.30000+ 1 1.06054- 4 3.83486- 3 3.20000+ 1 4.10000+ 1 2.63239- 6 3.88142- 3 3.20000+ 1 4.30000+ 1 3.76076- 7 3.89845- 3 3.20000+ 1 4.40000+ 1 9.62758- 5 3.90696- 3 3.20000+ 1 4.70000+ 1 1.50427- 6 3.92699- 3 3.20000+ 1 5.80000+ 1 3.76076- 7 3.92600- 3 3.30000+ 1 3.30000+ 1 4.58820- 5 3.84198- 3 3.30000+ 1 4.10000+ 1 3.38470- 6 3.88854- 3 3.30000+ 1 4.30000+ 1 7.14523- 6 3.90557- 3 3.30000+ 1 4.40000+ 1 1.22599- 4 3.91408- 3 3.30000+ 1 4.60000+ 1 1.50425- 6 3.93347- 3 3.30000+ 1 4.70000+ 1 1.12821- 6 3.93411- 3 3.30000+ 1 5.80000+ 1 3.76070- 7 3.93312- 3 4.10000+ 1 4.10000+ 1 3.45374- 7 3.93510- 3 4.10000+ 1 4.30000+ 1 3.45374- 7 3.95213- 3 4.10000+ 1 4.40000+ 1 1.03612- 5 3.96064- 3 4.30000+ 1 4.40000+ 1 1.05620- 5 3.97767- 3 4.40000+ 1 4.40000+ 1 1.11675- 5 3.98618- 3 4.40000+ 1 4.60000+ 1 1.24080- 6 4.00557- 3 4.40000+ 1 4.70000+ 1 1.55104- 6 4.00621- 3 4.40000+ 1 5.80000+ 1 9.30622- 7 4.00522- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.22890- 3 2.34010- 3 1.90000+ 1 2.06170- 4 2.54624- 3 2.40000+ 1 4.90380- 2 3.14385- 3 2.90000+ 1 5.39140- 4 3.26497- 3 3.00000+ 1 4.84660- 5 3.31299- 3 4.30000+ 1 8.40190- 5 3.46888- 3 4.40000+ 1 7.25190- 6 3.47739- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 5.10805- 2 5.95700- 5 1.40000+ 1 3.30000+ 1 7.41299- 3 6.66900- 5 1.40000+ 1 4.10000+ 1 1.05243- 3 1.13250- 4 1.40000+ 1 4.30000+ 1 5.40919- 4 1.30280- 4 1.40000+ 1 4.40000+ 1 1.14475- 3 1.38790- 4 1.40000+ 1 4.60000+ 1 7.51760- 4 1.58180- 4 1.40000+ 1 4.70000+ 1 1.02953- 4 1.58820- 4 1.40000+ 1 5.80000+ 1 1.17667- 4 1.57830- 4 1.60000+ 1 1.60000+ 1 1.06225- 5 8.81200- 4 1.60000+ 1 1.80000+ 1 8.59623- 4 1.02950- 3 1.60000+ 1 1.90000+ 1 7.67289- 4 1.23564- 3 1.60000+ 1 2.10000+ 1 2.96533- 2 1.47699- 3 1.60000+ 1 2.20000+ 1 3.45971- 3 1.51516- 3 1.60000+ 1 2.40000+ 1 1.60374- 2 1.83325- 3 1.60000+ 1 2.50000+ 1 3.84295- 3 1.84311- 3 1.60000+ 1 2.70000+ 1 1.63427- 5 1.89704- 3 1.60000+ 1 2.90000+ 1 1.61791- 4 1.95437- 3 1.60000+ 1 3.00000+ 1 1.12769- 4 2.00239- 3 1.60000+ 1 3.20000+ 1 3.56422- 3 2.08757- 3 1.60000+ 1 3.30000+ 1 4.43688- 4 2.09469- 3 1.60000+ 1 4.10000+ 1 3.26844- 6 2.14125- 3 1.60000+ 1 4.30000+ 1 2.69652- 5 2.15828- 3 1.60000+ 1 4.40000+ 1 1.71588- 5 2.16679- 3 1.60000+ 1 4.60000+ 1 5.14802- 5 2.18618- 3 1.60000+ 1 4.70000+ 1 5.71974- 6 2.18682- 3 1.60000+ 1 5.80000+ 1 8.17135- 7 2.18583- 3 1.80000+ 1 1.80000+ 1 4.44517- 4 1.17780- 3 1.80000+ 1 1.90000+ 1 3.57498- 3 1.38394- 3 1.80000+ 1 2.10000+ 1 2.68588- 2 1.62529- 3 1.80000+ 1 2.20000+ 1 1.62444- 3 1.66346- 3 1.80000+ 1 2.40000+ 1 1.14593- 2 1.98155- 3 1.80000+ 1 2.50000+ 1 6.07613- 3 1.99141- 3 1.80000+ 1 2.70000+ 1 1.20115- 4 2.04534- 3 1.80000+ 1 2.90000+ 1 1.66698- 4 2.10267- 3 1.80000+ 1 3.00000+ 1 5.87485- 4 2.15069- 3 1.80000+ 1 3.20000+ 1 3.19484- 3 2.23587- 3 1.80000+ 1 3.30000+ 1 2.37780- 4 2.24299- 3 1.80000+ 1 4.10000+ 1 2.20616- 5 2.28955- 3 1.80000+ 1 4.30000+ 1 2.77819- 5 2.30658- 3 1.80000+ 1 4.40000+ 1 9.06998- 5 2.31509- 3 1.80000+ 1 4.60000+ 1 4.57585- 5 2.33448- 3 1.80000+ 1 4.70000+ 1 3.26841- 6 2.33512- 3 1.80000+ 1 5.80000+ 1 2.45138- 6 2.33413- 3 1.90000+ 1 1.90000+ 1 1.25015- 3 1.59008- 3 1.90000+ 1 2.10000+ 1 5.20177- 2 1.83143- 3 1.90000+ 1 2.20000+ 1 1.98150- 3 1.86960- 3 1.90000+ 1 2.40000+ 1 2.30842- 3 2.18769- 3 1.90000+ 1 2.50000+ 1 1.76912- 3 2.19755- 3 1.90000+ 1 2.70000+ 1 1.39720- 4 2.25148- 3 1.90000+ 1 2.90000+ 1 4.98462- 4 2.30881- 3 1.90000+ 1 3.00000+ 1 3.92208- 4 2.35683- 3 1.90000+ 1 3.20000+ 1 6.26321- 3 2.44201- 3 1.90000+ 1 3.30000+ 1 2.68016- 4 2.44913- 3 1.90000+ 1 4.10000+ 1 2.61481- 5 2.49569- 3 1.90000+ 1 4.30000+ 1 7.92594- 5 2.51272- 3 1.90000+ 1 4.40000+ 1 5.96515- 5 2.52123- 3 1.90000+ 1 4.60000+ 1 8.98848- 5 2.54062- 3 1.90000+ 1 4.70000+ 1 3.26845- 6 2.54126- 3 1.90000+ 1 5.80000+ 1 3.26845- 6 2.54027- 3 2.10000+ 1 2.10000+ 1 4.79361- 2 2.07278- 3 2.10000+ 1 2.20000+ 1 9.40615- 2 2.11095- 3 2.10000+ 1 2.40000+ 1 5.61073- 2 2.42904- 3 2.10000+ 1 2.50000+ 1 6.65512- 2 2.43890- 3 2.10000+ 1 2.70000+ 1 6.52145- 3 2.49283- 3 2.10000+ 1 2.90000+ 1 6.06048- 3 2.55016- 3 2.10000+ 1 3.00000+ 1 1.13423- 2 2.59818- 3 2.10000+ 1 3.20000+ 1 1.42326- 2 2.68336- 3 2.10000+ 1 3.30000+ 1 1.62078- 2 2.69048- 3 2.10000+ 1 4.10000+ 1 1.29763- 3 2.73704- 3 2.10000+ 1 4.30000+ 1 1.04995- 3 2.75407- 3 2.10000+ 1 4.40000+ 1 1.83356- 3 2.76258- 3 2.10000+ 1 4.60000+ 1 2.11634- 4 2.78197- 3 2.10000+ 1 4.70000+ 1 2.27985- 4 2.78261- 3 2.10000+ 1 5.80000+ 1 1.48712- 4 2.78162- 3 2.20000+ 1 2.20000+ 1 1.48554- 3 2.14912- 3 2.20000+ 1 2.40000+ 1 6.55996- 2 2.46721- 3 2.20000+ 1 2.50000+ 1 3.13299- 3 2.47707- 3 2.20000+ 1 2.70000+ 1 3.84046- 4 2.53100- 3 2.20000+ 1 2.90000+ 1 2.12458- 4 2.58833- 3 2.20000+ 1 3.00000+ 1 3.44830- 4 2.63635- 3 2.20000+ 1 3.20000+ 1 1.13681- 2 2.72153- 3 2.20000+ 1 3.30000+ 1 4.16717- 4 2.72865- 3 2.20000+ 1 4.10000+ 1 6.78207- 5 2.77521- 3 2.20000+ 1 4.30000+ 1 3.43184- 5 2.79224- 3 2.20000+ 1 4.40000+ 1 5.31131- 5 2.80075- 3 2.20000+ 1 4.60000+ 1 1.63427- 4 2.82014- 3 2.20000+ 1 4.70000+ 1 5.71972- 6 2.82078- 3 2.20000+ 1 5.80000+ 1 7.35419- 6 2.81979- 3 2.40000+ 1 2.40000+ 1 6.44691- 2 2.78530- 3 2.40000+ 1 2.50000+ 1 1.85107- 1 2.79516- 3 2.40000+ 1 2.70000+ 1 3.75232- 3 2.84909- 3 2.40000+ 1 2.90000+ 1 2.06663- 3 2.90642- 3 2.40000+ 1 3.00000+ 1 5.20518- 4 2.95444- 3 2.40000+ 1 3.20000+ 1 7.41955- 3 3.03962- 3 2.40000+ 1 3.30000+ 1 1.07457- 2 3.04674- 3 2.40000+ 1 4.10000+ 1 7.52594- 4 3.09330- 3 2.40000+ 1 4.30000+ 1 3.50542- 4 3.11033- 3 2.40000+ 1 4.40000+ 1 8.49828- 5 3.11884- 3 2.40000+ 1 4.60000+ 1 1.09500- 4 3.13823- 3 2.40000+ 1 4.70000+ 1 1.51989- 4 3.13887- 3 2.40000+ 1 5.80000+ 1 8.98870- 5 3.13788- 3 2.50000+ 1 2.50000+ 1 4.29189- 3 2.80502- 3 2.50000+ 1 2.70000+ 1 7.04200- 4 2.85895- 3 2.50000+ 1 2.90000+ 1 6.29377- 4 2.91628- 3 2.50000+ 1 3.00000+ 1 3.89497- 4 2.96430- 3 2.50000+ 1 3.20000+ 1 8.19946- 3 3.04948- 3 2.50000+ 1 3.30000+ 1 5.34519- 4 3.05660- 3 2.50000+ 1 4.10000+ 1 1.30434- 4 3.10316- 3 2.50000+ 1 4.30000+ 1 9.39521- 5 3.12019- 3 2.50000+ 1 4.40000+ 1 6.20256- 5 3.12870- 3 2.50000+ 1 4.60000+ 1 1.16752- 4 3.14809- 3 2.50000+ 1 4.70000+ 1 7.29748- 6 3.14873- 3 2.50000+ 1 5.80000+ 1 1.45952- 5 3.14774- 3 2.70000+ 1 2.70000+ 1 1.63889- 6 2.91288- 3 2.70000+ 1 2.90000+ 1 2.54026- 5 2.97021- 3 2.70000+ 1 3.00000+ 1 2.13059- 5 3.01823- 3 2.70000+ 1 3.20000+ 1 7.92396- 4 3.10341- 3 2.70000+ 1 3.30000+ 1 5.49019- 5 3.11053- 3 2.70000+ 1 4.10000+ 1 8.19442- 7 3.15709- 3 2.70000+ 1 4.30000+ 1 4.09702- 6 3.17412- 3 2.70000+ 1 4.40000+ 1 3.27767- 6 3.18263- 3 2.70000+ 1 4.60000+ 1 1.14718- 5 3.20202- 3 2.70000+ 1 4.70000+ 1 8.19442- 7 3.20266- 3 2.90000+ 1 2.90000+ 1 1.71589- 5 3.02754- 3 2.90000+ 1 3.00000+ 1 8.82513- 5 3.07556- 3 2.90000+ 1 3.20000+ 1 7.24796- 4 3.16074- 3 2.90000+ 1 3.30000+ 1 3.59538- 5 3.16786- 3 2.90000+ 1 4.10000+ 1 4.90265- 6 3.21442- 3 2.90000+ 1 4.30000+ 1 5.71978- 6 3.23145- 3 2.90000+ 1 4.40000+ 1 1.38907- 5 3.23996- 3 2.90000+ 1 4.60000+ 1 1.06225- 5 3.25935- 3 2.90000+ 1 4.70000+ 1 8.17140- 7 3.25999- 3 2.90000+ 1 5.80000+ 1 8.17140- 7 3.25900- 3 3.00000+ 1 3.00000+ 1 3.18689- 5 3.12358- 3 3.00000+ 1 3.20000+ 1 1.37535- 3 3.20876- 3 3.00000+ 1 3.30000+ 1 4.98486- 5 3.21588- 3 3.00000+ 1 4.10000+ 1 4.08568- 6 3.26244- 3 3.00000+ 1 4.30000+ 1 1.38913- 5 3.27947- 3 3.00000+ 1 4.40000+ 1 9.80580- 6 3.28798- 3 3.00000+ 1 4.60000+ 1 1.96127- 5 3.30737- 3 3.00000+ 1 4.70000+ 1 8.17175- 7 3.30801- 3 3.00000+ 1 5.80000+ 1 8.17175- 7 3.30702- 3 3.20000+ 1 3.20000+ 1 1.01574- 3 3.29394- 3 3.20000+ 1 3.30000+ 1 1.97089- 3 3.30106- 3 3.20000+ 1 4.10000+ 1 1.56883- 4 3.34762- 3 3.20000+ 1 4.30000+ 1 1.25838- 4 3.36465- 3 3.20000+ 1 4.40000+ 1 2.22254- 4 3.37316- 3 3.20000+ 1 4.60000+ 1 3.02332- 5 3.39255- 3 3.20000+ 1 4.70000+ 1 2.77821- 5 3.39319- 3 3.20000+ 1 5.80000+ 1 1.79767- 5 3.39220- 3 3.30000+ 1 3.30000+ 1 5.72769- 5 3.30818- 3 3.30000+ 1 4.10000+ 1 1.90914- 5 3.35474- 3 3.30000+ 1 4.30000+ 1 1.11366- 5 3.37177- 3 3.30000+ 1 4.40000+ 1 1.43190- 5 3.38028- 3 3.30000+ 1 4.60000+ 1 5.56841- 5 3.39967- 3 3.30000+ 1 4.70000+ 1 1.59100- 6 3.40031- 3 3.30000+ 1 5.80000+ 1 1.59100- 6 3.39932- 3 4.10000+ 1 4.30000+ 1 6.11300- 7 3.41833- 3 4.10000+ 1 4.40000+ 1 6.11300- 7 3.42684- 3 4.10000+ 1 4.60000+ 1 1.83390- 6 3.44623- 3 4.30000+ 1 4.30000+ 1 4.93950- 7 3.43536- 3 4.30000+ 1 4.40000+ 1 1.48185- 6 3.44387- 3 4.30000+ 1 4.60000+ 1 9.87901- 7 3.46326- 3 4.40000+ 1 4.40000+ 1 4.54991- 7 3.45238- 3 4.40000+ 1 4.60000+ 1 1.81991- 6 3.47177- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.55459- 3 2.38244- 3 2.40000+ 1 2.35539- 3 2.98005- 3 2.50000+ 1 4.61037- 2 2.98991- 3 3.00000+ 1 3.63188- 4 3.14919- 3 4.40000+ 1 5.43257- 5 3.31359- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.40445- 6 7.17400- 4 1.60000+ 1 1.80000+ 1 2.48461- 4 8.65700- 4 1.60000+ 1 1.90000+ 1 1.65205- 3 1.07184- 3 1.60000+ 1 2.10000+ 1 3.16495- 3 1.31319- 3 1.60000+ 1 2.20000+ 1 3.25748- 2 1.35136- 3 1.60000+ 1 2.40000+ 1 4.16125- 3 1.66945- 3 1.60000+ 1 2.50000+ 1 1.67793- 2 1.67931- 3 1.60000+ 1 2.70000+ 1 1.23403- 5 1.73324- 3 1.60000+ 1 2.90000+ 1 1.72772- 5 1.79057- 3 1.60000+ 1 3.00000+ 1 2.49274- 4 1.83859- 3 1.60000+ 1 3.20000+ 1 3.73510- 4 1.92377- 3 1.60000+ 1 3.30000+ 1 3.90301- 3 1.93089- 3 1.60000+ 1 4.10000+ 1 3.29080- 6 1.97745- 3 1.60000+ 1 4.30000+ 1 2.46815- 6 1.99448- 3 1.60000+ 1 4.40000+ 1 3.78439- 5 2.00299- 3 1.60000+ 1 4.60000+ 1 5.75885- 6 2.02238- 3 1.60000+ 1 4.70000+ 1 5.26536- 5 2.02302- 3 1.80000+ 1 1.80000+ 1 4.93607- 6 1.01400- 3 1.80000+ 1 1.90000+ 1 4.88102- 3 1.22014- 3 1.80000+ 1 2.10000+ 1 2.37768- 4 1.46149- 3 1.80000+ 1 2.20000+ 1 3.36268- 2 1.49966- 3 1.80000+ 1 2.40000+ 1 2.29200- 3 1.81775- 3 1.80000+ 1 2.50000+ 1 9.85339- 3 1.82761- 3 1.80000+ 1 2.70000+ 1 3.20847- 5 1.88154- 3 1.80000+ 1 2.90000+ 1 1.64539- 6 1.93887- 3 1.80000+ 1 3.00000+ 1 7.38783- 4 1.98689- 3 1.80000+ 1 3.20000+ 1 6.58175- 6 2.07207- 3 1.80000+ 1 3.30000+ 1 4.02208- 3 2.07919- 3 1.80000+ 1 4.10000+ 1 5.75880- 6 2.12575- 3 1.80000+ 1 4.30000+ 1 8.22714- 7 2.14278- 3 1.80000+ 1 4.40000+ 1 1.11888- 4 2.15129- 3 1.80000+ 1 4.70000+ 1 5.42974- 5 2.17132- 3 1.80000+ 1 5.80000+ 1 8.22714- 7 2.17033- 3 1.90000+ 1 1.90000+ 1 3.06789- 3 1.42628- 3 1.90000+ 1 2.10000+ 1 3.05132- 3 1.66763- 3 1.90000+ 1 2.20000+ 1 4.90659- 2 1.70580- 3 1.90000+ 1 2.40000+ 1 2.03537- 3 2.02389- 3 1.90000+ 1 2.50000+ 1 3.39297- 3 2.03375- 3 1.90000+ 1 2.70000+ 1 3.15923- 4 2.08768- 3 1.90000+ 1 2.90000+ 1 6.33481- 4 2.14501- 3 1.90000+ 1 3.00000+ 1 9.53548- 4 2.19303- 3 1.90000+ 1 3.20000+ 1 4.53309- 4 2.27821- 3 1.90000+ 1 3.30000+ 1 5.83555- 3 2.28533- 3 1.90000+ 1 4.10000+ 1 6.08806- 5 2.33189- 3 1.90000+ 1 4.30000+ 1 9.95523- 5 2.34892- 3 1.90000+ 1 4.40000+ 1 1.45629- 4 2.35743- 3 1.90000+ 1 4.60000+ 1 6.58185- 6 2.37682- 3 1.90000+ 1 4.70000+ 1 7.81569- 5 2.37746- 3 1.90000+ 1 5.80000+ 1 6.58185- 6 2.37647- 3 2.10000+ 1 2.10000+ 1 6.68045- 4 1.90898- 3 2.10000+ 1 2.20000+ 1 6.94981- 2 1.94715- 3 2.10000+ 1 2.40000+ 1 2.84495- 3 2.26524- 3 2.10000+ 1 2.50000+ 1 3.93358- 2 2.27510- 3 2.10000+ 1 2.70000+ 1 3.27447- 4 2.32903- 3 2.10000+ 1 2.90000+ 1 6.25261- 5 2.38636- 3 2.10000+ 1 3.00000+ 1 4.79652- 4 2.43438- 3 2.10000+ 1 3.20000+ 1 1.80994- 4 2.51956- 3 2.10000+ 1 3.30000+ 1 8.37932- 3 2.52668- 3 2.10000+ 1 4.10000+ 1 5.67669- 5 2.57324- 3 2.10000+ 1 4.30000+ 1 1.06951- 5 2.59027- 3 2.10000+ 1 4.40000+ 1 7.32230- 5 2.59878- 3 2.10000+ 1 4.60000+ 1 2.46817- 6 2.61817- 3 2.10000+ 1 4.70000+ 1 1.12713- 4 2.61881- 3 2.10000+ 1 5.80000+ 1 6.58186- 6 2.61782- 3 2.20000+ 1 2.20000+ 1 7.69105- 2 1.98532- 3 2.20000+ 1 2.40000+ 1 6.18092- 2 2.30341- 3 2.20000+ 1 2.50000+ 1 9.94820- 2 2.31327- 3 2.20000+ 1 2.70000+ 1 6.81703- 3 2.36720- 3 2.20000+ 1 2.90000+ 1 7.23009- 3 2.42453- 3 2.20000+ 1 3.00000+ 1 1.07931- 2 2.47255- 3 2.20000+ 1 3.20000+ 1 1.19218- 2 2.55773- 3 2.20000+ 1 3.30000+ 1 2.25214- 2 2.56485- 3 2.20000+ 1 4.10000+ 1 1.34837- 3 2.61141- 3 2.20000+ 1 4.30000+ 1 1.24147- 3 2.62844- 3 2.20000+ 1 4.40000+ 1 1.74744- 3 2.63695- 3 2.20000+ 1 4.60000+ 1 1.80169- 4 2.65634- 3 2.20000+ 1 4.70000+ 1 3.11001- 4 2.65698- 3 2.20000+ 1 5.80000+ 1 1.54672- 4 2.65599- 3 2.40000+ 1 2.40000+ 1 5.35440- 3 2.62150- 3 2.40000+ 1 2.50000+ 1 1.70248- 1 2.63136- 3 2.40000+ 1 2.70000+ 1 7.53620- 4 2.68529- 3 2.40000+ 1 2.90000+ 1 4.54135- 4 2.74262- 3 2.40000+ 1 3.00000+ 1 3.77648- 4 2.79064- 3 2.40000+ 1 3.20000+ 1 4.71441- 4 2.87582- 3 2.40000+ 1 3.30000+ 1 7.03189- 3 2.88294- 3 2.40000+ 1 4.10000+ 1 1.43163- 4 2.92950- 3 2.40000+ 1 4.30000+ 1 7.73367- 5 2.94653- 3 2.40000+ 1 4.40000+ 1 5.92377- 5 2.95504- 3 2.40000+ 1 4.60000+ 1 7.40469- 6 2.97443- 3 2.40000+ 1 4.70000+ 1 9.37912- 5 2.97507- 3 2.40000+ 1 5.80000+ 1 1.64545- 5 2.97408- 3 2.50000+ 1 2.50000+ 1 1.16265- 1 2.64122- 3 2.50000+ 1 2.70000+ 1 3.86353- 3 2.69515- 3 2.50000+ 1 2.90000+ 1 2.15798- 3 2.75248- 3 2.50000+ 1 3.00000+ 1 7.14945- 4 2.80050- 3 2.50000+ 1 3.20000+ 1 6.28325- 3 2.88568- 3 2.50000+ 1 3.30000+ 1 1.35505- 2 2.89280- 3 2.50000+ 1 4.10000+ 1 7.73360- 4 2.93936- 3 2.50000+ 1 4.30000+ 1 3.72676- 4 2.95639- 3 2.50000+ 1 4.40000+ 1 1.15997- 4 2.96490- 3 2.50000+ 1 4.60000+ 1 9.46126- 5 2.98429- 3 2.50000+ 1 4.70000+ 1 1.85936- 4 2.98493- 3 2.50000+ 1 5.80000+ 1 9.13229- 5 2.98394- 3 2.70000+ 1 2.70000+ 1 8.36245- 7 2.74908- 3 2.70000+ 1 2.90000+ 1 8.36245- 7 2.80641- 3 2.70000+ 1 3.00000+ 1 5.10111- 5 2.85443- 3 2.70000+ 1 3.20000+ 1 4.51564- 5 2.93961- 3 2.70000+ 1 3.30000+ 1 8.37071- 4 2.94673- 3 2.70000+ 1 4.40000+ 1 7.52617- 6 3.01883- 3 2.70000+ 1 4.60000+ 1 8.36245- 7 3.03822- 3 2.70000+ 1 4.70000+ 1 1.08708- 5 3.03886- 3 2.90000+ 1 3.00000+ 1 1.02841- 4 2.91176- 3 2.90000+ 1 3.20000+ 1 4.11371- 6 2.99694- 3 2.90000+ 1 3.30000+ 1 8.77888- 4 3.00406- 3 2.90000+ 1 4.40000+ 1 1.56328- 5 3.07616- 3 2.90000+ 1 4.70000+ 1 1.15189- 5 3.09619- 3 3.00000+ 1 3.00000+ 1 7.48710- 5 2.95978- 3 3.00000+ 1 3.20000+ 1 7.65154- 5 3.04496- 3 3.00000+ 1 3.30000+ 1 1.29002- 3 3.05208- 3 3.00000+ 1 4.10000+ 1 9.87295- 6 3.09864- 3 3.00000+ 1 4.30000+ 1 1.64547- 5 3.11567- 3 3.00000+ 1 4.40000+ 1 2.30372- 5 3.12418- 3 3.00000+ 1 4.60000+ 1 8.22758- 7 3.14357- 3 3.00000+ 1 4.70000+ 1 1.72780- 5 3.14421- 3 3.00000+ 1 5.80000+ 1 8.22758- 7 3.14322- 3 3.20000+ 1 3.20000+ 1 1.15182- 5 3.13014- 3 3.20000+ 1 3.30000+ 1 1.44716- 3 3.13726- 3 3.20000+ 1 4.10000+ 1 7.40448- 6 3.18382- 3 3.20000+ 1 4.30000+ 1 8.22724- 7 3.20085- 3 3.20000+ 1 4.40000+ 1 1.15182- 5 3.20936- 3 3.20000+ 1 4.70000+ 1 1.97447- 5 3.22939- 3 3.20000+ 1 5.80000+ 1 8.22724- 7 3.22840- 3 3.30000+ 1 3.30000+ 1 1.59199- 3 3.14438- 3 3.30000+ 1 4.10000+ 1 1.62898- 4 3.19094- 3 3.30000+ 1 4.30000+ 1 1.51383- 4 3.20797- 3 3.30000+ 1 4.40000+ 1 2.08975- 4 3.21648- 3 3.30000+ 1 4.60000+ 1 2.22136- 5 3.23587- 3 3.30000+ 1 4.70000+ 1 4.36050- 5 3.23651- 3 3.30000+ 1 5.80000+ 1 1.89229- 5 3.23552- 3 4.10000+ 1 4.40000+ 1 1.13878- 6 3.26304- 3 4.10000+ 1 4.70000+ 1 1.70820- 6 3.28307- 3 4.30000+ 1 4.40000+ 1 2.17909- 6 3.28007- 3 4.30000+ 1 4.70000+ 1 1.45269- 6 3.30010- 3 4.40000+ 1 4.40000+ 1 1.12274- 6 3.28858- 3 4.40000+ 1 4.70000+ 1 1.68414- 6 3.30861- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.53739- 5 1.48300- 4 1.90000+ 1 4.32556- 4 3.54440- 4 2.90000+ 1 3.00233- 4 1.07317- 3 3.00000+ 1 7.76930- 5 1.12119- 3 4.30000+ 1 6.12854- 5 1.27708- 3 4.40000+ 1 1.84495- 5 1.28559- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.56918- 2 4.40700- 5 1.80000+ 1 3.30000+ 1 1.03378- 1 5.11900- 5 1.80000+ 1 4.10000+ 1 9.52044- 3 9.77500- 5 1.80000+ 1 4.30000+ 1 7.70486- 3 1.14780- 4 1.80000+ 1 4.40000+ 1 1.10882- 2 1.23290- 4 1.80000+ 1 4.60000+ 1 8.29750- 4 1.42680- 4 1.80000+ 1 4.70000+ 1 1.21272- 3 1.43320- 4 1.80000+ 1 5.80000+ 1 1.06410- 3 1.42330- 4 1.90000+ 1 2.40000+ 1 6.60672- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 2.19061- 2 5.75000- 6 1.90000+ 1 2.70000+ 1 4.26256- 2 5.96800- 5 1.90000+ 1 2.90000+ 1 5.13728- 2 1.17010- 4 1.90000+ 1 3.00000+ 1 4.74310- 2 1.65030- 4 1.90000+ 1 3.20000+ 1 4.25509- 2 2.50210- 4 1.90000+ 1 3.30000+ 1 5.30355- 2 2.57330- 4 1.90000+ 1 4.10000+ 1 8.41206- 3 3.03890- 4 1.90000+ 1 4.30000+ 1 8.37854- 3 3.20920- 4 1.90000+ 1 4.40000+ 1 7.67096- 3 3.29430- 4 1.90000+ 1 4.60000+ 1 5.98548- 4 3.48820- 4 1.90000+ 1 4.70000+ 1 7.16832- 4 3.49460- 4 1.90000+ 1 5.80000+ 1 9.63608- 4 3.48470- 4 2.10000+ 1 2.40000+ 1 3.95728- 3 2.37240- 4 2.10000+ 1 2.50000+ 1 5.20577- 3 2.47100- 4 2.10000+ 1 2.70000+ 1 1.74915- 2 3.01030- 4 2.10000+ 1 2.90000+ 1 6.09201- 3 3.58360- 4 2.10000+ 1 3.00000+ 1 6.36684- 3 4.06380- 4 2.10000+ 1 3.20000+ 1 2.10464- 3 4.91560- 4 2.10000+ 1 3.30000+ 1 2.90924- 3 4.98680- 4 2.10000+ 1 4.10000+ 1 2.53483- 3 5.45240- 4 2.10000+ 1 4.30000+ 1 9.87341- 4 5.62270- 4 2.10000+ 1 4.40000+ 1 8.45762- 4 5.70780- 4 2.10000+ 1 4.60000+ 1 2.91170- 5 5.90170- 4 2.10000+ 1 4.70000+ 1 3.88226- 5 5.90810- 4 2.10000+ 1 5.80000+ 1 2.77674- 4 5.89820- 4 2.20000+ 1 2.40000+ 1 6.06066- 3 2.75410- 4 2.20000+ 1 2.50000+ 1 7.09867- 3 2.85270- 4 2.20000+ 1 2.70000+ 1 2.44758- 2 3.39200- 4 2.20000+ 1 2.90000+ 1 9.67585- 3 3.96530- 4 2.20000+ 1 3.00000+ 1 7.47679- 3 4.44550- 4 2.20000+ 1 3.20000+ 1 2.30781- 3 5.29730- 4 2.20000+ 1 3.30000+ 1 3.38434- 3 5.36850- 4 2.20000+ 1 4.10000+ 1 3.52258- 3 5.83410- 4 2.20000+ 1 4.30000+ 1 1.38829- 3 6.00440- 4 2.20000+ 1 4.40000+ 1 1.10896- 3 6.08950- 4 2.20000+ 1 4.60000+ 1 3.30346- 5 6.28340- 4 2.20000+ 1 4.70000+ 1 4.53083- 5 6.28980- 4 2.20000+ 1 5.80000+ 1 3.85648- 4 6.27990- 4 2.40000+ 1 2.40000+ 1 9.25561- 3 5.93500- 4 2.40000+ 1 2.50000+ 1 1.76049- 2 6.03360- 4 2.40000+ 1 2.70000+ 1 2.14518- 2 6.57290- 4 2.40000+ 1 2.90000+ 1 3.00396- 3 7.14620- 4 2.40000+ 1 3.00000+ 1 1.25316- 2 7.62640- 4 2.40000+ 1 3.20000+ 1 1.20646- 3 8.47820- 4 2.40000+ 1 3.30000+ 1 7.75919- 4 8.54940- 4 2.40000+ 1 4.10000+ 1 2.64128- 3 9.01500- 4 2.40000+ 1 4.30000+ 1 3.90021- 4 9.18530- 4 2.40000+ 1 4.40000+ 1 1.56192- 3 9.27040- 4 2.40000+ 1 4.60000+ 1 1.71356- 5 9.46430- 4 2.40000+ 1 4.70000+ 1 1.01596- 5 9.47070- 4 2.40000+ 1 5.80000+ 1 2.80985- 4 9.46080- 4 2.50000+ 1 2.50000+ 1 1.52998- 2 6.13220- 4 2.50000+ 1 2.70000+ 1 2.77793- 2 6.67150- 4 2.50000+ 1 2.90000+ 1 1.46271- 3 7.24480- 4 2.50000+ 1 3.00000+ 1 1.34547- 2 7.72500- 4 2.50000+ 1 3.20000+ 1 7.05759- 4 8.57680- 4 2.50000+ 1 3.30000+ 1 1.73204- 3 8.64800- 4 2.50000+ 1 4.10000+ 1 3.40743- 3 9.11360- 4 2.50000+ 1 4.30000+ 1 1.84636- 4 9.28390- 4 2.50000+ 1 4.40000+ 1 1.60727- 3 9.36900- 4 2.50000+ 1 4.60000+ 1 1.01647- 5 9.56290- 4 2.50000+ 1 4.70000+ 1 2.27573- 5 9.56930- 4 2.50000+ 1 5.80000+ 1 3.62144- 4 9.55940- 4 2.70000+ 1 2.70000+ 1 1.65548- 2 7.21080- 4 2.70000+ 1 2.90000+ 1 2.44671- 2 7.78410- 4 2.70000+ 1 3.00000+ 1 3.86826- 2 8.26430- 4 2.70000+ 1 3.20000+ 1 3.75879- 2 9.11610- 4 2.70000+ 1 3.30000+ 1 5.20904- 2 9.18730- 4 2.70000+ 1 4.10000+ 1 5.43869- 3 9.65290- 4 2.70000+ 1 4.30000+ 1 4.23607- 3 9.82320- 4 2.70000+ 1 4.40000+ 1 6.23746- 3 9.90830- 4 2.70000+ 1 4.60000+ 1 5.74724- 4 1.01022- 3 2.70000+ 1 4.70000+ 1 7.39975- 4 1.01086- 3 2.70000+ 1 5.80000+ 1 6.09603- 4 1.00987- 3 2.90000+ 1 2.90000+ 1 1.89775- 3 8.35740- 4 2.90000+ 1 3.00000+ 1 8.46833- 3 8.83760- 4 2.90000+ 1 3.20000+ 1 3.39768- 3 9.68940- 4 2.90000+ 1 3.30000+ 1 2.43602- 3 9.76060- 4 2.90000+ 1 4.10000+ 1 3.02911- 3 1.02262- 3 2.90000+ 1 4.30000+ 1 5.34643- 4 1.03965- 3 2.90000+ 1 4.40000+ 1 1.02914- 3 1.04816- 3 2.90000+ 1 4.60000+ 1 4.92686- 5 1.06755- 3 2.90000+ 1 4.70000+ 1 3.10205- 5 1.06819- 3 2.90000+ 1 5.80000+ 1 3.22973- 4 1.06720- 3 3.00000+ 1 3.00000+ 1 5.16812- 3 9.31780- 4 3.00000+ 1 3.20000+ 1 2.47166- 3 1.01696- 3 3.00000+ 1 3.30000+ 1 5.79806- 3 1.02408- 3 3.00000+ 1 4.10000+ 1 5.08260- 3 1.07064- 3 3.00000+ 1 4.30000+ 1 1.32682- 3 1.08767- 3 3.00000+ 1 4.40000+ 1 1.45137- 3 1.09618- 3 3.00000+ 1 4.60000+ 1 3.71674- 5 1.11557- 3 3.00000+ 1 4.70000+ 1 8.17705- 5 1.11621- 3 3.00000+ 1 5.80000+ 1 5.46353- 4 1.11522- 3 3.20000+ 1 3.20000+ 1 1.00779- 3 1.10214- 3 3.20000+ 1 3.30000+ 1 3.05690- 3 1.10926- 3 3.20000+ 1 4.10000+ 1 5.07656- 3 1.15582- 3 3.20000+ 1 4.30000+ 1 4.92157- 4 1.17285- 3 3.20000+ 1 4.40000+ 1 2.62742- 4 1.18136- 3 3.20000+ 1 4.60000+ 1 2.94119- 5 1.20075- 3 3.20000+ 1 4.70000+ 1 3.72555- 5 1.20139- 3 3.20000+ 1 5.80000+ 1 5.43143- 4 1.20040- 3 3.30000+ 1 3.30000+ 1 1.95844- 3 1.11638- 3 3.30000+ 1 4.10000+ 1 6.75948- 3 1.16294- 3 3.30000+ 1 4.30000+ 1 2.95937- 4 1.17997- 3 3.30000+ 1 4.40000+ 1 7.27564- 4 1.18848- 3 3.30000+ 1 4.60000+ 1 3.76989- 5 1.20787- 3 3.30000+ 1 4.70000+ 1 5.08938- 5 1.20851- 3 3.30000+ 1 5.80000+ 1 7.21950- 4 1.20752- 3 4.10000+ 1 4.10000+ 1 3.91207- 4 1.20950- 3 4.10000+ 1 4.30000+ 1 5.01243- 4 1.22653- 3 4.10000+ 1 4.40000+ 1 7.56203- 4 1.23504- 3 4.10000+ 1 4.60000+ 1 6.98571- 5 1.25443- 3 4.10000+ 1 4.70000+ 1 8.90624- 5 1.25507- 3 4.10000+ 1 5.80000+ 1 8.73213- 5 1.25408- 3 4.30000+ 1 4.30000+ 1 3.63310- 5 1.24356- 3 4.30000+ 1 4.40000+ 1 1.54406- 4 1.25207- 3 4.30000+ 1 4.60000+ 1 7.26604- 6 1.27146- 3 4.30000+ 1 4.70000+ 1 3.63310- 6 1.27210- 3 4.30000+ 1 5.80000+ 1 5.63127- 5 1.27111- 3 4.40000+ 1 4.40000+ 1 8.95000- 5 1.26058- 3 4.40000+ 1 4.60000+ 1 3.44227- 6 1.27997- 3 4.40000+ 1 4.70000+ 1 8.60546- 6 1.28061- 3 4.40000+ 1 5.80000+ 1 7.91717- 5 1.27962- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.02080- 3 4.47490- 4 2.70000+ 1 2.43510- 4 8.67540- 4 3.20000+ 1 6.89608- 5 1.05807- 3 4.10000+ 1 4.74210- 5 1.11175- 3 5.80000+ 1 5.51657- 6 1.15633- 3 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 2.14698- 2 1.67300- 5 1.90000+ 1 3.20000+ 1 1.16404- 2 1.01910- 4 1.90000+ 1 3.30000+ 1 1.77692- 2 1.09030- 4 1.90000+ 1 4.10000+ 1 2.48102- 3 1.55590- 4 1.90000+ 1 4.30000+ 1 2.73054- 3 1.72620- 4 1.90000+ 1 4.40000+ 1 2.67542- 3 1.81130- 4 1.90000+ 1 4.60000+ 1 1.34158- 4 2.00520- 4 1.90000+ 1 4.70000+ 1 1.97598- 4 2.01160- 4 1.90000+ 1 5.80000+ 1 2.72875- 4 2.00170- 4 2.10000+ 1 2.40000+ 1 1.02203- 1 8.89400- 5 2.10000+ 1 2.50000+ 1 2.41652- 1 9.88000- 5 2.10000+ 1 2.70000+ 1 3.63409- 2 1.52730- 4 2.10000+ 1 2.90000+ 1 2.94071- 2 2.10060- 4 2.10000+ 1 3.00000+ 1 3.73884- 2 2.58080- 4 2.10000+ 1 3.20000+ 1 2.09205- 2 3.43260- 4 2.10000+ 1 3.30000+ 1 3.16941- 2 3.50380- 4 2.10000+ 1 4.10000+ 1 7.22221- 3 3.96940- 4 2.10000+ 1 4.30000+ 1 4.76046- 3 4.13970- 4 2.10000+ 1 4.40000+ 1 5.95982- 3 4.22480- 4 2.10000+ 1 4.60000+ 1 3.10469- 4 4.41870- 4 2.10000+ 1 4.70000+ 1 4.28633- 4 4.42510- 4 2.10000+ 1 5.80000+ 1 8.27319- 4 4.41520- 4 2.20000+ 1 2.40000+ 1 4.23793- 2 1.27110- 4 2.20000+ 1 2.50000+ 1 1.08476- 2 1.36970- 4 2.20000+ 1 2.70000+ 1 5.73709- 3 1.90900- 4 2.20000+ 1 2.90000+ 1 2.44852- 2 2.48230- 4 2.20000+ 1 3.00000+ 1 5.06213- 3 2.96250- 4 2.20000+ 1 3.20000+ 1 2.34004- 3 3.81430- 4 2.20000+ 1 3.30000+ 1 2.58223- 3 3.88550- 4 2.20000+ 1 4.10000+ 1 8.67080- 4 4.35110- 4 2.20000+ 1 4.30000+ 1 2.79578- 3 4.52140- 4 2.20000+ 1 4.40000+ 1 6.27890- 4 4.60650- 4 2.20000+ 1 4.60000+ 1 3.02632- 5 4.80040- 4 2.20000+ 1 4.70000+ 1 3.41736- 5 4.80680- 4 2.20000+ 1 5.80000+ 1 9.57120- 5 4.79690- 4 2.40000+ 1 2.40000+ 1 2.17278- 3 4.45200- 4 2.40000+ 1 2.50000+ 1 1.21198- 2 4.55060- 4 2.40000+ 1 2.70000+ 1 5.03678- 3 5.08990- 4 2.40000+ 1 2.90000+ 1 2.02102- 2 5.66320- 4 2.40000+ 1 3.00000+ 1 2.85461- 3 6.14340- 4 2.40000+ 1 3.20000+ 1 5.97942- 3 6.99520- 4 2.40000+ 1 3.30000+ 1 4.26896- 3 7.06640- 4 2.40000+ 1 4.10000+ 1 1.01733- 3 7.53200- 4 2.40000+ 1 4.30000+ 1 2.34958- 3 7.70230- 4 2.40000+ 1 4.40000+ 1 4.03547- 4 7.78740- 4 2.40000+ 1 4.60000+ 1 7.30762- 5 7.98130- 4 2.40000+ 1 4.70000+ 1 5.95090- 5 7.98770- 4 2.40000+ 1 5.80000+ 1 1.16618- 4 7.97780- 4 2.50000+ 1 2.50000+ 1 6.04021- 4 4.64920- 4 2.50000+ 1 2.70000+ 1 2.87066- 3 5.18850- 4 2.50000+ 1 2.90000+ 1 3.19003- 2 5.76180- 4 2.50000+ 1 3.00000+ 1 1.80696- 3 6.24200- 4 2.50000+ 1 3.20000+ 1 1.26504- 2 7.09380- 4 2.50000+ 1 3.30000+ 1 1.20194- 3 7.16500- 4 2.50000+ 1 4.10000+ 1 4.32401- 4 7.63060- 4 2.50000+ 1 4.30000+ 1 3.57130- 3 7.80090- 4 2.50000+ 1 4.40000+ 1 2.41109- 4 7.88600- 4 2.50000+ 1 4.60000+ 1 1.53208- 4 8.07990- 4 2.50000+ 1 4.70000+ 1 1.56395- 5 8.08630- 4 2.50000+ 1 5.80000+ 1 4.73528- 5 8.07640- 4 2.70000+ 1 2.70000+ 1 1.44819- 3 5.72780- 4 2.70000+ 1 2.90000+ 1 1.91337- 2 6.30110- 4 2.70000+ 1 3.00000+ 1 3.65884- 3 6.78130- 4 2.70000+ 1 3.20000+ 1 4.72236- 3 7.63310- 4 2.70000+ 1 3.30000+ 1 3.36195- 3 7.70430- 4 2.70000+ 1 4.10000+ 1 4.42680- 4 8.16990- 4 2.70000+ 1 4.30000+ 1 2.10405- 3 8.34020- 4 2.70000+ 1 4.40000+ 1 5.29076- 4 8.42530- 4 2.70000+ 1 4.60000+ 1 5.66819- 5 8.61920- 4 2.70000+ 1 4.70000+ 1 4.45380- 5 8.62560- 4 2.70000+ 1 5.80000+ 1 4.85866- 5 8.61570- 4 2.90000+ 1 2.90000+ 1 1.46740- 2 6.87440- 4 2.90000+ 1 3.00000+ 1 3.86560- 2 7.35460- 4 2.90000+ 1 3.20000+ 1 3.03698- 2 8.20640- 4 2.90000+ 1 3.30000+ 1 5.07924- 2 8.27760- 4 2.90000+ 1 4.10000+ 1 4.44235- 3 8.74320- 4 2.90000+ 1 4.30000+ 1 4.22616- 3 8.91350- 4 2.90000+ 1 4.40000+ 1 6.27322- 3 8.99860- 4 2.90000+ 1 4.60000+ 1 4.66164- 4 9.19250- 4 2.90000+ 1 4.70000+ 1 7.19187- 4 9.19890- 4 2.90000+ 1 5.80000+ 1 5.10623- 4 9.18900- 4 3.00000+ 1 3.00000+ 1 1.21505- 3 7.83480- 4 3.00000+ 1 3.20000+ 1 5.06367- 3 8.68660- 4 3.00000+ 1 3.30000+ 1 2.25733- 3 8.75780- 4 3.00000+ 1 4.10000+ 1 5.26669- 4 9.22340- 4 3.00000+ 1 4.30000+ 1 3.93007- 3 9.39370- 4 3.00000+ 1 4.40000+ 1 3.31778- 4 9.47880- 4 3.00000+ 1 4.60000+ 1 5.94440- 5 9.67270- 4 3.00000+ 1 4.70000+ 1 3.04124- 5 9.67910- 4 3.00000+ 1 5.80000+ 1 5.66748- 5 9.66920- 4 3.20000+ 1 3.20000+ 1 1.19166- 3 9.53840- 4 3.20000+ 1 3.30000+ 1 1.86610- 3 9.60960- 4 3.20000+ 1 4.10000+ 1 5.53091- 4 1.00752- 3 3.20000+ 1 4.30000+ 1 1.95587- 3 1.02455- 3 3.20000+ 1 4.40000+ 1 4.94973- 4 1.03306- 3 3.20000+ 1 4.60000+ 1 3.33381- 5 1.05245- 3 3.20000+ 1 4.70000+ 1 2.64997- 5 1.05309- 3 3.20000+ 1 5.80000+ 1 6.32556- 5 1.05210- 3 3.30000+ 1 3.30000+ 1 2.37832- 4 9.68080- 4 3.30000+ 1 4.10000+ 1 2.08741- 4 1.01464- 3 3.30000+ 1 4.30000+ 1 2.44674- 3 1.03167- 3 3.30000+ 1 4.40000+ 1 1.38299- 4 1.04018- 3 3.30000+ 1 4.60000+ 1 1.68026- 5 1.05957- 3 3.30000+ 1 4.70000+ 1 6.46262- 6 1.06021- 3 3.30000+ 1 5.80000+ 1 2.26186- 5 1.05922- 3 4.10000+ 1 4.10000+ 1 1.43209- 5 1.06120- 3 4.10000+ 1 4.30000+ 1 1.76255- 4 1.07823- 3 4.10000+ 1 4.40000+ 1 3.02945- 5 1.08674- 3 4.10000+ 1 4.60000+ 1 4.40656- 6 1.10613- 3 4.10000+ 1 4.70000+ 1 2.20315- 6 1.10677- 3 4.10000+ 1 5.80000+ 1 3.30468- 6 1.10578- 3 4.30000+ 1 4.30000+ 1 1.02556- 4 1.09526- 3 4.30000+ 1 4.40000+ 1 2.55548- 4 1.10377- 3 4.30000+ 1 4.60000+ 1 1.94018- 5 1.12316- 3 4.30000+ 1 4.70000+ 1 2.99349- 5 1.12380- 3 4.30000+ 1 5.80000+ 1 2.05111- 5 1.12281- 3 4.40000+ 1 4.40000+ 1 6.33805- 6 1.11228- 3 4.40000+ 1 4.60000+ 1 2.77303- 6 1.13167- 3 4.40000+ 1 4.70000+ 1 1.18838- 6 1.13231- 3 4.40000+ 1 5.80000+ 1 2.37669- 6 1.13132- 3 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.33350- 5 2.41350- 4 2.20000+ 1 1.93923- 4 2.79520- 4 2.70000+ 1 2.60289- 4 6.61400- 4 3.20000+ 1 2.67240- 5 8.51930- 4 3.30000+ 1 1.59057- 4 8.59050- 4 4.10000+ 1 4.96298- 5 9.05610- 4 5.80000+ 1 6.04860- 6 9.50190- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.90000+ 1 1.65084- 2 3.92000- 6 2.10000+ 1 3.00000+ 1 4.64590- 2 5.19400- 5 2.10000+ 1 3.20000+ 1 1.57891- 2 1.37120- 4 2.10000+ 1 3.30000+ 1 2.47146- 2 1.44240- 4 2.10000+ 1 4.10000+ 1 3.57243- 3 1.90800- 4 2.10000+ 1 4.30000+ 1 2.56336- 3 2.07830- 4 2.10000+ 1 4.40000+ 1 6.04631- 3 2.16340- 4 2.10000+ 1 4.60000+ 1 2.16429- 4 2.35730- 4 2.10000+ 1 4.70000+ 1 3.05450- 4 2.36370- 4 2.10000+ 1 5.80000+ 1 4.04874- 4 2.35380- 4 2.20000+ 1 2.90000+ 1 1.25342- 1 4.20900- 5 2.20000+ 1 3.00000+ 1 1.42581- 1 9.01100- 5 2.20000+ 1 3.20000+ 1 1.22807- 1 1.75290- 4 2.20000+ 1 3.30000+ 1 1.47857- 1 1.82410- 4 2.20000+ 1 4.10000+ 1 2.30436- 2 2.28970- 4 2.20000+ 1 4.30000+ 1 2.04573- 2 2.46000- 4 2.20000+ 1 4.40000+ 1 2.10580- 2 2.54510- 4 2.20000+ 1 4.60000+ 1 1.66982- 3 2.73900- 4 2.20000+ 1 4.70000+ 1 1.93248- 3 2.74540- 4 2.20000+ 1 5.80000+ 1 2.61082- 3 2.73550- 4 2.40000+ 1 2.40000+ 1 8.70755- 4 2.39060- 4 2.40000+ 1 2.50000+ 1 6.18433- 3 2.48920- 4 2.40000+ 1 2.70000+ 1 8.63731- 3 3.02850- 4 2.40000+ 1 2.90000+ 1 4.64781- 3 3.60180- 4 2.40000+ 1 3.00000+ 1 5.36890- 2 4.08200- 4 2.40000+ 1 3.20000+ 1 2.01536- 3 4.93380- 4 2.40000+ 1 3.30000+ 1 7.81793- 3 5.00500- 4 2.40000+ 1 4.10000+ 1 1.09925- 3 5.47060- 4 2.40000+ 1 4.30000+ 1 6.76708- 4 5.64090- 4 2.40000+ 1 4.40000+ 1 5.84686- 3 5.72600- 4 2.40000+ 1 4.60000+ 1 2.71841- 5 5.91990- 4 2.40000+ 1 4.70000+ 1 8.64687- 5 5.92630- 4 2.40000+ 1 5.80000+ 1 1.17993- 4 5.91640- 4 2.50000+ 1 2.50000+ 1 4.27923- 3 2.58780- 4 2.50000+ 1 2.70000+ 1 1.99395- 2 3.12710- 4 2.50000+ 1 2.90000+ 1 1.65338- 2 3.70040- 4 2.50000+ 1 3.00000+ 1 6.53914- 2 4.18060- 4 2.50000+ 1 3.20000+ 1 1.58739- 3 5.03240- 4 2.50000+ 1 3.30000+ 1 1.10018- 2 5.10360- 4 2.50000+ 1 4.10000+ 1 3.07645- 3 5.56920- 4 2.50000+ 1 4.30000+ 1 2.50859- 3 5.73950- 4 2.50000+ 1 4.40000+ 1 7.21040- 3 5.82460- 4 2.50000+ 1 4.60000+ 1 2.43107- 5 6.01850- 4 2.50000+ 1 4.70000+ 1 1.25903- 4 6.02490- 4 2.50000+ 1 5.80000+ 1 3.41211- 4 6.01500- 4 2.70000+ 1 2.70000+ 1 1.07091- 5 3.66640- 4 2.70000+ 1 2.90000+ 1 2.29056- 4 4.23970- 4 2.70000+ 1 3.00000+ 1 4.91722- 3 4.71990- 4 2.70000+ 1 3.20000+ 1 4.53345- 4 5.57170- 4 2.70000+ 1 3.30000+ 1 7.80872- 4 5.64290- 4 2.70000+ 1 4.10000+ 1 8.32938- 6 6.10850- 4 2.70000+ 1 4.30000+ 1 2.49881- 5 6.27880- 4 2.70000+ 1 4.40000+ 1 5.16119- 4 6.36390- 4 2.70000+ 1 4.60000+ 1 6.24696- 6 6.55780- 4 2.70000+ 1 4.70000+ 1 8.62677- 6 6.56420- 4 2.70000+ 1 5.80000+ 1 1.18984- 6 6.55430- 4 2.90000+ 1 2.90000+ 1 2.97479- 7 4.81300- 4 2.90000+ 1 3.00000+ 1 5.54132- 3 5.29320- 4 2.90000+ 1 3.20000+ 1 2.46608- 4 6.14500- 4 2.90000+ 1 3.30000+ 1 7.10659- 4 6.21620- 4 2.90000+ 1 4.10000+ 1 4.16462- 5 6.68180- 4 2.90000+ 1 4.30000+ 1 3.27225- 6 6.85210- 4 2.90000+ 1 4.40000+ 1 5.97927- 4 6.93720- 4 2.90000+ 1 4.60000+ 1 2.97479- 6 7.13110- 4 2.90000+ 1 4.70000+ 1 7.43687- 6 7.13750- 4 2.90000+ 1 5.80000+ 1 4.75954- 6 7.12760- 4 3.00000+ 1 3.00000+ 1 7.17576- 3 5.77340- 4 3.00000+ 1 3.20000+ 1 8.29393- 3 6.62520- 4 3.00000+ 1 3.30000+ 1 1.10888- 2 6.69640- 4 3.00000+ 1 4.10000+ 1 1.02847- 3 7.16200- 4 3.00000+ 1 4.30000+ 1 9.54295- 4 7.33230- 4 3.00000+ 1 4.40000+ 1 1.94199- 3 7.41740- 4 3.00000+ 1 4.60000+ 1 1.25376- 4 7.61130- 4 3.00000+ 1 4.70000+ 1 1.55966- 4 7.61770- 4 3.00000+ 1 5.80000+ 1 1.18407- 4 7.60780- 4 3.20000+ 1 3.20000+ 1 1.56077- 4 7.47700- 4 3.20000+ 1 3.30000+ 1 9.33613- 4 7.54820- 4 3.20000+ 1 4.10000+ 1 6.21464- 5 8.01380- 4 3.20000+ 1 4.30000+ 1 3.85936- 5 8.18410- 4 3.20000+ 1 4.40000+ 1 8.47919- 4 8.26920- 4 3.20000+ 1 4.60000+ 1 4.25656- 6 8.46310- 4 3.20000+ 1 4.70000+ 1 1.07826- 5 8.46950- 4 3.20000+ 1 5.80000+ 1 6.81059- 6 8.45960- 4 3.30000+ 1 3.30000+ 1 8.48689- 4 7.61940- 4 3.30000+ 1 4.10000+ 1 1.37591- 4 8.08500- 4 3.30000+ 1 4.30000+ 1 1.07970- 4 8.25530- 4 3.30000+ 1 4.40000+ 1 1.09105- 3 8.34040- 4 3.30000+ 1 4.60000+ 1 1.21168- 5 8.53430- 4 3.30000+ 1 4.70000+ 1 2.12705- 5 8.54070- 4 3.30000+ 1 5.80000+ 1 1.56159- 5 8.53080- 4 4.10000+ 1 4.30000+ 1 3.19653- 6 8.72090- 4 4.10000+ 1 4.40000+ 1 9.48361- 5 8.80600- 4 4.10000+ 1 4.60000+ 1 7.99137- 7 8.99990- 4 4.10000+ 1 4.70000+ 1 1.59817- 6 9.00630- 4 4.30000+ 1 4.40000+ 1 9.19204- 5 8.97630- 4 4.30000+ 1 4.60000+ 1 5.43886- 7 9.17020- 4 4.30000+ 1 4.70000+ 1 1.08774- 6 9.17660- 4 4.30000+ 1 5.80000+ 1 2.71953- 7 9.16670- 4 4.40000+ 1 4.40000+ 1 9.56728- 5 9.06140- 4 4.40000+ 1 4.60000+ 1 1.04751- 5 9.25530- 4 4.40000+ 1 4.70000+ 1 1.32683- 5 9.26170- 4 4.40000+ 1 5.80000+ 1 9.54372- 6 9.25180- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.37661- 4 3.56260- 4 2.90000+ 1 1.31650- 4 4.77380- 4 3.00000+ 1 1.53810- 5 5.25400- 4 4.30000+ 1 2.26450- 5 6.81290- 4 4.40000+ 1 2.53780- 6 6.89800- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 4.30000+ 1 1.12116- 3 4.65000- 6 2.20000+ 1 4.40000+ 1 2.75499- 3 1.31600- 5 2.20000+ 1 4.60000+ 1 1.06668- 3 3.25500- 5 2.20000+ 1 4.70000+ 1 2.01202- 4 3.31900- 5 2.20000+ 1 5.80000+ 1 2.38981- 4 3.22000- 5 2.40000+ 1 2.40000+ 1 1.92159- 2 0.00000+ 0 2.40000+ 1 2.50000+ 1 4.26744- 2 7.57000- 6 2.40000+ 1 2.70000+ 1 1.14419- 1 6.15000- 5 2.40000+ 1 2.90000+ 1 1.00340- 1 1.18830- 4 2.40000+ 1 3.00000+ 1 1.24641- 1 1.66850- 4 2.40000+ 1 3.20000+ 1 1.24982- 1 2.52030- 4 2.40000+ 1 3.30000+ 1 1.31261- 1 2.59150- 4 2.40000+ 1 4.10000+ 1 2.29789- 2 3.05710- 4 2.40000+ 1 4.30000+ 1 1.69200- 2 3.22740- 4 2.40000+ 1 4.40000+ 1 1.94252- 2 3.31250- 4 2.40000+ 1 4.60000+ 1 1.60208- 3 3.50640- 4 2.40000+ 1 4.70000+ 1 1.74617- 3 3.51280- 4 2.40000+ 1 5.80000+ 1 2.63543- 3 3.50290- 4 2.50000+ 1 2.50000+ 1 2.46541- 3 1.74300- 5 2.50000+ 1 2.70000+ 1 8.95776- 3 7.13600- 5 2.50000+ 1 2.90000+ 1 1.72504- 2 1.28690- 4 2.50000+ 1 3.00000+ 1 8.06310- 3 1.76710- 4 2.50000+ 1 3.20000+ 1 1.34735- 1 2.61890- 4 2.50000+ 1 3.30000+ 1 5.70783- 3 2.69010- 4 2.50000+ 1 4.10000+ 1 1.28587- 3 3.15570- 4 2.50000+ 1 4.30000+ 1 1.84290- 3 3.32600- 4 2.50000+ 1 4.40000+ 1 9.84472- 4 3.41110- 4 2.50000+ 1 4.60000+ 1 1.54411- 3 3.60500- 4 2.50000+ 1 4.70000+ 1 7.16053- 5 3.61140- 4 2.50000+ 1 5.80000+ 1 1.41895- 4 3.60150- 4 2.70000+ 1 2.70000+ 1 8.82561- 4 1.25290- 4 2.70000+ 1 2.90000+ 1 2.12067- 3 1.82620- 4 2.70000+ 1 3.00000+ 1 1.69971- 3 2.30640- 4 2.70000+ 1 3.20000+ 1 1.20918- 2 3.15820- 4 2.70000+ 1 3.30000+ 1 2.31743- 3 3.22940- 4 2.70000+ 1 4.10000+ 1 2.05148- 4 3.69500- 4 2.70000+ 1 4.30000+ 1 2.39853- 4 3.86530- 4 2.70000+ 1 4.40000+ 1 2.09103- 4 3.95040- 4 2.70000+ 1 4.60000+ 1 1.33113- 4 4.14430- 4 2.70000+ 1 4.70000+ 1 2.32844- 5 4.15070- 4 2.70000+ 1 5.80000+ 1 2.24033- 5 4.14080- 4 2.90000+ 1 2.90000+ 1 4.17333- 4 2.39950- 4 2.90000+ 1 3.00000+ 1 2.19606- 3 2.87970- 4 2.90000+ 1 3.20000+ 1 8.10073- 3 3.73150- 4 2.90000+ 1 3.30000+ 1 9.90627- 4 3.80270- 4 2.90000+ 1 4.10000+ 1 1.49805- 4 4.26830- 4 2.90000+ 1 4.30000+ 1 9.70861- 5 4.43860- 4 2.90000+ 1 4.40000+ 1 1.99448- 4 4.52370- 4 2.90000+ 1 4.60000+ 1 9.13737- 5 4.71760- 4 2.90000+ 1 4.70000+ 1 1.31791- 5 4.72400- 4 2.90000+ 1 5.80000+ 1 1.53759- 5 4.71410- 4 3.00000+ 1 3.00000+ 1 7.60528- 4 3.35990- 4 3.00000+ 1 3.20000+ 1 1.56164- 2 4.21170- 4 3.00000+ 1 3.30000+ 1 1.34653- 3 4.28290- 4 3.00000+ 1 4.10000+ 1 7.77485- 5 4.74850- 4 3.00000+ 1 4.30000+ 1 1.68315- 4 4.91880- 4 3.00000+ 1 4.40000+ 1 1.43919- 4 5.00390- 4 3.00000+ 1 4.60000+ 1 1.77410- 4 5.19780- 4 3.00000+ 1 4.70000+ 1 1.53015- 5 5.20420- 4 3.00000+ 1 5.80000+ 1 7.85752- 6 5.19430- 4 3.20000+ 1 3.20000+ 1 1.02185- 2 5.06350- 4 3.20000+ 1 3.30000+ 1 2.00113- 2 5.13470- 4 3.20000+ 1 4.10000+ 1 1.86616- 3 5.60030- 4 3.20000+ 1 4.30000+ 1 1.39214- 3 5.77060- 4 3.20000+ 1 4.40000+ 1 2.56859- 3 5.85570- 4 3.20000+ 1 4.60000+ 1 2.70618- 4 6.04960- 4 3.20000+ 1 4.70000+ 1 2.78959- 4 6.05600- 4 3.20000+ 1 5.80000+ 1 2.11760- 4 6.04610- 4 3.30000+ 1 3.30000+ 1 2.79173- 4 5.20590- 4 3.30000+ 1 4.10000+ 1 6.11889- 5 5.67150- 4 3.30000+ 1 4.30000+ 1 6.46652- 5 5.84180- 4 3.30000+ 1 4.40000+ 1 1.18904- 4 5.92690- 4 3.30000+ 1 4.60000+ 1 1.80087- 4 6.12080- 4 3.30000+ 1 4.70000+ 1 6.60551- 6 6.12720- 4 3.30000+ 1 5.80000+ 1 6.25788- 6 6.11730- 4 4.10000+ 1 4.10000+ 1 3.23928- 6 6.13710- 4 4.10000+ 1 4.30000+ 1 6.47835- 6 6.30740- 4 4.10000+ 1 4.40000+ 1 4.85891- 6 6.39250- 4 4.10000+ 1 4.60000+ 1 1.08746- 5 6.58640- 4 4.10000+ 1 4.70000+ 1 4.62750- 7 6.59280- 4 4.10000+ 1 5.80000+ 1 6.94139- 7 6.58290- 4 4.30000+ 1 4.30000+ 1 8.32931- 7 6.47770- 4 4.30000+ 1 4.40000+ 1 7.49676- 6 6.56280- 4 4.30000+ 1 4.60000+ 1 7.28884- 6 6.75670- 4 4.30000+ 1 4.70000+ 1 6.24747- 7 6.76310- 4 4.30000+ 1 5.80000+ 1 6.24747- 7 6.75320- 4 4.40000+ 1 4.40000+ 1 1.35371- 6 6.64790- 4 4.40000+ 1 4.60000+ 1 5.66868- 6 6.84180- 4 4.40000+ 1 4.70000+ 1 3.38404- 7 6.84820- 4 4.40000+ 1 5.80000+ 1 1.69212- 7 6.83830- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.70700- 5 3.18090- 4 2.50000+ 1 3.82550- 4 3.27950- 4 3.00000+ 1 1.13480- 4 4.87230- 4 4.40000+ 1 1.87320- 5 6.51630- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 1.29051- 2 2.33300- 5 2.40000+ 1 2.90000+ 1 8.55951- 3 8.06600- 5 2.40000+ 1 3.00000+ 1 1.60824- 2 1.28680- 4 2.40000+ 1 3.20000+ 1 7.50403- 3 2.13860- 4 2.40000+ 1 3.30000+ 1 1.09218- 1 2.20980- 4 2.40000+ 1 4.10000+ 1 2.14164- 3 2.67540- 4 2.40000+ 1 4.30000+ 1 1.37575- 3 2.84570- 4 2.40000+ 1 4.40000+ 1 2.07852- 3 2.93080- 4 2.40000+ 1 4.60000+ 1 1.04691- 4 3.12470- 4 2.40000+ 1 4.70000+ 1 1.19027- 3 3.13110- 4 2.40000+ 1 5.80000+ 1 2.40226- 4 3.12120- 4 2.50000+ 1 2.50000+ 1 1.49679- 2 0.00000+ 0 2.50000+ 1 2.70000+ 1 1.12498- 1 3.31900- 5 2.50000+ 1 2.90000+ 1 1.20720- 1 9.05200- 5 2.50000+ 1 3.00000+ 1 1.12111- 1 1.38540- 4 2.50000+ 1 3.20000+ 1 1.09581- 1 2.23720- 4 2.50000+ 1 3.30000+ 1 1.99853- 1 2.30840- 4 2.50000+ 1 4.10000+ 1 2.26889- 2 2.77400- 4 2.50000+ 1 4.30000+ 1 1.95480- 2 2.94430- 4 2.50000+ 1 4.40000+ 1 1.77241- 2 3.02940- 4 2.50000+ 1 4.60000+ 1 1.52110- 3 3.22330- 4 2.50000+ 1 4.70000+ 1 2.41349- 3 3.22970- 4 2.50000+ 1 5.80000+ 1 2.58357- 3 3.21980- 4 2.70000+ 1 2.70000+ 1 1.58364- 3 8.71200- 5 2.70000+ 1 2.90000+ 1 2.21280- 3 1.44450- 4 2.70000+ 1 3.00000+ 1 3.57378- 3 1.92470- 4 2.70000+ 1 3.20000+ 1 3.19968- 3 2.77650- 4 2.70000+ 1 3.30000+ 1 1.49638- 2 2.84770- 4 2.70000+ 1 4.10000+ 1 3.57196- 4 3.31330- 4 2.70000+ 1 4.30000+ 1 2.56968- 4 3.48360- 4 2.70000+ 1 4.40000+ 1 4.36025- 4 3.56870- 4 2.70000+ 1 4.60000+ 1 3.32587- 5 3.76260- 4 2.70000+ 1 4.70000+ 1 1.53092- 4 3.76900- 4 2.70000+ 1 5.80000+ 1 3.87258- 5 3.75910- 4 2.90000+ 1 2.90000+ 1 2.79129- 4 2.01780- 4 2.90000+ 1 3.00000+ 1 3.80856- 3 2.49800- 4 2.90000+ 1 3.20000+ 1 5.28742- 4 3.34980- 4 2.90000+ 1 3.30000+ 1 1.20481- 2 3.42100- 4 2.90000+ 1 4.10000+ 1 1.48516- 4 3.88660- 4 2.90000+ 1 4.30000+ 1 6.39678- 5 4.05690- 4 2.90000+ 1 4.40000+ 1 3.60548- 4 4.14200- 4 2.90000+ 1 4.60000+ 1 4.92074- 6 4.33590- 4 2.90000+ 1 4.70000+ 1 1.29280- 4 4.34230- 4 2.90000+ 1 5.80000+ 1 1.52097- 5 4.33240- 4 3.00000+ 1 3.00000+ 1 1.18226- 3 2.97820- 4 3.00000+ 1 3.20000+ 1 1.94791- 3 3.83000- 4 3.00000+ 1 3.30000+ 1 1.51305- 2 3.90120- 4 3.00000+ 1 4.10000+ 1 1.20721- 4 4.36680- 4 3.00000+ 1 4.30000+ 1 1.86609- 4 4.53710- 4 3.00000+ 1 4.40000+ 1 2.26583- 4 4.62220- 4 3.00000+ 1 4.60000+ 1 2.50810- 5 4.81610- 4 3.00000+ 1 4.70000+ 1 1.60255- 4 4.82250- 4 3.00000+ 1 5.80000+ 1 1.10531- 5 4.81260- 4 3.20000+ 1 3.20000+ 1 1.37938- 4 4.68180- 4 3.20000+ 1 3.30000+ 1 1.45133- 2 4.75300- 4 3.20000+ 1 4.10000+ 1 7.96115- 5 5.21860- 4 3.20000+ 1 4.30000+ 1 4.98115- 5 5.38890- 4 3.20000+ 1 4.40000+ 1 2.14146- 4 5.47400- 4 3.20000+ 1 4.60000+ 1 3.40592- 6 5.66790- 4 3.20000+ 1 4.70000+ 1 1.54116- 4 5.67430- 4 3.20000+ 1 5.80000+ 1 7.66315- 6 5.66440- 4 3.30000+ 1 3.30000+ 1 1.64389- 2 4.82420- 4 3.30000+ 1 4.10000+ 1 1.92372- 3 5.28980- 4 3.30000+ 1 4.30000+ 1 1.79204- 3 5.46010- 4 3.30000+ 1 4.40000+ 1 2.43619- 3 5.54520- 4 3.30000+ 1 4.60000+ 1 2.19633- 4 5.73910- 4 3.30000+ 1 4.70000+ 1 4.04592- 4 5.74550- 4 3.30000+ 1 5.80000+ 1 2.17894- 4 5.73560- 4 4.10000+ 1 4.10000+ 1 7.11048- 6 5.75540- 4 4.10000+ 1 4.30000+ 1 9.10127- 6 5.92570- 4 4.10000+ 1 4.40000+ 1 1.08076- 5 6.01080- 4 4.10000+ 1 4.60000+ 1 5.68807- 7 6.20470- 4 4.10000+ 1 4.70000+ 1 1.30828- 5 6.21110- 4 4.10000+ 1 5.80000+ 1 1.42197- 6 6.20120- 4 4.30000+ 1 4.30000+ 1 1.20540- 6 6.09600- 4 4.30000+ 1 4.40000+ 1 1.08491- 5 6.18110- 4 4.30000+ 1 4.60000+ 1 2.41091- 7 6.37500- 4 4.30000+ 1 4.70000+ 1 1.06081- 5 6.38140- 4 4.30000+ 1 5.80000+ 1 7.23245- 7 6.37150- 4 4.40000+ 1 4.40000+ 1 3.85880- 6 6.26620- 4 4.40000+ 1 4.60000+ 1 9.64646- 7 6.46010- 4 4.40000+ 1 4.70000+ 1 8.26813- 6 6.46650- 4 4.40000+ 1 5.80000+ 1 4.13410- 7 6.45660- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.05275- 5 2.54320- 4 3.30000+ 1 3.26899- 6 2.61440- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 4.60000+ 1 6.16449- 3 4.24000- 6 2.50000+ 1 4.70000+ 1 6.51178- 3 4.88000- 6 2.50000+ 1 5.80000+ 1 4.01571- 3 3.89000- 6 2.70000+ 1 4.10000+ 1 9.94899- 3 1.32400- 5 2.70000+ 1 4.30000+ 1 9.45947- 3 3.02700- 5 2.70000+ 1 4.40000+ 1 1.94351- 2 3.87800- 5 2.70000+ 1 4.60000+ 1 6.44377- 4 5.81700- 5 2.70000+ 1 4.70000+ 1 1.15990- 3 5.88100- 5 2.70000+ 1 5.80000+ 1 1.13413- 3 5.78200- 5 2.90000+ 1 3.20000+ 1 6.33532- 2 1.68900- 5 2.90000+ 1 3.30000+ 1 6.57506- 2 2.40100- 5 2.90000+ 1 4.10000+ 1 3.89642- 2 7.05700- 5 2.90000+ 1 4.30000+ 1 2.02533- 2 8.76000- 5 2.90000+ 1 4.40000+ 1 3.72957- 2 9.61100- 5 2.90000+ 1 4.60000+ 1 3.33716- 3 1.15500- 4 2.90000+ 1 4.70000+ 1 4.02952- 3 1.16140- 4 2.90000+ 1 5.80000+ 1 4.13606- 3 1.15150- 4 3.00000+ 1 3.20000+ 1 1.63611- 1 6.49100- 5 3.00000+ 1 3.30000+ 1 1.27949- 1 7.20300- 5 3.00000+ 1 4.10000+ 1 1.68297- 2 1.18590- 4 3.00000+ 1 4.30000+ 1 1.29836- 2 1.35620- 4 3.00000+ 1 4.40000+ 1 9.05714- 3 1.44130- 4 3.00000+ 1 4.60000+ 1 2.16670- 3 1.63520- 4 3.00000+ 1 4.70000+ 1 1.66176- 3 1.64160- 4 3.00000+ 1 5.80000+ 1 1.58014- 3 1.63170- 4 3.20000+ 1 3.20000+ 1 7.89264- 2 1.50090- 4 3.20000+ 1 3.30000+ 1 1.22049- 1 1.57210- 4 3.20000+ 1 4.10000+ 1 8.48566- 3 2.03770- 4 3.20000+ 1 4.30000+ 1 3.26449- 2 2.20800- 4 3.20000+ 1 4.40000+ 1 2.31121- 2 2.29310- 4 3.20000+ 1 4.60000+ 1 1.40239- 3 2.48700- 4 3.20000+ 1 4.70000+ 1 1.40239- 3 2.49340- 4 3.20000+ 1 5.80000+ 1 1.04734- 3 2.48350- 4 3.30000+ 1 3.30000+ 1 2.94789- 2 1.64330- 4 3.30000+ 1 4.10000+ 1 6.55093- 3 2.10890- 4 3.30000+ 1 4.30000+ 1 3.80165- 2 2.27920- 4 3.30000+ 1 4.40000+ 1 1.76387- 2 2.36430- 4 3.30000+ 1 4.60000+ 1 1.15448- 3 2.55820- 4 3.30000+ 1 4.70000+ 1 6.17494- 4 2.56460- 4 3.30000+ 1 5.80000+ 1 7.24888- 4 2.55470- 4 4.10000+ 1 4.10000+ 1 1.09312- 4 2.57450- 4 4.10000+ 1 4.30000+ 1 1.45237- 3 2.74480- 4 4.10000+ 1 4.40000+ 1 1.10871- 3 2.82990- 4 4.10000+ 1 4.60000+ 1 4.68483- 5 3.02380- 4 4.10000+ 1 4.70000+ 1 3.12324- 5 3.03020- 4 4.10000+ 1 5.80000+ 1 3.12324- 5 3.02030- 4 4.30000+ 1 4.30000+ 1 4.88994- 4 2.91510- 4 4.30000+ 1 4.40000+ 1 9.49199- 4 3.00020- 4 4.30000+ 1 4.60000+ 1 2.30115- 4 3.19410- 4 4.30000+ 1 4.70000+ 1 1.86963- 4 3.20050- 4 4.30000+ 1 5.80000+ 1 1.43827- 4 3.19060- 4 4.40000+ 1 4.40000+ 1 1.82387- 4 3.08530- 4 4.40000+ 1 4.60000+ 1 1.30282- 4 3.27920- 4 4.40000+ 1 4.70000+ 1 7.81684- 5 3.28560- 4 4.40000+ 1 5.80000+ 1 9.11929- 5 3.27570- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 4.93386- 5 2.51580- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 4.30000+ 1 1.35937- 2 2.04100- 5 2.70000+ 1 4.40000+ 1 2.37687- 2 2.89200- 5 2.70000+ 1 4.60000+ 1 1.66930- 3 4.83100- 5 2.70000+ 1 4.70000+ 1 1.78864- 3 4.89500- 5 2.70000+ 1 5.80000+ 1 2.30530- 3 4.79600- 5 2.90000+ 1 3.20000+ 1 1.58848- 2 7.03000- 6 2.90000+ 1 3.30000+ 1 3.73108- 2 1.41500- 5 2.90000+ 1 4.10000+ 1 6.17669- 3 6.07100- 5 2.90000+ 1 4.30000+ 1 1.60687- 3 7.77400- 5 2.90000+ 1 4.40000+ 1 5.54043- 3 8.62500- 5 2.90000+ 1 4.60000+ 1 5.35621- 4 1.05640- 4 2.90000+ 1 4.70000+ 1 6.19327- 4 1.06280- 4 2.90000+ 1 5.80000+ 1 8.36903- 4 1.05290- 4 3.00000+ 1 3.20000+ 1 1.54242- 1 5.50500- 5 3.00000+ 1 3.30000+ 1 3.76906- 1 6.21700- 5 3.00000+ 1 4.10000+ 1 2.68882- 2 1.08730- 4 3.00000+ 1 4.30000+ 1 9.61235- 3 1.25760- 4 3.00000+ 1 4.40000+ 1 3.02649- 2 1.34270- 4 3.00000+ 1 4.60000+ 1 2.62762- 3 1.53660- 4 3.00000+ 1 4.70000+ 1 5.29607- 3 1.54300- 4 3.00000+ 1 5.80000+ 1 2.77736- 3 1.53310- 4 3.20000+ 1 3.20000+ 1 8.55842- 3 1.40230- 4 3.20000+ 1 3.30000+ 1 9.08919- 2 1.47350- 4 3.20000+ 1 4.10000+ 1 3.12771- 3 1.93910- 4 3.20000+ 1 4.30000+ 1 3.14323- 3 2.10940- 4 3.20000+ 1 4.40000+ 1 1.85173- 2 2.19450- 4 3.20000+ 1 4.60000+ 1 1.71173- 4 2.38840- 4 3.20000+ 1 4.70000+ 1 6.22406- 4 2.39480- 4 3.20000+ 1 5.80000+ 1 3.26761- 4 2.38490- 4 3.30000+ 1 3.30000+ 1 8.55744- 2 1.54470- 4 3.30000+ 1 4.10000+ 1 8.75384- 3 2.01030- 4 3.30000+ 1 4.30000+ 1 9.51526- 3 2.18060- 4 3.30000+ 1 4.40000+ 1 4.32422- 2 2.26570- 4 3.30000+ 1 4.60000+ 1 1.25761- 3 2.45960- 4 3.30000+ 1 4.70000+ 1 1.47276- 3 2.46600- 4 3.30000+ 1 5.80000+ 1 1.04257- 3 2.45610- 4 4.10000+ 1 4.10000+ 1 7.39970- 5 2.47590- 4 4.10000+ 1 4.30000+ 1 4.80984- 4 2.64620- 4 4.10000+ 1 4.40000+ 1 1.34430- 3 2.73130- 4 4.10000+ 1 4.60000+ 1 2.46660- 5 2.92520- 4 4.10000+ 1 4.70000+ 1 3.69994- 5 2.93160- 4 4.10000+ 1 5.80000+ 1 1.23334- 5 2.92170- 4 4.30000+ 1 4.30000+ 1 4.53849- 5 2.81650- 4 4.30000+ 1 4.40000+ 1 3.97131- 4 2.90160- 4 4.30000+ 1 4.60000+ 1 3.40397- 5 3.09550- 4 4.30000+ 1 4.70000+ 1 4.53849- 5 3.10190- 4 4.30000+ 1 5.80000+ 1 4.53849- 5 3.09200- 4 4.40000+ 1 4.40000+ 1 5.18353- 4 2.98670- 4 4.40000+ 1 4.60000+ 1 1.05592- 4 3.18060- 4 4.40000+ 1 4.70000+ 1 2.11184- 4 3.18700- 4 4.40000+ 1 5.80000+ 1 1.05592- 4 3.17710- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.40195- 6 5.73300- 5 3.00000+ 1 1.79074- 5 1.05350- 4 4.30000+ 1 2.39704- 6 2.61240- 4 4.40000+ 1 4.00180- 8 2.69750- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 4.10000+ 1 3.65616- 2 6.78000- 6 2.90000+ 1 4.30000+ 1 2.44079- 2 2.38100- 5 2.90000+ 1 4.40000+ 1 4.90808- 2 3.23200- 5 2.90000+ 1 4.60000+ 1 2.48877- 3 5.17100- 5 2.90000+ 1 4.70000+ 1 5.49459- 3 5.23500- 5 2.90000+ 1 5.80000+ 1 4.11555- 3 5.13600- 5 3.00000+ 1 3.20000+ 1 2.89634- 1 1.12000- 6 3.00000+ 1 3.30000+ 1 2.88712- 1 8.24000- 6 3.00000+ 1 4.10000+ 1 3.05178- 2 5.48000- 5 3.00000+ 1 4.30000+ 1 3.04133- 2 7.18300- 5 3.00000+ 1 4.40000+ 1 2.98327- 2 8.03400- 5 3.00000+ 1 4.60000+ 1 3.76556- 3 9.97300- 5 3.00000+ 1 4.70000+ 1 3.67187- 3 1.00370- 4 3.00000+ 1 5.80000+ 1 3.46811- 3 9.93800- 5 3.20000+ 1 3.20000+ 1 1.90701- 3 8.63000- 5 3.20000+ 1 3.30000+ 1 1.28770- 1 9.34200- 5 3.20000+ 1 4.10000+ 1 7.69212- 3 1.39980- 4 3.20000+ 1 4.30000+ 1 1.36506- 3 1.57010- 4 3.20000+ 1 4.40000+ 1 6.93386- 3 1.65520- 4 3.20000+ 1 4.60000+ 1 7.73665- 5 1.84910- 4 3.20000+ 1 4.70000+ 1 8.00973- 4 1.85550- 4 3.20000+ 1 5.80000+ 1 6.92216- 4 1.84560- 4 3.30000+ 1 3.30000+ 1 2.71968- 2 1.00540- 4 3.30000+ 1 4.10000+ 1 8.96353- 3 1.47100- 4 3.30000+ 1 4.30000+ 1 4.03164- 3 1.64130- 4 3.30000+ 1 4.40000+ 1 3.76143- 3 1.72640- 4 3.30000+ 1 4.60000+ 1 6.46265- 4 1.92030- 4 3.30000+ 1 4.70000+ 1 3.69077- 4 1.92670- 4 3.30000+ 1 5.80000+ 1 8.04913- 4 1.91680- 4 4.10000+ 1 4.10000+ 1 6.32287- 4 1.93660- 4 4.10000+ 1 4.30000+ 1 7.54236- 4 2.10690- 4 4.10000+ 1 4.40000+ 1 1.15764- 3 2.19200- 4 4.10000+ 1 4.60000+ 1 9.40637- 5 2.38590- 4 4.10000+ 1 4.70000+ 1 1.23655- 4 2.39230- 4 4.10000+ 1 5.80000+ 1 1.23896- 4 2.38240- 4 4.30000+ 1 4.30000+ 1 6.73671- 5 2.27720- 4 4.30000+ 1 4.40000+ 1 4.10403- 4 2.36230- 4 4.30000+ 1 4.60000+ 1 9.64098- 6 2.55620- 4 4.30000+ 1 4.70000+ 1 2.92807- 5 2.56260- 4 4.30000+ 1 5.80000+ 1 5.96339- 5 2.55270- 4 4.40000+ 1 4.40000+ 1 1.81498- 4 2.44740- 4 4.40000+ 1 4.60000+ 1 4.18773- 5 2.64130- 4 4.40000+ 1 4.70000+ 1 2.99878- 5 2.64770- 4 4.40000+ 1 5.80000+ 1 8.55447- 5 2.63780- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.83871- 5 1.33200- 4 4.10000+ 1 3.27803- 6 1.86880- 4 5.80000+ 1 4.31745- 7 2.31460- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 4.10000+ 1 1.08469- 2 0.00000+ 0 3.00000+ 1 4.30000+ 1 1.63688- 2 1.45000- 5 3.00000+ 1 4.40000+ 1 1.32332- 2 2.30100- 5 3.00000+ 1 4.60000+ 1 1.97806- 3 4.24000- 5 3.00000+ 1 4.70000+ 1 2.32472- 3 4.30400- 5 3.00000+ 1 5.80000+ 1 2.15140- 3 4.20500- 5 3.20000+ 1 3.20000+ 1 1.36843- 1 2.89700- 5 3.20000+ 1 3.30000+ 1 5.89392- 1 3.60900- 5 3.20000+ 1 4.10000+ 1 4.84411- 2 8.26500- 5 3.20000+ 1 4.30000+ 1 3.27991- 2 9.96800- 5 3.20000+ 1 4.40000+ 1 5.51951- 2 1.08190- 4 3.20000+ 1 4.60000+ 1 2.93848- 3 1.27580- 4 3.20000+ 1 4.70000+ 1 6.53408- 3 1.28220- 4 3.20000+ 1 5.80000+ 1 5.59713- 3 1.27230- 4 3.30000+ 1 3.30000+ 1 2.57808- 2 4.32100- 5 3.30000+ 1 4.10000+ 1 4.76224- 3 8.97700- 5 3.30000+ 1 4.30000+ 1 2.83255- 2 1.06800- 4 3.30000+ 1 4.40000+ 1 6.67212- 3 1.15310- 4 3.30000+ 1 4.60000+ 1 1.75164- 3 1.34700- 4 3.30000+ 1 4.70000+ 1 4.80589- 4 1.35340- 4 3.30000+ 1 5.80000+ 1 4.43077- 4 1.34350- 4 4.10000+ 1 4.10000+ 1 9.39533- 5 1.36330- 4 4.10000+ 1 4.30000+ 1 2.16265- 3 1.53360- 4 4.10000+ 1 4.40000+ 1 3.63846- 4 1.61870- 4 4.10000+ 1 4.60000+ 1 1.19329- 4 1.81260- 4 4.10000+ 1 4.70000+ 1 3.87545- 5 1.81900- 4 4.10000+ 1 5.80000+ 1 1.75650- 5 1.80910- 4 4.30000+ 1 4.30000+ 1 1.04073- 3 1.70390- 4 4.30000+ 1 4.40000+ 1 2.45705- 3 1.78900- 4 4.30000+ 1 4.60000+ 1 1.69001- 4 1.98290- 4 4.30000+ 1 4.70000+ 1 2.66068- 4 1.98930- 4 4.30000+ 1 5.80000+ 1 2.07243- 4 1.97940- 4 4.40000+ 1 4.40000+ 1 7.18017- 5 1.87410- 4 4.40000+ 1 4.60000+ 1 7.27651- 5 2.06800- 4 4.40000+ 1 4.70000+ 1 1.37287- 5 2.07440- 4 4.40000+ 1 5.80000+ 1 1.49644- 5 2.06450- 4 1 90000 0 7 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.88323- 7 8.51800- 5 3.30000+ 1 4.48833- 6 9.23000- 5 4.10000+ 1 1.77081- 6 1.38860- 4 5.80000+ 1 2.17582- 7 1.83440- 4 1 90000 0 9 2.32038+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.10000+ 1 4.69395- 2 3.46300- 5 3.20000+ 1 4.30000+ 1 3.33259- 2 5.16600- 5 3.20000+ 1 4.40000+ 1 9.95140- 2 6.01700- 5 3.20000+ 1 4.60000+ 1 2.69815- 3 7.95600- 5 3.20000+ 1 4.70000+ 1 8.85714- 3 8.02000- 5 3.20000+ 1 5.80000+ 1 4.30680- 3 7.92100- 5 3.30000+ 1 3.30000+ 1 2.81643- 1 0.00000+ 0 3.30000+ 1 4.10000+ 1 1.46471- 1 4.17500- 5 3.30000+ 1 4.30000+ 1 1.48694- 1 5.87800- 5 3.30000+ 1 4.40000+ 1 1.71914- 1 6.72900- 5 3.30000+ 1 4.60000+ 1 1.73453- 2 8.66800- 5 3.30000+ 1 4.70000+ 1 1.67211- 2 8.73200- 5 3.30000+ 1 5.80000+ 1 1.68379- 2 8.63300- 5 4.10000+ 1 4.10000+ 1 1.57799- 4 8.83100- 5 4.10000+ 1 4.30000+ 1 2.85561- 4 1.05340- 4 4.10000+ 1 4.40000+ 1 1.38908- 3 1.13850- 4 4.10000+ 1 4.60000+ 1 5.15431- 5 1.33240- 4 4.10000+ 1 4.70000+ 1 8.56192- 5 1.33880- 4 4.10000+ 1 5.80000+ 1 2.93133- 5 1.32890- 4 4.30000+ 1 4.40000+ 1 1.14846- 3 1.30880- 4 4.30000+ 1 4.60000+ 1 1.31832- 5 1.50270- 4 4.30000+ 1 4.70000+ 1 5.25007- 5 1.50910- 4 4.30000+ 1 5.80000+ 1 1.51665- 5 1.49920- 4 4.40000+ 1 4.40000+ 1 1.11530- 3 1.39390- 4 4.40000+ 1 4.60000+ 1 1.13357- 4 1.58780- 4 4.40000+ 1 4.70000+ 1 1.47889- 4 1.59420- 4 4.40000+ 1 5.80000+ 1 1.20964- 4 1.58430- 4 1 91000 0 0 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 8.60000- 1 3.60000+ 1 1.14000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 91000 0 0 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13080- 1 3.00000+ 0 2.11130- 2 5.00000+ 0 2.04020- 2 6.00000+ 0 1.67430- 2 8.00000+ 0 5.33490- 3 1.00000+ 1 5.00180- 3 1.10000+ 1 4.15940- 3 1.30000+ 1 3.61610- 3 1.40000+ 1 3.44360- 3 1.60000+ 1 1.36210- 3 1.80000+ 1 1.21010- 3 1.90000+ 1 9.90570- 4 2.10000+ 1 7.43750- 4 2.20000+ 1 7.03210- 4 2.40000+ 1 3.77630- 4 2.50000+ 1 3.67040- 4 2.70000+ 1 3.05170- 4 2.90000+ 1 2.45890- 4 3.00000+ 1 1.94070- 4 3.20000+ 1 1.06080- 4 3.30000+ 1 9.84000- 5 3.50000+ 1 7.64000- 6 3.60000+ 1 6.80000- 6 4.10000+ 1 5.00100- 5 4.30000+ 1 3.26100- 5 4.40000+ 1 2.38200- 5 4.60000+ 1 4.71000- 6 4.70000+ 1 4.13000- 6 5.80000+ 1 5.67000- 6 1 91000 0 0 2.31000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.68910- 1 3.00000+ 0 4.20430- 2 5.00000+ 0 4.20650- 2 6.00000+ 0 2.70150- 2 8.00000+ 0 1.34750- 2 1.00000+ 1 1.33400- 2 1.10000+ 1 9.53350- 3 1.30000+ 1 9.36850- 3 1.40000+ 1 8.65000- 3 1.60000+ 1 4.63120- 3 1.80000+ 1 4.47650- 3 1.90000+ 1 3.30600- 3 2.10000+ 1 3.06430- 3 2.20000+ 1 2.84690- 3 2.40000+ 1 2.48480- 3 2.50000+ 1 2.41090- 3 2.70000+ 1 1.42900- 3 2.90000+ 1 1.30660- 3 3.00000+ 1 9.72100- 4 3.20000+ 1 7.65310- 4 3.30000+ 1 7.09070- 4 3.50000+ 1 3.17360- 4 3.60000+ 1 3.02170- 4 4.10000+ 1 3.44350- 4 4.30000+ 1 2.74440- 4 4.40000+ 1 1.93180- 4 4.60000+ 1 7.86600- 5 4.70000+ 1 6.81500- 5 5.80000+ 1 4.38500- 5 1 91000 0 0 2.31000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.33700-11 3.00000+ 0 3.03520-10 5.00000+ 0 2.45750-10 6.00000+ 0 2.99080-10 8.00000+ 0 7.88920-10 1.00000+ 1 7.40650-10 1.10000+ 1 8.36420-10 1.30000+ 1 7.20960-10 1.40000+ 1 7.49530-10 1.60000+ 1 1.71490- 9 1.80000+ 1 1.70450- 9 1.90000+ 1 1.89410- 9 2.10000+ 1 1.87630- 9 2.20000+ 1 1.93310- 9 2.40000+ 1 1.87560- 9 2.50000+ 1 1.90340- 9 2.70000+ 1 3.57890- 9 2.90000+ 1 3.72100- 9 3.00000+ 1 4.13190- 9 3.20000+ 1 4.63000- 9 3.30000+ 1 4.77290- 9 3.50000+ 1 7.47220- 9 3.60000+ 1 7.67300- 9 4.10000+ 1 7.84680- 9 4.30000+ 1 8.73880- 9 4.40000+ 1 9.92810- 9 4.60000+ 1 1.56700- 8 4.70000+ 1 1.67750- 8 5.80000+ 1 2.16360- 8 1 91000 0 0 2.31000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.76660- 5 3.00000+ 0 2.30900- 6 5.00000+ 0 4.05620- 6 6.00000+ 0 3.40320- 6 8.00000+ 0 1.03090- 7 1.00000+ 1 1.13360- 7 1.10000+ 1 1.26590- 7 1.30000+ 1 1.63910- 7 1.40000+ 1 1.51210- 7 1.60000+ 1 5.51030- 9 1.80000+ 1 7.05930- 9 1.90000+ 1 4.85180- 9 2.10000+ 1 3.32810- 9 2.20000+ 1 2.55650- 9 2.40000+ 1 1.11950-10 2.50000+ 1 1.01620-10 2.70000+ 1 3.73670-10 2.90000+ 1 7.53440-10 3.00000+ 1 3.68220-10 1 91000 0 0 2.31000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.75090- 6 3.00000+ 0 1.35130- 5 5.00000+ 0 5.19930- 6 6.00000+ 0 4.33060- 6 8.00000+ 0 1.86390- 5 1.00000+ 1 1.47510- 5 1.10000+ 1 1.14420- 5 1.30000+ 1 3.26290- 6 1.40000+ 1 3.23980- 6 1.60000+ 1 1.38940- 5 1.80000+ 1 1.52480- 5 1.90000+ 1 9.31090- 6 2.10000+ 1 6.20700- 6 2.20000+ 1 6.39080- 6 2.40000+ 1 2.93560- 7 2.50000+ 1 2.53000- 7 2.70000+ 1 2.17850- 5 2.90000+ 1 9.24010- 6 3.00000+ 1 6.67810- 6 1 91000 0 0 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.19365- 4 3.00000+ 0 1.16530- 3 5.00000+ 0 8.68119- 4 6.00000+ 0 8.09018- 4 8.00000+ 0 8.62559- 4 1.00000+ 1 7.68355- 4 1.10000+ 1 6.77602- 4 1.30000+ 1 5.18169- 4 1.40000+ 1 5.09925- 4 1.60000+ 1 4.53335- 4 1.80000+ 1 4.42113- 4 1.90000+ 1 4.12050- 4 2.10000+ 1 3.27634- 4 2.20000+ 1 3.23752- 4 2.40000+ 1 2.00236- 4 2.50000+ 1 2.03637- 4 2.70000+ 1 2.15623- 4 2.90000+ 1 1.82241- 4 3.00000+ 1 1.41369- 4 3.20000+ 1 1.06080- 4 3.30000+ 1 9.84000- 5 3.50000+ 1 7.64000- 6 3.60000+ 1 6.80000- 6 4.10000+ 1 5.00100- 5 4.30000+ 1 3.26100- 5 4.40000+ 1 2.38200- 5 4.60000+ 1 4.71000- 6 4.70000+ 1 4.13000- 6 5.80000+ 1 5.67000- 6 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42814+ 0 3.00000+ 0 5.67548- 1 5.00000+ 0 6.36596- 1 6.00000+ 0 5.15210- 1 8.00000+ 0 5.43176- 2 1.00000+ 1 5.50156- 2 1.10000+ 1 5.04161- 2 1.30000+ 1 5.83149- 2 1.40000+ 1 5.30150- 2 1.60000+ 1 1.80319- 3 1.80000+ 1 1.96398- 3 1.90000+ 1 1.23539- 3 2.10000+ 1 7.40477- 4 2.20000+ 1 6.40518- 4 2.40000+ 1 8.15396- 5 2.50000+ 1 7.04395- 5 2.70000+ 1 3.38891- 5 2.90000+ 1 3.87112- 5 3.00000+ 1 8.20082- 6 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.01053- 1 3.00000+ 0 7.34820- 3 5.00000+ 0 9.65022- 3 6.00000+ 0 6.37551- 3 8.00000+ 0 1.72185- 4 1.00000+ 1 1.75767- 4 1.10000+ 1 1.56195- 4 1.30000+ 1 1.84037- 4 1.40000+ 1 1.60170- 4 1.60000+ 1 1.16129- 6 1.80000+ 1 1.06609- 6 1.90000+ 1 6.60735- 7 2.10000+ 1 2.95411- 7 2.20000+ 1 2.40018- 7 2.40000+ 1 2.03125- 8 2.50000+ 1 1.75925- 8 2.70000+ 1 4.31411- 9 2.90000+ 1 5.67230- 9 3.00000+ 1 9.07649-10 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.70689+ 0 3.00000+ 0 1.42342+ 1 5.00000+ 0 1.03253+ 1 6.00000+ 0 9.57568+ 0 8.00000+ 0 1.03289+ 1 1.00000+ 1 9.05137+ 0 1.10000+ 1 7.90406+ 0 1.30000+ 1 5.77074+ 0 1.40000+ 1 5.67807+ 0 1.60000+ 1 4.82979+ 0 1.80000+ 1 4.68674+ 0 1.90000+ 1 4.31119+ 0 2.10000+ 1 3.23335+ 0 2.20000+ 1 3.16790+ 0 2.40000+ 1 1.72674+ 0 2.50000+ 1 1.75732+ 0 2.70000+ 1 1.80205+ 0 2.90000+ 1 1.05214+ 0 3.00000+ 1 9.99992- 1 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.12079- 2 3.00000+ 0 1.25995- 2 5.00000+ 0 9.88366- 3 6.00000+ 0 9.55847- 3 8.00000+ 0 4.30016- 3 1.00000+ 1 4.05768- 3 1.10000+ 1 3.32560- 3 1.30000+ 1 2.91389- 3 1.40000+ 1 2.77350- 3 1.60000+ 1 9.07604- 4 1.80000+ 1 7.66921- 4 1.90000+ 1 5.77860- 4 2.10000+ 1 4.15821- 4 2.20000+ 1 3.79218- 4 2.40000+ 1 1.77374- 4 2.50000+ 1 1.63386- 4 2.70000+ 1 8.95432- 5 2.90000+ 1 6.36432- 5 3.00000+ 1 5.27000- 5 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.88439- 1 9.26780- 2 6.00000+ 0 4.63919- 1 9.63370- 2 1.00000+ 1 5.33429- 2 1.08078- 1 1.10000+ 1 1.04180- 1 1.08921- 1 1.30000+ 1 1.82300- 3 1.09464- 1 1.40000+ 1 2.09300- 3 1.09636- 1 1.80000+ 1 1.32910- 2 1.11870- 1 1.90000+ 1 2.67829- 2 1.12089- 1 2.10000+ 1 5.31759- 4 1.12336- 1 2.20000+ 1 6.12069- 4 1.12377- 1 2.90000+ 1 3.23089- 3 1.12834- 1 3.00000+ 1 6.36819- 3 1.12886- 1 3.20000+ 1 1.06280- 4 1.12974- 1 3.30000+ 1 1.21450- 4 1.12982- 1 4.30000+ 1 5.70799- 4 1.13047- 1 4.40000+ 1 1.06770- 3 1.13056- 1 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.88689- 3 7.08540- 2 3.00000+ 0 5.00000+ 0 7.00520- 3 7.15650- 2 3.00000+ 0 6.00000+ 0 2.76693- 3 7.52240- 2 3.00000+ 0 8.00000+ 0 1.61182- 3 8.66321- 2 3.00000+ 0 1.00000+ 1 1.53999- 3 8.69652- 2 3.00000+ 0 1.10000+ 1 6.81546- 4 8.78076- 2 3.00000+ 0 1.30000+ 1 5.95797- 5 8.83509- 2 3.00000+ 0 1.40000+ 1 3.81284- 5 8.85234- 2 3.00000+ 0 1.60000+ 1 4.25161- 4 9.06049- 2 3.00000+ 0 1.80000+ 1 3.99586- 4 9.07569- 2 3.00000+ 0 1.90000+ 1 1.78482- 4 9.09764- 2 3.00000+ 0 2.10000+ 1 1.74074- 5 9.12232- 2 3.00000+ 0 2.20000+ 1 1.09745- 5 9.12638- 2 3.00000+ 0 2.40000+ 1 6.63112- 8 9.15894- 2 3.00000+ 0 2.50000+ 1 6.63112- 8 9.16000- 2 3.00000+ 0 2.70000+ 1 1.06863- 4 9.16618- 2 3.00000+ 0 2.90000+ 1 9.41627- 5 9.17211- 2 3.00000+ 0 3.00000+ 1 4.15773- 5 9.17729- 2 3.00000+ 0 3.20000+ 1 3.41496- 6 9.18609- 2 3.00000+ 0 3.30000+ 1 2.12199- 6 9.18686- 2 5.00000+ 0 5.00000+ 0 2.68042- 4 7.22760- 2 5.00000+ 0 6.00000+ 0 4.52085- 3 7.59350- 2 5.00000+ 0 8.00000+ 0 1.28451- 3 8.73431- 2 5.00000+ 0 1.00000+ 1 1.03914- 4 8.76762- 2 5.00000+ 0 1.10000+ 1 9.44669- 4 8.85186- 2 5.00000+ 0 1.30000+ 1 5.96833- 5 8.90619- 2 5.00000+ 0 1.40000+ 1 1.37310- 4 8.92344- 2 5.00000+ 0 1.60000+ 1 3.29486- 4 9.13159- 2 5.00000+ 0 1.80000+ 1 2.62279- 5 9.14679- 2 5.00000+ 0 1.90000+ 1 2.37541- 4 9.16874- 2 5.00000+ 0 2.10000+ 1 1.66456- 5 9.19342- 2 5.00000+ 0 2.20000+ 1 3.86290- 5 9.19748- 2 5.00000+ 0 2.40000+ 1 5.30531- 7 9.23004- 2 5.00000+ 0 2.50000+ 1 7.95774- 7 9.23110- 2 5.00000+ 0 2.70000+ 1 8.22318- 5 9.23728- 2 5.00000+ 0 2.90000+ 1 6.13417- 6 9.24321- 2 5.00000+ 0 3.00000+ 1 5.48095- 5 9.24839- 2 5.00000+ 0 3.20000+ 1 3.24935- 6 9.25719- 2 5.00000+ 0 3.30000+ 1 7.42705- 6 9.25796- 2 6.00000+ 0 6.00000+ 0 1.84416- 3 7.95940- 2 6.00000+ 0 8.00000+ 0 4.51048- 4 9.10021- 2 6.00000+ 0 1.00000+ 1 8.22118- 4 9.13352- 2 6.00000+ 0 1.10000+ 1 7.94736- 4 9.21776- 2 6.00000+ 0 1.30000+ 1 1.48417- 4 9.27209- 2 6.00000+ 0 1.40000+ 1 1.18202- 4 9.28934- 2 6.00000+ 0 1.60000+ 1 1.12439- 4 9.49749- 2 6.00000+ 0 1.80000+ 1 2.04041- 4 9.51269- 2 6.00000+ 0 1.90000+ 1 2.01595- 4 9.53464- 2 6.00000+ 0 2.10000+ 1 4.20106- 5 9.55932- 2 6.00000+ 0 2.20000+ 1 3.34223- 5 9.56338- 2 6.00000+ 0 2.40000+ 1 7.95772- 7 9.59594- 2 6.00000+ 0 2.50000+ 1 8.28917- 7 9.59700- 2 6.00000+ 0 2.70000+ 1 2.78520- 5 9.60318- 2 6.00000+ 0 2.90000+ 1 4.75786- 5 9.60911- 2 6.00000+ 0 3.00000+ 1 4.66200- 5 9.61429- 2 6.00000+ 0 3.20000+ 1 8.18967- 6 9.62309- 2 6.00000+ 0 3.30000+ 1 6.43255- 6 9.62386- 2 8.00000+ 0 8.00000+ 0 1.65354- 4 1.02410- 1 8.00000+ 0 1.00000+ 1 2.83931- 4 1.02743- 1 8.00000+ 0 1.10000+ 1 1.12374- 4 1.03586- 1 8.00000+ 0 1.30000+ 1 9.54928- 6 1.04129- 1 8.00000+ 0 1.40000+ 1 5.73638- 6 1.04302- 1 8.00000+ 0 1.60000+ 1 8.71057- 5 1.06383- 1 8.00000+ 0 1.80000+ 1 7.37746- 5 1.06535- 1 8.00000+ 0 1.90000+ 1 2.95105- 5 1.06755- 1 8.00000+ 0 2.10000+ 1 2.78521- 6 1.07001- 1 8.00000+ 0 2.20000+ 1 1.65784- 6 1.07042- 1 8.00000+ 0 2.70000+ 1 2.18841- 5 1.07440- 1 8.00000+ 0 2.90000+ 1 1.73740- 5 1.07499- 1 8.00000+ 0 3.00000+ 1 6.89682- 6 1.07551- 1 8.00000+ 0 3.20000+ 1 5.63677- 7 1.07639- 1 8.00000+ 0 3.30000+ 1 3.31579- 7 1.07647- 1 1.00000+ 1 1.00000+ 1 9.61549- 6 1.03076- 1 1.00000+ 1 1.10000+ 1 1.77525- 4 1.03919- 1 1.00000+ 1 1.30000+ 1 9.98010- 6 1.04462- 1 1.00000+ 1 1.40000+ 1 1.86010- 5 1.04635- 1 1.00000+ 1 1.60000+ 1 7.28450- 5 1.06716- 1 1.00000+ 1 1.80000+ 1 4.80767- 6 1.06868- 1 1.00000+ 1 1.90000+ 1 4.49595- 5 1.07088- 1 1.00000+ 1 2.10000+ 1 2.81830- 6 1.07334- 1 1.00000+ 1 2.20000+ 1 5.30518- 6 1.07375- 1 1.00000+ 1 2.40000+ 1 6.63120- 8 1.07701- 1 1.00000+ 1 2.50000+ 1 9.94693- 8 1.07711- 1 1.00000+ 1 2.70000+ 1 1.81691- 5 1.07773- 1 1.00000+ 1 2.90000+ 1 1.12735- 6 1.07832- 1 1.00000+ 1 3.00000+ 1 1.03780- 5 1.07884- 1 1.00000+ 1 3.20000+ 1 5.63663- 7 1.07972- 1 1.00000+ 1 3.30000+ 1 1.02785- 6 1.07980- 1 1.10000+ 1 1.10000+ 1 8.67062- 5 1.04761- 1 1.10000+ 1 1.30000+ 1 2.60613- 5 1.05304- 1 1.10000+ 1 1.40000+ 1 1.99601- 5 1.05477- 1 1.10000+ 1 1.60000+ 1 2.80833- 5 1.07559- 1 1.10000+ 1 1.80000+ 1 4.43641- 5 1.07710- 1 1.10000+ 1 1.90000+ 1 4.41327- 5 1.07930- 1 1.10000+ 1 2.10000+ 1 7.46028- 6 1.08177- 1 1.10000+ 1 2.20000+ 1 5.70305- 6 1.08217- 1 1.10000+ 1 2.40000+ 1 9.94711- 8 1.08543- 1 1.10000+ 1 2.50000+ 1 1.32626- 7 1.08554- 1 1.10000+ 1 2.70000+ 1 6.96276- 6 1.08615- 1 1.10000+ 1 2.90000+ 1 1.03782- 5 1.08675- 1 1.10000+ 1 3.00000+ 1 1.02122- 5 1.08727- 1 1.10000+ 1 3.20000+ 1 1.45893- 6 1.08815- 1 1.10000+ 1 3.30000+ 1 1.09417- 6 1.08822- 1 1.30000+ 1 1.30000+ 1 6.63131- 8 1.05848- 1 1.30000+ 1 1.40000+ 1 2.81835- 6 1.06020- 1 1.30000+ 1 1.60000+ 1 2.38729- 6 1.08102- 1 1.30000+ 1 1.80000+ 1 2.45363- 6 1.08254- 1 1.30000+ 1 1.90000+ 1 6.29973- 6 1.08473- 1 1.30000+ 1 2.10000+ 1 3.31576- 8 1.08720- 1 1.30000+ 1 2.20000+ 1 7.62610- 7 1.08761- 1 1.30000+ 1 2.70000+ 1 5.96828- 7 1.09159- 1 1.30000+ 1 2.90000+ 1 5.63672- 7 1.09218- 1 1.30000+ 1 3.00000+ 1 1.42576- 6 1.09270- 1 1.30000+ 1 3.30000+ 1 1.32626- 7 1.09366- 1 1.40000+ 1 1.40000+ 1 6.63142- 7 1.06193- 1 1.40000+ 1 1.60000+ 1 1.42578- 6 1.08274- 1 1.40000+ 1 1.80000+ 1 4.31042- 6 1.08426- 1 1.40000+ 1 1.90000+ 1 4.77466- 6 1.08646- 1 1.40000+ 1 2.10000+ 1 7.62623- 7 1.08893- 1 1.40000+ 1 2.20000+ 1 3.64740- 7 1.08933- 1 1.40000+ 1 2.70000+ 1 3.64740- 7 1.09331- 1 1.40000+ 1 2.90000+ 1 9.94727- 7 1.09391- 1 1.40000+ 1 3.00000+ 1 1.09419- 6 1.09442- 1 1.40000+ 1 3.20000+ 1 1.32628- 7 1.09530- 1 1.40000+ 1 3.30000+ 1 6.63142- 8 1.09538- 1 1.60000+ 1 1.60000+ 1 1.14720- 5 1.10356- 1 1.60000+ 1 1.80000+ 1 1.89320- 5 1.10508- 1 1.60000+ 1 1.90000+ 1 7.39384- 6 1.10727- 1 1.60000+ 1 2.10000+ 1 6.96277- 7 1.10974- 1 1.60000+ 1 2.20000+ 1 3.97880- 7 1.11015- 1 1.60000+ 1 2.70000+ 1 5.76951- 6 1.11413- 1 1.60000+ 1 2.90000+ 1 4.47631- 6 1.11472- 1 1.60000+ 1 3.00000+ 1 1.72417- 6 1.11524- 1 1.60000+ 1 3.20000+ 1 1.32626- 7 1.11612- 1 1.60000+ 1 3.30000+ 1 6.63132- 8 1.11619- 1 1.80000+ 1 1.80000+ 1 5.96819- 7 1.10660- 1 1.80000+ 1 1.90000+ 1 1.12735- 5 1.10879- 1 1.80000+ 1 2.10000+ 1 6.96265- 7 1.11126- 1 1.80000+ 1 2.20000+ 1 1.22674- 6 1.11167- 1 1.80000+ 1 2.50000+ 1 3.31571- 8 1.11503- 1 1.80000+ 1 2.70000+ 1 4.70818- 6 1.11565- 1 1.80000+ 1 2.90000+ 1 2.65259- 7 1.11624- 1 1.80000+ 1 3.00000+ 1 2.61931- 6 1.11676- 1 1.80000+ 1 3.20000+ 1 1.32624- 7 1.11764- 1 1.80000+ 1 3.30000+ 1 2.32092- 7 1.11771- 1 1.90000+ 1 1.90000+ 1 5.60358- 6 1.11099- 1 1.90000+ 1 2.10000+ 1 1.79050- 6 1.11346- 1 1.90000+ 1 2.20000+ 1 1.35933- 6 1.11386- 1 1.90000+ 1 2.40000+ 1 3.31578- 8 1.11712- 1 1.90000+ 1 2.50000+ 1 3.31578- 8 1.11722- 1 1.90000+ 1 2.70000+ 1 1.82367- 6 1.11784- 1 1.90000+ 1 2.90000+ 1 2.61937- 6 1.11844- 1 1.90000+ 1 3.00000+ 1 2.58619- 6 1.11895- 1 1.90000+ 1 3.20000+ 1 3.64736- 7 1.11983- 1 1.90000+ 1 3.30000+ 1 2.65265- 7 1.11991- 1 2.10000+ 1 2.20000+ 1 2.07495- 7 1.11633- 1 2.10000+ 1 2.70000+ 1 1.72913- 7 1.12031- 1 2.10000+ 1 2.90000+ 1 1.72913- 7 1.12090- 1 2.10000+ 1 3.00000+ 1 4.14993- 7 1.12142- 1 2.10000+ 1 3.30000+ 1 3.45838- 8 1.12238- 1 2.20000+ 1 2.20000+ 1 6.63130- 8 1.11674- 1 2.20000+ 1 2.70000+ 1 9.94709- 8 1.12072- 1 2.20000+ 1 2.90000+ 1 2.98420- 7 1.12131- 1 2.20000+ 1 3.00000+ 1 2.98420- 7 1.12183- 1 2.20000+ 1 3.20000+ 1 3.31576- 8 1.12271- 1 2.20000+ 1 3.30000+ 1 3.31576- 8 1.12278- 1 2.70000+ 1 2.70000+ 1 7.08863- 7 1.12470- 1 2.70000+ 1 2.90000+ 1 1.09553- 6 1.12529- 1 2.70000+ 1 3.00000+ 1 4.18862- 7 1.12581- 1 2.70000+ 1 3.20000+ 1 3.22212- 8 1.12669- 1 2.70000+ 1 3.30000+ 1 3.22212- 8 1.12676- 1 2.90000+ 1 2.90000+ 1 3.30586- 8 1.12588- 1 2.90000+ 1 3.00000+ 1 5.95046- 7 1.12640- 1 2.90000+ 1 3.20000+ 1 3.30586- 8 1.12728- 1 2.90000+ 1 3.30000+ 1 6.61151- 8 1.12736- 1 3.00000+ 1 3.00000+ 1 3.04847- 7 1.12692- 1 3.00000+ 1 3.20000+ 1 6.77412- 8 1.12780- 1 3.00000+ 1 3.30000+ 1 6.77412- 8 1.12788- 1 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.25020- 5 7.11000- 4 6.00000+ 0 7.49180- 3 4.37000- 3 1.00000+ 1 5.03970- 2 1.61112- 2 1.10000+ 1 4.49910- 2 1.69536- 2 1.30000+ 1 2.27610- 3 1.74969- 2 1.40000+ 1 3.39420- 3 1.76694- 2 1.80000+ 1 1.35680- 2 1.99029- 2 1.90000+ 1 1.37900- 2 2.01224- 2 2.10000+ 1 3.83620- 4 2.03692- 2 2.20000+ 1 6.14620- 4 2.04098- 2 2.90000+ 1 3.24090- 3 2.08671- 2 3.00000+ 1 3.33640- 3 2.09189- 2 3.20000+ 1 6.77330- 5 2.10069- 2 3.30000+ 1 1.09630- 4 2.10146- 2 4.30000+ 1 5.92950- 4 2.10804- 2 4.40000+ 1 5.84050- 4 2.10892- 2 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.10000+ 1 4.12984- 3 0.00000+ 0 5.00000+ 0 2.20000+ 1 5.55674- 3 7.79000- 6 5.00000+ 0 2.40000+ 1 1.28460- 2 3.33370- 4 5.00000+ 0 2.50000+ 1 1.70002- 2 3.43960- 4 5.00000+ 0 2.70000+ 1 5.01646- 3 4.05830- 4 5.00000+ 0 2.90000+ 1 4.01982- 3 4.65110- 4 5.00000+ 0 3.00000+ 1 3.26197- 3 5.16930- 4 5.00000+ 0 3.20000+ 1 8.57095- 4 6.04920- 4 5.00000+ 0 3.30000+ 1 1.09596- 3 6.12600- 4 6.00000+ 0 1.10000+ 1 3.66346- 2 2.10600- 4 6.00000+ 0 1.30000+ 1 2.06737- 1 7.53900- 4 6.00000+ 0 1.40000+ 1 2.51272- 1 9.26400- 4 6.00000+ 0 1.60000+ 1 1.68269- 2 3.00790- 3 6.00000+ 0 1.80000+ 1 6.54885- 3 3.15990- 3 6.00000+ 0 1.90000+ 1 9.25247- 3 3.37943- 3 6.00000+ 0 2.10000+ 1 3.17214- 2 3.62625- 3 6.00000+ 0 2.20000+ 1 3.66526- 2 3.66679- 3 6.00000+ 0 2.40000+ 1 1.95884- 2 3.99237- 3 6.00000+ 0 2.50000+ 1 2.40089- 2 4.00296- 3 6.00000+ 0 2.70000+ 1 3.99547- 3 4.06483- 3 6.00000+ 0 2.90000+ 1 1.52160- 3 4.12411- 3 6.00000+ 0 3.00000+ 1 2.14006- 3 4.17593- 3 6.00000+ 0 3.20000+ 1 5.61149- 3 4.26392- 3 6.00000+ 0 3.30000+ 1 6.35771- 3 4.27160- 3 8.00000+ 0 8.00000+ 0 5.37354- 3 1.04432- 2 8.00000+ 0 1.00000+ 1 1.12481- 2 1.07763- 2 8.00000+ 0 1.10000+ 1 1.60101- 2 1.16187- 2 8.00000+ 0 1.30000+ 1 1.13452- 2 1.21620- 2 8.00000+ 0 1.40000+ 1 1.37842- 2 1.23345- 2 8.00000+ 0 1.60000+ 1 2.41093- 3 1.44160- 2 8.00000+ 0 1.80000+ 1 2.88752- 3 1.45680- 2 8.00000+ 0 1.90000+ 1 4.08792- 3 1.47875- 2 8.00000+ 0 2.10000+ 1 2.73883- 3 1.50343- 2 8.00000+ 0 2.20000+ 1 3.31446- 3 1.50749- 2 8.00000+ 0 2.40000+ 1 2.52086- 4 1.54005- 2 8.00000+ 0 2.50000+ 1 2.62939- 4 1.54111- 2 8.00000+ 0 2.70000+ 1 5.88718- 4 1.54729- 2 8.00000+ 0 2.90000+ 1 6.77730- 4 1.55322- 2 8.00000+ 0 3.00000+ 1 9.45692- 4 1.55840- 2 8.00000+ 0 3.20000+ 1 5.16738- 4 1.56720- 2 8.00000+ 0 3.30000+ 1 6.19367- 4 1.56797- 2 1.00000+ 1 1.00000+ 1 1.37755- 5 1.11094- 2 1.00000+ 1 1.10000+ 1 2.06974- 4 1.19518- 2 1.00000+ 1 1.30000+ 1 7.27870- 4 1.24951- 2 1.00000+ 1 1.40000+ 1 5.17610- 3 1.26676- 2 1.00000+ 1 1.60000+ 1 1.99965- 3 1.47491- 2 1.00000+ 1 1.80000+ 1 1.72190- 6 1.49011- 2 1.00000+ 1 1.90000+ 1 4.25312- 5 1.51206- 2 1.00000+ 1 2.10000+ 1 1.47217- 4 1.53674- 2 1.00000+ 1 2.20000+ 1 8.01908- 4 1.54080- 2 1.00000+ 1 2.40000+ 1 9.52300- 5 1.57336- 2 1.00000+ 1 2.50000+ 1 3.28208- 4 1.57442- 2 1.00000+ 1 2.70000+ 1 4.58554- 4 1.58060- 2 1.00000+ 1 2.90000+ 1 3.44389- 7 1.58653- 2 1.00000+ 1 3.00000+ 1 9.29892- 6 1.59171- 2 1.00000+ 1 3.20000+ 1 2.72067- 5 1.60051- 2 1.00000+ 1 3.30000+ 1 1.37415- 4 1.60128- 2 1.10000+ 1 1.10000+ 1 6.86530- 4 1.27942- 2 1.10000+ 1 1.30000+ 1 1.44831- 3 1.33375- 2 1.10000+ 1 1.40000+ 1 8.89851- 4 1.35100- 2 1.10000+ 1 1.60000+ 1 2.76225- 3 1.55915- 2 1.10000+ 1 1.80000+ 1 5.44122- 5 1.57435- 2 1.10000+ 1 1.90000+ 1 2.72581- 4 1.59630- 2 1.10000+ 1 2.10000+ 1 1.55485- 4 1.62098- 2 1.10000+ 1 2.20000+ 1 6.93930- 5 1.62504- 2 1.10000+ 1 2.40000+ 1 1.12611- 4 1.65760- 2 1.10000+ 1 2.50000+ 1 9.74597- 5 1.65866- 2 1.10000+ 1 2.70000+ 1 6.28668- 4 1.66484- 2 1.10000+ 1 2.90000+ 1 1.27419- 5 1.67077- 2 1.10000+ 1 3.00000+ 1 5.97498- 5 1.67595- 2 1.10000+ 1 3.20000+ 1 2.49683- 5 1.68475- 2 1.10000+ 1 3.30000+ 1 9.98707- 6 1.68552- 2 1.30000+ 1 1.30000+ 1 6.44201- 4 1.38808- 2 1.30000+ 1 1.40000+ 1 1.78976- 2 1.40533- 2 1.30000+ 1 1.60000+ 1 1.76162- 3 1.61348- 2 1.30000+ 1 1.80000+ 1 2.19027- 4 1.62868- 2 1.30000+ 1 1.90000+ 1 4.01547- 4 1.65063- 2 1.30000+ 1 2.10000+ 1 3.02891- 4 1.67531- 2 1.30000+ 1 2.20000+ 1 3.00318- 3 1.67937- 2 1.30000+ 1 2.40000+ 1 2.49855- 4 1.71193- 2 1.30000+ 1 2.50000+ 1 6.78745- 4 1.71299- 2 1.30000+ 1 2.70000+ 1 3.91394- 4 1.71917- 2 1.30000+ 1 2.90000+ 1 5.32071- 5 1.72510- 2 1.30000+ 1 3.00000+ 1 9.50493- 5 1.73028- 2 1.30000+ 1 3.20000+ 1 5.69949- 5 1.73908- 2 1.30000+ 1 3.30000+ 1 5.20706- 4 1.73985- 2 1.40000+ 1 1.40000+ 1 4.87576- 3 1.42258- 2 1.40000+ 1 1.60000+ 1 2.17379- 3 1.63073- 2 1.40000+ 1 1.80000+ 1 1.16770- 3 1.64593- 2 1.40000+ 1 1.90000+ 1 2.38667- 4 1.66788- 2 1.40000+ 1 2.10000+ 1 2.87379- 3 1.69256- 2 1.40000+ 1 2.20000+ 1 1.72632- 3 1.69662- 2 1.40000+ 1 2.40000+ 1 7.44197- 4 1.72918- 2 1.40000+ 1 2.50000+ 1 5.51709- 4 1.73024- 2 1.40000+ 1 2.70000+ 1 4.86285- 4 1.73642- 2 1.40000+ 1 2.90000+ 1 2.66732- 4 1.74235- 2 1.40000+ 1 3.00000+ 1 5.66528- 5 1.74753- 2 1.40000+ 1 3.20000+ 1 4.98160- 4 1.75633- 2 1.40000+ 1 3.30000+ 1 3.03240- 4 1.75710- 2 1.60000+ 1 1.60000+ 1 2.55705- 4 1.83888- 2 1.60000+ 1 1.80000+ 1 5.15025- 4 1.85408- 2 1.60000+ 1 1.90000+ 1 7.09764- 4 1.87603- 2 1.60000+ 1 2.10000+ 1 4.28595- 4 1.90071- 2 1.60000+ 1 2.20000+ 1 5.22785- 4 1.90477- 2 1.60000+ 1 2.40000+ 1 3.28888- 5 1.93733- 2 1.60000+ 1 2.50000+ 1 3.25444- 5 1.93839- 2 1.60000+ 1 2.70000+ 1 1.23297- 4 1.94457- 2 1.60000+ 1 2.90000+ 1 1.20884- 4 1.95050- 2 1.60000+ 1 3.00000+ 1 1.64449- 4 1.95568- 2 1.60000+ 1 3.20000+ 1 8.09314- 5 1.96448- 2 1.60000+ 1 3.30000+ 1 9.76328- 5 1.96525- 2 1.80000+ 1 1.90000+ 1 1.11927- 5 1.89123- 2 1.80000+ 1 2.10000+ 1 4.02917- 5 1.91591- 2 1.80000+ 1 2.20000+ 1 1.88713- 4 1.91997- 2 1.80000+ 1 2.40000+ 1 1.36018- 5 1.95253- 2 1.80000+ 1 2.50000+ 1 5.35501- 5 1.95359- 2 1.80000+ 1 2.70000+ 1 1.18125- 4 1.95977- 2 1.80000+ 1 3.00000+ 1 2.41068- 6 1.97088- 2 1.80000+ 1 3.20000+ 1 7.23154- 6 1.97968- 2 1.80000+ 1 3.30000+ 1 3.25432- 5 1.98045- 2 1.90000+ 1 1.90000+ 1 2.60007- 5 1.91319- 2 1.90000+ 1 2.10000+ 1 4.45981- 5 1.93787- 2 1.90000+ 1 2.20000+ 1 2.13520- 5 1.94192- 2 1.90000+ 1 2.40000+ 1 2.65163- 5 1.97448- 2 1.90000+ 1 2.50000+ 1 2.20407- 5 1.97554- 2 1.90000+ 1 2.70000+ 1 1.61694- 4 1.98173- 2 1.90000+ 1 2.90000+ 1 2.58285- 6 1.98765- 2 1.90000+ 1 3.00000+ 1 1.13643- 5 1.99284- 2 1.90000+ 1 3.20000+ 1 7.05960- 6 2.00163- 2 1.90000+ 1 3.30000+ 1 3.27162- 6 2.00240- 2 2.10000+ 1 2.10000+ 1 3.28882- 5 1.96255- 2 2.10000+ 1 2.20000+ 1 5.28273- 4 1.96660- 2 2.10000+ 1 2.40000+ 1 4.06371- 5 1.99916- 2 2.10000+ 1 2.50000+ 1 8.31699- 5 2.00022- 2 2.10000+ 1 2.70000+ 1 9.53993- 5 2.00641- 2 2.10000+ 1 2.90000+ 1 9.64255- 6 2.01234- 2 2.10000+ 1 3.00000+ 1 1.06764- 5 2.01752- 2 2.10000+ 1 3.20000+ 1 1.22253- 5 2.02632- 2 2.10000+ 1 3.30000+ 1 9.31585- 5 2.02708- 2 2.20000+ 1 2.20000+ 1 1.63926- 4 1.97066- 2 2.20000+ 1 2.40000+ 1 9.78103- 5 2.00322- 2 2.20000+ 1 2.50000+ 1 8.02402- 5 2.00427- 2 2.20000+ 1 2.70000+ 1 1.16746- 4 2.01046- 2 2.20000+ 1 2.90000+ 1 4.33914- 5 2.01639- 2 2.20000+ 1 3.00000+ 1 5.16568- 6 2.02157- 2 2.20000+ 1 3.20000+ 1 9.31585- 5 2.03037- 2 2.20000+ 1 3.30000+ 1 5.83722- 5 2.03114- 2 2.40000+ 1 2.40000+ 1 1.20529- 6 2.03577- 2 2.40000+ 1 2.50000+ 1 2.16950- 5 2.03683- 2 2.40000+ 1 2.70000+ 1 7.05949- 6 2.04302- 2 2.40000+ 1 2.90000+ 1 2.75502- 6 2.04895- 2 2.40000+ 1 3.00000+ 1 6.02659- 6 2.05413- 2 2.40000+ 1 3.20000+ 1 7.05949- 6 2.06293- 2 2.40000+ 1 3.30000+ 1 1.61861- 5 2.06370- 2 2.50000+ 1 2.50000+ 1 4.62972- 6 2.03789- 2 2.50000+ 1 2.70000+ 1 7.12252- 6 2.04408- 2 2.50000+ 1 2.90000+ 1 1.17522- 5 2.05001- 2 2.50000+ 1 3.00000+ 1 5.16400- 6 2.05519- 2 2.50000+ 1 3.20000+ 1 1.40663- 5 2.06399- 2 2.50000+ 1 3.30000+ 1 1.40663- 5 2.06476- 2 2.70000+ 1 2.70000+ 1 1.62500- 5 2.05027- 2 2.70000+ 1 2.90000+ 1 3.04213- 5 2.05619- 2 2.70000+ 1 3.00000+ 1 4.10020- 5 2.06138- 2 2.70000+ 1 3.20000+ 1 1.98396- 5 2.07017- 2 2.70000+ 1 3.30000+ 1 2.39971- 5 2.07094- 2 2.90000+ 1 3.00000+ 1 5.83043- 7 2.06730- 2 2.90000+ 1 3.20000+ 1 1.94344- 6 2.07610- 2 2.90000+ 1 3.30000+ 1 8.55152- 6 2.07687- 2 3.00000+ 1 3.00000+ 1 1.62355- 6 2.07249- 2 3.00000+ 1 3.20000+ 1 2.31935- 6 2.08128- 2 3.00000+ 1 3.30000+ 1 1.15971- 6 2.08205- 2 3.20000+ 1 3.20000+ 1 1.21366- 6 2.09008- 2 3.20000+ 1 3.30000+ 1 1.66453- 5 2.09085- 2 3.30000+ 1 3.30000+ 1 5.24860- 6 2.09162- 2 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.18270- 5 3.65900- 3 8.00000+ 0 9.84309- 3 1.50671- 2 1.10000+ 1 4.96200- 4 1.62426- 2 1.30000+ 1 3.51140- 1 1.67859- 2 1.60000+ 1 2.65830- 3 1.90399- 2 1.90000+ 1 1.48700- 4 1.94114- 2 2.10000+ 1 7.88189- 2 1.96582- 2 2.40000+ 1 4.74460- 4 2.00244- 2 2.70000+ 1 6.74489- 4 2.00968- 2 3.00000+ 1 3.58300- 5 2.02079- 2 3.20000+ 1 1.49210- 2 2.02959- 2 3.50000+ 1 6.51749- 6 2.03944- 2 4.10000+ 1 1.38180- 4 2.03520- 2 4.40000+ 1 6.22359- 6 2.03782- 2 5.80000+ 1 1.53020- 5 2.03963- 2 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 1.14921- 1 4.29000- 5 6.00000+ 0 1.40000+ 1 3.76453- 2 2.15400- 4 6.00000+ 0 1.60000+ 1 3.12785- 3 2.29690- 3 6.00000+ 0 1.80000+ 1 2.55680- 2 2.44890- 3 6.00000+ 0 1.90000+ 1 6.09672- 3 2.66843- 3 6.00000+ 0 2.10000+ 1 2.26754- 2 2.91525- 3 6.00000+ 0 2.20000+ 1 7.66702- 3 2.95579- 3 6.00000+ 0 2.40000+ 1 1.11216- 3 3.28137- 3 6.00000+ 0 2.50000+ 1 1.60324- 3 3.29196- 3 6.00000+ 0 2.70000+ 1 7.21734- 4 3.35383- 3 6.00000+ 0 2.90000+ 1 5.45986- 3 3.41311- 3 6.00000+ 0 3.00000+ 1 1.36901- 3 3.46493- 3 6.00000+ 0 3.20000+ 1 4.09209- 3 3.55292- 3 6.00000+ 0 3.30000+ 1 1.39018- 3 3.56060- 3 8.00000+ 0 8.00000+ 0 3.53632- 4 9.73220- 3 8.00000+ 0 1.00000+ 1 1.45387- 2 1.00653- 2 8.00000+ 0 1.10000+ 1 1.28451- 3 1.09077- 2 8.00000+ 0 1.30000+ 1 2.70881- 3 1.14510- 2 8.00000+ 0 1.40000+ 1 1.00919- 3 1.16235- 2 8.00000+ 0 1.60000+ 1 1.42029- 4 1.37050- 2 8.00000+ 0 1.80000+ 1 2.46353- 3 1.38570- 2 8.00000+ 0 1.90000+ 1 2.95364- 4 1.40765- 2 8.00000+ 0 2.10000+ 1 4.65107- 4 1.43233- 2 8.00000+ 0 2.20000+ 1 1.47398- 4 1.43639- 2 8.00000+ 0 2.40000+ 1 6.13938- 5 1.46895- 2 8.00000+ 0 2.50000+ 1 4.47005- 5 1.47001- 2 8.00000+ 0 2.70000+ 1 3.36666- 5 1.47619- 2 8.00000+ 0 2.90000+ 1 5.27629- 4 1.48212- 2 8.00000+ 0 3.00000+ 1 6.67663- 5 1.48730- 2 8.00000+ 0 3.20000+ 1 8.23239- 5 1.49610- 2 8.00000+ 0 3.30000+ 1 2.51800- 5 1.49687- 2 1.00000+ 1 1.00000+ 1 1.55298- 2 1.03984- 2 1.00000+ 1 1.10000+ 1 3.53695- 2 1.12408- 2 1.00000+ 1 1.30000+ 1 1.78739- 2 1.17841- 2 1.00000+ 1 1.40000+ 1 2.29857- 2 1.19566- 2 1.00000+ 1 1.60000+ 1 3.92341- 3 1.40381- 2 1.00000+ 1 1.80000+ 1 6.70313- 3 1.41901- 2 1.00000+ 1 1.90000+ 1 8.86320- 3 1.44096- 2 1.00000+ 1 2.10000+ 1 4.30218- 3 1.46564- 2 1.00000+ 1 2.20000+ 1 5.55117- 3 1.46970- 2 1.00000+ 1 2.40000+ 1 3.47412- 4 1.50226- 2 1.00000+ 1 2.50000+ 1 2.82061- 4 1.50332- 2 1.00000+ 1 2.70000+ 1 9.90502- 4 1.50950- 2 1.00000+ 1 2.90000+ 1 1.52430- 3 1.51543- 2 1.00000+ 1 3.00000+ 1 2.04259- 3 1.52061- 2 1.00000+ 1 3.20000+ 1 8.12203- 4 1.52941- 2 1.00000+ 1 3.30000+ 1 1.03881- 3 1.53018- 2 1.10000+ 1 1.10000+ 1 7.28500- 4 1.20832- 2 1.10000+ 1 1.30000+ 1 1.38712- 2 1.26265- 2 1.10000+ 1 1.40000+ 1 2.12668- 3 1.27990- 2 1.10000+ 1 1.60000+ 1 2.88577- 4 1.48805- 2 1.10000+ 1 1.80000+ 1 6.03571- 3 1.50325- 2 1.10000+ 1 1.90000+ 1 3.16023- 4 1.52520- 2 1.10000+ 1 2.10000+ 1 2.84766- 3 1.54988- 2 1.10000+ 1 2.20000+ 1 4.24383- 4 1.55394- 2 1.10000+ 1 2.40000+ 1 1.14577- 4 1.58650- 2 1.10000+ 1 2.50000+ 1 5.74325- 5 1.58756- 2 1.10000+ 1 2.70000+ 1 6.95954- 5 1.59374- 2 1.10000+ 1 2.90000+ 1 1.29349- 3 1.59967- 2 1.10000+ 1 3.00000+ 1 7.04500- 5 1.60485- 2 1.10000+ 1 3.20000+ 1 5.20001- 4 1.61365- 2 1.10000+ 1 3.30000+ 1 7.66714- 5 1.61442- 2 1.30000+ 1 1.30000+ 1 1.31840- 2 1.31698- 2 1.30000+ 1 1.40000+ 1 5.07765- 2 1.33423- 2 1.30000+ 1 1.60000+ 1 7.31898- 4 1.54238- 2 1.30000+ 1 1.80000+ 1 2.93078- 3 1.55758- 2 1.30000+ 1 1.90000+ 1 3.19609- 3 1.57953- 2 1.30000+ 1 2.10000+ 1 5.25597- 3 1.60421- 2 1.30000+ 1 2.20000+ 1 1.09408- 2 1.60827- 2 1.30000+ 1 2.40000+ 1 1.10958- 3 1.64083- 2 1.30000+ 1 2.50000+ 1 2.20653- 3 1.64189- 2 1.30000+ 1 2.70000+ 1 1.85307- 4 1.64807- 2 1.30000+ 1 2.90000+ 1 6.28372- 4 1.65400- 2 1.30000+ 1 3.00000+ 1 7.22872- 4 1.65918- 2 1.30000+ 1 3.20000+ 1 9.59642- 4 1.66798- 2 1.30000+ 1 3.30000+ 1 2.00166- 3 1.66875- 2 1.40000+ 1 1.40000+ 1 2.47893- 3 1.35148- 2 1.40000+ 1 1.60000+ 1 2.19262- 4 1.55963- 2 1.40000+ 1 1.80000+ 1 3.30405- 3 1.57483- 2 1.40000+ 1 1.90000+ 1 4.52671- 4 1.59678- 2 1.40000+ 1 2.10000+ 1 8.30786- 3 1.62146- 2 1.40000+ 1 2.20000+ 1 9.75248- 4 1.62552- 2 1.40000+ 1 2.40000+ 1 4.42201- 4 1.65808- 2 1.40000+ 1 2.50000+ 1 1.68056- 4 1.65914- 2 1.40000+ 1 2.70000+ 1 5.29063- 5 1.66532- 2 1.40000+ 1 2.90000+ 1 6.80122- 4 1.67125- 2 1.40000+ 1 3.00000+ 1 1.00441- 4 1.67643- 2 1.40000+ 1 3.20000+ 1 1.45027- 3 1.68523- 2 1.40000+ 1 3.30000+ 1 1.75977- 4 1.68600- 2 1.60000+ 1 1.60000+ 1 1.35799- 5 1.76778- 2 1.60000+ 1 1.80000+ 1 6.68781- 4 1.78298- 2 1.60000+ 1 1.90000+ 1 6.67645- 5 1.80493- 2 1.60000+ 1 2.10000+ 1 1.23067- 4 1.82961- 2 1.60000+ 1 2.20000+ 1 3.16853- 5 1.83367- 2 1.60000+ 1 2.40000+ 1 1.44276- 5 1.86623- 2 1.60000+ 1 2.50000+ 1 8.48737- 6 1.86729- 2 1.60000+ 1 2.70000+ 1 6.50670- 6 1.87347- 2 1.60000+ 1 2.90000+ 1 1.43430- 4 1.87940- 2 1.60000+ 1 3.00000+ 1 1.49944- 5 1.88458- 2 1.60000+ 1 3.20000+ 1 2.15004- 5 1.89338- 2 1.60000+ 1 3.30000+ 1 5.37516- 6 1.89415- 2 1.80000+ 1 1.80000+ 1 6.87791- 4 1.79818- 2 1.80000+ 1 1.90000+ 1 1.51877- 3 1.82013- 2 1.80000+ 1 2.10000+ 1 6.95682- 4 1.84481- 2 1.80000+ 1 2.20000+ 1 8.06609- 4 1.84887- 2 1.80000+ 1 2.40000+ 1 4.69650- 5 1.88143- 2 1.80000+ 1 2.50000+ 1 2.91405- 5 1.88249- 2 1.80000+ 1 2.70000+ 1 1.68900- 4 1.88867- 2 1.80000+ 1 2.90000+ 1 3.09227- 4 1.89460- 2 1.80000+ 1 3.00000+ 1 3.50253- 4 1.89978- 2 1.80000+ 1 3.20000+ 1 1.30994- 4 1.90858- 2 1.80000+ 1 3.30000+ 1 1.51367- 4 1.90935- 2 1.90000+ 1 1.90000+ 1 3.42328- 5 1.84209- 2 1.90000+ 1 2.10000+ 1 6.60317- 4 1.86677- 2 1.90000+ 1 2.20000+ 1 9.13800- 5 1.87082- 2 1.90000+ 1 2.40000+ 1 2.37646- 5 1.90338- 2 1.90000+ 1 2.50000+ 1 1.07502- 5 1.90444- 2 1.90000+ 1 2.70000+ 1 1.61258- 5 1.91063- 2 1.90000+ 1 2.90000+ 1 3.25641- 4 1.91655- 2 1.90000+ 1 3.00000+ 1 1.52779- 5 1.92174- 2 1.90000+ 1 3.20000+ 1 1.20801- 4 1.93053- 2 1.90000+ 1 3.30000+ 1 1.64087- 5 1.93130- 2 2.10000+ 1 2.10000+ 1 5.21138- 4 1.89145- 2 2.10000+ 1 2.20000+ 1 1.86647- 3 1.89550- 2 2.10000+ 1 2.40000+ 1 1.52494- 4 1.92806- 2 2.10000+ 1 2.50000+ 1 3.04707- 4 1.92912- 2 2.10000+ 1 2.70000+ 1 3.11213- 5 1.93531- 2 2.10000+ 1 2.90000+ 1 1.48250- 4 1.94124- 2 2.10000+ 1 3.00000+ 1 1.49655- 4 1.94642- 2 2.10000+ 1 3.20000+ 1 1.89832- 4 1.95522- 2 2.10000+ 1 3.30000+ 1 3.44028- 4 1.95598- 2 2.20000+ 1 2.20000+ 1 9.70414- 5 1.89956- 2 2.20000+ 1 2.40000+ 1 6.61995- 5 1.93212- 2 2.20000+ 1 2.50000+ 1 2.57452- 5 1.93317- 2 2.20000+ 1 2.70000+ 1 7.63847- 6 1.93936- 2 2.20000+ 1 2.90000+ 1 1.66358- 4 1.94529- 2 2.20000+ 1 3.00000+ 1 2.03706- 5 1.95047- 2 2.20000+ 1 3.20000+ 1 3.28174- 4 1.95927- 2 2.20000+ 1 3.30000+ 1 3.50817- 5 1.96004- 2 2.40000+ 1 2.40000+ 1 3.96086- 6 1.96467- 2 2.40000+ 1 2.50000+ 1 2.65940- 5 1.96573- 2 2.40000+ 1 2.70000+ 1 3.39501- 6 1.97192- 2 2.40000+ 1 2.90000+ 1 9.61915- 6 1.97785- 2 2.40000+ 1 3.00000+ 1 5.09248- 6 1.98303- 2 2.40000+ 1 3.20000+ 1 2.57453- 5 1.99183- 2 2.40000+ 1 3.30000+ 1 1.13161- 5 1.99260- 2 2.50000+ 1 2.50000+ 1 1.69746- 6 1.96679- 2 2.50000+ 1 2.70000+ 1 1.98039- 6 1.97298- 2 2.50000+ 1 2.90000+ 1 5.65834- 6 1.97891- 2 2.50000+ 1 3.00000+ 1 2.26341- 6 1.98409- 2 2.50000+ 1 3.20000+ 1 5.14907- 5 1.99289- 2 2.50000+ 1 3.30000+ 1 4.52663- 6 1.99366- 2 2.70000+ 1 2.70000+ 1 8.48772- 7 1.97917- 2 2.70000+ 1 2.90000+ 1 3.62134- 5 1.98509- 2 2.70000+ 1 3.00000+ 1 3.67792- 6 1.99028- 2 2.70000+ 1 3.20000+ 1 5.37538- 6 1.99907- 2 2.70000+ 1 3.30000+ 1 1.41453- 6 1.99984- 2 2.90000+ 1 2.90000+ 1 3.47981- 5 1.99102- 2 2.90000+ 1 3.00000+ 1 7.49724- 5 1.99620- 2 2.90000+ 1 3.20000+ 1 2.80091- 5 2.00500- 2 2.90000+ 1 3.30000+ 1 3.11202- 5 2.00577- 2 3.00000+ 1 3.00000+ 1 1.69745- 6 2.00139- 2 3.00000+ 1 3.20000+ 1 2.74416- 5 2.01018- 2 3.00000+ 1 3.30000+ 1 3.67791- 6 2.01095- 2 3.20000+ 1 3.20000+ 1 1.84830- 5 2.01898- 2 3.20000+ 1 3.30000+ 1 6.48419- 5 2.01975- 2 3.30000+ 1 3.30000+ 1 3.48320- 6 2.02052- 2 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.08669- 2 1.14081- 2 1.00000+ 1 2.60588- 4 1.17412- 2 1.10000+ 1 2.36748- 4 1.25836- 2 1.30000+ 1 3.44078- 2 1.31269- 2 1.40000+ 1 3.02378- 1 1.32994- 2 1.60000+ 1 5.22926- 3 1.53809- 2 1.80000+ 1 5.81516- 5 1.55329- 2 1.90000+ 1 6.40015- 5 1.57524- 2 2.10000+ 1 6.88325- 3 1.59992- 2 2.20000+ 1 6.29386- 2 1.60398- 2 2.40000+ 1 8.44714- 5 1.63654- 2 2.50000+ 1 4.66547- 4 1.63760- 2 2.70000+ 1 1.31169- 3 1.64378- 2 2.90000+ 1 1.33149- 5 1.64971- 2 3.00000+ 1 1.50759- 5 1.65489- 2 3.20000+ 1 1.27439- 3 1.66369- 2 3.30000+ 1 1.16599- 2 1.66446- 2 3.50000+ 1 1.14779- 6 1.67354- 2 3.60000+ 1 6.19296- 6 1.67362- 2 4.10000+ 1 2.72658- 4 1.66930- 2 4.30000+ 1 2.40738- 6 1.67104- 2 4.40000+ 1 2.59748- 6 1.67192- 2 5.80000+ 1 3.01118- 5 1.67373- 2 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.52216- 4 6.07320- 3 8.00000+ 0 1.00000+ 1 1.99590- 4 6.40630- 3 8.00000+ 0 1.10000+ 1 1.82630- 2 7.24870- 3 8.00000+ 0 1.30000+ 1 2.78963- 3 7.79200- 3 8.00000+ 0 1.40000+ 1 5.52548- 3 7.96450- 3 8.00000+ 0 1.60000+ 1 1.84353- 4 1.00460- 2 8.00000+ 0 1.80000+ 1 3.39583- 5 1.01980- 2 8.00000+ 0 1.90000+ 1 3.01714- 3 1.04175- 2 8.00000+ 0 2.10000+ 1 3.32314- 4 1.06644- 2 8.00000+ 0 2.20000+ 1 6.21983- 4 1.07049- 2 8.00000+ 0 2.40000+ 1 3.19146- 4 1.10305- 2 8.00000+ 0 2.50000+ 1 5.42659- 4 1.10411- 2 8.00000+ 0 2.70000+ 1 4.33148- 5 1.11029- 2 8.00000+ 0 2.90000+ 1 7.27702- 6 1.11622- 2 8.00000+ 0 3.00000+ 1 6.34837- 4 1.12140- 2 8.00000+ 0 3.20000+ 1 5.47505- 5 1.13020- 2 8.00000+ 0 3.30000+ 1 9.91007- 5 1.13097- 2 1.00000+ 1 1.00000+ 1 6.93086- 7 6.73940- 3 1.00000+ 1 1.10000+ 1 3.06141- 2 7.58180- 3 1.00000+ 1 1.30000+ 1 1.31408- 3 8.12510- 3 1.00000+ 1 1.40000+ 1 9.91517- 3 8.29760- 3 1.00000+ 1 1.60000+ 1 4.22765- 5 1.03791- 2 1.00000+ 1 1.80000+ 1 6.93086- 6 1.05311- 2 1.00000+ 1 1.90000+ 1 5.25275- 3 1.07506- 2 1.00000+ 1 2.10000+ 1 2.59210- 4 1.09974- 2 1.00000+ 1 2.20000+ 1 1.62974- 3 1.10380- 2 1.00000+ 1 2.40000+ 1 2.76190- 4 1.13636- 2 1.00000+ 1 2.50000+ 1 6.61874- 4 1.13742- 2 1.00000+ 1 2.70000+ 1 1.03958- 5 1.14360- 2 1.00000+ 1 2.90000+ 1 2.42566- 6 1.14953- 2 1.00000+ 1 3.00000+ 1 1.11375- 3 1.15471- 2 1.00000+ 1 3.20000+ 1 4.85140- 5 1.16351- 2 1.00000+ 1 3.30000+ 1 2.85546- 4 1.16428- 2 1.10000+ 1 1.10000+ 1 3.65968- 2 8.42420- 3 1.10000+ 1 1.30000+ 1 3.83756- 2 8.96750- 3 1.10000+ 1 1.40000+ 1 4.89520- 2 9.14000- 3 1.10000+ 1 1.60000+ 1 4.84359- 3 1.12215- 2 1.10000+ 1 1.80000+ 1 7.29178- 3 1.13735- 2 1.10000+ 1 1.90000+ 1 1.52609- 2 1.15930- 2 1.10000+ 1 2.10000+ 1 8.63417- 3 1.18398- 2 1.10000+ 1 2.20000+ 1 1.09399- 2 1.18804- 2 1.10000+ 1 2.40000+ 1 8.98225- 4 1.22060- 2 1.10000+ 1 2.50000+ 1 1.07428- 3 1.22166- 2 1.10000+ 1 2.70000+ 1 1.21741- 3 1.22784- 2 1.10000+ 1 2.90000+ 1 1.68801- 3 1.23377- 2 1.10000+ 1 3.00000+ 1 3.39749- 3 1.23895- 2 1.10000+ 1 3.20000+ 1 1.61109- 3 1.24775- 2 1.10000+ 1 3.30000+ 1 2.01758- 3 1.24852- 2 1.30000+ 1 1.30000+ 1 5.05636- 3 9.51080- 3 1.30000+ 1 1.40000+ 1 9.41960- 2 9.68330- 3 1.30000+ 1 1.60000+ 1 6.76781- 4 1.17648- 2 1.30000+ 1 1.80000+ 1 3.46546- 4 1.19168- 2 1.30000+ 1 1.90000+ 1 5.93839- 3 1.21363- 2 1.30000+ 1 2.10000+ 1 1.90638- 3 1.23831- 2 1.30000+ 1 2.20000+ 1 1.48699- 2 1.24237- 2 1.30000+ 1 2.40000+ 1 4.83780- 4 1.27493- 2 1.30000+ 1 2.50000+ 1 1.61591- 3 1.27599- 2 1.30000+ 1 2.70000+ 1 1.68417- 4 1.28217- 2 1.30000+ 1 2.90000+ 1 8.14388- 5 1.28810- 2 1.30000+ 1 3.00000+ 1 1.23021- 3 1.29328- 2 1.30000+ 1 3.20000+ 1 3.45502- 4 1.30208- 2 1.30000+ 1 3.30000+ 1 2.56343- 3 1.30285- 2 1.40000+ 1 1.40000+ 1 6.22029- 2 9.85580- 3 1.40000+ 1 1.60000+ 1 1.35295- 3 1.19373- 2 1.40000+ 1 1.80000+ 1 2.12370- 3 1.20893- 2 1.40000+ 1 1.90000+ 1 8.48325- 3 1.23088- 2 1.40000+ 1 2.10000+ 1 1.78949- 2 1.25556- 2 1.40000+ 1 2.20000+ 1 2.25569- 2 1.25962- 2 1.40000+ 1 2.40000+ 1 5.05999- 3 1.29218- 2 1.40000+ 1 2.50000+ 1 4.55991- 3 1.29324- 2 1.40000+ 1 2.70000+ 1 3.38927- 4 1.29942- 2 1.40000+ 1 2.90000+ 1 4.81365- 4 1.30535- 2 1.40000+ 1 3.00000+ 1 1.81728- 3 1.31053- 2 1.40000+ 1 3.20000+ 1 3.23503- 3 1.31933- 2 1.40000+ 1 3.30000+ 1 4.01198- 3 1.32010- 2 1.60000+ 1 1.60000+ 1 1.97523- 5 1.40188- 2 1.60000+ 1 1.80000+ 1 8.31675- 6 1.41708- 2 1.60000+ 1 1.90000+ 1 7.99075- 4 1.43903- 2 1.60000+ 1 2.10000+ 1 8.66304- 5 1.46371- 2 1.60000+ 1 2.20000+ 1 1.61486- 4 1.46777- 2 1.60000+ 1 2.40000+ 1 3.98503- 5 1.50033- 2 1.60000+ 1 2.50000+ 1 7.65824- 5 1.50139- 2 1.60000+ 1 2.70000+ 1 9.35633- 6 1.50757- 2 1.60000+ 1 2.90000+ 1 1.73265- 6 1.51350- 2 1.60000+ 1 3.00000+ 1 1.68064- 4 1.51868- 2 1.60000+ 1 3.20000+ 1 1.45540- 5 1.52748- 2 1.60000+ 1 3.30000+ 1 2.59897- 5 1.52825- 2 1.80000+ 1 1.90000+ 1 1.24128- 3 1.45423- 2 1.80000+ 1 2.10000+ 1 6.27226- 5 1.47891- 2 1.80000+ 1 2.20000+ 1 3.82576- 4 1.48297- 2 1.80000+ 1 2.40000+ 1 4.15836- 5 1.51553- 2 1.80000+ 1 2.50000+ 1 9.28675- 5 1.51659- 2 1.80000+ 1 2.70000+ 1 2.07913- 6 1.52277- 2 1.80000+ 1 3.00000+ 1 2.62674- 4 1.53388- 2 1.80000+ 1 3.20000+ 1 1.14357- 5 1.54268- 2 1.80000+ 1 3.30000+ 1 6.75703- 5 1.54345- 2 1.90000+ 1 1.90000+ 1 1.51854- 3 1.47619- 2 1.90000+ 1 2.10000+ 1 1.34077- 3 1.50087- 2 1.90000+ 1 2.20000+ 1 1.86986- 3 1.50492- 2 1.90000+ 1 2.40000+ 1 1.14704- 4 1.53748- 2 1.90000+ 1 2.50000+ 1 1.44163- 4 1.53854- 2 1.90000+ 1 2.70000+ 1 2.00992- 4 1.54473- 2 1.90000+ 1 2.90000+ 1 2.86925- 4 1.55065- 2 1.90000+ 1 3.00000+ 1 6.69152- 4 1.55584- 2 1.90000+ 1 3.20000+ 1 2.50187- 4 1.56463- 2 1.90000+ 1 3.30000+ 1 3.43755- 4 1.56540- 2 2.10000+ 1 2.10000+ 1 1.71888- 4 1.52555- 2 2.10000+ 1 2.20000+ 1 2.96844- 3 1.52960- 2 2.10000+ 1 2.40000+ 1 5.99491- 5 1.56216- 2 2.10000+ 1 2.50000+ 1 1.88514- 4 1.56322- 2 2.10000+ 1 2.70000+ 1 2.18317- 5 1.56941- 2 2.10000+ 1 2.90000+ 1 1.45542- 5 1.57534- 2 2.10000+ 1 3.00000+ 1 2.78268- 4 1.58052- 2 2.10000+ 1 3.20000+ 1 6.16815- 5 1.58932- 2 2.10000+ 1 3.30000+ 1 5.15644- 4 1.59008- 2 2.20000+ 1 2.20000+ 1 2.05936- 3 1.53366- 2 2.20000+ 1 2.40000+ 1 6.20614- 4 1.56622- 2 2.20000+ 1 2.50000+ 1 5.48567- 4 1.56727- 2 2.20000+ 1 2.70000+ 1 4.08917- 5 1.57346- 2 2.20000+ 1 2.90000+ 1 8.80207- 5 1.57939- 2 2.20000+ 1 3.00000+ 1 3.99205- 4 1.58457- 2 2.20000+ 1 3.20000+ 1 5.40934- 4 1.59337- 2 2.20000+ 1 3.30000+ 1 7.32569- 4 1.59414- 2 2.40000+ 1 2.40000+ 1 2.77215- 6 1.59877- 2 2.40000+ 1 2.50000+ 1 8.59390- 5 1.59983- 2 2.40000+ 1 2.70000+ 1 8.66284- 6 1.60602- 2 2.40000+ 1 2.90000+ 1 8.66284- 6 1.61195- 2 2.40000+ 1 3.00000+ 1 2.28701- 5 1.61713- 2 2.40000+ 1 3.20000+ 1 1.00498- 5 1.62593- 2 2.40000+ 1 3.30000+ 1 1.01532- 4 1.62670- 2 2.50000+ 1 2.50000+ 1 3.04934- 5 1.60089- 2 2.50000+ 1 2.70000+ 1 1.69796- 5 1.60708- 2 2.50000+ 1 2.90000+ 1 1.94054- 5 1.61301- 2 2.50000+ 1 3.00000+ 1 2.94542- 5 1.61819- 2 2.50000+ 1 3.20000+ 1 3.08419- 5 1.62699- 2 2.50000+ 1 3.30000+ 1 8.94039- 5 1.62776- 2 2.70000+ 1 2.70000+ 1 1.06418- 6 1.61327- 2 2.70000+ 1 2.90000+ 1 3.54732- 7 1.61919- 2 2.70000+ 1 3.00000+ 1 4.32768- 5 1.62438- 2 2.70000+ 1 3.20000+ 1 3.90211- 6 1.63318- 2 2.70000+ 1 3.30000+ 1 6.73976- 6 1.63394- 2 2.90000+ 1 3.00000+ 1 6.24869- 5 1.63030- 2 2.90000+ 1 3.20000+ 1 2.85647- 6 1.63910- 2 2.90000+ 1 3.30000+ 1 1.60680- 5 1.63987- 2 3.00000+ 1 3.00000+ 1 7.39640- 5 1.63549- 2 3.00000+ 1 3.20000+ 1 5.23306- 5 1.64428- 2 3.00000+ 1 3.30000+ 1 7.39640- 5 1.64505- 2 3.20000+ 1 3.20000+ 1 5.54442- 6 1.65308- 2 3.20000+ 1 3.30000+ 1 9.42589- 5 1.65385- 2 3.30000+ 1 3.30000+ 1 6.51495- 5 1.65462- 2 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.06130- 5 3.33100- 4 1.10000+ 1 1.07100- 3 1.17550- 3 1.80000+ 1 2.52889- 3 4.12480- 3 1.90000+ 1 1.40619- 3 4.34433- 3 2.90000+ 1 6.60747- 4 5.08901- 3 3.00000+ 1 4.19888- 4 5.14083- 3 4.30000+ 1 1.22029- 4 5.30229- 3 4.40000+ 1 7.50477- 5 5.31108- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.70000+ 1 1.54086- 2 2.79300- 5 1.00000+ 1 2.90000+ 1 1.61220- 2 8.72100- 5 1.00000+ 1 3.00000+ 1 1.94124- 2 1.39030- 4 1.00000+ 1 3.20000+ 1 1.09462- 2 2.27020- 4 1.00000+ 1 3.30000+ 1 1.42835- 2 2.34700- 4 1.00000+ 1 3.50000+ 1 1.73061- 4 3.25460- 4 1.00000+ 1 3.60000+ 1 2.16297- 4 3.26300- 4 1.00000+ 1 4.10000+ 1 2.95084- 3 2.83090- 4 1.00000+ 1 4.30000+ 1 2.56804- 3 3.00490- 4 1.00000+ 1 4.40000+ 1 2.88039- 3 3.09280- 4 1.00000+ 1 4.60000+ 1 6.32515- 5 3.28390- 4 1.00000+ 1 4.70000+ 1 7.52897- 5 3.28970- 4 1.00000+ 1 5.80000+ 1 3.11620- 4 3.27430- 4 1.10000+ 1 1.90000+ 1 4.51561- 2 1.84930- 4 1.10000+ 1 2.10000+ 1 1.14438- 2 4.31750- 4 1.10000+ 1 2.20000+ 1 2.73073- 2 4.72290- 4 1.10000+ 1 2.40000+ 1 2.09864- 1 7.97870- 4 1.10000+ 1 2.50000+ 1 2.54118- 1 8.08460- 4 1.10000+ 1 2.70000+ 1 1.21203- 2 8.70330- 4 1.10000+ 1 2.90000+ 1 1.23062- 2 9.29610- 4 1.10000+ 1 3.00000+ 1 1.01679- 2 9.81430- 4 1.10000+ 1 3.20000+ 1 2.42287- 3 1.06942- 3 1.10000+ 1 3.30000+ 1 5.48075- 3 1.07710- 3 1.10000+ 1 3.50000+ 1 1.53248- 3 1.16786- 3 1.10000+ 1 3.60000+ 1 1.76550- 3 1.16870- 3 1.10000+ 1 4.10000+ 1 2.35233- 3 1.12549- 3 1.10000+ 1 4.30000+ 1 2.01421- 3 1.14289- 3 1.10000+ 1 4.40000+ 1 1.54956- 3 1.15168- 3 1.10000+ 1 4.60000+ 1 1.49421- 5 1.17079- 3 1.10000+ 1 4.70000+ 1 3.06107- 5 1.17137- 3 1.10000+ 1 5.80000+ 1 2.50821- 4 1.16983- 3 1.30000+ 1 1.60000+ 1 2.81520- 2 3.56700- 4 1.30000+ 1 1.80000+ 1 5.92418- 3 5.08700- 4 1.30000+ 1 1.90000+ 1 9.74137- 3 7.28230- 4 1.30000+ 1 2.10000+ 1 9.57341- 3 9.75050- 4 1.30000+ 1 2.20000+ 1 1.14387- 2 1.01559- 3 1.30000+ 1 2.40000+ 1 1.06193- 2 1.34117- 3 1.30000+ 1 2.50000+ 1 1.00028- 2 1.35176- 3 1.30000+ 1 2.70000+ 1 4.37194- 3 1.41363- 3 1.30000+ 1 2.90000+ 1 1.08351- 3 1.47291- 3 1.30000+ 1 3.00000+ 1 1.65915- 3 1.52473- 3 1.30000+ 1 3.20000+ 1 1.45222- 3 1.61272- 3 1.30000+ 1 3.30000+ 1 1.88407- 3 1.62040- 3 1.30000+ 1 3.50000+ 1 8.42834- 5 1.71116- 3 1.30000+ 1 3.60000+ 1 7.16627- 5 1.71200- 3 1.30000+ 1 4.10000+ 1 7.83973- 4 1.66879- 3 1.30000+ 1 4.30000+ 1 1.74948- 4 1.68619- 3 1.30000+ 1 4.40000+ 1 2.43711- 4 1.69498- 3 1.30000+ 1 4.60000+ 1 8.84940- 6 1.71409- 3 1.30000+ 1 4.70000+ 1 1.05893- 5 1.71467- 3 1.30000+ 1 5.80000+ 1 8.08013- 5 1.71313- 3 1.40000+ 1 1.60000+ 1 3.84073- 2 5.29200- 4 1.40000+ 1 1.80000+ 1 9.16150- 4 6.81200- 4 1.40000+ 1 1.90000+ 1 1.27818- 2 9.00730- 4 1.40000+ 1 2.10000+ 1 1.30955- 2 1.14755- 3 1.40000+ 1 2.20000+ 1 1.79007- 2 1.18809- 3 1.40000+ 1 2.40000+ 1 1.25859- 2 1.51367- 3 1.40000+ 1 2.50000+ 1 1.88700- 2 1.52426- 3 1.40000+ 1 2.70000+ 1 5.87312- 3 1.58613- 3 1.40000+ 1 2.90000+ 1 2.36611- 4 1.64541- 3 1.40000+ 1 3.00000+ 1 2.14589- 3 1.69723- 3 1.40000+ 1 3.20000+ 1 2.20215- 3 1.78522- 3 1.40000+ 1 3.30000+ 1 2.83803- 3 1.79290- 3 1.40000+ 1 3.50000+ 1 9.34276- 5 1.88366- 3 1.40000+ 1 3.60000+ 1 1.39409- 4 1.88450- 3 1.40000+ 1 4.10000+ 1 1.04936- 3 1.84129- 3 1.40000+ 1 4.30000+ 1 4.14899- 5 1.85869- 3 1.40000+ 1 4.40000+ 1 3.15099- 4 1.86748- 3 1.40000+ 1 4.60000+ 1 1.36371- 5 1.88659- 3 1.40000+ 1 4.70000+ 1 1.58124- 5 1.88717- 3 1.40000+ 1 5.80000+ 1 1.08073- 4 1.88563- 3 1.60000+ 1 1.60000+ 1 2.20874- 3 2.61070- 3 1.60000+ 1 1.80000+ 1 3.92358- 3 2.76270- 3 1.60000+ 1 1.90000+ 1 6.12794- 3 2.98223- 3 1.60000+ 1 2.10000+ 1 7.37985- 3 3.22905- 3 1.60000+ 1 2.20000+ 1 1.02248- 2 3.26959- 3 1.60000+ 1 2.40000+ 1 5.62364- 3 3.59517- 3 1.60000+ 1 2.50000+ 1 6.96288- 3 3.60576- 3 1.60000+ 1 2.70000+ 1 8.98887- 4 3.66763- 3 1.60000+ 1 2.90000+ 1 9.18611- 4 3.72691- 3 1.60000+ 1 3.00000+ 1 1.41158- 3 3.77873- 3 1.60000+ 1 3.20000+ 1 1.35803- 3 3.86672- 3 1.60000+ 1 3.30000+ 1 1.86482- 3 3.87440- 3 1.60000+ 1 3.50000+ 1 5.73026- 5 3.96516- 3 1.60000+ 1 3.60000+ 1 6.80391- 5 3.96600- 3 1.60000+ 1 4.10000+ 1 1.73213- 4 3.92279- 3 1.60000+ 1 4.30000+ 1 1.54937- 4 3.94019- 3 1.60000+ 1 4.40000+ 1 2.18767- 4 3.94898- 3 1.60000+ 1 4.60000+ 1 8.41402- 6 3.96809- 3 1.60000+ 1 4.70000+ 1 1.05895- 5 3.96867- 3 1.60000+ 1 5.80000+ 1 1.81347- 5 3.96713- 3 1.80000+ 1 1.80000+ 1 1.50148- 4 2.91470- 3 1.80000+ 1 1.90000+ 1 4.84389- 4 3.13423- 3 1.80000+ 1 2.10000+ 1 2.34280- 4 3.38105- 3 1.80000+ 1 2.20000+ 1 1.10251- 4 3.42159- 3 1.80000+ 1 2.40000+ 1 2.21949- 5 3.74717- 3 1.80000+ 1 2.50000+ 1 5.00206- 4 3.75776- 3 1.80000+ 1 2.70000+ 1 5.99396- 4 3.81963- 3 1.80000+ 1 2.90000+ 1 5.03384- 5 3.87891- 3 1.80000+ 1 3.00000+ 1 7.76133- 5 3.93073- 3 1.80000+ 1 3.20000+ 1 3.67024- 5 4.01872- 3 1.80000+ 1 3.30000+ 1 2.55323- 5 4.02640- 3 1.80000+ 1 3.50000+ 1 1.45072- 7 4.11716- 3 1.80000+ 1 3.60000+ 1 3.19151- 6 4.11800- 3 1.80000+ 1 4.10000+ 1 1.07503- 4 4.07479- 3 1.80000+ 1 4.30000+ 1 7.97885- 6 4.09219- 3 1.80000+ 1 4.40000+ 1 1.13148- 5 4.10098- 3 1.80000+ 1 4.60000+ 1 2.90135- 7 4.12009- 3 1.80000+ 1 4.70000+ 1 1.45072- 7 4.12067- 3 1.80000+ 1 5.80000+ 1 1.11700- 5 4.11913- 3 1.90000+ 1 1.90000+ 1 4.63501- 4 3.35376- 3 1.90000+ 1 2.10000+ 1 6.46266- 4 3.60058- 3 1.90000+ 1 2.20000+ 1 1.43935- 3 3.64112- 3 1.90000+ 1 2.40000+ 1 8.88262- 4 3.96670- 3 1.90000+ 1 2.50000+ 1 1.31725- 3 3.97729- 3 1.90000+ 1 2.70000+ 1 9.40781- 4 4.03916- 3 1.90000+ 1 2.90000+ 1 9.69087- 5 4.09844- 3 1.90000+ 1 3.00000+ 1 1.80326- 4 4.15026- 3 1.90000+ 1 3.20000+ 1 1.16207- 4 4.23825- 3 1.90000+ 1 3.30000+ 1 2.48651- 4 4.24593- 3 1.90000+ 1 3.50000+ 1 8.41399- 6 4.33669- 3 1.90000+ 1 3.60000+ 1 1.10252- 5 4.33753- 3 1.90000+ 1 4.10000+ 1 1.69155- 4 4.29432- 3 1.90000+ 1 4.30000+ 1 1.59583- 5 4.31172- 3 1.90000+ 1 4.40000+ 1 2.71283- 5 4.32051- 3 1.90000+ 1 4.60000+ 1 7.25342- 7 4.33962- 3 1.90000+ 1 4.70000+ 1 1.45074- 6 4.34020- 3 1.90000+ 1 5.80000+ 1 1.74091- 5 4.33866- 3 2.10000+ 1 2.10000+ 1 9.71954- 5 3.84740- 3 2.10000+ 1 2.20000+ 1 2.52265- 4 3.88794- 3 2.10000+ 1 2.40000+ 1 4.47538- 4 4.21352- 3 2.10000+ 1 2.50000+ 1 2.66824- 3 4.22411- 3 2.10000+ 1 2.70000+ 1 1.10241- 3 4.28598- 3 2.10000+ 1 2.90000+ 1 3.40904- 5 4.34526- 3 2.10000+ 1 3.00000+ 1 1.12579- 4 4.39708- 3 2.10000+ 1 3.20000+ 1 2.79983- 5 4.48507- 3 2.10000+ 1 3.30000+ 1 3.87337- 5 4.49275- 3 2.10000+ 1 3.50000+ 1 4.06191- 6 4.58351- 3 2.10000+ 1 3.60000+ 1 1.94383- 5 4.58435- 3 2.10000+ 1 4.10000+ 1 1.96571- 4 4.54114- 3 2.10000+ 1 4.30000+ 1 5.22258- 6 4.55854- 3 2.10000+ 1 4.40000+ 1 1.65376- 5 4.56733- 3 2.10000+ 1 4.60000+ 1 1.45072- 7 4.58644- 3 2.10000+ 1 4.70000+ 1 1.45072- 7 4.58702- 3 2.10000+ 1 5.80000+ 1 2.03106- 5 4.58548- 3 2.20000+ 1 2.20000+ 1 2.16876- 4 3.92848- 3 2.20000+ 1 2.40000+ 1 2.36190- 3 4.25406- 3 2.20000+ 1 2.50000+ 1 1.52457- 3 4.26465- 3 2.20000+ 1 2.70000+ 1 1.51948- 3 4.32652- 3 2.20000+ 1 2.90000+ 1 1.84242- 5 4.38580- 3 2.20000+ 1 3.00000+ 1 2.47052- 4 4.43762- 3 2.20000+ 1 3.20000+ 1 3.40907- 5 4.52561- 3 2.20000+ 1 3.30000+ 1 6.45584- 5 4.53329- 3 2.20000+ 1 3.50000+ 1 1.75539- 5 4.62405- 3 2.20000+ 1 3.60000+ 1 1.20404- 5 4.62489- 3 2.20000+ 1 4.10000+ 1 2.70703- 4 4.58168- 3 2.20000+ 1 4.30000+ 1 2.90137- 6 4.59908- 3 2.20000+ 1 4.40000+ 1 3.61231- 5 4.60787- 3 2.20000+ 1 4.60000+ 1 1.45073- 7 4.62698- 3 2.20000+ 1 4.70000+ 1 2.90137- 7 4.62756- 3 2.20000+ 1 5.80000+ 1 2.78537- 5 4.62602- 3 2.40000+ 1 2.40000+ 1 6.26440- 4 4.57964- 3 2.40000+ 1 2.50000+ 1 4.09242- 3 4.59023- 3 2.40000+ 1 2.70000+ 1 7.67128- 4 4.65210- 3 2.40000+ 1 2.90000+ 1 4.64230- 6 4.71138- 3 2.40000+ 1 3.00000+ 1 1.08073- 4 4.76320- 3 2.40000+ 1 3.20000+ 1 7.34084- 5 4.85119- 3 2.40000+ 1 3.30000+ 1 4.38989- 4 4.85887- 3 2.40000+ 1 3.50000+ 1 1.16057- 5 4.94963- 3 2.40000+ 1 3.60000+ 1 3.11900- 5 4.95047- 3 2.40000+ 1 4.10000+ 1 1.34622- 4 4.90726- 3 2.40000+ 1 4.30000+ 1 8.70405- 7 4.92466- 3 2.40000+ 1 4.40000+ 1 1.47972- 5 4.93345- 3 2.40000+ 1 4.60000+ 1 4.35212- 7 4.95256- 3 2.40000+ 1 4.70000+ 1 2.46623- 6 4.95314- 3 2.40000+ 1 5.80000+ 1 1.37820- 5 4.95160- 3 2.50000+ 1 2.50000+ 1 1.41678- 3 4.60082- 3 2.50000+ 1 2.70000+ 1 9.48033- 4 4.66269- 3 2.50000+ 1 2.90000+ 1 1.00680- 4 4.72197- 3 2.50000+ 1 3.00000+ 1 1.72773- 4 4.77379- 3 2.50000+ 1 3.20000+ 1 4.81641- 4 4.86178- 3 2.50000+ 1 3.30000+ 1 2.67219- 4 4.86946- 3 2.50000+ 1 3.50000+ 1 3.19158- 5 4.96022- 3 2.50000+ 1 3.60000+ 1 2.35014- 5 4.96106- 3 2.50000+ 1 4.10000+ 1 1.66248- 4 4.91785- 3 2.50000+ 1 4.30000+ 1 1.63930- 5 4.93525- 3 2.50000+ 1 4.40000+ 1 2.40819- 5 4.94404- 3 2.50000+ 1 4.60000+ 1 3.04649- 6 4.96315- 3 2.50000+ 1 4.70000+ 1 1.45075- 6 4.96373- 3 2.50000+ 1 5.80000+ 1 1.71185- 5 4.96219- 3 2.70000+ 1 2.70000+ 1 8.39918- 5 4.72456- 3 2.70000+ 1 2.90000+ 1 1.41590- 4 4.78384- 3 2.70000+ 1 3.00000+ 1 2.16727- 4 4.83566- 3 2.70000+ 1 3.20000+ 1 2.04108- 4 4.92365- 3 2.70000+ 1 3.30000+ 1 2.78963- 4 4.93133- 3 2.70000+ 1 3.50000+ 1 7.83357- 6 5.02209- 3 2.70000+ 1 3.60000+ 1 9.28413- 6 5.02293- 3 2.70000+ 1 4.10000+ 1 3.17691- 5 4.97972- 3 2.70000+ 1 4.30000+ 1 2.39357- 5 4.99712- 3 2.70000+ 1 4.40000+ 1 3.36555- 5 5.00591- 3 2.70000+ 1 4.60000+ 1 1.30559- 6 5.02502- 3 2.70000+ 1 4.70000+ 1 1.59575- 6 5.02560- 3 2.70000+ 1 5.80000+ 1 3.33647- 6 5.02406- 3 2.90000+ 1 2.90000+ 1 4.20703- 6 4.84312- 3 2.90000+ 1 3.00000+ 1 1.50880- 5 4.89494- 3 2.90000+ 1 3.20000+ 1 5.36761- 6 4.98293- 3 2.90000+ 1 3.30000+ 1 4.49720- 6 4.99061- 3 2.90000+ 1 3.60000+ 1 7.25341- 7 5.08221- 3 2.90000+ 1 4.10000+ 1 2.53876- 5 5.03900- 3 2.90000+ 1 4.30000+ 1 1.30566- 6 5.05640- 3 2.90000+ 1 4.40000+ 1 2.17607- 6 5.06519- 3 2.90000+ 1 5.80000+ 1 2.61120- 6 5.08334- 3 3.00000+ 1 3.00000+ 1 1.68279- 5 4.94676- 3 3.00000+ 1 3.20000+ 1 2.04539- 5 5.03475- 3 3.00000+ 1 3.30000+ 1 4.29389- 5 5.04243- 3 3.00000+ 1 3.50000+ 1 1.01545- 6 5.13319- 3 3.00000+ 1 3.60000+ 1 1.45068- 6 5.13403- 3 3.00000+ 1 4.10000+ 1 3.90222- 5 5.09082- 3 3.00000+ 1 4.30000+ 1 2.46613- 6 5.10822- 3 3.00000+ 1 4.40000+ 1 5.07725- 6 5.11701- 3 3.00000+ 1 4.60000+ 1 1.45068- 7 5.13612- 3 3.00000+ 1 4.70000+ 1 2.90126- 7 5.13670- 3 3.00000+ 1 5.80000+ 1 4.06179- 6 5.13516- 3 3.20000+ 1 3.20000+ 1 1.88598- 6 5.12274- 3 3.20000+ 1 3.30000+ 1 5.36755- 6 5.13042- 3 3.20000+ 1 3.50000+ 1 7.25333- 7 5.22118- 3 3.20000+ 1 3.60000+ 1 3.62677- 6 5.22202- 3 3.20000+ 1 4.10000+ 1 3.64116- 5 5.17881- 3 3.20000+ 1 4.30000+ 1 8.70395- 7 5.19621- 3 3.20000+ 1 4.40000+ 1 3.04643- 6 5.20500- 3 3.20000+ 1 5.80000+ 1 3.77174- 6 5.22315- 3 3.30000+ 1 3.30000+ 1 4.64232- 6 5.13810- 3 3.30000+ 1 3.50000+ 1 3.33665- 6 5.22886- 3 3.30000+ 1 3.60000+ 1 2.17607- 6 5.22970- 3 3.30000+ 1 4.10000+ 1 4.97605- 5 5.18649- 3 3.30000+ 1 4.30000+ 1 7.25343- 7 5.20389- 3 3.30000+ 1 4.40000+ 1 6.23834- 6 5.21268- 3 3.30000+ 1 5.80000+ 1 5.07747- 6 5.23083- 3 3.50000+ 1 3.60000+ 1 2.90130- 7 5.32046- 3 3.50000+ 1 4.10000+ 1 1.30562- 6 5.27725- 3 3.50000+ 1 4.40000+ 1 1.45070- 7 5.30344- 3 3.50000+ 1 5.80000+ 1 1.45070- 7 5.32159- 3 3.60000+ 1 4.10000+ 1 1.59586- 6 5.27809- 3 3.60000+ 1 4.30000+ 1 1.45077- 7 5.29549- 3 3.60000+ 1 4.40000+ 1 1.45077- 7 5.30428- 3 3.60000+ 1 5.80000+ 1 1.45077- 7 5.32243- 3 4.10000+ 1 4.10000+ 1 3.04398- 6 5.23488- 3 4.10000+ 1 4.30000+ 1 4.34858- 6 5.25228- 3 4.10000+ 1 4.40000+ 1 6.08778- 6 5.26107- 3 4.10000+ 1 4.60000+ 1 2.89901- 7 5.28018- 3 4.10000+ 1 4.70000+ 1 2.89901- 7 5.28076- 3 4.10000+ 1 5.80000+ 1 5.79794- 7 5.27922- 3 4.30000+ 1 4.30000+ 1 1.73086- 7 5.26968- 3 4.30000+ 1 4.40000+ 1 3.46161- 7 5.27847- 3 4.30000+ 1 5.80000+ 1 5.19248- 7 5.29662- 3 4.40000+ 1 4.40000+ 1 4.35219- 7 5.28726- 3 4.40000+ 1 5.80000+ 1 5.80276- 7 5.30541- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.75569- 3 1.38570- 3 1.60000+ 1 9.85355- 4 3.63970- 3 2.10000+ 1 4.93428- 3 4.25805- 3 2.70000+ 1 2.53159- 4 4.69663- 3 3.20000+ 1 1.14289- 3 4.89572- 3 4.10000+ 1 5.29237- 5 4.95179- 3 5.80000+ 1 5.74647- 6 4.99613- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 7.80107- 3 9.86500- 5 1.10000+ 1 2.20000+ 1 1.70326- 2 1.39190- 4 1.10000+ 1 2.40000+ 1 2.84856- 2 4.64770- 4 1.10000+ 1 2.50000+ 1 2.36430- 2 4.75360- 4 1.10000+ 1 2.70000+ 1 3.11991- 3 5.37230- 4 1.10000+ 1 2.90000+ 1 4.45026- 3 5.96510- 4 1.10000+ 1 3.00000+ 1 1.97274- 3 6.48330- 4 1.10000+ 1 3.20000+ 1 1.74973- 3 7.36320- 4 1.10000+ 1 3.30000+ 1 3.16422- 3 7.44000- 4 1.10000+ 1 3.50000+ 1 2.39436- 4 8.34760- 4 1.10000+ 1 3.60000+ 1 1.94277- 4 8.35600- 4 1.10000+ 1 4.10000+ 1 5.78877- 4 7.92390- 4 1.10000+ 1 4.30000+ 1 6.72137- 4 8.09790- 4 1.10000+ 1 4.40000+ 1 2.88039- 4 8.18580- 4 1.10000+ 1 4.60000+ 1 1.10025- 5 8.37690- 4 1.10000+ 1 4.70000+ 1 1.77359- 5 8.38270- 4 1.10000+ 1 5.80000+ 1 5.99402- 5 8.36730- 4 1.30000+ 1 1.60000+ 1 4.75832- 2 2.36000- 5 1.30000+ 1 1.80000+ 1 4.92868- 2 1.75600- 4 1.30000+ 1 1.90000+ 1 3.45844- 2 3.95130- 4 1.30000+ 1 2.10000+ 1 1.66848- 2 6.41950- 4 1.30000+ 1 2.20000+ 1 2.54566- 2 6.82490- 4 1.30000+ 1 2.40000+ 1 1.49248- 1 1.00807- 3 1.30000+ 1 2.50000+ 1 2.34013- 1 1.01866- 3 1.30000+ 1 2.70000+ 1 1.15777- 2 1.08053- 3 1.30000+ 1 2.90000+ 1 9.47419- 3 1.13981- 3 1.30000+ 1 3.00000+ 1 7.64730- 3 1.19163- 3 1.30000+ 1 3.20000+ 1 3.27085- 3 1.27962- 3 1.30000+ 1 3.30000+ 1 4.98089- 3 1.28730- 3 1.30000+ 1 3.50000+ 1 1.11866- 3 1.37806- 3 1.30000+ 1 3.60000+ 1 1.76510- 3 1.37890- 3 1.30000+ 1 4.10000+ 1 2.26747- 3 1.33569- 3 1.30000+ 1 4.30000+ 1 1.54092- 3 1.35309- 3 1.30000+ 1 4.40000+ 1 1.17365- 3 1.36188- 3 1.30000+ 1 4.60000+ 1 2.08564- 5 1.38099- 3 1.30000+ 1 4.70000+ 1 2.85748- 5 1.38157- 3 1.30000+ 1 5.80000+ 1 2.33529- 4 1.38003- 3 1.40000+ 1 1.60000+ 1 7.27540- 3 1.96100- 4 1.40000+ 1 1.80000+ 1 5.58280- 2 3.48100- 4 1.40000+ 1 1.90000+ 1 4.54382- 3 5.67630- 4 1.40000+ 1 2.10000+ 1 1.65985- 3 8.14450- 4 1.40000+ 1 2.20000+ 1 2.70484- 3 8.54990- 4 1.40000+ 1 2.40000+ 1 7.67790- 3 1.18057- 3 1.40000+ 1 2.50000+ 1 4.67193- 3 1.19116- 3 1.40000+ 1 2.70000+ 1 1.18009- 3 1.25303- 3 1.40000+ 1 2.90000+ 1 8.17946- 3 1.31231- 3 1.40000+ 1 3.00000+ 1 8.59524- 4 1.36413- 3 1.40000+ 1 3.20000+ 1 1.30065- 4 1.45212- 3 1.40000+ 1 3.30000+ 1 4.49476- 4 1.45980- 3 1.40000+ 1 3.50000+ 1 8.29285- 5 1.55056- 3 1.40000+ 1 3.60000+ 1 3.97409- 5 1.55140- 3 1.40000+ 1 4.10000+ 1 2.14300- 4 1.50819- 3 1.40000+ 1 4.30000+ 1 1.25464- 3 1.52559- 3 1.40000+ 1 4.40000+ 1 1.28254- 4 1.53438- 3 1.40000+ 1 4.60000+ 1 6.56859- 7 1.55349- 3 1.40000+ 1 4.70000+ 1 2.46335- 6 1.55407- 3 1.40000+ 1 5.80000+ 1 2.21692- 5 1.55253- 3 1.60000+ 1 1.60000+ 1 5.43160- 4 2.27760- 3 1.60000+ 1 1.80000+ 1 8.44371- 3 2.42960- 3 1.60000+ 1 1.90000+ 1 1.04733- 3 2.64913- 3 1.60000+ 1 2.10000+ 1 3.32357- 4 2.89595- 3 1.60000+ 1 2.20000+ 1 9.63762- 4 2.93649- 3 1.60000+ 1 2.40000+ 1 6.32734- 5 3.26207- 3 1.60000+ 1 2.50000+ 1 7.08663- 4 3.27266- 3 1.60000+ 1 2.70000+ 1 2.05801- 4 3.33453- 3 1.60000+ 1 2.90000+ 1 1.22219- 3 3.39381- 3 1.60000+ 1 3.00000+ 1 2.16786- 4 3.44563- 3 1.60000+ 1 3.20000+ 1 4.12945- 5 3.53362- 3 1.60000+ 1 3.30000+ 1 1.57521- 4 3.54130- 3 1.60000+ 1 3.50000+ 1 6.66041- 7 3.63206- 3 1.60000+ 1 3.60000+ 1 4.66227- 6 3.63290- 3 1.60000+ 1 4.10000+ 1 3.86295- 5 3.58969- 3 1.60000+ 1 4.30000+ 1 1.88156- 4 3.60709- 3 1.60000+ 1 4.40000+ 1 3.26354- 5 3.61588- 3 1.60000+ 1 4.60000+ 1 3.33011- 7 3.63499- 3 1.60000+ 1 4.70000+ 1 9.99054- 7 3.63557- 3 1.60000+ 1 5.80000+ 1 3.99629- 6 3.63403- 3 1.80000+ 1 1.80000+ 1 6.61550- 3 2.58160- 3 1.80000+ 1 1.90000+ 1 1.76647- 2 2.80113- 3 1.80000+ 1 2.10000+ 1 1.80098- 2 3.04795- 3 1.80000+ 1 2.20000+ 1 2.81212- 2 3.08849- 3 1.80000+ 1 2.40000+ 1 1.13200- 2 3.41407- 3 1.80000+ 1 2.50000+ 1 1.84858- 2 3.42466- 3 1.80000+ 1 2.70000+ 1 2.10161- 3 3.48653- 3 1.80000+ 1 2.90000+ 1 2.54818- 3 3.54581- 3 1.80000+ 1 3.00000+ 1 4.03038- 3 3.59763- 3 1.80000+ 1 3.20000+ 1 3.32911- 3 3.68562- 3 1.80000+ 1 3.30000+ 1 5.07690- 3 3.69330- 3 1.80000+ 1 3.50000+ 1 1.15887- 4 3.78406- 3 1.80000+ 1 3.60000+ 1 1.79155- 4 3.78490- 3 1.80000+ 1 4.10000+ 1 4.17592- 4 3.74169- 3 1.80000+ 1 4.30000+ 1 4.17264- 4 3.75909- 3 1.80000+ 1 4.40000+ 1 6.23403- 4 3.76788- 3 1.80000+ 1 4.60000+ 1 2.06468- 5 3.78699- 3 1.80000+ 1 4.70000+ 1 2.86379- 5 3.78757- 3 1.80000+ 1 5.80000+ 1 4.36255- 5 3.78603- 3 1.90000+ 1 1.90000+ 1 4.45236- 4 3.02066- 3 1.90000+ 1 2.10000+ 1 1.03465- 3 3.26748- 3 1.90000+ 1 2.20000+ 1 9.68385- 4 3.30802- 3 1.90000+ 1 2.40000+ 1 7.32141- 3 3.63360- 3 1.90000+ 1 2.50000+ 1 2.03228- 3 3.64419- 3 1.90000+ 1 2.70000+ 1 1.64836- 4 3.70606- 3 1.90000+ 1 2.90000+ 1 2.60745- 3 3.76534- 3 1.90000+ 1 3.00000+ 1 1.71163- 4 3.81716- 3 1.90000+ 1 3.20000+ 1 1.48520- 4 3.90515- 3 1.90000+ 1 3.30000+ 1 1.57516- 4 3.91283- 3 1.90000+ 1 3.50000+ 1 6.29383- 5 4.00359- 3 1.90000+ 1 3.60000+ 1 1.73168- 5 4.00443- 3 1.90000+ 1 4.10000+ 1 2.99710- 5 3.96122- 3 1.90000+ 1 4.30000+ 1 4.02616- 4 3.97862- 3 1.90000+ 1 4.40000+ 1 2.56415- 5 3.98741- 3 1.90000+ 1 4.60000+ 1 9.99019- 7 4.00652- 3 1.90000+ 1 4.70000+ 1 9.99019- 7 4.00710- 3 1.90000+ 1 5.80000+ 1 2.99710- 6 4.00556- 3 2.10000+ 1 2.10000+ 1 6.75684- 4 3.51430- 3 2.10000+ 1 2.20000+ 1 1.27646- 3 3.55484- 3 2.10000+ 1 2.40000+ 1 7.44282- 4 3.88042- 3 2.10000+ 1 2.50000+ 1 1.04432- 3 3.89101- 3 2.10000+ 1 2.70000+ 1 7.99219- 5 3.95288- 3 2.10000+ 1 2.90000+ 1 2.57620- 3 4.01216- 3 2.10000+ 1 3.00000+ 1 2.19456- 4 4.06398- 3 2.10000+ 1 3.20000+ 1 2.02139- 4 4.15197- 3 2.10000+ 1 3.30000+ 1 2.11144- 4 4.15965- 3 2.10000+ 1 3.50000+ 1 4.32908- 6 4.25041- 3 2.10000+ 1 3.60000+ 1 7.65929- 6 4.25125- 3 2.10000+ 1 4.10000+ 1 1.59843- 5 4.20804- 3 2.10000+ 1 4.30000+ 1 3.94617- 4 4.22544- 3 2.10000+ 1 4.40000+ 1 3.36350- 5 4.23423- 3 2.10000+ 1 4.60000+ 1 1.33200- 6 4.25334- 3 2.10000+ 1 4.70000+ 1 1.33200- 6 4.25392- 3 2.10000+ 1 5.80000+ 1 1.66500- 6 4.25238- 3 2.20000+ 1 2.20000+ 1 3.51323- 4 3.59538- 3 2.20000+ 1 2.40000+ 1 1.67101- 3 3.92096- 3 2.20000+ 1 2.50000+ 1 4.23924- 4 3.93155- 3 2.20000+ 1 2.70000+ 1 1.88478- 4 3.99342- 3 2.20000+ 1 2.90000+ 1 4.06933- 3 4.05270- 3 2.20000+ 1 3.00000+ 1 1.68840- 4 4.10452- 3 2.20000+ 1 3.20000+ 1 1.80812- 4 4.19251- 3 2.20000+ 1 3.30000+ 1 1.06896- 4 4.20019- 3 2.20000+ 1 3.50000+ 1 7.99222- 6 4.29095- 3 2.20000+ 1 3.60000+ 1 2.66407- 6 4.29179- 3 2.20000+ 1 4.10000+ 1 3.56307- 5 4.24858- 3 2.20000+ 1 4.30000+ 1 6.25062- 4 4.26598- 3 2.20000+ 1 4.40000+ 1 2.49744- 5 4.27477- 3 2.20000+ 1 4.60000+ 1 9.99033- 7 4.29388- 3 2.20000+ 1 4.70000+ 1 6.66027- 7 4.29446- 3 2.20000+ 1 5.80000+ 1 3.66312- 6 4.29292- 3 2.40000+ 1 2.40000+ 1 2.96500- 3 4.24654- 3 2.40000+ 1 2.50000+ 1 1.89062- 2 4.25713- 3 2.40000+ 1 2.70000+ 1 1.03235- 5 4.31900- 3 2.40000+ 1 2.90000+ 1 1.49163- 3 4.37828- 3 2.40000+ 1 3.00000+ 1 1.56714- 3 4.43010- 3 2.40000+ 1 3.20000+ 1 1.48855- 4 4.51809- 3 2.40000+ 1 3.30000+ 1 3.65990- 4 4.52577- 3 2.40000+ 1 3.50000+ 1 5.06172- 5 4.61653- 3 2.40000+ 1 3.60000+ 1 1.52528- 4 4.61737- 3 2.40000+ 1 4.10000+ 1 1.99814- 6 4.57416- 3 2.40000+ 1 4.30000+ 1 2.26773- 4 4.59156- 3 2.40000+ 1 4.40000+ 1 2.39434- 4 4.60035- 3 2.40000+ 1 4.60000+ 1 9.99048- 7 4.61946- 3 2.40000+ 1 4.70000+ 1 1.99814- 6 4.62004- 3 2.40000+ 1 5.80000+ 1 3.33009- 7 4.61850- 3 2.50000+ 1 2.50000+ 1 9.85048- 4 4.26772- 3 2.50000+ 1 2.70000+ 1 1.42857- 4 4.32959- 3 2.50000+ 1 2.90000+ 1 2.36937- 3 4.38887- 3 2.50000+ 1 3.00000+ 1 3.84960- 4 4.44069- 3 2.50000+ 1 3.20000+ 1 2.02469- 4 4.52868- 3 2.50000+ 1 3.30000+ 1 8.12560- 5 4.53636- 3 2.50000+ 1 3.50000+ 1 1.56185- 4 4.62712- 3 2.50000+ 1 3.60000+ 1 1.59845- 5 4.62796- 3 2.50000+ 1 4.10000+ 1 2.69738- 5 4.58475- 3 2.50000+ 1 4.30000+ 1 3.55327- 4 4.60215- 3 2.50000+ 1 4.40000+ 1 5.76132- 5 4.61094- 3 2.50000+ 1 4.60000+ 1 1.33201- 6 4.63005- 3 2.50000+ 1 4.70000+ 1 3.33006- 7 4.63063- 3 2.50000+ 1 5.80000+ 1 2.66408- 6 4.62909- 3 2.70000+ 1 2.70000+ 1 1.93139- 5 4.39146- 3 2.70000+ 1 2.90000+ 1 3.06051- 4 4.45074- 3 2.70000+ 1 3.00000+ 1 3.39668- 5 4.50256- 3 2.70000+ 1 3.20000+ 1 9.32453- 6 4.59055- 3 2.70000+ 1 3.30000+ 1 3.13036- 5 4.59823- 3 2.70000+ 1 3.60000+ 1 9.99050- 7 4.68983- 3 2.70000+ 1 4.10000+ 1 7.32637- 6 4.64662- 3 2.70000+ 1 4.30000+ 1 4.72885- 5 4.66402- 3 2.70000+ 1 4.40000+ 1 4.99536- 6 4.67281- 3 2.70000+ 1 4.70000+ 1 3.33010- 7 4.69250- 3 2.70000+ 1 5.80000+ 1 6.66039- 7 4.69096- 3 2.90000+ 1 2.90000+ 1 2.29120- 4 4.51002- 3 2.90000+ 1 3.00000+ 1 5.99446- 4 4.56184- 3 2.90000+ 1 3.20000+ 1 4.78890- 4 4.64983- 3 2.90000+ 1 3.30000+ 1 7.39630- 4 4.65751- 3 2.90000+ 1 3.50000+ 1 1.53190- 5 4.74827- 3 2.90000+ 1 3.60000+ 1 2.33123- 5 4.74911- 3 2.90000+ 1 4.10000+ 1 6.09434- 5 4.70590- 3 2.90000+ 1 4.30000+ 1 7.42631- 5 4.72330- 3 2.90000+ 1 4.40000+ 1 9.29112- 5 4.73209- 3 2.90000+ 1 4.60000+ 1 2.99722- 6 4.75120- 3 2.90000+ 1 4.70000+ 1 4.32921- 6 4.75178- 3 2.90000+ 1 5.80000+ 1 6.32736- 6 4.75024- 3 3.00000+ 1 3.00000+ 1 1.63171- 5 4.61366- 3 3.00000+ 1 3.20000+ 1 3.16355- 5 4.70165- 3 3.00000+ 1 3.30000+ 1 2.76389- 5 4.70933- 3 3.00000+ 1 3.50000+ 1 1.36527- 5 4.80009- 3 3.00000+ 1 3.60000+ 1 3.32999- 6 4.80093- 3 3.00000+ 1 4.10000+ 1 5.99422- 6 4.75772- 3 3.00000+ 1 4.30000+ 1 9.25765- 5 4.77512- 3 3.00000+ 1 4.40000+ 1 4.99520- 6 4.78391- 3 3.00000+ 1 4.60000+ 1 3.32999- 7 4.80302- 3 3.00000+ 1 5.80000+ 1 6.66017- 7 4.80206- 3 3.20000+ 1 3.20000+ 1 1.46532- 5 4.78964- 3 3.20000+ 1 3.30000+ 1 3.23025- 5 4.79732- 3 3.20000+ 1 3.50000+ 1 9.99056- 7 4.88808- 3 3.20000+ 1 3.60000+ 1 1.66505- 6 4.88892- 3 3.20000+ 1 4.10000+ 1 1.99815- 6 4.84571- 3 3.20000+ 1 4.30000+ 1 7.35970- 5 4.86311- 3 3.20000+ 1 4.40000+ 1 4.99538- 6 4.87190- 3 3.20000+ 1 4.60000+ 1 3.33012- 7 4.89101- 3 3.20000+ 1 4.70000+ 1 3.33012- 7 4.89159- 3 3.20000+ 1 5.80000+ 1 3.33012- 7 4.89005- 3 3.30000+ 1 3.30000+ 1 8.62675- 6 4.80500- 3 3.30000+ 1 3.50000+ 1 2.07046- 6 4.89576- 3 3.30000+ 1 3.60000+ 1 6.90143- 7 4.89660- 3 3.30000+ 1 4.10000+ 1 6.21136- 6 4.85339- 3 3.30000+ 1 4.30000+ 1 1.18014- 4 4.87079- 3 3.30000+ 1 4.40000+ 1 4.14090- 6 4.87958- 3 3.30000+ 1 4.60000+ 1 3.45062- 7 4.89869- 3 3.30000+ 1 5.80000+ 1 6.90143- 7 4.89773- 3 3.50000+ 1 3.60000+ 1 1.33200- 6 4.98736- 3 3.50000+ 1 4.30000+ 1 2.33117- 6 4.96155- 3 3.50000+ 1 4.40000+ 1 1.99810- 6 4.97034- 3 3.60000+ 1 4.10000+ 1 3.33007- 7 4.94499- 3 3.60000+ 1 4.30000+ 1 3.33007- 6 4.96239- 3 3.60000+ 1 4.40000+ 1 3.33007- 7 4.97118- 3 4.10000+ 1 4.10000+ 1 6.91573- 7 4.90178- 3 4.10000+ 1 4.30000+ 1 9.68202- 6 4.91918- 3 4.10000+ 1 4.40000+ 1 1.03735- 6 4.92797- 3 4.30000+ 1 4.30000+ 1 5.99447- 6 4.93658- 3 4.30000+ 1 4.40000+ 1 1.43203- 5 4.94537- 3 4.30000+ 1 4.60000+ 1 3.33013- 7 4.96448- 3 4.30000+ 1 4.70000+ 1 6.66045- 7 4.96506- 3 4.30000+ 1 5.80000+ 1 9.99059- 7 4.96352- 3 4.40000+ 1 4.40000+ 1 3.33008- 7 4.95416- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.38089- 5 5.43300- 4 1.40000+ 1 3.05289- 4 7.15800- 4 1.60000+ 1 2.04409- 3 2.79730- 3 2.10000+ 1 9.63866- 4 3.41565- 3 2.20000+ 1 7.25087- 3 3.45619- 3 2.70000+ 1 5.00968- 4 3.85423- 3 3.20000+ 1 1.99489- 4 4.05332- 3 3.30000+ 1 1.53149- 3 4.06100- 3 4.10000+ 1 9.54936- 5 4.10939- 3 5.80000+ 1 1.26139- 5 4.15373- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.65919- 2 1.65670- 4 1.30000+ 1 2.50000+ 1 2.41492- 2 1.76260- 4 1.30000+ 1 2.70000+ 1 3.48356- 3 2.38130- 4 1.30000+ 1 2.90000+ 1 3.30987- 3 2.97410- 4 1.30000+ 1 3.00000+ 1 9.80486- 3 3.49230- 4 1.30000+ 1 3.20000+ 1 1.86337- 3 4.37220- 4 1.30000+ 1 3.30000+ 1 2.06807- 3 4.44900- 4 1.30000+ 1 3.50000+ 1 9.84656- 5 5.35660- 4 1.30000+ 1 3.60000+ 1 1.61169- 4 5.36500- 4 1.30000+ 1 4.10000+ 1 6.56311- 4 4.93290- 4 1.30000+ 1 4.30000+ 1 5.33755- 4 5.10690- 4 1.30000+ 1 4.40000+ 1 1.42270- 3 5.19480- 4 1.30000+ 1 4.60000+ 1 1.14384- 5 5.38590- 4 1.30000+ 1 4.70000+ 1 1.16434- 5 5.39170- 4 1.30000+ 1 5.80000+ 1 6.74080- 5 5.37630- 4 1.40000+ 1 2.20000+ 1 6.85628- 2 1.25900- 5 1.40000+ 1 2.40000+ 1 2.07318- 1 3.38170- 4 1.40000+ 1 2.50000+ 1 2.50219- 1 3.48760- 4 1.40000+ 1 2.70000+ 1 2.10922- 2 4.10630- 4 1.40000+ 1 2.90000+ 1 2.21795- 2 4.69910- 4 1.40000+ 1 3.00000+ 1 2.37531- 2 5.21730- 4 1.40000+ 1 3.20000+ 1 7.75607- 3 6.09720- 4 1.40000+ 1 3.30000+ 1 1.13394- 2 6.17400- 4 1.40000+ 1 3.50000+ 1 1.28774- 3 7.08160- 4 1.40000+ 1 3.60000+ 1 1.44051- 3 7.09000- 4 1.40000+ 1 4.10000+ 1 4.08157- 3 6.65790- 4 1.40000+ 1 4.30000+ 1 3.58915- 3 6.83190- 4 1.40000+ 1 4.40000+ 1 3.53653- 3 6.91980- 4 1.40000+ 1 4.60000+ 1 4.65727- 5 7.11090- 4 1.40000+ 1 4.70000+ 1 6.25061- 5 7.11670- 4 1.40000+ 1 5.80000+ 1 4.33246- 4 7.10130- 4 1.60000+ 1 1.60000+ 1 1.30699- 4 1.43520- 3 1.60000+ 1 1.80000+ 1 4.33867- 4 1.58720- 3 1.60000+ 1 1.90000+ 1 1.04782- 2 1.80673- 3 1.60000+ 1 2.10000+ 1 6.58523- 4 2.05355- 3 1.60000+ 1 2.20000+ 1 8.59070- 4 2.09409- 3 1.60000+ 1 2.40000+ 1 2.33213- 3 2.41967- 3 1.60000+ 1 2.50000+ 1 4.23304- 3 2.43026- 3 1.60000+ 1 2.70000+ 1 5.32877- 5 2.49213- 3 1.60000+ 1 2.90000+ 1 6.04885- 5 2.55141- 3 1.60000+ 1 3.00000+ 1 1.50605- 3 2.60323- 3 1.60000+ 1 3.20000+ 1 1.02976- 4 2.69122- 3 1.60000+ 1 3.30000+ 1 1.30699- 4 2.69890- 3 1.60000+ 1 3.50000+ 1 1.69226- 5 2.78966- 3 1.60000+ 1 3.60000+ 1 2.95240- 5 2.79050- 3 1.60000+ 1 4.10000+ 1 1.00814- 5 2.74729- 3 1.60000+ 1 4.30000+ 1 9.00125- 6 2.76469- 3 1.60000+ 1 4.40000+ 1 2.13864- 4 2.77348- 3 1.60000+ 1 4.60000+ 1 7.20090- 7 2.79259- 3 1.60000+ 1 4.70000+ 1 7.20090- 7 2.79317- 3 1.60000+ 1 5.80000+ 1 1.08015- 6 2.79163- 3 1.80000+ 1 1.80000+ 1 7.20065- 7 1.73920- 3 1.80000+ 1 1.90000+ 1 1.32578- 2 1.95873- 3 1.80000+ 1 2.10000+ 1 3.02792- 4 2.20555- 3 1.80000+ 1 2.20000+ 1 3.03864- 3 2.24609- 3 1.80000+ 1 2.40000+ 1 1.63388- 3 2.57167- 3 1.80000+ 1 2.50000+ 1 8.24094- 3 2.58226- 3 1.80000+ 1 2.70000+ 1 8.49687- 5 2.64413- 3 1.80000+ 1 2.90000+ 1 1.80012- 6 2.70341- 3 1.80000+ 1 3.00000+ 1 1.95824- 3 2.75523- 3 1.80000+ 1 3.20000+ 1 5.50845- 5 2.84322- 3 1.80000+ 1 3.30000+ 1 4.43572- 4 2.85090- 3 1.80000+ 1 3.50000+ 1 1.11611- 5 2.94166- 3 1.80000+ 1 3.60000+ 1 5.76056- 5 2.94250- 3 1.80000+ 1 4.10000+ 1 1.58429- 5 2.89929- 3 1.80000+ 1 4.30000+ 1 3.60041- 7 2.91669- 3 1.80000+ 1 4.40000+ 1 2.79754- 4 2.92548- 3 1.80000+ 1 4.60000+ 1 3.60041- 7 2.94459- 3 1.80000+ 1 4.70000+ 1 2.52017- 6 2.94517- 3 1.80000+ 1 5.80000+ 1 1.80012- 6 2.94363- 3 1.90000+ 1 1.90000+ 1 1.67741- 2 2.17826- 3 1.90000+ 1 2.10000+ 1 2.50310- 2 2.42508- 3 1.90000+ 1 2.20000+ 1 3.24095- 2 2.46562- 3 1.90000+ 1 2.40000+ 1 2.36626- 2 2.79120- 3 1.90000+ 1 2.50000+ 1 2.69935- 2 2.80179- 3 1.90000+ 1 2.70000+ 1 2.56816- 3 2.86366- 3 1.90000+ 1 2.90000+ 1 3.01470- 3 2.92294- 3 1.90000+ 1 3.00000+ 1 6.25212- 3 2.97476- 3 1.90000+ 1 3.20000+ 1 4.44887- 3 3.06275- 3 1.90000+ 1 3.30000+ 1 5.76609- 3 3.07043- 3 1.90000+ 1 3.50000+ 1 2.26829- 4 3.16119- 3 1.90000+ 1 3.60000+ 1 2.48076- 4 3.16203- 3 1.90000+ 1 4.10000+ 1 5.08016- 4 3.11882- 3 1.90000+ 1 4.30000+ 1 5.05154- 4 3.13622- 3 1.90000+ 1 4.40000+ 1 9.37199- 4 3.14501- 3 1.90000+ 1 4.60000+ 1 2.77237- 5 3.16412- 3 1.90000+ 1 4.70000+ 1 3.24049- 5 3.16470- 3 1.90000+ 1 5.80000+ 1 5.32876- 5 3.16316- 3 2.10000+ 1 2.10000+ 1 1.74256- 4 2.67190- 3 2.10000+ 1 2.20000+ 1 4.20698- 3 2.71244- 3 2.10000+ 1 2.40000+ 1 6.80106- 4 3.03802- 3 2.10000+ 1 2.50000+ 1 7.72452- 3 3.04861- 3 2.10000+ 1 2.70000+ 1 8.35275- 5 3.11048- 3 2.10000+ 1 2.90000+ 1 1.72816- 5 3.16976- 3 2.10000+ 1 3.00000+ 1 3.60635- 3 3.22158- 3 2.10000+ 1 3.20000+ 1 5.07642- 5 3.30957- 3 2.10000+ 1 3.30000+ 1 6.53089- 4 3.31725- 3 2.10000+ 1 3.50000+ 1 5.04044- 6 3.40801- 3 2.10000+ 1 3.60000+ 1 4.53624- 5 3.40885- 3 2.10000+ 1 4.10000+ 1 1.47607- 5 3.36564- 3 2.10000+ 1 4.30000+ 1 2.52014- 6 3.38304- 3 2.10000+ 1 4.40000+ 1 5.11975- 4 3.39183- 3 2.10000+ 1 4.60000+ 1 3.60037- 7 3.41094- 3 2.10000+ 1 4.70000+ 1 3.60037- 6 3.41152- 3 2.10000+ 1 5.80000+ 1 1.44008- 6 3.40998- 3 2.20000+ 1 2.20000+ 1 1.80172- 3 2.75298- 3 2.20000+ 1 2.40000+ 1 6.15463- 3 3.07856- 3 2.20000+ 1 2.50000+ 1 5.04498- 3 3.08915- 3 2.20000+ 1 2.70000+ 1 1.17735- 4 3.15102- 3 2.20000+ 1 2.90000+ 1 3.08927- 4 3.21030- 3 2.20000+ 1 3.00000+ 1 4.60580- 3 3.26212- 3 2.20000+ 1 3.20000+ 1 6.41595- 4 3.35011- 3 2.20000+ 1 3.30000+ 1 5.63846- 4 3.35779- 3 2.20000+ 1 3.50000+ 1 4.64454- 5 3.44855- 3 2.20000+ 1 3.60000+ 1 3.56442- 5 3.44939- 3 2.20000+ 1 4.10000+ 1 2.08828- 5 3.40618- 3 2.20000+ 1 4.30000+ 1 4.42854- 5 3.42358- 3 2.20000+ 1 4.40000+ 1 6.52050- 4 3.43237- 3 2.20000+ 1 4.60000+ 1 3.96058- 6 3.45148- 3 2.20000+ 1 4.70000+ 1 3.24051- 6 3.45206- 3 2.20000+ 1 5.80000+ 1 2.16023- 6 3.45052- 3 2.40000+ 1 2.40000+ 1 1.05419- 3 3.40414- 3 2.40000+ 1 2.50000+ 1 2.72962- 2 3.41473- 3 2.40000+ 1 2.70000+ 1 2.57792- 4 3.47660- 3 2.40000+ 1 2.90000+ 1 3.00638- 4 3.53588- 3 2.40000+ 1 3.00000+ 1 3.24303- 3 3.58770- 3 2.40000+ 1 3.20000+ 1 1.40056- 4 3.67569- 3 2.40000+ 1 3.30000+ 1 1.02288- 3 3.68337- 3 2.40000+ 1 3.50000+ 1 1.76418- 5 3.77413- 3 2.40000+ 1 3.60000+ 1 2.04139- 4 3.77497- 3 2.40000+ 1 4.10000+ 1 4.46442- 5 3.73176- 3 2.40000+ 1 4.30000+ 1 4.82445- 5 3.74916- 3 2.40000+ 1 4.40000+ 1 4.57264- 4 3.75795- 3 2.40000+ 1 4.60000+ 1 7.20075- 7 3.77706- 3 2.40000+ 1 4.70000+ 1 5.76064- 6 3.77764- 3 2.40000+ 1 5.80000+ 1 4.68055- 6 3.77610- 3 2.50000+ 1 2.50000+ 1 1.08495- 2 3.42532- 3 2.50000+ 1 2.70000+ 1 4.39252- 4 3.48719- 3 2.50000+ 1 2.90000+ 1 1.49157- 3 3.54647- 3 2.50000+ 1 3.00000+ 1 3.86856- 3 3.59829- 3 2.50000+ 1 3.20000+ 1 1.35343- 3 3.68628- 3 2.50000+ 1 3.30000+ 1 9.15209- 4 3.69396- 3 2.50000+ 1 3.50000+ 1 2.07747- 4 3.78472- 3 2.50000+ 1 3.60000+ 1 1.64535- 4 3.78556- 3 2.50000+ 1 4.10000+ 1 7.38075- 5 3.74235- 3 2.50000+ 1 4.30000+ 1 2.40136- 4 3.75975- 3 2.50000+ 1 4.40000+ 1 5.52293- 4 3.76854- 3 2.50000+ 1 4.60000+ 1 8.28082- 6 3.78765- 3 2.50000+ 1 4.70000+ 1 5.04046- 6 3.78823- 3 2.50000+ 1 5.80000+ 1 7.56061- 6 3.78669- 3 2.70000+ 1 2.70000+ 1 6.12066- 6 3.54906- 3 2.70000+ 1 2.90000+ 1 1.29614- 5 3.60834- 3 2.70000+ 1 3.00000+ 1 3.71205- 4 3.66016- 3 2.70000+ 1 3.20000+ 1 1.44012- 5 3.74815- 3 2.70000+ 1 3.30000+ 1 1.90822- 5 3.75583- 3 2.70000+ 1 3.50000+ 1 1.80015- 6 3.84659- 3 2.70000+ 1 3.60000+ 1 2.88039- 6 3.84743- 3 2.70000+ 1 4.10000+ 1 2.52020- 6 3.80422- 3 2.70000+ 1 4.30000+ 1 2.16018- 6 3.82162- 3 2.70000+ 1 4.40000+ 1 5.29268- 5 3.83041- 3 2.70000+ 1 5.80000+ 1 3.60046- 7 3.84856- 3 2.90000+ 1 3.00000+ 1 4.47882- 4 3.71944- 3 2.90000+ 1 3.20000+ 1 2.88041- 6 3.80743- 3 2.90000+ 1 3.30000+ 1 4.78849- 5 3.81511- 3 2.90000+ 1 3.50000+ 1 2.52022- 6 3.90587- 3 2.90000+ 1 3.60000+ 1 1.15213- 5 3.90671- 3 2.90000+ 1 4.10000+ 1 2.52022- 6 3.86350- 3 2.90000+ 1 4.40000+ 1 6.40879- 5 3.88969- 3 2.90000+ 1 4.70000+ 1 3.60048- 7 3.90938- 3 2.90000+ 1 5.80000+ 1 3.60048- 7 3.90784- 3 3.00000+ 1 3.00000+ 1 5.52318- 4 3.77126- 3 3.00000+ 1 3.20000+ 1 6.44486- 4 3.85925- 3 3.00000+ 1 3.30000+ 1 8.22715- 4 3.86693- 3 3.00000+ 1 3.50000+ 1 3.09631- 5 3.95769- 3 3.00000+ 1 3.60000+ 1 3.52844- 5 3.95853- 3 3.00000+ 1 4.10000+ 1 7.34495- 5 3.91532- 3 3.00000+ 1 4.30000+ 1 7.52498- 5 3.93272- 3 3.00000+ 1 4.40000+ 1 1.63823- 4 3.94151- 3 3.00000+ 1 4.60000+ 1 3.96057- 6 3.96062- 3 3.00000+ 1 4.70000+ 1 4.68064- 6 3.96120- 3 3.00000+ 1 5.80000+ 1 7.56094- 6 3.95966- 3 3.20000+ 1 3.20000+ 1 3.96058- 6 3.94724- 3 3.20000+ 1 3.30000+ 1 1.07655- 4 3.95492- 3 3.20000+ 1 3.50000+ 1 1.08015- 6 4.04568- 3 3.20000+ 1 3.60000+ 1 8.64123- 6 4.04652- 3 3.20000+ 1 4.10000+ 1 2.52026- 6 4.00331- 3 3.20000+ 1 4.30000+ 1 3.60054- 7 4.02071- 3 3.20000+ 1 4.40000+ 1 9.14517- 5 4.02950- 3 3.20000+ 1 4.70000+ 1 7.20092- 7 4.04919- 3 3.20000+ 1 5.80000+ 1 3.60054- 7 4.04765- 3 3.30000+ 1 3.30000+ 1 4.68048- 5 3.96260- 3 3.30000+ 1 3.50000+ 1 8.28089- 6 4.05336- 3 3.30000+ 1 3.60000+ 1 6.48061- 6 4.05420- 3 3.30000+ 1 4.10000+ 1 3.24039- 6 4.01099- 3 3.30000+ 1 4.30000+ 1 6.84063- 6 4.02839- 3 3.30000+ 1 4.40000+ 1 1.16652- 4 4.03718- 3 3.30000+ 1 4.60000+ 1 7.20065- 7 4.05629- 3 3.30000+ 1 4.70000+ 1 3.60041- 7 4.05687- 3 3.30000+ 1 5.80000+ 1 3.60041- 7 4.05533- 3 3.50000+ 1 3.60000+ 1 1.80015- 6 4.14496- 3 3.50000+ 1 4.10000+ 1 3.60046- 7 4.10175- 3 3.50000+ 1 4.30000+ 1 3.60046- 7 4.11915- 3 3.50000+ 1 4.40000+ 1 4.32053- 6 4.12794- 3 3.60000+ 1 4.10000+ 1 3.60046- 7 4.10259- 3 3.60000+ 1 4.30000+ 1 1.80015- 6 4.11999- 3 3.60000+ 1 4.40000+ 1 5.04057- 6 4.12878- 3 4.10000+ 1 4.10000+ 1 3.60037- 7 4.05938- 3 4.10000+ 1 4.30000+ 1 3.60037- 7 4.07678- 3 4.10000+ 1 4.40000+ 1 1.04409- 5 4.08557- 3 4.30000+ 1 4.40000+ 1 1.08010- 5 4.10297- 3 4.40000+ 1 4.40000+ 1 1.22416- 5 4.11176- 3 4.40000+ 1 4.60000+ 1 7.20086- 7 4.13087- 3 4.40000+ 1 4.70000+ 1 7.20086- 7 4.13145- 3 4.40000+ 1 5.80000+ 1 1.08014- 6 4.12991- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.28621- 3 2.40600- 3 1.90000+ 1 2.07111- 4 2.62553- 3 2.40000+ 1 5.01831- 2 3.23847- 3 2.90000+ 1 5.46822- 4 3.37021- 3 3.00000+ 1 4.86601- 5 3.42203- 3 3.50000+ 1 5.65192- 4 3.60846- 3 4.30000+ 1 8.94303- 5 3.58349- 3 4.40000+ 1 7.67272- 6 3.59228- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 5.08820- 2 6.64200- 5 1.40000+ 1 3.30000+ 1 7.30179- 3 7.41000- 5 1.40000+ 1 3.50000+ 1 5.06358- 3 1.64860- 4 1.40000+ 1 3.60000+ 1 5.48530- 4 1.65700- 4 1.40000+ 1 4.10000+ 1 1.01265- 3 1.22490- 4 1.40000+ 1 4.30000+ 1 5.12264- 4 1.39890- 4 1.40000+ 1 4.40000+ 1 1.05999- 3 1.48680- 4 1.40000+ 1 4.60000+ 1 3.04194- 4 1.67790- 4 1.40000+ 1 4.70000+ 1 4.01916- 5 1.68370- 4 1.40000+ 1 5.80000+ 1 1.04024- 4 1.66830- 4 1.60000+ 1 1.60000+ 1 8.66924- 6 8.91900- 4 1.60000+ 1 1.80000+ 1 8.22013- 4 1.04390- 3 1.60000+ 1 1.90000+ 1 7.49479- 4 1.26343- 3 1.60000+ 1 2.10000+ 1 2.90242- 2 1.51025- 3 1.60000+ 1 2.20000+ 1 3.40780- 3 1.55079- 3 1.60000+ 1 2.40000+ 1 1.60183- 2 1.87637- 3 1.60000+ 1 2.50000+ 1 3.77732- 3 1.88696- 3 1.60000+ 1 2.70000+ 1 1.57622- 5 1.94883- 3 1.60000+ 1 2.90000+ 1 1.58406- 4 2.00811- 3 1.60000+ 1 3.00000+ 1 1.11916- 4 2.05993- 3 1.60000+ 1 3.20000+ 1 3.54566- 3 2.14792- 3 1.60000+ 1 3.30000+ 1 4.44499- 4 2.15560- 3 1.60000+ 1 3.50000+ 1 1.14278- 4 2.24636- 3 1.60000+ 1 3.60000+ 1 2.20667- 5 2.24720- 3 1.60000+ 1 4.10000+ 1 3.15243- 6 2.20399- 3 1.60000+ 1 4.30000+ 1 2.52198- 5 2.22139- 3 1.60000+ 1 4.40000+ 1 1.57622- 5 2.23018- 3 1.60000+ 1 4.60000+ 1 2.12786- 5 2.24929- 3 1.60000+ 1 4.70000+ 1 2.36427- 6 2.24987- 3 1.80000+ 1 1.80000+ 1 4.12954- 4 1.19590- 3 1.80000+ 1 1.90000+ 1 3.46139- 3 1.41543- 3 1.80000+ 1 2.10000+ 1 2.62977- 2 1.66225- 3 1.80000+ 1 2.20000+ 1 1.56043- 3 1.70279- 3 1.80000+ 1 2.40000+ 1 1.16222- 2 2.02837- 3 1.80000+ 1 2.50000+ 1 6.24738- 3 2.03896- 3 1.80000+ 1 2.70000+ 1 1.14278- 4 2.10083- 3 1.80000+ 1 2.90000+ 1 1.58406- 4 2.16011- 3 1.80000+ 1 3.00000+ 1 5.76105- 4 2.21193- 3 1.80000+ 1 3.20000+ 1 3.17753- 3 2.29992- 3 1.80000+ 1 3.30000+ 1 2.31703- 4 2.30760- 3 1.80000+ 1 3.50000+ 1 8.03867- 5 2.39836- 3 1.80000+ 1 3.60000+ 1 4.17709- 5 2.39920- 3 1.80000+ 1 4.10000+ 1 2.04905- 5 2.35599- 3 1.80000+ 1 4.30000+ 1 2.52197- 5 2.37339- 3 1.80000+ 1 4.40000+ 1 8.43259- 5 2.38218- 3 1.80000+ 1 4.60000+ 1 1.89153- 5 2.40129- 3 1.80000+ 1 4.70000+ 1 1.57621- 6 2.40187- 3 1.80000+ 1 5.80000+ 1 2.36427- 6 2.40033- 3 1.90000+ 1 1.90000+ 1 1.20820- 3 1.63496- 3 1.90000+ 1 2.10000+ 1 5.07301- 2 1.88178- 3 1.90000+ 1 2.20000+ 1 1.93245- 3 1.92232- 3 1.90000+ 1 2.40000+ 1 2.19488- 3 2.24790- 3 1.90000+ 1 2.50000+ 1 1.72442- 3 2.25849- 3 1.90000+ 1 2.70000+ 1 1.37921- 4 2.32036- 3 1.90000+ 1 2.90000+ 1 4.88641- 4 2.37964- 3 1.90000+ 1 3.00000+ 1 3.83820- 4 2.43146- 3 1.90000+ 1 3.20000+ 1 6.20082- 3 2.51945- 3 1.90000+ 1 3.30000+ 1 2.65601- 4 2.52713- 3 1.90000+ 1 3.50000+ 1 1.26101- 5 2.61789- 3 1.90000+ 1 3.60000+ 1 8.66934- 6 2.61873- 3 1.90000+ 1 4.10000+ 1 2.60082- 5 2.57552- 3 1.90000+ 1 4.30000+ 1 7.48713- 5 2.59292- 3 1.90000+ 1 4.40000+ 1 5.59577- 5 2.60171- 3 1.90000+ 1 4.60000+ 1 3.62531- 5 2.62082- 3 1.90000+ 1 4.70000+ 1 1.57624- 6 2.62140- 3 1.90000+ 1 5.80000+ 1 2.36430- 6 2.61986- 3 2.10000+ 1 2.10000+ 1 4.68383- 2 2.12860- 3 2.10000+ 1 2.20000+ 1 9.17888- 2 2.16914- 3 2.10000+ 1 2.40000+ 1 5.52498- 2 2.49472- 3 2.10000+ 1 2.50000+ 1 6.53843- 2 2.50531- 3 2.10000+ 1 2.70000+ 1 6.46250- 3 2.56718- 3 2.10000+ 1 2.90000+ 1 6.03115- 3 2.62646- 3 2.10000+ 1 3.00000+ 1 1.12222- 2 2.67828- 3 2.10000+ 1 3.20000+ 1 1.41739- 2 2.76627- 3 2.10000+ 1 3.30000+ 1 1.61312- 2 2.77395- 3 2.10000+ 1 3.50000+ 1 5.31179- 4 2.86471- 3 2.10000+ 1 3.60000+ 1 6.09209- 4 2.86555- 3 2.10000+ 1 4.10000+ 1 1.26167- 3 2.82234- 3 2.10000+ 1 4.30000+ 1 1.01265- 3 2.83974- 3 2.10000+ 1 4.40000+ 1 1.72518- 3 2.84853- 3 2.10000+ 1 4.60000+ 1 8.66914- 5 2.86764- 3 2.10000+ 1 4.70000+ 1 9.06305- 5 2.86822- 3 2.10000+ 1 5.80000+ 1 1.31616- 4 2.86668- 3 2.20000+ 1 2.20000+ 1 1.45096- 3 2.20968- 3 2.20000+ 1 2.40000+ 1 6.49040- 2 2.53526- 3 2.20000+ 1 2.50000+ 1 3.07999- 3 2.54585- 3 2.20000+ 1 2.70000+ 1 3.79064- 4 2.60772- 3 2.20000+ 1 2.90000+ 1 2.04907- 4 2.66700- 3 2.20000+ 1 3.00000+ 1 3.41248- 4 2.71882- 3 2.20000+ 1 3.20000+ 1 1.12651- 2 2.80681- 3 2.20000+ 1 3.30000+ 1 4.14556- 4 2.81449- 3 2.20000+ 1 3.50000+ 1 5.76894- 4 2.90525- 3 2.20000+ 1 3.60000+ 1 2.44319- 5 2.90609- 3 2.20000+ 1 4.10000+ 1 6.54132- 5 2.86288- 3 2.20000+ 1 4.30000+ 1 3.15245- 5 2.88028- 3 2.20000+ 1 4.40000+ 1 5.04400- 5 2.88907- 3 2.20000+ 1 4.60000+ 1 6.62012- 5 2.90818- 3 2.20000+ 1 4.70000+ 1 2.36429- 6 2.90876- 3 2.20000+ 1 5.80000+ 1 7.09315- 6 2.90722- 3 2.40000+ 1 2.40000+ 1 6.40376- 2 2.86084- 3 2.40000+ 1 2.50000+ 1 1.83684- 1 2.87143- 3 2.40000+ 1 2.70000+ 1 3.80110- 3 2.93330- 3 2.40000+ 1 2.90000+ 1 2.11692- 3 2.99258- 3 2.40000+ 1 3.00000+ 1 5.01237- 4 3.04440- 3 2.40000+ 1 3.20000+ 1 7.43974- 3 3.13239- 3 2.40000+ 1 3.30000+ 1 1.08411- 2 3.14007- 3 2.40000+ 1 3.50000+ 1 1.09226- 3 3.23083- 3 2.40000+ 1 3.60000+ 1 1.61640- 3 3.23167- 3 2.40000+ 1 4.10000+ 1 7.47914- 4 3.18846- 3 2.40000+ 1 4.30000+ 1 3.47557- 4 3.20586- 3 2.40000+ 1 4.40000+ 1 7.72330- 5 3.21465- 3 2.40000+ 1 4.60000+ 1 4.49209- 5 3.23376- 3 2.40000+ 1 4.70000+ 1 6.14710- 5 3.23434- 3 2.40000+ 1 5.80000+ 1 8.11753- 5 3.23280- 3 2.50000+ 1 2.50000+ 1 4.06027- 3 2.88202- 3 2.50000+ 1 2.70000+ 1 6.69878- 4 2.94389- 3 2.50000+ 1 2.90000+ 1 6.21135- 4 3.00317- 3 2.50000+ 1 3.00000+ 1 3.67297- 4 3.05499- 3 2.50000+ 1 3.20000+ 1 7.81665- 3 3.14298- 3 2.50000+ 1 3.30000+ 1 5.11857- 4 3.15066- 3 2.50000+ 1 3.50000+ 1 1.49776- 3 3.24142- 3 2.50000+ 1 3.60000+ 1 6.63982- 5 3.24226- 3 2.50000+ 1 4.10000+ 1 1.21875- 4 3.19905- 3 2.50000+ 1 4.30000+ 1 8.99317- 5 3.21645- 3 2.50000+ 1 4.40000+ 1 5.54725- 5 3.22524- 3 2.50000+ 1 4.60000+ 1 4.53871- 5 3.24435- 3 2.50000+ 1 4.70000+ 1 2.52144- 6 3.24493- 3 2.50000+ 1 5.80000+ 1 1.26077- 5 3.24339- 3 2.70000+ 1 2.70000+ 1 1.57621- 6 3.00576- 3 2.70000+ 1 2.90000+ 1 2.52197- 5 3.06504- 3 2.70000+ 1 3.00000+ 1 2.12785- 5 3.11686- 3 2.70000+ 1 3.20000+ 1 7.95985- 4 3.20485- 3 2.70000+ 1 3.30000+ 1 5.51657- 5 3.21253- 3 2.70000+ 1 3.50000+ 1 2.91600- 5 3.30329- 3 2.70000+ 1 3.60000+ 1 4.72852- 6 3.30413- 3 2.70000+ 1 4.10000+ 1 7.88113- 7 3.26092- 3 2.70000+ 1 4.30000+ 1 3.94046- 6 3.27832- 3 2.70000+ 1 4.40000+ 1 3.15241- 6 3.28711- 3 2.70000+ 1 4.60000+ 1 4.72852- 6 3.30622- 3 2.90000+ 1 2.90000+ 1 1.65502- 5 3.12432- 3 2.90000+ 1 3.00000+ 1 8.74805- 5 3.17614- 3 2.90000+ 1 3.20000+ 1 7.33728- 4 3.26413- 3 2.90000+ 1 3.30000+ 1 3.54656- 5 3.27181- 3 2.90000+ 1 3.50000+ 1 1.49741- 5 3.36257- 3 2.90000+ 1 3.60000+ 1 3.94049- 6 3.36341- 3 2.90000+ 1 4.10000+ 1 4.72855- 6 3.32020- 3 2.90000+ 1 4.30000+ 1 5.51661- 6 3.33760- 3 2.90000+ 1 4.40000+ 1 1.26099- 5 3.34639- 3 2.90000+ 1 4.60000+ 1 3.94049- 6 3.36550- 3 2.90000+ 1 5.80000+ 1 7.88118- 7 3.36454- 3 3.00000+ 1 3.00000+ 1 3.15256- 5 3.22796- 3 3.00000+ 1 3.20000+ 1 1.38233- 3 3.31595- 3 3.00000+ 1 3.30000+ 1 4.96539- 5 3.32363- 3 3.00000+ 1 3.50000+ 1 3.15256- 6 3.41439- 3 3.00000+ 1 3.60000+ 1 1.57629- 6 3.41523- 3 3.00000+ 1 4.10000+ 1 3.94065- 6 3.37202- 3 3.00000+ 1 4.30000+ 1 1.33985- 5 3.38942- 3 3.00000+ 1 4.40000+ 1 9.45750- 6 3.39821- 3 3.00000+ 1 4.60000+ 1 7.88152- 6 3.41732- 3 3.00000+ 1 5.80000+ 1 7.88152- 7 3.41636- 3 3.20000+ 1 3.20000+ 1 1.03005- 3 3.40394- 3 3.20000+ 1 3.30000+ 1 1.99399- 3 3.41162- 3 3.20000+ 1 3.50000+ 1 7.17192- 5 3.50238- 3 3.20000+ 1 3.60000+ 1 6.93530- 5 3.50322- 3 3.20000+ 1 4.10000+ 1 1.55262- 4 3.46001- 3 3.20000+ 1 4.30000+ 1 1.22954- 4 3.47741- 3 3.20000+ 1 4.40000+ 1 2.12789- 4 3.48620- 3 3.20000+ 1 4.60000+ 1 1.26101- 5 3.50531- 3 3.20000+ 1 4.70000+ 1 1.10339- 5 3.50589- 3 3.20000+ 1 5.80000+ 1 1.65505- 5 3.50435- 3 3.30000+ 1 3.30000+ 1 3.57472- 5 3.41930- 3 3.30000+ 1 3.50000+ 1 1.19803- 4 3.51006- 3 3.30000+ 1 3.60000+ 1 4.83060- 6 3.51090- 3 3.30000+ 1 4.10000+ 1 1.15934- 5 3.46769- 3 3.30000+ 1 4.30000+ 1 6.76275- 6 3.48509- 3 3.30000+ 1 4.40000+ 1 8.69538- 6 3.49388- 3 3.30000+ 1 4.60000+ 1 1.44923- 5 3.51299- 3 3.30000+ 1 5.80000+ 1 9.66146- 7 3.51203- 3 3.50000+ 1 3.60000+ 1 1.26098- 5 3.60166- 3 3.50000+ 1 4.10000+ 1 5.51656- 6 3.55845- 3 3.50000+ 1 4.30000+ 1 2.36425- 6 3.57585- 3 3.50000+ 1 4.40000+ 1 7.88111- 7 3.58464- 3 3.50000+ 1 4.60000+ 1 7.88111- 7 3.60375- 3 3.50000+ 1 4.70000+ 1 7.88111- 7 3.60433- 3 3.50000+ 1 5.80000+ 1 7.88111- 7 3.60279- 3 3.60000+ 1 4.10000+ 1 7.88102- 7 3.55929- 3 3.60000+ 1 4.30000+ 1 7.88102- 7 3.57669- 3 3.60000+ 1 4.60000+ 1 7.88102- 7 3.60459- 3 4.10000+ 1 4.30000+ 1 1.01197- 6 3.53348- 3 4.10000+ 1 4.40000+ 1 1.01197- 6 3.54227- 3 4.10000+ 1 4.60000+ 1 1.01197- 6 3.56138- 3 4.30000+ 1 4.30000+ 1 6.71375- 7 3.55088- 3 4.30000+ 1 4.40000+ 1 2.01406- 6 3.55967- 3 4.30000+ 1 4.60000+ 1 6.71375- 7 3.57878- 3 4.40000+ 1 4.40000+ 1 7.88108- 7 3.56846- 3 4.40000+ 1 4.60000+ 1 1.57620- 6 3.58757- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.56881- 3 2.45303- 3 2.40000+ 1 2.41142- 3 3.06597- 3 2.50000+ 1 4.72303- 2 3.07656- 3 3.00000+ 1 3.66222- 4 3.24953- 3 3.50000+ 1 2.67002- 5 3.43596- 3 3.60000+ 1 5.14973- 4 3.43680- 3 4.40000+ 1 5.77314- 5 3.41978- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 9.55308- 6 7.19400- 4 1.60000+ 1 1.80000+ 1 2.53145- 4 8.71400- 4 1.60000+ 1 1.90000+ 1 1.60556- 3 1.09093- 3 1.60000+ 1 2.10000+ 1 3.14931- 3 1.33775- 3 1.60000+ 1 2.20000+ 1 3.20427- 2 1.37829- 3 1.60000+ 1 2.40000+ 1 4.12431- 3 1.70387- 3 1.60000+ 1 2.50000+ 1 1.67897- 2 1.71446- 3 1.60000+ 1 2.70000+ 1 1.35328- 5 1.77633- 3 1.60000+ 1 2.90000+ 1 1.83086- 5 1.83561- 3 1.60000+ 1 3.00000+ 1 2.45179- 4 1.88743- 3 1.60000+ 1 3.20000+ 1 3.78126- 4 1.97542- 3 1.60000+ 1 3.30000+ 1 3.89594- 3 1.98310- 3 1.60000+ 1 3.50000+ 1 2.38810- 5 2.07386- 3 1.60000+ 1 3.60000+ 1 1.06666- 4 2.07470- 3 1.60000+ 1 4.10000+ 1 3.18413- 6 2.03149- 3 1.60000+ 1 4.30000+ 1 3.18413- 6 2.04889- 3 1.60000+ 1 4.40000+ 1 3.50279- 5 2.05768- 3 1.60000+ 1 4.60000+ 1 2.38810- 6 2.07679- 3 1.60000+ 1 4.70000+ 1 2.06975- 5 2.07737- 3 1.80000+ 1 1.80000+ 1 6.36856- 6 1.02340- 3 1.80000+ 1 1.90000+ 1 4.80894- 3 1.24293- 3 1.80000+ 1 2.10000+ 1 2.33235- 4 1.48975- 3 1.80000+ 1 2.20000+ 1 3.30140- 2 1.53029- 3 1.80000+ 1 2.40000+ 1 2.30299- 3 1.85587- 3 1.80000+ 1 2.50000+ 1 9.99209- 3 1.86646- 3 1.80000+ 1 2.70000+ 1 3.26370- 5 1.92833- 3 1.80000+ 1 2.90000+ 1 1.59207- 6 1.98761- 3 1.80000+ 1 3.00000+ 1 7.37135- 4 2.03943- 3 1.80000+ 1 3.20000+ 1 6.36856- 6 2.12742- 3 1.80000+ 1 3.30000+ 1 4.00825- 3 2.13510- 3 1.80000+ 1 3.50000+ 1 1.51251- 5 2.22586- 3 1.80000+ 1 3.60000+ 1 6.20904- 5 2.22670- 3 1.80000+ 1 4.10000+ 1 5.57224- 6 2.18349- 3 1.80000+ 1 4.30000+ 1 7.96063- 7 2.20089- 3 1.80000+ 1 4.40000+ 1 1.05874- 4 2.20968- 3 1.80000+ 1 4.70000+ 1 2.14941- 5 2.22937- 3 1.80000+ 1 5.80000+ 1 7.96063- 7 2.22783- 3 1.90000+ 1 1.90000+ 1 2.98928- 3 1.46246- 3 1.90000+ 1 2.10000+ 1 2.98749- 3 1.70928- 3 1.90000+ 1 2.20000+ 1 4.79979- 2 1.74982- 3 1.90000+ 1 2.40000+ 1 1.99880- 3 2.07540- 3 1.90000+ 1 2.50000+ 1 3.26775- 3 2.08599- 3 1.90000+ 1 2.70000+ 1 3.10455- 4 2.14786- 3 1.90000+ 1 2.90000+ 1 6.28073- 4 2.20714- 3 1.90000+ 1 3.00000+ 1 9.40135- 4 2.25896- 3 1.90000+ 1 3.20000+ 1 4.52955- 4 2.34695- 3 1.90000+ 1 3.30000+ 1 5.78956- 3 2.35463- 3 1.90000+ 1 3.50000+ 1 1.11448- 5 2.44539- 3 1.90000+ 1 3.60000+ 1 1.75128- 5 2.44623- 3 1.90000+ 1 4.10000+ 1 5.89075- 5 2.40302- 3 1.90000+ 1 4.30000+ 1 9.55304- 5 2.42042- 3 1.90000+ 1 4.40000+ 1 1.36924- 4 2.42921- 3 1.90000+ 1 4.60000+ 1 2.38809- 6 2.44832- 3 1.90000+ 1 4.70000+ 1 3.10455- 5 2.44890- 3 1.90000+ 1 5.80000+ 1 5.57220- 6 2.44736- 3 2.10000+ 1 2.10000+ 1 6.57521- 4 1.95610- 3 2.10000+ 1 2.20000+ 1 6.81162- 2 1.99664- 3 2.10000+ 1 2.40000+ 1 2.81401- 3 2.32222- 3 2.10000+ 1 2.50000+ 1 3.89583- 2 2.33281- 3 2.10000+ 1 2.70000+ 1 3.26360- 4 2.39468- 3 2.10000+ 1 2.90000+ 1 6.28851- 5 2.45396- 3 2.10000+ 1 3.00000+ 1 4.75236- 4 2.50578- 3 2.10000+ 1 3.20000+ 1 1.80700- 4 2.59377- 3 2.10000+ 1 3.30000+ 1 8.33518- 3 2.60145- 3 2.10000+ 1 3.50000+ 1 2.38803- 5 2.69221- 3 2.10000+ 1 3.60000+ 1 3.34316- 4 2.69305- 3 2.10000+ 1 4.10000+ 1 5.57207- 5 2.64984- 3 2.10000+ 1 4.30000+ 1 1.03480- 5 2.66724- 3 2.10000+ 1 4.40000+ 1 6.92530- 5 2.67603- 3 2.10000+ 1 4.60000+ 1 7.96039- 7 2.69514- 3 2.10000+ 1 4.70000+ 1 4.45771- 5 2.69572- 3 2.10000+ 1 5.80000+ 1 5.57207- 6 2.69418- 3 2.20000+ 1 2.20000+ 1 7.52841- 2 2.03718- 3 2.20000+ 1 2.40000+ 1 6.11225- 2 2.36276- 3 2.20000+ 1 2.50000+ 1 9.85251- 2 2.37335- 3 2.20000+ 1 2.70000+ 1 6.77594- 3 2.43522- 3 2.20000+ 1 2.90000+ 1 7.20986- 3 2.49450- 3 2.20000+ 1 3.00000+ 1 1.07133- 2 2.54632- 3 2.20000+ 1 3.20000+ 1 1.19305- 2 2.63431- 3 2.20000+ 1 3.30000+ 1 2.24413- 2 2.64199- 3 2.20000+ 1 3.50000+ 1 5.85095- 4 2.73275- 3 2.20000+ 1 3.60000+ 1 8.84398- 4 2.73359- 3 2.20000+ 1 4.10000+ 1 1.31587- 3 2.69038- 3 2.20000+ 1 4.30000+ 1 1.19960- 3 2.70778- 3 2.20000+ 1 4.40000+ 1 1.64939- 3 2.71657- 3 2.20000+ 1 4.60000+ 1 7.40321- 5 2.73568- 3 2.20000+ 1 4.70000+ 1 1.23383- 4 2.73626- 3 2.20000+ 1 5.80000+ 1 1.37718- 4 2.73472- 3 2.40000+ 1 2.40000+ 1 5.34876- 3 2.68834- 3 2.40000+ 1 2.50000+ 1 1.70121- 1 2.69893- 3 2.40000+ 1 2.70000+ 1 7.58648- 4 2.76080- 3 2.40000+ 1 2.90000+ 1 4.62505- 4 2.82008- 3 2.40000+ 1 3.00000+ 1 3.76542- 4 2.87190- 3 2.40000+ 1 3.20000+ 1 4.75253- 4 2.95989- 3 2.40000+ 1 3.30000+ 1 7.06097- 3 2.96757- 3 2.40000+ 1 3.50000+ 1 9.07498- 5 3.05833- 3 2.40000+ 1 3.60000+ 1 1.25775- 3 3.05917- 3 2.40000+ 1 4.10000+ 1 1.40904- 4 3.01596- 3 2.40000+ 1 4.30000+ 1 7.56247- 5 3.03336- 3 2.40000+ 1 4.40000+ 1 5.65214- 5 3.04215- 3 2.40000+ 1 4.60000+ 1 3.18416- 6 3.06126- 3 2.40000+ 1 4.70000+ 1 3.74141- 5 3.06184- 3 2.40000+ 1 5.80000+ 1 1.51252- 5 3.06030- 3 2.50000+ 1 2.50000+ 1 1.16130- 1 2.70952- 3 2.50000+ 1 2.70000+ 1 3.92446- 3 2.77139- 3 2.50000+ 1 2.90000+ 1 2.22250- 3 2.83067- 3 2.50000+ 1 3.00000+ 1 6.97343- 4 2.88249- 3 2.50000+ 1 3.20000+ 1 6.34448- 3 2.97048- 3 2.50000+ 1 3.30000+ 1 1.36636- 2 2.97816- 3 2.50000+ 1 3.50000+ 1 1.51725- 3 3.06892- 3 2.50000+ 1 3.60000+ 1 1.87310- 3 3.06976- 3 2.50000+ 1 4.10000+ 1 7.71361- 4 3.02655- 3 2.50000+ 1 4.30000+ 1 3.72556- 4 3.04395- 3 2.50000+ 1 4.40000+ 1 1.07459- 4 3.05274- 3 2.50000+ 1 4.60000+ 1 3.90055- 5 3.07185- 3 2.50000+ 1 4.70000+ 1 7.48276- 5 3.07243- 3 2.50000+ 1 5.80000+ 1 8.27879- 5 3.07089- 3 2.70000+ 1 2.70000+ 1 7.96072- 7 2.83326- 3 2.70000+ 1 2.90000+ 1 7.96072- 7 2.89254- 3 2.70000+ 1 3.00000+ 1 4.93569- 5 2.94436- 3 2.70000+ 1 3.20000+ 1 4.45790- 5 3.03235- 3 2.70000+ 1 3.30000+ 1 8.31083- 4 3.04003- 3 2.70000+ 1 3.50000+ 1 5.57230- 6 3.13079- 3 2.70000+ 1 3.60000+ 1 2.78625- 5 3.13163- 3 2.70000+ 1 4.40000+ 1 7.16468- 6 3.11461- 3 2.70000+ 1 4.70000+ 1 4.77626- 6 3.13430- 3 2.90000+ 1 3.00000+ 1 1.03478- 4 3.00364- 3 2.90000+ 1 3.20000+ 1 3.97998- 6 3.09163- 3 2.90000+ 1 3.30000+ 1 8.89136- 4 3.09931- 3 2.90000+ 1 3.50000+ 1 3.18399- 6 3.19007- 3 2.90000+ 1 3.60000+ 1 1.43287- 5 3.19091- 3 2.90000+ 1 4.40000+ 1 1.51244- 5 3.17389- 3 2.90000+ 1 4.70000+ 1 4.77598- 6 3.19358- 3 3.00000+ 1 3.00000+ 1 7.48270- 5 3.05546- 3 3.00000+ 1 3.20000+ 1 7.72139- 5 3.14345- 3 3.00000+ 1 3.30000+ 1 1.29918- 3 3.15113- 3 3.00000+ 1 3.50000+ 1 2.38806- 6 3.24189- 3 3.00000+ 1 3.60000+ 1 4.77611- 6 3.24273- 3 3.00000+ 1 4.10000+ 1 9.55290- 6 3.19952- 3 3.00000+ 1 4.30000+ 1 1.59204- 5 3.21692- 3 3.00000+ 1 4.40000+ 1 2.14937- 5 3.22571- 3 3.00000+ 1 4.60000+ 1 7.96047- 7 3.24482- 3 3.00000+ 1 4.70000+ 1 7.16445- 6 3.24540- 3 3.00000+ 1 5.80000+ 1 7.96047- 7 3.24386- 3 3.20000+ 1 3.20000+ 1 1.19402- 5 3.23144- 3 3.20000+ 1 3.30000+ 1 1.47021- 3 3.23912- 3 3.20000+ 1 3.50000+ 1 3.98010- 6 3.32988- 3 3.20000+ 1 3.60000+ 1 5.57213- 5 3.33072- 3 3.20000+ 1 4.10000+ 1 7.96048- 6 3.28751- 3 3.20000+ 1 4.30000+ 1 7.96048- 7 3.30491- 3 3.20000+ 1 4.40000+ 1 1.11447- 5 3.31370- 3 3.20000+ 1 4.70000+ 1 7.96048- 6 3.33339- 3 3.20000+ 1 5.80000+ 1 7.96048- 7 3.33185- 3 3.30000+ 1 3.30000+ 1 1.61360- 3 3.24680- 3 3.30000+ 1 3.50000+ 1 6.84604- 5 3.33756- 3 3.30000+ 1 3.60000+ 1 1.22590- 4 3.33840- 3 3.30000+ 1 4.10000+ 1 1.61608- 4 3.29519- 3 3.30000+ 1 4.30000+ 1 1.48066- 4 3.31259- 3 3.30000+ 1 4.40000+ 1 2.00606- 4 3.32138- 3 3.30000+ 1 4.60000+ 1 8.75656- 6 3.34049- 3 3.30000+ 1 4.70000+ 1 1.75129- 5 3.34107- 3 3.30000+ 1 5.80000+ 1 1.67163- 5 3.33953- 3 3.50000+ 1 3.60000+ 1 1.11449- 5 3.42916- 3 3.50000+ 1 4.10000+ 1 7.96069- 7 3.38595- 3 3.50000+ 1 4.30000+ 1 7.96069- 7 3.40335- 3 3.60000+ 1 3.60000+ 1 7.96097- 7 3.43000- 3 3.60000+ 1 4.10000+ 1 5.57248- 6 3.38679- 3 3.60000+ 1 4.30000+ 1 2.38821- 6 3.40419- 3 3.60000+ 1 4.40000+ 1 7.96097- 7 3.41298- 3 3.60000+ 1 4.70000+ 1 7.96097- 7 3.43267- 3 3.60000+ 1 5.80000+ 1 7.96097- 7 3.43113- 3 4.10000+ 1 4.40000+ 1 1.90672- 6 3.36977- 3 4.10000+ 1 4.70000+ 1 9.53395- 7 3.38946- 3 4.30000+ 1 4.40000+ 1 2.67217- 6 3.38717- 3 4.30000+ 1 4.70000+ 1 8.90754- 7 3.40686- 3 4.40000+ 1 4.40000+ 1 1.84452- 6 3.39596- 3 4.40000+ 1 4.70000+ 1 9.22294- 7 3.41565- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.48914- 5 1.52000- 4 1.90000+ 1 4.55155- 4 3.71530- 4 2.90000+ 1 3.14205- 4 1.11621- 3 3.00000+ 1 7.58465- 5 1.16803- 3 4.30000+ 1 6.48763- 5 1.32949- 3 4.40000+ 1 1.86529- 5 1.33828- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.51755- 2 4.59200- 5 1.80000+ 1 3.30000+ 1 1.01943- 1 5.36000- 5 1.80000+ 1 3.50000+ 1 3.32243- 3 1.44360- 4 1.80000+ 1 3.60000+ 1 3.52588- 3 1.45200- 4 1.80000+ 1 4.10000+ 1 9.23430- 3 1.01990- 4 1.80000+ 1 4.30000+ 1 7.42161- 3 1.19390- 4 1.80000+ 1 4.40000+ 1 1.03870- 2 1.28180- 4 1.80000+ 1 4.60000+ 1 3.37710- 4 1.47290- 4 1.80000+ 1 4.70000+ 1 4.79079- 4 1.47870- 4 1.80000+ 1 5.80000+ 1 9.42034- 4 1.46330- 4 1.90000+ 1 2.40000+ 1 6.13573- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 1.91988- 2 4.49000- 6 1.90000+ 1 2.70000+ 1 4.22336- 2 6.63600- 5 1.90000+ 1 2.90000+ 1 5.08420- 2 1.25640- 4 1.90000+ 1 3.00000+ 1 4.60309- 2 1.77460- 4 1.90000+ 1 3.20000+ 1 4.11211- 2 2.65450- 4 1.90000+ 1 3.30000+ 1 5.11975- 2 2.73130- 4 1.90000+ 1 3.50000+ 1 2.37964- 4 3.63890- 4 1.90000+ 1 3.60000+ 1 4.06937- 4 3.64730- 4 1.90000+ 1 4.10000+ 1 8.16077- 3 3.21520- 4 1.90000+ 1 4.30000+ 1 8.06905- 3 3.38920- 4 1.90000+ 1 4.40000+ 1 7.10571- 3 3.47710- 4 1.90000+ 1 4.60000+ 1 2.37819- 4 3.66820- 4 1.90000+ 1 4.70000+ 1 2.76831- 4 3.67400- 4 1.90000+ 1 5.80000+ 1 8.52598- 4 3.65860- 4 2.10000+ 1 2.40000+ 1 3.85410- 3 2.40720- 4 2.10000+ 1 2.50000+ 1 4.90879- 3 2.51310- 4 2.10000+ 1 2.70000+ 1 1.72613- 2 3.13180- 4 2.10000+ 1 2.90000+ 1 6.07152- 3 3.72460- 4 2.10000+ 1 3.00000+ 1 6.06063- 3 4.24280- 4 2.10000+ 1 3.20000+ 1 2.05486- 3 5.12270- 4 2.10000+ 1 3.30000+ 1 2.98926- 3 5.19950- 4 2.10000+ 1 3.50000+ 1 1.94931- 4 6.10710- 4 2.10000+ 1 3.60000+ 1 1.85307- 4 6.11550- 4 2.10000+ 1 4.10000+ 1 2.45088- 3 5.68340- 4 2.10000+ 1 4.30000+ 1 9.51418- 4 5.85740- 4 2.10000+ 1 4.40000+ 1 7.67010- 4 5.94530- 4 2.10000+ 1 4.60000+ 1 1.16929- 5 6.13640- 4 2.10000+ 1 4.70000+ 1 1.58369- 5 6.14220- 4 2.10000+ 1 5.80000+ 1 2.44960- 4 6.12680- 4 2.20000+ 1 2.40000+ 1 5.73663- 3 2.81260- 4 2.20000+ 1 2.50000+ 1 6.84551- 3 2.91850- 4 2.20000+ 1 2.70000+ 1 2.42061- 2 3.53720- 4 2.20000+ 1 2.90000+ 1 9.53384- 3 4.13000- 4 2.20000+ 1 3.00000+ 1 7.21629- 3 4.64820- 4 2.20000+ 1 3.20000+ 1 2.36847- 3 5.52810- 4 2.20000+ 1 3.30000+ 1 3.38300- 3 5.60490- 4 2.20000+ 1 3.50000+ 1 2.05468- 4 6.51250- 4 2.20000+ 1 3.60000+ 1 2.85430- 4 6.52090- 4 2.20000+ 1 4.10000+ 1 3.41134- 3 6.08880- 4 2.20000+ 1 4.30000+ 1 1.32658- 3 6.26280- 4 2.20000+ 1 4.40000+ 1 1.01846- 3 6.35070- 4 2.20000+ 1 4.60000+ 1 1.39456- 5 6.54180- 4 2.20000+ 1 4.70000+ 1 1.80991- 5 6.54760- 4 2.20000+ 1 5.80000+ 1 3.40172- 4 6.53220- 4 2.40000+ 1 2.40000+ 1 9.15260- 3 6.06840- 4 2.40000+ 1 2.50000+ 1 1.73345- 2 6.17430- 4 2.40000+ 1 2.70000+ 1 2.12130- 2 6.79300- 4 2.40000+ 1 2.90000+ 1 2.97520- 3 7.38580- 4 2.40000+ 1 3.00000+ 1 1.26626- 2 7.90400- 4 2.40000+ 1 3.20000+ 1 1.21172- 3 8.78390- 4 2.40000+ 1 3.30000+ 1 7.76596- 4 8.86070- 4 2.40000+ 1 3.50000+ 1 8.70781- 5 9.76830- 4 2.40000+ 1 3.60000+ 1 7.90898- 5 9.77670- 4 2.40000+ 1 4.10000+ 1 2.55234- 3 9.34460- 4 2.40000+ 1 4.30000+ 1 3.72608- 4 9.51860- 4 2.40000+ 1 4.40000+ 1 1.49622- 3 9.60650- 4 2.40000+ 1 4.60000+ 1 7.10849- 6 9.79760- 4 2.40000+ 1 4.70000+ 1 3.99856- 6 9.80340- 4 2.40000+ 1 5.80000+ 1 2.47768- 4 9.78800- 4 2.50000+ 1 2.50000+ 1 1.51414- 2 6.28020- 4 2.50000+ 1 2.70000+ 1 2.74859- 2 6.89890- 4 2.50000+ 1 2.90000+ 1 1.42957- 3 7.49170- 4 2.50000+ 1 3.00000+ 1 1.35023- 2 8.00990- 4 2.50000+ 1 3.20000+ 1 7.06472- 4 8.88980- 4 2.50000+ 1 3.30000+ 1 1.73556- 3 8.96660- 4 2.50000+ 1 3.50000+ 1 8.35316- 5 9.87420- 4 2.50000+ 1 3.60000+ 1 1.39008- 4 9.88260- 4 2.50000+ 1 4.10000+ 1 3.29449- 3 9.45050- 4 2.50000+ 1 4.30000+ 1 1.74018- 4 9.62450- 4 2.50000+ 1 4.40000+ 1 1.52861- 3 9.71240- 4 2.50000+ 1 4.60000+ 1 4.15390- 6 9.90350- 4 2.50000+ 1 4.70000+ 1 9.04954- 6 9.90930- 4 2.50000+ 1 5.80000+ 1 3.19401- 4 9.89390- 4 2.70000+ 1 2.70000+ 1 1.67247- 2 7.51760- 4 2.70000+ 1 2.90000+ 1 2.48218- 2 8.11040- 4 2.70000+ 1 3.00000+ 1 3.91132- 2 8.62860- 4 2.70000+ 1 3.20000+ 1 3.83890- 2 9.50850- 4 2.70000+ 1 3.30000+ 1 5.31001- 2 9.58530- 4 2.70000+ 1 3.50000+ 1 2.82299- 3 1.04929- 3 2.70000+ 1 3.60000+ 1 3.48274- 3 1.05013- 3 2.70000+ 1 4.10000+ 1 5.38896- 3 1.00692- 3 2.70000+ 1 4.30000+ 1 4.16248- 3 1.02432- 3 2.70000+ 1 4.40000+ 1 5.99052- 3 1.03311- 3 2.70000+ 1 4.60000+ 1 2.40566- 4 1.05222- 3 2.70000+ 1 4.70000+ 1 3.00703- 4 1.05280- 3 2.70000+ 1 5.80000+ 1 5.50383- 4 1.05126- 3 2.90000+ 1 2.90000+ 1 1.92470- 3 8.70320- 4 2.90000+ 1 3.00000+ 1 8.66368- 3 9.22140- 4 2.90000+ 1 3.20000+ 1 3.46776- 3 1.01013- 3 2.90000+ 1 3.30000+ 1 2.45361- 3 1.01781- 3 2.90000+ 1 3.50000+ 1 1.63579- 4 1.10857- 3 2.90000+ 1 3.60000+ 1 1.01788- 4 1.10941- 3 2.90000+ 1 4.10000+ 1 3.01528- 3 1.06620- 3 2.90000+ 1 4.30000+ 1 5.23436- 4 1.08360- 3 2.90000+ 1 4.40000+ 1 9.97824- 4 1.09239- 3 2.90000+ 1 4.60000+ 1 1.99925- 5 1.11150- 3 2.90000+ 1 4.70000+ 1 1.27224- 5 1.11208- 3 2.90000+ 1 5.80000+ 1 2.94425- 4 1.11054- 3 3.00000+ 1 3.00000+ 1 5.04021- 3 9.73960- 4 3.00000+ 1 3.20000+ 1 2.36955- 3 1.06195- 3 3.00000+ 1 3.30000+ 1 5.71156- 3 1.06963- 3 3.00000+ 1 3.50000+ 1 7.43849- 4 1.16039- 3 3.00000+ 1 3.60000+ 1 8.92678- 4 1.16123- 3 3.00000+ 1 4.10000+ 1 4.93678- 3 1.11802- 3 3.00000+ 1 4.30000+ 1 1.28635- 3 1.13542- 3 3.00000+ 1 4.40000+ 1 1.34621- 3 1.14421- 3 3.00000+ 1 4.60000+ 1 1.45149- 5 1.16332- 3 3.00000+ 1 4.70000+ 1 3.26574- 5 1.16390- 3 3.00000+ 1 5.80000+ 1 4.84430- 4 1.16236- 3 3.20000+ 1 3.20000+ 1 1.03690- 3 1.14994- 3 3.20000+ 1 3.30000+ 1 3.17123- 3 1.15762- 3 3.20000+ 1 3.50000+ 1 7.23853- 5 1.24838- 3 3.20000+ 1 3.60000+ 1 4.89094- 5 1.24922- 3 3.20000+ 1 4.10000+ 1 5.08850- 3 1.20601- 3 3.20000+ 1 4.30000+ 1 4.87136- 4 1.22341- 3 3.20000+ 1 4.40000+ 1 2.44542- 4 1.23220- 3 3.20000+ 1 4.60000+ 1 1.17380- 5 1.25131- 3 3.20000+ 1 4.70000+ 1 1.56512- 5 1.25189- 3 3.20000+ 1 5.80000+ 1 4.96909- 4 1.25035- 3 3.30000+ 1 3.30000+ 1 2.05172- 3 1.16530- 3 3.30000+ 1 3.50000+ 1 5.55537- 5 1.25606- 3 3.30000+ 1 3.60000+ 1 1.01530- 4 1.25690- 3 3.30000+ 1 4.10000+ 1 6.88662- 3 1.21369- 3 3.30000+ 1 4.30000+ 1 2.93091- 4 1.23109- 3 3.30000+ 1 4.40000+ 1 7.10678- 4 1.23988- 3 3.30000+ 1 4.60000+ 1 1.72412- 5 1.25899- 3 3.30000+ 1 4.70000+ 1 2.10721- 5 1.25957- 3 3.30000+ 1 5.80000+ 1 6.72388- 4 1.25803- 3 3.50000+ 1 3.60000+ 1 1.81432- 6 1.34766- 3 3.50000+ 1 4.10000+ 1 3.32032- 4 1.30445- 3 3.50000+ 1 4.30000+ 1 1.99578- 5 1.32185- 3 3.50000+ 1 4.40000+ 1 9.07143- 5 1.33064- 3 3.50000+ 1 5.80000+ 1 3.26574- 5 1.34879- 3 3.60000+ 1 4.10000+ 1 4.10045- 4 1.30529- 3 3.60000+ 1 4.30000+ 1 1.08858- 5 1.32269- 3 3.60000+ 1 4.40000+ 1 1.08858- 4 1.33148- 3 3.60000+ 1 5.80000+ 1 3.99156- 5 1.34963- 3 4.10000+ 1 4.10000+ 1 4.33547- 4 1.26208- 3 4.10000+ 1 4.30000+ 1 5.50367- 4 1.27948- 3 4.10000+ 1 4.40000+ 1 8.09688- 4 1.28827- 3 4.10000+ 1 4.60000+ 1 3.16761- 5 1.30738- 3 4.10000+ 1 4.70000+ 1 3.95940- 5 1.30796- 3 4.10000+ 1 5.80000+ 1 8.71091- 5 1.30642- 3 4.30000+ 1 4.30000+ 1 3.91892- 5 1.29688- 3 4.30000+ 1 4.40000+ 1 1.65012- 4 1.30567- 3 4.30000+ 1 4.60000+ 1 2.06261- 6 1.32478- 3 4.30000+ 1 4.70000+ 1 2.06261- 6 1.32536- 3 4.30000+ 1 5.80000+ 1 5.56906- 5 1.32382- 3 4.40000+ 1 4.40000+ 1 9.96351- 5 1.31446- 3 4.40000+ 1 4.60000+ 1 2.11989- 6 1.33357- 3 4.40000+ 1 4.70000+ 1 4.23978- 6 1.33415- 3 4.40000+ 1 5.80000+ 1 8.47934- 5 1.33261- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.03390- 3 4.66350- 4 2.70000+ 1 2.46018- 4 9.04930- 4 3.20000+ 1 6.91848- 5 1.10402- 3 4.10000+ 1 4.86010- 5 1.16009- 3 5.80000+ 1 5.23771- 6 1.20443- 3 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 2.07177- 2 2.54600- 5 1.90000+ 1 3.20000+ 1 1.14075- 2 1.13450- 4 1.90000+ 1 3.30000+ 1 1.71734- 2 1.21130- 4 1.90000+ 1 3.50000+ 1 4.08253- 4 2.11890- 4 1.90000+ 1 3.60000+ 1 6.07117- 4 2.12730- 4 1.90000+ 1 4.10000+ 1 2.31850- 3 1.69520- 4 1.90000+ 1 4.30000+ 1 2.54325- 3 1.86920- 4 1.90000+ 1 4.40000+ 1 2.40089- 3 1.95710- 4 1.90000+ 1 4.60000+ 1 5.21659- 5 2.14820- 4 1.90000+ 1 4.70000+ 1 7.45026- 5 2.15400- 4 1.90000+ 1 5.80000+ 1 2.32011- 4 2.13860- 4 2.10000+ 1 2.40000+ 1 9.78131- 2 8.87200- 5 2.10000+ 1 2.50000+ 1 2.34874- 1 9.93100- 5 2.10000+ 1 2.70000+ 1 3.56649- 2 1.61180- 4 2.10000+ 1 2.90000+ 1 2.90119- 2 2.20460- 4 2.10000+ 1 3.00000+ 1 3.61583- 2 2.72280- 4 2.10000+ 1 3.20000+ 1 2.02262- 2 3.60270- 4 2.10000+ 1 3.30000+ 1 3.03104- 2 3.67950- 4 2.10000+ 1 3.50000+ 1 3.41070- 4 4.58710- 4 2.10000+ 1 3.60000+ 1 6.43620- 4 4.59550- 4 2.10000+ 1 4.10000+ 1 6.96444- 3 4.16340- 4 2.10000+ 1 4.30000+ 1 4.54903- 3 4.33740- 4 2.10000+ 1 4.40000+ 1 5.49072- 3 4.42530- 4 2.10000+ 1 4.60000+ 1 1.23143- 4 4.61640- 4 2.10000+ 1 4.70000+ 1 1.64042- 4 4.62220- 4 2.10000+ 1 5.80000+ 1 7.23197- 4 4.60680- 4 2.20000+ 1 2.40000+ 1 4.23201- 2 1.29260- 4 2.20000+ 1 2.50000+ 1 1.08244- 2 1.39850- 4 2.20000+ 1 2.70000+ 1 5.62024- 3 2.01720- 4 2.20000+ 1 2.90000+ 1 2.40813- 2 2.61000- 4 2.20000+ 1 3.00000+ 1 4.91121- 3 3.12820- 4 2.20000+ 1 3.20000+ 1 2.26688- 3 4.00810- 4 2.20000+ 1 3.30000+ 1 2.52856- 3 4.08490- 4 2.20000+ 1 3.50000+ 1 1.30900- 4 4.99250- 4 2.20000+ 1 3.60000+ 1 6.99655- 5 5.00090- 4 2.20000+ 1 4.10000+ 1 8.33096- 4 4.56880- 4 2.20000+ 1 4.30000+ 1 2.65588- 3 4.74280- 4 2.20000+ 1 4.40000+ 1 5.76899- 4 4.83070- 4 2.20000+ 1 4.60000+ 1 1.21307- 5 5.02180- 4 2.20000+ 1 4.70000+ 1 1.34000- 5 5.02760- 4 2.20000+ 1 5.80000+ 1 8.39260- 5 5.01220- 4 2.40000+ 1 2.40000+ 1 2.15106- 3 4.54840- 4 2.40000+ 1 2.50000+ 1 1.17771- 2 4.65430- 4 2.40000+ 1 2.70000+ 1 5.10643- 3 5.27300- 4 2.40000+ 1 2.90000+ 1 2.03112- 2 5.86580- 4 2.40000+ 1 3.00000+ 1 2.75886- 3 6.38400- 4 2.40000+ 1 3.20000+ 1 6.05500- 3 7.26390- 4 2.40000+ 1 3.30000+ 1 4.45800- 3 7.34070- 4 2.40000+ 1 3.50000+ 1 1.18516- 4 8.24830- 4 2.40000+ 1 3.60000+ 1 7.20635- 5 8.25670- 4 2.40000+ 1 4.10000+ 1 1.01078- 3 7.82460- 4 2.40000+ 1 4.30000+ 1 2.27988- 3 7.99860- 4 2.40000+ 1 4.40000+ 1 3.69958- 4 8.08650- 4 2.40000+ 1 4.60000+ 1 3.03632- 5 8.27760- 4 2.40000+ 1 4.70000+ 1 2.47661- 5 8.28340- 4 2.40000+ 1 5.80000+ 1 1.05502- 4 8.26800- 4 2.50000+ 1 2.50000+ 1 5.88363- 4 4.76020- 4 2.50000+ 1 2.70000+ 1 2.85391- 3 5.37890- 4 2.50000+ 1 2.90000+ 1 3.14824- 2 5.97170- 4 2.50000+ 1 3.00000+ 1 1.76348- 3 6.48990- 4 2.50000+ 1 3.20000+ 1 1.26717- 2 7.36980- 4 2.50000+ 1 3.30000+ 1 1.21126- 3 7.44660- 4 2.50000+ 1 3.50000+ 1 3.01856- 5 8.35420- 4 2.50000+ 1 3.60000+ 1 1.53755- 5 8.36260- 4 2.50000+ 1 4.10000+ 1 4.20057- 4 7.93050- 4 2.50000+ 1 4.30000+ 1 3.39814- 3 8.10450- 4 2.50000+ 1 4.40000+ 1 2.23717- 4 8.19240- 4 2.50000+ 1 4.60000+ 1 6.27705- 5 8.38350- 4 2.50000+ 1 4.70000+ 1 6.20657- 6 8.38930- 4 2.50000+ 1 5.80000+ 1 4.18934- 5 8.37390- 4 2.70000+ 1 2.70000+ 1 1.58611- 3 5.99760- 4 2.70000+ 1 2.90000+ 1 2.08336- 2 6.59040- 4 2.70000+ 1 3.00000+ 1 3.98752- 3 7.10860- 4 2.70000+ 1 3.20000+ 1 5.16877- 3 7.98850- 4 2.70000+ 1 3.30000+ 1 3.65760- 3 8.06530- 4 2.70000+ 1 3.50000+ 1 7.34671- 5 8.97290- 4 2.70000+ 1 3.60000+ 1 1.48379- 4 8.98130- 4 2.70000+ 1 4.10000+ 1 4.75388- 4 8.54920- 4 2.70000+ 1 4.30000+ 1 2.21121- 3 8.72320- 4 2.70000+ 1 4.40000+ 1 5.48843- 4 8.81110- 4 2.70000+ 1 4.60000+ 1 2.59298- 5 9.00220- 4 2.70000+ 1 4.70000+ 1 2.01682- 5 9.00800- 4 2.70000+ 1 5.80000+ 1 4.75388- 5 8.99260- 4 2.90000+ 1 2.90000+ 1 1.53469- 2 7.18320- 4 2.90000+ 1 3.00000+ 1 4.02661- 2 7.70140- 4 2.90000+ 1 3.20000+ 1 3.19218- 2 8.58130- 4 2.90000+ 1 3.30000+ 1 5.33085- 2 8.65810- 4 2.90000+ 1 3.50000+ 1 2.57891- 3 9.56570- 4 2.90000+ 1 3.60000+ 1 3.47786- 3 9.57410- 4 2.90000+ 1 4.10000+ 1 4.53164- 3 9.14200- 4 2.90000+ 1 4.30000+ 1 4.26687- 3 9.31600- 4 2.90000+ 1 4.40000+ 1 6.20573- 3 9.40390- 4 2.90000+ 1 4.60000+ 1 2.00426- 4 9.59500- 4 2.90000+ 1 4.70000+ 1 3.00642- 4 9.60080- 4 2.90000+ 1 5.80000+ 1 4.74451- 4 9.58540- 4 3.00000+ 1 3.00000+ 1 1.30017- 3 8.21960- 4 3.00000+ 1 3.20000+ 1 5.48466- 3 9.09950- 4 3.00000+ 1 3.30000+ 1 2.46714- 3 9.17630- 4 3.00000+ 1 3.50000+ 1 8.57836- 5 1.00839- 3 3.00000+ 1 3.60000+ 1 1.22768- 4 1.00923- 3 3.00000+ 1 4.10000+ 1 5.63525- 4 9.66020- 4 3.00000+ 1 4.30000+ 1 4.13566- 3 9.83420- 4 3.00000+ 1 4.40000+ 1 3.37236- 4 9.92210- 4 3.00000+ 1 4.60000+ 1 2.66234- 5 1.01132- 3 3.00000+ 1 4.70000+ 1 1.33126- 5 1.01190- 3 3.00000+ 1 5.80000+ 1 5.62066- 5 1.01036- 3 3.20000+ 1 3.20000+ 1 1.38372- 3 9.97940- 4 3.20000+ 1 3.30000+ 1 2.13568- 3 1.00562- 3 3.20000+ 1 3.50000+ 1 2.59752- 4 1.09638- 3 3.20000+ 1 3.60000+ 1 4.31620- 4 1.09722- 3 3.20000+ 1 4.10000+ 1 6.33803- 4 1.05401- 3 3.20000+ 1 4.30000+ 1 2.21967- 3 1.07141- 3 3.20000+ 1 4.40000+ 1 5.43910- 4 1.08020- 3 3.20000+ 1 4.60000+ 1 1.56242- 5 1.09931- 3 3.20000+ 1 4.70000+ 1 1.17186- 5 1.09989- 3 3.20000+ 1 5.80000+ 1 6.54218- 5 1.09835- 3 3.30000+ 1 3.30000+ 1 3.10488- 4 1.01330- 3 3.30000+ 1 3.50000+ 1 6.94645- 5 1.10406- 3 3.30000+ 1 3.60000+ 1 3.43120- 5 1.10490- 3 3.30000+ 1 4.10000+ 1 2.68643- 4 1.06169- 3 3.30000+ 1 4.30000+ 1 3.14180- 3 1.07909- 3 3.30000+ 1 4.40000+ 1 1.74077- 4 1.08788- 3 3.30000+ 1 4.60000+ 1 8.36959- 6 1.10699- 3 3.30000+ 1 4.70000+ 1 3.34758- 6 1.10757- 3 3.30000+ 1 5.80000+ 1 2.59438- 5 1.10603- 3 3.50000+ 1 3.60000+ 1 1.69776- 6 1.19566- 3 3.50000+ 1 4.10000+ 1 7.64049- 6 1.15245- 3 3.50000+ 1 4.30000+ 1 1.47712- 4 1.16985- 3 3.50000+ 1 4.40000+ 1 5.94185- 6 1.17864- 3 3.50000+ 1 4.60000+ 1 8.48956- 7 1.19775- 3 3.50000+ 1 5.80000+ 1 8.48956- 7 1.19679- 3 3.60000+ 1 4.10000+ 1 1.18845- 5 1.15329- 3 3.60000+ 1 4.30000+ 1 2.00335- 4 1.17069- 3 3.60000+ 1 4.40000+ 1 8.48938- 6 1.17948- 3 3.60000+ 1 4.60000+ 1 1.69773- 6 1.19859- 3 3.60000+ 1 5.80000+ 1 8.48938- 7 1.19763- 3 4.10000+ 1 4.10000+ 1 1.88861- 5 1.11008- 3 4.10000+ 1 4.30000+ 1 2.33427- 4 1.12748- 3 4.10000+ 1 4.40000+ 1 3.92840- 5 1.13627- 3 4.10000+ 1 4.60000+ 1 2.26629- 6 1.15538- 3 4.10000+ 1 4.70000+ 1 1.51082- 6 1.15596- 3 4.10000+ 1 5.80000+ 1 3.77707- 6 1.15442- 3 4.30000+ 1 4.30000+ 1 1.51087- 4 1.14488- 3 4.30000+ 1 4.40000+ 1 3.67915- 4 1.15367- 3 4.30000+ 1 4.60000+ 1 1.19507- 5 1.17278- 3 4.30000+ 1 4.70000+ 1 1.79259- 5 1.17336- 3 4.30000+ 1 5.80000+ 1 2.73155- 5 1.17182- 3 4.40000+ 1 4.40000+ 1 1.09300- 5 1.16246- 3 4.40000+ 1 4.60000+ 1 2.18597- 6 1.18157- 3 4.40000+ 1 4.70000+ 1 7.28700- 7 1.18215- 3 4.40000+ 1 5.80000+ 1 3.64320- 6 1.18061- 3 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.30820- 5 2.46820- 4 2.20000+ 1 1.93390- 4 2.87360- 4 2.70000+ 1 2.70830- 4 6.85400- 4 3.20000+ 1 2.84230- 5 8.84490- 4 3.30000+ 1 1.68510- 4 8.92170- 4 4.10000+ 1 5.23010- 5 9.40560- 4 5.80000+ 1 6.04230- 6 9.84900- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.90000+ 1 1.65557- 2 9.30000- 7 2.10000+ 1 3.00000+ 1 4.57784- 2 5.27500- 5 2.10000+ 1 3.20000+ 1 1.58403- 2 1.40740- 4 2.10000+ 1 3.30000+ 1 2.45205- 2 1.48420- 4 2.10000+ 1 3.50000+ 1 4.23360- 4 2.39180- 4 2.10000+ 1 3.60000+ 1 3.57533- 4 2.40020- 4 2.10000+ 1 4.10000+ 1 3.50417- 3 1.96810- 4 2.10000+ 1 4.30000+ 1 2.49157- 3 2.14210- 4 2.10000+ 1 4.40000+ 1 5.70648- 3 2.23000- 4 2.10000+ 1 4.60000+ 1 8.90571- 5 2.42110- 4 2.10000+ 1 4.70000+ 1 1.21440- 4 2.42690- 4 2.10000+ 1 5.80000+ 1 3.61459- 4 2.41150- 4 2.20000+ 1 2.90000+ 1 1.25662- 1 4.14700- 5 2.20000+ 1 3.00000+ 1 1.41213- 1 9.32900- 5 2.20000+ 1 3.20000+ 1 1.22530- 1 1.81280- 4 2.20000+ 1 3.30000+ 1 1.47479- 1 1.88960- 4 2.20000+ 1 3.50000+ 1 1.40103- 3 2.79720- 4 2.20000+ 1 3.60000+ 1 1.88801- 3 2.80560- 4 2.20000+ 1 4.10000+ 1 2.26848- 2 2.37350- 4 2.20000+ 1 4.30000+ 1 1.99741- 2 2.54750- 4 2.20000+ 1 4.40000+ 1 1.98960- 2 2.63540- 4 2.20000+ 1 4.60000+ 1 6.84659- 4 2.82650- 4 2.20000+ 1 4.70000+ 1 7.70756- 4 2.83230- 4 2.20000+ 1 5.80000+ 1 2.33575- 3 2.81690- 4 2.40000+ 1 2.40000+ 1 8.97515- 4 2.35310- 4 2.40000+ 1 2.50000+ 1 5.46428- 3 2.45900- 4 2.40000+ 1 2.70000+ 1 8.89629- 3 3.07770- 4 2.40000+ 1 2.90000+ 1 4.76425- 3 3.67050- 4 2.40000+ 1 3.00000+ 1 5.42549- 2 4.18870- 4 2.40000+ 1 3.20000+ 1 2.06471- 3 5.06860- 4 2.40000+ 1 3.30000+ 1 7.87425- 3 5.14540- 4 2.40000+ 1 3.50000+ 1 1.06075- 4 6.05300- 4 2.40000+ 1 3.60000+ 1 9.71220- 5 6.06140- 4 2.40000+ 1 4.10000+ 1 1.10331- 3 5.62930- 4 2.40000+ 1 4.30000+ 1 6.70612- 4 5.80330- 4 2.40000+ 1 4.40000+ 1 5.61955- 3 5.89120- 4 2.40000+ 1 4.60000+ 1 1.12726- 5 6.08230- 4 2.40000+ 1 4.70000+ 1 3.46876- 5 6.08810- 4 2.40000+ 1 5.80000+ 1 1.08105- 4 6.07270- 4 2.50000+ 1 2.50000+ 1 4.08575- 3 2.56490- 4 2.50000+ 1 2.70000+ 1 2.05780- 2 3.18360- 4 2.50000+ 1 2.90000+ 1 1.69229- 2 3.77640- 4 2.50000+ 1 3.00000+ 1 6.58848- 2 4.29460- 4 2.50000+ 1 3.20000+ 1 1.60497- 3 5.17450- 4 2.50000+ 1 3.30000+ 1 1.11134- 2 5.25130- 4 2.50000+ 1 3.50000+ 1 3.86646- 4 6.15890- 4 2.50000+ 1 3.60000+ 1 5.05534- 4 6.16730- 4 2.50000+ 1 4.10000+ 1 3.09811- 3 5.73520- 4 2.50000+ 1 4.30000+ 1 2.48613- 3 5.90920- 4 2.50000+ 1 4.40000+ 1 6.90973- 3 5.99710- 4 2.50000+ 1 4.60000+ 1 1.00998- 5 6.18820- 4 2.50000+ 1 4.70000+ 1 5.07835- 5 6.19400- 4 2.50000+ 1 5.80000+ 1 3.13080- 4 6.17860- 4 2.70000+ 1 2.70000+ 1 1.49354- 5 3.80230- 4 2.70000+ 1 2.90000+ 1 2.33707- 4 4.39510- 4 2.70000+ 1 3.00000+ 1 4.93693- 3 4.91330- 4 2.70000+ 1 3.20000+ 1 4.55413- 4 5.79320- 4 2.70000+ 1 3.30000+ 1 7.79025- 4 5.87000- 4 2.70000+ 1 3.50000+ 1 3.42655- 5 6.77760- 4 2.70000+ 1 3.60000+ 1 3.22150- 5 6.78600- 4 2.70000+ 1 4.10000+ 1 9.66446- 6 6.35390- 4 2.70000+ 1 4.30000+ 1 2.48937- 5 6.52790- 4 2.70000+ 1 4.40000+ 1 4.92019- 4 6.61580- 4 2.70000+ 1 4.60000+ 1 2.63576- 6 6.80690- 4 2.70000+ 1 4.70000+ 1 3.51448- 6 6.81270- 4 2.70000+ 1 5.80000+ 1 1.17139- 6 6.79730- 4 2.90000+ 1 3.00000+ 1 5.59516- 3 5.50610- 4 2.90000+ 1 3.20000+ 1 2.48646- 4 6.38600- 4 2.90000+ 1 3.30000+ 1 7.07847- 4 6.46280- 4 2.90000+ 1 3.50000+ 1 2.69441- 5 7.37040- 4 2.90000+ 1 3.60000+ 1 5.50593- 5 7.37880- 4 2.90000+ 1 4.10000+ 1 4.15877- 5 6.94670- 4 2.90000+ 1 4.30000+ 1 3.51448- 6 7.12070- 4 2.90000+ 1 4.40000+ 1 5.72841- 4 7.20860- 4 2.90000+ 1 4.60000+ 1 1.17139- 6 7.39970- 4 2.90000+ 1 4.70000+ 1 2.92873- 6 7.40550- 4 2.90000+ 1 5.80000+ 1 4.39299- 6 7.39010- 4 3.00000+ 1 3.00000+ 1 7.09807- 3 6.02430- 4 3.00000+ 1 3.20000+ 1 8.26898- 3 6.90420- 4 3.00000+ 1 3.30000+ 1 1.10364- 2 6.98100- 4 3.00000+ 1 3.50000+ 1 6.22354- 4 7.88860- 4 3.00000+ 1 3.60000+ 1 7.38925- 4 7.89700- 4 3.00000+ 1 4.10000+ 1 9.94009- 4 7.46490- 4 3.00000+ 1 4.30000+ 1 9.14057- 4 7.63890- 4 3.00000+ 1 4.40000+ 1 1.82284- 3 7.72680- 4 3.00000+ 1 4.60000+ 1 5.12534- 5 7.91790- 4 3.00000+ 1 4.70000+ 1 6.20891- 5 7.92370- 4 3.00000+ 1 5.80000+ 1 1.03977- 4 7.90830- 4 3.20000+ 1 3.20000+ 1 1.66421- 4 7.78410- 4 3.20000+ 1 3.30000+ 1 9.95888- 4 7.86090- 4 3.20000+ 1 3.50000+ 1 1.44336- 5 8.76850- 4 3.20000+ 1 3.60000+ 1 2.44473- 5 8.77690- 4 3.20000+ 1 4.10000+ 1 6.42126- 5 8.34480- 4 3.20000+ 1 4.30000+ 1 4.00599- 5 8.51880- 4 3.20000+ 1 4.40000+ 1 8.61275- 4 8.60670- 4 3.20000+ 1 4.60000+ 1 1.76727- 6 8.79780- 4 3.20000+ 1 4.70000+ 1 4.71289- 6 8.80360- 4 3.20000+ 1 5.80000+ 1 6.48026- 6 8.78820- 4 3.30000+ 1 3.30000+ 1 9.09934- 4 7.93770- 4 3.30000+ 1 3.50000+ 1 4.50326- 5 8.84530- 4 3.30000+ 1 3.60000+ 1 6.16377- 5 8.85370- 4 3.30000+ 1 4.10000+ 1 1.42975- 4 8.42160- 4 3.30000+ 1 4.30000+ 1 1.11736- 4 8.59560- 4 3.30000+ 1 4.40000+ 1 1.11399- 3 8.68350- 4 3.30000+ 1 4.60000+ 1 5.34753- 6 8.87460- 4 3.30000+ 1 4.70000+ 1 9.00645- 6 8.88040- 4 3.30000+ 1 5.80000+ 1 1.46357- 5 8.86500- 4 3.50000+ 1 3.60000+ 1 8.78594- 7 9.76130- 4 3.50000+ 1 4.10000+ 1 4.39299- 6 9.32920- 4 3.50000+ 1 4.30000+ 1 1.75714- 6 9.50320- 4 3.50000+ 1 4.40000+ 1 6.23805- 5 9.59110- 4 3.50000+ 1 4.70000+ 1 2.92873- 7 9.78800- 4 3.50000+ 1 5.80000+ 1 2.92873- 7 9.77260- 4 3.60000+ 1 4.10000+ 1 4.39294- 6 9.33760- 4 3.60000+ 1 4.30000+ 1 3.51444- 6 9.51160- 4 3.60000+ 1 4.40000+ 1 7.38018- 5 9.59950- 4 3.60000+ 1 4.70000+ 1 2.92870- 7 9.79640- 4 3.60000+ 1 5.80000+ 1 2.92870- 7 9.78100- 4 4.10000+ 1 4.30000+ 1 3.57391- 6 9.07950- 4 4.10000+ 1 4.40000+ 1 1.00663- 4 9.16740- 4 4.10000+ 1 4.60000+ 1 2.97826- 7 9.35850- 4 4.10000+ 1 4.70000+ 1 5.95639- 7 9.36430- 4 4.30000+ 1 4.40000+ 1 9.83152- 5 9.34140- 4 4.30000+ 1 4.60000+ 1 3.09175- 7 9.53250- 4 4.30000+ 1 4.70000+ 1 6.18338- 7 9.53830- 4 4.30000+ 1 5.80000+ 1 3.09175- 7 9.52290- 4 4.40000+ 1 4.40000+ 1 1.14150- 4 9.42930- 4 4.40000+ 1 4.60000+ 1 5.42151- 6 9.62040- 4 4.40000+ 1 4.70000+ 1 6.62630- 6 9.62620- 4 4.40000+ 1 5.80000+ 1 1.05425- 5 9.61080- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.50713- 4 3.66120- 4 2.90000+ 1 1.43271- 4 4.97860- 4 3.00000+ 1 1.65081- 5 5.49680- 4 3.50000+ 1 1.09141- 5 7.36110- 4 4.30000+ 1 2.54902- 5 7.11140- 4 4.40000+ 1 2.80522- 6 7.19930- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 8.25302- 4 3.29000- 5 2.20000+ 1 3.60000+ 1 9.30550- 4 3.37400- 5 2.20000+ 1 4.30000+ 1 1.14846- 3 7.93000- 6 2.20000+ 1 4.40000+ 1 2.71716- 3 1.67200- 5 2.20000+ 1 4.60000+ 1 4.43774- 4 3.58300- 5 2.20000+ 1 4.70000+ 1 8.15655- 5 3.64100- 5 2.20000+ 1 5.80000+ 1 2.16630- 4 3.48700- 5 2.40000+ 1 2.40000+ 1 1.96500- 2 0.00000+ 0 2.40000+ 1 2.50000+ 1 2.84632- 2 0.00000+ 0 2.40000+ 1 2.70000+ 1 1.16675- 1 6.09500- 5 2.40000+ 1 2.90000+ 1 1.02884- 1 1.20230- 4 2.40000+ 1 3.00000+ 1 1.25753- 1 1.72050- 4 2.40000+ 1 3.20000+ 1 1.26443- 1 2.60040- 4 2.40000+ 1 3.30000+ 1 1.32779- 1 2.67720- 4 2.40000+ 1 3.50000+ 1 1.12702- 3 3.58480- 4 2.40000+ 1 3.60000+ 1 7.82745- 4 3.59320- 4 2.40000+ 1 4.10000+ 1 2.30117- 2 3.16110- 4 2.40000+ 1 4.30000+ 1 1.68197- 2 3.33510- 4 2.40000+ 1 4.40000+ 1 1.86792- 2 3.42300- 4 2.40000+ 1 4.60000+ 1 6.65680- 4 3.61410- 4 2.40000+ 1 4.70000+ 1 7.06012- 4 3.61990- 4 2.40000+ 1 5.80000+ 1 2.40566- 3 3.60450- 4 2.50000+ 1 2.50000+ 1 2.11106- 3 9.67000- 6 2.50000+ 1 2.70000+ 1 8.99325- 3 7.15400- 5 2.50000+ 1 2.90000+ 1 1.74475- 2 1.30820- 4 2.50000+ 1 3.00000+ 1 8.12322- 3 1.82640- 4 2.50000+ 1 3.20000+ 1 1.35883- 1 2.70630- 4 2.50000+ 1 3.30000+ 1 5.75034- 3 2.78310- 4 2.50000+ 1 3.50000+ 1 5.31938- 4 3.69070- 4 2.50000+ 1 3.60000+ 1 1.02175- 4 3.69910- 4 2.50000+ 1 4.10000+ 1 1.26245- 3 3.26700- 4 2.50000+ 1 4.30000+ 1 1.79959- 3 3.44100- 4 2.50000+ 1 4.40000+ 1 9.41069- 4 3.52890- 4 2.50000+ 1 4.60000+ 1 6.39368- 4 3.72000- 4 2.50000+ 1 4.70000+ 1 2.89420- 5 3.72580- 4 2.50000+ 1 5.80000+ 1 1.27166- 4 3.71040- 4 2.70000+ 1 2.70000+ 1 8.74846- 4 1.33410- 4 2.70000+ 1 2.90000+ 1 2.12634- 3 1.92690- 4 2.70000+ 1 3.00000+ 1 1.66637- 3 2.44510- 4 2.70000+ 1 3.20000+ 1 1.21741- 2 3.32500- 4 2.70000+ 1 3.30000+ 1 2.22583- 3 3.40180- 4 2.70000+ 1 3.50000+ 1 2.90288- 4 4.30940- 4 2.70000+ 1 3.60000+ 1 2.34183- 4 4.31780- 4 2.70000+ 1 4.10000+ 1 2.00845- 4 3.88570- 4 2.70000+ 1 4.30000+ 1 2.33292- 4 4.05970- 4 2.70000+ 1 4.40000+ 1 1.96901- 4 4.14760- 4 2.70000+ 1 4.60000+ 1 5.52530- 5 4.33870- 4 2.70000+ 1 4.70000+ 1 8.77027- 6 4.34450- 4 2.70000+ 1 5.80000+ 1 2.01716- 5 4.32910- 4 2.90000+ 1 2.90000+ 1 4.30625- 4 2.51970- 4 2.90000+ 1 3.00000+ 1 2.16977- 3 3.03790- 4 2.90000+ 1 3.20000+ 1 8.27032- 3 3.91780- 4 2.90000+ 1 3.30000+ 1 9.86663- 4 3.99460- 4 2.90000+ 1 3.50000+ 1 4.95531- 5 4.90220- 4 2.90000+ 1 3.60000+ 1 3.99059- 5 4.91060- 4 2.90000+ 1 4.10000+ 1 1.48652- 4 4.47850- 4 2.90000+ 1 4.30000+ 1 9.69129- 5 4.65250- 4 2.90000+ 1 4.40000+ 1 1.87242- 4 4.74040- 4 2.90000+ 1 4.60000+ 1 3.81503- 5 4.93150- 4 2.90000+ 1 4.70000+ 1 5.26226- 6 4.93730- 4 2.90000+ 1 5.80000+ 1 1.40325- 5 4.92190- 4 3.00000+ 1 3.00000+ 1 7.56010- 4 3.55610- 4 3.00000+ 1 3.20000+ 1 1.62504- 2 4.43600- 4 3.00000+ 1 3.30000+ 1 1.39284- 3 4.51280- 4 3.00000+ 1 3.50000+ 1 1.25018- 4 5.42040- 4 3.00000+ 1 3.60000+ 1 6.69305- 5 5.42880- 4 3.00000+ 1 4.10000+ 1 7.66117- 5 4.99670- 4 3.00000+ 1 4.30000+ 1 1.62907- 4 5.17070- 4 3.00000+ 1 4.40000+ 1 1.37219- 4 5.25860- 4 3.00000+ 1 4.60000+ 1 7.57691- 5 5.44970- 4 3.00000+ 1 4.70000+ 1 6.31415- 6 5.45550- 4 3.00000+ 1 5.80000+ 1 7.15602- 6 5.44010- 4 3.20000+ 1 3.20000+ 1 1.05057- 2 5.31590- 4 3.20000+ 1 3.30000+ 1 2.05299- 2 5.39270- 4 3.20000+ 1 3.50000+ 1 1.03926- 3 6.30030- 4 3.20000+ 1 3.60000+ 1 1.41728- 3 6.30870- 4 3.20000+ 1 4.10000+ 1 1.85662- 3 5.87660- 4 3.20000+ 1 4.30000+ 1 1.37744- 3 6.05060- 4 3.20000+ 1 4.40000+ 1 2.48955- 3 6.13850- 4 3.20000+ 1 4.60000+ 1 1.14455- 4 6.32960- 4 3.20000+ 1 4.70000+ 1 1.14455- 4 6.33540- 4 3.20000+ 1 5.80000+ 1 1.91628- 4 6.32000- 4 3.30000+ 1 3.30000+ 1 3.14582- 4 5.46950- 4 3.30000+ 1 3.50000+ 1 1.15754- 4 6.37710- 4 3.30000+ 1 3.60000+ 1 3.65352- 5 6.38550- 4 3.30000+ 1 4.10000+ 1 6.61470- 5 5.95340- 4 3.30000+ 1 4.30000+ 1 7.07629- 5 6.12740- 4 3.30000+ 1 4.40000+ 1 1.26909- 4 6.21530- 4 3.30000+ 1 4.60000+ 1 8.42218- 5 6.40640- 4 3.30000+ 1 4.70000+ 1 3.07665- 6 6.41220- 4 3.30000+ 1 5.80000+ 1 6.53781- 6 6.39680- 4 3.50000+ 1 3.60000+ 1 4.82378- 6 7.29310- 4 3.50000+ 1 4.10000+ 1 1.88566- 5 6.86100- 4 3.50000+ 1 4.30000+ 1 7.89333- 6 7.03500- 4 3.50000+ 1 4.40000+ 1 1.53478- 5 7.12290- 4 3.50000+ 1 4.60000+ 1 4.82378- 6 7.31400- 4 3.50000+ 1 4.70000+ 1 8.77035- 7 7.31980- 4 3.50000+ 1 5.80000+ 1 1.75406- 6 7.30440- 4 3.60000+ 1 4.10000+ 1 1.05237- 5 6.86940- 4 3.60000+ 1 4.30000+ 1 5.26230- 6 7.04340- 4 3.60000+ 1 4.40000+ 1 7.01636- 6 7.13130- 4 3.60000+ 1 4.60000+ 1 6.57779- 6 7.32240- 4 3.60000+ 1 5.80000+ 1 8.77029- 7 7.31280- 4 4.10000+ 1 4.10000+ 1 4.51370- 6 6.43730- 4 4.10000+ 1 4.30000+ 1 9.02719- 6 6.61130- 4 4.10000+ 1 4.40000+ 1 6.94394- 6 6.69920- 4 4.10000+ 1 4.60000+ 1 6.59679- 6 6.89030- 4 4.10000+ 1 4.70000+ 1 3.47206- 7 6.89610- 4 4.10000+ 1 5.80000+ 1 6.94394- 7 6.88070- 4 4.30000+ 1 4.30000+ 1 1.29908- 6 6.78530- 4 4.30000+ 1 4.40000+ 1 1.03929- 5 6.87320- 4 4.30000+ 1 4.60000+ 1 4.54684- 6 7.06430- 4 4.30000+ 1 4.70000+ 1 3.24782- 7 7.07010- 4 4.30000+ 1 5.80000+ 1 6.49546- 7 7.05470- 4 4.40000+ 1 4.40000+ 1 2.61658- 6 6.96110- 4 4.40000+ 1 4.60000+ 1 4.70974- 6 7.15220- 4 4.40000+ 1 4.70000+ 1 3.48873- 7 7.15800- 4 4.40000+ 1 5.80000+ 1 3.48873- 7 7.14260- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.72950- 5 3.25580- 4 2.50000+ 1 3.89751- 4 3.36170- 4 3.00000+ 1 1.22340- 4 5.09140- 4 3.50000+ 1 7.50421- 7 6.95570- 4 3.60000+ 1 1.23660- 5 6.96410- 4 4.40000+ 1 2.07540- 5 6.79390- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 1.27074- 2 2.04100- 5 2.40000+ 1 2.90000+ 1 8.47852- 3 7.96900- 5 2.40000+ 1 3.00000+ 1 1.58095- 2 1.31510- 4 2.40000+ 1 3.20000+ 1 7.47334- 3 2.19500- 4 2.40000+ 1 3.30000+ 1 1.07453- 1 2.27180- 4 2.40000+ 1 3.50000+ 1 1.71339- 4 3.17940- 4 2.40000+ 1 3.60000+ 1 2.85439- 4 3.18780- 4 2.40000+ 1 4.10000+ 1 2.07991- 3 2.75570- 4 2.40000+ 1 4.30000+ 1 1.33053- 3 2.92970- 4 2.40000+ 1 4.40000+ 1 1.94628- 3 3.01760- 4 2.40000+ 1 4.60000+ 1 4.28369- 5 3.20870- 4 2.40000+ 1 4.70000+ 1 4.69076- 4 3.21450- 4 2.40000+ 1 5.80000+ 1 2.12904- 4 3.19910- 4 2.50000+ 1 2.70000+ 1 1.15886- 1 3.10000- 5 2.50000+ 1 2.90000+ 1 1.24087- 1 9.02800- 5 2.50000+ 1 3.00000+ 1 1.14002- 1 1.42100- 4 2.50000+ 1 3.20000+ 1 1.12019- 1 2.30090- 4 2.50000+ 1 3.30000+ 1 2.02992- 1 2.37770- 4 2.50000+ 1 3.50000+ 1 6.77762- 4 3.28530- 4 2.50000+ 1 3.60000+ 1 1.49288- 3 3.29370- 4 2.50000+ 1 4.10000+ 1 2.28612- 2 2.86160- 4 2.50000+ 1 4.30000+ 1 1.94990- 2 3.03560- 4 2.50000+ 1 4.40000+ 1 1.71561- 2 3.12350- 4 2.50000+ 1 4.60000+ 1 6.39157- 4 3.31460- 4 2.50000+ 1 4.70000+ 1 9.82264- 4 3.32040- 4 2.50000+ 1 5.80000+ 1 2.37680- 3 3.30500- 4 2.70000+ 1 2.70000+ 1 1.59236- 3 9.28700- 5 2.70000+ 1 2.90000+ 1 2.24057- 3 1.52150- 4 2.70000+ 1 3.00000+ 1 3.53611- 3 2.03970- 4 2.70000+ 1 3.20000+ 1 3.14744- 3 2.91960- 4 2.70000+ 1 3.30000+ 1 1.50083- 2 2.99640- 4 2.70000+ 1 3.50000+ 1 2.75013- 4 3.90400- 4 2.70000+ 1 3.60000+ 1 4.29570- 4 3.91240- 4 2.70000+ 1 4.10000+ 1 3.53665- 4 3.48030- 4 2.70000+ 1 4.30000+ 1 2.53192- 4 3.65430- 4 2.70000+ 1 4.40000+ 1 4.12301- 4 3.74220- 4 2.70000+ 1 4.60000+ 1 1.31830- 5 3.93330- 4 2.70000+ 1 4.70000+ 1 6.13661- 5 3.93910- 4 2.70000+ 1 5.80000+ 1 3.50012- 5 3.92370- 4 2.90000+ 1 2.90000+ 1 2.90899- 4 2.11430- 4 2.90000+ 1 3.00000+ 1 3.86783- 3 2.63250- 4 2.90000+ 1 3.20000+ 1 5.47389- 4 3.51240- 4 2.90000+ 1 3.30000+ 1 1.25014- 2 3.58920- 4 2.90000+ 1 3.50000+ 1 4.53134- 5 4.49680- 4 2.90000+ 1 3.60000+ 1 1.03767- 4 4.50520- 4 2.90000+ 1 4.10000+ 1 1.50885- 4 4.07310- 4 2.90000+ 1 4.30000+ 1 6.52493- 5 4.24710- 4 2.90000+ 1 4.40000+ 1 3.47093- 4 4.33500- 4 2.90000+ 1 4.60000+ 1 2.26551- 6 4.52610- 4 2.90000+ 1 4.70000+ 1 5.34698- 5 4.53190- 4 2.90000+ 1 5.80000+ 1 1.45008- 5 4.51650- 4 3.00000+ 1 3.00000+ 1 1.19050- 3 3.15070- 4 3.00000+ 1 3.20000+ 1 2.02256- 3 4.03060- 4 3.00000+ 1 3.30000+ 1 1.55587- 2 4.10740- 4 3.00000+ 1 3.50000+ 1 8.72705- 5 5.01500- 4 3.00000+ 1 3.60000+ 1 1.21492- 4 5.02340- 4 3.00000+ 1 4.10000+ 1 1.15934- 4 4.59130- 4 3.00000+ 1 4.30000+ 1 1.77529- 4 4.76530- 4 3.00000+ 1 4.40000+ 1 2.18610- 4 4.85320- 4 3.00000+ 1 4.60000+ 1 1.06948- 5 5.04430- 4 3.00000+ 1 4.70000+ 1 6.58803- 5 5.05010- 4 3.00000+ 1 5.80000+ 1 9.83935- 6 5.03470- 4 3.20000+ 1 3.20000+ 1 1.38681- 4 4.91050- 4 3.20000+ 1 3.30000+ 1 1.48846- 2 4.98730- 4 3.20000+ 1 3.50000+ 1 2.79914- 5 5.89490- 4 3.20000+ 1 3.60000+ 1 1.06883- 4 5.90330- 4 3.20000+ 1 4.10000+ 1 7.67630- 5 5.47120- 4 3.20000+ 1 4.30000+ 1 4.87722- 5 5.64520- 4 3.20000+ 1 4.40000+ 1 2.09094- 4 5.73310- 4 3.20000+ 1 4.60000+ 1 1.27232- 6 5.92420- 4 3.20000+ 1 4.70000+ 1 6.31933- 5 5.93000- 4 3.20000+ 1 5.80000+ 1 6.78575- 6 5.91460- 4 3.30000+ 1 3.30000+ 1 1.66690- 2 5.06410- 4 3.30000+ 1 3.50000+ 1 1.16692- 3 5.97170- 4 3.30000+ 1 3.60000+ 1 1.38056- 3 5.98010- 4 3.30000+ 1 4.10000+ 1 1.89079- 3 5.54800- 4 3.30000+ 1 4.30000+ 1 1.75183- 3 5.72200- 4 3.30000+ 1 4.40000+ 1 2.33555- 3 5.80990- 4 3.30000+ 1 4.60000+ 1 9.14407- 5 6.00100- 4 3.30000+ 1 4.70000+ 1 1.64079- 4 6.00680- 4 3.30000+ 1 5.80000+ 1 1.94842- 4 5.99140- 4 3.50000+ 1 3.60000+ 1 3.81719- 6 6.88770- 4 3.50000+ 1 4.10000+ 1 1.18755- 5 6.45560- 4 3.50000+ 1 4.30000+ 1 4.24131- 6 6.62960- 4 3.50000+ 1 4.40000+ 1 8.05834- 6 6.71750- 4 3.50000+ 1 4.70000+ 1 4.66543- 6 6.91440- 4 3.50000+ 1 5.80000+ 1 8.48246- 7 6.89900- 4 3.60000+ 1 3.60000+ 1 4.24131- 7 6.89610- 4 3.60000+ 1 4.10000+ 1 2.20551- 5 6.46400- 4 3.60000+ 1 4.30000+ 1 9.33071- 6 6.63800- 4 3.60000+ 1 4.40000+ 1 1.35727- 5 6.72590- 4 3.60000+ 1 4.60000+ 1 4.24131- 7 6.91700- 4 3.60000+ 1 4.70000+ 1 5.93779- 6 6.92280- 4 3.60000+ 1 5.80000+ 1 2.12051- 6 6.90740- 4 4.10000+ 1 4.10000+ 1 9.19439- 6 6.03190- 4 4.10000+ 1 4.30000+ 1 1.18757- 5 6.20590- 4 4.10000+ 1 4.40000+ 1 1.30242- 5 6.29380- 4 4.10000+ 1 4.60000+ 1 3.83087- 7 6.48490- 4 4.10000+ 1 4.70000+ 1 6.89533- 6 6.49070- 4 4.10000+ 1 5.80000+ 1 1.53231- 6 6.47530- 4 4.30000+ 1 4.30000+ 1 1.85501- 6 6.37990- 4 4.30000+ 1 4.40000+ 1 1.48407- 5 6.46780- 4 4.30000+ 1 4.70000+ 1 6.67828- 6 6.66470- 4 4.30000+ 1 5.80000+ 1 1.11305- 6 6.64930- 4 4.40000+ 1 4.40000+ 1 6.78516- 6 6.55570- 4 4.40000+ 1 4.60000+ 1 7.82873- 7 6.74680- 4 4.40000+ 1 4.70000+ 1 6.00212- 6 6.75260- 4 4.40000+ 1 5.80000+ 1 7.82873- 7 6.73720- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.17953- 5 2.71550- 4 3.30000+ 1 3.97049- 6 2.79230- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 3.16696- 2 2.95000- 6 2.50000+ 1 3.60000+ 1 1.46925- 3 3.79000- 6 2.50000+ 1 4.60000+ 1 1.34054- 4 5.88000- 6 2.50000+ 1 4.70000+ 1 1.36207- 4 6.46000- 6 2.50000+ 1 5.80000+ 1 1.87678- 4 4.92000- 6 2.70000+ 1 3.50000+ 1 3.11728- 2 6.48200- 5 2.70000+ 1 3.60000+ 1 3.38782- 3 6.56600- 5 2.70000+ 1 4.10000+ 1 6.05601- 3 2.24500- 5 2.70000+ 1 4.30000+ 1 4.39310- 3 3.98500- 5 2.70000+ 1 4.40000+ 1 9.17100- 3 4.86400- 5 2.70000+ 1 4.60000+ 1 1.24099- 4 6.77500- 5 2.70000+ 1 4.70000+ 1 2.23386- 4 6.83300- 5 2.70000+ 1 5.80000+ 1 4.09523- 4 6.67900- 5 2.90000+ 1 3.20000+ 1 4.76323- 2 2.56600- 5 2.90000+ 1 3.30000+ 1 6.27879- 2 3.33400- 5 2.90000+ 1 3.50000+ 1 3.44496- 2 1.24100- 4 2.90000+ 1 3.60000+ 1 8.32526- 3 1.24940- 4 2.90000+ 1 4.10000+ 1 2.82996- 2 8.17300- 5 2.90000+ 1 4.30000+ 1 1.51297- 2 9.91300- 5 2.90000+ 1 4.40000+ 1 2.67775- 2 1.07920- 4 2.90000+ 1 4.60000+ 1 1.17410- 3 1.27030- 4 2.90000+ 1 4.70000+ 1 1.37426- 3 1.27610- 4 2.90000+ 1 5.80000+ 1 2.78863- 3 1.26070- 4 3.00000+ 1 3.20000+ 1 1.37294- 1 7.74800- 5 3.00000+ 1 3.30000+ 1 1.08389- 1 8.51600- 5 3.00000+ 1 3.50000+ 1 4.96380- 2 1.75920- 4 3.00000+ 1 3.60000+ 1 2.94117- 3 1.76760- 4 3.00000+ 1 4.10000+ 1 1.22239- 2 1.33550- 4 3.00000+ 1 4.30000+ 1 9.09616- 3 1.50950- 4 3.00000+ 1 4.40000+ 1 6.29187- 3 1.59740- 4 3.00000+ 1 4.60000+ 1 6.82546- 4 1.78850- 4 3.00000+ 1 4.70000+ 1 5.08782- 4 1.79430- 4 3.00000+ 1 5.80000+ 1 1.04243- 3 1.77890- 4 3.20000+ 1 3.20000+ 1 4.62400- 2 1.65470- 4 3.20000+ 1 3.30000+ 1 7.43833- 2 1.73150- 4 3.20000+ 1 3.50000+ 1 4.65869- 2 2.63910- 4 3.20000+ 1 3.60000+ 1 1.03249- 2 2.64750- 4 3.20000+ 1 4.10000+ 1 5.12532- 3 2.21540- 4 3.20000+ 1 4.30000+ 1 2.09229- 2 2.38940- 4 3.20000+ 1 4.40000+ 1 1.44821- 2 2.47730- 4 3.20000+ 1 4.60000+ 1 3.47475- 4 2.66840- 4 3.20000+ 1 4.70000+ 1 3.47475- 4 2.67420- 4 3.20000+ 1 5.80000+ 1 5.58444- 4 2.65880- 4 3.30000+ 1 3.30000+ 1 1.31546- 2 1.80830- 4 3.30000+ 1 3.50000+ 1 6.36276- 2 2.71590- 4 3.30000+ 1 3.60000+ 1 2.22147- 3 2.72430- 4 3.30000+ 1 4.10000+ 1 2.99093- 3 2.29220- 4 3.30000+ 1 4.30000+ 1 1.61567- 2 2.46620- 4 3.30000+ 1 4.40000+ 1 7.55760- 3 2.55410- 4 3.30000+ 1 4.60000+ 1 2.10976- 4 2.74520- 4 3.30000+ 1 4.70000+ 1 1.11693- 4 2.75100- 4 3.30000+ 1 5.80000+ 1 2.97848- 4 2.73560- 4 3.50000+ 1 3.60000+ 1 5.05097- 3 3.63190- 4 3.50000+ 1 4.10000+ 1 5.69626- 3 3.19980- 4 3.50000+ 1 4.30000+ 1 4.87712- 3 3.37380- 4 3.50000+ 1 4.40000+ 1 7.17300- 3 3.46170- 4 3.50000+ 1 4.60000+ 1 2.48189- 4 3.65280- 4 3.50000+ 1 4.70000+ 1 3.35072- 4 3.65860- 4 3.50000+ 1 5.80000+ 1 5.83260- 4 3.64320- 4 3.60000+ 1 3.60000+ 1 1.24098- 5 3.64030- 4 3.60000+ 1 4.10000+ 1 1.61322- 4 3.20820- 4 3.60000+ 1 4.30000+ 1 5.08780- 4 3.38220- 4 3.60000+ 1 4.40000+ 1 2.23385- 4 3.47010- 4 3.60000+ 1 4.60000+ 1 2.48189- 5 3.66120- 4 3.60000+ 1 4.70000+ 1 1.24098- 5 3.66700- 4 3.60000+ 1 5.80000+ 1 1.24098- 5 3.65160- 4 4.10000+ 1 4.10000+ 1 9.27083- 5 2.77610- 4 4.10000+ 1 4.30000+ 1 1.16547- 3 2.95010- 4 4.10000+ 1 4.40000+ 1 8.60874- 4 3.03800- 4 4.10000+ 1 4.60000+ 1 1.32444- 5 3.22910- 4 4.10000+ 1 4.70000+ 1 1.32444- 5 3.23490- 4 4.10000+ 1 5.80000+ 1 1.32444- 5 3.21950- 4 4.30000+ 1 4.30000+ 1 4.29087- 4 3.12410- 4 4.30000+ 1 4.40000+ 1 7.77724- 4 3.21200- 4 4.30000+ 1 4.60000+ 1 8.04526- 5 3.40310- 4 4.30000+ 1 4.70000+ 1 6.70445- 5 3.40890- 4 4.30000+ 1 5.80000+ 1 1.20684- 4 3.39350- 4 4.40000+ 1 4.40000+ 1 1.75497- 4 3.29990- 4 4.40000+ 1 4.60000+ 1 5.84970- 5 3.49100- 4 4.40000+ 1 4.70000+ 1 2.92485- 5 3.49680- 4 4.40000+ 1 5.80000+ 1 8.77454- 5 3.48140- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 6.12499- 5 2.68640- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 2.11931- 3 5.42300- 5 2.70000+ 1 3.60000+ 1 3.17519- 2 5.50700- 5 2.70000+ 1 4.10000+ 1 4.12154- 3 1.18600- 5 2.70000+ 1 4.30000+ 1 4.51168- 3 2.92600- 5 2.70000+ 1 4.40000+ 1 7.19031- 3 3.80500- 5 2.70000+ 1 4.60000+ 1 2.21036- 4 5.71600- 5 2.70000+ 1 4.70000+ 1 2.34025- 4 5.77400- 5 2.70000+ 1 5.80000+ 1 5.59103- 4 5.62000- 5 2.90000+ 1 3.20000+ 1 1.08856- 2 1.50700- 5 2.90000+ 1 3.30000+ 1 2.12814- 2 2.27500- 5 2.90000+ 1 3.50000+ 1 3.70577- 4 1.13510- 4 2.90000+ 1 3.60000+ 1 2.51677- 2 1.14350- 4 2.90000+ 1 4.10000+ 1 4.16117- 3 7.11400- 5 2.90000+ 1 4.30000+ 1 1.05881- 3 8.85400- 5 2.90000+ 1 4.40000+ 1 3.07055- 3 9.73300- 5 2.90000+ 1 4.60000+ 1 1.48229- 4 1.16440- 4 2.90000+ 1 4.70000+ 1 1.58826- 4 1.17020- 4 2.90000+ 1 5.80000+ 1 4.87055- 4 1.15480- 4 3.00000+ 1 3.20000+ 1 1.44146- 1 6.68900- 5 3.00000+ 1 3.30000+ 1 3.43788- 1 7.45700- 5 3.00000+ 1 3.50000+ 1 7.27606- 3 1.65330- 4 3.00000+ 1 3.60000+ 1 4.72568- 2 1.66170- 4 3.00000+ 1 4.10000+ 1 2.01937- 2 1.22960- 4 3.00000+ 1 4.30000+ 1 7.14805- 3 1.40360- 4 3.00000+ 1 4.40000+ 1 2.14648- 2 1.49150- 4 3.00000+ 1 4.60000+ 1 8.76154- 4 1.68260- 4 3.00000+ 1 4.70000+ 1 1.69886- 3 1.68840- 4 3.00000+ 1 5.80000+ 1 1.89117- 3 1.67300- 4 3.20000+ 1 3.20000+ 1 5.47442- 3 1.54880- 4 3.20000+ 1 3.30000+ 1 5.63837- 2 1.62560- 4 3.20000+ 1 3.50000+ 1 1.20348- 3 2.53320- 4 3.20000+ 1 3.60000+ 1 3.85019- 2 2.54160- 4 3.20000+ 1 4.10000+ 1 2.13007- 3 2.10950- 4 3.20000+ 1 4.30000+ 1 2.13007- 3 2.28350- 4 3.20000+ 1 4.40000+ 1 1.14701- 2 2.37140- 4 3.20000+ 1 4.60000+ 1 4.26023- 5 2.56250- 4 3.20000+ 1 4.70000+ 1 1.70407- 4 2.56830- 4 3.20000+ 1 5.80000+ 1 2.13007- 4 2.55290- 4 3.30000+ 1 3.30000+ 1 4.59925- 2 1.70240- 4 3.30000+ 1 3.50000+ 1 7.68679- 3 2.61000- 4 3.30000+ 1 3.60000+ 1 5.57236- 2 2.61840- 4 3.30000+ 1 4.10000+ 1 4.89146- 3 2.18630- 4 3.30000+ 1 4.30000+ 1 5.41056- 3 2.36030- 4 3.30000+ 1 4.40000+ 1 2.47014- 2 2.44820- 4 3.30000+ 1 4.60000+ 1 2.96463- 4 2.63930- 4 3.30000+ 1 4.70000+ 1 3.28224- 4 2.64510- 4 3.30000+ 1 5.80000+ 1 5.18798- 4 2.62970- 4 3.50000+ 1 3.60000+ 1 3.42000- 3 3.52600- 4 3.50000+ 1 4.10000+ 1 1.27056- 4 3.09390- 4 3.50000+ 1 4.30000+ 1 3.17645- 5 3.26790- 4 3.50000+ 1 4.40000+ 1 5.18810- 4 3.35580- 4 3.50000+ 1 4.70000+ 1 2.11753- 5 3.55270- 4 3.50000+ 1 5.80000+ 1 1.05882- 5 3.53730- 4 3.60000+ 1 3.60000+ 1 4.97628- 4 3.53440- 4 3.60000+ 1 4.10000+ 1 4.80688- 3 3.10230- 4 3.60000+ 1 4.30000+ 1 4.00229- 3 3.27630- 4 3.60000+ 1 4.40000+ 1 6.32093- 3 3.36420- 4 3.60000+ 1 4.60000+ 1 2.22342- 4 3.55530- 4 3.60000+ 1 4.70000+ 1 2.75285- 4 3.56110- 4 3.60000+ 1 5.80000+ 1 4.97628- 4 3.54570- 4 4.10000+ 1 4.10000+ 1 6.35276- 5 2.67020- 4 4.10000+ 1 4.30000+ 1 3.91769- 4 2.84420- 4 4.10000+ 1 4.40000+ 1 1.05884- 3 2.93210- 4 4.10000+ 1 4.60000+ 1 1.05884- 5 3.12320- 4 4.10000+ 1 4.70000+ 1 1.05884- 5 3.12900- 4 4.10000+ 1 5.80000+ 1 1.05884- 5 3.11360- 4 4.30000+ 1 4.30000+ 1 4.23514- 5 3.01820- 4 4.30000+ 1 4.40000+ 1 3.28230- 4 3.10610- 4 4.30000+ 1 4.60000+ 1 1.05882- 5 3.29720- 4 4.30000+ 1 4.70000+ 1 1.05882- 5 3.30300- 4 4.30000+ 1 5.80000+ 1 4.23514- 5 3.28760- 4 4.40000+ 1 4.40000+ 1 4.76467- 4 3.19400- 4 4.40000+ 1 4.60000+ 1 4.23513- 5 3.38510- 4 4.40000+ 1 4.70000+ 1 8.47065- 5 3.39090- 4 4.40000+ 1 5.80000+ 1 9.52937- 5 3.37550- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.41091- 6 5.92800- 5 3.00000+ 1 1.91281- 5 1.11100- 4 4.30000+ 1 2.68077- 6 2.72560- 4 4.40000+ 1 4.06136- 8 2.81350- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 1.68598- 2 5.16400- 5 2.90000+ 1 3.60000+ 1 2.74465- 2 5.24800- 5 2.90000+ 1 4.10000+ 1 2.90316- 2 9.27000- 6 2.90000+ 1 4.30000+ 1 1.89697- 2 2.66700- 5 2.90000+ 1 4.40000+ 1 3.68866- 2 3.54600- 5 2.90000+ 1 4.60000+ 1 8.22997- 4 5.45700- 5 2.90000+ 1 4.70000+ 1 1.74442- 3 5.51500- 5 2.90000+ 1 5.80000+ 1 2.89885- 3 5.36100- 5 3.00000+ 1 3.20000+ 1 2.71844- 1 5.02000- 6 3.00000+ 1 3.30000+ 1 2.49396- 1 1.27000- 5 3.00000+ 1 3.50000+ 1 3.09239- 2 1.03460- 4 3.00000+ 1 3.60000+ 1 2.99873- 2 1.04300- 4 3.00000+ 1 4.10000+ 1 2.49756- 2 6.10900- 5 3.00000+ 1 4.30000+ 1 2.46910- 2 7.84900- 5 3.00000+ 1 4.40000+ 1 2.34787- 2 8.72800- 5 3.00000+ 1 4.60000+ 1 1.28722- 3 1.06390- 4 3.00000+ 1 4.70000+ 1 1.21562- 3 1.06970- 4 3.00000+ 1 5.80000+ 1 2.57255- 3 1.05430- 4 3.20000+ 1 3.20000+ 1 1.85864- 3 9.30100- 5 3.20000+ 1 3.30000+ 1 1.28528- 1 1.00690- 4 3.20000+ 1 3.50000+ 1 8.45324- 4 1.91450- 4 3.20000+ 1 3.60000+ 1 2.78380- 3 1.92290- 4 3.20000+ 1 4.10000+ 1 7.34693- 3 1.49080- 4 3.20000+ 1 4.30000+ 1 1.32311- 3 1.66480- 4 3.20000+ 1 4.40000+ 1 6.36399- 3 1.75270- 4 3.20000+ 1 4.60000+ 1 3.17049- 5 1.94380- 4 3.20000+ 1 4.70000+ 1 3.12357- 4 1.94960- 4 3.20000+ 1 5.80000+ 1 6.07064- 4 1.93420- 4 3.30000+ 1 3.30000+ 1 2.75975- 2 1.08370- 4 3.30000+ 1 3.50000+ 1 2.68823- 3 1.99130- 4 3.30000+ 1 3.60000+ 1 1.85565- 3 1.99970- 4 3.30000+ 1 4.10000+ 1 8.76452- 3 1.56760- 4 3.30000+ 1 4.30000+ 1 3.89774- 3 1.74160- 4 3.30000+ 1 4.40000+ 1 3.53120- 3 1.82950- 4 3.30000+ 1 4.60000+ 1 2.64476- 4 2.02060- 4 3.30000+ 1 4.70000+ 1 1.46955- 4 2.02640- 4 3.30000+ 1 5.80000+ 1 7.21878- 4 2.01100- 4 3.50000+ 1 3.60000+ 1 6.73509- 5 2.90730- 4 3.50000+ 1 4.10000+ 1 5.52775- 4 2.47520- 4 3.50000+ 1 4.30000+ 1 4.42765- 5 2.64920- 4 3.50000+ 1 4.40000+ 1 1.95077- 4 2.73710- 4 3.50000+ 1 4.60000+ 1 2.12032- 6 2.92820- 4 3.50000+ 1 4.70000+ 1 6.61048- 6 2.93400- 4 3.50000+ 1 5.80000+ 1 4.12829- 5 2.91860- 4 3.60000+ 1 3.60000+ 1 1.87088- 6 2.91570- 4 3.60000+ 1 4.10000+ 1 6.87948- 4 2.48360- 4 3.60000+ 1 4.30000+ 1 1.20484- 4 2.65760- 4 3.60000+ 1 4.40000+ 1 1.15242- 4 2.74550- 4 3.60000+ 1 4.60000+ 1 5.48791- 6 2.93660- 4 3.60000+ 1 4.70000+ 1 4.86412- 6 2.94240- 4 3.60000+ 1 5.80000+ 1 5.13862- 5 2.92700- 4 4.10000+ 1 4.10000+ 1 6.38064- 4 2.05150- 4 4.10000+ 1 4.30000+ 1 7.52995- 4 2.22550- 4 4.10000+ 1 4.40000+ 1 1.12979- 3 2.31340- 4 4.10000+ 1 4.60000+ 1 3.98616- 5 2.50450- 4 4.10000+ 1 4.70000+ 1 5.09259- 5 2.51030- 4 4.10000+ 1 5.80000+ 1 1.14177- 4 2.49490- 4 4.30000+ 1 4.30000+ 1 6.69760- 5 2.39950- 4 4.30000+ 1 4.40000+ 1 4.00609- 4 2.48740- 4 4.30000+ 1 4.60000+ 1 4.11584- 6 2.67850- 4 4.30000+ 1 4.70000+ 1 1.19736- 5 2.68430- 4 4.30000+ 1 5.80000+ 1 5.51271- 5 2.66890- 4 4.40000+ 1 4.40000+ 1 1.93698- 4 2.57530- 4 4.40000+ 1 4.60000+ 1 1.93328- 5 2.76640- 4 4.40000+ 1 4.70000+ 1 1.34703- 5 2.77220- 4 4.40000+ 1 5.80000+ 1 8.74302- 5 2.75680- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.38259- 5 1.39810- 4 4.10000+ 1 3.94729- 6 1.95880- 4 5.80000+ 1 5.10148- 7 2.40220- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 7.01962- 3 4.41800- 5 3.00000+ 1 3.60000+ 1 4.51022- 3 4.50200- 5 3.00000+ 1 4.10000+ 1 1.85226- 2 1.81000- 6 3.00000+ 1 4.30000+ 1 1.09403- 2 1.92100- 5 3.00000+ 1 4.40000+ 1 8.70916- 3 2.80000- 5 3.00000+ 1 4.60000+ 1 5.36957- 4 4.71100- 5 3.00000+ 1 4.70000+ 1 6.09273- 4 4.76900- 5 3.00000+ 1 5.80000+ 1 1.32570- 3 4.61500- 5 3.20000+ 1 3.20000+ 1 1.24596- 1 3.37300- 5 3.20000+ 1 3.30000+ 1 5.32448- 1 4.14100- 5 3.20000+ 1 3.50000+ 1 2.29216- 2 1.32170- 4 3.20000+ 1 3.60000+ 1 5.05095- 2 1.33010- 4 3.20000+ 1 4.10000+ 1 4.47615- 2 8.98000- 5 3.20000+ 1 4.30000+ 1 3.00120- 2 1.07200- 4 3.20000+ 1 4.40000+ 1 4.89475- 2 1.15990- 4 3.20000+ 1 4.60000+ 1 1.12665- 3 1.35100- 4 3.20000+ 1 4.70000+ 1 2.42192- 3 1.35680- 4 3.20000+ 1 5.80000+ 1 4.69271- 3 1.34140- 4 3.30000+ 1 3.30000+ 1 2.19292- 2 4.90900- 5 3.30000+ 1 3.50000+ 1 1.26510- 2 1.39850- 4 3.30000+ 1 3.60000+ 1 2.99715- 3 1.40690- 4 3.30000+ 1 4.10000+ 1 4.21732- 3 9.74800- 5 3.30000+ 1 4.30000+ 1 2.41226- 2 1.14880- 4 3.30000+ 1 4.40000+ 1 5.53495- 3 1.23670- 4 3.30000+ 1 4.60000+ 1 6.23430- 4 1.42780- 4 3.30000+ 1 4.70000+ 1 1.67549- 4 1.43360- 4 3.30000+ 1 5.80000+ 1 3.62654- 4 1.41820- 4 3.50000+ 1 3.60000+ 1 6.28315- 4 2.31450- 4 3.50000+ 1 4.10000+ 1 5.71818- 4 1.88240- 4 3.50000+ 1 4.30000+ 1 1.21704- 3 2.05640- 4 3.50000+ 1 4.40000+ 1 7.03565- 4 2.14430- 4 3.50000+ 1 4.60000+ 1 1.43469- 5 2.33540- 4 3.50000+ 1 4.70000+ 1 3.54273- 5 2.34120- 4 3.50000+ 1 5.80000+ 1 6.17786- 5 2.32580- 4 3.60000+ 1 3.60000+ 1 4.97732- 6 2.32290- 4 3.60000+ 1 4.10000+ 1 1.99677- 4 1.89080- 4 3.60000+ 1 4.30000+ 1 1.94526- 3 2.06480- 4 3.60000+ 1 4.40000+ 1 2.11102- 4 2.15270- 4 3.60000+ 1 4.60000+ 1 2.72292- 5 2.34380- 4 3.60000+ 1 4.70000+ 1 5.85570- 6 2.34960- 4 3.60000+ 1 5.80000+ 1 1.66894- 5 2.33420- 4 4.10000+ 1 4.10000+ 1 1.03186- 4 1.45870- 4 4.10000+ 1 4.30000+ 1 2.22043- 3 1.63270- 4 4.10000+ 1 4.40000+ 1 3.71234- 4 1.72060- 4 4.10000+ 1 4.60000+ 1 5.29475- 5 1.91170- 4 4.10000+ 1 4.70000+ 1 1.65466- 5 1.91750- 4 4.10000+ 1 5.80000+ 1 1.74485- 5 1.90210- 4 4.30000+ 1 4.30000+ 1 1.13126- 3 1.80670- 4 4.30000+ 1 4.40000+ 1 2.60676- 3 1.89460- 4 4.30000+ 1 4.60000+ 1 7.81405- 5 2.08570- 4 4.30000+ 1 4.70000+ 1 1.19034- 4 2.09150- 4 4.30000+ 1 5.80000+ 1 2.07594- 4 2.07610- 4 4.40000+ 1 4.40000+ 1 1.03022- 4 1.98250- 4 4.40000+ 1 4.60000+ 1 4.50190- 5 2.17360- 4 4.40000+ 1 4.70000+ 1 8.44108- 6 2.17940- 4 4.40000+ 1 5.80000+ 1 2.07777- 5 2.16400- 4 1 91000 0 7 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.58691- 7 8.79900- 5 3.30000+ 1 5.36031- 6 9.56700- 5 4.10000+ 1 2.12600- 6 1.44060- 4 5.80000+ 1 2.55820- 7 1.88400- 4 1 91000 0 9 2.31000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 1.37934- 2 8.03500- 5 3.20000+ 1 3.60000+ 1 5.02272- 2 8.11900- 5 3.20000+ 1 4.10000+ 1 2.75824- 2 3.79800- 5 3.20000+ 1 4.30000+ 1 1.95136- 2 5.53800- 5 3.20000+ 1 4.40000+ 1 5.67065- 2 6.41700- 5 3.20000+ 1 4.60000+ 1 6.73835- 4 8.32800- 5 3.20000+ 1 4.70000+ 1 2.12642- 3 8.38600- 5 3.20000+ 1 5.80000+ 1 2.33681- 3 8.23200- 5 3.30000+ 1 3.30000+ 1 2.81725- 1 0.00000+ 0 3.30000+ 1 3.50000+ 1 1.16855- 1 8.80300- 5 3.30000+ 1 3.60000+ 1 1.03358- 1 8.88700- 5 3.30000+ 1 4.10000+ 1 9.20001- 2 4.56600- 5 3.30000+ 1 4.30000+ 1 9.26440- 2 6.30600- 5 3.30000+ 1 4.40000+ 1 1.04407- 1 7.18500- 5 3.30000+ 1 4.60000+ 1 4.57335- 3 9.09600- 5 3.30000+ 1 4.70000+ 1 4.29016- 3 9.15400- 5 3.30000+ 1 5.80000+ 1 9.65860- 3 9.00000- 5 3.50000+ 1 3.60000+ 1 9.88673- 4 1.79630- 4 3.50000+ 1 4.10000+ 1 1.10446- 3 1.36420- 4 3.50000+ 1 4.30000+ 1 2.81759- 4 1.53820- 4 3.50000+ 1 4.40000+ 1 2.67765- 3 1.62610- 4 3.50000+ 1 4.60000+ 1 7.38405- 6 1.81720- 4 3.50000+ 1 4.70000+ 1 6.91770- 5 1.82300- 4 3.50000+ 1 5.80000+ 1 5.12991- 5 1.80760- 4 3.60000+ 1 3.60000+ 1 5.59621- 5 1.80470- 4 3.60000+ 1 4.10000+ 1 2.06364- 3 1.37260- 4 3.60000+ 1 4.30000+ 1 1.45623- 3 1.54660- 4 3.60000+ 1 4.40000+ 1 3.19175- 3 1.63450- 4 3.60000+ 1 4.60000+ 1 6.25694- 5 1.82560- 4 3.60000+ 1 4.70000+ 1 6.29576- 5 1.83140- 4 3.60000+ 1 5.80000+ 1 1.30190- 4 1.81600- 4 4.10000+ 1 4.10000+ 1 1.95847- 4 9.40500- 5 4.10000+ 1 4.30000+ 1 3.41120- 4 1.11450- 4 4.10000+ 1 4.40000+ 1 1.58896- 3 1.20240- 4 4.10000+ 1 4.60000+ 1 2.55072- 5 1.39350- 4 4.10000+ 1 4.70000+ 1 4.13366- 5 1.39930- 4 4.10000+ 1 5.80000+ 1 3.28369- 5 1.38390- 4 4.30000+ 1 4.40000+ 1 1.34353- 3 1.37640- 4 4.30000+ 1 4.60000+ 1 6.77051- 6 1.56750- 4 4.30000+ 1 4.70000+ 1 2.60730- 5 1.57330- 4 4.30000+ 1 5.80000+ 1 1.74301- 5 1.55790- 4 4.40000+ 1 4.40000+ 1 1.41259- 3 1.46430- 4 4.40000+ 1 4.60000+ 1 6.22065- 5 1.65540- 4 4.40000+ 1 4.70000+ 1 7.88893- 5 1.66120- 4 4.40000+ 1 5.80000+ 1 1.43917- 4 1.64580- 4 1 92000 0 0 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 1.29000+ 0 3.60000+ 1 1.71000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 92000 0 0 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16110- 1 3.00000+ 0 2.17680- 2 5.00000+ 0 2.10440- 2 6.00000+ 0 1.71820- 2 8.00000+ 0 5.52130- 3 1.00000+ 1 5.18150- 3 1.10000+ 1 4.28960- 3 1.30000+ 1 3.73680- 3 1.40000+ 1 3.55520- 3 1.60000+ 1 1.41990- 3 1.80000+ 1 1.26420- 3 1.90000+ 1 1.03050- 3 2.10000+ 1 7.78180- 4 2.20000+ 1 7.35140- 4 2.40000+ 1 4.02090- 4 2.50000+ 1 3.90750- 4 2.70000+ 1 3.20650- 4 2.90000+ 1 2.59380- 4 3.00000+ 1 2.03390- 4 3.20000+ 1 1.12350- 4 3.30000+ 1 1.04020- 4 3.50000+ 1 8.91000- 6 3.60000+ 1 7.95000- 6 4.10000+ 1 5.22300- 5 4.30000+ 1 3.40900- 5 4.40000+ 1 2.45700- 5 4.60000+ 1 4.74000- 6 4.70000+ 1 4.13000- 6 5.80000+ 1 5.78000- 6 1 92000 0 0 2.38029+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.74690- 1 3.00000+ 0 4.36400- 2 5.00000+ 0 4.36760- 2 6.00000+ 0 2.76880- 2 8.00000+ 0 1.39860- 2 1.00000+ 1 1.38510- 2 1.10000+ 1 9.80070- 3 1.30000+ 1 9.63370- 3 1.40000+ 1 8.87860- 3 1.60000+ 1 4.82190- 3 1.80000+ 1 4.66510- 3 1.90000+ 1 3.41770- 3 2.10000+ 1 3.17370- 3 2.20000+ 1 2.94440- 3 2.40000+ 1 2.58200- 3 2.50000+ 1 2.50390- 3 2.70000+ 1 1.50460- 3 2.90000+ 1 1.37980- 3 3.00000+ 1 1.01900- 3 3.20000+ 1 8.08590- 4 3.30000+ 1 7.48090- 4 3.50000+ 1 3.50550- 4 3.60000+ 1 3.33840- 4 4.10000+ 1 3.64300- 4 4.30000+ 1 2.91100- 4 4.40000+ 1 2.02180- 4 4.60000+ 1 8.18300- 5 4.70000+ 1 7.03600- 5 5.80000+ 1 4.53500- 5 1 92000 0 0 2.38029+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.21730-11 3.00000+ 0 2.98500-10 5.00000+ 0 2.41310-10 6.00000+ 0 2.95370-10 8.00000+ 0 7.76180-10 1.00000+ 1 7.28300-10 1.10000+ 1 8.25220-10 1.30000+ 1 7.10920-10 1.40000+ 1 7.39490-10 1.60000+ 1 1.68480- 9 1.80000+ 1 1.67360- 9 1.90000+ 1 1.86440- 9 2.10000+ 1 1.84390- 9 2.20000+ 1 1.90070- 9 2.40000+ 1 1.83660- 9 2.50000+ 1 1.86440- 9 2.70000+ 1 3.50170- 9 2.90000+ 1 3.63530- 9 3.00000+ 1 4.04690- 9 3.20000+ 1 4.51420- 9 3.30000+ 1 4.65710- 9 3.50000+ 1 7.08600- 9 3.60000+ 1 7.27140- 9 4.10000+ 1 7.65750- 9 4.30000+ 1 8.51480- 9 4.40000+ 1 9.71960- 9 4.60000+ 1 1.53770- 8 4.70000+ 1 1.65240- 8 5.80000+ 1 2.12620- 8 1 92000 0 0 2.38029+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.16290- 5 3.00000+ 0 2.44340- 6 5.00000+ 0 4.28730- 6 6.00000+ 0 3.58450- 6 8.00000+ 0 1.10430- 7 1.00000+ 1 1.21060- 7 1.10000+ 1 1.35540- 7 1.30000+ 1 1.76960- 7 1.40000+ 1 1.62960- 7 1.60000+ 1 6.06550- 9 1.80000+ 1 7.70030- 9 1.90000+ 1 5.29300- 9 2.10000+ 1 3.57270- 9 2.20000+ 1 2.73110- 9 2.40000+ 1 1.26360-10 2.50000+ 1 1.14390-10 2.70000+ 1 4.19470-10 2.90000+ 1 8.35230-10 3.00000+ 1 3.99340-10 1 92000 0 0 2.38029+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.83560- 6 3.00000+ 0 1.34460- 5 5.00000+ 0 5.21630- 6 6.00000+ 0 4.38660- 6 8.00000+ 0 1.88050- 5 1.00000+ 1 1.49020- 5 1.10000+ 1 1.16220- 5 1.30000+ 1 3.36860- 6 1.40000+ 1 3.33800- 6 1.60000+ 1 1.40560- 5 1.80000+ 1 1.53250- 5 1.90000+ 1 9.50180- 6 2.10000+ 1 6.21330- 6 2.20000+ 1 6.54790- 6 2.40000+ 1 3.68440- 7 2.50000+ 1 3.07060- 7 2.70000+ 1 2.25110- 5 2.90000+ 1 9.59470- 6 3.00000+ 1 7.00840- 6 1 92000 0 0 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.97658- 4 3.00000+ 0 1.13366- 3 5.00000+ 0 8.42969- 4 6.00000+ 0 7.88082- 4 8.00000+ 0 8.45104- 4 1.00000+ 1 7.54252- 4 1.10000+ 1 6.64182- 4 1.30000+ 1 5.08520- 4 1.40000+ 1 4.99691- 4 1.60000+ 1 4.45870- 4 1.80000+ 1 4.33432- 4 1.90000+ 1 4.07809- 4 2.10000+ 1 3.23668- 4 2.20000+ 1 3.20670- 4 2.40000+ 1 1.96490- 4 2.50000+ 1 1.98204- 4 2.70000+ 1 2.12335- 4 2.90000+ 1 1.86851- 4 3.00000+ 1 1.34421- 4 3.20000+ 1 1.12350- 4 3.30000+ 1 1.04020- 4 3.50000+ 1 8.91000- 6 3.60000+ 1 7.95000- 6 4.10000+ 1 5.22300- 5 4.30000+ 1 3.40900- 5 4.40000+ 1 2.45700- 5 4.60000+ 1 4.74000- 6 4.70000+ 1 4.13000- 6 5.80000+ 1 5.78000- 6 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.43829+ 0 3.00000+ 0 5.81431- 1 5.00000+ 0 6.49784- 1 6.00000+ 0 5.26629- 1 8.00000+ 0 5.64400- 2 1.00000+ 1 5.73485- 2 1.10000+ 1 5.23995- 2 1.30000+ 1 6.04883- 2 1.40000+ 1 5.47543- 2 1.60000+ 1 1.86977- 3 1.80000+ 1 2.00765- 3 1.90000+ 1 1.29698- 3 2.10000+ 1 7.98477- 4 2.20000+ 1 6.86599- 4 2.40000+ 1 9.93862- 5 2.50000+ 1 8.60627- 5 2.70000+ 1 3.77708- 5 2.90000+ 1 4.58926- 5 3.00000+ 1 9.72275- 6 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.03931- 1 3.00000+ 0 7.73785- 3 5.00000+ 0 1.01539- 2 6.00000+ 0 6.67726- 3 8.00000+ 0 1.84193- 4 1.00000+ 1 1.88713- 4 1.10000+ 1 1.67088- 4 1.30000+ 1 1.96642- 4 1.40000+ 1 1.70250- 4 1.60000+ 1 1.25013- 6 1.80000+ 1 1.13044- 6 1.90000+ 1 7.21268- 7 2.10000+ 1 3.32722- 7 2.20000+ 1 2.69346- 7 2.40000+ 1 2.64519- 8 2.50000+ 1 2.29780- 8 2.70000+ 1 5.09419- 9 2.90000+ 1 7.07259- 9 3.00000+ 1 1.12513- 9 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.56894+ 0 3.00000+ 0 1.40287+ 1 5.00000+ 0 1.01473+ 1 6.00000+ 0 9.44666+ 0 8.00000+ 0 1.02730+ 1 1.00000+ 1 9.01025+ 0 1.10000+ 1 7.86613+ 0 1.30000+ 1 5.74336+ 0 1.40000+ 1 5.63965+ 0 1.60000+ 1 4.77309+ 0 1.80000+ 1 4.61370+ 0 1.90000+ 1 4.29890+ 0 2.10000+ 1 3.22293+ 0 2.20000+ 1 3.16076+ 0 2.40000+ 1 1.75881+ 0 2.50000+ 1 1.75317+ 0 2.70000+ 1 1.79848+ 0 2.90000+ 1 1.05703+ 0 3.00000+ 1 9.99990- 1 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13814- 2 3.00000+ 0 1.28965- 2 5.00000+ 0 1.00472- 2 6.00000+ 0 9.71665- 3 8.00000+ 0 4.49200- 3 1.00000+ 1 4.23853- 3 1.10000+ 1 3.45833- 3 1.30000+ 1 3.03164- 3 1.40000+ 1 2.88526- 3 1.60000+ 1 9.72780- 4 1.80000+ 1 8.29637- 4 1.90000+ 1 6.21970- 4 2.10000+ 1 4.54179- 4 2.20000+ 1 4.14201- 4 2.40000+ 1 2.05573- 4 2.50000+ 1 1.92523- 4 2.70000+ 1 1.08310- 4 2.90000+ 1 7.25221- 5 3.00000+ 1 6.89675- 5 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.89261- 1 9.50660- 2 6.00000+ 0 4.62811- 1 9.89280- 2 1.00000+ 1 5.33711- 2 1.10928- 1 1.10000+ 1 1.04380- 1 1.11820- 1 1.30000+ 1 1.86730- 3 1.12373- 1 1.40000+ 1 2.13010- 3 1.12555- 1 1.80000+ 1 1.33480- 2 1.14846- 1 1.90000+ 1 2.70001- 2 1.15080- 1 2.10000+ 1 5.49541- 4 1.15332- 1 2.20000+ 1 6.28781- 4 1.15375- 1 2.90000+ 1 3.26591- 3 1.15851- 1 3.00000+ 1 6.47761- 3 1.15907- 1 3.20000+ 1 1.12360- 4 1.15998- 1 3.30000+ 1 1.27580- 4 1.16006- 1 4.30000+ 1 5.82301- 4 1.16076- 1 4.40000+ 1 1.09740- 3 1.16085- 1 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.85315- 3 7.25740- 2 3.00000+ 0 5.00000+ 0 7.04168- 3 7.32980- 2 3.00000+ 0 6.00000+ 0 2.68169- 3 7.71600- 2 3.00000+ 0 8.00000+ 0 1.60179- 3 8.88207- 2 3.00000+ 0 1.00000+ 1 1.54838- 3 8.91605- 2 3.00000+ 0 1.10000+ 1 6.63420- 4 9.00524- 2 3.00000+ 0 1.30000+ 1 5.80910- 5 9.06052- 2 3.00000+ 0 1.40000+ 1 3.65655- 5 9.07868- 2 3.00000+ 0 1.60000+ 1 4.24347- 4 9.29221- 2 3.00000+ 0 1.80000+ 1 4.03588- 4 9.30778- 2 3.00000+ 0 1.90000+ 1 1.74839- 4 9.33115- 2 3.00000+ 0 2.10000+ 1 1.71267- 5 9.35638- 2 3.00000+ 0 2.20000+ 1 1.06369- 5 9.36069- 2 3.00000+ 0 2.40000+ 1 6.33133- 8 9.39399- 2 3.00000+ 0 2.50000+ 1 6.33133- 8 9.39513- 2 3.00000+ 0 2.70000+ 1 1.08047- 4 9.40213- 2 3.00000+ 0 2.90000+ 1 9.66204- 5 9.40826- 2 3.00000+ 0 3.00000+ 1 4.13753- 5 9.41386- 2 3.00000+ 0 3.20000+ 1 3.45072- 6 9.42296- 2 3.00000+ 0 3.30000+ 1 2.12103- 6 9.42380- 2 5.00000+ 0 5.00000+ 0 2.59285- 4 7.40220- 2 5.00000+ 0 6.00000+ 0 4.34446- 3 7.78840- 2 5.00000+ 0 8.00000+ 0 1.29555- 3 8.95447- 2 5.00000+ 0 1.00000+ 1 1.00736- 4 8.98845- 2 5.00000+ 0 1.10000+ 1 9.12578- 4 9.07764- 2 5.00000+ 0 1.30000+ 1 5.83464- 5 9.13292- 2 5.00000+ 0 1.40000+ 1 1.31984- 4 9.15108- 2 5.00000+ 0 1.60000+ 1 3.33761- 4 9.36461- 2 5.00000+ 0 1.80000+ 1 2.55802- 5 9.38018- 2 5.00000+ 0 1.90000+ 1 2.30945- 4 9.40355- 2 5.00000+ 0 2.10000+ 1 1.64304- 5 9.42878- 2 5.00000+ 0 2.20000+ 1 3.74840- 5 9.43309- 2 5.00000+ 0 2.40000+ 1 5.38209- 7 9.46639- 2 5.00000+ 0 2.50000+ 1 7.59803- 7 9.46752- 2 5.00000+ 0 2.70000+ 1 8.44027- 5 9.47453- 2 5.00000+ 0 2.90000+ 1 6.07850- 6 9.48066- 2 5.00000+ 0 3.00000+ 1 5.41341- 5 9.48626- 2 5.00000+ 0 3.20000+ 1 3.26080- 6 9.49536- 2 5.00000+ 0 3.30000+ 1 7.40802- 6 9.49620- 2 6.00000+ 0 6.00000+ 0 1.76151- 3 8.17460- 2 6.00000+ 0 8.00000+ 0 4.37955- 4 9.34067- 2 6.00000+ 0 1.00000+ 1 7.90458- 4 9.37465- 2 6.00000+ 0 1.10000+ 1 7.63303- 4 9.46384- 2 6.00000+ 0 1.30000+ 1 1.42370- 4 9.51912- 2 6.00000+ 0 1.40000+ 1 1.12829- 4 9.53728- 2 6.00000+ 0 1.60000+ 1 1.09634- 4 9.75081- 2 6.00000+ 0 1.80000+ 1 1.97175- 4 9.76638- 2 6.00000+ 0 1.90000+ 1 1.94889- 4 9.78975- 2 6.00000+ 0 2.10000+ 1 4.06514- 5 9.81498- 2 6.00000+ 0 2.20000+ 1 3.21961- 5 9.81929- 2 6.00000+ 0 2.40000+ 1 7.59808- 7 9.85259- 2 6.00000+ 0 2.50000+ 1 8.23120- 7 9.85372- 2 6.00000+ 0 2.70000+ 1 2.75112- 5 9.86073- 2 6.00000+ 0 2.90000+ 1 4.66649- 5 9.86686- 2 6.00000+ 0 3.00000+ 1 4.57781- 5 9.87246- 2 6.00000+ 0 3.20000+ 1 8.13613- 6 9.88156- 2 6.00000+ 0 3.30000+ 1 6.36363- 6 9.88240- 2 8.00000+ 0 8.00000+ 0 1.64590- 4 1.05067- 1 8.00000+ 0 1.00000+ 1 2.86289- 4 1.05407- 1 8.00000+ 0 1.10000+ 1 1.09505- 4 1.06299- 1 8.00000+ 0 1.30000+ 1 9.30761- 6 1.06852- 1 8.00000+ 0 1.40000+ 1 5.50873- 6 1.07034- 1 8.00000+ 0 1.60000+ 1 8.70594- 5 1.09169- 1 8.00000+ 0 1.80000+ 1 7.47137- 5 1.09325- 1 8.00000+ 0 1.90000+ 1 2.89366- 5 1.09558- 1 8.00000+ 0 2.10000+ 1 2.75431- 6 1.09811- 1 8.00000+ 0 2.20000+ 1 1.58293- 6 1.09854- 1 8.00000+ 0 2.70000+ 1 2.21605- 5 1.10268- 1 8.00000+ 0 2.90000+ 1 1.78877- 5 1.10329- 1 8.00000+ 0 3.00000+ 1 6.87003- 6 1.10385- 1 8.00000+ 0 3.20000+ 1 5.69851- 7 1.10476- 1 8.00000+ 0 3.30000+ 1 3.16587- 7 1.10485- 1 1.00000+ 1 1.00000+ 1 9.30757- 6 1.05747- 1 1.00000+ 1 1.10000+ 1 1.71843- 4 1.06639- 1 1.00000+ 1 1.30000+ 1 9.81409- 6 1.07192- 1 1.00000+ 1 1.40000+ 1 1.78877- 5 1.07373- 1 1.00000+ 1 1.60000+ 1 7.37969- 5 1.09509- 1 1.00000+ 1 1.80000+ 1 4.68527- 6 1.09664- 1 1.00000+ 1 1.90000+ 1 4.38152- 5 1.09898- 1 1.00000+ 1 2.10000+ 1 2.78584- 6 1.10150- 1 1.00000+ 1 2.20000+ 1 5.16034- 6 1.10193- 1 1.00000+ 1 2.40000+ 1 6.33152- 8 1.10526- 1 1.00000+ 1 2.50000+ 1 9.49770- 8 1.10538- 1 1.00000+ 1 2.70000+ 1 1.86470- 5 1.10608- 1 1.00000+ 1 2.90000+ 1 1.10807- 6 1.10669- 1 1.00000+ 1 3.00000+ 1 1.02891- 5 1.10725- 1 1.00000+ 1 3.20000+ 1 5.69849- 7 1.10816- 1 1.00000+ 1 3.30000+ 1 1.01307- 6 1.10824- 1 1.10000+ 1 1.10000+ 1 8.38323- 5 1.07531- 1 1.10000+ 1 1.30000+ 1 2.51999- 5 1.08084- 1 1.10000+ 1 1.40000+ 1 1.91854- 5 1.08265- 1 1.10000+ 1 1.60000+ 1 2.74791- 5 1.10400- 1 1.10000+ 1 1.80000+ 1 4.31809- 5 1.10556- 1 1.10000+ 1 1.90000+ 1 4.29303- 5 1.10790- 1 1.10000+ 1 2.10000+ 1 7.24999- 6 1.11042- 1 1.10000+ 1 2.20000+ 1 5.50869- 6 1.11085- 1 1.10000+ 1 2.40000+ 1 1.26631- 7 1.11418- 1 1.10000+ 1 2.50000+ 1 1.26631- 7 1.11430- 1 1.10000+ 1 2.70000+ 1 6.90163- 6 1.11500- 1 1.10000+ 1 2.90000+ 1 1.02257- 5 1.11561- 1 1.10000+ 1 3.00000+ 1 1.00990- 5 1.11617- 1 1.10000+ 1 3.20000+ 1 1.45633- 6 1.11708- 1 1.10000+ 1 3.30000+ 1 1.10806- 6 1.11716- 1 1.30000+ 1 1.30000+ 1 6.33127- 8 1.08636- 1 1.30000+ 1 1.40000+ 1 2.69090- 6 1.08818- 1 1.30000+ 1 1.60000+ 1 2.34266- 6 1.10953- 1 1.30000+ 1 1.80000+ 1 2.43759- 6 1.11109- 1 1.30000+ 1 1.90000+ 1 6.14159- 6 1.11343- 1 1.30000+ 1 2.10000+ 1 3.16574- 8 1.11595- 1 1.30000+ 1 2.20000+ 1 7.28105- 7 1.11638- 1 1.30000+ 1 2.70000+ 1 6.01487- 7 1.12053- 1 1.30000+ 1 2.90000+ 1 5.69827- 7 1.12114- 1 1.30000+ 1 3.00000+ 1 1.42463- 6 1.12170- 1 1.30000+ 1 3.30000+ 1 1.58286- 7 1.12269- 1 1.40000+ 1 1.40000+ 1 6.33122- 7 1.09000- 1 1.40000+ 1 1.60000+ 1 1.36132- 6 1.11135- 1 1.40000+ 1 1.80000+ 1 4.17867- 6 1.11291- 1 1.40000+ 1 1.90000+ 1 4.62208- 6 1.11524- 1 1.40000+ 1 2.10000+ 1 7.28099- 7 1.11777- 1 1.40000+ 1 2.20000+ 1 3.48231- 7 1.11820- 1 1.40000+ 1 2.70000+ 1 3.48231- 7 1.12234- 1 1.40000+ 1 2.90000+ 1 9.81363- 7 1.12295- 1 1.40000+ 1 3.00000+ 1 1.07633- 6 1.12351- 1 1.40000+ 1 3.20000+ 1 1.58285- 7 1.12442- 1 1.40000+ 1 3.30000+ 1 6.33122- 8 1.12451- 1 1.60000+ 1 1.60000+ 1 1.15236- 5 1.13270- 1 1.60000+ 1 1.80000+ 1 1.92801- 5 1.13426- 1 1.60000+ 1 1.90000+ 1 7.28135- 6 1.13660- 1 1.60000+ 1 2.10000+ 1 6.96498- 7 1.13912- 1 1.60000+ 1 2.20000+ 1 3.79920- 7 1.13955- 1 1.60000+ 1 2.70000+ 1 5.85688- 6 1.14369- 1 1.60000+ 1 2.90000+ 1 4.62232- 6 1.14431- 1 1.60000+ 1 3.00000+ 1 1.70953- 6 1.14487- 1 1.60000+ 1 3.20000+ 1 1.26632- 7 1.14578- 1 1.60000+ 1 3.30000+ 1 6.33154- 8 1.14586- 1 1.80000+ 1 1.80000+ 1 6.01514- 7 1.13582- 1 1.80000+ 1 1.90000+ 1 1.10170- 5 1.13815- 1 1.80000+ 1 2.10000+ 1 6.96500- 7 1.14068- 1 1.80000+ 1 2.20000+ 1 1.20303- 6 1.14111- 1 1.80000+ 1 2.50000+ 1 3.16588- 8 1.14455- 1 1.80000+ 1 2.70000+ 1 4.87541- 6 1.14525- 1 1.80000+ 1 2.90000+ 1 2.84926- 7 1.14586- 1 1.80000+ 1 3.00000+ 1 2.59607- 6 1.14642- 1 1.80000+ 1 3.20000+ 1 1.26633- 7 1.14733- 1 1.80000+ 1 3.30000+ 1 2.53276- 7 1.14742- 1 1.90000+ 1 1.90000+ 1 5.50876- 6 1.14049- 1 1.90000+ 1 2.10000+ 1 1.77285- 6 1.14301- 1 1.90000+ 1 2.20000+ 1 1.32963- 6 1.14344- 1 1.90000+ 1 2.40000+ 1 3.16589- 8 1.14677- 1 1.90000+ 1 2.50000+ 1 3.16589- 8 1.14689- 1 1.90000+ 1 2.70000+ 1 1.83615- 6 1.14759- 1 1.90000+ 1 2.90000+ 1 2.62773- 6 1.14820- 1 1.90000+ 1 3.00000+ 1 2.59608- 6 1.14876- 1 1.90000+ 1 3.20000+ 1 3.48251- 7 1.14967- 1 1.90000+ 1 3.30000+ 1 2.53277- 7 1.14975- 1 2.10000+ 1 2.20000+ 1 1.99985- 7 1.14597- 1 2.10000+ 1 2.70000+ 1 1.66661- 7 1.15011- 1 2.10000+ 1 2.90000+ 1 1.66661- 7 1.15072- 1 2.10000+ 1 3.00000+ 1 4.33314- 7 1.15128- 1 2.10000+ 1 3.30000+ 1 3.33323- 8 1.15228- 1 2.20000+ 1 2.20000+ 1 6.33154- 8 1.14640- 1 2.20000+ 1 2.70000+ 1 9.49772- 8 1.15054- 1 2.20000+ 1 2.90000+ 1 2.84925- 7 1.15115- 1 2.20000+ 1 3.00000+ 1 3.16587- 7 1.15171- 1 2.20000+ 1 3.20000+ 1 3.16587- 8 1.15263- 1 2.20000+ 1 3.30000+ 1 3.16587- 8 1.15271- 1 2.70000+ 1 2.70000+ 1 7.37890- 7 1.15469- 1 2.70000+ 1 2.90000+ 1 1.13758- 6 1.15530- 1 2.70000+ 1 3.00000+ 1 4.30444- 7 1.15586- 1 2.70000+ 1 3.20000+ 1 3.07454- 8 1.15677- 1 2.70000+ 1 3.30000+ 1 3.07454- 8 1.15685- 1 2.90000+ 1 2.90000+ 1 3.15738- 8 1.15591- 1 2.90000+ 1 3.00000+ 1 5.99899- 7 1.15647- 1 2.90000+ 1 3.20000+ 1 3.15738- 8 1.15738- 1 2.90000+ 1 3.30000+ 1 6.31455- 8 1.15747- 1 3.00000+ 1 3.00000+ 1 2.98628- 7 1.15703- 1 3.00000+ 1 3.20000+ 1 8.95895- 8 1.15794- 1 3.00000+ 1 3.30000+ 1 5.97237- 8 1.15803- 1 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.27890- 5 7.24000- 4 6.00000+ 0 8.43988- 3 4.58600- 3 1.00000+ 1 5.37558- 2 1.65865- 2 1.10000+ 1 4.67569- 2 1.74784- 2 1.30000+ 1 2.48529- 3 1.80312- 2 1.40000+ 1 3.70359- 3 1.82128- 2 1.80000+ 1 1.45280- 2 2.05038- 2 1.90000+ 1 1.44670- 2 2.07375- 2 2.10000+ 1 4.23259- 4 2.09898- 2 2.20000+ 1 6.78388- 4 2.10329- 2 2.90000+ 1 3.52109- 3 2.15086- 2 3.00000+ 1 3.55459- 3 2.15646- 2 3.20000+ 1 7.62828- 5 2.16556- 2 3.30000+ 1 1.23660- 4 2.16640- 2 4.30000+ 1 6.36628- 4 2.17339- 2 4.40000+ 1 6.17258- 4 2.17434- 2 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.20000+ 1 5.58155- 3 0.00000+ 0 5.00000+ 0 2.40000+ 1 1.26598- 2 3.21910- 4 5.00000+ 0 2.50000+ 1 1.68837- 2 3.33250- 4 5.00000+ 0 2.70000+ 1 5.12566- 3 4.03350- 4 5.00000+ 0 2.90000+ 1 4.12785- 3 4.64620- 4 5.00000+ 0 3.00000+ 1 3.30136- 3 5.20610- 4 5.00000+ 0 3.20000+ 1 8.78874- 4 6.11650- 4 5.00000+ 0 3.30000+ 1 1.11408- 3 6.19980- 4 6.00000+ 0 1.10000+ 1 3.60237- 2 2.96400- 4 6.00000+ 0 1.30000+ 1 2.05107- 1 8.49200- 4 6.00000+ 0 1.40000+ 1 2.47756- 1 1.03080- 3 6.00000+ 0 1.60000+ 1 1.67698- 2 3.16610- 3 6.00000+ 0 1.80000+ 1 6.52396- 3 3.32180- 3 6.00000+ 0 1.90000+ 1 9.13916- 3 3.55550- 3 6.00000+ 0 2.10000+ 1 3.20267- 2 3.80782- 3 6.00000+ 0 2.20000+ 1 3.68847- 2 3.85086- 3 6.00000+ 0 2.40000+ 1 1.93937- 2 4.18391- 3 6.00000+ 0 2.50000+ 1 2.37266- 2 4.19525- 3 6.00000+ 0 2.70000+ 1 4.03106- 3 4.26535- 3 6.00000+ 0 2.90000+ 1 1.54108- 3 4.32662- 3 6.00000+ 0 3.00000+ 1 2.14817- 3 4.38261- 3 6.00000+ 0 3.20000+ 1 5.80517- 3 4.47365- 3 6.00000+ 0 3.30000+ 1 6.55106- 3 4.48198- 3 8.00000+ 0 8.00000+ 0 5.45279- 3 1.07254- 2 8.00000+ 0 1.00000+ 1 1.14489- 2 1.10652- 2 8.00000+ 0 1.10000+ 1 1.60758- 2 1.19571- 2 8.00000+ 0 1.30000+ 1 1.13449- 2 1.25099- 2 8.00000+ 0 1.40000+ 1 1.36928- 2 1.26915- 2 8.00000+ 0 1.60000+ 1 2.46027- 3 1.48268- 2 8.00000+ 0 1.80000+ 1 2.95479- 3 1.49825- 2 8.00000+ 0 1.90000+ 1 4.13477- 3 1.52162- 2 8.00000+ 0 2.10000+ 1 2.76377- 3 1.54685- 2 8.00000+ 0 2.20000+ 1 3.32498- 3 1.55116- 2 8.00000+ 0 2.40000+ 1 2.55167- 4 1.58446- 2 8.00000+ 0 2.50000+ 1 2.64417- 4 1.58559- 2 8.00000+ 0 2.70000+ 1 6.08639- 4 1.59260- 2 8.00000+ 0 2.90000+ 1 7.04509- 4 1.59873- 2 8.00000+ 0 3.00000+ 1 9.72049- 4 1.60433- 2 8.00000+ 0 3.20000+ 1 5.34489- 4 1.61343- 2 8.00000+ 0 3.30000+ 1 6.36729- 4 1.61427- 2 1.00000+ 1 1.00000+ 1 1.31871- 5 1.14050- 2 1.00000+ 1 1.10000+ 1 2.10811- 4 1.22969- 2 1.00000+ 1 1.30000+ 1 7.41722- 4 1.28497- 2 1.00000+ 1 1.40000+ 1 5.19648- 3 1.30313- 2 1.00000+ 1 1.60000+ 1 2.04681- 3 1.51666- 2 1.00000+ 1 1.80000+ 1 1.54131- 6 1.53223- 2 1.00000+ 1 1.90000+ 1 4.33275- 5 1.55560- 2 1.00000+ 1 2.10000+ 1 1.51051- 4 1.58083- 2 1.00000+ 1 2.20000+ 1 8.15043- 4 1.58514- 2 1.00000+ 1 2.40000+ 1 9.70966- 5 1.61844- 2 1.00000+ 1 2.50000+ 1 3.34124- 4 1.61957- 2 1.00000+ 1 2.70000+ 1 4.75246- 4 1.62658- 2 1.00000+ 1 2.90000+ 1 3.42514- 7 1.63271- 2 1.00000+ 1 3.00000+ 1 9.59036- 6 1.63831- 2 1.00000+ 1 3.20000+ 1 2.86003- 5 1.64741- 2 1.00000+ 1 3.30000+ 1 1.42991- 4 1.64825- 2 1.10000+ 1 1.10000+ 1 7.10367- 4 1.31888- 2 1.10000+ 1 1.30000+ 1 1.43578- 3 1.37416- 2 1.10000+ 1 1.40000+ 1 8.85738- 4 1.39232- 2 1.10000+ 1 1.60000+ 1 2.78617- 3 1.60585- 2 1.10000+ 1 1.80000+ 1 5.58287- 5 1.62142- 2 1.10000+ 1 1.90000+ 1 2.84967- 4 1.64479- 2 1.10000+ 1 2.10000+ 1 1.58928- 4 1.67002- 2 1.10000+ 1 2.20000+ 1 7.10677- 5 1.67433- 2 1.10000+ 1 2.40000+ 1 1.09938- 4 1.70763- 2 1.10000+ 1 2.50000+ 1 9.55637- 5 1.70876- 2 1.10000+ 1 2.70000+ 1 6.41887- 4 1.71577- 2 1.10000+ 1 2.90000+ 1 1.33578- 5 1.72190- 2 1.10000+ 1 3.00000+ 1 6.33647- 5 1.72750- 2 1.10000+ 1 3.20000+ 1 2.62016- 5 1.73660- 2 1.10000+ 1 3.30000+ 1 1.06179- 5 1.73744- 2 1.30000+ 1 1.30000+ 1 6.40327- 4 1.42944- 2 1.30000+ 1 1.40000+ 1 1.76860- 2 1.44760- 2 1.30000+ 1 1.60000+ 1 1.76390- 3 1.66113- 2 1.30000+ 1 1.80000+ 1 2.23830- 4 1.67670- 2 1.30000+ 1 1.90000+ 1 3.97663- 4 1.70007- 2 1.30000+ 1 2.10000+ 1 3.03983- 4 1.72530- 2 1.30000+ 1 2.20000+ 1 2.99733- 3 1.72961- 2 1.30000+ 1 2.40000+ 1 2.51400- 4 1.76291- 2 1.30000+ 1 2.50000+ 1 6.81617- 4 1.76404- 2 1.30000+ 1 2.70000+ 1 3.96113- 4 1.77105- 2 1.30000+ 1 2.90000+ 1 5.53166- 5 1.77718- 2 1.30000+ 1 3.00000+ 1 9.57342- 5 1.78278- 2 1.30000+ 1 3.20000+ 1 5.85697- 5 1.79188- 2 1.30000+ 1 3.30000+ 1 5.32106- 4 1.79272- 2 1.40000+ 1 1.40000+ 1 4.80846- 3 1.46576- 2 1.40000+ 1 1.60000+ 1 2.16196- 3 1.67929- 2 1.40000+ 1 1.80000+ 1 1.17833- 3 1.69486- 2 1.40000+ 1 1.90000+ 1 2.35486- 4 1.71823- 2 1.40000+ 1 2.10000+ 1 2.86408- 3 1.74346- 2 1.40000+ 1 2.20000+ 1 1.71904- 3 1.74777- 2 1.40000+ 1 2.40000+ 1 7.46706- 4 1.78107- 2 1.40000+ 1 2.50000+ 1 5.52319- 4 1.78220- 2 1.40000+ 1 2.70000+ 1 4.89126- 4 1.78921- 2 1.40000+ 1 2.90000+ 1 2.73327- 4 1.79534- 2 1.40000+ 1 3.00000+ 1 5.66870- 5 1.80094- 2 1.40000+ 1 3.20000+ 1 5.08128- 4 1.81004- 2 1.40000+ 1 3.30000+ 1 3.09300- 4 1.81088- 2 1.60000+ 1 1.60000+ 1 2.62179- 4 1.89282- 2 1.60000+ 1 1.80000+ 1 5.29493- 4 1.90839- 2 1.60000+ 1 1.90000+ 1 7.20597- 4 1.93176- 2 1.60000+ 1 2.10000+ 1 4.33254- 4 1.95699- 2 1.60000+ 1 2.20000+ 1 5.25223- 4 1.96130- 2 1.60000+ 1 2.40000+ 1 3.35648- 5 1.99460- 2 1.60000+ 1 2.50000+ 1 3.28808- 5 1.99573- 2 1.60000+ 1 2.70000+ 1 1.27915- 4 2.00274- 2 1.60000+ 1 2.90000+ 1 1.26205- 4 2.00887- 2 1.60000+ 1 3.00000+ 1 1.69543- 4 2.01447- 2 1.60000+ 1 3.20000+ 1 8.39114- 5 2.02357- 2 1.60000+ 1 3.30000+ 1 1.00526- 4 2.02441- 2 1.80000+ 1 1.90000+ 1 1.14738- 5 1.94733- 2 1.80000+ 1 2.10000+ 1 4.14436- 5 1.97256- 2 1.80000+ 1 2.20000+ 1 1.92827- 4 1.97687- 2 1.80000+ 1 2.40000+ 1 1.38718- 5 2.01017- 2 1.80000+ 1 2.50000+ 1 5.44587- 5 2.01130- 2 1.80000+ 1 2.70000+ 1 1.22958- 4 2.01831- 2 1.80000+ 1 3.00000+ 1 2.56876- 6 2.03004- 2 1.80000+ 1 3.20000+ 1 7.70656- 6 2.03914- 2 1.80000+ 1 3.30000+ 1 3.40797- 5 2.03998- 2 1.90000+ 1 1.90000+ 1 2.73998- 5 1.97070- 2 1.90000+ 1 2.10000+ 1 4.48673- 5 1.99593- 2 1.90000+ 1 2.20000+ 1 2.10631- 5 2.00024- 2 1.90000+ 1 2.40000+ 1 2.62009- 5 2.03354- 2 1.90000+ 1 2.50000+ 1 2.19191- 5 2.03467- 2 1.90000+ 1 2.70000+ 1 1.66103- 4 2.04168- 2 1.90000+ 1 2.90000+ 1 2.73998- 6 2.04781- 2 1.90000+ 1 3.00000+ 1 1.21585- 5 2.05341- 2 1.90000+ 1 3.20000+ 1 7.36395- 6 2.06251- 2 1.90000+ 1 3.30000+ 1 3.25368- 6 2.06335- 2 2.10000+ 1 2.10000+ 1 3.32225- 5 2.02116- 2 2.10000+ 1 2.20000+ 1 5.31745- 4 2.02547- 2 2.10000+ 1 2.40000+ 1 4.14434- 5 2.05877- 2 2.10000+ 1 2.50000+ 1 8.42592- 5 2.05991- 2 2.10000+ 1 2.70000+ 1 9.74411- 5 2.06692- 2 2.10000+ 1 2.90000+ 1 1.01038- 5 2.07304- 2 2.10000+ 1 3.00000+ 1 1.09598- 5 2.07864- 2 2.10000+ 1 3.20000+ 1 1.26728- 5 2.08775- 2 2.10000+ 1 3.30000+ 1 9.60701- 5 2.08858- 2 2.20000+ 1 2.20000+ 1 1.64917- 4 2.02977- 2 2.20000+ 1 2.40000+ 1 9.93283- 5 2.06308- 2 2.20000+ 1 2.50000+ 1 8.11744- 5 2.06421- 2 2.20000+ 1 2.70000+ 1 1.18678- 4 2.07122- 2 2.20000+ 1 2.90000+ 1 4.50394- 5 2.07735- 2 2.20000+ 1 3.00000+ 1 5.30886- 6 2.08295- 2 2.20000+ 1 3.20000+ 1 9.59014- 5 2.09205- 2 2.20000+ 1 3.30000+ 1 6.01106- 5 2.09288- 2 2.40000+ 1 2.40000+ 1 1.19878- 6 2.09638- 2 2.40000+ 1 2.50000+ 1 2.20917- 5 2.09752- 2 2.40000+ 1 2.70000+ 1 7.36418- 6 2.10453- 2 2.40000+ 1 2.90000+ 1 2.91128- 6 2.11065- 2 2.40000+ 1 3.00000+ 1 5.99388- 6 2.11625- 2 2.40000+ 1 3.20000+ 1 7.36418- 6 2.12536- 2 2.40000+ 1 3.30000+ 1 1.67828- 5 2.12619- 2 2.50000+ 1 2.50000+ 1 4.69896- 6 2.09865- 2 2.50000+ 1 2.70000+ 1 7.13531- 6 2.10566- 2 2.50000+ 1 2.90000+ 1 1.18340- 5 2.11179- 2 2.50000+ 1 3.00000+ 1 5.04704- 6 2.11739- 2 2.50000+ 1 3.20000+ 1 1.44447- 5 2.12649- 2 2.50000+ 1 3.30000+ 1 1.42709- 5 2.12732- 2 2.70000+ 1 2.70000+ 1 1.66677- 5 2.11267- 2 2.70000+ 1 2.90000+ 1 3.13206- 5 2.11880- 2 2.70000+ 1 3.00000+ 1 4.17614- 5 2.12440- 2 2.70000+ 1 3.20000+ 1 2.01490- 5 2.13350- 2 2.70000+ 1 3.30000+ 1 2.43609- 5 2.13433- 2 2.90000+ 1 3.00000+ 1 7.34819- 7 2.13052- 2 2.90000+ 1 3.20000+ 1 2.02087- 6 2.13963- 2 2.90000+ 1 3.30000+ 1 8.63428- 6 2.14046- 2 3.00000+ 1 3.00000+ 1 1.72671- 6 2.13612- 2 3.00000+ 1 3.20000+ 1 2.37442- 6 2.14523- 2 3.00000+ 1 3.30000+ 1 1.07926- 6 2.14606- 2 3.20000+ 1 3.20000+ 1 1.19881- 6 2.15433- 2 3.20000+ 1 3.30000+ 1 1.74681- 5 2.15516- 2 3.30000+ 1 3.30000+ 1 5.59658- 6 2.15600- 2 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 3.62048- 5 3.86200- 3 8.00000+ 0 1.01029- 2 1.55227- 2 1.10000+ 1 5.20017- 4 1.67544- 2 1.30000+ 1 3.58938- 1 1.73072- 2 1.60000+ 1 2.74179- 3 1.96241- 2 1.90000+ 1 1.57069- 4 2.00135- 2 2.10000+ 1 8.12926- 2 2.02658- 2 2.40000+ 1 5.05497- 4 2.06419- 2 2.70000+ 1 7.04056- 4 2.07233- 2 3.00000+ 1 3.84318- 5 2.08406- 2 3.20000+ 1 1.57439- 2 2.09316- 2 3.50000+ 1 1.12539- 5 2.10351- 2 4.10000+ 1 1.45009- 4 2.09918- 2 4.40000+ 1 6.59107- 6 2.10194- 2 5.80000+ 1 1.64849- 5 2.10382- 2 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 1.12657- 1 1.25200- 4 6.00000+ 0 1.40000+ 1 3.62028- 2 3.06800- 4 6.00000+ 0 1.60000+ 1 3.04043- 3 2.44210- 3 6.00000+ 0 1.80000+ 1 2.52342- 2 2.59780- 3 6.00000+ 0 1.90000+ 1 5.90253- 3 2.83150- 3 6.00000+ 0 2.10000+ 1 2.19819- 2 3.08382- 3 6.00000+ 0 2.20000+ 1 7.42831- 3 3.12686- 3 6.00000+ 0 2.40000+ 1 1.09766- 3 3.45991- 3 6.00000+ 0 2.50000+ 1 1.57467- 3 3.47125- 3 6.00000+ 0 2.70000+ 1 7.10668- 4 3.54135- 3 6.00000+ 0 2.90000+ 1 5.46455- 3 3.60262- 3 6.00000+ 0 3.00000+ 1 1.34594- 3 3.65861- 3 6.00000+ 0 3.20000+ 1 4.06762- 3 3.74965- 3 6.00000+ 0 3.30000+ 1 1.38074- 3 3.75798- 3 8.00000+ 0 8.00000+ 0 3.46063- 4 1.00014- 2 8.00000+ 0 1.00000+ 1 1.44896- 2 1.03412- 2 8.00000+ 0 1.10000+ 1 1.27094- 3 1.12331- 2 8.00000+ 0 1.30000+ 1 2.74208- 3 1.17859- 2 8.00000+ 0 1.40000+ 1 9.73393- 4 1.19675- 2 8.00000+ 0 1.60000+ 1 1.39364- 4 1.41028- 2 8.00000+ 0 1.80000+ 1 2.47055- 3 1.42585- 2 8.00000+ 0 1.90000+ 1 2.94188- 4 1.44922- 2 8.00000+ 0 2.10000+ 1 4.76048- 4 1.47445- 2 8.00000+ 0 2.20000+ 1 1.43778- 4 1.47876- 2 8.00000+ 0 2.40000+ 1 6.01619- 5 1.51206- 2 8.00000+ 0 2.50000+ 1 4.41561- 5 1.51319- 2 8.00000+ 0 2.70000+ 1 3.33928- 5 1.52020- 2 8.00000+ 0 2.90000+ 1 5.37031- 4 1.52633- 2 8.00000+ 0 3.00000+ 1 6.76115- 5 1.53193- 2 8.00000+ 0 3.20000+ 1 8.63815- 5 1.54103- 2 8.00000+ 0 3.30000+ 1 2.51142- 5 1.54187- 2 1.00000+ 1 1.00000+ 1 1.55252- 2 1.06810- 2 1.00000+ 1 1.10000+ 1 3.48625- 2 1.15729- 2 1.00000+ 1 1.30000+ 1 1.75733- 2 1.21257- 2 1.00000+ 1 1.40000+ 1 2.23184- 2 1.23073- 2 1.00000+ 1 1.60000+ 1 3.92999- 3 1.44426- 2 1.00000+ 1 1.80000+ 1 6.73548- 3 1.45983- 2 1.00000+ 1 1.90000+ 1 8.79661- 3 1.48320- 2 1.00000+ 1 2.10000+ 1 4.26695- 3 1.50843- 2 1.00000+ 1 2.20000+ 1 5.44155- 3 1.51274- 2 1.00000+ 1 2.40000+ 1 3.43854- 4 1.54604- 2 1.00000+ 1 2.50000+ 1 2.76513- 4 1.54717- 2 1.00000+ 1 2.70000+ 1 1.00508- 3 1.55418- 2 1.00000+ 1 2.90000+ 1 1.55503- 3 1.56031- 2 1.00000+ 1 3.00000+ 1 2.05979- 3 1.56591- 2 1.00000+ 1 3.20000+ 1 8.25379- 4 1.57501- 2 1.00000+ 1 3.30000+ 1 1.04373- 3 1.57585- 2 1.10000+ 1 1.10000+ 1 7.08181- 4 1.24648- 2 1.10000+ 1 1.30000+ 1 1.33804- 2 1.30176- 2 1.10000+ 1 1.40000+ 1 2.06537- 3 1.31992- 2 1.10000+ 1 1.60000+ 1 2.86472- 4 1.53345- 2 1.10000+ 1 1.80000+ 1 5.97608- 3 1.54902- 2 1.10000+ 1 1.90000+ 1 3.09363- 4 1.57239- 2 1.10000+ 1 2.10000+ 1 2.77527- 3 1.59762- 2 1.10000+ 1 2.20000+ 1 4.16998- 4 1.60193- 2 1.10000+ 1 2.40000+ 1 1.10662- 4 1.63523- 2 1.10000+ 1 2.50000+ 1 5.51948- 5 1.63636- 2 1.10000+ 1 2.70000+ 1 7.00981- 5 1.64337- 2 1.10000+ 1 2.90000+ 1 1.29958- 3 1.64950- 2 1.10000+ 1 3.00000+ 1 7.00981- 5 1.65510- 2 1.10000+ 1 3.20000+ 1 5.19109- 4 1.66420- 2 1.10000+ 1 3.30000+ 1 7.69974- 5 1.66504- 2 1.30000+ 1 1.30000+ 1 1.26939- 2 1.35704- 2 1.30000+ 1 1.40000+ 1 4.87024- 2 1.37520- 2 1.30000+ 1 1.60000+ 1 7.44833- 4 1.58873- 2 1.30000+ 1 1.80000+ 1 2.88944- 3 1.60430- 2 1.30000+ 1 1.90000+ 1 3.09782- 3 1.62767- 2 1.30000+ 1 2.10000+ 1 5.11284- 3 1.65290- 2 1.30000+ 1 2.20000+ 1 1.06053- 2 1.65721- 2 1.30000+ 1 2.40000+ 1 1.08684- 3 1.69051- 2 1.30000+ 1 2.50000+ 1 2.15701- 3 1.69164- 2 1.30000+ 1 2.70000+ 1 1.90967- 4 1.69865- 2 1.30000+ 1 2.90000+ 1 6.28653- 4 1.70478- 2 1.30000+ 1 3.00000+ 1 7.11187- 4 1.71038- 2 1.30000+ 1 3.20000+ 1 9.56235- 4 1.71948- 2 1.30000+ 1 3.30000+ 1 1.98813- 3 1.72032- 2 1.40000+ 1 1.40000+ 1 2.37977- 3 1.39336- 2 1.40000+ 1 1.60000+ 1 2.12493- 4 1.60689- 2 1.40000+ 1 1.80000+ 1 3.21217- 3 1.62246- 2 1.40000+ 1 1.90000+ 1 4.41833- 4 1.64583- 2 1.40000+ 1 2.10000+ 1 8.05091- 3 1.67106- 2 1.40000+ 1 2.20000+ 1 9.46297- 4 1.67537- 2 1.40000+ 1 2.40000+ 1 4.32726- 4 1.70867- 2 1.40000+ 1 2.50000+ 1 1.64203- 4 1.70980- 2 1.40000+ 1 2.70000+ 1 5.18835- 5 1.71681- 2 1.40000+ 1 2.90000+ 1 6.70084- 4 1.72294- 2 1.40000+ 1 3.00000+ 1 9.96242- 5 1.72854- 2 1.40000+ 1 3.20000+ 1 1.43895- 3 1.73764- 2 1.40000+ 1 3.30000+ 1 1.74969- 4 1.73848- 2 1.60000+ 1 1.60000+ 1 1.35225- 5 1.82042- 2 1.60000+ 1 1.80000+ 1 6.73387- 4 1.83599- 2 1.60000+ 1 1.90000+ 1 6.67884- 5 1.85936- 2 1.60000+ 1 2.10000+ 1 1.26676- 4 1.88459- 2 1.60000+ 1 2.20000+ 1 3.11860- 5 1.88890- 2 1.60000+ 1 2.40000+ 1 1.40748- 5 1.92220- 2 1.60000+ 1 2.50000+ 1 8.27928- 6 1.92333- 2 1.60000+ 1 2.70000+ 1 6.34765- 6 1.93034- 2 1.60000+ 1 2.90000+ 1 1.46551- 4 1.93647- 2 1.60000+ 1 3.00000+ 1 1.54551- 5 1.94207- 2 1.60000+ 1 3.20000+ 1 2.29071- 5 1.95117- 2 1.60000+ 1 3.30000+ 1 5.51966- 6 1.95201- 2 1.80000+ 1 1.80000+ 1 6.94037- 4 1.85156- 2 1.80000+ 1 1.90000+ 1 1.51285- 3 1.87493- 2 1.80000+ 1 2.10000+ 1 6.91868- 4 1.90016- 2 1.80000+ 1 2.20000+ 1 7.92021- 4 1.90447- 2 1.80000+ 1 2.40000+ 1 4.66386- 5 1.93777- 2 1.80000+ 1 2.50000+ 1 2.87006- 5 1.93890- 2 1.80000+ 1 2.70000+ 1 1.72201- 4 1.94591- 2 1.80000+ 1 2.90000+ 1 3.16816- 4 1.95204- 2 1.80000+ 1 3.00000+ 1 3.54349- 4 1.95764- 2 1.80000+ 1 3.20000+ 1 1.33570- 4 1.96674- 2 1.80000+ 1 3.30000+ 1 1.52326- 4 1.96758- 2 1.90000+ 1 1.90000+ 1 3.39438- 5 1.89830- 2 1.90000+ 1 2.10000+ 1 6.46847- 4 1.92353- 2 1.90000+ 1 2.20000+ 1 9.02428- 5 1.92784- 2 1.90000+ 1 2.40000+ 1 2.31815- 5 1.96114- 2 1.90000+ 1 2.50000+ 1 1.04866- 5 1.96227- 2 1.90000+ 1 2.70000+ 1 1.62823- 5 1.96928- 2 1.90000+ 1 2.90000+ 1 3.28951- 4 1.97541- 2 1.90000+ 1 3.00000+ 1 1.54543- 5 1.98101- 2 1.90000+ 1 3.20000+ 1 1.21146- 4 1.99011- 2 1.90000+ 1 3.30000+ 1 1.65579- 5 1.99095- 2 2.10000+ 1 2.10000+ 1 5.12479- 4 1.94876- 2 2.10000+ 1 2.20000+ 1 1.82794- 3 1.95307- 2 2.10000+ 1 2.40000+ 1 1.50958- 4 1.98637- 2 2.10000+ 1 2.50000+ 1 3.00528- 4 1.98751- 2 2.10000+ 1 2.70000+ 1 3.22890- 5 1.99452- 2 2.10000+ 1 2.90000+ 1 1.49849- 4 2.00064- 2 2.10000+ 1 3.00000+ 1 1.48750- 4 2.00624- 2 2.10000+ 1 3.20000+ 1 1.91247- 4 2.01535- 2 2.10000+ 1 3.30000+ 1 3.45242- 4 2.01618- 2 2.20000+ 1 2.20000+ 1 9.52116- 5 1.95737- 2 2.20000+ 1 2.40000+ 1 6.56801- 5 1.99068- 2 2.20000+ 1 2.50000+ 1 2.53900- 5 1.99181- 2 2.20000+ 1 2.70000+ 1 7.45156- 6 1.99882- 2 2.20000+ 1 2.90000+ 1 1.65580- 4 2.00495- 2 2.20000+ 1 3.00000+ 1 2.04222- 5 2.01055- 2 2.20000+ 1 3.20000+ 1 3.29235- 4 2.01965- 2 2.20000+ 1 3.30000+ 1 3.53254- 5 2.02048- 2 2.40000+ 1 2.40000+ 1 3.86363- 6 2.02398- 2 2.40000+ 1 2.50000+ 1 2.62171- 5 2.02512- 2 2.40000+ 1 2.70000+ 1 3.58768- 6 2.03213- 2 2.40000+ 1 2.90000+ 1 9.93447- 6 2.03825- 2 2.40000+ 1 3.00000+ 1 5.24350- 6 2.04385- 2 2.40000+ 1 3.20000+ 1 2.59414- 5 2.05296- 2 2.40000+ 1 3.30000+ 1 1.13148- 5 2.05379- 2 2.50000+ 1 2.50000+ 1 1.65580- 6 2.02625- 2 2.50000+ 1 2.70000+ 1 1.93175- 6 2.03326- 2 2.50000+ 1 2.90000+ 1 5.51941- 6 2.03939- 2 2.50000+ 1 3.00000+ 1 2.20781- 6 2.04499- 2 2.50000+ 1 3.20000+ 1 5.18833- 5 2.05409- 2 2.50000+ 1 3.30000+ 1 4.41561- 6 2.05492- 2 2.70000+ 1 2.70000+ 1 8.27896- 7 2.04027- 2 2.70000+ 1 2.90000+ 1 3.75327- 5 2.04640- 2 2.70000+ 1 3.00000+ 1 3.86363- 6 2.05200- 2 2.70000+ 1 3.20000+ 1 5.79569- 6 2.06110- 2 2.70000+ 1 3.30000+ 1 1.37986- 6 2.06193- 2 2.90000+ 1 2.90000+ 1 3.61515- 5 2.05252- 2 2.90000+ 1 3.00000+ 1 7.69947- 5 2.05812- 2 2.90000+ 1 3.20000+ 1 2.89768- 5 2.06723- 2 2.90000+ 1 3.30000+ 1 3.17362- 5 2.06806- 2 3.00000+ 1 3.00000+ 1 1.65578- 6 2.06372- 2 3.00000+ 1 3.20000+ 1 2.78735- 5 2.07283- 2 3.00000+ 1 3.30000+ 1 3.86356- 6 2.07366- 2 3.20000+ 1 3.20000+ 1 1.87800- 5 2.08193- 2 3.20000+ 1 3.30000+ 1 6.52946- 5 2.08276- 2 3.30000+ 1 3.30000+ 1 3.52318- 6 2.08360- 2 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.15060- 2 1.16607- 2 1.00000+ 1 2.71781- 4 1.20005- 2 1.10000+ 1 2.47230- 4 1.28924- 2 1.30000+ 1 3.50481- 2 1.34452- 2 1.40000+ 1 3.07931- 1 1.36268- 2 1.60000+ 1 5.42881- 3 1.57621- 2 1.80000+ 1 6.04341- 5 1.59178- 2 1.90000+ 1 6.71981- 5 1.61515- 2 2.10000+ 1 7.05271- 3 1.64038- 2 2.20000+ 1 6.45821- 2 1.64469- 2 2.40000+ 1 9.02262- 5 1.67799- 2 2.50000+ 1 4.97921- 4 1.67912- 2 2.70000+ 1 1.37740- 3 1.68613- 2 2.90000+ 1 1.40100- 5 1.69226- 2 3.00000+ 1 1.60610- 5 1.69786- 2 3.20000+ 1 1.33360- 3 1.70696- 2 3.30000+ 1 1.22180- 2 1.70780- 2 3.50000+ 1 1.98710- 6 1.71731- 2 3.60000+ 1 1.07130- 5 1.71740- 2 4.10000+ 1 2.87201- 4 1.71298- 2 4.30000+ 1 2.56810- 6 1.71479- 2 4.40000+ 1 2.77151- 6 1.71574- 2 5.80000+ 1 3.11111- 5 1.71762- 2 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 4.25917- 4 6.13940- 3 8.00000+ 0 1.00000+ 1 1.85902- 4 6.47920- 3 8.00000+ 0 1.10000+ 1 1.80456- 2 7.37110- 3 8.00000+ 0 1.30000+ 1 2.82143- 3 7.92390- 3 8.00000+ 0 1.40000+ 1 5.67386- 3 8.10550- 3 8.00000+ 0 1.60000+ 1 1.74459- 4 1.02408- 2 8.00000+ 0 1.80000+ 1 3.12631- 5 1.03965- 2 8.00000+ 0 1.90000+ 1 2.99799- 3 1.06302- 2 8.00000+ 0 2.10000+ 1 3.40529- 4 1.08825- 2 8.00000+ 0 2.20000+ 1 6.49113- 4 1.09256- 2 8.00000+ 0 2.40000+ 1 3.30780- 4 1.12586- 2 8.00000+ 0 2.50000+ 1 5.59371- 4 1.12699- 2 8.00000+ 0 2.70000+ 1 4.16837- 5 1.13400- 2 8.00000+ 0 2.90000+ 1 6.72304- 6 1.14013- 2 8.00000+ 0 3.00000+ 1 6.40063- 4 1.14573- 2 8.00000+ 0 3.20000+ 1 5.74811- 5 1.15483- 2 8.00000+ 0 3.30000+ 1 1.05891- 4 1.15567- 2 1.00000+ 1 1.10000+ 1 3.02479- 2 7.71090- 3 1.00000+ 1 1.30000+ 1 1.29220- 3 8.26370- 3 1.00000+ 1 1.40000+ 1 9.56390- 3 8.44530- 3 1.00000+ 1 1.60000+ 1 3.96681- 5 1.05806- 2 1.00000+ 1 1.80000+ 1 7.05907- 6 1.07363- 2 1.00000+ 1 1.90000+ 1 5.21549- 3 1.09700- 2 1.00000+ 1 2.10000+ 1 2.54817- 4 1.12223- 2 1.00000+ 1 2.20000+ 1 1.57335- 3 1.12654- 2 1.00000+ 1 2.40000+ 1 2.81366- 4 1.15984- 2 1.00000+ 1 2.50000+ 1 6.70633- 4 1.16097- 2 1.00000+ 1 2.70000+ 1 9.74864- 6 1.16798- 2 1.00000+ 1 2.90000+ 1 2.35309- 6 1.17411- 2 1.00000+ 1 3.00000+ 1 1.12213- 3 1.17971- 2 1.00000+ 1 3.20000+ 1 4.87446- 5 1.18881- 2 1.00000+ 1 3.30000+ 1 2.81710- 4 1.18965- 2 1.10000+ 1 1.10000+ 1 3.59284- 2 8.60280- 3 1.10000+ 1 1.30000+ 1 3.76763- 2 9.15560- 3 1.10000+ 1 1.40000+ 1 4.77387- 2 9.33720- 3 1.10000+ 1 1.60000+ 1 4.80716- 3 1.14725- 2 1.10000+ 1 1.80000+ 1 7.23098- 3 1.16282- 2 1.10000+ 1 1.90000+ 1 1.50670- 2 1.18619- 2 1.10000+ 1 2.10000+ 1 8.54240- 3 1.21142- 2 1.10000+ 1 2.20000+ 1 1.07625- 2 1.21573- 2 1.10000+ 1 2.40000+ 1 8.99609- 4 1.24903- 2 1.10000+ 1 2.50000+ 1 1.07172- 3 1.25016- 2 1.10000+ 1 2.70000+ 1 1.22358- 3 1.25717- 2 1.10000+ 1 2.90000+ 1 1.69932- 3 1.26330- 2 1.10000+ 1 3.00000+ 1 3.40602- 3 1.26890- 2 1.10000+ 1 3.20000+ 1 1.63314- 3 1.27800- 2 1.10000+ 1 3.30000+ 1 2.03345- 3 1.27884- 2 1.30000+ 1 1.30000+ 1 4.92843- 3 9.70840- 3 1.30000+ 1 1.40000+ 1 9.17139- 2 9.89000- 3 1.30000+ 1 1.60000+ 1 6.83735- 4 1.20253- 2 1.30000+ 1 1.80000+ 1 3.44226- 4 1.21810- 2 1.30000+ 1 1.90000+ 1 5.84827- 3 1.24147- 2 1.30000+ 1 2.10000+ 1 1.87238- 3 1.26670- 2 1.30000+ 1 2.20000+ 1 1.45988- 2 1.27101- 2 1.30000+ 1 2.40000+ 1 4.83064- 4 1.30431- 2 1.30000+ 1 2.50000+ 1 1.61113- 3 1.30544- 2 1.30000+ 1 2.70000+ 1 1.72113- 4 1.31245- 2 1.30000+ 1 2.90000+ 1 8.20240- 5 1.31858- 2 1.30000+ 1 3.00000+ 1 1.22896- 3 1.32418- 2 1.30000+ 1 3.20000+ 1 3.47584- 4 1.33328- 2 1.30000+ 1 3.30000+ 1 2.57568- 3 1.33412- 2 1.40000+ 1 1.40000+ 1 6.05200- 2 1.00716- 2 1.40000+ 1 1.60000+ 1 1.38826- 3 1.22069- 2 1.40000+ 1 1.80000+ 1 2.05413- 3 1.23626- 2 1.40000+ 1 1.90000+ 1 8.29166- 3 1.25963- 2 1.40000+ 1 2.10000+ 1 1.75586- 2 1.28486- 2 1.40000+ 1 2.20000+ 1 2.21366- 2 1.28917- 2 1.40000+ 1 2.40000+ 1 5.04797- 3 1.32247- 2 1.40000+ 1 2.50000+ 1 4.54400- 3 1.32360- 2 1.40000+ 1 2.70000+ 1 3.51959- 4 1.33061- 2 1.40000+ 1 2.90000+ 1 4.72617- 4 1.33674- 2 1.40000+ 1 3.00000+ 1 1.80175- 3 1.34234- 2 1.40000+ 1 3.20000+ 1 3.25086- 3 1.35144- 2 1.40000+ 1 3.30000+ 1 4.03184- 3 1.35228- 2 1.60000+ 1 1.60000+ 1 1.88254- 5 1.43422- 2 1.60000+ 1 1.80000+ 1 7.73156- 6 1.44979- 2 1.60000+ 1 1.90000+ 1 7.96672- 4 1.47316- 2 1.60000+ 1 2.10000+ 1 8.87445- 5 1.49839- 2 1.60000+ 1 2.20000+ 1 1.68077- 4 1.50270- 2 1.60000+ 1 2.40000+ 1 4.06750- 5 1.53600- 2 1.60000+ 1 2.50000+ 1 7.79872- 5 1.53713- 2 1.60000+ 1 2.70000+ 1 9.07603- 6 1.54414- 2 1.60000+ 1 2.90000+ 1 1.68077- 6 1.55027- 2 1.60000+ 1 3.00000+ 1 1.70105- 4 1.55587- 2 1.60000+ 1 3.20000+ 1 1.51277- 5 1.56497- 2 1.60000+ 1 3.30000+ 1 2.79008- 5 1.56581- 2 1.80000+ 1 1.90000+ 1 1.23599- 3 1.48873- 2 1.80000+ 1 2.10000+ 1 6.21923- 5 1.51396- 2 1.80000+ 1 2.20000+ 1 3.71800- 4 1.51827- 2 1.80000+ 1 2.40000+ 1 4.23560- 5 1.55157- 2 1.80000+ 1 2.50000+ 1 9.41275- 5 1.55270- 2 1.80000+ 1 2.70000+ 1 2.01691- 6 1.55971- 2 1.80000+ 1 3.00000+ 1 2.65564- 4 1.57144- 2 1.80000+ 1 3.20000+ 1 1.14302- 5 1.58054- 2 1.80000+ 1 3.30000+ 1 6.72314- 5 1.58138- 2 1.90000+ 1 1.90000+ 1 1.50598- 3 1.51210- 2 1.90000+ 1 2.10000+ 1 1.33148- 3 1.53733- 2 1.90000+ 1 2.20000+ 1 1.84483- 3 1.54164- 2 1.90000+ 1 2.40000+ 1 1.15304- 4 1.57494- 2 1.90000+ 1 2.50000+ 1 1.44551- 4 1.57607- 2 1.90000+ 1 2.70000+ 1 2.02701- 4 1.58308- 2 1.90000+ 1 2.90000+ 1 2.90107- 4 1.58921- 2 1.90000+ 1 3.00000+ 1 6.73659- 4 1.59481- 2 1.90000+ 1 3.20000+ 1 2.54814- 4 1.60391- 2 1.90000+ 1 3.30000+ 1 3.47587- 4 1.60475- 2 2.10000+ 1 2.10000+ 1 1.70107- 4 1.56256- 2 2.10000+ 1 2.20000+ 1 2.93881- 3 1.56687- 2 2.10000+ 1 2.40000+ 1 6.01745- 5 1.60017- 2 2.10000+ 1 2.50000+ 1 1.88581- 4 1.60131- 2 2.10000+ 1 2.70000+ 1 2.25223- 5 1.60832- 2 2.10000+ 1 2.90000+ 1 1.47910- 5 1.61444- 2 2.10000+ 1 3.00000+ 1 2.80360- 4 1.62004- 2 2.10000+ 1 3.20000+ 1 6.25272- 5 1.62915- 2 2.10000+ 1 3.30000+ 1 5.22738- 4 1.62998- 2 2.20000+ 1 2.20000+ 1 2.03912- 3 1.57117- 2 2.20000+ 1 2.40000+ 1 6.22883- 4 1.60448- 2 2.20000+ 1 2.50000+ 1 5.49608- 4 1.60561- 2 2.20000+ 1 2.70000+ 1 4.30285- 5 1.61262- 2 2.20000+ 1 2.90000+ 1 8.67288- 5 1.61875- 2 2.20000+ 1 3.00000+ 1 3.99699- 4 1.62435- 2 2.20000+ 1 3.20000+ 1 5.48633- 4 1.63345- 2 2.20000+ 1 3.30000+ 1 7.42914- 4 1.63428- 2 2.40000+ 1 2.40000+ 1 3.02546- 6 1.63778- 2 2.40000+ 1 2.50000+ 1 8.77368- 5 1.63892- 2 2.40000+ 1 2.70000+ 1 8.74010- 6 1.64593- 2 2.40000+ 1 2.90000+ 1 9.07610- 6 1.65205- 2 2.40000+ 1 3.00000+ 1 2.35307- 5 1.65765- 2 2.40000+ 1 3.20000+ 1 1.00848- 5 1.66676- 2 2.40000+ 1 3.30000+ 1 1.04206- 4 1.66759- 2 2.50000+ 1 2.50000+ 1 3.12636- 5 1.64005- 2 2.50000+ 1 2.70000+ 1 1.74807- 5 1.64706- 2 2.50000+ 1 2.90000+ 1 1.98333- 5 1.65319- 2 2.50000+ 1 3.00000+ 1 2.99193- 5 1.65879- 2 2.50000+ 1 3.20000+ 1 3.15994- 5 1.66789- 2 2.50000+ 1 3.30000+ 1 9.14341- 5 1.66872- 2 2.70000+ 1 2.70000+ 1 1.01875- 6 1.65407- 2 2.70000+ 1 2.90000+ 1 3.39587- 7 1.66020- 2 2.70000+ 1 3.00000+ 1 4.38059- 5 1.66580- 2 2.70000+ 1 3.20000+ 1 4.07500- 6 1.67490- 2 2.70000+ 1 3.30000+ 1 7.13086- 6 1.67573- 2 2.90000+ 1 3.00000+ 1 6.33245- 5 1.67192- 2 2.90000+ 1 3.20000+ 1 2.73837- 6 1.68103- 2 2.90000+ 1 3.30000+ 1 1.60873- 5 1.68186- 2 3.00000+ 1 3.00000+ 1 7.53019- 5 1.67752- 2 3.00000+ 1 3.20000+ 1 5.37865- 5 1.68663- 2 3.00000+ 1 3.30000+ 1 7.53019- 5 1.68746- 2 3.20000+ 1 3.20000+ 1 5.71469- 6 1.69573- 2 3.20000+ 1 3.30000+ 1 9.78255- 5 1.69656- 2 3.30000+ 1 3.30000+ 1 6.75671- 5 1.69740- 2 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.06800- 5 3.39800- 4 1.10000+ 1 1.17100- 3 1.23170- 3 1.80000+ 1 2.66331- 3 4.25710- 3 1.90000+ 1 1.41780- 3 4.49080- 3 2.90000+ 1 7.05602- 4 5.26192- 3 3.00000+ 1 4.32851- 4 5.31791- 3 4.30000+ 1 1.31950- 4 5.48721- 3 4.40000+ 1 7.73292- 5 5.49673- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.70000+ 1 1.56728- 2 1.91500- 5 1.00000+ 1 2.90000+ 1 1.63583- 2 8.04200- 5 1.00000+ 1 3.00000+ 1 1.94928- 2 1.36410- 4 1.00000+ 1 3.20000+ 1 1.11144- 2 2.27450- 4 1.00000+ 1 3.30000+ 1 1.44098- 2 2.35780- 4 1.00000+ 1 3.50000+ 1 2.84189- 4 3.30890- 4 1.00000+ 1 3.60000+ 1 3.56912- 4 3.31850- 4 1.00000+ 1 4.10000+ 1 2.99907- 3 2.87570- 4 1.00000+ 1 4.30000+ 1 2.62546- 3 3.05710- 4 1.00000+ 1 4.40000+ 1 2.89055- 3 3.15230- 4 1.00000+ 1 4.60000+ 1 6.29579- 5 3.35060- 4 1.00000+ 1 4.70000+ 1 7.37405- 5 3.35670- 4 1.00000+ 1 5.80000+ 1 3.10349- 4 3.34020- 4 1.10000+ 1 1.90000+ 1 4.30065- 2 2.01200- 4 1.10000+ 1 2.10000+ 1 1.07966- 2 4.53520- 4 1.10000+ 1 2.20000+ 1 2.68651- 2 4.96560- 4 1.10000+ 1 2.40000+ 1 2.09737- 1 8.29610- 4 1.10000+ 1 2.50000+ 1 2.53313- 1 8.40950- 4 1.10000+ 1 2.70000+ 1 1.20476- 2 9.11050- 4 1.10000+ 1 2.90000+ 1 1.23044- 2 9.72320- 4 1.10000+ 1 3.00000+ 1 9.86433- 3 1.02831- 3 1.10000+ 1 3.20000+ 1 2.38085- 3 1.11935- 3 1.10000+ 1 3.30000+ 1 5.54569- 3 1.12768- 3 1.10000+ 1 3.50000+ 1 2.54472- 3 1.22279- 3 1.10000+ 1 3.60000+ 1 2.93851- 3 1.22375- 3 1.10000+ 1 4.10000+ 1 2.35577- 3 1.17947- 3 1.10000+ 1 4.30000+ 1 2.02812- 3 1.19761- 3 1.10000+ 1 4.40000+ 1 1.50233- 3 1.20713- 3 1.10000+ 1 4.60000+ 1 1.45187- 5 1.22696- 3 1.10000+ 1 4.70000+ 1 3.01865- 5 1.22757- 3 1.10000+ 1 5.80000+ 1 2.46089- 4 1.22592- 3 1.30000+ 1 1.60000+ 1 2.80403- 2 3.64600- 4 1.30000+ 1 1.80000+ 1 5.87385- 3 5.20300- 4 1.30000+ 1 1.90000+ 1 9.96578- 3 7.54000- 4 1.30000+ 1 2.10000+ 1 9.50723- 3 1.00632- 3 1.30000+ 1 2.20000+ 1 1.12972- 2 1.04936- 3 1.30000+ 1 2.40000+ 1 1.06267- 2 1.38241- 3 1.30000+ 1 2.50000+ 1 1.00492- 2 1.39375- 3 1.30000+ 1 2.70000+ 1 4.40359- 3 1.46385- 3 1.30000+ 1 2.90000+ 1 1.09345- 3 1.52512- 3 1.30000+ 1 3.00000+ 1 1.72357- 3 1.58111- 3 1.30000+ 1 3.20000+ 1 1.47626- 3 1.67215- 3 1.30000+ 1 3.30000+ 1 1.90563- 3 1.68048- 3 1.30000+ 1 3.50000+ 1 1.39721- 4 1.77559- 3 1.30000+ 1 3.60000+ 1 1.19747- 4 1.77655- 3 1.30000+ 1 4.10000+ 1 7.94045- 4 1.73227- 3 1.30000+ 1 4.30000+ 1 1.77823- 4 1.75041- 3 1.30000+ 1 4.40000+ 1 2.52854- 4 1.75993- 3 1.30000+ 1 4.60000+ 1 8.91250- 6 1.77976- 3 1.30000+ 1 4.70000+ 1 1.03499- 5 1.78037- 3 1.30000+ 1 5.80000+ 1 7.99221- 5 1.77872- 3 1.40000+ 1 1.60000+ 1 3.81560- 2 5.46200- 4 1.40000+ 1 1.80000+ 1 9.01841- 4 7.01900- 4 1.40000+ 1 1.90000+ 1 1.28239- 2 9.35600- 4 1.40000+ 1 2.10000+ 1 1.29608- 2 1.18792- 3 1.40000+ 1 2.20000+ 1 1.76402- 2 1.23096- 3 1.40000+ 1 2.40000+ 1 1.26730- 2 1.56401- 3 1.40000+ 1 2.50000+ 1 1.88941- 2 1.57535- 3 1.40000+ 1 2.70000+ 1 5.90016- 3 1.64545- 3 1.40000+ 1 2.90000+ 1 2.40631- 4 1.70672- 3 1.40000+ 1 3.00000+ 1 2.18288- 3 1.76271- 3 1.40000+ 1 3.20000+ 1 2.23374- 3 1.85375- 3 1.40000+ 1 3.30000+ 1 2.86725- 3 1.86208- 3 1.40000+ 1 3.50000+ 1 1.55678- 4 1.95719- 3 1.40000+ 1 3.60000+ 1 2.32287- 4 1.95815- 3 1.40000+ 1 4.10000+ 1 1.05967- 3 1.91387- 3 1.40000+ 1 4.30000+ 1 4.25486- 5 1.93201- 3 1.40000+ 1 4.40000+ 1 3.19968- 4 1.94153- 3 1.40000+ 1 4.60000+ 1 1.36563- 5 1.96136- 3 1.40000+ 1 4.70000+ 1 1.55248- 5 1.96197- 3 1.40000+ 1 5.80000+ 1 1.06506- 4 1.96032- 3 1.60000+ 1 1.60000+ 1 2.21959- 3 2.68150- 3 1.60000+ 1 1.80000+ 1 3.94997- 3 2.83720- 3 1.60000+ 1 1.90000+ 1 6.12950- 3 3.07090- 3 1.60000+ 1 2.10000+ 1 7.40372- 3 3.32322- 3 1.60000+ 1 2.20000+ 1 1.02411- 2 3.36626- 3 1.60000+ 1 2.40000+ 1 5.64777- 3 3.69931- 3 1.60000+ 1 2.50000+ 1 6.98215- 3 3.71065- 3 1.60000+ 1 2.70000+ 1 9.13959- 4 3.78075- 3 1.60000+ 1 2.90000+ 1 9.38960- 4 3.84202- 3 1.60000+ 1 3.00000+ 1 1.43450- 3 3.89801- 3 1.60000+ 1 3.20000+ 1 1.39543- 3 3.98905- 3 1.60000+ 1 3.30000+ 1 1.91303- 3 3.99738- 3 1.60000+ 1 3.50000+ 1 9.60244- 5 4.09249- 3 1.60000+ 1 3.60000+ 1 1.14282- 4 4.09345- 3 1.60000+ 1 4.10000+ 1 1.77244- 4 4.04917- 3 1.60000+ 1 4.30000+ 1 1.59418- 4 4.06731- 3 1.60000+ 1 4.40000+ 1 2.22369- 4 4.07683- 3 1.60000+ 1 4.60000+ 1 8.48089- 6 4.09666- 3 1.60000+ 1 4.70000+ 1 1.04929- 5 4.09727- 3 1.60000+ 1 5.80000+ 1 1.81121- 5 4.09562- 3 1.80000+ 1 1.80000+ 1 1.49207- 4 2.99290- 3 1.80000+ 1 1.90000+ 1 4.88311- 4 3.22660- 3 1.80000+ 1 2.10000+ 1 2.34023- 4 3.47892- 3 1.80000+ 1 2.20000+ 1 1.07089- 4 3.52196- 3 1.80000+ 1 2.40000+ 1 2.12750- 5 3.85501- 3 1.80000+ 1 2.50000+ 1 5.11743- 4 3.86635- 3 1.80000+ 1 2.70000+ 1 6.09050- 4 3.93645- 3 1.80000+ 1 2.90000+ 1 5.07436- 5 3.99772- 3 1.80000+ 1 3.00000+ 1 7.90623- 5 4.05371- 3 1.80000+ 1 3.20000+ 1 3.73747- 5 4.14475- 3 1.80000+ 1 3.30000+ 1 2.55877- 5 4.15308- 3 1.80000+ 1 3.50000+ 1 1.43751- 7 4.24819- 3 1.80000+ 1 3.60000+ 1 5.31878- 6 4.24915- 3 1.80000+ 1 4.10000+ 1 1.09827- 4 4.20487- 3 1.80000+ 1 4.30000+ 1 8.04992- 6 4.22301- 3 1.80000+ 1 4.40000+ 1 1.14994- 5 4.23253- 3 1.80000+ 1 4.60000+ 1 2.87492- 7 4.25236- 3 1.80000+ 1 4.70000+ 1 1.43751- 7 4.25297- 3 1.80000+ 1 5.80000+ 1 1.10686- 5 4.25132- 3 1.90000+ 1 1.90000+ 1 4.55095- 4 3.46030- 3 1.90000+ 1 2.10000+ 1 6.62073- 4 3.71262- 3 1.90000+ 1 2.20000+ 1 1.46726- 3 3.75566- 3 1.90000+ 1 2.40000+ 1 9.32911- 4 4.08871- 3 1.90000+ 1 2.50000+ 1 1.36284- 3 4.10005- 3 1.90000+ 1 2.70000+ 1 9.50138- 4 4.17015- 3 1.90000+ 1 2.90000+ 1 9.94683- 5 4.23142- 3 1.90000+ 1 3.00000+ 1 1.80109- 4 4.28741- 3 1.90000+ 1 3.20000+ 1 1.21466- 4 4.37845- 3 1.90000+ 1 3.30000+ 1 2.59607- 4 4.38678- 3 1.90000+ 1 3.50000+ 1 1.48055- 5 4.48189- 3 1.90000+ 1 3.60000+ 1 1.89741- 5 4.48285- 3 1.90000+ 1 4.10000+ 1 1.71775- 4 4.43857- 3 1.90000+ 1 4.30000+ 1 1.65300- 5 4.45671- 3 1.90000+ 1 4.40000+ 1 2.71668- 5 4.46623- 3 1.90000+ 1 4.60000+ 1 7.18709- 7 4.48606- 3 1.90000+ 1 4.70000+ 1 1.43748- 6 4.48667- 3 1.90000+ 1 5.80000+ 1 1.72495- 5 4.48502- 3 2.10000+ 1 2.10000+ 1 9.87540- 5 3.96494- 3 2.10000+ 1 2.20000+ 1 2.44369- 4 4.00798- 3 2.10000+ 1 2.40000+ 1 4.51208- 4 4.34103- 3 2.10000+ 1 2.50000+ 1 2.64823- 3 4.35237- 3 2.10000+ 1 2.70000+ 1 1.11553- 3 4.42247- 3 2.10000+ 1 2.90000+ 1 3.43552- 5 4.48374- 3 2.10000+ 1 3.00000+ 1 1.16859- 4 4.53973- 3 2.10000+ 1 3.20000+ 1 2.91802- 5 4.63077- 3 2.10000+ 1 3.30000+ 1 3.83800- 5 4.63910- 3 2.10000+ 1 3.50000+ 1 6.89971- 6 4.73421- 3 2.10000+ 1 3.60000+ 1 3.20550- 5 4.73517- 3 2.10000+ 1 4.10000+ 1 1.99954- 4 4.69089- 3 2.10000+ 1 4.30000+ 1 5.31865- 6 4.70903- 3 2.10000+ 1 4.40000+ 1 1.71067- 5 4.71855- 3 2.10000+ 1 4.60000+ 1 1.43748- 7 4.73838- 3 2.10000+ 1 4.70000+ 1 1.43748- 7 4.73899- 3 2.10000+ 1 5.80000+ 1 2.01243- 5 4.73734- 3 2.20000+ 1 2.20000+ 1 2.17342- 4 4.05102- 3 2.20000+ 1 2.40000+ 1 2.33110- 3 4.38407- 3 2.20000+ 1 2.50000+ 1 1.51802- 3 4.39541- 3 2.20000+ 1 2.70000+ 1 1.53481- 3 4.46551- 3 2.20000+ 1 2.90000+ 1 1.81119- 5 4.52678- 3 2.20000+ 1 3.00000+ 1 2.55143- 4 4.58277- 3 2.20000+ 1 3.20000+ 1 3.36359- 5 4.67381- 3 2.20000+ 1 3.30000+ 1 6.62657- 5 4.68214- 3 2.20000+ 1 3.50000+ 1 2.86048- 5 4.77725- 3 2.20000+ 1 3.60000+ 1 1.98376- 5 4.77821- 3 2.20000+ 1 4.10000+ 1 2.74707- 4 4.73393- 3 2.20000+ 1 4.30000+ 1 2.87487- 6 4.75207- 3 2.20000+ 1 4.40000+ 1 3.72301- 5 4.76159- 3 2.20000+ 1 4.60000+ 1 1.43748- 7 4.78142- 3 2.20000+ 1 4.70000+ 1 2.87487- 7 4.78203- 3 2.20000+ 1 5.80000+ 1 2.75996- 5 4.78038- 3 2.40000+ 1 2.40000+ 1 6.32342- 4 4.71712- 3 2.40000+ 1 2.50000+ 1 4.12711- 3 4.72846- 3 2.40000+ 1 2.70000+ 1 7.76930- 4 4.79856- 3 2.40000+ 1 2.90000+ 1 4.74354- 6 4.85983- 3 2.40000+ 1 3.00000+ 1 1.14992- 4 4.91582- 3 2.40000+ 1 3.20000+ 1 7.57535- 5 5.00686- 3 2.40000+ 1 3.30000+ 1 4.45326- 4 5.01519- 3 2.40000+ 1 3.50000+ 1 1.95499- 5 5.11030- 3 2.40000+ 1 3.60000+ 1 5.23236- 5 5.11126- 3 2.40000+ 1 4.10000+ 1 1.36994- 4 5.06698- 3 2.40000+ 1 4.30000+ 1 8.62454- 7 5.08512- 3 2.40000+ 1 4.40000+ 1 1.58118- 5 5.09464- 3 2.40000+ 1 4.60000+ 1 4.31237- 7 5.11447- 3 2.40000+ 1 4.70000+ 1 2.44371- 6 5.11508- 3 2.40000+ 1 5.80000+ 1 1.37994- 5 5.11343- 3 2.50000+ 1 2.50000+ 1 1.42779- 3 4.73980- 3 2.50000+ 1 2.70000+ 1 9.58645- 4 4.80990- 3 2.50000+ 1 2.90000+ 1 1.04359- 4 4.87117- 3 2.50000+ 1 3.00000+ 1 1.80689- 4 4.92716- 3 2.50000+ 1 3.20000+ 1 4.90748- 4 5.01820- 3 2.50000+ 1 3.30000+ 1 2.72688- 4 5.02653- 3 2.50000+ 1 3.50000+ 1 5.33285- 5 5.12164- 3 2.50000+ 1 3.60000+ 1 3.95303- 5 5.12260- 3 2.50000+ 1 4.10000+ 1 1.69049- 4 5.07832- 3 2.50000+ 1 4.30000+ 1 1.71067- 5 5.09646- 3 2.50000+ 1 4.40000+ 1 2.51554- 5 5.10598- 3 2.50000+ 1 4.60000+ 1 3.01865- 6 5.12581- 3 2.50000+ 1 4.70000+ 1 1.43748- 6 5.12642- 3 2.50000+ 1 5.80000+ 1 1.69618- 5 5.12477- 3 2.70000+ 1 2.70000+ 1 8.63942- 5 4.88000- 3 2.70000+ 1 2.90000+ 1 1.46188- 4 4.94127- 3 2.70000+ 1 3.00000+ 1 2.22371- 4 4.99726- 3 2.70000+ 1 3.20000+ 1 2.11738- 4 5.08830- 3 2.70000+ 1 3.30000+ 1 2.88650- 4 5.09663- 3 2.70000+ 1 3.50000+ 1 1.32249- 5 5.19174- 3 2.70000+ 1 3.60000+ 1 1.56690- 5 5.19270- 3 2.70000+ 1 4.10000+ 1 3.29189- 5 5.14842- 3 2.70000+ 1 4.30000+ 1 2.48691- 5 5.16656- 3 2.70000+ 1 4.40000+ 1 3.44987- 5 5.17608- 3 2.70000+ 1 4.60000+ 1 1.29371- 6 5.19591- 3 2.70000+ 1 4.70000+ 1 1.58119- 6 5.19652- 3 2.70000+ 1 5.80000+ 1 3.30618- 6 5.19487- 3 2.90000+ 1 2.90000+ 1 4.16860- 6 5.00254- 3 2.90000+ 1 3.00000+ 1 1.55250- 5 5.05853- 3 2.90000+ 1 3.20000+ 1 5.46230- 6 5.14957- 3 2.90000+ 1 3.30000+ 1 4.59986- 6 5.15790- 3 2.90000+ 1 3.60000+ 1 1.14992- 6 5.25397- 3 2.90000+ 1 4.10000+ 1 2.64496- 5 5.20969- 3 2.90000+ 1 4.30000+ 1 1.29370- 6 5.22783- 3 2.90000+ 1 4.40000+ 1 2.29993- 6 5.23735- 3 2.90000+ 1 5.80000+ 1 2.73120- 6 5.25614- 3 3.00000+ 1 3.00000+ 1 1.71070- 5 5.11452- 3 3.00000+ 1 3.20000+ 1 2.15615- 5 5.20556- 3 3.00000+ 1 3.30000+ 1 4.54244- 5 5.21389- 3 3.00000+ 1 3.50000+ 1 1.86868- 6 5.30900- 3 3.00000+ 1 3.60000+ 1 2.44374- 6 5.30996- 3 3.00000+ 1 4.10000+ 1 4.01064- 5 5.26568- 3 3.00000+ 1 4.30000+ 1 2.58743- 6 5.28382- 3 3.00000+ 1 4.40000+ 1 5.17495- 6 5.29334- 3 3.00000+ 1 4.60000+ 1 1.43750- 7 5.31317- 3 3.00000+ 1 4.70000+ 1 2.87491- 7 5.31378- 3 3.00000+ 1 5.80000+ 1 4.02493- 6 5.31213- 3 3.20000+ 1 3.20000+ 1 1.86864- 6 5.29660- 3 3.20000+ 1 3.30000+ 1 5.46222- 6 5.30493- 3 3.20000+ 1 3.50000+ 1 1.14990- 6 5.40004- 3 3.20000+ 1 3.60000+ 1 6.18126- 6 5.40100- 3 3.20000+ 1 4.10000+ 1 3.79483- 5 5.35672- 3 3.20000+ 1 4.30000+ 1 8.62444- 7 5.37486- 3 3.20000+ 1 4.40000+ 1 3.16232- 6 5.38438- 3 3.20000+ 1 5.80000+ 1 3.88106- 6 5.40317- 3 3.30000+ 1 3.30000+ 1 4.88730- 6 5.31326- 3 3.30000+ 1 3.50000+ 1 5.74963- 6 5.40837- 3 3.30000+ 1 3.60000+ 1 3.59360- 6 5.40933- 3 3.30000+ 1 4.10000+ 1 5.17487- 5 5.36505- 3 3.30000+ 1 4.30000+ 1 7.18711- 7 5.38319- 3 3.30000+ 1 4.40000+ 1 6.61236- 6 5.39271- 3 3.30000+ 1 5.80000+ 1 5.17487- 6 5.41150- 3 3.50000+ 1 3.60000+ 1 7.18714- 7 5.50444- 3 3.50000+ 1 4.10000+ 1 2.29992- 6 5.46016- 3 3.50000+ 1 4.40000+ 1 2.87487- 7 5.48782- 3 3.50000+ 1 5.80000+ 1 2.87487- 7 5.50661- 3 3.60000+ 1 3.60000+ 1 1.43746- 7 5.50540- 3 3.60000+ 1 4.10000+ 1 2.73115- 6 5.46112- 3 3.60000+ 1 4.30000+ 1 1.43746- 7 5.47926- 3 3.60000+ 1 4.40000+ 1 2.87483- 7 5.48878- 3 3.60000+ 1 5.80000+ 1 2.87483- 7 5.50757- 3 4.10000+ 1 4.10000+ 1 3.21172- 6 5.41684- 3 4.10000+ 1 4.30000+ 1 4.52561- 6 5.43498- 3 4.10000+ 1 4.40000+ 1 6.27781- 6 5.44450- 3 4.10000+ 1 4.60000+ 1 2.91975- 7 5.46433- 3 4.10000+ 1 4.70000+ 1 2.91975- 7 5.46494- 3 4.10000+ 1 5.80000+ 1 5.83941- 7 5.46329- 3 4.30000+ 1 4.30000+ 1 1.45446- 7 5.45312- 3 4.30000+ 1 4.40000+ 1 4.36328- 7 5.46264- 3 4.30000+ 1 5.80000+ 1 4.36328- 7 5.48143- 3 4.40000+ 1 4.40000+ 1 4.09238- 7 5.47216- 3 4.40000+ 1 5.80000+ 1 5.45634- 7 5.49095- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.86969- 3 1.44470- 3 1.60000+ 1 1.01670- 3 3.76160- 3 2.10000+ 1 5.03198- 3 4.40332- 3 2.70000+ 1 2.64399- 4 4.86085- 3 3.20000+ 1 1.19670- 3 5.06915- 3 4.10000+ 1 5.52648- 5 5.12927- 3 5.80000+ 1 5.79318- 6 5.17572- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 8.44671- 3 1.13720- 4 1.10000+ 1 2.20000+ 1 1.77059- 2 1.56760- 4 1.10000+ 1 2.40000+ 1 2.83975- 2 4.89810- 4 1.10000+ 1 2.50000+ 1 2.33611- 2 5.01150- 4 1.10000+ 1 2.70000+ 1 3.11641- 3 5.71250- 4 1.10000+ 1 2.90000+ 1 4.50033- 3 6.32520- 4 1.10000+ 1 3.00000+ 1 1.91063- 3 6.88510- 4 1.10000+ 1 3.20000+ 1 1.83283- 3 7.79550- 4 1.10000+ 1 3.30000+ 1 3.25943- 3 7.87880- 4 1.10000+ 1 3.50000+ 1 3.95407- 4 8.82990- 4 1.10000+ 1 3.60000+ 1 3.20035- 4 8.83950- 4 1.10000+ 1 4.10000+ 1 5.82706- 4 8.39670- 4 1.10000+ 1 4.30000+ 1 6.83996- 4 8.57810- 4 1.10000+ 1 4.40000+ 1 2.79552- 4 8.67330- 4 1.10000+ 1 4.60000+ 1 1.13060- 5 8.87160- 4 1.10000+ 1 4.70000+ 1 1.78623- 5 8.87770- 4 1.10000+ 1 5.80000+ 1 5.89917- 5 8.86120- 4 1.30000+ 1 1.60000+ 1 4.76134- 2 2.48000- 5 1.30000+ 1 1.80000+ 1 4.93477- 2 1.80500- 4 1.30000+ 1 1.90000+ 1 3.34532- 2 4.14200- 4 1.30000+ 1 2.10000+ 1 1.65905- 2 6.66520- 4 1.30000+ 1 2.20000+ 1 2.59540- 2 7.09560- 4 1.30000+ 1 2.40000+ 1 1.49828- 1 1.04261- 3 1.30000+ 1 2.50000+ 1 2.35231- 1 1.05395- 3 1.30000+ 1 2.70000+ 1 1.17114- 2 1.12405- 3 1.30000+ 1 2.90000+ 1 9.62779- 3 1.18532- 3 1.30000+ 1 3.00000+ 1 7.53253- 3 1.24131- 3 1.30000+ 1 3.20000+ 1 3.34089- 3 1.33235- 3 1.30000+ 1 3.30000+ 1 5.18374- 3 1.34068- 3 1.30000+ 1 3.50000+ 1 1.86405- 3 1.43579- 3 1.30000+ 1 3.60000+ 1 2.96254- 3 1.43675- 3 1.30000+ 1 4.10000+ 1 2.31124- 3 1.39247- 3 1.30000+ 1 4.30000+ 1 1.57735- 3 1.41061- 3 1.30000+ 1 4.40000+ 1 1.15757- 3 1.42013- 3 1.30000+ 1 4.60000+ 1 2.09755- 5 1.43996- 3 1.30000+ 1 4.70000+ 1 2.90047- 5 1.44057- 3 1.30000+ 1 5.80000+ 1 2.31377- 4 1.43892- 3 1.40000+ 1 1.60000+ 1 7.22413- 3 2.06400- 4 1.40000+ 1 1.80000+ 1 5.58708- 2 3.62100- 4 1.40000+ 1 1.90000+ 1 4.51799- 3 5.95800- 4 1.40000+ 1 2.10000+ 1 1.77060- 3 8.48120- 4 1.40000+ 1 2.20000+ 1 2.71528- 3 8.91160- 4 1.40000+ 1 2.40000+ 1 7.87697- 3 1.22421- 3 1.40000+ 1 2.50000+ 1 4.73675- 3 1.23555- 3 1.40000+ 1 2.70000+ 1 1.18950- 3 1.30565- 3 1.40000+ 1 2.90000+ 1 8.29366- 3 1.36692- 3 1.40000+ 1 3.00000+ 1 8.65563- 4 1.42291- 3 1.40000+ 1 3.20000+ 1 1.41088- 4 1.51395- 3 1.40000+ 1 3.30000+ 1 4.61624- 4 1.52228- 3 1.40000+ 1 3.50000+ 1 1.41586- 4 1.61739- 3 1.40000+ 1 3.60000+ 1 6.73514- 5 1.61835- 3 1.40000+ 1 4.10000+ 1 2.17282- 4 1.57407- 3 1.40000+ 1 4.30000+ 1 1.27916- 3 1.59221- 3 1.40000+ 1 4.40000+ 1 1.29128- 4 1.60173- 3 1.40000+ 1 4.60000+ 1 8.19307- 7 1.62156- 3 1.40000+ 1 4.70000+ 1 2.45798- 6 1.62217- 3 1.40000+ 1 5.80000+ 1 2.19581- 5 1.62052- 3 1.60000+ 1 1.60000+ 1 5.22114- 4 2.34170- 3 1.60000+ 1 1.80000+ 1 8.17535- 3 2.49740- 3 1.60000+ 1 1.90000+ 1 1.00009- 3 2.73110- 3 1.60000+ 1 2.10000+ 1 3.27873- 4 2.98342- 3 1.60000+ 1 2.20000+ 1 9.28702- 4 3.02646- 3 1.60000+ 1 2.40000+ 1 6.56990- 5 3.35951- 3 1.60000+ 1 2.50000+ 1 6.80173- 4 3.37085- 3 1.60000+ 1 2.70000+ 1 1.99954- 4 3.44095- 3 1.60000+ 1 2.90000+ 1 1.19758- 3 3.50222- 3 1.60000+ 1 3.00000+ 1 2.10433- 4 3.55821- 3 1.60000+ 1 3.20000+ 1 4.12614- 5 3.64925- 3 1.60000+ 1 3.30000+ 1 1.55205- 4 3.65758- 3 1.60000+ 1 3.50000+ 1 9.52183- 7 3.75269- 3 1.60000+ 1 3.60000+ 1 7.61743- 6 3.75365- 3 1.60000+ 1 4.10000+ 1 3.77710- 5 3.70937- 3 1.60000+ 1 4.30000+ 1 1.85359- 4 3.72751- 3 1.60000+ 1 4.40000+ 1 3.17396- 5 3.73703- 3 1.60000+ 1 4.60000+ 1 3.17396- 7 3.75686- 3 1.60000+ 1 4.70000+ 1 9.52183- 7 3.75747- 3 1.60000+ 1 5.80000+ 1 3.80863- 6 3.75582- 3 1.80000+ 1 1.80000+ 1 6.41330- 3 2.65310- 3 1.80000+ 1 1.90000+ 1 1.70314- 2 2.88680- 3 1.80000+ 1 2.10000+ 1 1.73845- 2 3.13912- 3 1.80000+ 1 2.20000+ 1 2.70893- 2 3.18216- 3 1.80000+ 1 2.40000+ 1 1.09443- 2 3.51521- 3 1.80000+ 1 2.50000+ 1 1.78113- 2 3.52655- 3 1.80000+ 1 2.70000+ 1 2.06009- 3 3.59665- 3 1.80000+ 1 2.90000+ 1 2.50498- 3 3.65792- 3 1.80000+ 1 3.00000+ 1 3.94722- 3 3.71391- 3 1.80000+ 1 3.20000+ 1 3.29171- 3 3.80495- 3 1.80000+ 1 3.30000+ 1 5.00942- 3 3.81328- 3 1.80000+ 1 3.50000+ 1 1.86610- 4 3.90839- 3 1.80000+ 1 3.60000+ 1 2.89450- 4 3.90935- 3 1.80000+ 1 4.10000+ 1 4.12280- 4 3.86507- 3 1.80000+ 1 4.30000+ 1 4.13207- 4 3.88321- 3 1.80000+ 1 4.40000+ 1 6.10315- 4 3.89273- 3 1.80000+ 1 4.60000+ 1 2.03118- 5 3.91256- 3 1.80000+ 1 4.70000+ 1 2.76115- 5 3.91317- 3 1.80000+ 1 5.80000+ 1 4.22109- 5 3.91152- 3 1.90000+ 1 1.90000+ 1 4.24643- 4 3.12050- 3 1.90000+ 1 2.10000+ 1 9.80367- 4 3.37282- 3 1.90000+ 1 2.20000+ 1 9.24823- 4 3.41586- 3 1.90000+ 1 2.40000+ 1 7.02121- 3 3.74891- 3 1.90000+ 1 2.50000+ 1 1.95246- 3 3.76025- 3 1.90000+ 1 2.70000+ 1 1.59008- 4 3.83035- 3 1.90000+ 1 2.90000+ 1 2.54402- 3 3.89162- 3 1.90000+ 1 3.00000+ 1 1.65984- 4 3.94761- 3 1.90000+ 1 3.20000+ 1 1.44091- 4 4.03865- 3 1.90000+ 1 3.30000+ 1 1.54238- 4 4.04698- 3 1.90000+ 1 3.50000+ 1 9.99730- 5 4.14209- 3 1.90000+ 1 3.60000+ 1 2.79283- 5 4.14305- 3 1.90000+ 1 4.10000+ 1 2.88814- 5 4.09877- 3 1.90000+ 1 4.30000+ 1 3.94803- 4 4.11691- 3 1.90000+ 1 4.40000+ 1 2.47551- 5 4.12643- 3 1.90000+ 1 4.60000+ 1 9.52123- 7 4.14626- 3 1.90000+ 1 4.70000+ 1 9.52123- 7 4.14687- 3 1.90000+ 1 5.80000+ 1 2.85643- 6 4.14522- 3 2.10000+ 1 2.10000+ 1 6.57935- 4 3.62514- 3 2.10000+ 1 2.20000+ 1 1.21012- 3 3.66818- 3 2.10000+ 1 2.40000+ 1 7.14113- 4 4.00123- 3 2.10000+ 1 2.50000+ 1 9.74058- 4 4.01257- 3 2.10000+ 1 2.70000+ 1 7.99799- 5 4.08267- 3 2.10000+ 1 2.90000+ 1 2.51362- 3 4.14394- 3 2.10000+ 1 3.00000+ 1 2.12023- 4 4.19993- 3 2.10000+ 1 3.20000+ 1 2.01542- 4 4.29097- 3 2.10000+ 1 3.30000+ 1 2.05029- 4 4.29930- 3 2.10000+ 1 3.50000+ 1 6.34771- 6 4.39441- 3 2.10000+ 1 3.60000+ 1 1.14257- 5 4.39537- 3 2.10000+ 1 4.10000+ 1 1.58685- 5 4.35109- 3 2.10000+ 1 4.30000+ 1 3.87214- 4 4.36923- 3 2.10000+ 1 4.40000+ 1 3.23729- 5 4.37875- 3 2.10000+ 1 4.60000+ 1 1.26950- 6 4.39858- 3 2.10000+ 1 4.70000+ 1 1.26950- 6 4.39919- 3 2.10000+ 1 5.80000+ 1 1.58685- 6 4.39754- 3 2.20000+ 1 2.20000+ 1 3.34835- 4 3.71122- 3 2.20000+ 1 2.40000+ 1 1.54756- 3 4.04427- 3 2.20000+ 1 2.50000+ 1 3.98633- 4 4.05561- 3 2.20000+ 1 2.70000+ 1 1.83442- 4 4.12571- 3 2.20000+ 1 2.90000+ 1 3.96145- 3 4.18698- 3 2.20000+ 1 3.00000+ 1 1.63456- 4 4.24297- 3 2.20000+ 1 3.20000+ 1 1.73289- 4 4.33401- 3 2.20000+ 1 3.30000+ 1 1.04417- 4 4.34234- 3 2.20000+ 1 3.50000+ 1 1.20603- 5 4.43745- 3 2.20000+ 1 3.60000+ 1 4.12598- 6 4.43841- 3 2.20000+ 1 4.10000+ 1 3.49114- 5 4.39413- 3 2.20000+ 1 4.30000+ 1 6.11897- 4 4.41227- 3 2.20000+ 1 4.40000+ 1 2.41196- 5 4.42179- 3 2.20000+ 1 4.60000+ 1 9.52147- 7 4.44162- 3 2.20000+ 1 4.70000+ 1 6.34765- 7 4.44223- 3 2.20000+ 1 5.80000+ 1 3.49114- 6 4.44058- 3 2.40000+ 1 2.40000+ 1 2.86559- 3 4.37732- 3 2.40000+ 1 2.50000+ 1 1.82581- 2 4.38866- 3 2.40000+ 1 2.70000+ 1 1.07908- 5 4.45876- 3 2.40000+ 1 2.90000+ 1 1.45807- 3 4.52003- 3 2.40000+ 1 3.00000+ 1 1.52723- 3 4.57602- 3 2.40000+ 1 3.20000+ 1 1.45037- 4 4.66706- 3 2.40000+ 1 3.30000+ 1 3.50058- 4 4.67539- 3 2.40000+ 1 3.50000+ 1 8.12467- 5 4.77050- 3 2.40000+ 1 3.60000+ 1 2.45645- 4 4.77146- 3 2.40000+ 1 4.10000+ 1 1.90430- 6 4.72718- 3 2.40000+ 1 4.30000+ 1 2.22812- 4 4.74532- 3 2.40000+ 1 4.40000+ 1 2.33273- 4 4.75484- 3 2.40000+ 1 4.60000+ 1 9.52137- 7 4.77467- 3 2.40000+ 1 4.70000+ 1 1.90430- 6 4.77528- 3 2.40000+ 1 5.80000+ 1 3.17380- 7 4.77363- 3 2.50000+ 1 2.50000+ 1 9.51177- 4 4.40000- 3 2.50000+ 1 2.70000+ 1 1.39009- 4 4.47010- 3 2.50000+ 1 2.90000+ 1 2.30540- 3 4.53137- 3 2.50000+ 1 3.00000+ 1 3.75449- 4 4.58736- 3 2.50000+ 1 3.20000+ 1 1.92970- 4 4.67840- 3 2.50000+ 1 3.30000+ 1 7.83928- 5 4.68673- 3 2.50000+ 1 3.50000+ 1 2.50096- 4 4.78184- 3 2.50000+ 1 3.60000+ 1 2.60240- 5 4.78280- 3 2.50000+ 1 4.10000+ 1 2.63430- 5 4.73852- 3 2.50000+ 1 4.30000+ 1 3.47221- 4 4.75666- 3 2.50000+ 1 4.40000+ 1 5.61762- 5 4.76618- 3 2.50000+ 1 4.60000+ 1 1.26948- 6 4.78601- 3 2.50000+ 1 4.70000+ 1 3.17382- 7 4.78662- 3 2.50000+ 1 5.80000+ 1 2.53899- 6 4.78497- 3 2.70000+ 1 2.70000+ 1 1.90431- 5 4.54020- 3 2.70000+ 1 2.90000+ 1 3.03731- 4 4.60147- 3 2.70000+ 1 3.00000+ 1 3.33257- 5 4.65746- 3 2.70000+ 1 3.20000+ 1 9.52142- 6 4.74850- 3 2.70000+ 1 3.30000+ 1 3.14209- 5 4.75683- 3 2.70000+ 1 3.50000+ 1 3.17382- 7 4.85194- 3 2.70000+ 1 3.60000+ 1 1.58683- 6 4.85290- 3 2.70000+ 1 4.10000+ 1 7.29978- 6 4.80862- 3 2.70000+ 1 4.30000+ 1 4.69719- 5 4.82676- 3 2.70000+ 1 4.40000+ 1 5.07813- 6 4.83628- 3 2.70000+ 1 4.70000+ 1 3.17382- 7 4.85672- 3 2.70000+ 1 5.80000+ 1 6.34762- 7 4.85507- 3 2.90000+ 1 2.90000+ 1 2.28191- 4 4.66274- 3 2.90000+ 1 3.00000+ 1 5.94120- 4 4.71873- 3 2.90000+ 1 3.20000+ 1 4.78912- 4 4.80977- 3 2.90000+ 1 3.30000+ 1 7.37574- 4 4.81810- 3 2.90000+ 1 3.50000+ 1 2.47553- 5 4.91321- 3 2.90000+ 1 3.60000+ 1 3.77689- 5 4.91417- 3 2.90000+ 1 4.10000+ 1 6.09364- 5 4.86989- 3 2.90000+ 1 4.30000+ 1 7.42655- 5 4.88803- 3 2.90000+ 1 4.40000+ 1 9.20381- 5 4.89755- 3 2.90000+ 1 4.60000+ 1 2.85645- 6 4.91738- 3 2.90000+ 1 4.70000+ 1 4.12591- 6 4.91799- 3 2.90000+ 1 5.80000+ 1 6.34755- 6 4.91634- 3 3.00000+ 1 3.00000+ 1 1.61856- 5 4.77472- 3 3.00000+ 1 3.20000+ 1 3.14206- 5 4.86576- 3 3.00000+ 1 3.30000+ 1 2.72924- 5 4.87409- 3 3.00000+ 1 3.50000+ 1 2.18973- 5 4.96920- 3 3.00000+ 1 3.60000+ 1 5.39539- 6 4.97016- 3 3.00000+ 1 4.10000+ 1 6.03003- 6 4.92588- 3 3.00000+ 1 4.30000+ 1 9.23553- 5 4.94402- 3 3.00000+ 1 4.40000+ 1 4.76057- 6 4.95354- 3 3.00000+ 1 4.60000+ 1 3.17379- 7 4.97337- 3 3.00000+ 1 5.80000+ 1 6.34755- 7 4.97233- 3 3.20000+ 1 3.20000+ 1 1.49172- 5 4.95680- 3 3.20000+ 1 3.30000+ 1 3.17387- 5 4.96513- 3 3.20000+ 1 3.50000+ 1 1.58686- 6 5.06024- 3 3.20000+ 1 3.60000+ 1 2.53903- 6 5.06120- 3 3.20000+ 1 4.10000+ 1 1.90434- 6 5.01692- 3 3.20000+ 1 4.30000+ 1 7.39505- 5 5.03506- 3 3.20000+ 1 4.40000+ 1 4.76070- 6 5.04458- 3 3.20000+ 1 4.60000+ 1 3.17387- 7 5.06441- 3 3.20000+ 1 4.70000+ 1 3.17387- 7 5.06502- 3 3.20000+ 1 5.80000+ 1 3.17387- 7 5.06337- 3 3.30000+ 1 3.30000+ 1 8.77813- 6 4.97346- 3 3.30000+ 1 3.50000+ 1 3.25118- 6 5.06857- 3 3.30000+ 1 3.60000+ 1 9.75351- 7 5.06953- 3 3.30000+ 1 4.10000+ 1 6.17708- 6 5.02525- 3 3.30000+ 1 4.30000+ 1 1.16716- 4 5.04339- 3 3.30000+ 1 4.40000+ 1 4.22653- 6 5.05291- 3 3.30000+ 1 4.60000+ 1 3.25118- 7 5.07274- 3 3.30000+ 1 5.80000+ 1 6.50235- 7 5.07170- 3 3.50000+ 1 3.60000+ 1 3.49121- 6 5.16464- 3 3.50000+ 1 4.30000+ 1 3.80855- 6 5.13850- 3 3.50000+ 1 4.40000+ 1 3.49121- 6 5.14802- 3 3.60000+ 1 4.10000+ 1 3.17385- 7 5.12132- 3 3.60000+ 1 4.30000+ 1 5.71284- 6 5.13946- 3 3.60000+ 1 4.40000+ 1 9.52152- 7 5.14898- 3 4.10000+ 1 4.10000+ 1 6.47998- 7 5.07704- 3 4.10000+ 1 4.30000+ 1 9.71996- 6 5.09518- 3 4.10000+ 1 4.40000+ 1 9.71996- 7 5.10470- 3 4.30000+ 1 4.30000+ 1 6.03018- 6 5.11332- 3 4.30000+ 1 4.40000+ 1 1.42824- 5 5.12284- 3 4.30000+ 1 4.60000+ 1 3.17387- 7 5.14267- 3 4.30000+ 1 4.70000+ 1 6.34771- 7 5.14328- 3 4.30000+ 1 5.80000+ 1 9.52156- 7 5.14163- 3 4.40000+ 1 4.40000+ 1 3.17389- 7 5.13236- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.37390- 5 5.52800- 4 1.40000+ 1 3.12000- 4 7.34400- 4 1.60000+ 1 2.13570- 3 2.86970- 3 2.10000+ 1 1.00120- 3 3.51142- 3 2.20000+ 1 7.50721- 3 3.55446- 3 2.70000+ 1 5.28781- 4 3.96895- 3 3.20000+ 1 2.11810- 4 4.17725- 3 3.30000+ 1 1.62230- 3 4.18558- 3 4.10000+ 1 1.02540- 4 4.23737- 3 5.80000+ 1 1.26720- 5 4.28382- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.63475- 2 1.50710- 4 1.30000+ 1 2.50000+ 1 2.39226- 2 1.62050- 4 1.30000+ 1 2.70000+ 1 3.52638- 3 2.32150- 4 1.30000+ 1 2.90000+ 1 3.38546- 3 2.93420- 4 1.30000+ 1 3.00000+ 1 9.88816- 3 3.49410- 4 1.30000+ 1 3.20000+ 1 1.90512- 3 4.40450- 4 1.30000+ 1 3.30000+ 1 2.12513- 3 4.48780- 4 1.30000+ 1 3.50000+ 1 1.61153- 4 5.43890- 4 1.30000+ 1 3.60000+ 1 2.66954- 4 5.44850- 4 1.30000+ 1 4.10000+ 1 6.70127- 4 5.00570- 4 1.30000+ 1 4.30000+ 1 5.49717- 4 5.18710- 4 1.30000+ 1 4.40000+ 1 1.43698- 3 5.28230- 4 1.30000+ 1 4.60000+ 1 1.15540- 5 5.48060- 4 1.30000+ 1 4.70000+ 1 1.15540- 5 5.48670- 4 1.30000+ 1 5.80000+ 1 6.66878- 5 5.47020- 4 1.40000+ 1 2.20000+ 1 6.54567- 2 0.00000+ 0 1.40000+ 1 2.40000+ 1 2.08905- 1 3.32310- 4 1.40000+ 1 2.50000+ 1 2.52066- 1 3.43650- 4 1.40000+ 1 2.70000+ 1 2.13784- 2 4.13750- 4 1.40000+ 1 2.90000+ 1 2.26474- 2 4.75020- 4 1.40000+ 1 3.00000+ 1 2.38850- 2 5.31010- 4 1.40000+ 1 3.20000+ 1 7.88063- 3 6.22050- 4 1.40000+ 1 3.30000+ 1 1.15436- 2 6.30380- 4 1.40000+ 1 3.50000+ 1 2.13653- 3 7.25490- 4 1.40000+ 1 3.60000+ 1 2.39839- 3 7.26450- 4 1.40000+ 1 4.10000+ 1 4.16890- 3 6.82170- 4 1.40000+ 1 4.30000+ 1 3.69219- 3 7.00310- 4 1.40000+ 1 4.40000+ 1 3.55005- 3 7.09830- 4 1.40000+ 1 4.60000+ 1 4.64186- 5 7.29660- 4 1.40000+ 1 4.70000+ 1 6.16215- 5 7.30270- 4 1.40000+ 1 5.80000+ 1 4.33584- 4 7.28620- 4 1.60000+ 1 1.60000+ 1 1.12014- 4 1.44980- 3 1.60000+ 1 1.80000+ 1 4.08643- 4 1.60550- 3 1.60000+ 1 1.90000+ 1 1.02188- 2 1.83920- 3 1.60000+ 1 2.10000+ 1 6.48561- 4 2.09152- 3 1.60000+ 1 2.20000+ 1 8.53586- 4 2.13456- 3 1.60000+ 1 2.40000+ 1 2.40262- 3 2.46761- 3 1.60000+ 1 2.50000+ 1 4.36681- 3 2.47895- 3 1.60000+ 1 2.70000+ 1 4.73637- 5 2.54905- 3 1.60000+ 1 2.90000+ 1 5.63519- 5 2.61032- 3 1.60000+ 1 3.00000+ 1 1.48633- 3 2.66631- 3 1.60000+ 1 3.20000+ 1 1.03716- 4 2.75735- 3 1.60000+ 1 3.30000+ 1 1.33100- 4 2.76568- 3 1.60000+ 1 3.50000+ 1 2.90394- 5 2.86079- 3 1.60000+ 1 3.60000+ 1 5.11669- 5 2.86175- 3 1.60000+ 1 4.10000+ 1 8.98879- 6 2.81747- 3 1.60000+ 1 4.30000+ 1 8.64312- 6 2.83561- 3 1.60000+ 1 4.40000+ 1 2.10894- 4 2.84513- 3 1.60000+ 1 4.60000+ 1 6.91433- 7 2.86496- 3 1.60000+ 1 4.70000+ 1 6.91433- 7 2.86557- 3 1.60000+ 1 5.80000+ 1 1.03716- 6 2.86392- 3 1.80000+ 1 1.90000+ 1 1.29733- 2 1.99490- 3 1.80000+ 1 2.10000+ 1 2.99043- 4 2.24722- 3 1.80000+ 1 2.20000+ 1 2.99252- 3 2.29026- 3 1.80000+ 1 2.40000+ 1 1.62107- 3 2.62331- 3 1.80000+ 1 2.50000+ 1 8.08890- 3 2.63465- 3 1.80000+ 1 2.70000+ 1 8.26262- 5 2.70475- 3 1.80000+ 1 2.90000+ 1 1.72846- 6 2.76602- 3 1.80000+ 1 3.00000+ 1 1.93954- 3 2.82201- 3 1.80000+ 1 3.20000+ 1 5.60053- 5 2.91305- 3 1.80000+ 1 3.30000+ 1 4.47361- 4 2.92138- 3 1.80000+ 1 3.50000+ 1 1.83228- 5 3.01649- 3 1.80000+ 1 3.60000+ 1 9.36897- 5 3.01745- 3 1.80000+ 1 4.10000+ 1 1.55579- 5 2.97317- 3 1.80000+ 1 4.30000+ 1 3.45724- 7 2.99131- 3 1.80000+ 1 4.40000+ 1 2.76577- 4 3.00083- 3 1.80000+ 1 4.60000+ 1 3.45724- 7 3.02066- 3 1.80000+ 1 4.70000+ 1 2.41995- 6 3.02127- 3 1.80000+ 1 5.80000+ 1 1.72846- 6 3.01962- 3 1.90000+ 1 1.90000+ 1 1.63193- 2 2.22860- 3 1.90000+ 1 2.10000+ 1 2.44067- 2 2.48092- 3 1.90000+ 1 2.20000+ 1 3.15677- 2 2.52396- 3 1.90000+ 1 2.40000+ 1 2.31937- 2 2.85701- 3 1.90000+ 1 2.50000+ 1 2.64515- 2 2.86835- 3 1.90000+ 1 2.70000+ 1 2.53925- 3 2.93845- 3 1.90000+ 1 2.90000+ 1 2.99306- 3 2.99972- 3 1.90000+ 1 3.00000+ 1 6.17269- 3 3.05571- 3 1.90000+ 1 3.20000+ 1 4.44201- 3 3.14675- 3 1.90000+ 1 3.30000+ 1 5.75190- 3 3.15508- 3 1.90000+ 1 3.50000+ 1 3.69573- 4 3.25019- 3 1.90000+ 1 3.60000+ 1 4.06557- 4 3.25115- 3 1.90000+ 1 4.10000+ 1 5.06118- 4 3.20687- 3 1.90000+ 1 4.30000+ 1 5.05086- 4 3.22501- 3 1.90000+ 1 4.40000+ 1 9.24777- 4 3.23453- 3 1.90000+ 1 4.60000+ 1 2.69655- 5 3.25436- 3 1.90000+ 1 4.70000+ 1 3.14588- 5 3.25497- 3 1.90000+ 1 5.80000+ 1 5.18560- 5 3.25332- 3 2.10000+ 1 2.10000+ 1 1.70790- 4 2.73324- 3 2.10000+ 1 2.20000+ 1 4.11669- 3 2.77628- 3 2.10000+ 1 2.40000+ 1 6.70371- 4 3.10933- 3 2.10000+ 1 2.50000+ 1 7.59090- 3 3.12067- 3 2.10000+ 1 2.70000+ 1 8.26282- 5 3.19077- 3 2.10000+ 1 2.90000+ 1 1.65949- 5 3.25204- 3 2.10000+ 1 3.00000+ 1 3.55667- 3 3.30803- 3 2.10000+ 1 3.20000+ 1 5.11681- 5 3.39907- 3 2.10000+ 1 3.30000+ 1 6.53073- 4 3.40740- 3 2.10000+ 1 3.50000+ 1 8.64331- 6 3.50251- 3 2.10000+ 1 3.60000+ 1 7.32948- 5 3.50347- 3 2.10000+ 1 4.10000+ 1 1.45199- 5 3.45919- 3 2.10000+ 1 4.30000+ 1 2.42001- 6 3.47733- 3 2.10000+ 1 4.40000+ 1 5.04077- 4 3.48685- 3 2.10000+ 1 4.60000+ 1 3.45732- 7 3.50668- 3 2.10000+ 1 4.70000+ 1 3.45732- 6 3.50729- 3 2.10000+ 1 5.80000+ 1 1.38287- 6 3.50564- 3 2.20000+ 1 2.20000+ 1 1.75675- 3 2.81932- 3 2.20000+ 1 2.40000+ 1 6.02776- 3 3.15237- 3 2.20000+ 1 2.50000+ 1 4.92890- 3 3.16371- 3 2.20000+ 1 2.70000+ 1 1.18239- 4 3.23381- 3 2.20000+ 1 2.90000+ 1 3.03547- 4 3.29508- 3 2.20000+ 1 3.00000+ 1 4.53661- 3 3.35107- 3 2.20000+ 1 3.20000+ 1 6.41331- 4 3.44211- 3 2.20000+ 1 3.30000+ 1 5.62503- 4 3.45044- 3 2.20000+ 1 3.50000+ 1 7.50232- 5 3.54555- 3 2.20000+ 1 3.60000+ 1 5.77367- 5 3.54651- 3 2.20000+ 1 4.10000+ 1 2.10899- 5 3.50223- 3 2.20000+ 1 4.30000+ 1 4.35617- 5 3.52037- 3 2.20000+ 1 4.40000+ 1 6.40987- 4 3.52989- 3 2.20000+ 1 4.60000+ 1 3.80299- 6 3.54972- 3 2.20000+ 1 4.70000+ 1 3.11150- 6 3.55033- 3 2.20000+ 1 5.80000+ 1 2.07434- 6 3.54868- 3 2.40000+ 1 2.40000+ 1 1.04028- 3 3.48542- 3 2.40000+ 1 2.50000+ 1 2.68841- 2 3.49676- 3 2.40000+ 1 2.70000+ 1 2.65525- 4 3.56686- 3 2.40000+ 1 2.90000+ 1 3.01482- 4 3.62813- 3 2.40000+ 1 3.00000+ 1 3.21275- 3 3.68412- 3 2.40000+ 1 3.20000+ 1 1.41398- 4 3.77516- 3 2.40000+ 1 3.30000+ 1 1.02646- 3 3.78349- 3 2.40000+ 1 3.50000+ 1 2.90397- 5 3.87860- 3 2.40000+ 1 3.60000+ 1 3.33972- 4 3.87956- 3 2.40000+ 1 4.10000+ 1 4.59809- 5 3.83528- 3 2.40000+ 1 4.30000+ 1 4.87476- 5 3.85342- 3 2.40000+ 1 4.40000+ 1 4.52206- 4 3.86294- 3 2.40000+ 1 4.60000+ 1 1.03717- 6 3.88277- 3 2.40000+ 1 4.70000+ 1 5.53144- 6 3.88338- 3 2.40000+ 1 5.80000+ 1 4.49442- 6 3.88173- 3 2.50000+ 1 2.50000+ 1 1.06926- 2 3.50810- 3 2.50000+ 1 2.70000+ 1 4.57378- 4 3.57820- 3 2.50000+ 1 2.90000+ 1 1.47760- 3 3.63947- 3 2.50000+ 1 3.00000+ 1 3.83302- 3 3.69546- 3 2.50000+ 1 3.20000+ 1 1.36250- 3 3.78650- 3 2.50000+ 1 3.30000+ 1 9.16852- 4 3.79483- 3 2.50000+ 1 3.50000+ 1 3.37428- 4 3.88994- 3 2.50000+ 1 3.60000+ 1 2.69656- 4 3.89090- 3 2.50000+ 1 4.10000+ 1 7.70937- 5 3.84662- 3 2.50000+ 1 4.30000+ 1 2.39228- 4 3.86476- 3 2.50000+ 1 4.40000+ 1 5.46572- 4 3.87428- 3 2.50000+ 1 4.60000+ 1 8.29717- 6 3.89411- 3 2.50000+ 1 4.70000+ 1 5.18563- 6 3.89472- 3 2.50000+ 1 5.80000+ 1 7.60570- 6 3.89307- 3 2.70000+ 1 2.70000+ 1 5.53140- 6 3.64830- 3 2.70000+ 1 2.90000+ 1 1.24460- 5 3.70957- 3 2.70000+ 1 3.00000+ 1 3.70972- 4 3.76556- 3 2.70000+ 1 3.20000+ 1 1.45196- 5 3.85660- 3 2.70000+ 1 3.30000+ 1 1.93611- 5 3.86493- 3 2.70000+ 1 3.50000+ 1 3.11144- 6 3.96004- 3 2.70000+ 1 3.60000+ 1 5.18573- 6 3.96100- 3 2.70000+ 1 4.10000+ 1 2.07430- 6 3.91672- 3 2.70000+ 1 4.30000+ 1 2.07430- 6 3.93486- 3 2.70000+ 1 4.40000+ 1 5.25490- 5 3.94438- 3 2.70000+ 1 5.80000+ 1 3.45726- 7 3.96317- 3 2.90000+ 1 3.00000+ 1 4.50127- 4 3.82683- 3 2.90000+ 1 3.20000+ 1 2.76579- 6 3.91787- 3 2.90000+ 1 3.30000+ 1 4.80556- 5 3.92620- 3 2.90000+ 1 3.50000+ 1 3.80291- 6 4.02131- 3 2.90000+ 1 3.60000+ 1 1.90146- 5 4.02227- 3 2.90000+ 1 4.10000+ 1 2.41996- 6 3.97799- 3 2.90000+ 1 4.40000+ 1 6.43035- 5 4.00565- 3 2.90000+ 1 4.70000+ 1 3.45726- 7 4.02609- 3 2.90000+ 1 5.80000+ 1 3.45726- 7 4.02444- 3 3.00000+ 1 3.00000+ 1 5.52457- 4 3.88282- 3 3.00000+ 1 3.20000+ 1 6.50627- 4 3.97386- 3 3.00000+ 1 3.30000+ 1 8.29717- 4 3.98219- 3 3.00000+ 1 3.50000+ 1 5.11662- 5 4.07730- 3 3.00000+ 1 3.60000+ 1 5.84260- 5 4.07826- 3 3.00000+ 1 4.10000+ 1 7.39836- 5 4.03398- 3 3.00000+ 1 4.30000+ 1 7.60570- 5 4.05212- 3 3.00000+ 1 4.40000+ 1 1.63866- 4 4.06164- 3 3.00000+ 1 4.60000+ 1 3.80284- 6 4.08147- 3 3.00000+ 1 4.70000+ 1 4.49431- 6 4.08208- 3 3.00000+ 1 5.80000+ 1 7.60570- 6 4.08043- 3 3.20000+ 1 3.20000+ 1 3.80290- 6 4.06490- 3 3.20000+ 1 3.30000+ 1 1.10284- 4 4.07323- 3 3.20000+ 1 3.50000+ 1 1.72847- 6 4.16834- 3 3.20000+ 1 3.60000+ 1 1.41740- 5 4.16930- 3 3.20000+ 1 4.10000+ 1 2.41996- 6 4.12502- 3 3.20000+ 1 4.30000+ 1 3.45725- 7 4.14316- 3 3.20000+ 1 4.40000+ 1 9.23081- 5 4.15268- 3 3.20000+ 1 4.70000+ 1 6.91434- 7 4.17312- 3 3.20000+ 1 5.80000+ 1 3.45725- 7 4.17147- 3 3.30000+ 1 3.30000+ 1 4.77095- 5 4.08156- 3 3.30000+ 1 3.50000+ 1 1.34827- 5 4.17667- 3 3.30000+ 1 3.60000+ 1 1.10629- 5 4.17763- 3 3.30000+ 1 4.10000+ 1 3.45719- 6 4.13335- 3 3.30000+ 1 4.30000+ 1 6.91423- 6 4.15149- 3 3.30000+ 1 4.40000+ 1 1.17195- 4 4.16101- 3 3.30000+ 1 4.60000+ 1 6.91423- 7 4.18084- 3 3.30000+ 1 4.70000+ 1 6.91423- 7 4.18145- 3 3.30000+ 1 5.80000+ 1 3.45719- 7 4.17980- 3 3.50000+ 1 3.60000+ 1 4.49430- 6 4.27274- 3 3.50000+ 1 4.10000+ 1 6.91421- 7 4.22846- 3 3.50000+ 1 4.30000+ 1 6.91421- 7 4.24660- 3 3.50000+ 1 4.40000+ 1 7.25988- 6 4.25612- 3 3.60000+ 1 3.60000+ 1 6.91417- 7 4.27370- 3 3.60000+ 1 4.10000+ 1 1.03713- 6 4.22942- 3 3.60000+ 1 4.30000+ 1 3.11135- 6 4.24756- 3 3.60000+ 1 4.40000+ 1 8.29711- 6 4.25708- 3 4.10000+ 1 4.10000+ 1 3.45724- 7 4.18514- 3 4.10000+ 1 4.30000+ 1 3.45724- 7 4.20328- 3 4.10000+ 1 4.40000+ 1 1.03716- 5 4.21280- 3 4.30000+ 1 4.40000+ 1 1.07170- 5 4.23094- 3 4.40000+ 1 4.40000+ 1 1.21000- 5 4.24046- 3 4.40000+ 1 4.60000+ 1 6.91424- 7 4.26029- 3 4.40000+ 1 4.70000+ 1 6.91424- 7 4.26090- 3 4.40000+ 1 5.80000+ 1 1.03715- 6 4.25925- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.34521- 3 2.47260- 3 1.90000+ 1 2.08131- 4 2.70630- 3 2.40000+ 1 5.15891- 2 3.33471- 3 2.90000+ 1 5.54742- 4 3.47742- 3 3.00000+ 1 4.88721- 5 3.53341- 3 3.50000+ 1 9.35183- 4 3.72789- 3 4.30000+ 1 9.48803- 5 3.70271- 3 4.40000+ 1 7.90862- 6 3.71223- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 5.03588- 2 6.92500- 5 1.40000+ 1 3.30000+ 1 7.22637- 3 7.75800- 5 1.40000+ 1 3.50000+ 1 8.24202- 3 1.72690- 4 1.40000+ 1 3.60000+ 1 8.89288- 4 1.73650- 4 1.40000+ 1 4.10000+ 1 1.00127- 3 1.29370- 4 1.40000+ 1 4.30000+ 1 5.02179- 4 1.47510- 4 1.40000+ 1 4.40000+ 1 1.03264- 3 1.57030- 4 1.40000+ 1 4.60000+ 1 2.94132- 4 1.76860- 4 1.40000+ 1 4.70000+ 1 3.88618- 5 1.77470- 4 1.40000+ 1 5.80000+ 1 1.00593- 4 1.75820- 4 1.60000+ 1 1.60000+ 1 6.85839- 6 8.97000- 4 1.60000+ 1 1.80000+ 1 7.87952- 4 1.05270- 3 1.60000+ 1 1.90000+ 1 7.35356- 4 1.28640- 3 1.60000+ 1 2.10000+ 1 2.85537- 2 1.53872- 3 1.60000+ 1 2.20000+ 1 3.35671- 3 1.58176- 3 1.60000+ 1 2.40000+ 1 1.60806- 2 1.91481- 3 1.60000+ 1 2.50000+ 1 3.73025- 3 1.92615- 3 1.60000+ 1 2.70000+ 1 1.52416- 5 1.99625- 3 1.60000+ 1 2.90000+ 1 1.55454- 4 2.05752- 3 1.60000+ 1 3.00000+ 1 1.11258- 4 2.11351- 3 1.60000+ 1 3.20000+ 1 3.55500- 3 2.20455- 3 1.60000+ 1 3.30000+ 1 4.47327- 4 2.21288- 3 1.60000+ 1 3.50000+ 1 1.88985- 4 2.30799- 3 1.60000+ 1 3.60000+ 1 3.65777- 5 2.30895- 3 1.60000+ 1 4.10000+ 1 3.81009- 6 2.26467- 3 1.60000+ 1 4.30000+ 1 2.51470- 5 2.28281- 3 1.60000+ 1 4.40000+ 1 1.60022- 5 2.29233- 3 1.60000+ 1 4.60000+ 1 2.05746- 5 2.31216- 3 1.60000+ 1 4.70000+ 1 2.28603- 6 2.31277- 3 1.80000+ 1 1.80000+ 1 3.82538- 4 1.20840- 3 1.80000+ 1 1.90000+ 1 3.35751- 3 1.44210- 3 1.80000+ 1 2.10000+ 1 2.58871- 2 1.69442- 3 1.80000+ 1 2.20000+ 1 1.50357- 3 1.73746- 3 1.80000+ 1 2.40000+ 1 1.18216- 2 2.07051- 3 1.80000+ 1 2.50000+ 1 6.40714- 3 2.08185- 3 1.80000+ 1 2.70000+ 1 1.08963- 4 2.15195- 3 1.80000+ 1 2.90000+ 1 1.51648- 4 2.21322- 3 1.80000+ 1 3.00000+ 1 5.67706- 4 2.26921- 3 1.80000+ 1 3.20000+ 1 3.18922- 3 2.36025- 3 1.80000+ 1 3.30000+ 1 2.27842- 4 2.36858- 3 1.80000+ 1 3.50000+ 1 1.34877- 4 2.46369- 3 1.80000+ 1 3.60000+ 1 7.08678- 5 2.46465- 3 1.80000+ 1 4.10000+ 1 1.98125- 5 2.42037- 3 1.80000+ 1 4.30000+ 1 2.43848- 5 2.43851- 3 1.80000+ 1 4.40000+ 1 8.30608- 5 2.44803- 3 1.80000+ 1 4.60000+ 1 1.82884- 5 2.46786- 3 1.80000+ 1 4.70000+ 1 1.52412- 6 2.46847- 3 1.80000+ 1 5.80000+ 1 1.52412- 6 2.46682- 3 1.90000+ 1 1.90000+ 1 1.16966- 3 1.67580- 3 1.90000+ 1 2.10000+ 1 4.96718- 2 1.92812- 3 1.90000+ 1 2.20000+ 1 1.89290- 3 1.97116- 3 1.90000+ 1 2.40000+ 1 2.09099- 3 2.30421- 3 1.90000+ 1 2.50000+ 1 1.67942- 3 2.31555- 3 1.90000+ 1 2.70000+ 1 1.37162- 4 2.38565- 3 1.90000+ 1 2.90000+ 1 4.79331- 4 2.44692- 3 1.90000+ 1 3.00000+ 1 3.77190- 4 2.50291- 3 1.90000+ 1 3.20000+ 1 6.19294- 3 2.59395- 3 1.90000+ 1 3.30000+ 1 2.66707- 4 2.60228- 3 1.90000+ 1 3.50000+ 1 1.90512- 5 2.69739- 3 1.90000+ 1 3.60000+ 1 1.37162- 5 2.69835- 3 1.90000+ 1 4.10000+ 1 2.59082- 5 2.65407- 3 1.90000+ 1 4.30000+ 1 7.39159- 5 2.67221- 3 1.90000+ 1 4.40000+ 1 5.48668- 5 2.68173- 3 1.90000+ 1 4.60000+ 1 3.58156- 5 2.70156- 3 1.90000+ 1 4.70000+ 1 1.52413- 6 2.70217- 3 1.90000+ 1 5.80000+ 1 2.28600- 6 2.70052- 3 2.10000+ 1 2.10000+ 1 4.59968- 2 2.18044- 3 2.10000+ 1 2.20000+ 1 8.99769- 2 2.22348- 3 2.10000+ 1 2.40000+ 1 5.45436- 2 2.55653- 3 2.10000+ 1 2.50000+ 1 6.44457- 2 2.56787- 3 2.10000+ 1 2.70000+ 1 6.43136- 3 2.63797- 3 2.10000+ 1 2.90000+ 1 6.02815- 3 2.69924- 3 2.10000+ 1 3.00000+ 1 1.11691- 2 2.75523- 3 2.10000+ 1 3.20000+ 1 1.42292- 2 2.84627- 3 2.10000+ 1 3.30000+ 1 1.62001- 2 2.85460- 3 2.10000+ 1 3.50000+ 1 8.71740- 4 2.94971- 3 2.10000+ 1 3.60000+ 1 1.00511- 3 2.95067- 3 2.10000+ 1 4.10000+ 1 1.26416- 3 2.90639- 3 2.10000+ 1 4.30000+ 1 1.01960- 3 2.92453- 3 2.10000+ 1 4.40000+ 1 1.71682- 3 2.93405- 3 2.10000+ 1 4.60000+ 1 8.53451- 5 2.95388- 3 2.10000+ 1 4.70000+ 1 8.83913- 5 2.95449- 3 2.10000+ 1 5.80000+ 1 1.28778- 4 2.95284- 3 2.20000+ 1 2.20000+ 1 1.41889- 3 2.26652- 3 2.20000+ 1 2.40000+ 1 6.43013- 2 2.59957- 3 2.20000+ 1 2.50000+ 1 3.03605- 3 2.61091- 3 2.20000+ 1 2.70000+ 1 3.74141- 4 2.68101- 3 2.20000+ 1 2.90000+ 1 1.98127- 4 2.74228- 3 2.20000+ 1 3.00000+ 1 3.39112- 4 2.79827- 3 2.20000+ 1 3.20000+ 1 1.12567- 2 2.88931- 3 2.20000+ 1 3.30000+ 1 4.14554- 4 2.89764- 3 2.20000+ 1 3.50000+ 1 9.47979- 4 2.99275- 3 2.20000+ 1 3.60000+ 1 3.96264- 5 2.99371- 3 2.20000+ 1 4.10000+ 1 6.47720- 5 2.94943- 3 2.20000+ 1 4.30000+ 1 3.04796- 5 2.96757- 3 2.20000+ 1 4.40000+ 1 4.95318- 5 2.97709- 3 2.20000+ 1 4.60000+ 1 6.47720- 5 2.99692- 3 2.20000+ 1 4.70000+ 1 2.28600- 6 2.99753- 3 2.20000+ 1 5.80000+ 1 6.85828- 6 2.99588- 3 2.40000+ 1 2.40000+ 1 6.35309- 2 2.93262- 3 2.40000+ 1 2.50000+ 1 1.82049- 1 2.94396- 3 2.40000+ 1 2.70000+ 1 3.86259- 3 3.01406- 3 2.40000+ 1 2.90000+ 1 2.17405- 3 3.07533- 3 2.40000+ 1 3.00000+ 1 4.84646- 4 3.13132- 3 2.40000+ 1 3.20000+ 1 7.49135- 3 3.22236- 3 2.40000+ 1 3.30000+ 1 1.09885- 2 3.23069- 3 2.40000+ 1 3.50000+ 1 1.79766- 3 3.32580- 3 2.40000+ 1 3.60000+ 1 2.67766- 3 3.32676- 3 2.40000+ 1 4.10000+ 1 7.65081- 4 3.28248- 3 2.40000+ 1 4.30000+ 1 3.58904- 4 3.30062- 3 2.40000+ 1 4.40000+ 1 7.46762- 5 3.31014- 3 2.40000+ 1 4.60000+ 1 4.41971- 5 3.32997- 3 2.40000+ 1 4.70000+ 1 6.01978- 5 3.33058- 3 2.40000+ 1 5.80000+ 1 8.15342- 5 3.32893- 3 2.50000+ 1 2.50000+ 1 3.97137- 3 2.95530- 3 2.50000+ 1 2.70000+ 1 6.59753- 4 3.02540- 3 2.50000+ 1 2.90000+ 1 6.33261- 4 3.08667- 3 2.50000+ 1 3.00000+ 1 3.58766- 4 3.14266- 3 2.50000+ 1 3.20000+ 1 7.73724- 3 3.23370- 3 2.50000+ 1 3.30000+ 1 5.08883- 4 3.24203- 3 2.50000+ 1 3.50000+ 1 2.42315- 3 3.33714- 3 2.50000+ 1 3.60000+ 1 1.07552- 4 3.33810- 3 2.50000+ 1 4.10000+ 1 1.20394- 4 3.29382- 3 2.50000+ 1 4.30000+ 1 9.23005- 5 3.31196- 3 2.50000+ 1 4.40000+ 1 5.37758- 5 3.32148- 3 2.50000+ 1 4.60000+ 1 4.41448- 5 3.34131- 3 2.50000+ 1 4.70000+ 1 2.40778- 6 3.34192- 3 2.50000+ 1 5.80000+ 1 1.20394- 5 3.34027- 3 2.70000+ 1 2.70000+ 1 1.52413- 6 3.09550- 3 2.70000+ 1 2.90000+ 1 2.43851- 5 3.15677- 3 2.70000+ 1 3.00000+ 1 2.13367- 5 3.21276- 3 2.70000+ 1 3.20000+ 1 8.06985- 4 3.30380- 3 2.70000+ 1 3.30000+ 1 5.56293- 5 3.31213- 3 2.70000+ 1 3.50000+ 1 4.87702- 5 3.40724- 3 2.70000+ 1 3.60000+ 1 7.62035- 6 3.40820- 3 2.70000+ 1 4.10000+ 1 7.62035- 7 3.36392- 3 2.70000+ 1 4.30000+ 1 3.81003- 6 3.38206- 3 2.70000+ 1 4.40000+ 1 3.04796- 6 3.39158- 3 2.70000+ 1 4.60000+ 1 4.57209- 6 3.41141- 3 2.90000+ 1 2.90000+ 1 1.60020- 5 3.21804- 3 2.90000+ 1 3.00000+ 1 8.76321- 5 3.27403- 3 2.90000+ 1 3.20000+ 1 7.46774- 4 3.36507- 3 2.90000+ 1 3.30000+ 1 3.50530- 5 3.37340- 3 2.90000+ 1 3.50000+ 1 2.59082- 5 3.46851- 3 2.90000+ 1 3.60000+ 1 6.85829- 6 3.46947- 3 2.90000+ 1 4.10000+ 1 4.57209- 6 3.42519- 3 2.90000+ 1 4.30000+ 1 5.33407- 6 3.44333- 3 2.90000+ 1 4.40000+ 1 1.29546- 5 3.45285- 3 2.90000+ 1 4.60000+ 1 4.57209- 6 3.47268- 3 2.90000+ 1 5.80000+ 1 7.62035- 7 3.47164- 3 3.00000+ 1 3.00000+ 1 3.12423- 5 3.33002- 3 3.00000+ 1 3.20000+ 1 1.40211- 3 3.42106- 3 3.00000+ 1 3.30000+ 1 5.10561- 5 3.42939- 3 3.00000+ 1 3.50000+ 1 5.33408- 6 3.52450- 3 3.00000+ 1 3.60000+ 1 3.04797- 6 3.52546- 3 3.00000+ 1 4.10000+ 1 3.81004- 6 3.48118- 3 3.00000+ 1 4.30000+ 1 1.37163- 5 3.49932- 3 3.00000+ 1 4.40000+ 1 9.14441- 6 3.50884- 3 3.00000+ 1 4.60000+ 1 8.38245- 6 3.52867- 3 3.00000+ 1 5.80000+ 1 7.62037- 7 3.52763- 3 3.20000+ 1 3.20000+ 1 1.05549- 3 3.51210- 3 3.20000+ 1 3.30000+ 1 2.03998- 3 3.52043- 3 3.20000+ 1 3.50000+ 1 1.19638- 4 3.61554- 3 3.20000+ 1 3.60000+ 1 1.15826- 4 3.61650- 3 3.20000+ 1 4.10000+ 1 1.58502- 4 3.57222- 3 3.20000+ 1 4.30000+ 1 1.26499- 4 3.59036- 3 3.20000+ 1 4.40000+ 1 2.15654- 4 3.59988- 3 3.20000+ 1 4.60000+ 1 1.21922- 5 3.61971- 3 3.20000+ 1 4.70000+ 1 1.14306- 5 3.62032- 3 3.20000+ 1 5.80000+ 1 1.60021- 5 3.61867- 3 3.30000+ 1 3.30000+ 1 3.19844- 5 3.52876- 3 3.30000+ 1 3.50000+ 1 1.76320- 4 3.62387- 3 3.30000+ 1 3.60000+ 1 6.56102- 6 3.62483- 3 3.30000+ 1 4.10000+ 1 1.06614- 5 3.58055- 3 3.30000+ 1 4.30000+ 1 5.74065- 6 3.59869- 3 3.30000+ 1 4.40000+ 1 8.20121- 6 3.60821- 3 3.30000+ 1 4.60000+ 1 1.23018- 5 3.62804- 3 3.30000+ 1 5.80000+ 1 8.20121- 7 3.62700- 3 3.50000+ 1 3.50000+ 1 3.04792- 6 3.71898- 3 3.50000+ 1 3.60000+ 1 3.42920- 5 3.71994- 3 3.50000+ 1 4.10000+ 1 9.90612- 6 3.67566- 3 3.50000+ 1 4.30000+ 1 4.57203- 6 3.69380- 3 3.50000+ 1 4.40000+ 1 7.62025- 7 3.70332- 3 3.50000+ 1 4.60000+ 1 7.62025- 7 3.72315- 3 3.50000+ 1 4.70000+ 1 7.62025- 7 3.72376- 3 3.50000+ 1 5.80000+ 1 7.62025- 7 3.72211- 3 3.60000+ 1 4.10000+ 1 1.52412- 6 3.67662- 3 3.60000+ 1 4.30000+ 1 7.62029- 7 3.69476- 3 3.60000+ 1 4.40000+ 1 7.62029- 7 3.70428- 3 3.60000+ 1 4.60000+ 1 7.62029- 7 3.72411- 3 4.10000+ 1 4.30000+ 1 8.83936- 7 3.65048- 3 4.10000+ 1 4.40000+ 1 8.83936- 7 3.66000- 3 4.10000+ 1 4.60000+ 1 8.83936- 7 3.67983- 3 4.30000+ 1 4.30000+ 1 7.18502- 7 3.66862- 3 4.30000+ 1 4.40000+ 1 2.15540- 6 3.67814- 3 4.30000+ 1 4.60000+ 1 7.18502- 7 3.69797- 3 4.40000+ 1 4.40000+ 1 7.37948- 7 3.68766- 3 4.40000+ 1 4.60000+ 1 1.47596- 6 3.70749- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.58319- 3 2.52470- 3 2.40000+ 1 2.47619- 3 3.15311- 3 2.50000+ 1 4.84798- 2 3.16445- 3 3.00000+ 1 3.69489- 4 3.35181- 3 3.50000+ 1 4.40678- 5 3.54629- 3 3.60000+ 1 8.51117- 4 3.54725- 3 4.40000+ 1 5.97478- 5 3.53063- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.31117- 5 7.15400- 4 1.60000+ 1 1.80000+ 1 2.59920- 4 8.71100- 4 1.60000+ 1 1.90000+ 1 1.56262- 3 1.10480- 3 1.60000+ 1 2.10000+ 1 3.13208- 3 1.35712- 3 1.60000+ 1 2.20000+ 1 3.16075- 2 1.40016- 3 1.60000+ 1 2.40000+ 1 4.10546- 3 1.73321- 3 1.60000+ 1 2.50000+ 1 1.68657- 2 1.74455- 3 1.60000+ 1 2.70000+ 1 1.38827- 5 1.81465- 3 1.60000+ 1 2.90000+ 1 1.92820- 5 1.87592- 3 1.60000+ 1 3.00000+ 1 2.42177- 4 1.93191- 3 1.60000+ 1 3.20000+ 1 3.83336- 4 2.02295- 3 1.60000+ 1 3.30000+ 1 3.91950- 3 2.03128- 3 1.60000+ 1 3.50000+ 1 3.85629- 5 2.12639- 3 1.60000+ 1 3.60000+ 1 1.77389- 4 2.12735- 3 1.60000+ 1 4.10000+ 1 3.08504- 6 2.08307- 3 1.60000+ 1 4.30000+ 1 3.08504- 6 2.10121- 3 1.60000+ 1 4.40000+ 1 3.47077- 5 2.11073- 3 1.60000+ 1 4.60000+ 1 2.31390- 6 2.13056- 3 1.60000+ 1 4.70000+ 1 2.00530- 5 2.13117- 3 1.80000+ 1 1.80000+ 1 8.48420- 6 1.02680- 3 1.80000+ 1 1.90000+ 1 4.74481- 3 1.26050- 3 1.80000+ 1 2.10000+ 1 2.31390- 4 1.51282- 3 1.80000+ 1 2.20000+ 1 3.25731- 2 1.55586- 3 1.80000+ 1 2.40000+ 1 2.31539- 3 1.88891- 3 1.80000+ 1 2.50000+ 1 1.01723- 2 1.90025- 3 1.80000+ 1 2.70000+ 1 3.31655- 5 1.97035- 3 1.80000+ 1 2.90000+ 1 2.31390- 6 2.03162- 3 1.80000+ 1 3.00000+ 1 7.37328- 4 2.08761- 3 1.80000+ 1 3.20000+ 1 6.17029- 6 2.17865- 3 1.80000+ 1 3.30000+ 1 4.02835- 3 2.18698- 3 1.80000+ 1 3.50000+ 1 2.46811- 5 2.28209- 3 1.80000+ 1 3.60000+ 1 1.04125- 4 2.28305- 3 1.80000+ 1 4.10000+ 1 6.17029- 6 2.23877- 3 1.80000+ 1 4.30000+ 1 7.71286- 7 2.25691- 3 1.80000+ 1 4.40000+ 1 1.05663- 4 2.26643- 3 1.80000+ 1 4.70000+ 1 2.08239- 5 2.28687- 3 1.80000+ 1 5.80000+ 1 7.71286- 7 2.28522- 3 1.90000+ 1 1.90000+ 1 2.91468- 3 1.49420- 3 1.90000+ 1 2.10000+ 1 2.93482- 3 1.74652- 3 1.90000+ 1 2.20000+ 1 4.71090- 2 1.78956- 3 1.90000+ 1 2.40000+ 1 1.95985- 3 2.12261- 3 1.90000+ 1 2.50000+ 1 3.14827- 3 2.13395- 3 1.90000+ 1 2.70000+ 1 3.06204- 4 2.20405- 3 1.90000+ 1 2.90000+ 1 6.23194- 4 2.26532- 3 1.90000+ 1 3.00000+ 1 9.29398- 4 2.32131- 3 1.90000+ 1 3.20000+ 1 4.55044- 4 2.41235- 3 1.90000+ 1 3.30000+ 1 5.79224- 3 2.42068- 3 1.90000+ 1 3.50000+ 1 1.77389- 5 2.51579- 3 1.90000+ 1 3.60000+ 1 2.85375- 5 2.51675- 3 1.90000+ 1 4.10000+ 1 5.86171- 5 2.47247- 3 1.90000+ 1 4.30000+ 1 9.56359- 5 2.49061- 3 1.90000+ 1 4.40000+ 1 1.34977- 4 2.50013- 3 1.90000+ 1 4.60000+ 1 3.08506- 6 2.51996- 3 1.90000+ 1 4.70000+ 1 3.00796- 5 2.52057- 3 1.90000+ 1 5.80000+ 1 5.39887- 6 2.51892- 3 2.10000+ 1 2.10000+ 1 6.45537- 4 1.99884- 3 2.10000+ 1 2.20000+ 1 6.70424- 2 2.04188- 3 2.10000+ 1 2.40000+ 1 2.78660- 3 2.37493- 3 2.10000+ 1 2.50000+ 1 3.85790- 2 2.38627- 3 2.10000+ 1 2.70000+ 1 3.23909- 4 2.45637- 3 2.10000+ 1 2.90000+ 1 6.40149- 5 2.51764- 3 2.10000+ 1 3.00000+ 1 4.73549- 4 2.57363- 3 2.10000+ 1 3.20000+ 1 1.81245- 4 2.66467- 3 2.10000+ 1 3.30000+ 1 8.35813- 3 2.67300- 3 2.10000+ 1 3.50000+ 1 4.01072- 5 2.76811- 3 2.10000+ 1 3.60000+ 1 5.51466- 4 2.76907- 3 2.10000+ 1 4.10000+ 1 5.55326- 5 2.72479- 3 2.10000+ 1 4.30000+ 1 1.00263- 5 2.74293- 3 2.10000+ 1 4.40000+ 1 6.86440- 5 2.75245- 3 2.10000+ 1 4.60000+ 1 7.71272- 7 2.77228- 3 2.10000+ 1 4.70000+ 1 4.31913- 5 2.77289- 3 2.10000+ 1 5.80000+ 1 5.39875- 6 2.77124- 3 2.20000+ 1 2.20000+ 1 7.39929- 2 2.08492- 3 2.20000+ 1 2.40000+ 1 6.05896- 2 2.41797- 3 2.20000+ 1 2.50000+ 1 9.76887- 2 2.42931- 3 2.20000+ 1 2.70000+ 1 6.75706- 3 2.49941- 3 2.20000+ 1 2.90000+ 1 7.21829- 3 2.56068- 3 2.20000+ 1 3.00000+ 1 1.06883- 2 2.61667- 3 2.20000+ 1 3.20000+ 1 1.20221- 2 2.70771- 3 2.20000+ 1 3.30000+ 1 2.25398- 2 2.71604- 3 2.20000+ 1 3.50000+ 1 9.64106- 4 2.81115- 3 2.20000+ 1 3.60000+ 1 1.46458- 3 2.81211- 3 2.20000+ 1 4.10000+ 1 1.32040- 3 2.76783- 3 2.20000+ 1 4.30000+ 1 1.20856- 3 2.78597- 3 2.20000+ 1 4.40000+ 1 1.64519- 3 2.79549- 3 2.20000+ 1 4.60000+ 1 7.32705- 5 2.81532- 3 2.20000+ 1 4.70000+ 1 1.21094- 4 2.81593- 3 2.20000+ 1 5.80000+ 1 1.34977- 4 2.81428- 3 2.40000+ 1 2.40000+ 1 5.33244- 3 2.75102- 3 2.40000+ 1 2.50000+ 1 1.69459- 1 2.76236- 3 2.40000+ 1 2.70000+ 1 7.64336- 4 2.83246- 3 2.40000+ 1 2.90000+ 1 4.71254- 4 2.89373- 3 2.40000+ 1 3.00000+ 1 3.75624- 4 2.94972- 3 2.40000+ 1 3.20000+ 1 4.81256- 4 3.04076- 3 2.40000+ 1 3.30000+ 1 7.12190- 3 3.04909- 3 2.40000+ 1 3.50000+ 1 1.50397- 4 3.14420- 3 2.40000+ 1 3.60000+ 1 2.08090- 3 3.14516- 3 2.40000+ 1 4.10000+ 1 1.43460- 4 3.10088- 3 2.40000+ 1 4.30000+ 1 7.78992- 5 3.11902- 3 2.40000+ 1 4.40000+ 1 5.63033- 5 3.12854- 3 2.40000+ 1 4.60000+ 1 3.08503- 6 3.14837- 3 2.40000+ 1 4.70000+ 1 3.70216- 5 3.14898- 3 2.40000+ 1 5.80000+ 1 1.46537- 5 3.14733- 3 2.50000+ 1 2.50000+ 1 1.15640- 1 2.77370- 3 2.50000+ 1 2.70000+ 1 3.99524- 3 2.84380- 3 2.50000+ 1 2.90000+ 1 2.29463- 3 2.90507- 3 2.50000+ 1 3.00000+ 1 6.80292- 4 2.96106- 3 2.50000+ 1 3.20000+ 1 6.42195- 3 3.05210- 3 2.50000+ 1 3.30000+ 1 1.38365- 2 3.06043- 3 2.50000+ 1 3.50000+ 1 2.51215- 3 3.15554- 3 2.50000+ 1 3.60000+ 1 3.10975- 3 3.15650- 3 2.50000+ 1 4.10000+ 1 7.91356- 4 3.11222- 3 2.50000+ 1 4.30000+ 1 3.87198- 4 3.13036- 3 2.50000+ 1 4.40000+ 1 1.04902- 4 3.13988- 3 2.50000+ 1 4.60000+ 1 3.85641- 5 3.15971- 3 2.50000+ 1 4.70000+ 1 7.40438- 5 3.16032- 3 2.50000+ 1 5.80000+ 1 8.25285- 5 3.15867- 3 2.70000+ 1 2.70000+ 1 7.71251- 7 2.91390- 3 2.70000+ 1 2.90000+ 1 7.71251- 7 2.97517- 3 2.70000+ 1 3.00000+ 1 4.93600- 5 3.03116- 3 2.70000+ 1 3.20000+ 1 4.55021- 5 3.12220- 3 2.70000+ 1 3.30000+ 1 8.44521- 4 3.13053- 3 2.70000+ 1 3.50000+ 1 9.25491- 6 3.22564- 3 2.70000+ 1 3.60000+ 1 4.70470- 5 3.22660- 3 2.70000+ 1 4.40000+ 1 6.94130- 6 3.20998- 3 2.70000+ 1 4.70000+ 1 4.62731- 6 3.23042- 3 2.90000+ 1 3.00000+ 1 1.04127- 4 3.09243- 3 2.90000+ 1 3.20000+ 1 3.85639- 6 3.18347- 3 2.90000+ 1 3.30000+ 1 9.07050- 4 3.19180- 3 2.90000+ 1 3.50000+ 1 5.39898- 6 3.28691- 3 2.90000+ 1 3.60000+ 1 2.46818- 5 3.28787- 3 2.90000+ 1 4.40000+ 1 1.46541- 5 3.27125- 3 2.90000+ 1 4.70000+ 1 4.62764- 6 3.29169- 3 3.00000+ 1 3.00000+ 1 7.48118- 5 3.14842- 3 3.00000+ 1 3.20000+ 1 7.86699- 5 3.23946- 3 3.00000+ 1 3.30000+ 1 1.32038- 3 3.24779- 3 3.00000+ 1 3.50000+ 1 3.85625- 6 3.34290- 3 3.00000+ 1 3.60000+ 1 6.94155- 6 3.34386- 3 3.00000+ 1 4.10000+ 1 9.25525- 6 3.29958- 3 3.00000+ 1 4.30000+ 1 1.61966- 5 3.31772- 3 3.00000+ 1 4.40000+ 1 2.15948- 5 3.32724- 3 3.00000+ 1 4.60000+ 1 7.71279- 7 3.34707- 3 3.00000+ 1 4.70000+ 1 6.94155- 6 3.34768- 3 3.00000+ 1 5.80000+ 1 7.71279- 7 3.34603- 3 3.20000+ 1 3.20000+ 1 1.15695- 5 3.33050- 3 3.20000+ 1 3.30000+ 1 1.50932- 3 3.33883- 3 3.20000+ 1 3.50000+ 1 6.94156- 6 3.43394- 3 3.20000+ 1 3.60000+ 1 9.33235- 5 3.43490- 3 3.20000+ 1 4.10000+ 1 7.71279- 6 3.39062- 3 3.20000+ 1 4.30000+ 1 7.71279- 7 3.40876- 3 3.20000+ 1 4.40000+ 1 1.15695- 5 3.41828- 3 3.20000+ 1 4.70000+ 1 7.71279- 6 3.43872- 3 3.20000+ 1 5.80000+ 1 7.71279- 7 3.43707- 3 3.30000+ 1 3.30000+ 1 1.65359- 3 3.34716- 3 3.30000+ 1 3.50000+ 1 1.14145- 4 3.44227- 3 3.30000+ 1 3.60000+ 1 2.06698- 4 3.44323- 3 3.30000+ 1 4.10000+ 1 1.65051- 4 3.39895- 3 3.30000+ 1 4.30000+ 1 1.51933- 4 3.41709- 3 3.30000+ 1 4.40000+ 1 2.03612- 4 3.42661- 3 3.30000+ 1 4.60000+ 1 9.25519- 6 3.44644- 3 3.30000+ 1 4.70000+ 1 1.77386- 5 3.44705- 3 3.30000+ 1 5.80000+ 1 1.69676- 5 3.44540- 3 3.50000+ 1 3.60000+ 1 3.16214- 5 3.53834- 3 3.50000+ 1 4.10000+ 1 1.54258- 6 3.49406- 3 3.50000+ 1 4.30000+ 1 7.71286- 7 3.51220- 3 3.50000+ 1 4.40000+ 1 7.71286- 7 3.52172- 3 3.50000+ 1 4.70000+ 1 7.71286- 7 3.54216- 3 3.60000+ 1 3.60000+ 1 1.00266- 5 3.53930- 3 3.60000+ 1 4.10000+ 1 9.25548- 6 3.49502- 3 3.60000+ 1 4.30000+ 1 4.62759- 6 3.51316- 3 3.60000+ 1 4.40000+ 1 7.71298- 7 3.52268- 3 3.60000+ 1 4.60000+ 1 7.71298- 7 3.54251- 3 3.60000+ 1 4.70000+ 1 7.71298- 7 3.54312- 3 3.60000+ 1 5.80000+ 1 7.71298- 7 3.54147- 3 4.10000+ 1 4.40000+ 1 1.73533- 6 3.47840- 3 4.10000+ 1 4.70000+ 1 8.67662- 7 3.49884- 3 4.30000+ 1 4.40000+ 1 2.48093- 6 3.49654- 3 4.30000+ 1 4.70000+ 1 8.26959- 7 3.51698- 3 4.40000+ 1 4.40000+ 1 1.68539- 6 3.50606- 3 4.40000+ 1 4.70000+ 1 8.42695- 7 3.52650- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.44847- 5 1.55700- 4 1.90000+ 1 4.78408- 4 3.89400- 4 2.90000+ 1 3.28613- 4 1.16052- 3 3.00000+ 1 7.38328- 5 1.21651- 3 4.30000+ 1 6.87262- 5 1.38581- 3 4.40000+ 1 1.83936- 5 1.39533- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.46621- 2 4.33500- 5 1.80000+ 1 3.30000+ 1 1.00479- 1 5.16800- 5 1.80000+ 1 3.50000+ 1 5.59560- 3 1.46790- 4 1.80000+ 1 3.60000+ 1 5.97063- 3 1.47750- 4 1.80000+ 1 4.10000+ 1 9.25053- 3 1.03470- 4 1.80000+ 1 4.30000+ 1 7.47130- 3 1.21610- 4 1.80000+ 1 4.40000+ 1 1.02777- 2 1.31130- 4 1.80000+ 1 4.60000+ 1 3.31031- 4 1.50960- 4 1.80000+ 1 4.70000+ 1 4.63291- 4 1.51570- 4 1.80000+ 1 5.80000+ 1 9.18432- 4 1.49920- 4 1.90000+ 1 2.40000+ 1 5.65595- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 1.78573- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 4.10092- 2 6.87500- 5 1.90000+ 1 2.90000+ 1 4.96410- 2 1.30020- 4 1.90000+ 1 3.00000+ 1 4.40110- 2 1.86010- 4 1.90000+ 1 3.20000+ 1 3.91824- 2 2.77050- 4 1.90000+ 1 3.30000+ 1 4.87672- 2 2.85380- 4 1.90000+ 1 3.50000+ 1 3.96617- 4 3.80490- 4 1.90000+ 1 3.60000+ 1 6.81551- 4 3.81450- 4 1.90000+ 1 4.10000+ 1 7.97351- 3 3.37170- 4 1.90000+ 1 4.30000+ 1 7.93174- 3 3.55310- 4 1.90000+ 1 4.40000+ 1 6.79800- 3 3.64830- 4 1.90000+ 1 4.60000+ 1 2.22332- 4 3.84660- 4 1.90000+ 1 4.70000+ 1 2.56377- 4 3.85270- 4 1.90000+ 1 5.80000+ 1 8.15168- 4 3.83620- 4 2.10000+ 1 2.40000+ 1 3.75188- 3 2.39630- 4 2.10000+ 1 2.50000+ 1 4.63722- 3 2.50970- 4 2.10000+ 1 2.70000+ 1 1.70125- 2 3.21070- 4 2.10000+ 1 2.90000+ 1 6.04291- 3 3.82340- 4 2.10000+ 1 3.00000+ 1 5.76993- 3 4.38330- 4 2.10000+ 1 3.20000+ 1 2.01007- 3 5.29370- 4 2.10000+ 1 3.30000+ 1 3.08263- 3 5.37700- 4 2.10000+ 1 3.50000+ 1 3.26068- 4 6.32810- 4 2.10000+ 1 3.60000+ 1 3.14674- 4 6.33770- 4 2.10000+ 1 4.10000+ 1 2.42269- 3 5.89490- 4 2.10000+ 1 4.30000+ 1 9.50422- 4 6.07630- 4 2.10000+ 1 4.40000+ 1 7.28470- 4 6.17150- 4 2.10000+ 1 4.60000+ 1 1.12542- 5 6.36980- 4 2.10000+ 1 4.70000+ 1 1.58710- 5 6.37590- 4 2.10000+ 1 5.80000+ 1 2.36319- 4 6.35940- 4 2.20000+ 1 2.40000+ 1 5.40080- 3 2.82670- 4 2.20000+ 1 2.50000+ 1 6.56408- 3 2.94010- 4 2.20000+ 1 2.70000+ 1 2.37495- 2 3.64110- 4 2.20000+ 1 2.90000+ 1 9.34385- 3 4.25380- 4 2.20000+ 1 3.00000+ 1 6.92196- 3 4.81370- 4 2.20000+ 1 3.20000+ 1 2.42758- 3 5.72410- 4 2.20000+ 1 3.30000+ 1 3.37941- 3 5.80740- 4 2.20000+ 1 3.50000+ 1 3.45830- 4 6.75850- 4 2.20000+ 1 3.60000+ 1 4.79716- 4 6.76810- 4 2.20000+ 1 4.10000+ 1 3.35764- 3 6.32530- 4 2.20000+ 1 4.30000+ 1 1.30628- 3 6.50670- 4 2.20000+ 1 4.40000+ 1 9.75537- 4 6.60190- 4 2.20000+ 1 4.60000+ 1 1.39948- 5 6.80020- 4 2.20000+ 1 4.70000+ 1 1.77459- 5 6.80630- 4 2.20000+ 1 5.80000+ 1 3.26921- 4 6.78980- 4 2.40000+ 1 2.40000+ 1 9.02102- 3 6.15720- 4 2.40000+ 1 2.50000+ 1 1.70063- 2 6.27060- 4 2.40000+ 1 2.70000+ 1 2.09379- 2 6.97160- 4 2.40000+ 1 2.90000+ 1 2.93542- 3 7.58430- 4 2.40000+ 1 3.00000+ 1 1.27497- 2 8.14420- 4 2.40000+ 1 3.20000+ 1 1.21697- 3 9.05460- 4 2.40000+ 1 3.30000+ 1 7.78099- 4 9.13790- 4 2.40000+ 1 3.50000+ 1 1.41246- 4 1.00890- 3 2.40000+ 1 3.60000+ 1 1.29853- 4 1.00986- 3 2.40000+ 1 4.10000+ 1 2.51416- 3 9.65580- 4 2.40000+ 1 4.30000+ 1 3.68340- 4 9.83720- 4 2.40000+ 1 4.40000+ 1 1.49769- 3 9.93240- 4 2.40000+ 1 4.60000+ 1 6.92519- 6 1.01307- 3 2.40000+ 1 4.70000+ 1 3.89552- 6 1.01368- 3 2.40000+ 1 5.80000+ 1 2.38196- 4 1.01203- 3 2.50000+ 1 2.50000+ 1 1.48746- 2 6.38400- 4 2.50000+ 1 2.70000+ 1 2.70674- 2 7.08500- 4 2.50000+ 1 2.90000+ 1 1.38718- 3 7.69770- 4 2.50000+ 1 3.00000+ 1 1.34692- 2 8.25760- 4 2.50000+ 1 3.20000+ 1 7.04507- 4 9.16800- 4 2.50000+ 1 3.30000+ 1 1.73433- 3 9.25130- 4 2.50000+ 1 3.50000+ 1 1.36481- 4 1.02024- 3 2.50000+ 1 3.60000+ 1 2.26803- 4 1.02120- 3 2.50000+ 1 4.10000+ 1 3.23723- 3 9.76920- 4 2.50000+ 1 4.30000+ 1 1.69087- 4 9.95060- 4 2.50000+ 1 4.40000+ 1 1.51483- 3 1.00458- 3 2.50000+ 1 4.60000+ 1 4.03971- 6 1.02441- 3 2.50000+ 1 4.70000+ 1 8.80107- 6 1.02502- 3 2.50000+ 1 5.80000+ 1 3.06291- 4 1.02337- 3 2.70000+ 1 2.70000+ 1 1.69771- 2 7.78600- 4 2.70000+ 1 2.90000+ 1 2.52840- 2 8.39870- 4 2.70000+ 1 3.00000+ 1 3.96946- 2 8.95860- 4 2.70000+ 1 3.20000+ 1 3.94872- 2 9.86900- 4 2.70000+ 1 3.30000+ 1 5.45747- 2 9.95230- 4 2.70000+ 1 3.50000+ 1 4.74102- 3 1.09034- 3 2.70000+ 1 3.60000+ 1 5.87643- 3 1.09130- 3 2.70000+ 1 4.10000+ 1 5.49314- 3 1.04702- 3 2.70000+ 1 4.30000+ 1 4.26883- 3 1.06516- 3 2.70000+ 1 4.40000+ 1 6.07252- 3 1.07468- 3 2.70000+ 1 4.60000+ 1 2.41594- 4 1.09451- 3 2.70000+ 1 4.70000+ 1 2.99721- 4 1.09512- 3 2.70000+ 1 5.80000+ 1 5.48582- 4 1.09347- 3 2.90000+ 1 2.90000+ 1 1.95824- 3 9.01140- 4 2.90000+ 1 3.00000+ 1 8.89543- 3 9.57130- 4 2.90000+ 1 3.20000+ 1 3.56219- 3 1.04817- 3 2.90000+ 1 3.30000+ 1 2.49229- 3 1.05650- 3 2.90000+ 1 3.50000+ 1 2.70670- 4 1.15161- 3 2.90000+ 1 3.60000+ 1 1.67117- 4 1.15257- 3 2.90000+ 1 4.10000+ 1 3.08078- 3 1.10829- 3 2.90000+ 1 4.30000+ 1 5.34057- 4 1.12643- 3 2.90000+ 1 4.40000+ 1 1.01901- 3 1.13595- 3 2.90000+ 1 4.60000+ 1 1.99823- 5 1.15578- 3 2.90000+ 1 4.70000+ 1 1.27154- 5 1.15639- 3 2.90000+ 1 5.80000+ 1 2.92458- 4 1.15474- 3 3.00000+ 1 3.00000+ 1 5.04452- 3 1.01312- 3 3.00000+ 1 3.20000+ 1 2.33422- 3 1.10416- 3 3.00000+ 1 3.30000+ 1 5.79301- 3 1.11249- 3 3.00000+ 1 3.50000+ 1 1.26245- 3 1.20760- 3 3.00000+ 1 3.60000+ 1 1.53141- 3 1.20856- 3 3.00000+ 1 4.10000+ 1 5.04095- 3 1.16428- 3 3.00000+ 1 4.30000+ 1 1.33155- 3 1.18242- 3 3.00000+ 1 4.40000+ 1 1.34421- 3 1.19194- 3 3.00000+ 1 4.60000+ 1 1.45321- 5 1.21177- 3 3.00000+ 1 4.70000+ 1 3.08814- 5 1.21238- 3 3.00000+ 1 5.80000+ 1 4.83199- 4 1.21073- 3 3.20000+ 1 3.20000+ 1 1.05032- 3 1.19520- 3 3.20000+ 1 3.30000+ 1 3.24670- 3 1.20353- 3 3.20000+ 1 3.50000+ 1 1.18416- 4 1.29864- 3 3.20000+ 1 3.60000+ 1 8.40339- 5 1.29960- 3 3.20000+ 1 4.10000+ 1 5.12785- 3 1.25532- 3 3.20000+ 1 4.30000+ 1 4.88911- 4 1.27346- 3 3.20000+ 1 4.40000+ 1 2.31087- 4 1.28298- 3 3.20000+ 1 4.60000+ 1 1.14587- 5 1.30281- 3 3.20000+ 1 4.70000+ 1 1.52782- 5 1.30342- 3 3.20000+ 1 5.80000+ 1 4.88911- 4 1.30177- 3 3.30000+ 1 3.30000+ 1 2.08504- 3 1.21186- 3 3.30000+ 1 3.50000+ 1 9.35789- 5 1.30697- 3 3.30000+ 1 3.60000+ 1 1.70318- 4 1.30793- 3 3.30000+ 1 4.10000+ 1 6.93596- 3 1.26365- 3 3.30000+ 1 4.30000+ 1 2.90100- 4 1.28179- 3 3.30000+ 1 4.40000+ 1 7.01856- 4 1.29131- 3 3.30000+ 1 4.60000+ 1 1.68452- 5 1.31114- 3 3.30000+ 1 4.70000+ 1 2.05883- 5 1.31175- 3 3.30000+ 1 5.80000+ 1 6.60681- 4 1.31010- 3 3.50000+ 1 3.50000+ 1 1.81654- 6 1.40208- 3 3.50000+ 1 3.60000+ 1 7.26580- 6 1.40304- 3 3.50000+ 1 4.10000+ 1 5.61288- 4 1.35876- 3 3.50000+ 1 4.30000+ 1 3.26962- 5 1.37690- 3 3.50000+ 1 4.40000+ 1 1.54404- 4 1.38642- 3 3.50000+ 1 5.80000+ 1 5.26781- 5 1.40521- 3 3.60000+ 1 3.60000+ 1 3.63292- 6 1.40400- 3 3.60000+ 1 4.10000+ 1 6.93867- 4 1.35972- 3 3.60000+ 1 4.30000+ 1 1.81655- 5 1.37786- 3 3.60000+ 1 4.40000+ 1 1.85288- 4 1.38738- 3 3.60000+ 1 5.80000+ 1 6.53942- 5 1.40617- 3 4.10000+ 1 4.10000+ 1 4.34762- 4 1.31544- 3 4.10000+ 1 4.30000+ 1 5.54572- 4 1.33358- 3 4.10000+ 1 4.40000+ 1 8.05775- 4 1.34310- 3 4.10000+ 1 4.60000+ 1 3.09170- 5 1.36293- 3 4.10000+ 1 4.70000+ 1 3.86452- 5 1.36354- 3 4.10000+ 1 5.80000+ 1 8.50232- 5 1.36189- 3 4.30000+ 1 4.30000+ 1 3.98438- 5 1.35172- 3 4.30000+ 1 4.40000+ 1 1.63360- 4 1.36124- 3 4.30000+ 1 4.60000+ 1 1.99229- 6 1.38107- 3 4.30000+ 1 4.70000+ 1 1.99229- 6 1.38168- 3 4.30000+ 1 5.80000+ 1 5.37910- 5 1.38003- 3 4.40000+ 1 4.40000+ 1 9.82151- 5 1.37076- 3 4.40000+ 1 4.60000+ 1 2.08974- 6 1.39059- 3 4.40000+ 1 4.70000+ 1 4.17928- 6 1.39120- 3 4.40000+ 1 5.80000+ 1 8.35854- 5 1.38955- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.04427- 3 4.86020- 4 2.70000+ 1 2.47595- 4 9.43550- 4 3.20000+ 1 6.93990- 5 1.15185- 3 4.10000+ 1 4.94165- 5 1.21197- 3 5.80000+ 1 4.94735- 6 1.25842- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.93538- 2 3.03100- 5 1.90000+ 1 3.20000+ 1 1.11668- 2 1.21350- 4 1.90000+ 1 3.30000+ 1 1.66207- 2 1.29680- 4 1.90000+ 1 3.50000+ 1 6.49046- 4 2.24790- 4 1.90000+ 1 3.60000+ 1 9.67921- 4 2.25750- 4 1.90000+ 1 4.10000+ 1 2.22215- 3 1.81470- 4 1.90000+ 1 4.30000+ 1 2.46737- 3 1.99610- 4 1.90000+ 1 4.40000+ 1 2.26348- 3 2.09130- 4 1.90000+ 1 4.60000+ 1 4.83527- 5 2.28960- 4 1.90000+ 1 4.70000+ 1 6.82715- 5 2.29570- 4 1.90000+ 1 5.80000+ 1 2.17307- 4 2.27920- 4 2.10000+ 1 2.40000+ 1 9.29878- 2 8.39300- 5 2.10000+ 1 2.50000+ 1 2.27147- 1 9.52700- 5 2.10000+ 1 2.70000+ 1 3.49182- 2 1.65370- 4 2.10000+ 1 2.90000+ 1 2.84618- 2 2.26640- 4 2.10000+ 1 3.00000+ 1 3.48520- 2 2.82630- 4 2.10000+ 1 3.20000+ 1 1.94995- 2 3.73670- 4 2.10000+ 1 3.30000+ 1 2.89224- 2 3.82000- 4 2.10000+ 1 3.50000+ 1 5.74965- 4 4.77110- 4 2.10000+ 1 3.60000+ 1 1.08517- 3 4.78070- 4 2.10000+ 1 4.10000+ 1 6.84430- 3 4.33790- 4 2.10000+ 1 4.30000+ 1 4.49180- 3 4.51930- 4 2.10000+ 1 4.40000+ 1 5.28849- 3 4.61450- 4 2.10000+ 1 4.60000+ 1 1.16875- 4 4.81280- 4 2.10000+ 1 4.70000+ 1 1.52969- 4 4.81890- 4 2.10000+ 1 5.80000+ 1 6.92373- 4 4.80240- 4 2.20000+ 1 2.40000+ 1 4.21704- 2 1.26970- 4 2.20000+ 1 2.50000+ 1 1.07417- 2 1.38310- 4 2.20000+ 1 2.70000+ 1 5.46892- 3 2.08410- 4 2.20000+ 1 2.90000+ 1 2.35533- 2 2.69680- 4 2.20000+ 1 3.00000+ 1 4.73459- 3 3.25670- 4 2.20000+ 1 3.20000+ 1 2.19217- 3 4.16710- 4 2.20000+ 1 3.30000+ 1 2.47080- 3 4.25040- 4 2.20000+ 1 3.50000+ 1 2.05052- 4 5.20150- 4 2.20000+ 1 3.60000+ 1 1.15105- 4 5.21110- 4 2.20000+ 1 4.10000+ 1 8.16120- 4 4.76830- 4 2.20000+ 1 4.30000+ 1 2.59882- 3 4.94970- 4 2.20000+ 1 4.40000+ 1 5.52824- 4 5.04490- 4 2.20000+ 1 4.60000+ 1 1.14836- 5 5.24320- 4 2.20000+ 1 4.70000+ 1 1.27138- 5 5.24930- 4 2.20000+ 1 5.80000+ 1 8.02492- 5 5.23280- 4 2.40000+ 1 2.40000+ 1 2.10502- 3 4.60020- 4 2.40000+ 1 2.50000+ 1 1.13031- 2 4.71360- 4 2.40000+ 1 2.70000+ 1 5.11521- 3 5.41460- 4 2.40000+ 1 2.90000+ 1 2.01405- 2 6.02730- 4 2.40000+ 1 3.00000+ 1 2.62913- 3 6.58720- 4 2.40000+ 1 3.20000+ 1 6.07222- 3 7.49760- 4 2.40000+ 1 3.30000+ 1 4.61184- 3 7.58090- 4 2.40000+ 1 3.50000+ 1 2.00126- 4 8.53200- 4 2.40000+ 1 3.60000+ 1 1.26996- 4 8.54160- 4 2.40000+ 1 4.10000+ 1 1.01616- 3 8.09880- 4 2.40000+ 1 4.30000+ 1 2.26249- 3 8.28020- 4 2.40000+ 1 4.40000+ 1 3.51318- 4 8.37540- 4 2.40000+ 1 4.60000+ 1 2.96643- 5 8.57370- 4 2.40000+ 1 4.70000+ 1 2.47423- 5 8.57980- 4 2.40000+ 1 5.80000+ 1 1.03618- 4 8.56330- 4 2.50000+ 1 2.50000+ 1 5.70452- 4 4.82700- 4 2.50000+ 1 2.70000+ 1 2.82318- 3 5.52800- 4 2.50000+ 1 2.90000+ 1 3.08916- 2 6.14070- 4 2.50000+ 1 3.00000+ 1 1.71289- 3 6.70060- 4 2.50000+ 1 3.20000+ 1 1.26712- 2 7.61100- 4 2.50000+ 1 3.30000+ 1 1.21828- 3 7.69430- 4 2.50000+ 1 3.50000+ 1 4.72981- 5 8.64540- 4 2.50000+ 1 3.60000+ 1 2.57000- 5 8.65500- 4 2.50000+ 1 4.10000+ 1 4.15571- 4 8.21220- 4 2.50000+ 1 4.30000+ 1 3.33342- 3 8.39360- 4 2.50000+ 1 4.40000+ 1 2.16804- 4 8.48880- 4 2.50000+ 1 4.60000+ 1 6.12402- 5 8.68710- 4 2.50000+ 1 4.70000+ 1 6.15167- 6 8.69320- 4 2.50000+ 1 5.80000+ 1 4.04641- 5 8.67670- 4 2.70000+ 1 2.70000+ 1 1.71261- 3 6.22900- 4 2.70000+ 1 2.90000+ 1 2.23754- 2 6.84170- 4 2.70000+ 1 3.00000+ 1 4.28904- 3 7.40160- 4 2.70000+ 1 3.20000+ 1 5.60685- 3 8.31200- 4 2.70000+ 1 3.30000+ 1 3.94435- 3 8.39530- 4 2.70000+ 1 3.50000+ 1 1.27538- 4 9.34640- 4 2.70000+ 1 3.60000+ 1 2.62664- 4 9.35600- 4 2.70000+ 1 4.10000+ 1 5.14675- 4 8.91320- 4 2.70000+ 1 4.30000+ 1 2.37750- 3 9.09460- 4 2.70000+ 1 4.40000+ 1 5.89078- 4 9.18980- 4 2.70000+ 1 4.60000+ 1 2.73280- 5 9.38810- 4 2.70000+ 1 4.70000+ 1 1.97363- 5 9.39420- 4 2.70000+ 1 5.80000+ 1 5.01014- 5 9.37770- 4 2.90000+ 1 2.90000+ 1 1.61833- 2 7.45440- 4 2.90000+ 1 3.00000+ 1 4.23792- 2 8.01430- 4 2.90000+ 1 3.20000+ 1 3.39683- 2 8.92470- 4 2.90000+ 1 3.30000+ 1 5.66882- 2 9.00800- 4 2.90000+ 1 3.50000+ 1 4.48326- 3 9.95910- 4 2.90000+ 1 3.60000+ 1 6.06686- 3 9.96870- 4 2.90000+ 1 4.10000+ 1 4.78990- 3 9.52590- 4 2.90000+ 1 4.30000+ 1 4.52199- 3 9.70730- 4 2.90000+ 1 4.40000+ 1 6.51991- 3 9.80250- 4 2.90000+ 1 4.60000+ 1 2.09794- 4 1.00008- 3 2.90000+ 1 4.70000+ 1 3.11482- 4 1.00069- 3 2.90000+ 1 5.80000+ 1 4.88994- 4 9.99040- 4 3.00000+ 1 3.00000+ 1 1.35887- 3 8.57420- 4 3.00000+ 1 3.20000+ 1 5.82348- 3 9.48460- 4 3.00000+ 1 3.30000+ 1 2.64361- 3 9.56790- 4 3.00000+ 1 3.50000+ 1 1.48405- 4 1.05190- 3 3.00000+ 1 3.60000+ 1 2.13348- 4 1.05286- 3 3.00000+ 1 4.10000+ 1 6.02915- 4 1.00858- 3 3.00000+ 1 4.30000+ 1 4.41217- 3 1.02672- 3 3.00000+ 1 4.40000+ 1 3.50934- 4 1.03624- 3 3.00000+ 1 4.60000+ 1 2.78272- 5 1.05607- 3 3.00000+ 1 4.70000+ 1 1.39137- 5 1.05668- 3 3.00000+ 1 5.80000+ 1 5.87461- 5 1.05503- 3 3.20000+ 1 3.20000+ 1 1.59704- 3 1.03950- 3 3.20000+ 1 3.30000+ 1 2.43354- 3 1.04783- 3 3.20000+ 1 3.50000+ 1 5.01488- 4 1.14294- 3 3.20000+ 1 3.60000+ 1 8.32084- 4 1.14390- 3 3.20000+ 1 4.10000+ 1 7.38434- 4 1.09962- 3 3.20000+ 1 4.30000+ 1 2.58681- 3 1.11776- 3 3.20000+ 1 4.40000+ 1 6.22731- 4 1.12728- 3 3.20000+ 1 4.60000+ 1 1.76348- 5 1.14711- 3 3.20000+ 1 4.70000+ 1 1.32259- 5 1.14772- 3 3.20000+ 1 5.80000+ 1 7.38434- 5 1.14607- 3 3.30000+ 1 3.30000+ 1 3.86332- 4 1.05616- 3 3.30000+ 1 3.50000+ 1 1.38348- 4 1.15127- 3 3.30000+ 1 3.60000+ 1 7.07098- 5 1.15223- 3 3.30000+ 1 4.10000+ 1 3.36133- 4 1.10795- 3 3.30000+ 1 4.30000+ 1 3.96692- 3 1.12609- 3 3.30000+ 1 4.40000+ 1 2.18286- 4 1.13561- 3 3.30000+ 1 4.60000+ 1 1.02481- 5 1.15544- 3 3.30000+ 1 4.70000+ 1 4.09910- 6 1.15605- 3 3.30000+ 1 5.80000+ 1 3.17684- 5 1.15440- 3 3.50000+ 1 3.50000+ 1 1.02482- 6 1.24638- 3 3.50000+ 1 3.60000+ 1 5.12388- 6 1.24734- 3 3.50000+ 1 4.10000+ 1 1.53721- 5 1.20306- 3 3.50000+ 1 4.30000+ 1 3.01291- 4 1.22120- 3 3.50000+ 1 4.40000+ 1 1.22976- 5 1.23072- 3 3.50000+ 1 4.60000+ 1 2.04959- 6 1.25055- 3 3.50000+ 1 4.70000+ 1 1.02482- 6 1.25116- 3 3.50000+ 1 5.80000+ 1 2.04959- 6 1.24951- 3 3.60000+ 1 3.60000+ 1 1.02483- 6 1.24830- 3 3.60000+ 1 4.10000+ 1 2.45961- 5 1.20402- 3 3.60000+ 1 4.30000+ 1 4.08900- 4 1.22216- 3 3.60000+ 1 4.40000+ 1 1.63972- 5 1.23168- 3 3.60000+ 1 4.60000+ 1 4.09917- 6 1.25151- 3 3.60000+ 1 5.80000+ 1 2.04961- 6 1.25047- 3 4.10000+ 1 4.10000+ 1 2.37750- 5 1.15974- 3 4.10000+ 1 4.30000+ 1 2.89867- 4 1.17788- 3 4.10000+ 1 4.40000+ 1 4.84651- 5 1.18740- 3 4.10000+ 1 4.60000+ 1 2.74322- 6 1.20723- 3 4.10000+ 1 4.70000+ 1 1.82880- 6 1.20784- 3 4.10000+ 1 5.80000+ 1 4.57193- 6 1.20619- 3 4.30000+ 1 4.30000+ 1 1.91228- 4 1.19602- 3 4.30000+ 1 4.40000+ 1 4.58714- 4 1.20554- 3 4.30000+ 1 4.60000+ 1 1.46296- 5 1.22537- 3 4.30000+ 1 4.70000+ 1 2.19438- 5 1.22598- 3 4.30000+ 1 5.80000+ 1 3.34385- 5 1.22433- 3 4.40000+ 1 4.40000+ 1 1.34919- 5 1.21506- 3 4.40000+ 1 4.60000+ 1 2.89104- 6 1.23489- 3 4.40000+ 1 4.70000+ 1 9.63695- 7 1.23550- 3 4.40000+ 1 5.80000+ 1 4.81829- 6 1.23385- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.27894- 5 2.52320- 4 2.20000+ 1 1.92277- 4 2.95360- 4 2.70000+ 1 2.80941- 4 7.09850- 4 3.20000+ 1 3.02879- 5 9.18150- 4 3.30000+ 1 1.79050- 4 9.26480- 4 4.10000+ 1 5.46973- 5 9.78270- 4 5.80000+ 1 5.88617- 6 1.02472- 3 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 2.90000+ 1 1.58914- 2 0.00000+ 0 2.10000+ 1 3.00000+ 1 4.52132- 2 4.89300- 5 2.10000+ 1 3.20000+ 1 1.59083- 2 1.39970- 4 2.10000+ 1 3.30000+ 1 2.44313- 2 1.48300- 4 2.10000+ 1 3.50000+ 1 7.20005- 4 2.43410- 4 2.10000+ 1 3.60000+ 1 6.16930- 4 2.44370- 4 2.10000+ 1 4.10000+ 1 3.50794- 3 2.00090- 4 2.10000+ 1 4.30000+ 1 2.50928- 3 2.18230- 4 2.10000+ 1 4.40000+ 1 5.63409- 3 2.27750- 4 2.10000+ 1 4.60000+ 1 8.77690- 5 2.47580- 4 2.10000+ 1 4.70000+ 1 1.17624- 4 2.48190- 4 2.10000+ 1 5.80000+ 1 3.52854- 4 2.46540- 4 2.20000+ 1 2.90000+ 1 1.24958- 1 3.59800- 5 2.20000+ 1 3.00000+ 1 1.39056- 1 9.19700- 5 2.20000+ 1 3.20000+ 1 1.21692- 1 1.83010- 4 2.20000+ 1 3.30000+ 1 1.46498- 1 1.91340- 4 2.20000+ 1 3.50000+ 1 2.42318- 3 2.86450- 4 2.20000+ 1 3.60000+ 1 3.22893- 3 2.87410- 4 2.20000+ 1 4.10000+ 1 2.27617- 2 2.43130- 4 2.20000+ 1 4.30000+ 1 2.01202- 2 2.61270- 4 2.20000+ 1 4.40000+ 1 1.96339- 2 2.70790- 4 2.20000+ 1 4.60000+ 1 6.68424- 4 2.90620- 4 2.20000+ 1 4.70000+ 1 7.46664- 4 2.91230- 4 2.20000+ 1 5.80000+ 1 2.28630- 3 2.89580- 4 2.40000+ 1 2.40000+ 1 9.23129- 4 2.26320- 4 2.40000+ 1 2.50000+ 1 4.78976- 3 2.37660- 4 2.40000+ 1 2.70000+ 1 9.11780- 3 3.07760- 4 2.40000+ 1 2.90000+ 1 4.85348- 3 3.69030- 4 2.40000+ 1 3.00000+ 1 5.46161- 2 4.25020- 4 2.40000+ 1 3.20000+ 1 2.11038- 3 5.16060- 4 2.40000+ 1 3.30000+ 1 7.90886- 3 5.24390- 4 2.40000+ 1 3.50000+ 1 1.83824- 4 6.19500- 4 2.40000+ 1 3.60000+ 1 1.71761- 4 6.20460- 4 2.40000+ 1 4.10000+ 1 1.12856- 3 5.76180- 4 2.40000+ 1 4.30000+ 1 6.86171- 4 5.94320- 4 2.40000+ 1 4.40000+ 1 5.62789- 3 6.03840- 4 2.40000+ 1 4.60000+ 1 1.14892- 5 6.23670- 4 2.40000+ 1 4.70000+ 1 3.36046- 5 6.24280- 4 2.40000+ 1 5.80000+ 1 1.07707- 4 6.22630- 4 2.50000+ 1 2.50000+ 1 3.88529- 3 2.49000- 4 2.50000+ 1 2.70000+ 1 2.10281- 2 3.19100- 4 2.50000+ 1 2.90000+ 1 1.71283- 2 3.80370- 4 2.50000+ 1 3.00000+ 1 6.58675- 2 4.36360- 4 2.50000+ 1 3.20000+ 1 1.61343- 3 5.27400- 4 2.50000+ 1 3.30000+ 1 1.11559- 2 5.35730- 4 2.50000+ 1 3.50000+ 1 6.82119- 4 6.30840- 4 2.50000+ 1 3.60000+ 1 8.82060- 4 6.31800- 4 2.50000+ 1 4.10000+ 1 3.16536- 3 5.87520- 4 2.50000+ 1 4.30000+ 1 2.53428- 3 6.05660- 4 2.50000+ 1 4.40000+ 1 6.86727- 3 6.15180- 4 2.50000+ 1 4.60000+ 1 9.96770- 6 6.35010- 4 2.50000+ 1 4.70000+ 1 4.92725- 5 6.35620- 4 2.50000+ 1 5.80000+ 1 3.11869- 4 6.33970- 4 2.70000+ 1 2.70000+ 1 2.00822- 5 3.89200- 4 2.70000+ 1 2.90000+ 1 2.38120- 4 4.50470- 4 2.70000+ 1 3.00000+ 1 4.93881- 3 5.06460- 4 2.70000+ 1 3.20000+ 1 4.56162- 4 5.97500- 4 2.70000+ 1 3.30000+ 1 7.75754- 4 6.05830- 4 2.70000+ 1 3.50000+ 1 5.70912- 5 7.00940- 4 2.70000+ 1 3.60000+ 1 5.45092- 5 7.01900- 4 2.70000+ 1 4.10000+ 1 1.11884- 5 6.57620- 4 2.70000+ 1 4.30000+ 1 2.52464- 5 6.75760- 4 2.70000+ 1 4.40000+ 1 4.88579- 4 6.85280- 4 2.70000+ 1 4.60000+ 1 2.29509- 6 7.05110- 4 2.70000+ 1 4.70000+ 1 3.15591- 6 7.05720- 4 2.70000+ 1 5.80000+ 1 1.14760- 6 7.04070- 4 2.90000+ 1 3.00000+ 1 5.61561- 3 5.67730- 4 2.90000+ 1 3.20000+ 1 2.50739- 4 6.58770- 4 2.90000+ 1 3.30000+ 1 7.05470- 4 6.67100- 4 2.90000+ 1 3.50000+ 1 4.50419- 5 7.62210- 4 2.90000+ 1 3.60000+ 1 9.46737- 5 7.63170- 4 2.90000+ 1 4.10000+ 1 4.27466- 5 7.18890- 4 2.90000+ 1 4.30000+ 1 3.72957- 6 7.37030- 4 2.90000+ 1 4.40000+ 1 5.71213- 4 7.46550- 4 2.90000+ 1 4.60000+ 1 1.14760- 6 7.66380- 4 2.90000+ 1 4.70000+ 1 2.86895- 6 7.66990- 4 2.90000+ 1 5.80000+ 1 4.30332- 6 7.65340- 4 3.00000+ 1 3.00000+ 1 7.12017- 3 6.23720- 4 3.00000+ 1 3.20000+ 1 8.39045- 3 7.14760- 4 3.00000+ 1 3.30000+ 1 1.11924- 2 7.23090- 4 3.00000+ 1 3.50000+ 1 1.03192- 3 8.18200- 4 3.00000+ 1 3.60000+ 1 1.23131- 3 8.19160- 4 3.00000+ 1 4.10000+ 1 9.99813- 4 7.74880- 4 3.00000+ 1 4.30000+ 1 9.23214- 4 7.93020- 4 3.00000+ 1 4.40000+ 1 1.82260- 3 8.02540- 4 3.00000+ 1 4.60000+ 1 5.10673- 5 8.22370- 4 3.00000+ 1 4.70000+ 1 6.11078- 5 8.22980- 4 3.00000+ 1 5.80000+ 1 1.02130- 4 8.21330- 4 3.20000+ 1 3.20000+ 1 1.69750- 4 8.05800- 4 3.20000+ 1 3.30000+ 1 1.01646- 3 8.14130- 4 3.20000+ 1 3.50000+ 1 2.38350- 5 9.09240- 4 3.20000+ 1 3.60000+ 1 4.18561- 5 9.10200- 4 3.20000+ 1 4.10000+ 1 6.51103- 5 8.65920- 4 3.20000+ 1 4.30000+ 1 4.12752- 5 8.84060- 4 3.20000+ 1 4.40000+ 1 8.74333- 4 8.93580- 4 3.20000+ 1 4.60000+ 1 1.74401- 6 9.13410- 4 3.20000+ 1 4.70000+ 1 4.65073- 6 9.14020- 4 3.20000+ 1 5.80000+ 1 6.39475- 6 9.12370- 4 3.30000+ 1 3.30000+ 1 9.38089- 4 8.22460- 4 3.30000+ 1 3.50000+ 1 7.60006- 5 9.17570- 4 3.30000+ 1 3.60000+ 1 1.04322- 4 9.18530- 4 3.30000+ 1 4.10000+ 1 1.45838- 4 8.74250- 4 3.30000+ 1 4.30000+ 1 1.14984- 4 8.92390- 4 3.30000+ 1 4.40000+ 1 1.14121- 3 9.01910- 4 3.30000+ 1 4.60000+ 1 5.32842- 6 9.21740- 4 3.30000+ 1 4.70000+ 1 8.97418- 6 9.22350- 4 3.30000+ 1 5.80000+ 1 1.48640- 5 9.20700- 4 3.50000+ 1 3.50000+ 1 2.86883- 7 1.01268- 3 3.50000+ 1 3.60000+ 1 2.29500- 6 1.01364- 3 3.50000+ 1 4.10000+ 1 7.17197- 6 9.69360- 4 3.50000+ 1 4.30000+ 1 2.86883- 6 9.87500- 4 3.50000+ 1 4.40000+ 1 1.02697- 4 9.97020- 4 3.50000+ 1 4.70000+ 1 2.86883- 7 1.01746- 3 3.50000+ 1 5.80000+ 1 5.73756- 7 1.01581- 3 3.60000+ 1 3.60000+ 1 8.60683- 7 1.01460- 3 3.60000+ 1 4.10000+ 1 7.17234- 6 9.70320- 4 3.60000+ 1 4.30000+ 1 6.02473- 6 9.88460- 4 3.60000+ 1 4.40000+ 1 1.21929- 4 9.97980- 4 3.60000+ 1 4.60000+ 1 2.86898- 7 1.01781- 3 3.60000+ 1 4.70000+ 1 5.73786- 7 1.01842- 3 3.60000+ 1 5.80000+ 1 5.73786- 7 1.01677- 3 4.10000+ 1 4.30000+ 1 3.53135- 6 9.44180- 4 4.10000+ 1 4.40000+ 1 1.01526- 4 9.53700- 4 4.10000+ 1 4.60000+ 1 2.94282- 7 9.73530- 4 4.10000+ 1 4.70000+ 1 5.88554- 7 9.74140- 4 4.30000+ 1 4.40000+ 1 9.98455- 5 9.71840- 4 4.30000+ 1 4.60000+ 1 3.06280- 7 9.91670- 4 4.30000+ 1 4.70000+ 1 6.12550- 7 9.92280- 4 4.30000+ 1 5.80000+ 1 3.06280- 7 9.90630- 4 4.40000+ 1 4.40000+ 1 1.14689- 4 9.81360- 4 4.40000+ 1 4.60000+ 1 5.36222- 6 1.00119- 3 4.40000+ 1 4.70000+ 1 6.55387- 6 1.00180- 3 4.40000+ 1 5.80000+ 1 1.04259- 5 1.00015- 3 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.65130- 4 3.76090- 4 2.90000+ 1 1.56490- 4 5.18800- 4 3.00000+ 1 1.77830- 5 5.74790- 4 3.50000+ 1 2.03490- 5 7.69270- 4 4.30000+ 1 2.79790- 5 7.44090- 4 4.40000+ 1 2.98590- 6 7.53610- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 1.31440- 3 3.41300- 5 2.20000+ 1 3.60000+ 1 1.52192- 3 3.50900- 5 2.20000+ 1 4.30000+ 1 1.20923- 3 8.95000- 6 2.20000+ 1 4.40000+ 1 2.74906- 3 1.84700- 5 2.20000+ 1 4.60000+ 1 4.37521- 4 3.83000- 5 2.20000+ 1 4.70000+ 1 8.01482- 5 3.89100- 5 2.20000+ 1 5.80000+ 1 2.15030- 4 3.72600- 5 2.40000+ 1 2.50000+ 1 2.72205- 2 0.00000+ 0 2.40000+ 1 2.70000+ 1 1.18511- 1 5.54400- 5 2.40000+ 1 2.90000+ 1 1.05924- 1 1.16710- 4 2.40000+ 1 3.00000+ 1 1.27076- 1 1.72700- 4 2.40000+ 1 3.20000+ 1 1.28377- 1 2.63740- 4 2.40000+ 1 3.30000+ 1 1.34811- 1 2.72070- 4 2.40000+ 1 3.50000+ 1 1.91125- 3 3.67180- 4 2.40000+ 1 3.60000+ 1 1.37823- 3 3.68140- 4 2.40000+ 1 4.10000+ 1 2.35993- 2 3.23860- 4 2.40000+ 1 4.30000+ 1 1.73665- 2 3.42000- 4 2.40000+ 1 4.40000+ 1 1.88694- 2 3.51520- 4 2.40000+ 1 4.60000+ 1 6.62207- 4 3.71350- 4 2.40000+ 1 4.70000+ 1 6.97228- 4 3.71960- 4 2.40000+ 1 5.80000+ 1 2.41536- 3 3.70310- 4 2.50000+ 1 2.50000+ 1 2.16173- 3 0.00000+ 0 2.50000+ 1 2.70000+ 1 8.98147- 3 6.67800- 5 2.50000+ 1 2.90000+ 1 1.77461- 2 1.28050- 4 2.50000+ 1 3.00000+ 1 8.21103- 3 1.84040- 4 2.50000+ 1 3.20000+ 1 1.37228- 1 2.75080- 4 2.50000+ 1 3.30000+ 1 5.81427- 3 2.83410- 4 2.50000+ 1 3.50000+ 1 8.09326- 4 3.78520- 4 2.50000+ 1 3.60000+ 1 1.72978- 4 3.79480- 4 2.50000+ 1 4.10000+ 1 1.27272- 3 3.35200- 4 2.50000+ 1 4.30000+ 1 1.82323- 3 3.53340- 4 2.50000+ 1 4.40000+ 1 9.44203- 4 3.62860- 4 2.50000+ 1 4.60000+ 1 6.31525- 4 3.82690- 4 2.50000+ 1 4.70000+ 1 2.84661- 5 3.83300- 4 2.50000+ 1 5.80000+ 1 1.25251- 4 3.81650- 4 2.70000+ 1 2.70000+ 1 8.74612- 4 1.36880- 4 2.70000+ 1 2.90000+ 1 2.13598- 3 1.98150- 4 2.70000+ 1 3.00000+ 1 1.64499- 3 2.54140- 4 2.70000+ 1 3.20000+ 1 1.23024- 2 3.45180- 4 2.70000+ 1 3.30000+ 1 2.14729- 3 3.53510- 4 2.70000+ 1 3.50000+ 1 4.83946- 4 4.48620- 4 2.70000+ 1 3.60000+ 1 3.94610- 4 4.49580- 4 2.70000+ 1 4.10000+ 1 2.02322- 4 4.05300- 4 2.70000+ 1 4.30000+ 1 2.35622- 4 4.23440- 4 2.70000+ 1 4.40000+ 1 1.94897- 4 4.32960- 4 2.70000+ 1 4.60000+ 1 5.43074- 5 4.52790- 4 2.70000+ 1 4.70000+ 1 8.32126- 6 4.53400- 4 2.70000+ 1 5.80000+ 1 1.97088- 5 4.51750- 4 2.90000+ 1 2.90000+ 1 4.47153- 4 2.59420- 4 2.90000+ 1 3.00000+ 1 2.14723- 3 3.15410- 4 2.90000+ 1 3.20000+ 1 8.48133- 3 4.06450- 4 2.90000+ 1 3.30000+ 1 9.88894- 4 4.14780- 4 2.90000+ 1 3.50000+ 1 7.88309- 5 5.09890- 4 2.90000+ 1 3.60000+ 1 6.56933- 5 5.10850- 4 2.90000+ 1 4.10000+ 1 1.51527- 4 4.66570- 4 2.90000+ 1 4.30000+ 1 1.01168- 4 4.84710- 4 2.90000+ 1 4.40000+ 1 1.84806- 4 4.94230- 4 2.90000+ 1 4.60000+ 1 3.81011- 5 5.14060- 4 2.90000+ 1 4.70000+ 1 5.25549- 6 5.14670- 4 2.90000+ 1 5.80000+ 1 1.40140- 5 5.13020- 4 3.00000+ 1 3.00000+ 1 7.49067- 4 3.71400- 4 3.00000+ 1 3.20000+ 1 1.68558- 2 4.62440- 4 3.00000+ 1 3.30000+ 1 1.43856- 3 4.70770- 4 3.00000+ 1 3.50000+ 1 2.05267- 4 5.65880- 4 3.00000+ 1 3.60000+ 1 1.12421- 4 5.66840- 4 3.00000+ 1 4.10000+ 1 7.70773- 5 5.22560- 4 3.00000+ 1 4.30000+ 1 1.62663- 4 5.40700- 4 3.00000+ 1 4.40000+ 1 1.36267- 4 5.50220- 4 3.00000+ 1 4.60000+ 1 7.66521- 5 5.70050- 4 3.00000+ 1 4.70000+ 1 6.38777- 6 5.70660- 4 3.00000+ 1 5.80000+ 1 6.81352- 6 5.69010- 4 3.20000+ 1 3.20000+ 1 1.08977- 2 5.53480- 4 3.20000+ 1 3.30000+ 1 2.12752- 2 5.61810- 4 3.20000+ 1 3.50000+ 1 1.76069- 3 6.56920- 4 3.20000+ 1 3.60000+ 1 2.40959- 3 6.57880- 4 3.20000+ 1 4.10000+ 1 1.90168- 3 6.13600- 4 3.20000+ 1 4.30000+ 1 1.42208- 3 6.31740- 4 3.20000+ 1 4.40000+ 1 2.54598- 3 6.41260- 4 3.20000+ 1 4.60000+ 1 1.16052- 4 6.61090- 4 3.20000+ 1 4.70000+ 1 1.15182- 4 6.61700- 4 3.20000+ 1 5.80000+ 1 1.91829- 4 6.60050- 4 3.30000+ 1 3.30000+ 1 3.26043- 4 5.70140- 4 3.30000+ 1 3.50000+ 1 1.93305- 4 6.65250- 4 3.30000+ 1 3.60000+ 1 6.24926- 5 6.66210- 4 3.30000+ 1 4.10000+ 1 6.71509- 5 6.21930- 4 3.30000+ 1 4.30000+ 1 7.29718- 5 6.40070- 4 3.30000+ 1 4.40000+ 1 1.29641- 4 6.49590- 4 3.30000+ 1 4.60000+ 1 8.61701- 5 6.69420- 4 3.30000+ 1 4.70000+ 1 3.10522- 6 6.70030- 4 3.30000+ 1 5.80000+ 1 6.21041- 6 6.68380- 4 3.50000+ 1 3.50000+ 1 2.18982- 6 7.60360- 4 3.50000+ 1 3.60000+ 1 1.27006- 5 7.61320- 4 3.50000+ 1 4.10000+ 1 3.02192- 5 7.17040- 4 3.50000+ 1 4.30000+ 1 1.22624- 5 7.35180- 4 3.50000+ 1 4.40000+ 1 2.49640- 5 7.44700- 4 3.50000+ 1 4.60000+ 1 7.88332- 6 7.64530- 4 3.50000+ 1 4.70000+ 1 8.75915- 7 7.65140- 4 3.50000+ 1 5.80000+ 1 2.62769- 6 7.63490- 4 3.60000+ 1 3.60000+ 1 8.75912- 7 7.62280- 4 3.60000+ 1 4.10000+ 1 1.79557- 5 7.18000- 4 3.60000+ 1 4.30000+ 1 8.75912- 6 7.36140- 4 3.60000+ 1 4.40000+ 1 1.13878- 5 7.45660- 4 3.60000+ 1 4.60000+ 1 1.09495- 5 7.65490- 4 3.60000+ 1 4.70000+ 1 4.37969- 7 7.66100- 4 3.60000+ 1 5.80000+ 1 1.31389- 6 7.64450- 4 4.10000+ 1 4.10000+ 1 4.56890- 6 6.73720- 4 4.10000+ 1 4.30000+ 1 9.13835- 6 6.91860- 4 4.10000+ 1 4.40000+ 1 7.02889- 6 7.01380- 4 4.10000+ 1 4.60000+ 1 6.67752- 6 7.21210- 4 4.10000+ 1 4.70000+ 1 3.51455- 7 7.21820- 4 4.10000+ 1 5.80000+ 1 7.02889- 7 7.20170- 4 4.30000+ 1 4.30000+ 1 1.27996- 6 7.10000- 4 4.30000+ 1 4.40000+ 1 1.02399- 5 7.19520- 4 4.30000+ 1 4.60000+ 1 4.48008- 6 7.39350- 4 4.30000+ 1 4.70000+ 1 3.20012- 7 7.39960- 4 4.30000+ 1 5.80000+ 1 6.40005- 7 7.38310- 4 4.40000+ 1 4.40000+ 1 2.58082- 6 7.29040- 4 4.40000+ 1 4.60000+ 1 4.79331- 6 7.48870- 4 4.40000+ 1 4.70000+ 1 3.68685- 7 7.49480- 4 4.40000+ 1 5.80000+ 1 3.68685- 7 7.47830- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.75489- 5 3.33050- 4 2.50000+ 1 3.97668- 4 3.44390- 4 3.00000+ 1 1.31869- 4 5.31750- 4 3.50000+ 1 1.38589- 6 7.26230- 4 3.60000+ 1 2.29319- 5 7.27190- 4 4.40000+ 1 2.21179- 5 7.10570- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 1.19884- 2 1.24000- 5 2.40000+ 1 2.90000+ 1 8.35602- 3 7.36700- 5 2.40000+ 1 3.00000+ 1 1.55558- 2 1.29660- 4 2.40000+ 1 3.20000+ 1 7.45516- 3 2.20700- 4 2.40000+ 1 3.30000+ 1 1.06098- 1 2.29030- 4 2.40000+ 1 3.50000+ 1 2.87380- 4 3.24140- 4 2.40000+ 1 3.60000+ 1 4.28575- 4 3.25100- 4 2.40000+ 1 4.10000+ 1 2.06599- 3 2.80820- 4 2.40000+ 1 4.30000+ 1 1.33403- 3 2.98960- 4 2.40000+ 1 4.40000+ 1 1.91332- 3 3.08480- 4 2.40000+ 1 4.60000+ 1 4.17015- 5 3.28310- 4 2.40000+ 1 4.70000+ 1 4.48394- 4 3.28920- 4 2.40000+ 1 5.80000+ 1 2.06440- 4 3.27270- 4 2.50000+ 1 2.70000+ 1 1.16127- 1 2.37400- 5 2.50000+ 1 2.90000+ 1 1.23393- 1 8.50100- 5 2.50000+ 1 3.00000+ 1 1.12608- 1 1.41000- 4 2.50000+ 1 3.20000+ 1 1.11704- 1 2.32040- 4 2.50000+ 1 3.30000+ 1 2.01350- 1 2.40370- 4 2.50000+ 1 3.50000+ 1 1.20480- 3 3.35480- 4 2.50000+ 1 3.60000+ 1 2.50979- 3 3.36440- 4 2.50000+ 1 4.10000+ 1 2.29122- 2 2.92160- 4 2.50000+ 1 4.30000+ 1 1.96261- 2 3.10300- 4 2.50000+ 1 4.40000+ 1 1.69633- 2 3.19820- 4 2.50000+ 1 4.60000+ 1 6.25102- 4 3.39650- 4 2.50000+ 1 4.70000+ 1 9.46323- 4 3.40260- 4 2.50000+ 1 5.80000+ 1 2.32819- 3 3.38610- 4 2.70000+ 1 2.70000+ 1 1.60287- 3 9.38400- 5 2.70000+ 1 2.90000+ 1 2.28081- 3 1.55110- 4 2.70000+ 1 3.00000+ 1 3.50044- 3 2.11100- 4 2.70000+ 1 3.20000+ 1 3.11228- 3 3.02140- 4 2.70000+ 1 3.30000+ 1 1.50984- 2 3.10470- 4 2.70000+ 1 3.50000+ 1 4.62626- 4 4.05580- 4 2.70000+ 1 3.60000+ 1 7.24763- 4 4.06540- 4 2.70000+ 1 4.10000+ 1 3.59215- 4 3.62260- 4 2.70000+ 1 4.30000+ 1 2.59440- 4 3.80400- 4 2.70000+ 1 4.40000+ 1 4.09998- 4 3.89920- 4 2.70000+ 1 4.60000+ 1 1.26996- 5 4.09750- 4 2.70000+ 1 4.70000+ 1 5.94154- 5 4.10360- 4 2.70000+ 1 5.80000+ 1 3.49225- 5 4.08710- 4 2.90000+ 1 2.90000+ 1 3.01629- 4 2.16380- 4 2.90000+ 1 3.00000+ 1 3.88101- 3 2.72370- 4 2.90000+ 1 3.20000+ 1 5.62053- 4 3.63410- 4 2.90000+ 1 3.30000+ 1 1.28724- 2 3.71740- 4 2.90000+ 1 3.50000+ 1 7.51825- 5 4.66850- 4 2.90000+ 1 3.60000+ 1 1.68466- 4 4.67810- 4 2.90000+ 1 4.10000+ 1 1.54893- 4 4.23530- 4 2.90000+ 1 4.30000+ 1 6.83885- 5 4.41670- 4 2.90000+ 1 4.40000+ 1 3.44653- 4 4.51190- 4 2.90000+ 1 4.60000+ 1 2.26450- 6 4.71020- 4 2.90000+ 1 4.70000+ 1 5.34435- 5 4.71630- 4 2.90000+ 1 5.80000+ 1 1.44926- 5 4.69980- 4 3.00000+ 1 3.00000+ 1 1.19094- 3 3.28360- 4 3.00000+ 1 3.20000+ 1 2.09004- 3 4.19400- 4 3.00000+ 1 3.30000+ 1 1.59622- 2 4.27730- 4 3.00000+ 1 3.50000+ 1 1.44814- 4 5.22840- 4 3.00000+ 1 3.60000+ 1 1.99059- 4 5.23800- 4 3.00000+ 1 4.10000+ 1 1.13623- 4 4.79520- 4 3.00000+ 1 4.30000+ 1 1.73865- 4 4.97660- 4 3.00000+ 1 4.40000+ 1 2.19997- 4 5.07180- 4 3.00000+ 1 4.60000+ 1 1.06795- 5 5.27010- 4 3.00000+ 1 4.70000+ 1 6.53562- 5 5.27620- 4 3.00000+ 1 5.80000+ 1 9.39765- 6 5.25970- 4 3.20000+ 1 3.20000+ 1 1.38949- 4 5.10440- 4 3.20000+ 1 3.30000+ 1 1.52845- 2 5.18770- 4 3.20000+ 1 3.50000+ 1 4.70168- 5 6.13880- 4 3.20000+ 1 3.60000+ 1 1.77565- 4 6.14840- 4 3.20000+ 1 4.10000+ 1 7.51421- 5 5.70560- 4 3.20000+ 1 4.30000+ 1 4.91168- 5 5.88700- 4 3.20000+ 1 4.40000+ 1 2.13674- 4 5.98220- 4 3.20000+ 1 4.60000+ 1 1.25943- 6 6.18050- 4 3.20000+ 1 4.70000+ 1 6.29683- 5 6.18660- 4 3.20000+ 1 5.80000+ 1 6.71664- 6 6.17010- 4 3.30000+ 1 3.30000+ 1 1.71877- 2 5.27100- 4 3.30000+ 1 3.50000+ 1 1.96706- 3 6.22210- 4 3.30000+ 1 3.60000+ 1 2.33825- 3 6.23170- 4 3.30000+ 1 4.10000+ 1 1.92553- 3 5.78890- 4 3.30000+ 1 4.30000+ 1 1.79721- 3 5.97030- 4 3.30000+ 1 4.40000+ 1 2.37946- 3 6.06550- 4 3.30000+ 1 4.60000+ 1 9.25986- 5 6.26380- 4 3.30000+ 1 4.70000+ 1 1.63952- 4 6.26990- 4 3.30000+ 1 5.80000+ 1 1.94118- 4 6.25340- 4 3.50000+ 1 3.50000+ 1 4.12883- 7 7.17320- 4 3.50000+ 1 3.60000+ 1 9.90907- 6 7.18280- 4 3.50000+ 1 4.10000+ 1 1.89927- 5 6.74000- 4 3.50000+ 1 4.30000+ 1 7.01889- 6 6.92140- 4 3.50000+ 1 4.40000+ 1 1.27983- 5 7.01660- 4 3.50000+ 1 4.60000+ 1 4.12883- 7 7.21490- 4 3.50000+ 1 4.70000+ 1 7.84457- 6 7.22100- 4 3.50000+ 1 5.80000+ 1 1.65147- 6 7.20450- 4 3.60000+ 1 3.60000+ 1 4.95453- 6 7.19240- 4 3.60000+ 1 4.10000+ 1 3.55075- 5 6.74960- 4 3.60000+ 1 4.30000+ 1 1.44513- 5 6.93100- 4 3.60000+ 1 4.40000+ 1 2.18822- 5 7.02620- 4 3.60000+ 1 4.60000+ 1 8.25749- 7 7.22450- 4 3.60000+ 1 4.70000+ 1 9.08337- 6 7.23060- 4 3.60000+ 1 5.80000+ 1 2.89006- 6 7.21410- 4 4.10000+ 1 4.10000+ 1 9.09243- 6 6.30680- 4 4.10000+ 1 4.30000+ 1 1.21230- 5 6.48820- 4 4.10000+ 1 4.40000+ 1 1.28809- 5 6.58340- 4 4.10000+ 1 4.60000+ 1 3.78856- 7 6.78170- 4 4.10000+ 1 4.70000+ 1 6.81931- 6 6.78780- 4 4.10000+ 1 5.80000+ 1 1.51537- 6 6.77130- 4 4.30000+ 1 4.30000+ 1 1.86674- 6 6.66960- 4 4.30000+ 1 4.40000+ 1 1.45607- 5 6.76480- 4 4.30000+ 1 4.70000+ 1 6.72032- 6 6.96920- 4 4.30000+ 1 5.80000+ 1 1.12010- 6 6.95270- 4 4.40000+ 1 4.40000+ 1 6.89895- 6 6.86000- 4 4.40000+ 1 4.60000+ 1 7.96061- 7 7.05830- 4 4.40000+ 1 4.70000+ 1 6.10287- 6 7.06440- 4 4.40000+ 1 5.80000+ 1 7.96061- 7 7.04790- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 7.40479- 5 2.89740- 4 3.30000+ 1 4.72978- 6 2.98070- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 5.55785- 2 2.43000- 6 2.50000+ 1 3.60000+ 1 2.74841- 3 3.39000- 6 2.50000+ 1 4.60000+ 1 1.62955- 4 6.60000- 6 2.50000+ 1 4.70000+ 1 1.68431- 4 7.21000- 6 2.50000+ 1 5.80000+ 1 2.30048- 4 5.56000- 6 2.70000+ 1 3.50000+ 1 4.13042- 2 7.25300- 5 2.70000+ 1 3.60000+ 1 5.31014- 3 7.34900- 5 2.70000+ 1 4.10000+ 1 3.93261- 3 2.92100- 5 2.70000+ 1 4.30000+ 1 3.57340- 3 4.73500- 5 2.70000+ 1 4.40000+ 1 7.48601- 3 5.68700- 5 2.70000+ 1 4.60000+ 1 9.98165- 5 7.67000- 5 2.70000+ 1 4.70000+ 1 1.69687- 4 7.73100- 5 2.70000+ 1 5.80000+ 1 2.79480- 4 7.56600- 5 2.90000+ 1 3.20000+ 1 3.96108- 2 3.03600- 5 2.90000+ 1 3.30000+ 1 6.32366- 2 3.86900- 5 2.90000+ 1 3.50000+ 1 4.58340- 2 1.33800- 4 2.90000+ 1 3.60000+ 1 1.09902- 2 1.34760- 4 2.90000+ 1 4.10000+ 1 2.31592- 2 9.04800- 5 2.90000+ 1 4.30000+ 1 1.26911- 2 1.08620- 4 2.90000+ 1 4.40000+ 1 2.18936- 2 1.18140- 4 2.90000+ 1 4.60000+ 1 1.06848- 3 1.37970- 4 2.90000+ 1 4.70000+ 1 1.23203- 3 1.38580- 4 2.90000+ 1 5.80000+ 1 2.23515- 3 1.36930- 4 3.00000+ 1 3.20000+ 1 1.21914- 1 8.63500- 5 3.00000+ 1 3.30000+ 1 9.59137- 2 9.46800- 5 3.00000+ 1 3.50000+ 1 6.46831- 2 1.89790- 4 3.00000+ 1 3.60000+ 1 3.81273- 3 1.90750- 4 3.00000+ 1 4.10000+ 1 9.51241- 3 1.46470- 4 3.00000+ 1 4.30000+ 1 6.89741- 3 1.64610- 4 3.00000+ 1 4.40000+ 1 4.82117- 3 1.74130- 4 3.00000+ 1 4.60000+ 1 5.39009- 4 1.93960- 4 3.00000+ 1 4.70000+ 1 3.89277- 4 1.94570- 4 3.00000+ 1 5.80000+ 1 7.78538- 4 1.92920- 4 3.20000+ 1 3.20000+ 1 3.17419- 2 1.77390- 4 3.20000+ 1 3.30000+ 1 5.36101- 2 1.85720- 4 3.20000+ 1 3.50000+ 1 5.97995- 2 2.80830- 4 3.20000+ 1 3.60000+ 1 1.19680- 2 2.81790- 4 3.20000+ 1 4.10000+ 1 3.69320- 3 2.37510- 4 3.20000+ 1 4.30000+ 1 1.59101- 2 2.55650- 4 3.20000+ 1 4.40000+ 1 1.09698- 2 2.65170- 4 3.20000+ 1 4.60000+ 1 2.39557- 4 2.85000- 4 3.20000+ 1 4.70000+ 1 2.39557- 4 2.85610- 4 3.20000+ 1 5.80000+ 1 3.89276- 4 2.83960- 4 3.30000+ 1 3.30000+ 1 1.04007- 2 1.94050- 4 3.30000+ 1 3.50000+ 1 8.32045- 2 2.89160- 4 3.30000+ 1 3.60000+ 1 2.78474- 3 2.90120- 4 3.30000+ 1 4.10000+ 1 2.45540- 3 2.45840- 4 3.30000+ 1 4.30000+ 1 1.22072- 2 2.63980- 4 3.30000+ 1 4.40000+ 1 5.87896- 3 2.73500- 4 3.30000+ 1 4.60000+ 1 1.59706- 4 2.93330- 4 3.30000+ 1 4.70000+ 1 8.98331- 5 2.93940- 4 3.30000+ 1 5.80000+ 1 2.39552- 4 2.92290- 4 3.50000+ 1 3.50000+ 1 1.79669- 3 3.84270- 4 3.50000+ 1 3.60000+ 1 1.08900- 2 3.85230- 4 3.50000+ 1 4.10000+ 1 7.45619- 3 3.40950- 4 3.50000+ 1 4.30000+ 1 6.42840- 3 3.59090- 4 3.50000+ 1 4.40000+ 1 9.35266- 3 3.68610- 4 3.50000+ 1 4.60000+ 1 3.19412- 4 3.88440- 4 3.50000+ 1 4.70000+ 1 4.29223- 4 3.89050- 4 3.50000+ 1 5.80000+ 1 7.48621- 4 3.87400- 4 3.60000+ 1 3.60000+ 1 5.98872- 5 3.86190- 4 3.60000+ 1 4.10000+ 1 2.19588- 4 3.41910- 4 3.60000+ 1 4.30000+ 1 6.88708- 4 3.60050- 4 3.60000+ 1 4.40000+ 1 2.99435- 4 3.69570- 4 3.60000+ 1 4.60000+ 1 2.99435- 5 3.89400- 4 3.60000+ 1 4.70000+ 1 9.98166- 6 3.90010- 4 3.60000+ 1 5.80000+ 1 1.99633- 5 3.88360- 4 4.10000+ 1 4.10000+ 1 7.98568- 5 2.97630- 4 4.10000+ 1 4.30000+ 1 8.78392- 4 3.15770- 4 4.10000+ 1 4.40000+ 1 6.48831- 4 3.25290- 4 4.10000+ 1 4.60000+ 1 9.98214- 6 3.45120- 4 4.10000+ 1 4.70000+ 1 9.98214- 6 3.45730- 4 4.10000+ 1 5.80000+ 1 1.99643- 5 3.44080- 4 4.30000+ 1 4.30000+ 1 3.19420- 4 3.33910- 4 4.30000+ 1 4.40000+ 1 5.49011- 4 3.43430- 4 4.30000+ 1 4.60000+ 1 5.98903- 5 3.63260- 4 4.30000+ 1 4.70000+ 1 3.99272- 5 3.63870- 4 4.30000+ 1 5.80000+ 1 7.98570- 5 3.62220- 4 4.40000+ 1 4.40000+ 1 1.19782- 4 3.52950- 4 4.40000+ 1 4.60000+ 1 3.99264- 5 3.72780- 4 4.40000+ 1 4.70000+ 1 1.99639- 5 3.73390- 4 4.40000+ 1 5.80000+ 1 5.98890- 5 3.71740- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 7.51976- 5 2.86730- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 3.20411- 3 6.11900- 5 2.70000+ 1 3.60000+ 1 3.97906- 2 6.21500- 5 2.70000+ 1 4.10000+ 1 4.26246- 3 1.78700- 5 2.70000+ 1 4.30000+ 1 3.55686- 3 3.60100- 5 2.70000+ 1 4.40000+ 1 5.36935- 3 4.55300- 5 2.70000+ 1 4.60000+ 1 1.66571- 4 6.53600- 5 2.70000+ 1 4.70000+ 1 1.66571- 4 6.59700- 5 2.70000+ 1 5.80000+ 1 3.33143- 4 6.43200- 5 2.90000+ 1 3.20000+ 1 8.44894- 3 1.90200- 5 2.90000+ 1 3.30000+ 1 1.62116- 2 2.73500- 5 2.90000+ 1 3.50000+ 1 4.92854- 4 1.22460- 4 2.90000+ 1 3.60000+ 1 3.41230- 2 1.23420- 4 2.90000+ 1 4.10000+ 1 3.83734- 3 7.91400- 5 2.90000+ 1 4.30000+ 1 9.41704- 4 9.72800- 5 2.90000+ 1 4.40000+ 1 2.32349- 3 1.06800- 4 2.90000+ 1 4.60000+ 1 1.32012- 4 1.26630- 4 2.90000+ 1 4.70000+ 1 1.40824- 4 1.27240- 4 2.90000+ 1 5.80000+ 1 4.04857- 4 1.25590- 4 3.00000+ 1 3.20000+ 1 1.40398- 1 7.50100- 5 3.00000+ 1 3.30000+ 1 3.24452- 1 8.33400- 5 3.00000+ 1 3.50000+ 1 9.65489- 3 1.78450- 4 3.00000+ 1 3.60000+ 1 6.34370- 2 1.79410- 4 3.00000+ 1 4.10000+ 1 1.62733- 2 1.35130- 4 3.00000+ 1 4.30000+ 1 5.77351- 3 1.53270- 4 3.00000+ 1 4.40000+ 1 1.65734- 2 1.62790- 4 3.00000+ 1 4.60000+ 1 7.21703- 4 1.82620- 4 3.00000+ 1 4.70000+ 1 1.37298- 3 1.83230- 4 3.00000+ 1 5.80000+ 1 1.46975- 3 1.81580- 4 3.20000+ 1 3.20000+ 1 4.31313- 3 1.66050- 4 3.20000+ 1 3.30000+ 1 4.36663- 2 1.74380- 4 3.20000+ 1 3.50000+ 1 1.57087- 3 2.69490- 4 3.20000+ 1 3.60000+ 1 5.25571- 2 2.70450- 4 3.20000+ 1 4.10000+ 1 1.81052- 3 2.26170- 4 3.20000+ 1 4.30000+ 1 1.81933- 3 2.44310- 4 3.20000+ 1 4.40000+ 1 8.94598- 3 2.53830- 4 3.20000+ 1 4.60000+ 1 3.54999- 5 2.73660- 4 3.20000+ 1 4.70000+ 1 1.33121- 4 2.74270- 4 3.20000+ 1 5.80000+ 1 1.77495- 4 2.72620- 4 3.30000+ 1 3.30000+ 1 3.30662- 2 1.82710- 4 3.30000+ 1 3.50000+ 1 9.22358- 3 2.77820- 4 3.30000+ 1 3.60000+ 1 7.43957- 2 2.78780- 4 3.30000+ 1 4.10000+ 1 3.69629- 3 2.34500- 4 3.30000+ 1 4.30000+ 1 4.19833- 3 2.52640- 4 3.30000+ 1 4.40000+ 1 1.90542- 2 2.62160- 4 3.30000+ 1 4.60000+ 1 2.28824- 4 2.81990- 4 3.30000+ 1 4.70000+ 1 2.37626- 4 2.82600- 4 3.30000+ 1 5.80000+ 1 3.78461- 4 2.80950- 4 3.50000+ 1 3.50000+ 1 1.76015- 5 3.72930- 4 3.50000+ 1 3.60000+ 1 7.62153- 3 3.73890- 4 3.50000+ 1 4.10000+ 1 1.76015- 4 3.29610- 4 3.50000+ 1 4.30000+ 1 4.40038- 5 3.47750- 4 3.50000+ 1 4.40000+ 1 7.04100- 4 3.57270- 4 3.50000+ 1 4.60000+ 1 8.80116- 6 3.77100- 4 3.50000+ 1 4.70000+ 1 1.76015- 5 3.77710- 4 3.50000+ 1 5.80000+ 1 1.76015- 5 3.76060- 4 3.60000+ 1 3.60000+ 1 3.73150- 3 3.74850- 4 3.60000+ 1 4.10000+ 1 6.53017- 3 3.30570- 4 3.60000+ 1 4.30000+ 1 5.46540- 3 3.48710- 4 3.60000+ 1 4.40000+ 1 8.55467- 3 3.58230- 4 3.60000+ 1 4.60000+ 1 2.99231- 4 3.78060- 4 3.60000+ 1 4.70000+ 1 3.60820- 4 3.78670- 4 3.60000+ 1 5.80000+ 1 6.60071- 4 3.77020- 4 4.10000+ 1 4.10000+ 1 6.16091- 5 2.86290- 4 4.10000+ 1 4.30000+ 1 3.34450- 4 3.04430- 4 4.10000+ 1 4.40000+ 1 8.62529- 4 3.13950- 4 4.10000+ 1 4.60000+ 1 8.80156- 6 3.33780- 4 4.10000+ 1 4.70000+ 1 8.80156- 6 3.34390- 4 4.10000+ 1 5.80000+ 1 8.80156- 6 3.32740- 4 4.30000+ 1 4.30000+ 1 3.52046- 5 3.22570- 4 4.30000+ 1 4.40000+ 1 2.64036- 4 3.32090- 4 4.30000+ 1 4.60000+ 1 8.80130- 6 3.51920- 4 4.30000+ 1 4.70000+ 1 8.80130- 6 3.52530- 4 4.30000+ 1 5.80000+ 1 3.52046- 5 3.50880- 4 4.40000+ 1 4.40000+ 1 3.60818- 4 3.41610- 4 4.40000+ 1 4.60000+ 1 3.52035- 5 3.61440- 4 4.40000+ 1 4.70000+ 1 6.16055- 5 3.62050- 4 4.40000+ 1 5.80000+ 1 7.92097- 5 3.60400- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.40882- 6 6.12700- 5 3.00000+ 1 2.03309- 5 1.17260- 4 4.30000+ 1 2.91931- 6 2.86560- 4 4.40000+ 1 4.16005- 8 2.96080- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 2.45806- 2 5.23600- 5 2.90000+ 1 3.60000+ 1 4.06326- 2 5.33200- 5 2.90000+ 1 4.10000+ 1 2.69422- 2 9.04000- 6 2.90000+ 1 4.30000+ 1 1.78106- 2 2.71800- 5 2.90000+ 1 4.40000+ 1 3.40466- 2 3.67000- 5 2.90000+ 1 4.60000+ 1 7.64802- 4 5.65300- 5 2.90000+ 1 4.70000+ 1 1.58535- 3 5.71400- 5 2.90000+ 1 5.80000+ 1 2.62901- 3 5.54900- 5 3.00000+ 1 3.20000+ 1 2.41761- 1 4.91000- 6 3.00000+ 1 3.30000+ 1 2.27496- 1 1.32400- 5 3.00000+ 1 3.50000+ 1 4.89870- 2 1.08350- 4 3.00000+ 1 3.60000+ 1 4.73234- 2 1.09310- 4 3.00000+ 1 4.10000+ 1 2.41721- 2 6.50300- 5 3.00000+ 1 4.30000+ 1 2.40581- 2 8.31700- 5 3.00000+ 1 4.40000+ 1 2.24198- 2 9.26900- 5 3.00000+ 1 4.60000+ 1 1.21541- 3 1.12520- 4 3.00000+ 1 4.70000+ 1 1.13481- 3 1.13130- 4 3.00000+ 1 5.80000+ 1 2.42911- 3 1.11480- 4 3.20000+ 1 3.20000+ 1 1.80464- 3 9.59500- 5 3.20000+ 1 3.30000+ 1 1.27531- 1 1.04280- 4 3.20000+ 1 3.50000+ 1 1.29878- 3 1.99390- 4 3.20000+ 1 3.60000+ 1 4.36837- 3 2.00350- 4 3.20000+ 1 4.10000+ 1 7.09386- 3 1.56070- 4 3.20000+ 1 4.30000+ 1 1.32684- 3 1.74210- 4 3.20000+ 1 4.40000+ 1 6.03362- 3 1.83730- 4 3.20000+ 1 4.60000+ 1 3.16736- 5 2.03560- 4 3.20000+ 1 4.70000+ 1 2.88842- 4 2.04170- 4 3.20000+ 1 5.80000+ 1 5.73658- 4 2.02520- 4 3.30000+ 1 3.30000+ 1 2.83358- 2 1.12610- 4 3.30000+ 1 3.50000+ 1 4.38691- 3 2.07720- 4 3.30000+ 1 3.60000+ 1 3.02146- 3 2.08680- 4 3.30000+ 1 4.10000+ 1 8.83218- 3 1.64400- 4 3.30000+ 1 4.30000+ 1 3.94534- 3 1.82540- 4 3.30000+ 1 4.40000+ 1 3.49851- 3 1.92060- 4 3.30000+ 1 4.60000+ 1 2.57618- 4 2.11890- 4 3.30000+ 1 4.70000+ 1 1.42764- 4 2.12500- 4 3.30000+ 1 5.80000+ 1 7.12043- 4 2.10850- 4 3.50000+ 1 3.50000+ 1 1.70720- 6 3.02830- 4 3.50000+ 1 3.60000+ 1 1.70599- 4 3.03790- 4 3.50000+ 1 4.10000+ 1 8.88726- 4 2.59510- 4 3.50000+ 1 4.30000+ 1 7.28012- 5 2.77650- 4 3.50000+ 1 4.40000+ 1 3.00352- 4 2.87170- 4 3.50000+ 1 4.60000+ 1 3.29255- 6 3.07000- 4 3.50000+ 1 4.70000+ 1 1.03655- 5 3.07610- 4 3.50000+ 1 5.80000+ 1 6.48740- 5 3.05960- 4 3.60000+ 1 3.60000+ 1 1.62188- 5 3.04750- 4 3.60000+ 1 4.10000+ 1 1.11161- 3 2.60470- 4 3.60000+ 1 4.30000+ 1 1.96094- 4 2.78610- 4 3.60000+ 1 4.40000+ 1 1.79257- 4 2.88130- 4 3.60000+ 1 4.60000+ 1 8.65834- 6 3.07960- 4 3.60000+ 1 4.70000+ 1 7.56075- 6 3.08570- 4 3.60000+ 1 5.80000+ 1 8.12146- 5 3.06920- 4 4.10000+ 1 4.10000+ 1 6.02445- 4 2.16190- 4 4.10000+ 1 4.30000+ 1 7.13168- 4 2.34330- 4 4.10000+ 1 4.40000+ 1 1.05783- 3 2.43850- 4 4.10000+ 1 4.60000+ 1 3.70272- 5 2.63680- 4 4.10000+ 1 4.70000+ 1 4.69317- 5 2.64290- 4 4.10000+ 1 5.80000+ 1 1.05423- 4 2.62640- 4 4.30000+ 1 4.30000+ 1 6.64597- 5 2.52470- 4 4.30000+ 1 4.40000+ 1 3.91435- 4 2.61990- 4 4.30000+ 1 4.60000+ 1 4.02411- 6 2.81820- 4 4.30000+ 1 4.70000+ 1 1.12189- 5 2.82430- 4 4.30000+ 1 5.80000+ 1 5.32881- 5 2.80780- 4 4.40000+ 1 4.40000+ 1 1.85000- 4 2.71510- 4 4.40000+ 1 4.60000+ 1 1.81701- 5 2.91340- 4 4.40000+ 1 4.70000+ 1 1.25610- 5 2.91950- 4 4.40000+ 1 5.80000+ 1 8.35322- 5 2.90300- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.00728- 5 1.47030- 4 4.10000+ 1 4.70798- 6 2.07150- 4 5.80000+ 1 5.56837- 7 2.53600- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 1.05117- 2 4.70800- 5 3.00000+ 1 3.60000+ 1 6.64366- 3 4.80400- 5 3.00000+ 1 4.10000+ 1 1.83840- 2 3.76000- 6 3.00000+ 1 4.30000+ 1 1.05376- 2 2.19000- 5 3.00000+ 1 4.40000+ 1 8.69437- 3 3.14200- 5 3.00000+ 1 4.60000+ 1 4.85014- 4 5.12500- 5 3.00000+ 1 4.70000+ 1 5.55547- 4 5.18600- 5 3.00000+ 1 5.80000+ 1 1.26380- 3 5.02100- 5 3.20000+ 1 3.20000+ 1 1.16352- 1 3.46800- 5 3.20000+ 1 3.30000+ 1 4.93582- 1 4.30100- 5 3.20000+ 1 3.50000+ 1 3.49561- 2 1.38120- 4 3.20000+ 1 3.60000+ 1 7.77276- 2 1.39080- 4 3.20000+ 1 4.10000+ 1 4.33804- 2 9.48000- 5 3.20000+ 1 4.30000+ 1 2.90688- 2 1.12940- 4 3.20000+ 1 4.40000+ 1 4.66747- 2 1.22460- 4 3.20000+ 1 4.60000+ 1 1.05973- 3 1.42290- 4 3.20000+ 1 4.70000+ 1 2.22892- 3 1.42900- 4 3.20000+ 1 5.80000+ 1 4.41565- 3 1.41250- 4 3.30000+ 1 3.30000+ 1 2.00392- 2 5.13400- 5 3.30000+ 1 3.50000+ 1 1.92475- 2 1.46450- 4 3.30000+ 1 3.60000+ 1 4.54004- 3 1.47410- 4 3.30000+ 1 4.10000+ 1 4.13723- 3 1.03130- 4 3.30000+ 1 4.30000+ 1 2.27838- 2 1.21270- 4 3.30000+ 1 4.40000+ 1 5.12248- 3 1.30790- 4 3.30000+ 1 4.60000+ 1 5.53791- 4 1.50620- 4 3.30000+ 1 4.70000+ 1 1.53406- 4 1.51230- 4 3.30000+ 1 5.80000+ 1 3.47229- 4 1.49580- 4 3.50000+ 1 3.50000+ 1 7.11008- 5 2.41560- 4 3.50000+ 1 3.60000+ 1 1.59453- 3 2.42520- 4 3.50000+ 1 4.10000+ 1 9.10765- 4 1.98240- 4 3.50000+ 1 4.30000+ 1 1.91799- 3 2.16380- 4 3.50000+ 1 4.40000+ 1 1.08232- 3 2.25900- 4 3.50000+ 1 4.60000+ 1 2.11608- 5 2.45730- 4 3.50000+ 1 4.70000+ 1 5.27607- 5 2.46340- 4 3.50000+ 1 5.80000+ 1 9.56474- 5 2.44690- 4 3.60000+ 1 3.60000+ 1 4.20402- 5 2.43480- 4 3.60000+ 1 4.10000+ 1 3.23053- 4 1.99200- 4 3.60000+ 1 4.30000+ 1 3.06637- 3 2.17340- 4 3.60000+ 1 4.40000+ 1 3.30675- 4 2.26860- 4 3.60000+ 1 4.60000+ 1 3.86552- 5 2.46690- 4 3.60000+ 1 4.70000+ 1 8.46443- 6 2.47300- 4 3.60000+ 1 5.80000+ 1 2.65218- 5 2.45650- 4 4.10000+ 1 4.10000+ 1 1.05850- 4 1.54920- 4 4.10000+ 1 4.30000+ 1 2.13811- 3 1.73060- 4 4.10000+ 1 4.40000+ 1 3.59200- 4 1.82580- 4 4.10000+ 1 4.60000+ 1 4.94533- 5 2.02410- 4 4.10000+ 1 4.70000+ 1 1.56179- 5 2.03020- 4 4.10000+ 1 5.80000+ 1 1.73527- 5 2.01370- 4 4.30000+ 1 4.30000+ 1 1.12155- 3 1.91200- 4 4.30000+ 1 4.40000+ 1 2.55593- 3 2.00720- 4 4.30000+ 1 4.60000+ 1 7.59148- 5 2.20550- 4 4.30000+ 1 4.70000+ 1 1.14895- 4 2.21160- 4 4.30000+ 1 5.80000+ 1 1.99783- 4 2.19510- 4 4.40000+ 1 4.40000+ 1 1.01393- 4 2.10240- 4 4.40000+ 1 4.60000+ 1 4.28397- 5 2.30070- 4 4.40000+ 1 4.70000+ 1 7.96501- 6 2.30680- 4 4.40000+ 1 5.80000+ 1 2.04516- 5 2.29030- 4 1 92000 0 7 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.32318- 7 9.10400- 5 3.30000+ 1 6.29807- 6 9.93700- 5 4.10000+ 1 2.59909- 6 1.51160- 4 5.80000+ 1 2.93269- 7 1.97610- 4 1 92000 0 9 2.38029+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 1.74597- 2 8.21300- 5 3.20000+ 1 3.60000+ 1 6.43805- 2 8.30900- 5 3.20000+ 1 4.10000+ 1 2.12225- 2 3.88100- 5 3.20000+ 1 4.30000+ 1 1.51377- 2 5.69500- 5 3.20000+ 1 4.40000+ 1 4.31869- 2 6.64700- 5 3.20000+ 1 4.60000+ 1 5.17432- 4 8.63000- 5 3.20000+ 1 4.70000+ 1 1.55659- 3 8.69100- 5 3.20000+ 1 5.80000+ 1 1.75801- 3 8.52600- 5 3.30000+ 1 3.30000+ 1 1.35811- 1 0.00000+ 0 3.30000+ 1 3.50000+ 1 1.93075- 1 9.04600- 5 3.30000+ 1 3.60000+ 1 1.71488- 1 9.14200- 5 3.30000+ 1 4.10000+ 1 9.24452- 2 4.71400- 5 3.30000+ 1 4.30000+ 1 9.38395- 2 6.52800- 5 3.30000+ 1 4.40000+ 1 1.03588- 1 7.48000- 5 3.30000+ 1 4.60000+ 1 4.50111- 3 9.46300- 5 3.30000+ 1 4.70000+ 1 4.18274- 3 9.52400- 5 3.30000+ 1 5.80000+ 1 9.49663- 3 9.35900- 5 3.50000+ 1 3.50000+ 1 2.93610- 5 1.85570- 4 3.50000+ 1 3.60000+ 1 2.47953- 3 1.86530- 4 3.50000+ 1 4.10000+ 1 1.68256- 3 1.42250- 4 3.50000+ 1 4.30000+ 1 4.52451- 4 1.60390- 4 3.50000+ 1 4.40000+ 1 4.18925- 3 1.69910- 4 3.50000+ 1 4.60000+ 1 1.16686- 5 1.89740- 4 3.50000+ 1 4.70000+ 1 1.02763- 4 1.90350- 4 3.50000+ 1 5.80000+ 1 7.67895- 5 1.88700- 4 3.60000+ 1 3.60000+ 1 4.73194- 4 1.87490- 4 3.60000+ 1 4.10000+ 1 3.17221- 3 1.43210- 4 3.60000+ 1 4.30000+ 1 2.32340- 3 1.61350- 4 3.60000+ 1 4.40000+ 1 5.03077- 3 1.70870- 4 3.60000+ 1 4.60000+ 1 9.86294- 5 1.90700- 4 3.60000+ 1 4.70000+ 1 9.59932- 5 1.91310- 4 3.60000+ 1 5.80000+ 1 1.98762- 4 1.89660- 4 4.10000+ 1 4.10000+ 1 2.28147- 4 9.89300- 5 4.10000+ 1 4.30000+ 1 3.88475- 4 1.17070- 4 4.10000+ 1 4.40000+ 1 1.76783- 3 1.26590- 4 4.10000+ 1 4.60000+ 1 2.79465- 5 1.46420- 4 4.10000+ 1 4.70000+ 1 4.44566- 5 1.47030- 4 4.10000+ 1 5.80000+ 1 3.69351- 5 1.45380- 4 4.30000+ 1 4.30000+ 1 1.61806- 7 1.35210- 4 4.30000+ 1 4.40000+ 1 1.52078- 3 1.44730- 4 4.30000+ 1 4.60000+ 1 7.92813- 6 1.64560- 4 4.30000+ 1 4.70000+ 1 2.86398- 5 1.65170- 4 4.30000+ 1 5.80000+ 1 1.95785- 5 1.63520- 4 4.40000+ 1 4.40000+ 1 1.54884- 3 1.54250- 4 4.40000+ 1 4.60000+ 1 6.77666- 5 1.74080- 4 4.40000+ 1 4.70000+ 1 8.46309- 5 1.74690- 4 4.40000+ 1 5.80000+ 1 1.55057- 4 1.73040- 4 1 93000 0 0 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 1.71000+ 0 3.60000+ 1 2.29000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 93000 0 0 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19200- 1 3.00000+ 0 2.24400- 2 5.00000+ 0 2.17020- 2 6.00000+ 0 1.76260- 2 8.00000+ 0 5.71220- 3 1.00000+ 1 5.36550- 3 1.10000+ 1 4.42160- 3 1.30000+ 1 3.85920- 3 1.40000+ 1 3.66810- 3 1.60000+ 1 1.47890- 3 1.80000+ 1 1.31950- 3 1.90000+ 1 1.07080- 3 2.10000+ 1 8.12940- 4 2.20000+ 1 7.67290- 4 2.40000+ 1 4.26750- 4 2.50000+ 1 4.14600- 4 2.70000+ 1 3.36250- 4 2.90000+ 1 2.72950- 4 3.00000+ 1 2.12560- 4 3.20000+ 1 1.18480- 4 3.30000+ 1 1.09470- 4 3.50000+ 1 1.01200- 5 3.60000+ 1 9.03000- 6 4.10000+ 1 5.43900- 5 4.30000+ 1 3.55200- 5 4.40000+ 1 2.52500- 5 4.60000+ 1 4.75000- 6 4.70000+ 1 4.11000- 6 5.80000+ 1 5.88000- 6 1 93000 0 0 2.37000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.80710- 1 3.00000+ 0 4.53050- 2 5.00000+ 0 4.53540- 2 6.00000+ 0 2.83720- 2 8.00000+ 0 1.45160- 2 1.00000+ 1 1.43810- 2 1.10000+ 1 1.00730- 2 1.30000+ 1 9.90360- 3 1.40000+ 1 9.11030- 3 1.60000+ 1 5.01980- 3 1.80000+ 1 4.86070- 3 1.90000+ 1 3.53160- 3 2.10000+ 1 3.28520- 3 2.20000+ 1 3.04360- 3 2.40000+ 1 2.68070- 3 2.50000+ 1 2.59820- 3 2.70000+ 1 1.58280- 3 2.90000+ 1 1.45520- 3 3.00000+ 1 1.06630- 3 3.20000+ 1 8.52160- 4 3.30000+ 1 7.87180- 4 3.50000+ 1 3.83000- 4 3.60000+ 1 3.64660- 4 4.10000+ 1 3.84280- 4 4.30000+ 1 3.07670- 4 4.40000+ 1 2.10710- 4 4.60000+ 1 8.44800- 5 4.70000+ 1 7.20400- 5 5.80000+ 1 4.67800- 5 1 93000 0 0 2.37000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.10530-11 3.00000+ 0 2.93560-10 5.00000+ 0 2.36990-10 6.00000+ 0 2.91780-10 8.00000+ 0 7.63820-10 1.00000+ 1 7.15940-10 1.10000+ 1 8.14410-10 1.30000+ 1 7.00880-10 1.40000+ 1 7.29840-10 1.60000+ 1 1.65580- 9 1.80000+ 1 1.64310- 9 1.90000+ 1 1.83580- 9 2.10000+ 1 1.81260- 9 2.20000+ 1 1.86940- 9 2.40000+ 1 1.79990- 9 2.50000+ 1 1.82730- 9 2.70000+ 1 3.42790- 9 2.90000+ 1 3.55340- 9 3.00000+ 1 3.96590- 9 3.20000+ 1 4.40610- 9 3.30000+ 1 4.54510- 9 3.50000+ 1 6.76550- 9 3.60000+ 1 6.94310- 9 4.10000+ 1 7.48380- 9 4.30000+ 1 8.31010- 9 4.40000+ 1 9.53040- 9 4.60000+ 1 1.51410- 8 4.70000+ 1 1.63460- 8 5.80000+ 1 2.09140- 8 1 93000 0 0 2.37000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.57060- 5 3.00000+ 0 2.58430- 6 5.00000+ 0 4.52930- 6 6.00000+ 0 3.77270- 6 8.00000+ 0 1.18200- 7 1.00000+ 1 1.29150- 7 1.10000+ 1 1.45000- 7 1.30000+ 1 1.90840- 7 1.40000+ 1 1.75390- 7 1.60000+ 1 6.66860- 9 1.80000+ 1 8.39520- 9 1.90000+ 1 5.76310- 9 2.10000+ 1 3.84600- 9 2.20000+ 1 2.92880- 9 2.40000+ 1 1.41800-10 2.50000+ 1 1.27890-10 2.70000+ 1 4.70180-10 2.90000+ 1 9.24090-10 3.00000+ 1 4.31880-10 1 93000 0 0 2.37000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.92350- 6 3.00000+ 0 1.34440- 5 5.00000+ 0 5.21590- 6 6.00000+ 0 4.44320- 6 8.00000+ 0 1.89490- 5 1.00000+ 1 1.50400- 5 1.10000+ 1 1.17530- 5 1.30000+ 1 3.47760- 6 1.40000+ 1 3.43870- 6 1.60000+ 1 1.42550- 5 1.80000+ 1 1.54060- 5 1.90000+ 1 9.51210- 6 2.10000+ 1 6.18060- 6 2.20000+ 1 6.68460- 6 2.40000+ 1 4.42510- 7 2.50000+ 1 3.64010- 7 2.70000+ 1 2.34190- 5 2.90000+ 1 9.95460- 6 3.00000+ 1 7.56570- 6 1 93000 0 0 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.75282- 4 3.00000+ 0 1.10185- 3 5.00000+ 0 8.17213- 4 6.00000+ 0 7.66527- 4 8.00000+ 0 8.26213- 4 1.00000+ 1 7.39746- 4 1.10000+ 1 6.49139- 4 1.30000+ 1 4.98787- 4 1.40000+ 1 4.89002- 4 1.60000+ 1 4.37357- 4 1.80000+ 1 4.24411- 4 1.90000+ 1 4.01786- 4 2.10000+ 1 3.20000- 4 2.20000+ 1 3.17031- 4 2.40000+ 1 1.92932- 4 2.50000+ 1 1.92550- 4 2.70000+ 1 2.08938- 4 2.90000+ 1 1.90666- 4 3.00000+ 1 1.27408- 4 3.20000+ 1 1.18480- 4 3.30000+ 1 1.09470- 4 3.50000+ 1 1.01200- 5 3.60000+ 1 9.03000- 6 4.10000+ 1 5.43900- 5 4.30000+ 1 3.55200- 5 4.40000+ 1 2.52500- 5 4.60000+ 1 4.75000- 6 4.70000+ 1 4.11000- 6 5.80000+ 1 5.88000- 6 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.44823+ 0 3.00000+ 0 5.94869- 1 5.00000+ 0 6.62651- 1 6.00000+ 0 5.37726- 1 8.00000+ 0 5.86507- 2 1.00000+ 1 5.98417- 2 1.10000+ 1 5.44764- 2 1.30000+ 1 6.27110- 2 1.40000+ 1 5.64331- 2 1.60000+ 1 1.93870- 3 1.80000+ 1 2.05173- 3 1.90000+ 1 1.36357- 3 2.10000+ 1 8.59427- 4 2.20000+ 1 7.34071- 4 2.40000+ 1 1.19749- 4 2.50000+ 1 1.04057- 4 2.70000+ 1 4.18161- 5 2.90000+ 1 5.39877- 5 3.00000+ 1 1.14470- 5 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.06869- 1 3.00000+ 0 8.13685- 3 5.00000+ 0 1.06755- 2 6.00000+ 0 6.98317- 3 8.00000+ 0 1.96989- 4 1.00000+ 1 2.02759- 4 1.10000+ 1 1.78739- 4 1.30000+ 1 2.09957- 4 1.40000+ 1 1.80541- 4 1.60000+ 1 1.34358- 6 1.80000+ 1 1.19856- 6 1.90000+ 1 7.89297- 7 2.10000+ 1 3.74921- 7 2.20000+ 1 3.02621- 7 2.40000+ 1 3.39885- 8 2.50000+ 1 2.96241- 8 2.70000+ 1 5.95563- 9 2.90000+ 1 8.73719- 9 3.00000+ 1 1.38229- 9 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.41345+ 0 3.00000+ 0 1.38101+ 1 5.00000+ 0 9.94621+ 0 6.00000+ 0 9.30193+ 0 8.00000+ 0 1.01969+ 1 1.00000+ 1 8.95470+ 0 1.10000+ 1 7.81171+ 0 1.30000+ 1 5.70489+ 0 1.40000+ 1 5.59004+ 0 1.60000+ 1 4.70590+ 0 1.80000+ 1 4.52657+ 0 1.90000+ 1 4.26845+ 0 2.10000+ 1 3.20191+ 0 2.20000+ 1 3.14600+ 0 2.40000+ 1 1.78945+ 0 2.50000+ 1 1.74288+ 0 2.70000+ 1 1.79844+ 0 2.90000+ 1 1.06152+ 0 3.00000+ 1 9.99989- 1 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.15553- 2 3.00000+ 0 1.32013- 2 5.00000+ 0 1.02092- 2 6.00000+ 0 9.87630- 3 8.00000+ 0 4.68900- 3 1.00000+ 1 4.42299- 3 1.10000+ 1 3.59372- 3 1.30000+ 1 3.15046- 3 1.40000+ 1 2.99856- 3 1.60000+ 1 1.04020- 3 1.80000+ 1 8.93890- 4 1.90000+ 1 6.68224- 4 2.10000+ 1 4.92565- 4 2.20000+ 1 4.49956- 4 2.40000+ 1 2.33784- 4 2.50000+ 1 2.22021- 4 2.70000+ 1 1.27306- 4 2.90000+ 1 8.22757- 5 3.00000+ 1 8.51504- 5 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.90152- 1 9.74980- 2 6.00000+ 0 4.61733- 1 1.01574- 1 1.00000+ 1 5.33993- 2 1.13834- 1 1.10000+ 1 1.04521- 1 1.14778- 1 1.30000+ 1 1.91211- 3 1.15341- 1 1.40000+ 1 2.16701- 3 1.15532- 1 1.80000+ 1 1.34061- 2 1.17880- 1 1.90000+ 1 2.72192- 2 1.18129- 1 2.10000+ 1 5.67604- 4 1.18387- 1 2.20000+ 1 6.45644- 4 1.18433- 1 2.90000+ 1 3.30102- 3 1.18927- 1 3.00000+ 1 6.58804- 3 1.18987- 1 3.20000+ 1 1.18421- 4 1.19082- 1 3.30000+ 1 1.33661- 4 1.19091- 1 4.30000+ 1 5.83154- 4 1.19164- 1 4.40000+ 1 1.09331- 3 1.19175- 1 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.81983- 3 7.43200- 2 3.00000+ 0 5.00000+ 0 7.07106- 3 7.50580- 2 3.00000+ 0 6.00000+ 0 2.59579- 3 7.91340- 2 3.00000+ 0 8.00000+ 0 1.59002- 3 9.10478- 2 3.00000+ 0 1.00000+ 1 1.55618- 3 9.13945- 2 3.00000+ 0 1.10000+ 1 6.44947- 4 9.23384- 2 3.00000+ 0 1.30000+ 1 5.65867- 5 9.29008- 2 3.00000+ 0 1.40000+ 1 3.50761- 5 9.30919- 2 3.00000+ 0 1.60000+ 1 4.23050- 4 9.52811- 2 3.00000+ 0 1.80000+ 1 4.07599- 4 9.54405- 2 3.00000+ 0 1.90000+ 1 1.71027- 4 9.56892- 2 3.00000+ 0 2.10000+ 1 1.68585- 5 9.59471- 2 3.00000+ 0 2.20000+ 1 1.03024- 5 9.59927- 2 3.00000+ 0 2.40000+ 1 6.04241- 8 9.63332- 2 3.00000+ 0 2.50000+ 1 6.04241- 8 9.63454- 2 3.00000+ 0 2.70000+ 1 1.09036- 4 9.64237- 2 3.00000+ 0 2.90000+ 1 9.89761- 5 9.64870- 2 3.00000+ 0 3.00000+ 1 4.10873- 5 9.65474- 2 3.00000+ 0 3.20000+ 1 3.47454- 6 9.66415- 2 3.00000+ 0 3.30000+ 1 2.08459- 6 9.66505- 2 5.00000+ 0 5.00000+ 0 2.50684- 4 7.57960- 2 5.00000+ 0 6.00000+ 0 4.17380- 3 7.98720- 2 5.00000+ 0 8.00000+ 0 1.30598- 3 9.17858- 2 5.00000+ 0 1.00000+ 1 9.75575- 5 9.21325- 2 5.00000+ 0 1.10000+ 1 8.82092- 4 9.30764- 2 5.00000+ 0 1.30000+ 1 5.68611- 5 9.36388- 2 5.00000+ 0 1.40000+ 1 1.26623- 4 9.38299- 2 5.00000+ 0 1.60000+ 1 3.38078- 4 9.60191- 2 5.00000+ 0 1.80000+ 1 2.49260- 5 9.61785- 2 5.00000+ 0 1.90000+ 1 2.24629- 4 9.64272- 2 5.00000+ 0 2.10000+ 1 1.61340- 5 9.66851- 2 5.00000+ 0 2.20000+ 1 3.63169- 5 9.67307- 2 5.00000+ 0 2.40000+ 1 5.13623- 7 9.70712- 2 5.00000+ 0 2.50000+ 1 7.55325- 7 9.70834- 2 5.00000+ 0 2.70000+ 1 8.65302- 5 9.71617- 2 5.00000+ 0 2.90000+ 1 6.01235- 6 9.72250- 2 5.00000+ 0 3.00000+ 1 5.34179- 5 9.72854- 2 5.00000+ 0 3.20000+ 1 3.29317- 6 9.73795- 2 5.00000+ 0 3.30000+ 1 7.34167- 6 9.73885- 2 6.00000+ 0 6.00000+ 0 1.68194- 3 8.39480- 2 6.00000+ 0 8.00000+ 0 4.24681- 4 9.58618- 2 6.00000+ 0 1.00000+ 1 7.59831- 4 9.62085- 2 6.00000+ 0 1.10000+ 1 7.32989- 4 9.71524- 2 6.00000+ 0 1.30000+ 1 1.36204- 4 9.77148- 2 6.00000+ 0 1.40000+ 1 1.07405- 4 9.79059- 2 6.00000+ 0 1.60000+ 1 1.06772- 4 1.00095- 1 6.00000+ 0 1.80000+ 1 1.90371- 4 1.00254- 1 6.00000+ 0 1.90000+ 1 1.88312- 4 1.00503- 1 6.00000+ 0 2.10000+ 1 3.92483- 5 1.00761- 1 6.00000+ 0 2.20000+ 1 3.09678- 5 1.00807- 1 6.00000+ 0 2.40000+ 1 7.55319- 7 1.01147- 1 6.00000+ 0 2.50000+ 1 7.85545- 7 1.01159- 1 6.00000+ 0 2.70000+ 1 2.71007- 5 1.01238- 1 6.00000+ 0 2.90000+ 1 4.57108- 5 1.01301- 1 6.00000+ 0 3.00000+ 1 4.48961- 5 1.01361- 1 6.00000+ 0 3.20000+ 1 8.00637- 6 1.01456- 1 6.00000+ 0 3.30000+ 1 6.25412- 6 1.01465- 1 8.00000+ 0 8.00000+ 0 1.63748- 4 1.07776- 1 8.00000+ 0 1.00000+ 1 2.88772- 4 1.08122- 1 8.00000+ 0 1.10000+ 1 1.06653- 4 1.09066- 1 8.00000+ 0 1.30000+ 1 9.09413- 6 1.09629- 1 8.00000+ 0 1.40000+ 1 5.28723- 6 1.09820- 1 8.00000+ 0 1.60000+ 1 8.69843- 5 1.12009- 1 8.00000+ 0 1.80000+ 1 7.57141- 5 1.12168- 1 8.00000+ 0 1.90000+ 1 2.83701- 5 1.12417- 1 8.00000+ 0 2.10000+ 1 2.71917- 6 1.12675- 1 8.00000+ 0 2.20000+ 1 1.54078- 6 1.12721- 1 8.00000+ 0 2.70000+ 1 2.24179- 5 1.13152- 1 8.00000+ 0 2.90000+ 1 1.83998- 5 1.13215- 1 8.00000+ 0 3.00000+ 1 6.82812- 6 1.13275- 1 8.00000+ 0 3.20000+ 1 5.43847- 7 1.13369- 1 8.00000+ 0 3.30000+ 1 3.02135- 7 1.13378- 1 1.00000+ 1 1.00000+ 1 8.97348- 6 1.08469- 1 1.00000+ 1 1.10000+ 1 1.66169- 4 1.09413- 1 1.00000+ 1 1.30000+ 1 9.63791- 6 1.09975- 1 1.00000+ 1 1.40000+ 1 1.71612- 5 1.10166- 1 1.00000+ 1 1.60000+ 1 7.47769- 5 1.12356- 1 1.00000+ 1 1.80000+ 1 4.53180- 6 1.12515- 1 1.00000+ 1 1.90000+ 1 4.26305- 5 1.12764- 1 1.00000+ 1 2.10000+ 1 2.77964- 6 1.13022- 1 1.00000+ 1 2.20000+ 1 4.98531- 6 1.13067- 1 1.00000+ 1 2.40000+ 1 6.04258- 8 1.13408- 1 1.00000+ 1 2.50000+ 1 9.06404- 8 1.13420- 1 1.00000+ 1 2.70000+ 1 1.91249- 5 1.13498- 1 1.00000+ 1 2.90000+ 1 1.08766- 6 1.13562- 1 1.00000+ 1 3.00000+ 1 1.01518- 5 1.13622- 1 1.00000+ 1 3.20000+ 1 5.74032- 7 1.13716- 1 1.00000+ 1 3.30000+ 1 9.97030- 7 1.13725- 1 1.10000+ 1 1.10000+ 1 8.09388- 5 1.10357- 1 1.10000+ 1 1.30000+ 1 2.42903- 5 1.10919- 1 1.10000+ 1 1.40000+ 1 1.83995- 5 1.11110- 1 1.10000+ 1 1.60000+ 1 2.68584- 5 1.13299- 1 1.10000+ 1 1.80000+ 1 4.19353- 5 1.13459- 1 1.10000+ 1 1.90000+ 1 4.17239- 5 1.13708- 1 1.10000+ 1 2.10000+ 1 7.06981- 6 1.13965- 1 1.10000+ 1 2.20000+ 1 5.34748- 6 1.14011- 1 1.10000+ 1 2.40000+ 1 1.20849- 7 1.14352- 1 1.10000+ 1 2.50000+ 1 1.20849- 7 1.14364- 1 1.10000+ 1 2.70000+ 1 6.82801- 6 1.14442- 1 1.10000+ 1 2.90000+ 1 1.00909- 5 1.14505- 1 1.10000+ 1 3.00000+ 1 9.93997- 6 1.14566- 1 1.10000+ 1 3.20000+ 1 1.45019- 6 1.14660- 1 1.10000+ 1 3.30000+ 1 1.08764- 6 1.14669- 1 1.30000+ 1 1.30000+ 1 6.04239- 8 1.11482- 1 1.30000+ 1 1.40000+ 1 2.56797- 6 1.11673- 1 1.30000+ 1 1.60000+ 1 2.29605- 6 1.13862- 1 1.30000+ 1 1.80000+ 1 2.38673- 6 1.14021- 1 1.30000+ 1 1.90000+ 1 5.95182- 6 1.14270- 1 1.30000+ 1 2.10000+ 1 3.02126- 8 1.14528- 1 1.30000+ 1 2.20000+ 1 7.25087- 7 1.14574- 1 1.30000+ 1 2.70000+ 1 5.74014- 7 1.15005- 1 1.30000+ 1 2.90000+ 1 5.74014- 7 1.15068- 1 1.30000+ 1 3.00000+ 1 1.38972- 6 1.15128- 1 1.30000+ 1 3.30000+ 1 1.51062- 7 1.15231- 1 1.40000+ 1 1.40000+ 1 6.04239- 7 1.11864- 1 1.40000+ 1 1.60000+ 1 1.32938- 6 1.14053- 1 1.40000+ 1 1.80000+ 1 4.01816- 6 1.14212- 1 1.40000+ 1 1.90000+ 1 4.47132- 6 1.14461- 1 1.40000+ 1 2.10000+ 1 6.94894- 7 1.14719- 1 1.40000+ 1 2.20000+ 1 3.32319- 7 1.14765- 1 1.40000+ 1 2.70000+ 1 3.32319- 7 1.15196- 1 1.40000+ 1 2.90000+ 1 9.36558- 7 1.15259- 1 1.40000+ 1 3.00000+ 1 1.05741- 6 1.15319- 1 1.40000+ 1 3.20000+ 1 1.51062- 7 1.15413- 1 1.40000+ 1 3.30000+ 1 6.04239- 8 1.15422- 1 1.60000+ 1 1.60000+ 1 1.15408- 5 1.16242- 1 1.60000+ 1 1.80000+ 1 1.96089- 5 1.16402- 1 1.60000+ 1 1.90000+ 1 7.16049- 6 1.16650- 1 1.60000+ 1 2.10000+ 1 6.94913- 7 1.16908- 1 1.60000+ 1 2.20000+ 1 3.92769- 7 1.16954- 1 1.60000+ 1 2.70000+ 1 5.95198- 6 1.17385- 1 1.60000+ 1 2.90000+ 1 4.77371- 6 1.17448- 1 1.60000+ 1 3.00000+ 1 1.72213- 6 1.17509- 1 1.60000+ 1 3.20000+ 1 1.51066- 7 1.17603- 1 1.60000+ 1 3.30000+ 1 9.06400- 8 1.17612- 1 1.80000+ 1 1.80000+ 1 5.74034- 7 1.16561- 1 1.80000+ 1 1.90000+ 1 1.07861- 5 1.16810- 1 1.80000+ 1 2.10000+ 1 6.94919- 7 1.17068- 1 1.80000+ 1 2.20000+ 1 1.17830- 6 1.17113- 1 1.80000+ 1 2.40000+ 1 3.02137- 8 1.17454- 1 1.80000+ 1 2.50000+ 1 3.02137- 8 1.17466- 1 1.80000+ 1 2.70000+ 1 5.01555- 6 1.17544- 1 1.80000+ 1 2.90000+ 1 2.71919- 7 1.17608- 1 1.80000+ 1 3.00000+ 1 2.56806- 6 1.17668- 1 1.80000+ 1 3.20000+ 1 1.51067- 7 1.17762- 1 1.80000+ 1 3.30000+ 1 2.41714- 7 1.17771- 1 1.90000+ 1 1.90000+ 1 5.37782- 6 1.17058- 1 1.90000+ 1 2.10000+ 1 1.72214- 6 1.17316- 1 1.90000+ 1 2.20000+ 1 1.29919- 6 1.17362- 1 1.90000+ 1 2.40000+ 1 3.02136- 8 1.17702- 1 1.90000+ 1 2.50000+ 1 3.02136- 8 1.17715- 1 1.90000+ 1 2.70000+ 1 1.81271- 6 1.17793- 1 1.90000+ 1 2.90000+ 1 2.59828- 6 1.17856- 1 1.90000+ 1 3.00000+ 1 2.56805- 6 1.17917- 1 1.90000+ 1 3.20000+ 1 3.62556- 7 1.18011- 1 1.90000+ 1 3.30000+ 1 2.71918- 7 1.18020- 1 2.10000+ 1 2.20000+ 1 2.11487- 7 1.17620- 1 2.10000+ 1 2.70000+ 1 1.81271- 7 1.18051- 1 2.10000+ 1 2.90000+ 1 1.51067- 7 1.18114- 1 2.10000+ 1 3.00000+ 1 4.22998- 7 1.18175- 1 2.10000+ 1 3.30000+ 1 3.02136- 8 1.18278- 1 2.20000+ 1 2.20000+ 1 6.18180- 8 1.17665- 1 2.20000+ 1 2.70000+ 1 9.27286- 8 1.18096- 1 2.20000+ 1 2.90000+ 1 2.78183- 7 1.18160- 1 2.20000+ 1 3.00000+ 1 3.09096- 7 1.18220- 1 2.20000+ 1 3.20000+ 1 3.09096- 8 1.18314- 1 2.20000+ 1 3.30000+ 1 3.09096- 8 1.18323- 1 2.70000+ 1 2.70000+ 1 7.55835- 7 1.18527- 1 2.70000+ 1 2.90000+ 1 1.20933- 6 1.18591- 1 2.70000+ 1 3.00000+ 1 4.23284- 7 1.18651- 1 2.70000+ 1 3.20000+ 1 3.02340- 8 1.18745- 1 2.70000+ 1 3.30000+ 1 3.02340- 8 1.18754- 1 2.90000+ 1 2.90000+ 1 3.02137- 8 1.18654- 1 2.90000+ 1 3.00000+ 1 6.04261- 7 1.18714- 1 2.90000+ 1 3.20000+ 1 3.02137- 8 1.18809- 1 2.90000+ 1 3.30000+ 1 6.04261- 8 1.18818- 1 3.00000+ 1 3.00000+ 1 3.02130- 7 1.18775- 1 3.00000+ 1 3.20000+ 1 9.06386- 8 1.18869- 1 3.00000+ 1 3.30000+ 1 6.04246- 8 1.18878- 1 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.29329- 5 7.38000- 4 6.00000+ 0 9.39825- 3 4.81400- 3 1.00000+ 1 5.66597- 2 1.70745- 2 1.10000+ 1 4.79137- 2 1.80184- 2 1.30000+ 1 2.67989- 3 1.85808- 2 1.40000+ 1 3.99118- 3 1.87719- 2 1.80000+ 1 1.53669- 2 2.11205- 2 1.90000+ 1 1.49699- 2 2.13692- 2 2.10000+ 1 4.60668- 4 2.16271- 2 2.20000+ 1 7.39416- 4 2.16727- 2 2.90000+ 1 3.77308- 3 2.21670- 2 3.00000+ 1 3.73248- 3 2.22274- 2 3.20000+ 1 8.47006- 5 2.23215- 2 3.30000+ 1 1.37419- 4 2.23305- 2 4.30000+ 1 6.74286- 4 2.24045- 2 4.40000+ 1 6.34827- 4 2.24147- 2 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.20000+ 1 5.27664- 3 0.00000+ 0 5.00000+ 0 2.40000+ 1 1.25958- 2 3.11250- 4 5.00000+ 0 2.50000+ 1 1.68368- 2 3.23400- 4 5.00000+ 0 2.70000+ 1 5.20324- 3 4.01750- 4 5.00000+ 0 2.90000+ 1 4.22856- 3 4.65050- 4 5.00000+ 0 3.00000+ 1 3.32396- 3 5.25440- 4 5.00000+ 0 3.20000+ 1 8.95221- 4 6.19520- 4 5.00000+ 0 3.30000+ 1 1.12849- 3 6.28530- 4 6.00000+ 0 1.10000+ 1 3.52637- 2 3.92400- 4 6.00000+ 0 1.30000+ 1 2.02898- 1 9.54800- 4 6.00000+ 0 1.40000+ 1 2.43838- 1 1.14590- 3 6.00000+ 0 1.60000+ 1 1.66929- 2 3.33510- 3 6.00000+ 0 1.80000+ 1 6.48426- 3 3.49450- 3 6.00000+ 0 1.90000+ 1 9.01934- 3 3.74320- 3 6.00000+ 0 2.10000+ 1 3.21627- 2 4.00106- 3 6.00000+ 0 2.20000+ 1 3.69077- 2 4.04671- 3 6.00000+ 0 2.40000+ 1 1.91348- 2 4.38725- 3 6.00000+ 0 2.50000+ 1 2.33448- 2 4.39940- 3 6.00000+ 0 2.70000+ 1 4.05858- 3 4.47775- 3 6.00000+ 0 2.90000+ 1 1.55489- 3 4.54105- 3 6.00000+ 0 3.00000+ 1 2.15008- 3 4.60144- 3 6.00000+ 0 3.20000+ 1 5.95647- 3 4.69552- 3 6.00000+ 0 3.30000+ 1 6.70016- 3 4.70453- 3 8.00000+ 0 8.00000+ 0 5.51599- 3 1.10156- 2 8.00000+ 0 1.00000+ 1 1.16029- 2 1.13623- 2 8.00000+ 0 1.10000+ 1 1.60819- 2 1.23062- 2 8.00000+ 0 1.30000+ 1 1.12899- 2 1.28686- 2 8.00000+ 0 1.40000+ 1 1.35309- 2 1.30597- 2 8.00000+ 0 1.60000+ 1 2.49938- 3 1.52489- 2 8.00000+ 0 1.80000+ 1 3.01058- 3 1.54083- 2 8.00000+ 0 1.90000+ 1 4.16168- 3 1.56570- 2 8.00000+ 0 2.10000+ 1 2.77778- 3 1.59149- 2 8.00000+ 0 2.20000+ 1 3.32018- 3 1.59605- 2 8.00000+ 0 2.40000+ 1 2.57368- 4 1.63010- 2 8.00000+ 0 2.50000+ 1 2.65178- 4 1.63132- 2 8.00000+ 0 2.70000+ 1 6.25598- 4 1.63915- 2 8.00000+ 0 2.90000+ 1 7.28288- 4 1.64548- 2 8.00000+ 0 3.00000+ 1 9.92606- 4 1.65152- 2 8.00000+ 0 3.20000+ 1 5.49209- 4 1.66093- 2 8.00000+ 0 3.30000+ 1 6.50058- 4 1.66183- 2 1.00000+ 1 1.00000+ 1 1.27332- 5 1.17090- 2 1.00000+ 1 1.10000+ 1 2.13573- 4 1.26529- 2 1.00000+ 1 1.30000+ 1 7.52952- 4 1.32153- 2 1.00000+ 1 1.40000+ 1 5.21018- 3 1.34064- 2 1.00000+ 1 1.60000+ 1 2.08603- 3 1.55956- 2 1.00000+ 1 1.80000+ 1 1.52802- 6 1.57550- 2 1.00000+ 1 1.90000+ 1 4.41417- 5 1.60037- 2 1.00000+ 1 2.10000+ 1 1.54152- 4 1.62616- 2 1.00000+ 1 2.20000+ 1 8.26264- 4 1.63072- 2 1.00000+ 1 2.40000+ 1 9.82976- 5 1.66477- 2 1.00000+ 1 2.50000+ 1 3.37675- 4 1.66599- 2 1.00000+ 1 2.70000+ 1 4.90138- 4 1.67382- 2 1.00000+ 1 2.90000+ 1 3.39555- 7 1.68015- 2 1.00000+ 1 3.00000+ 1 1.00171- 5 1.68619- 2 1.00000+ 1 3.20000+ 1 2.98804- 5 1.69560- 2 1.00000+ 1 3.30000+ 1 1.48042- 4 1.69650- 2 1.10000+ 1 1.10000+ 1 7.31733- 4 1.35968- 2 1.10000+ 1 1.30000+ 1 1.42350- 3 1.41592- 2 1.10000+ 1 1.40000+ 1 8.82483- 4 1.43503- 2 1.10000+ 1 1.60000+ 1 2.79610- 3 1.65395- 2 1.10000+ 1 1.80000+ 1 5.70442- 5 1.66989- 2 1.10000+ 1 1.90000+ 1 2.96420- 4 1.69476- 2 1.10000+ 1 2.10000+ 1 1.62640- 4 1.72055- 2 1.10000+ 1 2.20000+ 1 7.31733- 5 1.72511- 2 1.10000+ 1 2.40000+ 1 1.06620- 4 1.75916- 2 1.10000+ 1 2.50000+ 1 9.33733- 5 1.76038- 2 1.10000+ 1 2.70000+ 1 6.51553- 4 1.76821- 2 1.10000+ 1 2.90000+ 1 1.37520- 5 1.77455- 2 1.10000+ 1 3.00000+ 1 6.70583- 5 1.78058- 2 1.10000+ 1 3.20000+ 1 2.75030- 5 1.78999- 2 1.10000+ 1 3.30000+ 1 1.12050- 5 1.79089- 2 1.30000+ 1 1.30000+ 1 6.33764- 4 1.47216- 2 1.30000+ 1 1.40000+ 1 1.73688- 2 1.49127- 2 1.30000+ 1 1.60000+ 1 1.76018- 3 1.71019- 2 1.30000+ 1 1.80000+ 1 2.27667- 4 1.72613- 2 1.30000+ 1 1.90000+ 1 3.93026- 4 1.75100- 2 1.30000+ 1 2.10000+ 1 3.03716- 4 1.77679- 2 1.30000+ 1 2.20000+ 1 2.97696- 3 1.78135- 2 1.30000+ 1 2.40000+ 1 2.51097- 4 1.81540- 2 1.30000+ 1 2.50000+ 1 6.79434- 4 1.81662- 2 1.30000+ 1 2.70000+ 1 3.99636- 4 1.82445- 2 1.30000+ 1 2.90000+ 1 5.70435- 5 1.83078- 2 1.30000+ 1 3.00000+ 1 9.59210- 5 1.83682- 2 1.30000+ 1 3.20000+ 1 5.99295- 5 1.84623- 2 1.30000+ 1 3.30000+ 1 5.39695- 4 1.84713- 2 1.40000+ 1 1.40000+ 1 4.71332- 3 1.51038- 2 1.40000+ 1 1.60000+ 1 2.14210- 3 1.72930- 2 1.40000+ 1 1.80000+ 1 1.18570- 3 1.74524- 2 1.40000+ 1 1.90000+ 1 2.31910- 4 1.77011- 2 1.40000+ 1 2.10000+ 1 2.84090- 3 1.79590- 2 1.40000+ 1 2.20000+ 1 1.70390- 3 1.80046- 2 1.40000+ 1 2.40000+ 1 7.43953- 4 1.83451- 2 1.40000+ 1 2.50000+ 1 5.49043- 4 1.83573- 2 1.40000+ 1 2.70000+ 1 4.89962- 4 1.84356- 2 1.40000+ 1 2.90000+ 1 2.78940- 4 1.84989- 2 1.40000+ 1 3.00000+ 1 5.65343- 5 1.85593- 2 1.40000+ 1 3.20000+ 1 5.14582- 4 1.86534- 2 1.40000+ 1 3.30000+ 1 3.13061- 4 1.86624- 2 1.60000+ 1 1.60000+ 1 2.67562- 4 1.94822- 2 1.60000+ 1 1.80000+ 1 5.42767- 4 1.96416- 2 1.60000+ 1 1.90000+ 1 7.28188- 4 1.98903- 2 1.60000+ 1 2.10000+ 1 4.36825- 4 2.01482- 2 1.60000+ 1 2.20000+ 1 5.26125- 4 2.01938- 2 1.60000+ 1 2.40000+ 1 3.39553- 5 2.05343- 2 1.60000+ 1 2.50000+ 1 3.29363- 5 2.05465- 2 1.60000+ 1 2.70000+ 1 1.32251- 4 2.06248- 2 1.60000+ 1 2.90000+ 1 1.31401- 4 2.06881- 2 1.60000+ 1 3.00000+ 1 1.73841- 4 2.07485- 2 1.60000+ 1 3.20000+ 1 8.65799- 5 2.08426- 2 1.60000+ 1 3.30000+ 1 1.03051- 4 2.08516- 2 1.80000+ 1 1.90000+ 1 1.17139- 5 2.00497- 2 1.80000+ 1 2.10000+ 1 4.26127- 5 2.03076- 2 1.80000+ 1 2.20000+ 1 1.96418- 4 2.03532- 2 1.80000+ 1 2.40000+ 1 1.42609- 5 2.06937- 2 1.80000+ 1 2.50000+ 1 5.53457- 5 2.07059- 2 1.80000+ 1 2.70000+ 1 1.27489- 4 2.07842- 2 1.80000+ 1 3.00000+ 1 2.71637- 6 2.09079- 2 1.80000+ 1 3.20000+ 1 7.97925- 6 2.10020- 2 1.80000+ 1 3.30000+ 1 3.54817- 5 2.10110- 2 1.90000+ 1 1.90000+ 1 2.88606- 5 2.02984- 2 1.90000+ 1 2.10000+ 1 4.51585- 5 2.05563- 2 1.90000+ 1 2.20000+ 1 2.08817- 5 2.06019- 2 1.90000+ 1 2.40000+ 1 2.58046- 5 2.09424- 2 1.90000+ 1 2.50000+ 1 2.17307- 5 2.09546- 2 1.90000+ 1 2.70000+ 1 1.69778- 4 2.10329- 2 1.90000+ 1 2.90000+ 1 2.88606- 6 2.10962- 2 1.90000+ 1 3.00000+ 1 1.29028- 5 2.11566- 2 1.90000+ 1 3.20000+ 1 7.47001- 6 2.12507- 2 1.90000+ 1 3.30000+ 1 3.22565- 6 2.12597- 2 2.10000+ 1 2.10000+ 1 3.36143- 5 2.08141- 2 2.10000+ 1 2.20000+ 1 5.33241- 4 2.08598- 2 2.10000+ 1 2.40000+ 1 4.17633- 5 2.12003- 2 2.10000+ 1 2.50000+ 1 8.48825- 5 2.12125- 2 2.10000+ 1 2.70000+ 1 9.93092- 5 2.12908- 2 2.10000+ 1 2.90000+ 1 1.05258- 5 2.13541- 2 2.10000+ 1 3.00000+ 1 1.12048- 5 2.14145- 2 2.10000+ 1 3.20000+ 1 1.30717- 5 2.15086- 2 2.10000+ 1 3.30000+ 1 9.84622- 5 2.15176- 2 2.20000+ 1 2.20000+ 1 1.65188- 4 2.09054- 2 2.20000+ 1 2.40000+ 1 9.99983- 5 2.12460- 2 2.20000+ 1 2.50000+ 1 8.14894- 5 2.12581- 2 2.20000+ 1 2.70000+ 1 1.20199- 4 2.13365- 2 2.20000+ 1 2.90000+ 1 4.65167- 5 2.13998- 2 2.20000+ 1 3.00000+ 1 5.26286- 6 2.14601- 2 2.20000+ 1 3.20000+ 1 9.82953- 5 2.15542- 2 2.20000+ 1 3.30000+ 1 6.14566- 5 2.15632- 2 2.40000+ 1 2.40000+ 1 1.18839- 6 2.15865- 2 2.40000+ 1 2.50000+ 1 2.22398- 5 2.15986- 2 2.40000+ 1 2.70000+ 1 7.47005- 6 2.16770- 2 2.40000+ 1 2.90000+ 1 3.05587- 6 2.17403- 2 2.40000+ 1 3.00000+ 1 5.94196- 6 2.18007- 2 2.40000+ 1 3.20000+ 1 7.63975- 6 2.18948- 2 2.40000+ 1 3.30000+ 1 1.73168- 5 2.19038- 2 2.50000+ 1 2.50000+ 1 4.75360- 6 2.16108- 2 2.50000+ 1 2.70000+ 1 7.13010- 6 2.16891- 2 2.50000+ 1 2.90000+ 1 1.20540- 5 2.17524- 2 2.50000+ 1 3.00000+ 1 5.09310- 6 2.18128- 2 2.50000+ 1 3.20000+ 1 1.46010- 5 2.19069- 2 2.50000+ 1 3.30000+ 1 1.44300- 5 2.19159- 2 2.70000+ 1 2.70000+ 1 1.70398- 5 2.17675- 2 2.70000+ 1 2.90000+ 1 3.23043- 5 2.18308- 2 2.70000+ 1 3.00000+ 1 4.24229- 5 2.18912- 2 2.70000+ 1 3.20000+ 1 2.05903- 5 2.19853- 2 2.70000+ 1 3.30000+ 1 2.46720- 5 2.19943- 2 2.90000+ 1 3.00000+ 1 7.09444- 7 2.19545- 2 2.90000+ 1 3.20000+ 1 2.12842- 6 2.20486- 2 2.90000+ 1 3.30000+ 1 8.86807- 6 2.20576- 2 3.00000+ 1 3.00000+ 1 1.89317- 6 2.20149- 2 3.00000+ 1 3.20000+ 1 2.31380- 6 2.21090- 2 3.00000+ 1 3.30000+ 1 1.05170- 6 2.21180- 2 3.20000+ 1 3.20000+ 1 1.18837- 6 2.22030- 2 3.20000+ 1 3.30000+ 1 1.81645- 5 2.22120- 2 3.30000+ 1 3.30000+ 1 5.84577- 6 2.22211- 2 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.11687- 5 4.07600- 3 8.00000+ 0 1.03749- 2 1.59898- 2 1.10000+ 1 5.44836- 4 1.72804- 2 1.30000+ 1 3.66977- 1 1.78428- 2 1.60000+ 1 2.82728- 3 2.02231- 2 1.90000+ 1 1.65929- 4 2.06312- 2 2.10000+ 1 8.38804- 2 2.08891- 2 2.40000+ 1 5.37876- 4 2.12752- 2 2.70000+ 1 7.34224- 4 2.13657- 2 3.00000+ 1 4.11537- 5 2.14894- 2 3.20000+ 1 1.65729- 2 2.15835- 2 3.50000+ 1 1.76409- 5 2.16919- 2 4.10000+ 1 1.51759- 4 2.16476- 2 4.40000+ 1 6.84665- 6 2.16767- 2 5.80000+ 1 1.63409- 5 2.16961- 2 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 1.08817- 1 2.16800- 4 6.00000+ 0 1.40000+ 1 3.50409- 2 4.07900- 4 6.00000+ 0 1.60000+ 1 2.96770- 3 2.59710- 3 6.00000+ 0 1.80000+ 1 2.49873- 2 2.75650- 3 6.00000+ 0 1.90000+ 1 5.72593- 3 3.00520- 3 6.00000+ 0 2.10000+ 1 2.14126- 2 3.26306- 3 6.00000+ 0 2.20000+ 1 7.22355- 3 3.30871- 3 6.00000+ 0 2.40000+ 1 1.08150- 3 3.64925- 3 6.00000+ 0 2.50000+ 1 1.54437- 3 3.66140- 3 6.00000+ 0 2.70000+ 1 7.02182- 4 3.73975- 3 6.00000+ 0 2.90000+ 1 5.48343- 3 3.80305- 3 6.00000+ 0 3.00000+ 1 1.32429- 3 3.86344- 3 6.00000+ 0 3.20000+ 1 4.04620- 3 3.95752- 3 6.00000+ 0 3.30000+ 1 1.37181- 3 3.96653- 3 8.00000+ 0 8.00000+ 0 3.38830- 4 1.02776- 2 8.00000+ 0 1.00000+ 1 1.44677- 2 1.06243- 2 8.00000+ 0 1.10000+ 1 1.25771- 3 1.15682- 2 8.00000+ 0 1.30000+ 1 2.78042- 3 1.21306- 2 8.00000+ 0 1.40000+ 1 9.41755- 4 1.23217- 2 8.00000+ 0 1.60000+ 1 1.37045- 4 1.45109- 2 8.00000+ 0 1.80000+ 1 2.47967- 3 1.46703- 2 8.00000+ 0 1.90000+ 1 2.93230- 4 1.49190- 2 8.00000+ 0 2.10000+ 1 4.88002- 4 1.51769- 2 8.00000+ 0 2.20000+ 1 1.40552- 4 1.52225- 2 8.00000+ 0 2.40000+ 1 5.88102- 5 1.55630- 2 8.00000+ 0 2.50000+ 1 4.37019- 5 1.55752- 2 8.00000+ 0 2.70000+ 1 3.31807- 5 1.56535- 2 8.00000+ 0 2.90000+ 1 5.46529- 4 1.57168- 2 8.00000+ 0 3.00000+ 1 6.82523- 5 1.57772- 2 8.00000+ 0 3.20000+ 1 9.03746- 5 1.58713- 2 8.00000+ 0 3.30000+ 1 2.50884- 5 1.58803- 2 1.00000+ 1 1.00000+ 1 1.55347- 2 1.09710- 2 1.00000+ 1 1.10000+ 1 3.44025- 2 1.19149- 2 1.00000+ 1 1.30000+ 1 1.72960- 2 1.24773- 2 1.00000+ 1 1.40000+ 1 2.16737- 2 1.26684- 2 1.00000+ 1 1.60000+ 1 3.93995- 3 1.48576- 2 1.00000+ 1 1.80000+ 1 6.77628- 3 1.50170- 2 1.00000+ 1 1.90000+ 1 8.73407- 3 1.52657- 2 1.00000+ 1 2.10000+ 1 4.24033- 3 1.55236- 2 1.00000+ 1 2.20000+ 1 5.34078- 3 1.55692- 2 1.00000+ 1 2.40000+ 1 3.40992- 4 1.59097- 2 1.00000+ 1 2.50000+ 1 2.71923- 4 1.59219- 2 1.00000+ 1 2.70000+ 1 1.01997- 3 1.60002- 2 1.00000+ 1 2.90000+ 1 1.58709- 3 1.60635- 2 1.00000+ 1 3.00000+ 1 2.07481- 3 1.61239- 2 1.00000+ 1 3.20000+ 1 8.38704- 4 1.62180- 2 1.00000+ 1 3.30000+ 1 1.04731- 3 1.62270- 2 1.10000+ 1 1.10000+ 1 6.88181- 4 1.28588- 2 1.10000+ 1 1.30000+ 1 1.29068- 2 1.34212- 2 1.10000+ 1 1.40000+ 1 2.00632- 3 1.36123- 2 1.10000+ 1 1.60000+ 1 2.84609- 4 1.58015- 2 1.10000+ 1 1.80000+ 1 5.91895- 3 1.59609- 2 1.10000+ 1 1.90000+ 1 3.02677- 4 1.62096- 2 1.10000+ 1 2.10000+ 1 2.70880- 3 1.64675- 2 1.10000+ 1 2.20000+ 1 4.10054- 4 1.65131- 2 1.10000+ 1 2.40000+ 1 1.06828- 4 1.68536- 2 1.10000+ 1 2.50000+ 1 5.28756- 5 1.68658- 2 1.10000+ 1 2.70000+ 1 7.04104- 5 1.69441- 2 1.10000+ 1 2.90000+ 1 1.30431- 3 1.70074- 2 1.10000+ 1 3.00000+ 1 6.96036- 5 1.70678- 2 1.10000+ 1 3.20000+ 1 5.17945- 4 1.71619- 2 1.10000+ 1 3.30000+ 1 7.74225- 5 1.71709- 2 1.30000+ 1 1.30000+ 1 1.22582- 2 1.39836- 2 1.30000+ 1 1.40000+ 1 4.68736- 2 1.41747- 2 1.30000+ 1 1.60000+ 1 7.58593- 4 1.63639- 2 1.30000+ 1 1.80000+ 1 2.85569- 3 1.65233- 2 1.30000+ 1 1.90000+ 1 3.00572- 3 1.67720- 2 1.30000+ 1 2.10000+ 1 4.98127- 3 1.70299- 2 1.30000+ 1 2.20000+ 1 1.02970- 2 1.70755- 2 1.30000+ 1 2.40000+ 1 1.06449- 3 1.74160- 2 1.30000+ 1 2.50000+ 1 2.10819- 3 1.74282- 2 1.30000+ 1 2.70000+ 1 1.96925- 4 1.75065- 2 1.30000+ 1 2.90000+ 1 6.29625- 4 1.75698- 2 1.30000+ 1 3.00000+ 1 7.00056- 4 1.76302- 2 1.30000+ 1 3.20000+ 1 9.51984- 4 1.77243- 2 1.30000+ 1 3.30000+ 1 1.97196- 3 1.77333- 2 1.40000+ 1 1.40000+ 1 2.29075- 3 1.43658- 2 1.40000+ 1 1.60000+ 1 2.06633- 4 1.65550- 2 1.40000+ 1 1.80000+ 1 3.12762- 3 1.67144- 2 1.40000+ 1 1.90000+ 1 4.31884- 4 1.69631- 2 1.40000+ 1 2.10000+ 1 7.81849- 3 1.72210- 2 1.40000+ 1 2.20000+ 1 9.19609- 4 1.72666- 2 1.40000+ 1 2.40000+ 1 4.23797- 4 1.76071- 2 1.40000+ 1 2.50000+ 1 1.60780- 4 1.76193- 2 1.40000+ 1 2.70000+ 1 5.09849- 5 1.76976- 2 1.40000+ 1 2.90000+ 1 6.60902- 4 1.77609- 2 1.40000+ 1 3.00000+ 1 9.87377- 5 1.78213- 2 1.40000+ 1 3.20000+ 1 1.42695- 3 1.79154- 2 1.40000+ 1 3.30000+ 1 1.73727- 4 1.79244- 2 1.60000+ 1 1.60000+ 1 1.32187- 5 1.87442- 2 1.60000+ 1 1.80000+ 1 6.79012- 4 1.89036- 2 1.60000+ 1 1.90000+ 1 6.66346- 5 1.91523- 2 1.60000+ 1 2.10000+ 1 1.30574- 4 1.94102- 2 1.60000+ 1 2.20000+ 1 3.04837- 5 1.94558- 2 1.60000+ 1 2.40000+ 1 1.37577- 5 1.97963- 2 1.60000+ 1 2.50000+ 1 8.36270- 6 1.98085- 2 1.60000+ 1 2.70000+ 1 6.47467- 6 1.98868- 2 1.60000+ 1 2.90000+ 1 1.49722- 4 1.99501- 2 1.60000+ 1 3.00000+ 1 1.56466- 5 2.00105- 2 1.60000+ 1 3.20000+ 1 2.40094- 5 2.01046- 2 1.60000+ 1 3.30000+ 1 5.39549- 6 2.01136- 2 1.80000+ 1 1.80000+ 1 7.02491- 4 1.90630- 2 1.80000+ 1 1.90000+ 1 1.50881- 3 1.93117- 2 1.80000+ 1 2.10000+ 1 6.90346- 4 1.95696- 2 1.80000+ 1 2.20000+ 1 7.79384- 4 1.96152- 2 1.80000+ 1 2.40000+ 1 4.63999- 5 1.99557- 2 1.80000+ 1 2.50000+ 1 2.83254- 5 1.99679- 2 1.80000+ 1 2.70000+ 1 1.75885- 4 2.00462- 2 1.80000+ 1 2.90000+ 1 3.25338- 4 2.01095- 2 1.80000+ 1 3.00000+ 1 3.58524- 4 2.01699- 2 1.80000+ 1 3.20000+ 1 1.36226- 4 2.02640- 2 1.80000+ 1 3.30000+ 1 1.53229- 4 2.02730- 2 1.90000+ 1 1.90000+ 1 3.34505- 5 1.95604- 2 1.90000+ 1 2.10000+ 1 6.34735- 4 1.98183- 2 1.90000+ 1 2.20000+ 1 8.92919- 5 1.98639- 2 1.90000+ 1 2.40000+ 1 2.26602- 5 2.02044- 2 1.90000+ 1 2.50000+ 1 1.02505- 5 2.02166- 2 1.90000+ 1 2.70000+ 1 1.64557- 5 2.02949- 2 1.90000+ 1 2.90000+ 1 3.32612- 4 2.03582- 2 1.90000+ 1 3.00000+ 1 1.53766- 5 2.04186- 2 1.90000+ 1 3.20000+ 1 1.21663- 4 2.05127- 2 1.90000+ 1 3.30000+ 1 1.69948- 5 2.05217- 2 2.10000+ 1 2.10000+ 1 5.03921- 4 2.00761- 2 2.10000+ 1 2.20000+ 1 1.79091- 3 2.01218- 2 2.10000+ 1 2.40000+ 1 1.49449- 4 2.04623- 2 2.10000+ 1 2.50000+ 1 2.97017- 4 2.04745- 2 2.10000+ 1 2.70000+ 1 3.37206- 5 2.05528- 2 2.10000+ 1 2.90000+ 1 1.51333- 4 2.06161- 2 2.10000+ 1 3.00000+ 1 1.48106- 4 2.06765- 2 2.10000+ 1 3.20000+ 1 1.92346- 4 2.07706- 2 2.10000+ 1 3.30000+ 1 3.45573- 4 2.07796- 2 2.20000+ 1 2.20000+ 1 9.33364- 5 2.01674- 2 2.20000+ 1 2.40000+ 1 6.50153- 5 2.05080- 2 2.20000+ 1 2.50000+ 1 2.50883- 5 2.05201- 2 2.20000+ 1 2.70000+ 1 7.55326- 6 2.05985- 2 2.20000+ 1 2.90000+ 1 1.65090- 4 2.06618- 2 2.20000+ 1 3.00000+ 1 2.05022- 5 2.07221- 2 2.20000+ 1 3.20000+ 1 3.29380- 4 2.08162- 2 2.20000+ 1 3.30000+ 1 3.53388- 5 2.08252- 2 2.40000+ 1 2.40000+ 1 3.77669- 6 2.08485- 2 2.40000+ 1 2.50000+ 1 2.61666- 5 2.08606- 2 2.40000+ 1 2.70000+ 1 3.50694- 6 2.09390- 2 2.40000+ 1 2.90000+ 1 9.98112- 6 2.10023- 2 2.40000+ 1 3.00000+ 1 5.12550- 6 2.10627- 2 2.40000+ 1 3.20000+ 1 2.64361- 5 2.11568- 2 2.40000+ 1 3.30000+ 1 1.16003- 5 2.11658- 2 2.50000+ 1 2.50000+ 1 1.61855- 6 2.08728- 2 2.50000+ 1 2.70000+ 1 1.88829- 6 2.09511- 2 2.50000+ 1 2.90000+ 1 5.39542- 6 2.10144- 2 2.50000+ 1 3.00000+ 1 2.15814- 6 2.10748- 2 2.50000+ 1 3.20000+ 1 5.23361- 5 2.11689- 2 2.50000+ 1 3.30000+ 1 4.58601- 6 2.11779- 2 2.70000+ 1 2.70000+ 1 8.09330- 7 2.10295- 2 2.70000+ 1 2.90000+ 1 3.88468- 5 2.10928- 2 2.70000+ 1 3.00000+ 1 3.77676- 6 2.11532- 2 2.70000+ 1 3.20000+ 1 6.20487- 6 2.12473- 2 2.70000+ 1 3.30000+ 1 1.34884- 6 2.12563- 2 2.90000+ 1 2.90000+ 1 3.74986- 5 2.11561- 2 2.90000+ 1 3.00000+ 1 7.90416- 5 2.12165- 2 2.90000+ 1 3.20000+ 1 2.99453- 5 2.13106- 2 2.90000+ 1 3.30000+ 1 3.23730- 5 2.13196- 2 3.00000+ 1 3.00000+ 1 1.88834- 6 2.12769- 2 3.00000+ 1 3.20000+ 1 2.83256- 5 2.13710- 2 3.00000+ 1 3.30000+ 1 3.77678- 6 2.13800- 2 3.20000+ 1 3.20000+ 1 1.88019- 5 2.14650- 2 3.20000+ 1 3.30000+ 1 6.52555- 5 2.14740- 2 3.30000+ 1 3.30000+ 1 3.56317- 6 2.14831- 2 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.21569- 2 1.19138- 2 1.00000+ 1 2.83008- 4 1.22605- 2 1.10000+ 1 2.57888- 4 1.32044- 2 1.30000+ 1 3.56618- 2 1.37668- 2 1.40000+ 1 3.13248- 1 1.39579- 2 1.60000+ 1 5.62897- 3 1.61471- 2 1.80000+ 1 6.26916- 5 1.63065- 2 1.90000+ 1 7.04446- 5 1.65552- 2 2.10000+ 1 7.21836- 3 1.68131- 2 2.20000+ 1 6.61776- 2 1.68587- 2 2.40000+ 1 9.62084- 5 1.71992- 2 2.50000+ 1 5.30137- 4 1.72114- 2 2.70000+ 1 1.44389- 3 1.72897- 2 2.90000+ 1 1.47009- 5 1.73530- 2 3.00000+ 1 1.70639- 5 1.74134- 2 3.20000+ 1 1.39089- 3 1.75075- 2 3.30000+ 1 1.27599- 2 1.75165- 2 3.50000+ 1 3.12658- 6 1.76159- 2 3.60000+ 1 1.68249- 5 1.76170- 2 4.10000+ 1 2.99708- 4 1.75716- 2 4.30000+ 1 2.64908- 6 1.75905- 2 4.40000+ 1 2.88568- 6 1.76007- 2 5.80000+ 1 3.09648- 5 1.76201- 2 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.97596- 4 6.20160- 3 8.00000+ 0 1.00000+ 1 1.71238- 4 6.54830- 3 8.00000+ 0 1.10000+ 1 1.78122- 2 7.49220- 3 8.00000+ 0 1.30000+ 1 2.86314- 3 8.05460- 3 8.00000+ 0 1.40000+ 1 5.84680- 3 8.24570- 3 8.00000+ 0 1.60000+ 1 1.64384- 4 1.04349- 2 8.00000+ 0 1.80000+ 1 2.83763- 5 1.05943- 2 8.00000+ 0 1.90000+ 1 2.97136- 3 1.08430- 2 8.00000+ 0 2.10000+ 1 3.50297- 4 1.11009- 2 8.00000+ 0 2.20000+ 1 6.80069- 4 1.11465- 2 8.00000+ 0 2.40000+ 1 3.40192- 4 1.14870- 2 8.00000+ 0 2.50000+ 1 5.73385- 4 1.14992- 2 8.00000+ 0 2.70000+ 1 3.97921- 5 1.15775- 2 8.00000+ 0 2.90000+ 1 6.19730- 6 1.16408- 2 8.00000+ 0 3.00000+ 1 6.42892- 4 1.17012- 2 8.00000+ 0 3.20000+ 1 6.03430- 5 1.17953- 2 8.00000+ 0 3.30000+ 1 1.13508- 4 1.18043- 2 1.00000+ 1 1.00000+ 1 3.26176- 7 6.89500- 3 1.00000+ 1 1.10000+ 1 2.98353- 2 7.83890- 3 1.00000+ 1 1.30000+ 1 1.27338- 3 8.40130- 3 1.00000+ 1 1.40000+ 1 9.20283- 3 8.59240- 3 1.00000+ 1 1.60000+ 1 3.65313- 5 1.07816- 2 1.00000+ 1 1.80000+ 1 7.17575- 6 1.09410- 2 1.00000+ 1 1.90000+ 1 5.17340- 3 1.11897- 2 1.00000+ 1 2.10000+ 1 2.50500- 4 1.14476- 2 1.00000+ 1 2.20000+ 1 1.51762- 3 1.14932- 2 1.00000+ 1 2.40000+ 1 2.86054- 4 1.18337- 2 1.00000+ 1 2.50000+ 1 6.78113- 4 1.18459- 2 1.00000+ 1 2.70000+ 1 9.13261- 6 1.19242- 2 1.00000+ 1 2.90000+ 1 2.60941- 6 1.19875- 2 1.00000+ 1 3.00000+ 1 1.12851- 3 1.20479- 2 1.00000+ 1 3.20000+ 1 4.89253- 5 1.21420- 2 1.00000+ 1 3.30000+ 1 2.77249- 4 1.21510- 2 1.10000+ 1 1.10000+ 1 3.52192- 2 8.78280- 3 1.10000+ 1 1.30000+ 1 3.69141- 2 9.34520- 3 1.10000+ 1 1.40000+ 1 4.64497- 2 9.53630- 3 1.10000+ 1 1.60000+ 1 4.76236- 3 1.17255- 2 1.10000+ 1 1.80000+ 1 7.16496- 3 1.18849- 2 1.10000+ 1 1.90000+ 1 1.48430- 2 1.21336- 2 1.10000+ 1 2.10000+ 1 8.45387- 3 1.23915- 2 1.10000+ 1 2.20000+ 1 1.05864- 2 1.24371- 2 1.10000+ 1 2.40000+ 1 9.00619- 4 1.27776- 2 1.10000+ 1 2.50000+ 1 1.06957- 3 1.27898- 2 1.10000+ 1 2.70000+ 1 1.22715- 3 1.28681- 2 1.10000+ 1 2.90000+ 1 1.70855- 3 1.29314- 2 1.10000+ 1 3.00000+ 1 3.40314- 3 1.29918- 2 1.10000+ 1 3.20000+ 1 1.65212- 3 1.30859- 2 1.10000+ 1 3.30000+ 1 2.04420- 3 1.30949- 2 1.30000+ 1 1.30000+ 1 4.81520- 3 9.90760- 3 1.30000+ 1 1.40000+ 1 8.95891- 2 1.00987- 2 1.30000+ 1 1.60000+ 1 6.90876- 4 1.22879- 2 1.30000+ 1 1.80000+ 1 3.41854- 4 1.24473- 2 1.30000+ 1 1.90000+ 1 5.76363- 3 1.26960- 2 1.30000+ 1 2.10000+ 1 1.83907- 3 1.29539- 2 1.30000+ 1 2.20000+ 1 1.43576- 2 1.29995- 2 1.30000+ 1 2.40000+ 1 4.80811- 4 1.33400- 2 1.30000+ 1 2.50000+ 1 1.60231- 3 1.33522- 2 1.30000+ 1 2.70000+ 1 1.75821- 4 1.34305- 2 1.30000+ 1 2.90000+ 1 8.28515- 5 1.34938- 2 1.30000+ 1 3.00000+ 1 1.22776- 3 1.35542- 2 1.30000+ 1 3.20000+ 1 3.48374- 4 1.36483- 2 1.30000+ 1 3.30000+ 1 2.58403- 3 1.36573- 2 1.40000+ 1 1.40000+ 1 5.90733- 2 1.02898- 2 1.40000+ 1 1.60000+ 1 1.42146- 3 1.24790- 2 1.40000+ 1 1.80000+ 1 1.98637- 3 1.26384- 2 1.40000+ 1 1.90000+ 1 8.10921- 3 1.28871- 2 1.40000+ 1 2.10000+ 1 1.72401- 2 1.31450- 2 1.40000+ 1 2.20000+ 1 2.17478- 2 1.31906- 2 1.40000+ 1 2.40000+ 1 5.01800- 3 1.35311- 2 1.40000+ 1 2.50000+ 1 4.50883- 3 1.35433- 2 1.40000+ 1 2.70000+ 1 3.64028- 4 1.36216- 2 1.40000+ 1 2.90000+ 1 4.63499- 4 1.36849- 2 1.40000+ 1 3.00000+ 1 1.78625- 3 1.37453- 2 1.40000+ 1 3.20000+ 1 3.25795- 3 1.38394- 2 1.40000+ 1 3.30000+ 1 4.04239- 3 1.38484- 2 1.60000+ 1 1.60000+ 1 1.79402- 5 1.46682- 2 1.60000+ 1 1.80000+ 1 7.17598- 6 1.48276- 2 1.60000+ 1 1.90000+ 1 7.93926- 4 1.50763- 2 1.60000+ 1 2.10000+ 1 9.06791- 5 1.53342- 2 1.60000+ 1 2.20000+ 1 1.74507- 4 1.53798- 2 1.60000+ 1 2.40000+ 1 4.17512- 5 1.57203- 2 1.60000+ 1 2.50000+ 1 7.95896- 5 1.57325- 2 1.60000+ 1 2.70000+ 1 8.80692- 6 1.58108- 2 1.60000+ 1 2.90000+ 1 1.63093- 6 1.58741- 2 1.60000+ 1 3.00000+ 1 1.71572- 4 1.59345- 2 1.60000+ 1 3.20000+ 1 1.56563- 5 1.60286- 2 1.60000+ 1 3.30000+ 1 2.93567- 5 1.60376- 2 1.80000+ 1 1.90000+ 1 1.23225- 3 1.52357- 2 1.80000+ 1 2.10000+ 1 6.16453- 5 1.54936- 2 1.80000+ 1 2.20000+ 1 3.61404- 4 1.55392- 2 1.80000+ 1 2.40000+ 1 4.30561- 5 1.58797- 2 1.80000+ 1 2.50000+ 1 9.52429- 5 1.58919- 2 1.80000+ 1 2.70000+ 1 1.95701- 6 1.59702- 2 1.80000+ 1 3.00000+ 1 2.68119- 4 1.60939- 2 1.80000+ 1 3.20000+ 1 1.17424- 5 1.61880- 2 1.80000+ 1 3.30000+ 1 6.68651- 5 1.61970- 2 1.90000+ 1 1.90000+ 1 1.49282- 3 1.54844- 2 1.90000+ 1 2.10000+ 1 1.32451- 3 1.57423- 2 1.90000+ 1 2.20000+ 1 1.82293- 3 1.57879- 2 1.90000+ 1 2.40000+ 1 1.15462- 4 1.61284- 2 1.90000+ 1 2.50000+ 1 1.44171- 4 1.61406- 2 1.90000+ 1 2.70000+ 1 2.04512- 4 1.62189- 2 1.90000+ 1 2.90000+ 1 2.93226- 4 1.62822- 2 1.90000+ 1 3.00000+ 1 6.77481- 4 1.63426- 2 1.90000+ 1 3.20000+ 1 2.58983- 4 1.64367- 2 1.90000+ 1 3.30000+ 1 3.50967- 4 1.64457- 2 2.10000+ 1 2.10000+ 1 1.67984- 4 1.60001- 2 2.10000+ 1 2.20000+ 1 2.90419- 3 1.60458- 2 2.10000+ 1 2.40000+ 1 6.03449- 5 1.63863- 2 2.10000+ 1 2.50000+ 1 1.88852- 4 1.63985- 2 2.10000+ 1 2.70000+ 1 2.34844- 5 1.64768- 2 2.10000+ 1 2.90000+ 1 1.46780- 5 1.65401- 2 2.10000+ 1 3.00000+ 1 2.82462- 4 1.66005- 2 2.10000+ 1 3.20000+ 1 6.32797- 5 1.66946- 2 2.10000+ 1 3.30000+ 1 5.27095- 4 1.67036- 2 2.20000+ 1 2.20000+ 1 2.01536- 3 1.60914- 2 2.20000+ 1 2.40000+ 1 6.24964- 4 1.64320- 2 2.20000+ 1 2.50000+ 1 5.50236- 4 1.64441- 2 2.20000+ 1 2.70000+ 1 4.50118- 5 1.65225- 2 2.20000+ 1 2.90000+ 1 8.54569- 5 1.65858- 2 2.20000+ 1 3.00000+ 1 3.99882- 4 1.66461- 2 2.20000+ 1 3.20000+ 1 5.53535- 4 1.67402- 2 2.20000+ 1 3.30000+ 1 7.49221- 4 1.67492- 2 2.40000+ 1 2.40000+ 1 2.93547- 6 1.67725- 2 2.40000+ 1 2.50000+ 1 8.87130- 5 1.67846- 2 2.40000+ 1 2.70000+ 1 9.13227- 6 1.68630- 2 2.40000+ 1 2.90000+ 1 9.45873- 6 1.69263- 2 2.40000+ 1 3.00000+ 1 2.38092- 5 1.69867- 2 2.40000+ 1 3.20000+ 1 1.04368- 5 1.70808- 2 2.40000+ 1 3.30000+ 1 1.06653- 4 1.70898- 2 2.50000+ 1 2.50000+ 1 3.16389- 5 1.67968- 2 2.50000+ 1 2.70000+ 1 1.79397- 5 1.68751- 2 2.50000+ 1 2.90000+ 1 2.05486- 5 1.69384- 2 2.50000+ 1 3.00000+ 1 3.00080- 5 1.69988- 2 2.50000+ 1 3.20000+ 1 3.22918- 5 1.70929- 2 2.50000+ 1 3.30000+ 1 9.36116- 5 1.71019- 2 2.70000+ 1 2.70000+ 1 9.78503- 7 1.69535- 2 2.70000+ 1 2.90000+ 1 3.26178- 7 1.70168- 2 2.70000+ 1 3.00000+ 1 4.43600- 5 1.70772- 2 2.70000+ 1 3.20000+ 1 4.24021- 6 1.71713- 2 2.70000+ 1 3.30000+ 1 7.50178- 6 1.71803- 2 2.90000+ 1 3.00000+ 1 6.39567- 5 1.71405- 2 2.90000+ 1 3.20000+ 1 2.93689- 6 1.72346- 2 2.90000+ 1 3.30000+ 1 1.59889- 5 1.72436- 2 3.00000+ 1 3.00000+ 1 7.66539- 5 1.72009- 2 3.00000+ 1 3.20000+ 1 5.51260- 5 1.72950- 2 3.00000+ 1 3.30000+ 1 7.69788- 5 1.73040- 2 3.20000+ 1 3.20000+ 1 5.87120- 6 1.73890- 2 3.20000+ 1 3.30000+ 1 1.00468- 4 1.73980- 2 3.30000+ 1 3.30000+ 1 6.98036- 5 1.74071- 2 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.07920- 5 3.46700- 4 1.10000+ 1 1.28470- 3 1.29060- 3 1.80000+ 1 2.81250- 3 4.39270- 3 1.90000+ 1 1.43020- 3 4.64140- 3 2.90000+ 1 7.55191- 4 5.43925- 3 3.00000+ 1 4.45520- 4 5.49964- 3 4.30000+ 1 1.38390- 4 5.67668- 3 4.40000+ 1 7.74951- 5 5.68695- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.70000+ 1 1.58070- 2 1.04500- 5 1.00000+ 1 2.90000+ 1 1.64915- 2 7.37500- 5 1.00000+ 1 3.00000+ 1 1.95052- 2 1.34140- 4 1.00000+ 1 3.20000+ 1 1.12366- 2 2.28220- 4 1.00000+ 1 3.30000+ 1 1.45180- 2 2.37230- 4 1.00000+ 1 3.50000+ 1 4.04133- 4 3.36580- 4 1.00000+ 1 3.60000+ 1 5.08664- 4 3.37670- 4 1.00000+ 1 4.10000+ 1 3.04689- 3 2.92310- 4 1.00000+ 1 4.30000+ 1 2.68107- 3 3.11180- 4 1.00000+ 1 4.40000+ 1 2.89900- 3 3.21450- 4 1.00000+ 1 4.60000+ 1 6.23168- 5 3.41950- 4 1.00000+ 1 4.70000+ 1 7.20113- 5 3.42590- 4 1.00000+ 1 5.80000+ 1 3.01612- 4 3.40820- 4 1.10000+ 1 1.90000+ 1 4.08110- 2 2.19800- 4 1.10000+ 1 2.10000+ 1 1.02072- 2 4.77660- 4 1.10000+ 1 2.20000+ 1 2.65009- 2 5.23310- 4 1.10000+ 1 2.40000+ 1 2.09491- 1 8.63850- 4 1.10000+ 1 2.50000+ 1 2.52458- 1 8.76000- 4 1.10000+ 1 2.70000+ 1 1.19849- 2 9.54350- 4 1.10000+ 1 2.90000+ 1 1.23086- 2 1.01765- 3 1.10000+ 1 3.00000+ 1 9.55520- 3 1.07804- 3 1.10000+ 1 3.20000+ 1 2.34132- 3 1.17212- 3 1.10000+ 1 3.30000+ 1 5.60913- 3 1.18113- 3 1.10000+ 1 3.50000+ 1 3.67850- 3 1.28048- 3 1.10000+ 1 3.60000+ 1 4.24497- 3 1.28157- 3 1.10000+ 1 4.10000+ 1 2.35811- 3 1.23621- 3 1.10000+ 1 4.30000+ 1 2.04285- 3 1.25508- 3 1.10000+ 1 4.40000+ 1 1.45949- 3 1.26535- 3 1.10000+ 1 4.60000+ 1 1.42602- 5 1.28585- 3 1.10000+ 1 4.70000+ 1 2.99462- 5 1.28649- 3 1.10000+ 1 5.80000+ 1 2.35721- 4 1.28472- 3 1.30000+ 1 1.60000+ 1 2.79091- 2 3.74100- 4 1.30000+ 1 1.80000+ 1 5.83032- 3 5.33500- 4 1.30000+ 1 1.90000+ 1 1.02083- 2 7.82200- 4 1.30000+ 1 2.10000+ 1 9.44108- 3 1.04006- 3 1.30000+ 1 2.20000+ 1 1.11517- 2 1.08571- 3 1.30000+ 1 2.40000+ 1 1.06400- 2 1.42625- 3 1.30000+ 1 2.50000+ 1 1.01044- 2 1.43840- 3 1.30000+ 1 2.70000+ 1 4.43667- 3 1.51675- 3 1.30000+ 1 2.90000+ 1 1.10408- 3 1.58005- 3 1.30000+ 1 3.00000+ 1 1.78866- 3 1.64044- 3 1.30000+ 1 3.20000+ 1 1.49848- 3 1.73452- 3 1.30000+ 1 3.30000+ 1 1.92256- 3 1.74353- 3 1.30000+ 1 3.50000+ 1 2.01499- 4 1.84288- 3 1.30000+ 1 3.60000+ 1 1.73550- 4 1.84397- 3 1.30000+ 1 4.10000+ 1 8.02409- 4 1.79861- 3 1.30000+ 1 4.30000+ 1 1.80245- 4 1.81748- 3 1.30000+ 1 4.40000+ 1 2.61104- 4 1.82775- 3 1.30000+ 1 4.60000+ 1 8.69906- 6 1.84825- 3 1.30000+ 1 4.70000+ 1 1.01254- 5 1.84889- 3 1.30000+ 1 5.80000+ 1 7.90038- 5 1.84712- 3 1.40000+ 1 1.60000+ 1 3.79260- 2 5.65200- 4 1.40000+ 1 1.80000+ 1 8.88995- 4 7.24600- 4 1.40000+ 1 1.90000+ 1 1.28845- 2 9.73300- 4 1.40000+ 1 2.10000+ 1 1.28185- 2 1.23116- 3 1.40000+ 1 2.20000+ 1 1.73802- 2 1.27681- 3 1.40000+ 1 2.40000+ 1 1.27676- 2 1.61735- 3 1.40000+ 1 2.50000+ 1 1.89301- 2 1.62950- 3 1.40000+ 1 2.70000+ 1 5.92733- 3 1.70785- 3 1.40000+ 1 2.90000+ 1 2.44850- 4 1.77115- 3 1.40000+ 1 3.00000+ 1 2.22066- 3 1.83154- 3 1.40000+ 1 3.20000+ 1 2.26053- 3 1.92562- 3 1.40000+ 1 3.30000+ 1 2.89037- 3 1.93463- 3 1.40000+ 1 3.50000+ 1 2.25743- 4 2.03398- 3 1.40000+ 1 3.60000+ 1 3.35693- 4 2.03507- 3 1.40000+ 1 4.10000+ 1 1.06782- 3 1.98971- 3 1.40000+ 1 4.30000+ 1 4.36369- 5 2.00858- 3 1.40000+ 1 4.40000+ 1 3.24002- 4 2.01885- 3 1.40000+ 1 4.60000+ 1 1.34042- 5 2.03935- 3 1.40000+ 1 4.70000+ 1 1.51169- 5 2.03999- 3 1.40000+ 1 5.80000+ 1 1.04953- 4 2.03822- 3 1.60000+ 1 1.60000+ 1 2.23842- 3 2.75440- 3 1.60000+ 1 1.80000+ 1 3.98960- 3 2.91380- 3 1.60000+ 1 1.90000+ 1 6.15049- 3 3.16250- 3 1.60000+ 1 2.10000+ 1 7.44810- 3 3.42036- 3 1.60000+ 1 2.20000+ 1 1.02843- 2 3.46601- 3 1.60000+ 1 2.40000+ 1 5.66414- 3 3.80655- 3 1.60000+ 1 2.50000+ 1 6.99215- 3 3.81870- 3 1.60000+ 1 2.70000+ 1 9.29910- 4 3.89705- 3 1.60000+ 1 2.90000+ 1 9.60566- 4 3.96035- 3 1.60000+ 1 3.00000+ 1 1.46001- 3 4.02074- 3 1.60000+ 1 3.20000+ 1 1.43283- 3 4.11482- 3 1.60000+ 1 3.30000+ 1 1.96113- 3 4.12383- 3 1.60000+ 1 3.50000+ 1 1.39326- 4 4.22318- 3 1.60000+ 1 3.60000+ 1 1.66126- 4 4.22427- 3 1.60000+ 1 4.10000+ 1 1.80964- 4 4.17891- 3 1.60000+ 1 4.30000+ 1 1.63707- 4 4.19778- 3 1.60000+ 1 4.40000+ 1 2.25311- 4 4.20805- 3 1.60000+ 1 4.60000+ 1 8.55598- 6 4.22855- 3 1.60000+ 1 4.70000+ 1 1.04102- 5 4.22919- 3 1.60000+ 1 5.80000+ 1 1.79675- 5 4.22742- 3 1.80000+ 1 1.80000+ 1 1.48155- 4 3.07320- 3 1.80000+ 1 1.90000+ 1 4.93259- 4 3.32190- 3 1.80000+ 1 2.10000+ 1 2.33429- 4 3.57976- 3 1.80000+ 1 2.20000+ 1 1.03250- 4 3.62541- 3 1.80000+ 1 2.40000+ 1 2.05341- 5 3.96595- 3 1.80000+ 1 2.50000+ 1 5.22635- 4 3.97810- 3 1.80000+ 1 2.70000+ 1 6.18442- 4 4.05645- 3 1.80000+ 1 2.90000+ 1 5.06229- 5 4.11975- 3 1.80000+ 1 3.00000+ 1 8.01380- 5 4.18014- 3 1.80000+ 1 3.20000+ 1 3.79316- 5 4.27422- 3 1.80000+ 1 3.30000+ 1 2.53823- 5 4.28323- 3 1.80000+ 1 3.50000+ 1 1.42600- 7 4.38258- 3 1.80000+ 1 3.60000+ 1 7.84304- 6 4.38367- 3 1.80000+ 1 4.10000+ 1 1.11794- 4 4.33831- 3 1.80000+ 1 4.30000+ 1 7.98562- 6 4.35718- 3 1.80000+ 1 4.40000+ 1 1.15511- 5 4.36745- 3 1.80000+ 1 4.60000+ 1 2.85200- 7 4.38795- 3 1.80000+ 1 4.70000+ 1 1.42600- 7 4.38859- 3 1.80000+ 1 5.80000+ 1 1.09795- 5 4.38682- 3 1.90000+ 1 1.90000+ 1 4.46914- 4 3.57060- 3 1.90000+ 1 2.10000+ 1 6.79929- 4 3.82846- 3 1.90000+ 1 2.20000+ 1 1.49797- 3 3.87411- 3 1.90000+ 1 2.40000+ 1 9.82838- 4 4.21465- 3 1.90000+ 1 2.50000+ 1 1.41294- 3 4.22680- 3 1.90000+ 1 2.70000+ 1 9.59576- 4 4.30515- 3 1.90000+ 1 2.90000+ 1 1.01814- 4 4.36845- 3 1.90000+ 1 3.00000+ 1 1.79396- 4 4.42884- 3 1.90000+ 1 3.20000+ 1 1.27064- 4 4.52292- 3 1.90000+ 1 3.30000+ 1 2.70517- 4 4.53193- 3 1.90000+ 1 3.50000+ 1 2.26739- 5 4.63128- 3 1.90000+ 1 3.60000+ 1 2.86635- 5 4.63237- 3 1.90000+ 1 4.10000+ 1 1.73830- 4 4.58701- 3 1.90000+ 1 4.30000+ 1 1.69703- 5 4.60588- 3 1.90000+ 1 4.40000+ 1 2.69518- 5 4.61615- 3 1.90000+ 1 4.60000+ 1 7.13004- 7 4.63665- 3 1.90000+ 1 4.70000+ 1 1.42603- 6 4.63729- 3 1.90000+ 1 5.80000+ 1 1.71122- 5 4.63552- 3 2.10000+ 1 2.10000+ 1 9.98204- 5 4.08632- 3 2.10000+ 1 2.20000+ 1 2.35580- 4 4.13197- 3 2.10000+ 1 2.40000+ 1 4.54045- 4 4.47251- 3 2.10000+ 1 2.50000+ 1 2.62141- 3 4.48466- 3 2.10000+ 1 2.70000+ 1 1.12764- 3 4.56301- 3 2.10000+ 1 2.90000+ 1 3.43669- 5 4.62631- 3 2.10000+ 1 3.00000+ 1 1.21498- 4 4.68670- 3 2.10000+ 1 3.20000+ 1 2.99462- 5 4.78078- 3 2.10000+ 1 3.30000+ 1 3.79320- 5 4.78979- 3 2.10000+ 1 3.50000+ 1 1.01253- 5 4.88914- 3 2.10000+ 1 3.60000+ 1 4.57752- 5 4.89023- 3 2.10000+ 1 4.10000+ 1 2.02496- 4 4.84487- 3 2.10000+ 1 4.30000+ 1 5.27628- 6 4.86374- 3 2.10000+ 1 4.40000+ 1 1.76825- 5 4.87401- 3 2.10000+ 1 4.60000+ 1 1.42602- 7 4.89451- 3 2.10000+ 1 4.70000+ 1 1.42602- 7 4.89515- 3 2.10000+ 1 5.80000+ 1 1.98219- 5 4.89338- 3 2.20000+ 1 2.20000+ 1 2.17035- 4 4.17762- 3 2.20000+ 1 2.40000+ 1 2.29395- 3 4.51816- 3 2.20000+ 1 2.50000+ 1 1.50735- 3 4.53031- 3 2.20000+ 1 2.70000+ 1 1.54832- 3 4.60866- 3 2.20000+ 1 2.90000+ 1 1.75397- 5 4.67196- 3 2.20000+ 1 3.00000+ 1 2.63521- 4 4.73235- 3 2.20000+ 1 3.20000+ 1 3.30829- 5 4.82643- 3 2.20000+ 1 3.30000+ 1 6.75937- 5 4.83544- 3 2.20000+ 1 3.50000+ 1 4.03563- 5 4.93479- 3 2.20000+ 1 3.60000+ 1 2.85204- 5 4.93588- 3 2.20000+ 1 4.10000+ 1 2.77650- 4 4.89052- 3 2.20000+ 1 4.30000+ 1 2.85204- 6 4.90939- 3 2.20000+ 1 4.40000+ 1 3.83599- 5 4.91966- 3 2.20000+ 1 4.60000+ 1 1.42602- 7 4.94016- 3 2.20000+ 1 4.70000+ 1 2.85204- 7 4.94080- 3 2.20000+ 1 5.80000+ 1 2.72374- 5 4.93903- 3 2.40000+ 1 2.40000+ 1 6.38840- 4 4.85870- 3 2.40000+ 1 2.50000+ 1 4.15797- 3 4.87085- 3 2.40000+ 1 2.70000+ 1 7.82751- 4 4.94920- 3 2.40000+ 1 2.90000+ 1 4.84845- 6 5.01250- 3 2.40000+ 1 3.00000+ 1 1.22358- 4 5.07289- 3 2.40000+ 1 3.20000+ 1 7.78614- 5 5.16697- 3 2.40000+ 1 3.30000+ 1 4.49482- 4 5.17598- 3 2.40000+ 1 3.50000+ 1 2.85206- 5 5.27533- 3 2.40000+ 1 3.60000+ 1 7.60058- 5 5.27642- 3 2.40000+ 1 4.10000+ 1 1.38326- 4 5.23106- 3 2.40000+ 1 4.30000+ 1 8.55596- 7 5.24993- 3 2.40000+ 1 4.40000+ 1 1.66854- 5 5.26020- 3 2.40000+ 1 4.60000+ 1 4.27808- 7 5.28070- 3 2.40000+ 1 4.70000+ 1 2.42428- 6 5.28134- 3 2.40000+ 1 5.80000+ 1 1.35468- 5 5.27957- 3 2.50000+ 1 2.50000+ 1 1.43911- 3 4.88300- 3 2.50000+ 1 2.70000+ 1 9.63850- 4 4.96135- 3 2.50000+ 1 2.90000+ 1 1.08378- 4 5.02465- 3 2.50000+ 1 3.00000+ 1 1.88945- 4 5.08504- 3 2.50000+ 1 3.20000+ 1 4.97819- 4 5.17912- 3 2.50000+ 1 3.30000+ 1 2.77068- 4 5.18813- 3 2.50000+ 1 3.50000+ 1 7.72888- 5 5.28748- 3 2.50000+ 1 3.60000+ 1 5.76099- 5 5.28857- 3 2.50000+ 1 4.10000+ 1 1.70269- 4 5.24321- 3 2.50000+ 1 4.30000+ 1 1.79672- 5 5.26208- 3 2.50000+ 1 4.40000+ 1 2.60960- 5 5.27235- 3 2.50000+ 1 4.60000+ 1 2.99461- 6 5.29285- 3 2.50000+ 1 4.70000+ 1 1.42602- 6 5.29349- 3 2.50000+ 1 5.80000+ 1 1.66852- 5 5.29172- 3 2.70000+ 1 2.70000+ 1 8.85550- 5 5.03970- 3 2.70000+ 1 2.90000+ 1 1.50444- 4 5.10300- 3 2.70000+ 1 3.00000+ 1 2.27443- 4 5.16339- 3 2.70000+ 1 3.20000+ 1 2.18470- 4 5.25747- 3 2.70000+ 1 3.30000+ 1 2.97319- 4 5.26648- 3 2.70000+ 1 3.50000+ 1 1.93939- 5 5.36583- 3 2.70000+ 1 3.60000+ 1 2.29591- 5 5.36692- 3 2.70000+ 1 4.10000+ 1 3.37957- 5 5.32156- 3 2.70000+ 1 4.30000+ 1 2.56680- 5 5.34043- 3 2.70000+ 1 4.40000+ 1 3.50797- 5 5.35070- 3 2.70000+ 1 4.60000+ 1 1.28340- 6 5.37120- 3 2.70000+ 1 4.70000+ 1 1.56858- 6 5.37184- 3 2.70000+ 1 5.80000+ 1 3.42234- 6 5.37007- 3 2.90000+ 1 2.90000+ 1 4.27809- 6 5.16630- 3 2.90000+ 1 3.00000+ 1 1.59710- 5 5.22669- 3 2.90000+ 1 3.20000+ 1 5.56142- 6 5.32077- 3 2.90000+ 1 3.30000+ 1 4.56328- 6 5.32978- 3 2.90000+ 1 3.60000+ 1 1.71122- 6 5.43022- 3 2.90000+ 1 4.10000+ 1 2.72376- 5 5.38486- 3 2.90000+ 1 4.30000+ 1 1.28344- 6 5.40373- 3 2.90000+ 1 4.40000+ 1 2.28158- 6 5.41400- 3 2.90000+ 1 5.80000+ 1 2.70947- 6 5.43337- 3 3.00000+ 1 3.00000+ 1 1.72548- 5 5.28708- 3 3.00000+ 1 3.20000+ 1 2.28154- 5 5.38116- 3 3.00000+ 1 3.30000+ 1 4.79143- 5 5.39017- 3 3.00000+ 1 3.50000+ 1 2.85202- 6 5.48952- 3 3.00000+ 1 3.60000+ 1 3.70756- 6 5.49061- 3 3.00000+ 1 4.10000+ 1 4.12123- 5 5.44525- 3 3.00000+ 1 4.30000+ 1 2.70943- 6 5.46412- 3 3.00000+ 1 4.40000+ 1 5.13366- 6 5.47439- 3 3.00000+ 1 4.60000+ 1 1.42601- 7 5.49489- 3 3.00000+ 1 4.70000+ 1 2.85202- 7 5.49553- 3 3.00000+ 1 5.80000+ 1 3.99283- 6 5.49376- 3 3.20000+ 1 3.20000+ 1 1.99639- 6 5.47524- 3 3.20000+ 1 3.30000+ 1 5.41890- 6 5.48425- 3 3.20000+ 1 3.50000+ 1 1.71121- 6 5.58360- 3 3.20000+ 1 3.60000+ 1 9.12657- 6 5.58469- 3 3.20000+ 1 4.10000+ 1 3.92153- 5 5.53933- 3 3.20000+ 1 4.30000+ 1 8.55592- 7 5.55820- 3 3.20000+ 1 4.40000+ 1 3.27981- 6 5.56847- 3 3.20000+ 1 5.80000+ 1 3.85028- 6 5.58784- 3 3.30000+ 1 3.30000+ 1 4.99106- 6 5.49326- 3 3.30000+ 1 3.50000+ 1 8.27081- 6 5.59261- 3 3.30000+ 1 3.60000+ 1 5.27635- 6 5.59370- 3 3.30000+ 1 4.10000+ 1 5.33350- 5 5.54834- 3 3.30000+ 1 4.30000+ 1 7.13006- 7 5.56721- 3 3.30000+ 1 4.40000+ 1 6.98746- 6 5.57748- 3 3.30000+ 1 5.80000+ 1 5.27635- 6 5.59685- 3 3.50000+ 1 3.50000+ 1 1.51792- 7 5.69196- 3 3.50000+ 1 3.60000+ 1 1.51792- 6 5.69305- 3 3.50000+ 1 4.10000+ 1 3.64294- 6 5.64769- 3 3.50000+ 1 4.40000+ 1 4.55373- 7 5.67683- 3 3.50000+ 1 5.80000+ 1 3.03582- 7 5.69620- 3 3.60000+ 1 3.60000+ 1 4.27178- 7 5.69414- 3 3.60000+ 1 4.10000+ 1 3.98701- 6 5.64878- 3 3.60000+ 1 4.30000+ 1 2.84785- 7 5.66765- 3 3.60000+ 1 4.40000+ 1 5.69560- 7 5.67792- 3 3.60000+ 1 5.80000+ 1 4.27178- 7 5.69729- 3 4.10000+ 1 4.10000+ 1 3.27990- 6 5.60342- 3 4.10000+ 1 4.30000+ 1 4.70596- 6 5.62229- 3 4.10000+ 1 4.40000+ 1 6.41732- 6 5.63256- 3 4.10000+ 1 4.60000+ 1 2.85212- 7 5.65306- 3 4.10000+ 1 4.70000+ 1 2.85212- 7 5.65370- 3 4.10000+ 1 5.80000+ 1 5.70413- 7 5.65193- 3 4.30000+ 1 4.30000+ 1 1.42604- 7 5.64116- 3 4.30000+ 1 4.40000+ 1 4.27809- 7 5.65143- 3 4.30000+ 1 5.80000+ 1 4.27809- 7 5.67080- 3 4.40000+ 1 4.40000+ 1 3.85059- 7 5.66170- 3 4.40000+ 1 5.80000+ 1 5.13402- 7 5.68107- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.99261- 3 1.50630- 3 1.60000+ 1 1.04990- 3 3.88660- 3 2.10000+ 1 5.12732- 3 4.55256- 3 2.70000+ 1 2.75981- 4 5.02925- 3 3.20000+ 1 1.24901- 3 5.24702- 3 4.10000+ 1 5.73232- 5 5.31111- 3 5.80000+ 1 5.83802- 6 5.35962- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 9.15112- 3 1.30960- 4 1.10000+ 1 2.20000+ 1 1.83616- 2 1.76610- 4 1.10000+ 1 2.40000+ 1 2.83876- 2 5.17150- 4 1.10000+ 1 2.50000+ 1 2.31255- 2 5.29300- 4 1.10000+ 1 2.70000+ 1 3.12070- 3 6.07650- 4 1.10000+ 1 2.90000+ 1 4.55360- 3 6.70950- 4 1.10000+ 1 3.00000+ 1 1.85352- 3 7.31340- 4 1.10000+ 1 3.20000+ 1 1.91615- 3 8.25420- 4 1.10000+ 1 3.30000+ 1 3.35216- 3 8.34430- 4 1.10000+ 1 3.50000+ 1 5.69031- 4 9.33780- 4 1.10000+ 1 3.60000+ 1 4.58185- 4 9.34870- 4 1.10000+ 1 4.10000+ 1 5.86749- 4 8.89510- 4 1.10000+ 1 4.30000+ 1 6.94323- 4 9.08380- 4 1.10000+ 1 4.40000+ 1 2.70913- 4 9.18650- 4 1.10000+ 1 4.60000+ 1 1.14786- 5 9.39150- 4 1.10000+ 1 4.70000+ 1 1.77107- 5 9.39790- 4 1.10000+ 1 5.80000+ 1 5.80513- 5 9.38020- 4 1.30000+ 1 1.60000+ 1 4.76094- 2 2.74000- 5 1.30000+ 1 1.80000+ 1 4.94991- 2 1.86800- 4 1.30000+ 1 1.90000+ 1 3.23588- 2 4.35500- 4 1.30000+ 1 2.10000+ 1 1.65470- 2 6.93360- 4 1.30000+ 1 2.20000+ 1 2.65427- 2 7.39010- 4 1.30000+ 1 2.40000+ 1 1.50641- 1 1.07955- 3 1.30000+ 1 2.50000+ 1 2.36840- 1 1.09170- 3 1.30000+ 1 2.70000+ 1 1.18726- 2 1.17005- 3 1.30000+ 1 2.90000+ 1 9.80656- 3 1.23335- 3 1.30000+ 1 3.00000+ 1 7.42354- 3 1.29374- 3 1.30000+ 1 3.20000+ 1 3.41452- 3 1.38782- 3 1.30000+ 1 3.30000+ 1 5.39493- 3 1.39683- 3 1.30000+ 1 3.50000+ 1 2.70310- 3 1.49618- 3 1.30000+ 1 3.60000+ 1 4.31719- 3 1.49727- 3 1.30000+ 1 4.10000+ 1 2.35405- 3 1.45191- 3 1.30000+ 1 4.30000+ 1 1.61109- 3 1.47078- 3 1.30000+ 1 4.40000+ 1 1.13251- 3 1.48105- 3 1.30000+ 1 4.60000+ 1 2.04989- 5 1.50155- 3 1.30000+ 1 4.70000+ 1 2.86984- 5 1.50219- 3 1.30000+ 1 5.80000+ 1 2.35488- 4 1.50042- 3 1.40000+ 1 1.60000+ 1 7.20189- 3 2.18500- 4 1.40000+ 1 1.80000+ 1 5.60027- 2 3.77900- 4 1.40000+ 1 1.90000+ 1 4.49975- 3 6.26600- 4 1.40000+ 1 2.10000+ 1 1.89624- 3 8.84460- 4 1.40000+ 1 2.20000+ 1 2.73386- 3 9.30110- 4 1.40000+ 1 2.40000+ 1 8.09682- 3 1.27065- 3 1.40000+ 1 2.50000+ 1 4.81259- 3 1.28280- 3 1.40000+ 1 2.70000+ 1 1.20054- 3 1.36115- 3 1.40000+ 1 2.90000+ 1 8.41570- 3 1.42445- 3 1.40000+ 1 3.00000+ 1 8.72608- 4 1.48484- 3 1.40000+ 1 3.20000+ 1 1.53332- 4 1.57892- 3 1.40000+ 1 3.30000+ 1 4.74256- 4 1.58793- 3 1.40000+ 1 3.50000+ 1 2.10076- 4 1.68728- 3 1.40000+ 1 3.60000+ 1 9.90459- 5 1.68837- 3 1.40000+ 1 4.10000+ 1 2.20233- 4 1.64301- 3 1.40000+ 1 4.30000+ 1 1.30129- 3 1.66188- 3 1.40000+ 1 4.40000+ 1 1.29544- 4 1.67215- 3 1.40000+ 1 4.60000+ 1 8.19931- 7 1.69265- 3 1.40000+ 1 4.70000+ 1 2.45986- 6 1.69329- 3 1.40000+ 1 5.80000+ 1 2.16467- 5 1.69152- 3 1.60000+ 1 1.60000+ 1 4.97020- 4 2.40770- 3 1.60000+ 1 1.80000+ 1 7.85880- 3 2.56710- 3 1.60000+ 1 1.90000+ 1 9.46983- 4 2.81580- 3 1.60000+ 1 2.10000+ 1 3.21949- 4 3.07366- 3 1.60000+ 1 2.20000+ 1 8.87923- 4 3.11931- 3 1.60000+ 1 2.40000+ 1 6.89469- 5 3.45985- 3 1.60000+ 1 2.50000+ 1 6.47790- 4 3.47200- 3 1.60000+ 1 2.70000+ 1 1.91565- 4 3.55035- 3 1.60000+ 1 2.90000+ 1 1.16127- 3 3.61365- 3 1.60000+ 1 3.00000+ 1 2.01458- 4 3.67404- 3 1.60000+ 1 3.20000+ 1 4.10687- 5 3.76812- 3 1.60000+ 1 3.30000+ 1 1.51081- 4 3.77713- 3 1.60000+ 1 3.50000+ 1 1.19904- 6 3.87648- 3 1.60000+ 1 3.60000+ 1 1.04918- 5 3.87757- 3 1.60000+ 1 4.10000+ 1 3.62725- 5 3.83221- 3 1.60000+ 1 4.30000+ 1 1.79867- 4 3.85108- 3 1.60000+ 1 4.40000+ 1 3.05771- 5 3.86135- 3 1.60000+ 1 4.60000+ 1 2.99773- 7 3.88185- 3 1.60000+ 1 4.70000+ 1 8.99304- 7 3.88249- 3 1.60000+ 1 5.80000+ 1 3.59716- 6 3.88072- 3 1.80000+ 1 1.80000+ 1 6.17129- 3 2.72650- 3 1.80000+ 1 1.90000+ 1 1.62999- 2 2.97520- 3 1.80000+ 1 2.10000+ 1 1.66485- 2 3.23306- 3 1.80000+ 1 2.20000+ 1 2.58908- 2 3.27871- 3 1.80000+ 1 2.40000+ 1 1.04686- 2 3.61925- 3 1.80000+ 1 2.50000+ 1 1.69719- 2 3.63140- 3 1.80000+ 1 2.70000+ 1 2.00200- 3 3.70975- 3 1.80000+ 1 2.90000+ 1 2.43800- 3 3.77305- 3 1.80000+ 1 3.00000+ 1 3.83207- 3 3.83344- 3 1.80000+ 1 3.20000+ 1 3.21943- 3 3.92752- 3 1.80000+ 1 3.30000+ 1 4.88822- 3 3.93653- 3 1.80000+ 1 3.50000+ 1 2.58390- 4 4.03588- 3 1.80000+ 1 3.60000+ 1 4.00167- 4 4.03697- 3 1.80000+ 1 4.10000+ 1 4.02273- 4 3.99161- 3 1.80000+ 1 4.30000+ 1 4.03493- 4 4.01048- 3 1.80000+ 1 4.40000+ 1 5.90241- 4 4.02075- 3 1.80000+ 1 4.60000+ 1 1.91845- 5 4.04125- 3 1.80000+ 1 4.70000+ 1 2.57805- 5 4.04189- 3 1.80000+ 1 5.80000+ 1 4.01689- 5 4.04012- 3 1.90000+ 1 1.90000+ 1 4.01393- 4 3.22390- 3 1.90000+ 1 2.10000+ 1 9.18503- 4 3.48176- 3 1.90000+ 1 2.20000+ 1 8.73814- 4 3.52741- 3 1.90000+ 1 2.40000+ 1 6.65035- 3 3.86795- 3 1.90000+ 1 2.50000+ 1 1.85347- 3 3.88010- 3 1.90000+ 1 2.70000+ 1 1.51687- 4 3.95845- 3 1.90000+ 1 2.90000+ 1 2.45726- 3 4.02175- 3 1.90000+ 1 3.00000+ 1 1.58881- 4 4.08214- 3 1.90000+ 1 3.20000+ 1 1.36991- 4 4.17622- 3 1.90000+ 1 3.30000+ 1 1.49285- 4 4.18523- 3 1.90000+ 1 3.50000+ 1 1.36396- 4 4.28458- 3 1.90000+ 1 3.60000+ 1 3.83713- 5 4.28567- 3 1.90000+ 1 4.10000+ 1 2.75791- 5 4.24031- 3 1.90000+ 1 4.30000+ 1 3.81908- 4 4.25918- 3 1.90000+ 1 4.40000+ 1 2.36803- 5 4.26945- 3 1.90000+ 1 4.60000+ 1 8.99300- 7 4.28995- 3 1.90000+ 1 4.70000+ 1 8.99300- 7 4.29059- 3 1.90000+ 1 5.80000+ 1 2.69792- 6 4.28882- 3 2.10000+ 1 2.10000+ 1 6.33429- 4 3.73962- 3 2.10000+ 1 2.20000+ 1 1.13671- 3 3.78527- 3 2.10000+ 1 2.40000+ 1 6.81092- 4 4.12581- 3 2.10000+ 1 2.50000+ 1 8.97231- 4 4.13796- 3 2.10000+ 1 2.70000+ 1 7.94400- 5 4.21631- 3 2.10000+ 1 2.90000+ 1 2.42539- 3 4.27961- 3 2.10000+ 1 3.00000+ 1 2.01746- 4 4.34000- 3 2.10000+ 1 3.20000+ 1 1.97568- 4 4.43408- 3 2.10000+ 1 3.30000+ 1 1.96349- 4 4.44309- 3 2.10000+ 1 3.50000+ 1 8.69355- 6 4.54244- 3 2.10000+ 1 3.60000+ 1 1.52880- 5 4.54353- 3 2.10000+ 1 4.10000+ 1 1.58884- 5 4.49817- 3 2.10000+ 1 4.30000+ 1 3.74128- 4 4.51704- 3 2.10000+ 1 4.40000+ 1 3.05777- 5 4.52731- 3 2.10000+ 1 4.60000+ 1 1.19906- 6 4.54781- 3 2.10000+ 1 4.70000+ 1 8.99319- 7 4.54845- 3 2.10000+ 1 5.80000+ 1 1.49883- 6 4.54668- 3 2.20000+ 1 2.20000+ 1 3.15369- 4 3.83092- 3 2.20000+ 1 2.40000+ 1 1.41610- 3 4.17146- 3 2.20000+ 1 2.50000+ 1 3.70518- 4 4.18361- 3 2.20000+ 1 2.70000+ 1 1.76862- 4 4.26196- 3 2.20000+ 1 2.90000+ 1 3.81430- 3 4.32526- 3 2.20000+ 1 3.00000+ 1 1.56185- 4 4.38565- 3 2.20000+ 1 3.20000+ 1 1.63378- 4 4.47973- 3 2.20000+ 1 3.30000+ 1 1.00425- 4 4.48874- 3 2.20000+ 1 3.50000+ 1 1.52880- 5 4.58809- 3 2.20000+ 1 3.60000+ 1 5.39592- 6 4.58918- 3 2.20000+ 1 4.10000+ 1 3.38747- 5 4.54382- 3 2.20000+ 1 4.30000+ 1 5.89960- 4 4.56269- 3 2.20000+ 1 4.40000+ 1 2.27831- 5 4.57296- 3 2.20000+ 1 4.60000+ 1 8.99315- 7 4.59346- 3 2.20000+ 1 4.70000+ 1 5.99535- 7 4.59410- 3 2.20000+ 1 5.80000+ 1 3.29757- 6 4.59233- 3 2.40000+ 1 2.40000+ 1 2.73961- 3 4.51200- 3 2.40000+ 1 2.50000+ 1 1.74273- 2 4.52415- 3 2.40000+ 1 2.70000+ 1 1.16912- 5 4.60250- 3 2.40000+ 1 2.90000+ 1 1.40510- 3 4.66580- 3 2.40000+ 1 3.00000+ 1 1.46867- 3 4.72619- 3 2.40000+ 1 3.20000+ 1 1.40300- 4 4.82027- 3 2.40000+ 1 3.30000+ 1 3.30648- 4 4.82928- 3 2.40000+ 1 3.50000+ 1 1.12119- 4 4.92863- 3 2.40000+ 1 3.60000+ 1 3.39054- 4 4.92972- 3 2.40000+ 1 4.10000+ 1 2.09836- 6 4.88436- 3 2.40000+ 1 4.30000+ 1 2.15234- 4 4.90323- 3 2.40000+ 1 4.40000+ 1 2.23324- 4 4.91350- 3 2.40000+ 1 4.60000+ 1 8.99330- 7 4.93400- 3 2.40000+ 1 4.70000+ 1 1.79872- 6 4.93464- 3 2.40000+ 1 5.80000+ 1 2.99781- 7 4.93287- 3 2.50000+ 1 2.50000+ 1 9.08318- 4 4.53630- 3 2.50000+ 1 2.70000+ 1 1.33699- 4 4.61465- 3 2.50000+ 1 2.90000+ 1 2.20928- 3 4.67795- 3 2.50000+ 1 3.00000+ 1 3.61221- 4 4.73834- 3 2.50000+ 1 3.20000+ 1 1.81356- 4 4.83242- 3 2.50000+ 1 3.30000+ 1 7.46445- 5 4.84143- 3 2.50000+ 1 3.50000+ 1 3.43842- 4 4.94078- 3 2.50000+ 1 3.60000+ 1 3.56726- 5 4.94187- 3 2.50000+ 1 4.10000+ 1 2.54803- 5 4.89651- 3 2.50000+ 1 4.30000+ 1 3.33347- 4 4.91538- 3 2.50000+ 1 4.40000+ 1 5.36580- 5 4.92565- 3 2.50000+ 1 4.60000+ 1 1.19905- 6 4.94615- 3 2.50000+ 1 4.70000+ 1 2.99774- 7 4.94679- 3 2.50000+ 1 5.80000+ 1 2.39829- 6 4.94502- 3 2.70000+ 1 2.70000+ 1 1.82859- 5 4.69300- 3 2.70000+ 1 2.90000+ 1 2.97669- 4 4.75630- 3 2.70000+ 1 3.00000+ 1 3.20746- 5 4.81669- 3 2.70000+ 1 3.20000+ 1 9.59271- 6 4.91077- 3 2.70000+ 1 3.30000+ 1 3.05773- 5 4.91978- 3 2.70000+ 1 3.50000+ 1 2.99774- 7 5.01913- 3 2.70000+ 1 3.60000+ 1 2.09831- 6 5.02022- 3 2.70000+ 1 4.10000+ 1 6.89472- 6 4.97486- 3 2.70000+ 1 4.30000+ 1 4.61643- 5 4.99373- 3 2.70000+ 1 4.40000+ 1 4.79642- 6 5.00400- 3 2.70000+ 1 4.70000+ 1 2.99774- 7 5.02514- 3 2.70000+ 1 5.80000+ 1 5.99529- 7 5.02337- 3 2.90000+ 1 2.90000+ 1 2.24545- 4 4.81960- 3 2.90000+ 1 3.00000+ 1 5.81563- 4 4.87999- 3 2.90000+ 1 3.20000+ 1 4.72167- 4 4.97407- 3 2.90000+ 1 3.30000+ 1 7.24872- 4 4.98308- 3 2.90000+ 1 3.50000+ 1 3.44737- 5 5.08243- 3 2.90000+ 1 3.60000+ 1 5.27618- 5 5.08352- 3 2.90000+ 1 4.10000+ 1 5.99545- 5 5.03816- 3 2.90000+ 1 4.30000+ 1 7.34465- 5 5.05703- 3 2.90000+ 1 4.40000+ 1 8.96357- 5 5.06730- 3 2.90000+ 1 4.60000+ 1 2.69801- 6 5.08780- 3 2.90000+ 1 4.70000+ 1 3.89709- 6 5.08844- 3 2.90000+ 1 5.80000+ 1 5.99545- 6 5.08667- 3 3.00000+ 1 3.00000+ 1 1.55887- 5 4.94038- 3 3.00000+ 1 3.20000+ 1 3.02769- 5 5.03446- 3 3.00000+ 1 3.30000+ 1 2.66805- 5 5.04347- 3 3.00000+ 1 3.50000+ 1 3.02769- 5 5.14282- 3 3.00000+ 1 3.60000+ 1 7.49446- 6 5.14391- 3 3.00000+ 1 4.10000+ 1 5.99538- 6 5.09855- 3 3.00000+ 1 4.30000+ 1 9.05321- 5 5.11742- 3 3.00000+ 1 4.40000+ 1 4.49667- 6 5.12769- 3 3.00000+ 1 4.60000+ 1 2.99778- 7 5.14819- 3 3.00000+ 1 5.80000+ 1 5.99538- 7 5.14706- 3 3.20000+ 1 3.20000+ 1 1.46886- 5 5.12854- 3 3.20000+ 1 3.30000+ 1 3.05773- 5 5.13755- 3 3.20000+ 1 3.50000+ 1 2.09831- 6 5.23690- 3 3.20000+ 1 3.60000+ 1 3.59718- 6 5.23799- 3 3.20000+ 1 4.10000+ 1 1.79867- 6 5.19263- 3 3.20000+ 1 4.30000+ 1 7.28446- 5 5.21150- 3 3.20000+ 1 4.40000+ 1 4.49661- 6 5.22177- 3 3.20000+ 1 4.60000+ 1 2.99774- 7 5.24227- 3 3.20000+ 1 4.70000+ 1 2.99774- 7 5.24291- 3 3.20000+ 1 5.80000+ 1 2.99774- 7 5.24114- 3 3.30000+ 1 3.30000+ 1 8.42203- 6 5.14656- 3 3.30000+ 1 3.50000+ 1 4.21102- 6 5.24591- 3 3.30000+ 1 3.60000+ 1 1.20311- 6 5.24700- 3 3.30000+ 1 4.10000+ 1 6.01560- 6 5.20164- 3 3.30000+ 1 4.30000+ 1 1.12496- 4 5.22051- 3 3.30000+ 1 4.40000+ 1 3.91018- 6 5.23078- 3 3.30000+ 1 4.60000+ 1 3.00789- 7 5.25128- 3 3.30000+ 1 5.80000+ 1 6.01560- 7 5.25015- 3 3.50000+ 1 3.50000+ 1 6.32093- 7 5.34526- 3 3.50000+ 1 3.60000+ 1 7.26921- 6 5.34635- 3 3.50000+ 1 4.30000+ 1 5.68894- 6 5.31986- 3 3.50000+ 1 4.40000+ 1 4.74083- 6 5.33013- 3 3.60000+ 1 3.60000+ 1 3.13945- 7 5.34744- 3 3.60000+ 1 4.10000+ 1 3.13945- 7 5.30208- 3 3.60000+ 1 4.30000+ 1 8.47643- 6 5.32095- 3 3.60000+ 1 4.40000+ 1 1.25573- 6 5.33122- 3 4.10000+ 1 4.10000+ 1 6.10491- 7 5.25672- 3 4.10000+ 1 4.30000+ 1 9.46280- 6 5.27559- 3 4.10000+ 1 4.40000+ 1 9.15750- 7 5.28586- 3 4.30000+ 1 4.30000+ 1 5.89476- 6 5.29446- 3 4.30000+ 1 4.40000+ 1 1.38529- 5 5.30473- 3 4.30000+ 1 4.60000+ 1 2.94747- 7 5.32523- 3 4.30000+ 1 4.70000+ 1 5.89476- 7 5.32587- 3 4.30000+ 1 5.80000+ 1 8.84227- 7 5.32410- 3 4.40000+ 1 4.40000+ 1 2.99781- 7 5.31500- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.36800- 5 5.62400- 4 1.40000+ 1 3.19051- 4 7.53500- 4 1.60000+ 1 2.23121- 3 2.94270- 3 2.10000+ 1 1.03990- 3 3.60866- 3 2.20000+ 1 7.77263- 3 3.65431- 3 2.70000+ 1 5.57632- 4 4.08535- 3 3.20000+ 1 2.24191- 4 4.30312- 3 3.30000+ 1 1.71351- 3 4.31213- 3 4.10000+ 1 1.09600- 4 4.36721- 3 5.80000+ 1 1.26050- 5 4.41572- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.60901- 2 1.35650- 4 1.30000+ 1 2.50000+ 1 2.36280- 2 1.47800- 4 1.30000+ 1 2.70000+ 1 3.58901- 3 2.26150- 4 1.30000+ 1 2.90000+ 1 3.48669- 3 2.89450- 4 1.30000+ 1 3.00000+ 1 1.00330- 2 3.49840- 4 1.30000+ 1 3.20000+ 1 1.95810- 3 4.43920- 4 1.30000+ 1 3.30000+ 1 2.19335- 3 4.52930- 4 1.30000+ 1 3.50000+ 1 2.31988- 4 5.52280- 4 1.30000+ 1 3.60000+ 1 3.86708- 4 5.53370- 4 1.30000+ 1 4.10000+ 1 6.86014- 4 5.08010- 4 1.30000+ 1 4.30000+ 1 5.67187- 4 5.26880- 4 1.30000+ 1 4.40000+ 1 1.45170- 3 5.37150- 4 1.30000+ 1 4.60000+ 1 1.13560- 5 5.57650- 4 1.30000+ 1 4.70000+ 1 1.13560- 5 5.58290- 4 1.30000+ 1 5.80000+ 1 6.77297- 5 5.56520- 4 1.40000+ 1 2.20000+ 1 6.00297- 2 0.00000+ 0 1.40000+ 1 2.40000+ 1 2.11824- 1 3.26750- 4 1.40000+ 1 2.50000+ 1 2.55717- 1 3.38900- 4 1.40000+ 1 2.70000+ 1 2.18696- 2 4.17250- 4 1.40000+ 1 2.90000+ 1 2.32742- 2 4.80550- 4 1.40000+ 1 3.00000+ 1 2.41378- 2 5.40940- 4 1.40000+ 1 3.20000+ 1 8.04709- 3 6.35020- 4 1.40000+ 1 3.30000+ 1 1.17993- 2 6.44030- 4 1.40000+ 1 3.50000+ 1 3.10239- 3 7.43380- 4 1.40000+ 1 3.60000+ 1 3.48891- 3 7.44470- 4 1.40000+ 1 4.10000+ 1 4.28782- 3 6.99110- 4 1.40000+ 1 4.30000+ 1 3.82292- 3 7.17980- 4 1.40000+ 1 4.40000+ 1 3.58626- 3 7.28250- 4 1.40000+ 1 4.60000+ 1 4.70458- 5 7.48750- 4 1.40000+ 1 4.70000+ 1 6.20514- 5 7.49390- 4 1.40000+ 1 5.80000+ 1 4.25643- 4 7.47620- 4 1.60000+ 1 1.60000+ 1 9.46132- 5 1.46380- 3 1.60000+ 1 1.80000+ 1 3.83394- 4 1.62320- 3 1.60000+ 1 1.90000+ 1 9.93860- 3 1.87190- 3 1.60000+ 1 2.10000+ 1 6.36246- 4 2.12976- 3 1.60000+ 1 2.20000+ 1 8.44266- 4 2.17541- 3 1.60000+ 1 2.40000+ 1 2.45269- 3 2.51595- 3 1.60000+ 1 2.50000+ 1 4.46229- 3 2.52810- 3 1.60000+ 1 2.70000+ 1 4.12066- 5 2.60645- 3 1.60000+ 1 2.90000+ 1 5.14282- 5 2.66975- 3 1.60000+ 1 3.00000+ 1 1.45878- 3 2.73014- 3 1.60000+ 1 3.20000+ 1 1.02853- 4 2.82422- 3 1.60000+ 1 3.30000+ 1 1.33510- 4 2.83323- 3 1.60000+ 1 3.50000+ 1 4.28556- 5 2.93258- 3 1.60000+ 1 3.60000+ 1 7.51622- 5 2.93367- 3 1.60000+ 1 4.10000+ 1 7.91191- 6 2.88831- 3 1.60000+ 1 4.30000+ 1 7.91191- 6 2.90718- 3 1.60000+ 1 4.40000+ 1 2.05369- 4 2.91745- 3 1.60000+ 1 4.60000+ 1 6.59324- 7 2.93795- 3 1.60000+ 1 4.70000+ 1 6.59324- 7 2.93859- 3 1.60000+ 1 5.80000+ 1 6.59324- 7 2.93682- 3 1.80000+ 1 1.90000+ 1 1.26425- 2 2.03130- 3 1.80000+ 1 2.10000+ 1 2.93408- 4 2.28916- 3 1.80000+ 1 2.20000+ 1 2.92096- 3 2.33481- 3 1.80000+ 1 2.40000+ 1 1.59518- 3 2.67535- 3 1.80000+ 1 2.50000+ 1 7.86726- 3 2.68750- 3 1.80000+ 1 2.70000+ 1 7.97798- 5 2.76585- 3 1.80000+ 1 2.90000+ 1 2.30759- 6 2.82915- 3 1.80000+ 1 3.00000+ 1 1.90828- 3 2.88954- 3 1.80000+ 1 3.20000+ 1 5.63723- 5 2.98362- 3 1.80000+ 1 3.30000+ 1 4.46036- 4 2.99263- 3 1.80000+ 1 3.50000+ 1 2.57138- 5 3.09198- 3 1.80000+ 1 3.60000+ 1 1.30216- 4 3.09307- 3 1.80000+ 1 4.10000+ 1 1.51649- 5 3.04771- 3 1.80000+ 1 4.30000+ 1 3.29676- 7 3.06658- 3 1.80000+ 1 4.40000+ 1 2.70343- 4 3.07685- 3 1.80000+ 1 4.60000+ 1 3.29676- 7 3.09735- 3 1.80000+ 1 4.70000+ 1 2.30759- 6 3.09799- 3 1.80000+ 1 5.80000+ 1 1.64838- 6 3.09622- 3 1.90000+ 1 1.90000+ 1 1.58116- 2 2.28000- 3 1.90000+ 1 2.10000+ 1 2.36951- 2 2.53786- 3 1.90000+ 1 2.20000+ 1 3.06127- 2 2.58351- 3 1.90000+ 1 2.40000+ 1 2.25880- 2 2.92405- 3 1.90000+ 1 2.50000+ 1 2.57420- 2 2.93620- 3 1.90000+ 1 2.70000+ 1 2.49938- 3 3.01455- 3 1.90000+ 1 2.90000+ 1 2.95575- 3 3.07785- 3 1.90000+ 1 3.00000+ 1 6.06318- 3 3.13824- 3 1.90000+ 1 3.20000+ 1 4.40317- 3 3.23232- 3 1.90000+ 1 3.30000+ 1 5.69618- 3 3.24133- 3 1.90000+ 1 3.50000+ 1 5.19872- 4 3.34068- 3 1.90000+ 1 3.60000+ 1 5.72630- 4 3.34177- 3 1.90000+ 1 4.10000+ 1 5.00094- 4 3.29641- 3 1.90000+ 1 4.30000+ 1 5.00426- 4 3.31528- 3 1.90000+ 1 4.40000+ 1 9.04253- 4 3.32555- 3 1.90000+ 1 4.60000+ 1 2.60418- 5 3.34605- 3 1.90000+ 1 4.70000+ 1 2.99987- 5 3.34669- 3 1.90000+ 1 5.80000+ 1 5.01075- 5 3.34492- 3 2.10000+ 1 2.10000+ 1 1.66151- 4 2.79572- 3 2.10000+ 1 2.20000+ 1 3.98959- 3 2.84137- 3 2.10000+ 1 2.40000+ 1 6.54715- 4 3.18191- 3 2.10000+ 1 2.50000+ 1 7.38597- 3 3.19406- 3 2.10000+ 1 2.70000+ 1 8.04389- 5 3.27241- 3 2.10000+ 1 2.90000+ 1 1.54937- 5 3.33571- 3 2.10000+ 1 3.00000+ 1 3.48303- 3 3.39610- 3 2.10000+ 1 3.20000+ 1 5.04392- 5 3.49018- 3 2.10000+ 1 3.30000+ 1 6.43860- 4 3.49919- 3 2.10000+ 1 3.50000+ 1 1.21979- 5 3.59854- 3 2.10000+ 1 3.60000+ 1 1.02197- 4 3.59963- 3 2.10000+ 1 4.10000+ 1 1.41763- 5 3.55427- 3 2.10000+ 1 4.30000+ 1 2.30760- 6 3.57314- 3 2.10000+ 1 4.40000+ 1 4.90554- 4 3.58341- 3 2.10000+ 1 4.60000+ 1 3.29677- 7 3.60391- 3 2.10000+ 1 4.70000+ 1 3.29677- 6 3.60455- 3 2.10000+ 1 5.80000+ 1 1.31864- 6 3.60278- 3 2.20000+ 1 2.20000+ 1 1.69857- 3 2.88702- 3 2.20000+ 1 2.40000+ 1 5.83652- 3 3.22756- 3 2.20000+ 1 2.50000+ 1 4.76272- 3 3.23971- 3 2.20000+ 1 2.70000+ 1 1.17035- 4 3.31806- 3 2.20000+ 1 2.90000+ 1 2.94722- 4 3.38136- 3 2.20000+ 1 3.00000+ 1 4.43909- 3 3.44175- 3 2.20000+ 1 3.20000+ 1 6.31986- 4 3.53583- 3 2.20000+ 1 3.30000+ 1 5.53193- 4 3.54484- 3 2.20000+ 1 3.50000+ 1 1.04506- 4 3.64419- 3 2.20000+ 1 3.60000+ 1 8.04395- 5 3.64528- 3 2.20000+ 1 4.10000+ 1 2.07697- 5 3.59992- 3 2.20000+ 1 4.30000+ 1 4.25285- 5 3.61879- 3 2.20000+ 1 4.40000+ 1 6.23410- 4 3.62906- 3 2.20000+ 1 4.60000+ 1 3.62649- 6 3.64956- 3 2.20000+ 1 4.70000+ 1 2.96712- 6 3.65020- 3 2.20000+ 1 5.80000+ 1 1.97808- 6 3.64843- 3 2.40000+ 1 2.40000+ 1 1.01870- 3 3.56810- 3 2.40000+ 1 2.50000+ 1 2.62433- 2 3.58025- 3 2.40000+ 1 2.70000+ 1 2.71644- 4 3.65860- 3 2.40000+ 1 2.90000+ 1 2.99335- 4 3.72190- 3 2.40000+ 1 3.00000+ 1 3.14644- 3 3.78229- 3 2.40000+ 1 3.20000+ 1 1.41764- 4 3.87637- 3 2.40000+ 1 3.30000+ 1 1.01672- 3 3.88538- 3 2.40000+ 1 3.50000+ 1 4.08793- 5 3.98473- 3 2.40000+ 1 3.60000+ 1 4.69122- 4 3.98582- 3 2.40000+ 1 4.10000+ 1 4.71427- 5 3.94046- 3 2.40000+ 1 4.30000+ 1 4.84618- 5 3.95933- 3 2.40000+ 1 4.40000+ 1 4.39772- 4 3.96960- 3 2.40000+ 1 4.60000+ 1 9.89008- 7 3.99010- 3 2.40000+ 1 4.70000+ 1 5.27475- 6 3.99074- 3 2.40000+ 1 5.80000+ 1 4.61539- 6 3.98897- 3 2.50000+ 1 2.50000+ 1 1.04443- 2 3.59240- 3 2.50000+ 1 2.70000+ 1 4.72419- 4 3.67075- 3 2.50000+ 1 2.90000+ 1 1.44830- 3 3.73405- 3 2.50000+ 1 3.00000+ 1 3.75403- 3 3.79444- 3 2.50000+ 1 3.20000+ 1 1.35658- 3 3.88852- 3 2.50000+ 1 3.30000+ 1 9.07580- 4 3.89753- 3 2.50000+ 1 3.50000+ 1 4.72087- 4 3.99688- 3 2.50000+ 1 3.60000+ 1 3.79108- 4 3.99797- 3 2.50000+ 1 4.10000+ 1 7.97800- 5 3.95261- 3 2.50000+ 1 4.30000+ 1 2.35055- 4 3.97148- 3 2.50000+ 1 4.40000+ 1 5.32083- 4 3.98175- 3 2.50000+ 1 4.60000+ 1 7.91211- 6 4.00225- 3 2.50000+ 1 4.70000+ 1 4.94517- 6 4.00289- 3 2.50000+ 1 5.80000+ 1 7.91211- 6 4.00112- 3 2.70000+ 1 2.70000+ 1 4.94512- 6 3.74910- 3 2.70000+ 1 2.90000+ 1 1.15383- 5 3.81240- 3 2.70000+ 1 3.00000+ 1 3.67903- 4 3.87279- 3 2.70000+ 1 3.20000+ 1 1.45059- 5 3.96687- 3 2.70000+ 1 3.30000+ 1 1.94488- 5 3.97588- 3 2.70000+ 1 3.50000+ 1 4.61530- 6 4.07523- 3 2.70000+ 1 3.60000+ 1 7.91203- 6 4.07632- 3 2.70000+ 1 4.10000+ 1 1.97804- 6 4.03096- 3 2.70000+ 1 4.30000+ 1 1.97804- 6 4.04983- 3 2.70000+ 1 4.40000+ 1 5.17576- 5 4.06010- 3 2.70000+ 1 5.80000+ 1 3.29673- 7 4.07947- 3 2.90000+ 1 3.00000+ 1 4.48011- 4 3.93609- 3 2.90000+ 1 3.20000+ 1 2.63740- 6 4.03017- 3 2.90000+ 1 3.30000+ 1 4.78023- 5 4.03918- 3 2.90000+ 1 3.50000+ 1 5.60434- 6 4.13853- 3 2.90000+ 1 3.60000+ 1 2.70343- 5 4.13962- 3 2.90000+ 1 4.10000+ 1 2.30759- 6 4.09426- 3 2.90000+ 1 4.40000+ 1 6.36258- 5 4.12340- 3 2.90000+ 1 4.70000+ 1 3.29675- 7 4.14454- 3 2.90000+ 1 5.80000+ 1 3.29675- 7 4.14277- 3 3.00000+ 1 3.00000+ 1 5.48234- 4 3.99648- 3 3.00000+ 1 3.20000+ 1 6.49773- 4 4.09056- 3 3.00000+ 1 3.30000+ 1 8.28114- 4 4.09957- 3 3.00000+ 1 3.50000+ 1 7.25266- 5 4.19892- 3 3.00000+ 1 3.60000+ 1 8.27466- 5 4.20001- 3 3.00000+ 1 4.10000+ 1 7.38455- 5 4.15465- 3 3.00000+ 1 4.30000+ 1 7.58232- 5 4.17352- 3 3.00000+ 1 4.40000+ 1 1.61852- 4 4.18379- 3 3.00000+ 1 4.60000+ 1 3.95593- 6 4.20429- 3 3.00000+ 1 4.70000+ 1 4.28561- 6 4.20493- 3 3.00000+ 1 5.80000+ 1 7.25266- 6 4.20316- 3 3.20000+ 1 3.20000+ 1 3.95604- 6 4.18464- 3 3.20000+ 1 3.30000+ 1 1.10771- 4 4.19365- 3 3.20000+ 1 3.50000+ 1 2.30763- 6 4.29300- 3 3.20000+ 1 3.60000+ 1 2.01110- 5 4.29409- 3 3.20000+ 1 4.10000+ 1 2.63744- 6 4.24873- 3 3.20000+ 1 4.30000+ 1 3.29681- 7 4.26760- 3 3.20000+ 1 4.40000+ 1 9.16487- 5 4.27787- 3 3.20000+ 1 4.70000+ 1 6.59350- 7 4.29901- 3 3.20000+ 1 5.80000+ 1 3.29681- 7 4.29724- 3 3.30000+ 1 3.30000+ 1 4.78029- 5 4.20266- 3 3.30000+ 1 3.50000+ 1 1.94492- 5 4.30201- 3 3.30000+ 1 3.60000+ 1 1.58251- 5 4.30310- 3 3.30000+ 1 4.10000+ 1 3.62648- 6 4.25774- 3 3.30000+ 1 4.30000+ 1 6.92299- 6 4.27661- 3 3.30000+ 1 4.40000+ 1 1.16376- 4 4.28688- 3 3.30000+ 1 4.60000+ 1 6.59346- 7 4.30738- 3 3.30000+ 1 4.70000+ 1 6.59346- 7 4.30802- 3 3.30000+ 1 5.80000+ 1 3.29679- 7 4.30625- 3 3.50000+ 1 3.50000+ 1 3.49931- 7 4.40136- 3 3.50000+ 1 3.60000+ 1 9.44797- 6 4.40245- 3 3.50000+ 1 4.10000+ 1 6.99850- 7 4.35709- 3 3.50000+ 1 4.30000+ 1 1.04976- 6 4.37596- 3 3.50000+ 1 4.40000+ 1 1.08476- 5 4.38623- 3 3.60000+ 1 3.60000+ 1 2.50831- 6 4.40354- 3 3.60000+ 1 4.10000+ 1 1.43333- 6 4.35818- 3 3.60000+ 1 4.30000+ 1 4.65844- 6 4.37705- 3 3.60000+ 1 4.40000+ 1 1.25420- 5 4.38732- 3 4.10000+ 1 4.10000+ 1 3.10303- 7 4.31282- 3 4.10000+ 1 4.30000+ 1 3.10303- 7 4.33169- 3 4.10000+ 1 4.40000+ 1 9.92943- 6 4.34196- 3 4.30000+ 1 4.40000+ 1 1.02200- 5 4.36083- 3 4.40000+ 1 4.40000+ 1 1.15837- 5 4.37110- 3 4.40000+ 1 4.60000+ 1 6.43531- 7 4.39160- 3 4.40000+ 1 4.70000+ 1 6.43531- 7 4.39224- 3 4.40000+ 1 5.80000+ 1 9.65284- 7 4.39047- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.40299- 3 2.53970- 3 1.90000+ 1 2.08959- 4 2.78840- 3 2.40000+ 1 5.29348- 2 3.43245- 3 2.90000+ 1 5.66628- 4 3.58625- 3 3.00000+ 1 4.90398- 5 3.64664- 3 3.50000+ 1 1.40550- 3 3.84908- 3 4.30000+ 1 9.70437- 5 3.82368- 3 4.40000+ 1 7.93137- 6 3.83395- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.96752- 2 7.26200- 5 1.40000+ 1 3.30000+ 1 7.13070- 3 8.16300- 5 1.40000+ 1 3.50000+ 1 1.16146- 2 1.80980- 4 1.40000+ 1 3.60000+ 1 1.24966- 3 1.82070- 4 1.40000+ 1 4.10000+ 1 9.88032- 4 1.36710- 4 1.40000+ 1 4.30000+ 1 4.89224- 4 1.55580- 4 1.40000+ 1 4.40000+ 1 9.99847- 4 1.65850- 4 1.40000+ 1 4.60000+ 1 2.82193- 4 1.86350- 4 1.40000+ 1 4.70000+ 1 3.68381- 5 1.86990- 4 1.40000+ 1 5.80000+ 1 9.65157- 5 1.85220- 4 1.60000+ 1 1.60000+ 1 5.15748- 6 9.01400- 4 1.60000+ 1 1.80000+ 1 7.58900- 4 1.06080- 3 1.60000+ 1 1.90000+ 1 7.22813- 4 1.30950- 3 1.60000+ 1 2.10000+ 1 2.81286- 2 1.56736- 3 1.60000+ 1 2.20000+ 1 3.30316- 3 1.61301- 3 1.60000+ 1 2.40000+ 1 1.61344- 2 1.95355- 3 1.60000+ 1 2.50000+ 1 3.67953- 3 1.96570- 3 1.60000+ 1 2.70000+ 1 1.47358- 5 2.04405- 3 1.60000+ 1 2.90000+ 1 1.52513- 4 2.10735- 3 1.60000+ 1 3.00000+ 1 1.10517- 4 2.16774- 3 1.60000+ 1 3.20000+ 1 3.56103- 3 2.26182- 3 1.60000+ 1 3.30000+ 1 4.48699- 4 2.27083- 3 1.60000+ 1 3.50000+ 1 2.72615- 4 2.37018- 3 1.60000+ 1 3.60000+ 1 5.08377- 5 2.37127- 3 1.60000+ 1 4.10000+ 1 3.68390- 6 2.32591- 3 1.60000+ 1 4.30000+ 1 2.50513- 5 2.34478- 3 1.60000+ 1 4.40000+ 1 1.54727- 5 2.35505- 3 1.60000+ 1 4.60000+ 1 1.98940- 5 2.37555- 3 1.60000+ 1 4.70000+ 1 2.21041- 6 2.37619- 3 1.80000+ 1 1.80000+ 1 3.55144- 4 1.22020- 3 1.80000+ 1 1.90000+ 1 3.26259- 3 1.46890- 3 1.80000+ 1 2.10000+ 1 2.55427- 2 1.72676- 3 1.80000+ 1 2.20000+ 1 1.45219- 3 1.77241- 3 1.80000+ 1 2.40000+ 1 1.20229- 2 2.11295- 3 1.80000+ 1 2.50000+ 1 6.55597- 3 2.12510- 3 1.80000+ 1 2.70000+ 1 1.03889- 4 2.20345- 3 1.80000+ 1 2.90000+ 1 1.43671- 4 2.26675- 3 1.80000+ 1 3.00000+ 1 5.57012- 4 2.32714- 3 1.80000+ 1 3.20000+ 1 3.19703- 3 2.42122- 3 1.80000+ 1 3.30000+ 1 2.23254- 4 2.43023- 3 1.80000+ 1 3.50000+ 1 1.96722- 4 2.52958- 3 1.80000+ 1 3.60000+ 1 1.06094- 4 2.53067- 3 1.80000+ 1 4.10000+ 1 1.84197- 5 2.48531- 3 1.80000+ 1 4.30000+ 1 2.35769- 5 2.50418- 3 1.80000+ 1 4.40000+ 1 8.03112- 5 2.51445- 3 1.80000+ 1 4.60000+ 1 1.76827- 5 2.53495- 3 1.80000+ 1 4.70000+ 1 1.47356- 6 2.53559- 3 1.80000+ 1 5.80000+ 1 2.21038- 6 2.53382- 3 1.90000+ 1 1.90000+ 1 1.13395- 3 1.71760- 3 1.90000+ 1 2.10000+ 1 4.87222- 2 1.97546- 3 1.90000+ 1 2.20000+ 1 1.85527- 3 2.02111- 3 1.90000+ 1 2.40000+ 1 1.98788- 3 2.36165- 3 1.90000+ 1 2.50000+ 1 1.63348- 3 2.37380- 3 1.90000+ 1 2.70000+ 1 1.35565- 4 2.45215- 3 1.90000+ 1 2.90000+ 1 4.69323- 4 2.51545- 3 1.90000+ 1 3.00000+ 1 3.69875- 4 2.57584- 3 1.90000+ 1 3.20000+ 1 6.17792- 3 2.66992- 3 1.90000+ 1 3.30000+ 1 2.65986- 4 2.67893- 3 1.90000+ 1 3.50000+ 1 2.57870- 5 2.77828- 3 1.90000+ 1 3.60000+ 1 1.91567- 5 2.77937- 3 1.90000+ 1 4.10000+ 1 2.57870- 5 2.73401- 3 1.90000+ 1 4.30000+ 1 7.22037- 5 2.75288- 3 1.90000+ 1 4.40000+ 1 5.30490- 5 2.76315- 3 1.90000+ 1 4.60000+ 1 3.46294- 5 2.78365- 3 1.90000+ 1 4.70000+ 1 1.47356- 6 2.78429- 3 1.90000+ 1 5.80000+ 1 2.21038- 6 2.78252- 3 2.10000+ 1 2.10000+ 1 4.52543- 2 2.23332- 3 2.10000+ 1 2.20000+ 1 8.83582- 2 2.27897- 3 2.10000+ 1 2.40000+ 1 5.38026- 2 2.61951- 3 2.10000+ 1 2.50000+ 1 6.35229- 2 2.63166- 3 2.10000+ 1 2.70000+ 1 6.40852- 3 2.71001- 3 2.10000+ 1 2.90000+ 1 6.03146- 3 2.77331- 3 2.10000+ 1 3.00000+ 1 1.11249- 2 2.83370- 3 2.10000+ 1 3.20000+ 1 1.42646- 2 2.92778- 3 2.10000+ 1 3.30000+ 1 1.62482- 2 2.93679- 3 2.10000+ 1 3.50000+ 1 1.24221- 3 3.03614- 3 2.10000+ 1 3.60000+ 1 1.43520- 3 3.03723- 3 2.10000+ 1 4.10000+ 1 1.26506- 3 2.99187- 3 2.10000+ 1 4.30000+ 1 1.02349- 3 3.01074- 3 2.10000+ 1 4.40000+ 1 1.70269- 3 3.02101- 3 2.10000+ 1 4.60000+ 1 8.32556- 5 3.04151- 3 2.10000+ 1 4.70000+ 1 8.54656- 5 3.04215- 3 2.10000+ 1 5.80000+ 1 1.25990- 4 3.04038- 3 2.20000+ 1 2.20000+ 1 1.38663- 3 2.32462- 3 2.20000+ 1 2.40000+ 1 6.35281- 2 2.66516- 3 2.20000+ 1 2.50000+ 1 2.98554- 3 2.67731- 3 2.20000+ 1 2.70000+ 1 3.67657- 4 2.75566- 3 2.20000+ 1 2.90000+ 1 1.91566- 4 2.81896- 3 2.20000+ 1 3.00000+ 1 3.35971- 4 2.87935- 3 2.20000+ 1 3.20000+ 1 1.12292- 2 2.97343- 3 2.20000+ 1 3.30000+ 1 4.12605- 4 2.98244- 3 2.20000+ 1 3.50000+ 1 1.34909- 3 3.08179- 3 2.20000+ 1 3.60000+ 1 5.59949- 5 3.08288- 3 2.20000+ 1 4.10000+ 1 6.41002- 5 3.03752- 3 2.20000+ 1 4.30000+ 1 2.94710- 5 3.05639- 3 2.20000+ 1 4.40000+ 1 4.93646- 5 3.06666- 3 2.20000+ 1 4.60000+ 1 6.33622- 5 3.08716- 3 2.20000+ 1 4.70000+ 1 2.21037- 6 3.08780- 3 2.20000+ 1 5.80000+ 1 5.89450- 6 3.08603- 3 2.40000+ 1 2.40000+ 1 6.28978- 2 3.00570- 3 2.40000+ 1 2.50000+ 1 1.79976- 1 3.01785- 3 2.40000+ 1 2.70000+ 1 3.93297- 3 3.09620- 3 2.40000+ 1 2.90000+ 1 2.23831- 3 3.15950- 3 2.40000+ 1 3.00000+ 1 4.68599- 4 3.21989- 3 2.40000+ 1 3.20000+ 1 7.50638- 3 3.31397- 3 2.40000+ 1 3.30000+ 1 1.10743- 2 3.32298- 3 2.40000+ 1 3.50000+ 1 2.56987- 3 3.42233- 3 2.40000+ 1 3.60000+ 1 3.84527- 3 3.42342- 3 2.40000+ 1 4.10000+ 1 7.84667- 4 3.37806- 3 2.40000+ 1 4.30000+ 1 3.72826- 4 3.39693- 3 2.40000+ 1 4.40000+ 1 7.29430- 5 3.40720- 3 2.40000+ 1 4.60000+ 1 4.27327- 5 3.42770- 3 2.40000+ 1 4.70000+ 1 5.82045- 5 3.42834- 3 2.40000+ 1 5.80000+ 1 7.80983- 5 3.42657- 3 2.50000+ 1 2.50000+ 1 3.88216- 3 3.03000- 3 2.50000+ 1 2.70000+ 1 6.47665- 4 3.10835- 3 2.50000+ 1 2.90000+ 1 6.46113- 4 3.17165- 3 2.50000+ 1 3.00000+ 1 3.50683- 4 3.23204- 3 2.50000+ 1 3.20000+ 1 7.63231- 3 3.32612- 3 2.50000+ 1 3.30000+ 1 5.04155- 4 3.33513- 3 2.50000+ 1 3.50000+ 1 3.40339- 3 3.43448- 3 2.50000+ 1 3.60000+ 1 1.52706- 4 3.43557- 3 2.50000+ 1 4.10000+ 1 1.18940- 4 3.39021- 3 2.50000+ 1 4.30000+ 1 9.36194- 5 3.40908- 3 2.50000+ 1 4.40000+ 1 5.21804- 5 3.41935- 3 2.50000+ 1 4.60000+ 1 4.22056- 5 3.43985- 3 2.50000+ 1 4.70000+ 1 2.30212- 6 3.44049- 3 2.50000+ 1 5.80000+ 1 1.15102- 5 3.43872- 3 2.70000+ 1 2.70000+ 1 1.47365- 6 3.18670- 3 2.70000+ 1 2.90000+ 1 2.35784- 5 3.25000- 3 2.70000+ 1 3.00000+ 1 2.13682- 5 3.31039- 3 2.70000+ 1 3.20000+ 1 8.16402- 4 3.40447- 3 2.70000+ 1 3.30000+ 1 5.59986- 5 3.41348- 3 2.70000+ 1 3.50000+ 1 7.07351- 5 3.51283- 3 2.70000+ 1 3.60000+ 1 1.10522- 5 3.51392- 3 2.70000+ 1 4.10000+ 1 7.36834- 7 3.46856- 3 2.70000+ 1 4.30000+ 1 3.68407- 6 3.48743- 3 2.70000+ 1 4.40000+ 1 2.94729- 6 3.49770- 3 2.70000+ 1 4.60000+ 1 4.42094- 6 3.51820- 3 2.90000+ 1 2.90000+ 1 1.54724- 5 3.31330- 3 2.90000+ 1 3.00000+ 1 8.69419- 5 3.37369- 3 2.90000+ 1 3.20000+ 1 7.58150- 4 3.46777- 3 2.90000+ 1 3.30000+ 1 3.38931- 5 3.47678- 3 2.90000+ 1 3.50000+ 1 3.83132- 5 3.57613- 3 2.90000+ 1 3.60000+ 1 1.03154- 5 3.57722- 3 2.90000+ 1 4.10000+ 1 4.42064- 6 3.53186- 3 2.90000+ 1 4.30000+ 1 5.15737- 6 3.55073- 3 2.90000+ 1 4.40000+ 1 1.25254- 5 3.56100- 3 2.90000+ 1 4.60000+ 1 4.42064- 6 3.58150- 3 2.90000+ 1 5.80000+ 1 7.36784- 7 3.58037- 3 3.00000+ 1 3.00000+ 1 3.09432- 5 3.43408- 3 3.00000+ 1 3.20000+ 1 1.41832- 3 3.52816- 3 3.00000+ 1 3.30000+ 1 5.15739- 5 3.53717- 3 3.00000+ 1 3.50000+ 1 7.36787- 6 3.63652- 3 3.00000+ 1 3.60000+ 1 4.42066- 6 3.63761- 3 3.00000+ 1 4.10000+ 1 4.42066- 6 3.59225- 3 3.00000+ 1 4.30000+ 1 1.32615- 5 3.61112- 3 3.00000+ 1 4.40000+ 1 8.84142- 6 3.62139- 3 3.00000+ 1 4.60000+ 1 8.10470- 6 3.64189- 3 3.00000+ 1 5.80000+ 1 7.36787- 7 3.64076- 3 3.20000+ 1 3.20000+ 1 1.07644- 3 3.62224- 3 3.20000+ 1 3.30000+ 1 2.07708- 3 3.63125- 3 3.20000+ 1 3.50000+ 1 1.73141- 4 3.73060- 3 3.20000+ 1 3.60000+ 1 1.67986- 4 3.73169- 3 3.20000+ 1 4.10000+ 1 1.61361- 4 3.68633- 3 3.20000+ 1 4.30000+ 1 1.28940- 4 3.70520- 3 3.20000+ 1 4.40000+ 1 2.17353- 4 3.71547- 3 3.20000+ 1 4.60000+ 1 1.25255- 5 3.73597- 3 3.20000+ 1 4.70000+ 1 1.10515- 5 3.73661- 3 3.20000+ 1 5.80000+ 1 1.62096- 5 3.73484- 3 3.30000+ 1 3.30000+ 1 3.02846- 5 3.64026- 3 3.30000+ 1 3.50000+ 1 2.38594- 4 3.73961- 3 3.30000+ 1 3.60000+ 1 9.60272- 6 3.74070- 3 3.30000+ 1 4.10000+ 1 9.60272- 6 3.69534- 3 3.30000+ 1 4.30000+ 1 5.17062- 6 3.71421- 3 3.30000+ 1 4.40000+ 1 7.38676- 6 3.72448- 3 3.30000+ 1 4.60000+ 1 1.18187- 5 3.74498- 3 3.30000+ 1 5.80000+ 1 7.38676- 7 3.74385- 3 3.50000+ 1 3.50000+ 1 1.33794- 5 3.83896- 3 3.50000+ 1 3.60000+ 1 7.21028- 5 3.84005- 3 3.50000+ 1 4.10000+ 1 1.41239- 5 3.79469- 3 3.50000+ 1 4.30000+ 1 6.69019- 6 3.81356- 3 3.50000+ 1 4.40000+ 1 1.48665- 6 3.82383- 3 3.50000+ 1 4.60000+ 1 7.43336- 7 3.84433- 3 3.50000+ 1 4.70000+ 1 1.48665- 6 3.84497- 3 3.50000+ 1 5.80000+ 1 1.48665- 6 3.84320- 3 3.60000+ 1 3.60000+ 1 7.20098- 7 3.84114- 3 3.60000+ 1 4.10000+ 1 2.16031- 6 3.79578- 3 3.60000+ 1 4.30000+ 1 1.44018- 6 3.81465- 3 3.60000+ 1 4.40000+ 1 7.20098- 7 3.82492- 3 3.60000+ 1 4.60000+ 1 7.20098- 7 3.84542- 3 4.10000+ 1 4.30000+ 1 7.36798- 7 3.76929- 3 4.10000+ 1 4.40000+ 1 7.36798- 7 3.77956- 3 4.10000+ 1 4.60000+ 1 7.36798- 7 3.80006- 3 4.30000+ 1 4.30000+ 1 7.36795- 7 3.78816- 3 4.30000+ 1 4.40000+ 1 2.21040- 6 3.79843- 3 4.30000+ 1 4.60000+ 1 7.36795- 7 3.81893- 3 4.40000+ 1 4.40000+ 1 6.57037- 7 3.80870- 3 4.40000+ 1 4.60000+ 1 1.31406- 6 3.82920- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.59608- 3 2.59730- 3 2.40000+ 1 2.53127- 3 3.24135- 3 2.50000+ 1 4.95835- 2 3.25350- 3 3.00000+ 1 3.73956- 4 3.45554- 3 3.50000+ 1 6.60423- 5 3.65798- 3 3.60000+ 1 1.27559- 3 3.65907- 3 4.40000+ 1 6.01434- 5 3.64285- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 1.64424- 5 7.10300- 4 1.60000+ 1 1.80000+ 1 2.68306- 4 8.69700- 4 1.60000+ 1 1.90000+ 1 1.52541- 3 1.11840- 3 1.60000+ 1 2.10000+ 1 3.11446- 3 1.37626- 3 1.60000+ 1 2.20000+ 1 3.12597- 2 1.42191- 3 1.60000+ 1 2.40000+ 1 4.08200- 3 1.76245- 3 1.60000+ 1 2.50000+ 1 1.69268- 2 1.77460- 3 1.60000+ 1 2.70000+ 1 1.49474- 5 1.85295- 3 1.60000+ 1 2.90000+ 1 2.09272- 5 1.91625- 3 1.60000+ 1 3.00000+ 1 2.39906- 4 1.97664- 3 1.60000+ 1 3.20000+ 1 3.87136- 4 2.07072- 3 1.60000+ 1 3.30000+ 1 3.93946- 3 2.07973- 3 1.60000+ 1 3.50000+ 1 5.45584- 5 2.17908- 3 1.60000+ 1 3.60000+ 1 2.55599- 4 2.18017- 3 1.60000+ 1 4.10000+ 1 3.73685- 6 2.13481- 3 1.60000+ 1 4.30000+ 1 2.98948- 6 2.15368- 3 1.60000+ 1 4.40000+ 1 3.43797- 5 2.16395- 3 1.60000+ 1 4.60000+ 1 2.24211- 6 2.18445- 3 1.60000+ 1 4.70000+ 1 1.94313- 5 2.18509- 3 1.80000+ 1 1.80000+ 1 1.12110- 5 1.02910- 3 1.80000+ 1 1.90000+ 1 4.68763- 3 1.27780- 3 1.80000+ 1 2.10000+ 1 2.29444- 4 1.53566- 3 1.80000+ 1 2.20000+ 1 3.21989- 2 1.58131- 3 1.80000+ 1 2.40000+ 1 2.32591- 3 1.92185- 3 1.80000+ 1 2.50000+ 1 1.03594- 2 1.93400- 3 1.80000+ 1 2.70000+ 1 3.36333- 5 2.01235- 3 1.80000+ 1 2.90000+ 1 2.98949- 6 2.07565- 3 1.80000+ 1 3.00000+ 1 7.36921- 4 2.13604- 3 1.80000+ 1 3.20000+ 1 5.97909- 6 2.23012- 3 1.80000+ 1 3.30000+ 1 4.04638- 3 2.23913- 3 1.80000+ 1 3.50000+ 1 3.58738- 5 2.33848- 3 1.80000+ 1 3.60000+ 1 1.53216- 4 2.33957- 3 1.80000+ 1 4.10000+ 1 5.97909- 6 2.29421- 3 1.80000+ 1 4.30000+ 1 7.47384- 7 2.31308- 3 1.80000+ 1 4.40000+ 1 1.05371- 4 2.32335- 3 1.80000+ 1 4.70000+ 1 2.01788- 5 2.34449- 3 1.80000+ 1 5.80000+ 1 7.47384- 7 2.34272- 3 1.90000+ 1 1.90000+ 1 2.84960- 3 1.52650- 3 1.90000+ 1 2.10000+ 1 2.88692- 3 1.78436- 3 1.90000+ 1 2.20000+ 1 4.63032- 2 1.83001- 3 1.90000+ 1 2.40000+ 1 1.92227- 3 2.17055- 3 1.90000+ 1 2.50000+ 1 3.02977- 3 2.18270- 3 1.90000+ 1 2.70000+ 1 3.02679- 4 2.26105- 3 1.90000+ 1 2.90000+ 1 6.17331- 4 2.32435- 3 1.90000+ 1 3.00000+ 1 9.19266- 4 2.38474- 3 1.90000+ 1 3.20000+ 1 4.56649- 4 2.47882- 3 1.90000+ 1 3.30000+ 1 5.79203- 3 2.48783- 3 1.90000+ 1 3.50000+ 1 2.46634- 5 2.58718- 3 1.90000+ 1 3.60000+ 1 3.88653- 5 2.58827- 3 1.90000+ 1 4.10000+ 1 5.75470- 5 2.54291- 3 1.90000+ 1 4.30000+ 1 9.41680- 5 2.56178- 3 1.90000+ 1 4.40000+ 1 1.32281- 4 2.57205- 3 1.90000+ 1 4.60000+ 1 2.98947- 6 2.59255- 3 1.90000+ 1 4.70000+ 1 2.91472- 5 2.59319- 3 1.90000+ 1 5.80000+ 1 5.97904- 6 2.59142- 3 2.10000+ 1 2.10000+ 1 6.33003- 4 2.04222- 3 2.10000+ 1 2.20000+ 1 6.60658- 2 2.08787- 3 2.10000+ 1 2.40000+ 1 2.75476- 3 2.42841- 3 2.10000+ 1 2.50000+ 1 3.81251- 2 2.44056- 3 2.10000+ 1 2.70000+ 1 3.21375- 4 2.51891- 3 2.10000+ 1 2.90000+ 1 6.42721- 5 2.58221- 3 2.10000+ 1 3.00000+ 1 4.70101- 4 2.64260- 3 2.10000+ 1 3.20000+ 1 1.80868- 4 2.73668- 3 2.10000+ 1 3.30000+ 1 8.36959- 3 2.74569- 3 2.10000+ 1 3.50000+ 1 5.67985- 5 2.84504- 3 2.10000+ 1 3.60000+ 1 7.86227- 4 2.84613- 3 2.10000+ 1 4.10000+ 1 5.45571- 5 2.80077- 3 2.10000+ 1 4.30000+ 1 1.04623- 5 2.81964- 3 2.10000+ 1 4.40000+ 1 6.80103- 5 2.82991- 3 2.10000+ 1 4.60000+ 1 7.47365- 7 2.85041- 3 2.10000+ 1 4.70000+ 1 4.18525- 5 2.85105- 3 2.10000+ 1 5.80000+ 1 5.23139- 6 2.84928- 3 2.20000+ 1 2.20000+ 1 7.28397- 2 2.13352- 3 2.20000+ 1 2.40000+ 1 6.01007- 2 2.47406- 3 2.20000+ 1 2.50000+ 1 9.68585- 2 2.48621- 3 2.20000+ 1 2.70000+ 1 6.74752- 3 2.56456- 3 2.20000+ 1 2.90000+ 1 7.23086- 3 2.62786- 3 2.20000+ 1 3.00000+ 1 1.06732- 2 2.68825- 3 2.20000+ 1 3.20000+ 1 1.21066- 2 2.78233- 3 2.20000+ 1 3.30000+ 1 2.26222- 2 2.79134- 3 2.20000+ 1 3.50000+ 1 1.38041- 3 2.89069- 3 2.20000+ 1 3.60000+ 1 2.10021- 3 2.89178- 3 2.20000+ 1 4.10000+ 1 1.32433- 3 2.84642- 3 2.20000+ 1 4.30000+ 1 1.21523- 3 2.86529- 3 2.20000+ 1 4.40000+ 1 1.63682- 3 2.87556- 3 2.20000+ 1 4.60000+ 1 7.17487- 5 2.89606- 3 2.20000+ 1 4.70000+ 1 1.16599- 4 2.89670- 3 2.20000+ 1 5.80000+ 1 1.32284- 4 2.89493- 3 2.40000+ 1 2.40000+ 1 5.30719- 3 2.81460- 3 2.40000+ 1 2.50000+ 1 1.68379- 1 2.82675- 3 2.40000+ 1 2.70000+ 1 7.69082- 4 2.90510- 3 2.40000+ 1 2.90000+ 1 4.79814- 4 2.96840- 3 2.40000+ 1 3.00000+ 1 3.74460- 4 3.02879- 3 2.40000+ 1 3.20000+ 1 4.85065- 4 3.12287- 3 2.40000+ 1 3.30000+ 1 7.15487- 3 3.13188- 3 2.40000+ 1 3.50000+ 1 2.15998- 4 3.23123- 3 2.40000+ 1 3.60000+ 1 2.97904- 3 3.23232- 3 2.40000+ 1 4.10000+ 1 1.44247- 4 3.18696- 3 2.40000+ 1 4.30000+ 1 7.99697- 5 3.20583- 3 2.40000+ 1 4.40000+ 1 5.60539- 5 3.21610- 3 2.40000+ 1 4.60000+ 1 2.98956- 6 3.23660- 3 2.40000+ 1 4.70000+ 1 3.58746- 5 3.23724- 3 2.40000+ 1 5.80000+ 1 1.42003- 5 3.23547- 3 2.50000+ 1 2.50000+ 1 1.14853- 1 2.83890- 3 2.50000+ 1 2.70000+ 1 4.07337- 3 2.91725- 3 2.50000+ 1 2.90000+ 1 2.37599- 3 2.98055- 3 2.50000+ 1 3.00000+ 1 6.65195- 4 3.04094- 3 2.50000+ 1 3.20000+ 1 6.46434- 3 3.13502- 3 2.50000+ 1 3.30000+ 1 1.39492- 2 3.14403- 3 2.50000+ 1 3.50000+ 1 3.61137- 3 3.24338- 3 2.50000+ 1 3.60000+ 1 4.46865- 3 3.24447- 3 2.50000+ 1 4.10000+ 1 8.10942- 4 3.19911- 3 2.50000+ 1 4.30000+ 1 4.02860- 4 3.21798- 3 2.50000+ 1 4.40000+ 1 1.02395- 4 3.22825- 3 2.50000+ 1 4.60000+ 1 3.81159- 5 3.24875- 3 2.50000+ 1 4.70000+ 1 7.17490- 5 3.24939- 3 2.50000+ 1 5.80000+ 1 8.14674- 5 3.24762- 3 2.70000+ 1 2.70000+ 1 7.47396- 7 2.99560- 3 2.70000+ 1 2.90000+ 1 7.47396- 7 3.05890- 3 2.70000+ 1 3.00000+ 1 4.93271- 5 3.11929- 3 2.70000+ 1 3.20000+ 1 4.63391- 5 3.21337- 3 2.70000+ 1 3.30000+ 1 8.55757- 4 3.22238- 3 2.70000+ 1 3.50000+ 1 1.34537- 5 3.32173- 3 2.70000+ 1 3.60000+ 1 6.87597- 5 3.32282- 3 2.70000+ 1 4.40000+ 1 7.47396- 6 3.30660- 3 2.70000+ 1 4.70000+ 1 4.48432- 6 3.32774- 3 2.90000+ 1 3.00000+ 1 1.03884- 4 3.18259- 3 2.90000+ 1 3.20000+ 1 3.73695- 6 3.27667- 3 2.90000+ 1 3.30000+ 1 9.22292- 4 3.28568- 3 2.90000+ 1 3.50000+ 1 7.47401- 6 3.38503- 3 2.90000+ 1 3.60000+ 1 3.73695- 5 3.38612- 3 2.90000+ 1 4.40000+ 1 1.49478- 5 3.36990- 3 2.90000+ 1 4.70000+ 1 4.48435- 6 3.39104- 3 3.00000+ 1 3.00000+ 1 7.39935- 5 3.24298- 3 3.00000+ 1 3.20000+ 1 7.99695- 5 3.33706- 3 3.00000+ 1 3.30000+ 1 1.33932- 3 3.34607- 3 3.00000+ 1 3.50000+ 1 5.23163- 6 3.44542- 3 3.00000+ 1 3.60000+ 1 9.71607- 6 3.44651- 3 3.00000+ 1 4.10000+ 1 9.71607- 6 3.40115- 3 3.00000+ 1 4.30000+ 1 1.64428- 5 3.42002- 3 3.00000+ 1 4.40000+ 1 2.16743- 5 3.43029- 3 3.00000+ 1 4.60000+ 1 7.47400- 7 3.45079- 3 3.00000+ 1 4.70000+ 1 6.72660- 6 3.45143- 3 3.00000+ 1 5.80000+ 1 7.47400- 7 3.44966- 3 3.20000+ 1 3.20000+ 1 1.19575- 5 3.43114- 3 3.20000+ 1 3.30000+ 1 1.54259- 3 3.44015- 3 3.20000+ 1 3.50000+ 1 1.04625- 5 3.53950- 3 3.20000+ 1 3.60000+ 1 1.36024- 4 3.54059- 3 3.20000+ 1 4.10000+ 1 8.22118- 6 3.49523- 3 3.20000+ 1 4.30000+ 1 7.47382- 7 3.51410- 3 3.20000+ 1 4.40000+ 1 1.19575- 5 3.52437- 3 3.20000+ 1 4.70000+ 1 7.47382- 6 3.54551- 3 3.20000+ 1 5.80000+ 1 7.47382- 7 3.54374- 3 3.30000+ 1 3.30000+ 1 1.68832- 3 3.44916- 3 3.30000+ 1 3.50000+ 1 1.65914- 4 3.54851- 3 3.30000+ 1 3.60000+ 1 3.01193- 4 3.54960- 3 3.30000+ 1 4.10000+ 1 1.68167- 4 3.50424- 3 3.30000+ 1 4.30000+ 1 1.55451- 4 3.52311- 3 3.30000+ 1 4.40000+ 1 2.05531- 4 3.53338- 3 3.30000+ 1 4.60000+ 1 8.96861- 6 3.55388- 3 3.30000+ 1 4.70000+ 1 1.71900- 5 3.55452- 3 3.30000+ 1 5.80000+ 1 1.64425- 5 3.55275- 3 3.50000+ 1 3.50000+ 1 8.48174- 7 3.64786- 3 3.50000+ 1 3.60000+ 1 7.37898- 5 3.64895- 3 3.50000+ 1 4.10000+ 1 2.54449- 6 3.60359- 3 3.50000+ 1 4.30000+ 1 1.69632- 6 3.62246- 3 3.50000+ 1 4.40000+ 1 8.48174- 7 3.63273- 3 3.50000+ 1 4.70000+ 1 8.48174- 7 3.65387- 3 3.60000+ 1 3.60000+ 1 2.92744- 5 3.65004- 3 3.60000+ 1 4.10000+ 1 1.42421- 5 3.60468- 3 3.60000+ 1 4.30000+ 1 7.12072- 6 3.62355- 3 3.60000+ 1 4.40000+ 1 1.58236- 6 3.63382- 3 3.60000+ 1 4.60000+ 1 7.91191- 7 3.65432- 3 3.60000+ 1 4.70000+ 1 1.58236- 6 3.65496- 3 3.60000+ 1 5.80000+ 1 1.58236- 6 3.65319- 3 4.10000+ 1 4.40000+ 1 1.49478- 6 3.58846- 3 4.10000+ 1 4.70000+ 1 7.47400- 7 3.60960- 3 4.30000+ 1 4.40000+ 1 2.24217- 6 3.60733- 3 4.30000+ 1 4.70000+ 1 7.47400- 7 3.62847- 3 4.40000+ 1 4.40000+ 1 1.49478- 6 3.61760- 3 4.40000+ 1 4.70000+ 1 7.47400- 7 3.63874- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.41410- 5 1.59400- 4 1.90000+ 1 5.05130- 4 4.08100- 4 2.90000+ 1 3.44240- 4 1.20595- 3 3.00000+ 1 7.16330- 5 1.26634- 3 4.30000+ 1 7.07360- 5 1.44338- 3 4.40000+ 1 1.76230- 5 1.45365- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.40222- 2 4.09200- 5 1.80000+ 1 3.30000+ 1 9.87581- 2 4.99300- 5 1.80000+ 1 3.50000+ 1 8.13515- 3 1.49280- 4 1.80000+ 1 3.60000+ 1 8.72098- 3 1.50370- 4 1.80000+ 1 4.10000+ 1 9.18750- 3 1.05010- 4 1.80000+ 1 4.30000+ 1 7.43804- 3 1.23880- 4 1.80000+ 1 4.40000+ 1 1.00802- 2 1.34150- 4 1.80000+ 1 4.60000+ 1 3.19555- 4 1.54650- 4 1.80000+ 1 4.70000+ 1 4.40546- 4 1.55290- 4 1.80000+ 1 5.80000+ 1 8.87773- 4 1.53520- 4 1.90000+ 1 2.40000+ 1 5.28054- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 1.73533- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.95844- 2 7.18500- 5 1.90000+ 1 2.90000+ 1 4.82675- 2 1.35150- 4 1.90000+ 1 3.00000+ 1 4.18178- 2 1.95540- 4 1.90000+ 1 3.20000+ 1 3.70499- 2 2.89620- 4 1.90000+ 1 3.30000+ 1 4.61023- 2 2.98630- 4 1.90000+ 1 3.50000+ 1 5.72824- 4 3.97980- 4 1.90000+ 1 3.60000+ 1 9.86154- 4 3.99070- 4 1.90000+ 1 4.10000+ 1 7.72549- 3 3.53710- 4 1.90000+ 1 4.30000+ 1 7.73062- 3 3.72580- 4 1.90000+ 1 4.40000+ 1 6.43936- 3 3.82850- 4 1.90000+ 1 4.60000+ 1 2.04691- 4 4.03350- 4 1.90000+ 1 4.70000+ 1 2.33608- 4 4.03990- 4 1.90000+ 1 5.80000+ 1 7.71671- 4 4.02220- 4 2.10000+ 1 2.40000+ 1 3.63222- 3 2.39210- 4 2.10000+ 1 2.50000+ 1 4.36458- 3 2.51360- 4 2.10000+ 1 2.70000+ 1 1.66639- 2 3.29710- 4 2.10000+ 1 2.90000+ 1 5.96712- 3 3.93010- 4 2.10000+ 1 3.00000+ 1 5.44500- 3 4.53400- 4 2.10000+ 1 3.20000+ 1 1.94650- 3 5.47480- 4 2.10000+ 1 3.30000+ 1 3.15477- 3 5.56490- 4 2.10000+ 1 3.50000+ 1 4.68768- 4 6.55840- 4 2.10000+ 1 3.60000+ 1 4.57445- 4 6.56930- 4 2.10000+ 1 4.10000+ 1 2.37232- 3 6.11570- 4 2.10000+ 1 4.30000+ 1 9.38356- 4 6.30440- 4 2.10000+ 1 4.40000+ 1 6.83803- 4 6.40710- 4 2.10000+ 1 4.60000+ 1 1.06189- 5 6.61210- 4 2.10000+ 1 4.70000+ 1 1.56490- 5 6.61850- 4 2.10000+ 1 5.80000+ 1 2.25933- 4 6.60080- 4 2.20000+ 1 2.40000+ 1 5.07908- 3 2.84860- 4 2.20000+ 1 2.50000+ 1 6.27365- 3 2.97010- 4 2.20000+ 1 2.70000+ 1 2.31850- 2 3.75360- 4 2.20000+ 1 2.90000+ 1 9.10675- 3 4.38660- 4 2.20000+ 1 3.00000+ 1 6.59770- 3 4.99050- 4 2.20000+ 1 3.20000+ 1 2.47572- 3 5.93130- 4 2.20000+ 1 3.30000+ 1 3.35784- 3 6.02140- 4 2.20000+ 1 3.50000+ 1 5.00482- 4 7.01490- 4 2.20000+ 1 3.60000+ 1 6.91909- 4 7.02580- 4 2.20000+ 1 4.10000+ 1 3.27956- 3 6.57220- 4 2.20000+ 1 4.30000+ 1 1.27521- 3 6.76090- 4 2.20000+ 1 4.40000+ 1 9.25105- 4 6.86360- 4 2.20000+ 1 4.60000+ 1 1.38322- 5 7.06860- 4 2.20000+ 1 4.70000+ 1 1.70461- 5 7.07500- 4 2.20000+ 1 5.80000+ 1 3.12138- 4 7.05730- 4 2.40000+ 1 2.40000+ 1 8.84021- 3 6.25400- 4 2.40000+ 1 2.50000+ 1 1.65951- 2 6.37550- 4 2.40000+ 1 2.70000+ 1 2.05055- 2 7.15900- 4 2.40000+ 1 2.90000+ 1 2.87562- 3 7.79200- 4 2.40000+ 1 3.00000+ 1 1.27360- 2 8.39590- 4 2.40000+ 1 3.20000+ 1 1.21150- 3 9.33670- 4 2.40000+ 1 3.30000+ 1 7.73522- 4 9.42680- 4 2.40000+ 1 3.50000+ 1 1.98260- 4 1.04203- 3 2.40000+ 1 3.60000+ 1 1.83730- 4 1.04312- 3 2.40000+ 1 4.10000+ 1 2.45353- 3 9.97760- 4 2.40000+ 1 4.30000+ 1 3.60337- 4 1.01663- 3 2.40000+ 1 4.40000+ 1 1.48318- 3 1.02690- 3 2.40000+ 1 4.60000+ 1 6.70659- 6 1.04740- 3 2.40000+ 1 4.70000+ 1 3.77246- 6 1.04804- 3 2.40000+ 1 5.80000+ 1 2.27046- 4 1.04627- 3 2.50000+ 1 2.50000+ 1 1.45548- 2 6.49700- 4 2.50000+ 1 2.70000+ 1 2.65027- 2 7.28050- 4 2.50000+ 1 2.90000+ 1 1.33898- 3 7.91350- 4 2.50000+ 1 3.00000+ 1 1.33546- 2 8.51740- 4 2.50000+ 1 3.20000+ 1 6.97760- 4 9.45820- 4 2.50000+ 1 3.30000+ 1 1.72144- 3 9.54830- 4 2.50000+ 1 3.50000+ 1 1.92955- 4 1.05418- 3 2.50000+ 1 3.60000+ 1 3.19259- 4 1.05527- 3 2.50000+ 1 4.10000+ 1 3.15671- 3 1.00991- 3 2.50000+ 1 4.30000+ 1 1.62771- 4 1.02878- 3 2.50000+ 1 4.40000+ 1 1.48792- 3 1.03905- 3 2.50000+ 1 4.60000+ 1 3.91213- 6 1.05955- 3 2.50000+ 1 4.70000+ 1 8.38313- 6 1.06019- 3 2.50000+ 1 5.80000+ 1 2.91879- 4 1.05842- 3 2.70000+ 1 2.70000+ 1 1.73039- 2 8.06400- 4 2.70000+ 1 2.90000+ 1 2.58647- 2 8.69700- 4 2.70000+ 1 3.00000+ 1 4.04238- 2 9.30090- 4 2.70000+ 1 3.20000+ 1 4.06786- 2 1.02417- 3 2.70000+ 1 3.30000+ 1 5.61616- 2 1.03318- 3 2.70000+ 1 3.50000+ 1 6.94704- 3 1.13253- 3 2.70000+ 1 3.60000+ 1 8.62752- 3 1.13362- 3 2.70000+ 1 4.10000+ 1 5.61415- 3 1.08826- 3 2.70000+ 1 4.30000+ 1 4.38310- 3 1.10713- 3 2.70000+ 1 4.40000+ 1 6.15672- 3 1.11740- 3 2.70000+ 1 4.60000+ 1 2.42184- 4 1.13790- 3 2.70000+ 1 4.70000+ 1 2.98645- 4 1.13854- 3 2.70000+ 1 5.80000+ 1 5.48111- 4 1.13677- 3 2.90000+ 1 2.90000+ 1 1.99397- 3 9.33000- 4 2.90000+ 1 3.00000+ 1 9.13932- 3 9.93390- 4 2.90000+ 1 3.20000+ 1 3.65829- 3 1.08747- 3 2.90000+ 1 3.30000+ 1 2.53117- 3 1.09648- 3 2.90000+ 1 3.50000+ 1 3.89678- 4 1.19583- 3 2.90000+ 1 3.60000+ 1 2.36730- 4 1.19692- 3 2.90000+ 1 4.10000+ 1 3.14845- 3 1.15156- 3 2.90000+ 1 4.30000+ 1 5.44467- 4 1.17043- 3 2.90000+ 1 4.40000+ 1 1.03797- 3 1.18070- 3 2.90000+ 1 4.60000+ 1 2.00303- 5 1.20120- 3 2.90000+ 1 4.70000+ 1 1.27466- 5 1.20184- 3 2.90000+ 1 5.80000+ 1 2.93172- 4 1.20007- 3 3.00000+ 1 3.00000+ 1 5.03497- 3 1.05378- 3 3.00000+ 1 3.20000+ 1 2.28896- 3 1.14786- 3 3.00000+ 1 3.30000+ 1 5.85802- 3 1.15687- 3 3.00000+ 1 3.50000+ 1 1.86465- 3 1.25622- 3 3.00000+ 1 3.60000+ 1 2.27807- 3 1.25731- 3 3.00000+ 1 4.10000+ 1 5.13145- 3 1.21195- 3 3.00000+ 1 4.30000+ 1 1.37476- 3 1.23082- 3 3.00000+ 1 4.40000+ 1 1.33669- 3 1.24109- 3 3.00000+ 1 4.60000+ 1 1.27466- 5 1.26159- 3 3.00000+ 1 4.70000+ 1 3.09559- 5 1.26223- 3 3.00000+ 1 5.80000+ 1 4.80736- 4 1.26046- 3 3.20000+ 1 3.20000+ 1 1.06177- 3 1.24194- 3 3.20000+ 1 3.30000+ 1 3.32157- 3 1.25095- 3 3.20000+ 1 3.50000+ 1 1.71972- 4 1.35030- 3 3.20000+ 1 3.60000+ 1 1.21498- 4 1.35139- 3 3.20000+ 1 4.10000+ 1 5.15346- 3 1.30603- 3 3.20000+ 1 4.30000+ 1 4.91608- 4 1.32490- 3 3.20000+ 1 4.40000+ 1 2.20573- 4 1.33517- 3 3.20000+ 1 4.60000+ 1 1.12153- 5 1.35567- 3 3.20000+ 1 4.70000+ 1 1.49537- 5 1.35631- 3 3.20000+ 1 5.80000+ 1 4.80391- 4 1.35454- 3 3.30000+ 1 3.30000+ 1 2.11623- 3 1.25996- 3 3.30000+ 1 3.50000+ 1 1.33987- 4 1.35931- 3 3.30000+ 1 3.60000+ 1 2.47773- 4 1.36040- 3 3.30000+ 1 4.10000+ 1 6.97436- 3 1.31504- 3 3.30000+ 1 4.30000+ 1 2.88155- 4 1.33391- 3 3.30000+ 1 4.40000+ 1 6.91905- 4 1.34418- 3 3.30000+ 1 4.60000+ 1 1.65183- 5 1.36468- 3 3.30000+ 1 4.70000+ 1 2.01889- 5 1.36532- 3 3.30000+ 1 5.80000+ 1 6.47887- 4 1.36355- 3 3.50000+ 1 3.50000+ 1 3.76779- 6 1.45866- 3 3.50000+ 1 3.60000+ 1 1.50712- 5 1.45975- 3 3.50000+ 1 4.10000+ 1 8.47773- 4 1.41439- 3 3.50000+ 1 4.30000+ 1 4.89813- 5 1.43326- 3 3.50000+ 1 4.40000+ 1 2.35486- 4 1.44353- 3 3.50000+ 1 5.80000+ 1 7.91207- 5 1.46290- 3 3.60000+ 1 3.60000+ 1 9.36576- 6 1.46084- 3 3.60000+ 1 4.10000+ 1 1.04528- 3 1.41548- 3 3.60000+ 1 4.30000+ 1 2.80978- 5 1.43435- 3 3.60000+ 1 4.40000+ 1 2.80978- 4 1.44462- 3 3.60000+ 1 4.70000+ 1 1.87319- 6 1.46576- 3 3.60000+ 1 5.80000+ 1 9.74099- 5 1.46399- 3 4.10000+ 1 4.10000+ 1 4.31705- 4 1.37012- 3 4.10000+ 1 4.30000+ 1 5.51817- 4 1.38899- 3 4.10000+ 1 4.40000+ 1 7.90221- 4 1.39926- 3 4.10000+ 1 4.60000+ 1 3.00309- 5 1.41976- 3 4.10000+ 1 4.70000+ 1 3.75387- 5 1.42040- 3 4.10000+ 1 5.80000+ 1 8.25882- 5 1.41863- 3 4.30000+ 1 4.30000+ 1 3.79778- 5 1.40786- 3 4.30000+ 1 4.40000+ 1 1.59515- 4 1.41813- 3 4.30000+ 1 4.60000+ 1 1.89889- 6 1.43863- 3 4.30000+ 1 4.70000+ 1 1.89889- 6 1.43927- 3 4.30000+ 1 5.80000+ 1 5.12700- 5 1.43750- 3 4.40000+ 1 4.40000+ 1 9.21626- 5 1.42840- 3 4.40000+ 1 4.60000+ 1 2.00351- 6 1.44890- 3 4.40000+ 1 4.70000+ 1 4.00702- 6 1.44954- 3 4.40000+ 1 5.80000+ 1 7.81370- 5 1.44777- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.05592- 3 5.06560- 4 2.70000+ 1 2.49096- 4 9.83250- 4 3.20000+ 1 6.90559- 5 1.20102- 3 4.10000+ 1 5.02567- 5 1.26511- 3 5.80000+ 1 4.83328- 6 1.31362- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.81763- 2 3.61400- 5 1.90000+ 1 3.20000+ 1 1.08849- 2 1.30220- 4 1.90000+ 1 3.30000+ 1 1.60263- 2 1.39230- 4 1.90000+ 1 3.50000+ 1 9.04184- 4 2.38580- 4 1.90000+ 1 3.60000+ 1 1.34772- 3 2.39670- 4 1.90000+ 1 4.10000+ 1 2.13835- 3 1.94310- 4 1.90000+ 1 4.30000+ 1 2.40110- 3 2.13180- 4 1.90000+ 1 4.40000+ 1 2.13507- 3 2.23450- 4 1.90000+ 1 4.60000+ 1 4.45757- 5 2.43950- 4 1.90000+ 1 4.70000+ 1 6.19839- 5 2.44590- 4 1.90000+ 1 5.80000+ 1 2.04676- 4 2.42820- 4 2.10000+ 1 2.40000+ 1 8.83644- 2 7.98100- 5 2.10000+ 1 2.50000+ 1 2.18699- 1 9.19600- 5 2.10000+ 1 2.70000+ 1 3.39628- 2 1.70310- 4 2.10000+ 1 2.90000+ 1 2.77898- 2 2.33610- 4 2.10000+ 1 3.00000+ 1 3.33749- 2 2.94000- 4 2.10000+ 1 3.20000+ 1 1.86553- 2 3.88080- 4 2.10000+ 1 3.30000+ 1 2.73781- 2 3.97090- 4 2.10000+ 1 3.50000+ 1 8.39191- 4 4.96440- 4 2.10000+ 1 3.60000+ 1 1.58276- 3 4.97530- 4 2.10000+ 1 4.10000+ 1 6.67146- 3 4.52170- 4 2.10000+ 1 4.30000+ 1 4.39468- 3 4.71040- 4 2.10000+ 1 4.40000+ 1 5.04202- 3 4.81310- 4 2.10000+ 1 4.60000+ 1 1.09193- 4 5.01810- 4 2.10000+ 1 4.70000+ 1 1.40189- 4 5.02450- 4 2.10000+ 1 5.80000+ 1 6.59832- 4 5.00680- 4 2.20000+ 1 2.40000+ 1 4.20635- 2 1.25460- 4 2.20000+ 1 2.50000+ 1 1.06633- 2 1.37610- 4 2.20000+ 1 2.70000+ 1 5.29464- 3 2.15960- 4 2.20000+ 1 2.90000+ 1 2.29163- 2 2.79260- 4 2.20000+ 1 3.00000+ 1 4.53432- 3 3.39650- 4 2.20000+ 1 3.20000+ 1 2.10739- 3 4.33730- 4 2.20000+ 1 3.30000+ 1 2.39532- 3 4.42740- 4 2.20000+ 1 3.50000+ 1 2.78942- 4 5.42090- 4 2.20000+ 1 3.60000+ 1 1.63269- 4 5.43180- 4 2.20000+ 1 4.10000+ 1 7.93634- 4 4.97820- 4 2.20000+ 1 4.30000+ 1 2.52271- 3 5.16690- 4 2.20000+ 1 4.40000+ 1 5.24518- 4 5.26960- 4 2.20000+ 1 4.60000+ 1 1.08142- 5 5.47460- 4 2.20000+ 1 4.70000+ 1 1.18698- 5 5.48100- 4 2.20000+ 1 5.80000+ 1 7.62332- 5 5.46330- 4 2.40000+ 1 2.40000+ 1 2.03690- 3 4.66000- 4 2.40000+ 1 2.50000+ 1 1.07451- 2 4.78150- 4 2.40000+ 1 2.70000+ 1 5.05320- 3 5.56500- 4 2.40000+ 1 2.90000+ 1 1.97071- 2 6.19800- 4 2.40000+ 1 3.00000+ 1 2.46841- 3 6.80190- 4 2.40000+ 1 3.20000+ 1 5.99825- 3 7.74270- 4 2.40000+ 1 3.30000+ 1 4.69402- 3 7.83280- 4 2.40000+ 1 3.50000+ 1 2.88423- 4 8.82630- 4 2.40000+ 1 3.60000+ 1 1.89384- 4 8.83720- 4 2.40000+ 1 4.10000+ 1 1.00444- 3 8.38360- 4 2.40000+ 1 4.30000+ 1 2.20663- 3 8.57230- 4 2.40000+ 1 4.40000+ 1 3.27457- 4 8.67500- 4 2.40000+ 1 4.60000+ 1 2.83552- 5 8.88000- 4 2.40000+ 1 4.70000+ 1 2.42665- 5 8.88640- 4 2.40000+ 1 5.80000+ 1 1.00100- 4 8.86870- 4 2.50000+ 1 2.50000+ 1 5.51936- 4 4.90300- 4 2.50000+ 1 2.70000+ 1 2.77597- 3 5.68650- 4 2.50000+ 1 2.90000+ 1 3.01593- 2 6.31950- 4 2.50000+ 1 3.00000+ 1 1.65342- 3 6.92340- 4 2.50000+ 1 3.20000+ 1 1.25852- 2 7.86420- 4 2.50000+ 1 3.30000+ 1 1.21593- 3 7.95430- 4 2.50000+ 1 3.50000+ 1 6.44901- 5 8.94780- 4 2.50000+ 1 3.60000+ 1 3.70585- 5 8.95870- 4 2.50000+ 1 4.10000+ 1 4.07385- 4 8.50510- 4 2.50000+ 1 4.30000+ 1 3.23982- 3 8.69380- 4 2.50000+ 1 4.40000+ 1 2.08240- 4 8.79650- 4 2.50000+ 1 4.60000+ 1 5.88192- 5 9.00150- 4 2.50000+ 1 4.70000+ 1 5.80287- 6 9.00790- 4 2.50000+ 1 5.80000+ 1 3.87729- 5 8.99020- 4 2.70000+ 1 2.70000+ 1 1.85156- 3 6.47000- 4 2.70000+ 1 2.90000+ 1 2.40649- 2 7.10300- 4 2.70000+ 1 3.00000+ 1 4.61442- 3 7.70690- 4 2.70000+ 1 3.20000+ 1 6.08387- 3 8.64770- 4 2.70000+ 1 3.30000+ 1 4.24860- 3 8.73780- 4 2.70000+ 1 3.50000+ 1 1.92535- 4 9.73130- 4 2.70000+ 1 3.60000+ 1 4.01111- 4 9.74220- 4 2.70000+ 1 4.10000+ 1 5.56736- 4 9.28860- 4 2.70000+ 1 4.30000+ 1 2.55101- 3 9.47730- 4 2.70000+ 1 4.40000+ 1 6.28964- 4 9.58000- 4 2.70000+ 1 4.60000+ 1 2.72752- 5 9.78500- 4 2.70000+ 1 4.70000+ 1 2.08577- 5 9.79140- 4 2.70000+ 1 5.80000+ 1 5.45510- 5 9.77370- 4 2.90000+ 1 2.90000+ 1 1.70739- 2 7.73600- 4 2.90000+ 1 3.00000+ 1 4.45902- 2 8.33990- 4 2.90000+ 1 3.20000+ 1 3.61081- 2 9.28070- 4 2.90000+ 1 3.30000+ 1 6.02107- 2 9.37080- 4 2.90000+ 1 3.50000+ 1 6.77715- 3 1.03643- 3 2.90000+ 1 3.60000+ 1 9.17581- 3 1.03752- 3 2.90000+ 1 4.10000+ 1 5.05729- 3 9.92160- 4 2.90000+ 1 4.30000+ 1 4.78378- 3 1.01103- 3 2.90000+ 1 4.40000+ 1 6.82562- 3 1.02130- 3 2.90000+ 1 4.60000+ 1 2.16838- 4 1.04180- 3 2.90000+ 1 4.70000+ 1 3.18582- 4 1.04244- 3 2.90000+ 1 5.80000+ 1 5.05390- 4 1.04067- 3 3.00000+ 1 3.00000+ 1 1.41960- 3 8.94380- 4 3.00000+ 1 3.20000+ 1 6.18934- 3 9.88460- 4 3.00000+ 1 3.30000+ 1 2.83413- 3 9.97470- 4 3.00000+ 1 3.50000+ 1 2.20636- 4 1.09682- 3 3.00000+ 1 3.60000+ 1 3.24466- 4 1.09791- 3 3.00000+ 1 4.10000+ 1 6.44088- 4 1.05255- 3 3.00000+ 1 4.30000+ 1 4.70468- 3 1.07142- 3 3.00000+ 1 4.40000+ 1 3.65031- 4 1.08169- 3 3.00000+ 1 4.60000+ 1 2.92015- 5 1.10219- 3 3.00000+ 1 4.70000+ 1 1.46012- 5 1.10283- 3 3.00000+ 1 5.80000+ 1 6.16479- 5 1.10106- 3 3.20000+ 1 3.20000+ 1 1.83436- 3 1.08254- 3 3.20000+ 1 3.30000+ 1 2.76018- 3 1.09155- 3 3.20000+ 1 3.50000+ 1 8.41293- 4 1.19090- 3 3.20000+ 1 3.60000+ 1 1.39257- 3 1.19199- 3 3.20000+ 1 4.10000+ 1 8.56170- 4 1.14663- 3 3.20000+ 1 4.30000+ 1 2.99543- 3 1.16550- 3 3.20000+ 1 4.40000+ 1 7.08126- 4 1.17577- 3 3.20000+ 1 4.60000+ 1 1.99115- 5 1.19627- 3 3.20000+ 1 4.70000+ 1 1.49338- 5 1.19691- 3 3.20000+ 1 5.80000+ 1 8.46231- 5 1.19514- 3 3.30000+ 1 3.30000+ 1 4.60687- 4 1.10056- 3 3.30000+ 1 3.50000+ 1 2.32162- 4 1.19991- 3 3.30000+ 1 3.60000+ 1 1.22123- 4 1.20100- 3 3.30000+ 1 4.10000+ 1 4.03862- 4 1.15564- 3 3.30000+ 1 4.30000+ 1 4.79565- 3 1.17451- 3 3.30000+ 1 4.40000+ 1 2.61184- 4 1.18478- 3 3.30000+ 1 4.60000+ 1 1.20923- 5 1.20528- 3 3.30000+ 1 4.70000+ 1 4.83661- 6 1.20592- 3 3.30000+ 1 5.80000+ 1 3.74846- 5 1.20415- 3 3.50000+ 1 3.50000+ 1 5.08003- 6 1.29926- 3 3.50000+ 1 3.60000+ 1 1.39708- 5 1.30035- 3 3.50000+ 1 4.10000+ 1 2.79408- 5 1.25499- 3 3.50000+ 1 4.30000+ 1 5.43566- 4 1.27386- 3 3.50000+ 1 4.40000+ 1 2.15904- 5 1.28413- 3 3.50000+ 1 4.60000+ 1 3.81015- 6 1.30463- 3 3.50000+ 1 4.70000+ 1 1.27009- 6 1.30527- 3 3.50000+ 1 5.80000+ 1 2.54006- 6 1.30350- 3 3.60000+ 1 3.60000+ 1 2.53056- 6 1.30144- 3 3.60000+ 1 4.10000+ 1 4.42851- 5 1.25608- 3 3.60000+ 1 4.30000+ 1 7.36392- 4 1.27495- 3 3.60000+ 1 4.40000+ 1 2.91016- 5 1.28522- 3 3.60000+ 1 4.60000+ 1 6.32632- 6 1.30572- 3 3.60000+ 1 5.80000+ 1 3.79591- 6 1.30459- 3 4.10000+ 1 4.10000+ 1 2.92753- 5 1.21072- 3 4.10000+ 1 4.30000+ 1 3.51305- 4 1.22959- 3 4.10000+ 1 4.40000+ 1 5.85517- 5 1.23986- 3 4.10000+ 1 4.60000+ 1 3.25287- 6 1.26036- 3 4.10000+ 1 4.70000+ 1 2.16854- 6 1.26100- 3 4.10000+ 1 5.80000+ 1 5.42129- 6 1.25923- 3 4.30000+ 1 4.30000+ 1 2.27149- 4 1.24846- 3 4.30000+ 1 4.40000+ 1 5.39355- 4 1.25873- 3 4.30000+ 1 4.60000+ 1 1.70064- 5 1.27923- 3 4.30000+ 1 4.70000+ 1 2.55087- 5 1.27987- 3 4.30000+ 1 5.80000+ 1 3.88710- 5 1.27810- 3 4.40000+ 1 4.40000+ 1 1.58969- 5 1.26900- 3 4.40000+ 1 4.60000+ 1 3.40644- 6 1.28950- 3 4.40000+ 1 4.70000+ 1 1.13552- 6 1.29014- 3 4.40000+ 1 5.80000+ 1 5.67723- 6 1.28837- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.25819- 5 2.57860- 4 2.20000+ 1 1.92454- 4 3.03510- 4 2.70000+ 1 2.92972- 4 7.34550- 4 3.20000+ 1 3.23428- 5 9.52320- 4 3.30000+ 1 1.90656- 4 9.61330- 4 4.10000+ 1 5.69942- 5 1.01641- 3 5.80000+ 1 5.71740- 6 1.06492- 3 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 5.14100- 2 4.53000- 5 2.10000+ 1 3.20000+ 1 1.84018- 2 1.39380- 4 2.10000+ 1 3.30000+ 1 2.80695- 2 1.48390- 4 2.10000+ 1 3.50000+ 1 1.22813- 3 2.47740- 4 2.10000+ 1 3.60000+ 1 1.06458- 3 2.48830- 4 2.10000+ 1 4.10000+ 1 4.05282- 3 2.03470- 4 2.10000+ 1 4.30000+ 1 2.91192- 3 2.22340- 4 2.10000+ 1 4.40000+ 1 6.41521- 3 2.32610- 4 2.10000+ 1 4.60000+ 1 9.88776- 5 2.53110- 4 2.10000+ 1 4.70000+ 1 1.30295- 4 2.53750- 4 2.10000+ 1 5.80000+ 1 3.97529- 4 2.51980- 4 2.20000+ 1 2.90000+ 1 1.23471- 1 3.05600- 5 2.20000+ 1 3.00000+ 1 1.36902- 1 9.09500- 5 2.20000+ 1 3.20000+ 1 1.21063- 1 1.85030- 4 2.20000+ 1 3.30000+ 1 1.45519- 1 1.94040- 4 2.20000+ 1 3.50000+ 1 3.62878- 3 2.93390- 4 2.20000+ 1 3.60000+ 1 4.77170- 3 2.94480- 4 2.20000+ 1 4.10000+ 1 2.27862- 2 2.49120- 4 2.20000+ 1 4.30000+ 1 2.02113- 2 2.67990- 4 2.20000+ 1 4.40000+ 1 1.93165- 2 2.78260- 4 2.20000+ 1 4.60000+ 1 6.47825- 4 2.98760- 4 2.20000+ 1 4.70000+ 1 7.17511- 4 2.99400- 4 2.20000+ 1 5.80000+ 1 2.24001- 3 2.97630- 4 2.40000+ 1 2.40000+ 1 9.46239- 4 2.17300- 4 2.40000+ 1 2.50000+ 1 4.15763- 3 2.29450- 4 2.40000+ 1 2.70000+ 1 9.32768- 3 3.07800- 4 2.40000+ 1 2.90000+ 1 4.92239- 3 3.71100- 4 2.40000+ 1 3.00000+ 1 5.46613- 2 4.31490- 4 2.40000+ 1 3.20000+ 1 2.14036- 3 5.25570- 4 2.40000+ 1 3.30000+ 1 7.90337- 3 5.34580- 4 2.40000+ 1 3.50000+ 1 2.74862- 4 6.33930- 4 2.40000+ 1 3.60000+ 1 2.61501- 4 6.35020- 4 2.40000+ 1 4.10000+ 1 1.14783- 3 5.89660- 4 2.40000+ 1 4.30000+ 1 6.96104- 4 6.08530- 4 2.40000+ 1 4.40000+ 1 5.59328- 3 6.18800- 4 2.40000+ 1 4.60000+ 1 1.10846- 5 6.39300- 4 2.40000+ 1 4.70000+ 1 3.21193- 5 6.39940- 4 2.40000+ 1 5.80000+ 1 1.06879- 4 6.38170- 4 2.50000+ 1 2.50000+ 1 3.70786- 3 2.41600- 4 2.50000+ 1 2.70000+ 1 2.15054- 2 3.19950- 4 2.50000+ 1 2.90000+ 1 1.73254- 2 3.83250- 4 2.50000+ 1 3.00000+ 1 6.56840- 2 4.43640- 4 2.50000+ 1 3.20000+ 1 1.61566- 3 5.37720- 4 2.50000+ 1 3.30000+ 1 1.11603- 2 5.46730- 4 2.50000+ 1 3.50000+ 1 1.03864- 3 6.46080- 4 2.50000+ 1 3.60000+ 1 1.32671- 3 6.47170- 4 2.50000+ 1 4.10000+ 1 3.22345- 3 6.01810- 4 2.50000+ 1 4.30000+ 1 2.57209- 3 6.20680- 4 2.50000+ 1 4.40000+ 1 6.79440- 3 6.30950- 4 2.50000+ 1 4.60000+ 1 9.82754- 6 6.51450- 4 2.50000+ 1 4.70000+ 1 4.74541- 5 6.52090- 4 2.50000+ 1 5.80000+ 1 3.09714- 4 6.50320- 4 2.70000+ 1 2.70000+ 1 2.69115- 5 3.98300- 4 2.70000+ 1 2.90000+ 1 2.47927- 4 4.61600- 4 2.70000+ 1 3.00000+ 1 5.02382- 3 5.21990- 4 2.70000+ 1 3.20000+ 1 4.63788- 4 6.16070- 4 2.70000+ 1 3.30000+ 1 7.84437- 4 6.25080- 4 2.70000+ 1 3.50000+ 1 8.41706- 5 7.24430- 4 2.70000+ 1 3.60000+ 1 8.13075- 5 7.25520- 4 2.70000+ 1 4.10000+ 1 1.37422- 5 6.80160- 4 2.70000+ 1 4.30000+ 1 2.63389- 5 6.99030- 4 2.70000+ 1 4.40000+ 1 4.92137- 4 7.09300- 4 2.70000+ 1 4.60000+ 1 2.29041- 6 7.29800- 4 2.70000+ 1 4.70000+ 1 3.14919- 6 7.30440- 4 2.70000+ 1 5.80000+ 1 1.43140- 6 7.28670- 4 2.90000+ 1 2.90000+ 1 5.72589- 7 5.24900- 4 2.90000+ 1 3.00000+ 1 5.72959- 3 5.85290- 4 2.90000+ 1 3.20000+ 1 2.57089- 4 6.79370- 4 2.90000+ 1 3.30000+ 1 7.14867- 4 6.88380- 4 2.90000+ 1 3.50000+ 1 6.69924- 5 7.87730- 4 2.90000+ 1 3.60000+ 1 1.44001- 4 7.88820- 4 2.90000+ 1 4.10000+ 1 4.43759- 5 7.43460- 4 2.90000+ 1 4.30000+ 1 4.29439- 6 7.62330- 4 2.90000+ 1 4.40000+ 1 5.77175- 4 7.72600- 4 2.90000+ 1 4.60000+ 1 1.14510- 6 7.93100- 4 2.90000+ 1 4.70000+ 1 2.86298- 6 7.93740- 4 2.90000+ 1 5.80000+ 1 4.58068- 6 7.91970- 4 3.00000+ 1 3.00000+ 1 7.25287- 3 6.45680- 4 3.00000+ 1 3.20000+ 1 8.64007- 3 7.39760- 4 3.00000+ 1 3.30000+ 1 1.15138- 2 7.48770- 4 3.00000+ 1 3.50000+ 1 1.51138- 3 8.48120- 4 3.00000+ 1 3.60000+ 1 1.80788- 3 8.49210- 4 3.00000+ 1 4.10000+ 1 1.01921- 3 8.03850- 4 3.00000+ 1 4.30000+ 1 9.44468- 4 8.22720- 4 3.00000+ 1 4.40000+ 1 1.84424- 3 8.32990- 4 3.00000+ 1 4.60000+ 1 5.09590- 5 8.53490- 4 3.00000+ 1 4.70000+ 1 6.04070- 5 8.54130- 4 3.00000+ 1 5.80000+ 1 1.01921- 4 8.52360- 4 3.20000+ 1 3.20000+ 1 1.72922- 4 8.33840- 4 3.20000+ 1 3.30000+ 1 1.03634- 3 8.42850- 4 3.20000+ 1 3.50000+ 1 3.45259- 5 9.42200- 4 3.20000+ 1 3.60000+ 1 6.21453- 5 9.43290- 4 3.20000+ 1 4.10000+ 1 6.55970- 5 8.97930- 4 3.20000+ 1 4.30000+ 1 4.25818- 5 9.16800- 4 3.20000+ 1 4.40000+ 1 8.84432- 4 9.27070- 4 3.20000+ 1 4.60000+ 1 1.72620- 6 9.47570- 4 3.20000+ 1 4.70000+ 1 4.31564- 6 9.48210- 4 3.20000+ 1 5.80000+ 1 6.32965- 6 9.46440- 4 3.30000+ 1 3.30000+ 1 9.64432- 4 8.51860- 4 3.30000+ 1 3.50000+ 1 1.11522- 4 9.51210- 4 3.30000+ 1 3.60000+ 1 1.52990- 4 9.52300- 4 3.30000+ 1 4.10000+ 1 1.48217- 4 9.06940- 4 3.30000+ 1 4.30000+ 1 1.17972- 4 9.25810- 4 3.30000+ 1 4.40000+ 1 1.16394- 3 9.36080- 4 3.30000+ 1 4.60000+ 1 5.32377- 6 9.56580- 4 3.30000+ 1 4.70000+ 1 8.96621- 6 9.57220- 4 3.30000+ 1 5.80000+ 1 1.48511- 5 9.55450- 4 3.50000+ 1 3.50000+ 1 5.81393- 7 1.05056- 3 3.50000+ 1 3.60000+ 1 5.23242- 6 1.05165- 3 3.50000+ 1 4.10000+ 1 1.07557- 5 1.00629- 3 3.50000+ 1 4.30000+ 1 4.36043- 6 1.02516- 3 3.50000+ 1 4.40000+ 1 1.51167- 4 1.03543- 3 3.50000+ 1 4.60000+ 1 2.90701- 7 1.05593- 3 3.50000+ 1 4.70000+ 1 5.81393- 7 1.05657- 3 3.50000+ 1 5.80000+ 1 8.72084- 7 1.05480- 3 3.60000+ 1 3.60000+ 1 2.62824- 6 1.05274- 3 3.60000+ 1 4.10000+ 1 1.10967- 5 1.00738- 3 3.60000+ 1 4.30000+ 1 9.05258- 6 1.02625- 3 3.60000+ 1 4.40000+ 1 1.80752- 4 1.03652- 3 3.60000+ 1 4.60000+ 1 2.92025- 7 1.05702- 3 3.60000+ 1 4.70000+ 1 5.84041- 7 1.05766- 3 3.60000+ 1 5.80000+ 1 8.76055- 7 1.05589- 3 4.10000+ 1 4.30000+ 1 3.42198- 6 9.80890- 4 4.10000+ 1 4.40000+ 1 9.98032- 5 9.91160- 4 4.10000+ 1 4.60000+ 1 2.85165- 7 1.01166- 3 4.10000+ 1 4.70000+ 1 5.70321- 7 1.01230- 3 4.30000+ 1 4.40000+ 1 9.81426- 5 1.01003- 3 4.30000+ 1 4.60000+ 1 2.96512- 7 1.03053- 3 4.30000+ 1 4.70000+ 1 5.93015- 7 1.03117- 3 4.30000+ 1 5.80000+ 1 2.96512- 7 1.02940- 3 4.40000+ 1 4.40000+ 1 1.09262- 4 1.02030- 3 4.40000+ 1 4.60000+ 1 5.06859- 6 1.04080- 3 4.40000+ 1 4.70000+ 1 6.19509- 6 1.04144- 3 4.40000+ 1 5.80000+ 1 9.85552- 6 1.03967- 3 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.77691- 4 3.86190- 4 2.90000+ 1 1.69740- 4 5.39990- 4 3.00000+ 1 1.90280- 5 6.00380- 4 3.50000+ 1 3.39721- 5 8.02820- 4 4.30000+ 1 2.97571- 5 7.77420- 4 4.40000+ 1 3.14331- 6 7.87690- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 1.83789- 3 3.55300- 5 2.20000+ 1 3.60000+ 1 2.16860- 3 3.66200- 5 2.20000+ 1 4.30000+ 1 1.19961- 3 1.01300- 5 2.20000+ 1 4.40000+ 1 2.79607- 3 2.04000- 5 2.20000+ 1 4.60000+ 1 4.29236- 4 4.09000- 5 2.20000+ 1 4.70000+ 1 7.83622- 5 4.15400- 5 2.20000+ 1 5.80000+ 1 2.13949- 4 3.97700- 5 2.40000+ 1 2.70000+ 1 1.21823- 1 4.99400- 5 2.40000+ 1 2.90000+ 1 1.09455- 1 1.13240- 4 2.40000+ 1 3.00000+ 1 1.28987- 1 1.73630- 4 2.40000+ 1 3.20000+ 1 1.31078- 1 2.67710- 4 2.40000+ 1 3.30000+ 1 1.37652- 1 2.76720- 4 2.40000+ 1 3.50000+ 1 2.83469- 3 3.76070- 4 2.40000+ 1 3.60000+ 1 2.11186- 3 3.77160- 4 2.40000+ 1 4.10000+ 1 2.42754- 2 3.31800- 4 2.40000+ 1 4.30000+ 1 1.79846- 2 3.50670- 4 2.40000+ 1 4.40000+ 1 1.91064- 2 3.60940- 4 2.40000+ 1 4.60000+ 1 6.57716- 4 3.81440- 4 2.40000+ 1 4.70000+ 1 6.85893- 4 3.82080- 4 2.40000+ 1 5.80000+ 1 2.43115- 3 3.80310- 4 2.50000+ 1 2.50000+ 1 2.12774- 3 0.00000+ 0 2.50000+ 1 2.70000+ 1 8.99256- 3 6.20900- 5 2.50000+ 1 2.90000+ 1 1.81855- 2 1.25390- 4 2.50000+ 1 3.00000+ 1 8.34058- 3 1.85780- 4 2.50000+ 1 3.20000+ 1 1.39531- 1 2.79860- 4 2.50000+ 1 3.30000+ 1 5.90449- 3 2.88870- 4 2.50000+ 1 3.50000+ 1 1.08162- 3 3.88220- 4 2.50000+ 1 3.60000+ 1 2.55769- 4 3.89310- 4 2.50000+ 1 4.10000+ 1 1.28815- 3 3.43950- 4 2.50000+ 1 4.30000+ 1 1.85778- 3 3.62820- 4 2.50000+ 1 4.40000+ 1 9.50026- 4 3.73090- 4 2.50000+ 1 4.60000+ 1 6.23368- 4 3.93590- 4 2.50000+ 1 4.70000+ 1 2.77352- 5 3.94230- 4 2.50000+ 1 5.80000+ 1 1.24141- 4 3.92460- 4 2.70000+ 1 2.70000+ 1 8.83562- 4 1.40440- 4 2.70000+ 1 2.90000+ 1 2.16550- 3 2.03740- 4 2.70000+ 1 3.00000+ 1 1.63918- 3 2.64130- 4 2.70000+ 1 3.20000+ 1 1.24884- 2 3.58210- 4 2.70000+ 1 3.30000+ 1 2.08455- 3 3.67220- 4 2.70000+ 1 3.50000+ 1 7.06147- 4 4.66570- 4 2.70000+ 1 3.60000+ 1 5.80675- 4 4.67660- 4 2.70000+ 1 4.10000+ 1 2.04713- 4 4.22300- 4 2.70000+ 1 4.30000+ 1 2.39043- 4 4.41170- 4 2.70000+ 1 4.40000+ 1 1.93717- 4 4.51440- 4 2.70000+ 1 4.60000+ 1 5.32686- 5 4.71940- 4 2.70000+ 1 4.70000+ 1 7.92428- 6 4.72580- 4 2.70000+ 1 5.80000+ 1 1.93717- 5 4.70810- 4 2.90000+ 1 2.90000+ 1 4.70597- 4 2.67040- 4 2.90000+ 1 3.00000+ 1 2.13992- 3 3.27430- 4 2.90000+ 1 3.20000+ 1 8.73239- 3 4.21510- 4 2.90000+ 1 3.30000+ 1 9.96239- 4 4.30520- 4 2.90000+ 1 3.50000+ 1 1.10502- 4 5.29870- 4 2.90000+ 1 3.60000+ 1 9.42088- 5 5.30960- 4 2.90000+ 1 4.10000+ 1 1.56278- 4 4.85600- 4 2.90000+ 1 4.30000+ 1 1.06530- 4 5.04470- 4 2.90000+ 1 4.40000+ 1 1.83574- 4 5.14740- 4 2.90000+ 1 4.60000+ 1 3.78595- 5 5.35240- 4 2.90000+ 1 4.70000+ 1 4.84254- 6 5.35880- 4 2.90000+ 1 5.80000+ 1 1.40870- 5 5.34110- 4 3.00000+ 1 3.00000+ 1 7.38436- 4 3.87820- 4 3.00000+ 1 3.20000+ 1 1.73448- 2 4.81900- 4 3.00000+ 1 3.30000+ 1 1.47424- 3 4.90910- 4 3.00000+ 1 3.50000+ 1 2.91595- 4 5.90260- 4 3.00000+ 1 3.60000+ 1 1.62093- 4 5.91350- 4 3.00000+ 1 4.10000+ 1 7.67588- 5 5.45990- 4 3.00000+ 1 4.30000+ 1 1.61236- 4 5.64860- 4 3.00000+ 1 4.40000+ 1 1.34219- 4 5.75130- 4 3.00000+ 1 4.60000+ 1 7.63299- 5 5.95630- 4 3.00000+ 1 4.70000+ 1 6.43233- 6 5.96270- 4 3.00000+ 1 5.80000+ 1 6.86108- 6 5.94500- 4 3.20000+ 1 3.20000+ 1 1.13256- 2 5.75980- 4 3.20000+ 1 3.30000+ 1 2.20839- 2 5.84990- 4 3.20000+ 1 3.50000+ 1 2.60272- 3 6.84340- 4 3.20000+ 1 3.60000+ 1 3.56417- 3 6.85430- 4 3.20000+ 1 4.10000+ 1 1.95024- 3 6.40070- 4 3.20000+ 1 4.30000+ 1 1.46825- 3 6.58940- 4 3.20000+ 1 4.40000+ 1 2.60142- 3 6.69210- 4 3.20000+ 1 4.60000+ 1 1.17107- 4 6.89710- 4 3.20000+ 1 4.70000+ 1 1.15346- 4 6.90350- 4 3.20000+ 1 5.80000+ 1 1.92382- 4 6.88580- 4 3.30000+ 1 3.30000+ 1 3.38696- 4 5.94000- 4 3.30000+ 1 3.50000+ 1 2.82046- 4 6.93350- 4 3.30000+ 1 3.60000+ 1 9.24389- 5 6.94440- 4 3.30000+ 1 4.10000+ 1 6.84484- 5 6.49080- 4 3.30000+ 1 4.30000+ 1 7.55287- 5 6.67950- 4 3.30000+ 1 4.40000+ 1 1.32574- 4 6.78220- 4 3.30000+ 1 4.60000+ 1 8.73296- 5 6.98720- 4 3.30000+ 1 4.70000+ 1 3.14707- 6 6.99360- 4 3.30000+ 1 5.80000+ 1 6.29391- 6 6.97590- 4 3.50000+ 1 3.50000+ 1 8.82974- 6 7.92700- 4 3.50000+ 1 3.60000+ 1 2.60485- 5 7.93790- 4 3.50000+ 1 4.10000+ 1 4.32665- 5 7.48430- 4 3.50000+ 1 4.30000+ 1 1.76596- 5 7.67300- 4 3.50000+ 1 4.40000+ 1 3.53202- 5 7.77570- 4 3.50000+ 1 4.60000+ 1 1.14793- 5 7.98070- 4 3.50000+ 1 4.70000+ 1 1.32455- 6 7.98710- 4 3.50000+ 1 5.80000+ 1 3.53202- 6 7.96940- 4 3.60000+ 1 3.60000+ 1 2.22849- 6 7.94880- 4 3.60000+ 1 4.10000+ 1 2.67423- 5 7.49520- 4 3.60000+ 1 4.30000+ 1 1.29264- 5 7.68390- 4 3.60000+ 1 4.40000+ 1 1.69370- 5 7.78660- 4 3.60000+ 1 4.60000+ 1 1.55998- 5 7.99160- 4 3.60000+ 1 4.70000+ 1 4.45718- 7 7.99800- 4 3.60000+ 1 5.80000+ 1 2.22849- 6 7.98030- 4 4.10000+ 1 4.10000+ 1 4.63352- 6 7.04160- 4 4.10000+ 1 4.30000+ 1 9.26735- 6 7.23030- 4 4.10000+ 1 4.40000+ 1 6.77197- 6 7.33300- 4 4.10000+ 1 4.60000+ 1 6.77197- 6 7.53800- 4 4.10000+ 1 4.70000+ 1 3.56423- 7 7.54440- 4 4.10000+ 1 5.80000+ 1 7.12832- 7 7.52670- 4 4.30000+ 1 4.30000+ 1 1.25909- 6 7.41900- 4 4.30000+ 1 4.40000+ 1 9.75778- 6 7.52170- 4 4.30000+ 1 4.60000+ 1 4.40684- 6 7.72670- 4 4.30000+ 1 4.70000+ 1 3.14777- 7 7.73310- 4 4.30000+ 1 5.80000+ 1 6.29542- 7 7.71540- 4 4.40000+ 1 4.40000+ 1 2.50661- 6 7.62440- 4 4.40000+ 1 4.60000+ 1 4.65534- 6 7.82940- 4 4.40000+ 1 4.70000+ 1 3.58083- 7 7.83580- 4 4.40000+ 1 5.80000+ 1 3.58083- 7 7.81810- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.76338- 5 3.40540- 4 2.50000+ 1 4.01626- 4 3.52690- 4 3.00000+ 1 1.40339- 4 5.54730- 4 3.50000+ 1 2.28888- 6 7.57170- 4 3.60000+ 1 3.79566- 5 7.58260- 4 4.40000+ 1 2.32598- 5 7.42040- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 1.11502- 2 4.29000- 6 2.40000+ 1 2.90000+ 1 8.25506- 3 6.75900- 5 2.40000+ 1 3.00000+ 1 1.53842- 2 1.27980- 4 2.40000+ 1 3.20000+ 1 7.44261- 3 2.22060- 4 2.40000+ 1 3.30000+ 1 1.04888- 1 2.31070- 4 2.40000+ 1 3.50000+ 1 4.20077- 4 3.30420- 4 2.40000+ 1 3.60000+ 1 5.66559- 4 3.31510- 4 2.40000+ 1 4.10000+ 1 2.05511- 3 2.86150- 4 2.40000+ 1 4.30000+ 1 1.33728- 3 3.05020- 4 2.40000+ 1 4.40000+ 1 1.88166- 3 3.15290- 4 2.40000+ 1 4.60000+ 1 4.07572- 5 3.35790- 4 2.40000+ 1 4.70000+ 1 4.26137- 4 3.36430- 4 2.40000+ 1 5.80000+ 1 2.00959- 4 3.34660- 4 2.50000+ 1 2.70000+ 1 1.14227- 1 1.64400- 5 2.50000+ 1 2.90000+ 1 1.23133- 1 7.97400- 5 2.50000+ 1 3.00000+ 1 1.11748- 1 1.40130- 4 2.50000+ 1 3.20000+ 1 1.11559- 1 2.34210- 4 2.50000+ 1 3.30000+ 1 2.00201- 1 2.43220- 4 2.50000+ 1 3.50000+ 1 1.85584- 3 3.42570- 4 2.50000+ 1 3.60000+ 1 3.67615- 3 3.43660- 4 2.50000+ 1 4.10000+ 1 2.29933- 2 2.98300- 4 2.50000+ 1 4.30000+ 1 1.97493- 2 3.17170- 4 2.50000+ 1 4.40000+ 1 1.67623- 2 3.27440- 4 2.50000+ 1 4.60000+ 1 6.07694- 4 3.47940- 4 2.50000+ 1 4.70000+ 1 9.05915- 4 3.48580- 4 2.50000+ 1 5.80000+ 1 2.28357- 3 3.46810- 4 2.70000+ 1 2.70000+ 1 1.61583- 3 9.47900- 5 2.70000+ 1 2.90000+ 1 2.31912- 3 1.58090- 4 2.70000+ 1 3.00000+ 1 3.46458- 3 2.18480- 4 2.70000+ 1 3.20000+ 1 3.07469- 3 3.12560- 4 2.70000+ 1 3.30000+ 1 1.51404- 2 3.21570- 4 2.70000+ 1 3.50000+ 1 6.76196- 4 4.20920- 4 2.70000+ 1 3.60000+ 1 1.05881- 3 4.22010- 4 2.70000+ 1 4.10000+ 1 3.64087- 4 3.76650- 4 2.70000+ 1 4.30000+ 1 2.65616- 4 3.95520- 4 2.70000+ 1 4.40000+ 1 4.06073- 4 4.05790- 4 2.70000+ 1 4.60000+ 1 1.21962- 5 4.26290- 4 2.70000+ 1 4.70000+ 1 5.73673- 5 4.26930- 4 2.70000+ 1 5.80000+ 1 3.47812- 5 4.25160- 4 2.90000+ 1 2.90000+ 1 3.10535- 4 2.21390- 4 2.90000+ 1 3.00000+ 1 3.85652- 3 2.81780- 4 2.90000+ 1 3.20000+ 1 5.71685- 4 3.75860- 4 2.90000+ 1 3.30000+ 1 1.30954- 2 3.84870- 4 2.90000+ 1 3.50000+ 1 1.07252- 4 4.84220- 4 2.90000+ 1 3.60000+ 1 2.36048- 4 4.85310- 4 2.90000+ 1 4.10000+ 1 1.57965- 4 4.39950- 4 2.90000+ 1 4.30000+ 1 7.13504- 5 4.58820- 4 2.90000+ 1 4.40000+ 1 3.38361- 4 4.69090- 4 2.90000+ 1 4.60000+ 1 2.24369- 6 4.89590- 4 2.90000+ 1 4.70000+ 1 5.20534- 5 4.90230- 4 2.90000+ 1 5.80000+ 1 1.43594- 5 4.88460- 4 3.00000+ 1 3.00000+ 1 1.19369- 3 3.42170- 4 3.00000+ 1 3.20000+ 1 2.15779- 3 4.36250- 4 3.00000+ 1 3.30000+ 1 1.63692- 2 4.45260- 4 3.00000+ 1 3.50000+ 1 2.08645- 4 5.44610- 4 3.00000+ 1 3.60000+ 1 2.83891- 4 5.45700- 4 3.00000+ 1 4.10000+ 1 1.11583- 4 5.00340- 4 3.00000+ 1 4.30000+ 1 1.70165- 4 5.19210- 4 3.00000+ 1 4.40000+ 1 2.21044- 4 5.29480- 4 3.00000+ 1 4.60000+ 1 1.06896- 5 5.49980- 4 3.00000+ 1 4.70000+ 1 6.41327- 5 5.50620- 4 3.00000+ 1 5.80000+ 1 8.97856- 6 5.48850- 4 3.20000+ 1 3.20000+ 1 1.39820- 4 5.30330- 4 3.20000+ 1 3.30000+ 1 1.56888- 2 5.39340- 4 3.20000+ 1 3.50000+ 1 6.80293- 5 6.38690- 4 3.20000+ 1 3.60000+ 1 2.57513- 4 6.39780- 4 3.20000+ 1 4.10000+ 1 7.42894- 5 5.94420- 4 3.20000+ 1 4.30000+ 1 4.92490- 5 6.13290- 4 3.20000+ 1 4.40000+ 1 2.17447- 4 6.23560- 4 3.20000+ 1 4.60000+ 1 1.25212- 6 6.44060- 4 3.20000+ 1 4.70000+ 1 6.17703- 5 6.44700- 4 3.20000+ 1 5.80000+ 1 6.67780- 6 6.42930- 4 3.30000+ 1 3.30000+ 1 1.76783- 2 5.48350- 4 3.30000+ 1 3.50000+ 1 2.88239- 3 6.47700- 4 3.30000+ 1 3.60000+ 1 3.43224- 3 6.48790- 4 3.30000+ 1 4.10000+ 1 1.95573- 3 6.03430- 4 3.30000+ 1 4.30000+ 1 1.83681- 3 6.22300- 4 3.30000+ 1 4.40000+ 1 2.41338- 3 6.32570- 4 3.30000+ 1 4.60000+ 1 9.27063- 5 6.53070- 4 3.30000+ 1 4.70000+ 1 1.62134- 4 6.53710- 4 3.30000+ 1 5.80000+ 1 1.93034- 4 6.51940- 4 3.50000+ 1 3.50000+ 1 1.69114- 6 7.47050- 4 3.50000+ 1 3.60000+ 1 2.15625- 5 7.48140- 4 3.50000+ 1 4.10000+ 1 2.87499- 5 7.02780- 4 3.50000+ 1 4.30000+ 1 1.01472- 5 7.21650- 4 3.50000+ 1 4.40000+ 1 1.90260- 5 7.31920- 4 3.50000+ 1 4.60000+ 1 4.22801- 7 7.52420- 4 3.50000+ 1 4.70000+ 1 1.14156- 5 7.53060- 4 3.50000+ 1 5.80000+ 1 2.11396- 6 7.51290- 4 3.60000+ 1 3.60000+ 1 1.39035- 5 7.49230- 4 3.60000+ 1 4.10000+ 1 5.18229- 5 7.03870- 4 3.60000+ 1 4.30000+ 1 2.06444- 5 7.22740- 4 3.60000+ 1 4.40000+ 1 3.11785- 5 7.33010- 4 3.60000+ 1 4.60000+ 1 1.26402- 6 7.53510- 4 3.60000+ 1 4.70000+ 1 1.34821- 5 7.54150- 4 3.60000+ 1 5.80000+ 1 4.21329- 6 7.52380- 4 4.10000+ 1 4.10000+ 1 9.22890- 6 6.58510- 4 4.10000+ 1 4.30000+ 1 1.18118- 5 6.77380- 4 4.10000+ 1 4.40000+ 1 1.21810- 5 6.87650- 4 4.10000+ 1 4.60000+ 1 3.69132- 7 7.08150- 4 4.10000+ 1 4.70000+ 1 6.64426- 6 7.08790- 4 4.10000+ 1 5.80000+ 1 1.47647- 6 7.07020- 4 4.30000+ 1 4.30000+ 1 2.19039- 6 6.96250- 4 4.30000+ 1 4.40000+ 1 1.38726- 5 7.06520- 4 4.30000+ 1 4.70000+ 1 6.20645- 6 7.27660- 4 4.30000+ 1 5.80000+ 1 1.09529- 6 7.25890- 4 4.40000+ 1 4.40000+ 1 6.78392- 6 7.16790- 4 4.40000+ 1 4.60000+ 1 7.82789- 7 7.37290- 4 4.40000+ 1 4.70000+ 1 5.74037- 6 7.37930- 4 4.40000+ 1 5.80000+ 1 7.82789- 7 7.36160- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.72151- 5 3.08270- 4 3.30000+ 1 5.53787- 6 3.17280- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 8.58834- 2 2.03000- 6 2.50000+ 1 3.60000+ 1 4.54301- 3 3.12000- 6 2.50000+ 1 4.60000+ 1 2.07219- 4 7.40000- 6 2.50000+ 1 4.70000+ 1 2.15994- 4 8.04000- 6 2.50000+ 1 5.80000+ 1 2.98551- 4 6.27000- 6 2.70000+ 1 3.50000+ 1 4.79349- 2 8.03800- 5 2.70000+ 1 3.60000+ 1 7.04387- 3 8.14700- 5 2.70000+ 1 4.10000+ 1 2.71097- 3 3.61100- 5 2.70000+ 1 4.30000+ 1 2.89657- 3 5.49800- 5 2.70000+ 1 4.40000+ 1 6.04344- 3 6.52500- 5 2.70000+ 1 4.60000+ 1 8.06859- 5 8.57500- 5 2.70000+ 1 4.70000+ 1 1.29096- 4 8.63900- 5 2.70000+ 1 5.80000+ 1 1.93644- 4 8.46200- 5 2.90000+ 1 3.20000+ 1 3.42240- 2 3.53200- 5 2.90000+ 1 3.30000+ 1 6.40365- 2 4.43300- 5 2.90000+ 1 3.50000+ 1 5.17172- 2 1.43680- 4 2.90000+ 1 3.60000+ 1 1.23296- 2 1.44770- 4 2.90000+ 1 4.10000+ 1 1.84645- 2 9.94100- 5 2.90000+ 1 4.30000+ 1 1.02586- 2 1.18280- 4 2.90000+ 1 4.40000+ 1 1.72677- 2 1.28550- 4 2.90000+ 1 4.60000+ 1 9.18415- 4 1.49050- 4 2.90000+ 1 4.70000+ 1 1.02242- 3 1.49690- 4 2.90000+ 1 5.80000+ 1 1.74158- 3 1.47920- 4 3.00000+ 1 3.20000+ 1 1.06490- 1 9.57100- 5 3.00000+ 1 3.30000+ 1 8.28069- 2 1.04720- 4 3.00000+ 1 3.50000+ 1 7.37949- 2 2.04070- 4 3.00000+ 1 3.60000+ 1 4.34903- 3 2.05160- 4 3.00000+ 1 4.10000+ 1 7.40679- 3 1.59800- 4 3.00000+ 1 4.30000+ 1 5.26062- 3 1.78670- 4 3.00000+ 1 4.40000+ 1 3.69552- 3 1.88940- 4 3.00000+ 1 4.60000+ 1 4.19586- 4 2.09440- 4 3.00000+ 1 4.70000+ 1 2.98543- 4 2.10080- 4 3.00000+ 1 5.80000+ 1 5.89013- 4 2.08310- 4 3.20000+ 1 3.20000+ 1 2.22138- 2 1.89790- 4 3.20000+ 1 3.30000+ 1 3.96327- 2 1.98800- 4 3.20000+ 1 3.50000+ 1 6.74839- 2 2.98150- 4 3.20000+ 1 3.60000+ 1 1.22317- 2 2.99240- 4 3.20000+ 1 4.10000+ 1 2.70295- 3 2.53880- 4 3.20000+ 1 4.30000+ 1 1.21431- 2 2.72750- 4 3.20000+ 1 4.40000+ 1 8.35902- 3 2.83020- 4 3.20000+ 1 4.60000+ 1 1.69438- 4 3.03520- 4 3.20000+ 1 4.70000+ 1 1.69438- 4 3.04160- 4 3.20000+ 1 5.80000+ 1 2.74325- 4 3.02390- 4 3.30000+ 1 3.30000+ 1 8.32701- 3 2.07810- 4 3.30000+ 1 3.50000+ 1 9.53188- 2 3.07160- 4 3.30000+ 1 3.60000+ 1 3.07416- 3 3.08250- 4 3.30000+ 1 4.10000+ 1 2.00911- 3 2.62890- 4 3.30000+ 1 4.30000+ 1 9.23877- 3 2.81760- 4 3.30000+ 1 4.40000+ 1 4.56701- 3 2.92030- 4 3.30000+ 1 4.60000+ 1 1.29102- 4 3.12530- 4 3.30000+ 1 4.70000+ 1 7.26209- 5 3.13170- 4 3.30000+ 1 5.80000+ 1 1.93652- 4 3.11400- 4 3.50000+ 1 3.50000+ 1 5.60826- 3 4.06510- 4 3.50000+ 1 3.60000+ 1 1.81456- 2 4.07600- 4 3.50000+ 1 4.10000+ 1 8.65858- 3 3.62240- 4 3.50000+ 1 4.30000+ 1 7.51869- 3 3.81110- 4 3.50000+ 1 4.40000+ 1 1.07983- 2 3.91380- 4 3.50000+ 1 4.60000+ 1 3.68979- 4 4.11880- 4 3.50000+ 1 4.70000+ 1 4.91945- 4 4.12520- 4 3.50000+ 1 5.80000+ 1 8.52720- 4 4.10750- 4 3.60000+ 1 3.60000+ 1 1.21026- 4 4.08690- 4 3.60000+ 1 4.10000+ 1 2.58191- 4 3.63330- 4 3.60000+ 1 4.30000+ 1 8.06848- 4 3.82200- 4 3.60000+ 1 4.40000+ 1 3.38860- 4 3.92470- 4 3.60000+ 1 4.60000+ 1 2.42048- 5 4.12970- 4 3.60000+ 1 4.70000+ 1 8.06848- 6 4.13610- 4 3.60000+ 1 5.80000+ 1 2.42048- 5 4.11840- 4 4.10000+ 1 4.10000+ 1 6.45502- 5 3.17970- 4 4.10000+ 1 4.30000+ 1 7.10043- 4 3.36840- 4 4.10000+ 1 4.40000+ 1 5.08336- 4 3.47110- 4 4.10000+ 1 4.60000+ 1 8.06870- 6 3.67610- 4 4.10000+ 1 4.70000+ 1 8.06870- 6 3.68250- 4 4.10000+ 1 5.80000+ 1 1.61369- 5 3.66480- 4 4.30000+ 1 4.30000+ 1 2.58197- 4 3.55710- 4 4.30000+ 1 4.40000+ 1 4.19590- 4 3.65980- 4 4.30000+ 1 4.60000+ 1 4.03420- 5 3.86480- 4 4.30000+ 1 4.70000+ 1 3.22736- 5 3.87120- 4 4.30000+ 1 5.80000+ 1 6.45498- 5 3.85350- 4 4.40000+ 1 4.40000+ 1 8.87558- 5 3.76250- 4 4.40000+ 1 4.60000+ 1 2.42055- 5 3.96750- 4 4.40000+ 1 4.70000+ 1 1.61369- 5 3.97390- 4 4.40000+ 1 5.80000+ 1 4.03423- 5 3.95620- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 9.14010- 5 3.05130- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 4.38040- 3 6.82300- 5 2.70000+ 1 3.60000+ 1 4.63537- 2 6.93200- 5 2.70000+ 1 4.10000+ 1 3.03860- 3 2.39600- 5 2.70000+ 1 4.30000+ 1 3.07810- 3 4.28300- 5 2.70000+ 1 4.40000+ 1 4.26211- 3 5.31000- 5 2.70000+ 1 4.60000+ 1 1.26279- 4 7.36000- 5 2.70000+ 1 4.70000+ 1 1.34169- 4 7.42400- 5 2.70000+ 1 5.80000+ 1 2.20991- 4 7.24700- 5 2.90000+ 1 3.20000+ 1 6.81323- 3 2.31700- 5 2.90000+ 1 3.30000+ 1 1.29201- 2 3.21800- 5 2.90000+ 1 3.50000+ 1 5.72726- 4 1.31530- 4 2.90000+ 1 3.60000+ 1 4.09313- 2 1.32620- 4 2.90000+ 1 4.10000+ 1 3.53303- 3 8.72600- 5 2.90000+ 1 4.30000+ 1 8.40506- 4 1.06130- 4 2.90000+ 1 4.40000+ 1 1.79260- 3 1.16400- 4 2.90000+ 1 4.60000+ 1 1.11572- 4 1.36900- 4 2.90000+ 1 4.70000+ 1 1.19008- 4 1.37540- 4 2.90000+ 1 5.80000+ 1 3.42155- 4 1.35770- 4 3.00000+ 1 3.20000+ 1 1.36117- 1 8.35600- 5 3.00000+ 1 3.30000+ 1 3.02582- 1 9.25700- 5 3.00000+ 1 3.50000+ 1 1.14694- 2 1.91920- 4 3.00000+ 1 3.60000+ 1 7.58856- 2 1.93010- 4 3.00000+ 1 4.10000+ 1 1.33701- 2 1.47650- 4 3.00000+ 1 4.30000+ 1 4.73908- 3 1.66520- 4 3.00000+ 1 4.40000+ 1 1.30062- 2 1.76790- 4 3.00000+ 1 4.60000+ 1 5.94270- 4 1.97290- 4 3.00000+ 1 4.70000+ 1 1.10678- 3 1.97930- 4 3.00000+ 1 5.80000+ 1 1.17369- 3 1.96160- 4 3.20000+ 1 3.20000+ 1 3.42466- 3 1.77640- 4 3.20000+ 1 3.30000+ 1 3.45737- 2 1.86650- 4 3.20000+ 1 3.50000+ 1 1.79032- 3 2.86000- 4 3.20000+ 1 3.60000+ 1 6.26298- 2 2.87090- 4 3.20000+ 1 4.10000+ 1 1.54507- 3 2.41730- 4 3.20000+ 1 4.30000+ 1 1.55252- 3 2.60600- 4 3.20000+ 1 4.40000+ 1 6.98293- 3 2.70870- 4 3.20000+ 1 4.60000+ 1 2.97134- 5 2.91370- 4 3.20000+ 1 4.70000+ 1 1.11431- 4 2.92010- 4 3.20000+ 1 5.80000+ 1 1.48571- 4 2.90240- 4 3.30000+ 1 3.30000+ 1 2.48032- 2 1.95660- 4 3.30000+ 1 3.50000+ 1 9.93322- 3 2.95010- 4 3.30000+ 1 3.60000+ 1 8.80740- 2 2.96100- 4 3.30000+ 1 4.10000+ 1 2.86675- 3 2.50740- 4 3.30000+ 1 4.30000+ 1 3.33578- 3 2.69610- 4 3.30000+ 1 4.40000+ 1 1.49450- 2 2.79880- 4 3.30000+ 1 4.60000+ 1 1.78718- 4 3.00380- 4 3.30000+ 1 4.70000+ 1 1.78718- 4 3.01020- 4 3.30000+ 1 5.80000+ 1 2.82958- 4 2.99250- 4 3.50000+ 1 3.50000+ 1 6.35900- 5 3.94360- 4 3.50000+ 1 3.60000+ 1 1.39652- 2 3.95450- 4 3.50000+ 1 4.10000+ 1 2.30503- 4 3.50090- 4 3.50000+ 1 4.30000+ 1 5.56378- 5 3.68960- 4 3.50000+ 1 4.40000+ 1 8.98187- 4 3.79230- 4 3.50000+ 1 4.60000+ 1 7.94859- 6 3.99730- 4 3.50000+ 1 4.70000+ 1 2.38460- 5 4.00370- 4 3.50000+ 1 5.80000+ 1 1.58969- 5 3.98600- 4 3.60000+ 1 3.60000+ 1 8.92755- 3 3.96540- 4 3.60000+ 1 4.10000+ 1 8.06086- 3 3.51180- 4 3.60000+ 1 4.30000+ 1 6.77233- 3 3.70050- 4 3.60000+ 1 4.40000+ 1 1.05226- 2 3.80320- 4 3.60000+ 1 4.60000+ 1 3.68145- 4 4.00820- 4 3.60000+ 1 4.70000+ 1 4.37180- 4 4.01460- 4 3.60000+ 1 5.80000+ 1 7.89982- 4 3.99690- 4 4.10000+ 1 4.10000+ 1 5.19958- 5 3.05820- 4 4.10000+ 1 4.30000+ 1 2.89702- 4 3.24690- 4 4.10000+ 1 4.40000+ 1 7.13105- 4 3.34960- 4 4.10000+ 1 4.60000+ 1 7.42828- 6 3.55460- 4 4.10000+ 1 4.70000+ 1 7.42828- 6 3.56100- 4 4.10000+ 1 5.80000+ 1 7.42828- 6 3.54330- 4 4.30000+ 1 4.30000+ 1 2.97114- 5 3.43560- 4 4.30000+ 1 4.40000+ 1 2.07988- 4 3.53830- 4 4.30000+ 1 4.60000+ 1 7.42820- 6 3.74330- 4 4.30000+ 1 4.70000+ 1 7.42820- 6 3.74970- 4 4.30000+ 1 5.80000+ 1 2.97114- 5 3.73200- 4 4.40000+ 1 4.40000+ 1 2.82268- 4 3.64100- 4 4.40000+ 1 4.60000+ 1 2.22844- 5 3.84600- 4 4.40000+ 1 4.70000+ 1 4.45669- 5 3.85240- 4 4.40000+ 1 5.80000+ 1 5.94258- 5 3.83470- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.39080- 6 6.33000- 5 3.00000+ 1 2.13674- 5 1.23690- 4 4.30000+ 1 3.08430- 6 3.00730- 4 4.40000+ 1 4.33715- 8 3.11000- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 3.14203- 2 5.31800- 5 2.90000+ 1 3.60000+ 1 5.27399- 2 5.42700- 5 2.90000+ 1 4.10000+ 1 2.52174- 2 8.91000- 6 2.90000+ 1 4.30000+ 1 1.68682- 2 2.77800- 5 2.90000+ 1 4.40000+ 1 3.14977- 2 3.80500- 5 2.90000+ 1 4.60000+ 1 7.10785- 4 5.85500- 5 2.90000+ 1 4.70000+ 1 1.43372- 3 5.91900- 5 2.90000+ 1 5.80000+ 1 2.41126- 3 5.74200- 5 3.00000+ 1 3.20000+ 1 2.17084- 1 5.21000- 6 3.00000+ 1 3.30000+ 1 2.05656- 1 1.42200- 5 3.00000+ 1 3.50000+ 1 6.69192- 2 1.13570- 4 3.00000+ 1 3.60000+ 1 6.43795- 2 1.14660- 4 3.00000+ 1 4.10000+ 1 2.32278- 2 6.93000- 5 3.00000+ 1 4.30000+ 1 2.32472- 2 8.81700- 5 3.00000+ 1 4.40000+ 1 2.12044- 2 9.84400- 5 3.00000+ 1 4.60000+ 1 1.12997- 3 1.18940- 4 3.00000+ 1 4.70000+ 1 1.04271- 3 1.19580- 4 3.00000+ 1 5.80000+ 1 2.27594- 3 1.17810- 4 3.20000+ 1 3.20000+ 1 1.72838- 3 9.92900- 5 3.20000+ 1 3.30000+ 1 1.24193- 1 1.08300- 4 3.20000+ 1 3.50000+ 1 1.71732- 3 2.07650- 4 3.20000+ 1 3.60000+ 1 5.87643- 3 2.08740- 4 3.20000+ 1 4.10000+ 1 6.74735- 3 1.63380- 4 3.20000+ 1 4.30000+ 1 1.30417- 3 1.82250- 4 3.20000+ 1 4.40000+ 1 5.62704- 3 1.92520- 4 3.20000+ 1 4.60000+ 1 3.07421- 5 2.13020- 4 3.20000+ 1 4.70000+ 1 2.60806- 4 2.13660- 4 3.20000+ 1 5.80000+ 1 5.34562- 4 2.11890- 4 3.30000+ 1 3.30000+ 1 2.84503- 2 1.17310- 4 3.30000+ 1 3.50000+ 1 6.13684- 3 2.16660- 4 3.30000+ 1 3.60000+ 1 4.20834- 3 2.17750- 4 3.30000+ 1 4.10000+ 1 8.73830- 3 1.72390- 4 3.30000+ 1 4.30000+ 1 3.91345- 3 1.91260- 4 3.30000+ 1 4.40000+ 1 3.39540- 3 2.01530- 4 3.30000+ 1 4.60000+ 1 2.44523- 4 2.22030- 4 3.30000+ 1 4.70000+ 1 1.35032- 4 2.22670- 4 3.30000+ 1 5.80000+ 1 6.90570- 4 2.20900- 4 3.50000+ 1 3.50000+ 1 6.15526- 6 3.16010- 4 3.50000+ 1 3.60000+ 1 3.32040- 4 3.17100- 4 3.50000+ 1 4.10000+ 1 1.25808- 3 2.71740- 4 3.50000+ 1 4.30000+ 1 1.05365- 4 2.90610- 4 3.50000+ 1 4.40000+ 1 4.06501- 4 3.00880- 4 3.50000+ 1 4.60000+ 1 4.46567- 6 3.21380- 4 3.50000+ 1 4.70000+ 1 1.42418- 5 3.22020- 4 3.50000+ 1 5.80000+ 1 9.00374- 5 3.20250- 4 3.60000+ 1 3.60000+ 1 4.13090- 5 3.18190- 4 3.60000+ 1 4.10000+ 1 1.52481- 3 2.72830- 4 3.60000+ 1 4.30000+ 1 2.70030- 4 2.91700- 4 3.60000+ 1 4.40000+ 1 2.36776- 4 3.01970- 4 3.60000+ 1 4.60000+ 1 1.15531- 5 3.22470- 4 3.60000+ 1 4.70000+ 1 9.80219- 6 3.23110- 4 3.60000+ 1 5.80000+ 1 1.09113- 4 3.21340- 4 4.10000+ 1 4.10000+ 1 5.61371- 4 2.27470- 4 4.10000+ 1 4.30000+ 1 6.66102- 4 2.46340- 4 4.10000+ 1 4.40000+ 1 9.76588- 4 2.56610- 4 4.10000+ 1 4.60000+ 1 3.38520- 5 2.77110- 4 4.10000+ 1 4.70000+ 1 4.22875- 5 2.77750- 4 4.10000+ 1 5.80000+ 1 9.61879- 5 2.75980- 4 4.30000+ 1 4.30000+ 1 6.40666- 5 2.65210- 4 4.30000+ 1 4.40000+ 1 3.72831- 4 2.75480- 4 4.30000+ 1 4.60000+ 1 3.85085- 6 2.95980- 4 4.30000+ 1 4.70000+ 1 1.02687- 5 2.96620- 4 4.30000+ 1 5.80000+ 1 5.01802- 5 2.94850- 4 4.40000+ 1 4.40000+ 1 1.72003- 4 2.85750- 4 4.40000+ 1 4.60000+ 1 1.65706- 5 3.06250- 4 4.40000+ 1 4.70000+ 1 1.13189- 5 3.06890- 4 4.40000+ 1 5.80000+ 1 7.77158- 5 3.05120- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 4.71592- 5 1.54470- 4 4.10000+ 1 5.52553- 6 2.18560- 4 5.80000+ 1 5.98093- 7 2.67070- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 1.38371- 2 5.02700- 5 3.00000+ 1 3.60000+ 1 8.58643- 3 5.13600- 5 3.00000+ 1 4.10000+ 1 1.80217- 2 6.00000- 6 3.00000+ 1 4.30000+ 1 1.03126- 2 2.48700- 5 3.00000+ 1 4.40000+ 1 8.67923- 3 3.51400- 5 3.00000+ 1 4.60000+ 1 4.32408- 4 5.56400- 5 3.00000+ 1 4.70000+ 1 4.97721- 4 5.62800- 5 3.00000+ 1 5.80000+ 1 1.20310- 3 5.45100- 5 3.20000+ 1 3.20000+ 1 1.08124- 1 3.59900- 5 3.20000+ 1 3.30000+ 1 4.56493- 1 4.50000- 5 3.20000+ 1 3.50000+ 1 4.64019- 2 1.44350- 4 3.20000+ 1 3.60000+ 1 1.03674- 1 1.45440- 4 3.20000+ 1 4.10000+ 1 4.19316- 2 1.00080- 4 3.20000+ 1 4.30000+ 1 2.80984- 2 1.18950- 4 3.20000+ 1 4.40000+ 1 4.43350- 2 1.29220- 4 3.20000+ 1 4.60000+ 1 9.89718- 4 1.49720- 4 3.20000+ 1 4.70000+ 1 2.03655- 3 1.50360- 4 3.20000+ 1 5.80000+ 1 4.16110- 3 1.48590- 4 3.30000+ 1 3.30000+ 1 1.83079- 2 5.40100- 5 3.30000+ 1 3.50000+ 1 2.53973- 2 1.53360- 4 3.30000+ 1 3.60000+ 1 5.95874- 3 1.54450- 4 3.30000+ 1 4.10000+ 1 4.03226- 3 1.09090- 4 3.30000+ 1 4.30000+ 1 2.14757- 2 1.27960- 4 3.30000+ 1 4.40000+ 1 4.73372- 3 1.38230- 4 3.30000+ 1 4.60000+ 1 4.89459- 4 1.58730- 4 3.30000+ 1 4.70000+ 1 1.38703- 4 1.59370- 4 3.30000+ 1 5.80000+ 1 3.30626- 4 1.57600- 4 3.50000+ 1 3.50000+ 1 2.65222- 4 2.52710- 4 3.50000+ 1 3.60000+ 1 3.18206- 3 2.53800- 4 3.50000+ 1 4.10000+ 1 1.30785- 3 2.08440- 4 3.50000+ 1 4.30000+ 1 2.72555- 3 2.27310- 4 3.50000+ 1 4.40000+ 1 1.49976- 3 2.37580- 4 3.50000+ 1 4.60000+ 1 2.84671- 5 2.58080- 4 3.50000+ 1 4.70000+ 1 6.96158- 5 2.58720- 4 3.50000+ 1 5.80000+ 1 1.33322- 4 2.56950- 4 3.60000+ 1 3.60000+ 1 1.13101- 4 2.54890- 4 3.60000+ 1 4.10000+ 1 4.69268- 4 2.09530- 4 3.60000+ 1 4.30000+ 1 4.34044- 3 2.28400- 4 3.60000+ 1 4.40000+ 1 4.65335- 4 2.38670- 4 3.60000+ 1 4.60000+ 1 4.89535- 5 2.59170- 4 3.60000+ 1 4.70000+ 1 1.15346- 5 2.59810- 4 3.60000+ 1 5.80000+ 1 3.76989- 5 2.58040- 4 4.10000+ 1 4.10000+ 1 1.05498- 4 1.64170- 4 4.10000+ 1 4.30000+ 1 2.02255- 3 1.83040- 4 4.10000+ 1 4.40000+ 1 3.41439- 4 1.93310- 4 4.10000+ 1 4.60000+ 1 4.54877- 5 2.13810- 4 4.10000+ 1 4.70000+ 1 1.45239- 5 2.14450- 4 4.10000+ 1 5.80000+ 1 1.67166- 5 2.12680- 4 4.30000+ 1 4.30000+ 1 1.07559- 3 2.01910- 4 4.30000+ 1 4.40000+ 1 2.42312- 3 2.12180- 4 4.30000+ 1 4.60000+ 1 7.11356- 5 2.32680- 4 4.30000+ 1 4.70000+ 1 1.06455- 4 2.33320- 4 4.30000+ 1 5.80000+ 1 1.86418- 4 2.31550- 4 4.40000+ 1 4.40000+ 1 9.52474- 5 2.22450- 4 4.40000+ 1 4.60000+ 1 3.87946- 5 2.42950- 4 4.40000+ 1 4.70000+ 1 7.38957- 6 2.43590- 4 4.40000+ 1 5.80000+ 1 1.90893- 5 2.41820- 4 1 93000 0 7 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.13770- 7 9.40800- 5 3.30000+ 1 7.35380- 6 1.03090- 4 4.10000+ 1 3.14740- 6 1.58170- 4 5.80000+ 1 3.32000- 7 2.06680- 4 1 93000 0 9 2.37000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.05387- 2 8.39600- 5 3.20000+ 1 3.60000+ 1 7.66141- 2 8.50500- 5 3.20000+ 1 4.10000+ 1 1.74265- 2 3.96900- 5 3.20000+ 1 4.30000+ 1 1.25169- 2 5.85600- 5 3.20000+ 1 4.40000+ 1 3.50695- 2 6.88300- 5 3.20000+ 1 4.60000+ 1 4.19493- 4 8.93300- 5 3.20000+ 1 4.70000+ 1 1.21180- 3 8.99700- 5 3.20000+ 1 5.80000+ 1 1.41310- 3 8.82000- 5 3.30000+ 1 3.50000+ 1 2.66858- 1 9.29700- 5 3.30000+ 1 3.60000+ 1 2.37467- 1 9.40600- 5 3.30000+ 1 4.10000+ 1 8.92467- 2 4.87000- 5 3.30000+ 1 4.30000+ 1 9.11598- 2 6.75700- 5 3.30000+ 1 4.40000+ 1 9.86422- 2 7.78400- 5 3.30000+ 1 4.60000+ 1 4.22633- 3 9.83400- 5 3.30000+ 1 4.70000+ 1 3.87887- 3 9.89800- 5 3.30000+ 1 5.80000+ 1 8.96074- 3 9.72100- 5 3.50000+ 1 3.50000+ 1 9.92496- 5 1.92320- 4 3.50000+ 1 3.60000+ 1 4.48204- 3 1.93410- 4 3.50000+ 1 4.10000+ 1 2.14183- 3 1.48050- 4 3.50000+ 1 4.30000+ 1 6.00025- 4 1.66920- 4 3.50000+ 1 4.40000+ 1 5.41828- 3 1.77190- 4 3.50000+ 1 4.60000+ 1 1.52167- 5 1.97690- 4 3.50000+ 1 4.70000+ 1 1.26233- 4 1.98330- 4 3.50000+ 1 5.80000+ 1 9.61433- 5 1.96560- 4 3.60000+ 1 3.60000+ 1 1.14014- 3 1.94500- 4 3.60000+ 1 4.10000+ 1 3.98282- 3 1.49140- 4 3.60000+ 1 4.30000+ 1 3.00208- 3 1.68010- 4 3.60000+ 1 4.40000+ 1 6.41157- 3 1.78280- 4 3.60000+ 1 4.60000+ 1 1.24308- 4 1.98780- 4 3.60000+ 1 4.70000+ 1 1.17849- 4 1.99420- 4 3.60000+ 1 5.80000+ 1 2.47248- 4 1.97650- 4 4.10000+ 1 4.10000+ 1 2.56472- 4 1.03780- 4 4.10000+ 1 4.30000+ 1 4.25462- 4 1.22650- 4 4.10000+ 1 4.40000+ 1 1.88121- 3 1.32920- 4 4.10000+ 1 4.60000+ 1 2.91556- 5 1.53420- 4 4.10000+ 1 4.70000+ 1 4.55667- 5 1.54060- 4 4.10000+ 1 5.80000+ 1 4.03297- 5 1.52290- 4 4.30000+ 1 4.30000+ 1 5.21462- 7 1.41520- 4 4.30000+ 1 4.40000+ 1 1.63969- 3 1.51790- 4 4.30000+ 1 4.60000+ 1 8.69070- 6 1.72290- 4 4.30000+ 1 4.70000+ 1 2.98972- 5 1.72930- 4 4.30000+ 1 5.80000+ 1 2.12060- 5 1.71160- 4 4.40000+ 1 4.40000+ 1 1.63586- 3 1.62060- 4 4.40000+ 1 4.60000+ 1 7.05790- 5 1.82560- 4 4.40000+ 1 4.70000+ 1 8.69387- 5 1.83200- 4 4.40000+ 1 5.80000+ 1 1.61522- 4 1.81430- 4 1 94000 0 0 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 2.57000+ 0 3.60000+ 1 3.43000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 94000 0 0 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22350- 1 3.00000+ 0 2.31220- 2 5.00000+ 0 2.23710- 2 6.00000+ 0 1.80710- 2 8.00000+ 0 5.90210- 3 1.00000+ 1 5.54850- 3 1.10000+ 1 4.54990- 3 1.30000+ 1 3.97780- 3 1.40000+ 1 3.77690- 3 1.60000+ 1 1.53370- 3 1.80000+ 1 1.37050- 3 1.90000+ 1 1.10600- 3 2.10000+ 1 8.42550- 4 2.20000+ 1 7.94170- 4 2.40000+ 1 4.46080- 4 2.50000+ 1 4.33090- 4 2.70000+ 1 3.46640- 4 2.90000+ 1 2.81330- 4 3.00000+ 1 2.16420- 4 3.20000+ 1 1.19500- 4 3.30000+ 1 1.09850- 4 3.50000+ 1 7.40000- 6 3.60000+ 1 6.25000- 6 4.10000+ 1 5.31200- 5 4.30000+ 1 3.39200- 5 4.40000+ 1 2.34200- 5 5.80000+ 1 5.42000- 6 1 94000 0 0 2.44000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.86930- 1 3.00000+ 0 4.70370- 2 5.00000+ 0 4.71040- 2 6.00000+ 0 2.90660- 2 8.00000+ 0 1.50670- 2 1.00000+ 1 1.49330- 2 1.10000+ 1 1.03490- 2 1.30000+ 1 1.01780- 2 1.40000+ 1 9.34540- 3 1.60000+ 1 5.22460- 3 1.80000+ 1 5.06350- 3 1.90000+ 1 3.64760- 3 2.10000+ 1 3.39870- 3 2.20000+ 1 3.14430- 3 2.40000+ 1 2.78040- 3 2.50000+ 1 2.69340- 3 2.70000+ 1 1.66170- 3 2.90000+ 1 1.53090- 3 3.00000+ 1 1.11110- 3 3.20000+ 1 8.90890- 4 3.30000+ 1 8.20820- 4 3.50000+ 1 3.91240- 4 3.60000+ 1 3.69810- 4 4.10000+ 1 3.92910- 4 4.30000+ 1 3.11140- 4 4.40000+ 1 2.07010- 4 5.80000+ 1 4.11500- 5 1 94000 0 0 2.44000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.98950-11 3.00000+ 0 2.88690-10 5.00000+ 0 2.32700-10 6.00000+ 0 2.88230-10 8.00000+ 0 7.51470-10 1.00000+ 1 7.03970-10 1.10000+ 1 8.03600-10 1.30000+ 1 6.91220-10 1.40000+ 1 7.20570-10 1.60000+ 1 1.62730- 9 1.80000+ 1 1.61380- 9 1.90000+ 1 1.80760- 9 2.10000+ 1 1.78210- 9 2.20000+ 1 1.83930- 9 2.40000+ 1 1.76440- 9 2.50000+ 1 1.79220- 9 2.70000+ 1 3.35840- 9 2.90000+ 1 3.47740- 9 3.00000+ 1 3.89250- 9 3.20000+ 1 4.31730- 9 3.30000+ 1 4.46010- 9 3.50000+ 1 6.78870- 9 3.60000+ 1 7.00880- 9 4.10000+ 1 7.39490- 9 4.30000+ 1 8.24450- 9 4.40000+ 1 9.55360- 9 5.80000+ 1 2.18410- 8 1 94000 0 0 2.44000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.98990- 5 3.00000+ 0 2.73070- 6 5.00000+ 0 4.77920- 6 6.00000+ 0 3.96680- 6 8.00000+ 0 1.26240- 7 1.00000+ 1 1.37320- 7 1.10000+ 1 1.54530- 7 1.30000+ 1 2.06280- 7 1.40000+ 1 1.89280- 7 1.60000+ 1 7.29020- 9 1.80000+ 1 9.12330- 9 1.90000+ 1 6.21160- 9 2.10000+ 1 4.17000- 9 2.20000+ 1 3.17440- 9 2.40000+ 1 1.55970-10 2.50000+ 1 1.40200-10 2.70000+ 1 5.21620-10 2.90000+ 1 1.00940- 9 3.00000+ 1 4.57650-10 1 94000 0 0 2.44000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.01650- 6 3.00000+ 0 1.34220- 5 5.00000+ 0 5.20780- 6 6.00000+ 0 4.49860- 6 8.00000+ 0 2.02030- 5 1.00000+ 1 1.51880- 5 1.10000+ 1 1.18070- 5 1.30000+ 1 3.59480- 6 1.40000+ 1 3.54170- 6 1.60000+ 1 1.44210- 5 1.80000+ 1 1.54270- 5 1.90000+ 1 9.65020- 6 2.10000+ 1 6.26810- 6 2.20000+ 1 6.77810- 6 2.40000+ 1 6.43820- 7 2.50000+ 1 4.37030- 7 2.70000+ 1 2.57900- 5 2.90000+ 1 1.05650- 5 3.00000+ 1 1.07500- 5 1 94000 0 0 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.41546- 4 3.00000+ 0 1.05424- 3 5.00000+ 0 7.79376- 4 6.00000+ 0 7.33819- 4 8.00000+ 0 8.06518- 4 1.00000+ 1 7.11969- 4 1.10000+ 1 6.24110- 4 1.30000+ 1 4.79532- 4 1.40000+ 1 4.70090- 4 1.60000+ 1 4.23174- 4 1.80000+ 1 4.07283- 4 1.90000+ 1 3.93105- 4 2.10000+ 1 3.11243- 4 2.20000+ 1 3.08468- 4 2.40000+ 1 1.84047- 4 2.50000+ 1 1.84792- 4 2.70000+ 1 2.05174- 4 2.90000+ 1 1.84602- 4 3.00000+ 1 1.30910- 4 3.20000+ 1 1.19500- 4 3.30000+ 1 1.09850- 4 3.50000+ 1 7.40000- 6 3.60000+ 1 6.25000- 6 4.10000+ 1 5.31200- 5 4.30000+ 1 3.39200- 5 4.40000+ 1 2.34200- 5 5.80000+ 1 5.42000- 6 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.45746+ 0 3.00000+ 0 6.07793- 1 5.00000+ 0 6.74009- 1 6.00000+ 0 5.48429- 1 8.00000+ 0 6.09097- 2 1.00000+ 1 6.23000- 2 1.10000+ 1 5.65547- 2 1.30000+ 1 6.48034- 2 1.40000+ 1 5.80407- 2 1.60000+ 1 2.01090- 3 1.80000+ 1 2.09542- 3 1.90000+ 1 1.42896- 3 2.10000+ 1 9.22784- 4 2.20000+ 1 7.84571- 4 2.40000+ 1 1.43169- 4 2.50000+ 1 1.24704- 4 2.70000+ 1 4.63060- 5 2.90000+ 1 6.31622- 5 3.00000+ 1 1.33920- 5 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.09869- 1 3.00000+ 0 8.54143- 3 5.00000+ 0 1.11910- 2 6.00000+ 0 7.29319- 3 8.00000+ 0 2.10019- 4 1.00000+ 1 2.17249- 4 1.10000+ 1 1.90869- 4 1.30000+ 1 2.23357- 4 1.40000+ 1 1.90998- 4 1.60000+ 1 1.44202- 6 1.80000+ 1 1.26848- 6 1.90000+ 1 8.58322- 7 2.10000+ 1 4.21677- 7 2.20000+ 1 3.40445- 7 2.40000+ 1 4.31122- 8 2.50000+ 1 3.76757- 8 2.70000+ 1 6.90717- 9 2.90000+ 1 1.06771- 8 3.00000+ 1 1.66831- 9 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.29890+ 0 3.00000+ 0 1.36515+ 1 5.00000+ 0 9.80713+ 0 6.00000+ 0 9.19166+ 0 8.00000+ 0 1.03120+ 1 1.00000+ 1 8.92966+ 0 1.10000+ 1 7.76630+ 0 1.30000+ 1 5.69522+ 0 1.40000+ 1 5.54603+ 0 1.60000+ 1 4.65470+ 0 1.80000+ 1 4.45924+ 0 1.90000+ 1 4.25958+ 0 2.10000+ 1 3.22605+ 0 2.20000+ 1 3.13356+ 0 2.40000+ 1 1.83389+ 0 2.50000+ 1 1.72848+ 0 2.70000+ 1 1.79896+ 0 2.90000+ 1 1.06570+ 0 3.00000+ 1 9.99987- 1 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17392- 2 3.00000+ 0 1.35263- 2 5.00000+ 0 1.04006- 2 6.00000+ 0 1.00440- 2 8.00000+ 0 4.88556- 3 1.00000+ 1 4.61928- 3 1.10000+ 1 3.73492- 3 1.30000+ 1 3.27491- 3 1.40000+ 1 3.11581- 3 1.60000+ 1 1.10908- 3 1.80000+ 1 9.61949- 4 1.90000+ 1 7.12037- 4 2.10000+ 1 5.30885- 4 2.20000+ 1 4.85361- 4 2.40000+ 1 2.61990- 4 2.50000+ 1 2.48261- 4 2.70000+ 1 1.41459- 4 2.90000+ 1 9.67171- 5 3.00000+ 1 8.55083- 5 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.90998- 1 9.99790- 2 6.00000+ 0 4.60637- 1 1.04279- 1 1.00000+ 1 5.34166- 2 1.16802- 1 1.10000+ 1 1.04789- 1 1.17800- 1 1.30000+ 1 1.95719- 3 1.18372- 1 1.40000+ 1 2.20338- 3 1.18573- 1 1.80000+ 1 1.34569- 2 1.20979- 1 1.90000+ 1 2.74298- 2 1.21244- 1 2.10000+ 1 5.85826- 4 1.21507- 1 2.20000+ 1 6.61975- 4 1.21556- 1 2.90000+ 1 3.33558- 3 1.22069- 1 3.00000+ 1 6.69825- 3 1.22134- 1 3.20000+ 1 1.23719- 4 1.22230- 1 3.30000+ 1 1.38569- 4 1.22240- 1 4.30000+ 1 5.83906- 4 1.22316- 1 4.40000+ 1 1.08429- 3 1.22327- 1 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.78083- 3 7.61060- 2 3.00000+ 0 5.00000+ 0 7.09825- 3 7.68570- 2 3.00000+ 0 6.00000+ 0 2.50982- 3 8.11570- 2 3.00000+ 0 8.00000+ 0 1.57740- 3 9.33259- 2 3.00000+ 0 1.00000+ 1 1.56195- 3 9.36795- 2 3.00000+ 0 1.10000+ 1 6.26344- 4 9.46781- 2 3.00000+ 0 1.30000+ 1 5.49625- 5 9.52502- 2 3.00000+ 0 1.40000+ 1 3.35246- 5 9.54511- 2 3.00000+ 0 1.60000+ 1 4.21380- 4 9.76943- 2 3.00000+ 0 1.80000+ 1 4.10855- 4 9.78575- 2 3.00000+ 0 1.90000+ 1 1.67078- 4 9.81220- 2 3.00000+ 0 2.10000+ 1 1.65174- 5 9.83854- 2 3.00000+ 0 2.20000+ 1 9.92784- 6 9.84338- 2 3.00000+ 0 2.40000+ 1 5.75529- 8 9.87819- 2 3.00000+ 0 2.50000+ 1 5.75529- 8 9.87949- 2 3.00000+ 0 2.70000+ 1 1.09786- 4 9.88814- 2 3.00000+ 0 2.90000+ 1 1.01033- 4 9.89467- 2 3.00000+ 0 3.00000+ 1 4.06034- 5 9.90116- 2 3.00000+ 0 3.20000+ 1 3.45324- 6 9.91085- 2 3.00000+ 0 3.30000+ 1 2.04312- 6 9.91181- 2 5.00000+ 0 5.00000+ 0 2.41656- 4 7.76080- 2 5.00000+ 0 6.00000+ 0 3.99857- 3 8.19080- 2 5.00000+ 0 8.00000+ 0 1.31308- 3 9.40769- 2 5.00000+ 0 1.00000+ 1 9.45855- 5 9.44305- 2 5.00000+ 0 1.10000+ 1 8.50441- 4 9.54291- 2 5.00000+ 0 1.30000+ 1 5.51354- 5 9.60012- 2 5.00000+ 0 1.40000+ 1 1.21775- 4 9.62021- 2 5.00000+ 0 1.60000+ 1 3.41326- 4 9.84453- 2 5.00000+ 0 1.80000+ 1 2.42864- 5 9.86085- 2 5.00000+ 0 1.90000+ 1 2.18092- 4 9.88730- 2 5.00000+ 0 2.10000+ 1 1.57679- 5 9.91364- 2 5.00000+ 0 2.20000+ 1 3.51633- 5 9.91848- 2 5.00000+ 0 2.40000+ 1 5.17953- 7 9.95329- 2 5.00000+ 0 2.50000+ 1 7.48170- 7 9.95459- 2 5.00000+ 0 2.70000+ 1 8.82818- 5 9.96324- 2 5.00000+ 0 2.90000+ 1 5.92755- 6 9.96977- 2 5.00000+ 0 3.00000+ 1 5.24559- 5 9.97626- 2 5.00000+ 0 3.20000+ 1 3.25154- 6 9.98595- 2 5.00000+ 0 3.30000+ 1 7.19393- 6 9.98691- 2 6.00000+ 0 6.00000+ 0 1.60173- 3 8.62080- 2 6.00000+ 0 8.00000+ 0 4.11476- 4 9.83769- 2 6.00000+ 0 1.00000+ 1 7.29331- 4 9.87305- 2 6.00000+ 0 1.10000+ 1 7.02633- 4 9.97291- 2 6.00000+ 0 1.30000+ 1 1.29493- 4 1.00301- 1 6.00000+ 0 1.40000+ 1 1.02153- 4 1.00502- 1 6.00000+ 0 1.60000+ 1 1.03822- 4 1.02745- 1 6.00000+ 0 1.80000+ 1 1.83410- 4 1.02909- 1 6.00000+ 0 1.90000+ 1 1.81657- 4 1.03173- 1 6.00000+ 0 2.10000+ 1 3.76103- 5 1.03436- 1 6.00000+ 0 2.20000+ 1 2.96393- 5 1.03485- 1 6.00000+ 0 2.40000+ 1 7.48182- 7 1.03833- 1 6.00000+ 0 2.50000+ 1 7.76957- 7 1.03846- 1 6.00000+ 0 2.70000+ 1 2.66463- 5 1.03932- 1 6.00000+ 0 2.90000+ 1 4.45738- 5 1.03998- 1 6.00000+ 0 3.00000+ 1 4.37956- 5 1.04063- 1 6.00000+ 0 3.20000+ 1 7.79831- 6 1.04160- 1 6.00000+ 0 3.30000+ 1 6.07185- 6 1.04169- 1 8.00000+ 0 8.00000+ 0 1.62664- 4 1.10546- 1 8.00000+ 0 1.00000+ 1 2.90350- 4 1.10899- 1 8.00000+ 0 1.10000+ 1 1.03649- 4 1.11898- 1 8.00000+ 0 1.30000+ 1 8.83404- 6 1.12470- 1 8.00000+ 0 1.40000+ 1 5.06443- 6 1.12671- 1 8.00000+ 0 1.60000+ 1 8.67580- 5 1.14914- 1 8.00000+ 0 1.80000+ 1 7.64862- 5 1.15077- 1 8.00000+ 0 1.90000+ 1 2.77399- 5 1.15342- 1 8.00000+ 0 2.10000+ 1 2.67615- 6 1.15605- 1 8.00000+ 0 2.20000+ 1 1.49638- 6 1.15654- 1 8.00000+ 0 2.70000+ 1 2.25887- 5 1.16101- 1 8.00000+ 0 2.90000+ 1 1.88198- 5 1.16167- 1 8.00000+ 0 3.00000+ 1 6.73341- 6 1.16231- 1 8.00000+ 0 3.20000+ 1 5.46734- 7 1.16328- 1 8.00000+ 0 3.30000+ 1 3.16537- 7 1.16338- 1 1.00000+ 1 1.00000+ 1 8.69017- 6 1.11253- 1 1.00000+ 1 1.10000+ 1 1.60673- 4 1.12252- 1 1.00000+ 1 1.30000+ 1 9.35209- 6 1.12824- 1 1.00000+ 1 1.40000+ 1 1.63731- 5 1.13025- 1 1.00000+ 1 1.60000+ 1 7.55359- 5 1.15268- 1 1.00000+ 1 1.80000+ 1 4.40249- 6 1.15431- 1 1.00000+ 1 1.90000+ 1 4.14955- 5 1.15695- 1 1.00000+ 1 2.10000+ 1 2.70488- 6 1.15959- 1 1.00000+ 1 2.20000+ 1 4.80540- 6 1.16007- 1 1.00000+ 1 2.40000+ 1 5.75509- 8 1.16355- 1 1.00000+ 1 2.50000+ 1 8.63270- 8 1.16368- 1 1.00000+ 1 2.70000+ 1 1.95381- 5 1.16455- 1 1.00000+ 1 2.90000+ 1 1.06469- 6 1.16520- 1 1.00000+ 1 3.00000+ 1 1.00140- 5 1.16585- 1 1.00000+ 1 3.20000+ 1 5.75509- 7 1.16682- 1 1.00000+ 1 3.30000+ 1 9.78363- 7 1.16692- 1 1.10000+ 1 1.10000+ 1 7.80404- 5 1.13250- 1 1.10000+ 1 1.30000+ 1 2.31355- 5 1.13822- 1 1.10000+ 1 1.40000+ 1 1.74955- 5 1.14023- 1 1.10000+ 1 1.60000+ 1 2.62156- 5 1.16266- 1 1.10000+ 1 1.80000+ 1 4.07179- 5 1.16430- 1 1.10000+ 1 1.90000+ 1 4.04589- 5 1.16694- 1 1.10000+ 1 2.10000+ 1 6.79098- 6 1.16958- 1 1.10000+ 1 2.20000+ 1 5.12218- 6 1.17006- 1 1.10000+ 1 2.40000+ 1 1.15096- 7 1.17354- 1 1.10000+ 1 2.50000+ 1 1.15096- 7 1.17367- 1 1.10000+ 1 2.70000+ 1 6.73351- 6 1.17453- 1 1.10000+ 1 2.90000+ 1 9.92765- 6 1.17519- 1 1.10000+ 1 3.00000+ 1 9.75516- 6 1.17584- 1 1.10000+ 1 3.20000+ 1 1.40998- 6 1.17681- 1 1.10000+ 1 3.30000+ 1 1.06471- 6 1.17690- 1 1.30000+ 1 1.30000+ 1 5.75502- 8 1.14394- 1 1.30000+ 1 1.40000+ 1 2.44593- 6 1.14595- 1 1.30000+ 1 1.60000+ 1 2.24436- 6 1.16839- 1 1.30000+ 1 1.80000+ 1 2.33078- 6 1.17002- 1 1.30000+ 1 1.90000+ 1 5.69756- 6 1.17266- 1 1.30000+ 1 2.10000+ 1 2.87756- 8 1.17530- 1 1.30000+ 1 2.20000+ 1 6.90593- 7 1.17578- 1 1.30000+ 1 2.70000+ 1 5.75502- 7 1.18026- 1 1.30000+ 1 2.90000+ 1 5.75502- 7 1.18091- 1 1.30000+ 1 3.00000+ 1 1.35247- 6 1.18156- 1 1.30000+ 1 3.30000+ 1 1.43867- 7 1.18262- 1 1.40000+ 1 1.40000+ 1 6.04262- 7 1.14796- 1 1.40000+ 1 1.60000+ 1 1.26615- 6 1.17039- 1 1.40000+ 1 1.80000+ 1 3.82688- 6 1.17203- 1 1.40000+ 1 1.90000+ 1 4.25885- 6 1.17467- 1 1.40000+ 1 2.10000+ 1 6.90588- 7 1.17731- 1 1.40000+ 1 2.20000+ 1 3.45305- 7 1.17779- 1 1.40000+ 1 2.70000+ 1 3.16530- 7 1.18226- 1 1.40000+ 1 2.90000+ 1 9.20802- 7 1.18292- 1 1.40000+ 1 3.00000+ 1 1.00712- 6 1.18357- 1 1.40000+ 1 3.20000+ 1 1.43865- 7 1.18454- 1 1.40000+ 1 3.30000+ 1 5.75497- 8 1.18463- 1 1.60000+ 1 1.60000+ 1 1.15680- 5 1.19283- 1 1.60000+ 1 1.80000+ 1 1.98839- 5 1.19446- 1 1.60000+ 1 1.90000+ 1 7.02110- 6 1.19710- 1 1.60000+ 1 2.10000+ 1 6.61819- 7 1.19974- 1 1.60000+ 1 2.20000+ 1 3.74085- 7 1.20022- 1 1.60000+ 1 2.70000+ 1 6.01406- 6 1.20470- 1 1.60000+ 1 2.90000+ 1 4.89175- 6 1.20535- 1 1.60000+ 1 3.00000+ 1 1.69769- 6 1.20600- 1 1.60000+ 1 3.20000+ 1 1.43867- 7 1.20697- 1 1.60000+ 1 3.30000+ 1 8.63260- 8 1.20706- 1 1.80000+ 1 1.80000+ 1 5.46733- 7 1.19609- 1 1.80000+ 1 1.90000+ 1 1.05317- 5 1.19873- 1 1.80000+ 1 2.10000+ 1 6.90602- 7 1.20137- 1 1.80000+ 1 2.20000+ 1 1.12220- 6 1.20185- 1 1.80000+ 1 2.40000+ 1 2.87760- 8 1.20533- 1 1.80000+ 1 2.50000+ 1 2.87760- 8 1.20546- 1 1.80000+ 1 2.70000+ 1 5.15084- 6 1.20633- 1 1.80000+ 1 2.90000+ 1 2.58983- 7 1.20698- 1 1.80000+ 1 3.00000+ 1 2.53215- 6 1.20763- 1 1.80000+ 1 3.20000+ 1 1.43868- 7 1.20860- 1 1.80000+ 1 3.30000+ 1 2.30208- 7 1.20870- 1 1.90000+ 1 1.90000+ 1 5.23695- 6 1.20138- 1 1.90000+ 1 2.10000+ 1 1.66895- 6 1.20401- 1 1.90000+ 1 2.20000+ 1 1.26616- 6 1.20450- 1 1.90000+ 1 2.40000+ 1 2.87755- 8 1.20798- 1 1.90000+ 1 2.50000+ 1 2.87755- 8 1.20811- 1 1.90000+ 1 2.70000+ 1 1.81283- 6 1.20897- 1 1.90000+ 1 2.90000+ 1 2.56106- 6 1.20963- 1 1.90000+ 1 3.00000+ 1 2.53211- 6 1.21028- 1 1.90000+ 1 3.20000+ 1 3.45306- 7 1.21124- 1 1.90000+ 1 3.30000+ 1 2.58979- 7 1.21134- 1 2.10000+ 1 2.20000+ 1 2.01421- 7 1.20713- 1 2.10000+ 1 2.70000+ 1 1.72645- 7 1.21161- 1 2.10000+ 1 2.90000+ 1 1.72645- 7 1.21226- 1 2.10000+ 1 3.00000+ 1 4.02865- 7 1.21291- 1 2.10000+ 1 3.30000+ 1 2.87761- 8 1.21398- 1 2.20000+ 1 2.20000+ 1 6.03679- 8 1.20762- 1 2.20000+ 1 2.70000+ 1 9.05524- 8 1.21209- 1 2.20000+ 1 2.90000+ 1 2.71660- 7 1.21274- 1 2.20000+ 1 3.00000+ 1 3.01845- 7 1.21339- 1 2.20000+ 1 3.20000+ 1 3.01845- 8 1.21436- 1 2.20000+ 1 3.30000+ 1 3.01845- 8 1.21446- 1 2.70000+ 1 2.70000+ 1 7.69055- 7 1.21657- 1 2.70000+ 1 2.90000+ 1 1.25331- 6 1.21722- 1 2.70000+ 1 3.00000+ 1 4.27252- 7 1.21787- 1 2.70000+ 1 3.20000+ 1 2.84835- 8 1.21884- 1 2.70000+ 1 3.30000+ 1 2.84835- 8 1.21894- 1 2.90000+ 1 2.90000+ 1 2.76472- 8 1.21787- 1 2.90000+ 1 3.00000+ 1 6.08217- 7 1.21852- 1 2.90000+ 1 3.20000+ 1 2.76472- 8 1.21949- 1 2.90000+ 1 3.30000+ 1 5.52933- 8 1.21959- 1 3.00000+ 1 3.00000+ 1 3.11210- 7 1.21917- 1 3.00000+ 1 3.20000+ 1 8.48743- 8 1.22014- 1 3.00000+ 1 3.30000+ 1 5.65825- 8 1.22024- 1 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.30640- 5 7.51000- 4 6.00000+ 0 1.04650- 2 5.05100- 3 1.00000+ 1 5.97178- 2 1.75735- 2 1.10000+ 1 4.90848- 2 1.85721- 2 1.30000+ 1 2.89009- 3 1.91442- 2 1.40000+ 1 4.30168- 3 1.93451- 2 1.80000+ 1 1.62529- 2 2.17515- 2 1.90000+ 1 1.54869- 2 2.20160- 2 2.10000+ 1 5.01858- 4 2.22794- 2 2.20000+ 1 8.06147- 4 2.23278- 2 2.90000+ 1 4.03519- 3 2.28407- 2 3.00000+ 1 3.90149- 3 2.29056- 2 3.20000+ 1 9.32807- 5 2.30025- 2 3.30000+ 1 1.51329- 4 2.30121- 2 4.30000+ 1 7.13457- 4 2.30881- 2 4.40000+ 1 6.44228- 4 2.30986- 2 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.20000+ 1 4.22262- 3 0.00000+ 0 5.00000+ 0 2.40000+ 1 1.24227- 2 3.04920- 4 5.00000+ 0 2.50000+ 1 1.64667- 2 3.17910- 4 5.00000+ 0 2.70000+ 1 5.28589- 3 4.04360- 4 5.00000+ 0 2.90000+ 1 4.33042- 3 4.69670- 4 5.00000+ 0 3.00000+ 1 3.33993- 3 5.34580- 4 5.00000+ 0 3.20000+ 1 9.05462- 4 6.31500- 4 5.00000+ 0 3.30000+ 1 1.13008- 3 6.41150- 4 6.00000+ 0 1.10000+ 1 3.46784- 2 5.01100- 4 6.00000+ 0 1.30000+ 1 2.00847- 1 1.07320- 3 6.00000+ 0 1.40000+ 1 2.40166- 1 1.27410- 3 6.00000+ 0 1.60000+ 1 1.66008- 2 3.51730- 3 6.00000+ 0 1.80000+ 1 6.44919- 3 3.68050- 3 6.00000+ 0 1.90000+ 1 8.89426- 3 3.94500- 3 6.00000+ 0 2.10000+ 1 3.23585- 2 4.20845- 3 6.00000+ 0 2.20000+ 1 3.69974- 2 4.25683- 3 6.00000+ 0 2.40000+ 1 1.88478- 2 4.60492- 3 6.00000+ 0 2.50000+ 1 2.29566- 2 4.61791- 3 6.00000+ 0 2.70000+ 1 4.07724- 3 4.70436- 3 6.00000+ 0 2.90000+ 1 1.56808- 3 4.76967- 3 6.00000+ 0 3.00000+ 1 2.14466- 3 4.83458- 3 6.00000+ 0 3.20000+ 1 6.08351- 3 4.93150- 3 6.00000+ 0 3.30000+ 1 6.80759- 3 4.94115- 3 8.00000+ 0 8.00000+ 0 5.58825- 3 1.13178- 2 8.00000+ 0 1.00000+ 1 1.17909- 2 1.16714- 2 8.00000+ 0 1.10000+ 1 1.61089- 2 1.26700- 2 8.00000+ 0 1.30000+ 1 1.12629- 2 1.32421- 2 8.00000+ 0 1.40000+ 1 1.34019- 2 1.34430- 2 8.00000+ 0 1.60000+ 1 2.54567- 3 1.56862- 2 8.00000+ 0 1.80000+ 1 3.07516- 3 1.58494- 2 8.00000+ 0 1.90000+ 1 4.19776- 3 1.61139- 2 8.00000+ 0 2.10000+ 1 2.79446- 3 1.63773- 2 8.00000+ 0 2.20000+ 1 3.31916- 3 1.64257- 2 8.00000+ 0 2.40000+ 1 2.59257- 4 1.67738- 2 8.00000+ 0 2.50000+ 1 2.65327- 4 1.67868- 2 8.00000+ 0 2.70000+ 1 6.44172- 4 1.68733- 2 8.00000+ 0 2.90000+ 1 7.53202- 4 1.69386- 2 8.00000+ 0 3.00000+ 1 1.01279- 3 1.70035- 2 8.00000+ 0 3.20000+ 1 5.60985- 4 1.71004- 2 8.00000+ 0 3.30000+ 1 6.59042- 4 1.71100- 2 1.00000+ 1 1.00000+ 1 1.22982- 5 1.20250- 2 1.00000+ 1 1.10000+ 1 2.17664- 4 1.30236- 2 1.00000+ 1 1.30000+ 1 7.65175- 4 1.35957- 2 1.00000+ 1 1.40000+ 1 5.21840- 3 1.37966- 2 1.00000+ 1 1.60000+ 1 2.13194- 3 1.60398- 2 1.00000+ 1 1.80000+ 1 1.51623- 6 1.62030- 2 1.00000+ 1 1.90000+ 1 4.51488- 5 1.64675- 2 1.00000+ 1 2.10000+ 1 1.57683- 4 1.67309- 2 1.00000+ 1 2.20000+ 1 8.37606- 4 1.67793- 2 1.00000+ 1 2.40000+ 1 9.97319- 5 1.71274- 2 1.00000+ 1 2.50000+ 1 3.41986- 4 1.71404- 2 1.00000+ 1 2.70000+ 1 5.06080- 4 1.72269- 2 1.00000+ 1 2.90000+ 1 3.36926- 7 1.72922- 2 1.00000+ 1 3.00000+ 1 1.02762- 5 1.73571- 2 1.00000+ 1 3.20000+ 1 3.09975- 5 1.74540- 2 1.00000+ 1 3.30000+ 1 1.52123- 4 1.74636- 2 1.10000+ 1 1.10000+ 1 7.55373- 4 1.40222- 2 1.10000+ 1 1.30000+ 1 1.41329- 3 1.45943- 2 1.10000+ 1 1.40000+ 1 8.80712- 4 1.47952- 2 1.10000+ 1 1.60000+ 1 2.81267- 3 1.70384- 2 1.10000+ 1 1.80000+ 1 5.84565- 5 1.72016- 2 1.10000+ 1 1.90000+ 1 3.08787- 4 1.74661- 2 1.10000+ 1 2.10000+ 1 1.67119- 4 1.77295- 2 1.10000+ 1 2.20000+ 1 7.58093- 5 1.77779- 2 1.10000+ 1 2.40000+ 1 1.03439- 4 1.81260- 2 1.10000+ 1 2.50000+ 1 9.09712- 5 1.81390- 2 1.10000+ 1 2.70000+ 1 6.61883- 4 1.82255- 2 1.10000+ 1 2.90000+ 1 1.43199- 5 1.82908- 2 1.10000+ 1 3.00000+ 1 7.05833- 5 1.83557- 2 1.10000+ 1 3.20000+ 1 2.89757- 5 1.84526- 2 1.10000+ 1 3.30000+ 1 1.17919- 5 1.84622- 2 1.30000+ 1 1.30000+ 1 6.28034- 4 1.51664- 2 1.30000+ 1 1.40000+ 1 1.71081- 2 1.53673- 2 1.30000+ 1 1.60000+ 1 1.75742- 3 1.76105- 2 1.30000+ 1 1.80000+ 1 2.31811- 4 1.77737- 2 1.30000+ 1 1.90000+ 1 3.88993- 4 1.80382- 2 1.30000+ 1 2.10000+ 1 3.03741- 4 1.83016- 2 1.30000+ 1 2.20000+ 1 2.96061- 3 1.83500- 2 1.30000+ 1 2.40000+ 1 2.51012- 4 1.86981- 2 1.30000+ 1 2.50000+ 1 6.78234- 4 1.87111- 2 1.30000+ 1 2.70000+ 1 4.02633- 4 1.87976- 2 1.30000+ 1 2.90000+ 1 5.87935- 5 1.88629- 2 1.30000+ 1 3.00000+ 1 9.58577- 5 1.89278- 2 1.30000+ 1 3.20000+ 1 6.08165- 5 1.90247- 2 1.30000+ 1 3.30000+ 1 5.43804- 4 1.90343- 2 1.40000+ 1 1.40000+ 1 4.63264- 3 1.55682- 2 1.40000+ 1 1.60000+ 1 2.12322- 3 1.78114- 2 1.40000+ 1 1.80000+ 1 1.19316- 3 1.79746- 2 1.40000+ 1 1.90000+ 1 2.28762- 4 1.82391- 2 1.40000+ 1 2.10000+ 1 2.82129- 3 1.85025- 2 1.40000+ 1 2.20000+ 1 1.69064- 3 1.85509- 2 1.40000+ 1 2.40000+ 1 7.42224- 4 1.88990- 2 1.40000+ 1 2.50000+ 1 5.46311- 4 1.89120- 2 1.40000+ 1 2.70000+ 1 4.90043- 4 1.89985- 2 1.40000+ 1 2.90000+ 1 2.84189- 4 1.90638- 2 1.40000+ 1 3.00000+ 1 5.62651- 5 1.91287- 2 1.40000+ 1 3.20000+ 1 5.18342- 4 1.92256- 2 1.40000+ 1 3.30000+ 1 3.14849- 4 1.92352- 2 1.60000+ 1 1.60000+ 1 2.73925- 4 2.00546- 2 1.60000+ 1 1.80000+ 1 5.57102- 4 2.02178- 2 1.60000+ 1 1.90000+ 1 7.37159- 4 2.04823- 2 1.60000+ 1 2.10000+ 1 4.40194- 4 2.07457- 2 1.60000+ 1 2.20000+ 1 5.26612- 4 2.07941- 2 1.60000+ 1 2.40000+ 1 3.43665- 5 2.11422- 2 1.60000+ 1 2.50000+ 1 3.31865- 5 2.11552- 2 1.60000+ 1 2.70000+ 1 1.36788- 4 2.12417- 2 1.60000+ 1 2.90000+ 1 1.36458- 4 2.13070- 2 1.60000+ 1 3.00000+ 1 1.78068- 4 2.13719- 2 1.60000+ 1 3.20000+ 1 8.86107- 5 2.14688- 2 1.60000+ 1 3.30000+ 1 1.04618- 4 2.14784- 2 1.80000+ 1 1.90000+ 1 1.21289- 5 2.06455- 2 1.80000+ 1 2.10000+ 1 4.36318- 5 2.09089- 2 1.80000+ 1 2.20000+ 1 2.00129- 4 2.09573- 2 1.80000+ 1 2.40000+ 1 1.44869- 5 2.13054- 2 1.80000+ 1 2.50000+ 1 5.60987- 5 2.13184- 2 1.80000+ 1 2.70000+ 1 1.32239- 4 2.14049- 2 1.80000+ 1 3.00000+ 1 2.69537- 6 2.15351- 2 1.80000+ 1 3.20000+ 1 8.42324- 6 2.16320- 2 1.80000+ 1 3.30000+ 1 3.67248- 5 2.16416- 2 1.90000+ 1 1.90000+ 1 3.03238- 5 2.09100- 2 1.90000+ 1 2.10000+ 1 4.54848- 5 2.11734- 2 1.90000+ 1 2.20000+ 1 2.07210- 5 2.12218- 2 1.90000+ 1 2.40000+ 1 2.54379- 5 2.15699- 2 1.90000+ 1 2.50000+ 1 2.13949- 5 2.15829- 2 1.90000+ 1 2.70000+ 1 1.73520- 4 2.16694- 2 1.90000+ 1 2.90000+ 1 3.03238- 6 2.17347- 2 1.90000+ 1 3.00000+ 1 1.38140- 5 2.17996- 2 1.90000+ 1 3.20000+ 1 7.74937- 6 2.18965- 2 1.90000+ 1 3.30000+ 1 3.20078- 6 2.19061- 2 2.10000+ 1 2.10000+ 1 3.38616- 5 2.14369- 2 2.10000+ 1 2.20000+ 1 5.34534- 4 2.14853- 2 2.10000+ 1 2.40000+ 1 4.21155- 5 2.18334- 2 2.10000+ 1 2.50000+ 1 8.55779- 5 2.18464- 2 2.10000+ 1 2.70000+ 1 1.01079- 4 2.19328- 2 2.10000+ 1 2.90000+ 1 1.09499- 5 2.19981- 2 2.10000+ 1 3.00000+ 1 1.12869- 5 2.20630- 2 2.10000+ 1 3.20000+ 1 1.33078- 5 2.21599- 2 2.10000+ 1 3.30000+ 1 9.98948- 5 2.21696- 2 2.20000+ 1 2.20000+ 1 1.65427- 4 2.15337- 2 2.20000+ 1 2.40000+ 1 1.00908- 4 2.18817- 2 2.20000+ 1 2.50000+ 1 8.20435- 5 2.18947- 2 2.20000+ 1 2.70000+ 1 1.21468- 4 2.19812- 2 2.20000+ 1 2.90000+ 1 4.80122- 5 2.20465- 2 2.20000+ 1 3.00000+ 1 5.22231- 6 2.21114- 2 2.20000+ 1 3.20000+ 1 1.00068- 4 2.22083- 2 2.20000+ 1 3.30000+ 1 6.24980- 5 2.22180- 2 2.40000+ 1 2.40000+ 1 1.17918- 6 2.22298- 2 2.40000+ 1 2.50000+ 1 2.25737- 5 2.22428- 2 2.40000+ 1 2.70000+ 1 7.58090- 6 2.23293- 2 2.40000+ 1 2.90000+ 1 3.03235- 6 2.23946- 2 2.40000+ 1 3.00000+ 1 5.89613- 6 2.24595- 2 2.40000+ 1 3.20000+ 1 7.91770- 6 2.25564- 2 2.40000+ 1 3.30000+ 1 1.76878- 5 2.25661- 2 2.50000+ 1 2.50000+ 1 4.71697- 6 2.22558- 2 2.50000+ 1 2.70000+ 1 7.24416- 6 2.23423- 2 2.50000+ 1 2.90000+ 1 1.22979- 5 2.24076- 2 2.50000+ 1 3.00000+ 1 5.05387- 6 2.24725- 2 2.50000+ 1 3.20000+ 1 1.48249- 5 2.25694- 2 2.50000+ 1 3.30000+ 1 1.46559- 5 2.25791- 2 2.70000+ 1 2.70000+ 1 1.75222- 5 2.24287- 2 2.70000+ 1 2.90000+ 1 3.33091- 5 2.24940- 2 2.70000+ 1 3.00000+ 1 4.31984- 5 2.25589- 2 2.70000+ 1 3.20000+ 1 2.09917- 5 2.26559- 2 2.70000+ 1 3.30000+ 1 2.48081- 5 2.26655- 2 2.90000+ 1 3.00000+ 1 7.07597- 7 2.26242- 2 2.90000+ 1 3.20000+ 1 2.12288- 6 2.27212- 2 2.90000+ 1 3.30000+ 1 9.19948- 6 2.27308- 2 3.00000+ 1 3.00000+ 1 1.91856- 6 2.26892- 2 3.00000+ 1 3.20000+ 1 2.34486- 6 2.27861- 2 3.00000+ 1 3.30000+ 1 1.06586- 6 2.27957- 2 3.20000+ 1 3.20000+ 1 1.34771- 6 2.28830- 2 3.20000+ 1 3.30000+ 1 1.87002- 5 2.28926- 2 3.30000+ 1 3.30000+ 1 6.09968- 6 2.29023- 2 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 4.66629- 5 4.30000- 3 8.00000+ 0 1.06300- 2 1.64689- 2 1.10000+ 1 5.68969- 4 1.78211- 2 1.30000+ 1 3.73999- 1 1.83932- 2 1.60000+ 1 2.90809- 3 2.08373- 2 1.90000+ 1 1.74660- 4 2.12650- 2 2.10000+ 1 8.63128- 2 2.15284- 2 2.40000+ 1 5.69659- 4 2.19249- 2 2.70000+ 1 7.62558- 4 2.20244- 2 3.00000+ 1 4.37619- 5 2.21546- 2 3.20000+ 1 1.72490- 2 2.22515- 2 3.50000+ 1 2.55199- 5 2.23636- 2 4.10000+ 1 1.53600- 4 2.23179- 2 4.40000+ 1 7.09158- 6 2.23476- 2 5.80000+ 1 1.56720- 5 2.23656- 2 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 1.05239- 1 3.22200- 4 6.00000+ 0 1.40000+ 1 3.37777- 2 5.23100- 4 6.00000+ 0 1.60000+ 1 2.90044- 3 2.76630- 3 6.00000+ 0 1.80000+ 1 2.47838- 2 2.92950- 3 6.00000+ 0 1.90000+ 1 5.56476- 3 3.19400- 3 6.00000+ 0 2.10000+ 1 2.08545- 2 3.45745- 3 6.00000+ 0 2.20000+ 1 7.03221- 3 3.50583- 3 6.00000+ 0 2.40000+ 1 1.07065- 3 3.85392- 3 6.00000+ 0 2.50000+ 1 1.52099- 3 3.86691- 3 6.00000+ 0 2.70000+ 1 6.93954- 4 3.95336- 3 6.00000+ 0 2.90000+ 1 5.50152- 3 4.01867- 3 6.00000+ 0 3.00000+ 1 1.30116- 3 4.08358- 3 6.00000+ 0 3.20000+ 1 4.00364- 3 4.18050- 3 6.00000+ 0 3.30000+ 1 1.35478- 3 4.19015- 3 8.00000+ 0 8.00000+ 0 3.33742- 4 1.05668- 2 8.00000+ 0 1.00000+ 1 1.45123- 2 1.09204- 2 8.00000+ 0 1.10000+ 1 1.25103- 3 1.19190- 2 8.00000+ 0 1.30000+ 1 2.82843- 3 1.24911- 2 8.00000+ 0 1.40000+ 1 9.12814- 4 1.26920- 2 8.00000+ 0 1.60000+ 1 1.35244- 4 1.49352- 2 8.00000+ 0 1.80000+ 1 2.50264- 3 1.50984- 2 8.00000+ 0 1.90000+ 1 2.93781- 4 1.53629- 2 8.00000+ 0 2.10000+ 1 5.02062- 4 1.56263- 2 8.00000+ 0 2.20000+ 1 1.37633- 4 1.56747- 2 8.00000+ 0 2.40000+ 1 5.76984- 5 1.60228- 2 8.00000+ 0 2.50000+ 1 4.31394- 5 1.60358- 2 8.00000+ 0 2.70000+ 1 3.30818- 5 1.61223- 2 8.00000+ 0 2.90000+ 1 5.58198- 4 1.61876- 2 8.00000+ 0 3.00000+ 1 6.90749- 5 1.62525- 2 8.00000+ 0 3.20000+ 1 9.42187- 5 1.63494- 2 8.00000+ 0 3.30000+ 1 2.48778- 5 1.63590- 2 1.00000+ 1 1.00000+ 1 1.56335- 2 1.12740- 2 1.00000+ 1 1.10000+ 1 3.41035- 2 1.22726- 2 1.00000+ 1 1.30000+ 1 1.71052- 2 1.28447- 2 1.00000+ 1 1.40000+ 1 2.11451- 2 1.30456- 2 1.00000+ 1 1.60000+ 1 3.97113- 3 1.52888- 2 1.00000+ 1 1.80000+ 1 6.85196- 3 1.54520- 2 1.00000+ 1 1.90000+ 1 8.71498- 3 1.57165- 2 1.00000+ 1 2.10000+ 1 4.22757- 3 1.59799- 2 1.00000+ 1 2.20000+ 1 5.25890- 3 1.60283- 2 1.00000+ 1 2.40000+ 1 3.38499- 4 1.63764- 2 1.00000+ 1 2.50000+ 1 2.67316- 4 1.63894- 2 1.00000+ 1 2.70000+ 1 1.03909- 3 1.64759- 2 1.00000+ 1 2.90000+ 1 1.62426- 3 1.65412- 2 1.00000+ 1 3.00000+ 1 2.09401- 3 1.66061- 2 1.00000+ 1 3.20000+ 1 8.49058- 4 1.67030- 2 1.00000+ 1 3.30000+ 1 1.04570- 3 1.67126- 2 1.10000+ 1 1.10000+ 1 6.71726- 4 1.32712- 2 1.10000+ 1 1.30000+ 1 1.25106- 2 1.38433- 2 1.10000+ 1 1.40000+ 1 1.95852- 3 1.40442- 2 1.10000+ 1 1.60000+ 1 2.83986- 4 1.62874- 2 1.10000+ 1 1.80000+ 1 5.89207- 3 1.64506- 2 1.10000+ 1 1.90000+ 1 2.97488- 4 1.67151- 2 1.10000+ 1 2.10000+ 1 2.65200- 3 1.69785- 2 1.10000+ 1 2.20000+ 1 4.04672- 4 1.70269- 2 1.10000+ 1 2.40000+ 1 1.03220- 4 1.73750- 2 1.10000+ 1 2.50000+ 1 5.08164- 5 1.73880- 2 1.10000+ 1 2.70000+ 1 7.09309- 5 1.74745- 2 1.10000+ 1 2.90000+ 1 1.31352- 3 1.75398- 2 1.10000+ 1 3.00000+ 1 6.90765- 5 1.76047- 2 1.10000+ 1 3.20000+ 1 5.14798- 4 1.77016- 2 1.10000+ 1 3.30000+ 1 7.75460- 5 1.77112- 2 1.30000+ 1 1.30000+ 1 1.18565- 2 1.44154- 2 1.30000+ 1 1.40000+ 1 4.51590- 2 1.46163- 2 1.30000+ 1 1.60000+ 1 7.75744- 4 1.68595- 2 1.30000+ 1 1.80000+ 1 2.83182- 3 1.70227- 2 1.30000+ 1 1.90000+ 1 2.92614- 3 1.72872- 2 1.30000+ 1 2.10000+ 1 4.86559- 3 1.75506- 2 1.30000+ 1 2.20000+ 1 1.00216- 2 1.75990- 2 1.30000+ 1 2.40000+ 1 1.04461- 3 1.79471- 2 1.30000+ 1 2.50000+ 1 2.06522- 3 1.79601- 2 1.30000+ 1 2.70000+ 1 2.03783- 4 1.80466- 2 1.30000+ 1 2.90000+ 1 6.31486- 4 1.81119- 2 1.30000+ 1 3.00000+ 1 6.88932- 4 1.81768- 2 1.30000+ 1 3.20000+ 1 9.44061- 4 1.82737- 2 1.30000+ 1 3.30000+ 1 1.94632- 3 1.82833- 2 1.40000+ 1 1.40000+ 1 2.20889- 3 1.48172- 2 1.40000+ 1 1.60000+ 1 2.01142- 4 1.70604- 2 1.40000+ 1 1.80000+ 1 3.05477- 3 1.72236- 2 1.40000+ 1 1.90000+ 1 4.23722- 4 1.74881- 2 1.40000+ 1 2.10000+ 1 7.60808- 3 1.77515- 2 1.40000+ 1 2.20000+ 1 8.95895- 4 1.77999- 2 1.40000+ 1 2.40000+ 1 4.15786- 4 1.81480- 2 1.40000+ 1 2.50000+ 1 1.57469- 4 1.81610- 2 1.40000+ 1 2.70000+ 1 5.02861- 5 1.82475- 2 1.40000+ 1 2.90000+ 1 6.52413- 4 1.83128- 2 1.40000+ 1 3.00000+ 1 9.79238- 5 1.83777- 2 1.40000+ 1 3.20000+ 1 1.40907- 3 1.84746- 2 1.40000+ 1 3.30000+ 1 1.71505- 4 1.84842- 2 1.60000+ 1 1.60000+ 1 1.32329- 5 1.93036- 2 1.60000+ 1 1.80000+ 1 6.87858- 4 1.94668- 2 1.60000+ 1 1.90000+ 1 6.69578- 5 1.97313- 2 1.60000+ 1 2.10000+ 1 1.34971- 4 1.99947- 2 1.60000+ 1 2.20000+ 1 2.99062- 5 2.00431- 2 1.60000+ 1 2.40000+ 1 1.34971- 5 2.03912- 2 1.60000+ 1 2.50000+ 1 8.20466- 6 2.04042- 2 1.60000+ 1 2.70000+ 1 6.35181- 6 2.04907- 2 1.60000+ 1 2.90000+ 1 1.53504- 4 2.05560- 2 1.60000+ 1 3.00000+ 1 1.58788- 5 2.06209- 2 1.60000+ 1 3.20000+ 1 2.51426- 5 2.07178- 2 1.60000+ 1 3.30000+ 1 5.29313- 6 2.07274- 2 1.80000+ 1 1.80000+ 1 7.13544- 4 1.96300- 2 1.80000+ 1 1.90000+ 1 1.51066- 3 1.98945- 2 1.80000+ 1 2.10000+ 1 6.90241- 4 2.01579- 2 1.80000+ 1 2.20000+ 1 7.68300- 4 2.02063- 2 1.80000+ 1 2.40000+ 1 4.63167- 5 2.05544- 2 1.80000+ 1 2.50000+ 1 2.77887- 5 2.05674- 2 1.80000+ 1 2.70000+ 1 1.80237- 4 2.06539- 2 1.80000+ 1 2.90000+ 1 3.34527- 4 2.07192- 2 1.80000+ 1 3.00000+ 1 3.63114- 4 2.07841- 2 1.80000+ 1 3.20000+ 1 1.38419- 4 2.08810- 2 1.80000+ 1 3.30000+ 1 1.53242- 4 2.08906- 2 1.90000+ 1 1.90000+ 1 3.30833- 5 2.01590- 2 1.90000+ 1 2.10000+ 1 6.24375- 4 2.04224- 2 1.90000+ 1 2.20000+ 1 8.84031- 5 2.04708- 2 1.90000+ 1 2.40000+ 1 2.19684- 5 2.08189- 2 1.90000+ 1 2.50000+ 1 9.79277- 6 2.08319- 2 1.90000+ 1 2.70000+ 1 1.66743- 5 2.09184- 2 1.90000+ 1 2.90000+ 1 3.36924- 4 2.09837- 2 1.90000+ 1 3.00000+ 1 1.53512- 5 2.10486- 2 1.90000+ 1 3.20000+ 1 1.21485- 4 2.11455- 2 1.90000+ 1 3.30000+ 1 1.69394- 5 2.11551- 2 2.10000+ 1 2.10000+ 1 4.97300- 4 2.06859- 2 2.10000+ 1 2.20000+ 1 1.76079- 3 2.07343- 2 2.10000+ 1 2.40000+ 1 1.48211- 4 2.10824- 2 2.10000+ 1 2.50000+ 1 2.93508- 4 2.10954- 2 2.10000+ 1 2.70000+ 1 3.51993- 5 2.11818- 2 2.10000+ 1 2.90000+ 1 1.52980- 4 2.12471- 2 2.10000+ 1 3.00000+ 1 1.47152- 4 2.13120- 2 2.10000+ 1 3.20000+ 1 1.92670- 4 2.14089- 2 2.10000+ 1 3.30000+ 1 3.44582- 4 2.14186- 2 2.20000+ 1 2.20000+ 1 9.18383- 5 2.07827- 2 2.20000+ 1 2.40000+ 1 6.43140- 5 2.11307- 2 2.20000+ 1 2.50000+ 1 2.48777- 5 2.11437- 2 2.20000+ 1 2.70000+ 1 7.41043- 6 2.12302- 2 2.20000+ 1 2.90000+ 1 1.64617- 4 2.12955- 2 2.20000+ 1 3.00000+ 1 2.06434- 5 2.13604- 2 2.20000+ 1 3.20000+ 1 3.28718- 4 2.14573- 2 2.20000+ 1 3.30000+ 1 3.51992- 5 2.14670- 2 2.40000+ 1 2.40000+ 1 3.70526- 6 2.14788- 2 2.40000+ 1 2.50000+ 1 2.59363- 5 2.14918- 2 2.40000+ 1 2.70000+ 1 3.44066- 6 2.15783- 2 2.40000+ 1 2.90000+ 1 1.00576- 5 2.16436- 2 2.40000+ 1 3.00000+ 1 5.02856- 6 2.17085- 2 2.40000+ 1 3.20000+ 1 2.64667- 5 2.18054- 2 2.40000+ 1 3.30000+ 1 1.16457- 5 2.18151- 2 2.50000+ 1 2.50000+ 1 1.58789- 6 2.15048- 2 2.50000+ 1 2.70000+ 1 1.85259- 6 2.15913- 2 2.50000+ 1 2.90000+ 1 5.55758- 6 2.16566- 2 2.50000+ 1 3.00000+ 1 2.11728- 6 2.17215- 2 2.50000+ 1 3.20000+ 1 5.24052- 5 2.18184- 2 2.50000+ 1 3.30000+ 1 4.49927- 6 2.18281- 2 2.70000+ 1 2.70000+ 1 7.93980- 7 2.16777- 2 2.70000+ 1 2.90000+ 1 4.02280- 5 2.17430- 2 2.70000+ 1 3.00000+ 1 3.96986- 6 2.18079- 2 2.70000+ 1 3.20000+ 1 6.61673- 6 2.19049- 2 2.70000+ 1 3.30000+ 1 1.32329- 6 2.19145- 2 2.90000+ 1 2.90000+ 1 3.91709- 5 2.18083- 2 2.90000+ 1 3.00000+ 1 8.09894- 5 2.18732- 2 2.90000+ 1 3.20000+ 1 3.07013- 5 2.19702- 2 2.90000+ 1 3.30000+ 1 3.28179- 5 2.19798- 2 3.00000+ 1 3.00000+ 1 1.85259- 6 2.19382- 2 3.00000+ 1 3.20000+ 1 2.85834- 5 2.20351- 2 3.00000+ 1 3.30000+ 1 3.96988- 6 2.20447- 2 3.20000+ 1 3.20000+ 1 1.87949- 5 2.21320- 2 3.20000+ 1 3.30000+ 1 6.52479- 5 2.21416- 2 3.30000+ 1 3.30000+ 1 3.55819- 6 2.21513- 2 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.28140- 2 1.21689- 2 1.00000+ 1 2.94300- 4 1.25225- 2 1.10000+ 1 2.68710- 4 1.35211- 2 1.30000+ 1 3.62600- 2 1.40932- 2 1.40000+ 1 3.18420- 1 1.42941- 2 1.60000+ 1 5.83040- 3 1.65373- 2 1.80000+ 1 6.49180- 5 1.67005- 2 1.90000+ 1 7.37580- 5 1.69650- 2 2.10000+ 1 7.37820- 3 1.72284- 2 2.20000+ 1 6.77430- 2 1.72768- 2 2.40000+ 1 1.02340- 4 1.76249- 2 2.50000+ 1 5.63120- 4 1.76379- 2 2.70000+ 1 1.50950- 3 1.77244- 2 2.90000+ 1 1.53560- 5 1.77897- 2 3.00000+ 1 1.80270- 5 1.78546- 2 3.20000+ 1 1.43670- 3 1.79515- 2 3.30000+ 1 1.31910- 2 1.79611- 2 3.50000+ 1 4.54420- 6 1.80636- 2 3.60000+ 1 2.43900- 5 1.80647- 2 4.10000+ 1 3.12550- 4 1.80179- 2 4.30000+ 1 2.73110- 6 1.80371- 2 4.40000+ 1 2.96040- 6 1.80476- 2 5.80000+ 1 3.03940- 5 1.80656- 2 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.71838- 4 6.26680- 3 8.00000+ 0 1.00000+ 1 1.58999- 4 6.62040- 3 8.00000+ 0 1.10000+ 1 1.76204- 2 7.61900- 3 8.00000+ 0 1.30000+ 1 2.90309- 3 8.19110- 3 8.00000+ 0 1.40000+ 1 6.01340- 3 8.39200- 3 8.00000+ 0 1.60000+ 1 1.54880- 4 1.06352- 2 8.00000+ 0 1.80000+ 1 2.59723- 5 1.07984- 2 8.00000+ 0 1.90000+ 1 2.95571- 3 1.10629- 2 8.00000+ 0 2.10000+ 1 3.59807- 4 1.13263- 2 8.00000+ 0 2.20000+ 1 7.10727- 4 1.13747- 2 8.00000+ 0 2.40000+ 1 3.52535- 4 1.17228- 2 8.00000+ 0 2.50000+ 1 5.91339- 4 1.17358- 2 8.00000+ 0 2.70000+ 1 3.76913- 5 1.18223- 2 8.00000+ 0 2.90000+ 1 5.70133- 6 1.18876- 2 8.00000+ 0 3.00000+ 1 6.46164- 4 1.19525- 2 8.00000+ 0 3.20000+ 1 6.27157- 5 1.20494- 2 8.00000+ 0 3.30000+ 1 1.20047- 4 1.20590- 2 1.00000+ 1 1.00000+ 1 1.26690- 6 6.97400- 3 1.00000+ 1 1.10000+ 1 2.95181- 2 7.97260- 3 1.00000+ 1 1.30000+ 1 1.25773- 3 8.54470- 3 1.00000+ 1 1.40000+ 1 8.88775- 3 8.74560- 3 1.00000+ 1 1.60000+ 1 3.42085- 5 1.09888- 2 1.00000+ 1 1.80000+ 1 7.91854- 6 1.11520- 2 1.00000+ 1 1.90000+ 1 5.14252- 3 1.14165- 2 1.00000+ 1 2.10000+ 1 2.47055- 4 1.16799- 2 1.00000+ 1 2.20000+ 1 1.46438- 3 1.17283- 2 1.00000+ 1 2.40000+ 1 2.91397- 4 1.20764- 2 1.00000+ 1 2.50000+ 1 6.86388- 4 1.20894- 2 1.00000+ 1 2.70000+ 1 8.55213- 6 1.21759- 2 1.00000+ 1 2.90000+ 1 2.53391- 6 1.22412- 2 1.00000+ 1 3.00000+ 1 1.13328- 3 1.23061- 2 1.00000+ 1 3.20000+ 1 4.90948- 5 1.24030- 2 1.00000+ 1 3.30000+ 1 2.70813- 4 1.24126- 2 1.10000+ 1 1.10000+ 1 3.46070- 2 8.97120- 3 1.10000+ 1 1.30000+ 1 3.62831- 2 9.54330- 3 1.10000+ 1 1.40000+ 1 4.53389- 2 9.74420- 3 1.10000+ 1 1.60000+ 1 4.73116- 3 1.19874- 2 1.10000+ 1 1.80000+ 1 7.11217- 3 1.21506- 2 1.10000+ 1 1.90000+ 1 1.46656- 2 1.24151- 2 1.10000+ 1 2.10000+ 1 8.36943- 3 1.26785- 2 1.10000+ 1 2.20000+ 1 1.04185- 2 1.27269- 2 1.10000+ 1 2.40000+ 1 9.00510- 4 1.30750- 2 1.10000+ 1 2.50000+ 1 1.06550- 3 1.30880- 2 1.10000+ 1 2.70000+ 1 1.23213- 3 1.31745- 2 1.10000+ 1 2.90000+ 1 1.71675- 3 1.32398- 2 1.10000+ 1 3.00000+ 1 3.39900- 3 1.33047- 2 1.10000+ 1 3.20000+ 1 1.66039- 3 1.34016- 2 1.10000+ 1 3.30000+ 1 2.03987- 3 1.34112- 2 1.30000+ 1 1.30000+ 1 4.69609- 3 1.01154- 2 1.30000+ 1 1.40000+ 1 8.72982- 2 1.03163- 2 1.30000+ 1 1.60000+ 1 6.98724- 4 1.25595- 2 1.30000+ 1 1.80000+ 1 3.41119- 4 1.27227- 2 1.30000+ 1 1.90000+ 1 5.68232- 3 1.29872- 2 1.30000+ 1 2.10000+ 1 1.80665- 3 1.32506- 2 1.30000+ 1 2.20000+ 1 1.40985- 2 1.32990- 2 1.30000+ 1 2.40000+ 1 4.79837- 4 1.36471- 2 1.30000+ 1 2.50000+ 1 1.59539- 3 1.36601- 2 1.30000+ 1 2.70000+ 1 1.79581- 4 1.37466- 2 1.30000+ 1 2.90000+ 1 8.36180- 5 1.38119- 2 1.30000+ 1 3.00000+ 1 1.22233- 3 1.38768- 2 1.30000+ 1 3.20000+ 1 3.47454- 4 1.39737- 2 1.30000+ 1 3.30000+ 1 2.57019- 3 1.39833- 2 1.40000+ 1 1.40000+ 1 5.75217- 2 1.05172- 2 1.40000+ 1 1.60000+ 1 1.46015- 3 1.27604- 2 1.40000+ 1 1.80000+ 1 1.92387- 3 1.29236- 2 1.40000+ 1 1.90000+ 1 7.93105- 3 1.31881- 2 1.40000+ 1 2.10000+ 1 1.69191- 2 1.34515- 2 1.40000+ 1 2.20000+ 1 2.13464- 2 1.34999- 2 1.40000+ 1 2.40000+ 1 4.99934- 3 1.38480- 2 1.40000+ 1 2.50000+ 1 4.48714- 3 1.38610- 2 1.40000+ 1 2.70000+ 1 3.77549- 4 1.39475- 2 1.40000+ 1 2.90000+ 1 4.54518- 4 1.40128- 2 1.40000+ 1 3.00000+ 1 1.76394- 3 1.40777- 2 1.40000+ 1 3.20000+ 1 3.24397- 3 1.41746- 2 1.40000+ 1 3.30000+ 1 4.02135- 3 1.41842- 2 1.60000+ 1 1.60000+ 1 1.71037- 5 1.50036- 2 1.60000+ 1 1.80000+ 1 6.65102- 6 1.51668- 2 1.60000+ 1 1.90000+ 1 7.92132- 4 1.54313- 2 1.60000+ 1 2.10000+ 1 9.28013- 5 1.56947- 2 1.60000+ 1 2.20000+ 1 1.81798- 4 1.57431- 2 1.60000+ 1 2.40000+ 1 4.27573- 5 1.60912- 2 1.60000+ 1 2.50000+ 1 8.10835- 5 1.61042- 2 1.60000+ 1 2.70000+ 1 8.55185- 6 1.61907- 2 1.60000+ 1 2.90000+ 1 1.58356- 6 1.62560- 2 1.60000+ 1 3.00000+ 1 1.72929- 4 1.63209- 2 1.60000+ 1 3.20000+ 1 1.64702- 5 1.64178- 2 1.60000+ 1 3.30000+ 1 3.10385- 5 1.64274- 2 1.80000+ 1 1.90000+ 1 1.22828- 3 1.55945- 2 1.80000+ 1 2.10000+ 1 6.11305- 5 1.58579- 2 1.80000+ 1 2.20000+ 1 3.50937- 4 1.59063- 2 1.80000+ 1 2.40000+ 1 4.37100- 5 1.62544- 2 1.80000+ 1 2.50000+ 1 9.62874- 5 1.62674- 2 1.80000+ 1 2.70000+ 1 1.58363- 6 1.63539- 2 1.80000+ 1 3.00000+ 1 2.70184- 4 1.64841- 2 1.80000+ 1 3.20000+ 1 1.17192- 5 1.65810- 2 1.80000+ 1 3.30000+ 1 6.55659- 5 1.65906- 2 1.90000+ 1 1.90000+ 1 1.48201- 3 1.58590- 2 1.90000+ 1 2.10000+ 1 1.31608- 3 1.61224- 2 1.90000+ 1 2.20000+ 1 1.79871- 3 1.61708- 2 1.90000+ 1 2.40000+ 1 1.16245- 4 1.65189- 2 1.90000+ 1 2.50000+ 1 1.44427- 4 1.65319- 2 1.90000+ 1 2.70000+ 1 2.06191- 4 1.66184- 2 1.90000+ 1 2.90000+ 1 2.95830- 4 1.66837- 2 1.90000+ 1 3.00000+ 1 6.79420- 4 1.67486- 2 1.90000+ 1 3.20000+ 1 2.61313- 4 1.68455- 2 1.90000+ 1 3.30000+ 1 3.51268- 4 1.68551- 2 2.10000+ 1 2.10000+ 1 1.66294- 4 1.63859- 2 2.10000+ 1 2.20000+ 1 2.87406- 3 1.64343- 2 2.10000+ 1 2.40000+ 1 6.04966- 5 1.67824- 2 2.10000+ 1 2.50000+ 1 1.88455- 4 1.67954- 2 2.10000+ 1 2.70000+ 1 2.40719- 5 1.68818- 2 2.10000+ 1 2.90000+ 1 1.48863- 5 1.69471- 2 2.10000+ 1 3.00000+ 1 2.83485- 4 1.70120- 2 2.10000+ 1 3.20000+ 1 6.33444- 5 1.71089- 2 2.10000+ 1 3.30000+ 1 5.28303- 4 1.71186- 2 2.20000+ 1 2.20000+ 1 1.99450- 3 1.64827- 2 2.20000+ 1 2.40000+ 1 6.25851- 4 1.68307- 2 2.20000+ 1 2.50000+ 1 5.50501- 4 1.68437- 2 2.20000+ 1 2.70000+ 1 4.75100- 5 1.69302- 2 2.20000+ 1 2.90000+ 1 8.42537- 5 1.69955- 2 2.20000+ 1 3.00000+ 1 3.98763- 4 1.70604- 2 2.20000+ 1 3.20000+ 1 5.55891- 4 1.71573- 2 2.20000+ 1 3.30000+ 1 7.51626- 4 1.71670- 2 2.40000+ 1 2.40000+ 1 2.85065- 6 1.71788- 2 2.40000+ 1 2.50000+ 1 9.02679- 5 1.71918- 2 2.40000+ 1 2.70000+ 1 9.50174- 6 1.72783- 2 2.40000+ 1 2.90000+ 1 9.50174- 6 1.73436- 2 2.40000+ 1 3.00000+ 1 2.40713- 5 1.74085- 2 2.40000+ 1 3.20000+ 1 1.04517- 5 1.75054- 2 2.40000+ 1 3.30000+ 1 1.08005- 4 1.75151- 2 2.50000+ 1 2.50000+ 1 3.19900- 5 1.72048- 2 2.50000+ 1 2.70000+ 1 1.83703- 5 1.72913- 2 2.50000+ 1 2.90000+ 1 2.09046- 5 1.73566- 2 2.50000+ 1 3.00000+ 1 3.04065- 5 1.74215- 2 2.50000+ 1 3.20000+ 1 3.26236- 5 1.75184- 2 2.50000+ 1 3.30000+ 1 9.47049- 5 1.75281- 2 2.70000+ 1 2.70000+ 1 9.50188- 7 1.73777- 2 2.70000+ 1 2.90000+ 1 3.16739- 7 1.74430- 2 2.70000+ 1 3.00000+ 1 4.49765- 5 1.75079- 2 2.70000+ 1 3.20000+ 1 4.43429- 6 1.76049- 2 2.70000+ 1 3.30000+ 1 8.23527- 6 1.76145- 2 2.90000+ 1 3.00000+ 1 6.49313- 5 1.75732- 2 2.90000+ 1 3.20000+ 1 2.85069- 6 1.76702- 2 2.90000+ 1 3.30000+ 1 1.58360- 5 1.76798- 2 3.00000+ 1 3.00000+ 1 7.75991- 5 1.76382- 2 3.00000+ 1 3.20000+ 1 5.63815- 5 1.77351- 2 3.00000+ 1 3.30000+ 1 7.79194- 5 1.77447- 2 3.20000+ 1 3.20000+ 1 6.01819- 6 1.78320- 2 3.20000+ 1 3.30000+ 1 1.02312- 4 1.78416- 2 3.30000+ 1 3.30000+ 1 7.06340- 5 1.78513- 2 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.05590- 5 3.53600- 4 1.10000+ 1 1.36711- 3 1.35220- 3 1.80000+ 1 2.87821- 3 4.53160- 3 1.90000+ 1 1.39521- 3 4.79610- 3 2.90000+ 1 7.81193- 4 5.62077- 3 3.00000+ 1 4.42292- 4 5.68568- 3 4.30000+ 1 1.44711- 4 5.86818- 3 4.40000+ 1 7.74713- 5 5.87868- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.70000+ 1 1.44674- 2 6.96000- 6 1.00000+ 1 2.90000+ 1 1.59260- 2 7.22700- 5 1.00000+ 1 3.00000+ 1 1.85367- 2 1.37180- 4 1.00000+ 1 3.20000+ 1 1.07096- 2 2.34100- 4 1.00000+ 1 3.30000+ 1 1.37919- 2 2.43750- 4 1.00000+ 1 3.50000+ 1 5.57530- 4 3.46200- 4 1.00000+ 1 3.60000+ 1 6.86847- 4 3.47350- 4 1.00000+ 1 4.10000+ 1 2.85249- 3 3.00480- 4 1.00000+ 1 4.30000+ 1 2.48641- 3 3.19680- 4 1.00000+ 1 4.40000+ 1 2.59742- 3 3.30180- 4 1.00000+ 1 5.80000+ 1 2.48082- 4 3.48180- 4 1.10000+ 1 1.80000+ 1 5.56539- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 3.69049- 2 2.46200- 4 1.10000+ 1 2.10000+ 1 9.17765- 3 5.09650- 4 1.10000+ 1 2.20000+ 1 2.48956- 2 5.58030- 4 1.10000+ 1 2.40000+ 1 1.97092- 1 9.06120- 4 1.10000+ 1 2.50000+ 1 2.37016- 1 9.19110- 4 1.10000+ 1 2.70000+ 1 1.12540- 2 1.00556- 3 1.10000+ 1 2.90000+ 1 1.16166- 2 1.07087- 3 1.10000+ 1 3.00000+ 1 8.71917- 3 1.13578- 3 1.10000+ 1 3.20000+ 1 2.16085- 3 1.23270- 3 1.10000+ 1 3.30000+ 1 5.33531- 3 1.24235- 3 1.10000+ 1 3.50000+ 1 5.12789- 3 1.34480- 3 1.10000+ 1 3.60000+ 1 5.81167- 3 1.34595- 3 1.10000+ 1 4.10000+ 1 2.16784- 3 1.29908- 3 1.10000+ 1 4.30000+ 1 1.86192- 3 1.31828- 3 1.10000+ 1 4.40000+ 1 1.25638- 3 1.32878- 3 1.10000+ 1 5.80000+ 1 1.90168- 4 1.34678- 3 1.30000+ 1 1.60000+ 1 2.63518- 2 3.90600- 4 1.30000+ 1 1.80000+ 1 5.48586- 3 5.53800- 4 1.30000+ 1 1.90000+ 1 9.88260- 3 8.18300- 4 1.30000+ 1 2.10000+ 1 8.85301- 3 1.08175- 3 1.30000+ 1 2.20000+ 1 1.03959- 2 1.13013- 3 1.30000+ 1 2.40000+ 1 1.00133- 2 1.47822- 3 1.30000+ 1 2.50000+ 1 9.55189- 3 1.49121- 3 1.30000+ 1 2.70000+ 1 4.21610- 3 1.57766- 3 1.30000+ 1 2.90000+ 1 1.05008- 3 1.64297- 3 1.30000+ 1 3.00000+ 1 1.74486- 3 1.70788- 3 1.30000+ 1 3.20000+ 1 1.42765- 3 1.80480- 3 1.30000+ 1 3.30000+ 1 1.82199- 3 1.81445- 3 1.30000+ 1 3.50000+ 1 2.79503- 4 1.91690- 3 1.30000+ 1 3.60000+ 1 2.37781- 4 1.91805- 3 1.30000+ 1 4.10000+ 1 7.45824- 4 1.87118- 3 1.30000+ 1 4.30000+ 1 1.65554- 4 1.89038- 3 1.30000+ 1 4.40000+ 1 2.40328- 4 1.90088- 3 1.30000+ 1 5.80000+ 1 6.44623- 5 1.91888- 3 1.40000+ 1 1.60000+ 1 3.57568- 2 5.91500- 4 1.40000+ 1 1.80000+ 1 8.31086- 4 7.54700- 4 1.40000+ 1 1.90000+ 1 1.22307- 2 1.01920- 3 1.40000+ 1 2.10000+ 1 1.19799- 2 1.28265- 3 1.40000+ 1 2.20000+ 1 1.61829- 2 1.33103- 3 1.40000+ 1 2.40000+ 1 1.20898- 2 1.67912- 3 1.40000+ 1 2.50000+ 1 1.78314- 2 1.69211- 3 1.40000+ 1 2.70000+ 1 5.61388- 3 1.77856- 3 1.40000+ 1 2.90000+ 1 2.34691- 4 1.84387- 3 1.40000+ 1 3.00000+ 1 2.12412- 3 1.90878- 3 1.40000+ 1 3.20000+ 1 2.15080- 3 2.00570- 3 1.40000+ 1 3.30000+ 1 2.73366- 3 2.01535- 3 1.40000+ 1 3.50000+ 1 3.14927- 4 2.11780- 3 1.40000+ 1 3.60000+ 1 4.58414- 4 2.11895- 3 1.40000+ 1 4.10000+ 1 9.89200- 4 2.07208- 3 1.40000+ 1 4.30000+ 1 4.05193- 5 2.09128- 3 1.40000+ 1 4.40000+ 1 2.92328- 4 2.10178- 3 1.40000+ 1 5.80000+ 1 8.54535- 5 2.11978- 3 1.60000+ 1 1.60000+ 1 2.12339- 3 2.83470- 3 1.60000+ 1 1.80000+ 1 3.79130- 3 2.99790- 3 1.60000+ 1 1.90000+ 1 5.80469- 3 3.26240- 3 1.60000+ 1 2.10000+ 1 7.05357- 3 3.52585- 3 1.60000+ 1 2.20000+ 1 9.71978- 3 3.57423- 3 1.60000+ 1 2.40000+ 1 5.37867- 3 3.92232- 3 1.60000+ 1 2.50000+ 1 6.62745- 3 3.93531- 3 1.60000+ 1 2.70000+ 1 8.92110- 4 4.02176- 3 1.60000+ 1 2.90000+ 1 9.25979- 4 4.08707- 3 1.60000+ 1 3.00000+ 1 1.39475- 3 4.15198- 3 1.60000+ 1 3.20000+ 1 1.37947- 3 4.24890- 3 1.60000+ 1 3.30000+ 1 1.88171- 3 4.25855- 3 1.60000+ 1 3.50000+ 1 1.96044- 4 4.36100- 3 1.60000+ 1 3.60000+ 1 2.29614- 4 4.36215- 3 1.60000+ 1 4.10000+ 1 1.70107- 4 4.31528- 3 1.60000+ 1 4.30000+ 1 1.52594- 4 4.33448- 3 1.60000+ 1 4.40000+ 1 2.03138- 4 4.34498- 3 1.60000+ 1 5.80000+ 1 1.48437- 5 4.36298- 3 1.80000+ 1 1.80000+ 1 1.39216- 4 3.16110- 3 1.80000+ 1 1.90000+ 1 4.70467- 4 3.42560- 3 1.80000+ 1 2.10000+ 1 2.20792- 4 3.68905- 3 1.80000+ 1 2.20000+ 1 9.50846- 5 3.73743- 3 1.80000+ 1 2.40000+ 1 1.87222- 5 4.08552- 3 1.80000+ 1 2.50000+ 1 5.05526- 4 4.09851- 3 1.80000+ 1 2.70000+ 1 5.93497- 4 4.18496- 3 1.80000+ 1 2.90000+ 1 4.80098- 5 4.25027- 3 1.80000+ 1 3.00000+ 1 7.68950- 5 4.31518- 3 1.80000+ 1 3.20000+ 1 3.63753- 5 4.41210- 3 1.80000+ 1 3.30000+ 1 2.38035- 5 4.42175- 3 1.80000+ 1 3.50000+ 1 2.67459- 7 4.52420- 3 1.80000+ 1 3.60000+ 1 1.11001- 5 4.52535- 3 1.80000+ 1 4.10000+ 1 1.04976- 4 4.47848- 3 1.80000+ 1 4.30000+ 1 7.35529- 6 4.49768- 3 1.80000+ 1 4.40000+ 1 1.04307- 5 4.50818- 3 1.80000+ 1 5.80000+ 1 9.09363- 6 4.52618- 3 1.90000+ 1 1.90000+ 1 4.13635- 4 3.69010- 3 1.90000+ 1 2.10000+ 1 6.60495- 4 3.95355- 3 1.90000+ 1 2.20000+ 1 1.44593- 3 4.00193- 3 1.90000+ 1 2.40000+ 1 9.73459- 4 4.35002- 3 1.90000+ 1 2.50000+ 1 1.37939- 3 4.36301- 3 1.90000+ 1 2.70000+ 1 9.13801- 4 4.44946- 3 1.90000+ 1 2.90000+ 1 9.86927- 5 4.51477- 3 1.90000+ 1 3.00000+ 1 1.68501- 4 4.57968- 3 1.90000+ 1 3.20000+ 1 1.24909- 4 4.67660- 3 1.90000+ 1 3.30000+ 1 2.64925- 4 4.68625- 3 1.90000+ 1 3.50000+ 1 3.33006- 5 4.78870- 3 1.90000+ 1 3.60000+ 1 4.07889- 5 4.78985- 3 1.90000+ 1 4.10000+ 1 1.62086- 4 4.74298- 3 1.90000+ 1 4.30000+ 1 1.57800- 5 4.76218- 3 1.90000+ 1 4.40000+ 1 2.38039- 5 4.77268- 3 1.90000+ 1 5.80000+ 1 1.40417- 5 4.79068- 3 2.10000+ 1 2.10000+ 1 9.58870- 5 4.21700- 3 2.10000+ 1 2.20000+ 1 2.15169- 4 4.26538- 3 2.10000+ 1 2.40000+ 1 4.33566- 4 4.61347- 3 2.10000+ 1 2.50000+ 1 2.46321- 3 4.62646- 3 2.10000+ 1 2.70000+ 1 1.07795- 3 4.71291- 3 2.10000+ 1 2.90000+ 1 3.28978- 5 4.77822- 3 2.10000+ 1 3.00000+ 1 1.19165- 4 4.84313- 3 2.10000+ 1 3.20000+ 1 2.92871- 5 4.94005- 3 2.10000+ 1 3.30000+ 1 3.51718- 5 4.94970- 3 2.10000+ 1 3.50000+ 1 1.41754- 5 5.05215- 3 2.10000+ 1 3.60000+ 1 6.21859- 5 5.05330- 3 2.10000+ 1 4.10000+ 1 1.89372- 4 5.00643- 3 2.10000+ 1 4.30000+ 1 4.94821- 6 5.02563- 3 2.10000+ 1 4.40000+ 1 1.63155- 5 5.03613- 3 2.10000+ 1 5.80000+ 1 1.63155- 5 5.05413- 3 2.20000+ 1 2.20000+ 1 2.05807- 4 4.31376- 3 2.20000+ 1 2.40000+ 1 2.14290- 3 4.66185- 3 2.20000+ 1 2.50000+ 1 1.42135- 3 4.67484- 3 2.20000+ 1 2.70000+ 1 1.47660- 3 4.76129- 3 2.20000+ 1 2.90000+ 1 1.63155- 5 4.82660- 3 2.20000+ 1 3.00000+ 1 2.56633- 4 4.89151- 3 2.20000+ 1 3.20000+ 1 3.06259- 5 4.98843- 3 2.20000+ 1 3.30000+ 1 6.51304- 5 4.99808- 3 2.20000+ 1 3.50000+ 1 5.53650- 5 5.10053- 3 2.20000+ 1 3.60000+ 1 3.89166- 5 5.10168- 3 2.20000+ 1 4.10000+ 1 2.59041- 4 5.05481- 3 2.20000+ 1 4.30000+ 1 2.54095- 6 5.07401- 3 2.20000+ 1 4.40000+ 1 3.51719- 5 5.08451- 3 2.20000+ 1 5.80000+ 1 2.23332- 5 5.10251- 3 2.40000+ 1 2.40000+ 1 6.06334- 4 5.00994- 3 2.40000+ 1 2.50000+ 1 3.94890- 3 5.02293- 3 2.40000+ 1 2.70000+ 1 7.48668- 4 5.10938- 3 2.40000+ 1 2.90000+ 1 4.68066- 6 5.17469- 3 2.40000+ 1 3.00000+ 1 1.22362- 4 5.23960- 3 2.40000+ 1 3.20000+ 1 7.54263- 5 5.33652- 3 2.40000+ 1 3.30000+ 1 4.27283- 4 5.34617- 3 2.40000+ 1 3.50000+ 1 3.99866- 5 5.44862- 3 2.40000+ 1 3.60000+ 1 1.04718- 4 5.44977- 3 2.40000+ 1 4.10000+ 1 1.29316- 4 5.40290- 3 2.40000+ 1 4.30000+ 1 8.02380- 7 5.42210- 3 2.40000+ 1 4.40000+ 1 1.56471- 5 5.43260- 3 2.40000+ 1 5.80000+ 1 1.11002- 5 5.45060- 3 2.50000+ 1 2.50000+ 1 1.36470- 3 5.03592- 3 2.50000+ 1 2.70000+ 1 9.20102- 4 5.12237- 3 2.50000+ 1 2.90000+ 1 1.05788- 4 5.18768- 3 2.50000+ 1 3.00000+ 1 1.85896- 4 5.25259- 3 2.50000+ 1 3.20000+ 1 4.75961- 4 5.34951- 3 2.50000+ 1 3.30000+ 1 2.65057- 4 5.35916- 3 2.50000+ 1 3.50000+ 1 1.08056- 4 5.46161- 3 2.50000+ 1 3.60000+ 1 7.94372- 5 5.46276- 3 2.50000+ 1 4.10000+ 1 1.59020- 4 5.41589- 3 2.50000+ 1 4.30000+ 1 1.68502- 5 5.43509- 3 2.50000+ 1 4.40000+ 1 2.42057- 5 5.44559- 3 2.50000+ 1 5.80000+ 1 1.36410- 5 5.46359- 3 2.70000+ 1 2.70000+ 1 8.58579- 5 5.20882- 3 2.70000+ 1 2.90000+ 1 1.46435- 4 5.27413- 3 2.70000+ 1 3.00000+ 1 2.19333- 4 5.33904- 3 2.70000+ 1 3.20000+ 1 2.12378- 4 5.43596- 3 2.70000+ 1 3.30000+ 1 2.87945- 4 5.44561- 3 2.70000+ 1 3.50000+ 1 2.74166- 5 5.54806- 3 2.70000+ 1 3.60000+ 1 3.19638- 5 5.54921- 3 2.70000+ 1 4.10000+ 1 3.20966- 5 5.50234- 3 2.70000+ 1 4.30000+ 1 2.42064- 5 5.52154- 3 2.70000+ 1 4.40000+ 1 3.19638- 5 5.53204- 3 2.70000+ 1 5.80000+ 1 2.80840- 6 5.55004- 3 2.90000+ 1 2.90000+ 1 4.01194- 6 5.33944- 3 2.90000+ 1 3.00000+ 1 1.56470- 5 5.40435- 3 2.90000+ 1 3.20000+ 1 5.34923- 6 5.50127- 3 2.90000+ 1 3.30000+ 1 4.41318- 6 5.51092- 3 2.90000+ 1 3.60000+ 1 2.40726- 6 5.61452- 3 2.90000+ 1 4.10000+ 1 2.59449- 5 5.56765- 3 2.90000+ 1 4.30000+ 1 1.20364- 6 5.58685- 3 2.90000+ 1 4.40000+ 1 2.13969- 6 5.59735- 3 2.90000+ 1 5.80000+ 1 2.27347- 6 5.61535- 3 3.00000+ 1 3.00000+ 1 1.63157- 5 5.46926- 3 3.00000+ 1 3.20000+ 1 2.27351- 5 5.56618- 3 3.00000+ 1 3.30000+ 1 4.73426- 5 5.57583- 3 3.00000+ 1 3.50000+ 1 4.14579- 6 5.67828- 3 3.00000+ 1 3.60000+ 1 5.48292- 6 5.67943- 3 3.00000+ 1 4.10000+ 1 3.89171- 5 5.63256- 3 3.00000+ 1 4.30000+ 1 2.54098- 6 5.65176- 3 3.00000+ 1 4.40000+ 1 4.54704- 6 5.66226- 3 3.00000+ 1 5.80000+ 1 3.34339- 6 5.68026- 3 3.20000+ 1 3.20000+ 1 2.00601- 6 5.66310- 3 3.20000+ 1 3.30000+ 1 5.08175- 6 5.67275- 3 3.20000+ 1 3.50000+ 1 2.40725- 6 5.77520- 3 3.20000+ 1 3.60000+ 1 1.25708- 5 5.77635- 3 3.20000+ 1 4.10000+ 1 3.73117- 5 5.72948- 3 3.20000+ 1 4.30000+ 1 8.02373- 7 5.74868- 3 3.20000+ 1 4.40000+ 1 3.07585- 6 5.75918- 3 3.20000+ 1 5.80000+ 1 3.20953- 6 5.77718- 3 3.30000+ 1 3.30000+ 1 4.94822- 6 5.68240- 3 3.30000+ 1 3.50000+ 1 1.15008- 5 5.78485- 3 3.30000+ 1 3.60000+ 1 7.35539- 6 5.78600- 3 3.30000+ 1 4.10000+ 1 5.05533- 5 5.73913- 3 3.30000+ 1 4.30000+ 1 6.68649- 7 5.75833- 3 3.30000+ 1 4.40000+ 1 6.55280- 6 5.76883- 3 3.30000+ 1 5.80000+ 1 4.41320- 6 5.78683- 3 3.50000+ 1 3.50000+ 1 5.47169- 7 5.88730- 3 3.50000+ 1 3.60000+ 1 3.00953- 6 5.88845- 3 3.50000+ 1 4.10000+ 1 4.78779- 6 5.84158- 3 3.50000+ 1 4.40000+ 1 5.47169- 7 5.87128- 3 3.50000+ 1 5.80000+ 1 4.10378- 7 5.88928- 3 3.60000+ 1 3.60000+ 1 9.62537- 7 5.88960- 3 3.60000+ 1 4.10000+ 1 5.63763- 6 5.84273- 3 3.60000+ 1 4.30000+ 1 4.12521- 7 5.86193- 3 3.60000+ 1 4.40000+ 1 6.87524- 7 5.87243- 3 3.60000+ 1 5.80000+ 1 5.50026- 7 5.89043- 3 4.10000+ 1 4.10000+ 1 3.44313- 6 5.79586- 3 4.10000+ 1 4.30000+ 1 5.00803- 6 5.81506- 3 4.10000+ 1 4.40000+ 1 6.57291- 6 5.82556- 3 4.10000+ 1 5.80000+ 1 6.26002- 7 5.84356- 3 4.30000+ 1 4.30000+ 1 1.39793- 7 5.83426- 3 4.30000+ 1 4.40000+ 1 4.19376- 7 5.84476- 3 4.30000+ 1 5.80000+ 1 4.19376- 7 5.86276- 3 4.40000+ 1 4.40000+ 1 2.81981- 7 5.85526- 3 4.40000+ 1 5.80000+ 1 5.63962- 7 5.87326- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.12859- 3 1.57070- 3 1.60000+ 1 1.08480- 3 4.01480- 3 2.10000+ 1 5.22338- 3 4.70595- 3 2.70000+ 1 2.87949- 4 5.20186- 3 3.20000+ 1 1.29309- 3 5.42900- 3 4.10000+ 1 5.93617- 5 5.49538- 3 5.80000+ 1 5.78427- 6 5.54308- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 9.81685- 3 1.56050- 4 1.10000+ 1 2.20000+ 1 1.89420- 2 2.04430- 4 1.10000+ 1 2.40000+ 1 2.83496- 2 5.52520- 4 1.10000+ 1 2.50000+ 1 2.29100- 2 5.65510- 4 1.10000+ 1 2.70000+ 1 3.12370- 3 6.51960- 4 1.10000+ 1 2.90000+ 1 4.61425- 3 7.17270- 4 1.10000+ 1 3.00000+ 1 1.79250- 3 7.82180- 4 1.10000+ 1 3.20000+ 1 1.98037- 3 8.79100- 4 1.10000+ 1 3.30000+ 1 3.41153- 3 8.88750- 4 1.10000+ 1 3.50000+ 1 8.34286- 4 9.91200- 4 1.10000+ 1 3.60000+ 1 6.56181- 4 9.92350- 4 1.10000+ 1 4.10000+ 1 5.75324- 4 9.45480- 4 1.10000+ 1 4.30000+ 1 6.79144- 4 9.64680- 4 1.10000+ 1 4.40000+ 1 2.47804- 4 9.75180- 4 1.10000+ 1 5.80000+ 1 5.00219- 5 9.93180- 4 1.30000+ 1 1.60000+ 1 4.73810- 2 3.70000- 5 1.30000+ 1 1.80000+ 1 4.98112- 2 2.00200- 4 1.30000+ 1 1.90000+ 1 3.14541- 2 4.64700- 4 1.30000+ 1 2.10000+ 1 1.65116- 2 7.28150- 4 1.30000+ 1 2.20000+ 1 2.72586- 2 7.76530- 4 1.30000+ 1 2.40000+ 1 1.51122- 1 1.12462- 3 1.30000+ 1 2.50000+ 1 2.37976- 1 1.13761- 3 1.30000+ 1 2.70000+ 1 1.20079- 2 1.22406- 3 1.30000+ 1 2.90000+ 1 9.94802- 3 1.28937- 3 1.30000+ 1 3.00000+ 1 7.27542- 3 1.35428- 3 1.30000+ 1 3.20000+ 1 3.45556- 3 1.45120- 3 1.30000+ 1 3.30000+ 1 5.57402- 3 1.46085- 3 1.30000+ 1 3.50000+ 1 4.01265- 3 1.56330- 3 1.30000+ 1 3.60000+ 1 6.31766- 3 1.56445- 3 1.30000+ 1 4.10000+ 1 2.33109- 3 1.51758- 3 1.30000+ 1 4.30000+ 1 1.57755- 3 1.53678- 3 1.30000+ 1 4.40000+ 1 1.04699- 3 1.54728- 3 1.30000+ 1 5.80000+ 1 2.05001- 4 1.56528- 3 1.40000+ 1 1.60000+ 1 7.19291- 3 2.37900- 4 1.40000+ 1 1.80000+ 1 5.63772- 2 4.01100- 4 1.40000+ 1 1.90000+ 1 4.47183- 3 6.65600- 4 1.40000+ 1 2.10000+ 1 2.03118- 3 9.29050- 4 1.40000+ 1 2.20000+ 1 2.74972- 3 9.77430- 4 1.40000+ 1 2.40000+ 1 8.29764- 3 1.32552- 3 1.40000+ 1 2.50000+ 1 4.87762- 3 1.33851- 3 1.40000+ 1 2.70000+ 1 1.20827- 3 1.42496- 3 1.40000+ 1 2.90000+ 1 8.51886- 3 1.49027- 3 1.40000+ 1 3.00000+ 1 8.74978- 4 1.55518- 3 1.40000+ 1 3.20000+ 1 1.65811- 4 1.65210- 3 1.40000+ 1 3.30000+ 1 4.82016- 4 1.66175- 3 1.40000+ 1 3.50000+ 1 3.18330- 4 1.76420- 3 1.40000+ 1 3.60000+ 1 1.46136- 4 1.76535- 3 1.40000+ 1 4.10000+ 1 2.16825- 4 1.71848- 3 1.40000+ 1 4.30000+ 1 1.27007- 3 1.73768- 3 1.40000+ 1 4.40000+ 1 1.22509- 4 1.74818- 3 1.40000+ 1 5.80000+ 1 1.86963- 5 1.76618- 3 1.60000+ 1 1.60000+ 1 4.71506- 4 2.48110- 3 1.60000+ 1 1.80000+ 1 7.51116- 3 2.64430- 3 1.60000+ 1 1.90000+ 1 8.93246- 4 2.90880- 3 1.60000+ 1 2.10000+ 1 3.14529- 4 3.17225- 3 1.60000+ 1 2.20000+ 1 8.44881- 4 3.22063- 3 1.60000+ 1 2.40000+ 1 7.04312- 5 3.56872- 3 1.60000+ 1 2.50000+ 1 6.14928- 4 3.58171- 3 1.60000+ 1 2.70000+ 1 1.83867- 4 3.66816- 3 1.60000+ 1 2.90000+ 1 1.12202- 3 3.73347- 3 1.60000+ 1 3.00000+ 1 1.92343- 4 3.79838- 3 1.60000+ 1 3.20000+ 1 4.04472- 5 3.89530- 3 1.60000+ 1 3.30000+ 1 1.45675- 4 3.90495- 3 1.60000+ 1 3.50000+ 1 1.97998- 6 4.00740- 3 1.60000+ 1 3.60000+ 1 1.44251- 5 4.00855- 3 1.60000+ 1 4.10000+ 1 3.42264- 5 3.96168- 3 1.60000+ 1 4.30000+ 1 1.67730- 4 3.98088- 3 1.60000+ 1 4.40000+ 1 2.74353- 5 3.99138- 3 1.60000+ 1 5.80000+ 1 3.11136- 6 4.00938- 3 1.80000+ 1 1.80000+ 1 5.90857- 3 2.80750- 3 1.80000+ 1 1.90000+ 1 1.55079- 2 3.07200- 3 1.80000+ 1 2.10000+ 1 1.58641- 2 3.33545- 3 1.80000+ 1 2.20000+ 1 2.46169- 2 3.38383- 3 1.80000+ 1 2.40000+ 1 1.00056- 2 3.73192- 3 1.80000+ 1 2.50000+ 1 1.61654- 2 3.74491- 3 1.80000+ 1 2.70000+ 1 1.93645- 3 3.83136- 3 1.80000+ 1 2.90000+ 1 2.36546- 3 3.89667- 3 1.80000+ 1 3.00000+ 1 3.69046- 3 3.96158- 3 1.80000+ 1 3.20000+ 1 3.11916- 3 4.05850- 3 1.80000+ 1 3.30000+ 1 4.71818- 3 4.06815- 3 1.80000+ 1 3.50000+ 1 3.66035- 4 4.17060- 3 1.80000+ 1 3.60000+ 1 5.56111- 4 4.17175- 3 1.80000+ 1 4.10000+ 1 3.81298- 4 4.12488- 3 1.80000+ 1 4.30000+ 1 3.78191- 4 4.14408- 3 1.80000+ 1 4.40000+ 1 5.36308- 4 4.15458- 3 1.80000+ 1 5.80000+ 1 3.33775- 5 4.17258- 3 1.90000+ 1 1.90000+ 1 3.77892- 4 3.33650- 3 1.90000+ 1 2.10000+ 1 8.60447- 4 3.59995- 3 1.90000+ 1 2.20000+ 1 8.24538- 4 3.64833- 3 1.90000+ 1 2.40000+ 1 6.31761- 3 3.99642- 3 1.90000+ 1 2.50000+ 1 1.76416- 3 4.00941- 3 1.90000+ 1 2.70000+ 1 1.44824- 4 4.09586- 3 1.90000+ 1 2.90000+ 1 2.36187- 3 4.16117- 3 1.90000+ 1 3.00000+ 1 1.51612- 4 4.22608- 3 1.90000+ 1 3.20000+ 1 1.30116- 4 4.32300- 3 1.90000+ 1 3.30000+ 1 1.43131- 4 4.33265- 3 1.90000+ 1 3.50000+ 1 1.91200- 4 4.43510- 3 1.90000+ 1 3.60000+ 1 5.28947- 5 4.43625- 3 1.90000+ 1 4.10000+ 1 2.57408- 5 4.38938- 3 1.90000+ 1 4.30000+ 1 3.54426- 4 4.40858- 3 1.90000+ 1 4.40000+ 1 2.12149- 5 4.41908- 3 1.90000+ 1 5.80000+ 1 2.26279- 6 4.43708- 3 2.10000+ 1 2.10000+ 1 6.11253- 4 3.86340- 3 2.10000+ 1 2.20000+ 1 1.07057- 3 3.91178- 3 2.10000+ 1 2.40000+ 1 6.47159- 4 4.25987- 3 2.10000+ 1 2.50000+ 1 8.25645- 4 4.27286- 3 2.10000+ 1 2.70000+ 1 7.86327- 5 4.35931- 3 2.10000+ 1 2.90000+ 1 2.33556- 3 4.42462- 3 2.10000+ 1 3.00000+ 1 1.92059- 4 4.48953- 3 2.10000+ 1 3.20000+ 1 1.93475- 4 4.58645- 3 2.10000+ 1 3.30000+ 1 1.87535- 4 4.59610- 3 2.10000+ 1 3.50000+ 1 1.21630- 5 4.69855- 3 2.10000+ 1 3.60000+ 1 2.00836- 5 4.69970- 3 2.10000+ 1 4.10000+ 1 1.52743- 5 4.65283- 3 2.10000+ 1 4.30000+ 1 3.47906- 4 4.67203- 3 2.10000+ 1 4.40000+ 1 2.74355- 5 4.68253- 3 2.10000+ 1 5.80000+ 1 1.41424- 6 4.70053- 3 2.20000+ 1 2.20000+ 1 2.97853- 4 3.96016- 3 2.20000+ 1 2.40000+ 1 1.28931- 3 4.30825- 3 2.20000+ 1 2.50000+ 1 3.43111- 4 4.32124- 3 2.20000+ 1 2.70000+ 1 1.69995- 4 4.40769- 3 2.20000+ 1 2.90000+ 1 3.66307- 3 4.47300- 3 2.20000+ 1 3.00000+ 1 1.49063- 4 4.53791- 3 2.20000+ 1 3.20000+ 1 1.54158- 4 4.63483- 3 2.20000+ 1 3.30000+ 1 9.61710- 5 4.64448- 3 2.20000+ 1 3.50000+ 1 2.00836- 5 4.74693- 3 2.20000+ 1 3.60000+ 1 7.35417- 6 4.74808- 3 2.20000+ 1 4.10000+ 1 3.16795- 5 4.70121- 3 2.20000+ 1 4.30000+ 1 5.46751- 4 4.72041- 3 2.20000+ 1 4.40000+ 1 2.06491- 5 4.73091- 3 2.20000+ 1 5.80000+ 1 2.82846- 6 4.74891- 3 2.40000+ 1 2.40000+ 1 2.61944- 3 4.65634- 3 2.40000+ 1 2.50000+ 1 1.66600- 2 4.66933- 3 2.40000+ 1 2.70000+ 1 1.21630- 5 4.75578- 3 2.40000+ 1 2.90000+ 1 1.35570- 3 4.82109- 3 2.40000+ 1 3.00000+ 1 1.41109- 3 4.88600- 3 2.40000+ 1 3.20000+ 1 1.34073- 4 4.98292- 3 2.40000+ 1 3.30000+ 1 3.08015- 4 4.99257- 3 2.40000+ 1 3.50000+ 1 1.58112- 4 5.09502- 3 2.40000+ 1 3.60000+ 1 4.70951- 4 5.09617- 3 2.40000+ 1 4.10000+ 1 2.26275- 6 5.04930- 3 2.40000+ 1 4.30000+ 1 2.00262- 4 5.06850- 3 2.40000+ 1 4.40000+ 1 2.02523- 4 5.07900- 3 2.40000+ 1 5.80000+ 1 2.82844- 7 5.09700- 3 2.50000+ 1 2.50000+ 1 8.66962- 4 4.68232- 3 2.50000+ 1 2.70000+ 1 1.28130- 4 4.76877- 3 2.50000+ 1 2.90000+ 1 2.12213- 3 4.83408- 3 2.50000+ 1 3.00000+ 1 3.47353- 4 4.89899- 3 2.50000+ 1 3.20000+ 1 1.68579- 4 4.99591- 3 2.50000+ 1 3.30000+ 1 7.01506- 5 5.00556- 3 2.50000+ 1 3.50000+ 1 4.84818- 4 5.10801- 3 2.50000+ 1 3.60000+ 1 4.95013- 5 5.10916- 3 2.50000+ 1 4.10000+ 1 2.40426- 5 5.06229- 3 2.50000+ 1 4.30000+ 1 3.08880- 4 5.08149- 3 2.50000+ 1 4.40000+ 1 4.86522- 5 5.09199- 3 2.50000+ 1 5.80000+ 1 1.98002- 6 5.10999- 3 2.70000+ 1 2.70000+ 1 1.78197- 5 4.85522- 3 2.70000+ 1 2.90000+ 1 2.91064- 4 4.92053- 3 2.70000+ 1 3.00000+ 1 3.11137- 5 4.98544- 3 2.70000+ 1 3.20000+ 1 9.61700- 6 5.08236- 3 2.70000+ 1 3.30000+ 1 2.99825- 5 5.09201- 3 2.70000+ 1 3.50000+ 1 2.82843- 7 5.19446- 3 2.70000+ 1 3.60000+ 1 3.11137- 6 5.19561- 3 2.70000+ 1 4.10000+ 1 6.50564- 6 5.14874- 3 2.70000+ 1 4.30000+ 1 4.35600- 5 5.16794- 3 2.70000+ 1 4.40000+ 1 4.52567- 6 5.17844- 3 2.70000+ 1 5.80000+ 1 5.65703- 7 5.19644- 3 2.90000+ 1 2.90000+ 1 2.20619- 4 4.98584- 3 2.90000+ 1 3.00000+ 1 5.66006- 4 5.05075- 3 2.90000+ 1 3.20000+ 1 4.62173- 4 5.14767- 3 2.90000+ 1 3.30000+ 1 7.06863- 4 5.15732- 3 2.90000+ 1 3.50000+ 1 4.95005- 5 5.25977- 3 2.90000+ 1 3.60000+ 1 7.38247- 5 5.26092- 3 2.90000+ 1 4.10000+ 1 5.74195- 5 5.21405- 3 2.90000+ 1 4.30000+ 1 6.95823- 5 5.23325- 3 2.90000+ 1 4.40000+ 1 8.23092- 5 5.24375- 3 2.90000+ 1 5.80000+ 1 5.09135- 6 5.26175- 3 3.00000+ 1 3.00000+ 1 1.49913- 5 5.11566- 3 3.00000+ 1 3.20000+ 1 2.91348- 5 5.21258- 3 3.00000+ 1 3.30000+ 1 2.60220- 5 5.22223- 3 3.00000+ 1 3.50000+ 1 4.29925- 5 5.32468- 3 3.00000+ 1 3.60000+ 1 1.04655- 5 5.32583- 3 3.00000+ 1 4.10000+ 1 5.65699- 6 5.27896- 3 3.00000+ 1 4.30000+ 1 8.51376- 5 5.29816- 3 3.00000+ 1 4.40000+ 1 4.24270- 6 5.30866- 3 3.00000+ 1 5.80000+ 1 5.65699- 7 5.32666- 3 3.20000+ 1 3.20000+ 1 1.47258- 5 5.30950- 3 3.20000+ 1 3.30000+ 1 2.91686- 5 5.31915- 3 3.20000+ 1 3.50000+ 1 2.83169- 6 5.42160- 3 3.20000+ 1 3.60000+ 1 4.81397- 6 5.42275- 3 3.20000+ 1 4.10000+ 1 1.98227- 6 5.37588- 3 3.20000+ 1 4.30000+ 1 6.90963- 5 5.39508- 3 3.20000+ 1 4.40000+ 1 4.24762- 6 5.40558- 3 3.20000+ 1 5.80000+ 1 2.83169- 7 5.42358- 3 3.30000+ 1 3.30000+ 1 8.37137- 6 5.32880- 3 3.30000+ 1 3.50000+ 1 5.77335- 6 5.43125- 3 3.30000+ 1 3.60000+ 1 1.44331- 6 5.43240- 3 3.30000+ 1 4.10000+ 1 5.77335- 6 5.38553- 3 3.30000+ 1 4.30000+ 1 1.07678- 4 5.40473- 3 3.30000+ 1 4.40000+ 1 3.75265- 6 5.41523- 3 3.30000+ 1 5.80000+ 1 5.77335- 7 5.43323- 3 3.50000+ 1 3.50000+ 1 1.61880- 6 5.53370- 3 3.50000+ 1 3.60000+ 1 1.34902- 5 5.53485- 3 3.50000+ 1 4.30000+ 1 7.01498- 6 5.50718- 3 3.50000+ 1 4.40000+ 1 5.93593- 6 5.51768- 3 3.60000+ 1 3.60000+ 1 5.65233- 7 5.53600- 3 3.60000+ 1 4.10000+ 1 5.65233- 7 5.48913- 3 3.60000+ 1 4.30000+ 1 1.07394- 5 5.50833- 3 3.60000+ 1 4.40000+ 1 1.41306- 6 5.51883- 3 4.10000+ 1 4.10000+ 1 6.00278- 7 5.44226- 3 4.10000+ 1 4.30000+ 1 9.00425- 6 5.46146- 3 4.10000+ 1 4.40000+ 1 9.00425- 7 5.47196- 3 4.30000+ 1 4.30000+ 1 5.94495- 6 5.48066- 3 4.30000+ 1 4.40000+ 1 1.37673- 5 5.49116- 3 4.30000+ 1 5.80000+ 1 9.38668- 7 5.50916- 3 4.40000+ 1 4.40000+ 1 2.82849- 7 5.50166- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.36460- 5 5.72100- 4 1.40000+ 1 3.26920- 4 7.73000- 4 1.60000+ 1 2.33420- 3 3.01620- 3 2.10000+ 1 1.08070- 3 3.70735- 3 2.20000+ 1 8.05339- 3 3.75573- 3 2.70000+ 1 5.87740- 4 4.20326- 3 3.20000+ 1 2.35660- 4 4.43040- 3 3.30000+ 1 1.79470- 3 4.44005- 3 4.10000+ 1 1.15700- 4 4.49678- 3 5.80000+ 1 1.23290- 5 4.54448- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.59513- 2 1.26020- 4 1.30000+ 1 2.50000+ 1 2.34229- 2 1.39010- 4 1.30000+ 1 2.70000+ 1 3.69813- 3 2.25460- 4 1.30000+ 1 2.90000+ 1 3.62008- 3 2.90770- 4 1.30000+ 1 3.00000+ 1 1.02942- 2 3.55680- 4 1.30000+ 1 3.20000+ 1 2.01875- 3 4.52600- 4 1.30000+ 1 3.30000+ 1 2.27170- 3 4.62250- 4 1.30000+ 1 3.50000+ 1 3.41820- 4 5.64700- 4 1.30000+ 1 3.60000+ 1 5.62749- 4 5.65850- 4 1.30000+ 1 4.10000+ 1 6.90807- 4 5.18980- 4 1.30000+ 1 4.30000+ 1 5.68074- 4 5.38180- 4 1.30000+ 1 4.40000+ 1 1.40252- 3 5.48680- 4 1.30000+ 1 5.80000+ 1 5.99365- 5 5.66680- 4 1.40000+ 1 2.20000+ 1 5.13909- 2 0.00000+ 0 1.40000+ 1 2.40000+ 1 2.15725- 1 3.26920- 4 1.40000+ 1 2.50000+ 1 2.60326- 1 3.39910- 4 1.40000+ 1 2.70000+ 1 2.25751- 2 4.26360- 4 1.40000+ 1 2.90000+ 1 2.41470- 2 4.91670- 4 1.40000+ 1 3.00000+ 1 2.45723- 2 5.56580- 4 1.40000+ 1 3.20000+ 1 8.22894- 3 6.53500- 4 1.40000+ 1 3.30000+ 1 1.21001- 2 6.63150- 4 1.40000+ 1 3.50000+ 1 4.62150- 3 7.65600- 4 1.40000+ 1 3.60000+ 1 5.11185- 3 7.66750- 4 1.40000+ 1 4.10000+ 1 4.32853- 3 7.19880- 4 1.40000+ 1 4.30000+ 1 3.82928- 3 7.39080- 4 1.40000+ 1 4.40000+ 1 3.44576- 3 7.49580- 4 1.40000+ 1 5.80000+ 1 3.76804- 4 7.67580- 4 1.60000+ 1 1.60000+ 1 7.77011- 5 1.48250- 3 1.60000+ 1 1.80000+ 1 3.57689- 4 1.64570- 3 1.60000+ 1 1.90000+ 1 9.60142- 3 1.91020- 3 1.60000+ 1 2.10000+ 1 6.25077- 4 2.17365- 3 1.60000+ 1 2.20000+ 1 8.36777- 4 2.22203- 3 1.60000+ 1 2.40000+ 1 2.52951- 3 2.57012- 3 1.60000+ 1 2.50000+ 1 4.60240- 3 2.58311- 3 1.60000+ 1 2.70000+ 1 3.52337- 5 2.66956- 3 1.60000+ 1 2.90000+ 1 4.65592- 5 2.73487- 3 1.60000+ 1 3.00000+ 1 1.42004- 3 2.79978- 3 1.60000+ 1 3.20000+ 1 1.02240- 4 2.89670- 3 1.60000+ 1 3.30000+ 1 1.33702- 4 2.90635- 3 1.60000+ 1 3.50000+ 1 6.51186- 5 3.00880- 3 1.60000+ 1 3.60000+ 1 1.12621- 4 3.00995- 3 1.60000+ 1 4.10000+ 1 6.60616- 6 2.96308- 3 1.60000+ 1 4.30000+ 1 6.92077- 6 2.98228- 3 1.60000+ 1 4.40000+ 1 1.88733- 4 2.99278- 3 1.60000+ 1 5.80000+ 1 6.29156- 7 3.01078- 3 1.80000+ 1 1.80000+ 1 6.29144- 7 1.80890- 3 1.80000+ 1 1.90000+ 1 1.22509- 2 2.07340- 3 1.80000+ 1 2.10000+ 1 2.90670- 4 2.33685- 3 1.80000+ 1 2.20000+ 1 2.87463- 3 2.38523- 3 1.80000+ 1 2.40000+ 1 1.57060- 3 2.73332- 3 1.80000+ 1 2.50000+ 1 7.65559- 3 2.74631- 3 1.80000+ 1 2.70000+ 1 7.70703- 5 2.83276- 3 1.80000+ 1 2.90000+ 1 2.83120- 6 2.89807- 3 1.80000+ 1 3.00000+ 1 1.86558- 3 2.96298- 3 1.80000+ 1 3.20000+ 1 5.69378- 5 3.05990- 3 1.80000+ 1 3.30000+ 1 4.44191- 4 3.06955- 3 1.80000+ 1 3.50000+ 1 3.68066- 5 3.17200- 3 1.80000+ 1 3.60000+ 1 1.82768- 4 3.17315- 3 1.80000+ 1 4.10000+ 1 1.44698- 5 3.12628- 3 1.80000+ 1 4.30000+ 1 6.29144- 7 3.14548- 3 1.80000+ 1 4.40000+ 1 2.49461- 4 3.15598- 3 1.80000+ 1 5.80000+ 1 1.25828- 6 3.17398- 3 1.90000+ 1 1.90000+ 1 1.52552- 2 2.33790- 3 1.90000+ 1 2.10000+ 1 2.28870- 2 2.60135- 3 1.90000+ 1 2.20000+ 1 2.95313- 2 2.64973- 3 1.90000+ 1 2.40000+ 1 2.19465- 2 2.99782- 3 1.90000+ 1 2.50000+ 1 2.49929- 2 3.01081- 3 1.90000+ 1 2.70000+ 1 2.44399- 3 3.09726- 3 1.90000+ 1 2.90000+ 1 2.90156- 3 3.16257- 3 1.90000+ 1 3.00000+ 1 5.90641- 3 3.22748- 3 1.90000+ 1 3.20000+ 1 4.31879- 3 3.32440- 3 1.90000+ 1 3.30000+ 1 5.57301- 3 3.33405- 3 1.90000+ 1 3.50000+ 1 7.47105- 4 3.43650- 3 1.90000+ 1 3.60000+ 1 8.09386- 4 3.43765- 3 1.90000+ 1 4.10000+ 1 4.79102- 4 3.39078- 3 1.90000+ 1 4.30000+ 1 4.74691- 4 3.40998- 3 1.90000+ 1 4.40000+ 1 8.30779- 4 3.42048- 3 1.90000+ 1 5.80000+ 1 4.21521- 5 3.43848- 3 2.10000+ 1 2.10000+ 1 1.62008- 4 2.86480- 3 2.10000+ 1 2.20000+ 1 3.87696- 3 2.91318- 3 2.10000+ 1 2.40000+ 1 6.40775- 4 3.26127- 3 2.10000+ 1 2.50000+ 1 7.20909- 3 3.27426- 3 2.10000+ 1 2.70000+ 1 7.92718- 5 3.36071- 3 2.10000+ 1 2.90000+ 1 1.44696- 5 3.42602- 3 2.10000+ 1 3.00000+ 1 3.39132- 3 3.49093- 3 2.10000+ 1 3.20000+ 1 5.00173- 5 3.58785- 3 2.10000+ 1 3.30000+ 1 6.34180- 4 3.59750- 3 2.10000+ 1 3.50000+ 1 1.76155- 5 3.69995- 3 2.10000+ 1 3.60000+ 1 1.43133- 4 3.70110- 3 2.10000+ 1 4.10000+ 1 1.35270- 5 3.65423- 3 2.10000+ 1 4.30000+ 1 1.88726- 6 3.67343- 3 2.10000+ 1 4.40000+ 1 4.50474- 4 3.68393- 3 2.10000+ 1 5.80000+ 1 1.25825- 6 3.70193- 3 2.20000+ 1 2.20000+ 1 1.64637- 3 2.96156- 3 2.20000+ 1 2.40000+ 1 5.67451- 3 3.30965- 3 2.20000+ 1 2.50000+ 1 4.62120- 3 3.32264- 3 2.20000+ 1 2.70000+ 1 1.16705- 4 3.40909- 3 2.20000+ 1 2.90000+ 1 2.87196- 4 3.47440- 3 2.20000+ 1 3.00000+ 1 4.31561- 3 3.53931- 3 2.20000+ 1 3.20000+ 1 6.22542- 4 3.63623- 3 2.20000+ 1 3.30000+ 1 5.43584- 4 3.64588- 3 2.20000+ 1 3.50000+ 1 1.49108- 4 3.74833- 3 2.20000+ 1 3.60000+ 1 1.12618- 4 3.74948- 3 2.20000+ 1 4.10000+ 1 2.04477- 5 3.70261- 3 2.20000+ 1 4.30000+ 1 3.96355- 5 3.72181- 3 2.20000+ 1 4.40000+ 1 5.71571- 4 3.73231- 3 2.20000+ 1 5.80000+ 1 1.88727- 6 3.75031- 3 2.40000+ 1 2.40000+ 1 9.96589- 4 3.65774- 3 2.40000+ 1 2.50000+ 1 2.56545- 2 3.67073- 3 2.40000+ 1 2.70000+ 1 2.78713- 4 3.75718- 3 2.40000+ 1 2.90000+ 1 2.97588- 4 3.82249- 3 2.40000+ 1 3.00000+ 1 3.08347- 3 3.88740- 3 2.40000+ 1 3.20000+ 1 1.40621- 4 3.98432- 3 2.40000+ 1 3.30000+ 1 1.00066- 3 3.99397- 3 2.40000+ 1 3.50000+ 1 5.91415- 5 4.09642- 3 2.40000+ 1 3.60000+ 1 6.63434- 4 4.09757- 3 2.40000+ 1 4.10000+ 1 4.71883- 5 4.05070- 3 2.40000+ 1 4.30000+ 1 4.65590- 5 4.06990- 3 2.40000+ 1 4.40000+ 1 4.06431- 4 4.08040- 3 2.40000+ 1 5.80000+ 1 4.08948- 6 4.09840- 3 2.50000+ 1 2.50000+ 1 1.02131- 2 3.68372- 3 2.50000+ 1 2.70000+ 1 4.88542- 4 3.77017- 3 2.50000+ 1 2.90000+ 1 1.42183- 3 3.83548- 3 2.50000+ 1 3.00000+ 1 3.67959- 3 3.90039- 3 2.50000+ 1 3.20000+ 1 1.34165- 3 3.99731- 3 2.50000+ 1 3.30000+ 1 8.91820- 4 4.00696- 3 2.50000+ 1 3.50000+ 1 6.77605- 4 4.10941- 3 2.50000+ 1 3.60000+ 1 5.36362- 4 4.11056- 3 2.50000+ 1 4.10000+ 1 8.08475- 5 4.06369- 3 2.50000+ 1 4.30000+ 1 2.22721- 4 4.08289- 3 2.50000+ 1 4.40000+ 1 4.92013- 4 4.09339- 3 2.50000+ 1 5.80000+ 1 6.92070- 6 4.11139- 3 2.70000+ 1 2.70000+ 1 4.40408- 6 3.85662- 3 2.70000+ 1 2.90000+ 1 1.10102- 5 3.92193- 3 2.70000+ 1 3.00000+ 1 3.63025- 4 3.98684- 3 2.70000+ 1 3.20000+ 1 1.41562- 5 4.08376- 3 2.70000+ 1 3.30000+ 1 1.98190- 5 4.09341- 3 2.70000+ 1 3.50000+ 1 6.92074- 6 4.19586- 3 2.70000+ 1 3.60000+ 1 1.19540- 5 4.19701- 3 2.70000+ 1 4.10000+ 1 1.57284- 6 4.15014- 3 2.70000+ 1 4.30000+ 1 1.57284- 6 4.16934- 3 2.70000+ 1 4.40000+ 1 4.84452- 5 4.17984- 3 2.90000+ 1 3.00000+ 1 4.44199- 4 4.05215- 3 2.90000+ 1 3.20000+ 1 2.51665- 6 4.14907- 3 2.90000+ 1 3.30000+ 1 4.71884- 5 4.15872- 3 2.90000+ 1 3.50000+ 1 8.17913- 6 4.26117- 3 2.90000+ 1 3.60000+ 1 3.80643- 5 4.26232- 3 2.90000+ 1 4.10000+ 1 2.20205- 6 4.21545- 3 2.90000+ 1 4.40000+ 1 5.94557- 5 4.24515- 3 2.90000+ 1 5.80000+ 1 3.14584- 7 4.26315- 3 3.00000+ 1 3.00000+ 1 5.39181- 4 4.11706- 3 3.00000+ 1 3.20000+ 1 6.43002- 4 4.21398- 3 3.00000+ 1 3.30000+ 1 8.16949- 4 4.22363- 3 3.00000+ 1 3.50000+ 1 1.05069- 4 4.32608- 3 3.00000+ 1 3.60000+ 1 1.17966- 4 4.32723- 3 3.00000+ 1 4.10000+ 1 7.14080- 5 4.28036- 3 3.00000+ 1 4.30000+ 1 7.26677- 5 4.29956- 3 3.00000+ 1 4.40000+ 1 1.50064- 4 4.31006- 3 3.00000+ 1 5.80000+ 1 6.29147- 6 4.32806- 3 3.20000+ 1 3.20000+ 1 4.08949- 6 4.31090- 3 3.20000+ 1 3.30000+ 1 1.10732- 4 4.32055- 3 3.20000+ 1 3.50000+ 1 3.46043- 6 4.42300- 3 3.20000+ 1 3.60000+ 1 2.86263- 5 4.42415- 3 3.20000+ 1 4.10000+ 1 2.51664- 6 4.37728- 3 3.20000+ 1 4.30000+ 1 3.14583- 7 4.39648- 3 3.20000+ 1 4.40000+ 1 8.55663- 5 4.40698- 3 3.20000+ 1 5.80000+ 1 3.14583- 7 4.42498- 3 3.30000+ 1 3.30000+ 1 4.78165- 5 4.33020- 3 3.30000+ 1 3.50000+ 1 2.79988- 5 4.43265- 3 3.30000+ 1 3.60000+ 1 2.23359- 5 4.43380- 3 3.30000+ 1 4.10000+ 1 3.46046- 6 4.38693- 3 3.30000+ 1 4.30000+ 1 6.60619- 6 4.40613- 3 3.30000+ 1 4.40000+ 1 1.08217- 4 4.41663- 3 3.30000+ 1 5.80000+ 1 3.14586- 7 4.43463- 3 3.50000+ 1 3.50000+ 1 6.11732- 7 4.53510- 3 3.50000+ 1 3.60000+ 1 1.80454- 5 4.53625- 3 3.50000+ 1 4.10000+ 1 1.22345- 6 4.48938- 3 3.50000+ 1 4.30000+ 1 1.22345- 6 4.50858- 3 3.50000+ 1 4.40000+ 1 1.34590- 5 4.51908- 3 3.60000+ 1 3.60000+ 1 6.09960- 6 4.53740- 3 3.60000+ 1 4.10000+ 1 1.92600- 6 4.49053- 3 3.60000+ 1 4.30000+ 1 6.09960- 6 4.50973- 3 3.60000+ 1 4.40000+ 1 1.60508- 5 4.52023- 3 3.60000+ 1 5.80000+ 1 3.21031- 7 4.53823- 3 4.10000+ 1 4.10000+ 1 3.14566- 7 4.44366- 3 4.10000+ 1 4.30000+ 1 3.14566- 7 4.46286- 3 4.10000+ 1 4.40000+ 1 9.43686- 6 4.47336- 3 4.30000+ 1 4.40000+ 1 9.75189- 6 4.49256- 3 4.40000+ 1 4.40000+ 1 1.17544- 5 4.50306- 3 4.40000+ 1 5.80000+ 1 1.06858- 6 4.52106- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.46758- 3 2.60730- 3 1.90000+ 1 2.10739- 4 2.87180- 3 2.40000+ 1 5.39736- 2 3.53172- 3 2.90000+ 1 5.81456- 4 3.69647- 3 3.00000+ 1 4.93267- 5 3.76138- 3 3.50000+ 1 1.95699- 3 3.97040- 3 4.30000+ 1 9.94753- 5 3.94388- 3 4.40000+ 1 7.84595- 6 3.95438- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.88769- 2 8.14000- 5 1.40000+ 1 3.30000+ 1 7.01534- 3 9.10500- 5 1.40000+ 1 3.50000+ 1 1.67564- 2 1.93500- 4 1.40000+ 1 3.60000+ 1 1.76853- 3 1.94650- 4 1.40000+ 1 4.10000+ 1 9.51910- 4 1.47780- 4 1.40000+ 1 4.30000+ 1 4.59909- 4 1.66980- 4 1.40000+ 1 4.40000+ 1 9.15561- 4 1.77480- 4 1.40000+ 1 5.80000+ 1 8.18727- 5 1.95480- 4 1.60000+ 1 1.60000+ 1 4.27152- 6 9.10400- 4 1.60000+ 1 1.80000+ 1 7.26897- 4 1.07360- 3 1.60000+ 1 1.90000+ 1 7.08390- 4 1.33810- 3 1.60000+ 1 2.10000+ 1 2.75927- 2 1.60155- 3 1.60000+ 1 2.20000+ 1 3.26497- 3 1.64993- 3 1.60000+ 1 2.40000+ 1 1.61380- 2 1.99802- 3 1.60000+ 1 2.50000+ 1 3.62031- 3 2.01101- 3 1.60000+ 1 2.70000+ 1 1.42384- 5 2.09746- 3 1.60000+ 1 2.90000+ 1 1.48789- 4 2.16277- 3 1.60000+ 1 3.00000+ 1 1.08919- 4 2.22768- 3 1.60000+ 1 3.20000+ 1 3.53190- 3 2.32460- 3 1.60000+ 1 3.30000+ 1 4.49240- 4 2.33425- 3 1.60000+ 1 3.50000+ 1 4.00101- 4 2.43670- 3 1.60000+ 1 3.60000+ 1 7.19070- 5 2.43785- 3 1.60000+ 1 4.10000+ 1 3.55965- 6 2.39098- 3 1.60000+ 1 4.30000+ 1 2.34933- 5 2.41018- 3 1.60000+ 1 4.40000+ 1 1.49505- 5 2.42068- 3 1.80000+ 1 1.80000+ 1 3.23941- 4 1.23680- 3 1.80000+ 1 1.90000+ 1 3.16174- 3 1.50130- 3 1.80000+ 1 2.10000+ 1 2.50587- 2 1.76475- 3 1.80000+ 1 2.20000+ 1 1.39540- 3 1.81313- 3 1.80000+ 1 2.40000+ 1 1.22374- 2 2.16122- 3 1.80000+ 1 2.50000+ 1 6.77200- 3 2.17421- 3 1.80000+ 1 2.70000+ 1 9.75334- 5 2.26066- 3 1.80000+ 1 2.90000+ 1 1.34557- 4 2.32597- 3 1.80000+ 1 3.00000+ 1 5.45338- 4 2.39088- 3 1.80000+ 1 3.20000+ 1 3.16820- 3 2.48780- 3 1.80000+ 1 3.30000+ 1 2.17142- 4 2.49745- 3 1.80000+ 1 3.50000+ 1 2.94026- 4 2.59990- 3 1.80000+ 1 3.60000+ 1 1.58764- 4 2.60105- 3 1.80000+ 1 4.10000+ 1 1.70866- 5 2.55418- 3 1.80000+ 1 4.30000+ 1 2.13591- 5 2.57338- 3 1.80000+ 1 4.40000+ 1 7.40422- 5 2.58388- 3 1.80000+ 1 5.80000+ 1 1.42384- 6 2.60188- 3 1.90000+ 1 1.90000+ 1 1.09784- 3 1.76580- 3 1.90000+ 1 2.10000+ 1 4.75924- 2 2.02925- 3 1.90000+ 1 2.20000+ 1 1.81041- 3 2.07763- 3 1.90000+ 1 2.40000+ 1 1.89017- 3 2.42572- 3 1.90000+ 1 2.50000+ 1 1.59342- 3 2.43871- 3 1.90000+ 1 2.70000+ 1 1.33852- 4 2.52516- 3 1.90000+ 1 2.90000+ 1 4.58500- 4 2.59047- 3 1.90000+ 1 3.00000+ 1 3.61665- 4 2.65538- 3 1.90000+ 1 3.20000+ 1 6.09369- 3 2.75230- 3 1.90000+ 1 3.30000+ 1 2.63418- 4 2.76195- 3 1.90000+ 1 3.50000+ 1 3.55966- 5 2.86440- 3 1.90000+ 1 3.60000+ 1 2.70538- 5 2.86555- 3 1.90000+ 1 4.10000+ 1 2.49176- 5 2.81868- 3 1.90000+ 1 4.30000+ 1 6.83461- 5 2.83788- 3 1.90000+ 1 4.40000+ 1 4.91231- 5 2.84838- 3 1.90000+ 1 5.80000+ 1 2.13593- 6 2.86638- 3 2.10000+ 1 2.10000+ 1 4.42630- 2 2.29270- 3 2.10000+ 1 2.20000+ 1 8.63181- 2 2.34108- 3 2.10000+ 1 2.40000+ 1 5.29075- 2 2.68917- 3 2.10000+ 1 2.50000+ 1 6.23408- 2 2.70216- 3 2.10000+ 1 2.70000+ 1 6.34368- 3 2.78861- 3 2.10000+ 1 2.90000+ 1 5.99211- 3 2.85392- 3 2.10000+ 1 3.00000+ 1 1.09847- 2 2.91883- 3 2.10000+ 1 3.20000+ 1 1.41433- 2 3.01575- 3 2.10000+ 1 3.30000+ 1 1.60937- 2 3.02540- 3 2.10000+ 1 3.50000+ 1 1.80698- 3 3.12785- 3 2.10000+ 1 3.60000+ 1 2.05114- 3 3.12900- 3 2.10000+ 1 4.10000+ 1 1.22667- 3 3.08213- 3 2.10000+ 1 4.30000+ 1 9.82516- 4 3.10133- 3 2.10000+ 1 4.40000+ 1 1.58629- 3 3.11183- 3 2.10000+ 1 5.80000+ 1 1.07510- 4 3.12983- 3 2.20000+ 1 2.20000+ 1 1.35552- 3 2.38946- 3 2.20000+ 1 2.40000+ 1 6.27547- 2 2.73755- 3 2.20000+ 1 2.50000+ 1 2.93163- 3 2.75054- 3 2.20000+ 1 2.70000+ 1 3.63077- 4 2.83699- 3 2.20000+ 1 2.90000+ 1 1.83687- 4 2.90230- 3 2.20000+ 1 3.00000+ 1 3.31052- 4 2.96721- 3 2.20000+ 1 3.20000+ 1 1.10809- 2 3.06413- 3 2.20000+ 1 3.30000+ 1 4.08654- 4 3.07378- 3 2.20000+ 1 3.50000+ 1 1.96496- 3 3.17623- 3 2.20000+ 1 3.60000+ 1 7.97380- 5 3.17738- 3 2.20000+ 1 4.10000+ 1 6.12272- 5 3.13051- 3 2.20000+ 1 4.30000+ 1 2.77659- 5 3.14971- 3 2.20000+ 1 4.40000+ 1 4.55656- 5 3.16021- 3 2.20000+ 1 5.80000+ 1 4.98340- 6 3.17821- 3 2.40000+ 1 2.40000+ 1 6.23224- 2 3.08564- 3 2.40000+ 1 2.50000+ 1 1.78175- 1 3.09863- 3 2.40000+ 1 2.70000+ 1 3.97770- 3 3.18508- 3 2.40000+ 1 2.90000+ 1 2.29174- 3 3.25039- 3 2.40000+ 1 3.00000+ 1 4.49235- 4 3.31530- 3 2.40000+ 1 3.20000+ 1 7.47686- 3 3.41222- 3 2.40000+ 1 3.30000+ 1 1.10937- 2 3.42187- 3 2.40000+ 1 3.50000+ 1 3.75185- 3 3.52432- 3 2.40000+ 1 3.60000+ 1 5.53032- 3 3.52547- 3 2.40000+ 1 4.10000+ 1 7.77431- 4 3.47860- 3 2.40000+ 1 4.30000+ 1 3.68781- 4 3.49780- 3 2.40000+ 1 4.40000+ 1 6.54988- 5 3.50830- 3 2.40000+ 1 5.80000+ 1 6.76330- 5 3.52630- 3 2.50000+ 1 2.50000+ 1 3.71384- 3 3.11162- 3 2.50000+ 1 2.70000+ 1 6.23300- 4 3.19807- 3 2.50000+ 1 2.90000+ 1 6.47003- 4 3.26338- 3 2.50000+ 1 3.00000+ 1 3.33908- 4 3.32829- 3 2.50000+ 1 3.20000+ 1 7.32828- 3 3.42521- 3 2.50000+ 1 3.30000+ 1 4.86157- 4 3.43486- 3 2.50000+ 1 3.50000+ 1 4.79105- 3 3.53731- 3 2.50000+ 1 3.60000+ 1 2.11111- 4 3.53846- 3 2.50000+ 1 4.10000+ 1 1.12025- 4 3.49159- 3 2.50000+ 1 4.30000+ 1 9.04777- 5 3.51079- 3 2.50000+ 1 4.40000+ 1 4.73940- 5 3.52129- 3 2.50000+ 1 5.80000+ 1 9.33515- 6 3.53929- 3 2.70000+ 1 2.70000+ 1 1.42388- 6 3.28452- 3 2.70000+ 1 2.90000+ 1 2.27819- 5 3.34983- 3 2.70000+ 1 3.00000+ 1 2.13597- 5 3.41474- 3 2.70000+ 1 3.20000+ 1 8.17341- 4 3.51166- 3 2.70000+ 1 3.30000+ 1 5.55330- 5 3.52131- 3 2.70000+ 1 3.50000+ 1 1.05371- 4 3.62376- 3 2.70000+ 1 3.60000+ 1 1.56630- 5 3.62491- 3 2.70000+ 1 4.10000+ 1 7.11970- 7 3.57804- 3 2.70000+ 1 4.30000+ 1 3.55974- 6 3.59724- 3 2.70000+ 1 4.40000+ 1 2.84776- 6 3.60774- 3 2.90000+ 1 2.90000+ 1 1.49506- 5 3.41514- 3 2.90000+ 1 3.00000+ 1 8.54337- 5 3.48005- 3 2.90000+ 1 3.20000+ 1 7.61768- 4 3.57697- 3 2.90000+ 1 3.30000+ 1 3.34613- 5 3.58662- 3 2.90000+ 1 3.50000+ 1 5.76678- 5 3.68907- 3 2.90000+ 1 3.60000+ 1 1.56626- 5 3.69022- 3 2.90000+ 1 4.10000+ 1 4.27153- 6 3.64335- 3 2.90000+ 1 4.30000+ 1 4.98340- 6 3.66255- 3 2.90000+ 1 4.40000+ 1 1.21032- 5 3.67305- 3 2.90000+ 1 5.80000+ 1 7.11952- 7 3.69105- 3 3.00000+ 1 3.00000+ 1 3.06128- 5 3.54496- 3 3.00000+ 1 3.20000+ 1 1.41603- 3 3.64188- 3 3.00000+ 1 3.30000+ 1 5.12590- 5 3.65153- 3 3.00000+ 1 3.50000+ 1 9.96661- 6 3.75398- 3 3.00000+ 1 3.60000+ 1 5.69544- 6 3.75513- 3 3.00000+ 1 4.10000+ 1 4.27136- 6 3.70826- 3 3.00000+ 1 4.30000+ 1 1.28148- 5 3.72746- 3 3.00000+ 1 4.40000+ 1 8.54301- 6 3.73796- 3 3.20000+ 1 3.20000+ 1 1.08073- 3 3.73880- 3 3.20000+ 1 3.30000+ 1 2.07961- 3 3.74845- 3 3.20000+ 1 3.50000+ 1 2.54872- 4 3.85090- 3 3.20000+ 1 3.60000+ 1 2.42053- 4 3.85205- 3 3.20000+ 1 4.10000+ 1 1.58047- 4 3.80518- 3 3.20000+ 1 4.30000+ 1 1.25297- 4 3.82438- 3 3.20000+ 1 4.40000+ 1 2.05038- 4 3.83488- 3 3.20000+ 1 5.80000+ 1 1.35263- 5 3.85288- 3 3.30000+ 1 3.30000+ 1 2.83964- 5 3.75810- 3 3.30000+ 1 3.50000+ 1 3.26223- 4 3.86055- 3 3.30000+ 1 3.60000+ 1 1.25466- 5 3.86170- 3 3.30000+ 1 4.10000+ 1 8.58489- 6 3.81483- 3 3.30000+ 1 4.30000+ 1 4.62242- 6 3.83403- 3 3.30000+ 1 4.40000+ 1 6.60380- 6 3.84453- 3 3.30000+ 1 5.80000+ 1 6.60380- 7 3.86253- 3 3.50000+ 1 3.50000+ 1 3.67372- 5 3.96300- 3 3.50000+ 1 3.60000+ 1 1.33651- 4 3.96415- 3 3.50000+ 1 4.10000+ 1 1.83695- 5 3.91728- 3 3.50000+ 1 4.30000+ 1 8.23437- 6 3.93648- 3 3.50000+ 1 4.40000+ 1 1.26678- 6 3.94698- 3 3.50000+ 1 5.80000+ 1 1.90031- 6 3.96498- 3 3.60000+ 1 3.60000+ 1 2.23791- 6 3.96530- 3 3.60000+ 1 4.10000+ 1 2.98367- 6 3.91843- 3 3.60000+ 1 4.30000+ 1 2.23791- 6 3.93763- 3 3.60000+ 1 4.40000+ 1 7.45949- 7 3.94813- 3 4.10000+ 1 4.30000+ 1 9.28244- 7 3.89076- 3 4.10000+ 1 4.40000+ 1 9.28244- 7 3.90126- 3 4.30000+ 1 4.30000+ 1 1.18209- 6 3.90996- 3 4.30000+ 1 4.40000+ 1 2.36408- 6 3.92046- 3 4.40000+ 1 4.40000+ 1 1.66319- 6 3.93096- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.61320- 3 2.67090- 3 2.40000+ 1 2.58071- 3 3.33082- 3 2.50000+ 1 5.05431- 2 3.34381- 3 3.00000+ 1 3.79441- 4 3.56048- 3 3.50000+ 1 9.16782- 5 3.76950- 3 3.60000+ 1 1.76950- 3 3.77065- 3 4.40000+ 1 5.97071- 5 3.75348- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.10093- 5 7.09500- 4 1.60000+ 1 1.80000+ 1 2.78198- 4 8.72700- 4 1.60000+ 1 1.90000+ 1 1.48516- 3 1.13720- 3 1.60000+ 1 2.10000+ 1 3.11167- 3 1.40065- 3 1.60000+ 1 2.20000+ 1 3.08128- 2 1.44903- 3 1.60000+ 1 2.40000+ 1 4.05328- 3 1.79712- 3 1.60000+ 1 2.50000+ 1 1.69635- 2 1.81011- 3 1.60000+ 1 2.70000+ 1 1.59383- 5 1.89656- 3 1.60000+ 1 2.90000+ 1 2.24576- 5 1.96187- 3 1.60000+ 1 3.00000+ 1 2.35454- 4 2.02678- 3 1.60000+ 1 3.20000+ 1 3.91222- 4 2.12370- 3 1.60000+ 1 3.30000+ 1 3.92066- 3 2.13335- 3 1.60000+ 1 3.50000+ 1 7.89675- 5 2.23580- 3 1.60000+ 1 3.60000+ 1 3.68752- 4 2.23695- 3 1.60000+ 1 4.10000+ 1 3.62226- 6 2.19008- 3 1.60000+ 1 4.30000+ 1 3.62226- 6 2.20928- 3 1.60000+ 1 4.40000+ 1 3.18777- 5 2.21978- 3 1.80000+ 1 1.80000+ 1 1.37650- 5 1.03590- 3 1.80000+ 1 1.90000+ 1 4.62793- 3 1.30040- 3 1.80000+ 1 2.10000+ 1 2.26762- 4 1.56385- 3 1.80000+ 1 2.20000+ 1 3.16611- 2 1.61223- 3 1.80000+ 1 2.40000+ 1 2.34073- 3 1.96032- 3 1.80000+ 1 2.50000+ 1 1.05346- 2 1.97331- 3 1.80000+ 1 2.70000+ 1 3.47743- 5 2.05976- 3 1.80000+ 1 2.90000+ 1 3.62226- 6 2.12507- 3 1.80000+ 1 3.00000+ 1 7.35339- 4 2.18998- 3 1.80000+ 1 3.20000+ 1 5.79582- 6 2.28690- 3 1.80000+ 1 3.30000+ 1 4.01702- 3 2.29655- 3 1.80000+ 1 3.50000+ 1 5.36112- 5 2.39900- 3 1.80000+ 1 3.60000+ 1 2.24576- 4 2.40015- 3 1.80000+ 1 4.10000+ 1 5.79582- 6 2.35328- 3 1.80000+ 1 4.30000+ 1 7.24472- 7 2.37248- 3 1.80000+ 1 4.40000+ 1 9.92548- 5 2.38298- 3 1.80000+ 1 5.80000+ 1 7.24472- 7 2.40098- 3 1.90000+ 1 1.90000+ 1 2.78201- 3 1.56490- 3 1.90000+ 1 2.10000+ 1 2.82919- 3 1.82835- 3 1.90000+ 1 2.20000+ 1 4.53787- 2 1.87673- 3 1.90000+ 1 2.40000+ 1 1.88877- 3 2.22482- 3 1.90000+ 1 2.50000+ 1 2.92257- 3 2.23781- 3 1.90000+ 1 2.70000+ 1 2.96310- 4 2.32426- 3 1.90000+ 1 2.90000+ 1 6.10739- 4 2.38957- 3 1.90000+ 1 3.00000+ 1 9.04149- 4 2.45448- 3 1.90000+ 1 3.20000+ 1 4.53519- 4 2.55140- 3 1.90000+ 1 3.30000+ 1 5.72564- 3 2.56105- 3 1.90000+ 1 3.50000+ 1 3.62230- 5 2.66350- 3 1.90000+ 1 3.60000+ 1 5.28876- 5 2.66465- 3 1.90000+ 1 4.10000+ 1 5.50600- 5 2.61778- 3 1.90000+ 1 4.30000+ 1 8.98347- 5 2.63698- 3 1.90000+ 1 4.40000+ 1 1.22432- 4 2.64748- 3 1.90000+ 1 5.80000+ 1 5.07121- 6 2.66548- 3 2.10000+ 1 2.10000+ 1 6.23748- 4 2.09180- 3 2.10000+ 1 2.20000+ 1 6.48353- 2 2.14018- 3 2.10000+ 1 2.40000+ 1 2.71957- 3 2.48827- 3 2.10000+ 1 2.50000+ 1 3.76784- 2 2.50126- 3 2.10000+ 1 2.70000+ 1 3.20213- 4 2.58771- 3 2.10000+ 1 2.90000+ 1 6.52018- 5 2.65302- 3 2.10000+ 1 3.00000+ 1 4.65091- 4 2.71793- 3 2.10000+ 1 3.20000+ 1 1.80390- 4 2.81485- 3 2.10000+ 1 3.30000+ 1 8.28912- 3 2.82450- 3 2.10000+ 1 3.50000+ 1 8.25883- 5 2.92695- 3 2.10000+ 1 3.60000+ 1 1.12873- 3 2.92810- 3 2.10000+ 1 4.10000+ 1 5.36105- 5 2.88123- 3 2.10000+ 1 4.30000+ 1 1.01420- 5 2.90043- 3 2.10000+ 1 4.40000+ 1 6.37505- 5 2.91093- 3 2.10000+ 1 5.80000+ 1 4.34667- 6 2.92893- 3 2.20000+ 1 2.20000+ 1 7.13698- 2 2.18856- 3 2.20000+ 1 2.40000+ 1 5.93541- 2 2.53665- 3 2.20000+ 1 2.50000+ 1 9.57567- 2 2.54964- 3 2.20000+ 1 2.70000+ 1 6.70219- 3 2.63609- 3 2.20000+ 1 2.90000+ 1 7.19897- 3 2.70140- 3 2.20000+ 1 3.00000+ 1 1.05733- 2 2.76631- 3 2.20000+ 1 3.20000+ 1 1.20554- 2 2.86323- 3 2.20000+ 1 3.30000+ 1 2.24330- 2 2.87288- 3 2.20000+ 1 3.50000+ 1 2.01840- 3 2.97533- 3 2.20000+ 1 3.60000+ 1 3.01891- 3 2.97648- 3 2.20000+ 1 4.10000+ 1 1.28819- 3 2.92961- 3 2.20000+ 1 4.30000+ 1 1.16859- 3 2.94881- 3 2.20000+ 1 4.40000+ 1 1.53016- 3 2.95931- 3 2.20000+ 1 5.80000+ 1 1.13024- 4 2.97731- 3 2.40000+ 1 2.40000+ 1 5.29085- 3 2.88474- 3 2.40000+ 1 2.50000+ 1 1.67898- 1 2.89773- 3 2.40000+ 1 2.70000+ 1 7.73015- 4 2.98418- 3 2.40000+ 1 2.90000+ 1 4.88298- 4 3.04949- 3 2.40000+ 1 3.00000+ 1 3.71658- 4 3.11440- 3 2.40000+ 1 3.20000+ 1 4.86113- 4 3.21132- 3 2.40000+ 1 3.30000+ 1 7.13842- 3 3.22097- 3 2.40000+ 1 3.50000+ 1 3.17310- 4 3.32342- 3 2.40000+ 1 3.60000+ 1 4.29243- 3 3.32457- 3 2.40000+ 1 4.10000+ 1 1.42002- 4 3.27770- 3 2.40000+ 1 4.30000+ 1 7.82443- 5 3.29690- 3 2.40000+ 1 4.40000+ 1 5.21635- 5 3.30740- 3 2.40000+ 1 5.80000+ 1 1.23158- 5 3.32540- 3 2.50000+ 1 2.50000+ 1 1.14467- 1 2.91072- 3 2.50000+ 1 2.70000+ 1 4.13175- 3 2.99717- 3 2.50000+ 1 2.90000+ 1 2.44589- 3 3.06248- 3 2.50000+ 1 3.00000+ 1 6.45516- 4 3.12739- 3 2.50000+ 1 3.20000+ 1 6.47840- 3 3.22431- 3 2.50000+ 1 3.30000+ 1 1.39709- 2 3.23396- 3 2.50000+ 1 3.50000+ 1 5.30830- 3 3.33641- 3 2.50000+ 1 3.60000+ 1 6.45148- 3 3.33756- 3 2.50000+ 1 4.10000+ 1 8.05617- 4 3.29069- 3 2.50000+ 1 4.30000+ 1 4.00648- 4 3.30989- 3 2.50000+ 1 4.40000+ 1 9.34598- 5 3.32039- 3 2.50000+ 1 5.80000+ 1 7.09976- 5 3.33839- 3 2.70000+ 1 2.90000+ 1 7.24450- 7 3.14893- 3 2.70000+ 1 3.00000+ 1 4.92617- 5 3.21384- 3 2.70000+ 1 3.20000+ 1 4.63652- 5 3.31076- 3 2.70000+ 1 3.30000+ 1 8.58478- 4 3.32041- 3 2.70000+ 1 3.50000+ 1 1.95594- 5 3.42286- 3 2.70000+ 1 3.60000+ 1 1.00694- 4 3.42401- 3 2.70000+ 1 4.40000+ 1 6.52006- 6 3.40684- 3 2.90000+ 1 3.00000+ 1 1.04318- 4 3.27915- 3 2.90000+ 1 3.20000+ 1 4.34657- 6 3.37607- 3 2.90000+ 1 3.30000+ 1 9.27301- 4 3.38572- 3 2.90000+ 1 3.50000+ 1 1.15911- 5 3.48817- 3 2.90000+ 1 3.60000+ 1 5.50575- 5 3.48932- 3 2.90000+ 1 4.40000+ 1 1.44886- 5 3.47215- 3 3.00000+ 1 3.00000+ 1 7.38953- 5 3.34406- 3 3.00000+ 1 3.20000+ 1 7.96923- 5 3.44098- 3 3.00000+ 1 3.30000+ 1 1.33884- 3 3.45063- 3 3.00000+ 1 3.50000+ 1 7.96923- 6 3.55308- 3 3.00000+ 1 3.60000+ 1 1.37649- 5 3.55423- 3 3.00000+ 1 4.10000+ 1 9.41814- 6 3.50736- 3 3.00000+ 1 4.30000+ 1 1.52131- 5 3.52656- 3 3.00000+ 1 4.40000+ 1 2.02842- 5 3.53706- 3 3.00000+ 1 5.80000+ 1 7.24470- 7 3.55506- 3 3.20000+ 1 3.20000+ 1 1.23155- 5 3.53790- 3 3.20000+ 1 3.30000+ 1 1.55099- 3 3.54755- 3 3.20000+ 1 3.50000+ 1 1.52129- 5 3.65000- 3 3.20000+ 1 3.60000+ 1 1.98498- 4 3.65115- 3 3.20000+ 1 4.10000+ 1 7.96914- 6 3.60428- 3 3.20000+ 1 4.30000+ 1 7.24461- 7 3.62348- 3 3.20000+ 1 4.40000+ 1 1.08671- 5 3.63398- 3 3.20000+ 1 5.80000+ 1 7.24461- 7 3.65198- 3 3.30000+ 1 3.30000+ 1 1.69308- 3 3.55720- 3 3.30000+ 1 3.50000+ 1 2.44873- 4 3.65965- 3 3.30000+ 1 3.60000+ 1 4.39035- 4 3.66080- 3 3.30000+ 1 4.10000+ 1 1.65176- 4 3.61393- 3 3.30000+ 1 4.30000+ 1 1.50692- 4 3.63313- 3 3.30000+ 1 4.40000+ 1 1.94162- 4 3.64363- 3 3.30000+ 1 5.80000+ 1 1.44892- 5 3.66163- 3 3.50000+ 1 3.50000+ 1 3.62636- 6 3.76210- 3 3.50000+ 1 3.60000+ 1 1.38521- 4 3.76325- 3 3.50000+ 1 4.10000+ 1 3.62636- 6 3.71638- 3 3.50000+ 1 4.30000+ 1 2.17581- 6 3.73558- 3 3.50000+ 1 4.40000+ 1 1.45055- 6 3.74608- 3 3.60000+ 1 3.60000+ 1 6.95270- 5 3.76440- 3 3.60000+ 1 4.10000+ 1 1.84037- 5 3.71753- 3 3.60000+ 1 4.30000+ 1 8.86140- 6 3.73673- 3 3.60000+ 1 4.40000+ 1 2.04487- 6 3.74723- 3 3.60000+ 1 5.80000+ 1 1.36325- 6 3.76523- 3 4.10000+ 1 4.40000+ 1 1.87030- 6 3.70036- 3 4.30000+ 1 4.40000+ 1 2.69411- 6 3.71956- 3 4.40000+ 1 4.40000+ 1 1.96300- 6 3.73006- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.37770- 5 1.63200- 4 1.90000+ 1 5.34761- 4 4.27700- 4 2.90000+ 1 3.60381- 4 1.25237- 3 3.00000+ 1 6.89101- 5 1.31728- 3 4.30000+ 1 7.26131- 5 1.49978- 3 4.40000+ 1 1.68520- 5 1.51028- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.29729- 2 4.37000- 5 1.80000+ 1 3.30000+ 1 9.67730- 2 5.33500- 5 1.80000+ 1 3.50000+ 1 1.22547- 2 1.55800- 4 1.80000+ 1 3.60000+ 1 1.29593- 2 1.56950- 4 1.80000+ 1 4.10000+ 1 8.90361- 3 1.10080- 4 1.80000+ 1 4.30000+ 1 7.14356- 3 1.29280- 4 1.80000+ 1 4.40000+ 1 9.36892- 3 1.39780- 4 1.80000+ 1 5.80000+ 1 7.54429- 4 1.57780- 4 1.90000+ 1 2.40000+ 1 5.03007- 3 0.00000+ 0 1.90000+ 1 2.50000+ 1 1.70044- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.84195- 2 8.10600- 5 1.90000+ 1 2.90000+ 1 4.69937- 2 1.46370- 4 1.90000+ 1 3.00000+ 1 3.97449- 2 2.11280- 4 1.90000+ 1 3.20000+ 1 3.49776- 2 3.08200- 4 1.90000+ 1 3.30000+ 1 4.34575- 2 3.17850- 4 1.90000+ 1 3.50000+ 1 8.50288- 4 4.20300- 4 1.90000+ 1 3.60000+ 1 1.43773- 3 4.21450- 4 1.90000+ 1 4.10000+ 1 7.31939- 3 3.74580- 4 1.90000+ 1 4.30000+ 1 7.27329- 3 3.93780- 4 1.90000+ 1 4.40000+ 1 5.78189- 3 4.04280- 4 1.90000+ 1 5.80000+ 1 6.40253- 4 4.22280- 4 2.10000+ 1 2.40000+ 1 3.52868- 3 2.45070- 4 2.10000+ 1 2.50000+ 1 4.12915- 3 2.58060- 4 2.10000+ 1 2.70000+ 1 1.63723- 2 3.44510- 4 2.10000+ 1 2.90000+ 1 5.90115- 3 4.09820- 4 2.10000+ 1 3.00000+ 1 5.13933- 3 4.74730- 4 2.10000+ 1 3.20000+ 1 1.87876- 3 5.71650- 4 2.10000+ 1 3.30000+ 1 3.22261- 3 5.81300- 4 2.10000+ 1 3.50000+ 1 6.88772- 4 6.83750- 4 2.10000+ 1 3.60000+ 1 6.65800- 4 6.84900- 4 2.10000+ 1 4.10000+ 1 2.27632- 3 6.38030- 4 2.10000+ 1 4.30000+ 1 8.93785- 4 6.57230- 4 2.10000+ 1 4.40000+ 1 6.09838- 4 6.67730- 4 2.10000+ 1 5.80000+ 1 1.90599- 4 6.85730- 4 2.20000+ 1 2.40000+ 1 4.80857- 3 2.93450- 4 2.20000+ 1 2.50000+ 1 6.03248- 3 3.06440- 4 2.20000+ 1 2.70000+ 1 2.27136- 2 3.92890- 4 2.20000+ 1 2.90000+ 1 8.89682- 3 4.58200- 4 2.20000+ 1 3.00000+ 1 6.29310- 3 5.23110- 4 2.20000+ 1 3.20000+ 1 2.52246- 3 6.20030- 4 2.20000+ 1 3.30000+ 1 3.33054- 3 6.29680- 4 2.20000+ 1 3.50000+ 1 7.38200- 4 7.32130- 4 2.20000+ 1 3.60000+ 1 9.98743- 4 7.33280- 4 2.20000+ 1 4.10000+ 1 3.13777- 3 6.86410- 4 2.20000+ 1 4.30000+ 1 1.20281- 3 7.05610- 4 2.20000+ 1 4.40000+ 1 8.32130- 4 7.16110- 4 2.20000+ 1 5.80000+ 1 2.62879- 4 7.34110- 4 2.40000+ 1 2.40000+ 1 8.68811- 3 6.41540- 4 2.40000+ 1 2.50000+ 1 1.62524- 2 6.54530- 4 2.40000+ 1 2.70000+ 1 2.01222- 2 7.40980- 4 2.40000+ 1 2.90000+ 1 2.82275- 3 8.06290- 4 2.40000+ 1 3.00000+ 1 1.27357- 2 8.71200- 4 2.40000+ 1 3.20000+ 1 1.20297- 3 9.68120- 4 2.40000+ 1 3.30000+ 1 7.66882- 4 9.77770- 4 2.40000+ 1 3.50000+ 1 2.85970- 4 1.08022- 3 2.40000+ 1 3.60000+ 1 2.62062- 4 1.08137- 3 2.40000+ 1 4.10000+ 1 2.34775- 3 1.03450- 3 2.40000+ 1 4.30000+ 1 3.40717- 4 1.05370- 3 2.40000+ 1 4.40000+ 1 1.39740- 3 1.06420- 3 2.40000+ 1 5.80000+ 1 1.91288- 4 1.08220- 3 2.50000+ 1 2.50000+ 1 1.42951- 2 6.67520- 4 2.50000+ 1 2.70000+ 1 2.59928- 2 7.53970- 4 2.50000+ 1 2.90000+ 1 1.29287- 3 8.19280- 4 2.50000+ 1 3.00000+ 1 1.32485- 2 8.84190- 4 2.50000+ 1 3.20000+ 1 6.89430- 4 9.81110- 4 2.50000+ 1 3.30000+ 1 1.70389- 3 9.90760- 4 2.50000+ 1 3.50000+ 1 2.79990- 4 1.09321- 3 2.50000+ 1 3.60000+ 1 4.53742- 4 1.09436- 3 2.50000+ 1 4.10000+ 1 3.01772- 3 1.04749- 3 2.50000+ 1 4.30000+ 1 1.51336- 4 1.06669- 3 2.50000+ 1 4.40000+ 1 1.39098- 3 1.07719- 3 2.50000+ 1 5.80000+ 1 2.45758- 4 1.09519- 3 2.70000+ 1 2.70000+ 1 1.75109- 2 8.40420- 4 2.70000+ 1 2.90000+ 1 2.62698- 2 9.05730- 4 2.70000+ 1 3.00000+ 1 4.08286- 2 9.70640- 4 2.70000+ 1 3.20000+ 1 4.13874- 2 1.06756- 3 2.70000+ 1 3.30000+ 1 5.70165- 2 1.07721- 3 2.70000+ 1 3.50000+ 1 1.03381- 2 1.17966- 3 2.70000+ 1 3.60000+ 1 1.26276- 2 1.18081- 3 2.70000+ 1 4.10000+ 1 5.56810- 3 1.13394- 3 2.70000+ 1 4.30000+ 1 4.30322- 3 1.15314- 3 2.70000+ 1 4.40000+ 1 5.86237- 3 1.16364- 3 2.70000+ 1 5.80000+ 1 4.77932- 4 1.18164- 3 2.90000+ 1 2.90000+ 1 2.01722- 3 9.71040- 4 2.90000+ 1 3.00000+ 1 9.31539- 3 1.03595- 3 2.90000+ 1 3.20000+ 1 3.71452- 3 1.13287- 3 2.90000+ 1 3.30000+ 1 2.53882- 3 1.14252- 3 2.90000+ 1 3.50000+ 1 5.72451- 4 1.24497- 3 2.90000+ 1 3.60000+ 1 3.36203- 4 1.24612- 3 2.90000+ 1 4.10000+ 1 3.12402- 3 1.19925- 3 2.90000+ 1 4.30000+ 1 5.32471- 4 1.21845- 3 2.90000+ 1 4.40000+ 1 9.97715- 4 1.22895- 3 2.90000+ 1 5.80000+ 1 2.56243- 4 1.24695- 3 3.00000+ 1 3.00000+ 1 4.97207- 3 1.10086- 3 3.00000+ 1 3.20000+ 1 2.21521- 3 1.19778- 3 3.00000+ 1 3.30000+ 1 5.84074- 3 1.20743- 3 3.00000+ 1 3.50000+ 1 2.80772- 3 1.30988- 3 3.00000+ 1 3.60000+ 1 3.38194- 3 1.31103- 3 3.00000+ 1 4.10000+ 1 5.06293- 3 1.26416- 3 3.00000+ 1 4.30000+ 1 1.35385- 3 1.28336- 3 3.00000+ 1 4.40000+ 1 1.24661- 3 1.29386- 3 3.00000+ 1 5.80000+ 1 4.17980- 4 1.31186- 3 3.20000+ 1 3.20000+ 1 1.08592- 3 1.29470- 3 3.20000+ 1 3.30000+ 1 3.44734- 3 1.30435- 3 3.20000+ 1 3.50000+ 1 2.58835- 4 1.40680- 3 3.20000+ 1 3.60000+ 1 1.80058- 4 1.40795- 3 3.20000+ 1 4.10000+ 1 5.15425- 3 1.36108- 3 3.20000+ 1 4.30000+ 1 4.83908- 4 1.38028- 3 3.20000+ 1 4.40000+ 1 2.00686- 4 1.39078- 3 3.20000+ 1 5.80000+ 1 4.22019- 4 1.40878- 3 3.30000+ 1 3.30000+ 1 2.18612- 3 1.31400- 3 3.30000+ 1 3.50000+ 1 2.02451- 4 1.41645- 3 3.30000+ 1 3.60000+ 1 3.69607- 4 1.41760- 3 3.30000+ 1 4.10000+ 1 7.01484- 3 1.37073- 3 3.30000+ 1 4.30000+ 1 2.84163- 4 1.38993- 3 3.30000+ 1 4.40000+ 1 6.63066- 4 1.40043- 3 3.30000+ 1 5.80000+ 1 5.75771- 4 1.41843- 3 3.50000+ 1 3.50000+ 1 1.43935- 5 1.51890- 3 3.50000+ 1 3.60000+ 1 3.05874- 5 1.52005- 3 3.50000+ 1 4.10000+ 1 1.17852- 3 1.47318- 3 3.50000+ 1 4.30000+ 1 6.65725- 5 1.49238- 3 3.50000+ 1 4.40000+ 1 3.20270- 4 1.50288- 3 3.50000+ 1 5.80000+ 1 9.53644- 5 1.52088- 3 3.60000+ 1 3.60000+ 1 2.37209- 5 1.52120- 3 3.60000+ 1 4.10000+ 1 1.45598- 3 1.47433- 3 3.60000+ 1 4.30000+ 1 3.64928- 5 1.49353- 3 3.60000+ 1 4.40000+ 1 3.85004- 4 1.50403- 3 3.60000+ 1 5.80000+ 1 1.18605- 4 1.52203- 3 4.10000+ 1 4.10000+ 1 4.47856- 4 1.42746- 3 4.10000+ 1 4.30000+ 1 5.65818- 4 1.44666- 3 4.10000+ 1 4.40000+ 1 7.85753- 4 1.45716- 3 4.10000+ 1 5.80000+ 1 7.59759- 5 1.47516- 3 4.30000+ 1 4.30000+ 1 3.82729- 5 1.46586- 3 4.30000+ 1 4.40000+ 1 1.57127- 4 1.47636- 3 4.30000+ 1 5.80000+ 1 4.63307- 5 1.49436- 3 4.40000+ 1 4.40000+ 1 9.00423- 5 1.48686- 3 4.40000+ 1 5.80000+ 1 7.02780- 5 1.50486- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.06993- 3 5.27950- 4 2.70000+ 1 2.50220- 4 1.02386- 3 3.20000+ 1 6.76512- 5 1.25100- 3 4.10000+ 1 5.10187- 5 1.31738- 3 5.80000+ 1 4.71546- 6 1.36508- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.70305- 2 4.80800- 5 1.90000+ 1 3.20000+ 1 1.04934- 2 1.45000- 4 1.90000+ 1 3.30000+ 1 1.53013- 2 1.54650- 4 1.90000+ 1 3.50000+ 1 1.29673- 3 2.57100- 4 1.90000+ 1 3.60000+ 1 1.89624- 3 2.58250- 4 1.90000+ 1 4.10000+ 1 2.01605- 3 2.11380- 4 1.90000+ 1 4.30000+ 1 2.25968- 3 2.30580- 4 1.90000+ 1 4.40000+ 1 1.91407- 3 2.41080- 4 1.90000+ 1 5.80000+ 1 1.69958- 4 2.59080- 4 2.10000+ 1 2.40000+ 1 8.31460- 2 8.18700- 5 2.10000+ 1 2.50000+ 1 2.10648- 1 9.48600- 5 2.10000+ 1 2.70000+ 1 3.29562- 2 1.81310- 4 2.10000+ 1 2.90000+ 1 2.70823- 2 2.46620- 4 2.10000+ 1 3.00000+ 1 3.18455- 2 3.11530- 4 2.10000+ 1 3.20000+ 1 1.77227- 2 4.08450- 4 2.10000+ 1 3.30000+ 1 2.57111- 2 4.18100- 4 2.10000+ 1 3.50000+ 1 1.25235- 3 5.20550- 4 2.10000+ 1 3.60000+ 1 2.32264- 3 5.21700- 4 2.10000+ 1 4.10000+ 1 6.33178- 3 4.74830- 4 2.10000+ 1 4.30000+ 1 4.13133- 3 4.94030- 4 2.10000+ 1 4.40000+ 1 4.54038- 3 5.04530- 4 2.10000+ 1 5.80000+ 1 5.50984- 4 5.22530- 4 2.20000+ 1 2.40000+ 1 4.19870- 2 1.30250- 4 2.20000+ 1 2.50000+ 1 1.06188- 2 1.43240- 4 2.20000+ 1 2.70000+ 1 5.12224- 3 2.29690- 4 2.20000+ 1 2.90000+ 1 2.22691- 2 2.95000- 4 2.20000+ 1 3.00000+ 1 4.32946- 3 3.59910- 4 2.20000+ 1 3.20000+ 1 2.01640- 3 4.56830- 4 2.20000+ 1 3.30000+ 1 2.30449- 3 4.66480- 4 2.20000+ 1 3.50000+ 1 3.91190- 4 5.68930- 4 2.20000+ 1 3.60000+ 1 2.32679- 4 5.70080- 4 2.20000+ 1 4.10000+ 1 7.52355- 4 5.23210- 4 2.20000+ 1 4.30000+ 1 2.36078- 3 5.42410- 4 2.20000+ 1 4.40000+ 1 4.71080- 4 5.52910- 4 2.20000+ 1 5.80000+ 1 6.36065- 5 5.70910- 4 2.40000+ 1 2.40000+ 1 1.97158- 3 4.78340- 4 2.40000+ 1 2.50000+ 1 1.02227- 2 4.91330- 4 2.40000+ 1 2.70000+ 1 4.98015- 3 5.77780- 4 2.40000+ 1 2.90000+ 1 1.92445- 2 6.43090- 4 2.40000+ 1 3.00000+ 1 2.30897- 3 7.08000- 4 2.40000+ 1 3.20000+ 1 5.88898- 3 8.04920- 4 2.40000+ 1 3.30000+ 1 4.73839- 3 8.14570- 4 2.40000+ 1 3.50000+ 1 4.22490- 4 9.17020- 4 2.40000+ 1 3.60000+ 1 2.78860- 4 9.18170- 4 2.40000+ 1 4.10000+ 1 9.66195- 4 8.71300- 4 2.40000+ 1 4.30000+ 1 2.07298- 3 8.90500- 4 2.40000+ 1 4.40000+ 1 2.88531- 4 9.01000- 4 2.40000+ 1 5.80000+ 1 8.44733- 5 9.19000- 4 2.50000+ 1 2.50000+ 1 5.34577- 4 5.04320- 4 2.50000+ 1 2.70000+ 1 2.72402- 3 5.90770- 4 2.50000+ 1 2.90000+ 1 2.94002- 2 6.56080- 4 2.50000+ 1 3.00000+ 1 1.59162- 3 7.20990- 4 2.50000+ 1 3.20000+ 1 1.24282- 2 8.17910- 4 2.50000+ 1 3.30000+ 1 1.20421- 3 8.27560- 4 2.50000+ 1 3.50000+ 1 9.05791- 5 9.30010- 4 2.50000+ 1 3.60000+ 1 5.31770- 5 9.31160- 4 2.50000+ 1 4.10000+ 1 3.89410- 4 8.84290- 4 2.50000+ 1 4.30000+ 1 3.03413- 3 9.03490- 4 2.50000+ 1 4.40000+ 1 1.89177- 4 9.13990- 4 2.50000+ 1 5.80000+ 1 3.25677- 5 9.31990- 4 2.70000+ 1 2.70000+ 1 2.00542- 3 6.77220- 4 2.70000+ 1 2.90000+ 1 2.59474- 2 7.42530- 4 2.70000+ 1 3.00000+ 1 4.96832- 3 8.07440- 4 2.70000+ 1 3.20000+ 1 6.59030- 3 9.04360- 4 2.70000+ 1 3.30000+ 1 4.56110- 3 9.14010- 4 2.70000+ 1 3.50000+ 1 3.01578- 4 1.01646- 3 2.70000+ 1 3.60000+ 1 6.18493- 4 1.01761- 3 2.70000+ 1 4.10000+ 1 5.91226- 4 9.70740- 4 2.70000+ 1 4.30000+ 1 2.65282- 3 9.89940- 4 2.70000+ 1 4.40000+ 1 6.38936- 4 1.00044- 3 2.70000+ 1 5.80000+ 1 4.94106- 5 1.01844- 3 2.90000+ 1 2.90000+ 1 1.79684- 2 8.07840- 4 2.90000+ 1 3.00000+ 1 4.67073- 2 8.72750- 4 2.90000+ 1 3.20000+ 1 3.80882- 2 9.69670- 4 2.90000+ 1 3.30000+ 1 6.34048- 2 9.79320- 4 2.90000+ 1 3.50000+ 1 1.04477- 2 1.08177- 3 2.90000+ 1 3.60000+ 1 1.39002- 2 1.08292- 3 2.90000+ 1 4.10000+ 1 5.19629- 3 1.03605- 3 2.90000+ 1 4.30000+ 1 4.86170- 3 1.05525- 3 2.90000+ 1 4.40000+ 1 6.73985- 3 1.06575- 3 2.90000+ 1 5.80000+ 1 4.57026- 4 1.08375- 3 3.00000+ 1 3.00000+ 1 1.49615- 3 9.37660- 4 3.00000+ 1 3.20000+ 1 6.63172- 3 1.03458- 3 3.00000+ 1 3.30000+ 1 3.05805- 3 1.04423- 3 3.00000+ 1 3.50000+ 1 3.42473- 4 1.14668- 3 3.00000+ 1 3.60000+ 1 5.01595- 4 1.14783- 3 3.00000+ 1 4.10000+ 1 6.81482- 4 1.10096- 3 3.00000+ 1 4.30000+ 1 4.89674- 3 1.12016- 3 3.00000+ 1 4.40000+ 1 3.64962- 4 1.13066- 3 3.00000+ 1 5.80000+ 1 5.70780- 5 1.14866- 3 3.20000+ 1 3.20000+ 1 2.06855- 3 1.13150- 3 3.20000+ 1 3.30000+ 1 3.07276- 3 1.14115- 3 3.20000+ 1 3.50000+ 1 1.42740- 3 1.24360- 3 3.20000+ 1 3.60000+ 1 2.31720- 3 1.24475- 3 3.20000+ 1 4.10000+ 1 9.58177- 4 1.19788- 3 3.20000+ 1 4.30000+ 1 3.30468- 3 1.21708- 3 3.20000+ 1 4.40000+ 1 7.52847- 4 1.22758- 3 3.20000+ 1 5.80000+ 1 8.38052- 5 1.24558- 3 3.30000+ 1 3.30000+ 1 5.27639- 4 1.15080- 3 3.30000+ 1 3.50000+ 1 3.88411- 4 1.25325- 3 3.30000+ 1 3.60000+ 1 2.06040- 4 1.25440- 3 3.30000+ 1 4.10000+ 1 4.58021- 4 1.20753- 3 3.30000+ 1 4.30000+ 1 5.41301- 3 1.22673- 3 3.30000+ 1 4.40000+ 1 2.88184- 4 1.23723- 3 3.30000+ 1 5.80000+ 1 3.75886- 5 1.25523- 3 3.50000+ 1 3.50000+ 1 1.84452- 5 1.35570- 3 3.50000+ 1 3.60000+ 1 3.40515- 5 1.35685- 3 3.50000+ 1 4.10000+ 1 4.39828- 5 1.30998- 3 3.50000+ 1 4.30000+ 1 8.71190- 4 1.32918- 3 3.50000+ 1 4.40000+ 1 3.26325- 5 1.33968- 3 3.50000+ 1 5.80000+ 1 4.25639- 6 1.35768- 3 3.60000+ 1 3.60000+ 1 7.20775- 6 1.35800- 3 3.60000+ 1 4.10000+ 1 7.06374- 5 1.31113- 3 3.60000+ 1 4.30000+ 1 1.18360- 3 1.33033- 3 3.60000+ 1 4.40000+ 1 4.61312- 5 1.34083- 3 3.60000+ 1 5.80000+ 1 5.76623- 6 1.35883- 3 4.10000+ 1 4.10000+ 1 3.52237- 5 1.26426- 3 4.10000+ 1 4.30000+ 1 4.21329- 4 1.28346- 3 4.10000+ 1 4.40000+ 1 6.77361- 5 1.29396- 3 4.10000+ 1 5.80000+ 1 5.41892- 6 1.31196- 3 4.30000+ 1 4.30000+ 1 2.81121- 4 1.30266- 3 4.30000+ 1 4.40000+ 1 6.45928- 4 1.31316- 3 4.30000+ 1 5.80000+ 1 4.26410- 5 1.33116- 3 4.40000+ 1 4.40000+ 1 2.22180- 5 1.32366- 3 4.40000+ 1 5.80000+ 1 6.83584- 6 1.34166- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.23181- 5 2.63450- 4 2.20000+ 1 1.91992- 4 3.11830- 4 2.70000+ 1 3.03463- 4 7.59360- 4 3.20000+ 1 3.40123- 5 9.86500- 4 3.30000+ 1 1.99602- 4 9.96150- 4 4.10000+ 1 5.92146- 5 1.05288- 3 5.80000+ 1 5.54286- 6 1.10058- 3 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 5.05637- 2 4.70300- 5 2.10000+ 1 3.20000+ 1 1.84172- 2 1.43950- 4 2.10000+ 1 3.30000+ 1 2.78933- 2 1.53600- 4 2.10000+ 1 3.50000+ 1 1.87159- 3 2.56050- 4 2.10000+ 1 3.60000+ 1 1.61461- 3 2.57200- 4 2.10000+ 1 4.10000+ 1 3.97339- 3 2.10330- 4 2.10000+ 1 4.30000+ 1 2.82785- 3 2.29530- 4 2.10000+ 1 4.40000+ 1 6.02832- 3 2.40030- 4 2.10000+ 1 5.80000+ 1 3.41228- 4 2.58030- 4 2.20000+ 1 2.90000+ 1 1.23784- 1 3.05000- 5 2.20000+ 1 3.00000+ 1 1.35414- 1 9.54100- 5 2.20000+ 1 3.20000+ 1 1.20599- 1 1.92330- 4 2.20000+ 1 3.30000+ 1 1.44791- 1 2.01980- 4 2.20000+ 1 3.50000+ 1 5.57216- 3 3.04430- 4 2.20000+ 1 3.60000+ 1 7.11223- 3 3.05580- 4 2.20000+ 1 4.10000+ 1 2.23508- 2 2.58710- 4 2.20000+ 1 4.30000+ 1 1.96501- 2 2.77910- 4 2.20000+ 1 4.40000+ 1 1.80784- 2 2.88410- 4 2.20000+ 1 5.80000+ 1 1.93366- 3 3.06410- 4 2.40000+ 1 2.40000+ 1 9.69690- 4 2.13840- 4 2.40000+ 1 2.50000+ 1 3.60712- 3 2.26830- 4 2.40000+ 1 2.70000+ 1 9.54645- 3 3.13280- 4 2.40000+ 1 2.90000+ 1 4.98519- 3 3.78590- 4 2.40000+ 1 3.00000+ 1 5.45471- 2 4.43500- 4 2.40000+ 1 3.20000+ 1 2.15627- 3 5.40420- 4 2.40000+ 1 3.30000+ 1 7.85764- 3 5.50070- 4 2.40000+ 1 3.50000+ 1 4.18884- 4 6.52520- 4 2.40000+ 1 3.60000+ 1 3.97500- 4 6.53670- 4 2.40000+ 1 4.10000+ 1 1.14108- 3 6.06800- 4 2.40000+ 1 4.30000+ 1 6.79655- 4 6.26000- 4 2.40000+ 1 4.40000+ 1 5.27691- 3 6.36500- 4 2.40000+ 1 5.80000+ 1 9.33970- 5 6.54500- 4 2.50000+ 1 2.50000+ 1 3.56850- 3 2.39820- 4 2.50000+ 1 2.70000+ 1 2.20948- 2 3.26270- 4 2.50000+ 1 2.90000+ 1 1.76032- 2 3.91580- 4 2.50000+ 1 3.00000+ 1 6.55690- 2 4.56490- 4 2.50000+ 1 3.20000+ 1 1.61458- 3 5.53410- 4 2.50000+ 1 3.30000+ 1 1.11451- 2 5.63060- 4 2.50000+ 1 3.50000+ 1 1.61290- 3 6.65510- 4 2.50000+ 1 3.60000+ 1 2.00335- 3 6.66660- 4 2.50000+ 1 4.10000+ 1 3.21840- 3 6.19790- 4 2.50000+ 1 4.30000+ 1 2.52139- 3 6.38990- 4 2.50000+ 1 4.40000+ 1 6.40840- 3 6.49490- 4 2.50000+ 1 5.80000+ 1 2.71656- 4 6.67490- 4 2.70000+ 1 2.70000+ 1 3.47202- 5 4.12720- 4 2.70000+ 1 2.90000+ 1 2.55473- 4 4.78030- 4 2.70000+ 1 3.00000+ 1 5.02821- 3 5.42940- 4 2.70000+ 1 3.20000+ 1 4.63223- 4 6.39860- 4 2.70000+ 1 3.30000+ 1 7.78247- 4 6.49510- 4 2.70000+ 1 3.50000+ 1 1.25618- 4 7.51960- 4 2.70000+ 1 3.60000+ 1 1.20810- 4 7.53110- 4 2.70000+ 1 4.10000+ 1 1.58073- 5 7.06240- 4 2.70000+ 1 4.30000+ 1 2.65340- 5 7.25440- 4 2.70000+ 1 4.40000+ 1 4.64916- 4 7.35940- 4 2.70000+ 1 5.80000+ 1 1.41134- 6 7.53940- 4 2.90000+ 1 2.90000+ 1 1.41137- 6 5.43340- 4 2.90000+ 1 3.00000+ 1 5.75550- 3 6.08250- 4 2.90000+ 1 3.20000+ 1 2.58854- 4 7.05170- 4 2.90000+ 1 3.30000+ 1 7.11638- 4 7.14820- 4 2.90000+ 1 3.50000+ 1 1.00216- 4 8.17270- 4 2.90000+ 1 3.60000+ 1 2.16520- 4 8.18420- 4 2.90000+ 1 4.10000+ 1 4.46012- 5 7.71550- 4 2.90000+ 1 4.30000+ 1 4.79882- 6 7.90750- 4 2.90000+ 1 4.40000+ 1 5.46790- 4 8.01250- 4 2.90000+ 1 5.80000+ 1 3.95203- 6 8.19250- 4 3.00000+ 1 3.00000+ 1 7.25985- 3 6.73160- 4 3.00000+ 1 3.20000+ 1 8.71161- 3 7.70080- 4 3.00000+ 1 3.30000+ 1 1.15900- 2 7.79730- 4 3.00000+ 1 3.50000+ 1 2.22976- 3 8.82180- 4 3.00000+ 1 3.60000+ 1 2.62324- 3 8.83330- 4 3.00000+ 1 4.10000+ 1 9.97568- 4 8.36460- 4 3.00000+ 1 4.30000+ 1 9.14856- 4 8.55660- 4 3.00000+ 1 4.40000+ 1 1.74001- 3 8.66160- 4 3.00000+ 1 5.80000+ 1 8.75059- 5 8.84160- 4 3.20000+ 1 3.20000+ 1 1.75380- 4 8.67000- 4 3.20000+ 1 3.30000+ 1 1.05079- 3 8.76650- 4 3.20000+ 1 3.50000+ 1 5.10082- 5 9.79100- 4 3.20000+ 1 3.60000+ 1 9.31322- 5 9.80250- 4 3.20000+ 1 4.10000+ 1 6.44756- 5 9.33380- 4 3.20000+ 1 4.30000+ 1 4.21243- 5 9.52580- 4 3.20000+ 1 4.40000+ 1 8.49368- 4 9.63080- 4 3.20000+ 1 5.80000+ 1 5.44465- 6 9.81080- 4 3.30000+ 1 3.30000+ 1 9.86570- 4 8.86300- 4 3.30000+ 1 3.50000+ 1 1.67392- 4 9.88750- 4 3.30000+ 1 3.60000+ 1 2.26386- 4 9.89900- 4 3.30000+ 1 4.10000+ 1 1.47357- 4 9.43030- 4 3.30000+ 1 4.30000+ 1 1.16864- 4 9.62230- 4 3.30000+ 1 4.40000+ 1 1.12797- 3 9.72730- 4 3.30000+ 1 5.80000+ 1 1.29857- 5 9.90730- 4 3.50000+ 1 3.50000+ 1 1.94793- 6 1.09120- 3 3.50000+ 1 3.60000+ 1 1.11321- 5 1.09235- 3 3.50000+ 1 4.10000+ 1 1.53067- 5 1.04548- 3 3.50000+ 1 4.30000+ 1 5.84409- 6 1.06468- 3 3.50000+ 1 4.40000+ 1 2.03988- 4 1.07518- 3 3.50000+ 1 5.80000+ 1 1.11321- 6 1.09318- 3 3.60000+ 1 3.60000+ 1 6.81474- 6 1.09350- 3 3.60000+ 1 4.10000+ 1 1.59006- 5 1.04663- 3 3.60000+ 1 4.30000+ 1 1.27780- 5 1.06583- 3 3.60000+ 1 4.40000+ 1 2.43620- 4 1.07633- 3 3.60000+ 1 5.80000+ 1 1.41967- 6 1.09433- 3 4.10000+ 1 4.10000+ 1 2.96075- 7 9.99760- 4 4.10000+ 1 4.30000+ 1 3.55292- 6 1.01896- 3 4.10000+ 1 4.40000+ 1 9.71120- 5 1.02946- 3 4.30000+ 1 4.40000+ 1 9.48201- 5 1.04866- 3 4.30000+ 1 5.80000+ 1 3.08863- 7 1.06666- 3 4.40000+ 1 4.40000+ 1 1.12278- 4 1.05916- 3 4.40000+ 1 5.80000+ 1 9.30321- 6 1.07716- 3 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.85100- 4 3.96470- 4 2.90000+ 1 1.81300- 4 5.61220- 4 3.00000+ 1 2.00090- 5 6.26130- 4 3.50000+ 1 5.18981- 5 8.35150- 4 4.30000+ 1 3.17180- 5 8.08630- 4 4.40000+ 1 3.24380- 6 8.19130- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 2.70269- 3 4.09800- 5 2.20000+ 1 3.60000+ 1 3.18686- 3 4.21300- 5 2.20000+ 1 4.30000+ 1 1.26057- 3 1.44600- 5 2.20000+ 1 4.40000+ 1 2.75159- 3 2.49600- 5 2.20000+ 1 5.80000+ 1 1.89287- 4 4.29600- 5 2.40000+ 1 2.70000+ 1 1.23156- 1 4.98300- 5 2.40000+ 1 2.90000+ 1 1.10407- 1 1.15140- 4 2.40000+ 1 3.00000+ 1 1.28085- 1 1.80050- 4 2.40000+ 1 3.20000+ 1 1.30645- 1 2.76970- 4 2.40000+ 1 3.30000+ 1 1.36984- 1 2.86620- 4 2.40000+ 1 3.50000+ 1 4.21715- 3 3.89070- 4 2.40000+ 1 3.60000+ 1 3.16734- 3 3.90220- 4 2.40000+ 1 4.10000+ 1 2.38644- 2 3.43350- 4 2.40000+ 1 4.30000+ 1 1.75570- 2 3.62550- 4 2.40000+ 1 4.40000+ 1 1.79400- 2 3.73050- 4 2.40000+ 1 5.80000+ 1 2.09727- 3 3.91050- 4 2.50000+ 1 2.70000+ 1 8.87366- 3 6.28200- 5 2.50000+ 1 2.90000+ 1 1.81780- 2 1.28130- 4 2.50000+ 1 3.00000+ 1 8.28243- 3 1.93040- 4 2.50000+ 1 3.20000+ 1 1.38514- 1 2.89960- 4 2.50000+ 1 3.30000+ 1 5.84430- 3 2.99610- 4 2.50000+ 1 3.50000+ 1 1.46913- 3 4.02060- 4 2.50000+ 1 3.60000+ 1 3.71747- 4 4.03210- 4 2.50000+ 1 4.10000+ 1 1.24626- 3 3.56340- 4 2.50000+ 1 4.30000+ 1 1.79710- 3 3.75540- 4 2.50000+ 1 4.40000+ 1 8.88375- 4 3.86040- 4 2.50000+ 1 5.80000+ 1 1.05408- 4 4.04040- 4 2.70000+ 1 2.70000+ 1 8.76647- 4 1.49270- 4 2.70000+ 1 2.90000+ 1 2.15923- 3 2.14580- 4 2.70000+ 1 3.00000+ 1 1.60140- 3 2.79490- 4 2.70000+ 1 3.20000+ 1 1.23595- 2 3.76410- 4 2.70000+ 1 3.30000+ 1 1.97716- 3 3.86060- 4 2.70000+ 1 3.50000+ 1 1.03627- 3 4.88510- 4 2.70000+ 1 3.60000+ 1 8.42802- 4 4.89660- 4 2.70000+ 1 4.10000+ 1 1.99106- 4 4.42790- 4 2.70000+ 1 4.30000+ 1 2.29462- 4 4.61990- 4 2.70000+ 1 4.40000+ 1 1.79578- 4 4.72490- 4 2.70000+ 1 5.80000+ 1 1.69169- 5 4.90490- 4 2.90000+ 1 2.90000+ 1 4.88438- 4 2.79890- 4 2.90000+ 1 3.00000+ 1 2.08991- 3 3.44800- 4 2.90000+ 1 3.20000+ 1 8.75594- 3 4.41720- 4 2.90000+ 1 3.30000+ 1 9.77315- 4 4.51370- 4 2.90000+ 1 3.50000+ 1 1.56165- 4 5.53820- 4 2.90000+ 1 3.60000+ 1 1.33607- 4 5.54970- 4 2.90000+ 1 4.10000+ 1 1.55295- 4 5.08100- 4 2.90000+ 1 4.30000+ 1 1.06710- 4 5.27300- 4 2.90000+ 1 4.40000+ 1 1.70054- 4 5.37800- 4 2.90000+ 1 5.80000+ 1 1.25798- 5 5.55800- 4 3.00000+ 1 3.00000+ 1 7.20983- 4 4.09710- 4 3.00000+ 1 3.20000+ 1 1.75769- 2 5.06630- 4 3.00000+ 1 3.30000+ 1 1.48692- 3 5.16280- 4 3.00000+ 1 3.50000+ 1 4.22814- 4 6.18730- 4 3.00000+ 1 3.60000+ 1 2.33891- 4 6.19880- 4 3.00000+ 1 4.10000+ 1 7.49679- 5 5.73010- 4 3.00000+ 1 4.30000+ 1 1.52939- 4 5.92210- 4 3.00000+ 1 4.40000+ 1 1.25082- 4 6.02710- 4 3.00000+ 1 5.80000+ 1 5.56906- 6 6.20710- 4 3.20000+ 1 3.20000+ 1 1.14036- 2 6.03550- 4 3.20000+ 1 3.30000+ 1 2.21964- 2 6.13200- 4 3.20000+ 1 3.50000+ 1 3.83445- 3 7.15650- 4 3.20000+ 1 3.60000+ 1 5.16144- 3 7.16800- 4 3.20000+ 1 4.10000+ 1 1.90108- 3 6.69930- 4 3.20000+ 1 4.30000+ 1 1.41973- 3 6.89130- 4 3.20000+ 1 4.40000+ 1 2.44952- 3 6.99630- 4 3.20000+ 1 5.80000+ 1 1.64830- 4 7.17630- 4 3.30000+ 1 3.30000+ 1 3.59203- 4 6.22850- 4 3.30000+ 1 3.50000+ 1 4.35063- 4 7.25300- 4 3.30000+ 1 3.60000+ 1 1.41857- 4 7.26450- 4 3.30000+ 1 4.10000+ 1 7.01072- 5 6.79580- 4 3.30000+ 1 4.30000+ 1 7.71179- 5 6.98780- 4 3.30000+ 1 4.40000+ 1 1.32380- 4 7.09280- 4 3.30000+ 1 5.80000+ 1 5.77351- 6 7.27280- 4 3.50000+ 1 3.50000+ 1 2.67552- 5 8.27750- 4 3.50000+ 1 3.60000+ 1 5.35090- 5 8.28900- 4 3.50000+ 1 4.10000+ 1 5.98809- 5 7.82030- 4 3.50000+ 1 4.30000+ 1 2.37822- 5 8.01230- 4 3.50000+ 1 4.40000+ 1 4.62912- 5 8.11730- 4 3.50000+ 1 5.80000+ 1 4.67160- 6 8.29730- 4 3.60000+ 1 3.60000+ 1 6.73458- 6 8.30050- 4 3.60000+ 1 4.10000+ 1 4.45504- 5 7.83180- 4 3.60000+ 1 4.30000+ 1 2.12387- 5 8.02380- 4 3.60000+ 1 4.40000+ 1 2.69383- 5 8.12880- 4 3.60000+ 1 5.80000+ 1 3.10819- 6 8.30880- 4 4.10000+ 1 4.10000+ 1 6.26282- 6 7.36310- 4 4.10000+ 1 4.30000+ 1 1.20441- 5 7.55510- 4 4.10000+ 1 4.40000+ 1 8.67156- 6 7.66010- 4 4.10000+ 1 5.80000+ 1 9.63502- 7 7.84010- 4 4.30000+ 1 4.30000+ 1 1.82487- 6 7.74710- 4 4.30000+ 1 4.40000+ 1 1.27747- 5 7.85210- 4 4.30000+ 1 5.80000+ 1 9.12483- 7 8.03210- 4 4.40000+ 1 4.40000+ 1 6.80903- 6 7.95710- 4 4.40000+ 1 5.80000+ 1 5.23777- 7 8.13710- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.75938- 5 3.48090- 4 2.50000+ 1 4.02774- 4 3.61080- 4 3.00000+ 1 1.47659- 4 5.77750- 4 3.50000+ 1 3.47219- 6 7.86770- 4 3.60000+ 1 5.76238- 5 7.87920- 4 4.40000+ 1 2.40264- 5 7.70750- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 1.06917- 2 1.45000- 6 2.40000+ 1 2.90000+ 1 8.17421- 3 6.67600- 5 2.40000+ 1 3.00000+ 1 1.52622- 2 1.31670- 4 2.40000+ 1 3.20000+ 1 7.43916- 3 2.28590- 4 2.40000+ 1 3.30000+ 1 1.03780- 1 2.38240- 4 2.40000+ 1 3.50000+ 1 6.31833- 4 3.40690- 4 2.40000+ 1 3.60000+ 1 7.70837- 4 3.41840- 4 2.40000+ 1 4.10000+ 1 2.00583- 3 2.94970- 4 2.40000+ 1 4.30000+ 1 1.29780- 3 3.14170- 4 2.40000+ 1 4.40000+ 1 1.76453- 3 3.24670- 4 2.40000+ 1 5.80000+ 1 1.72346- 4 3.42670- 4 2.50000+ 1 2.70000+ 1 1.13005- 1 1.44400- 5 2.50000+ 1 2.90000+ 1 1.24001- 1 7.97500- 5 2.50000+ 1 3.00000+ 1 1.11401- 1 1.44660- 4 2.50000+ 1 3.20000+ 1 1.11510- 1 2.41580- 4 2.50000+ 1 3.30000+ 1 1.98932- 1 2.51230- 4 2.50000+ 1 3.50000+ 1 2.92292- 3 3.53680- 4 2.50000+ 1 3.60000+ 1 5.44992- 3 3.54830- 4 2.50000+ 1 4.10000+ 1 2.26278- 2 3.07960- 4 2.50000+ 1 4.30000+ 1 1.92361- 2 3.27160- 4 2.50000+ 1 4.40000+ 1 1.57602- 2 3.37660- 4 2.50000+ 1 5.80000+ 1 1.97547- 3 3.55660- 4 2.70000+ 1 2.70000+ 1 1.62432- 3 1.00890- 4 2.70000+ 1 2.90000+ 1 2.34743- 3 1.66200- 4 2.70000+ 1 3.00000+ 1 3.41549- 3 2.31110- 4 2.70000+ 1 3.20000+ 1 3.01503- 3 3.28030- 4 2.70000+ 1 3.30000+ 1 1.50216- 2 3.37680- 4 2.70000+ 1 3.50000+ 1 1.00893- 3 4.40130- 4 2.70000+ 1 3.60000+ 1 1.55043- 3 4.41280- 4 2.70000+ 1 4.10000+ 1 3.60016- 4 3.94410- 4 2.70000+ 1 4.30000+ 1 2.60734- 4 4.13610- 4 2.70000+ 1 4.40000+ 1 3.80134- 4 4.24110- 4 2.70000+ 1 5.80000+ 1 2.99631- 5 4.42110- 4 2.90000+ 1 2.90000+ 1 3.22569- 4 2.31510- 4 2.90000+ 1 3.00000+ 1 3.85595- 3 2.96420- 4 2.90000+ 1 3.20000+ 1 5.83770- 4 3.93340- 4 2.90000+ 1 3.30000+ 1 1.33154- 2 4.02990- 4 2.90000+ 1 3.50000+ 1 1.58588- 4 5.05440- 4 2.90000+ 1 3.60000+ 1 3.36894- 4 5.06590- 4 2.90000+ 1 4.10000+ 1 1.58588- 4 4.59720- 4 2.90000+ 1 4.30000+ 1 7.16824- 5 4.78920- 4 2.90000+ 1 4.40000+ 1 3.18103- 4 4.89420- 4 2.90000+ 1 5.80000+ 1 1.25450- 5 5.07420- 4 3.00000+ 1 3.00000+ 1 1.20419- 3 3.61330- 4 3.00000+ 1 3.20000+ 1 2.23046- 3 4.58250- 4 3.00000+ 1 3.30000+ 1 1.67877- 2 4.67900- 4 3.00000+ 1 3.50000+ 1 3.10324- 4 5.70350- 4 3.00000+ 1 3.60000+ 1 4.11760- 4 5.71500- 4 3.00000+ 1 4.10000+ 1 1.08770- 4 5.24630- 4 3.00000+ 1 4.30000+ 1 1.62713- 4 5.43830- 4 3.00000+ 1 4.40000+ 1 2.12365- 4 5.54330- 4 3.00000+ 1 5.80000+ 1 7.76914- 6 5.72330- 4 3.20000+ 1 3.20000+ 1 1.41291- 4 5.55170- 4 3.20000+ 1 3.30000+ 1 1.61244- 2 5.64820- 4 3.20000+ 1 3.50000+ 1 1.02180- 4 6.67270- 4 3.20000+ 1 3.60000+ 1 3.79706- 4 6.68420- 4 3.20000+ 1 4.10000+ 1 7.27462- 5 6.21550- 4 3.20000+ 1 4.30000+ 1 4.83558- 5 6.40750- 4 3.20000+ 1 4.40000+ 1 2.11501- 4 6.51250- 4 3.20000+ 1 5.80000+ 1 5.88687- 6 6.69250- 4 3.30000+ 1 3.30000+ 1 1.79442- 2 5.74470- 4 3.30000+ 1 3.50000+ 1 4.29380- 3 6.76920- 4 3.30000+ 1 3.60000+ 1 5.02807- 3 6.78070- 4 3.30000+ 1 4.10000+ 1 1.92657- 3 6.31200- 4 3.30000+ 1 4.30000+ 1 1.79421- 3 6.50400- 4 3.30000+ 1 4.40000+ 1 2.29916- 3 6.60900- 4 3.30000+ 1 5.80000+ 1 1.67047- 4 6.78900- 4 3.50000+ 1 3.50000+ 1 6.06779- 6 7.79370- 4 3.50000+ 1 3.60000+ 1 4.81096- 5 7.80520- 4 3.50000+ 1 4.10000+ 1 4.29085- 5 7.33650- 4 3.50000+ 1 4.30000+ 1 1.51693- 5 7.52850- 4 3.50000+ 1 4.40000+ 1 2.68714- 5 7.63350- 4 3.50000+ 1 5.80000+ 1 3.03386- 6 7.81350- 4 3.60000+ 1 3.60000+ 1 3.86625- 5 7.81670- 4 3.60000+ 1 4.10000+ 1 7.60210- 5 7.34800- 4 3.60000+ 1 4.30000+ 1 2.91042- 5 7.54000- 4 3.60000+ 1 4.40000+ 1 4.38755- 5 7.64500- 4 3.60000+ 1 5.80000+ 1 5.64727- 6 7.82500- 4 4.10000+ 1 4.10000+ 1 1.09172- 5 6.87930- 4 4.10000+ 1 4.30000+ 1 1.41010- 5 7.07130- 4 4.10000+ 1 4.40000+ 1 1.36464- 5 7.17630- 4 4.10000+ 1 5.80000+ 1 1.81946- 6 7.35630- 4 4.30000+ 1 4.30000+ 1 2.67229- 6 7.26330- 4 4.30000+ 1 4.40000+ 1 1.81718- 5 7.36830- 4 4.30000+ 1 5.80000+ 1 1.06893- 6 7.54830- 4 4.40000+ 1 4.40000+ 1 1.23508- 5 7.47330- 4 4.40000+ 1 5.80000+ 1 1.02922- 6 7.65330- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.01174- 4 3.26580- 4 3.30000+ 1 6.38093- 6 3.36230- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 1.22262- 1 5.59000- 6 2.50000+ 1 3.60000+ 1 5.95584- 3 6.74000- 6 2.50000+ 1 5.80000+ 1 2.00944- 4 7.57000- 6 2.70000+ 1 3.50000+ 1 5.33974- 2 9.20400- 5 2.70000+ 1 3.60000+ 1 8.42346- 3 9.31900- 5 2.70000+ 1 4.10000+ 1 1.84949- 3 4.63200- 5 2.70000+ 1 4.30000+ 1 2.09968- 3 6.55200- 5 2.70000+ 1 4.40000+ 1 4.24850- 3 7.60200- 5 2.70000+ 1 5.80000+ 1 1.15973- 4 9.40200- 5 2.90000+ 1 3.20000+ 1 3.16863- 2 4.52500- 5 2.90000+ 1 3.30000+ 1 6.37522- 2 5.49000- 5 2.90000+ 1 3.50000+ 1 5.75541- 2 1.57350- 4 2.90000+ 1 3.60000+ 1 1.36012- 2 1.58500- 4 2.90000+ 1 4.10000+ 1 1.37259- 2 1.11630- 4 2.90000+ 1 4.30000+ 1 7.61235- 3 1.30830- 4 2.90000+ 1 4.40000+ 1 1.22994- 2 1.41330- 4 2.90000+ 1 5.80000+ 1 1.13727- 3 1.59330- 4 3.00000+ 1 3.00000+ 1 1.24396- 2 1.32400- 5 3.00000+ 1 3.20000+ 1 8.41238- 2 1.10160- 4 3.00000+ 1 3.30000+ 1 6.45660- 2 1.19810- 4 3.00000+ 1 3.50000+ 1 8.11510- 2 2.22260- 4 3.00000+ 1 3.60000+ 1 4.71231- 3 2.23410- 4 3.00000+ 1 4.10000+ 1 5.29215- 3 1.76540- 4 3.00000+ 1 4.30000+ 1 3.65618- 3 1.95740- 4 3.00000+ 1 4.40000+ 1 2.51483- 3 2.06240- 4 3.00000+ 1 5.80000+ 1 3.72349- 4 2.24240- 4 3.20000+ 1 3.20000+ 1 1.47238- 2 2.07080- 4 3.20000+ 1 3.30000+ 1 2.78280- 2 2.16730- 4 3.20000+ 1 3.50000+ 1 7.34220- 2 3.19180- 4 3.20000+ 1 3.60000+ 1 1.19763- 2 3.20330- 4 3.20000+ 1 4.10000+ 1 1.82516- 3 2.73460- 4 3.20000+ 1 4.30000+ 1 8.42379- 3 2.92660- 4 3.20000+ 1 4.40000+ 1 5.69518- 3 3.03160- 4 3.20000+ 1 5.80000+ 1 1.64805- 4 3.21160- 4 3.30000+ 1 3.30000+ 1 6.22644- 3 2.26380- 4 3.30000+ 1 3.50000+ 1 1.04873- 1 3.28830- 4 3.30000+ 1 3.60000+ 1 3.22309- 3 3.29980- 4 3.30000+ 1 4.10000+ 1 1.49555- 3 2.83110- 4 3.30000+ 1 4.30000+ 1 6.36687- 3 3.02310- 4 3.30000+ 1 4.40000+ 1 3.16213- 3 3.12810- 4 3.30000+ 1 5.80000+ 1 1.22086- 4 3.30810- 4 3.50000+ 1 3.50000+ 1 1.26813- 2 4.31280- 4 3.50000+ 1 3.60000+ 1 2.75059- 2 4.32430- 4 3.50000+ 1 4.10000+ 1 8.86000- 3 3.85560- 4 3.50000+ 1 4.30000+ 1 7.63713- 3 4.04760- 4 3.50000+ 1 4.40000+ 1 1.06673- 2 4.15260- 4 3.50000+ 1 5.80000+ 1 7.67865- 4 4.33260- 4 3.60000+ 1 3.60000+ 1 2.43979- 4 4.33580- 4 3.60000+ 1 4.10000+ 1 2.74481- 4 3.86710- 4 3.60000+ 1 4.30000+ 1 8.66144- 4 4.05910- 4 3.60000+ 1 4.40000+ 1 3.47686- 4 4.16410- 4 3.60000+ 1 5.80000+ 1 1.82989- 5 4.34410- 4 4.10000+ 1 4.10000+ 1 5.47530- 5 3.39840- 4 4.10000+ 1 4.30000+ 1 5.68052- 4 3.59040- 4 4.10000+ 1 4.40000+ 1 3.96944- 4 3.69540- 4 4.10000+ 1 5.80000+ 1 6.84412- 6 3.87540- 4 4.30000+ 1 4.30000+ 1 2.16893- 4 3.78240- 4 4.30000+ 1 4.40000+ 1 3.36542- 4 3.88740- 4 4.30000+ 1 5.80000+ 1 5.23506- 5 4.06740- 4 4.40000+ 1 4.40000+ 1 7.68612- 5 3.99240- 4 4.40000+ 1 5.80000+ 1 3.41580- 5 4.17240- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.10089- 4 3.23240- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 5.69175- 3 7.90500- 5 2.70000+ 1 3.60000+ 1 5.30934- 2 8.02000- 5 2.70000+ 1 4.10000+ 1 2.20113- 3 3.33300- 5 2.70000+ 1 4.30000+ 1 2.56073- 3 5.25300- 5 2.70000+ 1 4.40000+ 1 3.10004- 3 6.30300- 5 2.70000+ 1 5.80000+ 1 1.36409- 4 8.10300- 5 2.90000+ 1 3.20000+ 1 5.36893- 3 3.22600- 5 2.90000+ 1 3.30000+ 1 1.01601- 2 4.19100- 5 2.90000+ 1 3.50000+ 1 6.62833- 4 1.44360- 4 2.90000+ 1 3.60000+ 1 4.76687- 2 1.45510- 4 2.90000+ 1 4.10000+ 1 2.92838- 3 9.86400- 5 2.90000+ 1 4.30000+ 1 6.86928- 4 1.17840- 4 2.90000+ 1 4.40000+ 1 1.28949- 3 1.28340- 4 2.90000+ 1 5.80000+ 1 2.41026- 4 1.46340- 4 3.00000+ 1 3.20000+ 1 1.27489- 1 9.71700- 5 3.00000+ 1 3.30000+ 1 2.74086- 1 1.06820- 4 3.00000+ 1 3.50000+ 1 1.43758- 2 2.09270- 4 3.00000+ 1 3.60000+ 1 9.34937- 2 2.10420- 4 3.00000+ 1 4.10000+ 1 1.09171- 2 1.63550- 4 3.00000+ 1 4.30000+ 1 3.80920- 3 1.82750- 4 3.00000+ 1 4.40000+ 1 9.90251- 3 1.93250- 4 3.00000+ 1 5.80000+ 1 8.42219- 4 2.11250- 4 3.20000+ 1 3.20000+ 1 2.66933- 3 1.94090- 4 3.20000+ 1 3.30000+ 1 2.70351- 2 2.03740- 4 3.20000+ 1 3.50000+ 1 2.06130- 3 3.06190- 4 3.20000+ 1 3.60000+ 1 7.36009- 2 3.07340- 4 3.20000+ 1 4.10000+ 1 1.25260- 3 2.60470- 4 3.20000+ 1 4.30000+ 1 1.24655- 3 2.79670- 4 3.20000+ 1 4.40000+ 1 5.11982- 3 2.90170- 4 3.20000+ 1 5.80000+ 1 1.03377- 4 3.08170- 4 3.30000+ 1 3.30000+ 1 1.81284- 2 2.13390- 4 3.30000+ 1 3.50000+ 1 1.06460- 2 3.15840- 4 3.30000+ 1 3.60000+ 1 1.00711- 1 3.16990- 4 3.30000+ 1 4.10000+ 1 2.09317- 3 2.70120- 4 3.30000+ 1 4.30000+ 1 2.45998- 3 2.89320- 4 3.30000+ 1 4.40000+ 1 1.07301- 2 2.99820- 4 3.30000+ 1 5.80000+ 1 1.80442- 4 3.17820- 4 3.50000+ 1 3.50000+ 1 1.54289- 4 4.18290- 4 3.50000+ 1 3.60000+ 1 2.19565- 2 4.19440- 4 3.50000+ 1 4.10000+ 1 2.49223- 4 3.72570- 4 3.50000+ 1 4.30000+ 1 5.93399- 5 3.91770- 4 3.50000+ 1 4.40000+ 1 9.31643- 4 4.02270- 4 3.50000+ 1 5.80000+ 1 1.78018- 5 4.20270- 4 3.60000+ 1 3.60000+ 1 1.82578- 2 4.20590- 4 3.60000+ 1 4.10000+ 1 8.84040- 3 3.73720- 4 3.60000+ 1 4.30000+ 1 7.35501- 3 3.92920- 4 3.60000+ 1 4.40000+ 1 1.11496- 2 4.03420- 4 3.60000+ 1 5.80000+ 1 7.63771- 4 4.21420- 4 4.10000+ 1 4.10000+ 1 4.69325- 5 3.26850- 4 4.10000+ 1 4.30000+ 1 2.54780- 4 3.46050- 4 4.10000+ 1 4.40000+ 1 5.83325- 4 3.56550- 4 4.10000+ 1 5.80000+ 1 6.70492- 6 3.74550- 4 4.30000+ 1 4.30000+ 1 2.79905- 5 3.65250- 4 4.30000+ 1 4.40000+ 1 1.74945- 4 3.75750- 4 4.30000+ 1 5.80000+ 1 2.09931- 5 3.93750- 4 4.40000+ 1 4.40000+ 1 2.41401- 4 3.86250- 4 4.40000+ 1 5.80000+ 1 5.45065- 5 4.04250- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.37896- 6 6.53100- 5 3.00000+ 1 2.25034- 5 1.30220- 4 4.30000+ 1 3.16189- 6 3.12720- 4 4.40000+ 1 4.63655- 8 3.23220- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 4.02012- 2 5.79100- 5 2.90000+ 1 3.60000+ 1 6.65024- 2 5.90600- 5 2.90000+ 1 4.10000+ 1 2.28716- 2 1.21900- 5 2.90000+ 1 4.30000+ 1 1.52243- 2 3.13900- 5 2.90000+ 1 4.40000+ 1 2.74531- 2 4.18900- 5 2.90000+ 1 5.80000+ 1 1.91653- 3 5.98900- 5 3.00000+ 1 3.20000+ 1 2.01411- 1 1.07200- 5 3.00000+ 1 3.30000+ 1 1.83476- 1 2.03700- 5 3.00000+ 1 3.50000+ 1 8.71624- 2 1.22820- 4 3.00000+ 1 3.60000+ 1 8.20586- 2 1.23970- 4 3.00000+ 1 4.10000+ 1 2.00849- 2 7.71000- 5 3.00000+ 1 4.30000+ 1 1.99576- 2 9.63000- 5 3.00000+ 1 4.40000+ 1 1.74844- 2 1.06800- 4 3.00000+ 1 5.80000+ 1 1.72248- 3 1.24800- 4 3.20000+ 1 3.20000+ 1 1.65542- 3 1.07640- 4 3.20000+ 1 3.30000+ 1 1.20424- 1 1.17290- 4 3.20000+ 1 3.50000+ 1 2.37501- 3 2.19740- 4 3.20000+ 1 3.60000+ 1 8.07074- 3 2.20890- 4 3.20000+ 1 4.10000+ 1 6.32690- 3 1.74020- 4 3.20000+ 1 4.30000+ 1 1.23207- 3 1.93220- 4 3.20000+ 1 4.40000+ 1 5.03988- 3 2.03720- 4 3.20000+ 1 5.80000+ 1 4.45197- 4 2.21720- 4 3.30000+ 1 3.30000+ 1 2.78698- 2 1.26940- 4 3.30000+ 1 3.50000+ 1 8.72550- 3 2.29390- 4 3.30000+ 1 3.60000+ 1 5.87235- 3 2.30540- 4 3.30000+ 1 4.10000+ 1 8.34176- 3 1.83670- 4 3.30000+ 1 4.30000+ 1 3.68903- 3 2.02870- 4 3.30000+ 1 4.40000+ 1 3.08735- 3 2.13370- 4 3.30000+ 1 5.80000+ 1 5.85913- 4 2.31370- 4 3.50000+ 1 3.50000+ 1 1.65761- 5 3.31840- 4 3.50000+ 1 3.60000+ 1 6.15327- 4 3.32990- 4 3.50000+ 1 4.10000+ 1 1.61160- 3 2.86120- 4 3.50000+ 1 4.30000+ 1 1.35709- 4 3.05320- 4 3.50000+ 1 4.40000+ 1 4.92785- 4 3.15820- 4 3.50000+ 1 5.80000+ 1 1.03091- 4 3.33820- 4 3.60000+ 1 3.60000+ 1 9.66729- 5 3.34140- 4 3.60000+ 1 4.10000+ 1 1.96707- 3 2.87270- 4 3.60000+ 1 4.30000+ 1 3.46286- 4 3.06470- 4 3.60000+ 1 4.40000+ 1 2.89907- 4 3.16970- 4 3.60000+ 1 5.80000+ 1 1.25651- 4 3.34970- 4 4.10000+ 1 4.10000+ 1 5.53208- 4 2.40400- 4 4.10000+ 1 4.30000+ 1 6.48716- 4 2.59600- 4 4.10000+ 1 4.40000+ 1 9.25005- 4 2.70100- 4 4.10000+ 1 5.80000+ 1 8.38604- 5 2.88100- 4 4.30000+ 1 4.30000+ 1 6.16545- 5 2.78800- 4 4.30000+ 1 4.40000+ 1 3.50813- 4 2.89300- 4 4.30000+ 1 5.80000+ 1 4.34800- 5 3.07300- 4 4.40000+ 1 4.40000+ 1 1.67767- 4 2.99800- 4 4.40000+ 1 5.80000+ 1 7.07814- 5 3.17800- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 5.53860- 5 1.61830- 4 4.10000+ 1 6.25260- 6 2.28210- 4 5.80000+ 1 6.42920- 7 2.75910- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 1.87702- 2 5.75100- 5 3.00000+ 1 3.60000+ 1 1.13503- 2 5.86600- 5 3.00000+ 1 4.10000+ 1 1.69900- 2 1.17900- 5 3.00000+ 1 4.30000+ 1 9.70027- 3 3.09900- 5 3.00000+ 1 4.40000+ 1 7.95723- 3 4.14900- 5 3.00000+ 1 5.80000+ 1 9.92045- 4 5.94900- 5 3.20000+ 1 3.20000+ 1 9.92049- 2 4.23300- 5 3.20000+ 1 3.30000+ 1 4.15149- 1 5.19800- 5 3.20000+ 1 3.50000+ 1 6.29385- 2 1.54430- 4 3.20000+ 1 3.60000+ 1 1.38820- 1 1.55580- 4 3.20000+ 1 4.10000+ 1 3.88144- 2 1.08710- 4 3.20000+ 1 4.30000+ 1 2.56967- 2 1.27910- 4 3.20000+ 1 4.40000+ 1 3.91710- 2 1.38410- 4 3.20000+ 1 5.80000+ 1 3.37661- 3 1.56410- 4 3.30000+ 1 3.30000+ 1 1.60498- 2 6.16300- 5 3.30000+ 1 3.50000+ 1 3.34359- 2 1.64080- 4 3.30000+ 1 3.60000+ 1 7.68244- 3 1.65230- 4 3.30000+ 1 4.10000+ 1 3.65978- 3 1.18360- 4 3.30000+ 1 4.30000+ 1 1.88653- 2 1.37560- 4 3.30000+ 1 4.40000+ 1 4.03697- 3 1.48060- 4 3.30000+ 1 5.80000+ 1 2.65862- 4 1.66060- 4 3.50000+ 1 3.50000+ 1 7.26394- 4 2.66530- 4 3.50000+ 1 3.60000+ 1 5.86787- 3 2.67680- 4 3.50000+ 1 4.10000+ 1 1.66420- 3 2.20810- 4 3.50000+ 1 4.30000+ 1 3.38815- 3 2.40010- 4 3.50000+ 1 4.40000+ 1 1.79516- 3 2.50510- 4 3.50000+ 1 5.80000+ 1 1.48227- 4 2.68510- 4 3.60000+ 1 3.60000+ 1 2.75940- 4 2.68830- 4 3.60000+ 1 4.10000+ 1 6.32756- 4 2.21960- 4 3.60000+ 1 4.30000+ 1 5.67009- 3 2.41160- 4 3.60000+ 1 4.40000+ 1 5.96258- 4 2.51660- 4 3.60000+ 1 5.80000+ 1 4.51591- 5 2.69660- 4 4.10000+ 1 4.10000+ 1 1.07385- 4 1.75090- 4 4.10000+ 1 4.30000+ 1 1.94929- 3 1.94290- 4 4.10000+ 1 4.40000+ 1 3.24640- 4 2.04790- 4 4.10000+ 1 5.80000+ 1 1.49839- 5 2.22790- 4 4.30000+ 1 4.30000+ 1 1.09429- 3 2.13490- 4 4.30000+ 1 4.40000+ 1 2.39539- 3 2.23990- 4 4.30000+ 1 5.80000+ 1 1.67823- 4 2.41990- 4 4.40000+ 1 4.40000+ 1 1.23961- 4 2.34490- 4 4.40000+ 1 5.80000+ 1 2.32994- 5 2.52490- 4 1 94000 0 7 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 7.11493- 7 9.69200- 5 3.30000+ 1 8.62113- 6 1.06570- 4 4.10000+ 1 3.68821- 6 1.63300- 4 5.80000+ 1 3.71131- 7 2.11000- 4 1 94000 0 9 2.44000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.44730- 2 8.95200- 5 3.20000+ 1 3.60000+ 1 8.96672- 2 9.06700- 5 3.20000+ 1 4.10000+ 1 1.38523- 2 4.38000- 5 3.20000+ 1 4.30000+ 1 9.81552- 3 6.30000- 5 3.20000+ 1 4.40000+ 1 2.67920- 2 7.35000- 5 3.20000+ 1 5.80000+ 1 9.90566- 4 9.15000- 5 3.30000+ 1 3.30000+ 1 8.92438- 2 0.00000+ 0 3.30000+ 1 3.50000+ 1 2.73786- 1 9.91700- 5 3.30000+ 1 3.60000+ 1 2.40187- 1 1.00320- 4 3.30000+ 1 4.10000+ 1 6.06477- 2 5.34500- 5 3.30000+ 1 4.30000+ 1 6.13130- 2 7.26500- 5 3.30000+ 1 4.40000+ 1 6.43240- 2 8.31500- 5 3.30000+ 1 5.80000+ 1 5.33146- 3 1.01150- 4 3.50000+ 1 3.50000+ 1 2.31551- 4 2.01620- 4 3.50000+ 1 3.60000+ 1 7.01655- 3 2.02770- 4 3.50000+ 1 4.10000+ 1 2.35551- 3 1.55900- 4 3.50000+ 1 4.30000+ 1 6.53722- 4 1.75100- 4 3.50000+ 1 4.40000+ 1 5.66823- 3 1.85600- 4 3.50000+ 1 5.80000+ 1 9.34995- 5 2.03600- 4 3.60000+ 1 3.60000+ 1 2.27242- 3 2.03920- 4 3.60000+ 1 4.10000+ 1 4.41068- 3 1.57050- 4 3.60000+ 1 4.30000+ 1 3.27729- 3 1.76250- 4 3.60000+ 1 4.40000+ 1 6.76907- 3 1.86750- 4 3.60000+ 1 5.80000+ 1 2.40607- 4 2.04750- 4 4.10000+ 1 4.10000+ 1 3.01827- 4 1.10180- 4 4.10000+ 1 4.30000+ 1 4.80102- 4 1.29380- 4 4.10000+ 1 4.40000+ 1 2.00280- 3 1.39880- 4 4.10000+ 1 5.80000+ 1 4.15779- 5 1.57880- 4 4.30000+ 1 4.30000+ 1 1.18228- 6 1.48580- 4 4.30000+ 1 4.40000+ 1 1.74325- 3 1.59080- 4 4.30000+ 1 5.80000+ 1 2.18736- 5 1.77080- 4 4.40000+ 1 4.40000+ 1 1.81655- 3 1.69580- 4 4.40000+ 1 5.80000+ 1 1.64753- 4 1.87580- 4 1 95000 0 0 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 3.00000+ 0 3.60000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 95000 0 0 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.25570- 1 3.00000+ 0 2.38270- 2 5.00000+ 0 2.30620- 2 6.00000+ 0 1.85270- 2 8.00000+ 0 6.10210- 3 1.00000+ 1 5.74160- 3 1.10000+ 1 4.68550- 3 1.30000+ 1 4.10360- 3 1.40000+ 1 3.89250- 3 1.60000+ 1 1.59520- 3 1.80000+ 1 1.42820- 3 1.90000+ 1 1.14700- 3 2.10000+ 1 8.77900- 4 2.20000+ 1 8.26680- 4 2.40000+ 1 4.71030- 4 2.50000+ 1 4.57170- 4 2.70000+ 1 3.62440- 4 2.90000+ 1 2.95060- 4 3.00000+ 1 2.25250- 4 3.20000+ 1 1.25290- 4 3.30000+ 1 1.14900- 4 3.50000+ 1 8.29000- 6 3.60000+ 1 7.00000- 6 4.10000+ 1 5.50600- 5 4.30000+ 1 3.51400- 5 4.40000+ 1 2.38900- 5 5.80000+ 1 5.49000- 6 1 95000 0 0 2.43000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.93380- 1 3.00000+ 0 4.88390- 2 5.00000+ 0 4.89270- 2 6.00000+ 0 2.97700- 2 8.00000+ 0 1.56380- 2 1.00000+ 1 1.55060- 2 1.10000+ 1 1.06310- 2 1.30000+ 1 1.04580- 2 1.40000+ 1 9.58350- 3 1.60000+ 1 5.43740- 3 1.80000+ 1 5.27430- 3 1.90000+ 1 3.76610- 3 2.10000+ 1 3.51470- 3 2.20000+ 1 3.24680- 3 2.40000+ 1 2.88190- 3 2.50000+ 1 2.79030- 3 2.70000+ 1 1.74490- 3 2.90000+ 1 1.61140- 3 3.00000+ 1 1.15960- 3 3.20000+ 1 9.35230- 4 3.30000+ 1 8.60190- 4 3.50000+ 1 4.23300- 4 3.60000+ 1 4.00000- 4 4.10000+ 1 4.12810- 4 4.30000+ 1 3.27360- 4 4.40000+ 1 2.14330- 4 5.80000+ 1 4.21800- 5 1 95000 0 0 2.43000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.87750-11 3.00000+ 0 2.83940-10 5.00000+ 0 2.28490-10 6.00000+ 0 2.84750-10 8.00000+ 0 7.39490-10 1.00000+ 1 6.92380-10 1.10000+ 1 7.93170-10 1.30000+ 1 6.81960-10 1.40000+ 1 7.11300-10 1.60000+ 1 1.59950- 9 1.80000+ 1 1.58520- 9 1.90000+ 1 1.78060- 9 2.10000+ 1 1.75280- 9 2.20000+ 1 1.80990- 9 2.40000+ 1 1.73080- 9 2.50000+ 1 1.75820- 9 2.70000+ 1 3.29010- 9 2.90000+ 1 3.40210- 9 3.00000+ 1 3.81870- 9 3.20000+ 1 4.22070- 9 3.30000+ 1 4.36360- 9 3.50000+ 1 6.51060- 9 3.60000+ 1 6.71920- 9 4.10000+ 1 7.24050- 9 4.30000+ 1 8.06300- 9 4.40000+ 1 9.39140- 9 5.80000+ 1 2.15480- 8 1 95000 0 0 2.43000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.04230- 4 3.00000+ 0 2.88470- 6 5.00000+ 0 5.04220- 6 6.00000+ 0 4.16960- 6 8.00000+ 0 1.35000- 7 1.00000+ 1 1.46150- 7 1.10000+ 1 1.64940- 7 1.30000+ 1 2.22040- 7 1.40000+ 1 2.03350- 7 1.60000+ 1 8.00140- 9 1.80000+ 1 9.93390- 9 1.90000+ 1 6.73940- 9 2.10000+ 1 4.51250- 9 2.20000+ 1 3.43060- 9 2.40000+ 1 1.73330-10 2.50000+ 1 1.55270-10 2.70000+ 1 5.83130-10 2.90000+ 1 1.11320- 9 3.00000+ 1 4.92600-10 1 95000 0 0 2.43000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.11370- 6 3.00000+ 0 1.33440- 5 5.00000+ 0 5.20260- 6 6.00000+ 0 4.55540- 6 8.00000+ 0 2.03340- 5 1.00000+ 1 1.53190- 5 1.10000+ 1 1.13240- 5 1.30000+ 1 3.70500- 6 1.40000+ 1 3.64390- 6 1.60000+ 1 1.44670- 5 1.80000+ 1 1.55580- 5 1.90000+ 1 9.81210- 6 2.10000+ 1 6.37190- 6 2.20000+ 1 6.86510- 6 2.40000+ 1 7.20700- 7 2.50000+ 1 5.01530- 7 2.70000+ 1 2.69630- 5 2.90000+ 1 1.09280- 5 3.00000+ 1 1.20850- 5 1 95000 0 0 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.32633- 4 3.00000+ 0 1.04198- 3 5.00000+ 0 7.68258- 4 6.00000+ 0 7.25896- 4 8.00000+ 0 8.00554- 4 1.00000+ 1 7.10414- 4 1.10000+ 1 6.16881- 4 1.30000+ 1 4.78747- 4 1.40000+ 1 4.68266- 4 1.60000+ 1 4.21810- 4 1.80000+ 1 4.04395- 4 1.90000+ 1 3.95683- 4 2.10000+ 1 3.13997- 4 2.20000+ 1 3.09842- 4 2.40000+ 1 1.83926- 4 2.50000+ 1 1.83460- 4 2.70000+ 1 2.06256- 4 2.90000+ 1 1.88001- 4 3.00000+ 1 1.30972- 4 3.20000+ 1 1.25290- 4 3.30000+ 1 1.14900- 4 3.50000+ 1 8.29000- 6 3.60000+ 1 7.00000- 6 4.10000+ 1 5.50600- 5 4.30000+ 1 3.51400- 5 4.40000+ 1 2.38900- 5 5.80000+ 1 5.49000- 6 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.46690+ 0 3.00000+ 0 6.20306- 1 5.00000+ 0 6.86609- 1 6.00000+ 0 5.58695- 1 8.00000+ 0 6.30834- 2 1.00000+ 1 6.48699- 2 1.10000+ 1 5.86417- 2 1.30000+ 1 6.68596- 2 1.40000+ 1 5.95695- 2 1.60000+ 1 2.08103- 3 1.80000+ 1 2.12999- 3 1.90000+ 1 1.49476- 3 2.10000+ 1 9.88793- 4 2.20000+ 1 8.35894- 4 2.40000+ 1 1.69824- 4 2.50000+ 1 1.48391- 4 2.70000+ 1 5.10875- 5 2.90000+ 1 7.34738- 5 3.00000+ 1 1.55740- 5 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.12944- 1 3.00000+ 0 8.95169- 3 5.00000+ 0 1.17561- 2 6.00000+ 0 7.60670- 3 8.00000+ 0 2.23747- 4 1.00000+ 1 2.32761- 4 1.10000+ 1 2.03637- 4 1.30000+ 1 2.37167- 4 1.40000+ 1 2.01550- 4 1.60000+ 1 1.54465- 6 1.80000+ 1 1.33625- 6 1.90000+ 1 9.32018- 7 2.10000+ 1 4.73477- 7 2.20000+ 1 3.81977- 7 2.40000+ 1 5.42805- 8 2.50000+ 1 4.75436- 8 2.70000+ 1 8.00660- 9 2.90000+ 1 1.30208- 8 3.00000+ 1 2.01848- 9 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.15143+ 0 3.00000+ 0 1.34456+ 1 5.00000+ 0 9.62874+ 0 6.00000+ 0 9.05703+ 0 8.00000+ 0 1.02111+ 1 1.00000+ 1 8.89519+ 0 1.10000+ 1 7.65875+ 0 1.30000+ 1 5.67928+ 0 1.40000+ 1 5.50729+ 0 1.60000+ 1 4.59021+ 0 1.80000+ 1 4.37406+ 0 1.90000+ 1 4.24836+ 0 2.10000+ 1 3.24357+ 0 2.20000+ 1 3.11915+ 0 2.40000+ 1 1.86720+ 0 2.50000+ 1 1.72253+ 0 2.70000+ 1 1.79860+ 0 2.90000+ 1 1.06914+ 0 3.00000+ 1 9.99984- 1 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.18932- 2 3.00000+ 0 1.38333- 2 5.00000+ 0 1.05376- 2 6.00000+ 0 1.01944- 2 8.00000+ 0 5.07780- 3 1.00000+ 1 4.79843- 3 1.10000+ 1 3.86498- 3 1.30000+ 1 3.38769- 3 1.40000+ 1 3.22268- 3 1.60000+ 1 1.17185- 3 1.80000+ 1 1.02247- 3 1.90000+ 1 7.50385- 4 2.10000+ 1 5.63430- 4 2.20000+ 1 5.16456- 4 2.40000+ 1 2.87049- 4 2.50000+ 1 2.73662- 4 2.70000+ 1 1.56176- 4 2.90000+ 1 1.07046- 4 3.00000+ 1 9.42757- 5 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.91941- 1 1.02508- 1 6.00000+ 0 4.59542- 1 1.07043- 1 1.00000+ 1 5.34292- 2 1.19828- 1 1.10000+ 1 1.04970- 1 1.20884- 1 1.30000+ 1 2.00261- 3 1.21466- 1 1.40000+ 1 2.23921- 3 1.21677- 1 1.80000+ 1 1.35051- 2 1.24142- 1 1.90000+ 1 2.76421- 2 1.24423- 1 2.10000+ 1 6.04272- 4 1.24692- 1 2.20000+ 1 6.78953- 4 1.24743- 1 2.90000+ 1 3.37061- 3 1.25275- 1 3.00000+ 1 6.80993- 3 1.25345- 1 3.20000+ 1 1.29851- 4 1.25445- 1 3.30000+ 1 1.44471- 4 1.25455- 1 4.30000+ 1 5.84722- 4 1.25535- 1 4.40000+ 1 1.07550- 3 1.25546- 1 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.74013- 3 7.79160- 2 3.00000+ 0 5.00000+ 0 7.11245- 3 7.86810- 2 3.00000+ 0 6.00000+ 0 2.42224- 3 8.32160- 2 3.00000+ 0 8.00000+ 0 1.56217- 3 9.56409- 2 3.00000+ 0 1.00000+ 1 1.56617- 3 9.60014- 2 3.00000+ 0 1.10000+ 1 6.07068- 4 9.70575- 2 3.00000+ 0 1.30000+ 1 5.33642- 5 9.76394- 2 3.00000+ 0 1.40000+ 1 3.20059- 5 9.78505- 2 3.00000+ 0 1.60000+ 1 4.19004- 4 1.00148- 1 3.00000+ 0 1.80000+ 1 4.13799- 4 1.00315- 1 3.00000+ 0 1.90000+ 1 1.62934- 4 1.00596- 1 3.00000+ 0 2.10000+ 1 1.61822- 5 1.00865- 1 3.00000+ 0 2.20000+ 1 9.55521- 6 1.00916- 1 3.00000+ 0 2.40000+ 1 5.47574- 8 1.01272- 1 3.00000+ 0 2.50000+ 1 5.47574- 8 1.01286- 1 3.00000+ 0 2.70000+ 1 1.10340- 4 1.01381- 1 3.00000+ 0 2.90000+ 1 1.03024- 4 1.01448- 1 3.00000+ 0 3.00000+ 1 4.00828- 5 1.01518- 1 3.00000+ 0 3.20000+ 1 3.44972- 6 1.01618- 1 3.00000+ 0 3.30000+ 1 1.99869- 6 1.01628- 1 5.00000+ 0 5.00000+ 0 2.32973- 4 7.94460- 2 5.00000+ 0 6.00000+ 0 3.83037- 3 8.39810- 2 5.00000+ 0 8.00000+ 0 1.32049- 3 9.64059- 2 5.00000+ 0 1.00000+ 1 9.13656- 5 9.67664- 2 5.00000+ 0 1.10000+ 1 8.20010- 4 9.78225- 2 5.00000+ 0 1.30000+ 1 5.35271- 5 9.84044- 2 5.00000+ 0 1.40000+ 1 1.16368- 4 9.86155- 2 5.00000+ 0 1.60000+ 1 3.44816- 4 1.00913- 1 5.00000+ 0 1.80000+ 1 2.36019- 5 1.01080- 1 5.00000+ 0 1.90000+ 1 2.11536- 4 1.01361- 1 5.00000+ 0 2.10000+ 1 1.54426- 5 1.01630- 1 5.00000+ 0 2.20000+ 1 3.38963- 5 1.01681- 1 5.00000+ 0 2.40000+ 1 5.20206- 7 1.02037- 1 5.00000+ 0 2.50000+ 1 7.39271- 7 1.02051- 1 5.00000+ 0 2.70000+ 1 9.01625- 5 1.02146- 1 5.00000+ 0 2.90000+ 1 5.83180- 6 1.02213- 1 5.00000+ 0 3.00000+ 1 5.15292- 5 1.02283- 1 5.00000+ 0 3.20000+ 1 3.25831- 6 1.02383- 1 5.00000+ 0 3.30000+ 1 7.09129- 6 1.02393- 1 6.00000+ 0 6.00000+ 0 1.52494- 3 8.85160- 2 6.00000+ 0 8.00000+ 0 3.97769- 4 1.00941- 1 6.00000+ 0 1.00000+ 1 6.98795- 4 1.01301- 1 6.00000+ 0 1.10000+ 1 6.72725- 4 1.02357- 1 6.00000+ 0 1.30000+ 1 1.23258- 4 1.02939- 1 6.00000+ 0 1.40000+ 1 9.67602- 5 1.03150- 1 6.00000+ 0 1.60000+ 1 1.00783- 4 1.05448- 1 6.00000+ 0 1.80000+ 1 1.76437- 4 1.05615- 1 6.00000+ 0 1.90000+ 1 1.74957- 4 1.05896- 1 6.00000+ 0 2.10000+ 1 3.61427- 5 1.06165- 1 6.00000+ 0 2.20000+ 1 2.83377- 5 1.06216- 1 6.00000+ 0 2.40000+ 1 7.11884- 7 1.06572- 1 6.00000+ 0 2.50000+ 1 7.66618- 7 1.06586- 1 6.00000+ 0 2.70000+ 1 2.61474- 5 1.06681- 1 6.00000+ 0 2.90000+ 1 4.34240- 5 1.06748- 1 6.00000+ 0 3.00000+ 1 4.27123- 5 1.06818- 1 6.00000+ 0 3.20000+ 1 7.63896- 6 1.06918- 1 6.00000+ 0 3.30000+ 1 5.91388- 6 1.06928- 1 8.00000+ 0 8.00000+ 0 1.61456- 4 1.13366- 1 8.00000+ 0 1.00000+ 1 2.92144- 4 1.13726- 1 8.00000+ 0 1.10000+ 1 1.00619- 4 1.14782- 1 8.00000+ 0 1.30000+ 1 8.57004- 6 1.15364- 1 8.00000+ 0 1.40000+ 1 4.84606- 6 1.15575- 1 8.00000+ 0 1.60000+ 1 8.64639- 5 1.17873- 1 8.00000+ 0 1.80000+ 1 7.72938- 5 1.18040- 1 8.00000+ 0 1.90000+ 1 2.70781- 5 1.18321- 1 8.00000+ 0 2.10000+ 1 2.60100- 6 1.18590- 1 8.00000+ 0 2.20000+ 1 1.45116- 6 1.18641- 1 8.00000+ 0 2.70000+ 1 2.27528- 5 1.19105- 1 8.00000+ 0 2.90000+ 1 1.92472- 5 1.19173- 1 8.00000+ 0 3.00000+ 1 6.68052- 6 1.19243- 1 8.00000+ 0 3.20000+ 1 5.47579- 7 1.19343- 1 8.00000+ 0 3.30000+ 1 3.01172- 7 1.19353- 1 1.00000+ 1 1.00000+ 1 8.37817- 6 1.14087- 1 1.00000+ 1 1.10000+ 1 1.54856- 4 1.15143- 1 1.00000+ 1 1.30000+ 1 9.14483- 6 1.15725- 1 1.00000+ 1 1.40000+ 1 1.56336- 5 1.15936- 1 1.00000+ 1 1.60000+ 1 7.63061- 5 1.18233- 1 1.00000+ 1 1.80000+ 1 4.24393- 6 1.18400- 1 1.00000+ 1 1.90000+ 1 4.02491- 5 1.18681- 1 1.00000+ 1 2.10000+ 1 2.68316- 6 1.18950- 1 1.00000+ 1 2.20000+ 1 4.62711- 6 1.19002- 1 1.00000+ 1 2.40000+ 1 5.47574- 8 1.19357- 1 1.00000+ 1 2.50000+ 1 8.21368- 8 1.19371- 1 1.00000+ 1 2.70000+ 1 1.99599- 5 1.19466- 1 1.00000+ 1 2.90000+ 1 1.04039- 6 1.19533- 1 1.00000+ 1 3.00000+ 1 9.82909- 6 1.19603- 1 1.00000+ 1 3.20000+ 1 5.74962- 7 1.19703- 1 1.00000+ 1 3.30000+ 1 9.58275- 7 1.19713- 1 1.10000+ 1 1.10000+ 1 7.51303- 5 1.16199- 1 1.10000+ 1 1.30000+ 1 2.22044- 5 1.16781- 1 1.10000+ 1 1.40000+ 1 1.67020- 5 1.16992- 1 1.10000+ 1 1.60000+ 1 2.55459- 5 1.19289- 1 1.10000+ 1 1.80000+ 1 3.93977- 5 1.19456- 1 1.10000+ 1 1.90000+ 1 3.91817- 5 1.19737- 1 1.10000+ 1 2.10000+ 1 6.59849- 6 1.20007- 1 1.10000+ 1 2.20000+ 1 4.95584- 6 1.20058- 1 1.10000+ 1 2.40000+ 1 1.09511- 7 1.20413- 1 1.10000+ 1 2.50000+ 1 1.09511- 7 1.20427- 1 1.10000+ 1 2.70000+ 1 6.62604- 6 1.20522- 1 1.10000+ 1 2.90000+ 1 9.71987- 6 1.20589- 1 1.10000+ 1 3.00000+ 1 9.58293- 6 1.20659- 1 1.10000+ 1 3.20000+ 1 1.39632- 6 1.20759- 1 1.10000+ 1 3.30000+ 1 1.04041- 6 1.20770- 1 1.30000+ 1 1.30000+ 1 5.47575- 8 1.17363- 1 1.30000+ 1 1.40000+ 1 2.32722- 6 1.17574- 1 1.30000+ 1 1.60000+ 1 2.16295- 6 1.19871- 1 1.30000+ 1 1.80000+ 1 2.29989- 6 1.20038- 1 1.30000+ 1 1.90000+ 1 5.50340- 6 1.20319- 1 1.30000+ 1 2.10000+ 1 2.73793- 8 1.20588- 1 1.30000+ 1 2.20000+ 1 6.57107- 7 1.20640- 1 1.30000+ 1 2.70000+ 1 5.74963- 7 1.21104- 1 1.30000+ 1 2.90000+ 1 5.74963- 7 1.21171- 1 1.30000+ 1 3.00000+ 1 1.34153- 6 1.21241- 1 1.30000+ 1 3.30000+ 1 1.36896- 7 1.21351- 1 1.40000+ 1 1.40000+ 1 5.74978- 7 1.17785- 1 1.40000+ 1 1.60000+ 1 1.20474- 6 1.20082- 1 1.40000+ 1 1.80000+ 1 3.66885- 6 1.20249- 1 1.40000+ 1 1.90000+ 1 4.10711- 6 1.20530- 1 1.40000+ 1 2.10000+ 1 6.57124- 7 1.20800- 1 1.40000+ 1 2.20000+ 1 3.28567- 7 1.20851- 1 1.40000+ 1 2.70000+ 1 3.01179- 7 1.21315- 1 1.40000+ 1 2.90000+ 1 8.76159- 7 1.21382- 1 1.40000+ 1 3.00000+ 1 9.85691- 7 1.21452- 1 1.40000+ 1 3.20000+ 1 1.36900- 7 1.21552- 1 1.40000+ 1 3.30000+ 1 5.47590- 8 1.21563- 1 1.60000+ 1 1.60000+ 1 1.15817- 5 1.22380- 1 1.60000+ 1 1.80000+ 1 2.01782- 5 1.22547- 1 1.60000+ 1 1.90000+ 1 6.87221- 6 1.22828- 1 1.60000+ 1 2.10000+ 1 6.57111- 7 1.23097- 1 1.60000+ 1 2.20000+ 1 3.55937- 7 1.23148- 1 1.60000+ 1 2.70000+ 1 6.10552- 6 1.23612- 1 1.60000+ 1 2.90000+ 1 5.03786- 6 1.23680- 1 1.60000+ 1 3.00000+ 1 1.69761- 6 1.23750- 1 1.60000+ 1 3.20000+ 1 1.36897- 7 1.23850- 1 1.60000+ 1 3.30000+ 1 8.21375- 8 1.23860- 1 1.80000+ 1 1.80000+ 1 5.47578- 7 1.22714- 1 1.80000+ 1 1.90000+ 1 1.02674- 5 1.22995- 1 1.80000+ 1 2.10000+ 1 6.84499- 7 1.23264- 1 1.80000+ 1 2.20000+ 1 1.09510- 6 1.23315- 1 1.80000+ 1 2.40000+ 1 2.73794- 8 1.23671- 1 1.80000+ 1 2.50000+ 1 2.73794- 8 1.23685- 1 1.80000+ 1 2.70000+ 1 5.28441- 6 1.23779- 1 1.80000+ 1 2.90000+ 1 2.73794- 7 1.23847- 1 1.80000+ 1 3.00000+ 1 2.49160- 6 1.23917- 1 1.80000+ 1 3.20000+ 1 1.36897- 7 1.24017- 1 1.80000+ 1 3.30000+ 1 2.19040- 7 1.24027- 1 1.90000+ 1 1.90000+ 1 5.12005- 6 1.23276- 1 1.90000+ 1 2.10000+ 1 1.64279- 6 1.23545- 1 1.90000+ 1 2.20000+ 1 1.20474- 6 1.23596- 1 1.90000+ 1 2.40000+ 1 2.73800- 8 1.23952- 1 1.90000+ 1 2.50000+ 1 2.73800- 8 1.23966- 1 1.90000+ 1 2.70000+ 1 1.77973- 6 1.24061- 1 1.90000+ 1 2.90000+ 1 2.51898- 6 1.24128- 1 1.90000+ 1 3.00000+ 1 2.49166- 6 1.24198- 1 1.90000+ 1 3.20000+ 1 3.55945- 7 1.24298- 1 1.90000+ 1 3.30000+ 1 2.46423- 7 1.24308- 1 2.10000+ 1 2.20000+ 1 1.96990- 7 1.23865- 1 2.10000+ 1 2.70000+ 1 1.68850- 7 1.24330- 1 2.10000+ 1 2.90000+ 1 1.68850- 7 1.24397- 1 2.10000+ 1 3.00000+ 1 3.94001- 7 1.24467- 1 2.10000+ 1 3.30000+ 1 2.81420- 8 1.24577- 1 2.20000+ 1 2.20000+ 1 5.47580- 8 1.23917- 1 2.20000+ 1 2.70000+ 1 8.21377- 8 1.24381- 1 2.20000+ 1 2.90000+ 1 2.73795- 7 1.24448- 1 2.20000+ 1 3.00000+ 1 3.01173- 7 1.24518- 1 2.20000+ 1 3.20000+ 1 2.73795- 8 1.24618- 1 2.20000+ 1 3.30000+ 1 2.73795- 8 1.24628- 1 2.70000+ 1 2.70000+ 1 7.82960- 7 1.24845- 1 2.70000+ 1 2.90000+ 1 1.29595- 6 1.24912- 1 2.70000+ 1 3.00000+ 1 4.32000- 7 1.24982- 1 2.70000+ 1 3.20000+ 1 2.69988- 8 1.25082- 1 2.70000+ 1 3.30000+ 1 2.69988- 8 1.25093- 1 2.90000+ 1 2.90000+ 1 2.63944- 8 1.24980- 1 2.90000+ 1 3.00000+ 1 6.07076- 7 1.25050- 1 2.90000+ 1 3.20000+ 1 2.63944- 8 1.25150- 1 2.90000+ 1 3.30000+ 1 5.27879- 8 1.25160- 1 3.00000+ 1 3.00000+ 1 3.10876- 7 1.25119- 1 3.00000+ 1 3.20000+ 1 8.47839- 8 1.25219- 1 3.00000+ 1 3.30000+ 1 5.65221- 8 1.25230- 1 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.32310- 5 7.65000- 4 6.00000+ 0 1.16860- 2 5.30000- 3 1.00000+ 1 6.30931- 2 1.80854- 2 1.10000+ 1 5.03610- 2 1.91415- 2 1.30000+ 1 3.12540- 3 1.97234- 2 1.40000+ 1 4.64670- 3 1.99345- 2 1.80000+ 1 1.72410- 2 2.23988- 2 1.90000+ 1 1.60490- 2 2.26800- 2 2.10000+ 1 5.47791- 4 2.29491- 2 2.20000+ 1 8.81091- 4 2.30003- 2 2.90000+ 1 4.33040- 3 2.35319- 2 3.00000+ 1 4.09540- 3 2.36017- 2 3.20000+ 1 1.03510- 4 2.37017- 2 3.30000+ 1 1.68120- 4 2.37121- 2 4.30000+ 1 7.54751- 4 2.37919- 2 4.40000+ 1 6.53921- 4 2.38031- 2 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.22321- 2 2.93970- 4 5.00000+ 0 2.50000+ 1 1.64732- 2 3.07830- 4 5.00000+ 0 2.70000+ 1 5.36408- 3 4.02560- 4 5.00000+ 0 2.90000+ 1 4.44216- 3 4.69940- 4 5.00000+ 0 3.00000+ 1 3.36745- 3 5.39750- 4 5.00000+ 0 3.20000+ 1 9.20853- 4 6.39710- 4 5.00000+ 0 3.30000+ 1 1.14221- 3 6.50100- 4 6.00000+ 0 1.10000+ 1 3.41889- 2 6.14500- 4 6.00000+ 0 1.30000+ 1 1.99170- 1 1.19640- 3 6.00000+ 0 1.40000+ 1 2.37030- 1 1.40750- 3 6.00000+ 0 1.60000+ 1 1.65659- 2 3.70480- 3 6.00000+ 0 1.80000+ 1 6.43628- 3 3.87180- 3 6.00000+ 0 1.90000+ 1 8.79887- 3 4.15300- 3 6.00000+ 0 2.10000+ 1 3.26289- 2 4.42210- 3 6.00000+ 0 2.20000+ 1 3.71619- 2 4.47332- 3 6.00000+ 0 2.40000+ 1 1.86120- 2 4.82897- 3 6.00000+ 0 2.50000+ 1 2.26000- 2 4.84283- 3 6.00000+ 0 2.70000+ 1 4.10939- 3 4.93756- 3 6.00000+ 0 2.90000+ 1 1.58689- 3 5.00494- 3 6.00000+ 0 3.00000+ 1 2.14810- 3 5.07475- 3 6.00000+ 0 3.20000+ 1 6.24848- 3 5.17471- 3 6.00000+ 0 3.30000+ 1 6.96568- 3 5.18510- 3 8.00000+ 0 8.00000+ 0 5.68181- 3 1.16228- 2 8.00000+ 0 1.00000+ 1 1.20260- 2 1.19833- 2 8.00000+ 0 1.10000+ 1 1.61870- 2 1.30394- 2 8.00000+ 0 1.30000+ 1 1.12660- 2 1.36213- 2 8.00000+ 0 1.40000+ 1 1.33090- 2 1.38324- 2 8.00000+ 0 1.60000+ 1 2.60140- 3 1.61297- 2 8.00000+ 0 1.80000+ 1 3.15140- 3 1.62967- 2 8.00000+ 0 1.90000+ 1 4.24640- 3 1.65779- 2 8.00000+ 0 2.10000+ 1 2.81880- 3 1.68470- 2 8.00000+ 0 2.20000+ 1 3.32640- 3 1.68982- 2 8.00000+ 0 2.40000+ 1 2.61570- 4 1.72539- 2 8.00000+ 0 2.50000+ 1 2.65930- 4 1.72677- 2 8.00000+ 0 2.70000+ 1 6.65321- 4 1.73625- 2 8.00000+ 0 2.90000+ 1 7.81730- 4 1.74298- 2 8.00000+ 0 3.00000+ 1 1.03740- 3 1.74996- 2 8.00000+ 0 3.20000+ 1 5.76471- 4 1.75996- 2 8.00000+ 0 3.30000+ 1 6.72541- 4 1.76100- 2 1.00000+ 1 1.00000+ 1 1.19054- 5 1.23438- 2 1.00000+ 1 1.10000+ 1 2.22679- 4 1.33999- 2 1.00000+ 1 1.30000+ 1 7.79731- 4 1.39818- 2 1.00000+ 1 1.40000+ 1 5.24111- 3 1.41929- 2 1.00000+ 1 1.60000+ 1 2.18599- 3 1.64902- 2 1.00000+ 1 1.80000+ 1 1.34145- 6 1.66572- 2 1.00000+ 1 1.90000+ 1 4.64488- 5 1.69384- 2 1.00000+ 1 2.10000+ 1 1.61806- 4 1.72075- 2 1.00000+ 1 2.20000+ 1 8.51554- 4 1.72587- 2 1.00000+ 1 2.40000+ 1 1.01444- 4 1.76144- 2 1.00000+ 1 2.50000+ 1 3.46934- 4 1.76282- 2 1.00000+ 1 2.70000+ 1 5.24351- 4 1.77230- 2 1.00000+ 1 2.90000+ 1 3.35364- 7 1.77903- 2 1.00000+ 1 3.00000+ 1 1.07314- 5 1.78601- 2 1.00000+ 1 3.20000+ 1 3.21953- 5 1.79601- 2 1.00000+ 1 3.30000+ 1 1.57456- 4 1.79705- 2 1.10000+ 1 1.10000+ 1 7.82409- 4 1.44560- 2 1.10000+ 1 1.30000+ 1 1.41019- 3 1.50379- 2 1.10000+ 1 1.40000+ 1 8.83920- 4 1.52490- 2 1.10000+ 1 1.60000+ 1 2.83760- 3 1.75463- 2 1.10000+ 1 1.80000+ 1 6.01950- 5 1.77133- 2 1.10000+ 1 1.90000+ 1 3.22780- 4 1.79945- 2 1.10000+ 1 2.10000+ 1 1.72869- 4 1.82636- 2 1.10000+ 1 2.20000+ 1 7.93129- 5 1.83148- 2 1.10000+ 1 2.40000+ 1 1.00270- 4 1.86705- 2 1.10000+ 1 2.50000+ 1 8.90330- 5 1.86843- 2 1.10000+ 1 2.70000+ 1 6.74389- 4 1.87791- 2 1.10000+ 1 2.90000+ 1 1.49239- 5 1.88464- 2 1.10000+ 1 3.00000+ 1 7.47839- 5 1.89162- 2 1.10000+ 1 3.20000+ 1 3.06850- 5 1.90162- 2 1.10000+ 1 3.30000+ 1 1.27430- 5 1.90266- 2 1.30000+ 1 1.30000+ 1 6.23735- 4 1.56198- 2 1.30000+ 1 1.40000+ 1 1.68918- 2 1.58309- 2 1.30000+ 1 1.60000+ 1 1.75948- 3 1.81282- 2 1.30000+ 1 1.80000+ 1 2.36758- 4 1.82952- 2 1.30000+ 1 1.90000+ 1 3.86496- 4 1.85764- 2 1.30000+ 1 2.10000+ 1 3.04497- 4 1.88455- 2 1.30000+ 1 2.20000+ 1 2.95108- 3 1.88967- 2 1.30000+ 1 2.40000+ 1 2.51508- 4 1.92524- 2 1.30000+ 1 2.50000+ 1 6.78264- 4 1.92662- 2 1.30000+ 1 2.70000+ 1 4.06606- 4 1.93610- 2 1.30000+ 1 2.90000+ 1 6.06985- 5 1.94283- 2 1.30000+ 1 3.00000+ 1 9.64082- 5 1.94981- 2 1.30000+ 1 3.20000+ 1 6.20405- 5 1.95981- 2 1.30000+ 1 3.30000+ 1 5.51656- 4 1.96085- 2 1.40000+ 1 1.40000+ 1 4.56377- 3 1.60420- 2 1.40000+ 1 1.60000+ 1 2.11009- 3 1.83393- 2 1.40000+ 1 1.80000+ 1 1.20409- 3 1.85063- 2 1.40000+ 1 1.90000+ 1 2.26869- 4 1.87875- 2 1.40000+ 1 2.10000+ 1 2.80859- 3 1.90566- 2 1.40000+ 1 2.20000+ 1 1.68109- 3 1.91078- 2 1.40000+ 1 2.40000+ 1 7.41796- 4 1.94635- 2 1.40000+ 1 2.50000+ 1 5.44777- 4 1.94773- 2 1.40000+ 1 2.70000+ 1 4.91457- 4 1.95721- 2 1.40000+ 1 2.90000+ 1 2.90579- 4 1.96394- 2 1.40000+ 1 3.00000+ 1 5.63387- 5 1.97092- 2 1.40000+ 1 3.20000+ 1 5.24997- 4 1.98092- 2 1.40000+ 1 3.30000+ 1 3.18578- 4 1.98196- 2 1.60000+ 1 1.60000+ 1 2.81023- 4 2.06366- 2 1.60000+ 1 1.80000+ 1 5.73457- 4 2.08036- 2 1.60000+ 1 1.90000+ 1 7.48158- 4 2.10848- 2 1.60000+ 1 2.10000+ 1 4.44685- 4 2.13539- 2 1.60000+ 1 2.20000+ 1 5.28356- 4 2.14051- 2 1.60000+ 1 2.40000+ 1 3.48774- 5 2.17608- 2 1.60000+ 1 2.50000+ 1 3.33684- 5 2.17746- 2 1.60000+ 1 2.70000+ 1 1.41851- 4 2.18694- 2 1.60000+ 1 2.90000+ 1 1.42361- 4 2.19367- 2 1.60000+ 1 3.00000+ 1 1.82933- 4 2.20065- 2 1.60000+ 1 3.20000+ 1 9.12221- 5 2.21065- 2 1.60000+ 1 3.30000+ 1 1.06811- 4 2.21169- 2 1.80000+ 1 1.90000+ 1 1.25759- 5 2.12518- 2 1.80000+ 1 2.10000+ 1 4.51048- 5 2.15209- 2 1.80000+ 1 2.20000+ 1 2.04570- 4 2.15721- 2 1.80000+ 1 2.40000+ 1 1.45879- 5 2.19278- 2 1.80000+ 1 2.50000+ 1 5.68418- 5 2.19416- 2 1.80000+ 1 2.70000+ 1 1.37499- 4 2.20364- 2 1.80000+ 1 3.00000+ 1 2.85049- 6 2.21735- 2 1.80000+ 1 3.20000+ 1 8.71916- 6 2.22735- 2 1.80000+ 1 3.30000+ 1 3.80618- 5 2.22839- 2 1.90000+ 1 1.90000+ 1 3.20258- 5 2.15330- 2 1.90000+ 1 2.10000+ 1 4.61107- 5 2.18021- 2 1.90000+ 1 2.20000+ 1 2.07909- 5 2.18533- 2 1.90000+ 1 2.40000+ 1 2.49839- 5 2.22090- 2 1.90000+ 1 2.50000+ 1 2.11269- 5 2.22228- 2 1.90000+ 1 2.70000+ 1 1.77910- 4 2.23176- 2 1.90000+ 1 2.90000+ 1 3.18578- 6 2.23849- 2 1.90000+ 1 3.00000+ 1 1.47549- 5 2.24547- 2 1.90000+ 1 3.20000+ 1 8.04835- 6 2.25547- 2 1.90000+ 1 3.30000+ 1 3.35348- 6 2.25651- 2 2.10000+ 1 2.10000+ 1 3.42062- 5 2.20712- 2 2.10000+ 1 2.20000+ 1 5.37233- 4 2.21224- 2 2.10000+ 1 2.40000+ 1 4.27572- 5 2.24781- 2 2.10000+ 1 2.50000+ 1 8.63533- 5 2.24919- 2 2.10000+ 1 2.70000+ 1 1.02950- 4 2.25867- 2 2.10000+ 1 2.90000+ 1 1.14020- 5 2.26540- 2 2.10000+ 1 3.00000+ 1 1.15690- 5 2.27238- 2 2.10000+ 1 3.20000+ 1 1.37500- 5 2.28238- 2 2.10000+ 1 3.30000+ 1 1.02290- 4 2.28342- 2 2.20000+ 1 2.20000+ 1 1.66171- 4 2.21736- 2 2.20000+ 1 2.40000+ 1 1.02120- 4 2.25293- 2 2.20000+ 1 2.50000+ 1 8.26695- 5 2.25431- 2 2.20000+ 1 2.70000+ 1 1.22900- 4 2.26379- 2 2.20000+ 1 2.90000+ 1 4.98003- 5 2.27053- 2 2.20000+ 1 3.00000+ 1 5.36564- 6 2.27751- 2 2.20000+ 1 3.20000+ 1 1.02290- 4 2.28750- 2 2.20000+ 1 3.30000+ 1 6.38834- 5 2.28854- 2 2.40000+ 1 2.40000+ 1 1.34140- 6 2.28849- 2 2.40000+ 1 2.50000+ 1 2.28041- 5 2.28988- 2 2.40000+ 1 2.70000+ 1 7.88082- 6 2.29935- 2 2.40000+ 1 2.90000+ 1 3.18581- 6 2.30609- 2 2.40000+ 1 3.00000+ 1 6.03642- 6 2.31307- 2 2.40000+ 1 3.20000+ 1 8.04842- 6 2.32307- 2 2.40000+ 1 3.30000+ 1 1.81091- 5 2.32411- 2 2.50000+ 1 2.50000+ 1 4.69499- 6 2.29127- 2 2.50000+ 1 2.70000+ 1 7.37799- 6 2.30074- 2 2.50000+ 1 2.90000+ 1 1.25759- 5 2.30748- 2 2.50000+ 1 3.00000+ 1 5.03029- 6 2.31446- 2 2.50000+ 1 3.20000+ 1 1.52589- 5 2.32445- 2 2.50000+ 1 3.30000+ 1 1.50909- 5 2.32549- 2 2.70000+ 1 2.70000+ 1 1.79940- 5 2.31021- 2 2.70000+ 1 2.90000+ 1 3.46293- 5 2.31695- 2 2.70000+ 1 3.00000+ 1 4.39653- 5 2.32393- 2 2.70000+ 1 3.20000+ 1 2.13885- 5 2.33393- 2 2.70000+ 1 3.30000+ 1 2.51231- 5 2.33497- 2 2.90000+ 1 3.00000+ 1 6.93751- 7 2.33067- 2 2.90000+ 1 3.20000+ 1 2.25475- 6 2.34066- 2 2.90000+ 1 3.30000+ 1 9.53951- 6 2.34170- 2 3.00000+ 1 3.00000+ 1 2.00007- 6 2.33765- 2 3.00000+ 1 3.20000+ 1 2.40003- 6 2.34765- 2 3.00000+ 1 3.30000+ 1 1.00000- 6 2.34868- 2 3.20000+ 1 3.20000+ 1 1.34143- 6 2.35764- 2 3.20000+ 1 3.30000+ 1 1.96186- 5 2.35868- 2 3.30000+ 1 3.30000+ 1 6.32381- 6 2.35972- 2 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 5.30221- 5 4.53500- 3 8.00000+ 0 1.09160- 2 1.69599- 2 1.10000+ 1 5.95941- 4 1.83765- 2 1.30000+ 1 3.82371- 1 1.89584- 2 1.60000+ 1 3.00020- 3 2.14668- 2 1.90000+ 1 1.84320- 4 2.19150- 2 2.10000+ 1 8.90211- 2 2.21841- 2 2.40000+ 1 6.04531- 4 2.25910- 2 2.70000+ 1 7.94461- 4 2.26996- 2 3.00000+ 1 4.67431- 5 2.28367- 2 3.20000+ 1 1.80890- 2 2.29367- 2 3.50000+ 1 3.41661- 5 2.30537- 2 4.10000+ 1 1.60200- 4 2.30069- 2 4.40000+ 1 7.34441- 6 2.30381- 2 5.80000+ 1 1.48240- 5 2.30565- 2 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 1.01287- 1 4.31400- 4 6.00000+ 0 1.40000+ 1 3.25610- 2 6.42500- 4 6.00000+ 0 1.60000+ 1 2.82731- 3 2.93980- 3 6.00000+ 0 1.80000+ 1 2.45144- 2 3.10680- 3 6.00000+ 0 1.90000+ 1 5.38188- 3 3.38800- 3 6.00000+ 0 2.10000+ 1 2.02654- 2 3.65710- 3 6.00000+ 0 2.20000+ 1 6.82511- 3 3.70832- 3 6.00000+ 0 2.40000+ 1 1.05111- 3 4.06397- 3 6.00000+ 0 2.50000+ 1 1.48625- 3 4.07783- 3 6.00000+ 0 2.70000+ 1 6.83552- 4 4.17256- 3 6.00000+ 0 2.90000+ 1 5.50389- 3 4.23994- 3 6.00000+ 0 3.00000+ 1 1.27383- 3 4.30975- 3 6.00000+ 0 3.20000+ 1 3.96074- 3 4.40971- 3 6.00000+ 0 3.30000+ 1 1.33863- 3 4.42010- 3 8.00000+ 0 8.00000+ 0 3.26405- 4 1.08578- 2 8.00000+ 0 1.00000+ 1 1.44852- 2 1.12183- 2 8.00000+ 0 1.10000+ 1 1.23688- 3 1.22744- 2 8.00000+ 0 1.30000+ 1 2.86268- 3 1.28563- 2 8.00000+ 0 1.40000+ 1 8.81501- 4 1.30674- 2 8.00000+ 0 1.60000+ 1 1.32834- 4 1.53647- 2 8.00000+ 0 1.80000+ 1 2.51075- 3 1.55317- 2 8.00000+ 0 1.90000+ 1 2.92554- 4 1.58129- 2 8.00000+ 0 2.10000+ 1 5.13542- 4 1.60820- 2 8.00000+ 0 2.20000+ 1 1.34392- 4 1.61332- 2 8.00000+ 0 2.40000+ 1 5.63399- 5 1.64889- 2 8.00000+ 0 2.50000+ 1 4.23842- 5 1.65027- 2 8.00000+ 0 2.70000+ 1 3.28215- 5 1.65975- 2 8.00000+ 0 2.90000+ 1 5.66999- 4 1.66648- 2 8.00000+ 0 3.00000+ 1 6.97791- 5 1.67346- 2 8.00000+ 0 3.20000+ 1 9.82048- 5 1.68346- 2 8.00000+ 0 3.30000+ 1 2.48097- 5 1.68450- 2 1.00000+ 1 1.00000+ 1 1.56378- 2 1.15788- 2 1.00000+ 1 1.10000+ 1 3.36155- 2 1.26349- 2 1.00000+ 1 1.30000+ 1 1.68160- 2 1.32168- 2 1.00000+ 1 1.40000+ 1 2.04930- 2 1.34279- 2 1.00000+ 1 1.60000+ 1 3.97881- 3 1.57252- 2 1.00000+ 1 1.80000+ 1 6.88986- 3 1.58922- 2 1.00000+ 1 1.90000+ 1 8.64042- 3 1.61734- 2 1.00000+ 1 2.10000+ 1 4.19433- 3 1.64425- 2 1.00000+ 1 2.20000+ 1 5.14861- 3 1.64937- 2 1.00000+ 1 2.40000+ 1 3.34413- 4 1.68494- 2 1.00000+ 1 2.50000+ 1 2.61528- 4 1.68632- 2 1.00000+ 1 2.70000+ 1 1.05256- 3 1.69580- 2 1.00000+ 1 2.90000+ 1 1.65397- 3 1.70253- 2 1.00000+ 1 3.00000+ 1 2.10213- 3 1.70951- 2 1.00000+ 1 3.20000+ 1 8.58262- 4 1.71951- 2 1.00000+ 1 3.30000+ 1 1.04303- 3 1.72055- 2 1.10000+ 1 1.10000+ 1 6.50989- 4 1.36910- 2 1.10000+ 1 1.30000+ 1 1.20418- 2 1.42729- 2 1.10000+ 1 1.40000+ 1 1.89947- 3 1.44840- 2 1.10000+ 1 1.60000+ 1 2.81954- 4 1.67813- 2 1.10000+ 1 1.80000+ 1 5.82753- 3 1.69483- 2 1.10000+ 1 1.90000+ 1 2.90477- 4 1.72295- 2 1.10000+ 1 2.10000+ 1 2.58203- 3 1.74986- 2 1.10000+ 1 2.20000+ 1 3.97467- 4 1.75498- 2 1.10000+ 1 2.40000+ 1 9.89818- 5 1.79055- 2 1.10000+ 1 2.50000+ 1 4.83275- 5 1.79193- 2 1.10000+ 1 2.70000+ 1 7.10682- 5 1.80141- 2 1.10000+ 1 2.90000+ 1 1.31432- 3 1.80814- 2 1.10000+ 1 3.00000+ 1 6.82272- 5 1.81512- 2 1.10000+ 1 3.20000+ 1 5.10907- 4 1.82512- 2 1.10000+ 1 3.30000+ 1 7.75307- 5 1.82616- 2 1.30000+ 1 1.30000+ 1 1.14230- 2 1.48548- 2 1.30000+ 1 1.40000+ 1 4.33571- 2 1.50659- 2 1.30000+ 1 1.60000+ 1 7.88511- 4 1.73632- 2 1.30000+ 1 1.80000+ 1 2.79602- 3 1.75302- 2 1.30000+ 1 1.90000+ 1 2.83270- 3 1.78114- 2 1.30000+ 1 2.10000+ 1 4.72812- 3 1.80805- 2 1.30000+ 1 2.20000+ 1 9.70246- 3 1.81317- 2 1.30000+ 1 2.40000+ 1 1.01854- 3 1.84874- 2 1.30000+ 1 2.50000+ 1 2.00916- 3 1.85012- 2 1.30000+ 1 2.70000+ 1 2.09342- 4 1.85960- 2 1.30000+ 1 2.90000+ 1 6.30836- 4 1.86633- 2 1.30000+ 1 3.00000+ 1 6.75011- 4 1.87331- 2 1.30000+ 1 3.20000+ 1 9.33982- 4 1.88331- 2 1.30000+ 1 3.30000+ 1 1.91838- 3 1.88435- 2 1.40000+ 1 1.40000+ 1 2.12128- 3 1.52770- 2 1.40000+ 1 1.60000+ 1 1.95110- 4 1.75743- 2 1.40000+ 1 1.80000+ 1 2.96785- 3 1.77413- 2 1.40000+ 1 1.90000+ 1 4.13483- 4 1.80225- 2 1.40000+ 1 2.10000+ 1 7.36897- 3 1.82916- 2 1.40000+ 1 2.20000+ 1 8.68332- 4 1.83428- 2 1.40000+ 1 2.40000+ 1 4.05213- 4 1.86985- 2 1.40000+ 1 2.50000+ 1 1.53506- 4 1.87123- 2 1.40000+ 1 2.70000+ 1 4.91009- 5 1.88071- 2 1.40000+ 1 2.90000+ 1 6.40894- 4 1.88744- 2 1.40000+ 1 3.00000+ 1 9.69075- 5 1.89442- 2 1.40000+ 1 3.20000+ 1 1.38911- 3 1.90442- 2 1.40000+ 1 3.30000+ 1 1.69268- 4 1.90546- 2 1.60000+ 1 1.60000+ 1 1.29214- 5 1.98716- 2 1.60000+ 1 1.80000+ 1 6.93146- 4 2.00386- 2 1.60000+ 1 1.90000+ 1 6.69325- 5 2.03198- 2 1.60000+ 1 2.10000+ 1 1.38780- 4 2.05889- 2 1.60000+ 1 2.20000+ 1 2.92036- 5 2.06401- 2 1.60000+ 1 2.40000+ 1 1.31793- 5 2.09958- 2 1.60000+ 1 2.50000+ 1 8.01155- 6 2.10096- 2 1.60000+ 1 2.70000+ 1 6.20267- 6 2.11044- 2 1.60000+ 1 2.90000+ 1 1.56615- 4 2.11717- 2 1.60000+ 1 3.00000+ 1 1.60234- 5 2.12415- 2 1.60000+ 1 3.20000+ 1 2.63605- 5 2.13415- 2 1.60000+ 1 3.30000+ 1 5.42690- 6 2.13519- 2 1.80000+ 1 1.80000+ 1 7.21800- 4 2.02056- 2 1.80000+ 1 1.90000+ 1 1.50417- 3 2.04868- 2 1.80000+ 1 2.10000+ 1 6.87707- 4 2.07559- 2 1.80000+ 1 2.20000+ 1 7.54122- 4 2.08071- 2 1.80000+ 1 2.40000+ 1 4.60016- 5 2.11628- 2 1.80000+ 1 2.50000+ 1 2.71351- 5 2.11766- 2 1.80000+ 1 2.70000+ 1 1.83499- 4 2.12714- 2 1.80000+ 1 2.90000+ 1 3.42681- 4 2.13387- 2 1.80000+ 1 3.00000+ 1 3.66208- 4 2.14085- 2 1.80000+ 1 3.20000+ 1 1.40327- 4 2.15085- 2 1.80000+ 1 3.30000+ 1 1.53258- 4 2.15189- 2 1.90000+ 1 1.90000+ 1 3.25626- 5 2.07680- 2 1.90000+ 1 2.10000+ 1 6.11173- 4 2.10371- 2 1.90000+ 1 2.20000+ 1 8.73502- 5 2.10883- 2 1.90000+ 1 2.40000+ 1 2.14499- 5 2.14440- 2 1.90000+ 1 2.50000+ 1 9.56218- 6 2.14578- 2 1.90000+ 1 2.70000+ 1 1.70568- 5 2.15526- 2 1.90000+ 1 2.90000+ 1 3.39589- 4 2.16199- 2 1.90000+ 1 3.00000+ 1 1.52481- 5 2.16897- 2 1.90000+ 1 3.20000+ 1 1.20954- 4 2.17897- 2 1.90000+ 1 3.30000+ 1 1.70568- 5 2.18001- 2 2.10000+ 1 2.10000+ 1 4.87677- 4 2.13062- 2 2.10000+ 1 2.20000+ 1 1.71988- 3 2.13574- 2 2.10000+ 1 2.40000+ 1 1.46019- 4 2.17131- 2 2.10000+ 1 2.50000+ 1 2.88407- 4 2.17269- 2 2.10000+ 1 2.70000+ 1 3.66977- 5 2.18217- 2 2.10000+ 1 2.90000+ 1 1.54289- 4 2.18890- 2 2.10000+ 1 3.00000+ 1 1.46019- 4 2.19588- 2 2.10000+ 1 3.20000+ 1 1.92538- 4 2.20588- 2 2.10000+ 1 3.30000+ 1 3.42681- 4 2.20692- 2 2.20000+ 1 2.20000+ 1 8.99347- 5 2.14086- 2 2.20000+ 1 2.40000+ 1 6.33164- 5 2.17643- 2 2.20000+ 1 2.50000+ 1 2.45509- 5 2.17781- 2 2.20000+ 1 2.70000+ 1 7.23634- 6 2.18729- 2 2.20000+ 1 2.90000+ 1 1.63329- 4 2.19403- 2 2.20000+ 1 3.00000+ 1 2.04157- 5 2.20101- 2 2.20000+ 1 3.20000+ 1 3.26930- 4 2.21100- 2 2.20000+ 1 3.30000+ 1 3.51479- 5 2.21204- 2 2.40000+ 1 2.40000+ 1 3.87657- 6 2.21199- 2 2.40000+ 1 2.50000+ 1 2.55853- 5 2.21338- 2 2.40000+ 1 2.70000+ 1 3.35970- 6 2.22285- 2 2.40000+ 1 2.90000+ 1 1.00793- 5 2.22959- 2 2.40000+ 1 3.00000+ 1 4.91029- 6 2.23657- 2 2.40000+ 1 3.20000+ 1 2.66196- 5 2.24657- 2 2.40000+ 1 3.30000+ 1 1.16294- 5 2.24761- 2 2.50000+ 1 2.50000+ 1 1.55060- 6 2.21477- 2 2.50000+ 1 2.70000+ 1 2.06756- 6 2.22424- 2 2.50000+ 1 2.90000+ 1 5.42698- 6 2.23098- 2 2.50000+ 1 3.00000+ 1 2.06756- 6 2.23796- 2 2.50000+ 1 3.20000+ 1 5.24609- 5 2.24795- 2 2.50000+ 1 3.30000+ 1 4.39346- 6 2.24899- 2 2.70000+ 1 2.70000+ 1 7.75317- 7 2.23371- 2 2.70000+ 1 2.90000+ 1 4.13498- 5 2.24045- 2 2.70000+ 1 3.00000+ 1 4.13498- 6 2.24743- 2 2.70000+ 1 3.20000+ 1 6.97789- 6 2.25743- 2 2.70000+ 1 3.30000+ 1 1.29214- 6 2.25847- 2 2.90000+ 1 2.90000+ 1 4.05736- 5 2.24719- 2 2.90000+ 1 3.00000+ 1 8.26986- 5 2.25417- 2 2.90000+ 1 3.20000+ 1 3.15286- 5 2.26416- 2 2.90000+ 1 3.30000+ 1 3.30796- 5 2.26520- 2 3.00000+ 1 3.00000+ 1 1.80902- 6 2.26115- 2 3.00000+ 1 3.20000+ 1 2.89450- 5 2.27115- 2 3.00000+ 1 3.30000+ 1 4.13499- 6 2.27218- 2 3.20000+ 1 3.20000+ 1 1.88745- 5 2.28114- 2 3.20000+ 1 3.30000+ 1 6.51557- 5 2.28218- 2 3.30000+ 1 3.30000+ 1 3.54721- 6 2.28322- 2 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.34888- 2 1.24249- 2 1.00000+ 1 3.05637- 4 1.27854- 2 1.10000+ 1 2.79528- 4 1.38415- 2 1.30000+ 1 3.68187- 2 1.44234- 2 1.40000+ 1 3.23237- 1 1.46345- 2 1.60000+ 1 6.03115- 3 1.69318- 2 1.80000+ 1 6.70724- 5 1.70988- 2 1.90000+ 1 7.70973- 5 1.73800- 2 2.10000+ 1 7.53124- 3 1.76491- 2 2.20000+ 1 6.92504- 2 1.77003- 2 2.40000+ 1 1.08639- 4 1.80560- 2 2.50000+ 1 5.96715- 4 1.80698- 2 2.70000+ 1 1.57649- 3 1.81646- 2 2.90000+ 1 1.60169- 5 1.82319- 2 3.00000+ 1 1.90638- 5 1.83017- 2 3.20000+ 1 1.48989- 3 1.84017- 2 3.30000+ 1 1.36969- 2 1.84121- 2 3.50000+ 1 6.11475- 6 1.85187- 2 3.60000+ 1 3.27207- 5 1.85200- 2 4.10000+ 1 3.24607- 4 1.84719- 2 4.30000+ 1 2.81398- 6 1.84919- 2 4.40000+ 1 3.03687- 6 1.85031- 2 5.80000+ 1 2.96457- 5 1.85215- 2 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.46075- 4 6.32280- 3 8.00000+ 0 1.00000+ 1 1.47050- 4 6.68330- 3 8.00000+ 0 1.10000+ 1 1.74403- 2 7.73940- 3 8.00000+ 0 1.30000+ 1 2.94764- 3 8.32130- 3 8.00000+ 0 1.40000+ 1 6.18979- 3 8.53240- 3 8.00000+ 0 1.60000+ 1 1.45196- 4 1.08297- 2 8.00000+ 0 1.80000+ 1 2.33793- 5 1.09967- 2 8.00000+ 0 1.90000+ 1 2.94083- 3 1.12779- 2 8.00000+ 0 2.10000+ 1 3.70064- 4 1.15470- 2 8.00000+ 0 2.20000+ 1 7.42890- 4 1.15982- 2 8.00000+ 0 2.40000+ 1 3.65448- 4 1.19539- 2 8.00000+ 0 2.50000+ 1 6.09717- 4 1.19677- 2 8.00000+ 0 2.70000+ 1 3.59924- 5 1.20625- 2 8.00000+ 0 2.90000+ 1 5.22934- 6 1.21298- 2 8.00000+ 0 3.00000+ 1 6.50297- 4 1.21996- 2 8.00000+ 0 3.20000+ 1 6.58327- 5 1.22996- 2 8.00000+ 0 3.30000+ 1 1.27974- 4 1.23100- 2 1.00000+ 1 1.00000+ 1 3.07629- 6 7.04380- 3 1.00000+ 1 1.10000+ 1 2.92143- 2 8.09990- 3 1.00000+ 1 1.30000+ 1 1.24464- 3 8.68180- 3 1.00000+ 1 1.40000+ 1 8.58621- 3 8.89290- 3 1.00000+ 1 1.60000+ 1 3.16851- 5 1.11902- 2 1.00000+ 1 1.80000+ 1 8.61353- 6 1.13572- 2 1.00000+ 1 1.90000+ 1 5.11270- 3 1.16384- 2 1.00000+ 1 2.10000+ 1 2.43641- 4 1.19075- 2 1.00000+ 1 2.20000+ 1 1.41203- 3 1.19587- 2 1.00000+ 1 2.40000+ 1 2.96858- 4 1.23144- 2 1.00000+ 1 2.50000+ 1 6.94642- 4 1.23282- 2 1.00000+ 1 2.70000+ 1 8.30607- 6 1.24230- 2 1.00000+ 1 2.90000+ 1 2.76872- 6 1.24903- 2 1.00000+ 1 3.00000+ 1 1.13978- 3 1.25601- 2 1.00000+ 1 3.20000+ 1 4.92203- 5 1.26601- 2 1.00000+ 1 3.30000+ 1 2.65174- 4 1.26705- 2 1.10000+ 1 1.10000+ 1 3.40122- 2 9.15600- 3 1.10000+ 1 1.30000+ 1 3.56643- 2 9.73790- 3 1.10000+ 1 1.40000+ 1 4.42557- 2 9.94900- 3 1.10000+ 1 1.60000+ 1 4.70126- 3 1.22463- 2 1.10000+ 1 1.80000+ 1 7.06007- 3 1.24133- 2 1.10000+ 1 1.90000+ 1 1.44908- 2 1.26945- 2 1.10000+ 1 2.10000+ 1 8.28426- 3 1.29636- 2 1.10000+ 1 2.20000+ 1 1.02513- 2 1.30148- 2 1.10000+ 1 2.40000+ 1 8.99801- 4 1.33705- 2 1.10000+ 1 2.50000+ 1 1.06104- 3 1.33843- 2 1.10000+ 1 2.70000+ 1 1.23721- 3 1.34791- 2 1.10000+ 1 2.90000+ 1 1.72477- 3 1.35464- 2 1.10000+ 1 3.00000+ 1 3.39856- 3 1.36162- 2 1.10000+ 1 3.20000+ 1 1.67377- 3 1.37162- 2 1.10000+ 1 3.30000+ 1 2.04346- 3 1.37266- 2 1.30000+ 1 1.30000+ 1 4.58094- 3 1.03198- 2 1.30000+ 1 1.40000+ 1 8.50818- 2 1.05309- 2 1.30000+ 1 1.60000+ 1 7.07225- 4 1.28282- 2 1.30000+ 1 1.80000+ 1 3.40848- 4 1.29952- 2 1.30000+ 1 1.90000+ 1 5.60238- 3 1.32764- 2 1.30000+ 1 2.10000+ 1 1.77477- 3 1.35455- 2 1.30000+ 1 2.20000+ 1 1.38444- 2 1.35967- 2 1.30000+ 1 2.40000+ 1 4.78375- 4 1.39524- 2 1.30000+ 1 2.50000+ 1 1.58734- 3 1.39662- 2 1.30000+ 1 2.70000+ 1 1.83662- 4 1.40610- 2 1.30000+ 1 2.90000+ 1 8.45975- 5 1.41283- 2 1.30000+ 1 3.00000+ 1 1.21794- 3 1.41981- 2 1.30000+ 1 3.20000+ 1 3.47319- 4 1.42981- 2 1.30000+ 1 3.30000+ 1 2.56745- 3 1.43085- 2 1.40000+ 1 1.40000+ 1 5.60192- 2 1.07420- 2 1.40000+ 1 1.60000+ 1 1.50065- 3 1.30393- 2 1.40000+ 1 1.80000+ 1 1.86365- 3 1.32063- 2 1.40000+ 1 1.90000+ 1 7.75519- 3 1.34875- 2 1.40000+ 1 2.10000+ 1 1.66045- 2 1.37566- 2 1.40000+ 1 2.20000+ 1 2.09557- 2 1.38078- 2 1.40000+ 1 2.40000+ 1 4.97840- 3 1.41635- 2 1.40000+ 1 2.50000+ 1 4.46220- 3 1.41773- 2 1.40000+ 1 2.70000+ 1 3.91918- 4 1.42721- 2 1.40000+ 1 2.90000+ 1 4.45757- 4 1.43394- 2 1.40000+ 1 3.00000+ 1 1.74371- 3 1.44092- 2 1.40000+ 1 3.20000+ 1 3.24091- 3 1.45092- 2 1.40000+ 1 3.30000+ 1 4.01713- 3 1.45196- 2 1.60000+ 1 1.60000+ 1 1.63035- 5 1.53366- 2 1.60000+ 1 1.80000+ 1 6.15203- 6 1.55036- 2 1.60000+ 1 1.90000+ 1 7.90558- 4 1.57848- 2 1.60000+ 1 2.10000+ 1 9.50517- 5 1.60539- 2 1.60000+ 1 2.20000+ 1 1.89183- 4 1.61051- 2 1.60000+ 1 2.40000+ 1 4.39887- 5 1.64608- 2 1.60000+ 1 2.50000+ 1 8.24391- 5 1.64746- 2 1.60000+ 1 2.70000+ 1 7.99781- 6 1.65694- 2 1.60000+ 1 2.90000+ 1 1.53803- 6 1.66367- 2 1.60000+ 1 3.00000+ 1 1.74734- 4 1.67065- 2 1.60000+ 1 3.20000+ 1 1.72268- 5 1.68065- 2 1.60000+ 1 3.30000+ 1 3.29140- 5 1.68169- 2 1.80000+ 1 1.90000+ 1 1.22442- 3 1.59518- 2 1.80000+ 1 2.10000+ 1 6.09103- 5 1.62209- 2 1.80000+ 1 2.20000+ 1 3.40841- 4 1.62721- 2 1.80000+ 1 2.40000+ 1 4.46062- 5 1.66278- 2 1.80000+ 1 2.50000+ 1 9.72080- 5 1.66416- 2 1.80000+ 1 2.70000+ 1 1.53809- 6 1.67364- 2 1.80000+ 1 3.00000+ 1 2.72246- 4 1.68735- 2 1.80000+ 1 3.20000+ 1 1.19976- 5 1.69735- 2 1.80000+ 1 3.30000+ 1 6.49122- 5 1.69839- 2 1.90000+ 1 1.90000+ 1 1.47069- 3 1.62330- 2 1.90000+ 1 2.10000+ 1 1.30744- 3 1.65021- 2 1.90000+ 1 2.20000+ 1 1.77429- 3 1.65533- 2 1.90000+ 1 2.40000+ 1 1.16589- 4 1.69090- 2 1.90000+ 1 2.50000+ 1 1.44583- 4 1.69228- 2 1.90000+ 1 2.70000+ 1 2.07948- 4 1.70176- 2 1.90000+ 1 2.90000+ 1 2.98705- 4 1.70849- 2 1.90000+ 1 3.00000+ 1 6.82317- 4 1.71547- 2 1.90000+ 1 3.20000+ 1 2.64240- 4 1.72547- 2 1.90000+ 1 3.30000+ 1 3.52848- 4 1.72651- 2 2.10000+ 1 2.10000+ 1 1.64275- 4 1.67712- 2 2.10000+ 1 2.20000+ 1 2.84370- 3 1.68224- 2 2.10000+ 1 2.40000+ 1 6.06016- 5 1.71781- 2 2.10000+ 1 2.50000+ 1 1.88264- 4 1.71919- 2 2.10000+ 1 2.70000+ 1 2.49185- 5 1.72867- 2 2.10000+ 1 2.90000+ 1 1.50732- 5 1.73540- 2 2.10000+ 1 3.00000+ 1 2.84557- 4 1.74238- 2 2.10000+ 1 3.20000+ 1 6.36811- 5 1.75238- 2 2.10000+ 1 3.30000+ 1 5.31898- 4 1.75342- 2 2.20000+ 1 2.20000+ 1 1.97367- 3 1.68736- 2 2.20000+ 1 2.40000+ 1 6.26604- 4 1.72293- 2 2.20000+ 1 2.50000+ 1 5.50337- 4 1.72431- 2 2.20000+ 1 2.70000+ 1 4.98345- 5 1.73379- 2 2.20000+ 1 2.90000+ 1 8.27512- 5 1.74053- 2 2.20000+ 1 3.00000+ 1 3.97447- 4 1.74751- 2 2.20000+ 1 3.20000+ 1 5.59865- 4 1.75750- 2 2.20000+ 1 3.30000+ 1 7.56749- 4 1.75854- 2 2.40000+ 1 2.40000+ 1 3.07626- 6 1.75849- 2 2.40000+ 1 2.50000+ 1 9.16712- 5 1.75988- 2 2.40000+ 1 2.70000+ 1 9.84378- 6 1.76935- 2 2.40000+ 1 2.90000+ 1 9.84378- 6 1.77609- 2 2.40000+ 1 3.00000+ 1 2.43016- 5 1.78307- 2 2.40000+ 1 3.20000+ 1 1.07664- 5 1.79307- 2 2.40000+ 1 3.30000+ 1 1.09815- 4 1.79411- 2 2.50000+ 1 2.50000+ 1 3.26071- 5 1.76127- 2 2.50000+ 1 2.70000+ 1 1.90728- 5 1.77074- 2 2.50000+ 1 2.90000+ 1 2.12250- 5 1.77748- 2 2.50000+ 1 3.00000+ 1 3.07625- 5 1.78446- 2 2.50000+ 1 3.20000+ 1 3.29149- 5 1.79445- 2 2.50000+ 1 3.30000+ 1 9.59757- 5 1.79549- 2 2.70000+ 1 2.70000+ 1 9.22881- 7 1.78021- 2 2.70000+ 1 2.90000+ 1 3.07624- 7 1.78695- 2 2.70000+ 1 3.00000+ 1 4.58353- 5 1.79393- 2 2.70000+ 1 3.20000+ 1 4.61431- 6 1.80393- 2 2.70000+ 1 3.30000+ 1 8.61339- 6 1.80497- 2 2.90000+ 1 3.00000+ 1 6.64453- 5 1.80067- 2 2.90000+ 1 3.20000+ 1 2.76865- 6 1.81066- 2 2.90000+ 1 3.30000+ 1 1.56883- 5 1.81170- 2 3.00000+ 1 3.00000+ 1 7.87510- 5 1.80765- 2 3.00000+ 1 3.20000+ 1 5.75274- 5 1.81765- 2 3.00000+ 1 3.30000+ 1 7.90597- 5 1.81868- 2 3.20000+ 1 3.20000+ 1 6.15243- 6 1.82764- 2 3.20000+ 1 3.30000+ 1 1.04907- 4 1.82868- 2 3.30000+ 1 3.30000+ 1 7.25994- 5 1.82972- 2 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.05590- 5 3.60500- 4 1.10000+ 1 1.48721- 3 1.41660- 3 1.80000+ 1 3.01061- 3 4.67390- 3 1.90000+ 1 1.38791- 3 4.95510- 3 2.90000+ 1 8.26514- 4 5.80704- 3 3.00000+ 1 4.48722- 4 5.87685- 3 4.30000+ 1 1.51531- 4 6.06696- 3 4.40000+ 1 7.61043- 5 6.07821- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.70000+ 1 1.49539- 2 0.00000+ 0 1.00000+ 1 2.90000+ 1 1.61043- 2 6.54400- 5 1.00000+ 1 3.00000+ 1 1.85274- 2 1.35250- 4 1.00000+ 1 3.20000+ 1 1.07803- 2 2.35210- 4 1.00000+ 1 3.30000+ 1 1.37836- 2 2.45600- 4 1.00000+ 1 3.50000+ 1 6.83956- 4 3.52210- 4 1.00000+ 1 3.60000+ 1 8.45755- 4 3.53500- 4 1.00000+ 1 4.10000+ 1 2.86549- 3 3.05440- 4 1.00000+ 1 4.30000+ 1 2.51003- 3 3.25360- 4 1.00000+ 1 4.40000+ 1 2.56406- 3 3.36610- 4 1.00000+ 1 5.80000+ 1 2.42624- 4 3.55010- 4 1.10000+ 1 1.80000+ 1 5.46856- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 3.51362- 2 2.69600- 4 1.10000+ 1 2.10000+ 1 8.78464- 3 5.38700- 4 1.10000+ 1 2.20000+ 1 2.47654- 2 5.89920- 4 1.10000+ 1 2.40000+ 1 1.97358- 1 9.45570- 4 1.10000+ 1 2.50000+ 1 2.36495- 1 9.59430- 4 1.10000+ 1 2.70000+ 1 1.12192- 2 1.05416- 3 1.10000+ 1 2.90000+ 1 1.16370- 2 1.12154- 3 1.10000+ 1 3.00000+ 1 8.43224- 3 1.19135- 3 1.10000+ 1 3.20000+ 1 2.13065- 3 1.29131- 3 1.10000+ 1 3.30000+ 1 5.41367- 3 1.30170- 3 1.10000+ 1 3.50000+ 1 6.38714- 3 1.40831- 3 1.10000+ 1 3.60000+ 1 7.23610- 3 1.40960- 3 1.10000+ 1 4.10000+ 1 2.16129- 3 1.36154- 3 1.10000+ 1 4.30000+ 1 1.86409- 3 1.38146- 3 1.10000+ 1 4.40000+ 1 1.20317- 3 1.39271- 3 1.10000+ 1 5.80000+ 1 1.83494- 4 1.41111- 3 1.30000+ 1 1.60000+ 1 2.61996- 2 4.03300- 4 1.30000+ 1 1.80000+ 1 5.42423- 3 5.70300- 4 1.30000+ 1 1.90000+ 1 1.00966- 2 8.51500- 4 1.30000+ 1 2.10000+ 1 8.75701- 3 1.12060- 3 1.30000+ 1 2.20000+ 1 1.02080- 2 1.17182- 3 1.30000+ 1 2.40000+ 1 9.98017- 3 1.52747- 3 1.30000+ 1 2.50000+ 1 9.56693- 3 1.54133- 3 1.30000+ 1 2.70000+ 1 4.23017- 3 1.63606- 3 1.30000+ 1 2.90000+ 1 1.05454- 3 1.70344- 3 1.30000+ 1 3.00000+ 1 1.80396- 3 1.77325- 3 1.30000+ 1 3.20000+ 1 1.43726- 3 1.87321- 3 1.30000+ 1 3.30000+ 1 1.82138- 3 1.88360- 3 1.30000+ 1 3.50000+ 1 3.45149- 4 1.99021- 3 1.30000+ 1 3.60000+ 1 2.96199- 4 1.99150- 3 1.30000+ 1 4.10000+ 1 7.48513- 4 1.94344- 3 1.30000+ 1 4.30000+ 1 1.66286- 4 1.96336- 3 1.30000+ 1 4.40000+ 1 2.45666- 4 1.97461- 3 1.30000+ 1 5.80000+ 1 6.27069- 5 1.99301- 3 1.40000+ 1 1.60000+ 1 3.54127- 2 6.14400- 4 1.40000+ 1 1.80000+ 1 8.18040- 4 7.81400- 4 1.40000+ 1 1.90000+ 1 1.22673- 2 1.06260- 3 1.40000+ 1 2.10000+ 1 1.17996- 2 1.33170- 3 1.40000+ 1 2.20000+ 1 1.58585- 2 1.38292- 3 1.40000+ 1 2.40000+ 1 1.21369- 2 1.73857- 3 1.40000+ 1 2.50000+ 1 1.77889- 2 1.75243- 3 1.40000+ 1 2.70000+ 1 5.61549- 3 1.84716- 3 1.40000+ 1 2.90000+ 1 2.37583- 4 1.91454- 3 1.40000+ 1 3.00000+ 1 2.15164- 3 1.98435- 3 1.40000+ 1 3.20000+ 1 2.15782- 3 2.08431- 3 1.40000+ 1 3.30000+ 1 2.73049- 3 2.09470- 3 1.40000+ 1 3.50000+ 1 3.91561- 4 2.20131- 3 1.40000+ 1 3.60000+ 1 5.67918- 4 2.20260- 3 1.40000+ 1 4.10000+ 1 9.89501- 4 2.15454- 3 1.40000+ 1 4.30000+ 1 4.10080- 5 2.17446- 3 1.40000+ 1 4.40000+ 1 2.92880- 4 2.18571- 3 1.40000+ 1 5.80000+ 1 8.28110- 5 2.20411- 3 1.60000+ 1 1.60000+ 1 2.13245- 3 2.91170- 3 1.60000+ 1 1.80000+ 1 3.81182- 3 3.07870- 3 1.60000+ 1 1.90000+ 1 5.79958- 3 3.35990- 3 1.60000+ 1 2.10000+ 1 7.06170- 3 3.62900- 3 1.60000+ 1 2.20000+ 1 9.71470- 3 3.68022- 3 1.60000+ 1 2.40000+ 1 5.36741- 3 4.03587- 3 1.60000+ 1 2.50000+ 1 6.60126- 3 4.04973- 3 1.60000+ 1 2.70000+ 1 9.03026- 4 4.14446- 3 1.60000+ 1 2.90000+ 1 9.40840- 4 4.21184- 3 1.60000+ 1 3.00000+ 1 1.40969- 3 4.28165- 3 1.60000+ 1 3.20000+ 1 1.40373- 3 4.38161- 3 1.60000+ 1 3.30000+ 1 1.91144- 3 4.39200- 3 1.60000+ 1 3.50000+ 1 2.43805- 4 4.49861- 3 1.60000+ 1 3.60000+ 1 2.85741- 4 4.49990- 3 1.60000+ 1 4.10000+ 1 1.72236- 4 4.45184- 3 1.60000+ 1 4.30000+ 1 1.54921- 4 4.47176- 3 1.60000+ 1 4.40000+ 1 2.03324- 4 4.48301- 3 1.60000+ 1 5.80000+ 1 1.45527- 5 4.50141- 3 1.80000+ 1 1.80000+ 1 1.38116- 4 3.24570- 3 1.80000+ 1 1.90000+ 1 4.74412- 4 3.52690- 3 1.80000+ 1 2.10000+ 1 2.20662- 4 3.79600- 3 1.80000+ 1 2.20000+ 1 9.16780- 5 3.84722- 3 1.80000+ 1 2.40000+ 1 1.82568- 5 4.20287- 3 1.80000+ 1 2.50000+ 1 5.15152- 4 4.21673- 3 1.80000+ 1 2.70000+ 1 6.00863- 4 4.31146- 3 1.80000+ 1 2.90000+ 1 4.80224- 5 4.37884- 3 1.80000+ 1 3.00000+ 1 7.80505- 5 4.44865- 3 1.80000+ 1 3.20000+ 1 3.69096- 5 4.54861- 3 1.80000+ 1 3.30000+ 1 2.34156- 5 4.55900- 3 1.80000+ 1 3.50000+ 1 3.96870- 7 4.66561- 3 1.80000+ 1 3.60000+ 1 1.40225- 5 4.66690- 3 1.80000+ 1 4.10000+ 1 1.06232- 4 4.61884- 3 1.80000+ 1 4.30000+ 1 7.40840- 6 4.63876- 3 1.80000+ 1 4.40000+ 1 1.04510- 5 4.65001- 3 1.80000+ 1 5.80000+ 1 8.86358- 6 4.66841- 3 1.90000+ 1 1.90000+ 1 4.03896- 4 3.80810- 3 1.90000+ 1 2.10000+ 1 6.76424- 4 4.07720- 3 1.90000+ 1 2.20000+ 1 1.47230- 3 4.12842- 3 1.90000+ 1 2.40000+ 1 1.01862- 3 4.48407- 3 1.90000+ 1 2.50000+ 1 1.42215- 3 4.49793- 3 1.90000+ 1 2.70000+ 1 9.19317- 4 4.59266- 3 1.90000+ 1 2.90000+ 1 1.00808- 4 4.66004- 3 1.90000+ 1 3.00000+ 1 1.66685- 4 4.72985- 3 1.90000+ 1 3.20000+ 1 1.29776- 4 4.82981- 3 1.90000+ 1 3.30000+ 1 2.74509- 4 4.84020- 3 1.90000+ 1 3.50000+ 1 4.35242- 5 4.94681- 3 1.90000+ 1 3.60000+ 1 5.26537- 5 4.94810- 3 1.90000+ 1 4.10000+ 1 1.62983- 4 4.90004- 3 1.90000+ 1 4.30000+ 1 1.61392- 5 4.91996- 3 1.90000+ 1 4.40000+ 1 2.34156- 5 4.93121- 3 1.90000+ 1 5.80000+ 1 1.36264- 5 4.94961- 3 2.10000+ 1 2.10000+ 1 9.73669- 5 4.34630- 3 2.10000+ 1 2.20000+ 1 2.07038- 4 4.39752- 3 2.10000+ 1 2.40000+ 1 4.34983- 4 4.75317- 3 2.10000+ 1 2.50000+ 1 2.42753- 3 4.76703- 3 2.10000+ 1 2.70000+ 1 1.08560- 3 4.86176- 3 2.10000+ 1 2.90000+ 1 3.30733- 5 4.92914- 3 2.10000+ 1 3.00000+ 1 1.23298- 4 4.99895- 3 2.10000+ 1 3.20000+ 1 3.02950- 5 5.09891- 3 2.10000+ 1 3.30000+ 1 3.45292- 5 5.10930- 3 2.10000+ 1 3.50000+ 1 1.77274- 5 5.21591- 3 2.10000+ 1 3.60000+ 1 7.60682- 5 5.21720- 3 2.10000+ 1 4.10000+ 1 1.90638- 4 5.16914- 3 2.10000+ 1 4.30000+ 1 4.89477- 6 5.18906- 3 2.10000+ 1 4.40000+ 1 1.68018- 5 5.20031- 3 2.10000+ 1 5.80000+ 1 1.58754- 5 5.21871- 3 2.20000+ 1 2.20000+ 1 2.05980- 4 4.44874- 3 2.20000+ 1 2.40000+ 1 2.09920- 3 4.80439- 3 2.20000+ 1 2.50000+ 1 1.40661- 3 4.81825- 3 2.20000+ 1 2.70000+ 1 1.48422- 3 4.91298- 3 2.20000+ 1 2.90000+ 1 1.58752- 5 4.98036- 3 2.20000+ 1 3.00000+ 1 2.63657- 4 5.05017- 3 2.20000+ 1 3.20000+ 1 2.98984- 5 5.15013- 3 2.20000+ 1 3.30000+ 1 6.62800- 5 5.16052- 3 2.20000+ 1 3.50000+ 1 6.69408- 5 5.26713- 3 2.20000+ 1 3.60000+ 1 4.80216- 5 5.26842- 3 2.20000+ 1 4.10000+ 1 2.60213- 4 5.22036- 3 2.20000+ 1 4.30000+ 1 2.51348- 6 5.24028- 3 2.20000+ 1 4.40000+ 1 3.57189- 5 5.25153- 3 2.20000+ 1 5.80000+ 1 2.16956- 5 5.26993- 3 2.40000+ 1 2.40000+ 1 6.06935- 4 5.16004- 3 2.40000+ 1 2.50000+ 1 3.95680- 3 5.17390- 3 2.40000+ 1 2.70000+ 1 7.51954- 4 5.26863- 3 2.40000+ 1 2.90000+ 1 4.76246- 6 5.33601- 3 2.40000+ 1 3.00000+ 1 1.29386- 4 5.40582- 3 2.40000+ 1 3.20000+ 1 7.68582- 5 5.50578- 3 2.40000+ 1 3.30000+ 1 4.27434- 4 5.51617- 3 2.40000+ 1 3.50000+ 1 4.97402- 5 5.62278- 3 2.40000+ 1 3.60000+ 1 1.30311- 4 5.62407- 3 2.40000+ 1 4.10000+ 1 1.29903- 4 5.57601- 3 2.40000+ 1 4.30000+ 1 7.93729- 7 5.59593- 3 2.40000+ 1 4.40000+ 1 1.64046- 5 5.60718- 3 2.40000+ 1 5.80000+ 1 1.08489- 5 5.62558- 3 2.50000+ 1 2.50000+ 1 1.36482- 3 5.18776- 3 2.50000+ 1 2.70000+ 1 9.22474- 4 5.28249- 3 2.50000+ 1 2.90000+ 1 1.09006- 4 5.34987- 3 2.50000+ 1 3.00000+ 1 1.93145- 4 5.41968- 3 2.50000+ 1 3.20000+ 1 4.78498- 4 5.51964- 3 2.50000+ 1 3.30000+ 1 2.67093- 4 5.53003- 3 2.50000+ 1 3.50000+ 1 1.34014- 4 5.63664- 3 2.50000+ 1 3.60000+ 1 9.89556- 5 5.63793- 3 2.50000+ 1 4.10000+ 1 1.59280- 4 5.58987- 3 2.50000+ 1 4.30000+ 1 1.73302- 5 5.60979- 3 2.50000+ 1 4.40000+ 1 2.48702- 5 5.62104- 3 2.50000+ 1 5.80000+ 1 1.32292- 5 5.63944- 3 2.70000+ 1 2.70000+ 1 8.75738- 5 5.37722- 3 2.70000+ 1 2.90000+ 1 1.50013- 4 5.44460- 3 2.70000+ 1 3.00000+ 1 2.23174- 4 5.51441- 3 2.70000+ 1 3.20000+ 1 2.17481- 4 5.61437- 3 2.70000+ 1 3.30000+ 1 2.94345- 4 5.62476- 3 2.70000+ 1 3.50000+ 1 3.42627- 5 5.73137- 3 2.70000+ 1 3.60000+ 1 4.00841- 5 5.73266- 3 2.70000+ 1 4.10000+ 1 3.28078- 5 5.68460- 3 2.70000+ 1 4.30000+ 1 2.47385- 5 5.70452- 3 2.70000+ 1 4.40000+ 1 3.21471- 5 5.71577- 3 2.70000+ 1 5.80000+ 1 2.77806- 6 5.73417- 3 2.90000+ 1 2.90000+ 1 4.10100- 6 5.51198- 3 2.90000+ 1 3.00000+ 1 1.60066- 5 5.58179- 3 2.90000+ 1 3.20000+ 1 5.55596- 6 5.68175- 3 2.90000+ 1 3.30000+ 1 4.36559- 6 5.69214- 3 2.90000+ 1 3.50000+ 1 1.32291- 7 5.79875- 3 2.90000+ 1 3.60000+ 1 3.17494- 6 5.80004- 3 2.90000+ 1 4.10000+ 1 2.65907- 5 5.75198- 3 2.90000+ 1 4.30000+ 1 1.19066- 6 5.77190- 3 2.90000+ 1 4.40000+ 1 2.11662- 6 5.78315- 3 2.90000+ 1 5.80000+ 1 2.24897- 6 5.80155- 3 3.00000+ 1 3.00000+ 1 1.64050- 5 5.65160- 3 3.00000+ 1 3.20000+ 1 2.38128- 5 5.75156- 3 3.00000+ 1 3.30000+ 1 4.96101- 5 5.76195- 3 3.00000+ 1 3.50000+ 1 5.55610- 6 5.86856- 3 3.00000+ 1 3.60000+ 1 7.01171- 6 5.86985- 3 3.00000+ 1 4.10000+ 1 3.95560- 5 5.82179- 3 3.00000+ 1 4.30000+ 1 2.51354- 6 5.84171- 3 3.00000+ 1 4.40000+ 1 4.49797- 6 5.85296- 3 3.00000+ 1 5.80000+ 1 3.30737- 6 5.87136- 3 3.20000+ 1 3.20000+ 1 2.11663- 6 5.85152- 3 3.20000+ 1 3.30000+ 1 5.02708- 6 5.86191- 3 3.20000+ 1 3.50000+ 1 3.17496- 6 5.96852- 3 3.20000+ 1 3.60000+ 1 1.57429- 5 5.96981- 3 3.20000+ 1 4.10000+ 1 3.82327- 5 5.92175- 3 3.20000+ 1 4.30000+ 1 7.93733- 7 5.94167- 3 3.20000+ 1 4.40000+ 1 3.30730- 6 5.95292- 3 3.20000+ 1 5.80000+ 1 3.17496- 6 5.97132- 3 3.30000+ 1 3.30000+ 1 5.15931- 6 5.87230- 3 3.30000+ 1 3.50000+ 1 1.42880- 5 5.97891- 3 3.30000+ 1 3.60000+ 1 9.26010- 6 5.98020- 3 3.30000+ 1 4.10000+ 1 5.17234- 5 5.93214- 3 3.30000+ 1 4.30000+ 1 6.61437- 7 5.95206- 3 3.30000+ 1 4.40000+ 1 6.74662- 6 5.96331- 3 3.30000+ 1 5.80000+ 1 4.36559- 6 5.98171- 3 3.50000+ 1 3.50000+ 1 8.22302- 7 6.08552- 3 3.50000+ 1 3.60000+ 1 4.79679- 6 6.08681- 3 3.50000+ 1 4.10000+ 1 6.16752- 6 6.03875- 3 3.50000+ 1 4.40000+ 1 6.85249- 7 6.06992- 3 3.50000+ 1 5.80000+ 1 5.48195- 7 6.08832- 3 3.60000+ 1 3.60000+ 1 1.66832- 6 6.08810- 3 3.60000+ 1 4.10000+ 1 7.22943- 6 6.04004- 3 3.60000+ 1 4.30000+ 1 5.56079- 7 6.05996- 3 3.60000+ 1 4.40000+ 1 9.73143- 7 6.07121- 3 3.60000+ 1 5.80000+ 1 5.56079- 7 6.08961- 3 4.10000+ 1 4.10000+ 1 3.50401- 6 5.99198- 3 4.10000+ 1 4.30000+ 1 5.02749- 6 6.01190- 3 4.10000+ 1 4.40000+ 1 6.55120- 6 6.02315- 3 4.10000+ 1 5.80000+ 1 6.09373- 7 6.04155- 3 4.30000+ 1 4.30000+ 1 1.36506- 7 6.03182- 3 4.30000+ 1 4.40000+ 1 4.09509- 7 6.04307- 3 4.30000+ 1 5.80000+ 1 4.09509- 7 6.06147- 3 4.40000+ 1 4.40000+ 1 2.64584- 7 6.05432- 3 4.40000+ 1 5.80000+ 1 5.29149- 7 6.07272- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.27439- 3 1.63800- 3 1.60000+ 1 1.11990- 3 4.14640- 3 2.10000+ 1 5.30858- 3 4.86370- 3 2.70000+ 1 3.00279- 4 5.37916- 3 3.20000+ 1 1.34350- 3 5.61631- 3 4.10000+ 1 6.15248- 5 5.68654- 3 5.80000+ 1 5.73858- 6 5.73611- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.05201- 2 1.78200- 4 1.10000+ 1 2.20000+ 1 1.94689- 2 2.29420- 4 1.10000+ 1 2.40000+ 1 2.83952- 2 5.85070- 4 1.10000+ 1 2.50000+ 1 2.27434- 2 5.98930- 4 1.10000+ 1 2.70000+ 1 3.13142- 3 6.93660- 4 1.10000+ 1 2.90000+ 1 4.67801- 3 7.61040- 4 1.10000+ 1 3.00000+ 1 1.73935- 3 8.30850- 4 1.10000+ 1 3.20000+ 1 2.06287- 3 9.30810- 4 1.10000+ 1 3.30000+ 1 3.49693- 3 9.41200- 4 1.10000+ 1 3.50000+ 1 1.03283- 3 1.04781- 3 1.10000+ 1 3.60000+ 1 8.08638- 4 1.04910- 3 1.10000+ 1 4.10000+ 1 5.77444- 4 1.00104- 3 1.10000+ 1 4.30000+ 1 6.88351- 4 1.02096- 3 1.10000+ 1 4.40000+ 1 2.38779- 4 1.03221- 3 1.10000+ 1 5.80000+ 1 4.85469- 5 1.05061- 3 1.30000+ 1 1.60000+ 1 4.76958- 2 4.28000- 5 1.30000+ 1 1.80000+ 1 5.01248- 2 2.09800- 4 1.30000+ 1 1.90000+ 1 3.04314- 2 4.91000- 4 1.30000+ 1 2.10000+ 1 1.65209- 2 7.60100- 4 1.30000+ 1 2.20000+ 1 2.80390- 2 8.11320- 4 1.30000+ 1 2.40000+ 1 1.52031- 1 1.16697- 3 1.30000+ 1 2.50000+ 1 2.39667- 1 1.18083- 3 1.30000+ 1 2.70000+ 1 1.21868- 2 1.27556- 3 1.30000+ 1 2.90000+ 1 1.01328- 2 1.34294- 3 1.30000+ 1 3.00000+ 1 7.15017- 3 1.41275- 3 1.30000+ 1 3.20000+ 1 3.52537- 3 1.51271- 3 1.30000+ 1 3.30000+ 1 5.80738- 3 1.52310- 3 1.30000+ 1 3.50000+ 1 5.02080- 3 1.62971- 3 1.30000+ 1 3.60000+ 1 7.93880- 3 1.63100- 3 1.30000+ 1 4.10000+ 1 2.36750- 3 1.58294- 3 1.30000+ 1 4.30000+ 1 1.60645- 3 1.60286- 3 1.30000+ 1 4.40000+ 1 1.02077- 3 1.61411- 3 1.30000+ 1 5.80000+ 1 2.00769- 4 1.63251- 3 1.40000+ 1 1.60000+ 1 7.17861- 3 2.53900- 4 1.40000+ 1 1.80000+ 1 5.67663- 2 4.20900- 4 1.40000+ 1 1.90000+ 1 4.46151- 3 7.02100- 4 1.40000+ 1 2.10000+ 1 2.18689- 3 9.71200- 4 1.40000+ 1 2.20000+ 1 2.77939- 3 1.02242- 3 1.40000+ 1 2.40000+ 1 8.53038- 3 1.37807- 3 1.40000+ 1 2.50000+ 1 4.95544- 3 1.39193- 3 1.40000+ 1 2.70000+ 1 1.22158- 3 1.48666- 3 1.40000+ 1 2.90000+ 1 8.66151- 3 1.55404- 3 1.40000+ 1 3.00000+ 1 8.81097- 4 1.62385- 3 1.40000+ 1 3.20000+ 1 1.81839- 4 1.72381- 3 1.40000+ 1 3.30000+ 1 4.94674- 4 1.73420- 3 1.40000+ 1 3.50000+ 1 4.06299- 4 1.84081- 3 1.40000+ 1 3.60000+ 1 1.85131- 4 1.84210- 3 1.40000+ 1 4.10000+ 1 2.19194- 4 1.79404- 3 1.40000+ 1 4.30000+ 1 1.28929- 3 1.81396- 3 1.40000+ 1 4.40000+ 1 1.22101- 4 1.82521- 3 1.40000+ 1 5.80000+ 1 1.84308- 5 1.84361- 3 1.60000+ 1 1.60000+ 1 4.43295- 4 2.55120- 3 1.60000+ 1 1.80000+ 1 7.12056- 3 2.71820- 3 1.60000+ 1 1.90000+ 1 8.34385- 4 2.99940- 3 1.60000+ 1 2.10000+ 1 3.05122- 4 3.26850- 3 1.60000+ 1 2.20000+ 1 7.96677- 4 3.31972- 3 1.60000+ 1 2.40000+ 1 7.14649- 5 3.67537- 3 1.60000+ 1 2.50000+ 1 5.75937- 4 3.68923- 3 1.60000+ 1 2.70000+ 1 1.74038- 4 3.78396- 3 1.60000+ 1 2.90000+ 1 1.07351- 3 3.85134- 3 1.60000+ 1 3.00000+ 1 1.81681- 4 3.92115- 3 1.60000+ 1 3.20000+ 1 3.95559- 5 4.02111- 3 1.60000+ 1 3.30000+ 1 1.39497- 4 4.03150- 3 1.60000+ 1 3.50000+ 1 2.37348- 6 4.13811- 3 1.60000+ 1 3.60000+ 1 1.68777- 5 4.13940- 3 1.60000+ 1 4.10000+ 1 3.24351- 5 4.09134- 3 1.60000+ 1 4.30000+ 1 1.60339- 4 4.11126- 3 1.60000+ 1 4.40000+ 1 2.55797- 5 4.12251- 3 1.60000+ 1 5.80000+ 1 2.63711- 6 4.14091- 3 1.80000+ 1 1.80000+ 1 5.60700- 3 2.88520- 3 1.80000+ 1 1.90000+ 1 1.46362- 2 3.16640- 3 1.80000+ 1 2.10000+ 1 1.49717- 2 3.43550- 3 1.80000+ 1 2.20000+ 1 2.31868- 2 3.48672- 3 1.80000+ 1 2.40000+ 1 9.42232- 3 3.84237- 3 1.80000+ 1 2.50000+ 1 1.51669- 2 3.85623- 3 1.80000+ 1 2.70000+ 1 1.85166- 3 3.95096- 3 1.80000+ 1 2.90000+ 1 2.26711- 3 4.01834- 3 1.80000+ 1 3.00000+ 1 3.52304- 3 4.08815- 3 1.80000+ 1 3.20000+ 1 2.99355- 3 4.18811- 3 1.80000+ 1 3.30000+ 1 4.51743- 3 4.19850- 3 1.80000+ 1 3.50000+ 1 4.29309- 4 4.30511- 3 1.80000+ 1 3.60000+ 1 6.51868- 4 4.30640- 3 1.80000+ 1 4.10000+ 1 3.64698- 4 4.25834- 3 1.80000+ 1 4.30000+ 1 3.62046- 4 4.27826- 3 1.80000+ 1 4.40000+ 1 5.06822- 4 4.28951- 3 1.80000+ 1 5.80000+ 1 3.11165- 5 4.30791- 3 1.90000+ 1 1.90000+ 1 3.52308- 4 3.44760- 3 1.90000+ 1 2.10000+ 1 7.95844- 4 3.71670- 3 1.90000+ 1 2.20000+ 1 7.69212- 4 3.76792- 3 1.90000+ 1 2.40000+ 1 5.90592- 3 4.12357- 3 1.90000+ 1 2.50000+ 1 1.65340- 3 4.13743- 3 1.90000+ 1 2.70000+ 1 1.36334- 4 4.23216- 3 1.90000+ 1 2.90000+ 1 2.24842- 3 4.29954- 3 1.90000+ 1 3.00000+ 1 1.42924- 4 4.36935- 3 1.90000+ 1 3.20000+ 1 1.22360- 4 4.46931- 3 1.90000+ 1 3.30000+ 1 1.36334- 4 4.47970- 3 1.90000+ 1 3.50000+ 1 2.22039- 4 4.58631- 3 1.90000+ 1 3.60000+ 1 6.19681- 5 4.58760- 3 1.90000+ 1 4.10000+ 1 2.42617- 5 4.53954- 3 1.90000+ 1 4.30000+ 1 3.36751- 4 4.55946- 3 1.90000+ 1 4.40000+ 1 1.97772- 5 4.57071- 3 1.90000+ 1 5.80000+ 1 2.10976- 6 4.58911- 3 2.10000+ 1 2.10000+ 1 5.82789- 4 3.98580- 3 2.10000+ 1 2.20000+ 1 9.97034- 4 4.03702- 3 2.10000+ 1 2.40000+ 1 6.08897- 4 4.39267- 3 2.10000+ 1 2.50000+ 1 7.52614- 4 4.40653- 3 2.10000+ 1 2.70000+ 1 7.70014- 5 4.50126- 3 2.10000+ 1 2.90000+ 1 2.22146- 3 4.56864- 3 2.10000+ 1 3.00000+ 1 1.80374- 4 4.63845- 3 2.10000+ 1 3.20000+ 1 1.87493- 4 4.73841- 3 2.10000+ 1 3.30000+ 1 1.77467- 4 4.74880- 3 2.10000+ 1 3.50000+ 1 1.39766- 5 4.85541- 3 2.10000+ 1 3.60000+ 1 2.26791- 5 4.85670- 3 2.10000+ 1 4.10000+ 1 1.50309- 5 4.80864- 3 2.10000+ 1 4.30000+ 1 3.30161- 4 4.82856- 3 2.10000+ 1 4.40000+ 1 2.55792- 5 4.83981- 3 2.10000+ 1 5.80000+ 1 1.31849- 6 4.85821- 3 2.20000+ 1 2.20000+ 1 2.77420- 4 4.08824- 3 2.20000+ 1 2.40000+ 1 1.15897- 3 4.44389- 3 2.20000+ 1 2.50000+ 1 3.14079- 4 4.45775- 3 2.20000+ 1 2.70000+ 1 1.61385- 4 4.55248- 3 2.20000+ 1 2.90000+ 1 3.47590- 3 4.61986- 3 2.20000+ 1 3.00000+ 1 1.40551- 4 4.68967- 3 2.20000+ 1 3.20000+ 1 1.43457- 4 4.78963- 3 2.20000+ 1 3.30000+ 1 9.09786- 5 4.80002- 3 2.20000+ 1 3.50000+ 1 2.16241- 5 4.90663- 3 2.20000+ 1 3.60000+ 1 8.43857- 6 4.90792- 3 2.20000+ 1 4.10000+ 1 3.03258- 5 4.85986- 3 2.20000+ 1 4.30000+ 1 5.17653- 4 4.87978- 3 2.20000+ 1 4.40000+ 1 1.92499- 5 4.89103- 3 2.20000+ 1 5.80000+ 1 2.63706- 6 4.90943- 3 2.40000+ 1 2.40000+ 1 2.46217- 3 4.79954- 3 2.40000+ 1 2.50000+ 1 1.56530- 2 4.81340- 3 2.40000+ 1 2.70000+ 1 1.23941- 5 4.90813- 3 2.40000+ 1 2.90000+ 1 1.28796- 3 4.97551- 3 2.40000+ 1 3.00000+ 1 1.33545- 3 5.04532- 3 2.40000+ 1 3.20000+ 1 1.26577- 4 5.14528- 3 2.40000+ 1 3.30000+ 1 2.84015- 4 5.15567- 3 2.40000+ 1 3.50000+ 1 1.84587- 4 5.26228- 3 2.40000+ 1 3.60000+ 1 5.51137- 4 5.26357- 3 2.40000+ 1 4.10000+ 1 2.37344- 6 5.21551- 3 2.40000+ 1 4.30000+ 1 1.90132- 4 5.23543- 3 2.40000+ 1 4.40000+ 1 1.89863- 4 5.24668- 3 2.40000+ 1 5.80000+ 1 2.63707- 7 5.26508- 3 2.50000+ 1 2.50000+ 1 8.14310- 4 4.82726- 3 2.50000+ 1 2.70000+ 1 1.21041- 4 4.92199- 3 2.50000+ 1 2.90000+ 1 2.00620- 3 4.98937- 3 2.50000+ 1 3.00000+ 1 3.29094- 4 5.05918- 3 2.50000+ 1 3.20000+ 1 1.55313- 4 5.15914- 3 2.50000+ 1 3.30000+ 1 6.51337- 5 5.16953- 3 2.50000+ 1 3.50000+ 1 5.64844- 4 5.27614- 3 2.50000+ 1 3.60000+ 1 5.80145- 5 5.27743- 3 2.50000+ 1 4.10000+ 1 2.26789- 5 5.22937- 3 2.50000+ 1 4.30000+ 1 2.91385- 4 5.24929- 3 2.50000+ 1 4.40000+ 1 4.56201- 5 5.26054- 3 2.50000+ 1 5.80000+ 1 1.84585- 6 5.27894- 3 2.70000+ 1 2.70000+ 1 1.68773- 5 5.01672- 3 2.70000+ 1 2.90000+ 1 2.81106- 4 5.08410- 3 2.70000+ 1 3.00000+ 1 2.95343- 5 5.15391- 3 2.70000+ 1 3.20000+ 1 9.49321- 6 5.25387- 3 2.70000+ 1 3.30000+ 1 2.87445- 5 5.26426- 3 2.70000+ 1 3.50000+ 1 5.27393- 7 5.37087- 3 2.70000+ 1 3.60000+ 1 3.69187- 6 5.37216- 3 2.70000+ 1 4.10000+ 1 6.32890- 6 5.32410- 3 2.70000+ 1 4.30000+ 1 4.19290- 5 5.34402- 3 2.70000+ 1 4.40000+ 1 4.21912- 6 5.35527- 3 2.70000+ 1 5.80000+ 1 5.27393- 7 5.37367- 3 2.90000+ 1 2.90000+ 1 2.13599- 4 5.15148- 3 2.90000+ 1 3.00000+ 1 5.45070- 4 5.22129- 3 2.90000+ 1 3.20000+ 1 4.47219- 4 5.32125- 3 2.90000+ 1 3.30000+ 1 6.82191- 4 5.33164- 3 2.90000+ 1 3.50000+ 1 5.85416- 5 5.43825- 3 2.90000+ 1 3.60000+ 1 8.70205- 5 5.43954- 3 2.90000+ 1 4.10000+ 1 5.53763- 5 5.39148- 3 2.90000+ 1 4.30000+ 1 6.72434- 5 5.41140- 3 2.90000+ 1 4.40000+ 1 7.85827- 5 5.42265- 3 2.90000+ 1 5.80000+ 1 4.74661- 6 5.44105- 3 3.00000+ 1 3.00000+ 1 1.42402- 5 5.29110- 3 3.00000+ 1 3.20000+ 1 2.79517- 5 5.39106- 3 3.00000+ 1 3.30000+ 1 2.50517- 5 5.40145- 3 3.00000+ 1 3.50000+ 1 5.03669- 5 5.50806- 3 3.00000+ 1 3.60000+ 1 1.23940- 5 5.50935- 3 3.00000+ 1 4.10000+ 1 5.27394- 6 5.46129- 3 3.00000+ 1 4.30000+ 1 8.17478- 5 5.48121- 3 3.00000+ 1 4.40000+ 1 3.95551- 6 5.49246- 3 3.00000+ 1 5.80000+ 1 5.27394- 7 5.51086- 3 3.20000+ 1 3.20000+ 1 1.45402- 5 5.49102- 3 3.20000+ 1 3.30000+ 1 2.77591- 5 5.50141- 3 3.20000+ 1 3.50000+ 1 3.17228- 6 5.60802- 3 3.20000+ 1 3.60000+ 1 5.28721- 6 5.60931- 3 3.20000+ 1 4.10000+ 1 1.85051- 6 5.56125- 3 3.20000+ 1 4.30000+ 1 6.66204- 5 5.58117- 3 3.20000+ 1 4.40000+ 1 3.96546- 6 5.59242- 3 3.20000+ 1 5.80000+ 1 2.64369- 7 5.61082- 3 3.30000+ 1 3.30000+ 1 7.98392- 6 5.51180- 3 3.30000+ 1 3.50000+ 1 6.38725- 6 5.61841- 3 3.30000+ 1 3.60000+ 1 1.86287- 6 5.61970- 3 3.30000+ 1 4.10000+ 1 5.58876- 6 5.57164- 3 3.30000+ 1 4.30000+ 1 1.02725- 4 5.59156- 3 3.30000+ 1 4.40000+ 1 3.45983- 6 5.60281- 3 3.30000+ 1 5.80000+ 1 5.32255- 7 5.62121- 3 3.50000+ 1 3.50000+ 1 2.88622- 6 5.72502- 3 3.50000+ 1 3.60000+ 1 2.04662- 5 5.72631- 3 3.50000+ 1 4.30000+ 1 8.65880- 6 5.69817- 3 3.50000+ 1 4.40000+ 1 7.08461- 6 5.70942- 3 3.60000+ 1 3.60000+ 1 7.91101- 7 5.72760- 3 3.60000+ 1 4.10000+ 1 7.91101- 7 5.67954- 3 3.60000+ 1 4.30000+ 1 1.26577- 5 5.69946- 3 3.60000+ 1 4.40000+ 1 1.58208- 6 5.71071- 3 4.10000+ 1 4.10000+ 1 5.50287- 7 5.63148- 3 4.10000+ 1 4.30000+ 1 8.52964- 6 5.65140- 3 4.10000+ 1 4.40000+ 1 8.25440- 7 5.66265- 3 4.30000+ 1 4.30000+ 1 5.70600- 6 5.67132- 3 4.30000+ 1 4.40000+ 1 1.28390- 5 5.68257- 3 4.30000+ 1 5.80000+ 1 8.55910- 7 5.70097- 3 4.40000+ 1 4.40000+ 1 2.63709- 7 5.69382- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.36000- 5 5.81900- 4 1.40000+ 1 3.34869- 4 7.93000- 4 1.60000+ 1 2.43869- 3 3.09030- 3 2.10000+ 1 1.12150- 3 3.80760- 3 2.20000+ 1 8.33408- 3 3.85882- 3 2.70000+ 1 6.19019- 4 4.32306- 3 3.20000+ 1 2.48459- 4 4.56021- 3 3.30000+ 1 1.88850- 3 4.57060- 3 4.10000+ 1 1.22210- 4 4.63044- 3 5.80000+ 1 1.20580- 5 4.68001- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.64875- 2 1.10870- 4 1.30000+ 1 2.50000+ 1 2.46605- 2 1.24730- 4 1.30000+ 1 2.70000+ 1 4.03017- 3 2.19460- 4 1.30000+ 1 2.90000+ 1 3.97911- 3 2.86840- 4 1.30000+ 1 3.00000+ 1 1.11708- 2 3.56650- 4 1.30000+ 1 3.20000+ 1 2.21122- 3 4.56610- 4 1.30000+ 1 3.30000+ 1 2.49797- 3 4.67000- 4 1.30000+ 1 3.50000+ 1 4.52808- 4 5.73610- 4 1.30000+ 1 3.60000+ 1 7.52265- 4 5.74900- 4 1.30000+ 1 4.10000+ 1 7.54235- 4 5.26840- 4 1.30000+ 1 4.30000+ 1 6.24555- 4 5.46760- 4 1.30000+ 1 4.40000+ 1 1.50760- 3 5.58010- 4 1.30000+ 1 5.80000+ 1 6.30901- 5 5.76410- 4 1.40000+ 1 2.40000+ 1 2.34361- 1 3.21970- 4 1.40000+ 1 2.50000+ 1 2.82468- 1 3.35830- 4 1.40000+ 1 2.70000+ 1 2.46422- 2 4.30560- 4 1.40000+ 1 2.90000+ 1 2.65458- 2 4.97940- 4 1.40000+ 1 3.00000+ 1 2.65180- 2 5.67750- 4 1.40000+ 1 3.20000+ 1 8.94433- 3 6.67710- 4 1.40000+ 1 3.30000+ 1 1.31819- 2 6.78100- 4 1.40000+ 1 3.50000+ 1 6.19188- 3 7.84710- 4 1.40000+ 1 3.60000+ 1 6.86110- 3 7.86000- 4 1.40000+ 1 4.10000+ 1 4.73088- 3 7.37940- 4 1.40000+ 1 4.30000+ 1 4.20521- 3 7.57860- 4 1.40000+ 1 4.40000+ 1 3.67762- 3 7.69110- 4 1.40000+ 1 5.80000+ 1 4.00450- 4 7.87510- 4 1.60000+ 1 1.60000+ 1 6.22568- 5 1.49510- 3 1.60000+ 1 1.80000+ 1 3.33445- 4 1.66210- 3 1.60000+ 1 1.90000+ 1 9.29158- 3 1.94330- 3 1.60000+ 1 2.10000+ 1 6.12684- 4 2.21240- 3 1.60000+ 1 2.20000+ 1 8.27003- 4 2.26362- 3 1.60000+ 1 2.40000+ 1 2.58488- 3 2.61927- 3 1.60000+ 1 2.50000+ 1 4.70278- 3 2.63313- 3 1.60000+ 1 2.70000+ 1 2.96327- 5 2.72786- 3 1.60000+ 1 2.90000+ 1 4.19031- 5 2.79524- 3 1.60000+ 1 3.00000+ 1 1.38439- 3 2.86505- 3 1.60000+ 1 3.20000+ 1 1.01467- 4 2.96501- 3 1.60000+ 1 3.30000+ 1 1.34092- 4 2.97540- 3 1.60000+ 1 3.50000+ 1 8.32096- 5 3.08201- 3 1.60000+ 1 3.60000+ 1 1.43381- 4 3.08330- 3 1.60000+ 1 4.10000+ 1 5.68692- 6 3.03524- 3 1.60000+ 1 4.30000+ 1 5.98618- 6 3.05516- 3 1.60000+ 1 4.40000+ 1 1.81977- 4 3.06641- 3 1.60000+ 1 5.80000+ 1 5.98618- 7 3.08481- 3 1.80000+ 1 1.80000+ 1 1.79589- 6 1.82910- 3 1.80000+ 1 1.90000+ 1 1.18820- 2 2.11030- 3 1.80000+ 1 2.10000+ 1 2.86140- 4 2.37940- 3 1.80000+ 1 2.20000+ 1 2.80516- 3 2.43062- 3 1.80000+ 1 2.40000+ 1 1.54262- 3 2.78627- 3 1.80000+ 1 2.50000+ 1 7.42933- 3 2.80013- 3 1.80000+ 1 2.70000+ 1 7.42302- 5 2.89486- 3 1.80000+ 1 2.90000+ 1 3.59175- 6 2.96224- 3 1.80000+ 1 3.00000+ 1 1.82407- 3 3.03205- 3 1.80000+ 1 3.20000+ 1 5.71673- 5 3.13201- 3 1.80000+ 1 3.30000+ 1 4.41198- 4 3.14240- 3 1.80000+ 1 3.50000+ 1 4.42993- 5 3.24901- 3 1.80000+ 1 3.60000+ 1 2.18501- 4 3.25030- 3 1.80000+ 1 4.10000+ 1 1.37680- 5 3.20224- 3 1.80000+ 1 4.30000+ 1 5.98617- 7 3.22216- 3 1.80000+ 1 4.40000+ 1 2.41249- 4 3.23341- 3 1.80000+ 1 5.80000+ 1 1.19722- 6 3.25181- 3 1.90000+ 1 1.90000+ 1 1.47191- 2 2.39150- 3 1.90000+ 1 2.10000+ 1 2.21121- 2 2.66060- 3 1.90000+ 1 2.20000+ 1 2.85029- 2 2.71182- 3 1.90000+ 1 2.40000+ 1 2.12402- 2 3.06747- 3 1.90000+ 1 2.50000+ 1 2.41771- 2 3.08133- 3 1.90000+ 1 2.70000+ 1 2.38751- 3 3.17606- 3 1.90000+ 1 2.90000+ 1 2.84335- 3 3.24344- 3 1.90000+ 1 3.00000+ 1 5.76126- 3 3.31325- 3 1.90000+ 1 3.20000+ 1 4.24044- 3 3.41321- 3 1.90000+ 1 3.30000+ 1 5.46705- 3 3.42360- 3 1.90000+ 1 3.50000+ 1 8.98196- 4 3.53021- 3 1.90000+ 1 3.60000+ 1 9.75728- 4 3.53150- 3 1.90000+ 1 4.10000+ 1 4.68403- 4 3.48344- 3 1.90000+ 1 4.30000+ 1 4.64813- 4 3.50336- 3 1.90000+ 1 4.40000+ 1 8.01821- 4 3.51461- 3 1.90000+ 1 5.80000+ 1 3.98061- 5 3.53301- 3 2.10000+ 1 2.10000+ 1 1.57732- 4 2.92970- 3 2.10000+ 1 2.20000+ 1 3.75241- 3 2.98092- 3 2.10000+ 1 2.40000+ 1 6.23155- 4 3.33657- 3 2.10000+ 1 2.50000+ 1 6.99589- 3 3.35043- 3 2.10000+ 1 2.70000+ 1 7.75200- 5 3.44516- 3 2.10000+ 1 2.90000+ 1 1.34694- 5 3.51254- 3 2.10000+ 1 3.00000+ 1 3.30022- 3 3.58235- 3 2.10000+ 1 3.20000+ 1 4.93859- 5 3.68231- 3 2.10000+ 1 3.30000+ 1 6.23155- 4 3.69270- 3 2.10000+ 1 3.50000+ 1 2.12505- 5 3.79931- 3 2.10000+ 1 3.60000+ 1 1.71218- 4 3.80060- 3 2.10000+ 1 4.10000+ 1 1.31699- 5 3.75254- 3 2.10000+ 1 4.30000+ 1 1.79583- 6 3.77246- 3 2.10000+ 1 4.40000+ 1 4.33400- 4 3.78371- 3 2.10000+ 1 5.80000+ 1 1.19719- 6 3.80211- 3 2.20000+ 1 2.20000+ 1 1.58877- 3 3.03214- 3 2.20000+ 1 2.40000+ 1 5.48149- 3 3.38779- 3 2.20000+ 1 2.50000+ 1 4.45324- 3 3.40165- 3 2.20000+ 1 2.70000+ 1 1.16137- 4 3.49638- 3 2.20000+ 1 2.90000+ 1 2.78359- 4 3.56376- 3 2.20000+ 1 3.00000+ 1 4.19618- 3 3.63357- 3 2.20000+ 1 3.20000+ 1 6.10898- 4 3.73353- 3 2.20000+ 1 3.30000+ 1 5.32491- 4 3.74392- 3 2.20000+ 1 3.50000+ 1 1.78390- 4 3.85053- 3 2.20000+ 1 3.60000+ 1 1.35293- 4 3.85182- 3 2.20000+ 1 4.10000+ 1 2.00545- 5 3.80376- 3 2.20000+ 1 4.30000+ 1 3.83130- 5 3.82368- 3 2.20000+ 1 4.40000+ 1 5.49552- 4 3.83493- 3 2.20000+ 1 5.80000+ 1 1.79591- 6 3.85333- 3 2.40000+ 1 2.40000+ 1 9.69782- 4 3.74344- 3 2.40000+ 1 2.50000+ 1 2.49437- 2 3.75730- 3 2.40000+ 1 2.70000+ 1 2.84633- 4 3.85203- 3 2.40000+ 1 2.90000+ 1 2.94517- 4 3.91941- 3 2.40000+ 1 3.00000+ 1 3.00419- 3 3.98922- 3 2.40000+ 1 3.20000+ 1 1.39184- 4 4.08918- 3 2.40000+ 1 3.30000+ 1 9.84138- 4 4.09957- 3 2.40000+ 1 3.50000+ 1 7.12356- 5 4.20618- 3 2.40000+ 1 3.60000+ 1 7.99167- 4 4.20747- 3 2.40000+ 1 4.10000+ 1 4.81888- 5 4.15941- 3 2.40000+ 1 4.30000+ 1 4.57940- 5 4.17933- 3 2.40000+ 1 4.40000+ 1 3.91501- 4 4.19058- 3 2.40000+ 1 5.80000+ 1 3.89113- 6 4.20898- 3 2.50000+ 1 2.50000+ 1 9.93257- 3 3.77116- 3 2.50000+ 1 2.70000+ 1 5.03125- 4 3.86589- 3 2.50000+ 1 2.90000+ 1 1.38688- 3 3.93327- 3 2.50000+ 1 3.00000+ 1 3.58598- 3 4.00308- 3 2.50000+ 1 3.20000+ 1 1.32533- 3 4.10304- 3 2.50000+ 1 3.30000+ 1 8.75460- 4 4.11343- 3 2.50000+ 1 3.50000+ 1 8.12903- 4 4.22004- 3 2.50000+ 1 3.60000+ 1 6.46804- 4 4.22133- 3 2.50000+ 1 4.10000+ 1 8.32075- 5 4.17327- 3 2.50000+ 1 4.30000+ 1 2.16702- 4 4.19319- 3 2.50000+ 1 4.40000+ 1 4.74109- 4 4.20444- 3 2.50000+ 1 5.80000+ 1 6.88409- 6 4.22284- 3 2.70000+ 1 2.70000+ 1 3.89117- 6 3.96062- 3 2.70000+ 1 2.90000+ 1 1.04759- 5 4.02800- 3 2.70000+ 1 3.00000+ 1 3.57381- 4 4.09781- 3 2.70000+ 1 3.20000+ 1 1.43658- 5 4.19777- 3 2.70000+ 1 3.30000+ 1 2.00542- 5 4.20816- 3 2.70000+ 1 3.50000+ 1 8.68015- 6 4.31477- 3 2.70000+ 1 3.60000+ 1 1.52645- 5 4.31606- 3 2.70000+ 1 4.10000+ 1 1.49662- 6 4.26800- 3 2.70000+ 1 4.30000+ 1 1.49662- 6 4.28792- 3 2.70000+ 1 4.40000+ 1 4.69925- 5 4.29917- 3 2.90000+ 1 3.00000+ 1 4.38780- 4 4.16519- 3 2.90000+ 1 3.20000+ 1 2.39452- 6 4.26515- 3 2.90000+ 1 3.30000+ 1 4.66923- 5 4.27554- 3 2.90000+ 1 3.50000+ 1 9.87722- 6 4.38215- 3 2.90000+ 1 3.60000+ 1 4.63940- 5 4.38344- 3 2.90000+ 1 4.10000+ 1 2.09512- 6 4.33538- 3 2.90000+ 1 4.40000+ 1 5.80666- 5 4.36655- 3 2.90000+ 1 5.80000+ 1 2.99306- 7 4.38495- 3 3.00000+ 1 3.00000+ 1 5.30689- 4 4.23500- 3 3.00000+ 1 3.20000+ 1 6.35748- 4 4.33496- 3 3.00000+ 1 3.30000+ 1 8.06945- 4 4.34535- 3 3.00000+ 1 3.50000+ 1 1.27203- 4 4.45196- 3 3.00000+ 1 3.60000+ 1 1.43077- 4 4.45325- 3 3.00000+ 1 4.10000+ 1 7.00394- 5 4.40519- 3 3.00000+ 1 4.30000+ 1 7.18353- 5 4.42511- 3 3.00000+ 1 4.40000+ 1 1.46073- 4 4.43636- 3 3.00000+ 1 5.80000+ 1 5.98617- 6 4.45476- 3 3.20000+ 1 3.20000+ 1 3.89109- 6 4.43492- 3 3.20000+ 1 3.30000+ 1 1.10448- 4 4.44531- 3 3.20000+ 1 3.50000+ 1 4.19024- 6 4.55192- 3 3.20000+ 1 3.60000+ 1 3.50197- 5 4.55321- 3 3.20000+ 1 4.10000+ 1 2.39451- 6 4.50515- 3 3.20000+ 1 4.30000+ 1 2.99304- 7 4.52507- 3 3.20000+ 1 4.40000+ 1 8.35077- 5 4.53632- 3 3.20000+ 1 5.80000+ 1 2.99304- 7 4.55472- 3 3.30000+ 1 3.30000+ 1 4.75903- 5 4.45570- 3 3.30000+ 1 3.50000+ 1 3.41209- 5 4.56231- 3 3.30000+ 1 3.60000+ 1 2.72370- 5 4.56360- 3 3.30000+ 1 4.10000+ 1 3.59166- 6 4.51554- 3 3.30000+ 1 4.30000+ 1 6.58469- 6 4.53546- 3 3.30000+ 1 4.40000+ 1 1.05656- 4 4.54671- 3 3.30000+ 1 5.80000+ 1 2.99302- 7 4.56511- 3 3.50000+ 1 3.50000+ 1 1.20904- 6 4.66892- 3 3.50000+ 1 3.60000+ 1 2.78091- 5 4.67021- 3 3.50000+ 1 4.10000+ 1 1.51139- 6 4.62215- 3 3.50000+ 1 4.30000+ 1 1.51139- 6 4.64207- 3 3.50000+ 1 4.40000+ 1 1.66250- 5 4.65332- 3 3.60000+ 1 3.60000+ 1 9.93992- 6 4.67150- 3 3.60000+ 1 4.10000+ 1 2.48501- 6 4.62344- 3 3.60000+ 1 4.30000+ 1 7.76561- 6 4.64336- 3 3.60000+ 1 4.40000+ 1 1.95698- 5 4.65461- 3 3.60000+ 1 5.80000+ 1 3.10616- 7 4.67301- 3 4.10000+ 1 4.30000+ 1 2.99306- 7 4.59530- 3 4.10000+ 1 4.40000+ 1 9.27857- 6 4.60655- 3 4.30000+ 1 4.40000+ 1 9.57798- 6 4.62647- 3 4.40000+ 1 4.40000+ 1 1.08405- 5 4.63772- 3 4.40000+ 1 5.80000+ 1 9.56512- 7 4.65612- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.52628- 3 2.67540- 3 1.90000+ 1 2.12599- 4 2.95660- 3 2.40000+ 1 5.50696- 2 3.63257- 3 2.90000+ 1 5.94886- 4 3.80854- 3 3.00000+ 1 4.98157- 5 3.87835- 3 3.50000+ 1 2.51608- 3 4.09531- 3 4.30000+ 1 1.01629- 4 4.06846- 3 4.40000+ 1 7.74145- 6 4.07971- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.76279- 2 8.58100- 5 1.40000+ 1 3.30000+ 1 6.90652- 3 9.62000- 5 1.40000+ 1 3.50000+ 1 2.02848- 2 2.02810- 4 1.40000+ 1 3.60000+ 1 2.13786- 3 2.04100- 4 1.40000+ 1 4.10000+ 1 9.34433- 4 1.56040- 4 1.40000+ 1 4.30000+ 1 4.47566- 4 1.75960- 4 1.40000+ 1 4.40000+ 1 8.78552- 4 1.87210- 4 1.40000+ 1 5.80000+ 1 7.79247- 5 2.05610- 4 1.60000+ 1 1.60000+ 1 2.75838- 6 9.13200- 4 1.60000+ 1 1.80000+ 1 6.99267- 4 1.08020- 3 1.60000+ 1 1.90000+ 1 6.97197- 4 1.36140- 3 1.60000+ 1 2.10000+ 1 2.72185- 2 1.63050- 3 1.60000+ 1 2.20000+ 1 3.22594- 3 1.68172- 3 1.60000+ 1 2.40000+ 1 1.62162- 2 2.03737- 3 1.60000+ 1 2.50000+ 1 3.57776- 3 2.05123- 3 1.60000+ 1 2.70000+ 1 1.37918- 5 2.14596- 3 1.60000+ 1 2.90000+ 1 1.45512- 4 2.21334- 3 1.60000+ 1 3.00000+ 1 1.08958- 4 2.28315- 3 1.60000+ 1 3.20000+ 1 3.52928- 3 2.38311- 3 1.60000+ 1 3.30000+ 1 4.51008- 4 2.39350- 3 1.60000+ 1 3.50000+ 1 4.97207- 4 2.50011- 3 1.60000+ 1 3.60000+ 1 8.75812- 5 2.50140- 3 1.60000+ 1 4.10000+ 1 3.44797- 6 2.45334- 3 1.60000+ 1 4.30000+ 1 2.27569- 5 2.47326- 3 1.60000+ 1 4.40000+ 1 1.44815- 5 2.48451- 3 1.80000+ 1 1.80000+ 1 2.95834- 4 1.24720- 3 1.80000+ 1 1.90000+ 1 3.07359- 3 1.52840- 3 1.80000+ 1 2.10000+ 1 2.47317- 2 1.79750- 3 1.80000+ 1 2.20000+ 1 1.34605- 3 1.84872- 3 1.80000+ 1 2.40000+ 1 1.24774- 2 2.20437- 3 1.80000+ 1 2.50000+ 1 6.96785- 3 2.21823- 3 1.80000+ 1 2.70000+ 1 9.24067- 5 2.31296- 3 1.80000+ 1 2.90000+ 1 1.26894- 4 2.38034- 3 1.80000+ 1 3.00000+ 1 5.35836- 4 2.45015- 3 1.80000+ 1 3.20000+ 1 3.16665- 3 2.55011- 3 1.80000+ 1 3.30000+ 1 2.12403- 4 2.56050- 3 1.80000+ 1 3.50000+ 1 3.70318- 4 2.66711- 3 1.80000+ 1 3.60000+ 1 2.03437- 4 2.66840- 3 1.80000+ 1 4.10000+ 1 1.65508- 5 2.62034- 3 1.80000+ 1 4.30000+ 1 1.99992- 5 2.64026- 3 1.80000+ 1 4.40000+ 1 7.24085- 5 2.65151- 3 1.80000+ 1 5.80000+ 1 1.37919- 6 2.66991- 3 1.90000+ 1 1.90000+ 1 1.06479- 3 1.80960- 3 1.90000+ 1 2.10000+ 1 4.67176- 2 2.07870- 3 1.90000+ 1 2.20000+ 1 1.77636- 3 2.12992- 3 1.90000+ 1 2.40000+ 1 1.79985- 3 2.48557- 3 1.90000+ 1 2.50000+ 1 1.55363- 3 2.49943- 3 1.90000+ 1 2.70000+ 1 1.33101- 4 2.59416- 3 1.90000+ 1 2.90000+ 1 4.48924- 4 2.66154- 3 1.90000+ 1 3.00000+ 1 3.54448- 4 2.73135- 3 1.90000+ 1 3.20000+ 1 6.06229- 3 2.83131- 3 1.90000+ 1 3.30000+ 1 2.62728- 4 2.84170- 3 1.90000+ 1 3.50000+ 1 4.20670- 5 2.94831- 3 1.90000+ 1 3.60000+ 1 3.31011- 5 2.94960- 3 1.90000+ 1 4.10000+ 1 2.41360- 5 2.90154- 3 1.90000+ 1 4.30000+ 1 6.68897- 5 2.92146- 3 1.90000+ 1 4.40000+ 1 4.75815- 5 2.93271- 3 1.90000+ 1 5.80000+ 1 2.06876- 6 2.95111- 3 2.10000+ 1 2.10000+ 1 4.35424- 2 2.34780- 3 2.10000+ 1 2.20000+ 1 8.47551- 2 2.39902- 3 2.10000+ 1 2.40000+ 1 5.21612- 2 2.75467- 3 2.10000+ 1 2.50000+ 1 6.13642- 2 2.76853- 3 2.10000+ 1 2.70000+ 1 6.31078- 3 2.86326- 3 2.10000+ 1 2.90000+ 1 5.97907- 3 2.93064- 3 2.10000+ 1 3.00000+ 1 1.09187- 2 3.00045- 3 2.10000+ 1 3.20000+ 1 1.41243- 2 3.10041- 3 2.10000+ 1 3.30000+ 1 1.60750- 2 3.11080- 3 2.10000+ 1 3.50000+ 1 2.21440- 3 3.21741- 3 2.10000+ 1 3.60000+ 1 2.51844- 3 3.21870- 3 2.10000+ 1 4.10000+ 1 1.22066- 3 3.17064- 3 2.10000+ 1 4.30000+ 1 9.79896- 4 3.19056- 3 2.10000+ 1 4.40000+ 1 1.56053- 3 3.20181- 3 2.10000+ 1 5.80000+ 1 1.03445- 4 3.22021- 3 2.20000+ 1 2.20000+ 1 1.32755- 3 2.45024- 3 2.20000+ 1 2.40000+ 1 6.20825- 2 2.80589- 3 2.20000+ 1 2.50000+ 1 2.88890- 3 2.81975- 3 2.20000+ 1 2.70000+ 1 3.57901- 4 2.91448- 3 2.20000+ 1 2.90000+ 1 1.76537- 4 2.98186- 3 2.20000+ 1 3.00000+ 1 3.28242- 4 3.05167- 3 2.20000+ 1 3.20000+ 1 1.10194- 2 3.15163- 3 2.20000+ 1 3.30000+ 1 4.06866- 4 3.16202- 3 2.20000+ 1 3.50000+ 1 2.41019- 3 3.26863- 3 2.20000+ 1 3.60000+ 1 9.79252- 5 3.26992- 3 2.20000+ 1 4.10000+ 1 6.06852- 5 3.22186- 3 2.20000+ 1 4.30000+ 1 2.62048- 5 3.24178- 3 2.20000+ 1 4.40000+ 1 4.48258- 5 3.25303- 3 2.20000+ 1 5.80000+ 1 4.82714- 6 3.27143- 3 2.40000+ 1 2.40000+ 1 6.16582- 2 3.16154- 3 2.40000+ 1 2.50000+ 1 1.76078- 1 3.17540- 3 2.40000+ 1 2.70000+ 1 4.03699- 3 3.27013- 3 2.40000+ 1 2.90000+ 1 2.35225- 3 3.33751- 3 2.40000+ 1 3.00000+ 1 4.31695- 4 3.40732- 3 2.40000+ 1 3.20000+ 1 7.46848- 3 3.50728- 3 2.40000+ 1 3.30000+ 1 1.11517- 2 3.51767- 3 2.40000+ 1 3.50000+ 1 4.60796- 3 3.62428- 3 2.40000+ 1 3.60000+ 1 6.81689- 3 3.62557- 3 2.40000+ 1 4.10000+ 1 7.88907- 4 3.57751- 3 2.40000+ 1 4.30000+ 1 3.77217- 4 3.59743- 3 2.40000+ 1 4.40000+ 1 6.27549- 5 3.60868- 3 2.40000+ 1 5.80000+ 1 6.75807- 5 3.62708- 3 2.50000+ 1 2.50000+ 1 3.63544- 3 3.18926- 3 2.50000+ 1 2.70000+ 1 6.14438- 4 3.28399- 3 2.50000+ 1 2.90000+ 1 6.64089- 4 3.35137- 3 2.50000+ 1 3.00000+ 1 3.26880- 4 3.42118- 3 2.50000+ 1 3.20000+ 1 7.22707- 3 3.52114- 3 2.50000+ 1 3.30000+ 1 4.82014- 4 3.53153- 3 2.50000+ 1 3.50000+ 1 5.80581- 3 3.63814- 3 2.50000+ 1 3.60000+ 1 2.57910- 4 3.63943- 3 2.50000+ 1 4.10000+ 1 1.10341- 4 3.59137- 3 2.50000+ 1 4.30000+ 1 9.24049- 5 3.61129- 3 2.50000+ 1 4.40000+ 1 4.55133- 5 3.62254- 3 2.50000+ 1 5.80000+ 1 8.96473- 6 3.64094- 3 2.70000+ 1 2.70000+ 1 1.37919- 6 3.37872- 3 2.70000+ 1 2.90000+ 1 2.27571- 5 3.44610- 3 2.70000+ 1 3.00000+ 1 2.13787- 5 3.51591- 3 2.70000+ 1 3.20000+ 1 8.23409- 4 3.61587- 3 2.70000+ 1 3.30000+ 1 5.58586- 5 3.62626- 3 2.70000+ 1 3.50000+ 1 1.32406- 4 3.73287- 3 2.70000+ 1 3.60000+ 1 1.93086- 5 3.73416- 3 2.70000+ 1 4.10000+ 1 6.89619- 7 3.68610- 3 2.70000+ 1 4.30000+ 1 3.44800- 6 3.70602- 3 2.70000+ 1 4.40000+ 1 2.75840- 6 3.71727- 3 2.90000+ 1 2.90000+ 1 1.44829- 5 3.51348- 3 2.90000+ 1 3.00000+ 1 8.48285- 5 3.58329- 3 2.90000+ 1 3.20000+ 1 7.69674- 4 3.68325- 3 2.90000+ 1 3.30000+ 1 3.24137- 5 3.69364- 3 2.90000+ 1 3.50000+ 1 7.24148- 5 3.80025- 3 2.90000+ 1 3.60000+ 1 2.06898- 5 3.80154- 3 2.90000+ 1 4.10000+ 1 4.13786- 6 3.75348- 3 2.90000+ 1 4.30000+ 1 4.82752- 6 3.77340- 3 2.90000+ 1 4.40000+ 1 1.17239- 5 3.78465- 3 3.00000+ 1 3.00000+ 1 3.03439- 5 3.65310- 3 3.00000+ 1 3.20000+ 1 1.42468- 3 3.75306- 3 3.00000+ 1 3.30000+ 1 5.17207- 5 3.76345- 3 3.00000+ 1 3.50000+ 1 1.17230- 5 3.87006- 3 3.00000+ 1 3.60000+ 1 6.89622- 6 3.87135- 3 3.00000+ 1 4.10000+ 1 4.13751- 6 3.82329- 3 3.00000+ 1 4.30000+ 1 1.24137- 5 3.84321- 3 3.00000+ 1 4.40000+ 1 8.27543- 6 3.85446- 3 3.20000+ 1 3.20000+ 1 1.09435- 3 3.85302- 3 3.20000+ 1 3.30000+ 1 2.10261- 3 3.86341- 3 3.20000+ 1 3.50000+ 1 3.16531- 4 3.97002- 3 3.20000+ 1 3.60000+ 1 3.00667- 4 3.97131- 3 3.20000+ 1 4.10000+ 1 1.59305- 4 3.92325- 3 3.20000+ 1 4.30000+ 1 1.26195- 4 3.94317- 3 3.20000+ 1 4.40000+ 1 2.04120- 4 3.95442- 3 3.20000+ 1 5.80000+ 1 1.37917- 5 3.97282- 3 3.30000+ 1 3.30000+ 1 2.91954- 5 3.87380- 3 3.30000+ 1 3.50000+ 1 4.11980- 4 3.98041- 3 3.30000+ 1 3.60000+ 1 1.55709- 5 3.98170- 3 3.30000+ 1 4.10000+ 1 9.08285- 6 3.93364- 3 3.30000+ 1 4.30000+ 1 4.54133- 6 3.95356- 3 3.30000+ 1 4.40000+ 1 6.48794- 6 3.96481- 3 3.30000+ 1 5.80000+ 1 6.48794- 7 3.98321- 3 3.50000+ 1 3.50000+ 1 6.54417- 5 4.08702- 3 3.50000+ 1 3.60000+ 1 2.17918- 4 4.08831- 3 3.50000+ 1 4.10000+ 1 2.48669- 5 4.04025- 3 3.50000+ 1 4.30000+ 1 1.11245- 5 4.06017- 3 3.50000+ 1 4.40000+ 1 1.96319- 6 4.07142- 3 3.50000+ 1 5.80000+ 1 1.96319- 6 4.08982- 3 3.60000+ 1 3.60000+ 1 4.15602- 6 4.08960- 3 3.60000+ 1 4.10000+ 1 3.46344- 6 4.04154- 3 3.60000+ 1 4.30000+ 1 2.77076- 6 4.06146- 3 3.60000+ 1 4.40000+ 1 6.92708- 7 4.07271- 3 4.10000+ 1 4.30000+ 1 7.89795- 7 4.01340- 3 4.10000+ 1 4.40000+ 1 7.89795- 7 4.02465- 3 4.30000+ 1 4.30000+ 1 8.11463- 7 4.03332- 3 4.30000+ 1 4.40000+ 1 2.43432- 6 4.04457- 3 4.40000+ 1 4.40000+ 1 1.33479- 6 4.05582- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.63299- 3 2.74550- 3 2.40000+ 1 2.62508- 3 3.42147- 3 2.50000+ 1 5.14217- 2 3.43533- 3 3.00000+ 1 3.83827- 4 3.66725- 3 3.50000+ 1 1.17469- 4 3.88421- 3 3.60000+ 1 2.26418- 3 3.88550- 3 4.40000+ 1 5.91086- 5 3.86861- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 2.67149- 5 7.02100- 4 1.60000+ 1 1.80000+ 1 2.90359- 4 8.69100- 4 1.60000+ 1 1.90000+ 1 1.44757- 3 1.15030- 3 1.60000+ 1 2.10000+ 1 3.10537- 3 1.41940- 3 1.60000+ 1 2.20000+ 1 3.04901- 2 1.47062- 3 1.60000+ 1 2.40000+ 1 4.03626- 3 1.82627- 3 1.60000+ 1 2.50000+ 1 1.70522- 2 1.84013- 3 1.60000+ 1 2.70000+ 1 1.75760- 5 1.93486- 3 1.60000+ 1 2.90000+ 1 2.46066- 5 2.00224- 3 1.60000+ 1 3.00000+ 1 2.32001- 4 2.07205- 3 1.60000+ 1 3.20000+ 1 3.95097- 4 2.17201- 3 1.60000+ 1 3.30000+ 1 3.92840- 3 2.18240- 3 1.60000+ 1 3.50000+ 1 9.63210- 5 2.28901- 3 1.60000+ 1 3.60000+ 1 4.58374- 4 2.29030- 3 1.60000+ 1 4.10000+ 1 4.21815- 6 2.24224- 3 1.60000+ 1 4.30000+ 1 3.51510- 6 2.26216- 3 1.60000+ 1 4.40000+ 1 3.09345- 5 2.27341- 3 1.80000+ 1 1.80000+ 1 1.75760- 5 1.03610- 3 1.80000+ 1 1.90000+ 1 4.57827- 3 1.31730- 3 1.80000+ 1 2.10000+ 1 2.25679- 4 1.58640- 3 1.80000+ 1 2.20000+ 1 3.12963- 2 1.63762- 3 1.80000+ 1 2.40000+ 1 2.35659- 3 1.99327- 3 1.80000+ 1 2.50000+ 1 1.07492- 2 2.00713- 3 1.80000+ 1 2.70000+ 1 3.51510- 5 2.10186- 3 1.80000+ 1 2.90000+ 1 4.21815- 6 2.16924- 3 1.80000+ 1 3.00000+ 1 7.34668- 4 2.23905- 3 1.80000+ 1 3.20000+ 1 5.62437- 6 2.33901- 3 1.80000+ 1 3.30000+ 1 4.01916- 3 2.34940- 3 1.80000+ 1 3.50000+ 1 6.67881- 5 2.45601- 3 1.80000+ 1 3.60000+ 1 2.84017- 4 2.45730- 3 1.80000+ 1 4.10000+ 1 6.32753- 6 2.40924- 3 1.80000+ 1 4.30000+ 1 7.03049- 7 2.42916- 3 1.80000+ 1 4.40000+ 1 9.77235- 5 2.44041- 3 1.80000+ 1 5.80000+ 1 7.03049- 7 2.45881- 3 1.90000+ 1 1.90000+ 1 2.71863- 3 1.59850- 3 1.90000+ 1 2.10000+ 1 2.78264- 3 1.86760- 3 1.90000+ 1 2.20000+ 1 4.46261- 2 1.91882- 3 1.90000+ 1 2.40000+ 1 1.85393- 3 2.27447- 3 1.90000+ 1 2.50000+ 1 2.81782- 3 2.28833- 3 1.90000+ 1 2.70000+ 1 2.92478- 4 2.38306- 3 1.90000+ 1 2.90000+ 1 6.05312- 4 2.45044- 3 1.90000+ 1 3.00000+ 1 8.92870- 4 2.52025- 3 1.90000+ 1 3.20000+ 1 4.53468- 4 2.62021- 3 1.90000+ 1 3.30000+ 1 5.70294- 3 2.63060- 3 1.90000+ 1 3.50000+ 1 4.35903- 5 2.73721- 3 1.90000+ 1 3.60000+ 1 6.25720- 5 2.73850- 3 1.90000+ 1 4.10000+ 1 5.48365- 5 2.69044- 3 1.90000+ 1 4.30000+ 1 8.92870- 5 2.71036- 3 1.90000+ 1 4.40000+ 1 1.20216- 4 2.72161- 3 1.90000+ 1 5.80000+ 1 4.92115- 6 2.74001- 3 2.10000+ 1 2.10000+ 1 6.13776- 4 2.13670- 3 2.10000+ 1 2.20000+ 1 6.38925- 2 2.18792- 3 2.10000+ 1 2.40000+ 1 2.69000- 3 2.54357- 3 2.10000+ 1 2.50000+ 1 3.72580- 2 2.55743- 3 2.10000+ 1 2.70000+ 1 3.18484- 4 2.65216- 3 2.10000+ 1 2.90000+ 1 6.53855- 5 2.71954- 3 2.10000+ 1 3.00000+ 1 4.61904- 4 2.78935- 3 2.10000+ 1 3.20000+ 1 1.80699- 4 2.88931- 3 2.10000+ 1 3.30000+ 1 8.26940- 3 2.89970- 3 2.10000+ 1 3.50000+ 1 1.01244- 4 3.00631- 3 2.10000+ 1 3.60000+ 1 1.38849- 3 3.00760- 3 2.10000+ 1 4.10000+ 1 5.27303- 5 2.95954- 3 2.10000+ 1 4.30000+ 1 9.84347- 6 2.97946- 3 2.10000+ 1 4.40000+ 1 6.25744- 5 2.99071- 3 2.10000+ 1 5.80000+ 1 4.21835- 6 3.00911- 3 2.20000+ 1 2.20000+ 1 7.02426- 2 2.23914- 3 2.20000+ 1 2.40000+ 1 5.87754- 2 2.59479- 3 2.20000+ 1 2.50000+ 1 9.48371- 2 2.60865- 3 2.20000+ 1 2.70000+ 1 6.67833- 3 2.70338- 3 2.20000+ 1 2.90000+ 1 7.19165- 3 2.77076- 3 2.20000+ 1 3.00000+ 1 1.05318- 2 2.84057- 3 2.20000+ 1 3.20000+ 1 1.20815- 2 2.94053- 3 2.20000+ 1 3.30000+ 1 2.24166- 2 2.95092- 3 2.20000+ 1 3.50000+ 1 2.48251- 3 3.05753- 3 2.20000+ 1 3.60000+ 1 3.72267- 3 3.05882- 3 2.20000+ 1 4.10000+ 1 1.28380- 3 3.01076- 3 2.20000+ 1 4.30000+ 1 1.16640- 3 3.03068- 3 2.20000+ 1 4.40000+ 1 1.50875- 3 3.04193- 3 2.20000+ 1 5.80000+ 1 1.08976- 4 3.06033- 3 2.40000+ 1 2.40000+ 1 5.25898- 3 2.95044- 3 2.40000+ 1 2.50000+ 1 1.66737- 1 2.96430- 3 2.40000+ 1 2.70000+ 1 7.77576- 4 3.05903- 3 2.40000+ 1 2.90000+ 1 4.96355- 4 3.12641- 3 2.40000+ 1 3.00000+ 1 3.69111- 4 3.19622- 3 2.40000+ 1 3.20000+ 1 4.88612- 4 3.29618- 3 2.40000+ 1 3.30000+ 1 7.14455- 3 3.30657- 3 2.40000+ 1 3.50000+ 1 3.91596- 4 3.41318- 3 2.40000+ 1 3.60000+ 1 5.28840- 3 3.41447- 3 2.40000+ 1 4.10000+ 1 1.43428- 4 3.36641- 3 2.40000+ 1 4.30000+ 1 7.94453- 5 3.38633- 3 2.40000+ 1 4.40000+ 1 5.13234- 5 3.39758- 3 2.40000+ 1 5.80000+ 1 1.19522- 5 3.41598- 3 2.50000+ 1 2.50000+ 1 1.13614- 1 2.97816- 3 2.50000+ 1 2.70000+ 1 4.19924- 3 3.07289- 3 2.50000+ 1 2.90000+ 1 2.52247- 3 3.14027- 3 2.50000+ 1 3.00000+ 1 6.26408- 4 3.21008- 3 2.50000+ 1 3.20000+ 1 6.50433- 3 3.31004- 3 2.50000+ 1 3.30000+ 1 1.40333- 2 3.32043- 3 2.50000+ 1 3.50000+ 1 6.54876- 3 3.42704- 3 2.50000+ 1 3.60000+ 1 7.96759- 3 3.42833- 3 2.50000+ 1 4.10000+ 1 8.19751- 4 3.38027- 3 2.50000+ 1 4.30000+ 1 4.12688- 4 3.40019- 3 2.50000+ 1 4.40000+ 1 8.99898- 5 3.41144- 3 2.50000+ 1 5.80000+ 1 7.03046- 5 3.42984- 3 2.70000+ 1 2.90000+ 1 7.03076- 7 3.23500- 3 2.70000+ 1 3.00000+ 1 4.92130- 5 3.30481- 3 2.70000+ 1 3.20000+ 1 4.71046- 5 3.40477- 3 2.70000+ 1 3.30000+ 1 8.66188- 4 3.41516- 3 2.70000+ 1 3.50000+ 1 2.39038- 5 3.52177- 3 2.70000+ 1 3.60000+ 1 1.26552- 4 3.52306- 3 2.70000+ 1 4.40000+ 1 6.32777- 6 3.50617- 3 2.90000+ 1 3.00000+ 1 1.04761- 4 3.37219- 3 2.90000+ 1 3.20000+ 1 4.21828- 6 3.47215- 3 2.90000+ 1 3.30000+ 1 9.37881- 4 3.48254- 3 2.90000+ 1 3.50000+ 1 1.40616- 5 3.58915- 3 2.90000+ 1 3.60000+ 1 7.10088- 5 3.59044- 3 2.90000+ 1 4.40000+ 1 1.40616- 5 3.57355- 3 3.00000+ 1 3.00000+ 1 7.31186- 5 3.44200- 3 3.00000+ 1 3.20000+ 1 8.08512- 5 3.54196- 3 3.00000+ 1 3.30000+ 1 1.34991- 3 3.55235- 3 3.00000+ 1 3.50000+ 1 9.84338- 6 3.65896- 3 3.00000+ 1 3.60000+ 1 1.61701- 5 3.66025- 3 3.00000+ 1 4.10000+ 1 9.13990- 6 3.61219- 3 3.00000+ 1 4.30000+ 1 1.54683- 5 3.63211- 3 3.00000+ 1 4.40000+ 1 1.96860- 5 3.64336- 3 3.00000+ 1 5.80000+ 1 7.03075- 7 3.66176- 3 3.20000+ 1 3.20000+ 1 1.19524- 5 3.64192- 3 3.20000+ 1 3.30000+ 1 1.57278- 3 3.65231- 3 3.20000+ 1 3.50000+ 1 1.89823- 5 3.75892- 3 3.20000+ 1 3.60000+ 1 2.47488- 4 3.76021- 3 3.20000+ 1 4.10000+ 1 7.73376- 6 3.71215- 3 3.20000+ 1 4.30000+ 1 7.03077- 7 3.73207- 3 3.20000+ 1 4.40000+ 1 1.12486- 5 3.74332- 3 3.20000+ 1 5.80000+ 1 7.03077- 7 3.76172- 3 3.30000+ 1 3.30000+ 1 1.71469- 3 3.66270- 3 3.30000+ 1 3.50000+ 1 3.04419- 4 3.76931- 3 3.30000+ 1 3.60000+ 1 5.48371- 4 3.77060- 3 3.30000+ 1 4.10000+ 1 1.66628- 4 3.72254- 3 3.30000+ 1 4.30000+ 1 1.52562- 4 3.74246- 3 3.30000+ 1 4.40000+ 1 1.93348- 4 3.75371- 3 3.30000+ 1 5.80000+ 1 1.40614- 5 3.77211- 3 3.50000+ 1 3.50000+ 1 5.90165- 6 3.87592- 3 3.50000+ 1 3.60000+ 1 2.22787- 4 3.87721- 3 3.50000+ 1 4.10000+ 1 5.16372- 6 3.82915- 3 3.50000+ 1 4.30000+ 1 2.21305- 6 3.84907- 3 3.50000+ 1 4.40000+ 1 1.47544- 6 3.86032- 3 3.50000+ 1 5.80000+ 1 7.37709- 7 3.87872- 3 3.60000+ 1 3.60000+ 1 1.19304- 4 3.87850- 3 3.60000+ 1 4.10000+ 1 2.51175- 5 3.83044- 3 3.60000+ 1 4.30000+ 1 1.18613- 5 3.85036- 3 3.60000+ 1 4.40000+ 1 2.09309- 6 3.86161- 3 3.60000+ 1 5.80000+ 1 2.09309- 6 3.88001- 3 4.10000+ 1 4.40000+ 1 1.56309- 6 3.81355- 3 4.30000+ 1 4.40000+ 1 2.43048- 6 3.83347- 3 4.40000+ 1 4.40000+ 1 1.72099- 6 3.84472- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.34890- 5 1.67000- 4 1.90000+ 1 5.65462- 4 4.48200- 4 2.90000+ 1 3.76724- 4 1.30014- 3 3.00000+ 1 6.59170- 5 1.36995- 3 4.30000+ 1 7.48662- 5 1.56006- 3 4.40000+ 1 1.57378- 5 1.57131- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.20849- 2 4.17100- 5 1.80000+ 1 3.30000+ 1 9.56488- 2 5.21000- 5 1.80000+ 1 3.50000+ 1 1.54016- 2 1.58710- 4 1.80000+ 1 3.60000+ 1 1.63622- 2 1.60000- 4 1.80000+ 1 4.10000+ 1 8.85348- 3 1.11940- 4 1.80000+ 1 4.30000+ 1 7.13322- 3 1.31860- 4 1.80000+ 1 4.40000+ 1 9.16800- 3 1.43110- 4 1.80000+ 1 5.80000+ 1 7.26807- 4 1.61510- 4 1.90000+ 1 2.50000+ 1 1.64203- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.74824- 2 8.57600- 5 1.90000+ 1 2.90000+ 1 4.58844- 2 1.53140- 4 1.90000+ 1 3.00000+ 1 3.78935- 2 2.22950- 4 1.90000+ 1 3.20000+ 1 3.31786- 2 3.22910- 4 1.90000+ 1 3.30000+ 1 4.11601- 2 3.33300- 4 1.90000+ 1 3.50000+ 1 1.07626- 3 4.39910- 4 1.90000+ 1 3.60000+ 1 1.81946- 3 4.41200- 4 1.90000+ 1 4.10000+ 1 7.15021- 3 3.93140- 4 1.90000+ 1 4.30000+ 1 7.12963- 3 4.13060- 4 1.90000+ 1 4.40000+ 1 5.48308- 3 4.24310- 4 1.90000+ 1 5.80000+ 1 6.00838- 4 4.42710- 4 2.10000+ 1 2.40000+ 1 3.45835- 3 2.46270- 4 2.10000+ 1 2.50000+ 1 3.96421- 3 2.60130- 4 2.10000+ 1 2.70000+ 1 1.61603- 2 3.54860- 4 2.10000+ 1 2.90000+ 1 5.87005- 3 4.22240- 4 2.10000+ 1 3.00000+ 1 4.87148- 3 4.92050- 4 2.10000+ 1 3.20000+ 1 1.83002- 3 5.92010- 4 2.10000+ 1 3.30000+ 1 3.33120- 3 6.02400- 4 2.10000+ 1 3.50000+ 1 8.55876- 4 7.09010- 4 2.10000+ 1 3.60000+ 1 8.34857- 4 7.10300- 4 2.10000+ 1 4.10000+ 1 2.24642- 3 6.62240- 4 2.10000+ 1 4.30000+ 1 8.88464- 4 6.82160- 4 2.10000+ 1 4.40000+ 1 5.73076- 4 6.93410- 4 2.10000+ 1 5.80000+ 1 1.82442- 4 7.11810- 4 2.20000+ 1 2.40000+ 1 4.62374- 3 2.97490- 4 2.20000+ 1 2.50000+ 1 5.87640- 3 3.11350- 4 2.20000+ 1 2.70000+ 1 2.24228- 2 4.06080- 4 2.20000+ 1 2.90000+ 1 8.74467- 3 4.73460- 4 2.20000+ 1 3.00000+ 1 6.03472- 3 5.43270- 4 2.20000+ 1 3.20000+ 1 2.60345- 3 6.43230- 4 2.20000+ 1 3.30000+ 1 3.34585- 3 6.53620- 4 2.20000+ 1 3.50000+ 1 9.21398- 4 7.60230- 4 2.20000+ 1 3.60000+ 1 1.24422- 3 7.61520- 4 2.20000+ 1 4.10000+ 1 3.09553- 3 7.13460- 4 2.20000+ 1 4.30000+ 1 1.18302- 3 7.33380- 4 2.20000+ 1 4.40000+ 1 7.91832- 4 7.44630- 4 2.20000+ 1 5.80000+ 1 2.51045- 4 7.63030- 4 2.40000+ 1 2.40000+ 1 8.59564- 3 6.53140- 4 2.40000+ 1 2.50000+ 1 1.60311- 2 6.67000- 4 2.40000+ 1 2.70000+ 1 1.99317- 2 7.61730- 4 2.40000+ 1 2.90000+ 1 2.79827- 3 8.29110- 4 2.40000+ 1 3.00000+ 1 1.28958- 2 8.98920- 4 2.40000+ 1 3.20000+ 1 1.20623- 3 9.98880- 4 2.40000+ 1 3.30000+ 1 7.67691- 4 1.00927- 3 2.40000+ 1 3.50000+ 1 3.51271- 4 1.11588- 3 2.40000+ 1 3.60000+ 1 3.24314- 4 1.11717- 3 2.40000+ 1 4.10000+ 1 2.31897- 3 1.06911- 3 2.40000+ 1 4.30000+ 1 3.37257- 4 1.08903- 3 2.40000+ 1 4.40000+ 1 1.39835- 3 1.10028- 3 2.40000+ 1 5.80000+ 1 1.83107- 4 1.11868- 3 2.50000+ 1 2.50000+ 1 1.41355- 2 6.80860- 4 2.50000+ 1 2.70000+ 1 2.57222- 2 7.75590- 4 2.50000+ 1 2.90000+ 1 1.26133- 3 8.42970- 4 2.50000+ 1 3.00000+ 1 1.33212- 2 9.12780- 4 2.50000+ 1 3.20000+ 1 6.86371- 4 1.01274- 3 2.50000+ 1 3.30000+ 1 1.70315- 3 1.02313- 3 2.50000+ 1 3.50000+ 1 3.45933- 4 1.12974- 3 2.50000+ 1 3.60000+ 1 5.59584- 4 1.13103- 3 2.50000+ 1 4.10000+ 1 2.97875- 3 1.08297- 3 2.50000+ 1 4.30000+ 1 1.47482- 4 1.10289- 3 2.50000+ 1 4.40000+ 1 1.38118- 3 1.11414- 3 2.50000+ 1 5.80000+ 1 2.35029- 4 1.13254- 3 2.70000+ 1 2.70000+ 1 1.76615- 2 8.70320- 4 2.70000+ 1 2.90000+ 1 2.65555- 2 9.37700- 4 2.70000+ 1 3.00000+ 1 4.10384- 2 1.00751- 3 2.70000+ 1 3.20000+ 1 4.20376- 2 1.10747- 3 2.70000+ 1 3.30000+ 1 5.77993- 2 1.11786- 3 2.70000+ 1 3.50000+ 1 1.28706- 2 1.22447- 3 2.70000+ 1 3.60000+ 1 1.57589- 2 1.22576- 3 2.70000+ 1 4.10000+ 1 5.61324- 3 1.17770- 3 2.70000+ 1 4.30000+ 1 4.35264- 3 1.19762- 3 2.70000+ 1 4.40000+ 1 5.83482- 3 1.20887- 3 2.70000+ 1 5.80000+ 1 4.66416- 4 1.22727- 3 2.90000+ 1 2.90000+ 1 2.03128- 3 1.00508- 3 2.90000+ 1 3.00000+ 1 9.46182- 3 1.07489- 3 2.90000+ 1 3.20000+ 1 3.75469- 3 1.17485- 3 2.90000+ 1 3.30000+ 1 2.54093- 3 1.18524- 3 2.90000+ 1 3.50000+ 1 7.04102- 4 1.29185- 3 2.90000+ 1 3.60000+ 1 4.08788- 4 1.29314- 3 2.90000+ 1 4.10000+ 1 3.15145- 3 1.24508- 3 2.90000+ 1 4.30000+ 1 5.33036- 4 1.26500- 3 2.90000+ 1 4.40000+ 1 9.99462- 4 1.27625- 3 2.90000+ 1 5.80000+ 1 2.50319- 4 1.29465- 3 3.00000+ 1 3.00000+ 1 4.88572- 3 1.14470- 3 3.00000+ 1 3.20000+ 1 2.13219- 3 1.24466- 3 3.00000+ 1 3.30000+ 1 5.81851- 3 1.25505- 3 3.00000+ 1 3.50000+ 1 3.54225- 3 1.36166- 3 3.00000+ 1 3.60000+ 1 4.28958- 3 1.36295- 3 3.00000+ 1 4.10000+ 1 5.08383- 3 1.31489- 3 3.00000+ 1 4.30000+ 1 1.37586- 3 1.33481- 3 3.00000+ 1 4.40000+ 1 1.21195- 3 1.34606- 3 3.00000+ 1 5.80000+ 1 4.06990- 4 1.36446- 3 3.20000+ 1 3.20000+ 1 1.09131- 3 1.34462- 3 3.20000+ 1 3.30000+ 1 3.53528- 3 1.35501- 3 3.20000+ 1 3.50000+ 1 3.20222- 4 1.46162- 3 3.20000+ 1 3.60000+ 1 2.26356- 4 1.46291- 3 3.20000+ 1 4.10000+ 1 5.16581- 3 1.41485- 3 3.20000+ 1 4.30000+ 1 4.84009- 4 1.43477- 3 3.20000+ 1 4.40000+ 1 1.89555- 4 1.44602- 3 3.20000+ 1 5.80000+ 1 4.10398- 4 1.46442- 3 3.30000+ 1 3.30000+ 1 2.21607- 3 1.36540- 3 3.30000+ 1 3.50000+ 1 2.52334- 4 1.47201- 3 3.30000+ 1 3.60000+ 1 4.58942- 4 1.47330- 3 3.30000+ 1 4.10000+ 1 7.04157- 3 1.42524- 3 3.30000+ 1 4.30000+ 1 2.81583- 4 1.44516- 3 3.30000+ 1 4.40000+ 1 6.50932- 4 1.45641- 3 3.30000+ 1 5.80000+ 1 5.59508- 4 1.47481- 3 3.50000+ 1 3.50000+ 1 2.36398- 5 1.57862- 3 3.50000+ 1 3.60000+ 1 4.90973- 5 1.57991- 3 3.50000+ 1 4.10000+ 1 1.49299- 3 1.53185- 3 3.50000+ 1 4.30000+ 1 8.18312- 5 1.55177- 3 3.50000+ 1 4.40000+ 1 4.07328- 4 1.56302- 3 3.50000+ 1 5.80000+ 1 1.18199- 4 1.58142- 3 3.60000+ 1 3.60000+ 1 3.87513- 5 1.58120- 3 3.60000+ 1 4.10000+ 1 1.85088- 3 1.53314- 3 3.60000+ 1 4.30000+ 1 4.42878- 5 1.55306- 3 3.60000+ 1 4.40000+ 1 4.92695- 4 1.56431- 3 3.60000+ 1 5.80000+ 1 1.45774- 4 1.58271- 3 4.10000+ 1 4.10000+ 1 4.40440- 4 1.48508- 3 4.10000+ 1 4.30000+ 1 5.56357- 4 1.50500- 3 4.10000+ 1 4.40000+ 1 7.61117- 4 1.51625- 3 4.10000+ 1 5.80000+ 1 7.14770- 5 1.53465- 3 4.30000+ 1 4.30000+ 1 3.63624- 5 1.52492- 3 4.30000+ 1 4.40000+ 1 1.51188- 4 1.53617- 3 4.30000+ 1 5.80000+ 1 4.40185- 5 1.55457- 3 4.40000+ 1 4.40000+ 1 8.18187- 5 1.54742- 3 4.40000+ 1 5.80000+ 1 6.34106- 5 1.56582- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.08047- 3 5.50300- 4 2.70000+ 1 2.50585- 4 1.06576- 3 3.20000+ 1 6.61145- 5 1.30291- 3 4.10000+ 1 5.11736- 5 1.37314- 3 5.80000+ 1 4.59737- 6 1.42271- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.55711- 2 5.59500- 5 1.90000+ 1 3.20000+ 1 9.88980- 3 1.55910- 4 1.90000+ 1 3.30000+ 1 1.42567- 2 1.66300- 4 1.90000+ 1 3.50000+ 1 1.53678- 3 2.72910- 4 1.90000+ 1 3.60000+ 1 2.24430- 3 2.74200- 4 1.90000+ 1 4.10000+ 1 1.90394- 3 2.26140- 4 1.90000+ 1 4.30000+ 1 2.15958- 3 2.46060- 4 1.90000+ 1 4.40000+ 1 1.76449- 3 2.57310- 4 1.90000+ 1 5.80000+ 1 1.55455- 4 2.75710- 4 2.10000+ 1 2.40000+ 1 7.77161- 2 7.92700- 5 2.10000+ 1 2.50000+ 1 2.03280- 1 9.31300- 5 2.10000+ 1 2.70000+ 1 3.12977- 2 1.87860- 4 2.10000+ 1 2.90000+ 1 2.58190- 2 2.55240- 4 2.10000+ 1 3.00000+ 1 2.97221- 2 3.25050- 4 2.10000+ 1 3.20000+ 1 1.64533- 2 4.25010- 4 2.10000+ 1 3.30000+ 1 2.36138- 2 4.35400- 4 2.10000+ 1 3.50000+ 1 1.54864- 3 5.42010- 4 2.10000+ 1 3.60000+ 1 2.87595- 3 5.43300- 4 2.10000+ 1 4.10000+ 1 6.02934- 3 4.95240- 4 2.10000+ 1 4.30000+ 1 3.94252- 3 5.15160- 4 2.10000+ 1 4.40000+ 1 4.20159- 3 5.26410- 4 2.10000+ 1 5.80000+ 1 5.12019- 4 5.44810- 4 2.20000+ 1 2.40000+ 1 4.16754- 2 1.30490- 4 2.20000+ 1 2.50000+ 1 1.04896- 2 1.44350- 4 2.20000+ 1 2.70000+ 1 4.86593- 3 2.39080- 4 2.20000+ 1 2.90000+ 1 2.12596- 2 3.06460- 4 2.20000+ 1 3.00000+ 1 4.04655- 3 3.76270- 4 2.20000+ 1 3.20000+ 1 1.90558- 3 4.76230- 4 2.20000+ 1 3.30000+ 1 2.18905- 3 4.86620- 4 2.20000+ 1 3.50000+ 1 4.51971- 4 5.93230- 4 2.20000+ 1 3.60000+ 1 2.79255- 4 5.94520- 4 2.20000+ 1 4.10000+ 1 7.14273- 4 5.46460- 4 2.20000+ 1 4.30000+ 1 2.24102- 3 5.66380- 4 2.20000+ 1 4.40000+ 1 4.34708- 4 5.77630- 4 2.20000+ 1 5.80000+ 1 5.84604- 5 5.96030- 4 2.40000+ 1 2.40000+ 1 1.88681- 3 4.86140- 4 2.40000+ 1 2.50000+ 1 9.64587- 3 5.00000- 4 2.40000+ 1 2.70000+ 1 4.81530- 3 5.94730- 4 2.40000+ 1 2.90000+ 1 1.84298- 2 6.62110- 4 2.40000+ 1 3.00000+ 1 2.12100- 3 7.31920- 4 2.40000+ 1 3.20000+ 1 5.70668- 3 8.31880- 4 2.40000+ 1 3.30000+ 1 4.71766- 3 8.42270- 4 2.40000+ 1 3.50000+ 1 5.10077- 4 9.48880- 4 2.40000+ 1 3.60000+ 1 3.44604- 4 9.50170- 4 2.40000+ 1 4.10000+ 1 9.35965- 4 9.02110- 4 2.40000+ 1 4.30000+ 1 1.98167- 3 9.22030- 4 2.40000+ 1 4.40000+ 1 2.62472- 4 9.33280- 4 2.40000+ 1 5.80000+ 1 7.91199- 5 9.51680- 4 2.50000+ 1 2.50000+ 1 5.11760- 4 5.13860- 4 2.50000+ 1 2.70000+ 1 2.62132- 3 6.08590- 4 2.50000+ 1 2.90000+ 1 2.80837- 2 6.75970- 4 2.50000+ 1 3.00000+ 1 1.50884- 3 7.45780- 4 2.50000+ 1 3.20000+ 1 1.21129- 2 8.45740- 4 2.50000+ 1 3.30000+ 1 1.17825- 3 8.56130- 4 2.50000+ 1 3.50000+ 1 1.05206- 4 9.62740- 4 2.50000+ 1 3.60000+ 1 6.43771- 5 9.64030- 4 2.50000+ 1 4.10000+ 1 3.74435- 4 9.15970- 4 2.50000+ 1 4.30000+ 1 2.89027- 3 9.35890- 4 2.50000+ 1 4.40000+ 1 1.77669- 4 9.47140- 4 2.50000+ 1 5.80000+ 1 3.03174- 5 9.65540- 4 2.70000+ 1 2.70000+ 1 2.16267- 3 7.03320- 4 2.70000+ 1 2.90000+ 1 2.78856- 2 7.70700- 4 2.70000+ 1 3.00000+ 1 5.32780- 3 8.40510- 4 2.70000+ 1 3.20000+ 1 7.13087- 3 9.40470- 4 2.70000+ 1 3.30000+ 1 4.88327- 3 9.50860- 4 2.70000+ 1 3.50000+ 1 3.94042- 4 1.05747- 3 2.70000+ 1 3.60000+ 1 8.13270- 4 1.05876- 3 2.70000+ 1 4.10000+ 1 6.36949- 4 1.01070- 3 2.70000+ 1 4.30000+ 1 2.84105- 3 1.03062- 3 2.70000+ 1 4.40000+ 1 6.78311- 4 1.04187- 3 2.70000+ 1 5.80000+ 1 5.21796- 5 1.06027- 3 2.90000+ 1 2.90000+ 1 1.92048- 2 8.38080- 4 2.90000+ 1 3.00000+ 1 4.96234- 2 9.07890- 4 2.90000+ 1 3.20000+ 1 4.07592- 2 1.00785- 3 2.90000+ 1 3.30000+ 1 6.77479- 2 1.01824- 3 2.90000+ 1 3.50000+ 1 1.37385- 2 1.12485- 3 2.90000+ 1 3.60000+ 1 1.83073- 2 1.12614- 3 2.90000+ 1 4.10000+ 1 5.53829- 3 1.07808- 3 2.90000+ 1 4.30000+ 1 5.18489- 3 1.09800- 3 2.90000+ 1 4.40000+ 1 7.09094- 3 1.10925- 3 2.90000+ 1 5.80000+ 1 4.70698- 4 1.12765- 3 3.00000+ 1 3.00000+ 1 1.55594- 3 9.77700- 4 3.00000+ 1 3.20000+ 1 7.04358- 3 1.07766- 3 3.00000+ 1 3.30000+ 1 3.27193- 3 1.08805- 3 3.00000+ 1 3.50000+ 1 4.38079- 4 1.19466- 3 3.00000+ 1 3.60000+ 1 6.54397- 4 1.19595- 3 3.00000+ 1 4.10000+ 1 7.27081- 4 1.14789- 3 3.00000+ 1 4.30000+ 1 5.20602- 3 1.16781- 3 3.00000+ 1 4.40000+ 1 3.74460- 4 1.17906- 3 3.00000+ 1 5.80000+ 1 5.81679- 5 1.19746- 3 3.20000+ 1 3.20000+ 1 2.32731- 3 1.17762- 3 3.20000+ 1 3.30000+ 1 3.41634- 3 1.18801- 3 3.20000+ 1 3.50000+ 1 2.03173- 3 1.29462- 3 3.20000+ 1 3.60000+ 1 3.29814- 3 1.29591- 3 3.20000+ 1 4.10000+ 1 1.09366- 3 1.24785- 3 3.20000+ 1 4.30000+ 1 3.75716- 3 1.26777- 3 3.20000+ 1 4.40000+ 1 8.38561- 4 1.27902- 3 3.20000+ 1 5.80000+ 1 9.17866- 5 1.29742- 3 3.30000+ 1 3.30000+ 1 5.99506- 4 1.19840- 3 3.30000+ 1 3.50000+ 1 5.42555- 4 1.30501- 3 3.30000+ 1 3.60000+ 1 2.94214- 4 1.30630- 3 3.30000+ 1 4.10000+ 1 5.26744- 4 1.25824- 3 3.30000+ 1 4.30000+ 1 6.26539- 3 1.27816- 3 3.30000+ 1 4.40000+ 1 3.29011- 4 1.28941- 3 3.30000+ 1 5.80000+ 1 4.11267- 5 1.30781- 3 3.50000+ 1 3.50000+ 1 3.45993- 5 1.41162- 3 3.50000+ 1 3.60000+ 1 6.26084- 5 1.41291- 3 3.50000+ 1 4.10000+ 1 6.42562- 5 1.36485- 3 3.50000+ 1 4.30000+ 1 1.26703- 3 1.38477- 3 3.50000+ 1 4.40000+ 1 4.61336- 5 1.39602- 3 3.50000+ 1 5.80000+ 1 4.94282- 6 1.41442- 3 3.60000+ 1 3.60000+ 1 1.33126- 5 1.41420- 3 3.60000+ 1 4.10000+ 1 1.03174- 4 1.36614- 3 3.60000+ 1 4.30000+ 1 1.71226- 3 1.38606- 3 3.60000+ 1 4.40000+ 1 6.48964- 5 1.39731- 3 3.60000+ 1 5.80000+ 1 8.31992- 6 1.41571- 3 4.10000+ 1 4.10000+ 1 4.14241- 5 1.31808- 3 4.10000+ 1 4.30000+ 1 4.84806- 4 1.33800- 3 4.10000+ 1 4.40000+ 1 7.82423- 5 1.34925- 3 4.10000+ 1 5.80000+ 1 6.13671- 6 1.36765- 3 4.30000+ 1 4.30000+ 1 3.12623- 4 1.35792- 3 4.30000+ 1 4.40000+ 1 7.08124- 4 1.36917- 3 4.30000+ 1 5.80000+ 1 4.66345- 5 1.38757- 3 4.40000+ 1 4.40000+ 1 2.31510- 5 1.38042- 3 4.40000+ 1 5.80000+ 1 7.71647- 6 1.39882- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.20200- 5 2.69100- 4 2.20000+ 1 1.90671- 4 3.20320- 4 2.70000+ 1 3.12991- 4 7.84560- 4 3.20000+ 1 3.57681- 5 1.02171- 3 3.30000+ 1 2.09031- 4 1.03210- 3 4.10000+ 1 6.11982- 5 1.09194- 3 5.80000+ 1 5.47161- 6 1.14151- 3 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.95206- 2 4.38500- 5 2.10000+ 1 3.20000+ 1 1.83411- 2 1.43810- 4 2.10000+ 1 3.30000+ 1 2.75537- 2 1.54200- 4 2.10000+ 1 3.50000+ 1 2.34444- 3 2.60810- 4 2.10000+ 1 3.60000+ 1 2.04643- 3 2.62100- 4 2.10000+ 1 4.10000+ 1 3.94401- 3 2.14040- 4 2.10000+ 1 4.30000+ 1 2.81613- 3 2.33960- 4 2.10000+ 1 4.40000+ 1 5.87623- 3 2.45210- 4 2.10000+ 1 5.80000+ 1 3.27622- 4 2.63610- 4 2.20000+ 1 2.90000+ 1 1.24376- 1 2.52600- 5 2.20000+ 1 3.00000+ 1 1.33536- 1 9.50700- 5 2.20000+ 1 3.20000+ 1 1.19411- 1 1.95030- 4 2.20000+ 1 3.30000+ 1 1.43076- 1 2.05420- 4 2.20000+ 1 3.50000+ 1 6.99382- 3 3.12030- 4 2.20000+ 1 3.60000+ 1 8.85434- 3 3.13320- 4 2.20000+ 1 4.10000+ 1 2.23357- 2 2.65260- 4 2.20000+ 1 4.30000+ 1 1.96810- 2 2.85180- 4 2.20000+ 1 4.40000+ 1 1.76690- 2 2.96430- 4 2.20000+ 1 5.80000+ 1 1.86861- 3 3.14830- 4 2.40000+ 1 2.40000+ 1 9.92295- 4 2.04940- 4 2.40000+ 1 2.50000+ 1 3.13859- 3 2.18800- 4 2.40000+ 1 2.70000+ 1 9.69802- 3 3.13530- 4 2.40000+ 1 2.90000+ 1 5.00779- 3 3.80910- 4 2.40000+ 1 3.00000+ 1 5.41701- 2 4.50720- 4 2.40000+ 1 3.20000+ 1 2.16260- 3 5.50680- 4 2.40000+ 1 3.30000+ 1 7.77081- 3 5.61070- 4 2.40000+ 1 3.50000+ 1 5.32341- 4 6.67680- 4 2.40000+ 1 3.60000+ 1 5.14023- 4 6.68970- 4 2.40000+ 1 4.10000+ 1 1.15067- 3 6.20910- 4 2.40000+ 1 4.30000+ 1 6.81873- 4 6.40830- 4 2.40000+ 1 4.40000+ 1 5.17086- 3 6.52080- 4 2.40000+ 1 5.80000+ 1 9.12673- 5 6.70480- 4 2.50000+ 1 2.50000+ 1 3.45981- 3 2.32660- 4 2.50000+ 1 2.70000+ 1 2.25668- 2 3.27390- 4 2.50000+ 1 2.90000+ 1 1.77605- 2 3.94770- 4 2.50000+ 1 3.00000+ 1 6.52512- 2 4.64580- 4 2.50000+ 1 3.20000+ 1 1.61220- 3 5.64540- 4 2.50000+ 1 3.30000+ 1 1.11033- 2 5.74930- 4 2.50000+ 1 3.50000+ 1 2.09323- 3 6.81540- 4 2.50000+ 1 3.60000+ 1 2.57694- 3 6.82830- 4 2.50000+ 1 4.10000+ 1 3.26915- 3 6.34770- 4 2.50000+ 1 4.30000+ 1 2.54618- 3 6.54690- 4 2.50000+ 1 4.40000+ 1 6.29398- 3 6.65940- 4 2.50000+ 1 5.80000+ 1 2.67053- 4 6.84340- 4 2.70000+ 1 2.70000+ 1 4.38302- 5 4.22120- 4 2.70000+ 1 2.90000+ 1 2.62705- 4 4.89500- 4 2.70000+ 1 3.00000+ 1 5.02547- 3 5.59310- 4 2.70000+ 1 3.20000+ 1 4.62707- 4 6.59270- 4 2.70000+ 1 3.30000+ 1 7.73402- 4 6.69660- 4 2.70000+ 1 3.50000+ 1 1.57569- 4 7.76270- 4 2.70000+ 1 3.60000+ 1 1.53685- 4 7.77560- 4 2.70000+ 1 4.10000+ 1 1.85858- 5 7.29500- 4 2.70000+ 1 4.30000+ 1 2.74637- 5 7.49420- 4 2.70000+ 1 4.40000+ 1 4.58833- 4 7.60670- 4 2.70000+ 1 5.80000+ 1 1.66439- 6 7.79070- 4 2.90000+ 1 2.90000+ 1 2.77416- 6 5.56880- 4 2.90000+ 1 3.00000+ 1 5.77465- 3 6.26690- 4 2.90000+ 1 3.20000+ 1 2.60768- 4 7.26650- 4 2.90000+ 1 3.30000+ 1 7.08780- 4 7.37040- 4 2.90000+ 1 3.50000+ 1 1.25108- 4 8.43650- 4 2.90000+ 1 3.60000+ 1 2.76575- 4 8.44940- 4 2.90000+ 1 4.10000+ 1 4.57731- 5 7.96880- 4 2.90000+ 1 4.30000+ 1 5.54822- 6 8.16800- 4 2.90000+ 1 4.40000+ 1 5.42059- 4 8.28050- 4 2.90000+ 1 5.80000+ 1 3.88370- 6 8.46450- 4 3.00000+ 1 3.00000+ 1 7.25656- 3 6.96500- 4 3.00000+ 1 3.20000+ 1 8.76679- 3 7.96460- 4 3.00000+ 1 3.30000+ 1 1.16457- 2 8.06850- 4 3.00000+ 1 3.50000+ 1 2.75846- 3 9.13460- 4 3.00000+ 1 3.60000+ 1 3.25275- 3 9.14750- 4 3.00000+ 1 4.10000+ 1 9.99766- 4 8.66690- 4 3.00000+ 1 4.30000+ 1 9.18483- 4 8.86610- 4 3.00000+ 1 4.40000+ 1 1.72072- 3 8.97860- 4 3.00000+ 1 5.80000+ 1 8.48851- 5 9.16260- 4 3.20000+ 1 3.20000+ 1 1.74500- 4 8.96420- 4 3.20000+ 1 3.30000+ 1 1.04613- 3 9.06810- 4 3.20000+ 1 3.50000+ 1 6.25381- 5 1.01342- 3 3.20000+ 1 3.60000+ 1 1.17257- 4 1.01471- 3 3.20000+ 1 4.10000+ 1 6.36544- 5 9.66650- 4 3.20000+ 1 4.30000+ 1 4.24366- 5 9.86570- 4 3.20000+ 1 4.40000+ 1 8.37289- 4 9.97820- 4 3.20000+ 1 5.80000+ 1 5.30460- 6 1.01622- 3 3.30000+ 1 3.30000+ 1 9.90623- 4 9.17200- 4 3.30000+ 1 3.50000+ 1 2.07782- 4 1.02381- 3 3.30000+ 1 3.60000+ 1 2.81015- 4 1.02510- 3 3.30000+ 1 4.10000+ 1 1.46749- 4 9.77040- 4 3.30000+ 1 4.30000+ 1 1.17619- 4 9.96960- 4 3.30000+ 1 4.40000+ 1 1.11954- 3 1.00821- 3 3.30000+ 1 5.80000+ 1 1.24827- 5 1.02661- 3 3.50000+ 1 3.50000+ 1 3.34502- 6 1.13042- 3 3.50000+ 1 3.60000+ 1 1.81198- 5 1.13171- 3 3.50000+ 1 4.10000+ 1 1.95129- 5 1.08365- 3 3.50000+ 1 4.30000+ 1 7.24760- 6 1.10357- 3 3.50000+ 1 4.40000+ 1 2.53952- 4 1.11482- 3 3.50000+ 1 5.80000+ 1 1.39373- 6 1.13322- 3 3.60000+ 1 3.60000+ 1 1.13658- 5 1.13300- 3 3.60000+ 1 4.10000+ 1 2.04604- 5 1.08494- 3 3.60000+ 1 4.30000+ 1 1.61977- 5 1.10486- 3 3.60000+ 1 4.40000+ 1 3.03772- 4 1.11611- 3 3.60000+ 1 5.80000+ 1 1.70498- 6 1.13451- 3 4.10000+ 1 4.10000+ 1 2.85335- 7 1.03688- 3 4.10000+ 1 4.30000+ 1 3.42395- 6 1.05680- 3 4.10000+ 1 4.40000+ 1 9.41590- 5 1.06805- 3 4.30000+ 1 4.40000+ 1 9.07595- 5 1.08797- 3 4.30000+ 1 5.80000+ 1 2.92779- 7 1.10637- 3 4.40000+ 1 4.40000+ 1 1.04113- 4 1.09922- 3 4.40000+ 1 5.80000+ 1 8.37693- 6 1.11762- 3 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.90130- 4 4.06870- 4 2.90000+ 1 1.92800- 4 5.82840- 4 3.00000+ 1 2.09730- 5 6.52650- 4 3.50000+ 1 7.26310- 5 8.69610- 4 4.30000+ 1 3.28050- 5 8.42760- 4 4.40000+ 1 3.26660- 6 8.54010- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 3.32758- 3 4.29300- 5 2.20000+ 1 3.60000+ 1 3.98381- 3 4.42200- 5 2.20000+ 1 4.30000+ 1 1.31554- 3 1.60800- 5 2.20000+ 1 4.40000+ 1 2.83832- 3 2.73300- 5 2.20000+ 1 5.80000+ 1 1.89760- 4 4.57300- 5 2.40000+ 1 2.70000+ 1 1.23045- 1 4.44300- 5 2.40000+ 1 2.90000+ 1 1.10655- 1 1.11810- 4 2.40000+ 1 3.00000+ 1 1.26362- 1 1.81620- 4 2.40000+ 1 3.20000+ 1 1.29359- 1 2.81580- 4 2.40000+ 1 3.30000+ 1 1.35234- 1 2.91970- 4 2.40000+ 1 3.50000+ 1 5.20004- 3 3.98580- 4 2.40000+ 1 3.60000+ 1 4.02965- 3 3.99870- 4 2.40000+ 1 4.10000+ 1 2.38406- 2 3.51810- 4 2.40000+ 1 4.30000+ 1 1.76178- 2 3.71730- 4 2.40000+ 1 4.40000+ 1 1.75350- 2 3.82980- 4 2.40000+ 1 5.80000+ 1 2.03227- 3 4.01380- 4 2.50000+ 1 2.70000+ 1 8.73828- 3 5.82900- 5 2.50000+ 1 2.90000+ 1 1.82758- 2 1.25670- 4 2.50000+ 1 3.00000+ 1 8.21094- 3 1.95480- 4 2.50000+ 1 3.20000+ 1 1.37129- 1 2.95440- 4 2.50000+ 1 3.30000+ 1 5.76789- 3 3.05830- 4 2.50000+ 1 3.50000+ 1 1.65983- 3 4.12440- 4 2.50000+ 1 3.60000+ 1 4.60474- 4 4.13730- 4 2.50000+ 1 4.10000+ 1 1.22582- 3 3.65670- 4 2.50000+ 1 4.30000+ 1 1.78562- 3 3.85590- 4 2.50000+ 1 4.40000+ 1 8.65515- 4 3.96840- 4 2.50000+ 1 5.80000+ 1 1.00621- 4 4.15240- 4 2.70000+ 1 2.70000+ 1 8.63438- 4 1.53020- 4 2.70000+ 1 2.90000+ 1 2.14433- 3 2.20400- 4 2.70000+ 1 3.00000+ 1 1.55382- 3 2.90210- 4 2.70000+ 1 3.20000+ 1 1.22289- 2 3.90170- 4 2.70000+ 1 3.30000+ 1 1.86256- 3 4.00560- 4 2.70000+ 1 3.50000+ 1 1.27835- 3 5.07170- 4 2.70000+ 1 3.60000+ 1 1.04774- 3 5.08460- 4 2.70000+ 1 4.10000+ 1 1.97847- 4 4.60400- 4 2.70000+ 1 4.30000+ 1 2.27263- 4 4.80320- 4 2.70000+ 1 4.40000+ 1 1.73547- 4 4.91570- 4 2.70000+ 1 5.80000+ 1 1.62026- 5 5.09970- 4 2.90000+ 1 2.90000+ 1 5.03141- 4 2.87780- 4 2.90000+ 1 3.00000+ 1 2.02962- 3 3.57590- 4 2.90000+ 1 3.20000+ 1 8.76481- 3 4.57550- 4 2.90000+ 1 3.30000+ 1 9.59371- 4 4.67940- 4 2.90000+ 1 3.50000+ 1 1.85904- 4 5.74550- 4 2.90000+ 1 3.60000+ 1 1.62864- 4 5.75840- 4 2.90000+ 1 4.10000+ 1 1.56919- 4 5.27780- 4 2.90000+ 1 4.30000+ 1 1.10428- 4 5.47700- 4 2.90000+ 1 4.40000+ 1 1.64153- 4 5.58950- 4 2.90000+ 1 5.80000+ 1 1.27914- 5 5.77350- 4 3.00000+ 1 3.00000+ 1 6.98814- 4 4.27400- 4 3.00000+ 1 3.20000+ 1 1.77765- 2 5.27360- 4 3.00000+ 1 3.30000+ 1 1.50159- 3 5.37750- 4 3.00000+ 1 3.50000+ 1 5.12076- 4 6.44360- 4 3.00000+ 1 3.60000+ 1 2.87381- 4 6.45650- 4 3.00000+ 1 4.10000+ 1 7.37621- 5 5.97590- 4 3.00000+ 1 4.30000+ 1 1.49220- 4 6.17510- 4 3.00000+ 1 4.40000+ 1 1.21085- 4 6.28760- 4 3.00000+ 1 5.80000+ 1 5.54290- 6 6.47160- 4 3.20000+ 1 3.20000+ 1 1.14721- 2 6.27320- 4 3.20000+ 1 3.30000+ 1 2.22898- 2 6.37710- 4 3.20000+ 1 3.50000+ 1 4.73951- 3 7.44320- 4 3.20000+ 1 3.60000+ 1 6.38959- 3 7.45610- 4 3.20000+ 1 4.10000+ 1 1.90116- 3 6.97550- 4 3.20000+ 1 4.30000+ 1 1.42627- 3 7.17470- 4 3.20000+ 1 4.40000+ 1 2.42262- 3 7.28720- 4 3.20000+ 1 5.80000+ 1 1.59892- 4 7.47120- 4 3.30000+ 1 3.30000+ 1 3.65467- 4 6.48100- 4 3.30000+ 1 3.50000+ 1 5.38283- 4 7.54710- 4 3.30000+ 1 3.60000+ 1 1.78191- 4 7.56000- 4 3.30000+ 1 4.10000+ 1 7.05340- 5 7.07940- 4 3.30000+ 1 4.30000+ 1 7.75466- 5 7.27860- 4 3.30000+ 1 4.40000+ 1 1.32404- 4 7.39110- 4 3.30000+ 1 5.80000+ 1 5.77470- 6 7.57510- 4 3.50000+ 1 3.50000+ 1 4.43954- 5 8.61320- 4 3.50000+ 1 3.60000+ 1 8.28168- 5 8.62610- 4 3.50000+ 1 4.10000+ 1 7.34246- 5 8.14550- 4 3.50000+ 1 4.30000+ 1 2.90281- 5 8.34470- 4 3.50000+ 1 4.40000+ 1 5.59224- 5 8.45720- 4 3.50000+ 1 5.80000+ 1 5.12278- 6 8.64120- 4 3.60000+ 1 3.60000+ 1 1.08620- 5 8.63900- 4 3.60000+ 1 4.10000+ 1 5.33225- 5 8.15840- 4 3.60000+ 1 4.30000+ 1 2.56744- 5 8.35760- 4 3.60000+ 1 4.40000+ 1 3.11051- 5 8.47010- 4 3.60000+ 1 5.80000+ 1 3.45598- 6 8.65410- 4 4.10000+ 1 4.10000+ 1 6.09447- 6 7.67780- 4 4.10000+ 1 4.30000+ 1 1.17195- 5 7.87700- 4 4.10000+ 1 4.40000+ 1 7.96949- 6 7.98950- 4 4.10000+ 1 5.80000+ 1 9.37586- 7 8.17350- 4 4.30000+ 1 4.30000+ 1 2.16294- 6 8.07620- 4 4.30000+ 1 4.40000+ 1 1.16799- 5 8.18870- 4 4.30000+ 1 5.80000+ 1 8.65164- 7 8.37270- 4 4.40000+ 1 4.40000+ 1 6.10015- 6 8.30120- 4 4.40000+ 1 5.80000+ 1 5.08346- 7 8.48520- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.74113- 5 3.55650- 4 2.50000+ 1 4.01012- 4 3.69510- 4 3.00000+ 1 1.54271- 4 6.01430- 4 3.50000+ 1 4.81092- 6 8.18390- 4 3.60000+ 1 7.98128- 5 8.19680- 4 4.40000+ 1 2.40681- 5 8.02790- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 8.30834- 3 0.00000+ 0 2.40000+ 1 2.90000+ 1 8.23045- 3 6.05900- 5 2.40000+ 1 3.00000+ 1 1.54485- 2 1.30400- 4 2.40000+ 1 3.20000+ 1 7.60081- 3 2.30360- 4 2.40000+ 1 3.30000+ 1 1.05400- 1 2.40750- 4 2.40000+ 1 3.50000+ 1 8.07983- 4 3.47360- 4 2.40000+ 1 3.60000+ 1 9.13244- 4 3.48650- 4 2.40000+ 1 4.10000+ 1 2.04095- 3 3.00590- 4 2.40000+ 1 4.30000+ 1 1.33018- 3 3.20510- 4 2.40000+ 1 4.40000+ 1 1.76811- 3 3.31760- 4 2.40000+ 1 5.80000+ 1 1.70477- 4 3.50160- 4 2.50000+ 1 2.70000+ 1 1.11102- 1 7.07000- 6 2.50000+ 1 2.90000+ 1 1.23817- 1 7.44500- 5 2.50000+ 1 3.00000+ 1 1.09980- 1 1.44260- 4 2.50000+ 1 3.20000+ 1 1.10738- 1 2.44220- 4 2.50000+ 1 3.30000+ 1 1.97049- 1 2.54610- 4 2.50000+ 1 3.50000+ 1 3.77032- 3 3.61220- 4 2.50000+ 1 3.60000+ 1 6.79190- 3 3.62510- 4 2.50000+ 1 4.10000+ 1 2.26073- 2 3.14450- 4 2.50000+ 1 4.30000+ 1 1.92473- 2 3.34370- 4 2.50000+ 1 4.40000+ 1 1.54228- 2 3.45620- 4 2.50000+ 1 5.80000+ 1 1.92178- 3 3.64020- 4 2.70000+ 1 2.70000+ 1 1.62178- 3 1.01800- 4 2.70000+ 1 2.90000+ 1 2.36144- 3 1.69180- 4 2.70000+ 1 3.00000+ 1 3.34280- 3 2.38990- 4 2.70000+ 1 3.20000+ 1 2.92063- 3 3.38950- 4 2.70000+ 1 3.30000+ 1 1.48231- 2 3.49340- 4 2.70000+ 1 3.50000+ 1 1.25728- 3 4.55950- 4 2.70000+ 1 3.60000+ 1 1.93305- 3 4.57240- 4 2.70000+ 1 4.10000+ 1 3.60572- 4 4.09180- 4 2.70000+ 1 4.30000+ 1 2.62826- 4 4.29100- 4 2.70000+ 1 4.40000+ 1 3.69362- 4 4.40350- 4 2.70000+ 1 5.80000+ 1 2.90562- 5 4.58750- 4 2.90000+ 1 2.90000+ 1 3.30146- 4 2.36560- 4 2.90000+ 1 3.00000+ 1 3.80460- 3 3.06370- 4 2.90000+ 1 3.20000+ 1 5.91245- 4 4.06330- 4 2.90000+ 1 3.30000+ 1 1.34386- 2 4.16720- 4 2.90000+ 1 3.50000+ 1 1.94275- 4 5.23330- 4 2.90000+ 1 3.60000+ 1 4.06265- 4 5.24620- 4 2.90000+ 1 4.10000+ 1 1.60649- 4 4.76560- 4 2.90000+ 1 4.30000+ 1 7.39069- 5 4.96480- 4 2.90000+ 1 4.40000+ 1 3.08899- 4 5.07730- 4 2.90000+ 1 5.80000+ 1 1.23908- 5 5.26130- 4 3.00000+ 1 3.00000+ 1 1.19705- 3 3.76180- 4 3.00000+ 1 3.20000+ 1 2.28417- 3 4.76140- 4 3.00000+ 1 3.30000+ 1 1.69718- 2 4.86530- 4 3.00000+ 1 3.50000+ 1 3.83131- 4 5.93140- 4 3.00000+ 1 3.60000+ 1 5.04245- 4 5.94430- 4 3.00000+ 1 4.10000+ 1 1.05661- 4 5.46370- 4 3.00000+ 1 4.30000+ 1 1.58074- 4 5.66290- 4 3.00000+ 1 4.40000+ 1 2.10463- 4 5.77540- 4 3.00000+ 1 5.80000+ 1 7.30179- 6 5.95940- 4 3.20000+ 1 3.20000+ 1 1.41816- 4 5.76100- 4 3.20000+ 1 3.30000+ 1 1.64693- 2 5.86490- 4 3.20000+ 1 3.50000+ 1 1.27560- 4 6.93100- 4 3.20000+ 1 3.60000+ 1 4.74540- 4 6.94390- 4 3.20000+ 1 4.10000+ 1 7.21687- 5 6.46330- 4 3.20000+ 1 4.30000+ 1 4.86720- 5 6.66250- 4 3.20000+ 1 4.40000+ 1 2.14420- 4 6.77500- 4 3.20000+ 1 5.80000+ 1 5.45471- 6 6.95900- 4 3.30000+ 1 3.30000+ 1 1.83561- 2 5.96880- 4 3.30000+ 1 3.50000+ 1 5.39196- 3 7.03490- 4 3.30000+ 1 3.60000+ 1 6.32905- 3 7.04780- 4 3.30000+ 1 4.10000+ 1 1.96070- 3 6.56720- 4 3.30000+ 1 4.30000+ 1 1.83231- 3 6.76640- 4 3.30000+ 1 4.40000+ 1 2.31614- 3 6.87890- 4 3.30000+ 1 5.80000+ 1 1.64616- 4 7.06290- 4 3.50000+ 1 3.50000+ 1 1.00331- 5 8.10100- 4 3.50000+ 1 3.60000+ 1 7.59027- 5 8.11390- 4 3.50000+ 1 4.10000+ 1 5.45269- 5 7.63330- 4 3.50000+ 1 4.30000+ 1 1.87574- 5 7.83250- 4 3.50000+ 1 4.40000+ 1 3.31533- 5 7.94500- 4 3.50000+ 1 5.80000+ 1 3.92600- 6 8.12900- 4 3.60000+ 1 3.60000+ 1 6.34483- 5 8.12680- 4 3.60000+ 1 4.10000+ 1 9.53884- 5 7.64620- 4 3.60000+ 1 4.30000+ 1 3.50062- 5 7.84540- 4 3.60000+ 1 4.40000+ 1 5.33828- 5 7.95790- 4 3.60000+ 1 5.80000+ 1 6.56352- 6 8.14190- 4 4.10000+ 1 4.10000+ 1 1.06808- 5 7.16560- 4 4.10000+ 1 4.30000+ 1 1.37959- 5 7.36480- 4 4.10000+ 1 4.40000+ 1 1.29061- 5 7.47730- 4 4.10000+ 1 5.80000+ 1 1.78006- 6 7.66130- 4 4.30000+ 1 4.30000+ 1 2.96676- 6 7.56400- 4 4.30000+ 1 4.40000+ 1 1.63172- 5 7.67650- 4 4.30000+ 1 5.80000+ 1 9.88944- 7 7.86050- 4 4.40000+ 1 4.40000+ 1 1.15292- 5 7.78900- 4 4.40000+ 1 5.80000+ 1 9.60751- 7 7.97300- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.16095- 4 3.45740- 4 3.30000+ 1 7.27556- 6 3.56130- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 1.59115- 1 5.57000- 6 2.50000+ 1 3.60000+ 1 8.89386- 3 6.86000- 6 2.50000+ 1 5.80000+ 1 2.41678- 4 8.37000- 6 2.70000+ 1 3.50000+ 1 5.41057- 2 1.00300- 4 2.70000+ 1 3.60000+ 1 9.33528- 3 1.01590- 4 2.70000+ 1 4.10000+ 1 1.36306- 3 5.35300- 5 2.70000+ 1 4.30000+ 1 1.67355- 3 7.34500- 5 2.70000+ 1 4.40000+ 1 3.42744- 3 8.47000- 5 2.70000+ 1 5.80000+ 1 8.51835- 5 1.03100- 4 2.90000+ 1 3.20000+ 1 3.01255- 2 5.06800- 5 2.90000+ 1 3.30000+ 1 6.31656- 2 6.10700- 5 2.90000+ 1 3.50000+ 1 5.68648- 2 1.67680- 4 2.90000+ 1 3.60000+ 1 1.33850- 2 1.68970- 4 2.90000+ 1 4.10000+ 1 1.11065- 2 1.20910- 4 2.90000+ 1 4.30000+ 1 6.15844- 3 1.40830- 4 2.90000+ 1 4.40000+ 1 9.73202- 3 1.52080- 4 2.90000+ 1 5.80000+ 1 8.82815- 4 1.70480- 4 3.00000+ 1 3.00000+ 1 1.29680- 2 2.05300- 5 3.00000+ 1 3.20000+ 1 7.17099- 2 1.20490- 4 3.00000+ 1 3.30000+ 1 5.42931- 2 1.30880- 4 3.00000+ 1 3.50000+ 1 8.10898- 2 2.37490- 4 3.00000+ 1 3.60000+ 1 4.71007- 3 2.38780- 4 3.00000+ 1 4.10000+ 1 4.16886- 3 1.90720- 4 3.00000+ 1 4.30000+ 1 2.83115- 3 2.10640- 4 3.00000+ 1 4.40000+ 1 1.94424- 3 2.21890- 4 3.00000+ 1 5.80000+ 1 2.85623- 4 2.40290- 4 3.20000+ 1 3.20000+ 1 1.07731- 2 2.20450- 4 3.20000+ 1 3.30000+ 1 2.16459- 2 2.30840- 4 3.20000+ 1 3.50000+ 1 7.30163- 2 3.37450- 4 3.20000+ 1 3.60000+ 1 1.09335- 2 3.38740- 4 3.20000+ 1 4.10000+ 1 1.38786- 3 2.90680- 4 3.20000+ 1 4.30000+ 1 6.53901- 3 3.10600- 4 3.20000+ 1 4.40000+ 1 4.41451- 3 3.21850- 4 3.20000+ 1 5.80000+ 1 1.20259- 4 3.40250- 4 3.30000+ 1 3.30000+ 1 5.10576- 3 2.41230- 4 3.30000+ 1 3.50000+ 1 1.05310- 1 3.47840- 4 3.30000+ 1 3.60000+ 1 3.13162- 3 3.49130- 4 3.30000+ 1 4.10000+ 1 1.24263- 3 3.01070- 4 3.30000+ 1 4.30000+ 1 4.87517- 3 3.20990- 4 3.30000+ 1 4.40000+ 1 2.47523- 3 3.32240- 4 3.30000+ 1 5.80000+ 1 1.00210- 4 3.50640- 4 3.50000+ 1 3.50000+ 1 1.77486- 2 4.54450- 4 3.50000+ 1 3.60000+ 1 3.53708- 2 4.55740- 4 3.50000+ 1 4.10000+ 1 9.17538- 3 4.07680- 4 3.50000+ 1 4.30000+ 1 7.94495- 3 4.27600- 4 3.50000+ 1 4.40000+ 1 1.09481- 2 4.38850- 4 3.50000+ 1 5.80000+ 1 7.68378- 4 4.57250- 4 3.60000+ 1 3.60000+ 1 3.21421- 4 4.57030- 4 3.60000+ 1 4.10000+ 1 2.76224- 4 4.08970- 4 3.60000+ 1 4.30000+ 1 8.88930- 4 4.28890- 4 3.60000+ 1 4.40000+ 1 3.51543- 4 4.40140- 4 3.60000+ 1 5.80000+ 1 2.00879- 5 4.58540- 4 4.10000+ 1 4.10000+ 1 4.88575- 5 3.60910- 4 4.10000+ 1 4.30000+ 1 4.45144- 4 3.80830- 4 4.10000+ 1 4.40000+ 1 3.03992- 4 3.92080- 4 4.10000+ 1 5.80000+ 1 5.42851- 6 4.10480- 4 4.30000+ 1 4.30000+ 1 1.67959- 4 4.00750- 4 4.30000+ 1 4.40000+ 1 2.49071- 4 4.12000- 4 4.30000+ 1 5.80000+ 1 3.47520- 5 4.30400- 4 4.40000+ 1 4.40000+ 1 5.11835- 5 4.23250- 4 4.40000+ 1 5.80000+ 1 2.27467- 5 4.41650- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.31510- 4 3.42270- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 6.97111- 3 8.64400- 5 2.70000+ 1 3.60000+ 1 5.78817- 2 8.77300- 5 2.70000+ 1 4.10000+ 1 1.67523- 3 3.96700- 5 2.70000+ 1 4.30000+ 1 2.44788- 3 5.95900- 5 2.70000+ 1 4.40000+ 1 2.61018- 3 7.08400- 5 2.70000+ 1 5.80000+ 1 1.02681- 4 8.92400- 5 2.90000+ 1 3.20000+ 1 4.58611- 3 3.68200- 5 2.90000+ 1 3.30000+ 1 8.80863- 3 4.72100- 5 2.90000+ 1 3.50000+ 1 6.95833- 4 1.53820- 4 2.90000+ 1 3.60000+ 1 5.12551- 2 1.55110- 4 2.90000+ 1 4.10000+ 1 2.69897- 3 1.07050- 4 2.90000+ 1 4.30000+ 1 6.22047- 4 1.26970- 4 2.90000+ 1 4.40000+ 1 1.03847- 3 1.38220- 4 2.90000+ 1 5.80000+ 1 2.05577- 4 1.56620- 4 3.00000+ 1 3.00000+ 1 8.79157- 3 6.67000- 6 3.00000+ 1 3.20000+ 1 1.18721- 1 1.06630- 4 3.00000+ 1 3.30000+ 1 2.47610- 1 1.17020- 4 3.00000+ 1 3.50000+ 1 1.51406- 2 2.23630- 4 3.00000+ 1 3.60000+ 1 9.90248- 2 2.24920- 4 3.00000+ 1 4.10000+ 1 9.13992- 3 1.76860- 4 3.00000+ 1 4.30000+ 1 3.18285- 3 1.96780- 4 3.00000+ 1 4.40000+ 1 7.90766- 3 2.08030- 4 3.00000+ 1 5.80000+ 1 6.79676- 4 2.26430- 4 3.20000+ 1 3.20000+ 1 2.24109- 3 2.06590- 4 3.20000+ 1 3.30000+ 1 2.29958- 2 2.16980- 4 3.20000+ 1 3.50000+ 1 2.12920- 3 3.23590- 4 3.20000+ 1 3.60000+ 1 7.93305- 2 3.24880- 4 3.20000+ 1 4.10000+ 1 1.10724- 3 2.76820- 4 3.20000+ 1 4.30000+ 1 1.10194- 3 2.96740- 4 3.20000+ 1 4.40000+ 1 4.17331- 3 3.07990- 4 3.20000+ 1 5.80000+ 1 9.04923- 5 3.26390- 4 3.30000+ 1 3.30000+ 1 1.47636- 2 2.27370- 4 3.30000+ 1 3.50000+ 1 1.04416- 2 3.33980- 4 3.30000+ 1 3.60000+ 1 1.07183- 1 3.35270- 4 3.30000+ 1 4.10000+ 1 1.72187- 3 2.87210- 4 3.30000+ 1 4.30000+ 1 2.05339- 3 3.07130- 4 3.30000+ 1 4.40000+ 1 8.70359- 3 3.18380- 4 3.30000+ 1 5.80000+ 1 1.42161- 4 3.36780- 4 3.50000+ 1 3.50000+ 1 2.32531- 4 4.40590- 4 3.50000+ 1 3.60000+ 1 3.02537- 2 4.41880- 4 3.50000+ 1 4.10000+ 1 2.81192- 4 3.93820- 4 3.50000+ 1 4.30000+ 1 6.48891- 5 4.13740- 4 3.50000+ 1 4.40000+ 1 1.02198- 3 4.24990- 4 3.50000+ 1 5.80000+ 1 2.16291- 5 4.43390- 4 3.60000+ 1 3.60000+ 1 2.62306- 2 4.43170- 4 3.60000+ 1 4.10000+ 1 9.67729- 3 3.95110- 4 3.60000+ 1 4.30000+ 1 8.06715- 3 4.15030- 4 3.60000+ 1 4.40000+ 1 1.21060- 2 4.26280- 4 3.60000+ 1 5.80000+ 1 8.07788- 4 4.44680- 4 4.10000+ 1 4.10000+ 1 4.50929- 5 3.47050- 4 4.10000+ 1 4.30000+ 1 2.14189- 4 3.66970- 4 4.10000+ 1 4.40000+ 1 4.73469- 4 3.78220- 4 4.10000+ 1 5.80000+ 1 5.63649- 6 3.96620- 4 4.30000+ 1 4.30000+ 1 2.29366- 5 3.86890- 4 4.30000+ 1 4.40000+ 1 1.37620- 4 3.98140- 4 4.30000+ 1 5.80000+ 1 1.72032- 5 4.16540- 4 4.40000+ 1 4.40000+ 1 1.73756- 4 4.09390- 4 4.40000+ 1 5.80000+ 1 3.72328- 5 4.27790- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.35523- 6 6.73800- 5 3.00000+ 1 2.35545- 5 1.37190- 4 4.30000+ 1 3.21653- 6 3.27300- 4 4.40000+ 1 4.96283- 8 3.38550- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 4.48130- 2 5.90900- 5 2.90000+ 1 3.60000+ 1 7.52714- 2 6.03800- 5 2.90000+ 1 4.10000+ 1 2.18339- 2 1.23200- 5 2.90000+ 1 4.30000+ 1 1.46600- 2 3.22400- 5 2.90000+ 1 4.40000+ 1 2.59713- 2 4.34900- 5 2.90000+ 1 5.80000+ 1 1.77034- 3 6.18900- 5 3.00000+ 1 3.20000+ 1 1.83988- 1 1.19000- 5 3.00000+ 1 3.30000+ 1 1.66327- 1 2.22900- 5 3.00000+ 1 3.50000+ 1 1.00965- 1 1.28900- 4 3.00000+ 1 3.60000+ 1 9.45164- 2 1.30190- 4 3.00000+ 1 4.10000+ 1 1.90113- 2 8.21300- 5 3.00000+ 1 4.30000+ 1 1.89661- 2 1.02050- 4 3.00000+ 1 4.40000+ 1 1.62101- 2 1.13300- 4 3.00000+ 1 5.80000+ 1 1.56559- 3 1.31700- 4 3.20000+ 1 3.20000+ 1 1.59747- 3 1.11860- 4 3.20000+ 1 3.30000+ 1 1.17542- 1 1.22250- 4 3.20000+ 1 3.50000+ 1 2.73067- 3 2.28860- 4 3.20000+ 1 3.60000+ 1 9.42393- 3 2.30150- 4 3.20000+ 1 4.10000+ 1 6.05849- 3 1.82090- 4 3.20000+ 1 4.30000+ 1 1.20739- 3 2.02010- 4 3.20000+ 1 4.40000+ 1 4.70653- 3 2.13260- 4 3.20000+ 1 5.80000+ 1 4.13008- 4 2.31660- 4 3.30000+ 1 3.30000+ 1 2.77452- 2 1.32640- 4 3.30000+ 1 3.50000+ 1 1.04993- 2 2.39250- 4 3.30000+ 1 3.60000+ 1 7.04633- 3 2.40540- 4 3.30000+ 1 4.10000+ 1 8.24308- 3 1.92480- 4 3.30000+ 1 4.30000+ 1 3.63449- 3 2.12400- 4 3.30000+ 1 4.40000+ 1 2.97344- 3 2.23650- 4 3.30000+ 1 5.80000+ 1 5.60068- 4 2.42050- 4 3.50000+ 1 3.50000+ 1 2.52899- 5 3.45860- 4 3.50000+ 1 3.60000+ 1 8.81463- 4 3.47150- 4 3.50000+ 1 4.10000+ 1 1.92870- 3 2.99090- 4 3.50000+ 1 4.30000+ 1 1.66100- 4 3.19010- 4 3.50000+ 1 4.40000+ 1 5.60843- 4 3.30260- 4 3.50000+ 1 5.80000+ 1 1.20200- 4 3.48660- 4 3.60000+ 1 3.60000+ 1 1.44492- 4 3.48440- 4 3.60000+ 1 4.10000+ 1 2.32376- 3 3.00380- 4 3.60000+ 1 4.30000+ 1 4.08646- 4 3.20300- 4 3.60000+ 1 4.40000+ 1 3.28603- 4 3.31550- 4 3.60000+ 1 5.80000+ 1 1.44693- 4 3.49950- 4 4.10000+ 1 4.10000+ 1 5.20099- 4 2.52320- 4 4.10000+ 1 4.30000+ 1 6.10278- 4 2.72240- 4 4.10000+ 1 4.40000+ 1 8.58738- 4 2.83490- 4 4.10000+ 1 5.80000+ 1 7.61826- 5 3.01890- 4 4.30000+ 1 4.30000+ 1 5.68669- 5 2.92160- 4 4.30000+ 1 4.40000+ 1 3.20843- 4 3.03410- 4 4.30000+ 1 5.80000+ 1 3.88997- 5 3.21810- 4 4.40000+ 1 4.40000+ 1 1.45223- 4 3.14660- 4 4.40000+ 1 5.80000+ 1 6.07867- 5 3.33060- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 6.44773- 5 1.69770- 4 4.10000+ 1 7.22603- 6 2.40000- 4 5.80000+ 1 6.92423- 7 2.89570- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 2.14391- 2 6.15200- 5 3.00000+ 1 3.60000+ 1 1.28158- 2 6.28100- 5 3.00000+ 1 4.10000+ 1 1.65651- 2 1.47500- 5 3.00000+ 1 4.30000+ 1 9.60045- 3 3.46700- 5 3.00000+ 1 4.40000+ 1 7.86317- 3 4.59200- 5 3.00000+ 1 5.80000+ 1 9.33780- 4 6.43200- 5 3.20000+ 1 3.20000+ 1 9.27189- 2 4.44800- 5 3.20000+ 1 3.30000+ 1 3.84590- 1 5.48700- 5 3.20000+ 1 3.50000+ 1 7.18668- 2 1.61480- 4 3.20000+ 1 3.60000+ 1 1.59122- 1 1.62770- 4 3.20000+ 1 4.10000+ 1 3.74072- 2 1.14710- 4 3.20000+ 1 4.30000+ 1 2.47894- 2 1.34630- 4 3.20000+ 1 4.40000+ 1 3.69913- 2 1.45880- 4 3.20000+ 1 5.80000+ 1 3.16881- 3 1.64280- 4 3.30000+ 1 3.30000+ 1 1.47854- 2 6.52600- 5 3.30000+ 1 3.50000+ 1 3.80573- 2 1.71870- 4 3.30000+ 1 3.60000+ 1 8.72376- 3 1.73160- 4 3.30000+ 1 4.10000+ 1 3.55628- 3 1.25100- 4 3.30000+ 1 4.30000+ 1 1.78649- 2 1.45020- 4 3.30000+ 1 4.40000+ 1 3.74335- 3 1.56270- 4 3.30000+ 1 5.80000+ 1 2.51425- 4 1.74670- 4 3.50000+ 1 3.50000+ 1 1.18005- 3 2.78480- 4 3.50000+ 1 3.60000+ 1 8.76978- 3 2.79770- 4 3.50000+ 1 4.10000+ 1 2.05725- 3 2.31710- 4 3.50000+ 1 4.30000+ 1 4.16162- 3 2.51630- 4 3.50000+ 1 4.40000+ 1 2.14081- 3 2.62880- 4 3.50000+ 1 5.80000+ 1 1.76577- 4 2.81280- 4 3.60000+ 1 3.60000+ 1 4.26871- 4 2.81060- 4 3.60000+ 1 4.10000+ 1 7.74050- 4 2.33000- 4 3.60000+ 1 4.30000+ 1 6.78726- 3 2.52920- 4 3.60000+ 1 4.40000+ 1 7.06151- 4 2.64170- 4 3.60000+ 1 5.80000+ 1 5.38062- 5 2.82570- 4 4.10000+ 1 4.10000+ 1 1.05317- 4 1.84940- 4 4.10000+ 1 4.30000+ 1 1.82604- 3 2.04860- 4 4.10000+ 1 4.40000+ 1 3.04945- 4 2.16110- 4 4.10000+ 1 5.80000+ 1 1.44103- 5 2.34510- 4 4.30000+ 1 4.30000+ 1 1.04502- 3 2.24780- 4 4.30000+ 1 4.40000+ 1 2.25606- 3 2.36030- 4 4.30000+ 1 5.80000+ 1 1.55132- 4 2.54430- 4 4.40000+ 1 4.40000+ 1 1.11791- 4 2.47280- 4 4.40000+ 1 5.80000+ 1 2.10292- 5 2.65680- 4 1 95000 0 7 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.11048- 7 9.99600- 5 3.30000+ 1 9.95518- 6 1.10350- 4 4.10000+ 1 4.39189- 6 1.70190- 4 5.80000+ 1 4.15919- 7 2.19760- 4 1 95000 0 9 2.43000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.59888- 2 9.16700- 5 3.20000+ 1 3.60000+ 1 9.61228- 2 9.29600- 5 3.20000+ 1 4.10000+ 1 1.19479- 2 4.49000- 5 3.20000+ 1 4.30000+ 1 8.47458- 3 6.48200- 5 3.20000+ 1 4.40000+ 1 2.27162- 2 7.60700- 5 3.20000+ 1 5.80000+ 1 8.29330- 4 9.44700- 5 3.30000+ 1 3.30000+ 1 4.06427- 2 0.00000+ 0 3.30000+ 1 3.50000+ 1 3.07367- 1 1.02060- 4 3.30000+ 1 3.60000+ 1 2.69600- 1 1.03350- 4 3.30000+ 1 4.10000+ 1 5.50379- 2 5.52900- 5 3.30000+ 1 4.30000+ 1 5.57315- 2 7.52100- 5 3.30000+ 1 4.40000+ 1 5.73032- 2 8.64600- 5 3.30000+ 1 5.80000+ 1 4.68631- 3 1.04860- 4 3.50000+ 1 3.50000+ 1 3.22420- 4 2.08670- 4 3.50000+ 1 3.60000+ 1 8.94201- 3 2.09960- 4 3.50000+ 1 4.10000+ 1 2.46933- 3 1.61900- 4 3.50000+ 1 4.30000+ 1 7.03746- 4 1.81820- 4 3.50000+ 1 4.40000+ 1 5.94396- 3 1.93070- 4 3.50000+ 1 5.80000+ 1 9.54961- 5 2.11470- 4 3.60000+ 1 3.60000+ 1 3.06575- 3 2.11250- 4 3.60000+ 1 4.10000+ 1 4.61141- 3 1.63190- 4 3.60000+ 1 4.30000+ 1 3.48415- 3 1.83110- 4 3.60000+ 1 4.40000+ 1 7.08811- 3 1.94360- 4 3.60000+ 1 5.80000+ 1 2.46549- 4 2.12760- 4 4.10000+ 1 4.10000+ 1 3.22726- 4 1.15130- 4 4.10000+ 1 4.30000+ 1 4.99715- 4 1.35050- 4 4.10000+ 1 4.40000+ 1 2.01055- 3 1.46300- 4 4.10000+ 1 5.80000+ 1 4.33069- 5 1.64700- 4 4.30000+ 1 4.30000+ 1 1.97836- 6 1.54970- 4 4.30000+ 1 4.40000+ 1 1.75016- 3 1.66220- 4 4.30000+ 1 5.80000+ 1 2.19590- 5 1.84620- 4 4.40000+ 1 4.40000+ 1 1.75780- 3 1.77470- 4 4.40000+ 1 5.80000+ 1 1.55593- 4 1.95870- 4 1 96000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 3.00000+ 0 3.60000+ 1 4.00000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 96000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.28860- 1 3.00000+ 0 2.45540- 2 5.00000+ 0 2.37760- 2 6.00000+ 0 1.89940- 2 8.00000+ 0 6.31310- 3 1.00000+ 1 5.94560- 3 1.10000+ 1 4.82900- 3 1.30000+ 1 4.23720- 3 1.40000+ 1 4.01560- 3 1.60000+ 1 1.66410- 3 1.80000+ 1 1.49320- 3 1.90000+ 1 1.19440- 3 2.10000+ 1 9.19640- 4 2.20000+ 1 8.65440- 4 2.40000+ 1 5.02250- 4 2.50000+ 1 4.87470- 4 2.70000+ 1 3.84300- 4 2.90000+ 1 3.14800- 4 3.00000+ 1 2.39650- 4 3.20000+ 1 1.36460- 4 3.30000+ 1 1.25230- 4 3.50000+ 1 1.34800- 5 3.60000+ 1 1.19500- 5 4.10000+ 1 6.06900- 5 4.30000+ 1 3.96400- 5 4.40000+ 1 2.70000- 5 4.60000+ 1 4.65000- 6 4.70000+ 1 3.93000- 6 5.80000+ 1 6.18000- 6 1 96000 0 0 2.47000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00060- 1 3.00000+ 0 5.07160- 2 5.00000+ 0 5.08290- 2 6.00000+ 0 3.04840- 2 8.00000+ 0 1.62310- 2 1.00000+ 1 1.61010- 2 1.10000+ 1 1.09170- 2 1.30000+ 1 1.07410- 2 1.40000+ 1 9.82440- 3 1.60000+ 1 5.65830- 3 1.80000+ 1 5.49350- 3 1.90000+ 1 3.88710- 3 2.10000+ 1 3.63310- 3 2.20000+ 1 3.35130- 3 2.40000+ 1 2.98540- 3 2.50000+ 1 2.88880- 3 2.70000+ 1 1.83290- 3 2.90000+ 1 1.69710- 3 3.00000+ 1 1.21190- 3 3.20000+ 1 9.85420- 4 3.30000+ 1 9.05560- 4 3.50000+ 1 4.78710- 4 3.60000+ 1 4.54860- 4 4.10000+ 1 4.45460- 4 4.30000+ 1 3.58170- 4 4.40000+ 1 2.34340- 4 4.60000+ 1 9.02400- 5 4.70000+ 1 7.47700- 5 5.80000+ 1 5.10100- 5 1 96000 0 0 2.47000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.76940-11 3.00000+ 0 2.79230-10 5.00000+ 0 2.24320-10 6.00000+ 0 2.81390-10 8.00000+ 0 7.27520-10 1.00000+ 1 6.80800-10 1.10000+ 1 7.82740-10 1.30000+ 1 6.72690-10 1.40000+ 1 7.02420-10 1.60000+ 1 1.57240- 9 1.80000+ 1 1.55740- 9 1.90000+ 1 1.75390- 9 2.10000+ 1 1.72460- 9 2.20000+ 1 1.78170- 9 2.40000+ 1 1.69830- 9 2.50000+ 1 1.72570- 9 2.70000+ 1 3.22290- 9 2.90000+ 1 3.32750- 9 3.00000+ 1 3.74340- 9 3.20000+ 1 4.11650- 9 3.30000+ 1 4.25930- 9 3.50000+ 1 6.02790- 9 3.60000+ 1 6.19010- 9 4.10000+ 1 7.01650- 9 4.30000+ 1 7.76950- 9 4.40000+ 1 9.04380- 9 4.60000+ 1 1.46740- 8 4.70000+ 1 1.60950- 8 5.80000+ 1 1.99840- 8 1 96000 0 0 2.47000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.08690- 4 3.00000+ 0 3.04860- 6 5.00000+ 0 5.31890- 6 6.00000+ 0 4.38210- 6 8.00000+ 0 1.44580- 7 1.00000+ 1 1.55760- 7 1.10000+ 1 1.76270- 7 1.30000+ 1 2.38010- 7 1.40000+ 1 2.17600- 7 1.60000+ 1 8.81480- 9 1.80000+ 1 1.08450- 8 1.90000+ 1 7.36220- 9 2.10000+ 1 4.86660- 9 2.20000+ 1 3.69290- 9 2.40000+ 1 1.94270-10 2.50000+ 1 1.73540-10 2.70000+ 1 6.56670-10 2.90000+ 1 1.23920- 9 3.00000+ 1 5.38850-10 1 96000 0 0 2.47000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.11370- 6 3.00000+ 0 1.33440- 5 5.00000+ 0 5.20260- 6 6.00000+ 0 4.55540- 6 8.00000+ 0 2.03340- 5 1.00000+ 1 1.53190- 5 1.10000+ 1 1.13240- 5 1.30000+ 1 3.70500- 6 1.40000+ 1 3.64390- 6 1.60000+ 1 1.44670- 5 1.80000+ 1 1.55580- 5 1.90000+ 1 9.81210- 6 2.10000+ 1 6.37190- 6 2.20000+ 1 6.86510- 6 2.40000+ 1 7.20700- 7 2.50000+ 1 5.01530- 7 2.70000+ 1 2.69630- 5 2.90000+ 1 1.09280- 5 3.00000+ 1 1.20850- 5 1 96000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.77731- 4 3.00000+ 0 1.10554- 3 5.00000+ 0 8.13287- 4 6.00000+ 0 7.71206- 4 8.00000+ 0 8.53281- 4 1.00000+ 1 7.60496- 4 1.10000+ 1 6.60078- 4 1.30000+ 1 5.12526- 4 1.40000+ 1 5.00048- 4 1.60000+ 1 4.48533- 4 1.80000+ 1 4.28080- 4 1.90000+ 1 4.25053- 4 2.10000+ 1 3.38502- 4 2.20000+ 1 3.32530- 4 2.40000+ 1 1.99029- 4 2.50000+ 1 1.96398- 4 2.70000+ 1 2.21232- 4 2.90000+ 1 2.02766- 4 3.00000+ 1 1.41217- 4 3.20000+ 1 1.36460- 4 3.30000+ 1 1.25230- 4 3.50000+ 1 1.34800- 5 3.60000+ 1 1.19500- 5 4.10000+ 1 6.06900- 5 4.30000+ 1 3.96400- 5 4.40000+ 1 2.70000- 5 4.60000+ 1 4.65000- 6 4.70000+ 1 3.93000- 6 5.80000+ 1 6.18000- 6 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.47560+ 0 3.00000+ 0 6.32802- 1 5.00000+ 0 6.97561- 1 6.00000+ 0 5.68519- 1 8.00000+ 0 6.50951- 2 1.00000+ 1 6.74326- 2 1.10000+ 1 6.06886- 2 1.30000+ 1 6.88965- 2 1.40000+ 1 6.10148- 2 1.60000+ 1 2.14895- 3 1.80000+ 1 2.16677- 3 1.90000+ 1 1.56126- 3 2.10000+ 1 1.05805- 3 2.20000+ 1 8.89929- 4 2.40000+ 1 1.99673- 4 2.50000+ 1 1.75216- 4 2.70000+ 1 5.62962- 5 2.90000+ 1 8.50259- 5 3.00000+ 1 1.80134- 5 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.16077- 1 3.00000+ 0 9.38417- 3 5.00000+ 0 1.23118- 2 6.00000+ 0 7.92294- 3 8.00000+ 0 2.37227- 4 1.00000+ 1 2.48855- 4 1.10000+ 1 2.16602- 4 1.30000+ 1 2.51424- 4 1.40000+ 1 2.12177- 4 1.60000+ 1 1.65102- 6 1.80000+ 1 1.40940- 6 1.90000+ 1 1.01040- 6 2.10000+ 1 5.30965- 7 2.20000+ 1 4.28224- 7 2.40000+ 1 6.77219- 8 2.50000+ 1 5.95337- 8 2.70000+ 1 9.31314- 9 2.90000+ 1 1.58524- 8 3.00000+ 1 2.44968- 9 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 9.02262+ 0 3.00000+ 0 1.32548+ 1 5.00000+ 0 9.46534+ 0 6.00000+ 0 8.93706+ 0 8.00000+ 0 1.01163+ 1 1.00000+ 1 8.85603+ 0 1.10000+ 1 7.62081+ 0 1.30000+ 1 5.65507+ 0 1.40000+ 1 5.46388+ 0 1.60000+ 1 4.52707+ 0 1.80000+ 1 4.27114+ 0 1.90000+ 1 4.23546+ 0 2.10000+ 1 3.25507+ 0 2.20000+ 1 3.10588+ 0 2.40000+ 1 1.89464+ 0 2.50000+ 1 1.71249+ 0 2.70000+ 1 1.79932+ 0 2.90000+ 1 1.07177+ 0 3.00000+ 1 9.99982- 1 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.20048- 2 3.00000+ 0 1.40643- 2 5.00000+ 0 1.06509- 2 6.00000+ 0 1.02998- 2 8.00000+ 0 5.22259- 3 1.00000+ 1 4.93625- 3 1.10000+ 1 3.95232- 3 1.30000+ 1 3.47325- 3 1.40000+ 1 3.30337- 3 1.60000+ 1 1.21392- 3 1.80000+ 1 1.06371- 3 1.90000+ 1 7.68336- 4 2.10000+ 1 5.80607- 4 2.20000+ 1 5.32482- 4 2.40000+ 1 3.03153- 4 2.50000+ 1 2.91012- 4 2.70000+ 1 1.63059- 4 2.90000+ 1 1.12018- 4 3.00000+ 1 9.84308- 5 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.92902- 1 1.05084- 1 6.00000+ 0 4.58423- 1 1.09866- 1 1.00000+ 1 5.34344- 2 1.22914- 1 1.10000+ 1 1.05191- 1 1.24031- 1 1.30000+ 1 2.04751- 3 1.24623- 1 1.40000+ 1 2.27402- 3 1.24844- 1 1.80000+ 1 1.35481- 2 1.27367- 1 1.90000+ 1 2.78522- 2 1.27666- 1 2.10000+ 1 6.22784- 4 1.27940- 1 2.20000+ 1 6.95575- 4 1.27995- 1 2.90000+ 1 3.40592- 3 1.28545- 1 3.00000+ 1 6.92275- 3 1.28620- 1 3.20000+ 1 1.36751- 4 1.28724- 1 3.30000+ 1 1.51321- 4 1.28735- 1 4.30000+ 1 5.85584- 4 1.28820- 1 4.40000+ 1 1.06701- 3 1.28833- 1 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.69360- 3 7.97520- 2 3.00000+ 0 5.00000+ 0 7.12264- 3 8.05300- 2 3.00000+ 0 6.00000+ 0 2.33510- 3 8.53120- 2 3.00000+ 0 8.00000+ 0 1.54625- 3 9.79929- 2 3.00000+ 0 1.00000+ 1 1.56800- 3 9.83604- 2 3.00000+ 0 1.10000+ 1 5.87705- 4 9.94770- 2 3.00000+ 0 1.30000+ 1 5.16358- 5 1.00069- 1 3.00000+ 0 1.40000+ 1 3.04713- 5 1.00290- 1 3.00000+ 0 1.60000+ 1 4.16370- 4 1.02642- 1 3.00000+ 0 1.80000+ 1 4.15995- 4 1.02813- 1 3.00000+ 0 1.90000+ 1 1.58621- 4 1.03112- 1 3.00000+ 0 2.10000+ 1 1.58080- 5 1.03386- 1 3.00000+ 0 2.20000+ 1 9.20399- 6 1.03441- 1 3.00000+ 0 2.40000+ 1 5.19990- 8 1.03804- 1 3.00000+ 0 2.50000+ 1 5.19990- 8 1.03819- 1 3.00000+ 0 2.70000+ 1 1.10784- 4 1.03922- 1 3.00000+ 0 2.90000+ 1 1.04886- 4 1.03991- 1 3.00000+ 0 3.00000+ 1 3.95464- 5 1.04066- 1 3.00000+ 0 3.20000+ 1 3.43202- 6 1.04170- 1 3.00000+ 0 3.30000+ 1 1.97594- 6 1.04181- 1 5.00000+ 0 5.00000+ 0 2.24204- 4 8.13080- 2 5.00000+ 0 6.00000+ 0 3.66240- 3 8.60900- 2 5.00000+ 0 8.00000+ 0 1.32610- 3 9.87709- 2 5.00000+ 0 1.00000+ 1 8.81948- 5 9.91384- 2 5.00000+ 0 1.10000+ 1 7.88345- 4 1.00255- 1 5.00000+ 0 1.30000+ 1 5.19768- 5 1.00847- 1 5.00000+ 0 1.40000+ 1 1.11076- 4 1.01068- 1 5.00000+ 0 1.60000+ 1 3.47708- 4 1.03420- 1 5.00000+ 0 1.80000+ 1 2.29072- 5 1.03591- 1 5.00000+ 0 1.90000+ 1 2.04600- 4 1.03890- 1 5.00000+ 0 2.10000+ 1 1.51331- 5 1.04164- 1 5.00000+ 0 2.20000+ 1 3.26559- 5 1.04219- 1 5.00000+ 0 2.40000+ 1 4.94006- 7 1.04582- 1 5.00000+ 0 2.50000+ 1 7.02028- 7 1.04597- 1 5.00000+ 0 2.70000+ 1 9.18870- 5 1.04700- 1 5.00000+ 0 2.90000+ 1 5.74605- 6 1.04769- 1 5.00000+ 0 3.00000+ 1 5.04944- 5 1.04844- 1 5.00000+ 0 3.20000+ 1 3.24992- 6 1.04948- 1 5.00000+ 0 3.30000+ 1 6.96829- 6 1.04959- 1 6.00000+ 0 6.00000+ 0 1.44874- 3 9.08720- 2 6.00000+ 0 8.00000+ 0 3.84044- 4 1.03553- 1 6.00000+ 0 1.00000+ 1 6.67930- 4 1.03920- 1 6.00000+ 0 1.10000+ 1 6.42544- 4 1.05037- 1 6.00000+ 0 1.30000+ 1 1.17345- 4 1.05629- 1 6.00000+ 0 1.40000+ 1 9.16539- 5 1.05850- 1 6.00000+ 0 1.60000+ 1 9.76575- 5 1.08202- 1 6.00000+ 0 1.80000+ 1 1.69367- 4 1.08373- 1 6.00000+ 0 1.90000+ 1 1.68097- 4 1.08672- 1 6.00000+ 0 2.10000+ 1 3.46846- 5 1.08946- 1 6.00000+ 0 2.20000+ 1 2.70939- 5 1.09001- 1 6.00000+ 0 2.40000+ 1 7.02027- 7 1.09364- 1 6.00000+ 0 2.50000+ 1 7.28033- 7 1.09379- 1 6.00000+ 0 2.70000+ 1 2.55849- 5 1.09482- 1 6.00000+ 0 2.90000+ 1 4.21982- 5 1.09551- 1 6.00000+ 0 3.00000+ 1 4.15768- 5 1.09626- 1 6.00000+ 0 3.20000+ 1 7.48817- 6 1.09730- 1 6.00000+ 0 3.30000+ 1 5.79825- 6 1.09741- 1 8.00000+ 0 8.00000+ 0 1.60006- 4 1.16234- 1 8.00000+ 0 1.00000+ 1 2.93266- 4 1.16601- 1 8.00000+ 0 1.10000+ 1 9.74714- 5 1.17718- 1 8.00000+ 0 1.30000+ 1 8.32027- 6 1.18310- 1 8.00000+ 0 1.40000+ 1 4.62797- 6 1.18531- 1 8.00000+ 0 1.60000+ 1 8.60361- 5 1.20883- 1 8.00000+ 0 1.80000+ 1 7.79244- 5 1.21054- 1 8.00000+ 0 1.90000+ 1 2.63906- 5 1.21352- 1 8.00000+ 0 2.10000+ 1 2.54799- 6 1.21627- 1 8.00000+ 0 2.20000+ 1 1.37808- 6 1.21681- 1 8.00000+ 0 2.70000+ 1 2.28805- 5 1.22163- 1 8.00000+ 0 2.90000+ 1 1.96563- 5 1.22232- 1 8.00000+ 0 3.00000+ 1 6.57816- 6 1.22307- 1 8.00000+ 0 3.20000+ 1 5.46013- 7 1.22410- 1 8.00000+ 0 3.30000+ 1 2.86014- 7 1.22422- 1 1.00000+ 1 1.00000+ 1 8.03429- 6 1.16969- 1 1.00000+ 1 1.10000+ 1 1.49038- 4 1.18085- 1 1.00000+ 1 1.30000+ 1 8.91835- 6 1.18677- 1 1.00000+ 1 1.40000+ 1 1.48994- 5 1.18899- 1 1.00000+ 1 1.60000+ 1 7.69366- 5 1.21250- 1 1.00000+ 1 1.80000+ 1 4.10833- 6 1.21421- 1 1.00000+ 1 1.90000+ 1 3.89772- 5 1.21720- 1 1.00000+ 1 2.10000+ 1 2.62611- 6 1.21995- 1 1.00000+ 1 2.20000+ 1 4.44609- 6 1.22049- 1 1.00000+ 1 2.40000+ 1 5.20023- 8 1.22412- 1 1.00000+ 1 2.50000+ 1 7.80028- 8 1.22427- 1 1.00000+ 1 2.70000+ 1 2.03336- 5 1.22530- 1 1.00000+ 1 2.90000+ 1 1.01404- 6 1.22600- 1 1.00000+ 1 3.00000+ 1 9.64632- 6 1.22675- 1 1.00000+ 1 3.20000+ 1 5.72035- 7 1.22778- 1 1.00000+ 1 3.30000+ 1 9.62049- 7 1.22789- 1 1.10000+ 1 1.10000+ 1 7.21772- 5 1.19202- 1 1.10000+ 1 1.30000+ 1 2.12938- 5 1.19794- 1 1.10000+ 1 1.40000+ 1 1.59119- 5 1.20015- 1 1.10000+ 1 1.60000+ 1 2.48291- 5 1.22367- 1 1.10000+ 1 1.80000+ 1 3.80898- 5 1.22538- 1 1.10000+ 1 1.90000+ 1 3.78800- 5 1.22837- 1 1.10000+ 1 2.10000+ 1 6.36993- 6 1.23111- 1 1.10000+ 1 2.20000+ 1 4.75788- 6 1.23166- 1 1.10000+ 1 2.40000+ 1 1.03995- 7 1.23529- 1 1.10000+ 1 2.50000+ 1 1.03995- 7 1.23544- 1 1.10000+ 1 2.70000+ 1 6.49995- 6 1.23647- 1 1.10000+ 1 2.90000+ 1 9.51609- 6 1.23716- 1 1.10000+ 1 3.00000+ 1 9.38607- 6 1.23791- 1 1.10000+ 1 3.20000+ 1 1.37805- 6 1.23895- 1 1.10000+ 1 3.30000+ 1 1.01398- 6 1.23906- 1 1.30000+ 1 1.30000+ 1 5.19995- 8 1.20386- 1 1.30000+ 1 1.40000+ 1 2.18402- 6 1.20607- 1 1.30000+ 1 1.60000+ 1 2.10610- 6 1.22959- 1 1.30000+ 1 1.80000+ 1 2.26195- 6 1.23130- 1 1.30000+ 1 1.90000+ 1 5.30414- 6 1.23428- 1 1.30000+ 1 2.10000+ 1 2.60002- 8 1.23703- 1 1.30000+ 1 2.20000+ 1 6.24013- 7 1.23757- 1 1.30000+ 1 2.50000+ 1 2.60002- 8 1.24135- 1 1.30000+ 1 2.70000+ 1 5.46000- 7 1.24238- 1 1.30000+ 1 2.90000+ 1 5.72005- 7 1.24308- 1 1.30000+ 1 3.00000+ 1 1.29990- 6 1.24383- 1 1.30000+ 1 3.30000+ 1 1.29990- 7 1.24498- 1 1.40000+ 1 1.40000+ 1 5.46004- 7 1.20829- 1 1.40000+ 1 1.60000+ 1 1.17000- 6 1.23180- 1 1.40000+ 1 1.80000+ 1 3.50989- 6 1.23351- 1 1.40000+ 1 1.90000+ 1 3.92613- 6 1.23650- 1 1.40000+ 1 2.10000+ 1 6.24019- 7 1.23925- 1 1.40000+ 1 2.20000+ 1 3.12015- 7 1.23979- 1 1.40000+ 1 2.70000+ 1 3.12015- 7 1.24460- 1 1.40000+ 1 2.90000+ 1 8.58019- 7 1.24530- 1 1.40000+ 1 3.00000+ 1 9.62005- 7 1.24605- 1 1.40000+ 1 3.20000+ 1 1.29991- 7 1.24708- 1 1.40000+ 1 3.30000+ 1 7.79993- 8 1.24719- 1 1.60000+ 1 1.60000+ 1 1.15699- 5 1.25532- 1 1.60000+ 1 1.80000+ 1 2.04367- 5 1.25703- 1 1.60000+ 1 1.90000+ 1 6.73435- 6 1.26001- 1 1.60000+ 1 2.10000+ 1 6.50013- 7 1.26276- 1 1.60000+ 1 2.20000+ 1 3.38026- 7 1.26330- 1 1.60000+ 1 2.70000+ 1 6.16226- 6 1.26812- 1 1.60000+ 1 2.90000+ 1 5.14809- 6 1.26881- 1 1.60000+ 1 3.00000+ 1 1.69001- 6 1.26956- 1 1.60000+ 1 3.20000+ 1 1.29994- 7 1.27059- 1 1.60000+ 1 3.30000+ 1 7.80006- 8 1.27071- 1 1.80000+ 1 1.80000+ 1 5.19999- 7 1.25874- 1 1.80000+ 1 1.90000+ 1 9.98409- 6 1.26172- 1 1.80000+ 1 2.10000+ 1 6.76007- 7 1.26447- 1 1.80000+ 1 2.20000+ 1 1.06597- 6 1.26501- 1 1.80000+ 1 2.40000+ 1 2.60005- 8 1.26865- 1 1.80000+ 1 2.50000+ 1 2.60005- 8 1.26879- 1 1.80000+ 1 2.70000+ 1 5.40805- 6 1.26982- 1 1.80000+ 1 2.90000+ 1 2.60005- 7 1.27052- 1 1.80000+ 1 3.00000+ 1 2.47003- 6 1.27127- 1 1.80000+ 1 3.20000+ 1 1.55996- 7 1.27230- 1 1.80000+ 1 3.30000+ 1 2.34001- 7 1.27242- 1 1.90000+ 1 1.90000+ 1 4.96608- 6 1.26471- 1 1.90000+ 1 2.10000+ 1 1.58601- 6 1.26746- 1 1.90000+ 1 2.20000+ 1 1.17000- 6 1.26800- 1 1.90000+ 1 2.40000+ 1 2.60004- 8 1.27163- 1 1.90000+ 1 2.50000+ 1 2.60004- 8 1.27178- 1 1.90000+ 1 2.70000+ 1 1.76802- 6 1.27281- 1 1.90000+ 1 2.90000+ 1 2.49596- 6 1.27351- 1 1.90000+ 1 3.00000+ 1 2.47002- 6 1.27426- 1 1.90000+ 1 3.20000+ 1 3.38019- 7 1.27529- 1 1.90000+ 1 3.30000+ 1 2.60004- 7 1.27540- 1 2.10000+ 1 2.20000+ 1 1.82003- 7 1.27075- 1 2.10000+ 1 2.70000+ 1 1.82003- 7 1.27556- 1 2.10000+ 1 2.90000+ 1 1.55998- 7 1.27626- 1 2.10000+ 1 3.00000+ 1 3.90001- 7 1.27701- 1 2.10000+ 1 3.30000+ 1 2.60007- 8 1.27815- 1 2.20000+ 1 2.20000+ 1 5.20009- 8 1.27129- 1 2.20000+ 1 2.70000+ 1 1.03998- 7 1.27610- 1 2.20000+ 1 2.90000+ 1 2.60009- 7 1.27680- 1 2.20000+ 1 3.00000+ 1 2.86015- 7 1.27755- 1 2.20000+ 1 3.20000+ 1 2.60009- 8 1.27858- 1 2.20000+ 1 3.30000+ 1 2.60009- 8 1.27869- 1 2.70000+ 1 2.70000+ 1 7.97488- 7 1.28091- 1 2.70000+ 1 2.90000+ 1 1.33774- 6 1.28161- 1 2.70000+ 1 3.00000+ 1 4.37339- 7 1.28236- 1 2.70000+ 1 3.20000+ 1 2.57260- 8 1.28339- 1 2.70000+ 1 3.30000+ 1 2.57260- 8 1.28350- 1 2.90000+ 1 2.90000+ 1 2.52364- 8 1.28230- 1 2.90000+ 1 3.00000+ 1 6.05680- 7 1.28306- 1 2.90000+ 1 3.20000+ 1 2.52364- 8 1.28409- 1 2.90000+ 1 3.30000+ 1 5.04718- 8 1.28420- 1 3.00000+ 1 3.00000+ 1 3.18854- 7 1.28381- 1 3.00000+ 1 3.20000+ 1 7.97091- 8 1.28484- 1 3.00000+ 1 3.30000+ 1 5.31398- 8 1.28495- 1 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.33210- 5 7.78000- 4 6.00000+ 0 1.29840- 2 5.56000- 3 1.00000+ 1 6.63491- 2 1.86084- 2 1.10000+ 1 5.13270- 2 1.97250- 2 1.30000+ 1 3.36070- 3 2.03168- 2 1.40000+ 1 4.99610- 3 2.05384- 2 1.80000+ 1 1.81930- 2 2.30608- 2 1.90000+ 1 1.65300- 2 2.33596- 2 2.10000+ 1 5.95200- 4 2.36344- 2 2.20000+ 1 9.57461- 4 2.36886- 2 2.90000+ 1 4.62260- 3 2.42392- 2 3.00000+ 1 4.27730- 3 2.43143- 2 3.20000+ 1 1.14740- 4 2.44175- 2 3.30000+ 1 1.86670- 4 2.44288- 2 4.30000+ 1 7.98251- 4 2.45144- 2 4.40000+ 1 6.63891- 4 2.45270- 2 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.21630- 2 2.75750- 4 5.00000+ 0 2.50000+ 1 1.61071- 2 2.90530- 4 5.00000+ 0 2.70000+ 1 5.44520- 3 3.93700- 4 5.00000+ 0 2.90000+ 1 4.53161- 3 4.63200- 4 5.00000+ 0 3.00000+ 1 3.38731- 3 5.38350- 4 5.00000+ 0 3.20000+ 1 9.35239- 4 6.41540- 4 5.00000+ 0 3.30000+ 1 1.15360- 3 6.52770- 4 6.00000+ 0 1.10000+ 1 3.35868- 2 7.31000- 4 6.00000+ 0 1.30000+ 1 1.96559- 1 1.32280- 3 6.00000+ 0 1.40000+ 1 2.33019- 1 1.54440- 3 6.00000+ 0 1.60000+ 1 1.64849- 2 3.89590- 3 6.00000+ 0 1.80000+ 1 6.40363- 3 4.06680- 3 6.00000+ 0 1.90000+ 1 8.68730- 3 4.36560- 3 6.00000+ 0 2.10000+ 1 3.26938- 2 4.64036- 3 6.00000+ 0 2.20000+ 1 3.70957- 2 4.69456- 3 6.00000+ 0 2.40000+ 1 1.82729- 2 5.05775- 3 6.00000+ 0 2.50000+ 1 2.21519- 2 5.07253- 3 6.00000+ 0 2.70000+ 1 4.13037- 3 5.17570- 3 6.00000+ 0 2.90000+ 1 1.59959- 3 5.24520- 3 6.00000+ 0 3.00000+ 1 2.14779- 3 5.32035- 3 6.00000+ 0 3.20000+ 1 6.39023- 3 5.42354- 3 6.00000+ 0 3.30000+ 1 7.09783- 3 5.43477- 3 8.00000+ 0 8.00000+ 0 5.74953- 3 1.19278- 2 8.00000+ 0 1.00000+ 1 1.21969- 2 1.22953- 2 8.00000+ 0 1.10000+ 1 1.61798- 2 1.34119- 2 8.00000+ 0 1.30000+ 1 1.12020- 2 1.40037- 2 8.00000+ 0 1.40000+ 1 1.31329- 2 1.42253- 2 8.00000+ 0 1.60000+ 1 2.64318- 3 1.65768- 2 8.00000+ 0 1.80000+ 1 3.21187- 3 1.67477- 2 8.00000+ 0 1.90000+ 1 4.26935- 3 1.70465- 2 8.00000+ 0 2.10000+ 1 2.82958- 3 1.73213- 2 8.00000+ 0 2.20000+ 1 3.31527- 3 1.73755- 2 8.00000+ 0 2.40000+ 1 2.62838- 4 1.77386- 2 8.00000+ 0 2.50000+ 1 2.65328- 4 1.77534- 2 8.00000+ 0 2.70000+ 1 6.82970- 4 1.78566- 2 8.00000+ 0 2.90000+ 1 8.06799- 4 1.79261- 2 8.00000+ 0 3.00000+ 1 1.05690- 3 1.80012- 2 8.00000+ 0 3.20000+ 1 5.90952- 4 1.81044- 2 8.00000+ 0 3.30000+ 1 6.84990- 4 1.81157- 2 1.00000+ 1 1.00000+ 1 1.12965- 5 1.26628- 2 1.00000+ 1 1.10000+ 1 2.26599- 4 1.37794- 2 1.00000+ 1 1.30000+ 1 7.90467- 4 1.43712- 2 1.00000+ 1 1.40000+ 1 5.25164- 3 1.45928- 2 1.00000+ 1 1.60000+ 1 2.22949- 3 1.69443- 2 1.00000+ 1 1.80000+ 1 1.32913- 6 1.71152- 2 1.00000+ 1 1.90000+ 1 4.75136- 5 1.74140- 2 1.00000+ 1 2.10000+ 1 1.64962- 4 1.76888- 2 1.00000+ 1 2.20000+ 1 8.62752- 4 1.77430- 2 1.00000+ 1 2.40000+ 1 1.02335- 4 1.81061- 2 1.00000+ 1 2.50000+ 1 3.49371- 4 1.81209- 2 1.00000+ 1 2.70000+ 1 5.40422- 4 1.82241- 2 1.00000+ 1 2.90000+ 1 3.32263- 7 1.82936- 2 1.00000+ 1 3.00000+ 1 1.11305- 5 1.83687- 2 1.00000+ 1 3.20000+ 1 3.35583- 5 1.84719- 2 1.00000+ 1 3.30000+ 1 1.62812- 4 1.84832- 2 1.10000+ 1 1.10000+ 1 8.05093- 4 1.48960- 2 1.10000+ 1 1.30000+ 1 1.40569- 3 1.54878- 2 1.10000+ 1 1.40000+ 1 8.87041- 4 1.57094- 2 1.10000+ 1 1.60000+ 1 2.84459- 3 1.80609- 2 1.10000+ 1 1.80000+ 1 6.18015- 5 1.82318- 2 1.10000+ 1 1.90000+ 1 3.35269- 4 1.85306- 2 1.10000+ 1 2.10000+ 1 1.78769- 4 1.88054- 2 1.10000+ 1 2.20000+ 1 8.30632- 5 1.88596- 2 1.10000+ 1 2.40000+ 1 9.65271- 5 1.92227- 2 1.10000+ 1 2.50000+ 1 8.63931- 5 1.92375- 2 1.10000+ 1 2.70000+ 1 6.82674- 4 1.93407- 2 1.10000+ 1 2.90000+ 1 1.56169- 5 1.94102- 2 1.10000+ 1 3.00000+ 1 7.87503- 5 1.94853- 2 1.10000+ 1 3.20000+ 1 3.27299- 5 1.95885- 2 1.10000+ 1 3.30000+ 1 1.37899- 5 1.95998- 2 1.30000+ 1 1.30000+ 1 6.16167- 4 1.60796- 2 1.30000+ 1 1.40000+ 1 1.65577- 2 1.63012- 2 1.30000+ 1 1.60000+ 1 1.75407- 3 1.86527- 2 1.30000+ 1 1.80000+ 1 2.40406- 4 1.88236- 2 1.30000+ 1 1.90000+ 1 3.82613- 4 1.91224- 2 1.30000+ 1 2.10000+ 1 3.03696- 4 1.93972- 2 1.30000+ 1 2.20000+ 1 2.92506- 3 1.94514- 2 1.30000+ 1 2.40000+ 1 2.49876- 4 1.98145- 2 1.30000+ 1 2.50000+ 1 6.72715- 4 1.98293- 2 1.30000+ 1 2.70000+ 1 4.09202- 4 1.99325- 2 1.30000+ 1 2.90000+ 1 6.24656- 5 2.00020- 2 1.30000+ 1 3.00000+ 1 9.65258- 5 2.00771- 2 1.30000+ 1 3.20000+ 1 6.32966- 5 2.01803- 2 1.30000+ 1 3.30000+ 1 5.58219- 4 2.01916- 2 1.40000+ 1 1.40000+ 1 4.46465- 3 1.65228- 2 1.40000+ 1 1.60000+ 1 2.08683- 3 1.88743- 2 1.40000+ 1 1.80000+ 1 1.21061- 3 1.90452- 2 1.40000+ 1 1.90000+ 1 2.24123- 4 1.93440- 2 1.40000+ 1 2.10000+ 1 2.78004- 3 1.96188- 2 1.40000+ 1 2.20000+ 1 1.66242- 3 1.96730- 2 1.40000+ 1 2.40000+ 1 7.35197- 4 2.00361- 2 1.40000+ 1 2.50000+ 1 5.38637- 4 2.00509- 2 1.40000+ 1 2.70000+ 1 4.90616- 4 2.01541- 2 1.40000+ 1 2.90000+ 1 2.95575- 4 2.02236- 2 1.40000+ 1 3.00000+ 1 5.63216- 5 2.02987- 2 1.40000+ 1 3.20000+ 1 5.30327- 4 2.04019- 2 1.40000+ 1 3.30000+ 1 3.21654- 4 2.04132- 2 1.60000+ 1 1.60000+ 1 2.87088- 4 2.12258- 2 1.60000+ 1 1.80000+ 1 5.88292- 4 2.13967- 2 1.60000+ 1 1.90000+ 1 7.55080- 4 2.16955- 2 1.60000+ 1 2.10000+ 1 4.47746- 4 2.19703- 2 1.60000+ 1 2.20000+ 1 5.28155- 4 2.20245- 2 1.60000+ 1 2.40000+ 1 3.50556- 5 2.23876- 2 1.60000+ 1 2.50000+ 1 3.32277- 5 2.24024- 2 1.60000+ 1 2.70000+ 1 1.46369- 4 2.25056- 2 1.60000+ 1 2.90000+ 1 1.47869- 4 2.25751- 2 1.60000+ 1 3.00000+ 1 1.87068- 4 2.26502- 2 1.60000+ 1 3.20000+ 1 9.37027- 5 2.27534- 2 1.60000+ 1 3.30000+ 1 1.09150- 4 2.27647- 2 1.80000+ 1 1.90000+ 1 1.29588- 5 2.18664- 2 1.80000+ 1 2.10000+ 1 4.61873- 5 2.21412- 2 1.80000+ 1 2.20000+ 1 2.08007- 4 2.21954- 2 1.80000+ 1 2.40000+ 1 1.47868- 5 2.25585- 2 1.80000+ 1 2.50000+ 1 5.74840- 5 2.25733- 2 1.80000+ 1 2.70000+ 1 1.42548- 4 2.26765- 2 1.80000+ 1 3.00000+ 1 2.99047- 6 2.28211- 2 1.80000+ 1 3.20000+ 1 9.13733- 6 2.29243- 2 1.80000+ 1 3.30000+ 1 3.95404- 5 2.29356- 2 1.90000+ 1 1.90000+ 1 3.35600- 5 2.21652- 2 1.90000+ 1 2.10000+ 1 4.66860- 5 2.24400- 2 1.90000+ 1 2.20000+ 1 2.09340- 5 2.24942- 2 1.90000+ 1 2.40000+ 1 2.44231- 5 2.28573- 2 1.90000+ 1 2.50000+ 1 2.07680- 5 2.28721- 2 1.90000+ 1 2.70000+ 1 1.81420- 4 2.29753- 2 1.90000+ 1 2.90000+ 1 3.32280- 6 2.30448- 2 1.90000+ 1 3.00000+ 1 1.56170- 5 2.31199- 2 1.90000+ 1 3.20000+ 1 8.30636- 6 2.32231- 2 1.90000+ 1 3.30000+ 1 3.32280- 6 2.32344- 2 2.10000+ 1 2.10000+ 1 3.45570- 5 2.27147- 2 2.10000+ 1 2.20000+ 1 5.37470- 4 2.27689- 2 2.10000+ 1 2.40000+ 1 4.28649- 5 2.31321- 2 2.10000+ 1 2.50000+ 1 8.65635- 5 2.31469- 2 2.10000+ 1 2.70000+ 1 1.04671- 4 2.32501- 2 2.10000+ 1 2.90000+ 1 1.17960- 5 2.33196- 2 2.10000+ 1 3.00000+ 1 1.17960- 5 2.33947- 2 2.10000+ 1 3.20000+ 1 1.41220- 5 2.34979- 2 2.10000+ 1 3.30000+ 1 1.04511- 4 2.35091- 2 2.20000+ 1 2.20000+ 1 1.65969- 4 2.28231- 2 2.20000+ 1 2.40000+ 1 1.02340- 4 2.31863- 2 2.20000+ 1 2.50000+ 1 8.25753- 5 2.32011- 2 2.20000+ 1 2.70000+ 1 1.24109- 4 2.33043- 2 2.20000+ 1 2.90000+ 1 5.11708- 5 2.33738- 2 2.20000+ 1 3.00000+ 1 5.31648- 6 2.34489- 2 2.20000+ 1 3.20000+ 1 1.04330- 4 2.35521- 2 2.20000+ 1 3.30000+ 1 6.51285- 5 2.35633- 2 2.40000+ 1 2.40000+ 1 1.32920- 6 2.35495- 2 2.40000+ 1 2.50000+ 1 2.27610- 5 2.35643- 2 2.40000+ 1 2.70000+ 1 7.97467- 6 2.36674- 2 2.40000+ 1 2.90000+ 1 3.15670- 6 2.37369- 2 2.40000+ 1 3.00000+ 1 5.98108- 6 2.38121- 2 2.40000+ 1 3.20000+ 1 8.30636- 6 2.39153- 2 2.40000+ 1 3.30000+ 1 1.86080- 5 2.39265- 2 2.50000+ 1 2.50000+ 1 4.81805- 6 2.35791- 2 2.50000+ 1 2.70000+ 1 7.47630- 6 2.36822- 2 2.50000+ 1 2.90000+ 1 1.29589- 5 2.37517- 2 2.50000+ 1 3.00000+ 1 4.98415- 6 2.38269- 2 2.50000+ 1 3.20000+ 1 1.56168- 5 2.39301- 2 2.50000+ 1 3.30000+ 1 1.52848- 5 2.39413- 2 2.70000+ 1 2.70000+ 1 1.86076- 5 2.37854- 2 2.70000+ 1 2.90000+ 1 3.58852- 5 2.38549- 2 2.70000+ 1 3.00000+ 1 4.50231- 5 2.39300- 2 2.70000+ 1 3.20000+ 1 2.19296- 5 2.40332- 2 2.70000+ 1 3.30000+ 1 2.55846- 5 2.40445- 2 2.90000+ 1 3.00000+ 1 8.30618- 7 2.39995- 2 2.90000+ 1 3.20000+ 1 2.32585- 6 2.41027- 2 2.90000+ 1 3.30000+ 1 9.80154- 6 2.41140- 2 3.00000+ 1 3.00000+ 1 2.07529- 6 2.40747- 2 3.00000+ 1 3.20000+ 1 2.45251- 6 2.41779- 2 3.00000+ 1 3.30000+ 1 9.43208- 7 2.41891- 2 3.20000+ 1 3.20000+ 1 1.49528- 6 2.42811- 2 3.20000+ 1 3.30000+ 1 2.04357- 5 2.42923- 2 3.30000+ 1 3.30000+ 1 6.47930- 6 2.43035- 2 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.00028- 5 4.78200- 3 8.00000+ 0 1.11750- 2 1.74629- 2 1.10000+ 1 6.21577- 4 1.89470- 2 1.30000+ 1 3.89438- 1 1.95388- 2 1.60000+ 1 3.08409- 3 2.21119- 2 1.90000+ 1 1.93759- 4 2.25816- 2 2.10000+ 1 9.14726- 2 2.28564- 2 2.40000+ 1 6.38337- 4 2.32737- 2 2.70000+ 1 8.25207- 4 2.33917- 2 3.00000+ 1 4.98178- 5 2.35363- 2 3.20000+ 1 1.89859- 2 2.36395- 2 3.50000+ 1 4.37538- 5 2.37625- 2 4.10000+ 1 1.71109- 4 2.37153- 2 4.40000+ 1 7.60537- 6 2.37490- 2 5.80000+ 1 1.45479- 5 2.37698- 2 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.30000+ 1 9.72956- 2 5.44800- 4 6.00000+ 0 1.40000+ 1 3.14127- 2 7.66400- 4 6.00000+ 0 1.60000+ 1 2.75965- 3 3.11790- 3 6.00000+ 0 1.80000+ 1 2.42895- 2 3.28880- 3 6.00000+ 0 1.90000+ 1 5.21732- 3 3.58760- 3 6.00000+ 0 2.10000+ 1 1.97169- 2 3.86236- 3 6.00000+ 0 2.20000+ 1 6.63501- 3 3.91656- 3 6.00000+ 0 2.40000+ 1 1.03754- 3 4.27975- 3 6.00000+ 0 2.50000+ 1 1.45932- 3 4.29453- 3 6.00000+ 0 2.70000+ 1 6.74475- 4 4.39770- 3 6.00000+ 0 2.90000+ 1 5.51635- 3 4.46720- 3 6.00000+ 0 3.00000+ 1 1.25029- 3 4.54235- 3 6.00000+ 0 3.20000+ 1 3.93469- 3 4.64554- 3 6.00000+ 0 3.30000+ 1 1.32993- 3 4.65677- 3 8.00000+ 0 8.00000+ 0 3.21011- 4 1.11498- 2 8.00000+ 0 1.00000+ 1 1.45324- 2 1.15173- 2 8.00000+ 0 1.10000+ 1 1.22906- 3 1.26339- 2 8.00000+ 0 1.30000+ 1 2.90784- 3 1.32257- 2 8.00000+ 0 1.40000+ 1 8.52576- 4 1.34473- 2 8.00000+ 0 1.60000+ 1 1.30988- 4 1.57988- 2 8.00000+ 0 1.80000+ 1 2.53387- 3 1.59697- 2 8.00000+ 0 1.90000+ 1 2.92631- 4 1.62685- 2 8.00000+ 0 2.10000+ 1 5.27519- 4 1.65433- 2 8.00000+ 0 2.20000+ 1 1.31242- 4 1.65975- 2 8.00000+ 0 2.40000+ 1 5.52311- 5 1.69606- 2 8.00000+ 0 2.50000+ 1 4.18049- 5 1.69754- 2 8.00000+ 0 2.70000+ 1 3.26836- 5 1.70786- 2 8.00000+ 0 2.90000+ 1 5.78931- 4 1.71481- 2 8.00000+ 0 3.00000+ 1 7.06890- 5 1.72232- 2 8.00000+ 0 3.20000+ 1 1.02873- 4 1.73264- 2 8.00000+ 0 3.30000+ 1 2.45764- 5 1.73377- 2 1.00000+ 1 1.00000+ 1 1.57386- 2 1.18848- 2 1.00000+ 1 1.10000+ 1 3.32969- 2 1.30014- 2 1.00000+ 1 1.30000+ 1 1.66191- 2 1.35932- 2 1.00000+ 1 1.40000+ 1 1.99623- 2 1.38148- 2 1.00000+ 1 1.60000+ 1 4.00986- 3 1.61663- 2 1.00000+ 1 1.80000+ 1 6.96653- 3 1.63372- 2 1.00000+ 1 1.90000+ 1 8.61436- 3 1.66360- 2 1.00000+ 1 2.10000+ 1 4.17755- 3 1.69108- 2 1.00000+ 1 2.20000+ 1 5.05981- 3 1.69650- 2 1.00000+ 1 2.40000+ 1 3.30643- 4 1.73281- 2 1.00000+ 1 2.50000+ 1 2.56402- 4 1.73429- 2 1.00000+ 1 2.70000+ 1 1.07204- 3 1.74461- 2 1.00000+ 1 2.90000+ 1 1.69269- 3 1.75156- 2 1.00000+ 1 3.00000+ 1 2.12327- 3 1.75907- 2 1.00000+ 1 3.20000+ 1 8.72596- 4 1.76939- 2 1.00000+ 1 3.30000+ 1 1.04692- 3 1.77052- 2 1.10000+ 1 1.10000+ 1 6.33690- 4 1.41180- 2 1.10000+ 1 1.30000+ 1 1.16508- 2 1.47098- 2 1.10000+ 1 1.40000+ 1 1.85159- 3 1.49314- 2 1.10000+ 1 1.60000+ 1 2.80990- 4 1.72829- 2 1.10000+ 1 1.80000+ 1 5.79570- 3 1.74538- 2 1.10000+ 1 1.90000+ 1 2.84781- 4 1.77526- 2 1.10000+ 1 2.10000+ 1 2.52327- 3 1.80274- 2 1.10000+ 1 2.20000+ 1 3.91703- 4 1.80816- 2 1.10000+ 1 2.40000+ 1 9.52617- 5 1.84447- 2 1.10000+ 1 2.50000+ 1 4.63668- 5 1.84595- 2 1.10000+ 1 2.70000+ 1 7.17051- 5 1.85627- 2 1.10000+ 1 2.90000+ 1 1.32232- 3 1.86322- 2 1.10000+ 1 3.00000+ 1 6.79015- 5 1.87073- 2 1.10000+ 1 3.20000+ 1 5.09794- 4 1.88105- 2 1.10000+ 1 3.30000+ 1 7.80347- 5 1.88218- 2 1.30000+ 1 1.30000+ 1 1.10253- 2 1.53016- 2 1.30000+ 1 1.40000+ 1 4.16786- 2 1.55232- 2 1.30000+ 1 1.60000+ 1 8.04938- 4 1.78747- 2 1.30000+ 1 1.80000+ 1 2.77089- 3 1.80456- 2 1.30000+ 1 1.90000+ 1 2.75232- 3 1.83444- 2 1.30000+ 1 2.10000+ 1 4.60792- 3 1.86192- 2 1.30000+ 1 2.20000+ 1 9.42028- 3 1.86734- 2 1.30000+ 1 2.40000+ 1 9.95715- 4 1.90365- 2 1.30000+ 1 2.50000+ 1 1.96036- 3 1.90513- 2 1.30000+ 1 2.70000+ 1 2.15874- 4 1.91545- 2 1.30000+ 1 2.90000+ 1 6.32386- 4 1.92240- 2 1.30000+ 1 3.00000+ 1 6.64087- 4 1.92991- 2 1.30000+ 1 3.20000+ 1 9.29373- 4 1.94023- 2 1.30000+ 1 3.30000+ 1 1.90260- 3 1.94136- 2 1.40000+ 1 1.40000+ 1 2.04089- 3 1.57448- 2 1.40000+ 1 1.60000+ 1 1.89773- 4 1.80963- 2 1.40000+ 1 1.80000+ 1 2.89326- 3 1.82672- 2 1.40000+ 1 1.90000+ 1 4.04886- 4 1.85660- 2 1.40000+ 1 2.10000+ 1 7.15507- 3 1.88408- 2 1.40000+ 1 2.20000+ 1 8.43996- 4 1.88950- 2 1.40000+ 1 2.40000+ 1 3.96276- 4 1.92581- 2 1.40000+ 1 2.50000+ 1 1.49744- 4 1.92729- 2 1.40000+ 1 2.70000+ 1 4.83945- 5 1.93761- 2 1.40000+ 1 2.90000+ 1 6.31373- 4 1.94456- 2 1.40000+ 1 3.00000+ 1 9.60249- 5 1.95207- 2 1.40000+ 1 3.20000+ 1 1.37626- 3 1.96239- 2 1.40000+ 1 3.30000+ 1 1.67989- 4 1.96352- 2 1.60000+ 1 1.60000+ 1 1.26683- 5 2.04478- 2 1.60000+ 1 1.80000+ 1 7.02080- 4 2.06187- 2 1.60000+ 1 1.90000+ 1 6.71441- 5 2.09175- 2 1.60000+ 1 2.10000+ 1 1.43159- 4 2.11923- 2 1.60000+ 1 2.20000+ 1 2.88841- 5 2.12465- 2 1.60000+ 1 2.40000+ 1 1.29214- 5 2.16096- 2 1.60000+ 1 2.50000+ 1 7.85441- 6 2.16244- 2 1.60000+ 1 2.70000+ 1 6.33416- 6 2.17276- 2 1.60000+ 1 2.90000+ 1 1.60643- 4 2.17971- 2 1.60000+ 1 3.00000+ 1 1.62158- 5 2.18722- 2 1.60000+ 1 3.20000+ 1 2.78707- 5 2.19754- 2 1.60000+ 1 3.30000+ 1 5.32083- 6 2.19867- 2 1.80000+ 1 1.80000+ 1 7.32741- 4 2.07896- 2 1.80000+ 1 1.90000+ 1 1.50464- 3 2.10884- 2 1.80000+ 1 2.10000+ 1 6.86878- 4 2.13632- 2 1.80000+ 1 2.20000+ 1 7.41829- 4 2.14174- 2 1.80000+ 1 2.40000+ 1 4.56046- 5 2.17805- 2 1.80000+ 1 2.50000+ 1 2.66023- 5 2.17953- 2 1.80000+ 1 2.70000+ 1 1.87747- 4 2.18985- 2 1.80000+ 1 2.90000+ 1 3.52177- 4 2.19680- 2 1.80000+ 1 3.00000+ 1 3.70919- 4 2.20431- 2 1.80000+ 1 3.20000+ 1 1.43154- 4 2.21463- 2 1.80000+ 1 3.30000+ 1 1.53787- 4 2.21576- 2 1.90000+ 1 1.90000+ 1 3.19243- 5 2.13872- 2 1.90000+ 1 2.10000+ 1 5.99970- 4 2.16620- 2 1.90000+ 1 2.20000+ 1 8.64007- 5 2.17162- 2 1.90000+ 1 2.40000+ 1 2.07766- 5 2.20793- 2 1.90000+ 1 2.50000+ 1 9.12137- 6 2.20941- 2 1.90000+ 1 2.70000+ 1 1.72291- 5 2.21973- 2 1.90000+ 1 2.90000+ 1 3.43576- 4 2.22668- 2 1.90000+ 1 3.00000+ 1 1.52012- 5 2.23419- 2 1.90000+ 1 3.20000+ 1 1.21366- 4 2.24451- 2 1.90000+ 1 3.30000+ 1 1.72291- 5 2.24564- 2 2.10000+ 1 2.10000+ 1 4.80132- 4 2.19367- 2 2.10000+ 1 2.20000+ 1 1.68692- 3 2.19909- 2 2.10000+ 1 2.40000+ 1 1.44163- 4 2.23541- 2 2.10000+ 1 2.50000+ 1 2.84017- 4 2.23689- 2 2.10000+ 1 2.70000+ 1 3.82583- 5 2.24721- 2 2.10000+ 1 2.90000+ 1 1.55821- 4 2.25416- 2 2.10000+ 1 3.00000+ 1 1.44935- 4 2.26167- 2 2.10000+ 1 3.20000+ 1 1.93319- 4 2.27199- 2 2.10000+ 1 3.30000+ 1 3.43317- 4 2.27311- 2 2.20000+ 1 2.20000+ 1 8.84230- 5 2.20451- 2 2.20000+ 1 2.40000+ 1 6.25807- 5 2.24083- 2 2.20000+ 1 2.50000+ 1 2.43226- 5 2.24231- 2 2.20000+ 1 2.70000+ 1 7.34780- 6 2.25263- 2 2.20000+ 1 2.90000+ 1 1.62408- 4 2.25958- 2 2.20000+ 1 3.00000+ 1 2.05231- 5 2.26709- 2 2.20000+ 1 3.20000+ 1 3.27094- 4 2.27741- 2 2.20000+ 1 3.30000+ 1 3.52180- 5 2.27853- 2 2.40000+ 1 2.40000+ 1 3.80049- 6 2.27715- 2 2.40000+ 1 2.50000+ 1 2.53370- 5 2.27863- 2 2.40000+ 1 2.70000+ 1 3.29370- 6 2.28894- 2 2.40000+ 1 2.90000+ 1 1.01339- 5 2.29589- 2 2.40000+ 1 3.00000+ 1 5.06748- 6 2.30341- 2 2.40000+ 1 3.20000+ 1 2.68565- 5 2.31373- 2 2.40000+ 1 3.30000+ 1 1.16545- 5 2.31485- 2 2.50000+ 1 2.50000+ 1 1.52009- 6 2.28011- 2 2.50000+ 1 2.70000+ 1 2.02690- 6 2.29042- 2 2.50000+ 1 2.90000+ 1 5.32068- 6 2.29737- 2 2.50000+ 1 3.00000+ 1 2.02690- 6 2.30489- 2 2.50000+ 1 3.20000+ 1 5.26996- 5 2.31521- 2 2.50000+ 1 3.30000+ 1 4.56050- 6 2.31633- 2 2.70000+ 1 2.70000+ 1 7.60105- 7 2.30074- 2 2.70000+ 1 2.90000+ 1 4.30722- 5 2.30769- 2 2.70000+ 1 3.00000+ 1 4.05382- 6 2.31520- 2 2.70000+ 1 3.20000+ 1 7.34784- 6 2.32552- 2 2.70000+ 1 3.30000+ 1 1.26680- 6 2.32665- 2 2.90000+ 1 2.90000+ 1 4.20579- 5 2.31464- 2 2.90000+ 1 3.00000+ 1 8.46241- 5 2.32215- 2 2.90000+ 1 3.20000+ 1 3.24304- 5 2.33247- 2 2.90000+ 1 3.30000+ 1 3.36969- 5 2.33360- 2 3.00000+ 1 3.00000+ 1 1.77349- 6 2.32967- 2 3.00000+ 1 3.20000+ 1 2.93896- 5 2.33999- 2 3.00000+ 1 3.30000+ 1 4.05379- 6 2.34111- 2 3.20000+ 1 3.20000+ 1 1.90265- 5 2.35031- 2 3.20000+ 1 3.30000+ 1 6.49881- 5 2.35143- 2 3.30000+ 1 3.30000+ 1 3.53619- 6 2.35255- 2 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.42261- 2 1.26809- 2 1.00000+ 1 3.16661- 4 1.30484- 2 1.10000+ 1 2.90281- 4 1.41650- 2 1.30000+ 1 3.73281- 2 1.47568- 2 1.40000+ 1 3.27701- 1 1.49784- 2 1.60000+ 1 6.22932- 3 1.73299- 2 1.80000+ 1 6.91512- 5 1.75008- 2 1.90000+ 1 8.04792- 5 1.77996- 2 2.10000+ 1 7.67742- 3 1.80744- 2 2.20000+ 1 7.06852- 2 1.81286- 2 2.40000+ 1 1.15080- 4 1.84917- 2 2.50000+ 1 6.30982- 4 1.85065- 2 2.70000+ 1 1.64440- 3 1.86097- 2 2.90000+ 1 1.66740- 5 1.86792- 2 3.00000+ 1 2.01491- 5 1.87543- 2 3.20000+ 1 1.54880- 3 1.88575- 2 3.30000+ 1 1.42730- 2 1.88688- 2 3.50000+ 1 7.86872- 6 1.89805- 2 3.60000+ 1 4.19751- 5 1.89820- 2 4.10000+ 1 3.35081- 4 1.89333- 2 4.30000+ 1 2.87481- 6 1.89544- 2 4.40000+ 1 3.11471- 6 1.89670- 2 5.80000+ 1 2.95291- 5 1.89878- 2 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 3.20391- 4 6.36780- 3 8.00000+ 0 1.00000+ 1 1.35386- 4 6.73530- 3 8.00000+ 0 1.10000+ 1 1.72449- 2 7.85190- 3 8.00000+ 0 1.30000+ 1 2.99762- 3 8.44370- 3 8.00000+ 0 1.40000+ 1 6.37619- 3 8.66530- 3 8.00000+ 0 1.60000+ 1 1.35386- 4 1.10168- 2 8.00000+ 0 1.80000+ 1 2.09203- 5 1.11877- 2 8.00000+ 0 1.90000+ 1 2.92296- 3 1.14865- 2 8.00000+ 0 2.10000+ 1 3.81066- 4 1.17613- 2 8.00000+ 0 2.20000+ 1 7.76764- 4 1.18155- 2 8.00000+ 0 2.40000+ 1 3.77775- 4 1.21786- 2 8.00000+ 0 2.50000+ 1 6.27022- 4 1.21934- 2 8.00000+ 0 2.70000+ 1 3.37729- 5 1.22966- 2 8.00000+ 0 2.90000+ 1 4.78195- 6 1.23661- 2 8.00000+ 0 3.00000+ 1 6.54232- 4 1.24412- 2 8.00000+ 0 3.20000+ 1 6.93403- 5 1.25444- 2 8.00000+ 0 3.30000+ 1 1.36579- 4 1.25557- 2 1.00000+ 1 1.00000+ 1 5.67852- 6 7.10280- 3 1.00000+ 1 1.10000+ 1 2.88724- 2 8.21940- 3 1.00000+ 1 1.30000+ 1 1.23260- 3 8.81120- 3 1.00000+ 1 1.40000+ 1 8.27765- 3 9.03280- 3 1.00000+ 1 1.60000+ 1 2.95892- 5 1.13843- 2 1.00000+ 1 1.80000+ 1 9.86319- 6 1.15552- 2 1.00000+ 1 1.90000+ 1 5.08260- 3 1.18540- 2 1.00000+ 1 2.10000+ 1 2.40604- 4 1.21288- 2 1.00000+ 1 2.20000+ 1 1.36025- 3 1.21830- 2 1.00000+ 1 2.40000+ 1 3.01578- 4 1.25461- 2 1.00000+ 1 2.50000+ 1 7.02397- 4 1.25609- 2 1.00000+ 1 2.70000+ 1 7.77090- 6 1.26641- 2 1.00000+ 1 2.90000+ 1 3.28770- 6 1.27336- 2 1.00000+ 1 3.00000+ 1 1.14690- 3 1.28087- 2 1.00000+ 1 3.20000+ 1 4.96142- 5 1.29119- 2 1.00000+ 1 3.30000+ 1 2.60330- 4 1.29232- 2 1.10000+ 1 1.10000+ 1 3.33909- 2 9.33600- 3 1.10000+ 1 1.30000+ 1 3.50063- 2 9.92780- 3 1.10000+ 1 1.40000+ 1 4.31237- 2 1.01494- 2 1.10000+ 1 1.60000+ 1 4.66540- 3 1.25009- 2 1.10000+ 1 1.80000+ 1 7.00852- 3 1.26718- 2 1.10000+ 1 1.90000+ 1 1.42970- 2 1.29706- 2 1.10000+ 1 2.10000+ 1 8.20887- 3 1.32454- 2 1.10000+ 1 2.20000+ 1 1.00917- 2 1.32996- 2 1.10000+ 1 2.40000+ 1 9.00499- 4 1.36627- 2 1.10000+ 1 2.50000+ 1 1.05768- 3 1.36775- 2 1.10000+ 1 2.70000+ 1 1.24091- 3 1.37807- 2 1.10000+ 1 2.90000+ 1 1.73411- 3 1.38502- 2 1.10000+ 1 3.00000+ 1 3.39635- 3 1.39253- 2 1.10000+ 1 3.20000+ 1 1.69345- 3 1.40285- 2 1.10000+ 1 3.30000+ 1 2.05503- 3 1.40398- 2 1.30000+ 1 1.30000+ 1 4.47415- 3 1.05196- 2 1.30000+ 1 1.40000+ 1 8.31151- 2 1.07412- 2 1.30000+ 1 1.60000+ 1 7.16422- 4 1.30927- 2 1.30000+ 1 1.80000+ 1 3.41017- 4 1.32636- 2 1.30000+ 1 1.90000+ 1 5.52848- 3 1.35624- 2 1.30000+ 1 2.10000+ 1 1.74341- 3 1.38372- 2 1.30000+ 1 2.20000+ 1 1.36065- 2 1.38914- 2 1.30000+ 1 2.40000+ 1 4.76416- 4 1.42545- 2 1.30000+ 1 2.50000+ 1 1.57788- 3 1.42693- 2 1.30000+ 1 2.70000+ 1 1.87693- 4 1.43725- 2 1.30000+ 1 2.90000+ 1 8.57806- 5 1.44420- 2 1.30000+ 1 3.00000+ 1 1.21610- 3 1.45171- 2 1.30000+ 1 3.20000+ 1 3.48195- 4 1.46203- 2 1.30000+ 1 3.30000+ 1 2.57317- 3 1.46316- 2 1.40000+ 1 1.40000+ 1 5.46641- 2 1.09628- 2 1.40000+ 1 1.60000+ 1 1.54183- 3 1.33143- 2 1.40000+ 1 1.80000+ 1 1.80428- 3 1.34852- 2 1.40000+ 1 1.90000+ 1 7.58504- 3 1.37840- 2 1.40000+ 1 2.10000+ 1 1.62990- 2 1.40588- 2 1.40000+ 1 2.20000+ 1 2.05759- 2 1.41130- 2 1.40000+ 1 2.40000+ 1 4.95046- 3 1.44761- 2 1.40000+ 1 2.50000+ 1 4.43132- 3 1.44909- 2 1.40000+ 1 2.70000+ 1 4.06766- 4 1.45941- 2 1.40000+ 1 2.90000+ 1 4.36938- 4 1.46636- 2 1.40000+ 1 3.00000+ 1 1.72594- 3 1.47387- 2 1.40000+ 1 3.20000+ 1 3.24420- 3 1.48419- 2 1.40000+ 1 3.30000+ 1 4.02451- 3 1.48532- 2 1.60000+ 1 1.60000+ 1 1.52421- 5 1.56658- 2 1.60000+ 1 1.80000+ 1 5.38012- 6 1.58367- 2 1.60000+ 1 1.90000+ 1 7.89356- 4 1.61355- 2 1.60000+ 1 2.10000+ 1 9.74367- 5 1.64103- 2 1.60000+ 1 2.20000+ 1 1.97259- 4 1.64645- 2 1.60000+ 1 2.40000+ 1 4.51308- 5 1.68276- 2 1.60000+ 1 2.50000+ 1 8.39882- 5 1.68424- 2 1.60000+ 1 2.70000+ 1 7.77097- 6 1.69456- 2 1.60000+ 1 2.90000+ 1 1.19553- 6 1.70151- 2 1.60000+ 1 3.00000+ 1 1.76342- 4 1.70902- 2 1.60000+ 1 3.20000+ 1 1.79324- 5 1.71934- 2 1.60000+ 1 3.30000+ 1 3.49700- 5 1.72047- 2 1.80000+ 1 1.80000+ 1 2.98880- 7 1.60076- 2 1.80000+ 1 1.90000+ 1 1.22204- 3 1.63064- 2 1.80000+ 1 2.10000+ 1 6.06707- 5 1.65812- 2 1.80000+ 1 2.20000+ 1 3.30853- 4 1.66354- 2 1.80000+ 1 2.40000+ 1 4.51298- 5 1.69985- 2 1.80000+ 1 2.50000+ 1 9.80330- 5 1.70133- 2 1.80000+ 1 2.70000+ 1 1.49436- 6 1.71165- 2 1.80000+ 1 3.00000+ 1 2.75268- 4 1.72611- 2 1.80000+ 1 3.20000+ 1 1.19550- 5 1.73643- 2 1.80000+ 1 3.30000+ 1 6.42586- 5 1.73756- 2 1.90000+ 1 1.90000+ 1 1.45978- 3 1.66052- 2 1.90000+ 1 2.10000+ 1 1.30159- 3 1.68800- 2 1.90000+ 1 2.20000+ 1 1.75296- 3 1.69342- 2 1.90000+ 1 2.40000+ 1 1.17166- 4 1.72973- 2 1.90000+ 1 2.50000+ 1 1.44656- 4 1.73121- 2 1.90000+ 1 2.70000+ 1 2.09815- 4 1.74153- 2 1.90000+ 1 2.90000+ 1 3.01868- 4 1.74848- 2 1.90000+ 1 3.00000+ 1 6.85615- 4 1.75599- 2 1.90000+ 1 3.20000+ 1 2.68691- 4 1.76631- 2 1.90000+ 1 3.30000+ 1 3.55972- 4 1.76744- 2 2.10000+ 1 2.10000+ 1 1.62598- 4 1.71547- 2 2.10000+ 1 2.20000+ 1 2.81005- 3 1.72089- 2 2.10000+ 1 2.40000+ 1 6.09699- 5 1.75721- 2 2.10000+ 1 2.50000+ 1 1.88000- 4 1.75869- 2 2.10000+ 1 2.70000+ 1 2.57035- 5 1.76901- 2 2.10000+ 1 2.90000+ 1 1.52418- 5 1.77596- 2 2.10000+ 1 3.00000+ 1 2.86622- 4 1.78347- 2 2.10000+ 1 3.20000+ 1 6.42586- 5 1.79379- 2 2.10000+ 1 3.30000+ 1 5.36170- 4 1.79491- 2 2.20000+ 1 2.20000+ 1 1.95113- 3 1.72631- 2 2.20000+ 1 2.40000+ 1 6.27960- 4 1.76263- 2 2.20000+ 1 2.50000+ 1 5.50532- 4 1.76411- 2 2.20000+ 1 2.70000+ 1 5.26054- 5 1.77443- 2 2.20000+ 1 2.90000+ 1 8.12972- 5 1.78138- 2 2.20000+ 1 3.00000+ 1 3.97514- 4 1.78889- 2 2.20000+ 1 3.20000+ 1 5.64311- 4 1.79921- 2 2.20000+ 1 3.30000+ 1 7.63362- 4 1.80033- 2 2.40000+ 1 2.40000+ 1 2.98878- 6 1.79895- 2 2.40000+ 1 2.50000+ 1 9.26507- 5 1.80043- 2 2.40000+ 1 2.70000+ 1 1.01625- 5 1.81074- 2 2.40000+ 1 2.90000+ 1 1.01625- 5 1.81769- 2 2.40000+ 1 3.00000+ 1 2.48066- 5 1.82521- 2 2.40000+ 1 3.20000+ 1 1.10582- 5 1.83553- 2 2.40000+ 1 3.30000+ 1 1.12372- 4 1.83665- 2 2.50000+ 1 2.50000+ 1 3.28763- 5 1.80191- 2 2.50000+ 1 2.70000+ 1 1.94272- 5 1.81222- 2 2.50000+ 1 2.90000+ 1 2.18182- 5 1.81917- 2 2.50000+ 1 3.00000+ 1 3.10828- 5 1.82669- 2 2.50000+ 1 3.20000+ 1 3.34738- 5 1.83701- 2 2.50000+ 1 3.30000+ 1 9.80324- 5 1.83813- 2 2.70000+ 1 2.70000+ 1 8.96628- 7 1.82254- 2 2.70000+ 1 2.90000+ 1 2.98886- 7 1.82949- 2 2.70000+ 1 3.00000+ 1 4.69252- 5 1.83700- 2 2.70000+ 1 3.20000+ 1 4.78210- 6 1.84732- 2 2.70000+ 1 3.30000+ 1 9.26533- 6 1.84845- 2 2.90000+ 1 3.00000+ 1 6.78471- 5 1.84395- 2 2.90000+ 1 3.20000+ 1 2.98882- 6 1.85427- 2 2.90000+ 1 3.30000+ 1 1.58414- 5 1.85540- 2 3.00000+ 1 3.00000+ 1 8.03977- 5 1.85147- 2 3.00000+ 1 3.20000+ 1 5.91760- 5 1.86179- 2 3.00000+ 1 3.30000+ 1 8.06969- 5 1.86291- 2 3.20000+ 1 3.20000+ 1 6.27610- 6 1.87211- 2 3.20000+ 1 3.30000+ 1 1.07894- 4 1.87323- 2 3.30000+ 1 3.30000+ 1 7.47182- 5 1.87435- 2 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.06279- 5 3.67500- 4 1.10000+ 1 1.62889- 3 1.48410- 3 1.80000+ 1 3.16898- 3 4.81990- 3 1.90000+ 1 1.38609- 3 5.11870- 3 2.90000+ 1 8.80646- 4 5.99830- 3 3.00000+ 1 4.58028- 4 6.07345- 3 4.30000+ 1 1.57819- 4 6.27346- 3 4.40000+ 1 7.48696- 5 6.28610- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.90000+ 1 1.68281- 2 5.27000- 5 1.00000+ 1 3.00000+ 1 1.90156- 2 1.27850- 4 1.00000+ 1 3.20000+ 1 1.11691- 2 2.31040- 4 1.00000+ 1 3.30000+ 1 1.42330- 2 2.42270- 4 1.00000+ 1 3.50000+ 1 7.79997- 4 3.54020- 4 1.00000+ 1 3.60000+ 1 9.77338- 4 3.55550- 4 1.00000+ 1 4.10000+ 1 3.02736- 3 3.06810- 4 1.00000+ 1 4.30000+ 1 2.69959- 3 3.27860- 4 1.00000+ 1 4.40000+ 1 2.75155- 3 3.40500- 4 1.00000+ 1 4.60000+ 1 5.52468- 5 3.62850- 4 1.00000+ 1 4.70000+ 1 6.08878- 5 3.63570- 4 1.00000+ 1 5.80000+ 1 2.82950- 4 3.61320- 4 1.10000+ 1 1.80000+ 1 5.24510- 2 0.00000+ 0 1.10000+ 1 1.90000+ 1 3.41399- 2 2.89700- 4 1.10000+ 1 2.10000+ 1 8.55825- 3 5.64460- 4 1.10000+ 1 2.20000+ 1 2.51602- 2 6.18660- 4 1.10000+ 1 2.40000+ 1 1.99619- 1 9.81850- 4 1.10000+ 1 2.50000+ 1 2.38531- 1 9.96630- 4 1.10000+ 1 2.70000+ 1 1.13339- 2 1.09980- 3 1.10000+ 1 2.90000+ 1 1.18126- 2 1.16930- 3 1.10000+ 1 3.00000+ 1 8.26876- 3 1.24445- 3 1.10000+ 1 3.20000+ 1 2.13439- 3 1.34764- 3 1.10000+ 1 3.30000+ 1 5.59535- 3 1.35887- 3 1.10000+ 1 3.50000+ 1 7.30154- 3 1.47062- 3 1.10000+ 1 3.60000+ 1 8.37588- 3 1.47215- 3 1.10000+ 1 4.10000+ 1 2.23402- 3 1.42341- 3 1.10000+ 1 4.30000+ 1 1.96111- 3 1.44446- 3 1.10000+ 1 4.40000+ 1 1.23292- 3 1.45710- 3 1.10000+ 1 4.60000+ 1 1.18286- 5 1.47945- 3 1.10000+ 1 4.70000+ 1 2.59416- 5 1.48017- 3 1.10000+ 1 5.80000+ 1 2.08613- 4 1.47792- 3 1.30000+ 1 1.60000+ 1 2.68315- 2 4.11800- 4 1.30000+ 1 1.80000+ 1 5.52359- 3 5.82700- 4 1.30000+ 1 1.90000+ 1 1.05893- 2 8.81500- 4 1.30000+ 1 2.10000+ 1 8.88606- 3 1.15626- 3 1.30000+ 1 2.20000+ 1 1.02835- 2 1.21046- 3 1.30000+ 1 2.40000+ 1 1.01666- 2 1.57365- 3 1.30000+ 1 2.50000+ 1 9.79300- 3 1.58843- 3 1.30000+ 1 2.70000+ 1 4.35335- 3 1.69160- 3 1.30000+ 1 2.90000+ 1 1.08661- 3 1.76110- 3 1.30000+ 1 3.00000+ 1 1.90972- 3 1.83625- 3 1.30000+ 1 3.20000+ 1 1.48902- 3 1.93944- 3 1.30000+ 1 3.30000+ 1 1.87784- 3 1.95067- 3 1.30000+ 1 3.50000+ 1 3.95314- 4 2.06242- 3 1.30000+ 1 3.60000+ 1 3.45979- 4 2.06395- 3 1.30000+ 1 4.10000+ 1 7.87239- 4 2.01521- 3 1.30000+ 1 4.30000+ 1 1.77432- 4 2.03626- 3 1.30000+ 1 4.40000+ 1 2.71523- 4 2.04890- 3 1.30000+ 1 4.60000+ 1 7.79585- 6 2.07125- 3 1.30000+ 1 4.70000+ 1 8.46815- 6 2.07197- 3 1.30000+ 1 5.80000+ 1 7.25844- 5 2.06972- 3 1.40000+ 1 1.60000+ 1 3.61344- 2 6.33400- 4 1.40000+ 1 1.80000+ 1 8.29092- 4 8.04300- 4 1.40000+ 1 1.90000+ 1 1.26250- 2 1.10310- 3 1.40000+ 1 2.10000+ 1 1.19265- 2 1.37786- 3 1.40000+ 1 2.20000+ 1 1.59627- 2 1.43206- 3 1.40000+ 1 2.40000+ 1 1.24491- 2 1.79525- 3 1.40000+ 1 2.50000+ 1 1.81382- 2 1.81003- 3 1.40000+ 1 2.70000+ 1 5.75932- 3 1.91320- 3 1.40000+ 1 2.90000+ 1 2.46785- 4 1.98270- 3 1.40000+ 1 3.00000+ 1 2.23522- 3 2.05785- 3 1.40000+ 1 3.20000+ 1 2.23172- 3 2.16104- 3 1.40000+ 1 3.30000+ 1 2.81071- 3 2.17227- 3 1.40000+ 1 3.50000+ 1 4.51371- 4 2.28402- 3 1.40000+ 1 3.60000+ 1 6.60653- 4 2.28555- 3 1.40000+ 1 4.10000+ 1 1.03696- 3 2.23681- 3 1.40000+ 1 4.30000+ 1 4.42227- 5 2.25786- 3 1.40000+ 1 4.40000+ 1 3.17485- 4 2.27050- 3 1.40000+ 1 4.60000+ 1 1.18286- 5 2.29285- 3 1.40000+ 1 4.70000+ 1 1.26350- 5 2.29357- 3 1.40000+ 1 5.80000+ 1 9.55703- 5 2.29132- 3 1.60000+ 1 1.60000+ 1 2.19144- 3 2.98490- 3 1.60000+ 1 1.80000+ 1 3.92562- 3 3.15580- 3 1.60000+ 1 1.90000+ 1 5.92719- 3 3.45460- 3 1.60000+ 1 2.10000+ 1 7.24276- 3 3.72936- 3 1.60000+ 1 2.20000+ 1 9.94225- 3 3.78356- 3 1.60000+ 1 2.40000+ 1 5.51379- 3 4.14675- 3 1.60000+ 1 2.50000+ 1 6.76809- 3 4.16153- 3 1.60000+ 1 2.70000+ 1 9.38504- 4 4.26470- 3 1.60000+ 1 2.90000+ 1 9.82723- 4 4.33420- 3 1.60000+ 1 3.00000+ 1 1.46037- 3 4.40935- 3 1.60000+ 1 3.20000+ 1 1.47076- 3 4.51254- 3 1.60000+ 1 3.30000+ 1 1.99909- 3 4.52377- 3 1.60000+ 1 3.50000+ 1 2.83338- 4 4.63552- 3 1.60000+ 1 3.60000+ 1 3.36580- 4 4.63705- 3 1.60000+ 1 4.10000+ 1 1.83341- 4 4.58831- 3 1.60000+ 1 4.30000+ 1 1.67752- 4 4.60936- 3 1.60000+ 1 4.40000+ 1 2.20163- 4 4.62200- 3 1.60000+ 1 4.60000+ 1 7.79596- 6 4.64435- 3 1.60000+ 1 4.70000+ 1 9.14012- 6 4.64507- 3 1.60000+ 1 5.80000+ 1 1.70710- 5 4.64282- 3 1.80000+ 1 1.80000+ 1 1.40459- 4 3.32670- 3 1.80000+ 1 1.90000+ 1 4.90748- 4 3.62550- 3 1.80000+ 1 2.10000+ 1 2.26358- 4 3.90026- 3 1.80000+ 1 2.20000+ 1 9.12675- 5 3.95446- 3 1.80000+ 1 2.40000+ 1 1.84148- 5 4.31765- 3 1.80000+ 1 2.50000+ 1 5.39422- 4 4.33243- 3 1.80000+ 1 2.70000+ 1 6.24780- 4 4.43560- 3 1.80000+ 1 2.90000+ 1 4.93296- 5 4.50510- 3 1.80000+ 1 3.00000+ 1 8.13185- 5 4.58025- 3 1.80000+ 1 3.20000+ 1 3.85772- 5 4.68344- 3 1.80000+ 1 3.30000+ 1 2.39258- 5 4.69467- 3 1.80000+ 1 3.50000+ 1 4.03241- 7 4.80642- 3 1.80000+ 1 3.60000+ 1 1.68009- 5 4.80795- 3 1.80000+ 1 4.10000+ 1 1.12909- 4 4.75921- 3 1.80000+ 1 4.30000+ 1 7.79590- 6 4.78026- 3 1.80000+ 1 4.40000+ 1 1.14258- 5 4.79290- 3 1.80000+ 1 4.60000+ 1 1.34414- 7 4.81525- 3 1.80000+ 1 4.70000+ 1 1.34414- 7 4.81597- 3 1.80000+ 1 5.80000+ 1 1.04834- 5 4.81372- 3 1.90000+ 1 1.90000+ 1 4.03782- 4 3.92430- 3 1.90000+ 1 2.10000+ 1 7.12411- 4 4.19906- 3 1.90000+ 1 2.20000+ 1 1.53950- 3 4.25326- 3 1.90000+ 1 2.40000+ 1 1.09151- 3 4.61645- 3 1.90000+ 1 2.50000+ 1 1.50223- 3 4.63123- 3 1.90000+ 1 2.70000+ 1 9.47893- 4 4.73440- 3 1.90000+ 1 2.90000+ 1 1.05924- 4 4.80390- 3 1.90000+ 1 3.00000+ 1 1.69230- 4 4.87905- 3 1.90000+ 1 3.20000+ 1 1.38981- 4 4.98224- 3 1.90000+ 1 3.30000+ 1 2.93160- 4 4.99347- 3 1.90000+ 1 3.50000+ 1 5.28252- 5 5.10522- 3 1.90000+ 1 3.60000+ 1 6.38464- 5 5.10675- 3 1.90000+ 1 4.10000+ 1 1.71918- 4 5.05801- 3 1.90000+ 1 4.30000+ 1 1.76085- 5 5.07906- 3 1.90000+ 1 4.40000+ 1 2.48662- 5 5.09170- 3 1.90000+ 1 4.60000+ 1 6.72060- 7 5.11405- 3 1.90000+ 1 4.70000+ 1 1.34414- 6 5.11477- 3 1.90000+ 1 5.80000+ 1 1.58607- 5 5.11252- 3 2.10000+ 1 2.10000+ 1 1.01487- 4 4.47382- 3 2.10000+ 1 2.20000+ 1 2.04444- 4 4.52802- 3 2.10000+ 1 2.40000+ 1 4.49208- 4 4.89121- 3 2.10000+ 1 2.50000+ 1 2.46384- 3 4.90599- 3 2.10000+ 1 2.70000+ 1 1.12369- 3 5.00916- 3 2.10000+ 1 2.90000+ 1 3.42754- 5 5.07866- 3 2.10000+ 1 3.00000+ 1 1.31327- 4 5.15381- 3 2.10000+ 1 3.20000+ 1 3.21249- 5 5.25700- 3 2.10000+ 1 3.30000+ 1 3.48130- 5 5.26823- 3 2.10000+ 1 3.50000+ 1 2.05653- 5 5.37998- 3 2.10000+ 1 3.60000+ 1 8.79080- 5 5.38151- 3 2.10000+ 1 4.10000+ 1 2.01745- 4 5.33277- 3 2.10000+ 1 4.30000+ 1 5.24205- 6 5.35382- 3 2.10000+ 1 4.40000+ 1 1.86837- 5 5.36646- 3 2.10000+ 1 4.60000+ 1 1.34414- 7 5.38881- 3 2.10000+ 1 4.70000+ 1 1.34414- 7 5.38953- 3 2.10000+ 1 5.80000+ 1 1.85498- 5 5.38728- 3 2.20000+ 1 2.20000+ 1 2.11700- 4 4.58222- 3 2.20000+ 1 2.40000+ 1 2.11740- 3 4.94541- 3 2.20000+ 1 2.50000+ 1 1.43379- 3 4.96019- 3 2.20000+ 1 2.70000+ 1 1.53222- 3 5.06336- 3 2.20000+ 1 2.90000+ 1 1.58608- 5 5.13286- 3 2.20000+ 1 3.00000+ 1 2.78782- 4 5.20801- 3 2.20000+ 1 3.20000+ 1 2.99747- 5 5.31120- 3 2.20000+ 1 3.30000+ 1 6.96267- 5 5.32243- 3 2.20000+ 1 3.50000+ 1 7.56783- 5 5.43418- 3 2.20000+ 1 3.60000+ 1 5.57804- 5 5.43571- 3 2.20000+ 1 4.10000+ 1 2.74754- 4 5.38697- 3 2.20000+ 1 4.30000+ 1 2.55389- 6 5.40802- 3 2.20000+ 1 4.40000+ 1 3.93841- 5 5.42066- 3 2.20000+ 1 4.60000+ 1 1.34415- 7 5.44301- 3 2.20000+ 1 4.70000+ 1 2.68830- 7 5.44373- 3 2.20000+ 1 5.80000+ 1 2.52701- 5 5.44148- 3 2.40000+ 1 2.40000+ 1 6.22080- 4 5.30860- 3 2.40000+ 1 2.50000+ 1 4.06114- 3 5.32338- 3 2.40000+ 1 2.70000+ 1 7.77880- 4 5.42655- 3 2.40000+ 1 2.90000+ 1 5.10780- 6 5.49605- 3 2.40000+ 1 3.00000+ 1 1.40191- 4 5.57120- 3 2.40000+ 1 3.20000+ 1 8.07849- 5 5.67439- 3 2.40000+ 1 3.30000+ 1 4.41689- 4 5.68562- 3 2.40000+ 1 3.50000+ 1 5.75294- 5 5.79737- 3 2.40000+ 1 3.60000+ 1 1.52692- 4 5.79890- 3 2.40000+ 1 4.10000+ 1 1.37233- 4 5.75016- 3 2.40000+ 1 4.30000+ 1 9.40885- 7 5.77121- 3 2.40000+ 1 4.40000+ 1 1.85499- 5 5.78385- 3 2.40000+ 1 4.60000+ 1 4.03246- 7 5.80620- 3 2.40000+ 1 4.70000+ 1 2.01628- 6 5.80692- 3 2.40000+ 1 5.80000+ 1 1.26350- 5 5.80467- 3 2.50000+ 1 2.50000+ 1 1.39791- 3 5.33816- 3 2.50000+ 1 2.70000+ 1 9.52342- 4 5.44133- 3 2.50000+ 1 2.90000+ 1 1.15197- 4 5.51083- 3 2.50000+ 1 3.00000+ 1 2.05933- 4 5.58598- 3 2.50000+ 1 3.20000+ 1 4.96647- 4 5.68917- 3 2.50000+ 1 3.30000+ 1 2.77832- 4 5.70040- 3 2.50000+ 1 3.50000+ 1 1.54440- 4 5.81215- 3 2.50000+ 1 3.60000+ 1 1.15867- 4 5.81368- 3 2.50000+ 1 4.10000+ 1 1.68010- 4 5.76494- 3 2.50000+ 1 4.30000+ 1 1.89525- 5 5.78599- 3 2.50000+ 1 4.40000+ 1 2.76893- 5 5.79863- 3 2.50000+ 1 4.60000+ 1 2.68829- 6 5.82098- 3 2.50000+ 1 4.70000+ 1 1.20973- 6 5.82170- 3 2.50000+ 1 5.80000+ 1 1.54580- 5 5.81945- 3 2.70000+ 1 2.70000+ 1 9.19389- 5 5.54450- 3 2.70000+ 1 2.90000+ 1 1.58196- 4 5.61400- 3 2.70000+ 1 3.00000+ 1 2.33342- 4 5.68915- 3 2.70000+ 1 3.20000+ 1 2.29984- 4 5.79234- 3 2.70000+ 1 3.30000+ 1 3.10496- 4 5.80357- 3 2.70000+ 1 3.50000+ 1 4.01901- 5 5.91532- 3 2.70000+ 1 3.60000+ 1 4.75827- 5 5.91685- 3 2.70000+ 1 4.10000+ 1 3.52156- 5 5.86811- 3 2.70000+ 1 4.30000+ 1 2.70176- 5 5.88916- 3 2.70000+ 1 4.40000+ 1 3.52156- 5 5.90180- 3 2.70000+ 1 4.60000+ 1 1.20973- 6 5.92415- 3 2.70000+ 1 4.70000+ 1 1.47854- 6 5.92487- 3 2.70000+ 1 5.80000+ 1 3.22597- 6 5.92262- 3 2.90000+ 1 2.90000+ 1 4.30122- 6 5.68350- 3 2.90000+ 1 3.00000+ 1 1.69369- 5 5.75865- 3 2.90000+ 1 3.20000+ 1 5.78006- 6 5.86184- 3 2.90000+ 1 3.30000+ 1 4.57013- 6 5.87307- 3 2.90000+ 1 3.50000+ 1 1.34414- 7 5.98482- 3 2.90000+ 1 3.60000+ 1 3.76360- 6 5.98635- 3 2.90000+ 1 4.10000+ 1 2.86305- 5 5.93761- 3 2.90000+ 1 4.30000+ 1 1.34414- 6 5.95866- 3 2.90000+ 1 4.40000+ 1 2.41947- 6 5.97130- 3 2.90000+ 1 5.80000+ 1 2.68828- 6 5.99212- 3 3.00000+ 1 3.00000+ 1 1.69374- 5 5.83380- 3 3.00000+ 1 3.20000+ 1 2.58083- 5 5.93699- 3 3.00000+ 1 3.30000+ 1 5.34994- 5 5.94822- 3 3.00000+ 1 3.50000+ 1 6.85512- 6 6.05997- 3 3.00000+ 1 3.60000+ 1 8.60292- 6 6.06150- 3 3.00000+ 1 4.10000+ 1 4.22083- 5 6.01276- 3 3.00000+ 1 4.30000+ 1 2.82277- 6 6.03381- 3 3.00000+ 1 4.40000+ 1 4.97350- 6 6.04645- 3 3.00000+ 1 4.60000+ 1 1.34418- 7 6.06880- 3 3.00000+ 1 4.70000+ 1 2.68837- 7 6.06952- 3 3.00000+ 1 5.80000+ 1 3.89815- 6 6.06727- 3 3.20000+ 1 3.20000+ 1 2.28497- 6 6.04018- 3 3.20000+ 1 3.30000+ 1 5.24207- 6 6.05141- 3 3.20000+ 1 3.50000+ 1 3.76361- 6 6.16316- 3 3.20000+ 1 3.60000+ 1 1.86837- 5 6.16469- 3 3.20000+ 1 4.10000+ 1 4.14005- 5 6.11595- 3 3.20000+ 1 4.30000+ 1 9.40880- 7 6.13700- 3 3.20000+ 1 4.40000+ 1 3.62921- 6 6.14964- 3 3.20000+ 1 5.80000+ 1 3.76361- 6 6.17046- 3 3.30000+ 1 3.30000+ 1 5.51061- 6 6.06264- 3 3.30000+ 1 3.50000+ 1 1.65317- 5 6.17439- 3 3.30000+ 1 3.60000+ 1 1.10218- 5 6.17592- 3 3.30000+ 1 4.10000+ 1 5.57786- 5 6.12718- 3 3.30000+ 1 4.30000+ 1 6.72042- 7 6.14823- 3 3.30000+ 1 4.40000+ 1 7.52702- 6 6.16087- 3 3.30000+ 1 5.80000+ 1 5.10762- 6 6.18169- 3 3.50000+ 1 3.50000+ 1 1.14796- 6 6.28614- 3 3.50000+ 1 3.60000+ 1 6.60012- 6 6.28767- 3 3.50000+ 1 4.10000+ 1 7.60463- 6 6.23893- 3 3.50000+ 1 4.40000+ 1 1.00434- 6 6.27262- 3 3.50000+ 1 4.70000+ 1 1.43480- 7 6.29569- 3 3.50000+ 1 5.80000+ 1 7.17390- 7 6.29344- 3 3.60000+ 1 3.60000+ 1 2.23935- 6 6.28920- 3 3.60000+ 1 4.10000+ 1 8.67751- 6 6.24046- 3 3.60000+ 1 4.30000+ 1 6.99774- 7 6.26151- 3 3.60000+ 1 4.40000+ 1 1.25962- 6 6.27415- 3 3.60000+ 1 4.60000+ 1 1.39957- 7 6.29650- 3 3.60000+ 1 5.80000+ 1 8.39720- 7 6.29497- 3 4.10000+ 1 4.10000+ 1 3.36039- 6 6.19172- 3 4.10000+ 1 4.30000+ 1 4.97334- 6 6.21277- 3 4.10000+ 1 4.40000+ 1 6.31747- 6 6.22541- 3 4.10000+ 1 4.60000+ 1 2.68828- 7 6.24776- 3 4.10000+ 1 4.70000+ 1 2.68828- 7 6.24848- 3 4.10000+ 1 5.80000+ 1 6.72060- 7 6.24623- 3 4.30000+ 1 4.30000+ 1 1.34412- 7 6.23382- 3 4.30000+ 1 4.40000+ 1 4.03237- 7 6.24646- 3 4.30000+ 1 5.80000+ 1 4.03237- 7 6.26728- 3 4.40000+ 1 4.40000+ 1 3.18808- 7 6.25910- 3 4.40000+ 1 5.80000+ 1 4.25068- 7 6.27992- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.43011- 3 1.70840- 3 1.60000+ 1 1.15551- 3 4.28150- 3 2.10000+ 1 5.38612- 3 5.02596- 3 2.70000+ 1 3.12971- 4 5.56130- 3 3.20000+ 1 1.39881- 3 5.80914- 3 4.10000+ 1 6.38173- 5 5.88491- 3 5.80000+ 1 5.72363- 6 5.93942- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.11536- 2 1.96960- 4 1.10000+ 1 2.20000+ 1 1.98962- 2 2.51160- 4 1.10000+ 1 2.40000+ 1 2.84371- 2 6.14350- 4 1.10000+ 1 2.50000+ 1 2.25684- 2 6.29130- 4 1.10000+ 1 2.70000+ 1 3.14643- 3 7.32300- 4 1.10000+ 1 2.90000+ 1 4.75600- 3 8.01800- 4 1.10000+ 1 3.00000+ 1 1.69049- 3 8.76950- 4 1.10000+ 1 3.20000+ 1 2.14353- 3 9.80140- 4 1.10000+ 1 3.30000+ 1 3.58432- 3 9.91370- 4 1.10000+ 1 3.50000+ 1 1.15748- 3 1.10312- 3 1.10000+ 1 3.60000+ 1 9.13375- 4 1.10465- 3 1.10000+ 1 4.10000+ 1 5.93345- 4 1.05591- 3 1.10000+ 1 4.30000+ 1 7.24627- 4 1.07696- 3 1.10000+ 1 4.40000+ 1 2.42921- 4 1.08960- 3 1.10000+ 1 4.60000+ 1 1.13949- 5 1.11195- 3 1.10000+ 1 4.70000+ 1 1.61827- 5 1.11267- 3 1.10000+ 1 5.80000+ 1 5.51572- 5 1.11042- 3 1.30000+ 1 1.60000+ 1 4.79678- 2 4.43000- 5 1.30000+ 1 1.80000+ 1 5.05216- 2 2.15200- 4 1.30000+ 1 1.90000+ 1 2.95799- 2 5.14000- 4 1.30000+ 1 2.10000+ 1 1.65477- 2 7.88760- 4 1.30000+ 1 2.20000+ 1 2.89589- 2 8.42960- 4 1.30000+ 1 2.40000+ 1 1.52803- 1 1.20615- 3 1.30000+ 1 2.50000+ 1 2.41173- 1 1.22093- 3 1.30000+ 1 2.70000+ 1 1.23592- 2 1.32410- 3 1.30000+ 1 2.90000+ 1 1.03080- 2 1.39360- 3 1.30000+ 1 3.00000+ 1 7.02404- 3 1.46875- 3 1.30000+ 1 3.20000+ 1 3.59758- 3 1.57194- 3 1.30000+ 1 3.30000+ 1 6.06868- 3 1.58317- 3 1.30000+ 1 3.50000+ 1 5.69715- 3 1.69492- 3 1.30000+ 1 3.60000+ 1 9.16202- 3 1.69645- 3 1.30000+ 1 4.10000+ 1 2.45707- 3 1.64771- 3 1.30000+ 1 4.30000+ 1 1.69263- 3 1.66876- 3 1.30000+ 1 4.40000+ 1 1.04699- 3 1.68140- 3 1.30000+ 1 4.60000+ 1 1.94867- 5 1.70375- 3 1.30000+ 1 4.70000+ 1 2.79073- 5 1.70447- 3 1.30000+ 1 5.80000+ 1 2.29701- 4 1.70222- 3 1.40000+ 1 1.60000+ 1 7.19885- 3 2.65900- 4 1.40000+ 1 1.80000+ 1 5.72703- 2 4.36800- 4 1.40000+ 1 1.90000+ 1 4.44367- 3 7.35600- 4 1.40000+ 1 2.10000+ 1 2.35496- 3 1.01036- 3 1.40000+ 1 2.20000+ 1 2.80687- 3 1.06456- 3 1.40000+ 1 2.40000+ 1 8.75681- 3 1.42775- 3 1.40000+ 1 2.50000+ 1 5.03158- 3 1.44253- 3 1.40000+ 1 2.70000+ 1 1.23263- 3 1.54570- 3 1.40000+ 1 2.90000+ 1 8.79259- 3 1.61520- 3 1.40000+ 1 3.00000+ 1 8.86595- 4 1.69035- 3 1.40000+ 1 3.20000+ 1 1.99660- 4 1.79354- 3 1.40000+ 1 3.30000+ 1 5.07796- 4 1.80477- 3 1.40000+ 1 3.50000+ 1 4.70965- 4 1.91652- 3 1.40000+ 1 3.60000+ 1 2.15344- 4 1.91805- 3 1.40000+ 1 4.10000+ 1 2.26069- 4 1.86931- 3 1.40000+ 1 4.30000+ 1 1.35332- 3 1.89036- 3 1.40000+ 1 4.40000+ 1 1.28308- 4 1.90300- 3 1.40000+ 1 4.60000+ 1 9.90868- 7 1.92535- 3 1.40000+ 1 4.70000+ 1 2.31199- 6 1.92607- 3 1.40000+ 1 5.80000+ 1 2.08075- 5 1.92382- 3 1.60000+ 1 1.60000+ 1 4.15525- 4 2.61740- 3 1.60000+ 1 1.80000+ 1 6.72652- 3 2.78830- 3 1.60000+ 1 1.90000+ 1 7.77227- 4 3.08710- 3 1.60000+ 1 2.10000+ 1 2.95052- 4 3.36186- 3 1.60000+ 1 2.20000+ 1 7.48448- 4 3.41606- 3 1.60000+ 1 2.40000+ 1 7.22882- 5 3.77925- 3 1.60000+ 1 2.50000+ 1 5.38959- 4 3.79403- 3 1.60000+ 1 2.70000+ 1 1.64728- 4 3.89720- 3 1.60000+ 1 2.90000+ 1 1.02559- 3 3.96670- 3 1.60000+ 1 3.00000+ 1 1.71620- 4 4.04185- 3 1.60000+ 1 3.20000+ 1 3.88494- 5 4.14504- 3 1.60000+ 1 3.30000+ 1 1.33507- 4 4.15627- 3 1.60000+ 1 3.50000+ 1 2.70474- 6 4.26802- 3 1.60000+ 1 3.60000+ 1 1.79498- 5 4.26955- 3 1.60000+ 1 4.10000+ 1 3.14727- 5 4.22081- 3 1.60000+ 1 4.30000+ 1 1.58597- 4 4.24186- 3 1.60000+ 1 4.40000+ 1 2.53250- 5 4.25450- 3 1.60000+ 1 4.60000+ 1 2.45879- 7 4.27685- 3 1.60000+ 1 4.70000+ 1 4.91745- 7 4.27757- 3 1.60000+ 1 5.80000+ 1 2.95052- 6 4.27532- 3 1.80000+ 1 1.80000+ 1 5.30534- 3 2.95920- 3 1.80000+ 1 1.90000+ 1 1.37594- 2 3.25800- 3 1.80000+ 1 2.10000+ 1 1.40901- 2 3.53276- 3 1.80000+ 1 2.20000+ 1 2.17735- 2 3.58696- 3 1.80000+ 1 2.40000+ 1 8.88588- 3 3.95015- 3 1.80000+ 1 2.50000+ 1 1.42531- 2 3.96493- 3 1.80000+ 1 2.70000+ 1 1.76933- 3 4.06810- 3 1.80000+ 1 2.90000+ 1 2.17328- 3 4.13760- 3 1.80000+ 1 3.00000+ 1 3.35602- 3 4.21275- 3 1.80000+ 1 3.20000+ 1 2.87852- 3 4.31594- 3 1.80000+ 1 3.30000+ 1 4.33386- 3 4.32717- 3 1.80000+ 1 3.50000+ 1 4.58078- 4 4.43892- 3 1.80000+ 1 3.60000+ 1 7.03718- 4 4.44045- 3 1.80000+ 1 4.10000+ 1 3.57025- 4 4.39171- 3 1.80000+ 1 4.30000+ 1 3.59957- 4 4.41276- 3 1.80000+ 1 4.40000+ 1 5.04545- 4 4.42540- 3 1.80000+ 1 4.60000+ 1 1.54905- 5 4.44775- 3 1.80000+ 1 4.70000+ 1 1.99160- 5 4.44847- 3 1.80000+ 1 5.80000+ 1 3.34404- 5 4.44622- 3 1.90000+ 1 1.90000+ 1 3.27260- 4 3.55680- 3 1.90000+ 1 2.10000+ 1 7.35435- 4 3.83156- 3 1.90000+ 1 2.20000+ 1 7.16266- 4 3.88576- 3 1.90000+ 1 2.40000+ 1 5.53327- 3 4.24895- 3 1.90000+ 1 2.50000+ 1 1.55273- 3 4.26373- 3 1.90000+ 1 2.70000+ 1 1.28595- 4 4.36690- 3 1.90000+ 1 2.90000+ 1 2.13523- 3 4.43640- 3 1.90000+ 1 3.00000+ 1 1.34738- 4 4.51155- 3 1.90000+ 1 3.20000+ 1 1.15319- 4 4.61474- 3 1.90000+ 1 3.30000+ 1 1.29824- 4 4.62597- 3 1.90000+ 1 3.50000+ 1 2.34326- 4 4.73772- 3 1.90000+ 1 3.60000+ 1 6.66346- 5 4.73925- 3 1.90000+ 1 4.10000+ 1 2.36046- 5 4.69051- 3 1.90000+ 1 4.30000+ 1 3.30954- 4 4.71156- 3 1.90000+ 1 4.40000+ 1 1.96709- 5 4.72420- 3 1.90000+ 1 4.60000+ 1 4.91751- 7 4.74655- 3 1.90000+ 1 4.70000+ 1 4.91751- 7 4.74727- 3 1.90000+ 1 5.80000+ 1 2.21289- 6 4.74502- 3 2.10000+ 1 2.10000+ 1 5.55675- 4 4.10632- 3 2.10000+ 1 2.20000+ 1 9.30910- 4 4.16052- 3 2.10000+ 1 2.40000+ 1 5.73152- 4 4.52371- 3 2.10000+ 1 2.50000+ 1 6.85268- 4 4.53849- 3 2.10000+ 1 2.70000+ 1 7.54850- 5 4.64166- 3 2.10000+ 1 2.90000+ 1 2.11308- 3 4.71116- 3 2.10000+ 1 3.00000+ 1 1.69661- 4 4.78631- 3 2.10000+ 1 3.20000+ 1 1.82683- 4 4.88950- 3 2.10000+ 1 3.30000+ 1 1.69167- 4 4.90073- 3 2.10000+ 1 3.50000+ 1 1.45054- 5 5.01248- 3 2.10000+ 1 3.60000+ 1 2.33589- 5 5.01401- 3 2.10000+ 1 4.10000+ 1 1.52453- 5 4.96527- 3 2.10000+ 1 4.30000+ 1 3.25058- 4 4.98632- 3 2.10000+ 1 4.40000+ 1 2.50800- 5 4.99896- 3 2.10000+ 1 4.60000+ 1 9.83493- 7 5.02131- 3 2.10000+ 1 4.70000+ 1 7.37640- 7 5.02203- 3 2.10000+ 1 5.80000+ 1 1.47534- 6 5.01978- 3 2.20000+ 1 2.20000+ 1 2.58424- 4 4.21472- 3 2.20000+ 1 2.40000+ 1 1.03763- 3 4.57791- 3 2.20000+ 1 2.50000+ 1 2.86695- 4 4.59269- 3 2.20000+ 1 2.70000+ 1 1.53186- 4 4.69586- 3 2.20000+ 1 2.90000+ 1 3.29696- 3 4.76536- 3 2.20000+ 1 3.00000+ 1 1.32533- 4 4.84051- 3 2.20000+ 1 3.20000+ 1 1.34494- 4 4.94370- 3 2.20000+ 1 3.30000+ 1 8.67955- 5 4.95493- 3 2.20000+ 1 3.50000+ 1 2.13917- 5 5.06668- 3 2.20000+ 1 3.60000+ 1 8.60569- 6 5.06821- 3 2.20000+ 1 4.10000+ 1 2.92602- 5 5.01947- 3 2.20000+ 1 4.30000+ 1 5.07983- 4 5.04052- 3 2.20000+ 1 4.40000+ 1 1.89322- 5 5.05316- 3 2.20000+ 1 4.60000+ 1 7.37641- 7 5.07551- 3 2.20000+ 1 4.70000+ 1 4.91747- 7 5.07623- 3 2.20000+ 1 5.80000+ 1 2.70475- 6 5.07398- 3 2.40000+ 1 2.40000+ 1 2.31984- 3 4.94110- 3 2.40000+ 1 2.50000+ 1 1.47477- 2 4.95588- 3 2.40000+ 1 2.70000+ 1 1.30318- 5 5.05905- 3 2.40000+ 1 2.90000+ 1 1.22648- 3 5.12855- 3 2.40000+ 1 3.00000+ 1 1.26723- 3 5.20370- 3 2.40000+ 1 3.20000+ 1 1.19746- 4 5.30689- 3 2.40000+ 1 3.30000+ 1 2.62117- 4 5.31812- 3 2.40000+ 1 3.50000+ 1 1.95720- 4 5.42987- 3 2.40000+ 1 3.60000+ 1 5.93306- 4 5.43140- 3 2.40000+ 1 4.10000+ 1 2.45879- 6 5.38266- 3 2.40000+ 1 4.30000+ 1 1.87109- 4 5.40371- 3 2.40000+ 1 4.40000+ 1 1.88096- 4 5.41635- 3 2.40000+ 1 4.60000+ 1 7.37639- 7 5.43870- 3 2.40000+ 1 4.70000+ 1 1.22936- 6 5.43942- 3 2.40000+ 1 5.80000+ 1 2.45879- 7 5.43717- 3 2.50000+ 1 2.50000+ 1 7.65900- 4 4.97066- 3 2.50000+ 1 2.70000+ 1 1.14332- 4 5.07383- 3 2.50000+ 1 2.90000+ 1 1.90136- 3 5.14333- 3 2.50000+ 1 3.00000+ 1 3.12749- 4 5.21848- 3 2.50000+ 1 3.20000+ 1 1.42852- 4 5.32167- 3 2.50000+ 1 3.30000+ 1 6.07306- 5 5.33290- 3 2.50000+ 1 3.50000+ 1 5.98455- 4 5.44465- 3 2.50000+ 1 3.60000+ 1 6.24528- 5 5.44618- 3 2.50000+ 1 4.10000+ 1 2.18831- 5 5.39744- 3 2.50000+ 1 4.30000+ 1 2.85465- 4 5.41849- 3 2.50000+ 1 4.40000+ 1 4.54870- 5 5.43113- 3 2.50000+ 1 4.60000+ 1 7.37628- 7 5.45348- 3 2.50000+ 1 4.70000+ 1 2.45876- 7 5.45420- 3 2.50000+ 1 5.80000+ 1 1.96704- 6 5.45195- 3 2.70000+ 1 2.70000+ 1 1.62273- 5 5.17700- 3 2.70000+ 1 2.90000+ 1 2.71696- 4 5.24650- 3 2.70000+ 1 3.00000+ 1 2.82759- 5 5.32165- 3 2.70000+ 1 3.20000+ 1 9.34321- 6 5.42484- 3 2.70000+ 1 3.30000+ 1 2.77841- 5 5.43607- 3 2.70000+ 1 3.50000+ 1 4.91739- 7 5.54782- 3 2.70000+ 1 3.60000+ 1 3.93394- 6 5.54935- 3 2.70000+ 1 4.10000+ 1 6.14691- 6 5.50061- 3 2.70000+ 1 4.30000+ 1 4.20453- 5 5.52166- 3 2.70000+ 1 4.40000+ 1 4.17988- 6 5.53430- 3 2.70000+ 1 4.70000+ 1 2.45876- 7 5.55737- 3 2.70000+ 1 5.80000+ 1 4.91739- 7 5.55512- 3 2.90000+ 1 2.90000+ 1 2.07294- 4 5.31600- 3 2.90000+ 1 3.00000+ 1 5.24957- 4 5.39115- 3 2.90000+ 1 3.20000+ 1 4.34727- 4 5.49434- 3 2.90000+ 1 3.30000+ 1 6.61428- 4 5.50557- 3 2.90000+ 1 3.50000+ 1 6.29449- 5 5.61732- 3 2.90000+ 1 3.60000+ 1 9.49086- 5 5.61885- 3 2.90000+ 1 4.10000+ 1 5.48325- 5 5.57011- 3 2.90000+ 1 4.30000+ 1 6.76171- 5 5.59116- 3 2.90000+ 1 4.40000+ 1 7.91729- 5 5.60380- 3 2.90000+ 1 4.60000+ 1 2.21290- 6 5.62615- 3 2.90000+ 1 4.70000+ 1 2.95056- 6 5.62687- 3 2.90000+ 1 5.80000+ 1 5.16346- 6 5.62462- 3 3.00000+ 1 3.00000+ 1 1.37691- 5 5.46630- 3 3.00000+ 1 3.20000+ 1 2.68018- 5 5.56949- 3 3.00000+ 1 3.30000+ 1 2.40944- 5 5.58072- 3 3.00000+ 1 3.50000+ 1 5.38477- 5 5.69247- 3 3.00000+ 1 3.60000+ 1 1.32776- 5 5.69400- 3 3.00000+ 1 4.10000+ 1 5.16336- 6 5.64526- 3 3.00000+ 1 4.30000+ 1 8.13853- 5 5.66631- 3 3.00000+ 1 4.40000+ 1 3.93397- 6 5.67895- 3 3.00000+ 1 4.60000+ 1 2.45877- 7 5.70130- 3 3.00000+ 1 5.80000+ 1 4.91742- 7 5.69977- 3 3.20000+ 1 3.20000+ 1 1.37721- 5 5.67268- 3 3.20000+ 1 3.30000+ 1 2.56469- 5 5.68391- 3 3.20000+ 1 3.50000+ 1 3.32463- 6 5.79566- 3 3.20000+ 1 3.60000+ 1 5.46179- 6 5.79719- 3 3.20000+ 1 4.10000+ 1 1.89977- 6 5.74845- 3 3.20000+ 1 4.30000+ 1 6.45910- 5 5.76950- 3 3.20000+ 1 4.40000+ 1 3.79940- 6 5.78214- 3 3.20000+ 1 4.60000+ 1 2.37467- 7 5.80449- 3 3.20000+ 1 5.80000+ 1 2.37467- 7 5.80296- 3 3.30000+ 1 3.30000+ 1 7.29771- 6 5.69514- 3 3.30000+ 1 3.50000+ 1 6.35612- 6 5.80689- 3 3.30000+ 1 3.60000+ 1 1.88333- 6 5.80842- 3 3.30000+ 1 4.10000+ 1 5.17905- 6 5.75968- 3 3.30000+ 1 4.30000+ 1 9.76922- 5 5.78073- 3 3.30000+ 1 4.40000+ 1 3.29586- 6 5.79337- 3 3.30000+ 1 4.60000+ 1 2.35412- 7 5.81572- 3 3.30000+ 1 5.80000+ 1 4.70812- 7 5.81419- 3 3.50000+ 1 3.50000+ 1 3.77026- 6 5.91864- 3 3.50000+ 1 3.60000+ 1 2.71998- 5 5.92017- 3 3.50000+ 1 4.30000+ 1 1.05024- 5 5.89248- 3 3.50000+ 1 4.40000+ 1 8.88673- 6 5.90512- 3 3.60000+ 1 3.60000+ 1 9.86443- 7 5.92170- 3 3.60000+ 1 4.10000+ 1 7.39852- 7 5.87296- 3 3.60000+ 1 4.30000+ 1 1.43028- 5 5.89401- 3 3.60000+ 1 4.40000+ 1 1.97297- 6 5.90665- 3 4.10000+ 1 4.10000+ 1 4.67300- 7 5.82422- 3 4.10000+ 1 4.30000+ 1 8.17787- 6 5.84527- 3 4.10000+ 1 4.40000+ 1 7.00970- 7 5.85791- 3 4.30000+ 1 4.30000+ 1 5.14219- 6 5.86632- 3 4.30000+ 1 4.40000+ 1 1.16865- 5 5.87896- 3 4.30000+ 1 4.60000+ 1 2.33736- 7 5.90131- 3 4.30000+ 1 4.70000+ 1 4.67460- 7 5.90203- 3 4.30000+ 1 5.80000+ 1 7.01210- 7 5.89978- 3 4.40000+ 1 4.40000+ 1 2.45881- 7 5.89160- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.35470- 5 5.91800- 4 1.40000+ 1 3.42879- 4 8.13400- 4 1.60000+ 1 2.54480- 3 3.16490- 3 2.10000+ 1 1.16250- 3 3.90936- 3 2.20000+ 1 8.61449- 3 3.96356- 3 2.70000+ 1 6.50949- 4 4.44470- 3 3.20000+ 1 2.62800- 4 4.69254- 3 3.30000+ 1 1.99380- 3 4.70377- 3 4.10000+ 1 1.29180- 4 4.76831- 3 5.80000+ 1 1.19900- 5 4.82282- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.54046- 2 8.95500- 5 1.30000+ 1 2.50000+ 1 2.33790- 2 1.04330- 4 1.30000+ 1 2.70000+ 1 4.09966- 3 2.07500- 4 1.30000+ 1 2.90000+ 1 4.07981- 3 2.77000- 4 1.30000+ 1 3.00000+ 1 1.13304- 2 3.52150- 4 1.30000+ 1 3.20000+ 1 2.26178- 3 4.55340- 4 1.30000+ 1 3.30000+ 1 2.56790- 3 4.66570- 4 1.30000+ 1 3.50000+ 1 5.02973- 4 5.78320- 4 1.30000+ 1 3.60000+ 1 8.51003- 4 5.79850- 4 1.30000+ 1 4.10000+ 1 7.84685- 4 5.31110- 4 1.30000+ 1 4.30000+ 1 6.62703- 4 5.52160- 4 1.30000+ 1 4.40000+ 1 1.59486- 3 5.64800- 4 1.30000+ 1 4.60000+ 1 1.17835- 5 5.87150- 4 1.30000+ 1 4.70000+ 1 1.15654- 5 5.87870- 4 1.30000+ 1 5.80000+ 1 7.22271- 5 5.85620- 4 1.40000+ 1 2.40000+ 1 2.35991- 1 3.11150- 4 1.40000+ 1 2.50000+ 1 2.84279- 1 3.25930- 4 1.40000+ 1 2.70000+ 1 2.50857- 2 4.29100- 4 1.40000+ 1 2.90000+ 1 2.71762- 2 4.98600- 4 1.40000+ 1 3.00000+ 1 2.67147- 2 5.73750- 4 1.40000+ 1 3.20000+ 1 9.06499- 3 6.76940- 4 1.40000+ 1 3.30000+ 1 1.34333- 2 6.88170- 4 1.40000+ 1 3.50000+ 1 6.94942- 3 7.99920- 4 1.40000+ 1 3.60000+ 1 7.80433- 3 8.01450- 4 1.40000+ 1 4.10000+ 1 4.92278- 3 7.52710- 4 1.40000+ 1 4.30000+ 1 4.45723- 3 7.73760- 4 1.40000+ 1 4.40000+ 1 3.86276- 3 7.86400- 4 1.40000+ 1 4.60000+ 1 4.73517- 5 8.08750- 4 1.40000+ 1 4.70000+ 1 6.08805- 5 8.09470- 4 1.40000+ 1 5.80000+ 1 4.59559- 4 8.07220- 4 1.60000+ 1 1.60000+ 1 4.81704- 5 1.50080- 3 1.60000+ 1 1.80000+ 1 3.10396- 4 1.67170- 3 1.60000+ 1 1.90000+ 1 8.95845- 3 1.97050- 3 1.60000+ 1 2.10000+ 1 6.02838- 4 2.24526- 3 1.60000+ 1 2.20000+ 1 8.20604- 4 2.29946- 3 1.60000+ 1 2.40000+ 1 2.66337- 3 2.66265- 3 1.60000+ 1 2.50000+ 1 4.84126- 3 2.67743- 3 1.60000+ 1 2.70000+ 1 2.47969- 5 2.78060- 3 1.60000+ 1 2.90000+ 1 3.76245- 5 2.85010- 3 1.60000+ 1 3.00000+ 1 1.34684- 3 2.92525- 3 1.60000+ 1 3.20000+ 1 1.01471- 4 3.02844- 3 1.60000+ 1 3.30000+ 1 1.35393- 4 3.03967- 3 1.60000+ 1 3.50000+ 1 9.66257- 5 3.15142- 3 1.60000+ 1 3.60000+ 1 1.68448- 4 3.15295- 3 1.60000+ 1 4.10000+ 1 4.84554- 6 3.10421- 3 1.60000+ 1 4.30000+ 1 5.41550- 6 3.12526- 3 1.60000+ 1 4.40000+ 1 1.84712- 4 3.13790- 3 1.60000+ 1 4.60000+ 1 5.70055- 7 3.16025- 3 1.60000+ 1 4.70000+ 1 5.70055- 7 3.16097- 3 1.60000+ 1 5.80000+ 1 5.70055- 7 3.15872- 3 1.80000+ 1 1.80000+ 1 3.42044- 6 1.84260- 3 1.80000+ 1 1.90000+ 1 1.14894- 2 2.14140- 3 1.80000+ 1 2.10000+ 1 2.83894- 4 2.41616- 3 1.80000+ 1 2.20000+ 1 2.75604- 3 2.47036- 3 1.80000+ 1 2.40000+ 1 1.51589- 3 2.83355- 3 1.80000+ 1 2.50000+ 1 7.20676- 3 2.84833- 3 1.80000+ 1 2.70000+ 1 7.18303- 5 2.95150- 3 1.80000+ 1 2.90000+ 1 4.56066- 6 3.02100- 3 1.80000+ 1 3.00000+ 1 1.78238- 3 3.09615- 3 1.80000+ 1 3.20000+ 1 5.78638- 5 3.19934- 3 1.80000+ 1 3.30000+ 1 4.41819- 4 3.21057- 3 1.80000+ 1 3.50000+ 1 4.84574- 5 3.32232- 3 1.80000+ 1 3.60000+ 1 2.39994- 4 3.32385- 3 1.80000+ 1 4.10000+ 1 1.36816- 5 3.27511- 3 1.80000+ 1 4.30000+ 1 8.55122- 7 3.29616- 3 1.80000+ 1 4.40000+ 1 2.45704- 4 3.30880- 3 1.80000+ 1 4.60000+ 1 2.85044- 7 3.33115- 3 1.80000+ 1 4.70000+ 1 1.99528- 6 3.33187- 3 1.80000+ 1 5.80000+ 1 1.14014- 6 3.32962- 3 1.90000+ 1 1.90000+ 1 1.41648- 2 2.44020- 3 1.90000+ 1 2.10000+ 1 2.13017- 2 2.71496- 3 1.90000+ 1 2.20000+ 1 2.74224- 2 2.76916- 3 1.90000+ 1 2.40000+ 1 2.05716- 2 3.13235- 3 1.90000+ 1 2.50000+ 1 2.34003- 2 3.14713- 3 1.90000+ 1 2.70000+ 1 2.32878- 3 3.25030- 3 1.90000+ 1 2.90000+ 1 2.78480- 3 3.31980- 3 1.90000+ 1 3.00000+ 1 5.60627- 3 3.39495- 3 1.90000+ 1 3.20000+ 1 4.16898- 3 3.49814- 3 1.90000+ 1 3.30000+ 1 5.36940- 3 3.50937- 3 1.90000+ 1 3.50000+ 1 9.82540- 4 3.62112- 3 1.90000+ 1 3.60000+ 1 1.08233- 3 3.62265- 3 1.90000+ 1 4.10000+ 1 4.68040- 4 3.57391- 3 1.90000+ 1 4.30000+ 1 4.72039- 4 3.59496- 3 1.90000+ 1 4.40000+ 1 8.15235- 4 3.60760- 3 1.90000+ 1 4.60000+ 1 2.22336- 5 3.62995- 3 1.90000+ 1 4.70000+ 1 2.45143- 5 3.63067- 3 1.90000+ 1 5.80000+ 1 4.38960- 5 3.62842- 3 2.10000+ 1 2.10000+ 1 1.53627- 4 2.98972- 3 2.10000+ 1 2.20000+ 1 3.63507- 3 3.04392- 3 2.10000+ 1 2.40000+ 1 6.07688- 4 3.40711- 3 2.10000+ 1 2.50000+ 1 6.80411- 3 3.42189- 3 2.10000+ 1 2.70000+ 1 7.66745- 5 3.52506- 3 2.10000+ 1 2.90000+ 1 1.28265- 5 3.59456- 3 2.10000+ 1 3.00000+ 1 3.21062- 3 3.66971- 3 2.10000+ 1 3.20000+ 1 4.90257- 5 3.77290- 3 2.10000+ 1 3.30000+ 1 6.15673- 4 3.78413- 3 2.10000+ 1 3.50000+ 1 2.33726- 5 3.89588- 3 2.10000+ 1 3.60000+ 1 1.88112- 4 3.89741- 3 2.10000+ 1 4.10000+ 1 1.33963- 5 3.84867- 3 2.10000+ 1 4.30000+ 1 1.71018- 6 3.86972- 3 2.10000+ 1 4.40000+ 1 4.39801- 4 3.88236- 3 2.10000+ 1 4.60000+ 1 2.85036- 7 3.90471- 3 2.10000+ 1 4.70000+ 1 2.85036- 6 3.90543- 3 2.10000+ 1 5.80000+ 1 1.14010- 6 3.90318- 3 2.20000+ 1 2.20000+ 1 1.53546- 3 3.09812- 3 2.20000+ 1 2.40000+ 1 5.30776- 3 3.46131- 3 2.20000+ 1 2.50000+ 1 4.30387- 3 3.47609- 3 2.20000+ 1 2.70000+ 1 1.16015- 4 3.57926- 3 2.20000+ 1 2.90000+ 1 2.70518- 4 3.64876- 3 2.20000+ 1 3.00000+ 1 4.07556- 3 3.72391- 3 2.20000+ 1 3.20000+ 1 6.02865- 4 3.82710- 3 2.20000+ 1 3.30000+ 1 5.25041- 4 3.83833- 3 2.20000+ 1 3.50000+ 1 1.93268- 4 3.95008- 3 2.20000+ 1 3.60000+ 1 1.48802- 4 3.95161- 3 2.20000+ 1 4.10000+ 1 2.05240- 5 3.90287- 3 2.20000+ 1 4.30000+ 1 3.81960- 5 3.92392- 3 2.20000+ 1 4.40000+ 1 5.56688- 4 3.93656- 3 2.20000+ 1 4.60000+ 1 3.13552- 6 3.95891- 3 2.20000+ 1 4.70000+ 1 2.28047- 6 3.95963- 3 2.20000+ 1 5.80000+ 1 1.99529- 6 3.95738- 3 2.40000+ 1 2.40000+ 1 9.44915- 4 3.82450- 3 2.40000+ 1 2.50000+ 1 2.42891- 2 3.83928- 3 2.40000+ 1 2.70000+ 1 2.91879- 4 3.94245- 3 2.40000+ 1 2.90000+ 1 2.91879- 4 4.01195- 3 2.40000+ 1 3.00000+ 1 2.93959- 3 4.08710- 3 2.40000+ 1 3.20000+ 1 1.38248- 4 4.19029- 3 2.40000+ 1 3.30000+ 1 9.70853- 4 4.20152- 3 2.40000+ 1 3.50000+ 1 7.81011- 5 4.31327- 3 2.40000+ 1 3.60000+ 1 8.85911- 4 4.31480- 3 2.40000+ 1 4.10000+ 1 5.01667- 5 4.26606- 3 2.40000+ 1 4.30000+ 1 4.70322- 5 4.28711- 3 2.40000+ 1 4.40000+ 1 3.99615- 4 4.29975- 3 2.40000+ 1 4.60000+ 1 8.55118- 7 4.32210- 3 2.40000+ 1 4.70000+ 1 4.27571- 6 4.32282- 3 2.40000+ 1 5.80000+ 1 4.56064- 6 4.32057- 3 2.50000+ 1 2.50000+ 1 9.67168- 3 3.85406- 3 2.50000+ 1 2.70000+ 1 5.19629- 4 3.95723- 3 2.50000+ 1 2.90000+ 1 1.35618- 3 4.02673- 3 2.50000+ 1 3.00000+ 1 3.50883- 3 4.10188- 3 2.50000+ 1 3.20000+ 1 1.31239- 3 4.20507- 3 2.50000+ 1 3.30000+ 1 8.62537- 4 4.21630- 3 2.50000+ 1 3.50000+ 1 8.86201- 4 4.32805- 3 2.50000+ 1 3.60000+ 1 7.17160- 4 4.32958- 3 2.50000+ 1 4.10000+ 1 8.77922- 5 4.28084- 3 2.50000+ 1 4.30000+ 1 2.19485- 4 4.30189- 3 2.50000+ 1 4.40000+ 1 4.84276- 4 4.31453- 3 2.50000+ 1 4.60000+ 1 6.84106- 6 4.33688- 3 2.50000+ 1 4.70000+ 1 3.99064- 6 4.33760- 3 2.50000+ 1 5.80000+ 1 7.98116- 6 4.33535- 3 2.70000+ 1 2.70000+ 1 3.13538- 6 4.06040- 3 2.70000+ 1 2.90000+ 1 9.69105- 6 4.12990- 3 2.70000+ 1 3.00000+ 1 3.52009- 4 4.20505- 3 2.70000+ 1 3.20000+ 1 1.42522- 5 4.30824- 3 2.70000+ 1 3.30000+ 1 2.05231- 5 4.31947- 3 2.70000+ 1 3.50000+ 1 1.02611- 5 4.43122- 3 2.70000+ 1 3.60000+ 1 1.79564- 5 4.43275- 3 2.70000+ 1 4.10000+ 1 1.42522- 6 4.38401- 3 2.70000+ 1 4.30000+ 1 1.42522- 6 4.40506- 3 2.70000+ 1 4.40000+ 1 4.81704- 5 4.41770- 3 2.90000+ 1 2.90000+ 1 2.85037- 7 4.19940- 3 2.90000+ 1 3.00000+ 1 4.34398- 4 4.27455- 3 2.90000+ 1 3.20000+ 1 2.28040- 6 4.37774- 3 2.90000+ 1 3.30000+ 1 4.64602- 5 4.38897- 3 2.90000+ 1 3.50000+ 1 1.11162- 5 4.50072- 3 2.90000+ 1 3.60000+ 1 5.15915- 5 4.50225- 3 2.90000+ 1 4.10000+ 1 1.99523- 6 4.45351- 3 2.90000+ 1 4.40000+ 1 6.01429- 5 4.48720- 3 2.90000+ 1 4.70000+ 1 2.85037- 7 4.51027- 3 2.90000+ 1 5.80000+ 1 2.85037- 7 4.50802- 3 3.00000+ 1 3.00000+ 1 5.22182- 4 4.34970- 3 3.00000+ 1 3.20000+ 1 6.31640- 4 4.45289- 3 3.00000+ 1 3.30000+ 1 8.00381- 4 4.46412- 3 3.00000+ 1 3.50000+ 1 1.40518- 4 4.57587- 3 3.00000+ 1 3.60000+ 1 1.60182- 4 4.57740- 3 3.00000+ 1 4.10000+ 1 7.09731- 5 4.52866- 3 3.00000+ 1 4.30000+ 1 7.38234- 5 4.54971- 3 3.00000+ 1 4.40000+ 1 1.50215- 4 4.56235- 3 3.00000+ 1 4.60000+ 1 3.42032- 6 4.58470- 3 3.00000+ 1 4.70000+ 1 3.70536- 6 4.58542- 3 3.00000+ 1 5.80000+ 1 6.55570- 6 4.58317- 3 3.20000+ 1 3.20000+ 1 3.99057- 6 4.55608- 3 3.20000+ 1 3.30000+ 1 1.11445- 4 4.56731- 3 3.20000+ 1 3.50000+ 1 4.84561- 6 4.67906- 3 3.20000+ 1 3.60000+ 1 3.90509- 5 4.68059- 3 3.20000+ 1 4.10000+ 1 2.56532- 6 4.63185- 3 3.20000+ 1 4.30000+ 1 2.85037- 7 4.65290- 3 3.20000+ 1 4.40000+ 1 8.66522- 5 4.66554- 3 3.20000+ 1 4.70000+ 1 5.70063- 7 4.68861- 3 3.20000+ 1 5.80000+ 1 2.85037- 7 4.68636- 3 3.30000+ 1 3.30000+ 1 4.78862- 5 4.57854- 3 3.30000+ 1 3.50000+ 1 3.76250- 5 4.69029- 3 3.30000+ 1 3.60000+ 1 3.04982- 5 4.69182- 3 3.30000+ 1 4.10000+ 1 3.70539- 6 4.64308- 3 3.30000+ 1 4.30000+ 1 6.55576- 6 4.66413- 3 3.30000+ 1 4.40000+ 1 1.09454- 4 4.67677- 3 3.30000+ 1 4.60000+ 1 5.70063- 7 4.69912- 3 3.30000+ 1 4.70000+ 1 5.70063- 7 4.69984- 3 3.30000+ 1 5.80000+ 1 2.85037- 7 4.69759- 3 3.50000+ 1 3.50000+ 1 1.55475- 6 4.80204- 3 3.50000+ 1 3.60000+ 1 3.73114- 5 4.80357- 3 3.50000+ 1 4.10000+ 1 1.86557- 6 4.75483- 3 3.50000+ 1 4.30000+ 1 1.86557- 6 4.77588- 3 3.50000+ 1 4.40000+ 1 2.08328- 5 4.78852- 3 3.50000+ 1 4.70000+ 1 3.10936- 7 4.81159- 3 3.50000+ 1 5.80000+ 1 3.10936- 7 4.80934- 3 3.60000+ 1 3.60000+ 1 1.27081- 5 4.80510- 3 3.60000+ 1 4.10000+ 1 3.32850- 6 4.75636- 3 3.60000+ 1 4.30000+ 1 9.07755- 6 4.77741- 3 3.60000+ 1 4.40000+ 1 2.32996- 5 4.79005- 3 3.60000+ 1 4.60000+ 1 3.02589- 7 4.81240- 3 3.60000+ 1 5.80000+ 1 3.02589- 7 4.81087- 3 4.10000+ 1 4.30000+ 1 2.64161- 7 4.72867- 3 4.10000+ 1 4.40000+ 1 8.98142- 6 4.74131- 3 4.30000+ 1 4.40000+ 1 9.24559- 6 4.76236- 3 4.40000+ 1 4.40000+ 1 9.17235- 6 4.77500- 3 4.40000+ 1 4.60000+ 1 4.82751- 7 4.79735- 3 4.40000+ 1 4.70000+ 1 4.82751- 7 4.79807- 3 4.40000+ 1 5.80000+ 1 7.24132- 7 4.79582- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.58989- 3 2.74400- 3 1.90000+ 1 2.14349- 4 3.04280- 3 2.40000+ 1 5.61237- 2 3.73495- 3 2.90000+ 1 6.06597- 4 3.92240- 3 3.00000+ 1 5.02748- 5 3.99755- 3 3.50000+ 1 3.08479- 3 4.22372- 3 4.30000+ 1 1.02730- 4 4.19756- 3 4.40000+ 1 7.61556- 6 4.21020- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.76085- 2 8.51400- 5 1.40000+ 1 3.30000+ 1 6.85333- 3 9.63700- 5 1.40000+ 1 3.50000+ 1 2.23959- 2 2.08120- 4 1.40000+ 1 3.60000+ 1 2.38451- 3 2.09650- 4 1.40000+ 1 4.10000+ 1 9.41567- 4 1.60910- 4 1.40000+ 1 4.30000+ 1 4.52028- 4 1.81960- 4 1.40000+ 1 4.40000+ 1 8.93365- 4 1.94600- 4 1.40000+ 1 4.60000+ 1 2.42730- 4 2.16950- 4 1.40000+ 1 4.70000+ 1 3.07609- 5 2.17670- 4 1.40000+ 1 5.80000+ 1 8.69298- 5 2.15420- 4 1.60000+ 1 1.60000+ 1 1.33739- 6 9.09000- 4 1.60000+ 1 1.80000+ 1 6.72717- 4 1.07990- 3 1.60000+ 1 1.90000+ 1 6.86092- 4 1.37870- 3 1.60000+ 1 2.10000+ 1 2.68038- 2 1.65346- 3 1.60000+ 1 2.20000+ 1 3.20311- 3 1.70766- 3 1.60000+ 1 2.40000+ 1 1.62783- 2 2.07085- 3 1.60000+ 1 2.50000+ 1 3.53024- 3 2.08563- 3 1.60000+ 1 2.70000+ 1 1.33739- 5 2.18880- 3 1.60000+ 1 2.90000+ 1 1.42437- 4 2.25830- 3 1.60000+ 1 3.00000+ 1 1.08327- 4 2.33345- 3 1.60000+ 1 3.20000+ 1 3.53074- 3 2.43664- 3 1.60000+ 1 3.30000+ 1 4.56723- 4 2.44787- 3 1.60000+ 1 3.50000+ 1 5.59035- 4 2.55962- 3 1.60000+ 1 3.60000+ 1 9.76352- 5 2.56115- 3 1.60000+ 1 4.10000+ 1 3.34344- 6 2.51241- 3 1.60000+ 1 4.30000+ 1 2.34046- 5 2.53346- 3 1.60000+ 1 4.40000+ 1 1.47115- 5 2.54610- 3 1.60000+ 1 4.60000+ 1 1.73865- 5 2.56845- 3 1.60000+ 1 4.70000+ 1 2.00615- 6 2.56917- 3 1.80000+ 1 1.80000+ 1 2.66812- 4 1.25080- 3 1.80000+ 1 1.90000+ 1 2.98838- 3 1.54960- 3 1.80000+ 1 2.10000+ 1 2.43353- 2 1.82436- 3 1.80000+ 1 2.20000+ 1 1.29730- 3 1.87856- 3 1.80000+ 1 2.40000+ 1 1.27646- 2 2.24175- 3 1.80000+ 1 2.50000+ 1 7.23816- 3 2.25653- 3 1.80000+ 1 2.70000+ 1 8.76008- 5 2.35970- 3 1.80000+ 1 2.90000+ 1 1.18371- 4 2.42920- 3 1.80000+ 1 3.00000+ 1 5.26941- 4 2.50435- 3 1.80000+ 1 3.20000+ 1 3.16621- 3 2.60754- 3 1.80000+ 1 3.30000+ 1 2.07966- 4 2.61877- 3 1.80000+ 1 3.50000+ 1 4.23971- 4 2.73052- 3 1.80000+ 1 3.60000+ 1 2.41408- 4 2.73205- 3 1.80000+ 1 4.10000+ 1 1.60490- 5 2.68331- 3 1.80000+ 1 4.30000+ 1 1.93923- 5 2.70436- 3 1.80000+ 1 4.40000+ 1 7.42268- 5 2.71700- 3 1.80000+ 1 4.60000+ 1 1.60490- 5 2.73935- 3 1.80000+ 1 4.70000+ 1 6.68720- 7 2.74007- 3 1.80000+ 1 5.80000+ 1 1.33740- 6 2.73782- 3 1.90000+ 1 1.90000+ 1 1.03377- 3 1.84840- 3 1.90000+ 1 2.10000+ 1 4.57685- 2 2.12316- 3 1.90000+ 1 2.20000+ 1 1.73931- 3 2.17736- 3 1.90000+ 1 2.40000+ 1 1.71588- 3 2.54055- 3 1.90000+ 1 2.50000+ 1 1.52000- 3 2.55533- 3 1.90000+ 1 2.70000+ 1 1.31733- 4 2.65850- 3 1.90000+ 1 2.90000+ 1 4.40011- 4 2.72800- 3 1.90000+ 1 3.00000+ 1 3.47734- 4 2.80315- 3 1.90000+ 1 3.20000+ 1 6.03091- 3 2.90634- 3 1.90000+ 1 3.30000+ 1 2.62140- 4 2.91757- 3 1.90000+ 1 3.50000+ 1 4.41338- 5 3.02932- 3 1.90000+ 1 3.60000+ 1 3.61099- 5 3.03085- 3 1.90000+ 1 4.10000+ 1 2.47418- 5 2.98211- 3 1.90000+ 1 4.30000+ 1 6.75381- 5 3.00316- 3 1.90000+ 1 4.40000+ 1 4.88154- 5 3.01580- 3 1.90000+ 1 4.60000+ 1 3.00917- 5 3.03815- 3 1.90000+ 1 4.70000+ 1 1.33738- 6 3.03887- 3 1.90000+ 1 5.80000+ 1 2.00612- 6 3.03662- 3 2.10000+ 1 2.10000+ 1 4.27211- 2 2.39792- 3 2.10000+ 1 2.20000+ 1 8.30296- 2 2.45212- 3 2.10000+ 1 2.40000+ 1 5.14063- 2 2.81531- 3 2.10000+ 1 2.50000+ 1 6.03420- 2 2.83009- 3 2.10000+ 1 2.70000+ 1 6.26719- 3 2.93326- 3 2.10000+ 1 2.90000+ 1 5.95819- 3 3.00276- 3 2.10000+ 1 3.00000+ 1 1.08277- 2 3.07791- 3 2.10000+ 1 3.20000+ 1 1.41170- 2 3.18110- 3 2.10000+ 1 3.30000+ 1 1.60710- 2 3.19233- 3 2.10000+ 1 3.50000+ 1 2.46335- 3 3.30408- 3 2.10000+ 1 3.60000+ 1 2.84136- 3 3.30561- 3 2.10000+ 1 4.10000+ 1 1.24115- 3 3.25687- 3 2.10000+ 1 4.30000+ 1 1.01245- 3 3.27792- 3 2.10000+ 1 4.40000+ 1 1.61756- 3 3.29056- 3 2.10000+ 1 4.60000+ 1 7.35583- 5 3.31291- 3 2.10000+ 1 4.70000+ 1 7.28901- 5 3.31363- 3 2.10000+ 1 5.80000+ 1 1.16355- 4 3.31138- 3 2.20000+ 1 2.20000+ 1 1.30187- 3 2.50632- 3 2.20000+ 1 2.40000+ 1 6.14674- 2 2.86951- 3 2.20000+ 1 2.50000+ 1 2.84333- 3 2.88429- 3 2.20000+ 1 2.70000+ 1 3.54418- 4 2.98746- 3 2.20000+ 1 2.90000+ 1 1.69853- 4 3.05696- 3 2.20000+ 1 3.00000+ 1 3.24985- 4 3.13211- 3 2.20000+ 1 3.20000+ 1 1.09631- 2 3.23530- 3 2.20000+ 1 3.30000+ 1 4.06560- 4 3.24653- 3 2.20000+ 1 3.50000+ 1 2.68484- 3 3.35828- 3 2.20000+ 1 3.60000+ 1 1.10329- 4 3.35981- 3 2.20000+ 1 4.10000+ 1 6.15202- 5 3.31107- 3 2.20000+ 1 4.30000+ 1 2.60784- 5 3.33212- 3 2.20000+ 1 4.40000+ 1 4.61397- 5 3.34476- 3 2.20000+ 1 4.60000+ 1 5.48338- 5 3.36711- 3 2.20000+ 1 4.70000+ 1 2.00613- 6 3.36783- 3 2.20000+ 1 5.80000+ 1 5.34973- 6 3.36558- 3 2.40000+ 1 2.40000+ 1 6.12065- 2 3.23270- 3 2.40000+ 1 2.50000+ 1 1.74653- 1 3.24748- 3 2.40000+ 1 2.70000+ 1 4.09597- 3 3.35065- 3 2.40000+ 1 2.90000+ 1 2.41796- 3 3.42015- 3 2.40000+ 1 3.00000+ 1 4.15271- 4 3.49530- 3 2.40000+ 1 3.20000+ 1 7.49285- 3 3.59849- 3 2.40000+ 1 3.30000+ 1 1.12664- 2 3.60972- 3 2.40000+ 1 3.50000+ 1 5.14042- 3 3.72147- 3 2.40000+ 1 3.60000+ 1 7.73033- 3 3.72300- 3 2.40000+ 1 4.10000+ 1 8.19821- 4 3.67426- 3 2.40000+ 1 4.30000+ 1 4.01896- 4 3.69531- 3 2.40000+ 1 4.40000+ 1 6.28582- 5 3.70795- 3 2.40000+ 1 4.60000+ 1 3.81161- 5 3.73030- 3 2.40000+ 1 4.70000+ 1 5.08207- 5 3.73102- 3 2.40000+ 1 5.80000+ 1 7.69004- 5 3.72877- 3 2.50000+ 1 2.50000+ 1 3.59756- 3 3.26226- 3 2.50000+ 1 2.70000+ 1 6.12533- 4 3.36543- 3 2.50000+ 1 2.90000+ 1 6.90778- 4 3.43493- 3 2.50000+ 1 3.00000+ 1 3.22983- 4 3.51008- 3 2.50000+ 1 3.20000+ 1 7.21946- 3 3.61327- 3 2.50000+ 1 3.30000+ 1 4.83462- 4 3.62450- 3 2.50000+ 1 3.50000+ 1 6.44430- 3 3.73625- 3 2.50000+ 1 3.60000+ 1 2.90897- 4 3.73778- 3 2.50000+ 1 4.10000+ 1 1.12335- 4 3.68904- 3 2.50000+ 1 4.30000+ 1 9.96406- 5 3.71009- 3 2.50000+ 1 4.40000+ 1 4.68083- 5 3.72273- 3 2.50000+ 1 4.60000+ 1 3.54420- 5 3.74508- 3 2.50000+ 1 4.70000+ 1 2.00614- 6 3.74580- 3 2.50000+ 1 5.80000+ 1 1.06989- 5 3.74355- 3 2.70000+ 1 2.70000+ 1 1.33747- 6 3.46860- 3 2.70000+ 1 2.90000+ 1 2.20684- 5 3.53810- 3 2.70000+ 1 3.00000+ 1 2.14000- 5 3.61325- 3 2.70000+ 1 3.20000+ 1 8.31245- 4 3.71644- 3 2.70000+ 1 3.30000+ 1 5.68430- 5 3.72767- 3 2.70000+ 1 3.50000+ 1 1.50464- 4 3.83942- 3 2.70000+ 1 3.60000+ 1 2.20684- 5 3.84095- 3 2.70000+ 1 4.10000+ 1 6.68753- 7 3.79221- 3 2.70000+ 1 4.30000+ 1 3.34362- 6 3.81326- 3 2.70000+ 1 4.40000+ 1 3.34362- 6 3.82590- 3 2.70000+ 1 4.60000+ 1 4.01240- 6 3.84825- 3 2.90000+ 1 2.90000+ 1 1.40424- 5 3.60760- 3 2.90000+ 1 3.00000+ 1 8.42571- 5 3.68275- 3 2.90000+ 1 3.20000+ 1 7.79725- 4 3.78594- 3 2.90000+ 1 3.30000+ 1 3.20972- 5 3.79717- 3 2.90000+ 1 3.50000+ 1 8.35888- 5 3.90892- 3 2.90000+ 1 3.60000+ 1 2.40732- 5 3.91045- 3 2.90000+ 1 4.10000+ 1 4.01223- 6 3.86171- 3 2.90000+ 1 4.30000+ 1 4.68089- 6 3.88276- 3 2.90000+ 1 4.40000+ 1 1.20376- 5 3.89540- 3 2.90000+ 1 4.60000+ 1 4.01223- 6 3.91775- 3 2.90000+ 1 5.80000+ 1 6.68724- 7 3.91622- 3 3.00000+ 1 3.00000+ 1 3.00915- 5 3.75790- 3 3.00000+ 1 3.20000+ 1 1.43561- 3 3.86109- 3 3.00000+ 1 3.30000+ 1 5.21573- 5 3.87232- 3 3.00000+ 1 3.50000+ 1 1.27054- 5 3.98407- 3 3.00000+ 1 3.60000+ 1 8.02430- 6 3.98560- 3 3.00000+ 1 4.10000+ 1 4.01210- 6 3.93686- 3 3.00000+ 1 4.30000+ 1 1.33737- 5 3.95791- 3 3.00000+ 1 4.40000+ 1 8.69294- 6 3.97055- 3 3.00000+ 1 4.60000+ 1 7.35567- 6 3.99290- 3 3.00000+ 1 5.80000+ 1 6.68704- 7 3.99137- 3 3.20000+ 1 3.20000+ 1 1.11339- 3 3.96428- 3 3.20000+ 1 3.30000+ 1 2.13580- 3 3.97551- 3 3.20000+ 1 3.50000+ 1 3.57763- 4 4.08726- 3 3.20000+ 1 3.60000+ 1 3.44398- 4 4.08879- 3 3.20000+ 1 4.10000+ 1 1.64499- 4 4.04005- 3 3.20000+ 1 4.30000+ 1 1.32404- 4 4.06110- 3 3.20000+ 1 4.40000+ 1 2.14647- 4 4.07374- 3 3.20000+ 1 4.60000+ 1 1.13682- 5 4.09609- 3 3.20000+ 1 4.70000+ 1 1.00307- 5 4.09681- 3 3.20000+ 1 5.80000+ 1 1.53797- 5 4.09456- 3 3.30000+ 1 3.30000+ 1 3.14289- 5 3.98674- 3 3.30000+ 1 3.50000+ 1 4.98173- 4 4.09849- 3 3.30000+ 1 3.60000+ 1 1.93918- 5 4.10002- 3 3.30000+ 1 4.10000+ 1 1.00305- 5 4.05128- 3 3.30000+ 1 4.30000+ 1 5.34966- 6 4.07233- 3 3.30000+ 1 4.40000+ 1 7.35566- 6 4.08497- 3 3.30000+ 1 4.60000+ 1 1.06987- 5 4.10732- 3 3.30000+ 1 5.80000+ 1 6.68703- 7 4.10579- 3 3.50000+ 1 3.50000+ 1 9.53453- 5 4.21024- 3 3.50000+ 1 3.60000+ 1 3.22253- 4 4.21177- 3 3.50000+ 1 4.10000+ 1 3.32605- 5 4.16303- 3 3.50000+ 1 4.30000+ 1 1.55207- 5 4.18408- 3 3.50000+ 1 4.40000+ 1 2.21737- 6 4.19672- 3 3.50000+ 1 4.60000+ 1 2.21737- 6 4.21907- 3 3.50000+ 1 4.70000+ 1 2.21737- 6 4.21979- 3 3.50000+ 1 5.80000+ 1 2.95641- 6 4.21754- 3 3.60000+ 1 3.60000+ 1 4.64009- 6 4.21330- 3 3.60000+ 1 4.10000+ 1 3.47994- 6 4.16456- 3 3.60000+ 1 4.30000+ 1 2.89991- 6 4.18561- 3 3.60000+ 1 4.40000+ 1 1.15998- 6 4.19825- 3 3.60000+ 1 4.60000+ 1 1.74002- 6 4.22060- 3 3.60000+ 1 5.80000+ 1 5.80007- 7 4.21907- 3 4.10000+ 1 4.30000+ 1 4.66098- 7 4.13687- 3 4.10000+ 1 4.40000+ 1 4.66098- 7 4.14951- 3 4.10000+ 1 4.60000+ 1 4.66098- 7 4.17186- 3 4.30000+ 1 4.30000+ 1 5.84098- 7 4.15792- 3 4.30000+ 1 4.40000+ 1 1.75229- 6 4.17056- 3 4.30000+ 1 4.60000+ 1 5.84098- 7 4.19291- 3 4.40000+ 1 4.40000+ 1 3.39839- 7 4.18320- 3 4.40000+ 1 4.60000+ 1 6.79657- 7 4.20555- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.65099- 3 2.82120- 3 2.40000+ 1 2.66489- 3 3.51335- 3 2.50000+ 1 5.22157- 2 3.52813- 3 3.00000+ 1 3.87198- 4 3.77595- 3 3.50000+ 1 1.43549- 4 4.00212- 3 3.60000+ 1 2.76359- 3 4.00365- 3 4.40000+ 1 5.83667- 5 3.98860- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 3.34786- 5 6.87400- 4 1.60000+ 1 1.80000+ 1 3.05409- 4 8.58300- 4 1.60000+ 1 1.90000+ 1 1.41029- 3 1.15710- 3 1.60000+ 1 2.10000+ 1 3.11367- 3 1.43186- 3 1.60000+ 1 2.20000+ 1 3.01444- 2 1.48606- 3 1.60000+ 1 2.40000+ 1 4.01550- 3 1.84925- 3 1.60000+ 1 2.50000+ 1 1.71263- 2 1.86403- 3 1.60000+ 1 2.70000+ 1 1.91307- 5 1.96720- 3 1.60000+ 1 2.90000+ 1 2.66468- 5 2.03670- 3 1.60000+ 1 3.00000+ 1 2.28205- 4 2.11185- 3 1.60000+ 1 3.20000+ 1 4.03115- 4 2.21504- 3 1.60000+ 1 3.30000+ 1 3.94846- 3 2.22627- 3 1.60000+ 1 3.50000+ 1 1.06591- 4 2.33802- 3 1.60000+ 1 3.60000+ 1 5.22010- 4 2.33955- 3 1.60000+ 1 4.10000+ 1 4.09948- 6 2.29081- 3 1.60000+ 1 4.30000+ 1 4.09948- 6 2.31186- 3 1.60000+ 1 4.40000+ 1 3.14294- 5 2.32450- 3 1.60000+ 1 4.60000+ 1 2.04974- 6 2.34685- 3 1.60000+ 1 4.70000+ 1 1.70815- 5 2.34757- 3 1.60000+ 1 5.80000+ 1 6.83261- 7 2.34532- 3 1.80000+ 1 1.80000+ 1 2.11808- 5 1.02920- 3 1.80000+ 1 1.90000+ 1 4.53480- 3 1.32800- 3 1.80000+ 1 2.10000+ 1 2.24788- 4 1.60276- 3 1.80000+ 1 2.20000+ 1 3.08646- 2 1.65696- 3 1.80000+ 1 2.40000+ 1 2.37967- 3 2.02015- 3 1.80000+ 1 2.50000+ 1 1.09710- 2 2.03493- 3 1.80000+ 1 2.70000+ 1 3.68955- 5 2.13810- 3 1.80000+ 1 2.90000+ 1 4.78266- 6 2.20760- 3 1.80000+ 1 3.00000+ 1 7.36546- 4 2.28275- 3 1.80000+ 1 3.20000+ 1 5.46604- 6 2.38594- 3 1.80000+ 1 3.30000+ 1 4.02506- 3 2.39717- 3 1.80000+ 1 3.50000+ 1 7.58412- 5 2.50892- 3 1.80000+ 1 3.60000+ 1 3.29337- 4 2.51045- 3 1.80000+ 1 4.10000+ 1 6.83260- 6 2.46171- 3 1.80000+ 1 4.30000+ 1 6.83260- 7 2.48276- 3 1.80000+ 1 4.40000+ 1 1.02487- 4 2.49540- 3 1.80000+ 1 4.70000+ 1 1.70815- 5 2.51847- 3 1.80000+ 1 5.80000+ 1 6.83260- 7 2.51622- 3 1.90000+ 1 1.90000+ 1 2.65862- 3 1.62680- 3 1.90000+ 1 2.10000+ 1 2.73243- 3 1.90156- 3 1.90000+ 1 2.20000+ 1 4.38470- 2 1.95576- 3 1.90000+ 1 2.40000+ 1 1.82421- 3 2.31895- 3 1.90000+ 1 2.50000+ 1 2.72535- 3 2.33373- 3 1.90000+ 1 2.70000+ 1 2.86950- 4 2.43690- 3 1.90000+ 1 2.90000+ 1 5.99893- 4 2.50640- 3 1.90000+ 1 3.00000+ 1 8.81395- 4 2.58155- 3 1.90000+ 1 3.20000+ 1 4.53682- 4 2.68474- 3 1.90000+ 1 3.30000+ 1 5.68602- 3 2.69597- 3 1.90000+ 1 3.50000+ 1 4.78269- 5 2.80772- 3 1.90000+ 1 3.60000+ 1 6.76429- 5 2.80925- 3 1.90000+ 1 4.10000+ 1 5.46607- 5 2.76051- 3 1.90000+ 1 4.30000+ 1 9.08720- 5 2.78156- 3 1.90000+ 1 4.40000+ 1 1.23666- 4 2.79420- 3 1.90000+ 1 4.60000+ 1 2.04974- 6 2.81655- 3 1.90000+ 1 4.70000+ 1 2.45977- 5 2.81727- 3 1.90000+ 1 5.80000+ 1 4.78269- 6 2.81502- 3 2.10000+ 1 2.10000+ 1 6.06058- 4 2.17632- 3 2.10000+ 1 2.20000+ 1 6.28353- 2 2.23052- 3 2.10000+ 1 2.40000+ 1 2.65866- 3 2.59371- 3 2.10000+ 1 2.50000+ 1 3.68723- 2 2.60849- 3 2.10000+ 1 2.70000+ 1 3.17718- 4 2.71166- 3 2.10000+ 1 2.90000+ 1 6.62752- 5 2.78116- 3 2.10000+ 1 3.00000+ 1 4.57783- 4 2.85631- 3 2.10000+ 1 3.20000+ 1 1.81069- 4 2.95950- 3 2.10000+ 1 3.30000+ 1 8.26068- 3 2.97073- 3 2.10000+ 1 3.50000+ 1 1.12739- 4 3.08248- 3 2.10000+ 1 3.60000+ 1 1.57011- 3 3.08401- 3 2.10000+ 1 4.10000+ 1 5.39761- 5 3.03527- 3 2.10000+ 1 4.30000+ 1 1.09323- 5 3.05632- 3 2.10000+ 1 4.40000+ 1 6.49094- 5 3.06896- 3 2.10000+ 1 4.60000+ 1 6.83273- 7 3.09131- 3 2.10000+ 1 4.70000+ 1 3.55303- 5 3.09203- 3 2.10000+ 1 5.80000+ 1 4.78275- 6 3.08978- 3 2.20000+ 1 2.20000+ 1 6.90052- 2 2.28472- 3 2.20000+ 1 2.40000+ 1 5.81310- 2 2.64791- 3 2.20000+ 1 2.50000+ 1 9.38787- 2 2.66269- 3 2.20000+ 1 2.70000+ 1 6.64600- 3 2.76586- 3 2.20000+ 1 2.90000+ 1 7.17606- 3 2.83536- 3 2.20000+ 1 3.00000+ 1 1.04708- 2 2.91051- 3 2.20000+ 1 3.20000+ 1 1.21165- 2 3.01370- 3 2.20000+ 1 3.30000+ 1 2.24169- 2 3.02493- 3 2.20000+ 1 3.50000+ 1 2.77176- 3 3.13668- 3 2.20000+ 1 3.60000+ 1 4.21770- 3 3.13821- 3 2.20000+ 1 4.10000+ 1 1.30768- 3 3.08947- 3 2.20000+ 1 4.30000+ 1 1.20666- 3 3.11052- 3 2.20000+ 1 4.40000+ 1 1.56729- 3 3.12316- 3 2.20000+ 1 4.60000+ 1 6.42256- 5 3.14551- 3 2.20000+ 1 4.70000+ 1 9.97571- 5 3.14623- 3 2.20000+ 1 5.80000+ 1 1.22300- 4 3.14398- 3 2.40000+ 1 2.40000+ 1 5.24460- 3 3.01110- 3 2.40000+ 1 2.50000+ 1 1.66343- 1 3.02588- 3 2.40000+ 1 2.70000+ 1 7.82989- 4 3.12905- 3 2.40000+ 1 2.90000+ 1 5.05602- 4 3.19855- 3 2.40000+ 1 3.00000+ 1 3.68278- 4 3.27370- 3 2.40000+ 1 3.20000+ 1 4.91945- 4 3.37689- 3 2.40000+ 1 3.30000+ 1 7.18366- 3 3.38812- 3 2.40000+ 1 3.50000+ 1 4.38648- 4 3.49987- 3 2.40000+ 1 3.60000+ 1 5.99811- 3 3.50140- 3 2.40000+ 1 4.10000+ 1 1.47574- 4 3.45266- 3 2.40000+ 1 4.30000+ 1 8.40389- 5 3.47371- 3 2.40000+ 1 4.40000+ 1 5.39752- 5 3.48635- 3 2.40000+ 1 4.60000+ 1 2.73293- 6 3.50870- 3 2.40000+ 1 4.70000+ 1 3.07471- 5 3.50942- 3 2.40000+ 1 5.80000+ 1 1.36646- 5 3.50717- 3 2.50000+ 1 2.50000+ 1 1.13265- 1 3.04066- 3 2.50000+ 1 2.70000+ 1 4.26830- 3 3.14383- 3 2.50000+ 1 2.90000+ 1 2.60460- 3 3.21333- 3 2.50000+ 1 3.00000+ 1 6.09460- 4 3.28848- 3 2.50000+ 1 3.20000+ 1 6.55633- 3 3.39167- 3 2.50000+ 1 3.30000+ 1 1.41596- 2 3.40290- 3 2.50000+ 1 3.50000+ 1 7.35098- 3 3.51465- 3 2.50000+ 1 3.60000+ 1 9.06051- 3 3.51618- 3 2.50000+ 1 4.10000+ 1 8.53364- 4 3.46744- 3 2.50000+ 1 4.30000+ 1 4.42052- 4 3.48849- 3 2.50000+ 1 4.40000+ 1 9.15545- 5 3.50113- 3 2.50000+ 1 4.60000+ 1 3.41608- 5 3.52348- 3 2.50000+ 1 4.70000+ 1 6.28597- 5 3.52420- 3 2.50000+ 1 5.80000+ 1 8.06244- 5 3.52195- 3 2.70000+ 1 2.90000+ 1 1.36647- 6 3.31650- 3 2.70000+ 1 3.00000+ 1 4.85124- 5 3.39165- 3 2.70000+ 1 3.20000+ 1 4.78271- 5 3.49484- 3 2.70000+ 1 3.30000+ 1 8.76607- 4 3.50607- 3 2.70000+ 1 3.50000+ 1 2.73295- 5 3.61782- 3 2.70000+ 1 3.60000+ 1 1.46220- 4 3.61935- 3 2.70000+ 1 4.40000+ 1 6.83266- 6 3.60430- 3 2.70000+ 1 4.70000+ 1 4.09951- 6 3.62737- 3 2.90000+ 1 3.00000+ 1 1.04527- 4 3.46115- 3 2.90000+ 1 3.20000+ 1 4.09938- 6 3.56434- 3 2.90000+ 1 3.30000+ 1 9.51769- 4 3.57557- 3 2.90000+ 1 3.50000+ 1 1.63978- 5 3.68732- 3 2.90000+ 1 3.60000+ 1 8.26711- 5 3.68885- 3 2.90000+ 1 4.40000+ 1 1.50310- 5 3.67380- 3 2.90000+ 1 4.70000+ 1 4.09938- 6 3.69687- 3 3.00000+ 1 3.00000+ 1 7.31080- 5 3.53630- 3 3.00000+ 1 3.20000+ 1 8.13086- 5 3.63949- 3 3.00000+ 1 3.30000+ 1 1.36310- 3 3.65072- 3 3.00000+ 1 3.50000+ 1 1.09323- 5 3.76247- 3 3.00000+ 1 3.60000+ 1 1.77652- 5 3.76400- 3 3.00000+ 1 4.10000+ 1 9.56609- 6 3.71526- 3 3.00000+ 1 4.30000+ 1 1.63984- 5 3.73631- 3 3.00000+ 1 4.40000+ 1 2.04977- 5 3.74895- 3 3.00000+ 1 4.60000+ 1 6.83272- 7 3.77130- 3 3.00000+ 1 4.70000+ 1 6.14943- 6 3.77202- 3 3.00000+ 1 5.80000+ 1 6.83272- 7 3.76977- 3 3.20000+ 1 3.20000+ 1 1.22992- 5 3.74268- 3 3.20000+ 1 3.30000+ 1 1.60369- 3 3.75391- 3 3.20000+ 1 3.50000+ 1 2.11814- 5 3.86566- 3 3.20000+ 1 3.60000+ 1 2.85602- 4 3.86719- 3 3.20000+ 1 4.10000+ 1 8.19930- 6 3.81845- 3 3.20000+ 1 4.30000+ 1 6.83279- 7 3.83950- 3 3.20000+ 1 4.40000+ 1 1.16157- 5 3.85214- 3 3.20000+ 1 4.70000+ 1 6.83279- 6 3.87521- 3 3.20000+ 1 5.80000+ 1 6.83279- 7 3.87296- 3 3.30000+ 1 3.30000+ 1 1.74504- 3 3.76514- 3 3.30000+ 1 3.50000+ 1 3.46418- 4 3.87689- 3 3.30000+ 1 3.60000+ 1 6.33374- 4 3.87842- 3 3.30000+ 1 4.10000+ 1 1.72183- 4 3.82968- 3 3.30000+ 1 4.30000+ 1 1.60567- 4 3.85073- 3 3.30000+ 1 4.40000+ 1 2.04290- 4 3.86337- 3 3.30000+ 1 4.60000+ 1 8.19922- 6 3.88572- 3 3.30000+ 1 4.70000+ 1 1.57150- 5 3.88644- 3 3.30000+ 1 5.80000+ 1 1.63985- 5 3.88419- 3 3.50000+ 1 3.50000+ 1 8.78759- 6 3.98864- 3 3.50000+ 1 3.60000+ 1 3.16330- 4 3.99017- 3 3.50000+ 1 4.10000+ 1 6.39091- 6 3.94143- 3 3.50000+ 1 4.30000+ 1 3.19534- 6 3.96248- 3 3.50000+ 1 4.40000+ 1 1.59766- 6 3.97512- 3 3.50000+ 1 4.70000+ 1 1.59766- 6 3.99819- 3 3.50000+ 1 5.80000+ 1 7.98869- 7 3.99594- 3 3.60000+ 1 3.60000+ 1 1.73443- 4 3.99170- 3 3.60000+ 1 4.10000+ 1 3.27121- 5 3.94296- 3 3.60000+ 1 4.30000+ 1 1.59746- 5 3.96401- 3 3.60000+ 1 4.40000+ 1 3.04274- 6 3.97665- 3 3.60000+ 1 4.60000+ 1 1.52137- 6 3.99900- 3 3.60000+ 1 4.70000+ 1 3.04274- 6 3.99972- 3 3.60000+ 1 5.80000+ 1 3.04274- 6 3.99747- 3 4.10000+ 1 4.40000+ 1 9.41847- 7 3.92791- 3 4.10000+ 1 4.70000+ 1 4.70946- 7 3.95098- 3 4.30000+ 1 4.40000+ 1 1.64608- 6 3.94896- 3 4.30000+ 1 4.70000+ 1 5.48707- 7 3.97203- 3 4.40000+ 1 4.40000+ 1 1.00718- 6 3.96160- 3 4.40000+ 1 4.70000+ 1 5.03613- 7 3.98467- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.32170- 5 1.70900- 4 1.90000+ 1 5.95650- 4 4.69700- 4 2.90000+ 1 3.92220- 4 1.34930- 3 3.00000+ 1 6.25130- 5 1.42445- 3 4.30000+ 1 7.71980- 5 1.62446- 3 4.40000+ 1 1.47070- 5 1.63710- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 6.03876- 2 3.44400- 5 1.80000+ 1 3.30000+ 1 9.30098- 2 4.56700- 5 1.80000+ 1 3.50000+ 1 1.71823- 2 1.57420- 4 1.80000+ 1 3.60000+ 1 1.84734- 2 1.58950- 4 1.80000+ 1 4.10000+ 1 8.89372- 3 1.10210- 4 1.80000+ 1 4.30000+ 1 7.30091- 3 1.31260- 4 1.80000+ 1 4.40000+ 1 9.36387- 3 1.43900- 4 1.80000+ 1 4.60000+ 1 2.78016- 4 1.66250- 4 1.80000+ 1 4.70000+ 1 3.66407- 4 1.66970- 4 1.80000+ 1 5.80000+ 1 8.03936- 4 1.64720- 4 1.90000+ 1 2.50000+ 1 1.61398- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.61437- 2 8.54000- 5 1.90000+ 1 2.90000+ 1 4.43946- 2 1.54900- 4 1.90000+ 1 3.00000+ 1 3.57553- 2 2.30050- 4 1.90000+ 1 3.20000+ 1 3.11814- 2 3.33240- 4 1.90000+ 1 3.30000+ 1 3.86574- 2 3.44470- 4 1.90000+ 1 3.50000+ 1 1.23294- 3 4.56220- 4 1.90000+ 1 3.60000+ 1 2.10554- 3 4.57750- 4 1.90000+ 1 4.10000+ 1 7.06461- 3 4.09010- 4 1.90000+ 1 4.30000+ 1 7.16866- 3 4.30060- 4 1.90000+ 1 4.40000+ 1 5.42997- 3 4.42700- 4 1.90000+ 1 4.60000+ 1 1.54335- 4 4.65050- 4 1.90000+ 1 4.70000+ 1 1.69914- 4 4.65770- 4 1.90000+ 1 5.80000+ 1 6.51999- 4 4.63520- 4 2.10000+ 1 2.40000+ 1 3.35591- 3 2.42210- 4 2.10000+ 1 2.50000+ 1 3.77662- 3 2.56990- 4 2.10000+ 1 2.70000+ 1 1.57921- 2 3.60160- 4 2.10000+ 1 2.90000+ 1 5.77514- 3 4.29660- 4 2.10000+ 1 3.00000+ 1 4.56626- 3 5.04810- 4 2.10000+ 1 3.20000+ 1 1.76790- 3 6.08000- 4 2.10000+ 1 3.30000+ 1 3.42277- 3 6.19230- 4 2.10000+ 1 3.50000+ 1 9.53255- 4 7.30980- 4 2.10000+ 1 3.60000+ 1 9.49202- 4 7.32510- 4 2.10000+ 1 4.10000+ 1 2.24274- 3 6.83770- 4 2.10000+ 1 4.30000+ 1 9.05610- 4 7.04820- 4 2.10000+ 1 4.40000+ 1 5.61634- 4 7.17460- 4 2.10000+ 1 4.60000+ 1 8.82628- 6 7.39810- 4 2.10000+ 1 4.70000+ 1 1.46673- 5 7.40530- 4 2.10000+ 1 5.80000+ 1 2.00403- 4 7.38280- 4 2.20000+ 1 2.40000+ 1 4.41419- 3 2.96410- 4 2.20000+ 1 2.50000+ 1 5.67359- 3 3.11190- 4 2.20000+ 1 2.70000+ 1 2.19085- 2 4.14360- 4 2.20000+ 1 2.90000+ 1 8.50778- 3 4.83860- 4 2.20000+ 1 3.00000+ 1 5.73088- 3 5.59010- 4 2.20000+ 1 3.20000+ 1 2.66933- 3 6.62200- 4 2.20000+ 1 3.30000+ 1 3.34377- 3 6.73430- 4 2.20000+ 1 3.50000+ 1 1.02962- 3 7.85180- 4 2.20000+ 1 3.60000+ 1 1.40456- 3 7.86710- 4 2.20000+ 1 4.10000+ 1 3.08683- 3 7.37970- 4 2.20000+ 1 4.30000+ 1 1.19302- 3 7.59020- 4 2.20000+ 1 4.40000+ 1 7.86573- 4 7.71660- 4 2.20000+ 1 4.60000+ 1 1.33693- 5 7.94010- 4 2.20000+ 1 4.70000+ 1 1.47967- 5 7.94730- 4 2.20000+ 1 5.80000+ 1 2.75177- 4 7.92480- 4 2.40000+ 1 2.40000+ 1 8.41332- 3 6.59600- 4 2.40000+ 1 2.50000+ 1 1.56473- 2 6.74380- 4 2.40000+ 1 2.70000+ 1 1.95323- 2 7.77550- 4 2.40000+ 1 2.90000+ 1 2.74586- 3 8.47050- 4 2.40000+ 1 3.00000+ 1 1.29346- 2 9.22200- 4 2.40000+ 1 3.20000+ 1 1.19957- 3 1.02539- 3 2.40000+ 1 3.30000+ 1 7.63363- 4 1.03662- 3 2.40000+ 1 3.50000+ 1 3.87054- 4 1.14837- 3 2.40000+ 1 3.60000+ 1 3.64468- 4 1.14990- 3 2.40000+ 1 4.10000+ 1 2.31496- 3 1.10116- 3 2.40000+ 1 4.30000+ 1 3.42015- 4 1.12221- 3 2.40000+ 1 4.40000+ 1 1.45952- 3 1.13485- 3 2.40000+ 1 4.60000+ 1 5.97074- 6 1.15720- 3 2.40000+ 1 4.70000+ 1 3.11514- 6 1.15792- 3 2.40000+ 1 5.80000+ 1 2.00666- 4 1.15567- 3 2.50000+ 1 2.50000+ 1 1.38290- 2 6.89160- 4 2.50000+ 1 2.70000+ 1 2.51849- 2 7.92330- 4 2.50000+ 1 2.90000+ 1 1.21656- 3 8.61830- 4 2.50000+ 1 3.00000+ 1 1.32652- 2 9.36980- 4 2.50000+ 1 3.20000+ 1 6.77694- 4 1.04017- 3 2.50000+ 1 3.30000+ 1 1.68987- 3 1.05140- 3 2.50000+ 1 3.50000+ 1 3.83551- 4 1.16315- 3 2.50000+ 1 3.60000+ 1 6.26646- 4 1.16468- 3 2.50000+ 1 4.10000+ 1 2.97120- 3 1.11594- 3 2.50000+ 1 4.30000+ 1 1.47189- 4 1.13699- 3 2.50000+ 1 4.40000+ 1 1.42942- 3 1.14963- 3 2.50000+ 1 4.60000+ 1 3.37470- 6 1.17198- 3 2.50000+ 1 4.70000+ 1 7.00919- 6 1.17270- 3 2.50000+ 1 5.80000+ 1 2.57389- 4 1.17045- 3 2.70000+ 1 2.70000+ 1 1.78616- 2 8.95500- 4 2.70000+ 1 2.90000+ 1 2.69375- 2 9.65000- 4 2.70000+ 1 3.00000+ 1 4.14289- 2 1.04015- 3 2.70000+ 1 3.20000+ 1 4.29059- 2 1.14334- 3 2.70000+ 1 3.30000+ 1 5.89224- 2 1.15457- 3 2.70000+ 1 3.50000+ 1 1.45781- 2 1.26632- 3 2.70000+ 1 3.60000+ 1 1.81053- 2 1.26785- 3 2.70000+ 1 4.10000+ 1 5.80881- 3 1.21911- 3 2.70000+ 1 4.30000+ 1 4.58251- 3 1.24016- 3 2.70000+ 1 4.40000+ 1 6.15787- 3 1.25280- 3 2.70000+ 1 4.60000+ 1 2.29130- 4 1.27515- 3 2.70000+ 1 4.70000+ 1 2.70298- 4 1.27587- 3 2.70000+ 1 5.80000+ 1 5.31647- 4 1.27362- 3 2.90000+ 1 2.90000+ 1 2.05139- 3 1.03450- 3 2.90000+ 1 3.00000+ 1 9.65196- 3 1.10965- 3 2.90000+ 1 3.20000+ 1 3.82001- 3 1.21284- 3 2.90000+ 1 3.30000+ 1 2.55981- 3 1.22407- 3 2.90000+ 1 3.50000+ 1 7.85794- 4 1.33582- 3 2.90000+ 1 3.60000+ 1 4.58248- 4 1.33735- 3 2.90000+ 1 4.10000+ 1 3.25610- 3 1.28861- 3 2.90000+ 1 4.30000+ 1 5.56704- 4 1.30966- 3 2.90000+ 1 4.40000+ 1 1.05971- 3 1.32230- 3 2.90000+ 1 4.60000+ 1 1.96901- 5 1.34465- 3 2.90000+ 1 4.70000+ 1 1.07396- 5 1.34537- 3 2.90000+ 1 5.80000+ 1 2.82832- 4 1.34312- 3 3.00000+ 1 3.00000+ 1 4.81536- 3 1.18480- 3 3.00000+ 1 3.20000+ 1 2.06396- 3 1.28799- 3 3.00000+ 1 3.30000+ 1 5.83751- 3 1.29922- 3 3.00000+ 1 3.50000+ 1 4.06530- 3 1.41097- 3 3.00000+ 1 3.60000+ 1 5.01046- 3 1.41250- 3 3.00000+ 1 4.10000+ 1 5.23072- 3 1.36376- 3 3.00000+ 1 4.30000+ 1 1.45532- 3 1.38481- 3 3.00000+ 1 4.40000+ 1 1.24770- 3 1.39745- 3 3.00000+ 1 4.60000+ 1 1.07399- 5 1.41980- 3 3.00000+ 1 4.70000+ 1 2.68512- 5 1.42052- 3 3.00000+ 1 5.80000+ 1 4.60061- 4 1.41827- 3 3.20000+ 1 3.20000+ 1 1.08207- 3 1.39118- 3 3.20000+ 1 3.30000+ 1 3.57915- 3 1.40241- 3 3.20000+ 1 3.50000+ 1 3.54188- 4 1.51416- 3 3.20000+ 1 3.60000+ 1 2.53254- 4 1.51569- 3 3.20000+ 1 4.10000+ 1 5.19967- 3 1.46695- 3 3.20000+ 1 4.30000+ 1 4.92334- 4 1.48800- 3 3.20000+ 1 4.40000+ 1 1.84176- 4 1.50064- 3 3.20000+ 1 4.60000+ 1 1.06252- 5 1.52299- 3 3.20000+ 1 4.70000+ 1 1.41683- 5 1.52371- 3 3.20000+ 1 5.80000+ 1 4.53367- 4 1.52146- 3 3.30000+ 1 3.30000+ 1 2.20162- 3 1.41364- 3 3.30000+ 1 3.50000+ 1 2.76957- 4 1.52539- 3 3.30000+ 1 3.60000+ 1 5.13591- 4 1.52692- 3 3.30000+ 1 4.10000+ 1 7.05373- 3 1.47818- 3 3.30000+ 1 4.30000+ 1 2.82212- 4 1.49923- 3 3.30000+ 1 4.40000+ 1 6.57324- 4 1.51187- 3 3.30000+ 1 4.60000+ 1 1.57762- 5 1.53422- 3 3.30000+ 1 4.70000+ 1 1.75291- 5 1.53494- 3 3.30000+ 1 5.80000+ 1 6.15256- 4 1.53269- 3 3.50000+ 1 3.50000+ 1 3.00934- 5 1.63714- 3 3.50000+ 1 3.60000+ 1 6.39487- 5 1.63867- 3 3.50000+ 1 4.10000+ 1 1.79059- 3 1.58993- 3 3.50000+ 1 4.30000+ 1 9.96878- 5 1.61098- 3 3.50000+ 1 4.40000+ 1 5.04077- 4 1.62362- 3 3.50000+ 1 4.60000+ 1 1.88090- 6 1.64597- 3 3.50000+ 1 4.70000+ 1 1.88090- 6 1.64669- 3 3.50000+ 1 5.80000+ 1 1.54237- 4 1.64444- 3 3.60000+ 1 3.60000+ 1 5.00375- 5 1.64020- 3 3.60000+ 1 4.10000+ 1 2.18687- 3 1.59146- 3 3.60000+ 1 4.30000+ 1 5.18909- 5 1.61251- 3 3.60000+ 1 4.40000+ 1 6.04163- 4 1.62515- 3 3.60000+ 1 4.60000+ 1 1.85331- 6 1.64750- 3 3.60000+ 1 4.70000+ 1 1.85331- 6 1.64822- 3 3.60000+ 1 5.80000+ 1 1.89031- 4 1.64597- 3 4.10000+ 1 4.10000+ 1 4.07713- 4 1.54272- 3 4.10000+ 1 4.30000+ 1 5.26128- 4 1.56377- 3 4.10000+ 1 4.40000+ 1 7.20702- 4 1.57641- 3 4.10000+ 1 4.60000+ 1 2.70676- 5 1.59876- 3 4.10000+ 1 4.70000+ 1 3.04512- 5 1.59948- 3 4.10000+ 1 5.80000+ 1 7.44384- 5 1.59723- 3 4.30000+ 1 4.30000+ 1 3.40457- 5 1.58482- 3 4.30000+ 1 4.40000+ 1 1.41048- 4 1.59746- 3 4.30000+ 1 4.60000+ 1 1.62130- 6 1.61981- 3 4.30000+ 1 4.70000+ 1 1.62130- 6 1.62053- 3 4.30000+ 1 5.80000+ 1 4.37734- 5 1.61828- 3 4.40000+ 1 4.40000+ 1 6.82829- 5 1.61010- 3 4.40000+ 1 4.60000+ 1 1.58797- 6 1.63245- 3 4.40000+ 1 4.70000+ 1 3.17578- 6 1.63317- 3 4.40000+ 1 5.80000+ 1 5.87534- 5 1.63092- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.09594- 3 5.73560- 4 2.70000+ 1 2.51604- 4 1.10890- 3 3.20000+ 1 6.48107- 5 1.35674- 3 4.10000+ 1 5.15323- 5 1.43251- 3 5.80000+ 1 4.51159- 6 1.48702- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.40583- 2 5.91500- 5 1.90000+ 1 3.20000+ 1 9.09943- 3 1.62340- 4 1.90000+ 1 3.30000+ 1 1.30206- 2 1.73570- 4 1.90000+ 1 3.50000+ 1 1.62560- 3 2.85320- 4 1.90000+ 1 3.60000+ 1 2.40032- 3 2.86850- 4 1.90000+ 1 4.10000+ 1 1.80689- 3 2.38110- 4 1.90000+ 1 4.30000+ 1 2.10206- 3 2.59160- 4 1.90000+ 1 4.40000+ 1 1.68454- 3 2.71800- 4 1.90000+ 1 4.60000+ 1 3.13134- 5 2.94150- 4 1.90000+ 1 4.70000+ 1 4.17144- 5 2.94870- 4 1.90000+ 1 5.80000+ 1 1.62901- 4 2.92620- 4 2.10000+ 1 2.40000+ 1 7.21823- 2 7.13100- 5 2.10000+ 1 2.50000+ 1 1.95326- 1 8.60900- 5 2.10000+ 1 2.70000+ 1 2.92961- 2 1.89260- 4 2.10000+ 1 2.90000+ 1 2.42618- 2 2.58760- 4 2.10000+ 1 3.00000+ 1 2.73363- 2 3.33910- 4 2.10000+ 1 3.20000+ 1 1.50809- 2 4.37100- 4 2.10000+ 1 3.30000+ 1 2.14282- 2 4.48330- 4 2.10000+ 1 3.50000+ 1 1.71158- 3 5.60080- 4 2.10000+ 1 3.60000+ 1 3.21725- 3 5.61610- 4 2.10000+ 1 4.10000+ 1 5.78782- 3 5.12870- 4 2.10000+ 1 4.30000+ 1 3.84383- 3 5.33920- 4 2.10000+ 1 4.40000+ 1 4.04763- 3 5.46560- 4 2.10000+ 1 4.60000+ 1 7.95863- 5 5.68910- 4 2.10000+ 1 4.70000+ 1 9.57463- 5 5.69630- 4 2.10000+ 1 5.80000+ 1 5.42261- 4 5.67380- 4 2.20000+ 1 2.40000+ 1 4.10600- 2 1.25510- 4 2.20000+ 1 2.50000+ 1 1.02422- 2 1.40290- 4 2.20000+ 1 2.70000+ 1 4.55279- 3 2.43460- 4 2.20000+ 1 2.90000+ 1 2.00020- 2 3.12960- 4 2.20000+ 1 3.00000+ 1 3.72496- 3 3.88110- 4 2.20000+ 1 3.20000+ 1 1.78044- 3 4.91300- 4 2.20000+ 1 3.30000+ 1 2.05454- 3 5.02530- 4 2.20000+ 1 3.50000+ 1 4.66201- 4 6.14280- 4 2.20000+ 1 3.60000+ 1 3.02730- 4 6.15810- 4 2.20000+ 1 4.10000+ 1 6.83030- 4 5.67070- 4 2.20000+ 1 4.30000+ 1 2.16796- 3 5.88120- 4 2.20000+ 1 4.40000+ 1 4.16021- 4 6.00760- 4 2.20000+ 1 4.60000+ 1 8.25212- 6 6.23110- 4 2.20000+ 1 4.70000+ 1 8.70431- 6 6.23830- 4 2.20000+ 1 5.80000+ 1 6.16093- 5 6.21580- 4 2.40000+ 1 2.40000+ 1 1.78171- 3 4.88700- 4 2.40000+ 1 2.50000+ 1 8.98926- 3 5.03480- 4 2.40000+ 1 2.70000+ 1 4.58645- 3 6.06650- 4 2.40000+ 1 2.90000+ 1 1.73936- 2 6.76150- 4 2.40000+ 1 3.00000+ 1 1.92066- 3 7.51300- 4 2.40000+ 1 3.20000+ 1 5.46468- 3 8.54490- 4 2.40000+ 1 3.30000+ 1 4.64217- 3 8.65720- 4 2.40000+ 1 3.50000+ 1 5.48964- 4 9.77470- 4 2.40000+ 1 3.60000+ 1 3.84013- 4 9.79000- 4 2.40000+ 1 4.10000+ 1 9.13366- 4 9.30260- 4 2.40000+ 1 4.30000+ 1 1.93011- 3 9.51310- 4 2.40000+ 1 4.40000+ 1 2.48023- 4 9.63950- 4 2.40000+ 1 4.60000+ 1 2.29480- 5 9.86300- 4 2.40000+ 1 4.70000+ 1 2.05738- 5 9.87020- 4 2.40000+ 1 5.80000+ 1 8.51271- 5 9.84770- 4 2.50000+ 1 2.50000+ 1 4.83616- 4 5.18260- 4 2.50000+ 1 2.70000+ 1 2.48497- 3 6.21430- 4 2.50000+ 1 2.90000+ 1 2.64506- 2 6.90930- 4 2.50000+ 1 3.00000+ 1 1.41078- 3 7.66080- 4 2.50000+ 1 3.20000+ 1 1.16647- 2 8.69270- 4 2.50000+ 1 3.30000+ 1 1.13962- 3 8.80500- 4 2.50000+ 1 3.50000+ 1 1.09198- 4 9.92250- 4 2.50000+ 1 3.60000+ 1 7.04310- 5 9.93780- 4 2.50000+ 1 4.10000+ 1 3.62197- 4 9.45040- 4 2.50000+ 1 4.30000+ 1 2.80392- 3 9.66090- 4 2.50000+ 1 4.40000+ 1 1.73189- 4 9.78730- 4 2.50000+ 1 4.60000+ 1 4.83827- 5 1.00108- 3 2.50000+ 1 4.70000+ 1 4.74768- 6 1.00180- 3 2.50000+ 1 5.80000+ 1 3.23314- 5 9.99550- 4 2.70000+ 1 2.70000+ 1 2.31330- 3 7.24600- 4 2.70000+ 1 2.90000+ 1 2.97615- 2 7.94100- 4 2.70000+ 1 3.00000+ 1 5.67098- 3 8.69250- 4 2.70000+ 1 3.20000+ 1 7.66922- 3 9.72440- 4 2.70000+ 1 3.30000+ 1 5.20157- 3 9.83670- 4 2.70000+ 1 3.50000+ 1 4.63780- 4 1.09542- 3 2.70000+ 1 3.60000+ 1 9.74708- 4 1.09695- 3 2.70000+ 1 4.10000+ 1 6.97576- 4 1.04821- 3 2.70000+ 1 4.30000+ 1 3.12394- 3 1.06926- 3 2.70000+ 1 4.40000+ 1 7.54105- 4 1.08190- 3 2.70000+ 1 4.60000+ 1 3.20506- 5 1.10425- 3 2.70000+ 1 4.70000+ 1 2.26241- 5 1.10497- 3 2.70000+ 1 5.80000+ 1 6.22139- 5 1.10272- 3 2.90000+ 1 2.90000+ 1 2.06535- 2 8.63600- 4 2.90000+ 1 3.00000+ 1 5.30412- 2 9.38750- 4 2.90000+ 1 3.20000+ 1 4.40076- 2 1.04194- 3 2.90000+ 1 3.30000+ 1 7.30911- 2 1.05317- 3 2.90000+ 1 3.50000+ 1 1.64743- 2 1.16492- 3 2.90000+ 1 3.60000+ 1 2.22506- 2 1.16645- 3 2.90000+ 1 4.10000+ 1 6.07442- 3 1.11771- 3 2.90000+ 1 4.30000+ 1 5.76324- 3 1.13876- 3 2.90000+ 1 4.40000+ 1 7.92408- 3 1.15140- 3 2.90000+ 1 4.60000+ 1 2.35227- 4 1.17375- 3 2.90000+ 1 4.70000+ 1 3.33881- 4 1.17447- 3 2.90000+ 1 5.80000+ 1 5.69109- 4 1.17222- 3 3.00000+ 1 3.00000+ 1 1.59116- 3 1.01390- 3 3.00000+ 1 3.20000+ 1 7.38304- 3 1.11709- 3 3.00000+ 1 3.30000+ 1 3.45667- 3 1.12832- 3 3.00000+ 1 3.50000+ 1 5.01589- 4 1.24007- 3 3.00000+ 1 3.60000+ 1 7.72141- 4 1.24160- 3 3.00000+ 1 4.10000+ 1 7.79590- 4 1.19286- 3 3.00000+ 1 4.30000+ 1 5.63392- 3 1.21391- 3 3.00000+ 1 4.40000+ 1 4.00142- 4 1.22655- 3 3.00000+ 1 4.60000+ 1 3.00584- 5 1.24890- 3 3.00000+ 1 4.70000+ 1 1.50291- 5 1.24962- 3 3.00000+ 1 5.80000+ 1 6.95099- 5 1.24737- 3 3.20000+ 1 3.20000+ 1 2.62153- 3 1.22028- 3 3.20000+ 1 3.30000+ 1 3.80795- 3 1.23151- 3 3.20000+ 1 3.50000+ 1 2.62323- 3 1.34326- 3 3.20000+ 1 3.60000+ 1 4.30862- 3 1.34479- 3 3.20000+ 1 4.10000+ 1 1.27617- 3 1.29605- 3 3.20000+ 1 4.30000+ 1 4.41400- 3 1.31710- 3 3.20000+ 1 4.40000+ 1 9.86037- 4 1.32974- 3 3.20000+ 1 4.60000+ 1 2.59034- 5 1.35209- 3 3.20000+ 1 4.70000+ 1 1.72690- 5 1.35281- 3 3.20000+ 1 5.80000+ 1 1.19154- 4 1.35056- 3 3.30000+ 1 3.30000+ 1 6.67764- 4 1.24274- 3 3.30000+ 1 3.50000+ 1 6.69507- 4 1.35449- 3 3.30000+ 1 3.60000+ 1 3.78591- 4 1.35602- 3 3.30000+ 1 4.10000+ 1 6.04698- 4 1.30728- 3 3.30000+ 1 4.30000+ 1 7.33865- 3 1.32833- 3 3.30000+ 1 4.40000+ 1 3.89103- 4 1.34097- 3 3.30000+ 1 4.60000+ 1 1.57747- 5 1.36332- 3 3.30000+ 1 4.70000+ 1 5.25814- 6 1.36404- 3 3.30000+ 1 5.80000+ 1 5.25814- 5 1.36179- 3 3.50000+ 1 3.50000+ 1 5.11180- 5 1.46624- 3 3.50000+ 1 3.60000+ 1 9.27677- 5 1.46777- 3 3.50000+ 1 4.10000+ 1 8.33048- 5 1.41903- 3 3.50000+ 1 4.30000+ 1 1.70581- 3 1.44008- 3 3.50000+ 1 4.40000+ 1 6.24760- 5 1.45272- 3 3.50000+ 1 4.60000+ 1 1.32533- 5 1.47507- 3 3.50000+ 1 4.70000+ 1 3.78648- 6 1.47579- 3 3.50000+ 1 5.80000+ 1 7.57282- 6 1.47354- 3 3.60000+ 1 3.60000+ 1 2.04857- 5 1.46930- 3 3.60000+ 1 4.10000+ 1 1.34086- 4 1.42056- 3 3.60000+ 1 4.30000+ 1 2.27566- 3 1.44161- 3 3.60000+ 1 4.40000+ 1 8.75272- 5 1.45425- 3 3.60000+ 1 4.60000+ 1 2.04857- 5 1.47660- 3 3.60000+ 1 4.70000+ 1 1.86227- 6 1.47732- 3 3.60000+ 1 5.80000+ 1 1.11735- 5 1.47507- 3 4.10000+ 1 4.10000+ 1 4.51185- 5 1.37182- 3 4.10000+ 1 4.30000+ 1 5.46257- 4 1.39287- 3 4.10000+ 1 4.40000+ 1 8.86269- 5 1.40551- 3 4.10000+ 1 4.60000+ 1 4.83409- 6 1.42786- 3 4.10000+ 1 4.70000+ 1 1.61137- 6 1.42858- 3 4.10000+ 1 5.80000+ 1 8.05673- 6 1.42633- 3 4.30000+ 1 4.30000+ 1 3.16073- 4 1.41392- 3 4.30000+ 1 4.40000+ 1 7.20429- 4 1.42656- 3 4.30000+ 1 4.60000+ 1 2.24625- 5 1.44891- 3 4.30000+ 1 4.70000+ 1 3.04847- 5 1.44963- 3 4.30000+ 1 5.80000+ 1 5.13429- 5 1.44738- 3 4.40000+ 1 4.40000+ 1 1.97585- 5 1.43920- 3 4.40000+ 1 4.60000+ 1 3.03985- 6 1.46155- 3 4.40000+ 1 4.70000+ 1 1.51993- 6 1.46227- 3 4.40000+ 1 5.80000+ 1 7.59954- 6 1.46002- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.16480- 5 2.74760- 4 2.20000+ 1 1.88229- 4 3.28960- 4 2.70000+ 1 3.20829- 4 8.10100- 4 3.20000+ 1 3.74919- 5 1.05794- 3 3.30000+ 1 2.18539- 4 1.06917- 3 4.10000+ 1 6.32198- 5 1.13371- 3 5.80000+ 1 5.50788- 6 1.18822- 3 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.82735- 2 3.51100- 5 2.10000+ 1 3.20000+ 1 1.82238- 2 1.38300- 4 2.10000+ 1 3.30000+ 1 2.72327- 2 1.49530- 4 2.10000+ 1 3.50000+ 1 2.63687- 3 2.61280- 4 2.10000+ 1 3.60000+ 1 2.35218- 3 2.62810- 4 2.10000+ 1 4.10000+ 1 3.98946- 3 2.14070- 4 2.10000+ 1 4.30000+ 1 2.89676- 3 2.35120- 4 2.10000+ 1 4.40000+ 1 6.02143- 3 2.47760- 4 2.10000+ 1 4.60000+ 1 8.77807- 5 2.70110- 4 2.10000+ 1 4.70000+ 1 1.09459- 4 2.70830- 4 2.10000+ 1 5.80000+ 1 3.65746- 4 2.68580- 4 2.20000+ 1 2.90000+ 1 1.25494- 1 1.41600- 5 2.20000+ 1 3.00000+ 1 1.30754- 1 8.93100- 5 2.20000+ 1 3.20000+ 1 1.17664- 1 1.92500- 4 2.20000+ 1 3.30000+ 1 1.40853- 1 2.03730- 4 2.20000+ 1 3.50000+ 1 7.85660- 3 3.15480- 4 2.20000+ 1 3.60000+ 1 9.98515- 3 3.17010- 4 2.20000+ 1 4.10000+ 1 2.26608- 2 2.68270- 4 2.20000+ 1 4.30000+ 1 2.02760- 2 2.89320- 4 2.20000+ 1 4.40000+ 1 1.81011- 2 3.01960- 4 2.20000+ 1 4.60000+ 1 5.66491- 4 3.24310- 4 2.20000+ 1 4.70000+ 1 6.05498- 4 3.25030- 4 2.20000+ 1 5.80000+ 1 2.08139- 3 3.22780- 4 2.40000+ 1 2.40000+ 1 1.00666- 3 1.89900- 4 2.40000+ 1 2.50000+ 1 2.71089- 3 2.04680- 4 2.40000+ 1 2.70000+ 1 9.77315- 3 3.07850- 4 2.40000+ 1 2.90000+ 1 4.98130- 3 3.77350- 4 2.40000+ 1 3.00000+ 1 5.33028- 2 4.52500- 4 2.40000+ 1 3.20000+ 1 2.15192- 3 5.55690- 4 2.40000+ 1 3.30000+ 1 7.63498- 3 5.66920- 4 2.40000+ 1 3.50000+ 1 6.06044- 4 6.78670- 4 2.40000+ 1 3.60000+ 1 6.03065- 4 6.80200- 4 2.40000+ 1 4.10000+ 1 1.17415- 3 6.31460- 4 2.40000+ 1 4.30000+ 1 7.01690- 4 6.52510- 4 2.40000+ 1 4.40000+ 1 5.27939- 3 6.65150- 4 2.40000+ 1 4.60000+ 1 1.00235- 5 6.87500- 4 2.40000+ 1 4.70000+ 1 2.65500- 5 6.88220- 4 2.40000+ 1 5.80000+ 1 1.02126- 4 6.85970- 4 2.50000+ 1 2.50000+ 1 3.36051- 3 2.19460- 4 2.50000+ 1 2.70000+ 1 2.29857- 2 3.22630- 4 2.50000+ 1 2.90000+ 1 1.78580- 2 3.92130- 4 2.50000+ 1 3.00000+ 1 6.47191- 2 4.67280- 4 2.50000+ 1 3.20000+ 1 1.60701- 3 5.70470- 4 2.50000+ 1 3.30000+ 1 1.10483- 2 5.81700- 4 2.50000+ 1 3.50000+ 1 2.44506- 3 6.93450- 4 2.50000+ 1 3.60000+ 1 3.02262- 3 6.94980- 4 2.50000+ 1 4.10000+ 1 3.38021- 3 6.46240- 4 2.50000+ 1 4.30000+ 1 2.65305- 3 6.67290- 4 2.50000+ 1 4.40000+ 1 6.47681- 3 6.79930- 4 2.50000+ 1 4.60000+ 1 8.94025- 6 7.02280- 4 2.50000+ 1 4.70000+ 1 4.03667- 5 7.03000- 4 2.50000+ 1 5.80000+ 1 3.03962- 4 7.00750- 4 2.70000+ 1 2.70000+ 1 5.39128- 5 4.25800- 4 2.70000+ 1 2.90000+ 1 2.69569- 4 4.95300- 4 2.70000+ 1 3.00000+ 1 4.99439- 3 5.70450- 4 2.70000+ 1 3.20000+ 1 4.60291- 4 6.73640- 4 2.70000+ 1 3.30000+ 1 7.65618- 4 6.84870- 4 2.70000+ 1 3.50000+ 1 1.77723- 4 7.96620- 4 2.70000+ 1 3.60000+ 1 1.78273- 4 7.98150- 4 2.70000+ 1 4.10000+ 1 2.24861- 5 7.49410- 4 2.70000+ 1 4.30000+ 1 2.95308- 5 7.70460- 4 2.70000+ 1 4.40000+ 1 4.73841- 4 7.83100- 4 2.70000+ 1 4.60000+ 1 2.16741- 6 8.05450- 4 2.70000+ 1 4.70000+ 1 2.70929- 6 8.06170- 4 2.70000+ 1 5.80000+ 1 2.16741- 6 8.03920- 4 2.90000+ 1 2.90000+ 1 4.60557- 6 5.64800- 4 2.90000+ 1 3.00000+ 1 5.76481- 3 6.39950- 4 2.90000+ 1 3.20000+ 1 2.61977- 4 7.43140- 4 2.90000+ 1 3.30000+ 1 7.04395- 4 7.54370- 4 2.90000+ 1 3.50000+ 1 1.40884- 4 8.66120- 4 2.90000+ 1 3.60000+ 1 3.22394- 4 8.67650- 4 2.90000+ 1 4.10000+ 1 4.79526- 5 8.18910- 4 2.90000+ 1 4.30000+ 1 6.77297- 6 8.39960- 4 2.90000+ 1 4.40000+ 1 5.62161- 4 8.52600- 4 2.90000+ 1 4.60000+ 1 1.08365- 6 8.74950- 4 2.90000+ 1 4.70000+ 1 2.43838- 6 8.75670- 4 2.90000+ 1 5.80000+ 1 4.60557- 6 8.73420- 4 3.00000+ 1 3.00000+ 1 7.21639- 3 7.15100- 4 3.00000+ 1 3.20000+ 1 8.79369- 3 8.18290- 4 3.00000+ 1 3.30000+ 1 1.16694- 2 8.29520- 4 3.00000+ 1 3.50000+ 1 3.07684- 3 9.41270- 4 3.00000+ 1 3.60000+ 1 3.68231- 3 9.42800- 4 3.00000+ 1 4.10000+ 1 1.01884- 3 8.94060- 4 3.00000+ 1 4.30000+ 1 9.50365- 4 9.15110- 4 3.00000+ 1 4.40000+ 1 1.78401- 3 9.27750- 4 3.00000+ 1 4.60000+ 1 4.65976- 5 9.50100- 4 3.00000+ 1 4.70000+ 1 5.31001- 5 9.50820- 4 3.00000+ 1 5.80000+ 1 9.53624- 5 9.48570- 4 3.20000+ 1 3.20000+ 1 1.70889- 4 9.21480- 4 3.20000+ 1 3.30000+ 1 1.02431- 3 9.32710- 4 3.20000+ 1 3.50000+ 1 6.78752- 5 1.04446- 3 3.20000+ 1 3.60000+ 1 1.33359- 4 1.04599- 3 3.20000+ 1 4.10000+ 1 6.30847- 5 9.97250- 4 3.20000+ 1 4.30000+ 1 4.33875- 5 1.01830- 3 3.20000+ 1 4.40000+ 1 8.51771- 4 1.03094- 3 3.20000+ 1 4.60000+ 1 1.59709- 6 1.05329- 3 3.20000+ 1 4.70000+ 1 3.72648- 6 1.05401- 3 3.20000+ 1 5.80000+ 1 5.58971- 6 1.05176- 3 3.30000+ 1 3.30000+ 1 9.94000- 4 9.43940- 4 3.30000+ 1 3.50000+ 1 2.32980- 4 1.05569- 3 3.30000+ 1 3.60000+ 1 3.19416- 4 1.05722- 3 3.30000+ 1 4.10000+ 1 1.49014- 4 1.00848- 3 3.30000+ 1 4.30000+ 1 1.22184- 4 1.02953- 3 3.30000+ 1 4.40000+ 1 1.16575- 3 1.04217- 3 3.30000+ 1 4.60000+ 1 4.87649- 6 1.06452- 3 3.30000+ 1 4.70000+ 1 7.85664- 6 1.06524- 3 3.30000+ 1 5.80000+ 1 1.38164- 5 1.06299- 3 3.50000+ 1 3.50000+ 1 4.50479- 6 1.16744- 3 3.50000+ 1 3.60000+ 1 2.44948- 5 1.16897- 3 3.50000+ 1 4.10000+ 1 2.33683- 5 1.12023- 3 3.50000+ 1 4.30000+ 1 8.44653- 6 1.14128- 3 3.50000+ 1 4.40000+ 1 3.04077- 4 1.15392- 3 3.50000+ 1 4.60000+ 1 2.81558- 7 1.17627- 3 3.50000+ 1 4.70000+ 1 8.44653- 7 1.17699- 3 3.50000+ 1 5.80000+ 1 1.97083- 6 1.17474- 3 3.60000+ 1 3.60000+ 1 1.47245- 5 1.17050- 3 3.60000+ 1 4.10000+ 1 2.41694- 5 1.12176- 3 3.60000+ 1 4.30000+ 1 1.91685- 5 1.14281- 3 3.60000+ 1 4.40000+ 1 3.57265- 4 1.15545- 3 3.60000+ 1 4.60000+ 1 5.55615- 7 1.17780- 3 3.60000+ 1 4.70000+ 1 1.11121- 6 1.17852- 3 3.60000+ 1 5.80000+ 1 1.94464- 6 1.17627- 3 4.10000+ 1 4.10000+ 1 2.53646- 7 1.07302- 3 4.10000+ 1 4.30000+ 1 3.29728- 6 1.09407- 3 4.10000+ 1 4.40000+ 1 9.05479- 5 1.10671- 3 4.10000+ 1 4.60000+ 1 2.53646- 7 1.12906- 3 4.10000+ 1 4.70000+ 1 5.07273- 7 1.12978- 3 4.30000+ 1 4.40000+ 1 8.61472- 5 1.12776- 3 4.30000+ 1 4.60000+ 1 2.52642- 7 1.15011- 3 4.30000+ 1 4.70000+ 1 5.05265- 7 1.15083- 3 4.30000+ 1 5.80000+ 1 2.52642- 7 1.14858- 3 4.40000+ 1 4.40000+ 1 8.80254- 5 1.14040- 3 4.40000+ 1 4.60000+ 1 3.88676- 6 1.16275- 3 4.40000+ 1 4.70000+ 1 4.34406- 6 1.16347- 3 4.40000+ 1 5.80000+ 1 7.77348- 6 1.16122- 3 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.93605- 4 4.17390- 4 2.90000+ 1 2.04321- 4 6.04840- 4 3.00000+ 1 2.19425- 5 6.79990- 4 3.50000+ 1 9.50857- 5 9.06160- 4 4.30000+ 1 3.37425- 5 8.80000- 4 4.40000+ 1 3.27275- 6 8.92640- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 3.71168- 3 4.07200- 5 2.20000+ 1 3.60000+ 1 4.57206- 3 4.22500- 5 2.20000+ 1 4.30000+ 1 1.36730- 3 1.45600- 5 2.20000+ 1 4.40000+ 1 3.07514- 3 2.72000- 5 2.20000+ 1 4.60000+ 1 4.19140- 4 4.95500- 5 2.20000+ 1 4.70000+ 1 7.32207- 5 5.02700- 5 2.20000+ 1 5.80000+ 1 2.22475- 4 4.80200- 5 2.40000+ 1 2.70000+ 1 1.22544- 1 3.30900- 5 2.40000+ 1 2.90000+ 1 1.10352- 1 1.02590- 4 2.40000+ 1 3.00000+ 1 1.24032- 1 1.77740- 4 2.40000+ 1 3.20000+ 1 1.27777- 1 2.80930- 4 2.40000+ 1 3.30000+ 1 1.33198- 1 2.92160- 4 2.40000+ 1 3.50000+ 1 5.77526- 3 4.03910- 4 2.40000+ 1 3.60000+ 1 4.67512- 3 4.05440- 4 2.40000+ 1 4.10000+ 1 2.42134- 2 3.56700- 4 2.40000+ 1 4.30000+ 1 1.82244- 2 3.77750- 4 2.40000+ 1 4.40000+ 1 1.79957- 2 3.90390- 4 2.40000+ 1 4.60000+ 1 5.70665- 4 4.12740- 4 2.40000+ 1 4.70000+ 1 5.72343- 4 4.13460- 4 2.40000+ 1 5.80000+ 1 2.28145- 3 4.11210- 4 2.50000+ 1 2.70000+ 1 8.54329- 3 4.78700- 5 2.50000+ 1 2.90000+ 1 1.83335- 2 1.17370- 4 2.50000+ 1 3.00000+ 1 8.10055- 3 1.92520- 4 2.50000+ 1 3.20000+ 1 1.35377- 1 2.95710- 4 2.50000+ 1 3.30000+ 1 5.67939- 3 3.06940- 4 2.50000+ 1 3.50000+ 1 1.68288- 3 4.18690- 4 2.50000+ 1 3.60000+ 1 5.19831- 4 4.20220- 4 2.50000+ 1 4.10000+ 1 1.22516- 3 3.71480- 4 2.50000+ 1 4.30000+ 1 1.82506- 3 3.92530- 4 2.50000+ 1 4.40000+ 1 8.83765- 4 4.05170- 4 2.50000+ 1 4.60000+ 1 5.36086- 4 4.27520- 4 2.50000+ 1 4.70000+ 1 2.29287- 5 4.28240- 4 2.50000+ 1 5.80000+ 1 1.10893- 4 4.25990- 4 2.70000+ 1 2.70000+ 1 8.49519- 4 1.51040- 4 2.70000+ 1 2.90000+ 1 2.12389- 3 2.20540- 4 2.70000+ 1 3.00000+ 1 1.50486- 3 2.95690- 4 2.70000+ 1 3.20000+ 1 1.20652- 2 3.98880- 4 2.70000+ 1 3.30000+ 1 1.75067- 3 4.10110- 4 2.70000+ 1 3.50000+ 1 1.41889- 3 5.21860- 4 2.70000+ 1 3.60000+ 1 1.18466- 3 5.23390- 4 2.70000+ 1 4.10000+ 1 1.99669- 4 4.74650- 4 2.70000+ 1 4.30000+ 1 2.32169- 4 4.95700- 4 2.70000+ 1 4.40000+ 1 1.76744- 4 5.08340- 4 2.70000+ 1 4.60000+ 1 4.54363- 5 5.30690- 4 2.70000+ 1 4.70000+ 1 5.41897- 6 5.31410- 4 2.70000+ 1 5.80000+ 1 1.79241- 5 5.29160- 4 2.90000+ 1 2.90000+ 1 5.19382- 4 2.90040- 4 2.90000+ 1 3.00000+ 1 1.96491- 3 3.65190- 4 2.90000+ 1 3.20000+ 1 8.75340- 3 4.68380- 4 2.90000+ 1 3.30000+ 1 9.40798- 4 4.79610- 4 2.90000+ 1 3.50000+ 1 1.99256- 4 5.91360- 4 2.90000+ 1 3.60000+ 1 1.81324- 4 5.92890- 4 2.90000+ 1 4.10000+ 1 1.61736- 4 5.44150- 4 2.90000+ 1 4.30000+ 1 1.18384- 4 5.65200- 4 2.90000+ 1 4.40000+ 1 1.66308- 4 5.77840- 4 2.90000+ 1 4.60000+ 1 3.37638- 5 6.00190- 4 2.90000+ 1 4.70000+ 1 4.16833- 6 6.00910- 4 2.90000+ 1 5.80000+ 1 1.45890- 5 5.98660- 4 3.00000+ 1 3.00000+ 1 6.67401- 4 4.40340- 4 3.00000+ 1 3.20000+ 1 1.77124- 2 5.43530- 4 3.00000+ 1 3.30000+ 1 1.49407- 3 5.54760- 4 3.00000+ 1 3.50000+ 1 5.51934- 4 6.66510- 4 3.00000+ 1 3.60000+ 1 3.17664- 4 6.68040- 4 3.00000+ 1 4.10000+ 1 7.33692- 5 6.19300- 4 3.00000+ 1 4.30000+ 1 1.47569- 4 6.40350- 4 3.00000+ 1 4.40000+ 1 1.21727- 4 6.52990- 4 3.00000+ 1 4.60000+ 1 6.92005- 5 6.75340- 4 3.00000+ 1 4.70000+ 1 5.41929- 6 6.76060- 4 3.00000+ 1 5.80000+ 1 6.25295- 6 6.73810- 4 3.20000+ 1 3.20000+ 1 1.15284- 2 6.46720- 4 3.20000+ 1 3.30000+ 1 2.23818- 2 6.57950- 4 3.20000+ 1 3.50000+ 1 5.29660- 3 7.69700- 4 3.20000+ 1 3.60000+ 1 7.23834- 3 7.71230- 4 3.20000+ 1 4.10000+ 1 1.93834- 3 7.22490- 4 3.20000+ 1 4.30000+ 1 1.47984- 3 7.43540- 4 3.20000+ 1 4.40000+ 1 2.51995- 3 7.56180- 4 3.20000+ 1 4.60000+ 1 1.06297- 4 7.78530- 4 3.20000+ 1 4.70000+ 1 1.00876- 4 7.79250- 4 3.20000+ 1 5.80000+ 1 1.79665- 4 7.77000- 4 3.30000+ 1 3.30000+ 1 3.61916- 4 6.69180- 4 3.30000+ 1 3.50000+ 1 5.84328- 4 7.80930- 4 3.30000+ 1 3.60000+ 1 1.98496- 4 7.82460- 4 3.30000+ 1 4.10000+ 1 7.05501- 5 7.33720- 4 3.30000+ 1 4.30000+ 1 7.85210- 5 7.54770- 4 3.30000+ 1 4.40000+ 1 1.34721- 4 7.67410- 4 3.30000+ 1 4.60000+ 1 8.41023- 5 7.89760- 4 3.30000+ 1 4.70000+ 1 2.79008- 6 7.90480- 4 3.30000+ 1 5.80000+ 1 6.37734- 6 7.88230- 4 3.50000+ 1 3.50000+ 1 5.66414- 5 8.92680- 4 3.50000+ 1 3.60000+ 1 1.06798- 4 8.94210- 4 3.50000+ 1 4.10000+ 1 8.38813- 5 8.45470- 4 3.50000+ 1 4.30000+ 1 3.37252- 5 8.66520- 4 3.50000+ 1 4.40000+ 1 6.52891- 5 8.79160- 4 3.50000+ 1 4.60000+ 1 2.11855- 5 9.01510- 4 3.50000+ 1 4.70000+ 1 2.59423- 6 9.02230- 4 3.50000+ 1 5.80000+ 1 6.48563- 6 8.99980- 4 3.60000+ 1 3.60000+ 1 1.11549- 5 8.95740- 4 3.60000+ 1 4.10000+ 1 4.80823- 5 8.47000- 4 3.60000+ 1 4.30000+ 1 2.38495- 5 8.68050- 4 3.60000+ 1 4.40000+ 1 2.88497- 5 8.80690- 4 3.60000+ 1 4.60000+ 1 2.57724- 5 9.03040- 4 3.60000+ 1 4.70000+ 1 7.69312- 7 9.03760- 4 3.60000+ 1 5.80000+ 1 3.46194- 6 9.01510- 4 4.10000+ 1 4.10000+ 1 4.20729- 6 7.98260- 4 4.10000+ 1 4.30000+ 1 8.73797- 6 8.19310- 4 4.10000+ 1 4.40000+ 1 5.82544- 6 8.31950- 4 4.10000+ 1 4.60000+ 1 5.82544- 6 8.54300- 4 4.10000+ 1 4.70000+ 1 3.23636- 7 8.55020- 4 4.10000+ 1 5.80000+ 1 6.47264- 7 8.52770- 4 4.30000+ 1 4.30000+ 1 1.37078- 6 8.40360- 4 4.30000+ 1 4.40000+ 1 7.95053- 6 8.53000- 4 4.30000+ 1 4.60000+ 1 3.83823- 6 8.75350- 4 4.30000+ 1 4.70000+ 1 2.74162- 7 8.76070- 4 4.30000+ 1 5.80000+ 1 5.48317- 7 8.73820- 4 4.40000+ 1 4.40000+ 1 1.98763- 6 8.65640- 4 4.40000+ 1 4.60000+ 1 3.66919- 6 8.87990- 4 4.40000+ 1 4.70000+ 1 1.52894- 7 8.88710- 4 4.40000+ 1 5.80000+ 1 1.52894- 7 8.86460- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.71704- 5 3.63190- 4 2.50000+ 1 3.97794- 4 3.77970- 4 3.00000+ 1 1.60925- 4 6.25790- 4 3.50000+ 1 6.23725- 6 8.51960- 4 3.60000+ 1 1.03399- 4 8.53490- 4 4.40000+ 1 2.40058- 5 8.38440- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.70000+ 1 8.37534- 3 0.00000+ 0 2.40000+ 1 2.90000+ 1 8.29683- 3 4.83900- 5 2.40000+ 1 3.00000+ 1 1.55736- 2 1.23540- 4 2.40000+ 1 3.20000+ 1 7.66208- 3 2.26730- 4 2.40000+ 1 3.30000+ 1 1.06244- 1 2.37960- 4 2.40000+ 1 3.50000+ 1 8.14488- 4 3.49710- 4 2.40000+ 1 3.60000+ 1 9.20611- 4 3.51240- 4 2.40000+ 1 4.10000+ 1 2.05738- 3 3.02500- 4 2.40000+ 1 4.30000+ 1 1.34096- 3 3.23550- 4 2.40000+ 1 4.40000+ 1 1.78232- 3 3.36190- 4 2.40000+ 1 5.80000+ 1 1.71858- 4 3.57010- 4 2.50000+ 1 2.70000+ 1 1.10121- 1 0.00000+ 0 2.50000+ 1 2.90000+ 1 1.22715- 1 6.31700- 5 2.50000+ 1 3.00000+ 1 1.09009- 1 1.38320- 4 2.50000+ 1 3.20000+ 1 1.09760- 1 2.41510- 4 2.50000+ 1 3.30000+ 1 1.95300- 1 2.52740- 4 2.50000+ 1 3.50000+ 1 3.73685- 3 3.64490- 4 2.50000+ 1 3.60000+ 1 6.73166- 3 3.66020- 4 2.50000+ 1 4.10000+ 1 2.24067- 2 3.17280- 4 2.50000+ 1 4.30000+ 1 1.90764- 2 3.38330- 4 2.50000+ 1 4.40000+ 1 1.52857- 2 3.50970- 4 2.50000+ 1 5.80000+ 1 1.90472- 3 3.71790- 4 2.70000+ 1 2.70000+ 1 1.64937- 3 9.68400- 5 2.70000+ 1 2.90000+ 1 2.40168- 3 1.66340- 4 2.70000+ 1 3.00000+ 1 3.39981- 3 2.41490- 4 2.70000+ 1 3.20000+ 1 2.97043- 3 3.44680- 4 2.70000+ 1 3.30000+ 1 1.50765- 2 3.55910- 4 2.70000+ 1 3.50000+ 1 1.27877- 3 4.67660- 4 2.70000+ 1 3.60000+ 1 1.96609- 3 4.69190- 4 2.70000+ 1 4.10000+ 1 3.66711- 4 4.20450- 4 2.70000+ 1 4.30000+ 1 2.67306- 4 4.41500- 4 2.70000+ 1 4.40000+ 1 3.75663- 4 4.54140- 4 2.70000+ 1 5.80000+ 1 2.95517- 5 4.74960- 4 2.90000+ 1 2.90000+ 1 3.32191- 4 2.35840- 4 2.90000+ 1 3.00000+ 1 3.82808- 3 3.10990- 4 2.90000+ 1 3.20000+ 1 5.94905- 4 4.14180- 4 2.90000+ 1 3.30000+ 1 1.35212- 2 4.25410- 4 2.90000+ 1 3.50000+ 1 1.95485- 4 5.37160- 4 2.90000+ 1 3.60000+ 1 4.08773- 4 5.38690- 4 2.90000+ 1 4.10000+ 1 1.61638- 4 4.89950- 4 2.90000+ 1 4.30000+ 1 7.43639- 5 5.11000- 4 2.90000+ 1 4.40000+ 1 3.10811- 4 5.23640- 4 2.90000+ 1 5.80000+ 1 1.24679- 5 5.44460- 4 3.00000+ 1 3.00000+ 1 1.21702- 3 3.86140- 4 3.00000+ 1 3.20000+ 1 2.32228- 3 4.89330- 4 3.00000+ 1 3.30000+ 1 1.72540- 2 5.00560- 4 3.00000+ 1 3.50000+ 1 3.89511- 4 6.12310- 4 3.00000+ 1 3.60000+ 1 5.12648- 4 6.13840- 4 3.00000+ 1 4.10000+ 1 1.07419- 4 5.65100- 4 3.00000+ 1 4.30000+ 1 1.60700- 4 5.86150- 4 3.00000+ 1 4.40000+ 1 2.13963- 4 5.98790- 4 3.00000+ 1 5.80000+ 1 7.42329- 6 6.19610- 4 3.20000+ 1 3.20000+ 1 1.46800- 4 5.92520- 4 3.20000+ 1 3.30000+ 1 1.70482- 2 6.03750- 4 3.20000+ 1 3.50000+ 1 1.32033- 4 7.15500- 4 3.20000+ 1 3.60000+ 1 4.91208- 4 7.17030- 4 3.20000+ 1 4.10000+ 1 7.47020- 5 6.68290- 4 3.20000+ 1 4.30000+ 1 5.03806- 5 6.89340- 4 3.20000+ 1 4.40000+ 1 2.21946- 4 7.01980- 4 3.20000+ 1 5.80000+ 1 5.64620- 6 7.22800- 4 3.30000+ 1 3.30000+ 1 2.00850- 2 6.14980- 4 3.30000+ 1 3.50000+ 1 5.89957- 3 7.26730- 4 3.30000+ 1 3.60000+ 1 6.92491- 3 7.28260- 4 3.30000+ 1 4.10000+ 1 2.14525- 3 6.79520- 4 3.30000+ 1 4.30000+ 1 2.00488- 3 7.00570- 4 3.30000+ 1 4.40000+ 1 2.53416- 3 7.13210- 4 3.30000+ 1 5.80000+ 1 1.80120- 4 7.34030- 4 3.50000+ 1 3.50000+ 1 1.33700- 5 8.38480- 4 3.50000+ 1 3.60000+ 1 1.01147- 4 8.40010- 4 3.50000+ 1 4.10000+ 1 7.26625- 5 7.91270- 4 3.50000+ 1 4.30000+ 1 2.49971- 5 8.12320- 4 3.50000+ 1 4.40000+ 1 4.41802- 5 8.24960- 4 3.50000+ 1 5.80000+ 1 5.23184- 6 8.45780- 4 3.60000+ 1 3.60000+ 1 8.04635- 5 8.41540- 4 3.60000+ 1 4.10000+ 1 1.20969- 4 7.92800- 4 3.60000+ 1 4.30000+ 1 4.43941- 5 8.13850- 4 3.60000+ 1 4.40000+ 1 6.76984- 5 8.26490- 4 3.60000+ 1 5.80000+ 1 8.32370- 6 8.47310- 4 4.10000+ 1 4.10000+ 1 1.04572- 5 7.44060- 4 4.10000+ 1 4.30000+ 1 1.35064- 5 7.65110- 4 4.10000+ 1 4.40000+ 1 1.26365- 5 7.77750- 4 4.10000+ 1 5.80000+ 1 1.74275- 6 7.98570- 4 4.30000+ 1 4.30000+ 1 2.76853- 6 7.86160- 4 4.30000+ 1 4.40000+ 1 1.52275- 5 7.98800- 4 4.30000+ 1 5.80000+ 1 9.22867- 7 8.19620- 4 4.40000+ 1 4.40000+ 1 1.08554- 5 8.11440- 4 4.40000+ 1 5.80000+ 1 9.04600- 7 8.32260- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.31722- 4 3.65790- 4 3.30000+ 1 8.21319- 6 3.77020- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 1.94375- 1 1.30000- 6 2.50000+ 1 3.60000+ 1 1.24154- 2 2.83000- 6 2.50000+ 1 4.60000+ 1 3.17429- 4 1.01300- 5 2.50000+ 1 4.70000+ 1 3.29305- 4 1.08500- 5 2.50000+ 1 5.80000+ 1 4.92473- 4 8.60000- 6 2.70000+ 1 3.50000+ 1 5.29913- 2 1.04470- 4 2.70000+ 1 3.60000+ 1 1.00425- 2 1.06000- 4 2.70000+ 1 4.10000+ 1 1.10068- 3 5.72600- 5 2.70000+ 1 4.30000+ 1 1.44407- 3 7.83100- 5 2.70000+ 1 4.40000+ 1 3.18307- 3 9.09500- 5 2.70000+ 1 4.60000+ 1 3.96241- 5 1.13300- 4 2.70000+ 1 4.70000+ 1 5.72346- 5 1.14020- 4 2.70000+ 1 5.80000+ 1 7.92484- 5 1.11770- 4 2.90000+ 1 3.20000+ 1 2.86229- 2 5.09900- 5 2.90000+ 1 3.30000+ 1 6.32803- 2 6.22200- 5 2.90000+ 1 3.50000+ 1 5.25119- 2 1.73970- 4 2.90000+ 1 3.60000+ 1 1.24074- 2 1.75500- 4 2.90000+ 1 4.10000+ 1 9.53200- 3 1.26760- 4 2.90000+ 1 4.30000+ 1 5.33616- 3 1.47810- 4 2.90000+ 1 4.40000+ 1 8.38715- 3 1.60450- 4 2.90000+ 1 4.60000+ 1 4.93111- 4 1.82800- 4 2.90000+ 1 4.70000+ 1 5.19531- 4 1.83520- 4 2.90000+ 1 5.80000+ 1 8.18920- 4 1.81270- 4 3.00000+ 1 3.00000+ 1 1.02596- 2 2.29500- 5 3.00000+ 1 3.20000+ 1 6.31933- 2 1.26140- 4 3.00000+ 1 3.30000+ 1 4.70350- 2 1.37370- 4 3.00000+ 1 3.50000+ 1 7.64233- 2 2.49120- 4 3.00000+ 1 3.60000+ 1 4.47709- 3 2.50650- 4 3.00000+ 1 4.10000+ 1 3.47973- 3 2.01910- 4 3.00000+ 1 4.30000+ 1 2.35410- 3 2.22960- 4 3.00000+ 1 4.40000+ 1 1.65216- 3 2.35600- 4 3.00000+ 1 4.60000+ 1 1.84052- 4 2.57950- 4 3.00000+ 1 4.70000+ 1 1.24123- 4 2.58670- 4 3.00000+ 1 5.80000+ 1 2.56809- 4 2.56420- 4 3.20000+ 1 3.20000+ 1 8.60729- 3 2.29330- 4 3.20000+ 1 3.30000+ 1 1.84118- 2 2.40560- 4 3.20000+ 1 3.50000+ 1 7.05092- 2 3.52310- 4 3.20000+ 1 3.60000+ 1 9.84438- 3 3.53840- 4 3.20000+ 1 4.10000+ 1 1.16665- 3 3.05100- 4 3.20000+ 1 4.30000+ 1 5.58250- 3 3.26150- 4 3.20000+ 1 4.40000+ 1 3.85683- 3 3.38790- 4 3.20000+ 1 4.60000+ 1 6.60399- 5 3.61140- 4 3.20000+ 1 4.70000+ 1 7.04431- 5 3.61860- 4 3.20000+ 1 5.80000+ 1 1.14472- 4 3.59610- 4 3.30000+ 1 3.30000+ 1 4.53016- 3 2.51790- 4 3.30000+ 1 3.50000+ 1 1.02657- 1 3.63540- 4 3.30000+ 1 3.60000+ 1 2.98928- 3 3.65070- 4 3.30000+ 1 4.10000+ 1 1.13144- 3 3.16330- 4 3.30000+ 1 4.30000+ 1 4.08996- 3 3.37380- 4 3.30000+ 1 4.40000+ 1 2.17923- 3 3.50020- 4 3.30000+ 1 4.60000+ 1 6.60369- 5 3.72370- 4 3.30000+ 1 4.70000+ 1 3.52204- 5 3.73090- 4 3.30000+ 1 5.80000+ 1 1.01257- 4 3.70840- 4 3.50000+ 1 3.50000+ 1 2.03101- 2 4.75290- 4 3.50000+ 1 3.60000+ 1 4.10805- 2 4.76820- 4 3.50000+ 1 4.10000+ 1 9.53085- 3 4.28080- 4 3.50000+ 1 4.30000+ 1 8.39796- 3 4.49130- 4 3.50000+ 1 4.40000+ 1 1.16426- 2 4.61770- 4 3.50000+ 1 4.60000+ 1 3.66735- 4 4.84120- 4 3.50000+ 1 4.70000+ 1 4.73526- 4 4.84840- 4 3.50000+ 1 5.80000+ 1 8.77404- 4 4.82590- 4 3.60000+ 1 3.60000+ 1 3.52487- 4 4.78350- 4 3.60000+ 1 4.10000+ 1 2.74159- 4 4.29610- 4 3.60000+ 1 4.30000+ 1 9.05139- 4 4.50660- 4 3.60000+ 1 4.40000+ 1 3.52487- 4 4.63300- 4 3.60000+ 1 4.60000+ 1 2.17586- 5 4.85650- 4 3.60000+ 1 4.70000+ 1 8.70322- 6 4.86370- 4 3.60000+ 1 5.80000+ 1 2.17586- 5 4.84120- 4 4.10000+ 1 4.10000+ 1 3.61228- 5 3.80870- 4 4.10000+ 1 4.30000+ 1 3.45173- 4 4.01920- 4 4.10000+ 1 4.40000+ 1 2.32788- 4 4.14560- 4 4.10000+ 1 4.60000+ 1 4.01369- 6 4.36910- 4 4.10000+ 1 4.70000+ 1 4.01369- 6 4.37630- 4 4.10000+ 1 5.80000+ 1 8.02719- 6 4.35380- 4 4.30000+ 1 4.30000+ 1 1.16449- 4 4.22970- 4 4.30000+ 1 4.40000+ 1 1.66909- 4 4.35610- 4 4.30000+ 1 4.60000+ 1 1.55259- 5 4.57960- 4 4.30000+ 1 4.70000+ 1 1.16449- 5 4.58680- 4 4.30000+ 1 5.80000+ 1 2.71699- 5 4.56430- 4 4.40000+ 1 4.40000+ 1 2.55522- 5 4.48250- 4 4.40000+ 1 4.60000+ 1 8.51762- 6 4.70600- 4 4.40000+ 1 4.70000+ 1 2.83916- 6 4.71320- 4 4.40000+ 1 5.80000+ 1 1.41958- 5 4.69070- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.55921- 4 3.62240- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 8.14939- 3 8.96900- 5 2.70000+ 1 3.60000+ 1 6.05463- 2 9.12200- 5 2.70000+ 1 4.10000+ 1 1.34257- 3 4.24800- 5 2.70000+ 1 4.30000+ 1 2.55683- 3 6.35300- 5 2.70000+ 1 4.40000+ 1 2.42852- 3 7.61700- 5 2.70000+ 1 4.60000+ 1 6.91049- 5 9.85200- 5 2.70000+ 1 4.70000+ 1 6.91049- 5 9.92400- 5 2.70000+ 1 5.80000+ 1 9.37842- 5 9.69900- 5 2.90000+ 1 3.20000+ 1 4.16210- 3 3.62100- 5 2.90000+ 1 3.30000+ 1 8.16334- 3 4.74400- 5 2.90000+ 1 3.50000+ 1 7.01803- 4 1.59190- 4 2.90000+ 1 3.60000+ 1 5.33077- 2 1.60720- 4 2.90000+ 1 4.10000+ 1 2.67564- 3 1.11980- 4 2.90000+ 1 4.30000+ 1 6.09200- 4 1.33030- 4 2.90000+ 1 4.40000+ 1 9.25991- 4 1.45670- 4 2.90000+ 1 4.60000+ 1 7.31051- 5 1.68020- 4 2.90000+ 1 4.70000+ 1 7.31051- 5 1.68740- 4 2.90000+ 1 5.80000+ 1 2.09578- 4 1.66490- 4 3.00000+ 1 3.00000+ 1 1.38158- 2 8.17000- 6 3.00000+ 1 3.20000+ 1 1.12356- 1 1.11360- 4 3.00000+ 1 3.30000+ 1 2.28226- 1 1.22590- 4 3.00000+ 1 3.50000+ 1 1.48085- 2 2.34340- 4 3.00000+ 1 3.60000+ 1 9.89579- 2 2.35870- 4 3.00000+ 1 4.10000+ 1 8.04075- 3 1.87130- 4 3.00000+ 1 4.30000+ 1 2.83820- 3 2.08180- 4 3.00000+ 1 4.40000+ 1 6.83159- 3 2.20820- 4 3.00000+ 1 4.60000+ 1 3.35643- 4 2.43170- 4 3.00000+ 1 4.70000+ 1 5.82466- 4 2.43890- 4 3.00000+ 1 5.80000+ 1 6.51550- 4 2.41640- 4 3.20000+ 1 3.20000+ 1 1.99482- 3 2.14550- 4 3.20000+ 1 3.30000+ 1 2.09082- 2 2.25780- 4 3.20000+ 1 3.50000+ 1 2.08795- 3 3.37530- 4 3.20000+ 1 3.60000+ 1 8.23715- 2 3.39060- 4 3.20000+ 1 4.10000+ 1 1.05863- 3 2.90320- 4 3.20000+ 1 4.30000+ 1 1.05863- 3 3.11370- 4 3.20000+ 1 4.40000+ 1 3.72474- 3 3.24010- 4 3.20000+ 1 4.60000+ 1 1.47035- 5 3.46360- 4 3.20000+ 1 4.70000+ 1 6.86151- 5 3.47080- 4 3.20000+ 1 5.80000+ 1 9.31195- 5 3.44830- 4 3.30000+ 1 3.30000+ 1 1.30981- 2 2.37010- 4 3.30000+ 1 3.50000+ 1 9.89488- 3 3.48760- 4 3.30000+ 1 3.60000+ 1 1.10968- 1 3.50290- 4 3.30000+ 1 4.10000+ 1 1.54764- 3 3.01550- 4 3.30000+ 1 4.30000+ 1 1.88435- 3 3.22600- 4 3.30000+ 1 4.40000+ 1 7.81113- 3 3.35240- 4 3.30000+ 1 4.60000+ 1 9.27579- 5 3.57590- 4 3.30000+ 1 4.70000+ 1 9.27579- 5 3.58310- 4 3.30000+ 1 5.80000+ 1 1.41579- 4 3.56060- 4 3.50000+ 1 3.50000+ 1 2.88625- 4 4.60510- 4 3.50000+ 1 3.60000+ 1 3.82506- 2 4.62040- 4 3.50000+ 1 4.10000+ 1 3.21284- 4 4.13300- 4 3.50000+ 1 4.30000+ 1 7.62382- 5 4.34350- 4 3.50000+ 1 4.40000+ 1 1.17624- 3 4.46990- 4 3.50000+ 1 4.60000+ 1 1.08909- 5 4.69340- 4 3.50000+ 1 4.70000+ 1 2.72268- 5 4.70060- 4 3.50000+ 1 5.80000+ 1 2.72268- 5 4.67810- 4 3.60000+ 1 3.60000+ 1 3.16535- 2 4.63570- 4 3.60000+ 1 4.10000+ 1 1.04569- 2 4.14830- 4 3.60000+ 1 4.30000+ 1 8.85085- 3 4.35880- 4 3.60000+ 1 4.40000+ 1 1.33958- 2 4.48520- 4 3.60000+ 1 4.60000+ 1 4.33613- 4 4.70870- 4 3.60000+ 1 4.70000+ 1 4.94822- 4 4.71590- 4 3.60000+ 1 5.80000+ 1 9.59040- 4 4.69340- 4 4.10000+ 1 4.10000+ 1 3.58345- 5 3.66090- 4 4.10000+ 1 4.30000+ 1 1.79164- 4 3.87140- 4 4.10000+ 1 4.40000+ 1 3.85208- 4 3.99780- 4 4.10000+ 1 4.60000+ 1 4.47935- 6 4.22130- 4 4.10000+ 1 4.70000+ 1 4.47935- 6 4.22850- 4 4.10000+ 1 5.80000+ 1 4.47935- 6 4.20600- 4 4.30000+ 1 4.30000+ 1 1.71756- 5 4.08190- 4 4.30000+ 1 4.40000+ 1 1.03055- 4 4.20830- 4 4.30000+ 1 4.60000+ 1 4.29413- 6 4.43180- 4 4.30000+ 1 4.70000+ 1 4.29413- 6 4.43900- 4 4.30000+ 1 5.80000+ 1 1.28824- 5 4.41650- 4 4.40000+ 1 4.40000+ 1 1.04059- 4 4.33470- 4 4.40000+ 1 4.60000+ 1 7.43277- 6 4.55820- 4 4.40000+ 1 4.70000+ 1 1.48653- 5 4.56540- 4 4.40000+ 1 5.80000+ 1 2.60142- 5 4.54290- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.31857- 6 6.95000- 5 3.00000+ 1 2.44617- 5 1.44650- 4 4.30000+ 1 3.29638- 6 3.44660- 4 4.40000+ 1 5.47737- 8 3.57300- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 4.66519- 2 5.60200- 5 2.90000+ 1 3.60000+ 1 8.07608- 2 5.75500- 5 2.90000+ 1 4.10000+ 1 2.17675- 2 8.81000- 6 2.90000+ 1 4.30000+ 1 1.49890- 2 2.98600- 5 2.90000+ 1 4.40000+ 1 2.64540- 2 4.25000- 5 2.90000+ 1 4.60000+ 1 5.79287- 4 6.48500- 5 2.90000+ 1 4.70000+ 1 1.08609- 3 6.55700- 5 2.90000+ 1 5.80000+ 1 1.95281- 3 6.33200- 5 3.00000+ 1 3.20000+ 1 1.60757- 1 8.19000- 6 3.00000+ 1 3.30000+ 1 1.55779- 1 1.94200- 5 3.00000+ 1 3.50000+ 1 1.11020- 1 1.31170- 4 3.00000+ 1 3.60000+ 1 1.04123- 1 1.32700- 4 3.00000+ 1 4.10000+ 1 1.95211- 2 8.39600- 5 3.00000+ 1 4.30000+ 1 1.97961- 2 1.05010- 4 3.00000+ 1 4.40000+ 1 1.68258- 2 1.17650- 4 3.00000+ 1 4.60000+ 1 8.35813- 4 1.40000- 4 3.00000+ 1 4.70000+ 1 7.34576- 4 1.40720- 4 3.00000+ 1 5.80000+ 1 1.76274- 3 1.38470- 4 3.20000+ 1 3.20000+ 1 1.54548- 3 1.11380- 4 3.20000+ 1 3.30000+ 1 1.14556- 1 1.22610- 4 3.20000+ 1 3.50000+ 1 2.81252- 3 2.34360- 4 3.20000+ 1 3.60000+ 1 1.00322- 2 2.35890- 4 3.20000+ 1 4.10000+ 1 5.90167- 3 1.87150- 4 3.20000+ 1 4.30000+ 1 1.22497- 3 2.08200- 4 3.20000+ 1 4.40000+ 1 4.59710- 3 2.20840- 4 3.20000+ 1 4.60000+ 1 2.67631- 5 2.43190- 4 3.20000+ 1 4.70000+ 1 1.85796- 4 2.43910- 4 3.20000+ 1 5.80000+ 1 4.38655- 4 2.41660- 4 3.30000+ 1 3.30000+ 1 2.75467- 2 1.33840- 4 3.30000+ 1 3.50000+ 1 1.13930- 2 2.45590- 4 3.30000+ 1 3.60000+ 1 7.69595- 3 2.47120- 4 3.30000+ 1 4.10000+ 1 8.29283- 3 1.98380- 4 3.30000+ 1 4.30000+ 1 3.69715- 3 2.19430- 4 3.30000+ 1 4.40000+ 1 3.00492- 3 2.32070- 4 3.30000+ 1 4.60000+ 1 1.96020- 4 2.54420- 4 3.30000+ 1 4.70000+ 1 1.05926- 4 2.55140- 4 3.30000+ 1 5.80000+ 1 6.13926- 4 2.52890- 4 3.50000+ 1 3.50000+ 1 3.01045- 5 3.57340- 4 3.50000+ 1 3.60000+ 1 1.07851- 3 3.58870- 4 3.50000+ 1 4.10000+ 1 2.23053- 3 3.10130- 4 3.50000+ 1 4.30000+ 1 1.99248- 4 3.31180- 4 3.50000+ 1 4.40000+ 1 6.22298- 4 3.43820- 4 3.50000+ 1 4.60000+ 1 6.80821- 6 3.66170- 4 3.50000+ 1 4.70000+ 1 2.23390- 5 3.66890- 4 3.50000+ 1 5.80000+ 1 1.51799- 4 3.64640- 4 3.60000+ 1 3.60000+ 1 1.75035- 4 3.60400- 4 3.60000+ 1 4.10000+ 1 2.66071- 3 3.11660- 4 3.60000+ 1 4.30000+ 1 4.69210- 4 3.32710- 4 3.60000+ 1 4.40000+ 1 3.67134- 4 3.45350- 4 3.60000+ 1 4.60000+ 1 1.82910- 5 3.67700- 4 3.60000+ 1 4.70000+ 1 1.45519- 5 3.68420- 4 3.60000+ 1 5.80000+ 1 1.80897- 4 3.66170- 4 4.10000+ 1 4.10000+ 1 4.63059- 4 2.62920- 4 4.10000+ 1 4.30000+ 1 5.51284- 4 2.83970- 4 4.10000+ 1 4.40000+ 1 7.79220- 4 2.96610- 4 4.10000+ 1 4.60000+ 1 2.54892- 5 3.18960- 4 4.10000+ 1 4.70000+ 1 3.05507- 5 3.19680- 4 4.10000+ 1 5.80000+ 1 7.42084- 5 3.17430- 4 4.30000+ 1 4.30000+ 1 4.99899- 5 3.05020- 4 4.30000+ 1 4.40000+ 1 2.83464- 4 3.17660- 4 4.30000+ 1 4.60000+ 1 2.71683- 6 3.40010- 4 4.30000+ 1 4.70000+ 1 6.70166- 6 3.40730- 4 4.30000+ 1 5.80000+ 1 3.67703- 5 3.38480- 4 4.40000+ 1 4.40000+ 1 1.10749- 4 3.30300- 4 4.40000+ 1 4.60000+ 1 9.82583- 6 3.52650- 4 4.40000+ 1 4.70000+ 1 6.41159- 6 3.53370- 4 4.40000+ 1 5.80000+ 1 5.05444- 5 3.51120- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 7.44599- 5 1.78340- 4 4.10000+ 1 8.51589- 6 2.54110- 4 5.80000+ 1 7.55699- 7 3.08620- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 2.21436- 2 6.16700- 5 3.00000+ 1 3.60000+ 1 1.32470- 2 6.32000- 5 3.00000+ 1 4.10000+ 1 1.64170- 2 1.44600- 5 3.00000+ 1 4.30000+ 1 1.00112- 2 3.55100- 5 3.00000+ 1 4.40000+ 1 8.40171- 3 4.81500- 5 3.00000+ 1 4.60000+ 1 2.85643- 4 7.05000- 5 3.00000+ 1 4.70000+ 1 3.26691- 4 7.12200- 5 3.00000+ 1 5.80000+ 1 1.02708- 3 6.89700- 5 3.20000+ 1 3.20000+ 1 8.79784- 2 4.18800- 5 3.20000+ 1 3.30000+ 1 3.64154- 1 5.31100- 5 3.20000+ 1 3.50000+ 1 7.43897- 2 1.64860- 4 3.20000+ 1 3.60000+ 1 1.67156- 1 1.66390- 4 3.20000+ 1 4.10000+ 1 3.75660- 2 1.17650- 4 3.20000+ 1 4.30000+ 1 2.51958- 2 1.38700- 4 3.20000+ 1 4.40000+ 1 3.74471- 2 1.51340- 4 3.20000+ 1 4.60000+ 1 7.79242- 4 1.73690- 4 3.20000+ 1 4.70000+ 1 1.49918- 3 1.74410- 4 3.20000+ 1 5.80000+ 1 3.53288- 3 1.72160- 4 3.30000+ 1 3.30000+ 1 1.40781- 2 6.43400- 5 3.30000+ 1 3.50000+ 1 3.97845- 2 1.76090- 4 3.30000+ 1 3.60000+ 1 9.21190- 3 1.77620- 4 3.30000+ 1 4.10000+ 1 3.65076- 3 1.28880- 4 3.30000+ 1 4.30000+ 1 1.79882- 2 1.49930- 4 3.30000+ 1 4.40000+ 1 3.74755- 3 1.62570- 4 3.30000+ 1 4.60000+ 1 3.33577- 4 1.84920- 4 3.30000+ 1 4.70000+ 1 9.83252- 5 1.85640- 4 3.30000+ 1 5.80000+ 1 2.82941- 4 1.83390- 4 3.50000+ 1 3.50000+ 1 1.52558- 3 2.87840- 4 3.50000+ 1 3.60000+ 1 1.14837- 2 2.89370- 4 3.50000+ 1 4.10000+ 1 2.49601- 3 2.40630- 4 3.50000+ 1 4.30000+ 1 5.08833- 3 2.61680- 4 3.50000+ 1 4.40000+ 1 2.57731- 3 2.74320- 4 3.50000+ 1 4.60000+ 1 4.35580- 5 2.96670- 4 3.50000+ 1 4.70000+ 1 1.00838- 4 2.97390- 4 3.50000+ 1 5.80000+ 1 2.34671- 4 2.95140- 4 3.60000+ 1 3.60000+ 1 5.24726- 4 2.90900- 4 3.60000+ 1 4.10000+ 1 8.96700- 4 2.42160- 4 3.60000+ 1 4.30000+ 1 7.75975- 3 2.63210- 4 3.60000+ 1 4.40000+ 1 8.10399- 4 2.75850- 4 3.60000+ 1 4.60000+ 1 6.28859- 5 2.98200- 4 3.60000+ 1 4.70000+ 1 1.62941- 5 2.98920- 4 3.60000+ 1 5.80000+ 1 6.82329- 5 2.96670- 4 4.10000+ 1 4.10000+ 1 9.98704- 5 1.93420- 4 4.10000+ 1 4.30000+ 1 1.66681- 3 2.14470- 4 4.10000+ 1 4.40000+ 1 2.84652- 4 2.27110- 4 4.10000+ 1 4.60000+ 1 3.42881- 5 2.49460- 4 4.10000+ 1 4.70000+ 1 1.05854- 5 2.50180- 4 4.10000+ 1 5.80000+ 1 1.51882- 5 2.47930- 4 4.30000+ 1 4.30000+ 1 9.37520- 4 2.35520- 4 4.30000+ 1 4.40000+ 1 2.03626- 3 2.48160- 4 4.30000+ 1 4.60000+ 1 5.60087- 5 2.70510- 4 4.30000+ 1 4.70000+ 1 8.07805- 5 2.71230- 4 4.30000+ 1 5.80000+ 1 1.51227- 4 2.68980- 4 4.40000+ 1 4.40000+ 1 7.29408- 5 2.60800- 4 4.40000+ 1 4.60000+ 1 2.66766- 5 2.83150- 4 4.40000+ 1 4.70000+ 1 5.06524- 6 2.83870- 4 4.40000+ 1 5.80000+ 1 1.50272- 5 2.81620- 4 1 96000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 9.09173- 7 1.03190- 4 3.30000+ 1 1.13200- 5 1.14420- 4 4.10000+ 1 5.31672- 6 1.78960- 4 5.80000+ 1 4.67491- 7 2.33470- 4 1 96000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.57061- 2 8.97100- 5 3.20000+ 1 3.60000+ 1 9.74260- 2 9.12400- 5 3.20000+ 1 4.10000+ 1 1.07241- 2 4.25000- 5 3.20000+ 1 4.30000+ 1 7.74937- 3 6.35500- 5 3.20000+ 1 4.40000+ 1 2.06773- 2 7.61900- 5 3.20000+ 1 4.60000+ 1 2.39196- 4 9.85400- 5 3.20000+ 1 4.70000+ 1 6.17815- 4 9.92600- 5 3.20000+ 1 5.80000+ 1 8.20458- 4 9.70100- 5 3.30000+ 1 3.50000+ 1 3.26221- 1 1.00940- 4 3.30000+ 1 3.60000+ 1 2.89213- 1 1.02470- 4 3.30000+ 1 4.10000+ 1 5.33366- 2 5.37300- 5 3.30000+ 1 4.30000+ 1 5.49632- 2 7.47800- 5 3.30000+ 1 4.40000+ 1 5.61685- 2 8.74200- 5 3.30000+ 1 4.60000+ 1 2.24506- 3 1.09770- 4 3.30000+ 1 4.70000+ 1 1.98705- 3 1.10490- 4 3.30000+ 1 5.80000+ 1 4.99838- 3 1.08240- 4 3.50000+ 1 3.50000+ 1 3.64958- 4 2.12690- 4 3.50000+ 1 3.60000+ 1 1.01798- 2 2.14220- 4 3.50000+ 1 4.10000+ 1 2.53393- 3 1.65480- 4 3.50000+ 1 4.30000+ 1 7.67444- 4 1.86530- 4 3.50000+ 1 4.40000+ 1 6.44096- 3 1.99170- 4 3.50000+ 1 4.60000+ 1 1.74809- 5 2.21520- 4 3.50000+ 1 4.70000+ 1 1.26619- 4 2.22240- 4 3.50000+ 1 5.80000+ 1 1.07866- 4 2.19990- 4 3.60000+ 1 3.60000+ 1 3.47488- 3 2.15750- 4 3.60000+ 1 4.10000+ 1 4.70722- 3 1.67010- 4 3.60000+ 1 4.30000+ 1 3.72526- 3 1.88060- 4 3.60000+ 1 4.40000+ 1 7.63521- 3 2.00700- 4 3.60000+ 1 4.60000+ 1 1.39456- 4 2.23050- 4 3.60000+ 1 4.70000+ 1 1.22985- 4 2.23770- 4 3.60000+ 1 5.80000+ 1 2.82053- 4 2.21520- 4 4.10000+ 1 4.10000+ 1 3.10584- 4 1.18270- 4 4.10000+ 1 4.30000+ 1 4.74369- 4 1.39320- 4 4.10000+ 1 4.40000+ 1 1.88971- 3 1.51960- 4 4.10000+ 1 4.60000+ 1 2.78003- 5 1.74310- 4 4.10000+ 1 4.70000+ 1 4.07273- 5 1.75030- 4 4.10000+ 1 5.80000+ 1 4.62151- 5 1.72780- 4 4.30000+ 1 4.30000+ 1 2.59964- 6 1.60370- 4 4.30000+ 1 4.40000+ 1 1.63982- 3 1.73010- 4 4.30000+ 1 4.60000+ 1 8.83790- 6 1.95360- 4 4.30000+ 1 4.70000+ 1 2.68632- 5 1.96080- 4 4.30000+ 1 5.80000+ 1 2.21844- 5 1.93830- 4 4.40000+ 1 4.40000+ 1 1.49896- 3 1.85650- 4 4.40000+ 1 4.60000+ 1 6.07507- 5 2.08000- 4 4.40000+ 1 4.70000+ 1 7.13038- 5 2.08720- 4 4.40000+ 1 5.80000+ 1 1.42289- 4 2.06470- 4 1 97000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 3.43000+ 0 3.60000+ 1 4.57000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 4.60000+ 1 4.00000- 1 4.70000+ 1 6.00000- 1 5.80000+ 1 2.00000+ 0 1 97000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.32210- 1 3.00000+ 0 2.52940- 2 5.00000+ 0 2.45030- 2 6.00000+ 0 1.94620- 2 8.00000+ 0 6.52330- 3 1.00000+ 1 6.14880- 3 1.10000+ 1 4.96860- 3 1.30000+ 1 4.36690- 3 1.40000+ 1 4.13430- 3 1.60000+ 1 1.72880- 3 1.80000+ 1 1.55400- 3 1.90000+ 1 1.23660- 3 2.10000+ 1 9.56120- 4 2.20000+ 1 8.98820- 4 2.40000+ 1 5.28020- 4 2.50000+ 1 5.12270- 4 2.70000+ 1 4.00870- 4 2.90000+ 1 3.29260- 4 3.00000+ 1 2.48620- 4 3.20000+ 1 1.42390- 4 3.30000+ 1 1.30350- 4 3.50000+ 1 1.45300- 5 3.60000+ 1 1.28400- 5 4.10000+ 1 6.27900- 5 4.30000+ 1 4.10100- 5 4.40000+ 1 2.75100- 5 4.60000+ 1 4.60000- 6 4.70000+ 1 3.85000- 6 5.80000+ 1 6.28000- 6 1 97000 0 0 2.47000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.07000- 1 3.00000+ 0 5.26720- 2 5.00000+ 0 5.28160- 2 6.00000+ 0 3.12090- 2 8.00000+ 0 1.68470- 2 1.00000+ 1 1.67210- 2 1.10000+ 1 1.12080- 2 1.30000+ 1 1.10300- 2 1.40000+ 1 1.00690- 2 1.60000+ 1 5.88720- 3 1.80000+ 1 5.72090- 3 1.90000+ 1 4.01030- 3 2.10000+ 1 3.75350- 3 2.20000+ 1 3.45710- 3 2.40000+ 1 3.08990- 3 2.50000+ 1 2.98820- 3 2.70000+ 1 1.92210- 3 2.90000+ 1 1.78340- 3 3.00000+ 1 1.26180- 3 3.20000+ 1 1.03090- 3 3.30000+ 1 9.45580- 4 3.50000+ 1 5.10540- 4 3.60000+ 1 4.84650- 4 4.10000+ 1 4.66580- 4 4.30000+ 1 3.75560- 4 4.40000+ 1 2.41740- 4 4.60000+ 1 9.15700- 5 4.70000+ 1 7.50500- 5 5.80000+ 1 5.24700- 5 1 97000 0 0 2.47000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.66120-11 3.00000+ 0 2.74640-10 5.00000+ 0 2.20230-10 6.00000+ 0 2.78070-10 8.00000+ 0 7.15940-10 1.00000+ 1 6.69600-10 1.10000+ 1 7.72700-10 1.30000+ 1 6.63420-10 1.40000+ 1 6.93540-10 1.60000+ 1 1.54620- 9 1.80000+ 1 1.53000- 9 1.90000+ 1 1.72840- 9 2.10000+ 1 1.69680- 9 2.20000+ 1 1.75430- 9 2.40000+ 1 1.66700- 9 2.50000+ 1 1.69450- 9 2.70000+ 1 3.15920- 9 2.90000+ 1 3.25800- 9 3.00000+ 1 3.67580- 9 3.20000+ 1 4.03150- 9 3.30000+ 1 4.17050- 9 3.50000+ 1 5.83490- 9 3.60000+ 1 5.99320- 9 4.10000+ 1 6.87750- 9 4.30000+ 1 7.60730- 9 4.40000+ 1 8.90480- 9 4.60000+ 1 1.45740- 8 4.70000+ 1 1.60870- 8 5.80000+ 1 1.96940- 8 1 97000 0 0 2.47000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.13260- 4 3.00000+ 0 3.21960- 6 5.00000+ 0 5.60500- 6 6.00000+ 0 4.60080- 6 8.00000+ 0 1.54530- 7 1.00000+ 1 1.65590- 7 1.10000+ 1 1.87650- 7 1.30000+ 1 2.55710- 7 1.40000+ 1 2.33390- 7 1.60000+ 1 9.66230- 9 1.80000+ 1 1.18030- 8 1.90000+ 1 7.96320- 9 2.10000+ 1 5.28740- 9 2.20000+ 1 4.01640- 9 2.40000+ 1 2.13990-10 2.50000+ 1 1.90440-10 2.70000+ 1 7.32610-10 2.90000+ 1 1.36330- 9 3.00000+ 1 5.78000-10 1 97000 0 0 2.47000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.43840- 6 3.00000+ 0 1.32890- 5 5.00000+ 0 5.41650- 6 6.00000+ 0 4.72910- 6 8.00000+ 0 2.02690- 5 1.00000+ 1 1.56860- 5 1.10000+ 1 1.18170- 5 1.30000+ 1 4.05540- 6 1.40000+ 1 3.95630- 6 1.60000+ 1 1.49840- 5 1.80000+ 1 1.62310- 5 1.90000+ 1 1.04030- 5 2.10000+ 1 6.70900- 6 2.20000+ 1 6.36370- 6 2.40000+ 1 1.04650- 6 2.50000+ 1 7.11400- 7 2.70000+ 1 3.02810- 5 2.90000+ 1 1.19760- 5 3.00000+ 1 1.78740- 5 1 97000 0 0 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.73959- 4 3.00000+ 0 1.09488- 3 5.00000+ 0 8.17435- 4 6.00000+ 0 7.63978- 4 8.00000+ 0 8.51948- 4 1.00000+ 1 7.61049- 4 1.10000+ 1 6.58963- 4 1.30000+ 1 5.12852- 4 1.40000+ 1 4.96631- 4 1.60000+ 1 4.48972- 4 1.80000+ 1 4.25706- 4 1.90000+ 1 4.26461- 4 2.10000+ 1 3.44278- 4 2.20000+ 1 3.26863- 4 2.40000+ 1 2.00399- 4 2.50000+ 1 1.97617- 4 2.70000+ 1 2.25750- 4 2.90000+ 1 2.05501- 4 3.00000+ 1 1.45927- 4 3.20000+ 1 1.42390- 4 3.30000+ 1 1.30350- 4 3.50000+ 1 1.45300- 5 3.60000+ 1 1.28400- 5 4.10000+ 1 6.27900- 5 4.30000+ 1 4.10100- 5 4.40000+ 1 2.75100- 5 4.60000+ 1 4.60000- 6 4.70000+ 1 3.85000- 6 5.80000+ 1 6.28000- 6 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.48440+ 0 3.00000+ 0 6.45260- 1 5.00000+ 0 7.08400- 1 6.00000+ 0 5.77875- 1 8.00000+ 0 6.72514- 2 1.00000+ 1 7.00526- 2 1.10000+ 1 6.27308- 2 1.30000+ 1 7.07885- 2 1.40000+ 1 6.23644- 2 1.60000+ 1 2.22161- 3 1.80000+ 1 2.20005- 3 1.90000+ 1 1.62961- 3 2.10000+ 1 1.12930- 3 2.20000+ 1 9.40054- 4 2.40000+ 1 2.33497- 4 2.50000+ 1 2.05893- 4 2.70000+ 1 6.18332- 5 2.90000+ 1 9.77870- 5 3.00000+ 1 2.07267- 5 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.19329- 1 3.00000+ 0 9.83242- 3 5.00000+ 0 1.28242- 2 6.00000+ 0 8.24127- 3 8.00000+ 0 2.51799- 4 1.00000+ 1 2.65762- 4 1.10000+ 1 2.29974- 4 1.30000+ 1 2.65637- 4 1.40000+ 1 2.22800- 4 1.60000+ 1 1.76458- 6 1.80000+ 1 1.48256- 6 1.90000+ 1 1.09350- 6 2.10000+ 1 5.93046- 7 2.20000+ 1 4.76533- 7 2.40000+ 1 8.36995- 8 2.50000+ 1 7.38007- 8 2.70000+ 1 1.07376- 8 2.90000+ 1 1.90876- 8 3.00000+ 1 2.92580- 9 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.85983+ 0 3.00000+ 0 1.29534+ 1 5.00000+ 0 9.40823+ 0 6.00000+ 0 8.72497+ 0 8.00000+ 0 9.98020+ 0 1.00000+ 1 8.77086+ 0 1.10000+ 1 7.51829+ 0 1.30000+ 1 5.60251+ 0 1.40000+ 1 5.34355+ 0 1.60000+ 1 4.43948+ 0 1.80000+ 1 4.15444+ 0 1.90000+ 1 4.13925+ 0 2.10000+ 1 3.27633+ 0 2.20000+ 1 2.93751+ 0 2.40000+ 1 1.93029+ 0 2.50000+ 1 1.72018+ 0 2.70000+ 1 1.80075+ 0 2.90000+ 1 1.07401+ 0 3.00000+ 1 9.99979- 1 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.21068- 2 3.00000+ 0 1.43667- 2 5.00000+ 0 1.08614- 2 6.00000+ 0 1.04568- 2 8.00000+ 0 5.41955- 3 1.00000+ 1 5.12199- 3 1.10000+ 1 4.07966- 3 1.30000+ 1 3.58841- 3 1.40000+ 1 3.41487- 3 1.60000+ 1 1.27806- 3 1.80000+ 1 1.12681- 3 1.90000+ 1 8.09046- 4 2.10000+ 1 6.11249- 4 2.20000+ 1 5.71481- 4 2.40000+ 1 3.27538- 4 2.50000+ 1 3.14579- 4 2.70000+ 1 1.75109- 4 2.90000+ 1 1.23740- 4 3.00000+ 1 1.02690- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.94099- 1 1.07707- 1 6.00000+ 0 4.57688- 1 1.12748- 1 1.00000+ 1 5.34678- 2 1.26061- 1 1.10000+ 1 1.05420- 1 1.27241- 1 1.30000+ 1 2.09439- 3 1.27843- 1 1.40000+ 1 2.31049- 3 1.28076- 1 1.80000+ 1 1.36000- 2 1.30656- 1 1.90000+ 1 2.80849- 2 1.30973- 1 2.10000+ 1 6.41908- 4 1.31254- 1 2.20000+ 1 7.12417- 4 1.31311- 1 2.90000+ 1 3.44089- 3 1.31881- 1 3.00000+ 1 7.03547- 3 1.31961- 1 3.20000+ 1 1.42989- 4 1.32068- 1 3.30000+ 1 1.57149- 4 1.32080- 1 4.30000+ 1 5.86368- 4 1.32169- 1 4.40000+ 1 1.05860- 3 1.32182- 1 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.56433- 3 8.16220- 2 3.00000+ 0 5.00000+ 0 6.96157- 3 8.24130- 2 3.00000+ 0 6.00000+ 0 2.19666- 3 8.74540- 2 3.00000+ 0 8.00000+ 0 1.49358- 3 1.00393- 1 3.00000+ 0 1.00000+ 1 1.53318- 3 1.00767- 1 3.00000+ 0 1.10000+ 1 5.55170- 4 1.01947- 1 3.00000+ 0 1.30000+ 1 4.88231- 5 1.02549- 1 3.00000+ 0 1.40000+ 1 2.83535- 5 1.02782- 1 3.00000+ 0 1.60000+ 1 4.03713- 4 1.05187- 1 3.00000+ 0 1.80000+ 1 4.08453- 4 1.05362- 1 3.00000+ 0 1.90000+ 1 1.50688- 4 1.05679- 1 3.00000+ 0 2.10000+ 1 1.50688- 5 1.05960- 1 3.00000+ 0 2.20000+ 1 8.63137- 6 1.06017- 1 3.00000+ 0 2.40000+ 1 4.82191- 8 1.06388- 1 3.00000+ 0 2.50000+ 1 4.82191- 8 1.06404- 1 3.00000+ 0 2.70000+ 1 1.08428- 4 1.06515- 1 3.00000+ 0 2.90000+ 1 1.04088- 4 1.06587- 1 3.00000+ 0 3.00000+ 1 3.78994- 5 1.06667- 1 3.00000+ 0 3.20000+ 1 3.32714- 6 1.06774- 1 3.00000+ 0 3.30000+ 1 1.88057- 6 1.06786- 1 5.00000+ 0 5.00000+ 0 2.10704- 4 8.32040- 2 5.00000+ 0 6.00000+ 0 3.41976- 3 8.82450- 2 5.00000+ 0 8.00000+ 0 1.30063- 3 1.01184- 1 5.00000+ 0 1.00000+ 1 8.30615- 5 1.01558- 1 5.00000+ 0 1.10000+ 1 7.40933- 4 1.02738- 1 5.00000+ 0 1.30000+ 1 4.91880- 5 1.03340- 1 5.00000+ 0 1.40000+ 1 1.03392- 4 1.03573- 1 5.00000+ 0 1.60000+ 1 3.42506- 4 1.05978- 1 5.00000+ 0 1.80000+ 1 2.17004- 5 1.06153- 1 5.00000+ 0 1.90000+ 1 1.93414- 4 1.06470- 1 5.00000+ 0 2.10000+ 1 1.44423- 5 1.06751- 1 5.00000+ 0 2.20000+ 1 3.06446- 5 1.06808- 1 5.00000+ 0 2.40000+ 1 4.82209- 7 1.07179- 1 5.00000+ 0 2.50000+ 1 6.75092- 7 1.07195- 1 5.00000+ 0 2.70000+ 1 9.13281- 5 1.07306- 1 5.00000+ 0 2.90000+ 1 5.49740- 6 1.07378- 1 5.00000+ 0 3.00000+ 1 4.81739- 5 1.07458- 1 5.00000+ 0 3.20000+ 1 3.13436- 6 1.07565- 1 5.00000+ 0 3.30000+ 1 6.60622- 6 1.07577- 1 6.00000+ 0 6.00000+ 0 1.34419- 3 9.32860- 2 6.00000+ 0 8.00000+ 0 3.61798- 4 1.06225- 1 6.00000+ 0 1.00000+ 1 6.23635- 4 1.06599- 1 6.00000+ 0 1.10000+ 1 5.99505- 4 1.07779- 1 6.00000+ 0 1.30000+ 1 1.08859- 4 1.08381- 1 6.00000+ 0 1.40000+ 1 8.45796- 5 1.08614- 1 6.00000+ 0 1.60000+ 1 9.23626- 5 1.11019- 1 6.00000+ 0 1.80000+ 1 1.58719- 4 1.11194- 1 6.00000+ 0 1.90000+ 1 1.57729- 4 1.11511- 1 6.00000+ 0 2.10000+ 1 3.24527- 5 1.11792- 1 6.00000+ 0 2.20000+ 1 2.52188- 5 1.11849- 1 6.00000+ 0 2.40000+ 1 6.50974- 7 1.12220- 1 6.00000+ 0 2.50000+ 1 6.75074- 7 1.12236- 1 6.00000+ 0 2.70000+ 1 2.44228- 5 1.12347- 1 6.00000+ 0 2.90000+ 1 3.99507- 5 1.12419- 1 6.00000+ 0 3.00000+ 1 3.93727- 5 1.12499- 1 6.00000+ 0 3.20000+ 1 7.11244- 6 1.12606- 1 6.00000+ 0 3.30000+ 1 5.44886- 6 1.12618- 1 8.00000+ 0 8.00000+ 0 1.54861- 4 1.19163- 1 8.00000+ 0 1.00000+ 1 2.87712- 4 1.19538- 1 8.00000+ 0 1.10000+ 1 9.22230- 5 1.20718- 1 8.00000+ 0 1.30000+ 1 7.85994- 6 1.21320- 1 8.00000+ 0 1.40000+ 1 4.29173- 6 1.21552- 1 8.00000+ 0 1.60000+ 1 8.35904- 5 1.23958- 1 8.00000+ 0 1.80000+ 1 7.67444- 5 1.24133- 1 8.00000+ 0 1.90000+ 1 2.50992- 5 1.24450- 1 8.00000+ 0 2.10000+ 1 2.43522- 6 1.24731- 1 8.00000+ 0 2.20000+ 1 1.30201- 6 1.24788- 1 8.00000+ 0 2.70000+ 1 2.24472- 5 1.25286- 1 8.00000+ 0 2.90000+ 1 1.95542- 5 1.25357- 1 8.00000+ 0 3.00000+ 1 6.31684- 6 1.25438- 1 8.00000+ 0 3.20000+ 1 5.30434- 7 1.25544- 1 8.00000+ 0 3.30000+ 1 2.89332- 7 1.25556- 1 1.00000+ 1 1.00000+ 1 7.54646- 6 1.19912- 1 1.00000+ 1 1.10000+ 1 1.39990- 4 1.21093- 1 1.00000+ 1 1.30000+ 1 8.51099- 6 1.21694- 1 1.00000+ 1 1.40000+ 1 1.38630- 5 1.21927- 1 1.00000+ 1 1.60000+ 1 7.57796- 5 1.24332- 1 1.00000+ 1 1.80000+ 1 3.85779- 6 1.24507- 1 1.00000+ 1 1.90000+ 1 3.68159- 5 1.24825- 1 1.00000+ 1 2.10000+ 1 2.53159- 6 1.25105- 1 1.00000+ 1 2.20000+ 1 4.17129- 6 1.25162- 1 1.00000+ 1 2.40000+ 1 4.82198- 8 1.25533- 1 1.00000+ 1 2.50000+ 1 7.23296- 8 1.25549- 1 1.00000+ 1 2.70000+ 1 2.02049- 5 1.25660- 1 1.00000+ 1 2.90000+ 1 9.64379- 7 1.25732- 1 1.00000+ 1 3.00000+ 1 9.18589- 6 1.25813- 1 1.00000+ 1 3.20000+ 1 5.54557- 7 1.25919- 1 1.00000+ 1 3.30000+ 1 8.92080- 7 1.25931- 1 1.10000+ 1 1.10000+ 1 6.77034- 5 1.22273- 1 1.10000+ 1 1.30000+ 1 1.99394- 5 1.22874- 1 1.10000+ 1 1.40000+ 1 1.48034- 5 1.23107- 1 1.10000+ 1 1.60000+ 1 2.35805- 5 1.25513- 1 1.10000+ 1 1.80000+ 1 3.59008- 5 1.25687- 1 1.10000+ 1 1.90000+ 1 3.57327- 5 1.26005- 1 1.10000+ 1 2.10000+ 1 6.00352- 6 1.26285- 1 1.10000+ 1 2.20000+ 1 4.46070- 6 1.26343- 1 1.10000+ 1 2.40000+ 1 9.64404- 8 1.26713- 1 1.10000+ 1 2.50000+ 1 9.64404- 8 1.26729- 1 1.10000+ 1 2.70000+ 1 6.24483- 6 1.26841- 1 1.10000+ 1 2.90000+ 1 9.06543- 6 1.26912- 1 1.10000+ 1 3.00000+ 1 8.92102- 6 1.26993- 1 1.10000+ 1 3.20000+ 1 1.32613- 6 1.27099- 1 1.10000+ 1 3.30000+ 1 9.64404- 7 1.27111- 1 1.30000+ 1 1.30000+ 1 7.23299- 8 1.23476- 1 1.30000+ 1 1.40000+ 1 2.02530- 6 1.23709- 1 1.30000+ 1 1.60000+ 1 2.00120- 6 1.26114- 1 1.30000+ 1 1.80000+ 1 2.17000- 6 1.26289- 1 1.30000+ 1 1.90000+ 1 5.01500- 6 1.26606- 1 1.30000+ 1 2.10000+ 1 4.82200- 8 1.26887- 1 1.30000+ 1 2.20000+ 1 5.78648- 7 1.26944- 1 1.30000+ 1 2.50000+ 1 2.41110- 8 1.27331- 1 1.30000+ 1 2.70000+ 1 5.30429- 7 1.27442- 1 1.30000+ 1 2.90000+ 1 5.54559- 7 1.27514- 1 1.30000+ 1 3.00000+ 1 1.22960- 6 1.27594- 1 1.30000+ 1 3.30000+ 1 1.20550- 7 1.27713- 1 1.40000+ 1 1.40000+ 1 5.06297- 7 1.23941- 1 1.40000+ 1 1.60000+ 1 1.08499- 6 1.26347- 1 1.40000+ 1 1.80000+ 1 3.27888- 6 1.26522- 1 1.40000+ 1 1.90000+ 1 3.66478- 6 1.26839- 1 1.40000+ 1 2.10000+ 1 5.78645- 7 1.27120- 1 1.40000+ 1 2.20000+ 1 2.89328- 7 1.27177- 1 1.40000+ 1 2.70000+ 1 2.89328- 7 1.27675- 1 1.40000+ 1 2.90000+ 1 8.19754- 7 1.27746- 1 1.40000+ 1 3.00000+ 1 8.92078- 7 1.27827- 1 1.40000+ 1 3.20000+ 1 1.20550- 7 1.27933- 1 1.40000+ 1 3.30000+ 1 7.23295- 8 1.27945- 1 1.60000+ 1 1.60000+ 1 1.12840- 5 1.28752- 1 1.60000+ 1 1.80000+ 1 2.02051- 5 1.28927- 1 1.60000+ 1 1.90000+ 1 6.41352- 6 1.29245- 1 1.60000+ 1 2.10000+ 1 6.26882- 7 1.29525- 1 1.60000+ 1 2.20000+ 1 3.37551- 7 1.29582- 1 1.60000+ 1 2.70000+ 1 6.05172- 6 1.30080- 1 1.60000+ 1 2.90000+ 1 5.15962- 6 1.30152- 1 1.60000+ 1 3.00000+ 1 1.61541- 6 1.30233- 1 1.60000+ 1 3.20000+ 1 1.44661- 7 1.30339- 1 1.60000+ 1 3.30000+ 1 7.23302- 8 1.30351- 1 1.80000+ 1 1.80000+ 1 4.82203- 7 1.29102- 1 1.80000+ 1 1.90000+ 1 9.45179- 6 1.29419- 1 1.80000+ 1 2.10000+ 1 6.50983- 7 1.29700- 1 1.80000+ 1 2.20000+ 1 9.88509- 7 1.29757- 1 1.80000+ 1 2.40000+ 1 2.41112- 8 1.30128- 1 1.80000+ 1 2.50000+ 1 2.41112- 8 1.30144- 1 1.80000+ 1 2.70000+ 1 5.40063- 6 1.30255- 1 1.80000+ 1 2.90000+ 1 2.41112- 7 1.30327- 1 1.80000+ 1 3.00000+ 1 2.36281- 6 1.30407- 1 1.80000+ 1 3.20000+ 1 1.44661- 7 1.30514- 1 1.80000+ 1 3.30000+ 1 2.17001- 7 1.30526- 1 1.90000+ 1 1.90000+ 1 4.72562- 6 1.29737- 1 1.90000+ 1 2.10000+ 1 1.51898- 6 1.30017- 1 1.90000+ 1 2.20000+ 1 1.10908- 6 1.30075- 1 1.90000+ 1 2.40000+ 1 2.41106- 8 1.30445- 1 1.90000+ 1 2.50000+ 1 2.41106- 8 1.30461- 1 1.90000+ 1 2.70000+ 1 1.68768- 6 1.30573- 1 1.90000+ 1 2.90000+ 1 2.38696- 6 1.30644- 1 1.90000+ 1 3.00000+ 1 2.36276- 6 1.30725- 1 1.90000+ 1 3.20000+ 1 3.37544- 7 1.30831- 1 1.90000+ 1 3.30000+ 1 2.41106- 7 1.30843- 1 2.10000+ 1 2.20000+ 1 1.74521- 7 1.30355- 1 2.10000+ 1 2.70000+ 1 1.74521- 7 1.30853- 1 2.10000+ 1 2.90000+ 1 1.74521- 7 1.30925- 1 2.10000+ 1 3.00000+ 1 3.73972- 7 1.31005- 1 2.10000+ 1 3.30000+ 1 2.49325- 8 1.31124- 1 2.20000+ 1 2.20000+ 1 4.92078- 8 1.30412- 1 2.20000+ 1 2.70000+ 1 9.84140- 8 1.30910- 1 2.20000+ 1 2.90000+ 1 2.46049- 7 1.30982- 1 2.20000+ 1 3.00000+ 1 2.70653- 7 1.31063- 1 2.20000+ 1 3.20000+ 1 4.92078- 8 1.31169- 1 2.20000+ 1 3.30000+ 1 2.46049- 8 1.31181- 1 2.70000+ 1 2.70000+ 1 8.14724- 7 1.31408- 1 2.70000+ 1 2.90000+ 1 1.36586- 6 1.31480- 1 2.70000+ 1 3.00000+ 1 4.31315- 7 1.31561- 1 2.70000+ 1 3.20000+ 1 4.79239- 8 1.31667- 1 2.70000+ 1 3.30000+ 1 2.39629- 8 1.31679- 1 2.90000+ 1 2.90000+ 1 2.41622- 8 1.31551- 1 2.90000+ 1 3.00000+ 1 6.04031- 7 1.31632- 1 2.90000+ 1 3.20000+ 1 2.41622- 8 1.31738- 1 2.90000+ 1 3.30000+ 1 4.83225- 8 1.31750- 1 3.00000+ 1 3.00000+ 1 3.16760- 7 1.31713- 1 3.00000+ 1 3.20000+ 1 7.91871- 8 1.31819- 1 3.00000+ 1 3.30000+ 1 5.27915- 8 1.31831- 1 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.34300- 5 7.91000- 4 6.00000+ 0 1.44630- 2 5.83200- 3 1.00000+ 1 6.99220- 2 1.91452- 2 1.10000+ 1 5.24110- 2 2.03254- 2 1.30000+ 1 3.62240- 3 2.09271- 2 1.40000+ 1 5.37670- 3 2.11597- 2 1.80000+ 1 1.92370- 2 2.37400- 2 1.90000+ 1 1.70470- 2 2.40574- 2 2.10000+ 1 6.47730- 4 2.43379- 2 2.20000+ 1 1.04270- 3 2.43952- 2 2.90000+ 1 4.93790- 3 2.49647- 2 3.00000+ 1 4.45940- 3 2.50454- 2 3.20000+ 1 1.26550- 4 2.51516- 2 3.30000+ 1 2.06060- 4 2.51636- 2 4.30000+ 1 8.43410- 4 2.52530- 2 4.40000+ 1 6.73650- 4 2.52665- 2 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.19021- 2 2.62980- 4 5.00000+ 0 2.50000+ 1 1.59251- 2 2.78730- 4 5.00000+ 0 2.70000+ 1 5.49855- 3 3.90130- 4 5.00000+ 0 2.90000+ 1 4.61585- 3 4.61740- 4 5.00000+ 0 3.00000+ 1 3.38434- 3 5.42380- 4 5.00000+ 0 3.20000+ 1 9.38849- 4 6.48610- 4 5.00000+ 0 3.30000+ 1 1.14721- 3 6.60650- 4 6.00000+ 0 1.10000+ 1 3.30070- 2 8.63400- 4 6.00000+ 0 1.30000+ 1 1.93850- 1 1.46510- 3 6.00000+ 0 1.40000+ 1 2.28621- 1 1.69770- 3 6.00000+ 0 1.60000+ 1 1.63720- 2 4.10320- 3 6.00000+ 0 1.80000+ 1 6.36560- 3 4.27800- 3 6.00000+ 0 1.90000+ 1 8.55611- 3 4.59540- 3 6.00000+ 0 2.10000+ 1 3.27580- 2 4.87588- 3 6.00000+ 0 2.20000+ 1 3.70180- 2 4.93318- 3 6.00000+ 0 2.40000+ 1 1.79100- 2 5.30398- 3 6.00000+ 0 2.50000+ 1 2.16430- 2 5.31973- 3 6.00000+ 0 2.70000+ 1 4.13640- 3 5.43113- 3 6.00000+ 0 2.90000+ 1 1.60900- 3 5.50274- 3 6.00000+ 0 3.00000+ 1 2.13450- 3 5.58338- 3 6.00000+ 0 3.20000+ 1 6.47870- 3 5.68961- 3 6.00000+ 0 3.30000+ 1 7.16141- 3 5.70165- 3 8.00000+ 0 8.00000+ 0 5.82090- 3 1.22474- 2 8.00000+ 0 1.00000+ 1 1.23890- 2 1.26219- 2 8.00000+ 0 1.10000+ 1 1.61730- 2 1.38021- 2 8.00000+ 0 1.30000+ 1 1.11480- 2 1.44038- 2 8.00000+ 0 1.40000+ 1 1.29680- 2 1.46364- 2 8.00000+ 0 1.60000+ 1 2.68890- 3 1.70419- 2 8.00000+ 0 1.80000+ 1 3.27700- 3 1.72167- 2 8.00000+ 0 1.90000+ 1 4.29570- 3 1.75341- 2 8.00000+ 0 2.10000+ 1 2.83800- 3 1.78146- 2 8.00000+ 0 2.20000+ 1 3.30230- 3 1.78719- 2 8.00000+ 0 2.40000+ 1 2.63100- 4 1.82427- 2 8.00000+ 0 2.50000+ 1 2.63930- 4 1.82584- 2 8.00000+ 0 2.70000+ 1 7.01080- 4 1.83698- 2 8.00000+ 0 2.90000+ 1 8.31780- 4 1.84414- 2 8.00000+ 0 3.00000+ 1 1.07310- 3 1.85221- 2 8.00000+ 0 3.20000+ 1 5.99750- 4 1.86283- 2 8.00000+ 0 3.30000+ 1 6.89590- 4 1.86403- 2 1.00000+ 1 1.00000+ 1 1.08604- 5 1.29964- 2 1.00000+ 1 1.10000+ 1 2.31028- 4 1.41766- 2 1.00000+ 1 1.30000+ 1 8.01368- 4 1.47783- 2 1.00000+ 1 1.40000+ 1 5.24838- 3 1.50109- 2 1.00000+ 1 1.60000+ 1 2.27668- 3 1.74164- 2 1.00000+ 1 1.80000+ 1 1.31644- 6 1.75912- 2 1.00000+ 1 1.90000+ 1 4.87057- 5 1.79086- 2 1.00000+ 1 2.10000+ 1 1.68335- 4 1.81891- 2 1.00000+ 1 2.20000+ 1 8.72780- 4 1.82464- 2 1.00000+ 1 2.40000+ 1 1.03333- 4 1.86172- 2 1.00000+ 1 2.50000+ 1 3.51792- 4 1.86329- 2 1.00000+ 1 2.70000+ 1 5.56659- 4 1.87443- 2 1.00000+ 1 2.90000+ 1 3.29092- 7 1.88159- 2 1.00000+ 1 3.00000+ 1 1.15184- 5 1.88966- 2 1.00000+ 1 3.20000+ 1 3.45552- 5 1.90028- 2 1.00000+ 1 3.30000+ 1 1.66355- 4 1.90148- 2 1.10000+ 1 1.10000+ 1 8.29449- 4 1.53568- 2 1.10000+ 1 1.30000+ 1 1.40150- 3 1.59585- 2 1.10000+ 1 1.40000+ 1 8.90619- 4 1.61911- 2 1.10000+ 1 1.60000+ 1 2.85410- 3 1.85966- 2 1.10000+ 1 1.80000+ 1 6.33469- 5 1.87714- 2 1.10000+ 1 1.90000+ 1 3.48500- 4 1.90888- 2 1.10000+ 1 2.10000+ 1 1.85269- 4 1.93693- 2 1.10000+ 1 2.20000+ 1 8.75329- 5 1.94266- 2 1.10000+ 1 2.40000+ 1 9.28049- 5 1.97974- 2 1.10000+ 1 2.50000+ 1 8.37489- 5 1.98131- 2 1.10000+ 1 2.70000+ 1 6.90550- 4 1.99245- 2 1.10000+ 1 2.90000+ 1 1.61239- 5 1.99961- 2 1.10000+ 1 3.00000+ 1 8.25979- 5 2.00768- 2 1.10000+ 1 3.20000+ 1 3.45540- 5 2.01830- 2 1.10000+ 1 3.30000+ 1 1.48090- 5 2.01950- 2 1.30000+ 1 1.30000+ 1 6.08630- 4 1.65602- 2 1.30000+ 1 1.40000+ 1 1.62512- 2 1.67928- 2 1.30000+ 1 1.60000+ 1 1.74663- 3 1.91983- 2 1.30000+ 1 1.80000+ 1 2.44185- 4 1.93731- 2 1.30000+ 1 1.90000+ 1 3.78936- 4 1.96905- 2 1.30000+ 1 2.10000+ 1 3.02595- 4 1.99710- 2 1.30000+ 1 2.20000+ 1 2.89765- 3 2.00283- 2 1.30000+ 1 2.40000+ 1 2.48465- 4 2.03991- 2 1.30000+ 1 2.50000+ 1 6.67411- 4 2.04148- 2 1.30000+ 1 2.70000+ 1 4.10537- 4 2.05262- 2 1.30000+ 1 2.90000+ 1 6.40080- 5 2.05978- 2 1.30000+ 1 3.00000+ 1 9.64216- 5 2.06785- 2 1.30000+ 1 3.20000+ 1 6.38440- 5 2.07847- 2 1.30000+ 1 3.30000+ 1 5.58459- 4 2.07967- 2 1.40000+ 1 1.40000+ 1 4.37131- 3 1.70254- 2 1.40000+ 1 1.60000+ 1 2.06140- 3 1.94309- 2 1.40000+ 1 1.80000+ 1 1.21490- 3 1.96057- 2 1.40000+ 1 1.90000+ 1 2.21800- 4 1.99231- 2 1.40000+ 1 2.10000+ 1 2.75031- 3 2.02036- 2 1.40000+ 1 2.20000+ 1 1.64250- 3 2.02609- 2 1.40000+ 1 2.40000+ 1 7.28902- 4 2.06317- 2 1.40000+ 1 2.50000+ 1 5.32451- 4 2.06474- 2 1.40000+ 1 2.70000+ 1 4.88191- 4 2.07588- 2 1.40000+ 1 2.90000+ 1 2.99801- 4 2.08304- 2 1.40000+ 1 3.00000+ 1 5.61081- 5 2.09111- 2 1.40000+ 1 3.20000+ 1 5.30311- 4 2.10173- 2 1.40000+ 1 3.30000+ 1 3.21021- 4 2.10293- 2 1.60000+ 1 1.60000+ 1 2.93210- 4 2.18364- 2 1.60000+ 1 1.80000+ 1 6.02879- 4 2.20112- 2 1.60000+ 1 1.90000+ 1 7.62149- 4 2.23286- 2 1.60000+ 1 2.10000+ 1 4.49689- 4 2.26091- 2 1.60000+ 1 2.20000+ 1 5.26529- 4 2.26664- 2 1.60000+ 1 2.40000+ 1 3.52120- 5 2.30372- 2 1.60000+ 1 2.50000+ 1 3.32370- 5 2.30529- 2 1.60000+ 1 2.70000+ 1 1.50879- 4 2.31643- 2 1.60000+ 1 2.90000+ 1 1.53029- 4 2.32359- 2 1.60000+ 1 3.00000+ 1 1.90539- 4 2.33166- 2 1.60000+ 1 3.20000+ 1 9.52688- 5 2.34228- 2 1.60000+ 1 3.30000+ 1 1.10080- 4 2.34348- 2 1.80000+ 1 1.90000+ 1 1.33279- 5 2.25034- 2 1.80000+ 1 2.10000+ 1 4.72227- 5 2.27839- 2 1.80000+ 1 2.20000+ 1 2.11428- 4 2.28412- 2 1.80000+ 1 2.40000+ 1 1.49729- 5 2.32120- 2 1.80000+ 1 2.50000+ 1 5.79186- 5 2.32277- 2 1.80000+ 1 2.70000+ 1 1.47429- 4 2.33391- 2 1.80000+ 1 3.00000+ 1 3.12628- 6 2.34914- 2 1.80000+ 1 3.20000+ 1 9.54294- 6 2.35976- 2 1.80000+ 1 3.30000+ 1 4.06418- 5 2.36096- 2 1.90000+ 1 1.90000+ 1 3.52117- 5 2.28208- 2 1.90000+ 1 2.10000+ 1 4.72226- 5 2.31013- 2 1.90000+ 1 2.20000+ 1 2.10608- 5 2.31586- 2 1.90000+ 1 2.40000+ 1 2.38588- 5 2.35294- 2 1.90000+ 1 2.50000+ 1 2.04028- 5 2.35451- 2 1.90000+ 1 2.70000+ 1 1.84608- 4 2.36565- 2 1.90000+ 1 2.90000+ 1 3.45537- 6 2.37281- 2 1.90000+ 1 3.00000+ 1 1.66188- 5 2.38088- 2 1.90000+ 1 3.20000+ 1 8.55602- 6 2.39150- 2 1.90000+ 1 3.30000+ 1 3.45537- 6 2.39270- 2 2.10000+ 1 2.10000+ 1 3.47193- 5 2.33818- 2 2.10000+ 1 2.20000+ 1 5.36564- 4 2.34391- 2 2.10000+ 1 2.40000+ 1 4.31103- 5 2.38099- 2 2.10000+ 1 2.50000+ 1 8.67126- 5 2.38256- 2 2.10000+ 1 2.70000+ 1 1.05971- 4 2.39370- 2 2.10000+ 1 2.90000+ 1 1.21761- 5 2.40086- 2 2.10000+ 1 3.00000+ 1 1.20121- 5 2.40893- 2 2.10000+ 1 3.20000+ 1 1.43151- 5 2.41955- 2 2.10000+ 1 3.30000+ 1 1.05311- 4 2.42075- 2 2.20000+ 1 2.20000+ 1 1.65530- 4 2.34964- 2 2.20000+ 1 2.40000+ 1 1.02670- 4 2.38672- 2 2.20000+ 1 2.50000+ 1 8.24374- 5 2.38829- 2 2.20000+ 1 2.70000+ 1 1.24720- 4 2.39943- 2 2.20000+ 1 2.90000+ 1 5.26532- 5 2.40659- 2 2.20000+ 1 3.00000+ 1 5.42982- 6 2.41466- 2 2.20000+ 1 3.20000+ 1 1.05470- 4 2.42528- 2 2.20000+ 1 3.30000+ 1 6.54883- 5 2.42648- 2 2.40000+ 1 2.40000+ 1 1.31640- 6 2.42380- 2 2.40000+ 1 2.50000+ 1 2.28712- 5 2.42537- 2 2.40000+ 1 2.70000+ 1 8.06264- 6 2.43651- 2 2.40000+ 1 2.90000+ 1 3.29082- 6 2.44367- 2 2.40000+ 1 3.00000+ 1 5.75892- 6 2.45174- 2 2.40000+ 1 3.20000+ 1 8.39104- 6 2.46236- 2 2.40000+ 1 3.30000+ 1 1.87580- 5 2.46356- 2 2.50000+ 1 2.50000+ 1 4.77159- 6 2.42695- 2 2.50000+ 1 2.70000+ 1 7.40439- 6 2.43809- 2 2.50000+ 1 2.90000+ 1 1.31640- 5 2.44525- 2 2.50000+ 1 3.00000+ 1 4.93619- 6 2.45331- 2 2.50000+ 1 3.20000+ 1 1.57959- 5 2.46393- 2 2.50000+ 1 3.30000+ 1 1.54669- 5 2.46514- 2 2.70000+ 1 2.70000+ 1 1.92517- 5 2.44923- 2 2.70000+ 1 2.90000+ 1 3.75145- 5 2.45639- 2 2.70000+ 1 3.00000+ 1 4.62354- 5 2.46445- 2 2.70000+ 1 3.20000+ 1 2.25417- 5 2.47507- 2 2.70000+ 1 3.30000+ 1 2.59967- 5 2.47628- 2 2.90000+ 1 3.00000+ 1 8.22695- 7 2.47161- 2 2.90000+ 1 3.20000+ 1 2.46815- 6 2.48223- 2 2.90000+ 1 3.30000+ 1 1.02012- 5 2.48344- 2 3.00000+ 1 3.00000+ 1 2.21687- 6 2.47968- 2 3.00000+ 1 3.20000+ 1 2.40167- 6 2.49030- 2 3.00000+ 1 3.30000+ 1 9.23665- 7 2.49150- 2 3.20000+ 1 3.20000+ 1 1.48091- 6 2.50092- 2 3.20000+ 1 3.30000+ 1 2.07321- 5 2.50213- 2 3.30000+ 1 3.30000+ 1 6.58150- 6 2.50333- 2 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 6.65849- 5 5.04100- 3 8.00000+ 0 1.12260- 2 1.79797- 2 1.10000+ 1 6.36069- 4 1.95344- 2 1.30000+ 1 3.89050- 1 2.01361- 2 1.60000+ 1 3.10920- 3 2.27742- 2 1.90000+ 1 1.99700- 4 2.32664- 2 2.10000+ 1 9.21849- 2 2.35469- 2 2.40000+ 1 6.60359- 4 2.39750- 2 2.70000+ 1 8.39769- 4 2.41021- 2 3.00000+ 1 5.18839- 5 2.42544- 2 3.20000+ 1 1.93980- 2 2.43606- 2 3.50000+ 1 5.38299- 5 2.44885- 2 4.10000+ 1 1.73980- 4 2.44402- 2 4.40000+ 1 7.87089- 6 2.44755- 2 5.80000+ 1 1.44700- 5 2.44967- 2 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.10000+ 1 2.25105- 2 7.24000- 5 6.00000+ 0 1.30000+ 1 9.14453- 2 6.74100- 4 6.00000+ 0 1.40000+ 1 2.95336- 2 9.06700- 4 6.00000+ 0 1.60000+ 1 2.62370- 3 3.31220- 3 6.00000+ 0 1.80000+ 1 2.34340- 2 3.48700- 3 6.00000+ 0 1.90000+ 1 4.91351- 3 3.80440- 3 6.00000+ 0 2.10000+ 1 1.86652- 2 4.08488- 3 6.00000+ 0 2.20000+ 1 6.27704- 3 4.14218- 3 6.00000+ 0 2.40000+ 1 9.91850- 4 4.51298- 3 6.00000+ 0 2.50000+ 1 1.38767- 3 4.52873- 3 6.00000+ 0 2.70000+ 1 6.46901- 4 4.64013- 3 6.00000+ 0 2.90000+ 1 5.37224- 3 4.71174- 3 6.00000+ 0 3.00000+ 1 1.18803- 3 4.79238- 3 6.00000+ 0 3.20000+ 1 3.76914- 3 4.89861- 3 6.00000+ 0 3.30000+ 1 1.27106- 3 4.91065- 3 8.00000+ 0 8.00000+ 0 3.06550- 4 1.14564- 2 8.00000+ 0 1.00000+ 1 1.41621- 2 1.18309- 2 8.00000+ 0 1.10000+ 1 1.18508- 3 1.30111- 2 8.00000+ 0 1.30000+ 1 2.86844- 3 1.36128- 2 8.00000+ 0 1.40000+ 1 8.02588- 4 1.38454- 2 8.00000+ 0 1.60000+ 1 1.25515- 4 1.62509- 2 8.00000+ 0 1.80000+ 1 2.48155- 3 1.64257- 2 8.00000+ 0 1.90000+ 1 2.84096- 4 1.67431- 2 8.00000+ 0 2.10000+ 1 5.25735- 4 1.70236- 2 8.00000+ 0 2.20000+ 1 1.24789- 4 1.70809- 2 8.00000+ 0 2.40000+ 1 5.23763- 5 1.74517- 2 8.00000+ 0 2.50000+ 1 3.98277- 5 1.74674- 2 8.00000+ 0 2.70000+ 1 3.16198- 5 1.75788- 2 8.00000+ 0 2.90000+ 1 5.73000- 4 1.76504- 2 8.00000+ 0 3.00000+ 1 6.92766- 5 1.77311- 2 8.00000+ 0 3.20000+ 1 1.03796- 4 1.78373- 2 8.00000+ 0 3.30000+ 1 2.36546- 5 1.78493- 2 1.00000+ 1 1.00000+ 1 1.53740- 2 1.22054- 2 1.00000+ 1 1.10000+ 1 3.20198- 2 1.33856- 2 1.00000+ 1 1.30000+ 1 1.59422- 2 1.39873- 2 1.00000+ 1 1.40000+ 1 1.88590- 2 1.42199- 2 1.00000+ 1 1.60000+ 1 3.92177- 3 1.66254- 2 1.00000+ 1 1.80000+ 1 6.83886- 3 1.68002- 2 1.00000+ 1 1.90000+ 1 8.32973- 3 1.71176- 2 1.00000+ 1 2.10000+ 1 4.04170- 3 1.73981- 2 1.00000+ 1 2.20000+ 1 4.82703- 3 1.74554- 2 1.00000+ 1 2.40000+ 1 3.17882- 4 1.78262- 2 1.00000+ 1 2.50000+ 1 2.44020- 4 1.78419- 2 1.00000+ 1 2.70000+ 1 1.05817- 3 1.79533- 2 1.00000+ 1 2.90000+ 1 1.67940- 3 1.80249- 2 1.00000+ 1 3.00000+ 1 2.07198- 3 1.81056- 2 1.00000+ 1 3.20000+ 1 8.54672- 4 1.82118- 2 1.00000+ 1 3.30000+ 1 1.00968- 3 1.82238- 2 1.10000+ 1 1.10000+ 1 5.98135- 4 1.45658- 2 1.10000+ 1 1.30000+ 1 1.09292- 2 1.51675- 2 1.10000+ 1 1.40000+ 1 1.75118- 3 1.54001- 2 1.10000+ 1 1.60000+ 1 2.71788- 4 1.78056- 2 1.10000+ 1 1.80000+ 1 5.59015- 3 1.79804- 2 1.10000+ 1 1.90000+ 1 2.70581- 4 1.82978- 2 1.10000+ 1 2.10000+ 1 2.39402- 3 1.85783- 2 1.10000+ 1 2.20000+ 1 3.74849- 4 1.86356- 2 1.10000+ 1 2.40000+ 1 8.88298- 5 1.90064- 2 1.10000+ 1 2.50000+ 1 4.29642- 5 1.90221- 2 1.10000+ 1 2.70000+ 1 6.99999- 5 1.91335- 2 1.10000+ 1 2.90000+ 1 1.28803- 3 1.92051- 2 1.10000+ 1 3.00000+ 1 6.51723- 5 1.92858- 2 1.10000+ 1 3.20000+ 1 4.89510- 4 1.93920- 2 1.10000+ 1 3.30000+ 1 7.55519- 5 1.94040- 2 1.30000+ 1 1.30000+ 1 1.03512- 2 1.57692- 2 1.30000+ 1 1.40000+ 1 3.89859- 2 1.60018- 2 1.30000+ 1 1.60000+ 1 7.97000- 4 1.84073- 2 1.30000+ 1 1.80000+ 1 2.66913- 3 1.85821- 2 1.30000+ 1 1.90000+ 1 2.59601- 3 1.88995- 2 1.30000+ 1 2.10000+ 1 4.36143- 3 1.91800- 2 1.30000+ 1 2.20000+ 1 8.88304- 3 1.92373- 2 1.30000+ 1 2.40000+ 1 9.44020- 4 1.96081- 2 1.30000+ 1 2.50000+ 1 1.85404- 3 1.96238- 2 1.30000+ 1 2.70000+ 1 2.15790- 4 1.97352- 2 1.30000+ 1 2.90000+ 1 6.15256- 4 1.98068- 2 1.30000+ 1 3.00000+ 1 6.31902- 4 1.98875- 2 1.30000+ 1 3.20000+ 1 8.89707- 4 1.99937- 2 1.30000+ 1 3.30000+ 1 1.81253- 3 2.00057- 2 1.40000+ 1 1.40000+ 1 1.90911- 3 1.62344- 2 1.40000+ 1 1.60000+ 1 1.79350- 4 1.86399- 2 1.40000+ 1 1.80000+ 1 2.73893- 3 1.88147- 2 1.40000+ 1 1.90000+ 1 3.85238- 4 1.91321- 2 1.40000+ 1 2.10000+ 1 6.75071- 3 1.94126- 2 1.40000+ 1 2.20000+ 1 7.96524- 4 1.94699- 2 1.40000+ 1 2.40000+ 1 3.75581- 4 1.98407- 2 1.40000+ 1 2.50000+ 1 1.41927- 4 1.98564- 2 1.40000+ 1 2.70000+ 1 4.61026- 5 1.99678- 2 1.40000+ 1 2.90000+ 1 6.02962- 4 2.00394- 2 1.40000+ 1 3.00000+ 1 9.22031- 5 2.01201- 2 1.40000+ 1 3.20000+ 1 1.31308- 3 2.02263- 2 1.40000+ 1 3.30000+ 1 1.60271- 4 2.02383- 2 1.60000+ 1 1.60000+ 1 1.23091- 5 2.10454- 2 1.60000+ 1 1.80000+ 1 6.90597- 4 2.12202- 2 1.60000+ 1 1.90000+ 1 6.54136- 5 2.15376- 2 1.60000+ 1 2.10000+ 1 1.43613- 4 2.18181- 2 1.60000+ 1 2.20000+ 1 2.75165- 5 2.18754- 2 1.60000+ 1 2.40000+ 1 1.23091- 5 2.22462- 2 1.60000+ 1 2.50000+ 1 7.72399- 6 2.22619- 2 1.60000+ 1 2.70000+ 1 6.03435- 6 2.23733- 2 1.60000+ 1 2.90000+ 1 1.59542- 4 2.24449- 2 1.60000+ 1 3.00000+ 1 1.59307- 5 2.25256- 2 1.60000+ 1 3.20000+ 1 2.82408- 5 2.26318- 2 1.60000+ 1 3.30000+ 1 5.06882- 6 2.26438- 2 1.80000+ 1 1.80000+ 1 7.23631- 4 2.13950- 2 1.80000+ 1 1.90000+ 1 1.46057- 3 2.17124- 2 1.80000+ 1 2.10000+ 1 6.67150- 4 2.19929- 2 1.80000+ 1 2.20000+ 1 7.09410- 4 2.20502- 2 1.80000+ 1 2.40000+ 1 4.39289- 5 2.24210- 2 1.80000+ 1 2.50000+ 1 2.51031- 5 2.24367- 2 1.80000+ 1 2.70000+ 1 1.86580- 4 2.25481- 2 1.80000+ 1 2.90000+ 1 3.51206- 4 2.26197- 2 1.80000+ 1 3.00000+ 1 3.63504- 4 2.27004- 2 1.80000+ 1 3.20000+ 1 1.40728- 4 2.28066- 2 1.80000+ 1 3.30000+ 1 1.48687- 4 2.28186- 2 1.90000+ 1 1.90000+ 1 3.06547- 5 2.20298- 2 1.90000+ 1 2.10000+ 1 5.72276- 4 2.23103- 2 1.90000+ 1 2.20000+ 1 8.30314- 5 2.23676- 2 1.90000+ 1 2.40000+ 1 1.97924- 5 2.27384- 2 1.90000+ 1 2.50000+ 1 8.68952- 6 2.27541- 2 1.90000+ 1 2.70000+ 1 1.68962- 5 2.28655- 2 1.90000+ 1 2.90000+ 1 3.36716- 4 2.29371- 2 1.90000+ 1 3.00000+ 1 1.47243- 5 2.30178- 2 1.90000+ 1 3.20000+ 1 1.17064- 4 2.31240- 2 1.90000+ 1 3.30000+ 1 1.66538- 5 2.31360- 2 2.10000+ 1 2.10000+ 1 4.58601- 4 2.25908- 2 2.10000+ 1 2.20000+ 1 1.60443- 3 2.26481- 2 2.10000+ 1 2.40000+ 1 1.38303- 4 2.30189- 2 2.10000+ 1 2.50000+ 1 2.71306- 4 2.30346- 2 2.10000+ 1 2.70000+ 1 3.86192- 5 2.31460- 2 2.10000+ 1 2.90000+ 1 1.53034- 4 2.32176- 2 2.10000+ 1 3.00000+ 1 1.39520- 4 2.32983- 2 2.10000+ 1 3.20000+ 1 1.86825- 4 2.34045- 2 2.10000+ 1 3.30000+ 1 3.29956- 4 2.34165- 2 2.20000+ 1 2.20000+ 1 8.42390- 5 2.27054- 2 2.20000+ 1 2.40000+ 1 5.98619- 5 2.30762- 2 2.20000+ 1 2.50000+ 1 2.31718- 5 2.30919- 2 2.20000+ 1 2.70000+ 1 7.00003- 6 2.32033- 2 2.20000+ 1 2.90000+ 1 1.56657- 4 2.32749- 2 2.20000+ 1 3.00000+ 1 2.00341- 5 2.33556- 2 2.20000+ 1 3.20000+ 1 3.14522- 4 2.34618- 2 2.20000+ 1 3.30000+ 1 3.37929- 5 2.34738- 2 2.40000+ 1 2.40000+ 1 3.62065- 6 2.34470- 2 2.40000+ 1 2.50000+ 1 2.41377- 5 2.34627- 2 2.40000+ 1 2.70000+ 1 3.13788- 6 2.35741- 2 2.40000+ 1 2.90000+ 1 9.89590- 6 2.36457- 2 2.40000+ 1 3.00000+ 1 4.82763- 6 2.37264- 2 2.40000+ 1 3.20000+ 1 2.58267- 5 2.38326- 2 2.40000+ 1 3.30000+ 1 1.13445- 5 2.38446- 2 2.50000+ 1 2.50000+ 1 1.44822- 6 2.34785- 2 2.50000+ 1 2.70000+ 1 1.93109- 6 2.35899- 2 2.50000+ 1 2.90000+ 1 5.06885- 6 2.36615- 2 2.50000+ 1 3.00000+ 1 1.93109- 6 2.37421- 2 2.50000+ 1 3.20000+ 1 5.09289- 5 2.38483- 2 2.50000+ 1 3.30000+ 1 4.34473- 6 2.38604- 2 2.70000+ 1 2.70000+ 1 7.24130- 7 2.37013- 2 2.70000+ 1 2.90000+ 1 4.32061- 5 2.37729- 2 2.70000+ 1 3.00000+ 1 4.10342- 6 2.38535- 2 2.70000+ 1 3.20000+ 1 7.48243- 6 2.39597- 2 2.70000+ 1 3.30000+ 1 1.20688- 6 2.39718- 2 2.90000+ 1 2.90000+ 1 4.24825- 5 2.38445- 2 2.90000+ 1 3.00000+ 1 8.37559- 5 2.39251- 2 2.90000+ 1 3.20000+ 1 3.23442- 5 2.40313- 2 2.90000+ 1 3.30000+ 1 3.28271- 5 2.40434- 2 3.00000+ 1 3.00000+ 1 1.68963- 6 2.40058- 2 3.00000+ 1 3.20000+ 1 2.84820- 5 2.41120- 2 3.00000+ 1 3.30000+ 1 4.10335- 6 2.41240- 2 3.20000+ 1 3.20000+ 1 1.90685- 5 2.42182- 2 3.20000+ 1 3.30000+ 1 6.49314- 5 2.42303- 2 3.30000+ 1 3.30000+ 1 3.52550- 6 2.42423- 2 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.49568- 2 1.29387- 2 1.00000+ 1 3.27808- 4 1.33132- 2 1.10000+ 1 3.01198- 4 1.44934- 2 1.30000+ 1 3.78218- 2 1.50951- 2 1.40000+ 1 3.31968- 1 1.53277- 2 1.60000+ 1 6.42716- 3 1.77332- 2 1.80000+ 1 7.11646- 5 1.79080- 2 1.90000+ 1 8.39075- 5 1.82254- 2 2.10000+ 1 7.81665- 3 1.85059- 2 2.20000+ 1 7.20726- 2 1.85632- 2 2.40000+ 1 1.21549- 4 1.89340- 2 2.50000+ 1 6.65776- 4 1.89497- 2 2.70000+ 1 1.71029- 3 1.90611- 2 2.90000+ 1 1.72919- 5 1.91327- 2 3.00000+ 1 2.12049- 5 1.92134- 2 3.20000+ 1 1.59699- 3 1.93196- 2 3.30000+ 1 1.47369- 2 1.93316- 2 3.50000+ 1 9.72504- 6 1.94475- 2 3.60000+ 1 5.17217- 5 1.94492- 2 4.10000+ 1 3.45708- 4 1.93992- 2 4.30000+ 1 2.93568- 6 1.94210- 2 4.40000+ 1 3.19288- 6 1.94345- 2 5.80000+ 1 2.94078- 5 1.94557- 2 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.95571- 4 6.41540- 3 8.00000+ 0 1.00000+ 1 1.24974- 4 6.78990- 3 8.00000+ 0 1.10000+ 1 1.70933- 2 7.97010- 3 8.00000+ 0 1.30000+ 1 3.05186- 3 8.57180- 3 8.00000+ 0 1.40000+ 1 6.57415- 3 8.80440- 3 8.00000+ 0 1.60000+ 1 1.26125- 4 1.12099- 2 8.00000+ 0 1.80000+ 1 1.86010- 5 1.13847- 2 8.00000+ 0 1.90000+ 1 2.91212- 3 1.17021- 2 8.00000+ 0 2.10000+ 1 3.93217- 4 1.19826- 2 8.00000+ 0 2.20000+ 1 8.13192- 4 1.20399- 2 8.00000+ 0 2.40000+ 1 3.91770- 4 1.24107- 2 8.00000+ 0 2.50000+ 1 6.47239- 4 1.24264- 2 8.00000+ 0 2.70000+ 1 3.16789- 5 1.25378- 2 8.00000+ 0 2.90000+ 1 4.35948- 6 1.26094- 2 8.00000+ 0 3.00000+ 1 6.57110- 4 1.26901- 2 8.00000+ 0 3.20000+ 1 7.20763- 5 1.27963- 2 8.00000+ 0 3.30000+ 1 1.44450- 4 1.28083- 2 1.00000+ 1 1.00000+ 1 9.30043- 6 7.16440- 3 1.00000+ 1 1.10000+ 1 2.86207- 2 8.34460- 3 1.00000+ 1 1.30000+ 1 1.22615- 3 8.94630- 3 1.00000+ 1 1.40000+ 1 8.00942- 3 9.17890- 3 1.00000+ 1 1.60000+ 1 2.76100- 5 1.15844- 2 1.00000+ 1 1.80000+ 1 1.16248- 5 1.17592- 2 1.00000+ 1 1.90000+ 1 5.05976- 3 1.20766- 2 1.00000+ 1 2.10000+ 1 2.38319- 4 1.23571- 2 1.00000+ 1 2.20000+ 1 1.31157- 3 1.24144- 2 1.00000+ 1 2.40000+ 1 3.07199- 4 1.27852- 2 1.00000+ 1 2.50000+ 1 7.10304- 4 1.28009- 2 1.00000+ 1 2.70000+ 1 7.26611- 6 1.29123- 2 1.00000+ 1 2.90000+ 1 3.77832- 6 1.29839- 2 1.00000+ 1 3.00000+ 1 1.15084- 3 1.30646- 2 1.00000+ 1 3.20000+ 1 4.96981- 5 1.31708- 2 1.00000+ 1 3.30000+ 1 2.53150- 4 1.31828- 2 1.10000+ 1 1.10000+ 1 3.28607- 2 9.52480- 3 1.10000+ 1 1.30000+ 1 3.44560- 2 1.01265- 2 1.10000+ 1 1.40000+ 1 4.21383- 2 1.03591- 2 1.10000+ 1 1.60000+ 1 4.64263- 3 1.27646- 2 1.10000+ 1 1.80000+ 1 6.96639- 3 1.29394- 2 1.10000+ 1 1.90000+ 1 1.41433- 2 1.32568- 2 1.10000+ 1 2.10000+ 1 8.13419- 3 1.35373- 2 1.10000+ 1 2.20000+ 1 9.93789- 3 1.35946- 2 1.10000+ 1 2.40000+ 1 8.99217- 4 1.39654- 2 1.10000+ 1 2.50000+ 1 1.05264- 3 1.39811- 2 1.10000+ 1 2.70000+ 1 1.24594- 3 1.40925- 2 1.10000+ 1 2.90000+ 1 1.74126- 3 1.41641- 2 1.10000+ 1 3.00000+ 1 3.38852- 3 1.42448- 2 1.10000+ 1 3.20000+ 1 1.69736- 3 1.43510- 2 1.10000+ 1 3.30000+ 1 2.04466- 3 1.43630- 2 1.30000+ 1 1.30000+ 1 4.36805- 3 1.07282- 2 1.30000+ 1 1.40000+ 1 8.10736- 2 1.09608- 2 1.30000+ 1 1.60000+ 1 7.26585- 4 1.33663- 2 1.30000+ 1 1.80000+ 1 3.42350- 4 1.35411- 2 1.30000+ 1 1.90000+ 1 5.45667- 3 1.38585- 2 1.30000+ 1 2.10000+ 1 1.71324- 3 1.41390- 2 1.30000+ 1 2.20000+ 1 1.33691- 2 1.41963- 2 1.30000+ 1 2.40000+ 1 4.74870- 4 1.45671- 2 1.30000+ 1 2.50000+ 1 1.56857- 3 1.45828- 2 1.30000+ 1 2.70000+ 1 1.91812- 4 1.46942- 2 1.30000+ 1 2.90000+ 1 8.71888- 5 1.47658- 2 1.30000+ 1 3.00000+ 1 1.20927- 3 1.48465- 2 1.30000+ 1 3.20000+ 1 3.45844- 4 1.49527- 2 1.30000+ 1 3.30000+ 1 2.55218- 3 1.49647- 2 1.40000+ 1 1.40000+ 1 5.32919- 2 1.11934- 2 1.40000+ 1 1.60000+ 1 1.58685- 3 1.35989- 2 1.40000+ 1 1.80000+ 1 1.75081- 3 1.37737- 2 1.40000+ 1 1.90000+ 1 7.42238- 3 1.40911- 2 1.40000+ 1 2.10000+ 1 1.60024- 2 1.43716- 2 1.40000+ 1 2.20000+ 1 2.02105- 2 1.44289- 2 1.40000+ 1 2.40000+ 1 4.92578- 3 1.47997- 2 1.40000+ 1 2.50000+ 1 4.40379- 3 1.48154- 2 1.40000+ 1 2.70000+ 1 4.22005- 4 1.49268- 2 1.40000+ 1 2.90000+ 1 4.28402- 4 1.49984- 2 1.40000+ 1 3.00000+ 1 1.70141- 3 1.50791- 2 1.40000+ 1 3.20000+ 1 3.22083- 3 1.51853- 2 1.40000+ 1 3.30000+ 1 3.99222- 3 1.51973- 2 1.60000+ 1 1.60000+ 1 1.45307- 5 1.60044- 2 1.60000+ 1 1.80000+ 1 4.94074- 6 1.61792- 2 1.60000+ 1 1.90000+ 1 7.88507- 4 1.64966- 2 1.60000+ 1 2.10000+ 1 9.99776- 5 1.67771- 2 1.60000+ 1 2.20000+ 1 2.05762- 4 1.68344- 2 1.60000+ 1 2.40000+ 1 4.62099- 5 1.72052- 2 1.60000+ 1 2.50000+ 1 8.54453- 5 1.72209- 2 1.60000+ 1 2.70000+ 1 7.26605- 6 1.73323- 2 1.60000+ 1 2.90000+ 1 1.16247- 6 1.74039- 2 1.60000+ 1 3.00000+ 1 1.77577- 4 1.74846- 2 1.60000+ 1 3.20000+ 1 1.86011- 5 1.75908- 2 1.60000+ 1 3.30000+ 1 3.69109- 5 1.76028- 2 1.80000+ 1 1.80000+ 1 2.90638- 7 1.63540- 2 1.80000+ 1 1.90000+ 1 1.21926- 3 1.66714- 2 1.80000+ 1 2.10000+ 1 6.04501- 5 1.69519- 2 1.80000+ 1 2.20000+ 1 3.21441- 4 1.70092- 2 1.80000+ 1 2.40000+ 1 4.59202- 5 1.73800- 2 1.80000+ 1 2.50000+ 1 9.91030- 5 1.73957- 2 1.80000+ 1 2.70000+ 1 1.45309- 6 1.75071- 2 1.80000+ 1 2.90000+ 1 2.90638- 7 1.75787- 2 1.80000+ 1 3.00000+ 1 2.76692- 4 1.76594- 2 1.80000+ 1 3.20000+ 1 1.22064- 5 1.77656- 2 1.80000+ 1 3.30000+ 1 6.27796- 5 1.77776- 2 1.90000+ 1 1.90000+ 1 1.44993- 3 1.69888- 2 1.90000+ 1 2.10000+ 1 1.29385- 3 1.72693- 2 1.90000+ 1 2.20000+ 1 1.72952- 3 1.73266- 2 1.90000+ 1 2.40000+ 1 1.17418- 4 1.76974- 2 1.90000+ 1 2.50000+ 1 1.44452- 4 1.77131- 2 1.90000+ 1 2.70000+ 1 2.11580- 4 1.78245- 2 1.90000+ 1 2.90000+ 1 3.03999- 4 1.78961- 2 1.90000+ 1 3.00000+ 1 6.86751- 4 1.79768- 2 1.90000+ 1 3.20000+ 1 2.70293- 4 1.80830- 2 1.90000+ 1 3.30000+ 1 3.54860- 4 1.80950- 2 2.10000+ 1 2.10000+ 1 1.60729- 4 1.75498- 2 2.10000+ 1 2.20000+ 1 2.78077- 3 1.76071- 2 2.10000+ 1 2.40000+ 1 6.07438- 5 1.79779- 2 2.10000+ 1 2.50000+ 1 1.87459- 4 1.79936- 2 2.10000+ 1 2.70000+ 1 2.67380- 5 1.81050- 2 2.10000+ 1 2.90000+ 1 1.51134- 5 1.81766- 2 2.10000+ 1 3.00000+ 1 2.87141- 4 1.82573- 2 2.10000+ 1 3.20000+ 1 6.42306- 5 1.83635- 2 2.10000+ 1 3.30000+ 1 5.35654- 4 1.83755- 2 2.20000+ 1 2.20000+ 1 1.93096- 3 1.76644- 2 2.20000+ 1 2.40000+ 1 6.28032- 4 1.80352- 2 2.20000+ 1 2.50000+ 1 5.49566- 4 1.80509- 2 2.20000+ 1 2.70000+ 1 5.52213- 5 1.81623- 2 2.20000+ 1 2.90000+ 1 7.99230- 5 1.82339- 2 2.20000+ 1 3.00000+ 1 3.95266- 4 1.83146- 2 2.20000+ 1 3.20000+ 1 5.64682- 4 1.84208- 2 2.20000+ 1 3.30000+ 1 7.62916- 4 1.84328- 2 2.40000+ 1 2.40000+ 1 3.19700- 6 1.84060- 2 2.40000+ 1 2.50000+ 1 9.35837- 5 1.84217- 2 2.40000+ 1 2.70000+ 1 1.04624- 5 1.85331- 2 2.40000+ 1 2.90000+ 1 1.04624- 5 1.86047- 2 2.40000+ 1 3.00000+ 1 2.49944- 5 1.86854- 2 2.40000+ 1 3.20000+ 1 1.10440- 5 1.87916- 2 2.40000+ 1 3.30000+ 1 1.13344- 4 1.88036- 2 2.50000+ 1 2.50000+ 1 3.31323- 5 1.84375- 2 2.50000+ 1 2.70000+ 1 1.97628- 5 1.85489- 2 2.50000+ 1 2.90000+ 1 2.20883- 5 1.86205- 2 2.50000+ 1 3.00000+ 1 3.13894- 5 1.87011- 2 2.50000+ 1 3.20000+ 1 3.37129- 5 1.88073- 2 2.50000+ 1 3.30000+ 1 9.85228- 5 1.88194- 2 2.70000+ 1 2.70000+ 1 8.71915- 7 1.86603- 2 2.70000+ 1 2.90000+ 1 2.90635- 7 1.87319- 2 2.70000+ 1 3.00000+ 1 4.76637- 5 1.88125- 2 2.70000+ 1 3.20000+ 1 4.94075- 6 1.89187- 2 2.70000+ 1 3.30000+ 1 9.88166- 6 1.89308- 2 2.90000+ 1 3.00000+ 1 6.88784- 5 1.88841- 2 2.90000+ 1 3.20000+ 1 2.90629- 6 1.89903- 2 2.90000+ 1 3.30000+ 1 1.56938- 5 1.90024- 2 3.00000+ 1 3.00000+ 1 8.10844- 5 1.89648- 2 3.00000+ 1 3.20000+ 1 5.98698- 5 1.90710- 2 3.00000+ 1 3.30000+ 1 8.10844- 5 1.90830- 2 3.20000+ 1 3.20000+ 1 6.39425- 6 1.91772- 2 3.20000+ 1 3.30000+ 1 1.08985- 4 1.91893- 2 3.30000+ 1 3.30000+ 1 7.52745- 5 1.92013- 2 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.06940- 5 3.74500- 4 1.10000+ 1 1.78550- 3 1.55470- 3 1.80000+ 1 3.33600- 3 4.96930- 3 1.90000+ 1 1.38080- 3 5.28670- 3 2.90000+ 1 9.36351- 4 6.19404- 3 3.00000+ 1 4.65041- 4 6.27468- 3 4.30000+ 1 1.64070- 4 6.48229- 3 4.40000+ 1 7.35631- 5 6.49579- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.90000+ 1 1.69059- 2 4.52400- 5 1.00000+ 1 3.00000+ 1 1.90098- 2 1.25880- 4 1.00000+ 1 3.20000+ 1 1.12064- 2 2.32110- 4 1.00000+ 1 3.30000+ 1 1.41925- 2 2.44150- 4 1.00000+ 1 3.50000+ 1 9.75912- 4 3.59970- 4 1.00000+ 1 3.60000+ 1 1.20858- 3 3.61660- 4 1.00000+ 1 4.10000+ 1 2.98274- 3 3.11710- 4 1.00000+ 1 4.30000+ 1 2.63434- 3 3.33490- 4 1.00000+ 1 4.40000+ 1 2.57638- 3 3.46990- 4 1.00000+ 1 5.80000+ 1 2.40508- 4 3.68220- 4 1.10000+ 1 1.80000+ 1 5.11127- 2 7.00000- 7 1.10000+ 1 1.90000+ 1 3.24038- 2 3.18100- 4 1.10000+ 1 2.10000+ 1 8.26181- 3 5.98580- 4 1.10000+ 1 2.20000+ 1 2.51611- 2 6.55880- 4 1.10000+ 1 2.40000+ 1 1.99222- 1 1.02668- 3 1.10000+ 1 2.50000+ 1 2.37360- 1 1.04243- 3 1.10000+ 1 2.70000+ 1 1.12613- 2 1.15383- 3 1.10000+ 1 2.90000+ 1 1.18040- 2 1.22544- 3 1.10000+ 1 3.00000+ 1 7.94719- 3 1.30608- 3 1.10000+ 1 3.20000+ 1 2.09816- 3 1.41231- 3 1.10000+ 1 3.30000+ 1 5.64326- 3 1.42435- 3 1.10000+ 1 3.50000+ 1 9.20906- 3 1.54017- 3 1.10000+ 1 3.60000+ 1 1.04118- 2 1.54186- 3 1.10000+ 1 4.10000+ 1 2.16732- 3 1.49191- 3 1.10000+ 1 4.30000+ 1 1.88519- 3 1.51369- 3 1.10000+ 1 4.40000+ 1 1.10894- 3 1.52719- 3 1.10000+ 1 5.80000+ 1 1.72947- 4 1.54842- 3 1.30000+ 1 1.60000+ 1 2.68173- 2 4.27600- 4 1.30000+ 1 1.80000+ 1 5.49777- 3 6.02400- 4 1.30000+ 1 1.90000+ 1 1.08826- 2 9.19800- 4 1.30000+ 1 2.10000+ 1 8.82760- 3 1.20028- 3 1.30000+ 1 2.20000+ 1 1.01310- 2 1.25758- 3 1.30000+ 1 2.40000+ 1 1.01780- 2 1.62838- 3 1.30000+ 1 2.50000+ 1 9.86040- 3 1.64413- 3 1.30000+ 1 2.70000+ 1 4.38872- 3 1.75553- 3 1.30000+ 1 2.90000+ 1 1.09475- 3 1.82714- 3 1.30000+ 1 3.00000+ 1 1.97924- 3 1.90778- 3 1.30000+ 1 3.20000+ 1 1.49662- 3 2.01401- 3 1.30000+ 1 3.30000+ 1 1.86980- 3 2.02605- 3 1.30000+ 1 3.50000+ 1 4.98107- 4 2.14187- 3 1.30000+ 1 3.60000+ 1 4.33245- 4 2.14356- 3 1.30000+ 1 4.10000+ 1 7.74474- 4 2.09361- 3 1.30000+ 1 4.30000+ 1 1.72018- 4 2.11539- 3 1.30000+ 1 4.40000+ 1 2.63096- 4 2.12889- 3 1.30000+ 1 5.80000+ 1 6.13969- 5 2.15012- 3 1.40000+ 1 1.60000+ 1 3.60281- 2 6.60200- 4 1.40000+ 1 1.80000+ 1 8.21814- 4 8.35000- 4 1.40000+ 1 1.90000+ 1 1.27396- 2 1.15240- 3 1.40000+ 1 2.10000+ 1 1.17841- 2 1.43288- 3 1.40000+ 1 2.20000+ 1 1.57068- 2 1.49018- 3 1.40000+ 1 2.40000+ 1 1.25617- 2 1.86098- 3 1.40000+ 1 2.50000+ 1 1.81775- 2 1.87673- 3 1.40000+ 1 2.70000+ 1 5.78935- 3 1.98813- 3 1.40000+ 1 2.90000+ 1 2.50675- 4 2.05974- 3 1.40000+ 1 3.00000+ 1 2.27139- 3 2.14038- 3 1.40000+ 1 3.20000+ 1 2.23311- 3 2.24661- 3 1.40000+ 1 3.30000+ 1 2.79779- 3 2.25865- 3 1.40000+ 1 3.50000+ 1 5.73328- 4 2.37447- 3 1.40000+ 1 3.60000+ 1 8.22504- 4 2.37616- 3 1.40000+ 1 4.10000+ 1 1.01681- 3 2.32621- 3 1.40000+ 1 4.30000+ 1 4.33389- 5 2.34799- 3 1.40000+ 1 4.40000+ 1 3.01636- 4 2.36149- 3 1.40000+ 1 5.80000+ 1 8.05254- 5 2.38272- 3 1.60000+ 1 1.60000+ 1 2.21170- 3 3.06570- 3 1.60000+ 1 1.80000+ 1 3.96778- 3 3.24050- 3 1.60000+ 1 1.90000+ 1 5.94662- 3 3.55790- 3 1.60000+ 1 2.10000+ 1 7.28703- 3 3.83838- 3 1.60000+ 1 2.20000+ 1 9.98205- 3 3.89568- 3 1.60000+ 1 2.40000+ 1 5.53266- 3 4.26648- 3 1.60000+ 1 2.50000+ 1 6.77772- 3 4.28223- 3 1.60000+ 1 2.70000+ 1 9.54381- 4 4.39363- 3 1.60000+ 1 2.90000+ 1 1.00321- 3 4.46524- 3 1.60000+ 1 3.00000+ 1 1.47783- 3 4.54588- 3 1.60000+ 1 3.20000+ 1 1.49532- 3 4.65211- 3 1.60000+ 1 3.30000+ 1 2.02571- 3 4.66415- 3 1.60000+ 1 3.50000+ 1 3.59410- 4 4.77997- 3 1.60000+ 1 3.60000+ 1 4.20943- 4 4.78166- 3 1.60000+ 1 4.10000+ 1 1.81912- 4 4.73171- 3 1.60000+ 1 4.30000+ 1 1.64793- 4 4.75349- 3 1.60000+ 1 4.40000+ 1 2.08398- 4 4.76699- 3 1.60000+ 1 5.80000+ 1 1.45804- 5 4.78822- 3 1.80000+ 1 1.80000+ 1 1.40046- 4 3.41530- 3 1.80000+ 1 1.90000+ 1 4.97714- 4 3.73270- 3 1.80000+ 1 2.10000+ 1 2.27255- 4 4.01318- 3 1.80000+ 1 2.20000+ 1 8.82804- 5 4.07048- 3 1.80000+ 1 2.40000+ 1 1.81911- 5 4.44128- 3 1.80000+ 1 2.50000+ 1 5.53361- 4 4.45703- 3 1.80000+ 1 2.70000+ 1 6.35353- 4 4.56843- 3 1.80000+ 1 2.90000+ 1 4.94916- 5 4.64004- 3 1.80000+ 1 3.00000+ 1 8.27947- 5 4.72068- 3 1.80000+ 1 3.20000+ 1 3.90577- 5 4.82691- 3 1.80000+ 1 3.30000+ 1 2.35420- 5 4.83895- 3 1.80000+ 1 3.50000+ 1 5.35021- 7 4.95477- 3 1.80000+ 1 3.60000+ 1 2.15353- 5 4.95646- 3 1.80000+ 1 4.10000+ 1 1.12093- 4 4.90651- 3 1.80000+ 1 4.30000+ 1 7.49054- 6 4.92829- 3 1.80000+ 1 4.40000+ 1 1.08345- 5 4.94179- 3 1.80000+ 1 5.80000+ 1 8.82804- 6 4.96302- 3 1.90000+ 1 1.90000+ 1 3.94591- 4 4.05010- 3 1.90000+ 1 2.10000+ 1 7.33824- 4 4.33058- 3 1.90000+ 1 2.20000+ 1 1.57508- 3 4.38788- 3 1.90000+ 1 2.40000+ 1 1.14573- 3 4.75868- 3 1.90000+ 1 2.50000+ 1 1.55409- 3 4.77443- 3 1.90000+ 1 2.70000+ 1 9.56944- 4 4.88583- 3 1.90000+ 1 2.90000+ 1 1.08747- 4 4.95744- 3 1.90000+ 1 3.00000+ 1 1.67332- 4 5.03808- 3 1.90000+ 1 3.20000+ 1 1.44196- 4 5.14431- 3 1.90000+ 1 3.30000+ 1 3.02834- 4 5.15635- 3 1.90000+ 1 3.50000+ 1 7.02272- 5 5.27217- 3 1.90000+ 1 3.60000+ 1 8.26629- 5 5.27386- 3 1.90000+ 1 4.10000+ 1 1.69211- 4 5.22391- 3 1.90000+ 1 4.30000+ 1 1.73888- 5 5.24569- 3 1.90000+ 1 4.40000+ 1 2.28738- 5 5.25919- 3 1.90000+ 1 5.80000+ 1 1.33762- 5 5.28042- 3 2.10000+ 1 2.10000+ 1 1.03399- 4 4.61106- 3 2.10000+ 1 2.20000+ 1 1.97834- 4 4.66836- 3 2.10000+ 1 2.40000+ 1 4.52642- 4 5.03916- 3 2.10000+ 1 2.50000+ 1 2.43447- 3 5.05491- 3 2.10000+ 1 2.70000+ 1 1.13633- 3 5.16631- 3 2.10000+ 1 2.90000+ 1 3.46435- 5 5.23792- 3 2.10000+ 1 3.00000+ 1 1.36160- 4 5.31856- 3 2.10000+ 1 3.20000+ 1 3.31724- 5 5.42479- 3 2.10000+ 1 3.30000+ 1 3.41088- 5 5.43683- 3 2.10000+ 1 3.50000+ 1 2.60826- 5 5.55265- 3 2.10000+ 1 3.60000+ 1 1.07816- 4 5.55434- 3 2.10000+ 1 4.10000+ 1 1.99033- 4 5.50439- 3 2.10000+ 1 4.30000+ 1 5.08290- 6 5.52617- 3 2.10000+ 1 4.40000+ 1 1.80573- 5 5.53967- 3 2.10000+ 1 5.80000+ 1 1.57837- 5 5.56090- 3 2.20000+ 1 2.20000+ 1 2.12674- 4 4.72566- 3 2.20000+ 1 2.40000+ 1 2.07907- 3 5.09646- 3 2.20000+ 1 2.50000+ 1 1.42386- 3 5.11221- 3 2.20000+ 1 2.70000+ 1 1.54598- 3 5.22361- 3 2.20000+ 1 2.90000+ 1 1.55157- 5 5.29522- 3 2.20000+ 1 3.00000+ 1 2.86910- 4 5.37586- 3 2.20000+ 1 3.20000+ 1 2.91598- 5 5.48209- 3 2.20000+ 1 3.30000+ 1 7.07572- 5 5.49413- 3 2.20000+ 1 3.50000+ 1 9.32309- 5 5.60995- 3 2.20000+ 1 3.60000+ 1 6.90212- 5 5.61164- 3 2.20000+ 1 4.10000+ 1 2.70330- 4 5.56169- 3 2.20000+ 1 4.30000+ 1 2.40758- 6 5.58347- 3 2.20000+ 1 4.40000+ 1 3.79875- 5 5.59697- 3 2.20000+ 1 5.80000+ 1 2.14014- 5 5.61820- 3 2.40000+ 1 2.40000+ 1 6.24390- 4 5.46726- 3 2.40000+ 1 2.50000+ 1 4.08118- 3 5.48301- 3 2.40000+ 1 2.70000+ 1 7.84644- 4 5.59441- 3 2.40000+ 1 2.90000+ 1 5.35022- 6 5.66602- 3 2.40000+ 1 3.00000+ 1 1.48341- 4 5.74666- 3 2.40000+ 1 3.20000+ 1 8.21263- 5 5.85289- 3 2.40000+ 1 3.30000+ 1 4.39669- 4 5.86493- 3 2.40000+ 1 3.50000+ 1 7.28997- 5 5.98075- 3 2.40000+ 1 3.60000+ 1 1.90747- 4 5.98244- 3 2.40000+ 1 4.10000+ 1 1.35099- 4 5.93249- 3 2.40000+ 1 4.30000+ 1 9.36285- 7 5.95427- 3 2.40000+ 1 4.40000+ 1 1.83252- 5 5.96777- 3 2.40000+ 1 5.80000+ 1 1.07006- 5 5.98900- 3 2.50000+ 1 2.50000+ 1 1.40197- 3 5.49876- 3 2.50000+ 1 2.70000+ 1 9.58519- 4 5.61016- 3 2.50000+ 1 2.90000+ 1 1.19180- 4 5.68177- 3 2.50000+ 1 3.00000+ 1 2.14294- 4 5.76241- 3 2.50000+ 1 3.20000+ 1 4.97718- 4 5.86864- 3 2.50000+ 1 3.30000+ 1 2.78747- 4 5.88068- 3 2.50000+ 1 3.50000+ 1 1.95296- 4 5.99650- 3 2.50000+ 1 3.60000+ 1 1.44734- 4 5.99819- 3 2.50000+ 1 4.10000+ 1 1.64923- 4 5.94824- 3 2.50000+ 1 4.30000+ 1 1.88600- 5 5.97002- 3 2.50000+ 1 4.40000+ 1 2.68863- 5 5.98352- 3 2.50000+ 1 5.80000+ 1 1.29743- 5 6.00475- 3 2.70000+ 1 2.70000+ 1 9.41654- 5 5.72156- 3 2.70000+ 1 2.90000+ 1 1.62514- 4 5.79317- 3 2.70000+ 1 3.00000+ 1 2.37561- 4 5.87381- 3 2.70000+ 1 3.20000+ 1 2.35152- 4 5.98004- 3 2.70000+ 1 3.30000+ 1 3.16343- 4 5.99208- 3 2.70000+ 1 3.50000+ 1 5.12307- 5 6.10790- 3 2.70000+ 1 3.60000+ 1 5.97898- 5 6.10959- 3 2.70000+ 1 4.10000+ 1 3.53121- 5 6.05964- 3 2.70000+ 1 4.30000+ 1 2.67513- 5 6.08142- 3 2.70000+ 1 4.40000+ 1 3.35742- 5 6.09492- 3 2.70000+ 1 5.80000+ 1 2.80894- 6 6.11615- 3 2.90000+ 1 2.90000+ 1 4.28038- 6 5.86478- 3 2.90000+ 1 3.00000+ 1 1.75216- 5 5.94542- 3 2.90000+ 1 3.20000+ 1 5.88554- 6 6.05165- 3 2.90000+ 1 3.30000+ 1 4.54782- 6 6.06369- 3 2.90000+ 1 3.50000+ 1 1.33761- 7 6.17951- 3 2.90000+ 1 3.60000+ 1 4.81536- 6 6.18120- 3 2.90000+ 1 4.10000+ 1 2.87591- 5 6.13125- 3 2.90000+ 1 4.30000+ 1 1.33761- 6 6.15303- 3 2.90000+ 1 4.40000+ 1 2.27397- 6 6.16653- 3 2.90000+ 1 5.80000+ 1 2.27397- 6 6.18776- 3 3.00000+ 1 3.00000+ 1 1.68543- 5 6.02606- 3 3.00000+ 1 3.20000+ 1 2.70206- 5 6.13229- 3 3.00000+ 1 3.30000+ 1 5.56473- 5 6.14433- 3 3.00000+ 1 3.50000+ 1 9.22935- 6 6.26015- 3 3.00000+ 1 3.60000+ 1 1.12356- 5 6.26184- 3 3.00000+ 1 4.10000+ 1 4.20021- 5 6.21189- 3 3.00000+ 1 4.30000+ 1 2.80900- 6 6.23367- 3 3.00000+ 1 4.40000+ 1 4.54790- 6 6.24717- 3 3.00000+ 1 5.80000+ 1 3.34409- 6 6.26840- 3 3.20000+ 1 3.20000+ 1 2.40759- 6 6.23852- 3 3.20000+ 1 3.30000+ 1 5.08291- 6 6.25056- 3 3.20000+ 1 3.50000+ 1 4.81536- 6 6.36638- 3 3.20000+ 1 3.60000+ 1 2.32753- 5 6.36807- 3 3.20000+ 1 4.10000+ 1 4.11978- 5 6.31812- 3 3.20000+ 1 4.30000+ 1 9.36291- 7 6.33990- 3 3.20000+ 1 4.40000+ 1 3.61158- 6 6.35340- 3 3.20000+ 1 5.80000+ 1 3.21021- 6 6.37463- 3 3.30000+ 1 3.30000+ 1 5.61758- 6 6.26260- 3 3.30000+ 1 3.50000+ 1 2.07323- 5 6.37842- 3 3.30000+ 1 3.60000+ 1 1.37766- 5 6.38011- 3 3.30000+ 1 4.10000+ 1 5.53743- 5 6.33016- 3 3.30000+ 1 4.30000+ 1 6.68762- 7 6.35194- 3 3.30000+ 1 4.40000+ 1 7.35671- 6 6.36544- 3 3.30000+ 1 5.80000+ 1 4.41390- 6 6.38667- 3 3.50000+ 1 3.50000+ 1 1.87909- 6 6.49424- 3 3.50000+ 1 3.60000+ 1 9.66434- 6 6.49593- 3 3.50000+ 1 4.10000+ 1 8.85872- 6 6.44598- 3 3.50000+ 1 4.40000+ 1 1.07378- 6 6.48126- 3 3.50000+ 1 5.80000+ 1 6.71096- 7 6.50249- 3 3.60000+ 1 3.60000+ 1 3.51053- 6 6.49762- 3 3.60000+ 1 4.10000+ 1 1.03960- 5 6.44767- 3 3.60000+ 1 4.30000+ 1 8.10103- 7 6.46945- 3 3.60000+ 1 4.40000+ 1 1.48530- 6 6.48295- 3 3.60000+ 1 5.80000+ 1 8.10103- 7 6.50418- 3 4.10000+ 1 4.10000+ 1 3.62988- 6 6.39772- 3 4.10000+ 1 4.30000+ 1 5.08173- 6 6.41950- 3 4.10000+ 1 4.40000+ 1 6.38865- 6 6.43300- 3 4.10000+ 1 5.80000+ 1 5.80760- 7 6.45423- 3 4.30000+ 1 4.30000+ 1 1.33761- 7 6.44128- 3 4.30000+ 1 4.40000+ 1 4.01275- 7 6.45478- 3 4.30000+ 1 5.80000+ 1 4.01275- 7 6.47601- 3 4.40000+ 1 4.40000+ 1 2.31607- 7 6.46828- 3 4.40000+ 1 5.80000+ 1 4.63214- 7 6.48951- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.60019- 3 1.78190- 3 1.60000+ 1 1.19270- 3 4.42000- 3 2.10000+ 1 5.46398- 3 5.19268- 3 2.70000+ 1 3.25849- 4 5.74793- 3 3.20000+ 1 1.44540- 3 6.00641- 3 4.10000+ 1 6.60898- 5 6.08601- 3 5.80000+ 1 5.70208- 6 6.14252- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.17415- 2 2.24080- 4 1.10000+ 1 2.20000+ 1 2.03830- 2 2.81380- 4 1.10000+ 1 2.40000+ 1 2.84508- 2 6.52180- 4 1.10000+ 1 2.50000+ 1 2.24150- 2 6.67930- 4 1.10000+ 1 2.70000+ 1 3.15497- 3 7.79330- 4 1.10000+ 1 2.90000+ 1 4.82908- 3 8.50940- 4 1.10000+ 1 3.00000+ 1 1.63832- 3 9.31580- 4 1.10000+ 1 3.20000+ 1 2.21434- 3 1.03781- 3 1.10000+ 1 3.30000+ 1 3.64304- 3 1.04985- 3 1.10000+ 1 3.50000+ 1 1.45641- 3 1.16567- 3 1.10000+ 1 3.60000+ 1 1.12636- 3 1.16736- 3 1.10000+ 1 4.10000+ 1 5.81700- 4 1.11741- 3 1.10000+ 1 4.30000+ 1 7.07921- 4 1.13919- 3 1.10000+ 1 4.40000+ 1 2.20858- 4 1.15269- 3 1.10000+ 1 5.80000+ 1 4.63316- 5 1.17392- 3 1.30000+ 1 1.60000+ 1 4.79404- 2 5.31000- 5 1.30000+ 1 1.80000+ 1 5.09781- 2 2.27900- 4 1.30000+ 1 1.90000+ 1 2.86543- 2 5.45300- 4 1.30000+ 1 2.10000+ 1 1.66130- 2 8.25780- 4 1.30000+ 1 2.20000+ 1 2.99093- 2 8.83080- 4 1.30000+ 1 2.40000+ 1 1.53782- 1 1.25388- 3 1.30000+ 1 2.50000+ 1 2.42907- 1 1.26963- 3 1.30000+ 1 2.70000+ 1 1.25402- 2 1.38103- 3 1.30000+ 1 2.90000+ 1 1.05013- 2 1.45264- 3 1.30000+ 1 3.00000+ 1 6.87808- 3 1.53328- 3 1.30000+ 1 3.20000+ 1 3.65305- 3 1.63951- 3 1.30000+ 1 3.30000+ 1 6.29338- 3 1.65155- 3 1.30000+ 1 3.50000+ 1 7.24307- 3 1.76737- 3 1.30000+ 1 3.60000+ 1 1.15260- 2 1.76906- 3 1.30000+ 1 4.10000+ 1 2.43473- 3 1.71911- 3 1.30000+ 1 4.30000+ 1 1.65920- 3 1.74089- 3 1.30000+ 1 4.40000+ 1 9.60618- 4 1.75439- 3 1.30000+ 1 5.80000+ 1 1.94627- 4 1.77562- 3 1.40000+ 1 1.60000+ 1 7.19556- 3 2.85700- 4 1.40000+ 1 1.80000+ 1 5.77399- 2 4.60500- 4 1.40000+ 1 1.90000+ 1 4.43387- 3 7.77900- 4 1.40000+ 1 2.10000+ 1 2.54599- 3 1.05838- 3 1.40000+ 1 2.20000+ 1 2.84381- 3 1.11568- 3 1.40000+ 1 2.40000+ 1 9.00266- 3 1.48648- 3 1.40000+ 1 2.50000+ 1 5.11502- 3 1.50223- 3 1.40000+ 1 2.70000+ 1 1.24636- 3 1.61363- 3 1.40000+ 1 2.90000+ 1 8.94173- 3 1.68524- 3 1.40000+ 1 3.00000+ 1 8.90806- 4 1.76588- 3 1.40000+ 1 3.20000+ 1 2.19213- 4 1.87211- 3 1.40000+ 1 3.30000+ 1 5.18477- 4 1.88415- 3 1.40000+ 1 3.50000+ 1 6.09311- 4 1.99997- 3 1.40000+ 1 3.60000+ 1 2.72686- 4 2.00166- 3 1.40000+ 1 4.10000+ 1 2.23204- 4 1.95171- 3 1.40000+ 1 4.30000+ 1 1.32275- 3 1.97349- 3 1.40000+ 1 4.40000+ 1 1.20560- 4 1.98699- 3 1.40000+ 1 5.80000+ 1 1.77697- 5 2.00822- 3 1.60000+ 1 1.60000+ 1 3.85082- 4 2.69120- 3 1.60000+ 1 1.80000+ 1 6.28727- 3 2.86600- 3 1.60000+ 1 1.90000+ 1 7.15184- 4 3.18340- 3 1.60000+ 1 2.10000+ 1 2.82586- 4 3.46388- 3 1.60000+ 1 2.20000+ 1 6.95264- 4 3.52118- 3 1.60000+ 1 2.40000+ 1 7.24008- 5 3.89198- 3 1.60000+ 1 2.50000+ 1 4.96610- 4 3.90773- 3 1.60000+ 1 2.70000+ 1 1.53855- 4 4.01913- 3 1.60000+ 1 2.90000+ 1 9.66084- 4 4.09074- 3 1.60000+ 1 3.00000+ 1 1.59268- 4 4.17138- 3 1.60000+ 1 3.20000+ 1 3.71055- 5 4.27761- 3 1.60000+ 1 3.30000+ 1 1.24887- 4 4.28965- 3 1.60000+ 1 3.50000+ 1 3.39370- 6 4.40547- 3 1.60000+ 1 3.60000+ 1 2.05893- 5 4.40716- 3 1.60000+ 1 4.10000+ 1 2.85069- 5 4.35721- 3 1.60000+ 1 4.30000+ 1 1.43673- 4 4.37899- 3 1.60000+ 1 4.40000+ 1 2.19464- 5 4.39249- 3 1.60000+ 1 5.80000+ 1 2.26247- 6 4.41372- 3 1.80000+ 1 1.80000+ 1 4.96591- 3 3.04080- 3 1.80000+ 1 1.90000+ 1 1.27934- 2 3.35820- 3 1.80000+ 1 2.10000+ 1 1.31067- 2 3.63868- 3 1.80000+ 1 2.20000+ 1 2.02122- 2 3.69598- 3 1.80000+ 1 2.40000+ 1 8.25242- 3 4.06678- 3 1.80000+ 1 2.50000+ 1 1.31851- 2 4.08253- 3 1.80000+ 1 2.70000+ 1 1.66777- 3 4.19393- 3 1.80000+ 1 2.90000+ 1 2.05246- 3 4.26554- 3 1.80000+ 1 3.00000+ 1 3.14769- 3 4.34618- 3 1.80000+ 1 3.20000+ 1 2.70680- 3 4.45241- 3 1.80000+ 1 3.30000+ 1 4.06060- 3 4.46445- 3 1.80000+ 1 3.50000+ 1 5.37779- 4 4.58027- 3 1.80000+ 1 3.60000+ 1 8.12654- 4 4.58196- 3 1.80000+ 1 4.10000+ 1 3.28507- 4 4.53201- 3 1.80000+ 1 4.30000+ 1 3.26912- 4 4.55379- 3 1.80000+ 1 4.40000+ 1 4.42528- 4 4.56729- 3 1.80000+ 1 5.80000+ 1 2.64707- 5 4.58852- 3 1.90000+ 1 1.90000+ 1 3.00232- 4 3.67560- 3 1.90000+ 1 2.10000+ 1 6.69444- 4 3.95608- 3 1.90000+ 1 2.20000+ 1 6.57680- 4 4.01338- 3 1.90000+ 1 2.40000+ 1 5.09242- 3 4.38418- 3 1.90000+ 1 2.50000+ 1 1.43313- 3 4.39993- 3 1.90000+ 1 2.70000+ 1 1.19229- 4 4.51133- 3 1.90000+ 1 2.90000+ 1 2.00030- 3 4.58294- 3 1.90000+ 1 3.00000+ 1 1.24658- 4 4.66358- 3 1.90000+ 1 3.20000+ 1 1.05883- 4 4.76981- 3 1.90000+ 1 3.30000+ 1 1.20816- 4 4.78185- 3 1.90000+ 1 3.50000+ 1 2.71711- 4 4.89767- 3 1.90000+ 1 3.60000+ 1 7.66956- 5 4.89936- 3 1.90000+ 1 4.10000+ 1 2.12657- 5 4.84941- 3 1.90000+ 1 4.30000+ 1 2.97958- 4 4.87119- 3 1.90000+ 1 4.40000+ 1 1.69678- 5 4.88469- 3 1.90000+ 1 5.80000+ 1 1.58358- 6 4.90592- 3 2.10000+ 1 2.10000+ 1 5.22620- 4 4.23656- 3 2.10000+ 1 2.20000+ 1 8.57887- 4 4.29386- 3 2.10000+ 1 2.40000+ 1 5.33926- 4 4.66466- 3 2.10000+ 1 2.50000+ 1 6.18093- 4 4.68041- 3 2.10000+ 1 2.70000+ 1 7.28493- 5 4.79181- 3 2.10000+ 1 2.90000+ 1 1.97797- 3 4.86342- 3 2.10000+ 1 3.00000+ 1 1.56333- 4 4.94406- 3 2.10000+ 1 3.20000+ 1 1.73537- 4 5.05029- 3 2.10000+ 1 3.30000+ 1 1.57236- 4 5.06233- 3 2.10000+ 1 3.50000+ 1 1.69680- 5 5.17815- 3 2.10000+ 1 3.60000+ 1 2.62434- 5 5.17984- 3 2.10000+ 1 4.10000+ 1 1.42530- 5 5.12989- 3 2.10000+ 1 4.30000+ 1 2.92524- 4 5.15167- 3 2.10000+ 1 4.40000+ 1 2.17194- 5 5.16517- 3 2.10000+ 1 5.80000+ 1 1.13118- 6 5.18640- 3 2.20000+ 1 2.20000+ 1 2.37112- 4 4.35116- 3 2.20000+ 1 2.40000+ 1 9.16489- 4 4.72196- 3 2.20000+ 1 2.50000+ 1 2.58824- 4 4.73771- 3 2.20000+ 1 2.70000+ 1 1.43196- 4 4.84911- 3 2.20000+ 1 2.90000+ 1 3.07879- 3 4.92072- 3 2.20000+ 1 3.00000+ 1 1.22845- 4 5.00136- 3 2.20000+ 1 3.20000+ 1 1.23079- 4 5.10759- 3 2.20000+ 1 3.30000+ 1 8.03162- 5 5.11963- 3 2.20000+ 1 3.50000+ 1 2.30772- 5 5.23545- 3 2.20000+ 1 3.60000+ 1 9.72865- 6 5.23714- 3 2.20000+ 1 4.10000+ 1 2.66968- 5 5.18719- 3 2.20000+ 1 4.30000+ 1 4.56107- 4 5.20897- 3 2.20000+ 1 4.40000+ 1 1.62908- 5 5.22247- 3 2.20000+ 1 5.80000+ 1 2.03623- 6 5.24370- 3 2.40000+ 1 2.40000+ 1 2.14497- 3 5.09276- 3 2.40000+ 1 2.50000+ 1 1.36292- 2 5.10851- 3 2.40000+ 1 2.70000+ 1 1.31220- 5 5.21991- 3 2.40000+ 1 2.90000+ 1 1.14653- 3 5.29152- 3 2.40000+ 1 3.00000+ 1 1.17687- 3 5.37216- 3 2.40000+ 1 3.20000+ 1 1.10854- 4 5.47839- 3 2.40000+ 1 3.30000+ 1 2.35514- 4 5.49043- 3 2.40000+ 1 3.50000+ 1 2.28051- 4 5.60625- 3 2.40000+ 1 3.60000+ 1 6.83236- 4 5.60794- 3 2.40000+ 1 4.10000+ 1 2.48860- 6 5.55799- 3 2.40000+ 1 4.30000+ 1 1.68315- 4 5.57977- 3 2.40000+ 1 4.40000+ 1 1.63571- 4 5.59327- 3 2.40000+ 1 5.80000+ 1 2.26234- 7 5.61450- 3 2.50000+ 1 2.50000+ 1 7.07676- 4 5.12426- 3 2.50000+ 1 2.70000+ 1 1.06333- 4 5.23566- 3 2.50000+ 1 2.90000+ 1 1.76854- 3 5.30727- 3 2.50000+ 1 3.00000+ 1 2.90938- 4 5.38791- 3 2.50000+ 1 3.20000+ 1 1.28507- 4 5.49414- 3 2.50000+ 1 3.30000+ 1 5.52025- 5 5.50618- 3 2.50000+ 1 3.50000+ 1 6.96591- 4 5.62200- 3 2.50000+ 1 3.60000+ 1 7.17179- 5 5.62369- 3 2.50000+ 1 4.10000+ 1 1.99088- 5 5.57374- 3 2.50000+ 1 4.30000+ 1 2.55203- 4 5.59552- 3 2.50000+ 1 4.40000+ 1 3.95913- 5 5.60902- 3 2.50000+ 1 5.80000+ 1 1.58358- 6 5.63025- 3 2.70000+ 1 2.70000+ 1 1.51587- 5 5.34706- 3 2.70000+ 1 2.90000+ 1 2.58143- 4 5.41867- 3 2.70000+ 1 3.00000+ 1 2.62430- 5 5.49931- 3 2.70000+ 1 3.20000+ 1 9.04942- 6 5.60554- 3 2.70000+ 1 3.30000+ 1 2.62430- 5 5.61758- 3 2.70000+ 1 3.50000+ 1 6.78706- 7 5.73340- 3 2.70000+ 1 3.60000+ 1 4.52471- 6 5.73509- 3 2.70000+ 1 4.10000+ 1 5.65590- 6 5.68514- 3 2.70000+ 1 4.30000+ 1 3.84605- 5 5.70692- 3 2.70000+ 1 4.40000+ 1 3.61979- 6 5.72042- 3 2.70000+ 1 5.80000+ 1 4.52471- 7 5.74165- 3 2.90000+ 1 2.90000+ 1 1.97521- 4 5.49028- 3 2.90000+ 1 3.00000+ 1 4.95923- 4 5.57092- 3 2.90000+ 1 3.20000+ 1 4.11535- 4 5.67715- 3 2.90000+ 1 3.30000+ 1 6.23525- 4 5.68919- 3 2.90000+ 1 3.50000+ 1 7.44330- 5 5.80501- 3 2.90000+ 1 3.60000+ 1 1.10182- 4 5.80670- 3 2.90000+ 1 4.10000+ 1 5.09035- 5 5.75675- 3 2.90000+ 1 4.30000+ 1 6.19904- 5 5.77853- 3 2.90000+ 1 4.40000+ 1 6.99091- 5 5.79203- 3 2.90000+ 1 5.80000+ 1 4.07221- 6 5.81326- 3 3.00000+ 1 3.00000+ 1 1.26694- 5 5.65156- 3 3.00000+ 1 3.20000+ 1 2.48865- 5 5.75779- 3 3.00000+ 1 3.30000+ 1 2.26238- 5 5.76983- 3 3.00000+ 1 3.50000+ 1 6.31223- 5 5.88565- 3 3.00000+ 1 3.60000+ 1 1.56097- 5 5.88734- 3 3.00000+ 1 4.10000+ 1 4.75100- 6 5.83739- 3 3.00000+ 1 4.30000+ 1 7.39807- 5 5.85917- 3 3.00000+ 1 4.40000+ 1 3.39356- 6 5.87267- 3 3.00000+ 1 5.80000+ 1 4.52474- 7 5.89390- 3 3.20000+ 1 3.20000+ 1 1.37049- 5 5.86402- 3 3.20000+ 1 3.30000+ 1 2.42623- 5 5.87606- 3 3.20000+ 1 3.50000+ 1 3.81903- 6 5.99188- 3 3.20000+ 1 3.60000+ 1 6.29016- 6 5.99357- 3 3.20000+ 1 4.10000+ 1 1.79725- 6 5.94362- 3 3.20000+ 1 4.30000+ 1 6.04317- 5 5.96540- 3 3.20000+ 1 4.40000+ 1 3.36969- 6 5.97890- 3 3.20000+ 1 5.80000+ 1 2.24646- 7 6.00013- 3 3.30000+ 1 3.30000+ 1 6.97995- 6 5.88810- 3 3.30000+ 1 3.50000+ 1 7.20513- 6 6.00392- 3 3.30000+ 1 3.60000+ 1 2.02649- 6 6.00561- 3 3.30000+ 1 4.10000+ 1 4.95345- 6 5.95566- 3 3.30000+ 1 4.30000+ 1 9.20873- 5 5.97744- 3 3.30000+ 1 4.40000+ 1 2.92708- 6 5.99094- 3 3.30000+ 1 5.80000+ 1 4.50309- 7 6.01217- 3 3.50000+ 1 3.50000+ 1 5.67452- 6 6.11974- 3 3.50000+ 1 3.60000+ 1 3.63171- 5 6.12143- 3 3.50000+ 1 4.10000+ 1 2.26981- 7 6.07148- 3 3.50000+ 1 4.30000+ 1 1.08950- 5 6.09326- 3 3.50000+ 1 4.40000+ 1 8.85220- 6 6.10676- 3 3.60000+ 1 3.60000+ 1 1.77226- 6 6.12312- 3 3.60000+ 1 4.10000+ 1 8.86089- 7 6.07317- 3 3.60000+ 1 4.30000+ 1 1.55058- 5 6.09495- 3 3.60000+ 1 4.40000+ 1 1.99380- 6 6.10845- 3 4.10000+ 1 4.10000+ 1 4.52475- 7 6.02322- 3 4.10000+ 1 4.30000+ 1 7.69219- 6 6.04500- 3 4.10000+ 1 4.40000+ 1 6.78712- 7 6.05850- 3 4.30000+ 1 4.30000+ 1 5.00906- 6 6.06678- 3 4.30000+ 1 4.40000+ 1 1.09723- 5 6.08028- 3 4.30000+ 1 5.80000+ 1 7.15576- 7 6.10151- 3 4.40000+ 1 4.40000+ 1 2.26239- 7 6.09378- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.35189- 5 6.01700- 4 1.40000+ 1 3.51888- 4 8.34300- 4 1.60000+ 1 2.65949- 3 3.23980- 3 2.10000+ 1 1.20669- 3 4.01248- 3 2.20000+ 1 8.90546- 3 4.06978- 3 2.70000+ 1 6.85087- 4 4.56773- 3 3.20000+ 1 2.76269- 4 4.82621- 3 3.30000+ 1 2.09139- 3 4.83825- 3 4.10000+ 1 1.36299- 4 4.90581- 3 5.80000+ 1 1.19139- 5 4.96232- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.35378- 2 7.36800- 5 1.30000+ 1 2.50000+ 1 2.13466- 2 8.94300- 5 1.30000+ 1 2.70000+ 1 4.16018- 3 2.00830- 4 1.30000+ 1 2.90000+ 1 4.15876- 3 2.72440- 4 1.30000+ 1 3.00000+ 1 1.14181- 2 3.53080- 4 1.30000+ 1 3.20000+ 1 2.28646- 3 4.59310- 4 1.30000+ 1 3.30000+ 1 2.60295- 3 4.71350- 4 1.30000+ 1 3.50000+ 1 6.29475- 4 5.87170- 4 1.30000+ 1 3.60000+ 1 1.05709- 3 5.88860- 4 1.30000+ 1 4.10000+ 1 7.75333- 4 5.38910- 4 1.30000+ 1 4.30000+ 1 6.50340- 4 5.60690- 4 1.30000+ 1 4.40000+ 1 1.50150- 3 5.74190- 4 1.30000+ 1 5.80000+ 1 6.10789- 5 5.95420- 4 1.40000+ 1 2.40000+ 1 2.39011- 1 3.06280- 4 1.40000+ 1 2.50000+ 1 2.87271- 1 3.22030- 4 1.40000+ 1 2.70000+ 1 2.54570- 2 4.33430- 4 1.40000+ 1 2.90000+ 1 2.77274- 2 5.05040- 4 1.40000+ 1 3.00000+ 1 2.66975- 2 5.85680- 4 1.40000+ 1 3.20000+ 1 9.09208- 3 6.91910- 4 1.40000+ 1 3.30000+ 1 1.34894- 2 7.03950- 4 1.40000+ 1 3.50000+ 1 8.79407- 3 8.19770- 4 1.40000+ 1 3.60000+ 1 9.74562- 3 8.21460- 4 1.40000+ 1 4.10000+ 1 4.87583- 3 7.71510- 4 1.40000+ 1 4.30000+ 1 4.37326- 3 7.93290- 4 1.40000+ 1 4.40000+ 1 3.61189- 3 8.06790- 4 1.40000+ 1 5.80000+ 1 3.91900- 4 8.28020- 4 1.60000+ 1 1.60000+ 1 3.57124- 5 1.51100- 3 1.60000+ 1 1.80000+ 1 2.87879- 4 1.68580- 3 1.60000+ 1 1.90000+ 1 8.63012- 3 2.00320- 3 1.60000+ 1 2.10000+ 1 5.90348- 4 2.28368- 3 1.60000+ 1 2.20000+ 1 8.09489- 4 2.34098- 3 1.60000+ 1 2.40000+ 1 2.72015- 3 2.71178- 3 1.60000+ 1 2.50000+ 1 4.94117- 3 2.72753- 3 1.60000+ 1 2.70000+ 1 2.00223- 5 2.83893- 3 1.60000+ 1 2.90000+ 1 3.32782- 5 2.91054- 3 1.60000+ 1 3.00000+ 1 1.30423- 3 2.99118- 3 1.60000+ 1 3.20000+ 1 1.00107- 4 3.09741- 3 1.60000+ 1 3.30000+ 1 1.34740- 4 3.10945- 3 1.60000+ 1 3.50000+ 1 1.24997- 4 3.22527- 3 1.60000+ 1 3.60000+ 1 2.14541- 4 3.22696- 3 1.60000+ 1 4.10000+ 1 4.05836- 6 3.17701- 3 1.60000+ 1 4.30000+ 1 4.59937- 6 3.19879- 3 1.60000+ 1 4.40000+ 1 1.67198- 4 3.21229- 3 1.60000+ 1 5.80000+ 1 2.70565- 7 3.23352- 3 1.80000+ 1 1.80000+ 1 5.95227- 6 1.86060- 3 1.80000+ 1 1.90000+ 1 1.11062- 2 2.17800- 3 1.80000+ 1 2.10000+ 1 2.80022- 4 2.45848- 3 1.80000+ 1 2.20000+ 1 2.68475- 3 2.51578- 3 1.80000+ 1 2.40000+ 1 1.48562- 3 2.88658- 3 1.80000+ 1 2.50000+ 1 6.96565- 3 2.90233- 3 1.80000+ 1 2.70000+ 1 6.92614- 5 3.01373- 3 1.80000+ 1 2.90000+ 1 5.95227- 6 3.08534- 3 1.80000+ 1 3.00000+ 1 1.73272- 3 3.16598- 3 1.80000+ 1 3.20000+ 1 5.78986- 5 3.27221- 3 1.80000+ 1 3.30000+ 1 4.35047- 4 3.28425- 3 1.80000+ 1 3.50000+ 1 5.89801- 5 3.40007- 3 1.80000+ 1 3.60000+ 1 2.86248- 4 3.40176- 3 1.80000+ 1 4.10000+ 1 1.29857- 5 3.35181- 3 1.80000+ 1 4.30000+ 1 1.08219- 6 3.37359- 3 1.80000+ 1 4.40000+ 1 2.23481- 4 3.38709- 3 1.80000+ 1 5.80000+ 1 1.08219- 6 3.40832- 3 1.90000+ 1 1.90000+ 1 1.36146- 2 2.49540- 3 1.90000+ 1 2.10000+ 1 2.05074- 2 2.77588- 3 1.90000+ 1 2.20000+ 1 2.63657- 2 2.83318- 3 1.90000+ 1 2.40000+ 1 1.98563- 2 3.20398- 3 1.90000+ 1 2.50000+ 1 2.25691- 2 3.21973- 3 1.90000+ 1 2.70000+ 1 2.26563- 3 3.33113- 3 1.90000+ 1 2.90000+ 1 2.71832- 3 3.40274- 3 1.90000+ 1 3.00000+ 1 5.42979- 3 3.48338- 3 1.90000+ 1 3.20000+ 1 4.05534- 3 3.58961- 3 1.90000+ 1 3.30000+ 1 5.20934- 3 3.60165- 3 1.90000+ 1 3.50000+ 1 1.19585- 3 3.71747- 3 1.90000+ 1 3.60000+ 1 1.30025- 3 3.71916- 3 1.90000+ 1 4.10000+ 1 4.44528- 4 3.66921- 3 1.90000+ 1 4.30000+ 1 4.43183- 4 3.69099- 3 1.90000+ 1 4.40000+ 1 7.38356- 4 3.70449- 3 1.90000+ 1 5.80000+ 1 3.57130- 5 3.72572- 3 2.10000+ 1 2.10000+ 1 1.48811- 4 3.05636- 3 2.10000+ 1 2.20000+ 1 3.50332- 3 3.11366- 3 2.10000+ 1 2.40000+ 1 5.89276- 4 3.48446- 3 2.10000+ 1 2.50000+ 1 6.57897- 3 3.50021- 3 2.10000+ 1 2.70000+ 1 7.52147- 5 3.61161- 3 2.10000+ 1 2.90000+ 1 1.19053- 5 3.68322- 3 2.10000+ 1 3.00000+ 1 3.10595- 3 3.76386- 3 2.10000+ 1 3.20000+ 1 4.81593- 5 3.87009- 3 2.10000+ 1 3.30000+ 1 5.97932- 4 3.88213- 3 2.10000+ 1 3.50000+ 1 2.86782- 5 3.99795- 3 2.10000+ 1 3.60000+ 1 2.24567- 4 3.99964- 3 2.10000+ 1 4.10000+ 1 1.27168- 5 3.94969- 3 2.10000+ 1 4.30000+ 1 1.62339- 6 3.97147- 3 2.10000+ 1 4.40000+ 1 3.97722- 4 3.98497- 3 2.10000+ 1 5.80000+ 1 1.08220- 6 4.00620- 3 2.20000+ 1 2.20000+ 1 1.47453- 3 3.17096- 3 2.20000+ 1 2.40000+ 1 5.10752- 3 3.54176- 3 2.20000+ 1 2.50000+ 1 4.13153- 3 3.55751- 3 2.20000+ 1 2.70000+ 1 1.15525- 4 3.66891- 3 2.20000+ 1 2.90000+ 1 2.61077- 4 3.74052- 3 2.20000+ 1 3.00000+ 1 3.93811- 3 3.82116- 3 2.20000+ 1 3.20000+ 1 5.85751- 4 3.92739- 3 2.20000+ 1 3.30000+ 1 5.08628- 4 3.93943- 3 2.20000+ 1 3.50000+ 1 2.33751- 4 4.05525- 3 2.20000+ 1 3.60000+ 1 1.77752- 4 4.05694- 3 2.20000+ 1 4.10000+ 1 2.00220- 5 4.00699- 3 2.20000+ 1 4.30000+ 1 3.54419- 5 4.02877- 3 2.20000+ 1 4.40000+ 1 5.02672- 4 4.04227- 3 2.20000+ 1 5.80000+ 1 1.62336- 6 4.06350- 3 2.40000+ 1 2.40000+ 1 9.15278- 4 3.91256- 3 2.40000+ 1 2.50000+ 1 2.34980- 2 3.92831- 3 2.40000+ 1 2.70000+ 1 2.97608- 4 4.03971- 3 2.40000+ 1 2.90000+ 1 2.87322- 4 4.11132- 3 2.40000+ 1 3.00000+ 1 2.84869- 3 4.19196- 3 2.40000+ 1 3.20000+ 1 1.35553- 4 4.29819- 3 2.40000+ 1 3.30000+ 1 9.44223- 4 4.31023- 3 2.40000+ 1 3.50000+ 1 9.52350- 5 4.42605- 3 2.40000+ 1 3.60000+ 1 1.06249- 3 4.42774- 3 2.40000+ 1 4.10000+ 1 4.97817- 5 4.37779- 3 2.40000+ 1 4.30000+ 1 4.46417- 5 4.39957- 3 2.40000+ 1 4.40000+ 1 3.62263- 4 4.41307- 3 2.40000+ 1 5.80000+ 1 3.78777- 6 4.43430- 3 2.50000+ 1 2.50000+ 1 9.36051- 3 3.94406- 3 2.50000+ 1 2.70000+ 1 5.33551- 4 4.05546- 3 2.50000+ 1 2.90000+ 1 1.31521- 3 4.12707- 3 2.50000+ 1 3.00000+ 1 3.40026- 3 4.20771- 3 2.50000+ 1 3.20000+ 1 1.28289- 3 4.31394- 3 2.50000+ 1 3.30000+ 1 8.36837- 4 4.32598- 3 2.50000+ 1 3.50000+ 1 1.07494- 3 4.44180- 3 2.50000+ 1 3.60000+ 1 8.60649- 4 4.44349- 3 2.50000+ 1 4.10000+ 1 8.79308- 5 4.39354- 3 2.50000+ 1 4.30000+ 1 2.04541- 4 4.41532- 3 2.50000+ 1 4.40000+ 1 4.38840- 4 4.42882- 3 2.50000+ 1 5.80000+ 1 6.76407- 6 4.45005- 3 2.70000+ 1 2.70000+ 1 2.70562- 6 4.16686- 3 2.70000+ 1 2.90000+ 1 9.19874- 6 4.23847- 3 2.70000+ 1 3.00000+ 1 3.44406- 4 4.31911- 3 2.70000+ 1 3.20000+ 1 1.40695- 5 4.42534- 3 2.70000+ 1 3.30000+ 1 2.05611- 5 4.43738- 3 2.70000+ 1 3.50000+ 1 1.32568- 5 4.55320- 3 2.70000+ 1 3.60000+ 1 2.29966- 5 4.55489- 3 2.70000+ 1 4.10000+ 1 1.08218- 6 4.50494- 3 2.70000+ 1 4.30000+ 1 1.35269- 6 4.52672- 3 2.70000+ 1 4.40000+ 1 4.40990- 5 4.54022- 3 2.90000+ 1 2.90000+ 1 2.70563- 7 4.31008- 3 2.90000+ 1 3.00000+ 1 4.26388- 4 4.39072- 3 2.90000+ 1 3.20000+ 1 2.43494- 6 4.49695- 3 2.90000+ 1 3.30000+ 1 4.54530- 5 4.50899- 3 2.90000+ 1 3.50000+ 1 1.37970- 5 4.62481- 3 2.90000+ 1 3.60000+ 1 6.19570- 5 4.62650- 3 2.90000+ 1 4.10000+ 1 1.62337- 6 4.57655- 3 2.90000+ 1 4.40000+ 1 5.51927- 5 4.61183- 3 2.90000+ 1 5.80000+ 1 2.70563- 7 4.63306- 3 3.00000+ 1 3.00000+ 1 5.09175- 4 4.47136- 3 3.00000+ 1 3.20000+ 1 6.17114- 4 4.57759- 3 3.00000+ 1 3.30000+ 1 7.80262- 4 4.58963- 3 3.00000+ 1 3.50000+ 1 1.71805- 4 4.70545- 3 3.00000+ 1 3.60000+ 1 1.93447- 4 4.70714- 3 3.00000+ 1 4.10000+ 1 6.76380- 5 4.65719- 3 3.00000+ 1 4.30000+ 1 6.95309- 5 4.67897- 3 3.00000+ 1 4.40000+ 1 1.36906- 4 4.69247- 3 3.00000+ 1 5.80000+ 1 5.41089- 6 4.71370- 3 3.20000+ 1 3.20000+ 1 4.05833- 6 4.68382- 3 3.20000+ 1 3.30000+ 1 1.09303- 4 4.69586- 3 3.20000+ 1 3.50000+ 1 5.95227- 6 4.81168- 3 3.20000+ 1 3.60000+ 1 4.73474- 5 4.81337- 3 3.20000+ 1 4.10000+ 1 2.43494- 6 4.76342- 3 3.20000+ 1 4.30000+ 1 2.70563- 7 4.78520- 3 3.20000+ 1 4.40000+ 1 7.90023- 5 4.79870- 3 3.20000+ 1 5.80000+ 1 2.70563- 7 4.81993- 3 3.30000+ 1 3.30000+ 1 4.68049- 5 4.70790- 3 3.30000+ 1 3.50000+ 1 4.62623- 5 4.82372- 3 3.30000+ 1 3.60000+ 1 3.70654- 5 4.82541- 3 3.30000+ 1 4.10000+ 1 3.51712- 6 4.77546- 3 3.30000+ 1 4.30000+ 1 6.22256- 6 4.79724- 3 3.30000+ 1 4.40000+ 1 9.95662- 5 4.81074- 3 3.30000+ 1 5.80000+ 1 2.70557- 7 4.83197- 3 3.50000+ 1 3.50000+ 1 2.14744- 6 4.93954- 3 3.50000+ 1 3.60000+ 1 5.12674- 5 4.94123- 3 3.50000+ 1 4.10000+ 1 2.14744- 6 4.89128- 3 3.50000+ 1 4.30000+ 1 2.14744- 6 4.91306- 3 3.50000+ 1 4.40000+ 1 2.17425- 5 4.92656- 3 3.50000+ 1 5.80000+ 1 2.68431- 7 4.94779- 3 3.60000+ 1 3.60000+ 1 1.92119- 5 4.94292- 3 3.60000+ 1 4.10000+ 1 3.78824- 6 4.89297- 3 3.60000+ 1 4.30000+ 1 9.74113- 6 4.91475- 3 3.60000+ 1 4.40000+ 1 2.48938- 5 4.92825- 3 3.60000+ 1 5.80000+ 1 2.70596- 7 4.94948- 3 4.10000+ 1 4.30000+ 1 2.70561- 7 4.86480- 3 4.10000+ 1 4.40000+ 1 8.65760- 6 4.87830- 3 4.30000+ 1 4.40000+ 1 8.92816- 6 4.90008- 3 4.40000+ 1 4.40000+ 1 9.19833- 6 4.91358- 3 4.40000+ 1 5.80000+ 1 8.11624- 7 4.93481- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.64871- 3 2.81290- 3 1.90000+ 1 2.15400- 4 3.13030- 3 2.40000+ 1 5.69821- 2 3.83888- 3 2.90000+ 1 6.20881- 4 4.03764- 3 3.00000+ 1 5.09961- 5 4.11828- 3 3.50000+ 1 3.64871- 3 4.35237- 3 4.30000+ 1 1.04250- 4 4.32589- 3 4.40000+ 1 7.52302- 6 4.33939- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.61391- 2 9.02100- 5 1.40000+ 1 3.30000+ 1 6.67906- 3 1.02250- 4 1.40000+ 1 3.50000+ 1 2.75020- 2 2.18070- 4 1.40000+ 1 3.60000+ 1 2.88409- 3 2.19760- 4 1.40000+ 1 4.10000+ 1 9.01396- 4 1.69810- 4 1.40000+ 1 4.30000+ 1 4.22557- 4 1.91590- 4 1.40000+ 1 4.40000+ 1 8.08837- 4 2.05090- 4 1.40000+ 1 5.80000+ 1 7.11783- 5 2.26320- 4 1.60000+ 1 1.60000+ 1 6.47091- 7 9.09300- 4 1.60000+ 1 1.80000+ 1 6.46425- 4 1.08410- 3 1.60000+ 1 1.90000+ 1 6.74914- 4 1.40150- 3 1.60000+ 1 2.10000+ 1 2.63852- 2 1.68198- 3 1.60000+ 1 2.20000+ 1 3.16542- 3 1.73928- 3 1.60000+ 1 2.40000+ 1 1.63414- 2 2.11008- 3 1.60000+ 1 2.50000+ 1 3.48573- 3 2.12583- 3 1.60000+ 1 2.70000+ 1 1.29414- 5 2.23723- 3 1.60000+ 1 2.90000+ 1 1.39123- 4 2.30884- 3 1.60000+ 1 3.00000+ 1 1.07411- 4 2.38948- 3 1.60000+ 1 3.20000+ 1 3.50145- 3 2.49571- 3 1.60000+ 1 3.30000+ 1 4.54899- 4 2.50775- 3 1.60000+ 1 3.50000+ 1 7.04666- 4 2.62357- 3 1.60000+ 1 3.60000+ 1 1.19059- 4 2.62526- 3 1.60000+ 1 4.10000+ 1 3.23525- 6 2.57531- 3 1.60000+ 1 4.30000+ 1 2.20005- 5 2.59709- 3 1.60000+ 1 4.40000+ 1 1.35890- 5 2.61059- 3 1.80000+ 1 1.80000+ 1 2.38138- 4 1.25890- 3 1.80000+ 1 1.90000+ 1 2.89643- 3 1.57630- 3 1.80000+ 1 2.10000+ 1 2.39779- 2 1.85678- 3 1.80000+ 1 2.20000+ 1 1.24758- 3 1.91408- 3 1.80000+ 1 2.40000+ 1 1.30219- 2 2.28488- 3 1.80000+ 1 2.50000+ 1 7.45895- 3 2.30063- 3 1.80000+ 1 2.70000+ 1 8.28267- 5 2.41203- 3 1.80000+ 1 2.90000+ 1 1.10006- 4 2.48364- 3 1.80000+ 1 3.00000+ 1 5.15079- 4 2.56428- 3 1.80000+ 1 3.20000+ 1 3.13895- 3 2.67051- 3 1.80000+ 1 3.30000+ 1 2.01233- 4 2.68255- 3 1.80000+ 1 3.50000+ 1 5.43548- 4 2.79837- 3 1.80000+ 1 3.60000+ 1 3.10592- 4 2.80006- 3 1.80000+ 1 4.10000+ 1 1.42366- 5 2.75011- 3 1.80000+ 1 4.30000+ 1 1.74714- 5 2.77189- 3 1.80000+ 1 4.40000+ 1 6.79428- 5 2.78539- 3 1.80000+ 1 5.80000+ 1 1.29413- 6 2.80662- 3 1.90000+ 1 1.90000+ 1 9.99703- 4 1.89370- 3 1.90000+ 1 2.10000+ 1 4.48145- 2 2.17418- 3 1.90000+ 1 2.20000+ 1 1.70178- 3 2.23148- 3 1.90000+ 1 2.40000+ 1 1.63056- 3 2.60228- 3 1.90000+ 1 2.50000+ 1 1.47787- 3 2.61803- 3 1.90000+ 1 2.70000+ 1 1.30708- 4 2.72943- 3 1.90000+ 1 2.90000+ 1 4.29026- 4 2.80104- 3 1.90000+ 1 3.00000+ 1 3.39062- 4 2.88168- 3 1.90000+ 1 3.20000+ 1 5.94678- 3 2.98791- 3 1.90000+ 1 3.30000+ 1 2.58819- 4 2.99995- 3 1.90000+ 1 3.50000+ 1 5.24141- 5 3.11577- 3 1.90000+ 1 3.60000+ 1 4.40008- 5 3.11746- 3 1.90000+ 1 4.10000+ 1 2.39421- 5 3.06751- 3 1.90000+ 1 4.30000+ 1 6.34129- 5 3.08929- 3 1.90000+ 1 4.40000+ 1 4.46474- 5 3.10279- 3 1.90000+ 1 5.80000+ 1 1.94131- 6 3.12402- 3 2.10000+ 1 2.10000+ 1 4.19317- 2 2.45466- 3 2.10000+ 1 2.20000+ 1 8.13567- 2 2.51196- 3 2.10000+ 1 2.40000+ 1 5.05520- 2 2.88276- 3 2.10000+ 1 2.50000+ 1 5.92777- 2 2.89851- 3 2.10000+ 1 2.70000+ 1 6.21526- 3 3.00991- 3 2.10000+ 1 2.90000+ 1 5.92797- 3 3.08152- 3 2.10000+ 1 3.00000+ 1 1.06983- 2 3.16216- 3 2.10000+ 1 3.20000+ 1 1.39819- 2 3.26839- 3 2.10000+ 1 3.30000+ 1 1.58928- 2 3.28043- 3 2.10000+ 1 3.50000+ 1 3.05550- 3 3.39625- 3 2.10000+ 1 3.60000+ 1 3.47935- 3 3.39794- 3 2.10000+ 1 4.10000+ 1 1.20164- 3 3.34799- 3 2.10000+ 1 4.30000+ 1 9.68665- 4 3.36977- 3 2.10000+ 1 4.40000+ 1 1.49478- 3 3.38327- 3 2.10000+ 1 5.80000+ 1 9.64179- 5 3.40450- 3 2.20000+ 1 2.20000+ 1 1.27215- 3 2.56926- 3 2.20000+ 1 2.40000+ 1 6.06185- 2 2.94006- 3 2.20000+ 1 2.50000+ 1 2.79199- 3 2.95581- 3 2.20000+ 1 2.70000+ 1 3.49426- 4 3.06721- 3 2.20000+ 1 2.90000+ 1 1.62418- 4 3.13882- 3 2.20000+ 1 3.00000+ 1 3.20301- 4 3.21946- 3 2.20000+ 1 3.20000+ 1 1.08107- 2 3.32569- 3 2.20000+ 1 3.30000+ 1 4.01192- 4 3.33773- 3 2.20000+ 1 3.50000+ 1 3.33183- 3 3.45355- 3 2.20000+ 1 3.60000+ 1 1.34596- 4 3.45524- 3 2.20000+ 1 4.10000+ 1 5.88847- 5 3.40529- 3 2.20000+ 1 4.30000+ 1 2.39421- 5 3.42707- 3 2.20000+ 1 4.40000+ 1 4.27064- 5 3.44057- 3 2.20000+ 1 5.80000+ 1 4.52937- 6 3.46180- 3 2.40000+ 1 2.40000+ 1 6.03451- 2 3.31086- 3 2.40000+ 1 2.50000+ 1 1.71949- 1 3.32661- 3 2.40000+ 1 2.70000+ 1 4.14522- 3 3.43801- 3 2.40000+ 1 2.90000+ 1 2.47647- 3 3.50962- 3 2.40000+ 1 3.00000+ 1 3.96657- 4 3.59026- 3 2.40000+ 1 3.20000+ 1 7.41808- 3 3.69649- 3 2.40000+ 1 3.30000+ 1 1.12076- 2 3.70853- 3 2.40000+ 1 3.50000+ 1 6.38594- 3 3.82435- 3 2.40000+ 1 3.60000+ 1 9.49019- 3 3.82604- 3 2.40000+ 1 4.10000+ 1 8.09508- 4 3.77609- 3 2.40000+ 1 4.30000+ 1 3.95374- 4 3.79787- 3 2.40000+ 1 4.40000+ 1 5.56490- 5 3.81137- 3 2.40000+ 1 5.80000+ 1 6.60021- 5 3.83260- 3 2.50000+ 1 2.50000+ 1 3.54010- 3 3.34236- 3 2.50000+ 1 2.70000+ 1 6.07614- 4 3.45376- 3 2.50000+ 1 2.90000+ 1 7.14377- 4 3.52537- 3 2.50000+ 1 3.00000+ 1 3.16409- 4 3.60601- 3 2.50000+ 1 3.20000+ 1 7.12308- 3 3.71224- 3 2.50000+ 1 3.30000+ 1 4.78191- 4 3.72428- 3 2.50000+ 1 3.50000+ 1 7.97326- 3 3.84010- 3 2.50000+ 1 3.60000+ 1 3.56537- 4 3.84179- 3 2.50000+ 1 4.10000+ 1 1.08713- 4 3.79184- 3 2.50000+ 1 4.30000+ 1 9.89993- 5 3.81362- 3 2.50000+ 1 4.40000+ 1 4.33538- 5 3.82712- 3 2.50000+ 1 5.80000+ 1 8.41194- 6 3.84835- 3 2.70000+ 1 2.70000+ 1 1.29411- 6 3.56516- 3 2.70000+ 1 2.90000+ 1 2.07068- 5 3.63677- 3 2.70000+ 1 3.00000+ 1 2.13533- 5 3.71741- 3 2.70000+ 1 3.20000+ 1 8.30178- 4 3.82364- 3 2.70000+ 1 3.30000+ 1 5.62942- 5 3.83568- 3 2.70000+ 1 3.50000+ 1 1.91530- 4 3.95150- 3 2.70000+ 1 3.60000+ 1 2.71752- 5 3.95319- 3 2.70000+ 1 4.10000+ 1 6.47074- 7 3.90324- 3 2.70000+ 1 4.30000+ 1 3.23517- 6 3.92502- 3 2.70000+ 1 4.40000+ 1 2.58812- 6 3.93852- 3 2.90000+ 1 2.90000+ 1 1.35885- 5 3.70838- 3 2.90000+ 1 3.00000+ 1 8.28239- 5 3.78902- 3 2.90000+ 1 3.20000+ 1 7.80355- 4 3.89525- 3 2.90000+ 1 3.30000+ 1 3.10582- 5 3.90729- 3 2.90000+ 1 3.50000+ 1 1.07407- 4 4.02311- 3 2.90000+ 1 3.60000+ 1 3.10582- 5 4.02480- 3 2.90000+ 1 4.10000+ 1 3.88217- 6 3.97485- 3 2.90000+ 1 4.30000+ 1 4.52922- 6 3.99663- 3 2.90000+ 1 4.40000+ 1 1.10003- 5 4.01013- 3 3.00000+ 1 3.00000+ 1 2.97645- 5 3.86966- 3 3.00000+ 1 3.20000+ 1 1.42809- 3 3.97589- 3 3.00000+ 1 3.30000+ 1 5.17664- 5 3.98793- 3 3.00000+ 1 3.50000+ 1 1.55303- 5 4.10375- 3 3.00000+ 1 3.60000+ 1 9.70612- 6 4.10544- 3 3.00000+ 1 4.10000+ 1 3.88222- 6 4.05549- 3 3.00000+ 1 4.30000+ 1 1.22946- 5 4.07727- 3 3.00000+ 1 4.40000+ 1 7.76476- 6 4.09077- 3 3.20000+ 1 3.20000+ 1 1.11159- 3 4.08212- 3 3.20000+ 1 3.30000+ 1 2.12571- 3 4.09416- 3 3.20000+ 1 3.50000+ 1 4.47134- 4 4.20998- 3 3.20000+ 1 3.60000+ 1 4.23838- 4 4.21167- 3 3.20000+ 1 4.10000+ 1 1.60478- 4 4.16172- 3 3.20000+ 1 4.30000+ 1 1.27473- 4 4.18350- 3 3.20000+ 1 4.40000+ 1 1.99948- 4 4.19700- 3 3.20000+ 1 5.80000+ 1 1.29412- 5 4.21823- 3 3.30000+ 1 3.30000+ 1 3.10590- 5 4.10620- 3 3.30000+ 1 3.50000+ 1 6.23778- 4 4.22202- 3 3.30000+ 1 3.60000+ 1 2.32943- 5 4.22371- 3 3.30000+ 1 4.10000+ 1 9.70625- 6 4.17376- 3 3.30000+ 1 4.30000+ 1 4.52934- 6 4.19554- 3 3.30000+ 1 4.40000+ 1 7.11780- 6 4.20904- 3 3.30000+ 1 5.80000+ 1 6.47084- 7 4.23027- 3 3.50000+ 1 3.50000+ 1 1.48650- 4 4.33784- 3 3.50000+ 1 3.60000+ 1 4.47877- 4 4.33953- 3 3.50000+ 1 4.10000+ 1 3.73221- 5 4.28958- 3 3.50000+ 1 4.30000+ 1 1.73746- 5 4.31136- 3 3.50000+ 1 4.40000+ 1 1.93056- 6 4.32486- 3 3.50000+ 1 5.80000+ 1 3.21732- 6 4.34609- 3 3.60000+ 1 3.60000+ 1 7.80380- 6 4.34122- 3 3.60000+ 1 4.10000+ 1 4.80247- 6 4.29127- 3 3.60000+ 1 4.30000+ 1 4.20190- 6 4.31305- 3 3.60000+ 1 4.40000+ 1 1.20057- 6 4.32655- 3 3.60000+ 1 5.80000+ 1 6.00304- 7 4.34778- 3 4.10000+ 1 4.30000+ 1 6.47101- 7 4.26310- 3 4.10000+ 1 4.40000+ 1 6.47101- 7 4.27660- 3 4.30000+ 1 4.30000+ 1 6.47091- 7 4.28488- 3 4.30000+ 1 4.40000+ 1 1.94131- 6 4.29838- 3 4.40000+ 1 4.40000+ 1 7.67202- 7 4.31188- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.66669- 3 2.89770- 3 2.40000+ 1 2.70068- 3 3.60628- 3 2.50000+ 1 5.29276- 2 3.62203- 3 3.00000+ 1 3.92027- 4 3.88568- 3 3.50000+ 1 1.69159- 4 4.11977- 3 3.60000+ 1 3.25387- 3 4.12146- 3 4.40000+ 1 5.78595- 5 4.10679- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.04704- 5 6.76700- 4 1.60000+ 1 1.80000+ 1 3.23109- 4 8.51500- 4 1.60000+ 1 1.90000+ 1 1.37261- 3 1.16890- 3 1.60000+ 1 2.10000+ 1 3.11546- 3 1.44938- 3 1.60000+ 1 2.20000+ 1 2.98064- 2 1.50668- 3 1.60000+ 1 2.40000+ 1 4.00250- 3 1.87748- 3 1.60000+ 1 2.50000+ 1 1.72328- 2 1.89323- 3 1.60000+ 1 2.70000+ 1 2.05673- 5 2.00463- 3 1.60000+ 1 2.90000+ 1 2.91921- 5 2.07624- 3 1.60000+ 1 3.00000+ 1 2.23578- 4 2.15688- 3 1.60000+ 1 3.20000+ 1 4.06026- 4 2.26311- 3 1.60000+ 1 3.30000+ 1 3.92813- 3 2.27515- 3 1.60000+ 1 3.50000+ 1 1.32031- 4 2.39097- 3 1.60000+ 1 3.60000+ 1 6.49499- 4 2.39266- 3 1.60000+ 1 4.10000+ 1 4.64396- 6 2.34271- 3 1.60000+ 1 4.30000+ 1 4.64396- 6 2.36449- 3 1.60000+ 1 4.40000+ 1 2.91921- 5 2.37799- 3 1.60000+ 1 5.80000+ 1 6.63447- 7 2.39922- 3 1.80000+ 1 1.80000+ 1 2.58745- 5 1.02630- 3 1.80000+ 1 1.90000+ 1 4.48422- 3 1.34370- 3 1.80000+ 1 2.10000+ 1 2.24902- 4 1.62418- 3 1.80000+ 1 2.20000+ 1 3.04847- 2 1.68148- 3 1.80000+ 1 2.40000+ 1 2.39636- 3 2.05228- 3 1.80000+ 1 2.50000+ 1 1.12108- 2 2.06803- 3 1.80000+ 1 2.70000+ 1 3.78160- 5 2.17943- 3 1.80000+ 1 2.90000+ 1 5.97107- 6 2.25104- 3 1.80000+ 1 3.00000+ 1 7.33762- 4 2.33168- 3 1.80000+ 1 3.20000+ 1 5.97107- 6 2.43791- 3 1.80000+ 1 3.30000+ 1 3.99854- 3 2.44995- 3 1.80000+ 1 3.50000+ 1 9.62014- 5 2.56577- 3 1.80000+ 1 3.60000+ 1 4.17979- 4 2.56746- 3 1.80000+ 1 4.10000+ 1 6.63451- 6 2.51751- 3 1.80000+ 1 4.30000+ 1 6.63451- 7 2.53929- 3 1.80000+ 1 4.40000+ 1 9.55353- 5 2.55279- 3 1.80000+ 1 5.80000+ 1 6.63451- 7 2.57402- 3 1.90000+ 1 1.90000+ 1 2.59659- 3 1.66110- 3 1.90000+ 1 2.10000+ 1 2.68487- 3 1.94158- 3 1.90000+ 1 2.20000+ 1 4.30632- 2 1.99888- 3 1.90000+ 1 2.40000+ 1 1.78799- 3 2.36968- 3 1.90000+ 1 2.50000+ 1 2.62979- 3 2.38543- 3 1.90000+ 1 2.70000+ 1 2.81979- 4 2.49683- 3 1.90000+ 1 2.90000+ 1 5.93107- 4 2.56844- 3 1.90000+ 1 3.00000+ 1 8.67112- 4 2.64908- 3 1.90000+ 1 3.20000+ 1 4.50477- 4 2.75531- 3 1.90000+ 1 3.30000+ 1 5.61729- 3 2.76735- 3 1.90000+ 1 3.50000+ 1 5.83821- 5 2.88317- 3 1.90000+ 1 3.60000+ 1 8.02755- 5 2.88486- 3 1.90000+ 1 4.10000+ 1 5.24109- 5 2.83491- 3 1.90000+ 1 4.30000+ 1 8.69110- 5 2.85669- 3 1.90000+ 1 4.40000+ 1 1.14115- 4 2.87019- 3 1.90000+ 1 5.80000+ 1 3.98053- 6 2.89142- 3 2.10000+ 1 2.10000+ 1 5.95772- 4 2.22206- 3 2.10000+ 1 2.20000+ 1 6.18619- 2 2.27936- 3 2.10000+ 1 2.40000+ 1 2.62516- 3 2.65016- 3 2.10000+ 1 2.50000+ 1 3.63907- 2 2.66591- 3 2.10000+ 1 2.70000+ 1 3.15797- 4 2.77731- 3 2.10000+ 1 2.90000+ 1 6.70090- 5 2.84892- 3 2.10000+ 1 3.00000+ 1 4.53139- 4 2.92956- 3 2.10000+ 1 3.20000+ 1 1.79797- 4 3.03579- 3 2.10000+ 1 3.30000+ 1 8.17573- 3 3.04783- 3 2.10000+ 1 3.50000+ 1 1.39987- 4 3.16365- 3 2.10000+ 1 3.60000+ 1 1.92732- 3 3.16534- 3 2.10000+ 1 4.10000+ 1 5.24118- 5 3.11539- 3 2.10000+ 1 4.30000+ 1 1.06154- 5 3.13717- 3 2.10000+ 1 4.40000+ 1 5.97114- 5 3.15067- 3 2.10000+ 1 5.80000+ 1 3.98060- 6 3.17190- 3 2.20000+ 1 2.20000+ 1 6.78154- 2 2.33666- 3 2.20000+ 1 2.40000+ 1 5.75163- 2 2.70746- 3 2.20000+ 1 2.50000+ 1 9.28836- 2 2.72321- 3 2.20000+ 1 2.70000+ 1 6.61253- 3 2.83461- 3 2.20000+ 1 2.90000+ 1 7.15577- 3 2.90622- 3 2.20000+ 1 3.00000+ 1 1.03806- 2 2.98686- 3 2.20000+ 1 3.20000+ 1 1.20568- 2 3.09309- 3 2.20000+ 1 3.30000+ 1 2.22118- 2 3.10513- 3 2.20000+ 1 3.50000+ 1 3.45976- 3 3.22095- 3 2.20000+ 1 3.60000+ 1 5.19399- 3 3.22264- 3 2.20000+ 1 4.10000+ 1 1.26980- 3 3.17269- 3 2.20000+ 1 4.30000+ 1 1.15696- 3 3.19447- 3 2.20000+ 1 4.40000+ 1 1.45294- 3 3.20797- 3 2.20000+ 1 5.80000+ 1 1.01510- 4 3.22920- 3 2.40000+ 1 2.40000+ 1 5.20530- 3 3.07826- 3 2.40000+ 1 2.50000+ 1 1.64917- 1 3.09401- 3 2.40000+ 1 2.70000+ 1 7.87480- 4 3.20541- 3 2.40000+ 1 2.90000+ 1 5.12835- 4 3.27702- 3 2.40000+ 1 3.00000+ 1 3.64232- 4 3.35766- 3 2.40000+ 1 3.20000+ 1 4.90286- 4 3.46389- 3 2.40000+ 1 3.30000+ 1 7.13662- 3 3.47593- 3 2.40000+ 1 3.50000+ 1 5.47989- 4 3.59175- 3 2.40000+ 1 3.60000+ 1 7.37989- 3 3.59344- 3 2.40000+ 1 4.10000+ 1 1.44625- 4 3.54349- 3 2.40000+ 1 4.30000+ 1 8.16013- 5 3.56527- 3 2.40000+ 1 4.40000+ 1 4.97565- 5 3.57877- 3 2.40000+ 1 5.80000+ 1 1.12781- 5 3.60000- 3 2.50000+ 1 2.50000+ 1 1.12255- 1 3.10976- 3 2.50000+ 1 2.70000+ 1 4.33354- 3 3.22116- 3 2.50000+ 1 2.90000+ 1 2.68366- 3 3.29277- 3 2.50000+ 1 3.00000+ 1 5.89783- 4 3.37341- 3 2.50000+ 1 3.20000+ 1 6.52885- 3 3.47964- 3 2.50000+ 1 3.30000+ 1 1.41077- 2 3.49168- 3 2.50000+ 1 3.50000+ 1 9.18785- 3 3.60750- 3 2.50000+ 1 3.60000+ 1 1.11668- 2 3.60919- 3 2.50000+ 1 4.10000+ 1 8.45890- 4 3.55924- 3 2.50000+ 1 4.30000+ 1 4.37868- 4 3.58102- 3 2.50000+ 1 4.40000+ 1 8.22646- 5 3.59452- 3 2.50000+ 1 5.80000+ 1 6.89968- 5 3.61575- 3 2.70000+ 1 2.90000+ 1 1.32685- 6 3.40417- 3 2.70000+ 1 3.00000+ 1 4.77670- 5 3.48481- 3 2.70000+ 1 3.20000+ 1 4.77670- 5 3.59104- 3 2.70000+ 1 3.30000+ 1 8.77058- 4 3.60308- 3 2.70000+ 1 3.50000+ 1 3.38334- 5 3.71890- 3 2.70000+ 1 3.60000+ 1 1.83767- 4 3.72059- 3 2.70000+ 1 4.40000+ 1 5.97093- 6 3.70592- 3 2.90000+ 1 3.00000+ 1 1.04823- 4 3.55642- 3 2.90000+ 1 3.20000+ 1 4.64412- 6 3.66265- 3 2.90000+ 1 3.30000+ 1 9.54068- 4 3.67469- 3 2.90000+ 1 3.50000+ 1 2.05680- 5 3.79051- 3 2.90000+ 1 3.60000+ 1 1.06156- 4 3.79220- 3 2.90000+ 1 4.40000+ 1 1.39324- 5 3.77753- 3 3.00000+ 1 3.00000+ 1 7.23174- 5 3.63706- 3 3.00000+ 1 3.20000+ 1 8.16045- 5 3.74329- 3 3.00000+ 1 3.30000+ 1 1.35882- 3 3.75533- 3 3.00000+ 1 3.50000+ 1 1.32690- 5 3.87115- 3 3.00000+ 1 3.60000+ 1 2.12299- 5 3.87284- 3 3.00000+ 1 4.10000+ 1 9.28831- 6 3.82289- 3 3.00000+ 1 4.30000+ 1 1.52594- 5 3.84467- 3 3.00000+ 1 4.40000+ 1 1.92394- 5 3.85817- 3 3.00000+ 1 5.80000+ 1 6.63461- 7 3.87940- 3 3.20000+ 1 3.20000+ 1 1.26056- 5 3.84952- 3 3.20000+ 1 3.30000+ 1 1.60345- 3 3.86156- 3 3.20000+ 1 3.50000+ 1 2.65364- 5 3.97738- 3 3.20000+ 1 3.60000+ 1 3.54286- 4 3.97907- 3 3.20000+ 1 4.10000+ 1 7.96132- 6 3.92912- 3 3.20000+ 1 4.30000+ 1 6.63446- 7 3.95090- 3 3.20000+ 1 4.40000+ 1 1.06152- 5 3.96440- 3 3.20000+ 1 5.80000+ 1 6.63446- 7 3.98563- 3 3.30000+ 1 3.30000+ 1 1.74087- 3 3.87360- 3 3.30000+ 1 3.50000+ 1 4.33895- 4 3.98942- 3 3.30000+ 1 3.60000+ 1 7.84844- 4 3.99111- 3 3.30000+ 1 4.10000+ 1 1.68510- 4 3.94116- 3 3.30000+ 1 4.30000+ 1 1.54580- 4 3.96294- 3 3.30000+ 1 4.40000+ 1 1.90402- 4 3.97644- 3 3.30000+ 1 5.80000+ 1 1.32687- 5 3.99767- 3 3.50000+ 1 3.50000+ 1 1.28543- 5 4.10524- 3 3.50000+ 1 3.60000+ 1 4.28928- 4 4.10693- 3 3.50000+ 1 4.10000+ 1 6.76535- 6 4.05698- 3 3.50000+ 1 4.30000+ 1 3.38262- 6 4.07876- 3 3.50000+ 1 4.40000+ 1 2.02958- 6 4.09226- 3 3.50000+ 1 5.80000+ 1 6.76535- 7 4.11349- 3 3.60000+ 1 3.60000+ 1 2.55916- 4 4.10862- 3 3.60000+ 1 4.10000+ 1 3.64663- 5 4.05867- 3 3.60000+ 1 4.30000+ 1 1.72377- 5 4.08045- 3 3.60000+ 1 4.40000+ 1 3.31508- 6 4.09395- 3 3.60000+ 1 5.80000+ 1 2.65196- 6 4.11518- 3 4.10000+ 1 4.40000+ 1 1.33189- 6 4.04400- 3 4.30000+ 1 4.40000+ 1 2.05628- 6 4.06578- 3 4.40000+ 1 4.40000+ 1 1.37779- 6 4.07928- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.29679- 5 1.74800- 4 1.90000+ 1 6.28844- 4 4.92200- 4 2.90000+ 1 4.07996- 4 1.39954- 3 3.00000+ 1 5.86674- 5 1.48018- 3 4.30000+ 1 7.93852- 5 1.68779- 3 4.40000+ 1 1.37209- 5 1.70129- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 5.86600- 2 3.24100- 5 1.80000+ 1 3.30000+ 1 9.07110- 2 4.44500- 5 1.80000+ 1 3.50000+ 1 2.19316- 2 1.60270- 4 1.80000+ 1 3.60000+ 1 2.33448- 2 1.61960- 4 1.80000+ 1 4.10000+ 1 8.53573- 3 1.12010- 4 1.80000+ 1 4.30000+ 1 6.93025- 3 1.33790- 4 1.80000+ 1 4.40000+ 1 8.57486- 3 1.47290- 4 1.80000+ 1 5.80000+ 1 6.59711- 4 1.68520- 4 1.90000+ 1 2.50000+ 1 1.68263- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.47845- 2 9.13300- 5 1.90000+ 1 2.90000+ 1 4.29036- 2 1.62940- 4 1.90000+ 1 3.00000+ 1 3.36658- 2 2.43580- 4 1.90000+ 1 3.20000+ 1 2.90568- 2 3.49810- 4 1.90000+ 1 3.30000+ 1 3.59480- 2 3.61850- 4 1.90000+ 1 3.50000+ 1 1.57830- 3 4.77670- 4 1.90000+ 1 3.60000+ 1 2.64596- 3 4.79360- 4 1.90000+ 1 4.10000+ 1 6.61922- 3 4.29410- 4 1.90000+ 1 4.30000+ 1 6.66302- 3 4.51190- 4 1.90000+ 1 4.40000+ 1 4.78338- 3 4.64690- 4 1.90000+ 1 5.80000+ 1 5.23036- 4 4.85920- 4 2.10000+ 1 2.40000+ 1 3.23842- 3 2.44660- 4 2.10000+ 1 2.50000+ 1 3.57585- 3 2.60410- 4 2.10000+ 1 2.70000+ 1 1.54076- 2 3.71810- 4 2.10000+ 1 2.90000+ 1 5.66253- 3 4.43420- 4 2.10000+ 1 3.00000+ 1 4.26640- 3 5.24060- 4 2.10000+ 1 3.20000+ 1 1.68942- 3 6.30290- 4 2.10000+ 1 3.30000+ 1 3.47144- 3 6.42330- 4 2.10000+ 1 3.50000+ 1 1.17706- 3 7.58150- 4 2.10000+ 1 3.60000+ 1 1.16202- 3 7.59840- 4 2.10000+ 1 4.10000+ 1 2.13021- 3 7.09890- 4 2.10000+ 1 4.30000+ 1 8.51717- 4 7.31670- 4 2.10000+ 1 4.40000+ 1 4.91255- 4 7.45170- 4 2.10000+ 1 5.80000+ 1 1.63672- 4 7.66400- 4 2.20000+ 1 2.40000+ 1 4.18487- 3 3.01960- 4 2.20000+ 1 2.50000+ 1 5.44387- 3 3.17710- 4 2.20000+ 1 2.70000+ 1 2.13122- 2 4.29110- 4 2.20000+ 1 2.90000+ 1 8.25690- 3 5.00720- 4 2.20000+ 1 3.00000+ 1 5.41154- 3 5.81360- 4 2.20000+ 1 3.20000+ 1 2.70659- 3 6.87590- 4 2.20000+ 1 3.30000+ 1 3.30125- 3 6.99630- 4 2.20000+ 1 3.50000+ 1 1.27279- 3 8.15450- 4 2.20000+ 1 3.60000+ 1 1.70876- 3 8.17140- 4 2.20000+ 1 4.10000+ 1 2.92554- 3 7.67190- 4 2.20000+ 1 4.30000+ 1 1.11308- 3 7.88970- 4 2.20000+ 1 4.40000+ 1 6.94669- 4 8.02470- 4 2.20000+ 1 5.80000+ 1 2.24420- 4 8.23700- 4 2.40000+ 1 2.40000+ 1 8.21086- 3 6.72760- 4 2.40000+ 1 2.50000+ 1 1.52308- 2 6.88510- 4 2.40000+ 1 2.70000+ 1 1.90256- 2 7.99910- 4 2.40000+ 1 2.90000+ 1 2.67355- 3 8.71520- 4 2.40000+ 1 3.00000+ 1 1.28121- 2 9.52160- 4 2.40000+ 1 3.20000+ 1 1.17743- 3 1.05839- 3 2.40000+ 1 3.30000+ 1 7.49910- 4 1.07043- 3 2.40000+ 1 3.50000+ 1 4.74447- 4 1.18625- 3 2.40000+ 1 3.60000+ 1 4.42552- 4 1.18794- 3 2.40000+ 1 4.10000+ 1 2.19296- 3 1.13799- 3 2.40000+ 1 4.30000+ 1 3.19928- 4 1.15977- 3 2.40000+ 1 4.40000+ 1 1.35245- 3 1.17327- 3 2.40000+ 1 5.80000+ 1 1.63797- 4 1.19450- 3 2.50000+ 1 2.50000+ 1 1.34884- 2 7.04260- 4 2.50000+ 1 2.70000+ 1 2.45229- 2 8.15660- 4 2.50000+ 1 2.90000+ 1 1.16352- 3 8.87270- 4 2.50000+ 1 3.00000+ 1 1.30449- 2 9.67910- 4 2.50000+ 1 3.20000+ 1 6.61820- 4 1.07414- 3 2.50000+ 1 3.30000+ 1 1.65385- 3 1.08618- 3 2.50000+ 1 3.50000+ 1 4.72056- 4 1.20200- 3 2.50000+ 1 3.60000+ 1 7.59253- 4 1.20369- 3 2.50000+ 1 4.10000+ 1 2.81201- 3 1.15374- 3 2.50000+ 1 4.30000+ 1 1.35179- 4 1.17552- 3 2.50000+ 1 4.40000+ 1 1.31561- 3 1.18902- 3 2.50000+ 1 5.80000+ 1 2.09984- 4 1.21025- 3 2.70000+ 1 2.70000+ 1 1.80338- 2 9.27060- 4 2.70000+ 1 2.90000+ 1 2.72555- 2 9.98670- 4 2.70000+ 1 3.00000+ 1 4.16206- 2 1.07931- 3 2.70000+ 1 3.20000+ 1 4.33755- 2 1.18554- 3 2.70000+ 1 3.30000+ 1 5.94201- 2 1.19758- 3 2.70000+ 1 3.50000+ 1 1.84437- 2 1.31340- 3 2.70000+ 1 3.60000+ 1 2.26119- 2 1.31509- 3 2.70000+ 1 4.10000+ 1 5.72711- 3 1.26514- 3 2.70000+ 1 4.30000+ 1 4.46353- 3 1.28692- 3 2.70000+ 1 4.40000+ 1 5.78430- 3 1.30042- 3 2.70000+ 1 5.80000+ 1 4.51526- 4 1.32165- 3 2.90000+ 1 2.90000+ 1 2.06663- 3 1.07028- 3 2.90000+ 1 3.00000+ 1 9.80609- 3 1.15092- 3 2.90000+ 1 3.20000+ 1 3.85131- 3 1.25715- 3 2.90000+ 1 3.30000+ 1 2.55918- 3 1.26919- 3 2.90000+ 1 3.50000+ 1 9.83245- 4 1.38501- 3 2.90000+ 1 3.60000+ 1 5.56807- 4 1.38670- 3 2.90000+ 1 4.10000+ 1 3.21413- 3 1.33675- 3 2.90000+ 1 4.30000+ 1 5.38958- 4 1.35853- 3 2.90000+ 1 4.40000+ 1 1.00649- 3 1.37203- 3 2.90000+ 1 5.80000+ 1 2.40928- 4 1.39326- 3 3.00000+ 1 3.00000+ 1 4.71317- 3 1.23156- 3 3.00000+ 1 3.20000+ 1 1.97027- 3 1.33779- 3 3.00000+ 1 3.30000+ 1 5.77681- 3 1.34983- 3 3.00000+ 1 3.50000+ 1 5.22182- 3 1.46565- 3 3.00000+ 1 3.60000+ 1 6.36393- 3 1.46734- 3 3.00000+ 1 4.10000+ 1 5.13087- 3 1.41739- 3 3.00000+ 1 4.30000+ 1 1.42591- 3 1.43917- 3 3.00000+ 1 4.40000+ 1 1.14387- 3 1.45267- 3 3.00000+ 1 5.80000+ 1 3.89047- 4 1.47390- 3 3.20000+ 1 3.20000+ 1 1.10112- 3 1.44402- 3 3.20000+ 1 3.30000+ 1 3.71735- 3 1.45606- 3 3.20000+ 1 3.50000+ 1 4.51505- 4 1.57188- 3 3.20000+ 1 3.60000+ 1 3.21231- 4 1.57357- 3 3.20000+ 1 4.10000+ 1 5.18082- 3 1.52362- 3 3.20000+ 1 4.30000+ 1 4.81846- 4 1.54540- 3 3.20000+ 1 4.40000+ 1 1.65973- 4 1.55890- 3 3.20000+ 1 5.80000+ 1 3.89046- 4 1.58013- 3 3.30000+ 1 3.30000+ 1 2.27175- 3 1.46810- 3 3.30000+ 1 3.50000+ 1 3.55123- 4 1.58392- 3 3.30000+ 1 3.60000+ 1 6.54942- 4 1.58561- 3 3.30000+ 1 4.10000+ 1 7.07904- 3 1.53566- 3 3.30000+ 1 4.30000+ 1 2.76613- 4 1.55744- 3 3.30000+ 1 4.40000+ 1 6.24603- 4 1.57094- 3 3.30000+ 1 5.80000+ 1 5.31807- 4 1.59217- 3 3.50000+ 1 3.50000+ 1 4.99524- 5 1.69974- 3 3.50000+ 1 3.60000+ 1 9.81228- 5 1.70143- 3 3.50000+ 1 4.10000+ 1 2.10158- 3 1.65148- 3 3.50000+ 1 4.30000+ 1 1.12396- 4 1.67326- 3 3.50000+ 1 4.40000+ 1 5.78027- 4 1.68676- 3 3.50000+ 1 5.80000+ 1 1.56990- 4 1.70799- 3 3.60000+ 1 3.60000+ 1 8.07512- 5 1.70312- 3 3.60000+ 1 4.10000+ 1 2.58576- 3 1.65317- 3 3.60000+ 1 4.30000+ 1 5.92161- 5 1.67495- 3 3.60000+ 1 4.40000+ 1 6.98041- 4 1.68845- 3 3.60000+ 1 5.80000+ 1 1.93802- 4 1.70968- 3 4.10000+ 1 4.10000+ 1 4.25239- 4 1.60322- 3 4.10000+ 1 4.30000+ 1 5.39729- 4 1.62500- 3 4.10000+ 1 4.40000+ 1 7.12394- 4 1.63850- 3 4.10000+ 1 5.80000+ 1 6.54209- 5 1.65973- 3 4.30000+ 1 4.30000+ 1 3.39083- 5 1.64678- 3 4.30000+ 1 4.40000+ 1 1.42777- 4 1.66028- 3 4.30000+ 1 5.80000+ 1 3.92622- 5 1.68151- 3 4.40000+ 1 4.40000+ 1 6.60302- 5 1.67378- 3 4.40000+ 1 5.80000+ 1 5.35387- 5 1.69501- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.11313- 3 5.97880- 4 2.70000+ 1 2.52413- 4 1.15313- 3 3.20000+ 1 6.25841- 5 1.41161- 3 4.10000+ 1 5.18050- 5 1.49121- 3 5.80000+ 1 4.42101- 6 1.54772- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 3.00000+ 1 1.29387- 2 6.87800- 5 1.90000+ 1 3.20000+ 1 8.34978- 3 1.75010- 4 1.90000+ 1 3.30000+ 1 1.18672- 2 1.87050- 4 1.90000+ 1 3.50000+ 1 1.95119- 3 3.02870- 4 1.90000+ 1 3.60000+ 1 2.83439- 3 3.04560- 4 1.90000+ 1 4.10000+ 1 1.66164- 3 2.54610- 4 1.90000+ 1 4.30000+ 1 1.92667- 3 2.76390- 4 1.90000+ 1 4.40000+ 1 1.45710- 3 2.89890- 4 1.90000+ 1 5.80000+ 1 1.28778- 4 3.11120- 4 2.10000+ 1 2.40000+ 1 6.51996- 2 6.98600- 5 2.10000+ 1 2.50000+ 1 1.84847- 1 8.56100- 5 2.10000+ 1 2.70000+ 1 2.78245- 2 1.97010- 4 2.10000+ 1 2.90000+ 1 2.31369- 2 2.68620- 4 2.10000+ 1 3.00000+ 1 2.55024- 2 3.49260- 4 2.10000+ 1 3.20000+ 1 1.39417- 2 4.55490- 4 2.10000+ 1 3.30000+ 1 1.95747- 2 4.67530- 4 2.10000+ 1 3.50000+ 1 2.13989- 3 5.83350- 4 2.10000+ 1 3.60000+ 1 3.97589- 3 5.85040- 4 2.10000+ 1 4.10000+ 1 5.35559- 3 5.35090- 4 2.10000+ 1 4.30000+ 1 3.51923- 3 5.56870- 4 2.10000+ 1 4.40000+ 1 3.52618- 3 5.70370- 4 2.10000+ 1 5.80000+ 1 4.31591- 4 5.91600- 4 2.20000+ 1 2.40000+ 1 4.03415- 2 1.27160- 4 2.20000+ 1 2.50000+ 1 1.00474- 2 1.42910- 4 2.20000+ 1 2.70000+ 1 4.31359- 3 2.54310- 4 2.20000+ 1 2.90000+ 1 1.90355- 2 3.25920- 4 2.20000+ 1 3.00000+ 1 3.47048- 3 4.06560- 4 2.20000+ 1 3.20000+ 1 1.66755- 3 5.12790- 4 2.20000+ 1 3.30000+ 1 1.92682- 3 5.24830- 4 2.20000+ 1 3.50000+ 1 5.51915- 4 6.40650- 4 2.20000+ 1 3.60000+ 1 3.62273- 4 6.42340- 4 2.20000+ 1 4.10000+ 1 6.32387- 4 5.92390- 4 2.20000+ 1 4.30000+ 1 1.98114- 3 6.14170- 4 2.20000+ 1 4.40000+ 1 3.62373- 4 6.27670- 4 2.20000+ 1 5.80000+ 1 4.89893- 5 6.48900- 4 2.40000+ 1 2.40000+ 1 1.69582- 3 4.97960- 4 2.40000+ 1 2.50000+ 1 8.43534- 3 5.13710- 4 2.40000+ 1 2.70000+ 1 4.42715- 3 6.25110- 4 2.40000+ 1 2.90000+ 1 1.66211- 2 6.96720- 4 2.40000+ 1 3.00000+ 1 1.75472- 3 7.77360- 4 2.40000+ 1 3.20000+ 1 5.24666- 3 8.83590- 4 2.40000+ 1 3.30000+ 1 4.56589- 3 8.95630- 4 2.40000+ 1 3.50000+ 1 6.67072- 4 1.01145- 3 2.40000+ 1 3.60000+ 1 4.66023- 4 1.01314- 3 2.40000+ 1 4.10000+ 1 8.57505- 4 9.63190- 4 2.40000+ 1 4.30000+ 1 1.76881- 3 9.84970- 4 2.40000+ 1 4.40000+ 1 2.11771- 4 9.98470- 4 2.40000+ 1 5.80000+ 1 6.85569- 5 1.01970- 3 2.50000+ 1 2.50000+ 1 4.60763- 4 5.29460- 4 2.50000+ 1 2.70000+ 1 2.38542- 3 6.40860- 4 2.50000+ 1 2.90000+ 1 2.52252- 2 7.12470- 4 2.50000+ 1 3.00000+ 1 1.32907- 3 7.93110- 4 2.50000+ 1 3.20000+ 1 1.12666- 2 8.99340- 4 2.50000+ 1 3.30000+ 1 1.10090- 3 9.11380- 4 2.50000+ 1 3.50000+ 1 1.29742- 4 1.02720- 3 2.50000+ 1 3.60000+ 1 8.42808- 5 1.02889- 3 2.50000+ 1 4.10000+ 1 3.37774- 4 9.78940- 4 2.50000+ 1 4.30000+ 1 2.56275- 3 1.00072- 3 2.50000+ 1 4.40000+ 1 1.53062- 4 1.01422- 3 2.50000+ 1 5.80000+ 1 2.58844- 5 1.03545- 3 2.70000+ 1 2.70000+ 1 2.48343- 3 7.52260- 4 2.70000+ 1 2.90000+ 1 3.18026- 2 8.23870- 4 2.70000+ 1 3.00000+ 1 6.04339- 3 9.04510- 4 2.70000+ 1 3.20000+ 1 8.24032- 3 1.01074- 3 2.70000+ 1 3.30000+ 1 5.52003- 3 1.02278- 3 2.70000+ 1 3.50000+ 1 6.16880- 4 1.13860- 3 2.70000+ 1 3.60000+ 1 1.27953- 3 1.14029- 3 2.70000+ 1 4.10000+ 1 7.30307- 4 1.09034- 3 2.70000+ 1 4.30000+ 1 3.21375- 3 1.11212- 3 2.70000+ 1 4.40000+ 1 7.52226- 4 1.12562- 3 2.70000+ 1 5.80000+ 1 5.57188- 5 1.14685- 3 2.90000+ 1 2.90000+ 1 2.19958- 2 8.95480- 4 2.90000+ 1 3.00000+ 1 5.61954- 2 9.76120- 4 2.90000+ 1 3.20000+ 1 4.67938- 2 1.08235- 3 2.90000+ 1 3.30000+ 1 7.75676- 2 1.09439- 3 2.90000+ 1 3.50000+ 1 2.19289- 2 1.21021- 3 2.90000+ 1 3.60000+ 1 2.92274- 2 1.21190- 3 2.90000+ 1 4.10000+ 1 6.30515- 3 1.16195- 3 2.90000+ 1 4.30000+ 1 5.91107- 3 1.18373- 3 2.90000+ 1 4.40000+ 1 7.84385- 3 1.19723- 3 2.90000+ 1 5.80000+ 1 5.07510- 4 1.21846- 3 3.00000+ 1 3.00000+ 1 1.65387- 3 1.05676- 3 3.00000+ 1 3.20000+ 1 7.84587- 3 1.16299- 3 3.00000+ 1 3.30000+ 1 3.69059- 3 1.17503- 3 3.00000+ 1 3.50000+ 1 6.58307- 4 1.29085- 3 3.00000+ 1 3.60000+ 1 1.01339- 3 1.29254- 3 3.00000+ 1 4.10000+ 1 8.17871- 4 1.24259- 3 3.00000+ 1 4.30000+ 1 5.80498- 3 1.26437- 3 3.00000+ 1 4.40000+ 1 3.90996- 4 1.27787- 3 3.00000+ 1 5.80000+ 1 6.18412- 5 1.29910- 3 3.20000+ 1 3.20000+ 1 2.87968- 3 1.26922- 3 3.20000+ 1 3.30000+ 1 4.14311- 3 1.28126- 3 3.20000+ 1 3.50000+ 1 3.73079- 3 1.39708- 3 3.20000+ 1 3.60000+ 1 6.04764- 3 1.39877- 3 3.20000+ 1 4.10000+ 1 1.39887- 3 1.34882- 3 3.20000+ 1 4.30000+ 1 4.75190- 3 1.37060- 3 3.20000+ 1 4.40000+ 1 1.01910- 3 1.38410- 3 3.20000+ 1 5.80000+ 1 1.12598- 4 1.40533- 3 3.30000+ 1 3.30000+ 1 7.13784- 4 1.29330- 3 3.30000+ 1 3.50000+ 1 9.06521- 4 1.40912- 3 3.30000+ 1 3.60000+ 1 5.15289- 4 1.41081- 3 3.30000+ 1 4.10000+ 1 6.43169- 4 1.36086- 3 3.30000+ 1 4.30000+ 1 7.76351- 3 1.38264- 3 3.30000+ 1 4.40000+ 1 3.98874- 4 1.39614- 3 3.30000+ 1 5.80000+ 1 4.77123- 5 1.41737- 3 3.50000+ 1 3.50000+ 1 9.39633- 5 1.52494- 3 3.50000+ 1 3.60000+ 1 1.52685- 4 1.52663- 3 3.50000+ 1 4.10000+ 1 1.05711- 4 1.47668- 3 3.50000+ 1 4.30000+ 1 2.14939- 3 1.49846- 3 3.50000+ 1 4.40000+ 1 7.43869- 5 1.51196- 3 3.50000+ 1 5.80000+ 1 7.83016- 6 1.53319- 3 3.60000+ 1 3.60000+ 1 3.71833- 5 1.52832- 3 3.60000+ 1 4.10000+ 1 1.72219- 4 1.47837- 3 3.60000+ 1 4.30000+ 1 2.87688- 3 1.50015- 3 3.60000+ 1 4.40000+ 1 1.05681- 4 1.51365- 3 3.60000+ 1 5.80000+ 1 1.36990- 5 1.53488- 3 4.10000+ 1 4.10000+ 1 5.34360- 5 1.42842- 3 4.10000+ 1 4.30000+ 1 6.16415- 4 1.45020- 3 4.10000+ 1 4.40000+ 1 9.73253- 5 1.46370- 3 4.10000+ 1 5.80000+ 1 7.63347- 6 1.48493- 3 4.30000+ 1 4.30000+ 1 3.64871- 4 1.47198- 3 4.30000+ 1 4.40000+ 1 7.98410- 4 1.48548- 3 4.30000+ 1 5.80000+ 1 5.10029- 5 1.50671- 3 4.40000+ 1 4.40000+ 1 2.31784- 5 1.49898- 3 4.40000+ 1 5.80000+ 1 8.42823- 6 1.52021- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.13700- 5 2.80480- 4 2.20000+ 1 1.87170- 4 3.37780- 4 2.70000+ 1 3.30381- 4 8.35730- 4 3.20000+ 1 3.91981- 5 1.09421- 3 3.30000+ 1 2.27471- 4 1.10625- 3 4.10000+ 1 6.49781- 5 1.17381- 3 5.80000+ 1 5.51781- 6 1.23032- 3 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.75851- 2 3.18600- 5 2.10000+ 1 3.20000+ 1 1.81771- 2 1.38090- 4 2.10000+ 1 3.30000+ 1 2.69492- 2 1.50130- 4 2.10000+ 1 3.50000+ 1 3.41435- 3 2.65950- 4 2.10000+ 1 3.60000+ 1 3.04389- 3 2.67640- 4 2.10000+ 1 4.10000+ 1 3.88900- 3 2.17690- 4 2.10000+ 1 4.30000+ 1 2.79541- 3 2.39470- 4 2.10000+ 1 4.40000+ 1 5.60013- 3 2.52970- 4 2.10000+ 1 5.80000+ 1 3.06009- 4 2.74200- 4 2.20000+ 1 2.90000+ 1 1.28376- 1 8.52000- 6 2.20000+ 1 3.00000+ 1 1.29036- 1 8.91600- 5 2.20000+ 1 3.20000+ 1 1.16678- 1 1.95390- 4 2.20000+ 1 3.30000+ 1 1.39345- 1 2.07430- 4 2.20000+ 1 3.50000+ 1 1.01710- 2 3.23250- 4 2.20000+ 1 3.60000+ 1 1.26246- 2 3.24940- 4 2.20000+ 1 4.10000+ 1 2.20865- 2 2.74990- 4 2.20000+ 1 4.30000+ 1 1.95619- 2 2.96770- 4 2.20000+ 1 4.40000+ 1 1.67312- 2 3.10270- 4 2.20000+ 1 5.80000+ 1 1.74031- 3 3.31500- 4 2.40000+ 1 2.40000+ 1 1.02899- 3 1.80560- 4 2.40000+ 1 2.50000+ 1 2.36804- 3 1.96310- 4 2.40000+ 1 2.70000+ 1 9.95722- 3 3.07710- 4 2.40000+ 1 2.90000+ 1 4.99666- 3 3.79320- 4 2.40000+ 1 3.00000+ 1 5.26923- 2 4.59960- 4 2.40000+ 1 3.20000+ 1 2.14076- 3 5.66190- 4 2.40000+ 1 3.30000+ 1 7.51829- 3 5.78230- 4 2.40000+ 1 3.50000+ 1 7.76217- 4 6.94050- 4 2.40000+ 1 3.60000+ 1 7.71687- 4 6.95740- 4 2.40000+ 1 4.10000+ 1 1.15888- 3 6.45790- 4 2.40000+ 1 4.30000+ 1 6.76157- 4 6.67570- 4 2.40000+ 1 4.40000+ 1 4.89727- 3 6.81070- 4 2.40000+ 1 5.80000+ 1 8.67476- 5 7.02300- 4 2.50000+ 1 2.50000+ 1 3.27008- 3 2.12060- 4 2.50000+ 1 2.70000+ 1 2.34786- 2 3.23460- 4 2.50000+ 1 2.90000+ 1 1.79762- 2 3.95070- 4 2.50000+ 1 3.00000+ 1 6.39667- 2 4.75710- 4 2.50000+ 1 3.20000+ 1 1.58755- 3 5.81940- 4 2.50000+ 1 3.30000+ 1 1.09100- 2 5.93980- 4 2.50000+ 1 3.50000+ 1 3.17649- 3 7.09800- 4 2.50000+ 1 3.60000+ 1 3.84432- 3 7.11490- 4 2.50000+ 1 4.10000+ 1 3.34227- 3 6.61540- 4 2.50000+ 1 4.30000+ 1 2.56785- 3 6.83320- 4 2.50000+ 1 4.40000+ 1 6.00211- 3 6.96820- 4 2.50000+ 1 5.80000+ 1 2.58115- 4 7.18050- 4 2.70000+ 1 2.70000+ 1 6.65252- 5 4.34860- 4 2.70000+ 1 2.90000+ 1 2.80731- 4 5.06470- 4 2.70000+ 1 3.00000+ 1 4.96759- 3 5.87110- 4 2.70000+ 1 3.20000+ 1 4.56363- 4 6.93340- 4 2.70000+ 1 3.30000+ 1 7.53333- 4 7.05380- 4 2.70000+ 1 3.50000+ 1 2.26987- 4 8.21200- 4 2.70000+ 1 3.60000+ 1 2.28047- 4 8.22890- 4 2.70000+ 1 4.10000+ 1 2.55454- 5 7.72940- 4 2.70000+ 1 4.30000+ 1 2.98030- 5 7.94720- 4 2.70000+ 1 4.40000+ 1 4.41465- 4 8.08220- 4 2.70000+ 1 5.80000+ 1 2.12888- 6 8.29450- 4 2.90000+ 1 2.90000+ 1 7.18470- 6 5.78080- 4 2.90000+ 1 3.00000+ 1 5.74805- 3 6.58720- 4 2.90000+ 1 3.20000+ 1 2.62641- 4 7.64950- 4 2.90000+ 1 3.30000+ 1 6.98243- 4 7.76990- 4 2.90000+ 1 3.50000+ 1 1.80150- 4 8.92810- 4 2.90000+ 1 3.60000+ 1 4.12985- 4 8.94500- 4 2.90000+ 1 4.10000+ 1 4.78977- 5 8.44550- 4 2.90000+ 1 4.30000+ 1 7.45078- 6 8.66330- 4 2.90000+ 1 4.40000+ 1 5.25021- 4 8.79830- 4 2.90000+ 1 5.80000+ 1 3.99145- 6 9.01060- 4 3.00000+ 1 3.00000+ 1 7.16759- 3 7.39360- 4 3.00000+ 1 3.20000+ 1 8.77945- 3 8.45590- 4 3.00000+ 1 3.30000+ 1 1.16250- 2 8.57630- 4 3.00000+ 1 3.50000+ 1 3.84598- 3 9.73450- 4 3.00000+ 1 3.60000+ 1 4.54372- 3 9.75140- 4 3.00000+ 1 4.10000+ 1 9.88797- 4 9.25190- 4 3.00000+ 1 4.30000+ 1 9.11684- 4 9.46970- 4 3.00000+ 1 4.40000+ 1 1.65726- 3 9.60470- 4 3.00000+ 1 5.80000+ 1 7.95653- 5 9.81700- 4 3.20000+ 1 3.20000+ 1 1.72446- 4 9.51820- 4 3.20000+ 1 3.30000+ 1 1.03542- 3 9.63860- 4 3.20000+ 1 3.50000+ 1 8.59534- 5 1.07968- 3 3.20000+ 1 3.60000+ 1 1.71107- 4 1.08137- 3 3.20000+ 1 4.10000+ 1 6.17373- 5 1.03142- 3 3.20000+ 1 4.30000+ 1 4.28427- 5 1.05320- 3 3.20000+ 1 4.40000+ 1 8.10308- 4 1.06670- 3 3.20000+ 1 5.80000+ 1 4.78993- 6 1.08793- 3 3.30000+ 1 3.30000+ 1 9.84581- 4 9.75900- 4 3.30000+ 1 3.50000+ 1 2.90854- 4 1.09172- 3 3.30000+ 1 3.60000+ 1 3.93835- 4 1.09341- 3 3.30000+ 1 4.10000+ 1 1.43437- 4 1.04346- 3 3.30000+ 1 4.30000+ 1 1.17350- 4 1.06524- 3 3.30000+ 1 4.40000+ 1 1.08651- 3 1.07874- 3 3.30000+ 1 5.80000+ 1 1.14430- 5 1.09997- 3 3.50000+ 1 3.50000+ 1 7.49253- 6 1.20754- 3 3.50000+ 1 3.60000+ 1 3.79975- 5 1.20923- 3 3.50000+ 1 4.10000+ 1 2.80975- 5 1.15928- 3 3.50000+ 1 4.30000+ 1 9.63322- 6 1.18106- 3 3.50000+ 1 4.40000+ 1 3.44120- 4 1.19456- 3 3.50000+ 1 5.80000+ 1 2.14079- 6 1.21579- 3 3.60000+ 1 3.60000+ 1 2.42553- 5 1.21092- 3 3.60000+ 1 4.10000+ 1 2.96458- 5 1.16097- 3 3.60000+ 1 4.30000+ 1 2.26381- 5 1.18275- 3 3.60000+ 1 4.40000+ 1 4.07486- 4 1.19625- 3 3.60000+ 1 5.80000+ 1 2.15606- 6 1.21748- 3 4.10000+ 1 4.10000+ 1 5.32195- 7 1.11102- 3 4.10000+ 1 4.30000+ 1 3.45924- 6 1.13280- 3 4.10000+ 1 4.40000+ 1 8.80788- 5 1.14630- 3 4.30000+ 1 4.30000+ 1 2.66112- 7 1.15458- 3 4.30000+ 1 4.40000+ 1 8.30220- 5 1.16808- 3 4.30000+ 1 5.80000+ 1 2.66112- 7 1.18931- 3 4.40000+ 1 4.40000+ 1 9.04745- 5 1.18158- 3 4.40000+ 1 5.80000+ 1 7.18474- 6 1.20281- 3 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.94850- 4 4.28100- 4 2.90000+ 1 2.14670- 4 6.26860- 4 3.00000+ 1 2.27240- 5 7.07500- 4 3.50000+ 1 1.19250- 4 9.41590- 4 4.30000+ 1 3.49840- 5 9.15110- 4 4.40000+ 1 3.30590- 6 9.28610- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 3.99150- 3 4.27700- 5 2.20000+ 1 3.60000+ 1 4.89751- 3 4.44600- 5 2.20000+ 1 4.10000+ 1 2.35013- 3 0.00000+ 0 2.20000+ 1 4.30000+ 1 1.19474- 3 1.62900- 5 2.20000+ 1 4.40000+ 1 2.53770- 3 2.97900- 5 2.20000+ 1 5.80000+ 1 1.62426- 4 5.10200- 5 2.40000+ 1 2.70000+ 1 1.23058- 1 2.72300- 5 2.40000+ 1 2.90000+ 1 1.10888- 1 9.88400- 5 2.40000+ 1 3.00000+ 1 1.23048- 1 1.79480- 4 2.40000+ 1 3.20000+ 1 1.26939- 1 2.85710- 4 2.40000+ 1 3.30000+ 1 1.32100- 1 2.97750- 4 2.40000+ 1 3.50000+ 1 7.32461- 3 4.13570- 4 2.40000+ 1 3.60000+ 1 5.96262- 3 4.15260- 4 2.40000+ 1 4.10000+ 1 2.36947- 2 3.65310- 4 2.40000+ 1 4.30000+ 1 1.76992- 2 3.87090- 4 2.40000+ 1 4.40000+ 1 1.67171- 2 4.00590- 4 2.40000+ 1 5.80000+ 1 1.91854- 3 4.21820- 4 2.50000+ 1 2.70000+ 1 8.45419- 3 4.29800- 5 2.50000+ 1 2.90000+ 1 1.82463- 2 1.14590- 4 2.50000+ 1 3.00000+ 1 8.04056- 3 1.95230- 4 2.50000+ 1 3.20000+ 1 1.34089- 1 3.01460- 4 2.50000+ 1 3.30000+ 1 5.59749- 3 3.13500- 4 2.50000+ 1 3.50000+ 1 1.97274- 3 4.29320- 4 2.50000+ 1 3.60000+ 1 6.45264- 4 4.31010- 4 2.50000+ 1 4.10000+ 1 1.18168- 3 3.81060- 4 2.50000+ 1 4.30000+ 1 1.77192- 3 4.02840- 4 2.50000+ 1 4.40000+ 1 8.19007- 4 4.16340- 4 2.50000+ 1 5.80000+ 1 9.20044- 5 4.37570- 4 2.70000+ 1 2.70000+ 1 8.52697- 4 1.54380- 4 2.70000+ 1 2.90000+ 1 2.13909- 3 2.25990- 4 2.70000+ 1 3.00000+ 1 1.48323- 3 3.06630- 4 2.70000+ 1 3.20000+ 1 1.19341- 2 4.12860- 4 2.70000+ 1 3.30000+ 1 1.66765- 3 4.24900- 4 2.70000+ 1 3.50000+ 1 1.78256- 3 5.40720- 4 2.70000+ 1 3.60000+ 1 1.47663- 3 5.42410- 4 2.70000+ 1 4.10000+ 1 1.95508- 4 4.92460- 4 2.70000+ 1 4.30000+ 1 2.23860- 4 5.14240- 4 2.70000+ 1 4.40000+ 1 1.63474- 4 5.27740- 4 2.70000+ 1 5.80000+ 1 1.51973- 5 5.48970- 4 2.90000+ 1 2.90000+ 1 5.49142- 4 2.97600- 4 2.90000+ 1 3.00000+ 1 1.92541- 3 3.78240- 4 2.90000+ 1 3.20000+ 1 8.74591- 3 4.84470- 4 2.90000+ 1 3.30000+ 1 9.20444- 4 4.96510- 4 2.90000+ 1 3.50000+ 1 2.43564- 4 6.12330- 4 2.90000+ 1 3.60000+ 1 2.22203- 4 6.14020- 4 2.90000+ 1 4.10000+ 1 1.62639- 4 5.64070- 4 2.90000+ 1 4.30000+ 1 1.19527- 4 5.85850- 4 2.90000+ 1 4.40000+ 1 1.54428- 4 5.99350- 4 2.90000+ 1 5.80000+ 1 1.27327- 5 6.20580- 4 3.00000+ 1 3.00000+ 1 6.43188- 4 4.58880- 4 3.00000+ 1 3.20000+ 1 1.76147- 2 5.65110- 4 3.00000+ 1 3.30000+ 1 1.47906- 3 5.77150- 4 3.00000+ 1 3.50000+ 1 6.75650- 4 6.92970- 4 3.00000+ 1 3.60000+ 1 3.87316- 4 6.94660- 4 3.00000+ 1 4.10000+ 1 7.02331- 5 6.44710- 4 3.00000+ 1 4.30000+ 1 1.37996- 4 6.66490- 4 3.00000+ 1 4.40000+ 1 1.10895- 4 6.79990- 4 3.00000+ 1 5.80000+ 1 4.92872- 6 7.01220- 4 3.20000+ 1 3.20000+ 1 1.15358- 2 6.71340- 4 3.20000+ 1 3.30000+ 1 2.23475- 2 6.83380- 4 3.20000+ 1 3.50000+ 1 6.63336- 3 7.99200- 4 3.20000+ 1 3.60000+ 1 8.94372- 3 8.00890- 4 3.20000+ 1 4.10000+ 1 1.88074- 3 7.50940- 4 3.20000+ 1 4.30000+ 1 1.42109- 3 7.72720- 4 3.20000+ 1 4.40000+ 1 2.34286- 3 7.86220- 4 3.20000+ 1 5.80000+ 1 1.49910- 4 8.07450- 4 3.30000+ 1 3.30000+ 1 3.74996- 4 6.95420- 4 3.30000+ 1 3.50000+ 1 7.56151- 4 8.11240- 4 3.30000+ 1 3.60000+ 1 2.55877- 4 8.12930- 4 3.30000+ 1 4.10000+ 1 7.18779- 5 7.62980- 4 3.30000+ 1 4.30000+ 1 7.76283- 5 7.84760- 4 3.30000+ 1 4.40000+ 1 1.30619- 4 7.98260- 4 3.30000+ 1 5.80000+ 1 5.75019- 6 8.19490- 4 3.50000+ 1 3.50000+ 1 9.46078- 5 9.27060- 4 3.50000+ 1 3.60000+ 1 1.60302- 4 9.28750- 4 3.50000+ 1 4.10000+ 1 9.79122- 5 8.78800- 4 3.50000+ 1 4.30000+ 1 3.84207- 5 9.00580- 4 3.50000+ 1 4.40000+ 1 7.22977- 5 9.14080- 4 3.50000+ 1 5.80000+ 1 6.61003- 6 9.35310- 4 3.60000+ 1 3.60000+ 1 2.09512- 5 9.30440- 4 3.60000+ 1 4.10000+ 1 6.58479- 5 8.80490- 4 3.60000+ 1 4.30000+ 1 3.24961- 5 9.02270- 4 3.60000+ 1 4.40000+ 1 3.71988- 5 9.15770- 4 3.60000+ 1 5.80000+ 1 4.27593- 6 9.37000- 4 4.10000+ 1 4.10000+ 1 5.49777- 6 8.30540- 4 4.10000+ 1 4.30000+ 1 1.09962- 5 8.52320- 4 4.10000+ 1 4.40000+ 1 7.18927- 6 8.65820- 4 4.10000+ 1 5.80000+ 1 8.45796- 7 8.87050- 4 4.30000+ 1 4.30000+ 1 2.05367- 6 8.74100- 4 4.30000+ 1 4.40000+ 1 1.06799- 5 8.87600- 4 4.30000+ 1 5.80000+ 1 8.21466- 7 9.08830- 4 4.40000+ 1 4.40000+ 1 4.92886- 6 9.01100- 4 4.40000+ 1 5.80000+ 1 4.10739- 7 9.22330- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.68385- 5 3.70800- 4 2.50000+ 1 3.92443- 4 3.86550- 4 3.00000+ 1 1.66218- 4 6.50200- 4 3.50000+ 1 7.71121- 6 8.84290- 4 3.60000+ 1 1.27768- 4 8.85980- 4 4.40000+ 1 2.40591- 5 8.71310- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.90000+ 1 8.64030- 3 4.15400- 5 2.40000+ 1 3.00000+ 1 1.65397- 2 1.22180- 4 2.40000+ 1 3.20000+ 1 8.31728- 3 2.28410- 4 2.40000+ 1 3.30000+ 1 1.12992- 1 2.40450- 4 2.40000+ 1 3.50000+ 1 1.49794- 3 3.56270- 4 2.40000+ 1 3.60000+ 1 1.40774- 3 3.57960- 4 2.40000+ 1 4.10000+ 1 2.20733- 3 3.08010- 4 2.40000+ 1 4.30000+ 1 1.46853- 3 3.29790- 4 2.40000+ 1 4.40000+ 1 1.83063- 3 3.43290- 4 2.40000+ 1 5.80000+ 1 1.69542- 4 3.64520- 4 2.50000+ 1 2.90000+ 1 1.45120- 1 5.72900- 5 2.50000+ 1 3.00000+ 1 1.24602- 1 1.37930- 4 2.50000+ 1 3.20000+ 1 1.26835- 1 2.44160- 4 2.50000+ 1 3.30000+ 1 2.23222- 1 2.56200- 4 2.50000+ 1 3.50000+ 1 8.06739- 3 3.72020- 4 2.50000+ 1 3.60000+ 1 1.32735- 2 3.73710- 4 2.50000+ 1 4.10000+ 1 2.63106- 2 3.23760- 4 2.50000+ 1 4.30000+ 1 2.24899- 2 3.45540- 4 2.50000+ 1 4.40000+ 1 1.68830- 2 3.59040- 4 2.50000+ 1 5.80000+ 1 2.06128- 3 3.80270- 4 2.70000+ 1 2.70000+ 1 1.64587- 3 9.70800- 5 2.70000+ 1 2.90000+ 1 2.42641- 3 1.68690- 4 2.70000+ 1 3.00000+ 1 3.16516- 3 2.49330- 4 2.70000+ 1 3.20000+ 1 2.69702- 3 3.55560- 4 2.70000+ 1 3.30000+ 1 1.41969- 2 3.67600- 4 2.70000+ 1 3.50000+ 1 2.07909- 3 4.83420- 4 2.70000+ 1 3.60000+ 1 3.18893- 3 4.85110- 4 2.70000+ 1 4.10000+ 1 3.65805- 4 4.35160- 4 2.70000+ 1 4.30000+ 1 2.70925- 4 4.56940- 4 2.70000+ 1 4.40000+ 1 3.41561- 4 4.70440- 4 2.70000+ 1 5.80000+ 1 2.75924- 5 4.91670- 4 2.90000+ 1 2.90000+ 1 3.57852- 4 2.40300- 4 2.90000+ 1 3.00000+ 1 3.63062- 3 3.20940- 4 2.90000+ 1 3.20000+ 1 6.10948- 4 4.27170- 4 2.90000+ 1 3.30000+ 1 1.35881- 2 4.39210- 4 2.90000+ 1 3.50000+ 1 3.03779- 4 5.55030- 4 2.90000+ 1 3.60000+ 1 6.06291- 4 5.56720- 4 2.90000+ 1 4.10000+ 1 1.66463- 4 5.06770- 4 2.90000+ 1 4.30000+ 1 8.11210- 5 5.28550- 4 2.90000+ 1 4.40000+ 1 2.80128- 4 5.42050- 4 2.90000+ 1 5.80000+ 1 1.18301- 5 5.63280- 4 3.00000+ 1 3.00000+ 1 1.16198- 3 4.01580- 4 3.00000+ 1 3.20000+ 1 2.38926- 3 5.07810- 4 3.00000+ 1 3.30000+ 1 1.72423- 2 5.19850- 4 3.00000+ 1 3.50000+ 1 6.09849- 4 6.35670- 4 3.00000+ 1 3.60000+ 1 7.85528- 4 6.37360- 4 3.00000+ 1 4.10000+ 1 9.74581- 5 5.87410- 4 3.00000+ 1 4.30000+ 1 1.43890- 4 6.09190- 4 3.00000+ 1 4.40000+ 1 2.02033- 4 6.22690- 4 3.00000+ 1 5.80000+ 1 5.85594- 6 6.43920- 4 3.20000+ 1 3.20000+ 1 1.43715- 4 6.14040- 4 3.20000+ 1 3.30000+ 1 1.73827- 2 6.26080- 4 3.20000+ 1 3.50000+ 1 2.12640- 4 7.41900- 4 3.20000+ 1 3.60000+ 1 7.95015- 4 7.43590- 4 3.20000+ 1 4.10000+ 1 7.14380- 5 6.93640- 4 3.20000+ 1 4.30000+ 1 4.97157- 5 7.15420- 4 3.20000+ 1 4.40000+ 1 2.18906- 4 7.28920- 4 3.20000+ 1 5.80000+ 1 5.01332- 6 7.50150- 4 3.30000+ 1 3.30000+ 1 1.82449- 2 6.38120- 4 3.30000+ 1 3.50000+ 1 8.58576- 3 7.53940- 4 3.30000+ 1 3.60000+ 1 1.00820- 2 7.55630- 4 3.30000+ 1 4.10000+ 1 1.91644- 3 7.05680- 4 3.30000+ 1 4.30000+ 1 1.80571- 3 7.27460- 4 3.30000+ 1 4.40000+ 1 2.18857- 3 7.40960- 4 3.30000+ 1 5.80000+ 1 1.48988- 4 7.62190- 4 3.50000+ 1 3.50000+ 1 2.42678- 5 8.69760- 4 3.50000+ 1 3.60000+ 1 1.69539- 4 8.71450- 4 3.50000+ 1 4.10000+ 1 7.17759- 5 8.21500- 4 3.50000+ 1 4.30000+ 1 2.46102- 5 8.43280- 4 3.50000+ 1 4.40000+ 1 4.10161- 5 8.56780- 4 3.50000+ 1 5.80000+ 1 4.44339- 6 8.78010- 4 3.60000+ 1 3.60000+ 1 1.52043- 4 8.73140- 4 3.60000+ 1 4.10000+ 1 1.25871- 4 8.23190- 4 3.60000+ 1 4.30000+ 1 4.20771- 5 8.44970- 4 3.60000+ 1 4.40000+ 1 6.61198- 5 8.58470- 4 3.60000+ 1 5.80000+ 1 8.13238- 6 8.79700- 4 4.10000+ 1 4.10000+ 1 1.10274- 5 7.73240- 4 4.10000+ 1 4.30000+ 1 1.39962- 5 7.95020- 4 4.10000+ 1 4.40000+ 1 1.14522- 5 8.08520- 4 4.10000+ 1 5.80000+ 1 1.69649- 6 8.29750- 4 4.30000+ 1 4.30000+ 1 2.72907- 6 8.16800- 4 4.30000+ 1 4.40000+ 1 1.41004- 5 8.30300- 4 4.30000+ 1 5.80000+ 1 9.09681- 7 8.51530- 4 4.40000+ 1 4.40000+ 1 1.02332- 5 8.43800- 4 4.40000+ 1 5.80000+ 1 8.89834- 7 8.65030- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.47921- 4 3.85630- 4 3.30000+ 1 9.16585- 6 3.97670- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 2.35410- 1 1.22000- 6 2.50000+ 1 3.60000+ 1 1.43896- 2 2.91000- 6 2.50000+ 1 5.80000+ 1 2.82190- 4 9.47000- 6 2.70000+ 1 3.50000+ 1 5.28212- 2 1.12620- 4 2.70000+ 1 3.60000+ 1 1.02456- 2 1.14310- 4 2.70000+ 1 4.10000+ 1 8.18804- 4 6.43600- 5 2.70000+ 1 4.30000+ 1 1.06025- 3 8.61400- 5 2.70000+ 1 4.40000+ 1 2.34098- 3 9.96400- 5 2.70000+ 1 5.80000+ 1 5.24878- 5 1.20870- 4 2.90000+ 1 3.20000+ 1 2.81018- 2 5.63700- 5 2.90000+ 1 3.30000+ 1 5.96962- 2 6.84100- 5 2.90000+ 1 3.50000+ 1 5.23907- 2 1.84230- 4 2.90000+ 1 3.60000+ 1 1.23424- 2 1.85920- 4 2.90000+ 1 4.10000+ 1 7.42530- 3 1.35970- 4 2.90000+ 1 4.30000+ 1 4.11168- 3 1.57750- 4 2.90000+ 1 4.40000+ 1 6.19355- 3 1.71250- 4 2.90000+ 1 5.80000+ 1 5.49386- 4 1.92480- 4 3.00000+ 1 3.00000+ 1 8.80041- 3 3.07800- 5 3.00000+ 1 3.20000+ 1 5.18411- 2 1.37010- 4 3.00000+ 1 3.30000+ 1 3.79052- 2 1.49050- 4 3.00000+ 1 3.50000+ 1 7.78470- 2 2.64870- 4 3.00000+ 1 3.60000+ 1 4.50680- 3 2.66560- 4 3.00000+ 1 4.10000+ 1 2.69425- 3 2.16610- 4 3.00000+ 1 4.30000+ 1 1.77758- 3 2.38390- 4 3.00000+ 1 4.40000+ 1 1.20724- 3 2.51890- 4 3.00000+ 1 5.80000+ 1 1.71456- 4 2.73120- 4 3.20000+ 1 3.20000+ 1 6.27384- 3 2.43240- 4 3.20000+ 1 3.30000+ 1 1.42076- 2 2.55280- 4 3.20000+ 1 3.50000+ 1 6.94275- 2 3.71100- 4 3.20000+ 1 3.60000+ 1 8.92970- 3 3.72790- 4 3.20000+ 1 4.10000+ 1 8.57269- 4 3.22840- 4 3.20000+ 1 4.30000+ 1 4.08345- 3 3.44620- 4 3.20000+ 1 4.40000+ 1 2.76778- 3 3.58120- 4 3.20000+ 1 5.80000+ 1 7.34794- 5 3.79350- 4 3.30000+ 1 3.30000+ 1 3.59358- 3 2.67320- 4 3.30000+ 1 3.50000+ 1 1.01662- 1 3.83140- 4 3.30000+ 1 3.60000+ 1 2.85184- 3 3.84830- 4 3.30000+ 1 4.10000+ 1 8.81797- 4 3.34880- 4 3.30000+ 1 4.30000+ 1 2.96032- 3 3.56660- 4 3.30000+ 1 4.40000+ 1 1.57463- 3 3.70160- 4 3.30000+ 1 5.80000+ 1 6.64848- 5 3.91390- 4 3.50000+ 1 3.50000+ 1 2.66823- 2 4.98960- 4 3.50000+ 1 3.60000+ 1 4.79538- 2 5.00650- 4 3.50000+ 1 4.10000+ 1 8.73556- 3 4.50700- 4 3.50000+ 1 4.30000+ 1 7.62225- 3 4.72480- 4 3.50000+ 1 4.40000+ 1 1.02270- 2 4.85980- 4 3.50000+ 1 5.80000+ 1 6.89741- 4 5.07210- 4 3.60000+ 1 3.60000+ 1 4.62818- 4 5.02340- 4 3.60000+ 1 4.10000+ 1 2.67934- 4 4.52390- 4 3.60000+ 1 4.30000+ 1 8.69960- 4 4.74170- 4 3.60000+ 1 4.40000+ 1 3.27100- 4 4.87670- 4 3.60000+ 1 5.80000+ 1 1.73987- 5 5.08900- 4 4.10000+ 1 4.10000+ 1 3.14936- 5 4.02440- 4 4.10000+ 1 4.30000+ 1 2.83439- 4 4.24220- 4 4.10000+ 1 4.40000+ 1 1.85461- 4 4.37720- 4 4.10000+ 1 5.80000+ 1 3.49919- 6 4.58950- 4 4.30000+ 1 4.30000+ 1 9.79790- 5 4.46000- 4 4.30000+ 1 4.40000+ 1 1.32978- 4 4.59500- 4 4.30000+ 1 5.80000+ 1 2.09945- 5 4.80730- 4 4.40000+ 1 4.40000+ 1 2.48388- 5 4.73000- 4 4.40000+ 1 5.80000+ 1 1.24194- 5 4.94230- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 1.83571- 4 3.81920- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 9.32614- 3 9.68700- 5 2.70000+ 1 3.60000+ 1 6.44115- 2 9.85600- 5 2.70000+ 1 4.10000+ 1 1.06617- 3 4.86100- 5 2.70000+ 1 4.30000+ 1 2.21259- 3 7.03900- 5 2.70000+ 1 4.40000+ 1 1.88380- 3 8.38900- 5 2.70000+ 1 5.80000+ 1 6.32139- 5 1.05120- 4 2.90000+ 1 3.20000+ 1 3.67748- 3 4.06200- 5 2.90000+ 1 3.30000+ 1 7.35067- 3 5.26600- 5 2.90000+ 1 3.50000+ 1 7.51448- 4 1.68480- 4 2.90000+ 1 3.60000+ 1 5.67650- 2 1.70170- 4 2.90000+ 1 4.10000+ 1 2.29627- 3 1.20220- 4 2.90000+ 1 4.30000+ 1 5.20547- 4 1.42000- 4 2.90000+ 1 4.40000+ 1 7.13667- 4 1.55500- 4 2.90000+ 1 5.80000+ 1 1.55328- 4 1.76730- 4 3.00000+ 1 3.00000+ 1 3.73271- 2 1.50300- 5 3.00000+ 1 3.20000+ 1 9.72579- 2 1.21260- 4 3.00000+ 1 3.30000+ 1 1.94357- 1 1.33300- 4 3.00000+ 1 3.50000+ 1 1.57789- 2 2.49120- 4 3.00000+ 1 3.60000+ 1 1.04197- 1 2.50810- 4 3.00000+ 1 4.10000+ 1 6.51522- 3 2.00860- 4 3.00000+ 1 4.30000+ 1 2.25048- 3 2.22640- 4 3.00000+ 1 4.40000+ 1 5.13306- 3 2.36140- 4 3.00000+ 1 5.80000+ 1 4.55154- 4 2.57370- 4 3.20000+ 1 3.20000+ 1 1.65620- 3 2.27490- 4 3.20000+ 1 3.30000+ 1 1.77196- 2 2.39530- 4 3.20000+ 1 3.50000+ 1 2.17032- 3 3.55350- 4 3.20000+ 1 3.60000+ 1 8.74216- 2 3.57040- 4 3.20000+ 1 4.10000+ 1 8.93399- 4 3.07090- 4 3.20000+ 1 4.30000+ 1 8.80744- 4 3.28870- 4 3.20000+ 1 4.40000+ 1 2.86137- 3 3.42370- 4 3.20000+ 1 5.80000+ 1 6.74257- 5 3.63600- 4 3.30000+ 1 3.30000+ 1 1.09106- 2 2.51570- 4 3.30000+ 1 3.50000+ 1 9.97102- 3 3.67390- 4 3.30000+ 1 3.60000+ 1 1.17183- 1 3.69080- 4 3.30000+ 1 4.10000+ 1 1.24321- 3 3.19130- 4 3.30000+ 1 4.30000+ 1 1.50872- 3 3.40910- 4 3.30000+ 1 4.40000+ 1 5.99280- 3 3.54410- 4 3.30000+ 1 5.80000+ 1 1.01138- 4 3.75640- 4 3.50000+ 1 3.50000+ 1 3.94694- 4 4.83210- 4 3.50000+ 1 3.60000+ 1 4.61974- 2 4.84900- 4 3.50000+ 1 4.10000+ 1 3.09826- 4 4.34950- 4 3.50000+ 1 4.30000+ 1 7.21492- 5 4.56730- 4 3.50000+ 1 4.40000+ 1 1.07802- 3 4.70230- 4 3.50000+ 1 5.80000+ 1 2.12191- 5 4.91460- 4 3.60000+ 1 3.60000+ 1 4.31596- 2 4.86590- 4 3.60000+ 1 4.10000+ 1 1.04232- 2 4.36640- 4 3.60000+ 1 4.30000+ 1 8.72110- 3 4.58420- 4 3.60000+ 1 4.40000+ 1 1.28073- 2 4.71920- 4 3.60000+ 1 5.80000+ 1 8.21305- 4 4.93150- 4 4.10000+ 1 4.10000+ 1 3.37153- 5 3.86690- 4 4.10000+ 1 4.30000+ 1 1.60148- 4 4.08470- 4 4.10000+ 1 4.40000+ 1 3.28705- 4 4.21970- 4 4.10000+ 1 5.80000+ 1 4.21435- 6 4.43200- 4 4.30000+ 1 4.30000+ 1 1.68569- 5 4.30250- 4 4.30000+ 1 4.40000+ 1 8.85005- 5 4.43750- 4 4.30000+ 1 5.80000+ 1 1.26433- 5 4.64980- 4 4.40000+ 1 4.40000+ 1 9.69301- 5 4.57250- 4 4.40000+ 1 5.80000+ 1 2.10705- 5 4.78480- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.27190- 6 7.16100- 5 3.00000+ 1 2.51440- 5 1.52250- 4 4.30000+ 1 3.31130- 6 3.59860- 4 4.40000+ 1 5.92089- 8 3.73360- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 5.31928- 2 5.70800- 5 2.90000+ 1 3.60000+ 1 9.12004- 2 5.87700- 5 2.90000+ 1 4.10000+ 1 2.04289- 2 8.82000- 6 2.90000+ 1 4.30000+ 1 1.41250- 2 3.06000- 5 2.90000+ 1 4.40000+ 1 2.40134- 2 4.41000- 5 2.90000+ 1 5.80000+ 1 1.58933- 3 6.53300- 5 3.00000+ 1 3.20000+ 1 1.54718- 1 9.86000- 6 3.00000+ 1 3.30000+ 1 1.40159- 1 2.19000- 5 3.00000+ 1 3.50000+ 1 1.23370- 1 1.37720- 4 3.00000+ 1 3.60000+ 1 1.13740- 1 1.39410- 4 3.00000+ 1 4.10000+ 1 1.69337- 2 8.94600- 5 3.00000+ 1 4.30000+ 1 1.70317- 2 1.11240- 4 3.00000+ 1 4.40000+ 1 1.38159- 2 1.24740- 4 3.00000+ 1 5.80000+ 1 1.31139- 3 1.45970- 4 3.20000+ 1 3.20000+ 1 1.49494- 3 1.16090- 4 3.20000+ 1 3.30000+ 1 1.10978- 1 1.28130- 4 3.20000+ 1 3.50000+ 1 3.37173- 3 2.43950- 4 3.20000+ 1 3.60000+ 1 1.19637- 2 2.45640- 4 3.20000+ 1 4.10000+ 1 5.58023- 3 1.95690- 4 3.20000+ 1 4.30000+ 1 1.15857- 3 2.17470- 4 3.20000+ 1 4.40000+ 1 4.12256- 3 2.30970- 4 3.20000+ 1 5.80000+ 1 3.60551- 4 2.52200- 4 3.30000+ 1 3.30000+ 1 2.64134- 2 1.40170- 4 3.30000+ 1 3.50000+ 1 1.37457- 2 2.55990- 4 3.30000+ 1 3.60000+ 1 9.14657- 3 2.57680- 4 3.30000+ 1 4.10000+ 1 7.83078- 3 2.07730- 4 3.30000+ 1 4.30000+ 1 3.43497- 3 2.29510- 4 3.30000+ 1 4.40000+ 1 2.67744- 3 2.43010- 4 3.30000+ 1 5.80000+ 1 5.04033- 4 2.64240- 4 3.50000+ 1 3.50000+ 1 4.46454- 5 3.71810- 4 3.50000+ 1 3.60000+ 1 1.46458- 3 3.73500- 4 3.50000+ 1 4.10000+ 1 2.42387- 3 3.23550- 4 3.50000+ 1 4.30000+ 1 2.17042- 4 3.45330- 4 3.50000+ 1 4.40000+ 1 6.33626- 4 3.58830- 4 3.50000+ 1 5.80000+ 1 1.44134- 4 3.80060- 4 3.60000+ 1 3.60000+ 1 2.62957- 4 3.75190- 4 3.60000+ 1 4.10000+ 1 2.98774- 3 3.25240- 4 3.60000+ 1 4.30000+ 1 5.21347- 4 3.47020- 4 3.60000+ 1 4.40000+ 1 3.87916- 4 3.60520- 4 3.60000+ 1 5.80000+ 1 1.77535- 4 3.81750- 4 4.10000+ 1 4.10000+ 1 4.57233- 4 2.75290- 4 4.10000+ 1 4.30000+ 1 5.37248- 4 2.97070- 4 4.10000+ 1 4.40000+ 1 7.35652- 4 3.10570- 4 4.10000+ 1 5.80000+ 1 6.33649- 5 3.31800- 4 4.30000+ 1 4.30000+ 1 4.81058- 5 3.18850- 4 4.30000+ 1 4.40000+ 1 2.66950- 4 3.32350- 4 4.30000+ 1 5.80000+ 1 3.12635- 5 3.53580- 4 4.40000+ 1 4.40000+ 1 1.08029- 4 3.45850- 4 4.40000+ 1 5.80000+ 1 4.52207- 5 3.67080- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 8.57299- 5 1.86870- 4 4.10000+ 1 9.69129- 6 2.66470- 4 5.80000+ 1 8.29929- 7 3.22980- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 2.60721- 2 6.61100- 5 3.00000+ 1 3.60000+ 1 1.53269- 2 6.78000- 5 3.00000+ 1 4.10000+ 1 1.49009- 2 1.78500- 5 3.00000+ 1 4.30000+ 1 9.38181- 3 3.96300- 5 3.00000+ 1 4.40000+ 1 7.59444- 3 5.31300- 5 3.00000+ 1 5.80000+ 1 8.27729- 4 7.43600- 5 3.20000+ 1 3.20000+ 1 8.13889- 2 4.44800- 5 3.20000+ 1 3.30000+ 1 3.32765- 1 5.65200- 5 3.20000+ 1 3.50000+ 1 8.63504- 2 1.72340- 4 3.20000+ 1 3.60000+ 1 1.91955- 1 1.74030- 4 3.20000+ 1 4.10000+ 1 3.48004- 2 1.24080- 4 3.20000+ 1 4.30000+ 1 2.30692- 2 1.45860- 4 3.20000+ 1 4.40000+ 1 3.29765- 2 1.59360- 4 3.20000+ 1 5.80000+ 1 2.81359- 3 1.80590- 4 3.30000+ 1 3.30000+ 1 1.29730- 2 6.85600- 5 3.30000+ 1 3.50000+ 1 4.66164- 2 1.84380- 4 3.30000+ 1 3.60000+ 1 1.06312- 2 1.86070- 4 3.30000+ 1 4.10000+ 1 3.44623- 3 1.36120- 4 3.30000+ 1 4.30000+ 1 1.65777- 2 1.57900- 4 3.30000+ 1 4.40000+ 1 3.33894- 3 1.71400- 4 3.30000+ 1 5.80000+ 1 2.31482- 4 1.92630- 4 3.50000+ 1 3.50000+ 1 2.35729- 3 3.00200- 4 3.50000+ 1 3.60000+ 1 1.58241- 2 3.01890- 4 3.50000+ 1 4.10000+ 1 2.75160- 3 2.51940- 4 3.50000+ 1 4.30000+ 1 5.50129- 3 2.73720- 4 3.50000+ 1 4.40000+ 1 2.66288- 3 2.87220- 4 3.50000+ 1 5.80000+ 1 2.20790- 4 3.08450- 4 3.60000+ 1 3.60000+ 1 7.97487- 4 3.03580- 4 3.60000+ 1 4.10000+ 1 1.02253- 3 2.53630- 4 3.60000+ 1 4.30000+ 1 8.60211- 3 2.75410- 4 3.60000+ 1 4.40000+ 1 8.76214- 4 2.88910- 4 3.60000+ 1 5.80000+ 1 6.76510- 5 3.10140- 4 4.10000+ 1 4.10000+ 1 1.00551- 4 2.03680- 4 4.10000+ 1 4.30000+ 1 1.60406- 3 2.25460- 4 4.10000+ 1 4.40000+ 1 2.68657- 4 2.38960- 4 4.10000+ 1 5.80000+ 1 1.33268- 5 2.60190- 4 4.30000+ 1 4.30000+ 1 9.52784- 4 2.47240- 4 4.30000+ 1 4.40000+ 1 2.00104- 3 2.60740- 4 4.30000+ 1 5.80000+ 1 1.33269- 4 2.81970- 4 4.40000+ 1 4.40000+ 1 9.10059- 5 2.74240- 4 4.40000+ 1 5.80000+ 1 1.72440- 5 2.95470- 4 1 97000 0 7 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.02551- 6 1.06230- 4 3.30000+ 1 1.29341- 5 1.18270- 4 4.10000+ 1 6.24284- 6 1.85830- 4 5.80000+ 1 5.24233- 7 2.42340- 4 1 97000 0 9 2.47000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.73504- 2 9.17000- 5 3.20000+ 1 3.60000+ 1 1.02183- 1 9.33900- 5 3.20000+ 1 4.10000+ 1 8.99352- 3 4.34400- 5 3.20000+ 1 4.30000+ 1 6.36332- 3 6.52200- 5 3.20000+ 1 4.40000+ 1 1.65006- 2 7.87200- 5 3.20000+ 1 5.80000+ 1 5.89699- 4 9.99500- 5 3.30000+ 1 3.50000+ 1 3.46871- 1 1.03740- 4 3.30000+ 1 3.60000+ 1 3.04911- 1 1.05430- 4 3.30000+ 1 4.10000+ 1 4.39923- 2 5.54800- 5 3.30000+ 1 4.30000+ 1 4.48315- 2 7.72600- 5 3.30000+ 1 4.40000+ 1 4.42307- 2 9.07600- 5 3.30000+ 1 5.80000+ 1 3.52740- 3 1.11990- 4 3.50000+ 1 3.50000+ 1 5.09531- 4 2.19560- 4 3.50000+ 1 3.60000+ 1 1.26434- 2 2.21250- 4 3.50000+ 1 4.10000+ 1 2.61348- 3 1.71300- 4 3.50000+ 1 4.30000+ 1 7.68235- 4 1.93080- 4 3.50000+ 1 4.40000+ 1 6.18988- 3 2.06580- 4 3.50000+ 1 5.80000+ 1 9.55799- 5 2.27810- 4 3.60000+ 1 3.60000+ 1 4.72030- 3 2.22940- 4 3.60000+ 1 4.10000+ 1 4.90615- 3 1.72990- 4 3.60000+ 1 4.30000+ 1 3.76878- 3 1.94770- 4 3.60000+ 1 4.40000+ 1 7.45178- 3 2.08270- 4 3.60000+ 1 5.80000+ 1 2.50111- 4 2.29500- 4 4.10000+ 1 4.10000+ 1 3.22369- 4 1.23040- 4 4.10000+ 1 4.30000+ 1 4.71669- 4 1.44820- 4 4.10000+ 1 4.40000+ 1 1.74836- 3 1.58320- 4 4.10000+ 1 5.80000+ 1 4.13164- 5 1.79550- 4 4.30000+ 1 4.30000+ 1 3.64547- 6 1.66600- 4 4.30000+ 1 4.40000+ 1 1.52857- 3 1.80100- 4 4.30000+ 1 5.80000+ 1 1.97894- 5 2.01330- 4 4.40000+ 1 4.40000+ 1 1.45562- 3 1.93600- 4 4.40000+ 1 5.80000+ 1 1.24993- 4 2.14830- 4 1 98000 0 0 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 4.29000+ 0 3.60000+ 1 5.71000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 98000 0 0 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.35630- 1 3.00000+ 0 2.60470- 2 5.00000+ 0 2.52420- 2 6.00000+ 0 1.99290- 2 8.00000+ 0 6.73250- 3 1.00000+ 1 6.35090- 3 1.10000+ 1 5.10380- 3 1.30000+ 1 4.49220- 3 1.40000+ 1 4.24810- 3 1.60000+ 1 1.78870- 3 1.80000+ 1 1.60990- 3 1.90000+ 1 1.27290- 3 2.10000+ 1 9.86740- 4 2.20000+ 1 9.26200- 4 2.40000+ 1 5.47730- 4 2.50000+ 1 5.30980- 4 2.70000+ 1 4.11580- 4 2.90000+ 1 3.37870- 4 3.00000+ 1 2.51580- 4 3.20000+ 1 1.42470- 4 3.30000+ 1 1.29660- 4 3.50000+ 1 1.07800- 5 3.60000+ 1 9.02000- 6 4.10000+ 1 6.08800- 5 4.30000+ 1 3.87900- 5 4.40000+ 1 2.51000- 5 5.80000+ 1 5.71000- 6 1 98000 0 0 2.51000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.14200- 1 3.00000+ 0 5.47140- 2 5.00000+ 0 5.48930- 2 6.00000+ 0 3.19450- 2 8.00000+ 0 1.74880- 2 1.00000+ 1 1.73670- 2 1.10000+ 1 1.15040- 2 1.30000+ 1 1.13240- 2 1.40000+ 1 1.03170- 2 1.60000+ 1 6.12470- 3 1.80000+ 1 5.95700- 3 1.90000+ 1 4.13560- 3 2.10000+ 1 3.87600- 3 2.20000+ 1 3.56440- 3 2.40000+ 1 3.19560- 3 2.50000+ 1 3.08860- 3 2.70000+ 1 2.01250- 3 2.90000+ 1 1.87070- 3 3.00000+ 1 1.30900- 3 3.20000+ 1 1.07160- 3 3.30000+ 1 9.80100- 4 3.50000+ 1 5.19080- 4 3.60000+ 1 4.89460- 4 4.10000+ 1 4.74850- 4 4.30000+ 1 3.77830- 4 4.40000+ 1 2.34890- 4 5.80000+ 1 4.52700- 5 1 98000 0 0 2.51000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.55310-11 3.00000+ 0 2.70080-10 5.00000+ 0 2.16210-10 6.00000+ 0 2.74830-10 8.00000+ 0 7.04740-10 1.00000+ 1 6.58400-10 1.10000+ 1 7.63050-10 1.30000+ 1 6.54930-10 1.40000+ 1 6.85050-10 1.60000+ 1 1.52030- 9 1.80000+ 1 1.50330- 9 1.90000+ 1 1.70330- 9 2.10000+ 1 1.67010- 9 2.20000+ 1 1.72770- 9 2.40000+ 1 1.63730- 9 2.50000+ 1 1.66470- 9 2.70000+ 1 3.09890- 9 2.90000+ 1 3.19280- 9 3.00000+ 1 3.61560- 9 3.20000+ 1 3.95810- 9 3.30000+ 1 4.10490- 9 3.50000+ 1 5.85030- 9 3.60000+ 1 6.04340- 9 4.10000+ 1 6.81180- 9 4.30000+ 1 7.56870- 9 4.40000+ 1 8.97050- 9 5.80000+ 1 2.07370- 8 1 98000 0 0 2.51000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.17950- 4 3.00000+ 0 3.39840- 6 5.00000+ 0 5.90010- 6 6.00000+ 0 4.82530- 6 8.00000+ 0 1.64890- 7 1.00000+ 1 1.75510- 7 1.10000+ 1 1.99200- 7 1.30000+ 1 2.75380- 7 1.40000+ 1 2.50760- 7 1.60000+ 1 1.05430- 8 1.80000+ 1 1.28180- 8 1.90000+ 1 8.53350- 9 2.10000+ 1 5.78800- 9 2.20000+ 1 4.40930- 9 2.40000+ 1 2.32040-10 2.50000+ 1 2.05760-10 2.70000+ 1 8.10490-10 2.90000+ 1 1.48350- 9 3.00000+ 1 6.07890-10 1 98000 0 0 2.51000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.43840- 6 3.00000+ 0 1.32890- 5 5.00000+ 0 5.41650- 6 6.00000+ 0 4.72910- 6 8.00000+ 0 2.02690- 5 1.00000+ 1 1.56860- 5 1.10000+ 1 1.18170- 5 1.30000+ 1 4.05540- 6 1.40000+ 1 3.95630- 6 1.60000+ 1 1.49840- 5 1.80000+ 1 1.62310- 5 1.90000+ 1 1.04030- 5 2.10000+ 1 6.70900- 6 2.20000+ 1 6.36370- 6 2.40000+ 1 1.04650- 6 2.50000+ 1 7.11400- 7 2.70000+ 1 3.02810- 5 2.90000+ 1 1.19760- 5 3.00000+ 1 1.78740- 5 1 98000 0 0 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.26139- 4 3.00000+ 0 1.02595- 3 5.00000+ 0 7.63509- 4 6.00000+ 0 7.17277- 4 8.00000+ 0 8.02807- 4 1.00000+ 1 7.18351- 4 1.10000+ 1 6.21634- 4 1.30000+ 1 4.83744- 4 1.40000+ 1 4.67845- 4 1.60000+ 1 4.24524- 4 1.80000+ 1 3.99418- 4 1.90000+ 1 4.08238- 4 2.10000+ 1 3.28616- 4 2.20000+ 1 3.12167- 4 2.40000+ 1 1.88146- 4 2.50000+ 1 1.84608- 4 2.70000+ 1 2.16174- 4 2.90000+ 1 1.98444- 4 3.00000+ 1 1.40844- 4 3.20000+ 1 1.42470- 4 3.30000+ 1 1.29660- 4 3.50000+ 1 1.07800- 5 3.60000+ 1 9.02000- 6 4.10000+ 1 6.08800- 5 4.30000+ 1 3.87900- 5 4.40000+ 1 2.51000- 5 5.80000+ 1 5.71000- 6 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.49237+ 0 3.00000+ 0 6.57216- 1 5.00000+ 0 7.19187- 1 6.00000+ 0 5.86804- 1 8.00000+ 0 6.94556- 2 1.00000+ 1 7.26582- 2 1.10000+ 1 6.49356- 2 1.30000+ 1 7.26186- 2 1.40000+ 1 6.36146- 2 1.60000+ 1 2.29344- 3 1.80000+ 1 2.22841- 3 1.90000+ 1 1.69988- 3 2.10000+ 1 1.20260- 3 2.20000+ 1 9.97228- 4 2.40000+ 1 2.71716- 4 2.50000+ 1 2.39856- 4 2.70000+ 1 6.77842- 5 2.90000+ 1 1.12018- 4 3.00000+ 1 2.37371- 5 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22542- 1 3.00000+ 0 1.02893- 2 5.00000+ 0 1.34238- 2 6.00000+ 0 8.56070- 3 8.00000+ 0 2.67001- 4 1.00000+ 1 2.83234- 4 1.10000+ 1 2.44401- 4 1.30000+ 1 2.80134- 4 1.40000+ 1 2.33397- 4 1.60000+ 1 1.88067- 6 1.80000+ 1 1.55527- 6 1.90000+ 1 1.17893- 6 2.10000+ 1 6.61070- 7 2.20000+ 1 5.31188- 7 2.40000+ 1 1.02557- 7 2.50000+ 1 9.05083- 8 2.70000+ 1 1.22925- 8 2.90000+ 1 2.27925- 8 3.00000+ 1 3.44200- 9 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.73757+ 0 3.00000+ 0 1.27632+ 1 5.00000+ 0 9.23683+ 0 6.00000+ 0 8.60885+ 0 8.00000+ 0 9.90784+ 0 1.00000+ 1 8.72470+ 0 1.10000+ 1 7.47582+ 0 1.30000+ 1 5.57360+ 0 1.40000+ 1 5.29267+ 0 1.60000+ 1 4.37143+ 0 1.80000+ 1 4.03480+ 0 1.90000+ 1 4.12697+ 0 2.10000+ 1 3.28557+ 0 2.20000+ 1 2.92181+ 0 2.40000+ 1 1.96001+ 0 2.50000+ 1 1.70204+ 0 2.70000+ 1 1.80206+ 0 2.90000+ 1 1.07605+ 0 3.00000+ 1 9.99976- 1 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.23620- 2 3.00000+ 0 1.47317- 2 5.00000+ 0 1.10547- 2 6.00000+ 0 1.06510- 2 8.00000+ 0 5.66269- 3 1.00000+ 1 5.34932- 3 1.10000+ 1 4.23777- 3 1.30000+ 1 3.72832- 3 1.40000+ 1 3.54686- 3 1.60000+ 1 1.36230- 3 1.80000+ 1 1.20893- 3 1.90000+ 1 8.63483- 4 2.10000+ 1 6.57463- 4 2.20000+ 1 6.13502- 4 2.40000+ 1 3.59481- 4 2.50000+ 1 3.46281- 4 2.70000+ 1 1.95394- 4 2.90000+ 1 1.39404- 4 3.00000+ 1 1.10733- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.94949- 1 1.10388- 1 6.00000+ 0 4.56278- 1 1.15701- 1 1.00000+ 1 5.34218- 2 1.29279- 1 1.10000+ 1 1.05560- 1 1.30526- 1 1.30000+ 1 2.13929- 3 1.31138- 1 1.40000+ 1 2.34289- 3 1.31382- 1 1.80000+ 1 1.36199- 2 1.34020- 1 1.90000+ 1 2.82709- 2 1.34357- 1 2.10000+ 1 6.60727- 4 1.34643- 1 2.20000+ 1 7.27877- 4 1.34704- 1 2.90000+ 1 3.47519- 3 1.35292- 1 3.00000+ 1 7.14787- 3 1.35378- 1 3.20000+ 1 1.48289- 4 1.35488- 1 3.30000+ 1 1.61659- 4 1.35500- 1 4.30000+ 1 5.87068- 4 1.35591- 1 4.40000+ 1 1.05010- 3 1.35605- 1 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.58734- 3 8.35360- 2 3.00000+ 0 5.00000+ 0 7.09836- 3 8.43410- 2 3.00000+ 0 6.00000+ 0 2.15472- 3 8.96540- 2 3.00000+ 0 8.00000+ 0 1.50489- 3 1.02851- 1 3.00000+ 0 1.00000+ 1 1.56417- 3 1.03232- 1 3.00000+ 0 1.10000+ 1 5.46857- 4 1.04479- 1 3.00000+ 0 1.30000+ 1 4.80960- 5 1.05091- 1 3.00000+ 0 1.40000+ 1 2.75108- 5 1.05335- 1 3.00000+ 0 1.60000+ 1 4.08284- 4 1.07794- 1 3.00000+ 0 1.80000+ 1 4.18392- 4 1.07973- 1 3.00000+ 0 1.90000+ 1 1.49273- 4 1.08310- 1 3.00000+ 0 2.10000+ 1 1.49907- 5 1.08596- 1 3.00000+ 0 2.20000+ 1 8.43958- 6 1.08657- 1 3.00000+ 0 2.40000+ 1 4.66257- 8 1.09035- 1 3.00000+ 0 2.50000+ 1 4.66257- 8 1.09052- 1 3.00000+ 0 2.70000+ 1 1.10642- 4 1.09171- 1 3.00000+ 0 2.90000+ 1 1.07730- 4 1.09245- 1 3.00000+ 0 3.00000+ 1 3.79323- 5 1.09331- 1 3.00000+ 0 3.20000+ 1 3.35722- 6 1.09441- 1 3.00000+ 0 3.30000+ 1 1.86511- 6 1.09453- 1 5.00000+ 0 5.00000+ 0 2.06474- 4 8.51460- 2 5.00000+ 0 6.00000+ 0 3.33050- 3 9.04590- 2 5.00000+ 0 8.00000+ 0 1.33066- 3 1.03655- 1 5.00000+ 0 1.00000+ 1 8.16240- 5 1.04037- 1 5.00000+ 0 1.10000+ 1 7.26237- 4 1.05284- 1 5.00000+ 0 1.30000+ 1 4.85624- 5 1.05896- 1 5.00000+ 0 1.40000+ 1 1.00325- 4 1.06140- 1 5.00000+ 0 1.60000+ 1 3.51882- 4 1.08599- 1 5.00000+ 0 1.80000+ 1 2.14262- 5 1.08778- 1 5.00000+ 0 1.90000+ 1 1.90666- 4 1.09115- 1 5.00000+ 0 2.10000+ 1 1.43621- 5 1.09401- 1 5.00000+ 0 2.20000+ 1 3.00054- 5 1.09462- 1 5.00000+ 0 2.40000+ 1 4.66272- 7 1.09840- 1 5.00000+ 0 2.50000+ 1 6.76124- 7 1.09857- 1 5.00000+ 0 2.70000+ 1 9.47040- 5 1.09976- 1 5.00000+ 0 2.90000+ 1 5.50203- 6 1.10050- 1 5.00000+ 0 3.00000+ 1 4.79593- 5 1.10136- 1 5.00000+ 0 3.20000+ 1 3.17087- 6 1.10246- 1 5.00000+ 0 3.30000+ 1 6.57468- 6 1.10258- 1 6.00000+ 0 6.00000+ 0 1.30070- 3 9.57720- 2 6.00000+ 0 8.00000+ 0 3.55470- 4 1.08968- 1 6.00000+ 0 1.00000+ 1 6.07125- 4 1.09350- 1 6.00000+ 0 1.10000+ 1 5.83229- 4 1.10597- 1 6.00000+ 0 1.30000+ 1 1.05290- 4 1.11209- 1 6.00000+ 0 1.40000+ 1 8.13670- 5 1.11453- 1 6.00000+ 0 1.60000+ 1 9.10891- 5 1.13912- 1 6.00000+ 0 1.80000+ 1 1.55091- 4 1.14091- 1 6.00000+ 0 1.90000+ 1 1.54321- 4 1.14428- 1 6.00000+ 0 2.10000+ 1 3.16608- 5 1.14714- 1 6.00000+ 0 2.20000+ 1 2.44803- 5 1.14775- 1 6.00000+ 0 2.40000+ 1 6.29483- 7 1.15153- 1 6.00000+ 0 2.50000+ 1 6.76123- 7 1.15170- 1 6.00000+ 0 2.70000+ 1 2.43170- 5 1.15289- 1 6.00000+ 0 2.90000+ 1 3.94476- 5 1.15363- 1 6.00000+ 0 3.00000+ 1 3.88881- 5 1.15449- 1 6.00000+ 0 3.20000+ 1 7.04106- 6 1.15559- 1 6.00000+ 0 3.30000+ 1 5.36245- 6 1.15571- 1 8.00000+ 0 8.00000+ 0 1.56339- 4 1.22165- 1 8.00000+ 0 1.00000+ 1 2.94418- 4 1.22547- 1 8.00000+ 0 1.10000+ 1 9.09769- 5 1.23794- 1 8.00000+ 0 1.30000+ 1 7.74052- 6 1.24405- 1 8.00000+ 0 1.40000+ 1 4.17344- 6 1.24649- 1 8.00000+ 0 1.60000+ 1 8.47022- 5 1.27109- 1 8.00000+ 0 1.80000+ 1 7.88247- 5 1.27288- 1 8.00000+ 0 1.90000+ 1 2.48995- 5 1.27625- 1 8.00000+ 0 2.10000+ 1 2.42475- 6 1.27911- 1 8.00000+ 0 2.20000+ 1 1.28231- 6 1.27971- 1 8.00000+ 0 2.70000+ 1 2.29414- 5 1.28486- 1 8.00000+ 0 2.90000+ 1 2.03073- 5 1.28560- 1 8.00000+ 0 3.00000+ 1 6.34144- 6 1.28646- 1 8.00000+ 0 3.20000+ 1 5.36247- 7 1.28755- 1 8.00000+ 0 3.30000+ 1 2.79775- 7 1.28768- 1 1.00000+ 1 1.00000+ 1 7.36743- 6 1.22928- 1 1.00000+ 1 1.10000+ 1 1.37088- 4 1.24175- 1 1.00000+ 1 1.30000+ 1 8.48635- 6 1.24787- 1 1.00000+ 1 1.40000+ 1 1.34281- 5 1.25031- 1 1.00000+ 1 1.60000+ 1 7.78464- 5 1.27490- 1 1.00000+ 1 1.80000+ 1 3.80008- 6 1.27669- 1 1.00000+ 1 1.90000+ 1 3.62538- 5 1.28006- 1 1.00000+ 1 2.10000+ 1 2.54130- 6 1.28292- 1 1.00000+ 1 2.20000+ 1 4.07991- 6 1.28353- 1 1.00000+ 1 2.40000+ 1 6.99422- 8 1.28731- 1 1.00000+ 1 2.50000+ 1 6.99422- 8 1.28748- 1 1.00000+ 1 2.70000+ 1 2.09363- 5 1.28868- 1 1.00000+ 1 2.90000+ 1 9.55839- 7 1.28941- 1 1.00000+ 1 3.00000+ 1 9.13952- 6 1.29028- 1 1.00000+ 1 3.20000+ 1 5.59547- 7 1.29137- 1 1.00000+ 1 3.30000+ 1 8.85936- 7 1.29149- 1 1.10000+ 1 1.10000+ 1 6.62112- 5 1.25422- 1 1.10000+ 1 1.30000+ 1 1.94437- 5 1.26034- 1 1.10000+ 1 1.40000+ 1 1.43617- 5 1.26278- 1 1.10000+ 1 1.60000+ 1 2.33371- 5 1.28737- 1 1.10000+ 1 1.80000+ 1 3.52956- 5 1.28916- 1 1.10000+ 1 1.90000+ 1 3.51573- 5 1.29253- 1 1.10000+ 1 2.10000+ 1 5.92181- 6 1.29539- 1 1.10000+ 1 2.20000+ 1 4.35979- 6 1.29600- 1 1.10000+ 1 2.40000+ 1 9.32522- 8 1.29978- 1 1.10000+ 1 2.50000+ 1 9.32522- 8 1.29995- 1 1.10000+ 1 2.70000+ 1 6.22492- 6 1.30115- 1 1.10000+ 1 2.90000+ 1 8.99880- 6 1.30188- 1 1.10000+ 1 3.00000+ 1 8.85925- 6 1.30275- 1 1.10000+ 1 3.20000+ 1 1.30557- 6 1.30384- 1 1.10000+ 1 3.30000+ 1 9.55826- 7 1.30397- 1 1.30000+ 1 1.30000+ 1 6.99412- 8 1.26646- 1 1.30000+ 1 1.40000+ 1 1.95841- 6 1.26890- 1 1.30000+ 1 1.60000+ 1 1.98170- 6 1.29349- 1 1.30000+ 1 1.80000+ 1 2.16815- 6 1.29528- 1 1.30000+ 1 1.90000+ 1 4.91924- 6 1.29865- 1 1.30000+ 1 2.10000+ 1 4.66260- 8 1.30151- 1 1.30000+ 1 2.20000+ 1 5.59538- 7 1.30212- 1 1.30000+ 1 2.50000+ 1 2.33141- 8 1.30607- 1 1.30000+ 1 2.70000+ 1 5.36234- 7 1.30726- 1 1.30000+ 1 2.90000+ 1 5.59538- 7 1.30800- 1 1.30000+ 1 3.00000+ 1 1.23569- 6 1.30886- 1 1.30000+ 1 3.30000+ 1 1.16570- 7 1.31008- 1 1.40000+ 1 1.40000+ 1 4.89581- 7 1.27134- 1 1.40000+ 1 1.60000+ 1 1.04910- 6 1.29593- 1 1.40000+ 1 1.80000+ 1 3.19400- 6 1.29772- 1 1.40000+ 1 1.90000+ 1 3.59018- 6 1.30109- 1 1.40000+ 1 2.10000+ 1 5.59522- 7 1.30395- 1 1.40000+ 1 2.20000+ 1 2.79760- 7 1.30456- 1 1.40000+ 1 2.70000+ 1 2.79760- 7 1.30970- 1 1.40000+ 1 2.90000+ 1 7.92654- 7 1.31044- 1 1.40000+ 1 3.00000+ 1 8.85897- 7 1.31130- 1 1.40000+ 1 3.20000+ 1 1.16566- 7 1.31239- 1 1.40000+ 1 3.30000+ 1 6.99391- 8 1.31252- 1 1.60000+ 1 1.60000+ 1 1.14713- 5 1.32053- 1 1.60000+ 1 1.80000+ 1 2.08431- 5 1.32231- 1 1.60000+ 1 1.90000+ 1 6.38830- 6 1.32568- 1 1.60000+ 1 2.10000+ 1 6.29492- 7 1.32855- 1 1.60000+ 1 2.20000+ 1 3.26398- 7 1.32915- 1 1.60000+ 1 2.70000+ 1 6.20185- 6 1.33430- 1 1.60000+ 1 2.90000+ 1 5.36253- 6 1.33503- 1 1.60000+ 1 3.00000+ 1 1.63204- 6 1.33590- 1 1.60000+ 1 3.20000+ 1 1.39889- 7 1.33699- 1 1.60000+ 1 3.30000+ 1 6.99437- 8 1.33712- 1 1.80000+ 1 1.80000+ 1 4.89591- 7 1.32410- 1 1.80000+ 1 1.90000+ 1 9.34842- 6 1.32747- 1 1.80000+ 1 2.10000+ 1 6.52798- 7 1.33033- 1 1.80000+ 1 2.20000+ 1 9.79119- 7 1.33094- 1 1.80000+ 1 2.40000+ 1 2.33139- 8 1.33472- 1 1.80000+ 1 2.50000+ 1 2.33139- 8 1.33489- 1 1.80000+ 1 2.70000+ 1 5.61852- 6 1.33609- 1 1.80000+ 1 2.90000+ 1 2.56453- 7 1.33682- 1 1.80000+ 1 3.00000+ 1 2.35468- 6 1.33769- 1 1.80000+ 1 3.20000+ 1 1.39883- 7 1.33878- 1 1.80000+ 1 3.30000+ 1 2.09826- 7 1.33890- 1 1.90000+ 1 1.90000+ 1 4.66251- 6 1.33084- 1 1.90000+ 1 2.10000+ 1 1.49208- 6 1.33370- 1 1.90000+ 1 2.20000+ 1 1.09569- 6 1.33431- 1 1.90000+ 1 2.40000+ 1 2.33136- 8 1.33809- 1 1.90000+ 1 2.50000+ 1 2.33136- 8 1.33826- 1 1.90000+ 1 2.70000+ 1 1.70192- 6 1.33946- 1 1.90000+ 1 2.90000+ 1 2.37794- 6 1.34019- 1 1.90000+ 1 3.00000+ 1 2.35465- 6 1.34106- 1 1.90000+ 1 3.20000+ 1 3.26379- 7 1.34215- 1 1.90000+ 1 3.30000+ 1 2.33136- 7 1.34227- 1 2.10000+ 1 2.20000+ 1 1.63202- 7 1.33717- 1 2.10000+ 1 2.70000+ 1 1.63202- 7 1.34232- 1 2.10000+ 1 2.90000+ 1 1.63202- 7 1.34305- 1 2.10000+ 1 3.00000+ 1 3.73033- 7 1.34392- 1 2.10000+ 1 3.30000+ 1 4.66272- 8 1.34514- 1 2.20000+ 1 2.20000+ 1 4.66273- 8 1.33778- 1 2.20000+ 1 2.70000+ 1 9.32545- 8 1.34292- 1 2.20000+ 1 2.90000+ 1 2.33147- 7 1.34366- 1 2.20000+ 1 3.00000+ 1 2.79776- 7 1.34452- 1 2.20000+ 1 3.20000+ 1 4.66273- 8 1.34561- 1 2.20000+ 1 3.30000+ 1 2.33147- 8 1.34574- 1 2.70000+ 1 2.70000+ 1 8.23279- 7 1.34807- 1 2.70000+ 1 2.90000+ 1 1.41791- 6 1.34881- 1 2.70000+ 1 3.00000+ 1 4.34493- 7 1.34967- 1 2.70000+ 1 3.20000+ 1 4.57352- 8 1.35076- 1 2.70000+ 1 3.30000+ 1 2.28687- 8 1.35089- 1 2.90000+ 1 2.90000+ 1 2.24149- 8 1.34954- 1 2.90000+ 1 3.00000+ 1 5.82787- 7 1.35041- 1 2.90000+ 1 3.20000+ 1 4.48278- 8 1.35150- 1 2.90000+ 1 3.30000+ 1 4.48278- 8 1.35162- 1 3.00000+ 1 3.00000+ 1 2.88583- 7 1.35127- 1 3.00000+ 1 3.20000+ 1 8.87906- 8 1.35236- 1 3.00000+ 1 3.30000+ 1 6.65949- 8 1.35249- 1 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.34620- 5 8.05000- 4 6.00000+ 0 1.60339- 2 6.11800- 3 1.00000+ 1 7.34028- 2 1.96961- 2 1.10000+ 1 5.32098- 2 2.09432- 2 1.30000+ 1 3.88559- 3 2.15548- 2 1.40000+ 1 5.76288- 3 2.17989- 2 1.80000+ 1 2.02459- 2 2.44371- 2 1.90000+ 1 1.74779- 2 2.47741- 2 2.10000+ 1 7.01308- 4 2.50603- 2 2.20000+ 1 1.13010- 3 2.51208- 2 2.90000+ 1 5.24208- 3 2.57091- 2 3.00000+ 1 4.60699- 3 2.57954- 2 3.20000+ 1 1.38060- 4 2.59045- 2 3.30000+ 1 2.24669- 4 2.59173- 2 4.30000+ 1 8.90247- 4 2.60082- 2 4.40000+ 1 6.83138- 4 2.60219- 2 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.18220- 2 2.57270- 4 5.00000+ 0 2.50000+ 1 1.58608- 2 2.74020- 4 5.00000+ 0 2.70000+ 1 5.55215- 3 3.93420- 4 5.00000+ 0 2.90000+ 1 4.72456- 3 4.67130- 4 5.00000+ 0 3.00000+ 1 3.39207- 3 5.53420- 4 5.00000+ 0 3.20000+ 1 9.47731- 4 6.62530- 4 5.00000+ 0 3.30000+ 1 1.14760- 3 6.75340- 4 6.00000+ 0 1.10000+ 1 3.25187- 2 1.01420- 3 6.00000+ 0 1.30000+ 1 1.91198- 1 1.62580- 3 6.00000+ 0 1.40000+ 1 2.24128- 1 1.86990- 3 6.00000+ 0 1.60000+ 1 1.63067- 2 4.32930- 3 6.00000+ 0 1.80000+ 1 6.34843- 3 4.50810- 3 6.00000+ 0 1.90000+ 1 8.46030- 3 4.84510- 3 6.00000+ 0 2.10000+ 1 3.27926- 2 5.13126- 3 6.00000+ 0 2.20000+ 1 3.69116- 2 5.19180- 3 6.00000+ 0 2.40000+ 1 1.75398- 2 5.57027- 3 6.00000+ 0 2.50000+ 1 2.11558- 2 5.58702- 3 6.00000+ 0 2.70000+ 1 4.15555- 3 5.70642- 3 6.00000+ 0 2.90000+ 1 1.62217- 3 5.78013- 3 6.00000+ 0 3.00000+ 1 2.13058- 3 5.86642- 3 6.00000+ 0 3.20000+ 1 6.58042- 3 5.97553- 3 6.00000+ 0 3.30000+ 1 7.24021- 3 5.98834- 3 8.00000+ 0 8.00000+ 0 5.89299- 3 1.25820- 2 8.00000+ 0 1.00000+ 1 1.25748- 2 1.29636- 2 8.00000+ 0 1.10000+ 1 1.61636- 2 1.42107- 2 8.00000+ 0 1.30000+ 1 1.10699- 2 1.48223- 2 8.00000+ 0 1.40000+ 1 1.27728- 2 1.50664- 2 8.00000+ 0 1.60000+ 1 2.73125- 3 1.75258- 2 8.00000+ 0 1.80000+ 1 3.34124- 3 1.77046- 2 8.00000+ 0 1.90000+ 1 4.31551- 3 1.80416- 2 8.00000+ 0 2.10000+ 1 2.84505- 3 1.83278- 2 8.00000+ 0 2.20000+ 1 3.28514- 3 1.83883- 2 8.00000+ 0 2.40000+ 1 2.64155- 4 1.87668- 2 8.00000+ 0 2.50000+ 1 2.63185- 4 1.87835- 2 8.00000+ 0 2.70000+ 1 7.18616- 4 1.89029- 2 8.00000+ 0 2.90000+ 1 8.57254- 4 1.89766- 2 8.00000+ 0 3.00000+ 1 1.08889- 3 1.90629- 2 8.00000+ 0 3.20000+ 1 6.10338- 4 1.91720- 2 8.00000+ 0 3.30000+ 1 6.95967- 4 1.91848- 2 1.00000+ 1 1.00000+ 1 1.01096- 5 1.33452- 2 1.00000+ 1 1.10000+ 1 2.35128- 4 1.45923- 2 1.00000+ 1 1.30000+ 1 8.14952- 4 1.52039- 2 1.00000+ 1 1.40000+ 1 5.26495- 3 1.54480- 2 1.00000+ 1 1.60000+ 1 2.32250- 3 1.79074- 2 1.00000+ 1 1.80000+ 1 1.30445- 6 1.80862- 2 1.00000+ 1 1.90000+ 1 5.00577- 5 1.84232- 2 1.00000+ 1 2.10000+ 1 1.71862- 4 1.87094- 2 1.00000+ 1 2.20000+ 1 8.85900- 4 1.87699- 2 1.00000+ 1 2.40000+ 1 1.03546- 4 1.91484- 2 1.00000+ 1 2.50000+ 1 3.52364- 4 1.91651- 2 1.00000+ 1 2.70000+ 1 5.73144- 4 1.92845- 2 1.00000+ 1 2.90000+ 1 3.26106- 7 1.93582- 2 1.00000+ 1 3.00000+ 1 1.19035- 5 1.94445- 2 1.00000+ 1 3.20000+ 1 3.57094- 5 1.95536- 2 1.00000+ 1 3.30000+ 1 1.71212- 4 1.95664- 2 1.10000+ 1 1.10000+ 1 8.52472- 4 1.58394- 2 1.10000+ 1 1.30000+ 1 1.40486- 3 1.64510- 2 1.10000+ 1 1.40000+ 1 8.99380- 4 1.66951- 2 1.10000+ 1 1.60000+ 1 2.85744- 3 1.91545- 2 1.10000+ 1 1.80000+ 1 6.50606- 5 1.93333- 2 1.10000+ 1 1.90000+ 1 3.61182- 4 1.96703- 2 1.10000+ 1 2.10000+ 1 1.93056- 4 1.99565- 2 1.10000+ 1 2.20000+ 1 9.27809- 5 2.00170- 2 1.10000+ 1 2.40000+ 1 8.87041- 5 2.03955- 2 1.10000+ 1 2.50000+ 1 8.08832- 5 2.04122- 2 1.10000+ 1 2.70000+ 1 6.97105- 4 2.05316- 2 1.10000+ 1 2.90000+ 1 1.67946- 5 2.06053- 2 1.10000+ 1 3.00000+ 1 8.64262- 5 2.06916- 2 1.10000+ 1 3.20000+ 1 3.66882- 5 2.08007- 2 1.10000+ 1 3.30000+ 1 1.61436- 5 2.08135- 2 1.30000+ 1 1.30000+ 1 6.02009- 4 1.70626- 2 1.30000+ 1 1.40000+ 1 1.59126- 2 1.73067- 2 1.30000+ 1 1.60000+ 1 1.73986- 3 1.97661- 2 1.30000+ 1 1.80000+ 1 2.47525- 4 1.99449- 2 1.30000+ 1 1.90000+ 1 3.76503- 4 2.02819- 2 1.30000+ 1 2.10000+ 1 3.01164- 4 2.05681- 2 1.30000+ 1 2.20000+ 1 2.87034- 3 2.06286- 2 1.30000+ 1 2.40000+ 1 2.46055- 4 2.10071- 2 1.30000+ 1 2.50000+ 1 6.59226- 4 2.10238- 2 1.30000+ 1 2.70000+ 1 4.12212- 4 2.11432- 2 1.30000+ 1 2.90000+ 1 6.55517- 5 2.12169- 2 1.30000+ 1 3.00000+ 1 9.65321- 5 2.13032- 2 1.30000+ 1 3.20000+ 1 6.44067- 5 2.14123- 2 1.30000+ 1 3.30000+ 1 5.60919- 4 2.14251- 2 1.40000+ 1 1.40000+ 1 4.27287- 3 1.75508- 2 1.40000+ 1 1.60000+ 1 2.03549- 3 2.00102- 2 1.40000+ 1 1.80000+ 1 1.22300- 3 2.01890- 2 1.40000+ 1 1.90000+ 1 2.20299- 4 2.05260- 2 1.40000+ 1 2.10000+ 1 2.72109- 3 2.08122- 2 1.40000+ 1 2.20000+ 1 1.62299- 3 2.08727- 2 1.40000+ 1 2.40000+ 1 7.19406- 4 2.12512- 2 1.40000+ 1 2.50000+ 1 5.24407- 4 2.12679- 2 1.40000+ 1 2.70000+ 1 4.86078- 4 2.13873- 2 1.40000+ 1 2.90000+ 1 3.04759- 4 2.14610- 2 1.40000+ 1 3.00000+ 1 5.59308- 5 2.15473- 2 1.40000+ 1 3.20000+ 1 5.32068- 4 2.16564- 2 1.40000+ 1 3.30000+ 1 3.21559- 4 2.16692- 2 1.60000+ 1 1.60000+ 1 2.99371- 4 2.24696- 2 1.60000+ 1 1.80000+ 1 6.18470- 4 2.26484- 2 1.60000+ 1 1.90000+ 1 7.68166- 4 2.29854- 2 1.60000+ 1 2.10000+ 1 4.52325- 4 2.32716- 2 1.60000+ 1 2.20000+ 1 5.25533- 4 2.33321- 2 1.60000+ 1 2.40000+ 1 3.53829- 5 2.37106- 2 1.60000+ 1 2.50000+ 1 3.29379- 5 2.37273- 2 1.60000+ 1 2.70000+ 1 1.55394- 4 2.38467- 2 1.60000+ 1 2.90000+ 1 1.58654- 4 2.39204- 2 1.60000+ 1 3.00000+ 1 1.94044- 4 2.40067- 2 1.60000+ 1 3.20000+ 1 9.73429- 5 2.41158- 2 1.60000+ 1 3.30000+ 1 1.11367- 4 2.41286- 2 1.80000+ 1 1.90000+ 1 1.36968- 5 2.31642- 2 1.80000+ 1 2.10000+ 1 4.82663- 5 2.34504- 2 1.80000+ 1 2.20000+ 1 2.15077- 4 2.35109- 2 1.80000+ 1 2.40000+ 1 1.51647- 5 2.38894- 2 1.80000+ 1 2.50000+ 1 5.83762- 5 2.39061- 2 1.80000+ 1 2.70000+ 1 1.52627- 4 2.40255- 2 1.80000+ 1 3.00000+ 1 3.26116- 6 2.41855- 2 1.80000+ 1 3.20000+ 1 9.78305- 6 2.42946- 2 1.80000+ 1 3.30000+ 1 4.19064- 5 2.43074- 2 1.90000+ 1 1.90000+ 1 3.68516- 5 2.35012- 2 1.90000+ 1 2.10000+ 1 4.81035- 5 2.37874- 2 1.90000+ 1 2.20000+ 1 2.13608- 5 2.38479- 2 1.90000+ 1 2.40000+ 1 2.31548- 5 2.42264- 2 1.90000+ 1 2.50000+ 1 1.98938- 5 2.42431- 2 1.90000+ 1 2.70000+ 1 1.87518- 4 2.43625- 2 1.90000+ 1 2.90000+ 1 3.58736- 6 2.44362- 2 1.90000+ 1 3.00000+ 1 1.74468- 5 2.45225- 2 1.90000+ 1 3.20000+ 1 8.80521- 6 2.46316- 2 1.90000+ 1 3.30000+ 1 3.58736- 6 2.46444- 2 2.10000+ 1 2.10000+ 1 3.47314- 5 2.40735- 2 2.10000+ 1 2.20000+ 1 5.36631- 4 2.41341- 2 2.10000+ 1 2.40000+ 1 4.30472- 5 2.45125- 2 2.10000+ 1 2.50000+ 1 8.64266- 5 2.45293- 2 2.10000+ 1 2.70000+ 1 1.07459- 4 2.46487- 2 2.10000+ 1 2.90000+ 1 1.25549- 5 2.47224- 2 2.10000+ 1 3.00000+ 1 1.23929- 5 2.48087- 2 2.10000+ 1 3.20000+ 1 1.46757- 5 2.49178- 2 2.10000+ 1 3.30000+ 1 1.06809- 4 2.49306- 2 2.20000+ 1 2.20000+ 1 1.65176- 4 2.41946- 2 2.20000+ 1 2.40000+ 1 1.02398- 4 2.45731- 2 2.20000+ 1 2.50000+ 1 8.20221- 5 2.45898- 2 2.20000+ 1 2.70000+ 1 1.25388- 4 2.47092- 2 2.20000+ 1 2.90000+ 1 5.41357- 5 2.47829- 2 2.20000+ 1 3.00000+ 1 5.54397- 6 2.48692- 2 2.20000+ 1 3.20000+ 1 1.06968- 4 2.49783- 2 2.20000+ 1 3.30000+ 1 6.63664- 5 2.49911- 2 2.40000+ 1 2.40000+ 1 1.30448- 6 2.49515- 2 2.40000+ 1 2.50000+ 1 2.28285- 5 2.49683- 2 2.40000+ 1 2.70000+ 1 8.15280- 6 2.50877- 2 2.40000+ 1 2.90000+ 1 3.42422- 6 2.51614- 2 2.40000+ 1 3.00000+ 1 5.70697- 6 2.52477- 2 2.40000+ 1 3.20000+ 1 8.47930- 6 2.53568- 2 2.40000+ 1 3.30000+ 1 1.89145- 5 2.53696- 2 2.50000+ 1 2.50000+ 1 4.72875- 6 2.49850- 2 2.50000+ 1 2.70000+ 1 7.50082- 6 2.51044- 2 2.50000+ 1 2.90000+ 1 1.33719- 5 2.51781- 2 2.50000+ 1 3.00000+ 1 4.89185- 6 2.52644- 2 2.50000+ 1 3.20000+ 1 1.59798- 5 2.53735- 2 2.50000+ 1 3.30000+ 1 1.56538- 5 2.53864- 2 2.70000+ 1 2.70000+ 1 2.00560- 5 2.52238- 2 2.70000+ 1 2.90000+ 1 3.91332- 5 2.52975- 2 2.70000+ 1 3.00000+ 1 4.74487- 5 2.53838- 2 2.70000+ 1 3.20000+ 1 2.31539- 5 2.54929- 2 2.70000+ 1 3.30000+ 1 2.65777- 5 2.55058- 2 2.90000+ 1 3.00000+ 1 8.15277- 7 2.54575- 2 2.90000+ 1 3.20000+ 1 2.60892- 6 2.55667- 2 2.90000+ 1 3.30000+ 1 1.05988- 5 2.55795- 2 3.00000+ 1 3.00000+ 1 2.21138- 6 2.55438- 2 3.00000+ 1 3.20000+ 1 2.38152- 6 2.56529- 2 3.00000+ 1 3.30000+ 1 1.02058- 6 2.56658- 2 3.20000+ 1 3.20000+ 1 1.46755- 6 2.57621- 2 3.20000+ 1 3.30000+ 1 2.13604- 5 2.57749- 2 3.30000+ 1 3.30000+ 1 6.68528- 6 2.57877- 2 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 7.53862- 5 5.31300- 3 8.00000+ 0 1.15120- 2 1.85095- 2 1.10000+ 1 6.63581- 4 2.01382- 2 1.30000+ 1 3.96711- 1 2.07498- 2 1.60000+ 1 3.20031- 3 2.34533- 2 1.90000+ 1 2.10050- 4 2.39691- 2 2.10000+ 1 9.48122- 2 2.42553- 2 2.40000+ 1 6.96022- 4 2.46943- 2 2.70000+ 1 8.70752- 4 2.48304- 2 3.00000+ 1 5.49601- 5 2.49904- 2 3.20000+ 1 2.01020- 2 2.50995- 2 3.50000+ 1 6.52951- 5 2.52312- 2 4.10000+ 1 1.75450- 4 2.51811- 2 4.40000+ 1 8.14072- 6 2.52169- 2 5.80000+ 1 1.45760- 5 2.52363- 2 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.10000+ 1 2.13643- 2 2.09200- 4 6.00000+ 0 1.30000+ 1 8.79184- 2 8.20800- 4 6.00000+ 0 1.40000+ 1 2.84657- 2 1.06490- 3 6.00000+ 0 1.60000+ 1 2.55835- 3 3.52430- 3 6.00000+ 0 1.80000+ 1 2.31960- 2 3.70310- 3 6.00000+ 0 1.90000+ 1 4.75026- 3 4.04010- 3 6.00000+ 0 2.10000+ 1 1.81309- 2 4.32626- 3 6.00000+ 0 2.20000+ 1 6.09302- 3 4.38680- 3 6.00000+ 0 2.40000+ 1 9.75656- 4 4.76527- 3 6.00000+ 0 2.50000+ 1 1.35811- 3 4.78202- 3 6.00000+ 0 2.70000+ 1 6.36993- 4 4.90142- 3 6.00000+ 0 2.90000+ 1 5.36793- 3 4.97513- 3 6.00000+ 0 3.00000+ 1 1.15989- 3 5.06142- 3 6.00000+ 0 3.20000+ 1 3.71352- 3 5.17053- 3 6.00000+ 0 3.30000+ 1 1.25147- 3 5.18334- 3 8.00000+ 0 8.00000+ 0 3.01342- 4 1.17770- 2 8.00000+ 0 1.00000+ 1 1.42137- 2 1.21586- 2 8.00000+ 0 1.10000+ 1 1.17721- 3 1.34057- 2 8.00000+ 0 1.30000+ 1 2.90984- 3 1.40173- 2 8.00000+ 0 1.40000+ 1 7.75377- 4 1.42614- 2 8.00000+ 0 1.60000+ 1 1.23702- 4 1.67208- 2 8.00000+ 0 1.80000+ 1 2.50514- 3 1.68996- 2 8.00000+ 0 1.90000+ 1 2.84078- 4 1.72366- 2 8.00000+ 0 2.10000+ 1 5.39294- 4 1.75228- 2 8.00000+ 0 2.20000+ 1 1.21823- 4 1.75833- 2 8.00000+ 0 2.40000+ 1 5.10904- 5 1.79618- 2 8.00000+ 0 2.50000+ 1 3.92651- 5 1.79785- 2 8.00000+ 0 2.70000+ 1 3.14593- 5 1.80979- 2 8.00000+ 0 2.90000+ 1 5.84210- 4 1.81716- 2 8.00000+ 0 3.00000+ 1 7.00131- 5 1.82579- 2 8.00000+ 0 3.20000+ 1 1.08091- 4 1.83670- 2 8.00000+ 0 3.30000+ 1 2.34174- 5 1.83798- 2 1.00000+ 1 1.00000+ 1 1.54801- 2 1.25402- 2 1.00000+ 1 1.10000+ 1 3.16987- 2 1.37873- 2 1.00000+ 1 1.30000+ 1 1.57477- 2 1.43989- 2 1.00000+ 1 1.40000+ 1 1.83445- 2 1.46430- 2 1.00000+ 1 1.60000+ 1 3.95278- 3 1.71024- 2 1.00000+ 1 1.80000+ 1 6.91628- 3 1.72812- 2 1.00000+ 1 1.90000+ 1 8.29765- 3 1.76182- 2 1.00000+ 1 2.10000+ 1 4.02183- 3 1.79044- 2 1.00000+ 1 2.20000+ 1 4.73539- 3 1.79649- 2 1.00000+ 1 2.40000+ 1 3.13387- 4 1.83434- 2 1.00000+ 1 2.50000+ 1 2.38176- 4 1.83601- 2 1.00000+ 1 2.70000+ 1 1.07613- 3 1.84795- 2 1.00000+ 1 2.90000+ 1 1.71582- 3 1.85532- 2 1.00000+ 1 3.00000+ 1 2.08450- 3 1.86395- 2 1.00000+ 1 3.20000+ 1 8.62855- 4 1.87486- 2 1.00000+ 1 3.30000+ 1 1.00453- 3 1.87614- 2 1.10000+ 1 1.10000+ 1 5.81135- 4 1.50344- 2 1.10000+ 1 1.30000+ 1 1.05588- 2 1.56460- 2 1.10000+ 1 1.40000+ 1 1.70514- 3 1.58901- 2 1.10000+ 1 1.60000+ 1 2.70584- 4 1.83495- 2 1.10000+ 1 1.80000+ 1 5.55480- 3 1.85283- 2 1.10000+ 1 1.90000+ 1 2.64681- 4 1.88653- 2 1.10000+ 1 2.10000+ 1 2.33529- 3 1.91515- 2 1.10000+ 1 2.20000+ 1 3.68982- 4 1.92120- 2 1.10000+ 1 2.40000+ 1 8.51481- 5 1.95905- 2 1.10000+ 1 2.50000+ 1 4.09195- 5 1.96072- 2 1.10000+ 1 2.70000+ 1 7.02462- 5 1.97266- 2 1.10000+ 1 2.90000+ 1 1.29207- 3 1.98003- 2 1.10000+ 1 3.00000+ 1 6.43333- 5 1.98866- 2 1.10000+ 1 3.20000+ 1 4.84428- 4 1.99957- 2 1.10000+ 1 3.30000+ 1 7.54539- 5 2.00085- 2 1.30000+ 1 1.30000+ 1 9.97183- 3 1.62576- 2 1.30000+ 1 1.40000+ 1 3.74036- 2 1.65017- 2 1.30000+ 1 1.60000+ 1 8.12466- 4 1.89611- 2 1.30000+ 1 1.80000+ 1 2.64422- 3 1.91399- 2 1.30000+ 1 1.90000+ 1 2.51791- 3 1.94769- 2 1.30000+ 1 2.10000+ 1 4.24205- 3 1.97631- 2 1.30000+ 1 2.20000+ 1 8.60539- 3 1.98236- 2 1.30000+ 1 2.40000+ 1 9.19395- 4 2.02021- 2 1.30000+ 1 2.50000+ 1 1.80186- 3 2.02188- 2 1.30000+ 1 2.70000+ 1 2.22103- 4 2.03382- 2 1.30000+ 1 2.90000+ 1 6.15232- 4 2.04119- 2 1.30000+ 1 3.00000+ 1 6.18763- 4 2.04982- 2 1.30000+ 1 3.20000+ 1 8.78049- 4 2.06073- 2 1.30000+ 1 3.30000+ 1 1.78032- 3 2.06201- 2 1.40000+ 1 1.40000+ 1 1.83299- 3 1.67458- 2 1.40000+ 1 1.60000+ 1 1.74081- 4 1.92052- 2 1.40000+ 1 1.80000+ 1 2.66488- 3 1.93840- 2 1.40000+ 1 1.90000+ 1 3.76788- 4 1.97210- 2 1.40000+ 1 2.10000+ 1 6.54056- 3 2.00072- 2 1.40000+ 1 2.20000+ 1 7.72236- 4 2.00677- 2 1.40000+ 1 2.40000+ 1 3.65672- 4 2.04462- 2 1.40000+ 1 2.50000+ 1 1.38127- 4 2.04629- 2 1.40000+ 1 2.70000+ 1 4.51753- 5 2.05823- 2 1.40000+ 1 2.90000+ 1 5.91770- 4 2.06560- 2 1.40000+ 1 3.00000+ 1 9.10608- 5 2.07423- 2 1.40000+ 1 3.20000+ 1 1.29018- 3 2.08514- 2 1.40000+ 1 3.30000+ 1 1.57517- 4 2.08642- 2 1.60000+ 1 1.60000+ 1 1.20618- 5 2.16646- 2 1.60000+ 1 1.80000+ 1 6.99395- 4 2.18434- 2 1.60000+ 1 1.90000+ 1 6.55189- 5 2.21804- 2 1.60000+ 1 2.10000+ 1 1.47828- 4 2.24666- 2 1.60000+ 1 2.20000+ 1 2.69636- 5 2.25271- 2 1.60000+ 1 2.40000+ 1 1.20618- 5 2.29056- 2 1.60000+ 1 2.50000+ 1 7.56882- 6 2.29223- 2 1.60000+ 1 2.70000+ 1 6.14976- 6 2.30417- 2 1.60000+ 1 2.90000+ 1 1.63203- 4 2.31154- 2 1.60000+ 1 3.00000+ 1 1.60832- 5 2.32017- 2 1.60000+ 1 3.20000+ 1 2.95654- 5 2.33108- 2 1.60000+ 1 3.30000+ 1 5.20347- 6 2.33236- 2 1.80000+ 1 1.80000+ 1 7.34683- 4 2.20222- 2 1.80000+ 1 1.90000+ 1 1.45943- 3 2.23592- 2 1.80000+ 1 2.10000+ 1 6.65852- 4 2.26454- 2 1.80000+ 1 2.20000+ 1 6.96357- 4 2.27059- 2 1.80000+ 1 2.40000+ 1 4.35222- 5 2.30844- 2 1.80000+ 1 2.50000+ 1 2.45986- 5 2.31011- 2 1.80000+ 1 2.70000+ 1 1.90643- 4 2.32205- 2 1.80000+ 1 2.90000+ 1 3.60470- 4 2.32942- 2 1.80000+ 1 3.00000+ 1 3.66864- 4 2.33805- 2 1.80000+ 1 3.20000+ 1 1.42628- 4 2.34896- 2 1.80000+ 1 3.30000+ 1 1.48069- 4 2.35024- 2 1.90000+ 1 1.90000+ 1 3.00407- 5 2.26962- 2 1.90000+ 1 2.10000+ 1 5.60598- 4 2.29824- 2 1.90000+ 1 2.20000+ 1 8.20788- 5 2.30429- 2 1.90000+ 1 2.40000+ 1 1.91604- 5 2.34214- 2 1.90000+ 1 2.50000+ 1 8.27891- 6 2.34381- 2 1.90000+ 1 2.70000+ 1 1.70306- 5 2.35575- 2 1.90000+ 1 2.90000+ 1 3.39678- 4 2.36312- 2 1.90000+ 1 3.00000+ 1 1.46657- 5 2.37175- 2 1.90000+ 1 3.20000+ 1 1.16377- 4 2.38266- 2 1.90000+ 1 3.30000+ 1 1.67945- 5 2.38394- 2 2.10000+ 1 2.10000+ 1 4.50347- 4 2.32685- 2 2.10000+ 1 2.20000+ 1 1.56959- 3 2.33291- 2 2.10000+ 1 2.40000+ 1 1.35769- 4 2.37075- 2 2.10000+ 1 2.50000+ 1 2.66100- 4 2.37243- 2 2.10000+ 1 2.70000+ 1 4.02095- 5 2.38437- 2 2.10000+ 1 2.90000+ 1 1.53979- 4 2.39174- 2 2.10000+ 1 3.00000+ 1 1.37894- 4 2.40037- 2 2.10000+ 1 3.20000+ 1 1.86155- 4 2.41128- 2 2.10000+ 1 3.30000+ 1 3.27365- 4 2.41256- 2 2.20000+ 1 2.20000+ 1 8.23110- 5 2.33896- 2 2.20000+ 1 2.40000+ 1 5.88967- 5 2.37681- 2 2.20000+ 1 2.50000+ 1 2.27071- 5 2.37848- 2 2.20000+ 1 2.70000+ 1 6.85951- 6 2.39042- 2 2.20000+ 1 2.90000+ 1 1.55161- 4 2.39779- 2 2.20000+ 1 3.00000+ 1 1.98690- 5 2.40642- 2 2.20000+ 1 3.20000+ 1 3.12220- 4 2.41733- 2 2.20000+ 1 3.30000+ 1 3.35868- 5 2.41861- 2 2.40000+ 1 2.40000+ 1 3.54791- 6 2.41465- 2 2.40000+ 1 2.50000+ 1 2.36531- 5 2.41633- 2 2.40000+ 1 2.70000+ 1 3.07485- 6 2.42827- 2 2.40000+ 1 2.90000+ 1 9.69712- 6 2.43564- 2 2.40000+ 1 3.00000+ 1 4.73043- 6 2.44427- 2 2.40000+ 1 3.20000+ 1 2.57818- 5 2.45518- 2 2.40000+ 1 3.30000+ 1 1.13529- 5 2.45646- 2 2.50000+ 1 2.50000+ 1 1.41908- 6 2.41800- 2 2.50000+ 1 2.70000+ 1 1.89225- 6 2.42994- 2 2.50000+ 1 2.90000+ 1 4.96720- 6 2.43731- 2 2.50000+ 1 3.00000+ 1 1.89225- 6 2.44594- 2 2.50000+ 1 3.20000+ 1 5.06183- 5 2.45685- 2 2.50000+ 1 3.30000+ 1 4.49404- 6 2.45814- 2 2.70000+ 1 2.70000+ 1 7.09589- 7 2.44188- 2 2.70000+ 1 2.90000+ 1 4.44676- 5 2.44925- 2 2.70000+ 1 3.00000+ 1 4.25749- 6 2.45788- 2 2.70000+ 1 3.20000+ 1 8.04230- 6 2.46879- 2 2.70000+ 1 3.30000+ 1 1.41910- 6 2.47008- 2 2.90000+ 1 2.90000+ 1 4.39959- 5 2.45663- 2 2.90000+ 1 3.00000+ 1 8.53907- 5 2.46525- 2 2.90000+ 1 3.20000+ 1 3.28788- 5 2.47617- 2 2.90000+ 1 3.30000+ 1 3.31149- 5 2.47745- 2 3.00000+ 1 3.00000+ 1 1.89226- 6 2.47388- 2 3.00000+ 1 3.20000+ 1 2.86198- 5 2.48479- 2 3.00000+ 1 3.30000+ 1 4.02097- 6 2.48608- 2 3.20000+ 1 3.20000+ 1 1.91596- 5 2.49571- 2 3.20000+ 1 3.30000+ 1 6.52806- 5 2.49699- 2 3.30000+ 1 3.30000+ 1 3.50421- 6 2.49827- 2 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.57001- 2 1.31965- 2 1.00000+ 1 3.38871- 4 1.35781- 2 1.10000+ 1 3.12231- 4 1.48252- 2 1.30000+ 1 3.82931- 2 1.54368- 2 1.40000+ 1 3.36031- 1 1.56809- 2 1.60000+ 1 6.62511- 3 1.81403- 2 1.80000+ 1 7.31332- 5 1.83191- 2 1.90000+ 1 8.73552- 5 1.86561- 2 2.10000+ 1 7.94452- 3 1.89423- 2 2.20000+ 1 7.34082- 2 1.90028- 2 2.40000+ 1 1.28220- 4 1.93813- 2 2.50000+ 1 7.00761- 4 1.93980- 2 2.70000+ 1 1.77560- 3 1.95174- 2 2.90000+ 1 1.78740- 5 1.95911- 2 3.00000+ 1 2.22240- 5 1.96774- 2 3.20000+ 1 1.63540- 3 1.97865- 2 3.30000+ 1 1.50910- 2 1.97993- 2 3.50000+ 1 1.18440- 5 1.99182- 2 3.60000+ 1 6.28221- 5 1.99200- 2 4.10000+ 1 3.56491- 4 1.98681- 2 4.30000+ 1 2.99671- 6 1.98902- 2 4.40000+ 1 3.27151- 6 1.99039- 2 5.80000+ 1 2.96001- 5 1.99233- 2 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.70558- 4 6.46400- 3 8.00000+ 0 1.00000+ 1 1.15072- 4 6.84560- 3 8.00000+ 0 1.10000+ 1 1.69313- 2 8.09270- 3 8.00000+ 0 1.30000+ 1 3.11269- 3 8.70430- 3 8.00000+ 0 1.40000+ 1 6.78603- 3 8.94840- 3 8.00000+ 0 1.60000+ 1 1.16482- 4 1.14078- 2 8.00000+ 0 1.80000+ 1 1.63972- 5 1.15866- 2 8.00000+ 0 1.90000+ 1 2.89757- 3 1.19236- 2 8.00000+ 0 2.10000+ 1 4.05692- 4 1.22098- 2 8.00000+ 0 2.20000+ 1 8.51559- 4 1.22703- 2 8.00000+ 0 2.40000+ 1 4.05414- 4 1.26488- 2 8.00000+ 0 2.50000+ 1 6.66075- 4 1.26655- 2 8.00000+ 0 2.70000+ 1 2.96845- 5 1.27849- 2 8.00000+ 0 2.90000+ 1 3.67533- 6 1.28586- 2 8.00000+ 0 3.00000+ 1 6.59881- 4 1.29449- 2 8.00000+ 0 3.20000+ 1 7.54861- 5 1.30540- 2 8.00000+ 0 3.30000+ 1 1.53509- 4 1.30668- 2 1.00000+ 1 1.00000+ 1 1.35699- 5 7.22720- 3 1.00000+ 1 1.10000+ 1 2.83361- 2 8.47430- 3 1.00000+ 1 1.30000+ 1 1.22079- 3 9.08590- 3 1.00000+ 1 1.40000+ 1 7.73815- 3 9.33000- 3 1.00000+ 1 1.60000+ 1 2.54444- 5 1.17894- 2 1.00000+ 1 1.80000+ 1 1.32869- 5 1.19682- 2 1.00000+ 1 1.90000+ 1 5.03627- 3 1.23052- 2 1.00000+ 1 2.10000+ 1 2.36069- 4 1.25914- 2 1.00000+ 1 2.20000+ 1 1.26338- 3 1.26519- 2 1.00000+ 1 2.40000+ 1 3.12397- 4 1.30304- 2 1.00000+ 1 2.50000+ 1 7.18095- 4 1.30471- 2 1.00000+ 1 2.70000+ 1 6.78497- 6 1.31665- 2 1.00000+ 1 2.90000+ 1 4.24063- 6 1.32402- 2 1.00000+ 1 3.00000+ 1 1.15626- 3 1.33265- 2 1.00000+ 1 3.20000+ 1 4.97581- 5 1.34356- 2 1.00000+ 1 3.30000+ 1 2.46522- 4 1.34484- 2 1.10000+ 1 1.10000+ 1 3.23091- 2 9.72140- 3 1.10000+ 1 1.30000+ 1 3.38745- 2 1.03330- 2 1.10000+ 1 1.40000+ 1 4.11103- 2 1.05771- 2 1.10000+ 1 1.60000+ 1 4.61472- 3 1.30365- 2 1.10000+ 1 1.80000+ 1 6.92412- 3 1.32153- 2 1.10000+ 1 1.90000+ 1 1.39701- 2 1.35523- 2 1.10000+ 1 2.10000+ 1 8.06552- 3 1.38385- 2 1.10000+ 1 2.20000+ 1 9.78764- 3 1.38990- 2 1.10000+ 1 2.40000+ 1 8.98485- 4 1.42775- 2 1.10000+ 1 2.50000+ 1 1.04769- 3 1.42942- 2 1.10000+ 1 2.70000+ 1 1.24989- 3 1.44136- 2 1.10000+ 1 2.90000+ 1 1.74892- 3 1.44873- 2 1.10000+ 1 3.00000+ 1 3.37961- 3 1.45736- 2 1.10000+ 1 3.20000+ 1 1.70733- 3 1.46827- 2 1.10000+ 1 3.30000+ 1 2.04236- 3 1.46955- 2 1.30000+ 1 1.30000+ 1 4.27062- 3 1.09446- 2 1.30000+ 1 1.40000+ 1 7.92884- 2 1.11887- 2 1.30000+ 1 1.60000+ 1 7.37017- 4 1.36481- 2 1.30000+ 1 1.80000+ 1 3.44351- 4 1.38269- 2 1.30000+ 1 1.90000+ 1 5.39007- 3 1.41639- 2 1.30000+ 1 2.10000+ 1 1.68409- 3 1.44501- 2 1.30000+ 1 2.20000+ 1 1.31491- 2 1.45106- 2 1.30000+ 1 2.40000+ 1 4.72696- 4 1.48891- 2 1.30000+ 1 2.50000+ 1 1.55802- 3 1.49058- 2 1.30000+ 1 2.70000+ 1 1.96204- 4 1.50252- 2 1.30000+ 1 2.90000+ 1 8.84917- 5 1.50989- 2 1.30000+ 1 3.00000+ 1 1.20521- 3 1.51852- 2 1.30000+ 1 3.20000+ 1 3.44629- 4 1.52943- 2 1.30000+ 1 3.30000+ 1 2.54136- 3 1.53071- 2 1.40000+ 1 1.40000+ 1 5.20673- 2 1.14328- 2 1.40000+ 1 1.60000+ 1 1.63174- 3 1.38922- 2 1.40000+ 1 1.80000+ 1 1.69815- 3 1.40710- 2 1.40000+ 1 1.90000+ 1 7.26493- 3 1.44080- 2 1.40000+ 1 2.10000+ 1 1.57168- 2 1.46942- 2 1.40000+ 1 2.20000+ 1 1.98592- 2 1.47547- 2 1.40000+ 1 2.40000+ 1 4.89534- 3 1.51332- 2 1.40000+ 1 2.50000+ 1 4.36982- 3 1.51499- 2 1.40000+ 1 2.70000+ 1 4.37627- 4 1.52693- 2 1.40000+ 1 2.90000+ 1 4.20106- 4 1.53430- 2 1.40000+ 1 3.00000+ 1 1.68009- 3 1.54293- 2 1.40000+ 1 3.20000+ 1 3.20562- 3 1.55384- 2 1.40000+ 1 3.30000+ 1 3.97344- 3 1.55512- 2 1.60000+ 1 1.60000+ 1 1.35704- 5 1.63516- 2 1.60000+ 1 1.80000+ 1 4.52349- 6 1.65304- 2 1.60000+ 1 1.90000+ 1 7.87944- 4 1.68674- 2 1.60000+ 1 2.10000+ 1 1.02627- 4 1.71536- 2 1.60000+ 1 2.20000+ 1 2.14863- 4 1.72141- 2 1.60000+ 1 2.40000+ 1 4.72143- 5 1.75926- 2 1.60000+ 1 2.50000+ 1 8.70786- 5 1.76093- 2 1.60000+ 1 2.70000+ 1 7.06820- 6 1.77287- 2 1.60000+ 1 2.90000+ 1 1.13089- 6 1.78024- 2 1.60000+ 1 3.00000+ 1 1.79244- 4 1.78887- 2 1.60000+ 1 3.20000+ 1 1.92248- 5 1.79978- 2 1.60000+ 1 3.30000+ 1 3.90155- 5 1.80106- 2 1.80000+ 1 1.80000+ 1 5.65431- 7 1.67092- 2 1.80000+ 1 1.90000+ 1 1.21820- 3 1.70462- 2 1.80000+ 1 2.10000+ 1 6.04979- 5 1.73324- 2 1.80000+ 1 2.20000+ 1 3.12392- 4 1.73929- 2 1.80000+ 1 2.40000+ 1 4.66473- 5 1.77714- 2 1.80000+ 1 2.50000+ 1 9.97931- 5 1.77881- 2 1.80000+ 1 2.70000+ 1 1.13084- 6 1.79075- 2 1.80000+ 1 2.90000+ 1 2.82712- 7 1.79812- 2 1.80000+ 1 3.00000+ 1 2.79029- 4 1.80675- 2 1.80000+ 1 3.20000+ 1 1.21562- 5 1.81766- 2 1.80000+ 1 3.30000+ 1 6.19135- 5 1.81894- 2 1.90000+ 1 1.90000+ 1 1.43980- 3 1.73832- 2 1.90000+ 1 2.10000+ 1 1.28871- 3 1.76694- 2 1.90000+ 1 2.20000+ 1 1.70931- 3 1.77299- 2 1.90000+ 1 2.40000+ 1 1.17613- 4 1.81084- 2 1.90000+ 1 2.50000+ 1 1.44178- 4 1.81251- 2 1.90000+ 1 2.70000+ 1 2.13448- 4 1.82445- 2 1.90000+ 1 2.90000+ 1 3.07029- 4 1.83182- 2 1.90000+ 1 3.00000+ 1 6.88678- 4 1.84045- 2 1.90000+ 1 3.20000+ 1 2.73109- 4 1.85136- 2 1.90000+ 1 3.30000+ 1 3.55650- 4 1.85264- 2 2.10000+ 1 2.10000+ 1 1.58881- 4 1.79555- 2 2.10000+ 1 2.20000+ 1 2.74828- 3 1.80161- 2 2.10000+ 1 2.40000+ 1 6.10658- 5 1.83945- 2 2.10000+ 1 2.50000+ 1 1.86875- 4 1.84113- 2 2.10000+ 1 2.70000+ 1 2.77061- 5 1.85307- 2 2.10000+ 1 2.90000+ 1 1.55496- 5 1.86044- 2 2.10000+ 1 3.00000+ 1 2.88369- 4 1.86907- 2 2.10000+ 1 3.20000+ 1 6.44608- 5 1.87998- 2 2.10000+ 1 3.30000+ 1 5.36017- 4 1.88126- 2 2.20000+ 1 2.20000+ 1 1.90914- 3 1.80766- 2 2.20000+ 1 2.40000+ 1 6.28781- 4 1.84551- 2 2.20000+ 1 2.50000+ 1 5.49326- 4 1.84718- 2 2.20000+ 1 2.70000+ 1 5.79543- 5 1.85912- 2 2.20000+ 1 2.90000+ 1 7.85964- 5 1.86649- 2 2.20000+ 1 3.00000+ 1 3.93830- 4 1.87512- 2 2.20000+ 1 3.20000+ 1 5.65983- 4 1.88603- 2 2.20000+ 1 3.30000+ 1 7.64195- 4 1.88731- 2 2.40000+ 1 2.40000+ 1 3.10990- 6 1.88335- 2 2.40000+ 1 2.50000+ 1 9.44273- 5 1.88503- 2 2.40000+ 1 2.70000+ 1 1.07429- 5 1.89697- 2 2.40000+ 1 2.90000+ 1 1.07429- 5 1.90434- 2 2.40000+ 1 3.00000+ 1 2.54446- 5 1.91297- 2 2.40000+ 1 3.20000+ 1 1.13086- 5 1.92388- 2 2.40000+ 1 3.30000+ 1 1.14784- 4 1.92516- 2 2.50000+ 1 2.50000+ 1 3.33605- 5 1.88670- 2 2.50000+ 1 2.70000+ 1 2.03562- 5 1.89864- 2 2.50000+ 1 2.90000+ 1 2.26175- 5 1.90601- 2 2.50000+ 1 3.00000+ 1 3.16640- 5 1.91464- 2 2.50000+ 1 3.20000+ 1 3.39262- 5 1.92555- 2 2.50000+ 1 3.30000+ 1 9.97960- 5 1.92684- 2 2.70000+ 1 2.70000+ 1 8.48106- 7 1.91058- 2 2.70000+ 1 2.90000+ 1 2.82716- 7 1.91795- 2 2.70000+ 1 3.00000+ 1 4.86255- 5 1.92658- 2 2.70000+ 1 3.20000+ 1 5.08888- 6 1.93749- 2 2.70000+ 1 3.30000+ 1 1.04600- 5 1.93878- 2 2.90000+ 1 3.00000+ 1 7.03950- 5 1.93395- 2 2.90000+ 1 3.20000+ 1 3.10988- 6 1.94487- 2 2.90000+ 1 3.30000+ 1 1.55493- 5 1.94615- 2 3.00000+ 1 3.00000+ 1 8.19872- 5 1.94258- 2 3.00000+ 1 3.20000+ 1 6.10660- 5 1.95349- 2 3.00000+ 1 3.30000+ 1 8.19872- 5 1.95478- 2 3.20000+ 1 3.20000+ 1 6.50258- 6 1.96441- 2 3.20000+ 1 3.30000+ 1 1.10538- 4 1.96569- 2 3.30000+ 1 3.30000+ 1 7.63312- 5 1.96697- 2 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.06771- 5 3.81600- 4 1.10000+ 1 1.94301- 3 1.62870- 3 1.80000+ 1 3.48662- 3 5.12260- 3 1.90000+ 1 1.36101- 3 5.45960- 3 2.90000+ 1 9.86605- 4 6.39463- 3 3.00000+ 1 4.66012- 4 6.48092- 3 4.30000+ 1 1.70221- 4 6.69371- 3 4.40000+ 1 7.21753- 5 6.70740- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.90000+ 1 1.72647- 2 4.37300- 5 1.00000+ 1 3.00000+ 1 1.91419- 2 1.30020- 4 1.00000+ 1 3.20000+ 1 1.13162- 2 2.39130- 4 1.00000+ 1 3.30000+ 1 1.42670- 2 2.51940- 4 1.00000+ 1 3.50000+ 1 1.11963- 3 3.70820- 4 1.00000+ 1 3.60000+ 1 1.38322- 3 3.72580- 4 1.00000+ 1 4.10000+ 1 3.01003- 3 3.20720- 4 1.00000+ 1 4.30000+ 1 2.66907- 3 3.42810- 4 1.00000+ 1 4.40000+ 1 2.55552- 3 3.56500- 4 1.00000+ 1 5.80000+ 1 2.37189- 4 3.75890- 4 1.10000+ 1 1.80000+ 1 5.02035- 2 1.88000- 5 1.10000+ 1 1.90000+ 1 3.08668- 2 3.55800- 4 1.10000+ 1 2.10000+ 1 8.02098- 3 6.41960- 4 1.10000+ 1 2.20000+ 1 2.53222- 2 7.02500- 4 1.10000+ 1 2.40000+ 1 1.98235- 1 1.08097- 3 1.10000+ 1 2.50000+ 1 2.35629- 1 1.09772- 3 1.10000+ 1 2.70000+ 1 1.11922- 2 1.21712- 3 1.10000+ 1 2.90000+ 1 1.17929- 2 1.29083- 3 1.10000+ 1 3.00000+ 1 7.63254- 3 1.37712- 3 1.10000+ 1 3.20000+ 1 2.06931- 3 1.48623- 3 1.10000+ 1 3.30000+ 1 5.72385- 3 1.49904- 3 1.10000+ 1 3.50000+ 1 1.06594- 2 1.61792- 3 1.10000+ 1 3.60000+ 1 1.20158- 2 1.61968- 3 1.10000+ 1 4.10000+ 1 2.15088- 3 1.56782- 3 1.10000+ 1 4.30000+ 1 1.87889- 3 1.58991- 3 1.10000+ 1 4.40000+ 1 1.05275- 3 1.60360- 3 1.10000+ 1 5.80000+ 1 1.66908- 4 1.62299- 3 1.30000+ 1 1.60000+ 1 2.68739- 2 4.51600- 4 1.30000+ 1 1.80000+ 1 5.48272- 3 6.30400- 4 1.30000+ 1 1.90000+ 1 1.11673- 2 9.67400- 4 1.30000+ 1 2.10000+ 1 8.76256- 3 1.25356- 3 1.30000+ 1 2.20000+ 1 9.97775- 3 1.31410- 3 1.30000+ 1 2.40000+ 1 1.01397- 2 1.69257- 3 1.30000+ 1 2.50000+ 1 9.88039- 3 1.70932- 3 1.30000+ 1 2.70000+ 1 4.41826- 3 1.82872- 3 1.30000+ 1 2.90000+ 1 1.10164- 3 1.90243- 3 1.30000+ 1 3.00000+ 1 2.04554- 3 1.98872- 3 1.30000+ 1 3.20000+ 1 1.50767- 3 2.09783- 3 1.30000+ 1 3.30000+ 1 1.87062- 3 2.11064- 3 1.30000+ 1 3.50000+ 1 5.73321- 4 2.22952- 3 1.30000+ 1 3.60000+ 1 5.01551- 4 2.23128- 3 1.30000+ 1 4.10000+ 1 7.77496- 4 2.17942- 3 1.30000+ 1 4.30000+ 1 1.72648- 4 2.20151- 3 1.30000+ 1 4.40000+ 1 2.68349- 4 2.21520- 3 1.30000+ 1 5.80000+ 1 6.00320- 5 2.23459- 3 1.40000+ 1 1.60000+ 1 3.60298- 2 6.95700- 4 1.40000+ 1 1.80000+ 1 8.16854- 4 8.74500- 4 1.40000+ 1 1.90000+ 1 1.28412- 2 1.21150- 3 1.40000+ 1 2.10000+ 1 1.16388- 2 1.49766- 3 1.40000+ 1 2.20000+ 1 1.54561- 2 1.55820- 3 1.40000+ 1 2.40000+ 1 1.26083- 2 1.93667- 3 1.40000+ 1 2.50000+ 1 1.81278- 2 1.95342- 3 1.40000+ 1 2.70000+ 1 5.80930- 3 2.07282- 3 1.40000+ 1 2.90000+ 1 2.54497- 4 2.14653- 3 1.40000+ 1 3.00000+ 1 2.30396- 3 2.23282- 3 1.40000+ 1 3.20000+ 1 2.24359- 3 2.34193- 3 1.40000+ 1 3.30000+ 1 2.79565- 3 2.35474- 3 1.40000+ 1 3.50000+ 1 6.64862- 4 2.47362- 3 1.40000+ 1 3.60000+ 1 9.47845- 4 2.47538- 3 1.40000+ 1 4.10000+ 1 1.01754- 3 2.42352- 3 1.40000+ 1 4.30000+ 1 4.39243- 5 2.44561- 3 1.40000+ 1 4.40000+ 1 3.02005- 4 2.45930- 3 1.40000+ 1 5.80000+ 1 7.85298- 5 2.47869- 3 1.60000+ 1 1.60000+ 1 2.22664- 3 3.15510- 3 1.60000+ 1 1.80000+ 1 4.00259- 3 3.33390- 3 1.60000+ 1 1.90000+ 1 5.94976- 3 3.67090- 3 1.60000+ 1 2.10000+ 1 7.31657- 3 3.95706- 3 1.60000+ 1 2.20000+ 1 9.99870- 3 4.01760- 3 1.60000+ 1 2.40000+ 1 5.55652- 3 4.39607- 3 1.60000+ 1 2.50000+ 1 6.79319- 3 4.41282- 3 1.60000+ 1 2.70000+ 1 9.70224- 4 4.53222- 3 1.60000+ 1 2.90000+ 1 1.02426- 3 4.60593- 3 1.60000+ 1 3.00000+ 1 1.49406- 3 4.69222- 3 1.60000+ 1 3.20000+ 1 1.52395- 3 4.80133- 3 1.60000+ 1 3.30000+ 1 2.05812- 3 4.81414- 3 1.60000+ 1 3.50000+ 1 4.19151- 4 4.93302- 3 1.60000+ 1 3.60000+ 1 4.90101- 4 4.93478- 3 1.60000+ 1 4.10000+ 1 1.84891- 4 4.88292- 3 1.60000+ 1 4.30000+ 1 1.67978- 4 4.90501- 3 1.60000+ 1 4.40000+ 1 2.08051- 4 4.91870- 3 1.60000+ 1 5.80000+ 1 1.45088- 5 4.93809- 3 1.80000+ 1 1.80000+ 1 1.39503- 4 3.51270- 3 1.80000+ 1 1.90000+ 1 5.04745- 4 3.84970- 3 1.80000+ 1 2.10000+ 1 2.28547- 4 4.13586- 3 1.80000+ 1 2.20000+ 1 8.59892- 5 4.19640- 3 1.80000+ 1 2.40000+ 1 1.82366- 5 4.57487- 3 1.80000+ 1 2.50000+ 1 5.67309- 4 4.59162- 3 1.80000+ 1 2.70000+ 1 6.46397- 4 4.71102- 3 1.80000+ 1 2.90000+ 1 4.96519- 5 4.78473- 3 1.80000+ 1 3.00000+ 1 8.43938- 5 4.87102- 3 1.80000+ 1 3.20000+ 1 3.97999- 5 4.98013- 3 1.80000+ 1 3.30000+ 1 2.34264- 5 4.99294- 3 1.80000+ 1 3.50000+ 1 6.65529- 7 5.11182- 3 1.80000+ 1 3.60000+ 1 2.55577- 5 5.11358- 3 1.80000+ 1 4.10000+ 1 1.13803- 4 5.06172- 3 1.80000+ 1 4.30000+ 1 7.58722- 6 5.08381- 3 1.80000+ 1 4.40000+ 1 1.09145- 5 5.09750- 3 1.80000+ 1 5.80000+ 1 8.78524- 6 5.11689- 3 1.90000+ 1 1.90000+ 1 3.84950- 4 4.18670- 3 1.90000+ 1 2.10000+ 1 7.57395- 4 4.47286- 3 1.90000+ 1 2.20000+ 1 1.61263- 3 4.53340- 3 1.90000+ 1 2.40000+ 1 1.19989- 3 4.91187- 3 1.90000+ 1 2.50000+ 1 1.60523- 3 4.92862- 3 1.90000+ 1 2.70000+ 1 9.64898- 4 5.04802- 3 1.90000+ 1 2.90000+ 1 1.11943- 4 5.12173- 3 1.90000+ 1 3.00000+ 1 1.65451- 4 5.20802- 3 1.90000+ 1 3.20000+ 1 1.50417- 4 5.31713- 3 1.90000+ 1 3.30000+ 1 3.14259- 4 5.32994- 3 1.90000+ 1 3.50000+ 1 8.53225- 5 5.44882- 3 1.90000+ 1 3.60000+ 1 9.93006- 5 5.45058- 3 1.90000+ 1 4.10000+ 1 1.70379- 4 5.39872- 3 1.90000+ 1 4.30000+ 1 1.78365- 5 5.42081- 3 1.90000+ 1 4.40000+ 1 2.23616- 5 5.43450- 3 1.90000+ 1 5.80000+ 1 1.31784- 5 5.45389- 3 2.10000+ 1 2.10000+ 1 1.05416- 4 4.75902- 3 2.10000+ 1 2.20000+ 1 1.91149- 4 4.81956- 3 2.10000+ 1 2.40000+ 1 4.56958- 4 5.19803- 3 2.10000+ 1 2.50000+ 1 2.41208- 3 5.21478- 3 2.10000+ 1 2.70000+ 1 1.15012- 3 5.33418- 3 2.10000+ 1 2.90000+ 1 3.51402- 5 5.40789- 3 2.10000+ 1 3.00000+ 1 1.41760- 4 5.49418- 3 2.10000+ 1 3.20000+ 1 3.43426- 5 5.60329- 3 2.10000+ 1 3.30000+ 1 3.34100- 5 5.61610- 3 2.10000+ 1 3.50000+ 1 3.06152- 5 5.73498- 3 2.10000+ 1 3.60000+ 1 1.23258- 4 5.73674- 3 2.10000+ 1 4.10000+ 1 2.01115- 4 5.68488- 3 2.10000+ 1 4.30000+ 1 5.19111- 6 5.70697- 3 2.10000+ 1 4.40000+ 1 1.85022- 5 5.72066- 3 2.10000+ 1 5.80000+ 1 1.55734- 5 5.74005- 3 2.20000+ 1 2.20000+ 1 2.14040- 4 4.88010- 3 2.20000+ 1 2.40000+ 1 2.04674- 3 5.25857- 3 2.20000+ 1 2.50000+ 1 1.41780- 3 5.27532- 3 2.20000+ 1 2.70000+ 1 1.56015- 3 5.39472- 3 2.20000+ 1 2.90000+ 1 1.51746- 5 5.46843- 3 2.20000+ 1 3.00000+ 1 2.96037- 4 5.55472- 3 2.20000+ 1 3.20000+ 1 2.84852- 5 5.66383- 3 2.20000+ 1 3.30000+ 1 7.22758- 5 5.67664- 3 2.20000+ 1 3.50000+ 1 1.05686- 4 5.79552- 3 2.20000+ 1 3.60000+ 1 7.94669- 5 5.79728- 3 2.20000+ 1 4.10000+ 1 2.72347- 4 5.74542- 3 2.20000+ 1 4.30000+ 1 2.39589- 6 5.76751- 3 2.20000+ 1 4.40000+ 1 3.86009- 5 5.78120- 3 2.20000+ 1 5.80000+ 1 2.10312- 5 5.80059- 3 2.40000+ 1 2.40000+ 1 6.24422- 4 5.63704- 3 2.40000+ 1 2.50000+ 1 4.09034- 3 5.65379- 3 2.40000+ 1 2.70000+ 1 7.92261- 4 5.77319- 3 2.40000+ 1 2.90000+ 1 5.59020- 6 5.84690- 3 2.40000+ 1 3.00000+ 1 1.56923- 4 5.93319- 3 2.40000+ 1 3.20000+ 1 8.38590- 5 6.04230- 3 2.40000+ 1 3.30000+ 1 4.40181- 4 6.05511- 3 2.40000+ 1 3.50000+ 1 8.45247- 5 6.17399- 3 2.40000+ 1 3.60000+ 1 2.21085- 4 6.17575- 3 2.40000+ 1 4.10000+ 1 1.36032- 4 6.12389- 3 2.40000+ 1 4.30000+ 1 9.31720- 7 6.14598- 3 2.40000+ 1 4.40000+ 1 1.91668- 5 6.15967- 3 2.40000+ 1 5.80000+ 1 1.05145- 5 6.17906- 3 2.50000+ 1 2.50000+ 1 1.40150- 3 5.67054- 3 2.50000+ 1 2.70000+ 1 9.65825- 4 5.78994- 3 2.50000+ 1 2.90000+ 1 1.22997- 4 5.86365- 3 2.50000+ 1 3.00000+ 1 2.22823- 4 5.94994- 3 2.50000+ 1 3.20000+ 1 5.01155- 4 6.05905- 3 2.50000+ 1 3.30000+ 1 2.81249- 4 6.07186- 3 2.50000+ 1 3.50000+ 1 2.26012- 4 6.19074- 3 2.50000+ 1 3.60000+ 1 1.67578- 4 6.19250- 3 2.50000+ 1 4.10000+ 1 1.65719- 4 6.14064- 3 2.50000+ 1 4.30000+ 1 1.94337- 5 6.16273- 3 2.50000+ 1 4.40000+ 1 2.75532- 5 6.17642- 3 2.50000+ 1 5.80000+ 1 1.27785- 5 6.19581- 3 2.70000+ 1 2.70000+ 1 9.66366- 5 5.90934- 3 2.70000+ 1 2.90000+ 1 1.67320- 4 5.98305- 3 2.70000+ 1 3.00000+ 1 2.42118- 4 6.06934- 3 2.70000+ 1 3.20000+ 1 2.41598- 4 6.17845- 3 2.70000+ 1 3.30000+ 1 3.23855- 4 6.19126- 3 2.70000+ 1 3.50000+ 1 6.00319- 5 6.31014- 3 2.70000+ 1 3.60000+ 1 7.00157- 5 6.31190- 3 2.70000+ 1 4.10000+ 1 3.62059- 5 6.26004- 3 2.70000+ 1 4.30000+ 1 2.75536- 5 6.28213- 3 2.70000+ 1 4.40000+ 1 3.36759- 5 6.29582- 3 2.70000+ 1 5.80000+ 1 2.79534- 6 6.31521- 3 2.90000+ 1 2.90000+ 1 4.25953- 6 6.05676- 3 2.90000+ 1 3.00000+ 1 1.81034- 5 6.14305- 3 2.90000+ 1 3.20000+ 1 6.12305- 6 6.25216- 3 2.90000+ 1 3.30000+ 1 4.52572- 6 6.26497- 3 2.90000+ 1 3.50000+ 1 1.33114- 7 6.38385- 3 2.90000+ 1 3.60000+ 1 5.85697- 6 6.38561- 3 2.90000+ 1 4.10000+ 1 2.95507- 5 6.33375- 3 2.90000+ 1 4.30000+ 1 1.33114- 6 6.35584- 3 2.90000+ 1 4.40000+ 1 2.26286- 6 6.36953- 3 2.90000+ 1 5.80000+ 1 2.26286- 6 6.38892- 3 3.00000+ 1 3.00000+ 1 1.69059- 5 6.22934- 3 3.00000+ 1 3.20000+ 1 2.83523- 5 6.33845- 3 3.00000+ 1 3.30000+ 1 5.81679- 5 6.35126- 3 3.00000+ 1 3.50000+ 1 1.13143- 5 6.47014- 3 3.00000+ 1 3.60000+ 1 1.37103- 5 6.47190- 3 3.00000+ 1 4.10000+ 1 4.27284- 5 6.42004- 3 3.00000+ 1 4.30000+ 1 2.92839- 6 6.44213- 3 3.00000+ 1 4.40000+ 1 4.52573- 6 6.45582- 3 3.00000+ 1 5.80000+ 1 3.32773- 6 6.47521- 3 3.20000+ 1 3.20000+ 1 2.52906- 6 6.44756- 3 3.20000+ 1 3.30000+ 1 5.05812- 6 6.46037- 3 3.20000+ 1 3.50000+ 1 5.59029- 6 6.57925- 3 3.20000+ 1 3.60000+ 1 2.70209- 5 6.58101- 3 3.20000+ 1 4.10000+ 1 4.23285- 5 6.52915- 3 3.20000+ 1 4.30000+ 1 9.31736- 7 6.55124- 3 3.20000+ 1 4.40000+ 1 3.72707- 6 6.56493- 3 3.20000+ 1 5.80000+ 1 3.32773- 6 6.58432- 3 3.30000+ 1 3.30000+ 1 5.85710- 6 6.47318- 3 3.30000+ 1 3.50000+ 1 2.38266- 5 6.59206- 3 3.30000+ 1 3.60000+ 1 1.61066- 5 6.59382- 3 3.30000+ 1 4.10000+ 1 5.65747- 5 6.54196- 3 3.30000+ 1 4.30000+ 1 6.65537- 7 6.56405- 3 3.30000+ 1 4.40000+ 1 7.58731- 6 6.57774- 3 3.30000+ 1 5.80000+ 1 4.39267- 6 6.59713- 3 3.50000+ 1 3.50000+ 1 2.52904- 6 6.71094- 3 3.50000+ 1 3.60000+ 1 1.29116- 5 6.71270- 3 3.50000+ 1 4.10000+ 1 1.02497- 5 6.66084- 3 3.50000+ 1 4.40000+ 1 1.33114- 6 6.69662- 3 3.50000+ 1 5.80000+ 1 7.98636- 7 6.71601- 3 3.60000+ 1 3.60000+ 1 4.79198- 6 6.71446- 3 3.60000+ 1 4.10000+ 1 1.19802- 5 6.66260- 3 3.60000+ 1 4.30000+ 1 9.31747- 7 6.68469- 3 3.60000+ 1 4.40000+ 1 1.73041- 6 6.69838- 3 3.60000+ 1 5.80000+ 1 9.31747- 7 6.71777- 3 4.10000+ 1 4.10000+ 1 3.52409- 6 6.61074- 3 4.10000+ 1 4.30000+ 1 5.07467- 6 6.63283- 3 4.10000+ 1 4.40000+ 1 6.34348- 6 6.64652- 3 4.10000+ 1 5.80000+ 1 5.63836- 7 6.66591- 3 4.30000+ 1 4.30000+ 1 1.33115- 7 6.65492- 3 4.30000+ 1 4.40000+ 1 3.99325- 7 6.66861- 3 4.30000+ 1 5.80000+ 1 3.99325- 7 6.68800- 3 4.40000+ 1 4.40000+ 1 2.66219- 7 6.68230- 3 4.40000+ 1 5.80000+ 1 3.99324- 7 6.70169- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.78841- 3 1.85870- 3 1.60000+ 1 1.23191- 3 4.56220- 3 2.10000+ 1 5.53722- 3 5.36416- 3 2.70000+ 1 3.39142- 4 5.93932- 3 3.20000+ 1 1.48331- 3 6.20843- 3 4.10000+ 1 6.83443- 5 6.29002- 3 5.80000+ 1 5.67473- 6 6.34519- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 2.10000+ 1 1.21936- 2 2.60360- 4 1.10000+ 1 2.20000+ 1 2.07131- 2 3.20900- 4 1.10000+ 1 2.40000+ 1 2.84531- 2 6.99370- 4 1.10000+ 1 2.50000+ 1 2.22265- 2 7.16120- 4 1.10000+ 1 2.70000+ 1 3.16382- 3 8.35520- 4 1.10000+ 1 2.90000+ 1 4.90826- 3 9.09230- 4 1.10000+ 1 3.00000+ 1 1.58755- 3 9.95520- 4 1.10000+ 1 3.20000+ 1 2.27923- 3 1.10463- 3 1.10000+ 1 3.30000+ 1 3.69891- 3 1.11744- 3 1.10000+ 1 3.50000+ 1 1.67396- 3 1.23632- 3 1.10000+ 1 3.60000+ 1 1.28555- 3 1.23808- 3 1.10000+ 1 4.10000+ 1 5.82601- 4 1.18622- 3 1.10000+ 1 4.30000+ 1 7.17017- 4 1.20831- 3 1.10000+ 1 4.40000+ 1 2.11933- 4 1.22200- 3 1.10000+ 1 5.80000+ 1 4.53541- 5 1.24139- 3 1.30000+ 1 1.60000+ 1 4.87167- 2 7.00000- 5 1.30000+ 1 1.80000+ 1 5.14431- 2 2.48800- 4 1.30000+ 1 1.90000+ 1 2.77702- 2 5.85800- 4 1.30000+ 1 2.10000+ 1 1.66611- 2 8.71960- 4 1.30000+ 1 2.20000+ 1 3.09418- 2 9.32500- 4 1.30000+ 1 2.40000+ 1 1.54539- 1 1.31097- 3 1.30000+ 1 2.50000+ 1 2.44313- 1 1.32772- 3 1.30000+ 1 2.70000+ 1 1.27041- 2 1.44712- 3 1.30000+ 1 2.90000+ 1 1.06707- 2 1.52083- 3 1.30000+ 1 3.00000+ 1 6.71623- 3 1.60712- 3 1.30000+ 1 3.20000+ 1 3.70633- 3 1.71623- 3 1.30000+ 1 3.30000+ 1 6.53903- 3 1.72904- 3 1.30000+ 1 3.50000+ 1 8.44793- 3 1.84792- 3 1.30000+ 1 3.60000+ 1 1.34613- 2 1.84968- 3 1.30000+ 1 4.10000+ 1 2.46295- 3 1.79782- 3 1.30000+ 1 4.30000+ 1 1.68069- 3 1.81991- 3 1.30000+ 1 4.40000+ 1 9.26409- 4 1.83360- 3 1.30000+ 1 5.80000+ 1 1.92096- 4 1.85299- 3 1.40000+ 1 1.60000+ 1 7.21589- 3 3.14100- 4 1.40000+ 1 1.80000+ 1 5.83522- 2 4.92900- 4 1.40000+ 1 1.90000+ 1 4.40917- 3 8.29900- 4 1.40000+ 1 2.10000+ 1 2.74705- 3 1.11606- 3 1.40000+ 1 2.20000+ 1 2.87388- 3 1.17660- 3 1.40000+ 1 2.40000+ 1 9.23557- 3 1.55507- 3 1.40000+ 1 2.50000+ 1 5.18966- 3 1.57182- 3 1.40000+ 1 2.70000+ 1 1.25587- 3 1.69122- 3 1.40000+ 1 2.90000+ 1 9.06704- 3 1.76493- 3 1.40000+ 1 3.00000+ 1 8.93039- 4 1.85122- 3 1.40000+ 1 3.20000+ 1 2.40598- 4 1.96033- 3 1.40000+ 1 3.30000+ 1 5.28725- 4 1.97314- 3 1.40000+ 1 3.50000+ 1 7.24282- 4 2.09202- 3 1.40000+ 1 3.60000+ 1 3.20804- 4 2.09378- 3 1.40000+ 1 4.10000+ 1 2.24435- 4 2.04192- 3 1.40000+ 1 4.30000+ 1 1.33567- 3 2.06401- 3 1.40000+ 1 4.40000+ 1 1.19220- 4 2.07770- 3 1.40000+ 1 5.80000+ 1 1.73407- 5 2.09709- 3 1.60000+ 1 1.60000+ 1 3.55581- 4 2.77350- 3 1.60000+ 1 1.80000+ 1 5.85211- 3 2.95230- 3 1.60000+ 1 1.90000+ 1 6.55847- 4 3.28930- 3 1.60000+ 1 2.10000+ 1 2.69742- 4 3.57546- 3 1.60000+ 1 2.20000+ 1 6.43382- 4 3.63600- 3 1.60000+ 1 2.40000+ 1 7.19034- 5 4.01447- 3 1.60000+ 1 2.50000+ 1 4.57192- 4 4.03122- 3 1.60000+ 1 2.70000+ 1 1.43393- 4 4.15062- 3 1.60000+ 1 2.90000+ 1 9.07741- 4 4.22433- 3 1.60000+ 1 3.00000+ 1 1.47548- 4 4.31062- 3 1.60000+ 1 3.20000+ 1 3.57434- 5 4.41973- 3 1.60000+ 1 3.30000+ 1 1.17002- 4 4.43254- 3 1.60000+ 1 3.50000+ 1 3.94841- 6 4.55142- 3 1.60000+ 1 3.60000+ 1 2.18197- 5 4.55318- 3 1.60000+ 1 4.10000+ 1 2.65999- 5 4.50132- 3 1.60000+ 1 4.30000+ 1 1.34454- 4 4.52341- 3 1.60000+ 1 4.40000+ 1 2.01576- 5 4.53710- 3 1.60000+ 1 5.80000+ 1 2.07815- 6 4.55649- 3 1.80000+ 1 1.80000+ 1 4.62931- 3 3.13110- 3 1.80000+ 1 1.90000+ 1 1.18422- 2 3.46810- 3 1.80000+ 1 2.10000+ 1 1.21430- 2 3.75426- 3 1.80000+ 1 2.20000+ 1 1.86833- 2 3.81480- 3 1.80000+ 1 2.40000+ 1 7.65316- 3 4.19327- 3 1.80000+ 1 2.50000+ 1 1.21805- 2 4.21002- 3 1.80000+ 1 2.70000+ 1 1.56790- 3 4.32942- 3 1.80000+ 1 2.90000+ 1 1.93531- 3 4.40313- 3 1.80000+ 1 3.00000+ 1 2.94367- 3 4.48942- 3 1.80000+ 1 3.20000+ 1 2.54622- 3 4.59853- 3 1.80000+ 1 3.30000+ 1 3.80679- 3 4.61134- 3 1.80000+ 1 3.50000+ 1 5.79164- 4 4.73022- 3 1.80000+ 1 3.60000+ 1 8.72377- 4 4.73198- 3 1.80000+ 1 4.10000+ 1 3.08807- 4 4.68012- 3 1.80000+ 1 4.30000+ 1 3.07560- 4 4.70221- 3 1.80000+ 1 4.40000+ 1 4.08758- 4 4.71590- 3 1.80000+ 1 5.80000+ 1 2.43137- 5 4.73529- 3 1.90000+ 1 1.90000+ 1 2.74514- 4 3.80510- 3 1.90000+ 1 2.10000+ 1 6.08056- 4 4.09126- 3 1.90000+ 1 2.20000+ 1 6.02242- 4 4.15180- 3 1.90000+ 1 2.40000+ 1 4.68953- 3 4.53027- 3 1.90000+ 1 2.50000+ 1 1.32356- 3 4.54702- 3 1.90000+ 1 2.70000+ 1 1.10555- 4 4.66642- 3 1.90000+ 1 2.90000+ 1 1.86737- 3 4.74013- 3 1.90000+ 1 3.00000+ 1 1.15129- 4 4.82642- 3 1.90000+ 1 3.20000+ 1 9.76715- 5 4.93553- 3 1.90000+ 1 3.30000+ 1 1.12425- 4 4.94834- 3 1.90000+ 1 3.50000+ 1 2.89692- 4 5.06722- 3 1.90000+ 1 3.60000+ 1 8.20835- 5 5.06898- 3 1.90000+ 1 4.10000+ 1 1.97422- 5 5.01712- 3 1.90000+ 1 4.30000+ 1 2.77434- 4 5.03921- 3 1.90000+ 1 4.40000+ 1 1.55857- 5 5.05290- 3 1.90000+ 1 5.80000+ 1 1.45464- 6 5.07229- 3 2.10000+ 1 2.10000+ 1 4.91268- 4 4.37742- 3 2.10000+ 1 2.20000+ 1 7.92346- 4 4.43796- 3 2.10000+ 1 2.40000+ 1 4.96878- 4 4.81643- 3 2.10000+ 1 2.50000+ 1 5.56308- 4 4.83318- 3 2.10000+ 1 2.70000+ 1 7.04473- 5 4.95258- 3 2.10000+ 1 2.90000+ 1 1.84908- 3 5.02629- 3 2.10000+ 1 3.00000+ 1 1.44011- 4 5.11258- 3 2.10000+ 1 3.20000+ 1 1.65622- 4 5.22169- 3 2.10000+ 1 3.30000+ 1 1.47342- 4 5.23450- 3 2.10000+ 1 3.50000+ 1 1.80801- 5 5.35338- 3 2.10000+ 1 3.60000+ 1 2.70152- 5 5.35514- 3 2.10000+ 1 4.10000+ 1 1.37155- 5 5.30328- 3 2.10000+ 1 4.30000+ 1 2.72430- 4 5.32537- 3 2.10000+ 1 4.40000+ 1 1.97422- 5 5.33906- 3 2.10000+ 1 5.80000+ 1 1.03904- 6 5.35845- 3 2.20000+ 1 2.20000+ 1 2.17578- 4 4.49850- 3 2.20000+ 1 2.40000+ 1 8.04031- 4 4.87697- 3 2.20000+ 1 2.50000+ 1 2.32332- 4 4.89372- 3 2.20000+ 1 2.70000+ 1 1.33410- 4 5.01312- 3 2.20000+ 1 2.90000+ 1 2.86990- 3 5.08683- 3 2.20000+ 1 3.00000+ 1 1.13465- 4 5.17312- 3 2.20000+ 1 3.20000+ 1 1.13053- 4 5.28223- 3 2.20000+ 1 3.30000+ 1 7.48126- 5 5.29504- 3 2.20000+ 1 3.50000+ 1 2.28601- 5 5.41392- 3 2.20000+ 1 3.60000+ 1 1.01826- 5 5.41568- 3 2.20000+ 1 4.10000+ 1 2.49376- 5 5.36382- 3 2.20000+ 1 4.30000+ 1 4.23730- 4 5.38591- 3 2.20000+ 1 4.40000+ 1 1.49630- 5 5.39960- 3 2.20000+ 1 5.80000+ 1 1.87026- 6 5.41899- 3 2.40000+ 1 2.40000+ 1 1.98402- 3 5.25544- 3 2.40000+ 1 2.50000+ 1 1.26057- 2 5.27219- 3 2.40000+ 1 2.70000+ 1 1.35070- 5 5.39159- 3 2.40000+ 1 2.90000+ 1 1.07149- 3 5.46530- 3 2.40000+ 1 3.00000+ 1 1.09409- 3 5.55159- 3 2.40000+ 1 3.20000+ 1 1.02659- 4 5.66070- 3 2.40000+ 1 3.30000+ 1 2.11351- 4 5.67351- 3 2.40000+ 1 3.50000+ 1 2.44179- 4 5.79239- 3 2.40000+ 1 3.60000+ 1 7.31699- 4 5.79415- 3 2.40000+ 1 4.10000+ 1 2.49375- 6 5.74229- 3 2.40000+ 1 4.30000+ 1 1.56693- 4 5.76438- 3 2.40000+ 1 4.40000+ 1 1.50031- 4 5.77807- 3 2.40000+ 1 5.80000+ 1 2.07814- 7 5.79746- 3 2.50000+ 1 2.50000+ 1 6.53356- 4 5.28894- 3 2.50000+ 1 2.70000+ 1 9.85044- 5 5.40834- 3 2.50000+ 1 2.90000+ 1 1.64485- 3 5.48205- 3 2.50000+ 1 3.00000+ 1 2.70990- 4 5.56834- 3 2.50000+ 1 3.20000+ 1 1.15337- 4 5.67745- 3 2.50000+ 1 3.30000+ 1 5.02900- 5 5.69026- 3 2.50000+ 1 3.50000+ 1 7.44803- 4 5.80914- 3 2.50000+ 1 3.60000+ 1 7.66851- 5 5.81090- 3 2.50000+ 1 4.10000+ 1 1.82873- 5 5.75904- 3 2.50000+ 1 4.30000+ 1 2.36296- 4 5.78113- 3 2.50000+ 1 4.40000+ 1 3.63675- 5 5.79482- 3 2.50000+ 1 5.80000+ 1 1.45465- 6 5.81421- 3 2.70000+ 1 2.70000+ 1 1.43394- 5 5.52774- 3 2.70000+ 1 2.90000+ 1 2.45019- 4 5.60145- 3 2.70000+ 1 3.00000+ 1 2.45214- 5 5.68774- 3 2.70000+ 1 3.20000+ 1 8.93627- 6 5.79685- 3 2.70000+ 1 3.30000+ 1 2.47309- 5 5.80966- 3 2.70000+ 1 3.50000+ 1 8.31227- 7 5.92854- 3 2.70000+ 1 3.60000+ 1 4.77973- 6 5.93030- 3 2.70000+ 1 4.10000+ 1 5.19536- 6 5.87844- 3 2.70000+ 1 4.30000+ 1 3.63677- 5 5.90053- 3 2.70000+ 1 4.40000+ 1 3.32507- 6 5.91422- 3 2.70000+ 1 5.80000+ 1 4.15621- 7 5.93361- 3 2.90000+ 1 2.90000+ 1 1.88065- 4 5.67516- 3 2.90000+ 1 3.00000+ 1 4.67986- 4 5.76145- 3 2.90000+ 1 3.20000+ 1 3.90676- 4 5.87056- 3 2.90000+ 1 3.30000+ 1 5.89547- 4 5.88337- 3 2.90000+ 1 3.50000+ 1 8.08367- 5 6.00225- 3 2.90000+ 1 3.60000+ 1 1.19076- 4 6.00401- 3 2.90000+ 1 4.10000+ 1 4.84195- 5 5.95215- 3 2.90000+ 1 4.30000+ 1 5.90176- 5 5.97424- 3 2.90000+ 1 4.40000+ 1 6.50442- 5 5.98793- 3 2.90000+ 1 5.80000+ 1 3.74047- 6 6.00732- 3 3.00000+ 1 3.00000+ 1 1.18451- 5 5.84774- 3 3.00000+ 1 3.20000+ 1 2.30672- 5 5.95685- 3 3.00000+ 1 3.30000+ 1 2.11968- 5 5.96966- 3 3.00000+ 1 3.50000+ 1 6.77463- 5 6.08854- 3 3.00000+ 1 3.60000+ 1 1.68321- 5 6.09030- 3 3.00000+ 1 4.10000+ 1 4.36399- 6 6.03844- 3 3.00000+ 1 4.30000+ 1 6.96167- 5 6.06053- 3 3.00000+ 1 4.40000+ 1 3.11713- 6 6.07422- 3 3.00000+ 1 5.80000+ 1 4.15612- 7 6.09361- 3 3.20000+ 1 3.20000+ 1 1.32998- 5 6.06596- 3 3.20000+ 1 3.30000+ 1 2.26516- 5 6.07877- 3 3.20000+ 1 3.50000+ 1 4.15611- 6 6.19765- 3 3.20000+ 1 3.60000+ 1 6.44209- 6 6.19941- 3 3.20000+ 1 4.10000+ 1 1.66250- 6 6.14755- 3 3.20000+ 1 4.30000+ 1 5.75634- 5 6.16964- 3 3.20000+ 1 4.40000+ 1 3.11713- 6 6.18333- 3 3.20000+ 1 5.80000+ 1 2.07812- 7 6.20272- 3 3.30000+ 1 3.30000+ 1 6.65025- 6 6.09158- 3 3.30000+ 1 3.50000+ 1 7.48152- 6 6.21046- 3 3.30000+ 1 3.60000+ 1 2.28609- 6 6.21222- 3 3.30000+ 1 4.10000+ 1 4.57204- 6 6.16036- 3 3.30000+ 1 4.30000+ 1 8.70734- 5 6.18245- 3 3.30000+ 1 4.40000+ 1 2.70160- 6 6.19614- 3 3.30000+ 1 5.80000+ 1 4.15628- 7 6.21553- 3 3.50000+ 1 3.50000+ 1 7.06557- 6 6.32934- 3 3.50000+ 1 3.60000+ 1 4.48870- 5 6.33110- 3 3.50000+ 1 4.10000+ 1 2.07815- 7 6.27924- 3 3.50000+ 1 4.30000+ 1 1.18453- 5 6.30133- 3 3.50000+ 1 4.40000+ 1 9.35168- 6 6.31502- 3 3.60000+ 1 3.60000+ 1 2.07812- 6 6.33286- 3 3.60000+ 1 4.10000+ 1 8.31208- 7 6.28100- 3 3.60000+ 1 4.30000+ 1 1.70418- 5 6.30309- 3 3.60000+ 1 4.40000+ 1 2.28599- 6 6.31678- 3 4.10000+ 1 4.10000+ 1 4.15615- 7 6.22914- 3 4.10000+ 1 4.30000+ 1 7.27329- 6 6.25123- 3 4.10000+ 1 4.40000+ 1 6.23428- 7 6.26492- 3 4.30000+ 1 4.30000+ 1 4.67567- 6 6.27332- 3 4.30000+ 1 4.40000+ 1 9.98882- 6 6.28701- 3 4.30000+ 1 5.80000+ 1 6.37578- 7 6.30640- 3 4.40000+ 1 4.40000+ 1 2.07811- 7 6.30070- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.34990- 5 6.11600- 4 1.40000+ 1 3.61580- 4 8.55700- 4 1.60000+ 1 2.78110- 3 3.31510- 3 2.10000+ 1 1.25240- 3 4.11706- 3 2.20000+ 1 9.21591- 3 4.17760- 3 2.70000+ 1 7.19800- 4 4.69222- 3 3.20000+ 1 2.88710- 4 4.96133- 3 3.30000+ 1 2.17740- 3 4.97414- 3 4.10000+ 1 1.43560- 4 5.04292- 3 5.80000+ 1 1.20640- 5 5.09809- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 1.06625- 2 6.38700- 5 1.30000+ 1 2.50000+ 1 1.82416- 2 8.06200- 5 1.30000+ 1 2.70000+ 1 4.26899- 3 2.00020- 4 1.30000+ 1 2.90000+ 1 4.29707- 3 2.73730- 4 1.30000+ 1 3.00000+ 1 1.16624- 2 3.60020- 4 1.30000+ 1 3.20000+ 1 2.34406- 3 4.69130- 4 1.30000+ 1 3.30000+ 1 2.67934- 3 4.81940- 4 1.30000+ 1 3.50000+ 1 7.25350- 4 6.00820- 4 1.30000+ 1 3.60000+ 1 1.22231- 3 6.02580- 4 1.30000+ 1 4.10000+ 1 7.92224- 4 5.50720- 4 1.30000+ 1 4.30000+ 1 6.68968- 4 5.72810- 4 1.30000+ 1 4.40000+ 1 1.51020- 3 5.86500- 4 1.30000+ 1 5.80000+ 1 6.09739- 5 6.05890- 4 1.40000+ 1 2.40000+ 1 2.43410- 1 3.07970- 4 1.40000+ 1 2.50000+ 1 2.92650- 1 3.24720- 4 1.40000+ 1 2.70000+ 1 2.60955- 2 4.44120- 4 1.40000+ 1 2.90000+ 1 2.86358- 2 5.17830- 4 1.40000+ 1 3.00000+ 1 2.70143- 2 6.04120- 4 1.40000+ 1 3.20000+ 1 9.22663- 3 7.13230- 4 1.40000+ 1 3.30000+ 1 1.37577- 2 7.26040- 4 1.40000+ 1 3.50000+ 1 1.02340- 2 8.44920- 4 1.40000+ 1 3.60000+ 1 1.13381- 2 8.46680- 4 1.40000+ 1 4.10000+ 1 4.99136- 3 7.94820- 4 1.40000+ 1 4.30000+ 1 4.49673- 3 8.16910- 4 1.40000+ 1 4.40000+ 1 3.60855- 3 8.30600- 4 1.40000+ 1 5.80000+ 1 3.91410- 4 8.49990- 4 1.60000+ 1 1.60000+ 1 2.45560- 5 1.52640- 3 1.60000+ 1 1.80000+ 1 2.63524- 4 1.70520- 3 1.60000+ 1 1.90000+ 1 8.17440- 3 2.04220- 3 1.60000+ 1 2.10000+ 1 5.72642- 4 2.32836- 3 1.60000+ 1 2.20000+ 1 7.91113- 4 2.38890- 3 1.60000+ 1 2.40000+ 1 2.75588- 3 2.76737- 3 1.60000+ 1 2.50000+ 1 4.99728- 3 2.78412- 3 1.60000+ 1 2.70000+ 1 1.59488- 5 2.90352- 3 1.60000+ 1 2.90000+ 1 2.88601- 5 2.97723- 3 1.60000+ 1 3.00000+ 1 1.24317- 3 3.06352- 3 1.60000+ 1 3.20000+ 1 9.79758- 5 3.17263- 3 1.60000+ 1 3.30000+ 1 1.33160- 4 3.18544- 3 1.60000+ 1 3.50000+ 1 1.46575- 4 3.30432- 3 1.60000+ 1 3.60000+ 1 2.51127- 4 3.30608- 3 1.60000+ 1 4.10000+ 1 3.29106- 6 3.25422- 3 1.60000+ 1 4.30000+ 1 4.05048- 6 3.27631- 3 1.60000+ 1 4.40000+ 1 1.57207- 4 3.29000- 3 1.60000+ 1 5.80000+ 1 2.53161- 7 3.30939- 3 1.80000+ 1 1.80000+ 1 8.60735- 6 1.88400- 3 1.80000+ 1 1.90000+ 1 1.05531- 2 2.22100- 3 1.80000+ 1 2.10000+ 1 2.74158- 4 2.50716- 3 1.80000+ 1 2.20000+ 1 2.59390- 3 2.56770- 3 1.80000+ 1 2.40000+ 1 1.43391- 3 2.94617- 3 1.80000+ 1 2.50000+ 1 6.62945- 3 2.96292- 3 1.80000+ 1 2.70000+ 1 6.60742- 5 3.08232- 3 1.80000+ 1 2.90000+ 1 7.34160- 6 3.15603- 3 1.80000+ 1 3.00000+ 1 1.65895- 3 3.24232- 3 1.80000+ 1 3.20000+ 1 5.74659- 5 3.35143- 3 1.80000+ 1 3.30000+ 1 4.25051- 4 3.36424- 3 1.80000+ 1 3.50000+ 1 6.50624- 5 3.48312- 3 1.80000+ 1 3.60000+ 1 3.12147- 4 3.48488- 3 1.80000+ 1 4.10000+ 1 1.24050- 5 3.43302- 3 1.80000+ 1 4.30000+ 1 1.26577- 6 3.45511- 3 1.80000+ 1 4.40000+ 1 2.11140- 4 3.46880- 3 1.80000+ 1 5.80000+ 1 1.01261- 6 3.48819- 3 1.90000+ 1 1.90000+ 1 1.28680- 2 2.55800- 3 1.90000+ 1 2.10000+ 1 1.94027- 2 2.84416- 3 1.90000+ 1 2.20000+ 1 2.49166- 2 2.90470- 3 1.90000+ 1 2.40000+ 1 1.88682- 2 3.28317- 3 1.90000+ 1 2.50000+ 1 2.14363- 2 3.29992- 3 1.90000+ 1 2.70000+ 1 2.16789- 3 3.41932- 3 1.90000+ 1 2.90000+ 1 2.61060- 3 3.49303- 3 1.90000+ 1 3.00000+ 1 5.17438- 3 3.57932- 3 1.90000+ 1 3.20000+ 1 3.89048- 3 3.68843- 3 1.90000+ 1 3.30000+ 1 4.98756- 3 3.70124- 3 1.90000+ 1 3.50000+ 1 1.31766- 3 3.82012- 3 1.90000+ 1 3.60000+ 1 1.43180- 3 3.82188- 3 1.90000+ 1 4.10000+ 1 4.25058- 4 3.77002- 3 1.90000+ 1 4.30000+ 1 4.24801- 4 3.79211- 3 1.90000+ 1 4.40000+ 1 6.94671- 4 3.80580- 3 1.90000+ 1 5.80000+ 1 3.34177- 5 3.82519- 3 2.10000+ 1 2.10000+ 1 1.42534- 4 3.13032- 3 2.10000+ 1 2.20000+ 1 3.33154- 3 3.19086- 3 2.10000+ 1 2.40000+ 1 5.63798- 4 3.56933- 3 2.10000+ 1 2.50000+ 1 6.27870- 3 3.58608- 3 2.10000+ 1 2.70000+ 1 7.31644- 5 3.70548- 3 2.10000+ 1 2.90000+ 1 1.11398- 5 3.77919- 3 2.10000+ 1 3.00000+ 1 2.95902- 3 3.86548- 3 2.10000+ 1 3.20000+ 1 4.68365- 5 3.97459- 3 2.10000+ 1 3.30000+ 1 5.75952- 4 3.98740- 3 2.10000+ 1 3.50000+ 1 3.18988- 5 4.10628- 3 2.10000+ 1 3.60000+ 1 2.45570- 4 4.10804- 3 2.10000+ 1 4.10000+ 1 1.24054- 5 4.05618- 3 2.10000+ 1 4.30000+ 1 1.51891- 6 4.07827- 3 2.10000+ 1 4.40000+ 1 3.73928- 4 4.09196- 3 2.10000+ 1 5.80000+ 1 1.01264- 6 4.11135- 3 2.20000+ 1 2.20000+ 1 1.39866- 3 3.25140- 3 2.20000+ 1 2.40000+ 1 4.84943- 3 3.62987- 3 2.20000+ 1 2.50000+ 1 3.91594- 3 3.64662- 3 2.20000+ 1 2.70000+ 1 1.13672- 4 3.76602- 3 2.20000+ 1 2.90000+ 1 2.48855- 4 3.83973- 3 2.20000+ 1 3.00000+ 1 3.74568- 3 3.92602- 3 2.20000+ 1 3.20000+ 1 5.63769- 4 4.03513- 3 2.20000+ 1 3.30000+ 1 4.88587- 4 4.04794- 3 2.20000+ 1 3.50000+ 1 2.55439- 4 4.16682- 3 2.20000+ 1 3.60000+ 1 1.94423- 4 4.16858- 3 2.20000+ 1 4.10000+ 1 1.97453- 5 4.11672- 3 2.20000+ 1 4.30000+ 1 3.34166- 5 4.13881- 3 2.20000+ 1 4.40000+ 1 4.71873- 4 4.15250- 3 2.20000+ 1 5.80000+ 1 1.51884- 6 4.17189- 3 2.40000+ 1 2.40000+ 1 8.73661- 4 4.00834- 3 2.40000+ 1 2.50000+ 1 2.24291- 2 4.02509- 3 2.40000+ 1 2.70000+ 1 2.99486- 4 4.14449- 3 2.40000+ 1 2.90000+ 1 2.79486- 4 4.21820- 3 2.40000+ 1 3.00000+ 1 2.72710- 3 4.30449- 3 2.40000+ 1 3.20000+ 1 1.31128- 4 4.41360- 3 2.40000+ 1 3.30000+ 1 9.06821- 4 4.42641- 3 2.40000+ 1 3.50000+ 1 1.05057- 4 4.54529- 3 2.40000+ 1 3.60000+ 1 1.16919- 3 4.54705- 3 2.40000+ 1 4.10000+ 1 4.98733- 5 4.49519- 3 2.40000+ 1 4.30000+ 1 4.30380- 5 4.51728- 3 2.40000+ 1 4.40000+ 1 3.42283- 4 4.53097- 3 2.40000+ 1 5.80000+ 1 3.79736- 6 4.55036- 3 2.50000+ 1 2.50000+ 1 8.93382- 3 4.04184- 3 2.50000+ 1 2.70000+ 1 5.40502- 4 4.16124- 3 2.50000+ 1 2.90000+ 1 1.25818- 3 4.23495- 3 2.50000+ 1 3.00000+ 1 3.25523- 3 4.32124- 3 2.50000+ 1 3.20000+ 1 1.23840- 3 4.43035- 3 2.50000+ 1 3.30000+ 1 8.02277- 4 4.44316- 3 2.50000+ 1 3.50000+ 1 1.18070- 3 4.56204- 3 2.50000+ 1 3.60000+ 1 9.47593- 4 4.56380- 3 2.50000+ 1 4.10000+ 1 8.88608- 5 4.51194- 3 2.50000+ 1 4.30000+ 1 1.94931- 4 4.53403- 3 2.50000+ 1 4.40000+ 1 4.14683- 4 4.54772- 3 2.50000+ 1 5.80000+ 1 6.83537- 6 4.56711- 3 2.70000+ 1 2.70000+ 1 2.27841- 6 4.28064- 3 2.70000+ 1 2.90000+ 1 8.35418- 6 4.35435- 3 2.70000+ 1 3.00000+ 1 3.31878- 4 4.44064- 3 2.70000+ 1 3.20000+ 1 1.39242- 5 4.54975- 3 2.70000+ 1 3.30000+ 1 2.05068- 5 4.56256- 3 2.70000+ 1 3.50000+ 1 1.54425- 5 4.68144- 3 2.70000+ 1 3.60000+ 1 2.70870- 5 4.68320- 3 2.70000+ 1 4.10000+ 1 7.59463- 7 4.63134- 3 2.70000+ 1 4.30000+ 1 1.26576- 6 4.65343- 3 2.70000+ 1 4.40000+ 1 4.20241- 5 4.66712- 3 2.90000+ 1 2.90000+ 1 5.06305- 7 4.42806- 3 2.90000+ 1 3.00000+ 1 4.12900- 4 4.51435- 3 2.90000+ 1 3.20000+ 1 2.27842- 6 4.62346- 3 2.90000+ 1 3.30000+ 1 4.37964- 5 4.63627- 3 2.90000+ 1 3.50000+ 1 1.51887- 5 4.75515- 3 2.90000+ 1 3.60000+ 1 6.83526- 5 4.75691- 3 2.90000+ 1 4.10000+ 1 1.51887- 6 4.70505- 3 2.90000+ 1 4.40000+ 1 5.26562- 5 4.74083- 3 2.90000+ 1 5.80000+ 1 2.53163- 7 4.76022- 3 3.00000+ 1 3.00000+ 1 4.89110- 4 4.60064- 3 3.00000+ 1 3.20000+ 1 5.96449- 4 4.70975- 3 3.00000+ 1 3.30000+ 1 7.52398- 4 4.72256- 3 3.00000+ 1 3.50000+ 1 1.90628- 4 4.84144- 3 3.00000+ 1 3.60000+ 1 2.14431- 4 4.84320- 3 3.00000+ 1 4.10000+ 1 6.53164- 5 4.79134- 3 3.00000+ 1 4.30000+ 1 6.73410- 5 4.81343- 3 3.00000+ 1 4.40000+ 1 1.29865- 4 4.82712- 3 3.00000+ 1 5.80000+ 1 5.06316- 6 4.84651- 3 3.20000+ 1 3.20000+ 1 4.05046- 6 4.81886- 3 3.20000+ 1 3.30000+ 1 1.06580- 4 4.83167- 3 3.20000+ 1 3.50000+ 1 6.58206- 6 4.95055- 3 3.20000+ 1 3.60000+ 1 5.24030- 5 4.95231- 3 3.20000+ 1 4.10000+ 1 2.27840- 6 4.90045- 3 3.20000+ 1 4.30000+ 1 2.53160- 7 4.92254- 3 3.20000+ 1 4.40000+ 1 7.54396- 5 4.93623- 3 3.20000+ 1 5.80000+ 1 2.53160- 7 4.95562- 3 3.30000+ 1 3.30000+ 1 4.55688- 5 4.84448- 3 3.30000+ 1 3.50000+ 1 5.11387- 5 4.96336- 3 3.30000+ 1 3.60000+ 1 4.07582- 5 4.96512- 3 3.30000+ 1 4.10000+ 1 3.54422- 6 4.91326- 3 3.30000+ 1 4.30000+ 1 5.82278- 6 4.93535- 3 3.30000+ 1 4.40000+ 1 9.49343- 5 4.94904- 3 3.30000+ 1 5.80000+ 1 2.53166- 7 4.96843- 3 3.50000+ 1 3.50000+ 1 3.03796- 6 5.08224- 3 3.50000+ 1 3.60000+ 1 6.55677- 5 5.08400- 3 3.50000+ 1 4.10000+ 1 2.53163- 6 5.03214- 3 3.50000+ 1 4.30000+ 1 2.53163- 6 5.05423- 3 3.50000+ 1 4.40000+ 1 2.37970- 5 5.06792- 3 3.50000+ 1 5.80000+ 1 2.53163- 7 5.08731- 3 3.60000+ 1 3.60000+ 1 2.50628- 5 5.08576- 3 3.60000+ 1 4.10000+ 1 4.30374- 6 5.03390- 3 3.60000+ 1 4.30000+ 1 1.08861- 5 5.05599- 3 3.60000+ 1 4.40000+ 1 2.70873- 5 5.06968- 3 3.60000+ 1 5.80000+ 1 2.53164- 7 5.08907- 3 4.10000+ 1 4.30000+ 1 2.53163- 7 5.00413- 3 4.10000+ 1 4.40000+ 1 8.35424- 6 5.01782- 3 4.30000+ 1 4.40000+ 1 8.60741- 6 5.03991- 3 4.40000+ 1 4.40000+ 1 8.60734- 6 5.05360- 3 4.40000+ 1 5.80000+ 1 7.59467- 7 5.07299- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.70459- 3 2.88230- 3 1.90000+ 1 2.16109- 4 3.21930- 3 2.40000+ 1 5.77168- 2 3.94447- 3 2.90000+ 1 6.37178- 4 4.15433- 3 3.00000+ 1 5.14668- 5 4.24062- 3 3.50000+ 1 4.26729- 3 4.48142- 3 4.30000+ 1 1.06070- 4 4.45341- 3 4.40000+ 1 7.45378- 6 4.46710- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.20000+ 1 4.58113- 2 1.01630- 4 1.40000+ 1 3.30000+ 1 6.56224- 3 1.14440- 4 1.40000+ 1 3.50000+ 1 3.12263- 2 2.33320- 4 1.40000+ 1 3.60000+ 1 3.25163- 3 2.35080- 4 1.40000+ 1 4.10000+ 1 8.85794- 4 1.83220- 4 1.40000+ 1 4.30000+ 1 4.10611- 4 2.05310- 4 1.40000+ 1 4.40000+ 1 7.75463- 4 2.19000- 4 1.40000+ 1 5.80000+ 1 6.83312- 5 2.38390- 4 1.60000+ 1 1.80000+ 1 6.22489- 4 1.09360- 3 1.60000+ 1 1.90000+ 1 6.63875- 4 1.43060- 3 1.60000+ 1 2.10000+ 1 2.59672- 2 1.71676- 3 1.60000+ 1 2.20000+ 1 3.14447- 3 1.77730- 3 1.60000+ 1 2.40000+ 1 1.63799- 2 2.15577- 3 1.60000+ 1 2.50000+ 1 3.43471- 3 2.17252- 3 1.60000+ 1 2.70000+ 1 1.31642- 5 2.29192- 3 1.60000+ 1 2.90000+ 1 1.35404- 4 2.36563- 3 1.60000+ 1 3.00000+ 1 1.05940- 4 2.45192- 3 1.60000+ 1 3.20000+ 1 3.48001- 3 2.56103- 3 1.60000+ 1 3.30000+ 1 4.57633- 4 2.57384- 3 1.60000+ 1 3.50000+ 1 8.13685- 4 2.69272- 3 1.60000+ 1 3.60000+ 1 1.34157- 4 2.69448- 3 1.60000+ 1 4.10000+ 1 3.13439- 6 2.64262- 3 1.60000+ 1 4.30000+ 1 2.13138- 5 2.66471- 3 1.60000+ 1 4.40000+ 1 1.37918- 5 2.67840- 3 1.80000+ 1 1.80000+ 1 2.10013- 4 1.27240- 3 1.80000+ 1 1.90000+ 1 2.81230- 3 1.60940- 3 1.80000+ 1 2.10000+ 1 2.35704- 2 1.89556- 3 1.80000+ 1 2.20000+ 1 1.20048- 3 1.95610- 3 1.80000+ 1 2.40000+ 1 1.33258- 2 2.33457- 3 1.80000+ 1 2.50000+ 1 7.75395- 3 2.35132- 3 1.80000+ 1 2.70000+ 1 7.77331- 5 2.47072- 3 1.80000+ 1 2.90000+ 1 1.00930- 4 2.54443- 3 1.80000+ 1 3.00000+ 1 5.04004- 4 2.63072- 3 1.80000+ 1 3.20000+ 1 3.11611- 3 2.73983- 3 1.80000+ 1 3.30000+ 1 1.94957- 4 2.75264- 3 1.80000+ 1 3.50000+ 1 6.40044- 4 2.87152- 3 1.80000+ 1 3.60000+ 1 3.73631- 4 2.87328- 3 1.80000+ 1 4.10000+ 1 1.37917- 5 2.82142- 3 1.80000+ 1 4.30000+ 1 1.56714- 5 2.84351- 3 1.80000+ 1 4.40000+ 1 6.58222- 5 2.85720- 3 1.80000+ 1 5.80000+ 1 1.25376- 6 2.87659- 3 1.90000+ 1 1.90000+ 1 9.69134- 4 1.94640- 3 1.90000+ 1 2.10000+ 1 4.38522- 2 2.23256- 3 1.90000+ 1 2.20000+ 1 1.66382- 3 2.29310- 3 1.90000+ 1 2.40000+ 1 1.55397- 3 2.67157- 3 1.90000+ 1 2.50000+ 1 1.44312- 3 2.68832- 3 1.90000+ 1 2.70000+ 1 1.29137- 4 2.80772- 3 1.90000+ 1 2.90000+ 1 4.19386- 4 2.88143- 3 1.90000+ 1 3.00000+ 1 3.30986- 4 2.96772- 3 1.90000+ 1 3.20000+ 1 5.87332- 3 3.07683- 3 1.90000+ 1 3.30000+ 1 2.56386- 4 3.08964- 3 1.90000+ 1 3.50000+ 1 5.70461- 5 3.20852- 3 1.90000+ 1 3.60000+ 1 4.88958- 5 3.21028- 3 1.90000+ 1 4.10000+ 1 2.38218- 5 3.15842- 3 1.90000+ 1 4.30000+ 1 6.14332- 5 3.18051- 3 1.90000+ 1 4.40000+ 1 4.32536- 5 3.19420- 3 1.90000+ 1 5.80000+ 1 1.88062- 6 3.21359- 3 2.10000+ 1 2.10000+ 1 4.10714- 2 2.51872- 3 2.10000+ 1 2.20000+ 1 7.95845- 2 2.57926- 3 2.10000+ 1 2.40000+ 1 4.97010- 2 2.95773- 3 2.10000+ 1 2.50000+ 1 5.81608- 2 2.97448- 3 2.10000+ 1 2.70000+ 1 6.15682- 3 3.09388- 3 2.10000+ 1 2.90000+ 1 5.88961- 3 3.16759- 3 2.10000+ 1 3.00000+ 1 1.05641- 2 3.25388- 3 2.10000+ 1 3.20000+ 1 1.38677- 2 3.36299- 3 2.10000+ 1 3.30000+ 1 1.57496- 2 3.37580- 3 2.10000+ 1 3.50000+ 1 3.48174- 3 3.49468- 3 2.10000+ 1 3.60000+ 1 3.96128- 3 3.49644- 3 2.10000+ 1 4.10000+ 1 1.18922- 3 3.44458- 3 2.10000+ 1 4.30000+ 1 9.60375- 4 3.46667- 3 2.10000+ 1 4.40000+ 1 1.45751- 3 3.48036- 3 2.10000+ 1 5.80000+ 1 9.34073- 5 3.49975- 3 2.20000+ 1 2.20000+ 1 1.24557- 3 2.63980- 3 2.20000+ 1 2.40000+ 1 5.98411- 2 3.01827- 3 2.20000+ 1 2.50000+ 1 2.74087- 3 3.03502- 3 2.20000+ 1 2.70000+ 1 3.44787- 4 3.15442- 3 2.20000+ 1 2.90000+ 1 1.55467- 4 3.22813- 3 2.20000+ 1 3.00000+ 1 3.15952- 4 3.31442- 3 2.20000+ 1 3.20000+ 1 1.06757- 2 3.42353- 3 2.20000+ 1 3.30000+ 1 3.97457- 4 3.43634- 3 2.20000+ 1 3.50000+ 1 3.80087- 3 3.55522- 3 2.20000+ 1 3.60000+ 1 1.52963- 4 3.55698- 3 2.20000+ 1 4.10000+ 1 5.76739- 5 3.50512- 3 2.20000+ 1 4.30000+ 1 2.25677- 5 3.52721- 3 2.20000+ 1 4.40000+ 1 4.13741- 5 3.54090- 3 2.20000+ 1 5.80000+ 1 4.38814- 6 3.56029- 3 2.40000+ 1 2.40000+ 1 5.96945- 2 3.39674- 3 2.40000+ 1 2.50000+ 1 1.69955- 1 3.41349- 3 2.40000+ 1 2.70000+ 1 4.19209- 3 3.53289- 3 2.40000+ 1 2.90000+ 1 2.54014- 3 3.60660- 3 2.40000+ 1 3.00000+ 1 3.78631- 4 3.69289- 3 2.40000+ 1 3.20000+ 1 7.37595- 3 3.80200- 3 2.40000+ 1 3.30000+ 1 1.12055- 2 3.81481- 3 2.40000+ 1 3.50000+ 1 7.29254- 3 3.93369- 3 2.40000+ 1 3.60000+ 1 1.08543- 2 3.93545- 3 2.40000+ 1 4.10000+ 1 8.18082- 4 3.88359- 3 2.40000+ 1 4.30000+ 1 4.04343- 4 3.90568- 3 2.40000+ 1 4.40000+ 1 5.26585- 5 3.91937- 3 2.40000+ 1 5.80000+ 1 6.51960- 5 3.93876- 3 2.50000+ 1 2.50000+ 1 3.49054- 3 3.43024- 3 2.50000+ 1 2.70000+ 1 6.03082- 4 3.54964- 3 2.50000+ 1 2.90000+ 1 7.42239- 4 3.62335- 3 2.50000+ 1 3.00000+ 1 3.11578- 4 3.70964- 3 2.50000+ 1 3.20000+ 1 7.05511- 3 3.81875- 3 2.50000+ 1 3.30000+ 1 4.75819- 4 3.83156- 3 2.50000+ 1 3.50000+ 1 9.06978- 3 3.95044- 3 2.50000+ 1 3.60000+ 1 4.06236- 4 3.95220- 3 2.50000+ 1 4.10000+ 1 1.07198- 4 3.90034- 3 2.50000+ 1 4.30000+ 1 1.02189- 4 3.92243- 3 2.50000+ 1 4.40000+ 1 4.20015- 5 3.93612- 3 2.50000+ 1 5.80000+ 1 8.14975- 6 3.95551- 3 2.70000+ 1 2.70000+ 1 1.25381- 6 3.66904- 3 2.70000+ 1 2.90000+ 1 2.00613- 5 3.74275- 3 2.70000+ 1 3.00000+ 1 2.13145- 5 3.82904- 3 2.70000+ 1 3.20000+ 1 8.31275- 4 3.93815- 3 2.70000+ 1 3.30000+ 1 5.64229- 5 3.95096- 3 2.70000+ 1 3.50000+ 1 2.23182- 4 4.06984- 3 2.70000+ 1 3.60000+ 1 3.07174- 5 4.07160- 3 2.70000+ 1 4.10000+ 1 6.26910- 7 4.01974- 3 2.70000+ 1 4.30000+ 1 3.13450- 6 4.04183- 3 2.70000+ 1 4.40000+ 1 2.50750- 6 4.05552- 3 2.90000+ 1 2.90000+ 1 1.25375- 5 3.81646- 3 2.90000+ 1 3.00000+ 1 8.21219- 5 3.90275- 3 2.90000+ 1 3.20000+ 1 7.83596- 4 4.01186- 3 2.90000+ 1 3.30000+ 1 3.00895- 5 4.02467- 3 2.90000+ 1 3.50000+ 1 1.27260- 4 4.14355- 3 2.90000+ 1 3.60000+ 1 3.76114- 5 4.14531- 3 2.90000+ 1 4.10000+ 1 3.76114- 6 4.09345- 3 2.90000+ 1 4.30000+ 1 3.76114- 6 4.11554- 3 2.90000+ 1 4.40000+ 1 1.06577- 5 4.12923- 3 3.00000+ 1 3.00000+ 1 2.88361- 5 3.98904- 3 3.00000+ 1 3.20000+ 1 1.42435- 3 4.09815- 3 3.00000+ 1 3.30000+ 1 5.20311- 5 4.11096- 3 3.00000+ 1 3.50000+ 1 1.69254- 5 4.22984- 3 3.00000+ 1 3.60000+ 1 1.06576- 5 4.23160- 3 3.00000+ 1 4.10000+ 1 3.76111- 6 4.17974- 3 3.00000+ 1 4.30000+ 1 1.19099- 5 4.20183- 3 3.00000+ 1 4.40000+ 1 7.52251- 6 4.21552- 3 3.20000+ 1 3.20000+ 1 1.11526- 3 4.20726- 3 3.20000+ 1 3.30000+ 1 2.12767- 3 4.22007- 3 3.20000+ 1 3.50000+ 1 5.14672- 4 4.33895- 3 3.20000+ 1 3.60000+ 1 4.87723- 4 4.34071- 3 3.20000+ 1 4.10000+ 1 1.60486- 4 4.28885- 3 3.20000+ 1 4.30000+ 1 1.27890- 4 4.31094- 3 3.20000+ 1 4.40000+ 1 1.96844- 4 4.32463- 3 3.20000+ 1 5.80000+ 1 1.25376- 5 4.34402- 3 3.30000+ 1 3.30000+ 1 3.13438- 5 4.23288- 3 3.30000+ 1 3.50000+ 1 7.20912- 4 4.35176- 3 3.30000+ 1 3.60000+ 1 2.69568- 5 4.35352- 3 3.30000+ 1 4.10000+ 1 9.40364- 6 4.30166- 3 3.30000+ 1 4.30000+ 1 4.38814- 6 4.32375- 3 3.30000+ 1 4.40000+ 1 6.89583- 6 4.33744- 3 3.30000+ 1 5.80000+ 1 6.26886- 7 4.35683- 3 3.50000+ 1 3.50000+ 1 2.04365- 4 4.47064- 3 3.50000+ 1 3.60000+ 1 5.93022- 4 4.47240- 3 3.50000+ 1 4.10000+ 1 4.38813- 5 4.42054- 3 3.50000+ 1 4.30000+ 1 2.06870- 5 4.44263- 3 3.50000+ 1 4.40000+ 1 2.50740- 6 4.45632- 3 3.50000+ 1 5.80000+ 1 3.13437- 6 4.47571- 3 3.60000+ 1 3.60000+ 1 1.12832- 5 4.47416- 3 3.60000+ 1 4.10000+ 1 5.64199- 6 4.42230- 3 3.60000+ 1 4.30000+ 1 5.01514- 6 4.44439- 3 3.60000+ 1 4.40000+ 1 1.25374- 6 4.45808- 3 3.60000+ 1 5.80000+ 1 6.26877- 7 4.47747- 3 4.10000+ 1 4.30000+ 1 6.26898- 7 4.39253- 3 4.10000+ 1 4.40000+ 1 6.26898- 7 4.40622- 3 4.30000+ 1 4.30000+ 1 5.68605- 7 4.41462- 3 4.30000+ 1 4.40000+ 1 1.70579- 6 4.42831- 3 4.40000+ 1 4.40000+ 1 6.26888- 7 4.44200- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.67900- 3 2.97520- 3 2.40000+ 1 2.72970- 3 3.70037- 3 2.50000+ 1 5.34969- 2 3.71712- 3 3.00000+ 1 3.97179- 4 3.99652- 3 3.50000+ 1 1.97030- 4 4.23732- 3 3.60000+ 1 3.78859- 3 4.23908- 3 4.40000+ 1 5.75069- 5 4.22300- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 4.96568- 5 6.70700- 4 1.60000+ 1 1.80000+ 1 3.43087- 4 8.49500- 4 1.60000+ 1 1.90000+ 1 1.33629- 3 1.18650- 3 1.60000+ 1 2.10000+ 1 3.12776- 3 1.47266- 3 1.60000+ 1 2.20000+ 1 2.94758- 2 1.53320- 3 1.60000+ 1 2.40000+ 1 3.98166- 3 1.91167- 3 1.60000+ 1 2.50000+ 1 1.73044- 2 1.92842- 3 1.60000+ 1 2.70000+ 1 2.32171- 5 2.04782- 3 1.60000+ 1 2.90000+ 1 3.22447- 5 2.12153- 3 1.60000+ 1 3.00000+ 1 2.19269- 4 2.20782- 3 1.60000+ 1 3.20000+ 1 4.12105- 4 2.31693- 3 1.60000+ 1 3.30000+ 1 3.92243- 3 2.32974- 3 1.60000+ 1 3.50000+ 1 1.50271- 4 2.44862- 3 1.60000+ 1 3.60000+ 1 7.49389- 4 2.45038- 3 1.60000+ 1 4.10000+ 1 5.15932- 6 2.39852- 3 1.60000+ 1 4.30000+ 1 5.15932- 6 2.42061- 3 1.60000+ 1 4.40000+ 1 2.83760- 5 2.43430- 3 1.60000+ 1 5.80000+ 1 6.44915- 7 2.45369- 3 1.80000+ 1 1.80000+ 1 3.09556- 5 1.02830- 3 1.80000+ 1 1.90000+ 1 4.44333- 3 1.36530- 3 1.80000+ 1 2.10000+ 1 2.24425- 4 1.65146- 3 1.80000+ 1 2.20000+ 1 3.00732- 2 1.71200- 3 1.80000+ 1 2.40000+ 1 2.42023- 3 2.09047- 3 1.80000+ 1 2.50000+ 1 1.14526- 2 2.10722- 3 1.80000+ 1 2.70000+ 1 3.99853- 5 2.22662- 3 1.80000+ 1 2.90000+ 1 7.09399- 6 2.30033- 3 1.80000+ 1 3.00000+ 1 7.33907- 4 2.38662- 3 1.80000+ 1 3.20000+ 1 5.80426- 6 2.49573- 3 1.80000+ 1 3.30000+ 1 3.97789- 3 2.50854- 3 1.80000+ 1 3.50000+ 1 1.12223- 4 2.62742- 3 1.80000+ 1 3.60000+ 1 4.92073- 4 2.62918- 3 1.80000+ 1 4.10000+ 1 7.09399- 6 2.57732- 3 1.80000+ 1 4.30000+ 1 1.28984- 6 2.59941- 3 1.80000+ 1 4.40000+ 1 9.41591- 5 2.61310- 3 1.80000+ 1 5.80000+ 1 6.44918- 7 2.63249- 3 1.90000+ 1 1.90000+ 1 2.53969- 3 1.70230- 3 1.90000+ 1 2.10000+ 1 2.63502- 3 1.98846- 3 1.90000+ 1 2.20000+ 1 4.23055- 2 2.04900- 3 1.90000+ 1 2.40000+ 1 1.75867- 3 2.42747- 3 1.90000+ 1 2.50000+ 1 2.54686- 3 2.44422- 3 1.90000+ 1 2.70000+ 1 2.76015- 4 2.56362- 3 1.90000+ 1 2.90000+ 1 5.86877- 4 2.63733- 3 1.90000+ 1 3.00000+ 1 8.53859- 4 2.72362- 3 1.90000+ 1 3.20000+ 1 4.47565- 4 2.83273- 3 1.90000+ 1 3.30000+ 1 5.56177- 3 2.84554- 3 1.90000+ 1 3.50000+ 1 6.57811- 5 2.96442- 3 1.90000+ 1 3.60000+ 1 8.77091- 5 2.96618- 3 1.90000+ 1 4.10000+ 1 5.15935- 5 2.91432- 3 1.90000+ 1 4.30000+ 1 8.51276- 5 2.93641- 3 1.90000+ 1 4.40000+ 1 1.10927- 4 2.95010- 3 1.90000+ 1 5.80000+ 1 3.86931- 6 2.96949- 3 2.10000+ 1 2.10000+ 1 5.88162- 4 2.27462- 3 2.10000+ 1 2.20000+ 1 6.08382- 2 2.33516- 3 2.10000+ 1 2.40000+ 1 2.59127- 3 2.71363- 3 2.10000+ 1 2.50000+ 1 3.59476- 2 2.73038- 3 2.10000+ 1 2.70000+ 1 3.15364- 4 2.84978- 3 2.10000+ 1 2.90000+ 1 6.83605- 5 2.92349- 3 2.10000+ 1 3.00000+ 1 4.47570- 4 3.00978- 3 2.10000+ 1 3.20000+ 1 1.79289- 4 3.11889- 3 2.10000+ 1 3.30000+ 1 8.10855- 3 3.13170- 3 2.10000+ 1 3.50000+ 1 1.59935- 4 3.25058- 3 2.10000+ 1 3.60000+ 1 2.20170- 3 3.25234- 3 2.10000+ 1 4.10000+ 1 5.15941- 5 3.20048- 3 2.10000+ 1 4.30000+ 1 1.03190- 5 3.22257- 3 2.10000+ 1 4.40000+ 1 5.80434- 5 3.23626- 3 2.10000+ 1 5.80000+ 1 3.86936- 6 3.25565- 3 2.20000+ 1 2.20000+ 1 6.65953- 2 2.39570- 3 2.20000+ 1 2.40000+ 1 5.68268- 2 2.77417- 3 2.20000+ 1 2.50000+ 1 9.17941- 2 2.79092- 3 2.20000+ 1 2.70000+ 1 6.57298- 3 2.91032- 3 2.20000+ 1 2.90000+ 1 7.12757- 3 2.98403- 3 2.20000+ 1 3.00000+ 1 1.02851- 2 3.07032- 3 2.20000+ 1 3.20000+ 1 1.20091- 2 3.17943- 3 2.20000+ 1 3.30000+ 1 2.20459- 2 3.19224- 3 2.20000+ 1 3.50000+ 1 3.96367- 3 3.31112- 3 2.20000+ 1 3.60000+ 1 5.94681- 3 3.31288- 3 2.20000+ 1 4.10000+ 1 1.26083- 3 3.26102- 3 2.20000+ 1 4.30000+ 1 1.15056- 3 3.28311- 3 2.20000+ 1 4.40000+ 1 1.42206- 3 3.29680- 3 2.20000+ 1 5.80000+ 1 9.86700- 5 3.31619- 3 2.40000+ 1 2.40000+ 1 5.18036- 3 3.15264- 3 2.40000+ 1 2.50000+ 1 1.64197- 1 3.16939- 3 2.40000+ 1 2.70000+ 1 7.91929- 4 3.28879- 3 2.40000+ 1 2.90000+ 1 5.21705- 4 3.36250- 3 2.40000+ 1 3.00000+ 1 3.61137- 4 3.44879- 3 2.40000+ 1 3.20000+ 1 4.90117- 4 3.55790- 3 2.40000+ 1 3.30000+ 1 7.11895- 3 3.57071- 3 2.40000+ 1 3.50000+ 1 6.30065- 4 3.68959- 3 2.40000+ 1 3.60000+ 1 8.46040- 3 3.69135- 3 2.40000+ 1 4.10000+ 1 1.45103- 4 3.63949- 3 2.40000+ 1 4.30000+ 1 8.31911- 5 3.66158- 3 2.40000+ 1 4.40000+ 1 4.83666- 5 3.67527- 3 2.40000+ 1 5.80000+ 1 1.16079- 5 3.69466- 3 2.50000+ 1 2.50000+ 1 1.11672- 1 3.18614- 3 2.50000+ 1 2.70000+ 1 4.39685- 3 3.30554- 3 2.50000+ 1 2.90000+ 1 2.76725- 3 3.37925- 3 2.50000+ 1 3.00000+ 1 5.71387- 4 3.46554- 3 2.50000+ 1 3.20000+ 1 6.52698- 3 3.57465- 3 2.50000+ 1 3.30000+ 1 1.41144- 2 3.58746- 3 2.50000+ 1 3.50000+ 1 1.05719- 2 3.70634- 3 2.50000+ 1 3.60000+ 1 1.28252- 2 3.70810- 3 2.50000+ 1 4.10000+ 1 8.57055- 4 3.65624- 3 2.50000+ 1 4.30000+ 1 4.50772- 4 3.67833- 3 2.50000+ 1 4.40000+ 1 7.86763- 5 3.69202- 3 2.50000+ 1 5.80000+ 1 6.77125- 5 3.71141- 3 2.70000+ 1 2.90000+ 1 1.28985- 6 3.49865- 3 2.70000+ 1 3.00000+ 1 4.77241- 5 3.58494- 3 2.70000+ 1 3.20000+ 1 4.83682- 5 3.69405- 3 2.70000+ 1 3.30000+ 1 8.80316- 4 3.70686- 3 2.70000+ 1 3.50000+ 1 3.93405- 5 3.82574- 3 2.70000+ 1 3.60000+ 1 2.14755- 4 3.82750- 3 2.70000+ 1 4.40000+ 1 5.80430- 6 3.81142- 3 2.90000+ 1 3.00000+ 1 1.04475- 4 3.65865- 3 2.90000+ 1 3.20000+ 1 4.51421- 6 3.76776- 3 2.90000+ 1 3.30000+ 1 9.59597- 4 3.78057- 3 2.90000+ 1 3.50000+ 1 2.45065- 5 3.89945- 3 2.90000+ 1 3.60000+ 1 1.25762- 4 3.90121- 3 2.90000+ 1 4.40000+ 1 1.35424- 5 3.88513- 3 3.00000+ 1 3.00000+ 1 7.15841- 5 3.74494- 3 3.00000+ 1 3.20000+ 1 8.19029- 5 3.85405- 3 3.00000+ 1 3.30000+ 1 1.35822- 3 3.86686- 3 3.00000+ 1 3.50000+ 1 1.54777- 5 3.98574- 3 3.00000+ 1 3.60000+ 1 2.38610- 5 3.98750- 3 3.00000+ 1 4.10000+ 1 9.02863- 6 3.93564- 3 3.00000+ 1 4.30000+ 1 1.54777- 5 3.95773- 3 3.00000+ 1 4.40000+ 1 1.87021- 5 3.97142- 3 3.00000+ 1 5.80000+ 1 6.44909- 7 3.99081- 3 3.20000+ 1 3.20000+ 1 1.28983- 5 3.96316- 3 3.20000+ 1 3.30000+ 1 1.61228- 3 3.97597- 3 3.20000+ 1 3.50000+ 1 3.09554- 5 4.09485- 3 3.20000+ 1 3.60000+ 1 4.09522- 4 4.09661- 3 3.20000+ 1 4.10000+ 1 8.38376- 6 4.04475- 3 3.20000+ 1 4.30000+ 1 6.44913- 7 4.06684- 3 3.20000+ 1 4.40000+ 1 1.09630- 5 4.08053- 3 3.20000+ 1 5.80000+ 1 6.44913- 7 4.09992- 3 3.30000+ 1 3.30000+ 1 1.74639- 3 3.98878- 3 3.30000+ 1 3.50000+ 1 5.01733- 4 4.10766- 3 3.30000+ 1 3.60000+ 1 9.09311- 4 4.10942- 3 3.30000+ 1 4.10000+ 1 1.68966- 4 4.05756- 3 3.30000+ 1 4.30000+ 1 1.55426- 4 4.07965- 3 3.30000+ 1 4.40000+ 1 1.87671- 4 4.09334- 3 3.30000+ 1 5.80000+ 1 1.28983- 5 4.11273- 3 3.50000+ 1 3.50000+ 1 1.74120- 5 4.22654- 3 3.50000+ 1 3.60000+ 1 5.57199- 4 4.22830- 3 3.50000+ 1 4.10000+ 1 7.73885- 6 4.17644- 3 3.50000+ 1 4.30000+ 1 3.86928- 6 4.19853- 3 3.50000+ 1 4.40000+ 1 1.93473- 6 4.21222- 3 3.50000+ 1 5.80000+ 1 6.44913- 7 4.23161- 3 3.60000+ 1 3.60000+ 1 3.48250- 4 4.23006- 3 3.60000+ 1 4.10000+ 1 4.25634- 5 4.17820- 3 3.60000+ 1 4.30000+ 1 2.06366- 5 4.20029- 3 3.60000+ 1 4.40000+ 1 3.22445- 6 4.21398- 3 3.60000+ 1 5.80000+ 1 3.22445- 6 4.23337- 3 4.10000+ 1 4.40000+ 1 1.28980- 6 4.16212- 3 4.30000+ 1 4.40000+ 1 1.93470- 6 4.18421- 3 4.40000+ 1 4.40000+ 1 1.28980- 6 4.19790- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.27261- 5 1.78800- 4 1.90000+ 1 6.64383- 4 5.15800- 4 2.90000+ 1 4.23432- 4 1.45083- 3 3.00000+ 1 5.43673- 5 1.53712- 3 4.30000+ 1 8.13334- 5 1.74991- 3 4.40000+ 1 1.27651- 5 1.76360- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 5.65891- 2 3.63300- 5 1.80000+ 1 3.30000+ 1 8.85073- 2 4.91400- 5 1.80000+ 1 3.50000+ 1 2.55161- 2 1.68020- 4 1.80000+ 1 3.60000+ 1 2.71888- 2 1.69780- 4 1.80000+ 1 4.10000+ 1 8.42567- 3 1.17920- 4 1.80000+ 1 4.30000+ 1 6.86040- 3 1.40010- 4 1.80000+ 1 4.40000+ 1 8.32223- 3 1.53700- 4 1.80000+ 1 5.80000+ 1 6.31514- 4 1.73090- 4 1.90000+ 1 2.50000+ 1 1.45640- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.36185- 2 1.04220- 4 1.90000+ 1 2.90000+ 1 4.16566- 2 1.77930- 4 1.90000+ 1 3.00000+ 1 3.17883- 2 2.64220- 4 1.90000+ 1 3.20000+ 1 2.71574- 2 3.73330- 4 1.90000+ 1 3.30000+ 1 3.35624- 2 3.86140- 4 1.90000+ 1 3.50000+ 1 1.88339- 3 5.05020- 4 1.90000+ 1 3.60000+ 1 3.13220- 3 5.06780- 4 1.90000+ 1 4.10000+ 1 6.39435- 3 4.54920- 4 1.90000+ 1 4.30000+ 1 6.46065- 3 4.77010- 4 1.90000+ 1 4.40000+ 1 4.47196- 3 4.90700- 4 1.90000+ 1 5.80000+ 1 4.91421- 4 5.10090- 4 2.10000+ 1 2.40000+ 1 3.15268- 3 2.54230- 4 2.10000+ 1 2.50000+ 1 3.43821- 3 2.70980- 4 2.10000+ 1 2.70000+ 1 1.51278- 2 3.90380- 4 2.10000+ 1 2.90000+ 1 5.58445- 3 4.64090- 4 2.10000+ 1 3.00000+ 1 4.00078- 3 5.50380- 4 2.10000+ 1 3.20000+ 1 1.63011- 3 6.59490- 4 2.10000+ 1 3.30000+ 1 3.56149- 3 6.72300- 4 2.10000+ 1 3.50000+ 1 1.34260- 3 7.91180- 4 2.10000+ 1 3.60000+ 1 1.32984- 3 7.92940- 4 2.10000+ 1 4.10000+ 1 2.08582- 3 7.41080- 4 2.10000+ 1 4.30000+ 1 8.37894- 4 7.63170- 4 2.10000+ 1 4.40000+ 1 4.56218- 4 7.76860- 4 2.10000+ 1 5.80000+ 1 1.56373- 4 7.96250- 4 2.20000+ 1 2.40000+ 1 4.03822- 3 3.14770- 4 2.20000+ 1 2.50000+ 1 5.29512- 3 3.31520- 4 2.20000+ 1 2.70000+ 1 2.08663- 2 4.50920- 4 2.20000+ 1 2.90000+ 1 8.05455- 3 5.24630- 4 2.20000+ 1 3.00000+ 1 5.14136- 3 6.10920- 4 2.20000+ 1 3.20000+ 1 2.77753- 3 7.20030- 4 2.20000+ 1 3.30000+ 1 3.30325- 3 7.32840- 4 2.20000+ 1 3.50000+ 1 1.45154- 3 8.51720- 4 2.20000+ 1 3.60000+ 1 1.94233- 3 8.53480- 4 2.20000+ 1 4.10000+ 1 2.85869- 3 8.01620- 4 2.20000+ 1 4.30000+ 1 1.08485- 3 8.23710- 4 2.20000+ 1 4.40000+ 1 6.53325- 4 8.37400- 4 2.20000+ 1 5.80000+ 1 2.14265- 4 8.56790- 4 2.40000+ 1 2.40000+ 1 8.06673- 3 6.93240- 4 2.40000+ 1 2.50000+ 1 1.49352- 2 7.09990- 4 2.40000+ 1 2.70000+ 1 1.86880- 2 8.29390- 4 2.40000+ 1 2.90000+ 1 2.63127- 3 9.03100- 4 2.40000+ 1 3.00000+ 1 1.28645- 2 9.89390- 4 2.40000+ 1 3.20000+ 1 1.16831- 3 1.09850- 3 2.40000+ 1 3.30000+ 1 7.44966- 4 1.11131- 3 2.40000+ 1 3.50000+ 1 5.40238- 4 1.23019- 3 2.40000+ 1 3.60000+ 1 5.05663- 4 1.23195- 3 2.40000+ 1 4.10000+ 1 2.14765- 3 1.18009- 3 2.40000+ 1 4.30000+ 1 3.13727- 4 1.20218- 3 2.40000+ 1 4.40000+ 1 1.33957- 3 1.21587- 3 2.40000+ 1 5.80000+ 1 1.56616- 4 1.23526- 3 2.50000+ 1 2.50000+ 1 1.32570- 2 7.26740- 4 2.50000+ 1 2.70000+ 1 2.40696- 2 8.46140- 4 2.50000+ 1 2.90000+ 1 1.12451- 3 9.19850- 4 2.50000+ 1 3.00000+ 1 1.30009- 2 1.00614- 3 2.50000+ 1 3.20000+ 1 6.52240- 4 1.11525- 3 2.50000+ 1 3.30000+ 1 1.63645- 3 1.12806- 3 2.50000+ 1 3.50000+ 1 5.39647- 4 1.24694- 3 2.50000+ 1 3.60000+ 1 8.65266- 4 1.24870- 3 2.50000+ 1 4.10000+ 1 2.75102- 3 1.19684- 3 2.50000+ 1 4.30000+ 1 1.30246- 4 1.21893- 3 2.50000+ 1 4.40000+ 1 1.29300- 3 1.23262- 3 2.50000+ 1 5.80000+ 1 2.00518- 4 1.25201- 3 2.70000+ 1 2.70000+ 1 1.81376- 2 9.65540- 4 2.70000+ 1 2.90000+ 1 2.74858- 2 1.03925- 3 2.70000+ 1 3.00000+ 1 4.16507- 2 1.12554- 3 2.70000+ 1 3.20000+ 1 4.37475- 2 1.23465- 3 2.70000+ 1 3.30000+ 1 5.97990- 2 1.24746- 3 2.70000+ 1 3.50000+ 1 2.13277- 2 1.36634- 3 2.70000+ 1 3.60000+ 1 2.61405- 2 1.36810- 3 2.70000+ 1 4.10000+ 1 5.75017- 3 1.31624- 3 2.70000+ 1 4.30000+ 1 4.49235- 3 1.33833- 3 2.70000+ 1 4.40000+ 1 5.71843- 3 1.35202- 3 2.70000+ 1 5.80000+ 1 4.41642- 4 1.37141- 3 2.90000+ 1 2.90000+ 1 2.07050- 3 1.11296- 3 2.90000+ 1 3.00000+ 1 9.92279- 3 1.19925- 3 2.90000+ 1 3.20000+ 1 3.87420- 3 1.30836- 3 2.90000+ 1 3.30000+ 1 2.55268- 3 1.32117- 3 2.90000+ 1 3.50000+ 1 1.12186- 3 1.44005- 3 2.90000+ 1 3.60000+ 1 6.25387- 4 1.44181- 3 2.90000+ 1 4.10000+ 1 3.22595- 3 1.38995- 3 2.90000+ 1 4.30000+ 1 5.38826- 4 1.41204- 3 2.90000+ 1 4.40000+ 1 1.00523- 3 1.42573- 3 2.90000+ 1 5.80000+ 1 2.36723- 4 1.44512- 3 3.00000+ 1 3.00000+ 1 4.59315- 3 1.28554- 3 3.00000+ 1 3.20000+ 1 1.87433- 3 1.39465- 3 3.00000+ 1 3.30000+ 1 5.71139- 3 1.40746- 3 3.00000+ 1 3.50000+ 1 6.13008- 3 1.52634- 3 3.00000+ 1 3.60000+ 1 7.47980- 3 1.52810- 3 3.00000+ 1 4.10000+ 1 5.12312- 3 1.47624- 3 3.00000+ 1 4.30000+ 1 1.44163- 3 1.49833- 3 3.00000+ 1 4.40000+ 1 1.10062- 3 1.51202- 3 3.00000+ 1 5.80000+ 1 3.78060- 4 1.53141- 3 3.20000+ 1 3.20000+ 1 1.10761- 3 1.50376- 3 3.20000+ 1 3.30000+ 1 3.83160- 3 1.51657- 3 3.20000+ 1 3.50000+ 1 5.22900- 4 1.63545- 3 3.20000+ 1 3.60000+ 1 3.74517- 4 1.63721- 3 3.20000+ 1 4.10000+ 1 5.21137- 3 1.58535- 3 3.20000+ 1 4.30000+ 1 4.82268- 4 1.60744- 3 3.20000+ 1 4.40000+ 1 1.55461- 4 1.62113- 3 3.20000+ 1 5.80000+ 1 3.83335- 4 1.64052- 3 3.30000+ 1 3.30000+ 1 2.30008- 3 1.52938- 3 3.30000+ 1 3.50000+ 1 4.09862- 4 1.64826- 3 3.30000+ 1 3.60000+ 1 7.57857- 4 1.65002- 3 3.30000+ 1 4.10000+ 1 7.10525- 3 1.59816- 3 3.30000+ 1 4.30000+ 1 2.75596- 4 1.62025- 3 3.30000+ 1 4.40000+ 1 6.11258- 4 1.63394- 3 3.30000+ 1 5.80000+ 1 5.21161- 4 1.65333- 3 3.50000+ 1 3.50000+ 1 6.88959- 5 1.76714- 3 3.50000+ 1 3.60000+ 1 1.28966- 4 1.76890- 3 3.50000+ 1 4.10000+ 1 2.42026- 3 1.71704- 3 3.50000+ 1 4.30000+ 1 1.27195- 4 1.73913- 3 3.50000+ 1 4.40000+ 1 6.69547- 4 1.75282- 3 3.50000+ 1 5.80000+ 1 1.76658- 4 1.77221- 3 3.60000+ 1 3.60000+ 1 1.07763- 4 1.77066- 3 3.60000+ 1 4.10000+ 1 2.95731- 3 1.71880- 3 3.60000+ 1 4.30000+ 1 6.53645- 5 1.74089- 3 3.60000+ 1 4.40000+ 1 8.05570- 4 1.75458- 3 3.60000+ 1 5.80000+ 1 2.15516- 4 1.77397- 3 4.10000+ 1 4.10000+ 1 4.16920- 4 1.66694- 3 4.10000+ 1 4.30000+ 1 5.29981- 4 1.68903- 3 4.10000+ 1 4.40000+ 1 6.90710- 4 1.70272- 3 4.10000+ 1 5.80000+ 1 6.35981- 5 1.72211- 3 4.30000+ 1 4.30000+ 1 3.35651- 5 1.71112- 3 4.30000+ 1 4.40000+ 1 1.43100- 4 1.72481- 3 4.30000+ 1 5.80000+ 1 3.88658- 5 1.74420- 3 4.40000+ 1 4.40000+ 1 6.18298- 5 1.73850- 3 4.40000+ 1 5.80000+ 1 5.12308- 5 1.75789- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.12920- 3 6.23160- 4 2.70000+ 1 2.52200- 4 1.19832- 3 3.20000+ 1 5.93410- 5 1.46743- 3 4.10000+ 1 5.18540- 5 1.54902- 3 5.80000+ 1 4.31470- 6 1.60419- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 8.76196- 3 0.00000+ 0 1.90000+ 1 3.00000+ 1 1.13378- 2 8.54200- 5 1.90000+ 1 3.20000+ 1 7.27579- 3 1.94530- 4 1.90000+ 1 3.30000+ 1 1.02495- 2 2.07340- 4 1.90000+ 1 3.50000+ 1 2.05330- 3 3.26220- 4 1.90000+ 1 3.60000+ 1 2.96992- 3 3.27980- 4 1.90000+ 1 4.10000+ 1 1.48968- 3 2.76120- 4 1.90000+ 1 4.30000+ 1 1.74546- 3 2.98210- 4 1.90000+ 1 4.40000+ 1 1.26679- 3 3.11900- 4 1.90000+ 1 5.80000+ 1 1.12765- 4 3.31290- 4 2.10000+ 1 2.40000+ 1 5.78433- 2 7.54300- 5 2.10000+ 1 2.50000+ 1 1.72633- 1 9.21800- 5 2.10000+ 1 2.70000+ 1 2.51561- 2 2.11580- 4 2.10000+ 1 2.90000+ 1 2.10073- 2 2.85290- 4 2.10000+ 1 3.00000+ 1 2.26173- 2 3.71580- 4 2.10000+ 1 3.20000+ 1 1.22505- 2 4.80690- 4 2.10000+ 1 3.30000+ 1 1.70036- 2 4.93500- 4 2.10000+ 1 3.50000+ 1 2.34923- 3 6.12380- 4 2.10000+ 1 3.60000+ 1 4.36448- 3 6.14140- 4 2.10000+ 1 4.10000+ 1 4.84159- 3 5.62280- 4 2.10000+ 1 4.30000+ 1 3.18958- 3 5.84370- 4 2.10000+ 1 4.40000+ 1 3.09219- 3 5.98060- 4 2.10000+ 1 5.80000+ 1 3.81868- 4 6.17450- 4 2.20000+ 1 2.40000+ 1 3.85820- 2 1.35970- 4 2.20000+ 1 2.50000+ 1 9.52944- 3 1.52720- 4 2.20000+ 1 2.70000+ 1 3.89555- 3 2.72120- 4 2.20000+ 1 2.90000+ 1 1.72817- 2 3.45830- 4 2.20000+ 1 3.00000+ 1 3.07511- 3 4.32120- 4 2.20000+ 1 3.20000+ 1 1.50032- 3 5.41230- 4 2.20000+ 1 3.30000+ 1 1.73505- 3 5.54040- 4 2.20000+ 1 3.50000+ 1 5.71846- 4 6.72920- 4 2.20000+ 1 3.60000+ 1 3.85073- 4 6.74680- 4 2.20000+ 1 4.10000+ 1 5.70879- 4 6.22820- 4 2.20000+ 1 4.30000+ 1 1.78768- 3 6.44910- 4 2.20000+ 1 4.40000+ 1 3.17076- 4 6.58600- 4 2.20000+ 1 5.80000+ 1 4.32067- 5 6.77990- 4 2.40000+ 1 2.40000+ 1 1.55179- 3 5.14440- 4 2.40000+ 1 2.50000+ 1 7.63955- 3 5.31190- 4 2.40000+ 1 2.70000+ 1 4.07400- 3 6.50590- 4 2.40000+ 1 2.90000+ 1 1.51640- 2 7.24300- 4 2.40000+ 1 3.00000+ 1 1.53075- 3 8.10590- 4 2.40000+ 1 3.20000+ 1 4.84124- 3 9.19700- 4 2.40000+ 1 3.30000+ 1 4.31573- 3 9.32510- 4 2.40000+ 1 3.50000+ 1 7.08146- 4 1.05139- 3 2.40000+ 1 3.60000+ 1 4.99889- 4 1.05315- 3 2.40000+ 1 4.10000+ 1 7.88471- 4 1.00129- 3 2.40000+ 1 4.30000+ 1 1.60621- 3 1.02338- 3 2.40000+ 1 4.40000+ 1 1.82707- 4 1.03707- 3 2.40000+ 1 5.80000+ 1 6.15210- 5 1.05646- 3 2.50000+ 1 2.50000+ 1 4.22383- 4 5.47940- 4 2.50000+ 1 2.70000+ 1 2.18391- 3 6.67340- 4 2.50000+ 1 2.90000+ 1 2.29674- 2 7.41050- 4 2.50000+ 1 3.00000+ 1 1.19895- 3 8.27340- 4 2.50000+ 1 3.20000+ 1 1.04604- 2 9.36450- 4 2.50000+ 1 3.30000+ 1 1.02320- 3 9.49260- 4 2.50000+ 1 3.50000+ 1 1.35145- 4 1.06814- 3 2.50000+ 1 3.60000+ 1 8.97069- 5 1.06990- 3 2.50000+ 1 4.10000+ 1 3.08254- 4 1.01804- 3 2.50000+ 1 4.30000+ 1 2.31912- 3 1.04013- 3 2.50000+ 1 4.40000+ 1 1.36498- 4 1.05382- 3 2.50000+ 1 5.80000+ 1 2.30565- 5 1.07321- 3 2.70000+ 1 2.70000+ 1 2.66720- 3 7.86740- 4 2.70000+ 1 2.90000+ 1 3.40844- 2 8.60450- 4 2.70000+ 1 3.00000+ 1 6.44253- 3 9.46740- 4 2.70000+ 1 3.20000+ 1 8.88284- 3 1.05585- 3 2.70000+ 1 3.30000+ 1 5.87367- 3 1.06866- 3 2.70000+ 1 3.50000+ 1 7.53366- 4 1.18754- 3 2.70000+ 1 3.60000+ 1 1.56128- 3 1.18930- 3 2.70000+ 1 4.10000+ 1 7.84861- 4 1.13744- 3 2.70000+ 1 4.30000+ 1 3.42698- 3 1.15953- 3 2.70000+ 1 4.40000+ 1 7.91112- 4 1.17322- 3 2.70000+ 1 5.80000+ 1 5.87580- 5 1.19261- 3 2.90000+ 1 2.90000+ 1 2.36289- 2 9.34160- 4 2.90000+ 1 3.00000+ 1 5.99732- 2 1.02045- 3 2.90000+ 1 3.20000+ 1 5.02470- 2 1.12956- 3 2.90000+ 1 3.30000+ 1 8.31513- 2 1.14237- 3 2.90000+ 1 3.50000+ 1 2.69788- 2 1.26125- 3 2.90000+ 1 3.60000+ 1 3.59271- 2 1.26301- 3 2.90000+ 1 4.10000+ 1 6.75309- 3 1.21115- 3 2.90000+ 1 4.30000+ 1 6.33744- 3 1.23324- 3 2.90000+ 1 4.40000+ 1 8.27192- 3 1.24693- 3 2.90000+ 1 5.80000+ 1 5.30919- 4 1.26632- 3 3.00000+ 1 3.00000+ 1 1.70600- 3 1.10674- 3 3.00000+ 1 3.20000+ 1 8.30841- 3 1.21585- 3 3.00000+ 1 3.30000+ 1 3.92840- 3 1.22866- 3 3.00000+ 1 3.50000+ 1 7.84877- 4 1.34754- 3 3.00000+ 1 3.60000+ 1 1.22556- 3 1.34930- 3 3.00000+ 1 4.10000+ 1 8.68785- 4 1.29744- 3 3.00000+ 1 4.30000+ 1 6.15517- 3 1.31953- 3 3.00000+ 1 4.40000+ 1 3.98729- 4 1.33322- 3 3.00000+ 1 5.80000+ 1 6.50544- 5 1.35261- 3 3.20000+ 1 3.20000+ 1 3.16863- 3 1.32496- 3 3.20000+ 1 3.30000+ 1 4.52230- 3 1.33777- 3 3.20000+ 1 3.50000+ 1 4.87482- 3 1.45665- 3 3.20000+ 1 3.60000+ 1 7.89489- 3 1.45841- 3 3.20000+ 1 4.10000+ 1 1.57179- 3 1.40655- 3 3.20000+ 1 4.30000+ 1 5.29661- 3 1.42864- 3 3.20000+ 1 4.40000+ 1 1.11224- 3 1.44233- 3 3.20000+ 1 5.80000+ 1 1.21711- 4 1.46172- 3 3.30000+ 1 3.30000+ 1 7.76458- 4 1.35058- 3 3.30000+ 1 3.50000+ 1 1.14371- 3 1.46946- 3 3.30000+ 1 3.60000+ 1 6.63136- 4 1.47122- 3 3.30000+ 1 4.10000+ 1 7.11405- 4 1.41936- 3 3.30000+ 1 4.30000+ 1 8.63522- 3 1.44145- 3 3.30000+ 1 4.40000+ 1 4.38595- 4 1.45514- 3 3.30000+ 1 5.80000+ 1 5.24633- 5 1.47453- 3 3.50000+ 1 3.50000+ 1 1.42700- 4 1.58834- 3 3.50000+ 1 3.60000+ 1 2.22438- 4 1.59010- 3 3.50000+ 1 4.10000+ 1 1.32215- 4 1.53824- 3 3.50000+ 1 4.30000+ 1 2.67561- 3 1.56033- 3 3.50000+ 1 4.40000+ 1 9.02400- 5 1.57402- 3 3.50000+ 1 5.80000+ 1 1.04924- 5 1.59341- 3 3.60000+ 1 3.60000+ 1 5.45620- 5 1.59186- 3 3.60000+ 1 4.10000+ 1 2.11952- 4 1.54000- 3 3.60000+ 1 4.30000+ 1 3.57808- 3 1.56209- 3 3.60000+ 1 4.40000+ 1 1.30110- 4 1.57578- 3 3.60000+ 1 5.80000+ 1 1.67894- 5 1.59517- 3 4.10000+ 1 4.10000+ 1 5.87579- 5 1.48814- 3 4.10000+ 1 4.30000+ 1 6.84114- 4 1.51023- 3 4.10000+ 1 4.40000+ 1 1.04924- 4 1.52392- 3 4.10000+ 1 5.80000+ 1 8.39391- 6 1.54331- 3 4.30000+ 1 4.30000+ 1 3.94526- 4 1.53232- 3 4.30000+ 1 4.40000+ 1 8.49909- 4 1.54601- 3 4.30000+ 1 5.80000+ 1 5.45635- 5 1.56540- 3 4.40000+ 1 4.40000+ 1 2.30841- 5 1.55970- 3 4.40000+ 1 5.80000+ 1 8.39390- 6 1.57909- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.10910- 5 2.86160- 4 2.20000+ 1 1.86100- 4 3.46700- 4 2.70000+ 1 3.39320- 4 8.61320- 4 3.20000+ 1 4.06020- 5 1.13043- 3 3.30000+ 1 2.34140- 4 1.14324- 3 4.10000+ 1 6.64249- 5 1.21202- 3 5.80000+ 1 5.49940- 6 1.26719- 3 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.68070- 2 3.45800- 5 2.10000+ 1 3.20000+ 1 1.80561- 2 1.43690- 4 2.10000+ 1 3.30000+ 1 2.65921- 2 1.56500- 4 2.10000+ 1 3.50000+ 1 3.97448- 3 2.75380- 4 2.10000+ 1 3.60000+ 1 3.56813- 3 2.77140- 4 2.10000+ 1 4.10000+ 1 3.86260- 3 2.25280- 4 2.10000+ 1 4.30000+ 1 2.78441- 3 2.47370- 4 2.10000+ 1 4.40000+ 1 5.46843- 3 2.61060- 4 2.10000+ 1 5.80000+ 1 2.96598- 4 2.80450- 4 2.20000+ 1 2.90000+ 1 1.31191- 1 8.83000- 6 2.20000+ 1 3.00000+ 1 1.26681- 1 9.51200- 5 2.20000+ 1 3.20000+ 1 1.15152- 1 2.04230- 4 2.20000+ 1 3.30000+ 1 1.37060- 1 2.17040- 4 2.20000+ 1 3.50000+ 1 1.17452- 2 3.35920- 4 2.20000+ 1 3.60000+ 1 1.44520- 2 3.37680- 4 2.20000+ 1 4.10000+ 1 2.19345- 2 2.85820- 4 2.20000+ 1 4.30000+ 1 1.94787- 2 3.07910- 4 2.20000+ 1 4.40000+ 1 1.62319- 2 3.21600- 4 2.20000+ 1 5.80000+ 1 1.68238- 3 3.40990- 4 2.40000+ 1 2.40000+ 1 1.05232- 3 1.77440- 4 2.40000+ 1 2.50000+ 1 2.09515- 3 1.94190- 4 2.40000+ 1 2.70000+ 1 1.01033- 2 3.13590- 4 2.40000+ 1 2.90000+ 1 4.98694- 3 3.87300- 4 2.40000+ 1 3.00000+ 1 5.19603- 2 4.73590- 4 2.40000+ 1 3.20000+ 1 2.12645- 3 5.82700- 4 2.40000+ 1 3.30000+ 1 7.39527- 3 5.95510- 4 2.40000+ 1 3.50000+ 1 9.08654- 4 7.14390- 4 2.40000+ 1 3.60000+ 1 9.14924- 4 7.16150- 4 2.40000+ 1 4.10000+ 1 1.16521- 3 6.64290- 4 2.40000+ 1 4.30000+ 1 6.73451- 4 6.86380- 4 2.40000+ 1 4.40000+ 1 4.76585- 3 7.00070- 4 2.40000+ 1 5.80000+ 1 8.51938- 5 7.19460- 4 2.50000+ 1 2.50000+ 1 3.20857- 3 2.10940- 4 2.50000+ 1 2.70000+ 1 2.38571- 2 3.30340- 4 2.50000+ 1 2.90000+ 1 1.80063- 2 4.04050- 4 2.50000+ 1 3.00000+ 1 6.29965- 2 4.90340- 4 2.50000+ 1 3.20000+ 1 1.56723- 3 5.99450- 4 2.50000+ 1 3.30000+ 1 1.07585- 2 6.12260- 4 2.50000+ 1 3.50000+ 1 3.77085- 3 7.31140- 4 2.50000+ 1 3.60000+ 1 4.52582- 3 7.32900- 4 2.50000+ 1 4.10000+ 1 3.36946- 3 6.81040- 4 2.50000+ 1 4.30000+ 1 2.56929- 3 7.03130- 4 2.50000+ 1 4.40000+ 1 5.83657- 3 7.16820- 4 2.50000+ 1 5.80000+ 1 2.53759- 4 7.36210- 4 2.70000+ 1 2.70000+ 1 8.04900- 5 4.49740- 4 2.70000+ 1 2.90000+ 1 2.91898- 4 5.23450- 4 2.70000+ 1 3.00000+ 1 4.95503- 3 6.09740- 4 2.70000+ 1 3.20000+ 1 4.53416- 4 7.18850- 4 2.70000+ 1 3.30000+ 1 7.44524- 4 7.31660- 4 2.70000+ 1 3.50000+ 1 2.65509- 4 8.50540- 4 2.70000+ 1 3.60000+ 1 2.70739- 4 8.52300- 4 2.70000+ 1 4.10000+ 1 2.97917- 5 8.00440- 4 2.70000+ 1 4.30000+ 1 3.13596- 5 8.22530- 4 2.70000+ 1 4.40000+ 1 4.34587- 4 8.36220- 4 2.70000+ 1 5.80000+ 1 2.35202- 6 8.55610- 4 2.90000+ 1 2.90000+ 1 9.93064- 6 5.97160- 4 2.90000+ 1 3.00000+ 1 5.74962- 3 6.83450- 4 2.90000+ 1 3.20000+ 1 2.64202- 4 7.92560- 4 2.90000+ 1 3.30000+ 1 6.94624- 4 8.05370- 4 2.90000+ 1 3.50000+ 1 2.10106- 4 9.24250- 4 2.90000+ 1 3.60000+ 1 4.89207- 4 9.26010- 4 2.90000+ 1 4.10000+ 1 4.93927- 5 8.74150- 4 2.90000+ 1 4.30000+ 1 8.62393- 6 8.96240- 4 2.90000+ 1 4.40000+ 1 5.17966- 4 9.09930- 4 2.90000+ 1 5.80000+ 1 3.92004- 6 9.29320- 4 3.00000+ 1 3.00000+ 1 7.12236- 3 7.69740- 4 3.00000+ 1 3.20000+ 1 8.78883- 3 8.78850- 4 3.00000+ 1 3.30000+ 1 1.16141- 2 8.91660- 4 3.00000+ 1 3.50000+ 1 4.41206- 3 1.01054- 3 3.00000+ 1 3.60000+ 1 5.21010- 3 1.01230- 3 3.00000+ 1 4.10000+ 1 9.86035- 4 9.60440- 4 3.00000+ 1 4.30000+ 1 9.10741- 4 9.82530- 4 3.00000+ 1 4.40000+ 1 1.62738- 3 9.96220- 4 3.00000+ 1 5.80000+ 1 7.73541- 5 1.01561- 3 3.20000+ 1 3.20000+ 1 1.71960- 4 9.87960- 4 3.20000+ 1 3.30000+ 1 1.03154- 3 1.00077- 3 3.20000+ 1 3.50000+ 1 9.82602- 5 1.11965- 3 3.20000+ 1 3.60000+ 1 2.01228- 4 1.12141- 3 3.20000+ 1 4.10000+ 1 6.11524- 5 1.06955- 3 3.20000+ 1 4.30000+ 1 4.33824- 5 1.09164- 3 3.20000+ 1 4.40000+ 1 8.00472- 4 1.10533- 3 3.20000+ 1 5.80000+ 1 4.70402- 6 1.12472- 3 3.30000+ 1 3.30000+ 1 9.80772- 4 1.01358- 3 3.30000+ 1 3.50000+ 1 3.35557- 4 1.13246- 3 3.30000+ 1 3.60000+ 1 4.53149- 4 1.13422- 3 3.30000+ 1 4.10000+ 1 1.42160- 4 1.08236- 3 3.30000+ 1 4.30000+ 1 1.17602- 4 1.10445- 3 3.30000+ 1 4.40000+ 1 1.07062- 3 1.11814- 3 3.30000+ 1 5.80000+ 1 1.12382- 5 1.13753- 3 3.50000+ 1 3.50000+ 1 1.01922- 5 1.25134- 3 3.50000+ 1 3.60000+ 1 5.17440- 5 1.25310- 3 3.50000+ 1 4.10000+ 1 3.29274- 5 1.20124- 3 3.50000+ 1 4.30000+ 1 1.07141- 5 1.22333- 3 3.50000+ 1 4.40000+ 1 3.87550- 4 1.23702- 3 3.50000+ 1 5.80000+ 1 2.35202- 6 1.25641- 3 3.60000+ 1 3.60000+ 1 3.26659- 5 1.25486- 3 3.60000+ 1 4.10000+ 1 3.47577- 5 1.20300- 3 3.60000+ 1 4.30000+ 1 2.58723- 5 1.22509- 3 3.60000+ 1 4.40000+ 1 4.55250- 4 1.23878- 3 3.60000+ 1 5.80000+ 1 2.61343- 6 1.25817- 3 4.10000+ 1 4.10000+ 1 7.83992- 7 1.15114- 3 4.10000+ 1 4.30000+ 1 3.39725- 6 1.17323- 3 4.10000+ 1 4.40000+ 1 8.67627- 5 1.18692- 3 4.30000+ 1 4.30000+ 1 2.61342- 7 1.19532- 3 4.30000+ 1 4.40000+ 1 8.17973- 5 1.20901- 3 4.30000+ 1 5.80000+ 1 2.61342- 7 1.22840- 3 4.40000+ 1 4.40000+ 1 8.78083- 5 1.22270- 3 4.40000+ 1 5.80000+ 1 6.79466- 6 1.24209- 3 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.92220- 4 4.39010- 4 2.90000+ 1 2.23160- 4 6.48870- 4 3.00000+ 1 2.32420- 5 7.35160- 4 3.50000+ 1 1.47750- 4 9.75960- 4 4.30000+ 1 3.63310- 5 9.47950- 4 4.40000+ 1 3.34580- 6 9.61640- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 4.51414- 3 4.97600- 5 2.20000+ 1 3.60000+ 1 5.59998- 3 5.15200- 5 2.20000+ 1 4.10000+ 1 2.64845- 3 0.00000+ 0 2.20000+ 1 4.30000+ 1 1.21483- 3 2.17500- 5 2.20000+ 1 4.40000+ 1 2.52975- 3 3.54400- 5 2.20000+ 1 5.80000+ 1 1.58851- 4 5.48300- 5 2.40000+ 1 2.70000+ 1 1.21445- 1 2.74300- 5 2.40000+ 1 2.90000+ 1 1.11045- 1 1.01140- 4 2.40000+ 1 3.00000+ 1 1.21555- 1 1.87430- 4 2.40000+ 1 3.20000+ 1 1.25985- 1 2.96540- 4 2.40000+ 1 3.30000+ 1 1.30484- 1 3.09350- 4 2.40000+ 1 3.50000+ 1 8.41511- 3 4.28230- 4 2.40000+ 1 3.60000+ 1 7.00447- 3 4.29990- 4 2.40000+ 1 4.10000+ 1 2.36749- 2 3.78130- 4 2.40000+ 1 4.30000+ 1 1.77802- 2 4.00220- 4 2.40000+ 1 4.40000+ 1 1.63362- 2 4.13910- 4 2.40000+ 1 5.80000+ 1 1.87702- 3 4.33300- 4 2.50000+ 1 2.70000+ 1 8.32633- 3 4.41800- 5 2.50000+ 1 2.90000+ 1 1.83638- 2 1.17890- 4 2.50000+ 1 3.00000+ 1 7.97366- 3 2.04180- 4 2.50000+ 1 3.20000+ 1 1.33151- 1 3.13290- 4 2.50000+ 1 3.30000+ 1 5.52552- 3 3.26100- 4 2.50000+ 1 3.50000+ 1 2.10625- 3 4.44980- 4 2.50000+ 1 3.60000+ 1 7.41939- 4 4.46740- 4 2.50000+ 1 4.10000+ 1 1.16332- 3 3.94880- 4 2.50000+ 1 4.30000+ 1 1.77288- 3 4.16970- 4 2.50000+ 1 4.40000+ 1 7.97456- 4 4.30660- 4 2.50000+ 1 5.80000+ 1 8.83349- 5 4.50050- 4 2.70000+ 1 2.70000+ 1 8.53392- 4 1.63580- 4 2.70000+ 1 2.90000+ 1 2.14841- 3 2.37290- 4 2.70000+ 1 3.00000+ 1 1.45713- 3 3.23580- 4 2.70000+ 1 3.20000+ 1 1.18305- 2 4.32690- 4 2.70000+ 1 3.30000+ 1 1.57953- 3 4.45500- 4 2.70000+ 1 3.50000+ 1 2.05852- 3 5.64380- 4 2.70000+ 1 3.60000+ 1 1.71072- 3 5.66140- 4 2.70000+ 1 4.10000+ 1 1.96121- 4 5.14280- 4 2.70000+ 1 4.30000+ 1 2.22870- 4 5.36370- 4 2.70000+ 1 4.40000+ 1 1.59253- 4 5.50060- 4 2.70000+ 1 5.80000+ 1 1.45873- 5 5.69450- 4 2.90000+ 1 2.90000+ 1 5.77020- 4 3.11000- 4 2.90000+ 1 3.00000+ 1 1.88218- 3 3.97290- 4 2.90000+ 1 3.20000+ 1 8.77511- 3 5.06400- 4 2.90000+ 1 3.30000+ 1 9.04839- 4 5.19210- 4 2.90000+ 1 3.50000+ 1 2.73911- 4 6.38090- 4 2.90000+ 1 3.60000+ 1 2.54463- 4 6.39850- 4 2.90000+ 1 4.10000+ 1 1.67348- 4 5.87990- 4 2.90000+ 1 4.30000+ 1 1.26022- 4 6.10080- 4 2.90000+ 1 4.40000+ 1 1.51149- 4 6.23770- 4 2.90000+ 1 5.80000+ 1 1.29672- 5 6.43160- 4 3.00000+ 1 3.00000+ 1 6.19976- 4 4.83580- 4 3.00000+ 1 3.20000+ 1 1.75604- 2 5.92690- 4 3.00000+ 1 3.30000+ 1 1.47334- 3 6.05500- 4 3.00000+ 1 3.50000+ 1 7.59381- 4 7.24380- 4 3.00000+ 1 3.60000+ 1 4.38853- 4 7.26140- 4 3.00000+ 1 4.10000+ 1 6.92924- 5 6.74280- 4 3.00000+ 1 4.30000+ 1 1.33315- 4 6.96370- 4 3.00000+ 1 4.40000+ 1 1.06576- 4 7.10060- 4 3.00000+ 1 5.80000+ 1 4.86271- 6 7.29450- 4 3.20000+ 1 3.20000+ 1 1.15875- 2 7.01800- 4 3.20000+ 1 3.30000+ 1 2.24070- 2 7.14610- 4 3.20000+ 1 3.50000+ 1 7.63108- 3 8.33490- 4 3.20000+ 1 3.60000+ 1 1.02785- 2 8.35250- 4 3.20000+ 1 4.10000+ 1 1.88103- 3 7.83390- 4 3.20000+ 1 4.30000+ 1 1.42564- 3 8.05480- 4 3.20000+ 1 4.40000+ 1 2.30900- 3 8.19170- 4 3.20000+ 1 5.80000+ 1 1.46283- 4 8.38560- 4 3.30000+ 1 3.30000+ 1 3.74829- 4 7.27420- 4 3.30000+ 1 3.50000+ 1 8.59453- 4 8.46300- 4 3.30000+ 1 3.60000+ 1 2.93384- 4 8.48060- 4 3.30000+ 1 4.10000+ 1 7.17231- 5 7.96200- 4 3.30000+ 1 4.30000+ 1 7.65858- 5 8.18290- 4 3.30000+ 1 4.40000+ 1 1.28054- 4 8.31980- 4 3.30000+ 1 5.80000+ 1 5.67299- 6 8.51370- 4 3.50000+ 1 3.50000+ 1 1.27245- 4 9.65180- 4 3.50000+ 1 3.60000+ 1 2.09900- 4 9.66940- 4 3.50000+ 1 4.10000+ 1 1.09806- 4 9.15080- 4 3.50000+ 1 4.30000+ 1 4.33571- 5 9.37170- 4 3.50000+ 1 4.40000+ 1 7.98285- 5 9.50860- 4 3.50000+ 1 5.80000+ 1 7.29388- 6 9.70250- 4 3.60000+ 1 3.60000+ 1 2.71487- 5 9.68700- 4 3.60000+ 1 4.10000+ 1 7.21276- 5 9.16840- 4 3.60000+ 1 4.30000+ 1 3.64693- 5 9.38930- 4 3.60000+ 1 4.40000+ 1 4.01172- 5 9.52620- 4 3.60000+ 1 5.80000+ 1 4.45739- 6 9.72010- 4 4.10000+ 1 4.10000+ 1 5.26775- 6 8.64980- 4 4.10000+ 1 4.30000+ 1 1.05353- 5 8.87070- 4 4.10000+ 1 4.40000+ 1 6.88853- 6 9.00760- 4 4.10000+ 1 5.80000+ 1 8.10415- 7 9.20150- 4 4.30000+ 1 4.30000+ 1 2.43126- 6 9.09160- 4 4.30000+ 1 4.40000+ 1 1.01303- 5 9.22850- 4 4.30000+ 1 5.80000+ 1 8.10423- 7 9.42240- 4 4.40000+ 1 4.40000+ 1 4.45738- 6 9.36540- 4 4.40000+ 1 5.80000+ 1 4.05221- 7 9.55930- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.63851- 5 3.78470- 4 2.50000+ 1 3.83853- 4 3.95220- 4 3.00000+ 1 1.69291- 4 6.74620- 4 3.50000+ 1 9.46808- 6 9.15420- 4 3.60000+ 1 1.56811- 4 9.17180- 4 4.40000+ 1 2.42932- 5 9.01100- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.90000+ 1 8.70731- 3 4.06000- 5 2.40000+ 1 3.00000+ 1 1.66681- 2 1.26890- 4 2.40000+ 1 3.20000+ 1 8.38187- 3 2.36000- 4 2.40000+ 1 3.30000+ 1 1.13866- 1 2.48810- 4 2.40000+ 1 3.50000+ 1 1.50956- 3 3.67690- 4 2.40000+ 1 3.60000+ 1 1.41864- 3 3.69450- 4 2.40000+ 1 4.10000+ 1 2.22440- 3 3.17590- 4 2.40000+ 1 4.30000+ 1 1.47992- 3 3.39680- 4 2.40000+ 1 4.40000+ 1 1.84484- 3 3.53370- 4 2.40000+ 1 5.80000+ 1 1.70858- 4 3.72760- 4 2.50000+ 1 2.90000+ 1 1.43953- 1 5.73500- 5 2.50000+ 1 3.00000+ 1 1.23599- 1 1.43640- 4 2.50000+ 1 3.20000+ 1 1.25813- 1 2.52750- 4 2.50000+ 1 3.30000+ 1 2.21431- 1 2.65560- 4 2.50000+ 1 3.50000+ 1 8.00259- 3 3.84440- 4 2.50000+ 1 3.60000+ 1 1.31666- 2 3.86200- 4 2.50000+ 1 4.10000+ 1 2.60987- 2 3.34340- 4 2.50000+ 1 4.30000+ 1 2.23095- 2 3.56430- 4 2.50000+ 1 4.40000+ 1 1.67474- 2 3.70120- 4 2.50000+ 1 5.80000+ 1 2.04474- 3 3.89510- 4 2.70000+ 1 2.70000+ 1 1.67329- 3 1.03040- 4 2.70000+ 1 2.90000+ 1 2.46686- 3 1.76750- 4 2.70000+ 1 3.00000+ 1 3.21785- 3 2.63040- 4 2.70000+ 1 3.20000+ 1 2.74189- 3 3.72150- 4 2.70000+ 1 3.30000+ 1 1.44331- 2 3.84960- 4 2.70000+ 1 3.50000+ 1 2.11363- 3 5.03840- 4 2.70000+ 1 3.60000+ 1 3.24202- 3 5.05600- 4 2.70000+ 1 4.10000+ 1 3.71897- 4 4.53740- 4 2.70000+ 1 4.30000+ 1 2.75432- 4 4.75830- 4 2.70000+ 1 4.40000+ 1 3.47249- 4 4.89520- 4 2.70000+ 1 5.80000+ 1 2.80516- 5 5.08910- 4 2.90000+ 1 2.90000+ 1 3.59987- 4 2.50460- 4 2.90000+ 1 3.00000+ 1 3.65229- 3 3.36750- 4 2.90000+ 1 3.20000+ 1 6.14588- 4 4.45860- 4 2.90000+ 1 3.30000+ 1 1.36690- 2 4.58670- 4 2.90000+ 1 3.50000+ 1 3.05588- 4 5.77550- 4 2.90000+ 1 3.60000+ 1 6.09903- 4 5.79310- 4 2.90000+ 1 4.10000+ 1 1.67455- 4 5.27450- 4 2.90000+ 1 4.30000+ 1 8.16051- 5 5.49540- 4 2.90000+ 1 4.40000+ 1 2.81796- 4 5.63230- 4 2.90000+ 1 5.80000+ 1 1.19015- 5 5.82620- 4 3.00000+ 1 3.00000+ 1 1.18070- 3 4.23040- 4 3.00000+ 1 3.20000+ 1 2.42772- 3 5.32150- 4 3.00000+ 1 3.30000+ 1 1.75204- 2 5.44960- 4 3.00000+ 1 3.50000+ 1 6.19680- 4 6.63840- 4 3.00000+ 1 3.60000+ 1 7.98196- 4 6.65600- 4 3.00000+ 1 4.10000+ 1 9.90300- 5 6.13740- 4 3.00000+ 1 4.30000+ 1 1.46209- 4 6.35830- 4 3.00000+ 1 4.40000+ 1 2.05293- 4 6.49520- 4 3.00000+ 1 5.80000+ 1 5.95042- 6 6.68910- 4 3.20000+ 1 3.20000+ 1 1.46203- 4 6.41260- 4 3.20000+ 1 3.30000+ 1 1.76838- 2 6.54070- 4 3.20000+ 1 3.50000+ 1 2.16325- 4 7.72950- 4 3.20000+ 1 3.60000+ 1 8.08785- 4 7.74710- 4 3.20000+ 1 4.10000+ 1 7.26747- 5 7.22850- 4 3.20000+ 1 4.30000+ 1 5.05767- 5 7.44940- 4 3.20000+ 1 4.40000+ 1 2.22691- 4 7.58630- 4 3.20000+ 1 5.80000+ 1 5.10004- 6 7.78020- 4 3.30000+ 1 3.30000+ 1 1.95178- 2 6.66880- 4 3.30000+ 1 3.50000+ 1 9.18518- 3 7.85760- 4 3.30000+ 1 3.60000+ 1 1.07855- 2 7.87520- 4 3.30000+ 1 4.10000+ 1 2.05026- 3 7.35660- 4 3.30000+ 1 4.30000+ 1 1.93179- 3 7.57750- 4 3.30000+ 1 4.40000+ 1 2.34140- 3 7.71440- 4 3.30000+ 1 5.80000+ 1 1.59389- 4 7.90830- 4 3.50000+ 1 3.50000+ 1 3.01766- 5 9.04640- 4 3.50000+ 1 3.60000+ 1 2.10813- 4 9.06400- 4 3.50000+ 1 4.10000+ 1 8.92539- 5 8.54540- 4 3.50000+ 1 4.30000+ 1 3.06024- 5 8.76630- 4 3.50000+ 1 4.40000+ 1 5.10023- 5 8.90320- 4 3.50000+ 1 5.80000+ 1 5.52525- 6 9.09710- 4 3.60000+ 1 3.60000+ 1 1.82765- 4 9.08160- 4 3.60000+ 1 4.10000+ 1 1.51304- 4 8.56300- 4 3.60000+ 1 4.30000+ 1 5.05793- 5 8.78390- 4 3.60000+ 1 4.40000+ 1 7.94802- 5 8.92080- 4 3.60000+ 1 5.80000+ 1 9.77568- 6 9.11470- 4 4.10000+ 1 4.10000+ 1 1.10501- 5 8.04440- 4 4.10000+ 1 4.30000+ 1 1.40253- 5 8.26530- 4 4.10000+ 1 4.40000+ 1 1.14759- 5 8.40220- 4 4.10000+ 1 5.80000+ 1 1.70004- 6 8.59610- 4 4.30000+ 1 4.30000+ 1 2.54998- 6 8.48620- 4 4.30000+ 1 4.40000+ 1 1.31751- 5 8.62310- 4 4.30000+ 1 5.80000+ 1 8.50007- 7 8.81700- 4 4.40000+ 1 4.40000+ 1 9.77601- 6 8.76000- 4 4.40000+ 1 5.80000+ 1 8.50077- 7 8.95390- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.65011- 4 4.05260- 4 3.30000+ 1 1.01511- 5 4.18070- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 2.75139- 1 5.97000- 6 2.50000+ 1 3.60000+ 1 1.54555- 2 7.73000- 6 2.50000+ 1 5.80000+ 1 2.77739- 4 1.10400- 5 2.70000+ 1 3.30000+ 1 8.37342- 4 6.49000- 6 2.70000+ 1 3.50000+ 1 5.07665- 2 1.25370- 4 2.70000+ 1 3.60000+ 1 1.02178- 2 1.27130- 4 2.70000+ 1 4.10000+ 1 6.55818- 4 7.52700- 5 2.70000+ 1 4.30000+ 1 8.37342- 4 9.73600- 5 2.70000+ 1 4.40000+ 1 1.95286- 3 1.11050- 4 2.70000+ 1 5.80000+ 1 4.39157- 5 1.30440- 4 2.90000+ 1 3.20000+ 1 2.76306- 2 6.73900- 5 2.90000+ 1 3.30000+ 1 5.82445- 2 8.02000- 5 2.90000+ 1 3.50000+ 1 5.02517- 2 1.99080- 4 2.90000+ 1 3.60000+ 1 1.18636- 2 2.00840- 4 2.90000+ 1 4.10000+ 1 6.23619- 3 1.48980- 4 2.90000+ 1 4.30000+ 1 3.44599- 3 1.71070- 4 2.90000+ 1 4.40000+ 1 5.07383- 3 1.84760- 4 2.90000+ 1 5.80000+ 1 4.45013- 4 2.04150- 4 3.00000+ 1 3.00000+ 1 7.09966- 3 4.45700- 5 3.00000+ 1 3.20000+ 1 4.32684- 2 1.53680- 4 3.00000+ 1 3.30000+ 1 3.10775- 2 1.66490- 4 3.00000+ 1 3.50000+ 1 7.42986- 2 2.85370- 4 3.00000+ 1 3.60000+ 1 4.29486- 3 2.87130- 4 3.00000+ 1 4.10000+ 1 2.16938- 3 2.35270- 4 3.00000+ 1 4.30000+ 1 1.41698- 3 2.57360- 4 3.00000+ 1 4.40000+ 1 9.51501- 4 2.71050- 4 3.00000+ 1 5.80000+ 1 1.34671- 4 2.90440- 4 3.20000+ 1 3.20000+ 1 4.90398- 3 2.62790- 4 3.20000+ 1 3.30000+ 1 1.17318- 2 2.75600- 4 3.20000+ 1 3.50000+ 1 6.60737- 2 3.94480- 4 3.20000+ 1 3.60000+ 1 7.94588- 3 3.96240- 4 3.20000+ 1 4.10000+ 1 6.82157- 4 3.44380- 4 3.20000+ 1 4.30000+ 1 3.23808- 3 3.66470- 4 3.20000+ 1 4.40000+ 1 2.20467- 3 3.80160- 4 3.20000+ 1 5.80000+ 1 5.56269- 5 3.99550- 4 3.30000+ 1 3.30000+ 1 3.02711- 3 2.88410- 4 3.30000+ 1 3.50000+ 1 9.73235- 2 4.07290- 4 3.30000+ 1 3.60000+ 1 2.65243- 3 4.09050- 4 3.30000+ 1 4.10000+ 1 7.43601- 4 3.57190- 4 3.30000+ 1 4.30000+ 1 2.31267- 3 3.79280- 4 3.30000+ 1 4.40000+ 1 1.25600- 3 3.92970- 4 3.30000+ 1 5.80000+ 1 5.56241- 5 4.12360- 4 3.50000+ 1 3.50000+ 1 3.03740- 2 5.26170- 4 3.50000+ 1 3.60000+ 1 5.27263- 2 5.27930- 4 3.50000+ 1 4.10000+ 1 8.30293- 3 4.76070- 4 3.50000+ 1 4.30000+ 1 7.26933- 3 4.98160- 4 3.50000+ 1 4.40000+ 1 9.61728- 3 5.11850- 4 3.50000+ 1 5.80000+ 1 6.41141- 4 5.31240- 4 3.60000+ 1 3.60000+ 1 5.24076- 4 5.29690- 4 3.60000+ 1 4.10000+ 1 2.54717- 4 4.77830- 4 3.60000+ 1 4.30000+ 1 8.46117- 4 4.99920- 4 3.60000+ 1 4.40000+ 1 3.10342- 4 5.13610- 4 3.60000+ 1 5.80000+ 1 1.75668- 5 5.33000- 4 4.10000+ 1 4.10000+ 1 2.63498- 5 4.25970- 4 4.10000+ 1 4.30000+ 1 2.34215- 4 4.48060- 4 4.10000+ 1 4.40000+ 1 1.49311- 4 4.61750- 4 4.10000+ 1 5.80000+ 1 2.92768- 6 4.81140- 4 4.30000+ 1 4.30000+ 1 8.19767- 5 4.70150- 4 4.30000+ 1 4.40000+ 1 1.05398- 4 4.83840- 4 4.30000+ 1 5.80000+ 1 1.75666- 5 5.03230- 4 4.40000+ 1 4.40000+ 1 2.04932- 5 4.97530- 4 4.40000+ 1 5.80000+ 1 8.78302- 6 5.16920- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 2.14740- 4 4.01320- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 1.04898- 2 1.08620- 4 2.70000+ 1 3.60000+ 1 6.76416- 2 1.10380- 4 2.70000+ 1 4.10000+ 1 8.94854- 4 5.85200- 5 2.70000+ 1 4.30000+ 1 2.13778- 3 8.06100- 5 2.70000+ 1 4.40000+ 1 1.66735- 3 9.43000- 5 2.70000+ 1 5.80000+ 1 5.35384- 5 1.13690- 4 2.90000+ 1 3.20000+ 1 3.41875- 3 5.06400- 5 2.90000+ 1 3.30000+ 1 6.99432- 3 6.34500- 5 2.90000+ 1 3.50000+ 1 7.76297- 4 1.82330- 4 2.90000+ 1 3.60000+ 1 5.91483- 2 1.84090- 4 2.90000+ 1 4.10000+ 1 2.13776- 3 1.32230- 4 2.90000+ 1 4.30000+ 1 4.81836- 4 1.54320- 4 2.90000+ 1 4.40000+ 1 6.08035- 4 1.68010- 4 2.90000+ 1 5.80000+ 1 1.37670- 4 1.87400- 4 3.00000+ 1 3.00000+ 1 3.66202- 2 2.78200- 5 3.00000+ 1 3.20000+ 1 8.91001- 2 1.36930- 4 3.00000+ 1 3.30000+ 1 1.74626- 1 1.49740- 4 3.00000+ 1 3.50000+ 1 1.62945- 2 2.68620- 4 3.00000+ 1 3.60000+ 1 1.07969- 1 2.70380- 4 3.00000+ 1 4.10000+ 1 5.70952- 3 2.18520- 4 3.00000+ 1 4.30000+ 1 1.96948- 3 2.40610- 4 3.00000+ 1 4.40000+ 1 4.29469- 3 2.54300- 4 3.00000+ 1 5.80000+ 1 3.86255- 4 2.73690- 4 3.20000+ 1 3.20000+ 1 1.46078- 3 2.46040- 4 3.20000+ 1 3.30000+ 1 1.60379- 2 2.58850- 4 3.20000+ 1 3.50000+ 1 2.18351- 3 3.77730- 4 3.20000+ 1 3.60000+ 1 9.08947- 2 3.79490- 4 3.20000+ 1 4.10000+ 1 8.18351- 4 3.27630- 4 3.20000+ 1 4.30000+ 1 8.03051- 4 3.49720- 4 3.20000+ 1 4.40000+ 1 2.42062- 3 3.63410- 4 3.20000+ 1 5.80000+ 1 6.11841- 5 3.82800- 4 3.30000+ 1 3.30000+ 1 9.76309- 3 2.71660- 4 3.30000+ 1 3.50000+ 1 9.73239- 3 3.90540- 4 3.30000+ 1 3.60000+ 1 1.20998- 1 3.92300- 4 3.30000+ 1 4.10000+ 1 1.08607- 3 3.40440- 4 3.30000+ 1 4.30000+ 1 1.32310- 3 3.62530- 4 3.30000+ 1 4.40000+ 1 5.06316- 3 3.76220- 4 3.30000+ 1 5.80000+ 1 8.41319- 5 3.95610- 4 3.50000+ 1 3.50000+ 1 4.81839- 4 5.09420- 4 3.50000+ 1 3.60000+ 1 5.47925- 2 5.11180- 4 3.50000+ 1 4.10000+ 1 3.17406- 4 4.59320- 4 3.50000+ 1 4.30000+ 1 7.26589- 5 4.81410- 4 3.50000+ 1 4.40000+ 1 1.09368- 3 4.95100- 4 3.50000+ 1 5.80000+ 1 2.29439- 5 5.14490- 4 3.60000+ 1 3.60000+ 1 5.25208- 2 5.12940- 4 3.60000+ 1 4.10000+ 1 1.07077- 2 4.61080- 4 3.60000+ 1 4.30000+ 1 8.97137- 3 4.83170- 4 3.60000+ 1 4.40000+ 1 1.30210- 2 4.96860- 4 3.60000+ 1 5.80000+ 1 8.26011- 4 5.16250- 4 4.10000+ 1 4.10000+ 1 3.44180- 5 4.09220- 4 4.10000+ 1 4.30000+ 1 1.45323- 4 4.31310- 4 4.10000+ 1 4.40000+ 1 2.82994- 4 4.45000- 4 4.10000+ 1 5.80000+ 1 3.82424- 6 4.64390- 4 4.30000+ 1 4.30000+ 1 1.52967- 5 4.53400- 4 4.30000+ 1 4.40000+ 1 7.64807- 5 4.67090- 4 4.30000+ 1 5.80000+ 1 1.14726- 5 4.86480- 4 4.40000+ 1 4.40000+ 1 8.03075- 5 4.80780- 4 4.40000+ 1 5.80000+ 1 1.91195- 5 5.00170- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.22530- 6 7.37100- 5 3.00000+ 1 2.57741- 5 1.60000- 4 4.30000+ 1 3.33221- 6 3.72790- 4 4.40000+ 1 6.52242- 8 3.86480- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 5.64577- 2 6.29300- 5 2.90000+ 1 3.60000+ 1 9.74849- 2 6.46900- 5 2.90000+ 1 4.10000+ 1 1.99147- 2 1.28300- 5 2.90000+ 1 4.30000+ 1 1.38168- 2 3.49200- 5 2.90000+ 1 4.40000+ 1 2.29827- 2 4.86100- 5 2.90000+ 1 5.80000+ 1 1.51378- 3 6.80000- 5 3.00000+ 1 3.20000+ 1 1.44578- 1 1.75300- 5 3.00000+ 1 3.30000+ 1 1.29068- 1 3.03400- 5 3.00000+ 1 3.50000+ 1 1.32648- 1 1.49220- 4 3.00000+ 1 3.60000+ 1 1.21178- 1 1.50980- 4 3.00000+ 1 4.10000+ 1 1.60568- 2 9.91200- 5 3.00000+ 1 4.30000+ 1 1.62198- 2 1.21210- 4 3.00000+ 1 4.40000+ 1 1.28078- 2 1.34900- 4 3.00000+ 1 5.80000+ 1 1.21628- 3 1.54290- 4 3.20000+ 1 3.20000+ 1 1.45610- 3 1.26640- 4 3.20000+ 1 3.30000+ 1 1.07909- 1 1.39450- 4 3.20000+ 1 3.50000+ 1 3.67807- 3 2.58330- 4 3.20000+ 1 3.60000+ 1 1.32150- 2 2.60090- 4 3.20000+ 1 4.10000+ 1 5.38924- 3 2.08230- 4 3.20000+ 1 4.30000+ 1 1.14060- 3 2.30320- 4 3.20000+ 1 4.40000+ 1 3.88116- 3 2.44010- 4 3.20000+ 1 5.80000+ 1 3.40727- 4 2.63400- 4 3.30000+ 1 3.30000+ 1 2.53566- 2 1.52260- 4 3.30000+ 1 3.50000+ 1 1.51668- 2 2.71140- 4 3.30000+ 1 3.60000+ 1 1.00389- 2 2.72900- 4 3.30000+ 1 4.10000+ 1 7.55253- 3 2.21040- 4 3.30000+ 1 4.30000+ 1 3.30314- 3 2.43130- 4 3.30000+ 1 4.40000+ 1 2.51056- 3 2.56820- 4 3.30000+ 1 5.80000+ 1 4.75620- 4 2.76210- 4 3.50000+ 1 3.50000+ 1 5.57112- 5 3.90020- 4 3.50000+ 1 3.60000+ 1 1.80765- 3 3.91780- 4 3.50000+ 1 4.10000+ 1 2.67423- 3 3.39920- 4 3.50000+ 1 4.30000+ 1 2.43604- 4 3.62010- 4 3.50000+ 1 4.40000+ 1 6.61170- 4 3.75700- 4 3.50000+ 1 5.80000+ 1 1.55547- 4 3.95090- 4 3.60000+ 1 3.60000+ 1 3.33825- 4 3.93540- 4 3.60000+ 1 4.10000+ 1 3.31505- 3 3.41680- 4 3.60000+ 1 4.30000+ 1 5.75509- 4 3.63770- 4 3.60000+ 1 4.40000+ 1 4.11982- 4 3.77460- 4 3.60000+ 1 5.80000+ 1 1.92747- 4 3.96850- 4 4.10000+ 1 4.10000+ 1 4.39402- 4 2.89820- 4 4.10000+ 1 4.30000+ 1 5.16582- 4 3.11910- 4 4.10000+ 1 4.40000+ 1 6.97842- 4 3.25600- 4 4.10000+ 1 5.80000+ 1 5.95772- 5 3.44990- 4 4.30000+ 1 4.30000+ 1 4.63656- 5 3.34000- 4 4.30000+ 1 4.40000+ 1 2.54923- 4 3.47690- 4 4.30000+ 1 5.80000+ 1 2.93822- 5 3.67080- 4 4.40000+ 1 4.40000+ 1 1.00019- 4 3.61380- 4 4.40000+ 1 5.80000+ 1 4.19611- 5 3.80770- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 9.86274- 5 1.95400- 4 4.10000+ 1 1.06750- 5 2.76990- 4 5.80000+ 1 9.08054- 7 3.32160- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 2.81096- 2 7.55100- 5 3.00000+ 1 3.60000+ 1 1.63884- 2 7.72700- 5 3.00000+ 1 4.10000+ 1 1.41384- 2 2.54100- 5 3.00000+ 1 4.30000+ 1 9.30281- 3 4.75000- 5 3.00000+ 1 4.40000+ 1 7.44377- 3 6.11900- 5 3.00000+ 1 5.80000+ 1 7.82447- 4 8.05800- 5 3.20000+ 1 3.20000+ 1 7.65803- 2 5.29300- 5 3.20000+ 1 3.30000+ 1 3.11286- 1 6.57400- 5 3.20000+ 1 3.50000+ 1 9.19846- 2 1.84620- 4 3.20000+ 1 3.60000+ 1 2.04634- 1 1.86380- 4 3.20000+ 1 4.10000+ 1 3.36456- 2 1.34520- 4 3.20000+ 1 4.30000+ 1 2.22944- 2 1.56610- 4 3.20000+ 1 4.40000+ 1 3.11686- 2 1.70300- 4 3.20000+ 1 5.80000+ 1 2.66064- 3 1.89690- 4 3.30000+ 1 3.30000+ 1 1.21783- 2 7.85500- 5 3.30000+ 1 3.50000+ 1 5.00620- 2 1.97430- 4 3.30000+ 1 3.60000+ 1 1.13852- 2 1.99190- 4 3.30000+ 1 4.10000+ 1 3.39216- 3 1.47330- 4 3.30000+ 1 4.30000+ 1 1.60513- 2 1.69420- 4 3.30000+ 1 4.40000+ 1 3.16886- 3 1.83110- 4 3.30000+ 1 5.80000+ 1 2.22644- 4 2.02500- 4 3.50000+ 1 3.50000+ 1 3.07459- 3 3.16310- 4 3.50000+ 1 3.60000+ 1 1.99576- 2 3.18070- 4 3.50000+ 1 4.10000+ 1 3.07389- 3 2.66210- 4 3.50000+ 1 4.30000+ 1 6.11437- 3 2.88300- 4 3.50000+ 1 4.40000+ 1 2.87028- 3 3.01990- 4 3.50000+ 1 5.80000+ 1 2.39456- 4 3.21380- 4 3.60000+ 1 3.60000+ 1 1.02655- 3 3.19830- 4 3.60000+ 1 4.10000+ 1 1.15165- 3 2.67970- 4 3.60000+ 1 4.30000+ 1 9.50262- 3 2.90060- 4 3.60000+ 1 4.40000+ 1 9.56942- 4 3.03750- 4 3.60000+ 1 5.80000+ 1 7.42944- 5 3.23140- 4 4.10000+ 1 4.10000+ 1 1.00424- 4 2.16110- 4 4.10000+ 1 4.30000+ 1 1.54536- 3 2.38200- 4 4.10000+ 1 4.40000+ 1 2.58778- 4 2.51890- 4 4.10000+ 1 5.80000+ 1 1.29495- 5 2.71280- 4 4.30000+ 1 4.30000+ 1 9.19919- 4 2.60290- 4 4.30000+ 1 4.40000+ 1 1.90641- 3 2.73980- 4 4.30000+ 1 5.80000+ 1 1.25182- 4 2.93370- 4 4.40000+ 1 4.40000+ 1 8.33790- 5 2.87670- 4 4.40000+ 1 5.80000+ 1 1.59034- 5 3.07060- 4 1 98000 0 7 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.16480- 6 1.09110- 4 3.30000+ 1 1.48610- 5 1.21920- 4 4.10000+ 1 7.12191- 6 1.90700- 4 5.80000+ 1 5.89341- 7 2.45870- 4 1 98000 0 9 2.51000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.78776- 2 9.83300- 5 3.20000+ 1 3.60000+ 1 1.04628- 1 1.00090- 4 3.20000+ 1 4.10000+ 1 8.02849- 3 4.82300- 5 3.20000+ 1 4.30000+ 1 5.64752- 3 7.03200- 5 3.20000+ 1 4.40000+ 1 1.44378- 2 8.40100- 5 3.20000+ 1 5.80000+ 1 5.10573- 4 1.03400- 4 3.30000+ 1 3.50000+ 1 3.54813- 1 1.11140- 4 3.30000+ 1 3.60000+ 1 3.11833- 1 1.12900- 4 3.30000+ 1 4.10000+ 1 3.89773- 2 6.10400- 5 3.30000+ 1 4.30000+ 1 3.97233- 2 8.31300- 5 3.30000+ 1 4.40000+ 1 3.84353- 2 9.68200- 5 3.30000+ 1 5.80000+ 1 3.02953- 3 1.16210- 4 3.50000+ 1 3.50000+ 1 6.05553- 4 2.30020- 4 3.50000+ 1 3.60000+ 1 1.44641- 2 2.31780- 4 3.50000+ 1 4.10000+ 1 2.68331- 3 1.79920- 4 3.50000+ 1 4.30000+ 1 7.94193- 4 2.02010- 4 3.50000+ 1 4.40000+ 1 6.25973- 3 2.15700- 4 3.50000+ 1 5.80000+ 1 9.51453- 5 2.35090- 4 3.60000+ 1 3.60000+ 1 5.52179- 3 2.33540- 4 3.60000+ 1 4.10000+ 1 4.99938- 3 1.81680- 4 3.60000+ 1 4.30000+ 1 3.84899- 3 2.03770- 4 3.60000+ 1 4.40000+ 1 7.50559- 3 2.17460- 4 3.60000+ 1 5.80000+ 1 2.48290- 4 2.36850- 4 4.10000+ 1 4.10000+ 1 3.03239- 4 1.29820- 4 4.10000+ 1 4.30000+ 1 4.30809- 4 1.51910- 4 4.10000+ 1 4.40000+ 1 1.52540- 3 1.65600- 4 4.10000+ 1 5.80000+ 1 3.80578- 5 1.84990- 4 4.30000+ 1 4.30000+ 1 4.26246- 6 1.74000- 4 4.30000+ 1 4.40000+ 1 1.33528- 3 1.87690- 4 4.30000+ 1 5.80000+ 1 1.76579- 5 2.07080- 4 4.40000+ 1 4.40000+ 1 1.24794- 3 2.01380- 4 4.40000+ 1 5.80000+ 1 1.06263- 4 2.20770- 4 1 99000 0 0 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 4.71000+ 0 3.60000+ 1 6.29000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 99000 0 0 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.39110- 1 3.00000+ 0 2.68240- 2 5.00000+ 0 2.60070- 2 6.00000+ 0 2.04090- 2 8.00000+ 0 6.95310- 3 1.00000+ 1 6.56460- 3 1.10000+ 1 5.24720- 3 1.30000+ 1 4.62550- 3 1.40000+ 1 4.36960- 3 1.60000+ 1 1.85630- 3 1.80000+ 1 1.67360- 3 1.90000+ 1 1.31590- 3 2.10000+ 1 1.02400- 3 2.20000+ 1 9.60070- 4 2.40000+ 1 5.73930- 4 2.50000+ 1 5.56130- 4 2.70000+ 1 4.28630- 4 2.90000+ 1 3.52760- 4 3.00000+ 1 2.60360- 4 3.20000+ 1 1.48170- 4 3.30000+ 1 1.34480- 4 3.50000+ 1 1.15400- 5 3.60000+ 1 9.61000- 6 4.10000+ 1 6.28500- 5 4.30000+ 1 4.00200- 5 4.40000+ 1 2.54400- 5 5.80000+ 1 5.78000- 6 1 99000 0 0 2.52000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.21640- 1 3.00000+ 0 5.68360- 2 5.00000+ 0 5.70630- 2 6.00000+ 0 3.26910- 2 8.00000+ 0 1.81530- 2 1.00000+ 1 1.80390- 2 1.10000+ 1 1.18050- 2 1.30000+ 1 1.16220- 2 1.40000+ 1 1.05670- 2 1.60000+ 1 6.37100- 3 1.80000+ 1 6.20280- 3 1.90000+ 1 4.26350- 3 2.10000+ 1 4.00090- 3 2.20000+ 1 3.67360- 3 2.40000+ 1 3.30320- 3 2.50000+ 1 3.19060- 3 2.70000+ 1 2.10800- 3 2.90000+ 1 1.96350- 3 3.00000+ 1 1.36020- 3 3.20000+ 1 1.11830- 3 3.30000+ 1 1.02080- 3 3.50000+ 1 5.51160- 4 3.60000+ 1 5.19170- 4 4.10000+ 1 4.96510- 4 4.30000+ 1 3.95480- 4 4.40000+ 1 2.41370- 4 5.80000+ 1 4.63200- 5 1 99000 0 0 2.52000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.44890-11 3.00000+ 0 2.65600-10 5.00000+ 0 2.12230-10 6.00000+ 0 2.71620-10 8.00000+ 0 6.93540-10 1.00000+ 1 6.47590-10 1.10000+ 1 7.53400-10 1.30000+ 1 6.46040-10 1.40000+ 1 6.76940-10 1.60000+ 1 1.49480- 9 1.80000+ 1 1.47710- 9 1.90000+ 1 1.67900- 9 2.10000+ 1 1.64430- 9 2.20000+ 1 1.70180- 9 2.40000+ 1 1.60870- 9 2.50000+ 1 1.63620- 9 2.70000+ 1 3.03950- 9 2.90000+ 1 3.12790- 9 3.00000+ 1 3.55300- 9 3.20000+ 1 3.88090- 9 3.30000+ 1 4.02380- 9 3.50000+ 1 5.67270- 9 3.60000+ 1 5.86190- 9 4.10000+ 1 6.68060- 9 4.30000+ 1 7.41810- 9 4.40000+ 1 8.84300- 9 5.80000+ 1 2.04860- 8 1 99000 0 0 2.52000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.22800- 4 3.00000+ 0 3.58760- 6 5.00000+ 0 6.20900- 6 6.00000+ 0 5.05990- 6 8.00000+ 0 1.76190- 7 1.00000+ 1 1.86190- 7 1.10000+ 1 2.11670- 7 1.30000+ 1 2.95340- 7 1.40000+ 1 2.68350- 7 1.60000+ 1 1.15490- 8 1.80000+ 1 1.39410- 8 1.90000+ 1 9.20470- 9 2.10000+ 1 6.30920- 9 2.20000+ 1 4.81960- 9 2.40000+ 1 2.54020-10 2.50000+ 1 2.24390-10 2.70000+ 1 9.02660-10 2.90000+ 1 1.62950- 9 3.00000+ 1 6.50150-10 1 99000 0 0 2.52000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.55940- 6 3.00000+ 0 1.32620- 5 5.00000+ 0 5.40460- 6 6.00000+ 0 4.78840- 6 8.00000+ 0 2.03540- 5 1.00000+ 1 1.58940- 5 1.10000+ 1 1.19520- 5 1.30000+ 1 4.18840- 6 1.40000+ 1 4.06250- 6 1.60000+ 1 1.52860- 5 1.80000+ 1 1.64160- 5 1.90000+ 1 1.05970- 5 2.10000+ 1 6.82570- 6 2.20000+ 1 6.49510- 6 2.40000+ 1 1.15880- 6 2.50000+ 1 7.77100- 7 2.70000+ 1 3.12490- 5 2.90000+ 1 1.22710- 5 3.00000+ 1 2.01480- 5 1 99000 0 0 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.24799- 4 3.00000+ 0 1.02373- 3 5.00000+ 0 7.61075- 4 6.00000+ 0 7.17105- 4 8.00000+ 0 8.05749- 4 1.00000+ 1 7.24205- 4 1.10000+ 1 6.24430- 4 1.30000+ 1 4.86581- 4 1.40000+ 1 4.69127- 4 1.60000+ 1 4.25996- 4 1.80000+ 1 3.97003- 4 1.90000+ 1 4.14043- 4 2.10000+ 1 3.33782- 4 2.20000+ 1 3.15875- 4 2.40000+ 1 1.89885- 4 2.50000+ 1 1.84197- 4 2.70000+ 1 2.20530- 4 2.90000+ 1 2.01879- 4 3.00000+ 1 1.45588- 4 3.20000+ 1 1.48170- 4 3.30000+ 1 1.34480- 4 3.50000+ 1 1.15400- 5 3.60000+ 1 9.61000- 6 4.10000+ 1 6.28500- 5 4.30000+ 1 4.00200- 5 4.40000+ 1 2.54400- 5 5.80000+ 1 5.78000- 6 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.50025+ 0 3.00000+ 0 6.68918- 1 5.00000+ 0 7.28729- 1 6.00000+ 0 5.95220- 1 8.00000+ 0 7.15288- 2 1.00000+ 1 7.53263- 2 1.10000+ 1 6.69697- 2 1.30000+ 1 7.45363- 2 1.40000+ 1 6.47596- 2 1.60000+ 1 2.36577- 3 1.80000+ 1 2.25781- 3 1.90000+ 1 1.77031- 3 2.10000+ 1 1.27893- 3 2.20000+ 1 1.05471- 3 2.40000+ 1 3.14286- 4 2.50000+ 1 2.77702- 4 2.70000+ 1 7.42533- 5 2.90000+ 1 1.27845- 4 3.00000+ 1 2.70639- 5 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.25940- 1 3.00000+ 0 1.07589- 2 5.00000+ 0 1.40154- 2 6.00000+ 0 8.88201- 3 8.00000+ 0 2.82195- 4 1.00000+ 1 3.01555- 4 1.10000+ 1 2.58680- 4 1.30000+ 1 2.95462- 4 1.40000+ 1 2.43923- 4 1.60000+ 1 2.00417- 6 1.80000+ 1 1.63219- 6 1.90000+ 1 1.26966- 6 2.10000+ 1 7.35543- 7 2.20000+ 1 5.89714- 7 2.40000+ 1 1.24902- 7 2.50000+ 1 1.10358- 7 2.70000+ 1 1.41149- 8 2.90000+ 1 2.72098- 8 3.00000+ 1 4.06725- 9 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.59768+ 0 3.00000+ 0 1.25610+ 1 5.00000+ 0 9.07749+ 0 6.00000+ 0 8.48563+ 0 8.00000+ 0 9.81990+ 0 1.00000+ 1 8.68930+ 0 1.10000+ 1 7.41785+ 0 1.30000+ 1 5.53955+ 0 1.40000+ 1 5.23397+ 0 1.60000+ 1 4.29983+ 0 1.80000+ 1 3.90065+ 0 1.90000+ 1 4.10595+ 0 2.10000+ 1 3.28936+ 0 2.20000+ 1 2.90131+ 0 2.40000+ 1 1.98168+ 0 2.50000+ 1 1.67835+ 0 2.70000+ 1 1.80296+ 0 2.90000+ 1 1.07809+ 0 3.00000+ 1 9.99973- 1 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.24453- 2 3.00000+ 0 1.50414- 2 5.00000+ 0 1.12306- 2 6.00000+ 0 1.08099- 2 8.00000+ 0 5.86516- 3 1.00000+ 1 5.53884- 3 1.10000+ 1 4.36409- 3 1.30000+ 1 3.84346- 3 1.40000+ 1 3.65655- 3 1.60000+ 1 1.42830- 3 1.80000+ 1 1.27496- 3 1.90000+ 1 9.00587- 4 2.10000+ 1 6.89482- 4 2.20000+ 1 6.43605- 4 2.40000+ 1 3.83920- 4 2.50000+ 1 3.71823- 4 2.70000+ 1 2.08086- 4 2.90000+ 1 1.50854- 4 3.00000+ 1 1.14768- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.96149- 1 1.13103- 1 6.00000+ 0 4.55508- 1 1.18701- 1 1.00000+ 1 5.34468- 2 1.32545- 1 1.10000+ 1 1.05850- 1 1.33863- 1 1.30000+ 1 2.18629- 3 1.34485- 1 1.40000+ 1 2.37699- 3 1.34740- 1 1.80000+ 1 1.36579- 2 1.37436- 1 1.90000+ 1 2.84889- 2 1.37794- 1 2.10000+ 1 6.80327- 4 1.38086- 1 2.20000+ 1 7.44397- 4 1.38150- 1 2.90000+ 1 3.51008- 3 1.38757- 1 3.00000+ 1 7.26167- 3 1.38850- 1 3.20000+ 1 1.54609- 4 1.38962- 1 3.30000+ 1 1.67319- 4 1.38976- 1 4.30000+ 1 5.92817- 4 1.39070- 1 4.40000+ 1 1.05540- 3 1.39085- 1 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.45146- 3 8.54620- 2 3.00000+ 0 5.00000+ 0 6.92412- 3 8.62790- 2 3.00000+ 0 6.00000+ 0 2.02083- 3 9.18770- 2 3.00000+ 0 8.00000+ 0 1.45062- 3 1.05333- 1 3.00000+ 0 1.00000+ 1 1.52482- 3 1.05721- 1 3.00000+ 0 1.10000+ 1 5.14929- 4 1.07039- 1 3.00000+ 0 1.30000+ 1 4.52258- 5 1.07661- 1 3.00000+ 0 1.40000+ 1 2.54554- 5 1.07916- 1 3.00000+ 0 1.60000+ 1 3.94956- 4 1.10430- 1 3.00000+ 0 1.80000+ 1 4.09377- 4 1.10612- 1 3.00000+ 0 1.90000+ 1 1.41322- 4 1.10970- 1 3.00000+ 0 2.10000+ 1 1.42132- 5 1.11262- 1 3.00000+ 0 2.20000+ 1 7.88216- 6 1.11326- 1 3.00000+ 0 2.40000+ 1 4.30707- 8 1.11712- 1 3.00000+ 0 2.50000+ 1 4.30707- 8 1.11730- 1 3.00000+ 0 2.70000+ 1 1.07932- 4 1.11857- 1 3.00000+ 0 2.90000+ 1 1.06452- 4 1.11933- 1 3.00000+ 0 3.00000+ 1 3.62447- 5 1.12026- 1 3.00000+ 0 3.20000+ 1 3.23036- 6 1.12138- 1 3.00000+ 0 3.30000+ 1 1.76593- 6 1.12152- 1 5.00000+ 0 5.00000+ 0 1.93316- 4 8.70960- 2 5.00000+ 0 6.00000+ 0 3.09814- 3 9.26940- 2 5.00000+ 0 8.00000+ 0 1.30097- 3 1.06150- 1 5.00000+ 0 1.00000+ 1 7.66867- 5 1.06538- 1 5.00000+ 0 1.10000+ 1 6.79286- 4 1.07856- 1 5.00000+ 0 1.30000+ 1 4.59111- 5 1.08478- 1 5.00000+ 0 1.40000+ 1 9.31184- 5 1.08733- 1 5.00000+ 0 1.60000+ 1 3.45303- 4 1.11247- 1 5.00000+ 0 1.80000+ 1 2.02646- 5 1.11429- 1 5.00000+ 0 1.90000+ 1 1.79366- 4 1.11787- 1 5.00000+ 0 2.10000+ 1 1.36747- 5 1.12079- 1 5.00000+ 0 2.20000+ 1 2.80814- 5 1.12143- 1 5.00000+ 0 2.40000+ 1 4.52241- 7 1.12529- 1 5.00000+ 0 2.50000+ 1 6.24527- 7 1.12547- 1 5.00000+ 0 2.70000+ 1 9.37184- 5 1.12674- 1 5.00000+ 0 2.90000+ 1 5.25450- 6 1.12750- 1 5.00000+ 0 3.00000+ 1 4.55251- 5 1.12843- 1 5.00000+ 0 3.20000+ 1 3.05784- 6 1.12955- 1 5.00000+ 0 3.30000+ 1 6.22357- 6 1.12969- 1 6.00000+ 0 6.00000+ 0 1.20176- 3 9.82920- 2 6.00000+ 0 8.00000+ 0 3.33747- 4 1.11748- 1 6.00000+ 0 1.00000+ 1 5.64457- 4 1.12136- 1 6.00000+ 0 1.10000+ 1 5.41748- 4 1.13454- 1 6.00000+ 0 1.30000+ 1 9.74454- 5 1.14075- 1 6.00000+ 0 1.40000+ 1 7.49191- 5 1.14331- 1 6.00000+ 0 1.60000+ 1 8.58348- 5 1.16845- 1 6.00000+ 0 1.80000+ 1 1.44734- 4 1.17027- 1 6.00000+ 0 1.90000+ 1 1.44174- 4 1.17385- 1 6.00000+ 0 2.10000+ 1 2.95238- 5 1.17677- 1 6.00000+ 0 2.20000+ 1 2.27191- 5 1.17741- 1 6.00000+ 0 2.40000+ 1 5.81437- 7 1.18127- 1 6.00000+ 0 2.50000+ 1 6.24514- 7 1.18145- 1 6.00000+ 0 2.70000+ 1 2.30851- 5 1.18272- 1 6.00000+ 0 2.90000+ 1 3.71694- 5 1.18348- 1 6.00000+ 0 3.00000+ 1 3.66736- 5 1.18441- 1 6.00000+ 0 3.20000+ 1 6.65413- 6 1.18553- 1 6.00000+ 0 3.30000+ 1 5.03920- 6 1.18567- 1 8.00000+ 0 8.00000+ 0 1.50827- 4 1.25204- 1 8.00000+ 0 1.00000+ 1 2.87695- 4 1.25592- 1 8.00000+ 0 1.10000+ 1 8.56869- 5 1.26910- 1 8.00000+ 0 1.30000+ 1 7.27879- 6 1.27531- 1 8.00000+ 0 1.40000+ 1 3.87613- 6 1.27787- 1 8.00000+ 0 1.60000+ 1 8.20060- 5 1.30301- 1 8.00000+ 0 1.80000+ 1 7.73319- 5 1.30483- 1 8.00000+ 0 1.90000+ 1 2.35806- 5 1.30841- 1 8.00000+ 0 2.10000+ 1 2.28266- 6 1.31133- 1 8.00000+ 0 2.20000+ 1 1.18438- 6 1.31197- 1 8.00000+ 0 2.70000+ 1 2.23966- 5 1.31728- 1 8.00000+ 0 2.90000+ 1 2.01136- 5 1.31804- 1 8.00000+ 0 3.00000+ 1 6.05140- 6 1.31897- 1 8.00000+ 0 3.20000+ 1 5.16831- 7 1.32009- 1 8.00000+ 0 3.30000+ 1 2.58426- 7 1.32022- 1 1.00000+ 1 1.00000+ 1 6.86973- 6 1.25981- 1 1.00000+ 1 1.10000+ 1 1.28326- 4 1.27298- 1 1.00000+ 1 1.30000+ 1 8.05433- 6 1.27920- 1 1.00000+ 1 1.40000+ 1 1.24476- 5 1.28176- 1 1.00000+ 1 1.60000+ 1 7.63623- 5 1.30689- 1 1.00000+ 1 1.80000+ 1 3.55332- 6 1.30872- 1 1.00000+ 1 1.90000+ 1 3.41532- 5 1.31229- 1 1.00000+ 1 2.10000+ 1 2.43344- 6 1.31521- 1 1.00000+ 1 2.20000+ 1 3.81160- 6 1.31585- 1 1.00000+ 1 2.40000+ 1 6.46043- 8 1.31971- 1 1.00000+ 1 2.50000+ 1 6.46043- 8 1.31989- 1 1.00000+ 1 2.70000+ 1 2.07165- 5 1.32117- 1 1.00000+ 1 2.90000+ 1 9.04420- 7 1.32193- 1 1.00000+ 1 3.00000+ 1 8.67851- 6 1.32285- 1 1.00000+ 1 3.20000+ 1 5.38377- 7 1.32397- 1 1.00000+ 1 3.30000+ 1 8.39852- 7 1.32411- 1 1.10000+ 1 1.10000+ 1 6.18923- 5 1.28616- 1 1.10000+ 1 1.30000+ 1 1.81318- 5 1.29237- 1 1.10000+ 1 1.40000+ 1 1.33088- 5 1.29493- 1 1.10000+ 1 1.60000+ 1 2.20737- 5 1.32006- 1 1.10000+ 1 1.80000+ 1 3.31647- 5 1.32189- 1 1.10000+ 1 1.90000+ 1 3.30347- 5 1.32547- 1 1.10000+ 1 2.10000+ 1 5.55594- 6 1.32839- 1 1.10000+ 1 2.20000+ 1 4.06995- 6 1.32903- 1 1.10000+ 1 2.40000+ 1 8.61383- 8 1.33289- 1 1.10000+ 1 2.50000+ 1 8.61383- 8 1.33307- 1 1.10000+ 1 2.70000+ 1 5.94384- 6 1.33434- 1 1.10000+ 1 2.90000+ 1 8.52764- 6 1.33510- 1 1.10000+ 1 3.00000+ 1 8.42004- 6 1.33602- 1 1.10000+ 1 3.20000+ 1 1.24898- 6 1.33715- 1 1.10000+ 1 3.30000+ 1 9.04433- 7 1.33728- 1 1.30000+ 1 1.30000+ 1 6.46040- 8 1.29859- 1 1.30000+ 1 1.40000+ 1 1.78734- 6 1.30115- 1 1.30000+ 1 1.60000+ 1 1.87344- 6 1.32628- 1 1.30000+ 1 1.80000+ 1 2.06734- 6 1.32811- 1 1.30000+ 1 1.90000+ 1 4.60856- 6 1.33169- 1 1.30000+ 1 2.10000+ 1 4.30687- 8 1.33461- 1 1.30000+ 1 2.20000+ 1 5.16825- 7 1.33524- 1 1.30000+ 1 2.50000+ 1 2.15353- 8 1.33928- 1 1.30000+ 1 2.70000+ 1 4.95305- 7 1.34056- 1 1.30000+ 1 2.90000+ 1 5.38374- 7 1.34132- 1 1.30000+ 1 3.00000+ 1 1.16287- 6 1.34224- 1 1.30000+ 1 3.30000+ 1 1.07677- 7 1.34350- 1 1.40000+ 1 1.40000+ 1 4.52232- 7 1.30371- 1 1.40000+ 1 1.60000+ 1 9.90603- 7 1.32884- 1 1.40000+ 1 1.80000+ 1 2.97188- 6 1.33067- 1 1.40000+ 1 1.90000+ 1 3.33777- 6 1.33424- 1 1.40000+ 1 2.10000+ 1 5.16819- 7 1.33716- 1 1.40000+ 1 2.20000+ 1 2.58420- 7 1.33780- 1 1.40000+ 1 2.70000+ 1 2.58420- 7 1.34312- 1 1.40000+ 1 2.90000+ 1 7.53692- 7 1.34388- 1 1.40000+ 1 3.00000+ 1 8.39840- 7 1.34480- 1 1.40000+ 1 3.20000+ 1 1.07676- 7 1.34592- 1 1.40000+ 1 3.30000+ 1 6.46034- 8 1.34606- 1 1.60000+ 1 1.60000+ 1 1.11336- 5 1.35397- 1 1.60000+ 1 1.80000+ 1 2.05223- 5 1.35580- 1 1.60000+ 1 1.90000+ 1 6.07279- 6 1.35938- 1 1.60000+ 1 2.10000+ 1 5.81440- 7 1.36230- 1 1.60000+ 1 2.20000+ 1 3.01499- 7 1.36294- 1 1.60000+ 1 2.70000+ 1 6.09419- 6 1.36825- 1 1.60000+ 1 2.90000+ 1 5.34061- 6 1.36901- 1 1.60000+ 1 3.00000+ 1 1.55054- 6 1.36993- 1 1.60000+ 1 3.20000+ 1 1.29205- 7 1.37106- 1 1.60000+ 1 3.30000+ 1 6.46037- 8 1.37119- 1 1.80000+ 1 1.80000+ 1 4.52258- 7 1.35763- 1 1.80000+ 1 1.90000+ 1 8.85158- 6 1.36120- 1 1.80000+ 1 2.10000+ 1 6.24550- 7 1.36412- 1 1.80000+ 1 2.20000+ 1 9.04458- 7 1.36476- 1 1.80000+ 1 2.40000+ 1 2.15364- 8 1.36862- 1 1.80000+ 1 2.50000+ 1 2.15364- 8 1.36880- 1 1.80000+ 1 2.70000+ 1 5.57780- 6 1.37008- 1 1.80000+ 1 2.90000+ 1 2.36894- 7 1.37084- 1 1.80000+ 1 3.00000+ 1 2.23974- 6 1.37176- 1 1.80000+ 1 3.20000+ 1 1.50742- 7 1.37288- 1 1.80000+ 1 3.30000+ 1 1.93823- 7 1.37302- 1 1.90000+ 1 1.90000+ 1 4.41482- 6 1.36478- 1 1.90000+ 1 2.10000+ 1 1.42130- 6 1.36770- 1 1.90000+ 1 2.20000+ 1 1.03371- 6 1.36834- 1 1.90000+ 1 2.40000+ 1 2.15361- 8 1.37220- 1 1.90000+ 1 2.50000+ 1 2.15361- 8 1.37238- 1 1.90000+ 1 2.70000+ 1 1.63670- 6 1.37365- 1 1.90000+ 1 2.90000+ 1 2.28271- 6 1.37441- 1 1.90000+ 1 3.00000+ 1 2.23971- 6 1.37534- 1 1.90000+ 1 3.20000+ 1 3.23032- 7 1.37646- 1 1.90000+ 1 3.30000+ 1 2.36891- 7 1.37660- 1 2.10000+ 1 2.20000+ 1 1.55569- 7 1.37126- 1 2.10000+ 1 2.70000+ 1 1.55569- 7 1.37657- 1 2.10000+ 1 2.90000+ 1 1.55569- 7 1.37733- 1 2.10000+ 1 3.00000+ 1 3.77829- 7 1.37826- 1 2.10000+ 1 3.30000+ 1 4.44498- 8 1.37952- 1 2.20000+ 1 2.20000+ 1 4.30688- 8 1.37190- 1 2.20000+ 1 2.70000+ 1 8.61370- 8 1.37721- 1 2.20000+ 1 2.90000+ 1 2.36884- 7 1.37797- 1 2.20000+ 1 3.00000+ 1 2.58423- 7 1.37890- 1 2.20000+ 1 3.20000+ 1 4.30688- 8 1.38002- 1 2.20000+ 1 3.30000+ 1 2.15354- 8 1.38015- 1 2.70000+ 1 2.70000+ 1 8.50550- 7 1.38253- 1 2.70000+ 1 2.90000+ 1 1.46124- 6 1.38329- 1 2.70000+ 1 3.00000+ 1 4.14371- 7 1.38421- 1 2.70000+ 1 3.20000+ 1 4.36175- 8 1.38533- 1 2.70000+ 1 3.30000+ 1 2.18098- 8 1.38547- 1 2.90000+ 1 2.90000+ 1 2.15354- 8 1.38404- 1 2.90000+ 1 3.00000+ 1 5.81444- 7 1.38497- 1 2.90000+ 1 3.20000+ 1 4.30688- 8 1.38609- 1 2.90000+ 1 3.30000+ 1 4.30688- 8 1.38623- 1 3.00000+ 1 3.00000+ 1 2.85526- 7 1.38589- 1 3.00000+ 1 3.20000+ 1 8.78518- 8 1.38701- 1 3.00000+ 1 3.30000+ 1 6.58904- 8 1.38715- 1 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.34660- 5 8.17000- 4 6.00000+ 0 1.77941- 2 6.41500- 3 1.00000+ 1 7.71113- 2 2.02594- 2 1.10000+ 1 5.40262- 2 2.15768- 2 1.30000+ 1 4.17221- 3 2.21985- 2 1.40000+ 1 6.18412- 3 2.24544- 2 1.80000+ 1 2.13281- 2 2.51504- 2 1.90000+ 1 1.79191- 2 2.55081- 2 2.10000+ 1 7.60193- 4 2.58000- 2 2.20000+ 1 1.22540- 3 2.58639- 2 2.90000+ 1 5.57452- 3 2.64712- 2 3.00000+ 1 4.76962- 3 2.65636- 2 3.20000+ 1 1.51451- 4 2.66758- 2 3.30000+ 1 2.46541- 4 2.66895- 2 4.30000+ 1 9.44603- 4 2.67840- 2 4.40000+ 1 6.99662- 4 2.67986- 2 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.15301- 2 2.43070- 4 5.00000+ 0 2.50000+ 1 1.54211- 2 2.60870- 4 5.00000+ 0 2.70000+ 1 5.58933- 3 3.88370- 4 5.00000+ 0 2.90000+ 1 4.81033- 3 4.64240- 4 5.00000+ 0 3.00000+ 1 3.38582- 3 5.56640- 4 5.00000+ 0 3.20000+ 1 9.53245- 4 6.68830- 4 5.00000+ 0 3.30000+ 1 1.14321- 3 6.82520- 4 6.00000+ 0 1.10000+ 1 3.19858- 2 1.16780- 3 6.00000+ 0 1.30000+ 1 1.88538- 1 1.78950- 3 6.00000+ 0 1.40000+ 1 2.19798- 1 2.04540- 3 6.00000+ 0 1.60000+ 1 1.62009- 2 4.55870- 3 6.00000+ 0 1.80000+ 1 6.31806- 3 4.74140- 3 6.00000+ 0 1.90000+ 1 8.33905- 3 5.09910- 3 6.00000+ 0 2.10000+ 1 3.28168- 2 5.39100- 3 6.00000+ 0 2.20000+ 1 3.67828- 2 5.45493- 3 6.00000+ 0 2.40000+ 1 1.71529- 2 5.84107- 3 6.00000+ 0 2.50000+ 1 2.06218- 2 5.85887- 3 6.00000+ 0 2.70000+ 1 4.16028- 3 5.98637- 3 6.00000+ 0 2.90000+ 1 1.63259- 3 6.06224- 3 6.00000+ 0 3.00000+ 1 2.11858- 3 6.15464- 3 6.00000+ 0 3.20000+ 1 6.67416- 3 6.26683- 3 6.00000+ 0 3.30000+ 1 7.31156- 3 6.28052- 3 8.00000+ 0 8.00000+ 0 5.96982- 3 1.29178- 2 8.00000+ 0 1.00000+ 1 1.27841- 2 1.33063- 2 8.00000+ 0 1.10000+ 1 1.61531- 2 1.46237- 2 8.00000+ 0 1.30000+ 1 1.10151- 2 1.52454- 2 8.00000+ 0 1.40000+ 1 1.26041- 2 1.55013- 2 8.00000+ 0 1.60000+ 1 2.78011- 3 1.80146- 2 8.00000+ 0 1.80000+ 1 3.41132- 3 1.81973- 2 8.00000+ 0 1.90000+ 1 4.34012- 3 1.85550- 2 8.00000+ 0 2.10000+ 1 2.85251- 3 1.88469- 2 8.00000+ 0 2.20000+ 1 3.26951- 3 1.89108- 2 8.00000+ 0 2.40000+ 1 2.63871- 4 1.92970- 2 8.00000+ 0 2.50000+ 1 2.60971- 4 1.93148- 2 8.00000+ 0 2.70000+ 1 7.37693- 4 1.94423- 2 8.00000+ 0 2.90000+ 1 8.83825- 4 1.95181- 2 8.00000+ 0 3.00000+ 1 1.10551- 3 1.96105- 2 8.00000+ 0 3.20000+ 1 6.20133- 4 1.97227- 2 8.00000+ 0 3.30000+ 1 7.01493- 4 1.97364- 2 1.00000+ 1 1.00000+ 1 9.68901- 6 1.36948- 2 1.00000+ 1 1.10000+ 1 2.40300- 4 1.50122- 2 1.00000+ 1 1.30000+ 1 8.25332- 4 1.56339- 2 1.00000+ 1 1.40000+ 1 5.26231- 3 1.58898- 2 1.00000+ 1 1.60000+ 1 2.37380- 3 1.84031- 2 1.00000+ 1 1.80000+ 1 1.29191- 6 1.85858- 2 1.00000+ 1 1.90000+ 1 5.16771- 5 1.89435- 2 1.00000+ 1 2.10000+ 1 1.75221- 4 1.92354- 2 1.00000+ 1 2.20000+ 1 8.96092- 4 1.92993- 2 1.00000+ 1 2.40000+ 1 1.04320- 4 1.96855- 2 1.00000+ 1 2.50000+ 1 3.54151- 4 1.97033- 2 1.00000+ 1 2.70000+ 1 5.90731- 4 1.98308- 2 1.00000+ 1 2.90000+ 1 3.22980- 7 1.99066- 2 1.00000+ 1 3.00000+ 1 1.24341- 5 1.99990- 2 1.00000+ 1 3.20000+ 1 3.69811- 5 2.01112- 2 1.00000+ 1 3.30000+ 1 1.75381- 4 2.01249- 2 1.10000+ 1 1.10000+ 1 8.77678- 4 1.63296- 2 1.10000+ 1 1.30000+ 1 1.40710- 3 1.69513- 2 1.10000+ 1 1.40000+ 1 9.07508- 4 1.72072- 2 1.10000+ 1 1.60000+ 1 2.86619- 3 1.97205- 2 1.10000+ 1 1.80000+ 1 6.68548- 5 1.99032- 2 1.10000+ 1 1.90000+ 1 3.74969- 4 2.02609- 2 1.10000+ 1 2.10000+ 1 2.01049- 4 2.05528- 2 1.10000+ 1 2.20000+ 1 9.83457- 5 2.06167- 2 1.10000+ 1 2.40000+ 1 8.51068- 5 2.10029- 2 1.10000+ 1 2.50000+ 1 7.83208- 5 2.10207- 2 1.10000+ 1 2.70000+ 1 7.04748- 4 2.11482- 2 1.10000+ 1 2.90000+ 1 1.74410- 5 2.12240- 2 1.10000+ 1 3.00000+ 1 9.05928- 5 2.13164- 2 1.10000+ 1 3.20000+ 1 3.90799- 5 2.14286- 2 1.10000+ 1 3.30000+ 1 1.74410- 5 2.14423- 2 1.30000+ 1 1.30000+ 1 5.93771- 4 1.75730- 2 1.30000+ 1 1.40000+ 1 1.56018- 2 1.78289- 2 1.30000+ 1 1.60000+ 1 1.73238- 3 2.03422- 2 1.30000+ 1 1.80000+ 1 2.51116- 4 2.05249- 2 1.30000+ 1 1.90000+ 1 3.73685- 4 2.08826- 2 1.30000+ 1 2.10000+ 1 2.99555- 4 2.11745- 2 1.30000+ 1 2.20000+ 1 2.84026- 3 2.12384- 2 1.30000+ 1 2.40000+ 1 2.43846- 4 2.16246- 2 1.30000+ 1 2.50000+ 1 6.52100- 4 2.16424- 2 1.30000+ 1 2.70000+ 1 4.13244- 4 2.17699- 2 1.30000+ 1 2.90000+ 1 6.71800- 5 2.18457- 2 1.30000+ 1 3.00000+ 1 9.64085- 5 2.19381- 2 1.30000+ 1 3.20000+ 1 6.49190- 5 2.20503- 2 1.30000+ 1 3.30000+ 1 5.61811- 4 2.20640- 2 1.40000+ 1 1.40000+ 1 4.17860- 3 1.80848- 2 1.40000+ 1 1.60000+ 1 2.00944- 3 2.05981- 2 1.40000+ 1 1.80000+ 1 1.22703- 3 2.07808- 2 1.40000+ 1 1.90000+ 1 2.18655- 4 2.11385- 2 1.40000+ 1 2.10000+ 1 2.68906- 3 2.14304- 2 1.40000+ 1 2.20000+ 1 1.60134- 3 2.14943- 2 1.40000+ 1 2.40000+ 1 7.11356- 4 2.18805- 2 1.40000+ 1 2.50000+ 1 5.17102- 4 2.18983- 2 1.40000+ 1 2.70000+ 1 4.83181- 4 2.20258- 2 1.40000+ 1 2.90000+ 1 3.08767- 4 2.21016- 2 1.40000+ 1 3.00000+ 1 5.58762- 5 2.21940- 2 1.40000+ 1 3.20000+ 1 5.32442- 4 2.23062- 2 1.40000+ 1 3.30000+ 1 3.21207- 4 2.23199- 2 1.60000+ 1 1.60000+ 1 3.06022- 4 2.31114- 2 1.60000+ 1 1.80000+ 1 6.34193- 4 2.32941- 2 1.60000+ 1 1.90000+ 1 7.74844- 4 2.36518- 2 1.60000+ 1 2.10000+ 1 4.54113- 4 2.39437- 2 1.60000+ 1 2.20000+ 1 5.23393- 4 2.40076- 2 1.60000+ 1 2.40000+ 1 3.55282- 5 2.43938- 2 1.60000+ 1 2.50000+ 1 3.27832- 5 2.44116- 2 1.60000+ 1 2.70000+ 1 1.60191- 4 2.45391- 2 1.60000+ 1 2.90000+ 1 1.64391- 4 2.46149- 2 1.60000+ 1 3.00000+ 1 1.97661- 4 2.47073- 2 1.60000+ 1 3.20000+ 1 9.89915- 5 2.48195- 2 1.60000+ 1 3.30000+ 1 1.12401- 4 2.48332- 2 1.80000+ 1 1.80000+ 1 1.61490- 7 2.34768- 2 1.80000+ 1 1.90000+ 1 1.42110- 5 2.38345- 2 1.80000+ 1 2.10000+ 1 4.94161- 5 2.41264- 2 1.80000+ 1 2.20000+ 1 2.18490- 4 2.41903- 2 1.80000+ 1 2.40000+ 1 1.51800- 5 2.45765- 2 1.80000+ 1 2.50000+ 1 5.86200- 5 2.45943- 2 1.80000+ 1 2.70000+ 1 1.57780- 4 2.47218- 2 1.80000+ 1 3.00000+ 1 3.39120- 6 2.48900- 2 1.80000+ 1 3.20000+ 1 1.01740- 5 2.50022- 2 1.80000+ 1 3.30000+ 1 4.31180- 5 2.50159- 2 1.90000+ 1 1.90000+ 1 3.85962- 5 2.41922- 2 1.90000+ 1 2.10000+ 1 4.90932- 5 2.44841- 2 1.90000+ 1 2.20000+ 1 2.16391- 5 2.45480- 2 1.90000+ 1 2.40000+ 1 2.26081- 5 2.49342- 2 1.90000+ 1 2.50000+ 1 1.95400- 5 2.49520- 2 1.90000+ 1 2.70000+ 1 1.90720- 4 2.50795- 2 1.90000+ 1 2.90000+ 1 3.71422- 6 2.51553- 2 1.90000+ 1 3.00000+ 1 1.85710- 5 2.52477- 2 1.90000+ 1 3.20000+ 1 9.20495- 6 2.53599- 2 1.90000+ 1 3.30000+ 1 3.71422- 6 2.53736- 2 2.10000+ 1 2.10000+ 1 3.48820- 5 2.47760- 2 2.10000+ 1 2.20000+ 1 5.35011- 4 2.48399- 2 2.10000+ 1 2.40000+ 1 4.31180- 5 2.52261- 2 2.10000+ 1 2.50000+ 1 8.63981- 5 2.52439- 2 2.10000+ 1 2.70000+ 1 1.08680- 4 2.53714- 2 2.10000+ 1 2.90000+ 1 1.30810- 5 2.54472- 2 2.10000+ 1 3.00000+ 1 1.25960- 5 2.55396- 2 2.10000+ 1 3.20000+ 1 1.48570- 5 2.56518- 2 2.10000+ 1 3.30000+ 1 1.07880- 4 2.56655- 2 2.20000+ 1 2.20000+ 1 1.64390- 4 2.49039- 2 2.20000+ 1 2.40000+ 1 1.02380- 4 2.52900- 2 2.20000+ 1 2.50000+ 1 8.17147- 5 2.53078- 2 2.20000+ 1 2.70000+ 1 1.25800- 4 2.54353- 2 2.20000+ 1 2.90000+ 1 5.55517- 5 2.55112- 2 2.20000+ 1 3.00000+ 1 5.65207- 6 2.56036- 2 2.20000+ 1 3.20000+ 1 1.07880- 4 2.57158- 2 2.20000+ 1 3.30000+ 1 6.68547- 5 2.57294- 2 2.40000+ 1 2.40000+ 1 1.29191- 6 2.56761- 2 2.40000+ 1 2.50000+ 1 2.27700- 5 2.56939- 2 2.40000+ 1 2.70000+ 1 8.23603- 6 2.58214- 2 2.40000+ 1 2.90000+ 1 3.39121- 6 2.58973- 2 2.40000+ 1 3.00000+ 1 5.65211- 6 2.59897- 2 2.40000+ 1 3.20000+ 1 8.72093- 6 2.61019- 2 2.40000+ 1 3.30000+ 1 1.92170- 5 2.61156- 2 2.50000+ 1 2.50000+ 1 4.68317- 6 2.57117- 2 2.50000+ 1 2.70000+ 1 7.42855- 6 2.58392- 2 2.50000+ 1 2.90000+ 1 1.35649- 5 2.59151- 2 2.50000+ 1 3.00000+ 1 4.84467- 6 2.60075- 2 2.50000+ 1 3.20000+ 1 1.61489- 5 2.61197- 2 2.50000+ 1 3.30000+ 1 1.56649- 5 2.61334- 2 2.70000+ 1 2.70000+ 1 2.08336- 5 2.59667- 2 2.70000+ 1 2.90000+ 1 4.08582- 5 2.60426- 2 2.70000+ 1 3.00000+ 1 4.86094- 5 2.61350- 2 2.70000+ 1 3.20000+ 1 2.37396- 5 2.62472- 2 2.70000+ 1 3.30000+ 1 2.69697- 5 2.62609- 2 2.90000+ 1 3.00000+ 1 9.68888- 7 2.62109- 2 2.90000+ 1 3.20000+ 1 2.74526- 6 2.63231- 2 2.90000+ 1 3.30000+ 1 1.09809- 5 2.63368- 2 3.00000+ 1 3.00000+ 1 2.27401- 6 2.63033- 2 3.00000+ 1 3.20000+ 1 2.43645- 6 2.64155- 2 3.00000+ 1 3.30000+ 1 9.74561- 7 2.64292- 2 3.20000+ 1 3.20000+ 1 1.61492- 6 2.65277- 2 3.20000+ 1 3.30000+ 1 2.18012- 5 2.65413- 2 3.30000+ 1 3.30000+ 1 6.78222- 6 2.65550- 2 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 8.50454- 5 5.59800- 3 8.00000+ 0 1.17541- 2 1.90539- 2 1.10000+ 1 6.89953- 4 2.07598- 2 1.30000+ 1 4.02832- 1 2.13815- 2 1.60000+ 1 3.28012- 3 2.41507- 2 1.90000+ 1 2.20011- 4 2.46911- 2 2.10000+ 1 9.70975- 2 2.49830- 2 2.40000+ 1 7.29923- 4 2.54331- 2 2.70000+ 1 9.00184- 4 2.55784- 2 3.00000+ 1 5.80843- 5 2.57466- 2 3.20000+ 1 2.08411- 2 2.58588- 2 3.50000+ 1 7.79604- 5 2.59955- 2 4.10000+ 1 1.81171- 4 2.59441- 2 4.40000+ 1 8.50454- 6 2.59816- 2 5.80000+ 1 1.47361- 5 2.60012- 2 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.10000+ 1 2.05573- 2 3.50800- 4 6.00000+ 0 1.30000+ 1 8.50588- 2 9.72500- 4 6.00000+ 0 1.40000+ 1 2.75554- 2 1.22840- 3 6.00000+ 0 1.60000+ 1 2.50579- 3 3.74170- 3 6.00000+ 0 1.80000+ 1 2.30469- 2 3.92440- 3 6.00000+ 0 1.90000+ 1 4.60196- 3 4.28210- 3 6.00000+ 0 2.10000+ 1 1.76722- 2 4.57400- 3 6.00000+ 0 2.20000+ 1 5.93687- 3 4.63793- 3 6.00000+ 0 2.40000+ 1 9.59024- 4 5.02407- 3 6.00000+ 0 2.50000+ 1 1.32737- 3 5.04187- 3 6.00000+ 0 2.70000+ 1 6.28831- 4 5.16937- 3 6.00000+ 0 2.90000+ 1 5.38294- 3 5.24524- 3 6.00000+ 0 3.00000+ 1 1.13392- 3 5.33764- 3 6.00000+ 0 3.20000+ 1 3.66893- 3 5.44983- 3 6.00000+ 0 3.30000+ 1 1.23470- 3 5.46352- 3 8.00000+ 0 8.00000+ 0 2.95604- 4 1.21008- 2 8.00000+ 0 1.00000+ 1 1.42866- 2 1.24893- 2 8.00000+ 0 1.10000+ 1 1.16939- 3 1.38067- 2 8.00000+ 0 1.30000+ 1 2.96506- 3 1.44284- 2 8.00000+ 0 1.40000+ 1 7.51657- 4 1.46843- 2 8.00000+ 0 1.60000+ 1 1.21914- 4 1.71976- 2 8.00000+ 0 1.80000+ 1 2.52859- 3 1.73803- 2 8.00000+ 0 1.90000+ 1 2.83998- 4 1.77380- 2 8.00000+ 0 2.10000+ 1 5.55222- 4 1.80299- 2 8.00000+ 0 2.20000+ 1 1.19129- 4 1.80938- 2 8.00000+ 0 2.40000+ 1 4.94616- 5 1.84800- 2 8.00000+ 0 2.50000+ 1 3.83158- 5 1.84978- 2 8.00000+ 0 2.70000+ 1 3.13484- 5 1.86253- 2 8.00000+ 0 2.90000+ 1 5.95400- 4 1.87011- 2 8.00000+ 0 3.00000+ 1 7.05948- 5 1.87935- 2 8.00000+ 0 3.20000+ 1 1.12619- 4 1.89057- 2 8.00000+ 0 3.30000+ 1 2.32214- 5 1.89194- 2 1.00000+ 1 1.00000+ 1 1.55920- 2 1.28778- 2 1.00000+ 1 1.10000+ 1 3.14082- 2 1.41952- 2 1.00000+ 1 1.30000+ 1 1.55653- 2 1.48169- 2 1.00000+ 1 1.40000+ 1 1.78240- 2 1.50728- 2 1.00000+ 1 1.60000+ 1 3.98523- 3 1.75861- 2 1.00000+ 1 1.80000+ 1 7.00058- 3 1.77688- 2 1.00000+ 1 1.90000+ 1 8.26343- 3 1.81265- 2 1.00000+ 1 2.10000+ 1 4.00822- 3 1.84184- 2 1.00000+ 1 2.20000+ 1 4.64601- 3 1.84823- 2 1.00000+ 1 2.40000+ 1 3.10008- 4 1.88685- 2 1.00000+ 1 2.50000+ 1 2.33148- 4 1.88863- 2 1.00000+ 1 2.70000+ 1 1.09438- 3 1.90138- 2 1.00000+ 1 2.90000+ 1 1.75445- 3 1.90896- 2 1.00000+ 1 3.00000+ 1 2.09530- 3 1.91820- 2 1.00000+ 1 3.20000+ 1 8.71499- 4 1.92942- 2 1.00000+ 1 3.30000+ 1 9.98742- 4 1.93079- 2 1.10000+ 1 1.10000+ 1 5.63573- 4 1.55126- 2 1.10000+ 1 1.30000+ 1 1.01875- 2 1.61343- 2 1.10000+ 1 1.40000+ 1 1.65987- 3 1.63902- 2 1.10000+ 1 1.60000+ 1 2.69596- 4 1.89035- 2 1.10000+ 1 1.80000+ 1 5.51670- 3 1.90862- 2 1.10000+ 1 1.90000+ 1 2.58684- 4 1.94439- 2 1.10000+ 1 2.10000+ 1 2.28080- 3 1.97358- 2 1.10000+ 1 2.20000+ 1 3.63868- 4 1.97997- 2 1.10000+ 1 2.40000+ 1 8.12723- 5 2.01859- 2 1.10000+ 1 2.50000+ 1 3.87793- 5 2.02037- 2 1.10000+ 1 2.70000+ 1 7.05943- 5 2.03312- 2 1.10000+ 1 2.90000+ 1 1.29505- 3 2.04070- 2 1.10000+ 1 3.00000+ 1 6.33950- 5 2.04994- 2 1.10000+ 1 3.20000+ 1 4.79995- 4 2.06116- 2 1.10000+ 1 3.30000+ 1 7.54695- 5 2.06253- 2 1.30000+ 1 1.30000+ 1 9.64543- 3 1.67560- 2 1.30000+ 1 1.40000+ 1 3.60373- 2 1.70119- 2 1.30000+ 1 1.60000+ 1 8.27420- 4 1.95252- 2 1.30000+ 1 1.80000+ 1 2.62292- 3 1.97079- 2 1.30000+ 1 1.90000+ 1 2.44719- 3 2.00656- 2 1.30000+ 1 2.10000+ 1 4.13308- 3 2.03575- 2 1.30000+ 1 2.20000+ 1 8.35439- 3 2.04214- 2 1.30000+ 1 2.40000+ 1 8.92409- 4 2.08076- 2 1.30000+ 1 2.50000+ 1 1.74586- 3 2.08254- 2 1.30000+ 1 2.70000+ 1 2.27810- 4 2.09529- 2 1.30000+ 1 2.90000+ 1 6.16073- 4 2.10287- 2 1.30000+ 1 3.00000+ 1 6.07033- 4 2.11211- 2 1.30000+ 1 3.20000+ 1 8.66391- 4 2.12333- 2 1.30000+ 1 3.30000+ 1 1.75002- 3 2.12470- 2 1.40000+ 1 1.40000+ 1 1.76571- 3 1.72678- 2 1.40000+ 1 1.60000+ 1 1.69287- 4 1.97811- 2 1.40000+ 1 1.80000+ 1 2.59585- 3 1.99638- 2 1.40000+ 1 1.90000+ 1 3.69219- 4 2.03215- 2 1.40000+ 1 2.10000+ 1 6.35929- 3 2.06134- 2 1.40000+ 1 2.20000+ 1 7.50032- 4 2.06773- 2 1.40000+ 1 2.40000+ 1 3.55977- 4 2.10635- 2 1.40000+ 1 2.50000+ 1 1.34222- 4 2.10813- 2 1.40000+ 1 2.70000+ 1 4.43519- 5 2.12088- 2 1.40000+ 1 2.90000+ 1 5.81687- 4 2.12846- 2 1.40000+ 1 3.00000+ 1 9.00994- 5 2.13770- 2 1.40000+ 1 3.20000+ 1 1.27047- 3 2.14892- 2 1.40000+ 1 3.30000+ 1 1.54887- 4 2.15029- 2 1.60000+ 1 1.60000+ 1 1.20756- 5 2.22944- 2 1.60000+ 1 1.80000+ 1 7.09183- 4 2.24771- 2 1.60000+ 1 1.90000+ 1 6.57160- 5 2.28348- 2 1.60000+ 1 2.10000+ 1 1.52333- 4 2.31267- 2 1.60000+ 1 2.20000+ 1 2.64724- 5 2.31906- 2 1.60000+ 1 2.40000+ 1 1.16107- 5 2.35768- 2 1.60000+ 1 2.50000+ 1 7.43088- 6 2.35946- 2 1.60000+ 1 2.70000+ 1 6.03748- 6 2.37221- 2 1.60000+ 1 2.90000+ 1 1.67198- 4 2.37979- 2 1.60000+ 1 3.00000+ 1 1.64879- 5 2.38903- 2 1.60000+ 1 3.20000+ 1 3.06528- 5 2.40025- 2 1.60000+ 1 3.30000+ 1 5.10853- 6 2.40162- 2 1.80000+ 1 1.80000+ 1 7.47978- 4 2.26598- 2 1.80000+ 1 1.90000+ 1 1.45880- 3 2.30175- 2 1.80000+ 1 2.10000+ 1 6.65974- 4 2.33094- 2 1.80000+ 1 2.20000+ 1 6.85023- 4 2.33733- 2 1.80000+ 1 2.40000+ 1 4.31924- 5 2.37595- 2 1.80000+ 1 2.50000+ 1 2.39184- 5 2.37773- 2 1.80000+ 1 2.70000+ 1 1.94832- 4 2.39048- 2 1.80000+ 1 2.90000+ 1 3.70614- 4 2.39806- 2 1.80000+ 1 3.00000+ 1 3.70148- 4 2.40730- 2 1.80000+ 1 3.20000+ 1 1.44443- 4 2.41852- 2 1.80000+ 1 3.30000+ 1 1.47694- 4 2.41989- 2 1.90000+ 1 1.90000+ 1 2.97252- 5 2.33752- 2 1.90000+ 1 2.10000+ 1 5.51053- 4 2.36671- 2 1.90000+ 1 2.20000+ 1 8.15111- 5 2.37310- 2 1.90000+ 1 2.40000+ 1 1.85778- 5 2.41172- 2 1.90000+ 1 2.50000+ 1 7.89560- 6 2.41350- 2 1.90000+ 1 2.70000+ 1 1.71843- 5 2.42625- 2 1.90000+ 1 2.90000+ 1 3.42765- 4 2.43383- 2 1.90000+ 1 3.00000+ 1 1.46302- 5 2.44307- 2 1.90000+ 1 3.20000+ 1 1.16111- 4 2.45429- 2 1.90000+ 1 3.30000+ 1 1.69524- 5 2.45566- 2 2.10000+ 1 2.10000+ 1 4.42376- 4 2.39590- 2 2.10000+ 1 2.20000+ 1 1.53633- 3 2.40229- 2 2.10000+ 1 2.40000+ 1 1.33523- 4 2.44091- 2 2.10000+ 1 2.50000+ 1 2.60784- 4 2.44269- 2 2.10000+ 1 2.70000+ 1 4.17993- 5 2.45544- 2 2.10000+ 1 2.90000+ 1 1.55585- 4 2.46302- 2 2.10000+ 1 3.00000+ 1 1.37002- 4 2.47226- 2 2.10000+ 1 3.20000+ 1 1.85309- 4 2.48348- 2 2.10000+ 1 3.30000+ 1 3.24403- 4 2.48485- 2 2.20000+ 1 2.20000+ 1 8.08124- 5 2.40869- 2 2.20000+ 1 2.40000+ 1 5.80554- 5 2.44730- 2 2.20000+ 1 2.50000+ 1 2.25250- 5 2.44908- 2 2.20000+ 1 2.70000+ 1 6.96644- 6 2.46183- 2 2.20000+ 1 2.90000+ 1 1.53970- 4 2.46942- 2 2.20000+ 1 3.00000+ 1 1.99709- 5 2.47866- 2 2.20000+ 1 3.20000+ 1 3.09544- 4 2.48988- 2 2.20000+ 1 3.30000+ 1 3.34392- 5 2.49124- 2 2.40000+ 1 2.40000+ 1 3.48329- 6 2.48591- 2 2.40000+ 1 2.50000+ 1 2.32220- 5 2.48769- 2 2.40000+ 1 2.70000+ 1 3.01885- 6 2.50044- 2 2.40000+ 1 2.90000+ 1 9.75281- 6 2.50803- 2 2.40000+ 1 3.00000+ 1 4.41216- 6 2.51727- 2 2.40000+ 1 3.20000+ 1 2.57761- 5 2.52849- 2 2.40000+ 1 3.30000+ 1 1.11462- 5 2.52986- 2 2.50000+ 1 2.50000+ 1 1.39320- 6 2.48947- 2 2.50000+ 1 2.70000+ 1 1.85773- 6 2.50222- 2 2.50000+ 1 2.90000+ 1 4.87665- 6 2.50981- 2 2.50000+ 1 3.00000+ 1 1.85773- 6 2.51905- 2 2.50000+ 1 3.20000+ 1 5.01589- 5 2.53027- 2 2.50000+ 1 3.30000+ 1 4.41211- 6 2.53164- 2 2.70000+ 1 2.70000+ 1 6.96643- 7 2.51497- 2 2.70000+ 1 2.90000+ 1 4.59787- 5 2.52256- 2 2.70000+ 1 3.00000+ 1 4.17991- 6 2.53180- 2 2.70000+ 1 3.20000+ 1 8.35982- 6 2.54302- 2 2.70000+ 1 3.30000+ 1 1.39320- 6 2.54439- 2 2.90000+ 1 2.90000+ 1 4.57476- 5 2.53015- 2 2.90000+ 1 3.00000+ 1 8.70827- 5 2.53939- 2 2.90000+ 1 3.20000+ 1 3.36727- 5 2.55061- 2 2.90000+ 1 3.30000+ 1 3.32079- 5 2.55198- 2 3.00000+ 1 3.00000+ 1 1.85772- 6 2.54863- 2 3.00000+ 1 3.20000+ 1 2.87946- 5 2.55985- 2 3.00000+ 1 3.30000+ 1 4.17988- 6 2.56122- 2 3.20000+ 1 3.20000+ 1 1.95062- 5 2.57107- 2 3.20000+ 1 3.30000+ 1 6.54862- 5 2.57243- 2 3.30000+ 1 3.30000+ 1 3.48322- 6 2.57380- 2 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.64260- 2 1.34559- 2 1.00000+ 1 3.49730- 4 1.38444- 2 1.10000+ 1 3.23230- 4 1.51618- 2 1.30000+ 1 3.87240- 2 1.57835- 2 1.40000+ 1 3.39740- 1 1.60394- 2 1.60000+ 1 6.81630- 3 1.85527- 2 1.80000+ 1 7.49400- 5 1.87354- 2 1.90000+ 1 9.08400- 5 1.90931- 2 2.10000+ 1 8.07050- 3 1.93850- 2 2.20000+ 1 7.46720- 2 1.94489- 2 2.40000+ 1 1.34980- 4 1.98351- 2 2.50000+ 1 7.36610- 4 1.98529- 2 2.70000+ 1 1.84090- 3 1.99804- 2 2.90000+ 1 1.84430- 5 2.00562- 2 3.00000+ 1 2.32930- 5 2.01486- 2 3.20000+ 1 1.67920- 3 2.02608- 2 3.30000+ 1 1.55190- 2 2.02745- 2 3.50000+ 1 1.41830- 5 2.03975- 2 3.60000+ 1 7.50740- 5 2.03994- 2 4.10000+ 1 3.69200- 4 2.03461- 2 4.30000+ 1 3.08410- 6 2.03690- 2 4.40000+ 1 3.39060- 6 2.03836- 2 5.80000+ 1 3.00080- 5 2.04032- 2 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.46299- 4 6.50280- 3 8.00000+ 0 1.00000+ 1 1.06501- 4 6.89130- 3 8.00000+ 0 1.10000+ 1 1.68063- 2 8.20870- 3 8.00000+ 0 1.30000+ 1 3.17712- 3 8.83040- 3 8.00000+ 0 1.40000+ 1 7.00691- 3 9.08630- 3 8.00000+ 0 1.60000+ 1 1.07328- 4 1.15996- 2 8.00000+ 0 1.80000+ 1 1.45853- 5 1.17823- 2 8.00000+ 0 1.90000+ 1 2.89027- 3 1.21400- 2 8.00000+ 0 2.10000+ 1 4.19393- 4 1.24319- 2 8.00000+ 0 2.20000+ 1 8.92171- 4 1.24958- 2 8.00000+ 0 2.40000+ 1 4.21047- 4 1.28820- 2 8.00000+ 0 2.50000+ 1 6.88241- 4 1.28998- 2 8.00000+ 0 2.70000+ 1 2.75193- 5 1.30273- 2 8.00000+ 0 2.90000+ 1 3.30232- 6 1.31031- 2 8.00000+ 0 3.00000+ 1 6.63789- 4 1.31955- 2 8.00000+ 0 3.20000+ 1 7.92552- 5 1.33077- 2 8.00000+ 0 3.30000+ 1 1.62914- 4 1.33214- 2 1.00000+ 1 1.00000+ 1 1.92636- 5 7.27980- 3 1.00000+ 1 1.10000+ 1 2.81272- 2 8.59720- 3 1.00000+ 1 1.30000+ 1 1.22079- 3 9.21890- 3 1.00000+ 1 1.40000+ 1 7.50189- 3 9.47480- 3 1.00000+ 1 1.60000+ 1 2.39420- 5 1.19881- 2 1.00000+ 1 1.80000+ 1 1.56860- 5 1.21708- 2 1.00000+ 1 1.90000+ 1 5.01996- 3 1.25285- 2 1.00000+ 1 2.10000+ 1 2.34748- 4 1.28204- 2 1.00000+ 1 2.20000+ 1 1.21860- 3 1.28843- 2 1.00000+ 1 2.40000+ 1 3.18134- 4 1.32705- 2 1.00000+ 1 2.50000+ 1 7.26266- 4 1.32883- 2 1.00000+ 1 2.70000+ 1 6.32950- 6 1.34158- 2 1.00000+ 1 2.90000+ 1 4.67832- 6 1.34916- 2 1.00000+ 1 3.00000+ 1 1.16213- 3 1.35840- 2 1.00000+ 1 3.20000+ 1 5.00840- 5 1.36962- 2 1.00000+ 1 3.30000+ 1 2.40247- 4 1.37099- 2 1.10000+ 1 1.10000+ 1 3.18280- 2 9.91460- 3 1.10000+ 1 1.30000+ 1 3.33788- 2 1.05363- 2 1.10000+ 1 1.40000+ 1 4.02043- 2 1.07922- 2 1.10000+ 1 1.60000+ 1 4.59741- 3 1.33055- 2 1.10000+ 1 1.80000+ 1 6.89019- 3 1.34882- 2 1.10000+ 1 1.90000+ 1 1.38313- 2 1.38459- 2 1.10000+ 1 2.10000+ 1 7.99724- 3 1.41378- 2 1.10000+ 1 2.20000+ 1 9.64321- 3 1.42017- 2 1.10000+ 1 2.40000+ 1 8.96863- 4 1.45879- 2 1.10000+ 1 2.50000+ 1 1.04220- 3 1.46057- 2 1.10000+ 1 2.70000+ 1 1.25564- 3 1.47332- 2 1.10000+ 1 2.90000+ 1 1.75673- 3 1.48090- 2 1.10000+ 1 3.00000+ 1 3.37523- 3 1.49014- 2 1.10000+ 1 3.20000+ 1 1.71519- 3 1.50136- 2 1.10000+ 1 3.30000+ 1 2.03761- 3 1.50273- 2 1.30000+ 1 1.30000+ 1 4.17243- 3 1.11580- 2 1.30000+ 1 1.40000+ 1 7.73942- 2 1.14139- 2 1.30000+ 1 1.60000+ 1 7.48524- 4 1.39272- 2 1.30000+ 1 1.80000+ 1 3.47287- 4 1.41099- 2 1.30000+ 1 1.90000+ 1 5.32487- 3 1.44676- 2 1.30000+ 1 2.10000+ 1 1.65580- 3 1.47595- 2 1.30000+ 1 2.20000+ 1 1.29258- 2 1.48234- 2 1.30000+ 1 2.40000+ 1 4.70846- 4 1.52096- 2 1.30000+ 1 2.50000+ 1 1.54824- 3 1.52274- 2 1.30000+ 1 2.70000+ 1 2.00618- 4 1.53549- 2 1.30000+ 1 2.90000+ 1 9.02612- 5 1.54307- 2 1.30000+ 1 3.00000+ 1 1.19985- 3 1.55231- 2 1.30000+ 1 3.20000+ 1 3.43163- 4 1.56353- 2 1.30000+ 1 3.30000+ 1 2.52808- 3 1.56490- 2 1.40000+ 1 1.40000+ 1 5.07929- 2 1.16698- 2 1.40000+ 1 1.60000+ 1 1.68107- 3 1.41831- 2 1.40000+ 1 1.80000+ 1 1.65170- 3 1.43658- 2 1.40000+ 1 1.90000+ 1 7.11313- 3 1.47235- 2 1.40000+ 1 2.10000+ 1 1.54363- 2 1.50154- 2 1.40000+ 1 2.20000+ 1 1.95118- 2 1.50793- 2 1.40000+ 1 2.40000+ 1 4.86815- 3 1.54655- 2 1.40000+ 1 2.50000+ 1 4.33990- 3 1.54833- 2 1.40000+ 1 2.70000+ 1 4.54058- 4 1.56108- 2 1.40000+ 1 2.90000+ 1 4.12775- 4 1.56866- 2 1.40000+ 1 3.00000+ 1 1.65747- 3 1.57790- 2 1.40000+ 1 3.20000+ 1 3.18886- 3 1.58912- 2 1.40000+ 1 3.30000+ 1 3.95187- 3 1.59049- 2 1.60000+ 1 1.60000+ 1 1.26593- 5 1.66964- 2 1.60000+ 1 1.80000+ 1 4.12797- 6 1.68791- 2 1.60000+ 1 1.90000+ 1 7.88165- 4 1.72368- 2 1.60000+ 1 2.10000+ 1 1.05408- 4 1.75287- 2 1.60000+ 1 2.20000+ 1 2.24292- 4 1.75926- 2 1.60000+ 1 2.40000+ 1 4.84331- 5 1.79788- 2 1.60000+ 1 2.50000+ 1 8.86132- 5 1.79966- 2 1.60000+ 1 2.70000+ 1 6.60455- 6 1.81241- 2 1.60000+ 1 2.90000+ 1 1.10079- 6 1.81999- 2 1.60000+ 1 3.00000+ 1 1.80527- 4 1.82923- 2 1.60000+ 1 3.20000+ 1 2.00895- 5 1.84045- 2 1.60000+ 1 3.30000+ 1 4.12797- 5 1.84182- 2 1.80000+ 1 1.80000+ 1 8.25586- 7 1.70618- 2 1.80000+ 1 1.90000+ 1 1.21661- 3 1.74195- 2 1.80000+ 1 2.10000+ 1 6.05439- 5 1.77114- 2 1.80000+ 1 2.20000+ 1 3.03542- 4 1.77753- 2 1.80000+ 1 2.40000+ 1 4.76088- 5 1.81615- 2 1.80000+ 1 2.50000+ 1 1.00715- 4 1.81793- 2 1.80000+ 1 2.70000+ 1 1.10078- 6 1.83068- 2 1.80000+ 1 2.90000+ 1 2.75196- 7 1.83826- 2 1.80000+ 1 3.00000+ 1 2.80973- 4 1.84750- 2 1.80000+ 1 3.20000+ 1 1.23842- 5 1.85872- 2 1.80000+ 1 3.30000+ 1 6.08198- 5 1.86009- 2 1.90000+ 1 1.90000+ 1 1.43127- 3 1.77772- 2 1.90000+ 1 2.10000+ 1 1.28157- 3 1.80691- 2 1.90000+ 1 2.20000+ 1 1.68695- 3 1.81330- 2 1.90000+ 1 2.40000+ 1 1.18058- 4 1.85192- 2 1.90000+ 1 2.50000+ 1 1.44202- 4 1.85370- 2 1.90000+ 1 2.70000+ 1 2.15209- 4 1.86645- 2 1.90000+ 1 2.90000+ 1 3.09601- 4 1.87403- 2 1.90000+ 1 3.00000+ 1 6.90486- 4 1.88327- 2 1.90000+ 1 3.20000+ 1 2.75199- 4 1.89449- 2 1.90000+ 1 3.30000+ 1 3.55557- 4 1.89586- 2 2.10000+ 1 2.10000+ 1 1.57125- 4 1.83610- 2 2.10000+ 1 2.20000+ 1 2.71993- 3 1.84249- 2 2.10000+ 1 2.40000+ 1 6.10944- 5 1.88111- 2 2.10000+ 1 2.50000+ 1 1.86029- 4 1.88289- 2 2.10000+ 1 2.70000+ 1 2.86196- 5 1.89564- 2 2.10000+ 1 2.90000+ 1 1.56856- 5 1.90322- 2 2.10000+ 1 3.00000+ 1 2.89223- 4 1.91246- 2 2.10000+ 1 3.20000+ 1 6.43920- 5 1.92368- 2 2.10000+ 1 3.30000+ 1 5.36903- 4 1.92505- 2 2.20000+ 1 2.20000+ 1 1.88983- 3 1.84889- 2 2.20000+ 1 2.40000+ 1 6.28255- 4 1.88750- 2 2.20000+ 1 2.50000+ 1 5.47917- 4 1.88928- 2 2.20000+ 1 2.70000+ 1 6.10964- 5 1.90203- 2 2.20000+ 1 2.90000+ 1 7.70537- 5 1.90962- 2 2.20000+ 1 3.00000+ 1 3.91882- 4 1.91886- 2 2.20000+ 1 3.20000+ 1 5.67478- 4 1.93008- 2 2.20000+ 1 3.30000+ 1 7.65885- 4 1.93144- 2 2.40000+ 1 2.40000+ 1 3.30226- 6 1.92611- 2 2.40000+ 1 2.50000+ 1 9.54913- 5 1.92789- 2 2.40000+ 1 2.70000+ 1 1.10075- 5 1.94064- 2 2.40000+ 1 2.90000+ 1 1.10075- 5 1.94823- 2 2.40000+ 1 3.00000+ 1 2.55927- 5 1.95747- 2 2.40000+ 1 3.20000+ 1 1.15573- 5 1.96869- 2 2.40000+ 1 3.30000+ 1 1.15861- 4 1.97006- 2 2.50000+ 1 2.50000+ 1 3.38486- 5 1.92967- 2 2.50000+ 1 2.70000+ 1 2.06398- 5 1.94242- 2 2.50000+ 1 2.90000+ 1 2.28409- 5 1.95001- 2 2.50000+ 1 3.00000+ 1 3.19215- 5 1.95925- 2 2.50000+ 1 3.20000+ 1 3.41235- 5 1.97047- 2 2.50000+ 1 3.30000+ 1 1.00446- 4 1.97184- 2 2.70000+ 1 2.70000+ 1 8.25591- 7 1.95517- 2 2.70000+ 1 2.90000+ 1 2.75197- 7 1.96276- 2 2.70000+ 1 3.00000+ 1 4.92606- 5 1.97200- 2 2.70000+ 1 3.20000+ 1 5.50384- 6 1.98322- 2 2.70000+ 1 3.30000+ 1 1.12828- 5 1.98459- 2 2.90000+ 1 3.00000+ 1 7.15516- 5 1.97959- 2 2.90000+ 1 3.20000+ 1 3.30233- 6 1.99081- 2 2.90000+ 1 3.30000+ 1 1.54110- 5 1.99218- 2 3.00000+ 1 3.00000+ 1 8.31094- 5 1.98883- 2 3.00000+ 1 3.20000+ 1 6.21938- 5 2.00005- 2 3.00000+ 1 3.30000+ 1 8.25566- 5 2.00142- 2 3.20000+ 1 3.20000+ 1 6.60428- 6 2.01127- 2 3.20000+ 1 3.30000+ 1 1.12276- 4 2.01263- 2 3.30000+ 1 3.30000+ 1 7.76050- 5 2.01400- 2 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.05940- 5 3.88500- 4 1.10000+ 1 2.10450- 3 1.70590- 3 1.80000+ 1 3.62460- 3 5.27950- 3 1.90000+ 1 1.33150- 3 5.63720- 3 2.90000+ 1 1.03500- 3 6.60034- 3 3.00000+ 1 4.64280- 4 6.69274- 3 4.30000+ 1 1.78200- 4 6.91308- 3 4.40000+ 1 7.12701- 5 6.92766- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.90000+ 1 1.74378- 2 3.57400- 5 1.00000+ 1 3.00000+ 1 1.90515- 2 1.28140- 4 1.00000+ 1 3.20000+ 1 1.13923- 2 2.40330- 4 1.00000+ 1 3.30000+ 1 1.42686- 2 2.54020- 4 1.00000+ 1 3.50000+ 1 1.26660- 3 3.76960- 4 1.00000+ 1 3.60000+ 1 1.56512- 3 3.78890- 4 1.00000+ 1 4.10000+ 1 3.03068- 3 3.25650- 4 1.00000+ 1 4.30000+ 1 2.70036- 3 3.48480- 4 1.00000+ 1 4.40000+ 1 2.52530- 3 3.63060- 4 1.00000+ 1 5.80000+ 1 2.33745- 4 3.82720- 4 1.10000+ 1 1.80000+ 1 4.99039- 2 3.23000- 5 1.10000+ 1 1.90000+ 1 2.91929- 2 3.90000- 4 1.10000+ 1 2.10000+ 1 7.82547- 3 6.81900- 4 1.10000+ 1 2.20000+ 1 2.54549- 2 7.45830- 4 1.10000+ 1 2.40000+ 1 1.97323- 1 1.13197- 3 1.10000+ 1 2.50000+ 1 2.33664- 1 1.14977- 3 1.10000+ 1 2.70000+ 1 1.11133- 2 1.27727- 3 1.10000+ 1 2.90000+ 1 1.17782- 2 1.35314- 3 1.10000+ 1 3.00000+ 1 7.32241- 3 1.44554- 3 1.10000+ 1 3.20000+ 1 2.04801- 3 1.55773- 3 1.10000+ 1 3.30000+ 1 5.80268- 3 1.57142- 3 1.10000+ 1 3.50000+ 1 1.21471- 2 1.69436- 3 1.10000+ 1 3.60000+ 1 1.36657- 2 1.69629- 3 1.10000+ 1 4.10000+ 1 2.13429- 3 1.64305- 3 1.10000+ 1 4.30000+ 1 1.87515- 3 1.66588- 3 1.10000+ 1 4.40000+ 1 1.00016- 3 1.68046- 3 1.10000+ 1 5.80000+ 1 1.60331- 4 1.70012- 3 1.30000+ 1 1.60000+ 1 2.68895- 2 4.71300- 4 1.30000+ 1 1.80000+ 1 5.45159- 3 6.54000- 4 1.30000+ 1 1.90000+ 1 1.14832- 2 1.01170- 3 1.30000+ 1 2.10000+ 1 8.69375- 3 1.30360- 3 1.30000+ 1 2.20000+ 1 9.80457- 3 1.36753- 3 1.30000+ 1 2.40000+ 1 1.01446- 2 1.75367- 3 1.30000+ 1 2.50000+ 1 9.94544- 3 1.77147- 3 1.30000+ 1 2.70000+ 1 4.45373- 3 1.89897- 3 1.30000+ 1 2.90000+ 1 1.10993- 3 1.97484- 3 1.30000+ 1 3.00000+ 1 2.12099- 3 2.06724- 3 1.30000+ 1 3.20000+ 1 1.51713- 3 2.17943- 3 1.30000+ 1 3.30000+ 1 1.86415- 3 2.19312- 3 1.30000+ 1 3.50000+ 1 6.52722- 4 2.31606- 3 1.30000+ 1 3.60000+ 1 5.75201- 4 2.31799- 3 1.30000+ 1 4.10000+ 1 7.82458- 4 2.26475- 3 1.30000+ 1 4.30000+ 1 1.73588- 4 2.28758- 3 1.30000+ 1 4.40000+ 1 2.74554- 4 2.30216- 3 1.30000+ 1 5.80000+ 1 5.89667- 5 2.32182- 3 1.40000+ 1 1.60000+ 1 3.59313- 2 7.27200- 4 1.40000+ 1 1.80000+ 1 8.10789- 4 9.09900- 4 1.40000+ 1 1.90000+ 1 1.29769- 2 1.26760- 3 1.40000+ 1 2.10000+ 1 1.14722- 2 1.55950- 3 1.40000+ 1 2.20000+ 1 1.51713- 2 1.62343- 3 1.40000+ 1 2.40000+ 1 1.27229- 2 2.00957- 3 1.40000+ 1 2.50000+ 1 1.81575- 2 2.02737- 3 1.40000+ 1 2.70000+ 1 5.83627- 3 2.15487- 3 1.40000+ 1 2.90000+ 1 2.58517- 4 2.23074- 3 1.40000+ 1 3.00000+ 1 2.34443- 3 2.32314- 3 1.40000+ 1 3.20000+ 1 2.24435- 3 2.43533- 3 1.40000+ 1 3.30000+ 1 2.78452- 3 2.44902- 3 1.40000+ 1 3.50000+ 1 7.63750- 4 2.57196- 3 1.40000+ 1 3.60000+ 1 1.08064- 3 2.57389- 3 1.40000+ 1 4.10000+ 1 1.02045- 3 2.52065- 3 1.40000+ 1 4.30000+ 1 4.45222- 5 2.54348- 3 1.40000+ 1 4.40000+ 1 3.03046- 4 2.55806- 3 1.40000+ 1 5.80000+ 1 7.68519- 5 2.57772- 3 1.60000+ 1 1.60000+ 1 2.24867- 3 3.24050- 3 1.60000+ 1 1.80000+ 1 4.04854- 3 3.42320- 3 1.60000+ 1 1.90000+ 1 5.96967- 3 3.78090- 3 1.60000+ 1 2.10000+ 1 7.36143- 3 4.07280- 3 1.60000+ 1 2.20000+ 1 1.00376- 2 4.13673- 3 1.60000+ 1 2.40000+ 1 5.56998- 3 4.52287- 3 1.60000+ 1 2.50000+ 1 6.79606- 3 4.54067- 3 1.60000+ 1 2.70000+ 1 9.87028- 4 4.66817- 3 1.60000+ 1 2.90000+ 1 1.04585- 3 4.74404- 3 1.60000+ 1 3.00000+ 1 1.51284- 3 4.83644- 3 1.60000+ 1 3.20000+ 1 1.55223- 3 4.94863- 3 1.60000+ 1 3.30000+ 1 2.09081- 3 4.96232- 3 1.60000+ 1 3.50000+ 1 4.80465- 4 5.08526- 3 1.60000+ 1 3.60000+ 1 5.60797- 4 5.08719- 3 1.60000+ 1 4.10000+ 1 1.87766- 4 5.03395- 3 1.60000+ 1 4.30000+ 1 1.71070- 4 5.05678- 3 1.60000+ 1 4.40000+ 1 2.07901- 4 5.07136- 3 1.60000+ 1 5.80000+ 1 1.43106- 5 5.09102- 3 1.80000+ 1 1.80000+ 1 1.39008- 4 3.60590- 3 1.80000+ 1 1.90000+ 1 5.12922- 4 3.96360- 3 1.80000+ 1 2.10000+ 1 2.29767- 4 4.25550- 3 1.80000+ 1 2.20000+ 1 8.30813- 5 4.31943- 3 1.80000+ 1 2.40000+ 1 1.84188- 5 4.70557- 3 1.80000+ 1 2.50000+ 1 5.82124- 4 4.72337- 3 1.80000+ 1 2.70000+ 1 6.57507- 4 4.85087- 3 1.80000+ 1 2.90000+ 1 4.96905- 5 4.92674- 3 1.80000+ 1 3.00000+ 1 8.59985- 5 5.01914- 3 1.80000+ 1 3.20000+ 1 4.04147- 5 5.13133- 3 1.80000+ 1 3.30000+ 1 2.30557- 5 5.14502- 3 1.80000+ 1 3.50000+ 1 9.27519- 7 5.26796- 3 1.80000+ 1 3.60000+ 1 2.99471- 5 5.26989- 3 1.80000+ 1 4.10000+ 1 1.15543- 4 5.21665- 3 1.80000+ 1 4.30000+ 1 7.55282- 6 5.23948- 3 1.80000+ 1 4.40000+ 1 1.09985- 5 5.25406- 3 1.80000+ 1 5.80000+ 1 8.74541- 6 5.27372- 3 1.90000+ 1 1.90000+ 1 3.74991- 4 4.32130- 3 1.90000+ 1 2.10000+ 1 7.80841- 4 4.61320- 3 1.90000+ 1 2.20000+ 1 1.65001- 3 4.67713- 3 1.90000+ 1 2.40000+ 1 1.25760- 3 5.06327- 3 1.90000+ 1 2.50000+ 1 1.65901- 3 5.08107- 3 1.90000+ 1 2.70000+ 1 9.73923- 4 5.20857- 3 1.90000+ 1 2.90000+ 1 1.15142- 4 5.28444- 3 1.90000+ 1 3.00000+ 1 1.63112- 4 5.37684- 3 1.90000+ 1 3.20000+ 1 1.56363- 4 5.48903- 3 1.90000+ 1 3.30000+ 1 3.25433- 4 5.50272- 3 1.90000+ 1 3.50000+ 1 1.02555- 4 5.62566- 3 1.90000+ 1 3.60000+ 1 1.17662- 4 5.62759- 3 1.90000+ 1 4.10000+ 1 1.71600- 4 5.57435- 3 1.90000+ 1 4.30000+ 1 1.84187- 5 5.59718- 3 1.90000+ 1 4.40000+ 1 2.18638- 5 5.61176- 3 1.90000+ 1 5.80000+ 1 1.29859- 5 5.63142- 3 2.10000+ 1 2.10000+ 1 1.07464- 4 4.90510- 3 2.10000+ 1 2.20000+ 1 1.84716- 4 4.96903- 3 2.10000+ 1 2.40000+ 1 4.59928- 4 5.35517- 3 2.10000+ 1 2.50000+ 1 2.37733- 3 5.37297- 3 2.10000+ 1 2.70000+ 1 1.16282- 3 5.50047- 3 2.10000+ 1 2.90000+ 1 3.55124- 5 5.57634- 3 2.10000+ 1 3.00000+ 1 1.47215- 4 5.66874- 3 2.10000+ 1 3.20000+ 1 3.55124- 5 5.78093- 3 2.10000+ 1 3.30000+ 1 3.27290- 5 5.79462- 3 2.10000+ 1 3.50000+ 1 3.51134- 5 5.91756- 3 2.10000+ 1 3.60000+ 1 1.38077- 4 5.91949- 3 2.10000+ 1 4.10000+ 1 2.02741- 4 5.86625- 3 2.10000+ 1 4.30000+ 1 5.16765- 6 5.88908- 3 2.10000+ 1 4.40000+ 1 1.89484- 5 5.90366- 3 2.10000+ 1 5.80000+ 1 1.52383- 5 5.92332- 3 2.20000+ 1 2.20000+ 1 2.15059- 4 5.03296- 3 2.20000+ 1 2.40000+ 1 2.00383- 3 5.41910- 3 2.20000+ 1 2.50000+ 1 1.40557- 3 5.43690- 3 2.20000+ 1 2.70000+ 1 1.57353- 3 5.56440- 3 2.20000+ 1 2.90000+ 1 1.48415- 5 5.64027- 3 2.20000+ 1 3.00000+ 1 3.04898- 4 5.73267- 3 2.20000+ 1 3.20000+ 1 2.78264- 5 5.84486- 3 2.20000+ 1 3.30000+ 1 7.36725- 5 5.85855- 3 2.20000+ 1 3.50000+ 1 1.17403- 4 5.98149- 3 2.20000+ 1 3.60000+ 1 8.98402- 5 5.98342- 3 2.20000+ 1 4.10000+ 1 2.73895- 4 5.93018- 3 2.20000+ 1 4.30000+ 1 2.25257- 6 5.95301- 3 2.20000+ 1 4.40000+ 1 3.92228- 5 5.96759- 3 2.20000+ 1 5.80000+ 1 2.06711- 5 5.98725- 3 2.40000+ 1 2.40000+ 1 6.25024- 4 5.80524- 3 2.40000+ 1 2.50000+ 1 4.10254- 3 5.82304- 3 2.40000+ 1 2.70000+ 1 7.97851- 4 5.95054- 3 2.40000+ 1 2.90000+ 1 5.83044- 6 6.02641- 3 2.40000+ 1 3.00000+ 1 1.66161- 4 6.11881- 3 2.40000+ 1 3.20000+ 1 8.53356- 5 6.23100- 3 2.40000+ 1 3.30000+ 1 4.38209- 4 6.24469- 3 2.40000+ 1 3.50000+ 1 9.65998- 5 6.36763- 3 2.40000+ 1 3.60000+ 1 2.52561- 4 6.36956- 3 2.40000+ 1 4.10000+ 1 1.36618- 4 6.31632- 3 2.40000+ 1 4.30000+ 1 1.06005- 6 6.33915- 3 2.40000+ 1 4.40000+ 1 2.00084- 5 6.35373- 3 2.40000+ 1 5.80000+ 1 1.02036- 5 6.37339- 3 2.50000+ 1 2.50000+ 1 1.40216- 3 5.84084- 3 2.50000+ 1 2.70000+ 1 9.70469- 4 5.96834- 3 2.50000+ 1 2.90000+ 1 1.27209- 4 6.04421- 3 2.50000+ 1 3.00000+ 1 2.32014- 4 6.13661- 3 2.50000+ 1 3.20000+ 1 5.01919- 4 6.24880- 3 2.50000+ 1 3.30000+ 1 2.82512- 4 6.26249- 3 2.50000+ 1 3.50000+ 1 2.57858- 4 6.38543- 3 2.50000+ 1 3.60000+ 1 1.91084- 4 6.38736- 3 2.50000+ 1 4.10000+ 1 1.66160- 4 6.33412- 3 2.50000+ 1 4.30000+ 1 2.00082- 5 6.35695- 3 2.50000+ 1 4.40000+ 1 2.83572- 5 6.37153- 3 2.50000+ 1 5.80000+ 1 1.24550- 5 6.39119- 3 2.70000+ 1 2.70000+ 1 9.89769- 5 6.09584- 3 2.70000+ 1 2.90000+ 1 1.71985- 4 6.17171- 3 2.70000+ 1 3.00000+ 1 2.46465- 4 6.26411- 3 2.70000+ 1 3.20000+ 1 2.47384- 4 6.37630- 3 2.70000+ 1 3.30000+ 1 3.30601- 4 6.38999- 3 2.70000+ 1 3.50000+ 1 6.91664- 5 6.51293- 3 2.70000+ 1 3.60000+ 1 8.04301- 5 6.51486- 3 2.70000+ 1 4.10000+ 1 3.69681- 5 6.46162- 3 2.70000+ 1 4.30000+ 1 2.82235- 5 6.48445- 3 2.70000+ 1 4.40000+ 1 3.39199- 5 6.49903- 3 2.70000+ 1 5.80000+ 1 2.78256- 6 6.51869- 3 2.90000+ 1 2.90000+ 1 4.37273- 6 6.24758- 3 2.90000+ 1 3.00000+ 1 1.86834- 5 6.33998- 3 2.90000+ 1 3.20000+ 1 6.22777- 6 6.45217- 3 2.90000+ 1 3.30000+ 1 4.50520- 6 6.46586- 3 2.90000+ 1 3.50000+ 1 2.65015- 7 6.58880- 3 2.90000+ 1 3.60000+ 1 6.89059- 6 6.59073- 3 2.90000+ 1 4.10000+ 1 3.03436- 5 6.53749- 3 2.90000+ 1 4.30000+ 1 1.32508- 6 6.56032- 3 2.90000+ 1 4.40000+ 1 2.38512- 6 6.57490- 3 2.90000+ 1 5.80000+ 1 2.25255- 6 6.59456- 3 3.00000+ 1 3.00000+ 1 1.68278- 5 6.43238- 3 3.00000+ 1 3.20000+ 1 2.96817- 5 6.54457- 3 3.00000+ 1 3.30000+ 1 6.06899- 5 6.55826- 3 3.00000+ 1 3.50000+ 1 1.37806- 5 6.68120- 3 3.00000+ 1 3.60000+ 1 1.62980- 5 6.68313- 3 3.00000+ 1 4.10000+ 1 4.33293- 5 6.62989- 3 3.00000+ 1 4.30000+ 1 2.91518- 6 6.65272- 3 3.00000+ 1 4.40000+ 1 4.50519- 6 6.66730- 3 3.00000+ 1 5.80000+ 1 3.31258- 6 6.68696- 3 3.20000+ 1 3.20000+ 1 2.65016- 6 6.65676- 3 3.20000+ 1 3.30000+ 1 5.03519- 6 6.67045- 3 3.20000+ 1 3.50000+ 1 6.49273- 6 6.79339- 3 3.20000+ 1 3.60000+ 1 3.07416- 5 6.79532- 3 3.20000+ 1 4.10000+ 1 4.31966- 5 6.74208- 3 3.20000+ 1 4.30000+ 1 9.27510- 7 6.76491- 3 3.20000+ 1 4.40000+ 1 3.84268- 6 6.77949- 3 3.20000+ 1 5.80000+ 1 3.31260- 6 6.79915- 3 3.30000+ 1 3.30000+ 1 6.09540- 6 6.68414- 3 3.30000+ 1 3.50000+ 1 2.70314- 5 6.80708- 3 3.30000+ 1 3.60000+ 1 1.84185- 5 6.80901- 3 3.30000+ 1 4.10000+ 1 5.76418- 5 6.75577- 3 3.30000+ 1 4.30000+ 1 6.62518- 7 6.77860- 3 3.30000+ 1 4.40000+ 1 7.81766- 6 6.79318- 3 3.30000+ 1 5.80000+ 1 4.37274- 6 6.81284- 3 3.50000+ 1 3.50000+ 1 3.44514- 6 6.93002- 3 3.50000+ 1 3.60000+ 1 1.68277- 5 6.93195- 3 3.50000+ 1 4.10000+ 1 1.17931- 5 6.87871- 3 3.50000+ 1 4.40000+ 1 1.72257- 6 6.91612- 3 3.50000+ 1 5.80000+ 1 9.27501- 7 6.93578- 3 3.60000+ 1 3.60000+ 1 6.36036- 6 6.93388- 3 3.60000+ 1 4.10000+ 1 1.37809- 5 6.88064- 3 3.60000+ 1 4.30000+ 1 1.06006- 6 6.90347- 3 3.60000+ 1 4.40000+ 1 1.98765- 6 6.91805- 3 3.60000+ 1 5.80000+ 1 1.06006- 6 6.93771- 3 4.10000+ 1 4.10000+ 1 3.55942- 6 6.82740- 3 4.10000+ 1 4.30000+ 1 5.06541- 6 6.85023- 3 4.10000+ 1 4.40000+ 1 6.16059- 6 6.86481- 3 4.10000+ 1 5.80000+ 1 5.47589- 7 6.88447- 3 4.30000+ 1 4.30000+ 1 1.32509- 7 6.87306- 3 4.30000+ 1 4.40000+ 1 3.97526- 7 6.88764- 3 4.30000+ 1 5.80000+ 1 3.97526- 7 6.90730- 3 4.40000+ 1 4.40000+ 1 2.65016- 7 6.90222- 3 4.40000+ 1 5.80000+ 1 3.97524- 7 6.92188- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.99011- 3 1.93910- 3 1.60000+ 1 1.27190- 3 4.70830- 3 2.10000+ 1 5.59681- 3 5.54060- 3 2.70000+ 1 3.52841- 4 6.13597- 3 3.20000+ 1 1.52660- 3 6.41643- 3 4.10000+ 1 7.10052- 5 6.50175- 3 5.80000+ 1 5.77641- 6 6.55882- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 1.90000+ 1 6.79812- 3 1.50000- 6 1.10000+ 1 2.10000+ 1 1.25767- 2 2.93400- 4 1.10000+ 1 2.20000+ 1 2.08623- 2 3.57330- 4 1.10000+ 1 2.40000+ 1 2.82308- 2 7.43470- 4 1.10000+ 1 2.50000+ 1 2.18947- 2 7.61270- 4 1.10000+ 1 2.70000+ 1 3.14864- 3 8.88770- 4 1.10000+ 1 2.90000+ 1 4.95380- 3 9.64640- 4 1.10000+ 1 3.00000+ 1 1.52900- 3 1.05704- 3 1.10000+ 1 3.20000+ 1 2.33435- 3 1.16923- 3 1.10000+ 1 3.30000+ 1 3.73156- 3 1.18292- 3 1.10000+ 1 3.50000+ 1 1.89078- 3 1.30586- 3 1.10000+ 1 3.60000+ 1 1.44140- 3 1.30779- 3 1.10000+ 1 4.10000+ 1 5.80401- 4 1.25455- 3 1.10000+ 1 4.30000+ 1 7.21609- 4 1.27738- 3 1.10000+ 1 4.40000+ 1 2.02030- 4 1.29196- 3 1.10000+ 1 5.80000+ 1 4.41339- 5 1.31162- 3 1.30000+ 1 1.60000+ 1 4.87896- 2 8.28000- 5 1.30000+ 1 1.80000+ 1 5.14487- 2 2.65500- 4 1.30000+ 1 1.90000+ 1 2.66598- 2 6.23200- 4 1.30000+ 1 2.10000+ 1 1.66375- 2 9.15100- 4 1.30000+ 1 2.20000+ 1 3.18056- 2 9.79030- 4 1.30000+ 1 2.40000+ 1 1.54073- 1 1.36517- 3 1.30000+ 1 2.50000+ 1 2.43943- 1 1.38297- 3 1.30000+ 1 2.70000+ 1 1.27886- 2 1.51047- 3 1.30000+ 1 2.90000+ 1 1.07889- 2 1.58634- 3 1.30000+ 1 3.00000+ 1 6.51681- 3 1.67874- 3 1.30000+ 1 3.20000+ 1 3.74338- 3 1.79093- 3 1.30000+ 1 3.30000+ 1 6.76039- 3 1.80462- 3 1.30000+ 1 3.50000+ 1 9.63086- 3 1.92756- 3 1.30000+ 1 3.60000+ 1 1.53690- 2 1.92949- 3 1.30000+ 1 4.10000+ 1 2.47624- 3 1.87625- 3 1.30000+ 1 4.30000+ 1 1.69426- 3 1.89908- 3 1.30000+ 1 4.40000+ 1 8.85784- 4 1.91366- 3 1.30000+ 1 5.80000+ 1 1.89678- 4 1.93332- 3 1.40000+ 1 1.60000+ 1 7.15987- 3 3.38700- 4 1.40000+ 1 1.80000+ 1 5.83487- 2 5.21400- 4 1.40000+ 1 1.90000+ 1 4.36146- 3 8.79100- 4 1.40000+ 1 2.10000+ 1 2.95291- 3 1.17100- 3 1.40000+ 1 2.20000+ 1 2.89447- 3 1.23493- 3 1.40000+ 1 2.40000+ 1 9.41411- 3 1.62107- 3 1.40000+ 1 2.50000+ 1 5.22922- 3 1.63887- 3 1.40000+ 1 2.70000+ 1 1.26083- 3 1.76637- 3 1.40000+ 1 2.90000+ 1 9.14593- 3 1.84224- 3 1.40000+ 1 3.00000+ 1 8.90175- 4 1.93464- 3 1.40000+ 1 3.20000+ 1 2.63975- 4 2.04683- 3 1.40000+ 1 3.30000+ 1 5.37437- 4 2.06052- 3 1.40000+ 1 3.50000+ 1 8.40052- 4 2.18346- 3 1.40000+ 1 3.60000+ 1 3.68898- 4 2.18539- 3 1.40000+ 1 4.10000+ 1 2.24835- 4 2.13215- 3 1.40000+ 1 4.30000+ 1 1.34310- 3 2.15498- 3 1.40000+ 1 4.40000+ 1 1.17245- 4 2.16956- 3 1.40000+ 1 5.80000+ 1 1.69879- 5 2.18922- 3 1.60000+ 1 1.60000+ 1 3.26244- 4 2.85200- 3 1.60000+ 1 1.80000+ 1 5.42100- 3 3.03470- 3 1.60000+ 1 1.90000+ 1 5.97540- 4 3.39240- 3 1.60000+ 1 2.10000+ 1 2.56518- 4 3.68430- 3 1.60000+ 1 2.20000+ 1 5.92042- 4 3.74823- 3 1.60000+ 1 2.40000+ 1 7.14207- 5 4.13437- 3 1.60000+ 1 2.50000+ 1 4.16801- 4 4.15217- 3 1.60000+ 1 2.70000+ 1 1.32419- 4 4.27967- 3 1.60000+ 1 2.90000+ 1 8.47386- 4 4.35554- 3 1.60000+ 1 3.00000+ 1 1.35452- 4 4.44794- 3 1.60000+ 1 3.20000+ 1 3.41009- 5 4.56013- 3 1.60000+ 1 3.30000+ 1 1.08745- 4 4.57382- 3 1.60000+ 1 3.50000+ 1 4.35744- 6 4.69676- 3 1.60000+ 1 3.60000+ 1 2.27343- 5 4.69869- 3 1.60000+ 1 4.10000+ 1 2.44394- 5 4.64545- 3 1.60000+ 1 4.30000+ 1 1.25040- 4 4.66828- 3 1.60000+ 1 4.40000+ 1 1.81880- 5 4.68286- 3 1.60000+ 1 5.80000+ 1 1.89458- 6 4.70252- 3 1.80000+ 1 1.80000+ 1 4.29474- 3 3.21740- 3 1.80000+ 1 1.90000+ 1 1.09087- 2 3.57510- 3 1.80000+ 1 2.10000+ 1 1.11863- 2 3.86700- 3 1.80000+ 1 2.20000+ 1 1.71747- 2 3.93093- 3 1.80000+ 1 2.40000+ 1 7.03266- 3 4.31707- 3 1.80000+ 1 2.50000+ 1 1.11465- 2 4.33487- 3 1.80000+ 1 2.70000+ 1 1.46412- 3 4.46237- 3 1.80000+ 1 2.90000+ 1 1.81084- 3 4.53824- 3 1.80000+ 1 3.00000+ 1 2.73591- 3 4.63064- 3 1.80000+ 1 3.20000+ 1 2.37552- 3 4.74283- 3 1.80000+ 1 3.30000+ 1 3.54151- 3 4.75652- 3 1.80000+ 1 3.50000+ 1 6.08330- 4 4.87946- 3 1.80000+ 1 3.60000+ 1 9.12975- 4 4.88139- 3 1.80000+ 1 4.10000+ 1 2.87965- 4 4.82815- 3 1.80000+ 1 4.30000+ 1 2.87024- 4 4.85098- 3 1.80000+ 1 4.40000+ 1 3.75120- 4 4.86556- 3 1.80000+ 1 5.80000+ 1 2.21654- 5 4.88522- 3 1.90000+ 1 1.90000+ 1 2.49131- 4 3.93280- 3 1.90000+ 1 2.10000+ 1 5.47333- 4 4.22470- 3 1.90000+ 1 2.20000+ 1 5.46953- 4 4.28863- 3 1.90000+ 1 2.40000+ 1 4.26792- 3 4.67477- 3 1.90000+ 1 2.50000+ 1 1.20878- 3 4.69257- 3 1.90000+ 1 2.70000+ 1 1.01548- 4 4.82007- 3 1.90000+ 1 2.90000+ 1 1.73261- 3 4.89594- 3 1.90000+ 1 3.00000+ 1 1.05335- 4 4.98834- 3 1.90000+ 1 3.20000+ 1 8.88547- 5 5.10053- 3 1.90000+ 1 3.30000+ 1 1.03818- 4 5.11422- 3 1.90000+ 1 3.50000+ 1 3.00654- 4 5.23716- 3 1.90000+ 1 3.60000+ 1 8.56317- 5 5.23909- 3 1.90000+ 1 4.10000+ 1 1.81881- 5 5.18585- 3 1.90000+ 1 4.30000+ 1 2.56520- 4 5.20868- 3 1.90000+ 1 4.40000+ 1 1.40189- 5 5.22326- 3 1.90000+ 1 5.80000+ 1 1.32610- 6 5.24292- 3 2.10000+ 1 2.10000+ 1 4.57904- 4 4.51660- 3 2.10000+ 1 2.20000+ 1 7.27299- 4 4.58053- 3 2.10000+ 1 2.40000+ 1 4.60366- 4 4.96667- 3 2.10000+ 1 2.50000+ 1 4.99583- 4 4.98447- 3 2.10000+ 1 2.70000+ 1 6.74445- 5 5.11197- 3 2.10000+ 1 2.90000+ 1 1.71401- 3 5.18784- 3 2.10000+ 1 3.00000+ 1 1.31300- 4 5.28024- 3 2.10000+ 1 3.20000+ 1 1.56299- 4 5.39243- 3 2.10000+ 1 3.30000+ 1 1.36786- 4 5.40612- 3 2.10000+ 1 3.50000+ 1 1.91352- 5 5.52906- 3 2.10000+ 1 3.60000+ 1 2.76604- 5 5.53099- 3 2.10000+ 1 4.10000+ 1 1.30717- 5 5.47775- 3 2.10000+ 1 4.30000+ 1 2.51595- 4 5.50058- 3 2.10000+ 1 4.40000+ 1 1.78086- 5 5.51516- 3 2.10000+ 1 5.80000+ 1 9.47244- 7 5.53482- 3 2.20000+ 1 2.20000+ 1 1.97601- 4 4.64446- 3 2.20000+ 1 2.40000+ 1 7.00209- 4 5.03060- 3 2.20000+ 1 2.50000+ 1 2.07261- 4 5.04840- 3 2.20000+ 1 2.70000+ 1 1.23519- 4 5.17590- 3 2.20000+ 1 2.90000+ 1 2.65343- 3 5.25177- 3 2.20000+ 1 3.00000+ 1 1.04013- 4 5.34417- 3 2.20000+ 1 3.20000+ 1 1.02871- 4 5.45636- 3 2.20000+ 1 3.30000+ 1 6.87714- 5 5.47005- 3 2.20000+ 1 3.50000+ 1 2.23562- 5 5.59299- 3 2.20000+ 1 3.60000+ 1 1.02308- 5 5.59492- 3 2.20000+ 1 4.10000+ 1 2.29238- 5 5.54168- 3 2.20000+ 1 4.30000+ 1 3.90273- 4 5.56451- 3 2.20000+ 1 4.40000+ 1 1.34514- 5 5.57909- 3 2.20000+ 1 5.80000+ 1 1.70519- 6 5.59875- 3 2.40000+ 1 2.40000+ 1 1.81241- 3 5.41674- 3 2.40000+ 1 2.50000+ 1 1.15133- 2 5.43454- 3 2.40000+ 1 2.70000+ 1 1.34512- 5 5.56204- 3 2.40000+ 1 2.90000+ 1 9.90615- 4 5.63791- 3 2.40000+ 1 3.00000+ 1 1.00501- 3 5.73031- 3 2.40000+ 1 3.20000+ 1 9.43470- 5 5.84250- 3 2.40000+ 1 3.30000+ 1 1.87936- 4 5.85619- 3 2.40000+ 1 3.50000+ 1 2.54245- 4 5.97913- 3 2.40000+ 1 3.60000+ 1 7.62510- 4 5.98106- 3 2.40000+ 1 4.10000+ 1 2.46285- 6 5.92782- 3 2.40000+ 1 4.30000+ 1 1.44363- 4 5.95065- 3 2.40000+ 1 4.40000+ 1 1.36202- 4 5.96523- 3 2.40000+ 1 5.80000+ 1 1.89458- 7 5.98489- 3 2.50000+ 1 2.50000+ 1 5.96401- 4 5.45234- 3 2.50000+ 1 2.70000+ 1 9.05612- 5 5.57984- 3 2.50000+ 1 2.90000+ 1 1.51287- 3 5.65571- 3 2.50000+ 1 3.00000+ 1 2.49505- 4 5.74811- 3 2.50000+ 1 3.20000+ 1 1.02872- 4 5.86030- 3 2.50000+ 1 3.30000+ 1 4.52795- 5 5.87399- 3 2.50000+ 1 3.50000+ 1 7.75071- 4 5.99693- 3 2.50000+ 1 3.60000+ 1 7.99501- 5 5.99886- 3 2.50000+ 1 4.10000+ 1 1.68629- 5 5.94562- 3 2.50000+ 1 4.30000+ 1 2.16546- 4 5.96845- 3 2.50000+ 1 4.40000+ 1 3.29655- 5 5.98303- 3 2.50000+ 1 5.80000+ 1 1.32613- 6 6.00269- 3 2.70000+ 1 2.70000+ 1 1.32610- 5 5.70734- 3 2.70000+ 1 2.90000+ 1 2.30557- 4 5.78321- 3 2.70000+ 1 3.00000+ 1 2.27344- 5 5.87561- 3 2.70000+ 1 3.20000+ 1 8.52549- 6 5.98780- 3 2.70000+ 1 3.30000+ 1 2.31128- 5 6.00149- 3 2.70000+ 1 3.50000+ 1 7.57791- 7 6.12443- 3 2.70000+ 1 3.60000+ 1 4.92585- 6 6.12636- 3 2.70000+ 1 4.10000+ 1 4.92585- 6 6.07312- 3 2.70000+ 1 4.30000+ 1 3.41010- 5 6.09595- 3 2.70000+ 1 4.40000+ 1 3.03126- 6 6.11053- 3 2.70000+ 1 5.80000+ 1 3.78907- 7 6.13019- 3 2.90000+ 1 2.90000+ 1 1.77515- 4 5.85908- 3 2.90000+ 1 3.00000+ 1 4.38020- 4 5.95148- 3 2.90000+ 1 3.20000+ 1 3.66773- 4 6.06367- 3 2.90000+ 1 3.30000+ 1 5.51687- 4 6.07736- 3 2.90000+ 1 3.50000+ 1 8.54434- 5 6.20030- 3 2.90000+ 1 3.60000+ 1 1.25232- 4 6.20223- 3 2.90000+ 1 4.10000+ 1 4.54690- 5 6.14899- 3 2.90000+ 1 4.30000+ 1 5.55091- 5 6.17182- 3 2.90000+ 1 4.40000+ 1 6.02458- 5 6.18640- 3 2.90000+ 1 5.80000+ 1 3.41012- 6 6.20606- 3 3.00000+ 1 3.00000+ 1 1.09883- 5 6.04388- 3 3.00000+ 1 3.20000+ 1 2.14083- 5 6.15607- 3 3.00000+ 1 3.30000+ 1 1.97033- 5 6.16976- 3 3.00000+ 1 3.50000+ 1 7.10469- 5 6.29270- 3 3.00000+ 1 3.60000+ 1 1.76199- 5 6.29463- 3 3.00000+ 1 4.10000+ 1 3.97861- 6 6.24139- 3 3.00000+ 1 4.30000+ 1 6.49843- 5 6.26422- 3 3.00000+ 1 4.40000+ 1 2.84191- 6 6.27880- 3 3.00000+ 1 5.80000+ 1 3.78919- 7 6.29846- 3 3.20000+ 1 3.20000+ 1 1.26930- 5 6.26826- 3 3.20000+ 1 3.30000+ 1 2.10288- 5 6.28195- 3 3.20000+ 1 3.50000+ 1 4.16794- 6 6.40489- 3 3.20000+ 1 3.60000+ 1 6.44122- 6 6.40682- 3 3.20000+ 1 4.10000+ 1 1.70514- 6 6.35358- 3 3.20000+ 1 4.30000+ 1 5.39929- 5 6.37641- 3 3.20000+ 1 4.40000+ 1 2.84176- 6 6.39099- 3 3.20000+ 1 5.80000+ 1 1.89455- 7 6.41065- 3 3.30000+ 1 3.30000+ 1 6.25223- 6 6.29564- 3 3.30000+ 1 3.50000+ 1 7.38884- 6 6.41858- 3 3.30000+ 1 3.60000+ 1 2.27355- 6 6.42051- 3 3.30000+ 1 4.10000+ 1 4.35767- 6 6.36727- 3 3.30000+ 1 4.30000+ 1 8.12766- 5 6.39010- 3 3.30000+ 1 4.40000+ 1 2.65241- 6 6.40468- 3 3.30000+ 1 5.80000+ 1 3.78926- 7 6.42434- 3 3.50000+ 1 3.50000+ 1 8.71483- 6 6.54152- 3 3.50000+ 1 3.60000+ 1 5.32363- 5 6.54345- 3 3.50000+ 1 4.10000+ 1 1.89460- 7 6.49021- 3 3.50000+ 1 4.30000+ 1 1.23138- 5 6.51304- 3 3.50000+ 1 4.40000+ 1 9.66174- 6 6.52762- 3 3.60000+ 1 3.60000+ 1 2.65234- 6 6.54538- 3 3.60000+ 1 4.10000+ 1 9.47258- 7 6.49214- 3 3.60000+ 1 4.30000+ 1 1.79980- 5 6.51497- 3 3.60000+ 1 4.40000+ 1 2.27348- 6 6.52955- 3 4.10000+ 1 4.10000+ 1 3.78906- 7 6.43890- 3 4.10000+ 1 4.30000+ 1 6.63076- 6 6.46173- 3 4.10000+ 1 4.40000+ 1 5.68353- 7 6.47631- 3 4.30000+ 1 4.30000+ 1 4.35745- 6 6.48456- 3 4.30000+ 1 4.40000+ 1 8.90422- 6 6.49914- 3 4.30000+ 1 5.80000+ 1 5.68355- 7 6.51880- 3 4.40000+ 1 4.40000+ 1 1.89460- 7 6.51372- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.34840- 5 6.21700- 4 1.40000+ 1 3.71589- 4 8.77600- 4 1.60000+ 1 2.90539- 3 3.39090- 3 2.10000+ 1 1.29850- 3 4.22320- 3 2.20000+ 1 9.52368- 3 4.28713- 3 2.70000+ 1 7.56349- 4 4.81857- 3 3.20000+ 1 3.02849- 4 5.09903- 3 3.30000+ 1 2.27730- 3 5.11272- 3 4.10000+ 1 1.50610- 4 5.18435- 3 5.80000+ 1 1.22300- 5 5.24142- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 7.84895- 3 4.77700- 5 1.30000+ 1 2.50000+ 1 1.35146- 2 6.55700- 5 1.30000+ 1 2.70000+ 1 4.35760- 3 1.93070- 4 1.30000+ 1 2.90000+ 1 4.41387- 3 2.68940- 4 1.30000+ 1 3.00000+ 1 1.18322- 2 3.61340- 4 1.30000+ 1 3.20000+ 1 2.39075- 3 4.73530- 4 1.30000+ 1 3.30000+ 1 2.74134- 3 4.87220- 4 1.30000+ 1 3.50000+ 1 8.27523- 4 6.10160- 4 1.30000+ 1 3.60000+ 1 1.40185- 3 6.12090- 4 1.30000+ 1 4.10000+ 1 8.06652- 4 5.58850- 4 1.30000+ 1 4.30000+ 1 6.85581- 4 5.81680- 4 1.30000+ 1 4.40000+ 1 1.51243- 3 5.96260- 4 1.30000+ 1 5.80000+ 1 6.05317- 5 6.15920- 4 1.40000+ 1 2.40000+ 1 2.48044- 1 3.03670- 4 1.40000+ 1 2.50000+ 1 2.97750- 1 3.21470- 4 1.40000+ 1 2.70000+ 1 2.66593- 2 4.48970- 4 1.40000+ 1 2.90000+ 1 2.94005- 2 5.24840- 4 1.40000+ 1 3.00000+ 1 2.72005- 2 6.17240- 4 1.40000+ 1 3.20000+ 1 9.32617- 3 7.29430- 4 1.40000+ 1 3.30000+ 1 1.39508- 2 7.43120- 4 1.40000+ 1 3.50000+ 1 1.17969- 2 8.66060- 4 1.40000+ 1 3.60000+ 1 1.30606- 2 8.67990- 4 1.40000+ 1 4.10000+ 1 5.08767- 3 8.14750- 4 1.40000+ 1 4.30000+ 1 4.60630- 3 8.37580- 4 1.40000+ 1 4.40000+ 1 3.58572- 3 8.52160- 4 1.40000+ 1 5.80000+ 1 3.89954- 4 8.71820- 4 1.60000+ 1 1.60000+ 1 1.59682- 5 1.53460- 3 1.60000+ 1 1.80000+ 1 2.43086- 4 1.71730- 3 1.60000+ 1 1.90000+ 1 7.81090- 3 2.07500- 3 1.60000+ 1 2.10000+ 1 5.58391- 4 2.36690- 3 1.60000+ 1 2.20000+ 1 7.76445- 4 2.43083- 3 1.60000+ 1 2.40000+ 1 2.79340- 3 2.81697- 3 1.60000+ 1 2.50000+ 1 5.05763- 3 2.83477- 3 1.60000+ 1 2.70000+ 1 1.26315- 5 2.96227- 3 1.60000+ 1 2.90000+ 1 2.50234- 5 3.03814- 3 1.60000+ 1 3.00000+ 1 1.19486- 3 3.13054- 3 1.60000+ 1 3.20000+ 1 9.62805- 5 3.24273- 3 1.60000+ 1 3.30000+ 1 1.32271- 4 3.25642- 3 1.60000+ 1 3.50000+ 1 1.70410- 4 3.37936- 3 1.60000+ 1 3.60000+ 1 2.90515- 4 3.38129- 3 1.60000+ 1 4.10000+ 1 2.62156- 6 3.32805- 3 1.60000+ 1 4.30000+ 1 3.33650- 6 3.35088- 3 1.60000+ 1 4.40000+ 1 1.48954- 4 3.36546- 3 1.60000+ 1 5.80000+ 1 2.38324- 7 3.38512- 3 1.80000+ 1 1.80000+ 1 1.21543- 5 1.90000- 3 1.80000+ 1 1.90000+ 1 1.01167- 2 2.25770- 3 1.80000+ 1 2.10000+ 1 2.69069- 4 2.54960- 3 1.80000+ 1 2.20000+ 1 2.50681- 3 2.61353- 3 1.80000+ 1 2.40000+ 1 1.39409- 3 2.99967- 3 1.80000+ 1 2.50000+ 1 6.34943- 3 3.01747- 3 1.80000+ 1 2.70000+ 1 6.33920- 5 3.14497- 3 1.80000+ 1 2.90000+ 1 9.05605- 6 3.22084- 3 1.80000+ 1 3.00000+ 1 1.60054- 3 3.31324- 3 1.80000+ 1 3.20000+ 1 5.71973- 5 3.42543- 3 1.80000+ 1 3.30000+ 1 4.16350- 4 3.43912- 3 1.80000+ 1 3.50000+ 1 7.10190- 5 3.56206- 3 1.80000+ 1 3.60000+ 1 3.37463- 4 3.56399- 3 1.80000+ 1 4.10000+ 1 1.21543- 5 3.51075- 3 1.80000+ 1 4.30000+ 1 1.66819- 6 3.53358- 3 1.80000+ 1 4.40000+ 1 2.00909- 4 3.54816- 3 1.80000+ 1 5.80000+ 1 9.53257- 7 3.56782- 3 1.90000+ 1 1.90000+ 1 1.22591- 2 2.61540- 3 1.90000+ 1 2.10000+ 1 1.85193- 2 2.90730- 3 1.90000+ 1 2.20000+ 1 2.37501- 2 2.97123- 3 1.90000+ 1 2.40000+ 1 1.80483- 2 3.35737- 3 1.90000+ 1 2.50000+ 1 2.04858- 2 3.37517- 3 1.90000+ 1 2.70000+ 1 2.09151- 3 3.50267- 3 1.90000+ 1 2.90000+ 1 2.52650- 3 3.57854- 3 1.90000+ 1 3.00000+ 1 4.97130- 3 3.67094- 3 1.90000+ 1 3.20000+ 1 3.75913- 3 3.78313- 3 1.90000+ 1 3.30000+ 1 4.81064- 3 3.79682- 3 1.90000+ 1 3.50000+ 1 1.43760- 3 3.91976- 3 1.90000+ 1 3.60000+ 1 1.56097- 3 3.92169- 3 1.90000+ 1 4.10000+ 1 4.09685- 4 3.86845- 3 1.90000+ 1 4.30000+ 1 4.09929- 4 3.89128- 3 1.90000+ 1 4.40000+ 1 6.58501- 4 3.90586- 3 1.90000+ 1 5.80000+ 1 3.14590- 5 3.92552- 3 2.10000+ 1 2.10000+ 1 1.36796- 4 3.19920- 3 2.10000+ 1 2.20000+ 1 3.18103- 3 3.26313- 3 2.10000+ 1 2.40000+ 1 5.41221- 4 3.64927- 3 2.10000+ 1 2.50000+ 1 6.01188- 3 3.66707- 3 2.10000+ 1 2.70000+ 1 7.17331- 5 3.79457- 3 2.10000+ 1 2.90000+ 1 1.02480- 5 3.87044- 3 2.10000+ 1 3.00000+ 1 2.83959- 3 3.96284- 3 2.10000+ 1 3.20000+ 1 4.55176- 5 4.07503- 3 2.10000+ 1 3.30000+ 1 5.55753- 4 4.08872- 3 2.10000+ 1 3.50000+ 1 3.50328- 5 4.21166- 3 2.10000+ 1 3.60000+ 1 2.65967- 4 4.21359- 3 2.10000+ 1 4.10000+ 1 1.19155- 5 4.16035- 3 2.10000+ 1 4.30000+ 1 1.42987- 6 4.18318- 3 2.10000+ 1 4.40000+ 1 3.53908- 4 4.19776- 3 2.10000+ 1 5.80000+ 1 9.53248- 7 4.21742- 3 2.20000+ 1 2.20000+ 1 1.33103- 3 3.32706- 3 2.20000+ 1 2.40000+ 1 4.61943- 3 3.71320- 3 2.20000+ 1 2.50000+ 1 3.72113- 3 3.73100- 3 2.20000+ 1 2.70000+ 1 1.12735- 4 3.85850- 3 2.20000+ 1 2.90000+ 1 2.38083- 4 3.93437- 3 2.20000+ 1 3.00000+ 1 3.59032- 3 4.02677- 3 2.20000+ 1 3.20000+ 1 5.43857- 4 4.13896- 3 2.20000+ 1 3.30000+ 1 4.70210- 4 4.15265- 3 2.20000+ 1 3.50000+ 1 2.76936- 4 4.27559- 3 2.20000+ 1 3.60000+ 1 2.10682- 4 4.27752- 3 2.20000+ 1 4.10000+ 1 1.93039- 5 4.22428- 3 2.20000+ 1 4.30000+ 1 3.16971- 5 4.24711- 3 2.20000+ 1 4.40000+ 1 4.46134- 4 4.26169- 3 2.20000+ 1 5.80000+ 1 1.42991- 6 4.28135- 3 2.40000+ 1 2.40000+ 1 8.37944- 4 4.09934- 3 2.40000+ 1 2.50000+ 1 2.14824- 2 4.11714- 3 2.40000+ 1 2.70000+ 1 3.03386- 4 4.24464- 3 2.40000+ 1 2.90000+ 1 2.72406- 4 4.32051- 3 2.40000+ 1 3.00000+ 1 2.61987- 3 4.41291- 3 2.40000+ 1 3.20000+ 1 1.27499- 4 4.52510- 3 2.40000+ 1 3.30000+ 1 8.75370- 4 4.53879- 3 2.40000+ 1 3.50000+ 1 1.14630- 4 4.66173- 3 2.40000+ 1 3.60000+ 1 1.27126- 3 4.66366- 3 2.40000+ 1 4.10000+ 1 5.02859- 5 4.61042- 3 2.40000+ 1 4.30000+ 1 4.19454- 5 4.63325- 3 2.40000+ 1 4.40000+ 1 3.24117- 4 4.64783- 3 2.40000+ 1 5.80000+ 1 3.81315- 6 4.66749- 3 2.50000+ 1 2.50000+ 1 8.55965- 3 4.13494- 3 2.50000+ 1 2.70000+ 1 5.50292- 4 4.26244- 3 2.50000+ 1 2.90000+ 1 1.20778- 3 4.33831- 3 2.50000+ 1 3.00000+ 1 3.12699- 3 4.43071- 3 2.50000+ 1 3.20000+ 1 1.20139- 3 4.54290- 3 2.50000+ 1 3.30000+ 1 7.72887- 4 4.55659- 3 2.50000+ 1 3.50000+ 1 1.28214- 3 4.67953- 3 2.50000+ 1 3.60000+ 1 1.03096- 3 4.68146- 3 2.50000+ 1 4.10000+ 1 9.00901- 5 4.62822- 3 2.50000+ 1 4.30000+ 1 1.86370- 4 4.65105- 3 2.50000+ 1 4.40000+ 1 3.92760- 4 4.66563- 3 2.50000+ 1 5.80000+ 1 6.67310- 6 4.68529- 3 2.70000+ 1 2.70000+ 1 1.66821- 6 4.38994- 3 2.70000+ 1 2.90000+ 1 7.86453- 6 4.46581- 3 2.70000+ 1 3.00000+ 1 3.21975- 4 4.55821- 3 2.70000+ 1 3.20000+ 1 1.38227- 5 4.67040- 3 2.70000+ 1 3.30000+ 1 2.04949- 5 4.68409- 3 2.70000+ 1 3.50000+ 1 1.81129- 5 4.80703- 3 2.70000+ 1 3.60000+ 1 3.14581- 5 4.80896- 3 2.70000+ 1 4.10000+ 1 7.14957- 7 4.75572- 3 2.70000+ 1 4.30000+ 1 1.19157- 6 4.77855- 3 2.70000+ 1 4.40000+ 1 4.02760- 5 4.79313- 3 2.90000+ 1 2.90000+ 1 4.76643- 7 4.54168- 3 2.90000+ 1 3.00000+ 1 4.02047- 4 4.63408- 3 2.90000+ 1 3.20000+ 1 2.14485- 6 4.74627- 3 2.90000+ 1 3.30000+ 1 4.26593- 5 4.75996- 3 2.90000+ 1 3.50000+ 1 1.69218- 5 4.88290- 3 2.90000+ 1 3.60000+ 1 7.45962- 5 4.88483- 3 2.90000+ 1 4.10000+ 1 1.42990- 6 4.83159- 3 2.90000+ 1 4.30000+ 1 2.38327- 7 4.85442- 3 2.90000+ 1 4.40000+ 1 5.05247- 5 4.86900- 3 3.00000+ 1 3.00000+ 1 4.73074- 4 4.72648- 3 3.00000+ 1 3.20000+ 1 5.79363- 4 4.83867- 3 3.00000+ 1 3.30000+ 1 7.29504- 4 4.85236- 3 3.00000+ 1 3.50000+ 1 2.09020- 4 4.97530- 3 3.00000+ 1 3.60000+ 1 2.34982- 4 4.97723- 3 3.00000+ 1 4.10000+ 1 6.31553- 5 4.92399- 3 3.00000+ 1 4.30000+ 1 6.53000- 5 4.94682- 3 3.00000+ 1 4.40000+ 1 1.23931- 4 4.96140- 3 3.00000+ 1 5.80000+ 1 4.76644- 6 4.98106- 3 3.20000+ 1 3.20000+ 1 3.81311- 6 4.95086- 3 3.20000+ 1 3.30000+ 1 1.04145- 4 4.96455- 3 3.20000+ 1 3.50000+ 1 7.38794- 6 5.08749- 3 3.20000+ 1 3.60000+ 1 5.76735- 5 5.08942- 3 3.20000+ 1 4.10000+ 1 2.38324- 6 5.03618- 3 3.20000+ 1 4.30000+ 1 2.38324- 7 5.05901- 3 3.20000+ 1 4.40000+ 1 7.22101- 5 5.07359- 3 3.20000+ 1 5.80000+ 1 2.38324- 7 5.09325- 3 3.30000+ 1 3.30000+ 1 4.43281- 5 4.97824- 3 3.30000+ 1 3.50000+ 1 5.62440- 5 5.10118- 3 3.30000+ 1 3.60000+ 1 4.48053- 5 5.10311- 3 3.30000+ 1 4.10000+ 1 3.57488- 6 5.04987- 3 3.30000+ 1 4.30000+ 1 5.71986- 6 5.07270- 3 3.30000+ 1 4.40000+ 1 9.07991- 5 5.08728- 3 3.30000+ 1 5.80000+ 1 2.38329- 7 5.10694- 3 3.50000+ 1 3.50000+ 1 3.81307- 6 5.22412- 3 3.50000+ 1 3.60000+ 1 8.10281- 5 5.22605- 3 3.50000+ 1 4.10000+ 1 2.85983- 6 5.17281- 3 3.50000+ 1 4.30000+ 1 2.62153- 6 5.19564- 3 3.50000+ 1 4.40000+ 1 2.57390- 5 5.21022- 3 3.50000+ 1 5.80000+ 1 2.38321- 7 5.22988- 3 3.60000+ 1 3.60000+ 1 3.14580- 5 5.22798- 3 3.60000+ 1 4.10000+ 1 5.00469- 6 5.17474- 3 3.60000+ 1 4.30000+ 1 1.16780- 5 5.19757- 3 3.60000+ 1 4.40000+ 1 2.93136- 5 5.21215- 3 3.60000+ 1 5.80000+ 1 4.76638- 7 5.23181- 3 4.10000+ 1 4.30000+ 1 2.38326- 7 5.14433- 3 4.10000+ 1 4.40000+ 1 7.86456- 6 5.15891- 3 4.30000+ 1 4.40000+ 1 8.10299- 6 5.18174- 3 4.40000+ 1 4.40000+ 1 8.10293- 6 5.19632- 3 4.40000+ 1 5.80000+ 1 7.14954- 7 5.21598- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.75741- 3 2.95190- 3 1.90000+ 1 2.16661- 4 3.30960- 3 2.40000+ 1 5.84062- 2 4.05157- 3 2.90000+ 1 6.54642- 4 4.27274- 3 3.00000+ 1 5.19902- 5 4.36514- 3 3.50000+ 1 4.89101- 3 4.61396- 3 4.30000+ 1 1.08700- 4 4.58548- 3 4.40000+ 1 7.44342- 6 4.60006- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 3.09535- 3 0.00000+ 0 1.40000+ 1 3.20000+ 1 4.47974- 2 1.07730- 4 1.40000+ 1 3.30000+ 1 6.39832- 3 1.21420- 4 1.40000+ 1 3.50000+ 1 3.46047- 2 2.44360- 4 1.40000+ 1 3.60000+ 1 3.59160- 3 2.46290- 4 1.40000+ 1 4.10000+ 1 8.66096- 4 1.93050- 4 1.40000+ 1 4.30000+ 1 3.96381- 4 2.15880- 4 1.40000+ 1 4.40000+ 1 7.36986- 4 2.30460- 4 1.40000+ 1 5.80000+ 1 6.54573- 5 2.50120- 4 1.60000+ 1 1.80000+ 1 5.99410- 4 1.09560- 3 1.60000+ 1 1.90000+ 1 6.52750- 4 1.45330- 3 1.60000+ 1 2.10000+ 1 2.55454- 2 1.74520- 3 1.60000+ 1 2.20000+ 1 3.10741- 3 1.80913- 3 1.60000+ 1 2.40000+ 1 1.64253- 2 2.19527- 3 1.60000+ 1 2.50000+ 1 3.38864- 3 2.21307- 3 1.60000+ 1 2.70000+ 1 1.27272- 5 2.34057- 3 1.60000+ 1 2.90000+ 1 1.32126- 4 2.41644- 3 1.60000+ 1 3.00000+ 1 1.05451- 4 2.50884- 3 1.60000+ 1 3.20000+ 1 3.45595- 3 2.62103- 3 1.60000+ 1 3.30000+ 1 4.57587- 4 2.63472- 3 1.60000+ 1 3.50000+ 1 9.26690- 4 2.75766- 3 1.60000+ 1 3.60000+ 1 1.49703- 4 2.75959- 3 1.60000+ 1 4.10000+ 1 3.03031- 6 2.70635- 3 1.60000+ 1 4.30000+ 1 2.06069- 5 2.72918- 3 1.60000+ 1 4.40000+ 1 1.33344- 5 2.74376- 3 1.80000+ 1 1.80000+ 1 1.81821- 4 1.27830- 3 1.80000+ 1 1.90000+ 1 2.72254- 3 1.63600- 3 1.80000+ 1 2.10000+ 1 2.32007- 2 1.92790- 3 1.80000+ 1 2.20000+ 1 1.15339- 3 1.99183- 3 1.80000+ 1 2.40000+ 1 1.35982- 2 2.37797- 3 1.80000+ 1 2.50000+ 1 7.99492- 3 2.39577- 3 1.80000+ 1 2.70000+ 1 7.33359- 5 2.52327- 3 1.80000+ 1 2.90000+ 1 9.27304- 5 2.59914- 3 1.80000+ 1 3.00000+ 1 4.92134- 4 2.69154- 3 1.80000+ 1 3.20000+ 1 3.09475- 3 2.80373- 3 1.80000+ 1 3.30000+ 1 1.89102- 4 2.81742- 3 1.80000+ 1 3.50000+ 1 7.42447- 4 2.94036- 3 1.80000+ 1 3.60000+ 1 4.40623- 4 2.94229- 3 1.80000+ 1 4.10000+ 1 1.27273- 5 2.88905- 3 1.80000+ 1 4.30000+ 1 1.45459- 5 2.91188- 3 1.80000+ 1 4.40000+ 1 6.36385- 5 2.92646- 3 1.80000+ 1 5.80000+ 1 6.06095- 7 2.94612- 3 1.90000+ 1 1.90000+ 1 9.37017- 4 1.99370- 3 1.90000+ 1 2.10000+ 1 4.28880- 2 2.28560- 3 1.90000+ 1 2.20000+ 1 1.62548- 3 2.34953- 3 1.90000+ 1 2.40000+ 1 1.47577- 3 2.73567- 3 1.90000+ 1 2.50000+ 1 1.40127- 3 2.75347- 3 1.90000+ 1 2.70000+ 1 1.27883- 4 2.88097- 3 1.90000+ 1 2.90000+ 1 4.08507- 4 2.95684- 3 1.90000+ 1 3.00000+ 1 3.22430- 4 3.04924- 3 1.90000+ 1 3.20000+ 1 5.79783- 3 3.16143- 3 1.90000+ 1 3.30000+ 1 2.53340- 4 3.17512- 3 1.90000+ 1 3.50000+ 1 6.06099- 5 3.29806- 3 1.90000+ 1 3.60000+ 1 5.39426- 5 3.29999- 3 1.90000+ 1 4.10000+ 1 2.30310- 5 3.24675- 3 1.90000+ 1 4.30000+ 1 6.00027- 5 3.26958- 3 1.90000+ 1 4.40000+ 1 4.12132- 5 3.28416- 3 1.90000+ 1 5.80000+ 1 1.81822- 6 3.30382- 3 2.10000+ 1 2.10000+ 1 4.02649- 2 2.57750- 3 2.10000+ 1 2.20000+ 1 7.78593- 2 2.64143- 3 2.10000+ 1 2.40000+ 1 4.87799- 2 3.02757- 3 2.10000+ 1 2.50000+ 1 5.70152- 2 3.04537- 3 2.10000+ 1 2.70000+ 1 6.09911- 3 3.17287- 3 2.10000+ 1 2.90000+ 1 5.85252- 3 3.24874- 3 2.10000+ 1 3.00000+ 1 1.04295- 2 3.34114- 3 2.10000+ 1 3.20000+ 1 1.37432- 2 3.45333- 3 2.10000+ 1 3.30000+ 1 1.55958- 2 3.46702- 3 2.10000+ 1 3.50000+ 1 3.89845- 3 3.58996- 3 2.10000+ 1 3.60000+ 1 4.43476- 3 3.59189- 3 2.10000+ 1 4.10000+ 1 1.17638- 3 3.53865- 3 2.10000+ 1 4.30000+ 1 9.52137- 4 3.56148- 3 2.10000+ 1 4.40000+ 1 1.42006- 3 3.57606- 3 2.10000+ 1 5.80000+ 1 8.97029- 5 3.59572- 3 2.20000+ 1 2.20000+ 1 1.21580- 3 2.70536- 3 2.20000+ 1 2.40000+ 1 5.88916- 2 3.09150- 3 2.20000+ 1 2.50000+ 1 2.68617- 3 3.10930- 3 2.20000+ 1 2.70000+ 1 3.38805- 4 3.23680- 3 2.20000+ 1 2.90000+ 1 1.48495- 4 3.31267- 3 2.20000+ 1 3.00000+ 1 3.10922- 4 3.40507- 3 2.20000+ 1 3.20000+ 1 1.05372- 2 3.51726- 3 2.20000+ 1 3.30000+ 1 3.92125- 4 3.53095- 3 2.20000+ 1 3.50000+ 1 4.25581- 3 3.65389- 3 2.20000+ 1 3.60000+ 1 1.70315- 4 3.65582- 3 2.20000+ 1 4.10000+ 1 5.63649- 5 3.60258- 3 2.20000+ 1 4.30000+ 1 2.18183- 5 3.62541- 3 2.20000+ 1 4.40000+ 1 4.06077- 5 3.63999- 3 2.20000+ 1 5.80000+ 1 4.24253- 6 3.65965- 3 2.40000+ 1 2.40000+ 1 5.86902- 2 3.47764- 3 2.40000+ 1 2.50000+ 1 1.66929- 1 3.49544- 3 2.40000+ 1 2.70000+ 1 4.23639- 3 3.62294- 3 2.40000+ 1 2.90000+ 1 2.59956- 3 3.69881- 3 2.40000+ 1 3.00000+ 1 3.61232- 4 3.79121- 3 2.40000+ 1 3.20000+ 1 7.30073- 3 3.90340- 3 2.40000+ 1 3.30000+ 1 1.11502- 2 3.91709- 3 2.40000+ 1 3.50000+ 1 8.17477- 3 4.04003- 3 2.40000+ 1 3.60000+ 1 1.21788- 2 4.04196- 3 2.40000+ 1 4.10000+ 1 8.24877- 4 3.98872- 3 2.40000+ 1 4.30000+ 1 4.12124- 4 4.01155- 3 2.40000+ 1 4.40000+ 1 4.96992- 5 4.02613- 3 2.40000+ 1 5.80000+ 1 6.36377- 5 4.04579- 3 2.50000+ 1 2.50000+ 1 3.42505- 3 3.51324- 3 2.50000+ 1 2.70000+ 1 5.97612- 4 3.64074- 3 2.50000+ 1 2.90000+ 1 7.67312- 4 3.71661- 3 2.50000+ 1 3.00000+ 1 3.04864- 4 3.80901- 3 2.50000+ 1 3.20000+ 1 6.96154- 3 3.92120- 3 2.50000+ 1 3.30000+ 1 4.70937- 4 3.93489- 3 2.50000+ 1 3.50000+ 1 1.01198- 2 4.05783- 3 2.50000+ 1 3.60000+ 1 4.54568- 4 4.05976- 3 2.50000+ 1 4.10000+ 1 1.06062- 4 4.00652- 3 2.50000+ 1 4.30000+ 1 1.04853- 4 4.02935- 3 2.50000+ 1 4.40000+ 1 4.06081- 5 4.04393- 3 2.50000+ 1 5.80000+ 1 7.87915- 6 4.06359- 3 2.70000+ 1 2.70000+ 1 1.21211- 6 3.76824- 3 2.70000+ 1 2.90000+ 1 1.93944- 5 3.84411- 3 2.70000+ 1 3.00000+ 1 2.12121- 5 3.93651- 3 2.70000+ 1 3.20000+ 1 8.30939- 4 4.04870- 3 2.70000+ 1 3.30000+ 1 5.63649- 5 4.06239- 3 2.70000+ 1 3.50000+ 1 2.56374- 4 4.18533- 3 2.70000+ 1 3.60000+ 1 3.45467- 5 4.18726- 3 2.70000+ 1 4.10000+ 1 6.06094- 7 4.13402- 3 2.70000+ 1 4.30000+ 1 3.03032- 6 4.15685- 3 2.70000+ 1 4.40000+ 1 2.42422- 6 4.17143- 3 2.90000+ 1 2.90000+ 1 1.21210- 5 3.91998- 3 2.90000+ 1 3.00000+ 1 8.06085- 5 4.01238- 3 2.90000+ 1 3.20000+ 1 7.85472- 4 4.12457- 3 2.90000+ 1 3.30000+ 1 2.90916- 5 4.13826- 3 2.90000+ 1 3.50000+ 1 1.47884- 4 4.26120- 3 2.90000+ 1 3.60000+ 1 4.48497- 5 4.26313- 3 2.90000+ 1 4.10000+ 1 3.63640- 6 4.20989- 3 2.90000+ 1 4.30000+ 1 3.63640- 6 4.23272- 3 2.90000+ 1 4.40000+ 1 1.03034- 5 4.24730- 3 3.00000+ 1 3.00000+ 1 2.84861- 5 4.10478- 3 3.00000+ 1 3.20000+ 1 1.41886- 3 4.21697- 3 3.00000+ 1 3.30000+ 1 5.15182- 5 4.23066- 3 3.00000+ 1 3.50000+ 1 1.81824- 5 4.35360- 3 3.00000+ 1 3.60000+ 1 1.21213- 5 4.35553- 3 3.00000+ 1 4.10000+ 1 4.24260- 6 4.30229- 3 3.00000+ 1 4.30000+ 1 1.21213- 5 4.32512- 3 3.00000+ 1 4.40000+ 1 7.27317- 6 4.33970- 3 3.20000+ 1 3.20000+ 1 1.11643- 3 4.32916- 3 3.20000+ 1 3.30000+ 1 2.12430- 3 4.34285- 3 3.20000+ 1 3.50000+ 1 5.81227- 4 4.46579- 3 3.20000+ 1 3.60000+ 1 5.49719- 4 4.46772- 3 3.20000+ 1 4.10000+ 1 1.60000- 4 4.41448- 3 3.20000+ 1 4.30000+ 1 1.27882- 4 4.43731- 3 3.20000+ 1 4.40000+ 1 1.93336- 4 4.45189- 3 3.20000+ 1 5.80000+ 1 1.21211- 5 4.47155- 3 3.30000+ 1 3.30000+ 1 3.15180- 5 4.35654- 3 3.30000+ 1 3.50000+ 1 8.16408- 4 4.47948- 3 3.30000+ 1 3.60000+ 1 3.03036- 5 4.48141- 3 3.30000+ 1 4.10000+ 1 9.69767- 6 4.42817- 3 3.30000+ 1 4.30000+ 1 4.24258- 6 4.45100- 3 3.30000+ 1 4.40000+ 1 6.66703- 6 4.46558- 3 3.30000+ 1 5.80000+ 1 6.06101- 7 4.48524- 3 3.50000+ 1 3.50000+ 1 2.67892- 4 4.60242- 3 3.50000+ 1 3.60000+ 1 7.55808- 4 4.60435- 3 3.50000+ 1 4.10000+ 1 5.03056- 5 4.55111- 3 3.50000+ 1 4.30000+ 1 2.36373- 5 4.57394- 3 3.50000+ 1 4.40000+ 1 2.42426- 6 4.58852- 3 3.50000+ 1 5.80000+ 1 3.63648- 6 4.60818- 3 3.60000+ 1 3.60000+ 1 1.45459- 5 4.60628- 3 3.60000+ 1 4.10000+ 1 6.66696- 6 4.55304- 3 3.60000+ 1 4.30000+ 1 6.06095- 6 4.57587- 3 3.60000+ 1 4.40000+ 1 1.81821- 6 4.59045- 3 3.60000+ 1 5.80000+ 1 6.06095- 7 4.61011- 3 4.10000+ 1 4.30000+ 1 6.06102- 7 4.52263- 3 4.10000+ 1 4.40000+ 1 6.06102- 7 4.53721- 3 4.30000+ 1 4.30000+ 1 5.00293- 7 4.54546- 3 4.30000+ 1 4.40000+ 1 1.50081- 6 4.56004- 3 4.40000+ 1 4.40000+ 1 6.06102- 7 4.57462- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.68911- 3 3.05370- 3 2.40000+ 1 2.75301- 3 3.79567- 3 2.50000+ 1 5.39592- 2 3.81347- 3 3.00000+ 1 4.02552- 4 4.10924- 3 3.50000+ 1 2.24921- 4 4.35806- 3 3.60000+ 1 4.32722- 3 4.35999- 3 4.40000+ 1 5.75973- 5 4.34416- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 5.95958- 5 6.57000- 4 1.60000+ 1 1.80000+ 1 3.66354- 4 8.39700- 4 1.60000+ 1 1.90000+ 1 1.30109- 3 1.19740- 3 1.60000+ 1 2.10000+ 1 3.13985- 3 1.48930- 3 1.60000+ 1 2.20000+ 1 2.92149- 2 1.55323- 3 1.60000+ 1 2.40000+ 1 3.97527- 3 1.93937- 3 1.60000+ 1 2.50000+ 1 1.74361- 2 1.95717- 3 1.60000+ 1 2.70000+ 1 2.57193- 5 2.08467- 3 1.60000+ 1 2.90000+ 1 3.57568- 5 2.16054- 3 1.60000+ 1 3.00000+ 1 2.15797- 4 2.25294- 3 1.60000+ 1 3.20000+ 1 4.17166- 4 2.36513- 3 1.60000+ 1 3.30000+ 1 3.92135- 3 2.37882- 3 1.60000+ 1 3.50000+ 1 1.68759- 4 2.50176- 3 1.60000+ 1 3.60000+ 1 8.55668- 4 2.50369- 3 1.60000+ 1 4.10000+ 1 5.64607- 6 2.45045- 3 1.60000+ 1 4.30000+ 1 5.64607- 6 2.47328- 3 1.60000+ 1 4.40000+ 1 2.69754- 5 2.48786- 3 1.60000+ 1 5.80000+ 1 6.27340- 7 2.50752- 3 1.80000+ 1 1.80000+ 1 3.63848- 5 1.02240- 3 1.80000+ 1 1.90000+ 1 4.40509- 3 1.38010- 3 1.80000+ 1 2.10000+ 1 2.25841- 4 1.67200- 3 1.80000+ 1 2.20000+ 1 2.97551- 2 1.73593- 3 1.80000+ 1 2.40000+ 1 2.44282- 3 2.12207- 3 1.80000+ 1 2.50000+ 1 1.17359- 2 2.13987- 3 1.80000+ 1 2.70000+ 1 4.20301- 5 2.26737- 3 1.80000+ 1 2.90000+ 1 8.15528- 6 2.34324- 3 1.80000+ 1 3.00000+ 1 7.33335- 4 2.43564- 3 1.80000+ 1 3.20000+ 1 5.64606- 6 2.54783- 3 1.80000+ 1 3.30000+ 1 3.96977- 3 2.56152- 3 1.80000+ 1 3.50000+ 1 1.29231- 4 2.68446- 3 1.80000+ 1 3.60000+ 1 5.73392- 4 2.68639- 3 1.80000+ 1 4.10000+ 1 6.90073- 6 2.63315- 3 1.80000+ 1 4.30000+ 1 1.25467- 6 2.65598- 3 1.80000+ 1 4.40000+ 1 9.28454- 5 2.67056- 3 1.80000+ 1 5.80000+ 1 6.27339- 7 2.69022- 3 1.90000+ 1 1.90000+ 1 2.48418- 3 1.73780- 3 1.90000+ 1 2.10000+ 1 2.59201- 3 2.02970- 3 1.90000+ 1 2.20000+ 1 4.16110- 2 2.09363- 3 1.90000+ 1 2.40000+ 1 1.72575- 3 2.47977- 3 1.90000+ 1 2.50000+ 1 2.46411- 3 2.49757- 3 1.90000+ 1 2.70000+ 1 2.71003- 4 2.62507- 3 1.90000+ 1 2.90000+ 1 5.80905- 4 2.70094- 3 1.90000+ 1 3.00000+ 1 8.41264- 4 2.79334- 3 1.90000+ 1 3.20000+ 1 4.46033- 4 2.90553- 3 1.90000+ 1 3.30000+ 1 5.51860- 3 2.91922- 3 1.90000+ 1 3.50000+ 1 7.27699- 5 3.04216- 3 1.90000+ 1 3.60000+ 1 9.47271- 5 3.04409- 3 1.90000+ 1 4.10000+ 1 5.01877- 5 2.99085- 3 1.90000+ 1 4.30000+ 1 8.40625- 5 3.01368- 3 1.90000+ 1 4.40000+ 1 1.07894- 4 3.02826- 3 1.90000+ 1 5.80000+ 1 3.76392- 6 3.04792- 3 2.10000+ 1 2.10000+ 1 5.78992- 4 2.32160- 3 2.10000+ 1 2.20000+ 1 5.99679- 2 2.38553- 3 2.10000+ 1 2.40000+ 1 2.56009- 3 2.77167- 3 2.10000+ 1 2.50000+ 1 3.55004- 2 2.78947- 3 2.10000+ 1 2.70000+ 1 3.13649- 4 2.91697- 3 2.10000+ 1 2.90000+ 1 6.90058- 5 2.99284- 3 2.10000+ 1 3.00000+ 1 4.42896- 4 3.08524- 3 2.10000+ 1 3.20000+ 1 1.78151- 4 3.19743- 3 2.10000+ 1 3.30000+ 1 8.06036- 3 3.21112- 3 2.10000+ 1 3.50000+ 1 1.80038- 4 3.33406- 3 2.10000+ 1 3.60000+ 1 2.47602- 3 3.33599- 3 2.10000+ 1 4.10000+ 1 5.14404- 5 3.28275- 3 2.10000+ 1 4.30000+ 1 1.06643- 5 3.30558- 3 2.10000+ 1 4.40000+ 1 5.70864- 5 3.32016- 3 2.10000+ 1 5.80000+ 1 3.76381- 6 3.33982- 3 2.20000+ 1 2.20000+ 1 6.55486- 2 2.44946- 3 2.20000+ 1 2.40000+ 1 5.62760- 2 2.83560- 3 2.20000+ 1 2.50000+ 1 9.08816- 2 2.85340- 3 2.20000+ 1 2.70000+ 1 6.54927- 3 2.98090- 3 2.20000+ 1 2.90000+ 1 7.11720- 3 3.05677- 3 2.20000+ 1 3.00000+ 1 1.02163- 2 3.14917- 3 2.20000+ 1 3.20000+ 1 1.19885- 2 3.26136- 3 2.20000+ 1 3.30000+ 1 2.19371- 2 3.27505- 3 2.20000+ 1 3.50000+ 1 4.47718- 3 3.39799- 3 2.20000+ 1 3.60000+ 1 6.71003- 3 3.39992- 3 2.20000+ 1 4.10000+ 1 1.25397- 3 3.34668- 3 2.20000+ 1 4.30000+ 1 1.14553- 3 3.36951- 3 2.20000+ 1 4.40000+ 1 1.39395- 3 3.38409- 3 2.20000+ 1 5.80000+ 1 9.59817- 5 3.40375- 3 2.40000+ 1 2.40000+ 1 5.14083- 3 3.22174- 3 2.40000+ 1 2.50000+ 1 1.62775- 1 3.23954- 3 2.40000+ 1 2.70000+ 1 7.97318- 4 3.36704- 3 2.40000+ 1 2.90000+ 1 5.30078- 4 3.44291- 3 2.40000+ 1 3.00000+ 1 3.57560- 4 3.53531- 3 2.40000+ 1 3.20000+ 1 4.89302- 4 3.64750- 3 2.40000+ 1 3.30000+ 1 7.09886- 3 3.66119- 3 2.40000+ 1 3.50000+ 1 7.12003- 4 3.78413- 3 2.40000+ 1 3.60000+ 1 9.53054- 3 3.78606- 3 2.40000+ 1 4.10000+ 1 1.46160- 4 3.73282- 3 2.40000+ 1 4.30000+ 1 8.40600- 5 3.75565- 3 2.40000+ 1 4.40000+ 1 4.76762- 5 3.77023- 3 2.40000+ 1 5.80000+ 1 1.12913- 5 3.78989- 3 2.50000+ 1 2.50000+ 1 1.10659- 1 3.25734- 3 2.50000+ 1 2.70000+ 1 4.46839- 3 3.38484- 3 2.50000+ 1 2.90000+ 1 2.85688- 3 3.46071- 3 2.50000+ 1 3.00000+ 1 5.53922- 4 3.55311- 3 2.50000+ 1 3.20000+ 1 6.51470- 3 3.66530- 3 2.50000+ 1 3.30000+ 1 1.41082- 2 3.67899- 3 2.50000+ 1 3.50000+ 1 1.19485- 2 3.80193- 3 2.50000+ 1 3.60000+ 1 1.44747- 2 3.80386- 3 2.50000+ 1 4.10000+ 1 8.69474- 4 3.75062- 3 2.50000+ 1 4.30000+ 1 4.62954- 4 3.77345- 3 2.50000+ 1 4.40000+ 1 7.52804- 5 3.78803- 3 2.50000+ 1 5.80000+ 1 6.83791- 5 3.80769- 3 2.70000+ 1 2.90000+ 1 1.25467- 6 3.58821- 3 2.70000+ 1 3.00000+ 1 4.70492- 5 3.68061- 3 2.70000+ 1 3.20000+ 1 4.89314- 5 3.79280- 3 2.70000+ 1 3.30000+ 1 8.84532- 4 3.80649- 3 2.70000+ 1 3.50000+ 1 4.51681- 5 3.92943- 3 2.70000+ 1 3.60000+ 1 2.47797- 4 3.93136- 3 2.70000+ 1 4.40000+ 1 6.27339- 6 3.91553- 3 2.90000+ 1 3.00000+ 1 1.04767- 4 3.75648- 3 2.90000+ 1 3.20000+ 1 4.39115- 6 3.86867- 3 2.90000+ 1 3.30000+ 1 9.65423- 4 3.88236- 3 2.90000+ 1 3.50000+ 1 2.82299- 5 4.00530- 3 2.90000+ 1 3.60000+ 1 1.47421- 4 4.00723- 3 2.90000+ 1 4.40000+ 1 1.31735- 5 3.99140- 3 3.00000+ 1 3.00000+ 1 7.08885- 5 3.84888- 3 3.00000+ 1 3.20000+ 1 8.15543- 5 3.96107- 3 3.00000+ 1 3.30000+ 1 1.36002- 3 3.97476- 3 3.00000+ 1 3.50000+ 1 1.75652- 5 4.09770- 3 3.00000+ 1 3.60000+ 1 2.57197- 5 4.09963- 3 3.00000+ 1 4.10000+ 1 8.78277- 6 4.04639- 3 3.00000+ 1 4.30000+ 1 1.50560- 5 4.06922- 3 3.00000+ 1 4.40000+ 1 1.81922- 5 4.08380- 3 3.00000+ 1 5.80000+ 1 6.27350- 7 4.10346- 3 3.20000+ 1 3.20000+ 1 1.25468- 5 4.07326- 3 3.20000+ 1 3.30000+ 1 1.62231- 3 4.08695- 3 3.20000+ 1 3.50000+ 1 3.45029- 5 4.20989- 3 3.20000+ 1 3.60000+ 1 4.65474- 4 4.21182- 3 3.20000+ 1 4.10000+ 1 8.15535- 6 4.15858- 3 3.20000+ 1 4.30000+ 1 6.27344- 7 4.18141- 3 3.20000+ 1 4.40000+ 1 1.06646- 5 4.19599- 3 3.20000+ 1 5.80000+ 1 6.27344- 7 4.21565- 3 3.30000+ 1 3.30000+ 1 1.75340- 3 4.10064- 3 3.30000+ 1 3.50000+ 1 5.70879- 4 4.22358- 3 3.30000+ 1 3.60000+ 1 1.03511- 3 4.22551- 3 3.30000+ 1 4.10000+ 1 1.69380- 4 4.17227- 3 3.30000+ 1 4.30000+ 1 1.55581- 4 4.19510- 3 3.30000+ 1 4.40000+ 1 1.85694- 4 4.20968- 3 3.30000+ 1 5.80000+ 1 1.31737- 5 4.22934- 3 3.50000+ 1 3.50000+ 1 2.32111- 5 4.34652- 3 3.50000+ 1 3.60000+ 1 7.16412- 4 4.34845- 3 3.50000+ 1 4.10000+ 1 8.78262- 6 4.29521- 3 3.50000+ 1 4.30000+ 1 4.39121- 6 4.31804- 3 3.50000+ 1 4.40000+ 1 2.50922- 6 4.33262- 3 3.50000+ 1 5.80000+ 1 6.27339- 7 4.35228- 3 3.60000+ 1 3.60000+ 1 4.56067- 4 4.35038- 3 3.60000+ 1 4.10000+ 1 4.89317- 5 4.29714- 3 3.60000+ 1 4.30000+ 1 2.44654- 5 4.31997- 3 3.60000+ 1 4.40000+ 1 3.76392- 6 4.33455- 3 3.60000+ 1 5.80000+ 1 3.76392- 6 4.35421- 3 4.10000+ 1 4.40000+ 1 1.25471- 6 4.28131- 3 4.30000+ 1 4.40000+ 1 1.88201- 6 4.30414- 3 4.40000+ 1 4.40000+ 1 1.25471- 6 4.31872- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.24540- 5 1.82700- 4 1.90000+ 1 7.00601- 4 5.40400- 4 2.90000+ 1 4.38801- 4 1.50354- 3 3.00000+ 1 4.99511- 5 1.59594- 3 4.30000+ 1 8.40161- 5 1.81628- 3 4.40000+ 1 1.18780- 5 1.83086- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 5.40696- 2 3.45300- 5 1.80000+ 1 3.30000+ 1 8.52237- 2 4.82200- 5 1.80000+ 1 3.50000+ 1 2.88146- 2 1.71160- 4 1.80000+ 1 3.60000+ 1 3.07156- 2 1.73090- 4 1.80000+ 1 4.10000+ 1 8.18840- 3 1.19850- 4 1.80000+ 1 4.30000+ 1 6.68836- 3 1.42680- 4 1.80000+ 1 4.40000+ 1 7.96115- 3 1.57260- 4 1.80000+ 1 5.80000+ 1 5.98828- 4 1.76920- 4 1.90000+ 1 2.50000+ 1 1.71402- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.21399- 2 1.11770- 4 1.90000+ 1 2.90000+ 1 3.99716- 2 1.87640- 4 1.90000+ 1 3.00000+ 1 2.96714- 2 2.80040- 4 1.90000+ 1 3.20000+ 1 2.51661- 2 3.92230- 4 1.90000+ 1 3.30000+ 1 3.10381- 2 4.05920- 4 1.90000+ 1 3.50000+ 1 2.18906- 3 5.28860- 4 1.90000+ 1 3.60000+ 1 3.61230- 3 5.30790- 4 1.90000+ 1 4.10000+ 1 6.08419- 3 4.77550- 4 1.90000+ 1 4.30000+ 1 6.18470- 3 5.00380- 4 1.90000+ 1 4.40000+ 1 4.12807- 3 5.14960- 4 1.90000+ 1 5.80000+ 1 4.54800- 4 5.34620- 4 2.10000+ 1 2.40000+ 1 3.02322- 3 2.58370- 4 2.10000+ 1 2.50000+ 1 3.25180- 3 2.76170- 4 2.10000+ 1 2.70000+ 1 1.46407- 2 4.03670- 4 2.10000+ 1 2.90000+ 1 5.43380- 3 4.79540- 4 2.10000+ 1 3.00000+ 1 3.70365- 3 5.71940- 4 2.10000+ 1 3.20000+ 1 1.55020- 3 6.84130- 4 2.10000+ 1 3.30000+ 1 3.60427- 3 6.97820- 4 2.10000+ 1 3.50000+ 1 1.48329- 3 8.20760- 4 2.10000+ 1 3.60000+ 1 1.47374- 3 8.22690- 4 2.10000+ 1 4.10000+ 1 2.01100- 3 7.69450- 4 2.10000+ 1 4.30000+ 1 8.11078- 4 7.92280- 4 2.10000+ 1 4.40000+ 1 4.17080- 4 8.06860- 4 2.10000+ 1 5.80000+ 1 1.47196- 4 8.26520- 4 2.20000+ 1 2.40000+ 1 3.82508- 3 3.22300- 4 2.20000+ 1 2.50000+ 1 5.06083- 3 3.40100- 4 2.20000+ 1 2.70000+ 1 2.01947- 2 4.67600- 4 2.20000+ 1 2.90000+ 1 7.77086- 3 5.43470- 4 2.20000+ 1 3.00000+ 1 4.82133- 3 6.35870- 4 2.20000+ 1 3.20000+ 1 2.80809- 3 7.48060- 4 2.20000+ 1 3.30000+ 1 3.25781- 3 7.61750- 4 2.20000+ 1 3.50000+ 1 1.60446- 3 8.84690- 4 2.20000+ 1 3.60000+ 1 2.13986- 3 8.86620- 4 2.20000+ 1 4.10000+ 1 2.75223- 3 8.33380- 4 2.20000+ 1 4.30000+ 1 1.04237- 3 8.56210- 4 2.20000+ 1 4.40000+ 1 6.04357- 4 8.70790- 4 2.20000+ 1 5.80000+ 1 2.01053- 4 8.90450- 4 2.40000+ 1 2.40000+ 1 7.81865- 3 7.08440- 4 2.40000+ 1 2.50000+ 1 1.44347- 2 7.26240- 4 2.40000+ 1 2.70000+ 1 1.80939- 2 8.53740- 4 2.40000+ 1 2.90000+ 1 2.54334- 3 9.29610- 4 2.40000+ 1 3.00000+ 1 1.26617- 2 1.02201- 3 2.40000+ 1 3.20000+ 1 1.13969- 3 1.13420- 3 2.40000+ 1 3.30000+ 1 7.29321- 4 1.14789- 3 2.40000+ 1 3.50000+ 1 5.94701- 4 1.27083- 3 2.40000+ 1 3.60000+ 1 5.58148- 4 1.27276- 3 2.40000+ 1 4.10000+ 1 2.06380- 3 1.21952- 3 2.40000+ 1 4.30000+ 1 3.01931- 4 1.24235- 3 2.40000+ 1 4.40000+ 1 1.29930- 3 1.25693- 3 2.40000+ 1 5.80000+ 1 1.46845- 4 1.27659- 3 2.50000+ 1 2.50000+ 1 1.28287- 2 7.44040- 4 2.50000+ 1 2.70000+ 1 2.32809- 2 8.71540- 4 2.50000+ 1 2.90000+ 1 1.06503- 3 9.47410- 4 2.50000+ 1 3.00000+ 1 1.27108- 2 1.03981- 3 2.50000+ 1 3.20000+ 1 6.33119- 4 1.15200- 3 2.50000+ 1 3.30000+ 1 1.59452- 3 1.16569- 3 2.50000+ 1 3.50000+ 1 5.96216- 4 1.28863- 3 2.50000+ 1 3.60000+ 1 9.53318- 4 1.29056- 3 2.50000+ 1 4.10000+ 1 2.64153- 3 1.23732- 3 2.50000+ 1 4.30000+ 1 1.22801- 4 1.26015- 3 2.50000+ 1 4.40000+ 1 1.24538- 3 1.27473- 3 2.50000+ 1 5.80000+ 1 1.87863- 4 1.29439- 3 2.70000+ 1 2.70000+ 1 1.83288- 2 9.99040- 4 2.70000+ 1 2.90000+ 1 2.78250- 2 1.07491- 3 2.70000+ 1 3.00000+ 1 4.19247- 2 1.16731- 3 2.70000+ 1 3.20000+ 1 4.43545- 2 1.27950- 3 2.70000+ 1 3.30000+ 1 6.05113- 2 1.29319- 3 2.70000+ 1 3.50000+ 1 2.44027- 2 1.41613- 3 2.70000+ 1 3.60000+ 1 2.98949- 2 1.41806- 3 2.70000+ 1 4.10000+ 1 5.80687- 3 1.36482- 3 2.70000+ 1 4.30000+ 1 4.54599- 3 1.38765- 3 2.70000+ 1 4.40000+ 1 5.67998- 3 1.40223- 3 2.70000+ 1 5.80000+ 1 4.35556- 4 1.42189- 3 2.90000+ 1 2.90000+ 1 2.09137- 3 1.15078- 3 2.90000+ 1 3.00000+ 1 1.01124- 2 1.24318- 3 2.90000+ 1 3.20000+ 1 3.91815- 3 1.35537- 3 2.90000+ 1 3.30000+ 1 2.56559- 3 1.36906- 3 2.90000+ 1 3.50000+ 1 1.27137- 3 1.49200- 3 2.90000+ 1 3.60000+ 1 6.96505- 4 1.49393- 3 2.90000+ 1 4.10000+ 1 3.25685- 3 1.44069- 3 2.90000+ 1 4.30000+ 1 5.41354- 4 1.46352- 3 2.90000+ 1 4.40000+ 1 1.00866- 3 1.47810- 3 2.90000+ 1 5.80000+ 1 2.32760- 4 1.49776- 3 3.00000+ 1 3.00000+ 1 4.49138- 3 1.33558- 3 3.00000+ 1 3.20000+ 1 1.78988- 3 1.44777- 3 3.00000+ 1 3.30000+ 1 5.68000- 3 1.46146- 3 3.00000+ 1 3.50000+ 1 7.13439- 3 1.58440- 3 3.00000+ 1 3.60000+ 1 8.71303- 3 1.58633- 3 3.00000+ 1 4.10000+ 1 5.13853- 3 1.53309- 3 3.00000+ 1 4.30000+ 1 1.46719- 3 1.55592- 3 3.00000+ 1 4.40000+ 1 1.06333- 3 1.57050- 3 3.00000+ 1 5.80000+ 1 3.70317- 4 1.59016- 3 3.20000+ 1 3.20000+ 1 1.11969- 3 1.55996- 3 3.20000+ 1 3.30000+ 1 3.96751- 3 1.57365- 3 3.20000+ 1 3.50000+ 1 6.01299- 4 1.69659- 3 3.20000+ 1 3.60000+ 1 4.30248- 4 1.69852- 3 3.20000+ 1 4.10000+ 1 5.26188- 3 1.64528- 3 3.20000+ 1 4.30000+ 1 4.86684- 4 1.66811- 3 3.20000+ 1 4.40000+ 1 1.46357- 4 1.68269- 3 3.20000+ 1 5.80000+ 1 3.77352- 4 1.70235- 3 3.30000+ 1 3.30000+ 1 2.33810- 3 1.58734- 3 3.30000+ 1 3.50000+ 1 4.69049- 4 1.71028- 3 3.30000+ 1 3.60000+ 1 8.69342- 4 1.71221- 3 3.30000+ 1 4.10000+ 1 7.15748- 3 1.65897- 3 3.30000+ 1 4.30000+ 1 2.76845- 4 1.68180- 3 3.30000+ 1 4.40000+ 1 6.03066- 4 1.69638- 3 3.30000+ 1 5.80000+ 1 5.13134- 4 1.71604- 3 3.50000+ 1 3.50000+ 1 9.16981- 5 1.83322- 3 3.50000+ 1 3.60000+ 1 1.69279- 4 1.83515- 3 3.50000+ 1 4.10000+ 1 2.76146- 3 1.78191- 3 3.50000+ 1 4.30000+ 1 1.44596- 4 1.80474- 3 3.50000+ 1 4.40000+ 1 7.68837- 4 1.81932- 3 3.50000+ 1 5.80000+ 1 1.95739- 4 1.83898- 3 3.60000+ 1 3.60000+ 1 1.42832- 4 1.83708- 3 3.60000+ 1 4.10000+ 1 3.37152- 3 1.78384- 3 3.60000+ 1 4.30000+ 1 7.05334- 5 1.80667- 3 3.60000+ 1 4.40000+ 1 9.25798- 4 1.82125- 3 3.60000+ 1 5.80000+ 1 2.39823- 4 1.84091- 3 4.10000+ 1 4.10000+ 1 4.21442- 4 1.73060- 3 4.10000+ 1 4.30000+ 1 5.36057- 4 1.75343- 3 4.10000+ 1 4.40000+ 1 6.84186- 4 1.76801- 3 4.10000+ 1 5.80000+ 1 6.17166- 5 1.78767- 3 4.30000+ 1 4.30000+ 1 3.35041- 5 1.77626- 3 4.30000+ 1 4.40000+ 1 1.42832- 4 1.79084- 3 4.30000+ 1 5.80000+ 1 3.87940- 5 1.81050- 3 4.40000+ 1 4.40000+ 1 5.99554- 5 1.80542- 3 4.40000+ 1 5.80000+ 1 4.93748- 5 1.82508- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.15251- 3 6.49600- 4 2.70000+ 1 2.53511- 4 1.24497- 3 3.20000+ 1 5.66033- 5 1.52543- 3 4.10000+ 1 5.20633- 5 1.61075- 3 5.80000+ 1 4.24092- 6 1.66782- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 9.88660- 3 4.94000- 6 1.90000+ 1 3.00000+ 1 1.00869- 2 9.73400- 5 1.90000+ 1 3.20000+ 1 6.36712- 3 2.09530- 4 1.90000+ 1 3.30000+ 1 8.92985- 3 2.23220- 4 1.90000+ 1 3.50000+ 1 2.15281- 3 3.46160- 4 1.90000+ 1 3.60000+ 1 3.10053- 3 3.48090- 4 1.90000+ 1 4.10000+ 1 1.35122- 3 2.94850- 4 1.90000+ 1 4.30000+ 1 1.60024- 3 3.17680- 4 1.90000+ 1 4.40000+ 1 1.11277- 3 3.32260- 4 1.90000+ 1 5.80000+ 1 1.00162- 4 3.51920- 4 2.10000+ 1 2.40000+ 1 5.14707- 2 7.56700- 5 2.10000+ 1 2.50000+ 1 1.60252- 1 9.34700- 5 2.10000+ 1 2.70000+ 1 2.30999- 2 2.20970- 4 2.10000+ 1 2.90000+ 1 1.93652- 2 2.96840- 4 2.10000+ 1 3.00000+ 1 2.03925- 2 3.89240- 4 2.10000+ 1 3.20000+ 1 1.09604- 2 5.01430- 4 2.10000+ 1 3.30000+ 1 1.50412- 2 5.15120- 4 2.10000+ 1 3.50000+ 1 2.57118- 3 6.38060- 4 2.10000+ 1 3.60000+ 1 4.77343- 3 6.39990- 4 2.10000+ 1 4.10000+ 1 4.43404- 3 5.86750- 4 2.10000+ 1 4.30000+ 1 2.92831- 3 6.09580- 4 2.10000+ 1 4.40000+ 1 2.75105- 3 6.24160- 4 2.10000+ 1 5.80000+ 1 3.41750- 4 6.43820- 4 2.20000+ 1 2.40000+ 1 3.69469- 2 1.39600- 4 2.20000+ 1 2.50000+ 1 9.04825- 3 1.57400- 4 2.20000+ 1 2.70000+ 1 3.57213- 3 2.84900- 4 2.20000+ 1 2.90000+ 1 1.59297- 2 3.60770- 4 2.20000+ 1 3.00000+ 1 2.77014- 3 4.53170- 4 2.20000+ 1 3.20000+ 1 1.36467- 3 5.65360- 4 2.20000+ 1 3.30000+ 1 1.57707- 3 5.79050- 4 2.20000+ 1 3.50000+ 1 5.93271- 4 7.01990- 4 2.20000+ 1 3.60000+ 1 4.07749- 4 7.03920- 4 2.20000+ 1 4.10000+ 1 5.22547- 4 6.50680- 4 2.20000+ 1 4.30000+ 1 1.63625- 3 6.73510- 4 2.20000+ 1 4.40000+ 1 2.81144- 4 6.88090- 4 2.20000+ 1 5.80000+ 1 3.85935- 5 7.07750- 4 2.40000+ 1 2.40000+ 1 1.43302- 3 5.25740- 4 2.40000+ 1 2.50000+ 1 6.97086- 3 5.43540- 4 2.40000+ 1 2.70000+ 1 3.80394- 3 6.71040- 4 2.40000+ 1 2.90000+ 1 1.40055- 2 7.46910- 4 2.40000+ 1 3.00000+ 1 1.35352- 3 8.39310- 4 2.40000+ 1 3.20000+ 1 4.50520- 3 9.51500- 4 2.40000+ 1 3.30000+ 1 4.10976- 3 9.65190- 4 2.40000+ 1 3.50000+ 1 7.50007- 4 1.08813- 3 2.40000+ 1 3.60000+ 1 5.33825- 4 1.09006- 3 2.40000+ 1 4.10000+ 1 7.32762- 4 1.03682- 3 2.40000+ 1 4.30000+ 1 1.47399- 3 1.05965- 3 2.40000+ 1 4.40000+ 1 1.59162- 4 1.07423- 3 2.40000+ 1 5.80000+ 1 5.57109- 5 1.09389- 3 2.50000+ 1 2.50000+ 1 3.90166- 4 5.61340- 4 2.50000+ 1 2.70000+ 1 2.02685- 3 6.88840- 4 2.50000+ 1 2.90000+ 1 2.11635- 2 7.64710- 4 2.50000+ 1 3.00000+ 1 1.09444- 3 8.57110- 4 2.50000+ 1 3.20000+ 1 9.79220- 3 9.69300- 4 2.50000+ 1 3.30000+ 1 9.58219- 4 9.82990- 4 2.50000+ 1 3.50000+ 1 1.40615- 4 1.10593- 3 2.50000+ 1 3.60000+ 1 9.47504- 5 1.10786- 3 2.50000+ 1 4.10000+ 1 2.84076- 4 1.05462- 3 2.50000+ 1 4.30000+ 1 2.12154- 3 1.07745- 3 2.50000+ 1 4.40000+ 1 1.23045- 4 1.09203- 3 2.50000+ 1 5.80000+ 1 2.07596- 5 1.11169- 3 2.70000+ 1 2.70000+ 1 2.85607- 3 8.16340- 4 2.70000+ 1 2.90000+ 1 3.63595- 2 8.92210- 4 2.70000+ 1 3.00000+ 1 6.85252- 3 9.84610- 4 2.70000+ 1 3.20000+ 1 9.54295- 3 1.09680- 3 2.70000+ 1 3.30000+ 1 6.22920- 3 1.11049- 3 2.70000+ 1 3.50000+ 1 9.06286- 4 1.23343- 3 2.70000+ 1 3.60000+ 1 1.87223- 3 1.23536- 3 2.70000+ 1 4.10000+ 1 8.37813- 4 1.18212- 3 2.70000+ 1 4.30000+ 1 3.64076- 3 1.20495- 3 2.70000+ 1 4.40000+ 1 8.31142- 4 1.21953- 3 2.70000+ 1 5.80000+ 1 6.18957- 5 1.23919- 3 2.90000+ 1 2.90000+ 1 2.52926- 2 9.68080- 4 2.90000+ 1 3.00000+ 1 6.37920- 2 1.06048- 3 2.90000+ 1 3.20000+ 1 5.37259- 2 1.17267- 3 2.90000+ 1 3.30000+ 1 8.88058- 2 1.18636- 3 2.90000+ 1 3.50000+ 1 3.25961- 2 1.30930- 3 2.90000+ 1 3.60000+ 1 4.33738- 2 1.31123- 3 2.90000+ 1 4.10000+ 1 7.19724- 3 1.25799- 3 2.90000+ 1 4.30000+ 1 6.75958- 3 1.28082- 3 2.90000+ 1 4.40000+ 1 8.67850- 3 1.29540- 3 2.90000+ 1 5.80000+ 1 5.50417- 4 1.31506- 3 3.00000+ 1 3.00000+ 1 1.75518- 3 1.15288- 3 3.00000+ 1 3.20000+ 1 8.79154- 3 1.26507- 3 3.00000+ 1 3.30000+ 1 4.17560- 3 1.27876- 3 3.00000+ 1 3.50000+ 1 9.24002- 4 1.40170- 3 3.00000+ 1 3.60000+ 1 1.46113- 3 1.40363- 3 3.00000+ 1 4.10000+ 1 9.24002- 4 1.35039- 3 3.00000+ 1 4.30000+ 1 6.50782- 3 1.37322- 3 3.00000+ 1 4.40000+ 1 4.04533- 4 1.38780- 3 3.00000+ 1 5.80000+ 1 6.63167- 5 1.40746- 3 3.20000+ 1 3.20000+ 1 3.32678- 3 1.37726- 3 3.20000+ 1 3.30000+ 1 4.71502- 3 1.39095- 3 3.20000+ 1 3.50000+ 1 5.99716- 3 1.51389- 3 3.20000+ 1 3.60000+ 1 9.71100- 3 1.51582- 3 3.20000+ 1 4.10000+ 1 1.68441- 3 1.46258- 3 3.20000+ 1 4.30000+ 1 5.63905- 3 1.48541- 3 3.20000+ 1 4.40000+ 1 1.16055- 3 1.49999- 3 3.20000+ 1 5.80000+ 1 1.28207- 4 1.51965- 3 3.30000+ 1 3.30000+ 1 8.06867- 4 1.40464- 3 3.30000+ 1 3.50000+ 1 1.35946- 3 1.52758- 3 3.30000+ 1 3.60000+ 1 8.02448- 4 1.52951- 3 3.30000+ 1 4.10000+ 1 7.51594- 4 1.47627- 3 3.30000+ 1 4.30000+ 1 9.17185- 3 1.49910- 3 3.30000+ 1 4.40000+ 1 4.59800- 4 1.51368- 3 3.30000+ 1 5.80000+ 1 5.30543- 5 1.53334- 3 3.50000+ 1 3.50000+ 1 2.01153- 4 1.65052- 3 3.50000+ 1 3.60000+ 1 3.07250- 4 1.65245- 3 3.50000+ 1 4.10000+ 1 1.59163- 4 1.59921- 3 3.50000+ 1 4.30000+ 1 3.20971- 3 1.62204- 3 3.50000+ 1 4.40000+ 1 1.03892- 4 1.63662- 3 3.50000+ 1 5.80000+ 1 1.10520- 5 1.65628- 3 3.60000+ 1 3.60000+ 1 7.51561- 5 1.65438- 3 3.60000+ 1 4.10000+ 1 2.54209- 4 1.60114- 3 3.60000+ 1 4.30000+ 1 4.29056- 3 1.62397- 3 3.60000+ 1 4.40000+ 1 1.52516- 4 1.63855- 3 3.60000+ 1 5.80000+ 1 1.76849- 5 1.65821- 3 4.10000+ 1 4.10000+ 1 6.18954- 5 1.54790- 3 4.10000+ 1 4.30000+ 1 7.27265- 4 1.57073- 3 4.10000+ 1 4.40000+ 1 1.10522- 4 1.58531- 3 4.10000+ 1 5.80000+ 1 8.84191- 6 1.60497- 3 4.30000+ 1 4.30000+ 1 4.19997- 4 1.59356- 3 4.30000+ 1 4.40000+ 1 8.88647- 4 1.60814- 3 4.30000+ 1 5.80000+ 1 5.52628- 5 1.62780- 3 4.40000+ 1 4.40000+ 1 2.21054- 5 1.62272- 3 4.40000+ 1 5.80000+ 1 8.84177- 6 1.64238- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.07900- 5 2.91900- 4 2.20000+ 1 1.84541- 4 3.55830- 4 2.70000+ 1 3.47521- 4 8.87270- 4 3.20000+ 1 4.20951- 5 1.16773- 3 3.30000+ 1 2.41551- 4 1.18142- 3 4.10000+ 1 6.78202- 5 1.25305- 3 5.80000+ 1 5.49642- 6 1.31012- 3 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.64026- 2 3.15400- 5 2.10000+ 1 3.20000+ 1 1.80351- 2 1.43730- 4 2.10000+ 1 3.30000+ 1 2.63876- 2 1.57420- 4 2.10000+ 1 3.50000+ 1 4.61146- 3 2.80360- 4 2.10000+ 1 3.60000+ 1 4.18538- 3 2.82290- 4 2.10000+ 1 4.10000+ 1 3.83800- 3 2.29050- 4 2.10000+ 1 4.30000+ 1 2.77775- 3 2.51880- 4 2.10000+ 1 4.40000+ 1 5.34441- 3 2.66460- 4 2.10000+ 1 5.80000+ 1 2.88084- 4 2.86120- 4 2.20000+ 1 2.90000+ 1 1.29248- 1 3.07000- 6 2.20000+ 1 3.00000+ 1 1.25098- 1 9.54700- 5 2.20000+ 1 3.20000+ 1 1.14017- 1 2.07660- 4 2.20000+ 1 3.30000+ 1 1.35658- 1 2.21350- 4 2.20000+ 1 3.50000+ 1 1.36058- 2 3.44290- 4 2.20000+ 1 3.60000+ 1 1.65837- 2 3.46220- 4 2.20000+ 1 4.10000+ 1 2.18685- 2 2.92980- 4 2.20000+ 1 4.30000+ 1 1.94746- 2 3.15810- 4 2.20000+ 1 4.40000+ 1 1.58357- 2 3.30390- 4 2.20000+ 1 5.80000+ 1 1.63317- 3 3.50050- 4 2.40000+ 1 2.40000+ 1 1.07366- 3 1.68040- 4 2.40000+ 1 2.50000+ 1 1.87485- 3 1.85840- 4 2.40000+ 1 2.70000+ 1 1.03207- 2 3.13340- 4 2.40000+ 1 2.90000+ 1 4.99765- 3 3.89210- 4 2.40000+ 1 3.00000+ 1 5.14144- 2 4.81610- 4 2.40000+ 1 3.20000+ 1 2.11824- 3 5.93800- 4 2.40000+ 1 3.30000+ 1 7.29576- 3 6.07490- 4 2.40000+ 1 3.50000+ 1 1.04697- 3 7.30430- 4 2.40000+ 1 3.60000+ 1 1.06636- 3 7.32360- 4 2.40000+ 1 4.10000+ 1 1.17626- 3 6.79120- 4 2.40000+ 1 4.30000+ 1 6.71879- 4 7.01950- 4 2.40000+ 1 4.40000+ 1 4.64466- 3 7.16530- 4 2.40000+ 1 5.80000+ 1 8.38868- 5 7.36190- 4 2.50000+ 1 2.50000+ 1 3.15977- 3 2.03640- 4 2.50000+ 1 2.70000+ 1 2.43960- 2 3.31140- 4 2.50000+ 1 2.90000+ 1 1.81043- 2 4.07010- 4 2.50000+ 1 3.00000+ 1 6.23244- 2 4.99410- 4 2.50000+ 1 3.20000+ 1 1.55184- 3 6.11600- 4 2.50000+ 1 3.30000+ 1 1.06455- 2 6.25290- 4 2.50000+ 1 3.50000+ 1 4.39852- 3 7.48230- 4 2.50000+ 1 3.60000+ 1 5.23919- 3 7.50160- 4 2.50000+ 1 4.10000+ 1 3.40436- 3 6.96920- 4 2.50000+ 1 4.30000+ 1 2.57440- 3 7.19750- 4 2.50000+ 1 4.40000+ 1 5.68206- 3 7.34330- 4 2.50000+ 1 5.80000+ 1 2.50120- 4 7.53990- 4 2.70000+ 1 2.70000+ 1 9.74834- 5 4.58640- 4 2.70000+ 1 2.90000+ 1 3.06820- 4 5.34510- 4 2.70000+ 1 3.00000+ 1 4.92455- 3 6.26910- 4 2.70000+ 1 3.20000+ 1 4.50736- 4 7.39100- 4 2.70000+ 1 3.30000+ 1 7.34204- 4 7.52790- 4 2.70000+ 1 3.50000+ 1 3.07070- 4 8.75730- 4 2.70000+ 1 3.60000+ 1 3.17600- 4 8.77660- 4 2.70000+ 1 4.10000+ 1 3.48898- 5 8.24420- 4 2.70000+ 1 4.30000+ 1 3.33499- 5 8.47250- 4 2.70000+ 1 4.40000+ 1 4.25857- 4 8.61830- 4 2.70000+ 1 5.80000+ 1 2.56542- 6 8.81490- 4 2.90000+ 1 2.90000+ 1 1.38536- 5 6.10380- 4 2.90000+ 1 3.00000+ 1 5.73411- 3 7.02780- 4 2.90000+ 1 3.20000+ 1 2.65511- 4 8.14970- 4 2.90000+ 1 3.30000+ 1 6.91877- 4 8.28660- 4 2.90000+ 1 3.50000+ 1 2.42942- 4 9.51600- 4 2.90000+ 1 3.60000+ 1 5.73101- 4 9.53530- 4 2.90000+ 1 4.10000+ 1 5.10513- 5 9.00290- 4 2.90000+ 1 4.30000+ 1 1.00047- 5 9.23120- 4 2.90000+ 1 4.40000+ 1 5.09223- 4 9.37700- 4 2.90000+ 1 5.80000+ 1 3.84808- 6 9.57360- 4 3.00000+ 1 3.00000+ 1 7.08427- 3 7.95180- 4 3.00000+ 1 3.20000+ 1 8.78228- 3 9.07370- 4 3.00000+ 1 3.30000+ 1 1.15876- 2 9.21060- 4 3.00000+ 1 3.50000+ 1 4.98835- 3 1.04400- 3 3.00000+ 1 3.60000+ 1 5.88852- 3 1.04593- 3 3.00000+ 1 4.10000+ 1 9.78985- 4 9.92690- 4 3.00000+ 1 4.30000+ 1 9.05577- 4 1.01552- 3 3.00000+ 1 4.40000+ 1 1.59466- 3 1.03010- 3 3.00000+ 1 5.80000+ 1 7.49084- 5 1.04976- 3 3.20000+ 1 3.20000+ 1 1.71118- 4 1.01956- 3 3.20000+ 1 3.30000+ 1 1.02849- 3 1.03325- 3 3.20000+ 1 3.50000+ 1 1.10568- 4 1.15619- 3 3.20000+ 1 3.60000+ 1 2.32937- 4 1.15812- 3 3.20000+ 1 4.10000+ 1 6.02871- 5 1.10488- 3 3.20000+ 1 4.30000+ 1 4.38685- 5 1.12771- 3 3.20000+ 1 4.40000+ 1 7.87583- 4 1.14229- 3 3.20000+ 1 5.80000+ 1 4.36115- 6 1.16195- 3 3.30000+ 1 3.30000+ 1 9.75868- 4 1.04694- 3 3.30000+ 1 3.50000+ 1 3.79926- 4 1.16988- 3 3.30000+ 1 3.60000+ 1 5.12561- 4 1.17181- 3 3.30000+ 1 4.10000+ 1 1.40325- 4 1.11857- 3 3.30000+ 1 4.30000+ 1 1.17495- 4 1.14140- 3 3.30000+ 1 4.40000+ 1 1.05156- 3 1.15598- 3 3.30000+ 1 5.80000+ 1 1.07745- 5 1.17564- 3 3.50000+ 1 3.50000+ 1 1.35968- 5 1.29282- 3 3.50000+ 1 3.60000+ 1 6.82394- 5 1.29475- 3 3.50000+ 1 4.10000+ 1 3.79682- 5 1.24151- 3 3.50000+ 1 4.30000+ 1 1.18007- 5 1.26434- 3 3.50000+ 1 4.40000+ 1 4.30991- 4 1.27892- 3 3.50000+ 1 5.80000+ 1 2.56545- 6 1.29858- 3 3.60000+ 1 3.60000+ 1 4.30990- 5 1.29668- 3 3.60000+ 1 4.10000+ 1 4.05330- 5 1.24344- 3 3.60000+ 1 4.30000+ 1 2.95012- 5 1.26627- 3 3.60000+ 1 4.40000+ 1 5.06157- 4 1.28085- 3 3.60000+ 1 5.80000+ 1 2.82203- 6 1.30051- 3 4.10000+ 1 4.10000+ 1 7.69605- 7 1.19020- 3 4.10000+ 1 4.30000+ 1 3.59160- 6 1.21303- 3 4.10000+ 1 4.40000+ 1 8.49141- 5 1.22761- 3 4.30000+ 1 4.30000+ 1 2.56543- 7 1.23586- 3 4.30000+ 1 4.40000+ 1 8.02972- 5 1.25044- 3 4.30000+ 1 5.80000+ 1 2.56543- 7 1.27010- 3 4.40000+ 1 4.40000+ 1 8.49138- 5 1.26502- 3 4.40000+ 1 5.80000+ 1 6.41351- 6 1.28468- 3 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.88133- 4 4.50070- 4 2.90000+ 1 2.31281- 4 6.71240- 4 3.00000+ 1 2.37491- 5 7.63640- 4 3.50000+ 1 1.77691- 4 1.01246- 3 4.30000+ 1 3.75162- 5 9.83980- 4 4.40000+ 1 3.37742- 6 9.98560- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 4.94823- 3 5.23900- 5 2.20000+ 1 3.60000+ 1 6.20151- 3 5.43200- 5 2.20000+ 1 4.10000+ 1 2.74726- 3 1.08000- 6 2.20000+ 1 4.30000+ 1 1.20198- 3 2.39100- 5 2.20000+ 1 4.40000+ 1 2.48717- 3 3.84900- 5 2.20000+ 1 5.80000+ 1 1.52938- 4 5.81500- 5 2.40000+ 1 2.70000+ 1 1.20555- 1 2.14400- 5 2.40000+ 1 2.90000+ 1 1.11245- 1 9.73100- 5 2.40000+ 1 3.00000+ 1 1.20485- 1 1.89710- 4 2.40000+ 1 3.20000+ 1 1.24965- 1 3.01900- 4 2.40000+ 1 3.30000+ 1 1.29274- 1 3.15590- 4 2.40000+ 1 3.50000+ 1 9.61808- 3 4.38530- 4 2.40000+ 1 3.60000+ 1 8.14839- 3 4.40460- 4 2.40000+ 1 4.10000+ 1 2.36042- 2 3.87220- 4 2.40000+ 1 4.30000+ 1 1.78363- 2 4.10050- 4 2.40000+ 1 4.40000+ 1 1.59633- 2 4.24630- 4 2.40000+ 1 5.80000+ 1 1.82802- 3 4.44290- 4 2.50000+ 1 2.70000+ 1 8.05820- 3 3.92400- 5 2.50000+ 1 2.90000+ 1 1.81599- 2 1.15110- 4 2.50000+ 1 3.00000+ 1 7.91611- 3 2.07510- 4 2.50000+ 1 3.20000+ 1 1.31611- 1 3.19700- 4 2.50000+ 1 3.30000+ 1 5.44286- 3 3.33390- 4 2.50000+ 1 3.50000+ 1 2.22466- 3 4.56330- 4 2.50000+ 1 3.60000+ 1 8.39908- 4 4.58260- 4 2.50000+ 1 4.10000+ 1 1.14373- 3 4.05020- 4 2.50000+ 1 4.30000+ 1 1.78259- 3 4.27850- 4 2.50000+ 1 4.40000+ 1 7.76991- 4 4.42430- 4 2.50000+ 1 5.80000+ 1 8.48278- 5 4.62090- 4 2.70000+ 1 2.70000+ 1 8.59854- 4 1.66740- 4 2.70000+ 1 2.90000+ 1 2.17173- 3 2.42610- 4 2.70000+ 1 3.00000+ 1 1.43975- 3 3.35010- 4 2.70000+ 1 3.20000+ 1 1.17146- 2 4.47200- 4 2.70000+ 1 3.30000+ 1 1.51016- 3 4.60890- 4 2.70000+ 1 3.50000+ 1 2.33183- 3 5.83830- 4 2.70000+ 1 3.60000+ 1 1.94434- 3 5.85760- 4 2.70000+ 1 4.10000+ 1 1.96744- 4 5.32520- 4 2.70000+ 1 4.30000+ 1 2.23023- 4 5.55350- 4 2.70000+ 1 4.40000+ 1 1.55725- 4 5.69930- 4 2.70000+ 1 5.80000+ 1 1.43375- 5 5.89590- 4 2.90000+ 1 2.90000+ 1 6.15351- 4 3.18480- 4 2.90000+ 1 3.00000+ 1 1.84970- 3 4.10880- 4 2.90000+ 1 3.20000+ 1 8.76062- 3 5.23070- 4 2.90000+ 1 3.30000+ 1 8.85371- 4 5.36760- 4 2.90000+ 1 3.50000+ 1 3.02691- 4 6.59700- 4 2.90000+ 1 3.60000+ 1 2.85161- 4 6.61630- 4 2.90000+ 1 4.10000+ 1 1.72850- 4 6.08390- 4 2.90000+ 1 4.30000+ 1 1.33030- 4 6.31220- 4 2.90000+ 1 4.40000+ 1 1.48150- 4 6.45800- 4 2.90000+ 1 5.80000+ 1 1.31430- 5 6.65460- 4 3.00000+ 1 3.00000+ 1 5.97403- 4 5.03280- 4 3.00000+ 1 3.20000+ 1 1.74838- 2 6.15470- 4 3.00000+ 1 3.30000+ 1 1.45798- 3 6.29160- 4 3.00000+ 1 3.50000+ 1 8.37570- 4 7.52100- 4 3.00000+ 1 3.60000+ 1 4.87495- 4 7.54030- 4 3.00000+ 1 4.10000+ 1 6.81042- 5 7.00790- 4 3.00000+ 1 4.30000+ 1 1.28638- 4 7.23620- 4 3.00000+ 1 4.40000+ 1 1.02348- 4 7.38200- 4 3.00000+ 1 5.80000+ 1 4.77935- 6 7.57860- 4 3.20000+ 1 3.20000+ 1 1.15955- 2 7.27660- 4 3.20000+ 1 3.30000+ 1 2.23901- 2 7.41350- 4 3.20000+ 1 3.50000+ 1 8.64155- 3 8.64290- 4 3.20000+ 1 3.60000+ 1 1.16325- 2 8.66220- 4 3.20000+ 1 4.10000+ 1 1.86672- 3 8.12980- 4 3.20000+ 1 4.30000+ 1 1.41864- 3 8.35810- 4 3.20000+ 1 4.40000+ 1 2.26451- 3 8.50390- 4 3.20000+ 1 5.80000+ 1 1.41784- 4 8.70050- 4 3.30000+ 1 3.30000+ 1 3.72765- 4 7.55040- 4 3.30000+ 1 3.50000+ 1 9.60996- 4 8.77980- 4 3.30000+ 1 3.60000+ 1 3.30556- 4 8.79910- 4 3.30000+ 1 4.10000+ 1 7.12892- 5 8.26670- 4 3.30000+ 1 4.30000+ 1 7.48729- 5 8.49500- 4 3.30000+ 1 4.40000+ 1 1.24655- 4 8.64080- 4 3.30000+ 1 5.80000+ 1 5.57567- 6 8.83740- 4 3.50000+ 1 3.50000+ 1 1.65683- 4 1.00092- 3 3.50000+ 1 3.60000+ 1 2.68030- 4 1.00285- 3 3.50000+ 1 4.10000+ 1 1.21875- 4 9.49610- 4 3.50000+ 1 4.30000+ 1 4.81892- 5 9.72440- 4 3.50000+ 1 4.40000+ 1 8.68207- 5 9.87020- 4 3.50000+ 1 5.80000+ 1 7.96520- 6 1.00668- 3 3.60000+ 1 3.60000+ 1 3.54464- 5 1.00478- 3 3.60000+ 1 4.10000+ 1 8.08497- 5 9.51540- 4 3.60000+ 1 4.30000+ 1 4.14193- 5 9.74370- 4 3.60000+ 1 4.40000+ 1 4.42083- 5 9.88950- 4 3.60000+ 1 5.80000+ 1 5.17751- 6 1.00861- 3 4.10000+ 1 4.10000+ 1 5.17751- 6 8.98300- 4 4.10000+ 1 4.30000+ 1 1.03548- 5 9.21130- 4 4.10000+ 1 4.40000+ 1 6.37230- 6 9.35710- 4 4.10000+ 1 5.80000+ 1 7.96538- 7 9.55370- 4 4.30000+ 1 4.30000+ 1 2.38943- 6 9.43960- 4 4.30000+ 1 4.40000+ 1 9.95614- 6 9.58540- 4 4.30000+ 1 5.80000+ 1 7.96495- 7 9.78200- 4 4.40000+ 1 4.40000+ 1 4.38096- 6 9.73120- 4 4.40000+ 1 5.80000+ 1 3.98267- 7 9.92780- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.58140- 5 3.86140- 4 2.50000+ 1 3.72770- 4 4.03940- 4 3.00000+ 1 1.71600- 4 6.99710- 4 3.50000+ 1 1.12330- 5 9.48530- 4 3.60000+ 1 1.86130- 4 9.50460- 4 4.40000+ 1 2.43260- 5 9.34630- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.90000+ 1 8.68173- 3 3.33800- 5 2.40000+ 1 3.00000+ 1 1.64918- 2 1.25780- 4 2.40000+ 1 3.20000+ 1 8.36482- 3 2.37970- 4 2.40000+ 1 3.30000+ 1 1.12699- 1 2.51660- 4 2.40000+ 1 3.50000+ 1 1.73756- 3 3.74600- 4 2.40000+ 1 3.60000+ 1 1.56079- 3 3.76530- 4 2.40000+ 1 4.10000+ 1 2.20490- 3 3.23290- 4 2.40000+ 1 4.30000+ 1 1.47832- 3 3.46120- 4 2.40000+ 1 4.40000+ 1 1.80618- 3 3.60700- 4 2.40000+ 1 5.80000+ 1 1.64948- 4 3.80360- 4 2.50000+ 1 2.90000+ 1 1.43193- 1 5.11800- 5 2.50000+ 1 3.00000+ 1 1.22212- 1 1.43580- 4 2.50000+ 1 3.20000+ 1 1.25095- 1 2.55770- 4 2.50000+ 1 3.30000+ 1 2.18988- 1 2.69460- 4 2.50000+ 1 3.50000+ 1 9.48654- 3 3.92400- 4 2.50000+ 1 3.60000+ 1 1.51692- 2 3.94330- 4 2.50000+ 1 4.10000+ 1 2.59588- 2 3.41090- 4 2.50000+ 1 4.30000+ 1 2.22502- 2 3.63920- 4 2.50000+ 1 4.40000+ 1 1.63462- 2 3.78500- 4 2.50000+ 1 5.80000+ 1 1.97997- 3 3.98160- 4 2.70000+ 1 2.70000+ 1 1.69327- 3 1.02810- 4 2.70000+ 1 2.90000+ 1 2.51053- 3 1.78680- 4 2.70000+ 1 3.00000+ 1 3.19254- 3 2.71080- 4 2.70000+ 1 3.20000+ 1 2.69558- 3 3.83270- 4 2.70000+ 1 3.30000+ 1 1.42654- 2 3.96960- 4 2.70000+ 1 3.50000+ 1 2.41198- 3 5.19900- 4 2.70000+ 1 3.60000+ 1 3.69369- 3 5.21830- 4 2.70000+ 1 4.10000+ 1 3.76251- 4 4.68590- 4 2.70000+ 1 4.30000+ 1 2.79781- 4 4.91420- 4 2.70000+ 1 4.40000+ 1 3.40341- 4 5.06000- 4 2.70000+ 1 5.80000+ 1 2.75612- 5 5.25660- 4 2.90000+ 1 2.90000+ 1 3.72907- 4 2.54550- 4 2.90000+ 1 3.00000+ 1 3.60439- 3 3.46950- 4 2.90000+ 1 3.20000+ 1 6.20136- 4 4.59140- 4 2.90000+ 1 3.30000+ 1 1.36582- 2 4.72830- 4 2.90000+ 1 3.50000+ 1 3.42443- 4 5.95770- 4 2.90000+ 1 3.60000+ 1 6.72746- 4 5.97700- 4 2.90000+ 1 4.10000+ 1 1.69959- 4 5.44460- 4 2.90000+ 1 4.30000+ 1 8.39384- 5 5.67290- 4 2.90000+ 1 4.40000+ 1 2.73115- 4 5.81870- 4 2.90000+ 1 5.80000+ 1 1.21101- 5 6.01530- 4 3.00000+ 1 3.00000+ 1 1.16092- 3 4.39350- 4 3.00000+ 1 3.20000+ 1 2.43246- 3 5.51540- 4 3.00000+ 1 3.30000+ 1 1.74447- 2 5.65230- 4 3.00000+ 1 3.50000+ 1 6.93219- 4 6.88170- 4 3.00000+ 1 3.60000+ 1 8.87805- 4 6.90100- 4 3.00000+ 1 4.10000+ 1 9.64655- 5 6.36860- 4 3.00000+ 1 4.30000+ 1 1.40731- 4 6.59690- 4 3.00000+ 1 4.40000+ 1 2.00861- 4 6.74270- 4 3.00000+ 1 5.80000+ 1 5.84639- 6 6.93930- 4 3.20000+ 1 3.20000+ 1 1.44073- 4 6.63730- 4 3.20000+ 1 3.30000+ 1 1.77011- 2 6.77420- 4 3.20000+ 1 3.50000+ 1 2.43876- 4 8.00360- 4 3.20000+ 1 3.60000+ 1 9.12868- 4 8.02290- 4 3.20000+ 1 4.10000+ 1 7.18260- 5 7.49050- 4 3.20000+ 1 4.30000+ 1 5.05297- 5 7.71880- 4 3.20000+ 1 4.40000+ 1 2.19665- 4 7.86460- 4 3.20000+ 1 5.80000+ 1 5.01118- 6 8.06120- 4 3.30000+ 1 3.30000+ 1 1.95127- 2 6.91110- 4 3.30000+ 1 3.50000+ 1 1.03894- 2 8.14050- 4 3.30000+ 1 3.60000+ 1 1.21929- 2 8.15980- 4 3.30000+ 1 4.10000+ 1 2.03496- 3 7.62740- 4 3.30000+ 1 4.30000+ 1 1.92095- 3 7.85570- 4 3.30000+ 1 4.40000+ 1 2.29851- 3 8.00150- 4 3.30000+ 1 5.80000+ 1 1.54518- 4 8.19810- 4 3.50000+ 1 3.50000+ 1 3.96720- 5 9.36990- 4 3.50000+ 1 3.60000+ 1 2.73943- 4 9.38920- 4 3.50000+ 1 4.10000+ 1 1.01061- 4 8.85680- 4 3.50000+ 1 4.30000+ 1 3.42444- 5 9.08510- 4 3.50000+ 1 4.40000+ 1 5.63746- 5 9.23090- 4 3.50000+ 1 5.80000+ 1 6.26403- 6 9.42750- 4 3.60000+ 1 3.60000+ 1 2.38031- 4 9.40850- 4 3.60000+ 1 4.10000+ 1 1.69550- 4 8.87610- 4 3.60000+ 1 4.30000+ 1 5.51227- 5 9.10440- 4 3.60000+ 1 4.40000+ 1 8.72771- 5 9.25020- 4 3.60000+ 1 5.80000+ 1 1.08581- 5 9.44680- 4 4.10000+ 1 4.10000+ 1 1.08582- 5 8.34370- 4 4.10000+ 1 4.30000+ 1 1.41981- 5 8.57200- 4 4.10000+ 1 4.40000+ 1 1.08582- 5 8.71780- 4 4.10000+ 1 5.80000+ 1 1.67038- 6 8.91440- 4 4.30000+ 1 4.30000+ 1 2.50538- 6 8.80030- 4 4.30000+ 1 4.40000+ 1 1.25274- 5 8.94610- 4 4.30000+ 1 5.80000+ 1 8.35152- 7 9.14270- 4 4.40000+ 1 4.40000+ 1 9.60480- 6 9.09190- 4 4.40000+ 1 5.80000+ 1 8.35190- 7 9.28850- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.83860- 4 4.25760- 4 3.30000+ 1 1.12380- 5 4.39450- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 3.07562- 1 6.26000- 6 2.50000+ 1 3.60000+ 1 1.76224- 2 8.19000- 6 2.50000+ 1 5.80000+ 1 2.85242- 4 1.20200- 5 2.70000+ 1 3.30000+ 1 2.54528- 3 1.08200- 5 2.70000+ 1 3.50000+ 1 4.85407- 2 1.33760- 4 2.70000+ 1 3.60000+ 1 1.00467- 2 1.35690- 4 2.70000+ 1 4.10000+ 1 5.38327- 4 8.24500- 5 2.70000+ 1 4.30000+ 1 6.67328- 4 1.05280- 4 2.70000+ 1 4.40000+ 1 1.65480- 3 1.19860- 4 2.70000+ 1 5.80000+ 1 3.47307- 5 1.39520- 4 2.90000+ 1 3.20000+ 1 2.70404- 2 7.30000- 5 2.90000+ 1 3.30000+ 1 5.65123- 2 8.66900- 5 2.90000+ 1 3.50000+ 1 4.81420- 2 2.09630- 4 2.90000+ 1 3.60000+ 1 1.14020- 2 2.11560- 4 2.90000+ 1 4.10000+ 1 5.30642- 3 1.58320- 4 2.90000+ 1 4.30000+ 1 2.92986- 3 1.81150- 4 2.90000+ 1 4.40000+ 1 4.21726- 3 1.95730- 4 2.90000+ 1 5.80000+ 1 3.69640- 4 2.15390- 4 3.00000+ 1 3.00000+ 1 5.74309- 3 5.32100- 5 3.00000+ 1 3.20000+ 1 3.63259- 2 1.65400- 4 3.00000+ 1 3.30000+ 1 2.55601- 2 1.79090- 4 3.00000+ 1 3.50000+ 1 7.08418- 2 3.02030- 4 3.00000+ 1 3.60000+ 1 4.08826- 3 3.03960- 4 3.00000+ 1 4.10000+ 1 1.77383- 3 2.50720- 4 3.00000+ 1 4.30000+ 1 1.14612- 3 2.73550- 4 3.00000+ 1 4.40000+ 1 7.61604- 4 2.88130- 4 3.00000+ 1 5.80000+ 1 1.09159- 4 3.07790- 4 3.20000+ 1 3.20000+ 1 3.93692- 3 2.77590- 4 3.20000+ 1 3.30000+ 1 9.89353- 3 2.91280- 4 3.20000+ 1 3.50000+ 1 6.27604- 2 4.14220- 4 3.20000+ 1 3.60000+ 1 7.10977- 3 4.16150- 4 3.20000+ 1 4.10000+ 1 5.58158- 4 3.62910- 4 3.20000+ 1 4.30000+ 1 2.60233- 3 3.85740- 4 3.20000+ 1 4.40000+ 1 1.78118- 3 4.00320- 4 3.20000+ 1 5.80000+ 1 4.46539- 5 4.19980- 4 3.30000+ 1 3.30000+ 1 2.58736- 3 3.04970- 4 3.30000+ 1 3.50000+ 1 9.28517- 2 4.27910- 4 3.30000+ 1 3.60000+ 1 2.47082- 3 4.29840- 4 3.30000+ 1 4.10000+ 1 6.32575- 4 3.76600- 4 3.30000+ 1 4.30000+ 1 1.82826- 3 3.99430- 4 3.30000+ 1 4.40000+ 1 1.01458- 3 4.14010- 4 3.30000+ 1 5.80000+ 1 4.46528- 5 4.33670- 4 3.50000+ 1 3.50000+ 1 3.38468- 2 5.50850- 4 3.50000+ 1 3.60000+ 1 5.71805- 2 5.52780- 4 3.50000+ 1 4.10000+ 1 7.87866- 3 4.99540- 4 3.50000+ 1 4.30000+ 1 6.91867- 3 5.22370- 4 3.50000+ 1 4.40000+ 1 9.01989- 3 5.36950- 4 3.50000+ 1 5.80000+ 1 5.95369- 4 5.56610- 4 3.60000+ 1 3.60000+ 1 5.80494- 4 5.54710- 4 3.60000+ 1 4.10000+ 1 2.43103- 4 5.01470- 4 3.60000+ 1 4.30000+ 1 8.11202- 4 5.24300- 4 3.60000+ 1 4.40000+ 1 2.92735- 4 5.38880- 4 3.60000+ 1 5.80000+ 1 1.73646- 5 5.58540- 4 4.10000+ 1 4.10000+ 1 2.23271- 5 4.48230- 4 4.10000+ 1 4.30000+ 1 1.98470- 4 4.71060- 4 4.10000+ 1 4.40000+ 1 1.21552- 4 4.85640- 4 4.10000+ 1 5.80000+ 1 2.48082- 6 5.05300- 4 4.30000+ 1 4.30000+ 1 6.69801- 5 4.93890- 4 4.30000+ 1 4.40000+ 1 8.43450- 5 5.08470- 4 4.30000+ 1 5.80000+ 1 1.48848- 5 5.28130- 4 4.40000+ 1 4.40000+ 1 1.73647- 5 5.23050- 4 4.40000+ 1 5.80000+ 1 7.44224- 6 5.42710- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 2.49730- 4 4.21650- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 1.15705- 2 1.15960- 4 2.70000+ 1 3.60000+ 1 7.03851- 2 1.17890- 4 2.70000+ 1 4.10000+ 1 7.70164- 4 6.46500- 5 2.70000+ 1 4.30000+ 1 2.05839- 3 8.74800- 5 2.70000+ 1 4.40000+ 1 1.50537- 3 1.02060- 4 2.70000+ 1 5.80000+ 1 4.55089- 5 1.21720- 4 2.90000+ 1 3.20000+ 1 3.23472- 3 5.52000- 5 2.90000+ 1 3.30000+ 1 6.74575- 3 6.88900- 5 2.90000+ 1 3.50000+ 1 7.98150- 4 1.91830- 4 2.90000+ 1 3.60000+ 1 6.12153- 2 1.93760- 4 2.90000+ 1 4.10000+ 1 1.99538- 3 1.40520- 4 2.90000+ 1 4.30000+ 1 4.48087- 4 1.63350- 4 2.90000+ 1 4.40000+ 1 5.25100- 4 1.77930- 4 2.90000+ 1 5.80000+ 1 1.22515- 4 1.97590- 4 3.00000+ 1 3.00000+ 1 3.24837- 2 3.54100- 5 3.00000+ 1 3.20000+ 1 8.13494- 2 1.47600- 4 3.00000+ 1 3.30000+ 1 1.56989- 1 1.61290- 4 3.00000+ 1 3.50000+ 1 1.67239- 2 2.84230- 4 3.00000+ 1 3.60000+ 1 1.11206- 1 2.86160- 4 3.00000+ 1 4.10000+ 1 5.06207- 3 2.32920- 4 3.00000+ 1 4.30000+ 1 1.73640- 3 2.55750- 4 3.00000+ 1 4.40000+ 1 3.63720- 3 2.70330- 4 3.00000+ 1 5.80000+ 1 3.32569- 4 2.89990- 4 3.20000+ 1 3.20000+ 1 1.30212- 3 2.59790- 4 3.20000+ 1 3.30000+ 1 1.47102- 2 2.73480- 4 3.20000+ 1 3.50000+ 1 2.18082- 3 3.96420- 4 3.20000+ 1 3.60000+ 1 9.39178- 2 3.98350- 4 3.20000+ 1 4.10000+ 1 7.56126- 4 3.45110- 4 3.20000+ 1 4.30000+ 1 7.31617- 4 3.67940- 4 3.20000+ 1 4.40000+ 1 2.06532- 3 3.82520- 4 3.20000+ 1 5.80000+ 1 5.60095- 5 4.02180- 4 3.30000+ 1 3.30000+ 1 8.93029- 3 2.87170- 4 3.30000+ 1 3.50000+ 1 9.51492- 3 4.10110- 4 3.30000+ 1 3.60000+ 1 1.24206- 1 4.12040- 4 3.30000+ 1 4.10000+ 1 9.62682- 4 3.58800- 4 3.30000+ 1 4.30000+ 1 1.17275- 3 3.81630- 4 3.30000+ 1 4.40000+ 1 4.31978- 3 3.96210- 4 3.30000+ 1 5.80000+ 1 7.35143- 5 4.15870- 4 3.50000+ 1 3.50000+ 1 5.77614- 4 5.33050- 4 3.50000+ 1 3.60000+ 1 6.42236- 2 5.34980- 4 3.50000+ 1 4.10000+ 1 3.29063- 4 4.81740- 4 3.50000+ 1 4.30000+ 1 7.70161- 5 5.04570- 4 3.50000+ 1 4.40000+ 1 1.10975- 3 5.19150- 4 3.50000+ 1 5.80000+ 1 2.10039- 5 5.38810- 4 3.60000+ 1 3.60000+ 1 6.27435- 2 5.36910- 4 3.60000+ 1 4.10000+ 1 1.09855- 2 4.83670- 4 3.60000+ 1 4.30000+ 1 9.21728- 3 5.06500- 4 3.60000+ 1 4.40000+ 1 1.32046- 2 5.21080- 4 3.60000+ 1 5.80000+ 1 8.26163- 4 5.40740- 4 4.10000+ 1 4.10000+ 1 3.15071- 5 4.30430- 4 4.10000+ 1 4.30000+ 1 1.33025- 4 4.53260- 4 4.10000+ 1 4.40000+ 1 2.48558- 4 4.67840- 4 4.10000+ 1 5.80000+ 1 3.50072- 6 4.87500- 4 4.30000+ 1 4.30000+ 1 1.40026- 5 4.76090- 4 4.30000+ 1 4.40000+ 1 7.00139- 5 4.90670- 4 4.30000+ 1 5.80000+ 1 1.05025- 5 5.10330- 4 4.40000+ 1 4.40000+ 1 6.65131- 5 5.05250- 4 4.40000+ 1 5.80000+ 1 1.75029- 5 5.24910- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.17570- 6 7.58700- 5 3.00000+ 1 2.63670- 5 1.68270- 4 4.30000+ 1 3.38430- 6 3.88610- 4 4.40000+ 1 7.20910- 8 4.03190- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 5.88003- 2 6.43300- 5 2.90000+ 1 3.60000+ 1 1.02696- 1 6.62600- 5 2.90000+ 1 4.10000+ 1 1.94303- 2 1.30200- 5 2.90000+ 1 4.30000+ 1 1.35576- 2 3.58500- 5 2.90000+ 1 4.40000+ 1 2.21952- 2 5.04300- 5 2.90000+ 1 5.80000+ 1 1.44016- 3 7.00900- 5 3.00000+ 1 3.20000+ 1 1.35258- 1 2.01000- 5 3.00000+ 1 3.30000+ 1 1.20608- 1 3.37900- 5 3.00000+ 1 3.50000+ 1 1.40698- 1 1.56730- 4 3.00000+ 1 3.60000+ 1 1.27398- 1 1.58660- 4 3.00000+ 1 4.10000+ 1 1.52957- 2 1.05420- 4 3.00000+ 1 4.30000+ 1 1.55247- 2 1.28250- 4 3.00000+ 1 4.40000+ 1 1.19158- 2 1.42830- 4 3.00000+ 1 5.80000+ 1 1.13128- 3 1.62490- 4 3.20000+ 1 3.20000+ 1 1.42402- 3 1.32290- 4 3.20000+ 1 3.30000+ 1 1.05071- 1 1.45980- 4 3.20000+ 1 3.50000+ 1 3.96637- 3 2.68920- 4 3.20000+ 1 3.60000+ 1 1.44162- 2 2.70850- 4 3.20000+ 1 4.10000+ 1 5.23097- 3 2.17610- 4 3.20000+ 1 4.30000+ 1 1.12241- 3 2.40440- 4 3.20000+ 1 4.40000+ 1 3.66717- 3 2.55020- 4 3.20000+ 1 5.80000+ 1 3.22268- 4 2.74680- 4 3.30000+ 1 3.30000+ 1 2.43105- 2 1.59670- 4 3.30000+ 1 3.50000+ 1 1.65458- 2 2.82610- 4 3.30000+ 1 3.60000+ 1 1.08988- 2 2.84540- 4 3.30000+ 1 4.10000+ 1 7.32111- 3 2.31300- 4 3.30000+ 1 4.30000+ 1 3.18941- 3 2.54130- 4 3.30000+ 1 4.40000+ 1 2.36215- 3 2.68710- 4 3.30000+ 1 5.80000+ 1 4.49207- 4 2.88370- 4 3.50000+ 1 3.50000+ 1 6.77423- 5 4.05550- 4 3.50000+ 1 3.60000+ 1 2.19246- 3 4.07480- 4 3.50000+ 1 4.10000+ 1 2.93383- 3 3.54240- 4 3.50000+ 1 4.30000+ 1 2.71923- 4 3.77070- 4 3.50000+ 1 4.40000+ 1 6.83953- 4 3.91650- 4 3.50000+ 1 5.80000+ 1 1.67188- 4 4.11310- 4 3.60000+ 1 3.60000+ 1 4.11752- 4 4.09410- 4 3.60000+ 1 4.10000+ 1 3.63696- 3 3.56170- 4 3.60000+ 1 4.30000+ 1 6.26665- 4 3.79000- 4 3.60000+ 1 4.40000+ 1 4.31882- 4 3.93580- 4 3.60000+ 1 5.80000+ 1 2.07143- 4 4.13240- 4 4.10000+ 1 4.10000+ 1 4.23759- 4 3.02930- 4 4.10000+ 1 4.30000+ 1 4.98228- 4 3.25760- 4 4.10000+ 1 4.40000+ 1 6.63926- 4 3.40340- 4 4.10000+ 1 5.80000+ 1 5.59857- 5 3.60000- 4 4.30000+ 1 4.30000+ 1 4.46675- 5 3.48590- 4 4.30000+ 1 4.40000+ 1 2.44674- 4 3.63170- 4 4.30000+ 1 5.80000+ 1 2.76882- 5 3.82830- 4 4.40000+ 1 4.40000+ 1 9.27324- 5 3.77750- 4 4.40000+ 1 5.80000+ 1 3.90076- 5 3.97410- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.12700- 4 2.04590- 4 4.10000+ 1 1.20269- 5 2.89910- 4 5.80000+ 1 1.00210- 6 3.46980- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 3.01243- 2 8.08600- 5 3.00000+ 1 3.60000+ 1 1.74382- 2 8.27900- 5 3.00000+ 1 4.10000+ 1 1.34102- 2 2.95500- 5 3.00000+ 1 4.30000+ 1 9.23721- 3 5.23800- 5 3.00000+ 1 4.40000+ 1 7.27078- 3 6.69600- 5 3.00000+ 1 5.80000+ 1 7.39008- 4 8.66200- 5 3.20000+ 1 3.20000+ 1 7.23509- 2 5.64200- 5 3.20000+ 1 3.30000+ 1 2.91603- 1 7.01100- 5 3.20000+ 1 3.50000+ 1 9.66082- 2 1.93050- 4 3.20000+ 1 3.60000+ 1 2.15173- 1 1.94980- 4 3.20000+ 1 4.10000+ 1 3.25443- 2 1.41740- 4 3.20000+ 1 4.30000+ 1 2.15823- 2 1.64570- 4 3.20000+ 1 4.40000+ 1 2.94863- 2 1.79150- 4 3.20000+ 1 5.80000+ 1 2.52793- 3 1.98810- 4 3.30000+ 1 3.30000+ 1 1.15121- 2 8.38000- 5 3.30000+ 1 3.50000+ 1 5.31424- 2 2.06740- 4 3.30000+ 1 3.60000+ 1 1.20571- 2 2.08670- 4 3.30000+ 1 4.10000+ 1 3.34552- 3 1.55430- 4 3.30000+ 1 4.30000+ 1 1.55822- 2 1.78260- 4 3.30000+ 1 4.40000+ 1 3.01872- 3 1.92840- 4 3.30000+ 1 5.80000+ 1 2.14632- 4 2.12500- 4 3.50000+ 1 3.50000+ 1 3.89659- 3 3.29680- 4 3.50000+ 1 3.60000+ 1 2.46339- 2 3.31610- 4 3.50000+ 1 4.10000+ 1 3.39508- 3 2.78370- 4 3.50000+ 1 4.30000+ 1 6.73818- 3 3.01200- 4 3.50000+ 1 4.40000+ 1 3.06138- 3 3.15780- 4 3.50000+ 1 5.80000+ 1 2.57649- 4 3.35440- 4 3.60000+ 1 3.60000+ 1 1.29082- 3 3.33540- 4 3.60000+ 1 4.10000+ 1 1.28552- 3 2.80300- 4 3.60000+ 1 4.30000+ 1 1.04401- 2 3.03130- 4 3.60000+ 1 4.40000+ 1 1.03931- 3 3.17710- 4 3.60000+ 1 5.80000+ 1 8.11521- 5 3.37370- 4 4.10000+ 1 4.10000+ 1 1.00219- 4 2.27060- 4 4.10000+ 1 4.30000+ 1 1.49479- 3 2.49890- 4 4.10000+ 1 4.40000+ 1 2.50327- 4 2.64470- 4 4.10000+ 1 5.80000+ 1 1.28599- 5 2.84130- 4 4.30000+ 1 4.30000+ 1 8.92413- 4 2.72720- 4 4.30000+ 1 4.40000+ 1 1.82311- 3 2.87300- 4 4.30000+ 1 5.80000+ 1 1.18170- 4 3.06960- 4 4.40000+ 1 4.40000+ 1 7.84915- 5 3.01880- 4 4.40000+ 1 5.80000+ 1 1.50771- 5 3.21540- 4 1 99000 0 7 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.30200- 6 1.12190- 4 3.30000+ 1 1.68261- 5 1.25880- 4 4.10000+ 1 8.26643- 6 1.97510- 4 5.80000+ 1 6.69372- 7 2.54580- 4 1 99000 0 9 2.52000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.83043- 2 1.00650- 4 3.20000+ 1 3.60000+ 1 1.06471- 1 1.02580- 4 3.20000+ 1 4.10000+ 1 7.22801- 3 4.93400- 5 3.20000+ 1 4.30000+ 1 5.06495- 3 7.21700- 5 3.20000+ 1 4.40000+ 1 1.27341- 2 8.67500- 5 3.20000+ 1 5.80000+ 1 4.47834- 4 1.06410- 4 3.30000+ 1 3.50000+ 1 3.61338- 1 1.14340- 4 3.30000+ 1 3.60000+ 1 3.17510- 1 1.16270- 4 3.30000+ 1 4.10000+ 1 3.48938- 2 6.30300- 5 3.30000+ 1 4.30000+ 1 3.56788- 2 8.58600- 5 3.30000+ 1 4.40000+ 1 3.37989- 2 1.00440- 4 3.30000+ 1 5.80000+ 1 2.64289- 3 1.20100- 4 3.50000+ 1 3.50000+ 1 6.92408- 4 2.37280- 4 3.50000+ 1 3.60000+ 1 1.60339- 2 2.39210- 4 3.50000+ 1 4.10000+ 1 2.71247- 3 1.85970- 4 3.50000+ 1 4.30000+ 1 8.06105- 4 2.08800- 4 3.50000+ 1 4.40000+ 1 6.20891- 3 2.23380- 4 3.50000+ 1 5.80000+ 1 9.33214- 5 2.43040- 4 3.60000+ 1 3.60000+ 1 6.25546- 3 2.41140- 4 3.60000+ 1 4.10000+ 1 5.04001- 3 1.87900- 4 3.60000+ 1 4.30000+ 1 3.87733- 3 2.10730- 4 3.60000+ 1 4.40000+ 1 7.44550- 3 2.25310- 4 3.60000+ 1 5.80000+ 1 2.43765- 4 2.44970- 4 4.10000+ 1 4.10000+ 1 2.88883- 4 1.34660- 4 4.10000+ 1 4.30000+ 1 3.98954- 4 1.57490- 4 4.10000+ 1 4.40000+ 1 1.34952- 3 1.72070- 4 4.10000+ 1 5.80000+ 1 3.56543- 5 1.91730- 4 4.30000+ 1 4.30000+ 1 5.13189- 6 1.80320- 4 4.30000+ 1 4.40000+ 1 1.18200- 3 1.94900- 4 4.30000+ 1 5.80000+ 1 1.60710- 5 2.14560- 4 4.40000+ 1 4.40000+ 1 1.08344- 3 2.09480- 4 4.40000+ 1 5.80000+ 1 9.11617- 5 2.29140- 4 1 100000 0 0 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91912 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.00000+ 0 3.00000+ 0 2.00000+ 0 5.00000+ 0 2.00000+ 0 6.00000+ 0 4.00000+ 0 8.00000+ 0 2.00000+ 0 1.00000+ 1 2.00000+ 0 1.10000+ 1 4.00000+ 0 1.30000+ 1 4.00000+ 0 1.40000+ 1 6.00000+ 0 1.60000+ 1 2.00000+ 0 1.80000+ 1 2.00000+ 0 1.90000+ 1 4.00000+ 0 2.10000+ 1 4.00000+ 0 2.20000+ 1 6.00000+ 0 2.40000+ 1 6.00000+ 0 2.50000+ 1 8.00000+ 0 2.70000+ 1 2.00000+ 0 2.90000+ 1 2.00000+ 0 3.00000+ 1 4.00000+ 0 3.20000+ 1 4.00000+ 0 3.30000+ 1 6.00000+ 0 3.50000+ 1 5.14000+ 0 3.60000+ 1 6.86000+ 0 4.10000+ 1 2.00000+ 0 4.30000+ 1 2.00000+ 0 4.40000+ 1 4.00000+ 0 5.80000+ 1 2.00000+ 0 1 100000 0 0 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 91913 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.42680- 1 3.00000+ 0 2.76220- 2 5.00000+ 0 2.67920- 2 6.00000+ 0 2.08940- 2 8.00000+ 0 7.17970- 3 1.00000+ 1 6.78400- 3 1.10000+ 1 5.39260- 3 1.30000+ 1 4.76080- 3 1.40000+ 1 4.49270- 3 1.60000+ 1 1.92580- 3 1.80000+ 1 1.73900- 3 1.90000+ 1 1.35960- 3 2.10000+ 1 1.06180- 3 2.20000+ 1 9.94360- 4 2.40000+ 1 6.00520- 4 2.50000+ 1 5.81620- 4 2.70000+ 1 4.46110- 4 2.90000+ 1 3.68060- 4 3.00000+ 1 2.69170- 4 3.20000+ 1 1.53890- 4 3.30000+ 1 1.39290- 4 3.50000+ 1 1.22900- 5 3.60000+ 1 1.01800- 5 4.10000+ 1 6.48500- 5 4.30000+ 1 4.12700- 5 4.40000+ 1 2.57700- 5 5.80000+ 1 5.85000- 6 1 100000 0 0 2.57000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91914 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 2.29420- 1 3.00000+ 0 5.90590- 2 5.00000+ 0 5.93360- 2 6.00000+ 0 3.34480- 2 8.00000+ 0 1.88470- 2 1.00000+ 1 1.87410- 2 1.10000+ 1 1.21110- 2 1.30000+ 1 1.19260- 2 1.40000+ 1 1.08210- 2 1.60000+ 1 6.62750- 3 1.80000+ 1 6.45860- 3 1.90000+ 1 4.39370- 3 2.10000+ 1 4.12820- 3 2.20000+ 1 3.78450- 3 2.40000+ 1 3.41230- 3 2.50000+ 1 3.29400- 3 2.70000+ 1 2.20720- 3 2.90000+ 1 2.06000- 3 3.00000+ 1 1.41230- 3 3.20000+ 1 1.16570- 3 3.30000+ 1 1.06190- 3 3.50000+ 1 5.83520- 4 3.60000+ 1 5.49050- 4 4.10000+ 1 5.18870- 4 4.30000+ 1 4.13710- 4 4.40000+ 1 2.47720- 4 5.80000+ 1 4.74200- 5 1 100000 0 0 2.57000+ 2 880712 2 0.00000+ 0 1.00000+50 0.00000+ 0 91915 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 6.34460-11 3.00000+ 0 2.61160-10 5.00000+ 0 2.08290-10 6.00000+ 0 2.68500-10 8.00000+ 0 6.82340-10 1.00000+ 1 6.36780-10 1.10000+ 1 7.44130-10 1.30000+ 1 6.37930-10 1.40000+ 1 6.68830-10 1.60000+ 1 1.47010- 9 1.80000+ 1 1.45160- 9 1.90000+ 1 1.65510- 9 2.10000+ 1 1.61920- 9 2.20000+ 1 1.67670- 9 2.40000+ 1 1.58130- 9 2.50000+ 1 1.60870- 9 2.70000+ 1 2.98150- 9 2.90000+ 1 3.06490- 9 3.00000+ 1 3.49280- 9 3.20000+ 1 3.80680- 9 3.30000+ 1 3.95040- 9 3.50000+ 1 5.51050- 9 3.60000+ 1 5.69580- 9 4.10000+ 1 6.55310- 9 4.30000+ 1 7.27140- 9 4.40000+ 1 8.72720- 9 5.80000+ 1 2.02350- 8 1 100000 0 0 2.57000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91921 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.27750- 4 3.00000+ 0 3.78630- 6 5.00000+ 0 6.53130- 6 6.00000+ 0 5.30280- 6 8.00000+ 0 1.88320- 7 1.00000+ 1 1.97470- 7 1.10000+ 1 2.24810- 7 1.30000+ 1 3.16410- 7 1.40000+ 1 2.86940- 7 1.60000+ 1 1.26550- 8 1.80000+ 1 1.51710- 8 1.90000+ 1 9.91770- 9 2.10000+ 1 6.88740- 9 2.20000+ 1 5.27770- 9 2.40000+ 1 2.77320-10 2.50000+ 1 2.44070-10 2.70000+ 1 1.00520- 9 2.90000+ 1 1.78870- 9 3.00000+ 1 6.94590-10 1 100000 0 0 2.57000+ 2 910605 2 0.00000+ 0 1.00000+50 0.00000+ 0 91922 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 3.68590- 6 3.00000+ 0 1.32310- 5 5.00000+ 0 5.38610- 6 6.00000+ 0 4.84840- 6 8.00000+ 0 2.04460- 5 1.00000+ 1 1.60100- 5 1.10000+ 1 1.20770- 5 1.30000+ 1 4.31410- 6 1.40000+ 1 4.17130- 6 1.60000+ 1 1.54340- 5 1.80000+ 1 1.67720- 5 1.90000+ 1 1.08400- 5 2.10000+ 1 6.89650- 6 2.20000+ 1 6.58020- 6 2.40000+ 1 1.27730- 6 2.50000+ 1 8.44810- 7 2.70000+ 1 3.21260- 5 2.90000+ 1 1.25450- 5 3.00000+ 1 2.26030- 5 1 100000 0 0 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92935 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 7.23615- 4 3.00000+ 0 1.01984- 3 5.00000+ 0 7.57569- 4 6.00000+ 0 7.16174- 4 8.00000+ 0 8.07823- 4 1.00000+ 1 7.27585- 4 1.10000+ 1 6.26582- 4 1.30000+ 1 4.88433- 4 1.40000+ 1 4.69712- 4 1.60000+ 1 4.26675- 4 1.80000+ 1 3.94047- 4 1.90000+ 1 4.20166- 4 2.10000+ 1 3.38562- 4 2.20000+ 1 3.19325- 4 2.40000+ 1 1.91269- 4 2.50000+ 1 1.83565- 4 2.70000+ 1 2.25089- 4 2.90000+ 1 2.05332- 4 3.00000+ 1 1.50390- 4 3.20000+ 1 1.53890- 4 3.30000+ 1 1.39290- 4 3.50000+ 1 1.22900- 5 3.60000+ 1 1.01800- 5 4.10000+ 1 6.48500- 5 4.30000+ 1 4.12700- 5 4.40000+ 1 2.57700- 5 5.80000+ 1 5.85000- 6 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.50715+ 0 3.00000+ 0 6.80462- 1 5.00000+ 0 7.37510- 1 6.00000+ 0 6.03114- 1 8.00000+ 0 7.36405- 2 1.00000+ 1 7.80818- 2 1.10000+ 1 6.91422- 2 1.30000+ 1 7.61816- 2 1.40000+ 1 6.57880- 2 1.60000+ 1 2.43528- 3 1.80000+ 1 2.28349- 3 1.90000+ 1 1.84325- 3 2.10000+ 1 1.35892- 3 2.20000+ 1 1.11341- 3 2.40000+ 1 3.61358- 4 2.50000+ 1 3.19752- 4 2.70000+ 1 8.10134- 5 2.90000+ 1 1.45023- 4 3.00000+ 1 3.07282- 5 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.29295- 1 3.00000+ 0 1.12462- 2 5.00000+ 0 1.46168- 2 6.00000+ 0 9.20291- 3 8.00000+ 0 2.98038- 4 1.00000+ 1 3.20962- 4 1.10000+ 1 2.74009- 4 1.30000+ 1 3.10228- 4 1.40000+ 1 2.54310- 4 1.60000+ 1 2.13036- 6 1.80000+ 1 1.70855- 6 1.90000+ 1 1.36487- 6 2.10000+ 1 8.17212- 7 2.20000+ 1 6.52429- 7 2.40000+ 1 1.50999- 7 2.50000+ 1 1.33621- 7 2.70000+ 1 1.61288- 8 2.90000+ 1 3.22756- 8 3.00000+ 1 4.78140- 9 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92933 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 8.46629+ 0 3.00000+ 0 1.23464+ 1 5.00000+ 0 8.90957+ 0 6.00000+ 0 8.35900+ 0 8.00000+ 0 9.72636+ 0 1.00000+ 1 8.62766+ 0 1.10000+ 1 7.35749+ 0 1.30000+ 1 5.49297+ 0 1.40000+ 1 5.17075+ 0 1.60000+ 1 4.22098+ 0 1.80000+ 1 3.76287+ 0 1.90000+ 1 4.09080+ 0 2.10000+ 1 3.28498+ 0 2.20000+ 1 2.87936+ 0 2.40000+ 1 1.99618+ 0 2.50000+ 1 1.65494+ 0 2.70000+ 1 1.80399+ 0 2.90000+ 1 1.08002+ 0 3.00000+ 1 9.99969- 1 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92934 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 0 1.26618- 2 3.00000+ 0 1.53559- 2 5.00000+ 0 1.14176- 2 6.00000+ 0 1.09749- 2 8.00000+ 0 6.07384- 3 1.00000+ 1 5.73545- 3 1.10000+ 1 4.49201- 3 1.30000+ 1 3.96214- 3 1.40000+ 1 3.76868- 3 1.60000+ 1 1.49700- 3 1.80000+ 1 1.34324- 3 1.90000+ 1 9.38069- 4 2.10000+ 1 7.22420- 4 2.20000+ 1 6.74383- 4 2.40000+ 1 4.09100- 4 2.50000+ 1 3.97922- 4 2.70000+ 1 2.21005- 4 2.90000+ 1 1.62695- 4 3.00000+ 1 1.18775- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.97058- 1 1.15888- 1 6.00000+ 0 4.54157- 1 1.21786- 1 1.00000+ 1 5.33827- 2 1.35896- 1 1.10000+ 1 1.06009- 1 1.37287- 1 1.30000+ 1 2.23099- 3 1.37919- 1 1.40000+ 1 2.40819- 3 1.38187- 1 1.80000+ 1 1.36759- 2 1.40941- 1 1.90000+ 1 2.86788- 2 1.41320- 1 2.10000+ 1 6.99076- 4 1.41618- 1 2.20000+ 1 7.60166- 4 1.41686- 1 2.90000+ 1 3.54388- 3 1.42312- 1 3.00000+ 1 7.36636- 3 1.42411- 1 3.20000+ 1 1.60799- 4 1.42526- 1 3.30000+ 1 1.72719- 4 1.42541- 1 4.30000+ 1 5.96927- 4 1.42639- 1 4.40000+ 1 1.05819- 3 1.42654- 1 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 0 3.00000+ 0 3.45653- 3 8.74360- 2 3.00000+ 0 5.00000+ 0 7.02466- 3 8.82660- 2 3.00000+ 0 6.00000+ 0 1.97022- 3 9.41640- 2 3.00000+ 0 8.00000+ 0 1.45411- 3 1.07878- 1 3.00000+ 0 1.00000+ 1 1.54741- 3 1.08274- 1 3.00000+ 0 1.10000+ 1 5.04165- 4 1.09665- 1 3.00000+ 0 1.30000+ 1 4.42785- 5 1.10297- 1 3.00000+ 0 1.40000+ 1 2.45302- 5 1.10565- 1 3.00000+ 0 1.60000+ 1 3.97274- 4 1.13132- 1 3.00000+ 0 1.80000+ 1 4.17015- 4 1.13319- 1 3.00000+ 0 1.90000+ 1 1.39111- 4 1.13698- 1 3.00000+ 0 2.10000+ 1 1.40141- 5 1.13996- 1 3.00000+ 0 2.20000+ 1 7.63867- 6 1.14064- 1 3.00000+ 0 2.40000+ 1 4.14015- 8 1.14457- 1 3.00000+ 0 2.50000+ 1 4.14015- 8 1.14476- 1 3.00000+ 0 2.70000+ 1 1.09460- 4 1.14612- 1 3.00000+ 0 2.90000+ 1 1.09460- 4 1.14690- 1 3.00000+ 0 3.00000+ 1 3.59983- 5 1.14789- 1 3.00000+ 0 3.20000+ 1 3.22942- 6 1.14904- 1 3.00000+ 0 3.30000+ 1 1.71811- 6 1.14919- 1 5.00000+ 0 5.00000+ 0 1.88303- 4 8.90960- 2 5.00000+ 0 6.00000+ 0 3.00019- 3 9.49940- 2 5.00000+ 0 8.00000+ 0 1.32425- 3 1.08708- 1 5.00000+ 0 1.00000+ 1 7.49315- 5 1.09104- 1 5.00000+ 0 1.10000+ 1 6.61967- 4 1.10495- 1 5.00000+ 0 1.30000+ 1 4.50836- 5 1.11127- 1 5.00000+ 0 1.40000+ 1 8.97719- 5 1.11395- 1 5.00000+ 0 1.60000+ 1 3.52867- 4 1.13962- 1 5.00000+ 0 1.80000+ 1 1.99133- 5 1.14149- 1 5.00000+ 0 1.90000+ 1 1.75744- 4 1.14528- 1 5.00000+ 0 2.10000+ 1 1.35375- 5 1.14826- 1 5.00000+ 0 2.20000+ 1 2.72820- 5 1.14894- 1 5.00000+ 0 2.40000+ 1 4.34686- 7 1.15287- 1 5.00000+ 0 2.50000+ 1 6.20979- 7 1.15306- 1 5.00000+ 0 2.70000+ 1 9.65407- 5 1.15442- 1 5.00000+ 0 2.90000+ 1 5.21632- 6 1.15520- 1 5.00000+ 0 3.00000+ 1 4.49996- 5 1.15619- 1 5.00000+ 0 3.20000+ 1 3.08429- 6 1.15734- 1 5.00000+ 0 3.30000+ 1 6.12710- 6 1.15749- 1 6.00000+ 0 6.00000+ 0 1.15588- 3 1.00892- 1 6.00000+ 0 8.00000+ 0 3.25935- 4 1.14606- 1 6.00000+ 0 1.00000+ 1 5.46214- 4 1.15002- 1 6.00000+ 0 1.10000+ 1 5.23864- 4 1.16393- 1 6.00000+ 0 1.30000+ 1 9.36688- 5 1.17025- 1 6.00000+ 0 1.40000+ 1 7.16021- 5 1.17293- 1 6.00000+ 0 1.60000+ 1 8.41219- 5 1.19860- 1 6.00000+ 0 1.80000+ 1 1.40528- 4 1.20047- 1 6.00000+ 0 1.90000+ 1 1.40158- 4 1.20426- 1 6.00000+ 0 2.10000+ 1 2.86056- 5 1.20724- 1 6.00000+ 0 2.20000+ 1 2.19007- 5 1.20792- 1 6.00000+ 0 2.40000+ 1 5.58883- 7 1.21185- 1 6.00000+ 0 2.50000+ 1 6.00303- 7 1.21204- 1 6.00000+ 0 2.70000+ 1 2.28107- 5 1.21340- 1 6.00000+ 0 2.90000+ 1 3.64315- 5 1.21418- 1 6.00000+ 0 3.00000+ 1 3.59555- 5 1.21517- 1 6.00000+ 0 3.20000+ 1 6.52062- 6 1.21632- 1 6.00000+ 0 3.30000+ 1 4.92654- 6 1.21647- 1 8.00000+ 0 8.00000+ 0 1.51486- 4 1.28321- 1 8.00000+ 0 1.00000+ 1 2.92813- 4 1.28716- 1 8.00000+ 0 1.10000+ 1 8.39972- 5 1.30108- 1 8.00000+ 0 1.30000+ 1 7.12055- 6 1.30740- 1 8.00000+ 0 1.40000+ 1 3.72582- 6 1.31008- 1 8.00000+ 0 1.60000+ 1 8.26512- 5 1.33574- 1 8.00000+ 0 1.80000+ 1 7.89703- 5 1.33761- 1 8.00000+ 0 1.90000+ 1 2.32455- 5 1.34141- 1 8.00000+ 0 2.10000+ 1 2.25625- 6 1.34439- 1 8.00000+ 0 2.20000+ 1 1.15917- 6 1.34506- 1 8.00000+ 0 2.70000+ 1 2.27695- 5 1.35054- 1 8.00000+ 0 2.90000+ 1 2.07405- 5 1.35132- 1 8.00000+ 0 3.00000+ 1 6.02368- 6 1.35231- 1 8.00000+ 0 3.20000+ 1 5.17489- 7 1.35346- 1 8.00000+ 0 3.30000+ 1 2.69094- 7 1.35361- 1 1.00000+ 1 1.00000+ 1 6.66527- 6 1.29112- 1 1.00000+ 1 1.10000+ 1 1.24907- 4 1.30503- 1 1.00000+ 1 1.30000+ 1 7.96935- 6 1.31135- 1 1.00000+ 1 1.40000+ 1 1.19647- 5 1.31403- 1 1.00000+ 1 1.60000+ 1 7.79975- 5 1.33970- 1 1.00000+ 1 1.80000+ 1 3.45693- 6 1.34157- 1 1.00000+ 1 1.90000+ 1 3.34283- 5 1.34536- 1 1.00000+ 1 2.10000+ 1 2.42185- 6 1.34834- 1 1.00000+ 1 2.20000+ 1 3.70512- 6 1.34902- 1 1.00000+ 1 2.40000+ 1 6.20989- 8 1.35295- 1 1.00000+ 1 2.50000+ 1 6.20989- 8 1.35314- 1 1.00000+ 1 2.70000+ 1 2.13416- 5 1.35450- 1 1.00000+ 1 2.90000+ 1 8.90112- 7 1.35528- 1 1.00000+ 1 3.00000+ 1 8.56943- 6 1.35627- 1 1.00000+ 1 3.20000+ 1 5.58879- 7 1.35742- 1 1.00000+ 1 3.30000+ 1 8.27973- 7 1.35757- 1 1.10000+ 1 1.10000+ 1 6.01541- 5 1.31895- 1 1.10000+ 1 1.30000+ 1 1.75950- 5 1.32527- 1 1.10000+ 1 1.40000+ 1 1.28340- 5 1.32795- 1 1.10000+ 1 1.60000+ 1 2.17140- 5 1.35362- 1 1.10000+ 1 1.80000+ 1 3.23970- 5 1.35548- 1 1.10000+ 1 1.90000+ 1 3.22940- 5 1.35928- 1 1.10000+ 1 2.10000+ 1 5.42351- 6 1.36226- 1 1.10000+ 1 2.20000+ 1 3.97441- 6 1.36293- 1 1.10000+ 1 2.40000+ 1 8.27990- 8 1.36687- 1 1.10000+ 1 2.50000+ 1 8.27990- 8 1.36706- 1 1.10000+ 1 2.70000+ 1 5.89961- 6 1.36841- 1 1.10000+ 1 2.90000+ 1 8.42520- 6 1.36919- 1 1.10000+ 1 3.00000+ 1 8.30040- 6 1.37018- 1 1.10000+ 1 3.20000+ 1 1.24200- 6 1.37134- 1 1.10000+ 1 3.30000+ 1 8.90130- 7 1.37148- 1 1.30000+ 1 1.30000+ 1 6.21001- 8 1.33158- 1 1.30000+ 1 1.40000+ 1 1.71810- 6 1.33427- 1 1.30000+ 1 1.60000+ 1 1.84240- 6 1.35993- 1 1.30000+ 1 1.80000+ 1 2.04940- 6 1.36180- 1 1.30000+ 1 1.90000+ 1 4.49201- 6 1.36560- 1 1.30000+ 1 2.10000+ 1 4.14011- 8 1.36857- 1 1.30000+ 1 2.20000+ 1 4.96810- 7 1.36925- 1 1.30000+ 1 2.50000+ 1 2.07000- 8 1.37338- 1 1.30000+ 1 2.70000+ 1 4.96810- 7 1.37473- 1 1.30000+ 1 2.90000+ 1 5.38201- 7 1.37551- 1 1.30000+ 1 3.00000+ 1 1.13850- 6 1.37650- 1 1.30000+ 1 3.30000+ 1 1.03500- 7 1.37780- 1 1.40000+ 1 1.40000+ 1 4.34694- 7 1.33695- 1 1.40000+ 1 1.60000+ 1 9.52196- 7 1.36261- 1 1.40000+ 1 1.80000+ 1 2.85665- 6 1.36448- 1 1.40000+ 1 1.90000+ 1 3.24975- 6 1.36828- 1 1.40000+ 1 2.10000+ 1 4.96803- 7 1.37126- 1 1.40000+ 1 2.20000+ 1 2.48396- 7 1.37193- 1 1.40000+ 1 2.70000+ 1 2.48396- 7 1.37741- 1 1.40000+ 1 2.90000+ 1 7.24489- 7 1.37819- 1 1.40000+ 1 3.00000+ 1 8.27977- 7 1.37918- 1 1.40000+ 1 3.20000+ 1 1.03498- 7 1.38033- 1 1.40000+ 1 3.30000+ 1 6.20991- 8 1.38048- 1 1.60000+ 1 1.60000+ 1 1.12609- 5 1.38828- 1 1.60000+ 1 1.80000+ 1 2.10308- 5 1.39015- 1 1.60000+ 1 1.90000+ 1 6.00306- 6 1.39395- 1 1.60000+ 1 2.10000+ 1 5.79606- 7 1.39692- 1 1.60000+ 1 2.20000+ 1 2.89787- 7 1.39760- 1 1.60000+ 1 2.70000+ 1 6.20995- 6 1.40308- 1 1.60000+ 1 2.90000+ 1 5.52686- 6 1.40386- 1 1.60000+ 1 3.00000+ 1 1.55248- 6 1.40485- 1 1.60000+ 1 3.20000+ 1 1.24198- 7 1.40600- 1 1.60000+ 1 3.30000+ 1 6.20995- 8 1.40615- 1 1.80000+ 1 1.80000+ 1 4.55406- 7 1.39202- 1 1.80000+ 1 1.90000+ 1 8.69392- 6 1.39581- 1 1.80000+ 1 2.10000+ 1 6.21009- 7 1.39879- 1 1.80000+ 1 2.20000+ 1 8.90142- 7 1.39947- 1 1.80000+ 1 2.40000+ 1 2.07003- 8 1.40340- 1 1.80000+ 1 2.50000+ 1 2.07003- 8 1.40359- 1 1.80000+ 1 2.70000+ 1 5.75468- 6 1.40495- 1 1.80000+ 1 2.90000+ 1 2.27703- 7 1.40573- 1 1.80000+ 1 3.00000+ 1 2.23573- 6 1.40672- 1 1.80000+ 1 3.20000+ 1 1.44902- 7 1.40787- 1 1.80000+ 1 3.30000+ 1 2.07003- 7 1.40802- 1 1.90000+ 1 1.90000+ 1 4.34695- 6 1.39961- 1 1.90000+ 1 2.10000+ 1 1.38688- 6 1.40259- 1 1.90000+ 1 2.20000+ 1 1.01428- 6 1.40326- 1 1.90000+ 1 2.40000+ 1 2.06997- 8 1.40720- 1 1.90000+ 1 2.50000+ 1 2.06997- 8 1.40739- 1 1.90000+ 1 2.70000+ 1 1.63528- 6 1.40874- 1 1.90000+ 1 2.90000+ 1 2.25627- 6 1.40952- 1 1.90000+ 1 3.00000+ 1 2.23567- 6 1.41051- 1 1.90000+ 1 3.20000+ 1 3.10505- 7 1.41167- 1 1.90000+ 1 3.30000+ 1 2.27697- 7 1.41181- 1 2.10000+ 1 2.20000+ 1 1.44897- 7 1.40624- 1 2.10000+ 1 2.70000+ 1 1.65597- 7 1.41172- 1 2.10000+ 1 2.90000+ 1 1.65597- 7 1.41250- 1 2.10000+ 1 3.00000+ 1 3.51894- 7 1.41349- 1 2.10000+ 1 3.30000+ 1 4.14004- 8 1.41479- 1 2.20000+ 1 2.20000+ 1 4.14002- 8 1.40691- 1 2.20000+ 1 2.70000+ 1 8.27971- 8 1.41240- 1 2.20000+ 1 2.90000+ 1 2.27695- 7 1.41318- 1 2.20000+ 1 3.00000+ 1 2.48395- 7 1.41416- 1 2.20000+ 1 3.20000+ 1 4.14002- 8 1.41532- 1 2.20000+ 1 3.30000+ 1 2.06995- 8 1.41546- 1 2.70000+ 1 2.70000+ 1 8.48679- 7 1.41788- 1 2.70000+ 1 2.90000+ 1 1.51109- 6 1.41866- 1 2.70000+ 1 3.00000+ 1 4.14010- 7 1.41965- 1 2.70000+ 1 3.20000+ 1 4.14010- 8 1.42080- 1 2.70000+ 1 3.30000+ 1 2.07000- 8 1.42095- 1 2.90000+ 1 2.90000+ 1 2.06995- 8 1.41944- 1 2.90000+ 1 3.00000+ 1 5.79597- 7 1.42043- 1 2.90000+ 1 3.20000+ 1 4.14001- 8 1.42158- 1 2.90000+ 1 3.30000+ 1 4.14001- 8 1.42173- 1 3.00000+ 1 3.00000+ 1 2.89789- 7 1.42142- 1 3.00000+ 1 3.20000+ 1 8.27988- 8 1.42257- 1 3.00000+ 1 3.30000+ 1 6.21000- 8 1.42272- 1 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 1.34831- 5 8.30000- 4 6.00000+ 0 1.97461- 2 6.72800- 3 1.00000+ 1 8.09943- 2 2.08380- 2 1.10000+ 1 5.46932- 2 2.22294- 2 1.30000+ 1 4.47512- 3 2.28612- 2 1.40000+ 1 6.62563- 3 2.31293- 2 1.80000+ 1 2.24611- 2 2.58830- 2 1.90000+ 1 1.83421- 2 2.62624- 2 2.10000+ 1 8.23874- 4 2.65602- 2 2.20000+ 1 1.32821- 3 2.66276- 2 2.90000+ 1 5.91813- 3 2.72539- 2 3.00000+ 1 4.92772- 3 2.73528- 2 3.20000+ 1 1.65971- 4 2.74681- 2 3.30000+ 1 2.70181- 4 2.74827- 2 4.30000+ 1 1.00100- 3 2.75807- 2 4.40000+ 1 7.14403- 4 2.75962- 2 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 5.00000+ 0 2.40000+ 1 1.15150- 2 2.29480- 4 5.00000+ 0 2.50000+ 1 1.53980- 2 2.48380- 4 5.00000+ 0 2.70000+ 1 5.63683- 3 3.83890- 4 5.00000+ 0 2.90000+ 1 4.89592- 3 4.61940- 4 5.00000+ 0 3.00000+ 1 3.38582- 3 5.60830- 4 5.00000+ 0 3.20000+ 1 9.57954- 4 6.76110- 4 5.00000+ 0 3.30000+ 1 1.14060- 3 6.90710- 4 6.00000+ 0 1.10000+ 1 3.15130- 2 1.33540- 3 6.00000+ 0 1.30000+ 1 1.85580- 1 1.96720- 3 6.00000+ 0 1.40000+ 1 2.15040- 1 2.23530- 3 6.00000+ 0 1.60000+ 1 1.61169- 2 4.80220- 3 6.00000+ 0 1.80000+ 1 6.29480- 3 4.98900- 3 6.00000+ 0 1.90000+ 1 8.23678- 3 5.36840- 3 6.00000+ 0 2.10000+ 1 3.27640- 2 5.66620- 3 6.00000+ 0 2.20000+ 1 3.65730- 2 5.73364- 3 6.00000+ 0 2.40000+ 1 1.67459- 2 6.12748- 3 6.00000+ 0 2.50000+ 1 2.00910- 2 6.14638- 3 6.00000+ 0 2.70000+ 1 4.17079- 3 6.28189- 3 6.00000+ 0 2.90000+ 1 1.64299- 3 6.35994- 3 6.00000+ 0 3.00000+ 1 2.10930- 3 6.45883- 3 6.00000+ 0 3.20000+ 1 6.74799- 3 6.57411- 3 6.00000+ 0 3.30000+ 1 7.35559- 3 6.58871- 3 8.00000+ 0 8.00000+ 0 6.04472- 3 1.32626- 2 8.00000+ 0 1.00000+ 1 1.29782- 2 1.36583- 2 8.00000+ 0 1.10000+ 1 1.61283- 2 1.50497- 2 8.00000+ 0 1.30000+ 1 1.09352- 2 1.56815- 2 8.00000+ 0 1.40000+ 1 1.24042- 2 1.59496- 2 8.00000+ 0 1.60000+ 1 2.82486- 3 1.85165- 2 8.00000+ 0 1.80000+ 1 3.47777- 3 1.87033- 2 8.00000+ 0 1.90000+ 1 4.35488- 3 1.90827- 2 8.00000+ 0 2.10000+ 1 2.85756- 3 1.93805- 2 8.00000+ 0 2.20000+ 1 3.24856- 3 1.94479- 2 8.00000+ 0 2.40000+ 1 2.64005- 4 1.98418- 2 8.00000+ 0 2.50000+ 1 2.59525- 4 1.98607- 2 8.00000+ 0 2.70000+ 1 7.55553- 4 1.99962- 2 8.00000+ 0 2.90000+ 1 9.09847- 4 2.00742- 2 8.00000+ 0 3.00000+ 1 1.11902- 3 2.01731- 2 8.00000+ 0 3.20000+ 1 6.29382- 4 2.02884- 2 8.00000+ 0 3.30000+ 1 7.05833- 4 2.03030- 2 1.00000+ 1 1.00000+ 1 9.11434- 6 1.40540- 2 1.00000+ 1 1.10000+ 1 2.44964- 4 1.54454- 2 1.00000+ 1 1.30000+ 1 8.35316- 4 1.60772- 2 1.00000+ 1 1.40000+ 1 5.26836- 3 1.63453- 2 1.00000+ 1 1.60000+ 1 2.42424- 3 1.89122- 2 1.00000+ 1 1.80000+ 1 1.27916- 6 1.90990- 2 1.00000+ 1 1.90000+ 1 5.30866- 5 1.94784- 2 1.00000+ 1 2.10000+ 1 1.78446- 4 1.97762- 2 1.00000+ 1 2.20000+ 1 9.07234- 4 1.98436- 2 1.00000+ 1 2.40000+ 1 1.04887- 4 2.02375- 2 1.00000+ 1 2.50000+ 1 3.54980- 4 2.02564- 2 1.00000+ 1 2.70000+ 1 6.08253- 4 2.03919- 2 1.00000+ 1 2.90000+ 1 3.19791- 7 2.04699- 2 1.00000+ 1 3.00000+ 1 1.29516- 5 2.05688- 2 1.00000+ 1 3.20000+ 1 3.80559- 5 2.06841- 2 1.00000+ 1 3.30000+ 1 1.79566- 4 2.06987- 2 1.10000+ 1 1.10000+ 1 9.02052- 4 1.68368- 2 1.10000+ 1 1.30000+ 1 1.41340- 3 1.74686- 2 1.10000+ 1 1.40000+ 1 9.19162- 4 1.77367- 2 1.10000+ 1 1.60000+ 1 2.86951- 3 2.03036- 2 1.10000+ 1 1.80000+ 1 6.87602- 5 2.04904- 2 1.10000+ 1 1.90000+ 1 3.88721- 4 2.08698- 2 1.10000+ 1 2.10000+ 1 2.09961- 4 2.11676- 2 1.10000+ 1 2.20000+ 1 1.04740- 4 2.12350- 2 1.10000+ 1 2.40000+ 1 8.12331- 5 2.16289- 2 1.10000+ 1 2.50000+ 1 7.56361- 5 2.16478- 2 1.10000+ 1 2.70000+ 1 7.10762- 4 2.17833- 2 1.10000+ 1 2.90000+ 1 1.80691- 5 2.18613- 2 1.10000+ 1 3.00000+ 1 9.48232- 5 2.19602- 2 1.10000+ 1 3.20000+ 1 4.15751- 5 2.20755- 2 1.10000+ 1 3.30000+ 1 1.90281- 5 2.20901- 2 1.30000+ 1 1.30000+ 1 5.85079- 4 1.81004- 2 1.30000+ 1 1.40000+ 1 1.52499- 2 1.83685- 2 1.30000+ 1 1.60000+ 1 1.72459- 3 2.09354- 2 1.30000+ 1 1.80000+ 1 2.54090- 4 2.11222- 2 1.30000+ 1 1.90000+ 1 3.71289- 4 2.15016- 2 1.30000+ 1 2.10000+ 1 2.97729- 4 2.17994- 2 1.30000+ 1 2.20000+ 1 2.80649- 3 2.18668- 2 1.30000+ 1 2.40000+ 1 2.40810- 4 2.22607- 2 1.30000+ 1 2.50000+ 1 6.42648- 4 2.22796- 2 1.30000+ 1 2.70000+ 1 4.14309- 4 2.24151- 2 1.30000+ 1 2.90000+ 1 6.85958- 5 2.24931- 2 1.30000+ 1 3.00000+ 1 9.64166- 5 2.25920- 2 1.30000+ 1 3.20000+ 1 6.53988- 5 2.27073- 2 1.30000+ 1 3.30000+ 1 5.61739- 4 2.27219- 2 1.40000+ 1 1.40000+ 1 4.07514- 3 1.86366- 2 1.40000+ 1 1.60000+ 1 1.98187- 3 2.12035- 2 1.40000+ 1 1.80000+ 1 1.23174- 3 2.13903- 2 1.40000+ 1 1.90000+ 1 2.17308- 4 2.17697- 2 1.40000+ 1 2.10000+ 1 2.65350- 3 2.20675- 2 1.40000+ 1 2.20000+ 1 1.57795- 3 2.21349- 2 1.40000+ 1 2.40000+ 1 7.00385- 4 2.25288- 2 1.40000+ 1 2.50000+ 1 5.07708- 4 2.25477- 2 1.40000+ 1 2.70000+ 1 4.79877- 4 2.26832- 2 1.40000+ 1 2.90000+ 1 3.12621- 4 2.27612- 2 1.40000+ 1 3.00000+ 1 5.58080- 5 2.28601- 2 1.40000+ 1 3.20000+ 1 5.31859- 4 2.29754- 2 1.40000+ 1 3.30000+ 1 3.20291- 4 2.29900- 2 1.60000+ 1 1.60000+ 1 3.12454- 4 2.37704- 2 1.60000+ 1 1.80000+ 1 6.50829- 4 2.39572- 2 1.60000+ 1 1.90000+ 1 7.80539- 4 2.43366- 2 1.60000+ 1 2.10000+ 1 4.56206- 4 2.46344- 2 1.60000+ 1 2.20000+ 1 5.21447- 4 2.47018- 2 1.60000+ 1 2.40000+ 1 3.54995- 5 2.50957- 2 1.60000+ 1 2.50000+ 1 3.26214- 5 2.51146- 2 1.60000+ 1 2.70000+ 1 1.64862- 4 2.52501- 2 1.60000+ 1 2.90000+ 1 1.70302- 4 2.53281- 2 1.60000+ 1 3.00000+ 1 2.00843- 4 2.54270- 2 1.60000+ 1 3.20000+ 1 1.00741- 4 2.55423- 2 1.60000+ 1 3.30000+ 1 1.13371- 4 2.55569- 2 1.80000+ 1 1.80000+ 1 1.59910- 7 2.41440- 2 1.80000+ 1 1.90000+ 1 1.47110- 5 2.45234- 2 1.80000+ 1 2.10000+ 1 5.05289- 5 2.48212- 2 1.80000+ 1 2.20000+ 1 2.21780- 4 2.48886- 2 1.80000+ 1 2.40000+ 1 1.53510- 5 2.52825- 2 1.80000+ 1 2.50000+ 1 5.88470- 5 2.53014- 2 1.80000+ 1 2.70000+ 1 1.63260- 4 2.54369- 2 1.80000+ 1 3.00000+ 1 3.51790- 6 2.56138- 2 1.80000+ 1 3.20000+ 1 1.05540- 5 2.57291- 2 1.80000+ 1 3.30000+ 1 4.42930- 5 2.57437- 2 1.90000+ 1 1.90000+ 1 4.04558- 5 2.49028- 2 1.90000+ 1 2.10000+ 1 5.00509- 5 2.52006- 2 1.90000+ 1 2.20000+ 1 2.22265- 5 2.52680- 2 1.90000+ 1 2.40000+ 1 2.19075- 5 2.56619- 2 1.90000+ 1 2.50000+ 1 1.90284- 5 2.56808- 2 1.90000+ 1 2.70000+ 1 1.93644- 4 2.58163- 2 1.90000+ 1 2.90000+ 1 3.83777- 6 2.58943- 2 1.90000+ 1 3.00000+ 1 1.95084- 5 2.59932- 2 1.90000+ 1 3.20000+ 1 9.59448- 6 2.61085- 2 1.90000+ 1 3.30000+ 1 3.83777- 6 2.61231- 2 2.10000+ 1 2.10000+ 1 3.50188- 5 2.54984- 2 2.10000+ 1 2.20000+ 1 5.33442- 4 2.55658- 2 2.10000+ 1 2.40000+ 1 4.30149- 5 2.59597- 2 2.10000+ 1 2.50000+ 1 8.58687- 5 2.59786- 2 2.10000+ 1 2.70000+ 1 1.09852- 4 2.61141- 2 2.10000+ 1 2.90000+ 1 1.34322- 5 2.61921- 2 2.10000+ 1 3.00000+ 1 1.29522- 5 2.62910- 2 2.10000+ 1 3.20000+ 1 1.51913- 5 2.64063- 2 2.10000+ 1 3.30000+ 1 1.08732- 4 2.64209- 2 2.20000+ 1 2.20000+ 1 1.63590- 4 2.56333- 2 2.20000+ 1 2.40000+ 1 1.02020- 4 2.60271- 2 2.20000+ 1 2.50000+ 1 8.10700- 5 2.60460- 2 2.20000+ 1 2.70000+ 1 1.26320- 4 2.61815- 2 2.20000+ 1 2.90000+ 1 5.67661- 5 2.62596- 2 2.20000+ 1 3.00000+ 1 5.75651- 6 2.63585- 2 2.20000+ 1 3.20000+ 1 1.08890- 4 2.64737- 2 2.20000+ 1 3.30000+ 1 6.73211- 5 2.64883- 2 2.40000+ 1 2.40000+ 1 1.27920- 6 2.64210- 2 2.40000+ 1 2.50000+ 1 2.25471- 5 2.64399- 2 2.40000+ 1 2.70000+ 1 8.31531- 6 2.65754- 2 2.40000+ 1 2.90000+ 1 3.51791- 6 2.66534- 2 2.40000+ 1 3.00000+ 1 5.59662- 6 2.67523- 2 2.40000+ 1 3.20000+ 1 8.79502- 6 2.68676- 2 2.40000+ 1 3.30000+ 1 1.93481- 5 2.68822- 2 2.50000+ 1 2.50000+ 1 4.63716- 6 2.64588- 2 2.50000+ 1 2.70000+ 1 7.51549- 6 2.65943- 2 2.50000+ 1 2.90000+ 1 1.37521- 5 2.66723- 2 2.50000+ 1 3.00000+ 1 4.79716- 6 2.67712- 2 2.50000+ 1 3.20000+ 1 1.61502- 5 2.68865- 2 2.50000+ 1 3.30000+ 1 1.58312- 5 2.69011- 2 2.70000+ 1 2.70000+ 1 2.17471- 5 2.67298- 2 2.70000+ 1 2.90000+ 1 4.26952- 5 2.68078- 2 2.70000+ 1 3.00000+ 1 4.98902- 5 2.69067- 2 2.70000+ 1 3.20000+ 1 2.43051- 5 2.70220- 2 2.70000+ 1 3.30000+ 1 2.75031- 5 2.70366- 2 2.90000+ 1 3.00000+ 1 9.59446- 7 2.69848- 2 2.90000+ 1 3.20000+ 1 2.71845- 6 2.71000- 2 2.90000+ 1 3.30000+ 1 1.13532- 5 2.71146- 2 3.00000+ 1 3.00000+ 1 2.39864- 6 2.70837- 2 3.00000+ 1 3.20000+ 1 2.39864- 6 2.71989- 2 3.00000+ 1 3.30000+ 1 9.59444- 7 2.72135- 2 3.20000+ 1 3.20000+ 1 1.59909- 6 2.73142- 2 3.20000+ 1 3.30000+ 1 2.22260- 5 2.73288- 2 3.30000+ 1 3.30000+ 1 6.87603- 6 2.73434- 2 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 9.57629- 5 5.89800- 3 8.00000+ 0 1.19960- 2 1.96123- 2 1.10000+ 1 7.16340- 4 2.13994- 2 1.30000+ 1 4.08720- 1 2.20312- 2 1.60000+ 1 3.36030- 3 2.48662- 2 1.90000+ 1 2.30090- 4 2.54324- 2 2.10000+ 1 9.93089- 2 2.57302- 2 2.40000+ 1 7.64389- 4 2.61915- 2 2.70000+ 1 9.28969- 4 2.63459- 2 3.00000+ 1 6.13040- 5 2.65228- 2 3.20000+ 1 2.15680- 2 2.66381- 2 3.50000+ 1 9.19049- 5 2.67797- 2 4.10000+ 1 1.86800- 4 2.67271- 2 4.40000+ 1 8.86989- 6 2.67662- 2 5.80000+ 1 1.48910- 5 2.67861- 2 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 5.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 6.00000+ 0 1.10000+ 1 1.97618- 2 5.05400- 4 6.00000+ 0 1.30000+ 1 8.20731- 2 1.13720- 3 6.00000+ 0 1.40000+ 1 2.66038- 2 1.40530- 3 6.00000+ 0 1.60000+ 1 2.45058- 3 3.97220- 3 6.00000+ 0 1.80000+ 1 2.28898- 2 4.15900- 3 6.00000+ 0 1.90000+ 1 4.45526- 3 4.53840- 3 6.00000+ 0 2.10000+ 1 1.72028- 2 4.83620- 3 6.00000+ 0 2.20000+ 1 5.77814- 3 4.90364- 3 6.00000+ 0 2.40000+ 1 9.44558- 4 5.29748- 3 6.00000+ 0 2.50000+ 1 1.30008- 3 5.31638- 3 6.00000+ 0 2.70000+ 1 6.20333- 4 5.45189- 3 6.00000+ 0 2.90000+ 1 5.38944- 3 5.52994- 3 6.00000+ 0 3.00000+ 1 1.10708- 3 5.62883- 3 6.00000+ 0 3.20000+ 1 3.61686- 3 5.74411- 3 6.00000+ 0 3.30000+ 1 1.21628- 3 5.75871- 3 8.00000+ 0 8.00000+ 0 2.91800- 4 1.24326- 2 8.00000+ 0 1.00000+ 1 1.43990- 2 1.28283- 2 8.00000+ 0 1.10000+ 1 1.16519- 3 1.42197- 2 8.00000+ 0 1.30000+ 1 3.01410- 3 1.48515- 2 8.00000+ 0 1.40000+ 1 7.27681- 4 1.51196- 2 8.00000+ 0 1.60000+ 1 1.20779- 4 1.76865- 2 8.00000+ 0 1.80000+ 1 2.56321- 3 1.78733- 2 8.00000+ 0 1.90000+ 1 2.84720- 4 1.82527- 2 8.00000+ 0 2.10000+ 1 5.70591- 4 1.85505- 2 8.00000+ 0 2.20000+ 1 1.16439- 4 1.86179- 2 8.00000+ 0 2.40000+ 1 4.84040- 5 1.90118- 2 8.00000+ 0 2.50000+ 1 3.76740- 5 1.90307- 2 8.00000+ 0 2.70000+ 1 3.12810- 5 1.91662- 2 8.00000+ 0 2.90000+ 1 6.09181- 4 1.92442- 2 8.00000+ 0 3.00000+ 1 7.14671- 5 1.93431- 2 8.00000+ 0 3.20000+ 1 1.17359- 4 1.94584- 2 8.00000+ 0 3.30000+ 1 2.30611- 5 1.94730- 2 1.00000+ 1 1.00000+ 1 1.57719- 2 1.32240- 2 1.00000+ 1 1.10000+ 1 3.11938- 2 1.46154- 2 1.00000+ 1 1.30000+ 1 1.54299- 2 1.52472- 2 1.00000+ 1 1.40000+ 1 1.73809- 2 1.55153- 2 1.00000+ 1 1.60000+ 1 4.03307- 3 1.80822- 2 1.00000+ 1 1.80000+ 1 7.10956- 3 1.82690- 2 1.00000+ 1 1.90000+ 1 8.25704- 3 1.86484- 2 1.00000+ 1 2.10000+ 1 4.00077- 3 1.89462- 2 1.00000+ 1 2.20000+ 1 4.56828- 3 1.90136- 2 1.00000+ 1 2.40000+ 1 3.05728- 4 1.94075- 2 1.00000+ 1 2.50000+ 1 2.27639- 4 1.94264- 2 1.00000+ 1 2.70000+ 1 1.11649- 3 1.95619- 2 1.00000+ 1 2.90000+ 1 1.79799- 3 1.96399- 2 1.00000+ 1 3.00000+ 1 2.11199- 3 1.97388- 2 1.00000+ 1 3.20000+ 1 8.80883- 4 1.98541- 2 1.00000+ 1 3.30000+ 1 9.93924- 4 1.98687- 2 1.10000+ 1 1.10000+ 1 5.48211- 4 1.60068- 2 1.10000+ 1 1.30000+ 1 9.86691- 3 1.66386- 2 1.10000+ 1 1.40000+ 1 1.62110- 3 1.69067- 2 1.10000+ 1 1.60000+ 1 2.69431- 4 1.94736- 2 1.10000+ 1 1.80000+ 1 5.49931- 3 1.96604- 2 1.10000+ 1 1.90000+ 1 2.53221- 4 2.00398- 2 1.10000+ 1 2.10000+ 1 2.23011- 3 2.03376- 2 1.10000+ 1 2.20000+ 1 3.58930- 4 2.04050- 2 1.10000+ 1 2.40000+ 1 7.78571- 5 2.07989- 2 1.10000+ 1 2.50000+ 1 3.67600- 5 2.08178- 2 1.10000+ 1 2.70000+ 1 7.10101- 5 2.09533- 2 1.10000+ 1 2.90000+ 1 1.30209- 3 2.10313- 2 1.10000+ 1 3.00000+ 1 6.25631- 5 2.11302- 2 1.10000+ 1 3.20000+ 1 4.75130- 4 2.12455- 2 1.10000+ 1 3.30000+ 1 7.53491- 5 2.12601- 2 1.30000+ 1 1.30000+ 1 9.31058- 3 1.72704- 2 1.30000+ 1 1.40000+ 1 3.46419- 2 1.75385- 2 1.30000+ 1 1.60000+ 1 8.44558- 4 2.01054- 2 1.30000+ 1 1.80000+ 1 2.60720- 3 2.02922- 2 1.30000+ 1 1.90000+ 1 2.37870- 3 2.06716- 2 1.30000+ 1 2.10000+ 1 4.02589- 3 2.09694- 2 1.30000+ 1 2.20000+ 1 8.10479- 3 2.10368- 2 1.30000+ 1 2.40000+ 1 8.69458- 4 2.14307- 2 1.30000+ 1 2.50000+ 1 1.69720- 3 2.14496- 2 1.30000+ 1 2.70000+ 1 2.34490- 4 2.15851- 2 1.30000+ 1 2.90000+ 1 6.17629- 4 2.16631- 2 1.30000+ 1 3.00000+ 1 5.94809- 4 2.17620- 2 1.30000+ 1 3.20000+ 1 8.54628- 4 2.18773- 2 1.30000+ 1 3.30000+ 1 1.71810- 3 2.18919- 2 1.40000+ 1 1.40000+ 1 1.69818- 3 1.78066- 2 1.40000+ 1 1.60000+ 1 1.64848- 4 2.03735- 2 1.40000+ 1 1.80000+ 1 2.53167- 3 2.05603- 2 1.40000+ 1 1.90000+ 1 3.62115- 4 2.09397- 2 1.40000+ 1 2.10000+ 1 6.17223- 3 2.12375- 2 1.40000+ 1 2.20000+ 1 7.28352- 4 2.13049- 2 1.40000+ 1 2.40000+ 1 3.46596- 4 2.16988- 2 1.40000+ 1 2.50000+ 1 1.30608- 4 2.17177- 2 1.40000+ 1 2.70000+ 1 4.33816- 5 2.18532- 2 1.40000+ 1 2.90000+ 1 5.71483- 4 2.19312- 2 1.40000+ 1 3.00000+ 1 8.90458- 5 2.20301- 2 1.40000+ 1 3.20000+ 1 1.24818- 3 2.21454- 2 1.40000+ 1 3.30000+ 1 1.52298- 4 2.21600- 2 1.60000+ 1 1.60000+ 1 1.18726- 5 2.29404- 2 1.60000+ 1 1.80000+ 1 7.21021- 4 2.31272- 2 1.60000+ 1 1.90000+ 1 6.59822- 5 2.35066- 2 1.60000+ 1 2.10000+ 1 1.57086- 4 2.38044- 2 1.60000+ 1 2.20000+ 1 2.58004- 5 2.38718- 2 1.60000+ 1 2.40000+ 1 1.14156- 5 2.42657- 2 1.60000+ 1 2.50000+ 1 7.30601- 6 2.42846- 2 1.60000+ 1 2.70000+ 1 6.16484- 6 2.44201- 2 1.60000+ 1 2.90000+ 1 1.71466- 4 2.44981- 2 1.60000+ 1 3.00000+ 1 1.66676- 5 2.45970- 2 1.60000+ 1 3.20000+ 1 3.21931- 5 2.47123- 2 1.60000+ 1 3.30000+ 1 5.02327- 6 2.47269- 2 1.80000+ 1 1.80000+ 1 7.62619- 4 2.33140- 2 1.80000+ 1 1.90000+ 1 1.46200- 3 2.36934- 2 1.80000+ 1 2.10000+ 1 6.66488- 4 2.39912- 2 1.80000+ 1 2.20000+ 1 6.73808- 4 2.40586- 2 1.80000+ 1 2.40000+ 1 4.26970- 5 2.44525- 2 1.80000+ 1 2.50000+ 1 2.32890- 5 2.44714- 2 1.80000+ 1 2.70000+ 1 1.99780- 4 2.46069- 2 1.80000+ 1 2.90000+ 1 3.81299- 4 2.46849- 2 1.80000+ 1 3.00000+ 1 3.74219- 4 2.47838- 2 1.80000+ 1 3.20000+ 1 1.46350- 4 2.48991- 2 1.80000+ 1 3.30000+ 1 1.47050- 4 2.49137- 2 1.90000+ 1 1.90000+ 1 2.92268- 5 2.40728- 2 1.90000+ 1 2.10000+ 1 5.40906- 4 2.43706- 2 1.90000+ 1 2.20000+ 1 8.06034- 5 2.44380- 2 1.90000+ 1 2.40000+ 1 1.78096- 5 2.48319- 2 1.90000+ 1 2.50000+ 1 7.53513- 6 2.48508- 2 1.90000+ 1 2.70000+ 1 1.73535- 5 2.49863- 2 1.90000+ 1 2.90000+ 1 3.46380- 4 2.50643- 2 1.90000+ 1 3.00000+ 1 1.43855- 5 2.51632- 2 1.90000+ 1 3.20000+ 1 1.15303- 4 2.52785- 2 1.90000+ 1 3.30000+ 1 1.68965- 5 2.52931- 2 2.10000+ 1 2.10000+ 1 4.34953- 4 2.46684- 2 2.10000+ 1 2.20000+ 1 1.50488- 3 2.47358- 2 2.10000+ 1 2.40000+ 1 1.31287- 4 2.51297- 2 2.10000+ 1 2.50000+ 1 2.55726- 4 2.51486- 2 2.10000+ 1 2.70000+ 1 4.33813- 5 2.52841- 2 2.10000+ 1 2.90000+ 1 1.57087- 4 2.53621- 2 2.10000+ 1 3.00000+ 1 1.35397- 4 2.54610- 2 2.10000+ 1 3.20000+ 1 1.84487- 4 2.55763- 2 2.10000+ 1 3.30000+ 1 3.21704- 4 2.55909- 2 2.20000+ 1 2.20000+ 1 7.92310- 5 2.48033- 2 2.20000+ 1 2.40000+ 1 5.70810- 5 2.51971- 2 2.20000+ 1 2.50000+ 1 2.21470- 5 2.52160- 2 2.20000+ 1 2.70000+ 1 6.84970- 6 2.53515- 2 2.20000+ 1 2.90000+ 1 1.52520- 4 2.54296- 2 2.20000+ 1 3.00000+ 1 1.98640- 5 2.55285- 2 2.20000+ 1 3.20000+ 1 3.06870- 4 2.56437- 2 2.20000+ 1 3.30000+ 1 3.31070- 5 2.56583- 2 2.40000+ 1 2.40000+ 1 3.42487- 6 2.55910- 2 2.40000+ 1 2.50000+ 1 2.28329- 5 2.56099- 2 2.40000+ 1 2.70000+ 1 2.96827- 6 2.57454- 2 2.40000+ 1 2.90000+ 1 9.81803- 6 2.58234- 2 2.40000+ 1 3.00000+ 1 4.33818- 6 2.59223- 2 2.40000+ 1 3.20000+ 1 2.55729- 5 2.60376- 2 2.40000+ 1 3.30000+ 1 1.11878- 5 2.60522- 2 2.50000+ 1 2.50000+ 1 1.36990- 6 2.56288- 2 2.50000+ 1 2.70000+ 1 1.82660- 6 2.57643- 2 2.50000+ 1 2.90000+ 1 4.79469- 6 2.58423- 2 2.50000+ 1 3.00000+ 1 1.82660- 6 2.59412- 2 2.50000+ 1 3.20000+ 1 4.97730- 5 2.60565- 2 2.50000+ 1 3.30000+ 1 4.33820- 6 2.60711- 2 2.70000+ 1 2.70000+ 1 6.84972- 7 2.58998- 2 2.70000+ 1 2.90000+ 1 4.74911- 5 2.59778- 2 2.70000+ 1 3.00000+ 1 4.33822- 6 2.60767- 2 2.70000+ 1 3.20000+ 1 8.90471- 6 2.61920- 2 2.70000+ 1 3.30000+ 1 1.36991- 6 2.62066- 2 2.90000+ 1 2.90000+ 1 4.74898- 5 2.60559- 2 2.90000+ 1 3.00000+ 1 8.85887- 5 2.61548- 2 2.90000+ 1 3.20000+ 1 3.44761- 5 2.62700- 2 2.90000+ 1 3.30000+ 1 3.33352- 5 2.62846- 2 3.00000+ 1 3.00000+ 1 1.82658- 6 2.62537- 2 3.00000+ 1 3.20000+ 1 2.89976- 5 2.63689- 2 3.00000+ 1 3.30000+ 1 4.10976- 6 2.63835- 2 3.20000+ 1 3.20000+ 1 1.96360- 5 2.64842- 2 3.20000+ 1 3.30000+ 1 6.57589- 5 2.64988- 2 3.30000+ 1 3.30000+ 1 3.42490- 6 2.65134- 2 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 2.71499- 2 1.37143- 2 1.00000+ 1 3.60449- 4 1.41100- 2 1.10000+ 1 3.34199- 4 1.55014- 2 1.30000+ 1 3.91178- 2 1.61332- 2 1.40000+ 1 3.43139- 1 1.64013- 2 1.60000+ 1 7.00927- 3 1.89682- 2 1.80000+ 1 7.67057- 5 1.91550- 2 1.90000+ 1 9.42786- 5 1.95344- 2 2.10000+ 1 8.18937- 3 1.98322- 2 2.20000+ 1 7.58647- 2 1.98996- 2 2.40000+ 1 1.41809- 4 2.02935- 2 2.50000+ 1 7.72907- 4 2.03124- 2 2.70000+ 1 1.90639- 3 2.04479- 2 2.90000+ 1 1.89859- 5 2.05259- 2 3.00000+ 1 2.43809- 5 2.06248- 2 3.20000+ 1 1.72159- 3 2.07401- 2 3.30000+ 1 1.59309- 2 2.07547- 2 3.50000+ 1 1.67669- 5 2.08817- 2 3.60000+ 1 8.85746- 5 2.08838- 2 4.10000+ 1 3.81788- 4 2.08291- 2 4.30000+ 1 3.16549- 6 2.08527- 2 4.40000+ 1 3.50599- 6 2.08682- 2 5.80000+ 1 3.04169- 5 2.08881- 2 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 6.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 8.00000+ 0 8.00000+ 0 2.22750- 4 6.53460- 3 8.00000+ 0 1.00000+ 1 9.86478- 5 6.93030- 3 8.00000+ 0 1.10000+ 1 1.66989- 2 8.32170- 3 8.00000+ 0 1.30000+ 1 3.24770- 3 8.95350- 3 8.00000+ 0 1.40000+ 1 7.24169- 3 9.22160- 3 8.00000+ 0 1.60000+ 1 9.83748- 5 1.17885- 2 8.00000+ 0 1.80000+ 1 1.25990- 5 1.19753- 2 8.00000+ 0 1.90000+ 1 2.88540- 3 1.23547- 2 8.00000+ 0 2.10000+ 1 4.33979- 4 1.26525- 2 8.00000+ 0 2.20000+ 1 9.35799- 4 1.27199- 2 8.00000+ 0 2.40000+ 1 4.37729- 4 1.31138- 2 8.00000+ 0 2.50000+ 1 7.11409- 4 1.31327- 2 8.00000+ 0 2.70000+ 1 2.54650- 5 1.32682- 2 8.00000+ 0 2.90000+ 1 2.94860- 6 1.33462- 2 8.00000+ 0 3.00000+ 1 6.67710- 4 1.34451- 2 8.00000+ 0 3.20000+ 1 8.28289- 5 1.35604- 2 8.00000+ 0 3.30000+ 1 1.72899- 4 1.35750- 2 1.00000+ 1 1.00000+ 1 2.57321- 5 7.32600- 3 1.00000+ 1 1.10000+ 1 2.79441- 2 8.71740- 3 1.00000+ 1 1.30000+ 1 1.22476- 3 9.34920- 3 1.00000+ 1 1.40000+ 1 7.28105- 3 9.61730- 3 1.00000+ 1 1.60000+ 1 2.25162- 5 1.21842- 2 1.00000+ 1 1.80000+ 1 1.84943- 5 1.23710- 2 1.00000+ 1 1.90000+ 1 5.00723- 3 1.27504- 2 1.00000+ 1 2.10000+ 1 2.34002- 4 1.30482- 2 1.00000+ 1 2.20000+ 1 1.17576- 3 1.31156- 2 1.00000+ 1 2.40000+ 1 3.24069- 4 1.35095- 2 1.00000+ 1 2.50000+ 1 7.34985- 4 1.35284- 2 1.00000+ 1 2.70000+ 1 6.16489- 6 1.36639- 2 1.00000+ 1 2.90000+ 1 5.62901- 6 1.37419- 2 1.00000+ 1 3.00000+ 1 1.16796- 3 1.38408- 2 1.00000+ 1 3.20000+ 1 5.06593- 5 1.39561- 2 1.00000+ 1 3.30000+ 1 2.33742- 4 1.39707- 2 1.10000+ 1 1.10000+ 1 3.13779- 2 1.01088- 2 1.10000+ 1 1.30000+ 1 3.29079- 2 1.07406- 2 1.10000+ 1 1.40000+ 1 3.93389- 2 1.10087- 2 1.10000+ 1 1.60000+ 1 4.58318- 3 1.35756- 2 1.10000+ 1 1.80000+ 1 6.86008- 3 1.37624- 2 1.10000+ 1 1.90000+ 1 1.37010- 2 1.41418- 2 1.10000+ 1 2.10000+ 1 7.93327- 3 1.44396- 2 1.10000+ 1 2.20000+ 1 9.50416- 3 1.45070- 2 1.10000+ 1 2.40000+ 1 8.95576- 4 1.49009- 2 1.10000+ 1 2.50000+ 1 1.03650- 3 1.49198- 2 1.10000+ 1 2.70000+ 1 1.26140- 3 1.50553- 2 1.10000+ 1 2.90000+ 1 1.76489- 3 1.51333- 2 1.10000+ 1 3.00000+ 1 3.37079- 3 1.52322- 2 1.10000+ 1 3.20000+ 1 1.72229- 3 1.53475- 2 1.10000+ 1 3.30000+ 1 2.03159- 3 1.53621- 2 1.30000+ 1 1.30000+ 1 4.07855- 3 1.13724- 2 1.30000+ 1 1.40000+ 1 7.55989- 2 1.16405- 2 1.30000+ 1 1.60000+ 1 7.60999- 4 1.42074- 2 1.30000+ 1 1.80000+ 1 3.51424- 4 1.43942- 2 1.30000+ 1 1.90000+ 1 5.26346- 3 1.47736- 2 1.30000+ 1 2.10000+ 1 1.62851- 3 1.50714- 2 1.30000+ 1 2.20000+ 1 1.27132- 2 1.51388- 2 1.30000+ 1 2.40000+ 1 4.68845- 4 1.55327- 2 1.30000+ 1 2.50000+ 1 1.53841- 3 1.55516- 2 1.30000+ 1 2.70000+ 1 2.05332- 4 1.56871- 2 1.30000+ 1 2.90000+ 1 9.22101- 5 1.57651- 2 1.30000+ 1 3.00000+ 1 1.19442- 3 1.58640- 2 1.30000+ 1 3.20000+ 1 3.41504- 4 1.59793- 2 1.30000+ 1 3.30000+ 1 2.51383- 3 1.59939- 2 1.40000+ 1 1.40000+ 1 4.95784- 2 1.19086- 2 1.40000+ 1 1.60000+ 1 1.73275- 3 1.44755- 2 1.40000+ 1 1.80000+ 1 1.60834- 3 1.46623- 2 1.40000+ 1 1.90000+ 1 6.96721- 3 1.50417- 2 1.40000+ 1 2.10000+ 1 1.51694- 2 1.53395- 2 1.40000+ 1 2.20000+ 1 1.91825- 2 1.54069- 2 1.40000+ 1 2.40000+ 1 4.83984- 3 1.58008- 2 1.40000+ 1 2.50000+ 1 4.30942- 3 1.58197- 2 1.40000+ 1 2.70000+ 1 4.71253- 4 1.59552- 2 1.40000+ 1 2.90000+ 1 4.05852- 4 1.60332- 2 1.40000+ 1 3.00000+ 1 1.63464- 3 1.61321- 2 1.40000+ 1 3.20000+ 1 3.17069- 3 1.62474- 2 1.40000+ 1 3.30000+ 1 3.92922- 3 1.62620- 2 1.60000+ 1 1.60000+ 1 1.17953- 5 1.70424- 2 1.60000+ 1 1.80000+ 1 3.75288- 6 1.72292- 2 1.60000+ 1 1.90000+ 1 7.88375- 4 1.76086- 2 1.60000+ 1 2.10000+ 1 1.08302- 4 1.79064- 2 1.60000+ 1 2.20000+ 1 2.34284- 4 1.79738- 2 1.60000+ 1 2.40000+ 1 4.98599- 5 1.83677- 2 1.60000+ 1 2.50000+ 1 9.03388- 5 1.83866- 2 1.60000+ 1 2.70000+ 1 6.16522- 6 1.85221- 2 1.60000+ 1 2.90000+ 1 8.04185- 7 1.86001- 2 1.60000+ 1 3.00000+ 1 1.82013- 4 1.86990- 2 1.60000+ 1 3.20000+ 1 2.09084- 5 1.88143- 2 1.60000+ 1 3.30000+ 1 4.36938- 5 1.88289- 2 1.80000+ 1 1.80000+ 1 1.07219- 6 1.74160- 2 1.80000+ 1 1.90000+ 1 1.21539- 3 1.77954- 2 1.80000+ 1 2.10000+ 1 6.08485- 5 1.80932- 2 1.80000+ 1 2.20000+ 1 2.95127- 4 1.81606- 2 1.80000+ 1 2.40000+ 1 4.82486- 5 1.85545- 2 1.80000+ 1 2.50000+ 1 1.01589- 4 1.85734- 2 1.80000+ 1 2.70000+ 1 1.07219- 6 1.87089- 2 1.80000+ 1 2.90000+ 1 5.36125- 7 1.87869- 2 1.80000+ 1 3.00000+ 1 2.82798- 4 1.88858- 2 1.80000+ 1 3.20000+ 1 1.25989- 5 1.90011- 2 1.80000+ 1 3.30000+ 1 5.95065- 5 1.90157- 2 1.90000+ 1 1.90000+ 1 1.42306- 3 1.81748- 2 1.90000+ 1 2.10000+ 1 1.27538- 3 1.84726- 2 1.90000+ 1 2.20000+ 1 1.66536- 3 1.85400- 2 1.90000+ 1 2.40000+ 1 1.18478- 4 1.89339- 2 1.90000+ 1 2.50000+ 1 1.44206- 4 1.89528- 2 1.90000+ 1 2.70000+ 1 2.16845- 4 1.90883- 2 1.90000+ 1 2.90000+ 1 3.12003- 4 1.91663- 2 1.90000+ 1 3.00000+ 1 6.91815- 4 1.92652- 2 1.90000+ 1 3.20000+ 1 2.77164- 4 1.93805- 2 1.90000+ 1 3.30000+ 1 3.55162- 4 1.93951- 2 2.10000+ 1 2.10000+ 1 1.55195- 4 1.87704- 2 2.10000+ 1 2.20000+ 1 2.69283- 3 1.88378- 2 2.10000+ 1 2.40000+ 1 6.08474- 5 1.92317- 2 2.10000+ 1 2.50000+ 1 1.85225- 4 1.92506- 2 2.10000+ 1 2.70000+ 1 2.94852- 5 1.93861- 2 2.10000+ 1 2.90000+ 1 1.58145- 5 1.94641- 2 2.10000+ 1 3.00000+ 1 2.90032- 4 1.95630- 2 2.10000+ 1 3.20000+ 1 6.46013- 5 1.96783- 2 2.10000+ 1 3.30000+ 1 5.37455- 4 1.96929- 2 2.20000+ 1 2.20000+ 1 1.87123- 3 1.89053- 2 2.20000+ 1 2.40000+ 1 6.27478- 4 1.92991- 2 2.20000+ 1 2.50000+ 1 5.46281- 4 1.93180- 2 2.20000+ 1 2.70000+ 1 6.43328- 5 1.94535- 2 2.20000+ 1 2.90000+ 1 7.58573- 5 1.95316- 2 2.20000+ 1 3.00000+ 1 3.89467- 4 1.96305- 2 2.20000+ 1 3.20000+ 1 5.68250- 4 1.97457- 2 2.20000+ 1 3.30000+ 1 7.66883- 4 1.97603- 2 2.40000+ 1 2.40000+ 1 3.21666- 6 1.96930- 2 2.40000+ 1 2.50000+ 1 9.62299- 5 1.97119- 2 2.40000+ 1 2.70000+ 1 1.12579- 5 1.98474- 2 2.40000+ 1 2.90000+ 1 1.12579- 5 1.99254- 2 2.40000+ 1 3.00000+ 1 2.60007- 5 2.00243- 2 2.40000+ 1 3.20000+ 1 1.15269- 5 2.01396- 2 2.40000+ 1 3.30000+ 1 1.16869- 4 2.01542- 2 2.50000+ 1 2.50000+ 1 3.40438- 5 1.97308- 2 2.50000+ 1 2.70000+ 1 2.11759- 5 1.98663- 2 2.50000+ 1 2.90000+ 1 2.33209- 5 1.99443- 2 2.50000+ 1 3.00000+ 1 3.21668- 5 2.00432- 2 2.50000+ 1 3.20000+ 1 3.43118- 5 2.01585- 2 2.50000+ 1 3.30000+ 1 1.01330- 4 2.01731- 2 2.70000+ 1 2.70000+ 1 8.04150- 7 2.00018- 2 2.70000+ 1 2.90000+ 1 2.68053- 7 2.00798- 2 2.70000+ 1 3.00000+ 1 5.01247- 5 2.01787- 2 2.70000+ 1 3.20000+ 1 5.62906- 6 2.02940- 2 2.70000+ 1 3.30000+ 1 1.20627- 5 2.03086- 2 2.90000+ 1 3.00000+ 1 7.26394- 5 2.02568- 2 2.90000+ 1 3.20000+ 1 3.21663- 6 2.03720- 2 2.90000+ 1 3.30000+ 1 1.52786- 5 2.03866- 2 3.00000+ 1 3.00000+ 1 8.39019- 5 2.03557- 2 3.00000+ 1 3.20000+ 1 6.29922- 5 2.04709- 2 3.00000+ 1 3.30000+ 1 8.30949- 5 2.04855- 2 3.20000+ 1 3.20000+ 1 6.70137- 6 2.05862- 2 3.20000+ 1 3.30000+ 1 1.13648- 4 2.06008- 2 3.30000+ 1 3.30000+ 1 7.85387- 5 2.06154- 2 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 1.04790- 5 3.95700- 4 1.10000+ 1 2.27220- 3 1.78710- 3 1.80000+ 1 3.75451- 3 5.44070- 3 1.90000+ 1 1.29290- 3 5.82010- 3 2.90000+ 1 1.08110- 3 6.81164- 3 3.00000+ 1 4.59671- 4 6.91053- 3 4.30000+ 1 1.85710- 4 7.13843- 3 4.40000+ 1 6.98261- 5 7.15393- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 8.00000+ 0 .00000+ 0 .00000+ 0 .00000+ 0 1.00000+ 1 2.90000+ 1 1.74941- 2 2.76400- 5 1.00000+ 1 3.00000+ 1 1.90611- 2 1.26530- 4 1.00000+ 1 3.20000+ 1 1.14571- 2 2.41810- 4 1.00000+ 1 3.30000+ 1 1.42721- 2 2.56410- 4 1.00000+ 1 3.50000+ 1 1.41421- 3 3.83410- 4 1.00000+ 1 3.60000+ 1 1.74141- 3 3.85520- 4 1.00000+ 1 4.10000+ 1 3.05073- 3 3.30850- 4 1.00000+ 1 4.30000+ 1 2.73123- 3 3.54430- 4 1.00000+ 1 4.40000+ 1 2.49863- 3 3.69930- 4 1.00000+ 1 5.80000+ 1 2.30513- 4 3.89850- 4 1.10000+ 1 1.80000+ 1 4.98303- 2 4.81000- 5 1.10000+ 1 1.90000+ 1 2.77392- 2 4.27500- 4 1.10000+ 1 2.10000+ 1 7.68246- 3 7.25300- 4 1.10000+ 1 2.20000+ 1 2.57112- 2 7.92740- 4 1.10000+ 1 2.40000+ 1 1.96161- 1 1.18658- 3 1.10000+ 1 2.50000+ 1 2.31632- 1 1.20548- 3 1.10000+ 1 2.70000+ 1 1.10301- 2 1.34099- 3 1.10000+ 1 2.90000+ 1 1.17561- 2 1.41904- 3 1.10000+ 1 3.00000+ 1 7.00115- 3 1.51793- 3 1.10000+ 1 3.20000+ 1 2.02671- 3 1.63321- 3 1.10000+ 1 3.30000+ 1 5.88584- 3 1.64781- 3 1.10000+ 1 3.50000+ 1 1.36711- 2 1.77481- 3 1.10000+ 1 3.60000+ 1 1.53251- 2 1.77692- 3 1.10000+ 1 4.10000+ 1 2.11362- 3 1.72225- 3 1.10000+ 1 4.30000+ 1 1.86561- 3 1.74583- 3 1.10000+ 1 4.40000+ 1 9.44466- 4 1.76133- 3 1.10000+ 1 5.80000+ 1 1.55341- 4 1.78125- 3 1.30000+ 1 1.60000+ 1 2.69621- 2 4.93100- 4 1.30000+ 1 1.80000+ 1 5.43620- 3 6.79900- 4 1.30000+ 1 1.90000+ 1 1.17800- 2 1.05930- 3 1.30000+ 1 2.10000+ 1 8.61781- 3 1.35710- 3 1.30000+ 1 2.20000+ 1 9.63401- 3 1.42454- 3 1.30000+ 1 2.40000+ 1 1.00950- 2 1.81838- 3 1.30000+ 1 2.50000+ 1 9.96431- 3 1.83728- 3 1.30000+ 1 2.70000+ 1 4.47961- 3 1.97279- 3 1.30000+ 1 2.90000+ 1 1.11560- 3 2.05084- 3 1.30000+ 1 3.00000+ 1 2.18961- 3 2.14973- 3 1.30000+ 1 3.20000+ 1 1.52380- 3 2.26501- 3 1.30000+ 1 3.30000+ 1 1.85730- 3 2.27961- 3 1.30000+ 1 3.50000+ 1 7.30821- 4 2.40661- 3 1.30000+ 1 3.60000+ 1 6.48141- 4 2.40872- 3 1.30000+ 1 4.10000+ 1 7.84531- 4 2.35405- 3 1.30000+ 1 4.30000+ 1 1.73940- 4 2.37763- 3 1.30000+ 1 4.40000+ 1 2.79571- 4 2.39313- 3 1.30000+ 1 5.80000+ 1 5.78890- 5 2.41305- 3 1.40000+ 1 1.60000+ 1 3.59222- 2 7.61200- 4 1.40000+ 1 1.80000+ 1 8.06652- 4 9.48000- 4 1.40000+ 1 1.90000+ 1 1.30857- 2 1.32740- 3 1.40000+ 1 2.10000+ 1 1.13117- 2 1.62520- 3 1.40000+ 1 2.20000+ 1 1.48886- 2 1.69264- 3 1.40000+ 1 2.40000+ 1 1.27667- 2 2.08648- 3 1.40000+ 1 2.50000+ 1 1.80945- 2 2.10538- 3 1.40000+ 1 2.70000+ 1 5.85076- 3 2.24089- 3 1.40000+ 1 2.90000+ 1 2.62164- 4 2.31894- 3 1.40000+ 1 3.00000+ 1 2.37705- 3 2.41783- 3 1.40000+ 1 3.20000+ 1 2.24675- 3 2.53311- 3 1.40000+ 1 3.30000+ 1 2.77064- 3 2.54771- 3 1.40000+ 1 3.50000+ 1 8.62820- 4 2.67471- 3 1.40000+ 1 3.60000+ 1 1.21107- 3 2.67682- 3 1.40000+ 1 4.10000+ 1 1.01957- 3 2.62215- 3 1.40000+ 1 4.30000+ 1 4.51000- 5 2.64573- 3 1.40000+ 1 4.40000+ 1 3.03033- 4 2.66123- 3 1.40000+ 1 5.80000+ 1 7.51653- 5 2.68115- 3 1.60000+ 1 1.60000+ 1 2.26452- 3 3.32810- 3 1.60000+ 1 1.80000+ 1 4.08553- 3 3.51490- 3 1.60000+ 1 1.90000+ 1 5.97164- 3 3.89430- 3 1.60000+ 1 2.10000+ 1 7.38785- 3 4.19210- 3 1.60000+ 1 2.20000+ 1 1.00490- 2 4.25954- 3 1.60000+ 1 2.40000+ 1 5.58593- 3 4.65338- 3 1.60000+ 1 2.50000+ 1 6.80095- 3 4.67228- 3 1.60000+ 1 2.70000+ 1 1.00300- 3 4.80779- 3 1.60000+ 1 2.90000+ 1 1.06730- 3 4.88584- 3 1.60000+ 1 3.00000+ 1 1.52721- 3 4.98473- 3 1.60000+ 1 3.20000+ 1 1.57851- 3 5.10001- 3 1.60000+ 1 3.30000+ 1 2.11922- 3 5.11461- 3 1.60000+ 1 3.50000+ 1 5.44783- 4 5.24161- 3 1.60000+ 1 3.60000+ 1 6.34435- 4 5.24372- 3 1.60000+ 1 4.10000+ 1 1.90561- 4 5.18905- 3 1.60000+ 1 4.30000+ 1 1.74201- 4 5.21263- 3 1.60000+ 1 4.40000+ 1 2.07171- 4 5.22813- 3 1.60000+ 1 5.80000+ 1 1.42431- 5 5.24805- 3 1.80000+ 1 1.80000+ 1 1.38341- 4 3.70170- 3 1.80000+ 1 1.90000+ 1 5.20895- 4 4.08110- 3 1.80000+ 1 2.10000+ 1 2.31443- 4 4.37890- 3 1.80000+ 1 2.20000+ 1 8.08378- 5 4.44634- 3 1.80000+ 1 2.40000+ 1 1.88571- 5 4.84018- 3 1.80000+ 1 2.50000+ 1 5.96445- 4 4.85908- 3 1.80000+ 1 2.70000+ 1 6.68747- 4 4.99459- 3 1.80000+ 1 2.90000+ 1 4.98495- 5 5.07264- 3 1.80000+ 1 3.00000+ 1 8.76959- 5 5.17153- 3 1.80000+ 1 3.20000+ 1 4.11444- 5 5.28681- 3 1.80000+ 1 3.30000+ 1 2.26823- 5 5.30141- 3 1.80000+ 1 3.50000+ 1 1.18691- 6 5.42841- 3 1.80000+ 1 3.60000+ 1 3.46834- 5 5.43052- 3 1.80000+ 1 4.10000+ 1 1.17231- 4 5.37585- 3 1.80000+ 1 4.30000+ 1 7.51678- 6 5.39943- 3 1.80000+ 1 4.40000+ 1 1.10771- 5 5.41493- 3 1.80000+ 1 5.80000+ 1 8.57178- 6 5.43485- 3 1.90000+ 1 1.90000+ 1 3.64231- 4 4.46050- 3 1.90000+ 1 2.10000+ 1 8.06383- 4 4.75830- 3 1.90000+ 1 2.20000+ 1 1.68930- 3 4.82574- 3 1.90000+ 1 2.40000+ 1 1.31510- 3 5.21958- 3 1.90000+ 1 2.50000+ 1 1.71120- 3 5.23848- 3 1.90000+ 1 2.70000+ 1 9.80993- 4 5.37399- 3 1.90000+ 1 2.90000+ 1 1.18420- 4 5.45204- 3 1.90000+ 1 3.00000+ 1 1.60480- 4 5.55093- 3 1.90000+ 1 3.20000+ 1 1.62860- 4 5.66621- 3 1.90000+ 1 3.30000+ 1 3.37201- 4 5.68081- 3 1.90000+ 1 3.50000+ 1 1.21190- 4 5.80781- 3 1.90000+ 1 3.60000+ 1 1.37280- 4 5.80992- 3 1.90000+ 1 4.10000+ 1 1.72490- 4 5.75525- 3 1.90000+ 1 4.30000+ 1 1.88570- 5 5.77883- 3 1.90000+ 1 4.40000+ 1 2.12321- 5 5.79433- 3 1.90000+ 1 5.80000+ 1 1.27910- 5 5.81425- 3 2.10000+ 1 2.10000+ 1 1.09721- 4 5.05610- 3 2.10000+ 1 2.20000+ 1 1.78162- 4 5.12354- 3 2.10000+ 1 2.40000+ 1 4.63666- 4 5.51738- 3 2.10000+ 1 2.50000+ 1 2.34814- 3 5.53628- 3 2.10000+ 1 2.70000+ 1 1.17561- 3 5.67179- 3 2.10000+ 1 2.90000+ 1 3.61325- 5 5.74984- 3 2.10000+ 1 3.00000+ 1 1.53102- 4 5.84873- 3 2.10000+ 1 3.20000+ 1 3.67925- 5 5.96401- 3 2.10000+ 1 3.30000+ 1 3.20455- 5 5.97861- 3 2.10000+ 1 3.50000+ 1 3.98256- 5 6.10561- 3 2.10000+ 1 3.60000+ 1 1.53242- 4 6.10772- 3 2.10000+ 1 4.10000+ 1 2.04542- 4 6.05305- 3 2.10000+ 1 4.30000+ 1 5.27477- 6 6.07663- 3 2.10000+ 1 4.40000+ 1 1.95172- 5 6.09213- 3 2.10000+ 1 5.80000+ 1 1.50342- 5 6.11205- 3 2.20000+ 1 2.20000+ 1 2.16272- 4 5.19098- 3 2.20000+ 1 2.40000+ 1 1.96581- 3 5.58482- 3 2.20000+ 1 2.50000+ 1 1.39681- 3 5.60372- 3 2.20000+ 1 2.70000+ 1 1.58601- 3 5.73923- 3 2.20000+ 1 2.90000+ 1 1.46381- 5 5.81728- 3 2.20000+ 1 3.00000+ 1 3.14123- 4 5.91617- 3 2.20000+ 1 3.20000+ 1 2.70343- 5 6.03145- 3 2.20000+ 1 3.30000+ 1 7.51676- 5 6.04605- 3 2.20000+ 1 3.50000+ 1 1.29231- 4 6.17305- 3 2.20000+ 1 3.60000+ 1 1.00491- 4 6.17516- 3 2.20000+ 1 4.10000+ 1 2.75353- 4 6.12049- 3 2.20000+ 1 4.30000+ 1 2.24192- 6 6.14407- 3 2.20000+ 1 4.40000+ 1 3.98253- 5 6.15957- 3 2.20000+ 1 5.80000+ 1 2.03081- 5 6.17949- 3 2.40000+ 1 2.40000+ 1 6.22955- 4 5.97866- 3 2.40000+ 1 2.50000+ 1 4.10204- 3 5.99756- 3 2.40000+ 1 2.70000+ 1 8.03627- 4 6.13307- 3 2.40000+ 1 2.90000+ 1 6.19795- 6 6.21112- 3 2.40000+ 1 3.00000+ 1 1.75261- 4 6.31001- 3 2.40000+ 1 3.20000+ 1 8.69047- 5 6.42529- 3 2.40000+ 1 3.30000+ 1 4.36494- 4 6.43989- 3 2.40000+ 1 3.50000+ 1 1.08661- 4 6.56689- 3 2.40000+ 1 3.60000+ 1 2.84313- 4 6.56900- 3 2.40000+ 1 4.10000+ 1 1.37151- 4 6.51433- 3 2.40000+ 1 4.30000+ 1 1.05501- 6 6.53791- 3 2.40000+ 1 4.40000+ 1 2.08361- 5 6.55341- 3 2.40000+ 1 5.80000+ 1 1.00221- 5 6.57333- 3 2.50000+ 1 2.50000+ 1 1.39750- 3 6.01646- 3 2.50000+ 1 2.70000+ 1 9.75470- 4 6.15197- 3 2.50000+ 1 2.90000+ 1 1.31080- 4 6.23002- 3 2.50000+ 1 3.00000+ 1 2.40801- 4 6.32891- 3 2.50000+ 1 3.20000+ 1 5.03100- 4 6.44419- 3 2.50000+ 1 3.30000+ 1 2.83790- 4 6.45879- 3 2.50000+ 1 3.50000+ 1 2.90120- 4 6.58579- 3 2.50000+ 1 3.60000+ 1 2.14681- 4 6.58790- 3 2.50000+ 1 4.10000+ 1 1.66420- 4 6.53323- 3 2.50000+ 1 4.30000+ 1 2.05730- 5 6.55681- 3 2.50000+ 1 4.40000+ 1 2.90120- 5 6.57231- 3 2.50000+ 1 5.80000+ 1 1.22640- 5 6.59223- 3 2.70000+ 1 2.70000+ 1 1.01410- 4 6.28748- 3 2.70000+ 1 2.90000+ 1 1.76840- 4 6.36553- 3 2.70000+ 1 3.00000+ 1 2.50552- 4 6.46442- 3 2.70000+ 1 3.20000+ 1 2.53332- 4 6.57970- 3 2.70000+ 1 3.30000+ 1 3.37332- 4 6.59430- 3 2.70000+ 1 3.50000+ 1 7.87284- 5 6.72130- 3 2.70000+ 1 3.60000+ 1 9.13874- 5 6.72341- 3 2.70000+ 1 4.10000+ 1 3.78482- 5 6.66874- 3 2.70000+ 1 4.30000+ 1 2.88802- 5 6.69232- 3 2.70000+ 1 4.40000+ 1 3.40232- 5 6.70782- 3 2.70000+ 1 5.80000+ 1 2.76932- 6 6.72774- 3 2.90000+ 1 2.90000+ 1 4.35172- 6 6.44358- 3 2.90000+ 1 3.00000+ 1 1.92541- 5 6.54247- 3 2.90000+ 1 3.20000+ 1 6.32984- 6 6.65775- 3 2.90000+ 1 3.30000+ 1 4.48362- 6 6.67235- 3 2.90000+ 1 3.50000+ 1 2.63742- 7 6.79935- 3 2.90000+ 1 3.60000+ 1 8.04454- 6 6.80146- 3 2.90000+ 1 4.10000+ 1 3.11222- 5 6.74679- 3 2.90000+ 1 4.30000+ 1 1.31880- 6 6.77037- 3 2.90000+ 1 4.40000+ 1 2.37372- 6 6.78587- 3 2.90000+ 1 5.80000+ 1 2.24192- 6 6.80579- 3 3.00000+ 1 3.00000+ 1 1.67479- 5 6.64136- 3 3.00000+ 1 3.20000+ 1 3.11218- 5 6.75664- 3 3.00000+ 1 3.30000+ 1 6.32977- 5 6.77124- 3 3.00000+ 1 3.50000+ 1 1.63519- 5 6.89824- 3 3.00000+ 1 3.60000+ 1 1.92538- 5 6.90035- 3 3.00000+ 1 4.10000+ 1 4.40457- 5 6.84568- 3 3.00000+ 1 4.30000+ 1 3.03308- 6 6.86926- 3 3.00000+ 1 4.40000+ 1 4.35167- 6 6.88476- 3 3.00000+ 1 5.80000+ 1 3.29688- 6 6.90468- 3 3.20000+ 1 3.20000+ 1 2.76927- 6 6.87192- 3 3.20000+ 1 3.30000+ 1 4.87924- 6 6.88652- 3 3.20000+ 1 3.50000+ 1 7.51661- 6 7.01352- 3 3.20000+ 1 3.60000+ 1 3.46826- 5 7.01563- 3 3.20000+ 1 4.10000+ 1 4.41764- 5 6.96096- 3 3.20000+ 1 4.30000+ 1 9.23068- 7 6.98454- 3 3.20000+ 1 4.40000+ 1 3.95615- 6 7.00004- 3 3.20000+ 1 5.80000+ 1 3.29686- 6 7.01996- 3 3.30000+ 1 3.30000+ 1 6.32970- 6 6.90112- 3 3.30000+ 1 3.50000+ 1 3.01986- 5 7.02812- 3 3.30000+ 1 3.60000+ 1 2.07036- 5 7.03023- 3 3.30000+ 1 4.10000+ 1 5.86830- 5 6.97556- 3 3.30000+ 1 4.30000+ 1 6.59330- 7 6.99914- 3 3.30000+ 1 4.40000+ 1 8.04437- 6 7.01464- 3 3.30000+ 1 5.80000+ 1 4.35163- 6 7.03456- 3 3.50000+ 1 3.50000+ 1 4.48363- 6 7.15512- 3 3.50000+ 1 3.60000+ 1 2.13632- 5 7.15723- 3 3.50000+ 1 4.10000+ 1 1.34511- 5 7.10256- 3 3.50000+ 1 4.40000+ 1 1.97811- 6 7.14164- 3 3.50000+ 1 5.80000+ 1 9.23086- 7 7.16156- 3 3.60000+ 1 3.60000+ 1 8.17634- 6 7.15934- 3 3.60000+ 1 4.10000+ 1 1.55612- 5 7.10467- 3 3.60000+ 1 4.30000+ 1 1.31882- 6 7.12825- 3 3.60000+ 1 4.40000+ 1 2.37375- 6 7.14375- 3 3.60000+ 1 5.80000+ 1 1.18692- 6 7.16367- 3 4.10000+ 1 4.10000+ 1 3.56042- 6 7.05000- 3 4.10000+ 1 4.30000+ 1 5.14288- 6 7.07358- 3 4.10000+ 1 4.40000+ 1 5.93426- 6 7.08908- 3 4.10000+ 1 5.80000+ 1 5.27458- 7 7.10900- 3 4.30000+ 1 4.30000+ 1 1.31880- 7 7.09716- 3 4.30000+ 1 4.40000+ 1 3.95621- 7 7.11266- 3 4.30000+ 1 5.80000+ 1 3.95621- 7 7.13258- 3 4.40000+ 1 4.40000+ 1 2.63741- 7 7.12816- 3 4.40000+ 1 5.80000+ 1 3.95621- 7 7.14808- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 3.20840- 3 2.02320- 3 1.60000+ 1 1.31260- 3 4.85820- 3 2.10000+ 1 5.64921- 3 5.72220- 3 2.70000+ 1 3.66931- 4 6.33789- 3 3.20000+ 1 1.56720- 3 6.63011- 3 4.10000+ 1 7.37511- 5 6.71915- 3 5.80000+ 1 5.88071- 6 6.77815- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.10000+ 1 1.90000+ 1 7.48125- 3 3.18000- 5 1.10000+ 1 2.10000+ 1 1.29773- 2 3.29600- 4 1.10000+ 1 2.20000+ 1 2.11054- 2 3.97040- 4 1.10000+ 1 2.40000+ 1 2.83036- 2 7.90880- 4 1.10000+ 1 2.50000+ 1 2.17744- 2 8.09780- 4 1.10000+ 1 2.70000+ 1 3.16697- 3 9.45290- 4 1.10000+ 1 2.90000+ 1 5.05020- 3 1.02334- 3 1.10000+ 1 3.00000+ 1 1.48693- 3 1.12223- 3 1.10000+ 1 3.20000+ 1 2.39965- 3 1.23751- 3 1.10000+ 1 3.30000+ 1 3.78457- 3 1.25211- 3 1.10000+ 1 3.50000+ 1 2.12144- 3 1.37911- 3 1.10000+ 1 3.60000+ 1 1.60503- 3 1.38122- 3 1.10000+ 1 4.10000+ 1 5.82752- 4 1.32655- 3 1.10000+ 1 4.30000+ 1 7.33184- 4 1.35013- 3 1.10000+ 1 4.40000+ 1 1.94254- 4 1.36563- 3 1.10000+ 1 5.80000+ 1 4.33169- 5 1.38555- 3 1.30000+ 1 1.60000+ 1 4.92602- 2 9.74000- 5 1.30000+ 1 1.80000+ 1 5.22071- 2 2.84200- 4 1.30000+ 1 1.90000+ 1 2.58586- 2 6.63600- 4 1.30000+ 1 2.10000+ 1 1.67618- 2 9.61400- 4 1.30000+ 1 2.20000+ 1 3.30744- 2 1.02884- 3 1.30000+ 1 2.40000+ 1 1.55118- 1 1.42268- 3 1.30000+ 1 2.50000+ 1 2.45896- 1 1.44158- 3 1.30000+ 1 2.70000+ 1 1.29898- 2 1.57709- 3 1.30000+ 1 2.90000+ 1 1.09928- 2 1.65514- 3 1.30000+ 1 3.00000+ 1 6.36109- 3 1.75403- 3 1.30000+ 1 3.20000+ 1 3.80624- 3 1.86931- 3 1.30000+ 1 3.30000+ 1 7.04779- 3 1.88391- 3 1.30000+ 1 3.50000+ 1 1.09648- 2 2.01091- 3 1.30000+ 1 3.60000+ 1 1.75217- 2 2.01302- 3 1.30000+ 1 4.10000+ 1 2.50966- 3 1.95835- 3 1.30000+ 1 4.30000+ 1 1.72068- 3 1.98193- 3 1.30000+ 1 4.40000+ 1 8.52357- 4 1.99743- 3 1.30000+ 1 5.80000+ 1 1.88367- 4 2.01735- 3 1.40000+ 1 1.60000+ 1 7.20611- 3 3.65500- 4 1.40000+ 1 1.80000+ 1 5.91517- 2 5.52300- 4 1.40000+ 1 1.90000+ 1 4.34783- 3 9.31700- 4 1.40000+ 1 2.10000+ 1 3.19870- 3 1.22950- 3 1.40000+ 1 2.20000+ 1 2.93839- 3 1.29694- 3 1.40000+ 1 2.40000+ 1 9.68158- 3 1.69078- 3 1.40000+ 1 2.50000+ 1 5.31785- 3 1.70968- 3 1.40000+ 1 2.70000+ 1 1.27384- 3 1.84519- 3 1.40000+ 1 2.90000+ 1 9.30267- 3 1.92324- 3 1.40000+ 1 3.00000+ 1 8.93865- 4 2.02213- 3 1.40000+ 1 3.20000+ 1 2.91299- 4 2.13741- 3 1.40000+ 1 3.30000+ 1 5.49516- 4 2.15201- 3 1.40000+ 1 3.50000+ 1 9.73778- 4 2.27901- 3 1.40000+ 1 3.60000+ 1 4.23432- 4 2.28112- 3 1.40000+ 1 4.10000+ 1 2.26646- 4 2.22645- 3 1.40000+ 1 4.30000+ 1 1.35994- 3 2.25003- 3 1.40000+ 1 4.40000+ 1 1.16183- 4 2.26553- 3 1.40000+ 1 5.80000+ 1 1.67895- 5 2.28545- 3 1.60000+ 1 1.60000+ 1 2.90606- 4 2.93240- 3 1.60000+ 1 1.80000+ 1 4.86953- 3 3.11920- 3 1.60000+ 1 1.90000+ 1 5.28503- 4 3.49860- 3 1.60000+ 1 2.10000+ 1 2.36887- 4 3.79640- 3 1.60000+ 1 2.20000+ 1 5.28333- 4 3.86384- 3 1.60000+ 1 2.40000+ 1 6.84981- 5 4.25768- 3 1.60000+ 1 2.50000+ 1 3.69515- 4 4.27658- 3 1.60000+ 1 2.70000+ 1 1.18858- 4 4.41209- 3 1.60000+ 1 2.90000+ 1 7.68080- 4 4.49014- 3 1.60000+ 1 3.00000+ 1 1.20878- 4 4.58903- 3 1.60000+ 1 3.20000+ 1 3.17306- 5 4.70431- 3 1.60000+ 1 3.30000+ 1 9.80448- 5 4.71891- 3 1.60000+ 1 3.50000+ 1 4.70084- 6 4.84591- 3 1.60000+ 1 3.60000+ 1 2.26637- 5 4.84802- 3 1.60000+ 1 4.10000+ 1 2.19937- 5 4.79335- 3 1.60000+ 1 4.30000+ 1 1.12988- 4 4.81693- 3 1.60000+ 1 4.40000+ 1 1.61168- 5 4.83243- 3 1.60000+ 1 5.80000+ 1 1.67888- 6 4.85235- 3 1.80000+ 1 1.80000+ 1 3.86381- 3 3.30600- 3 1.80000+ 1 1.90000+ 1 9.73968- 3 3.68540- 3 1.80000+ 1 2.10000+ 1 9.99347- 3 3.98320- 3 1.80000+ 1 2.20000+ 1 1.53077- 2 4.05064- 3 1.80000+ 1 2.40000+ 1 6.28335- 3 4.44448- 3 1.80000+ 1 2.50000+ 1 9.91837- 3 4.46338- 3 1.80000+ 1 2.70000+ 1 1.32707- 3 4.59889- 3 1.80000+ 1 2.90000+ 1 1.64626- 3 4.67694- 3 1.80000+ 1 3.00000+ 1 2.46494- 3 4.77583- 3 1.80000+ 1 3.20000+ 1 2.15065- 3 4.89111- 3 1.80000+ 1 3.30000+ 1 3.19533- 3 4.90571- 3 1.80000+ 1 3.50000+ 1 6.14286- 4 5.03271- 3 1.80000+ 1 3.60000+ 1 9.18189- 4 5.03482- 3 1.80000+ 1 4.10000+ 1 2.60724- 4 4.98015- 3 1.80000+ 1 4.30000+ 1 2.60394- 4 5.00373- 3 1.80000+ 1 4.40000+ 1 3.33422- 4 5.01923- 3 1.80000+ 1 5.80000+ 1 1.94746- 5 5.03915- 3 1.90000+ 1 1.90000+ 1 2.19427- 4 4.06480- 3 1.90000+ 1 2.10000+ 1 4.78644- 4 4.36260- 3 1.90000+ 1 2.20000+ 1 4.82164- 4 4.43004- 3 1.90000+ 1 2.40000+ 1 3.78415- 3 4.82388- 3 1.90000+ 1 2.50000+ 1 1.07529- 3 4.84278- 3 1.90000+ 1 2.70000+ 1 9.06599- 5 4.97829- 3 1.90000+ 1 2.90000+ 1 1.55908- 3 5.05634- 3 1.90000+ 1 3.00000+ 1 9.36829- 5 5.15523- 3 1.90000+ 1 3.20000+ 1 7.87400- 5 5.27051- 3 1.90000+ 1 3.30000+ 1 9.28449- 5 5.28511- 3 1.90000+ 1 3.50000+ 1 3.00517- 4 5.41211- 3 1.90000+ 1 3.60000+ 1 8.59579- 5 5.41422- 3 1.90000+ 1 4.10000+ 1 1.61168- 5 5.35955- 3 1.90000+ 1 4.30000+ 1 2.30007- 4 5.38313- 3 1.90000+ 1 4.40000+ 1 1.22558- 5 5.39863- 3 1.90000+ 1 5.80000+ 1 1.17518- 6 5.41855- 3 2.10000+ 1 2.10000+ 1 4.15519- 4 4.66040- 3 2.10000+ 1 2.20000+ 1 6.51728- 4 4.72784- 3 2.10000+ 1 2.40000+ 1 4.14849- 4 5.12168- 3 2.10000+ 1 2.50000+ 1 4.36679- 4 5.14058- 3 2.10000+ 1 2.70000+ 1 6.27908- 5 5.27609- 3 2.10000+ 1 2.90000+ 1 1.54380- 3 5.35414- 3 2.10000+ 1 3.00000+ 1 1.16340- 4 5.45303- 3 2.10000+ 1 3.20000+ 1 1.43710- 4 5.56831- 3 2.10000+ 1 3.30000+ 1 1.23900- 4 5.58291- 3 2.10000+ 1 3.50000+ 1 1.93070- 5 5.70991- 3 2.10000+ 1 3.60000+ 1 2.71969- 5 5.71202- 3 2.10000+ 1 4.10000+ 1 1.22560- 5 5.65735- 3 2.10000+ 1 4.30000+ 1 2.25979- 4 5.68093- 3 2.10000+ 1 4.40000+ 1 1.54450- 5 5.69643- 3 2.10000+ 1 5.80000+ 1 1.00730- 6 5.71635- 3 2.20000+ 1 2.20000+ 1 1.74610- 4 4.79528- 3 2.20000+ 1 2.40000+ 1 5.89789- 4 5.18912- 3 2.20000+ 1 2.50000+ 1 1.79310- 4 5.20802- 3 2.20000+ 1 2.70000+ 1 1.10970- 4 5.34353- 3 2.20000+ 1 2.90000+ 1 2.38299- 3 5.42158- 3 2.20000+ 1 3.00000+ 1 9.25058- 5 5.52047- 3 2.20000+ 1 3.20000+ 1 9.14998- 5 5.63575- 3 2.20000+ 1 3.30000+ 1 6.16148- 5 5.65035- 3 2.20000+ 1 3.50000+ 1 2.06499- 5 5.77735- 3 2.20000+ 1 3.60000+ 1 1.00730- 5 5.77946- 3 2.20000+ 1 4.10000+ 1 2.06499- 5 5.72479- 3 2.20000+ 1 4.30000+ 1 3.49209- 4 5.74837- 3 2.20000+ 1 4.40000+ 1 1.19200- 5 5.76387- 3 2.20000+ 1 5.80000+ 1 1.51110- 6 5.78379- 3 2.40000+ 1 2.40000+ 1 1.61275- 3 5.58296- 3 2.40000+ 1 2.50000+ 1 1.02427- 2 5.60186- 3 2.40000+ 1 2.70000+ 1 1.32626- 5 5.73737- 3 2.40000+ 1 2.90000+ 1 8.90794- 4 5.81542- 3 2.40000+ 1 3.00000+ 1 8.98503- 4 5.91431- 3 2.40000+ 1 3.20000+ 1 8.41126- 5 6.02959- 3 2.40000+ 1 3.30000+ 1 1.61675- 4 6.04419- 3 2.40000+ 1 3.50000+ 1 2.54852- 4 6.17119- 3 2.40000+ 1 3.60000+ 1 7.64557- 4 6.17330- 3 2.40000+ 1 4.10000+ 1 2.35033- 6 6.11863- 3 2.40000+ 1 4.30000+ 1 1.29276- 4 6.14221- 3 2.40000+ 1 4.40000+ 1 1.20036- 4 6.15771- 3 2.40000+ 1 5.80000+ 1 1.67885- 7 6.17763- 3 2.50000+ 1 2.50000+ 1 5.29686- 4 5.62076- 3 2.50000+ 1 2.70000+ 1 8.07524- 5 5.75627- 3 2.50000+ 1 2.90000+ 1 1.35369- 3 5.83432- 3 2.50000+ 1 3.00000+ 1 2.23448- 4 5.93321- 3 2.50000+ 1 3.20000+ 1 8.88092- 5 6.04849- 3 2.50000+ 1 3.30000+ 1 3.94537- 5 6.06309- 3 2.50000+ 1 3.50000+ 1 7.76484- 4 6.19009- 3 2.50000+ 1 3.60000+ 1 8.00854- 5 6.19220- 3 2.50000+ 1 4.10000+ 1 1.51109- 5 6.13753- 3 2.50000+ 1 4.30000+ 1 1.92899- 4 6.16111- 3 2.50000+ 1 4.40000+ 1 2.92128- 5 6.17661- 3 2.50000+ 1 5.80000+ 1 1.17519- 6 6.19653- 3 2.70000+ 1 2.70000+ 1 1.20881- 5 5.89178- 3 2.70000+ 1 2.90000+ 1 2.10872- 4 5.96983- 3 2.70000+ 1 3.00000+ 1 2.04821- 5 6.06872- 3 2.70000+ 1 3.20000+ 1 8.05868- 6 6.18400- 3 2.70000+ 1 3.30000+ 1 2.09862- 5 6.19860- 3 2.70000+ 1 3.50000+ 1 8.39428- 7 6.32560- 3 2.70000+ 1 3.60000+ 1 5.03675- 6 6.32771- 3 2.70000+ 1 4.10000+ 1 4.36514- 6 6.27304- 3 2.70000+ 1 4.30000+ 1 3.10603- 5 6.29662- 3 2.70000+ 1 4.40000+ 1 2.68633- 6 6.31212- 3 2.70000+ 1 5.80000+ 1 3.35783- 7 6.33204- 3 2.90000+ 1 2.90000+ 1 1.62848- 4 6.04788- 3 2.90000+ 1 3.00000+ 1 3.97884- 4 6.14677- 3 2.90000+ 1 3.20000+ 1 3.34594- 4 6.26205- 3 2.90000+ 1 3.30000+ 1 5.01642- 4 6.27665- 3 2.90000+ 1 3.50000+ 1 8.67976- 5 6.40365- 3 2.90000+ 1 3.60000+ 1 1.26588- 4 6.40576- 3 2.90000+ 1 4.10000+ 1 4.14674- 5 6.35109- 3 2.90000+ 1 4.30000+ 1 5.07012- 5 6.37467- 3 2.90000+ 1 4.40000+ 1 5.38912- 5 6.39017- 3 2.90000+ 1 5.80000+ 1 3.18975- 6 6.41009- 3 3.00000+ 1 3.00000+ 1 9.90498- 6 6.24566- 3 3.00000+ 1 3.20000+ 1 1.91394- 5 6.36094- 3 3.00000+ 1 3.30000+ 1 1.77964- 5 6.37554- 3 3.00000+ 1 3.50000+ 1 7.15234- 5 6.50254- 3 3.00000+ 1 3.60000+ 1 1.77964- 5 6.50465- 3 3.00000+ 1 4.10000+ 1 3.69357- 6 6.44998- 3 3.00000+ 1 4.30000+ 1 5.87621- 5 6.47356- 3 3.00000+ 1 4.40000+ 1 2.51835- 6 6.48906- 3 3.00000+ 1 5.80000+ 1 3.35786- 7 6.50898- 3 3.20000+ 1 3.20000+ 1 1.17518- 5 6.47622- 3 3.20000+ 1 3.30000+ 1 1.88038- 5 6.49082- 3 3.20000+ 1 3.50000+ 1 4.19715- 6 6.61782- 3 3.20000+ 1 3.60000+ 1 6.21181- 6 6.61993- 3 3.20000+ 1 4.10000+ 1 1.51108- 6 6.56526- 3 3.20000+ 1 4.30000+ 1 4.90223- 5 6.58884- 3 3.20000+ 1 4.40000+ 1 2.51827- 6 6.60434- 3 3.20000+ 1 5.80000+ 1 1.67888- 7 6.62426- 3 3.30000+ 1 3.30000+ 1 5.70812- 6 6.50542- 3 3.30000+ 1 3.50000+ 1 7.05091- 6 6.63242- 3 3.30000+ 1 3.60000+ 1 2.18257- 6 6.63453- 3 3.30000+ 1 4.10000+ 1 3.86145- 6 6.57986- 3 3.30000+ 1 4.30000+ 1 7.35329- 5 6.60344- 3 3.30000+ 1 4.40000+ 1 2.35037- 6 6.61894- 3 3.30000+ 1 5.80000+ 1 3.35775- 7 6.63886- 3 3.50000+ 1 3.50000+ 1 1.00728- 5 6.75942- 3 3.50000+ 1 3.60000+ 1 6.02701- 5 6.76153- 3 3.50000+ 1 4.10000+ 1 1.67888- 7 6.70686- 3 3.50000+ 1 4.30000+ 1 1.25918- 5 6.73044- 3 3.50000+ 1 4.40000+ 1 9.56947- 6 6.74594- 3 3.60000+ 1 3.60000+ 1 3.02204- 6 6.76364- 3 3.60000+ 1 4.10000+ 1 1.00731- 6 6.70897- 3 3.60000+ 1 4.30000+ 1 1.81323- 5 6.73255- 3 3.60000+ 1 4.40000+ 1 2.35043- 6 6.74805- 3 4.10000+ 1 4.10000+ 1 3.35773- 7 6.65430- 3 4.10000+ 1 4.30000+ 1 6.04388- 6 6.67788- 3 4.10000+ 1 4.40000+ 1 5.03660- 7 6.69338- 3 4.30000+ 1 4.30000+ 1 3.86158- 6 6.70146- 3 4.30000+ 1 4.40000+ 1 8.05876- 6 6.71696- 3 4.30000+ 1 5.80000+ 1 5.03680- 7 6.73688- 3 4.40000+ 1 4.40000+ 1 1.67890- 7 6.73246- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 1.34670- 5 6.31800- 4 1.40000+ 1 3.81981- 4 8.99900- 4 1.60000+ 1 3.03441- 3 3.46680- 3 2.10000+ 1 1.34570- 3 4.33080- 3 2.20000+ 1 9.84024- 3 4.39824- 3 2.70000+ 1 7.94033- 4 4.94649- 3 3.20000+ 1 3.17141- 4 5.23871- 3 3.30000+ 1 2.37781- 3 5.25331- 3 4.10000+ 1 1.57791- 4 5.32775- 3 5.80000+ 1 1.25580- 5 5.38675- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.30000+ 1 2.40000+ 1 5.96040- 3 3.12800- 5 1.30000+ 1 2.50000+ 1 8.49655- 3 5.01800- 5 1.30000+ 1 2.70000+ 1 4.45947- 3 1.85690- 4 1.30000+ 1 2.90000+ 1 4.57258- 3 2.63740- 4 1.30000+ 1 3.00000+ 1 1.20862- 2 3.62630- 4 1.30000+ 1 3.20000+ 1 2.45104- 3 4.77910- 4 1.30000+ 1 3.30000+ 1 2.82184- 3 4.92510- 4 1.30000+ 1 3.50000+ 1 9.32568- 4 6.19510- 4 1.30000+ 1 3.60000+ 1 1.58202- 3 6.21620- 4 1.30000+ 1 4.10000+ 1 8.26644- 4 5.66950- 4 1.30000+ 1 4.30000+ 1 7.06502- 4 5.90530- 4 1.30000+ 1 4.40000+ 1 1.52372- 3 6.06030- 4 1.30000+ 1 5.80000+ 1 6.06080- 5 6.25950- 4 1.40000+ 1 2.40000+ 1 2.52963- 1 2.99380- 4 1.40000+ 1 2.50000+ 1 3.03943- 1 3.18280- 4 1.40000+ 1 2.70000+ 1 2.73763- 2 4.53790- 4 1.40000+ 1 2.90000+ 1 3.03923- 2 5.31840- 4 1.40000+ 1 3.00000+ 1 2.75643- 2 6.30730- 4 1.40000+ 1 3.20000+ 1 9.46064- 3 7.46010- 4 1.40000+ 1 3.30000+ 1 1.42341- 2 7.60610- 4 1.40000+ 1 3.50000+ 1 1.34111- 2 8.87610- 4 1.40000+ 1 3.60000+ 1 1.48441- 2 8.89720- 4 1.40000+ 1 4.10000+ 1 5.21556- 3 8.35050- 4 1.40000+ 1 4.30000+ 1 4.74335- 3 8.58630- 4 1.40000+ 1 4.40000+ 1 3.58384- 3 8.74130- 4 1.40000+ 1 5.80000+ 1 3.91304- 4 8.94050- 4 1.60000+ 1 1.60000+ 1 8.84764- 6 1.54100- 3 1.60000+ 1 1.80000+ 1 2.21641- 4 1.72780- 3 1.60000+ 1 1.90000+ 1 7.34012- 3 2.10720- 3 1.60000+ 1 2.10000+ 1 5.38821- 4 2.40500- 3 1.60000+ 1 2.20000+ 1 7.54492- 4 2.47244- 3 1.60000+ 1 2.40000+ 1 2.80981- 3 2.86628- 3 1.60000+ 1 2.50000+ 1 5.07512- 3 2.88518- 3 1.60000+ 1 2.70000+ 1 9.95388- 6 3.02069- 3 1.60000+ 1 2.90000+ 1 2.12351- 5 3.09874- 3 1.60000+ 1 3.00000+ 1 1.12850- 3 3.19763- 3 1.60000+ 1 3.20000+ 1 9.35645- 5 3.31291- 3 1.60000+ 1 3.30000+ 1 1.29390- 4 3.32751- 3 1.60000+ 1 3.50000+ 1 1.93321- 4 3.45451- 3 1.60000+ 1 3.60000+ 1 3.28251- 4 3.45662- 3 1.60000+ 1 4.10000+ 1 2.21191- 6 3.40195- 3 1.60000+ 1 4.30000+ 1 2.87551- 6 3.42553- 3 1.60000+ 1 4.40000+ 1 1.38690- 4 3.44103- 3 1.60000+ 1 5.80000+ 1 2.21191- 7 3.46095- 3 1.80000+ 1 1.80000+ 1 1.57054- 5 1.91460- 3 1.80000+ 1 1.90000+ 1 9.53229- 3 2.29400- 3 1.80000+ 1 2.10000+ 1 2.62787- 4 2.59180- 3 1.80000+ 1 2.20000+ 1 2.40387- 3 2.65924- 3 1.80000+ 1 2.40000+ 1 1.33504- 3 3.05308- 3 1.80000+ 1 2.50000+ 1 5.98816- 3 3.07198- 3 1.80000+ 1 2.70000+ 1 6.03866- 5 3.20749- 3 1.80000+ 1 2.90000+ 1 1.08383- 5 3.28554- 3 1.80000+ 1 3.00000+ 1 1.51874- 3 3.38443- 3 1.80000+ 1 3.20000+ 1 5.64055- 5 3.49971- 3 1.80000+ 1 3.30000+ 1 4.03461- 4 3.51431- 3 1.80000+ 1 3.50000+ 1 7.54280- 5 3.64131- 3 1.80000+ 1 3.60000+ 1 3.54810- 4 3.64342- 3 1.80000+ 1 4.10000+ 1 1.15023- 5 3.58875- 3 1.80000+ 1 4.30000+ 1 1.76964- 6 3.61233- 3 1.80000+ 1 4.40000+ 1 1.88015- 4 3.62783- 3 1.80000+ 1 5.80000+ 1 8.84785- 7 3.64775- 3 1.90000+ 1 1.90000+ 1 1.14918- 2 2.67340- 3 1.90000+ 1 2.10000+ 1 1.73737- 2 2.97120- 3 1.90000+ 1 2.20000+ 1 2.22467- 2 3.03864- 3 1.90000+ 1 2.40000+ 1 1.69907- 2 3.43248- 3 1.90000+ 1 2.50000+ 1 1.92748- 2 3.45138- 3 1.90000+ 1 2.70000+ 1 1.98368- 3 3.58689- 3 1.90000+ 1 2.90000+ 1 2.40477- 3 3.66494- 3 1.90000+ 1 3.00000+ 1 4.69213- 3 3.76383- 3 1.90000+ 1 3.20000+ 1 3.56915- 3 3.87911- 3 1.90000+ 1 3.30000+ 1 4.55744- 3 3.89371- 3 1.90000+ 1 3.50000+ 1 1.52828- 3 4.02071- 3 1.90000+ 1 3.60000+ 1 1.65717- 3 4.02282- 3 1.90000+ 1 4.10000+ 1 3.88194- 4 3.96815- 3 1.90000+ 1 4.30000+ 1 3.89304- 4 3.99173- 3 1.90000+ 1 4.40000+ 1 6.13361- 4 4.00723- 3 1.90000+ 1 5.80000+ 1 2.91975- 5 4.02715- 3 2.10000+ 1 2.10000+ 1 1.30062- 4 3.26900- 3 2.10000+ 1 2.20000+ 1 2.99695- 3 3.33644- 3 2.10000+ 1 2.40000+ 1 5.12730- 4 3.73028- 3 2.10000+ 1 2.50000+ 1 5.68411- 3 3.74918- 3 2.10000+ 1 2.70000+ 1 6.96773- 5 3.88469- 3 2.10000+ 1 2.90000+ 1 9.51192- 6 3.96274- 3 2.10000+ 1 3.00000+ 1 2.67995- 3 4.06163- 3 2.10000+ 1 3.20000+ 1 4.37968- 5 4.17691- 3 2.10000+ 1 3.30000+ 1 5.29100- 4 4.19151- 3 2.10000+ 1 3.50000+ 1 3.76037- 5 4.31851- 3 2.10000+ 1 3.60000+ 1 2.80475- 4 4.32062- 3 2.10000+ 1 4.10000+ 1 1.15022- 5 4.26595- 3 2.10000+ 1 4.30000+ 1 1.32713- 6 4.28953- 3 2.10000+ 1 4.40000+ 1 3.29367- 4 4.30503- 3 2.10000+ 1 5.80000+ 1 8.84778- 7 4.32495- 3 2.20000+ 1 2.20000+ 1 1.25131- 3 3.40388- 3 2.20000+ 1 2.40000+ 1 4.34272- 3 3.79772- 3 2.20000+ 1 2.50000+ 1 3.49242- 3 3.81662- 3 2.20000+ 1 2.70000+ 1 1.10381- 4 3.95213- 3 2.20000+ 1 2.90000+ 1 2.24732- 4 4.03018- 3 2.20000+ 1 3.00000+ 1 3.38273- 3 4.12907- 3 2.20000+ 1 3.20000+ 1 5.17593- 4 4.24435- 3 2.20000+ 1 3.30000+ 1 4.46822- 4 4.25895- 3 2.20000+ 1 3.50000+ 1 2.91752- 4 4.38595- 3 2.20000+ 1 3.60000+ 1 2.22082- 4 4.38806- 3 2.20000+ 1 4.10000+ 1 1.90221- 5 4.33339- 3 2.20000+ 1 4.30000+ 1 2.96392- 5 4.35697- 3 2.20000+ 1 4.40000+ 1 4.14522- 4 4.37247- 3 2.20000+ 1 5.80000+ 1 1.32711- 6 4.39239- 3 2.40000+ 1 2.40000+ 1 7.91658- 4 4.19156- 3 2.40000+ 1 2.50000+ 1 2.03013- 2 4.21046- 3 2.40000+ 1 2.70000+ 1 3.03043- 4 4.34597- 3 2.40000+ 1 2.90000+ 1 2.62343- 4 4.42402- 3 2.40000+ 1 3.00000+ 1 2.48253- 3 4.52291- 3 2.40000+ 1 3.20000+ 1 1.21871- 4 4.63819- 3 2.40000+ 1 3.30000+ 1 8.30789- 4 4.65279- 3 2.40000+ 1 3.50000+ 1 1.21871- 4 4.77979- 3 2.40000+ 1 3.60000+ 1 1.34791- 3 4.78190- 3 2.40000+ 1 4.10000+ 1 4.99905- 5 4.72723- 3 2.40000+ 1 4.30000+ 1 4.02574- 5 4.75081- 3 2.40000+ 1 4.40000+ 1 3.02823- 4 4.76631- 3 2.40000+ 1 5.80000+ 1 3.76034- 6 4.78623- 3 2.50000+ 1 2.50000+ 1 8.08888- 3 4.22936- 3 2.50000+ 1 2.70000+ 1 5.52759- 4 4.36487- 3 2.50000+ 1 2.90000+ 1 1.14310- 3 4.44292- 3 2.50000+ 1 3.00000+ 1 2.96269- 3 4.54181- 3 2.50000+ 1 3.20000+ 1 1.14670- 3 4.65709- 3 2.50000+ 1 3.30000+ 1 7.32149- 4 4.67169- 3 2.50000+ 1 3.50000+ 1 1.35790- 3 4.79869- 3 2.50000+ 1 3.60000+ 1 1.09320- 3 4.80080- 3 2.50000+ 1 4.10000+ 1 9.02480- 5 4.74613- 3 2.50000+ 1 4.30000+ 1 1.75619- 4 4.76971- 3 2.50000+ 1 4.40000+ 1 3.67189- 4 4.78521- 3 2.50000+ 1 5.80000+ 1 6.63578- 6 4.80513- 3 2.70000+ 1 2.70000+ 1 1.32710- 6 4.50038- 3 2.70000+ 1 2.90000+ 1 7.07821- 6 4.57843- 3 2.70000+ 1 3.00000+ 1 3.07460- 4 4.67732- 3 2.70000+ 1 3.20000+ 1 1.34930- 5 4.79260- 3 2.70000+ 1 3.30000+ 1 2.03501- 5 4.80720- 3 2.70000+ 1 3.50000+ 1 2.03501- 5 4.93420- 3 2.70000+ 1 3.60000+ 1 3.56121- 5 4.93631- 3 2.70000+ 1 4.10000+ 1 4.42390- 7 4.88164- 3 2.70000+ 1 4.30000+ 1 8.84762- 7 4.90522- 3 2.70000+ 1 4.40000+ 1 3.78240- 5 4.92072- 3 2.90000+ 1 2.90000+ 1 6.63586- 7 4.65648- 3 2.90000+ 1 3.00000+ 1 3.85544- 4 4.75537- 3 2.90000+ 1 3.20000+ 1 1.99082- 6 4.87065- 3 2.90000+ 1 3.30000+ 1 4.07004- 5 4.88525- 3 2.90000+ 1 3.50000+ 1 1.81381- 5 5.01225- 3 2.90000+ 1 3.60000+ 1 7.94087- 5 5.01436- 3 2.90000+ 1 4.10000+ 1 1.32711- 6 4.95969- 3 2.90000+ 1 4.30000+ 1 2.21192- 7 4.98327- 3 2.90000+ 1 4.40000+ 1 4.77785- 5 4.99877- 3 3.00000+ 1 3.00000+ 1 4.49911- 4 4.85426- 3 3.00000+ 1 3.20000+ 1 5.53650- 4 4.96954- 3 3.00000+ 1 3.30000+ 1 6.95430- 4 4.98414- 3 3.00000+ 1 3.50000+ 1 2.23401- 4 5.11114- 3 3.00000+ 1 3.60000+ 1 2.51060- 4 5.11325- 3 3.00000+ 1 4.10000+ 1 6.03851- 5 5.05858- 3 3.00000+ 1 4.30000+ 1 6.25971- 5 5.08216- 3 3.00000+ 1 4.40000+ 1 1.16350- 4 5.09766- 3 3.00000+ 1 5.80000+ 1 4.42390- 6 5.11758- 3 3.20000+ 1 3.20000+ 1 3.76036- 6 5.08482- 3 3.20000+ 1 3.30000+ 1 1.00202- 4 5.09942- 3 3.20000+ 1 3.50000+ 1 7.96313- 6 5.22642- 3 3.20000+ 1 3.60000+ 1 6.14931- 5 5.22853- 3 3.20000+ 1 4.10000+ 1 2.21194- 6 5.17386- 3 3.20000+ 1 4.30000+ 1 2.21194- 7 5.19744- 3 3.20000+ 1 4.40000+ 1 6.81281- 5 5.21294- 3 3.20000+ 1 5.80000+ 1 2.21194- 7 5.23286- 3 3.30000+ 1 3.30000+ 1 4.26909- 5 5.11402- 3 3.30000+ 1 3.50000+ 1 5.99439- 5 5.24102- 3 3.30000+ 1 3.60000+ 1 4.77780- 5 5.24313- 3 3.30000+ 1 4.10000+ 1 3.53900- 6 5.18846- 3 3.30000+ 1 4.30000+ 1 5.52989- 6 5.21204- 3 3.30000+ 1 4.40000+ 1 8.51580- 5 5.22754- 3 3.30000+ 1 5.80000+ 1 2.21190- 7 5.24746- 3 3.50000+ 1 3.50000+ 1 4.64519- 6 5.36802- 3 3.50000+ 1 3.60000+ 1 9.66631- 5 5.37013- 3 3.50000+ 1 4.10000+ 1 3.31796- 6 5.31546- 3 3.50000+ 1 4.30000+ 1 2.87555- 6 5.33904- 3 3.50000+ 1 4.40000+ 1 2.72075- 5 5.35454- 3 3.50000+ 1 5.80000+ 1 2.21194- 7 5.37446- 3 3.60000+ 1 3.60000+ 1 3.82674- 5 5.37224- 3 3.60000+ 1 4.10000+ 1 5.75115- 6 5.31757- 3 3.60000+ 1 4.30000+ 1 1.23871- 5 5.34115- 3 3.60000+ 1 4.40000+ 1 3.09673- 5 5.35665- 3 3.60000+ 1 5.80000+ 1 4.42394- 7 5.37657- 3 4.10000+ 1 4.30000+ 1 2.21194- 7 5.28648- 3 4.10000+ 1 4.40000+ 1 7.52073- 6 5.30198- 3 4.30000+ 1 4.40000+ 1 7.74183- 6 5.32556- 3 4.40000+ 1 4.40000+ 1 7.52065- 6 5.34106- 3 4.40000+ 1 5.80000+ 1 6.63584- 7 5.36098- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 2.80591- 3 3.02180- 3 1.90000+ 1 2.16911- 4 3.40120- 3 2.40000+ 1 5.89352- 2 4.16028- 3 2.90000+ 1 6.70792- 4 4.39274- 3 3.00000+ 1 5.23962- 5 4.49163- 3 3.50000+ 1 5.53242- 3 4.74851- 3 4.30000+ 1 1.11100- 4 4.71953- 3 4.40000+ 1 7.41272- 6 4.73503- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.30000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.40000+ 1 3.00000+ 1 3.72444- 3 0.00000+ 0 1.40000+ 1 3.20000+ 1 4.40554- 2 1.14210- 4 1.40000+ 1 3.30000+ 1 6.28957- 3 1.28810- 4 1.40000+ 1 3.50000+ 1 3.81304- 2 2.55810- 4 1.40000+ 1 3.60000+ 1 3.93604- 3 2.57920- 4 1.40000+ 1 4.10000+ 1 8.51479- 4 2.03250- 4 1.40000+ 1 4.30000+ 1 3.85484- 4 2.26830- 4 1.40000+ 1 4.40000+ 1 7.04587- 4 2.42330- 4 1.40000+ 1 5.80000+ 1 6.28767- 5 2.62250- 4 1.60000+ 1 1.80000+ 1 5.80586- 4 1.09600- 3 1.60000+ 1 1.90000+ 1 6.42886- 4 1.47540- 3 1.60000+ 1 2.10000+ 1 2.51653- 2 1.77320- 3 1.60000+ 1 2.20000+ 1 3.09173- 3 1.84064- 3 1.60000+ 1 2.40000+ 1 1.64802- 2 2.23448- 3 1.60000+ 1 2.50000+ 1 3.34193- 3 2.25338- 3 1.60000+ 1 2.70000+ 1 1.29281- 5 2.38889- 3 1.60000+ 1 2.90000+ 1 1.29281- 4 2.46694- 3 1.60000+ 1 3.00000+ 1 1.04601- 4 2.56583- 3 1.60000+ 1 3.20000+ 1 3.43283- 3 2.68111- 3 1.60000+ 1 3.30000+ 1 4.59544- 4 2.69571- 3 1.60000+ 1 3.50000+ 1 1.04301- 3 2.82271- 3 1.60000+ 1 3.60000+ 1 1.63952- 4 2.82482- 3 1.60000+ 1 4.10000+ 1 2.93813- 6 2.77015- 3 1.60000+ 1 4.30000+ 1 2.05682- 5 2.79373- 3 1.60000+ 1 4.40000+ 1 1.29281- 5 2.80923- 3 1.80000+ 1 1.80000+ 1 1.55719- 4 1.28280- 3 1.80000+ 1 1.90000+ 1 2.64500- 3 1.66220- 3 1.80000+ 1 2.10000+ 1 2.28240- 2 1.96000- 3 1.80000+ 1 2.20000+ 1 1.11060- 3 2.02744- 3 1.80000+ 1 2.40000+ 1 1.39419- 2 2.42128- 3 1.80000+ 1 2.50000+ 1 8.32970- 3 2.44018- 3 1.80000+ 1 2.70000+ 1 6.93409- 5 2.57569- 3 1.80000+ 1 2.90000+ 1 8.40310- 5 2.65374- 3 1.80000+ 1 3.00000+ 1 4.81869- 4 2.75263- 3 1.80000+ 1 3.20000+ 1 3.07050- 3 2.86791- 3 1.80000+ 1 3.30000+ 1 1.83930- 4 2.88251- 3 1.80000+ 1 3.50000+ 1 8.53830- 4 3.00951- 3 1.80000+ 1 3.60000+ 1 5.17710- 4 3.01162- 3 1.80000+ 1 4.10000+ 1 1.17530- 5 2.95695- 3 1.80000+ 1 4.30000+ 1 1.35160- 5 2.98053- 3 1.80000+ 1 4.40000+ 1 6.11140- 5 2.99603- 3 1.80000+ 1 5.80000+ 1 5.87640- 7 3.01595- 3 1.90000+ 1 1.90000+ 1 9.07901- 4 2.04160- 3 1.90000+ 1 2.10000+ 1 4.19820- 2 2.33940- 3 1.90000+ 1 2.20000+ 1 1.58950- 3 2.40684- 3 1.90000+ 1 2.40000+ 1 1.40860- 3 2.80068- 3 1.90000+ 1 2.50000+ 1 1.36860- 3 2.81958- 3 1.90000+ 1 2.70000+ 1 1.26930- 4 2.95509- 3 1.90000+ 1 2.90000+ 1 3.99010- 4 3.03314- 3 1.90000+ 1 3.00000+ 1 3.14970- 4 3.13203- 3 1.90000+ 1 3.20000+ 1 5.72011- 3 3.24731- 3 1.90000+ 1 3.30000+ 1 2.50340- 4 3.26191- 3 1.90000+ 1 3.50000+ 1 6.46400- 5 3.38891- 3 1.90000+ 1 3.60000+ 1 5.87641- 5 3.39102- 3 1.90000+ 1 4.10000+ 1 2.29170- 5 3.33635- 3 1.90000+ 1 4.30000+ 1 5.81761- 5 3.35993- 3 1.90000+ 1 4.40000+ 1 3.99580- 5 3.37543- 3 1.90000+ 1 5.80000+ 1 1.76291- 6 3.39535- 3 2.10000+ 1 2.10000+ 1 3.94645- 2 2.63720- 3 2.10000+ 1 2.20000+ 1 7.61820- 2 2.70464- 3 2.10000+ 1 2.40000+ 1 4.79196- 2 3.09848- 3 2.10000+ 1 2.50000+ 1 5.59138- 2 3.11738- 3 2.10000+ 1 2.70000+ 1 6.04318- 3 3.25289- 3 2.10000+ 1 2.90000+ 1 5.81408- 3 3.33094- 3 2.10000+ 1 3.00000+ 1 1.02901- 2 3.42983- 3 2.10000+ 1 3.20000+ 1 1.36121- 2 3.54511- 3 2.10000+ 1 3.30000+ 1 1.54312- 2 3.55971- 3 2.10000+ 1 3.50000+ 1 4.32325- 3 3.68671- 3 2.10000+ 1 3.60000+ 1 4.91027- 3 3.68882- 3 2.10000+ 1 4.10000+ 1 1.16351- 3 3.63415- 3 2.10000+ 1 4.30000+ 1 9.43702- 4 3.65773- 3 2.10000+ 1 4.40000+ 1 1.38271- 3 3.67323- 3 2.10000+ 1 5.80000+ 1 8.69712- 5 3.69315- 3 2.20000+ 1 2.20000+ 1 1.19061- 3 2.77208- 3 2.20000+ 1 2.40000+ 1 5.80996- 2 3.16592- 3 2.20000+ 1 2.50000+ 1 2.63623- 3 3.18482- 3 2.20000+ 1 2.70000+ 1 3.34943- 4 3.32033- 3 2.20000+ 1 2.90000+ 1 1.41621- 4 3.39838- 3 2.20000+ 1 3.00000+ 1 3.06173- 4 3.49727- 3 2.20000+ 1 3.20000+ 1 1.03921- 2 3.61255- 3 2.20000+ 1 3.30000+ 1 3.87844- 4 3.62715- 3 2.20000+ 1 3.50000+ 1 4.72524- 3 3.75415- 3 2.20000+ 1 3.60000+ 1 1.88042- 4 3.75626- 3 2.20000+ 1 4.10000+ 1 5.58256- 5 3.70159- 3 2.20000+ 1 4.30000+ 1 2.05682- 5 3.72517- 3 2.20000+ 1 4.40000+ 1 3.93714- 5 3.74067- 3 2.20000+ 1 5.80000+ 1 4.11334- 6 3.76059- 3 2.40000+ 1 2.40000+ 1 5.80054- 2 3.55976- 3 2.40000+ 1 2.50000+ 1 1.64789- 1 3.57866- 3 2.40000+ 1 2.70000+ 1 4.28255- 3 3.71417- 3 2.40000+ 1 2.90000+ 1 2.66787- 3 3.79222- 3 2.40000+ 1 3.00000+ 1 3.44946- 4 3.89111- 3 2.40000+ 1 3.20000+ 1 7.24182- 3 4.00639- 3 2.40000+ 1 3.30000+ 1 1.11208- 2 4.02099- 3 2.40000+ 1 3.50000+ 1 9.08110- 3 4.14799- 3 2.40000+ 1 3.60000+ 1 1.35338- 2 4.15010- 3 2.40000+ 1 4.10000+ 1 8.32681- 4 4.09543- 3 2.40000+ 1 4.30000+ 1 4.21325- 4 4.11901- 3 2.40000+ 1 4.40000+ 1 4.64214- 5 4.13451- 3 2.40000+ 1 5.80000+ 1 6.34643- 5 4.15443- 3 2.50000+ 1 2.50000+ 1 3.37366- 3 3.59756- 3 2.50000+ 1 2.70000+ 1 5.92923- 4 3.73307- 3 2.50000+ 1 2.90000+ 1 7.98580- 4 3.81112- 3 2.50000+ 1 3.00000+ 1 2.99677- 4 3.91001- 3 2.50000+ 1 3.20000+ 1 6.88292- 3 4.02529- 3 2.50000+ 1 3.30000+ 1 4.66564- 4 4.03989- 3 2.50000+ 1 3.50000+ 1 1.11978- 2 4.16689- 3 2.50000+ 1 3.60000+ 1 5.03004- 4 4.16900- 3 2.50000+ 1 4.10000+ 1 1.05188- 4 4.11433- 3 2.50000+ 1 4.30000+ 1 1.08718- 4 4.13791- 3 2.50000+ 1 4.40000+ 1 3.93705- 5 4.15341- 3 2.50000+ 1 5.80000+ 1 7.63911- 6 4.17333- 3 2.70000+ 1 2.70000+ 1 1.17530- 6 3.86858- 3 2.70000+ 1 2.90000+ 1 1.88042- 5 3.94663- 3 2.70000+ 1 3.00000+ 1 2.11552- 5 4.04552- 3 2.70000+ 1 3.20000+ 1 8.30926- 4 4.16080- 3 2.70000+ 1 3.30000+ 1 5.64134- 5 4.17540- 3 2.70000+ 1 3.50000+ 1 2.90882- 4 4.30240- 3 2.70000+ 1 3.60000+ 1 3.87842- 5 4.30451- 3 2.70000+ 1 4.10000+ 1 5.87644- 7 4.24984- 3 2.70000+ 1 4.30000+ 1 2.93812- 6 4.27342- 3 2.70000+ 1 4.40000+ 1 2.93812- 6 4.28892- 3 2.90000+ 1 2.90000+ 1 1.11654- 5 4.02468- 3 2.90000+ 1 3.00000+ 1 7.93330- 5 4.12357- 3 2.90000+ 1 3.20000+ 1 7.87450- 4 4.23885- 3 2.90000+ 1 3.30000+ 1 2.82071- 5 4.25345- 3 2.90000+ 1 3.50000+ 1 1.70417- 4 4.38045- 3 2.90000+ 1 3.60000+ 1 5.28900- 5 4.38256- 3 2.90000+ 1 4.10000+ 1 3.52583- 6 4.32789- 3 2.90000+ 1 4.30000+ 1 3.52583- 6 4.35147- 3 2.90000+ 1 4.40000+ 1 9.98978- 6 4.36697- 3 3.00000+ 1 3.00000+ 1 2.82070- 5 4.22246- 3 3.00000+ 1 3.20000+ 1 1.41155- 3 4.33774- 3 3.00000+ 1 3.30000+ 1 5.17119- 5 4.35234- 3 3.00000+ 1 3.50000+ 1 1.93927- 5 4.47934- 3 3.00000+ 1 3.60000+ 1 1.29284- 5 4.48145- 3 3.00000+ 1 4.10000+ 1 4.11344- 6 4.42678- 3 3.00000+ 1 4.30000+ 1 1.17534- 5 4.45036- 3 3.00000+ 1 4.40000+ 1 7.05185- 6 4.46586- 3 3.20000+ 1 3.20000+ 1 1.11650- 3 4.45302- 3 3.20000+ 1 3.30000+ 1 2.11951- 3 4.46762- 3 3.20000+ 1 3.50000+ 1 6.50503- 4 4.59462- 3 3.20000+ 1 3.60000+ 1 6.13493- 4 4.59673- 3 3.20000+ 1 4.10000+ 1 1.59840- 4 4.54206- 3 3.20000+ 1 4.30000+ 1 1.28100- 4 4.56564- 3 3.20000+ 1 4.40000+ 1 1.89811- 4 4.58114- 3 3.20000+ 1 5.80000+ 1 1.17530- 5 4.60106- 3 3.30000+ 1 3.30000+ 1 3.11456- 5 4.48222- 3 3.30000+ 1 3.50000+ 1 9.16709- 4 4.60922- 3 3.30000+ 1 3.60000+ 1 3.40816- 5 4.61133- 3 3.30000+ 1 4.10000+ 1 9.40228- 6 4.55666- 3 3.30000+ 1 4.30000+ 1 4.11325- 6 4.58024- 3 3.30000+ 1 4.40000+ 1 6.46392- 6 4.59574- 3 3.30000+ 1 5.80000+ 1 5.87633- 7 4.61566- 3 3.50000+ 1 3.50000+ 1 3.42010- 4 4.73622- 3 3.50000+ 1 3.60000+ 1 9.42011- 4 4.73833- 3 3.50000+ 1 4.10000+ 1 5.70001- 5 4.68366- 3 3.50000+ 1 4.30000+ 1 2.70310- 5 4.70724- 3 3.50000+ 1 4.40000+ 1 2.93810- 6 4.72274- 3 3.50000+ 1 5.80000+ 1 4.11330- 6 4.74266- 3 3.60000+ 1 3.60000+ 1 1.82172- 5 4.74044- 3 3.60000+ 1 4.10000+ 1 7.05166- 6 4.68577- 3 3.60000+ 1 4.30000+ 1 7.05166- 6 4.70935- 3 3.60000+ 1 4.40000+ 1 1.76292- 6 4.72485- 3 3.60000+ 1 5.80000+ 1 5.87646- 7 4.74477- 3 4.10000+ 1 4.30000+ 1 5.87652- 7 4.65468- 3 4.10000+ 1 4.40000+ 1 5.87652- 7 4.67018- 3 4.30000+ 1 4.40000+ 1 1.76291- 6 4.69376- 3 4.40000+ 1 4.40000+ 1 5.87642- 7 4.70926- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 1.69639- 3 3.13310- 3 2.40000+ 1 2.77129- 3 3.89218- 3 2.50000+ 1 5.43027- 2 3.91108- 3 3.00000+ 1 4.07048- 4 4.22353- 3 3.50000+ 1 2.53349- 4 4.48041- 3 3.60000+ 1 4.87368- 3 4.48252- 3 4.40000+ 1 5.75497- 5 4.46693- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.60000+ 1 1.60000+ 1 7.14102- 5 6.41100- 4 1.60000+ 1 1.80000+ 1 3.92435- 4 8.27900- 4 1.60000+ 1 1.90000+ 1 1.26649- 3 1.20730- 3 1.60000+ 1 2.10000+ 1 3.15856- 3 1.50510- 3 1.60000+ 1 2.20000+ 1 2.89367- 2 1.57254- 3 1.60000+ 1 2.40000+ 1 3.95795- 3 1.96638- 3 1.60000+ 1 2.50000+ 1 1.75208- 2 1.98528- 3 1.60000+ 1 2.70000+ 1 2.86847- 5 2.12079- 3 1.60000+ 1 2.90000+ 1 3.96715- 5 2.19884- 3 1.60000+ 1 3.00000+ 1 2.11788- 4 2.29773- 3 1.60000+ 1 3.20000+ 1 4.23565- 4 2.41301- 3 1.60000+ 1 3.30000+ 1 3.91395- 3 2.42761- 3 1.60000+ 1 3.50000+ 1 1.86758- 4 2.55461- 3 1.60000+ 1 3.60000+ 1 9.61909- 4 2.55672- 3 1.60000+ 1 4.10000+ 1 6.10343- 6 2.50205- 3 1.60000+ 1 4.30000+ 1 6.10343- 6 2.52563- 3 1.60000+ 1 4.40000+ 1 2.62447- 5 2.54113- 3 1.60000+ 1 5.80000+ 1 6.10343- 7 2.56105- 3 1.80000+ 1 1.80000+ 1 4.27230- 5 1.01470- 3 1.80000+ 1 1.90000+ 1 4.37120- 3 1.39410- 3 1.80000+ 1 2.10000+ 1 2.26430- 4 1.69190- 3 1.80000+ 1 2.20000+ 1 2.93670- 2 1.75934- 3 1.80000+ 1 2.40000+ 1 2.46930- 3 2.15318- 3 1.80000+ 1 2.50000+ 1 1.20110- 2 2.17208- 3 1.80000+ 1 2.70000+ 1 4.39450- 5 2.30759- 3 1.80000+ 1 2.90000+ 1 9.76510- 6 2.38564- 3 1.80000+ 1 3.00000+ 1 7.33620- 4 2.48453- 3 1.80000+ 1 3.20000+ 1 6.10350- 6 2.59981- 3 1.80000+ 1 3.30000+ 1 3.94530- 3 2.61441- 3 1.80000+ 1 3.50000+ 1 1.46480- 4 2.74141- 3 1.80000+ 1 3.60000+ 1 6.58550- 4 2.74352- 3 1.80000+ 1 4.10000+ 1 7.32410- 6 2.68885- 3 1.80000+ 1 4.30000+ 1 1.22070- 6 2.71243- 3 1.80000+ 1 4.40000+ 1 9.21610- 5 2.72793- 3 1.80000+ 1 5.80000+ 1 6.10350- 7 2.74785- 3 1.90000+ 1 1.90000+ 1 2.43090- 3 1.77350- 3 1.90000+ 1 2.10000+ 1 2.54380- 3 2.07130- 3 1.90000+ 1 2.20000+ 1 4.09040- 2 2.13874- 3 1.90000+ 1 2.40000+ 1 1.69730- 3 2.53258- 3 1.90000+ 1 2.50000+ 1 2.39310- 3 2.55148- 3 1.90000+ 1 2.70000+ 1 2.64880- 4 2.68699- 3 1.90000+ 1 2.90000+ 1 5.74920- 4 2.76504- 3 1.90000+ 1 3.00000+ 1 8.28230- 4 2.86393- 3 1.90000+ 1 3.20000+ 1 4.42500- 4 2.97921- 3 1.90000+ 1 3.30000+ 1 5.45770- 3 2.99381- 3 1.90000+ 1 3.50000+ 1 7.99540- 5 3.12081- 3 1.90000+ 1 3.60000+ 1 1.01930- 4 3.12292- 3 1.90000+ 1 4.10000+ 1 4.94390- 5 3.06825- 3 1.90000+ 1 4.30000+ 1 8.30070- 5 3.09183- 3 1.90000+ 1 4.40000+ 1 1.04370- 4 3.10733- 3 1.90000+ 1 5.80000+ 1 3.66190- 6 3.12725- 3 2.10000+ 1 2.10000+ 1 5.71869- 4 2.36910- 3 2.10000+ 1 2.20000+ 1 5.89909- 2 2.43654- 3 2.10000+ 1 2.40000+ 1 2.52560- 3 2.83038- 3 2.10000+ 1 2.50000+ 1 3.50449- 2 2.84928- 3 2.10000+ 1 2.70000+ 1 3.13710- 4 2.98479- 3 2.10000+ 1 2.90000+ 1 7.01879- 5 3.06284- 3 2.10000+ 1 3.00000+ 1 4.37609- 4 3.16173- 3 2.10000+ 1 3.20000+ 1 1.77610- 4 3.27701- 3 2.10000+ 1 3.30000+ 1 7.98509- 3 3.29161- 3 2.10000+ 1 3.50000+ 1 1.99580- 4 3.41861- 3 2.10000+ 1 3.60000+ 1 2.75150- 3 3.42072- 3 2.10000+ 1 4.10000+ 1 5.06589- 5 3.36605- 3 2.10000+ 1 4.30000+ 1 1.09860- 5 3.38963- 3 2.10000+ 1 4.40000+ 1 5.55419- 5 3.40513- 3 2.10000+ 1 5.80000+ 1 3.66189- 6 3.42505- 3 2.20000+ 1 2.20000+ 1 6.43931- 2 2.50398- 3 2.20000+ 1 2.40000+ 1 5.55981- 2 2.89782- 3 2.20000+ 1 2.50000+ 1 8.98131- 2 2.91672- 3 2.20000+ 1 2.70000+ 1 6.51061- 3 3.05223- 3 2.20000+ 1 2.90000+ 1 7.08861- 3 3.13028- 3 2.20000+ 1 3.00000+ 1 1.01160- 2 3.22917- 3 2.20000+ 1 3.20000+ 1 1.19250- 2 3.34445- 3 2.20000+ 1 3.30000+ 1 2.17430- 2 3.35905- 3 2.20000+ 1 3.50000+ 1 4.99251- 3 3.48605- 3 2.20000+ 1 3.60000+ 1 7.47131- 3 3.48816- 3 2.20000+ 1 4.10000+ 1 1.24450- 3 3.43349- 3 2.20000+ 1 4.30000+ 1 1.13830- 3 3.45707- 3 2.20000+ 1 4.40000+ 1 1.36160- 3 3.47257- 3 2.20000+ 1 5.80000+ 1 9.27711- 5 3.49249- 3 2.40000+ 1 2.40000+ 1 5.11154- 3 3.29166- 3 2.40000+ 1 2.50000+ 1 1.61928- 1 3.31056- 3 2.40000+ 1 2.70000+ 1 8.01370- 4 3.44607- 3 2.40000+ 1 2.90000+ 1 5.38923- 4 3.52412- 3 2.40000+ 1 3.00000+ 1 3.54586- 4 3.62301- 3 2.40000+ 1 3.20000+ 1 4.87644- 4 3.73829- 3 2.40000+ 1 3.30000+ 1 7.06761- 3 3.75289- 3 2.40000+ 1 3.50000+ 1 7.95880- 4 3.87989- 3 2.40000+ 1 3.60000+ 1 1.06249- 2 3.88200- 3 2.40000+ 1 4.10000+ 1 1.46478- 4 3.82733- 3 2.40000+ 1 4.30000+ 1 8.48359- 5 3.85091- 3 2.40000+ 1 4.40000+ 1 4.63854- 5 3.86641- 3 2.40000+ 1 5.80000+ 1 1.09859- 5 3.88633- 3 2.50000+ 1 2.50000+ 1 1.09992- 1 3.32946- 3 2.50000+ 1 2.70000+ 1 4.53258- 3 3.46497- 3 2.50000+ 1 2.90000+ 1 2.94735- 3 3.54302- 3 2.50000+ 1 3.00000+ 1 5.37099- 4 3.64191- 3 2.50000+ 1 3.20000+ 1 6.49591- 3 3.75719- 3 2.50000+ 1 3.30000+ 1 1.40802- 2 3.77179- 3 2.50000+ 1 3.50000+ 1 1.33722- 2 3.89879- 3 2.50000+ 1 3.60000+ 1 1.61653- 2 3.90090- 3 2.50000+ 1 4.10000+ 1 8.80725- 4 3.84623- 3 2.50000+ 1 4.30000+ 1 4.76688- 4 3.86981- 3 2.50000+ 1 4.40000+ 1 7.14122- 5 3.88531- 3 2.50000+ 1 5.80000+ 1 6.77492- 5 3.90523- 3 2.70000+ 1 2.90000+ 1 1.22070- 6 3.67853- 3 2.70000+ 1 3.00000+ 1 4.63858- 5 3.77742- 3 2.70000+ 1 3.20000+ 1 4.94388- 5 3.89270- 3 2.70000+ 1 3.30000+ 1 8.86817- 4 3.90730- 3 2.70000+ 1 3.50000+ 1 5.06588- 5 4.03430- 3 2.70000+ 1 3.60000+ 1 2.81969- 4 4.03641- 3 2.70000+ 1 4.40000+ 1 6.10348- 6 4.02082- 3 2.90000+ 1 3.00000+ 1 1.04370- 4 3.85547- 3 2.90000+ 1 3.20000+ 1 4.88282- 6 3.97075- 3 2.90000+ 1 3.30000+ 1 9.69874- 4 3.98535- 3 2.90000+ 1 3.50000+ 1 3.23481- 5 4.11235- 3 2.90000+ 1 3.60000+ 1 1.70891- 4 4.11446- 3 2.90000+ 1 4.40000+ 1 1.34271- 5 4.09887- 3 3.00000+ 1 3.00000+ 1 7.01889- 5 3.95436- 3 3.00000+ 1 3.20000+ 1 8.17861- 5 4.06964- 3 3.00000+ 1 3.30000+ 1 1.35622- 3 4.08424- 3 3.00000+ 1 3.50000+ 1 1.89202- 5 4.21124- 3 3.00000+ 1 3.60000+ 1 2.74654- 5 4.21335- 3 3.00000+ 1 4.10000+ 1 8.54481- 6 4.15868- 3 3.00000+ 1 4.30000+ 1 1.52582- 5 4.18226- 3 3.00000+ 1 4.40000+ 1 1.77002- 5 4.19776- 3 3.00000+ 1 5.80000+ 1 6.10358- 7 4.21768- 3 3.20000+ 1 3.20000+ 1 1.28171- 5 4.18492- 3 3.20000+ 1 3.30000+ 1 1.62591- 3 4.19952- 3 3.20000+ 1 3.50000+ 1 3.90622- 5 4.32652- 3 3.20000+ 1 3.60000+ 1 5.23072- 4 4.32863- 3 3.20000+ 1 4.10000+ 1 7.93443- 6 4.27396- 3 3.20000+ 1 4.30000+ 1 6.10352- 7 4.29754- 3 3.20000+ 1 4.40000+ 1 1.03760- 5 4.31304- 3 3.20000+ 1 5.80000+ 1 6.10352- 7 4.33296- 3 3.30000+ 1 3.30000+ 1 1.75349- 3 4.21412- 3 3.30000+ 1 3.50000+ 1 6.41456- 4 4.34112- 3 3.30000+ 1 3.60000+ 1 1.16389- 3 4.34323- 3 3.30000+ 1 4.10000+ 1 1.69679- 4 4.28856- 3 3.30000+ 1 4.30000+ 1 1.56249- 4 4.31214- 3 3.30000+ 1 4.40000+ 1 1.83099- 4 4.32764- 3 3.30000+ 1 5.80000+ 1 1.28169- 5 4.34756- 3 3.50000+ 1 3.50000+ 1 2.99060- 5 4.46812- 3 3.50000+ 1 3.60000+ 1 8.99020- 4 4.47023- 3 3.50000+ 1 4.10000+ 1 9.76510- 6 4.41556- 3 3.50000+ 1 4.30000+ 1 4.88280- 6 4.43914- 3 3.50000+ 1 4.40000+ 1 2.44130- 6 4.45464- 3 3.50000+ 1 5.80000+ 1 6.10350- 7 4.47456- 3 3.60000+ 1 3.60000+ 1 5.81046- 4 4.47234- 3 3.60000+ 1 4.10000+ 1 5.55416- 5 4.41767- 3 3.60000+ 1 4.30000+ 1 2.80748- 5 4.44125- 3 3.60000+ 1 4.40000+ 1 3.66187- 6 4.45675- 3 3.60000+ 1 5.80000+ 1 4.27227- 6 4.47667- 3 4.10000+ 1 4.40000+ 1 1.22069- 6 4.40208- 3 4.30000+ 1 4.40000+ 1 1.83099- 6 4.42566- 3 4.40000+ 1 4.40000+ 1 1.22069- 6 4.44116- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 1.21770- 5 1.86800- 4 1.90000+ 1 7.38919- 4 5.66200- 4 2.90000+ 1 4.53869- 4 1.55774- 3 3.00000+ 1 4.52819- 5 1.65663- 3 4.30000+ 1 8.67199- 5 1.88453- 3 4.40000+ 1 1.09300- 5 1.90003- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.60000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.80000+ 1 3.20000+ 1 5.10518- 2 3.29100- 5 1.80000+ 1 3.30000+ 1 8.20137- 2 4.75100- 5 1.80000+ 1 3.50000+ 1 3.23564- 2 1.74510- 4 1.80000+ 1 3.60000+ 1 3.43851- 2 1.76620- 4 1.80000+ 1 4.10000+ 1 7.99311- 3 1.21950- 4 1.80000+ 1 4.30000+ 1 6.55538- 3 1.45530- 4 1.80000+ 1 4.40000+ 1 7.65443- 3 1.61030- 4 1.80000+ 1 5.80000+ 1 5.79784- 4 1.80950- 4 1.90000+ 1 2.50000+ 1 1.68056- 2 0.00000+ 0 1.90000+ 1 2.70000+ 1 3.07216- 2 1.20090- 4 1.90000+ 1 2.90000+ 1 3.83847- 2 1.98140- 4 1.90000+ 1 3.00000+ 1 2.76633- 2 2.97030- 4 1.90000+ 1 3.20000+ 1 2.31874- 2 4.12310- 4 1.90000+ 1 3.30000+ 1 2.85514- 2 4.26910- 4 1.90000+ 1 3.50000+ 1 2.54523- 3 5.53910- 4 1.90000+ 1 3.60000+ 1 4.15306- 3 5.56020- 4 1.90000+ 1 4.10000+ 1 5.82278- 3 5.01350- 4 1.90000+ 1 4.30000+ 1 5.94170- 3 5.24930- 4 1.90000+ 1 4.40000+ 1 3.81012- 3 5.40430- 4 1.90000+ 1 5.80000+ 1 4.32887- 4 5.60350- 4 2.10000+ 1 2.40000+ 1 2.91855- 3 2.63480- 4 2.10000+ 1 2.50000+ 1 3.11928- 3 2.82380- 4 2.10000+ 1 2.70000+ 1 1.42304- 2 4.17890- 4 2.10000+ 1 2.90000+ 1 5.30386- 3 4.95940- 4 2.10000+ 1 3.00000+ 1 3.42693- 3 5.94830- 4 2.10000+ 1 3.20000+ 1 1.47941- 3 7.10110- 4 2.10000+ 1 3.30000+ 1 3.66906- 3 7.24710- 4 2.10000+ 1 3.50000+ 1 1.62344- 3 8.51710- 4 2.10000+ 1 3.60000+ 1 1.61417- 3 8.53820- 4 2.10000+ 1 4.10000+ 1 1.94927- 3 7.99150- 4 2.10000+ 1 4.30000+ 1 7.90609- 4 8.22730- 4 2.10000+ 1 4.40000+ 1 3.82295- 4 8.38230- 4 2.10000+ 1 5.80000+ 1 1.39657- 4 8.58150- 4 2.20000+ 1 2.40000+ 1 3.68598- 3 3.30920- 4 2.20000+ 1 2.50000+ 1 4.89894- 3 3.49820- 4 2.20000+ 1 2.70000+ 1 1.95711- 2 4.85330- 4 2.20000+ 1 2.90000+ 1 7.50901- 3 5.63380- 4 2.20000+ 1 3.00000+ 1 4.52771- 3 6.62270- 4 2.20000+ 1 3.20000+ 1 2.86197- 3 7.77550- 4 2.20000+ 1 3.30000+ 1 3.23748- 3 7.92150- 4 2.20000+ 1 3.50000+ 1 1.75203- 3 9.19150- 4 2.20000+ 1 3.60000+ 1 2.32944- 3 9.21260- 4 2.20000+ 1 4.10000+ 1 2.66285- 3 8.66590- 4 2.20000+ 1 4.30000+ 1 1.00775- 3 8.90170- 4 2.20000+ 1 4.40000+ 1 5.62051- 4 9.05670- 4 2.20000+ 1 5.80000+ 1 1.90631- 4 9.25590- 4 2.40000+ 1 2.40000+ 1 7.61793- 3 7.24760- 4 2.40000+ 1 2.50000+ 1 1.40440- 2 7.43660- 4 2.40000+ 1 2.70000+ 1 1.75830- 2 8.79170- 4 2.40000+ 1 2.90000+ 1 2.48014- 3 9.57220- 4 2.40000+ 1 3.00000+ 1 1.26011- 2 1.05611- 3 2.40000+ 1 3.20000+ 1 1.11796- 3 1.17139- 3 2.40000+ 1 3.30000+ 1 7.17806- 4 1.18599- 3 2.40000+ 1 3.50000+ 1 6.54161- 4 1.31299- 3 2.40000+ 1 3.60000+ 1 6.14836- 4 1.31510- 3 2.40000+ 1 4.10000+ 1 2.00056- 3 1.26043- 3 2.40000+ 1 4.30000+ 1 2.93830- 4 1.28401- 3 2.40000+ 1 4.40000+ 1 1.27419- 3 1.29951- 3 2.40000+ 1 5.80000+ 1 1.39311- 4 1.31943- 3 2.50000+ 1 2.50000+ 1 1.25045- 2 7.62560- 4 2.50000+ 1 2.70000+ 1 2.26093- 2 8.98070- 4 2.50000+ 1 2.90000+ 1 1.01923- 3 9.76120- 4 2.50000+ 1 3.00000+ 1 1.25603- 2 1.07501- 3 2.50000+ 1 3.20000+ 1 6.16697- 4 1.19029- 3 2.50000+ 1 3.30000+ 1 1.56025- 3 1.20489- 3 2.50000+ 1 3.50000+ 1 6.57734- 4 1.33189- 3 2.50000+ 1 3.60000+ 1 1.04861- 3 1.33400- 3 2.50000+ 1 4.10000+ 1 2.55743- 3 1.27933- 3 2.50000+ 1 4.30000+ 1 1.16799- 4 1.30291- 3 2.50000+ 1 4.40000+ 1 1.21295- 3 1.31841- 3 2.50000+ 1 5.80000+ 1 1.78051- 4 1.33833- 3 2.70000+ 1 2.70000+ 1 1.85920- 2 1.03358- 3 2.70000+ 1 2.90000+ 1 2.82983- 2 1.11163- 3 2.70000+ 1 3.00000+ 1 4.22319- 2 1.21052- 3 2.70000+ 1 3.20000+ 1 4.49868- 2 1.32580- 3 2.70000+ 1 3.30000+ 1 6.12004- 2 1.34040- 3 2.70000+ 1 3.50000+ 1 2.76429- 2 1.46740- 3 2.70000+ 1 3.60000+ 1 3.38213- 2 1.46951- 3 2.70000+ 1 4.10000+ 1 5.86555- 3 1.41484- 3 2.70000+ 1 4.30000+ 1 4.60745- 3 1.43842- 3 2.70000+ 1 4.40000+ 1 5.65318- 3 1.45392- 3 2.70000+ 1 5.80000+ 1 4.29879- 4 1.47384- 3 2.90000+ 1 2.90000+ 1 2.10547- 3 1.18968- 3 2.90000+ 1 3.00000+ 1 1.03198- 2 1.28857- 3 2.90000+ 1 3.20000+ 1 3.95997- 3 1.40385- 3 2.90000+ 1 3.30000+ 1 2.58626- 3 1.41845- 3 2.90000+ 1 3.50000+ 1 1.42291- 3 1.54545- 3 2.90000+ 1 3.60000+ 1 7.66733- 4 1.54756- 3 2.90000+ 1 4.10000+ 1 3.28447- 3 1.49289- 3 2.90000+ 1 4.30000+ 1 5.40399- 4 1.51647- 3 2.90000+ 1 4.40000+ 1 1.01415- 3 1.53197- 3 2.90000+ 1 5.80000+ 1 2.29841- 4 1.55189- 3 3.00000+ 1 3.00000+ 1 4.39520- 3 1.38746- 3 3.00000+ 1 3.20000+ 1 1.71069- 3 1.50274- 3 3.00000+ 1 3.30000+ 1 5.65150- 3 1.51734- 3 3.00000+ 1 3.50000+ 1 8.19039- 3 1.64434- 3 3.00000+ 1 3.60000+ 1 1.00061- 2 1.64645- 3 3.00000+ 1 4.10000+ 1 5.16015- 3 1.59178- 3 3.00000+ 1 4.30000+ 1 1.49674- 3 1.61536- 3 3.00000+ 1 4.40000+ 1 1.02820- 3 1.63086- 3 3.00000+ 1 5.80000+ 1 3.64948- 4 1.65078- 3 3.20000+ 1 3.20000+ 1 1.12997- 3 1.61802- 3 3.20000+ 1 3.30000+ 1 4.10381- 3 1.63262- 3 3.20000+ 1 3.50000+ 1 6.79023- 4 1.75962- 3 3.20000+ 1 3.60000+ 1 4.87760- 4 1.76173- 3 3.20000+ 1 4.10000+ 1 5.31435- 3 1.70706- 3 3.20000+ 1 4.30000+ 1 4.89513- 4 1.73064- 3 3.20000+ 1 4.40000+ 1 1.38604- 4 1.74614- 3 3.20000+ 1 5.80000+ 1 3.71957- 4 1.76606- 3 3.30000+ 1 3.30000+ 1 2.37389- 3 1.64722- 3 3.30000+ 1 3.50000+ 1 5.28127- 4 1.77422- 3 3.30000+ 1 3.60000+ 1 9.82577- 4 1.77633- 3 3.30000+ 1 4.10000+ 1 7.21302- 3 1.72166- 3 3.30000+ 1 4.30000+ 1 2.77231- 4 1.74524- 3 3.30000+ 1 4.40000+ 1 5.94813- 4 1.76074- 3 3.30000+ 1 5.80000+ 1 5.05327- 4 1.78066- 3 3.50000+ 1 3.50000+ 1 1.17551- 4 1.90122- 3 3.50000+ 1 3.60000+ 1 2.15807- 4 1.90333- 3 3.50000+ 1 4.10000+ 1 3.10728- 3 1.84866- 3 3.50000+ 1 4.30000+ 1 1.59671- 4 1.87224- 3 3.50000+ 1 4.40000+ 1 8.70282- 4 1.88774- 3 3.50000+ 1 5.80000+ 1 2.15807- 4 1.90766- 3 3.60000+ 1 3.60000+ 1 1.82473- 4 1.90544- 3 3.60000+ 1 4.10000+ 1 3.79160- 3 1.85077- 3 3.60000+ 1 4.30000+ 1 7.72025- 5 1.87435- 3 3.60000+ 1 4.40000+ 1 1.04743- 3 1.88985- 3 3.60000+ 1 5.80000+ 1 2.63182- 4 1.90977- 3 4.10000+ 1 4.10000+ 1 4.21093- 4 1.79610- 3 4.10000+ 1 4.30000+ 1 5.38654- 4 1.81968- 3 4.10000+ 1 4.40000+ 1 6.77242- 4 1.83518- 3 4.10000+ 1 5.80000+ 1 6.14093- 5 1.85510- 3 4.30000+ 1 4.30000+ 1 3.33370- 5 1.84326- 3 4.30000+ 1 4.40000+ 1 1.43877- 4 1.85876- 3 4.30000+ 1 5.80000+ 1 3.68461- 5 1.87868- 3 4.40000+ 1 4.40000+ 1 5.61465- 5 1.87426- 3 4.40000+ 1 5.80000+ 1 4.73734- 5 1.89418- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.17670- 3 6.77200- 4 2.70000+ 1 2.54461- 4 1.29289- 3 3.20000+ 1 5.34681- 5 1.58511- 3 4.10000+ 1 5.21841- 5 1.67415- 3 5.80000+ 1 4.16661- 6 1.73315- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.80000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 1.90000+ 1 2.90000+ 1 1.01707- 2 1.13400- 5 1.90000+ 1 3.00000+ 1 8.69659- 3 1.10230- 4 1.90000+ 1 3.20000+ 1 5.38528- 3 2.25510- 4 1.90000+ 1 3.30000+ 1 7.50881- 3 2.40110- 4 1.90000+ 1 3.50000+ 1 2.18323- 3 3.67110- 4 1.90000+ 1 3.60000+ 1 3.12613- 3 3.69220- 4 1.90000+ 1 4.10000+ 1 1.19725- 3 3.14550- 4 1.90000+ 1 4.30000+ 1 1.43112- 3 3.38130- 4 1.90000+ 1 4.40000+ 1 9.51937- 4 3.53630- 4 1.90000+ 1 5.80000+ 1 8.70297- 5 3.73550- 4 2.10000+ 1 2.40000+ 1 4.60990- 2 7.66800- 5 2.10000+ 1 2.50000+ 1 1.50386- 1 9.55800- 5 2.10000+ 1 2.70000+ 1 2.06409- 2 2.31090- 4 2.10000+ 1 2.90000+ 1 1.73729- 2 3.09140- 4 2.10000+ 1 3.00000+ 1 1.78513- 2 4.08030- 4 2.10000+ 1 3.20000+ 1 9.47653- 3 5.23310- 4 2.10000+ 1 3.30000+ 1 1.28423- 2 5.37910- 4 2.10000+ 1 3.50000+ 1 2.72010- 3 6.64910- 4 2.10000+ 1 3.60000+ 1 5.04923- 3 6.67020- 4 2.10000+ 1 4.10000+ 1 3.96410- 3 6.12350- 4 2.10000+ 1 4.30000+ 1 2.62500- 3 6.35930- 4 2.10000+ 1 4.40000+ 1 2.37797- 3 6.51430- 4 2.10000+ 1 5.80000+ 1 2.95809- 4 6.71350- 4 2.20000+ 1 2.40000+ 1 3.50738- 2 1.44120- 4 2.20000+ 1 2.50000+ 1 8.50935- 3 1.63020- 4 2.20000+ 1 2.70000+ 1 3.19040- 3 2.98530- 4 2.20000+ 1 2.90000+ 1 1.42973- 2 3.76580- 4 2.20000+ 1 3.00000+ 1 2.42346- 3 4.75470- 4 2.20000+ 1 3.20000+ 1 1.21429- 3 5.90750- 4 2.20000+ 1 3.30000+ 1 1.40114- 3 6.05350- 4 2.20000+ 1 3.50000+ 1 5.96633- 4 7.32350- 4 2.20000+ 1 3.60000+ 1 4.17774- 4 7.34460- 4 2.20000+ 1 4.10000+ 1 4.66669- 4 6.79790- 4 2.20000+ 1 4.30000+ 1 1.45847- 3 7.03370- 4 2.20000+ 1 4.40000+ 1 2.43088- 4 7.18870- 4 2.20000+ 1 5.80000+ 1 3.37598- 5 7.38790- 4 2.40000+ 1 2.40000+ 1 1.30155- 3 5.37960- 4 2.40000+ 1 2.50000+ 1 6.28179- 3 5.56860- 4 2.40000+ 1 2.70000+ 1 3.46317- 3 6.92370- 4 2.40000+ 1 2.90000+ 1 1.26244- 2 7.70420- 4 2.40000+ 1 3.00000+ 1 1.16489- 3 8.69310- 4 2.40000+ 1 3.20000+ 1 4.11546- 3 9.84590- 4 2.40000+ 1 3.30000+ 1 3.83891- 3 9.99190- 4 2.40000+ 1 3.50000+ 1 7.62577- 4 1.12619- 3 2.40000+ 1 3.60000+ 1 5.44523- 4 1.12830- 3 2.40000+ 1 4.10000+ 1 6.67280- 4 1.07363- 3 2.40000+ 1 4.30000+ 1 1.32301- 3 1.09721- 3 2.40000+ 1 4.40000+ 1 1.35759- 4 1.11271- 3 2.40000+ 1 5.80000+ 1 4.97662- 5 1.13263- 3 2.50000+ 1 2.50000+ 1 3.54983- 4 5.75760- 4 2.50000+ 1 2.70000+ 1 1.83512- 3 7.11270- 4 2.50000+ 1 2.90000+ 1 1.90359- 2 7.89320- 4 2.50000+ 1 3.00000+ 1 9.76405- 4 8.88210- 4 2.50000+ 1 3.20000+ 1 9.00757- 3 1.00349- 3 2.50000+ 1 3.30000+ 1 8.80420- 4 1.01809- 3 2.50000+ 1 3.50000+ 1 1.41973- 4 1.14509- 3 2.50000+ 1 3.60000+ 1 9.67415- 5 1.14720- 3 2.50000+ 1 4.10000+ 1 2.56395- 4 1.09253- 3 2.50000+ 1 4.30000+ 1 1.89676- 3 1.11611- 3 2.50000+ 1 4.40000+ 1 1.08526- 4 1.13161- 3 2.50000+ 1 5.80000+ 1 1.83138- 5 1.15153- 3 2.70000+ 1 2.70000+ 1 3.04711- 3 8.46780- 4 2.70000+ 1 2.90000+ 1 3.87554- 2 9.24830- 4 2.70000+ 1 3.00000+ 1 7.25373- 3 1.02372- 3 2.70000+ 1 3.20000+ 1 1.02268- 2 1.13900- 3 2.70000+ 1 3.30000+ 1 6.58604- 3 1.15360- 3 2.70000+ 1 3.50000+ 1 1.07191- 3 1.28060- 3 2.70000+ 1 3.60000+ 1 2.21083- 3 1.28271- 3 2.70000+ 1 4.10000+ 1 8.87084- 4 1.22804- 3 2.70000+ 1 4.30000+ 1 3.85331- 3 1.25162- 3 2.70000+ 1 4.40000+ 1 8.66291- 4 1.26712- 3 2.70000+ 1 5.80000+ 1 6.46832- 5 1.28704- 3 2.90000+ 1 2.90000+ 1 2.70092- 2 1.00288- 3 2.90000+ 1 3.00000+ 1 6.75757- 2 1.10177- 3 2.90000+ 1 3.20000+ 1 5.71750- 2 1.21705- 3 2.90000+ 1 3.30000+ 1 9.42770- 2 1.23165- 3 2.90000+ 1 3.50000+ 1 3.87295- 2 1.35865- 3 2.90000+ 1 3.60000+ 1 5.14545- 2 1.36076- 3 2.90000+ 1 4.10000+ 1 7.66025- 3 1.30609- 3 2.90000+ 1 4.30000+ 1 7.19123- 3 1.32967- 3 2.90000+ 1 4.40000+ 1 9.08553- 3 1.34517- 3 2.90000+ 1 5.80000+ 1 5.72905- 4 1.36509- 3 3.00000+ 1 3.00000+ 1 1.79496- 3 1.20066- 3 3.00000+ 1 3.20000+ 1 9.25611- 3 1.31594- 3 3.00000+ 1 3.30000+ 1 4.41466- 3 1.33054- 3 3.00000+ 1 3.50000+ 1 1.06723- 3 1.45754- 3 3.00000+ 1 3.60000+ 1 1.70945- 3 1.45965- 3 3.00000+ 1 4.10000+ 1 9.74864- 4 1.40498- 3 3.00000+ 1 4.30000+ 1 6.86559- 3 1.42856- 3 3.00000+ 1 4.40000+ 1 4.08886- 4 1.44406- 3 3.00000+ 1 5.80000+ 1 6.93029- 5 1.46398- 3 3.20000+ 1 3.20000+ 1 3.47435- 3 1.43122- 3 3.20000+ 1 3.30000+ 1 4.89052- 3 1.44582- 3 3.20000+ 1 3.50000+ 1 7.24216- 3 1.57282- 3 3.20000+ 1 3.60000+ 1 1.17166- 2 1.57493- 3 3.20000+ 1 4.10000+ 1 1.80195- 3 1.52026- 3 3.20000+ 1 4.30000+ 1 5.97163- 3 1.54384- 3 3.20000+ 1 4.40000+ 1 1.20587- 3 1.55934- 3 3.20000+ 1 5.80000+ 1 1.33983- 4 1.57926- 3 3.30000+ 1 3.30000+ 1 8.29341- 4 1.46042- 3 3.30000+ 1 3.50000+ 1 1.58936- 3 1.58742- 3 3.30000+ 1 3.60000+ 1 9.51807- 4 1.58953- 3 3.30000+ 1 4.10000+ 1 7.90078- 4 1.53486- 3 3.30000+ 1 4.30000+ 1 9.69379- 3 1.55844- 3 3.30000+ 1 4.40000+ 1 4.78205- 4 1.57394- 3 3.30000+ 1 5.80000+ 1 5.54438- 5 1.59386- 3 3.50000+ 1 3.50000+ 1 2.72603- 4 1.71442- 3 3.50000+ 1 3.60000+ 1 4.08891- 4 1.71653- 3 3.50000+ 1 4.10000+ 1 1.87123- 4 1.66186- 3 3.50000+ 1 4.30000+ 1 3.79090- 3 1.68544- 3 3.50000+ 1 4.40000+ 1 1.20129- 4 1.70094- 3 3.50000+ 1 5.80000+ 1 1.38603- 5 1.72086- 3 3.60000+ 1 3.60000+ 1 1.03955- 4 1.71864- 3 3.60000+ 1 4.10000+ 1 3.00318- 4 1.66397- 3 3.60000+ 1 4.30000+ 1 5.06378- 3 1.68755- 3 3.60000+ 1 4.40000+ 1 1.75563- 4 1.70305- 3 3.60000+ 1 5.80000+ 1 2.07913- 5 1.72297- 3 4.10000+ 1 4.10000+ 1 6.46830- 5 1.60930- 3 4.10000+ 1 4.30000+ 1 7.66957- 4 1.63288- 3 4.10000+ 1 4.40000+ 1 1.15502- 4 1.64838- 3 4.10000+ 1 5.80000+ 1 9.24007- 6 1.66830- 3 4.30000+ 1 4.30000+ 1 4.43547- 4 1.65646- 3 4.30000+ 1 4.40000+ 1 9.24004- 4 1.67196- 3 4.30000+ 1 5.80000+ 1 5.77524- 5 1.69188- 3 4.40000+ 1 4.40000+ 1 2.31000- 5 1.68746- 3 4.40000+ 1 5.80000+ 1 9.24002- 6 1.70738- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 1.04710- 5 2.97800- 4 2.20000+ 1 1.82660- 4 3.65240- 4 2.70000+ 1 3.54901- 4 9.13490- 4 3.20000+ 1 4.34611- 5 1.20571- 3 3.30000+ 1 2.48060- 4 1.22031- 3 4.10000+ 1 6.90381- 5 1.29475- 3 5.80000+ 1 5.48191- 6 1.35375- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 1.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.10000+ 1 3.00000+ 1 4.57514- 2 2.86300- 5 2.10000+ 1 3.20000+ 1 1.78025- 2 1.43910- 4 2.10000+ 1 3.30000+ 1 2.58612- 2 1.58510- 4 2.10000+ 1 3.50000+ 1 5.18092- 3 2.85510- 4 2.10000+ 1 3.60000+ 1 4.73594- 3 2.87620- 4 2.10000+ 1 4.10000+ 1 3.78458- 3 2.32950- 4 2.10000+ 1 4.30000+ 1 2.74912- 3 2.56530- 4 2.10000+ 1 4.40000+ 1 5.17762- 3 2.72030- 4 2.10000+ 1 5.80000+ 1 2.76862- 4 2.91950- 4 2.20000+ 1 2.90000+ 1 1.36400- 1 0.00000+ 0 2.20000+ 1 3.00000+ 1 1.22070- 1 9.60700- 5 2.20000+ 1 3.20000+ 1 1.11740- 1 2.11350- 4 2.20000+ 1 3.30000+ 1 1.32400- 1 2.25950- 4 2.20000+ 1 3.50000+ 1 1.50930- 2 3.52950- 4 2.20000+ 1 3.60000+ 1 1.82290- 2 3.55060- 4 2.20000+ 1 4.10000+ 1 2.15790- 2 3.00390- 4 2.20000+ 1 4.30000+ 1 1.92630- 2 3.23970- 4 2.20000+ 1 4.40000+ 1 1.52410- 2 3.39470- 4 2.20000+ 1 5.80000+ 1 1.60480- 3 3.59390- 4 2.40000+ 1 2.40000+ 1 1.08890- 3 1.58560- 4 2.40000+ 1 2.50000+ 1 1.70779- 3 1.77460- 4 2.40000+ 1 2.70000+ 1 1.04360- 2 3.12970- 4 2.40000+ 1 2.90000+ 1 4.95256- 3 3.91020- 4 2.40000+ 1 3.00000+ 1 5.03846- 2 4.89910- 4 2.40000+ 1 3.20000+ 1 2.08639- 3 6.05190- 4 2.40000+ 1 3.30000+ 1 7.15016- 3 6.19790- 4 2.40000+ 1 3.50000+ 1 1.18120- 3 7.46790- 4 2.40000+ 1 3.60000+ 1 1.21630- 3 7.48900- 4 2.40000+ 1 4.10000+ 1 1.17820- 3 6.94230- 4 2.40000+ 1 4.30000+ 1 6.65096- 4 7.17810- 4 2.40000+ 1 4.40000+ 1 4.48067- 3 7.33310- 4 2.40000+ 1 5.80000+ 1 8.22581- 5 7.53230- 4 2.50000+ 1 2.50000+ 1 3.12393- 3 1.96360- 4 2.50000+ 1 2.70000+ 1 2.46633- 2 3.31870- 4 2.50000+ 1 2.90000+ 1 1.79952- 2 4.09920- 4 2.50000+ 1 3.00000+ 1 6.09746- 2 5.08810- 4 2.50000+ 1 3.20000+ 1 1.52232- 3 6.24090- 4 2.50000+ 1 3.30000+ 1 1.04371- 2 6.38690- 4 2.50000+ 1 3.50000+ 1 5.02485- 3 7.65690- 4 2.50000+ 1 3.60000+ 1 5.93906- 3 7.67800- 4 2.50000+ 1 4.10000+ 1 3.41734- 3 7.13130- 4 2.50000+ 1 4.30000+ 1 2.56023- 3 7.36710- 4 2.50000+ 1 4.40000+ 1 5.47685- 3 7.52210- 4 2.50000+ 1 5.80000+ 1 2.45273- 4 7.72130- 4 2.70000+ 1 2.70000+ 1 1.13361- 4 4.67380- 4 2.70000+ 1 2.90000+ 1 3.19771- 4 5.45430- 4 2.70000+ 1 3.00000+ 1 4.91602- 3 6.44320- 4 2.70000+ 1 3.20000+ 1 4.48921- 4 7.59600- 4 2.70000+ 1 3.30000+ 1 7.25793- 4 7.74200- 4 2.70000+ 1 3.50000+ 1 3.51872- 4 9.01200- 4 2.70000+ 1 3.60000+ 1 3.68662- 4 9.03310- 4 2.70000+ 1 4.10000+ 1 3.96242- 5 8.48640- 4 2.70000+ 1 4.30000+ 1 3.51112- 5 8.72220- 4 2.70000+ 1 4.40000+ 1 4.20072- 4 8.87720- 4 2.70000+ 1 5.80000+ 1 3.00952- 6 9.07640- 4 2.90000+ 1 2.90000+ 1 1.75550- 5 6.23480- 4 2.90000+ 1 3.00000+ 1 5.73627- 3 7.22370- 4 2.90000+ 1 3.20000+ 1 2.67839- 4 8.37650- 4 2.90000+ 1 3.30000+ 1 6.89416- 4 8.52250- 4 2.90000+ 1 3.50000+ 1 2.75879- 4 9.79250- 4 2.90000+ 1 3.60000+ 1 6.56566- 4 9.81360- 4 2.90000+ 1 4.10000+ 1 5.26647- 5 9.26690- 4 2.90000+ 1 4.30000+ 1 1.12860- 5 9.50270- 4 2.90000+ 1 4.40000+ 1 5.02827- 4 9.65770- 4 2.90000+ 1 5.80000+ 1 4.01258- 6 9.85690- 4 3.00000+ 1 3.00000+ 1 7.01258- 3 8.21260- 4 3.00000+ 1 3.20000+ 1 8.75022- 3 9.36540- 4 3.00000+ 1 3.30000+ 1 1.15090- 2 9.51140- 4 3.00000+ 1 3.50000+ 1 5.54948- 3 1.07814- 3 3.00000+ 1 3.60000+ 1 6.54088- 3 1.08025- 3 3.00000+ 1 4.10000+ 1 9.78061- 4 1.02558- 3 3.00000+ 1 4.30000+ 1 9.05602- 4 1.04916- 3 3.00000+ 1 4.40000+ 1 1.56300- 3 1.06466- 3 3.00000+ 1 5.80000+ 1 7.32308- 5 1.08458- 3 3.20000+ 1 3.20000+ 1 1.70281- 4 1.05182- 3 3.20000+ 1 3.30000+ 1 1.02001- 3 1.06642- 3 3.20000+ 1 3.50000+ 1 1.22891- 4 1.19342- 3 3.20000+ 1 3.60000+ 1 2.65092- 4 1.19553- 3 3.20000+ 1 4.10000+ 1 5.96882- 5 1.14086- 3 3.20000+ 1 4.30000+ 1 4.43902- 5 1.16444- 3 3.20000+ 1 4.40000+ 1 7.76192- 4 1.17994- 3 3.20000+ 1 5.80000+ 1 4.26342- 6 1.19986- 3 3.30000+ 1 3.30000+ 1 9.68743- 4 1.08102- 3 3.30000+ 1 3.50000+ 1 4.24336- 4 1.20802- 3 3.30000+ 1 3.60000+ 1 5.72043- 4 1.21013- 3 3.30000+ 1 4.10000+ 1 1.38939- 4 1.15546- 3 3.30000+ 1 4.30000+ 1 1.17869- 4 1.17904- 3 3.30000+ 1 4.40000+ 1 1.03269- 3 1.19454- 3 3.30000+ 1 5.80000+ 1 1.02829- 5 1.21446- 3 3.50000+ 1 3.50000+ 1 1.73040- 5 1.33502- 3 3.50000+ 1 3.60000+ 1 8.75240- 5 1.33713- 3 3.50000+ 1 4.10000+ 1 4.33868- 5 1.28246- 3 3.50000+ 1 4.30000+ 1 1.27900- 5 1.30604- 3 3.50000+ 1 4.40000+ 1 4.73987- 4 1.32154- 3 3.50000+ 1 5.80000+ 1 3.00949- 6 1.34146- 3 3.60000+ 1 3.60000+ 1 5.51735- 5 1.33924- 3 3.60000+ 1 4.10000+ 1 4.71485- 5 1.28457- 3 3.60000+ 1 4.30000+ 1 3.28537- 5 1.30815- 3 3.60000+ 1 4.40000+ 1 5.55505- 4 1.32365- 3 3.60000+ 1 5.80000+ 1 3.26027- 6 1.34357- 3 4.10000+ 1 4.10000+ 1 1.00320- 6 1.22990- 3 4.10000+ 1 4.30000+ 1 3.51108- 6 1.25348- 3 4.10000+ 1 4.40000+ 1 8.35121- 5 1.26898- 3 4.10000+ 1 5.80000+ 1 2.50789- 7 1.28890- 3 4.30000+ 1 4.30000+ 1 2.50790- 7 1.27706- 3 4.30000+ 1 4.40000+ 1 7.89985- 5 1.29256- 3 4.30000+ 1 5.80000+ 1 2.50790- 7 1.31248- 3 4.40000+ 1 4.40000+ 1 8.22584- 5 1.30806- 3 4.40000+ 1 5.80000+ 1 6.26978- 6 1.32798- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 4.82741- 4 4.61280- 4 2.90000+ 1 2.38750- 4 6.93740- 4 3.00000+ 1 2.41610- 5 7.92630- 4 3.50000+ 1 2.10050- 4 1.04951- 3 4.30000+ 1 3.85761- 5 1.02053- 3 4.40000+ 1 3.39441- 6 1.03603- 3 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.10000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.20000+ 1 3.50000+ 1 5.42716- 3 5.51500- 5 2.20000+ 1 3.60000+ 1 6.83083- 3 5.72600- 5 2.20000+ 1 4.10000+ 1 2.56886- 3 2.59000- 6 2.20000+ 1 4.30000+ 1 1.19983- 3 2.61700- 5 2.20000+ 1 4.40000+ 1 2.44976- 3 4.16700- 5 2.20000+ 1 5.80000+ 1 1.48593- 4 6.15900- 5 2.40000+ 1 2.70000+ 1 1.18851- 1 1.51700- 5 2.40000+ 1 2.90000+ 1 1.11381- 1 9.32200- 5 2.40000+ 1 3.00000+ 1 1.19061- 1 1.92110- 4 2.40000+ 1 3.20000+ 1 1.24041- 1 3.07390- 4 2.40000+ 1 3.30000+ 1 1.27681- 1 3.21990- 4 2.40000+ 1 3.50000+ 1 1.07451- 2 4.48990- 4 2.40000+ 1 3.60000+ 1 9.26045- 3 4.51100- 4 2.40000+ 1 4.10000+ 1 2.36242- 2 3.96430- 4 2.40000+ 1 4.30000+ 1 1.79522- 2 4.20010- 4 2.40000+ 1 4.40000+ 1 1.55992- 2 4.35510- 4 2.40000+ 1 5.80000+ 1 1.75572- 3 4.55430- 4 2.50000+ 1 2.70000+ 1 7.72665- 3 3.40700- 5 2.50000+ 1 2.90000+ 1 1.81033- 2 1.12120- 4 2.50000+ 1 3.00000+ 1 7.86907- 3 2.11010- 4 2.50000+ 1 3.20000+ 1 1.30941- 1 3.26290- 4 2.50000+ 1 3.30000+ 1 5.37309- 3 3.40890- 4 2.50000+ 1 3.50000+ 1 2.33823- 3 4.67890- 4 2.50000+ 1 3.60000+ 1 9.40119- 4 4.70000- 4 2.50000+ 1 4.10000+ 1 1.12731- 3 4.15330- 4 2.50000+ 1 4.30000+ 1 1.79193- 3 4.38910- 4 2.50000+ 1 4.40000+ 1 7.57215- 4 4.54410- 4 2.50000+ 1 5.80000+ 1 8.19888- 5 4.74330- 4 2.70000+ 1 2.70000+ 1 8.65213- 4 1.69580- 4 2.70000+ 1 2.90000+ 1 2.19751- 3 2.47630- 4 2.70000+ 1 3.00000+ 1 1.42451- 3 3.46520- 4 2.70000+ 1 3.20000+ 1 1.16921- 2 4.61800- 4 2.70000+ 1 3.30000+ 1 1.43841- 3 4.76400- 4 2.70000+ 1 3.50000+ 1 2.63582- 3 6.03400- 4 2.70000+ 1 3.60000+ 1 2.20301- 3 6.05510- 4 2.70000+ 1 4.10000+ 1 1.98261- 4 5.50840- 4 2.70000+ 1 4.30000+ 1 2.23101- 4 5.74420- 4 2.70000+ 1 4.40000+ 1 1.52941- 4 5.89920- 4 2.70000+ 1 5.80000+ 1 1.41901- 5 6.09840- 4 2.90000+ 1 2.90000+ 1 6.50004- 4 3.25680- 4 2.90000+ 1 3.00000+ 1 1.81946- 3 4.24570- 4 2.90000+ 1 3.20000+ 1 8.84125- 3 5.39850- 4 2.90000+ 1 3.30000+ 1 8.74304- 4 5.54450- 4 2.90000+ 1 3.50000+ 1 3.37420- 4 6.81450- 4 2.90000+ 1 3.60000+ 1 3.23230- 4 6.83560- 4 2.90000+ 1 4.10000+ 1 1.78556- 4 6.28890- 4 2.90000+ 1 4.30000+ 1 1.40324- 4 6.52470- 4 2.90000+ 1 4.40000+ 1 1.45854- 4 6.67970- 4 2.90000+ 1 5.80000+ 1 1.26144- 5 6.87890- 4 3.00000+ 1 3.00000+ 1 5.79456- 4 5.23460- 4 3.00000+ 1 3.20000+ 1 1.74604- 2 6.38740- 4 3.00000+ 1 3.30000+ 1 1.45693- 3 6.53340- 4 3.00000+ 1 3.50000+ 1 9.23576- 4 7.80340- 4 3.00000+ 1 3.60000+ 1 5.40033- 4 7.82450- 4 3.00000+ 1 4.10000+ 1 6.74050- 5 7.27780- 4 3.00000+ 1 4.30000+ 1 1.24962- 4 7.51360- 4 3.00000+ 1 4.40000+ 1 9.89408- 5 7.66860- 4 3.00000+ 1 5.80000+ 1 4.33599- 6 7.86780- 4 3.20000+ 1 3.20000+ 1 1.16621- 2 7.54020- 4 3.20000+ 1 3.30000+ 1 2.24532- 2 7.68620- 4 3.20000+ 1 3.50000+ 1 9.69877- 3 8.95620- 4 3.20000+ 1 3.60000+ 1 1.30331- 2 8.97730- 4 3.20000+ 1 4.10000+ 1 1.88332- 3 8.43060- 4 3.20000+ 1 4.30000+ 1 1.43441- 3 8.66640- 4 3.20000+ 1 4.40000+ 1 2.23922- 3 8.82140- 4 3.20000+ 1 5.80000+ 1 1.39931- 4 9.02060- 4 3.30000+ 1 3.30000+ 1 3.74079- 4 7.83220- 4 3.30000+ 1 3.50000+ 1 1.06932- 3 9.10220- 4 3.30000+ 1 3.60000+ 1 3.69748- 4 9.12330- 4 3.30000+ 1 4.10000+ 1 7.21362- 5 8.57660- 4 3.30000+ 1 4.30000+ 1 7.41062- 5 8.81240- 4 3.30000+ 1 4.40000+ 1 1.22592- 4 8.96740- 4 3.30000+ 1 5.80000+ 1 5.51854- 6 9.16660- 4 3.50000+ 1 3.50000+ 1 2.12063- 4 1.03722- 3 3.50000+ 1 3.60000+ 1 3.37814- 4 1.03933- 3 3.50000+ 1 4.10000+ 1 1.34411- 4 9.84660- 4 3.50000+ 1 4.30000+ 1 5.43969- 5 1.00824- 3 3.50000+ 1 4.40000+ 1 9.46039- 5 1.02374- 3 3.50000+ 1 5.80000+ 1 8.67208- 6 1.04366- 3 3.60000+ 1 3.60000+ 1 4.57237- 5 1.04144- 3 3.60000+ 1 4.10000+ 1 9.02682- 5 9.86770- 4 3.60000+ 1 4.30000+ 1 4.76959- 5 1.01035- 3 3.60000+ 1 4.40000+ 1 4.84839- 5 1.02585- 3 3.60000+ 1 5.80000+ 1 5.51851- 6 1.04577- 3 4.10000+ 1 4.10000+ 1 5.12446- 6 9.32100- 4 4.10000+ 1 4.30000+ 1 1.06433- 5 9.55680- 4 4.10000+ 1 4.40000+ 1 6.30692- 6 9.71180- 4 4.10000+ 1 5.80000+ 1 7.88360- 7 9.91100- 4 4.30000+ 1 4.30000+ 1 2.75917- 6 9.79260- 4 4.30000+ 1 4.40000+ 1 9.46049- 6 9.94760- 4 4.30000+ 1 5.80000+ 1 7.88356- 7 1.01468- 3 4.40000+ 1 4.40000+ 1 4.33593- 6 1.01026- 3 4.40000+ 1 5.80000+ 1 3.94173- 7 1.03018- 3 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 1.51720- 5 3.93840- 4 2.50000+ 1 3.60010- 4 4.12740- 4 3.00000+ 1 1.72610- 4 7.25190- 4 3.50000+ 1 1.30630- 5 9.82070- 4 3.60000+ 1 2.16380- 4 9.84180- 4 4.40000+ 1 2.41680- 5 9.68590- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.20000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.40000+ 1 2.90000+ 1 8.80741- 3 2.57800- 5 2.40000+ 1 3.00000+ 1 1.63208- 2 1.24670- 4 2.40000+ 1 3.20000+ 1 8.33222- 3 2.39950- 4 2.40000+ 1 3.30000+ 1 1.11769- 1 2.54550- 4 2.40000+ 1 3.50000+ 1 1.96308- 3 3.81550- 4 2.40000+ 1 3.60000+ 1 1.70018- 3 3.83660- 4 2.40000+ 1 4.10000+ 1 2.19068- 3 3.28990- 4 2.40000+ 1 4.30000+ 1 1.47919- 3 3.52570- 4 2.40000+ 1 4.40000+ 1 1.76648- 3 3.68070- 4 2.40000+ 1 5.80000+ 1 1.61138- 4 3.87990- 4 2.50000+ 1 2.90000+ 1 1.42320- 1 4.46800- 5 2.50000+ 1 3.00000+ 1 1.20650- 1 1.43570- 4 2.50000+ 1 3.20000+ 1 1.23890- 1 2.58850- 4 2.50000+ 1 3.30000+ 1 2.16250- 1 2.73450- 4 2.50000+ 1 3.50000+ 1 1.08900- 2 4.00450- 4 2.50000+ 1 3.60000+ 1 1.70490- 2 4.02560- 4 2.50000+ 1 4.10000+ 1 2.59249- 2 3.47890- 4 2.50000+ 1 4.30000+ 1 2.22320- 2 3.71470- 4 2.50000+ 1 4.40000+ 1 1.59410- 2 3.86970- 4 2.50000+ 1 5.80000+ 1 1.92380- 3 4.06890- 4 2.70000+ 1 2.70000+ 1 1.72259- 3 1.02140- 4 2.70000+ 1 2.90000+ 1 2.55187- 3 1.80190- 4 2.70000+ 1 3.00000+ 1 3.16012- 3 2.79080- 4 2.70000+ 1 3.20000+ 1 2.64447- 3 3.94360- 4 2.70000+ 1 3.30000+ 1 1.41749- 2 4.08960- 4 2.70000+ 1 3.50000+ 1 2.74986- 3 5.35960- 4 2.70000+ 1 3.60000+ 1 4.20248- 3 5.38070- 4 2.70000+ 1 4.10000+ 1 3.80549- 4 4.83400- 4 2.70000+ 1 4.30000+ 1 2.85095- 4 5.06980- 4 2.70000+ 1 4.40000+ 1 3.33850- 4 5.22480- 4 2.70000+ 1 5.80000+ 1 2.72706- 5 5.42400- 4 2.90000+ 1 2.90000+ 1 3.84674- 4 2.58240- 4 2.90000+ 1 3.00000+ 1 3.56414- 3 3.57130- 4 2.90000+ 1 3.20000+ 1 6.30535- 4 4.72410- 4 2.90000+ 1 3.30000+ 1 1.37911- 2 4.87010- 4 2.90000+ 1 3.50000+ 1 3.82604- 4 6.14010- 4 2.90000+ 1 3.60000+ 1 7.40864- 4 6.16120- 4 2.90000+ 1 4.10000+ 1 1.72711- 4 5.61450- 4 2.90000+ 1 4.30000+ 1 8.67693- 5 5.85030- 4 2.90000+ 1 4.40000+ 1 2.65680- 4 6.00530- 4 2.90000+ 1 5.80000+ 1 1.19821- 5 6.20450- 4 3.00000+ 1 3.00000+ 1 1.14832- 3 4.56020- 4 3.00000+ 1 3.20000+ 1 2.46064- 3 5.71300- 4 3.00000+ 1 3.30000+ 1 1.74313- 2 5.85900- 4 3.00000+ 1 3.50000+ 1 7.74746- 4 7.12900- 4 3.00000+ 1 3.60000+ 1 9.86305- 4 7.15010- 4 3.00000+ 1 4.10000+ 1 9.37955- 5 6.60340- 4 3.00000+ 1 4.30000+ 1 1.36773- 4 6.83920- 4 3.00000+ 1 4.40000+ 1 1.98334- 4 6.99420- 4 3.00000+ 1 5.80000+ 1 5.78483- 6 7.19340- 4 3.20000+ 1 3.20000+ 1 1.43792- 4 6.86580- 4 3.20000+ 1 3.30000+ 1 1.77592- 2 7.01180- 4 3.20000+ 1 3.50000+ 1 2.73532- 4 8.28180- 4 3.20000+ 1 3.60000+ 1 1.02601- 3 8.30290- 4 3.20000+ 1 4.10000+ 1 7.10692- 5 7.75620- 4 3.20000+ 1 4.30000+ 1 5.04099- 5 7.99200- 4 3.20000+ 1 4.40000+ 1 2.18993- 4 8.14700- 4 3.20000+ 1 5.80000+ 1 4.95829- 6 8.34620- 4 3.30000+ 1 3.30000+ 1 1.95278- 2 7.15780- 4 3.30000+ 1 3.50000+ 1 1.16519- 2 8.42780- 4 3.30000+ 1 3.60000+ 1 1.36519- 2 8.44890- 4 3.30000+ 1 4.10000+ 1 2.05028- 3 7.90220- 4 3.30000+ 1 4.30000+ 1 1.93618- 3 8.13800- 4 3.30000+ 1 4.40000+ 1 2.27048- 3 8.29300- 4 3.30000+ 1 5.80000+ 1 1.52469- 4 8.49220- 4 3.50000+ 1 3.50000+ 1 5.12353- 5 9.69780- 4 3.50000+ 1 3.60000+ 1 3.51623- 4 9.71890- 4 3.50000+ 1 4.10000+ 1 1.13630- 4 9.17220- 4 3.50000+ 1 4.30000+ 1 3.84263- 5 9.40800- 4 3.50000+ 1 4.40000+ 1 6.23914- 5 9.56300- 4 3.50000+ 1 5.80000+ 1 7.02424- 6 9.76220- 4 3.60000+ 1 3.60000+ 1 3.04518- 4 9.74000- 4 3.60000+ 1 4.10000+ 1 1.88831- 4 9.19330- 4 3.60000+ 1 4.30000+ 1 5.99135- 5 9.42910- 4 3.60000+ 1 4.40000+ 1 9.54482- 5 9.58410- 4 3.60000+ 1 5.80000+ 1 1.15701- 5 9.78330- 4 4.10000+ 1 4.10000+ 1 1.11561- 5 8.64660- 4 4.10000+ 1 4.30000+ 1 1.44611- 5 8.88240- 4 4.10000+ 1 4.40000+ 1 1.07431- 5 9.03740- 4 4.10000+ 1 5.80000+ 1 1.65281- 6 9.23660- 4 4.30000+ 1 4.30000+ 1 2.89234- 6 9.11820- 4 4.30000+ 1 4.40000+ 1 1.19823- 5 9.27320- 4 4.30000+ 1 5.80000+ 1 8.26399- 7 9.47240- 4 4.40000+ 1 4.40000+ 1 9.50362- 6 9.42820- 4 4.40000+ 1 5.80000+ 1 8.26393- 7 9.62740- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 2.04641- 4 4.46630- 4 3.30000+ 1 1.24271- 5 4.61230- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.40000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.50000+ 1 3.50000+ 1 3.34298- 1 6.61000- 6 2.50000+ 1 3.60000+ 1 2.01169- 2 8.72000- 6 2.50000+ 1 5.80000+ 1 2.76878- 4 1.30500- 5 2.70000+ 1 3.30000+ 1 3.42473- 3 1.51200- 5 2.70000+ 1 3.50000+ 1 4.65885- 2 1.42120- 4 2.70000+ 1 3.60000+ 1 9.83949- 3 1.44230- 4 2.70000+ 1 4.10000+ 1 4.55784- 4 8.95600- 5 2.70000+ 1 4.30000+ 1 5.40975- 4 1.13140- 4 2.70000+ 1 4.40000+ 1 1.42701- 3 1.28640- 4 2.70000+ 1 5.80000+ 1 2.98173- 5 1.48560- 4 2.90000+ 1 3.20000+ 1 2.64709- 2 7.85700- 5 2.90000+ 1 3.30000+ 1 5.47808- 2 9.31700- 5 2.90000+ 1 3.50000+ 1 4.61848- 2 2.20170- 4 2.90000+ 1 3.60000+ 1 1.09649- 2 2.22280- 4 2.90000+ 1 4.10000+ 1 4.57267- 3 1.67610- 4 2.90000+ 1 4.30000+ 1 2.51529- 3 1.91190- 4 2.90000+ 1 4.40000+ 1 3.55248- 3 2.06690- 4 2.90000+ 1 5.80000+ 1 3.08819- 4 2.26610- 4 3.00000+ 1 3.00000+ 1 4.64738- 3 6.21800- 5 3.00000+ 1 3.20000+ 1 3.06185- 2 1.77460- 4 3.00000+ 1 3.30000+ 1 2.11724- 2 1.92060- 4 3.00000+ 1 3.50000+ 1 6.76111- 2 3.19060- 4 3.00000+ 1 3.60000+ 1 3.89536- 3 3.21170- 4 3.00000+ 1 4.10000+ 1 1.46742- 3 2.66500- 4 3.00000+ 1 4.30000+ 1 9.43486- 4 2.90080- 4 3.00000+ 1 4.40000+ 1 6.17650- 4 3.05580- 4 3.00000+ 1 5.80000+ 1 8.73195- 5 3.25500- 4 3.20000+ 1 3.20000+ 1 3.24161- 3 2.92740- 4 3.20000+ 1 3.30000+ 1 8.51034- 3 3.07340- 4 3.20000+ 1 3.50000+ 1 5.98413- 2 4.34340- 4 3.20000+ 1 3.60000+ 1 6.41503- 3 4.36450- 4 3.20000+ 1 4.10000+ 1 4.64303- 4 3.81780- 4 3.20000+ 1 4.30000+ 1 2.12551- 3 4.05360- 4 3.20000+ 1 4.40000+ 1 1.46110- 3 4.20860- 4 3.20000+ 1 5.80000+ 1 3.62061- 5 4.40780- 4 3.30000+ 1 3.30000+ 1 2.23844- 3 3.21940- 4 3.30000+ 1 3.50000+ 1 8.88935- 2 4.48940- 4 3.30000+ 1 3.60000+ 1 2.30874- 3 4.51050- 4 3.30000+ 1 4.10000+ 1 5.45239- 4 3.96380- 4 3.30000+ 1 4.30000+ 1 1.46962- 3 4.19960- 4 3.30000+ 1 4.40000+ 1 8.30614- 4 4.35460- 4 3.30000+ 1 5.80000+ 1 3.83366- 5 4.55380- 4 3.50000+ 1 3.50000+ 1 3.71254- 2 5.75940- 4 3.50000+ 1 3.60000+ 1 6.12897- 2 5.78050- 4 3.50000+ 1 4.10000+ 1 7.50758- 3 5.23380- 4 3.50000+ 1 4.30000+ 1 6.60877- 3 5.46960- 4 3.50000+ 1 4.40000+ 1 8.48540- 3 5.62460- 4 3.50000+ 1 5.80000+ 1 5.53756- 4 5.82380- 4 3.60000+ 1 3.60000+ 1 6.30436- 4 5.80160- 4 3.60000+ 1 4.10000+ 1 2.32156- 4 5.25490- 4 3.60000+ 1 4.30000+ 1 7.79521- 4 5.49070- 4 3.60000+ 1 4.40000+ 1 2.76887- 4 5.64570- 4 3.60000+ 1 5.80000+ 1 1.49083- 5 5.84490- 4 4.10000+ 1 4.10000+ 1 2.12983- 5 4.70820- 4 4.10000+ 1 4.30000+ 1 1.68252- 4 4.94400- 4 4.10000+ 1 4.40000+ 1 1.00101- 4 5.09900- 4 4.10000+ 1 5.80000+ 1 2.12983- 6 5.29820- 4 4.30000+ 1 4.30000+ 1 5.75060- 5 5.17980- 4 4.30000+ 1 4.40000+ 1 6.81553- 5 5.33480- 4 4.30000+ 1 5.80000+ 1 1.06493- 5 5.53400- 4 4.40000+ 1 4.40000+ 1 1.49078- 5 5.48980- 4 4.40000+ 1 5.80000+ 1 6.38932- 6 5.68900- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.30000+ 1 2.88821- 4 4.42330- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.50000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.70000+ 1 3.50000+ 1 1.25382- 2 1.23220- 4 2.70000+ 1 3.60000+ 1 7.27928- 2 1.25330- 4 2.70000+ 1 4.10000+ 1 6.76198- 4 7.06600- 5 2.70000+ 1 4.30000+ 1 1.98353- 3 9.42400- 5 2.70000+ 1 4.40000+ 1 1.38782- 3 1.09740- 4 2.70000+ 1 5.80000+ 1 4.18605- 5 1.29660- 4 2.90000+ 1 3.20000+ 1 3.08166- 3 5.96700- 5 2.90000+ 1 3.30000+ 1 6.55283- 3 7.42700- 5 2.90000+ 1 3.50000+ 1 8.17886- 4 2.01270- 4 2.90000+ 1 3.60000+ 1 6.27824- 2 2.03380- 4 2.90000+ 1 4.10000+ 1 1.86124- 3 1.48710- 4 2.90000+ 1 4.30000+ 1 4.18609- 4 1.72290- 4 2.90000+ 1 4.40000+ 1 4.57250- 4 1.87790- 4 2.90000+ 1 5.80000+ 1 1.09483- 4 2.07710- 4 3.00000+ 1 3.00000+ 1 2.87288- 2 4.32800- 5 3.00000+ 1 3.20000+ 1 7.37634- 2 1.58560- 4 3.00000+ 1 3.30000+ 1 1.40289- 1 1.73160- 4 3.00000+ 1 3.50000+ 1 1.70589- 2 3.00160- 4 3.00000+ 1 3.60000+ 1 1.13769- 1 3.02270- 4 3.00000+ 1 4.10000+ 1 4.50157- 3 2.47600- 4 3.00000+ 1 4.30000+ 1 1.53919- 3 2.71180- 4 3.00000+ 1 4.40000+ 1 3.09118- 3 2.86680- 4 3.00000+ 1 5.80000+ 1 2.89808- 4 3.06600- 4 3.20000+ 1 3.20000+ 1 1.17211- 3 2.73840- 4 3.20000+ 1 3.30000+ 1 1.36111- 2 2.88440- 4 3.20000+ 1 3.50000+ 1 2.17032- 3 4.15440- 4 3.20000+ 1 3.60000+ 1 9.64395- 2 4.17550- 4 3.20000+ 1 4.10000+ 1 6.98744- 4 3.62880- 4 3.20000+ 1 4.30000+ 1 6.72974- 4 3.86460- 4 3.20000+ 1 4.40000+ 1 1.77742- 3 4.01960- 4 3.20000+ 1 5.80000+ 1 4.83003- 5 4.21880- 4 3.30000+ 1 3.30000+ 1 8.28498- 3 3.03040- 4 3.30000+ 1 3.50000+ 1 9.30579- 3 4.30040- 4 3.30000+ 1 3.60000+ 1 1.26830- 1 4.32150- 4 3.30000+ 1 4.10000+ 1 8.62959- 4 3.77480- 4 3.30000+ 1 4.30000+ 1 1.04970- 3 4.01060- 4 3.30000+ 1 4.40000+ 1 3.71260- 3 4.16560- 4 3.30000+ 1 5.80000+ 1 6.43989- 5 4.36480- 4 3.50000+ 1 3.50000+ 1 6.76198- 4 5.57040- 4 3.50000+ 1 3.60000+ 1 7.38098- 2 5.59150- 4 3.50000+ 1 4.10000+ 1 3.34884- 4 5.04480- 4 3.50000+ 1 4.30000+ 1 8.05019- 5 5.28060- 4 3.50000+ 1 4.40000+ 1 1.11742- 3 5.43560- 4 3.50000+ 1 5.80000+ 1 2.25393- 5 5.63480- 4 3.60000+ 1 3.60000+ 1 7.31520- 2 5.61260- 4 3.60000+ 1 4.10000+ 1 1.12086- 2 5.06590- 4 3.60000+ 1 4.30000+ 1 9.41812- 3 5.30170- 4 3.60000+ 1 4.40000+ 1 1.33075- 2 5.45670- 4 3.60000+ 1 5.80000+ 1 8.24276- 4 5.65590- 4 4.10000+ 1 4.10000+ 1 2.89809- 5 4.51920- 4 4.10000+ 1 4.30000+ 1 1.22350- 4 4.75500- 4 4.10000+ 1 4.40000+ 1 2.18960- 4 4.91000- 4 4.10000+ 1 5.80000+ 1 3.22010- 6 5.10920- 4 4.30000+ 1 4.30000+ 1 1.28792- 5 4.99080- 4 4.30000+ 1 4.40000+ 1 6.11800- 5 5.14580- 4 4.30000+ 1 5.80000+ 1 9.66014- 6 5.34500- 4 4.40000+ 1 4.40000+ 1 5.47402- 5 5.30080- 4 4.40000+ 1 5.80000+ 1 1.28791- 5 5.50000- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 1.11640- 6 7.80500- 5 3.00000+ 1 2.66940- 5 1.76940- 4 4.30000+ 1 3.39660- 6 4.04840- 4 4.40000+ 1 7.96121- 8 4.20340- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.70000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 2.90000+ 1 3.50000+ 1 6.08379- 2 6.57600- 5 2.90000+ 1 3.60000+ 1 1.07346- 1 6.78700- 5 2.90000+ 1 4.10000+ 1 1.93023- 2 1.32000- 5 2.90000+ 1 4.30000+ 1 1.33915- 2 3.67800- 5 2.90000+ 1 4.40000+ 1 2.14613- 2 5.22800- 5 2.90000+ 1 5.80000+ 1 1.38075- 3 7.22000- 5 3.00000+ 1 3.20000+ 1 1.28237- 1 2.30500- 5 3.00000+ 1 3.30000+ 1 1.12898- 1 3.76500- 5 3.00000+ 1 3.50000+ 1 1.47407- 1 1.64650- 4 3.00000+ 1 3.60000+ 1 1.32237- 1 1.66760- 4 3.00000+ 1 4.10000+ 1 1.45887- 2 1.12090- 4 3.00000+ 1 4.30000+ 1 1.48707- 2 1.35670- 4 3.00000+ 1 4.40000+ 1 1.10928- 2 1.51170- 4 3.00000+ 1 5.80000+ 1 1.05898- 3 1.71090- 4 3.20000+ 1 3.20000+ 1 1.39482- 3 1.38330- 4 3.20000+ 1 3.30000+ 1 1.01971- 1 1.52930- 4 3.20000+ 1 3.50000+ 1 4.24945- 3 2.79930- 4 3.20000+ 1 3.60000+ 1 1.56272- 2 2.82040- 4 3.20000+ 1 4.10000+ 1 5.08277- 3 2.27370- 4 3.20000+ 1 4.30000+ 1 1.10832- 3 2.50950- 4 3.20000+ 1 4.40000+ 1 3.46905- 3 2.66450- 4 3.20000+ 1 5.80000+ 1 3.07034- 4 2.86370- 4 3.30000+ 1 3.30000+ 1 2.32785- 2 1.67530- 4 3.30000+ 1 3.50000+ 1 1.79206- 2 2.94530- 4 3.30000+ 1 3.60000+ 1 1.17368- 2 2.96640- 4 3.30000+ 1 4.10000+ 1 7.10566- 3 2.41970- 4 3.30000+ 1 4.30000+ 1 3.08354- 3 2.65550- 4 3.30000+ 1 4.40000+ 1 2.22355- 3 2.81050- 4 3.30000+ 1 5.80000+ 1 4.27451- 4 3.00970- 4 3.50000+ 1 3.50000+ 1 8.04609- 5 4.21530- 4 3.50000+ 1 3.60000+ 1 2.61067- 3 4.23640- 4 3.50000+ 1 4.10000+ 1 3.19356- 3 3.68970- 4 3.50000+ 1 4.30000+ 1 3.01006- 4 3.92550- 4 3.50000+ 1 4.40000+ 1 7.01270- 4 4.08050- 4 3.50000+ 1 5.80000+ 1 1.78547- 4 4.27970- 4 3.60000+ 1 3.60000+ 1 4.96827- 4 4.25750- 4 3.60000+ 1 4.10000+ 1 3.95640- 3 3.71080- 4 3.60000+ 1 4.30000+ 1 6.77132- 4 3.94660- 4 3.60000+ 1 4.40000+ 1 4.48898- 4 4.10160- 4 3.60000+ 1 5.80000+ 1 2.21055- 4 4.30080- 4 4.10000+ 1 4.10000+ 1 4.09761- 4 3.16410- 4 4.10000+ 1 4.30000+ 1 4.82007- 4 3.39990- 4 4.10000+ 1 4.40000+ 1 6.33231- 4 3.55490- 4 4.10000+ 1 5.80000+ 1 5.31025- 5 3.75410- 4 4.30000+ 1 4.30000+ 1 4.32801- 5 3.63570- 4 4.30000+ 1 4.40000+ 1 2.35275- 4 3.79070- 4 4.30000+ 1 5.80000+ 1 2.62555- 5 3.98990- 4 4.40000+ 1 4.40000+ 1 8.63060- 5 3.94570- 4 4.40000+ 1 5.80000+ 1 3.65042- 5 4.14490- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.28010- 4 2.14170- 4 4.10000+ 1 1.34510- 5 3.03210- 4 5.80000+ 1 1.09850- 6 3.62210- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 2.90000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.00000+ 1 3.50000+ 1 3.19539- 2 8.66000- 5 3.00000+ 1 3.60000+ 1 1.83849- 2 8.87100- 5 3.00000+ 1 4.10000+ 1 1.28119- 2 3.40400- 5 3.00000+ 1 4.30000+ 1 9.20035- 3 5.76200- 5 3.00000+ 1 4.40000+ 1 7.11367- 3 7.31200- 5 3.00000+ 1 5.80000+ 1 7.02207- 4 9.30400- 5 3.20000+ 1 3.20000+ 1 6.87239- 2 6.02800- 5 3.20000+ 1 3.30000+ 1 2.73960- 1 7.48800- 5 3.20000+ 1 3.50000+ 1 1.00430- 1 2.01880- 4 3.20000+ 1 3.60000+ 1 2.23539- 1 2.03990- 4 3.20000+ 1 4.10000+ 1 3.15990- 2 1.49320- 4 3.20000+ 1 4.30000+ 1 2.09609- 2 1.72900- 4 3.20000+ 1 4.40000+ 1 2.79870- 2 1.88400- 4 3.20000+ 1 5.80000+ 1 2.40020- 3 2.08320- 4 3.30000+ 1 3.30000+ 1 1.08784- 2 8.94800- 5 3.30000+ 1 3.50000+ 1 5.56572- 2 2.16480- 4 3.30000+ 1 3.60000+ 1 1.26013- 2 2.18590- 4 3.30000+ 1 4.10000+ 1 3.30294- 3 1.63920- 4 3.30000+ 1 4.30000+ 1 1.52062- 2 1.87500- 4 3.30000+ 1 4.40000+ 1 2.88635- 3 2.03000- 4 3.30000+ 1 5.80000+ 1 2.07529- 4 2.22920- 4 3.50000+ 1 3.50000+ 1 4.81159- 3 3.43480- 4 3.50000+ 1 3.60000+ 1 2.97450- 2 3.45590- 4 3.50000+ 1 4.10000+ 1 3.71999- 3 2.90920- 4 3.50000+ 1 4.30000+ 1 7.36328- 3 3.14500- 4 3.50000+ 1 4.40000+ 1 3.24020- 3 3.30000- 4 3.50000+ 1 5.80000+ 1 2.74989- 4 3.49920- 4 3.60000+ 1 3.60000+ 1 1.58288- 3 3.47700- 4 3.60000+ 1 4.10000+ 1 1.42198- 3 2.93030- 4 3.60000+ 1 4.30000+ 1 1.13698- 2 3.16610- 4 3.60000+ 1 4.40000+ 1 1.11768- 3 3.32110- 4 3.60000+ 1 5.80000+ 1 8.76118- 5 3.52030- 4 4.10000+ 1 4.10000+ 1 1.00189- 4 2.38360- 4 4.10000+ 1 4.30000+ 1 1.44849- 3 2.61940- 4 4.10000+ 1 4.40000+ 1 2.42458- 4 2.77440- 4 4.10000+ 1 5.80000+ 1 1.23609- 5 2.97360- 4 4.30000+ 1 4.30000+ 1 8.66399- 4 2.85520- 4 4.30000+ 1 4.40000+ 1 1.74550- 3 3.01020- 4 4.30000+ 1 5.80000+ 1 1.11900- 4 3.20940- 4 4.40000+ 1 4.40000+ 1 7.39501- 5 3.16520- 4 4.40000+ 1 5.80000+ 1 1.43128- 5 3.36440- 4 1 100000 0 7 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92931 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 1.44899- 6 1.15280- 4 3.30000+ 1 1.89769- 5 1.29880- 4 4.10000+ 1 9.54487- 6 2.04320- 4 5.80000+ 1 7.57377- 7 2.63320- 4 1 100000 0 9 2.57000+ 2 901205 2 0.00000+ 0 1.00000+50 0.00000+ 0 92932 91 .00000+ 0 3.00000+ 1 .00000+ 0 .00000+ 0 .00000+ 0 3.20000+ 1 3.50000+ 1 2.85134- 2 1.02990- 4 3.20000+ 1 3.60000+ 1 1.07551- 1 1.05100- 4 3.20000+ 1 4.10000+ 1 6.55017- 3 5.04300- 5 3.20000+ 1 4.30000+ 1 4.56155- 3 7.40100- 5 3.20000+ 1 4.40000+ 1 1.13182- 2 8.95100- 5 3.20000+ 1 5.80000+ 1 3.94724- 4 1.09430- 4 3.30000+ 1 3.50000+ 1 3.67154- 1 1.17590- 4 3.30000+ 1 3.60000+ 1 3.22425- 1 1.19700- 4 3.30000+ 1 4.10000+ 1 3.15235- 2 6.50300- 5 3.30000+ 1 4.30000+ 1 3.22405- 2 8.86100- 5 3.30000+ 1 4.40000+ 1 2.99435- 2 1.04110- 4 3.30000+ 1 5.80000+ 1 2.32066- 3 1.24030- 4 3.50000+ 1 3.50000+ 1 7.74887- 4 2.44590- 4 3.50000+ 1 3.60000+ 1 1.74577- 2 2.46700- 4 3.50000+ 1 4.10000+ 1 2.74266- 3 1.92030- 4 3.50000+ 1 4.30000+ 1 8.13286- 4 2.15610- 4 3.50000+ 1 4.40000+ 1 6.13110- 3 2.31110- 4 3.50000+ 1 5.80000+ 1 9.12465- 5 2.51030- 4 3.60000+ 1 3.60000+ 1 6.93884- 3 2.48810- 4 3.60000+ 1 4.10000+ 1 5.07286- 3 1.94140- 4 3.60000+ 1 4.30000+ 1 3.88216- 3 2.17720- 4 3.60000+ 1 4.40000+ 1 7.35383- 3 2.33220- 4 3.60000+ 1 5.80000+ 1 2.38228- 4 2.53140- 4 4.10000+ 1 4.10000+ 1 2.77583- 4 1.39470- 4 4.10000+ 1 4.30000+ 1 3.72451- 4 1.63050- 4 4.10000+ 1 4.40000+ 1 1.19917- 3 1.78550- 4 4.10000+ 1 5.80000+ 1 3.35851- 5 1.98470- 4 4.30000+ 1 4.30000+ 1 5.89855- 6 1.86630- 4 4.30000+ 1 4.40000+ 1 1.05001- 3 2.02130- 4 4.30000+ 1 5.80000+ 1 1.46861- 5 2.22050- 4 4.40000+ 1 4.40000+ 1 9.43426- 4 2.17630- 4 4.40000+ 1 5.80000+ 1 7.89702- 5 2.37550- 4 1 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/EADLParser.py0000644000000000000000000010267114741736366016542 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging __doc__ =\ """ The 1997 release of the Evaluated Atomic Data Library (EADL97) This module parses the EADL.DAT file that can be downloaded from: http://www-nds.iaea.org/epdl97/libsall.htm EADL contains atomic relaxation information for use in particle transport analysis for atomic number Z = 1-100 and for each subshell. The original units are in cm and MeV. The specific data are: - Subshell data a) number of electrons b) binding and kinetic energy (MeV) c) average radius (cm) d) radiative and non-radiative level widths (MeV) e) average number of released electrons and x-rays f) average energy of released electrons and x-rays (MeV) g) average energy to the residual atom, i.e., local deposition (MeV) - Transition probability data a) radiation transition probabilities b) non-radiative transition probabilities The data are organized in blocks with headers. The first line of the header: Columns Format Definition 1-3 I3 Z - atomic number 4-6 I3 A - mass number (in all cases=0 for elemental data) 8-9 I2 Yi - incident particle designator (7 is photon) 11-12 I2 Yo - outgoing particle designator (0, no particle 7, photon 8, positron 9, electron) 14-24 E11.4 AW - atomic mass (amu) 26-31 I6 Date of evaluation (YYMMDD) The second line of the header: Columns Format Definition 1-2 I2 C - reaction descriptor = 71, coherent scattering = 72, incoherent scattering = 73, photoelectric effect = 74, pair production = 75, triplet production = 91, subshell parameters = 92, transition probabilities = 93, whole atom parameters 3-5 I2 I - reaction property: = 0, integrated cross section = 10, avg. energy of Yo = 11, avg. energy to the residual atom = 912, number of electrons = 913, binding energy = 914, kinetic energy = 915, average radius = 921, radiative level width = 922, non-radiative level width = 931, radiative transition probability = 932, non-radiative transition probability = 933, particles per initial vacancy = 934, energy of particles per initial vacancy = 935, average energy to the residual atom, i.e. local deposition, per initial vacancy --- moved to EPDL97 --- = 941, form factor = 942, scattering function = 943, imaginary anomalous scatt. factor = 944, real anomalous scatt. factor 6-8 I3 S - reaction modifier: = 0 no X1 field data required = 91 X1 field data required 22-32 #11.4 X1 - subshell designator 0 if S is 0 if S is 91, subshell designator Summary of the EADL Data Base -------------------------------------------------------------------------- Yi C S X1 Yo I Data Types -------------------------------------------------------------------------- Subshell parameters -------------------------------------------------------------------------- 0 91 0 0. 0 912 number of electrons 0 91 0 0. 0 913 binding energy 0 91 0 0. 0 914 kinetic energy 0 91 0 0. 0 915 average radius 0 91 0 0. 0 921 radiative level width 0 91 0 0. 0 921 non-radiative level width -------------------------------------------------------------------------- Transititon probabilities -------------------------------------------------------------------------- 0 92 0 0. 0 935 average energy to the residual atom 0 92 0 0. 7 or 9 933 average number of particles per initial vacancy 0 92 0 0. 7 or 9 934 average energy of particles per initial vacancy 0 92 91 * 0 931 radiative transition probability 0 92 91 * 0 932 non-radiative transition probability --------------------------------------------------------------------------- Yi C S X1 Yo I Data Types -------------------------------------------------------------------------- * -> Subshell designator Data sorted in ascending order Z -> C -> S -> X1 -> Yo -> I """ import numpy #Translation from EADL index to actual shell (Table VI) import EADLSubshells SHELL_LIST = EADLSubshells.SHELL_LIST getSubshellFromValue = EADLSubshells.getSubshellFromValue getValueFromSubshell = EADLSubshells.getValueFromSubshell _logger = logging.getLogger(__name__) AVOGADRO_NUMBER = 6.02214179E23 # Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] #Read the EPDL library # Try to find it in the local directory EADL = os.path.join(os.path.dirname(__file__), 'EADL.DAT') if not os.path.exists(EADL): from PyMca5 import PyMcaDataDir EADL = os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'EPDL97', 'EADL.DAT') infile = open(EADL, 'rb') if sys.version < '3.0': EADL97_DATA = infile.read() else: EADL97_DATA = infile.read().decode('UTF-8') infile.close() #speed up sequential access LAST_INDEX = -1 #properly write exponential notation #EADL97_DATA = EADL97_DATA.replace('- ', ' ') #EADL97_DATA = EADL97_DATA.replace('+ ', ' ') EADL97_DATA = EADL97_DATA.replace('- ', 'E-') EADL97_DATA = EADL97_DATA.replace('+ ', 'E+') #get rid of tabs if any EADL97_DATA = EADL97_DATA.replace('\t', ' ') #get rid of carriage returns if any EADL97_DATA = EADL97_DATA.replace('\r\n', '\n') EADL97_DATA = EADL97_DATA.split('\n') #Now I have a huge list with all the lines EADL97_ATOMIC_WEIGHTS = None def getParticle(value): """ Returns one of ['none', 'photon', 'positron', 'electron'] following the convention: 0 = no particle 7 = photon 8 = positron 9 = electron) """ if value == 7: return 'photon' if value == 0: return 'none' if value == 9: return 'electron' if value == 8: return 'positron' raise ValueError('Invalid particle code') def getReactionFromCode(value): """ The input value must be one of: 91, 92, 73, 74, 75 Returns one of coherent, incoherent, photoelectric, pair, triplet according to the integer EADL97 code of the reaction: 91 <-> subshell parameters 92 <-> transition probabilities 93 <-> whole atom parameters """ if value == 91: return 'subshell' if value == 92: return 'transition' raise ValueError('Invalid reaction descriptor code') def getReactionPropertyFromCode(value): """ The input value must be one of: 0, 10, 11, 941, 942, 943, 944 according to the integer EPDL97 code of the reaction property: 0 <-> integrated cross section 10 <-> avg. energy of Yo 11 <-> avg. energy to the residual atom 912 <-> number of electrons 913 <-> binding energy 914 <-> kinetic energy 915 <-> average radius 921 <-> radiative level width 922 <-> non-radiative level width 931 <-> radiative transition probability 932 <-> non-radiative transition probability 934 <-> energy of particles per initial vacancy 935 <-> average energy to the residual atom, i.e. 941 <-> form factor 942 <-> scattering function 943 <-> imaginary anomalous scatt. factor 944 <-> real anomalous scatt. factor """ if value == 0: return 'cross_section' if value == 10: return 'secondary_particle_energy' if value == 11: return 'atom_energy_transfer' if value == 912: return 'number_of_electrons' if value == 913: return 'binding_energy' if value == 914: return 'kinetic_energy' if value == 915: return 'average_radius' if value == 921: return 'radiative_level_width' if value == 922: return 'non-radiative_level_width' if value == 931: return 'radiative_transition_probability' if value == 932: return 'non-radiative_transition_probability' if value == 933: return 'particles_per_initial_vacancy' if value == 934: return 'energy_of_particles_per_initial_vacancy' if value == 935: return 'average_energy_to_the_residual_atom' if value == 941: return 'form_factor' if value == 942: return 'scattering_function' if value == 943: return 'imaginary_anomalous_scattering_factor' if value == 944: return 'real_anomalous_scattering_factor' raise ValueError('Invalid reaction property descriptor code') def parseHeader0(line): """ Columns Format Definition 1-3 I3 Z - atomic number 4-6 I3 A - mass number (in all cases=0 for elemental data) 8-9 I2 Yi - incident particle designator (7 is photon) 11-12 I2 Yo - outgoing particle designator (0, no particle 7, photon 8, positron 9, electron) 14-24 E11.4 AW - atomic mass (amu) 26-31 I6 Date of evaluation (YYMMDD) """ item0 = line[0:6] items = line[6:].split() Z = int(item0[0:3]) A = int(item0[3:6]) Yi = int(items[0]) Yo = int(items[1]) AW = float(items[2]) Date = items[4] ddict={} ddict['atomic_number'] = Z ddict['mass_number'] = A ddict['atomic_mass'] = AW ddict['incident_particle'] = getParticle(Yi) ddict['incident_particle_value'] = Yi ddict['outgoing_particle'] = getParticle(Yo) ddict['outgoing_particle_value'] = Yo ddict['date'] = Date ddict['Z'] = Z ddict['A'] = A ddict['Yi'] = Yi ddict['Yo'] = Yo ddict['AW'] = AW return ddict def parseHeader1(line): """ The second line of the header: Columns Format Definition 1-2 I2 C - reaction descriptor = 71, coherent scattering = 72, incoherent scattering = 73, photoelectric effect = 74, pair production = 75, triplet production = 91, subshell parameters = 92, transition probabilities = 93, whole atom parameters 3-5 I2 I - reaction property: = 0, integrated cross section = 10, avg. energy of Yo = 11, avg. energy to the residual atom = 912, number of electrons = 913, binding energy = 914, kinetic energy = 915, average radius = 921, radiative level width = 922, non-radiative level width = 931, radiative transition probability = 932, non-radiative transition probability = 934, energy of particles per initial vacancy = 935, average energy to the residual atom, i.e. local deposition, per initial vacancy --- moved to EPDL97 --- = 941, form factor = 942, scattering function = 943, imaginary anomalous scatt. factor = 944, real anomalous scatt. factor 6-8 I3 S - reaction modifier: = 0 no X1 field data required = 91 X1 field data required 22-32 #11.4 X1 - subshell designator 0 if S is 0 if S is 91, subshell designator """ item0 = line[0:6] items = line[6:].split() C = int(item0[0:2]) I = int(item0[2:6]) S = int(items[0]) #there seems to be some dummy number in between X1 = float(items[2]) ddict={} ddict['reaction_code'] = C ddict['reaction'] = getReactionFromCode(C) ddict['reaction_property'] = getReactionPropertyFromCode(I) ddict['reaction_property_code'] = I ddict['C'] = C ddict['I'] = I ddict['S'] = S ddict['X1'] = X1 if S == 91: ddict['subshell_code'] = X1 if X1 != 0.0: ddict['subshell'] = getSubshellFromValue(X1) else: ddict['subshell'] = 'none' elif (S == 0) and (X1 == 0.0): ddict['subshell_code'] = 0 ddict['subshell'] = 'none' else: _logger.error("Inconsistent data") _logger.error("X1 = %s; S = %s", X1, S) sys.exit(1) return ddict def parseHeader(line0, line1): #_logger.info "line0 = ", line0 #_logger.info "line1 = ", line1 ddict = parseHeader0(line0) ddict.update(parseHeader1(line1)) return ddict if 0: ddict = parseHeader0(EADL97_DATA[0]) for key in ddict.keys(): _logger.info("%s: %s", key, ddict[key]) if 0: ddict = parseHeader1(EADL97_DATA[1]) for key in ddict.keys(): _logger.info("%s: %s", key, ddict[key]) def getDataLineIndex(lines, z, Yi, C, S, X1, Yo, I): global LAST_INDEX if (z < 1) or (z>100): raise ValueError("Invalid atomic number %d" % z) nlines = len(lines) i = LAST_INDEX while i < (nlines-1): i += 1 line = lines[i] if len(line.split()) < 9: """ i += 2 while len(lines[i+1].split()) != 1: print lines[i+1] if i>=5: sys.exit(0) i += 1 """ continue try: ddict = parseHeader(lines[i], lines[i+1]) except Exception: _logger.error("Error with lines") _logger.error("line index = %d", i) _logger.error(lines[i]) _logger.error(lines[i+1]) _logger.error(sys.exc_info()) raise if 0: _logger.info("%s, %s", ddict['Z'], z) _logger.info("%s, %s", ddict['Yi'], Yi) _logger.info("%s, %s", ddict['C'], C) _logger.info("%s, %s", ddict['S'], S) _logger.info("%s, %s", ddict['X1'], X1) _logger.info("%s, %s", ddict['Yo'], Yo) _logger.info("%s, %s", ddict['I'], I) if ddict['Z'] == z: _logger.debug("Z found") if ddict['Yi'] == Yi: _logger.debug("Yi found") if ddict['C'] == C: _logger.debug("C found") if ddict['S'] == S: _logger.debug("S found with X1 = %s", ddict['X1']) _logger.debug("Requested X1 = %s", X1) _logger.debug(lines[i]) _logger.debug(lines[i+1]) if ddict['X1'] == X1: _logger.debug("Requested Yo = %s", Yo) _logger.debug("Found Yo = %s", ddict['Yo']) if ddict['Yo'] == Yo: _logger.debug("Requested I = %s", I) if ddict['I'] == I: _logger.debug("FOUND!") _logger.debug(lines[i]) _logger.debug(lines[i+1]) LAST_INDEX = i - 1 return i i += 1 if LAST_INDEX > 0: _logger.debug("REPEATING") LAST_INDEX = -1 return getDataLineIndex(lines, z, Yi, C, S, X1, Yo, I) return -1 def getActualDataFromLinesAndOffset(lines, index): data_begin = index + 2 data_end = index + 2 end_line = lines[data_end+1] while (len(end_line) != 72) and (end_line[-1] != '1'): data_end += 1 end_line = lines[data_end + 1] data_end += 1 _logger.debug("COMPLETE DATA SET") _logger.debug(lines[index:data_end]) _logger.debug("END DATA SET") _logger.debug("ADDITIONAL LINE") _logger.debug(lines[data_end]) _logger.debug("END ADDITIONAL LINE") ndata = data_end - data_begin energy = numpy.zeros((ndata,), numpy.float64) t = lines[data_begin].split() if len(t) == 2: value = numpy.zeros((ndata,), numpy.float64) for i in range(ndata): t = lines[data_begin+i].split() energy[i] = float(t[0]) try: value[i] = float(t[1]) except ValueError: if ('E' not in t[1]) and (('+' in t[1]) or ('-' in t[1])): t[1] = t[1].replace('-','E-') t[1] = t[1].replace('+','E+') value[i] = float(t[1]) else: raise else: value = [] for i in range(ndata): t = lines[data_begin+i].split() energy[i] = float(t[0]) value.append([]) for j in range(0, len(t)-1): tj = t[j+1] try: value[i].append(float(tj)) except ValueError: if ('E' not in tj) and (('+' in tj) or ('-' in tj)): tj = tj.replace('-','E-') tj = tj.replace('+','E+') value[i].append(float(tj)) else: raise return energy, value def getBaseShellDict(nvalues=None): bad_shells = ['L (', 'L23', 'M (', 'M23', 'M45', 'N (', 'N23', 'N45', 'N67', 'O (', 'O23', 'O45', 'O67', 'O89', 'P (', 'P23', 'P45', 'P67', 'P89', 'P101', 'Q (', 'Q23', 'Q45', 'Q67'] ddict = {} for shell in SHELL_LIST: if shell[0:3] in bad_shells: continue if shell[0:4] in bad_shells: continue if nvalues is None: ddict[shell] = 0.0 else: ddict[shell] = [0.0] * nvalues return ddict def getBaseShellList(): bad_shells = ['L (', 'L23', 'M (', 'M23', 'M45', 'N (', 'N23', 'N45', 'N67', 'O (', 'O23', 'O45', 'O67', 'O89', 'P (', 'P23', 'P45', 'P67', 'P89', 'P101', 'Q (', 'Q23', 'Q45', 'Q67'] ddict = [] for shell in SHELL_LIST: if shell[0:3] in bad_shells: continue if shell[0:4] in bad_shells: continue ddict.append(shell) return ddict def getRadiativeWidths(z, lines=None): #Yi C S X1 Yo I #0 91 0 0. 0 921 Radiative widths ddict = getBaseShellDict() if z < 6: return ddict if lines is None: lines = EADL97_DATA index = getDataLineIndex(lines, z, 0, 91, 0, 0., 0, 921) if index < 0: raise IOError("Requested data not found") shell_codes, value = getActualDataFromLinesAndOffset(lines, index) _logger.debug("shell_codes %s, value %s", shell_codes, value) i = 0 ddict = getBaseShellDict() for code in shell_codes: shell = getSubshellFromValue(code) ddict[shell] = value[i] i += 1 return ddict def getNonradiativeWidths(z, lines=None): #Yi C S X1 Yo I #0 91 0 0. 0 922 Nonradiative widths ddict = getBaseShellDict() if z < 6: return ddict if lines is None: lines = EADL97_DATA index = getDataLineIndex(lines, z, 0, 91, 0, 0., 0, 922) if index < 0: raise IOError("Requested data not found") shell_codes, value = getActualDataFromLinesAndOffset(lines, index) _logger.debug("shell_codes %s, value %s", shell_codes, value) i = 0 ddict = getBaseShellDict() for code in shell_codes: shell = getSubshellFromValue(code) ddict[shell] = value[i] i += 1 return ddict def getRadiativeTransitionProbabilities(z, shell='K', lines=None): """ getRadiativeTransitionProbabilities(z, shell='K') Returns a dictionary with the radiative transition probabilities from any shell to the given shell. """ #Yi C S X1 Yo I #0 92 91 1. 7 931 K Shell #0 92 91 2. 7 931 L1 Shell #0 92 91 5. 7 931 L2 Shell #0 92 91 6. 7 931 L3 Shell #0 92 91 8. 7 931 M1 Shell #0 92 91 10. 7 931 M2 Shell #0 92 91 11. 7 931 M3 Shell #0 92 91 13. 7 931 M4 Shell #0 92 91 14. 7 931 M5 Shell ddict = getBaseShellDict(nvalues=2) if z < 6: return ddict if lines is None: lines = EADL97_DATA X1 = getValueFromSubshell(shell) index = getDataLineIndex(lines, z, 0, 92, 91, X1, 7, 931) if index < 0: #this error may happen when requesting non existing data too raise IOError("Requested data not found") shell_codes, values = getActualDataFromLinesAndOffset(lines, index) _logger.debug("shell_codes %s, values %s", shell_codes, values) i = 0 ddict = getBaseShellDict(nvalues=2) for code in shell_codes: key = getSubshellFromValue(code) ddict[key] = values[i] i += 1 return ddict def getNonradiativeTransitionProbabilities(z, shell='K', lines=None): """ getNonradiativeTransitionProbabilities(z, shell='K') Returns the radiative transition probabilities and energies to the given shell. The output is a dictionary in IUPAC notation. """ #Yi C S X1 Yo I #0 92 91 1. 9 932 K Shell #0 92 91 2. 9 932 L1 Shell #0 92 91 5. 9 932 L2 Shell #0 92 91 6. 9 932 L3 Shell #0 92 91 8. 9 932 M1 Shell #0 92 91 10. 9 932 M2 Shell #0 92 91 11. 9 932 M3 Shell #0 92 91 13. 9 932 M4 Shell #0 92 91 14. 9 932 M5 Shell ddict = getBaseShellDict() #if z < 6: # return ddict if lines is None: lines = EADL97_DATA X1 = getValueFromSubshell(shell) index = getDataLineIndex(lines, z, 0, 92, 91, X1, 9, 932) if index < 0: #this error may happen when requesting non existing data too raise IOError("Requested data not found") shell_codes, values = getActualDataFromLinesAndOffset(lines, index) _logger.debug("shell_codes %s, values %s", shell_codes, values) i = 0 ddict = {}#getBaseShellDict() for code in shell_codes: key1 = getSubshellFromValue(code).split()[0] key2 = getSubshellFromValue(values[i][0]).split()[0] ddict[shell+'-'+key1+key2] = values[i][1:] i += 1 return ddict #The usefull stuff def getBindingEnergies(z, lines=None): """ getBindingEnergies(z) Returns the binding energies in MeV """ #Yi C S X1 Yo I #0 91 0 0. 0 913 if lines is None: lines = EADL97_DATA index = getDataLineIndex(lines, z, 0, 91, 0, 0., 0, 913) if index < 0: raise IOError("Requested data not found") shell_codes, value = getActualDataFromLinesAndOffset(lines, index) _logger.debug("shell_codes %s, value %s", shell_codes, value) i = 0 ddict = getBaseShellDict() for code in shell_codes: shell = getSubshellFromValue(code) ddict[shell] = value[i] i += 1 return ddict def getFluorescenceYields(z, lines=None): if lines is None: lines = EADL97_DATA radiative_dict = getRadiativeWidths(z, lines) nonradiative_dict = getNonradiativeWidths(z, lines) ddict={} for key in radiative_dict.keys(): x = radiative_dict[key] a = nonradiative_dict[key] if ( x > 0.0) or ( a > 0.0): ddict[key] = x / (a + x) return ddict def getCosterKronigYields(z, shell='L1', lines=None): """ getCosterKronigYields(z, shell='L1') Returns the non-zero Coster-Kronig yields as keys of a dictionary or just an empty dictionary. """ if lines is None: lines = EADL97_DATA #radiative_dict = getRadiativeWidths(z, lines) #nonradiative_dict = getNonradiativeWidths(z, lines) probabilities = getNonradiativeTransitionProbabilities(z, shell=shell, lines=lines) ddict = {} for key in probabilities: items = key.split('-') if items[0] != shell: raise ValueError("Inconsistent data!") if items[0][0] == items[1][0]: #coster kronig transition = 'f'+ items[0][1] + items[1][1] if transition not in ddict.keys(): ddict[transition] = 0.0 ddict[transition] += probabilities[key][0] return ddict def getLShellCosterKronigYields(z, lines=None): """ getLShellCosterKronigYields(z) Returns the L-shell Coster-Kronig yields of an element as keys of a dictionary """ ddict = {} ddict['f12'] = 0.0 ddict['f13'] = 0.0 ddict['f23'] = 0.0 for i in range(2): shell = 'L%d' % (i+1) try: ddict.update(getCosterKronigYields(z, shell=shell)) except IOError: pass return ddict def getMShellCosterKronigYields(z, lines=None): """ getMShellCosterKronigYields(z) Returns the M-shell Coster-Kronig yields of an element as keys of a dictionary. It does not check for physical meaning. So, it will give zeroes when needed. """ ddict = {} for i in range(1, 5): for j in range(i+1, 6): key = 'f%d%d' % (i,j) ddict[key] = 0.0 shell = 'M%d' % i try: ddict.update(getCosterKronigYields(z, shell=shell)) except IOError: pass return ddict def getAtomicWeights(): global EADL97_ATOMIC_WEIGHTS if EADL97_ATOMIC_WEIGHTS is None: lines = EADL97_DATA i = 1 EADL97_ATOMIC_WEIGHTS = numpy.zeros((len(Elements),), numpy.float64) for line in lines: if line.startswith('%3d000 ' % i): ddict0 = parseHeader0(line) EADL97_ATOMIC_WEIGHTS[i-1] = ddict0['atomic_mass'] i += 1 return EADL97_ATOMIC_WEIGHTS * 1 if __name__ == "__main__": if len(sys.argv) > 1: element = sys.argv[1] else: element = 'Pb' _logger.info("Getting binding energies for element %s", element) ddict = getBindingEnergies(Elements.index(element)+1) for key in getBaseShellList(): if ddict[key] > 0.0: _logger.info("Shell = %s Energy (keV) = %.7E", key, ddict[key] * 1000.) _logger.info("Getting fluorescence yields for element %s", element) ddict = getFluorescenceYields(Elements.index(element)+1) for key in getBaseShellList(): if key in ddict: if ddict[key] > 0.0: _logger.info("Shell = %s Yield = %.7E", key, ddict[key]) #total_emission = 0.0 for shell in ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5']: try: ddict = getRadiativeTransitionProbabilities(Elements.index(element)+1, shell=shell) _logger.info("%s Shell radiative emission probabilities ", shell) except IOError: continue total = 0.0 for key in getBaseShellList(): if key in ddict: if ddict[key][0] > 0.0: _logger.info("Shell = %s Yield = %.7E Energy = %.7E", key, ddict[key][0], ddict[key][1] * 1000.) total += ddict[key][0] _logger.info("Total %s-shell emission probability = %.7E", shell, total) #total_emission += total #_logger.info "total_emission = ", total_emission for shell in ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5']: try: ddict = getNonradiativeTransitionProbabilities(Elements.index(element)+1, shell=shell) _logger.info("%s Shell Nonradiative emission probabilities ", shell) except IOError: continue total = 0.0 shell_list = getBaseShellList() for key0 in shell_list: for key1 in shell_list: key = "%s-%s%s" % (shell, key0.split()[0], key1.split()[0]) if key in ddict: if ddict[key][0] > 0.0: _logger.info("Shell = %s Yield = %.7E Energy = %.7E", key, ddict[key][0], ddict[key][1] * 1000.) total += ddict[key][0] _logger.info("Total %s-shell non-radiative emission probability = %.7E", shell, total) if shell in ['K']: for key0 in ['L1', 'L2', 'L3']: subtotal = 0.0 for key1 in shell_list: tmpKey = key1.split()[0] key = "%s-%s%s" % (shell, key0, tmpKey) if key in ddict: if ddict[key][0] > 0.0: subtotal += ddict[key][0] if tmpKey == key0: subtotal += ddict[key][0] _logger.info("%s vacancies for nonradiative transition to %s shell = %.7E", key0, shell, subtotal) #_logger.info(getNonradiativeTransitionProbabilities(Elements.index(element)+1, 'L1')) _logger.info(getMShellCosterKronigYields(Elements.index(element)+1)) _logger.info("atomic weight = %s", getAtomicWeights()[Elements.index(element)]) sys.exit(0) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/EADLSubshells.py0000644000000000000000000000752614741736366017255 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__="Translation from EADL index to actual shell (Table VI)" SHELL_LIST = ['K (1s1/2)', 'L (2)', 'L1 (2s1/2)', 'L23 (2p)', 'L2 (2p1/2)', 'L3 (2p3/2)', 'M (3)', 'M1 (3s1/2)', 'M23 (3p)', 'M2 (3p1/2)', 'M3 (3p3/2)', 'M45 (3d)', 'M4 (3d3/2)', 'M5 (3d5/2)', 'N (4)', 'N1 (4s1/2)', 'N23 (4p)', 'N2 (4p1/2)', 'N3 (4p3/2)', 'N45 (4d)', 'N4 (4d3/2)', 'N5 (4d5/2)', 'N67 (4f)', 'N6 (4f5/2)', 'N7 (4f7/2)', 'O (5)', 'O1 (5s1/2)', 'O23 (5p)', 'O2 (5p1/2)', 'O3 (5p3/2)', 'O45 (5d)', 'O4 (5d3/2)', 'O5 (5d5/2)', 'O67 (5f)', 'O6 (5f5/2)', 'O7 (5f7/2)', 'O89 (5g)', 'O8 (5g7/2)', 'O9 (5g9/2)', 'P (6)', 'P1 (6s1/2)', 'P23 (6p)', 'P2 (6p1/2)', 'P3 (6p3/2)', 'P45 (6d)', 'P4 (6d3/2)', 'P5 (6d5/2)', 'P67 (6f)', 'P6 (6f5/2)', 'P7 (6f7/2)', 'P89 (6g)', 'P8 (6g7/2)', 'P9 (6g9/2)', 'P1011 (6h)', 'P10 (6h9/2)', 'P11 (6h11/2)', 'Q (7)', 'Q1 (7s1/2)', 'Q23 (7p)', 'Q2 (7p1/2)', 'Q3 (7p3/2)'] def getSubshellFromValue(value): idx = int(value) - 1 if idx < 0: raise IndexError("Invalid EADL Atomic Subshell Designator") return SHELL_LIST[idx] def getValueFromSubshell(subshell): """ Returns the float value associated to the respective shell or subshell """ if subshell.startswith('K'): return 1.0 #cleanup subshell wshell = subshell.replace(" ","") wshell = wshell.split("(")[0] wshell = wshell.upper() #test i = 0 for shell in SHELL_LIST: i += 1 if wshell == shell.split(" ")[0]: return float(i) raise ValueError("Invalid shell name %s" % subshell) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/EPDL97.DAT0000644000000000000000007324672014741736366015562 0ustar00rootroot 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.887553-6 1.059784-6 1.235246-5 1.126020-6 1.538627-5 1.196396-6 1.933495-5 1.271171-6 2.449127-5 1.350619-6 3.121326-5 1.392826-6 3.537646-5 1.481238-6 4.569015-5 1.575262-6 5.929956-5 1.727606-6 8.834929-5 1.894683-6 1.326150-4 2.048000-6 1.873294-4 2.209817-6 2.535444-4 2.278874-6 2.875153-4 2.423529-6 3.719583-4 2.577366-6 4.847814-4 2.740969-6 6.361175-4 2.914956-6 8.399473-4 3.072000-6 1.068768-3 3.196862-6 1.270922-3 3.296764-6 1.455758-3 3.399788-6 1.672152-3 3.506031-6 1.925436-3 3.615595-6 2.222455-3 3.728582-6 2.572967-3 4.089174-6 3.970629-3 4.216961-6 4.606550-3 4.348741-6 5.362783-3 4.484639-6 6.264931-3 4.624784-6 7.344783-3 4.918349-6 1.014920-2 5.072048-6 1.196269-2 5.224773-6 1.408552-2 5.516055-6 1.912926-2 5.654906-6 2.209738-2 5.789417-6 2.542495-2 5.919725-6 2.915895-2 6.168251-6 3.778053-2 6.286720-6 4.273283-2 6.401487-6 4.820047-2 6.512668-6 5.422655-2 6.620374-6 6.085293-2 6.724714-6 6.813173-2 6.923715-6 8.462333-2 7.018576-6 9.394256-2 7.110473-6 1.041230-1 7.285740-6 1.269674-1 7.369288-6 1.397874-1 7.450225-6 1.536647-1 7.528632-6 1.686477-1 7.604589-6 1.847748-1 7.678173-6 2.021023-1 7.749457-6 2.207290-1 7.818514-6 2.407503-1 7.885412-6 2.622354-1 8.013003-6 3.098524-1 8.073823-6 3.361805-1 8.132744-6 3.643648-1 8.189822-6 3.945704-1 8.245117-6 4.269049-1 8.352252-6 4.991215-1 8.452690-6 5.807595-1 8.552969-6 6.797026-1 8.635127-6 7.772269-1 8.717886-6 8.944214-1 8.795472-6 1.025914+0 8.868209-6 1.173025+0 8.936400-6 1.337205+0 9.000329-6 1.520026+0 9.060263-6 1.723103+0 9.116450-6 1.948114+0 9.169126-6 2.196855+0 9.218510-6 2.471239+0 9.264807-6 2.773250+0 9.308211-6 3.104934+0 9.348902-6 3.468414+0 9.387049-6 3.865914+0 9.422813-6 4.299759+0 9.456341-6 4.772360+0 9.487774-6 5.286219+0 9.517242-6 5.843938+0 9.544869-6 6.448256+0 9.570768-6 7.102088+0 9.595049-6 7.808598+0 9.617813-6 8.571286+0 9.639154-6 9.394113+0 9.659161-6 1.028166+1 9.677917-6 1.123925+1 9.695501-6 1.227308+1 9.711987-6 1.339011+1 9.727442-6 1.459789+1 9.741931-6 1.590413+1 9.755514-6 1.731615+1 9.768248-6 1.884027+1 9.780187-6 2.048117+1 9.802572-6 2.425525+1 9.822159-6 2.852550+1 9.839297-6 3.323382+1 9.854293-6 3.828498+1 9.867414-6 4.356202+1 9.878896-6 4.894212+1 9.897732-6 5.956359+1 9.953675-6 1.079827+2 9.968697-6 1.261386+2 9.983779-6 1.467710+2 9.996036-6 1.653085+2 1.000829-5 1.853760+2 1.003281-5 2.296195+2 1.003587-5 2.354802+2 1.005732-5 2.779687+2 1.006575-5 2.951201+2 1.008183-5 3.279700+2 1.009428-5 3.529781+2 1.010635-5 3.763755+2 1.011879-5 3.991598+2 1.013086-5 4.194604+2 1.014158-5 4.356719+2 1.015149-5 4.488576+2 1.015691-5 4.552509+2 1.017127-5 4.692053+2 1.018248-5 4.768264+2 1.019721-5 4.821890+2 1.020895-5 4.825796+2 1.021356-5 4.817859+2 1.022603-5 4.769980+2 1.023770-5 4.691419+2 1.025496-5 4.519426+2 1.026474-5 4.395265+2 1.027299-5 4.277383+2 1.028100-5 4.152545+2 1.029039-5 3.995090+2 1.030245-5 3.777973+2 1.031318-5 3.574434+2 1.032352-5 3.371779+2 1.033922-5 3.058090+2 1.035148-5 2.813164+2 1.036527-5 2.542510+2 1.037599-5 2.338338+2 1.040051-5 1.901986+2 1.040893-5 1.763753+2 1.042502-5 1.518664+2 1.044341-5 1.270148+2 1.046403-5 1.031656+2 1.049516-5 7.471749+1 1.052558-5 5.449680+1 1.054547-5 4.456947+1 1.055530-5 4.045834+1 1.056506-5 3.683133+1 1.058441-5 3.078704+1 1.060346-5 2.607512+1 1.062221-5 2.237911+1 1.064067-5 1.945265+1 1.065884-5 1.710780+1 1.067672-5 1.520346+1 1.069890-5 1.326865+1 1.071166-5 1.232424+1 1.072872-5 1.121476+1 1.074552-5 1.026401+1 1.076205-5 9.440388+0 1.079460-5 8.075337+0 1.082613-5 7.001098+0 1.085667-5 6.134893+0 1.088626-5 5.422995+0 1.091493-5 4.828812+0 1.096960-5 3.896951+0 1.109350-5 2.433798+0 1.113788-5 2.053734+0 1.117948-5 1.745434+0 1.121849-5 1.491316+0 1.129162-5 1.088318+0 1.135165-5 8.154058-1 1.141961-5 5.584826-1 1.146760-5 4.077998-1 1.150960-5 2.972264-1 1.154635-5 2.183287-1 1.157749-5 1.666451-1 1.159162-5 1.486700-1 1.160487-5 1.354856-1 1.161729-5 1.268331-1 1.162893-5 1.224986-1 1.163985-5 1.222958-1 1.165008-5 1.260503-1 1.165967-5 1.335866-1 1.166867-5 1.447182-1 1.167710-5 1.592418-1 1.168500-5 1.769341-1 1.169241-5 1.975520-1 1.169936-5 2.208348-1 1.170587-5 2.465080-1 1.171198-5 2.742878-1 1.171761-5 3.033961-1 1.173416-5 4.108227-1 1.175590-5 6.122891-1 1.176675-5 7.440053-1 1.177890-5 9.206611-1 1.179118-5 1.134083+0 1.180402-5 1.399658+0 1.181274-5 1.606600+0 1.182517-5 1.942441+0 1.183262-5 2.168227+0 1.183989-5 2.406467+0 1.184533-5 2.597359+0 1.185759-5 3.066207+0 1.186690-5 3.459323+0 1.187881-5 4.010044+0 1.189073-5 4.613565+0 1.189595-5 4.894249+0 1.191978-5 6.293732+0 1.193096-5 7.010112+0 1.195065-5 8.344751+0 1.196001-5 9.003222+0 1.197119-5 9.800374+0 1.198152-5 1.054170+1 1.199443-5 1.146126+1 1.200694-5 1.233208+1 1.201965-5 1.318108+1 1.203255-5 1.399023+1 1.203690-5 1.424895+1 1.205097-5 1.502538+1 1.206364-5 1.563533+1 1.207170-5 1.597422+1 1.208570-5 1.646335+1 1.209880-5 1.679877+1 1.210717-5 1.694823+1 1.211916-5 1.707224+1 1.212912-5 1.709419+1 1.213489-5 1.707342+1 1.215402-5 1.683335+1 1.216785-5 1.650392+1 1.218126-5 1.607040+1 1.219601-5 1.547721+1 1.221031-5 1.480230+1 1.222302-5 1.413394+1 1.223528-5 1.344081+1 1.223936-5 1.320117+1 1.225389-5 1.232280+1 1.226842-5 1.141718+1 1.228476-5 1.038702+1 1.229747-5 9.591008+0 1.232652-5 7.838757+0 1.233651-5 7.269659+0 1.235558-5 6.244562+0 1.237010-5 5.524095+0 1.238664-5 4.772838+0 1.240427-5 4.056695+0 1.241547-5 3.647134+0 1.245961-5 2.373187+0 1.246967-5 2.155740+0 1.247972-5 1.963754+0 1.249504-5 1.718282+0 1.250270-5 1.616027+0 1.251037-5 1.526887+0 1.251420-5 1.487107+0 1.252921-5 1.360780+0 1.253430-5 1.328225+0 1.254101-5 1.293018+0 1.254651-5 1.270373+0 1.257165-5 1.233780+0 1.257715-5 1.239262+0 1.258344-5 1.250917+0 1.260229-5 1.317408+0 1.261094-5 1.362008+0 1.262211-5 1.430808+0 1.263844-5 1.550311+0 1.267123-5 1.834321+0 1.268694-5 1.978880+0 1.269613-5 2.062736+0 1.271409-5 2.220376+0 1.272677-5 2.323515+0 1.274359-5 2.445301+0 1.275742-5 2.529869+0 1.277742-5 2.623569+0 1.279165-5 2.667994+0 1.279793-5 2.681587+0 1.281678-5 2.700450+0 1.282780-5 2.696813+0 1.283408-5 2.690179+0 1.284508-5 2.671128+0 1.285951-5 2.633118+0 1.287807-5 2.566198+0 1.289410-5 2.496089+0 1.291013-5 2.418630+0 1.297798-5 2.089788+0 1.300310-5 1.994314+0 1.302256-5 1.935697+0 1.304147-5 1.891866+0 1.307247-5 1.845950+0 1.309541-5 1.829247+0 1.312537-5 1.823140+0 1.317648-5 1.833477+0 1.323779-5 1.847655+0 1.328659-5 1.847744+0 1.334932-5 1.833698+0 1.351542-5 1.769457+0 1.362498-5 1.733986+0 1.372461-5 1.715389+0 1.388351-5 1.704333+0 1.411998-5 1.691588+0 1.465398-5 1.634877+0 1.568361-5 1.531559+0 1.659853-5 1.457325+0 1.806848-5 1.360888+0 1.970149-5 1.278274+0 2.200291-5 1.188989+0 2.489815-5 1.106409+0 2.788452-5 1.042104+0 3.184728-5 9.782835-1 3.727372-5 9.168016-1 4.171694-5 8.797614-1 4.809467-5 8.396242-1 5.653300-5 8.028790-1 6.637940-5 7.733670-1 7.951414-5 7.469901-1 9.721928-5 7.245400-1 1.203923-4 7.066772-1 1.533199-4 6.916611-1 2.127262-4 6.777725-1 4.628470-4 6.513569-1 6.703164-4 6.284393-1 9.094616-4 5.971722-1 1.129144-3 5.626810-1 1.156538-3 5.566560-1 1.332447-3 5.279290-1 1.512472-3 4.965070-1 1.671706-3 4.691909-1 1.803701-3 4.467372-1 1.913233-3 4.286082-1 2.072472-3 4.024488-1 2.243069-3 3.759227-1 2.425379-3 3.491066-1 2.641027-3 3.197025-1 2.864249-3 2.919157-1 3.101248-3 2.653056-1 3.368451-3 2.386776-1 3.652292-3 2.139823-1 4.023205-3 1.865218-1 4.442115-3 1.609938-1 5.015101-3 1.334314-1 5.657012-3 1.099949-1 6.482416-3 8.781459-2 7.461983-3 6.912388-2 8.726439-3 5.258735-2 1.034169-2 3.878097-2 1.219082-2 2.867096-2 1.489084-2 1.969935-2 1.857956-2 1.290129-2 2.452641-2 7.520383-3 3.505973-2 3.721924-3 6.095369-2 1.240517-3 1.833770-1 1.375154-4 5.563044-1 1.494776-5 1.696098+0 1.608114-6 5.122134+0 1.763269-7 1.546860+1 1.933387-8 4.671441+1 2.119917-9 1.410753+2 2.32444-10 4.260405+2 2.54870-11 1.584893+3 1.84171-12 5.011872+3 1.84171-13 1.584893+4 1.84171-14 5.011872+4 1.84171-15 1.000000+5 4.62616-16 1 1000 7 7 1.007970+0 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.562300-8 1.258900-6 1.515500-7 1.584900-6 2.401900-7 1.995300-6 3.806800-7 2.511900-6 6.033300-7 3.162300-6 9.562200-7 3.981100-6 1.515500-6 5.011900-6 2.401900-6 6.309600-6 3.806700-6 7.943300-6 6.033200-6 1.000000-5 9.561800-6 1.258900-5 1.515400-5 1.584900-5 2.401700-5 1.995300-5 3.806400-5 2.511900-5 6.032600-5 3.162300-5 9.560700-5 3.981100-5 1.515200-4 5.011900-5 2.401300-4 6.309600-5 3.805500-4 7.943300-5 6.027800-4 1.000000-4 9.546400-4 1.258900-4 1.512000-3 1.584900-4 2.392700-3 1.995300-4 3.784900-3 2.511900-4 5.979400-3 3.162300-4 9.429600-3 3.981100-4 1.482800-2 5.011900-4 2.322000-2 6.309600-4 3.612400-2 7.943300-4 5.560400-2 1.000000-3 8.434300-2 1.258900-3 1.250900-1 1.584900-3 1.797100-1 1.995300-3 2.475700-1 2.511900-3 3.238000-1 3.162300-3 3.998000-1 3.981100-3 4.667300-1 5.011900-3 5.195000-1 6.309600-3 5.566200-1 7.943300-3 5.805100-1 1.000000-2 5.934400-1 1.258900-2 6.072500-1 1.584900-2 6.093200-1 1.995300-2 6.065400-1 2.511900-2 5.998000-1 3.162300-2 5.895000-1 3.981100-2 5.759000-1 5.011900-2 5.592000-1 6.309600-2 5.395100-1 7.943300-2 5.170300-1 1.000000-1 4.920300-1 1.258900-1 4.649300-1 1.584900-1 4.362000-1 1.995300-1 4.064800-1 2.511900-1 3.763600-1 3.162300-1 3.464100-1 3.981100-1 3.170900-1 5.011900-1 2.887200-1 6.309600-1 2.615200-1 7.943300-1 2.356200-1 1.000000+0 2.111000-1 1.258900+0 1.880300-1 1.584900+0 1.664800-1 1.995300+0 1.464800-1 2.511900+0 1.281000-1 3.162300+0 1.113500-1 3.981100+0 9.622100-2 5.011900+0 8.269400-2 6.309600+0 7.070100-2 7.943300+0 6.015800-2 1.000000+1 5.096400-2 1.258900+1 4.300100-2 1.584900+1 3.615000-2 1.995300+1 3.029100-2 2.511900+1 2.530500-2 3.162300+1 2.108300-2 3.981100+1 1.752300-2 5.011900+1 1.453100-2 6.309600+1 1.202700-2 7.943300+1 9.935600-3 1.000000+2 8.194500-3 1.258900+2 6.748300-3 1.584900+2 5.549700-3 1.995300+2 4.558100-3 2.511900+2 3.739400-3 3.162300+2 3.064300-3 3.981100+2 2.508600-3 5.011900+2 2.051800-3 6.309600+2 1.676700-3 7.943300+2 1.369000-3 1.000000+3 1.116900-3 1.258900+3 9.106300-4 1.584900+3 7.419200-4 1.995300+3 6.040800-4 2.511900+3 4.915500-4 3.162300+3 3.997500-4 3.981100+3 3.249100-4 5.011900+3 2.639500-4 6.309600+3 2.143200-4 7.943300+3 1.739400-4 1.000000+4 1.411000-4 1.258900+4 1.144100-4 1.584900+4 9.273100-5 1.995300+4 7.512900-5 2.511900+4 6.084500-5 3.162300+4 4.925900-5 3.981100+4 3.986400-5 5.011900+4 3.225000-5 6.309600+4 2.608200-5 7.943300+4 2.108600-5 1.000000+5 1.704200-5 1 1000 7 7 1.007970+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159545-4 3.981072-4 3.976746-4 5.011872-4 5.005028-4 6.309573-4 6.298729-4 7.943282-4 7.926209-4 1.000000-3 9.973102-4 1.258925-3 1.254701-3 1.584893-3 1.578276-3 1.995262-3 1.984979-3 2.511886-3 2.496018-3 3.162278-3 3.137990-3 3.981072-3 3.944103-3 5.011872-3 4.955778-3 6.309573-3 6.224350-3 7.943282-3 7.813219-3 1.000000-2 9.800166-3 1.258925-2 1.228296-2 1.584893-2 1.537615-2 1.995262-2 1.922224-2 2.511886-2 2.399094-2 3.162278-2 2.988563-2 3.981072-2 3.714577-2 5.011872-2 4.605269-2 6.309573-2 5.693340-2 7.943282-2 7.016599-2 1.000000-1 8.618781-2 1.258925-1 1.055007-1 1.584893-1 1.286847-1 1.995262-1 1.564093-1 2.511886-1 1.894429-1 3.162278-1 2.286721-1 3.981072-1 2.751102-1 5.011872-1 3.299388-1 6.309573-1 3.945317-1 7.943282-1 4.705462-1 1.000000+0 5.599947-1 1.258925+0 6.653552-1 1.584893+0 7.896863-1 1.995262+0 9.367513-1 2.511886+0 1.111263+0 3.162278+0 1.318947+0 3.981072+0 1.566826+0 5.011872+0 1.863570+0 6.309573+0 2.219709+0 7.943282+0 2.648172+0 1.000000+1 3.164728+0 1.258925+1 3.788728+0 1.584893+1 4.543841+0 1.995262+1 5.458975+0 2.511886+1 6.569696+0 3.162278+1 7.919628+0 3.981072+1 9.562065+0 5.011872+1 1.156281+1 6.309573+1 1.400242+1 7.943282+1 1.697999+1 1.000000+2 2.061735+1 1.258925+2 2.506460+1 1.584893+2 3.050622+1 1.995262+2 3.716940+1 2.511886+2 4.533451+1 3.162278+2 5.534704+1 3.981072+2 6.763146+1 5.011872+2 8.271474+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 1000 7 9 1.007970+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728255-8 1.000000-4 2.738701-8 1.258925-4 4.340130-8 1.584893-4 6.876282-8 1.995262-4 1.089466-7 2.511886-4 1.725739-7 3.162278-4 2.732895-7 3.981072-4 4.325874-7 5.011872-4 6.844291-7 6.309573-4 1.084435-6 7.943282-4 1.707342-6 1.000000-3 2.689793-6 1.258925-3 4.224157-6 1.584893-3 6.617219-6 1.995262-3 1.028353-5 2.511886-3 1.586834-5 3.162278-3 2.428776-5 3.981072-3 3.696842-5 5.011872-3 5.609404-5 6.309573-3 8.522319-5 7.943282-3 1.300634-4 1.000000-2 1.998337-4 1.258925-2 3.062961-4 1.584893-2 4.727803-4 1.995262-2 7.303783-4 2.511886-2 1.127923-3 3.162278-2 1.737148-3 3.981072-2 2.664952-3 5.011872-2 4.066032-3 6.309573-2 6.162338-3 7.943282-2 9.266833-3 1.000000-1 1.381219-2 1.258925-1 2.039181-2 1.584893-1 2.980464-2 1.995262-1 4.311694-2 2.511886-1 6.174574-2 3.162278-1 8.755570-2 3.981072-1 1.229970-1 5.011872-1 1.712484-1 6.309573-1 2.364256-1 7.943282-1 3.237821-1 1.000000+0 4.400053-1 1.258925+0 5.935702-1 1.584893+0 7.952069-1 1.995262+0 1.058511+0 2.511886+0 1.400624+0 3.162278+0 1.843331+0 3.981072+0 2.414246+0 5.011872+0 3.148303+0 6.309573+0 4.089864+0 7.943282+0 5.295110+0 1.000000+1 6.835272+0 1.258925+1 8.800526+0 1.584893+1 1.130509+1 1.995262+1 1.449365+1 2.511886+1 1.854917+1 3.162278+1 2.370315+1 3.981072+1 3.024865+1 5.011872+1 3.855591+1 6.309573+1 4.909331+1 7.943282+1 6.245283+1 1.000000+2 7.938265+1 1.258925+2 1.008279+2 1.584893+2 1.279831+2 1.995262+2 1.623568+2 2.511886+2 2.058541+2 3.162278+2 2.608807+2 3.981072+2 3.304757+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.361000-5 6.305834+6 1.678804-5 3.578564+6 2.000000-5 2.212190+6 2.371374-5 1.374747+6 2.818383-5 8.425752+5 3.388442-5 4.960675+5 4.120975-5 2.803254+5 5.011872-5 1.571946+5 6.095369-5 8.753531+4 7.500000-5 4.672900+4 9.225714-5 2.479315+4 1.161449-4 1.215972+4 1.479108-4 5.707403+3 1.883649-4 2.657906+3 2.426610-4 1.184136+3 3.162278-4 5.045547+2 4.168694-4 2.055060+2 5.559043-4 7.998682+1 7.498942-4 2.974499+1 1.035142-3 1.016911+1 1.462177-3 3.194367+0 2.113489-3 9.212877-1 3.162278-3 2.345067-1 5.370318-3 3.847048-2 8.810489-3 7.046222-3 1.678804-2 7.649817-4 3.349654-2 7.050262-5 6.095369-2 8.951682-6 9.332543-2 2.078912-6 1.188502-1 9.136922-7 1.462177-1 4.548825-7 1.757924-1 2.461777-7 2.041738-1 1.505007-7 2.371374-1 9.270837-8 2.691535-1 6.194436-8 3.019952-1 4.323304-8 3.388442-1 3.040003-8 3.758374-1 2.230333-8 4.120975-1 1.704846-8 4.518559-1 1.312239-8 4.954502-1 1.017758-8 5.370318-1 8.201256-9 5.821032-1 6.650961-9 6.309573-1 5.430553-9 6.839117-1 4.464828-9 7.413102-1 3.697165-9 8.035261-1 3.080545-9 8.609938-1 2.651009-9 9.225714-1 2.296615-9 9.885531-1 2.004198-9 1.083927+0 1.688819-9 1.188502+0 1.433332-9 1.303167+0 1.224643-9 1.462177+0 1.013927-9 1.717908+0 7.83107-10 1.927525+0 6.55457-10 2.162719+0 5.52801-10 2.454709+0 4.61921-10 2.818383+0 3.82753-10 3.311311+0 3.09959-10 3.890451+0 2.52937-10 4.677351+0 2.02046-10 5.688529+0 1.60401-10 7.161434+0 1.23185-10 9.440609+0 9.05659-11 1.288250+1 6.46368-11 1.862087+1 4.37244-11 2.851018+1 2.80606-11 4.954502+1 1.59177-11 9.885531+1 7.90232-12 1.972423+2 3.94161-12 1.566751+3 4.94095-13 1.000000+5 7.73600-15 1 1000 7 0 1.007970+0 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.361000-5 1.361000-5 1.000000+5 1.361000-5 1 1000 7 9 1.007970+0 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.361000-5 0.0 1.000000+5 1.000000+5 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.361000-5 6.305834+6 1.678804-5 3.578564+6 2.000000-5 2.212190+6 2.371374-5 1.374747+6 2.818383-5 8.425752+5 3.388442-5 4.960675+5 4.120975-5 2.803254+5 5.011872-5 1.571946+5 6.095369-5 8.753531+4 7.500000-5 4.672900+4 9.225714-5 2.479315+4 1.161449-4 1.215972+4 1.479108-4 5.707403+3 1.883649-4 2.657906+3 2.426610-4 1.184136+3 3.162278-4 5.045547+2 4.168694-4 2.055060+2 5.559043-4 7.998682+1 7.498942-4 2.974499+1 1.035142-3 1.016911+1 1.462177-3 3.194367+0 2.113489-3 9.212877-1 3.162278-3 2.345067-1 5.370318-3 3.847048-2 8.810489-3 7.046222-3 1.678804-2 7.649817-4 3.349654-2 7.050262-5 6.095369-2 8.951682-6 9.332543-2 2.078912-6 1.188502-1 9.136922-7 1.462177-1 4.548825-7 1.757924-1 2.461777-7 2.041738-1 1.505007-7 2.371374-1 9.270837-8 2.691535-1 6.194436-8 3.019952-1 4.323304-8 3.388442-1 3.040003-8 3.758374-1 2.230333-8 4.120975-1 1.704846-8 4.518559-1 1.312239-8 4.954502-1 1.017758-8 5.370318-1 8.201256-9 5.821032-1 6.650961-9 6.309573-1 5.430553-9 6.839117-1 4.464828-9 7.413102-1 3.697165-9 8.035261-1 3.080545-9 8.609938-1 2.651009-9 9.225714-1 2.296615-9 9.885531-1 2.004198-9 1.083927+0 1.688819-9 1.188502+0 1.433332-9 1.303167+0 1.224643-9 1.462177+0 1.013927-9 1.717908+0 7.83107-10 1.927525+0 6.55457-10 2.162719+0 5.52801-10 2.454709+0 4.61921-10 2.818383+0 3.82753-10 3.311311+0 3.09959-10 3.890451+0 2.52937-10 4.677351+0 2.02046-10 5.688529+0 1.60401-10 7.161434+0 1.23185-10 9.440609+0 9.05659-11 1.288250+1 6.46368-11 1.862087+1 4.37244-11 2.851018+1 2.80606-11 4.954502+1 1.59177-11 9.885531+1 7.90232-12 1.972423+2 3.94161-12 1.566751+3 4.94095-13 1.000000+5 7.73600-15 1 1000 7 0 1.007970+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.361000-5 1.361000-5 1.000000+5 1.361000-5 1 1000 7 9 1.007970+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.361000-5 0.0 1.000000+5 1.000000+5 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.62517-11 1.028750+0 3.62517-10 1.036640+0 3.625170-9 1.054080+0 3.625170-8 1.093710+0 3.625170-7 1.133300+0 1.219870-6 1.147500+0 1.684560-6 1.158200+0 2.093570-6 1.174100+0 2.797530-6 1.190110+0 3.625170-6 1.205100+0 4.509120-6 1.227500+0 6.031090-6 1.250000+0 7.805000-6 1.281300+0 1.068780-5 1.308600+0 1.360120-5 1.332500+0 1.645170-5 1.374400+0 2.211970-5 1.405800+0 2.690870-5 1.452900+0 3.491940-5 1.500000+0 4.385000-5 1.562500+0 5.694550-5 1.641100+0 7.518500-5 1.706900+0 9.173120-5 1.811600+0 1.200670-4 1.952900+0 1.613860-4 2.000000+0 1.758000-4 2.044000+0 1.895000-4 2.163500+0 2.275480-4 2.372600+0 2.960880-4 2.647100+0 3.875840-4 3.000000+0 5.048000-4 3.437500+0 6.466110-4 4.000000+0 8.202000-4 4.750000+0 1.034370-3 5.000000+0 1.102000-3 6.000000+0 1.355000-3 7.000000+0 1.580000-3 8.000000+0 1.784000-3 9.000000+0 1.970000-3 1.000000+1 2.138000-3 1.100000+1 2.292000-3 1.200000+1 2.433000-3 1.300000+1 2.565000-3 1.400000+1 2.688000-3 1.500000+1 2.803000-3 1.600000+1 2.912000-3 1.800000+1 3.112000-3 2.000000+1 3.292000-3 2.200000+1 3.457000-3 2.400000+1 3.608000-3 2.600000+1 3.747000-3 2.800000+1 3.877000-3 3.000000+1 3.998000-3 4.000000+1 4.506000-3 5.000000+1 4.902000-3 6.000000+1 5.225000-3 8.000000+1 5.731000-3 1.000000+2 6.116000-3 1.500000+2 6.781000-3 2.000000+2 7.214000-3 3.000000+2 7.753000-3 4.000000+2 8.079000-3 5.000000+2 8.300000-3 6.000000+2 8.461000-3 8.000000+2 8.680000-3 1.000000+3 8.824000-3 1.500000+3 9.035000-3 2.000000+3 9.153000-3 3.000000+3 9.277000-3 4.000000+3 9.353000-3 5.000000+3 9.397000-3 6.000000+3 9.428000-3 8.000000+3 9.469000-3 1.000000+4 9.495000-3 1.500000+4 9.529000-3 2.000000+4 9.549000-3 3.000000+4 9.567000-3 4.000000+4 9.581000-3 5.000000+4 9.588000-3 6.000000+4 9.592000-3 8.000000+4 9.597000-3 1.000000+5 9.601000-3 1 1000 7 8 1.007970+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 1000 7 9 1.007970+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.004230-8 2.136250+0 1.004230-7 2.253680+0 1.004230-6 2.281500+0 1.406600-6 2.307000+0 1.847570-6 2.338200+0 2.484210-6 2.377400+0 3.440340-6 2.410200+0 4.375540-6 2.446800+0 5.565930-6 2.485900+0 7.007810-6 2.532900+0 8.968490-6 2.556430+0 1.004230-5 2.611900+0 1.280500-5 2.660400+0 1.548060-5 2.745300+0 2.071970-5 2.809000+0 2.509270-5 2.904500+0 3.232600-5 3.000000+0 4.035000-5 3.125000+0 5.203050-5 3.234400+0 6.331060-5 3.425800+0 8.526070-5 3.569300+0 1.033930-4 3.784700+0 1.329300-4 4.000000+0 1.647000-4 4.250000+0 2.035680-4 4.625000+0 2.647040-4 5.000000+0 3.283000-4 5.500000+0 4.156220-4 6.000000+0 5.042000-4 6.750000+0 6.362820-4 7.000000+0 6.798000-4 8.000000+0 8.503000-4 9.000000+0 1.014000-3 1.000000+1 1.170000-3 1.100000+1 1.318000-3 1.200000+1 1.458000-3 1.300000+1 1.590000-3 1.400000+1 1.716000-3 1.500000+1 1.836000-3 1.600000+1 1.951000-3 1.800000+1 2.164000-3 2.000000+1 2.359000-3 2.200000+1 2.539000-3 2.400000+1 2.706000-3 2.600000+1 2.862000-3 2.800000+1 3.007000-3 3.000000+1 3.143000-3 4.000000+1 3.719000-3 5.000000+1 4.173000-3 6.000000+1 4.546000-3 8.000000+1 5.136000-3 1.000000+2 5.593000-3 1.500000+2 6.412000-3 2.000000+2 6.976000-3 3.000000+2 7.731000-3 4.000000+2 8.223000-3 5.000000+2 8.575000-3 6.000000+2 8.841000-3 8.000000+2 9.223000-3 1.000000+3 9.485000-3 1.500000+3 9.888000-3 2.000000+3 1.012000-2 3.000000+3 1.038000-2 4.000000+3 1.053000-2 5.000000+3 1.063000-2 6.000000+3 1.070000-2 8.000000+3 1.079000-2 1.000000+4 1.085000-2 1.500000+4 1.093000-2 2.000000+4 1.097000-2 3.000000+4 1.102000-2 4.000000+4 1.105000-2 5.000000+4 1.106000-2 6.000000+4 1.108000-2 8.000000+4 1.109000-2 1.000000+5 1.110000-2 1 1000 7 8 1.007970+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 1000 7 9 1.007970+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+0 1.000000+5 1.000000+0 5.000000+5 9.994500-1 1.000000+6 9.977900-1 1.500000+6 9.950400-1 2.000000+6 9.912100-1 2.500000+6 9.863200-1 3.000000+6 9.803900-1 3.750000+6 9.695910-1 4.000000+6 9.655400-1 4.750000+6 9.518880-1 5.000000+6 9.469400-1 5.875000+6 9.278400-1 6.625000+6 9.096010-1 7.000000+6 8.998700-1 7.875000+6 8.757760-1 8.000000+6 8.721610-1 8.625000+6 8.537270-1 9.000000+6 8.423900-1 9.750000+6 8.187930-1 1.000000+7 8.108200-1 1.062500+7 7.903800-1 1.156300+7 7.590290-1 1.250000+7 7.271200-1 1.359400+7 6.894680-1 1.453100+7 6.572700-1 1.500000+7 6.413000-1 1.609400+7 6.043200-1 1.703100+7 5.733520-1 1.750000+7 5.581200-1 1.875000+7 5.185450-1 2.000000+7 4.807900-1 2.125000+7 4.449150-1 2.218800+7 4.193120-1 2.289100+7 4.009390-1 2.359400+7 3.832090-1 2.429700+7 3.661360-1 2.500000+7 3.497500-1 2.625000+7 3.221710-1 2.718800+7 3.028140-1 2.789100+7 2.890650-1 2.906300+7 2.674080-1 2.929700+7 2.632700-1 3.000000+7 2.512700-1 3.179700+7 2.229550-1 3.250000+7 2.128040-1 3.330100+7 2.017980-1 3.497600+7 1.806930-1 3.625000+7 1.662140-1 3.677000+7 1.606750-1 3.892300+7 1.397670-1 4.000000+7 1.304500-1 4.250000+7 1.113530-1 4.437500+7 9.908660-2 4.500000+7 9.533620-2 4.718800+7 8.345640-2 5.000000+7 7.059600-2 5.250000+7 6.105480-2 5.625000+7 4.943010-2 6.000000+7 4.032700-2 6.500000+7 3.109610-2 7.000000+7 2.428600-2 7.500000+7 1.919230-2 8.000000+7 1.533600-2 8.750000+7 1.116450-2 9.000000+7 1.009200-2 1.000000+8 6.881600-3 1.125000+8 4.449490-3 1.250000+8 2.994900-3 1.437500+8 1.759020-3 1.500000+8 1.493900-3 1.750000+8 8.230890-4 2.000000+8 4.890600-4 2.500000+8 2.035500-4 3.000000+8 9.902300-5 3.500000+8 5.373400-5 4.000000+8 3.160600-5 5.000000+8 1.299800-5 6.000000+8 6.282400-6 7.000000+8 3.395600-6 8.000000+8 1.992200-6 1.000000+9 8.168200-7 1.500000+9 1.615100-7 2.000000+9 5.112000-8 5.000000+9 1.309200-9 8.000000+9 1.99770-10 1.00000+10 8.18280-11 1.00000+11 8.18290-15 1.00000+14 8.18290-27 1.00000+17 8.18290-39 1 1000 7 0 1.007970+0 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.40970-13 1.000000+2 4.40970-11 1.000000+3 4.409700-9 1.000000+4 4.409700-7 1.000000+5 4.409700-5 5.000000+5 1.102425-3 1.000000+6 4.409700-3 1.500000+6 9.887600-3 2.000000+6 1.749400-2 2.500000+6 2.716600-2 3.000000+6 3.882600-2 3.750000+6 5.983670-2 4.000000+6 6.772900-2 4.750000+6 9.383850-2 5.000000+6 1.033100-1 5.875000+6 1.391020-1 6.625000+6 1.726290-1 7.000000+6 1.902300-1 7.875000+6 2.329580-1 8.000000+6 2.392320-1 8.625000+6 2.710060-1 9.000000+6 2.903800-1 9.750000+6 3.294640-1 1.000000+7 3.425600-1 1.062500+7 3.752390-1 1.156300+7 4.238310-1 1.250000+7 4.713000-1 1.359400+7 5.245410-1 1.453100+7 5.678810-1 1.500000+7 5.887300-1 1.609400+7 6.347230-1 1.703100+7 6.712280-1 1.750000+7 6.885000-1 1.875000+7 7.310720-1 2.000000+7 7.688400-1 2.125000+7 8.019520-1 2.218800+7 8.240260-1 2.289100+7 8.392010-1 2.359400+7 8.530840-1 2.429700+7 8.658780-1 2.500000+7 8.776800-1 2.625000+7 8.961610-1 2.718800+7 9.082310-1 2.789100+7 9.163850-1 2.906300+7 9.283980-1 2.929700+7 9.305910-1 3.000000+7 9.368600-1 3.179700+7 9.502770-1 3.250000+7 9.546510-1 3.330100+7 9.592280-1 3.497600+7 9.673380-1 3.625000+7 9.723280-1 3.677000+7 9.741820-1 3.892300+7 9.804080-1 4.000000+7 9.829800-1 4.250000+7 9.875650-1 4.437500+7 9.901100-1 4.500000+7 9.908580-1 4.718800+7 9.930070-1 5.000000+7 9.950200-1 5.250000+7 9.962740-1 5.625000+7 9.975580-1 6.000000+7 9.983700-1 6.500000+7 9.989660-1 7.000000+7 9.994100-1 7.500000+7 9.995910-1 8.000000+7 9.997600-1 8.750000+7 9.998670-1 9.000000+7 9.999000-1 1.000000+8 9.999500-1 1.125000+8 9.999710-1 1.250000+8 9.999900-1 1.437500+8 9.999980-1 1.500000+8 1.000000+0 1.750000+8 1.000000+0 2.000000+8 1.000000+0 2.500000+8 1.000000+0 3.000000+8 1.000000+0 3.500000+8 1.000000+0 4.000000+8 1.000000+0 5.000000+8 1.000000+0 6.000000+8 1.000000+0 7.000000+8 1.000000+0 8.000000+8 1.000000+0 1.000000+9 1.000000+0 1.500000+9 1.000000+0 2.000000+9 1.000000+0 5.000000+9 1.000000+0 8.000000+9 1.000000+0 1.00000+10 1.000000+0 1.00000+11 1.000000+0 1.00000+14 1.000000+0 1.00000+17 1.000000+0 1 1000 7 0 1.007970+0 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.006048-6 0.0 9.060263-6 0.0 9.959265-6 0.0 1.000216-5 2.056141+0 1.000829-5 2.346878+0 1.003281-5 4.286764+0 1.005732-5 7.228074+0 1.008490-5 1.186343+1 1.012784-5 2.078953+1 1.015691-5 2.646340+1 1.018248-5 2.980443+1 1.020764-5 3.080314+1 1.023288-5 2.927708+1 1.025783-5 2.565143+1 1.029642-5 1.777841+1 1.032697-5 1.152399+1 1.035148-5 7.439484+0 1.037599-5 4.433400+0 1.040051-5 2.438850+0 1.043728-5 6.199655-1 1.044953-5 0.0 1.180357-5 0.0 1.180402-5 3.513614-3 1.185759-5 4.149465-1 1.186168-5 4.460364-1 1.189073-5 8.147219-1 1.192160-5 1.421404+0 1.195065-5 2.196447+0 1.200225-5 3.912541+0 1.203690-5 5.009249+0 1.206838-5 5.666647+0 1.209718-5 5.859945+0 1.212582-5 5.608229+0 1.215743-5 4.875188+0 1.220316-5 3.378880+0 1.223936-5 2.190193+0 1.226842-5 1.413913+0 1.229747-5 8.425908-1 1.232652-5 4.635161-1 1.235558-5 2.353786-1 1.238463-5 0.0 1.244908-5 0.0 1.250270-5 1.432211-1 1.251037-5 1.634725-1 1.254101-5 2.985958-1 1.257356-5 5.209450-1 1.260421-5 8.049985-1 1.265952-5 1.444629+0 1.269613-5 1.843316+0 1.272677-5 2.072755+0 1.275742-5 2.163225+0 1.278806-5 2.113138+0 1.282061-5 1.904716+0 1.287807-5 1.410134+0 1.291013-5 1.194639+0 1.294588-5 1.095625+0 1.297798-5 1.093550+0 1.301873-5 1.178886+0 1.304147-5 1.229887+0 1.310997-5 1.333485+0 1.316532-5 1.332556+0 1.343596-5 1.237848+0 1.352357-5 1.210823+0 1.449822-5 1.104404+0 1.641221-5 8.940378-1 1.869746-5 7.123039-1 2.098487-5 5.809775-1 2.355835-5 4.721851-1 2.591418-5 3.966658-1 2.913232-5 3.194468-1 3.284931-5 2.551233-1 3.613424-5 2.127905-1 3.992138-5 1.757037-1 4.468631-5 1.411211-1 4.959088-5 1.151161-1 5.513187-5 9.326272-2 6.174884-5 7.439288-2 6.788208-5 6.140412-2 7.597705-5 4.884620-2 8.351275-5 4.020001-2 9.129327-5 3.345616-2 1.013578-4 2.688692-2 1.107131-4 2.234800-2 1.227129-4 1.798184-2 1.343996-4 1.481737-2 1.464240-4 1.234626-2 1.632676-4 9.761864-3 1.796900-4 7.935104-3 1.955877-4 6.599114-3 2.127262-4 5.489403-3 2.355439-4 4.390003-3 2.610462-4 3.496854-3 2.901504-4 2.765116-3 3.162278-4 2.284116-3 3.455636-4 1.870606-3 3.832090-4 1.482123-3 4.244363-4 1.177119-3 4.628470-4 9.662368-4 5.120268-4 7.676052-4 5.664023-4 6.095886-4 6.158809-4 5.026093-4 6.703164-4 4.135489-4 7.426832-4 3.264641-4 8.196199-4 2.595985-4 8.927987-4 2.126801-4 9.657660-4 1.771405-4 1.068488-3 1.398562-4 1.156538-3 1.160978-4 1.260279-3 9.484134-5 1.363758-3 7.878470-5 1.486735-3 6.429433-5 1.632110-3 5.149768-5 1.803701-3 4.061570-5 1.988476-3 3.221783-5 2.192294-3 2.553363-5 2.382858-3 2.090992-5 2.592844-3 1.708057-5 2.864249-3 1.345680-5 3.162278-3 1.061438-5 3.442126-3 8.651935-6 3.782484-3 6.890630-6 4.166398-3 5.457076-6 4.545369-3 4.423416-6 5.015101-3 3.489111-6 5.536401-3 2.746961-6 6.108867-3 2.162585-6 6.727818-3 1.710716-6 7.293133-3 1.406521-6 8.045052-3 1.108148-6 8.726439-3 9.095985-7 9.599454-3 7.205981-7 1.057673-2 5.686921-7 1.166505-2 4.475964-7 1.267246-2 3.655333-7 1.378198-2 2.977573-7 1.489084-2 2.464505-7 1.641297-2 1.943106-7 1.787538-2 1.576324-7 1.960153-2 1.257319-7 2.135751-2 1.019033-7 2.349543-2 8.064553-8 2.590966-2 6.345381-8 2.813668-2 5.183892-8 3.063084-2 4.209783-8 3.318207-2 3.459694-8 3.627321-2 2.781679-8 3.942087-2 2.269567-8 4.251628-2 1.886185-8 4.614771-2 1.543240-8 5.014365-2 1.259469-8 5.530042-2 9.911981-9 6.095369-2 7.811432-9 6.708800-2 6.189409-9 7.232052-2 5.157679-9 7.981633-2 4.059779-9 8.787735-2 3.214160-9 9.541984-2 2.633456-9 1.048142-1 2.101934-9 1.155206-1 1.664074-9 1.271856-1 1.324131-9 1.396468-1 1.061489-9 1.526687-1 8.60831-10 1.678048-1 6.90467-10 1.833770-1 5.62452-10 2.022933-1 4.49277-10 2.238699-1 3.57947-10 2.472603-1 2.87226-10 2.691535-1 2.38695-10 2.982749-1 1.91893-10 3.317199-1 1.54035-10 3.617335-1 1.29471-10 4.015596-1 1.05692-10 4.403013-1 8.90230-11 4.954502-1 7.21960-11 5.563044-1 5.95752-11 6.309573-1 4.90453-11 7.192419-1 4.08479-11 8.281805-1 3.41868-11 9.549926-1 2.93200-11 1.173413+0 2.42071-11 1.410753+0 2.03548-11 1.696098+0 1.71155-11 2.039158+0 1.43917-11 2.451607+0 1.21014-11 2.947480+0 1.01755-11 3.543651+0 8.55618-12 4.260405+0 7.19453-12 5.122134+0 6.04958-12 6.158159+0 5.08684-12 7.403736+0 4.27731-12 8.901248+0 3.59661-12 9.760024+0 3.29803-12 1.000000+1 6.26566-12 1 1000 7 0 1.007970+0 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.961483-1 3.006048-6-9.619043-1 4.918349-6-8.766548-1 6.075000-6-7.730935-1 6.834375-6-6.607493-1 7.369288-6-5.425116-1 7.749457-6-4.253621-1 8.013003-6-3.194542-1 8.189822-6-2.325116-1 8.352252-6-1.378043-1 8.452690-6-7.031283-2 8.546851-6 5.739465-4 8.635127-6 7.464289-2 8.717886-6 1.522186-1 8.795472-6 2.333708-1 8.868209-6 3.180276-1 8.936400-6 4.062208-1 9.060263-6 5.937417-1 9.169126-6 7.959427-1 9.264807-6 1.012947+0 9.387049-6 1.365727+0 9.487774-6 1.749493+0 9.570768-6 2.161485+0 9.659161-6 2.746669+0 9.727442-6 3.360716+0 9.780187-6 3.987632+0 9.839297-6 4.946219+0 9.878896-6 5.837836+0 9.912154-6 6.855318+0 9.939390-6 8.023216+0 9.957868-6 9.238971+0 9.968697-6 1.018446+1 1.000829-5 1.281610+1 1.003587-5 1.500826+1 1.006575-5 1.694708+1 1.009026-5 1.761845+1 1.011477-5 1.683063+1 1.013086-5 1.529402+1 1.014762-5 1.287969+1 1.015691-5 1.099751+1 1.017504-5 7.042591+0 1.017928-5 5.903776+0 1.018248-5 4.920188+0 1.019721-5 1.126382+0 1.020036-5 2.710003-1 1.020137-5-1.736904-2 1.020269-5-4.126461-1 1.020386-5-7.886407-1 1.020450-5-1.032431+0 1.020494-5-1.192690+0 1.020660-5-6.678618-1 1.020830-5-1.745143-1 1.020895-5 5.907910-3 1.021019-5 3.482549-1 1.021356-5 1.238612+0 1.022603-5 4.459616+0 1.023151-5 6.098217+0 1.023770-5 7.618207+0 1.026035-5 1.247413+1 1.028100-5 1.550886+1 1.029944-5 1.706626+1 1.032352-5 1.760516+1 1.035148-5 1.652750+1 1.037599-5 1.482913+1 1.041698-5 1.173303+1 1.044800-5 9.632952+0 1.045877-5 8.681934+0 1.048485-5 7.322947+0 1.051552-5 6.230501+0 1.055530-5 5.206536+0 1.060346-5 4.303157+0 1.065884-5 3.534493+0 1.072872-5 2.814236+0 1.079460-5 2.295856+0 1.088626-5 1.737329+0 1.096960-5 1.336292+0 1.104616-5 1.026805+0 1.113788-5 7.061088-1 1.121849-5 4.538440-1 1.129162-5 2.392643-1 1.141961-5-1.260340-1 1.146760-5-2.667768-1 1.154635-5-5.136493-1 1.161729-5-7.679126-1 1.168500-5-1.064381+0 1.173416-5-1.341370+0 1.177135-5-1.074955+0 1.179118-5-8.843498-1 1.180226-5-7.387387-1 1.180665-5-6.594510-1 1.181771-5-5.165218-1 1.184533-5-2.131771-1 1.185350-5-1.181614-1 1.185759-5-6.620043-2 1.185963-5-3.788539-2 1.186168-5-4.944335-3 1.186349-5 2.477006-2 1.186690-5 7.193659-2 1.188477-5 2.966840-1 1.188924-5 3.599787-1 1.189254-5 4.178780-1 1.189595-5 4.650616-1 1.192500-5 8.060628-1 1.193096-5 8.560934-1 1.195406-5 9.955962-1 1.196448-5 9.999472-1 1.198152-5 9.351505-1 1.199443-5 8.086325-1 1.200460-5 6.548284-1 1.201420-5 4.615629-1 1.201965-5 3.435767-1 1.202374-5 2.474276-1 1.202680-5 1.699858-1 1.202910-5 1.082918-1 1.203255-5 8.244092-3 1.203427-5-4.665732-2 1.203513-5-7.622125-2 1.203690-5-1.447764-1 1.205449-5-7.298200-1 1.206317-5-1.064265+0 1.207033-5-1.392935+0 1.208780-5-7.013380-1 1.209233-5-4.985519-1 1.209366-5-4.303966-1 1.209455-5-3.760748-1 1.209718-5-2.469485-1 1.209880-5-1.743151-1 1.210185-5-4.481695-2 1.210717-5 1.706008-1 1.211916-5 6.482654-1 1.212315-5 8.318047-1 1.212582-5 9.574513-1 1.213489-5 1.299402+0 1.215743-5 2.052142+0 1.217456-5 2.467624+0 1.219125-5 2.772842+0 1.221031-5 2.954065+0 1.223528-5 2.988488+0 1.226479-5 2.773781+0 1.229747-5 2.343271+0 1.233651-5 1.768466+0 1.237737-5 1.239121+0 1.239055-5 1.003313+0 1.240427-5 8.160364-1 1.245291-5 2.646296-1 1.245961-5 1.940171-1 1.246967-5 9.696672-2 1.247972-5 6.106422-3 1.250654-5-2.283444-1 1.251420-5-3.024934-1 1.254651-5-5.853247-1 1.258344-5-8.624374-1 1.261369-5-1.017884+0 1.264158-5-1.069277+0 1.266378-5-1.031939+0 1.268694-5-9.238181-1 1.271947-5-6.519609-1 1.273067-5-5.211525-1 1.275236-5-2.954529-1 1.275742-5-2.265967-1 1.278614-5 8.323287-2 1.278806-5 1.086953-1 1.279165-5 1.470871-1 1.279793-5 2.046352-1 1.282061-5 3.814757-1 1.283408-5 4.518778-1 1.284508-5 4.891641-1 1.285951-5 5.153648-1 1.287343-5 5.145939-1 1.289410-5 4.666812-1 1.290613-5 4.243827-1 1.294191-5 2.438835-1 1.294588-5 2.199549-1 1.297369-5 9.656701-2 1.297798-5 7.562429-2 1.298549-5 4.821641-2 1.300310-5-1.469445-3 1.300802-5-1.545160-2 1.301384-5-2.969137-2 1.302256-5-4.188024-2 1.302692-5-4.471488-2 1.303128-5-4.345837-2 1.304147-5-4.204887-2 1.307924-5-5.306100-2 1.309002-5-4.851646-2 1.309541-5-4.326423-2 1.310079-5-3.363414-2 1.312347-5-2.174342-3 1.312726-5 2.988046-3 1.313609-5 1.490655-2 1.314550-5 2.792702-2 1.318077-5 5.385176-2 1.321531-5 6.788954-2 1.324785-5 7.724259-2 1.328032-5 8.177844-2 1.331799-5 8.391054-2 1.334334-5 8.387269-2 1.336517-5 8.803772-2 1.339405-5 8.735696-2 1.342543-5 8.049446-2 1.343596-5 7.964892-2 1.344648-5 8.408387-2 1.348745-5 8.686238-2 1.350870-5 9.228173-2 1.351542-5 9.573831-2 1.353404-5 9.021062-2 1.353649-5 9.010705-2 1.356507-5 7.658814-2 1.357600-5 7.501167-2 1.358052-5 7.277256-2 1.359345-5 7.151601-2 1.359970-5 7.299143-2 1.360315-5 7.263092-2 1.361403-5 7.496088-2 1.362498-5 7.340118-2 1.363551-5 7.639792-2 1.364626-5 7.666415-2 1.366294-5 7.196973-2 1.367275-5 7.144980-2 1.367912-5 7.291183-2 1.369114-5 7.205245-2 1.370123-5 7.431139-2 1.370841-5 7.262007-2 1.373981-5 7.239788-2 1.375408-5 7.334960-2 1.377386-5 7.353082-2 1.378603-5 7.479186-2 1.379886-5 7.440585-2 1.385305-5 7.934108-2 1.393131-5 8.392893-2 1.398189-5 8.978944-2 1.406809-5 9.798967-2 1.411998-5 1.022744-1 1.443188-5 1.212699-1 1.480491-5 1.388700-1 1.507483-5 1.501103-1 1.592177-5 1.771639-1 1.697274-5 1.999198-1 1.828241-5 2.164973-1 2.043037-5 2.260132-1 2.355835-5 2.216402-1 3.184728-5 1.822885-1 4.077574-5 1.422589-1 4.959088-5 1.127463-1 5.904805-5 8.982780-2 6.959558-5 7.164369-2 7.951414-5 5.918889-2 9.129327-5 4.820859-2 1.053750-4 3.870251-2 1.203923-4 3.143820-2 1.376570-4 2.533864-2 1.562751-4 2.062427-2 1.753067-4 1.704816-2 1.955877-4 1.418944-2 2.209937-4 1.151544-2 2.523971-4 9.170053-3 2.845984-4 7.434307-3 3.162278-4 6.172641-3 3.559126-4 4.999223-3 4.002864-4 4.046395-3 4.450825-4 3.337785-3 5.026628-4 2.668525-3 5.664023-4 2.136827-3 6.413915-4 1.691005-3 7.168310-4 1.368239-3 8.002919-4 1.105914-3 9.094616-4 8.493078-4 1.015460-3 6.699192-4 1.129144-3 5.309044-4 1.260279-3 4.150446-4 1.396819-3 3.273144-4 1.512472-3 2.716444-4 1.671706-3 2.175218-4 1.839793-3 1.749417-4 2.032251-3 1.385658-4 2.243069-3 1.089676-4 2.485172-3 8.382992-5 2.701166-3 6.686666-5 2.916702-3 5.355524-5 3.162278-3 4.158092-5 3.442126-3 3.093656-5 3.718196-3 2.270183-5 3.946484-3 1.715676-5 4.166398-3 1.265378-5 4.356780-3 9.293390-6 4.545369-3 6.372228-6 4.726559-3 3.888578-6 4.838512-3 2.491493-6 4.901995-3 1.741458-6 5.015101-3 4.750420-7 5.134475-3-7.718234-7 5.217491-3-1.588941-6 5.412020-3-3.358508-6 5.657012-3-5.332664-6 6.001012-3-7.707167-6 6.482416-3-1.041694-5 7.153575-3-1.332098-5 8.045052-3-1.611238-5 9.427917-3-1.897833-5 1.145918-2-2.145870-5 1.489084-2-2.357779-5 2.181041-2-2.522066-5 4.251628-2-2.627762-5 1.294220-1-2.661436-5 3.912911-1-2.665064-5 1.228714+0-2.665465-5 3.710658+0-2.665505-5 1.000000+1-2.665509-5 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.500308-9 1.088000-6 5.38682-10 1.156000-6 6.55085-10 1.228250-6 3.195056-9 1.305016-6 6.459416-9 1.386579-6 8.781949-9 1.473240-6 8.854737-9 1.565318-6 6.244975-9 1.663150-6 2.183299-9 1.767097-6 7.34367-10 1.877541-6 1.050072-8 1.994887-6 4.633476-8 2.048000-6 6.956544-8 2.119567-6 5.434832-8 2.252040-6 3.383529-8 2.392793-6 2.906356-8 2.542342-6 4.055228-8 2.701239-6 8.022636-8 2.785652-6 1.208338-7 2.962476-6 2.837434-7 3.055054-6 4.193958-7 3.072000-6 4.366119-7 3.150524-6 4.456744-7 3.248978-6 4.546356-7 3.350508-6 4.946806-7 3.455212-6 5.732622-7 3.563187-6 7.025551-7 3.674537-6 9.009434-7 3.789366-6 1.189817-6 3.840000-6 1.305444-6 3.907784-6 1.335276-6 4.029902-6 1.368954-6 4.155836-6 1.491979-6 4.285706-6 1.727523-6 4.419635-6 2.111487-6 4.557748-6 2.697853-6 4.700178-6 3.560426-6 4.800000-6 4.252090-6 4.847058-6 4.458370-6 4.998529-6 5.064105-6 5.154733-6 6.019725-6 5.315818-6 7.455056-6 5.400000-6 8.294250-6 5.481938-6 8.869758-6 5.653248-6 1.025366-5 5.829912-6 1.240283-5 6.012097-6 1.554328-5 6.075000-6 1.668133-5 6.199975-6 1.839651-5 6.393724-6 2.171159-5 6.593528-6 2.673511-5 6.799576-6 3.383051-5 6.834375-6 3.501004-5 7.012063-6 4.010795-5 7.231190-6 4.837880-5 7.457164-6 6.067523-5 7.690201-6 7.730273-5 7.930519-6 9.261312-5 8.178348-6 1.142912-4 8.433921-6 1.461247-4 8.649756-6 1.808678-4 8.969278-6 2.367424-4 9.190366-6 2.875754-4 9.538617-6 3.827727-4 9.764763-6 4.649285-4 9.824871-6 4.879522-4 1.010218-5 6.111938-4 1.063107-5 9.410121-4 1.088319-5 1.157415-3 1.102350-5 1.299690-3 1.112742-5 1.410621-3 1.136403-5 1.700800-3 1.159324-5 2.055395-3 1.223878-5 3.470467-3 1.244065-5 4.084838-3 1.263622-5 4.783820-3 1.282567-5 5.577495-3 1.318701-5 7.485911-3 1.335925-5 8.620039-3 1.352611-5 9.889245-3 1.368775-5 1.130679-2 1.385884-5 1.304129-2 1.412835-5 1.638276-2 1.428997-5 1.879015-2 1.456551-5 2.378888-2 1.482384-5 2.976505-2 1.506602-5 3.684777-2 1.529307-5 4.516433-2 1.550592-5 5.484515-2 1.570548-5 6.602247-2 1.589256-5 7.882921-2 1.606794-5 9.340353-2 1.623237-5 1.098821-1 1.640107-5 1.302515-1 1.653103-5 1.488699-1 1.668173-5 1.743721-1 1.679353-5 1.965592-1 1.691261-5 2.239036-1 1.703592-5 2.570234-1 1.712890-5 2.858154-1 1.724524-5 3.273468-1 1.732676-5 3.607555-1 1.740523-5 3.968803-1 1.748608-5 4.388111-1 1.756187-5 4.830859-1 1.770398-5 5.814380-1 1.782834-5 6.878527-1 1.793713-5 8.011299-1 1.803233-5 9.199192-1 1.811564-5 1.042623+0 1.818853-5 1.167531+0 1.825230-5 1.292904+0 1.830811-5 1.417086+0 1.840577-5 1.673891+0 1.847902-5 1.907308+0 1.853395-5 2.111001+0 1.861635-5 2.474038+0 1.869875-5 2.925764+0 1.874478-5 3.227802+0 1.879080-5 3.574453+0 1.883683-5 3.975158+0 1.888285-5 4.442211+0 1.892888-5 4.992042+0 1.897490-5 5.647287+0 1.902093-5 6.440104+0 1.906695-5 7.417303+0 1.911298-5 8.647922+0 1.915900-5 1.023358+1 1.920502-5 1.232131+1 1.922804-5 1.361528+1 1.925105-5 1.511754+1 1.927406-5 1.686521+1 1.929707-5 1.890039+1 1.932009-5 2.127019+1 1.934310-5 2.402647+1 1.936611-5 2.722545+1 1.941214-5 3.519303+1 1.950035-5 5.789563+1 1.953376-5 6.956006+1 1.955842-5 7.936423+1 1.957322-5 8.574040+1 1.959798-5 9.723107+1 1.962123-5 1.089239+2 1.966929-5 1.355900+2 1.967530-5 1.391261+2 1.971735-5 1.647739+2 1.973387-5 1.751274+2 1.976541-5 1.949425+2 1.978981-5 2.099993+2 1.981347-5 2.240466+2 1.983787-5 2.376660+2 1.986152-5 2.497217+2 1.988255-5 2.592631+2 1.990578-5 2.682917+2 1.991259-5 2.706046+2 1.994075-5 2.784310+2 1.996205-5 2.823644+2 1.999138-5 2.848083+2 2.000889-5 2.845887+2 2.005599-5 2.778353+2 2.007098-5 2.738822+2 2.010482-5 2.620587+2 2.012400-5 2.537541+2 2.014017-5 2.459738+2 2.015588-5 2.378171+2 2.017428-5 2.276263+2 2.019793-5 2.137197+2 2.021896-5 2.008137+2 2.023923-5 1.880759+2 2.024599-5 1.837960+2 2.027002-5 1.685625+2 2.029405-5 1.534907+2 2.032108-5 1.370009+2 2.034211-5 1.246777+2 2.039017-5 9.869194+1 2.040669-5 9.056633+1 2.042246-5 8.322523+1 2.043823-5 7.629831+1 2.046221-5 6.656563+1 2.048977-5 5.655836+1 2.051043-5 4.986206+1 2.053733-5 4.212268+1 2.056340-5 3.561363+1 2.058866-5 3.015864+1 2.061333-5 2.556423+1 2.066038-5 1.853839+1 2.072559-5 1.178203+1 2.090506-5 3.366297+0 2.103857-5 1.325808+0 2.112345-5 7.717208-1 2.118712-5 5.952294-1 2.121099-5 5.753022-1 2.123188-5 5.786234-1 2.125016-5 5.980499-1 2.126615-5 6.283863-1 2.128014-5 6.657675-1 2.129239-5 7.072878-1 2.130310-5 7.507656-1 2.131248-5 7.945816-1 2.132068-5 8.375601-1 2.133414-5 9.179779-1 2.134445-5 9.883542-1 2.135556-5 1.073342+0 2.137811-5 1.277212+0 2.144740-5 2.215233+0 2.147324-5 2.705753+0 2.149415-5 3.165455+0 2.151506-5 3.683059+0 2.153596-5 4.259241+0 2.155621-5 4.872195+0 2.157240-5 5.399680+0 2.159217-5 6.086136+0 2.160477-5 6.545873+0 2.161507-5 6.932823+0 2.164923-5 8.277556+0 2.166158-5 8.780159+0 2.168259-5 9.645193+0 2.169867-5 1.030888+1 2.171673-5 1.104677+1 2.173181-5 1.165041+1 2.175121-5 1.239979+1 2.176436-5 1.288542+1 2.178163-5 1.348766+1 2.180228-5 1.414470+1 2.180867-5 1.433240+1 2.182958-5 1.488814+1 2.185009-5 1.533832+1 2.187136-5 1.569691+1 2.189517-5 1.595909+1 2.191468-5 1.606060+1 2.192612-5 1.607223+1 2.196338-5 1.586917+1 2.197777-5 1.569607+1 2.198691-5 1.556022+1 2.201812-5 1.495794+1 2.203224-5 1.462203+1 2.204504-5 1.428757+1 2.206605-5 1.368610+1 2.208964-5 1.294833+1 2.210935-5 1.229626+1 2.213468-5 1.143094+1 2.216286-5 1.046125+1 2.219614-5 9.348563+0 2.227756-5 7.020238+0 2.232939-5 5.959844+0 2.234223-5 5.753385+0 2.235388-5 5.585137+0 2.237299-5 5.347398+0 2.238859-5 5.187189+0 2.242371-5 4.929482+0 2.243982-5 4.854128+0 2.245997-5 4.792946+0 2.247352-5 4.770111+0 2.249773-5 4.760505+0 2.252096-5 4.781951+0 2.255654-5 4.855924+0 2.265479-5 5.150230+0 2.269129-5 5.244503+0 2.273629-5 5.328971+0 2.277059-5 5.367350+0 2.279681-5 5.382114+0 2.284777-5 5.379871+0 2.292337-5 5.324923+0 2.308498-5 5.160815+0 2.319294-5 5.089064+0 2.332081-5 5.046562+0 2.391521-5 4.953130+0 2.472096-5 4.875871+0 2.634045-5 4.694877+0 2.818383-5 4.544624+0 2.938144-5 4.466767+0 3.311311-5 4.286744+0 3.619694-5 4.171542+0 4.054793-5 4.048214+0 5.103305-5 3.836111+0 6.842459-5 3.609308+0 1.013036-4 3.353904+0 1.429914-4 3.164224+0 1.986801-4 3.014560+0 2.664521-4 2.903972+0 3.903644-4 2.791192+0 5.569950-4 2.707078+0 6.657041-4 2.666552+0 9.646616-4 2.567563+0 1.373140-3 2.433006+0 1.425474-3 2.417039+0 1.457016-3 2.391370+0 1.823140-3 2.252587+0 1.859755-3 2.230583+0 1.987560-3 2.177185+0 2.196003-3 2.088944+0 2.434340-3 1.986939+0 2.619190-3 1.908376+0 2.932693-3 1.776308+0 3.241857-3 1.649791+0 3.514204-3 1.544541+0 3.818204-3 1.433679+0 4.169105-3 1.315265+0 4.512061-3 1.208987+0 4.882166-3 1.104643+0 5.318064-3 9.952659-1 5.752703-3 8.992421-1 6.371307-3 7.824491-1 7.020085-3 6.809563-1 7.767800-3 5.853916-1 8.727248-3 4.885637-1 9.877529-3 4.003709-1 1.133851-2 3.184579-1 1.318796-2 2.459728-1 1.551596-2 1.848510-1 1.817819-2 1.389748-1 2.167833-2 1.004769-1 2.629769-2 6.987685-2 3.328818-2 4.448895-2 4.400092-2 2.585041-2 6.391601-2 1.238844-2 1.123457-1 4.038073-3 3.392711-1 4.441378-4 1.070165+0 4.465368-5 3.231848+0 4.896344-6 9.760024+0 5.368755-7 2.947480+1 5.886725-8 8.901248+1 6.454666-9 2.688134+2 7.07740-10 8.118035+2 7.76021-11 2.511886+3 8.10542-12 7.943282+3 8.10542-13 2.511886+4 8.10542-14 7.943282+4 8.10542-15 1.000000+5 5.11417-15 1 2000 7 7 4.002600+0 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.173800-8 1.258900-6 1.137000-7 1.584900-6 1.802000-7 1.995300-6 2.855900-7 2.511900-6 4.526300-7 3.162300-6 7.173700-7 3.981100-6 1.136900-6 5.011900-6 1.801900-6 6.309600-6 2.855800-6 7.943300-6 4.526200-6 1.000000-5 7.173400-6 1.258900-5 1.136900-5 1.584900-5 1.801800-5 1.995300-5 2.855600-5 2.511900-5 4.525700-5 3.162300-5 7.172600-5 3.981100-5 1.136700-4 5.011900-5 1.801500-4 6.309600-5 2.855000-4 7.943300-5 4.524400-4 1.000000-4 7.169900-4 1.258900-4 1.135900-3 1.584900-4 1.798500-3 1.995300-4 2.847400-3 2.511900-4 4.507000-3 3.162300-4 7.126000-3 3.981100-4 1.132400-2 5.011900-4 1.778900-2 6.309600-4 2.789100-2 7.943300-4 4.360800-2 1.000000-3 6.767400-2 1.258900-3 1.039800-1 1.584900-3 1.565800-1 1.995300-3 2.315400-1 2.511900-3 3.315900-1 3.162300-3 4.546500-1 3.981100-3 5.942600-1 5.011900-3 7.368400-1 6.309600-3 8.684800-1 7.943300-3 9.777100-1 1.000000-2 1.060200+0 1.258900-2 1.116800+0 1.584900-2 1.151400+0 1.995300-2 1.167100+0 2.511900-2 1.169100+0 3.162300-2 1.159200+0 3.981100-2 1.139100+0 5.011900-2 1.110500+0 6.309600-2 1.074200+0 7.943300-2 1.031200+0 1.000000-1 9.824400-1 1.258900-1 9.289400-1 1.584900-1 8.720100-1 1.995300-1 8.128500-1 2.511900-1 7.528100-1 3.162300-1 6.930000-1 3.981100-1 6.344100-1 5.011900-1 5.776900-1 6.309600-1 5.232900-1 7.943300-1 4.714700-1 1.000000+0 4.224200-1 1.258900+0 3.762700-1 1.584900+0 3.331400-1 1.995300+0 2.931300-1 2.511900+0 2.563500-1 3.162300+0 2.228200-1 3.981100+0 1.925500-1 5.011900+0 1.654800-1 6.309600+0 1.414800-1 7.943300+0 1.203900-1 1.000000+1 1.019900-1 1.258900+1 8.605200-2 1.584900+1 7.234300-2 1.995300+1 6.061700-2 2.511900+1 5.064000-2 3.162300+1 4.219100-2 3.981100+1 3.506600-2 5.011900+1 2.908000-2 6.309600+1 2.406800-2 7.943300+1 1.988300-2 1.000000+2 1.639900-2 1.258900+2 1.350500-2 1.584900+2 1.110600-2 1.995300+2 9.121600-3 2.511900+2 7.483100-3 3.162300+2 6.132300-3 3.981100+2 5.020200-3 5.011900+2 4.106000-3 6.309600+2 3.355300-3 7.943300+2 2.739600-3 1.000000+3 2.235200-3 1.258900+3 1.822300-3 1.584900+3 1.484700-3 1.995300+3 1.208900-3 2.511900+3 9.836800-4 3.162300+3 7.999700-4 3.981100+3 6.502100-4 5.011900+3 5.282100-4 6.309600+3 4.288900-4 7.943300+3 3.480800-4 1.000000+4 2.823600-4 1.258900+4 2.289500-4 1.584900+4 1.855700-4 1.995300+4 1.503500-4 2.511900+4 1.217600-4 3.162300+4 9.857500-5 3.981100+4 7.977500-5 5.011900+4 6.453800-5 6.309600+4 5.219400-5 7.943300+4 4.219800-5 1.000000+5 3.410500-5 1 2000 7 7 4.002600+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994173-4 2.511886-4 2.510160-4 3.162278-4 3.159542-4 3.981072-4 3.976732-4 5.011872-4 5.005017-4 6.309573-4 6.298707-4 7.943282-4 7.926121-4 1.000000-3 9.972885-4 1.258925-3 1.254637-3 1.584893-3 1.578165-3 1.995262-3 1.984677-3 2.511886-3 2.495372-3 3.162278-3 3.136602-3 3.981072-3 3.941481-3 5.011872-3 4.951101-3 6.309573-3 6.216964-3 7.943282-3 7.802571-3 1.000000-2 9.786491-3 1.258925-2 1.226494-2 1.584893-2 1.535489-2 1.995262-2 1.919883-2 2.511886-2 2.396523-2 3.162278-2 2.985836-2 3.981072-2 3.711747-2 5.011872-2 4.602293-2 6.309573-2 5.690285-2 7.943282-2 7.013522-2 1.000000-1 8.615659-2 1.258925-1 1.054698-1 1.584893-1 1.286536-1 1.995262-1 1.563785-1 2.511886-1 1.894142-1 3.162278-1 2.286440-1 3.981072-1 2.750822-1 5.011872-1 3.299116-1 6.309573-1 3.945051-1 7.943282-1 4.705203-1 1.000000+0 5.599690-1 1.258925+0 6.653313-1 1.584893+0 7.896645-1 1.995262+0 9.367301-1 2.511886+0 1.111242+0 3.162278+0 1.318927+0 3.981072+0 1.566807+0 5.011872+0 1.863552+0 6.309573+0 2.219692+0 7.943282+0 2.648156+0 1.000000+1 3.164712+0 1.258925+1 3.788713+0 1.584893+1 4.543826+0 1.995262+1 5.458962+0 2.511886+1 6.569682+0 3.162278+1 7.919615+0 3.981072+1 9.562051+0 5.011872+1 1.156280+1 6.309573+1 1.400240+1 7.943282+1 1.697998+1 1.000000+2 2.061735+1 1.258925+2 2.506457+1 1.584893+2 3.050617+1 1.995262+2 3.716934+1 2.511886+2 4.533445+1 3.162278+2 5.534704+1 3.981072+2 6.763146+1 5.011872+2 8.271474+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 2000 7 9 4.002600+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728482-8 1.000000-4 2.739249-8 1.258925-4 4.340687-8 1.584893-4 6.877522-8 1.995262-4 1.089796-7 2.511886-4 1.726696-7 3.162278-4 2.735285-7 3.981072-4 4.339473-7 5.011872-4 6.855691-7 6.309573-4 1.086617-6 7.943282-4 1.716087-6 1.000000-3 2.711456-6 1.258925-3 4.288563-6 1.584893-3 6.727892-6 1.995262-3 1.058524-5 2.511886-3 1.651445-5 3.162278-3 2.567613-5 3.981072-3 3.959085-5 5.011872-3 6.077117-5 6.309573-3 9.260898-5 7.943282-3 1.407111-4 1.000000-2 2.135092-4 1.258925-2 3.243128-4 1.584893-2 4.940447-4 1.995262-2 7.537886-4 2.511886-2 1.153635-3 3.162278-2 1.764414-3 3.981072-2 2.693246-3 5.011872-2 4.095790-3 6.309573-2 6.192880-3 7.943282-2 9.297601-3 1.000000-1 1.384341-2 1.258925-1 2.042277-2 1.584893-1 2.983568-2 1.995262-1 4.314769-2 2.511886-1 6.177444-2 3.162278-1 8.758378-2 3.981072-1 1.230249-1 5.011872-1 1.712756-1 6.309573-1 2.364523-1 7.943282-1 3.238080-1 1.000000+0 4.400310-1 1.258925+0 5.935941-1 1.584893+0 7.952287-1 1.995262+0 1.058532+0 2.511886+0 1.400644+0 3.162278+0 1.843351+0 3.981072+0 2.414264+0 5.011872+0 3.148320+0 6.309573+0 4.089881+0 7.943282+0 5.295127+0 1.000000+1 6.835288+0 1.258925+1 8.800541+0 1.584893+1 1.130511+1 1.995262+1 1.449366+1 2.511886+1 1.854918+1 3.162278+1 2.370316+1 3.981072+1 3.024867+1 5.011872+1 3.855593+1 6.309573+1 4.909333+1 7.943282+1 6.245284+1 1.000000+2 7.938265+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608807+2 3.981072+2 3.304757+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 2.342000-5 8.164340+6 2.540973-5 7.092028+6 2.754229-5 6.124288+6 3.019952-5 5.138770+6 3.311311-5 4.280394+6 3.672823-5 3.460117+6 4.120975-5 2.711523+6 4.677351-5 2.057654+6 5.370318-5 1.510589+6 6.165950-5 1.100882+6 7.161434-5 7.753070+5 8.317638-5 5.417804+5 9.660509-5 3.756308+5 1.109175-4 2.659520+5 1.273503-4 1.869537+5 1.462177-4 1.304428+5 1.678804-4 9.029770+4 1.905461-4 6.399792+4 2.162719-4 4.504787+4 2.454709-4 3.149129+4 2.800000-4 2.155160+4 3.200000-4 1.456054+4 3.630781-4 9.983011+3 4.200000-4 6.411620+3 4.841724-4 4.130207+3 5.559043-4 2.673505+3 6.606934-4 1.539894+3 9.225714-4 5.231426+2 1.333521-3 1.607001+2 1.698244-3 7.355183+1 1.927525-3 4.861848+1 2.483133-3 2.099525+1 4.466836-3 2.958413+0 6.165950-3 1.002369+0 8.810489-3 2.990383-1 1.428894-2 5.754295-2 2.851018-2 5.437138-3 5.688529-2 5.110215-4 8.413951-2 1.343254-4 1.096478-1 5.477781-5 1.428894-1 2.251127-5 1.698244-1 1.268994-5 2.000000-1 7.427700-6 2.317395-1 4.614360-6 2.630268-1 3.086061-6 2.951209-1 2.155080-6 3.311311-1 1.515502-6 3.672823-1 1.111731-6 4.073803-1 8.217025-7 4.466836-1 6.324772-7 4.897788-1 4.902735-7 5.370318-1 3.829728-7 5.821032-1 3.105670-7 6.309573-1 2.534542-7 6.839117-1 2.082553-7 7.413102-1 1.722705-7 8.035261-1 1.434648-7 8.810489-1 1.174784-7 9.772372-1 9.462500-8 1.122018+0 7.153977-8 1.258925+0 5.706435-8 1.364583+0 4.904141-8 1.479108+0 4.242654-8 1.584893+0 3.772357-8 1.717908+0 3.311443-8 1.862087+0 2.924924-8 2.187762+0 2.308985-8 2.511886+0 1.898815-8 2.884032+0 1.572516-8 3.311311+0 1.311495-8 3.890451+0 1.069240-8 4.677351+0 8.533832-9 5.754399+0 6.677478-9 7.244360+0 5.126597-9 9.440609+0 3.814996-9 1.288250+1 2.721366-9 1.798871+1 1.907261-9 3.090295+1 1.085222-9 5.888437+1 5.61206-10 1.174898+2 2.78938-10 4.677351+2 6.96209-11 2.951209+4 1.10091-12 1.000000+5 3.24900-13 1 2000 7 0 4.002600+0 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 2.342000-5 2.342000-5 1.000000+5 2.342000-5 1 2000 7 9 4.002600+0 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 2.342000-5 0.0 1.000000+5 1.000000+5 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.342000-5 8.164340+6 2.540973-5 7.092028+6 2.754229-5 6.124288+6 3.019952-5 5.138770+6 3.311311-5 4.280394+6 3.672823-5 3.460117+6 4.120975-5 2.711523+6 4.677351-5 2.057654+6 5.370318-5 1.510589+6 6.165950-5 1.100882+6 7.161434-5 7.753070+5 8.317638-5 5.417804+5 9.660509-5 3.756308+5 1.109175-4 2.659520+5 1.273503-4 1.869537+5 1.462177-4 1.304428+5 1.678804-4 9.029770+4 1.905461-4 6.399792+4 2.162719-4 4.504787+4 2.454709-4 3.149129+4 2.800000-4 2.155160+4 3.200000-4 1.456054+4 3.630781-4 9.983011+3 4.200000-4 6.411620+3 4.841724-4 4.130207+3 5.559043-4 2.673505+3 6.606934-4 1.539894+3 9.225714-4 5.231426+2 1.333521-3 1.607001+2 1.698244-3 7.355183+1 1.927525-3 4.861848+1 2.483133-3 2.099525+1 4.466836-3 2.958413+0 6.165950-3 1.002369+0 8.810489-3 2.990383-1 1.428894-2 5.754295-2 2.851018-2 5.437138-3 5.688529-2 5.110215-4 8.413951-2 1.343254-4 1.096478-1 5.477781-5 1.428894-1 2.251127-5 1.698244-1 1.268994-5 2.000000-1 7.427700-6 2.317395-1 4.614360-6 2.630268-1 3.086061-6 2.951209-1 2.155080-6 3.311311-1 1.515502-6 3.672823-1 1.111731-6 4.073803-1 8.217025-7 4.466836-1 6.324772-7 4.897788-1 4.902735-7 5.370318-1 3.829728-7 5.821032-1 3.105670-7 6.309573-1 2.534542-7 6.839117-1 2.082553-7 7.413102-1 1.722705-7 8.035261-1 1.434648-7 8.810489-1 1.174784-7 9.772372-1 9.462500-8 1.122018+0 7.153977-8 1.258925+0 5.706435-8 1.364583+0 4.904141-8 1.479108+0 4.242654-8 1.584893+0 3.772357-8 1.717908+0 3.311443-8 1.862087+0 2.924924-8 2.187762+0 2.308985-8 2.511886+0 1.898815-8 2.884032+0 1.572516-8 3.311311+0 1.311495-8 3.890451+0 1.069240-8 4.677351+0 8.533832-9 5.754399+0 6.677478-9 7.244360+0 5.126597-9 9.440609+0 3.814996-9 1.288250+1 2.721366-9 1.798871+1 1.907261-9 3.090295+1 1.085222-9 5.888437+1 5.61206-10 1.174898+2 2.78938-10 4.677351+2 6.96209-11 2.951209+4 1.10091-12 1.000000+5 3.24900-13 1 2000 7 0 4.002600+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.342000-5 2.342000-5 1.000000+5 2.342000-5 1 2000 7 9 4.002600+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.342000-5 0.0 1.000000+5 1.000000+5 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.45239-10 1.028750+0 1.452390-9 1.036640+0 1.452390-8 1.054080+0 1.452390-7 1.087100+0 1.105910-6 1.093710+0 1.452390-6 1.102600+0 2.013900-6 1.110700+0 2.626820-6 1.120600+0 3.514420-6 1.133300+0 4.887270-6 1.147500+0 6.749010-6 1.158200+0 8.387650-6 1.174100+0 1.120800-5 1.190110+0 1.452390-5 1.205100+0 1.806540-5 1.227500+0 2.416320-5 1.250000+0 3.127000-5 1.281300+0 4.281760-5 1.308600+0 5.448490-5 1.332500+0 6.589830-5 1.374400+0 8.858550-5 1.405800+0 1.077520-4 1.452900+0 1.397950-4 1.500000+0 1.755000-4 1.562500+0 2.278450-4 1.641100+0 3.007340-4 1.706900+0 3.668560-4 1.811600+0 4.801440-4 1.952900+0 6.455860-4 2.000000+0 7.034000-4 2.044000+0 7.584000-4 2.163500+0 9.111150-4 2.372600+0 1.185750-3 2.647100+0 1.551720-3 3.000000+0 2.020000-3 3.437500+0 2.587060-3 4.000000+0 3.281000-3 4.750000+0 4.135020-3 5.000000+0 4.405000-3 6.000000+0 5.419000-3 7.000000+0 6.321000-3 8.000000+0 7.137000-3 9.000000+0 7.878000-3 1.000000+1 8.552000-3 1.100000+1 9.167000-3 1.200000+1 9.732000-3 1.300000+1 1.026000-2 1.400000+1 1.075000-2 1.500000+1 1.121000-2 1.600000+1 1.164000-2 1.800000+1 1.244000-2 2.000000+1 1.316000-2 2.200000+1 1.382000-2 2.400000+1 1.442000-2 2.600000+1 1.498000-2 2.800000+1 1.549000-2 3.000000+1 1.597000-2 4.000000+1 1.798000-2 5.000000+1 1.952000-2 6.000000+1 2.076000-2 8.000000+1 2.265000-2 1.000000+2 2.404000-2 1.500000+2 2.633000-2 2.000000+2 2.775000-2 3.000000+2 2.943000-2 4.000000+2 3.041000-2 5.000000+2 3.106000-2 6.000000+2 3.152000-2 8.000000+2 3.215000-2 1.000000+3 3.255000-2 1.500000+3 3.314000-2 2.000000+3 3.346000-2 3.000000+3 3.380000-2 4.000000+3 3.401000-2 5.000000+3 3.413000-2 6.000000+3 3.421000-2 8.000000+3 3.432000-2 1.000000+4 3.439000-2 1.500000+4 3.447000-2 2.000000+4 3.453000-2 3.000000+4 3.458000-2 4.000000+4 3.461000-2 5.000000+4 3.463000-2 6.000000+4 3.464000-2 8.000000+4 3.465000-2 1.000000+5 3.466000-2 1 2000 7 8 4.002600+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 2000 7 9 4.002600+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.008460-8 2.136250+0 2.008460-7 2.214800+0 1.143760-6 2.234200+0 1.538560-6 2.253680+0 2.008460-6 2.281500+0 2.813200-6 2.307000+0 3.695140-6 2.338200+0 4.968440-6 2.377400+0 6.880700-6 2.410200+0 8.751100-6 2.446800+0 1.113190-5 2.485900+0 1.401570-5 2.532900+0 1.793700-5 2.556430+0 2.008460-5 2.611900+0 2.561000-5 2.660400+0 3.096090-5 2.745300+0 4.143880-5 2.809000+0 5.018450-5 2.904500+0 6.464890-5 3.000000+0 8.070000-5 3.125000+0 1.040650-4 3.234400+0 1.266320-4 3.425800+0 1.705500-4 3.569300+0 2.068340-4 3.784700+0 2.659380-4 4.000000+0 3.295000-4 4.250000+0 4.072380-4 4.625000+0 5.294480-4 5.000000+0 6.565000-4 5.500000+0 8.308980-4 6.000000+0 1.008000-3 6.750000+0 1.272770-3 7.000000+0 1.360000-3 8.000000+0 1.701000-3 9.000000+0 2.028000-3 1.000000+1 2.339000-3 1.100000+1 2.635000-3 1.200000+1 2.915000-3 1.300000+1 3.180000-3 1.400000+1 3.432000-3 1.500000+1 3.672000-3 1.600000+1 3.901000-3 1.800000+1 4.328000-3 2.000000+1 4.718000-3 2.200000+1 5.079000-3 2.400000+1 5.413000-3 2.600000+1 5.723000-3 2.800000+1 6.013000-3 3.000000+1 6.285000-3 4.000000+1 7.437000-3 5.000000+1 8.344000-3 6.000000+1 9.087000-3 8.000000+1 1.025000-2 1.000000+2 1.115000-2 1.500000+2 1.271000-2 2.000000+2 1.375000-2 3.000000+2 1.509000-2 4.000000+2 1.592000-2 5.000000+2 1.650000-2 6.000000+2 1.693000-2 8.000000+2 1.753000-2 1.000000+3 1.793000-2 1.500000+3 1.854000-2 2.000000+3 1.888000-2 3.000000+3 1.926000-2 4.000000+3 1.948000-2 5.000000+3 1.961000-2 6.000000+3 1.971000-2 8.000000+3 1.984000-2 1.000000+4 1.992000-2 1.500000+4 2.003000-2 2.000000+4 2.009000-2 3.000000+4 2.015000-2 4.000000+4 2.019000-2 5.000000+4 2.022000-2 6.000000+4 2.023000-2 8.000000+4 2.025000-2 1.000000+5 2.026000-2 1 2000 7 8 4.002600+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 2000 7 9 4.002600+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.000000+0 1.000000+5 2.000000+0 5.000000+5 1.999500+0 7.187500+5 1.998920+0 9.062500+5 1.998500+0 1.000000+6 1.998200+0 1.125000+6 1.997620+0 1.253900+6 1.997080+0 1.341800+6 1.996750+0 1.447300+6 1.996260+0 1.500000+6 1.996000+0 1.625000+6 1.995220+0 2.000000+6 1.993000+0 2.250000+6 1.991050+0 2.375000+6 1.990150+0 2.500000+6 1.989100+0 2.625000+6 1.987900+0 3.000000+6 1.984400+0 3.234400+6 1.981750+0 4.000000+6 1.972400+0 4.500000+6 1.965000+0 5.000000+6 1.956900+0 5.500000+6 1.947940+0 6.500000+6 1.927740+0 6.625000+6 1.925080+0 7.000000+6 1.916900+0 8.500000+6 1.879770+0 9.000000+6 1.866000+0 1.000000+7 1.836400+0 1.125000+7 1.797290+0 1.250000+7 1.755100+0 1.375000+7 1.709510+0 1.437500+7 1.685550+0 1.500000+7 1.661200+0 1.625000+7 1.610920+0 1.750000+7 1.560300+0 1.875000+7 1.509490+0 1.937500+7 1.484040+0 2.000000+7 1.458500+0 2.125000+7 1.406680+0 2.312500+7 1.328910+0 2.500000+7 1.252200+0 2.625000+7 1.202060+0 2.812500+7 1.128960+0 3.000000+7 1.058600+0 3.125000+7 1.013310+0 3.250000+7 9.694590-1 3.343800+7 9.374650-1 3.437500+7 9.064460-1 3.507800+7 8.836990-1 3.718800+7 8.182990-1 3.753900+7 8.078460-1 4.000000+7 7.379400-1 4.250000+7 6.727080-1 4.437500+7 6.274720-1 4.625000+7 5.852890-1 4.718800+7 5.653120-1 5.000000+7 5.095300-1 5.250000+7 4.647410-1 5.500000+7 4.241810-1 5.625000+7 4.053510-1 6.000000+7 3.541600-1 6.437500+7 3.032640-1 6.750000+7 2.719400-1 6.812500+7 2.661220-1 7.000000+7 2.495200-1 7.500000+7 2.106580-1 8.000000+7 1.786000-1 8.500000+7 1.520310-1 9.000000+7 1.299500-1 9.500000+7 1.115250-1 1.000000+8 9.612000-2 1.062500+8 8.025630-2 1.144500+8 6.393380-2 1.214800+8 5.301640-2 1.250000+8 4.840000-2 1.359400+8 3.683870-2 1.453100+8 2.950720-2 1.500000+8 2.651000-2 1.625000+8 2.015430-2 1.718800+8 1.657500-2 1.859400+8 1.254440-2 2.000000+8 9.640000-3 2.125000+8 7.715150-3 2.312500+8 5.629840-3 2.500000+8 4.196200-3 2.875000+8 2.464570-3 3.000000+8 2.093400-3 3.500000+8 1.153700-3 4.000000+8 6.855900-4 5.000000+8 2.854300-4 6.000000+8 1.389000-4 7.000000+8 7.539800-5 8.000000+8 4.436300-5 1.000000+9 1.825600-5 1.500000+9 3.625900-6 2.000000+9 1.150500-6 5.000000+9 2.974900-8 8.000000+9 4.578000-9 1.00000+10 1.885500-9 1.83860+10 1.67438-10 2.62810+10 4.06961-11 3.08890+10 2.15358-11 3.95280+10 8.19526-12 5.03940+10 3.18853-12 5.94880+10 1.68178-12 6.96160+10 9.21300-13 8.04680+10 5.31349-13 9.34890+10 3.01910-13 1.00000+11 2.34610-13 1.17140+11 1.30262-13 1.36540+11 7.40649-14 1.70670+11 3.28518-14 2.04860+11 1.70225-14 2.52170+11 8.12279-15 3.35790+11 2.97070-15 4.68190+11 9.42441-16 6.33390+11 3.37456-16 8.34870+11 1.33769-16 1.31660+12 2.98321-17 1.95920+12 8.24999-18 3.59790+12 1.20028-18 8.26120+12 9.14345-20 2.87420+13 2.11045-21 1.00000+14 5.13120-23 2.05350+15 6.09751-27 1.00000+17 5.12050-32 1 2000 7 0 4.002600+0 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.00000-13 1.000000+2 5.00000-11 1.000000+3 5.000000-9 1.000000+4 5.000000-7 1.000000+5 5.000000-5 5.000000+5 1.250000-3 7.187500+5 2.583008-3 9.062500+5 4.106445-3 1.000000+6 5.000000-3 1.125000+6 5.833370-3 1.253900+6 6.760940-3 1.341800+6 7.443730-3 1.447300+6 8.328310-3 1.500000+6 8.800000-3 1.625000+6 1.000290-2 2.000000+6 1.410000-2 2.250000+6 1.708470-2 2.375000+6 1.874350-2 2.500000+6 2.059000-2 2.625000+6 2.267080-2 3.000000+6 2.990000-2 3.234400+6 3.470670-2 4.000000+6 5.190000-2 4.500000+6 6.537150-2 5.000000+6 8.054000-2 5.500000+6 9.697850-2 6.500000+6 1.334180-1 6.625000+6 1.383070-1 7.000000+6 1.534700-1 8.500000+6 2.206770-1 9.000000+6 2.450200-1 1.000000+7 2.957500-1 1.125000+7 3.620240-1 1.250000+7 4.321500-1 1.375000+7 5.065660-1 1.437500+7 5.449120-1 1.500000+7 5.835200-1 1.625000+7 6.604830-1 1.750000+7 7.360300-1 1.875000+7 8.092800-1 1.937500+7 8.450660-1 2.000000+7 8.805600-1 2.125000+7 9.502550-1 2.312500+7 1.050970+0 2.500000+7 1.145700+0 2.625000+7 1.204720+0 2.812500+7 1.287180+0 3.000000+7 1.362400+0 3.125000+7 1.408550+0 3.250000+7 1.451890+0 3.343800+7 1.482540+0 3.437500+7 1.511630+0 3.507800+7 1.532450+0 3.718800+7 1.590060+0 3.753900+7 1.599000+0 4.000000+7 1.656600+0 4.250000+7 1.706670+0 4.437500+7 1.739430+0 4.625000+7 1.768660+0 4.718800+7 1.781980+0 5.000000+7 1.817500+0 5.250000+7 1.843980+0 5.500000+7 1.866590+0 5.625000+7 1.876590+0 6.000000+7 1.902300+0 6.437500+7 1.925190+0 6.750000+7 1.938110+0 6.812500+7 1.940300+0 7.000000+7 1.946700+0 7.500000+7 1.960160+0 8.000000+7 1.970200+0 8.500000+7 1.977420+0 9.000000+7 1.982900+0 9.500000+7 1.986900+0 1.000000+8 1.989900+0 1.062500+8 1.992680+0 1.144500+8 1.995110+0 1.214800+8 1.996490+0 1.250000+8 1.997100+0 1.359400+8 1.998070+0 1.453100+8 1.998790+0 1.500000+8 1.999000+0 1.625000+8 1.999250+0 1.718800+8 1.999430+0 1.859400+8 1.999670+0 2.000000+8 1.999900+0 2.125000+8 1.999930+0 2.312500+8 1.999970+0 2.500000+8 2.000000+0 2.875000+8 2.000000+0 3.000000+8 2.000000+0 3.500000+8 2.000000+0 4.000000+8 2.000000+0 5.000000+8 2.000000+0 6.000000+8 2.000000+0 7.000000+8 2.000000+0 8.000000+8 2.000000+0 1.000000+9 2.000000+0 1.500000+9 2.000000+0 2.000000+9 2.000000+0 5.000000+9 2.000000+0 8.000000+9 2.000000+0 1.00000+10 2.000000+0 1.83860+10 2.000000+0 2.62810+10 2.000000+0 3.08890+10 2.000000+0 3.95280+10 2.000000+0 5.03940+10 2.000000+0 5.94880+10 2.000000+0 6.96160+10 2.000000+0 8.04680+10 2.000000+0 9.34890+10 2.000000+0 1.00000+11 2.000000+0 1.17140+11 2.000000+0 1.36540+11 2.000000+0 1.70670+11 2.000000+0 2.04860+11 2.000000+0 2.52170+11 2.000000+0 3.35790+11 2.000000+0 4.68190+11 2.000000+0 6.33390+11 2.000000+0 8.34870+11 2.000000+0 1.31660+12 2.000000+0 1.95920+12 2.000000+0 3.59790+12 2.000000+0 8.26120+12 2.000000+0 2.87420+13 2.000000+0 1.00000+14 2.000000+0 2.05350+15 2.000000+0 1.00000+17 2.000000+0 1 2000 7 0 4.002600+0 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.055054-6 0.0 9.190366-6 0.0 1.869875-5 0.0 1.874478-5 2.23355-14 1.879080-5 4.41958-14 1.883683-5 8.07272-14 1.888285-5 1.36117-13 1.892888-5 2.11865-13 1.897490-5 3.04411-13 1.902093-5 4.03752-13 1.906695-5 4.94337-13 1.911298-5 5.58709-13 1.915900-5 5.82911-13 1.920502-5 5.61400-13 1.925105-5 4.99110-13 1.932009-5 3.60026-13 1.938912-5 2.17017-13 1.943515-5 1.40098-13 1.948117-5 8.34886-14 1.952502-5 4.77112-14 1.952511-5 6.245118-4 1.961523-5 1.717491+0 1.962123-5 1.830800+0 1.966929-5 3.343792+0 1.971735-5 5.637601+0 1.977141-5 9.252126+0 1.985561-5 1.621143+1 1.991259-5 2.063430+1 1.996205-5 2.322379+1 2.000889-5 2.407381+1 2.006154-5 2.282434+1 2.011045-5 1.999684+1 2.018611-5 1.385843+1 2.024599-5 8.982595+0 2.029405-5 5.798645+0 2.034211-5 3.455464+0 2.039017-5 1.900821+0 2.046221-5 4.837078-1 2.048618-5 1.374792-3 2.048629-5 0.0 2.137811-5 0.0 2.148499-5 4.856091-1 2.153596-5 8.647212-1 2.158858-5 1.458039+0 2.164923-5 2.422459+0 2.178719-5 5.058108+0 2.182958-5 5.675482+0 2.186448-5 6.040871+0 2.191468-5 6.194379+0 2.196656-5 5.889074+0 2.202541-5 5.064819+0 2.213468-5 3.136832+0 2.217226-5 2.547917+0 2.222002-5 1.985004+0 2.225171-5 1.778238+0 2.228055-5 1.647481+0 2.232939-5 1.624688+0 2.243982-5 2.084242+0 2.251419-5 2.642616+0 2.257179-5 2.917234+0 2.263356-5 3.033157+0 2.277059-5 2.929865+0 2.295831-5 2.762575+0 2.319294-5 2.732342+0 3.431379-5 1.953546+0 4.186730-5 1.569336+0 4.960744-5 1.280595+0 5.937671-5 1.020094+0 6.990409-5 8.208772-1 8.119001-5 6.670963-1 9.130740-5 5.634712-1 1.067551-4 4.470564-1 1.217924-4 3.651433-1 1.388002-4 2.967969-1 1.550768-4 2.475646-1 1.753502-4 2.013534-1 1.986801-4 1.620708-1 2.255041-4 1.291928-1 2.531608-4 1.044068-1 2.770400-4 8.811064-2 3.042964-4 7.351686-2 3.407541-4 5.885722-2 3.809581-4 4.703688-2 4.275315-4 3.714121-2 4.745412-4 2.985160-2 5.311490-4 2.346011-2 5.836695-4 1.911550-2 6.484636-4 1.517329-2 7.218790-4 1.194999-2 7.830661-4 9.966279-3 8.684603-4 7.907910-3 9.440608-4 6.567198-3 1.046562-3 5.232993-3 1.160831-3 4.164407-3 1.285618-3 3.324858-3 1.425474-3 2.643139-3 1.543114-3 2.214240-3 1.681173-3 1.828843-3 1.859755-3 1.455036-3 2.066990-3 1.141181-3 2.286906-3 9.029569-4 2.483133-3 7.461976-4 2.684856-3 6.218728-4 2.932693-3 5.058058-4 3.241857-3 4.001770-4 3.514204-3 3.314467-4 3.818204-3 2.729886-4 4.169105-3 2.222976-4 4.600993-3 1.764134-4 5.086971-3 1.392455-4 5.621203-3 1.100252-4 6.106091-3 9.052837-5 6.745403-3 7.138103-5 7.306487-3 5.898597-5 8.052132-3 4.676040-5 8.727248-3 3.858257-5 9.519726-3 3.129961-5 1.048666-2 2.479557-5 1.133851-2 2.054659-5 1.246220-2 1.636162-5 1.374709-2 1.291920-5 1.490929-2 1.062248-5 1.639771-2 8.440090-6 1.778457-2 6.938706-6 1.965400-2 5.449249-6 2.167833-2 4.300322-6 2.381387-2 3.427260-6 2.629769-2 2.697082-6 2.851018-2 2.219257-6 3.095840-2 1.817467-6 3.385027-2 1.463899-6 3.703939-2 1.176969-6 4.079524-2 9.314243-7 4.400092-2 7.753926-7 4.751493-2 6.436048-7 5.247080-2 5.060983-7 5.792762-2 3.982621-7 6.391601-2 3.140925-7 7.023548-2 2.501728-7 7.758807-2 1.967476-7 8.413951-2 1.618334-7 9.160571-2 1.320725-7 1.011484-1 1.042417-7 1.096478-1 8.599560-8 1.193775-1 7.036022-8 1.318133-1 5.569419-8 1.428894-1 4.605234-8 1.554289-1 3.788567-8 1.715693-1 3.014077-8 1.892873-1 2.410026-8 2.053641-1 2.004410-8 2.275571-1 1.594028-8 2.524847-1 1.270129-8 2.785338-1 1.029029-8 3.031927-1 8.611578-9 3.311311-1 7.184842-9 3.672823-1 5.845351-9 4.051664-1 4.841045-9 4.466836-1 4.044795-9 5.011872-1 3.305781-9 5.626449-1 2.731667-9 6.309573-1 2.289031-9 7.192419-1 1.904072-9 8.035261-1 1.650330-9 9.354393-1 1.387594-9 1.070165+0 1.211070-9 1.286622+0 1.017485-9 1.546860+0 8.54844-10 1.859734+0 7.18201-10 2.235892+0 6.03399-10 2.688134+0 5.06948-10 3.231848+0 4.25915-10 3.885536+0 3.57834-10 4.671441+0 3.00636-10 5.616308+0 2.52580-10 6.752287+0 2.12206-10 8.118035+0 1.78286-10 9.760024+0 1.49788-10 1.000000+1 2.85205-10 1 2000 7 0 4.002600+0 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.999925+0 3.055054-6-1.999202+0 9.190366-6-1.979189+0 1.335925-5-1.886523+0 1.529307-5-1.740891+0 1.640107-5-1.560442+0 1.712890-5-1.350466+0 1.756187-5-1.157955+0 1.793713-5-9.194718-1 1.818853-5-7.003006-1 1.830811-5-5.717661-1 1.840577-5-4.516569-1 1.847902-5-3.509304-1 1.853395-5-2.683983-1 1.861635-5-1.316390-1 1.869875-5 2.342219-2 1.874478-5 1.194880-1 1.879080-5 2.232535-1 1.883683-5 3.358131-1 1.888285-5 4.583431-1 1.892888-5 5.921342-1 1.897490-5 7.390299-1 1.906695-5 1.080465+0 1.915900-5 1.505843+0 1.922804-5 1.901758+0 1.929707-5 2.391238+0 1.936611-5 3.017555+0 1.943515-5 3.862783+0 1.948117-5 4.640069+0 1.951269-5 5.377699+0 1.954362-5 6.429476+0 1.962123-5 8.485135+0 1.967530-5 1.019750+1 1.973387-5 1.171290+1 1.978193-5 1.223965+1 1.981947-5 1.187107+1 1.985561-5 1.072412+1 1.989438-5 8.553409+0 1.990958-5 7.370023+0 1.994497-5 4.311912+0 1.995645-5 3.121077+0 1.996205-5 2.429622+0 1.996751-5 1.850274+0 1.998660-5-8.171752-2 1.999138-5-5.758888-1 1.999966-5-1.479167+0 2.000498-5-2.138114+0 2.000889-5-2.679920+0 2.005376-5 1.726500+0 2.005599-5 2.011446+0 2.006154-5 2.607306+0 2.007098-5 3.507691+0 2.011045-5 6.912190+0 2.014017-5 8.785117+0 2.016640-5 1.005449+1 2.019793-5 1.090755+1 2.023923-5 1.119916+1 2.028804-5 1.050765+1 2.034211-5 8.970221+0 2.040669-5 6.920410+0 2.047419-5 5.133159+0 2.049671-5 4.285959+0 2.052433-5 3.574565+0 2.056340-5 2.825627+0 2.061333-5 2.087477+0 2.066038-5 1.526870+0 2.070454-5 1.080411+0 2.074598-5 7.129647-1 2.076573-5 5.517525-1 2.080401-5 2.600977-1 2.083989-5 7.792839-3 2.087353-5-2.136737-1 2.090506-5-4.107077-1 2.099006-5-9.029174-1 2.125016-5-2.316804+0 2.134445-5-2.951203+0 2.137481-5-3.229689+0 2.142406-5-2.786615+0 2.148499-5-2.285869+0 2.155621-5-1.645559+0 2.160477-5-1.266704+0 2.165561-5-1.041439+0 2.167279-5-1.028436+0 2.169867-5-1.081442+0 2.172535-5-1.217058+0 2.174636-5-1.387495+0 2.178163-5-1.802637+0 2.180228-5-2.132596+0 2.185009-5-3.066042+0 2.186448-5-3.434316+0 2.190763-5-2.485196+0 2.191468-5-2.287311+0 2.197254-5-1.038640+0 2.198691-5-7.866024-1 2.201812-5-2.990730-1 2.202541-5-2.020292-1 2.203224-5-1.229592-1 2.204504-5 3.087166-3 2.205625-5 9.360803-2 2.206605-5 1.593519-1 2.207463-5 2.071714-1 2.208964-5 2.697821-1 2.210090-5 2.992051-1 2.210935-5 3.111027-1 2.212201-5 3.109449-1 2.212835-5 3.012898-1 2.213468-5 2.813367-1 2.215347-5 2.067818-1 2.216286-5 1.574671-1 2.216756-5 1.265616-1 2.217226-5 8.585669-2 2.219614-5-1.029222-1 2.220808-5-2.043165-1 2.221703-5-2.963608-1 2.222579-5-4.092082-1 2.227429-5-9.449503-1 2.228055-5-1.030811+0 2.234223-5-1.689037+0 2.238859-5-2.009724+0 2.245430-5-2.383517+0 2.250990-5-2.415312+0 2.257179-5-2.243466+0 2.265479-5-1.934222+0 2.273629-5-1.746226+0 2.284777-5-1.646050+0 2.306736-5-1.647662+0 2.320836-5-1.656035+0 2.386988-5-1.527403+0 2.564773-5-1.216388+0 2.759062-5-9.540548-1 2.986276-5-7.189956-1 3.144595-5-5.875031-1 3.371345-5-4.358719-1 3.619694-5-3.081334-1 3.821092-5-2.245451-1 4.054793-5-1.464271-1 4.186730-5-1.084339-1 4.304337-5-7.878495-2 4.434012-5-4.991692-2 4.554056-5-2.590257-2 4.673491-5-4.111041-3 4.717913-5 4.558166-3 4.831283-5 2.250488-2 4.960744-5 4.068834-2 5.140841-5 6.265957-2 5.416890-5 9.260318-2 5.695697-5 1.155890-1 6.010710-5 1.358381-1 6.386080-5 1.555750-1 7.228738-5 1.811631-1 8.395808-5 1.943966-1 1.013036-4 1.930723-1 1.388002-4 1.668323-1 1.952233-4 1.266351-1 2.474984-4 9.908289-2 2.963807-4 8.020877-2 3.557475-4 6.353148-2 4.184786-4 5.090575-2 4.841724-4 4.128435-2 5.569950-4 3.346146-2 6.364602-4 2.715713-2 7.218790-4 2.216014-2 8.162756-4 1.805325-2 9.225714-4 1.464848-2 1.046562-3 1.177076-2 1.160831-3 9.814715-3 1.313365-3 7.888549-3 1.485188-3 6.329504-3 1.681173-3 5.053190-3 1.859755-3 4.196872-3 2.066990-3 3.445440-3 2.334459-3 2.730049-3 2.619190-3 2.181312-3 2.990797-3 1.666276-3 3.307457-3 1.334399-3 3.665760-3 1.057648-3 4.074338-3 8.268153-4 4.512061-3 6.457389-4 4.987921-3 5.004189-4 5.417319-3 4.007832-4 5.891535-3 3.150639-4 6.371307-3 2.470777-4 6.858946-3 1.920727-4 7.306487-3 1.509731-4 7.767800-3 1.158231-4 8.235371-3 8.605182-5 8.727248-3 5.975312-5 9.141118-3 4.083403-5 9.519726-3 2.564332-5 9.877529-3 1.286294-5 1.004905-2 7.214755-6 1.027258-2 2.741570-7 1.048666-2-5.961061-6 1.069141-2-1.157754-5 1.107359-2-2.124000-5 1.158181-2-3.263721-5 1.222104-2-4.500298-5 1.318796-2-6.040259-5 1.460074-2-7.764275-5 1.639771-2-9.346495-5 1.893684-2-1.086147-4 2.307254-2-1.234328-4 2.974795-2-1.356193-4 4.325396-2-1.453154-4 8.224293-2-1.516108-4 2.468117-1-1.537507-4 7.413102-1-1.539884-4 2.235892+0-1.540147-4 6.752287+0-1.540176-4 1.000000+1-1.540178-4 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.973600-2 1.050678-6 6.538148-2 1.077219-6 7.537409-2 1.102930-6 8.647886-2 1.127838-6 9.878345-2 1.151968-6 1.123794-1 1.175343-6 1.273634-1 1.197988-6 1.438376-1 1.219926-6 1.619099-1 1.241178-6 1.816941-1 1.261765-6 2.033104-1 1.281710-6 2.268854-1 1.301031-6 2.525527-1 1.319748-6 2.804531-1 1.337880-6 3.107348-1 1.355446-6 3.435538-1 1.372463-6 3.790744-1 1.388948-6 4.174693-1 1.404918-6 4.589199-1 1.420389-6 5.036171-1 1.435376-6 5.517611-1 1.449895-6 6.035622-1 1.463960-6 6.592407-1 1.477586-6 7.190280-1 1.490786-6 7.831660-1 1.503574-6 8.519084-1 1.515961-6 9.255205-1 1.527962-6 1.004280+0 1.539588-6 1.088476+0 1.561761-6 1.274406+0 1.582569-6 1.485896+0 1.602098-6 1.725827+0 1.611407-6 1.857597+0 1.629161-6 2.147368+0 1.646087-6 2.479339+0 1.661956-6 2.851867+0 1.676833-6 3.269782+0 1.690780-6 3.737797+0 1.703855-6 4.260676+0 1.716113-6 4.843459+0 1.727605-6 5.491493+0 1.738379-6 6.210429+0 1.748479-6 7.006218+0 1.757948-6 7.885115+0 1.766825-6 8.853670+0 1.775148-6 9.918725+0 1.782950-6 1.108741+1 1.790265-6 1.236714+1 1.797122-6 1.376563+1 1.803551-6 1.529087+1 1.809578-6 1.695118+1 1.815229-6 1.875524+1 1.820526-6 2.071217+1 1.825492-6 2.283165+1 1.830148-6 2.512412+1 1.834513-6 2.760108+1 1.838605-6 3.027555+1 1.842441-6 3.316251+1 1.846037-6 3.627942+1 1.849409-6 3.964655+1 1.852570-6 4.328684+1 1.855533-6 4.722519+1 1.858311-6 5.148724+1 1.860916-6 5.609755+1 1.863358-6 6.107755+1 1.865647-6 6.644349+1 1.867793-6 7.220479+1 1.871817-6 8.537576+1 1.875338-6 1.001284+2 1.878419-6 1.162128+2 1.881114-6 1.332765+2 1.883473-6 1.509184+2 1.887343-6 1.863694+2 1.893633-6 2.652862+2 1.899482-6 3.678434+2 1.903428-6 4.552208+2 1.904866-6 4.908873+2 1.907205-6 5.531719+2 1.909543-6 6.206303+2 1.914220-6 7.695117+2 1.914805-6 7.892521+2 1.918898-6 9.325281+2 1.920505-6 9.904606+2 1.924007-6 1.117175+3 1.926364-6 1.200990+3 1.927743-6 1.248734+3 1.930005-6 1.323963+3 1.932445-6 1.399299+3 1.934612-6 1.459764+3 1.937005-6 1.518070+3 1.937702-6 1.533171+3 1.940565-6 1.585365+3 1.942779-6 1.614057+3 1.945588-6 1.634780+3 1.947283-6 1.638515+3 1.951854-6 1.615624+3 1.953113-6 1.601114+3 1.956606-6 1.543665+3 1.958473-6 1.503481+3 1.960991-6 1.440209+3 1.963366-6 1.372399+3 1.965668-6 1.300662+3 1.967715-6 1.233132+3 1.969688-6 1.165670+3 1.972684-6 1.060853+3 1.975022-6 9.787117+2 1.977653-6 8.876507+2 1.979700-6 8.187586+2 1.984377-6 6.709389+2 1.987519-6 5.811157+2 1.989054-6 5.403772+2 1.992400-6 4.589895+2 1.996411-6 3.749790+2 2.007079-6 2.169037+2 2.009735-6 1.899684+2 2.012385-6 1.670059+2 2.015029-6 1.474983+2 2.017669-6 1.309619+2 2.020303-6 1.169556+2 2.022933-6 1.050853+2 2.025557-6 9.500545+1 2.028176-6 8.641779+1 2.030790-6 7.906859+1 2.033399-6 7.274475+1 2.038606-6 6.248736+1 2.043793-6 5.458943+1 2.048960-6 4.834024+1 2.054107-6 4.327294+1 2.059234-6 3.907871+1 2.064340-6 3.554893+1 2.069427-6 3.253840+1 2.074494-6 2.994266+1 2.079541-6 2.768414+1 2.084568-6 2.570373+1 2.089575-6 2.395529+1 2.094563-6 2.240220+1 2.099532-6 2.101496+1 2.109430-6 1.864194+1 2.119251-6 1.669616+1 2.128996-6 1.507667+1 2.138664-6 1.371209+1 2.148256-6 1.255019+1 2.157774-6 1.155170+1 2.167217-6 1.068652+1 2.176587-6 9.931360+0 2.185883-6 9.267974+0 2.195107-6 8.681756+0 2.204259-6 8.160653+0 2.222419-6 7.272214+0 2.240295-6 6.547355+0 2.257893-6 5.947362+0 2.275215-6 5.444816+0 2.292266-6 5.019093+0 2.309052-6 4.654705+0 2.325575-6 4.339957+0 2.341839-6 4.065988+0 2.357850-6 3.826130+0 2.373610-6 3.614936+0 2.404639-6 3.256365+0 2.434697-6 2.966128+0 2.463817-6 2.728267+0 2.492026-6 2.530520+0 2.519354-6 2.363942+0 2.545828-6 2.222173+0 2.571474-6 2.100917+0 2.621165-6 1.899585+0 2.667749-6 1.742470+0 2.711422-6 1.617906+0 2.752366-6 1.517153+0 2.790750-6 1.434913+0 2.862721-6 1.303819+0 2.925696-6 1.208275+0 2.980798-6 1.136778+0 3.029013-6 1.082119+0 3.113389-6 9.998086-1 3.200000-6 9.290412-1 3.271594-6 8.775583-1 3.424521-6 7.862901-1 3.532243-6 7.329128-1 3.685518-6 6.625098-1 3.762155-6 6.220376-1 3.800474-6 5.935808-1 3.819634-6 5.748836-1 3.848281-6 5.450953-1 3.857730-6 5.375204-1 3.867178-6 5.328369-1 3.876627-6 5.322101-1 3.886076-6 5.366189-1 3.891677-6 5.418650-1 3.897278-6 5.491159-1 3.902063-6 5.568535-1 3.911632-6 5.761785-1 3.923871-6 6.064793-1 3.933320-6 6.317995-1 3.942769-6 6.564320-1 3.952218-6 6.783039-1 3.959745-6 6.926206-1 3.964262-6 6.996086-1 3.972413-6 7.089090-1 3.980564-6 7.138813-1 3.990013-6 7.145548-1 3.999462-6 7.105654-1 4.008910-6 7.030347-1 4.027808-6 6.820904-1 4.059953-6 6.456175-1 4.079091-6 6.286653-1 4.133185-6 5.963226-1 4.369849-6 5.073141-1 4.405348-6 4.925112-1 4.431973-6 4.792498-1 4.471910-6 4.529308-1 4.491878-6 4.360941-1 4.522972-6 4.091961-1 4.534077-6 4.020930-1 4.545182-6 3.981190-1 4.556288-6 3.984898-1 4.561840-6 4.006322-1 4.567393-6 4.042061-1 4.572946-6 4.092638-1 4.578498-6 4.158164-1 4.584051-6 4.238288-1 4.589604-6 4.332178-1 4.600709-6 4.555527-1 4.622920-6 5.081952-1 4.636802-6 5.401058-1 4.645131-6 5.566748-1 4.650683-6 5.661824-1 4.656236-6 5.742699-1 4.661789-6 5.808281-1 4.667342-6 5.857962-1 4.672913-6 5.891699-1 4.678485-6 5.909605-1 4.689644-6 5.901058-1 4.700802-6 5.841485-1 4.711961-6 5.743084-1 4.723119-6 5.618637-1 4.739596-6 5.411005-1 4.804875-6 4.625914-1 4.820978-6 4.462332-1 4.832844-6 4.354214-1 4.844710-6 4.261918-1 4.856576-6 4.191596-1 4.868443-6 4.149686-1 4.880309-6 4.141526-1 4.886242-6 4.151095-1 4.892175-6 4.169845-1 4.904041-6 4.233486-1 4.915908-6 4.326724-1 4.939640-6 4.558550-1 4.951506-6 4.669479-1 4.963372-6 4.758991-1 4.975239-6 4.817129-1 4.981593-6 4.833375-1 4.987948-6 4.838936-1 5.000225-6 4.820955-1 5.010837-6 4.779350-1 5.024780-6 4.699832-1 5.049334-6 4.542879-1 5.066095-6 4.460188-1 5.073888-6 4.434042-1 5.088220-6 4.407682-1 5.098443-6 4.404193-1 5.122997-6 4.427805-1 5.149072-6 4.459637-1 5.175888-6 4.466009-1 5.270308-6 4.408295-1 5.401931-6 4.383461-1 5.462220-6 4.343835-1 5.545466-6 4.274092-1 5.601411-6 4.257865-1 5.770000-6 4.250429-1 6.028622-6 4.220851-1 6.217016-6 4.211683-1 6.683439-6 4.222805-1 7.200000-6 4.265002-1 7.500000-6 4.296847-1 7.852356-6 4.342679-1 1.062663-5 4.721559-1 1.168154-5 4.833812-1 1.251699-5 4.904606-1 1.325867-5 4.948699-1 1.464715-5 4.996691-1 1.590460-5 5.009665-1 1.756871-5 4.973457-1 1.925009-5 4.884350-1 2.115225-5 4.731550-1 2.328197-5 4.493011-1 2.541071-5 4.203447-1 2.683417-5 3.980206-1 2.900062-5 3.591002-1 2.988290-5 3.420707-1 3.169111-5 3.040343-1 3.276719-5 2.804962-1 3.428613-5 2.450434-1 3.520650-5 2.231484-1 3.639113-5 1.938091-1 3.743646-5 1.679559-1 3.841208-5 1.434870-1 3.948313-5 1.167196-1 4.018418-5 9.954446-2 4.098806-5 8.041240-2 4.174169-5 6.327520-2 4.253535-5 4.641732-2 4.311060-5 3.524223-2 4.354345-5 2.763388-2 4.373158-5 2.457560-2 4.431375-5 1.614319-2 4.441298-5 1.487762-2 4.485953-5 9.927874-3 4.522817-5 6.893446-3 4.537120-5 6.003516-3 4.585089-5 4.307254-3 4.599241-5 4.224535-3 4.630060-5 4.798864-3 4.672220-5 7.455631-3 4.711745-5 1.222504-2 4.738058-5 1.684046-2 4.748800-5 1.909561-2 4.783539-5 2.801897-2 4.801029-5 3.354419-2 4.816107-5 3.892048-2 4.846639-5 5.172705-2 4.860065-5 5.825133-2 4.875263-5 6.635880-2 4.902098-5 8.271519-2 4.927256-5 1.006759-1 4.960744-5 1.291309-1 4.993682-5 1.631117-1 5.015942-5 1.900457-1 5.048416-5 2.360853-1 5.064429-5 2.621044-1 5.093515-5 3.152443-1 5.119079-5 3.667582-1 5.146479-5 4.209467-1 5.177993-5 4.674120-1 5.186653-5 4.749804-1 5.212437-5 4.814893-1 5.237862-5 4.658163-1 5.265489-5 4.299957-1 5.282611-5 4.008425-1 5.296369-5 3.744466-1 5.311152-5 3.435697-1 5.324208-5 3.144472-1 5.337265-5 2.839969-1 5.343793-5 2.684713-1 5.350322-5 2.529086-1 5.356850-5 2.374857-1 5.376435-5 1.948676-1 5.382963-5 1.833220-1 5.389492-5 1.741867-1 5.396020-5 1.684060-1 5.402548-5 1.671882-1 5.409077-5 1.720632-1 5.415605-5 1.849454-1 5.422133-5 2.082011-1 5.428662-5 2.447186-1 5.435190-5 2.979769-1 5.441718-5 3.721076-1 5.448247-5 4.719459-1 5.464567-5 8.723722-1 5.469464-5 1.046232+0 5.474360-5 1.250578+0 5.479427-5 1.497801+0 5.483227-5 1.709413+0 5.488214-5 2.024287+0 5.494026-5 2.448885+0 5.498523-5 2.823536+0 5.502275-5 3.168651+0 5.513530-5 4.394126+0 5.519654-5 5.186530+0 5.521695-5 5.470771+0 5.535219-5 7.603615+0 5.536910-5 7.899428+0 5.548744-5 1.012727+1 5.553393-5 1.106530+1 5.562268-5 1.291866+1 5.566917-5 1.390534+1 5.572464-5 1.507872+1 5.577483-5 1.612167+1 5.582660-5 1.716262+1 5.587653-5 1.811721+1 5.592698-5 1.901722+1 5.597136-5 1.974306+1 5.602841-5 2.056933+1 5.610026-5 2.141162+1 5.615697-5 2.190108+1 5.619310-5 2.212605+1 5.624600-5 2.232800+1 5.630230-5 2.237276+1 5.634758-5 2.228079+1 5.640168-5 2.202372+1 5.645603-5 2.161010+1 5.648260-5 2.135405+1 5.657784-5 2.017244+1 5.663183-5 1.934237+1 5.667733-5 1.856890+1 5.672718-5 1.765834+1 5.678145-5 1.661003+1 5.682677-5 1.570322+1 5.688505-5 1.451571+1 5.695260-5 1.313817+1 5.697512-5 1.268452+1 5.704274-5 1.135557+1 5.711883-5 9.947579+0 5.723795-5 8.003289+0 5.730509-5 7.074323+0 5.738474-5 6.142400+0 5.744511-5 5.560813+0 5.748622-5 5.225365+0 5.751377-5 5.027274+0 5.758512-5 4.609684+0 5.761823-5 4.460225+0 5.765970-5 4.309779+0 5.768851-5 4.227899+0 5.772716-5 4.145079+0 5.776010-5 4.097110+0 5.778447-5 4.073970+0 5.780856-5 4.060659+0 5.785590-5 4.059589+0 5.788051-5 4.070817+0 5.790973-5 4.093356+0 5.796581-5 4.160570+0 5.805217-5 4.310312+0 5.829135-5 4.834365+0 5.836286-5 4.981114+0 5.845313-5 5.142471+0 5.856335-5 5.295518+0 5.866791-5 5.393929+0 5.877547-5 5.451491+0 5.890220-5 5.473425+0 5.906149-5 5.454672+0 5.947660-5 5.354246+0 5.971890-5 5.337555+0 5.996593-5 5.358070+0 6.052337-5 5.464008+0 6.183829-5 5.757662+0 6.372663-5 6.111125+0 6.599607-5 6.496484+0 6.825386-5 6.844629+0 6.975292-5 7.052367+0 7.206656-5 7.337739+0 7.500000-5 7.644953+0 7.823428-5 7.921672+0 8.074394-5 8.100897+0 8.317637-5 8.238285+0 8.640829-5 8.386829+0 9.067760-5 8.523119+0 9.471283-5 8.612151+0 1.007054-4 8.673044+0 1.085664-4 8.681556+0 1.164758-4 8.640511+0 1.313654-4 8.484976+0 1.572590-4 8.166622+0 2.640698-4 7.224700+0 3.748008-4 6.670348+0 4.535090-4 6.352099+0 5.678393-4 6.022548+0 6.869674-4 5.678563+0 7.462090-4 5.528618+0 8.538916-4 5.273152+0 9.738152-4 5.004171+0 1.110102-3 4.725472+0 1.320719-3 4.335907+0 1.511297-3 4.032570+0 1.904278-3 3.530229+0 2.678552-3 2.890483+0 3.431538-3 2.488934+0 3.880519-3 2.297240+0 4.217233-3 2.169037+0 4.779205-3 1.971464+0 5.303118-3 1.805402+0 5.856295-3 1.647357+0 6.347121-3 1.519324+0 6.918310-3 1.384962+0 7.538482-3 1.254269+0 8.175389-3 1.135101+0 8.882461-3 1.018691+0 9.822744-3 8.869854-1 1.092176-2 7.607650-1 1.211640-2 6.503528-1 1.363729-2 5.402890-1 1.545534-2 4.411076-1 1.778162-2 3.490481-1 2.052816-2 2.728201-1 2.399192-2 2.073585-1 2.807687-2 1.562006-1 3.386789-2 1.105513-1 4.105492-2 7.695808-2 5.153029-2 4.978700-2 6.846440-2 2.863688-2 9.851910-2 1.397962-2 1.751010-1 4.457005-3 5.308844-1 4.863136-4 1.619761+0 5.225846-5 4.891600+0 5.730227-6 1.477239+1 6.283093-7 4.461192+1 6.889277-8 1.347258+2 7.553942-9 4.068655+2 8.28273-10 1.258925+3 8.65118-11 3.981072+3 8.65118-12 1.258925+4 8.65118-13 3.981072+4 8.65118-14 1.000000+5 1.37112-14 1 3000 7 7 6.939000+0 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.797700-7 1.258900-6 9.188700-7 1.584900-6 1.456300-6 1.995300-6 2.308100-6 2.511900-6 3.658000-6 3.162300-6 5.797600-6 3.981100-6 9.188500-6 5.011900-6 1.456300-5 6.309600-6 2.308000-5 7.943300-6 3.657900-5 1.000000-5 5.797400-5 1.258900-5 9.188100-5 1.584900-5 1.456200-4 1.995300-5 2.307700-4 2.511900-5 3.655200-4 3.162300-5 5.789300-4 3.981100-5 9.170700-4 5.011900-5 1.452900-3 6.309600-5 2.301900-3 7.943300-5 3.642800-3 1.000000-4 5.759600-3 1.258900-4 9.093100-3 1.584900-4 1.430900-2 1.995300-4 2.248400-2 2.511900-4 3.525000-2 3.162300-4 5.459100-2 3.981100-4 8.392100-2 5.011900-4 1.266400-1 6.309600-4 1.859900-1 7.943300-4 2.630500-1 1.000000-3 3.551400-1 1.258900-3 4.534600-1 1.584900-3 5.506900-1 1.995300-3 6.374100-1 2.511900-3 7.246900-1 3.162300-3 8.194500-1 3.981100-3 9.360400-1 5.011900-3 1.068100+0 6.309600-3 1.212800+0 7.943300-3 1.357500+0 1.000000-2 1.486800+0 1.258900-2 1.589400+0 1.584900-2 1.660700+0 1.995300-2 1.702700+0 2.511900-2 1.719500+0 3.162300-2 1.714700+0 3.981100-2 1.690500+0 5.011900-2 1.654900+0 6.309600-2 1.604100+0 7.943300-2 1.542200+0 1.000000-1 1.470600+0 1.258900-1 1.391500+0 1.584900-1 1.306700+0 1.995300-1 1.218400+0 2.511900-1 1.128600+0 3.162300-1 1.039100+0 3.981100-1 9.513600-1 5.011900-1 8.663600-1 6.309600-1 7.848000-1 7.943300-1 7.071200-1 1.000000+0 6.335600-1 1.258900+0 5.643500-1 1.584900+0 4.996700-1 1.995300+0 4.396600-1 2.511900+0 3.844900-1 3.162300+0 3.342100-1 3.981100+0 2.888100-1 5.011900+0 2.482100-1 6.309600+0 2.122100-1 7.943300+0 1.805700-1 1.000000+1 1.529700-1 1.258900+1 1.290700-1 1.584900+1 1.085100-1 1.995300+1 9.092000-2 2.511900+1 7.595500-2 3.162300+1 6.328300-2 3.981100+1 5.259600-2 5.011900+1 4.361700-2 6.309600+1 3.609900-2 7.943300+1 2.982200-2 1.000000+2 2.459700-2 1.258900+2 2.025600-2 1.584900+2 1.665800-2 1.995300+2 1.368200-2 2.511900+2 1.122400-2 3.162300+2 9.197800-3 3.981100+2 7.529800-3 5.011900+2 6.158500-3 6.309600+2 5.032600-3 7.943300+2 4.109200-3 1.000000+3 3.352600-3 1.258900+3 2.733300-3 1.584900+3 2.226900-3 1.995300+3 1.813200-3 2.511900+3 1.475400-3 3.162300+3 1.199900-3 3.981100+3 9.752500-4 5.011900+3 7.922700-4 6.309600+3 6.432900-4 7.943300+3 5.220800-4 1.000000+4 4.235200-4 1.258900+4 3.434100-4 1.584900+4 2.783400-4 1.995300+4 2.255100-4 2.511900+4 1.826300-4 3.162300+4 1.478500-4 3.981100+4 1.196500-4 5.011900+4 9.680100-5 6.309600+4 7.828600-5 7.943300+4 6.329200-5 1.000000+5 5.115400-5 1 3000 7 7 6.939000+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159561-4 3.981072-4 3.976772-4 5.011872-4 5.005100-4 6.309573-4 6.298977-4 7.943282-4 7.926723-4 1.000000-3 9.974325-4 1.258925-3 1.254976-3 1.584893-3 1.578833-3 1.995262-3 1.985989-3 2.511886-3 2.497584-3 3.162278-3 3.139862-3 3.981072-3 3.945804-3 5.011872-3 4.956116-3 6.309573-3 6.221696-3 7.943282-3 7.805877-3 1.000000-2 9.787003-3 1.258925-2 1.226154-2 1.584893-2 1.534729-2 1.995262-2 1.918651-2 2.511886-2 2.394912-2 3.162278-2 2.983902-2 3.981072-2 3.709834-2 5.011872-2 4.599934-2 6.309573-2 5.687813-2 7.943282-2 7.010927-2 1.000000-1 8.613005-2 1.258925-1 1.054431-1 1.584893-1 1.286274-1 1.995262-1 1.563528-1 2.511886-1 1.893859-1 3.162278-1 2.286191-1 3.981072-1 2.750575-1 5.011872-1 3.298875-1 6.309573-1 3.944823-1 7.943282-1 4.704986-1 1.000000+0 5.599475-1 1.258925+0 6.653089-1 1.584893+0 7.896439-1 1.995262+0 9.367119-1 2.511886+0 1.111225+0 3.162278+0 1.318909+0 3.981072+0 1.566789+0 5.011872+0 1.863536+0 6.309573+0 2.219678+0 7.943282+0 2.648142+0 1.000000+1 3.164698+0 1.258925+1 3.788698+0 1.584893+1 4.543813+0 1.995262+1 5.458949+0 2.511886+1 6.569670+0 3.162278+1 7.919604+0 3.981072+1 9.562041+0 5.011872+1 1.156279+1 6.309573+1 1.400240+1 7.943282+1 1.697998+1 1.000000+2 2.061732+1 1.258925+2 2.506455+1 1.584893+2 3.050616+1 1.995262+2 3.716938+1 2.511886+2 4.533439+1 3.162278+2 5.534695+1 3.981072+2 6.763146+1 5.011872+2 8.271474+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090813-9 2.511886-5 1.728560-9 3.162278-5 2.739388-9 3.981072-5 4.341567-9 5.011872-5 6.880929-9 6.309573-5 1.090540-8 7.943282-5 1.727774-8 1.000000-4 2.737180-8 1.258925-4 4.335788-8 1.584893-4 6.863346-8 1.995262-4 1.086924-7 2.511886-4 1.720775-7 3.162278-4 2.717142-7 3.981072-4 4.299443-7 5.011872-4 6.772134-7 6.309573-4 1.059636-6 7.943282-4 1.655970-6 1.000000-3 2.567536-6 1.258925-3 3.949282-6 1.584893-3 6.059747-6 1.995262-3 9.273060-6 2.511886-3 1.430262-5 3.162278-3 2.241557-5 3.981072-3 3.526730-5 5.011872-3 5.575585-5 6.309573-3 8.787727-5 7.943282-3 1.374050-4 1.000000-2 2.129973-4 1.258925-2 3.277133-4 1.584893-2 5.016430-4 1.995262-2 7.661133-4 2.511886-2 1.169749-3 3.162278-2 1.783757-3 3.981072-2 2.712373-3 5.011872-2 4.119381-3 6.309573-2 6.217607-3 7.943282-2 9.323550-3 1.000000-1 1.386995-2 1.258925-1 2.044942-2 1.584893-1 2.986193-2 1.995262-1 4.317345-2 2.511886-1 6.180276-2 3.162278-1 8.760863-2 3.981072-1 1.230496-1 5.011872-1 1.712997-1 6.309573-1 2.364751-1 7.943282-1 3.238296-1 1.000000+0 4.400525-1 1.258925+0 5.936166-1 1.584893+0 7.952493-1 1.995262+0 1.058550+0 2.511886+0 1.400662+0 3.162278+0 1.843368+0 3.981072+0 2.414282+0 5.011872+0 3.148336+0 6.309573+0 4.089896+0 7.943282+0 5.295140+0 1.000000+1 6.835302+0 1.258925+1 8.800556+0 1.584893+1 1.130512+1 1.995262+1 1.449367+1 2.511886+1 1.854919+1 3.162278+1 2.370317+1 3.981072+1 3.024868+1 5.011872+1 3.855593+1 6.309573+1 4.909333+1 7.943282+1 6.245284+1 1.000000+2 7.938268+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058543+2 3.162278+2 2.608808+2 3.981072+2 3.304757+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.500000-6 1.207440+6 5.600000-6 1.241780+6 5.770000-6 1.289010+6 5.956621-6 1.332752+6 6.165950-6 1.371698+6 6.420000-6 1.406580+6 6.683439-6 1.430410+6 6.918310-6 1.443092+6 7.200000-6 1.449470+6 7.500000-6 1.447060+6 7.852356-6 1.435264+6 8.222426-6 1.414927+6 8.700000-6 1.380000+6 9.225714-6 1.333989+6 9.772372-6 1.281290+6 1.035142-5 1.223129+6 1.109175-5 1.148312+6 1.188502-5 1.070029+6 1.273503-5 9.904937+5 1.380384-5 8.984331+5 1.500000-5 8.060030+5 1.621810-5 7.230685+5 1.778279-5 6.312666+5 1.950000-5 5.468300+5 2.150000-5 4.660470+5 2.371374-5 3.940484+5 2.630268-5 3.274176+5 2.917427-5 2.700707+5 3.273407-5 2.163257+5 3.672823-5 1.718930+5 4.120975-5 1.356143+5 4.677351-5 1.037091+5 5.370318-5 7.678121+4 5.985000-5 6.031280+4 5.985000-5 3.291953+6 6.070000-5 3.316867+6 6.180000-5 3.332675+6 6.237348-5 3.331783+6 6.350000-5 3.330076+6 6.531306-5 3.297906+6 6.730000-5 3.237094+6 6.918310-5 3.160842+6 7.161434-5 3.044538+6 7.413102-5 2.911257+6 7.500000-5 2.861228+6 7.705100-5 2.748656+6 8.035261-5 2.562834+6 8.413951-5 2.355202+6 8.810489-5 2.149896+6 9.332543-5 1.903385+6 9.440609-5 1.854970+6 9.900000-5 1.667821+6 1.060000-4 1.421291+6 1.150000-4 1.165624+6 1.220000-4 1.004903+6 1.273503-4 9.022234+5 1.462177-4 6.322429+5 1.500000-4 5.913445+5 1.757924-4 3.902729+5 1.778279-4 3.786787+5 2.018366-4 2.705165+5 2.150000-4 2.287163+5 2.290868-4 1.926754+5 2.511886-4 1.502165+5 2.570396-4 1.409853+5 2.884032-4 1.026638+5 3.198895-4 7.675133+4 3.311311-4 6.965685+4 3.630781-4 5.354449+4 3.981072-4 4.115599+4 4.168694-4 3.602312+4 4.841724-4 2.336239+4 5.069907-4 2.044744+4 6.095369-4 1.192887+4 7.161434-4 7.393692+3 7.762471-4 5.800558+3 8.511380-4 4.395432+3 9.440609-4 3.205078+3 1.035142-3 2.420438+3 1.122018-3 1.887211+3 1.258925-3 1.322472+3 1.288250-3 1.230631+3 1.548817-3 6.918618+2 1.566751-3 6.671249+2 1.927525-3 3.463639+2 1.949845-3 3.338445+2 2.426610-3 1.658591+2 2.540973-3 1.429309+2 3.090295-3 7.594230+1 3.235937-3 6.535095+1 3.981072-3 3.324051+1 4.000000-3 3.273008+1 5.128614-3 1.445081+1 5.308844-3 1.289869+1 6.760830-3 5.785596+0 7.161434-3 4.780074+0 9.772372-3 1.692324+0 1.011579-2 1.507903+0 1.396368-2 5.101072-1 1.479108-2 4.203378-1 2.113489-2 1.257622-1 2.398833-2 8.195660-2 3.845918-2 1.650171-2 7.161434-2 1.998718-3 7.413102-2 1.777553-3 1.047129-1 5.527349-4 1.059254-1 5.318123-4 1.318257-1 2.554970-4 1.333521-1 2.459312-4 1.603245-1 1.335636-4 1.621810-1 1.286194-4 1.949845-1 7.034672-5 2.238721-1 4.503751-5 2.570396-1 2.904607-5 2.917427-1 1.956992-5 3.273407-1 1.376935-5 3.630781-1 1.010414-5 4.027170-1 7.468330-6 4.415705-1 5.747345-6 4.841724-1 4.453806-6 5.308844-1 3.477899-6 5.754399-1 2.820012-6 5.821032-1 2.736826-6 6.237348-1 2.299528-6 6.309573-1 2.233794-6 6.760830-1 1.887074-6 6.839117-1 1.834790-6 7.328245-1 1.558897-6 7.413102-1 1.517157-6 7.943282-1 1.300061-6 8.035261-1 1.267045-6 8.709636-1 1.064462-6 8.912509-1 1.012800-6 1.202264+0 5.388317-7 1.273503+0 4.789064-7 1.303167+0 4.568576-7 1.380384+0 4.080586-7 1.412538+0 3.900414-7 1.479108+0 3.580061-7 1.513561+0 3.430028-7 1.566751+0 3.229588-7 1.603245+0 3.102627-7 1.659587+0 2.931740-7 1.717908+0 2.770391-7 1.737801+0 2.722968-7 1.840772+0 2.498018-7 2.238721+0 1.873519-7 2.264644+0 1.842100-7 2.540973+0 1.565867-7 2.570396+0 1.540647-7 2.917427+0 1.297626-7 2.951209+0 1.277543-7 3.388442+0 1.066336-7 3.427678+0 1.050407-7 4.000000+0 8.645945-8 4.073803+0 8.449033-8 4.786301+0 6.942758-8 4.897788+0 6.750805-8 5.888437+0 5.432343-8 6.025596+0 5.286843-8 7.413102+0 4.171203-8 7.673615+0 4.009702-8 9.549926+0 3.143549-8 9.885531+0 3.025087-8 1.273503+1 2.296847-8 1.300000+1 2.246006-8 1.840772+1 1.551189-8 1.883649+1 1.513653-8 2.630268+1 1.068297-8 2.722701+1 1.030481-8 4.168694+1 6.645619-9 4.365158+1 6.337884-9 8.317638+1 3.290164-9 8.709636+1 3.139658-9 1.659587+2 1.638587-9 1.737801+2 1.564224-9 6.606934+2 4.09752-10 6.918310+2 3.91256-10 1.000000+5 2.70303-12 1 3000 7 0 6.939000+0 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.500000-6 5.500000-6 5.985000-5 5.500000-6 5.985000-5 5.885424-5 7.161434-5 5.913283-5 1.220000-4 5.922144-5 6.095369-4 5.911526-5 1.000000+5 5.906114-5 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.500000-6 0.0 5.985000-5 5.435000-5 5.985000-5 9.957618-7 6.070000-5 1.807717-6 6.237348-5 3.420860-6 6.531306-5 6.279477-6 7.161434-5 1.248151-5 8.810489-5 2.888454-5 1.000000+5 1.000000+5 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.985000-5 3.231640+6 6.070000-5 3.258420+6 6.180000-5 3.276520+6 6.350000-5 3.277260+6 6.531306-5 3.248367+6 6.730000-5 3.190820+6 6.918310-5 3.117384+6 7.161434-5 3.004364+6 7.413102-5 2.874119+6 7.705100-5 2.714681+6 8.035261-5 2.532005+6 8.413951-5 2.327492+6 8.810489-5 2.124989+6 9.332543-5 1.881587+6 9.900000-5 1.648838+6 1.060000-4 1.405122+6 1.150000-4 1.152272+6 1.273503-4 8.917305+5 1.462177-4 6.246911+5 1.778279-4 3.739745+5 2.150000-4 2.257860+5 2.511886-4 1.482524+5 2.884032-4 1.013010+5 3.311311-4 6.872270+4 3.981072-4 4.059904+4 5.069907-4 2.017045+4 6.095369-4 1.176761+4 7.161434-4 7.293238+3 8.511380-4 4.335148+3 1.035142-3 2.386886+3 1.258925-3 1.304007+3 1.548817-3 6.821763+2 1.927525-3 3.415056+2 2.426610-3 1.635221+2 3.090295-3 7.486552+1 4.000000-3 3.226328+1 5.308844-3 1.271421+1 7.161434-3 4.711578+0 1.011579-2 1.486243+0 1.479108-2 4.142890-1 2.398833-2 8.077632-2 7.413102-2 1.751943-3 1.047129-1 5.447762-4 1.318257-1 2.518205-4 1.603245-1 1.316429-4 1.949845-1 6.933608-5 2.238721-1 4.439084-5 2.570396-1 2.862924-5 2.917427-1 1.928922-5 3.273407-1 1.357193-5 3.630781-1 9.959316-6 4.027170-1 7.361304-6 4.415705-1 5.664986-6 4.841724-1 4.389978-6 5.308844-1 3.428044-6 5.821032-1 2.697560-6 6.309573-1 2.201728-6 6.839117-1 1.808428-6 7.413102-1 1.495325-6 8.035261-1 1.248803-6 8.912509-1 9.981812-7 1.202264+0 5.309822-7 1.303167+0 4.502062-7 1.412538+0 3.843691-7 1.513561+0 3.380200-7 1.603245+0 3.057574-7 1.717908+0 2.730164-7 1.840772+0 2.461737-7 2.264644+0 1.815352-7 2.570396+0 1.518277-7 2.951209+0 1.258996-7 3.427678+0 1.035157-7 4.073803+0 8.326356-8 4.897788+0 6.652782-8 6.025596+0 5.210080-8 7.673615+0 3.951476-8 9.885531+0 2.981164-8 1.300000+1 2.213400-8 1.883649+1 1.491678-8 2.722701+1 1.015521-8 4.365158+1 6.245867-9 8.709636+1 3.094079-9 1.737801+2 1.541517-9 6.918310+2 3.85577-10 1.000000+5 2.66380-12 1 3000 7 0 6.939000+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.985000-5 5.985000-5 1.000000+5 5.985000-5 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.985000-5 0.0 1.000000+5 1.000000+5 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.500000-6 1.207440+6 5.600000-6 1.241780+6 5.770000-6 1.289010+6 5.956621-6 1.332752+6 6.165950-6 1.371698+6 6.420000-6 1.406580+6 6.683439-6 1.430410+6 6.918310-6 1.443092+6 7.200000-6 1.449470+6 7.500000-6 1.447060+6 7.852356-6 1.435264+6 8.222426-6 1.414927+6 8.700000-6 1.380000+6 9.225714-6 1.333989+6 9.772372-6 1.281290+6 1.035142-5 1.223129+6 1.109175-5 1.148312+6 1.188502-5 1.070029+6 1.273503-5 9.904937+5 1.380384-5 8.984331+5 1.500000-5 8.060030+5 1.621810-5 7.230685+5 1.778279-5 6.312666+5 1.950000-5 5.468300+5 2.150000-5 4.660470+5 2.371374-5 3.940484+5 2.630268-5 3.274176+5 2.917427-5 2.700707+5 3.273407-5 2.163257+5 3.672823-5 1.718930+5 4.120975-5 1.356143+5 4.677351-5 1.037091+5 5.370318-5 7.678121+4 6.237348-5 5.501152+4 7.500000-5 3.616620+4 9.440609-5 2.122410+4 1.220000-4 1.162180+4 1.500000-4 7.106300+3 1.757924-4 4.839998+3 2.018366-4 3.439581+3 2.290868-4 2.494567+3 2.570396-4 1.850115+3 2.884032-4 1.362828+3 3.198895-4 1.028183+3 3.630781-4 7.233438+2 4.168694-4 4.887131+2 4.841724-4 3.170989+2 7.762471-4 7.928423+1 9.440609-4 4.429375+1 1.122018-3 2.631350+1 1.288250-3 1.720259+1 1.566751-3 9.343947+0 1.949845-3 4.684923+0 2.540973-3 2.018723+0 3.235937-3 9.287544-1 3.981072-3 4.741074-1 5.128614-3 2.067907-1 6.760830-3 8.297458-2 9.772372-3 2.432027-2 1.396368-2 7.345851-3 2.113489-2 1.813656-3 3.845918-2 2.380058-4 7.161434-2 2.878506-5 1.059254-1 7.654604-6 1.333521-1 3.537342-6 1.621810-1 1.848784-6 1.949845-1 1.010636-6 2.238721-1 6.466699-7 2.570396-1 4.168265-7 2.917427-1 2.806951-7 3.273407-1 1.974176-7 3.630781-1 1.448270-7 4.027170-1 1.070255-7 4.415705-1 8.235856-8 4.841724-1 6.382823-8 5.308844-1 4.985473-8 5.754399-1 4.042368-8 6.237348-1 3.298130-8 6.760830-1 2.708619-8 7.328245-1 2.240318-8 7.943282-1 1.870017-8 8.709636-1 1.533489-8 1.273503+0 6.964777-9 1.380384+0 5.928222-9 1.479108+0 5.193025-9 1.566751+0 4.683422-9 1.659587+0 4.250666-9 1.737801+0 3.949427-9 2.238721+0 2.718770-9 2.540973+0 2.272282-9 2.917427+0 1.882892-9 3.388442+0 1.547329-9 4.000000+0 1.254500-9 4.786301+0 1.007318-9 5.888437+0 7.88187-10 7.413102+0 6.05159-10 9.549926+0 4.56075-10 1.273503+1 3.33291-10 1.840772+1 2.25097-10 2.630268+1 1.55025-10 4.168694+1 9.64311-11 8.317638+1 4.77473-11 1.659587+2 2.37807-11 6.606934+2 5.94683-12 1.000000+5 3.92330-14 1 3000 7 0 6.939000+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.500000-6 5.500000-6 1.000000+5 5.500000-6 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.500000-6 0.0 1.000000+5 1.000000+5 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.27543-10 1.028750+0 3.275430-9 1.036640+0 3.275430-8 1.054080+0 3.275430-7 1.070400+0 1.072550-6 1.076200+0 1.482250-6 1.080600+0 1.851090-6 1.087100+0 2.494060-6 1.093710+0 3.275430-6 1.102600+0 4.541740-6 1.110700+0 5.923990-6 1.120600+0 7.925710-6 1.133300+0 1.102170-5 1.147500+0 1.522030-5 1.158200+0 1.891570-5 1.174100+0 2.527620-5 1.190110+0 3.275430-5 1.205100+0 4.074150-5 1.227500+0 5.449350-5 1.250000+0 7.052000-5 1.281300+0 9.655590-5 1.308600+0 1.228550-4 1.332500+0 1.485750-4 1.374400+0 1.996810-4 1.405800+0 2.428400-4 1.452900+0 3.149650-4 1.500000+0 3.953000-4 1.562500+0 5.130320-4 1.641100+0 6.769240-4 1.706900+0 8.255890-4 1.811600+0 1.080350-3 1.952900+0 1.452730-3 2.000000+0 1.583000-3 2.044000+0 1.707000-3 2.163500+0 2.051210-3 2.372600+0 2.669620-3 2.529500+0 3.139730-3 2.764700+0 3.844900-3 3.000000+0 4.545000-3 3.437500+0 5.820350-3 4.000000+0 7.383000-3 4.750000+0 9.306740-3 5.000000+0 9.914000-3 6.000000+0 1.219000-2 7.000000+0 1.422000-2 8.000000+0 1.606000-2 9.000000+0 1.772000-2 1.000000+1 1.924000-2 1.100000+1 2.062000-2 1.200000+1 2.189000-2 1.300000+1 2.308000-2 1.400000+1 2.418000-2 1.500000+1 2.521000-2 1.600000+1 2.619000-2 1.800000+1 2.798000-2 2.000000+1 2.959000-2 2.200000+1 3.106000-2 2.400000+1 3.240000-2 2.600000+1 3.364000-2 2.800000+1 3.478000-2 3.000000+1 3.585000-2 4.000000+1 4.024000-2 5.000000+1 4.355000-2 6.000000+1 4.621000-2 8.000000+1 5.029000-2 1.000000+2 5.321000-2 1.500000+2 5.801000-2 2.000000+2 6.100000-2 3.000000+2 6.465000-2 4.000000+2 6.683000-2 5.000000+2 6.831000-2 6.000000+2 6.938000-2 8.000000+2 7.085000-2 1.000000+3 7.182000-2 1.500000+3 7.324000-2 2.000000+3 7.404000-2 3.000000+3 7.491000-2 4.000000+3 7.538000-2 5.000000+3 7.568000-2 6.000000+3 7.590000-2 8.000000+3 7.617000-2 1.000000+4 7.635000-2 1.500000+4 7.659000-2 2.000000+4 7.673000-2 3.000000+4 7.687000-2 4.000000+4 7.694000-2 5.000000+4 7.699000-2 6.000000+4 7.702000-2 8.000000+4 7.706000-2 1.000000+5 7.708000-2 1 3000 7 8 6.939000+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.011450-8 2.136250+0 3.011450-7 2.201800+0 1.376440-6 2.214800+0 1.714930-6 2.234200+0 2.306890-6 2.253680+0 3.011450-6 2.281500+0 4.218070-6 2.307000+0 5.540430-6 2.338200+0 7.449600-6 2.377400+0 1.031680-5 2.410200+0 1.312130-5 2.446800+0 1.669100-5 2.485900+0 2.101490-5 2.532900+0 2.689450-5 2.556430+0 3.011450-5 2.611900+0 3.839900-5 2.660400+0 4.642180-5 2.745300+0 6.213160-5 2.809000+0 7.524440-5 2.904500+0 9.693200-5 3.000000+0 1.210000-4 3.125000+0 1.560390-4 3.234400+0 1.898840-4 3.425800+0 2.557620-4 3.569300+0 3.101920-4 3.784700+0 3.988580-4 4.000000+0 4.942000-4 4.250000+0 6.107790-4 4.625000+0 7.940650-4 5.000000+0 9.848000-4 5.500000+0 1.247050-3 6.000000+0 1.513000-3 6.750000+0 1.908620-3 7.000000+0 2.039000-3 8.000000+0 2.551000-3 9.000000+0 3.042000-3 1.000000+1 3.509000-3 1.100000+1 3.953000-3 1.200000+1 4.373000-3 1.300000+1 4.769000-3 1.400000+1 5.148000-3 1.500000+1 5.508000-3 1.600000+1 5.852000-3 1.800000+1 6.491000-3 2.000000+1 7.077000-3 2.200000+1 7.618000-3 2.400000+1 8.118000-3 2.600000+1 8.584000-3 2.800000+1 9.019000-3 3.000000+1 9.427000-3 4.000000+1 1.115000-2 5.000000+1 1.250000-2 6.000000+1 1.361000-2 8.000000+1 1.533000-2 1.000000+2 1.664000-2 1.500000+2 1.892000-2 2.000000+2 2.042000-2 3.000000+2 2.238000-2 4.000000+2 2.363000-2 5.000000+2 2.453000-2 6.000000+2 2.521000-2 8.000000+2 2.619000-2 1.000000+3 2.687000-2 1.500000+3 2.793000-2 2.000000+3 2.856000-2 3.000000+3 2.928000-2 4.000000+3 2.970000-2 5.000000+3 2.997000-2 6.000000+3 3.016000-2 8.000000+3 3.042000-2 1.000000+4 3.058000-2 1.500000+4 3.082000-2 2.000000+4 3.095000-2 3.000000+4 3.108000-2 4.000000+4 3.116000-2 5.000000+4 3.121000-2 6.000000+4 3.125000-2 8.000000+4 3.128000-2 1.000000+5 3.131000-2 1 3000 7 8 6.939000+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 3000 7 9 6.939000+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.000000+0 1.000000+5 3.000000+0 5.000000+5 2.996600+0 7.187500+5 2.992870+0 9.062500+5 2.988860+0 1.000000+6 2.986500+0 1.500000+6 2.969900+0 1.812500+6 2.956140+0 2.000000+6 2.947200+0 2.500000+6 2.919000+0 3.000000+6 2.885000+0 3.250000+6 2.866290+0 3.625000+6 2.836440+0 3.750000+6 2.825850+0 4.000000+6 2.804400+0 4.437500+6 2.764580+0 4.750000+6 2.734700+0 4.812500+6 2.728720+0 5.000000+6 2.710600+0 5.250000+6 2.685830+0 5.687500+6 2.641570+0 5.875000+6 2.622460+0 6.015600+6 2.608130+0 6.507800+6 2.557680+0 6.625000+6 2.545480+0 7.000000+6 2.507100+0 7.500000+6 2.455890+0 7.875000+6 2.418100+0 8.000000+6 2.405790+0 8.437500+6 2.362600+0 9.000000+6 2.309000+0 9.750000+6 2.240570+0 1.000000+7 2.219000+0 1.125000+7 2.120340+0 1.187500+7 2.076530+0 1.250000+7 2.035800+0 1.312500+7 1.998540+0 1.437500+7 1.933530+0 1.500000+7 1.906000+0 1.625000+7 1.859520+0 1.750000+7 1.818400+0 2.000000+7 1.742500+0 2.250000+7 1.681130+0 2.500000+7 1.625800+0 2.750000+7 1.569460+0 3.000000+7 1.511500+0 3.250000+7 1.452220+0 3.437500+7 1.406910+0 3.718800+7 1.338180+0 3.750000+7 1.330400+0 4.000000+7 1.268800+0 4.250000+7 1.207140+0 4.500000+7 1.146600+0 4.578100+7 1.128030+0 4.859400+7 1.062840+0 5.000000+7 1.031300+0 5.343800+7 9.572080-1 5.500000+7 9.247860-1 5.718800+7 8.805620-1 6.000000+7 8.255000-1 6.250000+7 7.782270-1 6.625000+7 7.113540-1 6.750000+7 6.902530-1 7.000000+7 6.500000-1 7.500000+7 5.768390-1 7.750000+7 5.435800-1 8.000000+7 5.123000-1 8.500000+7 4.549750-1 9.000000+7 4.043700-1 9.500000+7 3.597620-1 1.000000+8 3.204600-1 1.062500+8 2.777990-1 1.109400+8 2.499440-1 1.179700+8 2.139250-1 1.187500+8 2.103020-1 1.250000+8 1.837500-1 1.312500+8 1.610050-1 1.406300+8 1.327720-1 1.500000+8 1.102000-1 1.617200+8 8.801280-2 1.712900+8 7.373990-2 1.815400+8 6.139390-2 1.938500+8 4.966050-2 2.000000+8 4.481000-2 2.125000+8 3.658120-2 2.312500+8 2.740100-2 2.500000+8 2.089100-2 2.750000+8 1.492320-2 3.000000+8 1.092000-2 3.250000+8 8.150950-3 3.500000+8 6.190700-3 3.875000+8 4.217860-3 4.000000+8 3.738300-3 4.750000+8 1.934730-3 5.000000+8 1.586900-3 6.000000+8 7.806300-4 7.000000+8 4.265600-4 8.000000+8 2.520900-4 1.000000+9 1.043000-4 1.500000+9 2.083500-5 2.000000+9 6.627900-6 5.000000+9 1.724500-7 8.000000+9 2.665200-8 1.00000+10 1.100700-8 1.54060+10 1.991390-9 2.13670+10 5.49152-10 2.85850+10 1.75836-10 3.52080+10 7.82270-11 4.33070+10 3.51834-11 5.37010+10 1.54430-11 6.52760+10 7.36547-12 7.39570+10 4.60423-12 8.69780+10 2.51301-12 1.00000+11 1.49950-12 1.17140+11 8.39494-13 1.36540+11 4.81183-13 1.70670+11 2.15954-13 2.04860+11 1.12982-13 2.52170+11 5.45067-14 3.35790+11 2.02375-14 4.68190+11 6.53315-15 6.33390+11 2.37640-15 8.34870+11 9.55525-16 1.31660+12 2.18077-16 1.95920+12 6.15051-17 3.59790+12 9.21168-18 8.26120+12 7.28147-19 2.87420+13 1.76258-20 1.00000+14 4.44040-22 5.62340+14 2.62711-24 7.49890+15 1.10723-27 1.00000+17 4.44440-31 1 3000 7 0 6.939000+0 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 2.65000-12 1.000000+2 2.65000-10 1.000000+3 2.650000-8 1.000000+4 2.650000-6 1.000000+5 2.650000-4 5.000000+5 6.625000-3 7.187500+5 1.368994-2 9.062500+5 2.176416-2 1.000000+6 2.650000-2 1.500000+6 5.847500-2 1.812500+6 8.464630-2 2.000000+6 1.022000-1 2.500000+6 1.544900-1 3.000000+6 2.164000-1 3.250000+6 2.495470-1 3.625000+6 3.009610-1 3.750000+6 3.184900-1 4.000000+6 3.541000-1 4.437500+6 4.176700-1 4.750000+6 4.634410-1 4.812500+6 4.725490-1 5.000000+6 4.998000-1 5.250000+6 5.356710-1 5.687500+6 5.968940-1 5.875000+6 6.224730-1 6.015600+6 6.413270-1 6.507800+6 7.050850-1 6.625000+6 7.197450-1 7.000000+6 7.652000-1 7.500000+6 8.221080-1 7.875000+6 8.616880-1 8.000000+6 8.742650-1 8.437500+6 9.157640-1 9.000000+6 9.629000-1 9.750000+6 1.016190+0 1.000000+7 1.032800+0 1.125000+7 1.110980+0 1.187500+7 1.144290+0 1.250000+7 1.172100+0 1.312500+7 1.193740+0 1.437500+7 1.228510+0 1.500000+7 1.245800+0 1.625000+7 1.286100+0 1.750000+7 1.329700+0 2.000000+7 1.417600+0 2.250000+7 1.510030+0 2.500000+7 1.605200+0 2.750000+7 1.700960+0 3.000000+7 1.795300+0 3.250000+7 1.887440+0 3.437500+7 1.954810+0 3.718800+7 2.051430+0 3.750000+7 2.061890+0 4.000000+7 2.142800+0 4.250000+7 2.218630+0 4.500000+7 2.289750+0 4.578100+7 2.310710+0 4.859400+7 2.382970+0 5.000000+7 2.416600+0 5.343800+7 2.492210+0 5.500000+7 2.523690+0 5.718800+7 2.564690+0 6.000000+7 2.612900+0 6.250000+7 2.651180+0 6.625000+7 2.702250+0 6.750000+7 2.717580+0 7.000000+7 2.746200+0 7.500000+7 2.794530+0 7.750000+7 2.815260+0 8.000000+7 2.833900+0 8.500000+7 2.865290+0 9.000000+7 2.890900+0 9.500000+7 2.911140+0 1.000000+8 2.927800+0 1.062500+8 2.943720+0 1.109400+8 2.953480+0 1.179700+8 2.964740+0 1.187500+8 2.965890+0 1.250000+8 2.973200+0 1.312500+8 2.978830+0 1.406300+8 2.984970+0 1.500000+8 2.989200+0 1.617200+8 2.992760+0 1.712900+8 2.994540+0 1.815400+8 2.996220+0 1.938500+8 2.997290+0 2.000000+8 2.997800+0 2.125000+8 2.998230+0 2.312500+8 2.998840+0 2.500000+8 2.999400+0 2.750000+8 2.999610+0 3.000000+8 2.999800+0 3.250000+8 2.999850+0 3.500000+8 2.999900+0 3.875000+8 2.999980+0 4.000000+8 3.000000+0 4.750000+8 3.000000+0 5.000000+8 3.000000+0 6.000000+8 3.000000+0 7.000000+8 3.000000+0 8.000000+8 3.000000+0 1.000000+9 3.000000+0 1.500000+9 3.000000+0 2.000000+9 3.000000+0 5.000000+9 3.000000+0 8.000000+9 3.000000+0 1.00000+10 3.000000+0 1.54060+10 3.000000+0 2.13670+10 3.000000+0 2.85850+10 3.000000+0 3.52080+10 3.000000+0 4.33070+10 3.000000+0 5.37010+10 3.000000+0 6.52760+10 3.000000+0 7.39570+10 3.000000+0 8.69780+10 3.000000+0 1.00000+11 3.000000+0 1.17140+11 3.000000+0 1.36540+11 3.000000+0 1.70670+11 3.000000+0 2.04860+11 3.000000+0 2.52170+11 3.000000+0 3.35790+11 3.000000+0 4.68190+11 3.000000+0 6.33390+11 3.000000+0 8.34870+11 3.000000+0 1.31660+12 3.000000+0 1.95920+12 3.000000+0 3.59790+12 3.000000+0 8.26120+12 3.000000+0 2.87420+13 3.000000+0 1.00000+14 3.000000+0 5.62340+14 3.000000+0 7.49890+15 3.000000+0 1.00000+17 3.000000+0 1 3000 7 0 6.939000+0 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.899984-6 0.0 1.900189-6 3.174345-2 1.909543-6 4.362406+0 1.914220-6 7.952293+0 1.918898-6 1.338366+1 1.924007-6 2.163814+1 1.937702-6 4.835698+1 1.942779-6 5.476637+1 1.947283-6 5.666872+1 1.952133-6 5.401340+1 1.957155-6 4.697733+1 1.965093-6 3.131988+1 1.970345-6 2.105137+1 1.975022-6 1.357958+1 1.979700-6 8.086676+0 1.984377-6 4.445591+0 1.991285-6 1.156087+0 1.993516-6 6.988097-2 1.993731-6 0.0 3.366517-6 0.0 3.374804-6 1.12898-17 3.383090-6 2.23393-17 3.391376-6 4.08046-17 3.399662-6 6.88021-17 3.407949-6 1.07090-16 3.416235-6 1.53868-16 3.424521-6 2.04082-16 3.432807-6 2.49869-16 3.441094-6 2.82407-16 3.449380-6 2.94640-16 3.457666-6 2.83767-16 3.465953-6 2.52282-16 3.474239-6 2.07045-16 3.490811-6 1.09694-16 3.499098-6 7.08145-17 3.507384-6 4.22004-17 3.515670-6 2.32148-17 3.523956-6 1.17887-17 3.532243-6 0.0 3.838793-6 0.0 3.838832-6 1.030475-5 3.848281-6 7.497369-3 3.857730-6 1.483216-2 3.867178-6 2.708695-2 3.876627-6 4.566421-2 3.886076-6 7.106426-2 3.906847-6 1.414079-1 3.916416-6 1.703057-1 3.923871-6 1.873308-1 3.933320-6 1.954391-1 3.942769-6 1.882301-1 3.952218-6 1.673598-1 3.980564-6 7.285050-2 3.990013-6 4.707392-2 3.999462-6 2.809456-2 4.008910-6 1.549137-2 4.021676-6 5.141454-3 4.027767-6 8.340888-5 4.027808-6 6.068464-5 4.031246-6 5.255534-5 4.040815-6 3.392790-5 4.050384-6 2.021860-5 4.059953-6 1.112242-5 4.069522-6 5.648087-6 4.079091-6 0.0 4.511847-6 0.0 4.511866-6 5.240163-6 4.522972-6 8.962848-3 4.534077-6 1.773351-2 4.545182-6 3.238995-2 4.556288-6 5.461005-2 4.567393-6 8.499463-2 4.584051-6 1.420116-1 4.600709-6 1.982837-1 4.611815-6 2.240948-1 4.622920-6 2.337938-1 4.634025-6 2.251596-1 4.645131-6 2.001725-1 4.661789-6 1.443883-1 4.678485-6 8.692717-2 4.689644-6 5.599950-2 4.700802-6 3.328766-2 4.711961-6 1.825886-2 4.723119-6 9.140727-3 4.733953-6 1.349253-5 4.733974-6 1.968005-6 4.756461-6 4.12751-14 4.756595-6 0.0 4.820968-6 0.0 4.820978-6 1.545957-6 4.832844-6 5.649977-3 4.844710-6 1.117929-2 4.856576-6 2.041910-2 4.868443-6 3.442819-2 4.880309-6 5.358544-2 4.898108-6 8.953590-2 4.915908-6 1.250184-1 4.927774-6 1.412946-1 4.939640-6 1.474118-1 4.951506-6 1.419690-1 4.963372-6 1.262145-1 4.981593-6 9.020639-2 4.987948-6 7.679744-2 5.000225-6 5.636514-2 5.010837-6 4.196009-2 5.022704-6 3.292561-2 5.024780-6 3.224815-2 5.034570-6 3.140677-2 5.037057-6 3.199283-2 5.049334-6 3.804079-2 5.058302-6 4.429086-2 5.073888-6 6.399782-2 5.098443-6 9.045229-2 5.110720-6 9.652231-2 5.122997-6 9.652053-2 5.159829-6 7.892084-2 5.175888-6 7.539769-2 5.184383-6 7.485727-2 5.197461-6 7.669821-2 5.216512-6 8.178759-2 5.270308-6 8.540959-2 5.388178-6 9.028871-2 5.421882-6 8.921606-2 5.473688-6 8.744497-2 5.520011-6 8.955266-2 5.601411-6 9.835741-2 6.028622-6 1.159956-1 6.683439-6 1.366349-1 7.500000-6 1.551335-1 8.700000-6 1.716393-1 1.062663-5 1.815774-1 1.325867-5 1.789305-1 2.683417-5 1.211560-1 3.428613-5 9.676158-2 4.253535-5 7.719648-2 5.186653-5 6.149738-2 5.494646-5 5.751899-2 5.521695-5 6.084416-1 5.535219-5 1.063977+0 5.548744-5 1.754711+0 5.563959-5 2.843262+0 5.587653-5 4.939288+0 5.603687-5 6.271438+0 5.617799-5 7.055657+0 5.631796-5 7.287378+0 5.645603-5 6.930932+0 5.659369-5 6.079114+0 5.687048-5 3.668160+0 5.697512-5 2.816549+0 5.711883-5 1.902883+0 5.724589-5 1.347676+0 5.730509-5 1.202814+0 5.738474-5 1.054136+0 5.746261-5 1.021654+0 5.758512-5 1.025322+0 5.765393-5 1.077208+0 5.798778-5 2.075650+0 5.818593-5 2.582655+0 5.836286-5 2.852035+0 5.847483-5 2.942147+0 5.871145-5 2.920105+0 5.923006-5 2.746519+0 5.990584-5 2.803347+0 6.372663-5 3.027999+0 6.975292-5 3.124126+0 7.823428-5 2.999935+0 1.098474-4 2.048756+0 1.255365-4 1.680452+0 1.429914-4 1.370223+0 1.608432-4 1.133818+0 1.843423-4 9.085268-1 2.050572-4 7.613362-1 2.292961-4 6.307017-1 2.559940-4 5.225681-1 2.815934-4 4.420177-1 3.143331-4 3.627110-1 3.533107-4 2.927715-1 3.928528-4 2.403931-1 4.397200-4 1.942840-1 4.837433-4 1.621898-1 5.359156-4 1.334070-1 5.821032-4 1.137379-1 6.542467-4 9.056400-2 7.303808-4 7.284995-2 8.155542-4 5.835405-2 8.985494-4 4.793278-2 9.994379-4 3.854892-2 1.110102-3 3.100160-2 1.238918-3 2.464859-2 1.375889-3 1.973161-2 1.511297-3 1.616169-2 1.679070-3 1.288125-2 1.858623-3 1.033981-2 2.031199-3 8.516932-3 2.255814-3 6.764718-3 2.480206-3 5.489201-3 2.726858-3 4.441003-3 2.967899-3 3.676466-3 3.297626-3 2.900340-3 3.634424-3 2.327676-3 3.959770-3 1.917270-3 4.318344-3 1.573188-3 4.779205-3 1.246876-3 5.173090-3 1.040232-3 5.604384-3 8.651163-4 6.214923-3 6.806484-4 6.760830-3 5.602644-4 7.392128-3 4.549890-4 8.175389-3 3.594542-4 8.882461-3 2.960331-4 9.822744-3 2.338886-4 1.070316-2 1.911083-4 1.161095-2 1.576935-4 1.262501-2 1.293807-4 1.391701-2 1.027800-4 1.512659-2 8.438025-5 1.667990-2 6.685430-5 1.843814-2 5.266392-5 2.019865-2 4.240188-5 2.214001-2 3.406268-5 2.399192-2 2.813204-5 2.603818-2 2.312980-5 2.807687-2 1.930839-5 3.057897-2 1.573790-5 3.386789-2 1.232398-5 3.677744-2 1.011736-5 4.032464-2 8.115775-6 4.353163-2 6.757283-6 4.745735-2 5.493630-6 5.153029-2 4.510976-6 5.686230-2 3.561575-6 6.187590-2 2.909973-6 6.687012-2 2.414808-6 7.342382-2 1.930186-6 8.118223-2 1.519752-6 8.936442-2 1.208675-6 9.851910-2 9.580983-7 1.069498-1 7.883668-7 1.160256-1 6.509703-7 1.274967-1 5.215914-7 1.405408-1 4.157723-7 1.548400-1 3.322982-7 1.709237-1 2.649784-7 1.892639-1 2.100950-7 2.088592-1 1.684847-7 2.258135-1 1.416545-7 2.496215-1 1.138835-7 2.712801-1 9.534600-8 2.997221-1 7.731456-8 3.273407-1 6.453332-8 3.630781-1 5.253407-8 4.005285-1 4.349569-8 4.415705-1 3.633440-8 4.954502-1 2.968464-8 5.457971-1 2.527779-8 5.984546-1 2.186178-8 6.635521-1 1.875997-8 7.413102-1 1.610095-8 8.326620-1 1.397913-8 9.550462-1 1.196468-8 1.070165+0 1.062715-8 1.286622+0 8.920970-9 1.546860+0 7.488714-9 1.859734+0 6.286405-9 2.235892+0 5.277126-9 2.688134+0 4.429886-9 3.231848+0 3.718671-9 3.885536+0 3.121640-9 4.671441+0 2.620463-9 5.616308+0 2.199749-9 6.752287+0 1.846580-9 8.118035+0 1.550113-9 9.760024+0 1.301243-9 1.000000+1 2.483201-9 1 3000 7 0 6.939000+0 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.726906+0 1.261765-6-2.448059+0 1.420389-6-2.131721+0 1.515961-6-1.823722+0 1.582569-6-1.510851+0 1.629161-6-1.212361+0 1.661956-6-9.426188-1 1.676833-6-7.982731-1 1.690780-6-6.474487-1 1.703855-6-4.900418-1 1.716113-6-3.259648-1 1.727605-6-1.551485-1 1.738379-6 2.245627-2 1.748479-6 2.068766-1 1.757948-6 3.981159-1 1.766825-6 5.961522-1 1.775148-6 8.009367-1 1.782950-6 1.012392+0 1.797122-6 1.454862+0 1.809578-6 1.922344+0 1.820526-6 2.413126+0 1.834513-6 3.188038+0 1.846037-6 4.000953+0 1.858311-6 5.124223+0 1.867793-6 6.264696+0 1.875338-6 7.429516+0 1.883473-6 9.080633+0 1.890306-6 1.098517+1 1.895221-6 1.287642+1 1.898979-6 1.494581+1 1.901989-6 1.741362+1 1.909543-6 2.224129+1 1.914805-6 2.625184+1 1.920505-6 2.977480+1 1.924843-6 3.097793+1 1.928950-6 2.977994+1 1.932445-6 2.708279+1 1.935830-6 2.280741+1 1.937397-6 1.986553+1 1.941317-6 1.156852+1 1.942162-6 9.380007+0 1.942779-6 7.543221+0 1.945588-6 5.497434-1 1.945910-6-2.815420-1 1.946256-6-1.208712+0 1.946684-6-2.427346+0 1.946870-6-2.998159+0 1.947109-6-2.149955+0 1.947283-6-1.614024+0 1.951710-6 9.914254+0 1.952655-6 1.237570+1 1.957155-6 2.191595+1 1.960047-6 2.634566+1 1.963366-6 3.000965+1 1.966838-6 3.177176+1 1.970345-6 3.192851+1 1.975022-6 3.011917+1 1.979700-6 2.700868+1 1.987519-6 2.135979+1 1.992958-6 1.791388+1 1.995071-6 1.605225+1 1.999085-6 1.389435+1 2.004419-6 1.190570+1 2.012385-6 9.808265+0 2.020303-6 8.300738+0 2.030790-6 6.823418+0 2.043793-6 5.492206+0 2.059234-6 4.347350+0 2.074494-6 3.505819+0 2.089575-6 2.859795+0 2.109430-6 2.199104+0 2.128996-6 1.693243+0 2.148256-6 1.293628+0 2.167217-6 9.698806-1 2.185883-6 7.022379-1 2.204259-6 4.772734-1 2.222419-6 2.848373-1 2.240295-6 1.189729-1 2.257893-6-2.545443-2 2.275215-6-1.523349-1 2.292266-6-2.646697-1 2.309052-6-3.648121-1 2.341839-6-5.356400-1 2.373610-6-6.759001-1 2.434697-6-8.938118-1 2.519354-6-1.118307+0 2.621165-6-1.313267+0 2.790750-6-1.533218+0 3.029013-6-1.725759+0 3.532243-6-1.950720+0 3.829213-6-2.072710+0 3.902063-6-2.141632+0 3.964262-6-1.938984+0 4.008910-6-1.966184+0 4.133185-6-2.055124+0 4.506855-6-2.197603+0 4.584051-6-2.273894+0 4.634025-6-2.101507+0 4.667342-6-2.019776+0 4.898108-6-2.246260+0 4.987948-6-2.116654+0 5.088220-6-2.209388+0 5.184383-6-2.184045+0 7.852356-6-2.208440+0 1.756871-5-2.150443+0 2.683417-5-2.235512+0 3.639113-5-2.467192+0 4.311060-5-2.782876+0 4.748800-5-3.147563+0 5.048416-5-3.582622+0 5.186653-5-3.905330+0 5.337265-5-3.663454+0 5.415605-5-3.322257+0 5.456502-5-2.964076+0 5.479427-5-2.624641+0 5.492222-5-2.316043+0 5.498523-5-2.077574+0 5.520674-5-1.465808+0 5.536910-5-9.144660-1 5.550434-5-5.235163-1 5.553393-5-4.606733-1 5.563959-5-3.114887-1 5.566917-5-3.029984-1 5.569136-5-3.109746-1 5.572464-5-3.405527-1 5.575793-5-3.841733-1 5.577483-5-4.128885-1 5.580442-5-4.857620-1 5.582660-5-5.549044-1 5.585989-5-6.818748-1 5.589317-5-8.443595-1 5.595234-5-1.185461+0 5.600702-5-1.568633+0 5.613691-5-2.765661+0 5.629664-5-4.595269+0 5.636922-5-3.771116+0 5.647020-5-2.684700+0 5.659369-5-1.629398+0 5.665003-5-1.278384+0 5.670463-5-1.007753+0 5.674692-5-8.434918-1 5.678145-5-7.493503-1 5.682677-5-6.712022-1 5.685591-5-6.494818-1 5.688505-5-6.591151-1 5.693008-5-7.050523-1 5.696386-5-7.625944-1 5.707655-5-1.074010+0 5.711036-5-1.215879+0 5.723795-5-1.772433+0 5.736483-5-2.412767+0 5.751377-5-3.101008+0 5.770692-5-3.942905+0 5.785590-5-4.282314+0 5.805217-5-4.398948+0 5.826675-5-4.225183+0 5.871145-5-3.610617+0 5.913566-5-3.462751+0 6.005606-5-3.389643+0 6.632205-5-2.489005+0 7.206656-5-1.833108+0 7.672140-5-1.409860+0 8.074394-5-1.107241+0 8.513637-5-8.353612-1 8.978229-5-6.019376-1 9.370402-5-4.408924-1 9.754980-5-3.107801-1 1.007054-4-2.194032-1 1.033188-4-1.547302-1 1.070853-4-7.139643-2 1.098474-4-2.041537-2 1.132562-4 3.528712-2 1.164758-4 8.019117-2 1.191041-4 1.109636-1 1.219860-4 1.411473-1 1.255365-4 1.739982-1 1.313654-4 2.170863-1 1.364123-4 2.461786-1 1.462177-4 2.849234-1 1.572590-4 3.112207-1 1.748474-4 3.280856-1 1.992796-4 3.286724-1 2.559940-4 2.942951-1 3.748008-4 2.105800-1 4.608747-4 1.659326-1 5.487459-4 1.331752-1 6.384593-4 1.089377-1 7.462090-4 8.773663-2 8.538916-4 7.221802-2 9.738152-4 5.931953-2 1.110102-3 4.850964-2 1.267131-3 3.936985-2 1.435133-3 3.219375-2 1.646293-3 2.567875-2 1.858623-3 2.092454-2 2.117665-3 1.673232-2 2.401832-3 1.342200-2 2.726858-3 1.070308-2 3.050982-3 8.726638-3 3.431538-3 7.016634-3 3.880519-3 5.555715-3 4.318344-3 4.515154-3 4.779205-3 3.688197-3 5.303118-3 2.980728-3 5.962386-3 2.324133-3 6.602620-3 1.853659-3 7.538482-3 1.343533-3 8.175389-3 1.079368-3 8.882461-3 8.500716-4 9.663624-3 6.529498-4 1.047481-2 4.931179-4 1.133030-2 3.603530-4 1.211640-2 2.623115-4 1.287738-2 1.839897-4 1.363729-2 1.184932-4 1.422309-2 7.500539-5 1.479108-2 3.767601-5 1.512659-2 1.757443-5 1.545534-2-8.659717-7 1.577374-2-1.763828-5 1.608511-2-3.308589-5 1.667990-2-6.022574-5 1.745242-2-9.139627-5 1.843814-2-1.256688-4 1.972490-2-1.628715-4 2.174505-2-2.085373-4 2.452565-2-2.538657-4 2.807687-2-2.933777-4 3.386789-2-3.331285-4 4.353163-2-3.676251-4 6.301680-2-3.952963-4 1.160256-1-4.130983-4 3.513676-1-4.197330-4 1.070165+0-4.204575-4 3.231848+0-4.205354-4 9.760024+0-4.205439-4 1.000000+1-4.205418-4 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.557390-3 1.150897-6 1.583454-2 1.223952-6 2.087632-2 1.301644-6 2.766146-2 1.384268-6 3.686244-2 1.472137-6 4.945084-2 1.518141-6 5.743776-2 1.565583-6 6.685511-2 1.614508-6 7.799495-2 1.664961-6 9.121893-2 1.716991-6 1.069779-1 1.770647-6 1.258323-1 1.824366-6 1.477767-1 1.876406-6 1.724457-1 1.926820-6 2.000722-1 1.975658-6 2.308969-1 2.022970-6 2.651631-1 2.068804-6 3.030823-1 2.113205-6 3.449244-1 2.156219-6 3.910439-1 2.197888-6 4.417708-1 2.238256-6 4.974403-1 2.277362-6 5.584059-1 2.315246-6 6.250407-1 2.351946-6 6.977382-1 2.387499-6 7.769133-1 2.421941-6 8.630031-1 2.455307-6 9.564680-1 2.487630-6 1.057793+0 2.518943-6 1.167487+0 2.549278-6 1.286087+0 2.578664-6 1.414158+0 2.607132-6 1.552291+0 2.634711-6 1.701108+0 2.661428-6 1.861262+0 2.687309-6 2.033437+0 2.712383-6 2.218352+0 2.736672-6 2.416759+0 2.760202-6 2.629445+0 2.782998-6 2.857233+0 2.805080-6 3.100985+0 2.826473-6 3.361602+0 2.867274-6 3.937233+0 2.905564-6 4.592151+0 2.941499-6 5.335298+0 2.958629-6 5.743492+0 2.991299-6 6.641267+0 3.022446-6 7.669938+0 3.051646-6 8.824353+0 3.079021-6 1.011940+1 3.104685-6 1.156965+1 3.128745-6 1.318994+1 3.151301-6 1.499599+1 3.172448-6 1.700436+1 3.192273-6 1.923256+1 3.210859-6 2.169901+1 3.228283-6 2.442308+1 3.244618-6 2.742502+1 3.259932-6 3.072598+1 3.274290-6 3.434799+1 3.287749-6 3.831394+1 3.300368-6 4.264760+1 3.312198-6 4.737362+1 3.323288-6 5.251762+1 3.333686-6 5.810627+1 3.343433-6 6.416756+1 3.352572-6 7.073114+1 3.361139-6 7.782894+1 3.369171-6 8.549605+1 3.376700-6 9.377200+1 3.383760-6 1.027023+2 3.390378-6 1.123399+2 3.396582-6 1.227462+2 3.402398-6 1.339908+2 3.407851-6 1.461497+2 3.412964-6 1.593010+2 3.417756-6 1.735201+2 3.422250-6 1.888731+2 3.426462-6 2.054106+2 3.430411-6 2.231626+2 3.437815-6 2.637391+2 3.444294-6 3.091912+2 3.449963-6 3.587609+2 3.454924-6 4.113710+2 3.459264-6 4.657895+2 3.463062-6 5.207812+2 3.469293-6 6.281606+2 3.487181-6 1.085250+3 3.493811-6 1.321595+3 3.499097-6 1.538453+3 3.504893-6 1.805139+3 3.507689-6 1.944131+3 3.516280-6 2.409098+3 3.517354-6 2.470705+3 3.524871-6 2.917540+3 3.527825-6 3.098057+3 3.534241-6 3.491628+3 3.538487-6 3.747356+3 3.540971-6 3.893050+3 3.545047-6 4.122772+3 3.549442-6 4.353237+3 3.553344-6 4.538777+3 3.557656-6 4.718573+3 3.558953-6 4.766871+3 3.563391-6 4.909799+3 3.567653-6 5.012132+3 3.570119-6 5.054713+3 3.574611-6 5.099669+3 3.577093-6 5.106133+3 3.585410-6 5.032709+3 3.589192-6 4.952538+3 3.594140-6 4.806993+3 3.597569-6 4.681403+3 3.602194-6 4.483912+3 3.606792-6 4.260466+3 3.610812-6 4.047466+3 3.614170-6 3.859932+3 3.618487-6 3.609835+3 3.623228-6 3.328700+3 3.627969-6 3.046443+3 3.632801-6 2.762980+3 3.636560-6 2.548525+3 3.645151-6 2.088352+3 3.648105-6 1.942020+3 3.653743-6 1.681865+3 3.660472-6 1.406145+3 3.667762-6 1.150606+3 3.685748-6 6.957111+2 3.692894-6 5.729069+2 3.696456-6 5.215130+2 3.700012-6 4.759290+2 3.703561-6 4.355470+2 3.710644-6 3.680947+2 3.717700-6 3.151993+2 3.724728-6 2.735172+2 3.731728-6 2.403811+2 3.738702-6 2.137226+2 3.745648-6 1.919736+2 3.752566-6 1.739651+2 3.759458-6 1.588347+2 3.766323-6 1.459488+2 3.773161-6 1.348406+2 3.779973-6 1.251631+2 3.786758-6 1.166552+2 3.800274-6 1.023674+2 3.813685-6 9.087683+1 3.826992-6 8.145219+1 3.840194-6 7.360003+1 3.853293-6 6.697334+1 3.866290-6 6.131988+1 3.879185-6 5.645133+1 3.891980-6 5.222413+1 3.904675-6 4.852693+1 3.917270-6 4.527198+1 3.929767-6 4.238893+1 3.942166-6 3.982063+1 3.966771-6 3.543375+1 3.990992-6 3.185024+1 4.014834-6 2.887803+1 4.038304-6 2.638261+1 4.061407-6 2.426480+1 4.084149-6 2.244970+1 4.106535-6 2.088044+1 4.128572-6 1.951367+1 4.150264-6 1.831560+1 4.171618-6 1.725845+1 4.213658-6 1.546413+1 4.254384-6 1.401362+1 4.293837-6 1.282365+1 4.332057-6 1.183426+1 4.369083-6 1.100101+1 4.404952-6 1.029150+1 4.439700-6 9.682360+0 4.473362-6 9.155784+0 4.538583-6 8.274514+0 4.599727-6 7.580180+0 4.657049-6 7.024487+0 4.710789-6 6.572171+0 4.761171-6 6.200200+0 4.855635-6 5.602716+0 4.938292-6 5.163714+0 5.010617-6 4.833789+0 5.073901-6 4.580844+0 5.184648-6 4.197779+0 5.267708-6 3.951435+0 5.392298-6 3.635392+0 5.584784-6 3.235247+0 5.761313-6 2.939778+0 6.088220-6 2.482731+0 6.163158-6 2.360055+0 6.218825-6 2.265441+0 6.234057-6 2.246258+0 6.249289-6 2.233193+0 6.264521-6 2.227791+0 6.279753-6 2.231002+0 6.294984-6 2.242878+0 6.310216-6 2.262414+0 6.355912-6 2.342931+0 6.371144-6 2.366773+0 6.386376-6 2.384438+0 6.401607-6 2.394256+0 6.416839-6 2.395603+0 6.432071-6 2.388838+0 6.447303-6 2.375092+0 6.477767-6 2.333206+0 6.553710-6 2.211763+0 6.617761-6 2.130191+0 6.825929-6 1.920600+0 6.925386-6 1.809276+0 6.975114-6 1.737434+0 7.042192-6 1.625785+0 7.059483-6 1.601792+0 7.076774-6 1.584301+0 7.094065-6 1.575986+0 7.111355-6 1.579095+0 7.120001-6 1.585394+0 7.128646-6 1.594939+0 7.141788-6 1.615510+0 7.163228-6 1.662885+0 7.215101-6 1.808648+0 7.232392-6 1.850282+0 7.250020-6 1.881681+0 7.260596-6 1.893985+0 7.272430-6 1.901469+0 7.284265-6 1.902263+0 7.301555-6 1.891977+0 7.318846-6 1.869723+0 7.336137-6 1.837987+0 7.370719-6 1.757415+0 7.425079-6 1.628173+0 7.443265-6 1.594031+0 7.461452-6 1.567527+0 7.479638-6 1.549761+0 7.493394-6 1.542391+0 7.507150-6 1.540094+0 7.520673-6 1.542327+0 7.534197-6 1.548285+0 7.588756-6 1.588581+0 7.606943-6 1.599218+0 7.625129-6 1.605057+0 7.643315-6 1.605427+0 7.661502-6 1.600678+0 7.697875-6 1.580922+0 7.752434-6 1.548868+0 7.785450-6 1.536957+0 7.877996-6 1.521849+0 8.103459-6 1.476751+0 8.275768-6 1.443812+0 8.439747-6 1.421510+0 8.709636-6 1.393440+0 8.977598-6 1.371577+0 9.258148-6 1.356330+0 9.885531-6 1.341235+0 1.023293-5 1.341686+0 1.060000-5 1.346002+0 1.100000-5 1.355325+0 1.180000-5 1.383773+0 1.230269-5 1.406762+0 1.440000-5 1.514239+0 1.766769-5 1.675828+0 1.923538-5 1.743534+0 2.120838-5 1.819181+0 2.278125-5 1.870361+0 2.510088-5 1.931016+0 2.810283-5 1.998029+0 3.076982-5 2.039813+0 3.412911-5 2.073751+0 3.785515-5 2.090897+0 4.168694-5 2.089358+0 4.570882-5 2.068703+0 5.020176-5 2.025547+0 5.499771-5 1.951892+0 5.913646-5 1.867683+0 6.329563-5 1.766210+0 6.722023-5 1.649044+0 6.998666-5 1.557473+0 7.448249-5 1.388219+0 7.771574-5 1.249730+0 7.973652-5 1.157560+0 8.197483-5 1.048319+0 8.377819-5 9.557921-1 8.471092-5 9.062954-1 8.653415-5 8.058457-1 8.821231-5 7.099644-1 8.980064-5 6.166900-1 9.128970-5 5.276193-1 9.194566-5 4.880697-1 9.313820-5 4.160316-1 9.425620-5 3.489244-1 9.530433-5 2.870809-1 9.637165-5 2.260407-1 9.720815-5 1.804501-1 9.747793-5 1.663419-1 9.807178-5 1.365944-1 9.846099-5 1.182534-1 9.888144-5 9.966649-2 9.940878-5 7.846333-2 9.964049-5 6.999460-2 1.003521-4 4.779745-2 1.010192-4 3.330703-2 1.011303-4 3.160443-2 1.016447-4 2.684101-2 1.019113-4 2.663964-2 1.022310-4 2.875950-2 1.025059-4 3.289539-2 1.026434-4 3.585343-2 1.027721-4 3.919750-2 1.030301-4 4.770884-2 1.033298-4 6.093325-2 1.037565-4 8.679746-2 1.039837-4 1.043341-1 1.042038-4 1.240031-1 1.044170-4 1.456116-1 1.046235-4 1.688518-1 1.048236-4 1.932865-1 1.050174-4 2.183525-1 1.052052-4 2.433839-1 1.055633-4 2.904350-1 1.058969-4 3.286658-1 1.062476-4 3.569061-1 1.064222-4 3.647854-1 1.067027-4 3.676580-1 1.069667-4 3.592481-1 1.072760-4 3.370455-1 1.075067-4 3.135920-1 1.077232-4 2.880196-1 1.079264-4 2.625727-1 1.082961-4 2.192966-1 1.084668-4 2.043390-1 1.086267-4 1.960275-1 1.087767-4 1.956926-1 1.089173-4 2.045736-1 1.090491-4 2.237884-1 1.091727-4 2.542929-1 1.092937-4 2.991128-1 1.093971-4 3.519527-1 1.094989-4 4.198929-1 1.095944-4 5.006659-1 1.096839-4 5.940218-1 1.098464-4 8.163336-1 1.100584-4 1.236331+0 1.101794-4 1.559635+0 1.102853-4 1.903105+0 1.103779-4 2.256669+0 1.104589-4 2.611400+0 1.105298-4 2.959870+0 1.106462-4 3.616285+0 1.107412-4 4.238119+0 1.108659-4 5.183907+0 1.109811-4 6.201263+0 1.110753-4 7.143669+0 1.111314-4 7.754333+0 1.112154-4 8.743240+0 1.112995-4 9.822623+0 1.114361-4 1.177687+1 1.115386-4 1.340852+1 1.115728-4 1.398422+1 1.118461-4 1.914954+1 1.119272-4 2.086404+1 1.120233-4 2.298965+1 1.121364-4 2.560976+1 1.122245-4 2.772135+1 1.123926-4 3.187313+1 1.124866-4 3.422671+1 1.125986-4 3.702705+1 1.127143-4 3.986548+1 1.128309-4 4.262222+1 1.129282-4 4.480839+1 1.130220-4 4.678619+1 1.131229-4 4.873941+1 1.132295-4 5.057501+1 1.133576-4 5.242664+1 1.134722-4 5.371806+1 1.135586-4 5.444648+1 1.136932-4 5.514139+1 1.137972-4 5.530200+1 1.139083-4 5.511131+1 1.140249-4 5.451728+1 1.141454-4 5.350066+1 1.142752-4 5.198377+1 1.143780-4 5.050444+1 1.145044-4 4.839759+1 1.146030-4 4.656938+1 1.147138-4 4.436616+1 1.148063-4 4.243543+1 1.149253-4 3.987643+1 1.150450-4 3.726275+1 1.151972-4 3.396852+1 1.153956-4 2.985835+1 1.157988-4 2.273243+1 1.159736-4 2.029704+1 1.160965-4 1.883583+1 1.161630-4 1.813197+1 1.162433-4 1.735919+1 1.163313-4 1.660635+1 1.164523-4 1.572470+1 1.165578-4 1.508836+1 1.166332-4 1.470358+1 1.166904-4 1.444728+1 1.168169-4 1.397990+1 1.168993-4 1.374147+1 1.170353-4 1.344414+1 1.171722-4 1.324527+1 1.172942-4 1.313438+1 1.175020-4 1.304818+1 1.177794-4 1.304911+1 1.184257-4 1.313183+1 1.188141-4 1.309863+1 1.193232-4 1.295964+1 1.205898-4 1.252324+1 1.215812-4 1.229021+1 1.230269-4 1.205958+1 1.245186-4 1.187630+1 1.262500-4 1.173361+1 1.282627-4 1.164615+1 1.305786-4 1.161353+1 1.333259-4 1.165223+1 1.358399-4 1.174124+1 1.404239-4 1.196468+1 1.464180-4 1.230118+1 1.536053-4 1.272243+1 1.621810-4 1.314147+1 1.679135-4 1.337220+1 1.748458-4 1.357145+1 1.877455-4 1.378253+1 2.041738-4 1.384325+1 2.278405-4 1.376840+1 2.636426-4 1.357131+1 2.950214-4 1.336353+1 3.498148-4 1.295314+1 3.958220-4 1.260887+1 5.983001-4 1.145040+1 6.552488-4 1.117768+1 7.646744-4 1.061131+1 8.532762-4 1.024999+1 1.046375-3 9.476570+0 1.193840-3 8.904003+0 1.332174-3 8.411311+0 1.452437-3 8.015323+0 1.595693-3 7.571567+0 1.747902-3 7.120232+0 1.937769-3 6.604607+0 2.207950-3 5.964115+0 2.575951-3 5.243384+0 4.283329-3 3.366519+0 5.485664-3 2.720164+0 6.307970-3 2.401722+0 7.058492-3 2.158877+0 7.851514-3 1.939802+0 8.687729-3 1.738552+0 9.443507-3 1.578792+0 1.031245-2 1.417806+0 1.136832-2 1.249663+0 1.258901-2 1.086341+0 1.446847-2 8.904213-1 1.603804-2 7.635003-1 1.769535-2 6.540319-1 2.011818-2 5.300597-1 2.374753-2 4.011074-1 2.792549-2 3.033531-1 3.304978-2 2.251837-1 3.949271-2 1.630533-1 4.738692-2 1.163099-1 5.805051-2 7.923770-2 7.402442-2 4.963093-2 1.004462-1 2.733980-2 1.493983-1 1.247838-2 2.938495-1 3.245138-3 8.906099-1 3.539466-4 2.688134+0 3.885989-5 8.118035+0 4.261000-6 2.451607+1 4.672105-7 7.403736+1 5.122863-8 2.235892+2 5.617108-9 6.752287+2 6.15904-10 2.511886+3 4.45056-11 7.943282+3 4.45056-12 2.511886+4 4.45056-13 7.943282+4 4.45056-14 1.000000+5 2.80811-14 1 4000 7 7 9.012200+0 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.870200-7 1.258900-6 6.133800-7 1.584900-6 9.721400-7 1.995300-6 1.540700-6 2.511900-6 2.441900-6 3.162300-6 3.870100-6 3.981100-6 6.133700-6 5.011900-6 9.721200-6 6.309600-6 1.540700-5 7.943300-6 2.441800-5 1.000000-5 3.870000-5 1.258900-5 6.133400-5 1.584900-5 9.720700-5 1.995300-5 1.540600-4 2.511900-5 2.441600-4 3.162300-5 3.869100-4 3.981100-5 6.129600-4 5.011900-5 9.711000-4 6.309600-5 1.538600-3 7.943300-5 2.437700-3 1.000000-4 3.859200-3 1.258900-4 6.108700-3 1.584900-4 9.655600-3 1.995300-4 1.525300-2 2.511900-4 2.404300-2 3.162300-4 3.775800-2 3.981100-4 5.912000-2 5.011900-4 9.187700-2 6.309600-4 1.411100-1 7.943300-4 2.128900-1 1.000000-3 3.132800-1 1.258900-3 4.467700-1 1.584900-3 6.091500-1 1.995300-3 7.900100-1 2.511900-3 9.698800-1 3.162300-3 1.137600+0 3.981100-3 1.289100+0 5.011900-3 1.435100+0 6.309600-3 1.584500+0 7.943300-3 1.740000+0 1.000000-2 1.894200+0 1.258900-2 2.031900+0 1.584900-2 2.134000+0 1.995300-2 2.212700+0 2.511900-2 2.249900+0 3.162300-2 2.255700+0 3.981100-2 2.235100+0 5.011900-2 2.191900+0 6.309600-2 2.129000+0 7.943300-2 2.049600+0 1.000000-1 1.956500+0 1.258900-1 1.852500+0 1.584900-1 1.740500+0 1.995300-1 1.623300+0 2.511900-1 1.503900+0 3.162300-1 1.384900+0 3.981100-1 1.268100+0 5.011900-1 1.154900+0 6.309600-1 1.046200+0 7.943300-1 9.426500-1 1.000000+0 8.446200-1 1.258900+0 7.523600-1 1.584900+0 6.661300-1 1.995300+0 5.861400-1 2.511900+0 5.125900-1 3.162300+0 4.455600-1 3.981100+0 3.850400-1 5.011900+0 3.309100-1 6.309600+0 2.829200-1 7.943300+0 2.407300-1 1.000000+1 2.039400-1 1.258900+1 1.720700-1 1.584900+1 1.446600-1 1.995300+1 1.212100-1 2.511900+1 1.012600-1 3.162300+1 8.436800-2 3.981100+1 7.012000-2 5.011900+1 5.815000-2 6.309600+1 4.812700-2 7.943300+1 3.975900-2 1.000000+2 3.279200-2 1.258900+2 2.700500-2 1.584900+2 2.220800-2 1.995300+2 1.824000-2 2.511900+2 1.496400-2 3.162300+2 1.226200-2 3.981100+2 1.003900-2 5.011900+2 8.210500-3 6.309600+2 6.709400-3 7.943300+2 5.478300-3 1.000000+3 4.469600-3 1.258900+3 3.644000-3 1.584900+3 2.968900-3 1.995300+3 2.417300-3 2.511900+3 1.967000-3 3.162300+3 1.599700-3 3.981100+3 1.300200-3 5.011900+3 1.056200-3 6.309600+3 8.576300-4 7.943300+3 6.960400-4 1.000000+4 5.646300-4 1.258900+4 4.578300-4 1.584900+4 3.710800-4 1.995300+4 3.006400-4 2.511900+4 2.434800-4 3.162300+4 1.971200-4 3.981100+4 1.595200-4 5.011900+4 1.290500-4 6.309600+4 1.043700-4 7.943300+4 8.438100-5 1.000000+5 6.819800-5 1 4000 7 7 9.012200+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976742-4 5.011872-4 5.005046-4 6.309573-4 6.298778-4 7.943282-4 7.926329-4 1.000000-3 9.973401-4 1.258925-3 1.254767-3 1.584893-3 1.578435-3 1.995262-3 1.985284-3 2.511886-3 2.496592-3 3.162278-3 3.138870-3 3.981072-3 3.945222-3 5.011872-3 4.956541-3 6.309573-3 6.223498-3 7.943282-3 7.808731-3 1.000000-2 9.789849-3 1.258925-2 1.226280-2 1.584893-2 1.534498-2 1.995262-2 1.917998-2 2.511886-2 2.393783-2 3.162278-2 2.982332-2 3.981072-2 3.707577-2 5.011872-2 4.597774-2 6.309573-2 5.685322-2 7.943282-2 7.008316-2 1.000000-1 8.610251-2 1.258925-1 1.054151-1 1.584893-1 1.285998-1 1.995262-1 1.563242-1 2.511886-1 1.893627-1 3.162278-1 2.285917-1 3.981072-1 2.750317-1 5.011872-1 3.298620-1 6.309573-1 3.944578-1 7.943282-1 4.704744-1 1.000000+0 5.599243-1 1.258925+0 6.652859-1 1.584893+0 7.896209-1 1.995262+0 9.366921-1 2.511886+0 1.111206+0 3.162278+0 1.318893+0 3.981072+0 1.566771+0 5.011872+0 1.863518+0 6.309573+0 2.219662+0 7.943282+0 2.648127+0 1.000000+1 3.164685+0 1.258925+1 3.788683+0 1.584893+1 4.543798+0 1.995262+1 5.458936+0 2.511886+1 6.569658+0 3.162278+1 7.919592+0 3.981072+1 9.562030+0 5.011872+1 1.156278+1 6.309573+1 1.400239+1 7.943282+1 1.697997+1 1.000000+2 2.061732+1 1.258925+2 2.506458+1 1.584893+2 3.050620+1 1.995262+2 3.716930+1 2.511886+2 4.533450+1 3.162278+2 5.534688+1 3.981072+2 6.763143+1 5.011872+2 8.271474+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739852-9 3.981072-5 4.341952-9 5.011872-5 6.881160-9 6.309573-5 1.090552-8 7.943282-5 1.728312-8 1.000000-4 2.738441-8 1.258925-4 4.339367-8 1.584893-4 6.873757-8 1.995262-4 1.088935-7 2.511886-4 1.724479-7 3.162278-4 2.729027-7 3.981072-4 4.329610-7 5.011872-4 6.825964-7 6.309573-4 1.079516-6 7.943282-4 1.695287-6 1.000000-3 2.659894-6 1.258925-3 4.158731-6 1.584893-3 6.458677-6 1.995262-3 9.978659-6 2.511886-3 1.529459-5 3.162278-3 2.340798-5 3.981072-3 3.584934-5 5.011872-3 5.533091-5 6.309573-3 8.607585-5 7.943282-3 1.345513-4 1.000000-2 2.101514-4 1.258925-2 3.264567-4 1.584893-2 5.039478-4 1.995262-2 7.726418-4 2.511886-2 1.181037-3 3.162278-2 1.799459-3 3.981072-2 2.734943-3 5.011872-2 4.140980-3 6.309573-2 6.242513-3 7.943282-2 9.349660-3 1.000000-1 1.389749-2 1.258925-1 2.047742-2 1.584893-1 2.988951-2 1.995262-1 4.320206-2 2.511886-1 6.182593-2 3.162278-1 8.763604-2 3.981072-1 1.230755-1 5.011872-1 1.713252-1 6.309573-1 2.364996-1 7.943282-1 3.238538-1 1.000000+0 4.400757-1 1.258925+0 5.936395-1 1.584893+0 7.952723-1 1.995262+0 1.058570+0 2.511886+0 1.400680+0 3.162278+0 1.843384+0 3.981072+0 2.414301+0 5.011872+0 3.148355+0 6.309573+0 4.089912+0 7.943282+0 5.295156+0 1.000000+1 6.835315+0 1.258925+1 8.800571+0 1.584893+1 1.130513+1 1.995262+1 1.449369+1 2.511886+1 1.854921+1 3.162278+1 2.370318+1 3.981072+1 3.024869+1 5.011872+1 3.855594+1 6.309573+1 4.909335+1 7.943282+1 6.245285+1 1.000000+2 7.938268+1 1.258925+2 1.008280+2 1.584893+2 1.279831+2 1.995262+2 1.623569+2 2.511886+2 2.058541+2 3.162278+2 2.608809+2 3.981072+2 3.304757+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.180000-6 1.361886+6 8.400000-6 1.470288+6 8.550000-6 1.539822+6 8.709636-6 1.608646+6 8.912509-6 1.688826+6 9.120108-6 1.762033+6 9.350000-6 1.834572+6 9.600000-6 1.902500+6 9.885531-6 1.968718+6 1.023293-5 2.033663+6 1.060000-5 2.085760+6 1.100000-5 2.126520+6 1.135011-5 2.150466+6 1.180000-5 2.167580+6 1.230269-5 2.171786+6 1.290000-5 2.160820+6 1.350000-5 2.136920+6 1.428894-5 2.091299+6 1.513561-5 2.030435+6 1.610000-5 1.952756+6 1.717908-5 1.861117+6 1.850000-5 1.747918+6 2.000000-5 1.623762+6 2.162719-5 1.498012+6 2.371374-5 1.351922+6 2.600160-5 1.211360+6 2.884032-5 1.062460+6 3.198895-5 9.247258+5 3.548134-5 7.990502+5 3.935501-5 6.852050+5 4.315191-5 5.937712+5 4.731513-5 5.110916+5 5.188000-5 4.368857+5 5.688529-5 3.706455+5 6.237348-5 3.121091+5 6.839116-5 2.608498+5 7.500000-5 2.163960+5 8.317638-5 1.741329+5 9.332543-5 1.356123+5 1.059254-4 1.021682+5 1.183600-4 7.922294+4 1.183600-4 2.545443+6 1.197000-4 2.430345+6 1.216186-4 2.294965+6 1.230269-4 2.212377+6 1.233000-4 2.196809+6 1.255000-4 2.089482+6 1.285000-4 1.970069+6 1.318257-4 1.861761+6 1.364583-4 1.737559+6 1.445440-4 1.559550+6 1.513561-4 1.430299+6 1.584893-4 1.304712+6 1.659587-4 1.182752+6 1.737801-4 1.065797+6 1.850000-4 9.181822+5 2.041738-4 7.188106+5 2.483133-4 4.382730+5 2.754229-4 3.353272+5 3.090295-4 2.472203+5 3.162278-4 2.325876+5 3.507519-4 1.759954+5 3.890451-4 1.331459+5 4.027170-4 1.211273+5 4.466836-4 9.117514+4 4.570882-4 8.549784+4 5.248075-4 5.811889+4 5.370318-4 5.449547+4 6.309573-4 3.450466+4 7.413102-4 2.167867+4 7.673615-4 1.962260+4 8.810489-4 1.310427+4 9.225714-4 1.145334+4 1.035142-3 8.144848+3 1.135011-3 6.199879+3 1.230269-3 4.868071+3 1.400000-3 3.302547+3 1.479108-3 2.794240+3 1.717908-3 1.772278+3 1.819701-3 1.484404+3 2.089296-3 9.699007+2 2.213095-3 8.106786+2 2.540973-3 5.270590+2 2.722701-3 4.240030+2 3.162278-3 2.645764+2 3.273407-3 2.370631+2 3.845918-3 1.419807+2 4.073803-3 1.180079+2 4.897788-3 6.528142+1 5.128614-3 5.622270+1 6.309573-3 2.869807+1 6.606934-3 2.468337+1 8.317638-3 1.161589+1 8.609938-3 1.036460+1 1.122018-2 4.324450+0 1.148154-2 4.005683+0 1.566751-2 1.424381+0 1.603245-2 1.318713+0 2.290868-2 3.991491-1 2.317395-2 3.839769-1 3.507519-2 9.512473-2 3.672823-2 8.146102-2 6.998420-2 9.241626-3 7.328245-2 7.911169-3 9.772372-2 3.004478-3 1.011580-1 2.675017-3 1.318257-1 1.105861-3 1.364583-1 9.855536-4 1.603245-1 5.788395-4 1.640590-1 5.364833-4 1.905461-1 3.293324-4 1.927525-1 3.172059-4 2.238721-1 1.959713-4 2.264644-1 1.888488-4 2.570396-1 1.264837-4 2.917427-1 8.533461-5 3.273407-1 6.009418-5 3.630781-1 4.412751-5 4.027170-1 3.263976-5 4.415705-1 2.513508-5 4.841724-1 1.948797-5 5.308844-1 1.522096-5 5.754399-1 1.234415-5 5.821032-1 1.198060-5 6.237348-1 1.006799-5 6.309573-1 9.780680-6 6.760830-1 8.266217-6 6.839117-1 8.037954-6 7.328245-1 6.831458-6 7.413102-1 6.649019-6 8.000000-1 5.591639-6 8.035261-1 5.536130-6 8.810489-1 4.534849-6 1.011579+0 3.394160-6 1.047129+0 3.160236-6 1.188502+0 2.432519-6 1.202264+0 2.377144-6 1.303167+0 2.023667-6 1.318257+0 1.979408-6 1.396368+0 1.772537-6 1.412538+0 1.735553-6 1.500000+0 1.555049-6 1.513561+0 1.531177-6 1.603245+0 1.387270-6 1.621810+0 1.361603-6 1.737801+0 1.217585-6 1.757924+0 1.196248-6 1.883649+0 1.076093-6 1.905461+0 1.057893-6 2.238721+0 8.333713-7 2.540973+0 6.959995-7 2.917427+0 5.761145-7 3.388442+0 4.729821-7 4.000000+0 3.831010-7 4.786301+0 3.073334-7 5.821032+0 2.435645-7 7.413102+0 1.843396-7 9.440609+0 1.405394-7 9.549926+0 1.387849-7 1.303167+1 9.890056-8 1.318257+1 9.769301-8 1.840772+1 6.843379-8 1.862087+1 6.761420-8 2.754229+1 4.490076-8 2.800000+1 4.414535-8 4.786301+1 2.542948-8 4.954502+1 2.455211-8 9.549926+1 1.260376-8 9.885531+1 1.217254-8 1.905461+2 6.283612-9 1.972423+2 6.069593-9 7.585776+2 1.571491-9 7.852356+2 1.518125-9 1.000000+5 1.19105-11 1 4000 7 0 9.012200+0 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.180000-6 8.180000-6 1.183600-4 8.180000-6 1.183600-4 1.149308-4 1.318257-4 1.147102-4 1.850000-4 1.150567-4 5.370318-4 1.146130-4 3.273407-3 1.143038-4 4.954502+1 1.141930-4 1.000000+5 1.141925-4 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.180000-6 0.0 1.183600-4 1.101800-4 1.183600-4 3.429181-6 1.197000-4 4.840111-6 1.216186-4 6.832551-6 1.233000-4 8.557584-6 1.255000-4 1.078907-5 1.318257-4 1.711554-5 1.659587-4 5.092820-5 3.273407-3 3.159103-3 1.000000+5 1.000000+5 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.183600-4 2.466220+6 1.197000-4 2.353140+6 1.216186-4 2.220522+6 1.233000-4 2.124680+6 1.255000-4 2.020280+6 1.285000-4 1.904592+6 1.318257-4 1.800088+6 1.364583-4 1.680679+6 1.513561-4 1.385768+6 1.584893-4 1.264817+6 1.659587-4 1.147011+6 1.737801-4 1.033777+6 1.850000-4 8.906540+5 2.041738-4 6.971185+5 2.483133-4 4.247542+5 2.754229-4 3.248023+5 3.162278-4 2.251076+5 3.890451-4 1.287429+5 4.466836-4 8.811893+4 5.370318-4 5.264221+4 6.309573-4 3.331830+4 7.673615-4 1.893880+4 9.225714-4 1.104988+4 1.135011-3 5.979501+3 1.400000-3 3.184300+3 1.717908-3 1.708430+3 2.089296-3 9.347272+2 2.540973-3 5.078205+2 3.162278-3 2.548525+2 3.845918-3 1.367429+2 4.897788-3 6.286177+1 6.309573-3 2.763020+1 8.317638-3 1.118210+1 1.122018-2 4.162457+0 1.566751-2 1.370882+0 2.290868-2 3.841202-1 3.672823-2 7.838946-2 7.328245-2 7.612624-3 1.011580-1 2.574066-3 1.364583-1 9.483662-4 1.640590-1 5.162488-4 1.927525-1 3.052480-4 2.264644-1 1.817308-4 2.570396-1 1.217187-4 2.917427-1 8.212063-5 3.273407-1 5.783178-5 3.630781-1 4.246687-5 4.027170-1 3.141180-5 4.415705-1 2.418955-5 4.841724-1 1.875488-5 5.308844-1 1.464836-5 5.821032-1 1.152967-5 6.309573-1 9.412449-6 6.839117-1 7.735229-6 7.413102-1 6.398455-6 8.035261-1 5.327393-6 8.810489-1 4.363608-6 1.011579+0 3.265713-6 1.188502+0 2.340416-6 1.303167+0 1.947052-6 1.396368+0 1.705446-6 1.500000+0 1.496200-6 1.603245+0 1.334775-6 1.737801+0 1.171510-6 1.883649+0 1.035371-6 2.238721+0 8.018506-7 2.540973+0 6.696748-7 2.917427+0 5.543232-7 3.388442+0 4.550914-7 4.000000+0 3.686100-7 4.786301+0 2.957083-7 5.821032+0 2.343515-7 7.413102+0 1.773668-7 9.440609+0 1.352224-7 1.303167+1 9.515911-8 1.840772+1 6.584488-8 2.754229+1 4.320215-8 4.786301+1 2.446736-8 9.549926+1 1.212695-8 1.905461+2 6.045912-9 7.585776+2 1.512044-9 1.000000+5 1.14600-11 1 4000 7 0 9.012200+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.183600-4 1.183600-4 1.000000+5 1.183600-4 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.183600-4 0.0 1.000000+5 1.000000+5 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.180000-6 1.361886+6 8.400000-6 1.470288+6 8.550000-6 1.539822+6 8.709636-6 1.608646+6 8.912509-6 1.688826+6 9.120108-6 1.762033+6 9.350000-6 1.834572+6 9.600000-6 1.902500+6 9.885531-6 1.968718+6 1.023293-5 2.033663+6 1.060000-5 2.085760+6 1.100000-5 2.126520+6 1.135011-5 2.150466+6 1.180000-5 2.167580+6 1.230269-5 2.171786+6 1.290000-5 2.160820+6 1.350000-5 2.136920+6 1.428894-5 2.091299+6 1.513561-5 2.030435+6 1.610000-5 1.952756+6 1.717908-5 1.861117+6 1.850000-5 1.747918+6 2.000000-5 1.623762+6 2.162719-5 1.498012+6 2.371374-5 1.351922+6 2.600160-5 1.211360+6 2.884032-5 1.062460+6 3.198895-5 9.247258+5 3.548134-5 7.990502+5 3.935501-5 6.852050+5 4.315191-5 5.937712+5 4.731513-5 5.110916+5 5.188000-5 4.368857+5 5.688529-5 3.706455+5 6.237348-5 3.121091+5 6.839116-5 2.608498+5 7.500000-5 2.163960+5 8.317638-5 1.741329+5 9.332543-5 1.356123+5 1.059254-4 1.021682+5 1.230269-4 7.250430+4 1.445440-4 4.970541+4 1.737801-4 3.202033+4 2.754229-4 1.052486+4 3.090295-4 7.928044+3 3.507519-4 5.757325+3 4.027170-4 4.026495+3 4.570882-4 2.874578+3 5.248075-4 1.975201+3 6.309573-4 1.186362+3 7.413102-4 7.545972+2 8.810489-4 4.610973+2 1.035142-3 2.889595+2 1.230269-3 1.738634+2 1.479108-3 1.003655+2 1.819701-3 5.365359+1 2.213095-3 2.949884+1 2.722701-3 1.553651+1 3.273407-3 8.727234+0 4.073803-3 4.364795+0 5.128614-3 2.087850+0 6.606934-3 9.200453-1 8.609938-3 3.875211-1 1.148154-2 1.501605-1 1.603245-2 4.956130-2 2.317395-2 1.446136-2 3.507519-2 3.588063-3 6.998420-2 3.486080-4 9.772372-2 1.132948-4 1.318257-1 4.169005-5 1.603245-1 2.181519-5 1.905461-1 1.240983-5 2.238721-1 7.382448-6 2.570396-1 4.765041-6 2.917427-1 3.213981-6 3.273407-1 2.262400-6 3.630781-1 1.660644-6 4.027170-1 1.227958-6 4.415705-1 9.455284-7 4.841724-1 7.330939-7 5.308844-1 5.726038-7 5.754399-1 4.642355-7 6.237348-1 3.787327-7 6.760830-1 3.110584-7 7.328245-1 2.572070-7 8.000000-1 2.107200-7 8.810489-1 1.712413-7 1.047129+0 1.195371-7 1.202264+0 8.994563-8 1.318257+0 7.487888-8 1.412538+0 6.563382-8 1.513561+0 5.789503-8 1.621810+0 5.147647-8 1.757924+0 4.523114-8 1.905461+0 4.001492-8 2.238721+0 3.152066-8 2.540973+0 2.632465-8 2.917427+0 2.179129-8 3.388442+0 1.789065-8 4.000000+0 1.449100-8 4.786301+0 1.162512-8 5.821032+0 9.212983-9 7.413102+0 6.972789-9 9.549926+0 5.248798-9 1.318257+1 3.694836-9 1.862087+1 2.557354-9 2.800000+1 1.669600-9 4.954502+1 9.28555-10 9.885531+1 4.60378-10 1.972423+2 2.29572-10 7.852356+2 5.74226-11 1.000000+5 4.50510-13 1 4000 7 0 9.012200+0 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.180000-6 8.180000-6 1.000000+5 8.180000-6 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.180000-6 0.0 1.000000+5 1.000000+5 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.85230-10 1.028750+0 5.852300-9 1.036640+0 5.852300-8 1.054080+0 5.852300-7 1.061100+0 1.037600-6 1.065100+0 1.373650-6 1.070400+0 1.916360-6 1.076200+0 2.648380-6 1.080600+0 3.307390-6 1.087100+0 4.456210-6 1.093710+0 5.852300-6 1.102600+0 8.114840-6 1.110700+0 1.058450-5 1.120600+0 1.416090-5 1.133300+0 1.969250-5 1.147500+0 2.719400-5 1.158200+0 3.379660-5 1.174100+0 4.516100-5 1.190110+0 5.852300-5 1.205100+0 7.279520-5 1.227500+0 9.736850-5 1.250000+0 1.260000-4 1.281300+0 1.724880-4 1.308600+0 2.194110-4 1.332500+0 2.652700-4 1.374400+0 3.563170-4 1.405800+0 4.331400-4 1.452900+0 5.614410-4 1.500000+0 7.043000-4 1.562500+0 9.137170-4 1.641100+0 1.205410-3 1.706900+0 1.470160-3 1.811600+0 1.923940-3 1.952900+0 2.586610-3 2.000000+0 2.818000-3 2.044000+0 3.038000-3 2.163500+0 3.648590-3 2.372600+0 4.746680-3 2.647100+0 6.209560-3 3.000000+0 8.082000-3 3.437500+0 1.035080-2 4.000000+0 1.313000-2 4.750000+0 1.655120-2 5.000000+0 1.763000-2 6.000000+0 2.167000-2 7.000000+0 2.528000-2 8.000000+0 2.854000-2 9.000000+0 3.150000-2 1.000000+1 3.420000-2 1.100000+1 3.665000-2 1.200000+1 3.890000-2 1.300000+1 4.100000-2 1.400000+1 4.296000-2 1.500000+1 4.479000-2 1.600000+1 4.651000-2 1.800000+1 4.968000-2 2.000000+1 5.253000-2 2.200000+1 5.511000-2 2.400000+1 5.748000-2 2.600000+1 5.965000-2 2.800000+1 6.166000-2 3.000000+1 6.352000-2 4.000000+1 7.122000-2 5.000000+1 7.699000-2 6.000000+1 8.158000-2 8.000000+1 8.852000-2 1.000000+2 9.355000-2 1.500000+2 1.019000-1 2.000000+2 1.072000-1 3.000000+2 1.138000-1 4.000000+2 1.177000-1 5.000000+2 1.203000-1 6.000000+2 1.223000-1 8.000000+2 1.249000-1 1.000000+3 1.267000-1 1.500000+3 1.293000-1 2.000000+3 1.307000-1 3.000000+3 1.323000-1 4.000000+3 1.331000-1 5.000000+3 1.337000-1 6.000000+3 1.341000-1 8.000000+3 1.346000-1 1.000000+4 1.349000-1 1.500000+4 1.353000-1 2.000000+4 1.356000-1 3.000000+4 1.358000-1 4.000000+4 1.360000-1 5.000000+4 1.360000-1 6.000000+4 1.361000-1 8.000000+4 1.362000-1 1.000000+5 1.362000-1 1 4000 7 8 9.012200+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.016920-8 2.136250+0 4.016920-7 2.184500+0 1.327050-6 2.201800+0 1.836010-6 2.214800+0 2.287520-6 2.234200+0 3.077120-6 2.253680+0 4.016920-6 2.281500+0 5.626410-6 2.307000+0 7.390280-6 2.338200+0 9.936880-6 2.377400+0 1.376140-5 2.410200+0 1.750220-5 2.446800+0 2.226380-5 2.485900+0 2.803130-5 2.532900+0 3.587400-5 2.556430+0 4.016920-5 2.611900+0 5.121990-5 2.660400+0 6.192160-5 2.745300+0 8.287720-5 2.809000+0 1.003680-4 2.904500+0 1.292970-4 3.000000+0 1.614000-4 3.125000+0 2.081320-4 3.234400+0 2.532690-4 3.425800+0 3.411130-4 3.569300+0 4.136860-4 3.784700+0 5.318950-4 4.000000+0 6.590000-4 4.250000+0 8.144210-4 4.625000+0 1.058770-3 5.000000+0 1.313000-3 5.500000+0 1.662450-3 6.000000+0 2.017000-3 6.750000+0 2.545030-3 7.000000+0 2.719000-3 8.000000+0 3.401000-3 9.000000+0 4.055000-3 1.000000+1 4.679000-3 1.100000+1 5.271000-3 1.200000+1 5.830000-3 1.300000+1 6.359000-3 1.400000+1 6.865000-3 1.500000+1 7.344000-3 1.600000+1 7.802000-3 1.800000+1 8.655000-3 2.000000+1 9.436000-3 2.200000+1 1.016000-2 2.400000+1 1.082000-2 2.600000+1 1.144000-2 2.800000+1 1.202000-2 3.000000+1 1.256000-2 4.000000+1 1.485000-2 5.000000+1 1.665000-2 6.000000+1 1.810000-2 8.000000+1 2.037000-2 1.000000+2 2.209000-2 1.500000+2 2.507000-2 2.000000+2 2.706000-2 3.000000+2 2.965000-2 4.000000+2 3.130000-2 5.000000+2 3.248000-2 6.000000+2 3.337000-2 8.000000+2 3.463000-2 1.000000+3 3.550000-2 1.500000+3 3.683000-2 2.000000+3 3.761000-2 3.000000+3 3.848000-2 4.000000+3 3.898000-2 5.000000+3 3.930000-2 6.000000+3 3.953000-2 8.000000+3 3.983000-2 1.000000+4 4.003000-2 1.500000+4 4.030000-2 2.000000+4 4.045000-2 3.000000+4 4.060000-2 4.000000+4 4.070000-2 5.000000+4 4.075000-2 6.000000+4 4.079000-2 8.000000+4 4.083000-2 1.000000+5 4.086000-2 1 4000 7 8 9.012200+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 4000 7 9 9.012200+0 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.000000+0 1.000000+5 4.000000+0 5.000000+5 3.997000+0 7.500000+5 3.993120+0 9.375000+5 3.989150+0 1.000000+6 3.988000+0 1.500000+6 3.973200+0 1.875000+6 3.957830+0 2.000000+6 3.952500+0 2.500000+6 3.926400+0 3.000000+6 3.894700+0 3.500000+6 3.858080+0 3.750000+6 3.837830+0 4.000000+6 3.816800+0 4.500000+6 3.771110+0 4.750000+6 3.746610+0 5.000000+6 3.721500+0 5.500000+6 3.668200+0 5.875000+6 3.626210+0 6.156200+6 3.593760+0 6.625000+6 3.538010+0 6.718700+6 3.526780+0 7.000000+6 3.492400+0 7.500000+6 3.429590+0 7.875000+6 3.381620+0 8.250000+6 3.332530+0 8.625000+6 3.283040+0 9.000000+6 3.232500+0 9.750000+6 3.130620+0 1.000000+7 3.097600+0 1.062500+7 3.016990+0 1.125000+7 2.939020+0 1.144500+7 2.914700+0 1.218800+7 2.822930+0 1.250000+7 2.784400+0 1.359400+7 2.650130+0 1.375000+7 2.631400+0 1.453100+7 2.542310+0 1.500000+7 2.492100+0 1.609400+7 2.385090+0 1.750000+7 2.262900+0 1.937500+7 2.119120+0 2.000000+7 2.077100+0 2.125000+7 2.002550+0 2.218800+7 1.953590+0 2.312500+7 1.909920+0 2.500000+7 1.835400+0 2.750000+7 1.756970+0 3.000000+7 1.695100+0 3.750000+7 1.558830+0 4.000000+7 1.519500+0 4.437500+7 1.450760+0 4.812500+7 1.390830+0 5.000000+7 1.360300+0 5.250000+7 1.318890+0 5.625000+7 1.256090+0 6.000000+7 1.193000+0 6.437500+7 1.119770+0 6.812500+7 1.058010+0 7.000000+7 1.027700+0 7.437500+7 9.584060-1 8.000000+7 8.743000-1 8.500000+7 8.045860-1 8.875000+7 7.545130-1 9.000000+7 7.381200-1 1.000000+8 6.206000-1 1.125000+8 5.193370-1 1.140600+8 5.080780-1 1.179700+8 4.798740-1 1.214800+8 4.542500-1 1.250000+8 4.279800-1 1.281300+8 4.041660-1 1.308600+8 3.835280-1 1.356400+8 3.487110-1 1.437500+8 2.961100-1 1.500000+8 2.623500-1 1.562500+8 2.342880-1 1.835900+8 1.520120-1 1.875000+8 1.435460-1 1.945300+8 1.296320-1 2.000000+8 1.198200-1 2.117200+8 1.012800-1 2.253900+8 8.352040-2 2.438500+8 6.498110-2 2.500000+8 5.994500-2 2.750000+8 4.385090-2 2.937500+8 3.515080-2 3.000000+8 3.272000-2 3.250000+8 2.479510-2 3.500000+8 1.908500-2 3.875000+8 1.325130-2 4.000000+8 1.181000-2 4.437500+8 8.059430-3 5.000000+8 5.152100-3 5.750000+8 3.027590-3 6.000000+8 2.571700-3 7.000000+8 1.418000-3 8.000000+8 8.430900-4 1.000000+9 3.513600-4 1.375000+9 9.985940-5 1.500000+9 7.073800-5 2.000000+9 2.257500-5 5.000000+9 5.915200-7 8.000000+9 9.182800-8 1.00000+10 3.802700-8 1.41360+10 9.728680-9 1.85560+10 3.350110-9 2.40710+10 1.215890-9 3.11120+10 4.50870-10 3.94540+10 1.81345-10 4.70230+10 9.30204-11 5.67350+10 4.58018-11 6.75510+10 2.38445-11 8.17480+10 1.17607-11 9.39160+10 7.06674-12 1.00000+11 5.61970-12 1.17140+11 3.16792-12 1.36540+11 1.82744-12 1.70670+11 8.27831-13 2.04860+11 4.36342-13 2.52170+11 2.12282-13 3.35790+11 7.97093-14 4.68190+11 2.60554-14 6.33390+11 9.58279-15 8.34870+11 3.89081-15 1.31660+12 9.01694-16 1.95920+12 2.57537-16 3.59790+12 3.92686-17 8.26120+12 3.17237-18 2.87420+13 7.89911-20 1.00000+14 2.02490-21 5.62340+14 1.21496-23 5.42470+15 1.36023-26 1.00000+17 2.03320-30 1 4000 7 0 9.012200+0 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.77000-12 1.000000+2 1.77000-10 1.000000+3 1.770000-8 1.000000+4 1.770000-6 1.000000+5 1.770000-4 5.000000+5 4.425000-3 7.500000+5 9.956250-3 9.375000+5 1.555664-2 1.000000+6 1.770000-2 1.500000+6 3.967900-2 1.875000+6 6.182660-2 2.000000+6 7.020000-2 2.500000+6 1.083400-1 3.000000+6 1.544000-1 3.500000+6 2.070510-1 3.750000+6 2.356080-1 4.000000+6 2.656000-1 4.500000+6 3.295820-1 4.750000+6 3.633160-1 5.000000+6 3.981000-1 5.500000+6 4.701000-1 5.875000+6 5.259310-1 6.156200+6 5.686840-1 6.625000+6 6.410470-1 6.718700+6 6.556350-1 7.000000+6 6.998000-1 7.500000+6 7.787380-1 7.875000+6 8.382330-1 8.250000+6 8.977560-1 8.625000+6 9.572290-1 9.000000+6 1.016500+0 9.750000+6 1.132960+0 1.000000+7 1.170600+0 1.062500+7 1.260370+0 1.125000+7 1.345080+0 1.144500+7 1.370570+0 1.218800+7 1.464520+0 1.250000+7 1.502800+0 1.359400+7 1.630740+0 1.375000+7 1.647980+0 1.453100+7 1.729540+0 1.500000+7 1.774200+0 1.609400+7 1.865190+0 1.750000+7 1.965700+0 1.937500+7 2.085460+0 2.000000+7 2.120700+0 2.125000+7 2.181980+0 2.218800+7 2.221780+0 2.312500+7 2.257610+0 2.500000+7 2.321500+0 2.750000+7 2.398230+0 3.000000+7 2.470500+0 3.750000+7 2.676570+0 4.000000+7 2.743700+0 4.437500+7 2.860470+0 4.812500+7 2.958140+0 5.000000+7 3.005300+0 5.250000+7 3.066500+0 5.625000+7 3.154550+0 6.000000+7 3.237400+0 6.437500+7 3.326310+0 6.812500+7 3.396240+0 7.000000+7 3.429100+0 7.437500+7 3.499400+0 8.000000+7 3.579400+0 8.500000+7 3.640260+0 8.875000+7 3.680640+0 9.000000+7 3.693100+0 1.000000+8 3.777100+0 1.125000+8 3.850820+0 1.140600+8 3.857870+0 1.179700+8 3.874630+0 1.214800+8 3.887970+0 1.250000+8 3.900000+0 1.281300+8 3.909050+0 1.308600+8 3.916780+0 1.356400+8 3.928330+0 1.437500+8 3.944060+0 1.500000+8 3.953800+0 1.562500+8 3.961720+0 1.835900+8 3.982520+0 1.875000+8 3.984510+0 1.945300+8 3.987080+0 2.000000+8 3.989000+0 2.117200+8 3.991590+0 2.253900+8 3.994410+0 2.438500+8 3.996380+0 2.500000+8 3.997000+0 2.750000+8 3.998050+0 2.937500+8 3.998770+0 3.000000+8 3.999000+0 3.250000+8 3.999310+0 3.500000+8 3.999600+0 3.875000+8 3.999830+0 4.000000+8 3.999900+0 4.437500+8 3.999950+0 5.000000+8 4.000000+0 5.750000+8 4.000000+0 6.000000+8 4.000000+0 7.000000+8 4.000000+0 8.000000+8 4.000000+0 1.000000+9 4.000000+0 1.375000+9 4.000000+0 1.500000+9 4.000000+0 2.000000+9 4.000000+0 5.000000+9 4.000000+0 8.000000+9 4.000000+0 1.00000+10 4.000000+0 1.41360+10 4.000000+0 1.85560+10 4.000000+0 2.40710+10 4.000000+0 3.11120+10 4.000000+0 3.94540+10 4.000000+0 4.70230+10 4.000000+0 5.67350+10 4.000000+0 6.75510+10 4.000000+0 8.17480+10 4.000000+0 9.39160+10 4.000000+0 1.00000+11 4.000000+0 1.17140+11 4.000000+0 1.36540+11 4.000000+0 1.70670+11 4.000000+0 2.04860+11 4.000000+0 2.52170+11 4.000000+0 3.35790+11 4.000000+0 4.68190+11 4.000000+0 6.33390+11 4.000000+0 8.34870+11 4.000000+0 1.31660+12 4.000000+0 1.95920+12 4.000000+0 3.59790+12 4.000000+0 8.26120+12 4.000000+0 2.87420+13 4.000000+0 1.00000+14 4.000000+0 5.62340+14 4.000000+0 5.42470+15 4.000000+0 1.00000+17 4.000000+0 1 4000 7 0 9.012200+0 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.022446-6 0.0 3.489647-6 0.0 3.490506-6 1.279243-1 3.506825-6 7.360732+0 3.507689-6 7.823796+0 3.516280-6 1.422633+1 3.524871-6 2.388680+1 3.534241-6 3.849502+1 3.558953-6 8.486226+1 3.568739-6 9.680225+1 3.577093-6 9.998262+1 3.585922-6 9.519313+1 3.595147-6 8.267772+1 3.618487-6 3.849835+1 3.627969-6 2.379749+1 3.636560-6 1.415829+1 3.645151-6 7.776682+0 3.657588-6 2.081636+0 3.661433-6 2.815762-1 3.662334-6 0.0 5.516889-6 0.0 5.530468-6 1.64111-15 5.544047-6 3.24730-15 5.557626-6 5.93147-15 5.571205-6 1.00013-14 5.584784-6 1.55669-14 5.598364-6 2.23667-14 5.611943-6 2.96659-14 5.625522-6 3.63217-14 5.639101-6 4.10514-14 5.652680-6 4.28296-14 5.666259-6 4.12491-14 5.679838-6 3.66724-14 5.693417-6 3.00966-14 5.720576-6 1.59454-14 5.734155-6 1.02938-14 5.747734-6 6.13436-15 5.761313-6 3.37456-15 5.774892-6 1.71364-15 5.788471-6 0.0 6.188137-6 0.0 6.188361-6 2.893434-5 6.218825-6 1.161470-2 6.234057-6 2.120061-2 6.249289-6 3.572435-2 6.264521-6 5.557178-2 6.279753-6 7.980256-2 6.294984-6 1.057914-1 6.310216-6 1.294655-1 6.325448-6 1.462602-1 6.340680-6 1.525338-1 6.355912-6 1.468495-1 6.371144-6 1.305103-1 6.386376-6 1.070734-1 6.416839-6 5.669533-2 6.432071-6 3.659101-2 6.447303-6 2.180035-2 6.462535-6 1.198986-2 6.477767-6 6.072485-3 6.492763-6 6.275462-5 6.492999-6 0.0 6.505671-6 0.0 6.521684-6 7.538941-6 6.537697-6 1.491749-5 6.553710-6 2.724801-5 6.569723-6 4.594388-5 6.585736-6 7.151128-5 6.601748-6 1.027484-4 6.617761-6 1.362793-4 6.633774-6 1.668546-4 6.649787-6 1.885822-4 6.665800-6 1.967510-4 6.681813-6 1.894904-4 6.697826-6 1.684657-4 6.713839-6 1.382578-4 6.745864-6 7.325004-5 6.761877-6 4.728767-5 6.777890-6 2.818007-5 6.793903-6 1.550209-5 6.809916-6 7.872132-6 6.825929-6 0.0 7.024842-6 0.0 7.024901-6 1.159200-5 7.042192-6 1.026656-2 7.059483-6 2.031123-2 7.076774-6 3.709428-2 7.094065-6 6.253692-2 7.111355-6 9.732504-2 7.163228-6 2.270074-1 7.180519-6 2.565450-1 7.197810-6 2.676369-1 7.215101-6 2.577449-1 7.232392-6 2.291395-1 7.284265-6 9.966195-2 7.301555-6 6.436700-2 7.318846-6 3.839158-2 7.336137-6 2.115449-2 7.363991-6 4.228944-3 7.370658-6 8.969160-5 7.370719-6 6.426915-5 7.388667-6 5.111360-5 7.388706-6 5.589242-5 7.425079-6 1.332324-2 7.443265-6 2.430333-2 7.461452-6 4.095770-2 7.479638-6 6.373580-2 7.534197-6 1.486688-1 7.552384-6 1.680176-1 7.570570-6 1.752853-1 7.588756-6 1.710291-1 7.606943-6 1.563782-1 7.643315-6 1.133316-1 7.661502-6 9.716126-2 7.679688-6 8.931815-2 7.690901-6 8.941249-2 7.697875-6 9.093553-2 7.716061-6 1.000864-1 7.734247-6 1.115819-1 7.752434-6 1.191646-1 7.766520-6 1.277310-1 7.785450-6 1.343336-1 7.877996-6 1.332485-1 8.025478-6 1.469789-1 8.101609-6 1.508761-1 8.205129-6 1.583877-1 8.550000-6 1.881549-1 9.600000-6 2.610068-1 1.060000-5 3.159531-1 1.180000-5 3.655706-1 1.350000-5 4.123886-1 1.610000-5 4.495373-1 1.923538-5 4.635332-1 2.510088-5 4.536458-1 5.913646-5 2.917921-1 7.448249-5 2.339211-1 9.194566-5 1.842967-1 1.102853-4 1.470344-1 1.110262-4 1.457833-1 1.115728-4 9.879970-1 1.118461-4 1.684457+0 1.121364-4 2.830769+0 1.124268-4 4.405461+0 1.132295-4 9.649304+0 1.135300-4 1.087673+1 1.137972-4 1.122482+1 1.140874-4 1.072815+1 1.143780-4 9.444187+0 1.149253-4 6.291570+0 1.151972-4 4.993941+0 1.154248-4 4.198966+0 1.157073-4 3.702166+0 1.160209-4 3.605800+0 1.165147-4 3.747445+0 1.168993-4 4.186809+0 1.172134-4 4.372592+0 1.176994-4 4.423732+0 1.192691-4 4.178563+0 1.266421-4 3.704919+0 1.358399-4 3.410724+0 1.952024-4 2.245702+0 2.213984-4 1.856024+0 2.515504-4 1.525724+0 2.882735-4 1.226203+0 3.321341-4 9.689194-1 3.692153-4 8.100031-1 4.126167-4 6.693187-1 4.610521-4 5.507933-1 5.189939-4 4.453251-1 5.818742-4 3.615956-1 6.552488-4 2.902294-1 7.164110-4 2.454032-1 7.931859-4 2.022197-1 8.716923-4 1.687115-1 9.729090-4 1.363011-1 1.095862-3 1.079656-1 1.217204-3 8.758493-2 1.361747-3 6.996259-2 1.522903-3 5.574194-2 1.700172-3 4.451054-2 1.889743-3 3.574066-2 2.115010-3 2.826522-2 2.326457-3 2.310714-2 2.575951-3 1.861372-2 2.845215-3 1.503213-2 3.176998-3 1.185893-2 3.522512-3 9.466189-3 3.880803-3 7.662791-3 4.283329-3 6.158637-3 4.709995-3 4.991658-3 5.128614-3 4.129014-3 5.666355-3 3.299540-3 6.156808-3 2.739068-3 6.717188-3 2.248971-3 7.274487-3 1.876105-3 8.034615-3 1.497128-3 8.840456-3 1.202275-3 9.669636-3 9.783695-4 1.072548-2 7.705125-4 1.183888-2 6.131502-4 1.293491-2 4.989690-4 1.414680-2 4.051263-4 1.539291-2 3.329210-4 1.676389-2 2.725666-4 1.851820-2 2.157469-4 2.011818-2 1.775937-4 2.188566-2 1.457243-4 2.423532-2 1.145703-4 2.633777-2 9.409976-5 2.909274-2 7.436324-5 3.168565-2 6.074995-5 3.427071-2 5.046669-5 3.712680-2 4.174666-5 4.060099-2 3.376234-5 4.432075-2 2.741247-5 4.836007-2 2.227830-5 5.255445-2 1.828486-5 5.805051-2 1.443760-5 6.322316-2 1.178603-5 6.838006-2 9.784480-6 7.402442-2 8.103937-6 8.009632-2 6.726952-6 8.724764-2 5.495078-6 9.498577-2 4.497450-6 1.046112-1 3.582147-6 1.159631-1 2.816442-6 1.280592-1 2.234056-6 1.410506-1 1.783943-6 1.530675-1 1.478306-6 1.688800-1 1.180116-6 1.870755-1 9.363054-7 2.036889-1 7.744230-7 2.258135-1 6.163736-7 2.496215-1 4.958337-7 2.712801-1 4.154299-7 2.997221-1 3.371984-7 3.273407-1 2.816435-7 3.611050-1 2.317930-7 4.005285-1 1.900869-7 4.415705-1 1.589011-7 4.954502-1 1.298940-7 5.457971-1 1.106350-7 5.984546-1 9.570736-8 6.635521-1 8.216760-8 7.563973-1 6.874636-8 8.691734-1 5.810619-8 1.022000+0 4.859832-8 1.228714+0 4.076172-8 1.477239+0 3.418880-8 1.776032+0 2.867578-8 2.135261+0 2.405174-8 2.567148+0 2.017334-8 3.086391+0 1.692034-8 3.710658+0 1.419190-8 4.461192+0 1.190342-8 5.363532+0 9.983966-9 6.448384+0 8.374028-9 7.752663+0 7.023696-9 9.320751+0 5.891109-9 9.760024+0 5.637738-9 1.000000+1 1.078268-8 1 4000 7 0 9.012200+0 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.886697+0 1.716991-6-3.599598+0 2.156219-6-3.234517+0 2.455307-6-2.803121+0 2.661428-6-2.331158+0 2.782998-6-1.933369+0 2.886723-6-1.479997+0 2.958629-6-1.074315+0 2.991299-6-8.564005-1 3.022446-6-6.242671-1 3.051646-6-3.811544-1 3.079021-6-1.268621-1 3.104685-6 1.387688-1 3.128745-6 4.160023-1 3.151301-6 7.049901-1 3.172448-6 1.005851+0 3.192273-6 1.318670+0 3.210859-6 1.643491+0 3.244618-6 2.329107+0 3.274290-6 3.062172+0 3.300368-6 3.841364+0 3.333686-6 5.091658+0 3.361139-6 6.429652+0 3.383760-6 7.840098+0 3.407851-6 9.800247+0 3.430411-6 1.230440+1 3.449963-6 1.534660+1 3.466385-6 1.900632+1 3.477959-6 2.270899+1 3.484716-6 2.570510+1 3.489647-6 2.887182+1 3.493811-6 3.215581+1 3.507689-6 4.076929+1 3.517354-6 4.778616+1 3.527825-6 5.394538+1 3.535748-6 5.598677+1 3.543145-6 5.389379+1 3.549442-6 4.924686+1 3.555539-6 4.191123+1 3.558361-6 3.687413+1 3.565956-6 2.162650+1 3.567653-6 1.738847+1 3.568739-6 1.425745+1 3.574057-6 1.498479+0 3.574611-6 1.136865-1 3.575035-6-9.761337-1 3.575710-6-2.791681+0 3.576134-6-4.021836+0 3.576414-6-3.091764+0 3.576578-6-2.505448+0 3.576967-6-1.333870+0 3.577093-6-9.768579-1 3.585410-6 1.984084+1 3.587722-6 2.526878+1 3.596028-6 4.160638+1 3.603213-6 5.106527+1 3.610812-6 5.677121+1 3.617407-6 5.820289+1 3.627376-6 5.499310+1 3.648105-6 4.065590+1 3.660472-6 3.316788+1 3.665955-6 2.885491+1 3.674977-6 2.466001+1 3.685748-6 2.119902+1 3.700012-6 1.790007+1 3.717700-6 1.495713+1 3.738702-6 1.242915+1 3.766323-6 1.004747+1 3.800274-6 7.984558+0 3.840194-6 6.272873+0 3.879185-6 5.052686+0 3.917270-6 4.137961+0 3.966771-6 3.221545+0 4.014834-6 2.533166+0 4.061407-6 1.998116+0 4.106535-6 1.570407+0 4.150264-6 1.220796+0 4.213658-6 7.999305-1 4.254384-6 5.714120-1 4.293837-6 3.749602-1 4.332057-6 2.043460-1 4.369083-6 5.485566-2 4.404952-6-7.714375-2 4.439700-6-1.944975-1 4.473362-6-2.994658-1 4.538583-6-4.818384-1 4.599727-6-6.316084-1 4.710789-6-8.622160-1 4.855635-6-1.103104+0 5.073901-6-1.379340+0 5.392298-6-1.665130+0 5.788471-6-1.913892+0 6.218825-6-2.161753+0 6.294984-6-2.202989+0 6.401607-6-2.070187+0 6.697826-6-2.246996+0 7.024901-6-2.420526+0 7.128646-6-2.521766+0 7.180519-6-2.440658+0 7.250020-6-2.266024+0 7.301555-6-2.275560+0 7.493394-6-2.521532+0 7.643315-6-2.419681+0 7.766520-6-2.494339+0 9.885531-6-2.608328+0 1.610000-5-2.515364+0 2.810283-5-2.323673+0 4.168694-5-2.266668+0 5.913646-5-2.348559+0 7.448249-5-2.571996+0 8.653415-5-2.914619+0 9.425620-5-3.296001+0 1.003521-4-3.806138+0 1.044170-4-4.397794+0 1.064222-4-4.861313+0 1.084668-4-4.483933+0 1.096839-4-3.991415+0 1.103779-4-3.472127+0 1.107412-4-3.036130+0 1.109811-4-2.591512+0 1.110753-4-2.307490+0 1.115386-4-1.340895+0 1.118461-4-5.656848-1 1.118631-4-5.099687-1 1.119272-4-3.550186-1 1.120713-4-6.701248-2 1.120953-4-1.547992-2 1.121193-4 4.894613-2 1.121364-4 9.626271-2 1.121684-4 1.596371-1 1.122245-4 2.428065-1 1.124268-4 4.565033-1 1.124866-4 4.683919-1 1.125314-4 4.551813-1 1.125986-4 4.076784-1 1.126659-4 3.346951-1 1.127143-4 2.638210-1 1.127567-4 1.838322-1 1.128309-4 9.635605-3 1.128865-4-1.495294-1 1.129282-4-2.857016-1 1.129908-4-5.195543-1 1.130220-4-6.520129-1 1.130931-4-1.000860+0 1.131677-4-1.411918+0 1.132124-4-1.714397+0 1.134317-4-3.234508+0 1.135586-4-4.339237+0 1.137467-4-5.891628+0 1.138601-4-4.921727+0 1.140377-4-3.580736+0 1.140874-4-3.161866+0 1.141876-4-2.512011+0 1.143415-4-1.607279+0 1.144122-4-1.262877+0 1.145044-4-9.101012-1 1.145570-4-7.447820-1 1.146030-4-6.191179-1 1.146433-4-5.230059-1 1.147138-4-3.851192-1 1.147667-4-3.070946-1 1.148063-4-2.634126-1 1.148658-4-2.241528-1 1.148955-4-2.187290-1 1.149253-4-2.303473-1 1.150450-4-2.963944-1 1.151049-4-3.557815-1 1.151349-4-3.998942-1 1.151972-4-5.427458-1 1.153106-4-7.506940-1 1.153956-4-9.403950-1 1.154248-4-1.034798+0 1.157405-4-1.880736+0 1.160209-4-2.470636+0 1.162433-4-2.791676+0 1.164918-4-3.087679+0 1.166904-4-3.290209+0 1.168593-4-3.307367+0 1.172942-4-3.148480+0 1.181237-4-2.838554+0 1.192691-4-2.616656+0 1.198743-4-2.586412+0 1.245186-4-2.174226+0 1.305786-4-1.798855+0 1.404239-4-1.341948+0 1.515603-4-9.271131-1 1.613243-4-6.306516-1 1.679135-4-4.615666-1 1.748458-4-3.140345-1 1.793242-4-2.344087-1 1.821289-4-1.887983-1 1.877455-4-1.057855-1 1.896177-4-8.187263-2 1.931564-4-4.198174-2 1.952024-4-2.139414-2 1.985887-4 1.471071-2 2.041738-4 6.548870-2 2.092305-4 1.039313-1 2.157691-4 1.464621-1 2.213984-4 1.780400-1 2.278405-4 2.089869-1 2.394611-4 2.531013-1 2.573172-4 3.033867-1 2.802206-4 3.430905-1 3.024267-4 3.611753-1 3.415666-4 3.678070-1 4.250284-4 3.398673-1 6.126288-4 2.511159-1 7.646744-4 1.964786-1 9.225714-4 1.555751-1 1.095862-3 1.236750-1 1.271672-3 1.003957-1 1.452437-3 8.277533-2 1.647113-3 6.854473-2 1.889743-3 5.544623-2 2.164081-3 4.468968-2 2.448536-3 3.648905-2 2.786121-3 2.940588-2 3.176998-3 2.348962-2 3.600720-3 1.886627-2 4.073803-3 1.513859-2 4.558253-3 1.232160-2 5.128614-3 9.887478-3 5.791899-3 7.822853-3 6.524259-3 6.175692-3 7.274487-3 4.936868-3 8.034615-3 3.992421-3 8.840456-3 3.226407-3 9.879475-3 2.484093-3 1.096263-2 1.909051-3 1.206539-2 1.466659-3 1.330525-2 1.077365-3 1.446847-2 7.862515-4 1.539291-2 5.998829-4 1.640589-2 4.310503-4 1.743427-2 2.889308-4 1.812422-2 2.066829-4 1.888723-2 1.261193-4 1.933441-2 8.326911-5 1.974831-2 4.617773-5 2.011818-2 1.495049-5 2.060301-2-2.346340-5 2.087802-2-4.407292-5 2.136816-2-7.885563-5 2.228319-2-1.376906-4 2.374753-2-2.182134-4 2.517793-2-2.836415-4 2.742000-2-3.663612-4 3.031106-2-4.471340-4 3.427071-2-5.263526-4 4.060099-2-6.081370-4 5.022115-2-6.784370-4 6.838006-2-7.394827-4 1.089569-1-7.828086-4 2.712801-1-8.064317-4 8.293732-1-8.104880-4 2.567148+0-8.109233-4 7.752663+0-8.109684-4 1.000000+1-8.109641-4 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.711690-4 1.060347-6 9.829310-4 1.199234-6 1.645778-3 1.356312-6 2.785772-3 1.533965-6 4.776139-3 1.682315-6 7.238060-3 1.789103-6 9.600002-3 1.898026-6 1.265686-2 2.000247-6 1.627180-2 2.141909-6 2.269347-2 2.230510-6 2.779960-2 2.313573-6 3.351958-2 2.391446-6 3.988091-2 2.464451-6 4.688765-2 2.532893-6 5.454819-2 2.597057-6 6.286803-2 2.657212-6 7.187191-2 2.721439-6 8.297339-2 2.766476-6 9.179644-2 2.816042-6 1.027719-1 2.862510-6 1.144067-1 2.906073-6 1.267145-1 2.946914-6 1.396987-1 2.985336-6 1.534624-1 3.031982-6 1.724353-1 3.054750-6 1.827499-1 3.086298-6 1.985526-1 3.127472-6 2.221158-1 3.169598-6 2.502349-1 3.193969-6 2.689623-1 3.225969-6 2.970127-1 3.258316-6 3.301598-1 3.277142-6 3.523078-1 3.299855-6 3.825683-1 3.326849-6 4.247256-1 3.355934-6 4.800309-1 3.381383-6 5.401256-1 3.403651-6 6.054607-1 3.423135-6 6.764441-1 3.442041-6 7.630217-1 3.455102-6 8.374083-1 3.468155-6 9.290172-1 3.479577-6 1.029635+0 3.489869-6 1.144325+0 3.498315-6 1.262770+0 3.505966-6 1.396120+0 3.512661-6 1.539412+0 3.518520-6 1.690369+0 3.523646-6 1.846035+0 3.528131-6 2.003207+0 3.533379-6 2.215448+0 3.538923-6 2.476938+0 3.544074-6 2.758076+0 3.556267-6 3.586996+0 3.563362-6 4.181324+0 3.577049-6 5.547254+0 3.580904-6 5.974666+0 3.585811-6 6.536641+0 3.589675-6 6.987547+0 3.594572-6 7.560485+0 3.598445-6 8.007147+0 3.603333-6 8.551332+0 3.606299-6 8.865332+0 3.610538-6 9.285169+0 3.613262-6 9.533170+0 3.617691-6 9.892413+0 3.622063-6 1.018549+1 3.626315-6 1.040376+1 3.630713-6 1.055333+1 3.635504-6 1.062210+1 3.639713-6 1.059834+1 3.644355-6 1.048003+1 3.648558-6 1.029109+1 3.652739-6 1.002951+1 3.656778-6 9.711868+0 3.658159-6 9.589681+0 3.665253-6 8.866546+0 3.668637-6 8.473618+0 3.672361-6 8.013739+0 3.675499-6 7.608693+0 3.678230-6 7.246820+0 3.682428-6 6.680111+0 3.686155-6 6.173101+0 3.690048-6 5.646808+0 3.695327-6 4.950186+0 3.699160-6 4.463897+0 3.703695-6 3.916696+0 3.708469-6 3.379255+0 3.712465-6 2.963444+0 3.717231-6 2.510619+0 3.721236-6 2.167060+0 3.722926-6 2.032302+0 3.728839-6 1.607248+0 3.733275-6 1.334279+0 3.736137-6 1.177827+0 3.739415-6 1.016472+0 3.743228-6 8.512748-1 3.747019-6 7.091186-1 3.750788-6 5.876124-1 3.753288-6 5.169320-1 3.755781-6 4.536797-1 3.758264-6 3.972953-1 3.760738-6 3.471760-1 3.763201-6 3.027518-1 3.765655-6 2.634871-1 3.769318-6 2.131937-1 3.772956-6 1.718697-1 3.777774-6 1.283371-1 3.783744-6 8.870094-2 3.790828-6 5.719933-2 3.794341-6 4.631854-2 3.796674-6 4.047450-2 3.798997-6 3.560105-2 3.801311-6 3.157638-2 3.803617-6 2.829339-2 3.805913-6 2.565817-2 3.808200-6 2.358865-2 3.810479-6 2.201330-2 3.815018-6 2.010211-2 3.819521-6 1.952676-2 3.823989-6 1.998305-2 3.828423-6 2.124469-2 3.832822-6 2.314344-2 3.837186-6 2.555378-2 3.850110-6 3.504297-2 3.858568-6 4.269631-2 3.866895-6 5.106962-2 3.875091-6 5.997180-2 3.883160-6 6.926303-2 3.891102-6 7.884093-2 3.906739-6 9.874924-2 3.921886-6 1.192107-1 3.936561-6 1.400939-1 3.950777-6 1.613181-1 4.207942-6 6.070139-1 4.395754-6 1.101807+0 4.435159-6 1.239952+0 4.500020-6 1.517929+0 4.554071-6 1.802870+0 4.590507-6 2.029899+0 4.612146-6 2.181000+0 4.643495-6 2.425141+0 4.662160-6 2.586756+0 4.698186-6 2.939831+0 4.724978-6 3.244846+0 4.762012-6 3.742889+0 4.794416-6 4.273973+0 4.822770-6 4.838083+0 4.847580-6 5.435296+0 4.871395-6 6.134421+0 4.888284-6 6.733846+0 4.904904-6 7.441799+0 4.919447-6 8.195125+0 4.932172-6 8.996872+0 4.943307-6 9.845667+0 4.953049-6 1.073440+1 4.961574-6 1.165077+1 4.969034-6 1.257912+1 4.975560-6 1.350277+1 4.986982-6 1.540611+1 4.995549-6 1.710305+1 5.010406-6 2.065328+1 5.028176-6 2.593285+1 5.037453-6 2.908513+1 5.045976-6 3.215505+1 5.049821-6 3.357468+1 5.058336-6 3.674363+1 5.062190-6 3.816795+1 5.072240-6 4.175487+1 5.074943-6 4.266911+1 5.083054-6 4.521852+1 5.088637-6 4.676046+1 5.095299-6 4.831599+1 5.101900-6 4.950017+1 5.106458-6 5.008497+1 5.112440-6 5.053937+1 5.118689-6 5.061308+1 5.121677-6 5.049906+1 5.127084-6 5.004432+1 5.132491-6 4.927165+1 5.134712-6 4.886395+1 5.139781-6 4.774273+1 5.145236-6 4.625444+1 5.149843-6 4.478773+1 5.155368-6 4.280189+1 5.161071-6 4.052788+1 5.164689-6 3.898677+1 5.170041-6 3.659600+1 5.175464-6 3.407330+1 5.181047-6 3.141489+1 5.185648-6 2.920762+1 5.191250-6 2.653650+1 5.196332-6 2.415933+1 5.200723-6 2.216151+1 5.206334-6 1.971025+1 5.213019-6 1.697084+1 5.218689-6 1.482578+1 5.224571-6 1.279092+1 5.231102-6 1.076961+1 5.236859-6 9.199073+0 5.245452-6 7.217533+0 5.255067-6 5.488390+0 5.261132-6 4.640115+0 5.266129-6 4.068880+0 5.269163-6 3.774000+0 5.273041-6 3.450258+0 5.276055-6 3.237108+0 5.277494-6 3.146590+0 5.279652-6 3.023768+0 5.281810-6 2.915844+0 5.286184-6 2.739876+0 5.288372-6 2.671968+0 5.290559-6 2.616536+0 5.296898-6 2.520471+0 5.300068-6 2.505119+0 5.303238-6 2.509330+0 5.319875-6 2.797344+0 5.330574-6 3.167979+0 5.335924-6 3.395964+0 5.357939-6 4.576700+0 5.370627-6 5.408875+0 5.383316-6 6.339808+0 5.396004-6 7.365282+0 5.408692-6 8.484247+0 5.441209-6 1.180168+1 5.469662-6 1.533556+1 5.535402-6 2.720159+1 5.552081-6 3.155319+1 5.566674-6 3.606192+1 5.579444-6 4.068838+1 5.590617-6 4.538554+1 5.600393-6 5.010142+1 5.608948-6 5.478252+1 5.623918-6 6.451264+1 5.635146-6 7.342122+1 5.643567-6 8.124230+1 5.650039-6 8.804798+1 5.659356-6 9.927985+1 5.668829-6 1.127869+2 5.672665-6 1.189589+2 5.681153-6 1.343042+2 5.689641-6 1.523532+2 5.700590-6 1.805084+2 5.710688-6 2.124427+2 5.717580-6 2.381830+2 5.724641-6 2.684069+2 5.737014-6 3.323229+2 5.769677-6 5.877146+2 5.783060-6 7.367435+2 5.787723-6 7.953158+2 5.798381-6 9.420212+2 5.801934-6 9.947617+2 5.816145-6 1.222943+3 5.817921-6 1.253171+3 5.830355-6 1.472489+3 5.835240-6 1.561147+3 5.845837-6 1.754284+3 5.852769-6 1.878483+3 5.860375-6 2.009714+3 5.866198-6 2.104792+3 5.870656-6 2.173470+3 5.877028-6 2.264117+3 5.884068-6 2.352179+3 5.893567-6 2.447368+3 5.900789-6 2.499216+3 5.905198-6 2.521473+3 5.912717-6 2.542269+3 5.918605-6 2.543149+3 5.925534-6 2.526843+3 5.932749-6 2.490395+3 5.936631-6 2.462890+3 5.944708-6 2.389090+3 5.950942-6 2.318082+3 5.955269-6 2.262374+3 5.962630-6 2.157073+3 5.968265-6 2.068860+3 5.974593-6 1.963604+3 5.979878-6 1.871873+3 5.986674-6 1.750528+3 5.993779-6 1.621601+3 6.000885-6 1.492718+3 6.012939-6 1.279566+3 6.017647-6 1.199619+3 6.025301-6 1.075015+3 6.029306-6 1.012820+3 6.053703-6 6.860375+2 6.066462-6 5.526824+2 6.086397-6 3.927820+2 6.098654-6 3.199362+2 6.102740-6 2.993276+2 6.110123-6 2.661922+2 6.117507-6 2.377895+2 6.125954-6 2.102992+2 6.134401-6 1.873240+2 6.150770-6 1.528381+2 6.180975-6 1.117561+2 6.193205-6 1.001425+2 6.207296-6 8.899120+1 6.220873-6 7.996354+1 6.233900-6 7.256061+1 6.248248-6 6.559372+1 6.256856-6 6.193231+1 6.266710-6 5.816380+1 6.276700-6 5.475644+1 6.286690-6 5.171709+1 6.306817-6 4.652543+1 6.367431-6 3.568426+1 6.383432-6 3.353876+1 6.408523-6 3.056653+1 6.432492-6 2.811033+1 6.456288-6 2.599108+1 6.473537-6 2.462772+1 6.499929-6 2.278076+1 6.536625-6 2.060199+1 6.576342-6 1.863269+1 6.618367-6 1.688408+1 6.662384-6 1.535066+1 6.708205-6 1.402104+1 6.752003-6 1.295606+1 6.774921-6 1.246555+1 6.824383-6 1.153577+1 6.863580-6 1.090104+1 6.902166-6 1.034566+1 6.944193-6 9.805639+0 7.014342-6 9.031015+0 7.050572-6 8.683954+0 7.121900-6 8.085691+0 7.199537-6 7.536698+0 7.264321-6 7.143290+0 7.329703-6 6.795971+0 7.386667-6 6.528671+0 7.475948-6 6.165170+0 7.534709-6 5.956379+0 7.630204-6 5.657851+0 7.747559-6 5.347826+0 7.847079-6 5.123984+0 8.009485-6 4.815861+0 8.205138-6 4.520373+0 8.377768-6 4.309249+0 8.511876-6 4.171327+0 8.711381-6 3.992507+0 9.083669-6 3.719774+0 9.749163-6 3.316071+0 9.888151-6 3.213857+0 1.000785-5 3.095219+0 1.004714-5 3.044489+0 1.013554-5 2.918806+0 1.016539-5 2.887530+0 1.017790-5 2.879530+0 1.021543-5 2.883806+0 1.024045-5 2.918213+0 1.026548-5 2.983922+0 1.028063-5 3.040063+0 1.030301-5 3.145300+0 1.032803-5 3.291014+0 1.039058-5 3.723245+0 1.041560-5 3.887907+0 1.044062-5 4.026790+0 1.046564-5 4.129145+0 1.047190-5 4.148188+0 1.049066-5 4.188780+0 1.050317-5 4.202057+0 1.051568-5 4.204662+0 1.052819-5 4.197207+0 1.055321-5 4.155664+0 1.056572-5 4.123743+0 1.059075-5 4.043635+0 1.061577-5 3.949926+0 1.068193-5 3.695986+0 1.071015-5 3.602012+0 1.075247-5 3.484961+0 1.084120-5 3.316196+0 1.108707-5 3.013065+0 1.119335-5 2.880808+0 1.120383-5 2.870487+0 1.125899-5 2.840342+0 1.128656-5 2.847188+0 1.131414-5 2.873077+0 1.134172-5 2.919509+0 1.136929-5 2.985620+0 1.141066-5 3.112977+0 1.145202-5 3.252866+0 1.147960-5 3.338248+0 1.150848-5 3.409878+0 1.153475-5 3.452943+0 1.156233-5 3.472001+0 1.158991-5 3.464228+0 1.161748-5 3.432882+0 1.164506-5 3.383863+0 1.171258-5 3.236740+0 1.175537-5 3.160142+0 1.178412-5 3.126634+0 1.179843-5 3.116037+0 1.182705-5 3.106516+0 1.185566-5 3.110415+0 1.191290-5 3.142592+0 1.195583-5 3.171366+0 1.201989-5 3.199300+0 1.209892-5 3.205060+0 1.228146-5 3.201563+0 1.264252-5 3.206003+0 1.380684-5 3.307181+0 1.508993-5 3.448445+0 1.760708-5 3.740246+0 2.089296-5 4.100374+0 2.310734-5 4.312833+0 2.542802-5 4.505013+0 2.880000-5 4.739133+0 3.242818-5 4.944755+0 3.673484-5 5.140511+0 4.100625-5 5.286542+0 4.527922-5 5.401025+0 4.990281-5 5.492016+0 5.514219-5 5.557841+0 6.058849-5 5.591637+0 6.654647-5 5.592432+0 7.233484-5 5.562409+0 7.776448-5 5.511330+0 8.321783-5 5.439007+0 8.996270-5 5.315637+0 9.554742-5 5.190005+0 1.011786-4 5.037854+0 1.071519-4 4.856566+0 1.125956-4 4.663687+0 1.188332-4 4.418176+0 1.256682-4 4.108403+0 1.316135-4 3.801189+0 1.371474-4 3.478450+0 1.409063-4 3.237498+0 1.451167-4 2.940500+0 1.486373-4 2.670780+0 1.517878-4 2.410266+0 1.545992-4 2.162621+0 1.567699-4 1.960079+0 1.587084-4 1.769958+0 1.605257-4 1.584267+0 1.622294-4 1.404157+0 1.638267-4 1.230598+0 1.653241-4 1.064409+0 1.667461-4 9.042577-1 1.680441-4 7.573540-1 1.692779-4 6.188556-1 1.702654-4 5.105541-1 1.707073-4 4.634330-1 1.715501-4 3.775678-1 1.723410-4 3.051357-1 1.727151-4 2.752186-1 1.732546-4 2.388589-1 1.737692-4 2.133165-1 1.741981-4 1.998510-1 1.747627-4 1.936845-1 1.752077-4 1.981147-1 1.756322-4 2.097353-1 1.761099-4 2.311641-1 1.763007-4 2.421676-1 1.765540-4 2.589778-1 1.767993-4 2.777378-1 1.770371-4 2.983681-1 1.772673-4 3.208338-1 1.777065-4 3.713034-1 1.779159-4 3.993891-1 1.783152-4 4.616152-1 1.786899-4 5.325627-1 1.788686-4 5.715991-1 1.792146-4 6.589887-1 1.795391-4 7.582624-1 1.798433-4 8.709183-1 1.801285-4 9.986019-1 1.803958-4 1.143038+0 1.806465-4 1.305932+0 1.809415-4 1.541164+0 1.811017-4 1.693155+0 1.813083-4 1.919799+0 1.815019-4 2.169350+0 1.816834-4 2.441889+0 1.818535-4 2.737010+0 1.820683-4 3.173643+0 1.823029-4 3.746938+0 1.825658-4 4.533807+0 1.829971-4 6.239059+0 1.836834-4 1.038942+1 1.840504-4 1.355694+1 1.843811-4 1.710053+1 1.845846-4 1.963936+1 1.848639-4 2.359239+1 1.850908-4 2.721627+1 1.853178-4 3.120873+1 1.857717-4 4.023945+1 1.858284-4 4.145753+1 1.862256-4 5.042972+1 1.863816-4 5.411936+1 1.866795-4 6.129134+1 1.869100-4 6.684338+1 1.870217-4 6.949811+1 1.871906-4 7.342875+1 1.873639-4 7.731311+1 1.875314-4 8.087621+1 1.877008-4 8.423642+1 1.878976-4 8.777617+1 1.880696-4 9.049590+1 1.882823-4 9.331378+1 1.884839-4 9.536906+1 1.886174-4 9.637884+1 1.888236-4 9.736355+1 1.889951-4 9.763824+1 1.891180-4 9.752881+1 1.894520-4 9.596178+1 1.896573-4 9.411886+1 1.899333-4 9.068341+1 1.901334-4 8.758490+1 1.903525-4 8.370177+1 1.905203-4 8.043824+1 1.906574-4 7.762533+1 1.908374-4 7.377954+1 1.910688-4 6.866769+1 1.913261-4 6.290038+1 1.916136-4 5.653921+1 1.919217-4 5.002386+1 1.922982-4 4.274343+1 1.927897-4 3.469948+1 1.929648-4 3.227336+1 1.931399-4 3.008133+1 1.934260-4 2.699200+1 1.936154-4 2.526610+1 1.938032-4 2.378878+1 1.939844-4 2.256910+1 1.941707-4 2.150587+1 1.943678-4 2.057196+1 1.945488-4 1.986685+1 1.947666-4 1.918578+1 1.949643-4 1.870275+1 1.952214-4 1.823111+1 1.953987-4 1.798924+1 1.957866-4 1.763328+1 1.961970-4 1.742456+1 1.969206-4 1.723436+1 1.982893-4 1.690901+1 2.003060-4 1.634170+1 2.018750-4 1.602569+1 2.043614-4 1.571369+1 2.064063-4 1.556801+1 2.090000-4 1.550483+1 2.100838-4 1.551158+1 2.125700-4 1.558145+1 2.143107-4 1.566653+1 2.180769-4 1.591207+1 2.260847-4 1.656158+1 2.351515-4 1.733557+1 2.406840-4 1.776359+1 2.468117-4 1.817238+1 2.567149-4 1.866722+1 2.691535-4 1.908803+1 2.853648-4 1.943838+1 3.138475-4 1.978525+1 3.475261-4 2.000669+1 3.732773-4 2.004960+1 4.110795-4 1.993280+1 5.084861-4 1.933554+1 6.025596-4 1.873590+1 7.118527-4 1.803915+1 9.283021-4 1.657562+1 1.076778-3 1.567770+1 1.291818-3 1.449360+1 1.488297-3 1.348311+1 1.686371-3 1.252524+1 1.853940-3 1.175520+1 2.056236-3 1.089348+1 2.302007-3 9.952169+0 2.581773-3 9.009663+0 2.905091-3 8.072982+0 3.345203-3 7.024803+0 4.082239-3 5.719980+0 5.964069-3 3.852831+0 7.862427-3 2.895601+0 9.065699-3 2.485821+0 1.024605-2 2.165486+0 1.135591-2 1.915766+0 1.249461-2 1.698990+0 1.380561-2 1.488333+0 1.497022-2 1.329976+0 1.656874-2 1.148037+0 1.839262-2 9.804436-1 2.085187-2 8.049055-1 2.390674-2 6.442128-1 2.763146-2 5.052342-1 3.269616-2 3.779807-1 3.856285-2 2.823590-1 4.583058-2 2.066468-1 5.475979-2 1.487531-1 6.681992-2 1.022530-1 8.443681-2 6.528925-2 1.114575-1 3.802956-2 1.606074-1 1.851550-2 2.840971-1 5.959732-3 8.810489-1 6.215675-4 2.688134+0 6.679207-5 8.118035+0 7.323856-6 2.451607+1 8.030478-7 7.403736+1 8.805248-8 2.235892+2 9.654763-9 6.752287+2 1.058624-9 2.511886+3 7.64968-11 7.943282+3 7.64968-12 2.511886+4 7.64968-13 7.943282+4 7.64968-14 1.000000+5 4.82662-14 1 5000 7 7 1.081100+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.400500-7 1.258900-6 5.389400-7 1.584900-6 8.541600-7 1.995300-6 1.353700-6 2.511900-6 2.145500-6 3.162300-6 3.400400-6 3.981100-6 5.389300-6 5.011900-6 8.541400-6 6.309600-6 1.353700-5 7.943300-6 2.145500-5 1.000000-5 3.400300-5 1.258900-5 5.389100-5 1.584900-5 8.540900-5 1.995300-5 1.353600-4 2.511900-5 2.145300-4 3.162300-5 3.399900-4 3.981100-5 5.388300-4 5.011900-5 8.539300-4 6.309600-5 1.353300-3 7.943300-5 2.143200-3 1.000000-4 3.393600-3 1.258900-4 5.374000-3 1.584900-4 8.500400-3 1.995300-4 1.343900-2 2.511900-4 2.121000-2 3.162300-4 3.337300-2 3.981100-4 5.238700-2 5.011900-4 8.177700-2 6.309600-4 1.265300-1 7.943300-4 1.932300-1 1.000000-3 2.896100-1 1.258900-3 4.243300-1 1.584900-3 6.003900-1 1.995300-3 8.193000-1 2.511900-3 1.067800+0 3.162300-3 1.324600+0 3.981100-3 1.564600+0 5.011900-3 1.776400+0 6.309600-3 1.966800+0 7.943300-3 2.145000+0 1.000000-2 2.303200+0 1.258900-2 2.480500+0 1.584900-2 2.618400+0 1.995300-2 2.718600+0 2.511900-2 2.776400+0 3.162300-2 2.793300+0 3.981100-2 2.775200+0 5.011900-2 2.726500+0 6.309600-2 2.651800+0 7.943300-2 2.555400+0 1.000000-1 2.441000+0 1.258900-1 2.312300+0 1.584900-1 2.173100+0 1.995300-1 2.027300+0 2.511900-1 1.878500+0 3.162300-1 1.729700+0 3.981100-1 1.584100+0 5.011900-1 1.442700+0 6.309600-1 1.307000+0 7.943300-1 1.177700+0 1.000000+0 1.055200+0 1.258900+0 9.399500-1 1.584900+0 8.322400-1 1.995300+0 7.323100-1 2.511900+0 6.404100-1 3.162300+0 5.566700-1 3.981100+0 4.810600-1 5.011900+0 4.134300-1 6.309600+0 3.534700-1 7.943300+0 3.007700-1 1.000000+1 2.548000-1 1.258900+1 2.149900-1 1.584900+1 1.807400-1 1.995300+1 1.514400-1 2.511900+1 1.265200-1 3.162300+1 1.054100-1 3.981100+1 8.760700-2 5.011900+1 7.265200-2 6.309600+1 6.012900-2 7.943300+1 4.967400-2 1.000000+2 4.097000-2 1.258900+2 3.373900-2 1.584900+2 2.774600-2 1.995300+2 2.278900-2 2.511900+2 1.869500-2 3.162300+2 1.532000-2 3.981100+2 1.254200-2 5.011900+2 1.025800-2 6.309600+2 8.382600-3 7.943300+2 6.844500-3 1.000000+3 5.584300-3 1.258900+3 4.552800-3 1.584900+3 3.709300-3 1.995300+3 3.020200-3 2.511900+3 2.457600-3 3.162300+3 1.998600-3 3.981100+3 1.624400-3 5.011900+3 1.319700-3 6.309600+3 1.071500-3 7.943300+3 8.696100-4 1.000000+4 7.054400-4 1.258900+4 5.720000-4 1.584900+4 4.636200-4 1.995300+4 3.756200-4 2.511900+4 3.042000-4 3.162300+4 2.462700-4 3.981100+4 1.993000-4 5.011900+4 1.612400-4 6.309600+4 1.304000-4 7.943300+4 1.054200-4 1.000000+5 8.520600-5 1 5000 7 7 1.081100+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159547-4 3.981072-4 3.976749-4 5.011872-4 5.005036-4 6.309573-4 6.298749-4 7.943282-4 7.926257-4 1.000000-3 9.973219-4 1.258925-3 1.254722-3 1.584893-3 1.578319-3 1.995262-3 1.985048-3 2.511886-3 2.496085-3 3.162278-3 3.137978-3 3.981072-3 3.943859-3 5.011872-3 4.955008-3 6.309573-3 6.222379-3 7.943282-3 7.808648-3 1.000000-2 9.790122-3 1.258925-2 1.226434-2 1.584893-2 1.534604-2 1.995262-2 1.917824-2 2.511886-2 2.393332-2 3.162278-2 2.981432-2 3.981072-2 3.706355-2 5.011872-2 4.596182-2 6.309573-2 5.683839-2 7.943282-2 7.006519-2 1.000000-1 8.608492-2 1.258925-1 1.053960-1 1.584893-1 1.285799-1 1.995262-1 1.563062-1 2.511886-1 1.893449-1 3.162278-1 2.285790-1 3.981072-1 2.750157-1 5.011872-1 3.298452-1 6.309573-1 3.944413-1 7.943282-1 4.704590-1 1.000000+0 5.599104-1 1.258925+0 6.652683-1 1.584893+0 7.896098-1 1.995262+0 9.366790-1 2.511886+0 1.111193+0 3.162278+0 1.318880+0 3.981072+0 1.566763+0 5.011872+0 1.863509+0 6.309573+0 2.219651+0 7.943282+0 2.648117+0 1.000000+1 3.164674+0 1.258925+1 3.788676+0 1.584893+1 4.543790+0 1.995262+1 5.458927+0 2.511886+1 6.569649+0 3.162278+1 7.919583+0 3.981072+1 9.562022+0 5.011872+1 1.156277+1 6.309573+1 1.400238+1 7.943282+1 1.697996+1 1.000000+2 2.061732+1 1.258925+2 2.506457+1 1.584893+2 3.050618+1 1.995262+2 3.716939+1 2.511886+2 4.533447+1 3.162278+2 5.534686+1 3.981072+2 6.763146+1 5.011872+2 8.271474+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090662-8 7.943282-5 1.728179-8 1.000000-4 2.738519-8 1.258925-4 4.339841-8 1.584893-4 6.875324-8 1.995262-4 1.089254-7 2.511886-4 1.725199-7 3.162278-4 2.730759-7 3.981072-4 4.322964-7 5.011872-4 6.836482-7 6.309573-4 1.082467-6 7.943282-4 1.702514-6 1.000000-3 2.678084-6 1.258925-3 4.203241-6 1.584893-3 6.574201-6 1.995262-3 1.021439-5 2.511886-3 1.580158-5 3.162278-3 2.429989-5 3.981072-3 3.721268-5 5.011872-3 5.686472-5 6.309573-3 8.719413-5 7.943282-3 1.346342-4 1.000000-2 2.098775-4 1.258925-2 3.249102-4 1.584893-2 5.028872-4 1.995262-2 7.743791-4 2.511886-2 1.185540-3 3.162278-2 1.808458-3 3.981072-2 2.747171-3 5.011872-2 4.156906-3 6.309573-2 6.257344-3 7.943282-2 9.367633-3 1.000000-1 1.391508-2 1.258925-1 2.049659-2 1.584893-1 2.990942-2 1.995262-1 4.321998-2 2.511886-1 6.184375-2 3.162278-1 8.764872-2 3.981072-1 1.230915-1 5.011872-1 1.713421-1 6.309573-1 2.365160-1 7.943282-1 3.238692-1 1.000000+0 4.400896-1 1.258925+0 5.936571-1 1.584893+0 7.952834-1 1.995262+0 1.058583+0 2.511886+0 1.400693+0 3.162278+0 1.843397+0 3.981072+0 2.414309+0 5.011872+0 3.148364+0 6.309573+0 4.089922+0 7.943282+0 5.295166+0 1.000000+1 6.835326+0 1.258925+1 8.800578+0 1.584893+1 1.130514+1 1.995262+1 1.449370+1 2.511886+1 1.854922+1 3.162278+1 2.370319+1 3.981072+1 3.024869+1 5.011872+1 3.855596+1 6.309573+1 4.909336+1 7.943282+1 6.245286+1 1.000000+2 7.938268+1 1.258925+2 1.008280+2 1.584893+2 1.279831+2 1.995262+2 1.623568+2 2.511886+2 2.058542+2 3.162278+2 2.608809+2 3.981072+2 3.304757+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.660000-6 7.822204+6 6.670000-6 7.809442+6 6.670000-6 1.171854+7 7.079458-6 1.097595+7 7.200000-6 1.076230+7 7.700000-6 9.936259+6 7.762471-6 9.836215+6 8.413951-6 8.869825+6 8.511380-6 8.734363+6 9.225714-6 7.823775+6 9.440609-6 7.572856+6 1.023293-5 6.743894+6 1.035142-5 6.629609+6 1.135011-5 5.769995+6 1.150000-5 5.653594+6 1.258000-5 4.908039+6 1.258000-5 6.075051+6 1.270000-5 6.032485+6 1.273503-5 6.019873+6 1.288250-5 5.964372+6 1.305000-5 5.903862+6 1.335000-5 5.796771+6 1.365000-5 5.693360+6 1.396368-5 5.589161+6 1.412538-5 5.535444+6 1.428894-5 5.481520+6 1.440000-5 5.445586+6 1.485000-5 5.300203+6 1.531087-5 5.157721+6 1.570000-5 5.040923+6 1.584893-5 4.997223+6 1.590000-5 4.982332+6 1.650000-5 4.807221+6 1.717908-5 4.620530+6 1.730000-5 4.587567+6 1.737801-5 4.566029+6 1.800000-5 4.401905+6 1.883649-5 4.194201+6 1.905461-5 4.141531+6 1.980000-5 3.966997+6 2.089296-5 3.730451+6 2.213095-5 3.480526+6 2.264644-5 3.383089+6 2.350000-5 3.229887+6 2.454709-5 3.054348+6 2.511886-5 2.964262+6 2.660725-5 2.745853+6 2.691535-5 2.703579+6 2.884032-5 2.458024+6 2.900000-5 2.439519+6 3.126079-5 2.191826+6 3.150000-5 2.168329+6 3.400000-5 1.938116+6 3.427678-5 1.915356+6 3.715352-5 1.696006+6 4.027170-5 1.496803+6 4.073803-5 1.469547+6 4.400000-5 1.300129+6 4.466836-5 1.268438+6 4.786301-5 1.132700+6 4.954502-5 1.068676+6 5.011872-5 1.048190+6 5.188000-5 9.889892+5 5.559043-5 8.773731+5 5.623413-5 8.601240+5 5.688529-5 8.425459+5 6.095369-5 7.445565+5 6.382635-5 6.838858+5 6.531306-5 6.555081+5 6.606934-5 6.417499+5 7.161434-5 5.504316+5 7.328245-5 5.260736+5 7.585776-5 4.915858+5 7.852356-5 4.593764+5 8.413951-5 3.993958+5 8.609938-5 3.812370+5 8.709636-5 3.721987+5 9.549926-5 3.072585+5 1.000000-4 2.784513+5 1.071519-4 2.402630+5 1.096478-4 2.284560+5 1.148154-4 2.065687+5 1.216186-4 1.821547+5 1.273503-4 1.643386+5 1.348963-4 1.445278+5 1.380384-4 1.372971+5 1.548817-4 1.056485+5 1.757924-4 7.874736+4 1.956100-4 6.119396+4 1.956100-4 1.553190+6 1.974000-4 1.475133+6 1.990000-4 1.418672+6 2.000000-4 1.389971+6 2.010000-4 1.361995+6 2.030000-4 1.316553+6 2.041738-4 1.294552+6 2.050000-4 1.279355+6 2.080000-4 1.234073+6 2.120000-4 1.186281+6 2.300000-4 1.029668+6 2.317395-4 1.015012+6 2.380000-4 9.648224+5 2.454709-4 9.046101+5 2.511886-4 8.591448+5 2.540973-4 8.372754+5 2.630268-4 7.714123+5 2.691535-4 7.304075+5 2.786121-4 6.717291+5 2.851018-4 6.352337+5 2.951209-4 5.841736+5 3.054921-4 5.372176+5 3.235937-4 4.671933+5 3.273407-4 4.543134+5 3.311311-4 4.417885+5 3.427678-4 4.051946+5 3.600000-4 3.583728+5 3.672823-4 3.402673+5 3.801894-4 3.111402+5 4.000000-4 2.727722+5 4.073803-4 2.599443+5 4.216965-4 2.373337+5 4.315191-4 2.233533+5 4.731513-4 1.751968+5 4.897788-4 1.599475+5 5.308844-4 1.287294+5 5.559043-4 1.137084+5 5.821032-4 1.002212+5 6.025596-4 9.116203+4 6.382635-4 7.784642+4 6.760830-4 6.647595+4 6.839116-4 6.440949+4 7.000000-4 6.036454+4 7.161434-4 5.664494+4 7.498942-4 4.981268+4 7.673615-4 4.671207+4 7.852356-4 4.380447+4 8.128305-4 3.972301+4 8.222426-4 3.844778+4 8.413951-4 3.601881+4 9.120108-4 2.866381+4 9.500000-4 2.553049+4 9.660509-4 2.432714+4 1.071519-3 1.804759+4 1.122018-3 1.580347+4 1.216186-3 1.249144+4 1.258925-3 1.129379+4 1.288250-3 1.055935+4 1.333521-3 9.546324+3 1.479108-3 7.026029+3 1.513561-3 6.563023+3 1.621810-3 5.349170+3 1.640590-3 5.169913+3 1.757924-3 4.202717+3 2.041738-3 2.682354+3 2.137962-3 2.332313+3 2.213095-3 2.100099+3 2.238721-3 2.027916+3 2.511886-3 1.429390+3 2.691535-3 1.155977+3 2.722701-3 1.115791+3 2.786121-3 1.039520+3 3.126079-3 7.296004+2 3.331200-3 5.987522+2 3.349654-3 5.885529+2 3.427678-3 5.478588+2 3.845918-3 3.829006+2 3.981072-3 3.434718+2 4.120975-3 3.081034+2 4.168694-3 2.971368+2 4.786301-3 1.923439+2 4.897788-3 1.787637+2 5.000000-3 1.674000+2 5.188000-3 1.488515+2 6.025596-3 9.245806+1 6.095369-3 8.910136+1 6.237348-3 8.274914+1 6.382635-3 7.684696+1 7.673615-3 4.251418+1 7.852356-3 3.945553+1 8.128305-3 3.527336+1 1.000000-2 1.800866+1 1.083927-2 1.383369+1 1.303167-2 7.570519+0 1.318257-2 7.290476+0 1.380384-2 6.262951+0 1.548817-2 4.283855+0 1.737801-2 2.930163+0 1.798871-2 2.614516+0 2.398833-2 1.004767+0 2.540973-2 8.298019-1 2.951209-2 5.030974-1 3.548134-2 2.717555-1 3.672823-2 2.421109-1 3.981072-2 1.847272-1 4.027170-2 1.777247-1 5.069907-2 8.205052-2 5.188000-2 7.594773-2 6.382635-2 3.788045-2 6.531306-2 3.506295-2 7.079458-2 2.675257-2 7.328245-2 2.382424-2 7.673615-2 2.042138-2 7.852356-2 1.890681-2 9.120108-2 1.145732-2 9.225714-2 1.102426-2 1.011580-1 8.099924-3 1.059254-1 6.951419-3 1.083927-1 6.439762-3 1.109175-1 5.965947-3 1.230269-1 4.229833-3 1.273503-1 3.771709-3 1.303167-1 3.494199-3 1.364583-1 3.001968-3 1.412538-1 2.679007-3 1.445440-1 2.483246-3 1.603245-1 1.764923-3 1.621810-1 1.699215-3 1.640590-1 1.636686-3 1.659587-1 1.576460-3 1.798871-1 1.212726-3 1.840772-1 1.125160-3 1.905461-1 1.005520-3 1.995262-1 8.673077-4 2.041738-1 8.055400-4 2.213095-1 6.219946-4 2.264644-1 5.782940-4 2.290868-1 5.576082-4 2.317395-1 5.376628-4 2.483133-1 4.321858-4 2.540973-1 4.018436-4 2.570396-1 3.877215-4 2.660725-1 3.482637-4 2.884032-1 2.711671-4 2.917427-1 2.618244-4 2.985383-1 2.440932-4 3.126079-1 2.121804-4 3.235937-1 1.910147-4 3.349654-1 1.723154-4 3.427678-1 1.608890-4 3.548134-1 1.451543-4 3.589219-1 1.402592-4 3.715352-1 1.268277-4 3.890451-1 1.109150-4 3.981072-1 1.037238-4 4.027170-1 1.003881-4 4.120975-1 9.403503-5 4.265795-1 8.526128-5 4.365158-1 7.987178-5 4.410200-1 7.758008-5 4.518559-1 7.255412-5 4.695800-1 6.525486-5 4.731513-1 6.390648-5 4.841724-1 5.997724-5 4.954502-1 5.638615-5 5.069907-1 5.301467-5 5.188000-1 4.984478-5 5.308844-1 4.686442-5 5.432503-1 4.414067-5 5.495409-1 4.284066-5 5.623413-1 4.035441-5 5.821032-1 3.689293-5 5.956621-1 3.481341-5 6.095369-1 3.285400-5 6.309573-1 3.011973-5 6.382635-1 2.928572-5 6.456542-1 2.847481-5 6.606935-1 2.692216-5 6.839117-1 2.475048-5 6.998420-1 2.344830-5 7.161434-1 2.221653-5 7.413102-1 2.048913-5 7.585776-1 1.944646-5 7.943282-1 1.752078-5 8.035261-1 1.706992-5 8.222427-1 1.623038-5 8.413951-1 1.543362-5 8.511380-1 1.505003-5 8.810489-1 1.395552-5 8.912509-1 1.362067-5 9.015711-1 1.329385-5 9.549926-1 1.177619-5 9.660509-1 1.149412-5 1.000000+0 1.071627-5 1.011579+0 1.046919-5 1.035142+0 9.991974-6 1.083927+0 9.101811-6 1.148154+0 8.099785-6 1.174898+0 7.743248-6 1.318257+0 6.182611-6 1.348963+0 5.910859-6 1.396368+0 5.536701-6 1.479108+0 4.964987-6 1.496236+0 4.858197-6 1.500000+0 4.835200-6 1.513561+0 4.759489-6 1.548817+0 4.571138-6 1.584893+0 4.390790-6 1.603245+0 4.308758-6 1.640590+0 4.149258-6 1.698244+0 3.921670-6 1.717908+0 3.852638-6 1.778279+0 3.652739-6 1.862087+0 3.402794-6 1.905461+0 3.287387-6 2.162719+0 2.719162-6 2.187762+0 2.672742-6 2.213095+0 2.628835-6 2.454709+0 2.264748-6 2.483133+0 2.227614-6 2.511886+0 2.192488-6 2.818383+0 1.870293-6 2.851018+0 1.840852-6 2.884032+0 1.812871-6 3.311311+0 1.508496-6 3.349654+0 1.485606-6 3.388442+0 1.463847-6 3.890451+0 1.226320-6 3.935501+0 1.208389-6 3.981072+0 1.191326-6 4.623810+0 9.902408-7 4.677351+0 9.762795-7 4.731513+0 9.629355-7 5.688529+0 7.726218-7 5.754399+0 7.620764-7 5.821032+0 7.519712-7 7.079458+0 5.993036-7 7.161434+0 5.913672-7 7.244360+0 5.837430-7 9.015711+0 4.561915-7 9.120108+0 4.503173-7 9.225714+0 4.446594-7 1.202264+1 3.324550-7 1.216186+1 3.282824-7 1.230269+1 3.242519-7 1.659587+1 2.351770-7 1.678804+1 2.322922-7 1.717908+1 2.267261-7 2.317395+1 1.654129-7 2.344229+1 1.634474-7 3.507519+1 1.075657-7 3.548134+1 1.063076-7 6.683439+1 5.565939-8 6.760830+1 5.501489-8 1.333521+2 2.767261-8 1.348963+2 2.735382-8 2.660725+2 1.380812-8 2.691535+2 1.364981-8 2.113489+3 1.732726-9 2.137962+3 1.712889-9 4.216965+3 8.68331-10 1.000000+5 3.65999-11 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.660000-6 6.660000-6 1.258000-5 6.663333-6 1.258000-5 7.799920-6 1.365000-5 8.115573-6 1.485000-5 8.417862-6 1.650000-5 8.761516-6 1.800000-5 9.019756-6 1.980000-5 9.281026-6 2.264644-5 9.618195-6 2.511886-5 9.866031-6 2.900000-5 1.018931-5 3.427678-5 1.054470-5 4.027170-5 1.086013-5 4.466836-5 1.104352-5 5.188000-5 1.128077-5 6.095369-5 1.149216-5 7.328245-5 1.168263-5 8.709636-5 1.182396-5 1.096478-4 1.197367-5 1.380384-4 1.209231-5 1.956100-4 1.221743-5 1.956100-4 1.883845-4 2.050000-4 1.877576-4 2.630268-4 1.884286-4 1.513561-3 1.876023-4 1.380384-2 1.871673-4 1.000000+5 1.870839-4 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.660000-6 0.0 6.670000-6 1.000000-8 6.670000-6 6.664175-9 1.258000-5 5.916667-6 1.258000-5 4.780080-6 1.335000-5 5.317897-6 1.440000-5 6.090253-6 1.531087-5 6.789850-6 1.650000-5 7.738484-6 1.800000-5 8.980244-6 1.980000-5 1.051897-5 2.264644-5 1.302824-5 2.691535-5 1.689163-5 3.427678-5 2.373208-5 4.466836-5 3.362484-5 6.095369-5 4.946153-5 1.000000-4 8.808235-5 1.956100-4 1.833926-4 1.956100-4 7.225463-6 1.974000-4 9.235985-6 1.990000-4 1.098623-5 2.010000-4 1.311786-5 2.041738-4 1.639934-5 2.080000-4 2.025259-5 2.120000-4 2.420523-5 2.380000-4 4.967913-5 2.786121-4 9.019096-5 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.956100-4 1.491996+6 1.974000-4 1.415240+6 1.990000-4 1.359908+6 2.010000-4 1.304600+6 2.030000-4 1.260482+6 2.050000-4 1.224572+6 2.080000-4 1.181160+6 2.120000-4 1.135722+6 2.300000-4 9.880480+5 2.380000-4 9.264640+5 2.454709-4 8.689782+5 2.540973-4 8.044611+5 2.691535-4 7.018027+5 3.311311-4 4.244617+5 3.600000-4 3.442820+5 4.000000-4 2.619660+5 4.897788-4 1.535190+5 5.559043-4 1.090977+5 6.839116-4 6.174659+4 7.852356-4 4.196629+4 9.500000-4 2.444300+4 1.122018-3 1.512352+4 1.333521-3 9.131749+3 1.640590-3 4.943495+3 2.041738-3 2.564155+3 2.511886-3 1.365977+3 3.126079-3 6.969917+2 3.845918-3 3.656702+2 4.786301-3 1.836276+2 6.025596-3 8.824568+1 7.673615-3 4.056843+1 1.000000-2 1.718110+1 1.318257-2 6.954370+0 1.798871-2 2.493658+0 2.540973-2 7.913584-1 3.672823-2 2.308643-1 7.328245-2 2.271425-2 1.011580-1 7.722672-3 1.303167-1 3.331743-3 1.621810-1 1.620116-3 1.905461-1 9.586949-4 2.213095-1 5.930455-4 2.540973-1 3.831397-4 2.884032-1 2.585499-4 3.235937-1 1.821286-4 3.589219-1 1.337347-4 3.981072-1 9.889858-5 4.410200-1 7.397200-5 4.841724-1 5.718843-5 5.308844-1 4.468537-5 5.821032-1 3.517720-5 6.309573-1 2.871880-5 6.839117-1 2.359882-5 7.413102-1 1.953616-5 8.035261-1 1.627606-5 8.810489-1 1.330578-5 9.660509-1 1.095829-5 1.148154+0 7.722230-6 1.348963+0 5.635409-6 1.500000+0 4.609800-6 1.584893+0 4.186112-6 1.698244+0 3.738820-6 1.862087+0 3.244166-6 2.187762+0 2.548200-6 2.483133+0 2.123818-6 2.851018+0 1.755078-6 3.349654+0 1.416381-6 3.935501+0 1.152082-6 4.677351+0 9.307904-7 5.754399+0 7.265690-7 7.161434+0 5.638144-7 9.120108+0 4.293369-7 1.216186+1 3.129871-7 1.678804+1 2.214696-7 2.317395+1 1.577074-7 3.507519+1 1.025549-7 6.683439+1 5.306654-8 1.333521+2 2.638353-8 2.660725+2 1.316489-8 2.113489+3 1.652009-9 1.000000+5 3.48950-11 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.956100-4 1.956100-4 1.000000+5 1.956100-4 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.956100-4 0.0 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.258000-5 1.167012+6 1.273503-5 1.206248+6 1.305000-5 1.278532+6 1.335000-5 1.341032+6 1.365000-5 1.397428+6 1.396368-5 1.450688+6 1.440000-5 1.515326+6 1.485000-5 1.571722+6 1.531087-5 1.619396+6 1.590000-5 1.667894+6 1.650000-5 1.704748+6 1.717908-5 1.733467+6 1.800000-5 1.753140+6 1.883649-5 1.759946+6 1.980000-5 1.755106+6 2.089296-5 1.737355+6 2.213095-5 1.706325+6 2.350000-5 1.662964+6 2.511886-5 1.604558+6 2.691535-5 1.535503+6 2.900000-5 1.453806+6 3.150000-5 1.357692+6 3.427678-5 1.256484+6 3.715352-5 1.158837+6 4.027170-5 1.061708+6 4.400000-5 9.570920+5 4.786301-5 8.605917+5 5.188000-5 7.718181+5 5.623413-5 6.873410+5 6.095369-5 6.076618+5 6.606934-5 5.334514+5 7.161434-5 4.650377+5 7.852356-5 3.944421+5 8.609938-5 3.319963+5 9.549926-5 2.713529+5 1.071519-4 2.151142+5 1.216186-4 1.652531+5 1.380384-4 1.259803+5 1.548817-4 9.779987+4 1.757924-4 7.349969+4 2.041738-4 5.203646+4 2.786121-4 2.511720+4 3.235937-4 1.759122+4 3.672823-4 1.292046+4 4.216965-4 9.151108+3 4.897788-4 6.248462+3 5.821032-4 3.988112+3 7.161434-4 2.309856+3 8.128305-4 1.645798+3 9.120108-4 1.201075+3 1.071519-3 7.653739+2 1.258925-3 4.843906+2 1.479108-3 3.043504+2 1.757924-3 1.833185+2 2.213095-3 9.235630+1 2.722701-3 4.946853+1 3.349654-3 2.629721+1 4.120975-3 1.387050+1 5.000000-3 7.581952+0 6.237348-3 3.767478+0 7.852356-3 1.804232+0 1.000000-2 8.263581-1 1.303167-2 3.486779-1 1.737801-2 1.353921-1 2.398833-2 4.654922-2 3.548134-2 1.262171-2 7.079458-2 1.245737-3 1.083927-1 2.993096-4 1.364583-1 1.394121-4 1.659587-1 7.332982-5 1.995262-1 4.031584-5 2.317395-1 2.498222-5 2.660725-1 1.618119-5 2.985383-1 1.133937-5 3.349654-1 8.003402-6 3.715352-1 5.890005-6 4.120975-1 4.366708-6 4.518559-1 3.369478-6 4.954502-1 2.618088-6 5.432503-1 2.049479-6 5.956621-1 1.616841-6 6.456542-1 1.322705-6 6.998420-1 1.089480-6 7.585776-1 9.031775-7 8.222427-1 7.538435-7 9.015711-1 6.182704-7 1.000000+0 4.987700-7 1.148154+0 3.775230-7 1.318257+0 2.877644-7 1.479108+0 2.311436-7 1.548817+0 2.127560-7 1.640590+0 1.930925-7 1.778279+0 1.700006-7 2.162719+0 1.266189-7 2.454709+0 1.054554-7 2.818383+0 8.709355-8 3.311311+0 7.025010-8 3.890451+0 5.711078-8 4.623810+0 4.611672-8 5.688529+0 3.598228-8 7.079458+0 2.791077-8 9.015711+0 2.124575-8 1.202264+1 1.548422-8 1.659587+1 1.095375-8 2.317395+1 7.704884-9 3.507519+1 5.010379-9 6.683439+1 2.592629-9 1.333521+2 1.288972-9 2.660725+2 6.43174-10 2.113489+3 8.07106-11 1.000000+5 1.70480-12 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.258000-5 1.258000-5 1.000000+5 1.258000-5 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.258000-5 0.0 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 6.670000-6 3.909100+6 7.200000-6 3.588300+6 7.762471-6 3.279700+6 8.511380-6 2.912800+6 9.440609-6 2.525700+6 1.035142-5 2.211000+6 1.150000-5 1.885300+6 1.288250-5 1.575600+6 1.428894-5 1.328500+6 1.584893-5 1.111700+6 1.737801-5 9.431800+5 1.905461-5 7.946300+5 2.089296-5 6.646300+5 2.264644-5 5.648400+5 2.454709-5 4.768400+5 2.660725-5 3.999200+5 2.884032-5 3.330300+5 3.126079-5 2.754000+5 3.400000-5 2.242900+5 3.715352-5 1.791700+5 4.027170-5 1.451800+5 4.466836-5 1.098800+5 4.954502-5 8.252100+4 5.559043-5 5.959100+4 6.382635-5 3.998700+4 7.328245-5 2.663400+4 8.413951-5 1.761900+4 9.549926-5 1.198800+4 1.096478-4 7.817500+3 1.273503-4 4.879800+3 1.757924-4 1.751900+3 2.000000-4 1.167600+3 2.317395-4 7.375800+2 2.630268-4 4.936500+2 2.951209-4 3.403100+2 3.273407-4 2.414800+2 3.672823-4 1.637000+2 4.073803-4 1.146000+2 4.731513-4 6.773400+1 6.382635-4 2.350100+1 7.000000-4 1.687600+1 7.673615-4 1.204000+1 8.222426-4 9.287400+0 9.120108-4 6.241000+0 1.288250-3 1.632337+0 1.621810-3 6.614553-1 2.238721-3 1.855686-1 2.786121-3 7.778826-2 3.427678-3 3.388766-2 4.168694-3 1.531390-2 5.188000-3 6.253209-3 6.382635-3 2.657252-3 8.128305-3 9.707609-4 1.083927-2 2.902417-4 1.548817-2 6.437915-5 2.951209-2 4.215062-6 3.981072-2 1.196323-6 5.069907-2 4.355699-7 6.531306-2 1.524106-7 7.852356-2 7.150507-8 9.225714-2 3.714375-8 1.059254-1 2.132849-8 1.230269-1 1.178521-8 1.412538-1 6.865897-9 1.640590-1 3.853411-9 1.840772-1 2.487815-9 2.041738-1 1.689104-9 2.290868-1 1.108246-9 2.570396-1 7.32766-10 2.917427-1 4.68172-10 3.235937-1 3.26744-10 3.548134-1 2.38912-10 3.890451-1 1.76077-10 4.265795-1 1.30682-10 4.731513-1 9.42120-11 5.188000-1 7.09419-11 5.623413-1 5.57125-11 6.095369-1 4.40485-11 6.606935-1 3.50853-11 7.161434-1 2.81400-11 7.943282-1 2.13217-11 8.511380-1 1.78331-11 9.015711-1 1.54571-11 9.549926-1 1.34837-11 1.011579+0 1.18504-11 1.083927+0 1.02300-11 1.174898+0 8.70891-12 1.318257+0 6.98851-12 1.513561+0 5.39879-12 1.603245+0 4.88709-12 1.717908+0 4.37022-12 1.905461+0 3.73014-12 2.213095+0 2.98202-12 2.511886+0 2.48706-12 2.884032+0 2.05676-12 3.388442+0 1.66086-12 3.981072+0 1.35172-12 4.731513+0 1.09260-12 5.821032+0 8.53220-13 7.244360+0 6.62360-13 9.225714+0 5.04564-13 1.216186+1 3.72563-13 1.678804+1 2.63624-13 2.317395+1 1.87720-13 3.548134+1 1.20639-13 6.683439+1 6.31662-14 1.333521+2 3.14047-14 2.660725+2 1.56705-14 4.216965+3 9.85235-16 1.000000+5 4.15360-17 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 6.670000-6 6.670000-6 1.000000+5 6.670000-6 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.670000-6 0.0 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.660000-6 7.822204+6 7.079458-6 7.319153+6 7.700000-6 6.624723+6 8.413951-6 5.913507+6 9.225714-6 5.216759+6 1.023293-5 4.495809+6 1.135011-5 3.846861+6 1.270000-5 3.223635+6 1.412538-5 2.706978+6 1.570000-5 2.259554+6 1.730000-5 1.900374+6 1.905461-5 1.588073+6 2.089296-5 1.328466+6 2.264644-5 1.128690+6 2.454709-5 9.529983+5 2.660725-5 7.991311+5 2.900000-5 6.569903+5 3.150000-5 5.403203+5 3.427678-5 4.391402+5 3.715352-5 3.579994+5 4.073803-5 2.813087+5 4.466836-5 2.195167+5 5.011872-5 1.596283+5 5.688529-5 1.114398+5 6.531306-5 7.466936+4 7.585776-5 4.800245+4 8.709636-5 3.169767+4 1.000000-4 2.077608+4 1.148154-4 1.351045+4 1.348963-4 8.112141+3 1.757924-4 3.495765+3 2.511886-4 1.137179+3 2.851018-4 7.588485+2 3.054921-4 6.060171+2 3.427678-4 4.126399+2 3.801894-4 2.898174+2 4.315191-4 1.868013+2 5.308844-4 9.068867+1 6.025596-4 5.790680+1 6.760830-4 3.823643+1 7.498942-4 2.612877+1 8.413951-4 1.689134+1 9.660509-4 9.928722+0 1.216186-3 4.066025+0 1.513561-3 1.727238+0 2.137962-3 4.423009-1 2.691535-3 1.770079-1 3.331200-3 7.522516-2 3.981072-3 3.650807-2 4.897788-3 1.563398-2 6.095369-3 6.337850-3 7.673615-3 2.428189-3 1.000000-2 7.989062-4 1.380384-2 2.045950-4 4.027170-2 2.169322-6 5.188000-2 7.450754-7 6.382635-2 3.129755-7 7.673615-2 1.457721-7 9.120108-2 7.172108-8 1.109175-1 3.237111-8 1.273503-1 1.859468-8 1.445440-1 1.126986-8 1.603245-1 7.531681-9 1.798871-1 4.847767-9 2.041738-1 3.010641-9 2.264644-1 2.050987-9 2.483133-1 1.468328-9 2.660725-1 1.148803-9 2.884032-1 8.69252-10 3.126079-1 6.61933-10 3.427678-1 4.88460-10 3.715352-1 3.76298-10 4.027170-1 2.91818-10 4.365158-1 2.27963-10 4.695800-1 1.83520-10 5.069907-1 1.47370-10 5.495409-1 1.17946-10 5.956621-1 9.51277-11 6.382635-1 7.96259-11 6.839117-1 6.70658-11 7.413102-1 5.53209-11 7.943282-1 4.71969-11 8.413951-1 4.16083-11 8.912509-1 3.69196-11 1.035142+0 2.78192-11 1.396368+0 1.53676-11 1.496236+0 1.34812-11 1.584893+0 1.21854-11 1.698244+0 1.08836-11 1.862087+0 9.44401-12 2.213095+0 7.29306-12 2.511886+0 6.08264-12 2.884032+0 5.03018-12 3.388442+0 4.06183-12 3.981072+0 3.30571-12 4.731513+0 2.67206-12 5.821032+0 2.08668-12 7.244360+0 1.61986-12 9.225714+0 1.23398-12 1.230269+1 8.99802-13 1.717908+1 6.29104-13 2.344229+1 4.53630-13 3.548134+1 2.95031-13 6.760830+1 1.52680-13 1.348963+2 7.59186-14 2.691535+2 3.78827-14 2.137962+3 4.75414-15 1.000000+5 1.01580-16 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.660000-6 6.660000-6 1.000000+5 6.660000-6 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.660000-6 0.0 1.000000+5 1.000000+5 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.20111-10 1.028750+0 9.201110-9 1.036640+0 9.201110-8 1.054080+0 9.201110-7 1.057700+0 1.254160-6 1.061100+0 1.631340-6 1.065100+0 2.159690-6 1.070400+0 3.012950-6 1.076200+0 4.163850-6 1.080600+0 5.199960-6 1.087100+0 7.006150-6 1.093710+0 9.201110-6 1.102600+0 1.275830-5 1.110700+0 1.664110-5 1.120600+0 2.226390-5 1.133300+0 3.096060-5 1.147500+0 4.275430-5 1.158200+0 5.313480-5 1.174100+0 7.100220-5 1.190110+0 9.201110-5 1.205100+0 1.144520-4 1.227500+0 1.530900-4 1.250000+0 1.981000-4 1.281300+0 2.711430-4 1.308600+0 3.448190-4 1.332500+0 4.167760-4 1.374400+0 5.594910-4 1.405800+0 6.798090-4 1.452900+0 8.805890-4 1.500000+0 1.104000-3 1.562500+0 1.431340-3 1.641100+0 1.887190-3 1.706900+0 2.300920-3 1.811600+0 3.010170-3 1.952900+0 4.046180-3 2.000000+0 4.408000-3 2.044000+0 4.752000-3 2.163500+0 5.706610-3 2.372600+0 7.421930-3 2.647100+0 9.706500-3 3.000000+0 1.263000-2 3.437500+0 1.617670-2 4.000000+0 2.052000-2 4.750000+0 2.585490-2 5.000000+0 2.754000-2 6.000000+0 3.387000-2 7.000000+0 3.950000-2 8.000000+0 4.459000-2 9.000000+0 4.921000-2 1.000000+1 5.341000-2 1.100000+1 5.723000-2 1.200000+1 6.074000-2 1.300000+1 6.401000-2 1.400000+1 6.706000-2 1.500000+1 6.991000-2 1.600000+1 7.259000-2 1.800000+1 7.751000-2 2.000000+1 8.193000-2 2.200000+1 8.594000-2 2.400000+1 8.959000-2 2.600000+1 9.295000-2 2.800000+1 9.604000-2 3.000000+1 9.892000-2 4.000000+1 1.107000-1 5.000000+1 1.196000-1 6.000000+1 1.267000-1 8.000000+1 1.373000-1 1.000000+2 1.451000-1 1.500000+2 1.582000-1 2.000000+2 1.665000-1 3.000000+2 1.766000-1 4.000000+2 1.827000-1 5.000000+2 1.868000-1 6.000000+2 1.898000-1 8.000000+2 1.939000-1 1.000000+3 1.965000-1 1.500000+3 2.005000-1 2.000000+3 2.027000-1 3.000000+3 2.050000-1 4.000000+3 2.063000-1 5.000000+3 2.072000-1 6.000000+3 2.077000-1 8.000000+3 2.085000-1 1.000000+4 2.090000-1 1.500000+4 2.096000-1 2.000000+4 2.100000-1 3.000000+4 2.104000-1 4.000000+4 2.106000-1 5.000000+4 2.107000-1 6.000000+4 2.108000-1 8.000000+4 2.109000-1 1.000000+5 2.110000-1 1 5000 7 8 1.081100+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.019910-8 2.136250+0 5.019910-7 2.169000+0 1.193060-6 2.184500+0 1.658400-6 2.201800+0 2.294440-6 2.214800+0 2.858690-6 2.234200+0 3.845450-6 2.253680+0 5.019910-6 2.281500+0 7.031280-6 2.307000+0 9.235570-6 2.338200+0 1.241800-5 2.377400+0 1.719750-5 2.410200+0 2.187240-5 2.446800+0 2.782290-5 2.485900+0 3.503060-5 2.532900+0 4.483150-5 2.556430+0 5.019910-5 2.611900+0 6.400890-5 2.660400+0 7.738260-5 2.745300+0 1.035700-4 2.809000+0 1.254280-4 2.904500+0 1.615800-4 3.000000+0 2.017000-4 3.125000+0 2.601060-4 3.234400+0 3.165220-4 3.425800+0 4.263260-4 3.569300+0 5.170460-4 3.784700+0 6.648160-4 4.000000+0 8.237000-4 4.250000+0 1.017950-3 4.625000+0 1.323310-3 5.000000+0 1.641000-3 5.500000+0 2.077760-3 6.000000+0 2.521000-3 6.750000+0 3.181370-3 7.000000+0 3.399000-3 8.000000+0 4.252000-3 9.000000+0 5.069000-3 1.000000+1 5.849000-3 1.100000+1 6.588000-3 1.200000+1 7.288000-3 1.300000+1 7.949000-3 1.400000+1 8.581000-3 1.500000+1 9.180000-3 1.600000+1 9.752000-3 1.800000+1 1.082000-2 2.000000+1 1.179000-2 2.200000+1 1.269000-2 2.400000+1 1.353000-2 2.600000+1 1.430000-2 2.800000+1 1.502000-2 3.000000+1 1.570000-2 4.000000+1 1.855000-2 5.000000+1 2.078000-2 6.000000+1 2.259000-2 8.000000+1 2.541000-2 1.000000+2 2.754000-2 1.500000+2 3.124000-2 2.000000+2 3.371000-2 3.000000+2 3.690000-2 4.000000+2 3.893000-2 5.000000+2 4.035000-2 6.000000+2 4.142000-2 8.000000+2 4.294000-2 1.000000+3 4.397000-2 1.500000+3 4.553000-2 2.000000+3 4.644000-2 3.000000+3 4.744000-2 4.000000+3 4.803000-2 5.000000+3 4.839000-2 6.000000+3 4.865000-2 8.000000+3 4.900000-2 1.000000+4 4.922000-2 1.500000+4 4.952000-2 2.000000+4 4.970000-2 3.000000+4 4.987000-2 4.000000+4 4.998000-2 5.000000+4 5.004000-2 6.000000+4 5.008000-2 8.000000+4 5.013000-2 1.000000+5 5.016000-2 1 5000 7 8 1.081100+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 5000 7 9 1.081100+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.000000+0 1.000000+5 5.000000+0 5.000000+5 4.997100+0 8.750000+5 4.990800+0 1.000000+6 4.988500+0 1.500000+6 4.974100+0 2.000000+6 4.954200+0 2.500000+6 4.928900+0 3.000000+6 4.898100+0 3.500000+6 4.862060+0 3.750000+6 4.842460+0 4.000000+6 4.821700+0 4.750000+6 4.752100+0 5.000000+6 4.727000+0 5.500000+6 4.673310+0 6.000000+6 4.616240+0 6.250000+6 4.586670+0 7.000000+6 4.493400+0 7.875000+6 4.377110+0 8.000000+6 4.359750+0 9.000000+6 4.216900+0 9.750000+6 4.104760+0 1.000000+7 4.067900+0 1.062500+7 3.976130+0 1.125000+7 3.885430+0 1.156300+7 3.839670+0 1.218800+7 3.747350+0 1.250000+7 3.700600+0 1.375000+7 3.511110+0 1.468800+7 3.372590+0 1.500000+7 3.328000+0 1.609400+7 3.177490+0 1.687500+7 3.075470+0 1.750000+7 2.997400+0 1.875000+7 2.848600+0 2.000000+7 2.711300+0 2.125000+7 2.584480+0 2.312500+7 2.417430+0 2.500000+7 2.273000+0 2.718800+7 2.131610+0 2.750000+7 2.113730+0 3.000000+7 1.986300+0 3.250000+7 1.885570+0 3.578100+7 1.782230+0 3.812500+7 1.723420+0 4.000000+7 1.683100+0 4.500000+7 1.596520+0 5.000000+7 1.526200+0 5.500000+7 1.462320+0 6.000000+7 1.400300+0 6.500000+7 1.337660+0 7.000000+7 1.274100+0 7.500000+7 1.209820+0 8.000000+7 1.145400+0 8.500000+7 1.081460+0 9.000000+7 1.018700+0 9.500000+7 9.576550-1 1.000000+8 8.987300-1 1.062500+8 8.284190-1 1.109400+8 7.784470-1 1.125000+8 7.623430-1 1.179700+8 7.080670-1 1.250000+8 6.433200-1 1.312500+8 5.902750-1 1.394500+8 5.271090-1 1.437500+8 4.966860-1 1.464800+8 4.782920-1 1.500000+8 4.556500-1 1.589800+8 4.027390-1 1.665000+8 3.634350-1 1.748800+8 3.244520-1 1.750000+8 3.239290-1 1.838500+8 2.877330-1 1.946200+8 2.495590-1 2.000000+8 2.326500-1 2.125000+8 1.980610-1 2.218800+8 1.759530-1 2.359400+8 1.479480-1 2.500000+8 1.250600-1 2.625000+8 1.081640-1 2.812500+8 8.762480-2 3.000000+8 7.154000-2 3.218800+8 5.696390-2 3.500000+8 4.312700-2 3.750000+8 3.412960-2 4.000000+8 2.732000-2 4.250000+8 2.208450-2 4.625000+8 1.633140-2 5.000000+8 1.231000-2 5.500000+8 8.671700-3 6.000000+8 6.270000-3 6.750000+8 4.016140-3 7.000000+8 3.496300-3 8.000000+8 2.094300-3 9.500000+8 1.075740-3 1.000000+9 8.808100-4 1.250000+9 3.673260-4 1.500000+9 1.790600-4 2.000000+9 5.737300-5 5.000000+9 1.515200-6 7.250000+9 3.484600-7 8.000000+9 2.362700-7 1.00000+10 9.810600-8 1.27030+10 3.837030-8 1.70630+10 1.213250-8 2.16210+10 4.846690-9 2.65200+10 2.207560-9 3.32650+10 9.28546-10 3.94540+10 4.86097-10 4.70230+10 2.50994-10 5.67350+10 1.24483-10 6.75510+10 6.52481-11 8.17480+10 3.24197-11 1.00000+11 1.56110-11 1.17140+11 8.85192-12 1.36540+11 5.13468-12 1.70670+11 2.34427-12 2.04860+11 1.24330-12 2.52170+11 6.08999-13 3.35790+11 2.30733-13 4.68190+11 7.61690-14 6.33390+11 2.82515-14 1.03630+12 5.78451-15 1.58930+12 1.49868-15 3.03270+12 2.02954-16 7.26730+12 1.44707-17 2.69580+13 3.00942-19 1.00000+14 6.47460-21 5.62340+14 3.91695-23 5.42470+15 4.39214-26 1.00000+17 6.52510-30 1 5000 7 0 1.081100+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.56500-12 1.000000+2 1.56500-10 1.000000+3 1.565000-8 1.000000+4 1.565000-6 1.000000+5 1.565000-4 5.000000+5 3.912500-3 8.750000+5 1.198203-2 1.000000+6 1.565000-2 1.500000+6 3.503300-2 2.000000+6 6.200000-2 2.500000+6 9.592600-2 3.000000+6 1.370200-1 3.500000+6 1.844140-1 3.750000+6 2.102880-1 4.000000+6 2.376100-1 4.750000+6 3.275090-1 5.000000+6 3.598900-1 5.500000+6 4.276570-1 6.000000+6 4.990800-1 6.250000+6 5.359830-1 7.000000+6 6.507200-1 7.875000+6 7.906170-1 8.000000+6 8.110770-1 9.000000+6 9.778900-1 9.750000+6 1.105260+0 1.000000+7 1.147400+0 1.062500+7 1.250340+0 1.125000+7 1.350840+0 1.156300+7 1.400620+0 1.218800+7 1.499280+0 1.250000+7 1.548500+0 1.375000+7 1.744680+0 1.468800+7 1.886200+0 1.500000+7 1.931400+0 1.609400+7 2.080600+0 1.687500+7 2.179920+0 1.750000+7 2.255800+0 1.875000+7 2.399380+0 2.000000+7 2.530800+0 2.125000+7 2.648690+0 2.312500+7 2.802700+0 2.500000+7 2.932800+0 2.718800+7 3.058860+0 2.750000+7 3.074850+0 3.000000+7 3.189800+0 3.250000+7 3.283930+0 3.578100+7 3.386850+0 3.812500+7 3.451000+0 4.000000+7 3.499100+0 4.500000+7 3.619030+0 5.000000+7 3.731800+0 5.500000+7 3.841620+0 6.000000+7 3.947600+0 6.500000+7 4.049510+0 7.000000+7 4.146200+0 7.500000+7 4.236330+0 8.000000+7 4.320200+0 8.500000+7 4.397950+0 9.000000+7 4.468900+0 9.500000+7 4.532460+0 1.000000+8 4.589600+0 1.062500+8 4.651970+0 1.109400+8 4.693240+0 1.125000+8 4.706230+0 1.179700+8 4.746940+0 1.250000+8 4.791800+0 1.312500+8 4.824460+0 1.394500+8 4.859990+0 1.437500+8 4.875880+0 1.464800+8 4.884570+0 1.500000+8 4.895500+0 1.589800+8 4.918140+0 1.665000+8 4.933040+0 1.748800+8 4.946840+0 1.750000+8 4.947010+0 1.838500+8 4.958050+0 1.946200+8 4.968500+0 2.000000+8 4.972900+0 2.125000+8 4.980430+0 2.218800+8 4.984200+0 2.359400+8 4.988940+0 2.500000+8 4.992200+0 2.625000+8 4.993740+0 2.812500+8 4.995920+0 3.000000+8 4.997400+0 3.218800+8 4.998180+0 3.500000+8 4.999100+0 3.750000+8 4.999360+0 4.000000+8 4.999600+0 4.250000+8 4.999680+0 4.625000+8 4.999800+0 5.000000+8 4.999900+0 5.500000+8 4.999950+0 6.000000+8 5.000000+0 6.750000+8 5.000000+0 7.000000+8 5.000000+0 8.000000+8 5.000000+0 9.500000+8 5.000000+0 1.000000+9 5.000000+0 1.250000+9 5.000000+0 1.500000+9 5.000000+0 2.000000+9 5.000000+0 5.000000+9 5.000000+0 7.250000+9 5.000000+0 8.000000+9 5.000000+0 1.00000+10 5.000000+0 1.27030+10 5.000000+0 1.70630+10 5.000000+0 2.16210+10 5.000000+0 2.65200+10 5.000000+0 3.32650+10 5.000000+0 3.94540+10 5.000000+0 4.70230+10 5.000000+0 5.67350+10 5.000000+0 6.75510+10 5.000000+0 8.17480+10 5.000000+0 1.00000+11 5.000000+0 1.17140+11 5.000000+0 1.36540+11 5.000000+0 1.70670+11 5.000000+0 2.04860+11 5.000000+0 2.52170+11 5.000000+0 3.35790+11 5.000000+0 4.68190+11 5.000000+0 6.33390+11 5.000000+0 1.03630+12 5.000000+0 1.58930+12 5.000000+0 3.03270+12 5.000000+0 7.26730+12 5.000000+0 2.69580+13 5.000000+0 1.00000+14 5.000000+0 5.62340+14 5.000000+0 5.42470+15 5.000000+0 1.00000+17 5.000000+0 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.031982-6 0.0 3.559527-6 0.0 3.563362-6 5.043049-2 3.577049-6 3.173929-1 3.580904-6 4.250849-1 3.585811-6 5.834982-1 3.589675-6 7.510356-1 3.594572-6 9.907641-1 3.598445-6 1.226632+0 3.603333-6 1.553838+0 3.630713-6 3.789140+0 3.639713-6 4.287165+0 3.648069-6 4.473296+0 3.657263-6 4.304244+0 3.666011-6 3.831551+0 3.684557-6 2.332563+0 3.690947-6 1.789513+0 3.699708-6 1.174993+0 3.703695-6 9.518772-1 3.708469-6 7.130085-1 3.712465-6 5.580630-1 3.717231-6 3.998860-1 3.721236-6 3.022990-1 3.734753-6 2.762468-2 3.738778-6 0.0 4.391470-6 0.0 4.391919-6 6.068543-9 4.395754-6 1.098068-7 4.413539-6 8.276235-7 4.417393-6 1.049202-6 4.424349-6 1.516394-6 4.428213-6 1.861111-6 4.435159-6 2.566288-6 4.445515-6 3.944436-6 4.478400-6 9.519871-6 4.489210-6 1.083583-5 4.500020-6 1.139414-5 4.510830-6 1.106892-5 4.521640-6 9.934614-6 4.536409-6 7.547605-6 4.554071-6 4.468923-6 4.564881-6 2.923642-6 4.568868-6 2.464498-6 4.575691-6 1.767525-6 4.579687-6 1.448659-6 4.586501-6 9.875253-7 4.590507-6 7.866941-7 4.607650-6 7.020620-8 4.608121-6 5.688130-8 4.612146-6 0.0 5.021248-6 0.0 5.021258-6 1.822085-5 5.025084-6 7.149708-2 5.045976-6 6.509907-1 5.049821-6 8.036627-1 5.058336-6 1.194404+0 5.062190-6 1.431922+0 5.070695-6 2.023713+0 5.083054-6 3.166502+0 5.121677-6 7.656747+0 5.133263-6 8.596211+0 5.145985-6 8.987178+0 5.159210-6 8.618734+0 5.171775-6 7.639313+0 5.207032-6 3.657950+0 5.219260-6 2.539256+0 5.231613-6 1.731094+0 5.238580-6 1.430937+0 5.244759-6 1.202379+0 5.257577-6 9.056165-1 5.268693-6 6.419127-1 5.273041-6 6.141875-1 5.281810-6 6.226877-1 5.290559-6 6.067097-1 5.303238-6 5.442235-1 5.330574-6 3.315847-1 5.341274-6 2.441095-1 5.353953-6 1.594879-1 5.357939-6 1.380503-1 5.366631-6 9.627420-2 5.370627-6 8.138599-2 5.379310-6 5.369745-2 5.383316-6 4.432022-2 5.396004-6 1.981233-2 5.404668-6 2.657094-3 5.408692-6 0.0 5.668829-6 0.0 5.672665-6 2.528097-2 5.696735-6 2.608825-1 5.700590-6 3.148878-1 5.710688-6 4.784080-1 5.724641-6 8.101289-1 5.731550-6 1.032300+0 5.742477-6 1.424924+0 5.769677-6 2.601170+0 5.773512-6 3.004563+0 5.801934-6 9.375159+0 5.816145-6 1.407487+1 5.830355-6 2.080412+1 5.845837-6 3.070269+1 5.885726-6 6.094814+1 5.902915-6 6.915805+1 5.917059-6 7.070941+1 5.931135-6 6.701880+1 5.946019-6 5.813598+1 5.986674-6 2.556497+1 6.000885-6 1.651723+1 6.015095-6 9.970111+0 6.025301-6 6.813387+0 6.029306-6 5.749301+0 6.053703-6 1.394668+0 6.057728-6 9.397150-1 6.086397-6 1.532434+0 6.102740-6 1.767766+0 6.117507-6 1.853509+0 6.134401-6 1.780194+0 6.150770-6 1.588959+0 6.180975-6 1.091895+0 6.193205-6 9.326089-1 6.207296-6 8.249193-1 6.220873-6 8.023404-1 6.233900-6 8.441785-1 6.286690-6 1.182401+0 6.306817-6 1.211536+0 6.367431-6 1.111700+0 6.536625-6 1.114929+0 6.662384-6 1.100522+0 7.199537-6 1.108679+0 1.016539-5 9.906366-1 1.024045-5 1.064582+0 1.029050-5 1.187760+0 1.036633-5 1.455945+0 1.039058-5 1.514306+0 1.041560-5 1.536079+0 1.044688-5 1.498998+0 1.050317-5 1.318657+0 1.056572-5 1.105629+0 1.061577-5 1.013312+0 1.066581-5 9.671606-1 1.120383-5 9.434510-1 1.128656-5 9.900271-1 1.134172-5 1.068971+0 1.143823-5 1.259382+0 1.147960-5 1.292267+0 1.153475-5 1.237684+0 1.162672-5 1.042766+0 1.168396-5 9.788111-1 1.175537-5 9.773665-1 1.188428-5 1.108346+0 1.195583-5 1.115661+0 1.209892-5 1.075615+0 1.508993-5 1.127837+0 1.883649-5 1.129938+0 2.880000-5 1.013632+0 4.527922-5 8.033045-1 6.058849-5 6.521709-1 7.776448-5 5.209245-1 9.554742-5 4.195534-1 1.125956-4 3.474656-1 1.316135-4 2.876265-1 1.567699-4 2.304463-1 1.844061-4 1.856613-1 1.844100-4 1.872142-1 1.853178-4 1.263924+0 1.857717-4 2.154820+0 1.862256-4 3.505365+0 1.867362-4 5.633025+0 1.875314-4 9.727906+0 1.880696-4 1.232877+1 1.885686-4 1.389477+1 1.889951-4 1.435385+1 1.894798-4 1.370103+1 1.900043-4 1.184902+1 1.910688-4 7.005475+0 1.913261-4 6.027312+0 1.917094-4 4.849047+0 1.921368-4 4.032084+0 1.926063-4 3.658677+0 1.935540-4 3.577537+0 1.941707-4 4.006643+0 1.946202-4 4.208563+0 1.953987-4 4.328505+0 1.969206-4 4.241560+0 1.986553-4 4.059612+0 2.064063-4 3.718966+0 2.260847-4 3.432337+0 2.932680-4 2.489707+0 3.381237-4 2.028961+0 3.940238-4 1.599584+0 4.430524-4 1.321350+0 5.084861-4 1.052504+0 5.714963-4 8.622462-1 6.380841-4 7.118236-1 7.279265-4 5.640488-1 8.144582-4 4.604543-1 8.968763-4 3.859162-1 1.003646-3 3.130940-1 1.113685-3 2.574141-1 1.256357-3 2.043991-1 1.390184-3 1.679848-1 1.525726-3 1.400058-1 1.686371-3 1.149129-1 1.853940-3 9.512081-2 2.056236-3 7.726722-2 2.241511-3 6.481709-2 2.509168-3 5.151893-2 2.744735-3 4.278215-2 3.005865-3 3.542131-2 3.345203-3 2.830539-2 3.652719-3 2.351343-2 4.082239-3 1.854858-2 4.457230-3 1.536186-2 4.899914-3 1.252461-2 5.350204-3 1.034068-2 5.964069-3 8.155530-3 6.525874-3 6.685320-3 7.124224-3 5.506558-3 7.862427-3 4.422746-3 8.550730-3 3.663369-3 9.450863-3 2.926094-3 1.047714-2 2.319679-3 1.135591-2 1.931399-3 1.249461-2 1.554074-3 1.380561-2 1.237249-3 1.497022-2 1.027105-3 1.656874-2 8.134169-4 1.839262-2 6.394564-4 1.994184-2 5.299956-4 2.171473-2 4.348696-4 2.390674-2 3.477830-4 2.600160-2 2.860048-4 2.812734-2 2.378888-4 3.064298-2 1.946166-4 3.389980-2 1.536015-4 3.645855-2 1.295541-4 3.952395-2 1.071203-4 4.292230-2 8.816171-5 4.708292-2 7.092497-5 5.110195-2 5.846171-5 5.615144-2 4.681998-5 6.107680-2 3.841672-5 6.681992-2 3.106594-5 7.257237-2 2.557285-5 7.852356-2 2.125973-5 8.602854-2 1.716200-5 9.487479-2 1.364076-5 1.028057-1 1.130339-5 1.114575-1 9.368976-6 1.201030-1 7.876701-6 1.330933-1 6.210254-6 1.454797-1 5.064394-6 1.606074-1 4.034279-6 1.784356-1 3.181840-6 1.957401-1 2.584239-6 2.146154-1 2.109133-6 2.379600-1 1.684825-6 2.617524-1 1.373027-6 2.912282-1 1.097464-6 3.244570-1 8.804363-7 3.569714-1 7.283244-7 3.959437-1 5.971721-7 4.414432-1 4.890640-7 4.962063-1 3.987923-7 5.497386-1 3.367586-7 6.026680-1 2.916770-7 6.857285-1 2.414583-7 7.740161-1 2.058459-7 8.810489-1 1.759791-7 1.018930+0 1.504335-7 1.228714+0 1.256740-7 1.477239+0 1.053205-7 1.776032+0 8.826334-8 2.135261+0 7.396868-8 2.567148+0 6.198911-8 3.086391+0 5.194968-8 3.710658+0 4.353619-8 4.461192+0 3.648530-8 5.363532+0 3.057634-8 6.448384+0 2.562436-8 7.752663+0 2.147437-8 9.320751+0 1.799650-8 9.760024+0 1.721888-8 1.000000+1 3.300591-8 1 5000 7 0 1.081100+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.965964+0 2.532893-6-4.714125+0 3.169598-6-4.388640+0 3.403651-6-4.057542+0 3.489869-6-3.746271+0 3.533379-6-3.402186+0 3.553008-6-3.101849+0 3.585811-6-2.135461+0 3.598445-6-1.776628+0 3.606299-6-1.664997+0 3.613262-6-1.730808+0 3.619182-6-1.887449+0 3.625215-6-2.158977+0 3.629617-6-2.464247+0 3.638019-6-3.207068+0 3.655623-6-5.103290+0 3.667388-6-3.972303+0 3.675499-6-3.504589+0 3.682428-6-3.250204+0 3.690048-6-3.158630+0 3.699708-6-3.286558+0 3.745758-6-4.639119+0 3.781363-6-5.091585+0 3.796674-6-5.057139+0 3.891102-6-4.661373+0 4.521640-6-3.443824+0 4.698186-6-2.913844+0 4.794416-6-2.495295+0 4.871395-6-2.022335+0 4.919447-6-1.610291+0 4.953049-6-1.220166+0 4.975560-6-8.773775-1 4.986982-6-6.635459-1 4.995549-6-4.774618-1 5.001974-6-3.183988-1 5.006792-6-1.846149-1 5.010406-6-7.368351-2 5.015827-6 1.166386-1 5.018538-6 2.283880-1 5.019893-6 2.916328-1 5.025084-6 5.747625-1 5.028176-6 7.229368-1 5.041715-6 1.276838+0 5.062190-6 2.289049+0 5.074943-6 2.837231+0 5.085084-6 3.100429+0 5.091302-6 3.115843+0 5.099296-6 2.969919+0 5.106458-6 2.691058+0 5.112440-6 2.334096+0 5.117247-6 1.945211+0 5.120132-6 1.631156+0 5.127084-6 8.295784-1 5.129787-6 4.942928-1 5.131139-6 3.091693-1 5.131815-6 2.083555-1 5.133263-6-3.985364-2 5.134712-6-2.541916-1 5.142315-6-1.323557+0 5.144533-6-1.684252+0 5.145985-6-1.956081+0 5.156979-6-3.575217+0 5.161071-6-4.191796+0 5.170041-6-5.309801+0 5.177870-6-4.562608+0 5.187388-6-3.987480+0 5.196332-6-3.678515+0 5.204156-6-3.617392+0 5.218374-6-3.968601+0 5.248042-6-5.305440+0 5.269163-6-4.489252+0 5.281810-6-4.035611+0 5.357939-6-2.579647+0 5.408692-6-1.547473+0 5.469662-6-3.600889-1 5.494558-6 1.582760-1 5.516341-6 6.479669-1 5.535402-6 1.113207+0 5.552081-6 1.555284+0 5.579444-6 2.370782+0 5.608948-6 3.417627+0 5.635146-6 4.554894+0 5.659356-6 5.869983+0 5.689641-6 8.075604+0 5.717580-6 1.073678+1 5.742477-6 1.380621+1 5.761071-6 1.679450+1 5.769677-6 1.879764+1 5.778397-6 2.140168+1 5.801934-6 2.655366+1 5.817921-6 3.061260+1 5.835240-6 3.395589+1 5.848298-6 3.469816+1 5.860375-6 3.283902+1 5.870656-6 2.940333+1 5.880612-6 2.420484+1 5.885220-6 2.069245+1 5.896998-6 1.080540+1 5.900169-6 7.696137+0 5.901254-6 6.429800+0 5.902068-6 5.359317+0 5.903709-6 3.564609+0 5.905198-6 2.040105+0 5.911630-6-4.396559+0 5.912717-6-5.520342+0 5.914805-6-3.177151+0 5.915563-6-2.186259+0 5.915786-6-1.838549+0 5.916222-6-1.268615+0 5.916647-6-7.530807-1 5.917059-6-2.745490-1 5.917857-6 6.149942-1 5.918605-6 1.417938+0 5.921236-6 4.103468+0 5.928756-6 1.157912+1 5.931135-6 1.435343+1 5.936631-6 1.935564+1 5.946019-6 2.706042+1 5.955269-6 3.246179+1 5.965635-6 3.636764+1 5.977613-6 3.863293+1 5.986674-6 3.839765+1 6.000885-6 3.574824+1 6.029306-6 2.699594+1 6.056722-6 1.923300+1 6.063614-6 1.707848+1 6.075183-6 1.477449+1 6.086397-6 1.317529+1 6.102740-6 1.149841+1 6.125954-6 9.903834+0 6.220873-6 5.278831+0 6.248248-6 4.254148+0 6.276700-6 3.532205+0 6.367431-6 2.112307+0 6.408523-6 1.569049+0 6.456288-6 1.059311+0 6.499929-6 6.724054-1 6.526890-6 4.714390-1 6.563816-6 2.093610-1 6.599061-6-5.512580-3 6.603013-6-2.915902-2 6.614207-6-1.004033-1 6.624138-6-1.587388-1 6.645798-6-2.725759-1 6.662384-6-3.612774-1 6.716472-6-6.083312-1 6.774921-6-8.396750-1 6.863580-6-1.125358+0 6.977538-6-1.418218+0 7.121900-6-1.705523+0 7.386667-6-2.074422+0 7.747559-6-2.387836+0 8.205138-6-2.628920+0 9.083669-6-2.877769+0 1.004714-5-3.097344+0 1.021543-5-3.256617+0 1.031552-5-3.347899+0 1.038432-5-3.177334+0 1.047190-5-2.790922+0 1.052819-5-2.703944+0 1.075247-5-2.948356+0 1.120383-5-3.162657+0 1.138308-5-3.284392+0 1.147960-5-3.104243+0 1.157612-5-2.928389+0 1.168396-5-3.016692+0 1.182705-5-3.166107+0 1.205599-5-3.083515+0 1.508993-5-3.022812+0 2.542802-5-2.623468+0 3.673484-5-2.371472+0 4.990281-5-2.226585+0 7.233484-5-2.161293+0 9.554742-5-2.235819+0 1.188332-4-2.438719+0 1.371474-4-2.723205+0 1.517878-4-3.103905+0 1.622294-4-3.555261+0 1.692779-4-4.051963+0 1.741981-4-4.605865+0 1.783152-4-4.257613+0 1.806465-4-3.830517+0 1.820683-4-3.369506+0 1.829971-4-2.897169+0 1.836834-4-2.376648+0 1.840504-4-1.981980+0 1.843060-4-1.604757+0 1.844061-4-1.389490+0 1.844384-4-1.301198+0 1.845846-4-1.024459+0 1.848639-4-5.960578-1 1.850908-4-2.573676-1 1.852043-4-7.215380-2 1.852610-4 2.977059-2 1.853178-4 1.516942-1 1.857717-4 1.008787+0 1.858284-4 1.136872+0 1.862823-4 1.884116+0 1.863816-4 2.003571+0 1.867362-4 2.284549+0 1.869100-4 2.279477+0 1.871906-4 2.069100+0 1.873639-4 1.787316+0 1.875314-4 1.386932+0 1.877008-4 8.406718-1 1.877859-4 5.428665-1 1.878497-4 3.009805-1 1.878976-4 1.068381-1 1.879694-4-2.107908-1 1.880053-4-3.864940-1 1.880232-4-4.814838-1 1.880696-4-7.546804-1 1.883385-4-2.169380+0 1.884727-4-2.991038+0 1.885686-4-3.685062+0 1.889068-4-5.848719+0 1.889951-4-5.170234+0 1.894377-4-2.471726+0 1.895319-4-1.900166+0 1.896573-4-1.265706+0 1.898967-4-1.584540-1 1.899333-4 1.892621-2 1.900043-4 3.040444-1 1.900708-4 5.384050-1 1.901334-4 7.373458-1 1.902501-4 1.061489+0 1.903525-4 1.301689+0 1.905203-4 1.615227+0 1.906574-4 1.800392+0 1.908374-4 1.945112+0 1.910109-4 1.961496+0 1.912626-4 1.753778+0 1.916136-4 1.269621+0 1.916615-4 1.184252+0 1.917094-4 1.072821+0 1.921368-4 2.191021-1 1.921955-4 7.574960-2 1.922982-4-1.214573-1 1.926063-4-6.625996-1 1.926730-4-7.874050-1 1.927897-4-9.647137-1 1.929648-4-1.193239+0 1.934737-4-1.775715+0 1.936154-4-1.986895+0 1.938032-4-2.160245+0 1.940447-4-2.267224+0 1.944543-4-2.332179+0 1.966474-4-2.079574+0 1.978087-4-2.020140+0 1.990000-4-2.034394+0 2.057814-4-1.913886+0 2.180769-4-1.593270+0 2.406840-4-9.571521-1 2.505310-4-7.287923-1 2.591160-4-5.665471-1 2.691535-4-4.130779-1 2.764880-4-3.201684-1 2.853648-4-2.233649-1 2.932680-4-1.520340-1 3.022962-4-7.881288-2 3.079314-4-4.066767-2 3.119134-4-1.209673-2 3.158658-4 1.150083-2 3.186453-4 2.812575-2 3.225948-4 4.945229-2 3.269157-4 7.405702-2 3.381237-4 1.300631-1 3.475261-4 1.698901-1 3.647726-4 2.305829-1 3.826098-4 2.765270-1 4.110795-4 3.263988-1 4.430524-4 3.574266-1 4.946668-4 3.807241-1 5.714963-4 3.797823-1 8.144582-4 3.061655-1 1.040908-3 2.401197-1 1.256357-3 1.928895-1 1.488297-3 1.554123-1 1.745233-3 1.252497-1 1.980160-3 1.045920-1 2.302007-3 8.380344-2 2.659116-3 6.727337-2 3.005865-3 5.547129-2 3.456464-3 4.428199-2 3.951324-3 3.542529-2 4.457230-3 2.879724-2 5.043736-3 2.317043-2 5.648303-3 1.889463-2 6.331027-3 1.530287-2 7.124224-3 1.222196-2 7.862427-3 1.007416-2 8.799854-3 8.015057-3 9.726230-3 6.487599-3 1.075823-2 5.193470-3 1.189596-2 4.106936-3 1.312973-2 3.211058-3 1.420053-2 2.602146-3 1.541085-2 2.050367-3 1.656874-2 1.623463-3 1.806979-2 1.181840-3 1.945936-2 8.542190-4 2.119976-2 5.165123-4 2.211918-2 3.636920-4 2.302827-2 2.306233-4 2.390674-2 1.160419-4 2.443303-2 5.328299-5 2.491660-2-9.176525-7 2.541583-2-5.363918-5 2.600160-2-1.116999-4 2.711216-2-2.115942-4 2.812734-2-2.927576-4 3.008079-2-4.264391-4 3.269616-2-5.690961-4 3.645855-2-7.232321-4 4.180097-2-8.747961-4 4.965735-2-1.015246-3 6.221452-2-1.139085-3 8.443681-2-1.238477-3 1.357342-1-1.310883-3 3.446226-1-1.349482-3 1.070165+0-1.355835-3 3.231848+0-1.356489-3 9.760024+0-1.356561-3 1.000000+1-1.356540-3 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.063257-5 1.086769-6 7.172930-5 1.125000-6 8.324650-5 1.155754-6 9.268135-5 1.191871-6 1.050139-4 1.267527-6 1.360769-4 1.307137-6 1.542209-4 1.347985-6 1.752985-4 1.390109-6 1.999982-4 1.423828-6 2.220186-4 1.478349-6 2.594191-4 1.524547-6 2.957580-4 1.601807-6 3.674938-4 1.671987-6 4.409965-4 1.724236-6 5.046360-4 1.802032-6 6.153136-4 1.890987-6 7.591546-4 1.950081-6 8.721561-4 2.048000-6 1.091929-3 2.205507-6 1.520201-3 2.345505-6 2.014639-3 2.494390-6 2.689503-3 2.652725-6 3.619496-3 2.820256-6 4.908132-3 2.981672-6 6.527119-3 3.133157-6 8.486935-3 3.205368-6 9.604874-3 3.343091-6 1.212956-2 3.408741-6 1.354538-2 3.595563-6 1.857044-2 3.717102-6 2.279255-2 3.819385-6 2.703079-2 3.920918-6 3.211268-2 4.016105-6 3.776509-2 4.105342-6 4.406419-2 4.196260-6 5.167704-2 4.267434-6 5.859996-2 4.340963-6 6.693531-2 4.409897-6 7.603307-2 4.474523-6 8.594561-2 4.535109-6 9.670293-2 4.592129-6 1.083871-1 4.645159-6 1.208679-1 4.695080-6 1.343888-1 4.741882-6 1.489846-1 4.785758-6 1.647013-1 4.826892-6 1.815579-1 4.865456-6 1.995777-1 4.901609-6 2.188312-1 4.935502-6 2.394162-1 4.967278-6 2.614241-1 4.997067-6 2.849361-1 5.024994-6 3.100184-1 5.051176-6 3.367168-1 5.081138-6 3.718341-1 5.098733-6 3.951815-1 5.120306-6 4.271321-1 5.140531-6 4.610446-1 5.159492-6 4.970312-1 5.177268-6 5.351994-1 5.193933-6 5.756509-1 5.209556-6 6.184791-1 5.224203-6 6.637709-1 5.237934-6 7.116143-1 5.263681-6 8.191529-1 5.286209-6 9.392641-1 5.305921-6 1.073754+0 5.323169-6 1.225028+0 5.338261-6 1.395622+0 5.351466-6 1.587322+0 5.363021-6 1.800292+0 5.373132-6 2.032652+0 5.381978-6 2.280654+0 5.389719-6 2.539275+0 5.396493-6 2.802954+0 5.402419-6 3.066255+0 5.407605-6 3.324336+0 5.416680-6 3.845198+0 5.432420-6 4.987367+0 5.445202-6 6.166656+0 5.458386-6 7.634974+0 5.467625-6 8.812957+0 5.470704-6 9.230953+0 5.481130-6 1.072807+1 5.485779-6 1.142983+1 5.497503-6 1.325849+1 5.502109-6 1.398660+1 5.510932-6 1.536720+1 5.515509-6 1.606402+1 5.519905-6 1.671278+1 5.524302-6 1.733513+1 5.530583-6 1.816617+1 5.535392-6 1.874645+1 5.542265-6 1.947502+1 5.548616-6 2.002698+1 5.551101-6 2.020799+1 5.557801-6 2.059029+1 5.564501-6 2.080951+1 5.567252-6 2.085033+1 5.573907-6 2.082807+1 5.580069-6 2.065435+1 5.583238-6 2.050837+1 5.589777-6 2.008946+1 5.594776-6 1.966690+1 5.605118-6 1.853846+1 5.611111-6 1.774799+1 5.618098-6 1.672365+1 5.622080-6 1.609977+1 5.627428-6 1.522610+1 5.631522-6 1.453626+1 5.637374-6 1.353010+1 5.643487-6 1.246790+1 5.651597-6 1.106734+1 5.657459-6 1.007800+1 5.659972-6 9.663023+0 5.665834-6 8.721224+0 5.671696-6 7.822874+0 5.680141-6 6.617759+0 5.686450-6 5.792732+0 5.688820-6 5.500307+0 5.695930-6 4.681464+0 5.699921-6 4.260331+0 5.705908-6 3.679966+0 5.712575-6 3.104196+0 5.716083-6 2.829970+0 5.724181-6 2.268290+0 5.729765-6 1.935329+0 5.735305-6 1.645113+0 5.740801-6 1.393454+0 5.746255-6 1.176307+0 5.751677-6 9.894912-1 5.757056-6 8.298548-1 5.762393-6 6.940624-1 5.767689-6 5.790690-1 5.772943-6 4.821220-1 5.778157-6 4.007541-1 5.788461-6 2.762344-1 5.798606-6 1.909124-1 5.803618-6 1.593519-1 5.808592-6 1.336465-1 5.813527-6 1.128361-1 5.818423-6 9.609666-2 5.823281-6 8.272425-2 5.828101-6 7.211901-2 5.832883-6 6.377173-2 5.837628-6 5.725164-2 5.842336-6 5.219567-2 5.847007-6 4.829915-2 5.851642-6 4.530766-2 5.858522-6 4.206738-2 5.867558-6 3.924171-2 5.875346-6 3.751105-2 5.885197-6 3.563930-2 5.895445-6 3.360348-2 5.903924-6 3.166317-2 5.912271-6 2.948292-2 5.920521-6 2.709313-2 5.928642-6 2.457803-2 5.936635-6 2.202687-2 5.944504-6 1.952710-2 5.952250-6 1.715541-2 5.959875-6 1.497327-2 5.974886-6 1.131735-2 5.989429-6 8.787197-3 6.003517-6 7.389561-3 6.017164-6 7.028674-3 6.030385-6 7.566723-3 6.056172-6 1.088023-2 6.080016-6 1.624630-2 6.102531-6 2.303246-2 6.144744-6 3.957102-2 6.181682-6 5.764403-2 6.246322-6 9.676961-2 6.371292-6 1.952293-1 6.440964-6 2.646896-1 6.488525-6 3.206440-1 6.536086-6 3.847849-1 6.583646-6 4.583246-1 6.647061-6 5.739704-1 6.768911-6 8.743845-1 6.831478-6 1.086841+0 6.886469-6 1.322286+0 6.911414-6 1.448831+0 6.934801-6 1.581251+0 6.978650-6 1.873763+0 7.017018-6 2.191483+0 7.050590-6 2.535329+0 7.079965-6 2.906943+0 7.105669-6 3.308972+0 7.128160-6 3.745004+0 7.147839-6 4.218462+0 7.165058-6 4.730780+0 7.180125-6 5.279857+0 7.193309-6 5.859605+0 7.204845-6 6.460665+0 7.214938-6 7.071807+0 7.223770-6 7.681457+0 7.239226-6 8.941795+0 7.250818-6 1.007006+1 7.278259-6 1.345783+1 7.301308-6 1.713256+1 7.316429-6 1.992659+1 7.321469-6 2.091447+1 7.331885-6 2.302545+1 7.339402-6 2.459081+1 7.349843-6 2.679026+1 7.357334-6 2.836122+1 7.361299-6 2.918223+1 7.373193-6 3.156358+1 7.380070-6 3.285769+1 7.386635-6 3.401522+1 7.393200-6 3.508049+1 7.401606-6 3.628477+1 7.411045-6 3.738755+1 7.418928-6 3.807873+1 7.427798-6 3.858053+1 7.438031-6 3.877061+1 7.445877-6 3.862236+1 7.450220-6 3.842907+1 7.457575-6 3.792190+1 7.465490-6 3.712889+1 7.472175-6 3.626802+1 7.478855-6 3.524341+1 7.486235-6 3.393579+1 7.493294-6 3.253091+1 7.501282-6 3.078523+1 7.508722-6 2.903764+1 7.512161-6 2.819790+1 7.520391-6 2.612785+1 7.528173-6 2.411956+1 7.535629-6 2.217856+1 7.540074-6 2.102502+1 7.546426-6 1.939354+1 7.553062-6 1.772472+1 7.563559-6 1.519367+1 7.571685-6 1.335284+1 7.578585-6 1.188535+1 7.583299-6 1.093806+1 7.590458-6 9.589358+0 7.601257-6 7.768690+0 7.609067-6 6.614004+0 7.620337-6 5.183530+0 7.626124-6 4.553090+0 7.637173-6 3.533225+0 7.649135-6 2.677478+0 7.657286-6 2.225891+0 7.662092-6 2.004433+0 7.666255-6 1.837331+0 7.668931-6 1.741356+0 7.673648-6 1.592755+0 7.677696-6 1.484871+0 7.681682-6 1.395225+0 7.685605-6 1.321980+0 7.689466-6 1.263473+0 7.697069-6 1.184348+0 7.704434-6 1.148555+0 7.711569-6 1.147534+0 7.718481-6 1.174407+0 7.731874-6 1.293370+0 7.744429-6 1.472439+0 7.756199-6 1.690330+0 7.844477-6 4.645544+0 7.866547-6 5.824245+0 7.883099-6 6.867179+0 7.904824-6 8.467997+0 7.918789-6 9.642472+0 7.932755-6 1.092810+1 7.943120-6 1.194839+1 7.971806-6 1.499407+1 7.984654-6 1.641238+1 7.991332-6 1.714758+1 8.004211-6 1.853864+1 8.013301-6 1.948149+1 8.021866-6 2.032613+1 8.030431-6 2.111680+1 8.035914-6 2.158979+1 8.044139-6 2.224443+1 8.052364-6 2.282708+1 8.061561-6 2.338710+1 8.073631-6 2.397027+1 8.085271-6 2.437272+1 8.100055-6 2.468445+1 8.115841-6 2.484378+1 8.132931-6 2.496480+1 8.150021-6 2.526120+1 8.156735-6 2.548902+1 8.169553-6 2.620265+1 8.173019-6 2.647479+1 8.179085-6 2.704949+1 8.183635-6 2.757245+1 8.190459-6 2.852485+1 8.197283-6 2.970545+1 8.201141-6 3.048579+1 8.207893-6 3.206937+1 8.212956-6 3.345633+1 8.220552-6 3.589321+1 8.228147-6 3.880624+1 8.235529-6 4.214908+1 8.242911-6 4.605476+1 8.250681-6 5.084266+1 8.258452-6 5.640252+1 8.267210-6 6.370212+1 8.275487-6 7.172196+1 8.284882-6 8.230362+1 8.324067-6 1.478056+2 8.344128-6 1.983659+2 8.360520-6 2.503085+2 8.375073-6 3.053464+2 8.378907-6 3.213136+2 8.405743-6 4.506737+2 8.416043-6 5.083292+2 8.429622-6 5.905197+2 8.439052-6 6.511923+2 8.455465-6 7.621183+2 8.463224-6 8.160552+2 8.470629-6 8.678785+2 8.481275-6 9.420570+2 8.490137-6 1.002601+3 8.499354-6 1.063423+3 8.509431-6 1.126233+3 8.518378-6 1.177755+3 8.528264-6 1.228922+3 8.531174-6 1.242677+3 8.543297-6 1.292743+3 8.552216-6 1.321447+3 8.563150-6 1.346362+3 8.568616-6 1.354366+3 8.585447-6 1.359789+3 8.603416-6 1.333736+3 8.613820-6 1.304429+3 8.627578-6 1.251296+3 8.637014-6 1.206546+3 8.647210-6 1.151805+3 8.654503-6 1.109267+3 8.665199-6 1.042880+3 8.676085-6 9.718464+2 8.689294-6 8.831540+2 8.697413-6 8.283327+2 8.706303-6 7.688111+2 8.719951-6 6.798669+2 8.726005-6 6.417831+2 8.738776-6 5.650218+2 8.745578-6 5.263915+2 8.774871-6 3.804137+2 8.792639-6 3.087554+2 8.840826-6 1.731054+2 8.851909-6 1.520388+2 8.863672-6 1.329518+2 8.875940-6 1.161685+2 8.882678-6 1.081377+2 8.892184-6 9.806724+1 8.901684-6 8.930396+1 8.912803-6 8.047123+1 8.924943-6 7.230879+1 8.936637-6 6.566129+1 8.948202-6 6.005341+1 8.960851-6 5.482352+1 8.970830-6 5.124822+1 8.983423-6 4.730713+1 8.996966-6 4.365408+1 9.011652-6 4.024588+1 9.022793-6 3.797471+1 9.034790-6 3.578104+1 9.053233-6 3.283116+1 9.076820-6 2.965299+1 9.101226-6 2.690755+1 9.125870-6 2.457000+1 9.153696-6 2.234242+1 9.177613-6 2.070728+1 9.206115-6 1.903032+1 9.242137-6 1.724886+1 9.277878-6 1.577427+1 9.313339-6 1.453714+1 9.348523-6 1.348731+1 9.383432-6 1.258797+1 9.418069-6 1.181152+1 9.452435-6 1.113666+1 9.486532-6 1.054649+1 9.521274-6 1.001417+1 9.587497-6 9.156348+0 9.653582-6 8.461435+0 9.718634-6 7.897972+0 9.782670-6 7.434828+0 9.845705-6 7.049723+0 9.912891-6 6.701681+0 9.984668-6 6.387453+0 1.002896-5 6.218589+0 1.009233-5 6.005457+0 1.020467-5 5.693650+0 1.031755-5 5.444862+0 1.044136-5 5.227779+0 1.054084-5 5.085571+0 1.063547-5 4.972770+0 1.073489-5 4.874915+0 1.083927-5 4.790419+0 1.092944-5 4.728804+0 1.110529-5 4.631483+0 1.130100-5 4.551817+0 1.143365-5 4.511404+0 1.166514-5 4.462986+0 1.198408-5 4.425678+0 1.245837-5 4.413669+0 1.381691-5 4.437150+0 1.422855-5 4.417253+0 1.442907-5 4.382889+0 1.457614-5 4.329702+0 1.471324-5 4.262153+0 1.476327-5 4.253381+0 1.481397-5 4.274986+0 1.483220-5 4.294152+0 1.487648-5 4.374299+0 1.488690-5 4.401108+0 1.492336-5 4.521573+0 1.496894-5 4.732563+0 1.500540-5 4.946157+0 1.509946-5 5.596168+0 1.514214-5 5.874682+0 1.517860-5 6.069880+0 1.521506-5 6.208755+0 1.522418-5 6.233416+0 1.525153-5 6.282005+0 1.527431-5 6.293436+0 1.530622-5 6.267430+0 1.532445-5 6.232701+0 1.536091-5 6.127602+0 1.539738-5 5.987764+0 1.554323-5 5.366343+0 1.558288-5 5.232252+0 1.562073-5 5.125437+0 1.569748-5 4.964309+0 1.592838-5 4.714940+0 1.599373-5 4.688810+0 1.607247-5 4.707934+0 1.611588-5 4.750941+0 1.615120-5 4.805030+0 1.621364-5 4.939390+0 1.634270-5 5.282972+0 1.639087-5 5.385124+0 1.642942-5 5.441258+0 1.646613-5 5.470512+0 1.650550-5 5.476383+0 1.656455-5 5.445967+0 1.670233-5 5.325309+0 1.678107-5 5.302277+0 1.682050-5 5.308477+0 1.691422-5 5.352441+0 1.699681-5 5.399222+0 1.709137-5 5.441168+0 1.752259-5 5.551113+0 1.797682-5 5.683913+0 1.872500-5 5.919933+0 2.065527-5 6.491187+0 2.213095-5 6.906674+0 2.404655-5 7.405790+0 2.615171-5 7.906636+0 2.884294-5 8.461475+0 3.108136-5 8.867514+0 3.338944-5 9.224939+0 3.587301-5 9.553708+0 3.836464-5 9.829206+0 4.259661-5 1.021377+1 4.611041-5 1.044951+1 4.908837-5 1.061559+1 5.249963-5 1.077296+1 5.973790-5 1.099627+1 6.814248-5 1.114734+1 7.823804-5 1.122042+1 8.878605-5 1.120297+1 1.005773-4 1.110352+1 1.130122-4 1.093196+1 1.255759-4 1.069493+1 1.330481-4 1.052755+1 1.394037-4 1.036991+1 1.457685-4 1.020080+1 1.548207-4 9.928503+0 1.634094-4 9.645880+0 1.726684-4 9.300886+0 1.817823-4 8.918541+0 1.917304-4 8.444328+0 2.001686-4 7.985318+0 2.089296-4 7.445614+0 2.158301-4 6.963807+0 2.229602-4 6.397342+0 2.292917-4 5.830386+0 2.346102-4 5.297198+0 2.383740-4 4.881593+0 2.419314-4 4.456521+0 2.449581-4 4.065698+0 2.479177-4 3.654346+0 2.502115-4 3.314519+0 2.526608-4 2.932019+0 2.548719-4 2.593427+0 2.565618-4 2.394194+0 2.573852-4 2.334825+0 2.591518-4 2.308085+0 2.610641-4 2.411689+0 2.623525-4 2.538812+0 2.635239-4 2.691651+0 2.646264-4 2.874231+0 2.655571-4 3.066357+0 2.664693-4 3.299726+0 2.672543-4 3.548580+0 2.680818-4 3.877352+0 2.686611-4 4.163100+0 2.694585-4 4.663047+0 2.701594-4 5.248400+0 2.707753-4 5.926278+0 2.713167-4 6.696696+0 2.718077-4 7.581958+0 2.720084-4 8.006200+0 2.724131-4 8.991626+0 2.727673-4 1.001792+1 2.730771-4 1.106115+1 2.733483-4 1.209907+1 2.737931-4 1.408670+1 2.745161-4 1.819018+1 2.755176-4 2.597769+1 2.759344-4 3.001006+1 2.764425-4 3.556139+1 2.766119-4 3.756127+1 2.769770-4 4.210690+1 2.773741-4 4.737857+1 2.779669-4 5.572516+1 2.781998-4 5.910192+1 2.786445-4 6.558481+1 2.789885-4 7.053691+1 2.793220-4 7.518695+1 2.796660-4 7.973537+1 2.799995-4 8.381043+1 2.803063-4 8.719464+1 2.806454-4 9.044674+1 2.807441-4 9.128605+1 2.810679-4 9.367045+1 2.814026-4 9.549499+1 2.815760-4 9.616957+1 2.819435-4 9.696304+1 2.821527-4 9.702177+1 2.827952-4 9.542548+1 2.831042-4 9.373899+1 2.835218-4 9.059427+1 2.838342-4 8.765863+1 2.840970-4 8.485488+1 2.843782-4 8.156723+1 2.846940-4 7.758821+1 2.849577-4 7.408852+1 2.852967-4 6.943460+1 2.856585-4 6.438146+1 2.860661-4 5.871952+1 2.863925-4 5.430337+1 2.870004-4 4.658877+1 2.879898-4 3.608681+1 2.882218-4 3.405262+1 2.885310-4 3.160331+1 2.889214-4 2.893118+1 2.892764-4 2.689016+1 2.894894-4 2.583271+1 2.897553-4 2.467681+1 2.900167-4 2.370545+1 2.901924-4 2.313715+1 2.903796-4 2.260128+1 2.906277-4 2.199202+1 2.910114-4 2.125010+1 2.913721-4 2.073965+1 2.918347-4 2.029434+1 2.922158-4 2.006233+1 2.927994-4 1.987020+1 2.936041-4 1.979266+1 2.964100-4 1.982160+1 3.002547-4 1.971385+1 3.032500-4 1.972314+1 3.061447-4 1.981149+1 3.104024-4 2.006684+1 3.121866-4 2.021144+1 3.374406-4 2.272983+1 3.423823-4 2.317720+1 3.511884-4 2.387527+1 3.589101-4 2.437007+1 3.684112-4 2.484058+1 3.810631-4 2.533100+1 4.010158-4 2.592260+1 4.312375-4 2.649575+1 4.642887-4 2.696430+1 5.053049-4 2.727306+1 5.547389-4 2.733123+1 6.130774-4 2.720257+1 6.851679-4 2.689510+1 7.200956-4 2.667751+1 9.352477-4 2.508089+1 1.190642-3 2.325266+1 1.322180-3 2.227828+1 1.418371-3 2.161977+1 1.633449-3 2.017633+1 1.876378-3 1.858940+1 2.046616-3 1.756227+1 2.250852-3 1.640449+1 2.494751-3 1.513426+1 2.761671-3 1.386355+1 3.056170-3 1.261405+1 3.331882-3 1.157600+1 3.759558-3 1.019630+1 4.313279-3 8.756033+0 5.240664-3 6.994308+0 8.687415-3 3.869663+0 1.068879-2 3.029700+0 1.207466-2 2.610991+0 1.348720-2 2.268279+0 1.486181-2 1.994646+0 1.652328-2 1.722274+0 1.820653-2 1.496879+0 2.021599-2 1.278495+0 2.271352-2 1.065516+0 2.561165-2 8.772995-1 2.957978-2 6.898567-1 3.494423-2 5.182776-1 4.194884-2 3.757719-1 4.958245-2 2.781291-1 6.023131-2 1.945078-1 7.343899-2 1.341005-1 9.220517-2 8.683077-2 1.190566-1 5.288922-2 1.682815-1 2.679898-2 2.801497-1 9.749170-3 7.629569-1 1.319868-3 2.341267+0 1.402424-4 7.070513+0 1.537822-5 2.135261+1 1.686199-6 6.448384+1 1.848882-7 1.947381+2 2.027259-8 5.880996+2 2.222845-9 1.995262+3 1.93113-10 6.309573+3 1.93113-11 1.995262+4 1.93113-12 6.309573+4 1.93113-13 1.000000+5 7.68796-14 1 6000 7 7 1.201120+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.821900-7 1.258900-6 4.472300-7 1.584900-6 7.088200-7 1.995300-6 1.123400-6 2.511900-6 1.780500-6 3.162300-6 2.821800-6 3.981100-6 4.472300-6 5.011900-6 7.088000-6 6.309600-6 1.123400-5 7.943300-6 1.780400-5 1.000000-5 2.821700-5 1.258900-5 4.472100-5 1.584900-5 7.087600-5 1.995300-5 1.123300-4 2.511900-5 1.780200-4 3.162300-5 2.821400-4 3.981100-5 4.471400-4 5.011900-5 7.086300-4 6.309600-5 1.123000-3 7.943300-5 1.779400-3 1.000000-4 2.818100-3 1.258900-4 4.463200-3 1.584900-4 7.063100-3 1.995300-4 1.117300-2 2.511900-4 1.764700-2 3.162300-4 2.787800-2 3.981100-4 4.403300-2 5.011900-4 6.902400-2 6.309600-4 1.076100-1 7.943300-4 1.660300-1 1.000000-3 2.522500-1 1.258900-3 3.764600-1 1.584900-3 5.460600-1 1.995300-3 7.694900-1 2.511900-3 1.043500+0 3.162300-3 1.355900+0 3.981100-3 1.682400+0 5.011900-3 1.992000+0 6.309600-3 2.263100+0 7.943300-3 2.495900+0 1.000000-2 2.703200+0 1.258900-2 2.874500+0 1.584900-2 3.059000+0 1.995300-2 3.189600+0 2.511900-2 3.274100+0 3.162300-2 3.308800+0 3.981100-2 3.298200+0 5.011900-2 3.249700+0 6.309600-2 3.167700+0 7.943300-2 3.056800+0 1.000000-1 2.923200+0 1.258900-1 2.771200+0 1.584900-1 2.605800+0 1.995300-1 2.431900+0 2.511900-1 2.253900+0 3.162300-1 2.076000+0 3.981100-1 1.901300+0 5.011900-1 1.731800+0 6.309600-1 1.568900+0 7.943300-1 1.413800+0 1.000000+0 1.266800+0 1.258900+0 1.128400+0 1.584900+0 9.991300-1 1.995300+0 8.791700-1 2.511900+0 7.688500-1 3.162300+0 6.683100-1 3.981100+0 5.775400-1 5.011900+0 4.963500-1 6.309600+0 4.243700-1 7.943300+0 3.610900-1 1.000000+1 3.059000-1 1.258900+1 2.581100-1 1.584900+1 2.169900-1 1.995300+1 1.818200-1 2.511900+1 1.518900-1 3.162300+1 1.265500-1 3.981100+1 1.051800-1 5.011900+1 8.722400-2 6.309600+1 7.219000-2 7.943300+1 5.963800-2 1.000000+2 4.918700-2 1.258900+2 4.050700-2 1.584900+2 3.331200-2 1.995300+2 2.736000-2 2.511900+2 2.244500-2 3.162300+2 1.839300-2 3.981100+2 1.505800-2 5.011900+2 1.231600-2 6.309600+2 1.006400-2 7.943300+2 8.217400-3 1.000000+3 6.704400-3 1.258900+3 5.466000-3 1.584900+3 4.453400-3 1.995300+3 3.626000-3 2.511900+3 2.950500-3 3.162300+3 2.399500-3 3.981100+3 1.950300-3 5.011900+3 1.584300-3 6.309600+3 1.286400-3 7.943300+3 1.044000-3 1.000000+4 8.469300-4 1.258900+4 6.867400-4 1.584900+4 5.566100-4 1.995300+4 4.509600-4 2.511900+4 3.652200-4 3.162300+4 2.956700-4 3.981100+4 2.392800-4 5.011900+4 1.935800-4 6.309600+4 1.565500-4 7.943300+4 1.265700-4 1.000000+5 1.023000-4 1 6000 7 7 1.201120+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159544-4 3.981072-4 3.976740-4 5.011872-4 5.005024-4 6.309573-4 6.298747-4 7.943282-4 7.926195-4 1.000000-3 9.973081-4 1.258925-3 1.254684-3 1.584893-3 1.578263-3 1.995262-3 1.984901-3 2.511886-3 2.495751-3 3.162278-3 3.137347-3 3.981072-3 3.942694-3 5.011872-3 4.953104-3 6.309573-3 6.219838-3 7.943282-3 7.806020-3 1.000000-2 9.788963-3 1.258925-2 1.226221-2 1.584893-2 1.534490-2 1.995262-2 1.917559-2 2.511886-2 2.392793-2 3.162278-2 2.980563-2 3.981072-2 3.705161-2 5.011872-2 4.594315-2 6.309573-2 5.681405-2 7.943282-2 7.004069-2 1.000000-1 8.605306-2 1.258925-1 1.053633-1 1.584893-1 1.285458-1 1.995262-1 1.562708-1 2.511886-1 1.893079-1 3.162278-1 2.285476-1 3.981072-1 2.749842-1 5.011872-1 3.298131-1 6.309573-1 3.944087-1 7.943282-1 4.704279-1 1.000000+0 5.598806-1 1.258925+0 6.652442-1 1.584893+0 7.895762-1 1.995262+0 9.366569-1 2.511886+0 1.111168+0 3.162278+0 1.318857+0 3.981072+0 1.566741+0 5.011872+0 1.863488+0 6.309573+0 2.219624+0 7.943282+0 2.648096+0 1.000000+1 3.164655+0 1.258925+1 3.788659+0 1.584893+1 4.543774+0 1.995262+1 5.458905+0 2.511886+1 6.569633+0 3.162278+1 7.919567+0 3.981072+1 9.562007+0 5.011872+1 1.156276+1 6.309573+1 1.400236+1 7.943282+1 1.697995+1 1.000000+2 2.061731+1 1.258925+2 2.506456+1 1.584893+2 3.050618+1 1.995262+2 3.716937+1 2.511886+2 4.533449+1 3.162278+2 5.534703+1 3.981072+2 6.763116+1 5.011872+2 8.271462+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728374-8 1.000000-4 2.738780-8 1.258925-4 4.340136-8 1.584893-4 6.876308-8 1.995262-4 1.089466-7 2.511886-4 1.725652-7 3.162278-4 2.733906-7 3.981072-4 4.331408-7 5.011872-4 6.848465-7 6.309573-4 1.082600-6 7.943282-4 1.708693-6 1.000000-3 2.691935-6 1.258925-3 4.241193-6 1.584893-3 6.630201-6 1.995262-3 1.036096-5 2.511886-3 1.613576-5 3.162278-3 2.493037-5 3.981072-3 3.837743-5 5.011872-3 5.876855-5 6.309573-3 8.973568-5 7.943282-3 1.372619-4 1.000000-2 2.110368-4 1.258925-2 3.270400-4 1.584893-2 5.040309-4 1.995262-2 7.770339-4 2.511886-2 1.190931-3 3.162278-2 1.817144-3 3.981072-2 2.759106-3 5.011872-2 4.175571-3 6.309573-2 6.281681-3 7.943282-2 9.392135-3 1.000000-1 1.394694-2 1.258925-1 2.052925-2 1.584893-1 2.994352-2 1.995262-1 4.325543-2 2.511886-1 6.188073-2 3.162278-1 8.768017-2 3.981072-1 1.231230-1 5.011872-1 1.713741-1 6.309573-1 2.365486-1 7.943282-1 3.239003-1 1.000000+0 4.401194-1 1.258925+0 5.936812-1 1.584893+0 7.953170-1 1.995262+0 1.058605+0 2.511886+0 1.400718+0 3.162278+0 1.843421+0 3.981072+0 2.414331+0 5.011872+0 3.148384+0 6.309573+0 4.089949+0 7.943282+0 5.295186+0 1.000000+1 6.835345+0 1.258925+1 8.800595+0 1.584893+1 1.130516+1 1.995262+1 1.449372+1 2.511886+1 1.854923+1 3.162278+1 2.370321+1 3.981072+1 3.024871+1 5.011872+1 3.855597+1 6.309573+1 4.909337+1 7.943282+1 6.245287+1 1.000000+2 7.938269+1 1.258925+2 1.008280+2 1.584893+2 1.279831+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608807+2 3.981072+2 3.304760+2 5.011872+2 4.184726+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.980000-6 8.801018+6 8.990000-6 8.800234+6 8.990000-6 1.319373+7 9.015711-6 1.318412+7 9.120108-6 1.316951+7 9.225714-6 1.313344+7 9.700000-6 1.294411+7 1.020000-5 1.266680+7 1.023293-5 1.264764+7 1.083927-5 1.225245+7 1.150000-5 1.177838+7 1.161449-5 1.169310+7 1.230269-5 1.118824+7 1.244515-5 1.108212+7 1.318257-5 1.054635+7 1.333521-5 1.043507+7 1.428894-5 9.771902+6 1.445440-5 9.659116+6 1.548817-5 8.992207+6 1.570000-5 8.859897+6 1.690000-5 8.158834+6 1.698244-5 8.112256+6 1.756000-5 7.792164+6 1.756000-5 8.668256+6 1.805000-5 8.479151+6 1.850000-5 8.312985+6 1.862087-5 8.266178+6 1.895000-5 8.140060+6 1.949845-5 7.937025+6 2.000000-5 7.759909+6 2.018366-5 7.695889+6 2.070000-5 7.510889+6 2.137962-5 7.278602+6 2.187762-5 7.115597+6 2.213095-5 7.030642+6 2.300000-5 6.749530+6 2.371374-5 6.532130+6 2.400000-5 6.443995+6 2.511886-5 6.115129+6 2.540973-5 6.033518+6 2.570396-5 5.951826+6 2.630268-5 5.786701+6 2.730000-5 5.525800+6 2.754229-5 5.465007+6 2.770000-5 5.424807+6 2.917427-5 5.068063+6 2.950000-5 4.993848+6 2.951209-5 4.991085+6 3.090295-5 4.682518+6 3.162278-5 4.533830+6 3.273407-5 4.311181+6 3.400000-5 4.076681+6 3.507519-5 3.887553+6 3.652000-5 3.652804+6 3.758374-5 3.489703+6 3.900000-5 3.288076+6 3.935501-5 3.239610+6 4.027170-5 3.118811+6 4.216965-5 2.888316+6 4.315191-5 2.777065+6 4.518559-5 2.565202+6 4.570882-5 2.514235+6 4.650000-5 2.439746+6 4.900000-5 2.223391+6 4.954502-5 2.179899+6 5.011872-5 2.135317+6 5.308844-5 1.922941+6 5.370318-5 1.882875+6 5.432503-5 1.843516+6 5.821032-5 1.621026+6 5.888437-5 1.586627+6 6.382635-5 1.361102+6 6.456542-5 1.331135+6 6.606934-5 1.272802+6 6.918310-5 1.164081+6 7.328245-5 1.039201+6 7.413102-5 1.015857+6 7.500000-5 9.927407+5 8.128305-5 8.443556+5 8.413951-5 7.867378+5 8.511380-5 7.684358+5 8.810489-5 7.159067+5 9.549926-5 6.051297+5 9.660509-5 5.908288+5 9.885531-5 5.625971+5 1.059254-4 4.857488+5 1.083927-4 4.621576+5 1.135011-4 4.184157+5 1.174898-4 3.883252+5 1.220000-4 3.574392+5 1.288250-4 3.171857+5 1.318257-4 3.015424+5 1.380384-4 2.720676+5 1.462177-4 2.393316+5 1.479108-4 2.332708+5 1.566751-4 2.047470+5 1.659587-4 1.797941+5 1.678804-4 1.750952+5 1.862087-4 1.380459+5 1.949845-4 1.239779+5 2.089296-4 1.055749+5 2.400000-4 7.606687+4 2.818383-4 5.179434+4 2.910100-4 4.797982+4 2.910100-4 1.006892+6 2.917427-4 9.959429+5 2.940000-4 9.631156+5 2.970000-4 9.279842+5 3.000000-4 9.002818+5 3.040000-4 8.715975+5 3.100000-4 8.389909+5 3.162278-4 8.115750+5 3.198895-4 7.961213+5 3.280000-4 7.635278+5 3.350000-4 7.341847+5 3.430000-4 6.997020+5 3.507519-4 6.655604+5 3.550000-4 6.478487+5 3.589219-4 6.309376+5 3.630781-4 6.136897+5 4.000000-4 4.860618+5 4.027170-4 4.781972+5 4.073803-4 4.651126+5 4.518559-4 3.623435+5 4.570882-4 3.524209+5 4.600000-4 3.470646+5 4.623810-4 3.426145+5 4.954502-4 2.882800+5 5.188000-4 2.559535+5 5.248075-4 2.484492+5 5.800000-4 1.918640+5 6.095369-4 1.684549+5 6.606934-4 1.363740+5 7.328245-4 1.032211+5 7.413102-4 1.000741+5 7.585776-4 9.406484+4 8.317638-4 7.317512+4 8.413951-4 7.091382+4 9.015711-4 5.874007+4 9.120108-4 5.688925+4 9.225714-4 5.509673+4 1.023293-3 4.130350+4 1.047129-3 3.873986+4 1.059254-3 3.751836+4 1.161449-3 2.893824+4 1.188502-3 2.711944+4 1.202264-3 2.625335+4 1.244515-3 2.381574+4 1.333521-3 1.953666+4 1.364583-3 1.828854+4 1.396368-3 1.712018+4 1.513561-3 1.358579+4 1.548817-3 1.270461+4 1.640590-3 1.074371+4 1.757924-3 8.784664+3 1.819701-3 7.943494+3 1.927525-3 6.702331+3 2.187762-3 4.610955+3 2.264644-3 4.158726+3 2.344229-3 3.750579+3 2.660725-3 2.568077+3 2.691535-3 2.480172+3 2.884032-3 2.012177+3 2.917427-3 1.943258+3 3.235937-3 1.420069+3 3.273407-3 1.371401+3 3.630781-3 9.985488+2 3.672823-3 9.639600+2 3.935501-3 7.801839+2 4.027170-3 7.270440+2 4.841724-3 4.109367+2 5.011872-3 3.692232+2 6.000000-3 2.101258+2 6.095369-3 1.999925+2 6.237348-3 1.860678+2 7.244360-3 1.158429+2 7.444800-3 1.062530+2 7.498942-3 1.038416+2 7.852356-3 8.974534+1 9.015711-3 5.767940+1 9.332543-3 5.164439+1 9.440609-3 4.977550+1 1.000000-2 4.139790+1 1.161449-2 2.552726+1 1.188502-2 2.369744+1 1.230269-2 2.119445+1 1.288250-2 1.826349+1 1.531087-2 1.040326+1 1.566751-2 9.650859+0 1.698244-2 7.420881+0 1.717908-2 7.145432+0 2.018366-2 4.207684+0 2.317395-2 2.671982+0 2.754229-2 1.508794+0 3.235937-2 8.848899-1 3.427678-2 7.305154-1 3.935501-2 4.611114-1 4.216965-2 3.663258-1 4.518559-2 2.910243-1 5.432503-2 1.575533-1 5.495409-2 1.516136-1 5.688529-2 1.351048-1 6.918310-2 7.030015-2 6.998420-2 6.764991-2 8.317638-2 3.801294-2 9.440609-2 2.490876-2 9.772372-2 2.221442-2 1.000000-1 2.058212-2 1.135011-1 1.352887-2 1.273503-1 9.238471-3 1.303167-1 8.564949-3 1.380384-1 7.088232-3 1.479108-1 5.648906-3 1.566751-1 4.675406-3 1.678804-1 3.735751-3 1.862087-1 2.668783-3 1.905461-1 2.478868-3 1.995262-1 2.138625-3 2.065380-1 1.914591-3 2.137962-1 1.714027-3 2.213095-1 1.534472-3 2.290868-1 1.376023-3 2.317395-1 1.326930-3 2.398833-1 1.190021-3 2.511886-1 1.029192-3 2.540973-1 9.925026-4 2.630268-1 8.917711-4 2.660725-1 8.605480-4 2.754229-1 7.732856-4 2.884032-1 6.705429-4 2.951209-1 6.252269-4 2.985383-1 6.037300-4 3.019952-1 5.829932-4 3.235937-1 4.727025-4 3.273407-1 4.567803-4 3.349654-1 4.265265-4 3.548134-1 3.594394-4 3.589219-1 3.473456-4 3.715352-1 3.141488-4 3.845918-1 2.841598-4 3.935501-1 2.657750-4 3.981072-1 2.570336-4 4.120975-1 2.330400-4 4.168694-1 2.255602-4 4.315191-1 2.045308-4 4.365158-1 1.979662-4 4.518559-1 1.799330-4 4.731513-1 1.584448-4 4.786301-1 1.534864-4 4.897788-1 1.442755-4 4.954502-1 1.398794-4 5.128614-1 1.274962-4 5.248075-1 1.198559-4 5.308844-1 1.163139-4 5.432503-1 1.095407-4 5.559043-1 1.031719-4 5.754399-1 9.430632-5 5.956621-1 8.642900-5 6.095369-1 8.155424-5 6.165950-1 7.922097-5 6.237348-1 7.695446-5 6.456542-1 7.072222-5 6.606935-1 6.685688-5 6.683439-1 6.500420-5 6.760830-1 6.320284-5 6.998420-1 5.824575-5 7.079458-1 5.668395-5 7.328245-1 5.224537-5 7.585776-1 4.828354-5 8.000000-1 4.277371-5 8.035261-1 4.236384-5 8.222427-1 4.028115-5 8.709636-1 3.552066-5 9.015711-1 3.301883-5 9.549926-1 2.924092-5 1.000000+0 2.661378-5 1.071519+0 2.311270-5 1.135011+0 2.054961-5 1.161449+0 1.960581-5 1.174898+0 1.916654-5 1.202264+0 1.831897-5 1.273503+0 1.636035-5 1.288250+0 1.600770-5 1.380384+0 1.404963-5 1.396368+0 1.375975-5 1.500000+0 1.209038-5 1.513561+0 1.190676-5 1.566751+0 1.122978-5 1.621810+0 1.059129-5 1.640590+0 1.039624-5 1.717908+0 9.653242-6 1.778279+0 9.131046-6 1.798871+0 8.971017-6 1.883649+0 8.360042-6 1.949845+0 7.929273-6 2.065380+0 7.275683-6 2.187762+0 6.676912-6 2.238721+0 6.451440-6 2.344229+0 6.038606-6 2.483133+0 5.560430-6 2.540973+0 5.379934-6 2.660725+0 5.048388-6 2.851018+0 4.589815-6 2.917427+0 4.446407-6 3.054921+0 4.182179-6 3.311311+0 3.757735-6 3.388442+0 3.644577-6 3.548134+0 3.435666-6 3.890451+0 3.053756-6 4.000000+0 2.947165-6 4.216965+0 2.760635-6 4.623810+0 2.463673-6 4.786301+0 2.360741-6 5.069907+0 2.203288-6 5.623413+0 1.946239-6 5.821032+0 1.867402-6 6.165950+0 1.746686-6 6.918310+0 1.528484-6 7.328245+0 1.429828-6 7.852356+0 1.322643-6 8.609938+0 1.192317-6 9.120108+0 1.117468-6 1.035142+1 9.718319-7 1.174898+1 8.453094-7 1.202264+1 8.241427-7 1.216186+1 8.139900-7 1.364583+1 7.190968-7 1.603245+1 6.046600-7 1.640590+1 5.898714-7 1.659587+1 5.827504-7 1.949845+1 4.916268-7 2.371374+1 3.999899-7 2.426610+1 3.903997-7 2.454709+1 3.857713-7 2.917427+1 3.225796-7 3.758374+1 2.481891-7 3.935501+1 2.366365-7 4.000000+1 2.327367-7 5.248075+1 1.763199-7 6.309573+1 1.460756-7 6.531306+1 1.410114-7 6.760830+1 1.361656-7 1.047129+2 8.743818-8 1.258925+2 7.256632-8 1.303167+2 7.007348-8 1.348963+2 6.768362-8 2.089296+2 4.361091-8 5.011872+2 1.810922-8 5.188000+2 1.749173-8 5.370318+2 1.689752-8 8.317638+2 1.090680-8 3.162278+4 2.86346-10 3.273407+4 2.76620-10 3.388442+4 2.67229-10 1.000000+5 9.05505-11 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.980000-6 8.980000-6 1.756000-5 8.983334-6 1.756000-5 9.850169-6 2.000000-5 1.024506-5 2.300000-5 1.064753-5 2.630268-5 1.101686-5 3.162278-5 1.152195-5 3.758374-5 1.202805-5 4.650000-5 1.269684-5 5.432503-5 1.320093-5 5.888437-5 1.345712-5 6.606934-5 1.380771-5 7.500000-5 1.416888-5 8.511380-5 1.448954-5 9.885531-5 1.482940-5 1.174898-4 1.517772-5 1.380384-4 1.546805-5 1.678804-4 1.578558-5 1.949845-4 1.599246-5 2.400000-4 1.622853-5 2.910100-4 1.640857-5 2.910100-4 2.796192-5 7.413102-4 2.802179-5 1.135011-1 2.798496-5 1.000000+5 2.798494-5 1 6000 7 7 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.980000-6 0.0 2.910100-4 0.0 2.910100-4 4.517846-7 3.040000-4 4.508906-7 3.589219-4 4.526722-7 7.585776-4 4.530051-7 2.917427-3 4.514535-7 3.427678-2 4.505319-7 1.000000+5 4.504140-7 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.980000-6 0.0 8.990000-6 1.000000-8 8.990000-6 6.670010-9 1.756000-5 8.576666-6 1.756000-5 7.709831-6 2.000000-5 9.754943-6 2.300000-5 1.235247-5 2.770000-5 1.654244-5 3.652000-5 2.458150-5 5.011872-5 3.717900-5 6.606934-5 5.226163-5 8.810489-5 7.353033-5 1.380384-4 1.225704-4 2.910100-4 2.746014-4 2.910100-4 2.625963-4 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.910100-4 9.589120+5 2.940000-4 9.163040+5 2.970000-4 8.823080+5 3.000000-4 8.557020+5 3.040000-4 8.284220+5 3.100000-4 7.978060+5 3.280000-4 7.275920+5 3.350000-4 7.000360+5 3.430000-4 6.674440+5 3.550000-4 6.181740+5 4.600000-4 3.314900+5 4.954502-4 2.753962+5 5.800000-4 1.832856+5 6.606934-4 1.302723+5 7.585776-4 8.982452+4 9.015711-4 5.605960+4 1.059254-3 3.578932+4 1.244515-3 2.270791+4 1.513561-3 1.294699+4 1.819701-3 7.566468+3 2.187762-3 4.390280+3 2.660725-3 2.444277+3 3.273407-3 1.304908+3 4.027170-3 6.916335+2 5.011872-3 3.511454+2 6.237348-3 1.769105+2 7.852356-3 8.530784+1 1.000000-2 3.934256+1 1.288250-2 1.735344+1 1.698244-2 7.049932+0 2.317395-2 2.538040+0 3.235937-2 8.404262-1 5.432503-2 1.496157-1 9.440609-2 2.364990-2 1.273503-1 8.771370-3 1.566751-1 4.439022-3 1.862087-1 2.533875-3 2.213095-1 1.456922-3 2.540973-1 9.423513-4 2.884032-1 6.366580-4 3.235937-1 4.488176-4 3.589219-1 3.297971-4 3.981072-1 2.440475-4 4.365158-1 1.879651-4 4.786301-1 1.457317-4 5.248075-1 1.138002-4 5.754399-1 8.954174-5 6.237348-1 7.306731-5 6.760830-1 6.001023-5 7.328245-1 4.960598-5 8.000000-1 4.061200-5 8.709636-1 3.372500-5 9.549926-1 2.776203-5 1.161449+0 1.861436-5 1.273503+0 1.553304-5 1.380384+0 1.333922-5 1.500000+0 1.147900-5 1.621810+0 1.005579-5 1.778279+0 8.669381-6 1.949845+0 7.528283-6 2.238721+0 6.125108-6 2.540973+0 5.107825-6 2.917427+0 4.221517-6 3.388442+0 3.460246-6 4.000000+0 2.798100-6 4.786301+0 2.241339-6 5.821032+0 1.772951-6 7.328245+0 1.357509-6 9.120108+0 1.060942-6 1.202264+1 7.824533-7 1.640590+1 5.600312-7 2.426610+1 3.706513-7 3.935501+1 2.246651-7 6.531306+1 1.338803-7 1.303167+2 6.653019-8 5.188000+2 1.660740-8 3.273407+4 2.62636-10 1.000000+5 8.59740-11 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.910100-4 2.854000-5 1.000000+5 2.854000-5 1 6000 7 7 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.910100-4 4.743900-7 1.000000+5 4.743900-7 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.910100-4 2.619956-4 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.756000-5 8.760920+5 1.805000-5 9.409060+5 1.850000-5 9.949100+5 1.895000-5 1.044342+6 1.949845-5 1.098004+6 2.000000-5 1.141568+6 2.070000-5 1.193806+6 2.137962-5 1.236351+6 2.213095-5 1.274890+6 2.300000-5 1.309664+6 2.400000-5 1.338790+6 2.511886-5 1.360036+6 2.630268-5 1.372023+6 2.770000-5 1.375216+6 2.917427-5 1.368831+6 3.090295-5 1.352171+6 3.273407-5 1.326814+6 3.507519-5 1.286919+6 3.758374-5 1.238844+6 4.027170-5 1.184266+6 4.315191-5 1.124691+6 4.650000-5 1.056356+6 5.011872-5 9.850130+5 5.432503-5 9.065535+5 5.888437-5 8.276212+5 6.382635-5 7.495781+5 6.918310-5 6.734480+5 7.500000-5 6.002220+5 8.128305-5 5.312138+5 8.810489-5 4.667076+5 9.660509-5 3.994310+5 1.059254-4 3.393489+5 1.174898-4 2.804630+5 1.318257-4 2.252019+5 1.479108-4 1.795824+5 1.659587-4 1.422465+5 1.862087-4 1.118675+5 2.089296-4 8.733087+4 2.400000-4 6.425800+4 2.917427-4 4.130268+4 3.507519-4 2.703073+4 4.000000-4 1.983704+4 4.518559-4 1.477826+4 5.188000-4 1.050564+4 6.095369-4 6.999703+3 7.328245-4 4.360967+3 9.015711-4 2.542546+3 1.023293-3 1.814712+3 1.202264-3 1.172436+3 1.396368-3 7.759460+2 1.640590-3 4.935829+2 1.927525-3 3.116411+2 2.264644-3 1.953708+2 2.691535-3 1.175571+2 3.235937-3 6.785216+1 3.935501-3 3.754283+1 4.841724-3 1.992322+1 6.000000-3 1.025898+1 7.444800-3 5.220779+0 9.332543-3 2.551381+0 1.188502-2 1.176372+0 1.531087-2 5.185882-1 2.018366-2 2.105212-1 2.754229-2 7.572317-2 3.935501-2 2.320715-2 1.000000-1 1.038460-3 1.380384-1 3.576204-4 1.678804-1 1.884548-4 1.995262-1 1.078772-4 2.317395-1 6.692835-5 2.630268-1 4.498317-5 2.985383-1 3.045391-5 3.349654-1 2.151201-5 3.715352-1 1.584144-5 4.120975-1 1.175183-5 4.518559-1 9.073725-6 4.954502-1 7.053655-6 5.432503-1 5.523305-6 5.956621-1 4.358210-6 6.456542-1 3.565716-6 6.998420-1 2.937113-6 7.585776-1 2.434834-6 8.222427-1 2.032148-6 9.015711-1 1.666432-6 1.000000+0 1.343500-6 1.174898+0 9.682488-7 1.288250+0 8.086703-7 1.396368+0 6.950088-7 1.513561+0 6.014111-7 1.640590+0 5.250662-7 1.798871+0 4.531104-7 2.065380+0 3.672970-7 2.344229+0 3.048742-7 2.660725+0 2.548807-7 3.054921+0 2.111572-7 3.548134+0 1.734591-7 4.216965+0 1.393788-7 5.069907+0 1.112495-7 6.165950+0 8.818878-8 7.852356+0 6.677589-8 1.035142+1 4.906666-8 1.364583+1 3.630160-8 1.949845+1 2.481777-8 2.917427+1 1.628342-8 5.248075+1 8.901187-9 1.047129+2 4.415621-9 2.089296+2 2.201704-9 8.317638+2 5.50603-10 1.000000+5 4.57520-12 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.756000-5 1.756000-5 1.000000+5 1.756000-5 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.756000-5 0.0 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.990000-6 4.393500+6 9.015711-6 4.385900+6 9.225714-6 4.372900+6 9.700000-6 4.311200+6 1.020000-5 4.219600+6 1.083927-5 4.082500+6 1.161449-5 3.897200+6 1.244515-5 3.694800+6 1.333521-5 3.479000+6 1.445440-5 3.220300+6 1.570000-5 2.954800+6 1.698244-5 2.705000+6 1.862087-5 2.420500+6 2.018366-5 2.181400+6 2.187762-5 1.952000+6 2.371374-5 1.734900+6 2.540973-5 1.558500+6 2.730000-5 1.385200+6 2.950000-5 1.210300+6 3.162278-5 1.064800+6 3.400000-5 9.248300+5 3.652000-5 7.987600+5 3.935501-5 6.800100+5 4.216965-5 5.819800+5 4.570882-5 4.815000+5 4.954502-5 3.953200+5 5.370318-5 3.222800+5 5.888437-5 2.533900+5 6.606934-5 1.859300+5 7.413102-5 1.353900+5 8.413951-5 9.487600+4 9.549926-5 6.607700+4 1.083927-4 4.572500+4 1.220000-4 3.221000+4 1.380384-4 2.217300+4 1.566751-4 1.500900+4 1.949845-4 7.570000+3 2.818383-4 2.383400+3 3.162278-4 1.652700+3 3.589219-4 1.096600+3 4.027170-4 7.501600+2 4.570882-4 4.899200+2 5.188000-4 3.177600+2 7.413102-4 9.221800+1 8.317638-4 6.157500+1 9.120108-4 4.430000+1 1.023293-3 2.909200+1 1.161449-3 1.819900+1 1.333521-3 1.082600+1 1.513561-3 6.675970+0 1.757924-3 3.741934+0 2.344229-3 1.213435+0 2.917427-3 5.114121-1 3.672823-3 2.042997-1 4.841724-3 6.738527-2 6.095369-3 2.654006-2 7.498942-3 1.139678-2 9.440609-3 4.409544-3 1.230269-2 1.467742-3 1.717908-2 3.635676-4 3.427678-2 2.010403-5 4.518559-2 6.352709-6 5.688529-2 2.449378-6 6.998420-2 1.046085-6 8.317638-2 5.183535-7 9.772372-2 2.710288-7 1.135011-1 1.493931-7 1.303167-1 8.680171-8 1.479108-1 5.312233-8 1.678804-1 3.275019-8 1.905461-1 2.034719-8 2.137962-1 1.329504-8 2.398833-1 8.747199-9 2.660725-1 6.041239-9 2.951209-1 4.201905-9 3.235937-1 3.063475-9 3.589219-1 2.163133-9 3.935501-1 1.598316-9 4.315191-1 1.188154-9 4.731513-1 8.89423-10 5.128614-1 6.94862-10 5.559043-1 5.46526-10 6.095369-1 4.18472-10 6.683439-1 3.22913-10 7.328245-1 2.50996-10 8.035261-1 1.96642-10 9.015711-1 1.46144-10 9.549926-1 1.26799-10 1.000000+0 1.13810-10 1.071519+0 9.76344-11 1.135011+0 8.65158-11 1.202264+0 7.71325-11 1.288250+0 6.76699-11 1.396368+0 5.85327-11 1.566751+0 4.80624-11 1.717908+0 4.13082-11 1.883649+0 3.57556-11 2.187762+0 2.85618-11 2.483133+0 2.37874-11 2.851018+0 1.96352-11 3.311311+0 1.60759-11 3.890451+0 1.30635-11 4.623810+0 1.05390-11 5.623413+0 8.32585-12 6.918310+0 6.53791-12 8.609938+0 5.09978-12 1.174898+1 3.61686-12 1.603245+1 2.58741-12 2.371374+1 1.71154-12 3.758374+1 1.06194-12 6.309573+1 6.25083-13 1.258925+2 3.10555-13 5.011872+2 7.75016-14 3.162278+4 1.22556-15 1.000000+5 3.87570-16 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.990000-6 8.990000-6 1.000000+5 8.990000-6 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.990000-6 0.0 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.980000-6 8.801018+6 9.120108-6 8.790112+6 9.700000-6 8.632912+6 1.023293-5 8.435425+6 1.083927-5 8.169945+6 1.150000-5 7.855127+6 1.230269-5 7.460447+6 1.318257-5 7.032279+6 1.428894-5 6.515857+6 1.548817-5 5.995330+6 1.690000-5 5.438986+6 1.850000-5 4.878481+6 2.018366-5 4.359268+6 2.187762-5 3.901685+6 2.371374-5 3.466717+6 2.570396-5 3.056509+6 2.754229-5 2.726096+6 2.951209-5 2.416216+6 3.162278-5 2.127060+6 3.400000-5 1.847102+6 3.652000-5 1.595440+6 3.900000-5 1.385357+6 4.216965-5 1.162127+6 4.518559-5 9.884143+5 4.900000-5 8.112433+5 5.308844-5 6.628076+5 5.821032-5 5.214414+5 6.456542-5 3.951326+5 7.328245-5 2.790670+5 8.511380-5 1.832951+5 9.885531-5 1.193525+5 1.135011-4 7.966368+4 1.288250-4 5.455740+4 1.462177-4 3.706871+4 1.678804-4 2.413385+4 2.818383-4 4.749173+3 3.198895-4 3.172965+3 3.630781-4 2.103933+3 4.073803-4 1.438077+3 4.623810-4 9.383853+2 5.248075-4 6.080213+2 7.585776-4 1.693169+2 8.413951-4 1.175688+2 9.225714-4 8.448374+1 1.047129-3 5.311970+1 1.188502-3 3.317652+1 1.364583-3 1.970300+1 1.548817-3 1.213700+1 1.819701-3 6.493002+0 2.344229-3 2.405418+0 2.884032-3 1.059390+0 3.630781-3 4.225377-1 4.841724-3 1.328270-1 6.095369-3 5.223031-2 7.244360-3 2.578281-2 9.015711-3 1.044861-2 1.161449-2 3.641526-3 1.566751-2 1.038942-3 4.216965-2 1.602837-5 5.495409-2 5.286953-6 6.918310-2 2.029752-6 8.317638-2 9.504872-7 9.772372-2 4.928252-7 1.135011-1 2.695806-7 1.303167-1 1.555607-7 1.479108-1 9.462438-8 1.678804-1 5.795062-8 1.862087-1 3.905544-8 2.065380-1 2.650505-8 2.290868-1 1.812859-8 2.511886-1 1.302194-8 2.754229-1 9.415799-9 3.019952-1 6.856800-9 3.273407-1 5.229030-9 3.548134-1 4.014399-9 3.845918-1 3.103375-9 4.168694-1 2.415864-9 4.518559-1 1.894475-9 4.897788-1 1.496453-9 5.308844-1 1.190677-9 5.754399-1 9.53975-10 6.165950-1 7.93780-10 6.606935-1 6.64719-10 7.079458-1 5.60449-10 7.585776-1 4.75561-10 8.035261-1 4.16782-10 8.709636-1 3.49651-10 9.549926-1 2.88273-10 1.174898+0 1.89222-10 1.288250+0 1.57988-10 1.396368+0 1.35736-10 1.500000+0 1.19270-10 1.621810+0 1.04477-10 1.778279+0 9.00763-11 1.949845+0 7.82234-11 2.238721+0 6.36424-11 2.540973+0 5.30725-11 2.917427+0 4.38640-11 3.388442+0 3.59533-11 4.000000+0 2.90730-11 4.786301+0 2.32893-11 5.821032+0 1.84228-11 7.328245+0 1.41055-11 9.120108+0 1.10233-11 1.216186+1 8.02894-12 1.659587+1 5.74822-12 2.454709+1 3.80536-12 4.000000+1 2.29570-12 6.760830+1 1.34320-12 1.348963+2 6.67624-13 5.370318+2 1.66693-13 3.388442+4 2.63634-15 1.000000+5 8.93310-16 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.980000-6 8.980000-6 1.000000+5 8.980000-6 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.980000-6 0.0 1.000000+5 1.000000+5 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.333020-9 1.028750+0 1.333020-8 1.036640+0 1.333020-7 1.051200+0 1.014200-6 1.054080+0 1.333020-6 1.057700+0 1.816980-6 1.061100+0 2.363420-6 1.065100+0 3.128870-6 1.070400+0 4.365050-6 1.076200+0 6.032430-6 1.080600+0 7.533500-6 1.087100+0 1.015020-5 1.093710+0 1.333020-5 1.102600+0 1.848360-5 1.110700+0 2.410880-5 1.120600+0 3.225480-5 1.133300+0 4.485370-5 1.147500+0 6.193950-5 1.158200+0 7.697810-5 1.174100+0 1.028640-4 1.190110+0 1.333020-4 1.205100+0 1.658170-4 1.227500+0 2.218000-4 1.250000+0 2.870000-4 1.281300+0 3.927430-4 1.308600+0 4.993150-4 1.332500+0 6.033180-4 1.374400+0 8.093810-4 1.405800+0 9.829260-4 1.452900+0 1.272260-3 1.500000+0 1.594000-3 1.562500+0 2.065330-3 1.641100+0 2.721820-3 1.706900+0 3.317880-3 1.811600+0 4.340210-3 1.952900+0 5.834230-3 2.000000+0 6.356000-3 2.044000+0 6.852000-3 2.163500+0 8.228230-3 2.372600+0 1.070050-2 2.647100+0 1.399100-2 3.000000+0 1.820000-2 3.437500+0 2.330160-2 4.000000+0 2.955000-2 4.750000+0 3.723440-2 5.000000+0 3.966000-2 6.000000+0 4.876000-2 7.000000+0 5.687000-2 8.000000+0 6.418000-2 9.000000+0 7.082000-2 1.000000+1 7.686000-2 1.100000+1 8.235000-2 1.200000+1 8.739000-2 1.300000+1 9.209000-2 1.400000+1 9.645000-2 1.500000+1 1.005000-1 1.600000+1 1.044000-1 1.800000+1 1.114000-1 2.000000+1 1.177000-1 2.200000+1 1.235000-1 2.400000+1 1.287000-1 2.600000+1 1.335000-1 2.800000+1 1.379000-1 3.000000+1 1.420000-1 4.000000+1 1.588000-1 5.000000+1 1.714000-1 6.000000+1 1.815000-1 8.000000+1 1.967000-1 1.000000+2 2.079000-1 1.500000+2 2.267000-1 2.000000+2 2.384000-1 3.000000+2 2.528000-1 4.000000+2 2.613000-1 5.000000+2 2.670000-1 6.000000+2 2.712000-1 8.000000+2 2.768000-1 1.000000+3 2.805000-1 1.500000+3 2.859000-1 2.000000+3 2.889000-1 3.000000+3 2.922000-1 4.000000+3 2.939000-1 5.000000+3 2.951000-1 6.000000+3 2.958000-1 8.000000+3 2.969000-1 1.000000+4 2.975000-1 1.500000+4 2.984000-1 2.000000+4 2.989000-1 3.000000+4 2.994000-1 4.000000+4 2.997000-1 5.000000+4 2.998000-1 6.000000+4 3.000000-1 8.000000+4 3.001000-1 1.000000+5 3.002000-1 1 6000 7 8 1.201120+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.025390-8 2.136250+0 6.025390-7 2.156900+0 1.073030-6 2.169000+0 1.432030-6 2.184500+0 1.990570-6 2.201800+0 2.754010-6 2.214800+0 3.431290-6 2.234200+0 4.615690-6 2.253680+0 6.025390-6 2.281500+0 8.439630-6 2.307000+0 1.108540-5 2.338200+0 1.490530-5 2.377400+0 2.064210-5 2.410200+0 2.625330-5 2.446800+0 3.339570-5 2.485900+0 4.204700-5 2.532900+0 5.381110-5 2.556430+0 6.025390-5 2.611900+0 7.683000-5 2.660400+0 9.288290-5 2.745300+0 1.243170-4 2.809000+0 1.505540-4 2.904500+0 1.939470-4 3.000000+0 2.421000-4 3.125000+0 3.121930-4 3.234400+0 3.798910-4 3.425800+0 5.116400-4 3.569300+0 6.204880-4 3.784700+0 7.977990-4 4.000000+0 9.885000-4 4.250000+0 1.221760-3 4.625000+0 1.588560-3 5.000000+0 1.970000-3 5.500000+0 2.493680-3 6.000000+0 3.025000-3 6.750000+0 3.817760-3 7.000000+0 4.079000-3 8.000000+0 5.102000-3 9.000000+0 6.083000-3 1.000000+1 7.018000-3 1.100000+1 7.906000-3 1.200000+1 8.745000-3 1.300000+1 9.538000-3 1.400000+1 1.030000-2 1.500000+1 1.102000-2 1.600000+1 1.170000-2 1.800000+1 1.298000-2 2.000000+1 1.415000-2 2.200000+1 1.523000-2 2.400000+1 1.623000-2 2.600000+1 1.715000-2 2.800000+1 1.802000-2 3.000000+1 1.883000-2 4.000000+1 2.224000-2 5.000000+1 2.490000-2 6.000000+1 2.706000-2 8.000000+1 3.041000-2 1.000000+2 3.294000-2 1.500000+2 3.734000-2 2.000000+2 4.024000-2 3.000000+2 4.397000-2 4.000000+2 4.630000-2 5.000000+2 4.792000-2 6.000000+2 4.914000-2 8.000000+2 5.084000-2 1.000000+3 5.198000-2 1.500000+3 5.372000-2 2.000000+3 5.471000-2 3.000000+3 5.580000-2 4.000000+3 5.644000-2 5.000000+3 5.684000-2 6.000000+3 5.712000-2 8.000000+3 5.749000-2 1.000000+4 5.773000-2 1.500000+4 5.805000-2 2.000000+4 5.824000-2 3.000000+4 5.842000-2 4.000000+4 5.854000-2 5.000000+4 5.860000-2 6.000000+4 5.865000-2 8.000000+4 5.870000-2 1.000000+5 5.873000-2 1 6000 7 8 1.201120+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 6000 7 9 1.201120+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.000000+0 1.000000+5 6.000000+0 5.000000+5 5.997400+0 6.250000+5 5.995310+0 7.187500+5 5.994000+0 8.154300+5 5.992810+0 8.813500+5 5.992030+0 9.604500+5 5.990510+0 1.000000+6 5.989800+0 1.500000+6 5.977100+0 2.000000+6 5.959400+0 2.250000+6 5.948730+0 2.500000+6 5.936800+0 3.000000+6 5.909300+0 3.500000+6 5.877020+0 4.000000+6 5.840600+0 4.750000+6 5.777140+0 5.000000+6 5.754400+0 5.500000+6 5.704970+0 6.000000+6 5.652560+0 6.250000+6 5.624480+0 7.000000+6 5.536900+0 8.000000+6 5.409400+0 9.000000+6 5.270200+0 9.750000+6 5.159370+0 1.000000+7 5.122500+0 1.062500+7 5.029200+0 1.125000+7 4.935470+0 1.156300+7 4.887660+0 1.218800+7 4.790340+0 1.250000+7 4.740700+0 1.375000+7 4.536270+0 1.500000+7 4.331000+0 1.625000+7 4.130080+0 1.750000+7 3.937100+0 1.875000+7 3.752990+0 1.937500+7 3.664230+0 2.000000+7 3.577500+0 2.125000+7 3.409270+0 2.218800+7 3.288850+0 2.312500+7 3.174170+0 2.500000+7 2.961400+0 2.718800+7 2.741110+0 2.906300+7 2.576370+0 3.000000+7 2.501500+0 3.250000+7 2.324590+0 3.437500+7 2.210950+0 3.718800+7 2.067600+0 3.812500+7 2.026000+0 4.000000+7 1.951200+0 4.250000+7 1.866850+0 4.500000+7 1.796230+0 4.625000+7 1.765180+0 5.000000+7 1.685600+0 5.500000+7 1.603080+0 6.000000+7 1.536300+0 7.000000+7 1.424500+0 7.750000+7 1.346410+0 8.000000+7 1.320600+0 8.500000+7 1.268670+0 9.000000+7 1.216500+0 9.500000+7 1.164200+0 1.000000+8 1.112100+0 1.062500+8 1.047700+0 1.109400+8 1.000230+0 1.179700+8 9.311410-1 1.187500+8 9.235700-1 1.250000+8 8.648200-1 1.312500+8 8.084600-1 1.394500+8 7.388620-1 1.437500+8 7.042720-1 1.464800+8 6.830610-1 1.500000+8 6.566200-1 1.589800+8 5.931260-1 1.665000+8 5.444980-1 1.748800+8 4.948940-1 1.750000+8 4.942130-1 1.838500+8 4.468060-1 1.946200+8 3.953480-1 2.000000+8 3.720200-1 2.125000+8 3.232420-1 2.218800+8 2.912350-1 2.359400+8 2.496320-1 2.500000+8 2.146500-1 2.625000+8 1.881880-1 2.812500+8 1.552580-1 3.000000+8 1.288200-1 3.218800+8 1.043200-1 3.406300+8 8.759860-2 3.500000+8 8.045200-2 3.750000+8 6.452520-2 4.000000+8 5.223000-2 4.250000+8 4.263930-2 4.625000+8 3.193660-2 5.000000+8 2.433000-2 5.500000+8 1.733630-2 6.000000+8 1.265000-2 6.750000+8 8.187060-3 7.000000+8 7.147100-3 8.000000+8 4.319400-3 9.000000+8 2.755200-3 1.000000+9 1.836400-3 1.218800+9 8.515030-4 1.500000+9 3.776700-4 2.000000+9 1.215700-4 5.000000+9 3.238600-6 7.250000+9 7.474620-7 8.000000+9 5.073400-7 1.00000+10 2.112300-7 1.27030+10 8.294570-8 1.55700+10 3.761840-8 2.00890+10 1.406990-8 2.40710+10 7.036550-9 2.88160+10 3.546550-9 3.54180+10 1.626410-9 4.34910+10 7.53486-10 5.36450+10 3.45792-10 6.21430+10 2.01266-10 7.56630+10 9.81546-11 8.78320+10 5.72633-11 1.00000+11 3.59640-11 1.17140+11 2.04980-11 1.36540+11 1.19478-11 1.70670+11 5.49183-12 2.04860+11 2.92810-12 2.52170+11 1.44254-12 3.35790+11 5.50664-13 4.68190+11 1.83270-13 6.33390+11 6.84398-14 1.03630+12 1.41544-14 1.58930+12 3.69623-15 3.03270+12 5.05564-16 7.26730+12 3.64413-17 2.69580+13 7.66541-19 1.00000+14 1.66090-20 5.62340+14 1.00989-22 5.42470+15 1.13425-25 1.00000+17 1.68100-29 1 6000 7 0 1.201120+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.29900-12 1.000000+2 1.29900-10 1.000000+3 1.299000-8 1.000000+4 1.299000-6 1.000000+5 1.299000-4 5.000000+5 3.247500-3 6.250000+5 5.074219-3 7.187500+5 6.710654-3 8.154300+5 8.637390-3 8.813500+5 1.009034-2 9.604500+5 1.198281-2 1.000000+6 1.299000-2 1.500000+6 2.953400-2 2.000000+6 5.164000-2 2.250000+6 6.518990-2 2.500000+6 8.049400-2 3.000000+6 1.157000-1 3.500000+6 1.559840-1 4.000000+6 2.015000-1 4.750000+6 2.800600-1 5.000000+6 3.086000-1 5.500000+6 3.685000-1 6.000000+6 4.319420-1 6.250000+6 4.649500-1 7.000000+6 5.687700-1 8.000000+6 7.174860-1 9.000000+6 8.755900-1 9.750000+6 9.981610-1 1.000000+7 1.039200+0 1.062500+7 1.141040+0 1.125000+7 1.242510+0 1.156300+7 1.293430+0 1.218800+7 1.395840+0 1.250000+7 1.447600+0 1.375000+7 1.657810+0 1.500000+7 1.866200+0 1.625000+7 2.064590+0 1.750000+7 2.253200+0 1.875000+7 2.432950+0 1.937500+7 2.519420+0 2.000000+7 2.604100+0 2.125000+7 2.766370+0 2.218800+7 2.882240+0 2.312500+7 2.992650+0 2.500000+7 3.197900+0 2.718800+7 3.410010+0 2.906300+7 3.569790+0 3.000000+7 3.642600+0 3.250000+7 3.814210+0 3.437500+7 3.924880+0 3.718800+7 4.066320+0 3.812500+7 4.107610+0 4.000000+7 4.183700+0 4.250000+7 4.271440+0 4.500000+7 4.347920+0 4.625000+7 4.382790+0 5.000000+7 4.477700+0 5.500000+7 4.588620+0 6.000000+7 4.690300+0 7.000000+7 4.877800+0 7.750000+7 5.009350+0 8.000000+7 5.051100+0 8.500000+7 5.131510+0 9.000000+7 5.208500+0 9.500000+7 5.280390+0 1.000000+8 5.348500+0 1.062500+8 5.426150+0 1.109400+8 5.479020+0 1.179700+8 5.551530+0 1.187500+8 5.558880+0 1.250000+8 5.615300+0 1.312500+8 5.664920+0 1.394500+8 5.720760+0 1.437500+8 5.746790+0 1.464800+8 5.762010+0 1.500000+8 5.780600+0 1.589800+8 5.820780+0 1.665000+8 5.849220+0 1.748800+8 5.875480+0 1.750000+8 5.875830+0 1.838500+8 5.898670+0 1.946200+8 5.920950+0 2.000000+8 5.930200+0 2.125000+8 5.947480+0 2.218800+8 5.957470+0 2.359400+8 5.968840+0 2.500000+8 5.977000+0 2.625000+8 5.981790+0 2.812500+8 5.987740+0 3.000000+8 5.991700+0 3.218800+8 5.994030+0 3.406300+8 5.995900+0 3.500000+8 5.996800+0 3.750000+8 5.997730+0 4.000000+8 5.998600+0 4.250000+8 5.998900+0 4.625000+8 5.999320+0 5.000000+8 5.999700+0 5.500000+8 5.999800+0 6.000000+8 5.999900+0 6.750000+8 5.999980+0 7.000000+8 6.000000+0 8.000000+8 6.000000+0 9.000000+8 6.000000+0 1.000000+9 6.000000+0 1.218800+9 6.000000+0 1.500000+9 6.000000+0 2.000000+9 6.000000+0 5.000000+9 6.000000+0 7.250000+9 6.000000+0 8.000000+9 6.000000+0 1.00000+10 6.000000+0 1.27030+10 6.000000+0 1.55700+10 6.000000+0 2.00890+10 6.000000+0 2.40710+10 6.000000+0 2.88160+10 6.000000+0 3.54180+10 6.000000+0 4.34910+10 6.000000+0 5.36450+10 6.000000+0 6.21430+10 6.000000+0 7.56630+10 6.000000+0 8.78320+10 6.000000+0 1.00000+11 6.000000+0 1.17140+11 6.000000+0 1.36540+11 6.000000+0 1.70670+11 6.000000+0 2.04860+11 6.000000+0 2.52170+11 6.000000+0 3.35790+11 6.000000+0 4.68190+11 6.000000+0 6.33390+11 6.000000+0 1.03630+12 6.000000+0 1.58930+12 6.000000+0 3.03270+12 6.000000+0 7.26730+12 6.000000+0 2.69580+13 6.000000+0 1.00000+14 6.000000+0 5.62340+14 6.000000+0 5.42470+15 6.000000+0 1.00000+17 6.000000+0 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.058617-6 0.0 5.443905-6 0.0 5.454280-6 1.289578-1 5.470704-6 4.309498-1 5.481130-6 7.060830-1 5.484104-6 7.967272-1 5.497503-6 1.360981+0 5.512578-6 2.271096+0 5.533148-6 3.833460+0 5.551101-6 5.261224+0 5.565731-6 6.092913+0 5.579320-6 6.434634+0 5.593409-6 6.249726+0 5.607450-6 5.576185+0 5.624932-6 4.301277+0 5.644897-6 2.704493+0 5.658297-6 1.796221+0 5.671696-6 1.103012+0 5.682505-6 7.074661-1 5.685096-6 6.262718-1 5.695930-6 3.771744-1 5.711895-6 7.036162-2 5.722780-6 0.0 6.440242-6 0.0 6.440964-6 1.341170-8 6.451329-6 3.986853-7 6.472671-6 1.582085-6 6.483087-6 2.404415-6 6.488525-6 2.911668-6 6.498966-6 4.190925-6 6.504378-6 4.951557-6 6.520232-6 7.781183-6 6.536086-6 1.129979-5 6.567793-6 1.880860-5 6.583646-6 2.156034-5 6.599500-6 2.284294-5 6.615354-6 2.236999-5 6.631207-6 2.024965-5 6.647061-6 1.694444-5 6.678768-6 9.373486-6 6.694622-6 6.197314-6 6.705395-6 4.494241-6 6.710475-6 3.788265-6 6.721274-6 2.605612-6 6.726329-6 2.141058-6 6.737153-6 1.396243-6 6.757278-6 2.399819-7 6.758036-6 2.105945-7 6.768911-6 0.0 7.285594-6 0.0 7.285604-6 1.040538-5 7.295969-6 1.106561-1 7.301308-6 1.961109-1 7.321469-6 5.508130-1 7.331885-6 8.096349-1 7.339402-6 1.024862+0 7.349843-6 1.425992+0 7.357334-6 1.753210+0 7.373193-6 2.644880+0 7.397683-6 4.396131+0 7.429065-6 6.829674+0 7.448118-6 7.915956+0 7.466576-6 8.401984+0 7.485264-6 8.203366+0 7.503858-6 7.372116+0 7.526412-6 5.795457+0 7.554593-6 3.600865+0 7.573872-6 2.332852+0 7.586878-6 1.657353+0 7.590458-6 1.485791+0 7.603040-6 1.022028+0 7.609067-6 8.331610-1 7.620337-6 5.677282-1 7.644267-6 1.065917-1 7.655131-6 2.132011-2 7.660732-6 8.366455-3 7.671608-6 0.0 7.932755-6 0.0 7.941764-6 4.027888-2 7.943120-6 4.700904-2 7.971806-6 2.556830-1 7.984654-6 3.916383-1 7.991332-6 4.718188-1 8.004211-6 6.831365-1 8.013301-6 8.593214-1 8.030431-6 1.268335+0 8.073631-6 2.593758+0 8.089150-6 3.085651+0 8.110959-6 3.570772+0 8.132931-6 3.738017+0 8.152463-6 3.597500+0 8.173019-6 3.170665+0 8.212956-6 1.961963+0 8.228147-6 1.480805+0 8.242911-6 1.108735+0 8.258452-6 8.279519-1 8.267210-6 7.028578-1 8.275487-6 6.126233-1 8.284882-6 5.450448-1 8.295038-6 5.134001-1 8.313590-6 5.308123-1 8.324067-6 5.718970-1 8.334140-6 6.678241-1 8.362654-6 1.097608+0 8.373029-6 1.596469+0 8.405743-6 5.203875+0 8.416043-6 6.581786+0 8.429622-6 8.944118+0 8.439052-6 1.096752+1 8.455465-6 1.513010+1 8.481275-6 2.398600+1 8.531174-6 4.359262+1 8.554250-6 4.984168+1 8.568616-6 5.202954+1 8.586524-6 5.167197+1 8.604824-6 4.855158+1 8.630751-6 4.009046+1 8.677993-6 2.113366+1 8.697413-6 1.472682+1 8.706303-6 1.226200+1 8.719951-6 9.170501+0 8.726005-6 8.007810+0 8.738776-6 6.079995+0 8.745578-6 5.204308+0 8.774871-6 2.360894+0 8.785459-6 1.675409+0 8.851909-6 1.666913+0 1.031755-5 1.857509+0 1.245837-5 1.973029+0 1.483220-5 2.008364+0 1.492336-5 2.087199+0 1.501908-5 2.301796+0 1.514214-5 2.629215+0 1.521506-5 2.631396+0 1.532445-5 2.345588+0 1.539738-5 2.152219+0 1.547030-5 2.045054+0 1.558288-5 1.992044+0 1.599373-5 1.986295+0 1.615120-5 2.060228+0 1.635233-5 2.296725+0 1.646613-5 2.261826+0 1.662360-5 2.098378+0 1.678107-5 2.126598+0 1.691422-5 2.177363+0 2.213095-5 2.225570+0 2.884294-5 2.122326+0 4.908837-5 1.556108+0 6.332030-5 1.251021+0 7.823804-5 1.020616+0 9.356589-5 8.454465-1 1.130122-4 6.830960-1 1.330481-4 5.624152-1 1.548207-4 4.660261-1 1.817823-4 3.795290-1 2.089296-4 3.156365-1 2.449581-4 2.539799-1 2.752462-4 2.159013-1 2.752569-4 2.186335-1 2.766119-4 1.247808+0 2.772894-4 2.099873+0 2.779669-4 3.391160+0 2.787291-4 5.424706+0 2.805899-4 1.143701+1 2.814650-4 1.330498+1 2.821527-4 1.371263+1 2.828371-4 1.308117+1 2.836327-4 1.125635+1 2.852967-4 6.365240+0 2.861296-4 4.559736+0 2.868270-4 3.684391+0 2.876013-4 3.295529+0 2.888441-4 3.165687+0 2.897553-4 3.603040+0 2.906277-4 3.884056+0 2.919790-4 4.078586+0 2.952178-4 3.998331+0 3.061447-4 3.768914+0 3.589101-4 3.241365+0 4.115394-4 2.670870+0 4.886013-4 2.087176+0 5.547389-4 1.708991+0 6.300500-4 1.392817+0 7.200956-4 1.115090+0 8.106589-4 9.110382-1 8.966381-4 7.654545-1 9.905327-4 6.413643-1 1.108738-3 5.235262-1 1.230422-3 4.330781-1 1.369296-3 3.548800-1 1.524753-3 2.902093-1 1.692743-3 2.376828-1 1.876378-3 1.949284-1 2.104523-3 1.558304-1 2.359460-3 1.242683-1 2.570978-3 1.047205-1 2.840655-3 8.569726-2 3.141280-3 6.986796-2 3.490282-3 5.632018-2 3.876507-3 4.534742-2 4.313279-3 3.630248-2 4.802348-3 2.897689-2 5.372295-3 2.284920-2 5.976271-3 1.820339-2 6.497417-3 1.520858-2 7.096802-3 1.256117-2 7.809128-3 1.021143-2 8.687415-3 8.078785-3 9.550534-3 6.557728-3 1.038345-2 5.449057-3 1.140257-2 4.424130-3 1.243306-2 3.646301-3 1.348720-2 3.038010-3 1.486181-2 2.439243-3 1.606610-2 2.045340-3 1.748328-2 1.688544-3 1.934364-2 1.340216-3 2.135989-2 1.068129-3 2.366261-2 8.446875-4 2.616420-2 6.697523-4 2.891101-2 5.319822-4 3.198016-2 4.212370-4 3.494423-2 3.427305-4 3.798470-2 2.822661-4 4.194884-2 2.239656-4 4.600424-2 1.806114-4 4.958245-2 1.516238-4 5.379966-2 1.253242-4 5.846899-2 1.031898-4 6.444391-2 8.220667-5 6.958250-2 6.871209-5 7.694672-2 5.431525-5 8.249623-2 4.615194-5 9.043579-2 3.722421-5 9.903033-2 3.014265-5 1.077147-1 2.481193-5 1.190566-1 1.968510-5 1.292084-1 1.629735-5 1.408778-1 1.337561-5 1.551390-1 1.072544-5 1.682815-1 8.930713-6 1.866090-1 7.081710-6 2.032942-1 5.862761-6 2.220772-1 4.826876-6 2.448733-1 3.909637-6 2.660725-1 3.279139-6 2.924944-1 2.690367-6 3.256961-1 2.162861-6 3.636314-1 1.740953-6 3.988060-1 1.460374-6 4.365158-1 1.237192-6 4.827808-1 1.036631-6 5.463866-1 8.437931-7 6.008782-1 7.274462-7 6.839116-1 6.021312-7 7.629569-1 5.205160-7 8.579996-1 4.508665-7 9.572285-1 3.987767-7 1.120601+0 3.407848-7 1.347258+0 2.853540-7 1.619761+0 2.389393-7 1.947381+0 2.000743-7 2.341267+0 1.675309-7 2.814822+0 1.402810-7 3.384160+0 1.174634-7 4.068655+0 9.835720-8 4.891600+0 8.235877-8 5.880996+0 6.896259-8 7.070513+0 5.774539-8 8.500626+0 4.835273-8 9.760024+0 4.232518-8 1.000000+1 8.131066-8 1 6000 7 0 1.201120+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.991287+0 3.058617-6-5.894231+0 4.592129-6-5.597487+0 5.098733-6-5.236660+0 5.286209-6-4.850533+0 5.373132-6-4.434694+0 5.416680-6-4.022946+0 5.439598-6-3.633158+0 5.484104-6-2.382902+0 5.502109-6-1.897080+0 5.512578-6-1.726351+0 5.519905-6-1.708888+0 5.527652-6-1.776031+0 5.535392-6-1.960826+0 5.542265-6-2.221438+0 5.549858-6-2.643788+0 5.563244-6-3.705274+0 5.578109-6-5.219026+0 5.588630-6-6.298761+0 5.594776-6-5.629370+0 5.608781-6-4.403711+0 5.622080-6-3.598017+0 5.631522-6-3.261034+0 5.642076-6-3.092739+0 5.654947-6-3.174351+0 5.673047-6-3.612346+0 5.729765-6-5.185313+0 5.772943-6-5.746605+0 5.867558-6-6.310305+0 6.181682-6-5.714711+0 6.768911-6-4.865628+0 6.978650-6-4.352994+0 7.105669-6-3.848741+0 7.193309-6-3.280600+0 7.239226-6-2.809884+0 7.266033-6-2.408465+0 7.283760-6-2.018138+0 7.301308-6-1.491593+0 7.316429-6-1.093479+0 7.331885-6-6.314334-1 7.339402-6-3.917083-1 7.349843-6-7.522631-2 7.357334-6 1.477311-1 7.361299-6 2.583605-1 7.375693-6 5.441946-1 7.380070-6 5.875856-1 7.386635-6 6.038923-1 7.393200-6 5.865093-1 7.397683-6 5.500827-1 7.401606-6 4.883681-1 7.405038-6 4.165219-1 7.411045-6 2.519668-1 7.415550-6 9.499026-2 7.418928-6-4.332844-2 7.423997-6-2.895393-1 7.426531-6-4.350638-1 7.427798-6-5.162955-1 7.438031-6-1.238198+0 7.444756-6-1.764405+0 7.450220-6-2.300007+0 7.463091-6-3.476004+0 7.468612-6-4.093337+0 7.484229-6-5.641844+0 7.493294-6-6.452939+0 7.497044-6-6.679581+0 7.509972-6-5.676871+0 7.524575-6-4.880331+0 7.540074-6-4.420979+0 7.553062-6-4.308130+0 7.571685-6-4.523693+0 7.603040-6-5.455082+0 7.645330-6-6.743152+0 7.673648-6-5.949600+0 7.731874-6-4.991699+0 7.883099-6-3.120452+0 7.925772-6-2.450427+0 7.984654-6-1.199298+0 8.013301-6-5.469466-1 8.021866-6-3.753101-1 8.030431-6-2.173393-1 8.035914-6-1.241022-1 8.044139-6-2.326821-2 8.052364-6 5.275817-2 8.061561-6 1.048278-1 8.068458-6 1.165689-1 8.073631-6 1.103722-1 8.081391-6 7.321763-2 8.085271-6 3.834914-2 8.089150-6-1.877156-2 8.100055-6-1.821404-1 8.105507-6-2.711880-1 8.108233-6-3.247369-1 8.115841-6-5.145951-1 8.126828-6-7.444726-1 8.132931-6-9.190623-1 8.152463-6-1.339387+0 8.169553-6-1.570474+0 8.173019-6-1.609574+0 8.183635-6-1.624537+0 8.197283-6-1.526308+0 8.207893-6-1.367055+0 8.212956-6-1.260956+0 8.220552-6-1.065070+0 8.224349-6-9.480983-1 8.235529-6-5.241630-1 8.239220-6-3.729541-1 8.242911-6-2.046050-1 8.250681-6 1.590651-1 8.258452-6 5.418637-1 8.267210-6 1.012518+0 8.275487-6 1.488957+0 8.295038-6 2.720498+0 8.313590-6 4.011864+0 8.334140-6 5.718823+0 8.354117-6 7.699492+0 8.362654-6 8.805590+0 8.378907-6 1.133517+1 8.416043-6 1.607894+1 8.439052-6 1.927093+1 8.463224-6 2.170194+1 8.484313-6 2.201335+1 8.499354-6 2.065268+1 8.514543-6 1.792594+1 8.523411-6 1.560440+1 8.529881-6 1.332420+1 8.545116-6 7.269582+0 8.549889-6 5.007517+0 8.552216-6 3.690140+0 8.561370-6-7.788167-1 8.564485-6-2.352926+0 8.567223-6-3.844757+0 8.568616-6-4.739499+0 8.584608-6-1.416280+0 8.584891-6-1.221329+0 8.585447-6-8.807654-1 8.586524-6-2.684545-1 8.603416-6 8.319226+0 8.609776-6 1.125958+1 8.627578-6 1.789843+1 8.637014-6 2.055906+1 8.651364-6 2.330837+1 8.668870-6 2.496261+1 8.677993-6 2.493725+1 8.697413-6 2.364742+1 8.738776-6 1.779603+1 8.782812-6 1.169452+1 8.792639-6 1.018431+1 8.809045-6 8.523634+0 8.833276-6 6.759850+0 8.851909-6 5.711175+0 8.882678-6 4.373948+0 8.912803-6 3.359292+0 8.936637-6 2.668455+0 8.970830-6 1.883762+0 8.996966-6 1.374099+0 9.022793-6 9.406335-1 9.044364-6 6.151733-1 9.061655-6 3.775813-1 9.076820-6 1.833728-1 9.088853-6 3.783511-2 9.101226-6-1.041406-1 9.113720-6-2.403377-1 9.136679-6-4.735582-1 9.167509-6-7.550458-1 9.206115-6-1.066719+0 9.266473-6-1.467970+0 9.348523-6-1.917241+0 9.452435-6-2.353240+0 9.587497-6-2.776439+0 9.782670-6-3.203523+0 1.009233-5-3.631972+0 1.063547-5-4.022760+0 1.143365-5-4.256756+0 1.293353-5-4.353775+0 1.463542-5-4.418316+0 1.492336-5-4.623261+0 1.505554-5-4.654542+0 1.517860-5-4.283802+0 1.528799-5-3.931272+0 1.539738-5-3.902287+0 1.569748-5-4.155072+0 1.625598-5-4.377817+0 1.652518-5-4.074805+0 1.682050-5-4.196573+0 2.615171-5-3.328936+0 3.338944-5-2.858302+0 4.259661-5-2.483917+0 5.249963-5-2.255215+0 6.814248-5-2.076132+0 8.878605-5-1.993724+0 1.255759-4-2.032262+0 1.634094-4-2.210199+0 1.917304-4-2.444881+0 2.158301-4-2.765357+0 2.346102-4-3.173601+0 2.479177-4-3.649515+0 2.573852-4-4.208119+0 2.646264-4-3.948163+0 2.686611-4-3.596287+0 2.713167-4-3.147550+0 2.727673-4-2.743743+0 2.737931-4-2.320836+0 2.745161-4-1.899729+0 2.749382-4-1.561063+0 2.751692-4-1.312065+0 2.752992-4-1.105725+0 2.755176-4-8.451802-1 2.757260-4-6.367618-1 2.762732-4-1.245095-1 2.764425-4 4.876642-2 2.765272-4 1.447476-1 2.766119-4 2.598485-1 2.772894-4 1.064677+0 2.773741-4 1.184884+0 2.780516-4 1.885139+0 2.781998-4 1.995813+0 2.787291-4 2.246649+0 2.789885-4 2.233676+0 2.794066-4 2.020281+0 2.796660-4 1.740163+0 2.799161-4 1.346377+0 2.801748-4 7.963481-1 2.803063-4 4.947344-1 2.804050-4 2.502030-1 2.804790-4 5.391810-2 2.805899-4-2.674196-1 2.806454-4-4.453882-1 2.806732-4-5.417288-1 2.807441-4-8.169466-1 2.811612-4-2.251787+0 2.813406-4-2.959834+0 2.815036-4-3.723120+0 2.819688-4-5.600327+0 2.821527-4-4.732961+0 2.827952-4-2.223383+0 2.829155-4-1.764501+0 2.831042-4-1.153129+0 2.834645-4-8.797152-2 2.835218-4 8.873153-2 2.836327-4 3.713179-1 2.837367-4 6.023981-1 2.838342-4 7.968369-1 2.839256-4 9.623463-1 2.840970-4 1.233692+0 2.842470-4 1.432918+0 2.844930-4 1.687728+0 2.846940-4 1.831093+0 2.849577-4 1.927198+0 2.852120-4 1.900055+0 2.857670-4 1.515085+0 2.860661-4 1.183855+0 2.861296-4 1.086043+0 2.868270-4 1.922751-1 2.869127-4 5.673766-2 2.870937-4-1.597654-1 2.876013-4-7.771086-1 2.877564-4-9.403303-1 2.879898-4-1.154710+0 2.887021-4-1.730718+0 2.889214-4-1.974383+0 2.892764-4-2.224820+0 2.900167-4-2.431287+0 2.910114-4-2.451922+0 2.940000-4-2.251780+0 2.956355-4-2.209622+0 3.032500-4-2.087698+0 3.234664-4-1.610040+0 3.423823-4-1.163375+0 3.558885-4-8.983021-1 3.684112-4-7.056034-1 3.810631-4-5.511818-1 3.904167-4-4.536434-1 4.010158-4-3.572438-1 4.115394-4-2.739549-1 4.220633-4-2.013583-1 4.312375-4-1.445998-1 4.413275-4-8.736558-2 4.558630-4-1.333948-2 4.581149-4-2.993764-3 4.642887-4 2.689431-2 4.751862-4 7.141166-2 4.886013-4 1.203229-1 5.053049-4 1.728878-1 5.179791-4 2.055089-1 5.417133-4 2.537242-1 5.678393-4 2.935138-1 5.991126-4 3.295036-1 6.481137-4 3.638895-1 7.090603-4 3.859289-1 8.106589-4 3.882567-1 9.905327-4 3.562679-1 1.418371-3 2.607597-1 1.748595-3 2.055269-1 2.104523-3 1.625730-1 2.494751-3 1.290293-1 2.904728-3 1.037382-1 3.331882-3 8.452527-2 3.759558-3 7.016079-2 4.313279-3 5.640787-2 4.960017-3 4.484162-2 5.651635-3 3.595835-2 6.372299-3 2.913935-2 7.096802-3 2.398261-2 8.010522-3 1.916032-2 8.943569-3 1.550615-2 9.819387-3 1.288128-2 1.089497-2 1.040471-2 1.207466-2 8.337896-3 1.348720-2 6.484708-3 1.486181-2 5.118978-3 1.606610-2 4.177367-3 1.748328-2 3.292290-3 1.899507-2 2.541012-3 2.058217-2 1.910658-3 2.226224-2 1.374784-3 2.366261-2 1.007927-3 2.500294-2 7.087377-4 2.616420-2 4.837708-4 2.718098-2 3.082943-4 2.776254-2 2.159997-4 2.829937-2 1.352867-4 2.900354-2 3.613397-5 2.957978-2-4.021195-5 3.007087-2-1.067519-4 3.063018-2-1.786858-4 3.123502-2-2.522483-4 3.262238-2-4.048824-4 3.427678-2-5.622396-4 3.656598-2-7.460149-4 3.980445-2-9.538347-4 4.483275-2-1.191906-3 5.099572-2-1.393060-3 6.023131-2-1.586976-3 7.535259-2-1.764232-3 1.039676-1-1.913130-3 1.682815-1-2.015011-3 4.704354-1-2.069832-3 1.477239+0-2.077064-3 4.461192+0-2.077791-3 1.000000+1-2.077819-3 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.031842-7 1.041760-6 5.323640-7 1.106870-6 8.280069-7 1.152000-6 1.112449-6 1.176050-6 1.159311-6 1.249553-6 1.354044-6 1.327650-6 1.769440-6 1.369139-6 2.102977-6 1.411925-6 2.554471-6 1.440000-6 2.864066-6 1.456047-6 2.961056-6 1.501549-6 3.183878-6 1.548472-6 3.523557-6 1.596862-6 4.015781-6 1.646764-6 4.700899-6 1.698225-6 5.632907-6 1.751295-6 6.881817-6 1.800000-6 8.179945-6 1.806023-6 8.292987-6 1.862461-6 9.056632-6 1.920663-6 1.009089-5 1.980684-6 1.156570-5 2.048000-6 1.376219-5 2.106411-6 1.598953-5 2.172236-6 1.919445-5 2.240118-6 2.331901-5 2.250000-6 2.387728-5 2.310122-6 2.662894-5 2.382313-6 3.060832-5 2.456761-6 3.607021-5 2.531250-6 4.281178-5 2.612707-6 4.937568-5 2.694354-6 5.780505-5 2.778553-6 6.927095-5 2.847656-6 8.050412-5 2.865383-6 8.313350-5 2.954926-6 9.688169-5 3.047267-6 1.154334-4 3.142495-6 1.404911-4 3.203613-6 1.591631-4 3.341969-6 2.009292-4 3.446406-6 2.435949-4 3.604065-6 3.310910-4 3.665172-6 3.656043-4 3.779709-6 4.417885-4 3.897775-6 5.454177-4 4.054573-6 7.295476-4 4.230295-6 9.747606-4 4.334281-6 1.158009-3 4.435018-6 1.361700-3 4.627145-6 1.870411-3 4.718729-6 2.170231-3 4.893401-6 2.903728-3 4.976665-6 3.332959-3 5.167267-6 4.599074-3 5.289229-6 5.628394-3 5.431018-6 7.170180-3 5.563944-6 9.002502-3 5.688563-6 1.117932-2 5.833360-6 1.448790-2 5.914921-6 1.677318-2 6.017604-6 2.025590-2 6.113869-6 2.429981-2 6.204117-6 2.888405-2 6.288725-6 3.407500-2 6.368045-6 3.999865-2 6.442407-6 4.670135-2 6.512122-6 5.419937-2 6.577480-6 6.258931-2 6.638752-6 7.198874-2 6.696196-6 8.247449-2 6.750049-6 9.408693-2 6.800536-6 1.068925-1 6.847867-6 1.210134-1 6.892241-6 1.365820-1 6.933841-6 1.537056-1 6.972841-6 1.724560-1 7.017994-6 1.981680-1 7.043681-6 2.151368-1 7.075816-6 2.393078-1 7.105943-6 2.655555-1 7.134187-6 2.940130-1 7.160665-6 3.248062-1 7.185489-6 3.580590-1 7.208761-6 3.938996-1 7.230579-6 4.324625-1 7.251033-6 4.738896-1 7.270208-6 5.183304-1 7.288186-6 5.659424-1 7.305039-6 6.168966-1 7.320840-6 6.713852-1 7.335652-6 7.296319-1 7.363426-6 8.632647-1 7.387728-6 1.017052+0 7.408993-6 1.194211+0 7.427599-6 1.397319+0 7.443880-6 1.627222+0 7.458125-6 1.882390+0 7.470590-6 2.158965+0 7.481496-6 2.451359+0 7.491040-6 2.753085+0 7.499390-6 3.057577+0 7.513090-6 3.651638+0 7.532670-6 4.741630+0 7.559227-6 6.767263+0 7.579988-6 8.849624+0 7.595049-6 1.064055+1 7.599699-6 1.123866+1 7.610163-6 1.265485+1 7.617303-6 1.367079+1 7.632254-6 1.589709+1 7.638649-6 1.687552+1 7.650857-6 1.875275+1 7.658563-6 1.992304+1 7.667757-6 2.127899+1 7.673274-6 2.206056+1 7.682020-6 2.323246+1 7.688715-6 2.406087+1 7.694184-6 2.468481+1 7.701361-6 2.542201+1 7.710588-6 2.621617+1 7.720500-6 2.685372+1 7.729246-6 2.721419+1 7.733076-6 2.730947+1 7.742343-6 2.737776+1 7.750528-6 2.724539+1 7.758816-6 2.692880+1 7.767564-6 2.640186+1 7.772066-6 2.605708+1 7.785800-6 2.472166+1 7.794145-6 2.372520+1 7.803874-6 2.241744+1 7.812492-6 2.115375+1 7.819218-6 2.011521+1 7.826770-6 1.891014+1 7.833078-6 1.788343+1 7.841189-6 1.655185+1 7.848337-6 1.538076+1 7.855486-6 1.422404+1 7.865950-6 1.257782+1 7.874089-6 1.135134+1 7.878503-6 1.071003+1 7.889144-6 9.242765+0 7.897160-6 8.217502+0 7.899492-6 7.932829+0 7.915817-6 6.117682+0 7.928137-6 4.954502+0 7.934072-6 4.455988+0 7.938837-6 4.083854+0 7.954633-6 3.019238+0 7.960614-6 2.679247+0 7.966560-6 2.372722+0 7.972460-6 2.097682+0 7.978314-6 1.851525+0 7.984122-6 1.631754+0 7.989884-6 1.436000+0 7.995602-6 1.262025+0 8.001275-6 1.107740+0 8.006903-6 9.711987-1 8.012488-6 8.506056-1 8.023526-6 6.507956-1 8.034436-6 4.962138-1 8.045174-6 3.781207-1 8.066151-6 2.216934-1 8.076395-6 1.721302-1 8.086478-6 1.361043-1 8.096404-6 1.105613-1 8.106175-6 9.312358-2 8.115793-6 8.194418-2 8.125260-6 7.558822-2 8.134580-6 7.293779-2 8.143754-6 7.311737-2 8.152785-6 7.543596-2 8.161675-6 7.934282-2 8.170425-6 8.439418-2 8.179040-6 9.022839-2 8.192000-6 1.000397-1 8.204083-6 1.096962-1 8.220133-6 1.223239-1 8.235685-6 1.334064-1 8.258114-6 1.458275-1 8.276807-6 1.519977-1 8.303092-6 1.536078-1 8.328749-6 1.478563-1 8.352926-6 1.374169-1 8.375616-6 1.248932-1 8.397248-6 1.118541-1 8.417527-6 9.954098-2 8.436540-6 8.841638-2 8.454364-6 7.859868-2 8.487784-6 6.211886-2 8.517027-6 4.981174-2 8.568202-6 3.255802-2 8.644964-6 1.503846-2 8.722790-6 5.585178-3 8.744925-6 4.292615-3 8.765730-6 3.633757-3 8.779089-6 3.495257-3 8.787200-6 3.520056-3 8.789991-6 3.547667-3 8.809498-6 4.014159-3 8.831023-6 5.088209-3 8.852547-6 6.757366-3 8.895596-6 1.193907-2 8.917121-6 1.549612-2 8.938645-6 1.973862-2 8.960170-6 2.470679-2 8.981695-6 3.044870-2 9.003219-6 3.702092-2 9.046268-6 5.293010-2 9.067793-6 6.242957-2 9.088222-6 7.251290-2 9.109743-6 8.436303-2 9.132366-6 9.830525-2 9.152190-6 1.118948-1 9.175415-6 1.296135-1 9.234403-6 1.849472-1 9.286016-6 2.489911-1 9.370695-6 4.023922-1 9.405273-6 4.913257-1 9.435528-6 5.882095-1 9.462001-6 6.929097-1 9.485165-6 8.051389-1 9.505434-6 9.242820-1 9.523169-6 1.049286+0 9.538687-6 1.178660+0 9.565844-6 1.463441+0 9.586211-6 1.740549+0 9.601487-6 1.994101+0 9.612943-6 2.214842+0 9.630129-6 2.603057+0 9.647314-6 3.070226+0 9.694805-6 4.865025+0 9.712614-6 5.756841+0 9.729706-6 6.731436+0 9.742296-6 7.521876+0 9.749447-6 7.996719+0 9.766042-6 9.163933+0 9.773385-6 9.705861+0 9.797323-6 1.154774+1 9.805552-6 1.219520+1 9.821261-6 1.342609+1 9.829490-6 1.405774+1 9.837345-6 1.464516+1 9.845199-6 1.521189+1 9.856420-6 1.597447+1 9.869021-6 1.674625+1 9.879545-6 1.730621+1 9.889693-6 1.776038+1 9.893076-6 1.789117+1 9.905045-6 1.826405+1 9.915518-6 1.846737+1 9.920006-6 1.851739+1 9.930479-6 1.854439+1 9.940952-6 1.844318+1 9.949672-6 1.826049+1 9.961085-6 1.788824+1 9.971273-6 1.743329+1 9.977307-6 1.711211+1 9.987461-6 1.649114+1 9.996830-6 1.583665+1 1.001336-5 1.452224+1 1.002371-5 1.361898+1 1.003272-5 1.279799+1 1.004071-5 1.205086+1 1.005099-5 1.107786+1 1.005886-5 1.033208+1 1.006489-5 9.765383+0 1.007350-5 8.967887+0 1.008250-5 8.157540+0 1.009655-5 6.956110+0 1.010740-5 6.093294+0 1.012124-5 5.087333+0 1.013246-5 4.355543+0 1.015714-5 3.016607+0 1.016369-5 2.722569+0 1.018183-5 2.031235+0 1.021305-5 1.211589+0 1.022839-5 9.481937-1 1.023534-5 8.535906-1 1.024190-5 7.771007-1 1.024814-5 7.147929-1 1.025400-5 6.651677-1 1.025949-5 6.259036-1 1.026978-5 5.699188-1 1.027879-5 5.384584-1 1.029867-5 5.216572-1 1.031520-5 5.587313-1 1.034185-5 7.109521-1 1.035293-5 8.072494-1 1.036810-5 9.704160-1 1.039436-5 1.335982+0 1.042170-5 1.819878+0 1.042503-5 1.884965+0 1.044172-5 2.228461+0 1.044729-5 2.348147+0 1.045405-5 2.496106+0 1.047432-5 2.950186+0 1.048507-5 3.191589+0 1.050163-5 3.553542+0 1.050675-5 3.661169+0 1.051570-5 3.842650+0 1.052242-5 3.971886+0 1.053250-5 4.152483+0 1.054257-5 4.314545+0 1.055149-5 4.440300+0 1.055817-5 4.522685+0 1.056319-5 4.577341+0 1.057447-5 4.676746+0 1.057823-5 4.702362+0 1.059100-5 4.760339+0 1.060057-5 4.774037+0 1.060696-5 4.769011+0 1.061813-5 4.733542+0 1.062930-5 4.665594+0 1.063912-5 4.580970+0 1.065091-5 4.452096+0 1.065990-5 4.336354+0 1.067002-5 4.191403+0 1.068520-5 3.952542+0 1.070052-5 3.697487+0 1.074410-5 3.013750+0 1.075425-5 2.883954+0 1.076710-5 2.744078+0 1.077834-5 2.646495+0 1.078754-5 2.584963+0 1.079654-5 2.541213+0 1.080553-5 2.513728+0 1.080881-5 2.507719+0 1.083174-5 2.522873+0 1.083610-5 2.536445+0 1.084374-5 2.567709+0 1.085519-5 2.631193+0 1.086773-5 2.720932+0 1.087466-5 2.778329+0 1.088869-5 2.909022+0 1.092289-5 3.286645+0 1.099023-5 4.191983+0 1.101397-5 4.585524+0 1.103450-5 4.987585+0 1.104846-5 5.308038+0 1.106961-5 5.894144+0 1.107914-5 6.208842+0 1.108890-5 6.571896+0 1.111684-5 7.907498+0 1.113717-5 9.258473+0 1.115480-5 1.079575+1 1.117231-5 1.277417+1 1.118733-5 1.493360+1 1.120051-5 1.726959+1 1.120996-5 1.924963+1 1.122736-5 2.370122+1 1.124175-5 2.832740+1 1.126055-5 3.597076+1 1.130765-5 6.594647+1 1.133030-5 8.764463+1 1.134850-5 1.093544+2 1.135293-5 1.152762+2 1.137516-5 1.488794+2 1.138400-5 1.641185+2 1.139933-5 1.931403+2 1.140444-5 2.035351+2 1.143431-5 2.710722+2 1.143771-5 2.794301+2 1.146350-5 3.463441+2 1.147378-5 3.743019+2 1.148777-5 4.129233+2 1.149730-5 4.392459+2 1.150460-5 4.592870+2 1.151659-5 4.915519+2 1.152952-5 5.249592+2 1.154100-5 5.528985+2 1.155368-5 5.813105+2 1.156861-5 6.106910+2 1.158073-5 6.307341+2 1.159361-5 6.478450+2 1.160659-5 6.603486+2 1.161297-5 6.646651+2 1.162641-5 6.697104+2 1.163626-5 6.698929+2 1.166101-5 6.574813+2 1.166957-5 6.491006+2 1.168318-5 6.318181+2 1.169517-5 6.129213+2 1.170547-5 5.942523+2 1.171649-5 5.721212+2 1.172887-5 5.450514+2 1.173923-5 5.209633+2 1.175250-5 4.886953+2 1.176671-5 4.530738+2 1.178220-5 4.137830+2 1.179645-5 3.779461+2 1.181359-5 3.360463+2 1.182568-5 3.076903+2 1.184882-5 2.570781+2 1.185289-5 2.487242+2 1.188143-5 1.954386+2 1.190467-5 1.589430+2 1.193197-5 1.237830+2 1.196596-5 9.044252+1 1.199304-5 7.082416+1 1.200653-5 6.293951+1 1.202001-5 5.613989+1 1.203345-5 5.028800+1 1.204687-5 4.525768+1 1.206026-5 4.093472+1 1.208700-5 3.400947+1 1.211363-5 2.884717+1 1.214015-5 2.494362+1 1.216657-5 2.193551+1 1.219289-5 1.956775+1 1.221911-5 1.766411+1 1.224522-5 1.610354+1 1.227123-5 1.480245+1 1.230269-5 1.348791+1 1.232295-5 1.276106+1 1.234865-5 1.194802+1 1.239987-5 1.061679+1 1.245068-5 9.582013+0 1.250110-5 8.761546+0 1.255112-5 8.100863+0 1.260336-5 7.536546+0 1.265000-5 7.118230+0 1.269886-5 6.748961+0 1.274733-5 6.439208+0 1.279543-5 6.177428+0 1.285200-5 5.917007+0 1.289051-5 5.764220+0 1.298447-5 5.458187+0 1.307696-5 5.229936+0 1.316801-5 5.059085+0 1.325763-5 4.930852+0 1.334586-5 4.833894+0 1.343270-5 4.760049+0 1.351819-5 4.704203+0 1.360234-5 4.663240+0 1.368518-5 4.634768+0 1.384827-5 4.605993+0 1.401750-5 4.602299+0 1.415932-5 4.611539+0 1.430759-5 4.631446+0 1.459038-5 4.696364+0 1.523121-5 4.902327+0 1.689260-5 5.543669+0 1.754552-5 5.788549+0 1.848306-5 6.113588+0 1.899706-5 6.267914+0 1.935604-5 6.357647+0 1.958013-5 6.398176+0 1.989439-5 6.431834+0 1.996945-5 6.462015+0 2.001865-5 6.501411+0 2.008128-5 6.587082+0 2.015537-5 6.758981+0 2.019962-5 6.905303+0 2.022947-5 7.023383+0 2.027887-5 7.250923+0 2.043941-5 8.135857+0 2.050115-5 8.437645+0 2.051968-5 8.513420+0 2.056907-5 8.671821+0 2.061847-5 8.758096+0 2.066169-5 8.771302+0 2.069371-5 8.745130+0 2.074196-5 8.654765+0 2.079754-5 8.491593+0 2.085928-5 8.266170+0 2.095808-5 7.890460+0 2.103161-5 7.649576+0 2.109758-5 7.479972+0 2.117538-5 7.338914+0 2.134221-5 7.222419+0 2.139391-5 7.232101+0 2.145824-5 7.274212+0 2.151079-5 7.333570+0 2.156335-5 7.414326+0 2.166474-5 7.617666+0 2.179986-5 7.914154+0 2.187870-5 8.050935+0 2.194440-5 8.127127+0 2.201966-5 8.170907+0 2.214149-5 8.174696+0 2.232050-5 8.168395+0 2.245641-5 8.216030+0 2.286308-5 8.434150+0 2.533772-5 9.624870+0 2.683265-5 1.032890+1 2.892053-5 1.126012+1 3.114433-5 1.217999+1 3.276800-5 1.279752+1 3.529328-5 1.369423+1 3.781743-5 1.448183+1 3.981072-5 1.504308+1 4.241310-5 1.567967+1 4.647580-5 1.650439+1 4.880125-5 1.690129+1 5.225466-5 1.738895+1 5.530983-5 1.773475+1 6.106492-5 1.821983+1 6.839116-5 1.861681+1 7.213739-5 1.875357+1 7.717915-5 1.887998+1 8.687729-5 1.899985+1 9.798233-5 1.901740+1 1.153301-4 1.888786+1 1.325458-4 1.864454+1 1.469800-4 1.839417+1 1.632934-4 1.807152+1 1.781596-4 1.773271+1 1.878326-4 1.749330+1 2.056126-4 1.700797+1 2.173766-4 1.665324+1 2.275767-4 1.631385+1 2.406123-4 1.584443+1 2.507364-4 1.544367+1 2.632033-4 1.490178+1 2.746008-4 1.434880+1 2.852572-4 1.377172+1 2.958671-4 1.312436+1 3.063593-4 1.240020+1 3.156809-4 1.166765+1 3.233222-4 1.098786+1 3.304456-4 1.027644+1 3.368218-4 9.559302+0 3.426137-4 8.826559+0 3.479536-4 8.067888+0 3.522424-4 7.400522+0 3.562091-4 6.864298+0 3.573260-4 6.770245+0 3.617258-4 6.715159+0 3.649908-4 6.898846+0 3.677603-4 7.165297+0 3.701308-4 7.503265+0 3.721865-4 7.923848+0 3.735984-4 8.318400+0 3.748470-4 8.776118+0 3.759444-4 9.302511+0 3.770461-4 1.000304+1 3.781412-4 1.095006+1 3.791566-4 1.214861+1 3.797507-4 1.303942+1 3.802706-4 1.395942+1 3.807255-4 1.488771+1 3.812852-4 1.620825+1 3.817765-4 1.754677+1 3.824805-4 1.978999+1 3.833067-4 2.295533+1 3.853495-4 3.340635+1 3.858220-4 3.632385+1 3.868851-4 4.340470+1 3.877120-4 4.921410+1 3.880368-4 5.151489+1 3.887751-4 5.666959+1 3.893694-4 6.063566+1 3.899268-4 6.410346+1 3.904307-4 6.695367+1 3.909604-4 6.958856+1 3.914546-4 7.165555+1 3.921155-4 7.374748+1 3.925557-4 7.467389+1 3.930694-4 7.525332+1 3.935357-4 7.529755+1 3.944600-4 7.402556+1 3.948942-4 7.282412+1 3.954810-4 7.063308+1 3.959206-4 6.860394+1 3.962903-4 6.667034+1 3.968490-4 6.341566+1 3.973422-4 6.027869+1 3.978590-4 5.680754+1 3.984261-4 5.288042+1 3.990520-4 4.853111+1 3.998536-4 4.314590+1 4.013001-4 3.463473+1 4.019383-4 3.156012+1 4.025749-4 2.895920+1 4.029816-4 2.754186+1 4.035345-4 2.591122+1 4.039867-4 2.481750+1 4.043663-4 2.405403+1 4.046090-4 2.363480+1 4.052205-4 2.279383+1 4.055052-4 2.249692+1 4.058286-4 2.222384+1 4.061201-4 2.203013+1 4.066972-4 2.177260+1 4.074090-4 2.163762+1 4.082240-4 2.165525+1 4.092920-4 2.183762+1 4.122673-4 2.254776+1 4.148006-4 2.301371+1 4.190279-4 2.359877+1 4.344008-4 2.560385+1 4.427929-4 2.668369+1 4.510571-4 2.769768+1 4.587307-4 2.858256+1 4.652352-4 2.925024+1 4.760295-4 3.021067+1 4.878384-4 3.104940+1 5.045651-4 3.193809+1 5.175575-4 3.247700+1 5.401834-4 3.319796+1 5.745766-4 3.409182+1 6.205080-4 3.493934+1 6.531306-4 3.532501+1 7.010723-4 3.559864+1 7.630133-4 3.566120+1 8.140011-4 3.555165+1 9.507288-4 3.473364+1 1.110468-3 3.368140+1 1.349467-3 3.170988+1 1.451889-3 3.092473+1 1.649110-3 2.924154+1 1.883649-3 2.733852+1 2.095491-3 2.569790+1 2.273315-3 2.438582+1 2.469324-3 2.301057+1 2.687717-3 2.156228+1 2.925537-3 2.009427+1 3.234118-3 1.835644+1 3.574882-3 1.664723+1 3.939131-3 1.503983+1 4.407372-3 1.327626+1 4.989675-3 1.148120+1 5.800167-3 9.551769+0 7.613768-3 6.770674+0 1.189371-2 3.837320+0 1.409741-2 3.072968+0 1.593647-2 2.603880+0 1.776857-2 2.234134+0 2.005877-2 1.870658+0 2.248527-2 1.572810+0 2.494722-2 1.335270+0 2.782549-2 1.116837+0 3.283102-2 8.445586-1 3.937653-2 6.168148-1 4.697589-2 4.513013-1 5.619661-2 3.262974-1 6.868889-2 2.251817-1 8.409726-2 1.538281-1 1.059903-1 9.876522-2 1.409254-1 5.675763-2 2.018366-1 2.798306-2 3.502653-1 9.361626-3 1.070165+0 1.006291-3 3.231848+0 1.103782-4 9.760024+0 1.210322-5 2.947480+1 1.327097-6 8.901248+1 1.455134-7 2.688134+2 1.595523-8 8.118035+2 1.749456-9 2.511886+3 1.82728-10 7.943282+3 1.82728-11 2.511886+4 1.82728-12 7.943282+4 1.82728-13 1.000000+5 1.15293-13 1 7000 7 7 1.400670+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.817000-7 1.258900-6 4.464700-7 1.584900-6 7.076000-7 1.995300-6 1.121500-6 2.511900-6 1.777400-6 3.162300-6 2.817000-6 3.981100-6 4.464600-6 5.011900-6 7.075900-6 6.309600-6 1.121400-5 7.943300-6 1.777400-5 1.000000-5 2.816900-5 1.258900-5 4.464400-5 1.584900-5 7.075500-5 1.995300-5 1.121400-4 2.511900-5 1.777200-4 3.162300-5 2.816600-4 3.981100-5 4.463700-4 5.011900-5 7.074200-4 6.309600-5 1.121100-3 7.943300-5 1.776700-3 1.000000-4 2.814300-3 1.258900-4 4.456000-3 1.584900-4 7.055800-3 1.995300-4 1.116300-2 2.511900-4 1.765100-2 3.162300-4 2.787500-2 3.981100-4 4.390900-2 5.011900-4 6.893500-2 6.309600-4 1.077600-1 7.943300-4 1.671800-1 1.000000-3 2.563300-1 1.258900-3 3.867700-1 1.584900-3 5.703800-1 1.995300-3 8.158500-1 2.511900-3 1.124000+0 3.162300-3 1.481600+0 3.981100-3 1.863100+0 5.011900-3 2.234700+0 6.309600-3 2.569100+0 7.943300-3 2.852800+0 1.000000-2 3.093300+0 1.258900-2 3.314200+0 1.584900-2 3.500800+0 1.995300-2 3.653900+0 2.511900-2 3.762200+0 3.162300-2 3.815500+0 3.981100-2 3.815400+0 5.011900-2 3.766900+0 6.309600-2 3.678300+0 7.943300-2 3.554600+0 1.000000-1 3.402300+0 1.258900-1 3.227400+0 1.584900-1 3.036200+0 1.995300-1 2.834500+0 2.511900-1 2.627700+0 3.162300-1 2.420700+0 3.981100-1 2.217100+0 5.011900-1 2.019500+0 6.309600-1 1.829800+0 7.943300-1 1.648900+0 1.000000+0 1.477500+0 1.258900+0 1.316200+0 1.584900+0 1.165400+0 1.995300+0 1.025400+0 2.511900+0 8.967800-1 3.162300+0 7.795100-1 3.981100+0 6.736400-1 5.011900+0 5.789400-1 6.309600+0 4.949800-1 7.943300+0 4.211800-1 1.000000+1 3.568000-1 1.258900+1 3.010600-1 1.584900+1 2.531000-1 1.995300+1 2.120700-1 2.511900+1 1.771700-1 3.162300+1 1.476100-1 3.981100+1 1.226800-1 5.011900+1 1.017400-1 6.309600+1 8.420200-2 7.943300+1 6.956200-2 1.000000+2 5.737200-2 1.258900+2 4.724700-2 1.584900+2 3.885500-2 1.995300+2 3.191200-2 2.511900+2 2.618000-2 3.162300+2 2.145400-2 3.981100+2 1.756300-2 5.011900+2 1.436500-2 6.309600+2 1.173900-2 7.943300+2 9.584700-3 1.000000+3 7.820000-3 1.258900+3 6.375500-3 1.584900+3 5.194400-3 1.995300+3 4.229300-3 2.511900+3 3.441500-3 3.162300+3 2.798700-3 3.981100+3 2.274800-3 5.011900+3 1.848000-3 6.309600+3 1.500500-3 7.943300+3 1.217800-3 1.000000+4 9.878600-4 1.258900+4 8.010100-4 1.584900+4 6.492300-4 1.995300+4 5.260000-4 2.511900+4 4.259900-4 3.162300+4 3.448700-4 3.981100+4 2.791000-4 5.011900+4 2.257900-4 6.309600+4 1.826000-4 7.943300+4 1.476300-4 1.000000+5 1.193200-4 1 7000 7 7 1.400670+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994173-4 2.511886-4 2.510160-4 3.162278-4 3.159544-4 3.981072-4 3.976743-4 5.011872-4 5.005022-4 6.309573-4 6.298738-4 7.943282-4 7.926121-4 1.000000-3 9.972996-4 1.258925-3 1.254675-3 1.584893-3 1.578207-3 1.995262-3 1.984830-3 2.511886-3 2.495649-3 3.162278-3 3.137139-3 3.981072-3 3.942358-3 5.011872-3 4.952496-3 6.309573-3 6.218947-3 7.943282-3 7.804769-3 1.000000-2 9.787687-3 1.258925-2 1.226285-2 1.584893-2 1.534524-2 1.995262-2 1.917586-2 2.511886-2 2.392461-2 3.162278-2 2.979801-2 3.981072-2 3.703757-2 5.011872-2 4.592691-2 6.309573-2 5.679311-2 7.943282-2 7.001313-2 1.000000-1 8.602744-2 1.258925-1 1.053364-1 1.584893-1 1.285170-1 1.995262-1 1.562403-1 2.511886-1 1.892780-1 3.162278-1 2.285172-1 3.981072-1 2.749547-1 5.011872-1 3.297889-1 6.309573-1 3.943809-1 7.943282-1 4.704027-1 1.000000+0 5.598565-1 1.258925+0 6.652224-1 1.584893+0 7.895568-1 1.995262+0 9.366315-1 2.511886+0 1.111148+0 3.162278+0 1.318838+0 3.981072+0 1.566722+0 5.011872+0 1.863468+0 6.309573+0 2.219604+0 7.943282+0 2.648080+0 1.000000+1 3.164640+0 1.258925+1 3.788643+0 1.584893+1 4.543757+0 1.995262+1 5.458888+0 2.511886+1 6.569619+0 3.162278+1 7.919554+0 3.981072+1 9.561994+0 5.011872+1 1.156274+1 6.309573+1 1.400236+1 7.943282+1 1.697994+1 1.000000+2 2.061730+1 1.258925+2 2.506454+1 1.584893+2 3.050617+1 1.995262+2 3.716936+1 2.511886+2 4.533443+1 3.162278+2 5.534685+1 3.981072+2 6.763145+1 5.011872+2 8.271453+1 6.309573+2 1.012442+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728482-8 1.000000-4 2.738902-8 1.258925-4 4.339899-8 1.584893-4 6.877324-8 1.995262-4 1.089546-7 2.511886-4 1.726211-7 3.162278-4 2.734077-7 3.981072-4 4.328513-7 5.011872-4 6.850367-7 6.309573-4 1.083509-6 7.943282-4 1.716127-6 1.000000-3 2.700424-6 1.258925-3 4.250875-6 1.584893-3 6.685974-6 1.995262-3 1.043278-5 2.511886-3 1.623741-5 3.162278-3 2.513842-5 3.981072-3 3.871338-5 5.011872-3 5.937602-5 6.309573-3 9.062657-5 7.943282-3 1.385137-4 1.000000-2 2.123126-4 1.258925-2 3.264031-4 1.584893-2 5.036955-4 1.995262-2 7.767680-4 2.511886-2 1.194259-3 3.162278-2 1.824764-3 3.981072-2 2.773152-3 5.011872-2 4.191815-3 6.309573-2 6.302621-3 7.943282-2 9.419696-3 1.000000-1 1.397256-2 1.258925-1 2.055611-2 1.584893-1 2.997232-2 1.995262-1 4.328592-2 2.511886-1 6.191062-2 3.162278-1 8.771060-2 3.981072-1 1.231524-1 5.011872-1 1.713983-1 6.309573-1 2.365765-1 7.943282-1 3.239256-1 1.000000+0 4.401435-1 1.258925+0 5.937030-1 1.584893+0 7.953364-1 1.995262+0 1.058631+0 2.511886+0 1.400738+0 3.162278+0 1.843440+0 3.981072+0 2.414350+0 5.011872+0 3.148404+0 6.309573+0 4.089969+0 7.943282+0 5.295202+0 1.000000+1 6.835360+0 1.258925+1 8.800611+0 1.584893+1 1.130517+1 1.995262+1 1.449373+1 2.511886+1 1.854925+1 3.162278+1 2.370322+1 3.981072+1 3.024872+1 5.011872+1 3.855598+1 6.309573+1 4.909338+1 7.943282+1 6.245288+1 1.000000+2 7.938270+1 1.258925+2 1.008280+2 1.584893+2 1.279831+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608809+2 3.981072+2 3.304757+2 5.011872+2 4.184727+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.148000-5 7.513300+6 1.150000-5 7.521724+6 1.150000-5 1.126542+7 1.180000-5 1.145118+7 1.190000-5 1.150107+7 1.220000-5 1.163217+7 1.230269-5 1.166531+7 1.273503-5 1.178273+7 1.333521-5 1.185279+7 1.400000-5 1.183776+7 1.479108-5 1.173321+7 1.570000-5 1.153026+7 1.659587-5 1.127178+7 1.678804-5 1.120985+7 1.778279-5 1.088214+7 1.800000-5 1.080533+7 1.905461-5 1.043275+7 1.927525-5 1.035166+7 2.041738-5 9.937405+6 2.070000-5 9.832503+6 2.213095-5 9.318481+6 2.230000-5 9.257128+6 2.310000-5 8.968055+6 2.310000-5 9.608387+6 2.371374-5 9.448699+6 2.400000-5 9.376109+6 2.426610-5 9.304870+6 2.430000-5 9.295605+6 2.483133-5 9.150694+6 2.550000-5 8.975253+6 2.580000-5 8.897896+6 2.600160-5 8.843364+6 2.630268-5 8.761074+6 2.700000-5 8.574534+6 2.786121-5 8.354660+6 2.800000-5 8.317368+6 2.890000-5 8.078794+6 3.000000-5 7.803639+6 3.019952-5 7.751852+6 3.126079-5 7.482547+6 3.230000-5 7.233833+6 3.235937-5 7.219401+6 3.260000-5 7.159956+6 3.400000-5 6.827914+6 3.467369-5 6.676752+6 3.570000-5 6.442636+6 3.715352-5 6.132717+6 3.758374-5 6.040625+6 3.935501-5 5.682157+6 3.981072-5 5.593132+6 4.168694-5 5.240334+6 4.220000-5 5.147604+6 4.466836-5 4.726709+6 4.500000-5 4.673045+6 4.731513-5 4.315563+6 4.800000-5 4.215766+6 5.069907-5 3.848165+6 5.128614-5 3.773296+6 5.150000-5 3.746232+6 5.432503-5 3.412816+6 5.500000-5 3.338613+6 5.821032-5 3.011615+6 5.900000-5 2.937549+6 6.309573-5 2.589124+6 6.382635-5 2.532047+6 6.800000-5 2.239486+6 6.839116-5 2.214477+6 6.918310-5 2.164288+6 7.328245-5 1.929811+6 7.500000-5 1.842041+6 7.585776-5 1.799957+6 7.852356-5 1.677710+6 8.317638-5 1.490679+6 8.413951-5 1.455665+6 8.485300-5 1.430413+6 9.120108-5 1.229696+6 9.440609-5 1.143091+6 9.500000-5 1.127930+6 9.900000-5 1.033071+6 1.080000-4 8.568744+5 1.083927-4 8.501315+5 1.188502-4 6.948793+5 1.220000-4 6.558154+5 1.244515-4 6.275600+5 1.318257-4 5.522421+5 1.364583-4 5.110116+5 1.412538-4 4.728741+5 1.479108-4 4.262810+5 1.531087-4 3.940268+5 1.584893-4 3.642206+5 1.659587-4 3.278617+5 1.720000-4 3.018882+5 1.800000-4 2.718540+5 1.862087-4 2.513801+5 1.949845-4 2.257175+5 2.065380-4 1.973784+5 2.089296-4 1.921506+5 2.344229-4 1.463927+5 2.630268-4 1.112127+5 2.691535-4 1.051922+5 3.000000-4 8.098800+4 3.090295-4 7.534844+4 3.273407-4 6.551106+4 3.548134-4 5.387149+4 3.758374-4 4.677487+4 4.027170-4 3.948549+4 4.048500-4 3.897755+4 4.048500-4 6.974976+5 4.073803-4 6.887019+5 4.120975-4 6.705516+5 4.155000-4 6.578694+5 4.216965-4 6.393319+5 4.450000-4 5.863680+5 4.550000-4 5.626132+5 4.570882-4 5.571470+5 4.677351-4 5.304541+5 4.786301-4 5.021687+5 4.850000-4 4.866136+5 5.188000-4 4.118131+5 5.248075-4 4.002337+5 5.308844-4 3.889696+5 5.432503-4 3.681011+5 6.000000-4 2.901581+5 6.025596-4 2.872156+5 6.100000-4 2.788914+5 6.237348-4 2.637885+5 6.531306-4 2.350973+5 7.000000-4 1.966839+5 7.413102-4 1.696766+5 8.035261-4 1.378708+5 8.128305-4 1.337494+5 8.609938-4 1.149073+5 8.912509-4 1.049015+5 9.225714-4 9.558030+4 9.885531-4 7.934947+4 1.011579-3 7.457663+4 1.059254-3 6.586821+4 1.083927-3 6.190326+4 1.096478-3 5.997756+4 1.174898-3 4.961777+4 1.216186-3 4.512669+4 1.230269-3 4.372185+4 1.244515-3 4.234113+4 1.364583-3 3.275493+4 1.396368-3 3.071751+4 1.428894-3 2.880678+4 1.479108-3 2.616127+4 1.603245-3 2.081533+4 1.717908-3 1.710915+4 1.757924-3 1.602667+4 1.840772-3 1.403859+4 1.883649-3 1.313905+4 2.000000-3 1.105725+4 2.065380-3 1.007954+4 2.187762-3 8.521634+3 2.264644-3 7.704447+3 2.398833-3 6.512856+3 2.483133-3 5.888311+3 2.576800-3 5.277481+3 2.630268-3 4.966222+3 2.818383-3 4.047888+3 3.019952-3 3.299394+3 3.054921-3 3.187488+3 3.090295-3 3.079303+3 3.507519-3 2.106193+3 3.630781-3 1.898944+3 3.715352-3 1.772157+3 4.315191-3 1.124981+3 4.365158-3 1.086337+3 4.415704-3 1.049020+3 4.570882-3 9.445214+2 5.308844-3 5.965065+2 5.432503-3 5.557637+2 5.495409-3 5.364480+2 5.623413-3 4.998076+2 6.606934-3 3.030273+2 6.918310-3 2.626367+2 7.000000-3 2.532324+2 7.244360-3 2.273794+2 8.128305-3 1.584289+2 8.511380-3 1.370986+2 8.709636-3 1.275358+2 9.332543-3 1.024481+2 1.011579-2 7.934559+1 1.096478-2 6.144377+1 1.224700-2 4.311638+1 1.273503-2 3.804420+1 1.412538-2 2.729502+1 1.428894-2 2.629766+1 1.603245-2 1.812389+1 1.640590-2 1.682294+1 1.840772-2 1.159199+1 1.862087-2 1.116486+1 2.065380-2 7.963597+0 2.454709-2 4.533437+0 2.754229-2 3.105495+0 3.090295-2 2.126995+0 3.349654-2 1.631968+0 3.801894-2 1.073424+0 4.315191-2 7.059468-1 4.623810-2 5.616945-1 5.188000-2 3.837492-1 5.495409-2 3.169777-1 5.956621-2 2.425511-1 6.025596-2 2.334530-1 6.918310-2 1.475456-1 7.328245-2 1.218698-1 8.317638-2 8.002573-2 8.810489-2 6.609974-2 9.772372-2 4.685395-2 9.885531-2 4.509623-2 1.059254-1 3.591289-2 1.135011-1 2.859967-2 1.216186-1 2.277572-2 1.303167-1 1.813772-2 1.333521-1 1.681204-2 1.380384-1 1.501810-2 1.396368-1 1.446372-2 1.496236-1 1.154311-2 1.548817-1 1.031204-2 1.621810-1 8.872395-3 1.698244-1 7.646918-3 1.737801-1 7.099562-3 1.905461-1 5.274868-3 1.927525-1 5.082580-3 1.949845-1 4.899379-3 2.018366-1 4.388467-3 2.137962-1 3.653018-3 2.187762-1 3.394589-3 2.264644-1 3.040824-3 2.344229-1 2.728497-3 2.371374-1 2.631771-3 2.398833-1 2.538474-3 2.600160-1 1.971718-3 2.630268-1 1.903024-3 2.638800-1 1.884136-3 2.660725-1 1.836723-3 2.884032-1 1.433324-3 2.917427-1 1.383436-3 2.951209-1 1.335284-3 3.019952-1 1.245588-3 3.162278-1 1.084029-3 3.235937-1 1.011287-3 3.311311-1 9.434265-4 3.388442-1 8.813551-4 3.467369-1 8.234341-4 3.589219-1 7.436114-4 3.672823-1 6.947426-4 3.758374-1 6.500624-4 3.935501-1 5.692347-4 4.073803-1 5.152806-4 4.168694-1 4.829411-4 4.265795-1 4.526713-4 4.415705-1 4.107862-4 4.466836-1 3.977044-4 4.570882-1 3.733662-4 4.677351-1 3.505488-4 4.731513-1 3.396683-4 4.897788-1 3.090119-4 5.011872-1 2.906236-4 5.128614-1 2.733557-4 5.370318-1 2.418371-4 5.495409-1 2.278757-4 5.559043-1 2.212114-4 5.754399-1 2.023653-4 5.888437-1 1.907018-4 6.025596-1 1.800448-4 6.309573-1 1.605163-4 6.447400-1 1.520977-4 6.531306-1 1.474316-4 6.839117-1 1.319719-4 6.998420-1 1.248611-4 7.079458-1 1.215547-4 7.413102-1 1.092025-4 7.585776-1 1.035054-4 7.673615-1 1.008582-4 7.762471-1 9.828368-5 8.035261-1 9.094770-5 8.222427-1 8.636382-5 8.317638-1 8.423808-5 8.413951-1 8.216886-5 9.015711-1 7.077821-5 9.120108-1 6.909922-5 9.549926-1 6.278390-5 9.772372-1 5.984611-5 1.000000+0 5.704578-5 1.011579+0 5.573104-5 1.074800+0 4.929960-5 1.135011+0 4.415307-5 1.174898+0 4.125710-5 1.216186+0 3.855113-5 1.258925+0 3.602263-5 1.303167+0 3.375664-5 1.318257+0 3.303345-5 1.380384+0 3.029237-5 1.428894+0 2.846938-5 1.500000+0 2.609017-5 1.531087+0 2.519518-5 1.621810+0 2.284419-5 1.640590+0 2.242182-5 1.659587+0 2.200727-5 1.778279+0 1.967607-5 1.798871+0 1.933005-5 1.819701+0 1.899012-5 1.949845+0 1.707247-5 2.089296+0 1.540080-5 2.238721+0 1.389280-5 2.398833+0 1.257946-5 2.570396+0 1.139028-5 2.754229+0 1.035118-5 2.951209+0 9.406881-6 3.162278+0 8.580911-6 3.427678+0 7.708490-6 3.672823+0 7.055101-6 4.027170+0 6.269243-6 4.365158+0 5.672961-6 4.786301+0 5.060620-6 5.248075+0 4.531064-6 5.821032+0 4.001256-6 6.456542+0 3.546766-6 7.244360+0 3.102063-6 8.128305+0 2.723167-6 9.225714+0 2.359610-6 1.059254+1 2.026008-6 1.174898+1 1.807140-6 1.188502+1 1.784803-6 1.513561+1 1.374521-6 1.566751+1 1.324177-6 2.200000+1 9.243084-7 2.213095+1 9.185173-7 2.238721+1 9.073967-7 2.264644+1 8.964107-7 3.467369+1 5.757609-7 3.507519+1 5.689130-7 3.548134+1 5.621520-7 3.630781+1 5.488699-7 6.095369+1 3.229731-7 6.165950+1 3.191895-7 6.309573+1 3.117590-7 6.382635+1 3.081088-7 1.216186+2 1.603804-7 1.230269+2 1.585213-7 1.258925+2 1.548690-7 1.273503+2 1.530744-7 2.426610+2 8.000078-8 2.454709+2 7.907913-8 2.511886+2 7.726804-8 2.540973+2 7.637807-8 1.927525+3 1.003027-8 1.949845+3 9.915240-9 1.995262+3 9.689146-9 2.018366+3 9.578038-9 1.000000+5 1.93196-10 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.148000-5 1.148000-5 2.310000-5 1.148667-5 2.310000-5 1.226061-5 2.700000-5 1.269874-5 3.126079-5 1.309026-5 3.758374-5 1.357713-5 5.150000-5 1.452399-5 6.382635-5 1.529342-5 7.585776-5 1.595616-5 8.485300-5 1.638736-5 9.900000-5 1.695289-5 1.083927-4 1.726424-5 1.244515-4 1.771827-5 1.479108-4 1.826730-5 1.720000-4 1.872625-5 1.949845-4 1.909588-5 2.089296-4 1.929272-5 2.344229-4 1.959716-5 2.691535-4 1.992163-5 3.273407-4 2.032689-5 4.048500-4 2.073119-5 4.048500-4 3.288370-5 5.432503-4 3.297693-5 1.603245-3 3.304730-5 1.000000+5 3.304938-5 1 7000 7 7 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.148000-5 0.0 4.048500-4 0.0 4.048500-4 1.323559-6 4.786301-4 1.330190-6 8.912509-4 1.333873-6 7.244360-3 1.329948-6 2.264644-1 1.328064-6 1.000000+5 1.328056-6 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.148000-5 0.0 1.150000-5 2.000000-8 1.150000-5 1.335365-8 2.310000-5 1.161333-5 2.310000-5 1.083939-5 2.700000-5 1.430126-5 3.260000-5 1.940038-5 4.800000-5 3.370701-5 7.328245-5 5.745620-5 9.900000-5 8.204711-5 1.531087-4 1.347377-4 2.691535-4 2.492319-4 4.048500-4 3.841188-4 4.048500-4 3.706427-4 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.048500-4 6.585200+5 4.073803-4 6.503148+5 4.155000-4 6.213060+5 4.216965-4 6.040912+5 4.450000-4 5.555480+5 4.550000-4 5.334500+5 4.677351-4 5.032248+5 4.850000-4 4.617740+5 5.308844-4 3.692204+5 6.100000-4 2.650820+5 6.531306-4 2.235427+5 8.035261-4 1.311643+5 8.912509-4 9.981121+4 1.083927-3 5.888841+4 1.230269-3 4.158482+4 1.479108-3 2.487555+4 1.757924-3 1.523374+4 2.065380-3 9.577851+3 2.483133-3 5.593454+3 3.019952-3 3.133184+3 3.715352-3 1.682436+3 4.570882-3 8.964811+2 5.623413-3 4.742900+2 7.000000-3 2.402480+2 8.709636-3 1.209692+2 1.096478-2 5.826726+1 1.412538-2 2.587850+1 1.840772-2 1.098848+1 2.454709-2 4.296775+0 3.349654-2 1.546574+0 5.188000-2 3.636171-1 9.885531-2 4.272117-2 1.333521-1 1.592585-2 1.621810-1 8.404857-3 1.927525-1 4.814854-3 2.264644-1 2.880668-3 2.600160-1 1.867886-3 2.951209-1 1.264959-3 3.311311-1 8.937379-4 3.672823-1 6.581525-4 4.073803-1 4.881411-4 4.466836-1 3.767596-4 4.897788-1 2.927381-4 5.370318-1 2.291013-4 5.888437-1 1.806591-4 6.447400-1 1.440900-4 6.998420-1 1.182876-4 7.585776-1 9.805564-5 8.222427-1 8.181552-5 9.015711-1 6.704981-5 1.000000+0 5.404000-5 1.135011+0 4.182720-5 1.258925+0 3.412511-5 1.380384+0 2.869679-5 1.500000+0 2.471600-5 1.621810+0 2.164098-5 1.778279+0 1.863971-5 1.949845+0 1.617326-5 2.238721+0 1.316109-5 2.570396+0 1.079036-5 2.951209+0 8.911409-6 3.427678+0 7.302475-6 4.027170+0 5.939036-6 4.786301+0 4.794069-6 5.821032+0 3.790507-6 7.244360+0 2.938673-6 9.225714+0 2.235326-6 1.174898+1 1.711958-6 1.566751+1 1.254430-6 2.264644+1 8.491848-7 3.630781+1 5.199537-7 6.382635+1 2.918789-7 1.273503+2 1.450114-7 2.540973+2 7.235488-8 2.018366+3 9.073546-9 1.000000+5 1.83020-10 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.048500-4 3.360300-5 1.000000+5 3.360300-5 1 7000 7 7 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.048500-4 1.401900-6 1.000000+5 1.401900-6 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.048500-4 3.698451-4 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.310000-5 6.403320+5 2.371374-5 6.898334+5 2.430000-5 7.343000+5 2.483133-5 7.713879+5 2.550000-5 8.142460+5 2.630268-5 8.598471+5 2.700000-5 8.949160+5 2.786121-5 9.327772+5 2.890000-5 9.710440+5 3.000000-5 1.003890+6 3.126079-5 1.033200+6 3.260000-5 1.056080+6 3.400000-5 1.072368+6 3.570000-5 1.083604+6 3.758374-5 1.087344+6 3.981072-5 1.082907+6 4.220000-5 1.070304+6 4.500000-5 1.048200+6 4.800000-5 1.018722+6 5.150000-5 9.797780+5 5.500000-5 9.380880+5 5.900000-5 8.891400+5 6.309573-5 8.392192+5 6.800000-5 7.809440+5 7.328245-5 7.211166+5 7.852356-5 6.654583+5 8.485300-5 6.036167+5 9.120108-5 5.474406+5 9.900000-5 4.862500+5 1.080000-4 4.254340+5 1.188502-4 3.642102+5 1.318257-4 3.053026+5 1.479108-4 2.488907+5 1.659587-4 2.014085+5 1.862087-4 1.618710+5 2.089296-4 1.291565+5 2.344229-4 1.022374+5 2.630268-4 8.029621+4 3.000000-4 6.045020+4 3.548134-4 4.174415+4 4.120975-4 2.981339+4 4.677351-4 2.226983+4 5.248075-4 1.696289+4 6.025596-4 1.213983+4 7.000000-4 8.380120+3 8.128305-4 5.748945+3 1.011579-3 3.280199+3 1.174898-3 2.217365+3 1.364583-3 1.488374+3 1.603245-3 9.615603+2 1.883649-3 6.164409+2 2.187762-3 4.050377+2 2.576800-3 2.539479+2 3.054921-3 1.550799+2 3.630781-3 9.332931+1 4.415704-3 5.206746+1 5.308844-3 2.984177+1 6.606934-3 1.528329+1 8.128305-3 8.047564+0 1.011579-2 4.057664+0 1.273503-2 1.957215+0 1.603245-2 9.369711-1 2.065380-2 4.134378-1 2.754229-2 1.618351-1 3.801894-2 5.612158-2 6.025596-2 1.224284-2 9.885531-2 2.371405-3 1.396368-1 7.605520-4 1.698244-1 4.019406-4 2.018366-1 2.306308-4 2.344229-1 1.433838-4 2.660725-1 9.654159-5 3.019952-1 6.547604-5 3.388442-1 4.633002-5 3.758374-1 3.416987-5 4.168694-1 2.538621-5 4.570882-1 1.962503-5 5.011872-1 1.527451-5 5.495409-1 1.197581-5 6.025596-1 9.461629-6 6.531306-1 7.750108-6 7.079458-1 6.390595-6 7.673615-1 5.302956-6 8.317638-1 4.430059-6 9.120108-1 3.635029-6 1.011579+0 2.933122-6 1.135011+0 2.324408-6 1.258925+0 1.896324-6 1.380384+0 1.594570-6 1.500000+0 1.373300-6 1.621810+0 1.202448-6 1.778279+0 1.035701-6 1.949845+0 8.986449-7 2.238721+0 7.312521-7 2.570396+0 5.995401-7 2.951209+0 4.951591-7 3.427678+0 4.057588-7 4.027170+0 3.299984-7 4.786301+0 2.663826-7 5.821032+0 2.106154-7 7.244360+0 1.632865-7 9.225714+0 1.242059-7 1.174898+1 9.512231-8 1.566751+1 6.970253-8 2.213095+1 4.834027-8 3.507519+1 2.993876-8 6.165950+1 1.679718-8 1.230269+2 8.342980-9 2.454709+2 4.162225-9 1.949845+3 5.21894-10 1.000000+5 1.01700-11 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.310000-5 2.310000-5 1.000000+5 2.310000-5 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.310000-5 0.0 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.150000-5 3.743700+6 1.190000-5 3.823600+6 1.230269-5 3.879700+6 1.273503-5 3.918600+6 1.333521-5 3.943800+6 1.400000-5 3.939300+6 1.479108-5 3.906400+6 1.570000-5 3.839200+6 1.678804-5 3.734500+6 1.800000-5 3.600700+6 1.927525-5 3.450600+6 2.070000-5 3.278600+6 2.230000-5 3.086500+6 2.426610-5 2.858800+6 2.600160-5 2.668700+6 2.800000-5 2.461400+6 3.019952-5 2.249400+6 3.235937-5 2.057700+6 3.467369-5 1.868400+6 3.715352-5 1.683600+6 3.981072-5 1.505400+6 4.220000-5 1.361300+6 4.500000-5 1.210000+6 4.800000-5 1.067500+6 5.128614-5 9.321000+5 5.500000-5 8.015900+5 5.900000-5 6.841200+5 6.382635-5 5.684500+5 6.918310-5 4.667600+5 7.585776-5 3.698300+5 8.413951-5 2.824600+5 9.500000-5 2.043600+5 1.083927-4 1.426800+5 1.220000-4 1.027400+5 1.364583-4 7.482600+4 1.531087-4 5.363800+4 1.720000-4 3.801800+4 1.949845-4 2.602500+4 2.344229-4 1.477000+4 3.090295-4 6.265300+3 3.548134-4 4.059000+3 4.027170-4 2.706700+3 4.570882-4 1.790800+3 5.188000-4 1.176300+3 6.000000-4 7.200500+2 7.413102-4 3.485900+2 9.225714-4 1.638100+2 1.059254-3 1.006579+2 1.216186-3 6.141834+1 1.396368-3 3.717582+1 1.603245-3 2.233588+1 1.840772-3 1.332182+1 2.065380-3 8.609519+0 2.398833-3 4.841630+0 2.818383-3 2.585254+0 3.507519-3 1.094377+0 4.315191-3 4.810530-1 5.432503-3 1.914497-1 7.244360-3 6.000019-2 9.332543-3 2.145209-2 1.224700-2 7.058717-3 1.640590-2 2.108376-3 3.090295-2 1.517608-4 4.315191-2 3.798534-5 5.495409-2 1.402435-5 6.918310-2 5.469045-6 8.317638-2 2.593924-6 9.772372-2 1.360255-6 1.135011-1 7.523017-7 1.303167-1 4.384697-7 1.496236-1 2.574427-7 1.698244-1 1.590672-7 1.905461-1 1.033627-7 2.137962-1 6.763633-8 2.371374-1 4.649017-8 2.630268-1 3.216617-8 2.917427-1 2.240398-8 3.235937-1 1.570427-8 3.589219-1 1.108904-8 3.935501-1 8.195589-9 4.265795-1 6.333287-9 4.677351-1 4.750030-9 5.128614-1 3.587015-9 5.754399-1 2.546438-9 6.309573-1 1.949930-9 6.839117-1 1.554497-9 7.413102-1 1.249378-9 8.035261-1 1.010676-9 9.015711-1 7.51433-10 9.549926-1 6.51781-10 1.000000+0 5.84980-10 1.074800+0 4.98560-10 1.135011+0 4.45194-10 1.216186+0 3.88822-10 1.318257+0 3.34935-10 1.428894+0 2.90622-10 1.640590+0 2.30047-10 1.798871+0 1.98200-10 1.949845+0 1.75078-10 2.238721+0 1.42450-10 2.570396+0 1.16792-10 2.951209+0 9.64646-11 3.427678+0 7.90487-11 4.027170+0 6.42893-11 4.786301+0 5.18960-11 5.821032+0 4.10328-11 7.244360+0 3.18111-11 9.225714+0 2.41974-11 1.188502+1 1.83008-11 1.566751+1 1.35791-11 2.238721+1 9.30424-12 3.548134+1 5.76373-12 6.309573+1 3.19674-12 1.258925+2 1.58812-12 2.511886+2 7.92339-13 1.995262+3 9.93584-14 1.000000+5 1.98120-15 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.150000-5 1.150000-5 1.000000+5 1.150000-5 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.150000-5 0.0 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.148000-5 7.513300+6 1.180000-5 7.647460+6 1.220000-5 7.766680+6 1.273503-5 7.864125+6 1.333521-5 7.908989+6 1.400000-5 7.898460+6 1.479108-5 7.826806+6 1.570000-5 7.691060+6 1.659587-5 7.519497+6 1.778279-5 7.258485+6 1.905461-5 6.957353+6 2.041738-5 6.626328+6 2.213095-5 6.212875+6 2.400000-5 5.777240+6 2.580000-5 5.377260+6 2.786121-5 4.947090+6 3.000000-5 4.532520+6 3.230000-5 4.120260+6 3.467369-5 3.731480+6 3.715352-5 3.362611+6 3.935501-5 3.064631+6 4.168694-5 2.777045+6 4.466836-5 2.449460+6 4.731513-5 2.192646+6 5.069907-5 1.905503+6 5.432503-5 1.643803+6 5.821032-5 1.408035+6 6.309573-5 1.165827+6 6.839116-5 9.582015+5 7.500000-5 7.594780+5 8.317638-5 5.806676+5 9.440609-5 4.144886+5 1.083927-4 2.845163+5 1.244515-4 1.937037+5 1.412538-4 1.350773+5 1.584893-4 9.658776+4 1.800000-4 6.608260+4 2.065380-4 4.346990+4 2.691535-4 1.916961+4 3.273407-4 1.041453+4 3.758374-4 6.723597+3 4.216965-4 4.638199+3 4.786301-4 3.060001+3 5.432503-4 2.004023+3 6.237348-4 1.253610+3 8.609938-4 4.133146+2 9.885531-4 2.555540+2 1.096478-3 1.769186+2 1.244515-3 1.119645+2 1.428894-3 6.744296+1 1.717908-3 3.409149+1 2.000000-3 1.925399+1 2.264644-3 1.199053+1 2.630268-3 6.709472+0 3.090295-3 3.561509+0 4.365158-3 9.029210-1 5.495409-3 3.593234-1 6.918310-3 1.419373-1 8.511380-3 6.109790-2 1.096478-2 2.163234-2 1.428894-2 7.247783-3 1.862087-2 2.407531-3 4.623810-2 5.361749-5 5.956621-2 1.871974-5 7.328245-2 7.960822-6 8.810489-2 3.749673-6 1.059254-1 1.780552-6 1.216186-1 1.024954-6 1.380384-1 6.218305-7 1.548817-1 3.972992-7 1.737801-1 2.555781-7 1.949845-1 1.656179-7 2.187762-1 1.081075-7 2.398833-1 7.735250-8 2.638800-1 5.509300-8 2.884032-1 4.048182-8 3.162278-1 2.963751-8 3.467369-1 2.186514-8 3.758374-1 1.685668-8 4.073803-1 1.308285-8 4.415705-1 1.022768-8 4.731513-1 8.336249-9 5.128614-1 6.617110-9 5.559043-1 5.293505-9 6.025596-1 4.268396-9 6.531306-1 3.468391-9 7.079458-1 2.839654-9 7.762471-1 2.278693-9 8.413951-1 1.894498-9 9.015711-1 1.627940-9 9.772372-1 1.375714-9 1.174898+0 9.49455-10 1.303167+0 7.76892-10 1.428894+0 6.54855-10 1.531087+0 5.79419-10 1.659587+0 5.06030-10 1.819701+0 4.36690-10 2.089296+0 3.54079-10 2.398833+0 2.89212-10 2.754229+0 2.37993-10 3.162278+0 1.97272-10 3.672823+0 1.62201-10 4.365158+0 1.30425-10 5.248075+0 1.04168-10 6.456542+0 8.15441-11 8.128305+0 6.26053-11 1.059254+1 4.65801-11 1.513561+1 3.16119-11 2.200000+1 2.12650-11 3.467369+1 1.32451-11 6.095369+1 7.43000-12 1.216186+2 3.68998-12 2.426610+2 1.84077-12 1.927525+3 2.30798-13 1.000000+5 4.44590-15 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.148000-5 1.148000-5 1.000000+5 1.148000-5 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.148000-5 0.0 1.000000+5 1.000000+5 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.825820-9 1.028750+0 1.825820-8 1.036640+0 1.825820-7 1.048300+0 1.024080-6 1.051200+0 1.389140-6 1.054080+0 1.825820-6 1.057700+0 2.488700-6 1.061100+0 3.237140-6 1.065100+0 4.285580-6 1.070400+0 5.978750-6 1.076200+0 8.262540-6 1.080600+0 1.031860-5 1.087100+0 1.390270-5 1.093710+0 1.825820-5 1.102600+0 2.531680-5 1.110700+0 3.302130-5 1.120600+0 4.417850-5 1.133300+0 6.143470-5 1.147500+0 8.483630-5 1.158200+0 1.054340-4 1.174100+0 1.408890-4 1.190110+0 1.825820-4 1.205100+0 2.271220-4 1.227500+0 3.038060-4 1.250000+0 3.931000-4 1.281300+0 5.378710-4 1.308600+0 6.835880-4 1.332500+0 8.258100-4 1.374400+0 1.107280-3 1.405800+0 1.344110-3 1.452900+0 1.738620-3 1.500000+0 2.177000-3 1.562500+0 2.819320-3 1.617200+0 3.431910-3 1.712900+0 4.602440-3 1.784700+0 5.550620-3 1.892300+0 7.062910-3 2.000000+0 8.667000-3 2.044000+0 9.343000-3 2.163500+0 1.121820-2 2.372600+0 1.458510-2 2.647100+0 1.906380-2 3.000000+0 2.479000-2 3.437500+0 3.173030-2 4.000000+0 4.023000-2 4.750000+0 5.068030-2 5.000000+0 5.398000-2 6.000000+0 6.636000-2 7.000000+0 7.737000-2 8.000000+0 8.731000-2 9.000000+0 9.633000-2 1.000000+1 1.045000-1 1.100000+1 1.120000-1 1.200000+1 1.188000-1 1.300000+1 1.252000-1 1.400000+1 1.311000-1 1.500000+1 1.367000-1 1.600000+1 1.419000-1 1.800000+1 1.514000-1 2.000000+1 1.599000-1 2.200000+1 1.677000-1 2.400000+1 1.747000-1 2.600000+1 1.812000-1 2.800000+1 1.871000-1 3.000000+1 1.926000-1 4.000000+1 2.153000-1 5.000000+1 2.325000-1 6.000000+1 2.462000-1 8.000000+1 2.667000-1 1.000000+2 2.819000-1 1.500000+2 3.071000-1 2.000000+2 3.229000-1 3.000000+2 3.418000-1 4.000000+2 3.530000-1 5.000000+2 3.605000-1 6.000000+2 3.659000-1 8.000000+2 3.731000-1 1.000000+3 3.779000-1 1.500000+3 3.848000-1 2.000000+3 3.887000-1 3.000000+3 3.928000-1 4.000000+3 3.951000-1 5.000000+3 3.965000-1 6.000000+3 3.975000-1 8.000000+3 3.988000-1 1.000000+4 3.996000-1 1.500000+4 4.008000-1 2.000000+4 4.014000-1 3.000000+4 4.020000-1 4.000000+4 4.024000-1 5.000000+4 4.026000-1 6.000000+4 4.027000-1 8.000000+4 4.029000-1 1.000000+5 4.030000-1 1 7000 7 8 1.400670+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.028370-8 2.136250+0 7.028370-7 2.156900+0 1.251650-6 2.169000+0 1.670410-6 2.184500+0 2.321920-6 2.201800+0 3.212440-6 2.214800+0 4.002450-6 2.234200+0 5.384010-6 2.253680+0 7.028370-6 2.281500+0 9.844480-6 2.307000+0 1.293070-5 2.338200+0 1.738650-5 2.377400+0 2.407820-5 2.410200+0 3.062340-5 2.446800+0 3.895470-5 2.485900+0 4.904610-5 2.532900+0 6.276840-5 2.556430+0 7.028370-5 2.611900+0 8.961910-5 2.660400+0 1.083440-4 2.745300+0 1.450110-4 2.809000+0 1.756150-4 2.904500+0 2.262320-4 3.000000+0 2.824000-4 3.125000+0 3.641590-4 3.234400+0 4.431220-4 3.425800+0 5.967940-4 3.569300+0 7.237510-4 3.784700+0 9.305640-4 4.000000+0 1.153000-3 4.250000+0 1.425100-3 4.625000+0 1.852990-3 5.000000+0 2.298000-3 5.500000+0 2.908990-3 6.000000+0 3.529000-3 6.750000+0 4.454210-3 7.000000+0 4.759000-3 8.000000+0 5.952000-3 9.000000+0 7.097000-3 1.000000+1 8.188000-3 1.100000+1 9.223000-3 1.200000+1 1.020000-2 1.300000+1 1.113000-2 1.400000+1 1.201000-2 1.500000+1 1.285000-2 1.600000+1 1.365000-2 1.800000+1 1.514000-2 2.000000+1 1.650000-2 2.200000+1 1.776000-2 2.400000+1 1.892000-2 2.600000+1 2.000000-2 2.800000+1 2.101000-2 3.000000+1 2.195000-2 4.000000+1 2.591000-2 5.000000+1 2.900000-2 6.000000+1 3.150000-2 8.000000+1 3.539000-2 1.000000+2 3.832000-2 1.500000+2 4.340000-2 2.000000+2 4.675000-2 3.000000+2 5.102000-2 4.000000+2 5.368000-2 5.000000+2 5.554000-2 6.000000+2 5.692000-2 8.000000+2 5.884000-2 1.000000+3 6.014000-2 1.500000+3 6.209000-2 2.000000+3 6.320000-2 3.000000+3 6.443000-2 4.000000+3 6.515000-2 5.000000+3 6.559000-2 6.000000+3 6.590000-2 8.000000+3 6.632000-2 1.000000+4 6.658000-2 1.500000+4 6.694000-2 2.000000+4 6.715000-2 3.000000+4 6.735000-2 4.000000+4 6.748000-2 5.000000+4 6.755000-2 6.000000+4 6.760000-2 8.000000+4 6.766000-2 1.000000+5 6.770000-2 1 7000 7 8 1.400670+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 7000 7 9 1.400670+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.000000+0 1.000000+5 7.000000+0 5.000000+5 6.993800+0 6.718700+5 6.990900+0 7.890600+5 6.989320+0 9.296900+5 6.987710+0 1.000000+6 6.987000+0 1.125000+6 6.985170+0 1.500000+6 6.979300+0 2.000000+6 6.963300+0 2.500000+6 6.942800+0 3.000000+6 6.917900+0 4.000000+6 6.855300+0 5.000000+6 6.776000+0 5.875000+6 6.694810+0 6.000000+6 6.682730+0 7.000000+6 6.574100+0 8.000000+6 6.451990+0 9.000000+6 6.321700+0 1.000000+7 6.184400+0 1.109400+7 6.019660+0 1.125000+7 5.995110+0 1.203100+7 5.871230+0 1.250000+7 5.796100+0 1.375000+7 5.593330+0 1.500000+7 5.387300+0 1.625000+7 5.178370+0 1.750000+7 4.969200+0 1.875000+7 4.761920+0 1.937500+7 4.660210+0 2.000000+7 4.560400+0 2.125000+7 4.365090+0 2.312500+7 4.086490+0 2.500000+7 3.825100+0 2.718800+7 3.542440+0 2.750000+7 3.504200+0 2.906300+7 3.321240+0 3.000000+7 3.218400+0 3.250000+7 2.965940+0 3.437500+7 2.799140+0 3.718800+7 2.580920+0 4.000000+7 2.393900+0 4.437500+7 2.159380+0 4.812500+7 2.003080+0 5.000000+7 1.937800+0 5.250000+7 1.862510+0 5.625000+7 1.769390+0 5.750000+7 1.742830+0 6.000000+7 1.694800+0 6.500000+7 1.616070+0 7.000000+7 1.552200+0 8.000000+7 1.446400+0 8.750000+7 1.375070+0 9.000000+7 1.352100+0 9.750000+7 1.284090+0 1.000000+8 1.262000+0 1.085900+8 1.187560+0 1.144500+8 1.137140+0 1.214800+8 1.076320+0 1.250000+8 1.045600+0 1.312500+8 9.908440-1 1.406300+8 9.113240-1 1.500000+8 8.378000-1 1.617200+8 7.550570-1 1.712900+8 6.927960-1 1.750000+8 6.696280-1 1.784700+8 6.482920-1 1.838500+8 6.159990-1 1.919300+8 5.689520-1 2.000000+8 5.237000-1 2.062500+8 4.899020-1 2.308600+8 3.753450-1 2.375000+8 3.502650-1 2.377000+8 3.495470-1 2.459000+8 3.219840-1 2.500000+8 3.095130-1 2.750000+8 2.480250-1 2.835900+8 2.307530-1 2.894500+8 2.197120-1 2.947300+8 2.101850-1 3.000000+8 2.010480-1 3.062500+8 1.906030-1 3.117200+8 1.818670-1 3.212900+8 1.675230-1 3.392300+8 1.438950-1 3.464100+8 1.356040-1 3.500000+8 1.317000-1 3.562500+8 1.252360-1 3.671900+8 1.148790-1 4.000000+8 8.895110-2 4.125000+8 8.055350-2 4.234400+8 7.382960-2 4.425800+8 6.343290-2 5.000000+8 4.135430-2 5.250000+8 3.500120-2 5.718800+8 2.614310-2 6.000000+8 2.207230-2 6.625000+8 1.536100-2 6.875000+8 1.349590-2 7.000000+8 1.271150-2 7.250000+8 1.138840-2 7.718800+8 9.414090-3 7.906300+8 8.718200-3 8.000000+8 8.381570-3 8.125000+8 7.940340-3 8.359400+8 7.147940-3 8.654200+8 6.236150-3 8.900900+8 5.553900-3 9.529000+8 4.149970-3 1.000000+9 3.374600-3 1.045900+9 2.799700-3 1.088000+9 2.387120-3 1.139500+9 1.989790-3 1.205600+9 1.603140-3 1.247700+9 1.409170-3 1.373800+9 9.881570-4 1.500000+9 7.172580-4 1.718800+9 4.346600-4 1.906300+9 2.952420-4 2.000000+9 2.463200-4 2.187500+9 1.749260-4 2.363300+9 1.297620-4 2.692900+9 7.787330-5 2.981300+9 5.209740-5 5.000000+9 6.624400-6 5.750000+9 3.811620-6 8.000000+9 1.042600-6 1.00000+10 4.352300-7 1.27030+10 1.714840-7 1.55700+10 7.806970-8 1.85560+10 3.978740-8 2.16210+10 2.219180-8 2.65200+10 1.022640-8 3.32650+10 4.361490-9 3.94540+10 2.308390-9 4.70230+10 1.205980-9 5.67350+10 6.05705-10 6.75510+10 3.21261-10 8.17480+10 1.61668-10 1.00000+11 7.88750-11 1.17140+11 4.51698-11 1.36540+11 2.64454-11 1.70670+11 1.22306-11 2.04860+11 6.55221-12 2.52170+11 3.24463-12 3.35790+11 1.24687-12 4.68190+11 4.17869-13 6.33390+11 1.56957-13 1.03630+12 3.27369-14 1.58930+12 8.60186-15 3.03270+12 1.18572-15 7.26730+12 8.61396-17 2.69580+13 1.82496-18 1.00000+14 3.96940-20 5.62340+14 2.42063-22 5.42470+15 2.72342-25 1.00000+17 4.03750-29 1 7000 7 0 1.400670+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.30000-12 1.000000+2 1.30000-10 1.000000+3 1.300000-8 1.000000+4 1.300000-6 1.000000+5 1.300000-4 5.000000+5 3.250000-3 6.718700+5 5.868321-3 7.890600+5 8.094004-3 9.296900+5 1.123621-2 1.000000+6 1.300000-2 1.125000+6 1.649010-2 1.500000+6 2.920000-2 2.000000+6 5.170000-2 2.500000+6 8.040000-2 3.000000+6 1.151000-1 4.000000+6 2.017000-1 5.000000+6 3.100000-1 5.875000+6 4.200330-1 6.000000+6 4.368180-1 7.000000+6 5.797000-1 8.000000+6 7.364600-1 9.000000+6 9.042000-1 1.000000+7 1.080000+0 1.109400+7 1.278750+0 1.125000+7 1.307440+0 1.203100+7 1.452170+0 1.250000+7 1.539700+0 1.375000+7 1.772470+0 1.500000+7 2.003000+0 1.625000+7 2.228330+0 1.750000+7 2.446800+0 1.875000+7 2.657050+0 1.937500+7 2.758520+0 2.000000+7 2.858000+0 2.125000+7 3.048640+0 2.312500+7 3.315380+0 2.500000+7 3.558600+0 2.718800+7 3.812940+0 2.750000+7 3.846890+0 2.906300+7 4.007360+0 3.000000+7 4.097000+0 3.250000+7 4.311800+0 3.437500+7 4.453020+0 3.718800+7 4.636790+0 4.000000+7 4.792000+0 4.437500+7 4.987420+0 4.812500+7 5.122470+0 5.000000+7 5.182000+0 5.250000+7 5.254070+0 5.625000+7 5.350560+0 5.750000+7 5.380580+0 6.000000+7 5.437000+0 6.500000+7 5.540240+0 7.000000+7 5.635000+0 8.000000+7 5.809000+0 8.750000+7 5.929580+0 9.000000+7 5.968000+0 9.750000+7 6.077840+0 1.000000+8 6.113000+0 1.085900+8 6.226560+0 1.144500+8 6.298480+0 1.214800+8 6.378060+0 1.250000+8 6.415700+0 1.312500+8 6.477240+0 1.406300+8 6.558950+0 1.500000+8 6.630000+0 1.617200+8 6.703240+0 1.712900+8 6.753430+0 1.750000+8 6.770310+0 1.784700+8 6.785630+0 1.838500+8 6.806880+0 1.919300+8 6.835130+0 2.000000+8 6.859900+0 2.062500+8 6.875510+0 2.308600+8 6.923390+0 2.375000+8 6.932290+0 2.377000+8 6.932540+0 2.459000+8 6.942620+0 2.500000+8 6.947000+0 2.750000+8 6.966450+0 2.835900+8 6.971560+0 2.894500+8 6.974260+0 2.947300+8 6.976650+0 3.000000+8 6.979000+0 3.062500+8 6.980790+0 3.117200+8 6.982330+0 3.212900+8 6.984950+0 3.392300+8 6.989520+0 3.464100+8 6.990710+0 3.500000+8 6.991300+0 3.562500+8 6.991920+0 3.671900+8 6.992990+0 4.000000+8 6.996000+0 4.125000+8 6.996430+0 4.234400+8 6.996790+0 4.425800+8 6.997410+0 5.000000+8 6.999100+0 5.250000+8 6.999290+0 5.718800+8 6.999620+0 6.000000+8 6.999800+0 6.625000+8 6.999860+0 6.875000+8 6.999890+0 7.000000+8 6.999900+0 7.250000+8 6.999930+0 7.718800+8 6.999970+0 7.906300+8 6.999990+0 8.000000+8 7.000000+0 8.125000+8 7.000000+0 8.359400+8 7.000000+0 8.654200+8 7.000000+0 8.900900+8 7.000000+0 9.529000+8 7.000000+0 1.000000+9 7.000000+0 1.045900+9 7.000000+0 1.088000+9 7.000000+0 1.139500+9 7.000000+0 1.205600+9 7.000000+0 1.247700+9 7.000000+0 1.373800+9 7.000000+0 1.500000+9 7.000000+0 1.718800+9 7.000000+0 1.906300+9 7.000000+0 2.000000+9 7.000000+0 2.187500+9 7.000000+0 2.363300+9 7.000000+0 2.692900+9 7.000000+0 2.981300+9 7.000000+0 5.000000+9 7.000000+0 5.750000+9 7.000000+0 8.000000+9 7.000000+0 1.00000+10 7.000000+0 1.27030+10 7.000000+0 1.55700+10 7.000000+0 1.85560+10 7.000000+0 2.16210+10 7.000000+0 2.65200+10 7.000000+0 3.32650+10 7.000000+0 3.94540+10 7.000000+0 4.70230+10 7.000000+0 5.67350+10 7.000000+0 6.75510+10 7.000000+0 8.17480+10 7.000000+0 1.00000+11 7.000000+0 1.17140+11 7.000000+0 1.36540+11 7.000000+0 1.70670+11 7.000000+0 2.04860+11 7.000000+0 2.52170+11 7.000000+0 3.35790+11 7.000000+0 4.68190+11 7.000000+0 6.33390+11 7.000000+0 1.03630+12 7.000000+0 1.58930+12 7.000000+0 3.03270+12 7.000000+0 7.26730+12 7.000000+0 2.69580+13 7.000000+0 1.00000+14 7.000000+0 5.62340+14 7.000000+0 5.42470+15 7.000000+0 1.00000+17 7.000000+0 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.047267-6 0.0 7.557843-6 0.0 7.579988-6 2.319160-1 7.595049-6 4.654271-1 7.613651-6 8.805978-1 7.617303-6 9.942648-1 7.632254-6 1.511661+0 7.650857-6 2.399045+0 7.685591-6 4.568509+0 7.711755-6 6.260384+0 7.730958-6 7.127157+0 7.750528-6 7.473532+0 7.769185-6 7.237110+0 7.789048-6 6.420317+0 7.816079-6 4.759690+0 7.841189-6 3.096090+0 7.855486-6 2.266984+0 7.874089-6 1.420599+0 7.878503-6 1.263290+0 7.892691-6 8.249267-1 7.899492-6 6.729415-1 7.915817-6 3.546803-1 7.929897-6 1.257929-1 7.953132-6 0.0 8.721726-6 0.0 8.722790-6 2.168765-8 8.744925-6 9.241623-7 8.765730-6 2.191896-6 8.787200-6 4.070527-6 8.809498-6 7.108211-6 8.831023-6 1.121479-5 8.852547-6 1.635503-5 8.895596-6 2.747850-5 8.917121-6 3.166174-5 8.938645-6 3.373084-5 8.960170-6 3.322727-5 8.981695-6 3.026629-5 9.003219-6 2.549411-5 9.046268-6 1.430581-5 9.067793-6 9.530775-6 9.088222-6 6.024080-6 9.109743-6 3.448106-6 9.132366-6 1.719547-6 9.151074-6 5.378734-7 9.152190-6 4.910930-7 9.175415-6 0.0 9.647314-6 0.0 9.669459-6 3.121526-2 9.694805-6 8.398026-2 9.718551-6 1.557077-1 9.725509-6 1.879646-1 9.742296-6 3.613711-1 9.749447-6 4.533286-1 9.766042-6 7.003647-1 9.773385-6 8.216635-1 9.797323-6 1.315654+0 9.824254-6 2.083713+0 9.851184-6 3.035488+0 9.893076-6 4.659288+0 9.920006-6 5.517677+0 9.944599-6 5.992241+0 9.968765-6 6.062702+0 9.993446-6 5.701321+0 1.001789-5 4.974958+0 1.008458-5 2.336241+0 1.011001-5 1.498098+0 1.013246-5 9.283139-1 1.015714-5 5.165067-1 1.018183-5 2.635651-1 1.020427-5 6.783755-2 1.022750-5 0.0 1.034185-5 0.0 1.036400-5 1.050723-2 1.037220-5 1.627721-2 1.039436-5 8.970236-2 1.042170-5 2.244153-1 1.042503-5 2.452242-1 1.044729-5 4.069088-1 1.047432-5 7.008025-1 1.050163-5 1.115690+0 1.057823-5 2.544967+0 1.060696-5 2.888854+0 1.063090-5 2.996267+0 1.065660-5 2.884792+0 1.068941-5 2.477661+0 1.075425-5 1.452795+0 1.078154-5 1.172385+0 1.080553-5 1.063478+0 1.083174-5 1.091098+0 1.088869-5 1.457010+0 1.093078-5 1.753451+0 1.096845-5 1.861102+0 1.103450-5 1.805381+0 1.108890-5 1.729922+0 1.131632-5 1.823816+0 1.132498-5 1.832538+0 1.134613-5 2.183417+0 1.138400-5 4.084871+0 1.140444-5 5.361046+0 1.143431-5 8.321056+0 1.146350-5 1.251225+1 1.150460-5 2.041459+1 1.155727-5 3.130429+1 1.158503-5 3.539027+1 1.160991-5 3.724539+1 1.163626-5 3.689149+1 1.166290-5 3.418424+1 1.169875-5 2.774423+1 1.175250-5 1.650539+1 1.177145-5 1.299294+1 1.179296-5 9.647066+0 1.182089-5 6.468987+0 1.184882-5 4.402595+0 1.188143-5 2.753737+0 1.190467-5 1.956016+0 1.368518-5 2.316982+0 1.625600-5 2.642226+0 2.008128-5 2.894386+0 2.027887-5 3.057646+0 2.051968-5 3.487838+0 2.064008-5 3.454815+0 2.090868-5 3.004856+0 2.109758-5 2.924560+0 2.151079-5 2.973038+0 2.187870-5 3.215074+0 2.221141-5 3.101584+0 2.402514-5 3.218065+0 2.892053-5 3.342170+0 3.529328-5 3.300391+0 4.647580-5 2.951568+0 6.839116-5 2.165947+0 8.162695-5 1.809671+0 9.798233-5 1.480403+0 1.153301-4 1.224669+0 1.325458-4 1.034588+0 1.551570-4 8.489684-1 1.781596-4 7.097849-1 2.056126-4 5.870012-1 2.406123-4 4.736930-1 2.746008-4 3.939908-1 3.156809-4 3.233123-1 3.649908-4 2.625913-1 3.839096-4 2.439940-1 3.839320-4 2.473632-1 3.858220-4 1.095325+0 3.867670-4 1.797922+0 3.877120-4 2.862436+0 3.887751-4 4.538237+0 3.914546-4 9.658486+0 3.925557-4 1.101203+1 3.935357-4 1.137054+1 3.945187-4 1.083100+1 3.956384-4 9.319182+0 3.979783-4 5.309287+0 3.990520-4 3.966189+0 3.999970-4 3.276065+0 4.010873-4 2.984850+0 4.028950-4 2.974807+0 4.043663-4 3.464089+0 4.061201-4 3.812372+0 4.086717-4 3.963866+0 4.760295-4 3.469072+0 5.401834-4 2.884318+0 6.373384-4 2.279833+0 7.353100-4 1.824033+0 8.531308-4 1.437339+0 9.775618-4 1.144207+0 1.110468-3 9.210773-1 1.255308-3 7.428001-1 1.402552-3 6.090915-1 1.565870-3 4.988554-1 1.768843-3 3.986268-1 1.935273-3 3.367407-1 2.164748-3 2.723666-1 2.394289-3 2.245507-1 2.687717-3 1.792839-1 3.022943-3 1.423583-1 3.397379-3 1.127647-1 3.817434-3 8.922404-2 4.165269-3 7.470772-2 4.564308-3 6.199060-2 4.989675-3 5.155821-2 5.451348-3 4.292121-2 5.986515-3 3.526994-2 6.538576-3 2.930530-2 7.187702-3 2.397609-2 7.880790-3 1.969815-2 8.636407-3 1.619410-2 9.412141-3 1.344012-2 1.041356-2 1.079237-2 1.156655-2 8.575130-3 1.260499-2 7.096315-3 1.377953-2 5.830024-3 1.523981-2 4.658842-3 1.674260-2 3.776639-3 1.817856-2 3.141864-3 2.005877-2 2.515208-3 2.197233-2 2.047609-3 2.402102-2 1.673422-3 2.634606-2 1.355349-3 2.906186-2 1.082794-3 3.217872-2 8.577940-4 3.550376-2 6.841139-4 3.937653-2 5.387899-4 4.357607-2 4.265133-4 4.777799-2 3.446917-4 5.188000-2 2.849836-4 5.619661-2 2.367625-4 6.089637-2 1.965106-4 6.683484-2 1.583580-4 7.201751-2 1.331448-4 7.972684-2 1.051443-4 8.633105-2 8.741573-5 9.352478-2 7.259214-5 1.007222-1 6.112769-5 1.115389-1 4.836648-5 1.226371-1 3.891842-5 1.335923-1 3.198258-5 1.447808-1 2.664269-5 1.591439-1 2.150652-5 1.755963-1 1.726541-5 1.927525-1 1.402466-5 2.109723-1 1.151071-5 2.301245-1 9.529643-6 2.554084-1 7.624402-6 2.769273-1 6.437743-6 3.071453-1 5.204549-6 3.398208-1 4.251308-6 3.796619-1 3.432477-6 4.205002-1 2.836212-6 4.570882-1 2.442355-6 5.029937-1 2.072262-6 5.573875-1 1.752561-6 6.148229-1 1.506857-6 6.868707-1 1.284526-6 7.673615-1 1.107781-6 8.585192-1 9.668672-7 1.000000+0 8.165841-7 1.173413+0 6.987257-7 1.410753+0 5.845836-7 1.696098+0 4.890875-7 2.039158+0 4.091914-7 2.451607+0 3.423469-7 2.947480+0 2.864219-7 3.543651+0 2.396327-7 4.260405+0 2.004869-7 5.122134+0 1.677359-7 6.158159+0 1.403350-7 7.403736+0 1.174102-7 8.901248+0 9.823035-8 9.760024+0 8.984950-8 1.000000+1 1.729912-7 1 7000 7 0 1.400670+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.999222+0 3.047267-6-6.986870+0 6.288725-6-6.774857+0 7.075816-6-6.409162+0 7.335652-6-5.998457+0 7.458125-6-5.533614+0 7.524278-6-5.015331+0 7.556073-6-4.533171+0 7.638649-6-2.623647+0 7.653659-6-2.404741+0 7.662241-6-2.376875+0 7.677938-6-2.500945+0 7.688715-6-2.736213+0 7.701361-6-3.183002+0 7.710588-6-3.682540+0 7.728426-6-4.907537+0 7.749459-6-6.721747+0 7.758816-6-7.464870+0 7.772066-6-6.318444+0 7.790901-6-4.976424+0 7.808393-6-4.109509+0 7.821964-6-3.705773+0 7.837134-6-3.505819+0 7.853699-6-3.602219+0 7.874089-6-3.973172+0 7.938837-6-5.540320+0 7.978314-6-6.208494+0 8.055746-6-6.832226+0 8.235685-6-7.486896+0 8.303092-6-7.537221+0 9.331179-6-6.339037+0 9.538687-6-5.806073+0 9.638721-6-5.294208+0 9.712614-6-4.565413+0 9.773385-6-3.617046+0 9.805552-6-3.195434+0 9.829490-6-3.002232+0 9.851184-6-2.997287+0 9.869021-6-3.161454+0 9.889693-6-3.555730+0 9.915518-6-4.393863+0 9.941700-6-5.586298+0 9.991444-6-8.090646+0 1.002371-5-6.869337+0 1.005519-5-6.305859+0 1.008250-5-6.220634+0 1.012124-5-6.676773+0 1.020510-5-8.195043+0 1.026978-5-7.334824+0 1.039436-5-6.062276+0 1.048507-5-5.057588+0 1.052242-5-4.854945+0 1.056319-5-5.003311+0 1.060377-5-5.581578+0 1.067002-5-6.794626+0 1.071271-5-7.137813+0 1.075425-5-6.984864+0 1.085519-5-5.732159+0 1.091499-5-5.396363+0 1.101397-5-5.304556+0 1.108890-5-4.853594+0 1.117231-5-4.016120+0 1.122736-5-3.213597+0 1.126055-5-2.552559+0 1.128391-5-1.963970+0 1.129418-5-1.655739+0 1.130765-5-1.176403+0 1.131632-5-8.083736-1 1.132065-5-5.974585-1 1.133030-5-3.578659-2 1.133556-5 2.726095-1 1.134084-5 5.972641-1 1.134349-5 7.772528-1 1.134850-5 1.192185+0 1.135293-5 1.490151+0 1.138400-5 3.283374+0 1.140189-5 4.438125+0 1.143771-5 6.982405+0 1.146723-5 8.473693+0 1.147868-5 8.665877+0 1.149730-5 8.570954+0 1.151100-5 8.018622+0 1.152577-5 6.945023+0 1.153608-5 5.900978+0 1.154765-5 4.383272+0 1.155368-5 3.388120+0 1.155727-5 2.645567+0 1.156861-5 4.673008-1 1.157145-5-1.071907-1 1.157358-5-5.555584-1 1.157677-5-1.267767+0 1.157916-5-1.856579+0 1.158222-5-2.692084+0 1.159999-5-7.005808+0 1.160991-5-9.919911+0 1.162773-5-5.149565+0 1.163118-5-4.095308+0 1.163299-5-3.455175+0 1.163626-5-2.500782+0 1.166003-5 3.491690+0 1.166290-5 4.272348+0 1.166957-5 5.749099+0 1.168318-5 8.265328+0 1.169875-5 1.080655+1 1.171649-5 1.275001+1 1.173584-5 1.399241+1 1.175250-5 1.428735+1 1.177145-5 1.383636+1 1.179296-5 1.265377+1 1.182089-5 1.065453+1 1.185289-5 8.145708+0 1.190249-5 4.658656+0 1.191151-5 3.916387+0 1.192516-5 3.129030+0 1.193878-5 2.496366+0 1.195238-5 1.959150+0 1.196596-5 1.491248+0 1.197951-5 1.077308+0 1.199304-5 7.063718-1 1.200653-5 3.710724-1 1.202001-5 6.618006-2 1.203345-5-2.122972-1 1.204687-5-4.685485-1 1.206026-5-7.051533-1 1.208700-5-1.128036+0 1.211363-5-1.495013+0 1.216657-5-2.103738+0 1.224522-5-2.793564+0 1.234865-5-3.453560+0 1.250110-5-4.121026+0 1.269886-5-4.682478+0 1.298447-5-5.180007+0 1.351819-5-5.655204+0 1.459038-5-5.980729+0 1.689260-5-5.977289+0 1.989439-5-5.834676+0 2.039618-5-6.005294+0 2.074196-5-5.296463+0 2.106428-5-5.437562+0 2.174068-5-5.632656+0 2.208893-5-5.407600+0 2.310000-5-5.339778+0 3.276800-5-4.152201+0 3.981072-5-3.468249+0 4.880125-5-2.849753+0 5.879968-5-2.420877+0 6.839116-5-2.171145+0 8.162695-5-1.976525+0 1.031375-4-1.838096+0 1.325458-4-1.801727+0 1.781596-4-1.876546+0 2.275767-4-2.059684+0 2.746008-4-2.351167+0 3.063593-4-2.669723+0 3.304456-4-3.051241+0 3.479536-4-3.494696+0 3.573260-4-3.851275+0 3.677603-4-3.716195+0 3.735984-4-3.496366+0 3.770461-4-3.241776+0 3.797507-4-2.902129+0 3.817765-4-2.474728+0 3.828378-4-2.130003+0 3.835704-4-1.788147+0 3.839096-4-1.547039+0 3.841018-4-1.380475+0 3.845863-4-1.086136+0 3.853495-4-6.743553-1 3.857039-4-4.576797-1 3.858220-4-3.647133-1 3.867670-4 2.849183-1 3.868851-4 3.824991-1 3.878301-4 9.422314-1 3.880368-4 1.029584+0 3.887751-4 1.225434+0 3.889818-4 1.228038+0 3.893694-4 1.149946+0 3.897201-4 1.019452+0 3.899268-4 8.964902-1 3.900819-4 7.818591-1 3.903144-4 5.738506-1 3.904307-4 4.516670-1 3.905497-4 3.071795-1 3.907833-4 4.999188-3 3.909604-4-2.381996-1 3.910947-4-4.373886-1 3.911930-4-5.930058-1 3.913425-4-8.509202-1 3.914546-4-1.070408+0 3.915521-4-1.293883+0 3.922000-4-2.628586+0 3.924298-4-3.196588+0 3.927105-4-3.946308+0 3.932889-4-5.374615+0 3.935357-4-4.681072+0 3.946290-4-2.220911+0 3.948942-4-1.725941+0 3.954810-4-7.243397-1 3.956384-4-4.958867-1 3.957834-4-3.129478-1 3.959206-4-1.583350-1 3.960492-4-2.735820-2 3.962903-4 1.856212-1 3.965013-4 3.400198-1 3.966859-4 4.520829-1 3.968490-4 5.335644-1 3.971302-4 6.361363-1 3.973422-4 6.806734-1 3.975012-4 6.942064-1 3.977397-4 6.779635-1 3.978590-4 6.487289-1 3.981166-4 5.167658-1 3.985822-4 3.161613-1 3.988171-4 1.861951-1 3.989346-4 1.053585-1 3.989933-4 5.776757-2 3.990520-4-2.960641-3 3.999970-4-7.614924-1 4.001181-4-8.785934-1 4.010873-4-1.605716+0 4.016192-4-1.924503+0 4.027218-4-2.468915+0 4.031455-4-2.724874+0 4.036370-4-2.876033+0 4.046090-4-2.994386+0 4.061201-4-2.977897+0 4.109948-4-2.660693+0 4.427929-4-1.830543+0 4.652352-4-1.344333+0 4.824336-4-1.049052+0 5.016438-4-8.004229-1 5.175575-4-6.405275-1 5.308844-4-5.293527-1 5.568784-4-3.526621-1 5.745766-4-2.501645-1 5.873890-4-1.867256-1 6.022299-4-1.175262-1 6.205080-4-4.076434-2 6.366104-4 1.625809-2 6.531306-4 6.872714-2 6.702704-4 1.152448-1 6.856363-4 1.505214-1 7.054648-4 1.899342-1 7.419569-4 2.466475-1 7.857108-4 2.975669-1 8.326620-4 3.374107-1 9.042188-4 3.732212-1 9.775618-4 3.888197-1 1.144516-3 3.890770-1 1.451889-3 3.427218-1 2.011220-3 2.529051-1 2.469324-3 1.990638-1 2.925537-3 1.599276-1 3.454313-3 1.271993-1 4.045835-3 1.010827-1 4.700094-3 8.049990-2 5.282755-3 6.692150-2 5.986515-3 5.463039-2 6.716537-3 4.505894-2 7.613768-3 3.629775-2 8.636407-3 2.892426-2 9.717050-3 2.320502-2 1.072148-2 1.917886-2 1.189371-2 1.557438-2 1.327543-2 1.236526-2 1.486224-2 9.624073-3 1.628827-2 7.743382-3 1.776857-2 6.211200-3 1.924667-2 4.990925-3 2.091138-2 3.887416-3 2.248527-2 3.045977-3 2.445496-2 2.195490-3 2.634606-2 1.538559-3 2.782549-2 1.107968-3 2.958237-2 6.734378-4 3.082097-2 4.075954-4 3.146913-2 2.800818-4 3.217872-2 1.487280-4 3.283102-2 3.469399-5 3.324096-2-3.304607-5 3.349654-2-7.512297-5 3.420508-2-1.853137-4 3.550376-2-3.722115-4 3.696327-2-5.606441-4 3.937653-2-8.299604-4 4.357607-2-1.217496-3 4.777799-2-1.515425-3 5.337603-2-1.806952-3 6.089637-2-2.079902-3 7.405111-2-2.372342-3 9.657632-2-2.624357-3 1.409254-1-2.814941-3 2.679699-1-2.937014-3 8.070027-1-2.978551-3 2.451607+0-2.983142-3 7.403736+0-2.983639-3 1.000000+1-2.983601-3 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.507359-6 1.024000-6 1.569996-6 1.068291-6 2.063213-6 1.135060-6 2.921798-6 1.206001-6 3.883342-6 1.281376-6 4.911134-6 1.361462-6 5.955297-6 1.446553-6 6.953359-6 1.536000-6 7.933832-6 1.633023-6 1.062466-5 1.684055-6 1.209597-5 1.736682-6 1.359015-5 1.790953-6 1.508203-5 1.846920-6 1.654461-5 1.904637-6 1.799264-5 1.920000-6 1.849764-5 2.025536-6 2.389987-5 2.088834-6 2.744465-5 2.154111-6 3.117512-5 2.221426-6 3.491617-5 2.290846-6 3.860083-5 2.362435-6 4.216074-5 2.400000-6 4.436649-5 2.436261-6 4.773866-5 2.512394-6 5.575788-5 2.590907-6 6.399496-5 2.671872-6 7.229537-5 2.755368-6 8.048552-5 2.841474-6 8.837114-5 3.000000-6 1.017276-4 3.021841-6 1.044836-4 3.116273-6 1.183371-4 3.213657-6 1.320253-4 3.375000-6 1.530145-4 3.524450-6 1.807282-4 3.634589-6 1.997350-4 3.796875-6 2.248402-4 3.865300-6 2.401954-4 3.986091-6 2.675875-4 4.110656-6 2.928129-4 4.239114-6 3.176796-4 4.271484-6 3.249094-4 4.371587-6 3.549346-4 4.508199-6 3.940570-4 4.649080-6 4.264698-4 4.805420-6 4.552094-4 4.944188-6 4.981632-4 5.098179-6 5.372939-4 5.247358-6 5.600336-4 5.406097-6 5.700592-4 5.531877-6 5.866126-4 5.667503-6 5.936327-4 5.743979-6 5.932673-4 5.798891-6 5.947789-4 5.926173-6 5.927586-4 6.049478-6 5.752180-4 6.102977-6 5.655526-4 6.168929-6 5.552581-4 6.284647-6 5.309480-4 6.396749-6 4.926908-4 6.505348-6 4.487563-4 6.610553-6 4.069172-4 6.712471-6 3.571334-4 6.811204-6 2.985260-4 6.889689-6 2.495186-4 7.002498-6 1.885451-4 7.181837-6 9.057556-5 7.308083-6 3.411391-5 7.349967-6 2.261562-5 7.507588-6 1.874741-5 7.655359-6 1.012354-4 7.700328-6 1.513787-4 7.793894-6 3.096107-4 7.923770-6 6.875688-4 8.045529-6 1.279142-3 8.074817-6 1.465006-3 8.159678-6 2.126044-3 8.266693-6 3.291006-3 8.367019-6 4.837443-3 8.421541-6 5.915576-3 8.461075-6 6.825214-3 8.549253-6 9.330339-3 8.850190-6 2.626278-2 8.914048-6 3.269080-2 8.973915-6 4.021809-2 9.030040-6 4.894281-2 9.082657-6 5.897501-2 9.131986-6 7.044813-2 9.178231-6 8.350692-2 9.221586-6 9.829267-2 9.262232-6 1.149398-1 9.300337-6 1.335828-1 9.337024-6 1.549759-1 9.369552-6 1.774393-1 9.400949-6 2.029731-1 9.430385-6 2.311375-1 9.457980-6 2.621085-1 9.483851-6 2.960664-1 9.508105-6 3.331976-1 9.530844-6 3.736987-1 9.552161-6 4.177834-1 9.572145-6 4.656916-1 9.590881-6 5.176985-1 9.608445-6 5.741220-1 9.624912-6 6.353229-1 9.655788-6 7.788384-1 9.682804-6 9.480403-1 9.706443-6 1.145626+0 9.727127-6 1.372386+0 9.745225-6 1.626623+0 9.761062-6 1.904252+0 9.774918-6 2.199430+0 9.787043-6 2.505408+0 9.806935-6 3.122951+0 9.847928-6 4.979785+0 9.874953-6 6.750924+0 9.896214-6 8.504239+0 9.909246-6 9.743965+0 9.920512-6 1.091655+1 9.944811-6 1.374451+1 9.949206-6 1.429550+1 9.962392-6 1.600882+1 9.972147-6 1.732437+1 9.977462-6 1.805397+1 9.993408-6 2.027267+1 1.000176-5 2.143717+1 1.000973-5 2.253831+1 1.002074-5 2.402467+1 1.003142-5 2.540620+1 1.003960-5 2.640893+1 1.005128-5 2.773595+1 1.006349-5 2.895932+1 1.007845-5 3.018585+1 1.009060-5 3.092709+1 1.009497-5 3.113300+1 1.010743-5 3.153524+1 1.011883-5 3.165499+1 1.013043-5 3.152894+1 1.014166-5 3.117083+1 1.015282-5 3.059255+1 1.016426-5 2.978348+1 1.017512-5 2.882853+1 1.018931-5 2.734200+1 1.020019-5 2.604837+1 1.021214-5 2.450425+1 1.022275-5 2.305252+1 1.023298-5 2.160414+1 1.023639-5 2.111445+1 1.024702-5 1.957743+1 1.025727-5 1.809520+1 1.026069-5 1.760426+1 1.027284-5 1.588364+1 1.028499-5 1.422012+1 1.030401-5 1.177771+1 1.031407-5 1.058172+1 1.032841-5 9.006064+0 1.034671-5 7.226657+0 1.035788-5 6.269063+0 1.037087-5 5.276834+0 1.037721-5 4.837660+0 1.040161-5 3.406426+0 1.041097-5 2.957539+0 1.042329-5 2.442139+0 1.043542-5 2.010501+0 1.044741-5 1.649524+0 1.045921-5 1.350299+0 1.047082-5 1.103273+0 1.048226-5 9.000950-1 1.049351-5 7.335526-1 1.050459-5 5.974808-1 1.051549-5 4.866559-1 1.053680-5 3.239005-1 1.055744-5 2.182234-1 1.056752-5 1.807359-1 1.058737-5 1.275542-1 1.060659-5 9.606468-2 1.062521-5 7.928395-2 1.064326-5 7.255992-2 1.066074-5 7.277765-2 1.067767-5 7.783130-2 1.069407-5 8.627799-2 1.070996-5 9.711275-2 1.074027-5 1.232898-1 1.075471-5 1.377320-1 1.078227-5 1.678403-1 1.080813-5 1.982787-1 1.083239-5 2.279288-1 1.085553-5 2.564180-1 1.089755-5 3.060491-1 1.095124-5 3.578800-1 1.100285-5 3.864133-1 1.100441-5 3.868889-1 1.107058-5 3.868215-1 1.113760-5 3.567080-1 1.120403-5 3.150989-1 1.125918-5 2.800741-1 1.131434-5 2.471450-1 1.136949-5 2.166240-1 1.142465-5 1.882564-1 1.145222-5 1.747727-1 1.147980-5 1.617030-1 1.150738-5 1.490154-1 1.153495-5 1.366865-1 1.156253-5 1.247023-1 1.161769-5 1.017646-1 1.164526-5 9.083540-2 1.167132-5 8.087152-2 1.168848-5 7.451535-2 1.170042-5 7.019773-2 1.171616-5 6.464725-2 1.174384-5 5.531320-2 1.175557-5 5.153849-2 1.179920-5 3.865656-2 1.184560-5 2.755441-2 1.188621-5 2.108033-2 1.189578-5 2.015450-2 1.192174-5 1.914854-2 1.195282-5 2.167821-2 1.198003-5 2.851654-2 1.200383-5 3.938150-2 1.202465-5 5.384144-2 1.204288-5 7.133307-2 1.207477-5 1.162153-1 1.209869-5 1.655221-1 1.211662-5 2.138434-1 1.213008-5 2.577260-1 1.215026-5 3.379653-1 1.216035-5 3.854569-1 1.217044-5 4.384412-1 1.221202-5 7.246283-1 1.223035-5 8.914432-1 1.224533-5 1.048979+0 1.226031-5 1.227153+0 1.227213-5 1.383238+0 1.229026-5 1.650255+0 1.230219-5 1.844823+0 1.232022-5 2.168037+0 1.233394-5 2.437619+0 1.234304-5 2.627430+0 1.237032-5 3.247784+0 1.237583-5 3.381811+0 1.239237-5 3.799522+0 1.240208-5 4.054630+0 1.241665-5 4.448237+0 1.243122-5 4.851349+0 1.243738-5 5.023743+0 1.244895-5 5.347795+0 1.245907-5 5.630227+0 1.246793-5 5.874698+0 1.247567-5 6.085277+0 1.248923-5 6.442799+0 1.249940-5 6.698551+0 1.251275-5 7.013012+0 1.252562-5 7.287960+0 1.252991-5 7.372441+0 1.255131-5 7.731280+0 1.256469-5 7.895423+0 1.257460-5 7.983562+0 1.258869-5 8.056477+0 1.260189-5 8.066210+0 1.260895-5 8.047582+0 1.262388-5 7.953130+0 1.263512-5 7.833272+0 1.264852-5 7.638014+0 1.266268-5 7.373809+0 1.267486-5 7.103409+0 1.268780-5 6.778447+0 1.270416-5 6.322134+0 1.271579-5 5.974442+0 1.272778-5 5.602150+0 1.273787-5 5.282750+0 1.275153-5 4.847928+0 1.276657-5 4.374802+0 1.278067-5 3.945371+0 1.280289-5 3.312883+0 1.281617-5 2.967801+0 1.284284-5 2.360752+0 1.287659-5 1.764267+0 1.289091-5 1.566241+0 1.291170-5 1.330877+0 1.291838-5 1.267125+0 1.293247-5 1.150102+0 1.293841-5 1.107261+0 1.294656-5 1.054448+0 1.295337-5 1.015261+0 1.296978-5 9.381853-1 1.297928-5 9.041437-1 1.298448-5 8.886105-1 1.299042-5 8.735235-1 1.299933-5 8.560845-1 1.300824-5 8.447970-1 1.301798-5 8.394551-1 1.304018-5 8.547523-1 1.304418-5 8.616097-1 1.307212-5 9.455328-1 1.308266-5 9.937243-1 1.310278-5 1.110854+0 1.311420-5 1.191651+0 1.313600-5 1.372765+0 1.316361-5 1.645587+0 1.318401-5 1.870018+0 1.320040-5 2.058501+0 1.321023-5 2.172990+0 1.322561-5 2.351170+0 1.324098-5 2.524836+0 1.325237-5 2.648280+0 1.326576-5 2.785506+0 1.327324-5 2.857791+0 1.328447-5 2.959309+0 1.329940-5 3.079936+0 1.331497-5 3.186659+0 1.333072-5 3.273511+0 1.334149-5 3.320451+0 1.335723-5 3.371115+0 1.337512-5 3.404122+0 1.339358-5 3.413597+0 1.341451-5 3.399414+0 1.344010-5 3.356598+0 1.350262-5 3.222061+0 1.353593-5 3.182845+0 1.355503-5 3.180908+0 1.357598-5 3.198761+0 1.359202-5 3.227105+0 1.360888-5 3.270521+0 1.362348-5 3.319097+0 1.364575-5 3.411592+0 1.365993-5 3.481273+0 1.370586-5 3.758241+0 1.374165-5 4.022248+0 1.380155-5 4.553656+0 1.384070-5 4.964224+0 1.391741-5 5.903768+0 1.394480-5 6.265153+0 1.396856-5 6.576485+0 1.399140-5 6.863610+0 1.401227-5 7.106851+0 1.403331-5 7.324688+0 1.405401-5 7.503831+0 1.407290-5 7.630074+0 1.409000-5 7.709269+0 1.410943-5 7.754581+0 1.412490-5 7.754572+0 1.414394-5 7.709134+0 1.415977-5 7.632994+0 1.417567-5 7.522323+0 1.419000-5 7.394442+0 1.420544-5 7.228983+0 1.421975-5 7.052483+0 1.423699-5 6.814159+0 1.425317-5 6.569808+0 1.426850-5 6.324710+0 1.428940-5 5.978297+0 1.434102-5 5.145837+0 1.438722-5 4.582960+0 1.443145-5 4.406083+0 1.443673-5 4.419952+0 1.444408-5 4.454643+0 1.445231-5 4.516543+0 1.446811-5 4.712135+0 1.447627-5 4.857847+0 1.448162-5 4.971644+0 1.448831-5 5.135871+0 1.449801-5 5.420866+0 1.450733-5 5.752135+0 1.451296-5 5.982095+0 1.452566-5 6.591130+0 1.452890-5 6.768261+0 1.454652-5 7.903878+0 1.456298-5 9.263510+0 1.457738-5 1.072947+1 1.458999-5 1.225380+1 1.461067-5 1.531618+1 1.464972-5 2.341533+1 1.467287-5 2.995754+1 1.468341-5 3.343280+1 1.470160-5 4.022943+1 1.471979-5 4.810781+1 1.473034-5 5.319850+1 1.475047-5 6.402565+1 1.477757-5 8.094184+1 1.479225-5 9.122411+1 1.482848-5 1.196920+2 1.484094-5 1.303689+2 1.486471-5 1.517094+2 1.487717-5 1.632458+2 1.488906-5 1.743818+2 1.490547-5 1.897962+2 1.492140-5 2.045735+2 1.493359-5 2.156220+2 1.494354-5 2.243886+2 1.495661-5 2.354357+2 1.497341-5 2.486689+2 1.499152-5 2.614173+2 1.500836-5 2.715769+2 1.501296-5 2.740362+2 1.503353-5 2.832264+2 1.504993-5 2.883012+2 1.506572-5 2.911922+2 1.508267-5 2.920650+2 1.508796-5 2.918628+2 1.511946-5 2.861001+2 1.513567-5 2.802474+2 1.515683-5 2.699552+2 1.517304-5 2.602767+2 1.518569-5 2.517959+2 1.520377-5 2.385007+2 1.522266-5 2.234620+2 1.523608-5 2.122732+2 1.525306-5 1.977400+2 1.526325-5 1.889199+2 1.528137-5 1.732433+2 1.529949-5 1.577950+2 1.532853-5 1.340625+2 1.533572-5 1.284581+2 1.537195-5 1.022558+2 1.540624-5 8.100281+1 1.543487-5 6.604003+1 1.547118-5 5.056441+1 1.551565-5 3.636751+1 1.553337-5 3.195643+1 1.555106-5 2.815991+1 1.556872-5 2.490655+1 1.558635-5 2.212866+1 1.560393-5 1.976333+1 1.562149-5 1.775312+1 1.563901-5 1.604640+1 1.567398-5 1.336379+1 1.570881-5 1.141933+1 1.574351-5 9.992136+0 1.577808-5 8.925563+0 1.581250-5 8.111504+0 1.584680-5 7.476623+0 1.588096-5 6.971488+0 1.591498-5 6.562606+0 1.594888-5 6.226929+0 1.598264-5 5.948224+0 1.601627-5 5.714746+0 1.608326-5 5.350041+0 1.614974-5 5.085619+0 1.621569-5 4.891766+0 1.628113-5 4.749275+0 1.634605-5 4.645147+0 1.641047-5 4.570195+0 1.647439-5 4.517710+0 1.653780-5 4.482703+0 1.660073-5 4.461392+0 1.666316-5 4.450837+0 1.678804-5 4.453387+0 1.690899-5 4.477259+0 1.702903-5 4.515845+0 1.726352-5 4.620779+0 1.771091-5 4.876365+0 1.872090-5 5.516443+0 1.942644-5 5.960501+0 2.033566-5 6.517273+0 2.153683-5 7.220754+0 2.275844-5 7.897645+0 2.342750-5 8.251111+0 2.471000-5 8.888404+0 2.543912-5 9.199693+0 2.568123-5 9.303321+0 2.580229-5 9.392487+0 2.590743-5 9.525806+0 2.593977-5 9.582206+0 2.603548-5 9.802422+0 2.613119-5 1.010912+1 2.626479-5 1.065652+1 2.638643-5 1.118086+1 2.642830-5 1.134105+1 2.650607-5 1.158129+1 2.656988-5 1.170606+1 2.664764-5 1.175714+1 2.670547-5 1.172421+1 2.679320-5 1.157696+1 2.686746-5 1.138875+1 2.707237-5 1.081719+1 2.718295-5 1.059948+1 2.722412-5 1.054536+1 2.730000-5 1.048593+1 2.735675-5 1.047482+1 2.750650-5 1.056741+1 2.764714-5 1.077579+1 2.788480-5 1.120616+1 2.796060-5 1.131895+1 2.805073-5 1.142253+1 2.817586-5 1.151405+1 2.859108-5 1.168222+1 3.147176-5 1.349015+1 3.350000-5 1.475305+1 3.564425-5 1.602682+1 3.950000-5 1.815761+1 4.230412-5 1.956793+1 4.501464-5 2.081946+1 4.731513-5 2.177202+1 5.000000-5 2.279244+1 5.490182-5 2.437999+1 5.851084-5 2.533252+1 6.304273-5 2.628647+1 6.726590-5 2.698233+1 7.233941-5 2.763727+1 7.931859-5 2.826533+1 8.709636-5 2.868995+1 9.601603-5 2.894158+1 1.048071-4 2.905137+1 1.198809-4 2.903365+1 1.369908-4 2.883570+1 1.596338-4 2.846141+1 1.827932-4 2.799035+1 2.108674-4 2.735419+1 2.322820-4 2.682699+1 2.549889-4 2.622740+1 2.813910-4 2.547647+1 2.944638-4 2.507663+1 3.102582-4 2.456055+1 3.239681-4 2.407978+1 3.398782-4 2.347555+1 3.567334-4 2.276957+1 3.730065-4 2.200868+1 3.896992-4 2.111580+1 4.047369-4 2.020496+1 4.171631-4 1.935153+1 4.285553-4 1.846899+1 4.387078-4 1.757804+1 4.474300-4 1.671404+1 4.556050-4 1.579790+1 4.628929-4 1.487141+1 4.752261-4 1.317492+1 4.766499-4 1.304431+1 4.839985-4 1.283094+1 4.892872-4 1.297682+1 4.935220-4 1.326761+1 4.965172-4 1.363627+1 4.989852-4 1.412051+1 5.010187-4 1.473063+1 5.026943-4 1.546708+1 5.040749-4 1.630956+1 5.052362-4 1.724027+1 5.058989-4 1.788208+1 5.069862-4 1.913739+1 5.078186-4 2.028716+1 5.088784-4 2.200826+1 5.099614-4 2.407448+1 5.130922-4 3.159480+1 5.145060-4 3.543915+1 5.157627-4 3.882860+1 5.168624-4 4.161539+1 5.175006-4 4.310355+1 5.182788-4 4.474990+1 5.190666-4 4.619365+1 5.199256-4 4.747623+1 5.207111-4 4.835552+1 5.215579-4 4.896721+1 5.223984-4 4.921325+1 5.232741-4 4.907663+1 5.245725-4 4.813366+1 5.251148-4 4.748438+1 5.258788-4 4.632849+1 5.264625-4 4.526819+1 5.273075-4 4.349267+1 5.282014-4 4.135863+1 5.290907-4 3.905025+1 5.295867-4 3.771450+1 5.308078-4 3.439630+1 5.326709-4 2.968047+1 5.337894-4 2.729403+1 5.343310-4 2.629679+1 5.350020-4 2.521721+1 5.357459-4 2.422690+1 5.363487-4 2.358267+1 5.370717-4 2.298949+1 5.378733-4 2.254415+1 5.386003-4 2.231296+1 5.390000-4 2.224771+1 5.394688-4 2.222063+1 5.402099-4 2.227213+1 5.406928-4 2.235789+1 5.419902-4 2.273803+1 5.446929-4 2.386732+1 5.463327-4 2.457354+1 5.478272-4 2.516510+1 5.501919-4 2.597739+1 5.518978-4 2.648194+1 5.535818-4 2.693072+1 5.577958-4 2.791938+1 5.639429-4 2.918571+1 5.694690-4 3.023275+1 5.795000-4 3.199358+1 5.853398-4 3.293595+1 5.937826-4 3.418036+1 6.048743-4 3.558448+1 6.179347-4 3.696960+1 6.303468-4 3.804567+1 6.468917-4 3.915620+1 6.674388-4 4.022215+1 6.928273-4 4.119927+1 7.311590-4 4.232076+1 7.820910-4 4.344792+1 8.354541-4 4.419880+1 8.891791-4 4.461223+1 9.671115-4 4.482085+1 1.060398-3 4.474172+1 1.148154-3 4.441988+1 1.206164-3 4.399215+1 1.447261-3 4.192021+1 1.616131-3 4.035935+1 1.791122-3 3.882583+1 2.008943-3 3.680350+1 2.238721-3 3.472729+1 2.444024-3 3.293185+1 2.709989-3 3.069296+1 2.950048-3 2.880442+1 3.162671-3 2.722357+1 3.435867-3 2.531566+1 3.761519-3 2.323914+1 4.112410-3 2.122544+1 4.442794-3 1.952768+1 4.886403-3 1.752419+1 5.447604-3 1.538830+1 6.074008-3 1.343074+1 7.058635-3 1.105513+1 8.939909-3 8.062032+0 1.412772-2 4.332791+0 1.679283-2 3.405462+0 1.959894-2 2.724856+0 2.238518-2 2.234018+0 2.515884-2 1.862243+0 2.814703-2 1.551733+0 3.417328-2 1.119942+0 3.989386-2 8.582497-1 4.883712-2 6.001360-1 5.831018-2 4.355844-1 7.132247-2 3.003855-1 8.737866-2 2.051850-1 1.087512-1 1.351620-1 1.424367-1 8.013469-2 1.970224-1 4.239740-2 3.164554-1 1.657707-2 7.651560-1 2.848902-3 2.341267+0 3.045495-4 7.070513+0 3.339633-5 2.135261+1 3.661873-6 6.448384+1 4.015168-7 1.947381+2 4.402545-8 5.880996+2 4.827294-9 1.995262+3 4.19378-10 6.309573+3 4.19378-11 1.995262+4 4.19378-12 6.309573+4 4.19378-13 1.000000+5 1.66957-13 1 8000 7 7 1.599940+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.438200-7 1.258900-6 3.864300-7 1.584900-6 6.124500-7 1.995300-6 9.706600-7 2.511900-6 1.538400-6 3.162300-6 2.438200-6 3.981100-6 3.864200-6 5.011900-6 6.124300-6 6.309600-6 9.706400-6 7.943300-6 1.538300-5 1.000000-5 2.438100-5 1.258900-5 3.864000-5 1.584900-5 6.124000-5 1.995300-5 9.705600-5 2.511900-5 1.538200-4 3.162300-5 2.437800-4 3.981100-5 3.863500-4 5.011900-5 6.122800-4 6.309600-5 9.703300-4 7.943300-5 1.537700-3 1.000000-4 2.435700-3 1.258900-4 3.857600-3 1.584900-4 6.109700-3 1.995300-4 9.668100-3 2.511900-4 1.529700-2 3.162300-4 2.417000-2 3.981100-4 3.814500-2 5.011900-4 6.002600-2 6.309600-4 9.404100-2 7.943300-4 1.465600-1 1.000000-3 2.266200-1 1.258900-3 3.457700-1 1.584900-3 5.176100-1 1.995300-3 7.555500-1 2.511900-3 1.067600+0 3.162300-3 1.449900+0 3.981100-3 1.884100+0 5.011900-3 2.336200+0 6.309600-3 2.763200+0 7.943300-3 3.135300+0 1.000000-2 3.447700+0 1.258900-2 3.706400+0 1.584900-2 3.924000+0 1.995300-2 4.102600+0 2.511900-2 4.235300+0 3.162300-2 4.309200+0 3.981100-2 4.321800+0 5.011900-2 4.277800+0 6.309600-2 4.183500+0 7.943300-2 4.047700+0 1.000000-1 3.877900+0 1.258900-1 3.682400+0 1.584900-1 3.466300+0 1.995300-1 3.237400+0 2.511900-1 3.002200+0 3.162300-1 2.766300+0 3.981100-1 2.533500+0 5.011900-1 2.308300+0 6.309600-1 2.091700+0 7.943300-1 1.885000+0 1.000000+0 1.689100+0 1.258900+0 1.504700+0 1.584900+0 1.332300+0 1.995300+0 1.172400+0 2.511900+0 1.025300+0 3.162300+0 8.912200-1 3.981100+0 7.701800-1 5.011900+0 6.619100-1 6.309600+0 5.659200-1 7.943300+0 4.815400-1 1.000000+1 4.079400-1 1.258900+1 3.442100-1 1.584900+1 2.893700-1 1.995300+1 2.424700-1 2.511900+1 2.025600-1 3.162300+1 1.687600-1 3.981100+1 1.402600-1 5.011900+1 1.163200-1 6.309600+1 9.627000-2 7.943300+1 7.953200-2 1.000000+2 6.559500-2 1.258900+2 5.401900-2 1.584900+2 4.442400-2 1.995300+2 3.648700-2 2.511900+2 2.993200-2 3.162300+2 2.452900-2 3.981100+2 2.008100-2 5.011900+2 1.642400-2 6.309600+2 1.342100-2 7.943300+2 1.095800-2 1.000000+3 8.940800-3 1.258900+3 7.289400-3 1.584900+3 5.938900-3 1.995300+3 4.835500-3 2.511900+3 3.934700-3 3.162300+3 3.199900-3 3.981100+3 2.600800-3 5.011900+3 2.112900-3 6.309600+3 1.715600-3 7.943300+3 1.392300-3 1.000000+4 1.129500-3 1.258900+4 9.158200-4 1.584900+4 7.422800-4 1.995300+4 6.013900-4 2.511900+4 4.870500-4 3.162300+4 3.943000-4 3.981100+4 3.191000-4 5.011900+4 2.581500-4 6.309600+4 2.087800-4 7.943300+4 1.687900-4 1.000000+5 1.364200-4 1 8000 7 7 1.599940+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994173-4 2.511886-4 2.510160-4 3.162278-4 3.159543-4 3.981072-4 3.976741-4 5.011872-4 5.005016-4 6.309573-4 6.298729-4 7.943282-4 7.926094-4 1.000000-3 9.972921-4 1.258925-3 1.254657-3 1.584893-3 1.578182-3 1.995262-3 1.984726-3 2.511886-3 2.495466-3 3.162278-3 3.136769-3 3.981072-3 3.941645-3 5.011872-3 4.951258-3 6.309573-3 6.216796-3 7.943282-3 7.801833-3 1.000000-2 9.784365-3 1.258925-2 1.225931-2 1.584893-2 1.534221-2 1.995262-2 1.917338-2 2.511886-2 2.392149-2 3.162278-2 2.979215-2 3.981072-2 3.702759-2 5.011872-2 4.591156-2 6.309573-2 5.677411-2 7.943282-2 6.999345-2 1.000000-1 8.600452-2 1.258925-1 1.053016-1 1.584893-1 1.284803-1 1.995262-1 1.562018-1 2.511886-1 1.892348-1 3.162278-1 2.284649-1 3.981072-1 2.749195-1 5.011872-1 3.297416-1 6.309573-1 3.943395-1 7.943282-1 4.703626-1 1.000000+0 5.598169-1 1.258925+0 6.651839-1 1.584893+0 7.895170-1 1.995262+0 9.365988-1 2.511886+0 1.111115+0 3.162278+0 1.318800+0 3.981072+0 1.566707+0 5.011872+0 1.863435+0 6.309573+0 2.219581+0 7.943282+0 2.648046+0 1.000000+1 3.164601+0 1.258925+1 3.788609+0 1.584893+1 4.543730+0 1.995262+1 5.458869+0 2.511886+1 6.569590+0 3.162278+1 7.919522+0 3.981072+1 9.561965+0 5.011872+1 1.156272+1 6.309573+1 1.400233+1 7.943282+1 1.697992+1 1.000000+2 2.061728+1 1.258925+2 2.506452+1 1.584893+2 3.050611+1 1.995262+2 3.716928+1 2.511886+2 4.533442+1 3.162278+2 5.534701+1 3.981072+2 6.763120+1 5.011872+2 8.271433+1 6.309573+2 1.012436+2 7.943282+2 1.240197+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728476-8 1.000000-4 2.738910-8 1.258925-4 4.340200-8 1.584893-4 6.877813-8 1.995262-4 1.089662-7 2.511886-4 1.726538-7 3.162278-4 2.734634-7 3.981072-4 4.330867-7 5.011872-4 6.855861-7 6.309573-4 1.084444-6 7.943282-4 1.718822-6 1.000000-3 2.707929-6 1.258925-3 4.268241-6 1.584893-3 6.710876-6 1.995262-3 1.053631-5 2.511886-3 1.642018-5 3.162278-3 2.550851-5 3.981072-3 3.942652-5 5.011872-3 6.061403-5 6.309573-3 9.277745-5 7.943282-3 1.414492-4 1.000000-2 2.156353-4 1.258925-2 3.299417-4 1.584893-2 5.067244-4 1.995262-2 7.792404-4 2.511886-2 1.197377-3 3.162278-2 1.830631-3 3.981072-2 2.783129-3 5.011872-2 4.207163-3 6.309573-2 6.321621-3 7.943282-2 9.439371-3 1.000000-1 1.399548-2 1.258925-1 2.059095-2 1.584893-1 3.000900-2 1.995262-1 4.332447-2 2.511886-1 6.195386-2 3.162278-1 8.776291-2 3.981072-1 1.231877-1 5.011872-1 1.714456-1 6.309573-1 2.366178-1 7.943282-1 3.239657-1 1.000000+0 4.401831-1 1.258925+0 5.937415-1 1.584893+0 7.953762-1 1.995262+0 1.058664+0 2.511886+0 1.400772+0 3.162278+0 1.843477+0 3.981072+0 2.414364+0 5.011872+0 3.148437+0 6.309573+0 4.089993+0 7.943282+0 5.295236+0 1.000000+1 6.835399+0 1.258925+1 8.800645+0 1.584893+1 1.130520+1 1.995262+1 1.449375+1 2.511886+1 1.854927+1 3.162278+1 2.370325+1 3.981072+1 3.024875+1 5.011872+1 3.855600+1 6.309573+1 4.909340+1 7.943282+1 6.245291+1 1.000000+2 7.938272+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608808+2 3.981072+2 3.304760+2 5.011872+2 4.184729+2 6.309573+2 5.297137+2 7.943282+2 6.703085+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.415000-5 5.994968+6 1.419000-5 6.018234+6 1.419000-5 8.998034+6 1.450000-5 9.271368+6 1.496236-5 9.606222+6 1.500000-5 9.632159+6 1.531087-5 9.818278+6 1.550000-5 9.924176+6 1.590000-5 1.011416+7 1.610000-5 1.020037+7 1.650000-5 1.033987+7 1.678804-5 1.043035+7 1.717908-5 1.052458+7 1.757924-5 1.060661+7 1.800000-5 1.066627+7 1.840772-5 1.071119+7 1.883649-5 1.073576+7 1.927525-5 1.074965+7 1.995262-5 1.073914+7 2.041738-5 1.072165+7 2.113489-5 1.066577+7 2.162719-5 1.061954+7 2.238721-5 1.052399+7 2.300000-5 1.044030+7 2.371374-5 1.032339+7 2.471000-5 1.015387+7 2.540973-5 1.002011+7 2.660725-5 9.788296+6 2.730000-5 9.644729+6 2.851018-5 9.393592+6 2.917427-5 9.249603+6 2.923000-5 9.237212+6 2.923000-5 9.706108+6 2.980000-5 9.612881+6 3.054921-5 9.493884+6 3.126079-5 9.371100+6 3.150000-5 9.330325+6 3.198895-5 9.244882+6 3.273407-5 9.117363+6 3.350000-5 8.977910+6 3.388442-5 8.909049+6 3.450000-5 8.797271+6 3.507519-5 8.694398+6 3.548134-5 8.617880+6 3.630781-5 8.464723+6 3.672823-5 8.386734+6 3.764500-5 8.219703+6 3.801894-5 8.148733+6 3.900000-5 7.966105+6 3.950000-5 7.873692+6 4.027170-5 7.733259+6 4.120975-5 7.559173+6 4.168694-5 7.472420+6 4.300000-5 7.237750+6 4.415704-5 7.028672+6 4.500000-5 6.880211+6 4.570882-5 6.758379+6 4.695900-5 6.543241+6 4.731513-5 6.482866+6 4.841724-5 6.300001+6 5.000000-5 6.041881+6 5.011872-5 6.023057+6 5.150000-5 5.806861+6 5.300000-5 5.577349+6 5.308844-5 5.564156+6 5.500000-5 5.286322+6 5.623413-5 5.113049+6 5.650000-5 5.076580+6 5.821032-5 4.847984+6 5.956621-5 4.673099+6 6.025596-5 4.587305+6 6.165950-5 4.417891+6 6.309573-5 4.249533+6 6.400000-5 4.147922+6 6.606934-5 3.926637+6 6.683439-5 3.847265+6 6.839116-5 3.691919+6 7.079458-5 3.468438+6 7.161434-5 3.395173+6 7.328245-5 3.251868+6 7.585776-5 3.046658+6 7.673615-5 2.979803+6 7.852356-5 2.849210+6 8.222426-5 2.603675+6 8.511380-5 2.428790+6 8.810489-5 2.265049+6 8.912509-5 2.212479+6 9.332543-5 2.011495+6 9.440609-5 1.963987+6 9.885531-5 1.783414+6 1.011579-4 1.698571+6 1.040000-4 1.600960+6 1.083927-4 1.465384+6 1.109175-4 1.394329+6 1.161449-4 1.261498+6 1.174898-4 1.230286+6 1.244515-4 1.084141+6 1.273503-4 1.030421+6 1.303167-4 9.788131+5 1.400000-4 8.342731+5 1.479108-4 7.365417+5 1.548817-4 6.636083+5 1.584893-4 6.296213+5 1.659587-4 5.663585+5 1.720000-4 5.216440+5 1.778279-4 4.828426+5 1.862087-4 4.336331+5 1.950000-4 3.893948+5 2.000000-4 3.668700+5 2.089296-4 3.308230+5 2.187762-4 2.966858+5 2.264644-4 2.732269+5 2.371374-4 2.447259+5 2.426610-4 2.316213+5 2.600160-4 1.960681+5 2.691535-4 1.804085+5 2.786121-4 1.658221+5 3.019952-4 1.363176+5 3.200000-4 1.182639+5 3.388442-4 1.028012+5 3.427678-4 9.991319+4 3.758374-4 7.958942+4 3.935501-4 7.104691+4 4.000000-4 6.822863+4 4.265795-4 5.813616+4 4.518559-4 5.037764+4 4.570882-4 4.895551+4 4.841724-4 4.235242+4 5.128614-4 3.663985+4 5.188000-4 3.559415+4 5.372800-4 3.254943+4 5.372800-4 5.075634+5 5.390000-4 5.106111+5 5.410000-4 5.111875+5 5.440000-4 5.091777+5 5.495409-4 5.020960+5 5.740000-4 4.728121+5 5.821032-4 4.620193+5 5.850000-4 4.582514+5 5.970000-4 4.404630+5 6.100000-4 4.197538+5 6.309573-4 3.861263+5 6.606934-4 3.435238+5 6.683439-4 3.336211+5 6.760830-4 3.240034+5 7.244360-4 2.743706+5 7.585776-4 2.455850+5 7.673615-4 2.388684+5 7.800000-4 2.296522+5 8.413951-4 1.898920+5 8.768010-4 1.708222+5 8.810489-4 1.687138+5 1.000000-3 1.218523+5 1.023293-3 1.148533+5 1.035142-3 1.114191+5 1.047129-3 1.080852+5 1.135011-3 8.738104+4 1.161449-3 8.213997+4 1.216186-3 7.258242+4 1.230269-3 7.037201+4 1.333521-3 5.666529+4 1.364583-3 5.326446+4 1.396368-3 5.000540+4 1.445440-3 4.548668+4 1.531087-3 3.883984+4 1.566751-3 3.646154+4 1.603245-3 3.419821+4 1.659587-3 3.106378+4 1.757924-3 2.646208+4 1.840772-3 2.327678+4 1.862087-3 2.254225+4 1.949845-3 1.978545+4 2.041738-3 1.736433+4 2.113489-3 1.574501+4 2.238721-3 1.337474+4 2.317395-3 1.210992+4 2.371374-3 1.133335+4 2.454709-3 1.026087+4 2.660725-3 8.136681+3 2.722701-3 7.608397+3 2.754229-3 7.357075+3 2.851018-3 6.651851+3 3.162278-3 4.916530+3 3.198895-3 4.752117+3 3.273407-3 4.439378+3 3.349654-3 4.147224+3 3.715352-3 3.052949+3 3.801894-3 2.852048+3 3.845918-3 2.755395+3 4.415704-3 1.821865+3 4.466836-3 1.760129+3 4.570882-3 1.642783+3 4.623810-3 1.587077+3 5.370318-3 1.008415+3 5.559043-3 9.081523+2 5.623413-3 8.769982+2 6.456542-3 5.743140+2 6.918310-3 4.646985+2 7.328245-3 3.888048+2 7.498942-3 3.620394+2 8.000000-3 2.963101+2 8.609938-3 2.359633+2 9.332543-3 1.833313+2 9.660509-3 1.645365+2 9.885531-3 1.530898+2 1.083927-2 1.147121+2 1.202264-2 8.263396+1 1.230269-2 7.682496+1 1.244515-2 7.407393+1 1.380384-2 5.335031+1 1.548817-2 3.694049+1 1.659587-2 2.962596+1 1.717908-2 2.653127+1 1.972423-2 1.699641+1 2.137962-2 1.310647+1 2.238721-2 1.129765+1 2.540973-2 7.484584+0 2.570396-2 7.209474+0 2.951209-2 4.599766+0 3.388442-2 2.925296+0 4.168694-2 1.483224+0 4.315191-2 1.323605+0 4.786301-2 9.406201-1 4.841724-2 9.055783-1 5.559043-2 5.742076-1 5.888437-2 4.749293-1 6.382635-2 3.639716-1 6.918310-2 2.789373-1 7.762471-2 1.907306-1 8.317638-2 1.518340-1 9.225714-2 1.078431-1 9.549926-2 9.622039-2 9.885531-2 8.585149-2 1.096478-1 6.098047-2 1.148154-1 5.237991-2 1.258925-1 3.872282-2 1.303167-1 3.457538-2 1.318257-1 3.329475-2 1.445440-1 2.461767-2 1.513561-1 2.120250-2 1.603245-1 1.759186-2 1.640590-1 1.632686-2 1.717908-1 1.406326-2 1.737801-1 1.354819-2 1.840772-1 1.126832-2 1.927525-1 9.723926-3 1.949845-1 9.372326-3 2.041738-1 8.088566-3 2.065380-1 7.796105-3 2.187762-1 6.500791-3 2.264644-1 5.829348-3 2.398833-1 4.861584-3 2.454709-1 4.526377-3 2.511886-1 4.214285-3 2.600160-1 3.786021-3 2.722701-1 3.282399-3 2.754229-1 3.169283-3 2.951209-1 2.567916-3 3.019952-1 2.394155-3 3.090295-1 2.232154-3 3.311311-1 1.816175-3 3.349654-1 1.754879-3 3.467369-1 1.583124-3 3.589219-1 1.431304-3 3.672823-1 1.338268-3 3.715352-1 1.294098-3 3.845918-1 1.170143-3 3.890451-1 1.132410-3 4.073803-1 9.932573-4 4.120975-1 9.612704-4 4.229500-1 8.927870-4 4.265795-1 8.713581-4 4.466836-1 7.668803-4 4.518559-1 7.428135-4 4.570882-1 7.195015-4 4.677351-1 6.750502-4 4.897788-1 5.961461-4 4.954502-1 5.779335-4 5.128614-1 5.265668-4 5.370318-1 4.667249-4 5.432503-1 4.528818-4 5.623413-1 4.137677-4 5.821032-1 3.790597-4 5.888437-1 3.681498-4 5.956621-1 3.575728-4 6.165950-1 3.276303-4 6.309573-1 3.096380-4 6.447400-1 2.936527-4 6.531306-1 2.845024-4 6.683439-1 2.689078-4 6.839117-1 2.546113-4 6.998420-1 2.410751-4 7.161434-1 2.282805-4 7.244360-1 2.221402-4 7.413102-1 2.107054-4 7.585776-1 1.998591-4 7.852356-1 1.846551-4 8.035261-1 1.754842-4 8.222427-1 1.667687-4 8.511380-1 1.545249-4 8.709636-1 1.471188-4 9.015711-1 1.366700-4 9.332543-1 1.269815-4 9.440609-1 1.240104-4 9.549926-1 1.211089-4 9.885531-1 1.128052-4 1.000000+0 1.101700-4 1.023293+0 1.050828-4 1.035142+0 1.026281-4 1.074800+0 9.517128-5 1.122018+0 8.730555-5 1.135011+0 8.531521-5 1.159100+0 8.180083-5 1.202264+0 7.618560-5 1.258925+0 6.965825-5 1.273503+0 6.811954-5 1.303167+0 6.526742-5 1.364583+0 5.991652-5 1.380384+0 5.864880-5 1.396368+0 5.741083-5 1.412538+0 5.625002-5 1.496236+0 5.078897-5 1.500000+0 5.056308-5 1.513561+0 4.976465-5 1.621810+0 4.433111-5 1.640590+0 4.348503-5 1.659587+0 4.265713-5 1.819701+0 3.681686-5 1.840772+0 3.614686-5 2.044000+0 3.077299-5 2.089296+0 2.975361-5 2.113489+0 2.923287-5 2.317395+0 2.552389-5 2.344229+0 2.509466-5 2.398833+0 2.425948-5 2.630268+0 2.129620-5 2.660725+0 2.095221-5 2.722701+0 2.028220-5 3.019952+0 1.761442-5 3.090295+0 1.707097-5 3.162278+0 1.654527-5 3.507519+0 1.444090-5 3.589219+0 1.401089-5 3.672823+0 1.359445-5 4.168694+0 1.157837-5 4.265795+0 1.124533-5 4.365158+0 1.092245-5 5.011872+0 9.221652-6 5.128614+0 8.965135-6 5.248075+0 8.716180-6 6.095369+0 7.298843-6 6.237348+0 7.102264-6 6.456542+0 6.817722-6 7.762471+0 5.515198-6 7.852356+0 5.442598-6 8.128305+0 5.230800-6 1.000000+1 4.148314-6 1.011579+1 4.095224-6 1.047129+1 3.940192-6 1.348963+1 2.988035-6 1.364583+1 2.950701-6 1.412538+1 2.841612-6 1.905461+1 2.065574-6 1.972423+1 1.990936-6 2.065380+1 1.895699-6 2.917427+1 1.321345-6 3.000000+1 1.283362-6 3.019952+1 1.274503-6 3.090295+1 1.244227-6 5.011872+1 7.564464-7 5.069907+1 7.475365-7 5.188000+1 7.300424-7 1.000000+2 3.747529-7 1.011579+2 3.703944-7 1.035142+2 3.618323-7 1.995262+2 1.867538-7 2.018366+2 1.845993-7 2.065380+2 1.803658-7 7.943282+2 4.670402-8 8.035261+2 4.616777-8 8.222427+2 4.511382-8 1.000000+5 3.70401-10 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.415000-5 1.415000-5 2.923000-5 1.416333-5 2.923000-5 1.489120-5 3.450000-5 1.535902-5 4.168694-5 1.585893-5 5.650000-5 1.670660-5 8.222426-5 1.806104-5 1.011579-4 1.892447-5 1.174898-4 1.954848-5 1.400000-4 2.025992-5 1.720000-4 2.109124-5 2.089296-4 2.188998-5 2.426610-4 2.251226-5 2.786121-4 2.305316-5 3.200000-4 2.355562-5 3.935501-4 2.424809-5 4.841724-4 2.489830-5 5.372800-4 2.521173-5 5.372800-4 3.796604-5 6.100000-4 3.809708-5 1.396368-3 3.824380-5 1.244515-2 3.831567-5 1.000000+5 3.832063-5 1 8000 7 7 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.415000-5 0.0 5.372800-4 0.0 5.372800-4 3.021460-6 5.495409-4 3.030906-6 5.970000-4 3.046377-6 1.047129-3 3.060000-6 1.096478-1 3.054371-6 1.000000+5 3.054337-6 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.415000-5 0.0 1.419000-5 4.000000-8 1.419000-5 2.675355-8 2.923000-5 1.506667-5 2.923000-5 1.433880-5 3.450000-5 1.914098-5 4.300000-5 2.705941-5 8.222426-5 6.416322-5 1.174898-4 9.794132-5 1.950000-4 1.733930-4 3.427678-4 3.189744-4 5.372800-4 5.120683-4 5.372800-4 4.962925-4 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.372800-4 4.750140+5 5.390000-4 4.783260+5 5.410000-4 4.792060+5 5.440000-4 4.776440+5 5.740000-4 4.453160+5 5.850000-4 4.320600+5 5.970000-4 4.156160+5 6.100000-4 3.962560+5 6.309573-4 3.645947+5 6.760830-4 3.060128+5 7.800000-4 2.172940+5 8.413951-4 1.797800+5 1.023293-3 1.088527+5 1.135011-3 8.284299+4 1.364583-3 5.051151+4 1.566751-3 3.457861+4 1.862087-3 2.137902+4 2.238721-3 1.268335+4 2.660725-3 7.714688+3 3.162278-3 4.660615+3 3.801894-3 2.702987+3 4.623810-3 1.503896+3 5.623413-3 8.309112+2 6.918310-3 4.402212+2 8.609938-3 2.234996+2 1.083927-2 1.086358+2 1.380384-2 5.051602+1 1.717908-2 2.511907+1 2.238721-2 1.069468+1 2.951209-2 4.353696+0 4.168694-2 1.403692+0 5.888437-2 4.494063-1 1.148154-1 4.955322-2 1.445440-1 2.328773-2 1.737801-1 1.281586-2 2.065380-1 7.374774-3 2.398833-1 4.598957-3 2.722701-1 3.105173-3 3.090295-1 2.111675-3 3.467369-1 1.497680-3 3.845918-1 1.106983-3 4.265795-1 8.243331-4 4.677351-1 6.386198-4 5.128614-1 4.981487-4 5.623413-1 3.914359-4 6.165950-1 3.099463-4 6.683439-1 2.543949-4 7.244360-1 2.101508-4 7.852356-1 1.746873-4 8.511380-1 1.461828-4 9.332543-1 1.201267-4 1.035142+0 9.708873-5 1.159100+0 7.738500-5 1.273503+0 6.444332-5 1.396368+0 5.431273-5 1.513561+0 4.707930-5 1.659587+0 4.035511-5 1.840772+0 3.419622-5 2.113489+0 2.765554-5 2.398833+0 2.295029-5 2.722701+0 1.918760-5 3.162278+0 1.565234-5 3.672823+0 1.286077-5 4.365158+0 1.033299-5 5.248075+0 8.245819-6 6.456542+0 6.449772-6 8.128305+0 4.948499-6 1.047129+1 3.727567-6 1.412538+1 2.688255-6 2.065380+1 1.793401-6 3.090295+1 1.177101-6 5.188000+1 6.906564-7 1.035142+2 3.423121-7 2.065380+2 1.706354-7 8.222427+2 4.268009-8 1.000000+5 3.50420-10 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.372800-4 3.884000-5 1.000000+5 3.884000-5 1 8000 7 7 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.372800-4 3.228500-6 1.000000+5 3.228500-6 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.372800-4 4.952115-4 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.923000-5 4.688960+5 2.980000-5 5.001360+5 3.054921-5 5.387023+5 3.126079-5 5.727308+5 3.198895-5 6.051350+5 3.273407-5 6.355905+5 3.350000-5 6.643780+5 3.450000-5 6.981440+5 3.548134-5 7.273325+5 3.672823-5 7.593422+5 3.801894-5 7.871315+5 3.950000-5 8.130880+5 4.120975-5 8.362195+5 4.300000-5 8.537600+5 4.500000-5 8.666880+5 4.731513-5 8.745066+5 5.000000-5 8.760620+5 5.300000-5 8.705900+5 5.623413-5 8.583685+5 5.956621-5 8.408812+5 6.309573-5 8.186714+5 6.683439-5 7.923930+5 7.161434-5 7.563180+5 7.673615-5 7.163651+5 8.222426-5 6.735615+5 8.810489-5 6.287366+5 9.440609-5 5.828683+5 1.011579-4 5.367544+5 1.083927-4 4.912400+5 1.174898-4 4.397286+5 1.273503-4 3.908153+5 1.400000-4 3.375800+5 1.548817-4 2.864484+5 1.720000-4 2.398600+5 1.950000-4 1.923800+5 2.187762-4 1.560023+5 2.426610-4 1.283485+5 2.691535-4 1.048981+5 3.019952-4 8.316340+4 3.388442-4 6.544903+4 3.935501-4 4.755460+4 4.570882-4 3.431419+4 5.188000-4 2.586342+4 5.821032-4 1.986171+4 6.606934-4 1.473830+4 7.585776-4 1.056516+4 8.768010-4 7.398820+3 1.035142-3 4.875101+3 1.230269-3 3.136234+3 1.445440-3 2.062105+3 1.659587-3 1.429128+3 1.949845-3 9.246631+2 2.317395-3 5.755729+2 2.722701-3 3.670883+2 3.198895-3 2.324225+2 3.801894-3 1.413334+2 4.466836-3 8.819724+1 5.370318-3 5.104895+1 6.456542-3 2.932632+1 8.000000-3 1.526158+1 9.885531-3 7.944051+0 1.230269-2 4.013352+0 1.548817-2 1.940431+0 1.972423-2 8.975646-1 2.540973-2 3.971101-1 3.388442-2 1.558613-1 4.786301-2 5.030516-2 9.549926-2 5.165834-3 1.303167-1 1.859270-3 1.603245-1 9.470423-4 1.927525-1 5.237637-4 2.264644-1 3.138637-4 2.600160-1 2.037924-4 2.951209-1 1.381752-4 3.311311-1 9.771399-5 3.672823-1 7.200809-5 4.073803-1 5.343988-5 4.466836-1 4.126480-5 4.897788-1 3.207488-5 5.370318-1 2.511136-5 5.888437-1 1.980814-5 6.447400-1 1.580300-5 6.998420-1 1.297594-5 7.585776-1 1.075850-5 8.222427-1 8.977579-6 9.015711-1 7.357576-6 9.885531-1 6.072906-6 1.122018+0 4.700705-6 1.258925+0 3.751746-6 1.380384+0 3.158744-6 1.500000+0 2.723100-6 1.640590+0 2.342213-6 1.819701+0 1.983261-6 2.089296+0 1.602580-6 2.344229+0 1.351231-6 2.660725+0 1.128299-6 3.090295+0 9.193989-7 3.589219+0 7.546235-7 4.265795+0 6.056794-7 5.128614+0 4.828678-7 6.237348+0 3.824842-7 7.852356+0 2.931197-7 1.011579+1 2.205583-7 1.364583+1 1.589340-7 1.972423+1 1.072233-7 3.019952+1 6.865625-8 5.069907+1 4.027130-8 1.011579+2 1.995510-8 2.018366+2 9.946066-9 8.035261+2 2.487515-9 1.000000+5 1.99580-11 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.923000-5 2.923000-5 1.000000+5 2.923000-5 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.923000-5 0.0 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.419000-5 2.979800+6 1.450000-5 3.072000+6 1.496236-5 3.185300+6 1.531087-5 3.258100+6 1.590000-5 3.358400+6 1.650000-5 3.434700+6 1.717908-5 3.498400+6 1.800000-5 3.546900+6 1.883649-5 3.570500+6 1.995262-5 3.573700+6 2.113489-5 3.550700+6 2.238721-5 3.505100+6 2.371374-5 3.439800+6 2.540973-5 3.339500+6 2.730000-5 3.215200+6 2.917427-5 3.083700+6 3.150000-5 2.917200+6 3.388442-5 2.746500+6 3.630781-5 2.574800+6 3.900000-5 2.390200+6 4.168694-5 2.214000+6 4.415704-5 2.059200+6 4.695900-5 1.893100+6 5.011872-5 1.719000+6 5.308844-5 1.568100+6 5.650000-5 1.409500+6 6.025596-5 1.253000+6 6.400000-5 1.114800+6 6.839116-5 9.730800+5 7.328245-5 8.385400+5 7.852356-5 7.178400+5 8.511380-5 5.943200+5 9.332543-5 4.752100+5 1.040000-4 3.621200+5 1.161449-4 2.724400+5 1.303167-4 2.012200+5 1.479108-4 1.431200+5 1.659587-4 1.042300+5 1.862087-4 7.529400+4 2.089296-4 5.393800+4 2.371374-4 3.704800+4 2.786121-4 2.275800+4 3.427678-4 1.207200+4 4.000000-4 7.479900+3 4.518559-4 5.089800+3 5.128614-4 3.385200+3 5.821032-4 2.235500+3 6.683439-4 1.410800+3 7.673615-4 8.837500+2 1.000000-3 3.568800+2 1.161449-3 2.121500+2 1.333521-3 1.303500+2 1.531087-3 7.953700+1 1.757924-3 4.817200+1 2.041738-3 2.776700+1 2.371374-3 1.588000+1 2.754229-3 9.015400+0 3.273407-3 4.652900+0 3.715352-3 2.847521+0 4.415704-3 1.446468+0 5.370318-3 6.660451-1 7.498942-3 1.756165-1 9.660509-3 6.340010-2 1.244515-2 2.271839-2 1.659587-2 6.995939-3 2.570396-2 1.155670-3 4.315191-2 1.365956-4 5.559043-2 4.840325-5 6.918310-2 1.989261-5 8.317638-2 9.473365-6 9.885531-2 4.760836-6 1.148154-1 2.639452-6 1.318257-1 1.541581-6 1.513561-1 9.070897-7 1.717908-1 5.620051-7 1.949845-1 3.508820-7 2.187762-1 2.303080-7 2.454709-1 1.522394-7 2.722701-1 1.056161-7 3.019952-1 7.380054-8 3.349654-1 5.198946-8 3.715352-1 3.691275-8 4.120975-1 2.641527-8 4.518559-1 1.975179-8 4.954502-1 1.487492-8 5.432503-1 1.129404-8 5.956621-1 8.642167-9 6.531306-1 6.663842-9 7.161434-1 5.178490-9 7.852356-1 4.054267-9 9.015711-1 2.835341-9 9.549926-1 2.458085-9 1.000000+0 2.205600-9 1.074800+0 1.879500-9 1.135011+0 1.677821-9 1.202264+0 1.498872-9 1.303167+0 1.291685-9 1.412538+0 1.121068-9 1.621810+0 8.88730-10 1.819701+0 7.37910-10 2.044000+0 6.16070-10 2.317395+0 5.11006-10 2.630268+0 4.26402-10 3.019952+0 3.52642-10 3.507519+0 2.89116-10 4.168694+0 2.31809-10 5.011872+0 1.84627-10 6.095369+0 1.46121-10 7.762471+0 1.10428-10 1.000000+1 8.30640-11 1.348963+1 5.98371-11 1.905461+1 4.13559-11 2.917427+1 2.64569-11 5.011872+1 1.51512-11 1.000000+2 7.50700-12 1.995262+2 3.74141-12 7.943282+2 9.35653-13 1.000000+5 7.42090-15 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.419000-5 1.419000-5 1.000000+5 1.419000-5 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.419000-5 0.0 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.415000-5 5.994968+6 1.450000-5 6.199368+6 1.500000-5 6.438995+6 1.550000-5 6.633795+6 1.610000-5 6.816409+6 1.678804-5 6.968462+6 1.757924-5 7.084369+6 1.840772-5 7.152674+6 1.927525-5 7.177872+6 2.041738-5 7.157167+6 2.162719-5 7.087146+6 2.300000-5 6.965982+6 2.471000-5 6.774182+6 2.660725-5 6.529112+6 2.851018-5 6.264912+6 3.054921-5 5.972556+6 3.273407-5 5.655755+6 3.507519-5 5.319927+6 3.764500-5 4.960882+6 4.027170-5 4.606033+6 4.300000-5 4.254779+6 4.570882-5 3.925028+6 4.841724-5 3.615599+6 5.150000-5 3.287577+6 5.500000-5 2.947444+6 5.821032-5 2.665459+6 6.165950-5 2.392110+6 6.606934-5 2.084621+6 7.079458-5 1.802915+6 7.585776-5 1.547938+6 8.222426-5 1.285697+6 8.912509-5 1.060192+6 9.885531-5 8.204205+5 1.109175-4 6.116335+5 1.244515-4 4.527855+5 1.400000-4 3.307631+5 1.584893-4 2.358009+5 1.778279-4 1.708727+5 2.000000-4 1.219471+5 2.264644-4 8.457780+4 2.600160-4 5.582909+4 3.200000-4 2.964324+4 3.758374-4 1.805042+4 4.265795-4 1.213989+4 4.841724-4 8.101805+3 5.495409-4 5.365499+3 6.309573-4 3.395361+3 7.244360-4 2.132606+3 8.810489-4 1.092835+3 1.047129-3 6.031857+2 1.216186-3 3.575146+2 1.396368-3 2.190390+2 1.603245-3 1.332358+2 1.840772-3 8.046560+1 2.113489-3 4.826281+1 2.454709-3 2.753179+1 2.851018-3 1.559184+1 3.349654-3 8.390460+0 3.845918-3 4.901503+0 4.570882-3 2.484333+0 5.559043-3 1.141124+0 7.328245-3 3.773674-1 9.332543-3 1.422116-1 1.202264-2 5.075457-2 1.548817-2 1.793930-2 2.137962-2 4.733994-3 4.841724-2 1.587953-4 6.382635-2 5.075000-5 7.762471-2 2.275624-5 9.225714-2 1.128959-5 1.096478-1 5.643996-6 1.258925-1 3.263306-6 1.445440-1 1.900712-6 1.640590-1 1.166134-6 1.840772-1 7.532537-7 2.041738-1 5.117736-7 2.264644-1 3.502590-7 2.511886-1 2.415774-7 2.754229-1 1.748292-7 3.019952-1 1.274026-7 3.311311-1 9.355644-8 3.589219-1 7.189852-8 3.890451-1 5.562523-8 4.229500-1 4.294200-8 4.570882-1 3.400794-8 4.954502-1 2.688455-8 5.370318-1 2.140978-8 5.821032-1 1.717568-8 6.309573-1 1.388302-8 6.839117-1 1.130807-8 7.413102-1 9.284997-9 8.035261-1 7.682654-9 8.709636-1 6.405314-9 9.440609-1 5.380751-9 1.023293+0 4.552612-9 1.135011+0 3.691953-9 1.258925+0 3.015129-9 1.364583+0 2.593699-9 1.496236+0 2.200308-9 1.640590+0 1.884397-9 1.819701+0 1.595509-9 2.089296+0 1.289305-9 2.344229+0 1.087134-9 2.660725+0 9.07741-10 3.090295+0 7.39628-10 3.589219+0 6.07077-10 4.265795+0 4.87254-10 5.128614+0 3.88450-10 6.237348+0 3.07697-10 7.852356+0 2.35808-10 1.011579+1 1.77433-10 1.364583+1 1.27854-10 1.972423+1 8.62587-11 3.000000+1 5.56130-11 5.069907+1 3.23978-11 1.011579+2 1.60538-11 2.018366+2 8.00144-12 8.035261+2 2.00107-12 1.000000+5 1.60550-14 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.415000-5 1.415000-5 1.000000+5 1.415000-5 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.415000-5 0.0 1.000000+5 1.000000+5 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.396190-9 1.028750+0 2.396190-8 1.036640+0 2.396190-7 1.046400+0 1.079490-6 1.048300+0 1.343990-6 1.051200+0 1.823090-6 1.054080+0 2.396190-6 1.057700+0 3.266140-6 1.061100+0 4.248400-6 1.065100+0 5.624360-6 1.070400+0 7.846470-6 1.076200+0 1.084370-5 1.080600+0 1.354200-5 1.087100+0 1.824570-5 1.093710+0 2.396190-5 1.102600+0 3.322540-5 1.110700+0 4.333670-5 1.120600+0 5.797900-5 1.133300+0 8.062540-5 1.147500+0 1.113370-4 1.158200+0 1.383690-4 1.174100+0 1.849000-4 1.190110+0 2.396190-4 1.205100+0 2.980780-4 1.227500+0 3.987250-4 1.250000+0 5.159000-4 1.281300+0 7.057770-4 1.308600+0 8.967660-4 1.332500+0 1.083060-3 1.374400+0 1.451470-3 1.405800+0 1.761230-3 1.452900+0 2.276980-3 1.500000+0 2.850000-3 1.562500+0 3.690010-3 1.617200+0 4.491720-3 1.712900+0 6.024660-3 1.784700+0 7.266770-3 1.892300+0 9.246850-3 2.000000+0 1.134000-2 2.044000+0 1.222000-2 2.163500+0 1.466160-2 2.372600+0 1.905500-2 2.647100+0 2.491260-2 3.000000+0 3.241000-2 3.437500+0 4.147570-2 4.000000+0 5.256000-2 4.750000+0 6.620440-2 5.000000+0 7.051000-2 6.000000+0 8.664000-2 7.000000+0 1.010000-1 8.000000+0 1.139000-1 9.000000+0 1.257000-1 1.000000+1 1.363000-1 1.100000+1 1.460000-1 1.200000+1 1.549000-1 1.300000+1 1.632000-1 1.400000+1 1.709000-1 1.500000+1 1.781000-1 1.600000+1 1.849000-1 1.800000+1 1.973000-1 2.000000+1 2.084000-1 2.200000+1 2.185000-1 2.400000+1 2.277000-1 2.600000+1 2.361000-1 2.800000+1 2.439000-1 3.000000+1 2.511000-1 4.000000+1 2.804000-1 5.000000+1 3.028000-1 6.000000+1 3.204000-1 8.000000+1 3.472000-1 1.000000+2 3.668000-1 1.500000+2 3.993000-1 2.000000+2 4.193000-1 3.000000+2 4.433000-1 4.000000+2 4.573000-1 5.000000+2 4.666000-1 6.000000+2 4.733000-1 8.000000+2 4.823000-1 1.000000+3 4.882000-1 1.500000+3 4.968000-1 2.000000+3 5.015000-1 3.000000+3 5.066000-1 4.000000+3 5.093000-1 5.000000+3 5.110000-1 6.000000+3 5.123000-1 8.000000+3 5.138000-1 1.000000+4 5.148000-1 1.500000+4 5.162000-1 2.000000+4 5.170000-1 3.000000+4 5.178000-1 4.000000+4 5.182000-1 5.000000+4 5.184000-1 6.000000+4 5.186000-1 8.000000+4 5.188000-1 1.000000+5 5.190000-1 1 8000 7 8 1.599940+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.033850-8 2.136250+0 8.033850-7 2.147000+0 1.101500-6 2.156900+0 1.430710-6 2.169000+0 1.909380-6 2.184500+0 2.654100-6 2.201800+0 3.672020-6 2.214800+0 4.575050-6 2.234200+0 6.154250-6 2.253680+0 8.033850-6 2.281500+0 1.125280-5 2.307000+0 1.478060-5 2.338200+0 1.987380-5 2.377400+0 2.752280-5 2.410200+0 3.500450-5 2.446800+0 4.452770-5 2.485900+0 5.606270-5 2.532900+0 7.174810-5 2.556430+0 8.033850-5 2.611900+0 1.024400-4 2.660400+0 1.238430-4 2.745300+0 1.657550-4 2.809000+0 2.007370-4 2.904500+0 2.585950-4 3.000000+0 3.228000-4 3.125000+0 4.162620-4 3.234400+0 5.065330-4 3.425800+0 6.822160-4 3.569300+0 8.273580-4 3.784700+0 1.063770-3 4.000000+0 1.318000-3 4.250000+0 1.628880-3 4.625000+0 2.117640-3 5.000000+0 2.626000-3 5.500000+0 3.324360-3 6.000000+0 4.033000-3 6.750000+0 5.089700-3 7.000000+0 5.438000-3 8.000000+0 6.803000-3 9.000000+0 8.111000-3 1.000000+1 9.357000-3 1.100000+1 1.054000-2 1.200000+1 1.166000-2 1.300000+1 1.272000-2 1.400000+1 1.373000-2 1.500000+1 1.468000-2 1.600000+1 1.560000-2 1.800000+1 1.730000-2 2.000000+1 1.885000-2 2.200000+1 2.029000-2 2.400000+1 2.161000-2 2.600000+1 2.284000-2 2.800000+1 2.399000-2 3.000000+1 2.506000-2 4.000000+1 2.958000-2 5.000000+1 3.309000-2 6.000000+1 3.594000-2 8.000000+1 4.036000-2 1.000000+2 4.368000-2 1.500000+2 4.942000-2 2.000000+2 5.316000-2 3.000000+2 5.791000-2 4.000000+2 6.084000-2 5.000000+2 6.286000-2 6.000000+2 6.436000-2 8.000000+2 6.645000-2 1.000000+3 6.784000-2 1.500000+3 6.993000-2 2.000000+3 7.111000-2 3.000000+3 7.241000-2 4.000000+3 7.317000-2 5.000000+3 7.364000-2 6.000000+3 7.396000-2 8.000000+3 7.440000-2 1.000000+4 7.468000-2 1.500000+4 7.505000-2 2.000000+4 7.527000-2 3.000000+4 7.548000-2 4.000000+4 7.562000-2 5.000000+4 7.570000-2 6.000000+4 7.575000-2 8.000000+4 7.580000-2 1.000000+5 7.585000-2 1 8000 7 8 1.599940+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 8000 7 9 1.599940+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.000000+0 1.000000+5 8.000000+0 5.000000+5 7.997400+0 6.250000+5 7.995640+0 7.187500+5 7.994550+0 7.890600+5 7.993810+0 8.945300+5 7.992700+0 1.000000+6 7.991200+0 1.500000+6 7.981400+0 1.750000+6 7.974160+0 2.000000+6 7.966900+0 2.500000+6 7.948400+0 3.000000+6 7.925900+0 4.000000+6 7.869200+0 5.000000+6 7.797400+0 6.000000+6 7.710830+0 7.000000+6 7.611700+0 8.000000+6 7.499070+0 8.500000+6 7.439220+0 9.000000+6 7.376700+0 1.000000+7 7.244100+0 1.125000+7 7.065310+0 1.250000+7 6.874800+0 1.375000+7 6.675530+0 1.500000+7 6.469800+0 1.625000+7 6.259530+0 1.750000+7 6.046600+0 1.875000+7 5.832230+0 1.937500+7 5.725500+0 2.000000+7 5.619700+0 2.125000+7 5.409030+0 2.312500+7 5.100780+0 2.500000+7 4.804700+0 2.718800+7 4.476210+0 2.906300+7 4.211730+0 3.000000+7 4.085800+0 3.250000+7 3.769430+0 3.437500+7 3.552640+0 3.625000+7 3.353120+0 3.718800+7 3.259800+0 4.000000+7 3.003100+0 4.250000+7 2.802620+0 4.625000+7 2.545670+0 4.750000+7 2.470700+0 5.000000+7 2.335100+0 5.500000+7 2.113840+0 5.875000+7 1.982770+0 6.000000+7 1.944500+0 6.500000+7 1.814710+0 7.000000+7 1.713200+0 7.500000+7 1.632610+0 8.000000+7 1.566700+0 9.000000+7 1.462300+0 1.000000+8 1.376300+0 1.109400+8 1.289980+0 1.203100+8 1.218030+0 1.250000+8 1.182000+0 1.312500+8 1.133930+0 1.406300+8 1.063350+0 1.500000+8 9.961000-1 1.589800+8 9.351090-1 1.665000+8 8.856220-1 1.748800+8 8.314080-1 1.750000+8 8.306270-1 1.838500+8 7.739270-1 1.919300+8 7.226370-1 2.000000+8 6.720000-1 2.062500+8 6.334100-1 2.335900+8 4.881760-1 2.375000+8 4.714480-1 2.445300+8 4.440250-1 2.500000+8 4.249770-1 2.750000+8 3.556040-1 2.835900+8 3.347720-1 2.894500+8 3.208020-1 2.947300+8 3.082180-1 3.000000+8 2.956360-1 3.062500+8 2.806600-1 3.117200+8 2.677890-1 3.212900+8 2.463720-1 3.392300+8 2.118210-1 3.464100+8 2.003380-1 3.500000+8 1.951000-1 3.562500+8 1.868080-1 3.671900+8 1.740310-1 3.877000+8 1.530720-1 3.959000+8 1.450700-1 4.000000+8 1.410760-1 4.091800+8 1.320890-1 4.176000+8 1.239540-1 4.279000+8 1.143760-1 4.327100+8 1.100800-1 5.000000+8 6.547630-2 5.125000+8 6.020680-2 5.343800+8 5.249600-2 5.753900+8 4.126620-2 5.918000+8 3.751320-2 6.000000+8 3.574920-2 6.562500+8 2.579330-2 6.718800+8 2.377890-2 6.859400+8 2.223510-2 7.000000+8 2.093210-2 7.125000+8 1.995830-2 7.343800+8 1.853240-2 7.671900+8 1.669370-2 7.835900+8 1.580200-2 8.000000+8 1.488390-2 8.125000+8 1.415750-2 8.297100+8 1.314390-2 8.455000+8 1.222300-2 8.648200+8 1.113590-2 8.896000+8 9.839550-3 1.000000+9 5.716500-3 1.031300+9 4.989450-3 1.060500+9 4.432840-3 1.100900+9 3.808440-3 1.137900+9 3.348380-3 1.183200+9 2.891670-3 1.241300+9 2.432250-3 1.333700+9 1.889680-3 1.444600+9 1.427040-3 1.500000+9 1.250200-3 1.562500+9 1.078010-3 1.671900+9 8.377520-4 1.815400+9 6.111630-4 2.000000+9 4.190800-4 2.750000+9 1.200530-4 5.000000+9 1.138700-5 7.250000+9 2.647090-6 8.000000+9 1.800600-6 1.00000+10 7.537100-7 1.27030+10 2.982060-7 1.55700+10 1.363410-7 1.85560+10 6.976680-8 2.16210+10 3.905500-8 2.65200+10 1.809300-8 3.32650+10 7.763340-9 3.94540+10 4.128570-9 4.70230+10 2.167440-9 5.67350+10 1.094460-9 6.75510+10 5.83303-10 8.17480+10 2.95088-10 1.00000+11 1.44740-10 1.17140+11 8.32229-11 1.47470+11 3.75079-11 1.82930+11 1.79512-11 2.26780+11 8.68151-12 3.06680+11 3.17131-12 4.01990+11 1.30191-12 5.50790+11 4.68507-13 8.34870+11 1.24132-13 1.31280+12 2.99988-14 2.31100+12 5.25577-15 5.15000+12 4.68626-16 1.71130+13 1.35259-17 1.00000+14 7.82030-20 5.62340+14 4.78081-22 5.42470+15 5.38904-25 1.00000+17 7.99970-29 1 8000 7 0 1.599940+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.10000-12 1.000000+2 1.10000-10 1.000000+3 1.100000-8 1.000000+4 1.100000-6 1.000000+5 1.100000-4 5.000000+5 2.750000-3 6.250000+5 4.296875-3 7.187500+5 5.682617-3 7.890600+5 6.848773-3 8.945300+5 8.802023-3 1.000000+6 1.100000-2 1.500000+6 2.530000-2 1.750000+6 3.441520-2 2.000000+6 4.480000-2 2.500000+6 6.980000-2 3.000000+6 1.001000-1 4.000000+6 1.761000-1 5.000000+6 2.710000-1 6.000000+6 3.841910-1 7.000000+6 5.137000-1 8.000000+6 6.568110-1 8.500000+6 7.328590-1 9.000000+6 8.118000-1 1.000000+7 9.770000-1 1.125000+7 1.194080+0 1.250000+7 1.419900+0 1.375000+7 1.651210+0 1.500000+7 1.885000+0 1.625000+7 2.118480+0 1.750000+7 2.349700+0 1.875000+7 2.576840+0 1.937500+7 2.688710+0 2.000000+7 2.799000+0 2.125000+7 3.014080+0 2.312500+7 3.322920+0 2.500000+7 3.613500+0 2.718800+7 3.927910+0 2.906300+7 4.176130+0 3.000000+7 4.293000+0 3.250000+7 4.580310+0 3.437500+7 4.774320+0 3.625000+7 4.951080+0 3.718800+7 5.033340+0 4.000000+7 5.257000+0 4.250000+7 5.429000+0 4.625000+7 5.647990+0 4.750000+7 5.711810+0 5.000000+7 5.828000+0 5.500000+7 6.020960+0 5.875000+7 6.139280+0 6.000000+7 6.175000+0 6.500000+7 6.301780+0 7.000000+7 6.411000+0 7.500000+7 6.507880+0 8.000000+7 6.596000+0 9.000000+7 6.755000+0 1.000000+8 6.901000+0 1.109400+8 7.047320+0 1.203100+8 7.161580+0 1.250000+8 7.215900+0 1.312500+8 7.283300+0 1.406300+8 7.377340+0 1.500000+8 7.462000+0 1.589800+8 7.533340+0 1.665000+8 7.586660+0 1.748800+8 7.639770+0 1.750000+8 7.640450+0 1.838500+8 7.689840+0 1.919300+8 7.729440+0 2.000000+8 7.764200+0 2.062500+8 7.787300+0 2.335900+8 7.867040+0 2.375000+8 7.875420+0 2.445300+8 7.890010+0 2.500000+8 7.899900+0 2.750000+8 7.934000+0 2.835900+8 7.943210+0 2.894500+8 7.948220+0 2.947300+8 7.952650+0 3.000000+8 7.957000+0 3.062500+8 7.960700+0 3.117200+8 7.963880+0 3.212900+8 7.969320+0 3.392300+8 7.976770+0 3.464100+8 7.979400+0 3.500000+8 7.980700+0 3.562500+8 7.982170+0 3.671900+8 7.984680+0 3.877000+8 7.989170+0 3.959000+8 7.990400+0 4.000000+8 7.991000+0 4.091800+8 7.991770+0 4.176000+8 7.992470+0 4.279000+8 7.993300+0 4.327100+8 7.993680+0 5.000000+8 7.997700+0 5.125000+8 7.997920+0 5.343800+8 7.998280+0 5.753900+8 7.998930+0 5.918000+8 7.999180+0 6.000000+8 7.999300+0 6.562500+8 7.999590+0 6.718800+8 7.999670+0 6.859400+8 7.999730+0 7.000000+8 7.999800+0 7.125000+8 7.999830+0 7.343800+8 7.999870+0 7.671900+8 7.999940+0 7.835900+8 7.999970+0 8.000000+8 8.000000+0 8.125000+8 8.000000+0 8.297100+8 8.000000+0 8.455000+8 8.000000+0 8.648200+8 8.000000+0 8.896000+8 8.000000+0 1.000000+9 8.000000+0 1.031300+9 8.000000+0 1.060500+9 8.000000+0 1.100900+9 8.000000+0 1.137900+9 8.000000+0 1.183200+9 8.000000+0 1.241300+9 8.000000+0 1.333700+9 8.000000+0 1.444600+9 8.000000+0 1.500000+9 8.000000+0 1.562500+9 8.000000+0 1.671900+9 8.000000+0 1.815400+9 8.000000+0 2.000000+9 8.000000+0 2.750000+9 8.000000+0 5.000000+9 8.000000+0 7.250000+9 8.000000+0 8.000000+9 8.000000+0 1.00000+10 8.000000+0 1.27030+10 8.000000+0 1.55700+10 8.000000+0 1.85560+10 8.000000+0 2.16210+10 8.000000+0 2.65200+10 8.000000+0 3.32650+10 8.000000+0 3.94540+10 8.000000+0 4.70230+10 8.000000+0 5.67350+10 8.000000+0 6.75510+10 8.000000+0 8.17480+10 8.000000+0 1.00000+11 8.000000+0 1.17140+11 8.000000+0 1.47470+11 8.000000+0 1.82930+11 8.000000+0 2.26780+11 8.000000+0 3.06680+11 8.000000+0 4.01990+11 8.000000+0 5.50790+11 8.000000+0 8.34870+11 8.000000+0 1.31280+12 8.000000+0 2.31100+12 8.000000+0 5.15000+12 8.000000+0 1.71130+13 8.000000+0 1.00000+14 8.000000+0 5.62340+14 8.000000+0 5.42470+15 8.000000+0 1.00000+17 8.000000+0 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.000000-6 0.0 9.030040-6 0.0 9.871915-6 0.0 9.913590-6 3.647675-1 9.920512-6 4.548976-1 9.944811-6 9.114302-1 9.962392-6 1.371495+0 9.969109-6 1.566802+0 9.993408-6 2.492617+0 1.002074-5 3.836096+0 1.006630-5 6.324958+0 1.009497-5 7.518138+0 1.011883-5 8.044921+0 1.014234-5 8.019328+0 1.016849-5 7.345650+0 1.019501-5 6.157371+0 1.024702-5 3.404925+0 1.026069-5 2.726722+0 1.028499-5 1.756719+0 1.030401-5 1.188259+0 1.030929-5 1.051316+0 1.032841-5 6.687701-1 1.035281-5 2.659929-1 1.035788-5 1.966906-1 1.037721-5 1.112518-1 1.040161-5 0.0 1.120256-5 0.0 1.120403-5 3.034397-8 1.124560-5 1.741402-6 1.125918-5 2.592195-6 1.128676-5 5.050309-6 1.130096-5 6.796208-6 1.131434-5 8.650672-6 1.134043-5 1.340400-5 1.136949-5 2.011349-5 1.142465-5 3.434888-5 1.145222-5 4.000904-5 1.147980-5 4.317761-5 1.150738-5 4.318605-5 1.153495-5 4.004452-5 1.156253-5 3.443387-5 1.161769-5 2.032747-5 1.164526-5 1.396215-5 1.167132-5 9.143317-6 1.168848-5 6.703493-6 1.170042-5 5.269208-6 1.171616-5 3.787768-6 1.174384-5 1.646266-6 1.175404-5 9.918710-7 1.175557-5 9.266297-7 1.179920-5 0.0 1.217044-5 0.0 1.221202-5 5.279601-2 1.223035-5 8.735175-2 1.226031-5 1.686918-1 1.227213-5 2.134545-1 1.229026-5 2.897318-1 1.230219-5 3.537247-1 1.232022-5 4.602223-1 1.232874-5 5.187104-1 1.237032-5 9.643444-1 1.240208-5 1.386233+0 1.245907-5 2.239788+0 1.252991-5 3.352253+0 1.257460-5 3.896887+0 1.260895-5 4.095368+0 1.263849-5 4.067634+0 1.266718-5 3.836573+0 1.271124-5 3.149548+0 1.278393-5 1.648438+0 1.281617-5 1.086419+0 1.284462-5 7.038271-1 1.286186-5 5.311872-1 1.287659-5 4.020682-1 1.289091-5 3.064812-1 1.291838-5 1.529892-1 1.293566-5 7.880019-2 1.295337-5 5.905671-2 1.297526-5 3.885931-2 1.297928-5 4.221591-2 1.300824-5 1.127030-1 1.301798-5 1.405397-1 1.304018-5 2.230736-1 1.307212-5 3.891640-1 1.310278-5 6.117389-1 1.314064-5 9.802854-1 1.321023-5 1.765498+0 1.325237-5 2.138018+0 1.327324-5 2.249662+0 1.329940-5 2.316529+0 1.334149-5 2.212001+0 1.342380-5 1.651390+0 1.344010-5 1.542713+0 1.347248-5 1.417588+0 1.350262-5 1.379102+0 1.353593-5 1.409235+0 1.364575-5 1.673066+0 1.374165-5 1.728463+0 1.399140-5 1.753861+0 1.417567-5 1.797126+0 1.467821-5 1.971584+0 1.471979-5 2.321804+0 1.475047-5 3.077042+0 1.479225-5 4.356007+0 1.482848-5 6.110993+0 1.486924-5 9.035071+0 1.490547-5 1.235668+1 1.497341-5 1.943160+1 1.501296-5 2.278052+1 1.505194-5 2.457941+1 1.508796-5 2.457025+1 1.512577-5 2.277004+1 1.516533-5 1.939731+1 1.524287-5 1.152579+1 1.526325-5 9.594199+0 1.529949-5 6.864555+0 1.533572-5 4.915332+0 1.537195-5 3.627943+0 1.540079-5 2.912907+0 1.544441-5 2.183588+0 1.792593-5 2.730341+0 2.153683-5 3.272284+0 2.603548-5 3.718997+0 2.630667-5 3.969060+0 2.655492-5 4.225191+0 2.676928-5 4.067962+0 2.700856-5 3.820427+0 2.735675-5 3.776262+0 2.805073-5 4.019357+0 2.881484-5 4.024494+0 3.564425-5 4.380215+0 4.230412-5 4.455896+0 5.300000-5 4.227580+0 8.709636-5 2.889248+0 1.048071-4 2.361459+0 1.256550-4 1.908191+0 1.441300-4 1.610931+0 1.671572-4 1.332687+0 1.915106-4 1.113103+0 2.212356-4 9.147219-1 2.549889-4 7.500344-1 2.944638-4 6.108944-1 3.398782-4 4.962323-1 3.896992-4 4.059837-1 4.474300-4 3.306242-1 5.105378-4 2.708106-1 5.105788-4 2.740705-1 5.130922-4 8.732496-1 5.143489-4 1.370234+0 5.156057-4 2.123075+0 5.170195-4 3.307830+0 5.206442-4 6.981337+0 5.220452-4 7.885140+0 5.232741-4 8.165489+0 5.245725-4 7.834500+0 5.258788-4 6.974237+0 5.293272-4 3.989878+0 5.306552-4 3.215501+0 5.315235-4 2.921156+0 5.321966-4 2.766188+0 5.334734-4 2.711535+0 5.358438-4 2.904773+0 5.378733-4 3.388036+0 5.402099-4 3.728811+0 5.431345-4 3.900995+0 5.694690-4 3.891795+0 6.179347-4 3.596599+0 6.928273-4 3.030620+0 8.055360-4 2.442895+0 9.303940-4 1.953860+0 1.060398-3 1.586710+0 1.206164-3 1.281081+0 1.349467-3 1.059958+0 1.493009-3 8.894249-1 1.678049-3 7.238005-1 1.862087-3 6.006655-1 2.080295-3 4.904074-1 2.298288-3 4.080999-1 2.542344-3 3.375656-1 2.879884-3 2.663399-1 3.162671-3 2.224881-1 3.538690-3 1.786414-1 3.913615-3 1.465288-1 4.328457-3 1.198873-1 4.746541-3 9.963461-2 5.288953-3 8.000065-2 5.886839-3 6.424745-2 6.455526-3 5.310632-2 7.058635-3 4.411742-2 7.732507-3 3.644421-2 8.418358-3 3.049598-2 9.178448-3 2.538492-2 1.008604-2 2.075816-2 1.123566-2 1.646593-2 1.239710-2 1.331310-2 1.366508-2 1.077503-2 1.489171-2 8.927808-3 1.652464-2 7.108381-3 1.836290-2 5.625517-3 2.019061-2 4.557365-3 2.238518-2 3.622203-3 2.442443-2 2.975822-3 2.712912-2 2.348998-3 3.015609-2 1.850107-3 3.271638-2 1.537041-3 3.628850-2 1.213912-3 3.989386-2 9.784065-4 4.411413-2 7.773838-4 4.883712-2 6.155885-4 5.365991-2 4.955611-4 5.831018-2 4.094422-4 6.435419-2 3.262757-4 6.994792-2 2.694790-4 7.622025-2 2.210822-4 8.249623-2 1.842509-4 8.986697-2 1.513466-4 9.832994-2 1.230327-4 1.087512-1 9.755760-5 1.201724-1 7.761745-5 1.329689-1 6.161108-5 1.454418-1 5.025629-5 1.587526-1 4.128939-5 1.737313-1 3.374406-5 1.923801-1 2.695238-5 2.109723-1 2.202036-5 2.340367-1 1.760703-5 2.540116-1 1.480468-5 2.754229-1 1.250024-5 2.993987-1 1.053618-5 3.254929-1 8.911559-6 3.575927-1 7.408565-6 3.946844-1 6.140899-6 4.431829-1 4.972607-6 4.897788-1 4.179782-6 5.370318-1 3.587875-6 5.888437-1 3.102977-6 6.685844-1 2.571445-6 7.651560-1 2.146103-6 8.511380-1 1.882519-6 9.885531-1 1.595739-6 1.173413+0 1.347329-6 1.410753+0 1.126289-6 1.696098+0 9.415118-7 2.039158+0 7.870492-7 2.451607+0 6.579274-7 2.947480+0 5.499891-7 3.543651+0 4.597589-7 4.260405+0 3.843317-7 5.122134+0 3.212790-7 6.158159+0 2.685706-7 7.403736+0 2.245094-7 8.901248+0 1.876768-7 9.760024+0 1.715927-7 1.000000+1 3.311053-7 1 8000 7 0 1.599940+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.001506+0 3.000000-6-8.012308+0 8.367019-6-7.916407+0 9.300337-6-7.564924+0 9.624912-6-7.096145+0 9.774918-6-6.537786+0 9.847928-6-5.957373+0 9.913590-6-4.869527+0 9.977462-6-3.603705+0 1.000176-5-3.323860+0 1.002074-5-3.314864+0 1.003960-5-3.549608+0 1.005504-5-3.935804+0 1.006630-5-4.365669+0 1.008946-5-5.532248+0 1.011603-5-7.317290+0 1.013555-5-8.657088+0 1.015816-5-7.093400+0 1.017512-5-6.047526+0 1.019501-5-5.102592+0 1.021214-5-4.582685+0 1.023298-5-4.243174+0 1.025727-5-4.213981+0 1.028499-5-4.557919+0 1.037721-5-6.366655+0 1.043542-5-7.130654+0 1.055744-5-7.862161+0 1.085553-5-8.617956+0 1.100441-5-8.846014+0 1.198003-5-7.992291+0 1.217044-5-7.500660+0 1.232874-5-6.547298+0 1.240208-5-6.190970+0 1.246793-5-6.292335+0 1.252562-5-6.796498+0 1.257460-5-7.623082+0 1.265211-5-9.384223+0 1.271124-5-8.303820+0 1.276079-5-7.967500+0 1.281617-5-8.199094+0 1.293841-5-9.551055+0 1.308266-5-8.240518+0 1.316361-5-7.909104+0 1.323330-5-8.185550+0 1.336717-5-9.508473+0 1.344010-5-9.647058+0 1.359202-5-9.340605+0 1.391741-5-1.031328+1 1.410943-5-1.125953+1 1.420544-5-1.108160+1 1.434102-5-9.805232+0 1.456298-5-7.117860+0 1.464022-5-5.779034+0 1.467287-5-4.967640+0 1.471524-5-3.543774+0 1.473034-5-2.896155+0 1.478208-5-1.036619+0 1.478660-5-8.464150-1 1.479225-5-5.841929-1 1.482848-5 8.014012-1 1.483301-5 1.001573+0 1.484094-5 1.260337+0 1.486924-5 2.054233+0 1.487717-5 2.192672+0 1.488906-5 2.296304+0 1.490547-5 2.365517+0 1.491397-5 2.289706+0 1.492140-5 2.158986+0 1.493359-5 1.832467+0 1.494354-5 1.465519+0 1.495101-5 1.128993+0 1.495661-5 8.394699-1 1.496081-5 5.993878-1 1.496711-5 1.962032-1 1.497026-5-3.005052-2 1.499152-5-1.795705+0 1.499945-5-2.528870+0 1.500836-5-3.494808+0 1.501296-5-4.099000+0 1.504066-5-7.357171+0 1.505725-5-9.728009+0 1.506026-5-1.011252+1 1.507870-5-7.757037+0 1.508796-5-6.316683+0 1.511833-5-2.484093+0 1.512166-5-2.023363+0 1.512577-5-1.534805+0 1.512937-5-1.138455+0 1.513567-5-4.891542-1 1.515683-5 1.562779+0 1.516121-5 1.943167+0 1.516533-5 2.263175+0 1.517304-5 2.796592+0 1.518569-5 3.523030+0 1.520377-5 4.290906+0 1.522266-5 4.764751+0 1.524287-5 4.900533+0 1.525816-5 4.825924+0 1.529496-5 3.995177+0 1.532853-5 2.796212+0 1.533572-5 2.485695+0 1.537195-5 1.149279+0 1.540079-5 1.061604-1 1.540624-5-9.603708-2 1.543487-5-1.024212+0 1.543964-5-1.192110+0 1.545334-5-1.730412+0 1.547118-5-2.221851+0 1.549788-5-2.791904+0 1.553337-5-3.381820+0 1.558635-5-4.049376+0 1.567398-5-4.829582+0 1.581250-5-5.627292+0 1.601627-5-6.328199+0 1.634605-5-6.945386+0 1.702903-5-7.492235+0 1.853152-5-7.775108+0 2.342750-5-7.417911+0 2.590743-5-7.283283+0 2.637048-5-7.346022+0 2.681713-5-6.742160+0 2.778428-5-6.980353+0 2.846803-5-6.791660+0 4.230412-5-4.907218+0 5.000000-5-4.051973+0 5.851084-5-3.323414+0 6.726590-5-2.787465+0 7.651560-5-2.397840+0 8.709636-5-2.102732+0 9.942597-5-1.891171+0 1.134703-4-1.750810+0 1.369908-4-1.641763+0 1.742967-4-1.611715+0 2.322820-4-1.696342+0 3.102582-4-1.930077+0 3.730065-4-2.234517+0 4.171631-4-2.577415+0 4.474300-4-2.949504+0 4.695441-4-3.382135+0 4.766499-4-3.577093+0 4.935220-4-3.511130+0 5.010187-4-3.328683+0 5.058989-4-3.031076+0 5.084559-4-2.721891+0 5.099614-4-2.411436+0 5.105788-4-2.188890+0 5.114489-4-1.894458+0 5.129351-4-1.468593+0 5.145060-4-8.966067-1 5.156057-4-5.729868-1 5.157627-4-5.197229-1 5.160377-4-4.624305-1 5.170195-4-3.415614-1 5.172944-4-3.444991-1 5.175006-4-3.624472-1 5.178098-4-4.088179-1 5.182788-4-5.104539-1 5.185511-4-6.015437-1 5.187573-4-6.863624-1 5.190666-4-8.391107-1 5.193758-4-1.030934+0 5.201024-4-1.571360+0 5.205828-4-2.028012+0 5.216835-4-3.286742+0 5.230427-4-5.157079+0 5.232741-4-4.811760+0 5.248423-4-2.984455+0 5.258788-4-2.051569+0 5.264625-4-1.677571+0 5.270560-4-1.414995+0 5.275275-4-1.274225+0 5.279126-4-1.200142+0 5.284225-4-1.159167+0 5.289053-4-1.188103+0 5.294672-4-1.324827+0 5.306552-4-1.735988+0 5.326709-4-2.640082+0 5.337894-4-3.062323+0 5.363487-4-3.709308+0 5.378733-4-3.799806+0 5.419902-4-3.521940+0 5.478272-4-3.142085+0 5.577958-4-2.759438+0 5.795000-4-2.150819+0 5.984470-4-1.721673+0 6.179347-4-1.375515+0 6.353239-4-1.131319+0 6.519273-4-9.488100-1 6.722023-4-7.677336-1 6.928273-4-6.190386-1 7.231363-4-4.380345-1 7.587537-4-2.671477-1 7.820910-4-1.716482-1 7.949155-4-1.244395-1 8.178252-4-5.071634-2 8.413951-4 1.438667-2 8.460533-4 2.512982-2 8.622337-4 6.377969-2 8.891791-4 1.184431-1 9.123775-4 1.575272-1 9.394987-4 1.968160-1 9.671115-4 2.313947-1 1.037392-3 2.985456-1 1.114034-3 3.443346-1 1.186049-3 3.710525-1 1.300845-3 3.897651-1 1.447261-3 3.929332-1 1.791122-3 3.591564-1 2.542344-3 2.641113-1 3.047665-3 2.147345-1 3.657626-3 1.704343-1 4.328457-3 1.354277-1 5.013887-3 1.094759-1 5.751165-3 8.895440-2 6.664597-3 7.045727-2 7.492705-3 5.815989-2 8.418358-3 4.775602-2 9.459263-3 3.893813-2 1.072859-2 3.095467-2 1.214361-2 2.442150-2 1.366508-2 1.924950-2 1.523697-2 1.528947-2 1.679283-2 1.228961-2 1.836290-2 9.933912-3 2.019061-2 7.784865-3 2.186013-2 6.229313-3 2.367858-2 4.863826-3 2.570396-2 3.641488-3 2.787854-2 2.589870-3 2.951209-2 1.937360-3 3.143631-2 1.285673-3 3.271638-2 9.085765-4 3.417328-2 5.265326-4 3.478011-2 3.797714-4 3.557661-2 1.983273-4 3.628850-2 4.487864-5 3.720418-2-1.395426-4 3.798831-2-2.883693-4 3.888100-2-4.473696-4 4.047930-2-7.082771-4 4.304133-2-1.070611-3 4.662307-2-1.487201-3 5.119328-2-1.904081-3 5.831018-2-2.401874-3 6.782953-2-2.845302-3 8.249623-2-3.251884-3 1.063313-1-3.589549-3 1.509211-1-3.846884-3 2.754229-1-4.024251-3 8.511380-1-4.092429-3 2.567148+0-4.099524-3 7.752663+0-4.100304-3 1.000000+1-4.100212-3 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.092277-6 1.078540-6 4.323245-6 1.145948-6 5.808916-6 1.217570-6 7.549040-6 1.293668-6 9.548699-6 1.374523-6 1.180582-5 1.460430-6 1.430905-5 1.536000-6 1.674623-5 1.648689-6 2.414239-5 1.751732-6 3.188328-5 1.861215-6 4.084853-5 1.977541-6 5.105314-5 2.168789-6 6.937560-5 2.304000-6 8.370184-5 2.452863-6 1.110957-4 2.608562-6 1.427794-4 2.774145-6 1.784711-4 2.880000-6 2.032396-4 3.042433-6 2.603203-4 3.235556-6 3.343693-4 3.336667-6 3.747143-4 3.440938-6 4.171675-4 3.600000-6 4.848992-4 3.773712-6 5.873236-4 3.891640-6 6.602333-4 4.050000-6 7.628051-4 4.268001-6 9.491226-4 4.401376-6 1.068891-3 4.556250-6 1.214094-3 4.680761-6 1.359360-3 4.827034-6 1.537673-3 4.977879-6 1.723646-3 5.133438-6 1.924674-3 5.293858-6 2.181271-3 5.459291-6 2.454159-3 5.629894-6 2.733577-3 5.766504-6 2.964409-3 5.987260-6 3.437401-3 6.174362-6 3.840435-3 6.487317-6 4.499065-3 6.736745-6 5.179234-3 6.912849-6 5.647403-3 7.083450-6 6.070447-3 7.298232-6 6.573374-3 7.408824-6 6.883469-3 7.563926-6 7.310440-3 7.754371-6 7.794416-3 7.859740-6 8.089506-3 8.000750-6 8.464308-3 8.239019-6 9.002601-3 8.397889-6 9.394853-3 8.522082-6 9.658262-3 8.642395-6 9.851951-3 8.871858-6 1.015459-2 8.981239-6 1.024964-2 9.087203-6 1.026543-2 9.292508-6 1.016796-2 9.484981-6 9.913692-3 9.669926-6 9.404879-3 9.834590-6 8.789602-3 9.993183-6 7.961545-3 1.008856-5 7.361335-3 1.014186-5 7.001416-3 1.028125-5 5.955194-3 1.041193-5 4.822633-3 1.048102-5 4.188351-3 1.053444-5 3.692419-3 1.064929-5 2.622184-3 1.075696-5 1.656539-3 1.082738-5 1.099754-3 1.085791-5 8.899077-4 1.095254-5 4.129871-4 1.104127-5 3.078772-4 1.112444-5 6.774231-4 1.116947-5 1.144975-3 1.120242-5 1.639209-3 1.127552-5 3.313026-3 1.134406-5 5.824516-3 1.140831-5 9.307833-3 1.146854-5 1.390218-2 1.152501-5 1.975410-2 1.157796-5 2.702060-2 1.162759-5 3.586628-2 1.167412-5 4.645794-2 1.175864-5 7.355235-2 1.183292-5 1.097158-1 1.186662-5 1.316850-1 1.189821-5 1.565286-1 1.192783-5 1.844726-1 1.195559-5 2.157567-1 1.198162-5 2.506391-1 1.200603-5 2.894051-1 1.202890-5 3.323750-1 1.205035-5 3.799085-1 1.207046-5 4.324034-1 1.208931-5 4.902843-1 1.212466-5 6.289724-1 1.215558-5 7.958404-1 1.218265-5 9.926670-1 1.220632-5 1.218913+0 1.222704-5 1.471555+0 1.224517-5 1.745521+0 1.226104-5 2.034451+0 1.228800-5 2.654923+0 1.234854-5 4.856375+0 1.237398-5 6.217155+0 1.238112-5 6.653512+0 1.240253-5 8.115573+0 1.241776-5 9.299335+0 1.243298-5 1.060441+1 1.244352-5 1.157763+1 1.246724-5 1.396749+1 1.249389-5 1.693750+1 1.250435-5 1.816855+1 1.252434-5 2.058199+1 1.253481-5 2.186215+1 1.254480-5 2.308213+1 1.255860-5 2.474536+1 1.257198-5 2.631119+1 1.258701-5 2.798167+1 1.259956-5 2.927980+1 1.261267-5 3.051691+1 1.263092-5 3.199404+1 1.264615-5 3.297197+1 1.266233-5 3.372553+1 1.267708-5 3.413640+1 1.268472-5 3.424151+1 1.270064-5 3.422008+1 1.271085-5 3.403561+1 1.273846-5 3.289294+1 1.275208-5 3.200677+1 1.276930-5 3.061771+1 1.278109-5 2.951690+1 1.279420-5 2.817103+1 1.280263-5 2.724918+1 1.281488-5 2.584506+1 1.282661-5 2.444802+1 1.284168-5 2.260253+1 1.285491-5 2.096374+1 1.285931-5 2.041739+1 1.287454-5 1.854409+1 1.288977-5 1.671427+1 1.290294-5 1.518505+1 1.292022-5 1.327826+1 1.293357-5 1.189463+1 1.294123-5 1.113974+1 1.295845-5 9.550261+0 1.296420-5 9.054899+0 1.298112-5 7.696601+0 1.299865-5 6.448850+0 1.301540-5 5.403285+0 1.302545-5 4.841662+0 1.304842-5 3.730421+0 1.306556-5 3.044645+0 1.308423-5 2.419977+0 1.309646-5 2.073016+0 1.310850-5 1.774161+0 1.312034-5 1.517300+0 1.313200-5 1.296948+0 1.314348-5 1.108229+0 1.315478-5 9.468357-1 1.316591-5 8.089878-1 1.318781-5 5.896844-1 1.320902-5 4.311307-1 1.324948-5 2.353162-1 1.326877-5 1.773399-1 1.328746-5 1.367425-1 1.330556-5 1.089397-1 1.332309-5 9.060945-2 1.334008-5 7.933628-2 1.335654-5 7.335490-2 1.338842-5 7.248316-2 1.341831-5 8.125108-2 1.344634-5 9.558676-2 1.349724-5 1.323468-1 1.352033-5 1.524098-1 1.354198-5 1.727086-1 1.356227-5 1.928637-1 1.360032-5 2.331402-1 1.363362-5 2.706285-1 1.368824-5 3.358532-1 1.374959-5 4.135112-1 1.382278-5 5.099413-1 1.386845-5 5.698386-1 1.390258-5 6.126650-1 1.393989-5 6.556132-1 1.397085-5 6.866476-1 1.400674-5 7.156488-1 1.404282-5 7.358138-1 1.405140-5 7.391795-1 1.407713-5 7.459232-1 1.414575-5 7.407618-1 1.418007-5 7.276160-1 1.421438-5 7.093681-1 1.424869-5 6.874545-1 1.428300-5 6.630587-1 1.431731-5 6.370328-1 1.438593-5 5.819557-1 1.441843-5 5.548035-1 1.444875-5 5.288552-1 1.448887-5 4.935121-1 1.452318-5 4.622551-1 1.455749-5 4.299410-1 1.459180-5 3.965171-1 1.462611-5 3.620413-1 1.465561-5 3.317569-1 1.468142-5 3.050636-1 1.470400-5 2.818976-1 1.472376-5 2.621133-1 1.475618-5 2.317208-1 1.478266-5 2.102473-1 1.480542-5 1.956072-1 1.481741-5 1.898053-1 1.482858-5 1.858494-1 1.484533-5 1.830005-1 1.485371-5 1.831688-1 1.486209-5 1.845330-1 1.487123-5 1.875123-1 1.489867-5 2.072146-1 1.491605-5 2.294538-1 1.492474-5 2.438306-1 1.493525-5 2.643760-1 1.494485-5 2.863525-1 1.497183-5 3.662429-1 1.501756-5 5.713739-1 1.504499-5 7.420566-1 1.505065-5 7.820089-1 1.509027-5 1.108331+0 1.510362-5 1.236653+0 1.511885-5 1.394131+0 1.513028-5 1.519687+0 1.514742-5 1.719328+0 1.516456-5 1.931422+0 1.517318-5 2.042292+0 1.519257-5 2.300484+0 1.519903-5 2.388805+0 1.521769-5 2.648291+0 1.522702-5 2.779683+0 1.523635-5 2.911481+0 1.525501-5 3.173992+0 1.526434-5 3.303472+0 1.527367-5 3.430895+0 1.530571-5 3.843239+0 1.531372-5 3.937860+0 1.533175-5 4.134320+0 1.534086-5 4.223714+0 1.536414-5 4.416645+0 1.538160-5 4.523649+0 1.538974-5 4.561459+0 1.541150-5 4.622518+0 1.542628-5 4.629694+0 1.543446-5 4.621597+0 1.545367-5 4.569179+0 1.546384-5 4.523030+0 1.550000-5 4.265155+0 1.551016-5 4.169794+0 1.553831-5 3.865712+0 1.555813-5 3.626776+0 1.557777-5 3.380136+0 1.559743-5 3.132211+0 1.564741-5 2.549887+0 1.566599-5 2.366353+0 1.568456-5 2.206130+0 1.570553-5 2.055496+0 1.572184-5 1.961188+0 1.573735-5 1.889963+0 1.575603-5 1.827303+0 1.576155-5 1.813479+0 1.579885-5 1.771914+0 1.581482-5 1.779616+0 1.582715-5 1.795062+0 1.583938-5 1.818110+0 1.585355-5 1.853913+0 1.586283-5 1.882410+0 1.589505-5 2.010390+0 1.592048-5 2.140758+0 1.595382-5 2.345893+0 1.602316-5 2.860722+0 1.603875-5 2.984209+0 1.605941-5 3.146880+0 1.608596-5 3.348958+0 1.611821-5 3.574019+0 1.613390-5 3.672645+0 1.617219-5 3.877522+0 1.619186-5 3.962346+0 1.622211-5 4.067105+0 1.624349-5 4.124681+0 1.626607-5 4.173656+0 1.631913-5 4.258320+0 1.640809-5 4.380058+0 1.660002-5 4.695667+0 1.669856-5 4.826566+0 1.685570-5 5.028194+0 1.696800-5 5.213338+0 1.709732-5 5.473845+0 1.742896-5 6.278804+0 1.753542-5 6.482764+0 1.766657-5 6.486537+0 1.767593-5 6.471929+0 1.787367-5 5.737009+0 1.797259-5 5.198335+0 1.807794-5 4.629291+0 1.812126-5 4.424343+0 1.815932-5 4.277643+0 1.819278-5 4.191767+0 1.820796-5 4.171851+0 1.823642-5 4.178139+0 1.826132-5 4.244411+0 1.828311-5 4.363345+0 1.830217-5 4.525719+0 1.831886-5 4.721478+0 1.833345-5 4.940672+0 1.834623-5 5.174137+0 1.835740-5 5.413917+0 1.837696-5 5.922988+0 1.839163-5 6.388486+0 1.840263-5 6.789950+0 1.841088-5 7.122785+0 1.842944-5 7.979324+0 1.844010-5 8.543301+0 1.847358-5 1.070073+1 1.852638-5 1.546546+1 1.857176-5 2.107147+1 1.859818-5 2.500671+1 1.861714-5 2.812670+1 1.864373-5 3.288642+1 1.865939-5 3.587574+1 1.868928-5 4.188862+1 1.870494-5 4.515458+1 1.872363-5 4.910721+1 1.874053-5 5.269409+1 1.876055-5 5.689464+1 1.877587-5 6.003234+1 1.879309-5 6.342773+1 1.880746-5 6.612564+1 1.882594-5 6.936176+1 1.884872-5 7.291130+1 1.886909-5 7.560159+1 1.888085-5 7.692041+1 1.889668-5 7.840594+1 1.891654-5 7.976910+1 1.893051-5 8.038199+1 1.895075-5 8.075047+1 1.896997-5 8.052963+1 1.898310-5 8.006424+1 1.900502-5 7.873760+1 1.901751-5 7.768953+1 1.903334-5 7.607488+1 1.905708-5 7.311144+1 1.906974-5 7.129324+1 1.909129-5 6.787898+1 1.910778-5 6.503677+1 1.912125-5 6.259916+1 1.913893-5 5.927910+1 1.916166-5 5.487951+1 1.918319-5 5.065691+1 1.919036-5 4.925062+1 1.921314-5 4.483119+1 1.923592-5 4.053454+1 1.925242-5 3.753408+1 1.928147-5 3.254191+1 1.932702-5 2.560965+1 1.936155-5 2.115798+1 1.944050-5 1.354865+1 1.946283-5 1.198396+1 1.948513-5 1.064414+1 1.950738-5 9.506842+0 1.952959-5 8.548966+0 1.955176-5 7.748210+0 1.957388-5 7.083542+0 1.959597-5 6.535547+0 1.961800-5 6.086633+0 1.964000-5 5.721114+0 1.968390-5 5.186604+0 1.972763-5 4.843952+0 1.977119-5 4.629320+0 1.981458-5 4.498789+0 1.985780-5 4.423146+0 1.990086-5 4.383432+0 1.994374-5 4.367524+0 1.998646-5 4.367690+0 2.007139-5 4.398049+0 2.018366-5 4.472594+0 2.040519-5 4.667162+0 2.080799-5 5.057641+0 2.112026-5 5.350931+0 2.157059-5 5.752851+0 2.200015-5 6.110031+0 2.254642-5 6.546846+0 2.305907-5 6.936279+0 2.376953-5 7.457203+0 2.502101-5 8.332413+0 2.667433-5 9.440711+0 2.818383-5 1.042128+1 3.019952-5 1.167333+1 3.201923-5 1.275083+1 3.224724-5 1.295179+1 3.238548-5 1.314883+1 3.251497-5 1.341592+1 3.262454-5 1.371183+1 3.292353-5 1.469762+1 3.300742-5 1.493994+1 3.310267-5 1.514716+1 3.318236-5 1.524954+1 3.327948-5 1.527932+1 3.338532-5 1.520255+1 3.353100-5 1.496916+1 3.371030-5 1.463567+1 3.382822-5 1.447535+1 3.395165-5 1.439881+1 3.405485-5 1.441258+1 3.419365-5 1.452872+1 3.444665-5 1.490320+1 3.468392-5 1.524792+1 3.492896-5 1.548333+1 3.570562-5 1.597865+1 3.781533-5 1.753531+1 3.947702-5 1.875169+1 4.212224-5 2.063596+1 4.462131-5 2.238071+1 4.731513-5 2.418954+1 4.915200-5 2.537114+1 5.218173-5 2.721013+1 5.454454-5 2.855806+1 5.821032-5 3.046884+1 6.095369-5 3.175358+1 6.400000-5 3.304034+1 6.741398-5 3.433093+1 7.120328-5 3.556190+1 7.676957-5 3.708590+1 8.269895-5 3.828655+1 8.861352-5 3.919750+1 9.522477-5 3.992749+1 1.048002-4 4.061959+1 1.136290-4 4.096240+1 1.233943-4 4.114250+1 1.427565-4 4.113104+1 1.703139-4 4.074005+1 1.966754-4 4.020559+1 2.277222-4 3.946657+1 2.620822-4 3.860646+1 3.010009-4 3.759438+1 3.398949-4 3.653111+1 3.713017-4 3.561990+1 4.009822-4 3.466963+1 4.219242-4 3.395920+1 4.401714-4 3.330111+1 4.567372-4 3.266198+1 4.807711-4 3.165235+1 5.026319-4 3.062040+1 5.206435-4 2.966521+1 5.368869-4 2.869637+1 5.511248-4 2.774443+1 5.651809-4 2.668377+1 5.748025-4 2.587078+1 5.858144-4 2.482591+1 5.956621-4 2.376897+1 6.038173-4 2.277816+1 6.113611-4 2.174688+1 6.177881-4 2.083304+1 6.225991-4 2.026566+1 6.326344-4 1.969455+1 6.382632-4 1.965697+1 6.429374-4 1.986629+1 6.457299-4 2.020701+1 6.488025-4 2.091226+1 6.503045-4 2.142735+1 6.519239-4 2.212754+1 6.539722-4 2.322661+1 6.585079-4 2.617829+1 6.603224-4 2.729526+1 6.619680-4 2.812120+1 6.635448-4 2.867347+1 6.647837-4 2.891807+1 6.660320-4 2.899239+1 6.671806-4 2.891657+1 6.685045-4 2.867714+1 6.701423-4 2.819353+1 6.717160-4 2.757261+1 6.735490-4 2.669159+1 6.755044-4 2.558892+1 6.774357-4 2.436601+1 6.814876-4 2.174605+1 6.829336-4 2.098369+1 6.840711-4 2.051646+1 6.850492-4 2.022849+1 6.859781-4 2.006243+1 6.870106-4 2.000599+1 6.876368-4 2.003753+1 6.881978-4 2.010691+1 6.892819-4 2.034533+1 6.898291-4 2.051417+1 6.909250-4 2.093848+1 6.925000-4 2.171204+1 6.972470-4 2.458856+1 6.986398-4 2.543749+1 7.007760-4 2.665903+1 7.021865-4 2.740022+1 7.068461-4 2.948775+1 7.092170-4 3.037777+1 7.122211-4 3.138894+1 7.178755-4 3.305173+1 7.241917-4 3.467248+1 7.319569-4 3.644679+1 7.379499-4 3.768648+1 7.480070-4 3.955890+1 7.532404-4 4.043444+1 7.599935-4 4.146978+1 7.676992-4 4.254211+1 7.748157-4 4.343575+1 7.820105-4 4.424909+1 7.896903-4 4.502485+1 7.975942-4 4.573177+1 8.091138-4 4.663184+1 8.279648-4 4.785019+1 8.473912-4 4.884553+1 8.831539-4 5.033936+1 9.093897-4 5.126318+1 9.536193-4 5.251147+1 9.957754-4 5.342803+1 1.035142-3 5.403436+1 1.093929-3 5.462160+1 1.155130-3 5.492676+1 1.243784-3 5.500297+1 1.383507-3 5.420142+1 1.573690-3 5.293025+1 1.627253-3 5.252127+1 1.863015-3 5.024844+1 1.945640-3 4.947684+1 2.213922-3 4.677342+1 2.571677-3 4.316214+1 2.851018-3 4.046070+1 3.098059-3 3.816167+1 3.334015-3 3.607829+1 3.562964-3 3.414882+1 3.792029-3 3.232276+1 4.158793-3 2.960371+1 4.570882-3 2.686687+1 5.051776-3 2.406133+1 5.629908-3 2.118324+1 6.237348-3 1.865287+1 7.187702-3 1.550822+1 8.458669-3 1.243512+1 1.075827-2 8.884963+0 1.544538-2 5.310942+0 1.891840-2 3.954996+0 2.179077-2 3.202047+0 2.479976-2 2.623025+0 2.833953-2 2.116839+0 3.499542-2 1.492589+0 3.879444-2 1.252972+0 4.671044-2 9.034569-1 5.443202-2 6.878066-1 6.601260-2 4.835614-1 8.266920-2 3.183390-1 1.050829-1 2.022727-1 1.351392-1 1.246890-1 1.825326-1 6.936410-2 2.709509-1 3.181466-2 4.954502-1 9.576724-3 1.546860+0 9.849588-4 4.671441+0 1.080267-4 1.410753+1 1.184523-5 4.260405+1 1.298808-6 1.286622+2 1.424115-7 3.885536+2 1.561511-8 1.258925+3 1.487466-9 3.981072+3 1.48747-10 1.258925+4 1.48747-11 3.981072+4 1.48747-12 1.000000+5 2.35747-13 1 9000 7 7 1.899840+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.155500-7 1.258900-6 3.416200-7 1.584900-6 5.414400-7 1.995300-6 8.581200-7 2.511900-6 1.360000-6 3.162300-6 2.155500-6 3.981100-6 3.416200-6 5.011900-6 5.414300-6 6.309600-6 8.581000-6 7.943300-6 1.360000-5 1.000000-5 2.155400-5 1.258900-5 3.416000-5 1.584900-5 5.413900-5 1.995300-5 8.580300-5 2.511900-5 1.359800-4 3.162300-5 2.155100-4 3.981100-5 3.415500-4 5.011900-5 5.412900-4 6.309600-5 8.578300-4 7.943300-5 1.359400-3 1.000000-4 2.154300-3 1.258900-4 3.413000-3 1.584900-4 5.403900-3 1.995300-4 8.556500-3 2.511900-4 1.353900-2 3.162300-4 2.141000-2 3.981100-4 3.381200-2 5.011900-4 5.328000-2 6.309600-4 8.372200-2 7.943300-4 1.309100-1 1.000000-3 2.032600-1 1.258900-3 3.121700-1 1.584900-3 4.719800-1 1.995300-3 6.985100-1 2.511900-3 1.004700+0 3.162300-3 1.395100+0 3.981100-3 1.859600+0 5.011900-3 2.370700+0 6.309600-3 2.883900+0 7.943300-3 3.351900+0 1.000000-2 3.746400+0 1.258900-2 4.066500+0 1.584900-2 4.326100+0 1.995300-2 4.535900+0 2.511900-2 4.694300+0 3.162300-2 4.788900+0 3.981100-2 4.818200+0 5.011900-2 4.778500+0 6.309600-2 4.684200+0 7.943300-2 4.538800+0 1.000000-1 4.353000+0 1.258900-1 4.135200+0 1.584900-1 3.894100+0 1.995300-1 3.638000+0 2.511900-1 3.374300+0 3.162300-1 3.109400+0 3.981100-1 2.848700+0 5.011900-1 2.595300+0 6.309600-1 2.351600+0 7.943300-1 2.119300+0 1.000000+0 1.899100+0 1.258900+0 1.691800+0 1.584900+0 1.498000+0 1.995300+0 1.318200+0 2.511900+0 1.152800+0 3.162300+0 1.002100+0 3.981100+0 8.659800-1 5.011900+0 7.442400-1 6.309600+0 6.363200-1 7.943300+0 5.414400-1 1.000000+1 4.586800-1 1.258900+1 3.870200-1 1.584900+1 3.253600-1 1.995300+1 2.726300-1 2.511900+1 2.277600-1 3.162300+1 1.897600-1 3.981100+1 1.577100-1 5.011900+1 1.307900-1 6.309600+1 1.082500-1 7.943300+1 8.942500-2 1.000000+2 7.375400-2 1.258900+2 6.073800-2 1.584900+2 4.994900-2 1.995300+2 4.102500-2 2.511900+2 3.365600-2 3.162300+2 2.758000-2 3.981100+2 2.257900-2 5.011900+2 1.846700-2 6.309600+2 1.509100-2 7.943300+2 1.232200-2 1.000000+3 1.005300-2 1.258900+3 8.196100-3 1.584900+3 6.677600-3 1.995300+3 5.437000-3 2.511900+3 4.424100-3 3.162300+3 3.597900-3 3.981100+3 2.924400-3 5.011900+3 2.375700-3 6.309600+3 1.929000-3 7.943300+3 1.565500-3 1.000000+4 1.269900-3 1.258900+4 1.029700-3 1.584900+4 8.346100-4 1.995300+4 6.761900-4 2.511900+4 5.476300-4 3.162300+4 4.433500-4 3.981100+4 3.587900-4 5.011900+4 2.902600-4 6.309600+4 2.347500-4 7.943300+4 1.897900-4 1.000000+5 1.533900-4 1 9000 7 7 1.899840+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994172-4 2.511886-4 2.510160-4 3.162278-4 3.159542-4 3.981072-4 3.976740-4 5.011872-4 5.005014-4 6.309573-4 6.298719-4 7.943282-4 7.926116-4 1.000000-3 9.972879-4 1.258925-3 1.254637-3 1.584893-3 1.578158-3 1.995262-3 1.984688-3 2.511886-3 2.495343-3 3.162278-3 3.136511-3 3.981072-3 3.941127-3 5.011872-3 4.950268-3 6.309573-3 6.215086-3 7.943282-3 7.799082-3 1.000000-2 9.780473-3 1.258925-2 1.225476-2 1.584893-2 1.533774-2 1.995262-2 1.916913-2 2.511886-2 2.391711-2 3.162278-2 2.978764-2 3.981072-2 3.701807-2 5.011872-2 4.590342-2 6.309573-2 5.675390-2 7.943282-2 6.996776-2 1.000000-1 8.597124-2 1.258925-1 1.052758-1 1.584893-1 1.284532-1 1.995262-1 1.561754-1 2.511886-1 1.892100-1 3.162278-1 2.284469-1 3.981072-1 2.748867-1 5.011872-1 3.297256-1 6.309573-1 3.943201-1 7.943282-1 4.703462-1 1.000000+0 5.597987-1 1.258925+0 6.651662-1 1.584893+0 7.895034-1 1.995262+0 9.365727-1 2.511886+0 1.111094+0 3.162278+0 1.318791+0 3.981072+0 1.566677+0 5.011872+0 1.863427+0 6.309573+0 2.219572+0 7.943282+0 2.648031+0 1.000000+1 3.164602+0 1.258925+1 3.788607+0 1.584893+1 4.543723+0 1.995262+1 5.458862+0 2.511886+1 6.569578+0 3.162278+1 7.919523+0 3.981072+1 9.561964+0 5.011872+1 1.156272+1 6.309573+1 1.400233+1 7.943282+1 1.697992+1 1.000000+2 2.061727+1 1.258925+2 2.506453+1 1.584893+2 3.050615+1 1.995262+2 3.716932+1 2.511886+2 4.533446+1 3.162278+2 5.534701+1 3.981072+2 6.763123+1 5.011872+2 8.271472+1 6.309573+2 1.012441+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728482-8 1.000000-4 2.739249-8 1.258925-4 4.340613-8 1.584893-4 6.877603-8 1.995262-4 1.089827-7 2.511886-4 1.726584-7 3.162278-4 2.735325-7 3.981072-4 4.332037-7 5.011872-4 6.858631-7 6.309573-4 1.085431-6 7.943282-4 1.716632-6 1.000000-3 2.712118-6 1.258925-3 4.288266-6 1.584893-3 6.735185-6 1.995262-3 1.057449-5 2.511886-3 1.654302-5 3.162278-3 2.576663-5 3.981072-3 3.994421-5 5.011872-3 6.160401-5 6.309573-3 9.448708-5 7.943282-3 1.442004-4 1.000000-2 2.195267-4 1.258925-2 3.344939-4 1.584893-2 5.111923-4 1.995262-2 7.834953-4 2.511886-2 1.201752-3 3.162278-2 1.835132-3 3.981072-2 2.792649-3 5.011872-2 4.215306-3 6.309573-2 6.341837-3 7.943282-2 9.465068-3 1.000000-1 1.402876-2 1.258925-1 2.061672-2 1.584893-1 3.003607-2 1.995262-1 4.335081-2 2.511886-1 6.197864-2 3.162278-1 8.778091-2 3.981072-1 1.232205-1 5.011872-1 1.714617-1 6.309573-1 2.366372-1 7.943282-1 3.239821-1 1.000000+0 4.402013-1 1.258925+0 5.937593-1 1.584893+0 7.953898-1 1.995262+0 1.058690+0 2.511886+0 1.400792+0 3.162278+0 1.843486+0 3.981072+0 2.414394+0 5.011872+0 3.148446+0 6.309573+0 4.090001+0 7.943282+0 5.295251+0 1.000000+1 6.835398+0 1.258925+1 8.800647+0 1.584893+1 1.130521+1 1.995262+1 1.449376+1 2.511886+1 1.854929+1 3.162278+1 2.370325+1 3.981072+1 3.024875+1 5.011872+1 3.855601+1 6.309573+1 4.909341+1 7.943282+1 6.245291+1 1.000000+2 7.938273+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608808+2 3.981072+2 3.304759+2 5.011872+2 4.184725+2 6.309573+2 5.297132+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.698000-5 4.745229+6 1.705000-5 4.784006+6 1.705000-5 7.135606+6 1.720000-5 7.263826+6 1.737801-5 7.410678+6 1.760000-5 7.579451+6 1.778279-5 7.713787+6 1.810000-5 7.928540+6 1.830000-5 8.057618+6 1.870000-5 8.290678+6 1.890000-5 8.401165+6 1.930000-5 8.598686+6 1.949845-5 8.691332+6 2.000000-5 8.898443+6 2.018366-5 8.969238+6 2.075800-5 9.162637+6 2.089296-5 9.204440+6 2.162719-5 9.399511+6 2.270000-5 9.608727+6 2.371374-5 9.740909+6 2.500000-5 9.833875+6 2.511886-5 9.840214+6 2.650000-5 9.865391+6 2.660725-5 9.865645+6 2.818383-5 9.825296+6 3.000000-5 9.713591+6 3.019952-5 9.697358+6 3.198895-5 9.537239+6 3.243600-5 9.490046+6 3.427678-5 9.285958+6 3.467369-5 9.236760+6 3.593000-5 9.074948+6 3.593000-5 9.421884+6 3.650000-5 9.372755+6 3.672823-5 9.353080+6 3.720000-5 9.305779+6 3.730000-5 9.295635+6 3.801894-5 9.219266+6 3.880000-5 9.138150+6 3.935501-5 9.081131+6 3.981072-5 9.028797+6 4.000000-5 9.006874+6 4.073803-5 8.918351+6 4.180000-5 8.794139+6 4.229500-5 8.737122+6 4.265795-5 8.691315+6 4.300000-5 8.646585+6 4.415704-5 8.497716+6 4.518559-5 8.369414+6 4.570882-5 8.300213+6 4.731513-5 8.083811+6 4.800000-5 7.994493+6 4.897788-5 7.860674+6 4.900000-5 7.857592+6 5.080000-5 7.612426+6 5.128614-5 7.548279+6 5.188000-5 7.465703+6 5.308844-5 7.298395+6 5.432503-5 7.133052+6 5.500000-5 7.040663+6 5.559043-5 6.959438+6 5.754399-5 6.700563+6 5.821032-5 6.611654+6 6.095369-5 6.255610+6 6.165950-5 6.164084+6 6.400000-5 5.870764+6 6.456542-5 5.803040+6 6.531306-5 5.711359+6 6.760830-5 5.439456+6 6.839116-5 5.351026+6 6.918310-5 5.260278+6 7.161434-5 4.992481+6 7.244360-5 4.905635+6 7.328245-5 4.816864+6 7.585776-5 4.556037+6 7.673615-5 4.471704+6 7.800000-5 4.350768+6 8.035261-5 4.135844+6 8.128305-5 4.054908+6 8.317638-5 3.892971+6 8.511380-5 3.735441+6 8.709636-5 3.583335+6 8.912509-5 3.433234+6 9.015711-5 3.359710+6 9.332543-5 3.147006+6 9.549926-5 3.009699+6 9.660509-5 2.942614+6 1.011579-4 2.687195+6 1.035142-4 2.565712+6 1.096478-4 2.281177+6 1.109175-4 2.227369+6 1.122018-4 2.174337+6 1.190000-4 1.921423+6 1.216186-4 1.834948+6 1.230269-4 1.790091+6 1.288250-4 1.620793+6 1.364583-4 1.430533+6 1.400000-4 1.351997+6 1.513561-4 1.137504+6 1.531087-4 1.108709+6 1.659587-4 9.242456+5 1.720000-4 8.522600+5 1.840772-4 7.291887+5 1.905461-4 6.732918+5 1.927525-4 6.555720+5 2.065380-4 5.578149+5 2.089296-4 5.429211+5 2.162719-4 5.004416+5 2.317395-4 4.246747+5 2.426610-4 3.802407+5 2.600160-4 3.219029+5 2.722701-4 2.877447+5 2.900000-4 2.466517+5 2.951209-4 2.362405+5 3.162278-4 1.993074+5 3.235937-4 1.883162+5 3.467369-4 1.586116+5 3.600000-4 1.445279+5 3.758374-4 1.297811+5 4.073803-4 1.061236+5 4.365158-4 8.918752+4 4.677351-4 7.495729+4 4.731513-4 7.281835+4 4.954502-4 6.478884+4 5.248075-4 5.597290+4 5.432503-4 5.127594+4 5.559043-4 4.833519+4 5.956621-4 4.047508+4 6.095369-4 3.815384+4 6.309573-4 3.487833+4 6.760830-4 2.914393+4 6.839116-4 2.828547+4 6.883700-4 2.780494+4 6.883700-4 3.830189+5 6.904000-4 3.897060+5 6.925000-4 3.938000+5 6.947000-4 3.959922+5 6.985000-4 3.969950+5 7.040000-4 3.957563+5 7.161434-4 3.896091+5 7.244360-4 3.840538+5 7.300000-4 3.804076+5 7.413102-4 3.711652+5 7.500000-4 3.630992+5 7.650000-4 3.477762+5 7.762471-4 3.354493+5 7.852356-4 3.260251+5 8.317638-4 2.806236+5 8.413951-4 2.723316+5 8.810489-4 2.431509+5 9.015711-4 2.300477+5 9.660509-4 1.947986+5 9.772372-4 1.892575+5 1.035142-3 1.638289+5 1.122018-3 1.332518+5 1.202264-3 1.116321+5 1.216186-3 1.083865+5 1.258925-3 9.919891+4 1.318257-3 8.785510+4 1.396368-3 7.548306+4 1.412538-3 7.322593+4 1.428894-3 7.100213+4 1.513561-3 6.084869+4 1.548817-3 5.720622+4 1.659587-3 4.753588+4 1.757924-3 4.060323+4 1.798871-3 3.812218+4 1.927525-3 3.155224+4 1.949845-3 3.055979+4 2.089296-3 2.522421+4 2.113489-3 2.443029+4 2.238721-3 2.082032+4 2.290868-3 1.951007+4 2.454709-3 1.605156+4 2.483133-3 1.553795+4 2.691535-3 1.237467+4 2.851018-3 1.049063+4 2.917427-3 9.819930+3 3.126079-3 8.054412+3 3.198895-3 7.539148+3 3.311311-3 6.818393+3 3.388442-3 6.376579+3 3.672823-3 5.043863+3 3.758374-3 4.716846+3 3.801894-3 4.561371+3 3.890451-3 4.262002+3 4.365158-3 3.035384+3 4.415704-3 2.934026+3 4.570882-3 2.649804+3 5.188000-3 1.815479+3 5.248075-3 1.754088+3 5.432503-3 1.582096+3 5.500000-3 1.524789+3 6.237348-3 1.042651+3 6.531306-3 9.071460+2 6.683439-3 8.461487+2 7.000000-3 7.345276+2 7.498942-3 5.951176+2 8.035261-3 4.817718+2 8.317638-3 4.334722+2 8.709636-3 3.759486+2 9.120108-3 3.260597+2 1.011579-2 2.366423+2 1.035142-2 2.203728+2 1.109175-2 1.775877+2 1.122018-2 1.713128+2 1.303167-2 1.072905+2 1.333521-2 9.976548+1 1.396368-2 8.626148+1 1.445440-2 7.734227+1 1.659587-2 4.998324+1 1.757924-2 4.159972+1 1.778279-2 4.009918+1 2.018366-2 2.676869+1 2.137962-2 2.227676+1 2.238721-2 1.920784+1 2.540973-2 1.277500+1 2.754229-2 9.854886+0 2.851018-2 8.809670+0 3.758374-2 3.591251+0 3.801894-2 3.458579+0 4.731513-2 1.691063+0 5.011872-2 1.400839+0 5.248075-2 1.204956+0 5.308844-2 1.160411+0 6.095369-2 7.369650-1 6.760830-2 5.242937-1 7.498942-2 3.729957-1 8.222426-2 2.755904-1 9.015711-2 2.036222-1 9.772372-2 1.562488-1 1.047129-1 1.245197-1 1.059254-1 1.198978-1 1.071519-1 1.154618-1 1.148154-1 9.208681-2 1.244515-1 7.072688-2 1.318257-1 5.857584-2 1.364583-1 5.231177-2 1.428894-1 4.505962-2 1.513561-1 3.739153-2 1.621810-1 2.989208-2 1.659587-1 2.774280-2 1.678804-1 2.673856-2 1.698244-1 2.577132-2 1.840772-1 1.991264-2 1.905461-1 1.782893-2 1.972423-1 1.596328-2 2.018366-1 1.484162-2 2.065380-1 1.379941-2 2.113489-1 1.283039-2 2.290868-1 9.944145-3 2.317395-1 9.594013-3 2.344229-1 9.256212-3 2.570396-1 6.950469-3 2.630268-1 6.470079-3 2.691535-1 6.030396-3 2.818383-1 5.239415-3 2.851018-1 5.058447-3 2.985383-1 4.394952-3 3.054921-1 4.101670-3 3.090295-1 3.962604-3 3.162278-1 3.698453-3 3.349654-1 3.112575-3 3.388442-1 3.009119-3 3.427678-1 2.909105-3 3.507519-1 2.719161-3 3.672823-1 2.375672-3 3.715352-1 2.296806-3 3.801894-1 2.150058-3 3.890451-1 2.012863-3 3.981072-1 1.884421-3 4.120975-1 1.706963-3 4.216965-1 1.600564-3 4.265795-1 1.549948-3 4.315191-1 1.500932-3 4.518559-1 1.319890-3 4.623810-1 1.239656-3 4.677351-1 1.201442-3 4.954502-1 1.027333-3 5.069907-1 9.665692-4 5.128614-1 9.375952-4 5.432503-1 8.052448-4 5.495409-1 7.817877-4 5.559043-1 7.590141-4 5.623413-1 7.369423-4 5.956621-1 6.358449-4 6.095369-1 6.004469-4 6.165950-1 5.835240-4 6.456542-1 5.204695-4 6.606935-1 4.924251-4 6.760830-1 4.659387-4 6.998420-1 4.288563-4 7.161434-1 4.065482-4 7.413102-1 3.752972-4 7.585776-1 3.558094-4 7.762471-1 3.379245-4 8.222427-1 2.971216-4 8.317638-1 2.895724-4 8.413951-1 2.824505-4 8.609938-1 2.687552-4 8.912509-1 2.494474-4 9.120108-1 2.373524-4 9.225714-1 2.317321-4 9.660509-1 2.105932-4 1.000000+0 1.960145-4 1.011579+0 1.915197-4 1.074800+0 1.695267-4 1.096478+0 1.628502-4 1.135011+0 1.519169-4 1.203700+0 1.355204-4 1.216186+0 1.328291-4 1.258925+0 1.242045-4 1.303167+0 1.164796-4 1.318257+0 1.140129-4 1.380384+0 1.046579-4 1.412538+0 1.004589-4 1.445440+0 9.642847-5 1.500000+0 9.027970-5 1.566751+0 8.388880-5 1.640590+0 7.762071-5 1.737801+0 7.073810-5 1.819701+0 6.567410-5 1.840772+0 6.451238-5 1.949845+0 5.900480-5 2.065380+0 5.396748-5 2.213095+0 4.869162-5 2.344229+0 4.469129-5 2.511886+0 4.048817-5 2.660725+0 3.728914-5 2.884032+0 3.337432-5 3.054921+0 3.083228-5 3.349654+0 2.728175-5 3.548134+0 2.527341-5 3.935501+0 2.213335-5 4.216965+0 2.025984-5 4.677351+0 1.782258-5 5.011872+0 1.636290-5 5.623413+0 1.425833-5 6.165950+0 1.277130-5 7.079458+0 1.087674-5 7.673615+0 9.904202-6 8.912509+0 8.364686-6 9.772372+0 7.538745-6 1.174898+1 6.155517-6 1.288250+1 5.562211-6 1.300000+1 5.506980-6 1.603245+1 4.395461-6 1.717908+1 4.080814-6 1.737801+1 4.030656-6 1.757924+1 3.981116-6 2.290868+1 3.010183-6 2.454709+1 2.798468-6 2.483133+1 2.764692-6 3.630781+1 1.863957-6 3.890451+1 1.735029-6 3.935501+1 1.714425-6 6.606934+1 1.009444-6 7.161434+1 9.296053-7 7.244360+1 9.187273-7 1.318257+2 5.013460-7 1.428894+2 4.620907-7 1.445440+2 4.567395-7 2.630268+2 2.500786-7 2.851018+2 2.306016-7 2.884032+2 2.279458-7 2.089296+3 3.137806-8 2.290868+3 2.861343-8 4.518559+3 1.449373-8 4.570882+3 1.432760-8 1.000000+5 6.54798-10 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.698000-5 1.698000-5 1.705000-5 1.698000-5 1.705000-5 1.700307-5 3.593000-5 1.700331-5 3.593000-5 1.770024-5 4.300000-5 1.822669-5 5.308844-5 1.879943-5 8.511380-5 2.027450-5 1.122018-4 2.140437-5 1.364583-4 2.225962-5 1.659587-4 2.313310-5 2.089296-4 2.419429-5 2.600160-4 2.528903-5 2.951209-4 2.593709-5 3.467369-4 2.673767-5 4.073803-4 2.749820-5 4.954502-4 2.838341-5 5.956621-4 2.921109-5 6.883700-4 2.982718-5 6.883700-4 4.335323-5 7.300000-4 4.351323-5 1.318257-3 4.372740-5 3.890451-3 4.387281-5 6.095369-2 4.394169-5 1.000000+5 4.394522-5 1 9000 7 7 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.698000-5 0.0 6.883700-4 0.0 6.883700-4 5.958675-6 6.947000-4 5.984709-6 7.300000-4 6.022718-6 7.852356-4 6.037694-6 1.412538-3 6.070093-6 4.570882-3 6.079972-6 1.011579+0 6.073099-6 1.000000+5 6.073051-6 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.698000-5 0.0 1.705000-5 7.000000-8 1.705000-5 4.693090-8 3.593000-5 1.892669-5 3.593000-5 1.822976-5 4.300000-5 2.477331-5 5.559043-5 3.666667-5 1.122018-4 9.079743-5 1.720000-4 1.487133-4 3.235937-4 2.971909-4 6.883700-4 6.585428-4 6.883700-4 6.390581-4 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.883700-4 3.552140+5 6.904000-4 3.621160+5 6.925000-4 3.664300+5 6.947000-4 3.688500+5 6.985000-4 3.702400+5 7.040000-4 3.695480+5 7.161434-4 3.645535+5 7.300000-4 3.565840+5 7.413102-4 3.482871+5 7.500000-4 3.409120+5 7.650000-4 3.267140+5 7.852356-4 3.063672+5 8.413951-4 2.559739+5 8.810489-4 2.286772+5 9.660509-4 1.834881+5 1.035142-3 1.544293+5 1.258925-3 9.366414+4 1.412538-3 6.917997+4 1.659587-3 4.494001+4 1.927525-3 2.984166+4 2.238721-3 1.969722+4 2.691535-3 1.170879+4 3.198895-3 7.134076+3 3.801894-3 4.316436+3 4.570882-3 2.507468+3 5.500000-3 1.442818+3 6.683439-3 8.006124+2 8.317638-3 4.101143+2 1.035142-2 2.084819+2 1.303167-2 1.014927+2 1.659587-2 4.727691+1 2.137962-2 2.106807+1 2.754229-2 9.319129+0 3.758374-2 3.395582+0 5.308844-2 1.097071+0 1.059254-1 1.133348-1 1.364583-1 4.944582-2 1.659587-1 2.622175-2 1.972423-1 1.508776-2 2.290868-1 9.398848-3 2.630268-1 6.115379-3 2.985383-1 4.154071-3 3.349654-1 2.941967-3 3.715352-1 2.170908-3 4.120975-1 1.613393-3 4.518559-1 1.247554-3 4.954502-1 9.710350-4 5.432503-1 7.611130-4 5.956621-1 6.009898-4 6.456542-1 4.919359-4 6.998420-1 4.053460-4 7.585776-1 3.363163-4 8.317638-1 2.737180-4 9.120108-1 2.243488-4 1.000000+0 1.852700-4 1.135011+0 1.435909-4 1.258925+0 1.173972-4 1.380384+0 9.892249-5 1.500000+0 8.533300-5 1.640590+0 7.336778-5 1.819701+0 6.207572-5 2.065380+0 5.101046-5 2.344229+0 4.224252-5 2.660725+0 3.524595-5 3.054921+0 2.914288-5 3.548134+0 2.388859-5 4.216965+0 1.914973-5 5.011872+0 1.546633-5 6.165950+0 1.207151-5 7.673615+0 9.361525-6 9.772372+0 7.125676-6 1.300000+1 5.205200-6 1.757924+1 3.762932-6 2.483133+1 2.613194-6 3.935501+1 1.620484-6 7.244360+1 8.683868-7 1.445440+2 4.317130-7 2.884032+2 2.154553-7 4.570882+3 1.354227-8 1.000000+5 6.18920-10 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.883700-4 4.441200-5 1.000000+5 4.441200-5 1 9000 7 7 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.883700-4 6.425100-6 1.000000+5 6.425100-6 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.883700-4 6.375329-4 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.593000-5 3.469360+5 3.650000-5 3.684580+5 3.720000-5 3.938720+5 3.801894-5 4.221074+5 3.880000-5 4.475520+5 3.981072-5 4.781312+5 4.073803-5 5.040712+5 4.180000-5 5.312440+5 4.300000-5 5.588820+5 4.415704-5 5.826892+5 4.570882-5 6.105863+5 4.731513-5 6.350353+5 4.900000-5 6.563240+5 5.080000-5 6.747500+5 5.308844-5 6.925908+5 5.559043-5 7.061413+5 5.821032-5 7.147849+5 6.095369-5 7.188811+5 6.400000-5 7.187180+5 6.760830-5 7.135046+5 7.161434-5 7.028691+5 7.585776-5 6.875946+5 8.035261-5 6.683254+5 8.511380-5 6.456004+5 9.015711-5 6.199538+5 9.660509-5 5.861687+5 1.035142-4 5.499925+5 1.109175-4 5.122223+5 1.190000-4 4.730380+5 1.288250-4 4.289485+5 1.400000-4 3.839480+5 1.513561-4 3.436683+5 1.659587-4 2.993322+5 1.840772-4 2.542408+5 2.065380-4 2.103732+5 2.317395-4 1.727973+5 2.600160-4 1.409212+5 2.900000-4 1.153002+5 3.235937-4 9.352252+4 3.600000-4 7.573760+4 4.073803-4 5.884537+4 4.731513-4 4.300068+4 5.432503-4 3.197112+4 6.095369-4 2.481674+4 6.839116-4 1.912600+4 7.762471-4 1.424876+4 9.015711-4 9.977998+3 1.035142-3 7.126360+3 1.216186-3 4.773668+3 1.428894-3 3.173879+3 1.659587-3 2.155948+3 1.949845-3 1.410252+3 2.290868-3 9.157520+2 2.691535-3 5.902511+2 3.126079-3 3.898963+2 3.672823-3 2.476416+2 4.365158-3 1.511494+2 5.188000-3 9.155323+1 6.237348-3 5.319232+1 7.498942-3 3.067026+1 9.120108-3 1.695458+1 1.122018-2 8.979072+0 1.396368-2 4.553826+0 1.757924-2 2.210581+0 2.238721-2 1.026622+0 2.851018-2 4.731120-1 3.801894-2 1.865679-1 5.248075-2 6.526699-2 1.047129-1 6.783434-3 1.364583-1 2.854825-3 1.678804-1 1.460388-3 2.018366-1 8.108886-4 2.344229-1 5.055893-4 2.691535-1 3.293348-4 3.054921-1 2.239888-4 3.427678-1 1.588833-4 3.801894-1 1.174331-4 4.216965-1 8.742518-5 4.623810-1 6.770199-5 5.069907-1 5.278333-5 5.559043-1 4.145400-5 6.095369-1 3.280364-5 6.606935-1 2.690573-5 7.161434-1 2.221058-5 7.762471-1 1.844863-5 8.413951-1 1.542272-5 9.225714-1 1.266174-5 1.011579+0 1.047191-5 1.135011+0 8.309777-6 1.258925+0 6.794017-6 1.380384+0 5.724177-6 1.500000+0 4.937000-6 1.640590+0 4.244593-6 1.819701+0 3.591323-6 2.065380+0 2.951221-6 2.344229+0 2.443975-6 2.660725+0 2.039189-6 3.054921+0 1.686092-6 3.548134+0 1.382111-6 4.216965+0 1.107934-6 5.011872+0 8.948160-7 6.165950+0 6.984210-7 7.673615+0 5.416141-7 9.772372+0 4.122597-7 1.288250+1 3.041465-7 1.717908+1 2.231201-7 2.454709+1 1.530190-7 3.935501+1 9.375682-8 7.244360+1 5.024193-8 1.445440+2 2.497744-8 2.884032+2 1.246601-8 2.290868+3 1.564057-9 1.000000+5 3.58080-11 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.593000-5 3.593000-5 1.000000+5 3.593000-5 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.593000-5 0.0 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.705000-5 2.351600+6 1.720000-5 2.396200+6 1.760000-5 2.501700+6 1.810000-5 2.620100+6 1.870000-5 2.742300+6 1.930000-5 2.845800+6 2.000000-5 2.947500+6 2.075800-5 3.036900+6 2.162719-5 3.116200+6 2.270000-5 3.187800+6 2.371374-5 3.233700+6 2.500000-5 3.267400+6 2.650000-5 3.279600+6 2.818383-5 3.267400+6 3.019952-5 3.226900+6 3.243600-5 3.160400+6 3.467369-5 3.077000+6 3.730000-5 2.965300+6 4.000000-5 2.842000+6 4.265795-5 2.714700+6 4.570882-5 2.564900+6 4.897788-5 2.404600+6 5.188000-5 2.263900+6 5.500000-5 2.116000+6 5.821032-5 1.969000+6 6.165950-5 1.818600+6 6.531306-5 1.668600+6 6.918310-5 1.520600+6 7.328245-5 1.376700+6 7.800000-5 1.227600+6 8.317638-5 1.082800+6 8.912509-5 9.389900+5 9.549926-5 8.087300+5 1.035142-4 6.741600+5 1.122018-4 5.582500+5 1.230269-4 4.468800+5 1.364583-4 3.455900+5 1.531087-4 2.579000+5 1.720000-4 1.904800+5 1.905461-4 1.449500+5 2.089296-4 1.127400+5 2.317395-4 8.437600+4 2.600160-4 6.063100+4 2.951209-4 4.180100+4 3.467369-4 2.581900+4 4.073803-4 1.585100+4 4.677351-4 1.036400+4 5.248075-4 7.225000+3 5.956621-4 4.820100+3 6.760830-4 3.192600+3 7.762471-4 2.021800+3 9.015711-4 1.221900+3 1.122018-3 5.799600+2 1.318257-3 3.327700+2 1.513561-3 2.053200+2 1.757924-3 1.204300+2 2.113489-3 6.189600+1 2.483133-3 3.433859+1 2.917427-3 1.888744+1 3.388442-3 1.076409+1 3.890451-3 6.355811+0 4.570882-3 3.410706+0 5.432503-3 1.737198+0 7.000000-3 6.390683-1 8.709636-3 2.678463-1 1.109175-2 1.015350-1 1.445440-2 3.481684-2 2.018366-2 8.949782-3 4.731513-2 2.747756-4 6.095369-2 9.820403-5 7.498942-2 4.259615-5 9.015711-2 2.042416-5 1.071519-1 1.033270-5 1.244515-1 5.765778-6 1.428894-1 3.389237-6 1.621810-1 2.096665-6 1.840772-1 1.306493-6 2.065380-1 8.557942-7 2.317395-1 5.645787-7 2.570396-1 3.908340-7 2.851018-1 2.723906-7 3.162278-1 1.912336-7 3.507519-1 1.352922-7 3.890451-1 9.647466-8 4.265795-1 7.191616-8 4.677351-1 5.397362-8 5.128614-1 4.080169-8 5.623413-1 3.108135-8 6.165950-1 2.385602-8 6.760830-1 1.845122-8 7.413102-1 1.438207-8 8.609938-1 9.703901-9 9.120108-1 8.386309-9 9.660509-1 7.295656-9 1.011579+0 6.565722-9 1.074800+0 5.750900-9 1.135011+0 5.140865-9 1.216186+0 4.495100-9 1.303167+0 3.957205-9 1.412538+0 3.434773-9 1.640590+0 2.671029-9 1.840772+0 2.217747-9 2.065380+0 1.854855-9 2.344229+0 1.536081-9 2.660725+0 1.281648-9 3.054921+0 1.059699-9 3.548134+0 8.68654-10 4.216965+0 6.96340-10 5.011872+0 5.62396-10 6.165950+0 4.38956-10 7.673615+0 3.40407-10 9.772372+0 2.59104-10 1.300000+1 1.89280-10 1.737801+1 1.38525-10 2.454709+1 9.61747-11 3.890451+1 5.96283-11 7.161434+1 3.19483-11 1.428894+2 1.58817-11 2.851018+2 7.92577-12 4.518559+3 4.98134-13 1.000000+5 2.25060-14 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.705000-5 1.705000-5 1.000000+5 1.705000-5 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.705000-5 0.0 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.698000-5 4.745229+6 1.737801-5 4.967790+6 1.778279-5 5.169053+6 1.830000-5 5.396961+6 1.890000-5 5.624428+6 1.949845-5 5.816695+6 2.018366-5 6.000016+6 2.089296-5 6.155147+6 2.162719-5 6.283311+6 2.270000-5 6.420927+6 2.371374-5 6.507209+6 2.511886-5 6.571823+6 2.660725-5 6.586846+6 2.818383-5 6.557896+6 3.000000-5 6.482827+6 3.198895-5 6.364029+6 3.427678-5 6.194724+6 3.672823-5 5.987879+6 3.935501-5 5.746725+6 4.229500-5 5.463279+6 4.518559-5 5.178992+6 4.800000-5 4.900462+6 5.128614-5 4.578347+6 5.432503-5 4.287274+6 5.754399-5 3.989966+6 6.095369-5 3.688997+6 6.456542-5 3.387584+6 6.839116-5 3.090550+6 7.244360-5 2.801501+6 7.673615-5 2.523002+6 8.128305-5 2.258577+6 8.709636-5 1.963450+6 9.332543-5 1.694174+6 1.011579-4 1.415255+6 1.096478-4 1.173678+6 1.216186-4 9.149547+5 1.364583-4 6.876617+5 1.531087-4 5.130234+5 1.720000-4 3.788463+5 1.927525-4 2.794134+5 2.162719-4 2.036325+5 2.426610-4 1.470504+5 2.722701-4 1.053022+5 3.162278-4 6.757799+4 3.758374-4 4.018463+4 4.365158-4 2.545675+4 4.954502-4 1.717996+4 5.559043-4 1.193262+4 6.309573-4 7.929976+3 7.244360-4 5.037873+3 8.317638-4 3.176279+3 9.772372-4 1.839181+3 1.202264-3 9.043770+2 1.396368-3 5.381603+2 1.548817-3 3.737815+2 1.798871-3 2.190107+2 2.089296-3 1.274301+2 2.454709-3 7.058675+1 2.851018-3 4.051676+1 3.311311-3 2.309370+1 3.758374-3 1.425838+1 4.415704-3 7.656695+0 5.248075-3 3.900987+0 6.531306-3 1.644674+0 8.035261-3 7.201789-1 1.011579-2 2.853425-1 1.333521-2 9.310107-2 1.778279-2 2.877132-2 2.540973-2 6.649424-3 5.011872-2 4.027318-4 6.760830-2 1.179199-4 8.222426-2 5.317360-5 9.772372-2 2.651816-5 1.148154-1 1.394899-5 1.318257-1 8.098407-6 1.513561-1 4.737241-6 1.698244-1 3.049001-6 1.905461-1 1.976437-6 2.113489-1 1.347287-6 2.344229-1 9.251130-7 2.570396-1 6.666696-7 2.818383-1 4.835412-7 3.090295-1 3.532087-7 3.388442-1 2.600028-7 3.672823-1 2.002357-7 3.981072-1 1.552337-7 4.315191-1 1.211902-7 4.677351-1 9.531384-8 5.069907-1 7.551010-8 5.495409-1 6.026361-8 5.956621-1 4.845631-8 6.456542-1 3.925604-8 6.998420-1 3.204567-8 7.585776-1 2.636144-8 8.222427-1 2.185050-8 8.912509-1 1.824758-8 9.660509-1 1.535457-8 1.096478+0 1.185361-8 1.203700+0 9.857700-9 1.318257+0 8.300475-9 1.445440+0 7.025702-9 1.566751+0 6.112722-9 1.737801+0 5.154432-9 1.949845+0 4.299180-9 2.213095+0 3.547379-9 2.511886+0 2.950058-9 2.884032+0 2.431735-9 3.349654+0 1.987749-9 3.935501+0 1.612519-9 4.677351+0 1.298583-9 5.623413+0 1.038833-9 7.079458+0 7.92471-10 8.912509+0 6.09456-10 1.174898+1 4.48469-10 1.603245+1 3.20325-10 2.290868+1 2.19378-10 3.630781+1 1.35855-10 6.606934+1 7.35762-11 1.318257+2 3.65497-11 2.630268+2 1.82354-11 2.089296+3 2.28691-12 1.000000+5 4.77510-14 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.698000-5 1.698000-5 1.000000+5 1.698000-5 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.698000-5 0.0 1.000000+5 1.000000+5 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.021830-9 1.028750+0 3.021830-8 1.036640+0 3.021830-7 1.046400+0 1.361340-6 1.048300+0 1.694900-6 1.051200+0 2.299100-6 1.054080+0 3.021830-6 1.057700+0 4.118920-6 1.061100+0 5.357650-6 1.065100+0 7.092860-6 1.070400+0 9.895160-6 1.076200+0 1.367500-5 1.080600+0 1.707780-5 1.087100+0 2.300960-5 1.093710+0 3.021830-5 1.102600+0 4.190060-5 1.110700+0 5.465200-5 1.120600+0 7.311770-5 1.133300+0 1.016780-4 1.147500+0 1.404080-4 1.158200+0 1.744990-4 1.174100+0 2.331790-4 1.190110+0 3.021830-4 1.205100+0 3.759000-4 1.227500+0 5.028170-4 1.250000+0 6.506000-4 1.281300+0 8.901720-4 1.308600+0 1.131280-3 1.332500+0 1.366570-3 1.374400+0 1.832150-3 1.405800+0 2.223820-3 1.452900+0 2.876180-3 1.500000+0 3.601000-3 1.562500+0 4.663010-3 1.617200+0 5.675960-3 1.712900+0 7.611820-3 1.784700+0 9.180510-3 1.892300+0 1.168430-2 2.000000+0 1.434000-2 2.044000+0 1.546000-2 2.163500+0 1.856640-2 2.372600+0 2.414080-2 2.647100+0 3.154890-2 3.000000+0 4.101000-2 3.437500+0 5.246870-2 4.000000+0 6.651000-2 4.750000+0 8.379580-2 5.000000+0 8.924000-2 6.000000+0 1.096000-1 7.000000+0 1.278000-1 8.000000+0 1.441000-1 9.000000+0 1.589000-1 1.000000+1 1.724000-1 1.100000+1 1.847000-1 1.200000+1 1.959000-1 1.300000+1 2.063000-1 1.400000+1 2.160000-1 1.500000+1 2.251000-1 1.600000+1 2.336000-1 1.800000+1 2.493000-1 2.000000+1 2.633000-1 2.200000+1 2.760000-1 2.400000+1 2.875000-1 2.600000+1 2.981000-1 2.800000+1 3.079000-1 3.000000+1 3.170000-1 4.000000+1 3.540000-1 5.000000+1 3.822000-1 6.000000+1 4.045000-1 8.000000+1 4.380000-1 1.000000+2 4.626000-1 1.500000+2 5.029000-1 2.000000+2 5.276000-1 3.000000+2 5.568000-1 4.000000+2 5.738000-1 5.000000+2 5.850000-1 6.000000+2 5.931000-1 8.000000+2 6.040000-1 1.000000+3 6.110000-1 1.500000+3 6.212000-1 2.000000+3 6.268000-1 3.000000+3 6.329000-1 4.000000+3 6.361000-1 5.000000+3 6.382000-1 6.000000+3 6.396000-1 8.000000+3 6.415000-1 1.000000+4 6.427000-1 1.500000+4 6.443000-1 2.000000+4 6.452000-1 3.000000+4 6.461000-1 4.000000+4 6.466000-1 5.000000+4 6.469000-1 6.000000+4 6.471000-1 8.000000+4 6.474000-1 1.000000+5 6.476000-1 1 9000 7 8 1.899840+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.036830-8 2.136250+0 9.036830-7 2.147000+0 1.239010-6 2.156900+0 1.609330-6 2.169000+0 2.147750-6 2.184500+0 2.985440-6 2.201800+0 4.130450-6 2.214800+0 5.146210-6 2.234200+0 6.922570-6 2.253680+0 9.036830-6 2.281500+0 1.265770-5 2.307000+0 1.662590-5 2.338200+0 2.235490-5 2.377400+0 3.095900-5 2.410200+0 3.937470-5 2.446800+0 5.008690-5 2.485900+0 6.306200-5 2.532900+0 8.070560-5 2.556430+0 9.036830-5 2.611900+0 1.152280-4 2.660400+0 1.393030-4 2.745300+0 1.864450-4 2.809000+0 2.257940-4 2.904500+0 2.908750-4 3.000000+0 3.631000-4 3.125000+0 4.682500-4 3.234400+0 5.698230-4 3.425800+0 7.675270-4 3.569300+0 9.308760-4 3.784700+0 1.196940-3 4.000000+0 1.483000-3 4.250000+0 1.832680-3 4.625000+0 2.382250-3 5.000000+0 2.954000-3 5.500000+0 3.740150-3 6.000000+0 4.538000-3 6.750000+0 5.726400-3 7.000000+0 6.118000-3 8.000000+0 7.653000-3 9.000000+0 9.124000-3 1.000000+1 1.053000-2 1.100000+1 1.186000-2 1.200000+1 1.311000-2 1.300000+1 1.430000-2 1.400000+1 1.544000-2 1.500000+1 1.652000-2 1.600000+1 1.754000-2 1.800000+1 1.945000-2 2.000000+1 2.120000-2 2.200000+1 2.281000-2 2.400000+1 2.430000-2 2.600000+1 2.568000-2 2.800000+1 2.697000-2 3.000000+1 2.817000-2 4.000000+1 3.324000-2 5.000000+1 3.717000-2 6.000000+1 4.036000-2 8.000000+1 4.530000-2 1.000000+2 4.901000-2 1.500000+2 5.536000-2 2.000000+2 5.949000-2 3.000000+2 6.467000-2 4.000000+2 6.783000-2 5.000000+2 7.001000-2 6.000000+2 7.162000-2 8.000000+2 7.384000-2 1.000000+3 7.532000-2 1.500000+3 7.753000-2 2.000000+3 7.878000-2 3.000000+3 8.013000-2 4.000000+3 8.094000-2 5.000000+3 8.142000-2 6.000000+3 8.177000-2 8.000000+3 8.222000-2 1.000000+4 8.251000-2 1.500000+4 8.290000-2 2.000000+4 8.313000-2 3.000000+4 8.334000-2 4.000000+4 8.349000-2 5.000000+4 8.357000-2 6.000000+4 8.362000-2 8.000000+4 8.368000-2 1.000000+5 8.372000-2 1 9000 7 8 1.899840+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 9000 7 9 1.899840+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.000000+0 1.000000+5 9.000000+0 5.000000+5 8.997600+0 6.250000+5 8.995760+0 7.187500+5 8.994620+0 7.890600+5 8.993850+0 8.418000+5 8.993320+0 9.209000+5 8.992580+0 1.000000+6 8.991900+0 1.062500+6 8.990730+0 1.171900+6 8.988830+0 1.500000+6 8.983100+0 1.875000+6 8.973550+0 2.000000+6 8.969900+0 2.500000+6 8.953100+0 3.000000+6 8.932600+0 4.000000+6 8.880800+0 5.000000+6 8.815000+0 6.000000+6 8.735480+0 6.500000+6 8.691160+0 7.000000+6 8.644100+0 8.000000+6 8.540080+0 8.500000+6 8.483620+0 9.000000+6 8.425500+0 1.000000+7 8.301100+0 1.125000+7 8.131940+0 1.250000+7 7.950100+0 1.375000+7 7.757570+0 1.500000+7 7.557900+0 1.625000+7 7.350100+0 1.687500+7 7.244850+0 1.750000+7 7.138400+0 1.937500+7 6.813650+0 2.000000+7 6.705600+0 2.125000+7 6.488000+0 2.312500+7 6.164720+0 2.500000+7 5.847500+0 2.718800+7 5.488060+0 2.906300+7 5.192540+0 3.000000+7 5.049900+0 3.250000+7 4.685140+0 3.437500+7 4.429480+0 3.718800+7 4.075000+0 4.000000+7 3.755000+0 4.250000+7 3.497410+0 4.500000+7 3.265010+0 4.625000+7 3.158110+0 5.000000+7 2.870100+0 5.500000+7 2.555470+0 5.750000+7 2.423400+0 6.000000+7 2.306200+0 6.500000+7 2.109840+0 6.750000+7 2.027760+0 7.000000+7 1.954600+0 7.500000+7 1.831410+0 8.000000+7 1.732600+0 8.500000+7 1.652380+0 9.000000+7 1.586000+0 1.000000+8 1.481000+0 1.187500+8 1.331520+0 1.250000+8 1.287200+0 1.359400+8 1.211770+0 1.453100+8 1.149430+0 1.500000+8 1.119200+0 1.617200+8 1.045290+0 1.712900+8 9.858510-1 1.784700+8 9.412610-1 1.861600+8 8.935610-1 1.875000+8 8.853130-1 1.953900+8 8.364500-1 2.000000+8 8.080000-1 2.062500+8 7.697870-1 2.335900+8 6.247000-1 2.375000+8 6.080160-1 2.445300+8 5.808420-1 2.500000+8 5.621000-1 2.718800+8 5.005630-1 2.815400+8 4.737940-1 2.881300+8 4.542000-1 2.940700+8 4.353810-1 3.000000+8 4.154000-1 3.062500+8 3.932200-1 3.117200+8 3.736480-1 3.332500+8 3.053680-1 3.392300+8 2.904160-1 3.464100+8 2.751870-1 3.500000+8 2.687000-1 3.562500+8 2.591440-1 3.617200+8 2.521210-1 3.856400+8 2.275140-1 3.928200+8 2.200460-1 4.000000+8 2.119000-1 4.062500+8 2.041100-1 4.148600+8 1.926740-1 4.227500+8 1.818680-1 4.324100+8 1.686600-1 4.448000+8 1.524060-1 4.645100+8 1.293060-1 4.881700+8 1.070720-1 5.000000+8 9.820000-2 6.000000+8 5.470000-2 6.562500+8 3.954300-2 6.718800+8 3.654030-2 6.859400+8 3.430740-2 6.964800+8 3.291320-2 7.000000+8 3.250000-2 7.125000+8 3.122170-2 7.234400+8 3.028600-2 7.665000+8 2.725730-2 7.784700+8 2.640740-2 7.928200+8 2.529880-2 8.000000+8 2.470000-2 8.125000+8 2.358030-2 8.242200+8 2.247000-2 8.403500+8 2.089690-2 8.551600+8 1.945210-2 8.732700+8 1.773360-2 8.891100+8 1.630480-2 1.000000+9 9.100000-3 1.015600+9 8.462390-3 1.045900+9 7.417000-3 1.074300+9 6.618980-3 1.100900+9 5.993730-3 1.137500+9 5.281210-3 1.171100+9 4.742540-3 1.193100+9 4.436020-3 1.500000+9 2.040900-3 1.562500+9 1.761520-3 1.617200+9 1.549510-3 1.712900+9 1.242120-3 1.784700+9 1.056440-3 2.000000+9 6.689300-4 2.187500+9 4.671930-4 2.539100+9 2.586870-4 2.846700+9 1.650070-4 5.000000+9 1.837900-5 8.000000+9 2.920200-6 1.00000+10 1.225600-6 1.13510+10 7.508350-7 1.41440+10 3.224960-7 1.70770+10 1.572690-7 2.01080+10 8.474250-8 2.51010+10 3.685550-8 2.97820+10 1.950320-8 3.41710+10 1.173250-8 4.24000+10 5.318730-9 5.27500+10 2.407670-9 6.14120+10 1.393600-9 7.51940+10 6.77380-10 8.75970+10 3.95101-10 1.00000+11 2.48440-10 1.17140+11 1.43376-10 1.47470+11 6.49482-11 1.82930+11 3.12232-11 2.26780+11 1.51633-11 3.06680+11 5.56951-12 4.01990+11 2.29639-12 5.50790+11 8.30244-13 8.34870+11 2.21185-13 1.31280+12 5.37243-14 2.31100+12 9.46069-15 5.15000+12 8.47983-16 1.71130+13 2.45892-17 1.00000+14 1.42600-19 5.62340+14 8.73312-22 5.42470+15 9.86481-25 1.00000+17 1.46800-28 1 9000 7 0 1.899840+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.00000-12 1.000000+2 1.00000-10 1.000000+3 1.000000-8 1.000000+4 1.000000-6 1.000000+5 1.000000-4 5.000000+5 2.500000-3 6.250000+5 3.906250-3 7.187500+5 5.166016-3 7.890600+5 6.226157-3 8.418000+5 7.086272-3 9.209000+5 8.480568-3 1.000000+6 1.000000-2 1.062500+6 1.133760-2 1.171900+6 1.381060-2 1.500000+6 2.240000-2 1.875000+6 3.489860-2 2.000000+6 3.970000-2 2.500000+6 6.190000-2 3.000000+6 8.880000-2 4.000000+6 1.565000-1 5.000000+6 2.420000-1 6.000000+6 3.439140-1 6.500000+6 4.005990-1 7.000000+6 4.610000-1 8.000000+6 5.919710-1 8.500000+6 6.620340-1 9.000000+6 7.349000-1 1.000000+7 8.880000-1 1.125000+7 1.092510+0 1.250000+7 1.308400+0 1.375000+7 1.532020+0 1.500000+7 1.761000+0 1.625000+7 1.993380+0 1.687500+7 2.110040+0 1.750000+7 2.227100+0 1.937500+7 2.575760+0 2.000000+7 2.691000+0 2.125000+7 2.918080+0 2.312500+7 3.249910+0 2.500000+7 3.569300+0 2.718800+7 3.923310+0 2.906300+7 4.209790+0 3.000000+7 4.347000+0 3.250000+7 4.691970+0 3.437500+7 4.931280+0 3.718800+7 5.259570+0 4.000000+7 5.552000+0 4.250000+7 5.783200+0 4.500000+7 5.990240+0 4.625000+7 6.085220+0 5.000000+7 6.339000+0 5.500000+7 6.613460+0 5.750000+7 6.728850+0 6.000000+7 6.832000+0 6.500000+7 7.007210+0 6.750000+7 7.082440+0 7.000000+7 7.151000+0 7.500000+7 7.271370+0 8.000000+7 7.376000+0 8.500000+7 7.468250+0 9.000000+7 7.552000+0 1.000000+8 7.703000+0 1.187500+8 7.949830+0 1.250000+8 8.024300+0 1.359400+8 8.146500+0 1.453100+8 8.242240+0 1.500000+8 8.288000+0 1.617200+8 8.391620+0 1.712900+8 8.467030+0 1.784700+8 8.517900+0 1.861600+8 8.568280+0 1.875000+8 8.576620+0 1.953900+8 8.622620+0 2.000000+8 8.647900+0 2.062500+8 8.678250+0 2.335900+8 8.786930+0 2.375000+8 8.798970+0 2.445300+8 8.819960+0 2.500000+8 8.834500+0 2.718800+8 8.881000+0 2.815400+8 8.897570+0 2.881300+8 8.906820+0 2.940700+8 8.915000+0 3.000000+8 8.923000+0 3.062500+8 8.929280+0 3.117200+8 8.934670+0 3.332500+8 8.952170+0 3.392300+8 8.956130+0 3.464100+8 8.960800+0 3.500000+8 8.963100+0 3.562500+8 8.965780+0 3.617200+8 8.968080+0 3.856400+8 8.977770+0 3.928200+8 8.980000+0 4.000000+8 8.982000+0 4.062500+8 8.983170+0 4.148600+8 8.984760+0 4.227500+8 8.986190+0 4.324100+8 8.987900+0 4.448000+8 8.990030+0 4.645100+8 8.992180+0 4.881700+8 8.994150+0 5.000000+8 8.995100+0 6.000000+8 8.998500+0 6.562500+8 8.999080+0 6.718800+8 8.999230+0 6.859400+8 8.999370+0 6.964800+8 8.999470+0 7.000000+8 8.999500+0 7.125000+8 8.999570+0 7.234400+8 8.999620+0 7.665000+8 8.999840+0 7.784700+8 8.999900+0 7.928200+8 8.999970+0 8.000000+8 9.000000+0 8.125000+8 9.000000+0 8.242200+8 9.000000+0 8.403500+8 9.000000+0 8.551600+8 9.000000+0 8.732700+8 9.000000+0 8.891100+8 9.000000+0 1.000000+9 9.000000+0 1.015600+9 9.000000+0 1.045900+9 9.000000+0 1.074300+9 9.000000+0 1.100900+9 9.000000+0 1.137500+9 9.000000+0 1.171100+9 9.000000+0 1.193100+9 9.000000+0 1.500000+9 9.000000+0 1.562500+9 9.000000+0 1.617200+9 9.000000+0 1.712900+9 9.000000+0 1.784700+9 9.000000+0 2.000000+9 9.000000+0 2.187500+9 9.000000+0 2.539100+9 9.000000+0 2.846700+9 9.000000+0 5.000000+9 9.000000+0 8.000000+9 9.000000+0 1.00000+10 9.000000+0 1.13510+10 9.000000+0 1.41440+10 9.000000+0 1.70770+10 9.000000+0 2.01080+10 9.000000+0 2.51010+10 9.000000+0 2.97820+10 9.000000+0 3.41710+10 9.000000+0 4.24000+10 9.000000+0 5.27500+10 9.000000+0 6.14120+10 9.000000+0 7.51940+10 9.000000+0 8.75970+10 9.000000+0 1.00000+11 9.000000+0 1.17140+11 9.000000+0 1.47470+11 9.000000+0 1.82930+11 9.000000+0 2.26780+11 9.000000+0 3.06680+11 9.000000+0 4.01990+11 9.000000+0 5.50790+11 9.000000+0 8.34870+11 9.000000+0 1.31280+12 9.000000+0 2.31100+12 9.000000+0 5.15000+12 9.000000+0 1.71130+13 9.000000+0 1.00000+14 9.000000+0 5.62340+14 9.000000+0 5.42470+15 9.000000+0 1.00000+17 9.000000+0 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.042433-6 0.0 9.223388-6 0.0 1.237208-5 0.0 1.242537-5 3.974574-1 1.243298-5 4.536576-1 1.244352-5 5.832015-1 1.246343-5 9.023709-1 1.249389-5 1.582213+0 1.252434-5 2.517751+0 1.255860-5 3.882704+0 1.261570-5 6.442699+0 1.264805-5 7.637318+0 1.268153-5 8.340649+0 1.271085-5 8.417467+0 1.274030-5 7.949992+0 1.277681-5 6.737616+0 1.285931-5 3.229195+0 1.288977-5 2.163830+0 1.291590-5 1.463763+0 1.292022-5 1.353850+0 1.293357-5 1.081677+0 1.296420-5 5.574031-1 1.298112-5 3.188464-1 1.299483-5 2.333563-1 1.302545-5 1.185009-1 1.305608-5 0.0 1.386669-5 0.0 1.386845-5 3.582771-8 1.393672-5 2.813978-6 1.393989-5 3.025082-6 1.397085-5 5.745965-6 1.400674-5 1.018427-5 1.404282-5 1.648132-5 1.407713-5 2.405484-5 1.414575-5 4.084411-5 1.418007-5 4.756603-5 1.421438-5 5.143122-5 1.424869-5 5.165621-5 1.428300-5 4.821303-5 1.431731-5 4.183136-5 1.438593-5 2.532008-5 1.441843-5 1.801842-5 1.444875-5 1.235229-5 1.448288-5 7.579930-6 1.448887-5 6.917070-6 1.452318-5 3.738242-6 1.454931-5 1.739296-6 1.455115-5 1.637469-6 1.455749-5 1.422265-6 1.459180-5 7.222417-7 1.462611-5 0.0 1.486209-5 0.0 1.492474-5 7.109417-2 1.493343-5 8.085071-2 1.493525-5 8.391913-2 1.497183-5 1.731002-1 1.500841-5 2.977755-1 1.504499-5 4.742914-1 1.509027-5 7.605964-1 1.521769-5 1.858400+0 1.527367-5 2.266544+0 1.534086-5 2.650422+0 1.538974-5 2.837889+0 1.543446-5 2.901321+0 1.546384-5 2.874721+0 1.550647-5 2.679613+0 1.554647-5 2.355149+0 1.562589-5 1.476930+0 1.564741-5 1.229267+0 1.568456-5 8.663318-1 1.572378-5 5.738117-1 1.573735-5 5.059918-1 1.576155-5 4.107000-1 1.579885-5 3.421460-1 1.581482-5 3.338211-1 1.583392-5 3.409993-1 1.585355-5 4.019081-1 1.589505-5 5.746705-1 1.592048-5 7.223132-1 1.603875-5 1.531381+0 1.608952-5 1.784163+0 1.612865-5 1.866960+0 1.617888-5 1.833080+0 1.631913-5 1.502899+0 1.638184-5 1.473360+0 1.660900-5 1.636861+0 1.683434-5 1.663001+0 1.844010-5 2.159003+0 1.850707-5 2.387836+0 1.852638-5 2.575648+0 1.857176-5 3.109089+0 1.859818-5 3.488255+0 1.864373-5 4.409244+0 1.869498-5 5.895235+0 1.876872-5 8.648506+0 1.882594-5 1.091635+1 1.888085-5 1.253117+1 1.892466-5 1.319006+1 1.896997-5 1.308536+1 1.901751-5 1.214325+1 1.906974-5 1.039760+1 1.917601-5 6.321453+0 1.921314-5 5.192362+0 1.923592-5 4.555003+0 1.928147-5 3.651829+0 1.932702-5 3.027501+0 1.936155-5 2.760783+0 1.941813-5 2.401817+0 2.280681-5 3.136992+0 2.719993-5 3.829900+0 3.251497-5 4.434804+0 3.296820-5 4.759221+0 3.326205-5 4.860597+0 3.382822-5 4.544900+0 3.442241-5 4.688774+0 3.570562-5 4.820237+0 4.212224-5 5.269782+0 4.915200-5 5.508971+0 5.821032-5 5.505964+0 7.455899-5 4.997780+0 1.096478-4 3.578549+0 1.348114-4 2.833032+0 1.576275-4 2.341852+0 1.881762-4 1.866439+0 2.172076-4 1.539613+0 2.498661-4 1.266983+0 2.862044-4 1.043158+0 3.289917-4 8.510549-1 3.713017-4 7.108488-1 4.219242-4 5.866226-1 4.807711-4 4.811121-1 5.511248-4 3.898068-1 6.326344-4 3.136327-1 6.552821-4 2.988240-1 6.585079-4 6.109430-1 6.601207-4 8.704407-1 6.617349-4 1.264076+0 6.635448-4 1.881994+0 6.681518-4 3.780273+0 6.698547-4 4.261361+0 6.717160-4 4.426941+0 6.735490-4 4.213680+0 6.759018-4 3.566092+0 6.788333-4 2.681673+0 6.799200-4 2.456997+0 6.814876-4 2.285188+0 6.831690-4 2.299841+0 6.850492-4 2.503066+0 6.881978-4 2.977954+0 6.909250-4 3.438040+0 6.938879-4 3.737916+0 6.986398-4 3.916099+0 7.178755-4 3.983848+0 7.676992-4 3.785316+0 8.710213-4 3.117580+0 1.032064-3 2.437843+0 1.189807-3 1.952348+0 1.383507-3 1.531762+0 1.573690-3 1.234567+0 1.804777-3 9.758976-1 2.011200-3 8.074708-1 2.213922-3 6.805490-1 2.477779-3 5.546042-1 2.764902-3 4.535008-1 3.098059-3 3.664677-1 3.435867-3 3.011442-1 3.792029-3 2.494680-1 4.158793-3 2.085133-1 4.570882-3 1.733401-1 5.144380-3 1.371330-1 5.629908-3 1.145478-1 6.237348-3 9.312620-2 6.985950-3 7.392682-2 7.665209-3 6.108710-2 8.458669-3 4.983843-2 9.248176-3 4.133925-2 1.016555-2 3.392430-2 1.109175-2 2.820314-2 1.224922-2 2.284354-2 1.358477-2 1.830046-2 1.507988-2 1.460406-2 1.642904-2 1.213624-2 1.793799-2 1.001783-2 1.992673-2 7.955140-3 2.179077-2 6.537223-3 2.424179-2 5.159800-3 2.688240-2 4.101068-3 2.956077-2 3.314928-3 3.289866-2 2.606186-3 3.646923-2 2.067152-3 4.029639-2 1.649145-3 4.381760-2 1.363803-3 4.850627-2 1.082664-3 5.305026-2 8.835286-4 5.753168-2 7.340250-4 6.250664-2 6.071163-4 6.771090-2 5.058706-4 7.438308-2 4.079688-4 8.023135-2 3.431779-4 8.700246-2 2.851693-4 9.454891-2 2.358184-4 1.026290-1 1.954945-4 1.109773-1 1.635379-4 1.201724-1 1.364865-4 1.329689-1 1.083998-4 1.460286-1 8.780922-5 1.587417-1 7.281822-5 1.725078-1 6.053726-5 1.880293-1 5.008909-5 2.057523-1 4.113678-5 2.267667-1 3.334707-5 2.485794-1 2.745684-5 2.709509-1 2.291885-5 3.006942-1 1.851198-5 3.291120-1 1.546087-5 3.631667-1 1.276871-5 4.021583-1 1.054005-5 4.518559-1 8.538422-6 4.954502-1 7.286734-6 5.479614-1 6.178807-6 6.008278-1 5.352890-6 6.637908-1 4.626886-6 7.615171-1 3.845813-6 8.413952-1 3.401188-6 9.772369-1 2.876605-6 1.173413+0 2.398855-6 1.410753+0 2.003624-6 1.696098+0 1.673511-6 2.039158+0 1.397786-6 2.451607+0 1.167490-6 2.947480+0 9.751364-7 3.543651+0 8.144749-7 4.260405+0 6.802836-7 5.122134+0 5.682014-7 6.158159+0 4.745856-7 7.403736+0 3.963938-7 8.901248+0 3.310847-7 9.760024+0 3.025835-7 1.000000+1 5.851467-7 1 9000 7 0 1.899840+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.002146+0 3.042433-6-9.019760+0 9.223388-6-9.123654+0 1.140831-5-8.892974+0 1.200603-5-8.401361+0 1.224517-5-7.751410+0 1.234854-5-7.065607+0 1.243298-5-5.892862+0 1.249769-5-4.789938+0 1.253481-5-4.398598+0 1.256573-5-4.397812+0 1.259418-5-4.783625+0 1.261570-5-5.360123+0 1.264472-5-6.500242+0 1.267801-5-8.278463+0 1.270548-5-9.818599+0 1.274678-5-7.515727+0 1.278109-5-6.106687+0 1.281488-5-5.288497+0 1.284168-5-4.998143+0 1.285931-5-5.008619+0 1.288977-5-5.242505+0 1.298112-5-6.675729+0 1.302545-5-7.346923+0 1.310850-5-8.164056+0 1.328746-5-8.942492+0 1.374959-5-9.780985+0 1.407713-5-1.011721+1 1.478266-5-9.538614+0 1.513028-5-8.466163+0 1.523635-5-8.752236+0 1.538450-5-9.867721+0 1.545367-5-1.063498+1 1.555813-5-9.646910+0 1.564338-5-9.501127+0 1.576155-5-1.028238+1 1.583392-5-1.078170+1 1.595893-5-1.021764+1 1.607103-5-1.049385+1 1.617219-5-1.104133+1 1.631913-5-1.092085+1 1.678650-5-1.113945+1 1.767593-5-1.161809+1 1.820796-5-1.020979+1 1.839163-5-9.231874+0 1.850393-5-7.981107+0 1.865939-5-5.729084+0 1.870494-5-5.359098+0 1.875121-5-5.422921+0 1.878213-5-5.786110+0 1.881670-5-6.524435+0 1.886669-5-8.293820+0 1.891932-5-1.085830+1 1.892466-5-1.114773+1 1.898310-5-8.146654+0 1.902656-5-6.182183+0 1.906362-5-4.906748+0 1.909129-5-4.261117+0 1.912125-5-3.813643+0 1.915030-5-3.609187+0 1.918319-5-3.690802+0 1.923022-5-4.105779+0 1.936155-5-5.990424+0 1.946283-5-7.180307+0 1.959597-5-7.948007+0 1.985780-5-8.655859+0 2.040519-5-9.222645+0 2.185921-5-9.550919+0 2.719993-5-9.169322+0 3.242034-5-8.701510+0 3.300742-5-8.660886+0 3.353100-5-8.199446+0 3.453976-5-8.327647+0 5.454454-5-5.502104+0 6.400000-5-4.440784+0 7.455899-5-3.530793+0 8.269895-5-3.007542+0 9.216000-5-2.558486+0 1.048002-4-2.145701+0 1.169258-4-1.889395+0 1.348114-4-1.660006+0 1.576275-4-1.509493+0 1.881762-4-1.431297+0 2.380778-4-1.433795+0 3.289917-4-1.587822+0 4.219242-4-1.842164+0 5.026319-4-2.177421+0 5.511248-4-2.490968+0 5.858144-4-2.830730+0 6.113611-4-3.214776+0 6.225991-4-3.451626+0 6.429374-4-3.500305+0 6.503045-4-3.388050+0 6.545141-4-3.159684+0 6.619680-4-2.293978+0 6.638343-4-2.240346+0 6.652320-4-2.381800+0 6.668320-4-2.731366+0 6.680450-4-3.169484+0 6.697669-4-4.040994+0 6.713562-4-4.962620+0 6.739125-4-3.888028+0 6.755044-4-3.490542+0 6.768423-4-3.346706+0 6.783601-4-3.369384+0 6.807687-4-3.768874+0 6.840711-4-4.448209+0 6.859781-4-4.675264+0 6.890108-4-4.816565+0 6.932563-4-4.488797+0 7.007760-4-3.836749+0 7.122211-4-3.267007+0 7.319569-4-2.615003+0 7.532404-4-2.094348+0 7.748157-4-1.690443+0 7.975942-4-1.365477+0 8.179167-4-1.144730+0 8.473912-4-9.016958-1 8.831539-4-6.764576-1 9.093897-4-5.365430-1 9.414265-4-3.940086-1 9.682491-4-2.889161-1 9.957754-4-1.958635-1 1.009080-3-1.559530-1 1.035142-3-8.536419-2 1.060779-3-2.516025-2 1.083667-3 2.049759-2 1.093929-3 4.137527-2 1.122469-3 8.894268-2 1.155130-3 1.362595-1 1.189807-3 1.794918-1 1.243784-3 2.339314-1 1.309747-3 2.865238-1 1.383507-3 3.262448-1 1.454418-3 3.541649-1 1.573690-3 3.799032-1 1.741733-3 3.931642-1 2.067918-3 3.789036-1 3.334015-3 2.551379-1 4.046013-3 2.031215-1 4.808695-3 1.622468-1 5.629908-3 1.301584-1 6.573740-3 1.034340-1 7.665209-3 8.144019-2 8.709636-3 6.620014-2 9.861014-3 5.363526-2 1.109175-2 4.362265-2 1.247544-2 3.515851-2 1.423979-2 2.723424-2 1.594915-2 2.156821-2 1.793799-2 1.668704-2 1.992673-2 1.302463-2 2.179077-2 1.038274-2 2.388831-2 8.038783-3 2.568085-2 6.427078-3 2.782179-2 4.863416-3 2.956077-2 3.812409-3 3.167197-2 2.741412-3 3.384824-2 1.821927-3 3.499542-2 1.398191-3 3.646923-2 9.084222-4 3.799159-2 4.569674-4 3.879444-2 2.382543-4 3.956252-2 4.010048-5 4.029639-2-1.398932-4 4.099676-2-3.037423-4 4.199135-2-5.224359-4 4.381760-2-8.896430-4 4.671044-2-1.391748-3 4.951507-2-1.802748-3 5.443202-2-2.383726-3 6.074866-2-2.946331-3 7.135810-2-3.608921-3 8.504378-2-4.151699-3 1.050829-1-4.596900-3 1.416741-1-4.977086-3 2.267667-1-5.260591-3 5.854637-1-5.414839-3 1.776032+0-5.439112-3 5.363532+0-5.441746-3 1.000000+1-5.441781-3 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.130384-6 1.152000-6 6.808027-6 1.224000-6 9.181559-6 1.300500-6 1.204782-5 1.381781-6 1.544857-5 1.468143-6 1.943448-5 1.559901-6 2.405638-5 1.657395-6 2.936392-5 1.760983-6 3.540391-5 1.871044-6 4.221803-5 1.987984-6 4.983090-5 2.048000-6 5.443608-5 2.178240-6 7.422318-5 2.388899-6 1.125161-4 2.619929-6 1.615823-4 2.873303-6 2.226508-4 3.072000-6 2.767585-4 3.351207-6 4.027307-4 3.675303-6 5.722370-4 3.840000-6 6.698720-4 4.286600-6 1.074345-3 4.558699-6 1.359166-3 4.800000-6 1.636066-3 5.155808-6 2.192072-3 5.400000-6 2.613154-3 5.654427-6 3.163184-3 6.075000-6 4.158801-3 6.395058-6 5.133505-3 6.834375-6 6.583297-3 7.232698-6 8.272217-3 7.458720-6 9.271670-3 7.691805-6 1.035237-2 7.921753-6 1.166007-2 8.360317-6 1.427277-2 8.649756-6 1.604367-2 8.968095-6 1.833894-2 9.190366-6 1.996614-2 9.520656-6 2.262764-2 9.764763-6 2.456572-2 1.002302-5 2.679509-2 1.033230-5 2.933277-2 1.062256-5 3.176795-2 1.089496-5 3.381626-2 1.115060-5 3.565723-2 1.139052-5 3.703991-2 1.161567-5 3.810475-2 1.172300-5 3.844569-2 1.192898-5 3.874553-2 1.212285-5 3.866242-2 1.230581-5 3.805005-2 1.238822-5 3.760769-2 1.247733-5 3.701234-2 1.263813-5 3.551857-2 1.278888-5 3.355588-2 1.293021-5 3.122522-2 1.306271-5 2.853810-2 1.318693-5 2.557976-2 1.330338-5 2.246086-2 1.341255-5 1.921623-2 1.351490-5 1.589792-2 1.361086-5 1.261394-2 1.370081-5 9.500829-3 1.378515-5 6.707970-3 1.386421-5 4.394139-3 1.392814-5 2.913300-3 1.393833-5 2.721910-3 1.397918-5 2.108941-3 1.400782-5 1.850813-3 1.407297-5 1.940560-3 1.413404-5 3.161108-3 1.419130-5 5.697487-3 1.424498-5 9.747391-3 1.429530-5 1.551669-2 1.434248-5 2.321623-2 1.438671-5 3.306058-2 1.442818-5 4.526850-2 1.446705-5 6.006507-2 1.450349-5 7.768519-2 1.453766-5 9.837846-2 1.462787-5 1.817533-1 1.465427-5 2.177635-1 1.467901-5 2.585394-1 1.470221-5 3.045227-1 1.472395-5 3.561655-1 1.476473-5 4.828093-1 1.480041-5 6.385175-1 1.483163-5 8.244555-1 1.485894-5 1.039371+0 1.488285-5 1.279663+0 1.490376-5 1.539939+0 1.498580-5 3.214388+0 1.501396-5 4.120370+0 1.503998-5 5.154642+0 1.506116-5 6.153651+0 1.507418-5 6.843420+0 1.508720-5 7.593326+0 1.510573-5 8.766533+0 1.512425-5 1.006714+1 1.513351-5 1.076519+1 1.514740-5 1.187096+1 1.516484-5 1.335512+1 1.516902-5 1.372675+1 1.519834-5 1.647666+1 1.521248-5 1.788389+1 1.523949-5 2.067039+1 1.525232-5 2.202055+1 1.526457-5 2.331208+1 1.528148-5 2.508116+1 1.529788-5 2.675659+1 1.531630-5 2.855680+1 1.533169-5 2.996728+1 1.534776-5 3.132411+1 1.537013-5 3.296870+1 1.538705-5 3.399018+1 1.540862-5 3.497730+1 1.542612-5 3.549481+1 1.543607-5 3.567055+1 1.545318-5 3.576693+1 1.547107-5 3.558828+1 1.547946-5 3.540749+1 1.549544-5 3.489572+1 1.551215-5 3.413757+1 1.551863-5 3.378483+1 1.554043-5 3.238134+1 1.555820-5 3.101522+1 1.557543-5 2.953253+1 1.559446-5 2.774958+1 1.561110-5 2.609860+1 1.562500-5 2.467502+1 1.564286-5 2.281180+1 1.566139-5 2.087237+1 1.567991-5 1.895603+1 1.570769-5 1.618407+1 1.572259-5 1.477098+1 1.575219-5 1.215704+1 1.576206-5 1.134937+1 1.577655-5 1.022468+1 1.579521-5 8.886814+0 1.581222-5 7.777365+0 1.583671-5 6.359709+0 1.584604-5 5.874120+0 1.586004-5 5.199805+0 1.587404-5 4.587762+0 1.590203-5 3.537177+0 1.592064-5 2.955360+0 1.593289-5 2.617894+0 1.594495-5 2.318259+0 1.595683-5 2.052532+0 1.598002-5 1.608742+0 1.600267-5 1.259054+0 1.602461-5 9.865806-1 1.604587-5 7.745651-1 1.606646-5 6.097285-1 1.608641-5 4.816406-1 1.612446-5 3.049754-1 1.614259-5 2.451826-1 1.617773-5 1.624845-1 1.621068-5 1.148268-1 1.624156-5 8.899677-2 1.627052-5 7.699433-2 1.629766-5 7.388358-2 1.632311-5 7.655146-2 1.637082-5 9.254775-2 1.641258-5 1.152841-1 1.644911-5 1.401432-1 1.648107-5 1.649157-1 1.653701-5 2.137073-1 1.657897-5 2.540387-1 1.661043-5 2.860771-1 1.665763-5 3.367071-1 1.670708-5 3.927968-1 1.674820-5 4.417090-1 1.678932-5 4.926451-1 1.683044-5 5.456177-1 1.687157-5 6.006539-1 1.691269-5 6.577554-1 1.695381-5 7.168337-1 1.703606-5 8.394727-1 1.707718-5 9.013322-1 1.711830-5 9.614943-1 1.715942-5 1.017647+0 1.720054-5 1.067005+0 1.724167-5 1.106623+0 1.728279-5 1.133822+0 1.730785-5 1.143418+0 1.736503-5 1.143957+0 1.740616-5 1.125860+0 1.744728-5 1.093192+0 1.748840-5 1.047465+0 1.752952-5 9.906284-1 1.756693-5 9.312535-1 1.760834-5 8.597839-1 1.762904-5 8.229228-1 1.771215-5 6.831976-1 1.773045-5 6.579837-1 1.776112-5 6.243781-1 1.778481-5 6.081092-1 1.779927-5 6.033198-1 1.780472-5 6.026550-1 1.783218-5 6.099523-1 1.784833-5 6.234683-1 1.789194-5 6.998328-1 1.789739-5 7.138642-1 1.793555-5 8.426112-1 1.795054-5 9.083633-1 1.797916-5 1.058205+0 1.803767-5 1.460096+0 1.806638-5 1.698197+0 1.809451-5 1.950932+0 1.811560-5 2.149038+0 1.812263-5 2.216053+0 1.814494-5 2.429720+0 1.816445-5 2.615304+0 1.817282-5 2.693608+0 1.820209-5 2.957219+0 1.822302-5 3.131183+0 1.826126-5 3.403965+0 1.827811-5 3.501342+0 1.828835-5 3.552687+0 1.834657-5 3.721274+0 1.836363-5 3.729126+0 1.843488-5 3.571032+0 1.844960-5 3.505637+0 1.846777-5 3.413285+0 1.850031-5 3.224439+0 1.853416-5 3.011759+0 1.859388-5 2.655975+0 1.861589-5 2.546975+0 1.863428-5 2.469772+0 1.865200-5 2.409014+0 1.865791-5 2.391967+0 1.867889-5 2.345090+0 1.869463-5 2.324329+0 1.871499-5 2.316080+0 1.872597-5 2.320292+0 1.874340-5 2.339102+0 1.876350-5 2.378416+0 1.877072-5 2.396882+0 1.879239-5 2.464863+0 1.881542-5 2.555376+0 1.884252-5 2.680966+0 1.890871-5 3.033429+0 1.894435-5 3.223650+0 1.895880-5 3.296543+0 1.898165-5 3.404231+0 1.899626-5 3.467351+0 1.902268-5 3.568255+0 1.906289-5 3.685987+0 1.909300-5 3.745060+0 1.913068-5 3.786147+0 1.914209-5 3.792133+0 1.918769-5 3.791770+0 1.923167-5 3.765096+0 1.935631-5 3.658626+0 1.938088-5 3.644402+0 1.944776-5 3.626340+0 1.950451-5 3.633026+0 1.958105-5 3.663709+0 1.983629-5 3.797967+0 2.013584-5 3.941868+0 2.031114-5 4.054106+0 2.049523-5 4.191772+0 2.086159-5 4.455958+0 2.144747-5 4.853150+0 2.207506-5 5.273061+0 2.256160-5 5.597580+0 2.326326-5 6.064356+0 2.408760-5 6.611420+0 2.478368-5 7.077240+0 2.558245-5 7.612828+0 2.660725-5 8.303893+0 2.786121-5 9.153940+0 2.917427-5 1.004705+1 3.100400-5 1.129336+1 3.276800-5 1.250964+1 3.480808-5 1.391109+1 3.719460-5 1.554935+1 3.897527-5 1.676732+1 3.925415-5 1.703227+1 3.946573-5 1.733081+1 3.964652-5 1.769002+1 4.012715-5 1.893693+1 4.029270-5 1.925086+1 4.040006-5 1.936460+1 4.052837-5 1.939964+1 4.069311-5 1.930962+1 4.105506-5 1.895638+1 4.120820-5 1.890143+1 4.137984-5 1.895791+1 4.160245-5 1.918306+1 4.205350-5 1.977201+1 4.234934-5 2.005675+1 4.362531-5 2.102632+1 4.585221-5 2.284766+1 4.802944-5 2.462376+1 5.030427-5 2.645935+1 5.300159-5 2.859757+1 5.613318-5 3.099670+1 5.900000-5 3.311485+1 6.233693-5 3.547059+1 6.553600-5 3.756903+1 6.873786-5 3.955556+1 7.336530-5 4.211391+1 7.651560-5 4.365265+1 8.012167-5 4.526950+1 8.345067-5 4.663792+1 8.963962-5 4.871624+1 9.508522-5 5.023806+1 9.963676-5 5.126670+1 1.065369-4 5.248241+1 1.144853-4 5.352314+1 1.228800-4 5.428377+1 1.335442-4 5.484687+1 1.515267-4 5.524487+1 1.719454-4 5.521678+1 1.955465-4 5.489339+1 2.249935-4 5.426962+1 2.683799-4 5.317670+1 3.204583-4 5.177131+1 3.833255-4 5.004378+1 4.348957-4 4.858611+1 4.966596-4 4.672903+1 5.412016-4 4.531180+1 5.837810-4 4.381878+1 6.093656-4 4.282599+1 6.367208-4 4.165544+1 6.617549-4 4.045790+1 6.814555-4 3.940522+1 7.018592-4 3.817937+1 7.206774-4 3.690223+1 7.331713-4 3.594916+1 7.491335-4 3.457782+1 7.622860-4 3.328773+1 7.735460-4 3.203002+1 7.826079-4 3.088841+1 7.918115-4 2.957245+1 7.996758-4 2.828556+1 8.064038-4 2.702654+1 8.126741-4 2.568076+1 8.174747-4 2.450424+1 8.216216-4 2.336309+1 8.261223-4 2.198668+1 8.298926-4 2.073741+1 8.329006-4 1.969117+1 8.363281-4 1.845384+1 8.400708-4 1.706865+1 8.444692-4 1.554051+1 8.462745-4 1.503327+1 8.478594-4 1.469467+1 8.485465-4 1.458720+1 8.493004-4 1.450083+1 8.499559-4 1.445484+1 8.506578-4 1.443778+1 8.518544-4 1.449072+1 8.530984-4 1.466191+1 8.538401-4 1.482228+1 8.545974-4 1.503134+1 8.557788-4 1.544776+1 8.563518-4 1.568828+1 8.578355-4 1.642096+1 8.593390-4 1.730897+1 8.650148-4 2.150360+1 8.666553-4 2.281207+1 8.690000-4 2.464748+1 8.704854-4 2.576367+1 8.722302-4 2.701232+1 8.735000-4 2.787373+1 8.756046-4 2.921062+1 8.794996-4 3.140094+1 8.826430-4 3.293838+1 8.874252-4 3.497817+1 8.896716-4 3.584003+1 8.934239-4 3.717359+1 8.993796-4 3.907765+1 9.062585-4 4.103446+1 9.118158-4 4.246778+1 9.202166-4 4.442933+1 9.260263-4 4.565962+1 9.344301-4 4.727580+1 9.406685-4 4.835953+1 9.492498-4 4.970324+1 9.573486-4 5.083750+1 9.660651-4 5.193625+1 9.813777-4 5.359409+1 1.004970-3 5.560732+1 1.026785-3 5.706271+1 1.057052-3 5.869306+1 1.103701-3 6.066104+1 1.148154-3 6.213077+1 1.192357-3 6.326634+1 1.256209-3 6.424704+1 1.338300-3 6.499517+1 1.435222-3 6.536803+1 1.557758-3 6.540107+1 1.677748-3 6.501402+1 1.776244-3 6.425098+1 2.013748-3 6.207827+1 2.220522-3 5.989482+1 2.396087-3 5.803684+1 2.671036-3 5.507520+1 2.980063-3 5.165342+1 3.198895-3 4.934129+1 3.425752-3 4.700636+1 3.787040-3 4.347591+1 4.155173-3 4.010624+1 4.543523-3 3.685372+1 4.886128-3 3.422183+1 5.341821-3 3.106521+1 5.878236-3 2.780910+1 6.503436-3 2.456654+1 7.157409-3 2.171958+1 8.097653-3 1.840506+1 9.275260-3 1.523590+1 1.122535-2 1.158897+1 1.502874-2 7.556325+0 1.925653-2 5.221255+0 2.286205-2 4.019342+0 2.606248-2 3.271636+0 3.034480-2 2.555025+0 3.657167-2 1.873457+0 4.036761-2 1.581066+0 5.316994-2 9.710518-1 6.284370-2 7.164753-1 8.068523-2 4.511195-1 1.020235-1 2.900561-1 1.304119-1 1.813060-1 1.725302-1 1.052735-1 2.441926-1 5.317743-2 4.029603-1 1.968448-2 1.120601+0 2.555998-3 3.384160+0 2.804168-4 1.022000+1 3.074898-5 3.086391+1 3.371581-6 9.320751+1 3.696868-7 2.814822+2 4.053536-8 8.500626+2 4.444613-9 3.162278+3 3.21171-10 1.000000+4 3.21171-11 3.162278+4 3.21171-12 1.000000+5 3.21171-13 1 10000 7 7 2.017900+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.931700-7 1.258900-6 3.061600-7 1.584900-6 4.852300-7 1.995300-6 7.690400-7 2.511900-6 1.218800-6 3.162300-6 1.931700-6 3.981100-6 3.061600-6 5.011900-6 4.852200-6 6.309600-6 7.690200-6 7.943300-6 1.218800-5 1.000000-5 1.931600-5 1.258900-5 3.061400-5 1.584900-5 4.851900-5 1.995300-5 7.689600-5 2.511900-5 1.218700-4 3.162300-5 1.931400-4 3.981100-5 3.061000-4 5.011900-5 4.851000-4 6.309600-5 7.687800-4 7.943300-5 1.218300-3 1.000000-4 1.930700-3 1.258900-4 3.059500-3 1.584900-4 4.846100-3 1.995300-4 7.672700-3 2.511900-4 1.214900-2 3.162300-4 1.921500-2 3.981100-4 3.037400-2 5.011900-4 4.793500-2 6.309600-4 7.538100-2 7.943300-4 1.180600-1 1.000000-3 1.838900-1 1.258900-3 2.838500-1 1.584900-3 4.320100-1 1.995300-3 6.449100-1 2.511900-3 9.383700-1 3.162300-3 1.322200+0 3.981100-3 1.794900+0 5.011900-3 2.337800+0 6.309600-3 2.914700+0 7.943300-3 3.470900+0 1.000000-2 3.961400+0 1.258900-2 4.366400+0 1.584900-2 4.686900+0 1.995300-2 4.939500+0 2.511900-2 5.129300+0 3.162300-2 5.251900+0 3.981100-2 5.299600+0 5.011900-2 5.272300+0 6.309600-2 5.174000+0 7.943300-2 5.023800+0 1.000000-1 4.823600+0 1.258900-1 4.586000+0 1.584900-1 4.321500+0 1.995300-1 4.039000+0 2.511900-1 3.747400+0 3.162300-1 3.454000+0 3.981100-1 3.164800+0 5.011900-1 2.883600+0 6.309600-1 2.613000+0 7.943300-1 2.355100+0 1.000000+0 2.110500+0 1.258900+0 1.880100+0 1.584900+0 1.664800+0 1.995300+0 1.464900+0 2.511900+0 1.281200+0 3.162300+0 1.113700+0 3.981100+0 9.624100-1 5.011900+0 8.271200-1 6.309600+0 7.071800-1 7.943300+0 6.017300-1 1.000000+1 5.097700-1 1.258900+1 4.301200-1 1.584900+1 3.616000-1 1.995300+1 3.029900-1 2.511900+1 2.531200-1 3.162300+1 2.108900-1 3.981100+1 1.752800-1 5.011900+1 1.453600-1 6.309600+1 1.203000-1 7.943300+1 9.938400-2 1.000000+2 8.196800-2 1.258900+2 6.750200-2 1.584900+2 5.551200-2 1.995300+2 4.559400-2 2.511900+2 3.740400-2 3.162300+2 3.065200-2 3.981100+2 2.509300-2 5.011900+2 2.052300-2 6.309600+2 1.677100-2 7.943300+2 1.369400-2 1.000000+3 1.117300-2 1.258900+3 9.108900-3 1.584900+3 7.421300-3 1.995300+3 6.042500-3 2.511900+3 4.916900-3 3.162300+3 3.998600-3 3.981100+3 3.250100-3 5.011900+3 2.640200-3 6.309600+3 2.143800-3 7.943300+3 1.739900-3 1.000000+4 1.411400-3 1.258900+4 1.144400-3 1.584900+4 9.275700-4 1.995300+4 7.515000-4 2.511900+4 6.086200-4 3.162300+4 4.927200-4 3.981100+4 3.987500-4 5.011900+4 3.225900-4 6.309600+4 2.608900-4 7.943300+4 2.109200-4 1.000000+5 1.704700-4 1 10000 7 7 2.017900+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994172-4 2.511886-4 2.510160-4 3.162278-4 3.159542-4 3.981072-4 3.976738-4 5.011872-4 5.005010-4 6.309573-4 6.298715-4 7.943282-4 7.926106-4 1.000000-3 9.972852-4 1.258925-3 1.254629-3 1.584893-3 1.578142-3 1.995262-3 1.984632-3 2.511886-3 2.495267-3 3.162278-3 3.136306-3 3.981072-3 3.940778-3 5.011872-3 4.949480-3 6.309573-3 6.213677-3 7.943282-3 7.796390-3 1.000000-2 9.776232-3 1.258925-2 1.224911-2 1.584893-2 1.533098-2 1.995262-2 1.916183-2 2.511886-2 2.391050-2 3.162278-2 2.977745-2 3.981072-2 3.700617-2 5.011872-2 4.588153-2 6.309573-2 5.674506-2 7.943282-2 6.993893-2 1.000000-1 8.594083-2 1.258925-1 1.052396-1 1.584893-1 1.284143-1 1.995262-1 1.561348-1 2.511886-1 1.891687-1 3.162278-1 2.284035-1 3.981072-1 2.748452-1 5.011872-1 3.296819-1 6.309573-1 3.942928-1 7.943282-1 4.703078-1 1.000000+0 5.597599-1 1.258925+0 6.651288-1 1.584893+0 7.894665-1 1.995262+0 9.365440-1 2.511886+0 1.111071+0 3.162278+0 1.318757+0 3.981072+0 1.566647+0 5.011872+0 1.863397+0 6.309573+0 2.219545+0 7.943282+0 2.647998+0 1.000000+1 3.164570+0 1.258925+1 3.788582+0 1.584893+1 4.543699+0 1.995262+1 5.458840+0 2.511886+1 6.569565+0 3.162278+1 7.919496+0 3.981072+1 9.561943+0 5.011872+1 1.156270+1 6.309573+1 1.400231+1 7.943282+1 1.697990+1 1.000000+2 2.061725+1 1.258925+2 2.506451+1 1.584893+2 3.050613+1 1.995262+2 3.716932+1 2.511886+2 4.533441+1 3.162278+2 5.534699+1 3.981072+2 6.763142+1 5.011872+2 8.271456+1 6.309573+2 1.012435+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728482-8 1.000000-4 2.739249-8 1.258925-4 4.340996-8 1.584893-4 6.878332-8 1.995262-4 1.089847-7 2.511886-4 1.726927-7 3.162278-4 2.735566-7 3.981072-4 4.333354-7 5.011872-4 6.862171-7 6.309573-4 1.085808-6 7.943282-4 1.717658-6 1.000000-3 2.714777-6 1.258925-3 4.296412-6 1.584893-3 6.751498-6 1.995262-3 1.063029-5 2.511886-3 1.661951-5 3.162278-3 2.597179-5 3.981072-3 4.029331-5 5.011872-3 6.239232-5 6.309573-3 9.589603-5 7.943282-3 1.468927-4 1.000000-2 2.237677-4 1.258925-2 3.401400-4 1.584893-2 5.179565-4 1.995262-2 7.907946-4 2.511886-2 1.208360-3 3.162278-2 1.845322-3 3.981072-2 2.804548-3 5.011872-2 4.237195-3 6.309573-2 6.350676-3 7.943282-2 9.493896-3 1.000000-1 1.405917-2 1.258925-1 2.065290-2 1.584893-1 3.007505-2 1.995262-1 4.339141-2 2.511886-1 6.201997-2 3.162278-1 8.782423-2 3.981072-1 1.232620-1 5.011872-1 1.715053-1 6.309573-1 2.366645-1 7.943282-1 3.240204-1 1.000000+0 4.402401-1 1.258925+0 5.937966-1 1.584893+0 7.954267-1 1.995262+0 1.058718+0 2.511886+0 1.400815+0 3.162278+0 1.843521+0 3.981072+0 2.414424+0 5.011872+0 3.148475+0 6.309573+0 4.090029+0 7.943282+0 5.295285+0 1.000000+1 6.835430+0 1.258925+1 8.800672+0 1.584893+1 1.130523+1 1.995262+1 1.449378+1 2.511886+1 1.854930+1 3.162278+1 2.370328+1 3.981072+1 3.024877+1 5.011872+1 3.855603+1 6.309573+1 4.909343+1 7.943282+1 6.245293+1 1.000000+2 7.938275+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608808+2 3.981072+2 3.304757+2 5.011872+2 4.184727+2 6.309573+2 5.297138+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.996000-5 3.806428+6 2.008000-5 3.861473+6 2.008000-5 5.741373+6 2.048000-5 6.023390+6 2.097500-5 6.344965+6 2.150000-5 6.655340+6 2.213095-5 6.991441+6 2.290868-5 7.353535+6 2.371374-5 7.676984+6 2.454709-5 7.960920+6 2.460000-5 7.978026+6 2.540973-5 8.209124+6 2.551200-5 8.236555+6 2.650000-5 8.466540+6 2.660725-5 8.489592+6 2.770000-5 8.686906+6 2.786121-5 8.713333+6 2.900000-5 8.864844+6 2.917427-5 8.885305+6 3.054921-5 9.007495+6 3.080000-5 9.026159+6 3.235937-5 9.099931+6 3.273407-5 9.112758+6 3.450000-5 9.132915+6 3.467369-5 9.133001+6 3.693800-5 9.091788+6 3.935501-5 8.989269+6 4.168694-5 8.844084+6 4.220000-5 8.809960+6 4.323000-5 8.728060+6 4.323000-5 8.988022+6 4.410000-5 8.944271+6 4.466836-5 8.916133+6 4.470000-5 8.914395+6 4.518559-5 8.887137+6 4.570882-5 8.851672+6 4.650000-5 8.798352+6 4.740000-5 8.738879+6 4.786301-5 8.708430+6 4.841724-5 8.669692+6 4.850000-5 8.662976+6 4.960000-5 8.573781+6 5.069907-5 8.486843+6 5.080000-5 8.478514+6 5.188000-5 8.389283+6 5.230000-5 8.351183+6 5.370318-5 8.225667+6 5.400000-5 8.199490+6 5.500000-5 8.108438+6 5.688529-5 7.924983+6 5.754399-5 7.862539+6 5.821032-5 7.797752+6 5.900000-5 7.716227+6 6.095369-5 7.520764+6 6.165950-5 7.449300+6 6.309573-5 7.297237+6 6.456542-5 7.147172+6 6.531306-5 7.070673+6 6.839116-5 6.749070+6 6.918310-5 6.667550+6 7.161434-5 6.414028+6 7.244360-5 6.331026+6 7.328245-5 6.246645+6 7.500000-5 6.070311+6 7.673615-5 5.899765+6 7.762471-5 5.813577+6 7.900000-5 5.677667+6 8.128305-5 5.462424+6 8.222426-5 5.375801+6 8.317638-5 5.286554+6 8.609938-5 5.025857+6 8.709636-5 4.940170+6 8.810489-5 4.852333+6 9.120108-5 4.596405+6 9.225714-5 4.512734+6 9.332543-5 4.427415+6 9.660509-5 4.179496+6 9.800000-5 4.079119+6 9.900000-5 4.007138+6 1.035142-4 3.704067+6 1.047129-4 3.628560+6 1.052000-4 3.597601+6 1.109175-4 3.260843+6 1.122018-4 3.191162+6 1.190000-4 2.846557+6 1.202264-4 2.789944+6 1.216186-4 2.727184+6 1.288250-4 2.428352+6 1.318257-4 2.316491+6 1.380384-4 2.104379+6 1.412538-4 2.005198+6 1.462177-4 1.864222+6 1.480000-4 1.816419+6 1.566751-4 1.606451+6 1.603245-4 1.528346+6 1.621810-4 1.490446+6 1.737801-4 1.279813+6 1.819701-4 1.154982+6 1.905461-4 1.041169+6 1.927525-4 1.014356+6 2.041738-4 8.898086+5 2.113489-4 8.218067+5 2.162719-4 7.791390+5 2.290868-4 6.815495+5 2.371374-4 6.284382+5 2.400000-4 6.108694+5 2.511886-4 5.482644+5 2.638800-4 4.873202+5 2.660725-4 4.777442+5 2.754229-4 4.395150+5 2.917427-4 3.820921+5 2.985383-4 3.612522+5 3.054921-4 3.414055+5 3.273407-4 2.878700+5 3.311311-4 2.797999+5 3.467369-4 2.495025+5 3.672823-4 2.161148+5 3.758374-4 2.039567+5 4.027170-4 1.714692+5 4.120975-4 1.618195+5 4.415704-4 1.358310+5 4.677351-4 1.174370+5 4.700000-4 1.160012+5 5.128614-4 9.281953+4 5.370318-4 8.254150+4 5.754399-4 6.906930+4 6.000000-4 6.202121+4 6.165950-4 5.779836+4 6.456542-4 5.126057+4 6.760830-4 4.546837+4 6.918310-4 4.281544+4 7.328245-4 3.678430+4 7.673615-4 3.258432+4 7.762471-4 3.160883+4 8.413951-4 2.549442+4 8.581800-4 2.418819+4 8.581800-4 2.966762+5 8.596000-4 3.025700+5 8.610000-4 3.071440+5 8.632000-4 3.122379+5 8.655000-4 3.156740+5 8.690000-4 3.186877+5 8.735000-4 3.203388+5 8.753400-4 3.203556+5 8.810489-4 3.204104+5 8.912509-4 3.181975+5 9.015711-4 3.144491+5 9.150000-4 3.078016+5 9.280000-4 2.998183+5 9.440609-4 2.885720+5 9.549926-4 2.802132+5 9.700000-4 2.692766+5 1.011579-3 2.407919+5 1.030000-3 2.294797+5 1.071519-3 2.078929+5 1.148154-3 1.758664+5 1.161449-3 1.710314+5 1.177900-3 1.652996+5 1.202264-3 1.569601+5 1.288250-3 1.318057+5 1.338300-3 1.195517+5 1.348963-3 1.171457+5 1.412538-3 1.041098+5 1.513561-3 8.722615+4 1.548817-3 8.209699+4 1.566751-3 7.964670+4 1.621810-3 7.272096+4 1.698244-3 6.441418+4 1.798871-3 5.523116+4 1.819701-3 5.355812+4 1.883649-3 4.883371+4 1.972423-3 4.317630+4 2.113489-3 3.575339+4 2.137962-3 3.464600+4 2.238721-3 3.054906+4 2.317395-3 2.779753+4 2.454709-3 2.369736+4 2.483133-3 2.295246+4 2.600160-3 2.019979+4 2.660725-3 1.894984+4 2.884032-3 1.510083+4 2.888100-3 1.504094+4 3.019952-3 1.326231+4 3.198895-3 1.127568+4 3.311311-3 1.021381+4 3.388442-3 9.562070+3 3.548134-3 8.379957+3 3.845918-3 6.652031+3 3.890451-3 6.433136+3 4.000000-3 5.934340+3 4.265795-3 4.921696+3 4.623810-3 3.893420+3 4.731513-3 3.638049+3 4.954502-3 3.176158+3 5.248075-3 2.680368+3 5.559043-3 2.261994+3 5.821032-3 1.971312+3 6.456542-3 1.446630+3 6.683439-3 1.304852+3 6.760830-3 1.260720+3 7.079458-3 1.096804+3 7.585776-3 8.900141+2 8.035261-3 7.478097+2 8.317638-3 6.735935+2 8.413951-3 6.502773+2 9.660509-3 4.261024+2 9.885531-3 3.970988+2 1.023293-2 3.572532+2 1.047129-2 3.326932+2 1.174898-2 2.330193+2 1.258925-2 1.881699+2 1.273503-2 1.815834+2 1.380384-2 1.411465+2 1.462177-2 1.179030+2 1.603245-2 8.839364+1 1.737801-2 6.853064+1 1.798871-2 6.144881+1 1.819701-2 5.925473+1 2.041738-2 4.118424+1 2.290868-2 2.854350+1 2.371374-2 2.556907+1 2.426610-2 2.376041+1 2.540973-2 2.051783+1 2.917427-2 1.316067+1 3.349654-2 8.439861+0 3.801894-2 5.598731+0 4.570882-2 3.081154+0 4.731513-2 2.752714+0 5.188000-2 2.038093+0 5.623413-2 1.566613+0 6.165950-2 1.159786+0 6.998420-2 7.670575-1 7.161434-2 7.114332-1 7.585776-2 5.893862-1 8.810489-2 3.613214-1 9.120108-2 3.227412-1 1.047129-1 2.054460-1 1.083927-1 1.835100-1 1.202264-1 1.307813-1 1.216186-1 1.259854-1 1.258925-1 1.126281-1 1.273503-1 1.084980-1 1.396368-1 8.047937-2 1.445440-1 7.195032-2 1.548817-1 5.750828-2 1.584893-1 5.341105-2 1.621810-1 4.960568-2 1.640590-1 4.780695-2 1.798871-1 3.557714-2 1.862087-1 3.184575-2 1.905461-1 2.957817-2 1.949845-1 2.749762-2 2.018366-1 2.465002-2 2.089296-1 2.209729-2 2.238721-1 1.775755-2 2.299100-1 1.634268-2 2.344229-1 1.538181-2 2.483133-1 1.285518-2 2.570396-1 1.154305-2 2.600160-1 1.114312-2 2.630268-1 1.075705-2 2.722701-1 9.678259-3 2.884032-1 8.115286-3 2.917427-1 7.834396-3 2.985383-1 7.311335-3 3.000000-1 7.205071-3 3.198895-1 5.943880-3 3.273407-1 5.547464-3 3.349654-1 5.184565-3 3.548134-1 4.378676-3 3.630781-1 4.092560-3 3.715352-1 3.830544-3 3.845918-1 3.469077-3 3.935501-1 3.247255-3 4.027170-1 3.039618-3 4.120975-1 2.849541-3 4.168694-1 2.759130-3 4.315191-1 2.504748-3 4.466836-1 2.273821-3 4.518559-1 2.203460-3 4.731513-1 1.943487-3 4.897788-1 1.768843-3 4.954502-1 1.715651-3 5.188000-1 1.518706-3 5.308844-1 1.428881-3 5.370318-1 1.385981-3 5.432503-1 1.345533-3 5.688529-1 1.195447-3 5.754399-1 1.160619-3 5.888437-1 1.093975-3 5.956621-1 1.063029-3 6.237348-1 9.479462-4 6.456542-1 8.698870-4 6.531306-1 8.460716-4 6.760830-1 7.785901-4 6.839117-1 7.573143-4 6.998420-1 7.164913-4 7.079458-1 6.975245-4 7.328245-1 6.436845-4 7.413102-1 6.266777-4 7.585776-1 5.940003-4 7.673615-1 5.788725-4 7.943282-1 5.358616-4 8.035261-1 5.222469-4 8.128305-1 5.089782-4 8.317638-1 4.839683-4 8.609938-1 4.487643-4 8.912509-1 4.161212-4 8.913100-1 4.160609-4 9.225714-1 3.881242-4 9.549926-1 3.637665-4 9.590200-1 3.609051-4 9.691100-1 3.530526-4 9.793000-1 3.453755-4 9.896000-1 3.366335-4 9.947800-1 3.323545-4 1.023293+0 3.083900-4 1.047129+0 2.914105-4 1.059700+0 2.829818-4 1.096478+0 2.622414-4 1.101500+0 2.595815-4 1.109175+0 2.555912-4 1.136900+0 2.431153-4 1.148154+0 2.383094-4 1.174898+0 2.283182-4 1.216186+0 2.141116-4 1.230269+0 2.098839-4 1.273503+0 1.976956-4 1.318257+0 1.868225-4 1.500000+0 1.512031-4 1.531087+0 1.459841-4 1.640590+0 1.296981-4 1.798871+0 1.117851-4 2.089296+0 8.867222-5 2.113489+0 8.716492-5 2.371374+0 7.343169-5 2.691535+0 6.127040-5 3.090295+0 5.065942-5 3.589219+0 4.152839-5 3.630781+0 4.091993-5 4.265795+0 3.328081-5 4.315191+0 3.280947-5 5.069907+0 2.687040-5 5.128614+0 2.650220-5 6.165950+0 2.125232-5 6.309573+0 2.069062-5 7.673615+0 1.647767-5 7.762471+0 1.626356-5 7.943282+0 1.584425-5 9.660509+0 1.268963-5 9.772372+0 1.252952-5 1.000000+1 1.221584-5 1.318257+1 9.011360-6 1.333521+1 8.900400-6 1.348963+1 8.790943-6 1.840772+1 6.294215-6 1.862087+1 6.218288-6 1.883649+1 6.143361-6 2.722701+1 4.168054-6 2.754229+1 4.118681-6 2.800000+1 4.049085-6 4.570882+1 2.439389-6 4.623810+1 2.410909-6 4.677351+1 2.382784-6 9.120108+1 1.206438-6 9.225714+1 1.192490-6 9.332543+1 1.178711-6 1.819701+2 6.006965-7 1.840772+2 5.937922-7 1.862087+2 5.869693-7 7.244360+2 1.500935-7 7.328245+2 1.483747-7 7.413102+2 1.466759-7 1.000000+5 1.086040-9 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.996000-5 1.996000-5 2.008000-5 1.996000-5 2.008000-5 1.999929-5 4.323000-5 1.999994-5 4.323000-5 2.067182-5 5.230000-5 2.126397-5 6.456542-5 2.186217-5 9.900000-5 2.322316-5 1.318257-4 2.439768-5 1.621810-4 2.532982-5 2.041738-4 2.640746-5 2.660725-4 2.779517-5 3.311311-4 2.907538-5 3.758374-4 2.982796-5 4.415704-4 3.076699-5 5.370318-4 3.189934-5 6.456542-4 3.297698-5 7.762471-4 3.403681-5 8.581800-4 3.458340-5 8.581800-4 4.911414-5 8.810489-4 4.930056-5 1.011579-3 4.943832-5 1.972423-3 4.971238-5 5.821032-3 4.989963-5 5.623413-2 4.999329-5 1.000000+5 5.000285-5 1 10000 7 7 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.996000-5 0.0 8.581800-4 0.0 8.581800-4 1.068088-5 8.655000-4 1.075784-5 8.810489-4 1.081044-5 9.280000-4 1.086853-5 1.621810-3 1.094482-5 3.548134-3 1.098217-5 1.000000+5 1.098504-5 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.996000-5 0.0 2.008000-5 1.200000-7 2.008000-5 8.070835-8 4.323000-5 2.323006-5 4.323000-5 2.255818-5 5.370318-5 3.236132-5 7.500000-5 5.270530-5 1.480000-4 1.230827-4 2.985383-4 2.700801-4 6.000000-4 5.674546-4 8.581800-4 8.235966-4 8.581800-4 7.983850-4 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.581800-4 2.724880+5 8.596000-4 2.784880+5 8.610000-4 2.831660+5 8.632000-4 2.884220+5 8.655000-4 2.920260+5 8.690000-4 2.952920+5 8.735000-4 2.972620+5 8.810489-4 2.978569+5 8.912509-4 2.963347+5 9.015711-4 2.932553+5 9.150000-4 2.874360+5 9.280000-4 2.802120+5 9.440609-4 2.698499+5 9.700000-4 2.518700+5 1.030000-3 2.146720+5 1.071519-3 1.945921+5 1.177900-3 1.550070+5 1.288250-3 1.237482+5 1.513561-3 8.204920+4 1.698244-3 6.064946+4 1.972423-3 4.069525+4 2.317395-3 2.622040+4 2.660725-3 1.788427+4 3.198895-3 1.064699+4 3.845918-3 6.283175+3 4.623810-3 3.678217+3 5.559043-3 2.137222+3 6.760830-3 1.191322+3 8.317638-3 6.365659+2 1.023293-2 3.376331+2 1.273503-2 1.716159+2 1.603245-2 8.353952+1 2.041738-2 3.892078+1 2.540973-2 1.938975+1 3.349654-2 7.975322+0 4.570882-2 2.911348+0 6.998420-2 7.247185-1 1.202264-1 1.235411-1 1.548817-1 5.432238-2 1.905461-1 2.793894-2 2.238721-1 1.677272-2 2.570396-1 1.090258-2 2.917427-1 7.399659-3 3.273407-1 5.239752-3 3.630781-1 3.865676-3 4.027170-1 2.871174-3 4.466836-1 2.147859-3 4.897788-1 1.670842-3 5.370318-1 1.309193-3 5.888437-1 1.033369-3 6.456542-1 8.216959-4 6.998420-1 6.767996-4 7.585776-1 5.610926-4 8.128305-1 4.807738-4 8.913100-1 3.930200-4 9.225714-1 3.666311-4 9.590200-1 3.409200-4 9.793000-1 3.262500-4 9.947800-1 3.139500-4 1.023293+0 2.913120-4 1.059700+0 2.673100-4 1.109175+0 2.414365-4 1.148154+0 2.251114-4 1.216186+0 2.022544-4 1.273503+0 1.867474-4 1.500000+0 1.428300-4 1.640590+0 1.225157-4 1.798871+0 1.055949-4 2.089296+0 8.376179-5 2.371374+0 6.936528-5 2.691535+0 5.787741-5 3.090295+0 4.785400-5 3.589219+0 3.922869-5 4.265795+0 3.143781-5 5.069907+0 2.538235-5 6.165950+0 2.007535-5 7.673615+0 1.556501-5 9.660509+0 1.198679-5 1.318257+1 8.512265-6 1.840772+1 5.945617-6 2.722701+1 3.937218-6 4.570882+1 2.304294-6 9.120108+1 1.139623-6 1.819701+2 5.674305-7 7.244360+2 1.417812-7 1.000000+5 1.025900-9 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.581800-4 5.040400-5 1.000000+5 5.040400-5 1 10000 7 7 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.581800-4 1.162900-5 1.000000+5 1.162900-5 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.581800-4 7.961470-4 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.323000-5 2.599620+5 4.410000-5 2.833080+5 4.470000-5 2.988540+5 4.570882-5 3.239620+5 4.650000-5 3.426760+5 4.740000-5 3.629480+5 4.850000-5 3.862600+5 4.960000-5 4.078960+5 5.080000-5 4.296880+5 5.230000-5 4.544040+5 5.370318-5 4.751459+5 5.500000-5 4.923920+5 5.688529-5 5.143788+5 5.900000-5 5.351240+5 6.095369-5 5.510028+5 6.309573-5 5.652004+5 6.531306-5 5.768129+5 6.839116-5 5.884951+5 7.161434-5 5.959892+5 7.500000-5 5.996180+5 7.900000-5 5.994460+5 8.317638-5 5.952036+5 8.810489-5 5.861274+5 9.332543-5 5.730224+5 9.900000-5 5.559740+5 1.052000-4 5.351625+5 1.122018-4 5.101153+5 1.202264-4 4.807322+5 1.288250-4 4.495403+5 1.380384-4 4.172983+5 1.480000-4 3.844920+5 1.603245-4 3.473494+5 1.737801-4 3.113080+5 1.905461-4 2.725717+5 2.113489-4 2.328882+5 2.371374-4 1.939352+5 2.660725-4 1.603111+5 2.985383-4 1.315324+5 3.311311-4 1.093090+5 3.672823-4 9.020098+4 4.120975-4 7.225720+4 4.677351-4 5.612657+4 5.370318-4 4.228066+4 6.165950-4 3.162830+4 6.918310-4 2.466858+4 7.762471-4 1.909960+4 8.810489-4 1.429885+4 1.011579-3 1.034646+4 1.161449-3 7.429144+3 1.338300-3 5.247765+3 1.566751-3 3.540113+3 1.819701-3 2.418149+3 2.113489-3 1.639824+3 2.454709-3 1.103932+3 2.884032-3 7.154848+2 3.388442-3 4.604006+2 4.000000-3 2.902855+2 4.731513-3 1.806193+2 5.559043-3 1.137279+2 6.683439-3 6.647471+1 8.035261-3 3.854730+1 9.660509-3 2.218372+1 1.174898-2 1.223979+1 1.462177-2 6.246815+0 1.819701-2 3.162999+0 2.290868-2 1.533006+0 2.917427-2 7.109185-1 3.801894-2 3.040064-1 5.188000-2 1.112031-1 1.273503-1 5.963133-3 1.621810-1 2.730219-3 1.949845-1 1.515417-3 2.299100-1 9.014500-4 2.630268-1 5.937554-4 2.985383-1 4.036235-4 3.349654-1 2.861307-4 3.715352-1 2.113043-4 4.120975-1 1.571395-4 4.518559-1 1.215496-4 4.954502-1 9.465556-5 5.432503-1 7.423808-5 5.956621-1 5.865182-5 6.531306-1 4.668298-5 7.079458-1 3.848815-5 7.673615-1 3.194141-5 8.317638-1 2.671792-5 8.913100-1 2.297000-5 9.225714-1 2.142756-5 9.590200-1 1.992500-5 9.793000-1 1.906800-5 9.947800-1 1.834900-5 1.023293+0 1.702617-5 1.059700+0 1.562400-5 1.109175+0 1.411135-5 1.148154+0 1.315745-5 1.216186+0 1.182073-5 1.273503+0 1.091463-5 1.500000+0 8.347800-6 1.640590+0 7.160676-6 1.798871+0 6.171473-6 2.089296+0 4.895603-6 2.371374+0 4.054133-6 2.691535+0 3.382746-6 3.090295+0 2.796949-6 3.589219+0 2.292759-6 4.265795+0 1.837433-6 5.069907+0 1.483558-6 6.165950+0 1.173412-6 7.762471+0 8.978056-7 9.772372+0 6.916358-7 1.333521+1 4.913265-7 1.862087+1 3.432745-7 2.754229+1 2.273674-7 4.623810+1 1.330939-7 9.225714+1 6.583618-8 1.840772+2 3.278238-8 7.328245+2 8.192009-9 1.000000+5 5.99580-11 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.323000-5 4.323000-5 1.000000+5 4.323000-5 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.323000-5 0.0 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.008000-5 1.879900+6 2.048000-5 1.975100+6 2.097500-5 2.083200+6 2.150000-5 2.187700+6 2.213095-5 2.300900+6 2.290868-5 2.423400+6 2.371374-5 2.533000+6 2.454709-5 2.629200+6 2.540973-5 2.713500+6 2.650000-5 2.801400+6 2.770000-5 2.877200+6 2.900000-5 2.938500+6 3.054921-5 2.988200+6 3.235937-5 3.021300+6 3.450000-5 3.033600+6 3.693800-5 3.021700+6 3.935501-5 2.989900+6 4.168694-5 2.943900+6 4.466836-5 2.869800+6 4.786301-5 2.777700+6 5.069907-5 2.687300+6 5.400000-5 2.574600+6 5.754399-5 2.449100+6 6.095369-5 2.326000+6 6.456542-5 2.194900+6 6.839116-5 2.057400+6 7.244360-5 1.915400+6 7.673615-5 1.771000+6 8.128305-5 1.626200+6 8.609938-5 1.483000+6 9.120108-5 1.343500+6 9.660509-5 1.209600+6 1.035142-4 1.058200+6 1.109175-4 9.188000+5 1.190000-4 7.904400+5 1.288250-4 6.623400+5 1.412538-4 5.354700+5 1.566751-4 4.182200+5 1.737801-4 3.244400+5 1.927525-4 2.501500+5 2.162719-4 1.859100+5 2.400000-4 1.410300+5 2.638800-4 1.088900+5 2.917427-4 8.224200+4 3.273407-4 5.913500+4 3.758374-4 3.948000+4 4.415704-4 2.445900+4 5.128614-4 1.556300+4 5.754399-4 1.091400+4 6.456542-4 7.599800+3 7.328245-4 5.066000+3 8.413951-4 3.229300+3 9.549926-4 2.122700+3 1.148154-3 1.142900+3 1.348963-3 6.601600+2 1.548817-3 4.097500+2 1.798871-3 2.425700+2 2.137962-3 1.313800+2 2.483133-3 7.669700+1 2.888100-3 4.422900+1 3.311311-3 2.668200+1 3.890451-3 1.459800+1 4.623810-3 7.597300+0 5.248075-3 4.676700+0 6.456542-3 2.092400+0 7.585776-3 1.112400+0 9.885531-3 3.897477-1 1.258925-2 1.483939-1 1.737801-2 4.058634-2 2.371374-2 1.154092-2 4.731513-2 6.971073-4 6.165950-2 2.391865-4 7.585776-2 1.042259-4 9.120108-2 5.016793-5 1.083927-1 2.547200-5 1.258925-1 1.425482-5 1.445440-1 8.402515-6 1.640590-1 5.210078-6 1.862087-1 3.254814-6 2.089296-1 2.136316-6 2.344229-1 1.412155-6 2.600160-1 9.793312-7 2.884032-1 6.838469-7 3.198895-1 4.810793-7 3.548134-1 3.410519-7 3.935501-1 2.436869-7 4.315191-1 1.819418-7 4.731513-1 1.367620-7 5.188000-1 1.035881-7 5.688529-1 7.905348-8 6.237348-1 6.074978-8 6.839117-1 4.701313-8 7.413102-1 3.781323-8 8.035261-1 3.062498-8 8.912509-1 2.354982-8 9.225714-1 2.166759-8 9.691100-1 1.931100-8 9.896000-1 1.830300-8 1.023293+0 1.671121-8 1.059700+0 1.531400-8 1.101500+0 1.402700-8 1.136900+0 1.313100-8 1.174898+0 1.231999-8 1.230269+0 1.134519-8 1.318257+0 1.011446-8 1.500000+0 8.203300-9 1.640590+0 7.037602-9 1.798871+0 6.065113-9 2.089296+0 4.810910-9 2.371374+0 3.984060-9 2.691535+0 3.324187-9 3.090295+0 2.748556-9 3.630781+0 2.219564-9 4.315191+0 1.779623-9 5.128614+0 1.437619-9 6.309573+0 1.122191-9 7.943282+0 8.59302-10 1.000000+1 6.62450-10 1.348963+1 4.76830-10 1.883649+1 3.33242-10 2.800000+1 2.19620-10 4.677351+1 1.29258-10 9.332543+1 6.39463-11 1.862087+2 3.18437-11 7.413102+2 7.95778-12 1.000000+5 5.89210-14 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.008000-5 2.008000-5 1.000000+5 2.008000-5 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.008000-5 0.0 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.996000-5 3.806428+6 2.048000-5 4.048290+6 2.097500-5 4.261765+6 2.150000-5 4.467640+6 2.213095-5 4.690541+6 2.290868-5 4.930135+6 2.371374-5 5.143984+6 2.460000-5 5.343648+6 2.551200-5 5.514772+6 2.660725-5 5.681363+6 2.786121-5 5.828448+6 2.917427-5 5.941126+6 3.080000-5 6.033280+6 3.273407-5 6.089251+6 3.467369-5 6.100278+6 3.693800-5 6.070088+6 3.935501-5 5.999369+6 4.220000-5 5.879320+6 4.518559-5 5.722139+6 4.841724-5 5.525838+6 5.188000-5 5.296268+6 5.500000-5 5.078320+6 5.821032-5 4.846413+6 6.165950-5 4.594437+6 6.531306-5 4.327177+6 6.918310-5 4.049009+6 7.328245-5 3.763242+6 7.762471-5 3.473029+6 8.222426-5 3.183157+6 8.709636-5 2.898252+6 9.225714-5 2.621531+6 9.800000-5 2.343756+6 1.047129-4 2.058258+6 1.122018-4 1.784600+6 1.216186-4 1.498788+6 1.318257-4 1.249915+6 1.462177-4 9.810903+5 1.621810-4 7.642099+5 1.819701-4 5.746566+5 2.041738-4 4.287288+5 2.290868-4 3.170971+5 2.511886-4 2.473875+5 2.754229-4 1.918384+5 3.054921-4 1.430964+5 3.467369-4 9.916779+4 4.027170-4 6.377847+4 4.700000-4 4.017040+4 5.370318-4 2.675724+4 6.000000-4 1.895664+4 6.760830-4 1.298496+4 7.673615-4 8.629796+3 8.753400-4 5.602588+3 1.011579-3 3.457379+3 1.202264-3 1.929679+3 1.412538-3 1.111374+3 1.621810-3 6.876956+2 1.883649-3 4.058807+2 2.238721-3 2.191305+2 2.600160-3 1.275256+2 3.019952-3 7.367420+1 3.548134-3 4.042819+1 4.265795-3 2.018921+1 4.954502-3 1.140817+1 5.821032-3 6.110074+0 7.079458-3 2.841034+0 8.413951-3 1.434578+0 1.047129-2 5.987285-1 1.380384-2 1.971362-1 1.798871-2 6.750093-2 2.426610-2 1.993623-2 5.623413-2 6.357909-4 7.161434-2 2.374348-4 8.810489-2 1.027944-4 1.047129-1 5.152904-5 1.216186-1 2.852015-5 1.396368-1 1.663887-5 1.584893-1 1.021756-5 1.798871-1 6.323543-6 2.018366-1 4.119295-6 2.238721-1 2.821551-6 2.483133-1 1.947037-6 2.722701-1 1.409661-6 3.000000-1 1.010700-6 3.273407-1 7.545660-7 3.548134-1 5.796439-7 3.845918-1 4.481581-7 4.168694-1 3.489226-7 4.518559-1 2.736019-7 4.897788-1 2.160928-7 5.308844-1 1.719158-7 5.754399-1 1.377918-7 6.237348-1 1.113004-7 6.760830-1 9.060892-8 7.328245-1 7.431541-8 7.943282-1 6.139225-8 8.609938-1 5.108014-8 9.549926-1 4.066520-8 9.947800-1 3.746600-8 1.047129+0 3.331896-8 1.096478+0 3.023544-8 1.148154+0 2.764986-8 1.230269+0 2.436850-8 1.531087+0 1.647061-8 1.640590+0 1.464167-8 1.798871+0 1.262095-8 2.113489+0 9.841888-9 2.371374+0 8.293489-9 2.691535+0 6.919917-9 3.090295+0 5.721568-9 3.589219+0 4.690252-9 4.265795+0 3.758818-9 5.069907+0 3.034855-9 6.165950+0 2.400351-9 7.673615+0 1.861003-9 9.660509+0 1.433141-9 1.318257+1 1.017743-9 1.840772+1 7.10875-10 2.722701+1 4.70745-10 4.570882+1 2.75500-10 9.120108+1 1.36256-10 1.819701+2 6.78428-11 7.244360+2 1.69522-11 1.000000+5 1.22650-13 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.996000-5 1.996000-5 1.000000+5 1.996000-5 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.996000-5 0.0 1.000000+5 1.000000+5 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.757550-9 1.028750+0 3.757550-8 1.036640+0 3.757550-7 1.043800+0 1.216680-6 1.046400+0 1.692780-6 1.048300+0 2.107560-6 1.051200+0 2.858860-6 1.054080+0 3.757550-6 1.057700+0 5.121750-6 1.061100+0 6.662070-6 1.065100+0 8.819750-6 1.070400+0 1.230430-5 1.076200+0 1.700440-5 1.080600+0 2.123570-5 1.087100+0 2.861180-5 1.093710+0 3.757550-5 1.102600+0 5.210190-5 1.110700+0 6.795770-5 1.120600+0 9.091870-5 1.133300+0 1.264310-4 1.147500+0 1.745900-4 1.158200+0 2.169790-4 1.174100+0 2.899460-4 1.190110+0 3.757550-4 1.205100+0 4.674300-4 1.227500+0 6.252610-4 1.250000+0 8.090000-4 1.281300+0 1.106680-3 1.308600+0 1.406040-3 1.332500+0 1.697960-3 1.374400+0 2.275060-3 1.405800+0 2.760110-3 1.452900+0 3.567400-3 1.500000+0 4.464000-3 1.562500+0 5.777970-3 1.617200+0 7.031760-3 1.712900+0 9.428980-3 1.784700+0 1.137180-2 1.892300+0 1.447060-2 2.000000+0 1.775000-2 2.044000+0 1.913000-2 2.163500+0 2.295710-2 2.372600+0 2.983380-2 2.647100+0 3.898450-2 3.000000+0 5.068000-2 3.437500+0 6.482510-2 4.000000+0 8.214000-2 4.750000+0 1.034750-1 5.000000+0 1.102000-1 6.000000+0 1.353000-1 7.000000+0 1.576000-1 8.000000+0 1.778000-1 9.000000+0 1.961000-1 1.000000+1 2.127000-1 1.100000+1 2.277000-1 1.200000+1 2.416000-1 1.300000+1 2.544000-1 1.400000+1 2.664000-1 1.500000+1 2.775000-1 1.600000+1 2.880000-1 1.800000+1 3.073000-1 2.000000+1 3.245000-1 2.200000+1 3.401000-1 2.400000+1 3.543000-1 2.600000+1 3.673000-1 2.800000+1 3.793000-1 3.000000+1 3.904000-1 4.000000+1 4.361000-1 5.000000+1 4.705000-1 6.000000+1 4.977000-1 8.000000+1 5.390000-1 1.000000+2 5.690000-1 1.500000+2 6.177000-1 2.000000+2 6.473000-1 3.000000+2 6.820000-1 4.000000+2 7.021000-1 5.000000+2 7.154000-1 6.000000+2 7.249000-1 8.000000+2 7.376000-1 1.000000+3 7.459000-1 1.500000+3 7.578000-1 2.000000+3 7.643000-1 3.000000+3 7.714000-1 4.000000+3 7.752000-1 5.000000+3 7.776000-1 6.000000+3 7.793000-1 8.000000+3 7.814000-1 1.000000+4 7.828000-1 1.500000+4 7.847000-1 2.000000+4 7.857000-1 3.000000+4 7.868000-1 4.000000+4 7.874000-1 5.000000+4 7.877000-1 6.000000+4 7.880000-1 8.000000+4 7.883000-1 1.000000+5 7.885000-1 1 10000 7 8 2.017900+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.004230-7 2.136250+0 1.004230-6 2.147000+0 1.376870-6 2.156900+0 1.788390-6 2.169000+0 2.386720-6 2.184500+0 3.317620-6 2.201800+0 4.590020-6 2.214800+0 5.718800-6 2.234200+0 7.692800-6 2.253680+0 1.004230-5 2.281500+0 1.406600-5 2.307000+0 1.847570-5 2.338200+0 2.484210-5 2.377400+0 3.440340-5 2.410200+0 4.375540-5 2.446800+0 5.565930-5 2.485900+0 7.007810-5 2.532900+0 8.968490-5 2.556430+0 1.004230-4 2.611900+0 1.280500-4 2.660400+0 1.548060-4 2.745300+0 2.071970-4 2.809000+0 2.509270-4 2.904500+0 3.232600-4 3.000000+0 4.035000-4 3.125000+0 5.203050-4 3.234400+0 6.331060-4 3.425800+0 8.526070-4 3.569300+0 1.033930-3 3.784700+0 1.329300-3 4.000000+0 1.647000-3 4.250000+0 2.035680-3 4.625000+0 2.647040-3 5.000000+0 3.283000-3 5.500000+0 4.156230-3 6.000000+0 5.042000-3 6.750000+0 6.362800-3 7.000000+0 6.798000-3 8.000000+0 8.503000-3 9.000000+0 1.014000-2 1.000000+1 1.170000-2 1.100000+1 1.317000-2 1.200000+1 1.457000-2 1.300000+1 1.589000-2 1.400000+1 1.715000-2 1.500000+1 1.835000-2 1.600000+1 1.949000-2 1.800000+1 2.161000-2 2.000000+1 2.355000-2 2.200000+1 2.533000-2 2.400000+1 2.698000-2 2.600000+1 2.852000-2 2.800000+1 2.994000-2 3.000000+1 3.128000-2 4.000000+1 3.689000-2 5.000000+1 4.124000-2 6.000000+1 4.477000-2 8.000000+1 5.021000-2 1.000000+2 5.428000-2 1.500000+2 6.121000-2 2.000000+2 6.567000-2 3.000000+2 7.123000-2 4.000000+2 7.460000-2 5.000000+2 7.691000-2 6.000000+2 7.861000-2 8.000000+2 8.094000-2 1.000000+3 8.250000-2 1.500000+3 8.480000-2 2.000000+3 8.610000-2 3.000000+3 8.751000-2 4.000000+3 8.834000-2 5.000000+3 8.884000-2 6.000000+3 8.920000-2 8.000000+3 8.967000-2 1.000000+4 8.997000-2 1.500000+4 9.037000-2 2.000000+4 9.061000-2 3.000000+4 9.082000-2 4.000000+4 9.097000-2 5.000000+4 9.106000-2 6.000000+4 9.111000-2 8.000000+4 9.117000-2 1.000000+5 9.121000-2 1 10000 7 8 2.017900+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 10000 7 9 2.017900+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.000000+5 1.000000+1 5.000000+5 9.997800+0 6.250000+5 9.996130+0 7.187500+5 9.995080+0 7.890600+5 9.994380+0 8.945300+5 9.993440+0 1.000000+6 9.992600+0 1.125000+6 9.990250+0 1.500000+6 9.984500+0 2.000000+6 9.972400+0 2.500000+6 9.957000+0 3.000000+6 9.938200+0 4.000000+6 9.890600+0 5.000000+6 9.830000+0 6.500000+6 9.715540+0 7.000000+6 9.671900+0 8.500000+6 9.522530+0 9.000000+6 9.468200+0 1.000000+7 9.351500+0 1.125000+7 9.191220+0 1.187500+7 9.106830+0 1.250000+7 9.019300+0 1.375000+7 8.835250+0 1.437500+7 8.739950+0 1.500000+7 8.642700+0 1.687500+7 8.337020+0 1.750000+7 8.233000+0 1.937500+7 7.911380+0 2.000000+7 7.803100+0 2.125000+7 7.583850+0 2.312500+7 7.254050+0 2.500000+7 6.925400+0 2.718800+7 6.546990+0 2.750000+7 6.493570+0 2.906300+7 6.230470+0 3.000000+7 6.076400+0 3.250000+7 5.676490+0 3.437500+7 5.390830+0 3.718800+7 4.987110+0 4.000000+7 4.613900+0 4.250000+7 4.307240+0 4.625000+7 3.893070+0 5.000000+7 3.531000+0 5.437500+7 3.168280+0 6.000000+7 2.786400+0 6.500000+7 2.513880+0 6.750000+7 2.397750+0 7.000000+7 2.292900+0 7.500000+7 2.113980+0 7.750000+7 2.037750+0 8.000000+7 1.968800+0 8.500000+7 1.850710+0 9.000000+7 1.754000+0 9.750000+7 1.639340+0 1.000000+8 1.607300+0 1.062500+8 1.537350+0 1.203100+8 1.413790+0 1.250000+8 1.378900+0 1.437500+8 1.255030+0 1.500000+8 1.217400+0 1.625000+8 1.144690+0 1.718800+8 1.090810+0 1.789100+8 1.050230+0 1.875000+8 1.000240+0 1.894500+8 9.887360-1 1.973600+8 9.421600-1 2.000000+8 9.266000-1 2.375000+8 7.271720-1 2.500000+8 6.781000-1 2.718800+8 6.090260-1 2.815400+8 5.786630-1 2.881300+8 5.566960-1 2.960400+8 5.284990-1 3.000000+8 5.136000-1 3.062500+8 4.891350-1 3.171900+8 4.465540-1 3.335900+8 3.904510-1 3.418000+8 3.677170-1 3.500000+8 3.491000-1 3.562500+8 3.376700-1 3.671900+8 3.213660-1 3.835900+8 3.005100-1 3.918000+8 2.898220-1 4.000000+8 2.782000-1 4.091800+8 2.637920-1 4.176000+8 2.497880-1 4.279000+8 2.323570-1 4.369100+8 2.173820-1 5.000000+8 1.363000-1 5.125000+8 1.259950-1 5.343800+8 1.110930-1 5.671900+8 9.311650-2 5.835900+8 8.528200-2 6.000000+8 7.790000-2 6.562500+8 5.681610-2 6.718800+8 5.260080-2 6.859400+8 4.945690-2 6.964800+8 4.748570-2 7.000000+8 4.690000-2 7.125000+8 4.508410-2 7.234400+8 4.375010-2 7.665000+8 3.942480-2 7.784700+8 3.821660-2 7.928200+8 3.664610-2 8.000000+8 3.580000-2 8.125000+8 3.421880-2 8.242200+8 3.265490-2 8.403500+8 3.043920-2 8.551600+8 2.839930-2 8.732700+8 2.596740-2 8.891100+8 2.394340-2 1.000000+9 1.360000-2 1.030800+9 1.185890-2 1.060100+9 1.051890-2 1.087600+9 9.473830-3 1.125800+9 8.281540-3 1.172600+9 7.123810-3 1.213500+9 6.309710-3 1.285100+9 5.188380-3 1.419400+9 3.719880-3 1.500000+9 3.074600-3 1.562500+9 2.654350-3 1.617200+9 2.336100-3 1.712900+9 1.875290-3 1.856400+9 1.366430-3 2.000000+9 1.015100-3 2.363300+9 5.237160-4 2.846700+9 2.523190-4 3.154300+9 1.691150-4 5.000000+9 2.822500-5 8.000000+9 4.506700-6 1.00000+10 1.896500-6 1.13510+10 1.163900-6 1.41440+10 5.017070-7 1.70770+10 2.455160-7 2.13560+10 1.059460-7 2.50230+10 5.869470-8 2.97090+10 3.110220-8 3.62280+10 1.502560-8 4.42000+10 7.294460-9 5.42260+10 3.496070-9 6.26180+10 2.092520-9 7.59690+10 1.056530-9 9.39920+10 5.01621-10 1.00000+11 4.04450-10 1.17140+11 2.34231-10 1.47470+11 1.06617-10 1.82930+11 5.14715-11 2.31360+11 2.34813-11 3.10280+11 8.91602-12 4.35820+11 2.95348-12 5.93370+11 1.09812-12 9.79510+11 2.25979-13 1.51300+12 5.87115-14 2.91350+12 7.97894-15 7.05210+12 5.70006-16 2.65560+13 1.17052-17 1.00000+14 2.44680-19 5.62340+14 1.50019-21 5.42470+15 1.69852-24 1.00000+17 2.53680-28 1 10000 7 0 2.017900+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.00000-13 1.000000+2 9.00000-11 1.000000+3 9.000000-9 1.000000+4 9.000000-7 1.000000+5 9.000000-5 5.000000+5 2.250000-3 6.250000+5 3.515625-3 7.187500+5 4.649414-3 7.890600+5 5.603541-3 8.945300+5 7.201655-3 1.000000+6 9.000000-3 1.125000+6 1.140580-2 1.500000+6 2.010000-2 2.000000+6 3.570000-2 2.500000+6 5.560000-2 3.000000+6 7.990000-2 4.000000+6 1.410000-1 5.000000+6 2.180000-1 6.500000+6 3.624430-1 7.000000+6 4.177000-1 8.500000+6 6.020310-1 9.000000+6 6.694000-1 1.000000+7 8.120000-1 1.125000+7 1.002660+0 1.187500+7 1.102450+0 1.250000+7 1.205100+0 1.375000+7 1.417440+0 1.437500+7 1.526410+0 1.500000+7 1.637000+0 1.687500+7 1.974370+0 1.750000+7 2.088500+0 1.937500+7 2.432270+0 2.000000+7 2.547000+0 2.125000+7 2.774850+0 2.312500+7 3.112170+0 2.500000+7 3.441700+0 2.718800+7 3.813680+0 2.750000+7 3.865400+0 2.906300+7 4.120260+0 3.000000+7 4.269000+0 3.250000+7 4.648980+0 3.437500+7 4.918300+0 3.718800+7 5.296730+0 4.000000+7 5.644000+0 4.250000+7 5.926530+0 4.625000+7 6.307660+0 5.000000+7 6.640000+0 5.437500+7 6.970830+0 6.000000+7 7.320000+0 6.500000+7 7.569540+0 6.750000+7 7.676150+0 7.000000+7 7.774000+0 7.500000+7 7.942520+0 7.750000+7 8.016700+0 8.000000+7 8.085000+0 8.500000+7 8.205730+0 9.000000+7 8.312000+0 9.750000+7 8.448180+0 1.000000+8 8.490000+0 1.062500+8 8.586580+0 1.203100+8 8.777660+0 1.250000+8 8.836100+0 1.437500+8 9.048710+0 1.500000+8 9.113000+0 1.625000+8 9.232270+0 1.718800+8 9.313080+0 1.789100+8 9.369450+0 1.875000+8 9.433670+0 1.894500+8 9.447900+0 1.973600+8 9.500390+0 2.000000+8 9.517500+0 2.375000+8 9.705970+0 2.500000+8 9.752200+0 2.718800+8 9.815350+0 2.815400+8 9.838630+0 2.881300+8 9.852410+0 2.960400+8 9.867900+0 3.000000+8 9.875000+0 3.062500+8 9.884490+0 3.171900+8 9.900650+0 3.335900+8 9.920590+0 3.418000+8 9.929370+0 3.500000+8 9.936800+0 3.562500+8 9.941350+0 3.671900+8 9.949120+0 3.835900+8 9.958910+0 3.918000+8 9.963000+0 4.000000+8 9.967000+0 4.091800+8 9.970080+0 4.176000+8 9.972850+0 4.279000+8 9.976150+0 4.369100+8 9.978990+0 5.000000+8 9.990600+0 5.125000+8 9.991450+0 5.343800+8 9.992900+0 5.671900+8 9.994960+0 5.835900+8 9.995940+0 6.000000+8 9.996900+0 6.562500+8 9.998060+0 6.718800+8 9.998370+0 6.859400+8 9.998640+0 6.964800+8 9.998830+0 7.000000+8 9.998900+0 7.125000+8 9.999050+0 7.234400+8 9.999170+0 7.665000+8 9.999650+0 7.784700+8 9.999780+0 7.928200+8 9.999930+0 8.000000+8 1.000000+1 8.125000+8 1.000000+1 8.242200+8 1.000000+1 8.403500+8 1.000000+1 8.551600+8 1.000000+1 8.732700+8 1.000000+1 8.891100+8 1.000000+1 1.000000+9 1.000000+1 1.030800+9 1.000000+1 1.060100+9 1.000000+1 1.087600+9 1.000000+1 1.125800+9 1.000000+1 1.172600+9 1.000000+1 1.213500+9 1.000000+1 1.285100+9 1.000000+1 1.419400+9 1.000000+1 1.500000+9 1.000000+1 1.562500+9 1.000000+1 1.617200+9 1.000000+1 1.712900+9 1.000000+1 1.856400+9 1.000000+1 2.000000+9 1.000000+1 2.363300+9 1.000000+1 2.846700+9 1.000000+1 3.154300+9 1.000000+1 5.000000+9 1.000000+1 8.000000+9 1.000000+1 1.00000+10 1.000000+1 1.13510+10 1.000000+1 1.41440+10 1.000000+1 1.70770+10 1.000000+1 2.13560+10 1.000000+1 2.50230+10 1.000000+1 2.97090+10 1.000000+1 3.62280+10 1.000000+1 4.42000+10 1.000000+1 5.42260+10 1.000000+1 6.26180+10 1.000000+1 7.59690+10 1.000000+1 9.39920+10 1.000000+1 1.00000+11 1.000000+1 1.17140+11 1.000000+1 1.47470+11 1.000000+1 1.82930+11 1.000000+1 2.31360+11 1.000000+1 3.10280+11 1.000000+1 4.35820+11 1.000000+1 5.93370+11 1.000000+1 9.79510+11 1.000000+1 1.51300+12 1.000000+1 2.91350+12 1.000000+1 7.05210+12 1.000000+1 2.65560+13 1.000000+1 1.00000+14 1.000000+1 5.62340+14 1.000000+1 5.42470+15 1.000000+1 1.00000+17 1.000000+1 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.072000-6 0.0 9.520656-6 0.0 1.505016-5 0.0 1.511499-5 4.208877-1 1.512425-5 4.804010-1 1.516129-5 8.774918-1 1.516902-5 1.016337+0 1.519834-5 1.587049+0 1.523949-5 2.651330+0 1.529023-5 4.358822+0 1.535147-5 6.603051+0 1.539113-5 7.787941+0 1.543216-5 8.495967+0 1.546909-5 8.589455+0 1.550844-5 8.084155+0 1.554481-5 7.179853+0 1.561110-5 4.940808+0 1.564286-5 3.812597+0 1.567991-5 2.678934+0 1.571695-5 1.767589+0 1.576206-5 9.498063-1 1.579104-5 5.157477-1 1.579938-5 4.477570-1 1.583671-5 2.463148-1 1.587404-5 1.250814-1 1.591136-5 0.0 1.670483-5 0.0 1.670708-5 4.453485-8 1.678932-5 3.299721-6 1.682166-5 5.396138-6 1.683044-5 6.175978-6 1.687157-5 1.106027-5 1.691269-5 1.751551-5 1.695381-5 2.572971-5 1.703606-5 4.448275-5 1.707718-5 5.246908-5 1.711830-5 5.766120-5 1.715942-5 5.911371-5 1.720054-5 5.660483-5 1.724167-5 5.068247-5 1.730785-5 3.701056-5 1.736503-5 2.449048-5 1.740616-5 1.685330-5 1.744728-5 1.085374-5 1.748840-5 6.512906-6 1.752717-5 3.016434-6 1.752952-5 2.890543-6 1.756693-5 1.662067-6 1.762904-5 4.225043-7 1.764974-5 0.0 1.771751-5 0.0 1.779927-5 8.353406-2 1.780472-5 8.905172-2 1.783218-5 1.353574-1 1.784833-5 1.708392-1 1.789194-5 3.043943-1 1.793555-5 4.838546-1 1.797916-5 7.130490-1 1.801535-5 9.340355-1 1.806638-5 1.298915+0 1.815609-5 1.819491+0 1.822302-5 2.070764+0 1.828835-5 2.195433+0 1.836363-5 2.245117+0 1.843802-5 2.163609+0 1.850855-5 1.943987+0 1.858473-5 1.546523+0 1.865791-5 1.107045+0 1.872003-5 8.097155-1 1.876350-5 6.920965-1 1.879239-5 6.619953-1 1.883830-5 6.895893-1 1.888422-5 7.796662-1 1.894435-5 1.014607+0 1.902268-5 1.340548+0 1.909300-5 1.537094+0 1.914209-5 1.599410+0 1.920512-5 1.595051+0 1.938088-5 1.486448+0 1.958105-5 1.531957+0 1.967094-5 1.576980+0 2.049523-5 1.763126+0 2.326326-5 2.493021+0 2.660725-5 3.228566+0 3.100400-5 4.004601+0 3.785978-5 4.898874+0 3.975208-5 5.153040+0 4.040006-5 5.488328+0 4.120820-5 5.266406+0 4.250605-5 5.490309+0 5.030427-5 6.125633+0 5.900000-5 6.510972+0 6.873786-5 6.601597+0 8.585192-5 6.196993+0 1.335442-4 4.308231+0 1.605369-4 3.500243+0 1.872362-4 2.902349+0 2.144125-4 2.439470+0 2.460375-4 2.028028+0 2.826507-4 1.669373+0 3.204583-4 1.391394+0 3.672823-4 1.136146+0 4.186730-4 9.313933-1 4.758828-4 7.653179-1 5.412016-4 6.268357-1 6.093656-4 5.196423-1 7.018592-4 4.140658-1 8.064038-4 3.295414-1 8.348487-4 3.130389-1 8.371668-4 3.387265-1 8.389758-4 3.711660-1 8.409785-4 4.275943-1 8.430333-4 5.246372-1 8.450995-4 6.766069-1 8.474312-4 9.296419-1 8.493004-4 1.188251+0 8.522851-4 1.708748+0 8.578355-4 2.771654+0 8.617865-4 3.348571+0 8.650148-4 3.657256+0 8.704854-4 3.900924+0 8.896716-4 4.044793+0 9.344301-4 3.944187+0 1.057052-3 3.255638+0 1.224965-3 2.624675+0 1.395819-3 2.144324+0 1.604688-3 1.717519+0 1.819701-3 1.395033+0 2.072195-3 1.119230+0 2.299745-3 9.344377-1 2.572242-3 7.664851-1 2.871582-3 6.284151-1 3.198895-3 5.161877-1 3.539706-3 4.275973-1 3.935501-3 3.504448-1 4.287893-3 2.976331-1 4.731512-3 2.463796-1 5.178756-3 2.066388-1 5.703801-3 1.710419-1 6.290965-3 1.408150-1 6.936806-3 1.158710-1 7.545462-3 9.770819-2 8.352230-3 7.953296-2 9.275260-3 6.408318-2 1.006079-2 5.420335-2 1.122535-2 4.313272-2 1.226317-2 3.583108-2 1.341999-2 2.961151-2 1.454580-2 2.495014-2 1.606190-2 2.021316-2 1.745851-2 1.688388-2 1.925653-2 1.366616-2 2.096544-2 1.135923-2 2.286205-2 9.402065-3 2.483999-2 7.844069-3 2.743834-2 6.297612-3 3.034480-2 5.038307-3 3.354932-2 4.032488-3 3.725702-2 3.188318-3 4.127910-2 2.533708-3 4.576751-2 2.010126-3 5.084923-2 1.583915-3 5.515751-2 1.317716-3 6.015647-2 1.082496-3 6.590160-2 8.810298-4 7.253517-2 7.087086-4 7.910742-2 5.819236-4 8.602854-2 4.810883-4 9.378601-2 3.955905-4 1.020235-1 3.267070-4 1.116319-1 2.664214-4 1.206379-1 2.234520-4 1.304119-1 1.875165-4 1.428508-1 1.529409-4 1.573392-1 1.231696-4 1.725302-1 1.004711-4 1.917610-1 7.960036-5 2.111132-1 6.465064-5 2.293925-1 5.406836-5 2.514578-1 4.449424-5 2.742548-1 3.716227-5 3.000000-1 3.095413-5 3.277531-1 2.594000-5 3.611050-1 2.149183-5 4.029603-1 1.750881-5 4.467926-1 1.453571-5 4.899896-1 1.239424-5 5.432503-1 1.046482-5 6.148228-1 8.646667-6 6.898426-1 7.326703-6 7.585776-1 6.450721-6 8.685017-1 5.472318-6 1.022000+0 4.529426-6 1.228714+0 3.779999-6 1.477239+0 3.154570-6 1.776032+0 2.632623-6 2.135261+0 2.197036-6 2.567148+0 1.833520-6 3.086391+0 1.530150-6 3.710658+0 1.276976-6 4.461192+0 1.065691-6 5.363532+0 8.893641-7 6.448384+0 7.422122-7 7.752663+0 6.194077-7 9.320751+0 5.169221-7 9.760024+0 4.940685-7 1.000000+1 9.575474-7 1 10000 7 0 2.017900+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.000217+1 3.072000-6-1.002031+1 9.520656-6-1.018436+1 1.370081-5-1.011889+1 1.453766-5-9.673639+0 1.485894-5-9.061206+0 1.501396-5-8.297658+0 1.514740-5-6.738553+0 1.521248-5-5.818342+0 1.525232-5-5.516370+0 1.529023-5-5.546496+0 1.532510-5-5.950692+0 1.535147-5-6.539133+0 1.538879-5-7.766270+0 1.543607-5-9.837089+0 1.546122-5-1.098156+1 1.551863-5-8.426750+0 1.555820-5-7.110780+0 1.559446-5-6.328294+0 1.563393-5-5.943682+0 1.567991-5-6.053744+0 1.575712-5-6.838505+0 1.584604-5-8.090122+0 1.596851-5-9.119751+0 1.621068-5-9.980136+0 1.691269-5-1.098327+1 1.736503-5-1.137993+1 1.776112-5-1.087452+1 1.802810-5-1.025568+1 1.817282-5-1.073526+1 1.836363-5-1.176164+1 1.858473-5-1.086196+1 1.872003-5-1.111610+1 1.895880-5-1.214114+1 1.936432-5-1.172247+1 2.478368-5-1.159413+1 3.962377-5-1.010885+1 4.031440-5-9.950158+0 4.095196-5-9.655753+0 4.205350-5-9.659643+0 6.873786-5-6.013078+0 8.012167-5-4.777089+0 8.963962-5-3.955274+0 9.963676-5-3.279718+0 1.102808-4-2.743993+0 1.228800-4-2.283816+0 1.379391-4-1.916157+0 1.515267-4-1.690944+0 1.719454-4-1.477467+0 1.955465-4-1.338925+0 2.249935-4-1.257285+0 2.683799-4-1.231408+0 3.354760-4-1.292068+0 4.758828-4-1.552562+0 5.837810-4-1.836254+0 6.617549-4-2.131561+0 7.206774-4-2.465647+0 7.622860-4-2.827004+0 7.918115-4-3.222680+0 8.126741-4-3.660707+0 8.261223-4-4.107204+0 8.430333-4-4.965190+0 8.485465-4-5.555012+0 8.532265-4-6.294665+0 8.578355-4-6.170109+0 8.722302-4-4.696504+0 8.826430-4-4.013674+0 8.934239-4-3.526324+0 9.118158-4-2.912738+0 9.344301-4-2.356803+0 9.573486-4-1.934720+0 9.865560-4-1.539219+0 1.017142-3-1.240876+0 1.057052-3-9.546981-1 1.103701-3-7.028738-1 1.148154-3-5.102954-1 1.180108-3-3.899732-1 1.208062-3-3.005608-1 1.224965-3-2.522216-1 1.256209-3-1.730188-1 1.288250-3-1.022388-1 1.326106-3-2.930640-2 1.358644-3 2.322652-2 1.395819-3 7.553582-2 1.435222-3 1.233748-1 1.479477-3 1.703413-1 1.557758-3 2.369785-1 1.637494-3 2.854717-1 1.733825-3 3.277386-1 1.855567-3 3.595889-1 2.072195-3 3.878113-1 2.396087-3 3.867539-1 3.082956-3 3.361857-1 4.155173-3 2.524781-1 5.023847-3 2.014599-1 5.878236-3 1.640300-1 6.936806-3 1.298843-1 8.097653-3 1.029374-1 9.275260-3 8.310393-2 1.065369-2 6.611374-2 1.191071-2 5.451193-2 1.341999-2 4.395866-2 1.502874-2 3.549095-2 1.695032-2 2.791329-2 1.879207-2 2.238079-2 2.096544-2 1.740661-2 2.286205-2 1.405124-2 2.483999-2 1.124613-2 2.743834-2 8.359004-3 2.975950-2 6.321990-3 3.216405-2 4.614777-3 3.421625-2 3.411737-3 3.657167-2 2.249833-3 3.801894-2 1.628301-3 3.965733-2 9.995381-4 4.036761-2 7.475008-4 4.127910-2 4.429300-4 4.206273-2 1.944399-4 4.294225-2-6.929530-5 4.391054-2-3.424867-4 4.480066-2-5.798128-4 4.662100-2-1.026301-3 4.873991-2-1.489267-3 5.207370-2-2.115896-3 5.666061-2-2.816685-3 6.284370-2-3.545141-3 7.057841-2-4.216065-3 8.222426-2-4.908793-3 9.877401-2-5.554068-3 1.269843-1-6.135335-3 1.816459-1-6.590585-3 3.277531-1-6.892089-3 1.022000+0-7.011998-3 3.086391+0-7.024233-3 9.320751+0-7.025575-3 1.000000+1-7.025292-3 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.450232-2 1.061565-6 7.467113-2 1.092401-6 8.721400-2 1.122274-6 1.012662-1 1.151213-6 1.169506-1 1.179248-6 1.343969-1 1.206407-6 1.537421-1 1.232717-6 1.751312-1 1.258205-6 1.987170-1 1.282897-6 2.246613-1 1.306817-6 2.531344-1 1.329989-6 2.843163-1 1.352437-6 3.183968-1 1.374184-6 3.555759-1 1.395251-6 3.960645-1 1.415660-6 4.400848-1 1.435431-6 4.878704-1 1.454584-6 5.396675-1 1.473139-6 5.957350-1 1.491114-6 6.563448-1 1.508527-6 7.217830-1 1.525396-6 7.923499-1 1.541738-6 8.683606-1 1.557569-6 9.501457-1 1.572905-6 1.038052+0 1.587762-6 1.132443+0 1.602155-6 1.233698+0 1.616098-6 1.342217+0 1.629605-6 1.458415+0 1.642691-6 1.582728+0 1.655367-6 1.715610+0 1.679544-6 2.009003+0 1.702233-6 2.342699+0 1.713048-6 2.526264+0 1.723526-6 2.722118+0 1.733676-6 2.930871+0 1.753035-6 3.387622+0 1.771491-6 3.909075+0 1.788794-6 4.495275+0 1.805015-6 5.153053+0 1.820222-6 5.889329+0 1.834479-6 6.711434+0 1.847845-6 7.627149+0 1.860376-6 8.644700+0 1.872123-6 9.772762+0 1.883136-6 1.102045+1 1.893461-6 1.239729+1 1.903140-6 1.391324+1 1.912215-6 1.557866+1 1.920722-6 1.740427+1 1.928698-6 1.940119+1 1.936175-6 2.158089+1 1.943185-6 2.395519+1 1.949757-6 2.653630+1 1.955918-6 2.933684+1 1.961694-6 3.236994+1 1.967109-6 3.564936+1 1.972185-6 3.918975+1 1.976944-6 4.300697+1 1.981406-6 4.711857+1 1.985589-6 5.154446+1 1.989511-6 5.630757+1 1.993187-6 6.143447+1 1.996634-6 6.695540+1 1.999865-6 7.290374+1 2.002894-6 7.931450+1 2.005734-6 8.622214+1 2.008396-6 9.365777+1 2.010892-6 1.016463+2 2.015572-6 1.199867+2 2.019668-6 1.407372+2 2.023251-6 1.636653+2 2.026386-6 1.883499+2 2.029129-6 2.142479+2 2.031530-6 2.407700+2 2.035468-6 2.934704+2 2.040946-6 3.896955+2 2.048333-6 5.718272+2 2.052098-6 6.914327+2 2.058416-6 9.352841+2 2.060809-6 1.041315+3 2.063458-6 1.166543+3 2.066518-6 1.320063+3 2.068500-6 1.423549+3 2.071536-6 1.586123+3 2.072640-6 1.645925+3 2.075952-6 1.825059+3 2.077492-6 1.907103+3 2.080111-6 2.042807+3 2.082116-6 2.141896+3 2.084368-6 2.246430+3 2.086853-6 2.351455+3 2.088667-6 2.419970+3 2.091818-6 2.520084+3 2.094013-6 2.573985+3 2.096377-6 2.616200+3 2.097488-6 2.630119+3 2.100105-6 2.647466+3 2.101701-6 2.647301+3 2.106395-6 2.600160+3 2.108653-6 2.553744+3 2.111483-6 2.475629+3 2.114000-6 2.389411+3 2.116334-6 2.297260+3 2.118121-6 2.219929+3 2.120675-6 2.101070+3 2.123343-6 1.968943+3 2.125811-6 1.841981+3 2.127714-6 1.742370+3 2.129000-6 1.674781+3 2.131475-6 1.545215+3 2.134042-6 1.413175+3 2.137163-6 1.258239+3 2.139084-6 1.167019+3 2.141571-6 1.054468+3 2.149167-6 7.558339+2 2.153538-6 6.168769+2 2.165626-6 3.477336+2 2.169314-6 2.935194+2 2.172992-6 2.494456+2 2.176656-6 2.138139+2 2.180305-6 1.850537+2 2.183940-6 1.618087+2 2.187560-6 1.429416+2 2.191167-6 1.275226+2 2.194759-6 1.148076+2 2.198338-6 1.042118+2 2.201902-6 9.528139+1 2.205453-6 8.766812+1 2.208989-6 8.110588+1 2.212512-6 7.539157+1 2.219530-6 6.590369+1 2.226493-6 5.835803+1 2.233402-6 5.221369+1 2.240257-6 4.711858+1 2.247059-6 4.283214+1 2.253807-6 3.918311+1 2.260502-6 3.604555+1 2.267145-6 3.332439+1 2.273737-6 3.094639+1 2.280277-6 2.885405+1 2.286765-6 2.700155+1 2.293203-6 2.535187+1 2.305979-6 2.253581+1 2.318555-6 2.023760+1 2.330934-6 1.833258+1 2.343120-6 1.673349+1 2.355115-6 1.537652+1 2.366923-6 1.421375+1 2.378547-6 1.320874+1 2.389989-6 1.233359+1 2.401252-6 1.156639+1 2.412339-6 1.088927+1 2.434167-6 9.740609+0 2.455313-6 8.813051+0 2.475798-6 8.052205+0 2.495642-6 7.419740+0 2.514867-6 6.887302+0 2.533491-6 6.434170+0 2.551533-6 6.045295+0 2.569011-6 5.708969+0 2.602875-6 5.146638+0 2.634622-6 4.704132+0 2.664385-6 4.350084+0 2.692288-6 4.062164+0 2.718447-6 3.825453+0 2.767495-6 3.446250+0 2.810412-6 3.168407+0 2.847964-6 2.959864+0 2.880823-6 2.799993+0 2.938325-6 2.557980+0 2.981451-6 2.402323+0 3.046141-6 2.202346+0 3.141459-6 1.958860+0 3.240998-6 1.754859+0 3.263969-6 1.713628+0 3.475353-6 1.364721+0 3.510584-6 1.303504+0 3.545824-6 1.235779+0 3.563279-6 1.197748+0 3.580734-6 1.154711+0 3.589462-6 1.130535+0 3.598190-6 1.104014+0 3.606917-6 1.074636+0 3.615645-6 1.041895+0 3.624372-6 1.005429+0 3.633100-6 9.652413-1 3.641828-6 9.220059-1 3.663683-6 8.148009-1 3.665998-6 8.053205-1 3.671368-6 7.863960-1 3.676738-6 7.730384-1 3.679621-6 7.687467-1 3.682503-6 7.668085-1 3.691523-6 7.788512-1 3.693778-6 7.867737-1 3.700542-6 8.239864-1 3.703643-6 8.482117-1 3.709562-6 9.076094-1 3.712742-6 9.467381-1 3.715627-6 9.865582-1 3.720361-6 1.060499+0 3.730116-6 1.243085+0 3.735825-6 1.364882+0 3.743186-6 1.531751+0 3.746768-6 1.614614+0 3.753673-6 1.772612+0 3.755787-6 1.819593+0 3.763680-6 1.984379+0 3.766780-6 2.043057+0 3.772699-6 2.143015+0 3.774954-6 2.176454+0 3.778336-6 2.221422+0 3.781719-6 2.259898+0 3.786026-6 2.299219+0 3.789257-6 2.321526+0 3.794103-6 2.343580+0 3.798948-6 2.352449+0 3.806320-6 2.342766+0 3.808778-6 2.333960+0 3.817797-6 2.281913+0 3.826817-6 2.206606+0 3.835837-6 2.118058+0 3.858274-6 1.892170+0 3.868725-6 1.800612+0 3.878849-6 1.724454+0 3.898464-6 1.610520+0 3.916853-6 1.535050+0 3.934093-6 1.482196+0 3.966418-6 1.409383+0 3.994702-6 1.361312+0 4.044200-6 1.295867+0 4.192702-6 1.142495+0 4.223661-6 1.104671+0 4.256671-6 1.062029+0 4.266421-6 1.051616+0 4.276871-6 1.043269+0 4.287645-6 1.038913+0 4.297970-6 1.039776+0 4.305668-6 1.043992+0 4.317215-6 1.056104+0 4.328762-6 1.074427+0 4.360470-6 1.139848+0 4.370920-6 1.159265+0 4.379849-6 1.172618+0 4.388778-6 1.182223+0 4.402269-6 1.188974+0 4.412719-6 1.188001+0 4.423169-6 1.182394+0 4.433619-6 1.173193+0 4.454518-6 1.148441+0 4.470866-6 1.127079+0 4.520094-6 1.069985+0 4.542345-6 1.050279+0 4.564596-6 1.035962+0 4.586847-6 1.028596+0 4.609099-6 1.028300+0 4.653601-6 1.036493+0 4.675853-6 1.036254+0 4.698104-6 1.030452+0 4.763571-6 1.002725+0 4.810470-6 9.915300-1 5.101990-6 9.288740-1 5.247818-6 8.995717-1 5.824991-6 8.129495-1 6.240837-6 7.641845-1 6.669705-6 7.234623-1 7.384917-6 6.696709-1 8.345000-6 6.125556-1 9.050000-6 5.785150-1 9.930000-6 5.388350-1 1.059254-5 5.101494-1 1.139063-5 4.778082-1 1.230269-5 4.403249-1 1.281445-5 4.199432-1 1.333521-5 3.976010-1 1.400000-5 3.696344-1 1.462177-5 3.435539-1 1.548817-5 3.062233-1 1.640590-5 2.664859-1 1.737801-5 2.246317-1 1.843200-5 1.796149-1 1.940942-5 1.390480-1 2.038153-5 1.008782-1 2.125909-5 6.930152-2 2.181692-5 5.114998-2 2.214728-5 4.147096-2 2.289532-5 2.245216-2 2.304000-5 1.928759-2 2.363757-5 8.607093-3 2.381134-5 6.293150-3 2.433342-5 1.841367-3 2.440321-5 1.554417-3 2.462573-5 1.397733-3 2.533832-5 6.535842-3 2.563814-5 1.176369-2 2.572321-5 1.377395-2 2.596184-5 2.076683-2 2.652863-5 4.411854-2 2.677977-5 5.816193-2 2.698479-5 7.215196-2 2.740250-5 1.078020-1 2.777870-5 1.495691-1 2.808780-5 1.935060-1 2.861249-5 2.956355-1 2.882673-5 3.519599-1 2.900834-5 4.094142-1 2.916795-5 4.695563-1 2.930824-5 5.323205-1 2.943154-5 5.976468-1 2.954689-5 6.698902-1 2.967836-5 7.681708-1 2.979244-5 8.672630-1 2.988644-5 9.547640-1 2.996389-5 1.025672+0 3.004638-5 1.093664+0 3.011011-5 1.137318+0 3.016978-5 1.170227+0 3.030716-5 1.231550+0 3.033695-5 1.248071+0 3.036657-5 1.268415+0 3.040110-5 1.299174+0 3.044425-5 1.352118+0 3.047574-5 1.403684+0 3.052272-5 1.505365+0 3.055505-5 1.594905+0 3.057911-5 1.672720+0 3.062970-5 1.868553+0 3.065375-5 1.976795+0 3.073988-5 2.434023+0 3.078803-5 2.723457+0 3.082629-5 2.959945+0 3.085841-5 3.156545+0 3.089152-5 3.351598+0 3.091910-5 3.504129+0 3.094577-5 3.639827+0 3.097611-5 3.776505+0 3.100227-5 3.876526+0 3.103128-5 3.965530+0 3.105064-5 4.011038+0 3.108133-5 4.058894+0 3.109323-5 4.069176+0 3.112718-5 4.072562+0 3.115440-5 4.047458+0 3.122219-5 3.881476+0 3.125091-5 3.770263+0 3.129683-5 3.549444+0 3.132249-5 3.406573+0 3.134699-5 3.259634+0 3.137148-5 3.104341+0 3.139014-5 2.981620+0 3.140647-5 2.871861+0 3.143504-5 2.676194+0 3.145647-5 2.527915+0 3.147255-5 2.416630+0 3.149666-5 2.250682+0 3.152077-5 2.087180+0 3.155809-5 1.841886+0 3.158608-5 1.666274+0 3.159541-5 1.609617+0 3.164964-5 1.301676+0 3.167006-5 1.195985+0 3.172477-5 9.426349-1 3.176233-5 7.944056-1 3.183327-5 5.704802-1 3.187502-5 4.708442-1 3.189380-5 4.331952-1 3.192198-5 3.844970-1 3.195015-5 3.445210-1 3.200650-5 2.879259-1 3.202528-5 2.752200-1 3.204712-5 2.638790-1 3.208807-5 2.515539-1 3.212390-5 2.490996-1 3.218661-5 2.599892-1 3.223364-5 2.782012-1 3.230419-5 3.174192-1 3.245687-5 4.335937-1 3.257345-5 5.397116-1 3.287964-5 8.748720-1 3.317410-5 1.330974+0 3.344558-5 1.973674+0 3.360189-5 2.449357+0 3.363355-5 2.551221+0 3.368419-5 2.714904+0 3.376649-5 2.975722+0 3.379816-5 3.071671+0 3.384879-5 3.216705+0 3.389133-5 3.328174+0 3.392569-5 3.409711+0 3.396937-5 3.500653+0 3.399954-5 3.554232+0 3.404849-5 3.623647+0 3.409007-5 3.664575+0 3.413290-5 3.688816+0 3.417800-5 3.694661+0 3.424745-5 3.665796+0 3.429331-5 3.623784+0 3.437862-5 3.506147+0 3.447620-5 3.330036+0 3.464387-5 3.014229+0 3.471936-5 2.898810+0 3.478107-5 2.826161+0 3.479367-5 2.814014+0 3.487752-5 2.757380+0 3.491887-5 2.744840+0 3.494406-5 2.741961+0 3.505418-5 2.767022+0 3.513730-5 2.818243+0 3.526091-5 2.924551+0 3.544804-5 3.102774+0 3.554305-5 3.186350+0 3.570657-5 3.312966+0 3.603639-5 3.535899+0 3.671581-5 4.034304+0 3.708641-5 4.334975+0 3.765576-5 4.809027+0 3.824093-5 5.314055+0 3.914878-5 6.140592+0 3.973520-5 6.702353+0 4.030329-5 7.271089+0 4.138677-5 8.405614+0 4.241973-5 9.547178+0 4.330000-5 1.056376+1 4.466836-5 1.221152+1 4.625741-5 1.425764+1 4.740300-5 1.579129+1 4.877251-5 1.766674+1 5.031596-5 1.983113+1 5.155000-5 2.157811+1 5.230000-5 2.263478+1 5.417315-5 2.524701+1 5.580000-5 2.748924+1 5.754399-5 2.978787+1 5.919705-5 3.192720+1 5.962470-5 3.263153+1 5.991369-5 3.329670+1 6.019489-5 3.419179+1 6.044453-5 3.521523+1 6.093649-5 3.752141+1 6.115638-5 3.838324+1 6.129320-5 3.878098+1 6.147885-5 3.911465+1 6.164904-5 3.921484+1 6.192189-5 3.906737+1 6.235461-5 3.865369+1 6.262157-5 3.862819+1 6.289241-5 3.885696+1 6.396088-5 4.054804+1 6.628669-5 4.349204+1 6.848516-5 4.605544+1 7.083903-5 4.858121+1 7.413102-5 5.168041+1 7.650000-5 5.366875+1 7.839754-5 5.509109+1 8.042786-5 5.647376+1 8.300000-5 5.806344+1 8.519488-5 5.926573+1 8.971765-5 6.135965+1 9.545181-5 6.339135+1 1.000000-4 6.469639+1 1.100000-4 6.668906+1 1.219691-4 6.831228+1 1.350026-4 6.947331+1 1.601267-4 7.080542+1 1.778280-4 7.121031+1 1.986667-4 7.122908+1 2.248388-4 7.075592+1 2.629247-4 6.966994+1 3.216205-4 6.780055+1 3.699346-4 6.623817+1 4.629763-4 6.319890+1 5.234874-4 6.134507+1 5.973791-4 5.903504+1 6.413844-4 5.757712+1 6.717188-4 5.641554+1 7.294628-4 5.410149+1 7.642845-4 5.264221+1 7.906217-4 5.146973+1 8.219645-4 4.997154+1 8.493027-4 4.853336+1 8.720610-4 4.719922+1 8.944737-4 4.571236+1 9.098485-4 4.458990+1 9.294915-4 4.301036+1 9.456767-4 4.155837+1 9.551472-4 4.062313+1 9.656474-4 3.949228+1 9.770290-4 3.813851+1 9.874378-4 3.675025+1 9.954071-4 3.556014+1 1.001915-3 3.448410+1 1.010457-3 3.289114+1 1.017322-3 3.141409+1 1.023981-3 2.974339+1 1.029506-3 2.810930+1 1.034036-3 2.655596+1 1.037197-3 2.534953+1 1.040644-3 2.393791+1 1.045668-3 2.181636+1 1.049959-3 2.016404+1 1.052005-3 1.951397+1 1.053913-3 1.902789+1 1.055526-3 1.872662+1 1.056770-3 1.857207+1 1.058030-3 1.849039+1 1.059676-3 1.850412+1 1.060690-3 1.858289+1 1.061466-3 1.868003+1 1.063050-3 1.897772+1 1.063980-3 1.921410+1 1.065362-3 1.964701+1 1.066750-3 2.017552+1 1.067775-3 2.062268+1 1.070300-3 2.190835+1 1.073381-3 2.376596+1 1.079000-3 2.762737+1 1.081089-3 2.911627+1 1.084459-3 3.148264+1 1.086625-3 3.294800+1 1.090000-3 3.510807+1 1.092000-3 3.630671+1 1.094000-3 3.744135+1 1.097750-3 3.939659+1 1.100022-3 4.047598+1 1.104014-3 4.219595+1 1.109175-3 4.412559+1 1.111611-3 4.493739+1 1.116036-3 4.627488+1 1.121807-3 4.779863+1 1.127982-3 4.921126+1 1.132710-3 5.017089+1 1.139467-3 5.139172+1 1.146525-3 5.251154+1 1.157132-3 5.397193+1 1.176072-3 5.616203+1 1.197353-3 5.822675+1 1.220899-3 6.015466+1 1.241441-3 6.158670+1 1.269884-3 6.323325+1 1.309548-3 6.501087+1 1.344785-3 6.614924+1 1.402927-3 6.751121+1 1.458254-3 6.841826+1 1.538947-3 6.918380+1 1.652094-3 6.957059+1 1.748541-3 6.951819+1 1.878657-3 6.892600+1 2.017976-3 6.798551+1 2.232287-3 6.618607+1 2.405288-3 6.454160+1 2.675030-3 6.191298+1 2.950048-3 5.907033+1 3.162671-3 5.689856+1 3.499188-3 5.352068+1 3.761421-3 5.098615+1 4.137563-3 4.752983+1 4.603332-3 4.350221+1 5.041713-3 4.001743+1 5.408443-3 3.734112+1 5.935763-3 3.382978+1 6.588751-3 3.002908+1 7.331139-3 2.635211+1 8.135824-3 2.303722+1 9.101152-3 1.979865+1 1.040388-2 1.641245+1 1.254214-2 1.252131+1 1.611291-2 8.636512+0 2.079125-2 5.880300+0 2.471156-2 4.504782+0 2.807191-2 3.678856+0 3.403022-2 2.687706+0 3.837712-2 2.198268+0 4.356520-2 1.764543+0 5.334555-2 1.234838+0 6.198331-2 9.408897-1 7.872957-2 6.054512-1 1.000507-1 3.865205-1 1.266824-1 2.466029-1 1.669562-1 1.446018-1 2.344229-1 7.436511-2 3.667728-1 3.065624-2 7.829788-1 6.761484-3 2.451607+0 6.905813-4 7.403736+0 7.573092-5 2.235892+1 8.303853-6 6.752287+1 9.105008-7 2.039158+2 9.983444-8 6.158159+2 1.094663-8 1.995262+3 1.042755-9 6.309573+3 1.04275-10 1.995262+4 1.04275-11 6.309573+4 1.04275-12 1.000000+5 4.15128-13 1 11000 7 7 2.298980+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.878000-7 1.258900-6 1.248600-6 1.584900-6 1.978900-6 1.995300-6 3.136300-6 2.511900-6 4.970700-6 3.162300-6 7.877900-6 3.981100-6 1.248600-5 5.011900-6 1.978800-5 6.309600-6 3.136200-5 7.943300-6 4.970500-5 1.000000-5 7.877600-5 1.258900-5 1.248500-4 1.584900-5 1.977700-4 1.995300-5 3.132400-4 2.511900-5 4.961800-4 3.162300-5 7.860600-4 3.981100-5 1.245400-3 5.011900-5 1.973100-3 6.309600-5 3.125600-3 7.943300-5 4.945200-3 1.000000-4 7.819800-3 1.258900-4 1.234500-2 1.584900-4 1.944600-2 1.995300-4 3.052100-2 2.511900-4 4.766200-2 3.162300-4 7.388300-2 3.981100-4 1.132100-1 5.011900-4 1.705100-1 6.309600-4 2.505500-1 7.943300-4 3.559100-1 1.000000-3 4.853700-1 1.258900-3 6.349300-1 1.584900-3 8.047400-1 1.995300-3 1.007200+0 2.511900-3 1.263700+0 3.162300-3 1.596300+0 3.981100-3 2.016600+0 5.011900-3 2.522100+0 6.309600-3 3.089900+0 7.943300-3 3.674700+0 1.000000-2 4.222100+0 1.258900-2 4.687900+0 1.584900-2 5.059800+0 1.995300-2 5.349400+0 2.511900-2 5.567200+0 3.162300-2 5.712400+0 3.981100-2 5.777100+0 5.011900-2 5.757200+0 6.309600-2 5.665500+0 7.943300-2 5.506000+0 1.000000-1 5.291400+0 1.258900-1 5.034100+0 1.584900-1 4.745900+0 1.995300-1 4.437300+0 2.511900-1 4.117900+0 3.162300-1 3.796200+0 3.981100-1 3.478500+0 5.011900-1 3.168900+0 6.309600-1 2.872500+0 7.943300-1 2.589100+0 1.000000+0 2.320300+0 1.258900+0 2.067100+0 1.584900+0 1.830300+0 1.995300+0 1.610600+0 2.511900+0 1.408600+0 3.162300+0 1.224400+0 3.981100+0 1.058100+0 5.011900+0 9.093900-1 6.309600+0 7.775200-1 7.943300+0 6.615900-1 1.000000+1 5.604700-1 1.258900+1 4.729100-1 1.584900+1 3.975700-1 1.995300+1 3.331300-1 2.511900+1 2.783000-1 3.162300+1 2.318700-1 3.981100+1 1.927100-1 5.011900+1 1.598100-1 6.309600+1 1.322700-1 7.943300+1 1.092700-1 1.000000+2 9.012200-2 1.258900+2 7.421700-2 1.584900+2 6.103400-2 1.995300+2 5.012900-2 2.511900+2 4.112500-2 3.162300+2 3.370100-2 3.981100+2 2.758900-2 5.011900+2 2.256500-2 6.309600+2 1.844000-2 7.943300+2 1.505600-2 1.000000+3 1.228400-2 1.258900+3 1.001500-2 1.584900+3 8.159500-3 1.995300+3 6.643600-3 2.511900+3 5.406000-3 3.162300+3 4.396400-3 3.981100+3 3.573300-3 5.011900+3 2.902900-3 6.309600+3 2.357000-3 7.943300+3 1.912900-3 1.000000+4 1.551800-3 1.258900+4 1.258300-3 1.584900+4 1.019800-3 1.995300+4 8.262500-4 2.511900+4 6.691600-4 3.162300+4 5.417400-4 3.981100+4 4.384200-4 5.011900+4 3.546800-4 6.309600+4 2.868400-4 7.943300+4 2.319000-4 1.000000+5 1.874300-4 1 11000 7 7 2.298980+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510167-4 3.162278-4 3.159554-4 3.981072-4 3.976784-4 5.011872-4 5.005122-4 6.309573-4 6.298959-4 7.943282-4 7.926725-4 1.000000-3 9.974248-4 1.258925-3 1.254929-3 1.584893-3 1.578693-3 1.995262-3 1.985587-3 2.511886-3 2.496641-3 3.162278-3 3.138133-3 3.981072-3 3.942868-3 5.011872-3 4.951745-3 6.309573-3 6.215635-3 7.943282-3 7.797743-3 1.000000-2 9.776265-3 1.258925-2 1.224734-2 1.584893-2 1.532780-2 1.995262-2 1.915767-2 2.511886-2 2.390523-2 3.162278-2 2.977176-2 3.981072-2 3.699816-2 5.011872-2 4.587488-2 6.309573-2 5.671617-2 7.943282-2 6.991640-2 1.000000-1 8.591480-2 1.258925-1 1.052236-1 1.584893-1 1.283867-1 1.995262-1 1.561034-1 2.511886-1 1.891364-1 3.162278-1 2.283708-1 3.981072-1 2.748277-1 5.011872-1 3.296651-1 6.309573-1 3.942560-1 7.943282-1 4.702763-1 1.000000+0 5.597337-1 1.258925+0 6.651024-1 1.584893+0 7.894418-1 1.995262+0 9.365123-1 2.511886+0 1.111041+0 3.162278+0 1.318739+0 3.981072+0 1.566626+0 5.011872+0 1.863377+0 6.309573+0 2.219524+0 7.943282+0 2.647996+0 1.000000+1 3.164559+0 1.258925+1 3.788565+0 1.584893+1 4.543683+0 1.995262+1 5.458822+0 2.511886+1 6.569549+0 3.162278+1 7.919487+0 3.981072+1 9.561929+0 5.011872+1 1.156268+1 6.309573+1 1.400229+1 7.943282+1 1.697988+1 1.000000+2 2.061724+1 1.258925+2 2.506450+1 1.584893+2 3.050611+1 1.995262+2 3.716932+1 2.511886+2 4.533443+1 3.162278+2 5.534697+1 3.981072+2 6.763141+1 5.011872+2 8.271469+1 6.309573+2 1.012435+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88193-10 1.995262-5 1.090619-9 2.511886-5 1.728487-9 3.162278-5 2.739501-9 3.981072-5 4.341871-9 5.011872-5 6.881068-9 6.309573-5 1.090500-8 7.943282-5 1.727652-8 1.000000-4 2.737244-8 1.258925-4 4.335754-8 1.584893-4 6.865252-8 1.995262-4 1.086645-7 2.511886-4 1.719038-7 3.162278-4 2.723384-7 3.981072-4 4.287299-7 5.011872-4 6.750186-7 6.309573-4 1.061490-6 7.943282-4 1.655784-6 1.000000-3 2.575190-6 1.258925-3 3.996361-6 1.584893-3 6.200455-6 1.995262-3 9.675371-6 2.511886-3 1.524593-5 3.162278-3 2.414516-5 3.981072-3 3.820391-5 5.011872-3 6.012686-5 6.309573-3 9.393865-5 7.943282-3 1.455395-4 1.000000-2 2.237346-4 1.258925-2 3.419186-4 1.584893-2 5.211271-4 1.995262-2 7.949538-4 2.511886-2 1.213630-3 3.162278-2 1.851017-3 3.981072-2 2.812556-3 5.011872-2 4.243847-3 6.309573-2 6.379562-3 7.943282-2 9.516426-3 1.000000-1 1.408520-2 1.258925-1 2.066893-2 1.584893-1 3.010263-2 1.995262-1 4.342285-2 2.511886-1 6.205220-2 3.162278-1 8.785697-2 3.981072-1 1.232795-1 5.011872-1 1.715221-1 6.309573-1 2.367013-1 7.943282-1 3.240520-1 1.000000+0 4.402663-1 1.258925+0 5.938230-1 1.584893+0 7.954514-1 1.995262+0 1.058750+0 2.511886+0 1.400845+0 3.162278+0 1.843539+0 3.981072+0 2.414446+0 5.011872+0 3.148495+0 6.309573+0 4.090049+0 7.943282+0 5.295286+0 1.000000+1 6.835441+0 1.258925+1 8.800689+0 1.584893+1 1.130525+1 1.995262+1 1.449380+1 2.511886+1 1.854932+1 3.162278+1 2.370329+1 3.981072+1 3.024879+1 5.011872+1 3.855604+1 6.309573+1 4.909344+1 7.943282+1 6.245294+1 1.000000+2 7.938276+1 1.258925+2 1.008280+2 1.584893+2 1.279832+2 1.995262+2 1.623569+2 2.511886+2 2.058542+2 3.162278+2 2.608808+2 3.981072+2 3.304758+2 5.011872+2 4.184725+2 6.309573+2 5.297138+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.150000-6 9.544867+4 5.164000-6 9.180590+4 5.195000-6 8.460820+4 5.248075-6 7.321184+4 5.300000-6 6.322070+4 5.330000-6 5.792260+4 5.370318-6 5.132763+4 5.420000-6 4.394090+4 5.450000-6 3.986380+4 5.495409-6 3.419176+4 5.535000-6 2.973750+4 5.570000-6 2.613380+4 5.600000-6 2.328550+4 5.635000-6 2.023300+4 5.660000-6 1.822350+4 5.688529-6 1.609595+4 5.720000-6 1.394070+4 5.743000-6 1.248710+4 5.770000-6 1.090660+4 5.792000-6 9.715660+3 5.815000-6 8.559410+3 5.835000-6 7.626750+3 5.855000-6 6.759070+3 5.870000-6 6.149060+3 5.892000-6 5.316390+3 5.910000-6 4.688200+3 5.927000-6 4.137350+3 5.942000-6 3.684280+3 5.956621-6 3.272176+3 5.970000-6 2.919770+3 5.985000-6 2.551730+3 5.996000-6 2.300020+3 6.010000-6 2.000950+3 6.023000-6 1.744490+3 6.035000-6 1.525330+3 6.043000-6 1.388510+3 6.052000-6 1.243250+3 6.062000-6 1.092480+3 6.070000-6 9.798040+2 6.077000-6 8.869170+2 6.085000-6 7.871960+2 6.092000-6 7.055010+2 6.100000-6 6.183850+2 6.108000-6 5.378880+2 6.115000-6 4.727960+2 6.121500-6 4.167590+2 6.127000-6 3.726080+2 6.133000-6 3.278550+2 6.139000-6 2.866070+2 6.144000-6 2.548810+2 6.150000-6 2.199640+2 6.155000-6 1.934520+2 6.160000-6 1.692990+2 6.165950-6 1.435740+2 6.173000-6 1.173010+2 6.183000-6 8.775710+1 6.188000-6 7.633350+1 6.191000-6 7.054570+1 6.194000-6 6.554640+1 6.197000-6 6.133450+1 6.199000-6 5.896140+1 6.201500-6 5.648210+1 6.203000-6 5.525370+1 6.205000-6 5.391660+1 6.207000-6 5.292250+1 6.209000-6 5.227010+1 6.211000-6 5.195810+1 6.213000-6 5.198540+1 6.215000-6 5.235080+1 6.217000-6 5.305200+1 6.219000-6 5.408990+1 6.221000-6 5.546270+1 6.223000-6 5.716830+1 6.225000-6 5.920590+1 6.227800-6 6.261420+1 6.230000-6 6.574470+1 6.233000-6 7.065340+1 6.237348-6 7.906915+1 6.242000-6 8.976550+1 6.255000-6 1.288150+2 6.260000-6 1.473800+2 6.265000-6 1.678840+2 6.272000-6 1.998200+2 6.277000-6 2.249150+2 6.282000-6 2.518920+2 6.288000-6 2.867240+2 6.295000-6 3.307180+2 6.302000-6 3.782820+2 6.307000-6 4.144160+2 6.312000-6 4.523360+2 6.320000-6 5.166820+2 6.327000-6 5.766270+2 6.335000-6 6.492590+2 6.342000-6 7.163660+2 6.350000-6 7.970690+2 6.357000-6 8.711790+2 6.365000-6 9.597220+2 6.376000-6 1.088160+3 6.385000-6 1.198880+3 6.395000-6 1.327840+3 6.405000-6 1.462780+3 6.415000-6 1.603650+3 6.425000-6 1.750450+3 6.440000-6 1.981160+3 6.455000-6 2.224360+3 6.470000-6 2.479850+3 6.485000-6 2.746960+3 6.500000-6 3.025500+3 6.515000-6 3.315350+3 6.535000-6 3.718270+3 6.557000-6 4.182880+3 6.580000-6 4.691190+3 6.600000-6 5.151440+3 6.627000-6 5.798010+3 6.650000-6 6.370790+3 6.670000-6 6.884410+3 6.700000-6 7.680600+3 6.730000-6 8.505840+3 6.760830-6 9.382547+3 6.790000-6 1.023650+4 6.820000-6 1.113790+4 6.850000-6 1.206190+4 6.890000-6 1.332470+4 6.930000-6 1.462030+4 6.980000-6 1.628100+4 7.020000-6 1.763900+4 7.070000-6 1.936730+4 7.130000-6 2.148050+4 7.170000-6 2.290920+4 7.230000-6 2.507640+4 7.290000-6 2.726620+4 7.350000-6 2.947200+4 7.420000-6 3.205750+4 7.500000-6 3.501810+4 7.585776-6 3.818693+4 7.673615-6 4.141468+4 7.770000-6 4.492220+4 7.880000-6 4.886770+4 8.000000-6 5.308320+4 8.128305-6 5.747174+4 8.270000-6 6.215900+4 8.420000-6 6.692430+4 8.550000-6 7.088280+4 8.709636-6 7.551573+4 8.850000-6 7.937830+4 9.050000-6 8.453980+4 9.225714-6 8.874660+4 9.440609-6 9.348474+4 9.700000-6 9.863200+4 9.930000-6 1.027000+5 1.023293-5 1.073921+5 1.059254-5 1.120598+5 1.096478-5 1.159635+5 1.135011-5 1.191298+5 1.180000-5 1.218600+5 1.230269-5 1.238813+5 1.273503-5 1.249018+5 1.333521-5 1.254223+5 1.400000-5 1.250290+5 1.462177-5 1.239673+5 1.548817-5 1.216698+5 1.640590-5 1.185437+5 1.737801-5 1.147644+5 1.862087-5 1.095699+5 2.000000-5 1.036980+5 2.162719-5 9.695412+4 2.350000-5 8.963480+4 2.580000-5 8.147390+4 2.884032-5 7.210806+4 3.235937-5 6.311064+4 3.622000-5 5.503438+4 3.622000-5 1.769510+6 3.642000-5 1.818429+6 3.642000-5 2.665169+6 3.710000-5 2.926816+6 3.715352-5 2.947248+6 3.780000-5 3.197001+6 3.850000-5 3.465733+6 3.935501-5 3.790408+6 4.000000-5 4.029927+6 4.030000-5 4.142530+6 4.073803-5 4.301598+6 4.120975-5 4.473422+6 4.168694-5 4.642149+6 4.220000-5 4.823352+6 4.265795-5 4.979236+6 4.330000-5 5.197115+6 4.365158-5 5.311232+6 4.450000-5 5.584670+6 4.466836-5 5.636263+6 4.570882-5 5.951264+6 4.680000-5 6.259259+6 4.680600-5 6.260920+6 4.800000-5 6.572863+6 4.950000-5 6.925072+6 4.954502-5 6.935289+6 5.080000-5 7.195362+6 5.230000-5 7.464812+6 5.400000-5 7.716247+6 5.580000-5 7.921366+6 5.754399-5 8.062838+6 5.950000-5 8.158927+6 5.956621-5 8.160127+6 6.150000-5 8.194689+6 6.350000-5 8.174760+6 6.448000-5 8.138993+6 6.448000-5 8.528693+6 6.540000-5 8.515603+6 6.580000-5 8.509465+6 6.640000-5 8.486193+6 6.770000-5 8.435342+6 6.800000-5 8.423294+6 6.920000-5 8.349724+6 7.070000-5 8.258651+6 7.079458-5 8.251108+6 7.244360-5 8.119733+6 7.328245-5 8.053883+6 7.413102-5 7.973995+6 7.585776-5 7.814865+6 7.650000-5 7.753449+6 7.800000-5 7.598539+6 7.900000-5 7.497371+6 8.000000-5 7.394505+6 8.035261-5 7.355728+6 8.300000-5 7.073173+6 8.400000-5 6.966769+6 8.609938-5 6.738963+6 8.709636-5 6.634236+6 8.810489-5 6.528293+6 8.912509-5 6.418777+6 9.225714-5 6.098667+6 9.240200-5 6.084206+6 9.332543-5 5.992338+6 9.650000-5 5.681360+6 9.800000-5 5.542486+6 1.000000-4 5.362881+6 1.047129-4 4.958693+6 1.059254-4 4.861858+6 1.083927-4 4.671250+6 1.100000-4 4.550269+6 1.135011-4 4.301431+6 1.161449-4 4.127700+6 1.188502-4 3.957903+6 1.230269-4 3.711179+6 1.273503-4 3.478732+6 1.318257-4 3.259124+6 1.333521-4 3.187025+6 1.400000-4 2.900146+6 1.428894-4 2.786595+6 1.450000-4 2.707417+6 1.520000-4 2.463161+6 1.531087-4 2.427593+6 1.566751-4 2.317197+6 1.584893-4 2.263614+6 1.659587-4 2.057521+6 1.678804-4 2.008610+6 1.720000-4 1.909525+6 1.737801-4 1.868088+6 1.800000-4 1.732629+6 1.862087-4 1.610472+6 1.883649-4 1.571066+6 1.905461-4 1.531872+6 1.950000-4 1.455726+6 2.041738-4 1.314486+6 2.065380-4 1.281400+6 2.089296-4 1.248594+6 2.150000-4 1.170108+6 2.264644-4 1.039543+6 2.290868-4 1.012719+6 2.300000-4 1.003539+6 2.400000-4 9.092950+5 2.511886-4 8.179711+5 2.540973-4 7.962510+5 2.583000-4 7.663273+5 2.722701-4 6.769400+5 2.786121-4 6.411271+5 2.884032-4 5.906512+5 2.917427-4 5.747547+5 3.090295-4 5.008801+5 3.126079-4 4.872446+5 3.273407-4 4.360636+5 3.311311-4 4.240102+5 3.467369-4 3.791524+5 3.548134-4 3.584734+5 3.672823-4 3.293957+5 3.890451-4 2.857649+5 4.000000-4 2.668110+5 4.120975-4 2.477462+5 4.365158-4 2.145066+5 4.466836-4 2.024908+5 4.677351-4 1.802859+5 4.954502-4 1.558495+5 5.011872-4 1.513727+5 5.248075-4 1.345915+5 5.559043-4 1.161573+5 5.688529-4 1.095120+5 5.888437-4 1.001840+5 6.200000-4 8.767362+4 6.456542-4 7.895223+4 6.606934-4 7.435496+4 7.000000-4 6.393630+4 7.161434-4 6.024296+4 7.244360-4 5.846259+4 7.500000-4 5.336286+4 8.035261-4 4.450203+4 8.222426-4 4.188637+4 8.609938-4 3.706852+4 9.120108-4 3.181069+4 9.440609-4 2.902429+4 9.772372-4 2.645998+4 1.035142-3 2.267573+4 1.064000-3 2.106644+4 1.064000-3 2.080480+5 1.065000-3 2.147796+5 1.066000-3 2.209929+5 1.067500-3 2.292183+5 1.068800-3 2.354185+5 1.070300-3 2.416846+5 1.071519-3 2.460605+5 1.071800-3 2.470810+5 1.074000-3 2.536326+5 1.076300-3 2.590460+5 1.079000-3 2.638640+5 1.081800-3 2.674143+5 1.085500-3 2.703091+5 1.090000-3 2.717211+5 1.094000-3 2.715526+5 1.096478-3 2.707455+5 1.100000-3 2.696059+5 1.109175-3 2.643762+5 1.148154-3 2.381738+5 1.173000-3 2.250730+5 1.188502-3 2.179944+5 1.216186-3 2.061128+5 1.244515-3 1.948706+5 1.258925-3 1.893161+5 1.288250-3 1.786778+5 1.380384-3 1.502186+5 1.400000-3 1.449890+5 1.445440-3 1.338041+5 1.500000-3 1.219088+5 1.621810-3 9.996708+4 1.640590-3 9.708221+4 1.730000-3 8.482716+4 1.737801-3 8.383185+4 1.883649-3 6.785677+4 1.905461-3 6.583635+4 2.018366-3 5.660314+4 2.041738-3 5.491802+4 2.187762-3 4.567057+4 2.238721-3 4.294611+4 2.290868-3 4.038435+4 2.371374-3 3.676116+4 2.570396-3 2.952152+4 2.630268-3 2.772707+4 2.722701-3 2.523805+4 2.786121-3 2.367669+4 3.019952-3 1.893446+4 3.090295-3 1.776231+4 3.198895-3 1.613882+4 3.273407-3 1.512603+4 3.548134-3 1.205629+4 3.630781-3 1.129919+4 3.715352-3 1.058968+4 3.845918-3 9.595150+3 4.168694-3 7.622852+3 4.265795-3 7.137461+3 4.415704-3 6.466742+3 4.518559-3 6.049418+3 4.897788-3 4.789770+3 5.011872-3 4.480458+3 5.300000-3 3.810182+3 5.308844-3 3.791564+3 5.754399-3 2.992233+3 5.821032-3 2.892725+3 5.956621-3 2.703386+3 6.237348-3 2.361090+3 6.382635-3 2.206555+3 6.839116-3 1.796581+3 6.928200-3 1.728715+3 7.079458-3 1.621038+3 7.413102-3 1.413319+3 7.673615-3 1.275193+3 8.222426-3 1.035666+3 8.413951-3 9.662285+2 8.810489-3 8.410116+2 9.332543-3 7.070611+2 9.885531-3 5.933077+2 1.011579-2 5.530803+2 1.083927-2 4.480372+2 1.150000-2 3.740776+2 1.202264-2 3.261960+2 1.230269-2 3.038367+2 1.273503-2 2.731398+2 1.364583-2 2.207379+2 1.428894-2 1.915166+2 1.462177-2 1.782665+2 1.500000-2 1.646314+2 1.659587-2 1.201467+2 1.778279-2 9.688353+1 1.798871-2 9.343825+1 1.819701-2 9.011352+1 1.840772-2 8.690711+1 2.238721-2 4.694373+1 2.264644-2 4.527256+1 2.290868-2 4.364600+1 2.511886-2 3.257051+1 2.851018-2 2.177914+1 2.884032-2 2.099629+1 2.917427-2 2.024160+1 3.427678-2 1.209147+1 3.672823-2 9.678366+0 3.715352-2 9.325690+0 4.570882-2 4.780856+0 4.677351-2 4.438795+0 4.731513-2 4.276040+0 5.011872-2 3.547248+0 5.432503-2 2.730750+0 6.025596-2 1.950812+0 6.456542-2 1.558976+0 6.531306-2 1.501598+0 7.079458-2 1.154930+0 7.328245-2 1.032019+0 7.498942-2 9.574350-1 8.912509-2 5.454743-1 9.120108-2 5.060539-1 1.059254-1 3.107742-1 1.071519-1 2.993349-1 1.109175-1 2.674803-1 1.174898-1 2.220250-1 1.244515-1 1.842948-1 1.288250-1 1.648088-1 1.428894-1 1.178876-1 1.584893-1 8.432529-2 1.603245-1 8.127731-2 1.621810-1 7.834134-2 1.640590-1 7.551143-2 1.840772-1 5.226777-2 1.862087-1 5.037978-2 1.905461-1 4.680590-2 2.018366-1 3.903681-2 2.065380-1 3.630515-2 2.089296-1 3.501188-2 2.238721-1 2.816428-2 2.264644-1 2.717463-2 2.290868-1 2.621974-2 2.344229-1 2.440949-2 2.540973-1 1.900741-2 2.600160-1 1.769637-2 2.691535-1 1.592689-2 2.786121-1 1.433600-2 2.884032-1 1.290401-2 2.951209-1 1.202975-2 3.054921-1 1.084951-2 3.198895-1 9.455470-3 3.311311-1 8.528805-3 3.349654-1 8.246160-3 3.427678-1 7.708659-3 3.548134-1 6.968288-3 3.630781-1 6.514648-3 3.672823-1 6.299030-3 3.801894-1 5.706267-3 3.890451-1 5.342917-3 3.935501-1 5.170010-3 4.073803-1 4.684154-3 4.216965-1 4.254012-3 4.265795-1 4.119806-3 4.518559-1 3.509681-3 4.623810-1 3.297100-3 4.677351-1 3.195690-3 4.954502-1 2.734248-3 5.011872-1 2.652419-3 5.128614-1 2.496033-3 5.432503-1 2.144781-3 5.623413-1 1.963232-3 5.888437-1 1.745225-3 5.956621-1 1.694617-3 6.165950-1 1.555690-3 6.382635-1 1.428385-3 6.456542-1 1.388310-3 6.531306-1 1.349359-3 6.683439-1 1.277056-3 6.918310-1 1.176006-3 6.998420-1 1.144132-3 7.161434-1 1.082954-3 7.244360-1 1.054586-3 7.328245-1 1.027019-3 7.498942-1 9.740298-4 7.585776-1 9.485694-4 7.762471-1 8.996294-4 7.943282-1 8.546900-4 8.035261-1 8.331164-4 8.128305-1 8.120875-4 8.222427-1 7.915894-4 8.413951-1 7.521340-4 8.810489-1 6.814000-4 8.912509-1 6.648165-4 9.015711-1 6.486367-4 9.225714-1 6.174499-4 9.549926-1 5.750209-4 9.885531-1 5.355975-4 1.000000+0 5.230668-4 1.011579+0 5.108298-4 1.035142+0 4.877961-4 1.074800+0 4.523989-4 1.109175+0 4.247901-4 1.135011+0 4.056700-4 1.188502+0 3.711090-4 1.202264+0 3.629569-4 1.258925+0 3.321004-4 1.303167+0 3.115205-4 1.318257+0 3.049639-4 1.380384+0 2.800893-4 1.412538+0 2.688663-4 1.428894+0 2.634249-4 1.445440+0 2.581068-4 1.513561+0 2.378868-4 1.548817+0 2.288189-4 1.584893+0 2.201214-4 1.659587+0 2.037054-4 1.717908+0 1.926284-4 1.757924+0 1.855976-4 1.840772+0 1.722969-4 1.862087+0 1.692330-4 1.927525+0 1.603645-4 1.972423+0 1.547241-4 2.089296+0 1.414760-4 2.113489+0 1.390596-4 2.187762+0 1.320555-4 2.213095+0 1.298056-4 2.371374+0 1.170890-4 2.483133+0 1.095931-4 2.511886+0 1.077997-4 2.691535+0 9.763871-5 2.851018+0 9.017484-5 2.884032+0 8.875510-5 3.126079+0 7.942373-5 3.311311+0 7.356295-5 3.349654+0 7.244619-5 3.630781+0 6.508943-5 3.890451+0 5.956593-5 3.935501+0 5.869384-5 4.315191+0 5.216156-5 4.623810+0 4.788193-5 4.677351+0 4.720493-5 5.188000+0 4.152684-5 5.559043+0 3.822365-5 5.688529+0 3.718395-5 6.309573+0 3.284435-5 6.839116+0 2.990343-5 7.000000+0 2.910633-5 7.852356+0 2.546851-5 8.511380+0 2.324938-5 8.810489+0 2.235976-5 1.023293+1 1.888177-5 1.059254+1 1.817650-5 1.083927+1 1.772163-5 1.288250+1 1.465392-5 1.318257+1 1.429320-5 1.380384+1 1.359819-5 1.400000+1 1.339234-5 1.659587+1 1.114298-5 1.678804+1 1.100723-5 1.800000+1 1.021995-5 1.927525+1 9.501667-6 1.949845+1 9.386061-6 2.137962+1 8.510451-6 2.264644+1 8.012938-6 2.754229+1 6.528994-6 2.985383+1 6.000974-6 3.273407+1 5.450138-6 3.507519+1 5.076212-6 4.315191+1 4.101457-6 4.786301+1 3.686697-6 5.495409+1 3.198538-6 6.095369+1 2.878797-6 8.035261+1 2.173891-6 9.440609+1 1.845383-6 1.096478+2 1.585081-6 1.216186+2 1.427856-6 1.603245+2 1.080704-6 1.883649+2 9.186210-7 2.187762+2 7.900045-7 2.426610+2 7.120120-7 6.382635+2 2.698736-7 7.498942+2 2.295827-7 8.709636+2 1.975816-7 9.660509+2 1.781273-7 1.000000+5 1.717951-9 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.150000-6 5.150000-6 3.622000-5 5.150000-6 3.622000-5 3.525368-5 3.642000-5 3.528594-5 3.642000-5 3.564624-5 4.030000-5 3.592348-5 4.950000-5 3.611975-5 6.448000-5 3.618633-5 6.448000-5 3.642624-5 1.000000-4 3.678468-5 2.540973-4 3.751346-5 4.677351-4 3.817127-5 7.500000-4 3.872219-5 1.064000-3 3.911765-5 1.064000-3 7.020546-5 1.070300-3 7.074070-5 1.081800-3 7.110339-5 1.109175-3 7.124734-5 2.630268-3 7.160148-5 1.500000-2 7.174185-5 1.000000+5 7.174380-5 1 11000 7 7 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.150000-6 0.0 6.448000-5 0.0 6.448000-5 2.20870-11 6.540000-5 2.32477-11 6.770000-5 2.60233-11 6.920000-5 2.77592-11 7.244360-5 3.12696-11 7.328245-5 3.20997-11 7.413102-5 3.30120-11 7.800000-5 3.68268-11 8.300000-5 4.14072-11 8.609938-5 4.40968-11 8.912509-5 4.66020-11 9.332543-5 4.98491-11 9.650000-5 5.22790-11 1.047129-4 5.79406-11 1.100000-4 6.12666-11 1.161449-4 6.48744-11 1.230269-4 6.86949-11 1.333521-4 7.39802-11 1.450000-4 7.96667-11 1.737801-4 9.33301-11 2.041738-4 1.07327-10 2.300000-4 1.18631-10 2.540973-4 1.28389-10 2.786121-4 1.37613-10 3.126079-4 1.49421-10 3.548134-4 1.63140-10 4.000000-4 1.76849-10 4.466836-4 1.89852-10 5.011872-4 2.03462-10 5.688529-4 2.18589-10 6.456542-4 2.33950-10 7.244360-4 2.47880-10 8.222426-4 2.62863-10 9.440609-4 2.78909-10 1.064000-3 2.92474-10 1.064000-3 1.843234-5 1.067500-3 1.864061-5 1.071800-3 1.879422-5 1.079000-3 1.893212-5 1.094000-3 1.903292-5 2.041738-3 1.919284-5 4.168694-3 1.926460-5 3.715352-2 1.928727-5 1.000000+5 1.928238-5 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.150000-6 0.0 3.622000-5 3.107000-5 3.622000-5 9.663228-7 3.642000-5 1.134058-6 3.642000-5 7.737607-7 3.715352-5 1.432207-6 3.780000-5 2.023360-6 3.850000-5 2.673091-6 3.935501-5 3.477267-6 4.120975-5 5.250112-6 4.450000-5 8.451102-6 5.080000-5 1.466864-5 6.448000-5 2.829367-5 6.448000-5 2.805373-5 1.059254-4 6.910057-5 6.200000-4 5.815004-4 1.064000-3 1.024882-3 1.064000-3 9.753622-4 1.109175-3 1.018879-3 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.064000-3 1.869816+5 1.065000-3 1.937660+5 1.066000-3 2.000320+5 1.067500-3 2.083360+5 1.068800-3 2.146040+5 1.070300-3 2.209480+5 1.071800-3 2.264220+5 1.074000-3 2.330880+5 1.076300-3 2.386200+5 1.079000-3 2.435760+5 1.081800-3 2.472680+5 1.085500-3 2.503480+5 1.090000-3 2.519820+5 1.094000-3 2.520080+5 1.100000-3 2.503480+5 1.109175-3 2.455455+5 1.148154-3 2.210249+5 1.173000-3 2.088880+5 1.244515-3 1.810844+5 1.500000-3 1.136314+5 1.730000-3 7.924100+4 2.041738-3 5.139360+4 2.290868-3 3.783152+4 2.722701-3 2.367008+4 3.198895-3 1.514788+4 3.715352-3 9.944803+3 4.415704-3 6.075762+3 5.300000-3 3.581100+3 6.382635-3 2.074399+3 7.673615-3 1.199021+3 9.332543-3 6.649116+2 1.150000-2 3.518080+2 1.428894-2 1.801210+2 1.778279-2 9.112023+1 2.264644-2 4.257960+1 2.917427-2 1.903707+1 3.427678-2 1.137235+1 4.677351-2 4.174421+0 6.456542-2 1.466084+0 1.109175-1 2.515018-1 1.584893-1 7.928602-2 1.905461-1 4.400307-2 2.238721-1 2.647851-2 2.600160-1 1.663678-2 2.951209-1 1.130916-2 3.311311-1 8.017973-3 3.672823-1 5.921866-3 4.073803-1 4.403719-3 4.518559-1 3.299567-3 4.954502-1 2.570595-3 5.432503-1 2.016417-3 5.956621-1 1.593197-3 6.531306-1 1.268629-3 7.161434-1 1.018130-3 7.762471-1 8.457262-4 8.413951-1 7.070501-4 9.225714-1 5.804776-4 1.011579+0 4.802558-4 1.135011+0 3.813932-4 1.258925+0 3.122246-4 1.380384+0 2.633269-4 1.513561+0 2.236499-4 1.659587+0 1.915128-4 1.840772+0 1.619841-4 2.089296+0 1.330075-4 2.371374+0 1.100807-4 2.691535+0 9.179420-5 3.126079+0 7.466991-5 3.630781+0 6.119321-5 4.315191+0 4.903936-5 5.188000+0 3.904134-5 6.309573+0 3.087839-5 7.852356+0 2.394412-5 1.023293+1 1.775201-5 1.288250+1 1.377727-5 1.659587+1 1.047615-5 2.137962+1 8.001134-6 3.273407+1 5.123987-6 5.495409+1 3.007118-6 1.096478+2 1.490236-6 2.187762+2 7.427432-7 8.709636+2 1.857644-7 1.000000+5 1.615200-9 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.064000-3 7.370800-5 1.000000+5 7.370800-5 1 11000 7 7 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.064000-3 2.050900-5 1.000000+5 2.050900-5 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.064000-3 9.697830-4 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.448000-5 3.897000+5 6.540000-5 4.095500+5 6.640000-5 4.297420+5 6.770000-5 4.541260+5 6.920000-5 4.795020+5 7.079458-5 5.035129+5 7.244360-5 5.252605+5 7.413102-5 5.445774+5 7.585776-5 5.615210+5 7.800000-5 5.789020+5 8.035261-5 5.937738+5 8.300000-5 6.059000+5 8.609938-5 6.147680+5 8.912509-5 6.188249+5 9.240200-5 6.190144+5 9.650000-5 6.144560+5 1.000000-4 6.073520+5 1.047129-4 5.943768+5 1.100000-4 5.767300+5 1.161449-4 5.539780+5 1.230269-4 5.274093+5 1.318257-4 4.936927+5 1.428894-4 4.536752+5 1.566751-4 4.087969+5 1.737801-4 3.606871+5 1.905461-4 3.205442+5 2.089296-4 2.828823+5 2.290868-4 2.477814+5 2.511886-4 2.154206+5 2.786121-4 1.825218+5 3.126079-4 1.506160+5 3.548134-4 1.209844+5 4.000000-4 9.761520+4 4.466836-4 7.953013+4 5.011872-4 6.371509+4 5.688529-4 4.952245+4 6.456542-4 3.821194+4 7.244360-4 2.998000+4 8.222426-4 2.277786+4 9.440609-4 1.674691+4 1.071519-3 1.254324+4 1.216186-3 9.326569+3 1.400000-3 6.661420+3 1.621810-3 4.647650+3 1.883649-3 3.197538+3 2.187762-3 2.182588+3 2.570396-3 1.435414+3 3.019952-3 9.366694+2 3.548134-3 6.066609+2 4.168694-3 3.900480+2 4.897788-3 2.489234+2 5.821032-3 1.526547+2 6.928200-3 9.251225+1 8.222426-3 5.609978+1 9.885531-3 3.250819+1 1.202264-2 1.805989+1 1.462177-2 9.957020+0 1.798871-2 5.260420+0 2.238721-2 2.661878+0 2.851018-2 1.243624+0 3.672823-2 5.559010-1 4.731513-2 2.466210-1 7.079458-2 6.702459-2 1.288250-1 9.593280-3 1.603245-1 4.748655-3 2.018366-1 2.284179-3 2.344229-1 1.428510-3 2.691535-1 9.329575-4 3.054921-1 6.358946-4 3.427678-1 4.517975-4 3.801894-1 3.343746-4 4.216965-1 2.492532-4 4.677351-1 1.872663-4 5.128614-1 1.462562-4 5.623413-1 1.150302-4 6.165950-1 9.114526-5 6.683439-1 7.483557-5 7.244360-1 6.187200-5 7.943282-1 5.017006-5 8.810489-1 3.997493-5 9.549926-1 3.371196-5 1.074800+0 2.651500-5 1.188502+0 2.174780-5 1.303167+0 1.825971-5 1.428894+0 1.544048-5 1.548817+0 1.341546-5 1.717908+0 1.129269-5 1.927525+0 9.400559-6 2.187762+0 7.740195-6 2.483133+0 6.424248-6 2.851018+0 5.285362-6 3.311311+0 4.312036-6 3.890451+0 3.491240-6 4.623810+0 2.806572-6 5.559043+0 2.240648-6 6.839116+0 1.752852-6 8.511380+0 1.362930-6 1.059254+1 1.066034-6 1.380384+1 7.971174-7 1.927525+1 5.570318-7 2.985383+1 3.518357-7 4.786301+1 2.161372-7 9.440609+1 1.082120-7 1.883649+2 5.387364-8 7.498942+2 1.346380-8 1.000000+5 1.00790-10 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.448000-5 4.143700-5 1.000000+5 4.143700-5 1 11000 7 7 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.448000-5 4.83380-10 1.000000+5 4.83380-10 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.448000-5 2.304252-5 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.642000-5 8.467400+5 3.715352-5 9.405400+5 3.780000-5 1.023600+6 3.850000-5 1.113200+6 3.935501-5 1.221700+6 4.000000-5 1.302600+6 4.073803-5 1.393300+6 4.168694-5 1.507300+6 4.265795-5 1.620500+6 4.365158-5 1.732100+6 4.466836-5 1.841000+6 4.570882-5 1.946500+6 4.680000-5 2.050200+6 4.800000-5 2.156000+6 4.950000-5 2.275200+6 5.080000-5 2.366600+6 5.230000-5 2.458300+6 5.400000-5 2.544300+6 5.580000-5 2.615000+6 5.754399-5 2.664400+6 5.950000-5 2.698900+6 6.150000-5 2.713100+6 6.350000-5 2.708800+6 6.580000-5 2.683300+6 6.800000-5 2.642700+6 7.070000-5 2.575900+6 7.328245-5 2.498600+6 7.585776-5 2.412300+6 7.900000-5 2.299800+6 8.300000-5 2.152500+6 8.709636-5 2.003800+6 9.225714-5 1.825300+6 9.800000-5 1.643000+6 1.059254-4 1.423600+6 1.161449-4 1.191200+6 1.273503-4 9.896600+5 1.400000-4 8.124000+5 1.531087-4 6.695300+5 1.659587-4 5.588400+5 1.800000-4 4.627700+5 1.950000-4 3.817400+5 2.150000-4 2.995600+5 2.400000-4 2.260700+5 2.722701-4 1.624200+5 3.090295-4 1.156600+5 3.467369-4 8.429800+4 3.890451-4 6.093100+4 4.365158-4 4.371300+4 4.954502-4 3.011900+4 5.559043-4 2.133400+4 6.200000-4 1.529200+4 7.000000-4 1.049000+4 8.035261-4 6.789200+3 9.120108-4 4.524000+3 1.035142-3 2.993800+3 1.188502-3 1.895700+3 1.380384-3 1.146300+3 1.621810-3 6.614300+2 1.883649-3 3.941700+2 2.187762-3 2.332700+2 2.570396-3 1.315800+2 3.019952-3 7.363700+1 3.548134-3 4.089600+1 4.168694-3 2.254000+1 4.897788-3 1.232900+1 5.754399-3 6.691300+0 6.839116-3 3.448600+0 8.222426-3 1.686000+0 9.885531-3 8.182400-1 1.273503-2 3.001211-1 1.659587-2 1.043214-1 2.290868-2 2.857322-2 4.570882-2 1.761169-3 6.025596-2 5.798908-4 7.498942-2 2.423446-4 9.120108-2 1.118104-4 1.071519-1 5.953704-5 1.244515-1 3.339246-5 1.428894-1 1.971280-5 1.640590-1 1.172457-5 1.862087-1 7.336149-6 2.089296-1 4.821915-6 2.344229-1 3.191895-6 2.600160-1 2.216540-6 2.884032-1 1.549774-6 3.198895-1 1.091483-6 3.548134-1 7.745900-7 3.890451-1 5.750227-7 4.265795-1 4.296532-7 4.677351-1 3.231689-7 5.128614-1 2.446380-7 5.623413-1 1.864873-7 6.165950-1 1.432353-7 6.683439-1 1.144950-7 7.328245-1 8.936010-8 8.035261-1 7.028606-8 9.015711-1 5.241169-8 9.549926-1 4.554014-8 1.000000+0 4.093200-8 1.074800+0 3.496000-8 1.135011+0 3.126206-8 1.202264+0 2.795640-8 1.303167+0 2.410389-8 1.412538+0 2.093304-8 1.659587+0 1.596638-8 1.862087+0 1.324999-8 2.089296+0 1.107604-8 2.371374+0 9.167470-9 2.691535+0 7.644347-9 3.126079+0 6.217929-9 3.630781+0 5.095710-9 4.315191+0 4.083630-9 5.188000+0 3.251044-9 6.309573+0 2.571262-9 7.852356+0 1.993863-9 1.023293+1 1.478187-9 1.318257+1 1.118771-9 1.800000+1 7.99350-10 2.754229+1 5.10707-10 4.315191+1 3.20799-10 8.035261+1 1.70069-10 1.603245+2 8.45603-11 6.382635+2 2.11194-11 1.000000+5 1.34500-13 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.642000-5 3.642000-5 1.000000+5 3.642000-5 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.642000-5 0.0 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.622000-5 1.714476+6 3.710000-5 1.939940+6 3.780000-5 2.121192+6 3.850000-5 2.301520+6 3.935501-5 2.519090+6 4.030000-5 2.755444+6 4.120975-5 2.977428+6 4.220000-5 3.211504+6 4.330000-5 3.461080+6 4.450000-5 3.719500+6 4.570882-5 3.963728+6 4.680600-5 4.170410+6 4.800000-5 4.378360+6 4.954502-5 4.619998+6 5.080000-5 4.793000+6 5.230000-5 4.972080+6 5.400000-5 5.138920+6 5.580000-5 5.274720+6 5.754399-5 5.368036+6 5.950000-5 5.430920+6 6.150000-5 5.453720+6 6.350000-5 5.439240+6 6.580000-5 5.383120+6 6.800000-5 5.297040+6 7.070000-5 5.157480+6 7.328245-5 4.998321+6 7.650000-5 4.777320+6 8.000000-5 4.521880+6 8.400000-5 4.224960+6 8.810489-5 3.926700+6 9.332543-5 3.569221+6 1.000000-4 3.157880+6 1.083927-4 2.714516+6 1.188502-4 2.265753+6 1.318257-4 1.834343+6 1.450000-4 1.499240+6 1.584893-4 1.233013+6 1.720000-4 1.023100+6 1.883649-4 8.248730+5 2.065380-4 6.579281+5 2.300000-4 5.008640+5 2.583000-4 3.703391+5 2.917427-4 2.679635+5 3.273407-4 1.959752+5 3.672823-4 1.421846+5 4.120975-4 1.023260+5 4.677351-4 7.070157+4 5.248075-4 5.021140+4 5.888437-4 3.543574+4 6.606934-4 2.484175+4 7.500000-4 1.669136+4 8.609938-4 1.075586+4 9.772372-4 7.135690+3 1.109175-3 4.703469+3 1.288250-3 2.852443+3 1.500000-3 1.702240+3 1.737801-3 1.026017+3 2.018366-3 6.088081+2 2.371374-3 3.443752+2 2.786121-3 1.932606+2 3.273407-3 1.076185+2 3.845918-3 5.946274+1 4.518559-3 3.259334+1 5.308844-3 1.772712+1 6.237348-3 9.568030+0 7.413102-3 4.901791+0 8.810489-3 2.492514+0 1.083927-2 1.097769+0 1.364583-2 4.377856-1 1.819701-2 1.375439-1 2.511886-2 3.726569-2 5.432503-2 1.607760-3 7.328245-2 4.775220-4 8.912509-2 2.174260-4 1.059254-1 1.093932-4 1.244515-1 5.802946-5 1.428894-1 3.394504-5 1.621810-1 2.091233-5 1.840772-1 1.298104-5 2.065380-1 8.479608-6 2.290868-1 5.821918-6 2.540973-1 4.027534-6 2.786121-1 2.922558-6 3.054921-1 2.135379-6 3.349654-1 1.571606-6 3.630781-1 1.209685-6 3.935501-1 9.371241-7 4.265795-1 7.310065-7 4.623810-1 5.742896-7 5.011872-1 4.545090-7 5.432503-1 3.626948-7 5.888437-1 2.915968-7 6.382635-1 2.361431-7 6.918310-1 1.925600-7 7.498942-1 1.581066-7 8.128305-1 1.307032-7 8.912509-1 1.059333-7 9.549926-1 9.104229-8 1.035142+0 7.689888-8 1.109175+0 6.678429-8 1.202264+0 5.706100-8 1.318257+0 4.802764-8 1.445440+0 4.071111-8 1.584893+0 3.475318-8 1.757924+0 2.930322-8 1.972423+0 2.442160-8 2.213095+0 2.048529-8 2.511886+0 1.701454-8 2.884032+0 1.400796-8 3.349654+0 1.143487-8 3.935501+0 9.263294-9 4.677351+0 7.450306-9 5.688529+0 5.868877-9 7.000000+0 4.593800-9 8.810489+0 3.529281-9 1.083927+1 2.798620-9 1.400000+1 2.113700-9 1.949845+1 1.481819-9 2.985383+1 9.47426-10 4.786301+1 5.82006-10 9.440609+1 2.91383-10 1.883649+2 1.45068-10 7.498942+2 3.62547-11 1.000000+5 2.71400-13 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.622000-5 3.622000-5 1.000000+5 3.622000-5 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.622000-5 0.0 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.150000-6 9.544867+4 5.164000-6 9.180590+4 5.195000-6 8.460820+4 5.248075-6 7.321184+4 5.300000-6 6.322070+4 5.330000-6 5.792260+4 5.370318-6 5.132763+4 5.420000-6 4.394090+4 5.450000-6 3.986380+4 5.495409-6 3.419176+4 5.535000-6 2.973750+4 5.570000-6 2.613380+4 5.600000-6 2.328550+4 5.635000-6 2.023300+4 5.660000-6 1.822350+4 5.688529-6 1.609595+4 5.720000-6 1.394070+4 5.743000-6 1.248710+4 5.770000-6 1.090660+4 5.792000-6 9.715660+3 5.815000-6 8.559410+3 5.835000-6 7.626750+3 5.855000-6 6.759070+3 5.870000-6 6.149060+3 5.892000-6 5.316390+3 5.910000-6 4.688200+3 5.927000-6 4.137350+3 5.942000-6 3.684280+3 5.956621-6 3.272176+3 5.970000-6 2.919770+3 5.985000-6 2.551730+3 5.996000-6 2.300020+3 6.010000-6 2.000950+3 6.023000-6 1.744490+3 6.035000-6 1.525330+3 6.043000-6 1.388510+3 6.052000-6 1.243250+3 6.062000-6 1.092480+3 6.070000-6 9.798040+2 6.077000-6 8.869170+2 6.085000-6 7.871960+2 6.092000-6 7.055010+2 6.100000-6 6.183850+2 6.108000-6 5.378880+2 6.115000-6 4.727960+2 6.121500-6 4.167590+2 6.127000-6 3.726080+2 6.133000-6 3.278550+2 6.139000-6 2.866070+2 6.144000-6 2.548810+2 6.150000-6 2.199640+2 6.155000-6 1.934520+2 6.160000-6 1.692990+2 6.165950-6 1.435740+2 6.173000-6 1.173010+2 6.183000-6 8.775710+1 6.188000-6 7.633350+1 6.191000-6 7.054570+1 6.194000-6 6.554640+1 6.197000-6 6.133450+1 6.199000-6 5.896140+1 6.201500-6 5.648210+1 6.203000-6 5.525370+1 6.205000-6 5.391660+1 6.207000-6 5.292250+1 6.209000-6 5.227010+1 6.211000-6 5.195810+1 6.213000-6 5.198540+1 6.215000-6 5.235080+1 6.217000-6 5.305200+1 6.219000-6 5.408990+1 6.221000-6 5.546270+1 6.223000-6 5.716830+1 6.225000-6 5.920590+1 6.227800-6 6.261420+1 6.230000-6 6.574470+1 6.233000-6 7.065340+1 6.237348-6 7.906915+1 6.242000-6 8.976550+1 6.255000-6 1.288150+2 6.260000-6 1.473800+2 6.265000-6 1.678840+2 6.272000-6 1.998200+2 6.277000-6 2.249150+2 6.282000-6 2.518920+2 6.288000-6 2.867240+2 6.295000-6 3.307180+2 6.302000-6 3.782820+2 6.307000-6 4.144160+2 6.312000-6 4.523360+2 6.320000-6 5.166820+2 6.327000-6 5.766270+2 6.335000-6 6.492590+2 6.342000-6 7.163660+2 6.350000-6 7.970690+2 6.357000-6 8.711790+2 6.365000-6 9.597220+2 6.376000-6 1.088160+3 6.385000-6 1.198880+3 6.395000-6 1.327840+3 6.405000-6 1.462780+3 6.415000-6 1.603650+3 6.425000-6 1.750450+3 6.440000-6 1.981160+3 6.455000-6 2.224360+3 6.470000-6 2.479850+3 6.485000-6 2.746960+3 6.500000-6 3.025500+3 6.515000-6 3.315350+3 6.535000-6 3.718270+3 6.557000-6 4.182880+3 6.580000-6 4.691190+3 6.600000-6 5.151440+3 6.627000-6 5.798010+3 6.650000-6 6.370790+3 6.670000-6 6.884410+3 6.700000-6 7.680600+3 6.730000-6 8.505840+3 6.760830-6 9.382547+3 6.790000-6 1.023650+4 6.820000-6 1.113790+4 6.850000-6 1.206190+4 6.890000-6 1.332470+4 6.930000-6 1.462030+4 6.980000-6 1.628100+4 7.020000-6 1.763900+4 7.070000-6 1.936730+4 7.130000-6 2.148050+4 7.170000-6 2.290920+4 7.230000-6 2.507640+4 7.290000-6 2.726620+4 7.350000-6 2.947200+4 7.420000-6 3.205750+4 7.500000-6 3.501810+4 7.585776-6 3.818693+4 7.673615-6 4.141468+4 7.770000-6 4.492220+4 7.880000-6 4.886770+4 8.000000-6 5.308320+4 8.128305-6 5.747174+4 8.270000-6 6.215900+4 8.420000-6 6.692430+4 8.550000-6 7.088280+4 8.709636-6 7.551573+4 8.850000-6 7.937830+4 9.050000-6 8.453980+4 9.225714-6 8.874660+4 9.440609-6 9.348474+4 9.700000-6 9.863200+4 9.930000-6 1.027000+5 1.023293-5 1.073921+5 1.059254-5 1.120598+5 1.096478-5 1.159635+5 1.135011-5 1.191298+5 1.180000-5 1.218600+5 1.230269-5 1.238813+5 1.273503-5 1.249018+5 1.333521-5 1.254223+5 1.400000-5 1.250290+5 1.462177-5 1.239673+5 1.548817-5 1.216698+5 1.640590-5 1.185437+5 1.737801-5 1.147644+5 1.862087-5 1.095699+5 2.000000-5 1.036980+5 2.162719-5 9.695412+4 2.350000-5 8.963480+4 2.580000-5 8.147390+4 2.884032-5 7.210806+4 3.235937-5 6.311064+4 3.715352-5 5.335896+4 4.466836-5 4.228538+4 5.956621-5 2.906500+4 1.135011-4 1.244688+4 1.333521-4 1.000649+4 1.520000-4 8.317440+3 1.678804-4 7.180510+3 1.862087-4 6.117095+3 2.041738-4 5.271855+3 2.264644-4 4.425785+3 2.540973-4 3.616114+3 2.884032-4 2.871930+3 3.311311-4 2.215357+3 3.890451-4 1.622554+3 4.677351-4 1.127977+3 5.688529-4 7.616116+2 6.456542-4 5.868542+2 7.161434-4 4.711820+2 8.035261-4 3.663558+2 9.120108-4 2.755671+2 1.096478-3 1.802373+2 1.258925-3 1.303678+2 1.445440-3 9.361848+1 1.640590-3 6.858848+1 1.905461-3 4.709990+1 2.238721-3 3.118309+1 2.630268-3 2.049039+1 3.090295-3 1.336247+1 3.630781-3 8.650075+0 4.265795-3 5.558835+0 5.011872-3 3.546753+0 5.956621-3 2.173915+0 7.079458-3 1.322228+0 8.413951-3 7.982812-1 1.011579-2 4.623837-1 1.230269-2 2.567595-1 1.500000-2 1.404096-1 1.840772-2 7.473876-2 2.290868-2 3.781218-2 2.884032-2 1.831627-2 3.715352-2 8.182902-3 5.011872-2 3.130840-3 6.531306-2 1.330161-3 1.174898-1 1.977622-4 1.584893-1 7.538120-5 1.905461-1 4.188289-5 2.264644-1 2.431605-5 2.600160-1 1.584781-5 2.951209-1 1.077816-5 3.311311-1 7.642034-6 3.672823-1 5.644052-6 4.073803-1 4.197366-6 4.518559-1 3.145650-6 4.954502-1 2.451236-6 5.432503-1 1.923690-6 5.956621-1 1.520994-6 6.456542-1 1.246759-6 6.998420-1 1.028366-6 7.585776-1 8.535844-7 8.222427-1 7.132576-7 9.015711-1 5.856643-7 9.885531-1 4.843956-7 1.135011+0 3.675752-7 1.258925+0 3.008912-7 1.380384+0 2.536576-7 1.513561+0 2.153277-7 1.659587+0 1.843838-7 1.862087+0 1.531490-7 2.113489+0 1.258251-7 2.371374+0 1.059723-7 2.691535+0 8.837252-8 3.126079+0 7.189209-8 3.630781+0 5.891659-8 4.315191+0 4.721448-8 5.188000+0 3.758854-8 6.309573+0 2.972993-8 7.852356+0 2.305335-8 1.023293+1 1.709115-8 1.288250+1 1.326518-8 1.678804+1 9.961446-9 2.264644+1 7.249859-9 3.507519+1 4.592632-9 6.095369+1 2.604572-9 1.216186+2 1.292079-9 2.426610+2 6.44367-10 9.660509+2 1.61259-10 1.000000+5 1.55520-12 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.150000-6 5.150000-6 1.000000+5 5.150000-6 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.150000-6 0.0 1.000000+5 1.000000+5 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.583840-9 1.028750+0 4.583840-8 1.036640+0 4.583840-7 1.041500+0 1.069300-6 1.043800+0 1.484230-6 1.046400+0 2.065030-6 1.048300+0 2.571020-6 1.051200+0 3.487520-6 1.054080+0 4.583840-6 1.057700+0 6.248030-6 1.061100+0 8.127070-6 1.065100+0 1.075920-5 1.070400+0 1.501010-5 1.076200+0 2.074370-5 1.080600+0 2.590550-5 1.087100+0 3.490360-5 1.093710+0 4.583840-5 1.102600+0 6.355900-5 1.110700+0 8.290110-5 1.120600+0 1.109110-4 1.133300+0 1.542310-4 1.147500+0 2.129780-4 1.158200+0 2.646880-4 1.174100+0 3.537010-4 1.190110+0 4.583840-4 1.205100+0 5.702300-4 1.227500+0 7.627870-4 1.250000+0 9.869000-4 1.281300+0 1.349760-3 1.308600+0 1.714350-3 1.332500+0 2.069580-3 1.374400+0 2.771040-3 1.405800+0 3.359900-3 1.452900+0 4.338860-3 1.500000+0 5.425000-3 1.562500+0 7.015670-3 1.617200+0 8.532990-3 1.712900+0 1.143430-2 1.784700+0 1.378700-2 1.892300+0 1.754440-2 2.000000+0 2.153000-2 2.044000+0 2.321000-2 2.163500+0 2.786610-2 2.372600+0 3.621080-2 2.529500+0 4.253620-2 2.764700+0 5.200040-2 3.000000+0 6.139000-2 3.437500+0 7.847550-2 4.000000+0 9.942000-2 4.750000+0 1.251860-1 5.000000+0 1.333000-1 6.000000+0 1.636000-1 7.000000+0 1.906000-1 8.000000+0 2.150000-1 9.000000+0 2.370000-1 1.000000+1 2.571000-1 1.100000+1 2.753000-1 1.200000+1 2.920000-1 1.300000+1 3.075000-1 1.400000+1 3.219000-1 1.500000+1 3.354000-1 1.600000+1 3.480000-1 1.800000+1 3.712000-1 2.000000+1 3.920000-1 2.200000+1 4.108000-1 2.400000+1 4.279000-1 2.600000+1 4.435000-1 2.800000+1 4.580000-1 3.000000+1 4.714000-1 4.000000+1 5.264000-1 5.000000+1 5.679000-1 6.000000+1 6.008000-1 8.000000+1 6.502000-1 1.000000+2 6.858000-1 1.500000+2 7.434000-1 2.000000+2 7.784000-1 3.000000+2 8.195000-1 4.000000+2 8.434000-1 5.000000+2 8.592000-1 6.000000+2 8.705000-1 8.000000+2 8.857000-1 1.000000+3 8.956000-1 1.500000+3 9.099000-1 2.000000+3 9.178000-1 3.000000+3 9.263000-1 4.000000+3 9.309000-1 5.000000+3 9.338000-1 6.000000+3 9.358000-1 8.000000+3 9.384000-1 1.000000+4 9.400000-1 1.500000+4 9.424000-1 2.000000+4 9.436000-1 3.000000+4 9.449000-1 4.000000+4 9.456000-1 5.000000+4 9.460000-1 6.000000+4 9.463000-1 8.000000+4 9.467000-1 1.000000+5 9.469000-1 1 11000 7 8 2.298980+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.104530-7 2.136250+0 1.104530-6 2.147000+0 1.514390-6 2.156900+0 1.967010-6 2.169000+0 2.625100-6 2.184500+0 3.648970-6 2.201800+0 5.048460-6 2.214800+0 6.289980-6 2.234200+0 8.461140-6 2.253680+0 1.104530-5 2.281500+0 1.547090-5 2.307000+0 2.032100-5 2.338200+0 2.732340-5 2.377400+0 3.783960-5 2.410200+0 4.812570-5 2.446800+0 6.121860-5 2.485900+0 7.707750-5 2.532900+0 9.864250-5 2.556430+0 1.104530-4 2.611900+0 1.408390-4 2.660400+0 1.702660-4 2.745300+0 2.278880-4 2.809000+0 2.759840-4 2.904500+0 3.555290-4 3.000000+0 4.438000-4 3.125000+0 5.722910-4 3.234400+0 6.963920-4 3.425800+0 9.379100-4 3.569300+0 1.137440-3 3.784700+0 1.462460-3 4.000000+0 1.812000-3 4.250000+0 2.239510-3 4.625000+0 2.911730-3 5.000000+0 3.611000-3 5.500000+0 4.571560-3 6.000000+0 5.546000-3 6.750000+0 6.998360-3 7.000000+0 7.477000-3 8.000000+0 9.353000-3 9.000000+0 1.115000-2 1.000000+1 1.286000-2 1.100000+1 1.449000-2 1.200000+1 1.603000-2 1.300000+1 1.748000-2 1.400000+1 1.886000-2 1.500000+1 2.018000-2 1.600000+1 2.143000-2 1.800000+1 2.376000-2 2.000000+1 2.589000-2 2.200000+1 2.785000-2 2.400000+1 2.966000-2 2.600000+1 3.135000-2 2.800000+1 3.291000-2 3.000000+1 3.438000-2 4.000000+1 4.053000-2 5.000000+1 4.530000-2 6.000000+1 4.915000-2 8.000000+1 5.509000-2 1.000000+2 5.952000-2 1.500000+2 6.703000-2 2.000000+2 7.186000-2 3.000000+2 7.790000-2 4.000000+2 8.160000-2 5.000000+2 8.416000-2 6.000000+2 8.605000-2 8.000000+2 8.870000-2 1.000000+3 9.048000-2 1.500000+3 9.317000-2 2.000000+3 9.472000-2 3.000000+3 9.643000-2 4.000000+3 9.744000-2 5.000000+3 9.807000-2 6.000000+3 9.851000-2 8.000000+3 9.910000-2 1.000000+4 9.947000-2 1.500000+4 9.999000-2 2.000000+4 1.003000-1 3.000000+4 1.006000-1 4.000000+4 1.008000-1 5.000000+4 1.009000-1 6.000000+4 1.009000-1 8.000000+4 1.010000-1 1.000000+5 1.011000-1 1 11000 7 8 2.298980+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 11000 7 9 2.298980+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.100000+1 1.000000+5 1.100000+1 5.000000+5 1.098900+1 7.500000+5 1.098080+1 9.375000+5 1.097630+1 1.000000+6 1.097500+1 1.250000+6 1.096750+1 1.500000+6 1.095600+1 1.875000+6 1.093080+1 2.000000+6 1.092200+1 2.375000+6 1.089070+1 2.500000+6 1.088000+1 2.875000+6 1.084200+1 3.000000+6 1.082900+1 3.250000+6 1.080070+1 3.625000+6 1.075580+1 4.000000+6 1.070900+1 4.437500+6 1.065130+1 4.812500+6 1.059930+1 5.000000+6 1.057300+1 5.468700+6 1.050010+1 5.851600+6 1.043810+1 6.000000+6 1.041420+1 6.261700+6 1.037040+1 6.753900+6 1.028870+1 7.000000+6 1.024800+1 7.500000+6 1.016540+1 8.250000+6 1.004140+1 8.500000+6 1.000070+1 9.000000+6 9.918800+0 1.000000+7 9.756000+0 1.250000+7 9.379600+0 1.437500+7 9.108140+0 1.500000+7 9.020900+0 1.687500+7 8.764360+0 1.750000+7 8.680400+0 1.937500+7 8.424180+0 2.000000+7 8.337600+0 2.218800+7 8.025970+0 2.406300+7 7.752680+0 2.500000+7 7.615900+0 2.750000+7 7.246600+0 2.875000+7 7.061560+0 3.000000+7 6.877400+0 3.250000+7 6.509440+0 3.437500+7 6.238480+0 3.625000+7 5.972830+0 3.718800+7 5.842800+0 4.000000+7 5.464700+0 4.250000+7 5.144230+0 4.437500+7 4.915170+0 4.625000+7 4.696470+0 4.812500+7 4.487770+0 5.000000+7 4.289000+0 5.437500+7 3.863600+0 5.500000+7 3.807130+0 6.000000+7 3.394200+0 6.500000+7 3.043090+0 7.000000+7 2.748800+0 7.750000+7 2.396510+0 8.000000+7 2.299400+0 8.500000+7 2.131220+0 9.000000+7 1.992400+0 9.500000+7 1.877650+0 1.000000+8 1.781900+0 1.062500+8 1.683090+0 1.144500+8 1.579160+0 1.187500+8 1.533800+0 1.250000+8 1.476100+0 1.375000+8 1.382620+0 1.500000+8 1.305200+0 1.625000+8 1.234910+0 1.753900+8 1.164740+0 1.841800+8 1.117000+0 1.947300+8 1.059150+0 2.000000+8 1.030000+0 2.125000+8 9.604930-1 2.375000+8 8.388010-1 2.500000+8 7.880000-1 2.671900+8 7.293880-1 2.789100+8 6.901390-1 2.881300+8 6.574290-1 2.960400+8 6.274170-1 3.000000+8 6.117000-1 3.062500+8 5.859540-1 3.171900+8 5.410830-1 3.335900+8 4.810880-1 3.418000+8 4.562150-1 3.500000+8 4.354000-1 3.562500+8 4.222760-1 3.671900+8 4.030160-1 3.835900+8 3.775400-1 3.918000+8 3.644670-1 4.000000+8 3.504000-1 4.091800+8 3.331420-1 4.176000+8 3.165140-1 4.279000+8 2.958620-1 4.411200+8 2.699850-1 5.000000+8 1.803000-1 5.125000+8 1.674770-1 5.343800+8 1.486850-1 5.671900+8 1.256840-1 5.835900+8 1.155640-1 6.000000+8 1.060000-1 6.562500+8 7.847900-2 6.718800+8 7.290850-2 6.859400+8 6.872570-2 7.000000+8 6.530000-2 7.125000+8 6.284500-2 7.343800+8 5.941350-2 7.671900+8 5.490750-2 7.835900+8 5.253490-2 7.959000+8 5.058790-2 8.000000+8 4.990000-2 8.125000+8 4.768200-2 8.242200+8 4.549240-2 8.403500+8 4.239580-2 8.551600+8 3.954960-2 8.732700+8 3.616130-2 8.817100+8 3.463870-2 1.000000+9 1.900000-2 1.015600+9 1.771430-2 1.045900+9 1.559850-2 1.074300+9 1.397400-2 1.113400+9 1.216110-2 1.149200+9 1.082230-2 1.193100+9 9.500950-3 1.231400+9 8.554720-3 1.298600+9 7.171110-3 1.424500+9 5.274190-3 1.500000+9 4.443100-3 1.562500+9 3.844440-3 1.617200+9 3.388540-3 1.712900+9 2.724980-3 1.784700+9 2.322600-3 2.000000+9 1.478600-3 2.187500+9 1.036510-3 2.539100+9 5.769250-4 3.154300+9 2.479890-4 5.000000+9 4.163500-5 8.000000+9 6.681300-6 1.00000+10 2.819200-6 1.20500+10 1.379270-6 1.41820+10 7.422020-7 1.71110+10 3.654350-7 2.01380+10 1.985940-7 2.41190+10 1.016240-7 2.88610+10 5.246980-8 3.54590+10 2.475230-8 4.35270+10 1.180090-8 5.36740+10 5.576870-9 6.21670+10 3.313210-9 7.56790+10 1.659710-9 9.39200+10 7.83204-10 1.00000+11 6.30680-10 1.17140+11 3.66426-10 1.47470+11 1.67528-10 1.82930+11 8.11891-11 2.31360+11 3.71828-11 3.10280+11 1.41809-11 4.35820+11 4.71945-12 5.93370+11 1.76115-12 9.79510+11 3.64254-13 1.51300+12 9.49733-14 2.91350+12 1.29587-14 7.05210+12 9.28909-16 1.00000+14 3.99780-19 5.62340+14 2.45368-21 5.42470+15 2.78506-24 1.00000+17 4.17740-28 1 11000 7 0 2.298980+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.60000-12 1.000000+2 3.60000-10 1.000000+3 3.600000-8 1.000000+4 3.600000-6 1.000000+5 3.600000-4 5.000000+5 9.000000-3 7.500000+5 2.025000-2 9.375000+5 3.164063-2 1.000000+6 3.600000-2 1.250000+6 5.568530-2 1.500000+6 7.930000-2 1.875000+6 1.218570-1 2.000000+6 1.378000-1 2.375000+6 1.902500-1 2.500000+6 2.092000-1 2.875000+6 2.698350-1 3.000000+6 2.912000-1 3.250000+6 3.353180-1 3.625000+6 4.045090-1 4.000000+6 4.764000-1 4.437500+6 5.623680-1 4.812500+6 6.367940-1 5.000000+6 6.740000-1 5.468700+6 7.659450-1 5.851600+6 8.396570-1 6.000000+6 8.677790-1 6.261700+6 9.166760-1 6.753900+6 1.005820+0 7.000000+6 1.049000+0 7.500000+6 1.133390+0 8.250000+6 1.252690+0 8.500000+6 1.290640+0 9.000000+6 1.364200+0 1.000000+7 1.503000+0 1.250000+7 1.828200+0 1.437500+7 2.075130+0 1.500000+7 2.160000+0 1.687500+7 2.424960+0 1.750000+7 2.515900+0 1.937500+7 2.796020+0 2.000000+7 2.891000+0 2.218800+7 3.229260+0 2.406300+7 3.520890+0 2.500000+7 3.667200+0 2.750000+7 4.053020+0 2.875000+7 4.243310+0 3.000000+7 4.431000+0 3.250000+7 4.796630+0 3.437500+7 5.061700+0 3.625000+7 5.318540+0 3.718800+7 5.443300+0 4.000000+7 5.804000+0 4.250000+7 6.105510+0 4.437500+7 6.319900+0 4.625000+7 6.524520+0 4.812500+7 6.718450+0 5.000000+7 6.903000+0 5.437500+7 7.293970+0 5.500000+7 7.345430+0 6.000000+7 7.724000+0 6.500000+7 8.043790+0 7.000000+7 8.313000+0 7.750000+7 8.637890+0 8.000000+7 8.729000+0 8.500000+7 8.889710+0 9.000000+7 9.028000+0 9.500000+7 9.146620+0 1.000000+8 9.252000+0 1.062500+8 9.366620+0 1.144500+8 9.498680+0 1.187500+8 9.560930+0 1.250000+8 9.646500+0 1.375000+8 9.800630+0 1.500000+8 9.939000+0 1.625000+8 1.006440+1 1.753900+8 1.018260+1 1.841800+8 1.025590+1 1.947300+8 1.033790+1 2.000000+8 1.037600+1 2.125000+8 1.045900+1 2.375000+8 1.059710+1 2.500000+8 1.065400+1 2.671900+8 1.071870+1 2.789100+8 1.075710+1 2.881300+8 1.078280+1 2.960400+8 1.080340+1 3.000000+8 1.081300+1 3.062500+8 1.082660+1 3.171900+8 1.084860+1 3.335900+8 1.087690+1 3.418000+8 1.088860+1 3.500000+8 1.090000+1 3.562500+8 1.090680+1 3.671900+8 1.091850+1 3.835900+8 1.093350+1 3.918000+8 1.093980+1 4.000000+8 1.094600+1 4.091800+8 1.095130+1 4.176000+8 1.095600+1 4.279000+8 1.096120+1 4.411200+8 1.096630+1 5.000000+8 1.098300+1 5.125000+8 1.098460+1 5.343800+8 1.098740+1 5.671900+8 1.099130+1 5.835900+8 1.099290+1 6.000000+8 1.099400+1 6.562500+8 1.099630+1 6.718800+8 1.099690+1 6.859400+8 1.099750+1 7.000000+8 1.099800+1 7.125000+8 1.099810+1 7.343800+8 1.099840+1 7.671900+8 1.099870+1 7.835900+8 1.099880+1 7.959000+8 1.099900+1 8.000000+8 1.099900+1 8.125000+8 1.099910+1 8.242200+8 1.099910+1 8.403500+8 1.099920+1 8.551600+8 1.099930+1 8.732700+8 1.099940+1 8.817100+8 1.099940+1 1.000000+9 1.100000+1 1.015600+9 1.100000+1 1.045900+9 1.100000+1 1.074300+9 1.100000+1 1.113400+9 1.100000+1 1.149200+9 1.100000+1 1.193100+9 1.100000+1 1.231400+9 1.100000+1 1.298600+9 1.100000+1 1.424500+9 1.100000+1 1.500000+9 1.100000+1 1.562500+9 1.100000+1 1.617200+9 1.100000+1 1.712900+9 1.100000+1 1.784700+9 1.100000+1 2.000000+9 1.100000+1 2.187500+9 1.100000+1 2.539100+9 1.100000+1 3.154300+9 1.100000+1 5.000000+9 1.100000+1 8.000000+9 1.100000+1 1.00000+10 1.100000+1 1.20500+10 1.100000+1 1.41820+10 1.100000+1 1.71110+10 1.100000+1 2.01380+10 1.100000+1 2.41190+10 1.100000+1 2.88610+10 1.100000+1 3.54590+10 1.100000+1 4.35270+10 1.100000+1 5.36740+10 1.100000+1 6.21670+10 1.100000+1 7.56790+10 1.100000+1 9.39200+10 1.100000+1 1.00000+11 1.100000+1 1.17140+11 1.100000+1 1.47470+11 1.100000+1 1.82930+11 1.100000+1 2.31360+11 1.100000+1 3.10280+11 1.100000+1 4.35820+11 1.100000+1 5.93370+11 1.100000+1 9.79510+11 1.100000+1 1.51300+12 1.100000+1 2.91350+12 1.100000+1 7.05210+12 1.100000+1 1.00000+14 1.100000+1 5.62340+14 1.100000+1 5.42470+15 1.100000+1 1.00000+17 1.100000+1 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.048333-6 0.0 2.050714-6 4.367178-1 2.058416-6 4.638160+0 2.060809-6 6.217111+0 2.063458-6 8.602326+0 2.065857-6 1.113596+1 2.068500-6 1.474448+1 2.070905-6 1.843281+1 2.076747-6 3.003977+1 2.088667-6 5.788991+1 2.095077-6 6.866330+1 2.099773-6 7.151130+1 2.101701-6 7.174765+1 2.106701-6 6.784390+1 2.111873-6 5.894196+1 2.125811-6 2.678298+1 2.129000-6 2.056620+1 2.131475-6 1.628193+1 2.134042-6 1.270029+1 2.136523-6 9.623304+0 2.139084-6 7.252293+0 2.141571-6 5.253192+0 2.149167-6 9.591552-1 2.151666-6 0.0 3.110831-6 0.0 3.118488-6 2.06785-16 3.126145-6 4.09171-16 3.133802-6 7.47385-16 3.141459-6 1.26019-15 3.149115-6 1.96148-15 3.156772-6 2.81828-15 3.164429-6 3.73800-15 3.172086-6 4.57665-15 3.179743-6 5.17261-15 3.187400-6 5.39668-15 3.195057-6 5.19753-15 3.202714-6 4.62084-15 3.210371-6 3.79227-15 3.225685-6 2.00917-15 3.233341-6 1.29705-15 3.240998-6 7.72950-16 3.248655-6 4.25206-16 3.256312-6 2.15924-16 3.263969-6 0.0 3.545814-6 0.0 3.545824-6 2.544087-9 3.554552-6 5.703902-6 3.563279-6 1.128569-5 3.572007-6 2.061296-5 3.580734-6 3.475427-5 3.589462-6 5.409185-5 3.598190-6 7.771610-5 3.606917-6 1.030732-4 3.615645-6 1.261931-4 3.624372-6 1.426201-4 3.633100-6 1.487926-4 3.641828-6 1.432969-4 3.650555-6 1.273935-4 3.663683-6 9.178318-5 3.664464-6 1.167828-3 3.682503-6 7.685549-2 3.691523-6 1.397876-1 3.700542-6 2.348228-1 3.709562-6 3.642596-1 3.735825-6 8.302152-1 3.746768-6 9.546800-1 3.755787-6 9.838614-1 3.764807-6 9.367592-1 3.772699-6 8.429986-1 3.796526-6 4.221553-1 3.798948-6 3.780361-1 3.808778-6 2.350343-1 3.817797-6 1.398672-1 3.826817-6 7.684167-2 3.839937-6 2.043882-2 3.844037-6 2.418064-3 3.844856-6 0.0 4.192692-6 0.0 4.192702-6 5.65631-10 4.213342-6 2.966807-6 4.223661-6 5.418831-6 4.233981-6 9.136449-6 4.245171-6 1.474230-5 4.245522-6 7.534756-5 4.266421-6 1.103892-2 4.276871-6 2.011581-2 4.287645-6 3.442992-2 4.297970-6 5.303472-2 4.328762-6 1.215577-1 4.339570-6 1.380283-1 4.350020-6 1.438710-1 4.360470-6 1.384418-1 4.370920-6 1.229832-1 4.402269-6 5.336447-2 4.412719-6 3.443036-2 4.423169-6 2.050703-2 4.433619-6 1.127546-2 4.444068-6 5.692202-3 4.454149-6 1.371289-4 4.454518-6 0.0 4.519908-6 0.0 4.520094-6 8.888170-6 4.542345-6 3.273014-3 4.553471-6 5.973948-3 4.564596-6 1.006590-2 4.575722-6 1.565739-2 4.586847-6 2.248331-2 4.597973-6 2.980396-2 4.609099-6 3.647194-2 4.620224-6 4.120158-2 4.631350-6 4.296727-2 4.642476-6 4.136466-2 4.653601-6 3.676105-2 4.675853-6 2.311142-2 4.686978-6 1.690722-2 4.698104-6 1.205204-2 4.705894-6 9.905067-3 4.709229-6 9.159245-3 4.717392-6 8.356389-3 4.720355-6 8.230783-3 4.731287-6 8.947092-3 4.742606-6 1.008739-2 4.751886-6 1.258500-2 4.763571-6 1.543731-2 4.775296-6 1.779198-2 4.787021-6 1.882881-2 4.798746-6 1.863355-2 4.810470-6 1.746255-2 4.835730-6 1.416001-2 4.847604-6 1.312454-2 4.859477-6 1.261974-2 4.895097-6 1.243177-2 4.901361-6 1.215700-2 4.919416-6 1.203788-2 5.043764-6 8.975005-3 5.090792-6 7.189994-3 5.117038-6 6.196505-3 5.141240-6 5.627390-3 5.166874-6 5.494192-3 5.213833-6 5.629434-3 5.254461-6 5.363983-3 5.382696-6 3.829669-3 5.493047-6 2.732065-3 5.584980-6 1.993261-3 5.674247-6 1.410732-3 5.747111-6 1.024000-3 5.808864-6 7.530024-4 5.862495-6 5.567820-4 5.918494-6 3.880821-4 5.963307-6 2.780075-4 6.006371-6 1.918568-4 6.033998-6 1.462321-4 6.061498-6 1.079959-4 6.084749-6 8.107396-5 6.108686-6 5.836891-5 6.127124-6 4.425155-5 6.143499-6 3.411224-5 6.157500-6 2.719569-5 6.170355-6 2.224083-5 6.181593-6 1.898674-5 6.192500-6 1.677484-5 6.203000-6 1.551391-5 6.215000-6 1.510102-5 6.226400-6 1.570976-5 6.237348-6 1.719886-5 6.248865-6 1.970786-5 6.262500-6 2.390800-5 6.277000-6 2.981253-5 6.293249-6 3.815687-5 6.312749-6 5.052789-5 6.335624-6 6.823451-5 6.362999-6 9.382092-5 6.392499-6 1.265699-4 6.432496-6 1.791908-4 6.481247-6 2.554628-4 6.540744-6 3.654376-4 6.607617-6 5.095318-4 6.703735-6 7.509023-4 6.821230-6 1.094029-3 7.012466-6 1.745168-3 7.200000-6 2.470467-3 7.673615-6 4.542223-3 9.283518-6 1.194564-2 1.023293-5 1.570262-2 1.139063-5 1.943332-2 1.281445-5 2.288997-2 1.462177-5 2.591165-2 1.737801-5 2.851576-2 2.289532-5 3.008288-2 3.032645-5 2.951717-2 3.047574-5 1.884260-1 3.052272-5 2.710253-1 3.055039-5 3.343357-1 3.062970-5 5.924902-1 3.070434-5 9.181135-1 3.079650-5 1.439881+0 3.094577-5 2.355608+0 3.100227-5 2.649710+0 3.108133-5 2.900420+0 3.115440-5 2.948084+0 3.123560-5 2.773023+0 3.130616-5 2.471746+0 3.152077-5 1.208949+0 3.159541-5 8.334972-1 3.167006-5 5.420266-1 3.172477-5 3.831597-1 3.179989-5 1.991148-1 3.181935-5 1.600143-1 3.187502-5 1.106521-1 3.202528-5 2.924593-2 3.343728-5 2.907398-2 3.360189-5 9.155271-2 3.363355-5 1.113996-1 3.368419-5 1.527424-1 3.376649-5 2.463893-1 3.384879-5 3.748529-1 3.389133-5 4.602830-1 3.413290-5 1.043688+0 3.417800-5 1.155530+0 3.427127-5 1.318524+0 3.438379-5 1.414338+0 3.447620-5 1.408780+0 3.466245-5 1.254150+0 3.479367-5 1.109741+0 3.491887-5 1.018076+0 3.508585-5 9.876385-1 3.549986-5 1.185686+0 3.591474-5 1.274052+0 3.745284-5 1.637872+0 4.330000-5 3.217382+0 5.031596-5 5.103438+0 5.580000-5 6.316053+0 6.019489-5 7.066800+0 6.102495-5 7.597834+0 6.147885-5 7.828002+0 6.251087-5 7.522656+0 6.457692-5 7.867111+0 7.220408-5 8.401040+0 8.300000-5 8.397056+0 1.128496-4 7.017498+0 1.496236-4 5.444192+0 1.864360-4 4.285358+0 2.248388-4 3.399990+0 2.629247-4 2.765520+0 3.093633-4 2.212151+0 3.520002-4 1.841200+0 4.034330-4 1.508092+0 4.629763-4 1.225884+0 5.234874-4 1.014976+0 5.973791-4 8.252525-1 6.717188-4 6.844910-1 7.642845-4 5.554737-1 8.720610-4 4.472321-1 1.001915-3 3.549467-1 1.035473-3 3.375737-1 1.039215-3 3.653348-1 1.041875-3 4.015808-1 1.043380-3 4.319611-1 1.045668-3 5.024355-1 1.048309-3 6.307623-1 1.050816-3 8.098257-1 1.053425-3 1.055698+0 1.056322-3 1.409460+0 1.063050-3 2.383840+0 1.067775-3 3.024024+0 1.071800-3 3.452855+0 1.077481-3 3.839863+0 1.086625-3 4.117286+0 1.100022-3 4.209945+0 1.206890-3 3.627830+0 1.402927-3 2.895279+0 1.628934-3 2.305291+0 1.878657-3 1.837419+0 2.127867-3 1.497850+0 2.405288-3 1.217592+0 2.675030-3 1.014175+0 2.950048-3 8.532251-1 3.266603-3 7.114860-1 3.614700-3 5.920462-1 4.028676-3 4.847884-1 4.456227-3 4.016752-1 4.887608-3 3.370797-1 5.408443-3 2.779879-1 5.935763-3 2.321305-1 6.588751-3 1.893668-1 7.331139-3 1.533224-1 8.135824-3 1.245883-1 9.101152-3 9.936830-2 1.019343-2 7.886987-2 1.141043-2 6.258416-2 1.254214-2 5.141871-2 1.391688-2 4.139008-2 1.519316-2 3.440458-2 1.655108-2 2.871330-2 1.821759-2 2.342352-2 2.028496-2 1.859746-2 2.253125-2 1.484170-2 2.471156-2 1.213941-2 2.749154-2 9.624945-3 3.061900-2 7.603845-3 3.403022-2 6.027819-3 3.760873-2 4.827362-3 4.094286-2 3.996358-3 4.538648-2 3.177464-3 4.994913-2 2.564513-3 5.456606-2 2.102744-3 5.966777-2 1.720791-3 6.563455-2 1.389286-3 7.277362-2 1.100024-3 8.060784-2 8.733122-4 8.735958-2 7.283293-4 9.471226-2 6.068276-4 1.028794-1 5.034656-4 1.140130-1 3.994644-4 1.266824-1 3.156056-4 1.383800-1 2.590873-4 1.510467-1 2.130958-4 1.634749-1 1.787905-4 1.818881-1 1.413874-4 1.988445-1 1.165205-4 2.216523-1 9.220989-5 2.412072-1 7.713396-5 2.642599-1 6.373813-5 2.921183-1 5.189078-5 3.241690-1 4.216568-5 3.531251-1 3.572080-5 3.901665-1 2.959754-5 4.315477-1 2.464242-5 4.677351-1 2.139318-5 5.158222-1 1.814828-5 5.655877-1 1.565805-5 6.339153-1 1.318341-5 7.161434-1 1.109968-5 8.222427-1 9.317470-6 9.225714-1 8.152970-6 1.070165+0 6.998375-6 1.286622+0 5.835993-6 1.546860+0 4.866675-6 1.859734+0 4.058355-6 2.235892+0 3.384290-6 2.688134+0 2.822183-6 3.231848+0 2.353438-6 3.885536+0 1.962548-6 4.671441+0 1.636583-6 5.616308+0 1.364758-6 6.752287+0 1.138081-6 8.118035+0 9.490537-7 9.760024+0 7.914225-7 1.000000+1 1.536904-6 1 11000 7 0 2.298980+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.071434+1 1.473139-6-1.005605+1 1.691068-6-9.200938+0 1.805015-6-8.237361+0 1.872123-6-7.209840+0 1.912215-6-6.237211+0 1.943185-6-5.134343+0 1.961694-6-4.229260+0 1.976944-6-3.267277+0 1.989511-6-2.260448+0 1.996634-6-1.571356+0 2.002894-6-8.734009-1 2.005734-6-5.226219-1 2.008396-6-1.714658-1 2.010892-6 1.794496-1 2.015572-6 9.021084-1 2.019668-6 1.615851+0 2.023251-6 2.315713+0 2.026386-6 2.997162+0 2.031530-6 4.289414+0 2.037076-6 6.009689+0 2.040946-6 7.500685+0 2.045216-6 9.588819+0 2.047554-6 1.107824+1 2.050714-6 1.384178+1 2.052098-6 1.510571+1 2.059613-6 2.076309+1 2.068500-6 2.841149+1 2.072640-6 3.112936+1 2.077492-6 3.215790+1 2.081180-6 3.061129+1 2.084368-6 2.771051+1 2.086853-6 2.433976+1 2.088667-6 2.090828+1 2.092290-6 1.293628+1 2.093531-6 9.714331+0 2.095610-6 3.585179+0 2.096009-6 2.293325+0 2.096221-6 1.489938+0 2.096377-6 9.554350-1 2.096677-6-8.722945-3 2.096959-6-8.725142-1 2.097488-6-2.439874+0 2.100236-6-1.051475+1 2.100391-6-1.100227+1 2.101174-6-8.264546+0 2.101555-6-6.800865+0 2.106238-6 7.232577+0 2.106701-6 8.772937+0 2.107775-6 1.173289+1 2.111873-6 2.161017+1 2.114000-6 2.553543+1 2.117287-6 2.983361+1 2.121496-6 3.301662+1 2.125193-6 3.354501+1 2.130857-6 3.113161+1 2.141571-6 2.215639+1 2.149167-6 1.632346+1 2.153538-6 1.244320+1 2.156341-6 1.072941+1 2.160066-6 8.948879+0 2.165626-6 6.890676+0 2.169314-6 5.785131+0 2.172992-6 4.830993+0 2.176656-6 3.996852+0 2.180305-6 3.259596+0 2.183940-6 2.602128+0 2.187560-6 2.011405+0 2.191167-6 1.477240+0 2.194759-6 9.915171-1 2.198338-6 5.476701-1 2.201902-6 1.403145-1 2.205453-6-2.350168-1 2.208989-6-5.820674-1 2.212512-6-9.040023-1 2.219530-6-1.483992+0 2.226493-6-1.991046+0 2.240257-6-2.835964+0 2.260502-6-3.802565+0 2.286765-6-4.732791+0 2.318555-6-5.551530+0 2.366923-6-6.415927+0 2.455313-6-7.379864+0 2.602875-6-8.228145+0 2.880823-6-8.952718+0 3.657119-6-9.858913+0 3.722294-6-1.015455+1 3.755787-6-9.570832+0 3.789257-6-9.031200+0 3.916853-6-9.495206+0 4.350020-6-9.710857+0 1.096478-5-1.013837+1 2.363757-5-1.089279+1 2.882673-5-1.171890+1 3.016978-5-1.242325+1 3.032645-5-1.248096+1 3.077899-5-1.170446+1 3.095889-5-1.223302+1 3.103128-5-1.270617+1 3.132249-5-1.063467+1 3.149666-5-1.021595+1 3.181935-5-1.084302+1 3.230419-5-1.164957+1 3.363355-5-1.290364+1 3.409007-5-1.336226+1 3.471936-5-1.252593+1 3.582893-5-1.287544+1 4.330000-5-1.335092+1 5.155000-5-1.280638+1 5.999360-5-1.169003+1 6.110005-5-1.159351+1 6.203776-5-1.086685+1 6.350000-5-1.077779+1 7.839754-5-7.669407+0 8.706023-5-6.287685+0 9.545181-5-5.253078+0 1.061393-4-4.278787+0 1.174976-4-3.525870+0 1.315642-4-2.858526+0 1.455910-4-2.381343+0 1.642838-4-1.917068+0 1.826259-4-1.610661+0 2.041738-4-1.374551+0 2.248388-4-1.235685+0 2.551580-4-1.125624+0 2.959716-4-1.073336+0 3.520002-4-1.083973+0 4.629763-4-1.212679+0 6.413844-4-1.524835+0 7.642845-4-1.822897+0 8.493027-4-2.119038+0 9.098485-4-2.425312+0 9.551472-4-2.762981+0 9.874378-4-3.120850+0 1.010457-3-3.501499+0 1.029506-3-3.997173+0 1.041875-3-4.558990+0 1.052005-3-5.378737+0 1.060690-3-6.112283+0 1.066750-3-6.218109+0 1.073381-3-5.845650+0 1.086625-3-4.657347+0 1.097750-3-3.925972+0 1.111611-3-3.302519+0 1.127982-3-2.810922+0 1.146525-3-2.416773+0 1.176072-3-1.984328+0 1.206890-3-1.644404+0 1.241441-3-1.341165+0 1.279812-3-1.075832+0 1.322046-3-8.456431-1 1.371987-3-6.330279-1 1.413685-3-4.902434-1 1.458254-3-3.609825-1 1.500000-3-2.576975-1 1.538947-3-1.756013-1 1.572321-3-1.149749-1 1.610339-3-5.368149-2 1.652094-3 5.530906-3 1.691012-3 5.362679-2 1.748541-3 1.177881-1 1.798499-3 1.637185-1 1.878657-3 2.203735-1 1.934994-3 2.530627-1 2.071333-3 3.112405-1 2.232287-3 3.531554-1 2.405288-3 3.784442-1 2.773994-3 3.898079-1 3.382404-3 3.610929-1 4.887608-3 2.607767-1 5.935763-3 2.075836-1 7.019934-3 1.666026-1 8.135824-3 1.353350-1 9.361233-3 1.096331-1 1.073177-2 8.830181-2 1.221828-2 7.119455-2 1.391688-2 5.668138-2 1.564741-2 4.570967-2 1.761454-2 3.628821-2 1.973481-2 2.869679-2 2.182336-2 2.295003-2 2.385362-2 1.853628-2 2.608240-2 1.467879-2 2.807191-2 1.189439-2 3.061900-2 9.013147-3 3.336598-2 6.538917-3 3.605420-2 4.593646-3 3.837712-2 3.195679-3 4.094286-2 1.894788-3 4.252864-2 1.194515-3 4.356520-2 7.754273-4 4.463377-2 3.710197-4 4.538648-2 9.943631-5 4.605367-2-1.283318-4 4.630652-2-2.143735-4 4.724708-2-5.178572-4 4.907936-2-1.065394-3 5.112255-2-1.613645-3 5.456606-2-2.413478-3 5.836887-2-3.149463-3 6.387672-2-4.008054-3 7.277362-2-5.030533-3 8.526954-2-5.992861-3 1.057863-1-6.944233-3 1.345458-1-7.664319-3 1.893500-1-8.241438-3 3.333463-1-8.640169-3 1.011579+0-8.809536-3 3.086391+0-8.827945-3 9.320751+0-8.829917-3 1.000000+1-8.829514-3 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.248094-2 1.099560-6 3.424496-2 1.169357-6 4.522432-2 1.243584-6 6.002253-2 1.322522-6 8.012742-2 1.406471-6 1.076992-1 1.450423-6 1.252292-1 1.495749-6 1.459334-1 1.542491-6 1.704707-1 1.590694-6 1.996608-1 1.640403-6 2.345240-1 1.690730-6 2.755135-1 1.739485-6 3.215743-1 1.786716-6 3.731391-1 1.832471-6 4.306512-1 1.876796-6 4.945790-1 1.919736-6 5.654171-1 1.961334-6 6.436898-1 2.001632-6 7.302004-1 2.078490-6 9.285699-1 2.115127-6 1.042269+0 2.150619-6 1.166414+0 2.185002-6 1.301770+0 2.218310-6 1.449100+0 2.250578-6 1.609199+0 2.281837-6 1.782907+0 2.312119-6 1.971107+0 2.341456-6 2.174728+0 2.369875-6 2.394744+0 2.397406-6 2.632180+0 2.424077-6 2.888110+0 2.449914-6 3.163664+0 2.474944-6 3.460023+0 2.499192-6 3.778428+0 2.522682-6 4.120175+0 2.545438-6 4.486624+0 2.567483-6 4.879197+0 2.588839-6 5.299377+0 2.609528-6 5.748718+0 2.648985-6 6.741433+0 2.686016-6 7.871323+0 2.703668-6 8.493127+0 2.720768-6 9.156844+0 2.737334-6 9.864653+0 2.768928-6 1.141386+1 2.799050-6 1.318319+1 2.827289-6 1.517328+1 2.853763-6 1.740739+1 2.878582-6 1.990913+1 2.901851-6 2.270355+1 2.923665-6 2.581720+1 2.944115-6 2.927816+1 2.963288-6 3.311603+1 2.981262-6 3.736186+1 2.998112-6 4.204814+1 3.013910-6 4.720873+1 3.028720-6 5.287883+1 3.042605-6 5.909483+1 3.055622-6 6.589433+1 3.067825-6 7.331606+1 3.079266-6 8.139978+1 3.089991-6 9.018637+1 3.100046-6 9.971782+1 3.109473-6 1.100375+2 3.118311-6 1.211904+2 3.126596-6 1.332238+2 3.134363-6 1.461882+2 3.141645-6 1.601384+2 3.148472-6 1.751352+2 3.154872-6 1.912479+2 3.160872-6 2.085563+2 3.166497-6 2.271518+2 3.171771-6 2.471369+2 3.176715-6 2.686220+2 3.181350-6 2.917194+2 3.185695-6 3.165353+2 3.189769-6 3.431605+2 3.197407-6 4.042408+2 3.204090-6 4.734246+2 3.209938-6 5.501103+2 3.215055-6 6.330335+2 3.219532-6 7.204626+2 3.223450-6 8.104474+2 3.226878-6 9.010476+2 3.232502-6 1.077333+3 3.244092-6 1.572804+3 3.250874-6 1.961915+3 3.257355-6 2.411851+3 3.258545-6 2.503158+3 3.266877-6 3.218359+3 3.272752-6 3.799683+3 3.274879-6 4.024440+3 3.280768-6 4.680784+3 3.282880-6 4.926359+3 3.288784-6 5.631598+3 3.291539-6 5.965836+3 3.294170-6 6.284797+3 3.297930-6 6.736019+3 3.300977-6 7.093039+3 3.304237-6 7.461743+3 3.307898-6 7.853420+3 3.311938-6 8.250308+3 3.314887-6 8.511563+3 3.319888-6 8.890147+3 3.323623-6 9.113045+3 3.328165-6 9.307840+3 3.332231-6 9.406791+3 3.336064-6 9.432641+3 3.339796-6 9.394572+3 3.343072-6 9.310517+3 3.347143-6 9.142638+3 3.350722-6 8.940384+3 3.355395-6 8.606383+3 3.358975-6 8.303198+3 3.361770-6 8.042074+3 3.365763-6 7.637700+3 3.369935-6 7.184499+3 3.373929-6 6.730171+3 3.376960-6 6.377265+3 3.380968-6 5.906397+3 3.384976-6 5.437614+3 3.386901-6 5.215177+3 3.391469-6 4.699368+3 3.394903-6 4.326358+3 3.401008-6 3.702997+3 3.410906-6 2.821678+3 3.418094-6 2.290353+3 3.429625-6 1.623126+3 3.437942-6 1.267186+3 3.442076-6 1.123379+3 3.446194-6 9.990812+2 3.450296-6 8.919451+2 3.454382-6 7.997708+2 3.458452-6 7.205349+2 3.462506-6 6.524084+2 3.466544-6 5.937629+2 3.470567-6 5.431682+2 3.478580-6 4.612034+2 3.486531-6 3.987984+2 3.494420-6 3.502744+2 3.502247-6 3.116823+2 3.510013-6 2.803148+2 3.517718-6 2.543193+2 3.525363-6 2.324171+2 3.532948-6 2.137088+2 3.540475-6 1.975466+2 3.547942-6 1.834511+2 3.555351-6 1.710582+2 3.562702-6 1.600857+2 3.577289-6 1.414876+2 3.591649-6 1.264307+2 3.605784-6 1.140270+2 3.619698-6 1.036617+2 3.633395-6 9.489539+1 3.646877-6 8.740499+1 3.660149-6 8.094706+1 3.673214-6 7.533450+1 3.686075-6 7.042071+1 3.698734-6 6.608875+1 3.723658-6 5.876038+1 3.747803-6 5.286862+1 3.771193-6 4.804727+1 3.793852-6 4.404597+1 3.815803-6 4.068408+1 3.837068-6 3.782901+1 3.857669-6 3.538181+1 3.877626-6 3.326509+1 3.916292-6 2.973712+1 3.952542-6 2.697361+1 3.986526-6 2.476564+1 4.018387-6 2.297161+1 4.048256-6 2.149303+1 4.076258-6 2.025893+1 4.128762-6 1.825703+1 4.174703-6 1.677120+1 4.214901-6 1.564234+1 4.250075-6 1.476667+1 4.311628-6 1.343002+1 4.357794-6 1.256256+1 4.427042-6 1.143678+1 4.529491-6 1.005166+1 4.651228-6 8.734752+0 4.717630-6 8.124263+0 4.963968-6 6.092270+0 5.025552-6 5.547766+0 5.071740-6 5.079532+0 5.106381-6 4.658161+0 5.132362-6 4.273753+0 5.151848-6 3.933827+0 5.166462-6 3.651078+0 5.177423-6 3.430143+0 5.196433-6 3.062758+0 5.203369-6 2.948124+0 5.210305-6 2.853213+0 5.214346-6 2.809863+0 5.218479-6 2.776610+0 5.230879-6 2.761908+0 5.233416-6 2.777772+0 5.237641-6 2.820799+0 5.239244-6 2.842902+0 5.247663-6 3.015956+0 5.251271-6 3.121678+0 5.252775-6 3.171674+0 5.263298-6 3.624974+0 5.268234-6 3.902418+0 5.277833-6 4.563094+0 5.296951-6 6.326172+0 5.304887-6 7.201261+0 5.312338-6 8.073602+0 5.320626-6 9.075645+0 5.327441-6 9.902844+0 5.331250-6 1.035878+1 5.338015-6 1.114531+1 5.341072-6 1.148697+1 5.353099-6 1.271287+1 5.357508-6 1.310396+1 5.365927-6 1.374627+1 5.372614-6 1.414995+1 5.375806-6 1.430762+1 5.380593-6 1.450089+1 5.385380-6 1.464218+1 5.390139-6 1.473169+1 5.393707-6 1.476630+1 5.401737-6 1.474704+1 5.404413-6 1.471240+1 5.414035-6 1.448339+1 5.417242-6 1.437438+1 5.426863-6 1.396645+1 5.430070-6 1.380777+1 5.442899-6 1.309339+1 5.447832-6 1.279595+1 5.468556-6 1.151628+1 5.488381-6 1.038459+1 5.500544-6 9.780748+0 5.512326-6 9.270436+0 5.523741-6 8.844457+0 5.545856-6 8.186818+0 5.566588-6 7.726527+0 5.586025-6 7.389936+0 5.622470-6 6.910836+0 5.654359-6 6.586559+0 5.710164-6 6.128106+0 5.793873-6 5.531684+0 5.835727-6 5.208683+0 5.878264-6 4.853984+0 5.907201-6 4.650394+0 5.921670-6 4.585894+0 5.936138-6 4.560194+0 5.943373-6 4.564727+0 5.950607-6 4.581953+0 5.955946-6 4.603086+0 5.965288-6 4.657448+0 5.972295-6 4.712442+0 5.988061-6 4.876666+0 6.008481-6 5.151277+0 6.022950-6 5.363988+0 6.037419-6 5.569000+0 6.051887-6 5.747161+0 6.063555-6 5.860649+0 6.070556-6 5.913174+0 6.082924-6 5.974999+0 6.095293-6 5.996680+0 6.109762-6 5.974037+0 6.124230-6 5.906915+0 6.138699-6 5.805593+0 6.157428-6 5.641990+0 6.198809-6 5.252548+0 6.214029-6 5.126581+0 6.229249-6 5.019154+0 6.244469-6 4.933757+0 6.259689-6 4.872328+0 6.274910-6 4.835120+0 6.290130-6 4.820511+0 6.305350-6 4.824942+0 6.335790-6 4.868646+0 6.366230-6 4.915633+0 6.381450-6 4.926809+0 6.396670-6 4.926168+0 6.427111-6 4.891779+0 6.504860-6 4.745093+0 6.536113-6 4.706790+0 6.678119-6 4.574356+0 6.867435-6 4.382754+0 7.017976-6 4.240255+0 7.680000-6 3.776257+0 8.137471-6 3.528426+0 8.709353-6 3.281932+0 9.274999-6 3.089221+0 9.933115-6 2.910309+0 1.046996-5 2.789747+0 1.110842-5 2.672222+0 1.165000-5 2.587877+0 1.405000-5 2.316607+0 1.698244-5 2.087779+0 1.922168-5 1.932732+0 2.089296-5 1.818933+0 2.190000-5 1.751972+0 2.317395-5 1.662053+0 2.457600-5 1.558514+0 2.630268-5 1.426706+0 2.755876-5 1.328097+0 2.818383-5 1.276673+0 2.922933-5 1.190607+0 3.079550-5 1.057580+0 3.226378-5 9.296831-1 3.364030-5 8.087626-1 3.493078-5 6.953015-1 3.630781-5 5.748918-1 3.727482-5 4.917603-1 3.833814-5 4.018700-1 3.933501-5 3.211860-1 4.026957-5 2.499137-1 4.099444-5 1.987599-1 4.261894-5 9.842534-2 4.278851-5 8.925227-2 4.339382-5 6.050029-2 4.404037-5 3.656034-2 4.422594-5 3.120312-2 4.528413-5 1.247689-2 4.539882-5 1.187848-2 4.548370-5 1.168667-2 4.637241-5 2.121943-2 4.658424-5 2.696370-2 4.690257-5 3.897737-2 4.732466-5 6.163128-2 4.754721-5 7.686366-2 4.803038-5 1.186547-1 4.815788-5 1.319016-1 4.838981-5 1.586487-1 4.888694-5 2.287194-1 4.912708-5 2.697084-1 4.952487-5 3.497378-1 4.998643-5 4.647976-1 5.034327-5 5.740107-1 5.114618-5 9.101299-1 5.142621-5 1.069061+0 5.173169-5 1.281480+0 5.192592-5 1.446723+0 5.206726-5 1.587047+0 5.217905-5 1.712772+0 5.234321-5 1.925237+0 5.255874-5 2.261575+0 5.282940-5 2.776877+0 5.297128-5 3.077864+0 5.304800-5 3.244501+0 5.318549-5 3.540730+0 5.331204-5 3.799275+0 5.339378-5 3.953078+0 5.345188-5 4.054055+0 5.353490-5 4.184247+0 5.361694-5 4.294715+0 5.369074-5 4.377607+0 5.375516-5 4.436945+0 5.383799-5 4.495789+0 5.397018-5 4.552609+0 5.417980-5 4.573505+0 5.441498-5 4.559276+0 5.451894-5 4.560349+0 5.460743-5 4.570655+0 5.475747-5 4.613616+0 5.485210-5 4.658799+0 5.509875-5 4.839232+0 5.525952-5 4.996620+0 5.569813-5 5.514020+0 5.623052-5 6.208342+0 5.677710-5 6.962659+0 5.757501-5 8.154710+0 5.790642-5 8.678236+0 5.831018-5 9.331585+0 5.875175-5 1.005840+1 5.910200-5 1.064158+1 5.956621-5 1.142527+1 6.025995-5 1.262559+1 6.117897-5 1.426398+1 6.165950-5 1.513735+1 6.241613-5 1.652656+1 6.346104-5 1.843403+1 6.456542-5 2.041994+1 6.575000-5 2.250557+1 6.690000-5 2.445182+1 6.800000-5 2.622841+1 6.933277-5 2.827536+1 7.030000-5 2.969569+1 7.161434-5 3.151718+1 7.321140-5 3.357369+1 7.479517-5 3.547621+1 7.650000-5 3.740831+1 7.890346-5 3.989483+1 8.106673-5 4.191463+1 8.267470-5 4.330403+1 8.318806-5 4.392685+1 8.347682-5 4.447590+1 8.377847-5 4.533414+1 8.400729-5 4.625171+1 8.426673-5 4.762229+1 8.449893-5 4.915046+1 8.519989-5 5.474422+1 8.545352-5 5.658757+1 8.567606-5 5.785410+1 8.590841-5 5.871332+1 8.616695-5 5.907051+1 8.640858-5 5.889303+1 8.674101-5 5.810751+1 8.718875-5 5.681115+1 8.743385-5 5.628688+1 8.771509-5 5.596708+1 8.810577-5 5.599727+1 8.873907-5 5.670559+1 8.971731-5 5.790630+1 9.266753-5 6.081362+1 9.458435-5 6.281526+1 9.838428-5 6.638386+1 1.034775-4 7.049034+1 1.065724-4 7.269962+1 1.098838-4 7.483686+1 1.130795-4 7.669449+1 1.163198-4 7.833777+1 1.207010-4 8.019088+1 1.283277-4 8.272680+1 1.341220-4 8.405072+1 1.388354-4 8.493463+1 1.496683-4 8.639109+1 1.612832-4 8.725833+1 1.712971-4 8.773233+1 2.080296-4 8.856634+1 2.330999-4 8.848101+1 2.726851-4 8.761807+1 3.148654-4 8.634172+1 3.744876-4 8.427542+1 4.377740-4 8.198241+1 5.811313-4 7.682219+1 6.586835-4 7.427568+1 7.192419-4 7.226035+1 7.472515-4 7.125932+1 8.156501-4 6.846796+1 8.922069-4 6.539336+1 9.299027-4 6.381565+1 9.624949-4 6.236590+1 9.983306-4 6.057426+1 1.031979-3 5.876963+1 1.057498-3 5.730138+1 1.079928-3 5.591247+1 1.106435-3 5.412229+1 1.126318-3 5.264544+1 1.145678-3 5.105926+1 1.158579-3 4.989653+1 1.172364-3 4.853838+1 1.185523-3 4.710933+1 1.198929-3 4.547864+1 1.209192-3 4.407353+1 1.220846-3 4.225574+1 1.230344-3 4.053068+1 1.239153-3 3.865361+1 1.246379-3 3.684811+1 1.252698-3 3.501230+1 1.258044-3 3.323151+1 1.262896-3 3.143344+1 1.267687-3 2.954419+1 1.275360-3 2.665385+1 1.278524-3 2.569997+1 1.281065-3 2.511509+1 1.283384-3 2.475768+1 1.285171-3 2.461324+1 1.287388-3 2.460637+1 1.289006-3 2.472730+1 1.290294-3 2.490080+1 1.291390-3 2.510241+1 1.293058-3 2.550233+1 1.294500-3 2.593593+1 1.296024-3 2.647820+1 1.298624-3 2.758397+1 1.301697-3 2.913972+1 1.311049-3 3.479446+1 1.315032-3 3.727829+1 1.318257-3 3.920676+1 1.320888-3 4.069932+1 1.324020-3 4.236486+1 1.327417-3 4.402887+1 1.332046-3 4.606354+1 1.337569-3 4.817820+1 1.343152-3 5.003013+1 1.348963-3 5.171695+1 1.352841-3 5.273143+1 1.358727-3 5.413066+1 1.364261-3 5.531717+1 1.372461-3 5.688896+1 1.380883-3 5.831625+1 1.395738-3 6.046894+1 1.404430-3 6.155595+1 1.416595-3 6.291610+1 1.428621-3 6.410785+1 1.440158-3 6.512547+1 1.458157-3 6.651788+1 1.479108-3 6.788873+1 1.513830-3 6.974215+1 1.559706-3 7.159814+1 1.597627-3 7.277990+1 1.643690-3 7.382032+1 1.717232-3 7.482986+1 1.792904-3 7.540064+1 1.904604-3 7.555537+1 2.058449-3 7.503204+1 2.187129-3 7.427576+1 2.351926-3 7.292057+1 2.598814-3 7.034826+1 2.868638-3 6.744014+1 3.236340-3 6.361560+1 3.722329-3 5.857807+1 4.024907-3 5.565730+1 4.317341-3 5.298348+1 4.744750-3 4.926114+1 5.112577-3 4.626886+1 5.492321-3 4.339674+1 6.082699-3 3.928079+1 6.549577-3 3.633613+1 7.146549-3 3.294055+1 7.938818-3 2.902000+1 8.709636-3 2.577953+1 9.640110-3 2.250829+1 1.079072-2 1.924145+1 1.256744-2 1.545355+1 1.516076-2 1.170724+1 2.002622-2 7.692179+0 2.378990-2 5.904461+0 2.797930-2 4.574351+0 3.427624-2 3.294143+0 3.858062-2 2.706404+0 4.432495-2 2.131575+0 5.357243-2 1.529771+0 6.234320-2 1.163676+0 7.845584-2 7.626604-1 1.032111-1 4.568935-1 1.295993-1 2.963497-1 1.704978-1 1.745358-1 2.364558-1 9.205819-2 3.612864-1 3.981775-2 7.332672-1 9.722612-3 2.235892+0 1.047485-3 6.752287+0 1.148757-4 2.039158+1 1.259612-5 6.158159+1 1.381140-6 1.859734+2 1.514391-7 5.616308+2 1.660496-8 1.995262+3 1.315648-9 6.309573+3 1.31565-10 1.995262+4 1.31565-11 6.309573+4 1.31565-12 1.000000+5 5.23769-13 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.817300-7 1.258900-6 1.397400-6 1.584900-6 2.214800-6 1.995300-6 3.510200-6 2.511900-6 5.563300-6 3.162300-6 8.817200-6 3.981100-6 1.397400-5 5.011900-6 2.214800-5 6.309600-6 3.510100-5 7.943300-6 5.563100-5 1.000000-5 8.816900-5 1.258900-5 1.397400-4 1.584900-5 2.213700-4 1.995300-5 3.506600-4 2.511900-5 5.555100-4 3.162300-5 8.801100-4 3.981100-5 1.394500-3 5.011900-5 2.209700-3 6.309600-5 3.501500-3 7.943300-5 5.540800-3 1.000000-4 8.764600-3 1.258900-4 1.386300-2 1.584900-4 2.187700-2 1.995300-4 3.446800-2 2.511900-4 5.408700-2 3.162300-4 8.448100-2 3.981100-4 1.308800-1 5.011900-4 2.003400-1 6.309600-4 3.012000-1 7.943300-4 4.410900-1 1.000000-3 6.232600-1 1.258900-3 8.418600-1 1.584900-3 1.082800+0 1.995300-3 1.334900+0 2.511900-3 1.606500+0 3.162300-3 1.923700+0 3.981100-3 2.310800+0 5.011900-3 2.779400+0 6.309600-3 3.319900+0 7.943300-3 3.909100+0 1.000000-2 4.490000+0 1.258900-2 5.007200+0 1.584900-2 5.429700+0 1.995300-2 5.756700+0 2.511900-2 6.001400+0 3.162300-2 6.166400+0 3.981100-2 6.248600+0 5.011900-2 6.241900+0 6.309600-2 6.150100+0 7.943300-2 5.984900+0 1.000000-1 5.756500+0 1.258900-1 5.480200+0 1.584900-1 5.169800+0 1.995300-1 4.835500+0 2.511900-1 4.488800+0 3.162300-1 4.139200+0 3.981100-1 3.793600+0 5.011900-1 3.456800+0 6.309600-1 3.134200+0 7.943300-1 2.825200+0 1.000000+0 2.532100+0 1.258900+0 2.256100+0 1.584900+0 1.997800+0 1.995300+0 1.758100+0 2.511900+0 1.537600+0 3.162300+0 1.336600+0 3.981100+0 1.155200+0 5.011900+0 9.927900-1 6.309600+0 8.488400-1 7.943300+0 7.222800-1 1.000000+1 6.118900-1 1.258900+1 5.163000-1 1.584900+1 4.340500-1 1.995300+1 3.637000-1 2.511900+1 3.038400-1 3.162300+1 2.531400-1 3.981100+1 2.104000-1 5.011900+1 1.744800-1 6.309600+1 1.444100-1 7.943300+1 1.193000-1 1.000000+2 9.839200-2 1.258900+2 8.102800-2 1.584900+2 6.663500-2 1.995300+2 5.473000-2 2.511900+2 4.489900-2 3.162300+2 3.679400-2 3.981100+2 3.012100-2 5.011900+2 2.463600-2 6.309600+2 2.013200-2 7.943300+2 1.643800-2 1.000000+3 1.341100-2 1.258900+3 1.093400-2 1.584900+3 8.908300-3 1.995300+3 7.253300-3 2.511900+3 5.902100-3 3.162300+3 4.799800-3 3.981100+3 3.901300-3 5.011900+3 3.169300-3 6.309600+3 2.573300-3 7.943300+3 2.088500-3 1.000000+4 1.694200-3 1.258900+4 1.373700-3 1.584900+4 1.113400-3 1.995300+4 9.020800-4 2.511900+4 7.305700-4 3.162300+4 5.914500-4 3.981100+4 4.786500-4 5.011900+4 3.872300-4 6.309600+4 3.131700-4 7.943300+4 2.531900-4 1.000000+5 2.046300-4 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510165-4 3.162278-4 3.159554-4 3.981072-4 3.976757-4 5.011872-4 5.005066-4 6.309573-4 6.298887-4 7.943282-4 7.926486-4 1.000000-3 9.973833-4 1.258925-3 1.254859-3 1.584893-3 1.578623-3 1.995262-3 1.985590-3 2.511886-3 2.496904-3 3.162278-3 3.138873-3 3.981072-3 3.944178-3 5.011872-3 4.953595-3 6.309573-3 6.217629-3 7.943282-3 7.799816-3 1.000000-2 9.777559-3 1.258925-2 1.224720-2 1.584893-2 1.532586-2 1.995262-2 1.915472-2 2.511886-2 2.390146-2 3.162278-2 2.976737-2 3.981072-2 3.699149-2 5.011872-2 4.585843-2 6.309573-2 5.670052-2 7.943282-2 6.989545-2 1.000000-1 8.589387-2 1.258925-1 1.051917-1 1.584893-1 1.283502-1 1.995262-1 1.560670-1 2.511886-1 1.890962-1 3.162278-1 2.283243-1 3.981072-1 2.747729-1 5.011872-1 3.295961-1 6.309573-1 3.941607-1 7.943282-1 4.701698-1 1.000000+0 5.596087-1 1.258925+0 6.649632-1 1.584893+0 7.892915-1 1.995262+0 9.363519-1 2.511886+0 1.110867+0 3.162278+0 1.318563+0 3.981072+0 1.566451+0 5.011872+0 1.863203+0 6.309573+0 2.219351+0 7.943282+0 2.647820+0 1.000000+1 3.164384+0 1.258925+1 3.788397+0 1.584893+1 4.543517+0 1.995262+1 5.458663+0 2.511886+1 6.569389+0 3.162278+1 7.919324+0 3.981072+1 9.561895+0 5.011872+1 1.156253+1 6.309573+1 1.400214+1 7.943282+1 1.697973+1 1.000000+2 2.061709+1 1.258925+2 2.506430+1 1.584893+2 3.050588+1 1.995262+2 3.716947+1 2.511886+2 4.533431+1 3.162278+2 5.534681+1 3.981072+2 6.763123+1 5.011872+2 8.271431+1 6.309573+2 1.012437+2 7.943282+2 1.240195+2 1.000000+3 1.520286+2 1.258925+3 1.864934+2 1.584893+3 2.289211+2 1.995262+3 2.811803+2 2.511886+3 3.455643+2 3.162278+3 4.249407+2 3.981072+3 5.228231+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88210-10 1.995262-5 1.090659-9 2.511886-5 1.728550-9 3.162278-5 2.739583-9 3.981072-5 4.341966-9 5.011872-5 6.881495-9 6.309573-5 1.090609-8 7.943282-5 1.727778-8 1.000000-4 2.737623-8 1.258925-4 4.337986-8 1.584893-4 6.870223-8 1.995262-4 1.087954-7 2.511886-4 1.721880-7 3.162278-4 2.723777-7 3.981072-4 4.314249-7 5.011872-4 6.806086-7 6.309573-4 1.068681-6 7.943282-4 1.679617-6 1.000000-3 2.616679-6 1.258925-3 4.066223-6 1.584893-3 6.270137-6 1.995262-3 9.672134-6 2.511886-3 1.498198-5 3.162278-3 2.340475-5 3.981072-3 3.689324-5 5.011872-3 5.827766-5 6.309573-3 9.194481-5 7.943282-3 1.434661-4 1.000000-2 2.224408-4 1.258925-2 3.420563-4 1.584893-2 5.230719-4 1.995262-2 7.979017-4 2.511886-2 1.217409-3 3.162278-2 1.855403-3 3.981072-2 2.819225-3 5.011872-2 4.260297-3 6.309573-2 6.395216-3 7.943282-2 9.537375-3 1.000000-1 1.410613-2 1.258925-1 2.070080-2 1.584893-1 3.013913-2 1.995262-1 4.345925-2 2.511886-1 6.209247-2 3.162278-1 8.790350-2 3.981072-1 1.233343-1 5.011872-1 1.715911-1 6.309573-1 2.367967-1 7.943282-1 3.241584-1 1.000000+0 4.403913-1 1.258925+0 5.939622-1 1.584893+0 7.956017-1 1.995262+0 1.058910+0 2.511886+0 1.401019+0 3.162278+0 1.843715+0 3.981072+0 2.414621+0 5.011872+0 3.148669+0 6.309573+0 4.090222+0 7.943282+0 5.295463+0 1.000000+1 6.835616+0 1.258925+1 8.800857+0 1.584893+1 1.130541+1 1.995262+1 1.449396+1 2.511886+1 1.854948+1 3.162278+1 2.370345+1 3.981072+1 3.024882+1 5.011872+1 3.855619+1 6.309573+1 4.909359+1 7.943282+1 6.245309+1 1.000000+2 7.938291+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623568+2 2.511886+2 2.058543+2 3.162278+2 2.608810+2 3.981072+2 3.304759+2 5.011872+2 4.184729+2 6.309573+2 5.297136+2 7.943282+2 6.703087+2 1.000000+3 8.479714+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714082+3 2.511886+3 2.166322+3 3.162278+3 2.737337+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 7.093072+5 6.940000-6 6.612740+5 7.079458-6 5.479266+5 7.200000-6 4.635200+5 7.328245-6 3.858297+5 7.420000-6 3.369380+5 7.520000-6 2.896340+5 7.600000-6 2.556080+5 7.700000-6 2.175860+5 7.770000-6 1.937160+5 7.852356-6 1.682140+5 7.943282-6 1.430599+5 8.020000-6 1.240864+5 8.100000-6 1.063274+5 8.150000-6 9.620420+4 8.222426-6 8.278211+4 8.290000-6 7.149440+4 8.350000-6 6.240680+4 8.400000-6 5.545980+4 8.460000-6 4.783440+4 8.511380-6 4.188758+4 8.550000-6 3.775340+4 8.600000-6 3.280840+4 8.635000-6 2.960920+4 8.680000-6 2.579820+4 8.720000-6 2.268440+4 8.755000-6 2.016240+4 8.790000-6 1.782340+4 8.820000-6 1.595730+4 8.850000-6 1.421666+4 8.880000-6 1.259600+4 8.912509-6 1.097203+4 8.940000-6 9.702040+3 8.970000-6 8.421180+3 8.990000-6 7.626040+3 9.015711-6 6.671636+3 9.035000-6 6.004340+3 9.055000-6 5.355300+3 9.077000-6 4.690940+3 9.092000-6 4.267080+3 9.110000-6 3.788960+3 9.128000-6 3.343460+3 9.142000-6 3.019140+3 9.155000-6 2.735100+3 9.170000-6 2.427460+3 9.185000-6 2.141020+3 9.200000-6 1.875458+3 9.215000-6 1.630418+3 9.225714-6 1.467766+3 9.240000-6 1.266688+3 9.250000-6 1.136534+3 9.260000-6 1.014996+3 9.270000-6 9.019740+2 9.280000-6 7.973880+2 9.291000-6 6.919600+2 9.302000-6 5.964880+2 9.310000-6 5.332340+2 9.320000-6 4.614040+2 9.335000-6 3.685600+2 9.353000-6 2.803600+2 9.361000-6 2.491620+2 9.368000-6 2.258520+2 9.374000-6 2.088100+2 9.380000-6 1.944636+2 9.385000-6 1.845510+2 9.390000-6 1.764854+2 9.393500-6 1.719330+2 9.397000-6 1.682766+2 9.401000-6 1.651936+2 9.405000-6 1.632650+2 9.409000-6 1.624942+2 9.413000-6 1.628730+2 9.417000-6 1.643962+2 9.421500-6 1.674710+2 9.426000-6 1.719798+2 9.430000-6 1.771842+2 9.435000-6 1.852684+2 9.440000-6 1.950956+2 9.445000-6 2.066560+2 9.452000-6 2.257300+2 9.460000-6 2.516260+2 9.470000-6 2.900880+2 9.490000-6 3.870260+2 9.502000-6 4.577700+2 9.510000-6 5.100980+2 9.520000-6 5.812440+2 9.531000-6 6.667900+2 9.542000-6 7.598700+2 9.555000-6 8.794980+2 9.565000-6 9.784680+2 9.577000-6 1.105100+3 9.589000-6 1.240232+3 9.600000-6 1.371454+3 9.615000-6 1.561570+3 9.627000-6 1.722788+3 9.642000-6 1.935606+3 9.655000-6 2.129920+3 9.670000-6 2.365380+3 9.685000-6 2.612720+3 9.700000-6 2.871660+3 9.715000-6 3.142040+3 9.730000-6 3.423740+3 9.750000-6 3.816300+3 9.772372-6 4.278012+3 9.790000-6 4.658200+3 9.810000-6 5.106720+3 9.830000-6 5.572860+3 9.860000-6 6.304280+3 9.890000-6 7.073040+3 9.920000-6 7.877880+3 9.945000-6 8.574960+3 9.980000-6 9.589720+3 1.001000-5 1.049420+4 1.005000-5 1.174766+4 1.008500-5 1.288690+4 1.012000-5 1.406368+4 1.017000-5 1.580676+4 1.021500-5 1.743366+4 1.027000-5 1.949232+4 1.033000-5 2.181860+4 1.039000-5 2.422260+4 1.044000-5 2.627920+4 1.050000-5 2.880680+4 1.057000-5 3.182820+4 1.065000-5 3.536620+4 1.073000-5 3.898420+4 1.081000-5 4.266740+4 1.088000-5 4.593600+4 1.096478-5 4.994351+4 1.106700-5 5.482818+4 1.115000-5 5.882720+4 1.127000-5 6.464120+4 1.138000-5 6.998600+4 1.150000-5 7.581420+4 1.165000-5 8.306880+4 1.180000-5 9.026080+4 1.195000-5 9.736420+4 1.207000-5 1.029684+5 1.222000-5 1.098606+5 1.240000-5 1.179452+5 1.260000-5 1.266672+5 1.280000-5 1.350942+5 1.303167-5 1.444678+5 1.330000-5 1.547878+5 1.357000-5 1.645806+5 1.390000-5 1.757438+5 1.420000-5 1.851334+5 1.450000-5 1.938188+5 1.480000-5 2.018240+5 1.515000-5 2.103400+5 1.550000-5 2.180200+5 1.590000-5 2.258400+5 1.640590-5 2.343940+5 1.698244-5 2.425105+5 1.767000-5 2.502066+5 1.840772-5 2.564006+5 1.920000-5 2.610500+5 2.000000-5 2.640260+5 2.089296-5 2.656787+5 2.190000-5 2.658860+5 2.317395-5 2.642638+5 2.454709-5 2.608001+5 2.630268-5 2.546604+5 2.818383-5 2.468641+5 3.019952-5 2.378011+5 3.273407-5 2.260256+5 3.548134-5 2.134099+5 3.890451-5 1.983539+5 4.265795-5 1.830435+5 4.677351-5 1.676969+5 5.150000-5 1.518818+5 5.624000-5 1.377385+5 5.624000-5 1.375446+6 5.655000-5 1.450155+6 5.655000-5 2.061125+6 5.688529-5 2.187346+6 5.690000-5 2.193052+6 5.710000-5 2.268666+6 5.754399-5 2.443014+6 5.760000-5 2.464834+6 5.821032-5 2.709043+6 5.830000-5 2.744883+6 5.888437-5 2.983161+6 5.956621-5 3.262105+6 6.025596-5 3.542322+6 6.030000-5 3.560396+6 6.095369-5 3.821865+6 6.165950-5 4.096720+6 6.237348-5 4.364688+6 6.309573-5 4.623380+6 6.382635-5 4.870584+6 6.456542-5 5.104912+6 6.540000-5 5.349059+6 6.610000-5 5.536873+6 6.690000-5 5.732629+6 6.800000-5 5.969614+6 6.839116-5 6.040337+6 6.918310-5 6.184868+6 7.030000-5 6.353549+6 7.161434-5 6.513612+6 7.300000-5 6.642677+6 7.450000-5 6.743312+6 7.585776-5 6.799503+6 7.650000-5 6.825874+6 7.852356-5 6.861760+6 8.080000-5 6.858510+6 8.317638-5 6.818192+6 8.511380-5 6.757291+6 8.650000-5 6.714837+6 8.946000-5 6.585445+6 8.946000-5 7.171423+6 9.015711-5 7.141088+6 9.400000-5 6.932974+6 9.800000-5 6.688032+6 1.023293-4 6.399488+6 1.060000-4 6.142741+6 1.071519-4 6.060234+6 1.109175-4 5.794223+6 1.122018-4 5.702136+6 1.161500-4 5.424229+6 1.174898-4 5.330114+6 1.202264-4 5.141105+6 1.220000-4 5.023737+6 1.240000-4 4.890823+6 1.260000-4 4.760814+6 1.288250-4 4.585214+6 1.318257-4 4.403471+6 1.330000-4 4.334398+6 1.380384-4 4.054359+6 1.400000-4 3.950159+6 1.412538-4 3.885130+6 1.445440-4 3.720251+6 1.480000-4 3.558649+6 1.513561-4 3.410696+6 1.531087-4 3.335536+6 1.566751-4 3.188876+6 1.659587-4 2.848223+6 1.678804-4 2.783298+6 1.819701-4 2.362990+6 1.840772-4 2.306694+6 1.883649-4 2.197584+6 1.972423-4 1.995100+6 2.041738-4 1.851805+6 2.162719-4 1.634924+6 2.220000-4 1.542869+6 2.290868-4 1.438531+6 2.400000-4 1.297231+6 2.426610-4 1.265677+6 2.630268-4 1.053719+6 2.660725-4 1.026584+6 2.691535-4 9.999838+5 2.951209-4 8.073589+5 2.985383-4 7.861362+5 3.273407-4 6.317631+5 3.311311-4 6.148063+5 3.350000-4 5.978536+5 3.715352-4 4.656494+5 3.758374-4 4.527679+5 4.168694-4 3.511937+5 4.216965-4 3.413946+5 4.265795-4 3.318225+5 4.731513-4 2.565090+5 5.069907-4 2.154972+5 5.308844-4 1.919863+5 5.370318-4 1.864834+5 5.432503-4 1.810976+5 5.888437-4 1.475037+5 6.025596-4 1.391428+5 6.095369-4 1.351122+5 6.165950-4 1.311658+5 6.683439-4 1.065876+5 6.839116-4 1.004802+5 6.998420-4 9.467714+4 7.000000-4 9.462180+4 7.585776-4 7.677659+4 7.673615-4 7.452111+4 7.852356-4 7.017337+4 8.035261-4 6.607420+4 8.709636-4 5.349059+4 8.810489-4 5.188986+4 8.912509-4 5.033384+4 9.225714-4 4.594719+4 9.885531-4 3.827799+4 1.000000-3 3.712188+4 1.035142-3 3.385609+4 1.047129-3 3.283402+4 1.135011-3 2.648302+4 1.188502-3 2.339398+4 1.216186-3 2.199058+4 1.294500-3 1.859011+4 1.294500-3 2.273381+5 1.303167-3 2.248217+5 1.318257-3 2.205411+5 1.348963-3 2.122296+5 1.412538-3 1.882837+5 1.479108-3 1.670389+5 1.500000-3 1.612482+5 1.531087-3 1.531316+5 1.548817-3 1.487561+5 1.621810-3 1.324725+5 1.730000-3 1.125980+5 1.737801-3 1.113291+5 1.778279-3 1.050553+5 1.819701-3 9.913565+4 1.862087-3 9.346603+4 2.000000-3 7.785644+4 2.018366-3 7.605612+4 2.065380-3 7.170347+4 2.089296-3 6.962162+4 2.162719-3 6.357011+4 2.317395-3 5.300007+4 2.344229-3 5.141672+4 2.398833-3 4.839044+4 2.400000-3 4.832848+4 2.511886-3 4.279534+4 2.691535-3 3.559156+4 2.722701-3 3.451410+4 2.754229-3 3.344697+4 2.786121-3 3.241282+4 2.951209-3 2.770278+4 3.126079-3 2.367743+4 3.235937-3 2.154727+4 3.273407-3 2.088071+4 3.467369-3 1.779446+4 3.672823-3 1.516454+4 3.801894-3 1.377609+4 3.845918-3 1.333628+4 4.073803-3 1.133923+4 4.315191-3 9.641316+3 4.466836-3 8.746581+3 4.518559-3 8.463223+3 4.786301-3 7.178377+3 5.069907-3 6.088644+3 5.248075-3 5.515505+3 5.308844-3 5.336714+3 5.623413-3 4.515684+3 6.025596-3 3.695459+3 6.165950-3 3.456435+3 6.309573-3 3.232874+3 6.382635-3 3.126574+3 6.606934-3 2.824493+3 7.161434-3 2.228327+3 7.244360-3 2.154066+3 7.498942-3 1.945808+3 7.673615-3 1.818281+3 7.762471-3 1.756949+3 8.511380-3 1.335207+3 8.709636-3 1.246594+3 8.912509-3 1.163863+3 9.332543-3 1.014510+3 1.011579-2 7.954865+2 1.047129-2 7.166929+2 1.059254-2 6.922037+2 1.122018-2 5.817529+2 1.150000-2 5.400483+2 1.216186-2 4.552021+2 1.273503-2 3.954337+2 1.288250-2 3.817600+2 1.380384-2 3.090990+2 1.428894-2 2.781326+2 1.479108-2 2.499860+2 1.548817-2 2.168153+2 1.640590-2 1.814720+2 1.737801-2 1.518912+2 1.800000-2 1.362464+2 1.819701-2 1.316939+2 1.905461-2 1.140468+2 2.264644-2 6.649441+1 2.371374-2 5.750368+1 2.398833-2 5.545276+1 2.511886-2 4.795497+1 2.851018-2 3.216211+1 2.884032-2 3.101439+1 2.985383-2 2.778474+1 3.630781-2 1.490006+1 3.801894-2 1.286703+1 3.845918-2 1.239964+1 4.677351-2 6.610529+0 5.011872-2 5.293951+0 5.128614-2 4.916184+0 5.888437-2 3.144314+0 6.531306-2 2.248817+0 6.683439-2 2.087397+0 7.498942-2 1.438131+0 8.128305-2 1.107992+0 8.222426-2 1.067472+0 9.332543-2 7.076249-1 9.772372-2 6.093628-1 1.096478-1 4.193341-1 1.148154-1 3.611054-1 1.202264-1 3.109640-1 1.230269-1 2.887422-1 1.244515-1 2.782344-1 1.273503-1 2.583620-1 1.333521-1 2.227739-1 1.462177-1 1.656287-1 1.531088-1 1.428142-1 1.566751-1 1.327183-1 1.659587-1 1.105051-1 1.737801-1 9.544348-2 1.862087-1 7.661139-2 1.883649-1 7.385580-2 1.972423-1 6.387313-2 2.000000-1 6.113893-2 2.089296-1 5.327774-2 2.213095-1 4.444002-2 2.290868-1 3.992170-2 2.317395-1 3.852146-2 2.344229-1 3.717034-2 2.483133-1 3.109350-2 2.540973-1 2.895067-2 2.570396-1 2.795134-2 2.630268-1 2.605499-2 2.691535-1 2.428923-2 2.754229-1 2.264323-2 2.818383-1 2.110878-2 2.884032-1 1.967832-2 3.000000-1 1.748689-2 3.054921-1 1.656325-2 3.090295-1 1.600259-2 3.273407-1 1.347145-2 3.388442-1 1.217385-2 3.427678-1 1.177026-2 3.630781-1 9.944445-3 3.715352-1 9.309345-3 3.758374-1 9.007170-3 3.801894-1 8.715223-3 4.027170-1 7.391538-3 4.073803-1 7.157960-3 4.168694-1 6.712722-3 4.216965-1 6.500944-3 4.365158-1 5.904909-3 4.466836-1 5.538231-3 4.623810-1 5.042451-3 4.677351-1 4.887518-3 4.695800-1 4.835646-3 4.897788-1 4.313996-3 4.954502-1 4.184736-3 5.069907-1 3.937721-3 5.128614-1 3.819940-3 5.370318-1 3.383045-3 5.432503-1 3.284484-3 5.495409-1 3.188794-3 5.559043-1 3.095893-3 5.623413-1 3.005868-3 5.888437-1 2.671223-3 5.956621-1 2.595830-3 6.095369-1 2.451369-3 6.456542-1 2.125046-3 6.606935-1 2.010735-3 6.683439-1 1.956024-3 6.998420-1 1.751685-3 7.161434-1 1.660885-3 7.244360-1 1.617364-3 7.585776-1 1.454406-3 7.673615-1 1.416300-3 7.852356-1 1.345479-3 8.222427-1 1.214573-3 8.413951-1 1.153978-3 8.511380-1 1.125688-3 8.609938-1 1.098095-3 8.912509-1 1.019468-3 9.120108-1 9.702043-4 9.225714-1 9.464725-4 9.332543-1 9.241363-4 9.440609-1 9.023299-4 9.660509-1 8.603563-4 1.000000+0 8.010293-4 1.022000+0 7.667658-4 1.023293+0 7.648207-4 1.035142+0 7.473366-4 1.047129+0 7.302771-4 1.083927+0 6.814029-4 1.122018+0 6.358002-4 1.148154+0 6.080086-4 1.230269+0 5.318796-4 1.244515+0 5.201523-4 1.258925+0 5.091295-4 1.333521+0 4.575525-4 1.364583+0 4.384156-4 1.380384+0 4.294948-4 1.462177+0 3.876494-4 1.500000+0 3.704148-4 1.513561+0 3.648049-4 1.659587+0 3.122243-4 1.678804+0 3.064458-4 1.862087+0 2.591389-4 1.883649+0 2.545170-4 2.113489+0 2.126853-4 2.137962+0 2.090441-4 2.371374+0 1.790288-4 2.398833+0 1.760862-4 2.691535+0 1.492567-4 2.722701+0 1.468966-4 3.126079+0 1.213810-4 3.198895+0 1.176996-4 3.630781+0 9.939724-5 3.715352+0 9.648679-5 4.265795+0 8.076040-5 4.365158+0 7.847550-5 5.128614+0 6.421991-5 5.248075+0 6.246064-5 6.237348+0 5.073575-5 6.382635+0 4.938747-5 7.762471+0 3.929882-5 8.000000+0 3.797666-5 1.000000+1 2.949090-5 1.035142+1 2.838552-5 1.303167+1 2.201231-5 1.348963+1 2.120506-5 1.778279+1 1.573256-5 1.819701+1 1.535371-5 2.540973+1 1.078716-5 2.570396+1 1.065666-5 4.120975+1 6.529965-6 4.168694+1 6.452426-6 7.585776+1 3.497967-6 1.513561+2 1.739077-6 3.019952+2 8.678032-7 2.398833+3 1.088686-7 1.000000+5 2.610008-9 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 6.890000-6 5.624000-5 6.890000-6 5.624000-5 1.307293-5 5.655000-5 1.311235-5 5.655000-5 1.330492-5 5.888437-5 1.346066-5 6.237348-5 1.356943-5 6.918310-5 1.364262-5 8.946000-5 1.368337-5 8.946000-5 1.424599-5 1.122018-4 1.436774-5 1.566751-4 1.467662-5 2.426610-4 1.512303-5 3.758374-4 1.567455-5 5.308844-4 1.617618-5 7.000000-4 1.659826-5 9.225714-4 1.702610-5 1.216186-3 1.744157-5 1.294500-3 1.753432-5 1.294500-3 2.887229-5 1.500000-3 2.894355-5 2.786121-3 2.909595-5 7.762471-3 2.919047-5 2.000000-1 2.922945-5 1.000000+5 2.922993-5 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 0.0 5.624000-5 0.0 5.624000-5 1.224618-7 5.655000-5 1.232426-7 5.655000-5 1.246469-7 5.760000-5 1.262445-7 5.956621-5 1.282113-7 6.165950-5 1.294342-7 6.540000-5 1.305694-7 7.300000-5 1.314100-7 9.400000-5 1.319434-7 2.041738-4 1.316425-7 6.165950-4 1.300647-7 1.294500-3 1.287503-7 1.294500-3 3.132666-5 1.348963-3 3.144355-5 2.400000-3 3.171318-5 4.518559-3 3.184702-5 2.398833-2 3.190159-5 1.000000+5 3.188909-5 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 0.0 5.624000-5 4.935000-5 5.624000-5 4.304461-5 5.655000-5 4.331441-5 5.655000-5 4.312043-5 6.165950-5 4.797601-5 8.946000-5 7.564475-5 8.946000-5 7.508211-5 5.370318-4 5.207090-4 1.294500-3 1.276837-3 1.294500-3 1.234301-3 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.294500-3 2.087480+5 1.348963-3 1.956051+5 1.479108-3 1.540909+5 1.819701-3 9.179897+4 2.089296-3 6.461515+4 2.400000-3 4.492640+4 2.722701-3 3.212591+4 3.273407-3 1.946314+4 3.801894-3 1.285131+4 4.466836-3 8.165067+3 5.308844-3 4.984628+3 6.382635-3 2.921503+3 7.673615-3 1.699507+3 9.332543-3 9.484401+2 1.150000-2 5.049560+2 1.428894-2 2.600833+2 1.800000-2 1.274104+2 2.264644-2 6.218262+1 2.884032-2 2.900316+1 3.801894-2 1.203247+1 5.128614-2 4.597087+0 8.222426-2 9.981017-1 1.202264-1 2.907052-1 1.531088-1 1.335039-1 1.883649-1 6.903879-2 2.213095-1 4.153989-2 2.540973-1 2.706075-2 2.884032-1 1.839326-2 3.273407-1 1.259146-2 3.630781-1 9.294768-3 4.027170-1 6.908573-3 4.466836-1 5.176492-3 4.897788-1 4.032358-3 5.370318-1 3.162253-3 5.888437-1 2.496892-3 6.456542-1 1.986385-3 6.998420-1 1.637374-3 7.673615-1 1.323882-3 8.413951-1 1.078693-3 9.225714-1 8.847105-4 1.000000+0 7.487500-4 1.122018+0 5.943127-4 1.244515+0 4.862193-4 1.364583+0 4.098155-4 1.500000+0 3.462500-4 1.659587+0 2.918565-4 1.862087+0 2.422352-4 2.113489+0 1.988119-4 2.371374+0 1.673513-4 2.691535+0 1.395212-4 3.126079+0 1.134623-4 3.630781+0 9.291273-5 4.265795+0 7.549184-5 5.128614+0 6.003047-5 6.237348+0 4.742604-5 7.762471+0 3.673506-5 1.000000+1 2.756700-5 1.303167+1 2.057633-5 1.778279+1 1.470629-5 2.570396+1 9.961713-6 4.168694+1 6.031645-6 7.585776+1 3.269860-6 1.513561+2 1.625665-6 3.019952+2 8.112120-7 2.398833+3 1.017689-7 1.000000+5 2.439800-9 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.294500-3 2.988200-5 1.000000+5 2.988200-5 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.294500-3 3.410500-5 1.000000+5 3.410500-5 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.294500-3 1.230513-3 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.946000-5 5.859780+5 1.122018-4 5.616845+5 1.202264-4 5.512282+5 1.260000-4 5.412740+5 1.330000-4 5.263000+5 1.400000-4 5.086240+5 1.480000-4 4.861820+5 1.566751-4 4.607276+5 1.678804-4 4.283632+5 1.840772-4 3.854209+5 2.041738-4 3.394927+5 2.220000-4 3.044020+5 2.426610-4 2.689958+5 2.660725-4 2.348884+5 2.985383-4 1.966564+5 3.350000-4 1.633974+5 3.715352-4 1.372921+5 4.168694-4 1.121984+5 4.731513-4 8.916945+4 5.308844-4 7.183164+4 6.025596-4 5.616115+4 6.839116-4 4.359157+4 7.673615-4 3.438091+4 8.709636-4 2.629974+4 9.885531-4 1.996718+4 1.135011-3 1.466636+4 1.303167-3 1.068250+4 1.500000-3 7.674460+3 1.730000-3 5.443720+3 2.000000-3 3.809780+3 2.317395-3 2.631155+3 2.691535-3 1.792902+3 3.126079-3 1.213102+3 3.672823-3 7.903998+2 4.315191-3 5.111191+2 5.069907-3 3.281243+2 6.025596-3 2.024686+2 7.161434-3 1.239561+2 8.511380-3 7.530327+1 1.011579-2 4.541167+1 1.216186-2 2.627813+1 1.479108-2 1.457943+1 1.819701-2 7.750403+0 2.264644-2 3.945903+0 2.851018-2 1.923325+0 3.630781-2 8.972869-1 4.677351-2 4.004356-1 6.683439-2 1.273033-1 1.244515-1 1.707387-2 1.566751-1 8.160560-3 1.972423-1 3.932285-3 2.290868-1 2.460143-3 2.630268-1 1.606702-3 3.000000-1 1.078937-3 3.388442-1 7.515927-4 3.758374-1 5.562392-4 4.168694-1 4.145492-4 4.623810-1 3.113489-4 5.069907-1 2.430615-4 5.559043-1 1.910623-4 6.095369-1 1.512843-4 6.606935-1 1.241251-4 7.161434-1 1.025334-4 7.852356-1 8.306907-5 8.609938-1 6.779891-5 9.440609-1 5.571429-5 1.035142+0 4.615578-5 1.148154+0 3.754244-5 1.258925+0 3.144410-5 1.380384+0 2.652625-5 1.513561+0 2.253220-5 1.678804+0 1.892714-5 1.883649+0 1.572072-5 2.137962+0 1.291099-5 2.398833+0 1.087549-5 2.722701+0 9.073088-6 3.198895+0 7.268571-6 3.715352+0 5.958762-6 4.365158+0 4.846500-6 5.248075+0 3.857636-6 6.382635+0 3.050328-6 8.000000+0 2.345300-6 1.035142+1 1.753046-6 1.348963+1 1.309753-6 1.819701+1 9.484872-7 2.570396+1 6.584101-7 4.168694+1 3.986571-7 7.585776+1 2.161145-7 1.513561+2 1.074493-7 3.019952+2 5.361592-8 2.398833+3 6.726448-9 1.000000+5 1.61260-10 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.946000-5 2.056900-5 1.000000+5 2.056900-5 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.946000-5 1.320900-7 1.000000+5 1.320900-7 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.946000-5 6.875891-5 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.655000-5 6.109700+5 5.710000-5 6.790400+5 5.760000-5 7.437200+5 5.830000-5 8.365600+5 5.888437-5 9.153600+5 5.956621-5 1.008500+6 6.025596-5 1.102500+6 6.095369-5 1.196000+6 6.165950-5 1.288500+6 6.237348-5 1.379000+6 6.309573-5 1.466800+6 6.382635-5 1.550900+6 6.456542-5 1.631000+6 6.540000-5 1.714600+6 6.610000-5 1.779100+6 6.690000-5 1.846500+6 6.800000-5 1.928400+6 6.918310-5 2.003100+6 7.030000-5 2.062000+6 7.161434-5 2.118400+6 7.300000-5 2.164300+6 7.450000-5 2.200600+6 7.650000-5 2.231500+6 7.852356-5 2.246500+6 8.080000-5 2.248400+6 8.317638-5 2.237800+6 8.650000-5 2.206700+6 9.015711-5 2.157100+6 9.400000-5 2.092300+6 9.800000-5 2.014900+6 1.023293-4 1.922600+6 1.071519-4 1.814500+6 1.122018-4 1.699000+6 1.174898-4 1.579000+6 1.240000-4 1.437400+6 1.318257-4 1.281800+6 1.412538-4 1.118400+6 1.531087-4 9.474300+5 1.678804-4 7.786800+5 1.819701-4 6.518600+5 1.972423-4 5.421000+5 2.162719-4 4.357400+5 2.400000-4 3.378600+5 2.691535-4 2.533900+5 2.985383-4 1.939500+5 3.311311-4 1.472900+5 3.715352-4 1.077000+5 4.216965-4 7.577200+4 4.731513-4 5.462500+4 5.432503-4 3.657600+4 6.165950-4 2.513600+4 6.998420-4 1.714200+4 7.852356-4 1.203500+4 8.810489-4 8.400000+3 1.000000-3 5.619500+3 1.135011-3 3.735100+3 1.318257-3 2.286900+3 1.531087-3 1.388300+3 1.737801-3 9.046100+2 2.018366-3 5.416000+2 2.344229-3 3.219600+2 2.754229-3 1.824800+2 3.235937-3 1.026400+2 3.801894-3 5.729400+1 4.466836-3 3.174200+1 5.248075-3 1.745500+1 6.165950-3 9.528900+0 7.244360-3 5.164102+0 8.709636-3 2.542689+0 1.047129-2 1.242295+0 1.288250-2 5.502617-1 1.640590-2 2.110391-1 2.511886-2 3.852515-2 5.011872-2 2.419882-3 6.531306-2 8.416597-4 8.128305-2 3.543306-4 9.772372-2 1.721381-4 1.148154-1 9.218759-5 1.333521-1 5.199707-5 1.531088-1 3.086660-5 1.737801-1 1.926947-5 1.972423-1 1.211832-5 2.213095-1 8.004044-6 2.483133-1 5.325517-6 2.754229-1 3.715966-6 3.054921-1 2.610966-6 3.388442-1 1.848263-6 3.715352-1 1.368972-6 4.073803-1 1.020796-6 4.466836-1 7.661368-7 4.954502-1 5.588890-7 5.432503-1 4.250014-7 5.956621-1 3.255945-7 6.456542-1 2.595924-7 6.998420-1 2.084787-7 7.585776-1 1.684825-7 8.609938-1 1.215475-7 9.120108-1 1.053573-7 9.660509-1 9.190616-8 1.022000+0 8.102300-8 1.083927+0 7.147138-8 1.148154+0 6.361717-8 1.230269+0 5.571913-8 1.333521+0 4.811625-8 1.462177+0 4.102624-8 1.678804+0 3.253723-8 1.883649+0 2.700478-8 2.113489+0 2.256579-8 2.371374+0 1.899495-8 2.691535+0 1.583567-8 3.126079+0 1.287766-8 3.630781+0 1.054561-8 4.265795+0 8.568490-9 5.128614+0 6.813598-9 6.237348+0 5.382993-9 7.762471+0 4.169502-9 1.000000+1 3.128900-9 1.303167+1 2.335397-9 1.778279+1 1.669187-9 2.570396+1 1.130638-9 4.168694+1 6.84613-10 7.585776+1 3.71138-10 1.513561+2 1.84526-10 3.019952+2 9.20750-11 2.398833+3 1.15514-11 1.000000+5 2.76920-13 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.655000-5 1.376200-5 1.000000+5 1.376200-5 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.655000-5 1.279800-7 1.000000+5 1.279800-7 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.655000-5 4.266002-5 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.624000-5 1.237708+6 5.690000-5 1.403560+6 5.754399-5 1.572651+6 5.821032-5 1.752600+6 5.888437-5 1.937270+6 5.956621-5 2.124850+6 6.030000-5 2.325292+6 6.095369-5 2.500588+6 6.165950-5 2.684647+6 6.237348-5 2.863796+6 6.309573-5 3.036447+6 6.382635-5 3.201286+6 6.456542-5 3.357223+6 6.540000-5 3.519648+6 6.610000-5 3.644496+6 6.690000-5 3.774560+6 6.800000-5 3.931920+6 6.918310-5 4.074918+6 7.030000-5 4.186960+6 7.161434-5 4.293178+6 7.300000-5 4.378920+6 7.450000-5 4.445920+6 7.650000-5 4.501000+6 7.852356-5 4.525249+6 8.080000-5 4.523640+6 8.317638-5 4.497372+6 8.650000-5 4.429640+6 9.015711-5 4.324984+6 9.400000-5 4.190600+6 9.800000-5 4.031680+6 1.023293-4 3.844216+6 1.060000-4 3.677692+6 1.109175-4 3.449967+6 1.161500-4 3.209195+6 1.220000-4 2.950084+6 1.288250-4 2.668815+6 1.380384-4 2.331843+6 1.513561-4 1.931073+6 1.659587-4 1.587699+6 1.819701-4 1.295597+6 1.972423-4 1.076877+6 2.162719-4 8.652981+5 2.426610-4 6.523585+5 2.691535-4 5.026519+5 2.985383-4 3.844973+5 3.311311-4 2.918833+5 3.758374-4 2.066717+5 4.265795-4 1.451993+5 4.731513-4 1.080767+5 5.370318-4 7.481102+4 6.095369-4 5.142358+4 7.000000-4 3.384028+4 8.035261-4 2.212047+4 9.225714-4 1.432637+4 1.047129-3 9.556191+3 1.216186-3 5.872377+3 1.412538-3 3.577933+3 1.621810-3 2.248261+3 1.862087-3 1.403900+3 2.162719-3 8.367786+2 2.511886-3 4.952715+2 2.951209-3 2.793937+2 3.467369-3 1.564071+2 4.073803-3 8.689301+1 4.786301-3 4.791211+1 5.623413-3 2.621532+1 6.606934-3 1.423481+1 7.762471-3 7.673069+0 9.332543-3 3.756296+0 1.122018-2 1.824395+0 1.380384-2 8.030777-1 1.737801-2 3.201467-1 2.398833-2 8.750435-2 3.801894-2 1.357333-2 5.888437-2 2.303210-3 7.498942-2 8.697860-4 9.332543-2 3.629050-4 1.096478-1 1.918679-4 1.273503-1 1.068977-4 1.462177-1 6.269681-5 1.659587-1 3.871918-5 1.862087-1 2.515600-5 2.089296-1 1.646310-5 2.317395-1 1.132141-5 2.570396-1 7.844604-6 2.818383-1 5.701970-6 3.090295-1 4.173694-6 3.388442-1 3.077435-6 3.715352-1 2.285901-6 4.027170-1 1.773736-6 4.365158-1 1.385763-6 4.695800-1 1.115100-6 5.069907-1 8.948914-7 5.495409-1 7.152049-7 5.956621-1 5.756161-7 6.456542-1 4.661406-7 6.998420-1 3.800585-7 7.585776-1 3.120355-7 8.222427-1 2.580109-7 8.912509-1 2.149324-7 9.660509-1 1.804213-7 1.047129+0 1.526706-7 1.148154+0 1.270143-7 1.258925+0 1.064174-7 1.380384+0 8.985474-8 1.513561+0 7.640220-8 1.678804+0 6.418550-8 1.883649+0 5.330553-8 2.137962+0 4.378007-8 2.398833+0 3.687879-8 2.722701+0 3.076575-8 3.198895+0 2.464566-8 3.715352+0 2.020435-8 4.365158+0 1.643315-8 5.248075+0 1.308009-8 6.382635+0 1.034263-8 8.000000+0 7.952300-9 1.035142+1 5.944097-9 1.348963+1 4.441033-9 1.819701+1 3.216018-9 2.570396+1 2.232454-9 4.168694+1 1.351725-9 7.585776+1 7.32797-10 1.513561+2 3.64335-10 3.019952+2 1.81796-10 2.398833+3 2.28076-11 1.000000+5 5.46770-13 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.624000-5 1.376100-5 1.000000+5 1.376100-5 1 12000 7 7 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.624000-5 1.360900-7 1.000000+5 1.360900-7 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.624000-5 4.234291-5 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.890000-6 7.093072+5 6.940000-6 6.612740+5 7.079458-6 5.479266+5 7.200000-6 4.635200+5 7.328245-6 3.858297+5 7.420000-6 3.369380+5 7.520000-6 2.896340+5 7.600000-6 2.556080+5 7.700000-6 2.175860+5 7.770000-6 1.937160+5 7.852356-6 1.682140+5 7.943282-6 1.430599+5 8.020000-6 1.240864+5 8.100000-6 1.063274+5 8.150000-6 9.620420+4 8.222426-6 8.278211+4 8.290000-6 7.149440+4 8.350000-6 6.240680+4 8.400000-6 5.545980+4 8.460000-6 4.783440+4 8.511380-6 4.188758+4 8.550000-6 3.775340+4 8.600000-6 3.280840+4 8.635000-6 2.960920+4 8.680000-6 2.579820+4 8.720000-6 2.268440+4 8.755000-6 2.016240+4 8.790000-6 1.782340+4 8.820000-6 1.595730+4 8.850000-6 1.421666+4 8.880000-6 1.259600+4 8.912509-6 1.097203+4 8.940000-6 9.702040+3 8.970000-6 8.421180+3 8.990000-6 7.626040+3 9.015711-6 6.671636+3 9.035000-6 6.004340+3 9.055000-6 5.355300+3 9.077000-6 4.690940+3 9.092000-6 4.267080+3 9.110000-6 3.788960+3 9.128000-6 3.343460+3 9.142000-6 3.019140+3 9.155000-6 2.735100+3 9.170000-6 2.427460+3 9.185000-6 2.141020+3 9.200000-6 1.875458+3 9.215000-6 1.630418+3 9.225714-6 1.467766+3 9.240000-6 1.266688+3 9.250000-6 1.136534+3 9.260000-6 1.014996+3 9.270000-6 9.019740+2 9.280000-6 7.973880+2 9.291000-6 6.919600+2 9.302000-6 5.964880+2 9.310000-6 5.332340+2 9.320000-6 4.614040+2 9.335000-6 3.685600+2 9.353000-6 2.803600+2 9.361000-6 2.491620+2 9.368000-6 2.258520+2 9.374000-6 2.088100+2 9.380000-6 1.944636+2 9.385000-6 1.845510+2 9.390000-6 1.764854+2 9.393500-6 1.719330+2 9.397000-6 1.682766+2 9.401000-6 1.651936+2 9.405000-6 1.632650+2 9.409000-6 1.624942+2 9.413000-6 1.628730+2 9.417000-6 1.643962+2 9.421500-6 1.674710+2 9.426000-6 1.719798+2 9.430000-6 1.771842+2 9.435000-6 1.852684+2 9.440000-6 1.950956+2 9.445000-6 2.066560+2 9.452000-6 2.257300+2 9.460000-6 2.516260+2 9.470000-6 2.900880+2 9.490000-6 3.870260+2 9.502000-6 4.577700+2 9.510000-6 5.100980+2 9.520000-6 5.812440+2 9.531000-6 6.667900+2 9.542000-6 7.598700+2 9.555000-6 8.794980+2 9.565000-6 9.784680+2 9.577000-6 1.105100+3 9.589000-6 1.240232+3 9.600000-6 1.371454+3 9.615000-6 1.561570+3 9.627000-6 1.722788+3 9.642000-6 1.935606+3 9.655000-6 2.129920+3 9.670000-6 2.365380+3 9.685000-6 2.612720+3 9.700000-6 2.871660+3 9.715000-6 3.142040+3 9.730000-6 3.423740+3 9.750000-6 3.816300+3 9.772372-6 4.278012+3 9.790000-6 4.658200+3 9.810000-6 5.106720+3 9.830000-6 5.572860+3 9.860000-6 6.304280+3 9.890000-6 7.073040+3 9.920000-6 7.877880+3 9.945000-6 8.574960+3 9.980000-6 9.589720+3 1.001000-5 1.049420+4 1.005000-5 1.174766+4 1.008500-5 1.288690+4 1.012000-5 1.406368+4 1.017000-5 1.580676+4 1.021500-5 1.743366+4 1.027000-5 1.949232+4 1.033000-5 2.181860+4 1.039000-5 2.422260+4 1.044000-5 2.627920+4 1.050000-5 2.880680+4 1.057000-5 3.182820+4 1.065000-5 3.536620+4 1.073000-5 3.898420+4 1.081000-5 4.266740+4 1.088000-5 4.593600+4 1.096478-5 4.994351+4 1.106700-5 5.482818+4 1.115000-5 5.882720+4 1.127000-5 6.464120+4 1.138000-5 6.998600+4 1.150000-5 7.581420+4 1.165000-5 8.306880+4 1.180000-5 9.026080+4 1.195000-5 9.736420+4 1.207000-5 1.029684+5 1.222000-5 1.098606+5 1.240000-5 1.179452+5 1.260000-5 1.266672+5 1.280000-5 1.350942+5 1.303167-5 1.444678+5 1.330000-5 1.547878+5 1.357000-5 1.645806+5 1.390000-5 1.757438+5 1.420000-5 1.851334+5 1.450000-5 1.938188+5 1.480000-5 2.018240+5 1.515000-5 2.103400+5 1.550000-5 2.180200+5 1.590000-5 2.258400+5 1.640590-5 2.343940+5 1.698244-5 2.425105+5 1.767000-5 2.502066+5 1.840772-5 2.564006+5 1.920000-5 2.610500+5 2.000000-5 2.640260+5 2.089296-5 2.656787+5 2.190000-5 2.658860+5 2.317395-5 2.642638+5 2.454709-5 2.608001+5 2.630268-5 2.546604+5 2.818383-5 2.468641+5 3.019952-5 2.378011+5 3.273407-5 2.260256+5 3.548134-5 2.134099+5 3.890451-5 1.983539+5 4.265795-5 1.830435+5 4.677351-5 1.676969+5 5.150000-5 1.518818+5 5.688529-5 1.360050+5 6.237348-5 1.218924+5 6.839116-5 1.085050+5 7.585776-5 9.448588+4 8.511380-5 8.037733+4 9.800000-5 6.537720+4 1.174898-4 4.967017+4 1.445440-4 3.600975+4 1.883649-4 2.365628+4 2.290868-4 1.725615+4 2.630268-4 1.372075+4 2.951209-4 1.126268+4 3.273407-4 9.352615+3 3.715352-4 7.396530+3 4.265795-4 5.682094+3 5.069907-4 4.050593+3 5.888437-4 3.004192+3 6.683439-4 2.315861+3 7.585776-4 1.772385+3 8.912509-4 1.250467+3 1.035142-3 8.987252+2 1.188502-3 6.570842+2 1.348963-3 4.900593+2 1.548817-3 3.531399+2 1.778279-3 2.526706+2 2.065380-3 1.744791+2 2.398833-3 1.195910+2 2.786121-3 8.137763+1 3.273407-3 5.334974+1 3.845918-3 3.470940+1 4.518559-3 2.241341+1 5.308844-3 1.436876+1 6.309573-3 8.854277+0 7.498942-3 5.413500+0 8.912509-3 3.284638+0 1.059254-2 1.978533+0 1.273503-2 1.143531+0 1.548817-2 6.336911-1 1.905461-2 3.365084-1 2.371374-2 1.711317-1 2.985383-2 8.331517-2 3.845918-2 3.741540-2 5.128614-2 1.493978-2 6.531306-2 6.869238-3 1.230269-1 8.890353-4 1.659587-1 3.406279-4 2.000000-1 1.886000-4 2.344229-1 1.147661-4 2.691535-1 7.502213-5 3.054921-1 5.117154-5 3.427678-1 3.638598-5 3.801894-1 2.694832-5 4.216965-1 2.010205-5 4.677351-1 1.511306-5 5.128614-1 1.181084-5 5.623413-1 9.295624-6 6.095369-1 7.585139-6 6.683439-1 6.058383-6 7.244360-1 5.009636-6 7.852356-1 4.168196-6 8.511380-1 3.491179-6 9.332543-1 2.872318-6 1.023293+0 2.380641-6 1.148154+0 1.893194-6 1.258925+0 1.585543-6 1.380384+0 1.337046-6 1.513561+0 1.135206-6 1.659587+0 9.717882-7 1.862087+0 8.066102-7 2.113489+0 6.620610-7 2.371374+0 5.573005-7 2.691535+0 4.646155-7 3.126079+0 3.778310-7 3.630781+0 3.094048-7 4.265795+0 2.513930-7 5.128614+0 1.999051-7 6.237348+0 1.579329-7 7.762471+0 1.223321-7 1.000000+1 9.180000-8 1.303167+1 6.851999-8 1.778279+1 4.897426-8 2.540973+1 3.357510-8 4.120975+1 2.032517-8 7.585776+1 1.088875-8 1.513561+2 5.413790-9 3.019952+2 2.701455-9 2.398833+3 3.38907-10 1.000000+5 8.12470-12 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.890000-6 6.890000-6 1.000000+5 6.890000-6 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.890000-6 0.0 1.000000+5 1.000000+5 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.503950-9 1.028750+0 5.503950-8 1.036640+0 5.503950-7 1.041500+0 1.283940-6 1.043800+0 1.782160-6 1.046400+0 2.479540-6 1.048300+0 3.087090-6 1.051200+0 4.187570-6 1.054080+0 5.503950-6 1.057700+0 7.502200-6 1.061100+0 9.758410-6 1.065100+0 1.291890-5 1.070400+0 1.802310-5 1.076200+0 2.490760-5 1.080600+0 3.110550-5 1.087100+0 4.190980-5 1.093710+0 5.503950-5 1.102600+0 7.631690-5 1.110700+0 9.954110-5 1.120600+0 1.331720-4 1.133300+0 1.851860-4 1.147500+0 2.557230-4 1.158200+0 3.178110-4 1.174100+0 4.246910-4 1.190110+0 5.503950-4 1.205100+0 6.847100-4 1.227500+0 9.159450-4 1.250000+0 1.185000-3 1.281300+0 1.620300-3 1.308600+0 2.057210-3 1.332500+0 2.482510-3 1.374400+0 3.321290-3 1.405800+0 4.024530-3 1.452900+0 5.192350-3 1.500000+0 6.487000-3 1.562500+0 8.382810-3 1.617200+0 1.019150-2 1.712900+0 1.365130-2 1.784700+0 1.645760-2 1.892300+0 2.093920-2 2.000000+0 2.569000-2 2.044000+0 2.769000-2 2.163500+0 3.323160-2 2.372600+0 4.316100-2 2.647100+0 5.633420-2 3.000000+0 7.314000-2 3.437500+0 9.348800-2 4.000000+0 1.184000-1 4.750000+0 1.489650-1 5.000000+0 1.586000-1 6.000000+0 1.947000-1 7.000000+0 2.268000-1 8.000000+0 2.557000-1 9.000000+0 2.819000-1 1.000000+1 3.057000-1 1.100000+1 3.273000-1 1.200000+1 3.471000-1 1.300000+1 3.655000-1 1.400000+1 3.826000-1 1.500000+1 3.986000-1 1.600000+1 4.136000-1 1.800000+1 4.411000-1 2.000000+1 4.657000-1 2.200000+1 4.880000-1 2.400000+1 5.083000-1 2.600000+1 5.268000-1 2.800000+1 5.440000-1 3.000000+1 5.598000-1 4.000000+1 6.251000-1 5.000000+1 6.740000-1 6.000000+1 7.128000-1 8.000000+1 7.712000-1 1.000000+2 8.130000-1 1.500000+2 8.803000-1 2.000000+2 9.211000-1 3.000000+2 9.694000-1 4.000000+2 9.975000-1 5.000000+2 1.016000+0 6.000000+2 1.030000+0 8.000000+2 1.048000+0 1.000000+3 1.059000+0 1.500000+3 1.077000+0 2.000000+3 1.086000+0 3.000000+3 1.096000+0 4.000000+3 1.102000+0 5.000000+3 1.105000+0 6.000000+3 1.107000+0 8.000000+3 1.111000+0 1.000000+4 1.113000+0 1.500000+4 1.115000+0 2.000000+4 1.117000+0 3.000000+4 1.118000+0 4.000000+4 1.119000+0 5.000000+4 1.120000+0 6.000000+4 1.120000+0 8.000000+4 1.120000+0 1.000000+5 1.121000+0 1 12000 7 8 2.431200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.205080-7 2.136250+0 1.205080-6 2.147000+0 1.652250-6 2.156900+0 2.146070-6 2.169000+0 2.864070-6 2.184500+0 3.981150-6 2.201800+0 5.508040-6 2.214800+0 6.862580-6 2.234200+0 9.231390-6 2.253680+0 1.205080-5 2.281500+0 1.687930-5 2.307000+0 2.217090-5 2.338200+0 2.981070-5 2.377400+0 4.128430-5 2.410200+0 5.250680-5 2.446800+0 6.679170-5 2.485900+0 8.409430-5 2.532900+0 1.076220-4 2.556430+0 1.205080-4 2.611900+0 1.536600-4 2.660400+0 1.857660-4 2.745300+0 2.486320-4 2.809000+0 3.011060-4 2.904500+0 3.878930-4 3.000000+0 4.842000-4 3.125000+0 6.243940-4 3.234400+0 7.598010-4 3.425800+0 1.023330-3 3.569300+0 1.241040-3 3.784700+0 1.595670-3 4.000000+0 1.977000-3 4.250000+0 2.443310-3 4.625000+0 3.176420-3 5.000000+0 3.939000-3 5.500000+0 4.986740-3 6.000000+0 6.050000-3 6.750000+0 7.635040-3 7.000000+0 8.157000-3 8.000000+0 1.020000-2 9.000000+0 1.216000-2 1.000000+1 1.403000-2 1.100000+1 1.580000-2 1.200000+1 1.748000-2 1.300000+1 1.906000-2 1.400000+1 2.057000-2 1.500000+1 2.200000-2 1.600000+1 2.337000-2 1.800000+1 2.591000-2 2.000000+1 2.823000-2 2.200000+1 3.037000-2 2.400000+1 3.234000-2 2.600000+1 3.417000-2 2.800000+1 3.588000-2 3.000000+1 3.747000-2 4.000000+1 4.416000-2 5.000000+1 4.934000-2 6.000000+1 5.352000-2 8.000000+1 5.995000-2 1.000000+2 6.473000-2 1.500000+2 7.284000-2 2.000000+2 7.806000-2 3.000000+2 8.461000-2 4.000000+2 8.866000-2 5.000000+2 9.148000-2 6.000000+2 9.357000-2 8.000000+2 9.652000-2 1.000000+3 9.851000-2 1.500000+3 1.015000-1 2.000000+3 1.033000-1 3.000000+3 1.052000-1 4.000000+3 1.064000-1 5.000000+3 1.071000-1 6.000000+3 1.076000-1 8.000000+3 1.083000-1 1.000000+4 1.087000-1 1.500000+4 1.093000-1 2.000000+4 1.096000-1 3.000000+4 1.099000-1 4.000000+4 1.102000-1 5.000000+4 1.103000-1 6.000000+4 1.104000-1 8.000000+4 1.105000-1 1.000000+5 1.105000-1 1 12000 7 8 2.431200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 12000 7 9 2.431200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.200000+1 1.000000+5 1.200000+1 5.000000+5 1.199100+1 1.000000+6 1.197500+1 1.375000+6 1.195750+1 1.500000+6 1.195100+1 1.875000+6 1.192360+1 2.000000+6 1.191400+1 2.375000+6 1.187900+1 2.500000+6 1.186700+1 2.875000+6 1.182520+1 3.000000+6 1.181100+1 3.500000+6 1.174570+1 4.000000+6 1.167300+1 4.500000+6 1.159130+1 5.000000+6 1.150500+1 5.500000+6 1.141110+1 5.875000+6 1.133840+1 6.000000+6 1.131440+1 6.437500+6 1.122680+1 7.000000+6 1.111400+1 7.500000+6 1.101190+1 8.000000+6 1.090670+1 8.156200+6 1.087330+1 8.718700+6 1.074900+1 9.000000+6 1.068500+1 9.750000+6 1.050990+1 1.000000+7 1.045400+1 1.062500+7 1.032330+1 1.156300+7 1.014030+1 1.187500+7 1.008030+1 1.250000+7 9.957100+0 1.375000+7 9.702560+0 1.500000+7 9.472300+0 1.750000+7 9.094800+0 2.000000+7 8.713300+0 2.250000+7 8.385030+0 2.375000+7 8.230100+0 2.500000+7 8.074600+0 2.750000+7 7.753140+0 3.000000+7 7.430700+0 3.250000+7 7.113380+0 3.437500+7 6.879420+0 3.718800+7 6.531540+0 3.750000+7 6.492800+0 4.000000+7 6.187900+0 4.343800+7 5.775160+0 4.500000+7 5.592260+0 4.578100+7 5.502260+0 4.859400+7 5.184580+0 5.000000+7 5.031500+0 5.250000+7 4.767110+0 5.500000+7 4.515130+0 5.625000+7 4.394260+0 6.000000+7 4.051900+0 6.500000+7 3.642140+0 7.000000+7 3.286400+0 7.750000+7 2.845360+0 8.000000+7 2.720300+0 8.750000+7 2.402800+0 9.000000+7 2.313200+0 9.750000+7 2.085730+0 1.000000+8 2.021300+0 1.062500+8 1.881430+0 1.109400+8 1.793110+0 1.125000+8 1.766710+0 1.179700+8 1.683360+0 1.250000+8 1.595800+0 1.312500+8 1.533210+0 1.406300+8 1.456970+0 1.500000+8 1.393300+0 1.718800+8 1.266130+0 1.859400+8 1.191070+0 2.000000+8 1.117800+0 2.125000+8 1.053720+0 2.500000+8 8.884000-1 2.671900+8 8.279080-1 2.789100+8 7.869590-1 2.894500+8 7.479150-1 2.973600+8 7.167710-1 3.000000+8 7.060000-1 3.062500+8 6.798100-1 3.171900+8 6.340030-1 3.377000+8 5.586830-1 3.459000+8 5.343280-1 3.500000+8 5.236000-1 3.562500+8 5.090820-1 3.835900+8 4.577100-1 3.945300+8 4.373460-1 4.000000+8 4.265000-1 4.091800+8 4.070360-1 4.176000+8 3.883560-1 4.279000+8 3.652110-1 4.411200+8 3.360800-1 4.495300+8 3.183630-1 5.000000+8 2.324000-1 5.250000+8 2.031130-1 5.625000+8 1.685000-1 5.812500+8 1.535350-1 6.000000+8 1.395000-1 6.562500+8 1.041840-1 6.718800+8 9.699550-2 6.859400+8 9.156730-2 7.000000+8 8.710000-2 7.125000+8 8.388280-2 7.343800+8 7.934320-2 7.671900+8 7.345750-2 7.835900+8 7.038860-2 7.959000+8 6.788050-2 8.000000+8 6.700000-2 8.125000+8 6.416240-2 8.242200+8 6.136510-2 8.403500+8 5.740530-2 8.551600+8 5.376080-2 8.732700+8 4.940360-2 8.965000+8 4.413240-2 1.000000+9 2.680000-2 1.031300+9 2.346270-2 1.060500+9 2.091340-2 1.100900+9 1.806170-2 1.137900+9 1.595980-2 1.183200+9 1.387120-2 1.241300+9 1.178810-2 1.444600+9 7.046660-3 1.500000+9 6.202100-3 1.562500+9 5.361030-3 1.617200+9 4.725370-3 1.712900+9 3.805290-3 1.856400+9 2.787770-3 2.000000+9 2.081600-3 2.375000+9 1.063140-3 3.031300+9 4.123010-4 5.000000+9 5.940900-5 8.000000+9 9.582200-6 1.00000+10 4.054100-6 1.20500+10 1.988480-6 1.41820+10 1.072740-6 1.71110+10 5.299150-7 2.01380+10 2.888440-7 2.41190+10 1.483330-7 2.88610+10 7.687230-8 3.54590+10 3.642460-8 4.35270+10 1.744410-8 5.36740+10 8.281890-9 6.21670+10 4.936080-9 7.56790+10 2.483120-9 9.39200+10 1.177000-9 1.00000+11 9.48970-10 1.17140+11 5.53031-10 1.47470+11 2.53897-10 1.82930+11 1.23492-10 2.31360+11 5.67634-11 3.10280+11 2.17385-11 4.35820+11 7.26551-12 5.93370+11 2.72054-12 9.79510+11 5.65272-13 1.51300+12 1.47849-13 2.91350+12 2.02463-14 7.05210+12 1.45555-15 1.00000+14 6.27460-19 5.62340+14 3.85449-21 5.42470+15 4.38702-24 1.00000+17 6.61270-28 1 12000 7 0 2.431200+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.00000-12 1.000000+2 4.00000-10 1.000000+3 4.000000-8 1.000000+4 4.000000-6 1.000000+5 4.000000-4 5.000000+5 1.000000-2 1.000000+6 4.000000-2 1.375000+6 7.551990-2 1.500000+6 8.970000-2 1.875000+6 1.387330-1 2.000000+6 1.572000-1 2.375000+6 2.186780-1 2.500000+6 2.411000-1 2.875000+6 3.135090-1 3.000000+6 3.393000-1 3.500000+6 4.497600-1 4.000000+6 5.702000-1 4.500000+6 6.980060-1 5.000000+6 8.310000-1 5.500000+6 9.668270-1 5.875000+6 1.069280+0 6.000000+6 1.103410+0 6.437500+6 1.222190+0 7.000000+6 1.372100+0 7.500000+6 1.501100+0 8.000000+6 1.625430+0 8.156200+6 1.663220+0 8.718700+6 1.794720+0 9.000000+6 1.857800+0 9.750000+6 2.016060+0 1.000000+7 2.066000+0 1.062500+7 2.183820+0 1.156300+7 2.345450+0 1.187500+7 2.395440+0 1.250000+7 2.491300+0 1.375000+7 2.667130+0 1.500000+7 2.829000+0 1.750000+7 3.135400+0 2.000000+7 3.444000+0 2.250000+7 3.764840+0 2.375000+7 3.929470+0 2.500000+7 4.095700+0 2.750000+7 4.433080+0 3.000000+7 4.771000+0 3.250000+7 5.105430+0 3.437500+7 5.352380+0 3.718800+7 5.714330+0 3.750000+7 5.753890+0 4.000000+7 6.064000+0 4.343800+7 6.470830+0 4.500000+7 6.648100+0 4.578100+7 6.734240+0 4.859400+7 7.036290+0 5.000000+7 7.181000+0 5.250000+7 7.426950+0 5.500000+7 7.660280+0 5.625000+7 7.771210+0 6.000000+7 8.086000+0 6.500000+7 8.459490+0 7.000000+7 8.784000+0 7.750000+7 9.188210+0 8.000000+7 9.304000+0 8.750000+7 9.603060+0 9.000000+7 9.689000+0 9.750000+7 9.910610+0 1.000000+8 9.975000+0 1.062500+8 1.011810+1 1.109400+8 1.021280+1 1.125000+8 1.024280+1 1.179700+8 1.033840+1 1.250000+8 1.044900+1 1.312500+8 1.053740+1 1.406300+8 1.065730+1 1.500000+8 1.076600+1 1.718800+8 1.098910+1 1.859400+8 1.111500+1 2.000000+8 1.122900+1 2.125000+8 1.131940+1 2.500000+8 1.154300+1 2.671900+8 1.162150+1 2.789100+8 1.166670+1 2.894500+8 1.170440+1 2.973600+8 1.172970+1 3.000000+8 1.173800+1 3.062500+8 1.175550+1 3.171900+8 1.178390+1 3.377000+8 1.182900+1 3.459000+8 1.184440+1 3.500000+8 1.185200+1 3.562500+8 1.186140+1 3.835900+8 1.189820+1 3.945300+8 1.191020+1 4.000000+8 1.191600+1 4.091800+8 1.192370+1 4.176000+8 1.193060+1 4.279000+8 1.193820+1 4.411200+8 1.194600+1 4.495300+8 1.195080+1 5.000000+8 1.197200+1 5.250000+8 1.197790+1 5.625000+8 1.198510+1 5.812500+8 1.198760+1 6.000000+8 1.199000+1 6.562500+8 1.199350+1 6.718800+8 1.199440+1 6.859400+8 1.199520+1 7.000000+8 1.199600+1 7.125000+8 1.199630+1 7.343800+8 1.199670+1 7.671900+8 1.199740+1 7.835900+8 1.199770+1 7.959000+8 1.199790+1 8.000000+8 1.199800+1 8.125000+8 1.199810+1 8.242200+8 1.199830+1 8.403500+8 1.199840+1 8.551600+8 1.199860+1 8.732700+8 1.199880+1 8.965000+8 1.199900+1 1.000000+9 1.200000+1 1.031300+9 1.200000+1 1.060500+9 1.200000+1 1.100900+9 1.200000+1 1.137900+9 1.200000+1 1.183200+9 1.200000+1 1.241300+9 1.200000+1 1.444600+9 1.200000+1 1.500000+9 1.200000+1 1.562500+9 1.200000+1 1.617200+9 1.200000+1 1.712900+9 1.200000+1 1.856400+9 1.200000+1 2.000000+9 1.200000+1 2.375000+9 1.200000+1 3.031300+9 1.200000+1 5.000000+9 1.200000+1 8.000000+9 1.200000+1 1.00000+10 1.200000+1 1.20500+10 1.200000+1 1.41820+10 1.200000+1 1.71110+10 1.200000+1 2.01380+10 1.200000+1 2.41190+10 1.200000+1 2.88610+10 1.200000+1 3.54590+10 1.200000+1 4.35270+10 1.200000+1 5.36740+10 1.200000+1 6.21670+10 1.200000+1 7.56790+10 1.200000+1 9.39200+10 1.200000+1 1.00000+11 1.200000+1 1.17140+11 1.200000+1 1.47470+11 1.200000+1 1.82930+11 1.200000+1 2.31360+11 1.200000+1 3.10280+11 1.200000+1 4.35820+11 1.200000+1 5.93370+11 1.200000+1 9.79510+11 1.200000+1 1.51300+12 1.200000+1 2.91350+12 1.200000+1 7.05210+12 1.200000+1 1.00000+14 1.200000+1 5.62340+14 1.200000+1 5.42470+15 1.200000+1 1.00000+17 1.200000+1 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.013910-6 0.0 3.250874-6 0.0 3.256720-6 1.280092+0 3.266877-6 7.896540+0 3.272752-6 1.252075+1 3.274879-6 1.480515+1 3.280768-6 2.222501+1 3.282880-6 2.566525+1 3.288784-6 3.646626+1 3.297930-6 5.845215+1 3.314887-6 1.059166+2 3.323623-6 1.250903+2 3.331787-6 1.345792+2 3.339796-6 1.337423+2 3.347628-6 1.233590+2 3.357272-6 1.004973+2 3.373929-6 5.442009+1 3.376960-6 4.657825+1 3.384976-6 2.964799+1 3.391469-6 1.969004+1 3.392992-6 1.743487+1 3.394903-6 1.532448+1 3.401008-6 9.471862+0 3.410906-6 2.807030+0 3.417040-6 0.0 4.496290-6 0.0 4.507357-6 9.92200-16 4.518424-6 1.96329-15 4.529491-6 3.58611-15 4.540558-6 6.04667-15 4.551625-6 9.41160-15 4.562692-6 1.35227-14 4.573759-6 1.79357-14 4.584826-6 2.19597-14 4.595893-6 2.48193-14 4.606960-6 2.58944-14 4.618027-6 2.49388-14 4.629094-6 2.21718-14 4.640161-6 1.81961-14 4.662295-6 9.64044-15 4.673362-6 6.22353-15 4.684429-6 3.70878-15 4.695496-6 2.04023-15 4.706563-6 1.03605-15 4.717630-6 0.0 5.210305-6 0.0 5.211984-6 5.414106-3 5.235954-6 2.391501-1 5.237641-6 2.590061-1 5.250470-6 4.703726-1 5.264100-6 8.158430-1 5.277833-6 1.292193+0 5.313810-6 2.777481+0 5.328243-6 3.175745+0 5.341072-6 3.285337+0 5.353099-6 3.161685+0 5.368359-6 2.702820+0 5.404413-6 1.208915+0 5.417242-6 7.786658-1 5.430070-6 4.630527-1 5.441146-6 2.795181-1 5.442899-6 2.542313-1 5.462631-6 5.511570-2 5.466795-6 1.222010-2 5.468556-6 1.592690-5 5.488361-6 1.000309-8 5.488381-6 0.0 5.877581-6 0.0 5.878264-6 3.626414-4 5.907201-6 4.738104-2 5.921670-6 8.636273-2 5.936138-6 1.453341-1 5.950607-6 2.257998-1 5.993316-6 5.201839-1 6.008481-6 5.918525-1 6.022950-6 6.167149-1 6.037419-6 5.932645-1 6.051887-6 5.268689-1 6.095293-6 2.284448-1 6.109762-6 1.473574-1 6.124230-6 8.774894-2 6.138699-6 4.823795-2 6.157428-6 1.703582-2 6.166919-6 8.279502-4 6.167636-6 1.112904-6 6.171896-6 1.609570-9 6.171906-6 5.67292-12 6.180948-6 0.0 6.183237-6 0.0 6.183589-6 6.164292-5 6.214029-6 1.643582-2 6.229249-6 2.999030-2 6.244469-6 5.051921-2 6.259689-6 7.856270-2 6.274910-6 1.127867-1 6.290130-6 1.494788-1 6.305350-6 1.828853-1 6.320570-6 2.065639-1 6.335790-6 2.153796-1 6.351010-6 2.079255-1 6.366230-6 1.885801-1 6.396670-6 1.291678-1 6.411891-6 1.042601-1 6.427111-6 8.874183-2 6.442355-6 8.348220-2 6.457981-6 8.799274-2 6.473607-6 9.713283-2 6.489234-6 1.030858-1 6.504860-6 1.117636-1 6.520486-6 1.150636-1 6.536113-6 1.135847-1 6.588276-6 9.875917-2 6.747286-6 8.281519-2 6.856467-6 6.695455-2 6.913246-6 6.272536-2 7.017976-6 5.920632-2 7.297685-6 4.221211-2 7.527384-6 3.093784-2 7.734921-6 2.282293-2 7.920452-6 1.697485-2 8.094312-6 1.252752-2 8.256161-6 9.163484-3 8.414960-6 6.501218-3 8.541742-6 4.776557-3 8.657471-6 3.480347-3 8.759358-6 2.539286-3 8.834987-6 1.952826-3 8.926244-6 1.363372-3 9.002846-6 9.619357-4 9.065993-6 6.911373-4 9.118996-6 5.036097-4 9.162497-6 3.756429-4 9.207497-6 2.669369-4 9.244999-6 1.941020-4 9.274999-6 1.471021-4 9.296499-6 1.194279-4 9.323748-6 9.140709-5 9.345402-6 7.465289-5 9.366250-6 6.304722-5 9.387500-6 5.570453-5 9.405000-6 5.300304-5 9.423750-6 5.340801-5 9.445000-6 5.792725-5 9.464999-6 6.605513-5 9.487185-6 7.939102-5 9.514999-6 1.024009-4 9.543998-6 1.336823-4 9.576998-6 1.781063-4 9.611622-6 2.345461-4 9.651748-6 3.121662-4 9.701872-6 4.269013-4 9.766774-6 6.035161-4 9.844989-6 8.561505-4 9.933115-6 1.189552-3 1.005811-5 1.743726-3 1.022435-5 2.612588-3 1.046996-5 4.131328-3 1.084612-5 6.881715-3 1.110842-5 9.026342-3 1.207000-5 1.775900-2 1.405000-5 3.624832-2 1.570000-5 4.982290-2 1.767000-5 6.318244-2 2.000000-5 7.547796-2 2.317395-5 8.754441-2 2.818383-5 9.948022-2 3.833814-5 1.098359-1 5.114618-5 1.117929-1 5.265916-5 1.117667-1 5.291839-5 1.628449-1 5.297128-5 1.800457-1 5.304800-5 2.125341-1 5.318549-5 2.951034-1 5.331204-5 3.985277-1 5.339378-5 4.815788-1 5.383799-5 1.025904+0 5.397018-5 1.144641+0 5.417980-5 1.230378+0 5.441498-5 1.226357+0 5.477393-5 1.175958+0 5.525952-5 1.259506+0 5.677710-5 1.736708+0 5.956621-5 2.782077+0 6.456542-5 4.706787+0 6.800000-5 5.797223+0 7.161434-5 6.663486+0 7.725525-5 7.549866+0 8.416354-5 8.248840+0 8.491187-5 8.772951+0 8.574805-5 9.674547+0 8.621276-5 9.658498+0 8.718875-5 8.956908+0 9.198835-5 9.258831+0 1.034775-4 9.346331+0 1.242770-4 8.665465+0 1.712971-4 6.548894+0 2.134888-4 5.136207+0 2.490290-4 4.252168+0 2.899638-4 3.490206+0 3.419297-4 2.784182+0 3.871601-4 2.332187+0 4.377740-4 1.949145+0 5.018188-4 1.588322+0 5.811313-4 1.268709+0 6.586835-4 1.043285+0 7.472515-4 8.539297-1 8.514051-4 6.918191-1 9.624949-4 5.659421-1 1.079928-3 4.673946-1 1.230344-3 3.754338-1 1.259948-3 3.629762-1 1.262896-3 3.867499-1 1.266248-3 4.297317-1 1.269524-3 5.018293-1 1.272368-3 6.047367-1 1.275645-3 7.891211-1 1.278524-3 1.021524+0 1.281685-3 1.341701+0 1.286408-3 1.949019+0 1.294500-3 3.063836+0 1.300185-3 3.636315+0 1.305959-3 3.971906+0 1.315032-3 4.134389+0 1.372461-3 3.984414+0 1.544022-3 3.314182+0 1.770619-3 2.692065+0 1.998113-3 2.231926+0 2.294897-3 1.785992+0 2.598814-3 1.453622+0 2.954649-3 1.168150+0 3.341698-3 9.431247-1 3.722329-3 7.783451-1 4.170252-3 6.337188-1 4.744750-3 4.999947-1 5.301210-3 4.066104-1 5.876197-3 3.342686-1 6.549577-3 2.717288-1 7.146549-3 2.293975-1 7.938818-3 1.867866-1 8.709636-3 1.554741-1 9.640110-3 1.269776-1 1.079072-2 1.011510-1 1.196940-2 8.189608-2 1.339173-2 6.503338-2 1.469026-2 5.369928-2 1.626989-2 4.336722-2 1.785938-2 3.568855-2 1.945498-2 2.976704-2 2.159015-2 2.385649-2 2.378990-2 1.938936-2 2.650350-2 1.536856-2 2.855041-2 1.308634-2 3.099857-2 1.093987-2 3.427624-2 8.782645-3 3.775338-2 7.110770-3 4.200527-2 5.615443-3 4.618786-2 4.551298-3 5.128614-2 3.609357-3 5.566174-2 3.005755-3 6.080969-2 2.466379-3 6.665478-2 2.009824-3 7.407175-2 1.587028-3 8.044541-2 1.319826-3 8.783946-2 1.083584-3 9.522478-2 9.039744-4 1.032111-1 7.542792-4 1.125031-1 6.214079-4 1.217864-1 5.203116-4 1.327096-1 4.299633-4 1.449741-1 3.534743-4 1.581653-1 2.916734-4 1.751611-1 2.333788-4 1.907982-1 1.937786-4 2.068669-1 1.628253-4 2.290868-1 1.309433-4 2.513138-1 1.077950-4 2.724171-1 9.132551-5 2.968530-1 7.669880-5 3.273407-1 6.313459-5 3.612864-1 5.217291-5 4.007297-1 4.299818-5 4.442561-1 3.574862-5 4.897788-1 3.024811-5 5.432503-1 2.554451-5 6.123944-1 2.124065-5 6.998420-1 1.755092-5 8.012167-1 1.475017-5 9.225714-1 1.249910-5 1.070165+0 1.072048-5 1.286622+0 8.933072-6 1.546860+0 7.443677-6 1.859734+0 6.202607-6 2.235892+0 5.168458-6 2.688134+0 4.306730-6 3.231848+0 3.588677-6 3.885536+0 2.990344-6 4.671441+0 2.491769-6 5.616308+0 2.076321-6 6.752287+0 1.730140-6 8.118035+0 1.441677-6 9.760024+0 1.201309-6 1.000000+1 2.337520-6 1 12000 7 0 2.431200+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.181647+1 1.919736-6-1.108015+1 2.369875-6-1.010773+1 2.629570-6-8.951336+0 2.768928-6-7.881717+0 2.878582-6-6.571844+0 2.944115-6-5.431407+0 2.998112-6-4.150926+0 3.028720-6-3.219434+0 3.055622-6-2.227068+0 3.067825-6-1.708770+0 3.079266-6-1.176251+0 3.089991-6-6.299958-1 3.100046-6-7.055949-2 3.109473-6 5.014290-1 3.118311-6 1.085271+0 3.126596-6 1.680198+0 3.134363-6 2.285380+0 3.148472-6 3.522876+0 3.160872-6 4.789978+0 3.176715-6 6.727432+0 3.189769-6 8.681847+0 3.204090-6 1.134836+1 3.215055-6 1.391202+1 3.226878-6 1.742980+1 3.234799-6 2.043698+1 3.244092-6 2.505546+1 3.249602-6 2.881071+1 3.256720-6 3.567388+1 3.272752-6 5.085424+1 3.282880-6 6.142729+1 3.291539-6 6.800317+1 3.298990-6 6.947545+1 3.305568-6 6.562029+1 3.311938-6 5.722769+1 3.314887-6 5.117166+1 3.320638-6 3.694154+1 3.322888-6 2.981364+1 3.328846-6 1.027804+1 3.330028-6 6.024887+0 3.330674-6 3.417817+0 3.330836-6 2.674017+0 3.330953-6 2.055068+0 3.331077-6 1.480547+0 3.331321-6 4.388659-1 3.331557-6-5.156580-1 3.331787-6-1.409489+0 3.332647-6-4.608476+0 3.334671-6-1.172090+1 3.335198-6-1.047395+1 3.337036-6-4.011731+0 3.337848-6-1.010089+0 3.338109-6-3.838173-3 3.338500-6 1.573066+0 3.338794-6 2.861924+0 3.338954-6 3.695861+0 3.339322-6 5.313526+0 3.340239-6 8.830048+0 3.341799-6 1.423297+1 3.346654-6 3.009420+1 3.348536-6 3.653719+1 3.355395-6 5.415478+1 3.360466-6 6.334617+1 3.367047-6 7.029538+1 3.373929-6 7.209134+1 3.383974-6 6.732631+1 3.401008-6 5.016301+1 3.417040-6 3.483371+1 3.421251-6 3.093938+1 3.429625-6 2.581873+1 3.442076-6 2.056132+1 3.454382-6 1.681245+1 3.470567-6 1.314718+1 3.486531-6 1.041968+1 3.502247-6 8.303397+0 3.517718-6 6.608843+0 3.532948-6 5.219125+0 3.547942-6 4.057614+0 3.562702-6 3.071733+0 3.577289-6 2.220981+0 3.591649-6 1.481891+0 3.605784-6 8.337203-1 3.619698-6 2.606056-1 3.633395-6-2.498049-1 3.646877-6-7.072769-1 3.660149-6-1.119637+0 3.686075-6-1.833277+0 3.723658-6-2.695780+0 3.771193-6-3.570825+0 3.837068-6-4.506807+0 3.916292-6-5.349703+0 4.048256-6-6.337475+0 4.250075-6-7.302160+0 4.618027-6-8.314323+0 5.106381-6-9.334214+0 5.203369-6-9.909335+0 5.280024-6-1.096809+1 5.308393-6-1.054682+1 5.339142-6-9.082743+0 5.365927-6-7.704752+0 5.385380-6-7.178131+0 5.404413-6-7.071787+0 5.488381-6-8.230705+0 5.586025-6-8.703845+0 5.972295-6-9.519042+0 6.082924-6-8.888951+0 6.290130-6-9.368255+0 6.442355-6-9.303714+0 9.744996-6-9.894054+0 3.079550-5-1.074248+1 4.339382-5-1.172163+1 5.034327-5-1.291036+1 5.265916-5-1.383634+1 5.369074-5-1.457236+1 5.477393-5-1.427253+1 5.956621-5-1.506986+1 6.456542-5-1.492876+1 8.207221-5-1.198278+1 8.416354-5-1.209292+1 8.519989-5-1.221756+1 8.595770-5-1.131204+1 8.659536-5-1.061115+1 8.832060-5-1.065297+1 9.838428-5-8.522062+0 1.098838-4-6.742796+0 1.207010-4-5.456709+0 1.310886-4-4.518168+0 1.441286-4-3.661480+0 1.576031-4-3.024244+0 1.712971-4-2.550199+0 1.943064-4-1.981826+0 2.134888-4-1.641527+0 2.330999-4-1.403882+0 2.490290-4-1.264300+0 2.789262-4-1.094145+0 3.148654-4-9.855796-1 3.560762-4-9.395886-1 4.039368-4-9.426076-1 5.018188-4-1.025708+0 7.192419-4-1.330780+0 8.922069-4-1.650860+0 9.983306-4-1.922217+0 1.079928-3-2.216320+0 1.145678-3-2.565909+0 1.198929-3-3.014812+0 1.230344-3-3.444445+0 1.252698-3-3.941158+0 1.266248-3-4.458470+0 1.277485-3-5.203814+0 1.289006-3-6.055909+0 1.296024-3-6.163410+0 1.303163-3-5.803078+0 1.318257-3-4.556144+0 1.329101-3-3.936601+0 1.343152-3-3.412583+0 1.364261-3-2.861791+0 1.388977-3-2.409395+0 1.416595-3-2.038343+0 1.458157-3-1.626071+0 1.501548-3-1.310097+0 1.544022-3-1.068071+0 1.597627-3-8.257180-1 1.658237-3-6.116509-1 1.717232-3-4.471300-1 1.770619-3-3.228033-1 1.820154-3-2.243169-1 1.865440-3-1.475227-1 1.904604-3-9.023059-2 1.949187-3-3.237549-2 1.981063-3 3.952150-3 1.998113-3 2.346440-2 2.058449-3 8.421424-2 2.125819-3 1.422518-1 2.187129-3 1.855562-1 2.294897-3 2.439882-1 2.418998-3 2.945239-1 2.598814-3 3.417103-1 2.795363-3 3.722930-1 3.125689-3 3.905430-1 3.590113-3 3.836122-1 6.082699-3 2.486267-1 7.407771-3 1.954042-1 8.709636-3 1.569328-1 1.025864-2 1.235179-1 1.172863-2 1.002337-1 1.339173-2 8.054334-2 1.516076-2 6.493488-2 1.686585-2 5.341551-2 1.898921-2 4.247406-2 2.123682-2 3.372224-2 2.378990-2 2.620541-2 2.650350-2 2.015039-2 2.855041-2 1.648044-2 3.099857-2 1.292467-2 3.322933-2 1.024337-2 3.546900-2 8.000263-3 3.775338-2 6.067748-3 4.013932-2 4.357100-3 4.238917-2 2.967354-3 4.432495-2 1.924923-3 4.618786-2 1.028809-3 4.708303-2 6.313606-4 4.810036-2 2.049268-4 4.887775-2-1.069961-4 5.006747-2-5.548090-4 5.128614-2-9.842175-4 5.357243-2-1.721529-3 5.711911-2-2.711218-3 6.080969-2-3.578728-3 6.665478-2-4.689404-3 7.407175-2-5.765240-3 8.557005-2-6.944405-3 1.032111-1-8.086922-3 1.327096-1-9.144730-3 1.802473-1-9.927203-3 2.884032-1-1.049179-2 7.332672-1-1.079753-2 2.235892+0-1.084748-2 6.752287+0-1.085284-2 1.000000+1-1.085254-2 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.099486-2 1.085096-6 1.588186-2 1.215257-6 2.680678-2 1.274516-6 3.360881-2 1.302764-6 3.737555-2 1.330129-6 4.142599-2 1.383149-6 5.043616-2 1.440000-6 6.208459-2 1.479455-6 7.149450-2 1.523142-6 8.364890-2 1.564099-6 9.694714-2 1.602496-6 1.114141-1 1.638493-6 1.270313-1 1.672240-6 1.438308-1 1.703878-6 1.618845-1 1.733539-6 1.812383-1 1.761346-6 2.019334-1 1.787415-6 2.240144-1 1.811855-6 2.475125-1 1.834767-6 2.724454-1 1.856247-6 2.988807-1 1.876385-6 3.269178-1 1.895264-6 3.566435-1 1.912963-6 3.881380-1 1.929556-6 4.214853-1 1.945112-6 4.567748-1 1.959696-6 4.941010-1 1.973368-6 5.335633-1 1.986185-6 5.752657-1 1.998202-6 6.193180-1 2.009467-6 6.658387-1 2.020029-6 7.149485-1 2.029930-6 7.667523-1 2.039213-6 8.213354-1 2.050313-6 8.958418-1 2.056074-6 9.392469-1 2.063722-6 1.002858+0 2.070893-6 1.069788+0 2.077615-6 1.140191+0 2.083917-6 1.214205+0 2.089825-6 1.291951+0 2.095364-6 1.373543+0 2.100557-6 1.459100+0 2.110294-6 1.649329+0 2.118813-6 1.858841+0 2.126268-6 2.090098+0 2.132791-6 2.346038+0 2.138498-6 2.629173+0 2.143492-6 2.940388+0 2.147862-6 3.278086+0 2.151686-6 3.638066+0 2.155031-6 4.014075+0 2.157959-6 4.398724+0 2.160520-6 4.784435+0 2.162761-6 5.164193+0 2.164722-6 5.532031+0 2.168154-6 6.263713+0 2.172659-6 7.413455+0 2.183812-6 1.132569+1 2.188504-6 1.344593+1 2.190515-6 1.443448+1 2.194536-6 1.653571+1 2.195969-6 1.731812+1 2.200568-6 1.991069+1 2.201741-6 2.058349+1 2.205260-6 2.260095+1 2.207640-6 2.394360+1 2.210480-6 2.549295+1 2.213330-6 2.695879+1 2.216085-6 2.826120+1 2.218387-6 2.924091+1 2.220606-6 3.007665+1 2.224027-6 3.112559+1 2.226708-6 3.172257+1 2.230185-6 3.217687+1 2.232562-6 3.227040+1 2.235834-6 3.210616+1 2.238609-6 3.170417+1 2.241279-6 3.109888+1 2.243811-6 3.033856+1 2.245842-6 2.960755+1 2.250358-6 2.764443+1 2.253243-6 2.618835+1 2.255976-6 2.469843+1 2.258704-6 2.313298+1 2.261127-6 2.170009+1 2.263658-6 2.018155+1 2.266923-6 1.822202+1 2.269604-6 1.663811+1 2.273625-6 1.434832+1 2.274966-6 1.361588+1 2.277045-6 1.251595+1 2.281099-6 1.051475+1 2.282451-6 9.893108+0 2.285690-6 8.500556+0 2.288531-6 7.394553+0 2.289714-6 6.966236+0 2.293936-6 5.586548+0 2.296892-6 4.754996+0 2.298666-6 4.306166+0 2.303395-6 3.278764+0 2.307356-6 2.588469+0 2.311278-6 2.035902+0 2.315179-6 1.595543+0 2.320347-6 1.148934+0 2.328023-6 7.004973-1 2.338119-6 3.634423-1 2.345588-6 2.229091-1 2.350519-6 1.608113-1 2.355411-6 1.156822-1 2.357843-6 9.794175-2 2.360266-6 8.279276-2 2.362678-6 6.986045-2 2.365082-6 5.882952-2 2.367476-6 4.943364-2 2.369861-6 4.144696-2 2.372236-6 3.467713-2 2.374602-6 2.895973-2 2.381645-6 1.680729-2 2.383975-6 1.407244-2 2.386293-6 1.185765-2 2.387448-6 1.092308-2 2.388601-6 1.009371-2 2.390901-6 8.723941-3 2.392047-6 8.171759-3 2.392620-6 7.926355-3 2.394903-6 7.134963-3 2.397179-6 6.622319-3 2.398313-6 6.461060-3 2.400577-6 6.312390-3 2.402833-6 6.377653-3 2.405079-6 6.638272-3 2.407317-6 7.079047-3 2.409546-6 7.687552-3 2.411767-6 8.453598-3 2.416190-6 1.043036-2 2.420579-6 1.295363-2 2.424933-6 1.598163-2 2.429254-6 1.947782-2 2.433541-6 2.340727-2 2.437794-6 2.773526-2 2.446234-6 3.749007-2 2.454542-6 4.844559-2 2.462721-6 6.036642-2 2.470771-6 7.305859-2 2.478696-6 8.636819-2 2.494298-6 1.146194-1 2.509413-6 1.442623-1 2.524055-6 1.749687-1 2.538239-6 2.066698-1 2.565722-6 2.747336-1 2.668782-6 5.838435-1 2.707429-6 7.311328-1 2.741246-6 8.836284-1 2.819380-6 1.345516+0 2.856548-6 1.642582+0 2.886901-6 1.937874+0 2.909666-6 2.199995+0 2.926740-6 2.425334+0 2.956876-6 2.895521+0 2.980792-6 3.352689+0 2.999951-6 3.792082+0 3.014611-6 4.184104+0 3.020450-6 4.356048+0 3.039718-6 4.999190+0 3.054464-6 5.586786+0 3.069210-6 6.280790+0 3.076583-6 6.676592+0 3.087382-6 7.327429+0 3.098181-6 8.079691+0 3.109899-6 9.039512+0 3.117229-6 9.733966+0 3.127528-6 1.086340+1 3.137045-6 1.210812+1 3.145910-6 1.349483+1 3.151495-6 1.451261+1 3.156732-6 1.559307+1 3.166550-6 1.804632+1 3.175141-6 2.082215+1 3.182658-6 2.394102+1 3.189235-6 2.739635+1 3.194991-6 3.115048+1 3.200027-6 3.513898+1 3.204433-6 3.928034+1 3.208289-6 4.348707+1 3.211662-6 4.767514+1 3.217197-6 5.571342+1 3.225107-6 7.012910+1 3.238044-6 1.026146+2 3.243270-6 1.192439+2 3.249243-6 1.407900+2 3.252826-6 1.549716+2 3.259197-6 1.822949+2 3.267160-6 2.194622+2 3.269898-6 2.327499+2 3.275124-6 2.583957+2 3.278468-6 2.747409+2 3.282457-6 2.938590+2 3.285852-6 3.095476+2 3.289371-6 3.249962+2 3.292065-6 3.361131+2 3.295914-6 3.506959+2 3.300400-6 3.653895+2 3.304868-6 3.771608+2 3.308871-6 3.849927+2 3.313340-6 3.904579+2 3.317063-6 3.922513+2 3.321436-6 3.910969+2 3.325506-6 3.868872+2 3.327590-6 3.835937+2 3.331565-6 3.752714+2 3.335329-6 3.650774+2 3.336721-6 3.607804+2 3.341397-6 3.444663+2 3.344980-6 3.302436+2 3.347776-6 3.182795+2 3.351772-6 3.001254+2 3.354983-6 2.848534+2 3.358362-6 2.683408+2 3.362720-6 2.467067+2 3.366701-6 2.269290+2 3.370683-6 2.074340+2 3.375162-6 1.861480+2 3.378646-6 1.702472+2 3.380929-6 1.602032+2 3.388935-6 1.276699+2 3.393868-6 1.099265+2 3.397942-6 9.666140+1 3.402321-6 8.380217+1 3.404948-6 7.676761+1 3.412954-6 5.831448+1 3.420299-6 4.498073+1 3.437590-6 2.424562+1 3.442740-6 2.023680+1 3.447568-6 1.713556+1 3.452095-6 1.470945+1 3.456338-6 1.278880+1 3.460316-6 1.124975+1 3.464046-6 1.000160+1 3.471039-6 8.074825+0 3.477158-6 6.737679+0 3.482512-6 5.772782+0 3.495395-6 4.015708+0 3.501544-6 3.381888+0 3.519990-6 1.999665+0 3.528654-6 1.548236+0 3.539685-6 1.112195+0 3.546216-6 9.174568-1 3.548393-6 8.620138-1 3.554923-6 7.219305-1 3.557916-6 6.700423-1 3.563630-6 5.904893-1 3.566623-6 5.581859-1 3.569480-6 5.327899-1 3.572337-6 5.122668-1 3.575466-6 4.948482-1 3.577252-6 4.870534-1 3.580182-6 4.772756-1 3.583471-6 4.701935-1 3.586365-6 4.668095-1 3.589751-6 4.655338-1 3.595193-6 4.676547-1 3.606656-6 4.768149-1 3.612302-6 4.779820-1 3.616417-6 4.757639-1 3.617437-6 4.747376-1 3.625124-6 4.602366-1 3.627930-6 4.518499-1 3.633287-6 4.313318-1 3.636416-6 4.167895-1 3.639764-6 3.993743-1 3.642499-6 3.839073-1 3.644549-6 3.716782-1 3.647625-6 3.525018-1 3.650701-6 3.325616-1 3.655055-6 3.035664-1 3.658320-6 2.816430-1 3.659409-6 2.743651-1 3.663762-6 2.457077-1 3.668116-6 2.182884-1 3.674230-6 1.830318-1 3.677141-6 1.679468-1 3.685530-6 1.318751-1 3.689400-6 1.193261-1 3.691335-6 1.140756-1 3.693754-6 1.084892-1 3.695802-6 1.046120-1 3.697476-6 1.020254-1 3.698843-6 1.003013-1 3.700637-6 9.856638-2 3.702944-6 9.721070-2 3.704271-6 9.687305-2 3.710037-6 9.907766-2 3.711651-6 1.007399-1 3.719379-6 1.147119-1 3.803589-6 8.565465-1 3.815081-6 1.114888+0 3.825137-6 1.416758+0 3.833936-6 1.760941+0 3.841634-6 2.143434+0 3.848371-6 2.557634+0 3.854265-6 2.994950+0 3.863936-6 3.900371+0 3.885323-6 7.038091+0 3.892657-6 8.574261+0 3.898832-6 1.007830+1 3.905125-6 1.181494+1 3.911073-6 1.364368+1 3.914713-6 1.484848+1 3.924301-6 1.829367+1 3.933890-6 2.202385+1 3.937186-6 2.333804+1 3.943478-6 2.583992+1 3.947234-6 2.730288+1 3.951716-6 2.898871+1 3.955616-6 3.037965+1 3.959872-6 3.179126+1 3.964652-6 3.321158+1 3.968644-6 3.423912+1 3.972814-6 3.513598+1 3.979050-6 3.610019+1 3.983462-6 3.648585+1 3.988622-6 3.660745+1 3.992300-6 3.647288+1 3.994341-6 3.631875+1 3.999133-6 3.573759+1 4.003209-6 3.500919+1 4.005471-6 3.451676+1 4.009876-6 3.338846+1 4.013958-6 3.216040+1 4.017469-6 3.097993+1 4.022850-6 2.898380+1 4.026374-6 2.757796+1 4.030239-6 2.596878+1 4.033199-6 2.470281+1 4.037429-6 2.286344+1 4.041848-6 2.093078+1 4.045909-6 1.916905+1 4.050149-6 1.736735+1 4.054344-6 1.564239+1 4.058539-6 1.399161+1 4.061385-6 1.292078+1 4.064756-6 1.170979+1 4.068687-6 1.038129+1 4.069738-6 1.004213+1 4.077094-6 7.862725+0 4.082341-6 6.518667+0 4.086422-6 5.592780+0 4.090279-6 4.810599+0 4.093890-6 4.156616+0 4.097944-6 3.507541+0 4.101815-6 2.966687+0 4.106700-6 2.384651+0 4.111699-6 1.893872+0 4.119225-6 1.326958+0 4.125888-6 9.687398-1 4.127570-6 8.964164-1 4.130914-6 7.717614-1 4.133130-6 7.021314-1 4.135121-6 6.477271-1 4.137483-6 5.924937-1 4.141985-6 5.129049-1 4.144236-6 4.846550-1 4.145361-6 4.732134-1 4.146486-6 4.634926-1 4.147726-6 4.547241-1 4.156400-6 4.458956-1 4.158878-6 4.590978-1 4.163215-6 4.979941-1 4.166468-6 5.400856-1 4.171347-6 6.238163-1 4.173787-6 6.750010-1 4.176226-6 7.324807-1 4.191096-6 1.224991+0 4.196053-6 1.446317+0 4.199770-6 1.631875+0 4.204726-6 1.905725+0 4.209726-6 2.212377+0 4.216853-6 2.700641+0 4.221005-6 3.011025+0 4.224261-6 3.266491+0 4.234526-6 4.128870+0 4.244174-6 4.986742+0 4.246174-6 5.165850+0 4.252346-6 5.712039+0 4.256512-6 6.069116+0 4.258775-6 6.257055+0 4.262170-6 6.528713+0 4.265565-6 6.785578+0 4.270414-6 7.121410+0 4.272395-6 7.246449+0 4.275860-6 7.446316+0 4.280409-6 7.668476+0 4.284795-6 7.835318+0 4.286257-6 7.879937+0 4.291635-6 7.994387+0 4.295957-6 8.027952+0 4.297897-6 8.025765+0 4.302423-6 7.979051+0 4.306950-6 7.874946+0 4.317620-6 7.417762+0 4.322247-6 7.137957+0 4.326968-6 6.810864+0 4.331350-6 6.476579+0 4.334721-6 6.203662+0 4.339404-6 5.808658+0 4.344195-6 5.393849+0 4.348921-6 4.983440+0 4.354103-6 4.542533+0 4.361511-6 3.949559+0 4.371712-6 3.249509+0 4.376625-6 2.974388+0 4.380302-6 2.798214+0 4.384271-6 2.637853+0 4.387743-6 2.523317+0 4.388739-6 2.494921+0 4.392344-6 2.408545+0 4.393215-6 2.391511+0 4.400067-6 2.307627+0 4.402994-6 2.297655+0 4.408559-6 2.317496+0 4.411248-6 2.343693+0 4.415097-6 2.397780+0 4.418042-6 2.450862+0 4.424510-6 2.596272+0 4.439738-6 3.024921+0 4.446989-6 3.232880+0 4.453046-6 3.392203+0 4.458886-6 3.526333+0 4.464187-6 3.627615+0 4.467542-6 3.680598+0 4.475611-6 3.771277+0 4.478300-6 3.790079+0 4.489058-6 3.813467+0 4.500947-6 3.764695+0 4.522422-6 3.610106+0 4.531063-6 3.567472+0 4.535820-6 3.555219+0 4.542035-6 3.553195+0 4.544106-6 3.556199+0 4.555155-6 3.603089+0 4.563147-6 3.666840+0 4.568388-6 3.720041+0 4.581739-6 3.885434+0 4.612589-6 4.333773+0 4.630399-6 4.593972+0 4.686130-6 5.448500+0 4.716130-6 5.953978+0 4.742426-6 6.385709+0 4.786530-6 7.082340+0 4.796279-6 7.275220+0 4.802568-6 7.422430+0 4.809897-6 7.625843+0 4.817846-6 7.897540+0 4.826335-6 8.263969+0 4.833169-6 8.630448+0 4.839557-6 9.042255+0 4.846484-6 9.576460+0 4.850829-6 9.963954+0 4.856435-6 1.052975+1 4.864211-6 1.144954+1 4.869656-6 1.219572+1 4.878780-6 1.365248+1 4.887904-6 1.538991+1 4.901446-6 1.853512+1 4.924053-6 2.545367+1 4.941341-6 3.231145+1 4.961682-6 4.239014+1 4.977233-6 5.185532+1 5.008249-6 7.709445+1 5.017332-6 8.673906+1 5.025847-6 9.707698+1 5.033829-6 1.081659+2 5.041313-6 1.200661+2 5.048329-6 1.328363+2 5.054907-6 1.465300+2 5.061074-6 1.611903+2 5.072636-6 1.946955+2 5.082753-6 2.324425+2 5.091605-6 2.740653+2 5.099351-6 3.188694+2 5.106128-6 3.659351+2 5.112294-6 4.163114+2 5.121788-6 5.106530+2 5.137928-6 7.294479+2 5.153571-6 1.030969+3 5.162331-6 1.245892+3 5.172072-6 1.527853+3 5.178941-6 1.754905+3 5.191626-6 2.234804+3 5.196546-6 2.440887+3 5.204311-6 2.785998+3 5.210865-6 3.093212+3 5.213649-6 3.227191+3 5.222002-6 3.637370+3 5.226377-6 3.854647+3 5.230554-6 4.061669+3 5.236321-6 4.344087+3 5.241914-6 4.610525+3 5.246197-6 4.807056+3 5.252317-6 5.072813+3 5.257973-6 5.298570+3 5.260186-6 5.380841+3 5.268141-6 5.644043+3 5.274082-6 5.803401+3 5.281307-6 5.949158+3 5.287775-6 6.031643+3 5.295096-6 6.067866+3 5.300514-6 6.055102+3 5.311496-6 5.928209+3 5.317188-6 5.812050+3 5.324621-6 5.613557+3 5.330317-6 5.429468+3 5.334762-6 5.269000+3 5.341114-6 5.017978+3 5.347751-6 4.733890+3 5.355646-6 4.375515+3 5.362010-6 4.077286+3 5.369214-6 3.736635+3 5.374849-6 3.472161+3 5.381899-6 3.148522+3 5.387466-6 2.901575+3 5.400194-6 2.376050+3 5.409566-6 2.030784+3 5.424645-6 1.557478+3 5.455511-6 8.906966+2 5.462910-6 7.820717+2 5.470280-6 6.896076+2 5.477620-6 6.111762+2 5.484933-6 5.447892+2 5.492216-6 4.886352+2 5.499471-6 4.411000+2 5.506698-6 4.007714+2 5.513897-6 3.664351+2 5.521067-6 3.370614+2 5.535352-6 2.898221+2 5.549526-6 2.539317+2 5.563588-6 2.258791+2 5.577541-6 2.033617+2 5.591385-6 1.848691+2 5.605120-6 1.693951+2 5.618749-6 1.562505+2 5.632270-6 1.449479+2 5.645687-6 1.351307+2 5.658998-6 1.265301+2 5.672205-6 1.189385+2 5.698414-6 1.061171+2 5.724213-6 9.577294+1 5.749608-6 8.726968+1 5.774607-6 8.017322+1 5.799216-6 7.417668+1 5.823439-6 6.905592+1 5.847285-6 6.464275+1 5.870757-6 6.080726+1 5.893863-6 5.744629+1 5.942494-6 5.144435+1 5.983422-6 4.727463+1 6.027716-6 4.346775+1 6.067470-6 4.055252+1 6.112938-6 3.768067+1 6.150686-6 3.560219+1 6.183947-6 3.396579+1 6.220372-6 3.235522+1 6.290945-6 2.966978+1 6.357107-6 2.756172+1 6.419134-6 2.587672+1 6.500817-6 2.399002+1 6.531801-6 2.335539+1 6.634018-6 2.151646+1 6.723458-6 2.016449+1 6.801719-6 1.914330+1 6.870196-6 1.835345+1 6.990032-6 1.714870+1 7.085906-6 1.632252+1 7.260893-6 1.504307+1 7.458080-6 1.382783+1 7.711340-6 1.249062+1 7.902843-6 1.148449+1 8.010563-6 1.078439+1 8.071156-6 1.024226+1 8.110109-6 9.815615+0 8.151882-6 9.353750+0 8.161914-6 9.259140+0 8.192011-6 9.068601+0 8.212076-6 9.059102+0 8.232141-6 9.178903+0 8.237157-6 9.231877+0 8.252206-6 9.449783+0 8.265640-6 9.720096+0 8.276611-6 9.992424+0 8.291011-6 1.041424+1 8.309524-6 1.104465+1 8.332465-6 1.190900+1 8.352530-6 1.267414+1 8.372595-6 1.338120+1 8.377611-6 1.354199+1 8.396963-6 1.408162+1 8.404495-6 1.425215+1 8.415792-6 1.446229+1 8.427088-6 1.461582+1 8.439971-6 1.472176+1 8.452854-6 1.475700+1 8.462887-6 1.473912+1 8.472919-6 1.468551+1 8.492984-6 1.448859+1 8.513049-6 1.420359+1 8.550219-6 1.356570+1 8.586180-6 1.295250+1 8.613310-6 1.254843+1 8.654693-6 1.205297+1 8.716766-6 1.152999+1 8.820223-6 1.094190+1 8.977364-6 1.022093+1 9.021557-6 1.005460+1 9.066627-6 9.945171+0 9.088943-6 9.924091+0 9.121002-6 9.937386+0 9.153062-6 9.996982+0 9.222841-6 1.019145+1 9.245199-6 1.023801+1 9.267569-6 1.026378+1 9.288191-6 1.026582+1 9.308813-6 1.024657+1 9.353006-6 1.014445+1 9.447870-6 9.825356+0 9.491274-6 9.714972+0 9.542490-6 9.632696+0 9.700562-6 9.468896+0 1.021570-5 8.828112+0 1.090747-5 8.134330+0 1.145687-5 7.679268+0 1.231337-5 7.092194+0 1.300080-5 6.706380+0 1.387011-5 6.306320+0 1.521358-5 5.824921+0 1.666814-5 5.434459+0 1.750000-5 5.253619+0 1.935000-5 4.933509+0 2.250000-5 4.542608+0 2.630268-5 4.198774+0 2.951209-5 3.948822+0 3.112518-5 3.827502+0 3.307051-5 3.674389+0 3.488741-5 3.525136+0 3.672823-5 3.374079+0 3.900000-5 3.176717+0 4.220000-5 2.873517+0 4.480089-5 2.605971+0 4.677351-5 2.389802+0 4.860000-5 2.181885+0 5.060177-5 1.944192+0 5.233111-5 1.731808+0 5.358347-5 1.575084+0 5.510650-5 1.381195+0 5.653435-5 1.197888+0 5.787620-5 1.026688+0 5.912789-5 8.682647-1 6.030440-5 7.236391-1 6.140737-5 5.934326-1 6.217301-5 5.072324-1 6.408898-5 3.079696-1 6.456542-5 2.633746-1 6.486904-5 2.368592-1 6.576546-5 1.673054-1 6.607671-5 1.464381-1 6.723238-5 8.461255-2 6.756112-5 7.225265-2 6.813384-5 5.810863-2 6.851593-5 5.445249-2 6.885998-5 5.541420-2 6.887185-5 5.552177-2 6.963904-5 7.383016-2 6.999648-5 9.104250-2 7.015847-5 1.009712-1 7.062176-5 1.375300-1 7.112344-5 1.923955-1 7.148164-5 2.426050-1 7.187245-5 3.092057-1 7.223403-5 3.832199-1 7.262242-5 4.781000-1 7.289238-5 5.548711-1 7.329461-5 6.883138-1 7.351777-5 7.734018-1 7.403590-5 1.006519+0 7.492927-5 1.567529+0 7.523259-5 1.826723+0 7.555858-5 2.163730+0 7.579964-5 2.461967+0 7.621438-5 3.093463+0 7.658956-5 3.802910+0 7.677716-5 4.201822+0 7.696475-5 4.622972+0 7.715234-5 5.058778+0 7.729769-5 5.401342+0 7.741194-5 5.670992+0 7.766076-5 6.252553+0 7.785534-5 6.697640+0 7.798358-5 6.986125+0 7.819629-5 7.458969+0 7.852610-5 8.195082+0 7.979259-5 1.151512+1 8.026501-5 1.298132+1 8.059307-5 1.404311+1 8.092934-5 1.515501+1 8.132419-5 1.647878+1 8.156954-5 1.730639+1 8.198794-5 1.871871+1 8.246651-5 2.032050+1 8.290000-5 2.174060+1 8.330000-5 2.301067+1 8.392500-5 2.489693+1 8.450000-5 2.651391+1 8.500000-5 2.782292+1 8.550364-5 2.904820+1 8.600000-5 3.016384+1 8.660770-5 3.140932+1 8.720000-5 3.250445+1 8.790000-5 3.366127+1 8.875000-5 3.489100+1 8.992921-5 3.635826+1 9.067910-5 3.718685+1 9.230000-5 3.877223+1 9.465127-5 4.081862+1 1.057713-4 5.079409+1 1.085292-4 5.319571+1 1.099437-4 5.435476+1 1.102949-4 5.478729+1 1.105779-4 5.528528+1 1.107917-4 5.580101+1 1.110724-4 5.673636+1 1.113317-4 5.794432+1 1.115451-4 5.924415+1 1.116351-4 5.988583+1 1.119308-4 6.241573+1 1.122175-4 6.549775+1 1.126044-4 7.052872+1 1.131418-4 7.835294+1 1.134223-4 8.222643+1 1.136382-4 8.483212+1 1.138669-4 8.706347+1 1.140815-4 8.855302+1 1.142433-4 8.924891+1 1.144436-4 8.958805+1 1.145898-4 8.948132+1 1.147942-4 8.887358+1 1.150366-4 8.757078+1 1.153674-4 8.510202+1 1.158573-4 8.101572+1 1.162110-4 7.846840+1 1.165018-4 7.690019+1 1.166129-4 7.644338+1 1.169746-4 7.548555+1 1.172897-4 7.522073+1 1.175337-4 7.528430+1 1.183058-4 7.621227+1 1.193840-4 7.748597+1 1.231915-4 8.063800+1 1.285818-4 8.554405+1 1.309492-4 8.740862+1 1.339130-4 8.950509+1 1.374585-4 9.171497+1 1.408478-4 9.353891+1 1.478973-4 9.666216+1 1.529487-4 9.858048+1 1.622728-4 1.014705+2 1.768336-4 1.046567+2 1.864833-4 1.061572+2 2.024179-4 1.074286+2 2.200392-4 1.078017+2 2.547822-4 1.071193+2 2.826506-4 1.069349+2 3.235937-4 1.059381+2 3.683741-4 1.044159+2 4.439824-4 1.013001+2 5.252738-4 9.813482+1 6.317523-4 9.416807+1 6.780474-4 9.221215+1 8.291285-4 8.633468+1 9.015711-4 8.369918+1 9.728423-4 8.070861+1 1.060396-3 7.705398+1 1.104187-3 7.517927+1 1.148726-3 7.310133+1 1.190585-3 7.103832+1 1.230393-3 6.896876+1 1.268648-3 6.684271+1 1.300649-3 6.491491+1 1.329689-3 6.298689+1 1.357070-3 6.096044+1 1.380384-3 5.905000+1 1.401401-3 5.714162+1 1.415081-3 5.577792+1 1.428661-3 5.430027+1 1.443026-3 5.256731+1 1.454655-3 5.100163+1 1.464283-3 4.956322+1 1.473253-3 4.807247+1 1.481904-3 4.645409+1 1.491148-3 4.445682+1 1.498862-3 4.250183+1 1.505215-3 4.064773+1 1.510940-3 3.878589+1 1.517417-3 3.653321+1 1.525307-3 3.387711+1 1.529528-3 3.269005+1 1.533036-3 3.192920+1 1.535719-3 3.152497+1 1.538178-3 3.131024+1 1.540211-3 3.125470+1 1.541896-3 3.129600+1 1.543322-3 3.139393+1 1.546595-3 3.183715+1 1.549340-3 3.243698+1 1.551535-3 3.305684+1 1.554628-3 3.412122+1 1.558451-3 3.569720+1 1.571805-3 4.240371+1 1.574763-3 4.393619+1 1.578202-3 4.566872+1 1.582186-3 4.757831+1 1.585656-3 4.913832+1 1.589574-3 5.077454+1 1.595000-3 5.281875+1 1.599562-3 5.435027+1 1.605265-3 5.605299+1 1.611811-3 5.776468+1 1.618754-3 5.935643+1 1.627810-3 6.116990+1 1.637499-3 6.286258+1 1.647910-3 6.446277+1 1.658926-3 6.595880+1 1.669149-3 6.719701+1 1.681977-3 6.857908+1 1.706229-3 7.076746+1 1.723980-3 7.210308+1 1.752569-3 7.388939+1 1.791758-3 7.579116+1 1.834879-3 7.732325+1 1.880940-3 7.854058+1 1.948793-3 7.974423+1 2.014969-3 8.044424+1 2.087987-3 8.079574+1 2.205754-3 8.083368+1 2.327546-3 8.033258+1 2.482296-3 7.925386+1 2.646524-3 7.775837+1 2.863645-3 7.544144+1 3.154767-3 7.219939+1 3.420287-3 6.928097+1 3.757103-3 6.571878+1 4.158793-3 6.165434+1 4.591125-3 5.758495+1 4.944204-3 5.449682+1 5.513823-3 4.984870+1 6.111770-3 4.545871+1 6.779021-3 4.103786+1 7.300652-3 3.792400+1 7.846708-3 3.495393+1 8.406115-3 3.220580+1 9.202073-3 2.875880+1 1.019633-2 2.512048+1 1.147437-2 2.133586+1 1.302353-2 1.779181+1 1.535835-2 1.394085+1 1.922605-2 9.925124+0 2.436253-2 6.891658+0 2.921543-2 5.175562+0 3.477447-2 3.907756+0 3.925455-2 3.197240+0 4.646300-2 2.396129+0 5.397532-2 1.844909+0 6.339126-2 1.381372+0 7.931505-2 9.157179-1 1.047129-1 5.455360-1 1.305513-1 3.589394-1 1.716842-1 2.117978-1 2.349430-1 1.148106-1 3.494529-1 5.243788-2 6.588191-1 1.485046-2 2.039158+0 1.553827-3 6.158159+0 1.704161-4 1.859734+1 1.868627-5 5.616308+1 2.048914-6 1.696098+2 2.246591-7 5.122134+2 2.463338-8 1.584893+3 2.572917-9 5.011872+3 2.57292-10 1.584893+4 2.57292-11 5.011872+4 2.57292-12 1.000000+5 6.46288-13 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.495900-7 1.258900-6 1.346500-6 1.584900-6 2.134100-6 1.995300-6 3.382300-6 2.511900-6 5.360500-6 3.162300-6 8.495800-6 3.981100-6 1.346500-5 5.011900-6 2.134000-5 6.309600-6 3.382200-5 7.943300-6 5.360300-5 1.000000-5 8.495500-5 1.258900-5 1.346400-4 1.584900-5 2.133900-4 1.995300-5 3.381900-4 2.511900-5 5.359800-4 3.162300-5 8.493900-4 3.981100-5 1.345800-3 5.011900-5 2.132400-3 6.309600-5 3.378800-3 7.943300-5 5.348400-3 1.000000-4 8.464100-3 1.258900-4 1.339400-2 1.584900-4 2.115900-2 1.995300-4 3.338300-2 2.511900-4 5.251500-2 3.162300-4 8.224000-2 3.981100-4 1.279000-1 5.011900-4 1.969600-1 6.309600-4 2.987300-1 7.943300-4 4.435600-1 1.000000-3 6.398300-1 1.258900-3 8.898300-1 1.584900-3 1.185500+0 1.995300-3 1.510500+0 2.511900-3 1.850000+0 3.162300-3 2.207300+0 3.981100-3 2.601300+0 5.011900-3 3.051700+0 6.309600-3 3.583100+0 7.943300-3 4.165800+0 1.000000-2 4.764500+0 1.258900-2 5.323600+0 1.584900-2 5.794500+0 1.995300-2 6.160800+0 2.511900-2 6.432200+0 3.162300-2 6.617900+0 3.981100-2 6.715700+0 5.011900-2 6.719500+0 6.309600-2 6.626300+0 7.943300-2 6.460500+0 1.000000-1 6.219900+0 1.258900-1 5.927000+0 1.584900-1 5.595000+0 1.995300-1 5.235600+0 2.511900-1 4.862000+0 3.162300-1 4.484100+0 3.981100-1 4.110400+0 5.011900-1 3.746400+0 6.309600-1 3.395600+0 7.943300-1 3.060900+0 1.000000+0 2.743300+0 1.258900+0 2.444100+0 1.584900+0 2.164300+0 1.995300+0 1.904500+0 2.511900+0 1.665700+0 3.162300+0 1.447900+0 3.981100+0 1.251300+0 5.011900+0 1.075400+0 6.309600+0 9.194600-1 7.943300+0 7.823700-1 1.000000+1 6.627900-1 1.258900+1 5.592400-1 1.584900+1 4.701500-1 1.995300+1 3.939500-1 2.511900+1 3.291100-1 3.162300+1 2.742000-1 3.981100+1 2.278900-1 5.011900+1 1.889900-1 6.309600+1 1.564200-1 7.943300+1 1.292200-1 1.000000+2 1.065800-1 1.258900+2 8.776700-2 1.584900+2 7.217700-2 1.995300+2 5.928100-2 2.511900+2 4.863300-2 3.162300+2 3.985400-2 3.981100+2 3.262600-2 5.011900+2 2.668500-2 6.309600+2 2.180600-2 7.943300+2 1.780500-2 1.000000+3 1.452700-2 1.258900+3 1.184300-2 1.584900+3 9.649200-3 1.995300+3 7.856500-3 2.511900+3 6.392900-3 3.162300+3 5.199000-3 3.981100+3 4.225700-3 5.011900+3 3.432900-3 6.309600+3 2.787400-3 7.943300+3 2.262200-3 1.000000+4 1.835100-3 1.258900+4 1.488000-3 1.584900+4 1.206000-3 1.995300+4 9.771000-4 2.511900+4 7.913300-4 3.162300+4 6.406400-4 3.981100+4 5.184600-4 5.011900+4 4.194400-4 6.309600+4 3.392100-4 7.943300+4 2.742400-4 1.000000+5 2.216500-4 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159551-4 3.981072-4 3.976751-4 5.011872-4 5.005052-4 6.309573-4 6.298852-4 7.943282-4 7.926432-4 1.000000-3 9.973569-4 1.258925-3 1.254812-3 1.584893-3 1.578511-3 1.995262-3 1.985394-3 2.511886-3 2.496666-3 3.162278-3 3.138754-3 3.981072-3 3.944436-3 5.011872-3 4.954296-3 6.309573-3 6.219263-3 7.943282-3 7.801623-3 1.000000-2 9.779207-3 1.258925-2 1.224790-2 1.584893-2 1.532509-2 1.995262-2 1.915221-2 2.511886-2 2.389819-2 3.162278-2 2.976313-2 3.981072-2 3.698626-2 5.011872-2 4.584948-2 6.309573-2 5.669653-2 7.943282-2 6.987698-2 1.000000-1 8.586908-2 1.258925-1 1.051582-1 1.584893-1 1.283098-1 1.995262-1 1.560217-1 2.511886-1 1.890496-1 3.162278-1 2.282771-1 3.981072-1 2.747177-1 5.011872-1 3.295574-1 6.309573-1 3.941642-1 7.943282-1 4.701849-1 1.000000+0 5.596467-1 1.258925+0 6.650181-1 1.584893+0 7.893624-1 1.995262+0 9.364390-1 2.511886+0 1.110980+0 3.162278+0 1.318662+0 3.981072+0 1.566567+0 5.011872+0 1.863313+0 6.309573+0 2.219463+0 7.943282+0 2.647928+0 1.000000+1 3.164482+0 1.258925+1 3.788485+0 1.584893+1 4.543630+0 1.995262+1 5.458772+0 2.511886+1 6.569493+0 3.162278+1 7.919422+0 3.981072+1 9.561861+0 5.011872+1 1.156263+1 6.309573+1 1.400225+1 7.943282+1 1.697984+1 1.000000+2 2.061720+1 1.258925+2 2.506444+1 1.584893+2 3.050604+1 1.995262+2 3.716928+1 2.511886+2 4.533440+1 3.162278+2 5.534675+1 3.981072+2 6.763106+1 5.011872+2 8.271419+1 6.309573+2 1.012440+2 7.943282+2 1.240192+2 1.000000+3 1.520289+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739888-9 3.981072-5 4.342114-9 5.011872-5 6.881454-9 6.309573-5 1.090589-8 7.943282-5 1.727919-8 1.000000-4 2.738005-8 1.258925-4 4.338609-8 1.584893-4 6.872520-8 1.995262-4 1.088437-7 2.511886-4 1.723323-7 3.162278-4 2.726347-7 3.981072-4 4.320341-7 5.011872-4 6.820449-7 6.309573-4 1.072112-6 7.943282-4 1.685001-6 1.000000-3 2.643120-6 1.258925-3 4.113477-6 1.584893-3 6.382177-6 1.995262-3 9.868224-6 2.511886-3 1.522063-5 3.162278-3 2.352381-5 3.981072-3 3.663598-5 5.011872-3 5.757670-5 6.309573-3 9.031005-5 7.943282-3 1.416594-4 1.000000-2 2.207932-4 1.258925-2 3.413576-4 1.584893-2 5.238424-4 1.995262-2 8.004127-4 2.511886-2 1.220677-3 3.162278-2 1.859650-3 3.981072-2 2.824454-3 5.011872-2 4.269242-3 6.309573-2 6.399208-3 7.943282-2 9.555848-3 1.000000-1 1.413092-2 1.258925-1 2.073432-2 1.584893-1 3.017955-2 1.995262-1 4.350454-2 2.511886-1 6.213907-2 3.162278-1 8.795066-2 3.981072-1 1.233894-1 5.011872-1 1.716299-1 6.309573-1 2.367932-1 7.943282-1 3.241433-1 1.000000+0 4.403533-1 1.258925+0 5.939073-1 1.584893+0 7.955308-1 1.995262+0 1.058823+0 2.511886+0 1.400906+0 3.162278+0 1.843616+0 3.981072+0 2.414505+0 5.011872+0 3.148559+0 6.309573+0 4.090110+0 7.943282+0 5.295354+0 1.000000+1 6.835518+0 1.258925+1 8.800769+0 1.584893+1 1.130530+1 1.995262+1 1.449385+1 2.511886+1 1.854937+1 3.162278+1 2.370335+1 3.981072+1 3.024886+1 5.011872+1 3.855609+1 6.309573+1 4.909348+1 7.943282+1 6.245298+1 1.000000+2 7.938280+1 1.258925+2 1.008281+2 1.584893+2 1.279833+2 1.995262+2 1.623570+2 2.511886+2 2.058542+2 3.162278+2 2.608810+2 3.981072+2 3.304761+2 5.011872+2 4.184730+2 6.309573+2 5.297133+2 7.943282+2 6.703091+2 1.000000+3 8.479711+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.870000-6 1.361433+7 4.880000-6 1.354722+7 4.880000-6 2.036141+7 5.128614-6 1.808790+7 5.308844-6 1.664129+7 5.370318-6 1.617142+7 5.623413-6 1.439602+7 5.700000-6 1.389717+7 6.000000-6 1.213499+7 6.025596-6 1.199463+7 6.350000-6 1.036917+7 6.382635-6 1.021819+7 6.700000-6 8.876356+6 7.000000-6 7.771734+6 7.079458-6 7.506419+6 7.350000-6 6.664883+6 7.413102-6 6.484190+6 7.700000-6 5.719377+6 7.762471-6 5.566427+6 8.100000-6 4.806594+6 8.128305-6 4.748222+6 8.500000-6 4.041920+6 8.511380-6 4.022215+6 8.850000-6 3.473723+6 8.912509-6 3.381862+6 9.225714-6 2.953823+6 9.332543-6 2.821900+6 9.600000-6 2.514402+6 9.772372-6 2.335969+6 1.000000-5 2.118269+6 1.016000-5 1.978570+6 1.016000-5 2.146882+6 1.020000-5 2.104440+6 1.030000-5 1.999811+6 1.035142-5 1.948458+6 1.040000-5 1.901399+6 1.047129-5 1.834789+6 1.055000-5 1.764737+6 1.060000-5 1.722053+6 1.062000-5 1.705126+6 1.067000-5 1.663607+6 1.071519-5 1.627223+6 1.072000-5 1.623388+6 1.077000-5 1.584136+6 1.082000-5 1.546148+6 1.087000-5 1.509368+6 1.092000-5 1.473756+6 1.097000-5 1.439286+6 1.100000-5 1.419096+6 1.103000-5 1.398966+6 1.108000-5 1.366218+6 1.112000-5 1.340778+6 1.116000-5 1.315990+6 1.120000-5 1.291837+6 1.123500-5 1.270991+6 1.127000-5 1.250614+6 1.131000-5 1.227887+6 1.135011-5 1.205684+6 1.138500-5 1.186835+6 1.141000-5 1.173589+6 1.143500-5 1.160556+6 1.146500-5 1.145193+6 1.149000-5 1.132616+6 1.150000-5 1.127636+6 1.152000-5 1.117569+6 1.154200-5 1.106639+6 1.156000-5 1.097813+6 1.158500-5 1.085724+6 1.160700-5 1.075248+6 1.163000-5 1.064456+6 1.165000-5 1.055202+6 1.167000-5 1.045968+6 1.169000-5 1.036855+6 1.171000-5 1.027860+6 1.173000-5 1.018982+6 1.175000-5 1.010219+6 1.176500-5 1.003722+6 1.178000-5 9.972875+5 1.183500-5 9.742282+5 1.185000-5 9.680817+5 1.186000-5 9.640173+5 1.187000-5 9.599794+5 1.187700-5 9.571685+5 1.188502-5 9.539637+5 1.189200-5 9.511881+5 1.190000-5 9.480224+5 1.190700-5 9.452660+5 1.191300-5 9.429133+5 1.192000-5 9.401801+5 1.192700-5 9.374594+5 1.193300-5 9.351372+5 1.193900-5 9.328241+5 1.194600-5 9.301368+5 1.195200-5 9.278432+5 1.196000-5 9.247990+5 1.196700-5 9.221483+5 1.197300-5 9.198859+5 1.198100-5 9.168831+5 1.198900-5 9.138959+5 1.200000-5 9.098138+5 1.201500-5 9.042943+5 1.202264-5 9.015041+5 1.206500-5 8.859412+5 1.208500-5 8.787427+5 1.210500-5 8.716382+5 1.212000-5 8.663707+5 1.213500-5 8.611549+5 1.215500-5 8.542800+5 1.216186-5 8.519417+5 1.217000-5 8.491512+5 1.219200-5 8.416815+5 1.221500-5 8.339873+5 1.223500-5 8.273909+5 1.226000-5 8.192669+5 1.228500-5 8.112759+5 1.230800-5 8.040394+5 1.233000-5 7.972198+5 1.236000-5 7.880782+5 1.239000-5 7.791160+5 1.242000-5 7.703295+5 1.245000-5 7.617150+5 1.248000-5 7.532697+5 1.251000-5 7.449898+5 1.254000-5 7.368725+5 1.258000-5 7.262966+5 1.258925-5 7.238844+5 1.262000-5 7.158271+5 1.266000-5 7.055823+5 1.270000-5 6.956071+5 1.273503-5 6.870760+5 1.275000-5 6.834681+5 1.280000-5 6.716401+5 1.285000-5 6.602015+5 1.290000-5 6.491412+5 1.297000-5 6.342678+5 1.303167-5 6.217317+5 1.310000-5 6.084377+5 1.318257-5 5.931708+5 1.327000-5 5.776038+5 1.333521-5 5.665662+5 1.335000-5 5.641257+5 1.342000-5 5.528251+5 1.352000-5 5.376007+5 1.360000-5 5.261578+5 1.370000-5 5.127212+5 1.381000-5 4.989865+5 1.392000-5 4.862753+5 1.396368-5 4.814431+5 1.405000-5 4.724172+5 1.420000-5 4.579171+5 1.435000-5 4.449148+5 1.450000-5 4.332717+5 1.465000-5 4.228638+5 1.485000-5 4.107166+5 1.500000-5 4.027712+5 1.515000-5 3.956197+5 1.522000-5 3.928267+5 1.531087-5 3.892345+5 1.540000-5 3.861855+5 1.566751-5 3.781544+5 1.570000-5 3.772533+5 1.590000-5 3.729681+5 1.620000-5 3.681910+5 1.621810-5 3.679164+5 1.640590-5 3.659441+5 1.650000-5 3.653931+5 1.659587-5 3.646768+5 1.678804-5 3.641878+5 1.680000-5 3.641937+5 1.698244-5 3.638785+5 1.717908-5 3.645559+5 1.737801-5 3.651689+5 1.750000-5 3.660225+5 1.757924-5 3.667388+5 1.771400-5 3.675787+5 1.785000-5 3.688145+5 1.800000-5 3.705018+5 1.819701-5 3.724726+5 1.830000-5 3.736895+5 1.850000-5 3.765238+5 1.862087-5 3.779395+5 1.885000-5 3.810783+5 1.905461-5 3.844493+5 1.920000-5 3.864360+5 1.950000-5 3.912703+5 1.980000-5 3.959124+5 2.000000-5 3.994224+5 2.020000-5 4.023436+5 2.055000-5 4.081000+5 2.070000-5 4.108156+5 2.090000-5 4.138122+5 2.104000-5 4.159763+5 2.130000-5 4.202635+5 2.137962-5 4.216097+5 2.150000-5 4.233031+5 2.170000-5 4.262783+5 2.199400-5 4.307486+5 2.213095-5 4.329226+5 2.250000-5 4.378666+5 2.270000-5 4.406582+5 2.300000-5 4.449298+5 2.317395-5 4.469290+5 2.344229-5 4.501436+5 2.400000-5 4.569239+5 2.426610-5 4.595603+5 2.516400-5 4.685397+5 2.540973-5 4.704230+5 2.580000-5 4.734390+5 2.630268-5 4.773149+5 2.770000-5 4.851549+5 2.800000-5 4.862557+5 2.818383-5 4.868815+5 2.917427-5 4.901091+5 2.951209-5 4.906311+5 2.985383-5 4.910674+5 3.090295-5 4.922615+5 3.150000-5 4.918652+5 3.235937-5 4.912081+5 3.273407-5 4.908189+5 3.311311-5 4.899448+5 3.402400-5 4.877782+5 3.467369-5 4.860900+5 3.570000-5 4.822350+5 3.650000-5 4.790977+5 3.672823-5 4.781856+5 3.758374-5 4.739904+5 3.850000-5 4.693770+5 3.900000-5 4.668582+5 3.950000-5 4.639253+5 4.027170-5 4.592903+5 4.168694-5 4.509732+5 4.220000-5 4.475023+5 4.365158-5 4.378793+5 4.450000-5 4.323040+5 4.466836-5 4.311972+5 4.570882-5 4.237600+5 4.677351-5 4.162355+5 4.800000-5 4.078125+5 4.900000-5 4.004295+5 5.011872-5 3.924018+5 5.150000-5 3.826867+5 5.308844-5 3.712090+5 5.432503-5 3.625175+5 5.559043-5 3.539251+5 5.623413-5 3.494415+5 5.754399-5 3.404298+5 5.956621-5 3.272023+5 6.025596-5 3.228238+5 6.095369-5 3.182861+5 6.309573-5 3.049242+5 6.500000-5 2.936694+5 6.606934-5 2.876171+5 6.683439-5 2.832404+5 6.918310-5 2.703182+5 7.161434-5 2.578931+5 7.328245-5 2.497998+5 7.413102-5 2.457173+5 7.762471-5 2.299363+5 8.035261-5 2.186334+5 8.073000-5 2.171345+5 8.073000-5 1.476650+6 8.115000-5 1.629247+6 8.120000-5 1.647396+6 8.120000-5 2.269376+6 8.145000-5 2.408038+6 8.160000-5 2.491301+6 8.175000-5 2.575943+6 8.190000-5 2.659747+6 8.205000-5 2.744046+6 8.230000-5 2.883656+6 8.235000-5 2.911647+6 8.260000-5 3.049251+6 8.265000-5 3.076993+6 8.282000-5 3.168195+6 8.290000-5 3.212057+6 8.300000-5 3.266139+6 8.317638-5 3.357714+6 8.330000-5 3.423436+6 8.340000-5 3.475705+6 8.370000-5 3.625925+6 8.385000-5 3.700774+6 8.415000-5 3.844625+6 8.420000-5 3.868289+6 8.450000-5 4.003309+6 8.465000-5 4.069885+6 8.500000-5 4.216174+6 8.515000-5 4.277377+6 8.550000-5 4.409866+6 8.570000-5 4.483625+6 8.600000-5 4.584908+6 8.630000-5 4.683100+6 8.650000-5 4.742507+6 8.690000-5 4.856071+6 8.709636-5 4.906574+6 8.720000-5 4.933412+6 8.750000-5 5.006533+6 8.780000-5 5.071252+6 8.830000-5 5.173185+6 8.850000-5 5.208241+6 8.920000-5 5.322841+6 9.015711-5 5.443831+6 9.120108-5 5.541763+6 9.230000-5 5.616122+6 9.400000-5 5.691122+6 9.549926-5 5.727032+6 9.580000-5 5.734193+6 9.660509-5 5.749414+6 9.885531-5 5.772216+6 9.900000-5 5.773673+6 1.000000-4 5.780213+6 1.040000-4 5.784122+6 1.047129-4 5.782845+6 1.050000-4 5.780851+6 1.083927-4 5.757883+6 1.096478-4 5.738549+6 1.122018-4 5.700126+6 1.125000-4 5.693642+6 1.161449-4 5.604384+6 1.190000-4 5.511365+6 1.190500-4 5.509306+6 1.190500-4 6.069171+6 1.216186-4 5.959880+6 1.230269-4 5.901768+6 1.273503-4 5.690351+6 1.303167-4 5.529950+6 1.318257-4 5.451519+6 1.333521-4 5.364681+6 1.364583-4 5.195288+6 1.366900-4 5.182238+6 1.380384-4 5.104962+6 1.430000-4 4.836848+6 1.513561-4 4.408761+6 1.531087-4 4.322790+6 1.540000-4 4.280124+6 1.603245-4 3.993128+6 1.621810-4 3.913867+6 1.678804-4 3.675277+6 1.737801-4 3.449711+6 1.757924-4 3.374279+6 1.800000-4 3.224631+6 1.840772-4 3.088489+6 1.850000-4 3.058912+6 1.862087-4 3.019618+6 1.972423-4 2.689427+6 1.980000-4 2.668814+6 2.000000-4 2.614069+6 2.018366-4 2.564359+6 2.137962-4 2.273084+6 2.162719-4 2.219086+6 2.238721-4 2.059441+6 2.317395-4 1.911690+6 2.371374-4 1.818568+6 2.426610-4 1.730126+6 2.454709-4 1.686982+6 2.457300-4 1.683083+6 2.483133-4 1.644636+6 2.500000-4 1.620232+6 2.630268-4 1.447444+6 2.691535-4 1.375496+6 2.730000-4 1.332263+6 2.754229-4 1.305810+6 2.786121-4 1.272155+6 2.818383-4 1.239215+6 2.917427-4 1.145549+6 2.951209-4 1.115979+6 3.000000-4 1.074536+6 3.054921-4 1.030193+6 3.126079-4 9.766299+5 3.235937-4 9.011179+5 3.273407-4 8.773111+5 3.350000-4 8.308628+5 3.388442-4 8.087657+5 3.427678-4 7.870856+5 3.630781-4 6.866225+5 3.715352-4 6.502392+5 3.758374-4 6.325598+5 3.801894-4 6.152654+5 4.120975-4 5.064535+5 4.168694-4 4.924415+5 4.216965-4 4.787398+5 4.315191-4 4.525117+5 4.365158-4 4.398697+5 4.518559-4 4.040903+5 4.623810-4 3.819139+5 4.677351-4 3.711894+5 4.731513-4 3.607770+5 4.786301-4 3.506186+5 4.841724-4 3.406744+5 5.128614-4 2.951540+5 5.308844-4 2.708977+5 5.370318-4 2.631504+5 5.688529-4 2.274835+5 5.821032-4 2.146556+5 5.956621-4 2.025693+5 6.000000-4 1.989084+5 6.095369-4 1.910851+5 6.382635-4 1.698304+5 6.606934-4 1.555069+5 6.839116-4 1.424249+5 6.918310-4 1.382548+5 7.585776-4 1.090052+5 7.673615-4 1.058293+5 7.762471-4 1.027257+5 7.800000-4 1.014532+5 7.943282-4 9.675250+4 8.035261-4 9.388495+4 8.709636-4 7.612445+4 8.810489-4 7.388739+4 9.015711-4 6.954274+4 9.120108-4 6.746888+4 1.000000-3 5.296841+4 1.011579-3 5.139795+4 1.035142-3 4.834638+4 1.047129-3 4.689048+4 1.096478-3 4.148868+4 1.148154-3 3.672799+4 1.161449-3 3.562864+4 1.202264-3 3.247909+4 1.244515-3 2.960578+4 1.303167-3 2.617791+4 1.318257-3 2.538687+4 1.333521-3 2.461207+4 1.380384-3 2.241935+4 1.396368-3 2.173217+4 1.428894-3 2.042131+4 1.513561-3 1.748932+4 1.549900-3 1.639320+4 1.549900-3 1.897466+5 1.566751-3 1.857792+5 1.584893-3 1.816482+5 1.595000-3 1.794068+5 1.603245-3 1.771629+5 1.621810-3 1.722532+5 1.670000-3 1.603735+5 1.737801-3 1.447003+5 1.778279-3 1.363320+5 1.819701-3 1.284487+5 1.840772-3 1.247484+5 1.862087-3 1.211550+5 2.000000-3 1.010616+5 2.018366-3 9.874225+4 2.065380-3 9.313176+4 2.100000-3 8.928119+4 2.137962-3 8.530916+4 2.187762-3 8.046299+4 2.238721-3 7.589303+4 2.317395-3 6.943850+4 2.344229-3 6.740971+4 2.398833-3 6.352761+4 2.436040-3 6.105847+4 2.483133-3 5.812028+4 2.511886-3 5.642220+4 2.540973-3 5.472664+4 2.660725-3 4.844005+4 2.722701-3 4.557095+4 2.786121-3 4.287144+4 2.851018-3 4.033219+4 2.884032-3 3.911949+4 2.951209-3 3.680253+4 3.019952-3 3.462305+4 3.090295-3 3.253592+4 3.198895-3 2.963649+4 3.311311-3 2.699537+4 3.388442-3 2.536678+4 3.400000-3 2.513442+4 3.467369-3 2.381655+4 3.589219-3 2.166258+4 3.758374-3 1.908875+4 3.890451-3 1.736113+4 3.935501-3 1.682073+4 4.027170-3 1.578990+4 4.073803-3 1.528953+4 4.216965-3 1.388172+4 4.415704-3 1.220299+4 4.570882-3 1.107855+4 4.623810-3 1.072726+4 4.786301-3 9.738841+3 4.841724-3 9.430061+3 4.954502-3 8.832687+3 5.188000-3 7.748278+3 5.308844-3 7.257061+3 5.370318-3 7.023268+3 5.432503-3 6.797004+3 5.623413-3 6.161022+3 5.754399-3 5.770483+3 5.821032-3 5.582102+3 6.095369-3 4.887583+3 6.237348-3 4.573431+3 6.309573-3 4.424017+3 6.456542-3 4.139672+3 6.606934-3 3.873604+3 6.839116-3 3.506247+3 6.918310-3 3.390283+3 7.161434-3 3.064645+3 7.328245-3 2.865118+3 7.413102-3 2.770283+3 7.673615-3 2.504204+3 7.762471-3 2.421316+3 8.128305-3 2.116327+3 8.222426-3 2.045453+3 8.413951-3 1.910638+3 8.609938-3 1.784704+3 8.810489-3 1.667077+3 9.120108-3 1.505015+3 9.225714-3 1.454574+3 9.772372-3 1.226635+3 9.800000-3 1.216416+3 1.000000-2 1.144930+3 1.023293-2 1.068560+3 1.059254-2 9.634553+2 1.083927-2 8.991960+2 1.096478-2 8.686914+2 1.174898-2 7.062135+2 1.188502-2 6.822400+2 1.202264-2 6.588208+2 1.230269-2 6.143639+2 1.288250-2 5.342530+2 1.303167-2 5.159147+2 1.333521-2 4.811041+2 1.412538-2 4.040115+2 1.462177-2 3.637926+2 1.500000-2 3.363692+2 1.566751-2 2.943001+2 1.603245-2 2.742225+2 1.659587-2 2.466448+2 1.717908-2 2.218419+2 1.819701-2 1.858973+2 1.840772-2 1.793734+2 1.883649-2 1.670044+2 1.905461-2 1.611435+2 2.113489-2 1.168369+2 2.137962-2 1.127340+2 2.213095-2 1.012696+2 2.317395-2 8.777705+1 2.344229-2 8.466538+1 2.454709-2 7.328301+1 2.630268-2 5.901361+1 2.917427-2 4.263715+1 2.951209-2 4.112475+1 3.311311-2 2.856433+1 3.388442-2 2.655518+1 3.548134-2 2.295099+1 3.715352-2 1.983604+1 3.845918-2 1.778049+1 4.216965-2 1.325099+1 4.731513-2 9.173694+0 5.128614-2 7.091716+0 5.432503-2 5.893478+0 5.495409-2 5.679203+0 5.559043-2 5.472720+0 5.754399-2 4.897244+0 5.956621-2 4.382286+0 6.606934-2 3.140150+0 7.079458-2 2.512542+0 7.585776-2 2.010381+0 7.673615-2 1.937044+0 8.222426-2 1.549913+0 8.511380-2 1.386384+0 8.810489-2 1.240108+0 8.912509-2 1.194864+0 9.225714-2 1.068797+0 9.332543-2 1.029803+0 1.047129-1 7.101432-1 1.059254-1 6.842356-1 1.096478-1 6.120471-1 1.122019-1 5.682028-1 1.174898-1 4.897141-1 1.230269-1 4.224378-1 1.244515-1 4.071156-1 1.273503-1 3.781191-1 1.303167-1 3.511884-1 1.396368-1 2.813694-1 1.428894-1 2.613417-1 1.445440-1 2.518690-1 1.462177-1 2.427400-1 1.500000-1 2.236530-1 1.603245-1 1.806647-1 1.621810-1 1.741166-1 1.640590-1 1.678732-1 1.659587-1 1.618538-1 1.698244-1 1.504548-1 1.737801-1 1.398587-1 1.862087-1 1.123609-1 1.883649-1 1.083353-1 1.905461-1 1.044538-1 1.949845-1 9.710312-2 2.089296-1 7.823852-2 2.113489-1 7.547190-2 2.137962-1 7.280314-2 2.299100-1 5.801731-2 2.317395-1 5.661637-2 2.344229-1 5.464163-2 2.371374-1 5.273577-2 2.483133-1 4.575433-2 2.570396-1 4.113673-2 2.600160-1 3.970353-2 2.630268-1 3.832029-2 2.660725-1 3.700661-2 2.818383-1 3.108413-2 2.851018-1 3.001863-2 2.917427-1 2.799836-2 2.951209-1 2.703981-2 2.985383-1 2.611406-2 3.019952-1 2.523649-2 3.090295-1 2.356899-2 3.126079-1 2.277702-2 3.235937-1 2.055723-2 3.273407-1 1.986742-2 3.349654-1 1.855644-2 3.388442-1 1.793375-2 3.427678-1 1.734385-2 3.590900-1 1.515138-2 3.630781-1 1.467293-2 3.715352-1 1.372491-2 3.758374-1 1.327411-2 3.935501-1 1.164777-2 3.981072-1 1.127334-2 4.027170-1 1.091094-2 4.168694-1 9.893755-3 4.265795-1 9.283385-3 4.365158-1 8.710676-3 4.415705-1 8.437706-3 4.466836-1 8.173297-3 4.570882-1 7.669894-3 4.623810-1 7.435903-3 4.731513-1 6.989175-3 4.795100-1 6.742576-3 4.841724-1 6.569288-3 4.897788-1 6.368904-3 5.011872-1 5.986928-3 5.069907-1 5.809252-3 5.128614-1 5.636873-3 5.248075-1 5.307310-3 5.308844-1 5.149830-3 5.370318-1 4.997019-3 5.495409-1 4.705404-3 5.559043-1 4.569840-3 5.754399-1 4.186194-3 5.821032-1 4.065607-3 5.888437-1 3.948493-3 5.956621-1 3.834989-3 6.025596-1 3.724747-3 6.095369-1 3.620827-3 6.382635-1 3.233400-3 6.456542-1 3.143205-3 6.531306-1 3.055716-3 6.606935-1 2.970664-3 6.683439-1 2.890549-3 6.918310-1 2.662972-3 6.998420-1 2.591167-3 7.079458-1 2.521465-3 7.244360-1 2.387636-3 7.328245-1 2.325427-3 7.585776-1 2.148384-3 7.673615-1 2.092418-3 7.852356-1 1.985067-3 8.000000-1 1.904860-3 8.222427-1 1.792659-3 8.317638-1 1.747549-3 8.413951-1 1.703574-3 8.511380-1 1.660792-3 8.609938-1 1.620407-3 8.709636-1 1.581004-3 8.912509-1 1.505063-3 9.015711-1 1.468472-3 9.120108-1 1.432770-3 9.225714-1 1.397937-3 9.440609-1 1.333126-3 9.549926-1 1.301856-3 9.660509-1 1.271326-3 9.772372-1 1.241512-3 1.000000+0 1.183965-3 1.011579+0 1.157034-3 1.074800+0 1.025006-3 1.083927+0 1.007829-3 1.096478+0 9.849079-4 1.122018+0 9.406169-4 1.135011+0 9.192697-4 1.148154+0 8.990917-4 1.174898+0 8.600554-4 1.202264+0 8.227156-4 1.216186+0 8.046601-4 1.230269+0 7.870010-4 1.244515+0 7.697297-4 1.258925+0 7.528825-4 1.288250+0 7.214855-4 1.318257+0 6.913993-4 1.333521+0 6.768332-4 1.364583+0 6.486137-4 1.380384+0 6.349830-4 1.412538+0 6.095181-4 1.445440+0 5.850754-4 1.462177+0 5.732265-4 1.500000+0 5.477917-4 1.513561+0 5.391264-4 1.566751+0 5.084473-4 1.603245+0 4.889750-4 1.659587+0 4.611555-4 1.678804+0 4.525965-4 1.698244+0 4.441962-4 1.737801+0 4.278609-4 1.778279+0 4.121297-4 1.840772+0 3.896104-4 1.883649+0 3.758394-4 1.905461+0 3.691374-4 1.949845+0 3.560901-4 2.000000+0 3.422360-4 2.065380+0 3.254600-4 2.113489+0 3.143734-4 2.137962+0 3.089726-4 2.213095+0 2.933204-4 2.264644+0 2.833307-4 2.344229+0 2.689800-4 2.398833+0 2.601583-4 2.426610+0 2.558565-4 2.511886+0 2.433734-4 2.570396+0 2.353929-4 2.691535+0 2.202085-4 2.754229+0 2.132575-4 2.786121+0 2.098648-4 2.884032+0 2.000069-4 2.951209+0 1.936949-4 3.090295+0 1.816620-4 3.162278+0 1.761410-4 3.198895+0 1.734439-4 3.311311+0 1.655975-4 3.427678+0 1.581075-4 3.589219+0 1.486451-4 3.672823+0 1.442844-4 3.715352+0 1.421523-4 3.890451+0 1.339343-4 4.027170+0 1.280851-4 4.265795+0 1.188985-4 4.365158+0 1.155240-4 4.415704+0 1.138729-4 4.623810+0 1.075009-4 4.786301+0 1.029578-4 5.069907+0 9.580855-5 5.188000+0 9.317777-5 5.308844+0 9.061923-5 5.559043+0 8.571096-5 5.754399+0 8.220560-5 6.165950+0 7.561908-5 6.309573+0 7.360486-5 6.456542+0 7.164430-5 6.839116+0 6.696835-5 7.079458+0 6.431093-5 7.673615+0 5.851318-5 7.943282+0 5.625667-5 8.128305+0 5.480088-5 8.511380+0 5.200135-5 8.810489+0 4.999623-5 9.772372+0 4.443296-5 1.023293+1 4.222451-5 1.035142+1 4.168978-5 1.083927+1 3.961768-5 1.096478+1 3.911603-5 1.122018+1 3.813168-5 1.318257+1 3.190095-5 1.380384+1 3.035290-5 1.445440+1 2.887994-5 1.462177+1 2.852306-5 1.496236+1 2.782246-5 1.757924+1 2.337716-5 1.778279+1 2.308862-5 1.905461+1 2.145914-5 2.065380+1 1.970286-5 2.113489+1 1.922804-5 2.187762+1 1.853718-5 2.483133+1 1.620974-5 2.570396+1 1.562804-5 2.722701+1 1.472152-5 2.754229+1 1.454663-5 2.951209+1 1.354005-5 2.985383+1 1.337920-5 3.090295+1 1.290805-5 4.027170+1 9.806002-6 4.315191+1 9.128163-6 4.623810+1 8.505844-6 4.677351+1 8.406330-6 4.897788+1 8.019780-6 5.011872+1 7.833236-6 7.161434+1 5.438905-6 8.035261+1 4.835490-6 8.912509+1 4.354237-6 9.015711+1 4.303813-6 9.549926+1 4.060316-6 9.660509+1 4.013298-6 1.000000+2 3.875484-6 1.428894+2 2.700930-6 1.603245+2 2.404085-6 1.778279+2 2.166435-6 1.798871+2 2.141524-6 1.905461+2 2.021201-6 1.927525+2 1.997962-6 1.995262+2 1.929833-6 2.851018+2 1.348410-6 6.382635+2 6.002753-7 7.079458+2 5.411610-7 7.161434+2 5.349631-7 7.585776+2 5.050222-7 7.673615+2 4.992383-7 7.943282+2 4.822810-7 2.264644+3 1.690694-7 1.000000+5 3.822959-9 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.870000-6 4.870000-6 1.016000-5 4.873381-6 1.016000-5 5.287845-6 1.067000-5 5.100490-6 1.108000-5 4.983427-6 1.146500-5 4.909064-6 1.178000-5 4.878965-6 1.210500-5 4.881267-6 1.242000-5 4.919323-6 1.273503-5 4.995001-6 1.303167-5 5.101998-6 1.335000-5 5.254347-6 1.370000-5 5.464014-6 1.405000-5 5.710847-6 1.450000-5 6.068826-6 1.570000-5 7.088857-6 1.621810-5 7.490114-6 1.659587-5 7.751193-6 1.698244-5 7.988173-6 1.750000-5 8.258175-6 1.800000-5 8.470230-6 1.862087-5 8.672538-6 1.920000-5 8.813425-6 2.000000-5 8.946752-6 2.104000-5 9.046822-6 2.250000-5 9.101390-6 2.426610-5 9.098937-6 2.917427-5 8.981738-6 3.672823-5 8.799672-6 4.450000-5 8.678066-6 5.308844-5 8.604720-6 6.606934-5 8.570444-6 8.073000-5 8.580570-6 8.073000-5 1.473245-5 8.120000-5 1.485056-5 8.120000-5 1.511928-5 8.265000-5 1.531257-5 8.465000-5 1.544636-5 8.850000-5 1.554374-5 1.000000-4 1.561150-5 1.190500-4 1.565350-5 1.190500-4 1.654585-5 1.430000-4 1.668935-5 1.862087-4 1.700240-5 2.500000-4 1.741529-5 3.715352-4 1.804765-5 5.128614-4 1.865090-5 6.839116-4 1.923993-5 8.810489-4 1.977816-5 1.148154-3 2.034356-5 1.428894-3 2.079873-5 1.549900-3 2.096421-5 1.549900-3 3.350050-5 2.722701-3 3.372067-5 6.309573-3 3.386669-5 3.388442-2 3.394670-5 1.000000+5 3.395984-5 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.870000-6 0.0 8.073000-5 0.0 8.073000-5 2.852451-8 8.120000-5 2.907160-8 8.120000-5 3.026585-8 8.205000-5 3.085434-8 8.317638-5 3.136865-8 8.465000-5 3.177566-8 8.690000-5 3.209918-8 9.120108-5 3.234845-8 1.050000-4 3.260187-8 1.190500-4 3.272347-8 1.190500-4 3.277186-8 1.757924-4 3.280902-8 6.606934-4 3.232964-8 1.396368-3 3.195015-8 1.549900-3 3.189849-8 1.549900-3 4.874814-5 1.670000-3 4.890675-5 2.884032-3 4.933589-5 5.308844-3 4.955571-5 2.317395-2 4.966064-5 1.000000+5 4.964113-5 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.870000-6 0.0 4.880000-6 1.000000-8 4.880000-6 6.653378-9 1.016000-5 5.286619-6 1.016000-5 4.872155-6 1.067000-5 5.569510-6 1.112000-5 6.146013-6 1.156000-5 6.663138-6 1.197300-5 7.097007-6 1.236000-5 7.450775-6 1.275000-5 7.750343-6 1.310000-5 7.968561-6 1.342000-5 8.127054-6 1.381000-5 8.272052-6 1.435000-5 8.404422-6 1.570000-5 8.611143-6 1.621810-5 8.727986-6 1.680000-5 8.919174-6 1.737801-5 9.178638-6 1.800000-5 9.529770-6 1.862087-5 9.948332-6 1.920000-5 1.038658-5 2.020000-5 1.122831-5 2.150000-5 1.242730-5 2.344229-5 1.433642-5 2.917427-5 2.019253-5 4.220000-5 3.349305-5 6.683439-5 5.826501-5 8.073000-5 7.214943-5 8.073000-5 6.596903-5 8.120000-5 6.632037-5 8.120000-5 6.605046-5 8.515000-5 6.965122-5 1.190500-4 1.033638-4 1.190500-4 1.024714-4 6.382635-4 6.191351-4 1.549900-3 1.528904-3 1.549900-3 1.467651-3 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.549900-3 1.733534+5 1.595000-3 1.642456+5 1.670000-3 1.469950+5 1.819701-3 1.178672+5 2.238721-3 6.991523+4 2.511886-3 5.208182+4 3.019952-3 3.203206+4 3.400000-3 2.328080+4 4.027170-3 1.464473+4 4.841724-3 8.755044+3 5.754399-3 5.361185+3 6.839116-3 3.259254+3 8.128305-3 1.967978+3 9.800000-3 1.131470+3 1.188502-2 6.347417+2 1.462177-2 3.385236+2 1.819701-2 1.730057+2 2.317395-2 8.169573+1 2.951209-2 3.827636+1 3.845918-2 1.654842+1 5.128614-2 6.600070+0 6.606934-2 2.922415+0 1.174898-1 4.556415-1 1.621810-1 1.619945-1 1.949845-1 9.033390-2 2.299100-1 5.397420-2 2.630268-1 3.564869-2 2.985383-1 2.429292-2 3.388442-1 1.668278-2 3.758374-1 1.234800-2 4.168694-1 9.203225-3 4.570882-1 7.134657-3 5.011872-1 5.569306-3 5.495409-1 4.377327-3 6.025596-1 3.465150-3 6.606935-1 2.763676-3 7.244360-1 2.221129-3 7.852356-1 1.846549-3 8.511380-1 1.544908-3 9.225714-1 1.300505-3 1.000000+0 1.101500-3 1.135011+0 8.552406-4 1.258925+0 7.004401-4 1.380384+0 5.907479-4 1.513561+0 5.015652-4 1.659587+0 4.290340-4 1.840772+0 3.624725-4 2.065380+0 3.027915-4 2.344229+0 2.502457-4 2.691535+0 2.048705-4 3.090295+0 1.690086-4 3.589219+0 1.382916-4 4.265795+0 1.106171-4 5.069907+0 8.913530-5 6.165950+0 7.035206-5 7.673615+0 5.443762-5 9.772372+0 4.133815-5 1.318257+1 2.967898-5 1.778279+1 2.148027-5 2.570396+1 1.453909-5 4.315191+1 8.492132-6 8.035261+1 4.498551-6 1.603245+2 2.236604-6 6.382635+2 5.584311-7 1.000000+5 3.556700-9 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.549900-3 3.468600-5 1.000000+5 3.468600-5 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.549900-3 5.335500-5 1.000000+5 5.335500-5 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.549900-3 1.461859-3 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.190500-4 5.598649+5 1.540000-4 4.951220+5 1.603245-4 4.824339+5 1.678804-4 4.646223+5 1.800000-4 4.347480+5 2.000000-4 3.897760+5 2.162719-4 3.573241+5 2.317395-4 3.286269+5 2.500000-4 2.973320+5 2.786121-4 2.552234+5 3.126079-4 2.154110+5 3.427678-4 1.867765+5 3.801894-4 1.577933+5 4.315191-4 1.274208+5 4.786301-4 1.062569+5 5.370318-4 8.614841+4 6.095369-4 6.791779+4 6.839116-4 5.429830+4 7.800000-4 4.174660+4 8.810489-4 3.248375+4 1.011579-3 2.424919+4 1.161449-3 1.794630+4 1.318257-3 1.352237+4 1.513561-3 9.853676+3 1.737801-3 7.123776+3 2.000000-3 5.082380+3 2.317395-3 3.538899+3 2.660725-3 2.502440+3 3.090295-3 1.706809+3 3.589219-3 1.155671+3 4.216965-3 7.536153+2 4.954502-3 4.877193+2 5.821032-3 3.133104+2 6.918310-3 1.934853+2 8.222426-3 1.185558+2 9.772372-3 7.208464+1 1.174898-2 4.205920+1 1.412538-2 2.435168+1 1.717908-2 1.351811+1 2.113489-2 7.190335+0 2.630268-2 3.663103+0 3.311311-2 1.786864+0 4.216965-2 8.344664-1 5.432503-2 3.730546-1 8.222426-2 9.882500-2 1.396368-1 1.802182-2 1.737801-1 8.984599-3 2.137962-1 4.684122-3 2.483133-1 2.945917-3 2.851018-1 1.934526-3 3.235937-1 1.325478-3 3.630781-1 9.468465-4 4.027170-1 7.043903-4 4.466836-1 5.279690-4 4.897788-1 4.113309-4 5.370318-1 3.226046-4 5.888437-1 2.548105-4 6.456542-1 2.027893-4 6.998420-1 1.672009-4 7.673615-1 1.352084-4 8.413951-1 1.101757-4 9.225714-1 9.036026-5 1.000000+0 7.648000-5 1.122018+0 6.072227-5 1.244515+0 4.968853-5 1.364583+0 4.187726-5 1.500000+0 3.537300-5 1.659587+0 2.979027-5 1.840772+0 2.516827-5 2.065380+0 2.102317-5 2.344229+0 1.737455-5 2.691535+0 1.422468-5 3.090295+0 1.173511-5 3.589219+0 9.602034-6 4.265795+0 7.680388-6 5.069907+0 6.188903-6 6.165950+0 4.884737-6 7.673615+0 3.779771-6 9.772372+0 2.870187-6 1.318257+1 2.060714-6 1.757924+1 1.509957-6 2.483133+1 1.046886-6 4.027170+1 6.331326-7 7.161434+1 3.511564-7 1.428894+2 1.744186-7 2.851018+2 8.702282-8 2.264644+3 1.091208-8 1.000000+5 2.46950-10 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.190500-4 2.532700-5 1.000000+5 2.532700-5 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.190500-4 3.324800-8 1.000000+5 3.324800-8 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.190500-4 9.368975-5 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.120000-5 6.219800+5 8.160000-5 6.945500+5 8.190000-5 7.507200+5 8.230000-5 8.256500+5 8.260000-5 8.813400+5 8.290000-5 9.369500+5 8.330000-5 1.009400+6 8.370000-5 1.079300+6 8.415000-5 1.154900+6 8.450000-5 1.210900+6 8.500000-5 1.286000+6 8.550000-5 1.354800+6 8.600000-5 1.417400+6 8.650000-5 1.473700+6 8.720000-5 1.542700+6 8.780000-5 1.593200+6 8.850000-5 1.643200+6 8.920000-5 1.684800+6 9.015711-5 1.730000+6 9.120108-5 1.767000+6 9.230000-5 1.795500+6 9.400000-5 1.824900+6 9.580000-5 1.843700+6 9.900000-5 1.861200+6 1.040000-4 1.870400+6 1.083927-4 1.865900+6 1.125000-4 1.849300+6 1.161449-4 1.823100+6 1.190000-4 1.795000+6 1.230269-4 1.745100+6 1.273503-4 1.681200+6 1.318257-4 1.607600+6 1.366900-4 1.523900+6 1.430000-4 1.415100+6 1.513561-4 1.280000+6 1.621810-4 1.125500+6 1.737801-4 9.826800+5 1.862087-4 8.516000+5 2.000000-4 7.285500+5 2.162719-4 6.092100+5 2.457300-4 4.507700+5 2.730000-4 3.492800+5 3.000000-4 2.757800+5 3.350000-4 2.075000+5 3.758374-4 1.532500+5 4.168694-4 1.158400+5 4.731513-4 8.154400+4 5.308844-4 5.889400+4 6.000000-4 4.136000+4 6.918310-4 2.719100+4 7.943282-4 1.794600+4 9.120108-4 1.175200+4 1.047129-3 7.633100+3 1.202264-3 4.919700+3 1.380384-3 3.146700+3 1.584893-3 1.997700+3 1.819701-3 1.259300+3 2.100000-3 7.751000+2 2.436040-3 4.653100+2 2.851018-3 2.689400+2 3.311311-3 1.585300+2 3.890451-3 8.905400+1 4.570882-3 4.966200+1 5.370318-3 2.749400+1 6.309573-3 1.511200+1 7.413102-3 8.246900+0 8.810489-3 4.277200+0 1.059254-2 2.106000+0 1.288250-2 9.839000-1 1.603245-2 4.169300-1 2.137962-2 1.334900-1 5.559043-2 2.970549-3 7.079458-2 1.141437-3 8.810489-2 4.840129-4 1.047129-1 2.475688-4 1.230269-1 1.333961-4 1.428894-1 7.567094-5 1.640590-1 4.517298-5 1.862087-1 2.835659-5 2.089296-1 1.869504-5 2.344229-1 1.241203-5 2.630268-1 8.303813-6 2.917427-1 5.825078-6 3.235937-1 4.115078-6 3.590900-1 2.923801-6 3.981072-1 2.098245-6 4.365158-1 1.571131-6 4.795100-1 1.178300-6 5.248075-1 9.012049-7 5.754399-1 6.904215-7 6.382635-1 5.154299-7 6.998420-1 4.003442-7 7.585776-1 3.230408-7 8.317638-1 2.540033-7 8.912509-1 2.136612-7 9.440609-1 1.861971-7 1.000000+0 1.634100-7 1.074800+0 1.400500-7 1.148154+0 1.225537-7 1.230269+0 1.073429-7 1.333521+0 9.265050-8 1.462177+0 7.892284-8 1.678804+0 6.250810-8 1.883649+0 5.185976-8 2.113489+0 4.336507-8 2.398833+0 3.588504-8 2.754229+0 2.941764-8 3.162278+0 2.429893-8 3.672823+0 1.990443-8 4.365158+0 1.593733-8 5.188000+0 1.285473-8 6.309573+0 1.015519-8 7.943282+0 7.760638-9 1.023293+1 5.824446-9 1.380384+1 4.187726-9 1.905461+1 2.960153-9 2.722701+1 2.030694-9 4.623810+1 1.173433-9 8.912509+1 6.00725-10 1.778279+2 2.98906-10 7.079458+2 7.46766-11 1.000000+5 5.27650-13 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.120000-5 1.583100-5 1.000000+5 1.583100-5 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.120000-5 3.342900-8 1.000000+5 3.342900-8 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.120000-5 6.533557-5 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.073000-5 1.259516+6 8.115000-5 1.413760+6 8.145000-5 1.527280+6 8.175000-5 1.640660+6 8.205000-5 1.753992+6 8.235000-5 1.866060+6 8.265000-5 1.976836+6 8.300000-5 2.103092+6 8.340000-5 2.242292+6 8.385000-5 2.391540+6 8.420000-5 2.501576+6 8.465000-5 2.634568+6 8.515000-5 2.770560+6 8.570000-5 2.905524+6 8.630000-5 3.035684+6 8.690000-5 3.148860+6 8.750000-5 3.246372+6 8.830000-5 3.354676+6 8.920000-5 3.451248+6 9.015711-5 3.530062+6 9.120108-5 3.594235+6 9.230000-5 3.643404+6 9.400000-5 3.693932+6 9.660509-5 3.736187+6 1.000000-4 3.760888+6 1.047129-4 3.768054+6 1.083927-4 3.754695+6 1.122018-4 3.719826+6 1.161449-4 3.658678+6 1.190000-4 3.598608+6 1.230269-4 3.494109+6 1.273503-4 3.361859+6 1.318257-4 3.211398+6 1.364583-4 3.049380+6 1.430000-4 2.822300+6 1.513561-4 2.550973+6 1.621810-4 2.240580+6 1.737801-4 1.955341+6 1.850000-4 1.717328+6 1.980000-4 1.480528+6 2.162719-4 1.209872+6 2.426610-4 9.217639+5 2.691535-4 7.172717+5 2.951209-4 5.699300+5 3.273407-4 4.365609+5 3.715352-4 3.128660+5 4.120975-4 2.365196+5 4.623810-4 1.719856+5 5.308844-4 1.163866+5 6.000000-4 8.167000+4 6.839116-4 5.552216+4 7.673615-4 3.929793+4 8.810489-4 2.576385+4 1.011579-3 1.675530+4 1.161449-3 1.081154+4 1.333521-3 6.921507+3 1.513561-3 4.568804+3 1.737801-3 2.884424+3 2.018366-3 1.738993+3 2.344229-3 1.040298+3 2.722701-3 6.179724+2 3.198895-3 3.498446+2 3.758374-3 1.965648+2 4.415704-3 1.096016+2 5.188000-3 6.065091+1 6.095369-3 3.331348+1 7.161434-3 1.816663+1 8.413951-3 9.835133+0 1.000000-2 5.057400+0 1.202264-2 2.467882+0 1.462177-2 1.142544+0 1.840772-2 4.580236-1 2.454709-2 1.448467-1 3.388442-2 3.960140-2 5.754399-2 4.682381-3 7.585776-2 1.544438-3 9.225714-2 7.087938-4 1.096478-1 3.590284-4 1.273503-1 2.002992-4 1.462177-1 1.177023-4 1.659587-1 7.281376-5 1.862087-1 4.736255-5 2.089296-1 3.103141-5 2.317395-1 2.135786-5 2.570396-1 1.480483-5 2.818383-1 1.075930-5 3.090295-1 7.874158-6 3.349654-1 6.029565-6 3.630781-1 4.646007-6 3.935501-1 3.603587-6 4.265795-1 2.816325-6 4.623810-1 2.216475-6 5.069907-1 1.698815-6 5.495409-1 1.354194-6 5.956621-1 1.087540-6 6.382635-1 9.083093-7 6.918310-1 7.416636-7 7.673615-1 5.767616-7 8.317638-1 4.771460-7 9.015711-1 3.972551-7 9.772372-1 3.328377-7 1.083927+0 2.683111-7 1.174898+0 2.288274-7 1.288250+0 1.923729-7 1.412538+0 1.628511-7 1.566751+0 1.360604-7 1.737801+0 1.144906-7 1.949845+0 9.525582-8 2.213095+0 7.845973-8 2.511886+0 6.509314-8 2.884032+0 5.349782-8 3.311311+0 4.429499-8 3.890451+0 3.582428-8 4.623810+0 2.875553-8 5.559043+0 2.292546-8 6.839116+0 1.791313-8 8.511380+0 1.390885-8 1.096478+1 1.046214-8 1.462177+1 7.629987-9 2.113489+1 5.142869-9 2.985383+1 3.578916-9 4.897788+1 2.145570-9 9.660509+1 1.073836-9 1.927525+2 5.34611-10 7.673615+2 1.33620-10 1.000000+5 1.02350-12 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.073000-5 1.579300-5 1.000000+5 1.579300-5 1 13000 7 7 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.073000-5 3.344200-8 1.000000+5 3.344200-8 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.073000-5 6.490356-5 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.016000-5 1.683126+5 1.020000-5 1.590042+5 1.030000-5 1.361862+5 1.040000-5 1.157812+5 1.047129-5 1.026228+5 1.055000-5 8.932820+4 1.062000-5 7.859820+4 1.067000-5 7.146620+4 1.072000-5 6.478680+4 1.077000-5 5.855380+4 1.082000-5 5.273600+4 1.087000-5 4.730400+4 1.092000-5 4.224400+4 1.097000-5 3.755080+4 1.103000-5 3.238040+4 1.108000-5 2.843800+4 1.112000-5 2.551400+4 1.116000-5 2.278360+4 1.120000-5 2.024180+4 1.123500-5 1.816804+4 1.127000-5 1.622904+4 1.131000-5 1.417394+4 1.135011-5 1.228004+4 1.138500-5 1.076364+4 1.141000-5 9.750060+3 1.143500-5 8.796480+3 1.146500-5 7.728340+3 1.149000-5 6.900660+3 1.152000-5 5.980760+3 1.154200-5 5.355480+3 1.156000-5 4.874520+3 1.158500-5 4.251120+3 1.160700-5 3.744760+3 1.163000-5 3.256640+3 1.165000-5 2.865940+3 1.167000-5 2.505920+3 1.169000-5 2.176100+3 1.171000-5 1.876028+3 1.173000-5 1.605024+3 1.175000-5 1.362692+3 1.176500-5 1.199366+3 1.178000-5 1.051672+3 1.183500-5 6.401920+2 1.185000-5 5.625500+2 1.186000-5 5.188160+2 1.187000-5 4.814420+2 1.187700-5 4.590460+2 1.188502-5 4.371367+2 1.189200-5 4.213420+2 1.190000-5 4.069240+2 1.190700-5 3.975260+2 1.191300-5 3.918480+2 1.192000-5 3.879800+2 1.192700-5 3.870760+2 1.193300-5 3.886240+2 1.193900-5 3.923100+2 1.194600-5 3.993020+2 1.195200-5 4.075880+2 1.196000-5 4.219060+2 1.196700-5 4.374820+2 1.197300-5 4.530840+2 1.198100-5 4.770920+2 1.198900-5 5.047540+2 1.200000-5 5.486580+2 1.201500-5 6.194280+2 1.206500-5 9.439300+2 1.208500-5 1.110916+3 1.210500-5 1.298562+3 1.212000-5 1.452552+3 1.213500-5 1.617838+3 1.215500-5 1.855432+3 1.217000-5 2.046240+3 1.219200-5 2.345560+3 1.221500-5 2.682620+3 1.223500-5 2.995220+3 1.226000-5 3.411280+3 1.228500-5 3.854640+3 1.230800-5 4.285860+3 1.233000-5 4.719180+3 1.236000-5 5.341620+3 1.239000-5 5.999900+3 1.242000-5 6.692820+3 1.245000-5 7.419060+3 1.248000-5 8.178180+3 1.251000-5 8.968660+3 1.254000-5 9.790060+3 1.258000-5 1.093124+4 1.262000-5 1.212330+4 1.266000-5 1.336404+4 1.270000-5 1.465150+4 1.275000-5 1.632366+4 1.280000-5 1.806232+4 1.285000-5 1.986328+4 1.290000-5 2.172440+4 1.297000-5 2.442340+4 1.303167-5 2.688507+4 1.310000-5 2.969860+4 1.318257-5 3.320862+4 1.327000-5 3.704460+4 1.335000-5 4.065080+4 1.342000-5 4.387280+4 1.352000-5 4.857480+4 1.360000-5 5.240940+4 1.370000-5 5.728120+4 1.381000-5 6.272520+4 1.392000-5 6.824240+4 1.405000-5 7.483580+4 1.420000-5 8.251120+4 1.435000-5 9.023380+4 1.450000-5 9.797340+4 1.465000-5 1.057056+5 1.485000-5 1.159688+5 1.500000-5 1.236058+5 1.522000-5 1.346792+5 1.540000-5 1.436026+5 1.566751-5 1.565942+5 1.590000-5 1.675898+5 1.620000-5 1.813310+5 1.650000-5 1.945344+5 1.680000-5 2.071820+5 1.717908-5 2.223519+5 1.757924-5 2.373738+5 1.800000-5 2.520780+5 1.850000-5 2.681360+5 1.905461-5 2.842177+5 1.950000-5 2.958900+5 2.000000-5 3.077580+5 2.070000-5 3.223420+5 2.137962-5 3.344391+5 2.213095-5 3.456944+5 2.300000-5 3.562500+5 2.400000-5 3.655620+5 2.516400-5 3.731925+5 2.630268-5 3.779224+5 2.770000-5 3.807500+5 2.917427-5 3.808769+5 3.090295-5 3.781534+5 3.273407-5 3.727290+5 3.467369-5 3.649569+5 3.672823-5 3.551426+5 3.900000-5 3.430080+5 4.168694-5 3.276714+5 4.466836-5 3.101917+5 4.800000-5 2.907200+5 5.150000-5 2.708980+5 5.559043-5 2.490733+5 6.025596-5 2.262498+5 6.606934-5 2.011385+5 7.328245-5 1.747556+5 8.282000-5 1.468238+5 9.549926-5 1.189679+5 1.122018-4 9.304228+4 1.333521-4 7.095754+4 2.162719-4 3.292497+4 2.454709-4 2.674538+4 2.818383-4 2.114409+4 3.273407-4 1.626157+4 3.801894-4 1.241043+4 4.518559-4 9.017512+3 5.128614-4 7.086083+3 5.821032-4 5.526427+3 6.606934-4 4.277748+3 7.762471-4 3.062047+3 9.015711-4 2.231100+3 1.035142-3 1.652851+3 1.202264-3 1.185552+3 1.396368-3 8.436240+2 1.603245-3 6.117709+2 1.862087-3 4.285323+2 2.137962-3 3.062955+2 2.483133-3 2.112598+2 2.884032-3 1.446249+2 3.388442-3 9.541551+1 3.935501-3 6.438333+1 4.623810-3 4.182044+1 5.432503-3 2.695801+1 6.456542-3 1.670957+1 7.673615-3 1.027837+1 9.120108-3 6.274453+0 1.083927-2 3.801587+0 1.303167-2 2.210102+0 1.566751-2 1.275231+0 1.905461-2 7.055231-1 2.344229-2 3.740729-1 2.917427-2 1.899915-1 3.715352-2 8.912645-2 4.731513-2 4.147703-2 6.606934-2 1.429256-2 8.511380-2 6.339382-3 1.273503-1 1.732624-3 1.603245-1 8.309416-4 1.949845-1 4.480639-4 2.317395-1 2.612904-4 2.660725-1 1.709294-4 3.019952-1 1.166534-4 3.388442-1 8.296035-5 3.758374-1 6.143700-5 4.168694-1 4.581005-5 4.623810-1 3.441814-5 5.069907-1 2.688160-5 5.559043-1 2.114703-5 6.095369-1 1.675895-5 6.683439-1 1.338516-5 7.328245-1 1.077425-5 8.000000-1 8.827700-6 8.709636-1 7.329721-6 9.549926-1 6.037780-6 1.083927+0 4.675161-6 1.202264+0 3.816645-6 1.318257+0 3.207644-6 1.445440+0 2.713808-6 1.566751+0 2.358356-6 1.737801+0 1.984309-6 1.949845+0 1.651527-6 2.213095+0 1.360549-6 2.511886+0 1.128770-6 2.884032+0 9.276240-7 3.311311+0 7.680282-7 3.890451+0 6.211523-7 4.623810+0 4.985858-7 5.559043+0 3.974986-7 6.839116+0 3.105919-7 8.511380+0 2.411719-7 1.083927+1 1.837354-7 1.445440+1 1.339652-7 2.065380+1 9.137951-8 2.951209+1 6.280141-8 4.897788+1 3.720174-8 9.549926+1 1.883785-8 1.905461+2 9.377706-9 7.585776+2 2.343756-9 1.000000+5 1.77470-11 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.016000-5 1.016000-5 1.000000+5 1.016000-5 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.016000-5 0.0 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.880000-6 6.814193+6 5.128614-6 6.069135+6 5.370318-6 5.428631+6 5.700000-6 4.668029+6 6.025596-6 4.030794+6 6.382635-6 3.436031+6 6.700000-6 2.986160+6 7.000000-6 2.616834+6 7.350000-6 2.244821+6 7.700000-6 1.927568+6 8.100000-6 1.620892+6 8.500000-6 1.363769+6 8.850000-6 1.172995+6 9.225714-6 9.981346+5 9.600000-6 8.502591+5 1.000000-5 7.166260+5 1.035142-5 6.169763+5 1.071519-5 5.287377+5 1.120000-5 4.309162+5 1.165000-5 3.568196+5 1.216186-5 2.883747+5 1.273503-5 2.278345+5 1.333521-5 1.788083+5 1.531087-5 8.486923+4 1.590000-5 6.962293+4 1.640590-5 5.948426+4 1.678804-5 5.329123+4 1.717908-5 4.804293+4 1.750000-5 4.444029+4 1.785000-5 4.113329+4 1.819701-5 3.840941+4 1.850000-5 3.642196+4 1.885000-5 3.451997+4 1.920000-5 3.298283+4 1.950000-5 3.191657+4 1.980000-5 3.105217+4 2.020000-5 3.017084+4 2.055000-5 2.961724+4 2.090000-5 2.923574+4 2.130000-5 2.897784+4 2.170000-5 2.887870+4 2.213095-5 2.891771+4 2.270000-5 2.915287+4 2.344229-5 2.969096+4 2.426610-5 3.049087+4 2.580000-5 3.225960+4 2.818383-5 3.508404+4 2.985383-5 3.682726+4 3.150000-5 3.825830+4 3.311311-5 3.936831+4 3.467369-5 4.016586+4 3.650000-5 4.077696+4 3.850000-5 4.109896+4 4.027170-5 4.110926+4 4.220000-5 4.086229+4 4.450000-5 4.028796+4 4.677351-5 3.946689+4 4.900000-5 3.847763+4 5.150000-5 3.722030+4 5.432503-5 3.565724+4 5.754399-5 3.378689+4 6.095369-5 3.177597+4 6.500000-5 2.943864+4 6.918310-5 2.714220+4 7.413102-5 2.463076+4 8.035261-5 2.181354+4 8.709636-5 1.918040+4 9.549926-5 1.642604+4 1.050000-4 1.389205+4 1.161449-4 1.152849+4 1.303167-4 9.240587+3 1.531087-4 6.716570+3 1.757924-4 5.079342+3 1.972423-4 3.996722+3 2.137962-4 3.354775+3 2.371374-4 2.658379+3 2.630268-4 2.090454+3 2.917427-4 1.631622+3 3.235937-4 1.263525+3 3.630781-4 9.435915+2 4.216965-4 6.394083+2 4.677351-4 4.854582+2 5.128614-4 3.776415+2 5.688529-4 2.824657+2 6.382635-4 2.030651+2 7.585776-4 1.226214+2 8.709636-4 8.128295+1 1.000000-3 5.348809+1 1.148154-3 3.497370+1 1.303167-3 2.351849+1 1.428894-3 1.752137+1 1.621810-3 1.159846+1 1.840772-3 7.622508+0 2.187762-3 4.260864+0 2.540973-3 2.553909+0 2.951209-3 1.519415+0 3.467369-3 8.618945-1 4.073803-3 4.850158-1 4.786301-3 2.707951-1 5.623413-3 1.500221-1 6.606934-3 8.249115-2 7.762471-3 4.503024-2 9.225714-3 2.335533-2 1.096478-2 1.202342-2 1.333521-2 5.619879-3 1.659587-2 2.382534-3 2.213095-2 7.632687-4 5.495409-2 2.044075-5 7.079458-2 7.503654-6 8.912509-2 3.040098-6 1.059254-1 1.554829-6 1.244515-1 8.377607-7 1.445440-1 4.753621-7 1.659587-1 2.837881-7 1.883649-1 1.781206-7 2.113489-1 1.174185-7 2.371374-1 7.794872-8 2.660725-1 5.213805-8 2.951209-1 3.655656-8 3.273407-1 2.581028-8 3.630781-1 1.835809-8 4.027170-1 1.315988-8 4.415705-1 9.856190-9 4.841724-1 7.432962-9 5.308844-1 5.647180-9 5.821032-1 4.322630-9 6.382635-1 3.333215-9 6.998420-1 2.589615-9 7.673615-1 2.027450-9 8.609938-1 1.502762-9 9.120108-1 1.301257-9 9.660509-1 1.134385-9 1.011579+0 1.022384-9 1.083927+0 8.81710-10 1.148154+0 7.84850-10 1.230269+0 6.87543-10 1.333521+0 5.93817-10 1.462177+0 5.06348-10 1.698244+0 3.93654-10 1.905461+0 3.26808-10 2.137962+0 2.73472-10 2.426610+0 2.26448-10 2.786121+0 1.85753-10 3.198895+0 1.53524-10 3.715352+0 1.25830-10 4.415704+0 1.00804-10 5.308844+0 8.02100-11 6.456542+0 6.34194-11 8.128305+0 4.85051-11 1.035142+1 3.69015-11 1.380384+1 2.68750-11 1.905461+1 1.89967-11 2.754229+1 1.28763-11 4.677351+1 7.44198-12 9.015711+1 3.81043-12 1.798871+2 1.89615-12 7.161434+2 4.73745-13 1.000000+5 3.38630-15 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.880000-6 4.880000-6 1.000000+5 4.880000-6 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.880000-6 0.0 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.870000-6 1.361433+7 5.308844-6 1.105917+7 5.623413-6 9.565229+6 6.000000-6 8.058604+6 6.350000-6 6.883937+6 6.700000-6 5.890196+6 7.079458-6 4.980787+6 7.413102-6 4.301351+6 7.762471-6 3.691422+6 8.128305-6 3.147465+6 8.511380-6 2.665243+6 8.912509-6 2.240487+6 9.332543-6 1.869040+6 9.772372-6 1.546784+6 1.020000-5 1.287761+6 1.060000-5 1.085634+6 1.100000-5 9.158805+5 1.150000-5 7.413870+5 1.202264-5 5.955464+5 1.258925-5 4.710282+5 1.318257-5 3.699880+5 1.396368-5 2.715672+5 1.515000-5 1.747048+5 1.570000-5 1.447554+5 1.621810-5 1.227813+5 1.659587-5 1.098597+5 1.698244-5 9.888817+4 1.737801-5 8.965972+4 1.771400-5 8.317346+4 1.800000-5 7.849737+4 1.830000-5 7.432470+4 1.862087-5 7.058857+4 1.885000-5 6.832737+4 1.920000-5 6.544723+4 1.950000-5 6.346370+4 1.980000-5 6.186936+4 2.020000-5 6.026563+4 2.055000-5 5.928050+4 2.104000-5 5.844462+4 2.150000-5 5.813156+4 2.199400-5 5.819914+4 2.250000-5 5.860810+4 2.317395-5 5.955060+4 2.400000-5 6.112870+4 2.540973-5 6.438659+4 2.800000-5 7.061270+4 2.951209-5 7.382863+4 3.090295-5 7.636627+4 3.235937-5 7.854795+4 3.402400-5 8.044919+4 3.570000-5 8.177271+4 3.758374-5 8.260008+4 3.950000-5 8.279937+4 4.168694-5 8.237504+4 4.365158-5 8.147178+4 4.570882-5 8.009471+4 4.800000-5 7.817937+4 5.011872-5 7.611024+4 5.308844-5 7.288251+4 5.623413-5 6.924153+4 5.956621-5 6.525920+4 6.309573-5 6.110148+4 6.683439-5 5.682899+4 7.161434-5 5.173500+4 7.762471-5 4.595000+4 8.317638-5 4.125071+4 9.015711-5 3.614747+4 9.885531-5 3.084471+4 1.096478-4 2.557680+4 1.216186-4 2.103290+4 1.380384-4 1.641941+4 1.621810-4 1.188870+4 1.840772-4 9.172232+3 2.018366-4 7.554408+3 2.238721-4 6.009278+3 2.483133-4 4.743136+3 2.754229-4 3.715443+3 3.054921-4 2.888426+3 3.388442-4 2.228099+3 3.801894-4 1.657901+3 4.365158-4 1.154376+3 4.841724-4 8.741449+2 5.308844-4 6.778932+2 5.956621-4 4.892418+2 6.839116-4 3.276710+2 8.035261-4 2.040303+2 9.015711-4 1.445352+2 1.096478-3 7.935682+1 1.244515-3 5.346078+1 1.380384-3 3.846873+1 1.566751-3 2.549728+1 1.778279-3 1.677230+1 2.065380-3 1.013835+1 2.398833-3 6.082648+0 2.786121-3 3.621337+0 3.311311-3 1.973869+0 3.890451-3 1.111474+0 4.570882-3 6.209400-1 5.308844-3 3.590593-1 6.237348-3 1.975505-1 7.328245-3 1.078710-1 8.609938-3 5.846552-2 1.023293-2 3.009551-2 1.230269-2 1.469871-2 1.500000-2 6.743609-3 1.883649-2 2.733761-3 2.454709-2 9.489693-4 3.548134-2 2.157316-4 5.956621-2 2.679429-5 7.673615-2 9.706853-6 9.332543-2 4.458891-6 1.122019-1 2.159329-6 1.303167-1 1.206428-6 1.500000-1 7.032800-7 1.698244-1 4.398501-7 1.905461-1 2.865876-7 2.137962-1 1.880986-7 2.371374-1 1.296845-7 2.600160-1 9.378529-8 2.851018-1 6.827873-8 3.126079-1 5.007103-8 3.427678-1 3.700548-8 3.715352-1 2.859226-8 4.027170-1 2.223501-8 4.365158-1 1.740707-8 4.731513-1 1.372332-8 5.128614-1 1.089908-8 5.559043-1 8.722329-9 6.025596-1 7.033240-9 6.531306-1 5.714754-9 7.079458-1 4.679255-9 7.585776-1 3.967253-9 8.222427-1 3.297310-9 8.912509-1 2.761235-9 9.660509-1 2.329157-9 1.096478+0 1.802731-9 1.216186+0 1.472604-9 1.333521+0 1.239077-9 1.462177+0 1.049709-9 1.603245+0 8.95615-10 1.778279+0 7.54840-10 2.000000+0 6.26830-10 2.264644+0 5.18920-10 2.570396+0 4.31053-10 2.951209+0 3.54713-10 3.427678+0 2.89560-10 4.027170+0 2.34567-10 4.786301+0 1.88557-10 5.754399+0 1.50538-10 7.079458+0 1.17776-10 8.810489+0 9.15526-11 1.122018+1 6.98201-11 1.496236+1 5.09445-11 2.187762+1 3.39417-11 3.090295+1 2.36369-11 5.011872+1 1.43451-11 1.000000+2 7.09860-12 1.995262+2 3.53483-12 7.943282+2 8.83654-13 1.000000+5 7.00690-15 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.870000-6 4.870000-6 1.000000+5 4.870000-6 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.870000-6 0.0 1.000000+5 1.000000+5 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.521130-9 1.028750+0 6.521130-8 1.036640+0 6.521130-7 1.039700+0 1.143360-6 1.041500+0 1.521230-6 1.043800+0 2.111510-6 1.046400+0 2.937780-6 1.048300+0 3.657610-6 1.051200+0 4.961470-6 1.054080+0 6.521130-6 1.057700+0 8.888670-6 1.061100+0 1.156190-5 1.065100+0 1.530650-5 1.070400+0 2.135390-5 1.076200+0 2.951080-5 1.080600+0 3.685420-5 1.087100+0 4.965520-5 1.093710+0 6.521130-5 1.102600+0 9.042070-5 1.110700+0 1.179360-4 1.120600+0 1.577810-4 1.133300+0 2.194050-4 1.147500+0 3.029750-4 1.158200+0 3.765350-4 1.174100+0 5.031680-4 1.190110+0 6.521130-4 1.205100+0 8.112730-4 1.227500+0 1.085280-3 1.250000+0 1.404000-3 1.281300+0 1.919250-3 1.308600+0 2.435860-3 1.332500+0 2.938220-3 1.374400+0 3.927670-3 1.405800+0 4.756090-3 1.452900+0 6.130130-3 1.500000+0 7.652000-3 1.562500+0 9.879900-3 1.617200+0 1.200560-2 1.712900+0 1.607290-2 1.784700+0 1.937300-2 1.892300+0 2.464430-2 2.000000+0 3.023000-2 2.044000+0 3.258000-2 2.163500+0 3.909030-2 2.372600+0 5.075370-2 2.647100+0 6.622380-2 3.000000+0 8.595000-2 3.437500+0 1.098110-1 4.000000+0 1.390000-1 4.750000+0 1.748100-1 5.000000+0 1.861000-1 6.000000+0 2.284000-1 7.000000+0 2.660000-1 8.000000+0 2.999000-1 9.000000+0 3.305000-1 1.000000+1 3.584000-1 1.100000+1 3.837000-1 1.200000+1 4.069000-1 1.300000+1 4.284000-1 1.400000+1 4.484000-1 1.500000+1 4.672000-1 1.600000+1 4.847000-1 1.800000+1 5.169000-1 2.000000+1 5.457000-1 2.200000+1 5.717000-1 2.400000+1 5.954000-1 2.600000+1 6.171000-1 2.800000+1 6.371000-1 3.000000+1 6.556000-1 4.000000+1 7.321000-1 5.000000+1 7.891000-1 6.000000+1 8.342000-1 8.000000+1 9.019000-1 1.000000+2 9.503000-1 1.500000+2 1.028000+0 2.000000+2 1.076000+0 3.000000+2 1.132000+0 4.000000+2 1.165000+0 5.000000+2 1.187000+0 6.000000+2 1.202000+0 8.000000+2 1.223000+0 1.000000+3 1.237000+0 1.500000+3 1.257000+0 2.000000+3 1.268000+0 3.000000+3 1.280000+0 4.000000+3 1.287000+0 5.000000+3 1.291000+0 6.000000+3 1.294000+0 8.000000+3 1.297000+0 1.000000+4 1.300000+0 1.500000+4 1.303000+0 2.000000+4 1.305000+0 3.000000+4 1.306000+0 4.000000+4 1.307000+0 5.000000+4 1.308000+0 6.000000+4 1.308000+0 8.000000+4 1.309000+0 1.000000+5 1.309000+0 1 13000 7 8 2.698150+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.305380-7 2.136250+0 1.305380-6 2.147000+0 1.789770-6 2.156900+0 2.324690-6 2.169000+0 3.102450-6 2.184500+0 4.312510-6 2.201800+0 5.966480-6 2.214800+0 7.433760-6 2.234200+0 9.999730-6 2.253680+0 1.305380-5 2.281500+0 1.828420-5 2.307000+0 2.401620-5 2.338200+0 3.229190-5 2.377400+0 4.472060-5 2.410200+0 5.687710-5 2.446800+0 7.235100-5 2.485900+0 9.109370-5 2.532900+0 1.165800-4 2.556430+0 1.305380-4 2.611900+0 1.664490-4 2.660400+0 2.012260-4 2.745300+0 2.693230-4 2.809000+0 3.261640-4 2.904500+0 4.201730-4 3.000000+0 5.245000-4 3.125000+0 6.763800-4 3.234400+0 8.230860-4 3.425800+0 1.108630-3 3.569300+0 1.344550-3 3.784700+0 1.728820-3 4.000000+0 2.142000-3 4.250000+0 2.647150-3 4.625000+0 3.441130-3 5.000000+0 4.267000-3 5.500000+0 5.402010-3 6.000000+0 6.554000-3 6.750000+0 8.270840-3 7.000000+0 8.836000-3 8.000000+0 1.105000-2 9.000000+0 1.318000-2 1.000000+1 1.520000-2 1.100000+1 1.712000-2 1.200000+1 1.893000-2 1.300000+1 2.065000-2 1.400000+1 2.228000-2 1.500000+1 2.383000-2 1.600000+1 2.531000-2 1.800000+1 2.806000-2 2.000000+1 3.057000-2 2.200000+1 3.288000-2 2.400000+1 3.501000-2 2.600000+1 3.699000-2 2.800000+1 3.883000-2 3.000000+1 4.056000-2 4.000000+1 4.778000-2 5.000000+1 5.337000-2 6.000000+1 5.788000-2 8.000000+1 6.479000-2 1.000000+2 6.993000-2 1.500000+2 7.864000-2 2.000000+2 8.426000-2 3.000000+2 9.134000-2 4.000000+2 9.572000-2 5.000000+2 9.878000-2 6.000000+2 1.011000-1 8.000000+2 1.043000-1 1.000000+3 1.064000-1 1.500000+3 1.097000-1 2.000000+3 1.116000-1 3.000000+3 1.137000-1 4.000000+3 1.149000-1 5.000000+3 1.157000-1 6.000000+3 1.162000-1 8.000000+3 1.169000-1 1.000000+4 1.174000-1 1.500000+4 1.180000-1 2.000000+4 1.184000-1 3.000000+4 1.188000-1 4.000000+4 1.190000-1 5.000000+4 1.191000-1 6.000000+4 1.192000-1 8.000000+4 1.193000-1 1.000000+5 1.194000-1 1 13000 7 8 2.698150+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 13000 7 9 2.698150+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.300000+1 1.000000+5 1.300000+1 5.000000+5 1.299200+1 8.750000+5 1.297940+1 1.000000+6 1.297400+1 1.500000+6 1.294500+1 1.875000+6 1.291390+1 2.000000+6 1.290300+1 2.500000+6 1.284900+1 3.000000+6 1.278500+1 3.500000+6 1.271040+1 4.000000+6 1.262800+1 4.500000+6 1.253700+1 5.000000+6 1.243900+1 5.500000+6 1.233240+1 6.000000+6 1.222110+1 6.156200+6 1.218420+1 6.718700+6 1.205180+1 7.000000+6 1.198400+1 7.687500+6 1.181400+1 8.437500+6 1.162350+1 8.500000+6 1.160780+1 9.000000+6 1.148100+1 9.750000+6 1.128790+1 1.000000+7 1.122500+1 1.062500+7 1.106680+1 1.156300+7 1.083470+1 1.187500+7 1.075830+1 1.250000+7 1.061000+1 1.359400+7 1.035730+1 1.500000+7 1.005400+1 1.625000+7 9.803430+0 1.750000+7 9.571100+0 2.000000+7 9.155200+0 2.500000+7 8.460600+0 2.875000+7 8.009980+0 3.000000+7 7.867400+0 3.343800+7 7.482960+0 3.578100+7 7.224880+0 3.750000+7 7.035340+0 3.859400+7 6.915780+0 4.000000+7 6.761700+0 4.343800+7 6.385900+0 4.718800+7 5.982000+0 4.750000+7 5.948980+0 5.000000+7 5.686400+0 5.250000+7 5.429040+0 5.625000+7 5.057050+0 5.750000+7 4.937280+0 6.000000+7 4.704900+0 6.437500+7 4.320740+0 6.750000+7 4.065770+0 7.000000+7 3.874200+0 7.750000+7 3.361630+0 8.000000+7 3.211500+0 8.750000+7 2.817820+0 9.000000+7 2.704100+0 1.000000+8 2.324800+0 1.085900+8 2.078390+0 1.125000+8 1.985740+0 1.144500+8 1.943330+0 1.214800+8 1.810250+0 1.250000+8 1.753700+0 1.312500+8 1.667510+0 1.406300+8 1.563560+0 1.500000+8 1.481200+0 2.000000+8 1.192400+0 2.125000+8 1.132660+0 2.406300+8 1.011100+0 2.500000+8 9.755000-1 2.671900+8 9.148790-1 2.789100+8 8.735830-1 2.894500+8 8.345210-1 3.000000+8 7.931000-1 3.500000+8 6.107000-1 3.625000+8 5.810610-1 3.859400+8 5.329040-1 3.953100+8 5.129570-1 4.000000+8 5.025000-1 4.062500+8 4.878780-1 4.179700+8 4.592120-1 4.282200+8 4.337980-1 4.450500+8 3.931500-1 5.000000+8 2.860000-1 5.250000+8 2.520920-1 5.625000+8 2.112250-1 5.812500+8 1.933840-1 6.000000+8 1.766000-1 6.562500+8 1.340270-1 6.718800+8 1.252400-1 6.859400+8 1.185530-1 7.000000+8 1.130000-1 7.125000+8 1.089630-1 7.343800+8 1.031880-1 7.630900+8 9.644660-2 7.815400+8 9.197200-2 7.953900+8 8.829700-2 8.000000+8 8.700000-2 8.125000+8 8.328710-2 8.297100+8 7.788720-2 8.455000+8 7.282410-2 8.648200+8 6.669430-2 8.891100+8 5.936860-2 8.965000+8 5.725620-2 1.000000+9 3.490000-2 1.031300+9 3.061730-2 1.060500+9 2.735350-2 1.100900+9 2.370370-2 1.137900+9 2.101690-2 1.162000+9 1.952340-2 1.500000+9 8.408100-3 1.562500+9 7.287080-3 1.617200+9 6.434160-3 1.712900+9 5.192410-3 1.784700+9 4.438200-3 2.000000+9 2.847700-3 2.375000+9 1.457810-3 3.031300+9 5.672540-4 5.000000+9 8.243500-5 8.000000+9 1.336500-5 1.00000+10 5.669800-6 1.20500+10 2.788470-6 1.41820+10 1.508110-6 1.71110+10 7.472820-7 2.01380+10 4.085670-7 2.41190+10 2.105250-7 2.88610+10 1.094860-7 3.54590+10 5.209690-8 4.35270+10 2.505420-8 5.36740+10 1.194630-8 6.21670+10 7.141400-9 7.56790+10 3.606750-9 9.18930+10 1.849650-9 1.00000+11 1.385600-9 1.26840+11 6.18983-10 1.58400+11 2.93903-10 2.07460+11 1.20185-10 2.55250+11 6.09032-11 3.65300+11 1.90709-11 5.05370+11 6.76273-12 6.79130+11 2.66088-12 1.10080+12 5.91745-13 2.24960+12 6.67097-14 5.80870+12 3.91303-15 2.41010+13 6.03008-17 1.00000+14 9.52300-19 5.62340+14 5.85586-21 5.42470+15 6.68476-24 1.00000+17 1.01300-27 1 13000 7 0 2.698150+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.90000-12 1.000000+2 3.90000-10 1.000000+3 3.900000-8 1.000000+4 3.900000-6 1.000000+5 3.900000-4 5.000000+5 9.750000-3 8.750000+5 2.985938-2 1.000000+6 3.900000-2 1.500000+6 8.710000-2 1.875000+6 1.349330-1 2.000000+6 1.530000-1 2.500000+6 2.353000-1 3.000000+6 3.325000-1 3.500000+6 4.428300-1 4.000000+6 5.642000-1 4.500000+6 6.945210-1 5.000000+6 8.320000-1 5.500000+6 9.748850-1 6.000000+6 1.121480+0 6.156200+6 1.167840+0 6.718700+6 1.335360+0 7.000000+6 1.419200+0 7.687500+6 1.622310+0 8.437500+6 1.838920+0 8.500000+6 1.856710+0 9.000000+6 1.996700+0 9.750000+6 2.198720+0 1.000000+7 2.264000+0 1.062500+7 2.421730+0 1.156300+7 2.644810+0 1.187500+7 2.715200+0 1.250000+7 2.850800+0 1.359400+7 3.070330+0 1.500000+7 3.324000+0 1.625000+7 3.526710+0 1.750000+7 3.712300+0 2.000000+7 4.047000+0 2.500000+7 4.653400+0 2.875000+7 5.100490+0 3.000000+7 5.250000+0 3.343800+7 5.662460+0 3.578100+7 5.942320+0 3.750000+7 6.144960+0 3.859400+7 6.272540+0 4.000000+7 6.435000+0 4.343800+7 6.823810+0 4.718800+7 7.230540+0 4.750000+7 7.263640+0 5.000000+7 7.523000+0 5.250000+7 7.772470+0 5.625000+7 8.127030+0 5.750000+7 8.240220+0 6.000000+7 8.459000+0 6.437500+7 8.814800+0 6.750000+7 9.048350+0 7.000000+7 9.225000+0 7.750000+7 9.692280+0 8.000000+7 9.830000+0 8.750000+7 1.019060+1 9.000000+7 1.029600+1 1.000000+8 1.065200+1 1.085900+8 1.089060+1 1.125000+8 1.098370+1 1.144500+8 1.102740+1 1.214800+8 1.116890+1 1.250000+8 1.123300+1 1.312500+8 1.133610+1 1.406300+8 1.147170+1 1.500000+8 1.159200+1 2.000000+8 1.208300+1 2.125000+8 1.217910+1 2.406300+8 1.237040+1 2.500000+8 1.242500+1 2.671900+8 1.251370+1 2.789100+8 1.256790+1 2.894500+8 1.261120+1 3.000000+8 1.265200+1 3.500000+8 1.279400+1 3.625000+8 1.281850+1 3.859400+8 1.285850+1 3.953100+8 1.287230+1 4.000000+8 1.287900+1 4.062500+8 1.288620+1 4.179700+8 1.289930+1 4.282200+8 1.290970+1 4.450500+8 1.292340+1 5.000000+8 1.295700+1 5.250000+8 1.296570+1 5.625000+8 1.297660+1 5.812500+8 1.298040+1 6.000000+8 1.298400+1 6.562500+8 1.298920+1 6.718800+8 1.299060+1 6.859400+8 1.299180+1 7.000000+8 1.299300+1 7.125000+8 1.299350+1 7.343800+8 1.299440+1 7.630900+8 1.299560+1 7.815400+8 1.299630+1 7.953900+8 1.299680+1 8.000000+8 1.299700+1 8.125000+8 1.299710+1 8.297100+8 1.299730+1 8.455000+8 1.299750+1 8.648200+8 1.299770+1 8.891100+8 1.299790+1 8.965000+8 1.299800+1 1.000000+9 1.299900+1 1.031300+9 1.299910+1 1.060500+9 1.299910+1 1.100900+9 1.299920+1 1.137900+9 1.299930+1 1.162000+9 1.299940+1 1.500000+9 1.300000+1 1.562500+9 1.300000+1 1.617200+9 1.300000+1 1.712900+9 1.300000+1 1.784700+9 1.300000+1 2.000000+9 1.300000+1 2.375000+9 1.300000+1 3.031300+9 1.300000+1 5.000000+9 1.300000+1 8.000000+9 1.300000+1 1.00000+10 1.300000+1 1.20500+10 1.300000+1 1.41820+10 1.300000+1 1.71110+10 1.300000+1 2.01380+10 1.300000+1 2.41190+10 1.300000+1 2.88610+10 1.300000+1 3.54590+10 1.300000+1 4.35270+10 1.300000+1 5.36740+10 1.300000+1 6.21670+10 1.300000+1 7.56790+10 1.300000+1 9.18930+10 1.300000+1 1.00000+11 1.300000+1 1.26840+11 1.300000+1 1.58400+11 1.300000+1 2.07460+11 1.300000+1 2.55250+11 1.300000+1 3.65300+11 1.300000+1 5.05370+11 1.300000+1 6.79130+11 1.300000+1 1.10080+12 1.300000+1 2.24960+12 1.300000+1 5.80870+12 1.300000+1 2.41010+13 1.300000+1 1.00000+14 1.300000+1 5.62340+14 1.300000+1 5.42470+15 1.300000+1 1.00000+17 1.300000+1 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.178450-6 0.0 2.186493-6 3.260436-1 2.189174-6 4.333462-1 2.194536-6 7.915422-1 2.195969-6 9.364163-1 2.199898-6 1.413576+0 2.205260-6 2.262419+0 2.213330-6 3.922891+0 2.221346-6 5.765089+0 2.227043-6 6.861939+0 2.232562-6 7.546189+0 2.238330-6 7.720960+0 2.243811-6 7.366815+0 2.250991-6 6.322895+0 2.261906-6 4.037671+0 2.264242-6 3.527029+0 2.269604-6 2.510405+0 2.274966-6 1.680875+0 2.277045-6 1.420149+0 2.282451-6 8.197754-1 2.285690-6 5.166287-1 2.287856-6 4.061248-1 2.293261-6 2.234126-1 2.298666-6 1.134514-1 2.304071-6 0.0 2.977961-6 0.0 2.980792-6 5.998650-8 2.992621-6 5.550899-7 2.995480-6 7.134703-7 2.998310-6 9.091977-7 2.999951-6 1.056933-6 3.002853-6 1.371026-6 3.007281-6 1.927132-6 3.010226-6 2.354722-6 3.014611-6 3.094283-6 3.020450-6 4.271270-6 3.039718-6 8.918244-6 3.047091-6 1.035167-5 3.054464-6 1.118425-5 3.061837-6 1.125865-5 3.069210-6 1.056928-5 3.076583-6 9.260600-6 3.098181-6 4.244494-6 3.102569-6 3.372491-6 3.106075-6 2.765057-6 3.109899-6 2.173436-6 3.113448-6 1.725220-6 3.117229-6 1.307663-6 3.123770-6 6.752143-7 3.124559-6 6.127288-7 3.127528-6 4.433014-7 3.131150-6 3.162410-7 3.142940-6 6.471182-8 3.145910-6 0.0 3.235278-6 0.0 3.235307-6 2.718917-4 3.250238-6 1.375853+0 3.251234-6 1.466727+0 3.252826-6 1.709927+0 3.259197-6 2.972858+0 3.267160-6 5.170411+0 3.275124-6 8.232216+0 3.287729-6 1.465804+1 3.300864-6 2.191603+1 3.309250-6 2.549048+1 3.316229-6 2.719534+1 3.323938-6 2.734338+1 3.333625-6 2.508904+1 3.343275-6 2.068537+1 3.362720-6 1.020076+1 3.370683-6 6.767880+0 3.378646-6 4.187473+0 3.380929-6 3.612517+0 3.388935-6 1.920466+0 3.394573-6 9.372631-1 3.396941-6 7.549276-1 3.404948-6 3.826140-1 3.412923-6 2.15970-15 3.412954-6 0.0 3.519990-6 0.0 3.537509-6 5.043506-2 3.546216-6 1.046717-1 3.554923-6 1.800427-1 3.563630-6 2.865340-1 3.573426-6 4.411966-1 3.589751-6 7.284187-1 3.599003-6 8.587213-1 3.607710-6 9.294730-1 3.616417-6 9.340618-1 3.626145-6 8.585546-1 3.634376-6 7.465819-1 3.655055-6 3.953401-1 3.659409-6 3.251502-1 3.668116-6 2.111505-1 3.675942-6 1.343707-1 3.685530-6 7.015367-2 3.693270-6 2.808495-2 3.694237-6 2.574210-2 3.704271-6 1.108464-2 3.711651-6 0.0 3.895527-6 0.0 3.895536-6 2.290383-5 3.913055-6 4.081981-1 3.914713-6 4.657751-1 3.924301-6 9.462285-1 3.933890-6 1.627249+0 3.943478-6 2.590399+0 3.957886-6 4.506798+0 3.973776-6 6.780635+0 3.983959-6 7.892588+0 3.992300-6 8.426373+0 4.002507-6 8.413853+0 4.012151-6 7.784955+0 4.025274-6 6.217606+0 4.047430-6 3.145493+0 4.050149-6 2.819544+0 4.059138-6 1.888428+0 4.068127-6 1.205635+0 4.077094-6 7.632952-1 4.086422-6 3.954714-1 4.087304-6 3.679096-1 4.105685-6 2.451888-1 4.116747-6 2.946541-1 4.127570-6 3.204448-1 4.137483-6 3.208670-1 4.147726-6 2.969491-1 4.158878-6 2.491889-1 4.181183-6 1.341389-1 4.186139-6 1.100190-1 4.196053-6 7.107834-2 4.203487-6 4.929985-2 4.205966-6 6.631733-2 4.221005-6 1.814211-1 4.224261-6 2.225953-1 4.234526-6 4.256940-1 4.244174-6 7.023602-1 4.255218-6 1.152394+0 4.268151-6 1.850305+0 4.286257-6 2.927927+0 4.297897-6 3.468839+0 4.306950-6 3.731130+0 4.318246-6 3.745315+0 4.329317-6 3.463141+0 4.340590-6 2.945158+0 4.361511-6 1.789117+0 4.371712-6 1.286883+0 4.380302-6 9.775896-1 4.388739-6 7.544337-1 4.393215-6 6.826945-1 4.402994-6 5.799132-1 4.410413-6 5.488094-1 4.415097-6 5.984252-1 4.424510-6 7.324817-1 4.431443-6 8.780248-1 4.465865-6 1.827454+0 4.478300-6 2.044835+0 4.490415-6 2.084845+0 4.500947-6 2.008777+0 4.533057-6 1.492273+0 4.544106-6 1.397303+0 4.557935-6 1.388417+0 4.599634-6 1.561064+0 4.802568-6 1.428387+0 4.846484-6 1.364425+0 5.025847-6 1.364074+0 5.153571-6 1.318681+0 5.171090-6 3.236770+0 5.178941-6 5.817392+0 5.191626-6 1.087249+1 5.196546-6 1.328305+1 5.204311-6 1.821429+1 5.209274-6 2.186674+1 5.222002-6 3.402367+1 5.236321-6 5.174822+1 5.260186-6 8.478757+1 5.274082-6 9.999038+1 5.287068-6 1.077334+2 5.299808-6 1.074621+2 5.312266-6 9.968170+1 5.327608-6 8.197197+1 5.349282-6 5.188357+1 5.362010-6 3.583553+1 5.373357-6 2.440976+1 5.374849-6 2.301664+1 5.384682-6 1.588616+1 5.387466-6 1.401220+1 5.400194-6 7.834180+0 5.407269-6 5.433741+0 5.425650-6 1.224259+0 6.500817-6 9.015783-1 7.458080-6 6.785088-1 8.151882-6 5.506392-1 8.192011-6 6.455269-1 8.212076-6 7.270026-1 8.232141-6 8.515402-1 8.252206-6 1.022009+0 8.309524-6 1.624392+0 8.332465-6 1.789403+0 8.352530-6 1.836298+0 8.372595-6 1.779971+0 8.396963-6 1.586316+0 8.452854-6 9.838578-1 8.472919-6 8.082206-1 8.492984-6 6.785853-1 8.513049-6 5.917886-1 8.553178-6 4.837449-1 8.977364-6 4.225712-1 9.043654-6 4.423709-1 9.088943-6 4.844319-1 9.153062-6 5.728168-1 9.178208-6 5.943241-1 9.200525-6 5.982911-1 9.222841-6 5.860201-1 9.267569-6 5.243859-1 9.330910-6 4.263873-1 9.375103-6 3.925203-1 9.424898-6 3.811348-1 9.542490-6 4.162553-1 9.589350-6 4.126000-1 9.700562-6 3.757902-1 1.021570-5 3.040915-1 1.090747-5 2.317092-1 1.145687-5 1.886842-1 1.209500-5 1.516483-1 1.259998-5 1.301638-1 1.320498-5 1.114524-1 1.387011-5 9.776595-2 1.471069-5 8.836479-2 1.559538-5 8.485885-2 1.666814-5 8.693414-2 1.800000-5 9.539427-2 2.055000-5 1.199317-1 2.630268-5 1.795153-1 3.112518-5 2.189584-1 3.672823-5 2.510922-1 4.480089-5 2.756043-1 5.510650-5 2.813051-1 7.579964-5 2.584133-1 7.621438-5 2.578007-1 7.658956-5 2.918818-1 7.677716-5 3.243981-1 7.696475-5 3.760723-1 7.715234-5 4.463135-1 7.729769-5 5.166770-1 7.798358-5 9.417133-1 7.819629-5 1.058368+0 7.924359-5 1.471345+0 8.019386-5 1.990414+0 8.198794-5 3.163823+0 8.450000-5 4.815764+0 8.660770-5 5.889205+0 8.875000-5 6.646106+0 9.230000-5 7.398948+0 1.017743-4 8.410873+0 1.116351-4 9.187216+0 1.125059-4 9.818830+0 1.139368-4 1.209678+1 1.144858-4 1.209933+1 1.158573-4 1.022615+1 1.166129-4 1.003498+1 1.187109-4 1.037940+1 1.339130-4 1.021189+1 2.200392-4 6.731447+0 2.636706-4 5.433568+0 3.072000-4 4.471228+0 3.518143-4 3.725461+0 4.123385-4 2.984207+0 4.667436-4 2.492735+0 5.252738-4 2.090751+0 6.060382-4 1.682059+0 6.780474-4 1.412750+0 7.647862-4 1.168612+0 8.649766-4 9.595182-1 9.728423-4 7.928193-1 1.104187-3 6.437361-1 1.268648-3 5.108276-1 1.443026-3 4.108027-1 1.507954-3 3.833284-1 1.512939-3 4.387159-1 1.515481-3 4.770247-1 1.519089-3 5.621621-1 1.522923-3 7.117872-1 1.526733-3 9.375104-1 1.530772-3 1.273326+0 1.534557-3 1.659441+0 1.546595-3 3.109077+0 1.551535-3 3.572430+0 1.556491-3 3.889223+0 1.563372-3 4.101899+0 1.578202-3 4.134412+0 1.880940-3 3.180142+0 2.140790-3 2.605681+0 2.422031-3 2.148022+0 2.785025-3 1.710799+0 3.154767-3 1.389629+0 3.581759-3 1.117090+0 4.040231-3 9.048990-1 4.591125-3 7.190596-1 5.142961-3 5.848603-1 5.689946-3 4.853237-1 6.320136-3 3.983849-1 7.036046-3 3.250343-1 7.846708-3 2.635089-1 8.679137-3 2.166168-1 9.516484-3 1.807798-1 1.057017-2 1.467364-1 1.178629-2 1.180167-1 1.302353-2 9.639528-2 1.414193-2 8.149094-2 1.579775-2 6.489363-2 1.747046-2 5.269361-2 1.922605-2 4.313167-2 2.110777-2 3.545814-2 2.362926-2 2.794249-2 2.580961-2 2.313549-2 2.845943-2 1.877760-2 3.174807-2 1.483044-2 3.477447-2 1.217900-2 3.851224-2 9.758541-3 4.284252-2 7.727266-3 4.749777-2 6.161089-3 5.288352-2 4.864615-3 5.741285-2 4.054751-3 6.339126-2 3.255632-3 6.998865-2 2.613297-3 7.723297-2 2.097958-3 8.541046-2 1.676560-3 9.275637-2 1.395182-3 1.016834-1 1.136796-3 1.125983-1 9.056379-4 1.223001-1 7.539431-4 1.338631-1 6.173811-4 1.487673-1 4.890396-4 1.630140-1 3.999354-4 1.785932-1 3.280258-4 1.935168-1 2.755604-4 2.104384-1 2.305243-4 2.293322-1 1.920377-4 2.490515-1 1.616581-4 2.704153-1 1.364065-4 3.023213-1 1.089007-4 3.388442-1 8.699940-5 3.753159-1 7.161746-5 4.171695-1 5.897697-5 4.572849-1 5.015330-5 5.040806-1 4.256126-5 5.559043-1 3.636805-5 6.110226-1 3.149334-5 6.918310-1 2.636753-5 7.829788-1 2.239533-5 8.951071-1 1.910188-5 1.022000+0 1.658596-5 1.228714+0 1.381008-5 1.477239+0 1.149879-5 1.776032+0 9.574321-6 2.135261+0 7.971936-6 2.567148+0 6.637730-6 3.086391+0 5.526821-6 3.710658+0 4.601837-6 4.461192+0 3.831661-6 5.363532+0 3.190384-6 6.448384+0 2.656432-6 7.752663+0 2.211844-6 9.320751+0 1.841664-6 9.760024+0 1.759237-6 1.000000+1 3.429943-6 1 13000 7 0 2.698150+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.287167+1 1.876385-6-1.230126+1 2.083917-6-1.166946+1 2.147862-6-1.095850+1 2.174107-6-1.013168+1 2.194536-6-8.562002+0 2.201741-6-7.921805+0 2.208776-6-7.607473+0 2.214332-6-7.685336+0 2.220606-6-8.273338+0 2.227043-6-9.511818+0 2.237095-6-1.220160+1 2.239763-6-1.300309+1 2.251545-6-1.030556+1 2.258704-6-9.361170+0 2.264242-6-9.104356+0 2.273625-6-9.350425+0 2.287856-6-1.049306+1 2.309973-6-1.181679+1 2.350519-6-1.267934+1 2.400577-6-1.301663+1 2.926740-6-1.110651+1 3.061837-6-1.006532+1 3.131150-6-9.012478+0 3.175141-6-7.814870+0 3.200027-6-6.699784+0 3.217197-6-5.525910+0 3.227650-6-4.478509+0 3.233848-6-3.586400+0 3.236302-6-3.051888+0 3.247252-6-1.215338+0 3.249243-6-8.441226-1 3.250238-6-6.387654-1 3.251234-6-3.996897-1 3.252826-6 8.154094-4 3.259197-6 1.389278+0 3.268156-6 3.200418+0 3.269898-6 3.487487+0 3.276340-6 4.379670+0 3.280064-6 4.560929+0 3.285852-6 4.418198+0 3.289371-6 4.006724+0 3.292065-6 3.506792+0 3.294264-6 2.982524+0 3.295914-6 2.516314+0 3.297152-6 2.121373+0 3.299008-6 1.443331+0 3.299936-6 1.054470+0 3.300400-6 8.410040-1 3.300864-6 5.979369-1 3.304868-6-1.366509+0 3.305868-6-1.881317+0 3.308120-6-3.156981+0 3.314140-6-7.178008+0 3.317063-6-9.454229+0 3.322326-6-1.315607+1 3.325014-6-1.099558+1 3.332724-6-6.078790+0 3.333625-6-5.411144+0 3.335329-6-4.398491+0 3.336721-6-3.657711+0 3.341397-6-1.338830+0 3.342366-6-9.104029-1 3.343275-6-5.485506-1 3.344980-6 5.663268-2 3.346471-6 5.214969-1 3.347776-6 8.846251-1 3.350059-6 1.429933+0 3.351772-6 1.767198+0 3.353056-6 1.980462+0 3.354983-6 2.235012+0 3.356909-6 2.397897+0 3.358362-6 2.468075+0 3.360541-6 2.508970+0 3.361630-6 2.483803+0 3.366701-6 2.075733+0 3.368692-6 1.876781+0 3.369688-6 1.744595+0 3.371678-6 1.361420+0 3.375162-6 8.281776-1 3.376904-6 5.431800-1 3.377775-6 3.828112-1 3.380929-6-3.094629-1 3.388935-6-1.831922+0 3.393868-6-2.889194+0 3.395165-6-3.254519+0 3.397942-6-3.891650+0 3.404948-6-5.051456+0 3.417083-6-6.770929+0 3.429356-6-7.923204+0 3.452095-6-9.307487+0 3.487197-6-1.064239+1 3.569480-6-1.263648+1 3.606145-6-1.269038+1 3.649163-6-1.244921+1 3.704271-6-1.324182+1 3.854265-6-1.126029+1 3.889787-6-1.029918+1 3.924301-6-8.426803+0 3.944844-6-7.405280+0 3.957886-6-7.385164+0 3.968644-6-7.937838+0 3.979830-6-9.196658+0 3.992300-6-1.130493+1 4.003209-6-1.332557+1 4.015891-6-1.129801+1 4.028435-6-1.002982+1 4.040828-6-9.561146+0 4.054344-6-9.856706+0 4.101815-6-1.249900+1 4.130914-6-1.337323+1 4.202557-6-1.190042+1 4.258775-6-1.013615+1 4.278952-6-1.012001+1 4.297897-6-1.085814+1 4.338151-6-1.321983+1 4.356450-6-1.345219+1 4.377344-6-1.314224+1 4.433280-6-1.115388+1 4.460833-6-1.094241+1 4.514151-6-1.171441+1 4.599634-6-1.099312+1 4.809897-6-1.003630+1 4.856435-6-9.747267+0 4.887904-6-8.990257+0 4.924053-6-7.486750+0 4.977233-6-4.815120+0 5.008249-6-3.070096+0 5.025847-6-1.953494+0 5.033829-6-1.403835+0 5.041313-6-8.592333-1 5.048329-6-3.196251-1 5.054907-6 2.148361-1 5.061074-6 7.438642-1 5.072636-6 1.819436+0 5.082753-6 2.865907+0 5.091605-6 3.878741+0 5.106128-6 5.786616+0 5.121788-6 8.305379+0 5.132714-6 1.047001+1 5.144772-6 1.346626+1 5.152820-6 1.613618+1 5.169402-6 2.305228+1 5.178941-6 2.812416+1 5.209274-6 4.306752+1 5.223593-6 4.824373+1 5.236321-6 4.897531+1 5.246197-6 4.593820+1 5.255760-6 3.965192+1 5.260186-6 3.519715+1 5.269334-6 2.416874+1 5.272467-6 1.948656+1 5.274082-6 1.656869+1 5.281307-6 5.226311+0 5.283204-6 2.030381+0 5.283813-6 9.465086-1 5.284270-6 1.063593-1 5.284956-6-1.218312+0 5.285471-6-2.307749+0 5.285741-6-2.991383+0 5.286327-6-4.252885+0 5.287775-6-7.007194+0 5.289640-6-1.031201+1 5.294005-6-8.768791+0 5.296528-6-4.256841+0 5.297334-6-2.714365+0 5.297852-6-1.662199+0 5.298111-6-1.101284+0 5.298241-6-8.031642-1 5.298469-6-2.080106-1 5.298667-6 2.459600-1 5.299055-6 1.067430+0 5.299808-6 2.540304+0 5.300514-6 3.843492+0 5.313711-6 2.586964+1 5.324621-6 4.008733+1 5.332688-6 4.757858+1 5.343156-6 5.332044+1 5.349282-6 5.475061+1 5.360419-6 5.462294+1 5.374849-6 4.951395+1 5.409566-6 3.220452+1 5.425650-6 2.503187+1 5.433156-6 2.177660+1 5.444363-6 1.847178+1 5.455511-6 1.594729+1 5.470280-6 1.330255+1 5.492216-6 1.030651+1 5.513897-6 8.050160+0 5.535352-6 6.275876+0 5.549526-6 5.287089+0 5.563588-6 4.419798+0 5.577541-6 3.652302+0 5.591385-6 2.967498+0 5.605120-6 2.352737+0 5.618749-6 1.797795+0 5.632270-6 1.293851+0 5.645687-6 8.343230-1 5.658998-6 4.136996-1 5.672205-6 2.723493-2 5.698414-6-6.611068-1 5.724213-6-1.253860+0 5.749608-6-1.769366+0 5.774607-6-2.222206+0 5.823439-6-2.979911+0 5.893863-6-3.849070+0 5.983422-6-4.692566+0 6.112938-6-5.576904+0 6.290945-6-6.415820+0 6.531801-6-7.159966+0 6.990032-6-7.993724+0 8.129585-6-9.219102+0 8.265640-6-9.698425+0 8.326730-6-9.294809+0 8.404495-6-8.318334+0 8.462887-6-8.207358+0 8.613310-6-8.742049+0 9.153062-6-9.205011+0 9.353006-6-9.106092+0 1.259998-5-9.779768+0 2.055000-5-1.032749+1 5.060177-5-1.131214+1 6.486904-5-1.247052+1 7.289238-5-1.385500+1 7.621438-5-1.505589+1 7.819629-5-1.618917+1 8.198794-5-1.726175+1 8.550364-5-1.687586+1 9.465127-5-1.434854+1 1.057713-4-1.261886+1 1.105779-4-1.239803+1 1.122597-4-1.306258+1 1.131093-4-1.323102+1 1.136382-4-1.264846+1 1.147942-4-1.015370+1 1.153674-4-9.700514+0 1.172049-4-1.041485+1 1.309492-4-7.926841+0 1.408478-4-6.573783+0 1.529487-4-5.345543+0 1.658393-4-4.363988+0 1.768336-4-3.706189+0 1.909579-4-3.043631+0 2.024179-4-2.632806+0 2.200392-4-2.165148+0 2.377178-4-1.842557+0 2.636706-4-1.489561+0 2.826506-4-1.288295+0 3.072000-4-1.108517+0 3.335224-4-9.823749-1 3.518143-4-9.214469-1 3.944715-4-8.421827-1 4.439824-4-8.160734-1 5.039531-4-8.342513-1 6.317523-4-9.520598-1 9.015711-4-1.299578+0 1.104187-3-1.638169+0 1.230393-3-1.934553+0 1.329689-3-2.276937+0 1.401401-3-2.658558+0 1.443026-3-2.993241+0 1.481904-3-3.481507+0 1.505215-3-3.975123+0 1.519089-3-4.481100+0 1.535719-3-5.503174+0 1.545618-3-5.995948+0 1.553363-3-5.986990+0 1.563372-3-5.454920+0 1.578202-3-4.426936+0 1.589574-3-3.872045+0 1.605265-3-3.365487+0 1.627810-3-2.867435+0 1.658926-3-2.381890+0 1.694048-3-1.983818+0 1.737866-3-1.614373+0 1.791758-3-1.276534+0 1.852582-3-9.954308-1 1.920455-3-7.502298-1 1.978093-3-5.840653-1 2.040078-3-4.385237-1 2.087987-3-3.435957-1 2.140790-3-2.520733-1 2.205754-3-1.563015-1 2.238721-3-1.127580-1 2.304093-3-3.682541-2 2.373507-3 3.155084-2 2.422031-3 7.179511-2 2.482296-3 1.170384-1 2.570395-3 1.754650-1 2.646524-3 2.153735-1 2.785025-3 2.702983-1 2.925277-3 3.104163-1 3.154767-3 3.547390-1 3.420287-3 3.809548-1 3.757103-3 3.908607-1 4.417905-3 3.769390-1 7.036046-3 2.530303-1 8.406115-3 2.037926-1 9.885531-3 1.636878-1 1.147437-2 1.316476-1 1.334058-2 1.040368-1 1.535835-2 8.228448-2 1.747046-2 6.542023-2 1.986798-2 5.130205-2 2.213095-2 4.121290-2 2.436253-2 3.348261-2 2.668394-2 2.707677-2 2.921543-2 2.151677-2 3.174807-2 1.705912-2 3.477447-2 1.274358-2 3.776618-2 9.337982-3 4.030484-2 6.964854-3 4.284252-2 4.947079-3 4.536274-2 3.232131-3 4.749777-2 1.971158-3 4.945607-2 9.381880-4 5.034610-2 5.030988-4 5.169369-2-1.113510-4 5.288352-2-6.215413-4 5.397532-2-1.064760-3 5.627248-2-1.922486-3 5.902223-2-2.830890-3 6.339126-2-4.060350-3 6.809705-2-5.151982-3 7.519714-2-6.453846-3 8.541046-2-7.829014-3 9.915924-2-9.091952-3 1.223001-1-1.038496-2 1.630140-1-1.154872-2 2.349430-1-1.236001-2 4.316244-1-1.289016-2 1.347258+0-1.309040-2 4.068655+0-1.311079-2 1.000000+1-1.311201-2 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.962280-3 1.110507-6 3.041141-3 1.200000-6 4.254336-3 1.255964-6 5.151309-3 1.295213-6 5.873125-3 1.335688-6 6.710589-3 1.377428-6 7.683500-3 1.420473-6 8.815295-3 1.464863-6 1.013946-2 1.606530-6 1.536582-2 1.761898-6 2.355779-2 1.816957-6 2.725073-2 1.972356-6 4.054919-2 2.020953-6 4.575292-2 2.068031-6 5.142906-2 2.200620-6 7.100709-2 2.283547-6 8.658210-2 2.361290-6 1.040903-1 2.434175-6 1.237206-1 2.502505-6 1.455052-1 2.566563-6 1.696207-1 2.626619-6 1.959914-1 2.682920-6 2.248954-1 2.735703-6 2.563561-1 2.785187-6 2.903751-1 2.831578-6 3.272230-1 2.875070-6 3.669972-1 2.915844-6 4.096629-1 2.954069-6 4.553819-1 2.989905-6 5.044066-1 3.023501-6 5.569129-1 3.054998-6 6.130044-1 3.084526-6 6.727693-1 3.112208-6 7.364342-1 3.138161-6 8.042479-1 3.168739-6 8.961152-1 3.185301-6 9.523375-1 3.206685-6 1.033195+0 3.226733-6 1.119052+0 3.245527-6 1.210045+0 3.266216-6 1.324281+0 3.279666-6 1.408009+0 3.295152-6 1.515498+0 3.309670-6 1.629049+0 3.323281-6 1.748917+0 3.336042-6 1.875343+0 3.348005-6 2.008581+0 3.360646-6 2.167961+0 3.369734-6 2.296573+0 3.379591-6 2.451853+0 3.388832-6 2.614975+0 3.397495-6 2.786168+0 3.413739-6 3.167138+0 3.427953-6 3.586868+0 3.440389-6 4.049945+0 3.452126-6 4.607891+0 3.460793-6 5.128919+0 3.469125-6 5.752686+0 3.476415-6 6.431098+0 3.482794-6 7.156382+0 3.488376-6 7.916310+0 3.493259-6 8.696026+0 3.497533-6 9.480012+0 3.501272-6 1.025372+1 3.504544-6 1.100465+1 3.510269-6 1.250201+1 3.517784-6 1.486228+1 3.530431-6 1.998039+1 3.536129-6 2.278628+1 3.543726-6 2.700111+1 3.546982-6 2.896117+1 3.553493-6 3.311797+1 3.562774-6 3.943255+1 3.565856-6 4.158059+1 3.572838-6 4.641929+1 3.577634-6 4.963908+1 3.580512-6 5.149629+1 3.584622-6 5.401593+1 3.589239-6 5.660830+1 3.593094-6 5.853928+1 3.596812-6 6.016667+1 3.602436-6 6.213247+1 3.606821-6 6.320878+1 3.611480-6 6.388225+1 3.615865-6 6.405705+1 3.617391-6 6.401211+1 3.622891-6 6.339956+1 3.626872-6 6.252525+1 3.631783-6 6.097399+1 3.635718-6 5.938012+1 3.642705-6 5.587370+1 3.646096-6 5.390449+1 3.650670-6 5.102543+1 3.654721-6 4.830444+1 3.657882-6 4.609735+1 3.662401-6 4.285773+1 3.666031-6 4.021492+1 3.669919-6 3.737898+1 3.673765-6 3.459663+1 3.679388-6 3.062454+1 3.683729-6 2.767576+1 3.685078-6 2.678543+1 3.689798-6 2.377948+1 3.694519-6 2.096259+1 3.699450-6 1.824050+1 3.703289-6 1.628453+1 3.706303-6 1.485057+1 3.713155-6 1.192457+1 3.715073-6 1.118676+1 3.721925-6 8.830283+0 3.726721-6 7.425831+0 3.729598-6 6.673192+0 3.733983-6 5.647047+0 3.739007-6 4.636149+0 3.744101-6 3.771935+0 3.749158-6 3.054936+0 3.754176-6 2.464085+0 3.759155-6 1.979953+0 3.764094-6 1.585319+0 3.768996-6 1.265168+0 3.771432-6 1.128911+0 3.776285-6 8.964778-1 3.781101-6 7.099827-1 3.785879-6 5.609427-1 3.790620-6 4.423144-1 3.795323-6 3.482868-1 3.804620-6 2.158256-1 3.809215-6 1.703122-1 3.813773-6 1.349616-1 3.818296-6 1.076698-1 3.822783-6 8.672836-2 3.825009-6 7.821109-2 3.827227-6 7.078027-2 3.829436-6 6.430471-2 3.831636-6 5.866677-2 3.833827-6 5.376113-2 3.838185-6 4.578064-2 3.842508-6 3.972840-2 3.847862-6 3.413106-2 3.849988-6 3.235078-2 3.855794-6 2.841914-2 3.862061-6 2.527171-2 3.866206-6 2.362508-2 3.870319-6 2.225932-2 3.874400-6 2.114136-2 3.878449-6 2.026275-2 3.882467-6 1.963187-2 3.886453-6 1.926746-2 3.894363-6 1.943847-2 3.902149-6 2.097472-2 3.909813-6 2.401829-2 3.917358-6 2.863126-2 3.924785-6 3.479844-2 3.932096-6 4.244546-2 3.946489-6 6.188829-2 3.960433-6 8.582362-2 3.973940-6 1.132611-1 3.987026-6 1.434026-1 4.012379-6 2.106675-1 4.036148-6 2.834091-1 4.080715-6 4.436739-1 4.158706-6 7.939722-1 4.223551-6 1.166487+0 4.261069-6 1.427743+0 4.293972-6 1.693502+0 4.355664-6 2.308800+0 4.417815-6 3.137673+0 4.450277-6 3.691740+0 4.482739-6 4.359624+0 4.515401-6 5.180639+0 4.540780-6 5.952773+0 4.555339-6 6.462032+0 4.580798-6 7.497589+0 4.595320-6 8.189046+0 4.617136-6 9.402237+0 4.628045-6 1.010410+1 4.638953-6 1.088250+1 4.649861-6 1.174984+1 4.663492-6 1.298229+1 4.675958-6 1.428470+1 4.682681-6 1.507031+1 4.695894-6 1.682162+1 4.709723-6 1.902392+1 4.725547-6 2.218206+1 4.739392-6 2.574684+1 4.751507-6 2.975532+1 4.762107-6 3.421601+1 4.772616-6 3.982996+1 4.779499-6 4.433171+1 4.786600-6 4.981820+1 4.793093-6 5.571619+1 4.798251-6 6.109384+1 4.807171-6 7.206205+1 4.814456-6 8.281421+1 4.840432-6 1.373671+2 4.848244-6 1.594162+2 4.857172-6 1.879551+2 4.863124-6 2.088863+2 4.870936-6 2.384627+2 4.876144-6 2.593335+2 4.885528-6 2.986944+2 4.888048-6 3.095263+2 4.897357-6 3.498656+2 4.903909-6 3.779405+2 4.909339-6 4.005305+2 4.914608-6 4.215080+2 4.920526-6 4.435414+2 4.925468-6 4.603902+2 4.930234-6 4.750418+2 4.937818-6 4.946021+2 4.943814-6 5.063766+2 4.951590-6 5.162816+2 4.956906-6 5.193626+2 4.962437-6 5.192958+2 4.968484-6 5.153995+2 4.973167-6 5.096891+2 4.979168-6 4.990774+2 4.984085-6 4.877807+2 4.992529-6 4.634601+2 4.997316-6 4.472546+2 5.003771-6 4.231061+2 5.008081-6 4.057785+2 5.012692-6 3.864023+2 5.017870-6 3.638786+2 5.022194-6 3.446562+2 5.027754-6 3.196828+2 5.033750-6 2.927872+2 5.039746-6 2.663041+2 5.046491-6 2.374240+2 5.051737-6 2.158800+2 5.063729-6 1.704852+2 5.069075-6 1.522184+2 5.075720-6 1.313357+2 5.079842-6 1.194202+2 5.089211-6 9.528195+1 5.095769-6 8.074982+1 5.099703-6 7.292234+1 5.108697-6 5.738237+1 5.116306-6 4.657653+1 5.131883-6 3.010804+1 5.143851-6 2.156964+1 5.148535-6 1.898794+1 5.154748-6 1.610327+1 5.160962-6 1.374468+1 5.167176-6 1.182306+1 5.171837-6 1.062090+1 5.173390-6 1.025976+1 5.182711-6 8.439744+0 5.185818-6 7.944363+0 5.198245-6 6.365399+0 5.201352-6 6.048163+0 5.210673-6 5.224478+0 5.229315-6 3.942192+0 5.233975-6 3.667666+0 5.240966-6 3.279086+0 5.247956-6 2.914682+0 5.257277-6 2.463628+0 5.260384-6 2.322128+0 5.269705-6 1.925420+0 5.272812-6 1.802849+0 5.285240-6 1.363901+0 5.291454-6 1.176272+0 5.299198-6 9.724400-1 5.313040-6 6.880302-1 5.317734-6 6.132541-1 5.322427-6 5.484696-1 5.331813-6 4.461924-1 5.336237-6 4.093874-1 5.338806-6 3.910631-1 5.343826-6 3.613399-1 5.351064-6 3.316898-1 5.356270-6 3.194811-1 5.392374-6 4.715371-1 5.399144-6 5.659439-1 5.405490-6 6.839482-1 5.411440-6 8.259333-1 5.417018-6 9.918251-1 5.436628-6 1.913330+0 5.444636-6 2.491312+0 5.451642-6 3.122719+0 5.457773-6 3.787587+0 5.463137-6 4.467127+0 5.467831-6 5.144903+0 5.475532-6 6.444257+0 5.481821-6 7.697140+0 5.486537-6 8.761155+0 5.492728-6 1.033242+1 5.499693-6 1.235422+1 5.504727-6 1.399323+1 5.510863-6 1.620230+1 5.514246-6 1.752169+1 5.521016-6 2.038227+1 5.527786-6 2.353633+1 5.536233-6 2.787123+1 5.543017-6 3.165214+1 5.554864-6 3.879288+1 5.559518-6 4.174321+1 5.568404-6 4.750856+1 5.573058-6 5.055545+1 5.577500-6 5.345103+1 5.583828-6 5.750631+1 5.587364-6 5.971274+1 5.593164-6 6.319923+1 5.599676-6 6.685338+1 5.605116-6 6.963706+1 5.611236-6 7.241631+1 5.618916-6 7.528811+1 5.625085-6 7.703353+1 5.628093-6 7.768903+1 5.634857-6 7.866893+1 5.641117-6 7.894669+1 5.647242-6 7.862329+1 5.653081-6 7.777130+1 5.656331-6 7.707275+1 5.662216-6 7.541533+1 5.668030-6 7.330975+1 5.677443-6 6.902147+1 5.682638-6 6.625559+1 5.686692-6 6.393266+1 5.692485-6 6.040607+1 5.696209-6 5.803546+1 5.702109-6 5.416012+1 5.707343-6 5.064298+1 5.711715-6 4.768077+1 5.717336-6 4.387937+1 5.724105-6 3.937221+1 5.729183-6 3.608360+1 5.732567-6 3.394975+1 5.738491-6 3.035135+1 5.744414-6 2.695175+1 5.745750-6 2.621507+1 5.755102-6 2.139336+1 5.761998-6 1.823311+1 5.768974-6 1.538934+1 5.775800-6 1.295146+1 5.785534-6 1.004935+1 5.790518-6 8.814687+0 5.797993-6 7.264000+0 5.803600-6 6.325566+0 5.807943-6 5.723502+0 5.812195-6 5.234361+0 5.815443-6 4.924813+0 5.816795-6 4.811804+0 5.819013-6 4.646051+0 5.822183-6 4.450500+0 5.826068-6 4.274924+0 5.826806-6 4.249311+0 5.835589-6 4.125082+0 5.836780-6 4.132869+0 5.838565-6 4.155092+0 5.840783-6 4.199946+0 5.847257-6 4.436013+0 5.854656-6 4.885490+0 5.857226-6 5.083435+0 5.868961-6 6.233086+0 5.883266-6 8.089247+0 5.890530-6 9.171603+0 5.897571-6 1.027720+1 5.902711-6 1.110385+1 5.908212-6 1.199222+1 5.914389-6 1.297718+1 5.919547-6 1.377532+1 5.924522-6 1.451194+1 5.929756-6 1.524055+1 5.934450-6 1.584417+1 5.940485-6 1.653861+1 5.948085-6 1.726249+1 5.953847-6 1.768691+1 5.958713-6 1.795600+1 5.964832-6 1.817453+1 5.971011-6 1.825870+1 5.983924-6 1.800850+1 5.988952-6 1.776812+1 5.998482-6 1.712733+1 6.005028-6 1.657262+1 6.010950-6 1.601125+1 6.019405-6 1.514650+1 6.031056-6 1.391514+1 6.048829-6 1.218531+1 6.058103-6 1.144389+1 6.066042-6 1.092544+1 6.073311-6 1.055219+1 6.084450-6 1.016992+1 6.089042-6 1.007650+1 6.099678-6 9.990063+0 6.106503-6 1.001848+1 6.113800-6 1.010826+1 6.124534-6 1.032518+1 6.161273-6 1.134314+1 6.173486-6 1.163943+1 6.185886-6 1.188162+1 6.201449-6 1.210029+1 6.216289-6 1.223655+1 6.255356-6 1.246406+1 6.269930-6 1.257135+1 6.284174-6 1.271439+1 6.294322-6 1.284516+1 6.322173-6 1.335391+1 6.339586-6 1.380336+1 6.354467-6 1.428002+1 6.366931-6 1.474936+1 6.388084-6 1.569149+1 6.432653-6 1.808475+1 6.449916-6 1.899310+1 6.455674-6 1.926822+1 6.465527-6 1.968926+1 6.476240-6 2.005547+1 6.482021-6 2.020502+1 6.492417-6 2.037548+1 6.503213-6 2.040346+1 6.514166-6 2.026429+1 6.521237-6 2.008271+1 6.528337-6 1.982941+1 6.536033-6 1.947851+1 6.542963-6 1.910033+1 6.550204-6 1.865012+1 6.561600-6 1.785219+1 6.571060-6 1.713652+1 6.600779-6 1.494194+1 6.608053-6 1.449903+1 6.616050-6 1.408954+1 6.627365-6 1.368155+1 6.639348-6 1.351317+1 6.646526-6 1.356124+1 6.650019-6 1.362845+1 6.653704-6 1.373192+1 6.659809-6 1.397984+1 6.666389-6 1.435872+1 6.678125-6 1.534137+1 6.685483-6 1.617147+1 6.711625-6 2.063806+1 6.722445-6 2.328951+1 6.733940-6 2.673050+1 6.744717-6 3.064234+1 6.757165-6 3.616176+1 6.764292-6 3.990190+1 6.773172-6 4.527246+1 6.781497-6 5.115342+1 6.789301-6 5.755395+1 6.796618-6 6.447774+1 6.810337-6 8.043992+1 6.822341-6 9.847219+1 6.832844-6 1.182800+2 6.842035-6 1.394525+2 6.857113-6 1.839761+2 6.881620-6 2.914254+2 6.901148-6 4.195593+2 6.908493-6 4.799533+2 6.923368-6 6.258418+2 6.930805-6 7.115942+2 6.941894-6 8.563266+2 6.946487-6 9.223322+2 6.957366-6 1.092877+3 6.962041-6 1.172222+3 6.972561-6 1.363418+3 6.978203-6 1.472726+3 6.993154-6 1.781649+3 6.999027-6 1.909071+3 7.010240-6 2.158003+3 7.018917-6 2.352414+3 7.027327-6 2.538928+3 7.033468-6 2.672042+3 7.040038-6 2.809937+3 7.047415-6 2.957216+3 7.055558-6 3.107832+3 7.062568-6 3.225280+3 7.072580-6 3.369812+3 7.080155-6 3.458600+3 7.090582-6 3.548642+3 7.095906-6 3.579380+3 7.113553-6 3.604411+3 7.120449-6 3.582056+3 7.129847-6 3.523575+3 7.137735-6 3.450922+3 7.149069-6 3.312478+3 7.158111-6 3.176950+3 7.166016-6 3.043302+3 7.173265-6 2.910623+3 7.181106-6 2.758641+3 7.190174-6 2.575265+3 7.198193-6 2.409203+3 7.202465-6 2.320182+3 7.212076-6 2.120655+3 7.215280-6 2.054870+3 7.232366-6 1.716336+3 7.246440-6 1.460106+3 7.255326-6 1.311609+3 7.266539-6 1.140351+3 7.283626-6 9.151433+2 7.314612-6 6.113931+2 7.326923-6 5.233718+2 7.333060-6 4.853551+2 7.345858-6 4.171047+2 7.357514-6 3.661893+2 7.369670-6 3.225812+2 7.381778-6 2.870452+2 7.393839-6 2.579878+2 7.405852-6 2.340857+2 7.417819-6 2.142640+2 7.429739-6 1.976657+2 7.441612-6 1.836173+2 7.453439-6 1.715956+2 7.477000-6 1.520762+2 7.500378-6 1.369163+2 7.523573-6 1.247683+2 7.546586-6 1.147984+2 7.569420-6 1.064658+2 7.592075-6 9.940143+1 7.614554-6 9.334264+1 7.636857-6 8.809522+1 7.658985-6 8.351141+1 7.680941-6 7.947613+1 7.725148-6 7.259211+1 7.771063-6 6.679191+1 7.809614-6 6.272586+1 7.851172-6 5.898670+1 7.892080-6 5.583154+1 7.932349-6 5.313840+1 7.971989-6 5.081558+1 8.013362-6 4.867900+1 8.058422-6 4.662953+1 8.125043-6 4.402965+1 8.200017-6 4.159001+1 8.294968-6 3.904279+1 8.341612-6 3.796546+1 8.426795-6 3.624601+1 8.531651-6 3.447440+1 8.679039-6 3.244053+1 8.786476-6 3.121453+1 8.972515-6 2.945431+1 9.066064-6 2.870550+1 9.285823-6 2.723144+1 9.544805-6 2.579320+1 9.940524-6 2.401679+1 1.020492-5 2.301811+1 1.090738-5 2.077646+1 1.115965-5 1.994608+1 1.133803-5 1.921180+1 1.139384-5 1.902627+1 1.142175-5 1.897417+1 1.144966-5 1.896111+1 1.147756-5 1.899342+1 1.150000-5 1.905385+1 1.155780-5 1.933361+1 1.164501-5 1.987418+1 1.167291-5 2.000294+1 1.170082-5 2.008618+1 1.172696-5 2.011749+1 1.175309-5 2.010371+1 1.178454-5 2.003366+1 1.184036-5 1.980615+1 1.198113-5 1.910715+1 1.229009-5 1.811150+1 1.244264-5 1.776277+1 1.274385-5 1.730448+1 1.352066-5 1.592438+1 1.520247-5 1.358849+1 1.638400-5 1.233878+1 1.752482-5 1.137367+1 1.856671-5 1.065535+1 1.984246-5 9.943189+0 2.100000-5 9.420788+0 2.235000-5 8.932057+0 2.371374-5 8.536218+0 2.457600-5 8.318470+0 2.560000-5 8.102315+0 2.733750-5 7.793250+0 2.917427-5 7.536435+0 3.198895-5 7.230560+0 3.507519-5 6.974779+0 3.935501-5 6.698929+0 4.168694-5 6.551733+0 4.415704-5 6.393334+0 4.684989-5 6.219876+0 4.850000-5 6.097718+0 5.184000-5 5.836448+0 5.308844-5 5.732322+0 5.610376-5 5.456732+0 5.911747-5 5.141536+0 6.194283-5 4.813330+0 6.459160-5 4.476546+0 6.707483-5 4.136899+0 6.940285-5 3.800203+0 7.161434-5 3.465091+0 7.399713-5 3.084971+0 7.554972-5 2.829118+0 7.734806-5 2.525938+0 7.903401-5 2.236876+0 8.061458-5 1.963657+0 8.209637-5 1.707105+0 8.348555-5 1.469132+0 8.478790-5 1.250514+0 8.558232-5 1.120724+0 8.785167-5 7.670876-1 8.844302-5 6.811840-1 8.981946-5 4.978445-1 9.030128-5 4.398349-1 9.146396-5 3.164520-1 9.205402-5 2.644569-1 9.306353-5 1.958272-1 9.358767-5 1.719221-1 9.438819-5 1.539292-1 9.453738-5 1.533434-1 9.492961-5 1.564152-1 9.554726-5 1.761782-1 9.610381-5 2.119289-1 9.656146-5 2.562084-1 9.682421-5 2.885242-1 9.713123-5 3.333478-1 9.744887-5 3.884676-1 9.822536-5 5.662086-1 9.890479-5 7.815410-1 9.950818-5 1.031092+0 1.000938-4 1.339164+0 1.009855-4 1.978423+0 1.016130-4 2.608225+0 1.019455-4 3.027851+0 1.025479-4 3.989596+0 1.033051-4 5.653674+0 1.035610-4 6.342564+0 1.039345-4 7.463652+0 1.041350-4 8.120525+0 1.045264-4 9.511362+0 1.048306-4 1.069187+1 1.053541-4 1.293872+1 1.058344-4 1.525907+1 1.062358-4 1.739458+1 1.066473-4 1.975633+1 1.070525-4 2.222426+1 1.074134-4 2.450912+1 1.078078-4 2.705977+1 1.079800-4 2.818163+1 1.082641-4 3.003118+1 1.085005-4 3.156105+1 1.089812-4 3.461645+1 1.092304-4 3.615652+1 1.094131-4 3.726144+1 1.098688-4 3.990879+1 1.103064-4 4.227908+1 1.107136-4 4.430713+1 1.112355-4 4.662892+1 1.115578-4 4.789949+1 1.119100-4 4.914372+1 1.124485-4 5.076355+1 1.128000-4 5.164669+1 1.132750-4 5.264052+1 1.138250-4 5.353754+1 1.145135-4 5.434226+1 1.152250-4 5.488617+1 1.160000-4 5.524228+1 1.175875-4 5.557316+1 1.199965-4 5.599131+1 1.218023-4 5.668793+1 1.244583-4 5.821412+1 1.281601-4 6.068020+1 1.335542-4 6.470497+1 1.369682-4 6.686225+1 1.396891-4 6.815493+1 1.403344-4 6.878111+1 1.407630-4 6.961377+1 1.410605-4 7.052706+1 1.413770-4 7.191746+1 1.416928-4 7.384303+1 1.419854-4 7.619335+1 1.422734-4 7.908878+1 1.426507-4 8.377073+1 1.431747-4 9.170962+1 1.437040-4 1.005951+2 1.440479-4 1.061727+2 1.443281-4 1.102295+2 1.446173-4 1.136893+2 1.447661-4 1.151129+2 1.450257-4 1.169331+2 1.454170-4 1.179741+2 1.455645-4 1.178342+2 1.458722-4 1.166750+2 1.461746-4 1.145525+2 1.465006-4 1.114656+2 1.470507-4 1.053756+2 1.475174-4 1.004007+2 1.479359-4 9.674999+1 1.481420-4 9.533370+1 1.484589-4 9.368222+1 1.487807-4 9.263424+1 1.491453-4 9.211635+1 1.493722-4 9.208562+1 1.496556-4 9.228370+1 1.500046-4 9.277526+1 1.509413-4 9.455641+1 1.520079-4 9.621527+1 1.537242-4 9.782136+1 1.586225-4 1.014943+2 1.677459-4 1.073267+2 1.719686-4 1.097447+2 1.764443-4 1.119800+2 1.862087-4 1.161785+2 1.989075-4 1.204425+2 2.077573-4 1.227628+2 2.186577-4 1.248248+2 2.332589-4 1.267173+2 2.426610-4 1.274782+2 2.633233-4 1.281343+2 2.951209-4 1.280032+2 3.714139-4 1.258643+2 4.628804-4 1.222258+2 5.337572-4 1.193276+2 6.159298-4 1.159817+2 6.640297-4 1.139902+2 8.915548-4 1.043912+2 9.702307-4 1.013442+2 1.093720-3 9.598182+1 1.141518-3 9.401116+1 1.188502-3 9.199036+1 1.285022-3 8.771059+1 1.340737-3 8.519088+1 1.392982-3 8.266205+1 1.438940-3 8.031086+1 1.478444-3 7.819354+1 1.513051-3 7.624120+1 1.549589-3 7.403548+1 1.576442-3 7.225804+1 1.607936-3 6.999115+1 1.633886-3 6.794594+1 1.659571-3 6.571168+1 1.679068-3 6.383629+1 1.696949-3 6.192692+1 1.710639-3 6.030424+1 1.726012-3 5.826270+1 1.738852-3 5.631907+1 1.751233-3 5.415673+1 1.761583-3 5.204295+1 1.770256-3 4.998099+1 1.778251-3 4.780157+1 1.784895-3 4.579824+1 1.802093-3 4.054313+1 1.806633-3 3.945373+1 1.810399-3 3.875753+1 1.813804-3 3.832699+1 1.817422-3 3.810469+1 1.820740-3 3.813002+1 1.824601-3 3.844380+1 1.826970-3 3.878612+1 1.829110-3 3.918976+1 1.833323-3 4.022809+1 1.837572-3 4.156312+1 1.842329-3 4.333011+1 1.857036-3 4.967778+1 1.860945-3 5.138163+1 1.865789-3 5.341310+1 1.870397-3 5.523300+1 1.875645-3 5.715055+1 1.879233-3 5.836345+1 1.886022-3 6.044563+1 1.890000-3 6.154633+1 1.896892-3 6.327222+1 1.904155-3 6.488267+1 1.913017-3 6.662020+1 1.922463-3 6.825997+1 1.934289-3 7.006978+1 1.945640-3 7.159649+1 1.956836-3 7.293143+1 1.969519-3 7.427220+1 1.995262-3 7.655465+1 2.013038-3 7.786916+1 2.046291-3 7.989261+1 2.089729-3 8.188451+1 2.141710-3 8.359713+1 2.199287-3 8.491322+1 2.272245-3 8.595409+1 2.347137-3 8.648040+1 2.443254-3 8.665931+1 2.570800-3 8.625639+1 2.741447-3 8.511331+1 2.900681-3 8.366845+1 3.130581-3 8.119269+1 3.445895-3 7.749584+1 3.825390-3 7.313022+1 4.280112-3 6.813319+1 4.787493-3 6.310710+1 5.165418-3 5.966221+1 5.755116-3 5.472046+1 6.162485-3 5.159544+1 6.642456-3 4.816423+1 7.367645-3 4.347932+1 8.018560-3 3.971445+1 8.608288-3 3.664095+1 9.464220-3 3.268436+1 1.050413-2 2.859202+1 1.161449-2 2.495778+1 1.316108-2 2.091297+1 1.527373-2 1.680636+1 1.844309-2 1.264239+1 2.401240-2 8.417122+0 2.927182-2 6.162949+0 3.584695-2 4.447968+0 4.060351-2 3.617763+0 4.899384-2 2.626108+0 5.561884-2 2.104258+0 6.612149-2 1.541470+0 8.206423-2 1.037198+0 1.081353-1 6.202762-1 1.360316-1 4.011997-1 1.798871-1 2.342396-1 2.454709-1 1.276965-1 3.681541-1 5.738187-2 6.978306-1 1.607715-2 2.135261+0 1.721202-3 6.448384+0 1.887740-4 1.947381+1 2.069923-5 5.880996+1 2.269632-6 1.776032+2 2.488603-7 5.363532+2 2.728699-8 1.995262+3 1.971775-9 6.309573+3 1.97178-10 1.995262+4 1.97178-11 6.309573+4 1.97178-12 1.000000+5 7.84978-13 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.665600-7 1.258900-6 1.214900-6 1.584900-6 1.925500-6 1.995300-6 3.051700-6 2.511900-6 4.836600-6 3.162300-6 7.665500-6 3.981100-6 1.214900-5 5.011900-6 1.925500-5 6.309600-6 3.051600-5 7.943300-6 4.836500-5 1.000000-5 7.665200-5 1.258900-5 1.214800-4 1.584900-5 1.925300-4 1.995300-5 3.051400-4 2.511900-5 4.836000-4 3.162300-5 7.663500-4 3.981100-5 1.214100-3 5.011900-5 1.923600-3 6.309600-5 3.047700-3 7.943300-5 4.828600-3 1.000000-4 7.643700-3 1.258900-4 1.209900-2 1.584900-4 1.912500-2 1.995300-4 3.021000-2 2.511900-4 4.761300-2 3.162300-4 7.481300-2 3.981100-4 1.169100-1 5.011900-4 1.812400-1 6.309600-4 2.777400-1 7.943300-4 4.182500-1 1.000000-3 6.147900-1 1.258900-3 8.757700-1 1.584900-3 1.200800+0 1.995300-3 1.578300+0 2.511900-3 1.989000+0 3.162300-3 2.416300+0 3.981100-3 2.857600+0 5.011900-3 3.330400+0 6.309600-3 3.855700+0 7.943300-3 4.436100+0 1.000000-2 5.046800+0 1.258900-2 5.636800+0 1.584900-2 6.151400+0 1.995300-2 6.559500+0 2.511900-2 6.861100+0 3.162300-2 7.066700+0 3.981100-2 7.179100+0 5.011900-2 7.193200+0 6.309600-2 7.107900+0 7.943300-2 6.932900+0 1.000000-1 6.682600+0 1.258900-1 6.371300+0 1.584900-1 6.016600+0 1.995300-1 5.632100+0 2.511900-1 5.231400+0 3.162300-1 4.825600+0 3.981100-1 4.423900+0 5.011900-1 4.032400+0 6.309600-1 3.655100+0 7.943300-1 3.294800+0 1.000000+0 2.953100+0 1.258900+0 2.631000+0 1.584900+0 2.329800+0 1.995300+0 2.050200+0 2.511900+0 1.793100+0 3.162300+0 1.558700+0 3.981100+0 1.347000+0 5.011900+0 1.157700+0 6.309600+0 9.898100-1 7.943300+0 8.422300-1 1.000000+1 7.135100-1 1.258900+1 6.020300-1 1.584900+1 5.061300-1 1.995300+1 4.240900-1 2.511900+1 3.542900-1 3.162300+1 2.951800-1 3.981100+1 2.453300-1 5.011900+1 2.034500-1 6.309600+1 1.683800-1 7.943300+1 1.391100-1 1.000000+2 1.147300-1 1.258900+2 9.448200-2 1.584900+2 7.770000-2 1.995300+2 6.381800-2 2.511900+2 5.235400-2 3.162300+2 4.290300-2 3.981100+2 3.512300-2 5.011900+2 2.872700-2 6.309600+2 2.347500-2 7.943300+2 1.916700-2 1.000000+3 1.563800-2 1.258900+3 1.275000-2 1.584900+3 1.038800-2 1.995300+3 8.457700-3 2.511900+3 6.882100-3 3.162300+3 5.596800-3 3.981100+3 4.549100-3 5.011900+3 3.695500-3 6.309600+3 3.000600-3 7.943300+3 2.435300-3 1.000000+4 1.975500-3 1.258900+4 1.601800-3 1.584900+4 1.298300-3 1.995300+4 1.051900-3 2.511900+4 8.518800-4 3.162300+4 6.896600-4 3.981100+4 5.581300-4 5.011900+4 4.515300-4 6.309600+4 3.651700-4 7.943300+4 2.952300-4 1.000000+5 2.386100-4 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976755-4 5.011872-4 5.005052-4 6.309573-4 6.298813-4 7.943282-4 7.926344-4 1.000000-3 9.973416-4 1.258925-3 1.254763-3 1.584893-3 1.578423-3 1.995262-3 1.985235-3 2.511886-3 2.496381-3 3.162278-3 3.138384-3 3.981072-3 3.944134-3 5.011872-3 4.954469-3 6.309573-3 6.219877-3 7.943282-3 7.802828-3 1.000000-2 9.780681-3 1.258925-2 1.224896-2 1.584893-2 1.532494-2 1.995262-2 1.915049-2 2.511886-2 2.389518-2 3.162278-2 2.975948-2 3.981072-2 3.698118-2 5.011872-2 4.584271-2 6.309573-2 5.667530-2 7.943282-2 6.986302-2 1.000000-1 8.583942-2 1.258925-1 1.051315-1 1.584893-1 1.282801-1 1.995262-1 1.559912-1 2.511886-1 1.890191-1 3.162278-1 2.282462-1 3.981072-1 2.747003-1 5.011872-1 3.295249-1 6.309573-1 3.941395-1 7.943282-1 4.701596-1 1.000000+0 5.596300-1 1.258925+0 6.649927-1 1.584893+0 7.893350-1 1.995262+0 9.364198-1 2.511886+0 1.110939+0 3.162278+0 1.318632+0 3.981072+0 1.566553+0 5.011872+0 1.863292+0 6.309573+0 2.219445+0 7.943282+0 2.647912+0 1.000000+1 3.164482+0 1.258925+1 3.788482+0 1.584893+1 4.543612+0 1.995262+1 5.458757+0 2.511886+1 6.569479+0 3.162278+1 7.919423+0 3.981072+1 9.561858+0 5.011872+1 1.156262+1 6.309573+1 1.400224+1 7.943282+1 1.697983+1 1.000000+2 2.061719+1 1.258925+2 2.506444+1 1.584893+2 3.050606+1 1.995262+2 3.716927+1 2.511886+2 4.533439+1 3.162278+2 5.534688+1 3.981072+2 6.763138+1 5.011872+2 8.271467+1 6.309573+2 1.012439+2 7.943282+2 1.240191+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739860-9 3.981072-5 4.341986-9 5.011872-5 6.881222-9 6.309573-5 1.090561-8 7.943282-5 1.728291-8 1.000000-4 2.738401-8 1.258925-4 4.339348-8 1.584893-4 6.873755-8 1.995262-4 1.088928-7 2.511886-4 1.724380-7 3.162278-4 2.729362-7 3.981072-4 4.317000-7 5.011872-4 6.820807-7 6.309573-4 1.076052-6 7.943282-4 1.693877-6 1.000000-3 2.658366-6 1.258925-3 4.162800-6 1.584893-3 6.470046-6 1.995262-3 1.002769-5 2.511886-3 1.550591-5 3.162278-3 2.389395-5 3.981072-3 3.693751-5 5.011872-3 5.740308-5 6.309573-3 8.969625-5 7.943282-3 1.404542-4 1.000000-2 2.193195-4 1.258925-2 3.402984-4 1.584893-2 5.239964-4 1.995262-2 8.021321-4 2.511886-2 1.223685-3 3.162278-2 1.863298-3 3.981072-2 2.829542-3 5.011872-2 4.276016-3 6.309573-2 6.420432-3 7.943282-2 9.569806-3 1.000000-1 1.416058-2 1.258925-1 2.076108-2 1.584893-1 3.020924-2 1.995262-1 4.353506-2 2.511886-1 6.216959-2 3.162278-1 8.798161-2 3.981072-1 1.234069-1 5.011872-1 1.716623-1 6.309573-1 2.368179-1 7.943282-1 3.241686-1 1.000000+0 4.403700-1 1.258925+0 5.939328-1 1.584893+0 7.955582-1 1.995262+0 1.058842+0 2.511886+0 1.400947+0 3.162278+0 1.843646+0 3.981072+0 2.414518+0 5.011872+0 3.148580+0 6.309573+0 4.090129+0 7.943282+0 5.295370+0 1.000000+1 6.835518+0 1.258925+1 8.800773+0 1.584893+1 1.130532+1 1.995262+1 1.449387+1 2.511886+1 1.854939+1 3.162278+1 2.370335+1 3.981072+1 3.024886+1 5.011872+1 3.855610+1 6.309573+1 4.909350+1 7.943282+1 6.245300+1 1.000000+2 7.938281+1 1.258925+2 1.008281+2 1.584893+2 1.279833+2 1.995262+2 1.623570+2 2.511886+2 2.058543+2 3.162278+2 2.608809+2 3.981072+2 3.304758+2 5.011872+2 4.184726+2 6.309573+2 5.297135+2 7.943282+2 6.703092+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.520000-6 2.709673+7 6.550000-6 2.689364+7 6.550000-6 4.041218+7 6.839116-6 3.767666+7 7.100000-6 3.523201+7 7.350000-6 3.295009+7 7.600000-6 3.071442+7 7.673615-6 3.008261+7 7.852356-6 2.854638+7 7.943282-6 2.779184+7 8.128305-6 2.627587+7 8.222426-6 2.553290+7 8.413951-6 2.404899+7 8.511380-6 2.332346+7 8.709636-6 2.187395+7 8.850000-6 2.090021+7 9.015711-6 1.977465+7 9.200000-6 1.859251+7 9.350000-6 1.765992+7 9.549926-6 1.648733+7 9.700000-6 1.564201+7 9.885531-6 1.465598+7 1.000000-5 1.406717+7 1.023293-5 1.294148+7 1.035142-5 1.239485+7 1.060000-5 1.132252+7 1.071519-5 1.084997+7 1.100000-5 9.766694+6 1.110000-5 9.408168+6 1.135011-5 8.567995+6 1.150000-5 8.095641+6 1.180000-5 7.231226+6 1.190000-5 6.961476+6 1.216186-5 6.303019+6 1.230269-5 5.972712+6 1.258925-5 5.356105+6 1.273503-5 5.064929+6 1.310000-5 4.408318+6 1.318257-5 4.270880+6 1.363000-5 3.602611+6 1.363000-5 3.609553+6 1.363900-5 3.597170+6 1.365000-5 3.582152+6 1.367000-5 3.554151+6 1.370000-5 3.512663+6 1.372000-5 3.485346+6 1.374000-5 3.458296+6 1.377000-5 3.418219+6 1.380384-5 3.373717+6 1.382000-5 3.352727+6 1.385000-5 3.314198+6 1.387700-5 3.280005+6 1.390000-5 3.251231+6 1.393500-5 3.208064+6 1.400000-5 3.129829+6 1.402200-5 3.103906+6 1.403500-5 3.088718+6 1.405000-5 3.071312+6 1.406000-5 3.059779+6 1.407000-5 3.048301+6 1.408000-5 3.036879+6 1.409000-5 3.025512+6 1.410000-5 3.014201+6 1.411000-5 3.002944+6 1.412000-5 2.991741+6 1.413000-5 2.980593+6 1.414000-5 2.969498+6 1.415000-5 2.958457+6 1.415700-5 2.950760+6 1.416800-5 2.938717+6 1.418000-5 2.925653+6 1.419000-5 2.914823+6 1.420000-5 2.904045+6 1.421500-5 2.887470+6 1.423000-5 2.871017+6 1.425000-5 2.849268+6 1.433000-5 2.764378+6 1.436000-5 2.733392+6 1.439000-5 2.702858+6 1.442000-5 2.672767+6 1.445000-5 2.643114+6 1.448000-5 2.613891+6 1.451000-5 2.585092+6 1.454000-5 2.556709+6 1.457000-5 2.528736+6 1.460000-5 2.501167+6 1.463500-5 2.469504+6 1.467000-5 2.438372+6 1.471000-5 2.403430+6 1.475000-5 2.369154+6 1.479108-5 2.334631+6 1.480000-5 2.327220+6 1.483500-5 2.297618+6 1.487000-5 2.268513+6 1.492000-5 2.227786+6 1.497000-5 2.188038+6 1.503000-5 2.141595+6 1.509000-5 2.096483+6 1.515000-5 2.052659+6 1.522000-5 2.003107+6 1.528000-5 1.961940+6 1.535000-5 1.915385+6 1.542000-5 1.870360+6 1.548817-5 1.827922+6 1.550000-5 1.820511+6 1.557000-5 1.777451+6 1.566751-5 1.719839+6 1.577900-5 1.657190+6 1.585000-5 1.619003+6 1.595000-5 1.567364+6 1.605000-5 1.518127+6 1.615000-5 1.471170+6 1.625000-5 1.426381+6 1.640590-5 1.360630+6 1.650000-5 1.322988+6 1.655000-5 1.303632+6 1.670000-5 1.248067+6 1.687100-5 1.189300+6 1.700000-5 1.147961+6 1.720000-5 1.088566+6 1.740000-5 1.034408+6 1.760000-5 9.850047+5 1.785000-5 9.292771+5 1.795500-5 9.076005+5 1.800000-5 8.988666+5 1.808000-5 8.840069+5 1.830000-5 8.455336+5 1.862087-5 7.957417+5 1.870000-5 7.847997+5 1.885000-5 7.656014+5 1.920000-5 7.251718+5 1.929400-5 7.156546+5 1.950000-5 6.968326+5 1.972423-5 6.777845+5 1.980000-5 6.721991+5 1.990000-5 6.653764+5 2.020000-5 6.460461+5 2.055000-5 6.280006+5 2.065380-5 6.236376+5 2.090000-5 6.138464+5 2.104000-5 6.093528+5 2.113489-5 6.066774+5 2.130000-5 6.017637+5 2.137962-5 5.998532+5 2.170000-5 5.935316+5 2.210000-5 5.879146+5 2.230000-5 5.866925+5 2.250000-5 5.850799+5 2.290868-5 5.845272+5 2.330000-5 5.852799+5 2.350000-5 5.866863+5 2.371374-5 5.876572+5 2.410000-5 5.910657+5 2.426610-5 5.931723+5 2.454709-5 5.959150+5 2.500000-5 6.019245+5 2.511886-5 6.039021+5 2.560000-5 6.104516+5 2.610000-5 6.186683+5 2.675200-5 6.291662+5 2.691535-5 6.321444+5 2.754229-5 6.420512+5 2.800000-5 6.500687+5 2.851018-5 6.577384+5 2.917427-5 6.686411+5 3.000000-5 6.802254+5 3.054921-5 6.879691+5 3.198895-5 7.050415+5 3.300000-5 7.150254+5 3.311311-5 7.160692+5 3.350000-5 7.195073+5 3.500000-5 7.303013+5 3.507519-5 7.307816+5 3.672823-5 7.380562+5 3.715352-5 7.394315+5 3.850000-5 7.417192+5 3.935501-5 7.422107+5 4.027170-5 7.415369+5 4.168694-5 7.390007+5 4.220000-5 7.375281+5 4.415704-5 7.300146+5 4.623810-5 7.183526+5 4.677351-5 7.149360+5 4.841724-5 7.033574+5 4.850000-5 7.027379+5 5.000000-5 6.913198+5 5.080000-5 6.848378+5 5.308844-5 6.652941+5 5.559043-5 6.421384+5 5.688529-5 6.300123+5 5.821032-5 6.173948+5 6.150000-5 5.862330+5 6.165950-5 5.846664+5 6.531306-5 5.502057+5 6.683439-5 5.362555+5 6.918310-5 5.152341+5 7.328245-5 4.804558+5 7.413102-5 4.734915+5 7.852356-5 4.392340+5 7.943282-5 4.326051+5 8.128305-5 4.193146+5 8.413951-5 3.997056+5 8.609938-5 3.870054+5 9.120108-5 3.563026+5 9.225714-5 3.503964+5 9.332543-5 3.444691+5 9.900000-5 3.151209+5 1.000000-4 3.103345+5 1.059254-4 2.838054+5 1.071519-4 2.786858+5 1.079800-4 2.752849+5 1.079800-4 1.603317+6 1.080900-4 1.649226+6 1.083927-4 1.789910+6 1.086000-4 1.886547+6 1.086700-4 1.918432+6 1.086700-4 2.574272+6 1.088500-4 2.698733+6 1.090500-4 2.837608+6 1.091000-4 2.872666+6 1.093500-4 3.045367+6 1.096478-4 3.246374+6 1.096500-4 3.247911+6 1.099500-4 3.443786+6 1.100000-4 3.476569+6 1.102500-4 3.633186+6 1.103000-4 3.664367+6 1.105500-4 3.813416+6 1.106000-4 3.842829+6 1.108500-4 3.981942+6 1.109500-4 4.036773+6 1.112000-4 4.165473+6 1.113000-4 4.215900+6 1.115000-4 4.309305+6 1.117000-4 4.400845+6 1.118000-4 4.442651+6 1.121200-4 4.572114+6 1.122018-4 4.602011+6 1.125400-4 4.719967+6 1.126000-4 4.740049+6 1.129000-4 4.829482+6 1.130000-4 4.857719+6 1.133000-4 4.931954+6 1.135500-4 4.989390+6 1.138500-4 5.047998+6 1.141000-4 5.092150+6 1.144000-4 5.135335+6 1.148154-4 5.188379+6 1.149500-4 5.201534+6 1.155000-4 5.248029+6 1.156000-4 5.255177+6 1.161449-4 5.281443+6 1.163000-4 5.288927+6 1.164000-4 5.292501+6 1.173000-4 5.307992+6 1.183000-4 5.315414+6 1.185000-4 5.314516+6 1.202264-4 5.297735+6 1.244515-4 5.257871+6 1.273503-4 5.218716+6 1.318257-4 5.160858+6 1.333521-4 5.138325+6 1.380384-4 5.044399+6 1.428894-4 4.927686+6 1.440000-4 4.901918+6 1.465000-4 4.840899+6 1.479108-4 4.800512+6 1.490000-4 4.769810+6 1.500000-4 4.739563+6 1.515500-4 4.686875+6 1.515500-4 5.172167+6 1.531087-4 5.118506+6 1.540000-4 5.086285+6 1.580000-4 4.931054+6 1.584893-4 4.911690+6 1.640590-4 4.682790+6 1.659587-4 4.600877+6 1.719700-4 4.357208+6 1.720000-4 4.356018+6 1.737801-4 4.283111+6 1.800000-4 4.043756+6 1.840772-4 3.896852+6 1.862087-4 3.819672+6 1.900000-4 3.686460+6 1.930000-4 3.586255+6 1.955530-4 3.503443+6 1.980000-4 3.426871+6 2.018366-4 3.306605+6 2.089296-4 3.099609+6 2.137962-4 2.962305+6 2.213095-4 2.767909+6 2.220000-4 2.750738+6 2.290868-4 2.578085+6 2.344229-4 2.458740+6 2.350000-4 2.446337+6 2.371374-4 2.400628+6 2.400000-4 2.339935+6 2.454709-4 2.229556+6 2.540973-4 2.070747+6 2.570396-4 2.020460+6 2.600160-4 1.970661+6 2.730000-4 1.770742+6 2.818383-4 1.650561+6 2.884032-4 1.568935+6 2.900000-4 1.549984+6 2.951209-4 1.490939+6 3.126079-4 1.308783+6 3.200000-4 1.241529+6 3.235937-4 1.209833+6 3.349654-4 1.116993+6 3.350000-4 1.116727+6 3.507519-4 1.003895+6 3.548134-4 9.773301+5 3.630781-4 9.257280+5 3.672823-4 9.009910+5 3.935501-4 7.652629+5 3.981072-4 7.447751+5 4.027170-4 7.248528+5 4.073803-4 7.052325+5 4.216965-4 6.488775+5 4.466836-4 5.650571+5 4.472100-4 5.634640+5 4.518559-4 5.495800+5 4.570882-4 5.343296+5 4.731513-4 4.909111+5 4.786301-4 4.772608+5 4.954502-4 4.386014+5 5.011872-4 4.264467+5 5.069907-4 4.145792+5 5.188000-4 3.914445+5 5.495409-4 3.392590+5 5.623413-4 3.204397+5 5.688529-4 3.113789+5 5.754399-4 3.025325+5 5.800000-4 2.966166+5 6.095369-4 2.616491+5 6.237348-4 2.469155+5 6.382635-4 2.330314+5 6.500000-4 2.224829+5 6.839116-4 1.953572+5 7.079458-4 1.789078+5 7.161434-4 1.737462+5 7.328245-4 1.638006+5 7.413102-4 1.590299+5 7.762471-4 1.411880+5 8.128305-4 1.254114+5 8.222426-4 1.217316+5 8.317638-4 1.181488+5 8.413951-4 1.146729+5 8.810489-4 1.016933+5 9.120108-4 9.296385+4 9.500000-4 8.356065+4 9.549926-4 8.242175+4 9.772372-4 7.760174+4 1.000000-3 7.303595+4 1.047129-3 6.472007+4 1.083927-3 5.908006+4 1.096478-3 5.730881+4 1.135011-3 5.231354+4 1.188502-3 4.630452+4 1.230269-3 4.223443+4 1.244515-3 4.096121+4 1.273503-3 3.852409+4 1.303167-3 3.623479+4 1.350000-3 3.297349+4 1.412538-3 2.919302+4 1.445440-3 2.744501+4 1.479108-3 2.579987+4 1.496236-3 2.501518+4 1.513561-3 2.425513+4 1.548817-3 2.279684+4 1.621810-3 2.011832+4 1.659587-3 1.890280+4 1.717908-3 1.721560+4 1.757924-3 1.617686+4 1.778279-3 1.567938+4 1.828500-3 1.452784+4 1.828500-3 1.543071+5 1.862087-3 1.508316+5 1.865000-3 1.505374+5 1.883649-3 1.481142+5 1.890000-3 1.473034+5 1.930000-3 1.413418+5 1.950000-3 1.379287+5 1.972423-3 1.339462+5 2.000000-3 1.292648+5 2.018366-3 1.262724+5 2.041738-3 1.226007+5 2.089296-3 1.155684+5 2.162719-3 1.057710+5 2.264644-3 9.398928+4 2.317395-3 8.860152+4 2.344229-3 8.602385+4 2.398833-3 8.108698+4 2.511886-3 7.204939+4 2.600160-3 6.593940+4 2.691535-3 6.034911+4 2.754229-3 5.688409+4 2.786121-3 5.522716+4 2.917427-3 4.896698+4 3.019952-3 4.474268+4 3.054921-3 4.341740+4 3.090295-3 4.210343+4 3.126079-3 4.082807+4 3.235937-3 3.722846+4 3.388442-3 3.291876+4 3.507519-3 3.001751+4 3.589219-3 2.822714+4 3.630781-3 2.737165+4 3.715352-3 2.573736+4 3.758374-3 2.493994+4 3.981072-3 2.130910+4 4.073803-3 2.000948+4 4.168694-3 1.878925+4 4.216965-3 1.820684+4 4.265795-3 1.764246+4 4.365158-3 1.656553+4 4.677351-3 1.367743+4 4.731513-3 1.324765+4 4.897788-3 1.203778+4 4.954502-3 1.165924+4 5.011872-3 1.129259+4 5.069907-3 1.093201+4 5.559043-3 8.432836+3 5.754399-3 7.650829+3 5.821032-3 7.406419+3 5.888437-3 7.169808+3 5.956621-3 6.940739+3 6.025596-3 6.718993+3 6.531306-3 5.334217+3 6.760830-3 4.831911+3 6.839116-3 4.675089+3 6.918310-3 4.523348+3 6.998420-3 4.376521+3 7.244360-3 3.964050+3 7.673615-3 3.353549+3 7.762471-3 3.243241+3 8.000000-3 2.971336+3 8.128305-3 2.837006+3 8.222426-3 2.743605+3 8.709636-3 2.320749+3 9.120108-3 2.026354+3 9.225714-3 1.958792+3 9.549926-3 1.769324+3 9.660509-3 1.710283+3 9.772372-3 1.653206+3 1.059254-2 1.303613+3 1.071519-2 1.259587+3 1.096478-2 1.175944+3 1.135011-2 1.060780+3 1.148154-2 1.024926+3 1.161449-2 9.902805+2 1.288250-2 7.267160+2 1.318257-2 6.778874+2 1.348963-2 6.323402+2 1.380384-2 5.898209+2 1.396368-2 5.696437+2 1.566751-2 4.022066+2 1.584893-2 3.884503+2 1.621810-2 3.620530+2 1.659587-2 3.374301+2 1.678804-2 3.257536+2 1.698244-2 3.144806+2 1.972423-2 1.989663+2 2.018366-2 1.852880+2 2.041738-2 1.788051+2 2.137962-2 1.550647+2 2.426610-2 1.048069+2 2.483133-2 9.759719+1 2.511886-2 9.418040+1 2.630268-2 8.155138+1 2.818383-2 6.571167+1 2.884032-2 6.114774+1 3.019952-2 5.294901+1 3.090295-2 4.926922+1 3.198895-2 4.422319+1 3.801894-2 2.564397+1 3.890451-2 2.384579+1 4.120975-2 1.988266+1 4.897788-2 1.147685+1 5.011872-2 1.066561+1 5.069907-2 1.028173+1 5.248075-2 9.211053+0 5.559043-2 7.668600+0 5.623413-2 7.390337+0 6.382635-2 4.921496+0 6.456542-2 4.742840+0 6.606934-2 4.404752+0 6.998420-2 3.661257+0 7.079458-2 3.528350+0 7.585776-2 2.826317+0 8.413951-2 2.026274+0 8.709636-2 1.813533+0 9.332543-2 1.452713+0 1.011580-1 1.121444+0 1.059254-1 9.672763-1 1.122019-1 8.040194-1 1.188502-1 6.683202-1 1.244515-1 5.764467-1 1.273503-1 5.353619-1 1.303167-1 4.972160-1 1.380384-1 4.133282-1 1.396368-1 3.984559-1 1.445440-1 3.569734-1 1.500000-1 3.172627-1 1.584893-1 2.662688-1 1.603245-1 2.566884-1 1.640590-1 2.385489-1 1.659587-1 2.299664-1 1.678804-1 2.216927-1 1.698244-1 2.137227-1 1.717908-1 2.060396-1 1.798871-1 1.782688-1 1.819701-1 1.719321-1 1.883649-1 1.542417-1 1.905461-1 1.487590-1 2.000000-1 1.277533-1 2.018366-1 1.241345-1 2.065380-1 1.154746-1 2.113489-1 1.074190-1 2.137962-1 1.036518-1 2.238721-1 8.985866-2 2.317395-1 8.073235-2 2.344229-1 7.790114-2 2.371374-1 7.516944-2 2.398833-1 7.253356-2 2.454709-1 6.754100-2 2.483133-1 6.521237-2 2.600160-1 5.667348-2 2.630268-1 5.471959-2 2.691535-1 5.101150-2 2.754229-1 4.755504-2 2.818383-1 4.433672-2 2.884032-1 4.138703-2 3.000000-1 3.678525-2 3.019952-1 3.606338-2 3.054921-1 3.484314-2 3.126079-1 3.252536-2 3.162278-1 3.142637-2 3.198895-1 3.036456-2 3.311311-1 2.744419-2 3.427678-1 2.480472-2 3.467369-1 2.398266-2 3.507519-1 2.318785-2 3.548134-1 2.242047-2 3.589219-1 2.167850-2 3.672823-1 2.029678-2 3.758374-1 1.900313-2 3.801894-1 1.838756-2 3.890451-1 1.721576-2 3.935501-1 1.665903-2 4.000000-1 1.590347-2 4.073803-1 1.511319-2 4.216965-1 1.372583-2 4.229500-1 1.361274-2 4.315191-1 1.287255-2 4.415705-1 1.207367-2 4.466836-1 1.170178-2 4.570882-1 1.099200-2 4.677351-1 1.032529-2 4.731513-1 1.000730-2 4.786301-1 9.699646-3 4.841724-1 9.401447-3 4.897788-1 9.119445-3 4.954502-1 8.845899-3 5.128614-1 8.073526-3 5.188000-1 7.831400-3 5.308844-1 7.369560-3 5.370318-1 7.154844-3 5.623413-1 6.356761-3 5.688529-1 6.171591-3 5.821032-1 5.817992-3 5.888437-1 5.653747-3 6.095369-1 5.188320-3 6.165950-1 5.041853-3 6.237348-1 4.899548-3 6.309573-1 4.761565-3 6.382635-1 4.627470-3 6.456542-1 4.501216-3 6.606935-1 4.258946-3 6.760830-1 4.029717-3 6.839117-1 3.919793-3 6.918310-1 3.813115-3 6.998420-1 3.709342-3 7.079458-1 3.612195-3 7.161434-1 3.517592-3 7.413102-1 3.248391-3 7.498942-1 3.163335-3 7.585776-1 3.080701-3 7.762471-1 2.926758-3 8.035261-1 2.710147-3 8.128305-1 2.641567-3 8.222427-1 2.574899-3 8.317638-1 2.509915-3 8.413951-1 2.448532-3 8.609938-1 2.330231-3 8.810489-1 2.217647-3 8.820400-1 2.212291-3 8.912509-1 2.163412-3 9.120108-1 2.059169-3 9.332543-1 1.959949-3 9.440609-1 1.913458-3 9.660509-1 1.823761-3 9.885531-1 1.738505-3 1.000000+0 1.697384-3 1.011579+0 1.658596-3 1.059254+0 1.512098-3 1.083927+0 1.443778-3 1.109175+0 1.378544-3 1.122018+0 1.347120-3 1.135011+0 1.316410-3 1.148154+0 1.287561-3 1.188502+0 1.204755-3 1.216186+0 1.152530-3 1.230269+0 1.127273-3 1.250000+0 1.093374-3 1.303167+0 1.012366-3 1.318257+0 9.910538-4 1.333521+0 9.701918-4 1.348963+0 9.497674-4 1.380384+0 9.103111-4 1.428894+0 8.562037-4 1.445440+0 8.388924-4 1.462177+0 8.219318-4 1.479108+0 8.053140-4 1.513561+0 7.731817-4 1.584893+0 7.151645-4 1.621810+0 6.878097-4 1.659587+0 6.615791-4 1.678804+0 6.488416-4 1.698244+0 6.368312-4 1.757924+0 6.021181-4 1.798871+0 5.800342-4 1.862087+0 5.485080-4 1.883649+0 5.383847-4 1.905461+0 5.288069-4 1.972423+0 5.010842-4 2.018366+0 4.834150-4 2.041738+0 4.748152-4 2.089296+0 4.581200-4 2.137962+0 4.420119-4 2.238721+0 4.125618-4 2.290868+0 3.985810-4 2.317395+0 3.917693-4 2.371374+0 3.785305-4 2.426610+0 3.657392-4 2.540973+0 3.422642-4 2.600160+0 3.310981-4 2.630268+0 3.256526-4 2.691535+0 3.150572-4 2.754229+0 3.048067-4 2.917427+0 2.814197-4 3.000000+0 2.707353-4 3.019952+0 2.682580-4 3.090295+0 2.598496-4 3.198895+0 2.477284-4 3.388442+0 2.293902-4 3.467369+0 2.224409-4 3.507519+0 2.190457-4 3.589219+0 2.124274-4 3.715352+0 2.028730-4 3.981072+0 1.855893-4 4.073803+0 1.801619-4 4.120975+0 1.775080-4 4.216965+0 1.723297-4 4.365158+0 1.648443-4 4.731513+0 1.491032-4 4.841724+0 1.448885-4 4.897788+0 1.428260-4 5.069907+0 1.368264-4 5.248075+0 1.310789-4 5.308844+0 1.292172-4 5.754399+0 1.172487-4 5.888437+0 1.140375-4 5.956621+0 1.124650-4 6.095369+0 1.093922-4 6.309573+0 1.049398-4 6.382635+0 1.034963-4 7.000000+0 9.291393-5 7.244360+0 8.926309-5 7.328245+0 8.807057-5 7.585776+0 8.459474-5 7.943282+0 8.017278-5 8.035261+0 7.910389-5 8.912509+0 7.032125-5 9.225714+0 6.761603-5 9.332543+0 6.673761-5 9.660509+0 6.417538-5 1.000000+1 6.171154-5 1.023293+1 6.012176-5 1.148154+1 5.293614-5 1.202264+1 5.030847-5 1.216186+1 4.967217-5 1.273503+1 4.721077-5 1.318257+1 4.544510-5 1.364583+1 4.374549-5 1.513561+1 3.911924-5 1.603245+1 3.676397-5 1.659587+1 3.541942-5 1.778279+1 3.288015-5 1.840772+1 3.167962-5 1.905461+1 3.052292-5 2.041738+1 2.837522-5 2.238721+1 2.574486-5 2.426610+1 2.364410-5 2.630268+1 2.171747-5 2.722701+1 2.094061-5 2.800000+1 2.033137-5 2.917427+1 1.948407-5 3.235937+1 1.750061-5 3.630781+1 1.553267-5 3.758374+1 1.498668-5 4.315191+1 1.298988-5 4.466836+1 1.253373-5 4.570882+1 1.223856-5 4.786301+1 1.167567-5 5.432503+1 1.025768-5 6.456542+1 8.597420-6 6.760830+1 8.202029-6 7.762471+1 7.122480-6 7.943282+1 6.956908-6 8.035261+1 6.875571-6 8.511380+1 6.486459-6 1.023293+2 5.383249-6 1.288250+2 4.264227-6 1.348963+2 4.070057-6 1.548817+2 3.539236-6 1.584893+2 3.457757-6 1.603245+2 3.417724-6 1.698244+2 3.225688-6 2.041738+2 2.680751-6 2.570396+2 2.127154-6 2.691535+2 2.030991-6 6.165950+2 8.834472-7 6.309573+2 8.632532-7 6.382635+2 8.533299-7 6.760830+2 8.055649-7 8.128305+2 6.699588-7 2.041738+3 2.665545-7 2.137962+3 2.545500-7 1.949845+4 2.787989-8 1.995262+4 2.724496-8 2.018366+4 2.693294-8 2.137962+4 2.542615-8 1.000000+5 5.434976-9 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.520000-6 6.520000-6 6.550000-6 6.520000-6 6.550000-6 6.530035-6 1.363000-5 6.530195-6 1.363000-5 6.543851-6 1.433000-5 6.533931-6 1.492000-5 6.568859-6 1.550000-5 6.650687-6 1.605000-5 6.779090-6 1.655000-5 6.942270-6 1.700000-5 7.128416-6 1.760000-5 7.431986-6 1.830000-5 7.853593-6 2.020000-5 9.135819-6 2.090000-5 9.561545-6 2.137962-5 9.820413-6 2.170000-5 9.978904-6 2.250000-5 1.030627-5 2.290868-5 1.044284-5 2.371374-5 1.065056-5 2.454709-5 1.079850-5 2.560000-5 1.090972-5 2.691535-5 1.096842-5 2.851018-5 1.096640-5 3.198895-5 1.085281-5 3.935501-5 1.055242-5 4.415704-5 1.040184-5 5.080000-5 1.025691-5 5.821032-5 1.015935-5 6.918310-5 1.009298-5 8.609938-5 1.008151-5 1.079800-4 1.013753-5 1.079800-4 1.679913-5 1.086700-4 1.703790-5 1.086700-4 1.734008-5 1.096500-4 1.752718-5 1.113000-4 1.769339-5 1.141000-4 1.779700-5 1.318257-4 1.788947-5 1.515500-4 1.793408-5 1.515500-4 1.908891-5 2.018366-4 1.949719-5 2.951209-4 2.013589-5 4.073803-4 2.077622-5 5.688529-4 2.153651-5 7.413102-4 2.220482-5 9.549926-4 2.287719-5 1.188502-3 2.347251-5 1.513561-3 2.411869-5 1.828500-3 2.461309-5 1.828500-3 3.844988-5 2.041738-3 3.857315-5 3.758374-3 3.881658-5 9.225714-3 3.897836-5 5.623413-2 3.906742-5 1.000000+5 3.907923-5 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.520000-6 0.0 1.079800-4 0.0 1.079800-4 2.199972-8 1.086000-4 2.271959-8 1.086700-4 2.278730-8 1.086700-4 2.376222-8 1.093500-4 2.422132-8 1.103000-4 2.464671-8 1.115000-4 2.496464-8 1.133000-4 2.520489-8 1.164000-4 2.535369-8 1.380384-4 2.561585-8 1.515500-4 2.569935-8 1.515500-4 2.581988-8 2.089296-4 2.588300-8 9.120108-4 2.557536-8 1.828500-3 2.537708-8 1.828500-3 7.389720-5 1.930000-3 7.434340-5 3.235937-3 7.502677-5 5.559043-3 7.539144-5 1.566751-2 7.559543-5 1.000000+5 7.559450-5 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.520000-6 0.0 6.550000-6 3.000000-8 6.550000-6 1.996451-8 1.363000-5 7.099805-6 1.363000-5 7.086149-6 1.439000-5 7.854491-6 1.509000-5 8.502388-6 1.566751-5 8.983180-6 1.625000-5 9.411094-6 1.687100-5 9.799689-6 1.740000-5 1.007593-5 1.808000-5 1.036499-5 1.929400-5 1.076987-5 2.020000-5 1.106418-5 2.104000-5 1.139964-5 2.170000-5 1.172110-5 2.250000-5 1.219373-5 2.330000-5 1.274754-5 2.426610-5 1.351065-5 2.511886-5 1.425072-5 2.610000-5 1.515795-5 2.800000-5 1.702706-5 3.198895-5 2.113614-5 4.220000-5 3.174340-5 5.688529-5 4.670973-5 9.332543-5 8.323028-5 1.079800-4 9.784247-5 1.079800-4 9.115887-5 1.086700-4 9.160931-5 1.086700-4 9.130616-5 1.122018-4 9.443492-5 1.515500-4 1.335902-4 1.515500-4 1.324353-4 6.839116-4 6.618874-4 1.828500-3 1.803862-3 1.828500-3 1.716153-3 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.828500-3 1.397793+5 1.865000-3 1.367737+5 1.890000-3 1.340314+5 1.930000-3 1.288080+5 1.950000-3 1.257426+5 2.786121-3 5.068054+4 3.054921-3 3.990231+4 3.715352-3 2.371276+4 4.365158-3 1.528534+4 5.011872-3 1.043048+4 6.025596-3 6.212684+3 7.244360-3 3.668166+3 8.709636-3 2.148715+3 1.059254-2 1.207468+3 1.288250-2 6.733051+2 1.584893-2 3.599725+2 1.972423-2 1.844034+2 2.511886-2 8.729887+1 3.198895-2 4.099398+1 4.120975-2 1.843099+1 5.559043-2 7.108644+0 1.380384-1 3.830072-1 1.717908-1 1.909308-1 2.113489-1 9.953736-2 2.454709-1 6.258379-2 2.818383-1 4.108211-2 3.198895-1 2.813498-2 3.589219-1 2.008633-2 4.000000-1 1.473513-2 4.415705-1 1.118689-2 4.841724-1 8.710912-3 5.308844-1 6.828224-3 5.821032-1 5.390631-3 6.382635-1 4.287571-3 6.998420-1 3.436921-3 7.585776-1 2.854881-3 8.317638-1 2.326156-3 9.332543-1 1.816376-3 1.000000+0 1.572800-3 1.135011+0 1.219700-3 1.250000+0 1.013100-3 1.380384+0 8.434980-4 1.513561+0 7.164444-4 1.678804+0 6.012290-4 1.883649+0 4.988697-4 2.137962+0 4.095693-4 2.426610+0 3.388969-4 2.754229+0 2.824367-4 3.198895+0 2.295461-4 3.715352+0 1.879828-4 4.365158+0 1.527462-4 5.308844+0 1.197328-4 6.382635+0 9.590058-5 8.035261+0 7.329788-5 1.023293+1 5.570910-5 1.364583+1 4.053449-5 1.905461+1 2.828250-5 2.800000+1 1.883900-5 4.570882+1 1.134030-5 8.035261+1 6.371063-6 1.603245+2 3.166982-6 6.382635+2 7.906867-7 2.018366+4 2.495781-8 1.000000+5 5.036400-9 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.828500-3 3.988800-5 1.000000+5 3.988800-5 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.828500-3 8.157500-5 1.000000+5 8.157500-5 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.828500-3 1.707037-3 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.515500-4 4.852926+5 1.800000-4 4.557580+5 1.862087-4 4.471602+5 1.930000-4 4.347880+5 2.018366-4 4.166641+5 2.400000-4 3.471160+5 2.570396-4 3.209440+5 2.730000-4 2.975560+5 2.951209-4 2.676273+5 3.350000-4 2.231140+5 3.672823-4 1.943267+5 4.027170-4 1.678865+5 4.570882-4 1.361070+5 5.069907-4 1.139659+5 5.623413-4 9.473620+4 6.382635-4 7.504735+4 7.161434-4 6.028412+4 8.128305-4 4.701395+4 9.120108-4 3.726609+4 1.047129-3 2.797173+4 1.188502-3 2.134747+4 1.350000-3 1.615746+4 1.548817-3 1.187313+4 1.778279-3 8.641932+3 2.041738-3 6.242442+3 2.344229-3 4.475323+3 2.691535-3 3.185656+3 3.090295-3 2.252220+3 3.589219-3 1.535668+3 4.168694-3 1.039567+3 4.897788-3 6.777116+2 5.754399-3 4.384505+2 6.760830-3 2.816016+2 8.000000-3 1.760336+2 9.549926-3 1.065042+2 1.135011-2 6.475561+1 1.348963-2 3.908533+1 1.621810-2 2.263897+1 1.972423-2 1.257342+1 2.426610-2 6.692123+0 3.019952-2 3.411743+0 3.801894-2 1.665623+0 4.897788-2 7.508913-1 6.382635-2 3.240553-1 1.273503-1 3.561381-2 1.678804-1 1.478584-2 2.018366-1 8.285910-3 2.398833-1 4.850460-3 2.754229-1 3.182165-3 3.126079-1 2.177928-3 3.507519-1 1.553606-3 3.890451-1 1.153842-3 4.315191-1 8.629562-4 4.731513-1 6.710359-4 5.188000-1 5.252406-4 5.688529-1 4.139554-4 6.237348-1 3.286493-4 6.839117-1 2.629263-4 7.498942-1 2.119733-4 8.128305-1 1.767243-4 8.912509-1 1.446458-4 9.660509-1 1.221898-4 1.109175+0 9.253625-5 1.230269+0 7.566194-5 1.348963+0 6.370966-5 1.479108+0 5.400232-5 1.621810+0 4.610944-5 1.798871+0 3.888199-5 2.041738+0 3.183154-5 2.317395+0 2.626568-5 2.630268+0 2.183452-5 3.019952+0 1.798364-5 3.507519+0 1.468578-5 4.120975+0 1.190139-5 4.897788+0 9.574702-6 5.956621+0 7.539850-6 7.328245+0 5.904088-6 9.332543+0 4.474075-6 1.216186+1 3.329969-6 1.659587+1 2.374278-6 2.426610+1 1.585072-6 3.758374+1 1.004704-6 6.760830+1 5.499187-7 1.348963+2 2.729737-7 2.691535+2 1.361753-7 2.137962+3 1.706474-8 1.000000+5 3.64670-10 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.515500-4 3.024200-5 1.000000+5 3.024200-5 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.515500-4 2.698400-8 1.000000+5 2.698400-8 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.515500-4 1.212810-4 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.086700-4 6.558400+5 1.090500-4 7.421500+5 1.093500-4 8.123500+5 1.096500-4 8.819500+5 1.099500-4 9.506100+5 1.102500-4 1.017600+6 1.105500-4 1.082600+6 1.108500-4 1.144300+6 1.112000-4 1.212200+6 1.115000-4 1.266500+6 1.118000-4 1.317000+6 1.122018-4 1.378600+6 1.125400-4 1.424700+6 1.129000-4 1.468200+6 1.133000-4 1.510000+6 1.138500-4 1.557400+6 1.144000-4 1.594500+6 1.149500-4 1.622600+6 1.155000-4 1.643500+6 1.163000-4 1.663400+6 1.173000-4 1.675800+6 1.185000-4 1.678900+6 1.318257-4 1.644071+6 1.380384-4 1.615575+6 1.440000-4 1.575261+6 1.490000-4 1.535100+6 1.531087-4 1.494100+6 1.580000-4 1.437300+6 1.640590-4 1.360700+6 1.719700-4 1.259200+6 1.840772-4 1.115500+6 1.980000-4 9.719200+5 2.089296-4 8.735400+5 2.213095-4 7.740200+5 2.350000-4 6.772100+5 2.570396-4 5.498000+5 2.900000-4 4.123000+5 3.200000-4 3.236300+5 3.507519-4 2.563800+5 4.027170-4 1.789500+5 4.472100-4 1.354000+5 5.011872-4 9.913400+4 5.688529-4 6.961400+4 6.382635-4 5.010900+4 7.328245-4 3.349600+4 8.222426-4 2.379600+4 9.500000-4 1.537500+4 1.083927-3 1.024200+4 1.244515-3 6.643900+3 1.445440-3 4.121100+3 1.659587-3 2.631300+3 1.883649-3 1.732900+3 2.162719-3 1.091400+3 2.511886-3 6.564900+2 2.917427-3 3.918600+2 3.388442-3 2.323000+2 3.981072-3 1.313000+2 4.677351-3 7.364800+1 5.559043-3 3.932500+1 6.531306-3 2.173400+1 7.762471-3 1.142500+1 9.225714-3 5.958500+0 1.096478-2 3.085000+0 1.318257-2 1.517122+0 1.621810-2 6.772694-1 2.041738-2 2.743195-1 2.818383-2 7.668389-2 5.069907-2 7.477524-3 6.606934-2 2.633952-3 8.413951-2 1.023695-3 1.011580-1 5.014658-4 1.188502-1 2.704572-4 1.396368-1 1.470055-4 1.603245-1 8.781551-5 1.819701-1 5.514377-5 2.065380-1 3.488909-5 2.317395-1 2.317845-5 2.600160-1 1.551347-5 2.884032-1 1.088378-5 3.198895-1 7.688465-6 3.548134-1 5.470323-6 3.935501-1 3.919350-6 4.315191-1 2.934109-6 4.731513-1 2.212202-6 5.128614-1 1.740038-6 5.623413-1 1.331818-6 6.309573-1 9.620752-7 6.918310-1 7.470298-7 7.498942-1 6.025709-7 8.222427-1 4.738562-7 8.810489-1 3.983557-7 9.332543-1 3.468833-7 9.885531-1 3.041127-7 1.059254+0 2.620750-7 1.135011+0 2.274933-7 1.216186+0 1.990997-7 1.318257+0 1.717104-7 1.445440+0 1.461111-7 1.659587+0 1.156264-7 1.862087+0 9.581125-8 2.089296+0 7.997702-8 2.371374+0 6.608388-8 2.691535+0 5.500648-8 3.090295+0 4.536073-8 3.589219+0 3.708496-8 4.216965+0 3.008577-8 5.069907+0 2.388461-8 6.095369+0 1.909559-8 7.585776+0 1.476675-8 9.660509+0 1.120275-8 1.273503+1 8.240540-9 1.778279+1 5.739048-9 2.630268+1 3.791397-9 4.315191+1 2.268063-9 7.762471+1 1.243824-9 1.548817+2 6.18156-10 6.165950+2 1.54292-10 1.949845+4 4.86993-12 1.000000+5 9.49390-13 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.086700-4 1.822400-5 1.000000+5 1.822400-5 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.086700-4 2.661400-8 1.000000+5 2.661400-8 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.086700-4 9.041939-5 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.079800-4 1.328032+6 1.080900-4 1.374388+6 1.083927-4 1.516295+6 1.086000-4 1.613764+6 1.088500-4 1.731516+6 1.091000-4 1.848448+6 1.093500-4 1.963212+6 1.096500-4 2.097332+6 1.100000-4 2.247856+6 1.103000-4 2.370140+6 1.106000-4 2.485284+6 1.109500-4 2.609920+6 1.113000-4 2.723664+6 1.117000-4 2.840224+6 1.121200-4 2.947193+6 1.126000-4 3.050900+6 1.130000-4 3.123364+6 1.135500-4 3.204208+6 1.141000-4 3.266168+6 1.148154-4 3.323429+6 1.156000-4 3.362680+6 1.164000-4 3.384100+6 1.183000-4 3.399652+6 1.244515-4 3.377036+6 1.333521-4 3.307605+6 1.380384-4 3.246221+6 1.465000-4 3.121496+6 1.500000-4 3.056852+6 1.540000-4 2.969780+6 1.584893-4 2.860306+6 1.640590-4 2.716033+6 1.720000-4 2.510064+6 1.840772-4 2.221691+6 1.980000-4 1.934484+6 2.089296-4 1.737110+6 2.220000-4 1.527268+6 2.371374-4 1.317100+6 2.600160-4 1.061639+6 2.951209-4 7.832836+5 3.200000-4 6.412160+5 3.548134-4 4.926524+5 4.073803-4 3.434408+5 4.518559-4 2.602346+5 5.069907-4 1.896871+5 5.800000-4 1.300596+5 6.500000-4 9.374560+4 7.413102-4 6.381069+4 8.413951-4 4.372894+4 9.772372-4 2.774322+4 1.135011-3 1.743964+4 1.303167-3 1.127274+4 1.513561-3 6.966510+3 1.757924-3 4.267124+3 2.018366-3 2.693574+3 2.317395-3 1.688729+3 2.691535-3 1.010792+3 3.126079-3 6.005405+2 3.630781-3 3.543644+2 4.265795-3 1.992353+2 5.011872-3 1.111998+2 5.888437-3 6.159385+1 6.918310-3 3.387481+1 8.222426-3 1.771089+1 9.660509-3 9.599926+0 1.148154-2 4.943185+0 1.380384-2 2.416469+0 1.678804-2 1.121035+0 2.137962-2 4.303776-1 2.884032-2 1.303847-1 6.456542-2 5.153699-3 8.413951-2 1.796546-3 1.011580-1 8.680718-4 1.188502-1 4.625730-4 1.396368-1 2.484477-4 1.584893-1 1.534899-4 1.798871-1 9.552243-5 2.018366-1 6.250693-5 2.238721-1 4.295478-5 2.483133-1 2.972763-5 2.754229-1 2.073179-5 3.019952-1 1.515558-5 3.311311-1 1.116221-5 3.589219-1 8.600793-6 3.890451-1 6.670613-6 4.229500-1 5.160565-6 4.570882-1 4.090894-6 4.954502-1 3.235786-6 5.370318-1 2.577503-6 5.821032-1 2.068930-6 6.309573-1 1.672809-6 6.839117-1 1.362266-6 7.413102-1 1.117856-6 8.035261-1 9.233302-7 8.820400-1 7.457000-7 9.440609-1 6.402132-7 1.000000+0 5.656600-7 1.109175+0 4.572071-7 1.188502+0 3.993051-7 1.303167+0 3.360280-7 1.428894+0 2.848143-7 1.584893+0 2.381962-7 1.757924+0 2.005425-7 1.972423+0 1.668524-7 2.238721+0 1.373784-7 2.540973+0 1.139812-7 2.917427+0 9.370558-8 3.388442+0 7.638705-8 3.981072+0 6.180004-8 4.731513+0 4.964572-8 5.754399+0 3.904194-8 7.000000+0 3.093800-8 8.912509+0 2.341454-8 1.148154+1 1.762648-8 1.513561+1 1.302645-8 2.041738+1 9.451850-9 2.917427+1 6.491412-9 4.786301+1 3.889992-9 8.511380+1 2.161234-9 1.698244+2 1.074752-9 6.760830+2 2.68432-10 2.137962+4 8.47396-12 1.000000+5 1.81140-12 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.079800-4 1.818000-5 1.000000+5 1.818000-5 1 14000 7 7 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.079800-4 2.656000-8 1.000000+5 2.656000-8 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.079800-4 8.977344-5 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.363000-5 6.942878+3 1.363900-5 6.662300+3 1.367000-5 5.873000+3 1.370000-5 5.169300+3 1.372000-5 4.732520+3 1.374000-5 4.317960+3 1.377000-5 3.740380+3 1.380384-5 3.151488+3 1.382000-5 2.893940+3 1.385000-5 2.453140+3 1.387700-5 2.100320+3 1.390000-5 1.829422+3 1.393500-5 1.471632+3 1.400000-5 9.737820+2 1.402200-5 8.526980+2 1.403500-5 7.922600+2 1.405000-5 7.325980+2 1.406000-5 6.987920+2 1.407000-5 6.696900+2 1.408000-5 6.451580+2 1.409000-5 6.253420+2 1.410000-5 6.100900+2 1.411000-5 5.993740+2 1.412000-5 5.931940+2 1.413000-5 5.914740+2 1.414000-5 5.942460+2 1.415000-5 6.014240+2 1.415700-5 6.090200+2 1.416800-5 6.253840+2 1.418000-5 6.491900+2 1.419000-5 6.737520+2 1.420000-5 7.026200+2 1.421500-5 7.538200+2 1.423000-5 8.144740+2 1.425000-5 9.098260+2 1.433000-5 1.451942+3 1.436000-5 1.719236+3 1.439000-5 2.020180+3 1.442000-5 2.353880+3 1.445000-5 2.719920+3 1.448000-5 3.117380+3 1.451000-5 3.545620+3 1.454000-5 4.003900+3 1.457000-5 4.491840+3 1.460000-5 5.008320+3 1.463500-5 5.646180+3 1.467000-5 6.321020+3 1.471000-5 7.136220+3 1.475000-5 7.996900+3 1.479108-5 8.926509+3 1.483500-5 9.969740+3 1.487000-5 1.083650+4 1.492000-5 1.212770+4 1.497000-5 1.347864+4 1.503000-5 1.517462+4 1.509000-5 1.694986+4 1.515000-5 1.879994+4 1.522000-5 2.104740+4 1.528000-5 2.304640+4 1.535000-5 2.545900+4 1.542000-5 2.795080+4 1.550000-5 3.089120+4 1.557000-5 3.353800+4 1.566751-5 3.733224+4 1.577900-5 4.180948+4 1.585000-5 4.473080+4 1.595000-5 4.892780+4 1.605000-5 5.321520+4 1.615000-5 5.758160+4 1.625000-5 6.201620+4 1.640590-5 6.905100+4 1.655000-5 7.565860+4 1.670000-5 8.262280+4 1.687100-5 9.063929+4 1.700000-5 9.672200+4 1.720000-5 1.061878+5 1.740000-5 1.156608+5 1.760000-5 1.251088+5 1.785000-5 1.368414+5 1.808000-5 1.475210+5 1.830000-5 1.576050+5 1.862087-5 1.720451+5 1.885000-5 1.821346+5 1.920000-5 1.971454+5 1.950000-5 2.096020+5 1.990000-5 2.255880+5 2.020000-5 2.371000+5 2.065380-5 2.537046+5 2.113489-5 2.702559+5 2.170000-5 2.883100+5 2.230000-5 3.058900+5 2.290868-5 3.221339+5 2.350000-5 3.364600+5 2.426610-5 3.530177+5 2.511886-5 3.689889+5 2.610000-5 3.844520+5 2.691535-5 3.951754+5 2.800000-5 4.067940+5 2.917427-5 4.163998+5 3.054921-5 4.242895+5 3.198895-5 4.292661+5 3.350000-5 4.314900+5 3.507519-5 4.311548+5 3.715352-5 4.274698+5 3.935501-5 4.204942+5 4.168694-5 4.105696+5 4.415704-5 3.981014+5 4.677351-5 3.834999+5 5.000000-5 3.644880+5 5.308844-5 3.459537+5 5.688529-5 3.234865+5 6.150000-5 2.975360+5 6.683439-5 2.699915+5 7.328245-5 2.405725+5 8.128305-5 2.096957+5 9.225714-5 1.758781+5 1.059254-4 1.439789+5 1.202264-4 1.189759+5 1.380384-4 9.589807+4 2.137962-4 4.751091+4 2.454709-4 3.784566+4 2.818383-4 2.992512+4 3.349654-4 2.214269+4 3.935501-4 1.659767+4 4.786301-4 1.159549+4 5.495409-4 8.941721+3 6.237348-4 6.995375+3 7.079458-4 5.431958+3 8.317638-4 3.902947+3 9.549926-4 2.920969+3 1.096478-3 2.170253+3 1.273503-3 1.560991+3 1.479108-3 1.114183+3 1.717908-3 7.894461+2 2.000000-3 5.519741+2 2.317395-3 3.872016+2 2.691535-3 2.680183+2 3.126079-3 1.841265+2 3.630781-3 1.255608+2 4.216965-3 8.501574+1 4.954502-3 5.543335+1 5.821032-3 3.586219+1 6.839116-3 2.303111+1 8.128305-3 1.422057+1 9.660509-3 8.714897+0 1.148154-2 5.300493+0 1.380384-2 3.093964+0 1.659587-2 1.792007+0 2.018366-2 9.952141-1 2.483133-2 5.296261-1 3.090295-2 2.699654-1 3.890451-2 1.317779-1 5.011872-2 5.935743-2 6.998420-2 2.055842-2 8.709636-2 1.021771-2 1.303167-1 2.810277-3 1.640590-1 1.352594-3 2.000000-1 7.261800-4 2.344229-1 4.431762-4 2.691535-1 2.904472-4 3.054921-1 1.985451-4 3.427678-1 1.414153-4 3.801894-1 1.048729-4 4.216965-1 7.831111-5 4.677351-1 5.892346-5 5.128614-1 4.607942-5 5.623413-1 3.629054-5 6.165950-1 2.879234-5 6.760830-1 2.302134-5 7.413102-1 1.854986-5 8.128305-1 1.506434-5 8.912509-1 1.233115-5 9.660509-1 1.041775-5 1.109175+0 7.891045-6 1.230269+0 6.452085-6 1.348963+0 5.432582-6 1.479108+0 4.604538-6 1.621810+0 3.931461-6 1.798871+0 3.315214-6 2.041738+0 2.714051-6 2.317395+0 2.239496-6 2.630268+0 1.861720-6 3.019952+0 1.533396-6 3.507519+0 1.252124-6 4.120975+0 1.014694-6 4.897788+0 8.163655-7 5.956621+0 6.428719-7 7.328245+0 5.034103-7 9.332543+0 3.814725-7 1.216186+1 2.839259-7 1.659587+1 2.024379-7 2.426610+1 1.351507-7 3.630781+1 8.878444-8 6.456542+1 4.914221-8 1.288250+2 2.438308-8 2.570396+2 1.216000-8 2.041738+3 1.523670-9 1.000000+5 3.10930-11 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.363000-5 1.363000-5 1.000000+5 1.363000-5 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.363000-5 0.0 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.550000-6 1.351854+7 6.839116-6 1.262090+7 7.100000-6 1.180914+7 7.350000-6 1.105241+7 7.600000-6 1.031687+7 7.852356-6 9.593776+6 8.128305-6 8.838420+6 8.413951-6 8.096323+6 8.709636-6 7.370668+6 9.015711-6 6.667710+6 9.350000-6 5.958963+6 9.700000-6 5.282129+6 1.000000-5 4.753489+6 1.035142-5 4.191685+6 1.071519-5 3.671943+6 1.110000-5 3.185682+6 1.150000-5 2.743628+6 1.190000-5 2.360121+6 1.230269-5 2.026423+6 1.273503-5 1.719883+6 1.318257-5 1.450987+6 1.365000-5 1.215147+6 1.420000-5 9.872138+5 1.480000-5 7.887071+5 1.548817-5 6.120260+5 1.640590-5 4.401481+5 1.800000-5 2.571388+5 1.870000-5 2.072748+5 1.929400-5 1.748578+5 1.980000-5 1.529214+5 2.020000-5 1.386294+5 2.065380-5 1.251528+5 2.104000-5 1.156402+5 2.137962-5 1.085533+5 2.170000-5 1.028274+5 2.210000-5 9.682205+4 2.250000-5 9.191871+4 2.290868-5 8.788399+4 2.330000-5 8.481338+4 2.371374-5 8.228897+4 2.410000-5 8.050737+4 2.454709-5 7.903364+4 2.500000-5 7.808471+4 2.560000-5 7.751871+4 2.610000-5 7.753271+4 2.675200-5 7.806823+4 2.754229-5 7.930489+4 2.851018-5 8.141605+4 3.000000-5 8.536938+4 3.311311-5 9.409450+4 3.507519-5 9.893338+4 3.672823-5 1.023626+5 3.850000-5 1.053267+5 4.027170-5 1.075416+5 4.220000-5 1.091314+5 4.415704-5 1.099551+5 4.623810-5 1.100568+5 4.850000-5 1.093687+5 5.080000-5 1.079721+5 5.308844-5 1.060429+5 5.559043-5 1.034396+5 5.821032-5 1.003047+5 6.165950-5 9.580889+4 6.531306-5 9.079001+4 6.918310-5 8.544651+4 7.328245-5 7.992995+4 7.852356-5 7.323886+4 8.413951-5 6.665809+4 9.120108-5 5.927371+4 9.900000-5 5.218083+4 1.071519-4 4.582800+4 1.161449-4 3.988286+4 1.273503-4 3.375940+4 1.428894-4 2.716089+4 1.659587-4 2.027256+4 1.900000-4 1.545574+4 2.089296-4 1.269652+4 2.290868-4 1.042264+4 2.540973-4 8.285037+3 2.818383-4 6.536895+3 3.126079-4 5.121608+3 3.507519-4 3.876054+3 3.981072-4 2.829819+3 4.466836-4 2.114880+3 4.954502-4 1.616443+3 5.495409-4 1.225615+3 6.095369-4 9.222950+2 6.839116-4 6.674935+2 7.762471-4 4.646090+2 8.810489-4 3.210354+2 1.000000-3 2.202203+2 1.135011-3 1.500312+2 1.303167-3 9.794493+1 1.496236-3 6.343972+1 1.717908-3 4.078429+1 1.972423-3 2.601789+1 2.264644-3 1.646339+1 2.600160-3 1.033949+1 3.019952-3 6.197246+0 3.507519-3 3.687057+0 4.073803-3 2.177458+0 4.731513-3 1.276852+0 5.559043-3 7.132759-1 6.531306-3 3.954664-1 7.673615-3 2.176613-1 9.120108-3 1.138977-1 1.071519-2 6.179289-2 1.288250-2 3.048222-2 1.566751-2 1.427735-2 1.972423-2 5.801613-3 2.630268-2 1.865738-3 5.248075-2 1.210899-4 7.079458-2 3.725254-5 8.709636-2 1.658441-5 1.059254-1 7.782682-6 1.244515-1 4.203554-6 1.445440-1 2.390331-6 1.659587-1 1.430285-6 1.883649-1 8.996340-7 2.137962-1 5.700548-7 2.398833-1 3.791765-7 2.691535-1 2.541097-7 3.000000-1 1.755700-7 3.311311-1 1.262882-7 3.672823-1 9.002096-8 4.073803-1 6.466615-8 4.466836-1 4.851523-8 4.897788-1 3.665227-8 5.370318-1 2.790452-8 5.888437-1 2.140245-8 6.456542-1 1.652423-8 7.079458-1 1.284870-8 7.762471-1 1.006753-8 8.609938-1 7.693315-9 9.120108-1 6.664499-9 9.660509-1 5.812170-9 1.011579+0 5.239729-9 1.083927+0 4.520227-9 1.148154+0 4.022266-9 1.230269+0 3.525139-9 1.333521+0 3.045279-9 1.462177+0 2.596138-9 1.698244+0 2.017720-9 1.905461+0 1.674159-9 2.137962+0 1.399476-9 2.426610+0 1.157997-9 2.754229+0 9.65090-10 3.198895+0 7.84380-10 3.715352+0 6.42364-10 4.365158+0 5.21946-10 5.248075+0 4.14941-10 6.309573+0 3.32203-10 7.943282+0 2.53802-10 1.000000+1 1.95340-10 1.318257+1 1.43829-10 1.840772+1 1.00264-10 2.722701+1 6.62856-11 4.466836+1 3.96784-11 7.943282+1 2.20256-11 1.584893+2 1.09477-11 6.309573+2 2.73316-12 1.995262+4 8.62683-14 1.000000+5 1.72100-14 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.550000-6 6.550000-6 1.000000+5 6.550000-6 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.550000-6 0.0 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 6.520000-6 2.709673+7 6.839116-6 2.505576+7 7.100000-6 2.342287+7 7.350000-6 2.189768+7 7.673615-6 1.998462+7 7.943282-6 1.845676+7 8.222426-6 1.694911+7 8.511380-6 1.547663+7 8.850000-6 1.386370+7 9.200000-6 1.232852+7 9.549926-6 1.092796+7 9.885531-6 9.709203+6 1.023293-5 8.570321+6 1.060000-5 7.495261+6 1.100000-5 6.462797+6 1.135011-5 5.668195+6 1.180000-5 4.781748+6 1.216186-5 4.166860+6 1.258925-5 3.539572+6 1.310000-5 2.911753+6 1.365000-5 2.360634+6 1.420000-5 1.916129+6 1.480000-5 1.529383+6 1.548817-5 1.185457+6 1.650000-5 8.238886+5 1.795500-5 5.050694+5 1.862087-5 4.113954+5 1.920000-5 3.484618+5 1.972423-5 3.033382+5 2.020000-5 2.703167+5 2.055000-5 2.500714+5 2.090000-5 2.327728+5 2.130000-5 2.161395+5 2.170000-5 2.023942+5 2.210000-5 1.911249+5 2.250000-5 1.819782+5 2.290868-5 1.745093+5 2.330000-5 1.688809+5 2.371374-5 1.643153+5 2.410000-5 1.611529+5 2.454709-5 1.586182+5 2.500000-5 1.570863+5 2.560000-5 1.563663+5 2.610000-5 1.566836+5 2.675200-5 1.580681+5 2.754229-5 1.608403+5 2.851018-5 1.653340+5 3.300000-5 1.904835+5 3.500000-5 2.003822+5 3.672823-5 2.074893+5 3.850000-5 2.132501+5 4.027170-5 2.174994+5 4.220000-5 2.205088+5 4.415704-5 2.219581+5 4.623810-5 2.219191+5 4.841724-5 2.204289+5 5.080000-5 2.173808+5 5.308844-5 2.132975+5 5.559043-5 2.078903+5 5.821032-5 2.014912+5 6.150000-5 1.926902+5 6.531306-5 1.820653+5 6.918310-5 1.712278+5 7.413102-5 1.577891+5 7.943282-5 1.443111+5 8.609938-5 1.289611+5 9.332543-5 1.143086+5 1.000000-4 1.025076+5 1.096478-4 8.791255+4 1.202264-4 7.473384+4 1.318257-4 6.303885+4 1.479108-4 5.055495+4 1.737801-4 3.676888+4 1.955530-4 2.893913+4 2.137962-4 2.401620+4 2.344229-4 1.967498+4 2.600160-4 1.560101+4 2.884032-4 1.227803+4 3.235937-4 9.334634+3 3.630781-4 7.043500+3 4.216965-4 4.840004+3 4.731513-4 3.601898+3 5.188000-4 2.825038+3 5.754399-4 2.133256+3 6.382635-4 1.599153+3 7.413102-4 1.044684+3 8.413951-4 7.233093+2 9.549926-4 4.971075+2 1.083927-3 3.392353+2 1.230269-3 2.299091+2 1.412538-3 1.492480+2 1.621810-3 9.614928+1 1.862087-3 6.146559+1 2.089296-3 4.206630+1 2.398833-3 2.647885+1 2.754229-3 1.654465+1 3.235937-3 9.480655+0 3.758374-3 5.611547+0 4.365158-3 3.297627+0 5.069907-3 1.924340+0 5.956621-3 1.069206+0 6.998420-3 5.895042-1 8.222426-3 3.226262-1 9.772372-3 1.677987-1 1.161449-2 8.655954-2 1.396368-2 4.239528-2 1.698244-2 1.970415-2 2.137962-2 7.932387-3 2.818383-2 2.639132-3 5.623413-2 1.659937-4 7.585776-2 5.024007-5 9.332543-2 2.211733-5 1.122019-1 1.074230-5 1.303167-1 6.014924-6 1.500000-1 3.512600-6 1.698244-1 2.199389-6 1.905461-1 1.434403-6 2.137962-1 9.424958-7 2.371374-1 6.504845-7 2.630268-1 4.523395-7 2.884032-1 3.297489-7 3.162278-1 2.420702-7 3.467369-1 1.790577-7 3.758374-1 1.384618-7 4.073803-1 1.078216-7 4.415705-1 8.452621-8 4.786301-1 6.671950-8 5.188000-1 5.303168-8 5.623413-1 4.245500-8 6.095369-1 3.424599-8 6.606935-1 2.785025-8 7.161434-1 2.282164-8 7.762471-1 1.883995-8 8.413951-1 1.565773-8 9.120108-1 1.310653-8 9.885531-1 1.105723-8 1.122018+0 8.561698-9 1.230269+0 7.164564-9 1.348963+0 6.037119-9 1.479108+0 5.120508-9 1.621810+0 4.373073-9 1.798871+0 3.687518-9 2.018366+0 3.072920-9 2.290868+0 2.533678-9 2.600160+0 2.104944-9 3.000000+0 1.721100-9 3.467369+0 1.414112-9 4.073803+0 1.145337-9 4.841724+0 9.21010-10 5.888437+0 7.24947-10 7.244360+0 5.67433-10 9.225714+0 4.29829-10 1.202264+1 3.19813-10 1.603245+1 2.33698-10 2.238721+1 1.63652-10 3.235937+1 1.11266-10 5.432503+1 6.52127-11 1.023293+2 3.42311-11 2.041738+2 1.70443-11 8.128305+2 4.26124-12 1.000000+5 3.45810-14 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 6.520000-6 6.520000-6 1.000000+5 6.520000-6 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.520000-6 0.0 1.000000+5 1.000000+5 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.626570-9 1.028750+0 7.626570-8 1.036640+0 7.626570-7 1.038200+0 1.029230-6 1.039700+0 1.337180-6 1.041500+0 1.779100-6 1.043800+0 2.469450-6 1.046400+0 3.435780-6 1.048300+0 4.277640-6 1.051200+0 5.802520-6 1.054080+0 7.626570-6 1.057700+0 1.039550-5 1.061100+0 1.352180-5 1.065100+0 1.790120-5 1.070400+0 2.497380-5 1.076200+0 3.451350-5 1.080600+0 4.310160-5 1.087100+0 5.807270-5 1.093710+0 7.626570-5 1.102600+0 1.057480-4 1.110700+0 1.379280-4 1.120600+0 1.845260-4 1.133300+0 2.565940-4 1.147500+0 3.543270-4 1.158200+0 4.403550-4 1.174100+0 5.884550-4 1.190110+0 7.626570-4 1.205100+0 9.488170-4 1.227500+0 1.269300-3 1.250000+0 1.642000-3 1.281300+0 2.244140-3 1.308600+0 2.847370-3 1.332500+0 3.433490-3 1.374400+0 4.586660-3 1.405800+0 5.551050-3 1.452900+0 7.148900-3 1.500000+0 8.917000-3 1.562500+0 1.150390-2 1.617200+0 1.397140-2 1.712900+0 1.869200-2 1.784700+0 2.252250-2 1.892300+0 2.864100-2 2.000000+0 3.513000-2 2.044000+0 3.786000-2 2.163500+0 4.542230-2 2.372600+0 5.896550-2 2.647100+0 7.691670-2 3.000000+0 9.978000-2 3.437500+0 1.274030-1 4.000000+0 1.612000-1 4.750000+0 2.027990-1 5.000000+0 2.159000-1 6.000000+0 2.648000-1 7.000000+0 3.083000-1 8.000000+0 3.475000-1 9.000000+0 3.830000-1 1.000000+1 4.153000-1 1.100000+1 4.445000-1 1.200000+1 4.714000-1 1.300000+1 4.963000-1 1.400000+1 5.194000-1 1.500000+1 5.411000-1 1.600000+1 5.614000-1 1.800000+1 5.986000-1 2.000000+1 6.318000-1 2.200000+1 6.619000-1 2.400000+1 6.893000-1 2.600000+1 7.144000-1 2.800000+1 7.375000-1 3.000000+1 7.589000-1 4.000000+1 8.472000-1 5.000000+1 9.133000-1 6.000000+1 9.652000-1 8.000000+1 1.043000+0 1.000000+2 1.098000+0 1.500000+2 1.188000+0 2.000000+2 1.242000+0 3.000000+2 1.307000+0 4.000000+2 1.345000+0 5.000000+2 1.370000+0 6.000000+2 1.388000+0 8.000000+2 1.413000+0 1.000000+3 1.429000+0 1.500000+3 1.452000+0 2.000000+3 1.464000+0 3.000000+3 1.478000+0 4.000000+3 1.486000+0 5.000000+3 1.490000+0 6.000000+3 1.494000+0 8.000000+3 1.498000+0 1.000000+4 1.501000+0 1.500000+4 1.504000+0 2.000000+4 1.506000+0 3.000000+4 1.509000+0 4.000000+4 1.510000+0 5.000000+4 1.510000+0 6.000000+4 1.511000+0 8.000000+4 1.511000+0 1.000000+5 1.512000+0 1 14000 7 8 2.808600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.405920-7 2.127900+0 1.070120-6 2.136250+0 1.405920-6 2.147000+0 1.927620-6 2.156900+0 2.503740-6 2.169000+0 3.341400-6 2.184500+0 4.644650-6 2.201800+0 6.426010-6 2.214800+0 8.006310-6 2.234200+0 1.076990-5 2.253680+0 1.405920-5 2.281500+0 1.969240-5 2.307000+0 2.586590-5 2.338200+0 3.477900-5 2.377400+0 4.816480-5 2.410200+0 6.125750-5 2.446800+0 7.792310-5 2.485900+0 9.810940-5 2.532900+0 1.255590-4 2.556430+0 1.405920-4 2.611900+0 1.792700-4 2.660400+0 2.167270-4 2.745300+0 2.900730-4 2.809000+0 3.512940-4 2.904500+0 4.525450-4 3.000000+0 5.649000-4 3.125000+0 7.284430-4 3.234400+0 8.863900-4 3.425800+0 1.193760-3 3.569300+0 1.447670-3 3.784700+0 1.861250-3 4.000000+0 2.306000-3 4.250000+0 2.849930-3 4.625000+0 3.705220-3 5.000000+0 4.595000-3 5.500000+0 5.817480-3 6.000000+0 7.058000-3 6.750000+0 8.907140-3 7.000000+0 9.516000-3 8.000000+0 1.190000-2 9.000000+0 1.419000-2 1.000000+1 1.637000-2 1.100000+1 1.843000-2 1.200000+1 2.038000-2 1.300000+1 2.223000-2 1.400000+1 2.399000-2 1.500000+1 2.566000-2 1.600000+1 2.725000-2 1.800000+1 3.020000-2 2.000000+1 3.290000-2 2.200000+1 3.539000-2 2.400000+1 3.768000-2 2.600000+1 3.981000-2 2.800000+1 4.179000-2 3.000000+1 4.364000-2 4.000000+1 5.140000-2 5.000000+1 5.739000-2 6.000000+1 6.222000-2 8.000000+1 6.961000-2 1.000000+2 7.511000-2 1.500000+2 8.443000-2 2.000000+2 9.045000-2 3.000000+2 9.805000-2 4.000000+2 1.027000-1 5.000000+2 1.060000-1 6.000000+2 1.085000-1 8.000000+2 1.119000-1 1.000000+3 1.142000-1 1.500000+3 1.177000-1 2.000000+3 1.197000-1 3.000000+3 1.219000-1 4.000000+3 1.232000-1 5.000000+3 1.240000-1 6.000000+3 1.246000-1 8.000000+3 1.253000-1 1.000000+4 1.258000-1 1.500000+4 1.265000-1 2.000000+4 1.268000-1 3.000000+4 1.272000-1 4.000000+4 1.275000-1 5.000000+4 1.276000-1 6.000000+4 1.277000-1 8.000000+4 1.278000-1 1.000000+5 1.279000-1 1 14000 7 8 2.808600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 14000 7 9 2.808600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.400000+1 1.000000+5 1.400000+1 5.000000+5 1.399300+1 7.187500+5 1.398480+1 9.062500+5 1.397900+1 1.000000+6 1.397500+1 1.500000+6 1.394600+1 1.875000+6 1.391560+1 2.000000+6 1.390500+1 2.500000+6 1.385200+1 3.000000+6 1.378800+1 3.500000+6 1.371380+1 4.000000+6 1.363100+1 4.500000+6 1.353740+1 5.000000+6 1.343800+1 5.687500+6 1.328680+1 6.000000+6 1.321410+1 6.156200+6 1.317580+1 6.718700+6 1.303750+1 7.000000+6 1.296600+1 7.500000+6 1.283430+1 8.000000+6 1.270030+1 8.250000+6 1.263120+1 9.000000+6 1.242300+1 9.750000+6 1.220990+1 1.000000+7 1.213900+1 1.062500+7 1.195990+1 1.125000+7 1.178250+1 1.156300+7 1.169340+1 1.250000+7 1.143200+1 1.359400+7 1.113420+1 1.437500+7 1.092830+1 1.500000+7 1.076900+1 1.625000+7 1.046320+1 1.750000+7 1.017900+1 1.937500+7 9.789140+0 2.000000+7 9.669300+0 2.250000+7 9.231190+0 2.500000+7 8.852100+0 3.000000+7 8.223200+0 3.500000+7 7.692490+0 3.750000+7 7.442660+0 3.875000+7 7.319780+0 4.000000+7 7.197700+0 4.250000+7 6.954310+0 4.625000+7 6.591680+0 5.000000+7 6.232400+0 5.250000+7 5.994550+0 5.625000+7 5.643670+0 6.000000+7 5.303100+0 6.437500+7 4.920920+0 6.750000+7 4.660920+0 6.812500+7 4.609990+0 7.000000+7 4.461000+0 7.500000+7 4.084270+0 7.750000+7 3.908430+0 8.000000+7 3.741100+0 8.750000+7 3.288560+0 9.000000+7 3.154100+0 1.000000+8 2.692200+0 1.109400+8 2.309170+0 1.125000+8 2.263360+0 1.203100+8 2.061300+0 1.250000+8 1.959500+0 1.335900+8 1.804720+0 1.429700+8 1.672380+0 1.437500+8 1.662740+0 1.500000+8 1.592500+0 1.562500+8 1.532830+0 1.671900+8 1.446720+0 1.835900+8 1.344860+0 1.875000+8 1.323620+0 2.000000+8 1.260400+0 2.250000+8 1.147850+0 2.500000+8 1.051300+0 2.671900+8 9.916630-1 2.789100+8 9.509040-1 2.894500+8 9.126760-1 3.000000+8 8.725000-1 3.500000+8 6.936000-1 3.812500+8 6.206400-1 3.937500+8 5.923630-1 4.000000+8 5.774000-1 4.121100+8 5.466260-1 4.231000+8 5.177900-1 4.371900+8 4.810280-1 4.461700+8 4.583090-1 5.000000+8 3.450000-1 5.500000+8 2.746640-1 5.750000+8 2.457640-1 5.937500+8 2.254670-1 6.000000+8 2.189000-1 6.562500+8 1.674040-1 6.718800+8 1.566490-1 6.859400+8 1.484470-1 7.000000+8 1.416000-1 7.125000+8 1.366090-1 7.343800+8 1.294150-1 7.671900+8 1.199550-1 7.835900+8 1.150190-1 7.959000+8 1.110030-1 8.000000+8 1.096000-1 8.125000+8 1.050910-1 8.297100+8 9.853780-2 8.455000+8 9.238860-2 8.648200+8 8.493060-2 8.817100+8 7.863270-2 9.112900+8 6.834850-2 9.889100+8 4.787020-2 1.000000+9 4.560000-2 1.031300+9 4.015990-2 1.060500+9 3.598140-2 1.100900+9 3.126850-2 1.137900+9 2.777110-2 1.162000+9 2.581720-2 1.500000+9 1.111600-2 1.562500+9 9.638750-3 1.617200+9 8.517170-3 1.712900+9 6.885920-3 1.856400+9 5.069750-3 2.000000+9 3.801100-3 5.000000+9 1.116900-4 8.000000+9 1.820500-5 9.500000+9 9.418400-6 1.00000+10 7.743700-6 1.20500+10 3.817950-6 1.41820+10 2.069880-6 1.71170+10 1.027420-6 2.01490+10 5.628770-7 2.26440+10 3.670230-7 2.74790+10 1.816710-7 3.41360+10 8.326330-8 4.02450+10 4.632390-8 4.77140+10 2.539100-8 5.73000+10 1.337670-8 6.79750+10 7.393480-9 7.94120+10 4.328750-9 9.31370+10 2.510730-9 1.00000+11 1.971800-9 1.26840+11 8.84353-10 1.58400+11 4.21349-10 2.07460+11 1.72962-10 2.55250+11 8.78916-11 3.65300+11 2.76360-11 5.05370+11 9.83190-12 8.52890+11 1.90626-12 1.34130+12 4.71854-13 2.64130+12 6.04034-14 6.55190+12 4.03815-15 1.00000+14 1.40480-18 5.62340+14 8.64710-21 5.42470+15 9.90279-24 1.00000+17 1.50940-27 1 14000 7 0 2.808600+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.50000-12 1.000000+2 3.50000-10 1.000000+3 3.500000-8 1.000000+4 3.500000-6 1.000000+5 3.500000-4 5.000000+5 8.750000-3 7.187500+5 1.808105-2 9.062500+5 2.874512-2 1.000000+6 3.500000-2 1.500000+6 7.900000-2 1.875000+6 1.226030-1 2.000000+6 1.391000-1 2.500000+6 2.148000-1 3.000000+6 3.049000-1 3.500000+6 4.080350-1 4.000000+6 5.229000-1 4.500000+6 6.481200-1 5.000000+6 7.820000-1 5.687500+6 9.770350-1 6.000000+6 1.069000+0 6.156200+6 1.115610+0 6.718700+6 1.285880+0 7.000000+6 1.372400+0 7.500000+6 1.527090+0 8.000000+6 1.682370+0 8.250000+6 1.760040+0 9.000000+6 1.991500+0 9.750000+6 2.218550+0 1.000000+7 2.293000+0 1.062500+7 2.475220+0 1.125000+7 2.652160+0 1.156300+7 2.738590+0 1.250000+7 2.988400+0 1.359400+7 3.262310+0 1.437500+7 3.446220+0 1.500000+7 3.587000+0 1.625000+7 3.850330+0 1.750000+7 4.092100+0 1.937500+7 4.419250+0 2.000000+7 4.520000+0 2.250000+7 4.888710+0 2.500000+7 5.217500+0 3.000000+7 5.808000+0 3.500000+7 6.364020+0 3.750000+7 6.635100+0 3.875000+7 6.769890+0 4.000000+7 6.903000+0 4.250000+7 7.168400+0 4.625000+7 7.558520+0 5.000000+7 7.937000+0 5.250000+7 8.180250+0 5.625000+7 8.532320+0 6.000000+7 8.867000+0 6.437500+7 9.233760+0 6.750000+7 9.479500+0 6.812500+7 9.526670+0 7.000000+7 9.667000+0 7.500000+7 1.001480+1 7.750000+7 1.017650+1 8.000000+7 1.033000+1 8.750000+7 1.074140+1 9.000000+7 1.086400+1 1.000000+8 1.128600+1 1.109400+8 1.164410+1 1.125000+8 1.168770+1 1.203100+8 1.188550+1 1.250000+8 1.199000+1 1.335900+8 1.215440+1 1.429700+8 1.230690+1 1.437500+8 1.231860+1 1.500000+8 1.240800+1 1.562500+8 1.248980+1 1.671900+8 1.261940+1 1.835900+8 1.278830+1 1.875000+8 1.282480+1 2.000000+8 1.293700+1 2.250000+8 1.313400+1 2.500000+8 1.330200+1 2.671900+8 1.340040+1 2.789100+8 1.346110+1 2.894500+8 1.351190+1 3.000000+8 1.355800+1 3.500000+8 1.372600+1 3.812500+8 1.379720+1 3.937500+8 1.382060+1 4.000000+8 1.383200+1 4.121100+8 1.385000+1 4.231000+8 1.386600+1 4.371900+8 1.388250+1 4.461700+8 1.389240+1 5.000000+8 1.393700+1 5.500000+8 1.396060+1 5.750000+8 1.396800+1 5.937500+8 1.397330+1 6.000000+8 1.397500+1 6.562500+8 1.398450+1 6.718800+8 1.398700+1 6.859400+8 1.398860+1 7.000000+8 1.399000+1 7.125000+8 1.399070+1 7.343800+8 1.399180+1 7.671900+8 1.399340+1 7.835900+8 1.399420+1 7.959000+8 1.399480+1 8.000000+8 1.399500+1 8.125000+8 1.399530+1 8.297100+8 1.399570+1 8.455000+8 1.399600+1 8.648200+8 1.399640+1 8.817100+8 1.399670+1 9.112900+8 1.399730+1 9.889100+8 1.399880+1 1.000000+9 1.399900+1 1.031300+9 1.399910+1 1.060500+9 1.399910+1 1.100900+9 1.399920+1 1.137900+9 1.399930+1 1.162000+9 1.399940+1 1.500000+9 1.400000+1 1.562500+9 1.400000+1 1.617200+9 1.400000+1 1.712900+9 1.400000+1 1.856400+9 1.400000+1 2.000000+9 1.400000+1 5.000000+9 1.400000+1 8.000000+9 1.400000+1 9.500000+9 1.400000+1 1.00000+10 1.400000+1 1.20500+10 1.400000+1 1.41820+10 1.400000+1 1.71170+10 1.400000+1 2.01490+10 1.400000+1 2.26440+10 1.400000+1 2.74790+10 1.400000+1 3.41360+10 1.400000+1 4.02450+10 1.400000+1 4.77140+10 1.400000+1 5.73000+10 1.400000+1 6.79750+10 1.400000+1 7.94120+10 1.400000+1 9.31370+10 1.400000+1 1.00000+11 1.400000+1 1.26840+11 1.400000+1 1.58400+11 1.400000+1 2.07460+11 1.400000+1 2.55250+11 1.400000+1 3.65300+11 1.400000+1 5.05370+11 1.400000+1 8.52890+11 1.400000+1 1.34130+12 1.400000+1 2.64130+12 1.400000+1 6.55190+12 1.400000+1 1.00000+14 1.400000+1 5.62340+14 1.400000+1 5.42470+15 1.400000+1 1.00000+17 1.400000+1 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.023501-6 0.0 3.527446-6 0.0 3.540747-6 4.911148-1 3.544811-6 6.393138-1 3.553493-6 1.167759+0 3.562176-6 1.969002+0 3.572838-6 3.549721+0 3.584622-6 5.665540+0 3.598051-6 8.245726+0 3.607369-6 9.701948+0 3.617391-6 1.062063+1 3.626010-6 1.079691+1 3.634835-6 1.035873+1 3.644572-6 9.270979+0 3.657882-6 7.173287+0 3.675047-6 4.274621+0 3.683729-6 3.044576+0 3.694519-6 1.805707+0 3.701094-6 1.138454+0 3.703289-6 1.000684+0 3.712059-6 5.963362-1 3.720828-6 3.280494-1 3.733983-6 8.339150-2 3.738368-6 0.0 4.392680-6 0.0 4.396174-6 1.067984-7 4.414304-6 1.199953-6 4.417815-6 1.479881-6 4.425116-6 2.207613-6 4.428636-6 2.649298-6 4.431699-6 3.111891-6 4.435928-6 3.877491-6 4.442607-6 5.359403-6 4.450277-6 7.250456-6 4.464424-6 1.154417-5 4.482739-6 1.763792-5 4.493602-6 2.061038-5 4.504502-6 2.250642-5 4.515401-6 2.300591-5 4.526301-6 2.206196-5 4.540780-6 1.903398-5 4.569898-6 1.016770-5 4.580798-6 7.214309-6 4.587296-6 5.708473-6 4.595320-6 4.137897-6 4.606230-6 2.330714-6 4.608920-6 1.956128-6 4.612586-6 1.562497-6 4.617136-6 1.217621-6 4.628045-6 6.698234-7 4.638953-6 3.401437-7 4.649861-6 0.0 4.836310-6 0.0 4.836340-6 2.162578-4 4.858660-6 1.636051+0 4.860148-6 1.744112+0 4.872052-6 3.193482+0 4.883956-6 5.811866+0 4.895860-6 9.225319+0 4.909339-6 1.424245+1 4.931823-6 2.369863+1 4.944564-6 2.819559+1 4.956906-6 3.093192+1 4.969667-6 3.149892+1 4.981730-6 2.991983+1 4.995164-6 2.608652+1 5.022194-6 1.557903+1 5.027754-6 1.334062+1 5.039746-6 9.218118+0 5.051737-6 5.970751+0 5.063729-6 3.615681+0 5.074420-6 1.846367+0 5.075720-6 1.735581+0 5.087712-6 1.090241+0 5.099703-6 7.917360-1 5.111695-6 5.236224-1 5.126786-6 8.283644-1 5.148535-6 1.318566+0 5.160962-6 1.559375+0 5.173390-6 1.718298+0 5.185818-6 1.766556+0 5.198245-6 1.696663+0 5.213780-6 1.463515+0 5.240966-6 8.960809-1 5.247956-6 7.445439-1 5.260384-6 5.143943-1 5.272812-6 3.326043-1 5.285240-6 2.010785-1 5.297667-6 8.967989-2 5.309912-6 4.981812-2 5.322427-6 2.529819-2 5.334942-6 0.0 5.500688-6 0.0 5.500707-6 5.034213-5 5.524401-6 6.068823-1 5.527786-6 6.926930-1 5.536233-6 1.049790+0 5.541325-6 1.330357+0 5.554864-6 2.369829+0 5.568404-6 3.767332+0 5.583828-6 5.831890+0 5.612110-6 1.004707+1 5.628093-6 1.185263+1 5.641117-6 1.268955+1 5.652072-6 1.279954+1 5.665370-6 1.216973+1 5.680167-6 1.066979+1 5.717336-6 5.664984+0 5.732567-6 3.948635+0 5.745750-6 2.782481+0 5.755102-6 2.144472+0 5.770843-6 1.207163+0 5.772192-6 1.154995+0 5.782686-6 8.870860-1 5.808767-6 3.641946-1 5.811741-6 3.423493-1 5.826806-6 4.185494-1 5.840783-6 5.046502-1 5.847257-6 5.994510-1 5.854656-6 7.574181-1 5.868961-6 1.217388+0 5.883266-6 1.879590+0 5.899359-6 2.879394+0 5.929756-6 5.007607+0 5.941379-6 5.707136+0 5.956103-6 6.272231+0 5.971785-6 6.391853+0 5.987034-6 6.065751+0 6.001442-6 5.468184+0 6.037237-6 3.594162+0 6.042271-6 3.380703+0 6.056488-6 2.972677+0 6.071305-6 2.839693+0 6.086150-6 2.959866+0 6.102640-6 3.260639+0 6.126096-6 3.827928+0 6.153189-6 4.146462+0 6.180032-6 4.106084+0 6.233963-6 3.820749+0 6.406125-6 3.798957+0 6.503213-6 3.696335+0 6.733940-6 3.721165+0 6.906369-6 3.658413+0 6.940367-6 5.757745+0 6.941894-6 5.913690+0 6.957366-6 9.441338+0 6.976067-6 1.474858+1 6.993154-6 2.197792+1 7.012376-6 3.327581+1 7.058529-6 6.704188+1 7.080155-6 7.929388+1 7.095906-6 8.371798+1 7.115526-6 8.183148+1 7.132917-6 7.450465+1 7.151071-6 6.256025+1 7.181106-6 3.963656+1 7.198193-6 2.808983+1 7.215280-6 1.900455+1 7.232366-6 1.246178+1 7.246440-6 8.564588+0 7.249453-6 7.925361+0 7.283626-6 3.494423+0 1.020492-5 1.909272+0 1.133803-5 1.397662+0 1.144966-5 1.426164+0 1.158919-5 1.595065+0 1.164501-5 1.573703+0 1.178454-5 1.300410+0 1.184036-5 1.231229+0 1.189617-5 1.187433+0 1.238085-5 1.032618+0 1.262640-5 9.847057-1 1.289511-5 8.847543-1 1.377054-5 6.740202-1 1.445374-5 5.469127-1 1.520247-5 4.390171-1 1.582879-5 3.698237-1 1.662483-5 3.038599-1 1.752482-5 2.518641-1 1.824334-5 2.234261-1 1.920000-5 1.994801-1 2.014962-5 1.872547-1 2.137962-5 1.836262-1 2.290868-5 1.915881-1 2.560000-5 2.235399-1 3.507519-5 3.663953-1 4.168694-5 4.403971-1 4.850000-5 4.862818-1 5.911747-5 5.142804-1 7.734806-5 4.956476-1 1.025479-4 4.382504-1 1.032340-4 4.778369-1 1.035610-4 5.244894-1 1.038142-4 5.762765-1 1.041350-4 6.773477-1 1.045264-4 8.251778-1 1.055492-4 1.317254+0 1.062358-4 1.716366+0 1.069110-4 2.242914+0 1.079800-4 3.264642+0 1.107136-4 6.097289+0 1.119100-4 7.089889+0 1.132750-4 7.899865+0 1.152250-4 8.565764+0 1.190689-4 9.028102+0 1.396891-4 9.994716+0 1.416928-4 1.010207+1 1.426507-4 1.065408+1 1.435544-4 1.194355+1 1.446559-4 1.373394+1 1.450648-4 1.392774+1 1.455645-4 1.357638+1 1.471336-4 1.114711+1 1.479359-4 1.069170+1 1.489504-4 1.082260+1 1.505080-4 1.121196+1 1.719686-4 1.072149+1 2.633233-4 7.222855+0 3.112619-4 5.887958+0 3.714139-4 4.663565+0 4.333082-4 3.770728+0 4.883894-4 3.175458+0 5.583095-4 2.606854+0 6.442620-4 2.098293+0 7.223539-4 1.756995+0 8.159740-4 1.449953+0 9.308078-4 1.174469+0 1.051178-3 9.640060-1 1.188502-3 7.877145-1 1.340737-3 6.445773-1 1.513051-3 5.259038-1 1.726012-3 4.200672-1 1.778251-3 4.007802-1 1.784895-3 4.692159-1 1.787030-3 4.973882-1 1.791418-3 5.886552-1 1.795806-3 7.363757-1 1.800637-3 9.847773-1 1.805212-3 1.311867+0 1.810399-3 1.761071+0 1.822581-3 2.979584+0 1.829110-3 3.476051+0 1.834831-3 3.768062+0 1.842329-3 3.966879+0 1.860945-3 4.014166+0 1.995262-3 3.711239+0 2.272245-3 3.028374+0 2.570800-3 2.496967+0 2.976802-3 1.979331+0 3.360491-3 1.618697+0 3.825390-3 1.301223+0 4.280112-3 1.071145+0 4.787493-3 8.787377-1 5.368205-3 7.150389-1 5.957363-3 5.915672-1 6.642456-3 4.832429-1 7.367645-3 3.981102-1 8.305676-3 3.168291-1 9.225714-3 2.587984-1 1.014301-2 2.150971-1 1.122957-2 1.760582-1 1.239098-2 1.447924-1 1.354214-2 1.211842-1 1.487809-2 1.001975-1 1.667667-2 7.939081-2 1.844309-2 6.453371-2 2.025231-2 5.316948-2 2.260544-2 4.224155-2 2.482742-2 3.471468-2 2.710522-2 2.881238-2 2.995364-2 2.330011-2 3.283764-2 1.914641-2 3.584695-2 1.584690-2 3.953440-2 1.282989-2 4.314624-2 1.061302-2 4.716585-2 8.737941-3 5.213727-2 7.019865-3 5.767613-2 5.624834-3 6.325026-2 4.589136-3 6.928065-2 3.752427-3 7.590178-2 3.065873-3 8.383495-2 2.461232-3 9.119215-2 2.043660-3 9.869668-2 1.716280-3 1.081353-1 1.402437-3 1.181111-1 1.153544-3 1.292659-1 9.448447-4 1.396368-1 7.966218-4 1.511682-1 6.698103-4 1.654143-1 5.505232-4 1.798871-1 4.592054-4 1.958921-1 3.824948-4 2.125152-1 3.213471-4 2.316613-1 2.681015-4 2.539973-1 2.213617-4 2.787625-1 1.829869-4 3.108433-1 1.472203-4 3.450609-1 1.201604-4 3.796619-1 1.003483-4 4.229500-1 8.243755-5 4.640476-1 7.009113-5 5.232991-1 5.735854-5 5.891615-1 4.763872-5 6.659825-1 3.981903-5 7.585776-1 3.345460-5 8.705518-1 2.835118-5 1.000000+0 2.429643-5 1.173413+0 2.071552-5 1.410753+0 1.723538-5 1.696098+0 1.433989-5 2.039158+0 1.193083-5 2.451607+0 9.926488-6 2.947480+0 8.258868-6 3.543651+0 6.871404-6 4.260405+0 5.717029-6 5.122134+0 4.756586-6 6.158159+0 3.957494-6 7.403736+0 3.292647-6 8.901248+0 2.739493-6 9.760024+0 2.498806-6 1.000000+1 4.881501-6 1 14000 7 0 2.808600+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.394578+1 2.735703-6-1.338095+1 3.245527-6-1.266049+1 3.413739-6-1.187264+1 3.488376-6-1.090818+1 3.520200-6-9.927777+0 3.551866-6-7.839684+0 3.565856-6-6.742127+0 3.574756-6-6.382993+0 3.584622-6-6.449936+0 3.593094-6-7.005129+0 3.598051-6-7.595057+0 3.606821-6-9.050413+0 3.617391-6-1.136272+1 3.628339-6-1.392791+1 3.631334-6-1.396600+1 3.644572-6-1.128673+1 3.654721-6-9.904894+0 3.666031-6-9.103104+0 3.675047-6-8.967000+0 3.692159-6-9.521757+0 3.723843-6-1.164402+1 3.756670-6-1.298059+1 3.827227-6-1.410631+1 3.862061-6-1.422337+1 4.158706-6-1.292189+1 4.482739-6-1.147203+1 4.628045-6-1.019637+1 4.709723-6-8.901238+0 4.751507-6-7.850186+0 4.786600-6-6.539738+0 4.807171-6-5.428850+0 4.819920-6-4.506886+0 4.829395-6-3.612086+0 4.834582-6-2.967505+0 4.837828-6-2.403930+0 4.840432-6-2.034414+0 4.854196-6-3.101047-1 4.857172-6 9.949786-2 4.858660-6 3.232822-1 4.860148-6 5.821004-1 4.863124-6 1.080471+0 4.867588-6 1.775955+0 4.870936-6 2.360215+0 4.873540-6 2.941038+0 4.876144-6 3.381314+0 4.885528-6 4.816261+0 4.897357-6 6.151252+0 4.903909-6 6.464705+0 4.909339-6 6.550214+0 4.914608-6 6.282352+0 4.920526-6 5.606336+0 4.925468-6 4.751216+0 4.930234-6 3.631134+0 4.937818-6 1.229484+0 4.939317-6 7.073534-1 4.941566-6-1.421413-1 4.942690-6-6.111170-1 4.943252-6-8.647774-1 4.944564-6-1.530711+0 4.952644-6-5.146603+0 4.955410-6-6.587381+0 4.958268-6-8.229748+0 4.967439-6-1.300125+1 4.970321-6-1.464875+1 4.979976-6-9.731982+0 4.984085-6-7.733289+0 4.993935-6-3.631302+0 4.997316-6-2.489908+0 4.998930-6-2.000090+0 5.003771-6-6.525527-1 5.005270-6-2.653208-1 5.008081-6 3.519192-1 5.010540-6 8.140438-1 5.012692-6 1.165857+0 5.014575-6 1.435518+0 5.017870-6 1.823646+0 5.020341-6 2.044155+0 5.022194-6 2.167956+0 5.024974-6 2.279104+0 5.026364-6 2.293476+0 5.033750-6 2.071098+0 5.036748-6 1.915437+0 5.038247-6 1.799082+0 5.041245-6 1.434596+0 5.046491-6 9.067394-1 5.049114-6 6.056685-1 5.050426-6 4.294428-1 5.051737-6 2.058104-1 5.063729-6-1.526015+0 5.071747-6-2.826721+0 5.074420-6-3.388812+0 5.077219-6-4.017304+0 5.089211-6-5.900027+0 5.099703-6-7.171646+0 5.119992-6-9.349636+0 5.139168-6-1.057797+1 5.160962-6-1.128980+1 5.240966-6-1.202984+1 5.356270-6-1.490937+1 5.463137-6-1.256024+1 5.498698-6-1.119862+1 5.536233-6-8.965204+0 5.559518-6-7.468600+0 5.573058-6-6.892582+0 5.587364-6-6.775929+0 5.599676-6-7.214730+0 5.611236-6-8.131694+0 5.625085-6-9.912133+0 5.646443-6-1.360279+1 5.654561-6-1.514250+1 5.668030-6-1.285938+1 5.682638-6-1.093659+1 5.696209-6-9.900979+0 5.709841-6-9.383216+0 5.724105-6-9.526429+0 5.745750-6-1.047157+1 5.772192-6-1.208553+1 5.826806-6-1.532663+1 5.885054-6-1.243699+1 5.910458-6-1.199053+1 5.932439-6-1.246544+1 5.964832-6-1.443408+1 5.983400-6-1.550949+1 6.009609-6-1.446827+1 6.036000-6-1.454312+1 6.071305-6-1.572894+1 6.112324-6-1.487434+1 6.216289-6-1.584317+1 6.354467-6-1.641667+1 6.440481-6-1.771759+1 6.528337-6-1.872232+1 6.571060-6-1.754925+1 6.773172-6-8.130478+0 6.810337-6-5.971426+0 6.832844-6-4.397691+0 6.850568-6-2.945549+0 6.863270-6-1.752029+0 6.868657-6-1.196118+0 6.873371-6-6.809244-1 6.881620-6 2.954362-1 6.887807-6 1.103307+0 6.892448-6 1.761784+0 6.895928-6 2.292391+0 6.901148-6 3.165990+0 6.905063-6 3.920438+0 6.908493-6 4.708751+0 6.927617-6 8.569667+0 6.937976-6 1.115433+1 6.946487-6 1.408026+1 6.976067-6 2.210884+1 6.999027-6 2.775054+1 7.016114-6 2.971471+1 7.029463-6 2.888256+1 7.040038-6 2.660816+1 7.050937-6 2.265537+1 7.058529-6 1.871152+1 7.072580-6 8.687271+0 7.076334-6 5.634577+0 7.078024-6 4.063953+0 7.079121-6 2.849954+0 7.080155-6 1.841416+0 7.082095-6 7.479841-2 7.090582-6-7.460238+0 7.094767-6-1.161848+1 7.095906-6-1.304348+1 7.112760-6-2.796824-2 7.113027-6 3.263143-1 7.113553-6 9.334660-1 7.114571-6 2.010021+0 7.115526-6 2.958514+0 7.117316-6 4.644666+0 7.120449-6 7.423280+0 7.129259-6 1.497911+1 7.132917-6 1.829240+1 7.137735-6 2.179403+1 7.151071-6 3.005527+1 7.160985-6 3.417464+1 7.173265-6 3.722599+1 7.181106-6 3.793906+1 7.196057-6 3.739206+1 7.215280-6 3.355124+1 7.246440-6 2.488288+1 7.255326-6 2.212205+1 7.281490-6 1.613801+1 7.289845-6 1.385628+1 7.302253-6 1.161493+1 7.320773-6 9.143266+0 7.333060-6 7.837999+0 7.345858-6 6.675802+0 7.369670-6 4.889021+0 7.393839-6 3.444373+0 7.417819-6 2.269499+0 7.429739-6 1.759763+0 7.441612-6 1.292854+0 7.453439-6 8.632771-1 7.477000-6 9.884264-2 7.500378-6-5.604408-1 7.523573-6-1.134923+0 7.546586-6-1.639586+0 7.569420-6-2.087243+0 7.614554-6-2.844291+0 7.680941-6-3.725439+0 7.771063-6-4.617507+0 7.892080-6-5.471788+0 8.058422-6-6.257437+0 8.341612-6-7.063214+0 8.786476-6-7.712349+0 9.544805-6-8.208080+0 1.155780-5-8.892970+0 1.175309-5-8.621725+0 1.289511-5-9.030126+0 1.887206-5-1.004246+1 2.917427-5-1.064854+1 6.459160-5-1.145578+1 8.348555-5-1.259148+1 9.492961-5-1.405996+1 1.009855-4-1.560825+1 1.039345-4-1.721154+1 1.079800-4-1.963155+1 1.103064-4-1.963647+1 1.175875-4-1.603320+1 1.238863-4-1.435835+1 1.354220-4-1.262107+1 1.403344-4-1.245189+1 1.419854-4-1.299624+1 1.431747-4-1.347999+1 1.439479-4-1.331552+1 1.446559-4-1.212964+1 1.455645-4-9.951991+0 1.460470-4-9.199919+0 1.466942-4-8.863748+0 1.475174-4-9.305678+0 1.489504-4-1.010143+1 1.509413-4-9.792917+0 1.643078-4-7.852739+0 1.764443-4-6.429615+0 1.926835-4-5.050720+0 2.077573-4-4.086358+0 2.256913-4-3.222434+0 2.426610-4-2.619708+0 2.633233-4-2.104829+0 2.860651-4-1.711718+0 3.033427-4-1.489238+0 3.283693-4-1.259321+0 3.551600-4-1.061927+0 3.823842-4-9.280133-1 4.190677-4-8.124991-1 4.628804-4-7.400069-1 5.136431-4-7.114656-1 5.883201-4-7.295053-1 7.223539-4-8.379962-1 1.051178-3-1.207300+0 1.285022-3-1.535575+0 1.438940-3-1.830687+0 1.549589-3-2.132198+0 1.633886-3-2.469913+0 1.696949-3-2.855850+0 1.738852-3-3.254249+0 1.770256-3-3.734432+0 1.789726-3-4.251872+0 1.805212-3-4.963416+0 1.820740-3-5.736399+0 1.829110-3-5.855319+0 1.837572-3-5.651643+0 1.865789-3-4.161471+0 1.879233-3-3.684737+0 1.904155-3-3.105614+0 1.934289-3-2.620233+0 1.969519-3-2.204941+0 2.013038-3-1.826178+0 2.070702-3-1.454735+0 2.141710-3-1.118385+0 2.214198-3-8.610646-1 2.272245-3-6.964010-1 2.347137-3-5.224960-1 2.425935-3-3.739006-1 2.502790-3-2.572438-1 2.570800-3-1.696001-1 2.642872-3-9.025131-2 2.723801-3-1.382216-2 2.766293-3 2.031935-2 2.818383-3 6.230240-2 2.900681-3 1.167461-1 2.976802-3 1.592741-1 3.054921-3 1.975853-1 3.130581-3 2.294215-1 3.285607-3 2.793358-1 3.445895-3 3.161254-1 3.723758-3 3.581841-1 4.040529-3 3.820983-1 4.644064-3 3.883682-1 5.598507-3 3.581273-1 8.018560-3 2.574764-1 9.749161-3 2.027614-1 1.161449-2 1.594005-1 1.354214-2 1.267350-1 1.575783-2 9.923757-2 1.779006-2 8.053663-2 2.025231-2 6.351890-2 2.260544-2 5.116664-2 2.482742-2 4.201150-2 2.771968-2 3.272971-2 3.088701-2 2.494607-2 3.372662-2 1.950306-2 3.660353-2 1.504212-2 3.953440-2 1.129508-2 4.216412-2 8.497851-3 4.506055-2 5.896745-3 4.810546-2 3.595544-3 5.011872-2 2.273283-3 5.213727-2 1.081332-3 5.335521-2 4.225315-4 5.445625-2-1.403337-4 5.561884-2-7.007703-4 5.767613-2-1.622243-3 6.032141-2-2.684125-3 6.457051-2-4.153025-3 6.928065-2-5.504278-3 7.590178-2-7.030992-3 8.622085-2-8.793365-3 9.869668-2-1.027968-2 1.181111-1-1.177735-2 1.511682-1-1.319041-2 2.080295-1-1.432631-2 3.337850-1-1.511796-2 8.705518-1-1.554670-2 2.688134+0-1.561285-2 8.118035+0-1.561975-2 1.000000+1-1.561895-2 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.630706-4 1.041301-6 3.085602-4 1.073842-6 3.499616-4 1.107399-6 3.984734-4 1.142006-6 4.553654-4 1.200000-6 5.669909-4 1.252449-6 6.756172-4 1.291588-6 7.691503-4 1.350000-6 9.313349-4 1.416498-6 1.137327-3 1.460763-6 1.298912-3 1.518750-6 1.542556-3 1.553488-6 1.694828-3 1.602034-6 1.932871-3 1.652098-6 2.214350-3 1.708594-6 2.576861-3 1.756967-6 2.903851-3 1.811873-6 3.324431-3 2.113233-6 6.726148-3 2.247374-6 8.958918-3 2.390030-6 1.202323-2 2.541741-6 1.626599-2 2.697050-6 2.195861-2 2.851865-6 2.945269-2 2.912283-6 3.292965-2 2.979591-6 3.728845-2 3.044795-6 4.206112-2 3.169155-6 5.275263-2 3.228436-6 5.876774-2 3.285864-6 6.528996-2 3.397131-6 7.999930-2 3.501443-6 9.677493-2 3.599236-6 1.158609-1 3.690917-6 1.373582-1 3.776868-6 1.614555-1 3.857448-6 1.884048-1 3.943088-6 2.226617-1 4.004939-6 2.517817-1 4.082359-6 2.947661-1 4.135608-6 3.292059-1 4.195704-6 3.743460-1 4.254864-6 4.262347-1 4.296804-6 4.685237-1 4.344887-6 5.241814-1 4.399213-6 5.977353-1 4.432226-6 6.491223-1 4.482025-6 7.383997-1 4.510759-6 7.975265-1 4.543809-6 8.740845-1 4.576455-6 9.604422-1 4.607060-6 1.053081+0 4.635752-6 1.152262+0 4.671628-6 1.296596+0 4.699534-6 1.427981+0 4.723583-6 1.557812+0 4.751804-6 1.734452+0 4.774727-6 1.901986+0 4.792195-6 2.047580+0 4.809316-6 2.208500+0 4.825367-6 2.378884+0 4.840415-6 2.559033+0 4.854710-6 2.751884+0 4.867748-6 2.949644+0 4.892547-6 3.398253+0 4.914245-6 3.895622+0 4.933231-6 4.447071+0 4.949844-6 5.059765+0 4.964380-6 5.741402+0 4.977099-6 6.497374+0 4.988229-6 7.327705+0 4.997967-6 8.225419+0 5.006488-6 9.176971+0 5.013943-6 1.016424+1 5.020467-6 1.116712+1 5.026175-6 1.216590+1 5.031170-6 1.314299+1 5.039911-6 1.511103+1 5.051383-6 1.825643+1 5.070420-6 2.508682+1 5.078603-6 2.868258+1 5.089514-6 3.407978+1 5.103542-6 4.190108+1 5.116012-6 4.942743+1 5.117571-6 5.038818+1 5.128482-6 5.711189+1 5.135077-6 6.108260+1 5.139271-6 6.352675+1 5.142416-6 6.530396+1 5.147134-6 6.785914+1 5.151852-6 7.025587+1 5.155362-6 7.191933+1 5.159968-6 7.392737+1 5.165891-6 7.618199+1 5.172126-6 7.811260+1 5.178360-6 7.954634+1 5.184985-6 8.048866+1 5.191220-6 8.080692+1 5.195372-6 8.070845+1 5.201318-6 8.013727+1 5.207768-6 7.895793+1 5.214820-6 7.703456+1 5.221350-6 7.470829+1 5.227916-6 7.189699+1 5.234206-6 6.881848+1 5.241878-6 6.464364+1 5.248257-6 6.090042+1 5.253622-6 5.761451+1 5.259363-6 5.400763+1 5.265810-6 4.990197+1 5.271195-6 4.647091+1 5.278118-6 4.211282+1 5.284387-6 3.826536+1 5.290656-6 3.455230+1 5.296965-6 3.098347+1 5.301697-6 2.843317+1 5.307907-6 2.526573+1 5.315144-6 2.184883+1 5.318160-6 2.051476+1 5.328511-6 1.634529+1 5.330088-6 1.576546+1 5.341130-6 1.210776+1 5.342707-6 1.164104+1 5.353748-6 8.741718+0 5.358086-6 7.769161+0 5.362226-6 6.922076+0 5.366367-6 6.150101+0 5.372676-6 5.108464+0 5.379598-6 4.136517+0 5.385704-6 3.412121+0 5.390546-6 2.916829+0 5.395361-6 2.487024+0 5.400137-6 2.116315+0 5.404877-6 1.797879+0 5.409579-6 1.525493+0 5.418874-6 1.096873+0 5.428024-6 7.917840-1 5.432545-6 6.756292-1 5.437031-6 5.793000-1 5.441482-6 4.999453-1 5.445899-6 4.350512-1 5.450280-6 3.824070-1 5.454628-6 3.400743-1 5.458942-6 3.063588-1 5.463222-6 2.797838-1 5.467468-6 2.590671-1 5.471681-6 2.430998-1 5.475862-6 2.309270-1 5.480009-6 2.217314-1 5.488208-6 2.096000-1 5.497439-6 2.015440-1 5.512487-6 1.915514-1 5.523981-6 1.814781-1 5.531495-6 1.727854-1 5.538921-6 1.625255-1 5.546232-6 1.510259-1 5.553428-6 1.386893-1 5.560511-6 1.259510-1 5.570248-6 1.082191-1 5.575544-6 9.878336-2 5.587861-6 7.834225-2 5.600952-6 6.014602-2 5.613634-6 4.695646-2 5.625919-6 3.875478-2 5.637821-6 3.514513-2 5.651208-6 3.598844-2 5.660880-6 3.963919-2 5.724508-6 1.183556-1 5.795517-6 3.093194-1 5.933474-6 9.369730-1 6.010841-6 1.459162+0 6.071312-6 2.021655+0 6.190862-6 3.772566+0 6.239432-6 4.872239+0 6.277149-6 5.976932+0 6.306739-6 7.055079+0 6.325356-6 7.857029+0 6.340300-6 8.585614+0 6.355244-6 9.403748+0 6.370188-6 1.032765+1 6.384492-6 1.133001+1 6.399316-6 1.251549+1 6.412152-6 1.368835+1 6.422262-6 1.472720+1 6.444362-6 1.745104+1 6.463700-6 2.053084+1 6.480620-6 2.399916+1 6.495425-6 2.786558+1 6.508380-6 3.210618+1 6.519715-6 3.666280+1 6.529634-6 4.145081+1 6.538312-6 4.637130+1 6.545906-6 5.132323+1 6.558365-6 6.096134+1 6.576170-6 7.861139+1 6.604695-6 1.185433+2 6.615354-6 1.376212+2 6.627536-6 1.622645+2 6.635658-6 1.803057+2 6.644794-6 2.020057+2 6.647840-6 2.095363+2 6.659583-6 2.397209+2 6.666113-6 2.571114+2 6.669666-6 2.666899+2 6.682356-6 3.011088+2 6.691239-6 3.248737+2 6.698599-6 3.439528+2 6.705737-6 3.616263+2 6.713752-6 3.801549+2 6.720447-6 3.942965+2 6.729054-6 4.103333+2 6.737176-6 4.229104+2 6.745297-6 4.327024+2 6.755830-6 4.408700+2 6.763031-6 4.433439+2 6.772942-6 4.425072+2 6.781263-6 4.380282+2 6.789216-6 4.306265+2 6.797426-6 4.199671+2 6.803440-6 4.103550+2 6.811976-6 3.943544+2 6.820559-6 3.758401+2 6.829127-6 3.553750+2 6.837911-6 3.328207+2 6.843147-6 3.188264+2 6.850630-6 2.983634+2 6.857846-6 2.783637+2 6.860251-6 2.716830+2 6.868551-6 2.487410+2 6.876851-6 2.262169+2 6.885151-6 2.043946+2 6.893450-6 1.835091+2 6.910050-6 1.452384+2 6.917009-6 1.307565+2 6.926584-6 1.124341+2 6.929569-6 1.071055+2 6.938523-6 9.220598+1 6.942710-6 8.578987+1 6.955272-6 6.856851+1 6.960566-6 6.217985+1 6.968507-6 5.350080+1 6.976449-6 4.583736+1 6.986046-6 3.781477+1 6.995971-6 3.079854+1 7.002809-6 2.663949+1 7.009648-6 2.297418+1 7.017948-6 1.912112+1 7.026247-6 1.584700+1 7.034547-6 1.307945+1 7.042847-6 1.075289+1 7.049305-6 9.209715+0 7.055762-6 7.872575+0 7.089259-6 3.442737+0 7.093447-6 3.110444+0 7.099727-6 2.679287+0 7.106008-6 2.319787+0 7.110195-6 2.115380+0 7.116476-6 1.855631+0 7.122756-6 1.645821+0 7.137411-6 1.318642+0 7.140475-6 1.275202+0 7.202065-6 2.134424+0 7.209763-6 2.561459+0 7.216500-6 3.026251+0 7.239962-6 5.487991+0 7.250327-6 7.095953+0 7.259906-6 8.927326+0 7.266896-6 1.049555+1 7.270563-6 1.140160+1 7.276063-6 1.287322+1 7.281562-6 1.448458+1 7.290502-6 1.741285+1 7.297206-6 1.986680+1 7.301676-6 2.162696+1 7.313409-6 2.671681+1 7.317320-6 2.856102+1 7.324165-6 3.195808+1 7.335198-6 3.785079+1 7.342291-6 4.187522+1 7.355831-6 4.993914+1 7.363537-6 5.466371+1 7.367214-6 5.693044+1 7.372731-6 6.032391+1 7.378247-6 6.368619+1 7.385697-6 6.812869+1 7.394063-6 7.290289+1 7.401050-6 7.664611+1 7.407788-6 7.998642+1 7.410034-6 8.103211+1 7.419086-6 8.485442+1 7.427007-6 8.761947+1 7.429271-6 8.830021+1 7.437757-6 9.038810+1 7.445846-6 9.165659+1 7.449962-6 9.201974+1 7.458954-6 9.213526+1 7.466897-6 9.146090+1 7.472596-6 9.053539+1 7.479682-6 8.888810+1 7.486728-6 8.673260+1 7.489911-6 8.560028+1 7.505197-6 7.894966+1 7.512874-6 7.497626+1 7.520895-6 7.048893+1 7.528669-6 6.590309+1 7.534811-6 6.217525+1 7.541708-6 5.793834+1 7.547469-6 5.440015+1 7.554875-6 4.990827+1 7.564036-6 4.453108+1 7.569212-6 4.161855+1 7.580350-6 3.575162+1 7.606423-6 2.474149+1 7.613686-6 2.244595+1 7.620783-6 2.054112+1 7.625098-6 1.954555+1 7.630857-6 1.840560+1 7.635885-6 1.758330+1 7.638879-6 1.716860+1 7.646855-6 1.632783+1 7.650072-6 1.609355+1 7.652798-6 1.594039+1 7.656432-6 1.579900+1 7.660591-6 1.572209+1 7.666547-6 1.576180+1 7.670243-6 1.587018+1 7.674212-6 1.605355+1 7.677454-6 1.625199+1 7.685962-6 1.696341+1 7.691688-6 1.758098+1 7.698386-6 1.842418+1 7.711360-6 2.034928+1 7.729738-6 2.346643+1 7.740603-6 2.536523+1 7.748532-6 2.671606+1 7.758054-6 2.825392+1 7.766136-6 2.945715+1 7.768634-6 2.980637+1 7.778744-6 3.109575+1 7.788053-6 3.209208+1 7.795381-6 3.274033+1 7.809065-6 3.362945+1 7.816761-6 3.395448+1 7.826192-6 3.419861+1 7.836357-6 3.429852+1 7.852780-6 3.419446+1 7.900494-6 3.337106+1 7.920111-6 3.327812+1 7.938642-6 3.342011+1 7.956406-6 3.373973+1 7.998100-6 3.488202+1 8.029883-6 3.581664+1 8.119258-6 3.823981+1 8.155421-6 3.939327+1 8.192021-6 4.081640+1 8.228279-6 4.257329+1 8.267225-6 4.490982+1 8.312468-6 4.795095+1 8.329215-6 4.897091+1 8.364044-6 5.034923+1 8.376843-6 5.046564+1 8.382527-6 5.043417+1 8.394766-6 5.018299+1 8.404130-6 4.982081+1 8.414011-6 4.928690+1 8.428102-6 4.829435+1 8.448953-6 4.653268+1 8.473921-6 4.467618+1 8.503956-6 4.485352+1 8.518361-6 4.689965+1 8.525786-6 4.870224+1 8.530657-6 5.021834+1 8.535721-6 5.210917+1 8.541841-6 5.486957+1 8.547590-6 5.798744+1 8.551597-6 6.049153+1 8.554966-6 6.282392+1 8.560268-6 6.694524+1 8.565039-6 7.116066+1 8.568078-6 7.411395+1 8.573208-6 7.960689+1 8.579526-6 8.731248+1 8.588138-6 9.965839+1 8.595464-6 1.120145+2 8.605080-6 1.311205+2 8.640015-6 2.342699+2 8.655887-6 3.022364+2 8.668894-6 3.693039+2 8.681075-6 4.419394+2 8.688366-6 4.900647+2 8.702286-6 5.915588+2 8.706875-6 6.277247+2 8.717201-6 7.137487+2 8.724967-6 7.824159+2 8.729902-6 8.276663+2 8.744707-6 9.698214+2 8.751998-6 1.042622+3 8.759567-6 1.119484+3 8.768569-6 1.211808+3 8.777890-6 1.307343+3 8.785027-6 1.379652+3 8.795226-6 1.480423+3 8.805881-6 1.580678+3 8.813642-6 1.649313+3 8.822839-6 1.724643+3 8.830876-6 1.784231+3 8.843304-6 1.863111+3 8.853009-6 1.912164+3 8.863986-6 1.953157+3 8.873113-6 1.974905+3 8.893845-6 1.981432+3 8.899644-6 1.972670+3 8.915719-6 1.925364+3 8.925817-6 1.879524+3 8.938255-6 1.807942+3 8.947576-6 1.744786+3 8.958043-6 1.665778+3 8.966785-6 1.594460+3 8.978025-6 1.497425+3 8.988787-6 1.400761+3 8.999236-6 1.305166+3 9.004539-6 1.256507+3 9.016470-6 1.147864+3 9.025749-6 1.065151+3 9.039669-6 9.458352+2 9.044250-6 9.081287+2 9.065067-6 7.485689+2 9.083756-6 6.237413+2 9.127727-6 4.016162+2 9.145742-6 3.370861+2 9.154723-6 3.098181+2 9.163686-6 2.855217+2 9.172632-6 2.639277+2 9.181561-6 2.447744+2 9.199383-6 2.127734+2 9.217135-6 1.877344+2 9.234818-6 1.681033+2 9.252432-6 1.526118+2 9.269978-6 1.402590+2 9.287454-6 1.302765+2 9.304863-6 1.220867+2 9.322203-6 1.152624+2 9.339476-6 1.094902+2 9.356681-6 1.045407+2 9.390957-6 9.646559+1 9.424965-6 9.015722+1 9.458708-6 8.508791+1 9.492187-6 8.092798+1 9.525404-6 7.745863+1 9.558362-6 7.452742+1 9.600438-6 7.136946+1 9.655699-6 6.798712+1 9.724721-6 6.465179+1 9.782460-6 6.240915+1 9.860707-6 5.994318+1 9.922342-6 5.835412+1 9.965271-6 5.739594+1 1.002911-5 5.615946+1 1.013965-5 5.443012+1 1.025228-5 5.305069+1 1.037392-5 5.185456+1 1.051557-5 5.071665+1 1.066871-5 4.969726+1 1.088059-5 4.856630+1 1.136594-5 4.639986+1 1.189732-5 4.435551+1 1.250678-5 4.204605+1 1.319885-5 3.934437+1 1.384550-5 3.683584+1 1.435293-5 3.489898+1 1.479722-5 3.322492+1 1.522682-5 3.208040+1 1.597314-5 2.951258+1 1.869471-5 2.259176+1 1.996580-5 2.030238+1 2.135610-5 1.832050+1 2.257332-5 1.693613+1 2.400141-5 1.563871+1 2.515465-5 1.478686+1 2.650768-5 1.397096+1 2.777115-5 1.335513+1 2.878159-5 1.293629+1 2.975605-5 1.258364+1 3.093040-5 1.222796+1 3.260500-5 1.181116+1 3.500000-5 1.136827+1 3.805439-5 1.096977+1 4.027170-5 1.077144+1 4.220000-5 1.064160+1 4.650000-5 1.045215+1 5.559043-5 1.014015+1 5.856236-5 1.003299+1 6.025596-5 9.956082+0 6.400000-5 9.752927+0 6.825000-5 9.457571+0 7.290000-5 9.045163+0 7.791237-5 8.511288+0 8.201250-5 7.993447+0 8.585192-5 7.436838+0 8.912509-5 6.917439+0 9.226406-5 6.378661+0 9.578354-5 5.725081+0 9.814547-5 5.260603+0 1.005659-4 4.763870+0 1.028476-4 4.276785+0 1.044870-4 3.919473+0 1.062064-4 3.538937+0 1.079169-4 3.155258+0 1.095689-4 2.782607+0 1.110967-4 2.439403+0 1.121496-4 2.204973+0 1.144235-4 1.708866+0 1.156512-4 1.451549+0 1.167022-4 1.241736+0 1.173882-4 1.110938+0 1.186960-4 8.776918-1 1.194115-4 7.610128-1 1.204673-4 6.067924-1 1.219671-4 4.350236-1 1.227309-4 3.748905-1 1.233028-4 3.446097-1 1.235634-4 3.355035-1 1.240864-4 3.270204-1 1.244716-4 3.299266-1 1.251114-4 3.542174-1 1.252724-4 3.645553-1 1.254942-4 3.818512-1 1.263891-4 4.920011-1 1.267199-4 5.515332-1 1.271720-4 6.520697-1 1.280127-4 9.080334-1 1.285422-4 1.124647+0 1.295699-4 1.706542+0 1.303431-4 2.338775+0 1.311413-4 3.252278+0 1.317862-4 4.263485+0 1.333502-4 8.244000+0 1.340430-4 1.094006+1 1.343676-4 1.244537+1 1.347980-4 1.470355+1 1.353681-4 1.819235+1 1.358385-4 2.152001+1 1.362153-4 2.447813+1 1.366359-4 2.806863+1 1.369414-4 3.084759+1 1.372471-4 3.374814+1 1.374912-4 3.613199+1 1.377692-4 3.889863+1 1.380925-4 4.215419+1 1.384199-4 4.545104+1 1.387016-4 4.825170+1 1.389762-4 5.092135+1 1.392833-4 5.380300+1 1.396308-4 5.689150+1 1.398317-4 5.857602+1 1.401249-4 6.088386+1 1.404851-4 6.344993+1 1.407900-4 6.537478+1 1.411276-4 6.723156+1 1.414096-4 6.856097+1 1.416040-4 6.936330+1 1.419500-4 7.057049+1 1.424907-4 7.194629+1 1.429905-4 7.275970+1 1.433219-4 7.311208+1 1.443124-4 7.361732+1 1.463625-4 7.402324+1 1.530558-4 7.676094+1 1.660095-4 8.294939+1 1.689066-4 8.396836+1 1.725312-4 8.461103+1 1.730105-4 8.490076+1 1.736061-4 8.570320+1 1.738827-4 8.633891+1 1.743256-4 8.785169+1 1.747402-4 8.996625+1 1.751981-4 9.325173+1 1.754349-4 9.538103+1 1.758830-4 1.002221+2 1.764238-4 1.073355+2 1.773016-4 1.204942+2 1.777435-4 1.268760+2 1.779399-4 1.294547+2 1.782766-4 1.333227+2 1.784966-4 1.353871+2 1.788514-4 1.378133+2 1.789945-4 1.384510+2 1.793448-4 1.391549+2 1.797368-4 1.385278+2 1.800348-4 1.371389+2 1.803277-4 1.351256+2 1.806149-4 1.326592+2 1.809630-4 1.292252+2 1.819103-4 1.193866+2 1.822857-4 1.159995+2 1.825478-4 1.139653+2 1.829906-4 1.112466+2 1.832735-4 1.099988+2 1.834977-4 1.092743+2 1.837834-4 1.086674+2 1.840858-4 1.083725+2 1.843828-4 1.083794+2 1.847664-4 1.087324+2 1.855769-4 1.102582+2 1.870738-4 1.135346+2 1.880238-4 1.150649+2 1.893347-4 1.164824+2 1.944513-4 1.200913+2 1.992979-4 1.230556+2 2.040420-4 1.256349+2 2.181359-4 1.323224+2 2.225537-4 1.342585+2 2.341087-4 1.382971+2 2.414764-4 1.405994+2 2.537319-4 1.435358+2 2.707073-4 1.463056+2 2.892469-4 1.481223+2 3.155241-4 1.490754+2 3.417826-4 1.492406+2 3.715353-4 1.488215+2 4.081138-4 1.475087+2 4.817831-4 1.445156+2 5.770985-4 1.405336+2 6.888505-4 1.357817+2 7.467140-4 1.333481+2 1.004146-3 1.217560+2 1.049095-3 1.199652+2 1.142727-3 1.157178+2 1.282839-3 1.097115+2 1.329741-3 1.077676+2 1.385723-3 1.052852+2 1.507015-3 9.967759+1 1.571256-3 9.664442+1 1.635392-3 9.345794+1 1.692362-3 9.052035+1 1.738667-3 8.798810+1 1.782241-3 8.546537+1 1.821207-3 8.306991+1 1.860633-3 8.045512+1 1.893119-3 7.809450+1 1.919886-3 7.597243+1 1.941304-3 7.412914+1 1.961244-3 7.227092+1 1.980918-3 7.026137+1 1.995980-3 6.856294+1 2.012894-3 6.643733+1 2.027021-3 6.442848+1 2.038109-3 6.265131+1 2.049642-3 6.054833+1 2.060246-3 5.830753+1 2.071181-3 5.560860+1 2.077980-3 5.372430+1 2.088789-3 5.051688+1 2.101047-3 4.706018+1 2.107220-3 4.568953+1 2.110907-3 4.506988+1 2.115752-3 4.453569+1 2.120113-3 4.436144+1 2.122240-3 4.438874+1 2.125857-3 4.460818+1 2.131059-3 4.530114+1 2.135897-3 4.632172+1 2.140739-3 4.766124+1 2.146161-3 4.946665+1 2.162944-3 5.609858+1 2.167378-3 5.788419+1 2.173139-3 6.011488+1 2.181649-3 6.313945+1 2.186778-3 6.478220+1 2.191969-3 6.630475+1 2.196511-3 6.752682+1 2.204762-3 6.951028+1 2.215522-3 7.171791+1 2.227035-3 7.372261+1 2.239963-3 7.565767+1 2.250761-3 7.708255+1 2.264644-3 7.871366+1 2.279083-3 8.021076+1 2.294541-3 8.162291+1 2.312384-3 8.304539+1 2.331162-3 8.433857+1 2.369277-3 8.644967+1 2.421378-3 8.856344+1 2.469739-3 8.996516+1 2.539973-3 9.134506+1 2.623770-3 9.225845+1 2.744066-3 9.263457+1 2.871801-3 9.229238+1 3.020410-3 9.128100+1 3.220656-3 8.939005+1 3.447466-3 8.688017+1 3.713014-3 8.364906+1 4.087474-3 7.906431+1 4.533396-3 7.391217+1 5.144214-3 6.751726+1 5.746124-3 6.193428+1 6.416950-3 5.646362+1 6.879836-3 5.303349+1 7.673883-3 4.771925+1 8.242071-3 4.432890+1 8.858038-3 4.096463+1 9.655080-3 3.705135+1 1.038611-2 3.387349+1 1.146916-2 2.978563+1 1.254843-2 2.635173+1 1.384850-2 2.291554+1 1.568062-2 1.909870+1 1.872743-2 1.460165+1 2.405315-2 9.915450+0 3.007222-2 6.970913+0 3.630038-2 5.148731+0 4.194440-2 4.053557+0 5.072499-2 2.934460+0 5.840652-2 2.291987+0 7.121406-2 1.603028+0 8.779638-2 1.090570+0 1.117266-1 6.958197-1 1.445650-1 4.264213-1 1.924160-1 2.457404-1 2.617053-1 1.347683-1 3.935501-1 6.022330-2 7.563973-1 1.640900-2 2.341267+0 1.716522-3 7.070513+0 1.882569-4 2.135261+1 2.064248-5 6.448384+1 2.263410-6 1.947381+2 2.481780-7 5.880996+2 2.721218-8 1.995262+3 2.364096-9 6.309573+3 2.36410-10 1.995262+4 2.36410-11 6.309573+4 2.36410-12 1.000000+5 9.41164-13 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.897700-7 1.258900-6 1.093200-6 1.584900-6 1.732600-6 1.995300-6 2.746000-6 2.511900-6 4.352100-6 3.162300-6 6.897600-6 3.981100-6 1.093200-5 5.011900-6 1.732600-5 6.309600-6 2.746000-5 7.943300-6 4.352000-5 1.000000-5 6.897400-5 1.258900-5 1.093100-4 1.584900-5 1.732500-4 1.995300-5 2.745700-4 2.511900-5 4.351600-4 3.162300-5 6.895900-4 3.981100-5 1.092600-3 5.011900-5 1.731000-3 6.309600-5 2.742800-3 7.943300-5 4.345800-3 1.000000-4 6.881100-3 1.258900-4 1.089500-2 1.584900-4 1.722800-2 1.995300-4 2.723100-2 2.511900-4 4.296100-2 3.162300-4 6.760900-2 3.981100-4 1.059000-1 5.011900-4 1.647800-1 6.309600-4 2.538600-1 7.943300-4 3.854200-1 1.000000-3 5.730300-1 1.258900-3 8.285200-1 1.584900-3 1.157300+0 1.995300-3 1.555100+0 2.511900-3 2.010700+0 3.162300-3 2.506600+0 3.981100-3 3.023300+0 5.011900-3 3.552500+0 6.309600-3 4.106400+0 7.943300-3 4.699100+0 1.000000-2 5.324300+0 1.258900-2 5.942900+0 1.584900-2 6.487900+0 1.995300-2 6.948800+0 2.511900-2 7.282400+0 3.162300-2 7.509400+0 3.981100-2 7.636000+0 5.011900-2 7.662100+0 6.309600-2 7.581600+0 7.943300-2 7.403100+0 1.000000-1 7.141200+0 1.258900-1 6.814600+0 1.584900-1 6.438100+0 1.995300-1 6.029000+0 2.511900-1 5.601300+0 3.162300-1 5.168000+0 3.981100-1 4.738400+0 5.011900-1 4.319600+0 6.309600-1 3.915700+0 7.943300-1 3.529900+0 1.000000+0 3.163900+0 1.258900+0 2.818900+0 1.584900+0 2.496300+0 1.995300+0 2.196800+0 2.511900+0 1.921200+0 3.162300+0 1.670100+0 3.981100+0 1.443300+0 5.011900+0 1.240400+0 6.309600+0 1.060600+0 7.943300+0 9.024400-1 1.000000+1 7.645200-1 1.258900+1 6.450700-1 1.584900+1 5.423100-1 1.995300+1 4.544100-1 2.511900+1 3.796200-1 3.162300+1 3.162800-1 3.981100+1 2.628700-1 5.011900+1 2.180000-1 6.309600+1 1.804200-1 7.943300+1 1.490500-1 1.000000+2 1.229300-1 1.258900+2 1.012400-1 1.584900+2 8.325500-2 1.995300+2 6.838000-2 2.511900+2 5.609700-2 3.162300+2 4.597000-2 3.981100+2 3.763400-2 5.011900+2 3.078000-2 6.309600+2 2.515300-2 7.943300+2 2.053800-2 1.000000+3 1.675600-2 1.258900+3 1.366100-2 1.584900+3 1.113000-2 1.995300+3 9.062300-3 2.511900+3 7.374200-3 3.162300+3 5.997000-3 3.981100+3 4.874300-3 5.011900+3 3.959700-3 6.309600+3 3.215200-3 7.943300+3 2.609400-3 1.000000+4 2.116700-3 1.258900+4 1.716400-3 1.584900+4 1.391100-3 1.995300+4 1.127100-3 2.511900+4 9.127900-4 3.162300+4 7.389700-4 3.981100+4 5.980300-4 5.011900+4 4.838100-4 6.309600+4 3.912700-4 7.943300+4 3.163300-4 1.000000+5 2.556700-4 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159547-4 3.981072-4 3.976751-4 5.011872-4 5.005043-4 6.309573-4 6.298792-4 7.943282-4 7.926294-4 1.000000-3 9.973301-4 1.258925-3 1.254744-3 1.584893-3 1.578369-3 1.995262-3 1.985124-3 2.511886-3 2.496175-3 3.162278-3 3.137985-3 3.981072-3 3.943548-3 5.011872-3 4.953856-3 6.309573-3 6.219542-3 7.943282-3 7.803045-3 1.000000-2 9.781404-3 1.258925-2 1.224968-2 1.584893-2 1.532438-2 1.995262-2 1.914905-2 2.511886-2 2.389236-2 3.162278-2 2.975666-2 3.981072-2 3.697851-2 5.011872-2 4.583474-2 6.309573-2 5.666262-2 7.943282-2 6.984359-2 1.000000-1 8.582378-2 1.258925-1 1.050925-1 1.584893-1 1.282510-1 1.995262-1 1.559616-1 2.511886-1 1.889795-1 3.162278-1 2.282048-1 3.981072-1 2.746559-1 5.011872-1 3.294867-1 6.309573-1 3.940959-1 7.943282-1 4.701477-1 1.000000+0 5.595930-1 1.258925+0 6.649532-1 1.584893+0 7.892999-1 1.995262+0 9.363844-1 2.511886+0 1.110913+0 3.162278+0 1.318600+0 3.981072+0 1.566514+0 5.011872+0 1.863264+0 6.309573+0 2.219414+0 7.943282+0 2.647890+0 1.000000+1 3.164457+0 1.258925+1 3.788441+0 1.584893+1 4.543589+0 1.995262+1 5.458731+0 2.511886+1 6.569461+0 3.162278+1 7.919402+0 3.981072+1 9.561824+0 5.011872+1 1.156260+1 6.309573+1 1.400221+1 7.943282+1 1.697981+1 1.000000+2 2.061717+1 1.258925+2 2.506442+1 1.584893+2 3.050606+1 1.995262+2 3.716926+1 2.511886+2 4.533435+1 3.162278+2 5.534693+1 3.981072+2 6.763136+1 5.011872+2 8.271466+1 6.309573+2 1.012436+2 7.943282+2 1.240202+2 1.000000+3 1.520295+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739871-9 3.981072-5 4.342037-9 5.011872-5 6.881315-9 6.309573-5 1.090574-8 7.943282-5 1.728344-8 1.000000-4 2.738596-8 1.258925-4 4.339679-8 1.584893-4 6.874794-8 1.995262-4 1.089154-7 2.511886-4 1.724976-7 3.162278-4 2.730779-7 3.981072-4 4.320443-7 5.011872-4 6.829420-7 6.309573-4 1.078181-6 7.943282-4 1.698798-6 1.000000-3 2.669941-6 1.258925-3 4.181808-6 1.584893-3 6.524135-6 1.995262-3 1.013873-5 2.511886-3 1.571100-5 3.162278-3 2.429291-5 3.981072-3 3.752377-5 5.011872-3 5.801602-5 6.309573-3 9.003192-5 7.943282-3 1.402370-4 1.000000-2 2.185959-4 1.258925-2 3.395750-4 1.584893-2 5.245496-4 1.995262-2 8.035709-4 2.511886-2 1.226507-3 3.162278-2 1.866121-3 3.981072-2 2.832209-3 5.011872-2 4.283983-3 6.309573-2 6.433111-3 7.943282-2 9.589229-3 1.000000-1 1.417622-2 1.258925-1 2.080003-2 1.584893-1 3.023833-2 1.995262-1 4.356459-2 2.511886-1 6.220916-2 3.162278-1 8.802296-2 3.981072-1 1.234513-1 5.011872-1 1.717005-1 6.309573-1 2.368614-1 7.943282-1 3.241805-1 1.000000+0 4.404070-1 1.258925+0 5.939722-1 1.584893+0 7.955933-1 1.995262+0 1.058878+0 2.511886+0 1.400973+0 3.162278+0 1.843678+0 3.981072+0 2.414558+0 5.011872+0 3.148609+0 6.309573+0 4.090160+0 7.943282+0 5.295393+0 1.000000+1 6.835543+0 1.258925+1 8.800813+0 1.584893+1 1.130534+1 1.995262+1 1.449389+1 2.511886+1 1.854940+1 3.162278+1 2.370337+1 3.981072+1 3.024889+1 5.011872+1 3.855612+1 6.309573+1 4.909352+1 7.943282+1 6.245302+1 1.000000+2 7.938283+1 1.258925+2 1.008281+2 1.584893+2 1.279833+2 1.995262+2 1.623570+2 2.511886+2 2.058543+2 3.162278+2 2.608808+2 3.981072+2 3.304758+2 5.011872+2 4.184726+2 6.309573+2 5.297138+2 7.943282+2 6.703081+2 1.000000+3 8.479705+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.330000-6 3.548020+7 8.380000-6 3.532957+7 8.380000-6 5.298017+7 8.609938-6 5.200347+7 8.620000-6 5.195385+7 8.850000-6 5.073838+7 8.920000-6 5.032192+7 9.120108-6 4.909881+7 9.440609-6 4.686254+7 9.700000-6 4.487840+7 1.000000-5 4.244210+7 1.023293-5 4.048503+7 1.050000-5 3.819130+7 1.071519-5 3.632456+7 1.100000-5 3.386100+7 1.122018-5 3.198235+7 1.150000-5 2.964750+7 1.180000-5 2.723278+7 1.215000-5 2.455531+7 1.216186-5 2.446863+7 1.250000-5 2.205565+7 1.288250-5 1.953332+7 1.290000-5 1.942453+7 1.330000-5 1.704660+7 1.365000-5 1.516943+7 1.412538-5 1.291185+7 1.462177-5 1.088725+7 1.515000-5 9.066610+6 1.570000-5 7.489310+6 1.630000-5 6.081750+6 1.698244-5 4.806693+6 1.721000-5 4.442983+6 1.721000-5 4.452883+6 1.724000-5 4.407926+6 1.728000-5 4.348947+6 1.733000-5 4.276598+6 1.740000-5 4.177805+6 1.747000-5 4.081844+6 1.755000-5 3.975529+6 1.763000-5 3.872660+6 1.770000-5 3.785390+6 1.771000-5 3.773023+6 1.778279-5 3.684455+6 1.786000-5 3.591892+6 1.793000-5 3.510505+6 1.801000-5 3.420326+6 1.812000-5 3.301083+6 1.820000-5 3.217689+6 1.830000-5 3.117219+6 1.840772-5 3.013471+6 1.855000-5 2.883198+6 1.862087-5 2.821017+6 1.867000-5 2.778277+6 1.882000-5 2.652857+6 1.895000-5 2.550149+6 1.910000-5 2.438127+6 1.927525-5 2.315479+6 1.945000-5 2.201394+6 1.960000-5 2.109553+6 1.980000-5 1.995214+6 2.000000-5 1.889461+6 2.020000-5 1.791595+6 2.047000-5 1.670873+6 2.070000-5 1.577409+6 2.089296-5 1.504931+6 2.100000-5 1.467822+6 2.113489-5 1.422851+6 2.130000-5 1.371536+6 2.166900-5 1.267179+6 2.170000-5 1.259003+6 2.190000-5 1.209917+6 2.230000-5 1.122656+6 2.250000-5 1.084476+6 2.270000-5 1.049677+6 2.285000-5 1.024762+6 2.300000-5 1.002109+6 2.317395-5 9.778838+5 2.330000-5 9.608463+5 2.350000-5 9.365087+5 2.370000-5 9.144753+5 2.376900-5 9.070001+5 2.400000-5 8.846528+5 2.426610-5 8.618548+5 2.450000-5 8.441042+5 2.470000-5 8.305100+5 2.485000-5 8.217044+5 2.511886-5 8.067754+5 2.520000-5 8.028722+5 2.540973-5 7.937199+5 2.560000-5 7.861662+5 2.580000-5 7.791563+5 2.600160-5 7.733110+5 2.610000-5 7.707898+5 2.630268-5 7.659863+5 2.650000-5 7.619569+5 2.670000-5 7.589524+5 2.691535-5 7.563844+5 2.710000-5 7.545067+5 2.730000-5 7.530043+5 2.754229-5 7.521772+5 2.770000-5 7.520225+5 2.800000-5 7.521392+5 2.818383-5 7.526204+5 2.851018-5 7.547130+5 2.870000-5 7.558257+5 2.905300-5 7.590377+5 2.920000-5 7.606043+5 2.951209-5 7.648709+5 2.985383-5 7.691049+5 3.000000-5 7.713405+5 3.054921-5 7.803573+5 3.060000-5 7.810760+5 3.126079-5 7.928009+5 3.150000-5 7.972627+5 3.162278-5 7.998134+5 3.209200-5 8.084764+5 3.260000-5 8.182458+5 3.300000-5 8.265776+5 3.311800-5 8.287632+5 3.427678-5 8.509604+5 3.450000-5 8.553529+5 3.500000-5 8.642067+5 3.589219-5 8.801130+5 3.758374-5 9.071954+5 3.801894-5 9.133882+5 3.845918-5 9.192147+5 3.950000-5 9.324656+5 4.000000-5 9.379807+5 4.027170-5 9.406944+5 4.168694-5 9.540400+5 4.220000-5 9.575078+5 4.365158-5 9.664540+5 4.400000-5 9.681621+5 4.415704-5 9.687224+5 4.570882-5 9.733586+5 4.623810-5 9.742870+5 4.650000-5 9.745853+5 4.786301-5 9.746649+5 4.850000-5 9.739780+5 4.900000-5 9.731515+5 5.011872-5 9.702645+5 5.080000-5 9.677938+5 5.188000-5 9.633975+5 5.248075-5 9.604779+5 5.308844-5 9.569126+5 5.500000-5 9.451530+5 5.559043-5 9.406227+5 5.754399-5 9.252439+5 5.821032-5 9.196121+5 6.025596-5 9.007460+5 6.095369-5 8.940043+5 6.237348-5 8.801402+5 6.309573-5 8.728863+5 6.400000-5 8.633392+5 6.650000-5 8.372861+5 6.683439-5 8.337220+5 6.760830-5 8.252411+5 7.000000-5 7.993857+5 7.161434-5 7.819882+5 7.244360-5 7.731275+5 7.413102-5 7.551034+5 7.585776-5 7.366850+5 7.852356-5 7.093335+5 7.943282-5 7.001209+5 8.035261-5 6.907896+5 8.317638-5 6.630361+5 8.609938-5 6.354649+5 8.810489-5 6.174257+5 8.912509-5 6.084185+5 9.225714-5 5.814217+5 9.549926-5 5.552325+5 9.885531-5 5.294776+5 1.000000-4 5.210219+5 1.035142-4 4.961031+5 1.080000-4 4.664025+5 1.109175-4 4.484447+5 1.122018-4 4.407183+5 1.161449-4 4.179970+5 1.202264-4 3.961884+5 1.260000-4 3.677113+5 1.303167-4 3.480209+5 1.364583-4 3.222978+5 1.381800-4 3.155694+5 1.381800-4 1.622093+6 1.385000-4 1.788216+6 1.387000-4 1.895101+6 1.389700-4 2.040433+6 1.391400-4 2.130900+6 1.391400-4 2.776000+6 1.392000-4 2.822648+6 1.392200-4 2.837712+6 1.394000-4 2.980788+6 1.395000-4 3.059145+6 1.396700-4 3.194280+6 1.397000-4 3.217165+6 1.399000-4 3.371562+6 1.401000-4 3.529799+6 1.402000-4 3.599272+6 1.404000-4 3.738217+6 1.406000-4 3.878314+6 1.407200-4 3.954851+6 1.408000-4 4.004715+6 1.410000-4 4.126638+6 1.411000-4 4.172548+6 1.412538-4 4.256786+6 1.413000-4 4.282432+6 1.416000-4 4.409971+6 1.418000-4 4.480580+6 1.419500-4 4.529112+6 1.426000-4 4.654811+6 1.427000-4 4.670429+6 1.428894-4 4.692612+6 1.429000-4 4.693856+6 1.445440-4 4.816093+6 1.447000-4 4.824929+6 1.465000-4 4.896197+6 1.466000-4 4.899253+6 1.479108-4 4.932123+6 1.485000-4 4.946910+6 1.490000-4 4.948588+6 1.510000-4 4.942673+6 1.520000-4 4.931979+6 1.531087-4 4.914075+6 1.540000-4 4.892344+6 1.548817-4 4.876645+6 1.570000-4 4.839462+6 1.571200-4 4.836941+6 1.590000-4 4.792423+6 1.650000-4 4.640523+6 1.659587-4 4.617225+6 1.720000-4 4.449771+6 1.737801-4 4.406735+6 1.760000-4 4.354223+6 1.780000-4 4.298520+6 1.840772-4 4.132677+6 1.871500-4 4.044201+6 1.871500-4 4.460629+6 1.883649-4 4.426436+6 1.950000-4 4.217759+6 1.972423-4 4.145631+6 2.041738-4 3.928810+6 2.065380-4 3.855838+6 2.089296-4 3.782828+6 2.113489-4 3.710190+6 2.148000-4 3.610521+6 2.200000-4 3.466008+6 2.205000-4 3.452606+6 2.213095-4 3.430747+6 2.238721-4 3.361215+6 2.264644-4 3.292223+6 2.300000-4 3.200521+6 2.344229-4 3.091322+6 2.350000-4 3.077503+6 2.371374-4 3.026732+6 2.400000-4 2.958583+6 2.420000-4 2.911570+6 2.511886-4 2.709618+6 2.540973-4 2.647985+6 2.570396-4 2.586761+6 2.650000-4 2.431492+6 2.660725-4 2.411655+6 2.691535-4 2.354124+6 2.851018-4 2.083085+6 2.884032-4 2.031758+6 2.917427-4 1.981191+6 2.951209-4 1.931585+6 3.019952-4 1.836163+6 3.100000-4 1.733624+6 3.198895-4 1.617351+6 3.200000-4 1.616117+6 3.311311-4 1.497140+6 3.548134-4 1.280612+6 3.589219-4 1.247183+6 3.630781-4 1.214648+6 3.715352-4 1.151561+6 3.890451-4 1.034807+6 3.981072-4 9.801947+5 4.073803-4 9.282245+5 4.120975-4 9.033158+5 4.265795-4 8.321729+5 4.466836-4 7.461514+5 4.570882-4 7.059491+5 4.623810-4 6.865875+5 4.786301-4 6.317144+5 5.011872-4 5.654877+5 5.069907-4 5.497847+5 5.248075-4 5.050323+5 5.308844-4 4.909641+5 5.432503-4 4.640190+5 5.559043-4 4.385919+5 5.623413-4 4.262965+5 5.688529-4 4.142698+5 5.821032-4 3.911334+5 6.025596-4 3.588980+5 6.095369-4 3.487702+5 6.237348-4 3.293792+5 6.382635-4 3.109712+5 6.531306-4 2.934267+5 6.683439-4 2.768114+5 7.000000-4 2.462896+5 7.161434-4 2.325461+5 7.300000-4 2.214204+5 7.413102-4 2.128521+5 8.000000-4 1.751711+5 8.035261-4 1.732037+5 8.128305-4 1.681563+5 8.317638-4 1.584326+5 8.413951-4 1.537894+5 9.015711-4 1.286266+5 9.120108-4 1.248660+5 9.225714-4 1.211905+5 9.332543-4 1.175953+5 9.549926-4 1.107262+5 1.023293-3 9.243885+4 1.030000-3 9.087943+4 1.059254-3 8.444270+4 1.071519-3 8.193240+4 1.096478-3 7.710280+4 1.161449-3 6.623644+4 1.174898-3 6.426046+4 1.202264-3 6.045758+4 1.230269-3 5.688559+4 1.258925-3 5.350702+4 1.318257-3 4.733983+4 1.333521-3 4.591619+4 1.364583-3 4.317602+4 1.412538-3 3.937736+4 1.428894-3 3.818141+4 1.513561-3 3.272080+4 1.531087-3 3.172929+4 1.584893-3 2.890857+4 1.640590-3 2.634516+4 1.650000-3 2.594134+4 1.659587-3 2.553758+4 1.737801-3 2.254805+4 1.778279-3 2.119125+4 1.819701-3 1.990511+4 1.900000-3 1.770511+4 1.927525-3 1.702384+4 2.000000-3 1.539523+4 2.041738-3 1.455488+4 2.089296-3 1.366441+4 2.130400-3 1.295470+4 2.130400-3 1.325803+5 2.162719-3 1.296187+5 2.172000-3 1.287893+5 2.187762-3 1.268632+5 2.238721-3 1.209192+5 2.264644-3 1.180537+5 2.317395-3 1.112676+5 2.344229-3 1.080228+5 2.398833-3 1.018088+5 2.454709-3 9.595324+4 2.511886-3 9.043449+4 2.600160-3 8.274448+4 2.660725-3 7.798550+4 2.691535-3 7.570996+4 2.754229-3 7.135207+4 2.851018-3 6.528243+4 2.900000-3 6.248187+4 3.019952-3 5.629151+4 3.054921-3 5.464793+4 3.126079-3 5.150375+4 3.311311-3 4.440686+4 3.349654-3 4.310960+4 3.507519-3 3.814994+4 3.589219-3 3.588873+4 3.630781-3 3.480898+4 3.758374-3 3.175821+4 3.845918-3 2.985432+4 3.890451-3 2.894561+4 4.073803-3 2.557883+4 4.168694-3 2.404546+4 4.216965-3 2.331368+4 4.365158-3 2.124746+4 4.518559-3 1.932494+4 4.731513-3 1.702916+4 4.841724-3 1.598577+4 4.954502-3 1.500641+4 5.300000-3 1.246909+4 5.308844-3 1.241111+4 5.559043-3 1.091172+4 5.688529-3 1.023144+4 5.754399-3 9.907391+3 6.165950-3 8.166407+3 6.237348-3 7.904291+3 6.531306-3 6.937189+3 6.683439-3 6.498983+3 6.760830-3 6.290383+3 7.244360-3 5.171283+3 7.413102-3 4.840134+3 7.673615-3 4.382695+3 7.852356-3 4.102018+3 8.000000-3 3.888172+3 8.609938-3 3.147444+3 8.709636-3 3.043604+3 8.810489-3 2.943181+3 9.120108-3 2.661365+3 9.225714-3 2.573554+3 9.440609-3 2.406536+3 1.035142-2 1.839668+3 1.047129-2 1.778157+3 1.071519-2 1.661244+3 1.083927-2 1.605702+3 1.122018-2 1.449974+3 1.230269-2 1.104394+3 1.258925-2 1.031733+3 1.288250-2 9.630608+2 1.333521-2 8.685296+2 1.479108-2 6.369089+2 1.531087-2 5.743523+2 1.548817-2 5.546797+2 1.584893-2 5.173362+2 1.798871-2 3.525078+2 1.840772-2 3.287605+2 1.883649-2 3.066120+2 1.905461-2 2.959922+2 2.238721-2 1.806359+2 2.317395-2 1.624971+2 2.344229-2 1.568608+2 2.371374-2 1.513661+2 2.454709-2 1.360107+2 2.483133-2 1.312466+2 2.754229-2 9.522080+1 2.851018-2 8.556185+1 2.951209-2 7.687672+1 2.985383-2 7.415768+1 3.162278-2 6.193914+1 3.427678-2 4.813985+1 3.548134-2 4.321079+1 3.758374-2 3.608715+1 4.265795-2 2.419792+1 4.466836-2 2.092471+1 4.841724-2 1.622317+1 4.954502-2 1.507699+1 5.559043-2 1.045239+1 5.754399-2 9.364518+0 5.821032-2 9.027665+0 5.956621-2 8.389496+0 6.309573-2 6.984554+0 6.606934-2 6.032014+0 6.998420-2 5.021911+0 7.498942-2 4.025008+0 7.585776-2 3.879269+0 7.852356-2 3.472887+0 7.943282-2 3.347119+0 8.128305-2 3.109073+0 8.413951-2 2.783370+0 9.225714-2 2.072116+0 9.549926-2 1.855051+0 9.885531-2 1.660730+0 1.011580-1 1.542625+0 1.109175-1 1.148451+0 1.148154-1 1.028152+0 1.174898-1 9.550392-1 1.188502-1 9.204581-1 1.273503-1 7.377297-1 1.303167-1 6.856578-1 1.318257-1 6.610280-1 1.333521-1 6.372854-1 1.364583-1 5.923263-1 1.396368-1 5.505398-1 1.513561-1 4.261734-1 1.531088-1 4.108656-1 1.566751-1 3.818818-1 1.603245-1 3.549424-1 1.621810-1 3.421938-1 1.678804-1 3.069854-1 1.737801-1 2.754018-1 1.778279-1 2.561733-1 1.798871-1 2.470683-1 1.819701-1 2.382946-1 1.949845-1 1.918225-1 1.972423-1 1.850109-1 2.000000-1 1.771172-1 2.065380-1 1.600992-1 2.089296-1 1.544142-1 2.137962-1 1.437853-1 2.187762-1 1.338980-1 2.213095-1 1.292124-1 2.238721-1 1.246909-1 2.317395-1 1.120534-1 2.426610-1 9.717319-2 2.483133-1 9.059304-2 2.600160-1 7.875105-2 2.691535-1 7.089706-2 2.722701-1 6.845723-2 2.786121-1 6.382648-2 2.851018-1 5.958027-2 2.884032-1 5.756687-2 2.951209-1 5.374204-2 3.000000-1 5.117422-2 3.090295-1 4.683793-2 3.162278-1 4.372593-2 3.198895-1 4.227545-2 3.235937-1 4.087305-2 3.273407-1 3.951923-2 3.427678-1 3.453769-2 3.507519-1 3.228760-2 3.548134-1 3.121816-2 3.589219-1 3.020500-2 3.630781-1 2.922470-2 3.801894-1 2.561690-2 3.890451-1 2.398365-2 3.935501-1 2.320649-2 4.027170-1 2.175932-2 4.120975-1 2.040462-2 4.216965-1 1.913429-2 4.315191-1 1.794304-2 4.365158-1 1.737554-2 4.466836-1 1.631997-2 4.570882-1 1.533028-2 4.623810-1 1.485817-2 4.731513-1 1.395712-2 4.841724-1 1.311073-2 4.897788-1 1.271734-2 4.954502-1 1.233647-2 5.069907-1 1.160861-2 5.188000-1 1.092370-2 5.248075-1 1.059655-2 5.308844-1 1.027921-2 5.370318-1 9.979547-3 5.559043-1 9.133655-3 5.688529-1 8.609950-3 5.821032-1 8.116282-3 5.888437-1 7.887031-3 6.095369-1 7.238813-3 6.165950-1 7.034803-3 6.237348-1 6.836546-3 6.309573-1 6.643878-3 6.382635-1 6.456638-3 6.456542-1 6.280226-3 6.683439-1 5.780578-3 6.760830-1 5.623025-3 6.839117-1 5.469768-3 6.918310-1 5.320690-3 6.998420-1 5.180620-3 7.244360-1 4.783175-3 7.328245-1 4.657592-3 7.413102-1 4.535305-3 7.585776-1 4.300280-3 7.673615-1 4.191028-3 7.852356-1 3.981344-3 8.035261-1 3.782154-3 8.317638-1 3.501897-3 8.413951-1 3.415623-3 8.511380-1 3.331681-3 8.609938-1 3.249802-3 8.709636-1 3.169938-3 9.120108-1 2.869629-3 9.225714-1 2.801508-3 9.440609-1 2.670447-3 9.660509-1 2.545518-3 9.885531-1 2.426434-3 1.000000+0 2.371002-3 1.011579+0 2.316974-3 1.023293+0 2.264174-3 1.083927+0 2.017691-3 1.096478+0 1.971714-3 1.130300+0 1.855360-3 1.135011+0 1.839973-3 1.148154+0 1.799564-3 1.202264+0 1.647017-3 1.230269+0 1.575662-3 1.244515+0 1.541153-3 1.258925+0 1.507402-3 1.318257+0 1.384548-3 1.333521+0 1.355434-3 1.364583+0 1.299027-3 1.380384+0 1.271711-3 1.445440+0 1.171920-3 1.462177+0 1.148222-3 1.500000+0 1.097349-3 1.513561+0 1.079964-3 1.603245+0 9.795856-4 1.659587+0 9.238948-4 1.678804+0 9.060442-4 1.698244+0 8.892571-4 1.778279+0 8.251642-4 1.862087+0 7.656910-4 1.883649+0 7.515049-4 1.905461+0 7.381137-4 2.000000+0 6.843549-4 2.113489+0 6.278396-4 2.137962+0 6.166525-4 2.264644+0 5.656455-4 2.398833+0 5.188581-4 2.426610+0 5.099758-4 2.570396+0 4.693287-4 2.722701+0 4.319222-4 2.754229+0 4.248063-4 2.951209+0 3.859062-4 3.126079+0 3.562251-4 3.162278+0 3.505685-4 3.427678+0 3.146651-4 3.630781+0 2.912941-4 3.672823+0 2.868325-4 4.027170+0 2.545888-4 4.315191+0 2.328080-4 4.365158+0 2.293635-4 4.786301+0 2.043994-4 5.128614+0 1.874764-4 5.188000+0 1.847954-4 5.754399+0 1.630379-4 6.237348+0 1.479027-4 6.309573+0 1.458584-4 7.161434+0 1.257171-4 7.852356+0 1.128389-4 7.943282+0 1.113248-4 8.000000+0 1.104015-4 8.709636+0 1.002448-4 1.011579+1 8.457688-5 1.023293+1 8.347833-5 1.035142+1 8.239623-5 1.122018+1 7.536805-5 1.318257+1 6.305906-5 1.348963+1 6.147305-5 1.364583+1 6.069647-5 1.500000+1 5.479944-5 1.800000+1 4.500329-5 1.840772+1 4.392752-5 1.862087+1 4.338548-5 2.089296+1 3.841076-5 2.630268+1 3.010723-5 2.660725+1 2.974279-5 2.691535+1 2.938276-5 3.019952+1 2.606985-5 4.073803+1 1.910111-5 4.120975+1 1.887397-5 4.168694+1 1.864953-5 4.216965+1 1.843084-5 4.731513+1 1.638029-5 7.328245+1 1.046343-5 7.413102+1 1.034074-5 7.498942+1 1.022086-5 8.035261+1 9.530260-6 1.462177+2 5.197432-6 1.479108+2 5.137184-6 1.496236+2 5.077983-6 1.603245+2 4.736862-6 2.917427+2 2.592696-6 2.951209+2 2.562820-6 2.985383+2 2.533427-6 3.198895+2 2.364020-6 2.317395+3 3.250945-7 2.344229+3 3.213661-7 2.371374+3 3.176868-7 2.540973+3 2.964793-7 1.000000+5 7.528996-9 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.330000-6 8.330000-6 8.380000-6 8.330000-6 8.380000-6 8.346658-6 1.721000-5 8.347090-6 1.721000-5 8.366794-6 1.812000-5 8.440072-6 1.882000-5 8.545885-6 1.960000-5 8.725648-6 2.020000-5 8.913195-6 2.089296-5 9.185680-6 2.170000-5 9.573867-6 2.285000-5 1.022026-5 2.450000-5 1.118422-5 2.540973-5 1.165386-5 2.630268-5 1.203239-5 2.710000-5 1.230148-5 2.800000-5 1.252751-5 2.905300-5 1.270394-5 3.000000-5 1.279845-5 3.150000-5 1.286153-5 3.311800-5 1.285073-5 3.589219-5 1.275110-5 4.415704-5 1.235492-5 5.080000-5 1.212042-5 5.821032-5 1.195116-5 6.760830-5 1.182566-5 8.035261-5 1.175115-5 1.000000-4 1.173868-5 1.303167-4 1.182049-5 1.381800-4 1.185209-5 1.381800-4 1.939350-5 1.389700-4 1.978128-5 1.391400-4 1.984508-5 1.391400-4 2.017621-5 1.402000-4 2.042874-5 1.416000-4 2.058842-5 1.447000-4 2.066691-5 1.590000-4 2.075363-5 1.871500-4 2.081553-5 1.871500-4 2.219902-5 2.238721-4 2.259240-5 3.548134-4 2.348164-5 4.786301-4 2.419785-5 6.531306-4 2.503293-5 8.413951-4 2.578865-5 1.096478-3 2.662396-5 1.412538-3 2.744157-5 1.778279-3 2.818849-5 2.130400-3 2.875049-5 2.130400-3 4.433346-5 2.454709-3 4.448042-5 4.365158-3 4.476144-5 1.047129-2 4.496203-5 4.954502-2 4.507233-5 1.000000+5 4.509514-5 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.330000-6 0.0 1.381800-4 0.0 1.381800-4 2.099903-8 1.385000-4 2.148808-8 1.389700-4 2.207740-8 1.391400-4 2.225480-8 1.391400-4 2.315046-8 1.397000-4 2.356968-8 1.404000-4 2.393832-8 1.413000-4 2.423113-8 1.419500-4 2.434584-8 1.445440-4 2.450017-8 1.520000-4 2.466760-8 1.780000-4 2.485925-8 1.871500-4 2.489593-8 1.871500-4 2.517031-8 2.420000-4 2.528530-8 5.821032-4 2.533383-8 2.130400-3 2.538276-8 2.130400-3 1.096395-4 2.264644-3 1.102349-4 3.758374-3 1.112815-4 6.531306-3 1.118689-4 1.584893-2 1.121737-4 1.000000+5 1.122111-4 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.330000-6 0.0 8.380000-6 5.000000-8 8.380000-6 3.334226-8 1.721000-5 8.862910-6 1.721000-5 8.843206-6 1.812000-5 9.679928-6 1.895000-5 1.037890-5 1.980000-5 1.101679-5 2.047000-5 1.145765-5 2.130000-5 1.192735-5 2.230000-5 1.239829-5 2.450000-5 1.331578-5 2.540973-5 1.375587-5 2.630268-5 1.427029-5 2.730000-5 1.494160-5 2.818383-5 1.561863-5 2.951209-5 1.675446-5 3.060000-5 1.776370-5 3.260000-5 1.974032-5 3.589219-5 2.314109-5 4.786301-5 3.565061-5 6.309573-5 5.122086-5 1.000000-4 8.826132-5 1.381800-4 1.263279-4 1.381800-4 1.187655-4 1.391400-4 1.192726-4 1.391400-4 1.189406-4 1.419500-4 1.213175-4 1.871500-4 1.663096-4 1.871500-4 1.649258-4 7.300000-4 7.046154-4 2.130400-3 2.101624-3 2.130400-3 1.976427-3 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.130400-3 1.196256+5 2.172000-3 1.165019+5 2.264644-3 1.070970+5 3.349654-3 3.941319+4 3.758374-3 2.908431+4 4.365158-3 1.949734+4 5.300000-3 1.146354+4 6.165950-3 7.516159+3 7.244360-3 4.763996+3 8.609938-3 2.901735+3 1.035142-2 1.697063+3 1.258925-2 9.521782+2 1.531087-2 5.302245+2 1.883649-2 2.831182+2 2.344229-2 1.448668+2 2.951209-2 7.100786+1 3.758374-2 3.333445+1 4.841724-2 1.498589+1 6.998420-2 4.638990+0 1.273503-1 6.812675-1 1.621810-1 3.159841-1 2.089296-1 1.425969-1 2.426610-1 8.973003-2 2.786121-1 5.893653-2 3.162278-1 4.037553-2 3.548134-1 2.882543-2 3.935501-1 2.142742-2 4.365158-1 1.604334-2 4.841724-1 1.210579-2 5.308844-1 9.491265-3 5.821032-1 7.494115-3 6.382635-1 5.961706-3 6.918310-1 4.912800-3 7.585776-1 3.970782-3 8.317638-1 3.233730-3 9.120108-1 2.649918-3 9.885531-1 2.240644-3 1.135011+0 1.699072-3 1.258925+0 1.392006-3 1.380384+0 1.174361-3 1.513561+0 9.972972-4 1.678804+0 8.366937-4 1.883649+0 6.939837-4 2.137962+0 5.694505-4 2.426610+0 4.709385-4 2.754229+0 3.922890-4 3.162278+0 3.237344-4 3.672823+0 2.648773-4 4.365158+0 2.118078-4 5.188000+0 1.706509-4 6.309573+0 1.346937-4 8.000000+0 1.019500-4 1.035142+1 7.608845-5 1.364583+1 5.604988-5 1.862087+1 4.006421-5 2.691535+1 2.713370-5 4.168694+1 1.722202-5 7.413102+1 9.549224-6 1.479108+2 4.743963-6 2.951209+2 2.366652-6 2.344229+3 2.967676-7 1.000000+5 6.952700-9 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.130400-3 4.602100-5 1.000000+5 4.602100-5 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.130400-3 1.215100-4 1.000000+5 1.215100-4 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.130400-3 1.962869-3 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.871500-4 4.164282+5 2.089296-4 4.141659+5 2.148000-4 4.107957+5 2.205000-4 4.047800+5 2.264644-4 3.962787+5 2.350000-4 3.820000+5 2.917427-4 2.999334+5 3.100000-4 2.785000+5 3.311311-4 2.549432+5 3.715352-4 2.161539+5 4.120975-4 1.852540+5 4.466836-4 1.632305+5 5.011872-4 1.349586+5 5.623413-4 1.109223+5 6.237348-4 9.229571+4 7.161434-4 7.159595+4 8.000000-4 5.801740+4 9.120108-4 4.486950+4 1.030000-3 3.510080+4 1.174898-3 2.670560+4 1.333521-3 2.038748+4 1.531087-3 1.507363+4 1.778279-3 1.077207+4 2.041738-3 7.837084+3 2.344229-3 5.659400+3 2.691535-3 4.056918+3 3.126079-3 2.805973+3 3.630781-3 1.925355+3 4.216965-3 1.311112+3 4.954502-3 8.598685+2 5.754399-3 5.771101+2 6.760830-3 3.729167+2 8.000000-3 2.345360+2 9.440609-3 1.475136+2 1.122018-2 9.025756+1 1.333521-2 5.481931+1 1.584893-2 3.305949+1 1.905461-2 1.913321+1 2.317395-2 1.061895+1 2.851018-2 5.648380+0 3.548134-2 2.878550+0 4.466836-2 1.405112+0 5.821032-2 6.110533-1 7.585776-2 2.636668-1 1.303167-1 4.709776-2 1.798871-1 1.699344-2 2.137962-1 9.911944-3 2.483133-1 6.255915-3 2.851018-1 4.117313-3 3.235937-1 2.826279-3 3.630781-1 2.022272-3 4.027170-1 1.506415-3 4.466836-1 1.130166-3 4.897788-1 8.811211-4 5.370318-1 6.915757-4 5.888437-1 5.466567-4 6.456542-1 4.353371-4 6.998420-1 3.591790-4 7.673615-1 2.904876-4 8.413951-1 2.366824-4 9.225714-1 1.940906-4 1.000000+0 1.642900-4 1.148154+0 1.247035-4 1.258925+0 1.044990-4 1.380384+0 8.815636-5 1.513561+0 7.485889-5 1.678804+0 6.280036-5 1.883649+0 5.208835-5 2.137962+0 4.274418-5 2.426610+0 3.535062-5 2.754229+0 2.944633-5 3.162278+0 2.429978-5 3.672823+0 1.988166-5 4.365158+0 1.589768-5 5.188000+0 1.280865-5 6.309573+0 1.011023-5 7.943282+0 7.715460-6 1.023293+1 5.785333-6 1.348963+1 4.260442-6 1.840772+1 3.044453-6 2.691535+1 2.036655-6 4.168694+1 1.292681-6 7.413102+1 7.167598-7 1.479108+2 3.560838-7 2.951209+2 1.776412-7 2.344229+3 2.227540-8 1.000000+5 5.21870-10 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.871500-4 3.563500-5 1.000000+5 3.563500-5 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.871500-4 2.783500-8 1.000000+5 2.783500-8 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.871500-4 1.514872-4 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.391400-4 6.451000+5 1.392200-4 6.633100+5 1.395000-4 7.365600+5 1.397000-4 7.895600+5 1.399000-4 8.433200+5 1.402000-4 9.238700+5 1.404000-4 9.769500+5 1.407200-4 1.060100+6 1.410000-4 1.130700+6 1.411000-4 1.140391+6 1.416000-4 1.232504+6 1.426000-4 1.346256+6 1.427000-4 1.354007+6 1.445440-4 1.425694+6 1.465000-4 1.467024+6 1.490000-4 1.497183+6 1.520000-4 1.514061+6 1.531087-4 1.514001+6 1.571200-4 1.502231+6 1.659587-4 1.452930+6 1.780000-4 1.373061+6 1.883649-4 1.278431+6 1.972423-4 1.190300+6 2.065380-4 1.099100+6 2.238721-4 9.464300+5 2.400000-4 8.267900+5 2.540973-4 7.350000+5 2.691535-4 6.480400+5 2.884032-4 5.524600+5 3.311311-4 3.965300+5 3.630781-4 3.160500+5 3.981072-4 2.498700+5 4.570882-4 1.741400+5 5.069907-4 1.320900+5 5.688529-4 9.638700+4 6.531306-4 6.550300+4 7.300000-4 4.764400+4 8.413951-4 3.147300+4 9.549926-4 2.158000+4 1.096478-3 1.419300+4 1.258925-3 9.263100+3 1.428894-3 6.225800+3 1.650000-3 3.934400+3 1.900000-3 2.489400+3 2.162719-3 1.624600+3 2.454709-3 1.064000+3 2.851018-3 6.404800+2 3.311311-3 3.826100+2 3.845918-3 2.269600+2 4.518559-3 1.283600+2 5.308844-3 7.205800+1 6.237348-3 4.016300+1 7.413102-3 2.130300+1 8.810489-3 1.121400+1 1.047129-2 5.857200+0 1.258925-2 2.907200+0 1.531087-2 1.370207+0 1.905461-2 5.863121-1 2.483133-2 2.077894-1 4.954502-2 1.364817-2 6.606934-2 4.412779-3 8.413951-2 1.722164-3 1.011580-1 8.461634-4 1.188502-1 4.574905-4 1.396368-1 2.492359-4 1.603245-1 1.491539-4 1.819701-1 9.380504-5 2.065380-1 5.943140-5 2.317395-1 3.952617-5 2.600160-1 2.648474-5 2.884032-1 1.860293-5 3.198895-1 1.315839-5 3.548134-1 9.374516-6 3.935501-1 6.726961-6 4.315191-1 5.041627-6 4.731513-1 3.803598-6 5.188000-1 2.889695-6 5.688529-1 2.211524-6 6.237348-1 1.705456-6 6.760830-1 1.367999-6 7.413102-1 1.071366-6 8.609938-1 7.278087-7 9.120108-1 6.304445-7 9.660509-1 5.496253-7 1.011579+0 4.953615-7 1.083927+0 4.272513-7 1.148154+0 3.801754-7 1.230269+0 3.332312-7 1.333521+0 2.879312-7 1.462177+0 2.455188-7 1.698244+0 1.907789-7 1.905461+0 1.582232-7 2.137962+0 1.321932-7 2.426610+0 1.093231-7 2.754229+0 9.106601-8 3.162278+0 7.515224-8 3.672823+0 6.148886-8 4.365158+0 4.916888-8 5.188000+0 3.961499-8 6.309573+0 3.126785-8 7.943282+0 2.386233-8 1.023293+1 1.789269-8 1.348963+1 1.317642-8 1.840772+1 9.415909-9 2.691535+1 6.298791-9 4.168694+1 3.997831-9 7.498942+1 2.190914-9 1.496236+2 1.088556-9 2.985383+2 5.43087-10 2.371374+3 6.81027-11 1.000000+5 1.61400-12 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.391400-4 2.127000-5 1.000000+5 2.127000-5 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.391400-4 2.610900-8 1.000000+5 2.610900-8 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.391400-4 1.178439-4 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.381800-4 1.306524+6 1.385000-4 1.473872+6 1.387000-4 1.581520+6 1.389700-4 1.727876+6 1.392000-4 1.852248+6 1.394000-4 1.960320+6 1.396700-4 2.102976+6 1.401000-4 2.325252+6 1.406000-4 2.543686+6 1.408000-4 2.619138+6 1.413000-4 2.802081+6 1.418000-4 2.923961+6 1.419500-4 2.956290+6 1.429000-4 3.034083+6 1.447000-4 3.104252+6 1.466000-4 3.145853+6 1.485000-4 3.176921+6 1.510000-4 3.163413+6 1.531087-4 3.135765+6 1.540000-4 3.119357+6 1.570000-4 3.084033+6 1.590000-4 3.053820+6 1.659587-4 2.935201+6 1.720000-4 2.823398+6 1.760000-4 2.762585+6 1.780000-4 2.723667+6 1.840772-4 2.626757+6 1.883649-4 2.549711+6 1.950000-4 2.419772+6 2.041738-4 2.236054+6 2.213095-4 1.925227+6 2.371374-4 1.683826+6 2.511886-4 1.496399+6 2.660725-4 1.319878+6 2.851018-4 1.125468+6 3.200000-4 8.535200+5 3.548134-4 6.625024+5 3.890451-4 5.245410+5 4.466836-4 3.655751+5 5.011872-4 2.690307+5 5.559043-4 2.026243+5 6.382635-4 1.377742+5 7.161434-4 9.915816+4 8.128305-4 6.853970+4 9.225714-4 4.705494+4 1.071519-3 2.990217+4 1.230269-3 1.951956+4 1.412538-3 1.265170+4 1.640590-3 7.843442+3 1.900000-3 4.866480+3 2.187762-3 3.052825+3 2.511886-3 1.919593+3 2.900000-3 1.176148+3 3.349654-3 7.145851+2 3.890451-3 4.229062+2 4.518559-3 2.486216+2 5.308844-3 1.392567+2 6.237348-3 7.742701+1 7.413102-3 4.095971+1 8.709636-3 2.244037+1 1.035142-2 1.169023+1 1.230269-2 6.043148+0 1.479108-2 2.966463+0 1.798871-2 1.382087+0 2.238721-2 5.840174-1 2.985383-2 1.863142-1 5.956621-2 1.184198-2 7.852356-2 3.947152-3 9.549926-2 1.824802-3 1.148154-1 8.894544-4 1.333521-1 4.993082-4 1.531088-1 2.951568-4 1.737801-1 1.835971-4 1.949845-1 1.200297-4 2.187762-1 7.905804-5 2.426610-1 5.467879-5 2.691535-1 3.808848-5 2.951209-1 2.780946-5 3.235937-1 2.044898-5 3.507519-1 1.572497-5 3.801894-1 1.216810-5 4.120975-1 9.477869-6 4.466836-1 7.436910-6 4.841724-1 5.877587-6 5.248075-1 4.677365-6 5.688529-1 3.747148-6 6.165950-1 3.022268-6 6.683439-1 2.454582-6 7.244360-1 2.007397-6 7.852356-1 1.653459-6 8.511380-1 1.371976-6 9.225714-1 1.146907-6 1.000000+0 9.663600-7 1.096478+0 8.013450-7 1.202264+0 6.692896-7 1.318257+0 5.631557-7 1.445440+0 4.772018-7 1.603245+0 3.990972-7 1.778279+0 3.361585-7 2.000000+0 2.787500-7 2.264644+0 2.303915-7 2.570396+0 1.911783-7 2.951209+0 1.571937-7 3.427678+0 1.281763-7 4.027170+0 1.037066-7 4.786301+0 8.325599-8 5.754399+0 6.641111-8 7.161434+0 5.120383-8 8.709636+0 4.083529-8 1.122018+1 3.070383-8 1.500000+1 2.232600-8 2.089296+1 1.564815-8 3.019952+1 1.062032-8 4.731513+1 6.675025-9 8.035261+1 3.884398-9 1.603245+2 1.930883-9 3.198895+2 9.63685-10 2.540973+3 1.20877-10 1.000000+5 3.06960-12 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.381800-4 2.121500-5 1.000000+5 2.121500-5 1 15000 7 7 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.381800-4 2.607100-8 1.000000+5 2.607100-8 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.381800-4 1.169389-4 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.721000-5 9.899700+3 1.724000-5 1.045042+4 1.728000-5 1.130260+4 1.733000-5 1.241004+4 1.740000-5 1.402642+4 1.747000-5 1.572234+4 1.755000-5 1.775270+4 1.763000-5 1.986984+4 1.771000-5 2.208940+4 1.778279-5 2.416832+4 1.786000-5 2.645300+4 1.793000-5 2.858920+4 1.801000-5 3.108900+4 1.812000-5 3.462840+4 1.820000-5 3.728080+4 1.830000-5 4.068220+4 1.840772-5 4.443199+4 1.855000-5 4.950860+4 1.867000-5 5.389400+4 1.882000-5 5.949820+4 1.895000-5 6.444860+4 1.910000-5 7.025500+4 1.927525-5 7.713802+4 1.945000-5 8.408440+4 1.960000-5 9.009960+4 1.980000-5 9.817380+4 2.000000-5 1.062932+5 2.020000-5 1.144308+5 2.047000-5 1.254124+5 2.070000-5 1.347298+5 2.100000-5 1.467922+5 2.130000-5 1.587050+5 2.166900-5 1.730990+5 2.190000-5 1.819460+5 2.230000-5 1.969230+5 2.270000-5 2.114420+5 2.317395-5 2.280037+5 2.370000-5 2.455380+5 2.426610-5 2.633791+5 2.485000-5 2.806580+5 2.540973-5 2.961506+5 2.610000-5 3.138540+5 2.691535-5 3.328305+5 2.770000-5 3.492160+5 2.851018-5 3.643230+5 2.951209-5 3.806545+5 3.054921-5 3.950612+5 3.162278-5 4.075494+5 3.300000-5 4.203420+5 3.450000-5 4.306660+5 3.589219-5 4.373631+5 3.758374-5 4.423443+5 3.950000-5 4.444960+5 4.168694-5 4.432638+5 4.400000-5 4.386080+5 4.650000-5 4.306940+5 4.900000-5 4.206240+5 5.188000-5 4.071564+5 5.500000-5 3.911780+5 5.821032-5 3.739883+5 6.237348-5 3.514953+5 6.683439-5 3.280356+5 7.244360-5 3.003020+5 7.943282-5 2.692289+5 8.810489-5 2.361802+5 9.885531-5 2.026164+5 1.122018-4 1.698694+5 1.260000-4 1.435474+5 1.428894-4 1.186224+5 1.659587-4 9.366742+4 2.300000-4 5.521880+4 2.650000-4 4.364720+4 3.019952-4 3.488958+4 3.630781-4 2.523741+4 4.265795-4 1.888668+4 5.308844-4 1.262419+4 6.095369-4 9.734996+3 7.000000-4 7.442360+3 8.035261-4 5.651982+3 9.332543-4 4.159548+3 1.059254-3 3.190336+3 1.230269-3 2.312499+3 1.428894-3 1.663068+3 1.659587-3 1.187137+3 1.927525-3 8.411749+2 2.238721-3 5.917075+2 2.600160-3 4.132405+2 3.019952-3 2.864204+2 3.507519-3 1.969394+2 4.073803-3 1.344168+2 4.731513-3 9.110072+1 5.559043-3 5.946488+1 6.531306-3 3.851505+1 7.673615-3 2.476043+1 9.120108-3 1.530264+1 1.083927-2 9.385287+0 1.288250-2 5.714042+0 1.531087-2 3.453971+0 1.840772-2 2.003533+0 2.238721-2 1.114441+0 2.754229-2 5.940342-1 3.427678-2 3.033113-1 4.265795-2 1.537178-1 5.559043-2 6.694139-2 7.943282-2 2.163213-2 1.318257-1 4.300674-3 1.678804-1 2.002736-3 2.089296-1 1.011048-3 2.426610-1 6.369032-4 2.786121-1 4.186945-4 3.162278-1 2.870497-4 3.548134-1 2.050658-4 3.935501-1 1.525124-4 4.365158-1 1.142302-4 4.841724-1 8.622121-5 5.308844-1 6.762601-5 5.821032-1 5.341717-5 6.382635-1 4.251197-5 6.998420-1 3.409404-5 7.673615-1 2.755474-5 8.413951-1 2.244400-5 9.120108-1 1.887828-5 9.885531-1 1.597736-5 1.135011+0 1.212271-5 1.258925+0 9.931803-6 1.380384+0 8.377112-6 1.513561+0 7.112152-6 1.678804+0 5.966573-6 1.883649+0 4.948994-6 2.137962+0 4.060902-6 2.426610+0 3.358398-6 2.754229+0 2.797565-6 3.162278+0 2.308681-6 3.672823+0 1.888906-6 4.365158+0 1.510410-6 5.188000+0 1.216937-6 6.309573+0 9.605546-7 7.943282+0 7.330307-7 1.023293+1 5.496500-7 1.348963+1 4.047811-7 1.840772+1 2.892529-7 2.691535+1 1.934967-7 4.216965+1 1.213638-7 7.498942+1 6.730538-8 1.496236+2 3.343967-8 2.985383+2 1.668363-8 2.371374+3 2.092072-9 1.000000+5 4.95820-11 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.721000-5 1.721000-5 1.000000+5 1.721000-5 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.721000-5 0.0 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 8.380000-6 1.765060+7 8.620000-6 1.733430+7 8.920000-6 1.681730+7 9.120108-6 1.642143+7 9.440609-6 1.570010+7 9.700000-6 1.505140+7 1.000000-5 1.425550+7 1.023293-5 1.361371+7 1.050000-5 1.285610+7 1.071519-5 1.223728+7 1.100000-5 1.141920+7 1.122018-5 1.079453+7 1.150000-5 1.001670+7 1.180000-5 9.210640+6 1.215000-5 8.315220+6 1.250000-5 7.475890+6 1.288250-5 6.628277+6 1.330000-5 5.789400+6 1.365000-5 5.155690+6 1.412538-5 4.392415+6 1.462177-5 3.706932+6 1.515000-5 3.089650+6 1.570000-5 2.554370+6 1.630000-5 2.076250+6 1.698244-5 1.642469+6 1.770000-5 1.287230+6 1.862087-5 9.473989+5 2.113489-5 4.345356+5 2.190000-5 3.511300+5 2.250000-5 3.003040+5 2.300000-5 2.658150+5 2.350000-5 2.372630+5 2.400000-5 2.137030+5 2.450000-5 1.943390+5 2.485000-5 1.829250+5 2.520000-5 1.730480+5 2.560000-5 1.634210+5 2.600160-5 1.553219+5 2.630268-5 1.501562+5 2.670000-5 1.443900+5 2.710000-5 1.396510+5 2.754229-5 1.354931+5 2.800000-5 1.322210+5 2.851018-5 1.296249+5 2.905300-5 1.278855+5 2.951209-5 1.271036+5 3.000000-5 1.268520+5 3.060000-5 1.272210+5 3.126079-5 1.283222+5 3.209200-5 1.304942+5 3.311800-5 1.340157+5 3.500000-5 1.417730+5 3.845918-5 1.566517+5 4.027170-5 1.636012+5 4.220000-5 1.699300+5 4.415704-5 1.751271+5 4.623810-5 1.793054+5 4.850000-5 1.823320+5 5.080000-5 1.839090+5 5.308844-5 1.841661+5 5.559043-5 1.831811+5 5.821032-5 1.809579+5 6.095369-5 1.775884+5 6.400000-5 1.729450+5 6.760830-5 1.666054+5 7.161434-5 1.589226+5 7.585776-5 1.505281+5 8.035261-5 1.416496+5 8.609938-5 1.307157+5 9.225714-5 1.197777+5 1.000000-4 1.073100+5 1.080000-4 9.587490+4 1.161449-4 8.564993+4 1.260000-4 7.491310+4 1.364583-4 6.522521+4 1.479108-4 5.635285+4 1.650000-4 4.583920+4 1.883649-4 3.540118+4 2.113489-4 2.810215+4 2.344229-4 2.267080+4 2.570396-4 1.859539+4 2.851018-4 1.476641+4 3.198895-4 1.133754+4 3.589219-4 8.640086+3 4.073803-4 6.357738+3 4.623810-4 4.644666+3 5.248075-4 3.366800+3 5.821032-4 2.570952+3 6.382635-4 2.009569+3 7.161434-4 1.466878+3 8.035261-4 1.062560+3 9.015711-4 7.641744+2 1.023293-3 5.276640+2 1.161449-3 3.616617+2 1.318257-3 2.461149+2 1.513561-3 1.604960+2 1.737801-3 1.039287+2 2.000000-3 6.628977+1 2.317395-3 4.104330+1 2.660725-3 2.598296+1 3.054921-3 1.632539+1 3.507519-3 1.017751+1 4.073803-3 6.053349+0 4.731513-3 3.575209+0 5.559043-3 2.012024+0 6.531306-3 1.123629+0 7.673615-3 6.228946-1 9.120108-3 3.284661-1 1.071519-2 1.794633-1 1.288250-2 8.923254-2 1.548817-2 4.404094-2 1.905461-2 1.973774-2 2.454709-2 7.338704-3 5.754399-2 2.571665-4 7.498942-2 9.129495-5 9.225714-2 4.089020-5 1.109175-1 2.017136-5 1.303167-1 1.094944-5 1.513561-1 6.256081-6 1.737801-1 3.759722-6 1.972423-1 2.374632-6 2.213095-1 1.574222-6 2.483133-1 1.050956-6 2.786121-1 7.070235-7 3.090295-1 4.984208-7 3.427678-1 3.539251-7 3.801894-1 2.532108-7 4.216965-1 1.825763-7 4.623810-1 1.374647-7 5.069907-1 1.042204-7 5.559043-1 7.959760-8 6.095369-1 6.123680-8 6.683439-1 4.746256-8 7.328245-1 3.706033-8 8.609938-1 2.435115-8 9.120108-1 2.108496-8 9.660509-1 1.837979-8 1.011579+0 1.656441-8 1.083927+0 1.428590-8 1.148154+0 1.271162-8 1.230269+0 1.114227-8 1.333521+0 9.627876-9 1.462177+0 8.209908-9 1.698244+0 6.379181-9 1.905461+0 5.290590-9 2.137962+0 4.420634-9 2.426610+0 3.655967-9 2.754229+0 3.045309-9 3.162278+0 2.513032-9 3.672823+0 2.056117-9 4.365158+0 1.644159-9 5.188000+0 1.324707-9 6.309573+0 1.045589-9 7.943282+0 7.97942-10 1.023293+1 5.98316-10 1.348963+1 4.40623-10 1.840772+1 3.14862-10 2.660725+1 2.13189-10 4.120975+1 1.35282-10 7.413102+1 7.41276-11 1.479108+2 3.68265-11 2.951209+2 1.83721-11 2.344229+3 2.30371-12 1.000000+5 5.39720-14 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 8.380000-6 8.380000-6 1.000000+5 8.380000-6 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.380000-6 0.0 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 8.330000-6 3.548020+7 8.609938-6 3.465620+7 8.850000-6 3.380340+7 9.120108-6 3.267738+7 9.440609-6 3.116244+7 9.700000-6 2.982700+7 1.000000-5 2.818660+7 1.023293-5 2.687132+7 1.050000-5 2.533520+7 1.071519-5 2.408728+7 1.100000-5 2.244180+7 1.122018-5 2.118782+7 1.150000-5 1.963080+7 1.180000-5 1.802214+7 1.216186-5 1.618375+7 1.250000-5 1.457976+7 1.290000-5 1.283432+7 1.330000-5 1.125720+7 1.365000-5 1.001374+7 1.412538-5 8.519432+6 1.462177-5 7.180314+6 1.515000-5 5.976960+6 1.570000-5 4.934940+6 1.630000-5 4.005500+6 1.698244-5 3.164224+6 1.778279-5 2.408853+6 1.862087-5 1.821561+6 2.089296-5 8.960986+5 2.170000-5 7.137600+5 2.230000-5 6.095100+5 2.285000-5 5.325300+5 2.330000-5 4.805000+5 2.376900-5 4.351112+5 2.426610-5 3.953564+5 2.470000-5 3.666440+5 2.511886-5 3.434594+5 2.540973-5 3.296565+5 2.580000-5 3.137440+5 2.610000-5 3.033280+5 2.650000-5 2.916060+5 2.691535-5 2.817436+5 2.730000-5 2.744340+5 2.770000-5 2.684560+5 2.818383-5 2.631330+5 2.870000-5 2.594100+5 2.920000-5 2.574200+5 2.985383-5 2.567805+5 3.060000-5 2.582020+5 3.150000-5 2.621900+5 3.260000-5 2.693640+5 3.427678-5 2.830266+5 3.801894-5 3.157931+5 4.000000-5 3.312120+5 4.168694-5 3.425247+5 4.365158-5 3.533713+5 4.570882-5 3.619709+5 4.786301-5 3.680667+5 5.011872-5 3.715680+5 5.248075-5 3.724235+5 5.500000-5 3.705660+5 5.754399-5 3.663181+5 6.025596-5 3.597538+5 6.309573-5 3.511271+5 6.650000-5 3.391100+5 7.000000-5 3.256520+5 7.413102-5 3.090593+5 7.852356-5 2.912671+5 8.317638-5 2.729581+5 8.912509-5 2.507036+5 9.549926-5 2.288152+5 1.035142-4 2.040491+5 1.109175-4 1.838394+5 1.202264-4 1.616060+5 1.303167-4 1.409648+5 1.412538-4 1.221282+5 1.548817-4 1.029181+5 1.737801-4 8.245890+4 1.972423-4 6.417176+4 2.200000-4 5.137280+4 2.420000-4 4.202400+4 2.660725-4 3.417176+4 2.951209-4 2.704367+4 3.311311-4 2.069828+4 3.715352-4 1.572662+4 4.265795-4 1.121576+4 4.786301-4 8.405032+3 5.432503-4 6.073652+3 6.025596-4 4.623205+3 6.683439-4 3.491053+3 7.413102-4 2.621972+3 8.317638-4 1.893715+3 9.332543-4 1.358148+3 1.059254-3 9.350546+2 1.202264-3 6.389594+2 1.364583-3 4.335377+2 1.584893-3 2.718657+2 1.819701-3 1.754000+2 2.089296-3 1.123183+2 2.398833-3 7.139460+1 2.754229-3 4.504622+1 3.126079-3 2.933424+1 3.589219-3 1.823199+1 4.168694-3 1.080588+1 4.841724-3 6.356328+0 5.688529-3 3.564508+0 6.683439-3 1.983884+0 7.852356-3 1.095839+0 9.225714-3 6.008355-1 1.083927-2 3.270679-1 1.288250-2 1.691877-1 1.548817-2 8.311058-2 1.883649-2 3.874143-2 2.371374-2 1.565472-2 3.162278-2 4.998870-3 6.309573-2 3.186860-4 8.128305-2 1.167318-4 9.885531-2 5.408959-5 1.174898-1 2.760881-5 1.364583-1 1.552368-5 1.566751-1 9.188846-6 1.778279-1 5.722282-6 2.000000-1 3.714600-6 2.238721-1 2.472100-6 2.483133-1 1.712969-6 2.722701-1 1.244428-6 3.000000-1 8.953100-7 3.273407-1 6.704382-7 3.589219-1 4.976922-7 3.890451-1 3.860364-7 4.216965-1 3.014216-7 4.570882-1 2.369575-7 4.954502-1 1.875754-7 5.370318-1 1.495561-7 5.821032-1 1.201096-7 6.309573-1 9.718700-8 6.839117-1 7.923143-8 7.413102-1 6.507022-8 8.035261-1 5.383102-8 8.709636-1 4.485350-8 9.440609-1 3.764439-8 1.023293+0 3.182261-8 1.130300+0 2.606400-8 1.244515+0 2.164986-8 1.364583+0 1.826237-8 1.500000+0 1.544100-8 1.659587+0 1.300164-8 1.862087+0 1.077453-8 2.113489+0 8.834702-9 2.398833+0 7.301401-9 2.722701+0 6.078130-9 3.126079+0 5.012869-9 3.630781+0 4.099216-9 4.315191+0 3.276217-9 5.128614+0 2.638254-9 6.237348+0 2.081424-9 7.852356+0 1.587836-9 1.011579+1 1.190112-9 1.318257+1 8.87310-10 1.800000+1 6.33270-10 2.630268+1 4.23708-10 4.073803+1 2.68805-10 7.328245+1 1.47272-10 1.462177+2 7.31549-11 2.917427+2 3.64937-11 2.317395+3 4.57591-12 1.000000+5 1.05980-13 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 8.330000-6 8.330000-6 1.000000+5 8.330000-6 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 8.330000-6 0.0 1.000000+5 1.000000+5 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.838830-9 1.028750+0 8.838830-8 1.036640+0 8.838830-7 1.038200+0 1.192830-6 1.039700+0 1.549720-6 1.041500+0 2.061890-6 1.043800+0 2.861980-6 1.046400+0 3.981910-6 1.048300+0 4.957580-6 1.051200+0 6.724850-6 1.054080+0 8.838830-6 1.057700+0 1.204780-5 1.061100+0 1.567110-5 1.065100+0 2.074670-5 1.070400+0 2.894350-5 1.076200+0 3.999950-5 1.080600+0 4.995280-5 1.087100+0 6.730350-5 1.093710+0 8.838830-5 1.102600+0 1.225570-4 1.110700+0 1.598500-4 1.120600+0 2.138540-4 1.133300+0 2.973750-4 1.147500+0 4.106380-4 1.158200+0 5.103380-4 1.174100+0 6.819790-4 1.190110+0 8.838830-4 1.205100+0 1.099660-3 1.227500+0 1.471130-3 1.250000+0 1.903000-3 1.281300+0 2.600210-3 1.308600+0 3.297940-3 1.332500+0 3.975230-3 1.374400+0 5.306000-3 1.405800+0 6.417440-3 1.452900+0 8.256700-3 1.500000+0 1.029000-2 1.562500+0 1.326390-2 1.617200+0 1.610040-2 1.712900+0 2.152830-2 1.784700+0 2.593440-2 1.892300+0 3.297410-2 2.000000+0 4.044000-2 2.044000+0 4.358000-2 2.163500+0 5.227500-2 2.372600+0 6.783730-2 2.647100+0 8.845150-2 3.000000+0 1.147000-1 3.437500+0 1.464150-1 4.000000+0 1.852000-1 4.750000+0 2.328010-1 5.000000+0 2.478000-1 6.000000+0 3.039000-1 7.000000+0 3.537000-1 8.000000+0 3.987000-1 9.000000+0 4.394000-1 1.000000+1 4.763000-1 1.100000+1 5.098000-1 1.200000+1 5.405000-1 1.300000+1 5.690000-1 1.400000+1 5.955000-1 1.500000+1 6.203000-1 1.600000+1 6.435000-1 1.800000+1 6.861000-1 2.000000+1 7.242000-1 2.200000+1 7.586000-1 2.400000+1 7.899000-1 2.600000+1 8.186000-1 2.800000+1 8.450000-1 3.000000+1 8.694000-1 4.000000+1 9.705000-1 5.000000+1 1.046000+0 6.000000+1 1.105000+0 8.000000+1 1.193000+0 1.000000+2 1.256000+0 1.500000+2 1.358000+0 2.000000+2 1.420000+0 3.000000+2 1.494000+0 4.000000+2 1.538000+0 5.000000+2 1.566000+0 6.000000+2 1.587000+0 8.000000+2 1.615000+0 1.000000+3 1.633000+0 1.500000+3 1.660000+0 2.000000+3 1.674000+0 3.000000+3 1.690000+0 4.000000+3 1.698000+0 5.000000+3 1.704000+0 6.000000+3 1.707000+0 8.000000+3 1.712000+0 1.000000+4 1.715000+0 1.500000+4 1.720000+0 2.000000+4 1.722000+0 3.000000+4 1.724000+0 4.000000+4 1.726000+0 5.000000+4 1.727000+0 6.000000+4 1.727000+0 8.000000+4 1.728000+0 1.000000+5 1.728000+0 1 15000 7 8 3.097380+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.506220-7 2.127900+0 1.146460-6 2.136250+0 1.506220-6 2.147000+0 2.065130-6 2.156900+0 2.682360-6 2.169000+0 3.579780-6 2.184500+0 4.976010-6 2.201800+0 6.884450-6 2.214800+0 8.577490-6 2.234200+0 1.153820-5 2.253680+0 1.506220-5 2.281500+0 2.109730-5 2.307000+0 2.771120-5 2.338200+0 3.726020-5 2.377400+0 5.160100-5 2.410200+0 6.562780-5 2.446800+0 8.348230-5 2.485900+0 1.051090-4 2.532900+0 1.345160-4 2.556430+0 1.506220-4 2.611900+0 1.920590-4 2.660400+0 2.321870-4 2.745300+0 3.107650-4 2.809000+0 3.763520-4 2.904500+0 4.848270-4 3.000000+0 6.052000-4 3.125000+0 7.804240-4 3.234400+0 9.496620-4 3.425800+0 1.279030-3 3.569300+0 1.551130-3 3.784700+0 1.994360-3 4.000000+0 2.471000-3 4.250000+0 3.053910-3 4.625000+0 3.970460-3 5.000000+0 4.924000-3 5.500000+0 6.234030-3 6.000000+0 7.562000-3 6.750000+0 9.538240-3 7.000000+0 1.019000-2 8.000000+0 1.275000-2 9.000000+0 1.520000-2 1.000000+1 1.753000-2 1.100000+1 1.974000-2 1.200000+1 2.183000-2 1.300000+1 2.381000-2 1.400000+1 2.569000-2 1.500000+1 2.748000-2 1.600000+1 2.918000-2 1.800000+1 3.234000-2 2.000000+1 3.523000-2 2.200000+1 3.789000-2 2.400000+1 4.034000-2 2.600000+1 4.262000-2 2.800000+1 4.474000-2 3.000000+1 4.672000-2 4.000000+1 5.500000-2 5.000000+1 6.140000-2 6.000000+1 6.654000-2 8.000000+1 7.443000-2 1.000000+2 8.028000-2 1.500000+2 9.021000-2 2.000000+2 9.662000-2 3.000000+2 1.047000-1 4.000000+2 1.097000-1 5.000000+2 1.131000-1 6.000000+2 1.157000-1 8.000000+2 1.193000-1 1.000000+3 1.217000-1 1.500000+3 1.254000-1 2.000000+3 1.274000-1 3.000000+3 1.297000-1 4.000000+3 1.311000-1 5.000000+3 1.319000-1 6.000000+3 1.325000-1 8.000000+3 1.333000-1 1.000000+4 1.338000-1 1.500000+4 1.345000-1 2.000000+4 1.349000-1 3.000000+4 1.352000-1 4.000000+4 1.355000-1 5.000000+4 1.356000-1 6.000000+4 1.357000-1 8.000000+4 1.358000-1 1.000000+5 1.359000-1 1 15000 7 8 3.097380+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 15000 7 9 3.097380+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.500000+1 1.000000+5 1.500000+1 5.000000+5 1.499300+1 7.500000+5 1.498430+1 1.000000+6 1.497600+1 1.500000+6 1.494900+1 2.000000+6 1.490900+1 2.500000+6 1.485800+1 3.000000+6 1.479800+1 3.500000+6 1.472560+1 4.000000+6 1.464600+1 4.750000+6 1.450700+1 5.000000+6 1.445800+1 5.500000+6 1.435070+1 6.000000+6 1.423730+1 6.250000+6 1.417670+1 7.000000+6 1.398900+1 7.500000+6 1.385580+1 8.000000+6 1.371920+1 8.250000+6 1.364840+1 9.000000+6 1.343300+1 9.750000+6 1.320980+1 1.000000+7 1.313500+1 1.062500+7 1.294450+1 1.125000+7 1.275400+1 1.156300+7 1.265740+1 1.250000+7 1.237100+1 1.375000+7 1.199110+1 1.437500+7 1.180480+1 1.500000+7 1.162300+1 1.625000+7 1.126830+1 1.750000+7 1.093300+1 1.937500+7 1.046540+1 2.000000+7 1.032000+1 2.218800+7 9.847800+0 2.500000+7 9.326800+0 2.750000+7 8.932110+0 3.000000+7 8.590900+0 3.500000+7 8.023130+0 3.750000+7 7.774410+0 4.000000+7 7.540600+0 4.500000+7 7.096790+0 4.875000+7 6.773820+0 5.000000+7 6.667200+0 5.437500+7 6.292960+0 5.812500+7 5.975000+0 6.000000+7 5.818200+0 6.437500+7 5.456200+0 6.812500+7 5.154720+0 7.000000+7 5.007900+0 7.500000+7 4.628860+0 8.000000+7 4.273200+0 8.500000+7 3.942160+0 9.000000+7 3.637700+0 9.750000+7 3.231660+0 1.000000+8 3.110000+0 1.125000+8 2.595950+0 1.187500+8 2.391400+0 1.250000+8 2.216000+0 1.312500+8 2.066250+0 1.406300+8 1.882010+0 1.437500+8 1.830010+0 1.476600+8 1.770660+0 1.500000+8 1.737900+0 1.589800+8 1.629950+0 1.665000+8 1.555900+0 1.750000+8 1.485470+0 1.784700+8 1.459930+0 1.928200+8 1.368220+0 2.000000+8 1.328700+0 2.500000+8 1.117400+0 2.671900+8 1.059090+0 2.789100+8 1.019500+0 2.929700+8 9.702280-1 3.000000+8 9.445000-1 3.125000+8 8.973660-1 3.500000+8 7.717000-1 3.812500+8 6.955190-1 3.937500+8 6.655960-1 4.000000+8 6.500000-1 4.125000+8 6.170480-1 4.282200+8 5.744720-1 4.413800+8 5.393130-1 4.497600+8 5.176030-1 5.000000+8 4.065000-1 5.500000+8 3.277680-1 5.750000+8 2.946920-1 5.937500+8 2.713620-1 6.000000+8 2.638000-1 6.562500+8 2.043570-1 6.718800+8 1.918170-1 6.859400+8 1.821800-1 7.000000+8 1.741000-1 7.125000+8 1.681470-1 7.343800+8 1.595190-1 7.671900+8 1.479710-1 7.835900+8 1.419540-1 8.000000+8 1.354000-1 8.125000+8 1.299620-1 8.297100+8 1.220760-1 8.455000+8 1.146810-1 8.648200+8 1.057060-1 8.817100+8 9.811500-2 9.112900+8 8.577600-2 1.000000+9 5.790000-2 1.031300+9 5.117010-2 1.060500+9 4.596600-2 1.100900+9 4.006250-2 1.137900+9 3.565540-2 1.162000+9 3.321420-2 1.500000+9 1.438000-2 1.562500+9 1.248260-2 1.617200+9 1.104200-2 1.712900+9 8.945050-3 1.856400+9 6.606170-3 2.000000+9 4.967100-3 4.250000+9 2.767670-4 5.000000+9 1.482600-4 8.000000+9 2.429600-5 9.500000+9 1.259510-5 1.00000+10 1.036200-5 1.20500+10 5.121470-6 1.41820+10 2.783160-6 1.71170+10 1.385620-6 2.01490+10 7.611500-7 2.26440+10 4.973100-7 2.74790+10 2.470120-7 3.20120+10 1.429050-7 3.62610+10 9.171980-8 4.42280+10 4.550330-8 5.12000+10 2.726560-8 6.34000+10 1.299440-8 7.25500+10 8.173910-9 8.62750+10 4.524930-9 1.00000+11 2.744400-9 1.26840+11 1.235480-9 1.58400+11 5.90557-10 2.07460+11 2.43299-10 2.55250+11 1.23949-10 3.65300+11 3.91264-11 5.05370+11 1.39644-11 8.52890+11 2.71854-12 1.34130+12 6.74845-13 2.64130+12 8.66581-14 6.55190+12 5.80754-15 1.00000+14 2.02260-18 5.62340+14 1.24640-20 5.42470+15 1.43230-23 1.00000+17 2.19660-27 1 15000 7 0 3.097380+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.20000-12 1.000000+2 3.20000-10 1.000000+3 3.200000-8 1.000000+4 3.200000-6 1.000000+5 3.200000-4 5.000000+5 8.000000-3 7.500000+5 1.800000-2 1.000000+6 3.200000-2 1.500000+6 7.120000-2 2.000000+6 1.256000-1 2.500000+6 1.944000-1 3.000000+6 2.766000-1 3.500000+6 3.712120-1 4.000000+6 4.773000-1 4.750000+6 6.552820-1 5.000000+6 7.190000-1 5.500000+6 8.518510-1 6.000000+6 9.910870-1 6.250000+6 1.062710+0 7.000000+6 1.284000+0 7.500000+6 1.435490+0 8.000000+6 1.589090+0 8.250000+6 1.666350+0 9.000000+6 1.898600+0 9.750000+6 2.129490+0 1.000000+7 2.206000+0 1.062500+7 2.395380+0 1.125000+7 2.581940+0 1.156300+7 2.674050+0 1.250000+7 2.943500+0 1.375000+7 3.286400+0 1.437500+7 3.450980+0 1.500000+7 3.611000+0 1.625000+7 3.917220+0 1.750000+7 4.205700+0 1.937500+7 4.606040+0 2.000000+7 4.732000+0 2.218800+7 5.142250+0 2.500000+7 5.610600+0 2.750000+7 5.978990+0 3.000000+7 6.312000+0 3.500000+7 6.902890+0 3.750000+7 7.173410+0 4.000000+7 7.435000+0 4.500000+7 7.937520+0 4.875000+7 8.300700+0 5.000000+7 8.419000+0 5.437500+7 8.824350+0 5.812500+7 9.160010+0 6.000000+7 9.323000+0 6.437500+7 9.689610+0 6.812500+7 9.987790+0 7.000000+7 1.013100+1 7.500000+7 1.049280+1 8.000000+7 1.082700+1 8.500000+7 1.113240+1 9.000000+7 1.141100+1 9.750000+7 1.177780+1 1.000000+8 1.188800+1 1.125000+8 1.235650+1 1.187500+8 1.254800+1 1.250000+8 1.271600+1 1.312500+8 1.286120+1 1.406300+8 1.304930+1 1.437500+8 1.310590+1 1.476600+8 1.317090+1 1.500000+8 1.320900+1 1.589800+8 1.334070+1 1.665000+8 1.343890+1 1.750000+8 1.353840+1 1.784700+8 1.357780+1 1.928200+8 1.372290+1 2.000000+8 1.379000+1 2.500000+8 1.417700+1 2.671900+8 1.428340+1 2.789100+8 1.434970+1 2.929700+8 1.442320+1 3.000000+8 1.445700+1 3.125000+8 1.451130+1 3.500000+8 1.465000+1 3.812500+8 1.473550+1 3.937500+8 1.476400+1 4.000000+8 1.477800+1 4.125000+8 1.480110+1 4.282200+8 1.482820+1 4.413800+8 1.484680+1 4.497600+8 1.485840+1 5.000000+8 1.491100+1 5.500000+8 1.494250+1 5.750000+8 1.495300+1 5.937500+8 1.496050+1 6.000000+8 1.496300+1 6.562500+8 1.497620+1 6.718800+8 1.497960+1 6.859400+8 1.498190+1 7.000000+8 1.498400+1 7.125000+8 1.498520+1 7.343800+8 1.498720+1 7.671900+8 1.499020+1 7.835900+8 1.499160+1 8.000000+8 1.499300+1 8.125000+8 1.499330+1 8.297100+8 1.499380+1 8.455000+8 1.499420+1 8.648200+8 1.499470+1 8.817100+8 1.499520+1 9.112900+8 1.499590+1 1.000000+9 1.499800+1 1.031300+9 1.499820+1 1.060500+9 1.499830+1 1.100900+9 1.499850+1 1.137900+9 1.499860+1 1.162000+9 1.499870+1 1.500000+9 1.500000+1 1.562500+9 1.500000+1 1.617200+9 1.500000+1 1.712900+9 1.500000+1 1.856400+9 1.500000+1 2.000000+9 1.500000+1 4.250000+9 1.500000+1 5.000000+9 1.500000+1 8.000000+9 1.500000+1 9.500000+9 1.500000+1 1.00000+10 1.500000+1 1.20500+10 1.500000+1 1.41820+10 1.500000+1 1.71170+10 1.500000+1 2.01490+10 1.500000+1 2.26440+10 1.500000+1 2.74790+10 1.500000+1 3.20120+10 1.500000+1 3.62610+10 1.500000+1 4.42280+10 1.500000+1 5.12000+10 1.500000+1 6.34000+10 1.500000+1 7.25500+10 1.500000+1 8.62750+10 1.500000+1 1.00000+11 1.500000+1 1.26840+11 1.500000+1 1.58400+11 1.500000+1 2.07460+11 1.500000+1 2.55250+11 1.500000+1 3.65300+11 1.500000+1 5.05370+11 1.500000+1 8.52890+11 1.500000+1 1.34130+12 1.500000+1 2.64130+12 1.500000+1 6.55190+12 1.500000+1 1.00000+14 1.500000+1 5.62340+14 1.500000+1 5.42470+15 1.500000+1 1.00000+17 1.500000+1 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.044795-6 0.0 5.066134-6 0.0 5.084838-6 5.662907-1 5.091073-6 7.526598-1 5.103542-6 1.374795+0 5.116012-6 2.318093+0 5.128482-6 3.635696+0 5.165891-6 9.146452+0 5.179140-6 1.078360+1 5.192730-6 1.183065+1 5.205318-6 1.213351+1 5.219242-6 1.171044+1 5.234206-6 1.058221+1 5.253622-6 8.466852+0 5.290656-6 4.208826+0 5.315893-6 1.816592+0 5.328511-6 1.172729+0 5.341130-6 6.988623-1 5.353748-6 3.844499-1 5.372676-6 9.772872-2 5.378985-6 0.0 6.006771-6 0.0 6.010841-6 1.451249-7 6.036341-6 1.936857-6 6.040431-6 2.316932-6 6.051126-6 3.559252-6 6.055226-6 4.158923-6 6.067243-6 6.318549-6 6.071312-6 7.208899-6 6.084815-6 1.103955-5 6.101200-6 1.649575-5 6.131087-6 2.721268-5 6.143995-6 3.110353-5 6.158790-6 3.400703-5 6.175919-6 3.487671-5 6.190862-6 3.361888-5 6.205806-6 3.070996-5 6.220750-6 2.664567-5 6.258114-6 1.483219-5 6.277149-6 9.715615-6 6.295469-6 5.704316-6 6.302469-6 4.351280-6 6.306739-6 3.684202-6 6.310413-6 3.245416-6 6.325356-6 1.934036-6 6.340300-6 1.063929-6 6.355244-6 5.402750-7 6.370188-6 0.0 6.599062-6 0.0 6.599111-6 2.524583-4 6.629567-6 1.563510+0 6.631597-6 1.666779+0 6.647840-6 3.044381+0 6.659583-6 4.554454+0 6.664083-6 5.248161+0 6.682356-6 9.008145+0 6.698599-6 1.303904+1 6.729054-6 2.151115+1 6.746312-6 2.558071+1 6.764875-6 2.833758+1 6.781263-6 2.902835+1 6.797426-6 2.804561+1 6.815509-6 2.530022+1 6.843147-6 1.929587+1 6.868551-6 1.359004+1 6.876851-6 1.184475+1 6.893450-6 8.932094+0 6.923969-6 4.740265+0 6.938523-6 3.785320+0 6.955272-6 2.933451+0 6.986046-6 1.617052+0 6.987417-6 1.555528+0 7.009648-6 1.109533+0 7.026247-6 8.096990-1 7.042847-6 5.572704-1 7.055762-6 4.003533-1 7.072511-6 2.191506-1 7.076046-6 1.870647-1 7.089259-6 1.218507-1 7.106008-6 6.703106-2 7.122756-6 3.403912-2 7.139505-6 0.0 7.263654-6 0.0 7.263684-6 6.387237-5 7.294971-6 6.776782-1 7.299441-6 7.734988-1 7.317320-6 1.412827+0 7.324165-6 1.783707+0 7.335198-6 2.500849+0 7.355831-6 4.318131+0 7.385697-6 7.705180+0 7.410034-6 1.069682+1 7.429271-6 1.264039+1 7.449962-6 1.387431+1 7.466897-6 1.412547+1 7.485548-6 1.350448+1 7.508039-6 1.179856+1 7.569212-6 5.217665+0 7.580350-6 4.277888+0 7.590624-6 3.557835+0 7.613686-6 2.263332+0 7.621880-6 1.959886+0 7.632049-6 1.825579+0 7.648718-6 1.950021+0 7.670243-6 2.548263+0 7.687842-6 3.281456+0 7.737960-6 6.222728+0 7.763231-6 7.382517+0 7.788053-6 7.755205+0 7.813275-6 7.484323+0 7.876908-6 6.008049+0 7.907360-6 5.758480+0 8.001968-6 6.278464+0 8.231679-6 6.262634+0 8.312468-6 6.210746+0 8.473921-6 6.356026+0 8.617443-6 6.396433+0 8.659864-6 7.926841+0 8.677924-6 9.001895+0 8.702286-6 1.287168+1 8.722147-6 1.685366+1 8.747358-6 2.394858+1 8.773540-6 3.352221+1 8.822839-6 5.283514+1 8.850368-6 6.051034+1 8.873113-6 6.258237+1 8.897537-6 5.995956+1 8.918204-6 5.452135+1 8.951382-6 4.168992+1 8.978025-6 3.056765+1 8.999236-6 2.287022+1 9.020447-6 1.682303+1 9.041657-6 1.214220+1 9.062397-6 9.602070+0 9.105116-6 6.401652+0 1.002911-5 6.045105+0 1.088059-5 5.431103+0 1.347386-5 3.102238+0 1.435293-5 2.453726+0 1.486953-5 2.143688+0 1.508645-5 2.045714+0 1.542748-5 1.818485+0 1.630000-5 1.420309+0 1.717232-5 1.108573+0 1.797599-5 8.907824-1 1.890863-5 6.998335-1 1.976301-5 5.709165-1 2.066579-5 4.711411-1 2.160989-5 3.972599-1 2.257332-5 3.464925-1 2.376900-5 3.088262-1 2.515465-5 2.900160-1 2.650768-5 2.890795-1 2.878159-5 3.114933-1 3.260500-5 3.815782-1 4.220000-5 5.775983-1 4.900000-5 6.816419-1 5.559043-5 7.460692-1 6.400000-5 7.895394-1 7.791237-5 7.955879-1 1.079169-4 7.208222-1 1.317862-4 6.443143-1 1.327594-4 6.796009-1 1.333502-4 7.443069-1 1.340430-4 8.949813-1 1.343676-4 9.950726-1 1.347980-4 1.158416+0 1.353681-4 1.426169+0 1.360385-4 1.832131+0 1.365496-4 2.247953+0 1.372471-4 2.954582+0 1.382462-4 4.225317+0 1.404851-4 7.377525+0 1.416040-4 8.569614+0 1.429905-4 9.445055+0 1.459499-4 1.015584+1 1.520000-4 1.070362+1 1.747402-4 1.102696+1 1.758830-4 1.154841+1 1.770462-4 1.289843+1 1.783899-4 1.463579+1 1.789945-4 1.473716+1 1.798660-4 1.397231+1 1.814619-4 1.181889+1 1.825478-4 1.126920+1 1.834977-4 1.129170+1 1.862463-4 1.191583+1 2.225537-4 1.082120+1 3.058771-4 7.814946+0 3.630781-4 6.310848+0 4.271890-4 5.070337+0 4.960298-4 4.115351+0 5.770985-4 3.301471+0 6.683439-4 2.648583+0 7.783622-4 2.093073+0 8.853386-4 1.708443+0 1.004146-3 1.395772+0 1.142727-3 1.130957+0 1.282839-3 9.345510-1 1.444295-3 7.671050-1 1.635392-3 6.221785-1 1.860633-3 4.992569-1 2.071181-3 4.164408-1 2.077980-3 4.697969-1 2.081376-3 5.038450-1 2.086474-3 5.876675-1 2.091577-3 7.225767-1 2.096688-3 9.248222-1 2.103266-3 1.299230+0 2.109310-3 1.725432+0 2.122240-3 2.795261+0 2.127350-3 3.160306+0 2.135897-3 3.597200+0 2.146161-3 3.884333+0 2.162944-3 3.983569+0 2.349765-3 3.612187+0 2.700980-3 2.903865+0 3.098834-3 2.336652+0 3.551326-3 1.876283+0 3.998510-3 1.538852+0 4.533396-3 1.242939+0 5.144214-3 9.967059-1 5.746124-3 8.182276-1 6.416950-3 6.700297-1 7.148674-3 5.495789-1 7.924416-3 4.533878-1 8.858038-3 3.673934-1 9.655080-3 3.115577-1 1.074517-2 2.534861-1 1.178583-2 2.116106-1 1.296067-2 1.755014-1 1.434456-2 1.434107-1 1.614475-2 1.130743-1 1.756760-2 9.527165-2 1.927178-2 7.890284-2 2.110381-2 6.539186-2 2.319975-2 5.377727-2 2.555892-2 4.392171-2 2.838924-2 3.523627-2 3.097987-2 2.929623-2 3.380038-2 2.434352-2 3.738974-2 1.963425-2 4.106984-2 1.604093-2 4.545499-2 1.288738-2 5.072499-2 1.015843-2 5.617265-2 8.130570-3 6.092128-2 6.810909-3 6.766099-2 5.417233-3 7.418468-2 4.426886-3 8.093349-2 3.654726-3 8.779638-2 3.055663-3 9.549926-2 2.537572-3 1.050525-1 2.056496-3 1.152539-1 1.676199-3 1.248023-1 1.406110-3 1.360316-1 1.165079-3 1.484087-1 9.640686-4 1.615985-1 8.009160-4 1.755720-1 6.704332-4 1.924160-1 5.508584-4 2.137962-1 4.402744-4 2.334130-1 3.662098-4 2.539830-1 3.076434-4 2.760339-1 2.595050-4 3.000000-1 2.198227-4 3.311531-1 1.811540-4 3.662267-1 1.495120-4 4.058716-1 1.237208-4 4.540352-1 1.014696-4 5.040806-1 8.502521-5 5.573810-1 7.238109-5 6.345999-1 5.948044-5 6.998420-1 5.191625-5 7.940157-1 4.413125-5 9.120108-1 3.746143-5 1.070165+0 3.170383-5 1.286622+0 2.635759-5 1.546860+0 2.191290-5 1.859734+0 1.821771-5 2.235892+0 1.514565-5 2.688134+0 1.259163-5 3.231848+0 1.046830-5 3.885536+0 8.703021-6 4.671441+0 7.235425-6 5.616308+0 6.015311-6 6.752287+0 5.000946-6 8.118035+0 4.157633-6 9.760024+0 3.456529-6 1.000000+1 6.765774-6 1 15000 7 0 3.097380+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.498015+1 3.044795-6-1.474919+1 4.399213-6-1.405637+1 4.809316-6-1.320461+1 4.964380-6-1.222325+1 5.031170-6-1.120008+1 5.061985-6-1.021331+1 5.103542-6-7.922983+0 5.117571-6-7.085648+0 5.132681-6-6.425218+0 5.142416-6-6.419806+0 5.155362-6-6.867919+0 5.165891-6-7.709333+0 5.178360-6-9.260649+0 5.192730-6-1.161532+1 5.216341-6-1.560127+1 5.234206-6-1.300412+1 5.250123-6-1.136359+1 5.268887-6-1.033762+1 5.287521-6-1.008378+1 5.309904-6-1.054499+1 5.358086-6-1.295114+1 5.404877-6-1.445571+1 5.504689-6-1.577257+1 5.795517-6-1.436625+1 6.205806-6-1.257633+1 6.370188-6-1.120634+1 6.463700-6-9.838810+0 6.519715-6-8.520719+0 6.558365-6-7.136070+0 6.581893-6-5.895524+0 6.595843-6-4.829868+0 6.604695-6-3.857004+0 6.623476-6-2.235945+0 6.629567-6-1.647647+0 6.635658-6-9.493554-1 6.641749-6-3.220659-1 6.644794-6 7.180626-3 6.647840-6 3.922968-1 6.659583-6 1.759590+0 6.666113-6 2.578071+0 6.669666-6 2.909039+0 6.682356-6 3.849138+0 6.685909-6 4.010596+0 6.698599-6 4.237087+0 6.705737-6 4.028231+0 6.713752-6 3.470903+0 6.720447-6 2.755791+0 6.724751-6 2.160772+0 6.726902-6 1.813190+0 6.729054-6 1.405954+0 6.737176-6-2.136132-1 6.741236-6-1.121180+0 6.744282-6-1.901979+0 6.746312-6-2.530250+0 6.755830-6-5.164170+0 6.760826-6-6.740720+0 6.764875-6-8.199543+0 6.777556-6-1.237050+1 6.786697-6-1.547380+1 6.790323-6-1.654195+1 6.801102-6-1.309503+1 6.815509-6-9.246766+0 6.829127-6-6.480818+0 6.837911-6-5.168181+0 6.843147-6-4.559661+0 6.850630-6-3.884102+0 6.857846-6-3.455936+0 6.868551-6-3.213988+0 6.874776-6-3.212265+0 6.891375-6-3.720706+0 6.910050-6-4.752264+0 6.920489-6-5.520577+0 6.929569-6-6.512542+0 6.942710-6-7.561398+0 6.976449-6-9.594011+0 7.009648-6-1.149346+1 7.106008-6-1.540896+1 7.140475-6-1.652637+1 7.209763-6-1.545271+1 7.262717-6-1.348060+1 7.317320-6-1.057118+1 7.342291-6-9.097525+0 7.363537-6-8.354918+0 7.385697-6-8.318081+0 7.401050-6-8.861104+0 7.410034-6-9.462654+0 7.428139-6-1.119220+1 7.447906-6-1.375009+1 7.472596-6-1.723746+1 7.479682-6-1.683489+1 7.489911-6-1.550181+1 7.512874-6-1.326501+1 7.534811-6-1.218766+1 7.554875-6-1.201941+1 7.577565-6-1.279803+1 7.613686-6-1.504449+1 7.647896-6-1.786848+1 7.691688-6-1.554873+1 7.722954-6-1.515746+1 7.758054-6-1.605143+1 7.806538-6-1.833005+1 7.846396-6-1.762210+1 7.903392-6-1.820104+1 7.991096-6-1.890960+1 8.202299-6-1.965825+1 8.376843-6-2.150161+1 8.428102-6-2.233219+1 8.568078-6-1.326657+1 8.605080-6-1.016745+1 8.617443-6-8.767092+0 8.651910-6-4.648026+0 8.659864-6-3.506322+0 8.668894-6-2.084898+0 8.673409-6-1.319746+0 8.675666-6-8.955244-1 8.676795-6-6.625249-1 8.677924-6-3.906273-1 8.681075-6 3.286012-1 8.683726-6 8.572730-1 8.688366-6 1.653570+0 8.706875-6 4.537049+0 8.718922-6 6.289586+0 8.724967-6 7.318992+0 8.747358-6 9.802240+0 8.759567-6 1.041871+1 8.768569-6 1.062843+1 8.777890-6 1.025273+1 8.785027-6 9.602874+0 8.795226-6 8.174976+0 8.803422-6 6.563113+0 8.808339-6 5.309479+0 8.817619-6 2.638301+0 8.820602-6 1.703486+0 8.822839-6 9.599241-1 8.826194-6-2.455781-1 8.827872-6-9.070918-1 8.828711-6-1.263010+0 8.830876-6-2.280636+0 8.843304-6-7.478773+0 8.850000-6-1.071572+1 8.854194-6-1.307472+1 8.863986-6-1.785598+1 8.871814-6-1.353483+1 8.873113-6-1.265511+1 8.893182-6-2.025869+0 8.893845-6-1.593834+0 8.895129-6-8.678165-1 8.897537-6 3.729161-1 8.899644-6 1.390512+0 8.918204-6 9.738733+0 8.925817-6 1.250319+1 8.938255-6 1.639681+1 8.951382-6 1.929561+1 8.966785-6 2.129758+1 8.978025-6 2.173384+1 8.996585-6 2.115283+1 9.020447-6 1.849623+1 9.039669-6 1.561508+1 9.044250-6 1.461315+1 9.069739-6 1.062109+1 9.102446-6 6.572220+0 9.109646-6 5.385460+0 9.118693-6 4.337154+0 9.127727-6 3.483355+0 9.136743-6 2.748860+0 9.145742-6 2.101640+0 9.154723-6 1.522955+0 9.163686-6 9.997367-1 9.172632-6 5.226550-1 9.181561-6 8.573601-2 9.199383-6-6.891811-1 9.217135-6-1.357049+0 9.234818-6-1.939545+0 9.252432-6-2.452655+0 9.287454-6-3.313914+0 9.339476-6-4.309759+0 9.390957-6-5.062479+0 9.492187-6-6.110054+0 9.634663-6-7.024317+0 9.860707-6-7.799152+0 1.013965-5-8.237540+0 1.066871-5-8.433315+0 1.319885-5-8.075234+0 1.597314-5-8.533266+0 2.207347-5-9.895399+0 2.975605-5-1.066810+1 4.650000-5-1.109187+1 8.201250-5-1.162282+1 1.044870-4-1.268102+1 1.186960-4-1.407894+1 1.271720-4-1.566726+1 1.317862-4-1.729840+1 1.360385-4-2.040599+1 1.384199-4-2.198938+1 1.404851-4-2.163769+1 1.452938-4-1.814559+1 1.510000-4-1.582230+1 1.589921-4-1.387001+1 1.689066-4-1.247308+1 1.736061-4-1.240344+1 1.758830-4-1.322172+1 1.770462-4-1.283702+1 1.776431-4-1.298311+1 1.784966-4-1.161152+1 1.794329-4-9.760422+0 1.800348-4-8.925750+0 1.806149-4-8.575811+0 1.814619-4-8.723748+0 1.834977-4-9.834863+0 1.851279-4-9.916029+0 1.893347-4-9.135022+0 2.040420-4-7.415739+0 2.225537-4-5.762981+0 2.414764-4-4.516671+0 2.590698-4-3.638998+0 2.778113-4-2.931168+0 2.966464-4-2.395825+0 3.155241-4-2.001794+0 3.315639-4-1.734164+0 3.584058-4-1.399567+0 3.790967-4-1.211339+0 4.081138-4-1.024643+0 4.516985-4-8.333398-1 4.817831-4-7.479375-1 5.208573-4-6.754241-1 5.770985-4-6.307998-1 6.475153-4-6.311831-1 7.467140-4-6.826243-1 9.635628-4-8.748829-1 1.329741-3-1.263026+0 1.571256-3-1.587807+0 1.738667-3-1.903865+0 1.860633-3-2.244116+0 1.941304-3-2.582880+0 1.995980-3-2.922233+0 2.038109-3-3.317358+0 2.071181-3-3.821551+0 2.090855-3-4.358766+0 2.120113-3-5.607520+0 2.131059-3-5.759886+0 2.140739-3-5.561327+0 2.173139-3-4.087053+0 2.191969-3-3.527810+0 2.215522-3-3.069990+0 2.250761-3-2.587881+0 2.294541-3-2.147497+0 2.349765-3-1.743397+0 2.421378-3-1.368913+0 2.487486-3-1.106454+0 2.560618-3-8.770399-1 2.639795-3-6.798651-1 2.716830-3-5.231995-1 2.806173-3-3.768056-1 2.871801-3-2.872226-1 2.949943-3-1.941372-1 3.020410-3-1.231809-1 3.098834-3-5.407725-2 3.171369-3 1.194284-3 3.186180-3 1.251940-2 3.266895-3 6.526961-2 3.349654-3 1.133981-1 3.447466-3 1.626610-1 3.551326-3 2.055504-1 3.713014-3 2.564636-1 3.829349-3 2.867493-1 4.087474-3 3.320183-1 4.430204-3 3.686489-1 4.797736-3 3.851408-1 5.559043-3 3.837829-1 7.148674-3 3.302424-1 9.407550-3 2.502773-1 1.146916-2 1.950021-1 1.341365-2 1.564735-1 1.568062-2 1.231915-1 1.811210-2 9.700316-2 2.043330-2 7.831102-2 2.319975-2 6.144712-2 2.555892-2 5.040865-2 2.838924-2 3.995302-2 3.097987-2 3.239383-2 3.380038-2 2.573354-2 3.738974-2 1.902387-2 4.106984-2 1.365520-2 4.436948-2 9.759286-3 4.767056-2 6.522068-3 5.072499-2 4.006816-3 5.265066-2 2.609316-3 5.363835-2 1.943181-3 5.492439-2 1.127384-3 5.617265-2 3.804255-4 5.731776-2-2.683063-4 5.840652-2-8.545145-4 5.972616-2-1.524739-3 6.092128-2-2.100779-3 6.385569-2-3.387333-3 6.766099-2-4.840892-3 7.246882-2-6.383577-3 7.883946-2-8.052636-3 8.779638-2-9.861118-3 1.022190-1-1.190699-2 1.216843-1-1.367075-2 1.525450-1-1.527718-2 2.085359-1-1.667356-2 3.184307-1-1.764544-2 7.296675-1-1.823608-2 2.235892+0-1.836021-2 6.752287+0-1.837338-2 1.000000+1-1.837273-2 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.003813-6 1.058280-6 5.076368-6 1.098044-6 6.006771-6 1.124423-6 6.525780-6 1.166672-6 7.676350-6 1.195797-6 8.489935-6 1.240728-6 1.000811-5 1.271702-6 1.108723-5 1.319485-6 1.312534-5 1.438273-6 1.931576-5 1.529570-6 2.560100-5 1.587793-6 3.044788-5 1.626661-6 3.399761-5 1.783976-6 5.292342-5 1.897217-6 7.154288-5 1.956505-6 8.330936-5 2.062284-6 1.083923-4 2.145719-6 1.316997-4 2.212772-6 1.537040-4 2.281922-6 1.798624-4 2.353232-6 2.110437-4 2.426770-6 2.483175-4 2.502607-6 2.930054-4 2.580813-6 3.467468-4 2.661464-6 4.115834-4 2.744634-6 4.900692-4 2.830404-6 5.854126-4 2.918854-6 7.016639-4 3.010068-6 8.439617-4 3.104133-6 1.018860-3 3.201137-6 1.234765-3 3.301173-6 1.502526-3 3.404334-6 1.836143-3 3.508697-6 2.245146-3 3.609798-6 2.724352-3 3.707740-6 3.282723-3 3.802621-6 3.927070-3 3.894537-6 4.667898-3 3.983581-6 5.517977-3 4.153408-6 7.579145-3 4.234362-6 8.806364-3 4.388759-6 1.173349-2 4.462359-6 1.349952-2 4.604957-6 1.768595-2 4.738643-6 2.280589-2 4.863974-6 2.900302-2 4.981472-6 3.643339-2 5.091626-6 4.531225-2 5.194895-6 5.582096-2 5.291710-6 6.805418-2 5.382475-6 8.230087-2 5.469038-6 9.907702-2 5.547339-6 1.175520-1 5.622126-6 1.390155-1 5.692240-6 1.633314-1 5.757971-6 1.907862-1 5.819594-6 2.216523-1 5.882482-6 2.595077-1 5.931526-6 2.945583-1 5.990326-6 3.445120-1 6.029904-6 3.840762-1 6.074531-6 4.358708-1 6.116368-6 4.928286-1 6.155591-6 5.552311-1 6.192363-6 6.234011-1 6.227172-6 6.984438-1 6.259155-6 7.783599-1 6.289454-6 8.658394-1 6.317859-6 9.604671-1 6.344489-6 1.062614+0 6.369454-6 1.172674+0 6.392860-6 1.291057+0 6.414802-6 1.418154+0 6.435373-6 1.554320+0 6.454658-6 1.699867+0 6.476067-6 1.885942+0 6.506638-6 2.208496+0 6.536300-6 2.608528+0 6.562255-6 3.060448+0 6.584965-6 3.571328+0 6.604836-6 4.149199+0 6.622224-6 4.800568+0 6.637438-6 5.527321+0 6.650750-6 6.324701+0 6.662399-6 7.181257+0 6.672591-6 8.080490+0 6.681509-6 9.003297+0 6.689312-6 9.930378+0 6.696141-6 1.084408+1 6.708090-6 1.270153+1 6.749643-6 2.230140+1 6.760536-6 2.573517+1 6.768836-6 2.861260+1 6.777135-6 3.170527+1 6.793735-6 3.845919+1 6.795810-6 3.934833+1 6.810334-6 4.576392+1 6.816040-6 4.834101+1 6.829008-6 5.419019+1 6.838086-6 5.817889+1 6.843533-6 6.048900+1 6.851314-6 6.363603+1 6.860051-6 6.689333+1 6.867349-6 6.933713+1 6.874386-6 7.141409+1 6.885031-6 7.396119+1 6.893331-6 7.539735+1 6.902149-6 7.635518+1 6.909930-6 7.669540+1 6.927048-6 7.576189+1 6.935013-6 7.456286+1 6.943874-6 7.269897+1 6.951906-6 7.056683+1 6.958723-6 6.846139+1 6.962229-6 6.728321+1 6.972090-6 6.366766+1 6.979510-6 6.070065+1 6.987208-6 5.745088+1 6.995653-6 5.374155+1 7.005137-6 4.947107+1 7.009663-6 4.741656+1 7.016452-6 4.433880+1 7.023241-6 4.128854+1 7.031765-6 3.753306+1 7.039985-6 3.402438+1 7.043359-6 3.262341+1 7.051024-6 2.953791+1 7.059324-6 2.636607+1 7.066586-6 2.374796+1 7.075923-6 2.061125+1 7.080452-6 1.918593+1 7.085418-6 1.769639+1 7.090566-6 1.623367+1 7.094773-6 1.509949+1 7.101085-6 1.350122+1 7.107397-6 1.202485+1 7.124228-6 8.660698+0 7.126332-6 8.296134+0 7.141059-6 6.065637+0 7.146845-6 5.333569+0 7.152367-6 4.704464+0 7.157890-6 4.139378+0 7.166306-6 3.392314+0 7.189568-6 1.936085+0 7.194065-6 1.740713+0 7.198526-6 1.569863+0 7.202953-6 1.421241+0 7.207345-6 1.292713+0 7.211702-6 1.182296+0 7.216026-6 1.088152+0 7.220316-6 1.008584+0 7.224572-6 9.420252-1 7.228795-6 8.870334-1 7.232985-6 8.422835-1 7.237142-6 8.065605-1 7.241267-6 7.787524-1 7.245360-6 7.578431-1 7.253449-6 7.330999-1 7.261413-6 7.258892-1 7.269253-6 7.309276-1 7.280784-6 7.523152-1 7.292047-6 7.808437-1 7.306658-6 8.173804-1 7.321673-6 8.439524-1 7.339968-6 8.519575-1 7.359587-6 8.274469-1 7.372161-6 7.954106-1 7.384441-6 7.542931-1 7.396338-6 7.075649-1 7.419026-6 6.078534-1 7.429842-6 5.586773-1 7.450797-6 4.658132-1 7.470442-6 3.854968-1 7.488860-6 3.181854-1 7.523392-6 2.142581-1 7.553608-6 1.456856-1 7.606487-6 6.809764-2 7.679661-6 3.361879-2 7.727973-6 5.290850-2 7.769816-6 9.784593-2 7.788940-6 1.278067-1 7.803347-6 1.545500-1 7.808065-6 1.641166-1 7.822460-6 1.958672-1 7.827189-6 2.071616-1 7.841573-6 2.442461-1 7.846314-6 2.573966-1 7.863988-6 3.106819-1 7.903687-6 4.571874-1 7.922811-6 5.427364-1 7.941936-6 6.394264-1 7.961060-6 7.485119-1 7.980184-6 8.714398-1 7.999481-6 1.011198+0 8.018838-6 1.169224+0 8.038194-6 1.347420+0 8.073673-6 1.735772+0 8.173687-6 3.474275+0 8.193043-6 3.978673+0 8.212400-6 4.564890+0 8.231756-6 5.251428+0 8.251112-6 6.063116+0 8.280056-6 7.588245+0 8.305381-6 9.355541+0 8.327541-6 1.138863+1 8.346931-6 1.369769+1 8.363897-6 1.627167+1 8.378742-6 1.907662+1 8.391732-6 2.205994+1 8.403098-6 2.515787+1 8.413043-6 2.830356+1 8.429360-6 3.449337+1 8.480552-6 6.483738+1 8.489886-6 7.255083+1 8.503588-6 8.524547+1 8.519247-6 1.017818+2 8.529687-6 1.139836+2 8.541431-6 1.287663+2 8.545346-6 1.339237+2 8.566225-6 1.630521+2 8.576881-6 1.787035+2 8.587104-6 1.939735+2 8.598104-6 2.104334+2 8.603354-6 2.182185+2 8.611228-6 2.297135+2 8.622933-6 2.461629+2 8.629635-6 2.551050+2 8.638432-6 2.661595+2 8.646914-6 2.759423+2 8.660181-6 2.891744+2 8.670621-6 2.975310+2 8.682365-6 3.044907+2 8.692805-6 3.083317+2 8.703815-6 3.098689+2 8.714296-6 3.088836+2 8.718740-6 3.077449+2 8.729175-6 3.034142+2 8.739598-6 2.968480+2 8.742540-6 2.946076+2 8.764830-6 2.726580+2 8.775522-6 2.594367+2 8.789542-6 2.400887+2 8.795368-6 2.315257+2 8.805279-6 2.164535+2 8.812867-6 2.046149+2 8.819063-6 1.948383+2 8.827197-6 1.819596+2 8.837654-6 1.655021+2 8.848093-6 1.493996+2 8.858533-6 1.338278+2 8.873850-6 1.122894+2 8.882467-6 1.009949+2 8.890775-6 9.072814+1 8.900606-6 7.941784+1 8.914655-6 6.488834+1 8.935766-6 4.669417+1 8.938405-6 4.471985+1 8.956877-6 3.265871+1 8.960382-6 3.070121+1 8.984916-6 1.962618+1 9.010246-6 1.224337+1 9.019796-6 1.029885+1 9.025123-6 9.378628+0 9.029119-6 8.758579+0 9.035112-6 7.932352+0 9.041105-6 7.220317+0 9.046433-6 6.674423+0 9.056422-6 5.846785+0 9.062415-6 5.459132+0 9.081061-6 4.690489+0 9.085516-6 4.592933+0 9.088971-6 4.538100+0 9.113071-6 4.638243+0 9.124244-6 4.974647+0 9.129576-6 5.205120+0 9.133576-6 5.409518+0 9.136575-6 5.581312+0 9.143324-6 6.028699+0 9.148342-6 6.418988+0 9.151718-6 6.710727+0 9.157626-6 7.280670+0 9.172884-6 9.132123+0 9.208220-6 1.585796+1 9.213145-6 1.709173+1 9.237064-6 2.413135+1 9.245769-6 2.710086+1 9.259689-6 3.223855+1 9.269514-6 3.610339+1 9.274203-6 3.800175+1 9.281236-6 4.089749+1 9.288270-6 4.383144+1 9.293698-6 4.610655+1 9.302602-6 4.982717+1 9.309874-6 5.282228+1 9.319419-6 5.663973+1 9.328622-6 6.013859+1 9.332382-6 6.150192+1 9.340938-6 6.443223+1 9.350187-6 6.728725+1 9.362206-6 7.042814+1 9.371485-6 7.235571+1 9.377456-6 7.334817+1 9.388693-6 7.466306+1 9.398369-6 7.520172+1 9.408545-6 7.517474+1 9.421219-6 7.431825+1 9.430104-6 7.320876+1 9.437025-6 7.207954+1 9.448949-6 6.965444+1 9.459338-6 6.712880+1 9.470015-6 6.423184+1 9.481019-6 6.103420+1 9.497484-6 5.609210+1 9.532556-6 4.638523+1 9.547365-6 4.311948+1 9.556102-6 4.150768+1 9.559204-6 4.099549+1 9.574815-6 3.891383+1 9.582447-6 3.819976+1 9.592582-6 3.755557+1 9.600283-6 3.729048+1 9.608252-6 3.721044+1 9.613991-6 3.726876+1 9.621723-6 3.749105+1 9.632103-6 3.802698+1 9.643077-6 3.885355+1 9.657113-6 4.023032+1 9.672620-6 4.206154+1 9.709897-6 4.707047+1 9.723885-6 4.893960+1 9.743615-6 5.138957+1 9.755019-6 5.266703+1 9.768784-6 5.405090+1 9.786073-6 5.553379+1 9.805583-6 5.688123+1 9.821453-6 5.775725+1 9.841599-6 5.865384+1 9.934007-6 6.203422+1 9.967465-6 6.365717+1 1.003302-5 6.786792+1 1.007072-5 7.098899+1 1.009514-5 7.335336+1 1.011771-5 7.582138+1 1.015142-5 8.006409+1 1.020856-5 8.864519+1 1.028330-5 1.011474+2 1.030390-5 1.050692+2 1.031883-5 1.084083+2 1.032757-5 1.106786+2 1.034113-5 1.148627+2 1.034981-5 1.180953+2 1.036324-5 1.241986+2 1.038062-5 1.346832+2 1.039083-5 1.425530+2 1.040092-5 1.517981+2 1.041416-5 1.664894+2 1.042584-5 1.821531+2 1.043965-5 2.042910+2 1.045446-5 2.327234+2 1.049828-5 3.464067+2 1.050715-5 3.744890+2 1.052743-5 4.437356+2 1.053787-5 4.815165+2 1.055129-5 5.313345+2 1.056064-5 5.663302+2 1.057064-5 6.035727+2 1.057829-5 6.316473+2 1.058923-5 6.706222+2 1.060132-5 7.113984+2 1.061604-5 7.565781+2 1.062827-5 7.894413+2 1.064286-5 8.219836+2 1.065484-5 8.426242+2 1.066250-5 8.527367+2 1.067298-5 8.625034+2 1.068277-5 8.672951+2 1.069342-5 8.677322+2 1.070614-5 8.618339+2 1.071457-5 8.541982+2 1.073225-5 8.291589+2 1.074046-5 8.137230+2 1.075000-5 7.930722+2 1.075931-5 7.703932+2 1.077051-5 7.402982+2 1.077965-5 7.137961+2 1.079165-5 6.769538+2 1.080322-5 6.398269+2 1.081981-5 5.850790+2 1.083255-5 5.427933+2 1.084865-5 4.901438+2 1.085802-5 4.603872+2 1.088294-5 3.858837+2 1.091185-5 3.104559+2 1.095684-5 2.200786+2 1.097507-5 1.925318+2 1.098720-5 1.768228+2 1.099931-5 1.630555+2 1.101139-5 1.510564+2 1.102346-5 1.406503+2 1.103549-5 1.316648+2 1.105000-5 1.224713+2 1.107149-5 1.116180+2 1.109538-5 1.026181+2 1.111917-5 9.604428+1 1.114287-5 9.121103+1 1.116648-5 8.761208+1 1.119000-5 8.488575+1 1.121342-5 8.277999+1 1.123675-5 8.112187+1 1.125999-5 7.979323+1 1.130630-5 7.782044+1 1.135224-5 7.646250+1 1.140000-5 7.546493+1 1.144304-5 7.481854+1 1.153244-5 7.399522+1 1.162044-5 7.363454+1 1.176303-5 7.356110+1 1.202094-5 7.417005+1 1.261723-5 7.605502+1 1.288917-5 7.659437+1 1.326287-5 7.687702+1 1.343570-5 7.680019+1 1.373699-5 7.634441+1 1.400539-5 7.574593+1 1.434215-5 7.469427+1 1.467947-5 7.328545+1 1.490454-5 7.217573+1 1.523255-5 7.037346+1 1.560519-5 6.813812+1 1.607252-5 6.518212+1 1.647535-5 6.255386+1 1.684652-5 6.011043+1 1.759494-5 5.530104+1 1.847445-5 5.004579+1 2.157403-5 3.588545+1 2.291371-5 3.171376+1 2.420000-5 2.849924+1 2.545715-5 2.595974+1 2.664916-5 2.398948+1 2.814339-5 2.199758+1 2.948125-5 2.056397+1 3.052574-5 1.962479+1 3.177125-5 1.867898+1 3.300000-5 1.789765+1 3.420000-5 1.725369+1 3.589219-5 1.652074+1 3.690000-5 1.615664+1 3.845918-5 1.568811+1 4.120975-5 1.508995+1 4.365158-5 1.471593+1 4.613203-5 1.447722+1 4.806410-5 1.434175+1 5.011872-5 1.425745+1 5.248075-5 1.420601+1 5.754399-5 1.418883+1 6.614101-5 1.422566+1 6.918310-5 1.421417+1 7.500000-5 1.413034+1 7.943282-5 1.397862+1 8.429205-5 1.371097+1 8.938760-5 1.333482+1 9.453944-5 1.284460+1 9.885531-5 1.235203+1 1.029928-4 1.179760+1 1.074608-4 1.111552+1 1.104681-4 1.061271+1 1.142282-4 9.928511+0 1.179981-4 9.176310+0 1.210348-4 8.529726+0 1.232040-4 8.045895+0 1.257925-4 7.442405+0 1.282870-4 6.834624+0 1.310720-4 6.131342+0 1.338273-4 5.416170+0 1.359684-4 4.846685+0 1.377543-4 4.366080+0 1.395217-4 3.888467+0 1.409984-4 3.489625+0 1.439416-4 2.702843+0 1.448906-4 2.455415+0 1.465169-4 2.046172+0 1.475069-4 1.808411+0 1.487703-4 1.521028+0 1.497961-4 1.304152+0 1.507420-4 1.120661+0 1.524672-4 8.391204-1 1.535519-4 7.070280-1 1.539768-4 6.667480-1 1.550855-4 5.974517-1 1.552977-4 5.908172-1 1.559716-4 5.860374-1 1.564535-4 5.995079-1 1.572680-4 6.597970-1 1.574648-4 6.823492-1 1.576551-4 7.074198-1 1.583497-4 8.286738-1 1.587208-4 9.146881-1 1.595280-4 1.161490+0 1.598983-4 1.306066+0 1.608336-4 1.778562+0 1.611012-4 1.947098+0 1.619308-4 2.588366+0 1.625841-4 3.250863+0 1.631660-4 3.993510+0 1.640355-4 5.458471+0 1.649154-4 7.531055+0 1.670753-4 1.668982+1 1.679223-4 2.261627+1 1.685622-4 2.824009+1 1.689801-4 3.248904+1 1.695236-4 3.869770+1 1.698801-4 4.316819+1 1.703313-4 4.922940+1 1.706312-4 5.346849+1 1.710477-4 5.956150+1 1.714228-4 6.517731+1 1.716550-4 6.867546+1 1.719080-4 7.247602+1 1.722860-4 7.807182+1 1.725674-4 8.212425+1 1.729319-4 8.716279+1 1.732300-4 9.105986+1 1.735000-4 9.438328+1 1.737984-4 9.780176+1 1.741000-4 1.009612+2 1.744500-4 1.042356+2 1.748094-4 1.071467+2 1.752000-4 1.097955+2 1.755980-4 1.119625+2 1.760313-4 1.137579+2 1.764933-4 1.151008+2 1.769500-4 1.159412+2 1.777416-4 1.165417+2 1.786243-4 1.164216+2 1.820750-4 1.145921+2 1.851100-4 1.140178+2 1.903793-4 1.140377+2 1.953675-4 1.148185+2 2.007014-4 1.159384+2 2.032342-4 1.159729+2 2.059660-4 1.154419+2 2.081516-4 1.145975+2 2.089112-4 1.144893+2 2.095677-4 1.147661+2 2.100795-4 1.154015+2 2.106418-4 1.167180+2 2.114492-4 1.201082+2 2.120188-4 1.237395+2 2.126196-4 1.286753+2 2.142655-4 1.454593+2 2.146255-4 1.489447+2 2.151490-4 1.532825+2 2.157614-4 1.567851+2 2.162796-4 1.581364+2 2.167655-4 1.579894+2 2.170974-4 1.571433+2 2.176027-4 1.548533+2 2.182018-4 1.509679+2 2.199571-4 1.379305+2 2.207473-4 1.336864+2 2.213441-4 1.316472+2 2.219051-4 1.306383+2 2.224679-4 1.304036+2 2.229290-4 1.306821+2 2.235292-4 1.315090+2 2.252357-4 1.351064+2 2.267342-4 1.380346+2 2.286548-4 1.405203+2 2.318572-4 1.427303+2 2.405423-4 1.462176+2 2.786537-4 1.592152+2 3.005300-4 1.649978+2 3.144808-4 1.676001+2 3.376599-4 1.700137+2 3.628389-4 1.712069+2 3.958221-4 1.717035+2 4.217245-4 1.714781+2 4.702662-4 1.698450+2 6.019548-4 1.643141+2 7.033760-4 1.598877+2 7.597638-4 1.571254+2 1.019618-3 1.448899+2 1.209695-3 1.359762+2 1.263794-3 1.336582+2 1.418840-3 1.265805+2 1.537919-3 1.214200+2 1.665411-3 1.154729+2 1.735660-3 1.121601+2 1.798235-3 1.091501+2 1.875179-3 1.054104+2 1.936826-3 1.023283+2 1.988941-3 9.953263+1 2.041750-3 9.657337+1 2.088592-3 9.381431+1 2.128881-3 9.130527+1 2.169977-3 8.854908+1 2.204063-3 8.603705+1 2.231628-3 8.382624+1 2.258135-3 8.151274+1 2.282974-3 7.912828+1 2.301477-3 7.716827+1 2.320137-3 7.497851+1 2.336555-3 7.281536+1 2.352387-3 7.043689+1 2.366023-3 6.805850+1 2.377671-3 6.568944+1 2.386929-3 6.353118+1 2.395471-3 6.131189+1 2.407364-3 5.794381+1 2.423620-3 5.345991+1 2.429178-3 5.221367+1 2.434915-3 5.121293+1 2.440807-3 5.056569+1 2.446698-3 5.036561+1 2.450663-3 5.050068+1 2.456132-3 5.104677+1 2.459413-3 5.156827+1 2.462710-3 5.222940+1 2.468708-3 5.374754+1 2.477534-3 5.656174+1 2.496537-3 6.362285+1 2.504431-3 6.647229+1 2.511685-3 6.889524+1 2.521701-3 7.187125+1 2.527084-3 7.329128+1 2.537178-3 7.564605+1 2.546792-3 7.757013+1 2.556676-3 7.929016+1 2.573346-3 8.174880+1 2.585077-3 8.323211+1 2.604525-3 8.536158+1 2.619871-3 8.680764+1 2.636417-3 8.817296+1 2.670000-3 9.044880+1 2.696253-3 9.188593+1 2.740445-3 9.380927+1 2.790626-3 9.541726+1 2.866038-3 9.703925+1 2.957662-3 9.810346+1 3.058483-3 9.849943+1 3.202624-3 9.820176+1 3.370475-3 9.708392+1 3.589219-3 9.490368+1 3.800398-3 9.243992+1 4.077765-3 8.900972+1 4.432816-3 8.452927+1 4.900842-3 7.885168+1 5.409099-3 7.325051+1 6.162477-3 6.595270+1 6.839969-3 6.025696+1 7.636531-3 5.442889+1 8.202897-3 5.071598+1 9.106993-3 4.541381+1 9.780549-3 4.190712+1 1.050539-2 3.850594+1 1.142061-2 3.469594+1 1.265673-2 3.029833+1 1.392951-2 2.652410+1 1.542985-2 2.288146+1 1.757923-2 1.883700+1 2.162329-2 1.370958+1 2.763519-2 9.329083+0 3.491300-2 6.419435+0 4.067086-2 5.000193+0 4.864130-2 3.701036+0 5.605000-2 2.898034+0 6.550243-2 2.196522+0 7.871936-2 1.572709+0 1.047129-1 9.275802-1 1.308217-1 6.094843-1 1.739155-1 3.533580-1 2.333920-1 1.996368-1 3.282843-1 1.021399-1 5.354883-1 3.871469-2 1.347258+0 6.143883-3 4.068655+0 6.741849-4 1.228714+1 7.392920-5 3.710658+1 8.106251-6 1.120601+2 8.888336-7 3.384160+2 9.745868-8 1.258925+3 7.042427-9 3.981072+3 7.04243-10 1.258925+4 7.04243-11 3.981072+4 7.04243-12 1.000000+5 1.11615-12 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.241500-7 1.258900-6 9.892100-7 1.584900-6 1.567800-6 1.995300-6 2.484800-6 2.511900-6 3.938100-6 3.162300-6 6.241400-6 3.981100-6 9.892000-6 5.011900-6 1.567800-5 6.309600-6 2.484700-5 7.943300-6 3.938000-5 1.000000-5 6.241200-5 1.258900-5 9.891500-5 1.584900-5 1.567700-4 1.995300-5 2.484500-4 2.511900-5 3.937600-4 3.162300-5 6.240500-4 3.981100-5 9.890000-4 5.011900-5 1.567400-3 6.309600-5 2.483900-3 7.943300-5 3.934300-3 1.000000-4 6.230400-3 1.258900-4 9.867400-3 1.584900-4 1.561300-2 1.995300-4 2.469200-2 2.511900-4 3.899600-2 3.162300-4 6.146700-2 3.981100-4 9.653500-2 5.011900-4 1.508200-1 6.309600-4 2.337000-1 7.943300-4 3.580100-1 1.000000-3 5.389500-1 1.258900-3 7.925100-1 1.584900-3 1.130000+0 1.995300-3 1.552300+0 2.511900-3 2.051000+0 3.162300-3 2.606600+0 3.981100-3 3.192100+0 5.011900-3 3.780800+0 6.309600-3 4.374000+0 7.943300-3 4.983900+0 1.000000-2 5.619500+0 1.258900-2 6.257900+0 1.584900-2 6.847000+0 1.995300-2 7.335500+0 2.511900-2 7.680700+0 3.162300-2 7.951800+0 3.981100-2 8.093500+0 5.011900-2 8.127500+0 6.309600-2 8.045400+0 7.943300-2 7.870800+0 1.000000-1 7.597400+0 1.258900-1 7.254500+0 1.584900-1 6.858000+0 1.995300-1 6.424300+0 2.511900-1 5.970500+0 3.162300-1 5.509800+0 3.981100-1 5.052700+0 5.011900-1 4.606500+0 6.309600-1 4.174800+0 7.943300-1 3.764600+0 1.000000+0 3.374500+0 1.258900+0 3.006700+0 1.584900+0 2.662600+0 1.995300+0 2.343200+0 2.511900+0 2.049300+0 3.162300+0 1.781400+0 3.981100+0 1.539500+0 5.011900+0 1.323100+0 6.309600+0 1.131300+0 7.943300+0 9.626100-1 1.000000+1 8.154900-1 1.258900+1 6.880900-1 1.584900+1 5.784700-1 1.995300+1 4.847100-1 2.511900+1 4.049300-1 3.162300+1 3.373800-1 3.981100+1 2.804000-1 5.011900+1 2.325400-1 6.309600+1 1.924500-1 7.943300+1 1.589900-1 1.000000+2 1.311300-1 1.258900+2 1.079900-1 1.584900+2 8.880700-2 1.995300+2 7.294000-2 2.511900+2 5.983800-2 3.162300+2 4.903600-2 3.981100+2 4.014400-2 5.011900+2 3.283300-2 6.309600+2 2.683000-2 7.943300+2 2.190700-2 1.000000+3 1.787400-2 1.258900+3 1.457200-2 1.584900+3 1.187200-2 1.995300+3 9.666700-3 2.511900+3 7.865900-3 3.162300+3 6.396900-3 3.981100+3 5.199400-3 5.011900+3 4.223800-3 6.309600+3 3.429600-3 7.943300+3 2.783400-3 1.000000+4 2.257900-3 1.258900+4 1.830800-3 1.584900+4 1.483900-3 1.995300+4 1.202200-3 2.511900+4 9.736600-4 3.162300+4 7.882500-4 3.981100+4 6.379100-4 5.011900+4 5.160700-4 6.309600+4 4.173700-4 7.943300+4 3.374300-4 1.000000+5 2.727200-4 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159545-4 3.981072-4 3.976748-4 5.011872-4 5.005033-4 6.309573-4 6.298770-4 7.943282-4 7.926239-4 1.000000-3 9.973177-4 1.258925-3 1.254708-3 1.584893-3 1.578311-3 1.995262-3 1.985014-3 2.511886-3 2.495985-3 3.162278-3 3.137680-3 3.981072-3 3.943110-3 5.011872-3 4.953288-3 6.309573-3 6.219198-3 7.943282-3 7.803154-3 1.000000-2 9.782083-3 1.258925-2 1.225068-2 1.584893-2 1.532545-2 1.995262-2 1.914864-2 2.511886-2 2.389052-2 3.162278-2 2.975323-2 3.981072-2 3.697208-2 5.011872-2 4.582955-2 6.309573-2 5.666237-2 7.943282-2 6.982842-2 1.000000-1 8.580455-2 1.258925-1 1.050781-1 1.584893-1 1.282199-1 1.995262-1 1.559252-1 2.511886-1 1.889420-1 3.162278-1 2.281650-1 3.981072-1 2.746108-1 5.011872-1 3.294427-1 6.309573-1 3.941013-1 7.943282-1 4.700907-1 1.000000+0 5.595475-1 1.258925+0 6.649184-1 1.584893+0 7.892651-1 1.995262+0 9.363558-1 2.511886+0 1.110869+0 3.162278+0 1.318577+0 3.981072+0 1.566480+0 5.011872+0 1.863235+0 6.309573+0 2.219387+0 7.943282+0 2.647858+0 1.000000+1 3.164421+0 1.258925+1 3.788407+0 1.584893+1 4.543565+0 1.995262+1 5.458709+0 2.511886+1 6.569435+0 3.162278+1 7.919372+0 3.981072+1 9.561794+0 5.011872+1 1.156258+1 6.309573+1 1.400220+1 7.943282+1 1.697979+1 1.000000+2 2.061714+1 1.258925+2 2.506441+1 1.584893+2 3.050604+1 1.995262+2 3.716922+1 2.511886+2 4.533436+1 3.162278+2 5.534692+1 3.981072+2 6.763135+1 5.011872+2 8.271440+1 6.309573+2 1.012434+2 7.943282+2 1.240201+2 1.000000+3 1.520286+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728229-8 1.000000-4 2.738640-8 1.258925-4 4.340033-8 1.584893-4 6.875961-8 1.995262-4 1.089395-7 2.511886-4 1.725559-7 3.162278-4 2.732227-7 3.981072-4 4.324166-7 5.011872-4 6.839132-7 6.309573-4 1.080328-6 7.943282-4 1.704290-6 1.000000-3 2.682328-6 1.258925-3 4.217756-6 1.584893-3 6.582222-6 1.995262-3 1.024880-5 2.511886-3 1.590109-5 3.162278-3 2.459763-5 3.981072-3 3.796202-5 5.011872-3 5.858393-5 6.309573-3 9.037517-5 7.943282-3 1.401287-4 1.000000-2 2.179175-4 1.258925-2 3.385782-4 1.584893-2 5.234808-4 1.995262-2 8.039858-4 2.511886-2 1.228348-3 3.162278-2 1.869544-3 3.981072-2 2.838639-3 5.011872-2 4.289178-3 6.309573-2 6.433367-3 7.943282-2 9.604406-3 1.000000-1 1.419545-2 1.258925-1 2.081449-2 1.584893-1 3.026938-2 1.995262-1 4.360102-2 2.511886-1 6.224663-2 3.162278-1 8.806280-2 3.981072-1 1.234964-1 5.011872-1 1.717445-1 6.309573-1 2.368560-1 7.943282-1 3.242376-1 1.000000+0 4.404525-1 1.258925+0 5.940070-1 1.584893+0 7.956281-1 1.995262+0 1.058906+0 2.511886+0 1.401018+0 3.162278+0 1.843701+0 3.981072+0 2.414592+0 5.011872+0 3.148637+0 6.309573+0 4.090186+0 7.943282+0 5.295424+0 1.000000+1 6.835579+0 1.258925+1 8.800847+0 1.584893+1 1.130537+1 1.995262+1 1.449391+1 2.511886+1 1.854943+1 3.162278+1 2.370340+1 3.981072+1 3.024892+1 5.011872+1 3.855614+1 6.309573+1 4.909354+1 7.943282+1 6.245304+1 1.000000+2 7.938286+1 1.258925+2 1.008281+2 1.584893+2 1.279833+2 1.995262+2 1.623570+2 2.511886+2 2.058543+2 3.162278+2 2.608808+2 3.981072+2 3.304758+2 5.011872+2 4.184728+2 6.309573+2 5.297140+2 7.943282+2 6.703081+2 1.000000+3 8.479714+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.025000-5 3.854138+7 1.034000-5 3.869034+7 1.034000-5 5.781136+7 1.050000-5 5.821186+7 1.060000-5 5.837111+7 1.075000-5 5.854276+7 1.085000-5 5.855568+7 1.105000-5 5.849642+7 1.109175-5 5.844017+7 1.135011-5 5.797429+7 1.140000-5 5.783696+7 1.161449-5 5.713958+7 1.170000-5 5.678470+7 1.190700-5 5.584559+7 1.200000-5 5.534719+7 1.220000-5 5.422171+7 1.222000-5 5.409416+7 1.245000-5 5.258000+7 1.273503-5 5.046489+7 1.303167-5 4.805200+7 1.333521-5 4.541988+7 1.335000-5 4.528637+7 1.364583-5 4.262425+7 1.396368-5 3.971028+7 1.428894-5 3.673289+7 1.462177-5 3.374631+7 1.500000-5 3.048106+7 1.531087-5 2.793248+7 1.570000-5 2.494309+7 1.611900-5 2.199586+7 1.659587-5 1.899190+7 1.710000-5 1.621208+7 1.757924-5 1.392236+7 1.819701-5 1.142681+7 1.883649-5 9.312438+6 1.950000-5 7.539160+6 2.040000-5 5.680706+6 2.095000-5 4.787272+6 2.095000-5 4.825723+6 2.101000-5 4.740274+6 2.113489-5 4.568113+6 2.127000-5 4.390445+6 2.137962-5 4.252516+6 2.142000-5 4.202782+6 2.150000-5 4.106255+6 2.160000-5 3.988487+6 2.177000-5 3.797724+6 2.200000-5 3.557464+6 2.220000-5 3.363972+6 2.242000-5 3.166326+6 2.265000-5 2.975377+6 2.290868-5 2.778120+6 2.317395-5 2.593299+6 2.350000-5 2.387916+6 2.385000-5 2.191243+6 2.400000-5 2.113657+6 2.420000-5 2.017846+6 2.426610-5 1.987421+6 2.460000-5 1.845049+6 2.483133-5 1.754814+6 2.500000-5 1.694741+6 2.511886-5 1.654067+6 2.540973-5 1.562087+6 2.560000-5 1.506016+6 2.580000-5 1.452209+6 2.610000-5 1.378117+6 2.630268-5 1.333355+6 2.650000-5 1.291915+6 2.670000-5 1.253216+6 2.710000-5 1.184714+6 2.730000-5 1.154165+6 2.770000-5 1.100233+6 2.786121-5 1.080740+6 2.818383-5 1.045652+6 2.830000-5 1.034135+6 2.851018-5 1.015396+6 2.870000-5 9.988488+5 2.920000-5 9.634174+5 2.965000-5 9.379349+5 3.000000-5 9.224447+5 3.040000-5 9.077706+5 3.090295-5 8.947563+5 3.135000-5 8.864622+5 3.190000-5 8.811440+5 3.245000-5 8.790522+5 3.300000-5 8.808160+5 3.350000-5 8.841398+5 3.400000-5 8.901182+5 3.420000-5 8.921405+5 3.500000-5 9.044498+5 3.507519-5 9.059525+5 3.589219-5 9.206078+5 3.650000-5 9.337510+5 3.690000-5 9.415673+5 3.801894-5 9.667778+5 3.845918-5 9.762357+5 3.950000-5 9.998066+5 4.000000-5 1.010303+6 4.120975-5 1.035911+6 4.315191-5 1.073900+6 4.365158-5 1.082382+6 4.518559-5 1.107506+6 4.570882-5 1.114683+6 4.731513-5 1.135579+6 4.800000-5 1.142534+6 4.954502-5 1.157031+6 5.000000-5 1.160553+6 5.011872-5 1.161332+6 5.188000-5 1.171529+6 5.248075-5 1.174045+6 5.432503-5 1.178411+6 5.495409-5 1.178949+6 5.559043-5 1.179021+6 5.688529-5 1.177986+6 5.754399-5 1.176527+6 5.900000-5 1.172393+6 5.956621-5 1.170384+6 6.025596-5 1.167040+6 6.237348-5 1.155757+6 6.309573-5 1.150663+6 6.531306-5 1.134268+6 6.606934-5 1.128047+6 6.650000-5 1.124325+6 6.839116-5 1.107343+6 6.918310-5 1.099677+6 7.079458-5 1.083722+6 7.161434-5 1.075447+6 7.300000-5 1.060678+6 7.500000-5 1.039327+6 7.585776-5 1.029816+6 7.673615-5 1.019932+6 7.943282-5 9.898705+5 8.128305-5 9.690034+5 8.222426-5 9.584334+5 8.413951-5 9.370489+5 8.609938-5 9.149829+5 9.015711-5 8.713943+5 9.120108-5 8.601040+5 9.549926-5 8.154922+5 9.800000-5 7.905697+5 1.000000-4 7.712513+5 1.023293-4 7.494627+5 1.047129-4 7.275834+5 1.096478-4 6.850299+5 1.122018-4 6.640082+5 1.135011-4 6.536015+5 1.190000-4 6.118416+5 1.224700-4 5.870487+5 1.258925-4 5.638913+5 1.273503-4 5.543675+5 1.318257-4 5.259993+5 1.380384-4 4.899132+5 1.412538-4 4.723007+5 1.428894-4 4.636254+5 1.500000-4 4.282993+5 1.548817-4 4.059763+5 1.580000-4 3.925292+5 1.621810-4 3.753799+5 1.678804-4 3.534269+5 1.714000-4 3.407425+5 1.714000-4 1.532991+6 1.715100-4 1.585626+6 1.717000-4 1.688447+6 1.719000-4 1.800419+6 1.722000-4 1.972367+6 1.725000-4 2.148177+6 1.727000-4 2.266422+6 1.727300-4 2.283330+6 1.727300-4 2.871880+6 1.730000-4 3.100571+6 1.731000-4 3.185213+6 1.732300-4 3.297111+6 1.733200-4 3.372466+6 1.735000-4 3.525933+6 1.735500-4 3.566956+6 1.737801-4 3.758452+6 1.740000-4 3.932328+6 1.741000-4 4.012069+6 1.742800-4 4.148465+6 1.743500-4 4.201339+6 1.745000-4 4.274842+6 1.747700-4 4.404862+6 1.750000-4 4.513746+6 1.751500-4 4.583445+6 1.752000-4 4.603256+6 1.753000-4 4.641276+6 1.753500-4 4.657629+6 1.755000-4 4.686918+6 1.759000-4 4.788528+6 1.763500-4 4.852444+6 1.769500-4 4.909119+6 1.775000-4 4.940379+6 1.777000-4 4.962640+6 1.778279-4 4.967334+6 1.780000-4 4.973651+6 1.800000-4 5.001940+6 1.810000-4 5.016079+6 1.815000-4 5.013759+6 1.838000-4 4.976159+6 1.862087-4 4.927924+6 1.883649-4 4.853433+6 2.000000-4 4.468669+6 2.080000-4 4.164610+6 2.113489-4 4.043129+6 2.162719-4 3.874193+6 2.213095-4 3.706696+6 2.238721-4 3.625665+6 2.259700-4 3.561268+6 2.259700-4 3.929078+6 2.260000-4 3.928153+6 2.330000-4 3.728005+6 2.344229-4 3.688131+6 2.350000-4 3.664230+6 2.371374-4 3.607909+6 2.385000-4 3.572733+6 2.426610-4 3.467995+6 2.483133-4 3.330839+6 2.511886-4 3.262546+6 2.600160-4 3.064971+6 2.660725-4 2.940264+6 2.691535-4 2.879421+6 2.730000-4 2.805422+6 2.786121-4 2.702682+6 2.818383-4 2.644564+6 2.851018-4 2.587272+6 2.884032-4 2.531251+6 2.951209-4 2.420943+6 2.985383-4 2.365691+6 3.000000-4 2.342427+6 3.054921-4 2.258020+6 3.090295-4 2.204652+6 3.126079-4 2.152556+6 3.235937-4 1.998863+6 3.349654-4 1.854667+6 3.350000-4 1.854252+6 3.430000-4 1.759981+6 3.507519-4 1.674724+6 3.630781-4 1.550272+6 3.758374-4 1.434380+6 3.801894-4 1.397744+6 3.890451-4 1.326403+6 3.935501-4 1.291928+6 4.000000-4 1.244800+6 4.168694-4 1.131966+6 4.216965-4 1.101893+6 4.365158-4 1.016487+6 4.415704-4 9.892982+5 4.466836-4 9.628541+5 4.570882-4 9.118828+5 4.786301-4 8.168419+5 4.841724-4 7.947150+5 4.897788-4 7.730998+5 5.069907-4 7.113897+5 5.188000-4 6.730850+5 5.248075-4 6.547305+5 5.308844-4 6.367252+5 5.495409-4 5.853886+5 5.623413-4 5.535354+5 5.754399-4 5.232598+5 5.821032-4 5.087641+5 6.095369-4 4.541468+5 6.237348-4 4.289928+5 6.382635-4 4.051384+5 6.531306-4 3.826337+5 6.760830-4 3.509626+5 7.161434-4 3.037022+5 7.244360-4 2.950641+5 7.328245-4 2.866342+5 7.500000-4 2.704060+5 7.585776-4 2.627123+5 8.035261-4 2.268840+5 8.128305-4 2.203443+5 8.317638-4 2.077781+5 8.413951-4 2.017179+5 8.511380-4 1.958380+5 8.609938-4 1.901320+5 9.015711-4 1.688089+5 9.332543-4 1.544446+5 9.440609-4 1.499220+5 9.660509-4 1.412795+5 9.700000-4 1.397886+5 9.772372-4 1.370950+5 1.011579-3 1.252573+5 1.059254-3 1.110920+5 1.096478-3 1.015186+5 1.110000-3 9.830635+4 1.135011-3 9.268548+4 1.148154-3 8.991025+4 1.202264-3 7.963842+4 1.230269-3 7.496324+4 1.258925-3 7.055488+4 1.303167-3 6.434844+4 1.318257-3 6.240702+4 1.364583-3 5.693358+4 1.400000-3 5.319401+4 1.428894-3 5.038655+4 1.450000-3 4.844899+4 1.479108-3 4.592913+4 1.531087-3 4.186671+4 1.566751-3 3.936400+4 1.603245-3 3.701483+4 1.650000-3 3.427558+4 1.659587-3 3.374444+4 1.698244-3 3.170368+4 1.778279-3 2.799496+4 1.798871-3 2.713898+4 1.840772-3 2.550668+4 1.883649-3 2.397128+4 1.927525-3 2.251805+4 1.949845-3 2.182166+4 2.065380-3 1.865808+4 2.113489-3 1.752751+4 2.162719-3 1.646488+4 2.238721-3 1.497906+4 2.371374-3 1.279133+4 2.398833-3 1.239477+4 2.400000-3 1.237828+4 2.455900-3 1.162141+4 2.455900-3 1.138099+5 2.511886-3 1.098391+5 2.513000-3 1.097624+5 2.558000-3 1.061920+5 2.570396-3 1.050668+5 2.600160-3 1.024340+5 2.722701-3 9.111614+4 2.754229-3 8.848839+4 2.786121-3 8.593623+4 2.818383-3 8.345767+4 2.917427-3 7.633012+4 2.951209-3 7.409008+4 3.126079-3 6.383723+4 3.162278-3 6.196413+4 3.235937-3 5.838113+4 3.388442-3 5.182601+4 3.589219-3 4.465028+4 3.672823-3 4.206717+4 3.758374-3 3.963357+4 3.845918-3 3.734096+4 3.890451-3 3.621437+4 3.935501-3 3.512150+4 4.120975-3 3.106676+4 4.300000-3 2.774044+4 4.315191-3 2.748114+4 4.466836-3 2.504320+4 4.518559-3 2.427972+4 4.570882-3 2.353938+4 4.731513-3 2.144930+4 5.011872-3 1.837087+4 5.069907-3 1.779822+4 5.188000-3 1.670589+4 5.248075-3 1.618517+4 5.308844-3 1.568061+4 5.495409-3 1.425820+4 5.888437-3 1.178937+4 6.025596-3 1.106547+4 6.095369-3 1.072035+4 6.165950-3 1.038019+4 6.531306-3 8.833191+3 6.918310-3 7.517066+3 7.161434-3 6.823566+3 7.244360-3 6.604220+3 7.673615-3 5.607894+3 8.128305-3 4.762055+3 8.317638-3 4.460606+3 8.413951-3 4.315293+3 8.511380-3 4.174718+3 8.609938-3 4.038718+3 9.015711-3 3.537132+3 9.660509-3 2.899211+3 9.885531-3 2.713258+3 1.000000-2 2.623673+3 1.011579-2 2.537052+3 1.023293-2 2.453206+3 1.059254-2 2.217928+3 1.148154-2 1.753061+3 1.188502-2 1.584974+3 1.202264-2 1.531959+3 1.216186-2 1.480668+3 1.258925-2 1.336871+3 1.364583-2 1.053363+3 1.428894-2 9.192475+2 1.445440-2 8.884503+2 1.462177-2 8.583383+2 1.513561-2 7.739850+2 1.621810-2 6.293475+2 1.717908-2 5.296952+2 1.757924-2 4.943729+2 1.778279-2 4.774222+2 1.840772-2 4.299757+2 1.949845-2 3.611486+2 2.065380-2 3.033402+2 2.137962-2 2.731741+2 2.162719-2 2.638009+2 2.187762-2 2.546576+2 2.290868-2 2.211445+2 2.344229-2 2.060809+2 2.511886-2 1.667712+2 2.691535-2 1.349384+2 2.786121-2 1.212484+2 2.851018-2 1.129023+2 2.917427-2 1.051304+2 2.951209-2 1.014474+2 3.090295-2 8.796190+1 3.427678-2 6.379945+1 3.507519-2 5.936603+1 3.845918-2 4.450612+1 4.000000-2 3.935689+1 4.415704-2 2.888171+1 4.897788-2 2.082519+1 5.559043-2 1.395994+1 5.754399-2 1.251734+1 5.821032-2 1.207037+1 5.888437-2 1.163936+1 6.531306-2 8.372504+0 6.998420-2 6.720940+0 7.328245-2 5.805168+0 7.413102-2 5.596432+0 7.673615-2 5.014194+0 8.413951-2 3.740885+0 8.511380-2 3.605851+0 8.709636-2 3.350158+0 8.810489-2 3.229195+0 9.015711-2 3.000217+0 9.120108-2 2.891892+0 1.047129-1 1.860110+0 1.083927-1 1.665829+0 1.096478-1 1.605689+0 1.230269-1 1.111654+0 1.273503-1 9.955529-1 1.288250-1 9.598885-1 1.333521-1 8.603853-1 1.412538-1 7.170117-1 1.428894-1 6.913442-1 1.462177-1 6.427329-1 1.479108-1 6.197246-1 1.500000-1 5.928042-1 1.621810-1 4.629615-1 1.678804-1 4.154652-1 1.698244-1 4.007416-1 1.717908-1 3.865505-1 1.819701-1 3.227841-1 1.840772-1 3.113544-1 1.883649-1 2.896951-1 1.927525-1 2.695425-1 1.949845-1 2.599981-1 2.065380-1 2.171137-1 2.089296-1 2.094261-1 2.113489-1 2.021081-1 2.137962-1 1.950458-1 2.187762-1 1.816665-1 2.213095-1 1.753252-1 2.290868-1 1.576005-1 2.344229-1 1.467913-1 2.426610-1 1.319517-1 2.454709-1 1.274160-1 2.483133-1 1.230364-1 2.540973-1 1.147334-1 2.570396-1 1.107945-1 2.600160-1 1.069912-1 2.754229-1 8.984626-2 2.786121-1 8.676223-2 2.851018-1 8.100297-2 2.951209-1 7.308283-2 3.054921-1 6.593807-2 3.090295-1 6.371530-2 3.126079-1 6.156744-2 3.162278-1 5.949195-2 3.235937-1 5.561834-2 3.349654-1 5.028323-2 3.388442-1 4.862136-2 3.427678-1 4.701447-2 3.548134-1 4.250547-2 3.630781-1 3.979621-2 3.672823-1 3.850911-2 3.715352-1 3.726366-2 3.758374-1 3.605847-2 3.801894-1 3.489247-2 3.935501-1 3.161587-2 3.981072-1 3.061594-2 4.027170-1 2.964767-2 4.120975-1 2.780520-2 4.168694-1 2.692737-2 4.315191-1 2.445713-2 4.365158-1 2.368517-2 4.466836-1 2.224856-2 4.518559-1 2.156459-2 4.570882-1 2.090165-2 4.623810-1 2.025910-2 4.677351-1 1.963642-2 4.731513-1 1.903287-2 4.841724-1 1.788089-2 4.954502-1 1.682548-2 5.011872-1 1.632242-2 5.069907-1 1.583441-2 5.128614-1 1.536109-2 5.308844-1 1.402435-2 5.432503-1 1.321966-2 5.477200-1 1.294458-2 5.495409-1 1.283504-2 5.559043-1 1.246220-2 5.821032-1 1.107634-2 5.956621-1 1.046016-2 6.025596-1 1.016505-2 6.095369-1 9.878940-3 6.382635-1 8.813044-3 6.456542-1 8.572485-3 6.531306-1 8.338494-3 6.606935-1 8.110895-3 6.683439-1 7.890044-3 6.918310-1 7.263066-3 6.998420-1 7.072030-3 7.079458-1 6.886023-3 7.161434-1 6.704909-3 7.244360-1 6.529041-3 7.328245-1 6.357788-3 7.585776-1 5.870632-3 7.673615-1 5.721634-3 7.852356-1 5.434891-3 8.035261-1 5.163198-3 8.222427-1 4.905149-3 8.317638-1 4.781005-3 8.413951-1 4.663278-3 8.511380-1 4.548450-3 8.609938-1 4.436448-3 8.709636-1 4.327206-3 8.912509-1 4.117255-3 9.120108-1 3.917493-3 9.440609-1 3.645325-3 9.660509-1 3.474997-3 9.885531-1 3.312631-3 1.011579+0 3.163334-3 1.023293+0 3.091225-3 1.035142+0 3.020899-3 1.047129+0 2.952181-3 1.083927+0 2.755284-3 1.109175+0 2.631368-3 1.135011+0 2.513028-3 1.148154+0 2.457950-3 1.161449+0 2.404234-3 1.174898+0 2.351708-3 1.230269+0 2.152834-3 1.258925+0 2.059798-3 1.273503+0 2.016489-3 1.288250+0 1.974218-3 1.333521+0 1.852691-3 1.364583+0 1.775856-3 1.380384+0 1.738643-3 1.396368+0 1.702210-3 1.412538+0 1.667833-3 1.428894+0 1.634250-3 1.462177+0 1.569119-3 1.531087+0 1.446540-3 1.548817+0 1.418517-3 1.566751+0 1.391120-3 1.584893+0 1.364260-3 1.678804+0 1.237541-3 1.698244+0 1.213646-3 1.717908+0 1.191097-3 1.737801+0 1.169032-3 1.757924+0 1.147383-3 1.883649+0 1.025653-3 1.905461+0 1.006659-3 1.927525+0 9.886854-4 1.949845+0 9.710851-4 1.972423+0 9.538036-4 2.089296+0 8.719013-4 2.137962+0 8.411448-4 2.187762+0 8.124639-4 2.213095+0 7.985309-4 2.238721+0 7.848409-4 2.371374+0 7.198307-4 2.426610+0 6.953607-4 2.483133+0 6.725395-4 2.511886+0 6.614417-4 2.540973+0 6.505298-4 2.722701+0 5.887379-4 2.786121+0 5.694736-4 2.851018+0 5.514702-4 2.884032+0 5.427065-4 2.917427+0 5.340849-4 3.126079+0 4.851558-4 3.198895+0 4.698634-4 3.273407+0 4.555344-4 3.349654+0 4.416780-4 3.388442+0 4.349103-4 3.630781+0 3.964280-4 3.715352+0 3.843730-4 3.801894+0 3.730537-4 3.890451+0 3.620950-4 3.981072+0 3.514608-4 4.265795+0 3.213960-4 4.365158+0 3.119573-4 4.466836+0 3.030718-4 4.623810+0 2.902464-4 4.731513+0 2.820010-4 5.128614+0 2.549438-4 5.248075+0 2.477014-4 5.432503+0 2.375199-4 5.623413+0 2.277796-4 5.754399+0 2.215106-4 6.165950+0 2.037199-4 6.309573+0 1.981132-4 6.531306+0 1.902208-4 6.839116+0 1.802052-4 7.000000+0 1.753513-4 7.852356+0 1.532177-4 8.000000+0 1.499025-4 8.035261+0 1.491526-4 8.128305+0 1.472072-4 8.413951+0 1.415336-4 8.511380+0 1.396917-4 1.023293+1 1.132792-4 1.035142+1 1.118051-4 1.047129+1 1.103879-4 1.348963+1 8.338058-5 1.364583+1 8.232393-5 1.380384+1 8.130596-5 1.883649+1 5.810967-5 1.905461+1 5.739124-5 1.927525+1 5.669667-5 2.722701+1 3.934939-5 2.754229+1 3.887384-5 2.800000+1 3.821400-5 4.415704+1 2.380961-5 4.466836+1 2.353067-5 4.518559+1 2.325501-5 7.852356+1 1.320950-5 7.943282+1 1.305489-5 8.035261+1 1.290209-5 8.128305+1 1.275265-5 1.566751+2 6.564750-6 1.584893+2 6.488749-6 1.603245+2 6.413629-6 1.621810+2 6.339861-6 3.126079+2 3.278879-6 3.162278+2 3.241180-6 3.198895+2 3.203915-6 6.382635+2 1.600847-6 6.456542+2 1.582510-6 2.483133+3 4.111462-7 2.511886+3 4.064378-7 2.540973+3 4.017830-7 8.035261+4 1.268510-8 8.128305+4 1.254035-8 1.000000+5 1.020001-8 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.025000-5 1.025000-5 1.034000-5 1.025000-5 1.034000-5 1.027977-5 2.095000-5 1.028097-5 2.095000-5 1.036598-5 2.200000-5 1.049378-5 2.290868-5 1.067074-5 2.385000-5 1.093152-5 2.460000-5 1.119921-5 2.560000-5 1.163380-5 2.710000-5 1.240160-5 2.870000-5 1.324328-5 2.965000-5 1.368454-5 3.040000-5 1.398356-5 3.135000-5 1.429222-5 3.190000-5 1.443758-5 3.300000-5 1.465180-5 3.420000-5 1.479224-5 3.507519-5 1.484856-5 3.690000-5 1.487616-5 4.000000-5 1.477860-5 5.011872-5 1.427060-5 5.688529-5 1.402058-5 6.606934-5 1.380705-5 7.673615-5 1.366830-5 9.120108-5 1.358316-5 1.135011-4 1.356470-5 1.500000-4 1.365535-5 1.714000-4 1.373833-5 1.714000-4 2.225807-5 1.719000-4 2.263074-5 1.727000-4 2.306859-5 1.727300-4 2.308113-5 1.727300-4 2.342888-5 1.737801-4 2.374446-5 1.747700-4 2.389770-5 1.769500-4 2.400116-5 1.883649-4 2.407318-5 2.259700-4 2.409956-5 2.259700-4 2.571629-5 3.000000-4 2.639543-5 4.000000-4 2.708772-5 5.495409-4 2.795167-5 7.585776-4 2.894694-5 1.011579-3 2.993695-5 1.318257-3 3.090760-5 1.698244-3 3.185609-5 2.162719-3 3.275749-5 2.455900-3 3.321733-5 2.455900-3 5.070339-5 2.818383-3 5.088340-5 5.069907-3 5.122254-5 1.188502-2 5.146195-5 4.897788-2 5.159459-5 1.000000+5 5.163045-5 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.025000-5 0.0 1.714000-4 0.0 1.714000-4 2.169547-8 1.719000-4 2.264349-8 1.722000-4 2.311610-8 1.727000-4 2.375745-8 1.727300-4 2.378936-8 1.727300-4 2.463095-8 1.733200-4 2.513224-8 1.741000-4 2.559114-8 1.745000-4 2.574154-8 1.755000-4 2.595064-8 1.777000-4 2.609858-8 1.862087-4 2.623235-8 2.113489-4 2.628841-8 2.259700-4 2.628505-8 2.259700-4 2.686684-8 3.126079-4 2.711992-8 5.821032-4 2.742125-8 1.258925-3 2.787832-8 2.162719-3 2.825271-8 2.455900-3 2.833727-8 2.455900-3 1.570614-4 2.600160-3 1.579631-4 4.315191-3 1.595680-4 7.244360-3 1.604341-4 1.778279-2 1.609613-4 1.000000+5 1.610383-4 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.025000-5 0.0 1.034000-5 9.000000-8 1.034000-5 6.023264-8 2.095000-5 1.066903-5 2.095000-5 1.058402-5 2.200000-5 1.150622-5 2.290868-5 1.223794-5 2.385000-5 1.291848-5 2.483133-5 1.353935-5 2.580000-5 1.406952-5 2.870000-5 1.545672-5 3.000000-5 1.616794-5 3.090295-5 1.674381-5 3.190000-5 1.746242-5 3.300000-5 1.834820-5 3.420000-5 1.940776-5 3.589219-5 2.102025-5 3.845918-5 2.361802-5 5.432503-5 4.022120-5 7.161434-5 5.789131-5 1.135011-4 9.993640-5 1.714000-4 1.576617-4 1.714000-4 1.491202-4 1.727300-4 1.496251-4 1.727300-4 1.492765-4 1.759000-4 1.518995-4 2.259700-4 2.018441-4 2.259700-4 2.002268-4 8.128305-4 7.836291-4 2.455900-3 2.422654-3 2.455900-3 2.248135-3 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.455900-3 1.021885+5 2.513000-3 9.884916+4 2.558000-3 9.580077+4 2.600160-3 9.250233+4 2.818383-3 7.550840+4 3.845918-3 3.400187+4 4.315191-3 2.506884+4 5.011872-3 1.679391+4 6.095369-3 9.819660+3 7.161434-3 6.258084+3 8.317638-3 4.094913+3 9.885531-3 2.492858+3 1.188502-2 1.457168+3 1.445440-2 8.172214+2 1.757924-2 4.549095+2 2.162719-2 2.428135+2 2.691535-2 1.242306+2 3.427678-2 5.874505+1 4.415704-2 2.659553+1 5.888437-2 1.071831+1 8.413951-2 3.444646+0 1.273503-1 9.165678-1 1.621810-1 4.262065-1 2.089296-1 1.927940-1 2.426610-1 1.214690-1 2.786121-1 7.986786-2 3.162278-1 5.476360-2 3.548134-1 3.912647-2 3.935501-1 2.910227-2 4.365158-1 2.180180-2 4.841724-1 1.645891-2 5.308844-1 1.290888-2 5.821032-1 1.019541-2 6.382635-1 8.112248-3 6.918310-1 6.685770-3 7.585776-1 5.404186-3 8.317638-1 4.401200-3 9.120108-1 3.606309-3 9.885531-1 3.049476-3 1.135011+0 2.313479-3 1.258925+0 1.896237-3 1.396368+0 1.567044-3 1.531087+0 1.331679-3 1.698244+0 1.117284-3 1.905461+0 9.267319-4 2.137962+0 7.743409-4 2.426610+0 6.401365-4 2.786121+0 5.242485-4 3.198895+0 4.325511-4 3.715352+0 3.538502-4 4.365158+0 2.871849-4 5.248075+0 2.280292-4 6.309573+0 1.823797-4 8.000000+0 1.380000-4 1.035142+1 1.029307-4 1.364583+1 7.578949-5 1.905461+1 5.283575-5 2.754229+1 3.578804-5 4.415704+1 2.191969-5 8.035261+1 1.187789-5 1.603245+2 5.904530-6 6.382635+2 1.473679-6 8.035261+4 1.167759-8 1.000000+5 9.390400-9 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.455900-3 5.269200-5 1.000000+5 5.269200-5 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.455900-3 1.749200-4 1.000000+5 1.749200-4 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.455900-3 2.228288-3 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.259700-4 3.678100+5 2.385000-4 3.611416+5 2.511886-4 3.525861+5 2.660725-4 3.408245+5 2.818383-4 3.269510+5 2.985383-4 3.112756+5 3.054921-4 3.041695+5 3.430000-4 2.658900+5 3.630781-4 2.474684+5 3.890451-4 2.249548+5 4.466836-4 1.836343+5 4.897788-4 1.594698+5 5.308844-4 1.399798+5 6.095369-4 1.108370+5 6.760830-4 9.247040+4 7.585776-4 7.497481+4 8.609938-4 5.913583+4 9.700000-4 4.691760+4 1.110000-3 3.584760+4 1.258925-3 2.765937+4 1.428894-3 2.116801+4 1.650000-3 1.549214+4 1.883649-3 1.153776+4 2.162719-3 8.423244+3 2.511886-3 5.940439+3 2.917427-3 4.153763+3 3.388442-3 2.880141+3 3.935501-3 1.981050+3 4.570882-3 1.352146+3 5.308844-3 9.161449+2 6.165950-3 6.164495+2 7.244360-3 3.993928+2 8.609938-3 2.488180+2 1.011579-2 1.588020+2 1.202264-2 9.741693+1 1.428894-2 5.931753+1 1.717908-2 3.466822+1 2.065380-2 2.010665+1 2.511886-2 1.118230+1 3.090295-2 5.960526+0 3.845918-2 3.044042+0 4.897788-2 1.436707+0 6.531306-2 5.823201-1 8.511380-2 2.521550-1 1.333521-1 6.062784-2 1.698244-1 2.832834-2 2.137962-1 1.382366-2 2.483133-1 8.730917-3 2.851018-1 5.754049-3 3.235937-1 3.953878-3 3.630781-1 2.830960-3 4.027170-1 2.109959-3 4.466836-1 1.584089-3 4.954502-1 1.198483-3 5.477200-1 9.221285-4 6.025596-1 7.240790-4 6.606935-1 5.777637-4 7.161434-1 4.773722-4 7.852356-1 3.870198-4 8.709636-1 3.082001-4 9.440609-1 2.596405-4 1.023293+0 2.202095-4 1.148154+0 1.751431-4 1.273503+0 1.436856-4 1.412538+0 1.188476-4 1.548817+0 1.010782-4 1.717908+0 8.486932-5 1.927525+0 7.045046-5 2.187762+0 5.788595-5 2.483133+0 4.791694-5 2.851018+0 3.929138-5 3.273407+0 3.245580-5 3.801894+0 2.658023-5 4.466836+0 2.159502-5 5.432503+0 1.692154-5 6.531306+0 1.355251-5 8.128305+0 1.049109-5 1.035142+1 7.969258-6 1.364583+1 5.867991-6 1.905461+1 4.090893-6 2.722701+1 2.804424-6 4.415704+1 1.697171-6 7.852356+1 9.414450-7 1.566751+2 4.678997-7 3.126079+2 2.334966-7 2.483133+3 2.928165-8 1.000000+5 7.27050-10 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.259700-4 4.137000-5 1.000000+5 4.137000-5 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.259700-4 3.250000-8 1.000000+5 3.250000-8 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.259700-4 1.845675-4 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.727300-4 5.885500+5 1.731000-4 6.861500+5 1.733200-4 7.478000+5 1.735500-4 8.138200+5 1.737801-4 8.810500+5 1.740000-4 9.454500+5 1.742800-4 1.027200+6 1.745000-4 1.091000+6 1.747700-4 1.167000+6 1.750000-4 1.229100+6 1.752000-4 1.281100+6 1.753500-4 1.318400+6 1.755000-4 1.336253+6 1.759000-4 1.407178+6 1.769500-4 1.475824+6 1.780000-4 1.505560+6 1.815000-4 1.526168+6 1.838000-4 1.512411+6 1.883649-4 1.467800+6 2.080000-4 1.277000+6 2.162719-4 1.200000+6 2.260000-4 1.108200+6 2.330000-4 1.055000+6 2.426610-4 9.801800+5 2.691535-4 8.018400+5 2.884032-4 6.979400+5 3.054921-4 6.169700+5 3.235937-4 5.413200+5 3.507519-4 4.468600+5 4.000000-4 3.239400+5 4.365158-4 2.599200+5 4.841724-4 1.983700+5 5.623413-4 1.332800+5 6.237348-4 1.004600+5 7.244360-4 6.616200+4 8.128305-4 4.764400+4 9.332543-4 3.185100+4 1.059254-3 2.186100+4 1.230269-3 1.388900+4 1.400000-3 9.320700+3 1.603245-3 6.095000+3 1.840772-3 3.925100+3 2.113489-3 2.510100+3 2.400000-3 1.653300+3 2.754229-3 1.044900+3 3.162278-3 6.547900+2 3.672823-3 3.917800+2 4.300000-3 2.263000+2 5.069907-3 1.265400+2 6.025596-3 6.821800+1 7.161434-3 3.647500+1 8.511380-3 1.935200+1 1.011579-2 1.019100+1 1.202264-2 5.327600+0 1.445440-2 2.647500+0 1.757924-2 1.249600+0 2.187762-2 5.358100-1 2.917427-2 1.742700-1 5.821032-2 1.159466-2 7.413102-2 4.520832-3 9.120108-2 2.031567-3 1.083927-1 1.050559-3 1.273503-1 5.717821-4 1.479108-1 3.273876-4 1.698244-1 1.969414-4 1.927525-1 1.244554-4 2.187762-1 7.924384-5 2.454709-1 5.294748-5 2.754229-1 3.564755-5 3.054921-1 2.514719-5 3.388442-1 1.787080-5 3.758374-1 1.279654-5 4.120975-1 9.573743-6 4.518559-1 7.210399-6 4.954502-1 5.466768-6 5.432503-1 4.173098-6 5.956621-1 3.206809-6 6.531306-1 2.482727-6 6.998420-1 2.060990-6 7.673615-1 1.620856-6 8.511380-1 1.247136-6 9.440609-1 9.628526-7 9.885531-1 8.631129-7 1.047129+0 7.592607-7 1.109175+0 6.725282-7 1.174898+0 6.001436-7 1.258925+0 5.277414-7 1.364583+0 4.573569-7 1.678804+0 3.218017-7 1.883649+0 2.664523-7 2.089296+0 2.263866-7 2.371374+0 1.869036-7 2.722701+0 1.528626-7 3.126079+0 1.259742-7 3.630781+0 1.029378-7 4.265795+0 8.345900-8 5.128614+0 6.620634-8 6.165950+0 5.290165-8 7.852356+0 3.979227-8 1.023293+1 2.942074-8 1.348963+1 2.165875-8 1.883649+1 1.509448-8 2.722701+1 1.022137-8 4.415704+1 6.185632-9 7.943282+1 3.391332-9 1.584893+2 1.685637-9 3.162278+2 8.41244-10 2.511886+3 1.05500-10 1.000000+5 2.64990-12 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.727300-4 2.477800-5 1.000000+5 2.477800-5 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.727300-4 2.789600-8 1.000000+5 2.789600-8 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.727300-4 1.479241-4 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.714000-4 1.192248+6 1.715100-4 1.245268+6 1.717000-4 1.348752+6 1.719000-4 1.461420+6 1.722000-4 1.634408+6 1.725000-4 1.811252+6 1.727000-4 1.930184+6 1.730000-4 2.107060+6 1.732300-4 2.240736+6 1.735000-4 2.393424+6 1.737801-4 2.544836+6 1.741000-4 2.706692+6 1.743500-4 2.823592+6 1.751500-4 2.987543+6 1.753000-4 3.007920+6 1.763500-4 3.092117+6 1.775000-4 3.128640+6 1.777000-4 3.145862+6 1.810000-4 3.183485+6 1.862087-4 3.145466+6 2.000000-4 2.861356+6 2.344229-4 2.089601+6 2.350000-4 2.071528+6 2.483133-4 1.867054+6 2.786121-4 1.487658+6 2.951209-4 1.319965+6 3.126079-4 1.162134+6 3.350000-4 9.882400+5 3.801894-4 7.264869+5 4.168694-4 5.775493+5 4.570882-4 4.556017+5 5.248075-4 3.161834+5 5.821032-4 2.392324+5 6.531306-4 1.741266+5 7.500000-4 1.179688+5 8.317638-4 8.760709+4 9.660509-4 5.646653+4 1.096478-3 3.863106+4 1.258925-3 2.534955+4 1.450000-3 1.634572+4 1.659587-3 1.067543+4 1.927525-3 6.603919+3 2.238721-3 4.051123+3 2.570396-3 2.561367+3 2.951209-3 1.608071+3 3.388442-3 1.002854+3 3.890451-3 6.213651+2 4.518559-3 3.673655+2 5.248075-3 2.157642+2 6.165950-3 1.207391+2 7.244360-3 6.708672+1 8.609938-3 3.546006+1 1.023293-2 1.859612+1 1.216186-2 9.678593+0 1.462177-2 4.785299+0 1.778279-2 2.245487+0 2.187762-2 9.998462-1 2.786121-2 3.858443-1 4.000000-2 9.194560-2 6.531306-2 1.312057-2 8.709636-2 4.214702-3 1.047129-1 2.050328-3 1.230269-1 1.099110-3 1.428894-1 6.203117-4 1.621810-1 3.848290-4 1.840772-1 2.404986-4 2.065380-1 1.579915-4 2.290868-1 1.089499-4 2.540973-1 7.566733-5 2.786121-1 5.509074-5 3.054921-1 4.037994-5 3.349654-1 2.980591-5 3.672823-1 2.216159-5 3.981072-1 1.720754-5 4.315191-1 1.344750-5 4.677351-1 1.058323-5 5.069907-1 8.394017-6 5.495409-1 6.705434-6 5.956621-1 5.394771-6 6.456542-1 4.371096-6 6.998420-1 3.566693-6 7.585776-1 2.930586-6 8.222427-1 2.424599-6 8.912509-1 2.020395-6 9.660509-1 1.695643-6 1.047129+0 1.434714-6 1.148154+0 1.194207-6 1.258925+0 1.001563-6 1.380384+0 8.459898-7 1.531087+0 7.049802-7 1.698244+0 5.915457-7 1.905461+0 4.905770-7 2.137962+0 4.098892-7 2.426610+0 3.388475-7 2.786121+0 2.775010-7 3.198895+0 2.289636-7 3.715352+0 1.873083-7 4.365158+0 1.520244-7 5.248075+0 1.207080-7 6.309573+0 9.653926-8 8.035261+0 7.268079-8 1.035142+1 5.448406-8 1.364583+1 4.011800-8 1.905461+1 2.796814-8 2.754229+1 1.894447-8 4.415704+1 1.160288-8 7.943282+1 6.361534-9 1.584893+2 3.161934-9 3.162278+2 1.578015-9 2.511886+3 1.97897-10 1.000000+5 4.97070-12 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.714000-4 2.469300-5 1.000000+5 2.469300-5 1 16000 7 7 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.714000-4 2.789600-8 1.000000+5 2.789600-8 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.714000-4 1.466791-4 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.095000-5 3.845141+4 2.101000-5 4.025700+4 2.113489-5 4.389103+4 2.127000-5 4.790920+4 2.142000-5 5.248200+4 2.160000-5 5.808300+4 2.177000-5 6.349960+4 2.200000-5 7.095880+4 2.220000-5 7.757020+4 2.242000-5 8.491420+4 2.265000-5 9.267760+4 2.290868-5 1.014901+5 2.317395-5 1.105544+5 2.350000-5 1.216966+5 2.385000-5 1.336094+5 2.420000-5 1.454398+5 2.460000-5 1.587984+5 2.500000-5 1.719276+5 2.540973-5 1.850836+5 2.580000-5 1.973112+5 2.630268-5 2.125960+5 2.670000-5 2.242860+5 2.730000-5 2.412520+5 2.786121-5 2.563565+5 2.851018-5 2.728898+5 2.920000-5 2.893640+5 3.000000-5 3.070660+5 3.090295-5 3.252865+5 3.190000-5 3.433400+5 3.300000-5 3.609040+5 3.400000-5 3.748680+5 3.507519-5 3.879184+5 3.650000-5 4.023740+5 3.801894-5 4.146080+5 3.950000-5 4.237520+5 4.120975-5 4.313164+5 4.315191-5 4.365772+5 4.518559-5 4.389147+5 4.731513-5 4.385111+5 5.000000-5 4.346680+5 5.248075-5 4.285266+5 5.559043-5 4.182551+5 5.900000-5 4.047760+5 6.237348-5 3.900300+5 6.650000-5 3.710120+5 7.079458-5 3.509949+5 7.585776-5 3.279305+5 8.222426-5 3.006751+5 9.015711-5 2.700983+5 1.000000-4 2.375320+5 1.122018-4 2.043938+5 1.258925-4 1.746705+5 1.412538-4 1.481989+5 1.580000-4 1.253748+5 1.800000-4 1.023266+5 2.213095-4 7.336615+4 2.691535-4 5.323079+4 3.090295-4 4.213791+4 3.630781-4 3.178057+4 4.365158-4 2.284896+4 5.188000-4 1.664015+4 6.382635-4 1.129210+4 7.328245-4 8.661635+3 8.511380-4 6.445372+3 9.772372-4 4.872065+3 1.135011-3 3.570398+3 1.318257-3 2.595827+3 1.531087-3 1.872259+3 1.778279-3 1.339466+3 2.065380-3 9.509463+2 2.398833-3 6.701011+2 2.786121-3 4.689989+2 3.235937-3 3.259039+2 3.758374-3 2.248171+2 4.315191-3 1.585019+2 5.011872-3 1.077662+2 5.888437-3 7.057460+1 6.918310-3 4.585720+1 8.128305-3 2.957411+1 9.660509-3 1.833841+1 1.148154-2 1.128399+1 1.364583-2 6.891307+0 1.621810-2 4.178004+0 1.949845-2 2.431208+0 2.344229-2 1.404239+0 2.851018-2 7.779121-1 3.507519-2 4.130401-1 4.415704-2 2.027932-1 5.754399-2 8.874589-2 7.673615-2 3.579894-2 1.412538-1 5.186033-3 1.819701-1 2.338312-3 2.213095-1 1.273280-3 2.570396-1 8.055137-4 2.951209-1 5.317771-4 3.349654-1 3.661455-4 3.758374-1 2.627553-4 4.168694-1 1.962826-4 4.623810-1 1.477079-4 5.069907-1 1.155007-4 5.559043-1 9.094514-5 6.095369-1 7.212414-5 6.683439-1 5.763358-5 7.328245-1 4.640433-5 8.035261-1 3.765042-5 8.709636-1 3.155074-5 9.440609-1 2.660548-5 1.035142+0 2.206653-5 1.161449+0 1.756875-5 1.288250+0 1.442428-5 1.428894+0 1.193825-5 1.566751+0 1.016013-5 1.737801+0 8.538015-6 1.949845+0 7.093308-6 2.213095+0 5.832141-6 2.511886+0 4.830800-6 2.884032+0 3.963821-6 3.349654+0 3.225478-6 3.890451+0 2.644395-6 4.623810+0 2.119560-6 5.623413+0 1.663292-6 6.839116+0 1.315931-6 8.413951+0 1.033856-6 1.047129+1 8.066974-7 1.380384+1 5.941291-7 1.927525+1 4.143134-7 2.800000+1 2.792600-7 4.518559+1 1.699255-7 8.128305+1 9.320170-8 1.621810+2 4.633247-8 6.456542+2 1.156489-8 8.128305+4 9.16418-11 1.000000+5 7.45460-11 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.095000-5 2.095000-5 1.000000+5 2.095000-5 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.095000-5 0.0 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.034000-5 1.912102+7 1.060000-5 1.934382+7 1.085000-5 1.944648+7 1.109175-5 1.944136+7 1.140000-5 1.928729+7 1.170000-5 1.897889+7 1.200000-5 1.853969+7 1.222000-5 1.814129+7 1.245000-5 1.765782+7 1.273503-5 1.697645+7 1.303167-5 1.619352+7 1.335000-5 1.529236+7 1.364583-5 1.441558+7 1.396368-5 1.345275+7 1.428894-5 1.246361+7 1.462177-5 1.146690+7 1.500000-5 1.037247+7 1.531087-5 9.515417+6 1.570000-5 8.507099+6 1.611900-5 7.510582+6 1.659587-5 6.492379+6 1.710000-5 5.547986+6 1.757924-5 4.768712+6 1.819701-5 3.918025+6 1.883649-5 3.196090+6 1.950000-5 2.589607+6 2.040000-5 1.953315+6 2.137962-5 1.446197+6 2.426610-5 6.326670+5 2.511886-5 5.077032+5 2.580000-5 4.304456+5 2.650000-5 3.674377+5 2.710000-5 3.241432+5 2.770000-5 2.889486+5 2.818383-5 2.655206+5 2.870000-5 2.446581+5 2.920000-5 2.279408+5 2.965000-5 2.154221+5 3.000000-5 2.071355+5 3.040000-5 1.990395+5 3.090295-5 1.906938+5 3.135000-5 1.847649+5 3.190000-5 1.791289+5 3.245000-5 1.750529+5 3.300000-5 1.722956+5 3.350000-5 1.707556+5 3.420000-5 1.698876+5 3.500000-5 1.703782+5 3.589219-5 1.723539+5 3.690000-5 1.759049+5 3.801894-5 1.809644+5 4.000000-5 1.914942+5 4.365158-5 2.117456+5 4.570882-5 2.220288+5 4.800000-5 2.318981+5 5.011872-5 2.393720+5 5.248075-5 2.457708+5 5.495409-5 2.503601+5 5.754399-5 2.530754+5 6.025596-5 2.539158+5 6.309573-5 2.528982+5 6.606934-5 2.501226+5 6.918310-5 2.457695+5 7.300000-5 2.389474+5 7.673615-5 2.311598+5 8.128305-5 2.208604+5 8.609938-5 2.095568+5 9.120108-5 1.975758+5 9.800000-5 1.821995+5 1.047129-4 1.679371+5 1.135011-4 1.509216+5 1.224700-4 1.353944+5 1.318257-4 1.210696+5 1.428894-4 1.062710+5 1.548817-4 9.256607+4 1.678804-4 8.009207+4 1.862087-4 6.596725+4 2.113489-4 5.159629+4 2.371374-4 4.097277+4 2.600160-4 3.385873+4 2.851018-4 2.779037+4 3.126079-4 2.265656+4 3.507519-4 1.742004+4 3.935501-4 1.329896+4 4.415704-4 1.007778+4 5.069907-4 7.166628+3 5.754399-4 5.210357+3 6.382635-4 3.987221+3 7.161434-4 2.938135+3 8.035261-4 2.148510+3 9.015711-4 1.558520+3 1.011579-3 1.122504+3 1.148154-3 7.764359+2 1.303167-3 5.329860+2 1.479108-3 3.632575+2 1.698244-3 2.373309+2 1.949845-3 1.538605+2 2.238721-3 9.901757+1 2.570396-3 6.325717+1 2.951209-3 4.011629+1 3.388442-3 2.525323+1 3.890451-3 1.578465+1 4.466836-3 9.797288+0 5.188000-3 5.800737+0 6.095369-3 3.272370+0 7.161434-3 1.832283+0 8.413951-3 1.018384+0 1.000000-2 5.385399-1 1.188502-2 2.825597-1 1.428894-2 1.409279-1 1.717908-2 6.974611-2 2.137962-2 3.000484-2 2.786121-2 1.071527-2 5.559043-2 7.178343-4 7.328245-2 2.447554-4 9.015711-2 1.099600-4 1.096478-1 5.203838-5 1.288250-1 2.830421-5 1.500000-1 1.604800-5 1.717908-1 9.746743-6 1.949845-1 6.162048-6 2.213095-1 3.925470-6 2.483133-1 2.624352-6 2.786121-1 1.767813-6 3.090295-1 1.247495-6 3.427678-1 8.865698-7 3.801894-1 6.347900-7 4.168694-1 4.748317-7 4.570882-1 3.575078-7 5.011872-1 2.710151-7 5.495409-1 2.069323-7 6.025596-1 1.591431-7 6.606935-1 1.232959-7 7.244360-1 9.623054-8 8.609938-1 6.138475-8 9.120108-1 5.316802-8 9.660509-1 4.636160-8 1.011579+0 4.179356-8 1.083927+0 3.605952-8 1.148154+0 3.209531-8 1.230269+0 2.813900-8 1.333521+0 2.431663-8 1.462177+0 2.073312-8 1.698244+0 1.609449-8 1.905461+0 1.333856-8 2.137962+0 1.114310-8 2.426610+0 9.211892-9 2.786121+0 7.543953-9 3.198895+0 6.224266-9 3.715352+0 5.091775-9 4.365158+0 4.132536-9 5.248075+0 3.281318-9 6.309573+0 2.624434-9 8.035261+0 1.975762-9 1.035142+1 1.481150-9 1.364583+1 1.090631-9 1.905461+1 7.60293-10 2.754229+1 5.14981-10 4.415704+1 3.15423-10 7.852356+1 1.74971-10 1.566751+2 8.69602-11 3.126079+2 4.33959-11 2.483133+3 5.44212-12 1.000000+5 1.35120-13 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.034000-5 1.034000-5 1.000000+5 1.034000-5 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.034000-5 0.0 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.025000-5 3.854138+7 1.050000-5 3.895338+7 1.075000-5 3.913712+7 1.105000-5 3.905418+7 1.135011-5 3.866243+7 1.161449-5 3.807410+7 1.190700-5 3.717203+7 1.220000-5 3.604485+7 1.245000-5 3.492218+7 1.273503-5 3.348844+7 1.303167-5 3.185848+7 1.333521-5 3.008725+7 1.364583-5 2.820867+7 1.396368-5 2.625753+7 1.428894-5 2.426928+7 1.462177-5 2.227941+7 1.500000-5 2.010859+7 1.531087-5 1.841706+7 1.570000-5 1.643599+7 1.611900-5 1.448528+7 1.659587-5 1.249952+7 1.710000-5 1.066409+7 1.757924-5 9.153648+6 1.819701-5 7.508786+6 1.883649-5 6.116348+6 1.950000-5 4.949553+6 2.040000-5 3.727391+6 2.150000-5 2.657201+6 2.400000-5 1.295191+6 2.483133-5 1.042182+6 2.560000-5 8.634277+5 2.610000-5 7.697770+5 2.670000-5 6.766408+5 2.730000-5 6.010408+5 2.786121-5 5.435083+5 2.830000-5 5.060300+5 2.870000-5 4.768246+5 2.920000-5 4.461126+5 2.965000-5 4.232619+5 3.000000-5 4.082432+5 3.040000-5 3.936565+5 3.090295-5 3.787760+5 3.135000-5 3.683658+5 3.190000-5 3.586751+5 3.245000-5 3.519124+5 3.300000-5 3.476164+5 3.350000-5 3.455124+5 3.420000-5 3.449604+5 3.500000-5 3.470671+5 3.589219-5 3.520408+5 3.690000-5 3.600538+5 3.845918-5 3.755948+5 4.315191-5 4.283641+5 4.518559-5 4.491793+5 4.731513-5 4.681147+5 4.954502-5 4.843717+5 5.188000-5 4.973953+5 5.432503-5 5.068727+5 5.688529-5 5.126038+5 5.956621-5 5.144742+5 6.237348-5 5.125747+5 6.531306-5 5.071913+5 6.839116-5 4.985874+5 7.161434-5 4.870462+5 7.500000-5 4.730086+5 7.943282-5 4.528795+5 8.413951-5 4.303210+5 9.015711-5 4.013801+5 9.549926-5 3.764169+5 1.023293-4 3.461999+5 1.096478-4 3.164086+5 1.190000-4 2.821524+5 1.273503-4 2.549528+5 1.380384-4 2.243842+5 1.500000-4 1.950258+5 1.621810-4 1.697874+5 1.778279-4 1.431629+5 2.000000-4 1.142169+5 2.238721-4 9.135213+4 2.483133-4 7.392350+4 2.730000-4 6.048914+4 3.000000-4 4.918486+4 3.349654-4 3.831972+4 3.758374-4 2.930650+4 4.216965-4 2.224861+4 4.786301-4 1.630593+4 5.495409-4 1.153925+4 6.095369-4 8.850429+3 6.760830-4 6.739487+3 7.585776-4 4.942183+3 8.413951-4 3.713580+3 9.440609-4 2.683719+3 1.059254-3 1.926007+3 1.202264-3 1.327023+3 1.364583-3 9.074851+2 1.566751-3 5.947951+2 1.798871-3 3.868498+2 2.065380-3 2.496787+2 2.371374-3 1.599678+2 2.722701-3 1.017295+2 3.126079-3 6.421348+1 3.589219-3 4.023329+1 4.120975-3 2.502350+1 4.731513-3 1.544774+1 5.495409-3 9.092286+0 6.531306-3 4.891648+0 7.673615-3 2.722551+0 9.015711-3 1.504190+0 1.059254-2 8.249980-1 1.258925-2 4.301004-1 1.513561-2 2.129941-1 1.840772-2 1.000511-1 2.290868-2 4.263772-2 2.951209-2 1.574606-2 6.998420-2 5.139998-4 8.810489-2 2.076531-4 1.083927-1 9.255412-5 1.273503-1 4.971120-5 1.462177-1 2.937546-5 1.678804-1 1.748321-5 1.883649-1 1.142201-5 2.113489-1 7.515285-6 2.344229-1 5.191481-6 2.600160-1 3.612213-6 2.851018-1 2.634103-6 3.126079-1 1.933914-6 3.427678-1 1.430281-6 3.715352-1 1.105547-6 4.027170-1 8.600475-7 4.365158-1 6.737889-7 4.731513-1 5.314583-7 5.128614-1 4.220864-7 5.559043-1 3.375764-7 6.025596-1 2.719427-7 6.531306-1 2.207790-7 7.079458-1 1.805600-7 7.673615-1 1.487317-7 8.413951-1 1.201486-7 9.120108-1 1.004253-7 9.885531-1 8.457252-8 1.083927+0 7.009041-8 1.174898+0 5.982802-8 1.288250+0 5.027265-8 1.428894+0 4.166090-8 1.584893+0 3.479103-8 1.757924+0 2.925983-8 1.972423+0 2.432308-8 2.238721+0 2.001139-8 2.540973+0 1.658636-8 2.917427+0 1.361892-8 3.388442+0 1.108899-8 3.981072+0 8.960971-9 4.731513+0 7.189843-9 5.754399+0 5.647308-9 7.000000+0 4.470900-9 8.511380+0 3.562655-9 1.047129+1 2.816749-9 1.364583+1 2.100812-9 1.905461+1 1.464552-9 2.754229+1 9.92004-10 4.466836+1 6.00412-10 8.035261+1 3.29248-10 1.603245+2 1.63665-10 3.198895+2 8.16833-11 2.540973+3 1.02443-11 1.000000+5 2.60290-13 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.025000-5 1.025000-5 1.000000+5 1.025000-5 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.025000-5 0.0 1.000000+5 1.000000+5 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.016260-8 1.028750+0 1.016260-7 1.036640+0 1.016260-6 1.038200+0 1.371480-6 1.039700+0 1.781820-6 1.041500+0 2.370700-6 1.043800+0 3.290610-6 1.046400+0 4.578260-6 1.048300+0 5.700060-6 1.051200+0 7.732010-6 1.054080+0 1.016260-5 1.057700+0 1.385220-5 1.061100+0 1.801820-5 1.065100+0 2.385390-5 1.070400+0 3.327830-5 1.076200+0 4.599020-5 1.080600+0 5.743420-5 1.087100+0 7.738350-5 1.093710+0 1.016260-4 1.102600+0 1.409110-4 1.110700+0 1.837890-4 1.120600+0 2.458790-4 1.133300+0 3.419040-4 1.147500+0 4.721260-4 1.158200+0 5.867540-4 1.174100+0 7.841010-4 1.190110+0 1.016260-3 1.205100+0 1.264390-3 1.227500+0 1.691550-3 1.250000+0 2.188000-3 1.281300+0 2.988740-3 1.308600+0 3.789100-3 1.332500+0 4.565080-3 1.374400+0 6.087410-3 1.405800+0 7.356750-3 1.452900+0 9.454170-3 1.500000+0 1.177000-2 1.562500+0 1.515410-2 1.617200+0 1.838500-2 1.712900+0 2.456320-2 1.784700+0 2.958470-2 1.892300+0 3.761540-2 2.000000+0 4.614000-2 2.044000+0 4.973000-2 2.163500+0 5.966550-2 2.372600+0 7.742200-2 2.529500+0 9.084240-2 2.764700+0 1.108710-1 3.000000+0 1.307000-1 3.437500+0 1.667280-1 4.000000+0 2.108000-1 4.750000+0 2.648730-1 5.000000+0 2.819000-1 6.000000+0 3.456000-1 7.000000+0 4.023000-1 8.000000+0 4.533000-1 9.000000+0 4.995000-1 1.000000+1 5.414000-1 1.100000+1 5.794000-1 1.200000+1 6.143000-1 1.300000+1 6.467000-1 1.400000+1 6.767000-1 1.500000+1 7.048000-1 1.600000+1 7.312000-1 1.800000+1 7.795000-1 2.000000+1 8.226000-1 2.200000+1 8.617000-1 2.400000+1 8.972000-1 2.600000+1 9.297000-1 2.800000+1 9.596000-1 3.000000+1 9.873000-1 4.000000+1 1.102000+0 5.000000+1 1.187000+0 6.000000+1 1.254000+0 8.000000+1 1.353000+0 1.000000+2 1.424000+0 1.500000+2 1.540000+0 2.000000+2 1.610000+0 3.000000+2 1.694000+0 4.000000+2 1.743000+0 5.000000+2 1.775000+0 6.000000+2 1.799000+0 8.000000+2 1.830000+0 1.000000+3 1.850000+0 1.500000+3 1.880000+0 2.000000+3 1.897000+0 3.000000+3 1.914000+0 4.000000+3 1.924000+0 5.000000+3 1.930000+0 6.000000+3 1.934000+0 8.000000+3 1.940000+0 1.000000+4 1.943000+0 1.500000+4 1.948000+0 2.000000+4 1.950000+0 3.000000+4 1.953000+0 4.000000+4 1.955000+0 5.000000+4 1.956000+0 6.000000+4 1.956000+0 8.000000+4 1.957000+0 1.000000+5 1.957000+0 1 16000 7 8 3.206400+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.606770-7 2.127900+0 1.223000-6 2.136250+0 1.606770-6 2.147000+0 2.202990-6 2.156900+0 2.861420-6 2.169000+0 3.818750-6 2.184500+0 5.308190-6 2.201800+0 7.344030-6 2.214800+0 9.150090-6 2.234200+0 1.230850-5 2.253680+0 1.606770-5 2.281500+0 2.250570-5 2.307000+0 2.956110-5 2.338200+0 3.974760-5 2.377400+0 5.504570-5 2.410200+0 7.000900-5 2.446800+0 8.905540-5 2.485900+0 1.121260-4 2.532900+0 1.434960-4 2.556430+0 1.606770-4 2.611900+0 2.048800-4 2.660400+0 2.476870-4 2.745300+0 3.315090-4 2.809000+0 4.014740-4 2.904500+0 5.171900-4 3.000000+0 6.456000-4 3.125000+0 8.325270-4 3.234400+0 1.013070-3 3.425800+0 1.364450-3 3.569300+0 1.654730-3 3.784700+0 2.127570-3 4.000000+0 2.636000-3 4.250000+0 3.257710-3 4.625000+0 4.235140-3 5.000000+0 5.252000-3 5.500000+0 6.649290-3 6.000000+0 8.066000-3 6.750000+0 1.017460-2 7.000000+0 1.087000-2 8.000000+0 1.360000-2 9.000000+0 1.621000-2 1.000000+1 1.870000-2 1.100000+1 2.106000-2 1.200000+1 2.328000-2 1.300000+1 2.539000-2 1.400000+1 2.740000-2 1.500000+1 2.930000-2 1.600000+1 3.111000-2 1.800000+1 3.448000-2 2.000000+1 3.756000-2 2.200000+1 4.039000-2 2.400000+1 4.301000-2 2.600000+1 4.543000-2 2.800000+1 4.768000-2 3.000000+1 4.979000-2 4.000000+1 5.860000-2 5.000000+1 6.540000-2 6.000000+1 7.086000-2 8.000000+1 7.923000-2 1.000000+2 8.544000-2 1.500000+2 9.599000-2 2.000000+2 1.028000-1 3.000000+2 1.113000-1 4.000000+2 1.166000-1 5.000000+2 1.203000-1 6.000000+2 1.230000-1 8.000000+2 1.268000-1 1.000000+3 1.293000-1 1.500000+3 1.331000-1 2.000000+3 1.353000-1 3.000000+3 1.377000-1 4.000000+3 1.391000-1 5.000000+3 1.399000-1 6.000000+3 1.405000-1 8.000000+3 1.413000-1 1.000000+4 1.419000-1 1.500000+4 1.426000-1 2.000000+4 1.430000-1 3.000000+4 1.434000-1 4.000000+4 1.436000-1 5.000000+4 1.438000-1 6.000000+4 1.439000-1 8.000000+4 1.440000-1 1.000000+5 1.441000-1 1 16000 7 8 3.206400+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 16000 7 9 3.206400+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.600000+1 1.000000+5 1.600000+1 5.000000+5 1.599400+1 7.187500+5 1.598670+1 8.593700+5 1.598310+1 1.000000+6 1.597800+1 1.250000+6 1.596520+1 1.500000+6 1.595200+1 2.000000+6 1.591400+1 2.500000+6 1.586600+1 3.000000+6 1.580800+1 3.750000+6 1.570240+1 4.000000+6 1.566400+1 4.750000+6 1.553030+1 5.000000+6 1.548300+1 5.500000+6 1.537940+1 6.000000+6 1.526950+1 6.250000+6 1.521050+1 7.000000+6 1.502700+1 7.875000+6 1.479420+1 8.000000+6 1.476040+1 8.625000+6 1.458230+1 9.000000+6 1.447400+1 1.000000+7 1.417200+1 1.062500+7 1.397660+1 1.125000+7 1.377950+1 1.156300+7 1.367880+1 1.250000+7 1.337800+1 1.375000+7 1.297300+1 1.437500+7 1.277220+1 1.500000+7 1.257400+1 1.625000+7 1.218210+1 1.687500+7 1.199170+1 1.750000+7 1.180500+1 1.937500+7 1.126850+1 2.000000+7 1.109900+1 2.218800+7 1.054170+1 2.406300+7 1.011360+1 2.500000+7 9.916200+0 2.750000+7 9.439330+0 3.000000+7 9.028500+0 3.250000+7 8.676380+0 3.625000+7 8.227430+0 4.000000+7 7.847700+0 4.750000+7 7.208540+0 5.000000+7 7.011400+0 5.500000+7 6.623830+0 5.875000+7 6.336780+0 6.000000+7 6.241800+0 6.437500+7 5.909310+0 6.812500+7 5.627660+0 7.000000+7 5.489200+0 7.500000+7 5.125270+0 8.000000+7 4.775400+0 8.500000+7 4.441360+0 9.000000+7 4.126200+0 9.500000+7 3.831470+0 1.000000+8 3.558300+0 1.062500+8 3.247580+0 1.125000+8 2.971680+0 1.250000+8 2.520000+0 1.375000+8 2.180200+0 1.437500+8 2.044600+0 1.468800+8 1.983980+0 1.500000+8 1.928000+0 1.562500+8 1.828120+0 1.671900+8 1.684690+0 1.750000+8 1.601110+0 1.753900+8 1.597280+0 1.877000+8 1.490050+0 2.000000+8 1.404400+0 2.125000+8 1.333560+0 2.312500+8 1.247580+0 2.500000+8 1.176900+0 2.750000+8 1.094270+0 2.875000+8 1.053040+0 3.000000+8 1.010100+0 3.125000+8 9.653360-1 3.500000+8 8.433000-1 3.812500+8 7.649630-1 3.937500+8 7.341060-1 4.000000+8 7.181000-1 4.125000+8 6.846920-1 4.234400+8 6.547550-1 4.425800+8 6.028220-1 4.569300+8 5.655440-1 5.000000+8 4.678000-1 5.437500+8 3.908790-1 5.718800+8 3.486280-1 5.929700+8 3.192400-1 6.000000+8 3.098000-1 6.562500+8 2.439360-1 6.718800+8 2.299020-1 6.906300+8 2.157660-1 7.000000+8 2.098000-1 7.125000+8 2.029120-1 7.671900+8 1.790010-1 7.835900+8 1.718460-1 8.000000+8 1.641000-1 8.125000+8 1.577090-1 8.297100+8 1.484800-1 8.455000+8 1.398250-1 8.648200+8 1.293140-1 8.896000+8 1.163980-1 9.172000+8 1.031770-1 1.000000+9 7.260000-2 1.031300+9 6.440790-2 1.074300+9 5.534330-2 1.113800+9 4.867240-2 1.139500+9 4.498130-2 1.500000+9 1.825000-2 1.589800+9 1.491400-2 1.665000+9 1.263710-2 1.784700+9 9.787010-3 2.000000+9 6.371000-3 2.750000+9 1.899570-3 3.875000+9 5.132420-4 5.000000+9 1.933100-4 8.000000+9 3.185200-5 9.500000+9 1.654700-5 1.00000+10 1.362200-5 1.20500+10 6.749560-6 1.41820+10 3.676560-6 1.71170+10 1.835730-6 2.01490+10 1.011060-6 2.26440+10 6.618850-7 2.74790+10 3.298360-7 3.20120+10 1.913340-7 3.62610+10 1.230690-7 4.42280+10 6.127520-8 5.12000+10 3.681010-8 6.34000+10 1.760810-8 7.94120+10 8.162610-9 1.00000+11 3.746600-9 1.26840+11 1.692600-9 1.58400+11 8.11524-10 2.01970+11 3.66099-10 2.73980+11 1.36341-10 3.89420+11 4.42925-11 5.35610+11 1.61845-11 8.96670+11 3.25302-12 1.40100+12 8.27622-13 2.73660+12 1.09448-13 6.72830+12 7.56033-15 1.00000+14 2.85150-18 5.62340+14 1.75958-20 5.42470+15 2.02949-23 1.00000+17 3.13270-27 1 16000 7 0 3.206400+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 2.90000-12 1.000000+2 2.90000-10 1.000000+3 2.900000-8 1.000000+4 2.900000-6 1.000000+5 2.900000-4 5.000000+5 7.250000-3 7.187500+5 1.498145-2 8.593700+5 2.141699-2 1.000000+6 2.900000-2 1.250000+6 4.510090-2 1.500000+6 6.460000-2 2.000000+6 1.142000-1 2.500000+6 1.770000-1 3.000000+6 2.526000-1 3.750000+6 3.881020-1 4.000000+6 4.388000-1 4.750000+6 6.057200-1 5.000000+6 6.660000-1 5.500000+6 7.926200-1 6.000000+6 9.266300-1 6.250000+6 9.960760-1 7.000000+6 1.212700+0 7.875000+6 1.477720+0 8.000000+6 1.516470+0 8.625000+6 1.712250+0 9.000000+6 1.831300+0 1.000000+7 2.151000+0 1.062500+7 2.350680+0 1.125000+7 2.549240+0 1.156300+7 2.647990+0 1.250000+7 2.939700+0 1.375000+7 3.317210+0 1.437500+7 3.500440+0 1.500000+7 3.680000+0 1.625000+7 4.025900+0 1.687500+7 4.192150+0 1.750000+7 4.354500+0 1.937500+7 4.814500+0 2.000000+7 4.960000+0 2.218800+7 5.436820+0 2.406300+7 5.809240+0 2.500000+7 5.983800+0 2.750000+7 6.412380+0 3.000000+7 6.795000+0 3.250000+7 7.137070+0 3.625000+7 7.593360+0 4.000000+7 8.002000+0 4.750000+7 8.731920+0 5.000000+7 8.960000+0 5.500000+7 9.403730+0 5.875000+7 9.724110+0 6.000000+7 9.829000+0 6.437500+7 1.018730+1 6.812500+7 1.048200+1 7.000000+7 1.062600+1 7.500000+7 1.099200+1 8.000000+7 1.133600+1 8.500000+7 1.165520+1 9.000000+7 1.195200+1 9.500000+7 1.222270+1 1.000000+8 1.247200+1 1.062500+8 1.275100+1 1.125000+8 1.299920+1 1.250000+8 1.341400+1 1.375000+8 1.373480+1 1.437500+8 1.386960+1 1.468800+8 1.393100+1 1.500000+8 1.399000+1 1.562500+8 1.409790+1 1.671900+8 1.426250+1 1.750000+8 1.436520+1 1.753900+8 1.437000+1 1.877000+8 1.451310+1 2.000000+8 1.464100+1 2.125000+8 1.475720+1 2.312500+8 1.491300+1 2.500000+8 1.505100+1 2.750000+8 1.521260+1 2.875000+8 1.528310+1 3.000000+8 1.535100+1 3.125000+8 1.541080+1 3.500000+8 1.556700+1 3.812500+8 1.566600+1 3.937500+8 1.569960+1 4.000000+8 1.571600+1 4.125000+8 1.574380+1 4.234400+8 1.576740+1 4.425800+8 1.580150+1 4.569300+8 1.582580+1 5.000000+8 1.588000+1 5.437500+8 1.591720+1 5.718800+8 1.593300+1 5.929700+8 1.594430+1 6.000000+8 1.594800+1 6.562500+8 1.596620+1 6.718800+8 1.597100+1 6.906300+8 1.597510+1 7.000000+8 1.597700+1 7.125000+8 1.597860+1 7.671900+8 1.598520+1 7.835900+8 1.598710+1 8.000000+8 1.598900+1 8.125000+8 1.598960+1 8.297100+8 1.599030+1 8.455000+8 1.599100+1 8.648200+8 1.599180+1 8.896000+8 1.599280+1 9.172000+8 1.599390+1 1.000000+9 1.599700+1 1.031300+9 1.599720+1 1.074300+9 1.599750+1 1.113800+9 1.599780+1 1.139500+9 1.599800+1 1.500000+9 1.600000+1 1.589800+9 1.600000+1 1.665000+9 1.600000+1 1.784700+9 1.600000+1 2.000000+9 1.600000+1 2.750000+9 1.600000+1 3.875000+9 1.600000+1 5.000000+9 1.600000+1 8.000000+9 1.600000+1 9.500000+9 1.600000+1 1.00000+10 1.600000+1 1.20500+10 1.600000+1 1.41820+10 1.600000+1 1.71170+10 1.600000+1 2.01490+10 1.600000+1 2.26440+10 1.600000+1 2.74790+10 1.600000+1 3.20120+10 1.600000+1 3.62610+10 1.600000+1 4.42280+10 1.600000+1 5.12000+10 1.600000+1 6.34000+10 1.600000+1 7.94120+10 1.600000+1 1.00000+11 1.600000+1 1.26840+11 1.600000+1 1.58400+11 1.600000+1 2.01970+11 1.600000+1 2.73980+11 1.600000+1 3.89420+11 1.600000+1 5.35610+11 1.600000+1 8.96670+11 1.600000+1 1.40100+12 1.600000+1 2.73660+12 1.600000+1 6.72830+12 1.600000+1 1.00000+14 1.600000+1 5.62340+14 1.600000+1 5.42470+15 1.600000+1 1.00000+17 1.600000+1 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.010068-6 0.0 6.743937-6 0.0 6.768836-6 5.872930-1 6.777135-6 7.805741-1 6.793735-6 1.425782+0 6.810334-6 2.404065+0 6.826933-6 3.741907+0 6.847682-6 5.907547+0 6.876731-6 9.205780+0 6.894368-6 1.075883+1 6.909930-6 1.164628+1 6.928995-6 1.190457+1 6.947506-6 1.142739+1 6.976595-6 9.856176+0 7.039985-6 5.213175+0 7.076839-6 2.532915+0 7.090566-6 1.875134+0 7.107397-6 1.210521+0 7.124228-6 7.213840-1 7.141059-6 3.968393-1 7.166306-6 1.008781-1 7.174721-6 0.0 7.765121-6 0.0 7.769816-6 1.718494-7 7.803347-6 2.587666-6 7.808065-6 3.037331-6 7.822460-6 4.751892-6 7.827189-6 5.461322-6 7.841573-6 8.058901-6 7.846314-6 9.073195-6 7.863988-6 1.352892-5 7.922811-6 3.385515-5 7.941936-6 3.924457-5 7.961060-6 4.269132-5 7.980184-6 4.382675-5 7.999481-6 4.270789-5 8.018838-6 3.974150-5 8.038194-6 3.550533-5 8.109153-6 1.661300-5 8.147379-6 7.854669-6 8.154331-6 6.641294-6 8.173687-6 4.287388-6 8.193043-6 2.554977-6 8.212400-6 1.405514-6 8.231756-6 7.137353-7 8.251112-6 0.0 8.482660-6 0.0 8.482709-6 1.635129-4 8.521857-6 1.301419+0 8.524467-6 1.387378+0 8.545346-6 2.534077+0 8.566225-6 4.282671+0 8.576881-6 5.532774+0 8.587104-6 6.900913+0 8.622933-6 1.280718+1 8.660181-6 1.926300+1 8.673231-6 2.120062+1 8.695252-6 2.348041+1 8.716666-6 2.440165+1 8.737483-6 2.400109+1 8.768992-6 2.153455+1 8.795368-6 1.824176+1 8.853313-6 9.904224+0 8.893545-6 5.039174+0 8.900606-6 4.286867+0 8.914655-6 3.302103+0 8.935766-6 2.138090+0 8.956877-6 1.307789+0 8.984916-6 5.488138-1 8.999099-6 2.252581-1 9.019796-6 1.358114-1 9.041105-6 7.471095-2 9.062415-6 3.793905-2 9.083724-6 0.0 9.145573-6 0.0 9.145612-6 6.210895-5 9.190634-6 7.101129-1 9.213145-6 1.322991+0 9.237064-6 2.317391+0 9.259689-6 3.759065+0 9.298447-6 6.883513+0 9.345562-6 1.079612+1 9.374888-6 1.236788+1 9.398369-6 1.276690+1 9.427864-6 1.219067+1 9.454882-6 1.084615+1 9.522698-6 6.580960+0 9.532556-6 6.033203+0 9.554447-6 5.148013+0 9.582447-6 4.647274+0 9.598704-6 4.592407+0 9.632103-6 5.376452+0 9.672620-6 6.716319+0 9.719520-6 7.705546+0 9.746688-6 7.958085+0 9.821453-6 7.805790+0 9.883584-6 7.587577+0 1.015142-5 7.989272+0 1.034981-5 8.579164+0 1.040247-5 9.649590+0 1.042805-5 1.050026+1 1.044668-5 1.152600+1 1.048518-5 1.547492+1 1.050715-5 1.836523+1 1.053339-5 2.252591+1 1.060330-5 3.519468+1 1.063147-5 3.912919+1 1.065920-5 4.127513+1 1.068703-5 4.136658+1 1.070614-5 4.005592+1 1.074046-5 3.529276+1 1.080707-5 2.257626+1 1.084328-5 1.671565+1 1.085802-5 1.469270+1 1.088294-5 1.246930+1 1.090543-5 1.108276+1 1.095684-5 9.161446+0 1.183516-5 9.499168+0 1.261723-5 9.257810+0 1.373699-5 8.198713+0 1.647535-5 4.648648+0 1.759494-5 3.489841+0 1.847445-5 2.766646+0 1.929813-5 2.222507+0 2.018255-5 1.762625+0 2.095000-5 1.448425+0 2.178830-5 1.179946+0 2.262062-5 9.725960-1 2.367415-5 7.762323-1 2.467329-5 6.421200-1 2.580000-5 5.371583-1 2.694916-5 4.670591-1 2.814339-5 4.233796-1 2.948125-5 3.998151-1 3.112648-5 3.967342-1 3.300000-5 4.157882-1 3.589219-5 4.727420-1 4.806410-5 7.854157-1 5.514219-5 9.292528-1 6.237348-5 1.030521+0 7.300000-5 1.106864+0 8.429205-5 1.124832+0 1.104681-4 1.071034+0 1.640355-4 8.643622-1 1.652608-4 8.917716-1 1.660669-4 9.573791-1 1.667571-4 1.064142+0 1.670753-4 1.133350+0 1.675534-4 1.273061+0 1.680338-4 1.448002+0 1.687848-4 1.828226+0 1.693562-4 2.225662+0 1.700336-4 2.866744+0 1.706312-4 3.595021+0 1.714228-4 4.784131+0 1.741000-4 9.421721+0 1.752000-4 1.086634+1 1.764933-4 1.192831+1 1.786243-4 1.265523+1 1.851100-4 1.308292+1 2.071816-4 1.244164+1 2.106418-4 1.229358+1 2.126196-4 1.289944+1 2.152583-4 1.495613+1 2.162796-4 1.486046+1 2.187721-4 1.264008+1 2.199571-4 1.209255+1 2.213441-4 1.200427+1 2.252357-4 1.261785+1 3.535442-4 8.324362+0 4.217245-4 6.649482+0 4.915200-4 5.392013+0 5.652540-4 4.422741+0 6.588004-4 3.530728+0 7.597638-4 2.844941+0 8.544363-4 2.371400+0 9.558888-4 1.986497+0 1.063646-3 1.672970+0 1.209695-3 1.356944+0 1.365320-3 1.111311+0 1.537919-3 9.108292-1 1.735660-3 7.428570-1 1.988941-3 5.887310-1 2.258135-3 4.730007-1 2.386929-3 4.306511-1 2.398693-3 4.956381-1 2.404554-3 5.600057-1 2.410313-3 6.623629-1 2.416316-3 8.241469-1 2.423620-3 1.113933+0 2.429178-3 1.390018+0 2.442407-3 2.216029+0 2.452850-3 2.874464+0 2.462710-3 3.349429+0 2.473990-3 3.701907+0 2.489625-3 3.896947+0 2.556676-3 3.881127+0 3.058483-3 2.957383+0 3.476707-3 2.414813+0 4.001175-3 1.924391+0 4.546627-3 1.554022+0 5.140217-3 1.260752+0 5.726785-3 1.043748+0 6.347141-3 8.694970-1 7.083805-3 7.133192-1 7.908102-3 5.829092-1 8.834195-3 4.744184-1 9.780549-3 3.916428-1 1.074402-2 3.273608-1 1.184341-2 2.714535-1 1.307383-2 2.237461-1 1.445440-2 1.838291-1 1.590021-2 1.519717-1 1.757923-2 1.244155-1 1.971534-2 9.859951-2 2.162329-2 8.171272-2 2.364351-2 6.797154-2 2.585626-2 5.649382-2 2.843741-2 4.632337-2 3.127550-2 3.796071-2 3.491300-2 3.011440-2 3.876328-2 2.410711-2 4.258762-2 1.972004-2 4.696723-2 1.598485-2 5.177095-2 1.295521-2 5.744971-2 1.034887-2 6.386548-2 8.219918-3 6.998420-2 6.734319-3 7.684105-2 5.493526-3 8.358865-2 4.571379-3 9.137814-2 3.760788-3 9.926452-2 3.136505-3 1.083927-1 2.585548-3 1.206253-1 2.044524-3 1.308217-1 1.712457-3 1.457016-1 1.355630-3 1.605507-1 1.098556-3 1.739155-1 9.259518-4 1.941139-1 7.326541-4 2.122585-1 6.062656-4 2.333920-1 4.972215-4 2.596421-1 3.994960-4 2.821934-1 3.374844-4 3.098258-1 2.803840-4 3.411110-1 2.328518-4 3.758374-1 1.940021-4 4.219512-1 1.572181-4 4.708164-1 1.299984-4 5.217951-1 1.096561-4 5.871513-1 9.115255-5 6.605081-1 7.675174-5 7.536967-1 6.426319-5 8.773269-1 5.347952-5 1.022000+0 4.533093-5 1.228714+0 3.765805-5 1.477239+0 3.128390-5 1.776032+0 2.598867-5 2.135261+0 2.158973-5 2.567148+0 1.793537-5 3.086391+0 1.489956-5 3.710658+0 1.237761-5 4.461192+0 1.028253-5 5.363532+0 8.542068-6 6.448384+0 7.096205-6 7.752663+0 5.895075-6 9.320751+0 4.897252-6 9.760024+0 4.675395-6 1.000000+1 9.169633-6 1 16000 7 0 3.206400+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.599756+1 3.010068-6-1.596452+1 5.692240-6-1.550765+1 6.369454-6-1.469575+1 6.604836-6-1.366593+1 6.696141-6-1.263132+1 6.741101-6-1.150420+1 6.816040-6-8.363690+0 6.832639-6-7.917514+0 6.851314-6-7.948353+0 6.867349-6-8.544348+0 6.876731-6-9.203902+0 6.894368-6-1.093687+1 6.927048-6-1.497996+1 6.945496-6-1.722810+1 6.982243-6-1.409138+1 7.009663-6-1.277230+1 7.039985-6-1.205243+1 7.072422-6-1.221831+1 7.180469-6-1.563348+1 7.269253-6-1.697550+1 7.321673-6-1.744517+1 7.769816-6-1.569479+1 8.109153-6-1.427063+1 8.280056-6-1.290147+1 8.378742-6-1.147429+1 8.429360-6-1.028870+1 8.465796-6-8.983422+0 8.482709-6-8.002350+0 8.503588-6-6.724676+0 8.524467-6-5.444843+0 8.545346-6-3.949423+0 8.566225-6-2.431194+0 8.568889-6-2.208770+0 8.576881-6-1.674731+0 8.587104-6-1.079689+0 8.591104-6-8.822241-1 8.598104-6-7.049117-1 8.603354-6-6.520045-1 8.611228-6-6.715081-1 8.619103-6-7.672880-1 8.622933-6-8.461322-1 8.629635-6-1.108953+0 8.634662-6-1.385538+0 8.638432-6-1.637244+0 8.644087-6-2.092096+0 8.646914-6-2.360881+0 8.660181-6-3.921737+0 8.669316-6-5.228906+0 8.689216-6-8.705426+0 8.713032-6-1.366040+1 8.737483-6-1.879335+1 8.771366-6-1.316055+1 8.795368-6-1.017176+1 8.812867-6-8.801973+0 8.827197-6-8.111166+0 8.837654-6-7.861078+0 8.855923-6-7.817574+0 8.882467-6-8.454414+0 8.893545-6-8.987778+0 8.938405-6-1.206247+1 9.025123-6-1.696617+1 9.085516-6-1.938860+1 9.175350-6-1.591702+1 9.245769-6-1.272203+1 9.274203-6-1.192717+1 9.302602-6-1.188397+1 9.328622-6-1.262539+1 9.351601-6-1.407806+1 9.393084-6-1.767427+1 9.421219-6-2.020048+1 9.459338-6-1.781017+1 9.500253-6-1.700766+1 9.532556-6-1.765371+1 9.600283-6-2.079942+1 9.646679-6-1.966349+1 9.695163-6-2.000056+1 9.768784-6-2.155796+1 9.873417-6-2.140673+1 1.015142-5-2.320704+1 1.030390-5-2.563984+1 1.034981-5-2.698169+1 1.041416-5-2.134366+1 1.046352-5-1.566061+1 1.050715-5-1.197857+1 1.053339-5-1.078351+1 1.055454-5-1.078910+1 1.057472-5-1.162502+1 1.059275-5-1.311987+1 1.060330-5-1.447601+1 1.062776-5-1.846966+1 1.064802-5-2.245499+1 1.069900-5-9.677438+0 1.070614-5-7.786068+0 1.071457-5-5.987520+0 1.073225-5-2.463927+0 1.073524-5-1.907751+0 1.074046-5-1.039802+0 1.074829-5 1.126582-1 1.075613-5 1.171030+0 1.075931-5 1.578497+0 1.076528-5 2.225799+0 1.077051-5 2.711867+0 1.077965-5 3.408308+0 1.078651-5 3.809055+0 1.079165-5 4.039514+0 1.080322-5 4.316264+0 1.081981-5 4.149616+0 1.082618-5 4.021989+0 1.083255-5 3.781769+0 1.084865-5 2.969799+0 1.085402-5 2.551118+0 1.085802-5 2.175835+0 1.087972-5 5.162546-1 1.088294-5 2.304516-1 1.091185-5-1.859119+0 1.092149-5-2.447526+0 1.095041-5-4.112843+0 1.096292-5-5.075284+0 1.097507-5-5.736182+0 1.099931-5-6.715012+0 1.103549-5-7.755477+0 1.109538-5-8.909602+0 1.119000-5-1.001507+1 1.135224-5-1.096106+1 1.162044-5-1.147146+1 1.212460-5-1.127889+1 1.400539-5-8.801585+0 1.490454-5-8.008136+0 1.607252-5-7.545391+0 1.759494-5-7.588770+0 2.545715-5-9.787354+0 3.177125-5-1.072310+1 4.365158-5-1.135102+1 9.885531-5-1.183369+1 1.257925-4-1.280682+1 1.439416-4-1.421069+1 1.559716-4-1.602048+1 1.625841-4-1.789973+1 1.660669-4-1.977488+1 1.716550-4-2.475760+1 1.735000-4-2.474750+1 1.769500-4-2.143593+1 1.802894-4-1.876995+1 1.853692-4-1.631138+1 1.926341-4-1.408828+1 2.032342-4-1.209246+1 2.089112-4-1.161579+1 2.117544-4-1.204015+1 2.126196-4-1.210276+1 2.138906-4-1.197290+1 2.144476-4-1.176018+1 2.157614-4-1.017983+1 2.168952-4-8.835076+0 2.178921-4-8.346643+0 2.187721-4-8.406416+0 2.219051-4-9.453525+0 2.235292-4-9.486484+0 2.318572-4-8.264574+0 2.470853-4-6.884499+0 2.691535-4-5.390088+0 2.915879-4-4.211179+0 3.144808-4-3.276485+0 3.376599-4-2.592479+0 3.628389-4-2.057940+0 3.841078-4-1.718385+0 4.043919-4-1.464106+0 4.217245-4-1.285372+0 4.460412-4-1.092568+0 4.702662-4-9.470786-1 5.010057-4-8.180909-1 5.500477-4-6.785929-1 5.863069-4-6.112790-1 6.355138-4-5.627496-1 7.033760-4-5.440423-1 7.810445-4-5.641637-1 8.859111-4-6.256641-1 1.160991-3-8.548298-1 1.598166-3-1.278074+0 1.798235-3-1.518374+0 1.988941-3-1.821549+0 2.128881-3-2.143108+0 2.231628-3-2.496987+0 2.301477-3-2.863680+0 2.352387-3-3.278658+0 2.386929-3-3.735613+0 2.410313-3-4.277488+0 2.445477-3-5.544307+0 2.458482-3-5.644723+0 2.471967-3-5.325087+0 2.504431-3-4.041339+0 2.527084-3-3.465392+0 2.556676-3-2.976619+0 2.604525-3-2.434489+0 2.655832-3-2.022622+0 2.719584-3-1.649471+0 2.790626-3-1.336525+0 2.891360-3-1.001998+0 2.976894-3-7.877708-1 3.058483-3-6.233220-1 3.156643-3-4.613344-1 3.234762-3-3.546685-1 3.322931-3-2.522181-1 3.370475-3-2.030172-1 3.476707-3-1.094779-1 3.526883-3-7.018766-2 3.624548-3-2.458928-3 3.633449-3 3.741746-3 3.707949-3 4.733074-2 3.800398-3 9.635852-2 3.901665-3 1.437340-1 4.001175-3 1.830173-1 4.194646-3 2.420903-1 4.432816-3 2.953919-1 4.659558-3 3.292406-1 5.140217-3 3.719114-1 5.726785-3 3.859841-1 6.604335-3 3.766362-1 1.074402-2 2.478253-1 1.265673-2 2.015057-1 1.497178-2 1.589803-1 1.695791-2 1.312311-1 1.971534-2 1.022787-1 2.223742-2 8.248687-2 2.521248-2 6.468801-2 2.843741-2 5.019718-2 3.127550-2 4.030997-2 3.376243-2 3.325029-2 3.696174-2 2.587937-2 4.067086-2 1.906208-2 4.388362-2 1.431109-2 4.696723-2 1.051640-2 4.967273-2 7.656717-3 5.288858-2 4.722630-3 5.518418-2 2.886184-3 5.605000-2 2.239541-3 5.744971-2 1.261025-3 5.888834-2 3.189058-4 5.945545-2-3.211662-5 6.021262-2-4.982548-4 6.150211-2-1.251175-3 6.386548-2-2.532173-3 6.704129-2-4.059882-3 7.147920-2-5.903412-3 7.684105-2-7.755285-3 8.358865-2-9.644894-3 9.416638-2-1.189583-2 1.083927-1-1.402099-2 1.308217-1-1.616247-2 1.651977-1-1.799311-2 2.333920-1-1.963508-2 3.758374-1-2.071513-2 1.022000+0-2.130135-2 3.086391+0-2.138295-2 9.320751+0-2.139190-2 1.000000+1-2.139030-2 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.246328-5 1.093478-6 3.300205-5 1.161821-6 4.063291-5 1.200000-6 4.495696-5 1.234434-6 5.090762-5 1.311586-6 6.474382-5 1.350000-6 7.174789-5 1.393561-6 8.255589-5 1.437109-6 9.362122-5 1.482019-6 1.049577-4 1.518750-6 1.146410-4 1.576093-6 1.345442-4 1.625345-6 1.521306-4 1.708594-6 1.822491-4 1.782533-6 2.185401-4 1.838237-6 2.464410-4 1.922168-6 2.889842-4 2.016013-6 3.538998-4 2.079014-6 3.984334-4 2.162439-6 4.589037-4 2.210982-6 5.058810-4 2.280076-6 5.755711-4 2.351328-6 6.463830-4 2.432744-6 7.275823-4 2.500582-6 8.116925-4 2.584790-6 9.193805-4 2.659311-6 1.029518-3 2.746340-6 1.160602-3 2.828114-6 1.302884-3 2.917986-6 1.461747-3 3.007633-6 1.644712-3 3.101622-6 1.839113-3 3.198548-6 2.070142-3 3.298502-6 2.311118-3 3.401580-6 2.595565-3 3.500016-6 2.865984-3 3.617501-6 3.240292-3 3.718767-6 3.556698-3 3.847128-6 4.022632-3 3.967350-6 4.452237-3 4.096000-6 4.976938-3 4.198139-6 5.384171-3 4.351034-6 6.086641-3 4.460523-6 6.554253-3 4.609201-6 7.286240-3 4.739306-6 7.854417-3 4.851485-6 8.429035-3 4.966979-6 8.933441-3 5.035512-6 9.200913-3 5.192872-6 9.871971-3 5.292252-6 1.023867-2 5.393972-6 1.056464-2 5.522498-6 1.091513-2 5.587974-6 1.106075-2 5.695076-6 1.121412-2 5.770041-6 1.128449-2 5.873047-6 1.123915-2 6.024983-6 1.099472-2 6.056579-6 1.090406-2 6.182626-6 1.043379-2 6.236011-6 1.015016-2 6.330417-6 9.569665-3 6.412295-6 8.929452-3 6.468971-6 8.437372-3 6.584510-6 7.254450-3 6.598865-6 7.093771-3 6.720641-6 5.609905-3 6.751344-6 5.207180-3 6.834806-6 4.085666-3 6.899391-6 3.206559-3 6.941836-6 2.644167-3 7.042176-6 1.408586-3 7.052485-6 1.294620-3 7.069535-6 1.114647-3 7.136245-6 5.393091-4 7.200795-6 2.463119-4 7.221212-6 2.253009-4 7.224434-6 2.256489-4 7.307112-6 6.459381-4 7.384623-6 2.015718-3 7.457289-6 4.580868-3 7.488146-6 6.168418-3 7.525413-6 8.579079-3 7.589280-6 1.427689-2 7.649155-6 2.200267-2 7.705288-6 3.207300-2 7.757912-6 4.474065-2 7.807248-6 6.028854-2 7.853500-6 7.909776-2 8.048881-6 2.409516-1 8.076249-6 2.817076-1 8.105688-6 3.338860-1 8.133288-6 3.924850-1 8.159162-6 4.579351-1 8.183419-6 5.306285-1 8.206161-6 6.109340-1 8.227481-6 6.992254-1 8.267455-6 9.090868-1 8.302433-6 1.159525+0 8.333039-6 1.456735+0 8.359819-6 1.808356+0 8.383252-6 2.222019+0 8.403755-6 2.702816+0 8.421696-6 3.250934+0 8.437394-6 3.860633+0 8.451130-6 4.520848+0 8.463148-6 5.216914+0 8.473665-6 5.932647+0 8.490918-6 7.361389+0 8.533905-6 1.268764+1 8.549909-6 1.545595+1 8.561415-6 1.774071+1 8.568318-6 1.923223+1 8.578837-6 2.167803+1 8.589356-6 2.432678+1 8.610394-6 3.017565+1 8.613023-6 3.095176+1 8.631432-6 3.659148+1 8.638664-6 3.887609+1 8.652470-6 4.326864+1 8.660108-6 4.568004+1 8.671024-6 4.904869+1 8.678041-6 5.113784+1 8.688874-6 5.419594+1 8.695551-6 5.595454+1 8.704316-6 5.808585+1 8.714175-6 6.020614+1 8.718214-6 6.098029+1 8.727418-6 6.252135+1 8.737937-6 6.387488+1 8.742868-6 6.435112+1 8.753962-6 6.503852+1 8.758317-6 6.516043+1 8.779355-6 6.457268+1 8.789450-6 6.361912+1 8.800120-6 6.217157+1 8.809059-6 6.063919+1 8.819680-6 5.847958+1 8.828086-6 5.654227+1 8.834646-6 5.490959+1 8.844022-6 5.242142+1 8.850049-6 5.074206+1 8.859552-6 4.799618+1 8.870199-6 4.482065+1 8.880466-6 4.170618+1 8.887624-6 3.952766+1 8.898830-6 3.614008+1 8.906836-6 3.375849+1 8.916864-6 3.084519+1 8.923557-6 2.895494+1 8.929418-6 2.734033+1 8.938210-6 2.499798+1 8.949632-6 2.211153+1 8.957686-6 2.019064+1 8.968040-6 1.786739+1 8.974810-6 1.644013+1 8.990263-6 1.345913+1 9.001853-6 1.147699+1 9.011060-6 1.005547+1 9.023085-6 8.398474+0 9.027093-6 7.895059+0 9.048470-6 5.602425+0 9.084210-6 3.082618+0 9.091225-6 2.752655+0 9.101913-6 2.337769+0 9.107257-6 2.167002+0 9.113654-6 1.992125+0 9.119936-6 1.849436+0 9.124086-6 1.769880+0 9.128204-6 1.701775+0 9.132289-6 1.644263+0 9.136343-6 1.596532+0 9.144387-6 1.527167+0 9.152305-6 1.488458+0 9.160099-6 1.475328+0 9.167772-6 1.483290+0 9.175325-6 1.508395+0 9.182759-6 1.547185+0 9.190078-6 1.596644+0 9.204374-6 1.717431+0 9.218227-6 1.853805+0 9.238204-6 2.061414+0 9.257260-6 2.249372+0 9.281307-6 2.445269+0 9.304855-6 2.573133+0 9.335416-6 2.632711+0 9.364101-6 2.587619+0 9.390451-6 2.479984+0 9.436340-6 2.207339+0 9.463191-6 2.029962+0 9.486686-6 1.876495+0 9.537842-6 1.566181+0 9.611318-6 1.187933+0 9.656488-6 9.890354-1 9.680256-6 8.929195-1 9.704024-6 8.021195-1 9.727792-6 7.162974-1 9.751561-6 6.351966-1 9.775329-6 5.586471-1 9.799097-6 4.865739-1 9.841190-6 3.700791-1 9.870402-6 2.980980-1 9.894170-6 2.454319-1 9.917938-6 1.986559-1 9.941706-6 1.585146-1 9.987086-6 1.040226-1 1.001734-5 8.785622-2 1.005217-5 9.544947-2 1.006271-5 1.044886-1 1.008540-5 1.368035-1 1.010808-5 1.898545-1 1.015584-5 3.929298-1 1.017994-5 5.604910-1 1.020405-5 7.900698-1 1.022816-5 1.103127+0 1.030139-5 2.972063+0 1.032329-5 4.001729+0 1.039793-5 1.108636+1 1.042495-5 1.589794+1 1.043785-5 1.880839+1 1.045477-5 2.333433+1 1.047245-5 2.901971+1 1.048823-5 3.500049+1 1.049732-5 3.886291+1 1.051271-5 4.611564+1 1.052426-5 5.215395+1 1.053455-5 5.796876+1 1.054906-5 6.682724+1 1.055712-5 7.206675+1 1.057968-5 8.779356+1 1.058290-5 9.014878+1 1.060547-5 1.071536+2 1.061433-5 1.139803+2 1.062279-5 1.205039+2 1.063125-5 1.269855+2 1.064443-5 1.368758+2 1.064981-5 1.408025+2 1.065923-5 1.474589+2 1.067159-5 1.556670+2 1.068450-5 1.634291+2 1.070057-5 1.716500+2 1.071202-5 1.763682+2 1.072403-5 1.801694+2 1.073539-5 1.826041+2 1.076723-5 1.830157+2 1.077959-5 1.805961+2 1.079211-5 1.767346+2 1.080268-5 1.724336+2 1.082416-5 1.610738+2 1.083454-5 1.545100+2 1.084417-5 1.479146+2 1.085497-5 1.400317+2 1.086013-5 1.361257+2 1.087560-5 1.240139+2 1.088292-5 1.181511+2 1.088991-5 1.125229+2 1.089690-5 1.068945+2 1.090835-5 9.774693+1 1.091571-5 9.196252+1 1.092308-5 8.628753+1 1.092962-5 8.135600+1 1.093944-5 7.419487+1 1.094925-5 6.735952+1 1.096001-5 6.029244+1 1.097412-5 5.174748+1 1.099057-5 4.290509+1 1.100950-5 3.425001+1 1.103236-5 2.591637+1 1.105848-5 1.897846+1 1.106746-5 1.715662+1 1.107603-5 1.565632+1 1.108461-5 1.437138+1 1.108930-5 1.375279+1 1.109466-5 1.311595+1 1.111073-5 1.161072+1 1.112212-5 1.087436+1 1.112852-5 1.056797+1 1.113328-5 1.038734+1 1.113957-5 1.020768+1 1.114699-5 1.007826+1 1.115484-5 1.003505+1 1.116075-5 1.006439+1 1.119200-5 1.108387+1 1.121941-5 1.321592+1 1.122112-5 1.338996+1 1.124858-5 1.687153+1 1.128923-5 2.443725+1 1.130346-5 2.770524+1 1.131261-5 2.994411+1 1.132631-5 3.346062+1 1.134028-5 3.718297+1 1.135150-5 4.022441+1 1.135824-5 4.205120+1 1.137211-5 4.577225+1 1.138425-5 4.892564+1 1.138772-5 4.980078+1 1.140073-5 5.295045+1 1.141293-5 5.567459+1 1.141461-5 5.603004+1 1.144303-5 6.119920+1 1.145337-5 6.264996+1 1.147127-5 6.459487+1 1.148647-5 6.569529+1 1.149519-5 6.611254+1 1.151251-5 6.653055+1 1.152670-5 6.652832+1 1.155011-5 6.604422+1 1.159141-5 6.464033+1 1.162421-5 6.390598+1 1.164182-5 6.385529+1 1.167909-5 6.469787+1 1.169783-5 6.558513+1 1.172859-5 6.757081+1 1.180460-5 7.381664+1 1.184155-5 7.687621+1 1.193114-5 8.406775+1 1.195683-5 8.643155+1 1.198758-5 8.978320+1 1.201696-5 9.379277+1 1.204544-5 9.872542+1 1.207599-5 1.055156+2 1.210375-5 1.133598+2 1.213210-5 1.233361+2 1.215429-5 1.327063+2 1.217286-5 1.416888+2 1.219148-5 1.517798+2 1.223071-5 1.765575+2 1.227691-5 2.111237+2 1.229522-5 2.259732+2 1.232001-5 2.465561+2 1.233550-5 2.594232+2 1.235777-5 2.774642+2 1.236734-5 2.849261+2 1.238138-5 2.954018+2 1.239483-5 3.047818+2 1.240677-5 3.124558+2 1.242000-5 3.201200+2 1.243431-5 3.272805+2 1.244598-5 3.321545+2 1.246155-5 3.371754+2 1.247269-5 3.396615+2 1.248943-5 3.415688+2 1.250491-5 3.413111+2 1.251097-5 3.406747+2 1.254130-5 3.329979+2 1.254490-5 3.316037+2 1.257198-5 3.180645+2 1.258049-5 3.127816+2 1.260033-5 2.988059+2 1.261227-5 2.894405+2 1.262366-5 2.799502+2 1.264312-5 2.627861+2 1.266254-5 2.449068+2 1.267876-5 2.297632+2 1.269962-5 2.104842+2 1.271969-5 1.925862+2 1.277497-5 1.495488+2 1.280515-5 1.311013+2 1.281298-5 1.269458+2 1.283533-5 1.164873+2 1.285042-5 1.105570+2 1.286551-5 1.054791+2 1.288102-5 1.010824+2 1.289650-5 9.744789+1 1.291196-5 9.449394+1 1.292738-5 9.213690+1 1.294278-5 9.029590+1 1.295814-5 8.889481+1 1.297704-5 8.766960+1 1.298881-5 8.713818+1 1.301936-5 8.639534+1 1.304979-5 8.630653+1 1.308010-5 8.661720+1 1.314036-5 8.782222+1 1.340000-5 9.429148+1 1.360665-5 9.902177+1 1.382954-5 1.036127+2 1.404595-5 1.077097+2 1.430000-5 1.120335+2 1.455807-5 1.158468+2 1.481747-5 1.190970+2 1.508013-5 1.218139+2 1.533750-5 1.238734+2 1.567500-5 1.256898+2 1.600000-5 1.265151+2 1.629084-5 1.264556+2 1.654286-5 1.258811+2 1.680000-5 1.248957+2 1.700262-5 1.238397+2 1.723590-5 1.223455+2 1.747921-5 1.205211+2 1.773891-5 1.182682+2 1.796701-5 1.161011+2 1.843200-5 1.112091+2 1.900381-5 1.047896+2 1.962382-5 9.769510+1 2.040616-5 8.897882+1 2.144375-5 7.836879+1 2.304000-5 6.485348+1 2.345594-5 6.179095+1 2.518444-5 5.141312+1 2.644977-5 4.557179+1 2.785606-5 4.037598+1 2.930000-5 3.613878+1 3.076432-5 3.271128+1 3.199108-5 3.036493+1 3.366526-5 2.777278+1 3.519375-5 2.588864+1 3.672823-5 2.435230+1 3.801894-5 2.328183+1 3.900000-5 2.258688+1 4.073803-5 2.155031+1 4.180000-5 2.103018+1 4.350000-5 2.033929+1 4.595862-5 1.959072+1 4.915200-5 1.894635+1 5.150000-5 1.864621+1 5.400000-5 1.845777+1 5.706250-5 1.836226+1 6.000000-5 1.836851+1 6.309573-5 1.844217+1 7.000000-5 1.874584+1 7.680000-5 1.905664+1 8.462526-5 1.929779+1 8.814855-5 1.934345+1 9.365783-5 1.929230+1 9.951145-5 1.913536+1 1.053651-4 1.887032+1 1.116915-4 1.840134+1 1.181681-4 1.774228+1 1.230188-4 1.714270+1 1.291963-4 1.623912+1 1.355539-4 1.514894+1 1.403978-4 1.419808+1 1.460404-4 1.295802+1 1.510831-4 1.173984+1 1.542092-4 1.092842+1 1.571399-4 1.012874+1 1.609507-4 9.038475+0 1.636794-4 8.223428+0 1.664371-4 7.373584+0 1.683547-4 6.771495+0 1.699657-4 6.258980+0 1.724100-4 5.472985+0 1.739076-4 4.990503+0 1.767619-4 4.077521+0 1.781475-4 3.642347+0 1.795907-4 3.200116+0 1.811958-4 2.726250+0 1.820659-4 2.479869+0 1.836382-4 2.059653+0 1.842316-4 1.911351+0 1.861267-4 1.486035+0 1.877848-4 1.190673+0 1.892357-4 1.011446+0 1.893279-4 1.003103+0 1.905053-4 9.346574-1 1.907995-4 9.298736-1 1.911735-4 9.318761-1 1.916161-4 9.469115-1 1.921122-4 9.817002-1 1.925881-4 1.034780+0 1.932138-4 1.137547+0 1.942891-4 1.417078+0 1.955648-4 1.964027+0 1.959250-4 2.172012+0 1.965216-4 2.580653+0 1.972756-4 3.233854+0 1.979568-4 3.988003+0 1.985404-4 4.789822+0 1.992517-4 6.012575+0 1.997338-4 7.030845+0 2.007230-4 9.741658+0 2.017527-4 1.375260+1 2.035517-4 2.514635+1 2.043104-4 3.222870+1 2.049367-4 3.929689+1 2.055546-4 4.739209+1 2.060534-4 5.471819+1 2.065738-4 6.303894+1 2.069752-4 6.985842+1 2.074341-4 7.797660+1 2.077924-4 8.447219+1 2.080862-4 8.984754+1 2.083669-4 9.498132+1 2.086962-4 1.009537+2 2.089181-4 1.049174+2 2.092380-4 1.105046+2 2.096200-4 1.169169+2 2.099998-4 1.229403+2 2.104000-4 1.288371+2 2.106788-4 1.326414+2 2.110399-4 1.371729+2 2.114000-4 1.412306+2 2.118392-4 1.455532+2 2.122417-4 1.489223+2 2.126252-4 1.516348+2 2.131114-4 1.544347+2 2.136351-4 1.567503+2 2.142347-4 1.586706+2 2.149245-4 1.601515+2 2.162348-4 1.616725+2 2.224999-4 1.647525+2 2.263343-4 1.654649+2 2.303961-4 1.650228+2 2.334550-4 1.638310+2 2.376448-4 1.611869+2 2.428655-4 1.570586+2 2.476601-4 1.524296+2 2.486890-4 1.517233+2 2.493698-4 1.515873+2 2.500415-4 1.518602+2 2.507804-4 1.527734+2 2.515824-4 1.546138+2 2.522736-4 1.569118+2 2.544274-4 1.662548+2 2.551586-4 1.689083+2 2.559319-4 1.706538+2 2.564258-4 1.710481+2 2.569096-4 1.708508+2 2.577087-4 1.693219+2 2.581923-4 1.677767+2 2.587197-4 1.657002+2 2.608481-4 1.562830+2 2.618366-4 1.529914+2 2.623268-4 1.518443+2 2.630402-4 1.507874+2 2.638671-4 1.504214+2 2.647215-4 1.508593+2 2.655145-4 1.518137+2 2.681041-4 1.563716+2 2.699951-4 1.593278+2 2.720490-4 1.615909+2 2.766399-4 1.648274+2 2.832379-4 1.684301+2 2.905865-4 1.717374+2 3.052470-4 1.769404+2 3.308895-4 1.841399+2 3.533672-4 1.889045+2 3.752969-4 1.919752+2 4.097321-4 1.940881+2 4.458407-4 1.947760+2 4.844337-4 1.947462+2 5.356810-4 1.935656+2 5.982713-4 1.911249+2 6.805367-4 1.873325+2 9.128212-4 1.757175+2 1.052929-3 1.694186+2 1.186518-3 1.622673+2 1.286099-3 1.574588+2 1.459736-3 1.490916+2 1.577766-3 1.438295+2 1.637365-3 1.411621+2 1.839255-3 1.315768+2 1.912845-3 1.281953+2 2.065360-3 1.206043+2 2.147647-3 1.165883+2 2.220860-3 1.128089+2 2.289297-3 1.091627+2 2.339357-3 1.063976+2 2.388209-3 1.035839+2 2.435668-3 1.007000+2 2.482156-3 9.764847+1 2.518193-3 9.510091+1 2.549551-3 9.271703+1 2.574902-3 9.064488+1 2.596802-3 8.872207+1 2.619279-3 8.658101+1 2.639498-3 8.446728+1 2.659529-3 8.214530+1 2.675108-3 8.013149+1 2.686775-3 7.846407+1 2.702251-3 7.596562+1 2.715554-3 7.346410+1 2.725583-3 7.130293+1 2.736955-3 6.853679+1 2.748812-3 6.535076+1 2.769176-3 5.989704+1 2.777133-3 5.818884+1 2.783687-3 5.714505+1 2.789489-3 5.656782+1 2.795786-3 5.636242+1 2.801539-3 5.658230+1 2.806087-3 5.703297+1 2.809400-3 5.750997+1 2.813670-3 5.829835+1 2.817742-3 5.921703+1 2.825332-3 6.129360+1 2.851180-3 7.006240+1 2.862725-3 7.386106+1 2.869884-3 7.599924+1 2.876600-3 7.783079+1 2.885392-3 7.997601+1 2.894375-3 8.189662+1 2.901328-3 8.321950+1 2.912736-3 8.513530+1 2.924027-3 8.678458+1 2.939969-3 8.880127+1 2.956558-3 9.060574+1 2.973872-3 9.223521+1 2.992868-3 9.377799+1 3.013440-3 9.521436+1 3.054921-3 9.753970+1 3.110386-3 9.981786+1 3.166074-3 1.014454+2 3.220116-3 1.025683+2 3.296611-3 1.035735+2 3.412911-3 1.041791+2 3.531961-3 1.040486+2 3.709544-3 1.029991+2 3.866278-3 1.015489+2 4.118659-3 9.865972+1 4.361888-3 9.561574+1 4.720274-3 9.099841+1 5.225465-3 8.461107+1 5.907969-3 7.685139+1 6.512534-3 7.081942+1 7.276443-3 6.418653+1 8.030745-3 5.847586+1 9.015711-3 5.205218+1 1.002797-2 4.637545+1 1.074402-2 4.282894+1 1.152210-2 3.935694+1 1.276546-2 3.451055+1 1.404083-2 3.032885+1 1.551891-2 2.630756+1 1.773290-2 2.159987+1 2.072998-2 1.701565+1 2.534165-2 1.242621+1 3.325901-2 8.055455+0 3.939882-2 6.119151+0 4.741825-2 4.493151+0 5.467799-2 3.522701+0 6.390336-2 2.677125+0 7.672822-2 1.925020+0 1.027277-1 1.123949+0 1.255772-1 7.705777-1 1.672623-1 4.459780-1 2.245641-1 2.522375-1 3.102376-1 1.339253-1 4.795100-1 5.658898-2 1.022000+0 1.252757-2 3.086391+0 1.375622-3 9.320751+0 1.508582-4 2.814822+1 1.654156-5 8.500626+1 1.813750-6 2.567148+2 1.988737-7 7.752663+2 2.180607-8 2.511886+3 2.077204-9 7.943282+3 2.07720-10 2.511886+4 2.07720-11 7.943282+4 2.07720-12 1.000000+5 1.31063-12 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.689300-7 1.258900-6 9.016900-7 1.584900-6 1.429100-6 1.995300-6 2.264900-6 2.511900-6 3.589700-6 3.162300-6 5.689200-6 3.981100-6 9.016800-6 5.011900-6 1.429100-5 6.309600-6 2.264900-5 7.943300-6 3.589600-5 1.000000-5 5.689000-5 1.258900-5 9.016400-5 1.584900-5 1.429000-4 1.995300-5 2.264700-4 2.511900-5 3.589200-4 3.162300-5 5.688300-4 3.981100-5 9.015000-4 5.011900-5 1.428700-3 6.309600-5 2.264200-3 7.943300-5 3.587800-3 1.000000-4 5.682500-3 1.258900-4 9.000200-3 1.584900-4 1.424100-2 1.995300-4 2.252900-2 2.511900-4 3.561100-2 3.162300-4 5.618300-2 3.981100-4 8.840500-2 5.011900-4 1.384900-1 6.309600-4 2.155800-1 7.943300-4 3.321300-1 1.000000-3 5.044400-1 1.258900-3 7.507200-1 1.584900-3 1.087000+0 1.995300-3 1.521100+0 2.511900-3 2.048600+0 3.162300-3 2.652500+0 3.981100-3 3.304700+0 5.011900-3 3.968600+0 6.309600-3 4.615900+0 7.943300-3 5.261200+0 1.000000-2 5.902200+0 1.258900-2 6.571200+0 1.584900-2 7.190500+0 1.995300-2 7.716100+0 2.511900-2 8.116800+0 3.162300-2 8.390200+0 3.981100-2 8.546900+0 5.011900-2 8.587800+0 6.309600-2 8.519100+0 7.943300-2 8.335500+0 1.000000-1 8.053100+0 1.258900-1 7.694300+0 1.584900-1 7.276800+0 1.995300-1 6.819300+0 2.511900-1 6.339400+0 3.162300-1 5.851400+0 3.981100-1 5.366700+0 5.011900-1 4.892700+0 6.309600-1 4.434600+0 7.943300-1 3.999300+0 1.000000+0 3.585200+0 1.258900+0 3.194500+0 1.584900+0 2.828900+0 1.995300+0 2.489600+0 2.511900+0 2.177400+0 3.162300+0 1.892700+0 3.981100+0 1.635800+0 5.011900+0 1.405800+0 6.309600+0 1.202000+0 7.943300+0 1.022800+0 1.000000+1 8.664700-1 1.258900+1 7.311000-1 1.584900+1 6.146400-1 1.995300+1 5.150100-1 2.511900+1 4.302500-1 3.162300+1 3.584700-1 3.981100+1 2.979300-1 5.011900+1 2.470700-1 6.309600+1 2.044900-1 7.943300+1 1.689300-1 1.000000+2 1.393300-1 1.258900+2 1.147400-1 1.584900+2 9.435900-2 1.995300+2 7.750000-2 2.511900+2 6.357900-2 3.162300+2 5.210100-2 3.981100+2 4.265300-2 5.011900+2 3.488600-2 6.309600+2 2.850800-2 7.943300+2 2.327700-2 1.000000+3 1.899100-2 1.258900+3 1.548300-2 1.584900+3 1.261500-2 1.995300+3 1.027100-2 2.511900+3 8.357600-3 3.162300+3 6.796800-3 3.981100+3 5.524400-3 5.011900+3 4.487900-3 6.309600+3 3.644000-3 7.943300+3 2.957400-3 1.000000+4 2.399000-3 1.258900+4 1.945300-3 1.584900+4 1.576700-3 1.995300+4 1.277400-3 2.511900+4 1.034500-3 3.162300+4 8.375200-4 3.981100+4 6.777900-4 5.011900+4 5.483400-4 6.309600+4 4.434600-4 7.943300+4 3.585200-4 1.000000+5 2.897700-4 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510160-4 3.162278-4 3.159544-4 3.981072-4 3.976745-4 5.011872-4 5.005027-4 6.309573-4 6.298753-4 7.943282-4 7.926164-4 1.000000-3 9.973089-4 1.258925-3 1.254696-3 1.584893-3 1.578269-3 1.995262-3 1.984928-3 2.511886-3 2.495810-3 3.162278-3 3.137381-3 3.981072-3 3.942669-3 5.011872-3 4.952715-3 6.309573-3 6.218416-3 7.943282-3 7.802718-3 1.000000-2 9.781875-3 1.258925-2 1.225128-2 1.584893-2 1.532597-2 1.995262-2 1.914837-2 2.511886-2 2.388888-2 3.162278-2 2.975034-2 3.981072-2 3.696813-2 5.011872-2 4.582814-2 6.309573-2 5.664537-2 7.943282-2 6.981780-2 1.000000-1 8.578568-2 1.258925-1 1.050539-1 1.584893-1 1.281893-1 1.995262-1 1.558908-1 2.511886-1 1.889053-1 3.162278-1 2.281279-1 3.981072-1 2.745714-1 5.011872-1 3.294266-1 6.309573-1 3.940430-1 7.943282-1 4.700425-1 1.000000+0 5.595057-1 1.258925+0 6.648817-1 1.584893+0 7.892301-1 1.995262+0 9.363154-1 2.511886+0 1.110846+0 3.162278+0 1.318527+0 3.981072+0 1.566448+0 5.011872+0 1.863205+0 6.309573+0 2.219358+0 7.943282+0 2.647834+0 1.000000+1 3.164402+0 1.258925+1 3.788376+0 1.584893+1 4.543536+0 1.995262+1 5.458685+0 2.511886+1 6.569414+0 3.162278+1 7.919357+0 3.981072+1 9.561804+0 5.011872+1 1.156256+1 6.309573+1 1.400218+1 7.943282+1 1.697977+1 1.000000+2 2.061713+1 1.258925+2 2.506439+1 1.584893+2 3.050602+1 1.995262+2 3.716922+1 2.511886+2 4.533435+1 3.162278+2 5.534690+1 3.981072+2 6.763130+1 5.011872+2 8.271464+1 6.309573+2 1.012441+2 7.943282+2 1.240200+2 1.000000+3 1.520282+2 1.258925+3 1.864948+2 1.584893+3 2.289233+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728418-8 1.000000-4 2.738844-8 1.258925-4 4.340195-8 1.584893-4 6.876146-8 1.995262-4 1.089507-7 2.511886-4 1.725951-7 3.162278-4 2.733323-7 3.981072-4 4.326720-7 5.011872-4 6.845459-7 6.309573-4 1.082000-6 7.943282-4 1.711830-6 1.000000-3 2.691116-6 1.258925-3 4.229133-6 1.584893-3 6.624661-6 1.995262-3 1.033445-5 2.511886-3 1.607610-5 3.162278-3 2.489621-5 3.981072-3 3.840249-5 5.011872-3 5.915699-5 6.309573-3 9.115767-5 7.943282-3 1.405643-4 1.000000-2 2.181251-4 1.258925-2 3.379715-4 1.584893-2 5.229661-4 1.995262-2 8.042578-4 2.511886-2 1.229986-3 3.162278-2 1.872442-3 3.981072-2 2.842586-3 5.011872-2 4.290587-3 6.309573-2 6.450368-3 7.943282-2 9.615027-3 1.000000-1 1.421432-2 1.258925-1 2.083868-2 1.584893-1 3.030004-2 1.995262-1 4.363541-2 2.511886-1 6.228335-2 3.162278-1 8.809990-2 3.981072-1 1.235357-1 5.011872-1 1.717607-1 6.309573-1 2.369144-1 7.943282-1 3.242858-1 1.000000+0 4.404943-1 1.258925+0 5.940437-1 1.584893+0 7.956631-1 1.995262+0 1.058947+0 2.511886+0 1.401041+0 3.162278+0 1.843750+0 3.981072+0 2.414624+0 5.011872+0 3.148667+0 6.309573+0 4.090215+0 7.943282+0 5.295449+0 1.000000+1 6.835598+0 1.258925+1 8.800878+0 1.584893+1 1.130540+1 1.995262+1 1.449394+1 2.511886+1 1.854945+1 3.162278+1 2.370342+1 3.981072+1 3.024891+1 5.011872+1 3.855617+1 6.309573+1 4.909356+1 7.943282+1 6.245306+1 1.000000+2 7.938287+1 1.258925+2 1.008282+2 1.584893+2 1.279833+2 1.995262+2 1.623570+2 2.511886+2 2.058543+2 3.162278+2 2.608809+2 3.981072+2 3.304759+2 5.011872+2 4.184726+2 6.309573+2 5.297133+2 7.943282+2 6.703083+2 1.000000+3 8.479718+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.229000-5 3.741930+7 1.242000-5 3.807803+7 1.242000-5 5.659007+7 1.260000-5 5.796466+7 1.273503-5 5.887309+7 1.288250-5 5.981928+7 1.295000-5 6.019944+7 1.312000-5 6.109512+7 1.318257-5 6.136942+7 1.340000-5 6.222575+7 1.348963-5 6.249305+7 1.367000-5 6.294501+7 1.370000-5 6.298970+7 1.396368-5 6.326531+7 1.400000-5 6.326943+7 1.420000-5 6.319106+7 1.430000-5 6.306439+7 1.445440-5 6.279154+7 1.455000-5 6.253766+7 1.470000-5 6.206987+7 1.485000-5 6.146369+7 1.500000-5 6.079085+7 1.515000-5 5.997863+7 1.530000-5 5.911653+7 1.540000-5 5.845511+7 1.560000-5 5.707839+7 1.570000-5 5.631731+7 1.590000-5 5.474774+7 1.600000-5 5.389995+7 1.621810-5 5.202420+7 1.630000-5 5.128109+7 1.650000-5 4.944924+7 1.660000-5 4.850034+7 1.680000-5 4.660594+7 1.690000-5 4.563562+7 1.710000-5 4.371210+7 1.720000-5 4.273787+7 1.740000-5 4.081991+7 1.750000-5 3.985191+7 1.778279-5 3.719827+7 1.785000-5 3.656844+7 1.819701-5 3.344903+7 1.863300-5 2.974444+7 1.905461-5 2.644599+7 1.950000-5 2.328255+7 2.000000-5 2.012416+7 2.065380-5 1.658789+7 2.137962-5 1.336760+7 2.213095-5 1.069661+7 2.300000-5 8.286967+6 2.400000-5 6.211851+6 2.484000-5 4.900334+6 2.484000-5 4.963976+6 2.517000-5 4.546639+6 2.540973-5 4.270260+6 2.570396-5 3.958726+6 2.600160-5 3.671771+6 2.630268-5 3.407508+6 2.670000-5 3.094506+6 2.700000-5 2.882249+6 2.730000-5 2.688399+6 2.740000-5 2.628670+6 2.754229-5 2.546438+6 2.786121-5 2.375815+6 2.830000-5 2.165351+6 2.851018-5 2.075300+6 2.884032-5 1.945883+6 2.900000-5 1.887232+6 2.920000-5 1.818940+6 2.930000-5 1.786675+6 2.951209-5 1.720705+6 2.985383-5 1.624939+6 3.000000-5 1.586311+6 3.020000-5 1.536752+6 3.040000-5 1.491561+6 3.060000-5 1.448248+6 3.080000-5 1.407962+6 3.100000-5 1.371321+6 3.126079-5 1.325670+6 3.135000-5 1.311052+6 3.162278-5 1.270403+6 3.170000-5 1.259205+6 3.190000-5 1.231842+6 3.230000-5 1.183786+6 3.235937-5 1.177240+6 3.245000-5 1.167223+6 3.280000-5 1.132953+6 3.300000-5 1.115140+6 3.311311-5 1.106196+6 3.330000-5 1.091467+6 3.350000-5 1.076994+6 3.388442-5 1.053119+6 3.400000-5 1.046626+6 3.427678-5 1.032719+6 3.450000-5 1.022619+6 3.485000-5 1.009676+6 3.500000-5 1.004834+6 3.507519-5 1.002292+6 3.540000-5 9.934432+5 3.555000-5 9.899153+5 3.590000-5 9.837397+5 3.610000-5 9.808940+5 3.650000-5 9.767287+5 3.672823-5 9.750891+5 3.715352-5 9.741987+5 3.730000-5 9.742665+5 3.770000-5 9.755164+5 3.801894-5 9.771709+5 3.830000-5 9.798647+5 3.850000-5 9.821624+5 3.880000-5 9.850576+5 3.900000-5 9.877639+5 3.970000-5 9.984820+5 3.981072-5 1.000553+6 4.000000-5 1.004401+6 4.073803-5 1.018030+6 4.150000-5 1.035142+6 4.180000-5 1.041375+6 4.315191-5 1.073874+6 4.350000-5 1.082027+6 4.500000-5 1.119105+6 4.677351-5 1.160591+6 4.841724-5 1.196980+6 4.900000-5 1.209187+6 5.080000-5 1.243466+6 5.150000-5 1.255738+6 5.308844-5 1.280358+6 5.400000-5 1.292901+6 5.559043-5 1.311608+6 5.650000-5 1.320644+6 5.688529-5 1.324127+6 5.800000-5 1.333056+6 5.900000-5 1.339257+6 6.000000-5 1.344574+6 6.070000-5 1.347679+6 6.165950-5 1.350367+6 6.309573-5 1.353275+6 6.400000-5 1.353013+6 6.606934-5 1.351034+6 6.683439-5 1.349132+6 6.918310-5 1.340227+6 7.000000-5 1.336052+6 7.079458-5 1.331508+6 7.244360-5 1.321392+6 7.328245-5 1.315315+6 7.500000-5 1.302125+6 7.585776-5 1.295276+6 7.673615-5 1.287413+6 7.943282-5 1.262703+6 8.035261-5 1.253675+6 8.317638-5 1.224441+6 8.500000-5 1.204774+6 8.609938-5 1.192751+6 8.810489-5 1.170874+6 9.000000-5 1.149499+6 9.332543-5 1.112705+6 9.549926-5 1.087976+6 9.900000-5 1.049336+6 1.020000-4 1.016701+6 1.023293-4 1.013153+6 1.060000-4 9.745089+5 1.083927-4 9.497247+5 1.135011-4 8.996065+5 1.161449-4 8.741938+5 1.230269-4 8.126537+5 1.244515-4 8.004371+5 1.273503-4 7.761292+5 1.318257-4 7.406439+5 1.350000-4 7.163438+5 1.428894-4 6.605785+5 1.450000-4 6.462700+5 1.540000-4 5.898671+5 1.566751-4 5.742195+5 1.584893-4 5.638285+5 1.659587-4 5.237177+5 1.698244-4 5.042072+5 1.757924-4 4.759319+5 1.800000-4 4.573041+5 1.840772-4 4.399558+5 1.950000-4 3.978363+5 1.972423-4 3.898250+5 2.018366-4 3.740477+5 2.077000-4 3.551363+5 2.077000-4 1.373668+6 2.077900-4 1.412730+6 2.080700-4 1.555821+6 2.083000-4 1.679737+6 2.085200-4 1.804087+6 2.088200-4 1.980485+6 2.091000-4 2.150693+6 2.094000-4 2.336419+6 2.094800-4 2.385241+6 2.094800-4 2.887921+6 2.095600-4 2.955845+6 2.096200-4 3.008663+6 2.097000-4 3.049448+6 2.098000-4 3.128817+6 2.100200-4 3.309182+6 2.102500-4 3.508003+6 2.103000-4 3.552176+6 2.104000-4 3.623729+6 2.105500-4 3.719103+6 2.107700-4 3.860707+6 2.109200-4 3.959789+6 2.112000-4 4.131710+6 2.114000-4 4.215304+6 2.117700-4 4.364061+6 2.118500-4 4.393488+6 2.126000-4 4.564201+6 2.127000-4 4.595175+6 2.128700-4 4.624292+6 2.132000-4 4.672032+6 2.139000-4 4.735275+6 2.140000-4 4.736741+6 2.145000-4 4.773524+6 2.153000-4 4.824048+6 2.162719-4 4.878793+6 2.171000-4 4.925914+6 2.175000-4 4.943072+6 2.177000-4 4.948231+6 2.187762-4 4.961173+6 2.205000-4 4.977833+6 2.208000-4 4.979071+6 2.220000-4 4.973688+6 2.230000-4 4.957531+6 2.260000-4 4.883211+6 2.264644-4 4.864156+6 2.308800-4 4.688518+6 2.317395-4 4.653381+6 2.350000-4 4.484535+6 2.415000-4 4.155465+6 2.426610-4 4.101162+6 2.454709-4 3.973677+6 2.511886-4 3.719179+6 2.540973-4 3.601068+6 2.650000-4 3.201456+6 2.660725-4 3.169225+6 2.675100-4 3.131562+6 2.680500-4 3.119198+6 2.680500-4 3.423004+6 2.691535-4 3.402568+6 2.695000-4 3.396215+6 2.710000-4 3.367555+6 2.732000-4 3.324519+6 2.754229-4 3.280336+6 2.770000-4 3.248748+6 2.786121-4 3.216132+6 2.800000-4 3.194742+6 2.818383-4 3.158879+6 2.851018-4 3.095868+6 2.884032-4 3.033346+6 2.900000-4 3.003525+6 2.951209-4 2.909399+6 3.000000-4 2.822514+6 3.054921-4 2.728038+6 3.130000-4 2.604657+6 3.235937-4 2.442283+6 3.250700-4 2.420872+6 3.273407-4 2.388284+6 3.311311-4 2.335332+6 3.349654-4 2.282020+6 3.350000-4 2.281547+6 3.507519-4 2.077709+6 3.548134-4 2.027873+6 3.550900-4 2.024482+6 3.589219-4 1.978587+6 3.715352-4 1.837933+6 3.726990-4 1.825346+6 3.758374-4 1.792023+6 4.027170-4 1.537254+6 4.120975-4 1.459153+6 4.168694-4 1.421398+6 4.265795-4 1.348864+6 4.466836-4 1.213986+6 4.518559-4 1.182477+6 4.600000-4 1.135211+6 4.623810-4 1.121850+6 4.677351-4 1.091904+6 5.011872-4 9.286552+5 5.069907-4 9.035616+5 5.128614-4 8.789521+5 5.248075-4 8.317615+5 5.308844-4 8.091478+5 5.623413-4 7.046395+5 5.754399-4 6.662757+5 5.821032-4 6.477778+5 6.095369-4 5.788873+5 6.309573-4 5.321957+5 6.456542-4 5.030827+5 6.500000-4 4.948134+5 6.531306-4 4.889746+5 6.606934-4 4.751808+5 6.839116-4 4.361318+5 7.161434-4 3.891390+5 7.244360-4 3.781138+5 7.413102-4 3.567684+5 7.585776-4 3.366512+5 7.673615-4 3.270321+5 8.035261-4 2.912842+5 8.222426-4 2.748312+5 8.500000-4 2.525622+5 8.511380-4 2.517000+5 8.912509-4 2.237939+5 9.225714-4 2.049643+5 9.500000-4 1.900202+5 9.549926-4 1.874556+5 1.035142-3 1.522219+5 1.047129-3 1.477399+5 1.070000-3 1.396877+5 1.083927-3 1.350467+5 1.096478-3 1.310478+5 1.188502-3 1.061667+5 1.194100-3 1.048754+5 1.202264-3 1.030177+5 1.230269-3 9.693461+4 1.244515-3 9.403259+4 1.348963-3 7.601418+4 1.350000-3 7.586063+4 1.396368-3 6.936858+4 1.428894-3 6.523752+4 1.531087-3 5.426643+4 1.548817-3 5.263141+4 1.566751-3 5.103381+4 1.584893-3 4.948575+4 1.603245-3 4.798480+4 1.640590-3 4.510372+4 1.737801-3 3.863814+4 1.757924-3 3.746390+4 1.778279-3 3.631768+4 1.840772-3 3.309022+4 1.862087-3 3.208045+4 1.883649-3 3.109629+4 1.972423-3 2.745075+4 2.000000-3 2.644023+4 2.041738-3 2.499441+4 2.137962-3 2.205604+4 2.162719-3 2.137803+4 2.187762-3 2.071753+4 2.264644-3 1.885432+4 2.317395-3 1.770867+4 2.344229-3 1.715758+4 2.483133-3 1.465493+4 2.540973-3 1.376120+4 2.600160-3 1.291688+4 2.691535-3 1.174898+4 2.804900-3 1.048238+4 2.804900-3 9.903124+4 2.884032-3 9.418821+4 2.917427-3 9.225645+4 2.935000-3 9.126482+4 2.951209-3 9.017827+4 2.965000-3 8.926820+4 3.000000-3 8.666890+4 3.090295-3 8.043420+4 3.126079-3 7.813685+4 3.162278-3 7.590272+4 3.349654-3 6.537143+4 3.400000-3 6.288929+4 3.467369-3 5.976690+4 3.548134-3 5.630038+4 3.630781-3 5.303556+4 3.845918-3 4.567283+4 3.890451-3 4.432796+4 3.935501-3 4.302265+4 4.000000-3 4.124430+4 4.073803-3 3.933219+4 4.168694-3 3.705003+4 4.415704-3 3.190385+4 4.472100-3 3.083862+4 4.518559-3 2.999739+4 4.570882-3 2.908725+4 4.623810-3 2.820479+4 4.677351-3 2.734890+4 4.800000-3 2.551853+4 5.188000-3 2.072288+4 5.248075-3 2.008699+4 5.308844-3 1.947061+4 5.370318-3 1.887317+4 5.432503-3 1.829396+4 5.559043-3 1.718843+4 5.821032-3 1.517218+4 6.140000-3 1.309408+4 6.165950-3 1.294248+4 6.237348-3 1.253751+4 6.309573-3 1.214522+4 6.382635-3 1.176515+4 6.531306-3 1.104038+4 7.079458-3 8.836156+3 7.244360-3 8.281944+3 7.328245-3 8.018008+3 7.498942-3 7.515084+3 7.673615-3 7.043669+3 8.511380-3 5.261408+3 8.609938-3 5.091269+3 8.810489-3 4.767317+3 9.015711-3 4.463963+3 1.000000-2 3.320004+3 1.011579-2 3.211307+3 1.023293-2 3.106165+3 1.047129-2 2.906098+3 1.059254-2 2.810946+3 1.174898-2 2.082718+3 1.188502-2 2.013694+3 1.202264-2 1.946950+3 1.216186-2 1.882417+3 1.244515-2 1.759699+3 1.258925-2 1.701375+3 1.400000-2 1.246336+3 1.412538-2 1.213827+3 1.428894-2 1.173099+3 1.462177-2 1.095697+3 1.496236-2 1.023402+3 1.500000-2 1.015807+3 1.698244-2 7.028591+2 1.717908-2 6.789894+2 1.778279-2 6.121357+2 1.798871-2 5.913472+2 1.819701-2 5.712471+2 2.041738-2 4.042496+2 2.065380-2 3.905106+2 2.089296-2 3.770980+2 2.162719-2 3.395628+2 2.187762-2 3.278907+2 2.213095-2 3.166197+2 2.264644-2 2.952266+2 2.454709-2 2.311133+2 2.570396-2 2.009398+2 2.600160-2 1.939607+2 2.630268-2 1.872242+2 2.786121-2 1.568705+2 2.851018-2 1.461550+2 2.951209-2 1.314388+2 3.000000-2 1.249807+2 3.198895-2 1.026078+2 3.235937-2 9.903866+1 3.388442-2 8.584196+1 3.715352-2 6.449107+1 3.801894-2 6.004111+1 3.981072-2 5.204139+1 4.120975-2 4.674558+1 4.677351-2 3.143337+1 5.011872-2 2.531529+1 5.370318-2 2.038520+1 5.623413-2 1.762484+1 5.888437-2 1.523832+1 6.025596-2 1.416915+1 6.165950-2 1.317494+1 6.531306-2 1.098406+1 6.760830-2 9.847822+0 7.161434-2 8.209290+0 7.585776-2 6.838073+0 7.673615-2 6.592645+0 7.762471-2 6.356027+0 8.413951-2 4.921205+0 8.810489-2 4.251849+0 9.332543-2 3.541717+0 9.440609-2 3.414611+0 9.549926-2 3.292069+0 1.059254-1 2.369303+0 1.122019-1 1.973621+0 1.148154-1 1.834518+0 1.244515-1 1.420454+0 1.318257-1 1.183251+0 1.348963-1 1.100209+0 1.445440-1 8.844464-1 1.462177-1 8.528497-1 1.531088-1 7.373901-1 1.548817-1 7.110562-1 1.640590-1 5.928404-1 1.698244-1 5.315684-1 1.757924-1 4.772004-1 1.778279-1 4.603436-1 1.840772-1 4.132610-1 1.862087-1 3.986772-1 1.972423-1 3.331252-1 2.000000-1 3.190001-1 2.018366-1 3.100292-1 2.041738-1 2.990887-1 2.089296-1 2.786005-1 2.187762-1 2.417389-1 2.213095-1 2.333214-1 2.238721-1 2.251972-1 2.264644-1 2.173567-1 2.317395-1 2.024851-1 2.426610-1 1.757258-1 2.454709-1 1.696968-1 2.540973-1 1.528229-1 2.570396-1 1.475855-1 2.600160-1 1.425276-1 2.722701-1 1.239738-1 2.786121-1 1.156232-1 2.818383-1 1.117283-1 2.851018-1 1.079647-1 2.917427-1 1.008135-1 2.985383-1 9.414526-2 3.000000-1 9.278872-2 3.090295-1 8.496218-2 3.162278-1 7.934335-2 3.273407-1 7.174166-2 3.311311-1 6.937322-2 3.388442-1 6.487518-2 3.507519-1 5.867023-2 3.548134-1 5.673675-2 3.589219-1 5.490306-2 3.672823-1 5.141152-2 3.715352-1 4.974998-2 3.801894-1 4.659135-2 3.890451-1 4.363383-2 3.935501-1 4.222622-2 3.981072-1 4.089298-2 4.120975-1 3.714064-2 4.216965-1 3.483639-2 4.265795-1 3.373867-2 4.315191-1 3.267554-2 4.365158-1 3.164595-2 4.570882-1 2.792478-2 4.677351-1 2.623478-2 4.731513-1 2.542869-2 4.795100-1 2.452500-2 4.954502-1 2.249422-2 5.011872-1 2.182004-2 5.128614-1 2.053419-2 5.248075-1 1.932443-2 5.370318-1 1.821417-2 5.495409-1 1.716769-2 5.559043-1 1.666829-2 5.623413-1 1.618343-2 5.754399-1 1.525584-2 5.821032-1 1.482446-2 6.025596-1 1.360213-2 6.165950-1 1.284553-2 6.309573-1 1.213121-2 6.531306-1 1.116225-2 6.606935-1 1.085678-2 6.760830-1 1.027231-2 6.839117-1 9.992061-3 6.918310-1 9.719458-3 7.079458-1 9.212507-3 7.244360-1 8.732007-3 7.413102-1 8.277707-3 7.585776-1 7.847164-3 7.762471-1 7.452569-3 7.943282-1 7.077824-3 8.035261-1 6.898034-3 8.128305-1 6.722811-3 8.317638-1 6.385706-3 8.413951-1 6.228919-3 8.609938-1 5.926803-3 8.709636-1 5.781286-3 8.810489-1 5.639343-3 8.912509-1 5.501243-3 9.015711-1 5.366564-3 9.120108-1 5.239464-3 9.440609-1 4.875949-3 9.549926-1 4.760472-3 9.660509-1 4.648066-3 9.772372-1 4.538350-3 9.885531-1 4.434933-3 1.000000+0 4.333877-3 1.011579+0 4.235129-3 1.023293+0 4.138624-3 1.047129+0 3.952165-3 1.071519+0 3.774434-3 1.083927+0 3.688584-3 1.096478+0 3.604692-3 1.122018+0 3.442626-3 1.130300+0 3.392415-3 1.135011+0 3.365298-3 1.148154+0 3.291364-3 1.161449+0 3.219055-3 1.174898+0 3.148526-3 1.202264+0 3.012078-3 1.216186+0 2.946102-3 1.230269+0 2.881573-3 1.250000+0 2.794717-3 1.273503+0 2.699854-3 1.288250+0 2.643009-3 1.318257+0 2.532890-3 1.333521+0 2.479583-3 1.348963+0 2.427394-3 1.380384+0 2.326293-3 1.412538+0 2.232766-3 1.445440+0 2.143272-3 1.462177+0 2.099880-3 1.496236+0 2.015740-3 1.513561+0 1.974945-3 1.548817+0 1.898937-3 1.566751+0 1.862151-3 1.603245+0 1.790703-3 1.659587+0 1.688670-3 1.678804+0 1.655968-3 1.698244+0 1.625028-3 1.717908+0 1.594669-3 1.757924+0 1.535799-3 1.798871+0 1.479106-3 1.862087+0 1.397990-3 1.883649+0 1.371952-3 1.905461+0 1.347218-3 1.927525+0 1.322931-3 1.995262+0 1.252840-3 2.044000+0 1.206081-3 2.113489+0 1.144196-3 2.137962+0 1.123628-3 2.162719+0 1.104183-3 2.238721+0 1.048011-3 2.290868+0 1.012160-3 2.371374+0 9.606856-4 2.398833+0 9.441162-4 2.426610+0 9.284174-4 2.540973+0 8.683590-4 2.600160+0 8.398035-4 2.691535+0 7.987341-4 2.722701+0 7.854958-4 2.754229+0 7.729234-4 2.917427+0 7.131834-4 2.985383+0 6.906012-4 3.126079+0 6.475710-4 3.162278+0 6.372388-4 3.235937+0 6.176970-4 3.388442+0 5.804919-4 3.467369+0 5.627386-4 3.630781+0 5.288540-4 3.672823+0 5.207067-4 3.758374+0 5.052891-4 3.981072+0 4.688041-4 4.073803+0 4.549590-4 4.265795+0 4.284906-4 4.315191+0 4.221177-4 4.415704+0 4.100386-4 4.731513+0 3.759177-4 4.841724+0 3.651874-4 5.128614+0 3.396888-4 5.188000+0 3.348069-4 5.308844+0 3.255311-4 5.688529+0 2.992779-4 5.821032+0 2.910062-4 6.165950+0 2.713185-4 6.237348+0 2.675438-4 6.382635+0 2.603662-4 6.918310+0 2.367803-4 7.161434+0 2.273379-4 7.673615+0 2.095717-4 7.852356+0 2.039637-4 8.035261+0 1.986461-4 8.709636+0 1.811383-4 9.015711+0 1.741156-4 9.549926+0 1.630136-4 9.772372+0 1.587736-4 1.000000+1 1.547333-4 1.174898+1 1.292264-4 1.216186+1 1.243334-4 1.244515+1 1.211754-4 1.258925+1 1.196267-4 1.659587+1 8.853344-5 1.698244+1 8.634040-5 1.717908+1 8.526457-5 1.737801+1 8.422532-5 2.344229+1 6.123118-5 2.400000+1 5.971675-5 2.426610+1 5.901960-5 2.454709+1 5.831318-5 3.507519+1 4.014704-5 3.589219+1 3.919177-5 3.630781+1 3.872273-5 3.672823+1 3.826657-5 5.821032+1 2.382102-5 5.888437+1 2.354040-5 5.956621+1 2.326312-5 6.000000+1 2.309020-5 6.025596+1 2.299050-5 1.161449+2 1.179873-5 1.174898+2 1.166145-5 1.188502+2 1.152579-5 1.202264+2 1.139272-5 2.317395+2 5.876933-6 2.344229+2 5.809080-6 2.371374+2 5.742013-6 2.398833+2 5.676088-6 9.225714+2 1.469879-6 9.332543+2 1.453003-6 9.440609+2 1.436321-6 9.549926+2 1.419872-6 5.821032+4 2.325347-8 5.888437+4 2.298717-8 5.956621+4 2.272394-8 6.025596+4 2.246397-8 1.000000+5 1.353994-8 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.229000-5 1.229000-5 1.242000-5 1.229000-5 1.242000-5 1.233253-5 2.484000-5 1.233503-5 2.484000-5 1.249536-5 2.600160-5 1.266129-5 2.700000-5 1.287431-5 2.786121-5 1.311711-5 2.900000-5 1.352474-5 3.040000-5 1.414055-5 3.311311-5 1.544779-5 3.427678-5 1.593162-5 3.540000-5 1.631229-5 3.650000-5 1.659368-5 3.770000-5 1.680604-5 3.900000-5 1.694209-5 4.073803-5 1.701393-5 4.315191-5 1.698359-5 4.900000-5 1.669473-5 5.650000-5 1.631835-5 6.400000-5 1.604800-5 7.328245-5 1.583119-5 8.500000-5 1.567577-5 1.023293-4 1.557266-5 1.273503-4 1.554546-5 1.698244-4 1.563757-5 2.077000-4 1.577247-5 2.077000-4 2.523474-5 2.083000-4 2.585042-5 2.088200-4 2.626852-5 2.094800-4 2.666402-5 2.094800-4 2.700953-5 2.105500-4 2.737051-5 2.117700-4 2.756197-5 2.145000-4 2.767054-5 2.260000-4 2.777581-5 2.680500-4 2.768291-5 2.680500-4 2.943723-5 2.800000-4 2.971540-5 3.054921-4 3.005101-5 4.677351-4 3.110225-5 6.456542-4 3.209768-5 8.912509-4 3.322944-5 1.188502-3 3.435680-5 1.548817-3 3.546129-5 2.000000-3 3.655143-5 2.540973-3 3.755454-5 2.804900-3 3.796850-5 2.804900-3 5.737649-5 3.162278-3 5.757085-5 5.559043-3 5.796183-5 1.216186-2 5.824450-5 4.677351-2 5.842102-5 1.000000+5 5.847462-5 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.229000-5 0.0 2.077000-4 0.0 2.077000-4 2.319611-8 2.080700-4 2.416601-8 2.083000-4 2.470429-8 2.085200-4 2.516951-8 2.088200-4 2.572861-8 2.091000-4 2.618067-8 2.094800-4 2.669760-8 2.094800-4 2.748809-8 2.100200-4 2.798483-8 2.104000-4 2.827971-8 2.112000-4 2.866460-8 2.118500-4 2.883262-8 2.132000-4 2.900418-8 2.187762-4 2.923395-8 2.264644-4 2.932089-8 2.511886-4 2.916975-8 2.680500-4 2.905710-8 2.680500-4 3.012578-8 2.900000-4 3.038681-8 3.350000-4 3.059379-8 5.308844-4 3.115261-8 9.225714-4 3.192893-8 1.428894-3 3.267148-8 2.041738-3 3.333193-8 2.804900-3 3.391346-8 2.804900-3 2.190795-4 3.000000-3 2.204006-4 4.800000-3 2.225994-4 7.673615-3 2.238509-4 1.500000-2 2.246224-4 9.549926-2 2.249916-4 1.000000+5 2.249463-4 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.229000-5 0.0 1.242000-5 1.300000-7 1.242000-5 8.747372-8 2.484000-5 1.250497-5 2.484000-5 1.234464-5 2.600160-5 1.334031-5 2.700000-5 1.412569-5 2.786121-5 1.474410-5 2.900000-5 1.547526-5 3.060000-5 1.636482-5 3.311311-5 1.766532-5 3.450000-5 1.848530-5 3.555000-5 1.919367-5 3.672823-5 2.008638-5 3.830000-5 2.141947-5 4.000000-5 2.300288-5 4.180000-5 2.478561-5 4.677351-5 2.995541-5 5.900000-5 4.278369-5 7.585776-5 6.006992-5 1.161449-4 1.006010-4 2.077000-4 1.919275-4 2.077000-4 1.824420-4 2.094800-4 1.827893-4 2.094800-4 1.824430-4 2.128700-4 1.852130-4 2.680500-4 2.403380-4 2.680500-4 2.385826-4 4.120975-4 3.813108-4 2.264644-3 2.227535-3 2.804900-3 2.766898-3 2.804900-3 2.528444-3 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.804900-3 8.854886+4 2.935000-3 8.201436+4 2.965000-3 8.027420+4 3.162278-3 6.837815+4 4.415704-3 2.894915+4 5.188000-3 1.885167+4 5.821032-3 1.382509+4 7.079458-3 8.068621+3 8.511380-3 4.811393+3 1.000000-2 3.039060+3 1.174898-2 1.907993+3 1.400000-2 1.142522+3 1.698244-2 6.446552+2 2.065380-2 3.583071+2 2.570396-2 1.844250+2 3.235937-2 9.091797+1 4.120975-2 4.291932+1 5.370318-2 1.871856+1 7.161434-2 7.538471+0 1.318257-1 1.086394+0 1.698244-1 4.880050-1 2.041738-1 2.745819-1 2.426610-1 1.613195-1 2.786121-1 1.061389-1 3.162278-1 7.283393-2 3.548134-1 5.208148-2 3.935501-1 3.876109-2 4.365158-1 2.904843-2 4.795100-1 2.251212-2 5.248075-1 1.773865-2 5.754399-1 1.400406-2 6.309573-1 1.113589-2 6.918310-1 8.921717-3 7.585776-1 7.202645-3 8.317638-1 5.861111-3 9.015711-1 4.926227-3 9.772372-1 4.166336-3 1.130300+0 3.114500-3 1.250000+0 2.565800-3 1.380384+0 2.135682-3 1.513561+0 1.813092-3 1.678804+0 1.520270-3 1.883649+0 1.259537-3 2.137962+0 1.031564-3 2.398833+0 8.667580-4 2.722701+0 7.211383-4 3.162278+0 5.850222-4 3.672823+0 4.780408-4 4.315191+0 3.875307-4 5.188000+0 3.073742-4 6.237348+0 2.456226-4 7.852356+0 1.872525-4 9.772372+0 1.457656-4 1.258925+1 1.098288-4 1.717908+1 7.828125-5 2.426610+1 5.418581-5 3.630781+1 3.555132-5 6.000000+1 2.119900-5 1.188502+2 1.058175-5 2.371374+2 5.271732-6 9.440609+2 1.318682-6 5.956621+4 2.086278-8 1.000000+5 1.243100-8 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.804900-3 5.967400-5 1.000000+5 5.967400-5 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.804900-3 2.450100-4 1.000000+5 2.450100-4 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.804900-3 2.500216-3 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.680500-4 3.038060+5 2.695000-4 3.098640+5 2.710000-4 3.146660+5 2.732000-4 3.197220+5 2.770000-4 3.252900+5 2.818383-4 3.296047+5 2.851018-4 3.313795+5 2.900000-4 3.325800+5 2.951209-4 3.320123+5 3.000000-4 3.298960+5 3.054921-4 3.259587+5 3.130000-4 3.186880+5 3.250700-4 3.047797+5 3.550900-4 2.721347+5 4.027170-4 2.337446+5 4.265795-4 2.166186+5 4.600000-4 1.943610+5 5.308844-4 1.566803+5 5.754399-4 1.380004+5 6.309573-4 1.184286+5 7.244360-4 9.336426+4 8.035261-4 7.755600+4 9.225714-4 5.998830+4 1.035142-3 4.810992+4 1.194100-3 3.624471+4 1.350000-3 2.821640+4 1.548817-3 2.114841+4 1.757924-3 1.609524+4 2.000000-3 1.210982+4 2.317395-3 8.680287+3 2.691535-3 6.136702+3 3.126079-3 4.302266+3 3.630781-3 2.991379+3 4.168694-3 2.123484+3 4.800000-3 1.486406+3 5.559043-3 1.018151+3 6.531306-3 6.667254+2 7.673615-3 4.331888+2 9.015711-3 2.793559+2 1.059254-2 1.788737+2 1.258925-2 1.100949+2 1.500000-2 6.676440+1 1.798871-2 3.943215+1 2.162719-2 2.294177+1 2.630268-2 1.280061+1 3.198895-2 7.088824+0 3.981072-2 3.633004+0 5.011872-2 1.783479+0 6.531306-2 7.804963-1 1.462177-1 6.157146-2 1.840772-1 2.990983-2 2.187762-1 1.752427-2 2.540973-1 1.110293-2 2.917427-1 7.332281-3 3.311311-1 5.049800-3 3.715352-1 3.624207-3 4.120975-1 2.707151-3 4.570882-1 2.036594-3 5.011872-1 1.591698-3 5.495409-1 1.252369-3 6.025596-1 9.923261-4 6.606935-1 7.921398-4 7.244360-1 6.377844-4 7.943282-1 5.173753-4 8.810489-1 4.122055-4 9.549926-1 3.475825-4 1.047129+0 2.883034-4 1.161449+0 2.348264-4 1.273503+0 1.969868-4 1.412538+0 1.629365-4 1.548817+0 1.385903-4 1.717908+0 1.163844-4 1.927525+0 9.655500-5 2.162719+0 8.061578-5 2.426610+0 6.778643-5 2.754229+0 5.643204-5 3.235937+0 4.508769-5 3.758374+0 3.688360-5 4.415704+0 2.993140-5 5.308844+0 2.376363-5 6.382635+0 1.900671-5 8.035261+0 1.450190-5 1.000000+1 1.129700-5 1.258925+1 8.735935-6 1.717908+1 6.226527-6 2.426610+1 4.309964-6 3.630781+1 2.827731-6 5.956621+1 1.698747-6 1.188502+2 8.417420-7 2.371374+2 4.193208-7 9.440609+2 1.048916-7 5.956621+4 1.659491-9 1.000000+5 9.88780-10 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.680500-4 4.744900-5 1.000000+5 4.744900-5 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.680500-4 4.109800-8 1.000000+5 4.109800-8 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.680500-4 2.205599-4 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.094800-4 5.026800+5 2.095600-4 5.205900+5 2.098000-4 5.810600+5 2.100200-4 6.393300+5 2.102500-4 7.033200+5 2.105500-4 7.905700+5 2.107700-4 8.563300+5 2.109200-4 9.024510+5 2.114000-4 1.026189+6 2.117700-4 1.118388+6 2.118500-4 1.135446+6 2.128700-4 1.207099+6 2.139000-4 1.253510+6 2.140000-4 1.250449+6 2.177000-4 1.357523+6 2.187762-4 1.374781+6 2.208000-4 1.402362+6 2.230000-4 1.413396+6 2.260000-4 1.401268+6 2.308800-4 1.360205+6 2.350000-4 1.317358+6 2.415000-4 1.236202+6 2.454709-4 1.193200+6 2.511886-4 1.123387+6 2.650000-4 9.885252+5 2.660725-4 9.827500+5 2.675100-4 9.690100+5 2.754229-4 9.199200+5 2.884032-4 8.404400+5 3.350000-4 6.192200+5 3.548134-4 5.469700+5 3.758374-4 4.790300+5 4.120975-4 3.834800+5 4.623810-4 2.884100+5 5.069907-4 2.280600+5 5.623413-4 1.735900+5 6.531306-4 1.161800+5 7.244360-4 8.734900+4 8.500000-4 5.572500+4 9.500000-4 4.046500+4 1.096478-3 2.657100+4 1.244515-3 1.818600+4 1.428894-3 1.193700+4 1.640590-3 7.775900+3 1.883649-3 5.031200+3 2.187762-3 3.115100+3 2.540973-3 1.913200+3 2.917427-3 1.211300+3 3.349654-3 7.617200+2 3.845918-3 4.758400+2 4.472100-3 2.826200+2 5.188000-3 1.680400+2 6.140000-3 9.243800+1 7.328245-3 4.893500+1 8.609938-3 2.721700+1 1.023293-2 1.441200+1 1.216186-2 7.576200+0 1.462177-2 3.787000+0 1.778279-2 1.798700+0 2.187762-2 8.115500-1 2.851018-2 2.909900-1 6.165950-2 1.436928-2 7.762471-2 5.893318-3 9.440609-2 2.782518-3 1.122019-1 1.445131-3 1.318257-1 7.896768-4 1.548817-1 4.347699-4 1.778279-1 2.626319-4 2.018366-1 1.666637-4 2.264644-1 1.109890-4 2.540973-1 7.443405-5 2.851018-1 5.029898-5 3.162278-1 3.559152-5 3.507519-1 2.536269-5 3.890451-1 1.821066-5 4.265795-1 1.365738-5 4.677351-1 1.031122-5 5.128614-1 7.840432-6 5.623413-1 6.006879-6 6.165950-1 4.635970-6 6.760830-1 3.604086-6 7.413102-1 2.822187-6 8.128305-1 2.226961-6 9.015711-1 1.716872-6 9.549926-1 1.495061-6 1.000000+0 1.345800-6 1.071519+0 1.159711-6 1.135011+0 1.030853-6 1.216186+0 9.025806-7 1.318257+0 7.791534-7 1.445440+0 6.637088-7 1.698244+0 5.053095-7 1.927525+0 4.109269-7 2.162719+0 3.430421-7 2.426610+0 2.884490-7 2.754229+0 2.401303-7 3.235937+0 1.918551-7 3.758374+0 1.569452-7 4.415704+0 1.273659-7 5.308844+0 1.011222-7 6.382635+0 8.087806-8 8.035261+0 6.170862-8 1.000000+1 4.807200-8 1.258925+1 3.717381-8 1.717908+1 2.649516-8 2.426610+1 1.833952-8 3.630781+1 1.203243-8 6.000000+1 7.175100-9 1.188502+2 3.581679-9 2.371374+2 1.784275-9 9.440609+2 4.46337-10 5.956621+4 7.06143-12 1.000000+5 4.20750-12 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.094800-4 2.864900-5 1.000000+5 2.864900-5 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.094800-4 3.123900-8 1.000000+5 3.123900-8 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.094800-4 1.807998-4 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.077000-4 1.018532+6 2.077900-4 1.057872+6 2.080700-4 1.201828+6 2.083000-4 1.326452+6 2.085200-4 1.451476+6 2.088200-4 1.628792+6 2.091000-4 1.799852+6 2.094000-4 1.986488+6 2.096200-4 2.124300+6 2.097000-4 2.145361+6 2.103000-4 2.487782+6 2.104000-4 2.531119+6 2.112000-4 2.814435+6 2.126000-4 3.036014+6 2.127000-4 3.060141+6 2.132000-4 3.111513+6 2.145000-4 3.174002+6 2.153000-4 3.204013+6 2.171000-4 3.258491+6 2.175000-4 3.264886+6 2.205000-4 3.261084+6 2.220000-4 3.250762+6 2.260000-4 3.177573+6 2.317395-4 3.011755+6 2.660725-4 1.962689+6 2.786121-4 1.785298+6 2.800000-4 1.773360+6 3.311311-4 1.258744+6 3.507519-4 1.111991+6 3.715352-4 9.744818+5 4.027170-4 8.022110+5 4.623810-4 5.695765+5 5.011872-4 4.635482+5 5.623413-4 3.420616+5 6.456542-4 2.358801+5 7.161434-4 1.773164+5 8.222426-4 1.202202+5 9.225714-4 8.642243+4 1.070000-3 5.594920+4 1.202264-3 3.949079+4 1.396368-3 2.503463+4 1.603245-3 1.630647+4 1.862087-3 1.016887+4 2.162719-3 6.290238+3 2.540973-3 3.715738+3 2.951209-3 2.259836+3 3.400000-3 1.401468+3 3.935501-3 8.492623+2 4.623810-3 4.848644+2 5.370318-3 2.860031+2 6.309573-3 1.607838+2 7.498942-3 8.605606+1 8.810489-3 4.766256+1 1.047129-2 2.512146+1 1.244515-2 1.313879+1 1.496236-2 6.529091+0 1.819701-2 3.080280+0 2.213095-2 1.442198+0 2.786121-2 5.858820-1 3.801894-2 1.720652-1 6.760830-2 1.767357-2 8.810489-2 6.246477-3 1.059254-1 3.047605-3 1.244515-1 1.637820-3 1.445440-1 9.264658-4 1.640590-1 5.758931-4 1.862087-1 3.605969-4 2.089296-1 2.372797-4 2.317395-1 1.638669-4 2.570396-1 1.139732-4 2.818383-1 8.306976-5 3.090295-1 6.095342-5 3.388442-1 4.505445-5 3.672823-1 3.481935-5 3.981072-1 2.708817-5 4.315191-1 2.120730-5 4.731513-1 1.615559-5 5.128614-1 1.281810-5 5.559043-1 1.024069-5 6.025596-1 8.241718-6 6.531306-1 6.688364-6 7.079458-1 5.466600-6 7.762471-1 4.375309-6 8.413951-1 3.625172-6 9.120108-1 3.024105-6 9.885531-1 2.540157-6 1.096478+0 2.054067-6 1.174898+0 1.792961-6 1.288250+0 1.507370-6 1.412538+0 1.275983-6 1.566751+0 1.065452-6 1.757924+0 8.786491-7 1.995262+0 7.165501-7 2.238721+0 5.994869-7 2.540973+0 4.966954-7 2.917427+0 4.079201-7 3.388442+0 3.320114-7 3.981072+0 2.681297-7 4.731513+0 2.149921-7 5.688529+0 1.711692-7 6.918310+0 1.354202-7 8.709636+0 1.035947-7 1.174898+1 7.390745-8 1.659587+1 5.066356-8 2.344229+1 3.504052-8 3.507519+1 2.297663-8 5.821032+1 1.363358-8 1.161449+2 6.753955-9 2.317395+2 3.364151-9 9.225714+2 8.41417-10 5.821032+4 1.33119-11 1.000000+5 7.75120-12 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.077000-4 2.853400-5 1.000000+5 2.853400-5 1 17000 7 7 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.077000-4 3.128400-8 1.000000+5 3.128400-8 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.077000-4 1.791347-4 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.484000-5 6.364200+4 2.517000-5 7.246200+4 2.540973-5 7.911498+4 2.570396-5 8.736333+4 2.600160-5 9.579353+4 2.630268-5 1.043720+5 2.670000-5 1.157198+5 2.700000-5 1.242938+5 2.740000-5 1.356438+5 2.786121-5 1.485919+5 2.830000-5 1.607430+5 2.884032-5 1.754055+5 2.930000-5 1.875736+5 2.985383-5 2.018130+5 3.040000-5 2.153880+5 3.100000-5 2.297320+5 3.162278-5 2.439884+5 3.235937-5 2.599974+5 3.311311-5 2.754164+5 3.400000-5 2.923100+5 3.500000-5 3.097880+5 3.610000-5 3.271480+5 3.730000-5 3.439800+5 3.850000-5 3.587600+5 4.000000-5 3.745800+5 4.150000-5 3.876900+5 4.315191-5 3.993377+5 4.500000-5 4.093120+5 4.677351-5 4.162269+5 4.900000-5 4.217260+5 5.150000-5 4.243480+5 5.400000-5 4.239080+5 5.688529-5 4.203869+5 6.000000-5 4.137700+5 6.309573-5 4.050341+5 6.683439-5 3.925111+5 7.079458-5 3.778127+5 7.500000-5 3.613840+5 8.035261-5 3.401872+5 8.609938-5 3.179738+5 9.332543-5 2.917693+5 1.023293-4 2.624202+5 1.135011-4 2.311645+5 1.273503-4 1.993357+5 1.428894-4 1.706890+5 1.584893-4 1.474796+5 1.757924-4 1.265967+5 1.972423-4 1.060424+5 2.317395-4 8.199828+4 2.851018-4 5.848280+4 3.273407-4 4.639174+4 3.715352-4 3.724263+4 4.466836-4 2.680941+4 5.248075-4 1.997775+4 6.500000-4 1.338820+4 7.673615-4 9.759923+3 8.912509-4 7.278677+3 1.035142-3 5.389488+3 1.202264-3 3.961087+3 1.396368-3 2.888644+3 1.584893-3 2.196959+3 1.840772-3 1.577672+3 2.137962-3 1.124371+3 2.483133-3 7.953847+2 2.884032-3 5.585689+2 3.349654-3 3.895246+2 3.890451-3 2.697100+2 4.518559-3 1.853680+2 5.248075-3 1.264856+2 6.165950-3 8.315586+1 7.244360-3 5.424246+1 8.511380-3 3.511305+1 1.000000-2 2.256189+1 1.188502-2 1.393168+1 1.412538-2 8.536532+0 1.698244-2 5.023037+0 2.041738-2 2.932654+0 2.454709-2 1.699192+0 3.000000-2 9.304963-1 3.715352-2 4.855433-1 4.677351-2 2.390863-1 6.025596-2 1.088104-1 8.413951-2 3.809910-2 1.445440-1 6.922518-3 1.840772-1 3.246771-3 2.238721-1 1.772369-3 2.600160-1 1.123434-3 2.985383-1 7.429921-4 3.388442-1 5.123996-4 3.801894-1 3.682668-4 4.216965-1 2.754924-4 4.677351-1 2.076163-4 5.128614-1 1.625523-4 5.623413-1 1.281426-4 6.165950-1 1.017419-4 6.760830-1 8.139294-5 7.413102-1 6.560629-5 8.128305-1 5.328461-5 8.912509-1 4.360770-5 9.660509-1 3.683878-5 1.096478+0 2.855868-5 1.202264+0 2.386058-5 1.318257+0 2.006309-5 1.462177+0 1.663557-5 1.603245+0 1.418422-5 1.798871+0 1.171617-5 2.044000+0 9.553700-6 2.290868+0 8.018849-6 2.600160+0 6.653291-6 2.985383+0 5.471081-6 3.467369+0 4.457706-6 4.073803+0 3.604041-6 4.841724+0 2.892747-6 5.821032+0 2.305207-6 7.161434+0 1.800739-6 9.015711+0 1.379156-6 1.216186+1 9.851109-7 1.698244+1 6.844426-7 2.400000+1 4.734000-7 3.589219+1 3.106967-7 5.888437+1 1.866154-7 1.174898+2 9.245607-8 2.344229+2 4.605529-8 9.332543+2 1.151998-8 5.888437+4 1.82247-10 1.000000+5 1.07350-10 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.484000-5 2.484000-5 1.000000+5 2.484000-5 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.484000-5 0.0 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.242000-5 1.851204+7 1.273503-5 1.931130+7 1.295000-5 1.978954+7 1.318257-5 2.022337+7 1.348963-5 2.066165+7 1.370000-5 2.086304+7 1.400000-5 2.101754+7 1.430000-5 2.101838+7 1.455000-5 2.089054+7 1.485000-5 2.059254+7 1.515000-5 2.014921+7 1.540000-5 1.968021+7 1.570000-5 1.901004+7 1.600000-5 1.823887+7 1.630000-5 1.739070+7 1.660000-5 1.648367+7 1.690000-5 1.554015+7 1.720000-5 1.457870+7 1.750000-5 1.361834+7 1.785000-5 1.251536+7 1.819701-5 1.146123+7 1.863300-5 1.020836+7 1.905461-5 9.088863+6 1.950000-5 8.011733+6 2.000000-5 6.933314+6 2.065380-5 5.722597+6 2.137962-5 4.617256+6 2.213095-5 3.698478+6 2.300000-5 2.867939+6 2.400000-5 2.151588+6 2.754229-5 8.333599+5 2.851018-5 6.600655+5 2.920000-5 5.642195+5 3.000000-5 4.756093+5 3.060000-5 4.220858+5 3.126079-5 3.736338+5 3.170000-5 3.465990+5 3.230000-5 3.153456+5 3.280000-5 2.936356+5 3.330000-5 2.753222+5 3.388442-5 2.576329+5 3.427678-5 2.477193+5 3.485000-5 2.356921+5 3.540000-5 2.265405+5 3.590000-5 2.199688+5 3.650000-5 2.139704+5 3.715352-5 2.094332+5 3.770000-5 2.069837+5 3.830000-5 2.054887+5 3.900000-5 2.050721+5 3.981072-5 2.060445+5 4.073803-5 2.086536+5 4.180000-5 2.130988+5 4.315191-5 2.202844+5 4.900000-5 2.575355+5 5.150000-5 2.722972+5 5.400000-5 2.850456+5 5.650000-5 2.955256+5 5.900000-5 3.037139+5 6.165950-5 3.099815+5 6.400000-5 3.135423+5 6.683439-5 3.156654+5 7.000000-5 3.156156+5 7.328245-5 3.133208+5 7.673615-5 3.089070+5 8.035261-5 3.026252+5 8.500000-5 2.928489+5 9.000000-5 2.809672+5 9.549926-5 2.671132+5 1.020000-4 2.505955+5 1.083927-4 2.347231+5 1.161449-4 2.164945+5 1.244515-4 1.983692+5 1.350000-4 1.775704+5 1.450000-4 1.599517+5 1.566751-4 1.417956+5 1.698244-4 1.240614+5 1.840772-4 1.077477+5 2.018366-4 9.103592+4 2.264644-4 7.312118+4 2.540973-4 5.829353+4 2.800000-4 4.784243+4 3.054921-4 3.981323+4 3.349654-4 3.255926+4 3.726990-4 2.558938+4 4.168694-4 1.974017+4 4.677351-4 1.500965+4 5.308844-4 1.102027+4 6.095369-4 7.804663+3 6.839116-4 5.821335+3 7.585776-4 4.440111+3 8.511380-4 3.260881+3 9.549926-4 2.376911+3 1.083927-3 1.665315+3 1.230269-3 1.157448+3 1.396368-3 7.981226+2 1.566751-3 5.654046+2 1.778279-3 3.841877+2 2.041738-3 2.500830+2 2.344229-3 1.616029+2 2.691535-3 1.036606+2 3.090295-3 6.602142+1 3.548134-3 4.175986+1 4.073803-3 2.622617+1 4.677351-3 1.634885+1 5.432503-3 9.723778+0 6.382635-3 5.511644+0 7.498942-3 3.099750+0 8.810489-3 1.730191+0 1.047129-2 9.190559-1 1.244515-2 4.844678-1 1.500000-2 2.405404-1 1.819701-2 1.155540-1 2.264644-2 4.997581-2 2.951209-2 1.796180-2 5.888437-2 1.221963-3 7.585776-2 4.583753-4 9.332543-2 2.069170-4 1.122019-1 1.027598-4 1.318257-1 5.609857-5 1.531088-1 3.221485-5 1.757924-1 1.944641-5 2.000000-1 1.222700-5 2.264644-1 7.879322-6 2.540973-1 5.282545-6 2.851018-1 3.568517-6 3.162278-1 2.524427-6 3.507519-1 1.798438-6 3.890451-1 1.291034-6 4.265795-1 9.683127-7 4.677351-1 7.311046-7 5.128614-1 5.556750-7 5.623413-1 4.251992-7 6.165950-1 3.277011-7 6.760830-1 2.544633-7 7.413102-1 1.990679-7 8.609938-1 1.350798-7 9.120108-1 1.170457-7 9.660509-1 1.020946-7 1.011579+0 9.205095-8 1.083927+0 7.943025-8 1.148154+0 7.069751-8 1.230269+0 6.197809-8 1.333521+0 5.355490-8 1.462177+0 4.565856-8 1.698244+0 3.544748-8 1.905461+0 2.936371-8 2.137962+0 2.449653-8 2.398833+0 2.058429-8 2.722701+0 1.712446-8 3.162278+0 1.389071-8 3.672823+0 1.135080-8 4.315191+0 9.201812-9 5.188000+0 7.298483-9 6.237348+0 5.832198-9 7.852356+0 4.446251-9 9.772372+0 3.461088-9 1.258925+1 2.607788-9 1.737801+1 1.835811-9 2.454709+1 1.271040-9 3.672823+1 8.34121-10 6.025596+1 5.01164-10 1.202264+2 2.48351-10 2.398833+2 1.23735-10 9.549926+2 3.09531-11 6.025596+4 4.89711-13 1.000000+5 2.95170-13 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.242000-5 1.242000-5 1.000000+5 1.242000-5 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.242000-5 0.0 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.229000-5 3.741930+7 1.260000-5 3.899763+7 1.288250-5 4.018030+7 1.312000-5 4.098863+7 1.340000-5 4.169196+7 1.367000-5 4.211062+7 1.396368-5 4.226636+7 1.420000-5 4.217296+7 1.445440-5 4.185247+7 1.470000-5 4.132963+7 1.500000-5 4.042229+7 1.530000-5 3.925096+7 1.560000-5 3.784896+7 1.590000-5 3.625696+7 1.621810-5 3.440749+7 1.650000-5 3.267043+7 1.680000-5 3.075930+7 1.710000-5 2.882157+7 1.740000-5 2.689051+7 1.778279-5 2.447991+7 1.819701-5 2.198780+7 1.863300-5 1.953608+7 1.905461-5 1.735713+7 1.950000-5 1.527082+7 2.000000-5 1.319085+7 2.065380-5 1.086529+7 2.137962-5 8.750340+6 2.213095-5 6.998129+6 2.300000-5 5.419028+6 2.400000-5 4.060263+6 2.730000-5 1.670002+6 2.830000-5 1.310739+6 2.900000-5 1.117419+6 2.951209-5 1.000220+6 3.020000-5 8.694758+5 3.080000-5 7.764026+5 3.135000-5 7.054326+5 3.190000-5 6.461194+5 3.245000-5 5.967661+5 3.300000-5 5.559361+5 3.350000-5 5.251761+5 3.400000-5 4.996562+5 3.450000-5 4.786929+5 3.507519-5 4.594468+5 3.555000-5 4.469596+5 3.610000-5 4.358062+5 3.672823-5 4.268002+5 3.730000-5 4.215162+5 3.801894-5 4.181697+5 3.880000-5 4.179496+5 3.970000-5 4.211596+5 4.073803-5 4.283425+5 4.180000-5 4.384629+5 4.350000-5 4.583262+5 4.841724-5 5.229006+5 5.080000-5 5.516861+5 5.308844-5 5.758920+5 5.559043-5 5.979430+5 5.800000-5 6.146361+5 6.070000-5 6.282027+5 6.309573-5 6.360632+5 6.606934-5 6.409495+5 6.918310-5 6.409738+5 7.244360-5 6.363270+5 7.585776-5 6.274733+5 7.943282-5 6.148808+5 8.317638-5 5.989664+5 8.810489-5 5.752848+5 9.332543-5 5.485270+5 9.900000-5 5.187795+5 1.060000-4 4.827362+5 1.135011-4 4.460343+5 1.230269-4 4.029783+5 1.318257-4 3.669568+5 1.428894-4 3.264711+5 1.540000-4 2.906410+5 1.659587-4 2.570250+5 1.800000-4 2.231791+5 1.950000-4 1.929505+5 2.162719-4 1.586827+5 2.426610-4 1.267319+5 2.691535-4 1.028358+5 2.951209-4 8.485085+4 3.235937-4 6.951378+4 3.589219-4 5.510428+4 4.027170-4 4.224580+4 4.518559-4 3.215857+4 5.128614-4 2.363597+4 5.821032-4 1.724042+4 6.606934-4 1.250119+4 7.413102-4 9.263287+3 8.222426-4 7.025437+3 9.225714-4 5.125572+3 1.047129-3 3.593986+3 1.188502-3 2.500503+3 1.348963-3 1.725988+3 1.531087-3 1.182033+3 1.737801-3 8.031547+2 1.972423-3 5.418874+2 2.264644-3 3.502733+2 2.600160-3 2.247379+2 3.000000-3 1.408614+2 3.467369-3 8.712721+1 4.000000-3 5.380252+1 4.570882-3 3.403537+1 5.308844-3 2.020269+1 6.237348-3 1.142505+1 7.328245-3 6.413424+0 8.609938-3 3.572654+0 1.011579-2 1.975509+0 1.202264-2 1.038786+0 1.428894-2 5.420576-1 1.717908-2 2.686803-1 2.089296-2 1.264405-1 2.600160-2 5.398956-2 3.388442-2 1.910717-2 5.623413-2 2.586935-3 7.673615-2 7.607638-4 9.549926-2 3.235766-4 1.148154-1 1.585835-4 1.348963-1 8.558755-5 1.548817-1 5.080044-5 1.757924-1 3.170665-5 1.972423-1 2.079590-5 2.213095-1 1.373753-5 2.454709-1 9.526189-6 2.722701-1 6.655734-6 3.000000-1 4.793900-6 3.273407-1 3.593066-6 3.589219-1 2.669448-6 3.890451-1 2.071779-6 4.216965-1 1.618302-6 4.570882-1 1.272544-6 4.954502-1 1.007584-6 5.370318-1 8.036415-7 5.821032-1 6.456051-7 6.309573-1 5.224563-7 6.839117-1 4.258826-7 7.413102-1 3.496351-7 8.035261-1 2.890440-7 8.709636-1 2.404804-7 9.440609-1 2.015564-7 1.023293+0 1.702378-7 1.122018+0 1.414342-7 1.230269+0 1.183789-7 1.348963+0 9.981472-8 1.496236+0 8.304471-8 1.659587+0 6.959204-8 1.862087+0 5.760542-8 2.113489+0 4.714480-8 2.371374+0 3.958619-8 2.691535+0 3.291312-8 3.126079+0 2.668432-8 3.630781+0 2.179194-8 4.265795+0 1.765683-8 5.128614+0 1.399795-8 6.165950+0 1.118021-8 7.673615+0 8.634964-9 9.549926+0 6.716542-9 1.244515+1 4.993392-9 1.717908+1 3.514373-9 2.426610+1 2.432630-9 3.589219+1 1.615254-9 5.888437+1 9.70152-10 1.174898+2 4.80648-10 2.344229+2 2.39430-10 9.332543+2 5.98883-11 5.888437+4 9.47483-13 1.000000+5 5.58090-13 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.229000-5 1.229000-5 1.000000+5 1.229000-5 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.229000-5 0.0 1.000000+5 1.000000+5 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.159780-8 1.028750+0 1.159780-7 1.036640+0 1.159780-6 1.038200+0 1.565160-6 1.039700+0 2.033460-6 1.041500+0 2.705490-6 1.043800+0 3.755320-6 1.046400+0 5.224820-6 1.048300+0 6.505050-6 1.051200+0 8.823950-6 1.054080+0 1.159780-5 1.057700+0 1.580850-5 1.061100+0 2.056280-5 1.065100+0 2.722260-5 1.070400+0 3.797810-5 1.076200+0 5.248520-5 1.080600+0 6.554540-5 1.087100+0 8.831200-5 1.093710+0 1.159780-4 1.102600+0 1.608110-4 1.110700+0 2.097430-4 1.120600+0 2.805990-4 1.133300+0 3.901800-4 1.147500+0 5.387860-4 1.158200+0 6.695980-4 1.174100+0 8.948160-4 1.190110+0 1.159780-3 1.205100+0 1.443000-3 1.227500+0 1.930540-3 1.250000+0 2.497000-3 1.280300+0 3.378550-3 1.307700+0 4.289690-3 1.343000+0 5.615910-3 1.382200+0 7.279500-3 1.433800+0 9.754920-3 1.500000+0 1.337000-2 1.562500+0 1.720000-2 1.617200+0 2.085770-2 1.712900+0 2.785450-2 1.784700+0 3.354250-2 1.892300+0 4.263510-2 2.000000+0 5.227000-2 2.044000+0 5.632000-2 2.163500+0 6.752640-2 2.372600+0 8.756030-2 2.647100+0 1.140390-1 3.000000+0 1.477000-1 3.437500+0 1.883160-1 4.000000+0 2.380000-1 4.750000+0 2.990830-1 5.000000+0 3.183000-1 6.000000+0 3.900000-1 7.000000+0 4.539000-1 8.000000+0 5.113000-1 9.000000+0 5.634000-1 1.000000+1 6.106000-1 1.100000+1 6.534000-1 1.200000+1 6.927000-1 1.300000+1 7.291000-1 1.400000+1 7.630000-1 1.500000+1 7.946000-1 1.600000+1 8.243000-1 1.800000+1 8.786000-1 2.000000+1 9.272000-1 2.200000+1 9.711000-1 2.400000+1 1.011000+0 2.600000+1 1.048000+0 2.800000+1 1.081000+0 3.000000+1 1.112000+0 4.000000+1 1.241000+0 5.000000+1 1.337000+0 6.000000+1 1.412000+0 8.000000+1 1.522000+0 1.000000+2 1.602000+0 1.500000+2 1.732000+0 2.000000+2 1.812000+0 3.000000+2 1.906000+0 4.000000+2 1.960000+0 5.000000+2 1.997000+0 6.000000+2 2.023000+0 8.000000+2 2.058000+0 1.000000+3 2.081000+0 1.500000+3 2.114000+0 2.000000+3 2.132000+0 3.000000+3 2.151000+0 4.000000+3 2.162000+0 5.000000+3 2.169000+0 6.000000+3 2.173000+0 8.000000+3 2.180000+0 1.000000+4 2.183000+0 1.500000+4 2.189000+0 2.000000+4 2.192000+0 3.000000+4 2.195000+0 4.000000+4 2.196000+0 5.000000+4 2.197000+0 6.000000+4 2.198000+0 8.000000+4 2.199000+0 1.000000+5 2.199000+0 1 17000 7 8 3.545300+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.707070-7 2.127900+0 1.299340-6 2.136250+0 1.707070-6 2.147000+0 2.340510-6 2.156900+0 3.040040-6 2.169000+0 4.057130-6 2.184500+0 5.639540-6 2.201800+0 7.802470-6 2.214800+0 9.721270-6 2.234200+0 1.307680-5 2.253680+0 1.707070-5 2.281500+0 2.391060-5 2.307000+0 3.140650-5 2.338200+0 4.222880-5 2.377400+0 5.848190-5 2.410200+0 7.437930-5 2.446800+0 9.461470-5 2.485900+0 1.191250-4 2.532900+0 1.524540-4 2.556430+0 1.707070-4 2.611900+0 2.176690-4 2.660400+0 2.631470-4 2.745300+0 3.522010-4 2.809000+0 4.265320-4 2.904500+0 5.494700-4 3.000000+0 6.859000-4 3.125000+0 8.845110-4 3.234400+0 1.076350-3 3.425800+0 1.449740-3 3.569300+0 1.758220-3 3.784700+0 2.260710-3 4.000000+0 2.801000-3 4.250000+0 3.461590-3 4.625000+0 4.499960-3 5.000000+0 5.580000-3 5.500000+0 7.063950-3 6.000000+0 8.569000-3 6.750000+0 1.081070-2 7.000000+0 1.155000-2 8.000000+0 1.445000-2 9.000000+0 1.722000-2 1.000000+1 1.986000-2 1.100000+1 2.237000-2 1.200000+1 2.473000-2 1.300000+1 2.697000-2 1.400000+1 2.910000-2 1.500000+1 3.112000-2 1.600000+1 3.304000-2 1.800000+1 3.662000-2 2.000000+1 3.989000-2 2.200000+1 4.289000-2 2.400000+1 4.566000-2 2.600000+1 4.823000-2 2.800000+1 5.062000-2 3.000000+1 5.285000-2 4.000000+1 6.219000-2 5.000000+1 6.939000-2 6.000000+1 7.517000-2 8.000000+1 8.402000-2 1.000000+2 9.059000-2 1.500000+2 1.017000-1 2.000000+2 1.089000-1 3.000000+2 1.180000-1 4.000000+2 1.235000-1 5.000000+2 1.273000-1 6.000000+2 1.302000-1 8.000000+2 1.341000-1 1.000000+3 1.367000-1 1.500000+3 1.407000-1 2.000000+3 1.429000-1 3.000000+3 1.454000-1 4.000000+3 1.469000-1 5.000000+3 1.478000-1 6.000000+3 1.484000-1 8.000000+3 1.492000-1 1.000000+4 1.497000-1 1.500000+4 1.505000-1 2.000000+4 1.509000-1 3.000000+4 1.513000-1 4.000000+4 1.515000-1 5.000000+4 1.517000-1 6.000000+4 1.518000-1 8.000000+4 1.519000-1 1.000000+5 1.520000-1 1 17000 7 8 3.545300+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 17000 7 9 3.545300+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.700000+1 1.000000+5 1.700000+1 5.000000+5 1.699400+1 6.718700+5 1.698850+1 7.890600+5 1.698550+1 8.945300+5 1.698290+1 1.000000+6 1.697900+1 1.500000+6 1.695400+1 1.750000+6 1.693650+1 2.000000+6 1.691900+1 2.500000+6 1.687400+1 3.000000+6 1.681900+1 3.750000+6 1.671850+1 4.000000+6 1.668200+1 4.750000+6 1.655420+1 5.000000+6 1.650900+1 5.875000+6 1.633060+1 6.000000+6 1.630420+1 6.625000+6 1.615960+1 7.000000+6 1.607000+1 7.875000+6 1.584280+1 8.500000+6 1.567190+1 8.625000+6 1.563600+1 9.000000+6 1.552900+1 1.000000+7 1.522900+1 1.109400+7 1.488380+1 1.125000+7 1.483450+1 1.203100+7 1.457960+1 1.250000+7 1.442500+1 1.375000+7 1.400570+1 1.437500+7 1.379640+1 1.500000+7 1.358700+1 1.625000+7 1.317050+1 1.687500+7 1.296450+1 1.750000+7 1.276200+1 1.937500+7 1.216980+1 2.000000+7 1.198000+1 2.125000+7 1.161150+1 2.250000+7 1.126250+1 2.312500+7 1.109440+1 2.500000+7 1.062100+1 2.750000+7 1.005610+1 3.000000+7 9.564600+0 3.250000+7 9.139830+0 3.500000+7 8.771750+0 3.625000+7 8.605060+0 4.000000+7 8.168600+0 4.500000+7 7.696630+0 5.000000+7 7.297600+0 5.500000+7 6.933250+0 6.000000+7 6.584800+0 6.500000+7 6.240170+0 7.000000+7 5.898200+0 7.500000+7 5.559350+0 8.000000+7 5.227300+0 8.500000+7 4.903560+0 9.000000+7 4.591500+0 9.500000+7 4.293140+0 1.000000+8 4.009700+0 1.062500+8 3.677860+0 1.125000+8 3.375720+0 1.156300+8 3.235740+0 1.250000+8 2.862800+0 1.437500+8 2.298380+0 1.500000+8 2.155100+0 1.617200+8 1.934490+0 1.712900+8 1.790760+0 1.750000+8 1.742240+0 1.815400+8 1.665130+0 1.938500+8 1.544400+0 2.000000+8 1.494100+0 2.125000+8 1.408520+0 2.289100+8 1.320590+0 2.500000+8 1.234000+0 2.812500+8 1.132170+0 2.937500+8 1.091930+0 3.000000+8 1.071100+0 3.125000+8 1.028010+0 3.500000+8 9.082000-1 3.812500+8 8.290230-1 3.937500+8 7.977600-1 4.000000+8 7.816000-1 4.125000+8 7.478750-1 4.234400+8 7.176920-1 4.425800+8 6.653220-1 4.712900+8 5.919740-1 5.000000+8 5.283000-1 5.437500+8 4.489390-1 5.683600+8 4.094570-1 5.894500+8 3.771770-1 6.000000+8 3.614000-1 6.250000+8 3.254320-1 6.625000+8 2.796810-1 6.812500+8 2.615570-1 6.953100+8 2.501940-1 7.000000+8 2.468000-1 7.125000+8 2.387640-1 7.671900+8 2.108900-1 7.835900+8 2.025810-1 8.000000+8 1.936000-1 8.125000+8 1.861970-1 8.297100+8 1.755100-1 8.455000+8 1.654870-1 8.648200+8 1.533070-1 8.896000+8 1.383250-1 9.172000+8 1.229640-1 1.000000+9 8.730000-2 1.031300+9 7.770400-2 1.074300+9 6.705750-2 1.113800+9 5.920120-2 1.162000+9 5.141850-2 1.224000+9 4.350490-2 1.411300+9 2.777930-2 1.500000+9 2.277400-2 1.562500+9 1.982730-2 1.617200+9 1.758440-2 1.712900+9 1.430820-2 1.856400+9 1.063290-2 2.000000+9 8.038400-3 2.750000+9 2.414330-3 3.875000+9 6.563370-4 5.000000+9 2.481200-4 8.000000+9 4.111100-5 9.500000+9 2.140070-5 1.00000+10 1.762900-5 1.20500+10 8.755810-6 1.41820+10 4.780550-6 1.71170+10 2.393680-6 2.01490+10 1.321830-6 2.26440+10 8.669550-7 2.74790+10 4.334290-7 3.20120+10 2.520690-7 3.62610+10 1.624770-7 4.42280+10 8.116840-8 5.12000+10 4.888150-8 6.34000+10 2.346490-8 7.94120+10 1.091700-8 1.00000+11 5.028400-9 1.26840+11 2.279320-9 1.58400+11 1.096030-9 2.01970+11 4.95880-10 2.73980+11 1.85295-10 3.89420+11 6.03953-11 5.35610+11 2.21297-11 8.96670+11 4.46407-12 1.40100+12 1.13846-12 2.73660+12 1.50967-13 6.72830+12 1.04496-14 1.00000+14 3.94720-18 5.62340+14 2.43938-20 5.42470+15 2.82449-23 1.00000+17 4.38990-27 1 17000 7 0 3.545300+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 2.60000-12 1.000000+2 2.60000-10 1.000000+3 2.600000-8 1.000000+4 2.600000-6 1.000000+5 2.600000-4 5.000000+5 6.500000-3 6.718700+5 1.173664-2 7.890600+5 1.618801-2 8.945300+5 2.080478-2 1.000000+6 2.600000-2 1.500000+6 5.900000-2 1.750000+6 8.015560-2 2.000000+6 1.043000-1 2.500000+6 1.620000-1 3.000000+6 2.316000-1 3.750000+6 3.569650-1 4.000000+6 4.041000-1 4.750000+6 5.603080-1 5.000000+6 6.170000-1 5.875000+6 8.311810-1 6.000000+6 8.636680-1 6.625000+6 1.032090+0 7.000000+6 1.137800+0 7.875000+6 1.395430+0 8.500000+6 1.587230+0 8.625000+6 1.626190+0 9.000000+6 1.744400+0 1.000000+7 2.065000+0 1.109400+7 2.420390+0 1.125000+7 2.471280+0 1.203100+7 2.725100+0 1.250000+7 2.877000+0 1.375000+7 3.276080+0 1.437500+7 3.472050+0 1.500000+7 3.665000+0 1.625000+7 4.040050+0 1.687500+7 4.221800+0 1.750000+7 4.400200+0 1.937500+7 4.910980+0 2.000000+7 5.074000+0 2.125000+7 5.387540+0 2.250000+7 5.686200+0 2.312500+7 5.829990+0 2.500000+7 6.239500+0 2.750000+7 6.736380+0 3.000000+7 7.182000+0 3.250000+7 7.579050+0 3.500000+7 7.936160+0 3.625000+7 8.101160+0 4.000000+7 8.553000+0 4.500000+7 9.074070+0 5.000000+7 9.539000+0 5.500000+7 9.970780+0 6.000000+7 1.038200+1 6.500000+7 1.077800+1 7.000000+7 1.115800+1 7.500000+7 1.152160+1 8.000000+7 1.186700+1 8.500000+7 1.219300+1 9.000000+7 1.249900+1 9.500000+7 1.278430+1 1.000000+8 1.305000+1 1.062500+8 1.335170+1 1.125000+8 1.362500+1 1.156300+8 1.375080+1 1.250000+8 1.408800+1 1.437500+8 1.461010+1 1.500000+8 1.475000+1 1.617200+8 1.497210+1 1.712900+8 1.512700+1 1.750000+8 1.518050+1 1.815400+8 1.526960+1 1.938500+8 1.541920+1 2.000000+8 1.548700+1 2.125000+8 1.561260+1 2.289100+8 1.575840+1 2.500000+8 1.592400+1 2.812500+8 1.613310+1 2.937500+8 1.620710+1 3.000000+8 1.624300+1 3.125000+8 1.630780+1 3.500000+8 1.647900+1 3.812500+8 1.659070+1 3.937500+8 1.662920+1 4.000000+8 1.664800+1 4.125000+8 1.668030+1 4.234400+8 1.670790+1 4.425800+8 1.674820+1 4.712900+8 1.680070+1 5.000000+8 1.684300+1 5.437500+8 1.688990+1 5.683600+8 1.690790+1 5.894500+8 1.692280+1 6.000000+8 1.693000+1 6.250000+8 1.694170+1 6.625000+8 1.695670+1 6.812500+8 1.696240+1 6.953100+8 1.696660+1 7.000000+8 1.696800+1 7.125000+8 1.697030+1 7.671900+8 1.697970+1 7.835900+8 1.698240+1 8.000000+8 1.698500+1 8.125000+8 1.698590+1 8.297100+8 1.698700+1 8.455000+8 1.698810+1 8.648200+8 1.698930+1 8.896000+8 1.699090+1 9.172000+8 1.699260+1 1.000000+9 1.699600+1 1.031300+9 1.699630+1 1.074300+9 1.699670+1 1.113800+9 1.699710+1 1.162000+9 1.699750+1 1.224000+9 1.699800+1 1.411300+9 1.699940+1 1.500000+9 1.700000+1 1.562500+9 1.700000+1 1.617200+9 1.700000+1 1.712900+9 1.700000+1 1.856400+9 1.700000+1 2.000000+9 1.700000+1 2.750000+9 1.700000+1 3.875000+9 1.700000+1 5.000000+9 1.700000+1 8.000000+9 1.700000+1 9.500000+9 1.700000+1 1.00000+10 1.700000+1 1.20500+10 1.700000+1 1.41820+10 1.700000+1 1.71170+10 1.700000+1 2.01490+10 1.700000+1 2.26440+10 1.700000+1 2.74790+10 1.700000+1 3.20120+10 1.700000+1 3.62610+10 1.700000+1 4.42280+10 1.700000+1 5.12000+10 1.700000+1 6.34000+10 1.700000+1 7.94120+10 1.700000+1 1.00000+11 1.700000+1 1.26840+11 1.700000+1 1.58400+11 1.700000+1 2.01970+11 1.700000+1 2.73980+11 1.700000+1 3.89420+11 1.700000+1 5.35610+11 1.700000+1 8.96670+11 1.700000+1 1.40100+12 1.700000+1 2.73660+12 1.700000+1 6.72830+12 1.700000+1 1.00000+14 1.700000+1 5.62340+14 1.700000+1 5.42470+15 1.700000+1 1.00000+17 1.700000+1 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.007633-6 0.0 8.547280-6 0.0 8.584096-6 6.760141-1 8.589356-6 7.716022-1 8.610394-6 1.409394+0 8.631432-6 2.376433+0 8.652470-6 3.698898+0 8.695551-6 7.169167+0 8.718214-6 9.069146+0 8.737937-6 1.030713+1 8.758317-6 1.105407+1 8.784063-6 1.110048+1 8.806771-6 1.051714+1 8.903783-6 6.423577+0 8.929418-6 5.308491+0 8.954234-6 4.053441+0 8.968040-6 3.281354+0 9.005716-6 1.844526+0 9.027093-6 1.190762+0 9.048470-6 7.096087-1 9.069847-6 3.903616-1 9.101913-6 9.923149-2 9.112602-6 0.0 9.651149-6 0.0 9.656488-6 1.905495-7 9.698659-6 3.149133-6 9.704024-6 3.647241-6 9.722414-6 5.780138-6 9.727792-6 6.565949-6 9.746170-6 9.797594-6 9.751561-6 1.092102-5 9.775329-6 1.678198-5 9.799097-6 2.399040-5 9.841190-6 3.810334-5 9.870402-6 4.566406-5 9.894170-6 4.921531-5 9.917938-6 5.007232-5 9.941706-6 4.852972-5 9.987086-6 4.148844-5 1.010808-5 1.659696-5 1.012628-5 1.248685-5 1.013185-5 1.143407-5 1.015584-5 8.008539-6 1.017994-5 5.170034-6 1.020405-5 3.080970-6 1.022816-5 1.694867-6 1.025227-5 8.606723-7 1.027637-5 0.0 1.047653-5 0.0 1.049732-5 4.428906-1 1.052811-5 1.178278+0 1.055389-5 2.161376+0 1.057968-5 3.661219+0 1.060547-5 5.727246+0 1.064443-5 9.956253+0 1.068748-5 1.490495+1 1.071366-5 1.728706+1 1.073539-5 1.868871+1 1.077025-5 1.917008+1 1.079827-5 1.844029+1 1.083181-5 1.655199+1 1.088991-5 1.205363+1 1.096001-5 6.326923+0 1.099227-5 3.866604+0 1.100950-5 2.996660+0 1.103236-5 2.030702+0 1.105848-5 1.225064+0 1.108461-5 6.828528-1 1.111073-5 3.511855-1 1.113676-5 3.273792-2 1.113717-5 3.211690-2 1.115867-5 2.364798-1 1.119200-5 6.289593-1 1.121941-5 1.151929+0 1.124858-5 2.018470+0 1.127644-5 3.160298+0 1.135824-5 7.808788+0 1.138772-5 9.194900+0 1.141461-5 1.002890+1 1.144686-5 1.031665+1 1.148142-5 1.002478+1 1.159141-5 7.384172+0 1.163156-5 6.925820+0 1.169783-5 6.841184+0 1.180460-5 7.744738+0 1.193114-5 8.261049+0 1.207599-5 8.392680+0 1.215429-5 8.845780+0 1.221201-5 9.671604+0 1.225946-5 1.079071+1 1.232001-5 1.372595+1 1.246722-5 2.263592+1 1.251097-5 2.411542+1 1.254490-5 2.422542+1 1.258049-5 2.331341+1 1.262366-5 2.104957+1 1.271969-5 1.465687+1 1.274479-5 1.345771+1 1.277497-5 1.241712+1 1.281298-5 1.164976+1 1.287327-5 1.099370+1 1.382954-5 1.247071+1 1.455807-5 1.299997+1 1.533750-5 1.289960+1 1.629084-5 1.195459+1 1.796701-5 9.129325+0 1.962382-5 6.310499+0 2.080921-5 4.720662+0 2.178237-5 3.700908+0 2.304000-5 2.704381+0 2.400832-5 2.145161+0 2.490974-5 1.739628+0 2.590461-5 1.397904+0 2.703200-5 1.109182+0 2.809810-5 9.100120-1 2.930000-5 7.506637-1 3.044926-5 6.462473-1 3.170000-5 5.719953-1 3.311311-5 5.247529-1 3.464380-5 5.045244-1 3.672823-5 5.126728-1 3.900000-5 5.512626-1 4.350000-5 6.732520-1 5.400000-5 9.980490-1 6.309573-5 1.220510+0 7.349002-5 1.379602+0 8.462526-5 1.462565+0 1.053651-4 1.477317+0 1.460404-4 1.335353+0 1.997338-4 1.096141+0 2.011823-4 1.125615+0 2.022150-4 1.212541+0 2.031566-4 1.372117+0 2.037230-4 1.518805+0 2.044966-4 1.810255+0 2.051452-4 2.166206+0 2.058883-4 2.750274+0 2.065738-4 3.483088+0 2.074341-4 4.685394+0 2.086962-4 6.914248+0 2.106788-4 1.065141+1 2.118392-4 1.235491+1 2.131114-4 1.362572+1 2.149245-4 1.461156+1 2.196000-4 1.556131+1 2.274443-4 1.568268+1 2.507804-4 1.354237+1 2.533418-4 1.407865+1 2.557415-4 1.459967+1 2.581923-4 1.360667+1 2.601771-4 1.278495+1 2.623268-4 1.253121+1 2.681041-4 1.305860+1 4.097321-4 8.668474+0 4.844337-4 6.972054+0 5.630499-4 5.660535+0 6.462352-4 4.642142+0 7.442091-4 3.763575+0 8.635531-4 2.998552+0 9.736840-4 2.484900+0 1.099631-3 2.047218+0 1.240045-3 1.685168+0 1.396368-3 1.386473+0 1.577766-3 1.131211+0 1.766056-3 9.353684-1 1.982974-3 7.682321-1 2.220860-3 6.323071-1 2.518193-3 5.085035-1 2.725583-3 4.439360-1 2.739050-3 4.800724-1 2.745709-3 5.201109-1 2.752835-3 5.933775-1 2.759188-3 6.956405-1 2.765334-3 8.405077-1 2.771357-3 1.024683+0 2.777133-3 1.248430+0 2.787510-3 1.744691+0 2.809400-3 2.899079+0 2.821627-3 3.390251+0 2.834398-3 3.699270+0 2.851180-3 3.863497+0 2.939969-3 3.818063+0 3.501498-3 2.920172+0 3.989000-3 2.373730+0 4.505572-3 1.949408+0 5.088493-3 1.589847+0 5.754689-3 1.289179+0 6.512534-3 1.037513+0 7.276443-3 8.519751-1 8.030745-3 7.125660-1 9.015711-3 5.761849-1 1.002797-2 4.726814-1 1.107980-2 3.914399-1 1.240156-2 3.156840-1 1.353110-2 2.667173-1 1.505315-2 2.166522-1 1.646559-2 1.815422-1 1.833877-2 1.465280-1 2.000809-2 1.230215-1 2.216282-2 1.000311-1 2.454709-2 8.121314-2 2.708647-2 6.632368-2 3.030908-2 5.256563-2 3.325901-2 4.331353-2 3.636325-2 3.588470-2 4.044962-2 2.867875-2 4.475583-2 2.313178-2 4.927461-2 1.883127-2 5.467799-2 1.507371-2 6.100743-2 1.189895-2 6.770072-2 9.502594-3 7.522761-2 7.561188-3 8.211822-2 6.249131-3 8.981011-2 5.145486-3 9.712785-2 4.338231-3 1.083392-1 3.421334-3 1.192357-1 2.777867-3 1.288945-1 2.345232-3 1.433784-1 1.862622-3 1.595478-1 1.478982-3 1.755998-1 1.203987-3 1.916706-1 9.999344-4 2.120940-1 8.078945-4 2.317395-1 6.718880-4 2.533315-1 5.595354-4 2.824636-1 4.489224-4 3.102376-1 3.729361-4 3.422923-1 3.086381-4 3.776101-1 2.567848-4 4.175047-1 2.140447-4 4.570882-1 1.827188-4 5.128614-1 1.507433-4 5.754399-1 1.256812-4 6.274022-1 1.104666-4 7.224144-1 9.087501-5 8.341612-1 7.578962-5 9.440609-1 6.588401-5 1.120601+0 5.532942-5 1.347258+0 4.592915-5 1.619761+0 3.812595-5 1.947381+0 3.164848-5 2.341267+0 2.627152-5 2.814822+0 2.180808-5 3.384160+0 1.810296-5 4.068655+0 1.502733-5 4.891600+0 1.247424-5 5.880996+0 1.035491-5 7.070513+0 8.595651-6 8.500626+0 7.135280-6 9.760024+0 6.205263-6 1.000000+1 1.219403-5 1 17000 7 0 3.545300+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.700581+1 3.007633-6-1.704966+1 7.457289-6-1.692425+1 8.159162-6-1.621014+1 8.403755-6-1.524392+1 8.515576-6-1.403316+1 8.586726-6-1.208007+1 8.638664-6-1.037861+1 8.666345-6-9.978424+0 8.695551-6-1.038850+1 8.715584-6-1.136028+1 8.742868-6-1.352186+1 8.802635-6-1.891495+1 8.844022-6-1.666243+1 8.887624-6-1.526858+1 8.949632-6-1.418640+1 9.001853-6-1.477699+1 9.144387-6-1.785637+1 9.304855-6-1.930095+1 1.013185-5-1.664703+1 1.032329-5-1.523320+1 1.042495-5-1.370365+1 1.047245-5-1.234390+1 1.054906-5-9.074134+0 1.058290-5-7.482064+0 1.061433-5-6.444978+0 1.063828-5-6.348194+0 1.064981-5-6.563625+0 1.066629-5-7.161754+0 1.068450-5-8.283149+0 1.071366-5-1.108023+1 1.073539-5-1.384321+1 1.079368-5-2.120958+1 1.083454-5-1.728678+1 1.087826-5-1.474585+1 1.090835-5-1.384712+1 1.094925-5-1.370317+1 1.098546-5-1.445301+1 1.114122-5-2.200274+1 1.125188-5-1.769298+1 1.129736-5-1.657670+1 1.134477-5-1.674860+1 1.138772-5-1.820848+1 1.148647-5-2.310395+1 1.155011-5-2.203776+1 1.162421-5-2.266843+1 1.175036-5-2.421223+1 1.201696-5-2.493402+1 1.217286-5-2.707522+1 1.232001-5-3.019062+1 1.238138-5-2.983501+1 1.244598-5-2.736068+1 1.251097-5-2.256338+1 1.258049-5-1.644938+1 1.261227-5-1.419893+1 1.265019-5-1.246461+1 1.267876-5-1.180412+1 1.270965-5-1.176436+1 1.277497-5-1.318675+1 1.289650-5-1.587034+1 1.303094-5-1.689539+1 1.331858-5-1.726405+1 1.402276-5-1.608795+1 1.600000-5-1.080533+1 1.700262-5-8.737215+0 1.773891-5-7.702693+0 1.868178-5-6.940574+0 1.962382-5-6.669968+0 2.111652-5-6.843457+0 2.809810-5-9.350720+0 3.366526-5-1.056820+1 4.180000-5-1.141978+1 5.706250-5-1.186438+1 1.116915-4-1.194728+1 1.460404-4-1.278556+1 1.699657-4-1.417586+1 1.842316-4-1.576257+1 1.942891-4-1.779248+1 1.997338-4-1.980531+1 2.035517-4-2.247443+1 2.080862-4-2.706748+1 2.099998-4-2.723111+1 2.126252-4-2.488601+1 2.167490-4-2.092926+1 2.226250-4-1.731212+1 2.291164-4-1.451985+1 2.360607-4-1.244097+1 2.446036-4-1.090336+1 2.493698-4-1.053833+1 2.528917-4-1.067169+1 2.544274-4-1.023795+1 2.572129-4-8.620641+0 2.587197-4-8.341346+0 2.638671-4-9.135512+0 2.665325-4-9.042516+0 2.766399-4-7.911217+0 2.905865-4-6.784979+0 3.130000-4-5.402878+0 3.375338-4-4.239008+0 3.616762-4-3.355913+0 3.848686-4-2.709174+0 4.097321-4-2.188833+0 4.356725-4-1.777229+0 4.721310-4-1.354267+0 5.094248-4-1.053802+0 5.356810-4-9.012644-1 5.764760-4-7.323095-1 6.144000-4-6.340117-1 6.625978-4-5.474197-1 7.217552-4-4.915042-1 7.805309-4-4.718986-1 8.635531-4-4.833702-1 9.736840-4-5.352495-1 1.240045-3-7.293786-1 1.766056-3-1.174734+0 2.065360-3-1.486054+0 2.289297-3-1.805069+0 2.435668-3-2.104971+0 2.549551-3-2.448191+0 2.639498-3-2.872893+0 2.686775-3-3.218953+0 2.725583-3-3.661409+0 2.752012-3-4.183154+0 2.792996-3-5.455264+0 2.806087-3-5.565349+0 2.821627-3-5.286902+0 2.857324-3-4.053756+0 2.876600-3-3.582889+0 2.901328-3-3.168161+0 2.939969-3-2.709301+0 2.992868-3-2.250426+0 3.054921-3-1.864404+0 3.135090-3-1.495943+0 3.220116-3-1.198712+0 3.317116-3-9.389593-1 3.412911-3-7.380809-1 3.501498-3-5.873546-1 3.618378-3-4.246552-1 3.709544-3-3.200435-1 3.809466-3-2.225184-1 3.866278-3-1.732903-1 3.931031-3-1.244436-1 3.989000-3-8.311314-2 4.046968-3-4.523652-2 4.118659-3-3.885555-3 4.170112-3 2.598542-2 4.256214-3 6.786345-2 4.361888-3 1.143767-1 4.505572-3 1.698694-1 4.623810-3 2.064160-1 4.833096-3 2.567702-1 5.088493-3 3.014313-1 5.347458-3 3.341161-1 5.907969-3 3.732450-1 6.512534-3 3.846760-1 7.498942-3 3.740019-1 1.191780-2 2.510816-1 1.404083-2 2.041150-1 1.646559-2 1.627681-1 1.938863-2 1.261149-1 2.216282-2 1.003802-1 2.534165-2 7.819443-2 2.866768-2 6.088023-2 3.217516-2 4.697392-2 3.536422-2 3.715351-2 3.843076-2 2.949264-2 4.175623-2 2.274196-2 4.572200-2 1.623428-2 4.927461-2 1.147738-2 5.260046-2 7.766239-3 5.467799-2 5.735743-3 5.740328-2 3.360596-3 5.962624-2 1.608779-3 6.100743-2 5.976630-4 6.224219-2-2.618414-4 6.390336-2-1.339296-3 6.639060-2-2.833812-3 6.901313-2-4.255212-3 7.383177-2-6.514041-3 7.879595-2-8.468272-3 8.698773-2-1.106369-2 9.712785-2-1.348775-2 1.122019-1-1.603740-2 1.356995-1-1.855920-2 1.713451-1-2.069462-2 2.317395-1-2.241424-2 3.665727-1-2.377028-2 8.709636-1-2.451788-2 2.688134+0-2.466191-2 8.118035+0-2.467695-2 1.000000+1-2.467519-2 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.256052-5 1.076275-6 5.429172-5 1.152000-6 6.663909-5 1.215013-6 8.507090-5 1.290952-6 1.096098-4 1.371636-6 1.372947-4 1.440000-6 1.625401-4 1.548449-6 2.260844-4 1.645227-6 2.882588-4 1.749660-6 3.588583-4 1.800000-6 3.955216-4 1.860722-6 4.548746-4 1.978835-6 5.792170-4 2.025000-6 6.315306-4 2.104444-6 7.442998-4 2.170208-6 8.430487-4 2.278125-6 1.013788-3 2.380090-6 1.221577-3 2.454467-6 1.380959-3 2.562891-6 1.625174-3 2.691839-6 2.000503-3 2.775959-6 2.257152-3 2.883252-6 2.600493-3 2.952168-6 2.877502-3 3.044423-6 3.269297-3 3.139561-6 3.681932-3 3.243658-6 4.155642-3 3.338850-6 4.702701-3 3.443189-6 5.332734-3 3.550788-6 5.992607-3 3.649116-6 6.618535-3 3.776180-6 7.589250-3 3.877185-6 8.399423-3 4.015879-6 9.670590-3 4.119510-6 1.066348-2 4.270793-6 1.233511-2 4.376979-6 1.355404-2 4.541889-6 1.572102-2 4.650540-6 1.719559-2 4.830192-6 1.998945-2 4.941199-6 2.176095-2 5.136796-6 2.534094-2 5.250024-6 2.745908-2 5.458796-6 3.191659-2 5.578150-6 3.448613-2 5.766766-6 3.914332-2 5.926785-6 4.307709-2 6.055789-6 4.669622-2 6.193562-6 5.048180-2 6.297209-6 5.330602-2 6.456326-6 5.825702-2 6.581583-6 6.197793-2 6.899871-6 7.137466-2 7.044670-6 7.578294-2 7.255071-6 8.193445-2 7.452528-6 8.710901-2 7.640778-6 9.130474-2 7.817262-6 9.468263-2 7.982717-6 9.654361-2 8.137830-6 9.655105-2 8.283249-6 9.575853-2 8.419579-6 9.301715-2 8.469308-6 9.160339-2 8.547388-6 8.908324-2 8.667209-6 8.394477-2 8.779542-6 7.726503-2 8.805776-6 7.549616-2 8.884853-6 6.976361-2 8.983583-6 6.150180-2 9.076142-6 5.246188-2 9.121215-6 4.772220-2 9.162916-6 4.321364-2 9.244267-6 3.415115-2 9.320534-6 2.545275-2 9.392033-6 1.752721-2 9.416939-6 1.494488-2 9.459064-6 1.093882-2 9.479247-6 9.228013-3 9.521906-6 6.193055-3 9.580820-6 3.741984-3 9.636052-6 4.086457-3 9.687831-6 7.794367-3 9.694180-6 8.537596-3 9.736375-6 1.547234-2 9.763994-6 2.223319-2 9.781885-6 2.774483-2 9.824550-6 4.524465-2 9.864549-6 6.861014-2 9.902047-6 9.848792-2 9.937202-6 1.355416-1 9.970160-6 1.804607-1 1.000106-5 2.339606-1 1.003094-5 2.989971-1 1.012889-5 6.559609-1 1.017084-5 9.217478-1 1.020755-5 1.254427+0 1.023967-5 1.666104+0 1.026778-5 2.168777+0 1.029237-5 2.770532+0 1.031389-5 3.472169+0 1.033272-5 4.265859+0 1.034920-5 5.136100+0 1.036362-5 6.062210+0 1.039692-5 8.950558+0 1.042650-5 1.264163+1 1.044849-5 1.624166+1 1.046775-5 2.008304+1 1.048183-5 2.332678+1 1.049029-5 2.545382+1 1.050316-5 2.895554+1 1.051604-5 3.276445+1 1.054180-5 4.122380+1 1.054502-5 4.235045+1 1.056756-5 5.055987+1 1.057641-5 5.389455+1 1.059331-5 6.031602+1 1.060217-5 6.365834+1 1.061062-5 6.680071+1 1.061907-5 6.986959+1 1.063115-5 7.407309+1 1.064470-5 7.845222+1 1.065603-5 8.175816+1 1.066877-5 8.501716+1 1.068346-5 8.807936+1 1.069634-5 9.007827+1 1.070097-5 9.063080+1 1.071154-5 9.155206+1 1.072446-5 9.202491+1 1.074905-5 9.094933+1 1.075812-5 8.992780+1 1.077636-5 8.694815+1 1.078727-5 8.463965+1 1.079841-5 8.193187+1 1.080765-5 7.945774+1 1.082192-5 7.530251+1 1.083663-5 7.070466+1 1.084955-5 6.649604+1 1.086457-5 6.150548+1 1.087890-5 5.673589+1 1.089467-5 5.156324+1 1.090876-5 4.706917+1 1.092090-5 4.332814+1 1.094713-5 3.574293+1 1.095615-5 3.330915+1 1.096476-5 3.107340+1 1.097967-5 2.740738+1 1.101587-5 1.961732+1 1.102492-5 1.791746+1 1.103171-5 1.670750+1 1.104698-5 1.418763+1 1.105207-5 1.340959+1 1.106519-5 1.154592+1 1.107831-5 9.882478+0 1.109307-5 8.244191+0 1.110782-5 6.843671+0 1.113406-5 4.903241+0 1.113980-5 4.566112+0 1.114840-5 4.115013+0 1.115701-5 3.726369+0 1.117013-5 3.246186+0 1.117669-5 3.053344+0 1.118325-5 2.889823+0 1.118872-5 2.774576+0 1.119234-5 2.708564+0 1.119952-5 2.600204+0 1.120658-5 2.521228+0 1.121354-5 2.468392+0 1.122038-5 2.438720+0 1.122712-5 2.429489+0 1.123376-5 2.438217+0 1.124029-5 2.462649+0 1.125314-5 2.551524+0 1.126560-5 2.681682+0 1.127767-5 2.841435+0 1.128935-5 3.021381+0 1.132227-5 3.614700+0 1.134254-5 4.009487+0 1.137127-5 4.560293+0 1.140415-5 5.123261+0 1.144709-5 5.666364+0 1.146924-5 5.840571+0 1.151821-5 5.960466+0 1.157505-5 5.720443+0 1.165171-5 5.056872+0 1.168636-5 4.719202+0 1.173775-5 4.226938+0 1.177244-5 3.908758+0 1.180113-5 3.654949+0 1.185246-5 3.219622+0 1.188721-5 2.936226+0 1.191591-5 2.707836+0 1.194460-5 2.483860+0 1.197329-5 2.263920+0 1.200199-5 2.047909+0 1.203582-5 1.798600+0 1.208656-5 1.438025+0 1.211193-5 1.265888+0 1.213730-5 1.101359+0 1.217415-5 8.813508-1 1.220284-5 7.325415-1 1.223154-5 6.130958-1 1.225731-5 5.420744-1 1.228308-5 5.207428-1 1.228926-5 5.252570-1 1.231843-5 6.140097-1 1.234760-5 8.552985-1 1.237677-5 1.326378+0 1.240594-5 2.138449+0 1.242053-5 2.718565+0 1.243511-5 3.445392+0 1.244778-5 4.216376+0 1.246994-5 5.941040+0 1.248656-5 7.608923+0 1.249903-5 9.107622+0 1.250838-5 1.038775+1 1.252241-5 1.258485+1 1.253643-5 1.514730+1 1.255366-5 1.884889+1 1.256873-5 2.263722+1 1.258149-5 2.627495+1 1.260173-5 3.291140+1 1.261725-5 3.874847+1 1.262889-5 4.356120+1 1.263277-5 4.524826+1 1.266371-5 6.014061+1 1.266758-5 6.217338+1 1.269465-5 7.732617+1 1.270699-5 8.468437+1 1.273055-5 9.923530+1 1.274236-5 1.066465+2 1.275364-5 1.137043+2 1.276491-5 1.206744+2 1.277645-5 1.276416+2 1.278587-5 1.331491+2 1.279824-5 1.400480+2 1.281216-5 1.472455+2 1.281855-5 1.503137+2 1.283395-5 1.570003+2 1.284743-5 1.619227+2 1.285492-5 1.642434+2 1.286761-5 1.674558+2 1.288127-5 1.698439+2 1.289280-5 1.709624+2 1.290663-5 1.711964+2 1.291917-5 1.703640+2 1.293326-5 1.682688+2 1.294582-5 1.654040+2 1.295887-5 1.614964+2 1.297189-5 1.567325+2 1.298441-5 1.514141+2 1.299536-5 1.462493+2 1.300058-5 1.436352+2 1.301995-5 1.332592+2 1.303291-5 1.258506+2 1.304746-5 1.172572+2 1.305440-5 1.130992+2 1.306482-5 1.068427+2 1.307523-5 1.006118+2 1.308307-5 9.597435+1 1.309482-5 8.914496+1 1.310657-5 8.252350+1 1.312222-5 7.412091+1 1.314819-5 6.149746+1 1.318818-5 4.589268+1 1.319681-5 4.318273+1 1.321299-5 3.872929+1 1.322513-5 3.592211+1 1.323620-5 3.375102+1 1.324012-5 3.306677+1 1.326074-5 3.019033+1 1.326930-5 2.933564+1 1.328510-5 2.825050+1 1.329458-5 2.789223+1 1.330159-5 2.776234+1 1.330751-5 2.773949+1 1.332422-5 2.808731+1 1.333045-5 2.836700+1 1.333784-5 2.880073+1 1.335943-5 3.067558+1 1.336254-5 3.101734+1 1.339427-5 3.547149+1 1.341233-5 3.873360+1 1.346703-5 5.116202+1 1.347985-5 5.446253+1 1.350640-5 6.148748+1 1.352439-5 6.624741+1 1.354520-5 7.158067+1 1.356215-5 7.567922+1 1.358286-5 8.027180+1 1.359520-5 8.274639+1 1.360473-5 8.450892+1 1.362309-5 8.752506+1 1.363769-5 8.955544+1 1.364940-5 9.094914+1 1.366492-5 9.248328+1 1.367979-5 9.363823+1 1.369378-5 9.446690+1 1.372076-5 9.546002+1 1.373662-5 9.574097+1 1.380272-5 9.555034+1 1.386543-5 9.498949+1 1.390140-5 9.500672+1 1.392759-5 9.523851+1 1.400961-5 9.700598+1 1.411098-5 9.992555+1 1.416997-5 1.011518+2 1.424480-5 1.018997+2 1.435519-5 1.019191+2 1.450419-5 1.018070+2 1.460443-5 1.023820+2 1.468822-5 1.035406+2 1.476280-5 1.051737+2 1.484315-5 1.074927+2 1.523823-5 1.216966+2 1.552782-5 1.318659+2 1.580845-5 1.414089+2 1.608148-5 1.504902+2 1.634604-5 1.590324+2 1.660240-5 1.669114+2 1.690000-5 1.754732+2 1.720000-5 1.832936+2 1.751543-5 1.905090+2 1.776427-5 1.954137+2 1.801880-5 1.996062+2 1.833750-5 2.035262+2 1.864688-5 2.060281+2 1.897500-5 2.072333+2 1.935000-5 2.068274+2 1.965000-5 2.052342+2 2.005251-5 2.015387+2 2.044671-5 1.967174+2 2.067507-5 1.934616+2 2.107428-5 1.870808+2 2.159930-5 1.776551+2 2.197079-5 1.706413+2 2.264682-5 1.577273+2 2.351999-5 1.416828+2 2.441101-5 1.267328+2 2.612499-5 1.026563+2 2.656964-5 9.786250+1 2.739149-5 8.896036+1 2.914653-5 7.430042+1 3.054921-5 6.524358+1 3.189498-5 5.830734+1 3.347409-5 5.180575+1 3.482500-5 4.734034+1 3.623135-5 4.351693+1 3.762974-5 4.037194+1 3.925000-5 3.738891+1 4.090000-5 3.492192+1 4.220000-5 3.330837+1 4.370000-5 3.174422+1 4.466836-5 3.088099+1 4.570882-5 3.006379+1 4.731513-5 2.899658+1 4.915200-5 2.800614+1 5.214064-5 2.682009+1 5.500000-5 2.607578+1 5.766504-5 2.563836+1 6.025596-5 2.539472+1 6.300000-5 2.529415+1 6.580000-5 2.531725+1 6.918310-5 2.547292+1 7.328245-5 2.577067+1 8.058819-5 2.646199+1 9.386420-5 2.768046+1 9.800000-5 2.796671+1 1.100338-4 2.843021+1 1.168154-4 2.850374+1 1.263385-4 2.827458+1 1.368067-4 2.762373+1 1.458540-4 2.672974+1 1.551047-4 2.548070+1 1.640590-4 2.393851+1 1.720580-4 2.226364+1 1.790606-4 2.057277+1 1.826947-4 1.959139+1 1.886411-4 1.783741+1 1.922901-4 1.667378+1 1.961397-4 1.536379+1 2.004665-4 1.379904+1 2.039494-4 1.247060+1 2.067112-4 1.137218+1 2.105231-4 9.794722+0 2.138585-4 8.374585+0 2.167770-4 7.108009+0 2.193307-4 5.995797+0 2.217994-4 4.931730+0 2.235203-4 4.209585+0 2.241938-4 3.934407+0 2.252311-4 3.521739+0 2.267280-4 2.956893+0 2.276264-4 2.640486+0 2.280378-4 2.502555+0 2.303982-4 1.823403+0 2.311895-4 1.651886+0 2.315300-4 1.589285+0 2.319001-4 1.529832+0 2.326937-4 1.436389+0 2.333240-4 1.400655+0 2.335107-4 1.397600+0 2.338219-4 1.401003+0 2.343604-4 1.434707+0 2.346680-4 1.471768+0 2.349962-4 1.527486+0 2.351512-4 1.560124+0 2.357443-4 1.727369+0 2.359372-4 1.797878+0 2.361892-4 1.903431+0 2.369460-4 2.326326+0 2.372450-4 2.544558+0 2.376684-4 2.912801+0 2.382051-4 3.495271+0 2.386123-4 4.038804+0 2.390639-4 4.761809+0 2.397220-4 6.084261+0 2.414224-4 1.149967+1 2.421005-4 1.472533+1 2.427275-4 1.838856+1 2.430724-4 2.071155+1 2.436424-4 2.506363+1 2.441819-4 2.979727+1 2.446578-4 3.447855+1 2.449018-4 3.706032+1 2.453857-4 4.253250+1 2.456014-4 4.511662+1 2.460446-4 5.068059+1 2.463020-4 5.405706+1 2.466723-4 5.907346+1 2.471112-4 6.521896+1 2.475117-4 7.096097+1 2.477537-4 7.446726+1 2.481617-4 8.040030+1 2.486227-4 8.706427+1 2.490109-4 9.257818+1 2.494300-4 9.836549+1 2.498414-4 1.038232+2 2.502546-4 1.090301+2 2.506212-4 1.133827+2 2.509875-4 1.174590+2 2.514350-4 1.220427+2 2.519861-4 1.270652+2 2.525422-4 1.314347+2 2.530292-4 1.347037+2 2.535140-4 1.374728+2 2.543000-4 1.410459+2 2.550866-4 1.436746+2 2.561625-4 1.461408+2 2.574680-4 1.480404+2 2.603480-4 1.506061+2 2.653891-4 1.538546+2 2.697144-4 1.557035+2 2.729056-4 1.563476+2 2.800652-4 1.564421+2 2.871478-4 1.556323+2 2.990596-4 1.520505+2 3.034462-4 1.504111+2 3.051549-4 1.503611+2 3.067836-4 1.513572+2 3.081347-4 1.532548+2 3.092120-4 1.554832+2 3.111424-4 1.606103+2 3.137538-4 1.678196+2 3.156426-4 1.719136+2 3.180000-4 1.754234+2 3.217548-4 1.788739+2 3.261574-4 1.817186+2 3.325247-4 1.849935+2 3.455697-4 1.902181+2 3.636959-4 1.962568+2 3.981072-4 2.057495+2 4.113917-4 2.087140+2 4.241310-4 2.108237+2 4.523652-4 2.137716+2 4.983105-4 2.160047+2 5.543065-4 2.167709+2 6.165950-4 2.159300+2 7.115206-4 2.126865+2 7.767010-4 2.095543+2 9.822796-4 1.992409+2 1.093500-3 1.939613+2 1.345862-3 1.810220+2 1.405118-3 1.781927+2 1.597457-3 1.684542+2 1.785093-3 1.592500+2 1.857487-3 1.558400+2 2.009773-3 1.484479+2 2.162535-3 1.410806+2 2.253469-3 1.367143+2 2.343307-3 1.323104+2 2.430336-3 1.279840+2 2.516290-3 1.236509+2 2.591637-3 1.196879+2 2.654152-3 1.162515+2 2.717499-3 1.126324+2 2.770129-3 1.094566+2 2.809341-3 1.069464+2 2.851790-3 1.040573+2 2.889087-3 1.013366+2 2.917427-3 9.911963+1 2.948123-3 9.652050+1 2.972522-3 9.426740+1 2.999060-3 9.157632+1 3.021563-3 8.902775+1 3.043300-3 8.622806+1 3.060856-3 8.360852+1 3.075787-3 8.101478+1 3.088112-3 7.854185+1 3.100134-3 7.580101+1 3.113309-3 7.246165+1 3.138771-3 6.591650+1 3.148525-3 6.394524+1 3.155751-3 6.289531+1 3.164114-3 6.223685+1 3.170824-3 6.219542+1 3.176930-3 6.255116+1 3.180533-3 6.293478+1 3.187326-3 6.398908+1 3.194574-3 6.554049+1 3.204624-3 6.825998+1 3.228553-3 7.590736+1 3.236180-3 7.830119+1 3.244100-3 8.063652+1 3.250176-3 8.230083+1 3.259200-3 8.455395+1 3.266147-3 8.611207+1 3.276444-3 8.816178+1 3.286988-3 8.998213+1 3.295675-3 9.130649+1 3.310008-3 9.321779+1 3.326255-3 9.506974+1 3.340027-3 9.644118+1 3.357233-3 9.795337+1 3.377705-3 9.951534+1 3.420286-3 1.021255+2 3.465809-3 1.042082+2 3.532675-3 1.063953+2 3.597623-3 1.078580+2 3.698645-3 1.091373+2 3.818547-3 1.096688+2 3.965515-3 1.093404+2 4.130299-3 1.082418+2 4.328766-3 1.063063+2 4.588595-3 1.031898+2 4.900432-3 9.915535+1 5.273152-3 9.428825+1 5.800364-3 8.761214+1 6.550082-3 7.916984+1 7.562055-3 6.956751+1 8.506597-3 6.216531+1 9.169142-3 5.764689+1 9.912129-3 5.307606+1 1.069978-2 4.875170+1 1.145767-2 4.501640+1 1.230575-2 4.126665+1 1.359257-2 3.630000+1 1.509330-2 3.145564+1 1.660768-2 2.742703+1 1.899476-2 2.245144+1 2.215143-2 1.771493+1 2.773929-2 1.241603+1 3.704245-2 7.798269+0 4.334063-2 6.023351+0 5.195776-2 4.439259+0 5.902195-2 3.561321+0 6.986062-2 2.641136+0 8.198794-2 1.975464+0 1.076136-1 1.195718+0 1.367188-1 7.612003-1 1.806895-1 4.465721-1 2.415939-1 2.543288-1 3.379422-1 1.316675-1 5.432503-1 5.141955-2 1.228714+0 1.010114-2 3.710658+0 1.108783-3 1.120601+1 1.215903-4 3.384160+1 1.333229-5 1.022000+2 1.461859-6 3.086391+2 1.602896-7 9.320751+2 1.757541-8 3.162278+3 1.526888-9 1.000000+4 1.52689-10 3.162278+4 1.52689-11 1.000000+5 1.52689-12 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.224400-7 1.258900-6 8.280100-7 1.584900-6 1.312300-6 1.995300-6 2.079900-6 2.511900-6 3.296300-6 3.162300-6 5.224300-6 3.981100-6 8.280000-6 5.011900-6 1.312300-5 6.309600-6 2.079800-5 7.943300-6 3.296200-5 1.000000-5 5.224100-5 1.258900-5 8.279600-5 1.584900-5 1.312200-4 1.995300-5 2.079700-4 2.511900-5 3.295900-4 3.162300-5 5.223500-4 3.981100-5 8.278300-4 5.011900-5 1.312000-3 6.309600-5 2.079200-3 7.943300-5 3.293700-3 1.000000-4 5.217000-3 1.258900-4 8.264000-3 1.584900-4 1.308200-2 1.995300-4 2.070100-2 2.511900-4 3.272500-2 3.162300-4 5.166400-2 3.981100-4 8.137300-2 5.011900-4 1.276700-1 6.309600-4 1.991000-1 7.943300-4 3.078800-1 1.000000-3 4.703000-1 1.258900-3 7.052700-1 1.584900-3 1.031600+0 1.995300-3 1.461200+0 2.511900-3 1.996400+0 3.162300-3 2.626000+0 3.981100-3 3.328500+0 5.011900-3 4.068900+0 6.309600-3 4.797400+0 7.943300-3 5.500400+0 1.000000-2 6.188300+0 1.258900-2 6.871500+0 1.584900-2 7.520600+0 1.995300-2 8.084100+0 2.511900-2 8.491600+0 3.162300-2 8.821700+0 3.981100-2 8.994200+0 5.011900-2 9.047000+0 6.309600-2 8.981800+0 7.943300-2 8.796500+0 1.000000-1 8.506300+0 1.258900-1 8.130900+0 1.584900-1 7.693800+0 1.995300-1 7.213400+0 2.511900-1 6.708100+0 3.162300-1 6.193200+0 3.981100-1 5.681200+0 5.011900-1 5.180800+0 6.309600-1 4.697800+0 7.943300-1 4.235600+0 1.000000+0 3.796800+0 1.258900+0 3.383200+0 1.584900+0 2.996200+0 1.995300+0 2.636800+0 2.511900+0 2.306200+0 3.162300+0 2.004700+0 3.981100+0 1.732600+0 5.011900+0 1.489000+0 6.309600+0 1.273100+0 7.943300+0 1.083300+0 1.000000+1 9.177600-1 1.258900+1 7.743800-1 1.584900+1 6.510200-1 1.995300+1 5.455000-1 2.511900+1 4.557200-1 3.162300+1 3.796900-1 3.981100+1 3.155700-1 5.011900+1 2.617000-1 6.309600+1 2.165900-1 7.943300+1 1.789300-1 1.000000+2 1.475800-1 1.258900+2 1.215300-1 1.584900+2 9.994500-2 1.995300+2 8.208800-2 2.511900+2 6.734200-2 3.162300+2 5.518600-2 3.981100+2 4.517800-2 5.011900+2 3.695100-2 6.309600+2 3.019500-2 7.943300+2 2.465500-2 1.000000+3 2.011500-2 1.258900+3 1.640000-2 1.584900+3 1.336100-2 1.995300+3 1.087900-2 2.511900+3 8.852400-3 3.162300+3 7.199100-3 3.981100+3 5.851400-3 5.011900+3 4.753500-3 6.309600+3 3.859700-3 7.943300+3 3.132400-3 1.000000+4 2.541100-3 1.258900+4 2.060400-3 1.584900+4 1.670000-3 1.995300+4 1.353000-3 2.511900+4 1.095800-3 3.162300+4 8.871000-4 3.981100+4 7.179200-4 5.011900+4 5.808000-4 6.309600+4 4.697100-4 7.943300+4 3.797500-4 1.000000+5 3.069200-4 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584205-4 1.995262-4 1.994173-4 2.511886-4 2.510160-4 3.162278-4 3.159544-4 3.981072-4 3.976743-4 5.011872-4 5.005023-4 6.309573-4 6.298720-4 7.943282-4 7.926143-4 1.000000-3 9.973036-4 1.258925-3 1.254684-3 1.584893-3 1.578242-3 1.995262-3 1.984872-3 2.511886-3 2.495699-3 3.162278-3 3.137197-3 3.981072-3 3.942272-3 5.011872-3 4.952004-3 6.309573-3 6.217377-3 7.943282-3 7.801590-3 1.000000-2 9.781347-3 1.258925-2 1.225092-2 1.584893-2 1.532582-2 1.995262-2 1.914745-2 2.511886-2 2.388607-2 3.162278-2 2.974596-2 3.981072-2 3.696553-2 5.011872-2 4.582224-2 6.309573-2 5.663708-2 7.943282-2 6.980235-2 1.000000-1 8.576573-2 1.258925-1 1.050324-1 1.584893-1 1.281616-1 1.995262-1 1.558535-1 2.511886-1 1.888604-1 3.162278-1 2.280742-1 3.981072-1 2.745144-1 5.011872-1 3.293424-1 6.309573-1 3.939538-1 7.943282-1 4.699744-1 1.000000+0 5.594466-1 1.258925+0 6.648210-1 1.584893+0 7.891697-1 1.995262+0 9.362543-1 2.511886+0 1.110799+0 3.162278+0 1.318480+0 3.981072+0 1.566410+0 5.011872+0 1.863158+0 6.309573+0 2.219305+0 7.943282+0 2.647787+0 1.000000+1 3.164352+0 1.258925+1 3.788342+0 1.584893+1 4.543462+0 1.995262+1 5.458672+0 2.511886+1 6.569375+0 3.162278+1 7.919316+0 3.981072+1 9.561766+0 5.011872+1 1.156249+1 6.309573+1 1.400212+1 7.943282+1 1.697973+1 1.000000+2 2.061709+1 1.258925+2 2.506434+1 1.584893+2 3.050596+1 1.995262+2 3.716919+1 2.511886+2 4.533431+1 3.162278+2 5.534670+1 3.981072+2 6.763131+1 5.011872+2 8.271461+1 6.309573+2 1.012439+2 7.943282+2 1.240192+2 1.000000+3 1.520279+2 1.258925+3 1.864932+2 1.584893+3 2.289229+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090664-8 7.943282-5 1.728307-8 1.000000-4 2.738827-8 1.258925-4 4.340328-8 1.584893-4 6.876944-8 1.995262-4 1.089613-7 2.511886-4 1.726112-7 3.162278-4 2.733845-7 3.981072-4 4.328223-7 5.011872-4 6.848930-7 6.309573-4 1.085369-6 7.943282-4 1.713918-6 1.000000-3 2.696419-6 1.258925-3 4.241366-6 1.584893-3 6.651381-6 1.995262-3 1.038995-5 2.511886-3 1.618716-5 3.162278-3 2.508056-5 3.981072-3 3.880013-5 5.011872-3 5.986865-5 6.309573-3 9.219602-5 7.943282-3 1.416927-4 1.000000-2 2.186533-4 1.258925-2 3.383391-4 1.584893-2 5.231100-4 1.995262-2 8.051701-4 2.511886-2 1.232798-3 3.162278-2 1.876821-3 3.981072-2 2.845183-3 5.011872-2 4.296479-3 6.309573-2 6.458656-3 7.943282-2 9.630473-3 1.000000-1 1.423427-2 1.258925-1 2.086009-2 1.584893-1 3.032771-2 1.995262-1 4.367268-2 2.511886-1 6.232820-2 3.162278-1 8.815352-2 3.981072-1 1.235928-1 5.011872-1 1.718448-1 6.309573-1 2.370035-1 7.943282-1 3.243538-1 1.000000+0 4.405534-1 1.258925+0 5.941044-1 1.584893+0 7.957235-1 1.995262+0 1.059008+0 2.511886+0 1.401087+0 3.162278+0 1.843797+0 3.981072+0 2.414661+0 5.011872+0 3.148714+0 6.309573+0 4.090268+0 7.943282+0 5.295495+0 1.000000+1 6.835648+0 1.258925+1 8.800912+0 1.584893+1 1.130547+1 1.995262+1 1.449395+1 2.511886+1 1.854949+1 3.162278+1 2.370346+1 3.981072+1 3.024895+1 5.011872+1 3.855623+1 6.309573+1 4.909362+1 7.943282+1 6.245309+1 1.000000+2 7.938291+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623570+2 2.511886+2 2.058543+2 3.162278+2 2.608811+2 3.981072+2 3.304759+2 5.011872+2 4.184726+2 6.309573+2 5.297134+2 7.943282+2 6.703090+2 1.000000+3 8.479721+2 1.258925+3 1.072432+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.443000-5 3.379932+7 1.462000-5 3.509256+7 1.462000-5 5.176278+7 1.479108-5 5.354524+7 1.496236-5 5.525755+7 1.500000-5 5.562293+7 1.530000-5 5.839034+7 1.531087-5 5.848376+7 1.560000-5 6.086036+7 1.570000-5 6.160576+7 1.590000-5 6.300636+7 1.603245-5 6.382036+7 1.621810-5 6.489153+7 1.630000-5 6.528915+7 1.650000-5 6.617324+7 1.660000-5 6.651636+7 1.680000-5 6.709824+7 1.690000-5 6.728191+7 1.710000-5 6.754272+7 1.720000-5 6.756235+7 1.740000-5 6.749583+7 1.750000-5 6.735309+7 1.770000-5 6.696642+7 1.778279-5 6.671738+7 1.800000-5 6.597520+7 1.830000-5 6.452280+7 1.860000-5 6.266069+7 1.862087-5 6.251542+7 1.885000-5 6.084900+7 1.910000-5 5.882572+7 1.935000-5 5.663416+7 1.965000-5 5.383458+7 1.995262-5 5.087053+7 2.000000-5 5.040878+7 2.030000-5 4.742454+7 2.070000-5 4.344102+7 2.110000-5 3.955432+7 2.150000-5 3.583940+7 2.190000-5 3.234700+7 2.238721-5 2.843596+7 2.290868-5 2.468706+7 2.350000-5 2.097446+7 2.426610-5 1.695073+7 2.511886-5 1.337531+7 2.610000-5 1.021384+7 2.754229-5 6.937674+6 2.892000-5 4.865298+6 2.892000-5 4.946294+6 2.920000-5 4.623754+6 2.951209-5 4.293770+6 2.990000-5 3.922746+6 3.020000-5 3.662622+6 3.054921-5 3.386165+6 3.060000-5 3.348720+6 3.090295-5 3.135653+6 3.100000-5 3.071577+6 3.150000-5 2.766492+6 3.162278-5 2.697518+6 3.198895-5 2.508675+6 3.210000-5 2.455537+6 3.260000-5 2.233745+6 3.300000-5 2.079170+6 3.315000-5 2.025875+6 3.330000-5 1.974301+6 3.370000-5 1.849358+6 3.400000-5 1.764246+6 3.427678-5 1.693573+6 3.450000-5 1.639408+6 3.470000-5 1.594077+6 3.507519-5 1.517426+6 3.520000-5 1.493573+6 3.570000-5 1.407555+6 3.589219-5 1.379131+6 3.630781-5 1.320547+6 3.672823-5 1.270995+6 3.690000-5 1.251543+6 3.750000-5 1.194998+6 3.770000-5 1.179573+6 3.801894-5 1.155491+6 3.850000-5 1.125726+6 3.910000-5 1.096124+6 3.950000-5 1.081601+6 3.970000-5 1.074295+6 4.030000-5 1.058753+6 4.073803-5 1.051690+6 4.090000-5 1.048893+6 4.150000-5 1.043374+6 4.216965-5 1.042471+6 4.220000-5 1.042385+6 4.280000-5 1.044887+6 4.300000-5 1.046129+6 4.350000-5 1.051236+6 4.365158-5 1.053054+6 4.370000-5 1.053560+6 4.420000-5 1.060550+6 4.466836-5 1.067907+6 4.518559-5 1.077747+6 4.570882-5 1.087808+6 4.623810-5 1.099337+6 4.677351-5 1.111672+6 4.680000-5 1.112247+6 4.731513-5 1.124541+6 4.850000-5 1.154110+6 4.900000-5 1.166725+6 5.011872-5 1.195828+6 5.230000-5 1.250392+6 5.432503-5 1.299184+6 5.500000-5 1.313850+6 5.688529-5 1.353641+6 5.754399-5 1.365750+6 5.956621-5 1.401271+6 6.025596-5 1.411453+6 6.220000-5 1.438264+6 6.237348-5 1.440321+6 6.300000-5 1.447236+6 6.500000-5 1.467319+6 6.531306-5 1.469879+6 6.580000-5 1.473464+6 6.760830-5 1.485151+6 6.839116-5 1.488946+6 6.918310-5 1.492097+6 7.000000-5 1.494711+6 7.150000-5 1.497064+6 7.328245-5 1.498486+6 7.413102-5 1.497173+6 7.673615-5 1.491398+6 7.762471-5 1.488130+6 7.800000-5 1.486472+6 8.035261-5 1.475034+6 8.150000-5 1.468024+6 8.317638-5 1.456933+6 8.413951-5 1.450253+6 8.511380-5 1.442419+6 8.810489-5 1.417536+6 8.912509-5 1.408214+6 9.300000-5 1.371004+6 9.332543-5 1.367667+6 9.549926-5 1.344839+6 9.800000-5 1.318940+6 9.900000-5 1.308037+6 1.040000-4 1.254382+6 1.047129-4 1.246439+6 1.109175-4 1.179499+6 1.135011-4 1.151414+6 1.188502-4 1.096427+6 1.190000-4 1.094888+6 1.260000-4 1.025653+6 1.273503-4 1.013085+6 1.364583-4 9.305607+5 1.412538-4 8.895692+5 1.462177-4 8.499826+5 1.480000-4 8.362592+5 1.584893-4 7.601216+5 1.698244-4 6.860828+5 1.720000-4 6.730347+5 1.757924-4 6.504984+5 1.840772-4 6.049531+5 1.850000-4 6.001240+5 1.950000-4 5.502749+5 2.000000-4 5.275947+5 2.162719-4 4.608509+5 2.187762-4 4.516677+5 2.400000-4 3.822861+5 2.426610-4 3.746964+5 2.470900-4 3.623496+5 2.470900-4 1.190686+6 2.472000-4 1.230931+6 2.474000-4 1.318161+6 2.476000-4 1.411024+6 2.479000-4 1.559824+6 2.479700-4 1.577210+6 2.486700-4 1.873998+6 2.494300-4 2.236228+6 2.494300-4 2.644958+6 2.494500-4 2.659377+6 2.495200-4 2.705218+6 2.498000-4 2.833248+6 2.501000-4 2.979071+6 2.504000-4 3.133238+6 2.505000-4 3.186190+6 2.506000-4 3.255070+6 2.506200-4 3.262370+6 2.509200-4 3.372672+6 2.511886-4 3.475387+6 2.512000-4 3.479927+6 2.514000-4 3.558327+6 2.514700-4 3.559725+6 2.515500-4 3.593038+6 2.516600-4 3.627367+6 2.523000-4 3.803100+6 2.525000-4 3.828626+6 2.543000-4 3.958221+6 2.553000-4 4.000850+6 2.554000-4 4.009650+6 2.556000-4 4.015735+6 2.600160-4 4.064995+6 2.606800-4 4.061062+6 2.615300-4 4.050636+6 2.647000-4 4.008064+6 2.665000-4 3.970308+6 2.691535-4 3.905130+6 2.710000-4 3.860763+6 2.722701-4 3.816488+6 2.760000-4 3.690420+6 2.818383-4 3.520803+6 2.851018-4 3.417829+6 2.890000-4 3.303011+6 2.930700-4 3.185172+6 2.951209-4 3.135503+6 3.000000-4 3.028074+6 3.019952-4 2.985684+6 3.054921-4 2.913388+6 3.080000-4 2.858377+6 3.090295-4 2.840751+6 3.100000-4 2.826812+6 3.134300-4 2.768141+6 3.134300-4 3.054641+6 3.162278-4 3.007654+6 3.200000-4 2.942660+6 3.273407-4 2.818851+6 3.311311-4 2.757630+6 3.427678-4 2.579810+6 3.507519-4 2.467112+6 3.589219-4 2.359594+6 3.630781-4 2.307238+6 3.758374-4 2.157112+6 3.935501-4 1.971154+6 3.981072-4 1.925035+6 4.000000-4 1.906354+6 4.027170-4 1.879992+6 4.120975-4 1.791371+6 4.150000-4 1.764414+6 4.365158-4 1.579205+6 4.415704-4 1.538951+6 4.518559-4 1.460646+6 4.623810-4 1.386430+6 4.677351-4 1.350537+6 4.841724-4 1.248462+6 4.897788-4 1.215881+6 5.011872-4 1.152830+6 5.069907-4 1.122542+6 5.308844-4 1.008555+6 5.432503-4 9.558653+5 5.559043-4 9.051243+5 5.623413-4 8.805726+5 5.754399-4 8.334693+5 5.888437-4 7.889421+5 6.095369-4 7.257534+5 6.165950-4 7.057400+5 6.531306-4 6.133150+5 6.606934-4 5.963618+5 6.700000-4 5.764054+5 6.839116-4 5.481263+5 7.079458-4 5.033487+5 7.413102-4 4.491827+5 7.498942-4 4.365936+5 7.500000-4 4.364415+5 7.673615-4 4.123726+5 7.852356-4 3.892510+5 8.128305-4 3.568516+5 8.317638-4 3.367998+5 8.413951-4 3.272100+5 8.709636-4 2.998928+5 9.015711-4 2.747204+5 9.332543-4 2.516278+5 9.440609-4 2.443306+5 9.885531-4 2.172331+5 1.023293-3 1.987693+5 1.047129-3 1.873046+5 1.059254-3 1.818288+5 1.071519-3 1.765147+5 1.096478-3 1.662916+5 1.122018-3 1.566719+5 1.174898-3 1.389808+5 1.188502-3 1.348724+5 1.202264-3 1.308865+5 1.273503-3 1.125824+5 1.318257-3 1.028010+5 1.333521-3 9.972488+4 1.380384-3 9.104897+4 1.450000-3 7.993278+4 1.479108-3 7.581976+4 1.500000-3 7.304609+4 1.531087-3 6.917428+4 1.566751-3 6.506405+4 1.659587-3 5.578805+4 1.698244-3 5.244518+4 1.757924-3 4.780760+4 1.800000-3 4.486814+4 1.883649-3 3.969182+4 1.927525-3 3.730639+4 1.972423-3 3.505364+4 2.041738-3 3.193189+4 2.065380-3 3.095322+4 2.162719-3 2.730850+4 2.213095-3 2.565455+4 2.290868-3 2.335189+4 2.371374-3 2.126010+4 2.483133-3 1.873984+4 2.540973-3 1.759689+4 2.660725-3 1.551079+4 2.722701-3 1.456424+4 2.851018-3 1.282600+4 2.917427-3 1.203821+4 3.090295-3 1.027103+4 3.126079-3 9.950639+3 3.162278-3 9.639818+3 3.177600-3 9.510986+3 3.177600-3 8.732089+4 3.311311-3 8.049065+4 3.349654-3 7.868247+4 3.350000-3 7.866642+4 3.388442-3 7.645314+4 3.589219-3 6.620493+4 3.600000-3 6.571035+4 3.678900-3 6.210986+4 3.801894-3 5.701709+4 3.845918-3 5.533497+4 3.890451-3 5.370198+4 4.168694-3 4.487056+4 4.265795-3 4.226250+4 4.365158-3 3.980373+4 4.466836-3 3.748843+4 4.677351-3 3.325364+4 4.841724-3 3.037696+4 4.954502-3 2.859874+4 5.069907-3 2.692307+4 5.128614-3 2.610175+4 5.188000-3 2.530553+4 5.623413-3 2.037227+4 5.754399-3 1.914853+4 5.888437-3 1.799727+4 5.956621-3 1.744792+4 6.025596-3 1.691537+4 6.309573-3 1.494272+4 6.606934-3 1.316281+4 6.683439-3 1.275198+4 6.839116-3 1.196768+4 6.918310-3 1.159384+4 7.079458-3 1.088089+4 7.673615-3 8.713724+3 7.762471-3 8.437350+3 8.035261-3 7.658889+3 8.128305-3 7.415729+3 8.317638-3 6.952356+3 8.810489-3 5.916698+3 9.120108-3 5.364829+3 9.225714-3 5.192385+3 9.440609-3 4.863945+3 9.549926-3 4.707611+3 9.772372-3 4.409874+3 1.035142-2 3.745346+3 1.071519-2 3.391072+3 1.096478-2 3.173494+3 1.122018-2 2.969882+3 1.161449-2 2.688711+3 1.244515-2 2.203749+3 1.258925-2 2.130949+3 1.273503-2 2.060543+3 1.303167-2 1.926512+3 1.333521-2 1.801206+3 1.380384-2 1.628369+3 1.500000-2 1.277470+3 1.513561-2 1.244332+3 1.566751-2 1.123396+3 1.584893-2 1.085755+3 1.603245-2 1.049377+3 1.659587-2 9.473978+2 1.798871-2 7.463501+2 1.840772-2 6.971371+2 1.905461-2 6.285973+2 1.927525-2 6.072836+2 1.949845-2 5.866919+2 2.018366-2 5.290163+2 2.137962-2 4.452145+2 2.162719-2 4.301191+2 2.238721-2 3.878007+2 2.317395-2 3.492488+2 2.398833-2 3.145320+2 2.483133-2 2.832672+2 2.570396-2 2.551105+2 2.600160-2 2.463607+2 2.786121-2 1.997823+2 2.917427-2 1.734752+2 3.090295-2 1.454100+2 3.126079-2 1.403675+2 3.162278-2 1.354993+2 3.507519-2 9.859661+1 3.845918-2 7.412185+1 3.890451-2 7.152480+1 4.466836-2 4.660644+1 4.500000-2 4.554990+1 4.841724-2 3.622995+1 5.956621-2 1.894024+1 6.165950-2 1.698507+1 6.237348-2 1.637924+1 6.839116-2 1.224673+1 7.079458-2 1.098170+1 7.762471-2 8.211234+0 7.943282-2 7.634419+0 8.128305-2 7.098136+0 8.609938-2 5.916268+0 8.709636-2 5.704643+0 8.912509-2 5.303836+0 9.120108-2 4.931200+0 9.660509-2 4.110175+0 1.059254-1 3.071271+0 1.071519-1 2.961430+0 1.109175-1 2.654911+0 1.148154-1 2.380123+0 1.258925-1 1.778569+0 1.288250-1 1.653629+0 1.303167-1 1.594493+0 1.348963-1 1.430383+0 1.412538-1 1.237541+0 1.462177-1 1.110217+0 1.479108-1 1.070756+0 1.513561-1 9.959936-1 1.566751-1 8.935287-1 1.678804-1 7.191425-1 1.717908-1 6.689367-1 1.798871-1 5.787949-1 1.819701-1 5.584582-1 1.840772-1 5.388365-1 1.883649-1 5.016705-1 1.905461-1 4.840617-1 1.927525-1 4.670717-1 2.065380-1 3.769476-1 2.137962-1 3.386339-1 2.162719-1 3.269061-1 2.187762-1 3.155849-1 2.264644-1 2.839530-1 2.317395-1 2.646489-1 2.371374-1 2.466575-1 2.398833-1 2.381261-1 2.426610-1 2.298898-1 2.483133-1 2.142619-1 2.540973-1 1.998990-1 2.600160-1 1.865133-1 2.630268-1 1.801606-1 2.660725-1 1.740253-1 2.722701-1 1.623744-1 2.884032-1 1.365464-1 2.917427-1 1.319790-1 3.019952-1 1.191908-1 3.162278-1 1.040487-1 3.198895-1 1.005740-1 3.273407-1 9.396884-2 3.311311-1 9.089128-2 3.349654-1 8.791924-2 3.427678-1 8.226347-2 3.467369-1 7.957403-2 3.507519-1 7.697261-2 3.548134-1 7.445624-2 3.672823-1 6.739011-2 3.715352-1 6.523188-2 3.801894-1 6.112734-2 3.845918-1 5.917301-2 3.935501-1 5.545054-2 4.073803-1 5.030135-2 4.120975-1 4.872857-2 4.168694-1 4.720773-2 4.265795-1 4.430701-2 4.365158-1 4.158509-2 4.466836-1 3.903041-2 4.518559-1 3.781259-2 4.570882-1 3.666155-2 4.731513-1 3.342047-2 4.841724-1 3.142100-2 4.897788-1 3.046663-2 5.011872-1 2.864396-2 5.188000-1 2.618087-2 5.248075-1 2.540801-2 5.308844-1 2.465801-2 5.370318-1 2.393014-2 5.495409-1 2.253823-2 5.623413-1 2.126425-2 5.688529-1 2.065454-2 5.754399-1 2.006247-2 5.821032-1 1.948736-2 5.888437-1 1.892875-2 6.025596-1 1.785911-2 6.095369-1 1.736317-2 6.237348-1 1.641226-2 6.309573-1 1.595664-2 6.456542-1 1.508300-2 6.606935-1 1.425720-2 6.623700-1 1.417218-2 6.760830-1 1.350506-2 6.839117-1 1.314412-2 6.918310-1 1.279293-2 7.079458-1 1.211846-2 7.161434-1 1.179468-2 7.244360-1 1.147955-2 7.328245-1 1.118327-2 7.498942-1 1.061345-2 7.762471-1 9.812929-3 7.943282-1 9.313092-3 8.035261-1 9.081002-3 8.222427-1 8.634034-3 8.459000-1 8.113694-3 8.609938-1 7.805258-3 8.810489-1 7.421212-3 8.912509-1 7.242777-3 9.120108-1 6.898778-3 9.332543-1 6.571133-3 9.549926-1 6.259050-3 9.660509-1 6.114624-3 9.772372-1 5.973583-3 1.000000+0 5.701194-3 1.011579+0 5.569699-3 1.023293+0 5.441227-3 1.047129+0 5.193115-3 1.071519+0 4.961902-3 1.083927+0 4.850181-3 1.096478+0 4.740982-3 1.148154+0 4.328318-3 1.161449+0 4.230893-3 1.188502+0 4.049558-3 1.202264+0 3.961826-3 1.230269+0 3.792067-3 1.250000+0 3.679036-3 1.273503+0 3.550978-3 1.288250+0 3.474291-3 1.303167+0 3.402038-3 1.318257+0 3.331286-3 1.333521+0 3.262032-3 1.364583+0 3.127805-3 1.396368+0 2.999106-3 1.412538+0 2.936754-3 1.428894+0 2.875879-3 1.445440+0 2.818394-3 1.462177+0 2.762061-3 1.548817+0 2.496926-3 1.566751+0 2.447182-3 1.584893+0 2.400159-3 1.603245+0 2.354041-3 1.621810+0 2.308807-3 1.698244+0 2.136459-3 1.717908+0 2.095422-3 1.737801+0 2.055290-3 1.778279+0 1.980109-3 1.798871+0 1.943555-3 1.905461+0 1.770721-3 1.927525+0 1.738045-3 1.949845+0 1.706065-3 1.995262+0 1.646076-3 2.018366+0 1.616876-3 2.137962+0 1.478512-3 2.187762+0 1.426541-3 2.213095+0 1.401317-3 2.264644+0 1.353854-3 2.290868+0 1.330728-3 2.426610+0 1.220929-3 2.483133+0 1.179589-3 2.511886+0 1.159504-3 2.570396+0 1.121671-3 2.600160+0 1.103220-3 2.786121+0 9.987508-4 2.851018+0 9.661741-4 2.884032+0 9.503302-4 2.951209+0 9.204571-4 2.985383+0 9.058743-4 3.198895+0 8.231311-4 3.273407+0 7.972649-4 3.311311+0 7.846715-4 3.427678+0 7.492300-4 3.467369+0 7.377756-4 3.715352+0 6.726551-4 3.801894+0 6.522515-4 3.845918+0 6.423086-4 4.027170+0 6.052011-4 4.073803+0 5.962641-4 4.415704+0 5.373109-4 4.518559+0 5.215640-4 4.570882+0 5.138839-4 4.786301+0 4.851740-4 4.841724+0 4.782508-4 5.308844+0 4.263200-4 5.432503+0 4.142435-4 5.495409+0 4.083485-4 5.754399+0 3.862573-4 5.821032+0 3.809238-4 6.456542+0 3.361296-4 6.606934+0 3.269137-4 6.683439+0 3.224109-4 7.079458+0 3.013717-4 7.161434+0 2.973317-4 8.035261+0 2.598018-4 8.222427+0 2.528845-4 8.317638+0 2.495027-4 8.810489+0 2.336811-4 8.912509+0 2.306393-4 1.011579+1 1.996899-4 1.035142+1 1.945263-4 1.047129+1 1.919994-4 1.122018+1 1.778284-4 1.135011+1 1.755703-4 1.364583+1 1.431104-4 1.380384+1 1.412936-4 1.400000+1 1.391024-4 1.462177+1 1.327139-4 1.479108+1 1.310710-4 1.905461+1 9.965927-5 1.927525+1 9.842585-5 1.972423+1 9.605574-5 1.995262+1 9.489221-5 2.000000+1 9.465426-5 2.818383+1 6.583707-5 2.884032+1 6.428049-5 2.917427+1 6.351607-5 4.415704+1 4.129254-5 4.466836+1 4.080156-5 4.518559+1 4.032375-5 4.570882+1 3.985154-5 4.677351+1 3.892366-5 8.222427+1 2.185619-5 8.511380+1 2.109742-5 8.609938+1 2.085060-5 8.709636+1 2.060920-5 9.120108+1 1.967124-5 1.640590+2 1.086250-5 1.698244+2 1.048960-5 1.717908+2 1.036822-5 1.737801+2 1.024879-5 1.819701+2 9.784675-6 3.273407+2 5.419366-6 3.388442+2 5.234249-6 3.427678+2 5.173982-6 3.467369+2 5.114669-6 3.630781+2 4.884139-6 5.188000+3 3.405105-7 5.370318+3 3.289341-7 5.432503+3 3.251639-7 5.495409+3 3.214413-7 5.754399+3 3.069726-7 1.000000+5 1.765964-8 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.443000-5 1.443000-5 1.462000-5 1.443000-5 1.462000-5 1.449119-5 2.892000-5 1.449636-5 2.892000-5 1.473255-5 3.020000-5 1.493512-5 3.150000-5 1.523795-5 3.260000-5 1.557788-5 3.400000-5 1.611359-5 3.770000-5 1.776080-5 3.910000-5 1.829210-5 4.030000-5 1.865269-5 4.150000-5 1.892071-5 4.300000-5 1.913789-5 4.466836-5 1.925682-5 4.680000-5 1.928326-5 5.011872-5 1.917074-5 6.237348-5 1.853664-5 7.000000-5 1.825389-5 8.035261-5 1.800375-5 9.332543-5 1.782589-5 1.135011-4 1.770385-5 1.412538-4 1.766685-5 1.850000-4 1.774068-5 2.470900-4 1.794246-5 2.470900-4 2.818255-5 2.476000-4 2.889694-5 2.479000-4 2.926400-5 2.486700-4 2.985042-5 2.494300-4 3.031958-5 2.494300-4 3.070660-5 2.506200-4 3.110551-5 2.523000-4 3.136129-5 2.556000-4 3.146589-5 2.710000-4 3.155259-5 3.134300-4 3.150535-5 3.134300-4 3.359903-5 3.758374-4 3.424432-5 4.897788-4 3.505422-5 7.079458-4 3.627437-5 9.440609-4 3.737516-5 1.273503-3 3.864350-5 1.698244-3 3.997176-5 2.162719-3 4.112784-5 2.722701-3 4.223238-5 3.177600-3 4.295772-5 3.177600-3 6.426548-5 3.890451-3 6.455149-5 6.918310-3 6.498360-5 1.566751-2 6.529587-5 6.237348-2 6.548205-5 1.000000+5 6.553579-5 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.443000-5 0.0 2.470900-4 0.0 2.470900-4 2.488099-8 2.476000-4 2.661560-8 2.479000-4 2.750694-8 2.479700-4 2.760225-8 2.486700-4 2.893077-8 2.494300-4 3.007007-8 2.494300-4 3.093436-8 2.498000-4 3.126489-8 2.506200-4 3.187384-8 2.516600-4 3.228416-8 2.525000-4 3.248390-8 2.556000-4 3.270390-8 2.615300-4 3.285582-8 2.722701-4 3.290046-8 3.090295-4 3.274900-8 3.134300-4 3.275506-8 3.134300-4 3.475826-8 3.981072-4 3.550941-8 5.432503-4 3.625590-8 7.673615-4 3.716889-8 1.122018-3 3.832539-8 1.566751-3 3.948300-8 2.065380-3 4.050303-8 2.722701-3 4.153325-8 3.177600-3 4.210058-8 3.177600-3 2.991491-4 3.388442-3 3.007789-4 5.188000-3 3.037753-4 8.317638-3 3.056935-4 1.659587-2 3.069233-4 7.943282-2 3.074706-4 1.000000+5 3.074530-4 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.443000-5 0.0 1.462000-5 1.900000-7 1.462000-5 1.288104-7 2.892000-5 1.442364-5 2.892000-5 1.418745-5 3.020000-5 1.526488-5 3.150000-5 1.626205-5 3.260000-5 1.702212-5 3.400000-5 1.788641-5 3.770000-5 1.993920-5 3.910000-5 2.080790-5 4.073803-5 2.197619-5 4.220000-5 2.315987-5 4.420000-5 2.496689-5 4.680000-5 2.751674-5 5.230000-5 3.324022-5 6.580000-5 4.740305-5 8.511380-5 6.718803-5 1.364583-4 1.187960-4 2.470900-4 2.291475-4 2.470900-4 2.188825-4 2.479700-4 2.186391-4 2.494300-4 2.190803-4 2.494300-4 2.186924-4 2.525000-4 2.210951-4 3.134300-4 2.818919-4 3.134300-4 2.797962-4 1.047129-3 1.009291-3 3.177600-3 3.134600-3 3.177600-3 2.814185-3 4.841724-2 4.804437-2 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.177600-3 7.780990+4 3.350000-3 7.045364+4 3.600000-3 5.898580+4 4.677351-3 3.002660+4 5.069907-3 2.435282+4 6.309573-3 1.356464+4 7.673615-3 7.928387+3 8.810489-3 5.390591+3 1.035142-2 3.416589+3 1.244515-2 2.012468+3 1.513561-2 1.137276+3 1.840772-2 6.375802+2 2.238721-2 3.548394+2 2.786121-2 1.828746+2 3.507519-2 9.027684+1 4.500000-2 4.171360+1 5.956621-2 1.734667+1 7.762471-2 7.520498+0 1.303167-1 1.460202+0 1.798871-1 5.300340-1 2.137962-1 3.100950-1 2.483133-1 1.962008-1 2.884032-1 1.250355-1 3.273407-1 8.604564-2 3.672823-1 6.170732-2 4.073803-1 4.605940-2 4.518559-1 3.462361-2 5.011872-1 2.622895-2 5.495409-1 2.063800-2 6.025596-1 1.635342-2 6.606935-1 1.305516-2 7.244360-1 1.051200-2 7.943282-1 8.528385-3 8.810489-1 6.796207-3 9.549926-1 5.732077-3 1.047129+0 4.755960-3 1.161449+0 3.874780-3 1.288250+0 3.181756-3 1.428894+0 2.633709-3 1.566751+0 2.241090-3 1.737801+0 1.882202-3 1.949845+0 1.562398-3 2.213095+0 1.283327-3 2.511886+0 1.061875-3 2.884032+0 8.703094-4 3.311311+0 7.185982-4 3.845918+0 5.882233-4 4.570882+0 4.706135-4 5.495409+0 3.739650-4 6.683439+0 2.952643-4 8.317638+0 2.284948-4 1.047129+1 1.758340-4 1.400000+1 1.273900-4 1.927525+1 9.013995-5 2.818383+1 6.029479-5 4.466836+1 3.736674-5 8.609938+1 1.909519-5 1.717908+2 9.495388-6 3.427678+2 4.738422-6 5.432503+3 2.977913-7 1.000000+5 1.617300-8 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.177600-3 6.687000-5 1.000000+5 6.687000-5 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.177600-3 3.357100-4 1.000000+5 3.357100-4 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.177600-3 2.775020-3 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.134300-4 2.865000+5 3.273407-4 2.840945+5 3.427678-4 2.793561+5 3.589219-4 2.726079+5 3.758374-4 2.641283+5 3.935501-4 2.542135+5 4.027170-4 2.488122+5 4.623810-4 2.095911+5 4.897788-4 1.938917+5 5.308844-4 1.722600+5 6.165950-4 1.370216+5 6.700000-4 1.198464+5 7.500000-4 9.896840+4 8.413951-4 8.093618+4 9.332543-4 6.702887+4 1.071519-3 5.169219+4 1.202264-3 4.133263+4 1.380384-3 3.134723+4 1.566751-3 2.414376+4 1.800000-3 1.799534+4 2.065380-3 1.333901+4 2.371374-3 9.800874+3 2.722701-3 7.148905+3 3.162278-3 5.038733+3 3.678900-3 3.508035+3 4.265795-3 2.442367+3 4.954502-3 1.680088+3 5.754399-3 1.146857+3 6.683439-3 7.771354+2 7.762471-3 5.229497+2 9.120108-3 3.388125+2 1.071519-2 2.179098+2 1.273503-2 1.347361+2 1.513561-2 8.266361+1 1.798871-2 5.034323+1 2.162719-2 2.943279+1 2.600160-2 1.707790+1 3.162278-2 9.505115+0 3.890451-2 5.071543+0 4.841724-2 2.593276+0 6.237348-2 1.183039+0 8.128305-2 5.165635-1 1.412538-1 9.111177-2 1.840772-1 3.983165-2 2.187762-1 2.337803-2 2.540973-1 1.483185-2 2.917427-1 9.805884-3 3.311311-1 6.759668-3 3.715352-1 4.855040-3 4.120975-1 3.628761-3 4.570882-1 2.731401-3 5.011872-1 2.135617-3 5.495409-1 1.680920-3 6.025596-1 1.332278-3 6.623700-1 1.057304-3 7.244360-1 8.566258-4 7.943282-1 6.949845-4 8.810489-1 5.537197-4 9.549926-1 4.669048-4 1.047129+0 3.873396-4 1.161449+0 3.155389-4 1.273503+0 2.647390-4 1.412538+0 2.189714-4 1.548817+0 1.861977-4 1.717908+0 1.562611-4 1.927525+0 1.296040-4 2.187762+0 1.063658-4 2.483133+0 8.795443-5 2.851018+0 7.204648-5 3.273407+0 5.945452-5 3.801894+0 4.864103-5 4.518559+0 3.889501-5 5.432503+0 3.089226-5 6.606934+0 2.437986-5 8.222427+0 1.885932-5 1.035142+1 1.450731-5 1.380384+1 1.053766-5 1.927525+1 7.341705-6 2.818383+1 4.910781-6 4.466836+1 3.043450-6 8.511380+1 1.573631-6 1.698244+2 7.824165-7 3.388442+2 3.904180-7 5.370318+3 2.453523-8 1.000000+5 1.317300-9 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.134300-4 5.382800-5 1.000000+5 5.382800-5 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.134300-4 5.411300-8 1.000000+5 5.411300-8 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.134300-4 2.595479-4 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.494300-4 4.087300+5 2.495200-4 4.261300+5 2.498000-4 4.872700+5 2.501000-4 5.588700+5 2.504000-4 6.360800+5 2.506200-4 6.962300+5 2.509200-4 7.822900+5 2.512000-4 8.666900+5 2.514000-4 9.286300+5 2.514700-4 9.242400+5 2.515500-4 9.509200+5 2.516600-4 9.761000+5 2.523000-4 1.097900+6 2.543000-4 1.184800+6 2.553000-4 1.198600+6 2.554000-4 1.204501+6 2.600160-4 1.210829+6 2.615300-4 1.204507+6 2.665000-4 1.177616+6 2.760000-4 1.093123+6 2.851018-4 1.012750+6 2.951209-4 9.403248+5 3.090295-4 8.685021+5 3.100000-4 8.663400+5 3.200000-4 8.157000+5 3.935501-4 5.274400+5 4.150000-4 4.687000+5 4.415704-4 4.046500+5 5.069907-4 2.877200+5 5.559043-4 2.278900+5 6.095369-4 1.790800+5 7.079458-4 1.198400+5 7.852356-4 9.026100+4 9.015711-4 6.126800+4 1.023293-3 4.268600+4 1.174898-3 2.851100+4 1.318257-3 2.025200+4 1.531087-3 1.286700+4 1.757924-3 8.399300+3 2.041738-3 5.249700+3 2.371374-3 3.255100+3 2.722701-3 2.079300+3 3.126079-3 1.319600+3 3.589219-3 8.319000+2 4.168694-3 5.009300+2 4.841724-3 2.993600+2 5.623413-3 1.776000+2 6.606934-3 1.004800+2 7.762471-3 5.642900+1 9.225714-3 3.018400+1 1.096478-2 1.602700+1 1.303167-2 8.449700+0 1.566751-2 4.237500+0 1.927525-2 1.933500+0 2.398833-2 8.375700-1 3.126079-2 3.016900-1 6.237348-2 2.070378-2 7.943282-2 8.150055-3 9.660509-2 3.859038-3 1.148154-1 2.009910-3 1.348963-1 1.101835-3 1.566751-1 6.353126-4 1.819701-1 3.692675-4 2.065380-1 2.349577-4 2.317395-1 1.568255-4 2.600160-1 1.054332-4 2.884032-1 7.424934-5 3.198895-1 5.264718-5 3.548134-1 3.761282-5 3.935501-1 2.707992-5 4.365158-1 1.964936-5 4.841724-1 1.436681-5 5.308844-1 1.095387-5 5.821032-1 8.411575-6 6.309573-1 6.719199-6 6.918310-1 5.235575-6 8.035261-1 3.527666-6 8.609938-1 2.958383-6 9.120108-1 2.569419-6 9.660509-1 2.245844-6 1.023293+0 1.977712-6 1.096478+0 1.710693-6 1.161449+0 1.525310-6 1.250000+0 1.327900-6 1.364583+0 1.133895-6 1.584893+0 8.764345-7 1.778279+0 7.228341-7 1.995262+0 6.004408-7 2.264644+0 4.937708-7 2.570396+0 4.090939-7 2.951209+0 3.357681-7 3.427678+0 2.732764-7 4.027170+0 2.207134-7 4.786301+0 1.769440-7 5.754399+0 1.408760-7 7.079458+0 1.099146-7 8.810489+0 8.522840-8 1.122018+1 6.486351-8 1.462177+1 4.841067-8 1.972423+1 3.505241-8 2.884032+1 2.345572-8 4.570882+1 1.454250-8 8.709636+1 7.521470-9 1.737801+2 3.740461-9 3.467369+2 1.866649-9 5.495409+3 1.17320-10 1.000000+5 6.44550-12 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.494300-4 3.282400-5 1.000000+5 3.282400-5 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.494300-4 3.566300-8 1.000000+5 3.566300-8 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.494300-4 2.165703-4 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.470900-4 8.283360+5 2.472000-4 8.688800+5 2.474000-4 9.566520+5 2.476000-4 1.050056+6 2.479000-4 1.199664+6 2.479700-4 1.217239+6 2.486700-4 1.515901+6 2.494500-4 1.890817+6 2.495200-4 1.923247+6 2.505000-4 2.170168+6 2.506000-4 2.211527+6 2.525000-4 2.374216+6 2.556000-4 2.470690+6 2.600160-4 2.524574+6 2.606800-4 2.524983+6 2.647000-4 2.502015+6 2.710000-4 2.419190+6 2.760000-4 2.302600+6 2.818383-4 2.197098+6 2.890000-4 2.049505+6 2.930700-4 1.967894+6 3.054921-4 1.784925+6 3.080000-4 1.746212+6 3.162278-4 1.660860+6 3.311311-4 1.508910+6 3.935501-4 1.044736+6 4.120975-4 9.422798+5 4.365158-4 8.223345+5 4.841724-4 6.367523+5 5.432503-4 4.764929+5 5.888437-4 3.863306+5 6.839116-4 2.586505+5 7.673615-4 1.888394+5 8.709636-4 1.324432+5 9.885531-4 9.233090+4 1.122018-3 6.384640+4 1.273503-3 4.385912+4 1.450000-3 2.962464+4 1.659587-3 1.956088+4 1.927525-3 1.224248+4 2.213095-3 7.886328+3 2.540973-3 5.046493+3 2.917427-3 3.207745+3 3.349654-3 2.025286+3 3.845918-3 1.270105+3 4.466836-3 7.604494+2 5.188000-3 4.517814+2 6.025596-3 2.665292+2 7.079458-3 1.498460+2 8.317638-3 8.364495+1 9.772372-3 4.636564+1 1.161449-2 2.445433+1 1.380384-2 1.280415+1 1.659587-2 6.371933+0 2.018366-2 3.011605+0 2.483133-2 1.351148+0 3.162278-2 5.260701-1 4.466836-2 1.353699-1 7.079458-2 2.210418-2 8.912509-2 8.983152-3 1.071519-1 4.400440-3 1.288250-1 2.172064-3 1.479108-1 1.287489-3 1.678804-1 8.024609-4 1.905461-1 5.037396-4 2.137962-1 3.323315-4 2.371374-1 2.301195-4 2.630268-1 1.604830-4 2.884032-1 1.172543-4 3.162278-1 8.624007-5 3.467369-1 6.387911-5 3.801894-1 4.767564-5 4.120975-1 3.715395-5 4.466836-1 2.914952-5 4.841724-1 2.302781-5 5.248075-1 1.831999-5 5.623413-1 1.514970-5 6.095369-1 1.222186-5 6.606935-1 9.928522-6 7.161434-1 8.118121-6 7.762471-1 6.681439-6 8.459000-1 5.468910-6 9.120108-1 4.613548-6 9.772372-1 3.972953-6 1.071519+0 3.286882-6 1.161449+0 2.800950-6 1.273503+0 2.352799-6 1.396368+0 1.989655-6 1.548817+0 1.659412-6 1.737801+0 1.366628-6 1.949845+0 1.134076-6 2.187762+0 9.476734-7 2.483133+0 7.836016-7 2.851018+0 6.419517-7 3.311311+0 5.215313-7 3.845918+0 4.269083-7 4.570882+0 3.415520-7 5.495409+0 2.714077-7 6.683439+0 2.142840-7 8.317638+0 1.658371-7 1.047129+1 1.276123-7 1.400000+1 9.245400-8 1.927525+1 6.541986-8 2.818383+1 4.375868-8 4.518559+1 2.679902-8 8.709636+1 1.369743-8 1.737801+2 6.811743-9 3.467369+2 3.399403-9 5.495409+3 2.13652-10 1.000000+5 1.17380-11 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.470900-4 3.266200-5 1.000000+5 3.266200-5 1 18000 7 7 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.470900-4 3.576500-8 1.000000+5 3.576500-8 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.470900-4 2.143922-4 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.892000-5 8.099600+4 2.920000-5 8.758780+4 2.951209-5 9.498113+4 2.990000-5 1.042176+5 3.020000-5 1.114110+5 3.060000-5 1.209422+5 3.100000-5 1.304652+5 3.150000-5 1.422490+5 3.210000-5 1.561470+5 3.260000-5 1.675158+5 3.315000-5 1.797462+5 3.370000-5 1.916392+5 3.427678-5 2.037304+5 3.507519-5 2.198110+5 3.589219-5 2.354453+5 3.672823-5 2.505869+5 3.770000-5 2.670820+5 3.850000-5 2.797800+5 3.950000-5 2.945440+5 4.073803-5 3.111743+5 4.216965-5 3.282404+5 4.365158-5 3.436124+5 4.518559-5 3.572793+5 4.677351-5 3.691957+5 4.850000-5 3.798180+5 5.011872-5 3.877966+5 5.230000-5 3.958740+5 5.432503-5 4.009612+5 5.688529-5 4.045355+5 5.956621-5 4.054053+5 6.237348-5 4.037582+5 6.531306-5 3.997972+5 6.918310-5 3.919105+5 7.328245-5 3.811652+5 7.800000-5 3.668800+5 8.317638-5 3.499915+5 8.912509-5 3.300846+5 9.549926-5 3.091276+5 1.040000-4 2.827900+5 1.135011-4 2.562492+5 1.260000-4 2.260580+5 1.412538-4 1.956837+5 1.584893-4 1.680001+5 1.757924-4 1.454906+5 1.950000-4 1.251216+5 2.187762-4 1.050128+5 2.511886-4 8.439911+4 3.054921-4 6.144341+4 3.507519-4 4.882349+4 3.981072-4 3.925910+4 4.677351-4 2.947577+4 5.559043-4 2.152482+4 6.531306-4 1.593240+4 8.128305-4 1.050853+4 9.332543-4 8.026125+3 1.096478-3 5.816558+3 1.273503-3 4.283574+3 1.479108-3 3.131423+3 1.698244-3 2.327468+3 1.972423-3 1.674875+3 2.290868-3 1.195892+3 2.660725-3 8.475056+2 3.090295-3 5.961970+2 3.589219-3 4.164669+2 4.168694-3 2.888622+2 4.841724-3 1.989342+2 5.623413-3 1.360137+2 6.606934-3 8.960901+1 7.762471-3 5.857310+1 9.120108-3 3.799336+1 1.071519-2 2.445918+1 1.258925-2 1.563148+1 1.500000-2 9.534490+0 1.798871-2 5.666080+0 2.137962-2 3.430131+0 2.570396-2 1.993272+0 3.126079-2 1.110997+0 3.845918-2 5.934527-1 4.841724-2 2.932543-1 6.165950-2 1.388054-1 8.609938-2 4.884314-2 1.513561-1 8.320743-3 1.883649-1 4.208303-3 2.264644-1 2.386509-3 2.630268-1 1.515615-3 3.019952-1 1.004150-3 3.427678-1 6.936684-4 3.845918-1 4.993159-4 4.265795-1 3.740423-4 4.731513-1 2.822686-4 5.188000-1 2.212732-4 5.688529-1 1.746451-4 6.237348-1 1.388344-4 6.839117-1 1.111965-4 7.498942-1 8.972843-5 8.222427-1 7.294597-5 8.912509-1 6.123303-5 9.660509-1 5.172589-5 1.096478+0 4.010573-5 1.202264+0 3.351472-5 1.318257+0 2.818382-5 1.462177+0 2.336669-5 1.621810+0 1.952775-5 1.798871+0 1.643800-5 2.018366+0 1.367533-5 2.290868+0 1.125577-5 2.600160+0 9.331306-6 2.985383+0 7.662661-6 3.467369+0 6.240228-6 4.073803+0 5.042721-6 4.841724+0 4.044818-6 5.821032+0 3.221726-6 7.161434+0 2.514806-6 8.912509+0 1.950772-6 1.135011+1 1.485102-6 1.479108+1 1.108704-6 2.000000+1 8.010000-7 2.917427+1 5.374765-7 4.677351+1 3.293607-7 9.120108+1 1.664613-7 1.819701+2 8.280892-8 3.630781+2 4.133543-8 5.754399+3 2.598365-9 1.000000+5 1.49480-10 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.892000-5 2.892000-5 1.000000+5 2.892000-5 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.892000-5 0.0 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.462000-5 1.667022+7 1.496236-5 1.786627+7 1.531087-5 1.899024+7 1.570000-5 2.010560+7 1.603245-5 2.091235+7 1.630000-5 2.146160+7 1.660000-5 2.194920+7 1.690000-5 2.228240+7 1.720000-5 2.245660+7 1.750000-5 2.247040+7 1.778279-5 2.233512+7 1.800000-5 2.213400+7 1.830000-5 2.172400+7 1.862087-5 2.112665+7 1.885000-5 2.061180+7 1.910000-5 1.997724+7 1.935000-5 1.927956+7 1.965000-5 1.837606+7 1.995262-5 1.741265+7 2.030000-5 1.627066+7 2.070000-5 1.494342+7 2.110000-5 1.363752+7 2.150000-5 1.238092+7 2.190000-5 1.119320+7 2.238721-5 9.856818+6 2.290868-5 8.570311+6 2.350000-5 7.291580+6 2.426610-5 5.900959+6 2.511886-5 4.661927+6 2.610000-5 3.563680+6 2.754229-5 2.422761+6 3.090295-5 1.049600+6 3.198895-5 8.205874+5 3.300000-5 6.615760+5 3.370000-5 5.750760+5 3.450000-5 4.950120+5 3.507519-5 4.477302+5 3.570000-5 4.045280+5 3.630781-5 3.694628+5 3.690000-5 3.409340+5 3.750000-5 3.168900+5 3.801894-5 2.995041+5 3.850000-5 2.858540+5 3.910000-5 2.717391+5 3.970000-5 2.604280+5 4.030000-5 2.515320+5 4.090000-5 2.447120+5 4.150000-5 2.396760+5 4.220000-5 2.357280+5 4.280000-5 2.337460+5 4.350000-5 2.328240+5 4.420000-5 2.331360+5 4.518559-5 2.352881+5 4.623810-5 2.393000+5 4.731513-5 2.447577+5 4.900000-5 2.551120+5 5.500000-5 2.971640+5 5.754399-5 3.136474+5 6.025596-5 3.290602+5 6.300000-5 3.420320+5 6.580000-5 3.524760+5 6.839116-5 3.597383+5 7.150000-5 3.656300+5 7.413102-5 3.684143+5 7.762471-5 3.693741+5 8.150000-5 3.674100+5 8.511380-5 3.633126+5 8.912509-5 3.567695+5 9.332543-5 3.482458+5 9.900000-5 3.350040+5 1.047129-4 3.205678+5 1.109175-4 3.043924+5 1.190000-4 2.835580+5 1.273503-4 2.629366+5 1.364583-4 2.418890+5 1.462177-4 2.211387+5 1.584893-4 1.976016+5 1.698244-4 1.782093+5 1.840772-4 1.567568+5 2.000000-4 1.362010+5 2.162719-4 1.185203+5 2.400000-4 9.771420+4 2.691535-4 7.836003+4 3.000000-4 6.310640+4 3.311311-4 5.141758+4 3.630781-4 4.215580+4 4.027170-4 3.344486+4 4.518559-4 2.566404+4 5.069907-4 1.954989+4 5.754399-4 1.437119+4 6.606934-4 1.019343+4 7.498942-4 7.389006+3 8.317638-4 5.643936+3 9.332543-4 4.152062+3 1.047129-3 3.034197+3 1.174898-3 2.201794+3 1.318257-3 1.586760+3 1.479108-3 1.135730+3 1.659587-3 8.071186+2 1.883649-3 5.502840+2 2.162719-3 3.595155+2 2.483133-3 2.330902+2 2.851018-3 1.499990+2 3.311311-3 9.231741+1 3.801894-3 5.855344+1 4.365158-3 3.687605+1 5.069907-3 2.217242+1 5.888437-3 1.322812+1 6.839116-3 7.830740+0 8.035261-3 4.416947+0 9.440609-3 2.472350+0 1.122018-2 1.317491+0 1.333521-2 6.968284-1 1.603245-2 3.504788-1 1.949845-2 1.675219-1 2.398833-2 7.605227-2 3.090295-2 2.872956-2 6.839116-2 1.331314-3 8.709636-2 5.267511-4 1.059254-1 2.504966-4 1.258925-1 1.309839-4 1.462177-1 7.520990-5 1.678804-1 4.537780-5 1.905461-1 2.874859-5 2.162719-1 1.834578-5 2.426610-1 1.228030-5 2.722701-1 8.279911-6 3.019952-1 5.845981-6 3.349654-1 4.155021-6 3.715352-1 2.975029-6 4.073803-1 2.225591-6 4.466836-1 1.676361-6 4.897788-1 1.270936-6 5.370318-1 9.697540-7 5.888437-1 7.450193-7 6.456542-1 5.767097-7 7.079458-1 4.497921-7 7.762471-1 3.534200-7 8.609938-1 2.705138-7 9.120108-1 2.344491-7 9.660509-1 2.045459-7 1.011579+0 1.844581-7 1.083927+0 1.592045-7 1.148154+0 1.417209-7 1.230269+0 1.242603-7 1.333521+0 1.073716-7 1.462177+0 9.152172-8 1.698244+0 7.099939-8 1.905461+0 5.879549-8 2.137962+0 4.906390-8 2.426610+0 4.051614-8 2.786121+0 3.314595-8 3.198895+0 2.732131-8 3.715352+0 2.232716-8 4.415704+0 1.783481-8 5.308844+0 1.415165-8 6.456542+0 1.115829-8 8.035261+0 8.624481-9 1.011579+1 6.629087-9 1.364583+1 4.751500-9 1.905461+1 3.309348-9 2.818383+1 2.186639-9 4.415704+1 1.371300-9 8.222427+1 7.25740-10 1.640590+2 3.60742-10 3.273407+2 1.79974-10 5.188000+3 1.13086-11 1.000000+5 5.86540-13 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.462000-5 1.462000-5 1.000000+5 1.462000-5 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.462000-5 0.0 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.443000-5 3.379932+7 1.479108-5 3.628424+7 1.500000-5 3.763732+7 1.530000-5 3.943580+7 1.560000-5 4.104480+7 1.590000-5 4.241720+7 1.621810-5 4.359861+7 1.650000-5 4.438680+7 1.680000-5 4.492680+7 1.710000-5 4.514400+7 1.740000-5 4.503000+7 1.770000-5 4.459200+7 1.800000-5 4.384120+7 1.830000-5 4.279880+7 1.860000-5 4.149600+7 1.885000-5 4.023720+7 1.910000-5 3.884848+7 1.935000-5 3.735460+7 1.965000-5 3.545852+7 2.000000-5 3.315768+7 2.030000-5 3.115388+7 2.070000-5 2.849760+7 2.110000-5 2.591680+7 2.150000-5 2.345848+7 2.190000-5 2.115380+7 2.238721-5 1.857914+7 2.290868-5 1.611675+7 2.350000-5 1.368288+7 2.426610-5 1.104977+7 2.511886-5 8.713382+6 2.610000-5 6.650160+6 2.754229-5 4.514913+6 3.054921-5 2.125295+6 3.162278-5 1.661756+6 3.260000-5 1.346380+6 3.330000-5 1.168576+6 3.400000-5 1.022972+6 3.470000-5 9.039880+5 3.520000-5 8.327360+5 3.570000-5 7.713240+5 3.630781-5 7.081859+5 3.690000-5 6.571520+5 3.750000-5 6.144720+5 3.801894-5 5.838812+5 3.850000-5 5.600920+5 3.910000-5 5.357923+5 3.970000-5 5.166640+5 4.030000-5 5.019760+5 4.090000-5 4.910920+5 4.150000-5 4.834800+5 4.220000-5 4.781040+5 4.300000-5 4.758160+5 4.370000-5 4.766040+5 4.466836-5 4.810809+5 4.570882-5 4.893139+5 4.680000-5 5.007400+5 4.850000-5 5.222600+5 5.432503-5 6.058663+5 5.688529-5 6.397402+5 5.956621-5 6.707281+5 6.220000-5 6.961480+5 6.500000-5 7.176040+5 6.760830-5 7.325468+5 7.000000-5 7.422080+5 7.328245-5 7.497963+5 7.673615-5 7.516962+5 8.035261-5 7.480833+5 8.413951-5 7.392652+5 8.810489-5 7.258202+5 9.300000-5 7.051080+5 9.800000-5 6.808000+5 1.040000-4 6.493000+5 1.109175-4 6.121185+5 1.188502-4 5.700359+5 1.273503-4 5.271127+5 1.364583-4 4.842652+5 1.480000-4 4.348760+5 1.584893-4 3.945199+5 1.720000-4 3.484364+5 1.850000-4 3.096112+5 2.000000-4 2.710044+5 2.187762-4 2.306380+5 2.426610-4 1.898966+5 2.722701-4 1.518285+5 3.019952-4 1.232461+5 3.311311-4 1.016814+5 3.630781-4 8.327482+4 4.000000-4 6.702160+4 4.415704-4 5.336993+4 5.011872-4 3.957638+4 5.623413-4 2.990909+4 6.531306-4 2.060457+4 7.413102-4 1.492407+4 8.413951-4 1.071471+4 9.440609-4 7.872451+3 1.059254-3 5.743415+3 1.188502-3 4.160268+3 1.333521-3 2.992718+3 1.500000-3 2.122274+3 1.698244-3 1.464725+3 1.927525-3 9.958461+2 2.213095-3 6.488019+2 2.540973-3 4.194758+2 2.917427-3 2.691622+2 3.388442-3 1.650944+2 3.890451-3 1.043814+2 4.466836-3 6.552521+1 5.128614-3 4.083522+1 5.956621-3 2.425526+1 6.918310-3 1.429803+1 8.128305-3 8.030303+0 9.549926-3 4.477625+0 1.122018-2 2.478544+0 1.333521-2 1.305124+0 1.584893-2 6.820361-1 1.905461-2 3.386885-1 2.317395-2 1.596995-1 2.917427-2 6.538066-2 3.890451-2 2.121876-2 7.079458-2 2.020242-3 9.120108-2 7.520143-4 1.109175-1 3.528947-4 1.303167-1 1.905416-4 1.513561-1 1.083123-4 1.717908-1 6.760952-5 1.927525-1 4.433561-5 2.162719-1 2.927387-5 2.398833-1 2.028482-5 2.660725-1 1.415892-5 2.917427-1 1.035567-5 3.198895-1 7.626600-6 3.507519-1 5.658328-6 3.845918-1 4.230779-6 4.168694-1 3.302480-6 4.518559-1 2.594762-6 4.897788-1 2.052667-6 5.308844-1 1.635722-6 5.754399-1 1.312889-6 6.237348-1 1.061338-6 6.760830-1 8.641296-7 7.328245-1 7.085243-7 7.943282-1 5.849909-7 8.609938-1 4.859968-7 9.332543-1 4.067372-7 1.000000+0 3.513700-7 1.096478+0 2.914089-7 1.188502+0 2.489586-7 1.303167+0 2.094065-7 1.445440+0 1.737162-7 1.603245+0 1.451681-7 1.798871+0 1.198393-7 2.018366+0 9.966593-8 2.290868+0 8.200963-8 2.600160+0 6.799016-8 2.985383+0 5.584273-8 3.467369+0 4.547682-8 4.073803+0 3.674967-8 4.841724+0 2.947721-8 5.821032+0 2.347926-8 7.161434+0 1.832697-8 8.912509+0 1.421590-8 1.135011+1 1.082324-8 1.479108+1 8.080167-9 1.995262+1 5.852258-9 2.917427+1 3.916899-9 4.677351+1 2.400294-9 9.120108+1 1.213102-9 1.819701+2 6.03496-10 3.630781+2 3.01246-10 5.754399+3 1.89362-11 1.000000+5 1.08940-12 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.443000-5 1.443000-5 1.000000+5 1.443000-5 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.443000-5 0.0 1.000000+5 1.000000+5 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.312590-8 1.028750+0 1.312590-7 1.036640+0 1.312590-6 1.038200+0 1.771380-6 1.039700+0 2.301380-6 1.041500+0 3.061960-6 1.043800+0 4.250110-6 1.046400+0 5.913230-6 1.048300+0 7.362140-6 1.051200+0 9.986580-6 1.054080+0 1.312590-5 1.057700+0 1.789140-5 1.061100+0 2.327210-5 1.065100+0 3.080940-5 1.070400+0 4.298200-5 1.076200+0 5.940070-5 1.080600+0 7.418170-5 1.087100+0 9.994800-5 1.093710+0 1.312590-4 1.102600+0 1.819980-4 1.110700+0 2.373770-4 1.120600+0 3.175660-4 1.133300+0 4.415810-4 1.147500+0 6.097610-4 1.158200+0 7.578050-4 1.174100+0 1.012700-3 1.190110+0 1.312590-3 1.205100+0 1.633170-3 1.227500+0 2.185000-3 1.250000+0 2.826000-3 1.280300+0 3.822850-3 1.307700+0 4.852150-3 1.343000+0 6.348640-3 1.382200+0 8.223190-3 1.433800+0 1.100830-2 1.500000+0 1.507000-2 1.562500+0 1.937100-2 1.617200+0 2.347820-2 1.712900+0 3.133730-2 1.784700+0 3.772800-2 1.892300+0 4.795390-2 2.000000+0 5.880000-2 2.044000+0 6.336000-2 2.163500+0 7.596770-2 2.372600+0 9.846460-2 2.529500+0 1.154430-1 2.764700+0 1.407560-1 3.000000+0 1.658000-1 3.437500+0 2.113060-1 4.000000+0 2.670000-1 4.750000+0 3.353100-1 5.000000+0 3.568000-1 6.000000+0 4.371000-1 7.000000+0 5.086000-1 8.000000+0 5.729000-1 9.000000+0 6.311000-1 1.000000+1 6.839000-1 1.100000+1 7.318000-1 1.200000+1 7.757000-1 1.300000+1 8.164000-1 1.400000+1 8.543000-1 1.500000+1 8.897000-1 1.600000+1 9.229000-1 1.800000+1 9.836000-1 2.000000+1 1.038000+0 2.200000+1 1.087000+0 2.400000+1 1.132000+0 2.600000+1 1.172000+0 2.800000+1 1.210000+0 3.000000+1 1.245000+0 4.000000+1 1.388000+0 5.000000+1 1.495000+0 6.000000+1 1.578000+0 8.000000+1 1.702000+0 1.000000+2 1.791000+0 1.500000+2 1.936000+0 2.000000+2 2.024000+0 3.000000+2 2.129000+0 4.000000+2 2.190000+0 5.000000+2 2.230000+0 6.000000+2 2.259000+0 8.000000+2 2.298000+0 1.000000+3 2.323000+0 1.500000+3 2.360000+0 2.000000+3 2.380000+0 3.000000+3 2.402000+0 4.000000+3 2.414000+0 5.000000+3 2.421000+0 6.000000+3 2.426000+0 8.000000+3 2.433000+0 1.000000+4 2.437000+0 1.500000+4 2.443000+0 2.000000+4 2.447000+0 3.000000+4 2.450000+0 4.000000+4 2.452000+0 5.000000+4 2.453000+0 6.000000+4 2.453000+0 8.000000+4 2.454000+0 1.000000+5 2.455000+0 1 18000 7 8 3.994800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.807620-7 2.119500+0 1.014520-6 2.127900+0 1.375870-6 2.136250+0 1.807620-6 2.147000+0 2.478370-6 2.156900+0 3.219110-6 2.169000+0 4.296100-6 2.184500+0 5.971730-6 2.201800+0 8.262060-6 2.214800+0 1.029390-5 2.234200+0 1.384710-5 2.253680+0 1.807620-5 2.281500+0 2.531890-5 2.307000+0 3.325630-5 2.338200+0 4.471610-5 2.377400+0 6.192650-5 2.410200+0 7.876010-5 2.446800+0 1.001870-4 2.485900+0 1.261410-4 2.532900+0 1.614340-4 2.556430+0 1.807620-4 2.611900+0 2.304910-4 2.660400+0 2.786490-4 2.745300+0 3.729510-4 2.809000+0 4.516630-4 2.904500+0 5.818430-4 3.000000+0 7.263000-4 3.125000+0 9.365730-4 3.234400+0 1.139650-3 3.425800+0 1.534860-3 3.569300+0 1.861350-3 3.784700+0 2.393140-3 4.000000+0 2.965000-3 4.250000+0 3.664380-3 4.625000+0 4.764060-3 5.000000+0 5.908000-3 5.500000+0 7.479420-3 6.000000+0 9.073000-3 6.750000+0 1.144700-2 7.000000+0 1.223000-2 8.000000+0 1.530000-2 9.000000+0 1.823000-2 1.000000+1 2.103000-2 1.100000+1 2.368000-2 1.200000+1 2.618000-2 1.300000+1 2.855000-2 1.400000+1 3.080000-2 1.500000+1 3.294000-2 1.600000+1 3.497000-2 1.800000+1 3.876000-2 2.000000+1 4.221000-2 2.200000+1 4.539000-2 2.400000+1 4.832000-2 2.600000+1 5.103000-2 2.800000+1 5.356000-2 3.000000+1 5.591000-2 4.000000+1 6.577000-2 5.000000+1 7.337000-2 6.000000+1 7.947000-2 8.000000+1 8.880000-2 1.000000+2 9.573000-2 1.500000+2 1.075000-1 2.000000+2 1.150000-1 3.000000+2 1.245000-1 4.000000+2 1.302000-1 5.000000+2 1.342000-1 6.000000+2 1.372000-1 8.000000+2 1.412000-1 1.000000+3 1.440000-1 1.500000+3 1.480000-1 2.000000+3 1.503000-1 3.000000+3 1.529000-1 4.000000+3 1.544000-1 5.000000+3 1.553000-1 6.000000+3 1.559000-1 8.000000+3 1.568000-1 1.000000+4 1.573000-1 1.500000+4 1.580000-1 2.000000+4 1.585000-1 3.000000+4 1.589000-1 4.000000+4 1.591000-1 5.000000+4 1.593000-1 6.000000+4 1.594000-1 8.000000+4 1.595000-1 1.000000+5 1.596000-1 1 18000 7 8 3.994800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 18000 7 9 3.994800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.800000+1 1.000000+5 1.800000+1 5.000000+5 1.799400+1 8.750000+5 1.798430+1 1.000000+6 1.798000+1 1.500000+6 1.795700+1 2.000000+6 1.792400+1 2.500000+6 1.788100+1 3.000000+6 1.782900+1 3.750000+6 1.773410+1 4.000000+6 1.769900+1 4.750000+6 1.757830+1 5.000000+6 1.753500+1 6.000000+6 1.733820+1 6.750000+6 1.717240+1 7.000000+6 1.711400+1 8.000000+6 1.686090+1 8.500000+6 1.672630+1 9.000000+6 1.658800+1 1.000000+7 1.629500+1 1.109400+7 1.595370+1 1.125000+7 1.590460+1 1.203100+7 1.564950+1 1.250000+7 1.549400+1 1.375000+7 1.506870+1 1.500000+7 1.463900+1 1.625000+7 1.420550+1 1.687500+7 1.398940+1 1.750000+7 1.377600+1 1.937500+7 1.314240+1 2.000000+7 1.293700+1 2.218800+7 1.224340+1 2.250000+7 1.214830+1 2.406300+7 1.168910+1 2.500000+7 1.142800+1 2.750000+7 1.077840+1 3.000000+7 1.020400+1 3.250000+7 9.700000+0 3.578100+7 9.133200+0 3.750000+7 8.875590+0 3.859400+7 8.724450+0 4.000000+7 8.542400+0 4.437500+7 8.059590+0 4.500000+7 7.998460+0 5.000000+7 7.563500+0 6.000000+7 6.864900+0 6.500000+7 6.547870+0 7.000000+7 6.236600+0 7.500000+7 5.927170+0 8.000000+7 5.619600+0 8.500000+7 5.315170+0 9.000000+7 5.016500+0 9.500000+7 4.725540+0 1.000000+8 4.443300+0 1.062500+8 4.104670+0 1.125000+8 3.788180+0 1.144500+8 3.694300+0 1.250000+8 3.231800+0 1.437500+8 2.587000+0 1.500000+8 2.417000+0 1.625000+8 2.134040+0 1.718800+8 1.962980+0 1.753900+8 1.906540+0 1.841800+8 1.781130+0 1.947300+8 1.656570+0 2.000000+8 1.603400+0 2.125000+8 1.497520+0 2.218800+8 1.432950+0 2.359400+8 1.354480+0 2.500000+8 1.292900+0 2.875000+8 1.169970+0 3.000000+8 1.129800+0 3.125000+8 1.087070+0 3.500000+8 9.668000-1 3.812500+8 8.877280-1 4.000000+8 8.409000-1 4.179700+8 7.930480-1 4.330100+8 7.522970-1 4.569300+8 6.893210-1 5.000000+8 5.890000-1 5.343800+8 5.227460-1 5.578100+8 4.818770-1 5.789100+8 4.466490-1 6.000000+8 4.125000-1 6.250000+8 3.736460-1 6.625000+8 3.237320-1 6.812500+8 3.037380-1 7.000000+8 2.873000-1 7.125000+8 2.782560-1 7.671900+8 2.464780-1 7.835900+8 2.369970-1 8.000000+8 2.268000-1 8.183600+8 2.143830-1 8.352100+8 2.024430-1 8.558000+8 1.876900-1 8.817100+8 1.696250-1 9.034000+8 1.553820-1 9.586000+8 1.241060-1 1.000000+9 1.057000-1 1.045900+9 8.981620-2 1.088000+9 7.833700-2 1.139500+9 6.714800-2 1.184600+9 5.923120-2 1.421100+9 3.338060-2 1.500000+9 2.799500-2 1.589800+9 2.298340-2 1.665000+9 1.954710-2 1.784700+9 1.522280-2 1.928200+9 1.144910-2 2.000000+9 9.994700-3 2.375000+9 5.260170-3 3.031300+9 2.100750-3 4.015600+9 7.236960-4 5.000000+9 3.140400-4 8.000000+9 5.233000-5 9.500000+9 2.729880-5 1.00000+10 2.250200-5 1.20500+10 1.120350-5 1.41820+10 6.130920-6 1.71170+10 3.078320-6 2.01490+10 1.704140-6 2.26440+10 1.119750-6 2.74790+10 5.615430-7 3.20120+10 3.273830-7 3.62610+10 2.114500-7 4.42280+10 1.059750-7 5.12000+10 6.397100-8 6.34000+10 3.081220-8 7.94120+10 1.438460-8 1.00000+11 6.647700-9 1.26840+11 3.022980-9 1.58400+11 1.457640-9 2.01970+11 6.61362-10 2.73980+11 2.47895-10 3.89420+11 8.10680-11 5.35610+11 2.97768-11 8.96670+11 6.02765-12 1.90530+12 6.07612-13 5.12830+12 3.16632-14 2.26460+13 4.07671-16 1.00000+14 5.37670-18 5.62340+14 3.32851-20 5.42470+15 3.87033-23 1.00000+17 6.05800-27 1 18000 7 0 3.994800+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 2.40000-12 1.000000+2 2.40000-10 1.000000+3 2.400000-8 1.000000+4 2.400000-6 1.000000+5 2.400000-4 5.000000+5 6.000000-3 8.750000+5 1.837500-2 1.000000+6 2.400000-2 1.500000+6 5.420000-2 2.000000+6 9.590000-2 2.500000+6 1.491000-1 3.000000+6 2.133000-1 3.750000+6 3.293850-1 4.000000+6 3.731000-1 4.750000+6 5.181670-1 5.000000+6 5.710000-1 6.000000+6 8.025980-1 6.750000+6 9.952240-1 7.000000+6 1.062600+0 8.000000+6 1.344940+0 8.500000+6 1.492830+0 9.000000+6 1.644500+0 1.000000+7 1.956000+0 1.109400+7 2.305500+0 1.125000+7 2.355870+0 1.203100+7 2.608310+0 1.250000+7 2.760200+0 1.375000+7 3.162030+0 1.500000+7 3.558000+0 1.625000+7 3.944670+0 1.687500+7 4.133710+0 1.750000+7 4.320200+0 1.937500+7 4.859330+0 2.000000+7 5.033000+0 2.218800+7 5.613550+0 2.250000+7 5.693340+0 2.406300+7 6.080010+0 2.500000+7 6.303000+0 2.750000+7 6.863840+0 3.000000+7 7.377000+0 3.250000+7 7.843290+0 3.578100+7 8.391480+0 3.750000+7 8.650960+0 3.859400+7 8.806820+0 4.000000+7 8.998000+0 4.437500+7 9.527560+0 4.500000+7 9.597550+0 5.000000+7 1.010600+1 6.000000+7 1.096700+1 6.500000+7 1.135480+1 7.000000+7 1.172600+1 7.500000+7 1.208160+1 8.000000+7 1.242400+1 8.500000+7 1.275070+1 9.000000+7 1.306100+1 9.500000+7 1.335390+1 1.000000+8 1.362900+1 1.062500+8 1.394710+1 1.125000+8 1.423930+1 1.144500+8 1.432390+1 1.250000+8 1.474500+1 1.437500+8 1.533020+1 1.500000+8 1.548900+1 1.625000+8 1.575840+1 1.718800+8 1.592740+1 1.753900+8 1.598640+1 1.841800+8 1.611830+1 1.947300+8 1.625910+1 2.000000+8 1.632400+1 2.125000+8 1.646190+1 2.218800+8 1.655340+1 2.359400+8 1.667970+1 2.500000+8 1.679500+1 2.875000+8 1.705520+1 3.000000+8 1.713200+1 3.125000+8 1.720130+1 3.500000+8 1.738600+1 3.812500+8 1.750900+1 4.000000+8 1.757300+1 4.179700+8 1.762560+1 4.330100+8 1.766510+1 4.569300+8 1.772150+1 5.000000+8 1.780000+1 5.343800+8 1.784550+1 5.578100+8 1.787120+1 5.789100+8 1.788990+1 6.000000+8 1.790700+1 6.250000+8 1.792190+1 6.625000+8 1.794140+1 6.812500+8 1.794880+1 7.000000+8 1.795600+1 7.125000+8 1.795890+1 7.671900+8 1.797110+1 7.835900+8 1.797460+1 8.000000+8 1.797800+1 8.183600+8 1.797980+1 8.352100+8 1.798140+1 8.558000+8 1.798340+1 8.817100+8 1.798580+1 9.034000+8 1.798770+1 9.586000+8 1.799210+1 1.000000+9 1.799400+1 1.045900+9 1.799480+1 1.088000+9 1.799550+1 1.139500+9 1.799640+1 1.184600+9 1.799710+1 1.421100+9 1.799990+1 1.500000+9 1.800000+1 1.589800+9 1.800000+1 1.665000+9 1.800000+1 1.784700+9 1.800000+1 1.928200+9 1.800000+1 2.000000+9 1.800000+1 2.375000+9 1.800000+1 3.031300+9 1.800000+1 4.015600+9 1.800000+1 5.000000+9 1.800000+1 8.000000+9 1.800000+1 9.500000+9 1.800000+1 1.00000+10 1.800000+1 1.20500+10 1.800000+1 1.41820+10 1.800000+1 1.71170+10 1.800000+1 2.01490+10 1.800000+1 2.26440+10 1.800000+1 2.74790+10 1.800000+1 3.20120+10 1.800000+1 3.62610+10 1.800000+1 4.42280+10 1.800000+1 5.12000+10 1.800000+1 6.34000+10 1.800000+1 7.94120+10 1.800000+1 1.00000+11 1.800000+1 1.26840+11 1.800000+1 1.58400+11 1.800000+1 2.01970+11 1.800000+1 2.73980+11 1.800000+1 3.89420+11 1.800000+1 5.35610+11 1.800000+1 8.96670+11 1.800000+1 1.90530+12 1.800000+1 5.12830+12 1.800000+1 2.26460+13 1.800000+1 1.00000+14 1.800000+1 5.62340+14 1.800000+1 5.42470+15 1.800000+1 1.00000+17 1.800000+1 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.044423-6 0.0 9.162916-6 0.0 1.046453-5 0.0 1.051282-5 9.107499-1 1.051604-5 9.709075-1 1.054180-5 1.773442+0 1.056756-5 2.990267+0 1.059653-5 4.907924+0 1.067059-5 1.096860+1 1.070097-5 1.276191+1 1.072446-5 1.343870+1 1.075338-5 1.327850+1 1.078727-5 1.213606+1 1.085250-5 9.329587+0 1.088875-5 8.282852+0 1.092090-5 7.442984+0 1.095041-5 6.468373+0 1.097731-5 5.214128+0 1.105207-5 2.308678+0 1.107831-5 1.490402+0 1.110454-5 8.881728-1 1.113078-5 4.885912-1 1.117013-5 1.242019-1 1.118325-5 0.0 1.165171-5 0.0 1.165766-5 2.627210-7 1.170907-5 4.715353-6 1.171505-5 5.401417-6 1.173775-5 8.651462-6 1.174374-5 9.733720-6 1.176642-5 1.465835-5 1.177244-5 1.620548-5 1.180113-5 2.492519-5 1.188721-5 5.784228-5 1.191591-5 6.593940-5 1.194460-5 7.027050-5 1.197329-5 7.053185-5 1.200199-5 6.741927-5 1.217415-5 3.546519-5 1.220284-5 2.950017-5 1.223154-5 2.232937-5 1.228926-5 1.189182-5 1.231843-5 7.676942-6 1.234760-5 4.574908-6 1.237677-5 2.516695-6 1.242053-5 6.397539-7 1.243511-5 0.0 1.253643-5 0.0 1.257088-5 1.104160-1 1.260173-5 7.571262-1 1.263277-5 1.464475+0 1.266371-5 2.611856+0 1.269465-5 4.307328+0 1.273485-5 7.382751+0 1.279824-5 1.325324+1 1.281855-5 1.508735+1 1.285492-5 1.749129+1 1.288665-5 1.851367+1 1.291689-5 1.850056+1 1.296577-5 1.690738+1 1.305440-5 1.252657+1 1.314819-5 7.290417+0 1.319218-5 4.699105+0 1.322918-5 3.154371+0 1.324012-5 2.861924+0 1.326930-5 2.225795+0 1.329458-5 1.885340+0 1.330159-5 1.864834+0 1.332693-5 1.909338+0 1.335943-5 2.422309+0 1.339427-5 3.400553+0 1.343449-5 5.243952+0 1.347985-5 7.537536+0 1.352826-5 9.430363+0 1.356215-5 1.024042+1 1.359520-5 1.052980+1 1.372076-5 9.767704+0 1.386543-5 9.719149+0 1.390140-5 9.619137+0 1.403577-5 1.000548+1 1.416997-5 1.067949+1 1.435519-5 1.094407+1 1.449555-5 1.104195+1 1.481769-5 1.141330+1 1.621810-5 1.503322+1 1.720000-5 1.659397+1 1.801880-5 1.695327+1 1.897500-5 1.622860+1 2.019586-5 1.398683+1 2.264682-5 8.595211+0 2.383258-5 6.529436+0 2.475551-5 5.245645+0 2.587091-5 4.033871+0 2.707782-5 3.044707+0 2.849174-5 2.247406+0 2.942329-5 1.850404+0 3.054921-5 1.484114+0 3.160644-5 1.227038+0 3.280802-5 1.011991+0 3.417411-5 8.421604-1 3.570000-5 7.205711-1 3.705000-5 6.566960-1 3.865000-5 6.187994-1 4.090000-5 6.141543-1 4.370000-5 6.587856-1 4.731513-5 7.612662-1 6.300000-5 1.303285+0 7.328245-5 1.569621+0 8.511380-5 1.754847+0 9.800000-5 1.847851+0 1.263385-4 1.846707+0 1.826947-4 1.599811+0 2.382051-4 1.329256+0 2.400493-4 1.374705+0 2.409719-4 1.454088+0 2.421005-4 1.636694+0 2.427275-4 1.798632+0 2.436424-4 2.147237+0 2.444227-4 2.578699+0 2.453857-4 3.340787+0 2.463020-4 4.328852+0 2.475117-4 5.980563+0 2.506212-4 1.082638+1 2.519861-4 1.244781+1 2.535140-4 1.364665+1 2.561625-4 1.459654+1 2.627725-4 1.513529+1 2.763613-4 1.456582+1 3.034462-4 1.283350+1 3.081347-4 1.293911+1 3.137538-4 1.362100+1 4.241310-4 1.021181+1 4.983105-4 8.331861+0 5.943777-4 6.562031+0 6.805979-4 5.403790+0 7.904795-4 4.330535+0 8.944230-4 3.588776+0 1.015180-3 2.948075+0 1.139921-3 2.453264+0 1.290540-3 2.008239+0 1.467781-3 1.625911+0 1.647938-3 1.341306+0 1.857487-3 1.095927+0 2.082677-3 9.021846-1 2.343307-3 7.365644-1 2.654152-3 5.932732-1 3.021563-3 4.727400-1 3.100134-3 4.580642-1 3.113309-3 4.861432-1 3.122204-3 5.332650-1 3.130617-3 6.196364-1 3.137129-3 7.269714-1 3.144621-3 9.047040-1 3.152258-3 1.152232+0 3.162256-3 1.574336+0 3.191007-3 2.986222+0 3.204624-3 3.459981+0 3.218026-3 3.724371+0 3.236180-3 3.855774+0 3.398151-3 3.690947+0 3.965515-3 2.901431+0 4.543458-3 2.332421+0 5.140217-3 1.908458+0 5.800364-3 1.556157+0 6.550082-3 1.263767+0 7.295789-3 1.046005+0 8.245430-3 8.411830-1 9.169142-3 6.934670-1 1.032990-2 5.570532-1 1.145767-2 4.585010-1 1.273503-2 3.757049-1 1.403853-2 3.115129-1 1.561669-2 2.535799-1 1.711440-2 2.119301-1 1.899476-2 1.725550-1 2.085295-2 1.432486-1 2.274019-2 1.204042-1 2.508204-2 9.865905-2 2.773929-2 8.040234-2 3.036861-2 6.669799-2 3.314365-2 5.568160-2 3.704245-2 4.415172-2 4.055979-2 3.649687-2 4.453388-2 2.999113-2 4.919920-2 2.427031-2 5.415782-2 1.978092-2 5.902195-2 1.647028-2 6.563382-2 1.310275-2 7.279631-2 1.047973-2 7.990349-2 8.573487-3 8.671218-2 7.180629-3 9.385724-2 6.051804-3 1.044201-1 4.805029-3 1.146325-1 3.925188-3 1.258500-1 3.208499-3 1.367188-1 2.685126-3 1.479936-1 2.264665-3 1.625823-1 1.851529-3 1.806895-1 1.476928-3 1.980911-1 1.217114-3 2.151852-1 1.022924-3 2.345494-1 8.567219-4 2.563009-1 7.147653-4 2.869906-1 5.694568-4 3.174507-1 4.673666-4 3.480922-1 3.921673-4 3.812852-1 3.310447-4 4.218780-1 2.759413-4 4.680718-1 2.305517-4 5.232991-1 1.917317-4 5.948055-1 1.571544-4 6.578472-1 1.356699-4 7.563973-1 1.126648-4 8.785167-1 9.394563-5 9.942601-1 8.209255-5 1.173413+0 6.940207-5 1.410753+0 5.756703-5 1.696098+0 4.775020-5 2.039158+0 3.960742-5 2.451607+0 3.285322-5 2.947480+0 2.725080-5 3.543651+0 2.260376-5 4.260405+0 1.874917-5 5.122134+0 1.555190-5 6.158159+0 1.289986-5 7.403736+0 1.070006-5 8.901248+0 8.875393-6 9.760024+0 8.083292-6 1.000000+1 1.591574-5 1 18000 7 0 3.994800+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.800799+1 3.044423-6-1.806998+1 9.162916-6-1.825513+1 9.970160-6-1.753706+1 1.026778-5-1.648392+1 1.039692-5-1.532145+1 1.046052-5-1.406190+1 1.057641-5-1.039649+1 1.060217-5-9.977787+0 1.063115-5-1.019111+1 1.065603-5-1.099860+1 1.067059-5-1.183848+1 1.069795-5-1.403503+1 1.075812-5-1.961223+1 1.077459-5-2.049159+1 1.081778-5-1.830510+1 1.086457-5-1.720519+1 1.097731-5-1.518463+1 1.105207-5-1.566916+1 1.122712-5-1.929136+1 1.146924-5-2.133755+1 1.223154-5-1.880913+1 1.243511-5-1.721011+1 1.252942-5-1.566592+1 1.262889-5-1.240968+1 1.269914-5-9.765034+0 1.274236-5-9.066531+0 1.277106-5-9.344230+0 1.279824-5-1.029306+1 1.281855-5-1.165395+1 1.284936-5-1.422063+1 1.293326-5-2.268182+1 1.294582-5-2.368328+1 1.298865-5-2.093906+1 1.304746-5-1.863867+1 1.311492-5-1.749825+1 1.316392-5-1.772000+1 1.319681-5-1.866965+1 1.328510-5-2.266875+1 1.332422-5-2.473082+1 1.341233-5-2.141536+1 1.346276-5-2.095449+1 1.352439-5-2.226449+1 1.362309-5-2.582745+1 1.372076-5-2.502481+1 1.390140-5-2.468792+1 1.415385-5-2.450041+1 1.457673-5-2.347081+1 1.538959-5-2.267970+1 1.660240-5-1.947947+1 1.910391-5-1.062337+1 1.981223-5-8.635150+0 2.044671-5-7.274212+0 2.119929-5-6.151792+0 2.197079-5-5.497196+0 2.264682-5-5.244134+0 2.351999-5-5.232056+0 2.475551-5-5.576150+0 3.103971-5-8.415793+0 3.570000-5-9.832088+0 4.220000-5-1.096286+1 5.214064-5-1.172923+1 6.918310-5-1.199710+1 1.263385-4-1.174613+1 1.640590-4-1.223798+1 1.961397-4-1.343002+1 2.167770-4-1.503958+1 2.291839-4-1.685102+1 2.369460-4-1.894058+1 2.414224-4-2.128419+1 2.475117-4-2.630466+1 2.494300-4-2.649186+1 2.519861-4-2.477984+1 2.566880-4-2.063557+1 2.627725-4-1.733057+1 2.710437-4-1.442615+1 2.800652-4-1.241016+1 2.895673-4-1.104710+1 3.017788-4-1.017875+1 3.100881-4-1.022510+1 3.180000-4-8.916010+0 3.325247-4-7.520660+0 3.543863-4-6.104943+0 3.791974-4-4.920613+0 4.113917-4-3.714236+0 4.365158-4-3.005150+0 4.635128-4-2.431221+0 4.983105-4-1.886103+0 5.202954-4-1.620350+0 5.543065-4-1.293083+0 5.943777-4-1.014530+0 6.165950-4-8.946110-1 6.555857-4-7.423472-1 6.964884-4-6.256569-1 7.282292-4-5.619280-1 7.767010-4-4.944152-1 8.146193-4-4.639611-1 8.753616-4-4.403209-1 9.495110-4-4.414717-1 1.056970-3-4.756696-1 1.234459-3-5.752453-1 1.785093-3-9.698432-1 2.162535-3-1.278442+0 2.430336-3-1.552355+0 2.654152-3-1.866797+0 2.809341-3-2.183371+0 2.917427-3-2.508679+0 2.999060-3-2.876986+0 3.060856-3-3.318048+0 3.100134-3-3.791191+0 3.127180-3-4.366345+0 3.164114-3-5.391528+0 3.180533-3-5.491708+0 3.198030-3-5.180238+0 3.236180-3-4.011312+0 3.266147-3-3.400531+0 3.310008-3-2.855420+0 3.357233-3-2.442964+0 3.420286-3-2.037312+0 3.494644-3-1.684171+0 3.597623-3-1.317578+0 3.698645-3-1.047249+0 3.818547-3-8.002031-1 3.937285-3-6.105976-1 4.066652-3-4.448517-1 4.170108-3-3.359408-1 4.273604-3-2.432560-1 4.328766-3-1.991824-1 4.413398-3-1.392993-1 4.478428-3-9.662364-2 4.543458-3-5.756205-2 4.644443-3-4.010853-3 4.677351-3 1.349536-2 4.808739-3 7.254249-2 4.900432-3 1.074942-1 5.014578-3 1.471526-1 5.140217-3 1.855544-1 5.273152-3 2.198761-1 5.555860-3 2.748499-1 5.970593-3 3.269535-1 6.550082-3 3.665998-1 7.295789-3 3.810788-1 8.245430-3 3.744732-1 1.145767-2 2.945356-1 1.453188-2 2.240704-1 1.711440-2 1.790984-1 2.024896-2 1.384208-1 2.274019-2 1.140441-1 2.602060-2 8.923752-2 2.943786-2 6.979571-2 3.314365-2 5.369698-2 3.704245-2 4.080397-2 4.055979-2 3.160761-2 4.453388-2 2.330772-2 4.822800-2 1.711522-2 5.195776-2 1.189899-2 5.540679-2 7.862926-3 5.775387-2 5.459310-3 5.902195-2 4.264481-3 6.056933-2 2.901218-3 6.195614-2 1.745573-3 6.326525-2 7.117300-4 6.407924-2 8.757074-5 6.420348-2-2.014218-6 6.563382-2-1.029999-3 6.826642-2-2.790058-3 7.130582-2-4.629793-3 7.603079-2-7.113431-3 8.198794-2-9.710174-3 8.914013-2-1.224012-2 9.955891-2-1.508039-2 1.146325-1-1.801192-2 1.367188-1-2.079871-2 1.727935-1-2.339243-2 2.345494-1-2.549847-2 3.695719-1-2.711984-2 8.389769-1-2.802276-2 2.567148+0-2.821689-2 7.752663+0-2.823756-2 1.000000+1-2.823531-2 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.423866-1 1.028642-6 5.411754-1 1.042973-6 5.993918-1 1.056856-6 6.624190-1 1.070306-6 7.305742-1 1.083335-6 8.041781-1 1.095957-6 8.835663-1 1.108185-6 9.690904-1 1.120031-6 1.061119+0 1.131506-6 1.160038+0 1.142623-6 1.266250+0 1.153392-6 1.380179+0 1.163825-6 1.502264+0 1.173932-6 1.632966+0 1.183723-6 1.772767+0 1.202396-6 2.081687+0 1.219921-6 2.433328+0 1.228275-6 2.626820+0 1.236368-6 2.833363+0 1.244208-6 3.053673+0 1.259160-6 3.535715+0 1.273415-6 4.085947+0 1.286780-6 4.704536+0 1.299309-6 5.398528+0 1.311054-6 6.175046+0 1.322066-6 7.041614+0 1.332390-6 8.006169+0 1.342068-6 9.077059+0 1.351142-6 1.026302+1 1.359648-6 1.157317+1 1.367623-6 1.301695+1 1.375099-6 1.460414+1 1.382108-6 1.634480+1 1.388679-6 1.824922+1 1.394839-6 2.032789+1 1.400615-6 2.259149+1 1.406029-6 2.505081+1 1.411105-6 2.771673+1 1.415863-6 3.060022+1 1.420325-6 3.371236+1 1.424507-6 3.706433+1 1.428428-6 4.066757+1 1.432104-6 4.453381+1 1.435550-6 4.867523+1 1.438781-6 5.310472+1 1.441810-6 5.783623+1 1.444650-6 6.288524+1 1.447312-6 6.826920+1 1.449807-6 7.400765+1 1.452147-6 8.012200+1 1.454341-6 8.663468+1 1.456397-6 9.356776+1 1.460253-6 1.093279+2 1.463627-6 1.270736+2 1.466579-6 1.467736+2 1.469162-6 1.682335+2 1.471422-6 1.911116+2 1.473400-6 2.149655+2 1.475130-6 2.393089+2 1.476644-6 2.636638+2 1.479128-6 3.107554+2 1.481157-6 3.567814+2 1.485960-6 4.985725+2 1.491753-6 7.446516+2 1.494565-6 8.978595+2 1.495823-6 9.738303+2 1.498225-6 1.131305+3 1.500513-6 1.295578+3 1.502344-6 1.435922+3 1.505547-6 1.696525+3 1.506805-6 1.802528+3 1.509207-6 2.007219+3 1.511066-6 2.164878+3 1.512868-6 2.314252+3 1.514584-6 2.450940+3 1.516434-6 2.589519+3 1.518077-6 2.702640+3 1.519892-6 2.814345+3 1.522020-6 2.924389+3 1.523850-6 2.998625+3 1.524602-6 3.023192+3 1.526420-6 3.067608+3 1.528262-6 3.090197+3 1.530316-6 3.088219+3 1.532147-6 3.062434+3 1.533951-6 3.015607+3 1.535584-6 2.955854+3 1.536584-6 2.911610+3 1.538950-6 2.785912+3 1.540887-6 2.663821+3 1.542581-6 2.545446+3 1.543995-6 2.439869+3 1.545814-6 2.297308+3 1.547644-6 2.148567+3 1.549475-6 1.997148+3 1.551541-6 1.826023+3 1.553148-6 1.694729+3 1.556826-6 1.407355+3 1.558895-6 1.257152+3 1.560734-6 1.132117+3 1.562889-6 9.966777+2 1.566021-6 8.221891+2 1.570225-6 6.294219+2 1.575718-6 4.425909+2 1.578840-6 3.641054+2 1.580396-6 3.312290+2 1.581950-6 3.020578+2 1.583500-6 2.762096+2 1.585047-6 2.533244+2 1.588136-6 2.151004+2 1.591213-6 1.850866+2 1.594277-6 1.613672+2 1.597330-6 1.424313+2 1.600371-6 1.271185+2 1.603399-6 1.145557+2 1.606417-6 1.040951+2 1.609422-6 9.526025+1 1.612415-6 8.770082+1 1.615397-6 8.115797+1 1.618367-6 7.543842+1 1.621326-6 7.039567+1 1.627220-6 6.189854+1 1.633068-6 5.504034+1 1.638870-6 4.939965+1 1.644627-6 4.468968+1 1.650339-6 4.070752+1 1.656006-6 3.730494+1 1.661629-6 3.437083+1 1.667208-6 3.182022+1 1.672744-6 2.958705+1 1.678236-6 2.761916+1 1.683685-6 2.587465+1 1.689092-6 2.431940+1 1.699821-6 2.166009+1 1.710383-6 1.948497+1 1.720779-6 1.767895+1 1.731013-6 1.616129+1 1.741087-6 1.487225+1 1.751004-6 1.376667+1 1.760765-6 1.281019+1 1.770375-6 1.197663+1 1.779834-6 1.124559+1 1.789145-6 1.060027+1 1.807476-6 9.504181+0 1.825235-6 8.617323+0 1.842439-6 7.889286+0 1.859105-6 7.283593+0 1.875250-6 6.773200+0 1.890891-6 6.338358+0 1.906043-6 5.964842+0 1.920721-6 5.641845+0 1.949161-6 5.100907+0 1.975823-6 4.674354+0 2.000819-6 4.332786+0 2.024252-6 4.054823+0 2.048000-6 3.808513+0 2.087413-6 3.457360+0 2.123455-6 3.186967+0 2.154993-6 2.983588+0 2.182588-6 2.827496+0 2.230879-6 2.590760+0 2.267098-6 2.438222+0 2.321426-6 2.242040+0 2.401805-6 2.002469+0 2.495471-6 1.781855+0 2.552192-6 1.669052+0 2.712061-6 1.385708+0 2.752029-6 1.311202+0 2.782004-6 1.248147+0 2.804486-6 1.191915+0 2.821347-6 1.139928+0 2.833993-6 1.091598+0 2.843478-6 1.048254+0 2.850591-6 1.011488+0 2.855926-6 9.818704-1 2.874361-6 8.786962-1 2.881436-6 8.487120-1 2.886069-6 8.361791-1 2.888511-6 8.325924-1 2.893138-6 8.327231-1 2.895586-6 8.369633-1 2.900207-6 8.538979-1 2.902661-6 8.680325-1 2.904429-6 8.805588-1 2.909736-6 9.303396-1 2.913104-6 9.715893-1 2.916708-6 1.023891+0 2.921859-6 1.112387+0 2.935551-6 1.406317+0 2.939804-6 1.506161+0 2.945110-6 1.629279+0 2.952185-6 1.781867+0 2.956164-6 1.857825+0 2.960586-6 1.931221+0 2.963074-6 1.966764+0 2.965250-6 1.994238+0 2.969059-6 2.033872+0 2.971915-6 2.056423+0 2.976200-6 2.078799+0 2.980484-6 2.087963+0 2.984022-6 2.086279+0 2.987559-6 2.077037+0 2.992102-6 2.055515+0 2.994634-6 2.039508+0 3.001709-6 1.983195+0 3.008784-6 1.915938+0 3.029171-6 1.716683+0 3.035611-6 1.662405+0 3.046881-6 1.582235+0 3.063787-6 1.493769+0 3.082713-6 1.425919+0 3.097888-6 1.385415+0 3.120651-6 1.337650+0 3.151002-6 1.287796+0 3.173765-6 1.256619+0 3.226879-6 1.195958+0 3.349974-6 1.075101+0 3.369226-6 1.052095+0 3.405158-6 1.007653+0 3.414609-6 9.996140-1 3.422952-6 9.955741-1 3.431295-6 9.951517-1 3.437271-6 9.973285-1 3.446235-6 1.004536+0 3.455199-6 1.016021+0 3.481353-6 1.061441+0 3.489696-6 1.074483+0 3.497214-6 1.083728+0 3.504732-6 1.089986+0 3.514725-6 1.093278+0 3.523068-6 1.091802+0 3.531411-6 1.087035+0 3.548097-6 1.070697+0 3.598469-6 1.012040+0 3.638913-6 9.754575-1 3.665783-6 9.561510-1 3.683696-6 9.474945-1 3.696833-6 9.440642-1 3.719523-6 9.433421-1 3.755350-6 9.445114-1 3.778556-6 9.385319-1 3.818047-6 9.176675-1 3.852959-6 9.014692-1 3.936663-6 8.758085-1 4.190597-6 7.969092-1 4.312803-6 7.620816-1 4.479108-6 7.194409-1 4.803746-6 6.423438-1 5.088196-6 5.802621-1 5.324993-6 5.314565-1 5.599973-6 4.784167-1 5.842975-6 4.346013-1 6.133965-6 3.838700-1 6.195000-6 3.733824-1 6.750000-6 2.828311-1 7.000000-6 2.440987-1 7.210000-6 2.130800-1 7.420000-6 1.836477-1 7.600000-6 1.595525-1 7.790256-6 1.350612-1 8.033701-6 1.057385-1 8.284755-6 7.841487-2 8.420000-6 6.501275-2 8.543653-6 5.375359-2 8.709636-6 3.978574-2 8.810642-6 3.230519-2 9.085975-6 1.558918-2 9.369912-6 4.314051-3 9.516317-6 1.306394-3 9.644211-6 6.152374-4 9.661120-6 6.610006-4 9.803662-6 2.338940-3 9.943976-6 6.338363-3 1.008210-5 1.275303-2 1.024697-5 2.378275-2 1.035190-5 3.296760-2 1.048365-5 4.711276-2 1.061334-5 6.396854-2 1.080383-5 9.405427-2 1.092803-5 1.177434-1 1.116295-5 1.576043-1 1.120755-5 1.589382-1 1.141264-5 1.434914-1 1.169698-5 1.136204-1 1.180772-5 1.024655-1 1.202401-5 8.166476-2 1.212964-5 7.202414-2 1.233595-5 5.433104-2 1.243670-5 4.630305-2 1.258832-5 3.517310-2 1.263504-5 3.200089-2 1.282719-5 2.019852-2 1.290744-5 1.593884-2 1.301334-5 1.107596-2 1.317712-5 5.311839-3 1.319366-5 4.854090-3 1.336835-5 1.537839-3 1.346944-5 1.049916-3 1.351606-5 1.231969-3 1.353758-5 1.405448-3 1.370153-5 4.622847-3 1.375262-5 6.362149-3 1.386035-5 1.133258-2 1.401420-5 2.171001-2 1.416325-5 3.582401-2 1.430764-5 5.386215-2 1.444752-5 7.596970-2 1.458303-5 1.023119-1 1.471430-5 1.331673-1 1.484147-5 1.688948-1 1.508787-5 2.554287-1 1.531886-5 3.611459-1 1.553542-5 4.874815-1 1.573844-5 6.351755-1 1.593445-5 8.100298-1 1.610721-5 9.957207-1 1.627449-5 1.209656+0 1.657835-5 1.703035+0 1.698337-5 2.651716+0 1.720696-5 3.380825+0 1.738625-5 4.109919+0 1.757075-5 5.032238+0 1.772456-5 5.972994+0 1.786706-5 7.025476+0 1.796457-5 7.873607+0 1.806697-5 8.906322+0 1.816821-5 1.010839+1 1.823497-5 1.102579+1 1.831296-5 1.225985+1 1.836359-5 1.317987+1 1.846863-5 1.550972+1 1.854741-5 1.780244+1 1.860650-5 1.996409+1 1.865082-5 2.189629+1 1.868405-5 2.354170+1 1.883000-5 3.273171+1 1.887623-5 3.608912+1 1.892246-5 3.941152+1 1.896870-5 4.247516+1 1.898026-5 4.317151+1 1.901493-5 4.503032+1 1.903031-5 4.572492+1 1.905338-5 4.659268+1 1.907646-5 4.723030+1 1.909575-5 4.757263+1 1.911022-5 4.770979+1 1.913193-5 4.771797+1 1.915363-5 4.748658+1 1.918831-5 4.662768+1 1.919987-5 4.621291+1 1.923454-5 4.461487+1 1.924610-5 4.397436+1 1.929233-5 4.097167+1 1.930389-5 4.013190+1 1.934566-5 3.690824+1 1.938225-5 3.397028+1 1.942817-5 3.035504+1 1.949678-5 2.558727+1 1.952350-5 2.405179+1 1.954600-5 2.293069+1 1.956974-5 2.193184+1 1.959295-5 2.114790+1 1.960446-5 2.083250+1 1.961597-5 2.056657+1 1.962794-5 2.034302+1 1.963991-5 2.017398+1 1.965704-5 2.002742+1 1.966989-5 1.999139+1 1.968916-5 2.005592+1 1.970844-5 2.026186+1 1.978077-5 2.225854+1 1.982773-5 2.452729+1 1.987468-5 2.748540+1 1.992163-5 3.105931+1 2.001554-5 3.977460+1 2.027798-5 7.362333+1 2.042951-5 1.024162+2 2.047763-5 1.140015+2 2.052754-5 1.277382+2 2.057767-5 1.437146+2 2.062117-5 1.597908+2 2.066488-5 1.785487+2 2.072719-5 2.112146+2 2.077710-5 2.441776+2 2.083190-5 2.900639+2 2.084678-5 3.047299+2 2.087692-5 3.379595+2 2.092275-5 3.991407+2 2.096885-5 4.767954+2 2.101332-5 5.706295+2 2.107727-5 7.456443+2 2.116212-5 1.065656+3 2.126630-5 1.607347+3 2.127932-5 1.685569+3 2.131838-5 1.930928+3 2.132527-5 1.975555+3 2.137349-5 2.294528+3 2.137994-5 2.337569+3 2.142507-5 2.635460+3 2.144214-5 2.744510+3 2.145843-5 2.845540+3 2.147472-5 2.942803+3 2.150017-5 3.085443+3 2.152875-5 3.228985+3 2.155263-5 3.332840+3 2.157565-5 3.417283+3 2.158480-5 3.446233+3 2.160864-5 3.508655+3 2.163447-5 3.554118+3 2.166333-5 3.576745+3 2.168618-5 3.573459+3 2.174003-5 3.494351+3 2.175950-5 3.442922+3 2.179173-5 3.334559+3 2.182152-5 3.212448+3 2.185454-5 3.058189+3 2.188557-5 2.900811+3 2.191302-5 2.756238+3 2.196334-5 2.491502+3 2.200484-5 2.286399+3 2.205163-5 2.082975+3 2.208304-5 1.968106+3 2.209137-5 1.940945+3 2.212158-5 1.854497+3 2.214910-5 1.792617+3 2.216279-5 1.767823+3 2.218559-5 1.735166+3 2.221231-5 1.710039+3 2.223955-5 1.697942+3 2.226353-5 1.697419+3 2.229507-5 1.709095+3 2.233049-5 1.735542+3 2.237929-5 1.787367+3 2.247874-5 1.907528+3 2.252925-5 1.958311+3 2.256187-5 1.983601+3 2.260772-5 2.007407+3 2.264883-5 2.016503+3 2.268802-5 2.014546+3 2.273544-5 1.999262+3 2.280124-5 1.957880+3 2.285035-5 1.914881+3 2.291030-5 1.852601+3 2.300069-5 1.747869+3 2.332037-5 1.399696+3 2.358866-5 1.175023+3 2.397155-5 9.260763+2 2.419447-5 8.122634+2 2.437768-5 7.343055+2 2.458716-5 6.591983+2 2.480769-5 5.925388+2 2.506464-5 5.275329+2 2.534956-5 4.680911+2 2.560403-5 4.238394+2 2.590856-5 3.795660+2 2.622452-5 3.415771+2 2.657468-5 3.067458+2 2.697566-5 2.738724+2 2.730872-5 2.510620+2 2.768028-5 2.294344+2 2.792233-5 2.171141+2 2.829907-5 2.002316+2 2.880000-5 1.812160+2 2.915347-5 1.697185+2 2.959744-5 1.570932+2 3.004798-5 1.460067+2 3.054921-5 1.353396+2 3.109581-5 1.252281+2 3.189923-5 1.127788+2 3.278088-5 1.015986+2 3.372436-5 9.176907+1 3.487444-5 8.192545+1 3.613652-5 7.289823+1 3.655939-5 7.001052+1 3.710191-5 6.630884+1 3.728365-5 6.535101+1 3.737453-5 6.499533+1 3.763999-5 6.447330+1 3.801065-5 6.426870+1 3.817384-5 6.390442+1 3.837415-5 6.306181+1 3.881324-5 6.049174+1 3.918061-5 5.876496+1 4.122850-5 5.233715+1 4.223038-5 4.970593+1 4.367500-5 4.645332+1 4.510896-5 4.376375+1 4.610441-5 4.215696+1 4.738600-5 4.038520+1 4.841724-5 3.913400+1 5.011872-5 3.739182+1 5.215280-5 3.571918+1 5.488032-5 3.411113+1 5.766504-5 3.299188+1 6.025596-5 3.230191+1 6.309573-5 3.185571+1 6.683439-5 3.162925+1 6.918310-5 3.164837+1 7.161434-5 3.175396+1 7.500000-5 3.202113+1 7.852356-5 3.235369+1 8.650000-5 3.332088+1 1.091009-4 3.604533+1 1.216445-4 3.706279+1 1.348963-4 3.760494+1 1.473392-4 3.756416+1 1.601963-4 3.690048+1 1.712971-4 3.584347+1 1.824946-4 3.432056+1 1.895309-4 3.312148+1 1.966754-4 3.169339+1 2.047623-4 2.982620+1 2.122954-4 2.783950+1 2.205415-4 2.535157+1 2.269418-4 2.317204+1 2.318587-4 2.136082+1 2.371101-4 1.928335+1 2.415112-4 1.742635+1 2.443351-4 1.617588+1 2.482552-4 1.437103+1 2.519127-4 1.261558+1 2.541882-4 1.149290+1 2.573593-4 9.900001+0 2.582718-4 9.437364+0 2.616420-4 7.723607+0 2.645320-4 6.269369+0 2.656106-4 5.738691+0 2.675136-4 4.831081+0 2.695411-4 3.923830+0 2.699907-4 3.734145+0 2.712294-4 3.239837+0 2.735237-4 2.468775+0 2.738829-4 2.369707+0 2.755312-4 2.012863+0 2.768564-4 1.871295+0 2.770361-4 1.864471+0 2.772878-4 1.860571+0 2.780862-4 1.896433+0 2.783237-4 1.922823+0 2.788249-4 2.005403+0 2.794503-4 2.165958+0 2.802382-4 2.475176+0 2.804361-4 2.574161+0 2.813465-4 3.157150+0 2.818523-4 3.581301+0 2.827138-4 4.486171+0 2.832916-4 5.224320+0 2.838071-4 5.965504+0 2.842397-4 6.638616+0 2.846268-4 7.271072+0 2.849655-4 7.839678+0 2.853326-4 8.462722+0 2.859467-4 9.495091+0 2.865219-4 1.042210+1 2.869484-4 1.107746+1 2.882930-4 1.318670+1 2.887286-4 1.408257+1 2.890714-4 1.497918+1 2.893479-4 1.588258+1 2.895633-4 1.673110+1 2.897217-4 1.745161+1 2.898406-4 1.805448+1 2.902950-4 2.094052+1 2.904247-4 2.196221+1 2.907984-4 2.550290+1 2.911412-4 2.965901+1 2.915995-4 3.684406+1 2.920027-4 4.496891+1 2.926099-4 6.089762+1 2.929021-4 7.029718+1 2.932936-4 8.475033+1 2.935342-4 9.469719+1 2.937639-4 1.049361+2 2.940661-4 1.194702+2 2.943270-4 1.329385+2 2.946067-4 1.482175+2 2.947432-4 1.559562+2 2.949543-4 1.682395+2 2.951527-4 1.800758+2 2.954428-4 1.977615+2 2.957581-4 2.172613+2 2.960507-4 2.353615+2 2.963654-4 2.545274+2 2.964344-4 2.586590+2 2.968150-4 2.807655+2 2.971252-4 2.976600+2 2.972936-4 3.063029+2 2.974913-4 3.159074+2 2.977923-4 3.292762+2 2.979272-4 3.347355+2 2.983425-4 3.493082+2 2.986253-4 3.571913+2 2.989793-4 3.646472+2 2.993179-4 3.692535+2 2.996088-4 3.712760+2 2.999169-4 3.715465+2 3.003234-4 3.691545+2 3.006584-4 3.650559+2 3.010344-4 3.584573+2 3.014832-4 3.482851+2 3.017524-4 3.412174+2 3.022153-4 3.278176+2 3.028579-4 3.076257+2 3.036318-4 2.827333+2 3.047820-4 2.485129+2 3.055478-4 2.292538+2 3.061004-4 2.174604+2 3.067262-4 2.062610+2 3.071680-4 1.996720+2 3.075761-4 1.944845+2 3.080943-4 1.890244+2 3.089230-4 1.825318+2 3.093076-4 1.802951+2 3.096893-4 1.784744+2 3.104466-4 1.758131+2 3.112337-4 1.740470+2 3.126483-4 1.724256+2 3.143039-4 1.717589+2 3.171558-4 1.716030+2 3.312553-4 1.735652+2 3.390163-4 1.738421+2 3.450469-4 1.733756+2 3.493879-4 1.725319+2 3.543544-4 1.709763+2 3.601408-4 1.684746+2 3.624292-4 1.682570+2 3.641752-4 1.691552+2 3.658102-4 1.711287+2 3.671295-4 1.735276+2 3.695878-4 1.793635+2 3.710746-4 1.831997+2 3.730488-4 1.879538+2 3.755169-4 1.927648+2 3.777020-4 1.959410+2 3.819017-4 2.002103+2 3.862458-4 2.034389+2 3.937726-4 2.080944+2 4.012128-4 2.120875+2 4.104606-4 2.165707+2 4.272496-4 2.228399+2 4.435217-4 2.268917+2 4.698403-4 2.317333+2 5.042741-4 2.356253+2 5.370318-4 2.378057+2 5.838664-4 2.389218+2 6.445153-4 2.385989+2 6.936775-4 2.367107+2 8.249385-4 2.299708+2 8.893291-4 2.263239+2 1.096478-3 2.137821+2 1.321105-3 2.007618+2 1.527786-3 1.892928+2 1.650061-3 1.832425+2 1.944241-3 1.687288+2 2.098336-3 1.613752+2 2.273403-3 1.534174+2 2.465828-3 1.445567+2 2.560420-3 1.403022+2 2.664926-3 1.353784+2 2.764511-3 1.307313+2 2.851018-3 1.266698+2 2.933198-3 1.227313+2 2.995858-3 1.195542+2 3.116057-3 1.130712+2 3.173074-3 1.098112+2 3.221385-3 1.068391+2 3.284893-3 1.025008+2 3.310483-3 1.006024+2 3.340831-3 9.818700+1 3.383042-3 9.442604+1 3.407947-3 9.189417+1 3.431963-3 8.912312+1 3.451650-3 8.649653+1 3.468488-3 8.388130+1 3.482387-3 8.138595+1 3.496654-3 7.846387+1 3.514667-3 7.432534+1 3.539618-3 6.859759+1 3.550513-3 6.662071+1 3.558662-3 6.555475+1 3.565997-3 6.497593+1 3.571656-3 6.480565+1 3.578900-3 6.495894+1 3.585111-3 6.542461+1 3.593615-3 6.653996+1 3.602700-3 6.827200+1 3.614453-3 7.114857+1 3.640912-3 7.874636+1 3.654646-3 8.253125+1 3.664113-3 8.489604+1 3.678595-3 8.806010+1 3.694852-3 9.098700+1 3.709141-3 9.310505+1 3.721700-3 9.469449+1 3.733094-3 9.596497+1 3.751788-3 9.777690+1 3.786554-3 1.004899+2 3.829349-3 1.030237+2 3.858926-3 1.044202+2 3.916246-3 1.065183+2 3.998510-3 1.085797+2 4.066810-3 1.097052+2 4.151670-3 1.105578+2 4.266767-3 1.109863+2 4.406182-3 1.107549+2 4.596607-3 1.095960+2 4.846858-3 1.072416+2 5.117555-3 1.041462+2 5.453554-3 1.000352+2 5.885065-3 9.471805+1 6.358354-3 8.905474+1 7.227784-3 7.977227+1 8.000285-3 7.265093+1 9.178271-3 6.358408+1 1.022556-2 5.684347+1 1.141153-2 5.033828+1 1.229383-2 4.613563+1 1.358164-2 4.077252+1 1.463230-2 3.698827+1 1.625685-2 3.199512+1 1.794689-2 2.772543+1 2.064091-2 2.245197+1 2.416047-2 1.757076+1 3.039968-2 1.218470+1 3.939451-2 8.015562+0 4.802304-2 5.769825+0 5.538574-2 4.529474+0 6.497031-2 3.429171+0 7.575207-2 2.606404+0 9.792344-2 1.629774+0 1.179451-1 1.152622+0 1.551773-1 6.850737-1 2.081334-1 3.896842-1 2.780113-1 2.217952-1 4.076735-1 1.043839-1 6.978306-1 3.589281-2 2.135261+0 3.847578-3 6.448384+0 4.220451-4 1.947381+1 4.627833-5 5.880996+1 5.074343-6 1.776032+2 5.563909-7 5.363532+2 6.100705-8 1.995262+3 4.408409-9 6.309573+3 4.40841-10 1.995262+4 4.40841-11 6.309573+4 4.40841-12 1.000000+5 1.75502-12 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.372900-6 1.258900-6 2.175900-6 1.584900-6 3.448500-6 1.995300-6 5.465500-6 2.511900-6 8.662300-6 3.162300-6 1.372900-5 3.981100-6 2.175800-5 5.011900-6 3.448500-5 6.309600-6 5.465400-5 7.943300-6 8.662000-5 1.000000-5 1.372800-4 1.258900-5 2.175700-4 1.584900-5 3.446200-4 1.995300-5 5.457700-4 2.511900-5 8.644300-4 3.162300-5 1.369400-3 3.981100-5 2.169500-3 5.011900-5 3.436900-3 6.309600-5 5.443900-3 7.943300-5 8.610700-3 1.000000-4 1.361100-2 1.258900-4 2.147400-2 1.584900-4 3.377500-2 1.995300-4 5.295100-2 2.511900-4 8.249700-2 3.162300-4 1.272300-1 3.981100-4 1.934100-1 5.011900-4 2.879600-1 6.309600-4 4.171300-1 7.943300-4 5.839300-1 1.000000-3 7.902200-1 1.258900-3 1.041100+0 1.584900-3 1.354700+0 1.995300-3 1.754000+0 2.511900-3 2.255100+0 3.162300-3 2.855800+0 3.981100-3 3.543900+0 5.011900-3 4.293500+0 6.309600-3 5.058900+0 7.943300-3 5.798700+0 1.000000-2 6.508700+0 1.258900-2 7.204900+0 1.584900-2 7.872000+0 1.995300-2 8.463100+0 2.511900-2 8.892600+0 3.162300-2 9.255700+0 3.981100-2 9.444500+0 5.011900-2 9.507000+0 6.309600-2 9.443600+0 7.943300-2 9.256400+0 1.000000-1 8.957400+0 1.258900-1 8.567200+0 1.584900-1 8.109500+0 1.995300-1 7.605300+0 2.511900-1 7.074900+0 3.162300-1 6.533400+0 3.981100-1 5.994300+0 5.011900-1 5.467000+0 6.309600-1 4.956600+0 7.943300-1 4.470300+0 1.000000+0 4.007400+0 1.258900+0 3.571000+0 1.584900+0 3.162500+0 1.995300+0 2.783300+0 2.511900+0 2.434300+0 3.162300+0 2.116200+0 3.981100+0 1.828900+0 5.011900+0 1.571800+0 6.309600+0 1.343900+0 7.943300+0 1.143600+0 1.000000+1 9.687900-1 1.258900+1 8.174400-1 1.584900+1 6.872200-1 1.995300+1 5.758300-1 2.511900+1 4.810600-1 3.162300+1 4.008000-1 3.981100+1 3.331100-1 5.011900+1 2.762500-1 6.309600+1 2.286300-1 7.943300+1 1.888800-1 1.000000+2 1.557800-1 1.258900+2 1.282900-1 1.584900+2 1.055000-1 1.995300+2 8.665300-2 2.511900+2 7.108700-2 3.162300+2 5.825500-2 3.981100+2 4.769000-2 5.011900+2 3.900500-2 6.309600+2 3.187400-2 7.943300+2 2.602600-2 1.000000+3 2.123400-2 1.258900+3 1.731200-2 1.584900+3 1.410400-2 1.995300+3 1.148400-2 2.511900+3 9.344700-3 3.162300+3 7.599500-3 3.981100+3 6.176800-3 5.011900+3 5.017900-3 6.309600+3 4.074300-3 7.943300+3 3.306600-3 1.000000+4 2.682400-3 1.258900+4 2.175000-3 1.584900+4 1.762900-3 1.995300+4 1.428300-3 2.511900+4 1.156700-3 3.162300+4 9.364400-4 3.981100+4 7.578400-4 5.011900+4 6.131000-4 6.309600+4 4.958300-4 7.943300+4 4.008700-4 1.000000+5 3.239900-4 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510169-4 3.162278-4 3.159565-4 3.981072-4 3.976796-4 5.011872-4 5.005151-4 6.309573-4 6.299039-4 7.943282-4 7.926810-4 1.000000-3 9.974375-4 1.258925-3 1.254925-3 1.584893-3 1.578635-3 1.995262-3 1.985416-3 2.511886-3 2.496382-3 3.162278-3 3.137944-3 3.981072-3 3.943038-3 5.011872-3 4.952683-3 6.309573-3 6.217896-3 7.943282-3 7.801801-3 1.000000-2 9.781643-3 1.258925-2 1.225159-2 1.584893-2 1.532679-2 1.995262-2 1.914812-2 2.511886-2 2.388495-2 3.162278-2 2.974424-2 3.981072-2 3.696042-2 5.011872-2 4.581299-2 6.309573-2 5.663013-2 7.943282-2 6.979411-2 1.000000-1 8.574975-2 1.258925-1 1.050092-1 1.584893-1 1.281373-1 1.995262-1 1.558256-1 2.511886-1 1.888256-1 3.162278-1 2.280330-1 3.981072-1 2.744693-1 5.011872-1 3.292933-1 6.309573-1 3.939580-1 7.943282-1 4.699215-1 1.000000+0 5.593830-1 1.258925+0 6.647623-1 1.584893+0 7.891150-1 1.995262+0 9.362071-1 2.511886+0 1.110741+0 3.162278+0 1.318429+0 3.981072+0 1.566345+0 5.011872+0 1.863125+0 6.309573+0 2.219265+0 7.943282+0 2.647732+0 1.000000+1 3.164289+0 1.258925+1 3.788304+0 1.584893+1 4.543435+0 1.995262+1 5.458619+0 2.511886+1 6.569315+0 3.162278+1 7.919274+0 3.981072+1 9.561716+0 5.011872+1 1.156247+1 6.309573+1 1.400207+1 7.943282+1 1.697966+1 1.000000+2 2.061706+1 1.258925+2 2.506433+1 1.584893+2 3.050595+1 1.995262+2 3.716914+1 2.511886+2 4.533421+1 3.162278+2 5.534670+1 3.981072+2 6.763098+1 5.011872+2 8.271420+1 6.309573+2 1.012435+2 7.943282+2 1.240192+2 1.000000+3 1.520279+2 1.258925+3 1.864928+2 1.584893+3 2.289212+2 1.995262+3 2.811789+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88177-10 1.995262-5 1.090580-9 2.511886-5 1.728426-9 3.162278-5 2.739423-9 3.981072-5 4.341779-9 5.011872-5 6.880910-9 6.309573-5 1.090471-8 7.943282-5 1.727507-8 1.000000-4 2.736895-8 1.258925-4 4.334840-8 1.584893-4 6.862074-8 1.995262-4 1.086151-7 2.511886-4 1.717563-7 3.162278-4 2.712288-7 3.981072-4 4.275434-7 5.011872-4 6.721833-7 6.309573-4 1.053472-6 7.943282-4 1.647264-6 1.000000-3 2.562499-6 1.258925-3 4.000569-6 1.584893-3 6.258249-6 1.995262-3 9.846432-6 2.511886-3 1.550420-5 3.162278-3 2.433371-5 3.981072-3 3.803404-5 5.011872-3 5.918960-5 6.309573-3 9.167736-5 7.943282-3 1.414810-4 1.000000-2 2.183575-4 1.258925-2 3.376610-4 1.584893-2 5.221418-4 1.995262-2 8.045055-4 2.511886-2 1.233919-3 3.162278-2 1.878538-3 3.981072-2 2.850300-3 5.011872-2 4.305735-3 6.309573-2 6.465605-3 7.943282-2 9.638714-3 1.000000-1 1.425025-2 1.258925-1 2.088330-2 1.584893-1 3.035199-2 1.995262-1 4.370064-2 2.511886-1 6.236300-2 3.162278-1 8.819474-2 3.981072-1 1.236379-1 5.011872-1 1.718940-1 6.309573-1 2.369993-1 7.943282-1 3.244068-1 1.000000+0 4.406170-1 1.258925+0 5.941631-1 1.584893+0 7.957782-1 1.995262+0 1.059055+0 2.511886+0 1.401145+0 3.162278+0 1.843849+0 3.981072+0 2.414727+0 5.011872+0 3.148748+0 6.309573+0 4.090308+0 7.943282+0 5.295551+0 1.000000+1 6.835711+0 1.258925+1 8.800950+0 1.584893+1 1.130550+1 1.995262+1 1.449400+1 2.511886+1 1.854955+1 3.162278+1 2.370350+1 3.981072+1 3.024900+1 5.011872+1 3.855625+1 6.309573+1 4.909366+1 7.943282+1 6.245316+1 1.000000+2 7.938294+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623571+2 2.511886+2 2.058544+2 3.162278+2 2.608811+2 3.981072+2 3.304762+2 5.011872+2 4.184730+2 6.309573+2 5.297139+2 7.943282+2 6.703090+2 1.000000+3 8.479721+2 1.258925+3 1.072433+3 1.584893+3 1.355972+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.220000-6 5.499681+4 4.228000-6 5.273570+4 4.245000-6 4.970310+4 4.280000-6 4.382770+4 4.315191-6 3.844009+4 4.340000-6 3.495570+4 4.380000-6 2.979770+4 4.420000-6 2.521230+4 4.450000-6 2.210150+4 4.477000-6 1.955220+4 4.500000-6 1.754120+4 4.527000-6 1.535910+4 4.550000-6 1.365370+4 4.570882-6 1.222126+4 4.593000-6 1.081700+4 4.615000-6 9.526440+3 4.635000-6 8.444570+3 4.650000-6 7.686720+3 4.670000-6 6.748280+3 4.692000-6 5.805330+3 4.710000-6 5.100230+3 4.728000-6 4.452460+3 4.742000-6 3.986980+3 4.755000-6 3.583680+3 4.770000-6 3.151910+3 4.786301-6 2.722309+3 4.800000-6 2.392190+3 4.815000-6 2.062130+3 4.827000-6 1.821220+3 4.838000-6 1.617660+3 4.850000-6 1.414200+3 4.860000-6 1.259190+3 4.874000-6 1.063580+3 4.885000-6 9.270580+2 4.900000-6 7.644670+2 4.922000-6 5.735530+2 4.935000-6 4.863540+2 4.943000-6 4.418330+2 4.950000-6 4.085090+2 4.957000-6 3.802960+2 4.962000-6 3.632480+2 4.967000-6 3.487590+2 4.971500-6 3.378750+2 4.977000-6 3.273430+2 4.981000-6 3.215440+2 4.985000-6 3.173110+2 4.989000-6 3.146290+2 4.993000-6 3.134900+2 4.997000-6 3.138860+2 5.001500-6 3.161160+2 5.005000-6 3.191580+2 5.010000-6 3.254690+2 5.015000-6 3.340770+2 5.020000-6 3.449480+2 5.025000-6 3.580480+2 5.031000-6 3.766860+2 5.037000-6 3.984640+2 5.042000-6 4.189770+2 5.052000-6 4.663590+2 5.065000-6 5.403530+2 5.092000-6 7.369590+2 5.105000-6 8.515290+2 5.120000-6 9.989930+2 5.135000-6 1.162440+3 5.146000-6 1.291960+3 5.158000-6 1.442510+3 5.172000-6 1.629860+3 5.188000-6 1.858724+3 5.200000-6 2.040540+3 5.215000-6 2.279380+3 5.230000-6 2.530890+3 5.248075-6 2.849872+3 5.263000-6 3.125990+3 5.280000-6 3.453800+3 5.300000-6 3.856930+3 5.320000-6 4.277810+3 5.340000-6 4.715800+3 5.365000-6 5.285730+3 5.390000-6 5.878580+3 5.410000-6 6.368990+3 5.440000-6 7.128690+3 5.470000-6 7.915260+3 5.500000-6 8.725850+3 5.535000-6 9.699870+3 5.570000-6 1.070060+4 5.610000-6 1.187290+4 5.650000-6 1.307160+4 5.688529-6 1.424744+4 5.730000-6 1.553220+4 5.770000-6 1.678700+4 5.821032-6 1.840527+4 5.865000-6 1.981080+4 5.920000-6 2.157850+4 5.980000-6 2.351200+4 6.050000-6 2.576560+4 6.120000-6 2.800840+4 6.200000-6 3.054630+4 6.270000-6 3.273790+4 6.350000-6 3.520100+4 6.456542-6 3.840222+4 6.550000-6 4.112450+4 6.650000-6 4.394190+4 6.770000-6 4.718300+4 6.890000-6 5.026550+4 7.000000-6 5.295150+4 7.150000-6 5.639330+4 7.270000-6 5.896420+4 7.420000-6 6.195360+4 7.600000-6 6.522250+4 7.770000-6 6.800490+4 8.000000-6 7.132650+4 8.222426-6 7.408953+4 8.420000-6 7.620330+4 8.709636-6 7.877665+4 9.015711-6 8.089231+4 9.350000-6 8.259260+4 9.700000-6 8.379910+4 1.011579-5 8.461119+4 1.059254-5 8.488474+4 1.109175-5 8.458672+4 1.161449-5 8.378956+4 1.230269-5 8.220599+4 1.310000-5 7.987300+4 1.396368-5 7.701720+4 1.500000-5 7.340210+4 1.621810-5 6.916435+4 1.778279-5 6.402763+4 1.972423-5 5.826260+4 2.238721-5 5.151196+4 2.347000-5 4.909469+4 2.347000-5 6.616268+7 2.371374-5 5.679143+7 2.375000-5 5.556420+7 2.375000-5 8.838060+7 2.383000-5 8.426568+7 2.400000-5 7.603558+7 2.410000-5 7.170723+7 2.426610-5 6.517590+7 2.440000-5 6.050297+7 2.454709-5 5.586733+7 2.470000-5 5.157235+7 2.483133-5 4.821972+7 2.493000-5 4.592377+7 2.511886-5 4.191991+7 2.520000-5 4.035969+7 2.540973-5 3.666860+7 2.550000-5 3.523250+7 2.570396-5 3.225214+7 2.600160-5 2.854183+7 2.610000-5 2.743782+7 2.635000-5 2.491341+7 2.650000-5 2.354134+7 2.665000-5 2.228639+7 2.691535-5 2.026887+7 2.700000-5 1.968427+7 2.740000-5 1.719646+7 2.754229-5 1.643037+7 2.795000-5 1.443805+7 2.851018-5 1.221127+7 2.917427-5 1.012804+7 2.985383-5 8.454708+6 3.054921-5 7.096353+6 3.150000-5 5.660941+6 3.235937-5 4.669364+6 3.330000-5 3.825445+6 3.427678-5 3.147585+6 3.507519-5 2.708574+6 3.540000-5 2.553953+6 3.589219-5 2.341643+6 3.630781-5 2.182511+6 3.672823-5 2.036370+6 3.715352-5 1.904522+6 3.758374-5 1.783408+6 3.801894-5 1.674245+6 3.830000-5 1.609333+6 3.880000-5 1.505455+6 3.900000-5 1.467060+6 3.950000-5 1.380374+6 3.970000-5 1.348339+6 4.027170-5 1.266474+6 4.042000-5 1.246861+6 4.050000-5 1.237122+6 4.050000-5 1.488716+6 4.073803-5 1.465379+6 4.090000-5 1.450016+6 4.110000-5 1.432307+6 4.150000-5 1.401720+6 4.168694-5 1.388768+6 4.180000-5 1.380850+6 4.220000-5 1.356723+6 4.240000-5 1.345889+6 4.270000-5 1.332116+6 4.280000-5 1.327430+6 4.300000-5 1.318916+6 4.350000-5 1.301795+6 4.365158-5 1.297354+6 4.370000-5 1.295852+6 4.420000-5 1.283591+6 4.470000-5 1.276211+6 4.490900-5 1.272865+6 4.570882-5 1.267813+6 4.650000-5 1.268484+6 4.680000-5 1.271103+6 4.738600-5 1.275188+6 4.800000-5 1.283795+6 4.820000-5 1.286197+6 4.841724-5 1.289206+6 4.900000-5 1.299677+6 4.954502-5 1.310435+6 5.011872-5 1.322601+6 5.080000-5 1.338216+6 5.150000-5 1.354941+6 5.248075-5 1.379714+6 5.308844-5 1.395157+6 5.432503-5 1.427821+6 5.623413-5 1.475170+6 5.850000-5 1.528049+6 5.900000-5 1.539020+6 6.025596-5 1.564525+6 6.095369-5 1.578057+6 6.165950-5 1.590944+6 6.309573-5 1.614560+6 6.400000-5 1.627576+6 6.580000-5 1.649890+6 6.606934-5 1.652958+6 6.683439-5 1.660925+6 6.839116-5 1.674108+6 6.918310-5 1.680017+6 7.150000-5 1.691448+6 7.161434-5 1.691911+6 7.328245-5 1.695639+6 7.413102-5 1.696947+6 7.500000-5 1.697565+6 7.762471-5 1.694791+6 7.800000-5 1.694098+6 7.852356-5 1.692842+6 8.150000-5 1.681229+6 8.222426-5 1.677989+6 8.413951-5 1.666884+6 8.511380-5 1.660964+6 8.650000-5 1.651884+6 8.810489-5 1.639594+6 8.912509-5 1.631950+6 9.120108-5 1.615577+6 9.440609-5 1.586751+6 9.660509-5 1.566673+6 1.000000-4 1.533613+6 1.023293-4 1.510321+6 1.059254-4 1.473040+6 1.060000-4 1.472290+6 1.083927-4 1.447733+6 1.096478-4 1.434279+6 1.122018-4 1.407219+6 1.148154-4 1.379731+6 1.150000-4 1.377832+6 1.194100-4 1.331046+6 1.202264-4 1.322471+6 1.224700-4 1.299052+6 1.264540-4 1.257055+6 1.273503-4 1.247970+6 1.303167-4 1.217982+6 1.318257-4 1.202449+6 1.350000-4 1.170493+6 1.396368-4 1.125523+6 1.428894-4 1.094330+6 1.445440-4 1.078860+6 1.500000-4 1.029521+6 1.548817-4 9.870025+5 1.566751-4 9.718586+5 1.621810-4 9.273108+5 1.678804-4 8.833152+5 1.757924-4 8.270235+5 1.760000-4 8.256167+5 1.778279-4 8.130285+5 1.819701-4 7.856567+5 1.927525-4 7.203148+5 1.972423-4 6.950365+5 2.041738-4 6.583109+5 2.089296-4 6.347494+5 2.150000-4 6.059051+5 2.264644-4 5.561988+5 2.344229-4 5.245917+5 2.454709-4 4.844304+5 2.540973-4 4.557022+5 2.630268-4 4.283483+5 2.660725-4 4.195346+5 2.691535-4 4.106952+5 2.800000-4 3.817583+5 2.951209-4 3.459998+5 2.986400-4 3.382583+5 2.986400-4 2.517879+6 3.000000-4 2.497513+6 3.016500-4 2.473124+6 3.016500-4 3.707511+6 3.100000-4 3.489986+6 3.215000-4 3.220726+6 3.273407-4 3.101611+6 3.427678-4 2.783086+6 3.430000-4 2.778655+6 3.467369-4 2.707099+6 3.507519-4 2.635739+6 3.548134-4 2.568106+6 3.600000-4 2.485287+6 3.650000-4 2.412504+6 3.711600-4 2.329498+6 3.711600-4 2.598028+6 3.715352-4 2.593229+6 3.758374-4 2.540884+6 3.801894-4 2.489744+6 3.890451-4 2.390007+6 3.935501-4 2.340929+6 3.985000-4 2.288824+6 4.027170-4 2.245152+6 4.050000-4 2.221042+6 4.073803-4 2.195835+6 4.168694-4 2.098132+6 4.216965-4 2.050162+6 4.229500-4 2.037582+6 4.280000-4 1.987282+6 4.365158-4 1.905360+6 4.415704-4 1.858516+6 4.518559-4 1.768207+6 4.623810-4 1.681847+6 4.700000-4 1.622769+6 4.731513-4 1.598837+6 4.786301-4 1.558428+6 5.011872-4 1.406019+6 5.069907-4 1.369844+6 5.080000-4 1.363541+6 5.248075-4 1.265909+6 5.370318-4 1.201174+6 5.432503-4 1.169702+6 5.559043-4 1.108274+6 5.688529-4 1.050101+6 5.821032-4 9.950418+5 6.025596-4 9.179322+5 6.165950-4 8.696321+5 6.200000-4 8.583048+5 6.237348-4 8.460374+5 6.382635-4 8.006118+5 6.531306-4 7.576934+5 6.606934-4 7.371211+5 6.700000-4 7.126998+5 6.760830-4 6.972726+5 7.040300-4 6.313287+5 7.328245-4 5.723256+5 7.500000-4 5.408321+5 7.585776-4 5.259502+5 7.673615-4 5.113138+5 7.800000-4 4.911508+5 7.852356-4 4.830419+5 7.943282-4 4.693961+5 8.317638-4 4.186407+5 8.413951-4 4.068545+5 8.709636-4 3.730963+5 8.912509-4 3.519839+5 9.225714-4 3.225735+5 9.440609-4 3.043850+5 9.500000-4 2.996148+5 9.549926-4 2.956850+5 9.700000-4 2.842452+5 1.011579-3 2.555263+5 1.059254-3 2.271323+5 1.083927-3 2.140817+5 1.096478-3 2.078211+5 1.110000-3 2.013626+5 1.135011-3 1.901388+5 1.150000-3 1.838286+5 1.188502-3 1.687980+5 1.216186-3 1.590432+5 1.244515-3 1.498097+5 1.273503-3 1.410859+5 1.303167-3 1.328782+5 1.333521-3 1.250938+5 1.364583-3 1.177765+5 1.428894-3 1.043476+5 1.479108-3 9.527589+4 1.500000-3 9.180213+4 1.513561-3 8.964137+4 1.548817-3 8.434512+4 1.570000-3 8.137330+4 1.603245-3 7.696499+4 1.621810-3 7.464652+4 1.678804-3 6.809008+4 1.698244-3 6.602426+4 1.757924-3 6.020462+4 1.798871-3 5.661878+4 1.800000-3 5.652422+4 1.819701-3 5.489700+4 1.862087-3 5.160969+4 1.927525-3 4.703835+4 2.018366-3 4.154889+4 2.041738-3 4.028171+4 2.065380-3 3.904465+4 2.162719-3 3.447173+4 2.187762-3 3.341374+4 2.213095-3 3.238887+4 2.344229-3 2.770504+4 2.371374-3 2.684696+4 2.483133-3 2.367915+4 2.511886-3 2.294889+4 2.540973-3 2.223974+4 2.660725-3 1.960897+4 2.691535-3 1.900261+4 2.722701-3 1.841029+4 2.754229-3 1.783635+4 2.851018-3 1.622250+4 2.917427-3 1.523049+4 3.054921-3 1.341683+4 3.126079-3 1.259467+4 3.162278-3 1.219948+4 3.235937-3 1.144614+4 3.273407-3 1.108756+4 3.349654-3 1.040447+4 3.388442-3 1.007780+4 3.507519-3 9.157606+3 3.583300-3 8.631675+3 3.583300-3 7.827128+4 3.630781-3 7.582829+4 3.672823-3 7.375210+4 3.758374-3 6.976924+4 3.890451-3 6.408181+4 3.935501-3 6.229055+4 3.981072-3 6.054922+4 4.027170-3 5.880623+4 4.168694-3 5.387363+4 4.216965-3 5.227832+4 4.265795-3 5.072865+4 4.365158-3 4.776586+4 4.500000-3 4.411574+4 4.570882-3 4.235010+4 4.623810-3 4.109471+4 4.897788-3 3.535600+4 5.000000-3 3.349714+4 5.069907-3 3.230283+4 5.128614-3 3.134497+4 5.188000-3 3.041562+4 5.308844-3 2.863839+4 5.623413-3 2.463707+4 5.650000-3 2.433488+4 5.821032-3 2.245540+4 5.888437-3 2.176931+4 5.956621-3 2.110424+4 6.025596-3 2.045952+4 6.095369-3 1.983437+4 6.165950-3 1.922835+4 6.531306-3 1.646525+4 6.760830-3 1.500079+4 6.839116-3 1.454219+4 6.998420-3 1.366672+4 7.000000-3 1.365841+4 7.079458-3 1.324890+4 7.161434-3 1.283531+4 7.585776-3 1.095328+4 7.943282-3 9.647454+3 8.000000-3 9.460086+3 8.128305-3 9.054171+3 8.222426-3 8.771323+3 8.511380-3 7.965847+3 8.912509-3 7.005858+3 9.332543-3 6.160918+3 9.500000-3 5.862613+3 9.549926-3 5.776161+3 1.011579-2 4.906588+3 1.047129-2 4.449062+3 1.096478-2 3.904301+3 1.109175-2 3.778867+3 1.122018-2 3.657477+3 1.135011-2 3.539979+3 1.150000-2 3.410672+3 1.202264-2 3.000973+3 1.230269-2 2.808470+3 1.288250-2 2.459428+3 1.318257-2 2.301532+3 1.333521-2 2.226434+3 1.348963-2 2.153783+3 1.400000-2 1.935210+3 1.445440-2 1.762819+3 1.462177-2 1.704524+3 1.513561-2 1.540808+3 1.566751-2 1.392814+3 1.584893-2 1.346716+3 1.603245-2 1.302145+3 1.698244-2 1.100461+3 1.737801-2 1.027976+3 1.757924-2 9.935133+2 1.798871-2 9.280156+2 1.883649-2 8.096869+2 1.905461-2 7.825435+2 1.927525-2 7.563113+2 2.065380-2 6.163885+2 2.137962-2 5.557560+2 2.162719-2 5.369007+2 2.238721-2 4.840858+2 2.317395-2 4.364693+2 2.344229-2 4.216625+2 2.483133-2 3.548318+2 2.511886-2 3.427844+2 2.600160-2 3.087068+2 2.691535-2 2.780162+2 2.884032-2 2.254885+2 2.917427-2 2.177550+2 2.951209-2 2.102865+2 3.019952-2 1.961094+2 3.090295-2 1.828772+2 3.126079-2 1.765373+2 3.235937-2 1.588048+2 3.548134-2 1.197520+2 3.672823-2 1.077257+2 3.758374-2 1.003812+2 3.845918-2 9.353753+1 3.890451-2 9.029245+1 3.981072-2 8.407905+1 4.073803-2 7.829344+1 4.570882-2 5.481853+1 4.786301-2 4.752965+1 4.954502-2 4.270613+1 5.000000-2 4.151359+1 5.754399-2 2.676226+1 6.095369-2 2.235482+1 6.237348-2 2.080216+1 6.606934-2 1.737617+1 6.760830-2 1.616128+1 7.161434-2 1.348291+1 7.413102-2 1.209327+1 7.498942-2 1.166266+1 8.317638-2 8.415652+0 8.413951-2 8.116006+0 8.609938-2 7.548348+0 9.332543-2 5.856512+0 9.549926-2 5.446921+0 1.011580-1 4.543938+0 1.023293-1 4.382178+0 1.047129-1 4.075712+0 1.148154-1 3.048270+0 1.202264-1 2.636226+0 1.216186-1 2.542229+0 1.333521-1 1.901417+0 1.348963-1 1.833624+0 1.412538-1 1.585785+0 1.428894-1 1.529251+0 1.462177-1 1.422188+0 1.531088-1 1.231603+0 1.566751-1 1.146118+0 1.584893-1 1.105627+0 1.640590-1 9.925437-1 1.659587-1 9.574817-1 1.737801-1 8.291896-1 1.778279-1 7.716440-1 1.819701-1 7.180909-1 1.862087-1 6.687622-1 1.883649-1 6.454056-1 1.949845-1 5.801183-1 2.000000-1 5.363694-1 2.137962-1 4.365420-1 2.187762-1 4.065873-1 2.213095-1 3.923903-1 2.238721-1 3.787042-1 2.317395-1 3.409499-1 2.398833-1 3.069647-1 2.426610-1 2.964067-1 2.483133-1 2.763681-1 2.570396-1 2.488214-1 2.600160-1 2.402735-1 2.691535-1 2.167236-1 2.754229-1 2.023235-1 2.951209-1 1.646142-1 2.985383-1 1.590514-1 3.000000-1 1.567927-1 3.019952-1 1.537785-1 3.054921-1 1.486805-1 3.090295-1 1.437515-1 3.235937-1 1.256191-1 3.311311-1 1.174299-1 3.349654-1 1.135377-1 3.388442-1 1.097745-1 3.427678-1 1.062145-1 3.467369-1 1.027699-1 3.548134-1 9.621367-2 3.630781-1 9.007576-2 3.715352-1 8.432952-2 3.801894-1 7.894987-2 3.845918-1 7.644929-2 3.890451-1 7.402802-2 3.935501-1 7.168390-2 4.120975-1 6.302673-2 4.168694-1 6.103103-2 4.216965-1 5.909859-2 4.265795-1 5.727359-2 4.315191-1 5.550495-2 4.518559-1 4.896150-2 4.623810-1 4.598511-2 4.677351-1 4.456548-2 4.731513-1 4.322470-2 4.786301-1 4.192428-2 4.897788-1 3.944027-2 4.954502-1 3.825403-2 5.011872-1 3.710351-2 5.128614-1 3.490521-2 5.188000-1 3.388286-2 5.248075-1 3.289045-2 5.308844-1 3.192738-2 5.432503-1 3.008503-2 5.623413-1 2.751897-2 5.688529-1 2.673612-2 5.754399-1 2.597554-2 5.888437-1 2.451912-2 5.956621-1 2.382184-2 6.165950-1 2.184675-2 6.237348-1 2.124522-2 6.309573-1 2.066028-2 6.382635-1 2.009161-2 6.531306-1 1.900081-2 6.683439-1 1.796925-2 6.760830-1 1.747467-2 6.839117-1 1.701027-2 6.918310-1 1.655822-2 7.161434-1 1.527326-2 7.244360-1 1.486751-2 7.328245-1 1.447254-2 7.413102-1 1.410065-2 7.498942-1 1.373926-2 7.585776-1 1.338715-2 7.852356-1 1.238436-2 8.035261-1 1.175794-2 8.128305-1 1.146579-2 8.222427-1 1.118165-2 8.317638-1 1.090455-2 8.511380-1 1.037096-2 8.609938-1 1.011405-2 8.709636-1 9.863500-3 8.912509-1 9.380879-3 9.015711-1 9.156552-3 9.120108-1 8.937667-3 9.225714-1 8.724014-3 9.660509-1 7.919315-3 9.772372-1 7.737763-3 9.885531-1 7.560448-3 1.022000+0 7.070507-3 1.035142+0 6.890925-3 1.047129+0 6.733018-3 1.083927+0 6.280705-3 1.096478+0 6.140410-3 1.109175+0 6.003561-3 1.130300+0 5.785876-3 1.135011+0 5.738976-3 1.148154+0 5.611127-3 1.174898+0 5.363914-3 1.188502+0 5.244435-3 1.202264+0 5.131352-3 1.230269+0 4.913056-3 1.258925+0 4.704058-3 1.288250+0 4.504019-3 1.303167+0 4.407220-3 1.333521+0 4.226140-3 1.364583+0 4.053022-3 1.396368+0 3.887000-3 1.428894+0 3.727837-3 1.445440+0 3.650719-3 1.479108+0 3.506653-3 1.531087+0 3.301782-3 1.548817+0 3.236185-3 1.566751+0 3.171920-3 1.603245+0 3.047192-3 1.640590+0 2.931648-3 1.698244+0 2.766996-3 1.717908+0 2.714196-3 1.737801+0 2.662419-3 1.778279+0 2.561814-3 1.819701+0 2.468500-3 1.840772+0 2.423267-3 1.883649+0 2.335275-3 1.905461+0 2.292484-3 1.927525+0 2.250493-3 1.972423+0 2.168805-3 1.995262+0 2.129082-3 2.044000+0 2.051014-3 2.113489+0 1.947872-3 2.137962+0 1.913567-3 2.187762+0 1.846780-3 2.238721+0 1.782325-3 2.264644+0 1.750947-3 2.317395+0 1.691867-3 2.398833+0 1.607202-3 2.426610+0 1.579933-3 2.511886+0 1.500897-3 2.570396+0 1.450415-3 2.600160+0 1.425815-3 2.660725+0 1.379505-3 2.754229+0 1.313037-3 2.786121+0 1.291600-3 2.884032+0 1.229389-3 2.951209+0 1.189590-3 3.000000+0 1.162036-3 3.054921+0 1.133333-3 3.162278+0 1.080787-3 3.198895+0 1.063819-3 3.311311+0 1.014514-3 3.388442+0 9.829194-4 3.467369+0 9.523101-4 3.548134+0 9.236178-4 3.672823+0 8.823066-4 3.715352+0 8.689512-4 3.845918+0 8.300980-4 3.935501+0 8.051659-4 4.073803+0 7.691659-4 4.168694+0 7.467855-4 4.315191+0 7.145146-4 4.365158+0 7.040708-4 4.570882+0 6.638120-4 4.677351+0 6.445545-4 4.841724+0 6.167111-4 4.954502+0 5.993395-4 5.188000+0 5.661327-4 5.248075+0 5.581225-4 5.495409+0 5.272087-4 5.623413+0 5.124001-4 5.821032+0 4.909639-4 6.000000+0 4.734338-4 6.237348+0 4.519403-4 6.309573+0 4.457518-4 6.683439+0 4.160658-4 6.839116+0 4.047526-4 7.161434+0 3.830411-4 7.413102+0 3.679216-4 7.852356+0 3.440897-4 7.943282+0 3.395119-4 8.317638+0 3.218067-4 8.511380+0 3.133035-4 8.810489+0 3.009683-4 9.225714+0 2.856504-4 1.000000+1 2.607465-4 1.011579+1 2.573708-4 1.059254+1 2.443019-4 1.083927+1 2.380186-4 1.135011+1 2.259327-4 1.216186+1 2.093185-4 1.303167+1 1.939570-4 1.318257+1 1.915087-4 1.348963+1 1.867055-4 1.396368+1 1.797257-4 1.479108+1 1.686677-4 1.678804+1 1.470596-4 1.778279+1 1.381924-4 1.800000+1 1.363921-4 1.840772+1 1.331320-4 1.905461+1 1.282569-4 2.454709+1 9.800831-5 2.511886+1 9.564449-5 2.540973+1 9.448402-5 2.600160+1 9.220561-5 3.758374+1 6.276257-5 3.801894+1 6.201265-5 3.845918+1 6.127258-5 3.890451+1 6.054149-5 3.935501+1 5.981909-5 6.382635+1 3.639784-5 6.456542+1 3.596984-5 6.531306+1 3.554723-5 6.606934+1 3.512960-5 6.683439+1 3.471691-5 6.760830+1 3.430908-5 1.273503+2 1.803271-5 1.288250+2 1.782304-5 1.303167+2 1.761595-5 1.318257+2 1.741126-5 1.333521+2 1.720898-5 1.348963+2 1.700903-5 2.540973+2 8.986580-6 2.570396+2 8.882937-6 2.600160+2 8.780527-6 2.630268+2 8.679300-6 2.660725+2 8.579244-6 2.691535+2 8.480340-6 1.011579+3 2.248104-6 1.023293+3 2.222298-6 1.035142+3 2.196795-6 1.047129+3 2.171583-6 1.059254+3 2.146662-6 1.071519+3 2.122028-6 1.000000+5 2.270959-8 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.220000-6 4.220000-6 2.347000-5 4.220000-6 2.347000-5 2.345572-5 2.375000-5 2.345320-5 2.375000-5 2.356340-5 3.235937-5 2.342181-5 4.050000-5 2.312723-5 4.050000-5 2.606324-5 4.300000-5 2.708637-5 4.490900-5 2.769357-5 4.680000-5 2.810202-5 4.900000-5 2.836591-5 5.150000-5 2.847374-5 5.623413-5 2.838752-5 7.161434-5 2.769355-5 8.511380-5 2.733358-5 1.023293-4 2.710236-5 1.303167-4 2.697462-5 1.927525-4 2.701059-5 2.986400-4 2.733986-5 2.986400-4 4.781538-5 3.016500-4 4.782089-5 3.016500-4 4.895259-5 3.711600-4 4.884746-5 3.711600-4 5.220348-5 4.073803-4 5.283217-5 4.518559-4 5.324073-5 5.559043-4 5.391677-5 7.943282-4 5.557534-5 1.110000-3 5.736332-5 1.513561-3 5.922266-5 2.018366-3 6.109118-5 2.540973-3 6.262045-5 3.273407-3 6.430704-5 3.583300-3 6.490483-5 3.583300-3 9.743763-5 5.650000-3 9.813270-5 1.122018-2 9.870732-5 3.235937-2 9.908978-5 3.349654-1 9.926160-5 1.000000+5 9.927507-5 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.220000-6 0.0 2.986400-4 0.0 2.986400-4 4.392779-8 3.016500-4 4.393647-8 3.016500-4 4.612574-8 3.711600-4 4.587093-8 3.711600-4 4.955951-8 4.073803-4 5.024304-8 4.415704-4 5.058589-8 5.688529-4 5.136517-8 7.943282-4 5.280005-8 1.110000-3 5.443213-8 1.548817-3 5.627975-8 2.065380-3 5.801274-8 2.722701-3 5.973567-8 3.507519-3 6.130108-8 3.583300-3 6.143569-8 3.583300-3 4.008706-4 4.365158-3 4.036023-4 6.165950-3 4.065934-4 1.011579-2 4.091808-4 2.162719-2 4.108161-4 1.428894-1 4.113817-4 1.000000+5 4.114009-4 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.220000-6 0.0 2.347000-5 1.925000-5 2.347000-5 1.428407-8 2.375000-5 2.968046-7 2.375000-5 1.865988-7 2.440000-5 8.420695-7 2.754229-5 4.021968-6 3.150000-5 8.055810-6 3.672823-5 1.345548-5 4.050000-5 1.737277-5 4.050000-5 1.443676-5 4.240000-5 1.554145-5 4.370000-5 1.636780-5 4.490900-5 1.721543-5 4.570882-5 1.781761-5 4.738600-5 1.919327-5 4.954502-5 2.113620-5 5.150000-5 2.302626-5 5.432503-5 2.587523-5 7.413102-5 4.652047-5 9.440609-5 6.722000-5 1.500000-4 1.230395-4 2.986400-4 2.713001-4 2.986400-4 2.507807-4 3.016500-4 2.537852-4 3.016500-4 2.526513-4 3.711600-4 3.222667-4 3.711600-4 3.189070-4 6.531306-4 5.984428-4 3.162278-3 3.098132-3 3.583300-3 3.518334-3 3.583300-3 3.084992-3 3.890451-2 3.839412-2 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.583300-3 6.963960+4 3.758374-3 6.220989+4 3.981072-3 5.410998+4 4.168694-3 4.821022+4 5.650000-3 2.192880+4 7.079458-3 1.198473+4 8.222426-3 7.949537+3 9.500000-3 5.321720+3 1.150000-2 3.100940+3 1.400000-2 1.761622+3 1.698244-2 1.002631+3 2.065380-2 5.619546+2 2.511886-2 3.126717+2 3.090295-2 1.668765+2 3.890451-2 8.241905+1 5.000000-2 3.790180+1 6.606934-2 1.586661+1 1.047129-1 3.722125+0 1.462177-1 1.298471+0 1.819701-1 6.556651-1 2.238721-1 3.457754-1 2.600160-1 2.193626-1 2.985383-1 1.452113-1 3.388442-1 1.002208-1 3.801894-1 7.207780-2 4.216965-1 5.395432-2 4.677351-1 4.068670-2 5.128614-1 3.186745-2 5.623413-1 2.512383-2 6.165950-1 1.994499-2 6.760830-1 1.595334-2 7.328245-1 1.321254-2 8.035261-1 1.073547-2 8.912509-1 8.565937-3 9.660509-1 7.231104-3 1.083927+0 5.734677-3 1.188502+0 4.788429-3 1.303167+0 4.023924-3 1.445440+0 3.333249-3 1.603245+0 2.782224-3 1.778279+0 2.339062-3 1.995262+0 1.943939-3 2.264644+0 1.598696-3 2.600160+0 1.301832-3 3.000000+0 1.061000-3 3.467369+0 8.695069-4 4.073803+0 7.022898-4 4.841724+0 5.630920-4 5.821032+0 4.482743-4 7.161434+0 3.497363-4 8.810489+0 2.747978-4 1.135011+1 2.062844-4 1.479108+1 1.539982-4 1.905461+1 1.171026-4 2.600160+1 8.419056-5 3.935501+1 5.461923-5 6.760830+1 3.132687-5 1.348963+2 1.553069-5 2.691535+2 7.743314-6 1.071519+3 1.937605-6 1.000000+5 2.073600-8 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.583300-3 1.014700-4 1.000000+5 1.014700-4 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.583300-3 4.505500-4 1.000000+5 4.505500-4 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.583300-3 3.031280-3 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.711600-4 2.685300+5 3.801894-4 2.713788+5 3.890451-4 2.721673+5 3.985000-4 2.710472+5 4.073803-4 2.683791+5 4.168694-4 2.640520+5 4.280000-4 2.573241+5 4.365158-4 2.511340+5 4.518559-4 2.389316+5 4.786301-4 2.186683+5 5.080000-4 1.983878+5 5.370318-4 1.835308+5 6.200000-4 1.490266+5 6.700000-4 1.321556+5 7.673615-4 1.059648+5 8.413951-4 9.064654+4 9.549926-4 7.242181+4 1.059254-3 5.992451+4 1.216186-3 4.610982+4 1.364583-3 3.681282+4 1.570000-3 2.775160+4 1.800000-3 2.089060+4 2.041738-3 1.596731+4 2.344229-3 1.180283+4 2.691535-3 8.659030+3 3.126079-3 6.140179+3 3.630781-3 4.318443+3 4.216965-3 3.012972+3 4.897788-3 2.085551+3 5.623413-3 1.474724+3 6.531306-3 1.005708+3 7.585776-3 6.808888+2 8.912509-3 4.438460+2 1.047129-2 2.871300+2 1.230269-2 1.844290+2 1.462177-2 1.138655+2 1.737801-2 6.976978+1 2.065380-2 4.244042+1 2.483133-2 2.478285+1 3.019952-2 1.388108+1 3.672823-2 7.715511+0 4.570882-2 3.970348+0 5.754399-2 1.957326+0 7.161434-2 9.931127-1 1.428894-1 1.146297-1 1.862087-1 5.027981-2 2.213095-1 2.957781-2 2.570396-1 1.880204-2 2.985383-1 1.203836-2 3.388442-1 8.317654-3 3.801894-1 5.987239-3 4.216965-1 4.484487-3 4.677351-1 3.382948-3 5.128614-1 2.650482-3 5.623413-1 2.090523-3 6.165950-1 1.660410-3 6.760830-1 1.328656-3 7.413102-1 1.071574-3 8.128305-1 8.706255-4 8.912509-1 7.123785-4 9.660509-1 6.017031-4 1.096478+0 4.665342-4 1.202264+0 3.898928-4 1.333521+0 3.209938-4 1.479108+0 2.663085-4 1.640590+0 2.226459-4 1.819701+0 1.874692-4 2.044000+0 1.557800-4 2.317395+0 1.285041-4 2.660725+0 1.047796-4 3.054921+0 8.609093-5 3.548134+0 7.015527-5 4.168694+0 5.672512-5 4.954502+0 4.552685-5 6.000000+0 3.595900-5 7.413102+0 2.794519-5 9.225714+0 2.169486-5 1.216186+1 1.589461-5 1.678804+1 1.116553-5 2.454709+1 7.443176-6 3.801894+1 4.711214-6 6.456542+1 2.732639-6 1.288250+2 1.354080-6 2.570396+2 6.749185-7 1.023293+3 1.688616-7 1.000000+5 1.725700-9 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.711600-4 8.131700-5 1.000000+5 8.131700-5 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.711600-4 8.155800-8 1.000000+5 8.155800-8 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.711600-4 2.897614-4 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.016500-4 1.234387+6 3.215000-4 1.014280+6 3.467369-4 8.235927+5 3.507519-4 8.005000+5 3.650000-4 7.314600+5 3.801894-4 6.725800+5 4.050000-4 5.927300+5 4.229500-4 5.400200+5 4.623810-4 4.409200+5 5.011872-4 3.654200+5 5.370318-4 3.087200+5 6.025596-4 2.308500+5 6.606934-4 1.818100+5 7.500000-4 1.296100+5 8.413951-4 9.472400+4 9.700000-4 6.370700+4 1.083927-3 4.644800+4 1.244515-3 3.112300+4 1.428894-3 2.067600+4 1.621810-3 1.411300+4 1.862087-3 9.236500+3 2.162719-3 5.787000+3 2.511886-3 3.596500+3 2.917427-3 2.218200+3 3.388442-3 1.357700+3 3.935501-3 8.247300+2 4.570882-3 4.971800+2 5.308844-3 2.974600+2 6.165950-3 1.767000+2 7.161434-3 1.042700+2 8.511380-3 5.628900+1 1.011579-2 3.014900+1 1.202264-2 1.603100+1 1.445440-2 8.111500+0 1.757924-2 3.901700+0 2.137962-2 1.863000+0 2.691535-2 7.745200-1 3.548134-2 2.678872-1 6.760830-2 2.226469-2 8.413951-2 9.636127-3 1.011580-1 4.792465-3 1.202264-1 2.508895-3 1.412538-1 1.381809-3 1.640590-1 7.999192-4 1.883649-1 4.865082-4 2.137962-1 3.106989-4 2.398833-1 2.081250-4 2.691535-1 1.404235-4 3.000000-1 9.760412-5 3.349654-1 6.795380-5 3.715352-1 4.871183-5 4.120975-1 3.518605-5 4.518559-1 2.653045-5 4.954502-1 2.013993-5 5.432503-1 1.540347-5 5.956621-1 1.186698-5 6.531306-1 9.209004-6 7.161434-1 7.198711-6 7.852356-1 5.668170-6 8.709636-1 4.348324-6 9.225714-1 3.774360-6 9.772372-1 3.298097-6 1.035142+0 2.905277-6 1.109175+0 2.514447-6 1.174898+0 2.244572-6 1.258925+0 1.972548-6 1.364583+0 1.707282-6 1.640590+0 1.244628-6 1.840772+0 1.027924-6 2.044000+0 8.699200-7 2.317395+0 7.176625-7 2.660725+0 5.851556-7 3.054921+0 4.807574-7 3.548134+0 3.917629-7 4.168694+0 3.167684-7 4.954502+0 2.542418-7 6.000000+0 2.008000-7 7.413102+0 1.560528-7 9.225714+0 1.211483-7 1.216186+1 8.875899-8 1.678804+1 6.235168-8 2.454709+1 4.156546-8 3.758374+1 2.662483-8 6.382635+1 1.544053-8 1.273503+2 7.650155-9 2.540973+2 3.812779-9 1.011579+3 9.53920-10 1.000000+5 9.63710-12 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.016500-4 5.122000-5 1.000000+5 5.122000-5 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.016500-4 5.051200-8 1.000000+5 5.051200-8 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.016500-4 2.503795-4 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.986400-4 2.179621+6 3.273407-4 1.853087+6 3.430000-4 1.671716+6 3.600000-4 1.495980+6 3.715352-4 1.399304+6 4.027170-4 1.189499+6 4.216965-4 1.076350+6 4.700000-4 8.390920+5 5.069907-4 7.015043+5 5.432503-4 5.913703+5 6.165950-4 4.281531+5 6.760830-4 3.362620+5 7.800000-4 2.286600+5 8.709636-4 1.687018+5 1.011579-3 1.106618+5 1.150000-3 7.649800+4 1.303167-3 5.301202+4 1.479108-3 3.630856+4 1.678804-3 2.470223+4 1.927525-3 1.610768+4 2.213095-3 1.042790+4 2.540973-3 6.704790+3 2.917427-3 4.282725+3 3.349654-3 2.717681+3 3.890451-3 1.648183+3 4.500000-3 1.005828+3 5.188000-3 6.164435+2 6.025596-3 3.656199+2 7.000000-3 2.151104+2 8.128305-3 1.259635+2 9.549926-3 7.023291+1 1.135011-2 3.727592+1 1.348963-2 1.963801+1 1.603245-2 1.027264+1 1.927525-2 5.108830+0 2.344229-2 2.413808+0 2.917427-2 1.036134+0 3.845918-2 3.528651-1 7.413102-2 2.699879-2 9.332543-2 1.102930-2 1.148154-1 4.962006-3 1.333521-1 2.805515-3 1.531088-1 1.668480-3 1.737801-1 1.042942-3 1.949845-1 6.848832-4 2.187762-1 4.529844-4 2.426610-1 3.143209-4 2.691535-1 2.196913-4 2.951209-1 1.608658-4 3.235937-1 1.186191-4 3.548134-1 8.811766-5 3.845918-1 6.837553-5 4.168694-1 5.340515-5 4.518559-1 4.199112-5 4.897788-1 3.323100-5 5.308844-1 2.646494-5 5.754399-1 2.121611-5 6.237348-1 1.712615-5 6.683439-1 1.433879-5 7.244360-1 1.173631-5 7.852356-1 9.674917-6 8.511380-1 8.031406-6 9.225714-1 6.710376-6 9.885531-1 5.789189-6 1.083927+0 4.796039-6 1.174898+0 4.094078-6 1.288250+0 3.440995-6 1.428894+0 2.851807-6 1.603245+0 2.333829-6 1.778279+0 1.961971-6 1.972423+0 1.660237-6 2.238721+0 1.364559-6 2.570396+0 1.110427-6 2.951209+0 9.106149-7 3.388442+0 7.523433-7 3.935501+0 6.161925-7 4.677351+0 4.932885-7 5.623413+0 3.921652-7 6.839116+0 3.097598-7 8.511380+0 2.397983-7 1.083927+1 1.821831-7 1.396368+1 1.375510-7 1.840772+1 1.019077-7 2.540973+1 7.233703-8 3.845918+1 4.691360-8 6.606934+1 2.689821-8 1.318257+2 1.333149-8 2.630268+2 6.646060-9 1.047129+3 1.662915-9 1.000000+5 1.73910-11 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.986400-4 5.099300-5 1.000000+5 5.099300-5 1 19000 7 7 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.986400-4 5.074500-8 1.000000+5 5.074500-8 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.986400-4 2.475963-4 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.050000-5 2.515940+5 4.168694-5 2.776310+5 4.270000-5 2.987180+5 4.365158-5 3.171568+5 4.470000-5 3.359200+5 4.570882-5 3.523729+5 4.680000-5 3.683980+5 4.800000-5 3.840120+5 4.954502-5 4.011838+5 5.080000-5 4.128600+5 5.248075-5 4.255370+5 5.432503-5 4.359600+5 5.623413-5 4.433925+5 5.850000-5 4.485000+5 6.095369-5 4.503044+5 6.309573-5 4.494031+5 6.606934-5 4.451760+5 6.918310-5 4.380612+5 7.328245-5 4.260385+5 7.800000-5 4.102040+5 8.413951-5 3.884903+5 9.120108-5 3.638804+5 1.000000-4 3.351620+5 1.096478-4 3.065087+5 1.202264-4 2.783278+5 1.318257-4 2.507649+5 1.428894-4 2.273783+5 1.566751-4 2.018728+5 1.757924-4 1.725253+5 2.041738-4 1.393896+5 2.344229-4 1.136443+5 2.630268-4 9.519883+4 3.000000-4 7.712020+4 3.548134-4 5.841295+4 4.073803-4 4.615794+4 4.731513-4 3.547740+4 5.688529-4 2.546207+4 6.606934-4 1.930721+4 7.943282-4 1.362949+4 9.500000-4 9.635640+3 1.110000-3 7.081740+3 1.303167-3 5.117698+3 1.513561-3 3.753038+3 1.757924-3 2.732024+3 2.018366-3 2.024133+3 2.344229-3 1.450988+3 2.722701-3 1.032214+3 3.162278-3 7.288641+2 3.672823-3 5.109796+2 4.265795-3 3.556633+2 5.000000-3 2.402703+2 5.821032-3 1.638593+2 6.760830-3 1.116343+2 7.943282-3 7.327451+1 9.332543-3 4.771117+1 1.096478-2 3.083819+1 1.288250-2 1.979136+1 1.513561-2 1.261205+1 1.798871-2 7.721218+0 2.162719-2 4.538994+0 2.600160-2 2.648514+0 3.126079-2 1.534323+0 3.845918-2 8.232911-1 4.786301-2 4.233619-1 6.095369-2 2.013681-1 8.317638-2 7.657509-2 1.584893-1 1.022161-2 1.949845-1 5.378109-3 2.317395-1 3.168747-3 2.691535-1 2.017409-3 3.090295-1 1.339840-3 3.467369-1 9.589848-4 3.890451-1 6.913562-4 4.315191-1 5.186232-4 4.786301-1 3.919180-4 5.248075-1 3.076093-4 5.754399-1 2.430783-4 6.309573-1 1.934660-4 6.918310-1 1.551246-4 7.585776-1 1.253077-4 8.317638-1 1.019645-4 9.015711-1 8.566382-5 9.772372-1 7.243030-5 1.130300+0 5.415700-5 1.258925+0 4.403604-5 1.396368+0 3.637882-5 1.548817+0 3.028310-5 1.717908+0 2.539884-5 1.905461+0 2.144968-5 2.137962+0 1.790796-5 2.426610+0 1.478470-5 2.786121+0 1.208581-5 3.198895+0 9.954740-6 3.715352+0 8.130907-6 4.365158+0 6.588317-6 5.248075+0 5.222598-6 6.309573+0 4.171043-6 7.943282+0 3.176892-6 1.011579+1 2.408258-6 1.318257+1 1.792032-6 1.778279+1 1.293350-6 2.540973+1 8.846993-7 3.845918+1 5.737667-7 6.606934+1 3.289682-7 1.318257+2 1.630543-7 2.630268+2 8.128226-8 1.047129+3 2.033805-8 1.000000+5 2.12700-10 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.050000-5 4.050000-5 1.000000+5 4.050000-5 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.050000-5 0.0 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.375000-5 3.281640+7 2.383000-5 3.130980+7 2.410000-5 2.652200+7 2.440000-5 2.224460+7 2.470000-5 1.885654+7 2.493000-5 1.672180+7 2.520000-5 1.463454+7 2.550000-5 1.271818+7 2.570396-5 1.161510+7 2.600160-5 1.023833+7 2.635000-5 8.904780+6 2.665000-5 7.944200+6 2.700000-5 6.997260+6 2.740000-5 6.097480+6 2.795000-5 5.102960+6 2.851018-5 4.304364+6 2.917427-5 3.560489+6 2.985383-5 2.964984+6 3.054921-5 2.482999+6 3.150000-5 1.974936+6 3.235937-5 1.624679+6 3.330000-5 1.326914+6 3.427678-5 1.087902+6 3.540000-5 8.781300+5 3.630781-5 7.469414+5 3.715352-5 6.485833+5 3.801894-5 5.671034+5 3.880000-5 5.071600+5 3.950000-5 4.625600+5 4.027170-5 4.218371+5 4.090000-5 3.942700+5 4.150000-5 3.719980+5 4.220000-5 3.503720+5 4.280000-5 3.351020+5 4.350000-5 3.205960+5 4.420000-5 3.091900+5 4.490900-5 3.003575+5 4.570882-5 2.932078+5 4.650000-5 2.886260+5 4.738600-5 2.859499+5 4.820000-5 2.853860+5 4.900000-5 2.862900+5 5.011872-5 2.894959+5 5.150000-5 2.957980+5 5.308844-5 3.051921+5 6.025596-5 3.550714+5 6.309573-5 3.724251+5 6.580000-5 3.862060+5 6.839116-5 3.967417+5 7.150000-5 4.061160+5 7.413102-5 4.115646+5 7.762471-5 4.156357+5 8.150000-5 4.167100+5 8.511380-5 4.151007+5 8.912509-5 4.110223+5 9.440609-5 4.029419+5 1.000000-4 3.920780+5 1.060000-4 3.786960+5 1.122018-4 3.636637+5 1.194100-4 3.453934+5 1.273503-4 3.249856+5 1.350000-4 3.055180+5 1.445440-4 2.821081+5 1.548817-4 2.584172+5 1.678804-4 2.314094+5 1.819701-4 2.057863+5 1.972423-4 1.818093+5 2.150000-4 1.581750+5 2.344229-4 1.364520+5 2.540973-4 1.180591+5 2.800000-4 9.831940+4 3.100000-4 8.046940+4 3.427678-4 6.554869+4 3.758374-4 5.396064+4 4.168694-4 4.302272+4 4.700000-4 3.282800+4 5.248075-4 2.543399+4 5.821032-4 1.988450+4 6.531306-4 1.502047+4 7.328245-4 1.127415+4 8.317638-4 8.160774+3 9.440609-4 5.862798+3 1.059254-3 4.310615+3 1.188502-3 3.147405+3 1.333521-3 2.282733+3 1.500000-3 1.632613+3 1.698244-3 1.137139+3 1.927525-3 7.802124+2 2.187762-3 5.312748+2 2.483133-3 3.591801+2 2.851018-3 2.325584+2 3.273407-3 1.494842+2 3.758374-3 9.540925+1 4.365158-3 5.820832+1 5.069907-3 3.523365+1 5.888437-3 2.115847+1 6.839116-3 1.260345+1 8.000000-3 7.266271+0 9.332543-3 4.197442+0 1.109175-2 2.251632+0 1.318257-2 1.198872+0 1.566751-2 6.336951-1 1.905461-2 3.051275-1 2.317395-2 1.457777-1 2.951209-2 5.804009-2 4.073803-2 1.684312-2 6.606934-2 2.620046-3 8.413951-2 1.040004-3 1.023293-1 4.955751-4 1.216186-1 2.594590-4 1.428894-1 1.428824-4 1.659587-1 8.273553-5 1.883649-1 5.246247-5 2.137962-1 3.350541-5 2.398833-1 2.244308-5 2.691535-1 1.514146-5 3.000000-1 1.052400-5 3.349654-1 7.327567-6 3.715352-1 5.253113-6 4.120975-1 3.794689-6 4.518559-1 2.861212-6 4.954502-1 2.171997-6 5.432503-1 1.660909-6 5.956621-1 1.279171-6 6.531306-1 9.920683-7 7.161434-1 7.749274-7 7.852356-1 6.097384-7 8.609938-1 4.810547-7 9.120108-1 4.170894-7 9.660509-1 3.640127-7 1.022000+0 3.211000-7 1.083927+0 2.834523-7 1.148154+0 2.523639-7 1.230269+0 2.212764-7 1.333521+0 1.911741-7 1.479108+0 1.597406-7 1.717908+0 1.238470-7 1.905461+0 1.045095-7 2.137962+0 8.723474-8 2.426610+0 7.202139-8 2.786121+0 5.887437-8 3.198895+0 4.849300-8 3.715352+0 3.960820-8 4.365158+0 3.209363-8 5.248075+0 2.544078-8 6.309573+0 2.031825-8 7.943282+0 1.547558-8 1.011579+1 1.173136-8 1.318257+1 8.729397-9 1.800000+1 6.218500-9 2.540973+1 4.309541-9 3.890451+1 2.761864-9 6.683439+1 1.583789-9 1.333521+2 7.85084-10 2.660725+2 3.91398-10 1.059254+3 9.79381-11 1.000000+5 1.03610-12 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.375000-5 2.375000-5 1.000000+5 2.375000-5 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.375000-5 0.0 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.347000-5 6.611359+7 2.371374-5 5.674285+7 2.400000-5 4.779040+7 2.426610-5 4.107376+7 2.454709-5 3.531212+7 2.483133-5 3.056947+7 2.511886-5 2.664357+7 2.540973-5 2.335883+7 2.570396-5 2.059228+7 2.610000-5 1.755296+7 2.650000-5 1.508852+7 2.691535-5 1.301187+7 2.740000-5 1.105704+7 2.795000-5 9.294000+6 2.851018-5 7.866648+6 2.917427-5 6.528237+6 2.985383-5 5.451337+6 3.054921-5 4.575870+6 3.150000-5 3.649688+6 3.235937-5 3.009364+6 3.330000-5 2.464240+6 3.427678-5 2.026401+6 3.507519-5 1.742488+6 3.589219-5 1.505939+6 3.672823-5 1.309352+6 3.758374-5 1.146669+6 3.830000-5 1.035040+6 3.900000-5 9.440200+5 3.970000-5 8.681760+5 4.042000-5 8.036676+5 4.110000-5 7.535120+5 4.180000-5 7.112520+5 4.240000-5 6.815880+5 4.300000-5 6.572120+5 4.370000-5 6.346080+5 4.420000-5 6.218440+5 4.490900-5 6.079541+5 4.570882-5 5.974143+5 4.650000-5 5.915040+5 4.738600-5 5.893071+5 4.841724-5 5.915148+5 4.954502-5 5.984986+5 5.080000-5 6.104160+5 5.248075-5 6.309636+5 5.900000-5 7.246760+5 6.165950-5 7.588969+5 6.400000-5 7.847160+5 6.683439-5 8.101380+5 6.918310-5 8.264093+5 7.161434-5 8.389271+5 7.500000-5 8.498040+5 7.852356-5 8.543335+5 8.222426-5 8.529711+5 8.650000-5 8.454280+5 9.120108-5 8.317531+5 9.660509-5 8.110745+5 1.023293-4 7.852340+5 1.083927-4 7.552127+5 1.150000-4 7.208160+5 1.224700-4 6.809285+5 1.303167-4 6.391436+5 1.396368-4 5.910975+5 1.500000-4 5.406640+5 1.621810-4 4.866624+5 1.760000-4 4.325760+5 1.927525-4 3.765390+5 2.089296-4 3.307613+5 2.264644-4 2.887100+5 2.454709-4 2.501864+5 2.660725-4 2.154199+5 2.951209-4 1.761542+5 3.273407-4 1.428842+5 3.600000-4 1.171096+5 3.935501-4 9.660348+4 4.415704-4 7.471046+4 5.011872-4 5.585054+4 5.559043-4 4.373968+4 6.237348-4 3.308788+4 7.040300-4 2.450100+4 7.852356-4 1.857062+4 8.912509-4 1.336399+4 1.011579-3 9.548174+3 1.135011-3 6.982539+3 1.273503-3 5.071311+3 1.428894-3 3.658441+3 1.603245-3 2.620813+3 1.819701-3 1.801798+3 2.065380-3 1.229191+3 2.344229-3 8.322854+2 2.660725-3 5.596227+2 3.054921-3 3.602713+2 3.507519-3 2.302979+2 4.027170-3 1.461631+2 4.623810-3 9.213830+1 5.308844-3 5.768187+1 6.095369-3 3.586091+1 7.079458-3 2.125916+1 8.222426-3 1.250901+1 9.549926-3 7.308743+0 1.122018-2 4.065850+0 1.333521-2 2.151362+0 1.603245-2 1.082205+0 1.927525-2 5.403254-1 2.317395-2 2.677205-1 2.884032-2 1.153336-1 3.758374-2 4.125499-2 7.498942-2 2.775065-3 9.549926-2 1.085732-3 1.148154-1 5.347794-4 1.348963-1 2.898441-4 1.566751-1 1.653690-4 1.778279-1 1.035660-4 2.000000-1 6.755100-5 2.238721-1 4.514174-5 2.483133-1 3.138404-5 2.754229-1 2.197926-5 3.019952-1 1.612208-5 3.311311-1 1.190783-5 3.630781-1 8.861003-6 3.935501-1 6.886817-6 4.265795-1 5.389194-6 4.623810-1 4.245285-6 5.011872-1 3.366242-6 5.432503-1 2.686668-6 5.888437-1 2.159098-6 6.382635-1 1.748142-6 6.918310-1 1.425785-6 7.498942-1 1.171127-6 8.222427-1 9.429465-7 8.912509-1 7.854999-7 9.660509-1 6.594069-7 1.047129+0 5.579793-7 1.148154+0 4.644925-7 1.258925+0 3.897156-7 1.396368+0 3.224192-7 1.566751+0 2.634346-7 1.737801+0 2.211283-7 1.927525+0 1.868513-7 2.187762+0 1.533681-7 2.511886+0 1.246406-7 2.884032+0 1.020814-7 3.311311+0 8.423714-8 3.845918+0 6.891843-8 4.570882+0 5.511383-8 5.495409+0 4.377415-8 6.683439+0 3.454554-8 8.317638+0 2.672131-8 1.059254+1 2.028677-8 1.348963+1 1.550209-8 1.800000+1 1.132600-8 2.540973+1 7.849339-9 3.845918+1 5.090685-9 6.531306+1 2.953229-9 1.303167+2 1.463563-9 2.600160+2 7.29548-10 1.035142+3 1.82536-10 1.000000+5 1.88710-12 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.347000-5 2.347000-5 1.000000+5 2.347000-5 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.347000-5 0.0 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.220000-6 5.499681+4 4.228000-6 5.273570+4 4.245000-6 4.970310+4 4.280000-6 4.382770+4 4.315191-6 3.844009+4 4.340000-6 3.495570+4 4.380000-6 2.979770+4 4.420000-6 2.521230+4 4.450000-6 2.210150+4 4.477000-6 1.955220+4 4.500000-6 1.754120+4 4.527000-6 1.535910+4 4.550000-6 1.365370+4 4.570882-6 1.222126+4 4.593000-6 1.081700+4 4.615000-6 9.526440+3 4.635000-6 8.444570+3 4.650000-6 7.686720+3 4.670000-6 6.748280+3 4.692000-6 5.805330+3 4.710000-6 5.100230+3 4.728000-6 4.452460+3 4.742000-6 3.986980+3 4.755000-6 3.583680+3 4.770000-6 3.151910+3 4.786301-6 2.722309+3 4.800000-6 2.392190+3 4.815000-6 2.062130+3 4.827000-6 1.821220+3 4.838000-6 1.617660+3 4.850000-6 1.414200+3 4.860000-6 1.259190+3 4.874000-6 1.063580+3 4.885000-6 9.270580+2 4.900000-6 7.644670+2 4.922000-6 5.735530+2 4.935000-6 4.863540+2 4.943000-6 4.418330+2 4.950000-6 4.085090+2 4.957000-6 3.802960+2 4.962000-6 3.632480+2 4.967000-6 3.487590+2 4.971500-6 3.378750+2 4.977000-6 3.273430+2 4.981000-6 3.215440+2 4.985000-6 3.173110+2 4.989000-6 3.146290+2 4.993000-6 3.134900+2 4.997000-6 3.138860+2 5.001500-6 3.161160+2 5.005000-6 3.191580+2 5.010000-6 3.254690+2 5.015000-6 3.340770+2 5.020000-6 3.449480+2 5.025000-6 3.580480+2 5.031000-6 3.766860+2 5.037000-6 3.984640+2 5.042000-6 4.189770+2 5.052000-6 4.663590+2 5.065000-6 5.403530+2 5.092000-6 7.369590+2 5.105000-6 8.515290+2 5.120000-6 9.989930+2 5.135000-6 1.162440+3 5.146000-6 1.291960+3 5.158000-6 1.442510+3 5.172000-6 1.629860+3 5.188000-6 1.858724+3 5.200000-6 2.040540+3 5.215000-6 2.279380+3 5.230000-6 2.530890+3 5.248075-6 2.849872+3 5.263000-6 3.125990+3 5.280000-6 3.453800+3 5.300000-6 3.856930+3 5.320000-6 4.277810+3 5.340000-6 4.715800+3 5.365000-6 5.285730+3 5.390000-6 5.878580+3 5.410000-6 6.368990+3 5.440000-6 7.128690+3 5.470000-6 7.915260+3 5.500000-6 8.725850+3 5.535000-6 9.699870+3 5.570000-6 1.070060+4 5.610000-6 1.187290+4 5.650000-6 1.307160+4 5.688529-6 1.424744+4 5.730000-6 1.553220+4 5.770000-6 1.678700+4 5.821032-6 1.840527+4 5.865000-6 1.981080+4 5.920000-6 2.157850+4 5.980000-6 2.351200+4 6.050000-6 2.576560+4 6.120000-6 2.800840+4 6.200000-6 3.054630+4 6.270000-6 3.273790+4 6.350000-6 3.520100+4 6.456542-6 3.840222+4 6.550000-6 4.112450+4 6.650000-6 4.394190+4 6.770000-6 4.718300+4 6.890000-6 5.026550+4 7.000000-6 5.295150+4 7.150000-6 5.639330+4 7.270000-6 5.896420+4 7.420000-6 6.195360+4 7.600000-6 6.522250+4 7.770000-6 6.800490+4 8.000000-6 7.132650+4 8.222426-6 7.408953+4 8.420000-6 7.620330+4 8.709636-6 7.877665+4 9.015711-6 8.089231+4 9.350000-6 8.259260+4 9.700000-6 8.379910+4 1.011579-5 8.461119+4 1.059254-5 8.488474+4 1.109175-5 8.458672+4 1.161449-5 8.378956+4 1.230269-5 8.220599+4 1.310000-5 7.987300+4 1.396368-5 7.701720+4 1.500000-5 7.340210+4 1.621810-5 6.916435+4 1.778279-5 6.402763+4 1.972423-5 5.826260+4 2.238721-5 5.151196+4 2.754229-5 4.171829+4 4.073803-5 2.784538+4 6.918310-5 1.639806+4 7.852356-5 1.438044+4 8.810489-5 1.267333+4 9.660509-5 1.138187+4 1.059254-4 1.015002+4 1.148154-4 9.126714+3 1.264540-4 7.972950+3 1.396368-4 6.885504+3 1.566751-4 5.760201+3 1.778279-4 4.697570+3 2.691535-4 2.365370+3 3.273407-4 1.698117+3 3.890451-4 1.258650+3 4.518559-4 9.635742+2 5.370318-4 7.027724+2 6.382635-4 5.088334+2 7.585776-4 3.657853+2 9.225714-4 2.497032+2 1.096478-3 1.769638+2 1.303167-3 1.244675+2 1.548817-3 8.687432+1 1.798871-3 6.320745+1 2.065380-3 4.679717+1 2.371374-3 3.437442+1 2.754229-3 2.441910+1 3.235937-3 1.676020+1 3.758374-3 1.173329+1 4.365158-3 8.156307+0 5.128614-3 5.470604+0 5.956621-3 3.748717+0 6.998420-3 2.476010+0 8.128305-3 1.672542+0 9.549926-3 1.087810+0 1.122018-2 7.023126-1 1.333521-2 4.360388-1 1.584893-2 2.686047-1 1.883649-2 1.642232-1 2.238721-2 9.968323-2 2.691535-2 5.809088-2 3.235937-2 3.360654-2 3.981072-2 1.801058-2 4.954502-2 9.251444-3 6.237348-2 4.554428-3 8.609938-2 1.669900-3 1.584893-1 2.483058-4 1.949845-1 1.306509-4 2.317395-1 7.698304-5 2.691535-1 4.901734-5 3.054921-1 3.367920-5 3.427678-1 2.409529-5 3.845918-1 1.736318-5 4.265795-1 1.301947-5 4.731513-1 9.834944-6 5.188000-1 7.717478-6 5.688529-1 6.098163-6 6.237348-1 4.853548-6 6.839117-1 3.892215-6 7.498942-1 3.145519-6 8.128305-1 2.628090-6 8.912509-1 2.157352-6 9.772372-1 1.784362-6 1.135011+0 1.325596-6 1.258925+0 1.086513-6 1.396368+0 8.970312-7 1.531087+0 7.613809-7 1.698244+0 6.380389-7 1.883649+0 5.384747-7 2.113489+0 4.492652-7 2.398833+0 3.706816-7 2.754229+0 3.028220-7 3.162278+0 2.492681-7 3.672823+0 2.034804-7 4.315191+0 1.647911-7 5.188000+0 1.305694-7 6.237348+0 1.042326-7 7.852356+0 7.935290-8 1.000000+1 6.013100-8 1.303167+1 4.472982-8 1.778279+1 3.187502-8 2.511886+1 2.206933-8 3.845918+1 1.414063-8 6.683439+1 8.012917-9 1.333521+2 3.972110-9 2.660725+2 1.980195-9 1.059254+3 4.95496-10 1.000000+5 5.24210-12 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.220000-6 4.220000-6 1.000000+5 4.220000-6 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.220000-6 0.0 1.000000+5 1.000000+5 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.479330-8 1.028750+0 1.479330-7 1.035300+0 1.112660-6 1.036640+0 1.479330-6 1.038200+0 1.996400-6 1.039700+0 2.593730-6 1.041500+0 3.450930-6 1.043800+0 4.790010-6 1.046400+0 6.664400-6 1.048300+0 8.297360-6 1.051200+0 1.125520-5 1.054080+0 1.479330-5 1.057700+0 2.016410-5 1.061100+0 2.622840-5 1.065100+0 3.472330-5 1.070400+0 4.844220-5 1.076200+0 6.694660-5 1.080600+0 8.360530-5 1.087100+0 1.126450-4 1.093710+0 1.479330-4 1.102600+0 2.051170-4 1.110700+0 2.675280-4 1.120600+0 3.579000-4 1.133300+0 4.976630-4 1.147500+0 6.871970-4 1.158200+0 8.540410-4 1.174100+0 1.141310-3 1.190110+0 1.479330-3 1.205100+0 1.840700-3 1.227500+0 2.462730-3 1.250000+0 3.185000-3 1.280300+0 4.307090-3 1.307700+0 5.464120-3 1.343000+0 7.143540-3 1.382200+0 9.243220-3 1.433800+0 1.235660-2 1.500000+0 1.689000-2 1.562500+0 2.169000-2 1.617200+0 2.627610-2 1.712900+0 3.505900-2 1.784700+0 4.220670-2 1.892300+0 5.364670-2 2.000000+0 6.577000-2 2.044000+0 7.086000-2 2.163500+0 8.492520-2 2.372600+0 1.100050-1 2.647100+0 1.430530-1 3.000000+0 1.850000-1 3.437500+0 2.356810-1 4.000000+0 2.977000-1 4.750000+0 3.736970-1 5.000000+0 3.976000-1 6.000000+0 4.869000-1 7.000000+0 5.663000-1 8.000000+0 6.378000-1 9.000000+0 7.025000-1 1.000000+1 7.612000-1 1.100000+1 8.145000-1 1.200000+1 8.633000-1 1.300000+1 9.086000-1 1.400000+1 9.506000-1 1.500000+1 9.899000-1 1.600000+1 1.027000+0 1.800000+1 1.094000+0 2.000000+1 1.155000+0 2.200000+1 1.209000+0 2.400000+1 1.259000+0 2.600000+1 1.304000+0 2.800000+1 1.346000+0 3.000000+1 1.384000+0 4.000000+1 1.543000+0 5.000000+1 1.662000+0 6.000000+1 1.754000+0 8.000000+1 1.891000+0 1.000000+2 1.990000+0 1.500000+2 2.150000+0 2.000000+2 2.248000+0 3.000000+2 2.364000+0 4.000000+2 2.432000+0 5.000000+2 2.476000+0 6.000000+2 2.509000+0 8.000000+2 2.552000+0 1.000000+3 2.580000+0 1.500000+3 2.621000+0 2.000000+3 2.644000+0 3.000000+3 2.668000+0 4.000000+3 2.681000+0 5.000000+3 2.689000+0 6.000000+3 2.695000+0 8.000000+3 2.703000+0 1.000000+4 2.708000+0 1.500000+4 2.714000+0 2.000000+4 2.718000+0 3.000000+4 2.722000+0 4.000000+4 2.724000+0 5.000000+4 2.725000+0 6.000000+4 2.726000+0 8.000000+4 2.727000+0 1.000000+5 2.727000+0 1 19000 7 8 3.910200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.907910-7 2.119500+0 1.070800-6 2.127900+0 1.452210-6 2.136250+0 1.907910-6 2.147000+0 2.615880-6 2.156900+0 3.397710-6 2.169000+0 4.534460-6 2.184500+0 6.303050-6 2.201800+0 8.720450-6 2.214800+0 1.086500-5 2.234200+0 1.461530-5 2.253680+0 1.907910-5 2.281500+0 2.672370-5 2.307000+0 3.510150-5 2.338200+0 4.719700-5 2.377400+0 6.536230-5 2.410200+0 8.313000-5 2.446800+0 1.057460-4 2.485900+0 1.331400-4 2.532900+0 1.703900-4 2.556430+0 1.907910-4 2.611900+0 2.432780-4 2.660400+0 2.941090-4 2.745300+0 3.936420-4 2.809000+0 4.767200-4 2.904500+0 6.141240-4 3.000000+0 7.666000-4 3.125000+0 9.885570-4 3.234400+0 1.202930-3 3.425800+0 1.620150-3 3.569300+0 1.964830-3 3.784700+0 2.526270-3 4.000000+0 3.130000-3 4.250000+0 3.868300-3 4.625000+0 5.028950-3 5.000000+0 6.236000-3 5.500000+0 7.893790-3 6.000000+0 9.576000-3 6.750000+0 1.208440-2 7.000000+0 1.291000-2 8.000000+0 1.614000-2 9.000000+0 1.924000-2 1.000000+1 2.219000-2 1.100000+1 2.499000-2 1.200000+1 2.763000-2 1.300000+1 3.012000-2 1.400000+1 3.250000-2 1.500000+1 3.475000-2 1.600000+1 3.690000-2 1.800000+1 4.089000-2 2.000000+1 4.453000-2 2.200000+1 4.788000-2 2.400000+1 5.097000-2 2.600000+1 5.383000-2 2.800000+1 5.649000-2 3.000000+1 5.897000-2 4.000000+1 6.935000-2 5.000000+1 7.734000-2 6.000000+1 8.376000-2 8.000000+1 9.357000-2 1.000000+2 1.009000-1 1.500000+2 1.132000-1 2.000000+2 1.211000-1 3.000000+2 1.311000-1 4.000000+2 1.371000-1 5.000000+2 1.414000-1 6.000000+2 1.445000-1 8.000000+2 1.489000-1 1.000000+3 1.518000-1 1.500000+3 1.563000-1 2.000000+3 1.589000-1 3.000000+3 1.617000-1 4.000000+3 1.634000-1 5.000000+3 1.644000-1 6.000000+3 1.651000-1 8.000000+3 1.661000-1 1.000000+4 1.667000-1 1.500000+4 1.676000-1 2.000000+4 1.681000-1 3.000000+4 1.686000-1 4.000000+4 1.689000-1 5.000000+4 1.691000-1 6.000000+4 1.692000-1 8.000000+4 1.693000-1 1.000000+5 1.694000-1 1 19000 7 8 3.910200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 19000 7 9 3.910200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.900000+1 1.000000+5 1.900000+1 5.000000+5 1.898900+1 7.500000+5 1.897680+1 1.000000+6 1.896100+1 1.375000+6 1.892790+1 1.500000+6 1.891600+1 1.750000+6 1.888670+1 2.000000+6 1.885300+1 2.375000+6 1.879410+1 2.500000+6 1.877400+1 2.875000+6 1.870460+1 3.000000+6 1.868100+1 3.250000+6 1.862820+1 3.625000+6 1.854570+1 4.000000+6 1.845900+1 4.437500+6 1.834870+1 4.812500+6 1.825090+1 5.000000+6 1.820200+1 5.500000+6 1.806130+1 5.875000+6 1.795400+1 6.437500+6 1.778980+1 6.500000+6 1.777170+1 7.000000+6 1.762500+1 8.000000+6 1.732650+1 8.500000+6 1.717580+1 9.000000+6 1.702600+1 1.000000+7 1.672500+1 1.187500+7 1.616720+1 1.250000+7 1.598300+1 1.437500+7 1.542400+1 1.500000+7 1.523700+1 1.687500+7 1.466710+1 1.750000+7 1.447700+1 1.937500+7 1.390430+1 2.000000+7 1.371500+1 2.250000+7 1.296730+1 2.500000+7 1.225400+1 2.750000+7 1.158280+1 3.000000+7 1.096300+1 3.250000+7 1.039770+1 3.625000+7 9.658170+0 4.000000+7 9.041800+0 4.437500+7 8.458600+0 4.500000+7 8.384790+0 5.000000+7 7.872000+0 5.750000+7 7.284320+0 6.000000+7 7.116600+0 6.750000+7 6.656370+0 7.000000+7 6.510900+0 7.500000+7 6.223810+0 8.000000+7 5.939900+0 8.500000+7 5.657910+0 9.000000+7 5.378900+0 9.500000+7 5.104040+0 1.000000+8 4.834300+0 1.062500+8 4.505780+0 1.109400+8 4.268180+0 1.179700+8 3.928120+0 1.187500+8 3.891720+0 1.250000+8 3.610000+0 1.312500+8 3.346480+0 1.437500+8 2.886060+0 1.500000+8 2.690700+0 1.671900+8 2.258640+0 1.718800+8 2.163150+0 1.789100+8 2.034620+0 1.929700+8 1.822700+0 2.000000+8 1.735300+0 2.125000+8 1.605170+0 2.253900+8 1.498920+0 2.341800+8 1.440240+0 2.447300+8 1.382270+0 2.500000+8 1.357700+0 2.625000+8 1.309350+0 2.906300+8 1.219640+0 3.000000+8 1.188900+0 3.125000+8 1.144800+0 3.500000+8 1.020100+0 3.875000+8 9.264170-1 4.000000+8 8.961000-1 4.179700+8 8.501730-1 4.330100+8 8.109350-1 4.569300+8 7.494500-1 4.892300+8 6.720290-1 5.000000+8 6.482000-1 5.343800+8 5.783960-1 5.578100+8 5.347740-1 5.789100+8 4.973090-1 6.000000+8 4.613000-1 6.625000+8 3.684970-1 6.812500+8 3.473120-1 7.000000+8 3.296000-1 7.250000+8 3.108020-1 7.625000+8 2.867380-1 7.812500+8 2.745350-1 8.000000+8 2.614000-1 8.183600+8 2.474020-1 8.352100+8 2.340230-1 8.558000+8 2.175260-1 8.817100+8 1.972960-1 9.034000+8 1.813110-1 9.586000+8 1.460510-1 1.000000+9 1.251000-1 1.045900+9 1.068560-1 1.088000+9 9.355130-2 1.139500+9 8.047790-2 1.205600+9 6.735100-2 1.405400+9 4.184940-2 1.500000+9 3.395100-2 1.589800+9 2.793500-2 1.665000+9 2.380340-2 1.784700+9 1.859260-2 1.928200+9 1.402920-2 2.000000+9 1.226500-2 2.375000+9 6.493140-3 2.703100+9 4.007370-3 3.277300+9 1.944330-3 4.138700+9 8.047270-4 5.000000+9 3.925600-4 8.000000+9 6.579400-5 9.500000+9 3.439460-5 1.00000+10 2.836900-5 1.20500+10 1.415880-5 1.41820+10 7.765550-6 1.71170+10 3.909620-6 2.01490+10 2.169740-6 2.26440+10 1.428200-6 2.74790+10 7.183090-7 3.20120+10 4.197960-7 3.62610+10 2.716660-7 4.42280+10 1.365780-7 5.12000+10 8.263080-8 6.34000+10 3.993010-8 7.94120+10 1.870270-8 1.00000+11 8.671000-9 1.26840+11 3.955180-9 1.58400+11 1.912230-9 2.01970+11 8.69929-10 2.73980+11 3.27082-10 3.88950+11 1.07705-10 6.15400+11 2.56488-11 1.00720+12 5.61907-12 1.85540+12 8.79351-13 4.35530+12 6.87880-14 2.49740+13 4.11473-16 1.00000+14 7.22060-18 5.62340+14 4.47850-20 5.42470+15 5.23062-23 1.00000+17 8.24820-27 1 19000 7 0 3.910200+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.20000-12 1.000000+2 6.20000-10 1.000000+3 6.200000-8 1.000000+4 6.200000-6 1.000000+5 6.200000-4 5.000000+5 1.550000-2 7.500000+5 3.487500-2 1.000000+6 6.200000-2 1.375000+6 1.162370-1 1.500000+6 1.377000-1 1.750000+6 1.849790-1 2.000000+6 2.378000-1 2.375000+6 3.265590-1 2.500000+6 3.584000-1 2.875000+6 4.593450-1 3.000000+6 4.946000-1 3.250000+6 5.669560-1 3.625000+6 6.792330-1 4.000000+6 7.945000-1 4.437500+6 9.305160-1 4.812500+6 1.047050+0 5.000000+6 1.105000+0 5.500000+6 1.257150+0 5.875000+6 1.369000+0 6.437500+6 1.532930+0 6.500000+6 1.550770+0 7.000000+6 1.692200+0 8.000000+6 1.965360+0 8.500000+6 2.099210+0 9.000000+6 2.232600+0 1.000000+7 2.500000+0 1.187500+7 3.014380+0 1.250000+7 3.189700+0 1.437500+7 3.724850+0 1.500000+7 3.905000+0 1.687500+7 4.440010+0 1.750000+7 4.616300+0 1.937500+7 5.132740+0 2.000000+7 5.301000+0 2.250000+7 5.947540+0 2.500000+7 6.555000+0 2.750000+7 7.122670+0 3.000000+7 7.652000+0 3.250000+7 8.143610+0 3.625000+7 8.813740+0 4.000000+7 9.405000+0 4.437500+7 1.000180+1 4.500000+7 1.008020+1 5.000000+7 1.065000+1 5.750000+7 1.135840+1 6.000000+7 1.156800+1 6.750000+7 1.214690+1 7.000000+7 1.232900+1 7.500000+7 1.267830+1 8.000000+7 1.301400+1 8.500000+7 1.333510+1 9.000000+7 1.364500+1 9.500000+7 1.393850+1 1.000000+8 1.422000+1 1.062500+8 1.454890+1 1.109400+8 1.478000+1 1.179700+8 1.510030+1 1.187500+8 1.513440+1 1.250000+8 1.539300+1 1.312500+8 1.562780+1 1.437500+8 1.603460+1 1.500000+8 1.621200+1 1.671900+8 1.661370+1 1.718800+8 1.670640+1 1.789100+8 1.683310+1 1.929700+8 1.705530+1 2.000000+8 1.715200+1 2.125000+8 1.730410+1 2.253900+8 1.744160+1 2.341800+8 1.752430+1 2.447300+8 1.761970+1 2.500000+8 1.766400+1 2.625000+8 1.776150+1 2.906300+8 1.795960+1 3.000000+8 1.802000+1 3.125000+8 1.809340+1 3.500000+8 1.829000+1 3.875000+8 1.844740+1 4.000000+8 1.849400+1 4.179700+8 1.855160+1 4.330100+8 1.859810+1 4.569300+8 1.865940+1 4.892300+8 1.873090+1 5.000000+8 1.875200+1 5.343800+8 1.880590+1 5.578100+8 1.883660+1 5.789100+8 1.885920+1 6.000000+8 1.888000+1 6.625000+8 1.892250+1 6.812500+8 1.893190+1 7.000000+8 1.894100+1 7.250000+8 1.894910+1 7.625000+8 1.896080+1 7.812500+8 1.896590+1 8.000000+8 1.897000+1 8.183600+8 1.897250+1 8.352100+8 1.897470+1 8.558000+8 1.897740+1 8.817100+8 1.898070+1 9.034000+8 1.898340+1 9.586000+8 1.898940+1 1.000000+9 1.899200+1 1.045900+9 1.899330+1 1.088000+9 1.899440+1 1.139500+9 1.899570+1 1.205600+9 1.899730+1 1.405400+9 1.899880+1 1.500000+9 1.899900+1 1.589800+9 1.899920+1 1.665000+9 1.899940+1 1.784700+9 1.899960+1 1.928200+9 1.899990+1 2.000000+9 1.900000+1 2.375000+9 1.900000+1 2.703100+9 1.900000+1 3.277300+9 1.900000+1 4.138700+9 1.900000+1 5.000000+9 1.900000+1 8.000000+9 1.900000+1 9.500000+9 1.900000+1 1.00000+10 1.900000+1 1.20500+10 1.900000+1 1.41820+10 1.900000+1 1.71170+10 1.900000+1 2.01490+10 1.900000+1 2.26440+10 1.900000+1 2.74790+10 1.900000+1 3.20120+10 1.900000+1 3.62610+10 1.900000+1 4.42280+10 1.900000+1 5.12000+10 1.900000+1 6.34000+10 1.900000+1 7.94120+10 1.900000+1 1.00000+11 1.900000+1 1.26840+11 1.900000+1 1.58400+11 1.900000+1 2.01970+11 1.900000+1 2.73980+11 1.900000+1 3.88950+11 1.900000+1 6.15400+11 1.900000+1 1.00720+12 1.900000+1 1.85540+12 1.900000+1 4.35530+12 1.900000+1 2.49740+13 1.900000+1 1.00000+14 1.900000+1 5.62340+14 1.900000+1 5.42470+15 1.900000+1 1.00000+17 1.900000+1 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.487243-6 0.0 1.493981-6 1.862965+0 1.494300-6 1.950134+0 1.494565-6 2.170288+0 1.498225-6 5.882349+0 1.501886-6 1.050120+1 1.505547-6 1.740965+1 1.509665-6 2.825173+1 1.517373-6 5.349452+1 1.520189-6 6.300095+1 1.524186-6 7.275134+1 1.528072-6 7.699364+1 1.531764-6 7.537416+1 1.535584-6 6.812017+1 1.539379-6 5.692383+1 1.545814-6 3.488053+1 1.549475-6 2.375713+1 1.553148-6 1.497394+1 1.556826-6 8.731538+0 1.560504-6 4.220938+0 1.566021-6 1.072980+0 1.567860-6 0.0 2.375754-6 0.0 2.378389-6 7.170412-7 2.387449-6 6.847320-6 2.390097-6 9.092624-6 2.393297-6 1.266866-5 2.395951-6 1.624704-5 2.399144-6 2.165813-5 2.401805-6 2.683002-5 2.407659-6 4.094600-5 2.422535-6 8.403495-5 2.428382-6 9.685215-5 2.432448-6 1.018568-4 2.436930-6 1.036732-4 2.442784-6 9.847493-5 2.448638-6 8.641662-5 2.463468-6 4.355835-5 2.466201-6 3.630007-5 2.469316-6 2.896904-5 2.472055-6 2.319807-5 2.475163-6 1.781386-5 2.477909-6 1.369375-5 2.481011-6 1.012876-5 2.483763-6 7.466276-6 2.492706-6 1.188156-6 2.495471-6 1.52699-14 2.498307-6 1.49973-14 2.504294-6 1.33333-14 2.510281-6 1.09425-14 2.522256-6 5.79740-15 2.528243-6 3.74260-15 2.534230-6 2.23032-15 2.540217-6 1.22692-15 2.546204-6 6.23043-16 2.552192-6 0.0 2.871931-6 0.0 2.874361-6 3.352798-3 2.886069-6 5.405067-2 2.888511-6 6.672421-2 2.893138-6 9.981217-2 2.895586-6 1.201874-1 2.900207-6 1.702915-1 2.902661-6 2.000120-1 2.909736-6 3.075076-1 2.928482-6 6.545663-1 2.938035-6 7.775541-1 2.945994-6 7.995511-1 2.953069-6 7.566746-1 2.960586-6 6.533217-1 2.980484-6 2.886054-1 2.987559-6 1.852101-1 2.992102-6 1.348646-1 2.994634-6 1.097611-1 2.999171-6 7.640063-2 3.001709-6 6.006830-2 3.008784-6 2.863791-2 3.013309-6 7.977985-3 3.015859-6 0.0 3.080693-6 0.0 3.082713-6 2.146224-8 3.095858-6 3.535284-7 3.097888-6 4.184335-7 3.103441-6 6.502332-7 3.105476-6 7.534861-7 3.111024-6 1.104633-6 3.113064-6 1.253578-6 3.120651-6 1.926799-6 3.141355-6 4.161102-6 3.151002-6 4.867524-6 3.158590-6 5.032390-6 3.166178-6 4.805601-6 3.173765-6 4.238514-6 3.196529-6 1.804788-6 3.202016-6 1.322408-6 3.204116-6 1.158045-6 3.209599-6 8.033473-7 3.211704-6 6.862016-7 3.217182-6 4.510718-7 3.219292-6 3.754866-7 3.226879-6 1.787351-7 3.232347-6 3.300107-8 3.234467-6 0.0 3.388477-6 0.0 3.389580-6 1.642305-4 3.405158-6 7.728882-3 3.406266-6 8.370006-3 3.414609-6 1.520573-2 3.422952-6 2.550961-2 3.431295-6 3.951889-2 3.455199-6 8.903999-2 3.464667-6 1.025806-1 3.473010-6 1.066727-1 3.481353-6 1.024224-1 3.489696-6 9.079981-2 3.514725-6 3.919412-2 3.523068-6 2.525250-2 3.531411-6 1.502381-2 3.539754-6 8.255063-3 3.548097-6 4.106472-3 3.555283-6 4.245569-4 3.556440-6 1.098560-5 3.564383-6 9.806674-6 3.572905-6 8.021984-6 3.588875-6 4.441641-6 3.598469-6 2.720478-6 3.606991-6 1.617235-6 3.614432-6 9.668358-7 3.615513-6 8.876226-7 3.624034-6 4.386047-7 3.631470-6 3.502886-8 3.632556-6 0.0 3.638327-6 0.0 3.638913-6 2.220786-5 3.656826-6 2.318244-3 3.665783-6 4.223270-3 3.674740-6 7.103524-3 3.683696-6 1.103134-2 3.709969-6 2.530144-2 3.719523-6 2.886967-2 3.728480-6 3.007264-2 3.737437-6 2.892038-2 3.746393-6 2.567648-2 3.755350-6 2.104568-2 3.772656-6 1.143482-2 3.778556-6 8.785550-3 3.782220-6 7.363670-3 3.791177-6 4.907519-3 3.797157-6 3.911752-3 3.800134-6 3.526320-3 3.806457-6 3.227826-3 3.815757-6 3.152453-3 3.818047-6 3.258431-3 3.825058-6 4.458990-3 3.834358-6 6.399041-3 3.843659-6 8.477829-3 3.852959-6 1.036915-2 3.862260-6 1.170814-2 3.871560-6 1.237692-2 3.880860-6 1.214241-2 3.890161-6 1.116205-2 3.912179-6 7.990661-3 3.918062-6 7.357329-3 3.927363-6 6.827044-3 3.936663-6 6.739572-3 3.945963-6 6.907510-3 3.950356-6 7.088579-3 3.964564-6 7.069620-3 3.970578-6 7.210784-3 3.980327-6 7.141957-3 4.020446-6 6.179179-3 4.060032-6 5.509447-3 4.101851-6 4.915364-3 4.138905-6 4.079912-3 4.170128-6 3.018856-3 4.190597-6 2.448401-3 4.208621-6 2.194800-3 4.225552-6 2.210800-3 4.260239-6 2.495522-3 4.280533-6 2.540965-3 4.312803-6 2.389910-3 4.399966-6 1.740930-3 4.479108-6 1.253470-3 4.543971-6 9.278290-4 4.603987-6 6.799833-4 4.651242-6 5.177173-4 4.705491-6 3.643098-4 4.751995-6 2.586385-4 4.793146-6 1.834647-4 4.828184-6 1.321647-4 4.859247-6 9.590515-5 4.885277-6 7.186108-5 4.909613-6 5.438306-5 4.928496-6 4.402442-5 4.947375-6 3.637028-5 4.962000-6 3.224495-5 4.977000-6 2.960644-5 4.995000-6 2.851354-5 5.010000-6 2.928469-5 5.025000-6 3.154373-5 5.043875-6 3.644192-5 5.061748-6 4.313030-5 5.080593-6 5.227479-5 5.104902-6 6.713478-5 5.130745-6 8.657354-5 5.164995-6 1.178436-4 5.204122-6 1.608137-4 5.251408-6 2.223516-4 5.304993-6 3.037943-4 5.394049-6 4.637285-4 5.509357-6 7.095772-4 5.669232-6 1.108077-3 5.842975-6 1.596375-3 6.195000-6 2.690584-3 7.210000-6 5.945419-3 8.033701-6 8.237478-3 9.085975-6 1.055132-2 1.048365-5 1.271055-2 1.243670-5 1.454264-2 1.508787-5 1.571992-2 1.878376-5 1.636617-2 1.887623-5 3.915500-1 1.892246-5 7.016685-1 1.896870-5 1.171877+0 1.901493-5 1.814907+0 1.909575-5 3.248702+0 1.915363-5 4.362185+0 1.919987-5 5.034776+0 1.924610-5 5.435249+0 1.930389-5 5.480807+0 1.934566-5 5.280120+0 1.946994-5 4.127576+0 1.953475-5 3.457480+0 1.958135-5 2.971133+0 1.963991-5 2.355447+0 1.970844-5 1.510497+0 1.978077-5 9.070772-1 1.982773-5 5.914005-1 1.987468-5 3.590716-1 1.992163-5 2.049211-1 1.996859-5 1.121503-1 2.001554-5 1.643473-2 2.115949-5 1.651800-2 2.116212-5 2.919630-2 2.126630-5 5.031488+0 2.131838-5 9.184832+0 2.137349-5 1.598241+1 2.142507-5 2.462380+1 2.150017-5 4.116115+1 2.158480-5 6.090237+1 2.164049-5 7.086116+1 2.168618-5 7.630116+1 2.174912-5 7.798506+1 2.180245-5 7.529532+1 2.198399-5 5.540473+1 2.208083-5 4.599410+1 2.216279-5 4.232164+1 2.221535-5 4.215926+1 2.240558-5 5.413186+1 2.251155-5 5.632360+1 2.266946-5 5.668448+1 2.285035-5 5.264573+1 2.306527-5 4.539323+1 2.325354-5 4.097412+1 2.353028-5 3.489849+1 2.379347-5 2.978598+1 2.412832-5 2.456202+1 2.454773-5 1.980411+1 2.501083-5 1.592988+1 2.550000-5 1.294102+1 2.608841-5 1.035392+1 2.673721-5 8.303939+0 2.743042-5 6.717417+0 2.815681-5 5.485821+0 2.903704-5 4.387803+0 3.004798-5 3.468791+0 3.109581-5 2.776468+0 3.219750-5 2.234867+0 3.344212-5 1.782735+0 3.447523-5 1.498453+0 3.577462-5 1.226615+0 3.692016-5 1.045979+0 3.719278-5 1.054773+0 3.737453-5 1.103308+0 3.763999-5 1.222045+0 3.782890-5 1.250978+0 3.801065-5 1.184651+0 3.828327-5 1.003248+0 3.846502-5 9.217224-1 3.873764-5 8.826611-1 3.926787-5 9.412377-1 4.032828-5 8.726725-1 4.223038-5 8.196670-1 4.420000-5 8.126062-1 4.738600-5 8.647906-1 5.215280-5 1.023215+0 6.309573-5 1.456246+0 7.161434-5 1.731849+0 8.267627-5 1.980097+0 9.660509-5 2.163807+0 1.091009-4 2.245879+0 1.348963-4 2.259076+0 1.895309-4 2.003523+0 2.882930-4 1.496895+0 2.897217-4 1.506776+0 2.904247-4 1.724733+0 2.907984-4 1.924156+0 2.911412-4 2.156965+0 2.919090-4 2.962318+0 2.926099-4 4.051685+0 2.932936-4 5.671629+0 2.940661-4 8.198699+0 2.955613-4 1.466855+1 2.968150-4 2.041456+1 2.978330-4 2.404577+1 2.987196-4 2.567351+1 2.996088-4 2.600888+1 3.006584-4 2.494198+1 3.041608-4 1.823611+1 3.055478-4 1.662352+1 3.080943-4 1.561018+1 3.601408-4 1.281140+1 3.658102-4 1.296829+1 3.730488-4 1.366782+1 5.232991-4 9.542908+0 6.202662-4 7.611621+0 7.259316-4 6.085348+0 8.489082-4 4.834152+0 9.696820-4 3.947948+0 1.096478-3 3.261490+0 1.233815-3 2.705767+0 1.413269-3 2.172670+0 1.581411-3 1.806972+0 1.777580-3 1.487008+0 2.017459-3 1.201254+0 2.273403-3 9.798323-1 2.560420-3 7.983039-1 2.851018-3 6.620786-1 3.246684-3 5.271227-1 3.493035-3 4.672530-1 3.507315-3 4.861298-1 3.517822-3 5.233230-1 3.526443-3 5.844435-1 3.532754-3 6.551166-1 3.539618-3 7.638199-1 3.547827-3 9.470168-1 3.556200-3 1.197089+0 3.568618-3 1.678411+0 3.598302-3 2.981391+0 3.614453-3 3.481965+0 3.633284-3 3.778609+0 3.664113-3 3.874691+0 4.446749-3 2.896798+0 5.046607-3 2.361570+0 5.730208-3 1.921259+0 6.500639-3 1.551536+0 7.404617-3 1.240761+0 8.299702-3 1.015217+0 9.178271-3 8.481705-1 1.022556-2 6.966949-1 1.141153-2 5.694838-1 1.273662-2 4.634741-1 1.410021-2 3.825352-1 1.570494-2 3.109969-1 1.745932-2 2.534348-1 1.928913-2 2.084623-1 2.139308-2 1.698545-1 2.334970-2 1.426443-1 2.574057-2 1.173278-1 2.825681-2 9.708270-2 3.152121-2 7.765637-2 3.465794-2 6.385941-2 3.832836-2 5.187621-2 4.276182-2 4.124973-2 4.640756-2 3.474736-2 5.100427-2 2.849169-2 5.673714-2 2.271816-2 6.300499-2 1.817991-2 6.983709-2 1.458620-2 7.757335-2 1.164140-2 8.522334-2 9.512524-3 9.493598-2 7.543424-3 1.058309-1 5.972964-3 1.179451-1 4.729599-3 1.285190-1 3.932136-3 1.426188-1 3.141225-3 1.551773-1 2.624294-3 1.696047-1 2.172618-3 1.885343-1 1.737694-3 2.081334-1 1.413292-3 2.280793-1 1.168895-3 2.499266-1 9.695770-4 2.780113-1 7.831584-4 3.060021-1 6.480615-4 3.371417-1 5.377225-4 3.808653-1 4.284192-4 4.216965-1 3.568366-4 4.683103-1 2.977605-4 5.188000-1 2.516619-4 5.691600-1 2.175683-4 6.428727-1 1.816835-4 7.244360-1 1.542201-4 8.067354-1 1.345976-4 9.233409-1 1.150643-4 1.070165+0 9.872025-5 1.286622+0 8.182325-5 1.546860+0 6.781835-5 1.859734+0 5.621053-5 2.235892+0 4.658952-5 2.688134+0 3.861523-5 3.231848+0 3.200584-5 3.885536+0 2.652770-5 4.671441+0 2.198721-5 5.616308+0 1.822387-5 6.752287+0 1.510467-5 8.118035+0 1.251935-5 9.760024+0 1.037653-5 1.000000+1 2.047111-5 1 19000 7 0 3.910200+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.818702+1 1.228275-6-1.702258+1 1.332390-6-1.556308+1 1.388679-6-1.384613+1 1.420325-6-1.206721+1 1.438781-6-1.041717+1 1.452147-6-8.681407+0 1.460253-6-7.258207+0 1.466579-6-5.847369+0 1.471422-6-4.512069+0 1.475130-6-3.282657+0 1.477969-6-2.178972+0 1.479128-6-1.677564+0 1.481157-6-7.130613-1 1.482679-6 9.830855-2 1.483820-6 7.687019-1 1.484676-6 1.314435+0 1.485960-6 2.224021+0 1.486601-6 2.738072+0 1.491753-6 7.430320+0 1.493663-6 9.559680+0 1.495022-6 1.168914+1 1.501886-6 1.990839+1 1.506805-6 2.529343+1 1.510466-6 2.718076+1 1.512868-6 2.662326+1 1.515285-6 2.458481+1 1.517373-6 2.144459+1 1.519001-6 1.800996+1 1.520189-6 1.460686+1 1.522477-6 7.214262+0 1.523335-6 4.098341+0 1.523721-6 2.492012+0 1.523964-6 1.283934+0 1.524186-6 3.101131-1 1.524602-6-1.396473+0 1.526420-6-8.681047+0 1.527381-6-1.303347+1 1.528072-6-1.659046+1 1.528619-6-1.900534+1 1.530690-6-1.015346+1 1.531111-6-8.102938+0 1.531341-6-6.817624+0 1.531764-6-4.865617+0 1.532147-6-3.240358+0 1.532483-6-1.881211+0 1.533070-6 4.091633-1 1.534392-6 5.445887+0 1.534722-6 6.794295+0 1.535168-6 8.737487+0 1.535947-6 1.148533+1 1.538493-6 1.899045+1 1.540184-6 2.298873+1 1.542581-6 2.673657+1 1.544905-6 2.871372+1 1.548559-6 2.864826+1 1.552746-6 2.525780+1 1.560102-6 1.615870+1 1.561596-6 1.393897+1 1.567401-6 7.891035+0 1.568649-6 6.246187+0 1.570225-6 4.772869+0 1.571012-6 4.146547+0 1.572583-6 3.033542+0 1.574152-6 2.060955+0 1.575718-6 1.195516+0 1.577280-6 4.161329-1 1.578840-6-2.919536-1 1.580396-6-9.397097-1 1.581950-6-1.535614+0 1.585047-6-2.597583+0 1.588136-6-3.519309+0 1.591213-6-4.328126+0 1.597330-6-5.685107+0 1.606417-6-7.256773+0 1.618367-6-8.794615+0 1.633068-6-1.017181+1 1.661629-6-1.194070+1 1.699821-6-1.335966+1 1.770375-6-1.478489+1 1.906043-6-1.601729+1 2.230879-6-1.703195+1 2.886069-6-1.793614+1 2.932017-6-1.789601+1 2.978342-6-1.713235+1 3.166178-6-1.762399+1 9.516317-6-1.896700+1 1.141264-5-1.946329+1 1.531886-5-1.827174+1 1.720696-5-1.676552+1 1.816821-5-1.515875+1 1.860650-5-1.376632+1 1.878376-5-1.266054+1 1.903031-5-1.044268+1 1.911022-5-1.039155+1 1.915363-5-1.072841+1 1.924610-5-1.214444+1 1.935897-5-1.399738+1 1.949678-5-1.496609+1 1.966989-5-1.492710+1 1.987468-5-1.306725+1 2.037781-5-7.719002+0 2.052754-5-5.786713+0 2.062117-5-4.356223+0 2.066488-5-3.611372+0 2.072719-5-2.443246+0 2.077710-5-1.403134+0 2.082701-5-2.467693-1 2.087692-5 1.046866+0 2.092275-5 2.385999+0 2.096885-5 3.915686+0 2.101332-5 5.611133+0 2.104986-5 7.218466+0 2.109782-5 9.739742+0 2.113636-5 1.231299+1 2.115949-5 1.439503+1 2.127932-5 2.543518+1 2.137994-5 3.549077+1 2.144214-5 3.985437+1 2.148829-5 4.060396+1 2.152875-5 3.900819+1 2.156797-5 3.537586+1 2.162130-5 2.657922+1 2.168047-5 1.359854+1 2.168618-5 1.203704+1 2.173840-5-5.058241-1 2.174003-5-9.937698-1 2.174319-5-1.814935+0 2.174912-5-3.223956+0 2.175950-5-5.509465+0 2.178965-5-1.196548+1 2.179825-5-1.397636+1 2.182499-5-1.861731+1 2.186604-5-2.403187+1 2.187882-5-2.543432+1 2.194318-5-2.010160+1 2.197704-5-1.856718+1 2.200484-5-1.828893+1 2.206391-5-1.903736+1 2.214910-5-2.308883+1 2.220061-5-2.651990+1 2.222792-5-2.446123+1 2.228405-5-2.315266+1 2.233517-5-2.362239+1 2.238540-5-2.551993+1 2.240558-5-2.694668+1 2.249203-5-2.257170+1 2.264447-5-1.457208+1 2.266946-5-1.288472+1 2.273544-5-9.553213+0 2.280954-5-6.145486+0 2.283104-5-4.965265+0 2.285035-5-4.118623+0 2.288423-5-2.883969+0 2.291030-5-2.084723+0 2.294793-5-1.124431+0 2.296704-5-7.296809-1 2.300069-5-2.104668-1 2.301158-5-4.885124-2 2.301693-5 2.835846-2 2.302920-5 1.999045-1 2.304190-5 3.693609-1 2.306527-5 7.087412-1 2.309666-5 1.119694+0 2.312551-5 1.455096+0 2.316732-5 1.980525+0 2.318822-5 2.298726+0 2.319867-5 2.498844+0 2.322528-5 3.195687+0 2.325354-5 3.570270+0 2.332037-5 4.092141+0 2.335908-5 4.496339+0 2.348646-5 5.185214+0 2.358866-5 6.009501+0 2.368069-5 6.184300+0 2.386485-5 6.642227+0 2.407140-5 6.542760+0 2.453069-5 5.699217+0 2.534956-5 3.545189+0 2.590856-5 2.068621+0 2.634775-5 1.022261+0 2.660343-5 4.661461-1 2.663144-5 4.010880-1 2.681111-5 3.728206-2 2.690627-5-1.637102-1 2.717250-5-6.774737-1 2.754955-5-1.346070+0 2.792233-5-1.961635+0 2.861113-5-2.962497+0 2.959744-5-4.157163+0 3.087276-5-5.405122+0 3.278088-5-6.833346+0 3.577462-5-8.445205+0 3.763999-5-9.300018+0 3.828327-5-9.232397+0 3.937823-5-9.716589+0 4.510896-5-1.094331+1 5.215280-5-1.175622+1 6.683439-5-1.229651+1 1.473392-4-1.180633+1 1.895309-4-1.220809+1 2.269418-4-1.333563+1 2.519127-4-1.491970+1 2.675136-4-1.677314+1 2.780862-4-1.906426+1 2.846268-4-2.168962+1 2.877588-4-2.387270+1 2.902950-4-2.283205+1 2.935342-4-2.034744+1 2.944273-4-2.062996+1 2.954428-4-2.257709+1 2.963654-4-2.578300+1 2.974913-4-3.152267+1 3.001703-4-2.021399+1 3.010344-4-1.740719+1 3.022153-4-1.487881+1 3.032212-4-1.376114+1 3.041608-4-1.348777+1 3.089230-4-1.444044+1 3.198935-4-1.289937+1 3.357165-4-1.085747+1 3.493879-4-9.782464+0 3.601408-4-9.457028+0 3.671295-4-9.647700+0 3.710746-4-9.236316+0 3.777020-4-8.337748+0 3.937726-4-7.034541+0 4.159218-4-5.707029+0 4.332858-4-4.881691+0 4.612180-4-3.884931+0 4.936708-4-3.025528+0 5.232991-4-2.433648+0 5.527134-4-1.978232+0 5.838664-4-1.609502+0 6.202662-4-1.277546+0 6.587946-4-1.007764+0 6.936775-4-8.211208-1 7.259316-4-6.962911-1 7.621955-4-5.892041-1 8.031062-4-4.989743-1 8.249385-4-4.600335-1 8.699168-4-4.014814-1 9.115342-4-3.682938-1 9.696820-4-3.466490-1 1.048019-3-3.409817-1 1.096478-3-3.478438-1 1.181382-3-3.769128-1 1.321105-3-4.482429-1 1.944241-3-8.587154-1 2.465828-3-1.246820+0 2.764511-3-1.528203+0 2.995858-3-1.823361+0 3.173074-3-2.145668+0 3.310483-3-2.527160+0 3.407947-3-2.963489+0 3.468488-3-3.413103+0 3.507315-3-3.914783+0 3.539618-3-4.649971+0 3.568618-3-5.340657+0 3.585111-3-5.435773+0 3.602700-3-5.194141+0 3.654646-3-3.803502+0 3.686986-3-3.253996+0 3.733094-3-2.764005+0 3.786554-3-2.365321+0 3.858926-3-1.972027+0 3.960237-3-1.571653+0 4.066810-3-1.254218+0 4.187295-3-9.804531-1 4.325041-3-7.408279-1 4.446749-3-5.749274-1 4.596607-3-4.100952-1 4.716657-3-3.023620-1 4.846858-3-2.039123-1 4.920265-3-1.549392-1 5.046607-3-8.175423-2 5.191128-3-9.997289-3 5.344501-3 5.474423-2 5.453554-3 9.352243-2 5.583099-3 1.355821-1 5.730208-3 1.775082-1 5.885065-3 2.142672-1 6.210478-3 2.719335-1 6.628628-3 3.195148-1 7.227784-3 3.607407-1 8.000285-3 3.780602-1 9.178271-3 3.722579-1 1.229383-2 3.037786-1 1.570494-2 2.304470-1 1.863645-2 1.825637-1 2.203219-2 1.411238-1 2.504448-2 1.133541-1 2.892533-2 8.649426-2 3.261322-2 6.734675-2 3.663223-2 5.131886-2 4.043089-2 3.960254-2 4.373305-2 3.128691-2 4.802304-2 2.252961-2 5.229022-2 1.555659-2 5.538574-2 1.128732-2 5.774709-2 8.417333-3 5.995888-2 5.979713-3 6.143136-2 4.487794-3 6.407145-2 2.021826-3 6.539655-2 8.791408-4 6.650902-2-2.196264-5 6.702703-2-4.385699-4 6.842856-2-1.515062-3 7.068983-2-3.148015-3 7.420276-2-5.414943-3 7.878091-2-8.023962-3 8.522334-2-1.107996-2 9.493598-2-1.468774-2 1.058309-1-1.771408-2 1.214437-1-2.083337-2 1.467843-1-2.408391-2 1.885343-1-2.701766-2 2.650872-1-2.939296-2 4.386211-1-3.107489-2 1.228714+0-3.193281-2 3.710658+0-3.204436-2 1.000000+1-3.205229-2 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.458583-1 1.059963-6 1.945767-1 1.093087-6 2.273692-1 1.127246-6 2.664089-1 1.162473-6 3.130636-1 1.197172-6 3.663730-1 1.230788-6 4.261117-1 1.263353-6 4.928015-1 1.294900-6 5.669858-1 1.325462-6 6.492374-1 1.355068-6 7.401603-1 1.383749-6 8.403908-1 1.411534-6 9.505994-1 1.438451-6 1.071492+0 1.464526-6 1.203813+0 1.489787-6 1.348344+0 1.514258-6 1.505908+0 1.537965-6 1.677371+0 1.560930-6 1.863641+0 1.583178-6 2.065675+0 1.604731-6 2.284475+0 1.625610-6 2.521093+0 1.645837-6 2.776633+0 1.665432-6 3.052252+0 1.684414-6 3.349160+0 1.702803-6 3.668627+0 1.720618-6 4.011979+0 1.737875-6 4.380602+0 1.754594-6 4.775948+0 1.770790-6 5.199528+0 1.786480-6 5.652923+0 1.801679-6 6.137778+0 1.830668-6 7.208802+0 1.857874-6 8.427296+0 1.870842-6 9.097454+0 1.883406-6 9.812619+0 1.895576-6 1.057531+1 1.918788-6 1.224316+1 1.940918-6 1.414545+1 1.961665-6 1.628245+1 1.981115-6 1.867798+1 1.999350-6 2.135612+1 2.016444-6 2.434266+1 2.032471-6 2.766400+1 2.048000-6 3.148095+1 2.061581-6 3.541849+1 2.074786-6 3.991231+1 2.087166-6 4.485919+1 2.098773-6 5.029083+1 2.109654-6 5.623984+1 2.119854-6 6.273955+1 2.129418-6 6.982376+1 2.138383-6 7.752652+1 2.146788-6 8.588200+1 2.154668-6 9.492433+1 2.162056-6 1.046875+2 2.168981-6 1.152054+2 2.175474-6 1.265118+2 2.181561-6 1.386406+2 2.187268-6 1.516262+2 2.192618-6 1.655034+2 2.197633-6 1.803084+2 2.202335-6 1.960792+2 2.206743-6 2.128575+2 2.210876-6 2.306892+2 2.214750-6 2.496253+2 2.218383-6 2.697213+2 2.221788-6 2.910352+2 2.224980-6 3.136237+2 2.230966-6 3.646113+2 2.236204-6 4.215145+2 2.240786-6 4.842080+2 2.244796-6 5.521050+2 2.248305-6 6.241940+2 2.251375-6 6.991629+2 2.254062-6 7.755606+2 2.256412-6 8.519494+2 2.258469-6 9.270223+2 2.262068-6 1.079421+3 2.266792-6 1.326793+3 2.278461-6 2.232418+3 2.282656-6 2.680752+3 2.287365-6 3.268797+3 2.291048-6 3.791102+3 2.295244-6 4.448617+3 2.299100-6 5.104141+3 2.300838-6 5.412720+3 2.305435-6 6.256478+3 2.306667-6 6.486735+3 2.310363-6 7.178557+3 2.312672-6 7.605586+3 2.315143-6 8.051458+3 2.317918-6 8.531085+3 2.320236-6 8.908492+3 2.323216-6 9.354104+3 2.326712-6 9.807363+3 2.329160-6 1.007232+4 2.332438-6 1.035102+4 2.335310-6 1.051757+4 2.338624-6 1.061436+4 2.339999-6 1.062378+4 2.344411-6 1.053220+4 2.345376-6 1.048780+4 2.350000-6 1.015987+4 2.351914-6 9.971795+3 2.354044-6 9.729894+3 2.356782-6 9.373286+3 2.359940-6 8.907335+3 2.362700-6 8.461112+3 2.365006-6 8.067059+3 2.367971-6 7.540294+3 2.371222-6 6.947749+3 2.372306-6 6.748940+3 2.376530-6 5.979081+3 2.378641-6 5.602127+3 2.382337-6 4.964809+3 2.385865-6 4.391231+3 2.389904-6 3.785649+3 2.392983-6 3.364258+3 2.397647-6 2.795961+3 2.403377-6 2.211993+3 2.413036-6 1.486417+3 2.416874-6 1.274577+3 2.420700-6 1.098684+3 2.424511-6 9.534155+2 2.428307-6 8.336918+2 2.432089-6 7.350103+2 2.435856-6 6.534845+2 2.439607-6 5.858359+2 2.443345-6 5.293526+2 2.447068-6 4.818285+2 2.450776-6 4.414937+2 2.454469-6 4.069429+2 2.458149-6 3.770692+2 2.465478-6 3.279842+2 2.472751-6 2.894286+2 2.479967-6 2.583225+2 2.487126-6 2.326941+2 2.494230-6 2.112288+2 2.501277-6 1.930123+2 2.508270-6 1.773844+2 2.515209-6 1.638535+2 2.522093-6 1.520443+2 2.528923-6 1.416644+2 2.535700-6 1.324818+2 2.542424-6 1.243103+2 2.555766-6 1.103741+2 2.568901-6 9.901317+1 2.581830-6 8.960381+1 2.594557-6 8.170965+1 2.607085-6 7.501337+1 2.619418-6 6.927743+1 2.631557-6 6.432145+1 2.643507-6 6.000692+1 2.655271-6 5.622501+1 2.666850-6 5.288735+1 2.689648-6 4.722760+1 2.711732-6 4.266053+1 2.733127-6 3.891517+1 2.753853-6 3.580229+1 2.773932-6 3.318236+1 2.793383-6 3.095333+1 2.812226-6 2.904068+1 2.830480-6 2.738609+1 2.865848-6 2.462081+1 2.899005-6 2.244594+1 2.930090-6 2.070559+1 2.959232-6 1.928839+1 2.986553-6 1.811779+1 3.012166-6 1.714072+1 3.060190-6 1.555066+1 3.102212-6 1.436645+1 3.138981-6 1.347001+1 3.203326-6 1.213063+1 3.251585-6 1.127956+1 3.323974-6 1.019790+1 3.429802-6 8.903608+0 3.563557-6 7.614817+0 3.737740-6 6.158544+0 3.781286-6 5.770755+0 3.813945-6 5.448912+0 3.838440-6 5.175584+0 3.856810-6 4.941531+0 3.870589-6 4.741832+0 3.891256-6 4.386516+0 3.901589-6 4.177356+0 3.912460-6 3.933575+0 3.922090-6 3.701628+0 3.943911-6 3.189657+0 3.948644-6 3.101012+0 3.952701-6 3.038205+0 3.965900-6 2.958112+0 3.970265-6 2.987640+0 3.975614-6 3.072051+0 3.979989-6 3.185354+0 3.981324-6 3.228455+0 3.985328-6 3.382996+0 3.989713-6 3.597515+0 3.993056-6 3.793894+0 4.000211-6 4.311427+0 4.006900-6 4.912699+0 4.019909-6 6.366207+0 4.024183-6 6.906907+0 4.029039-6 7.545129+0 4.033896-6 8.197300+0 4.038336-6 8.794855+0 4.039551-6 8.957346+0 4.045933-6 9.791359+0 4.049276-6 1.020883+1 4.057784-6 1.117942+1 4.061127-6 1.151537+1 4.067509-6 1.207157+1 4.072526-6 1.242281+1 4.077894-6 1.270951+1 4.082278-6 1.287402+1 4.085566-6 1.295662+1 4.090498-6 1.301685+1 4.095430-6 1.300457+1 4.101892-6 1.288866+1 4.106407-6 1.274852+1 4.111606-6 1.253610+1 4.116131-6 1.231436+1 4.121320-6 1.202698+1 4.125855-6 1.175427+1 4.140747-6 1.079383+1 4.158595-6 9.688672+0 4.168946-6 9.133273+0 4.178974-6 8.669359+0 4.188689-6 8.288222+0 4.207511-6 7.713857+0 4.225156-6 7.322141+0 4.241699-6 7.039474+0 4.272716-6 6.639342+0 4.299856-6 6.369856+0 4.347352-6 5.995996+0 4.489848-6 5.079207+0 4.511950-6 4.907439+0 4.538403-6 4.688750+0 4.560744-6 4.531755+0 4.571915-6 4.482451+0 4.583086-6 4.463939+0 4.594256-6 4.483272+0 4.602164-6 4.522164+0 4.608095-6 4.565245+0 4.616991-6 4.651131+0 4.625888-6 4.759466+0 4.661281-6 5.288252+0 4.672451-6 5.434912+0 4.677560-6 5.491553+0 4.685222-6 5.561636+0 4.692885-6 5.612226+0 4.699424-6 5.639370+0 4.705964-6 5.651890+0 4.717134-6 5.641585+0 4.728305-6 5.596715+0 4.739476-6 5.525272+0 4.759882-6 5.353722+0 4.800450-6 4.987696+0 4.826396-6 4.792609+0 4.838247-6 4.719695+0 4.850097-6 4.659089+0 4.861948-6 4.612475+0 4.873798-6 4.581241+0 4.882440-6 4.568546+0 4.895402-6 4.564967+0 4.908364-6 4.577597+0 4.956751-6 4.674746+0 4.976930-6 4.686332+0 4.992302-6 4.672560+0 5.016003-6 4.620712+0 5.064152-6 4.494503+0 5.100824-6 4.440506+0 5.161944-6 4.380887+0 5.415663-6 4.087849+0 5.548623-6 3.944419+0 5.809862-6 3.705794+0 7.406468-6 2.668322+0 7.829994-6 2.460868+0 8.329419-6 2.234147+0 8.712561-6 2.068833+0 8.890031-6 1.994726+0 9.350000-6 1.806280+0 9.700000-6 1.668779+0 1.025071-5 1.461446+0 1.088500-5 1.228367+0 1.143030-5 1.035613+0 1.178750-5 9.123288-1 1.228800-5 7.443519-1 1.253573-5 6.637122-1 1.292747-5 5.405231-1 1.333521-5 4.199267-1 1.374806-5 3.075505-1 1.396029-5 2.542989-1 1.416920-5 2.057375-1 1.440000-5 1.566348-1 1.457728-5 1.226212-1 1.477655-5 8.870066-2 1.500000-5 5.639788-2 1.518750-5 3.451641-2 1.536000-5 1.903798-2 1.544942-5 1.292010-2 1.554224-5 8.076169-3 1.563433-5 4.865283-3 1.572571-5 3.307357-3 1.581637-5 3.378401-3 1.590633-5 4.849506-3 1.599558-5 6.990190-3 1.610592-5 8.721418-3 1.611689-5 8.762296-3 1.612784-5 8.775113-3 1.623690-5 7.522732-3 1.628023-5 6.564881-3 1.636656-5 4.684373-3 1.645222-5 3.670675-3 1.653720-5 4.075261-3 1.662153-5 6.125013-3 1.670519-5 9.917088-3 1.678820-5 1.549468-2 1.695292-5 3.213943-2 1.711507-5 5.624936-2 1.728000-5 8.937554-2 1.743181-5 1.282383-1 1.758648-5 1.768843-1 1.773873-5 2.345114-1 1.788860-5 3.015292-1 1.803613-5 3.783543-1 1.818135-5 4.654120-1 1.832431-5 5.631463-1 1.846503-5 6.720977-1 1.860355-5 7.930784-1 1.873991-5 9.267990-1 1.900837-5 1.234177+0 1.926843-5 1.594219+0 1.952037-5 2.012268+0 1.976444-5 2.493437+0 2.000088-5 3.042955+0 2.022993-5 3.666611+0 2.048000-5 4.463915+0 2.089296-5 6.103071+0 2.199471-5 1.347471+1 2.247947-5 1.893377+1 2.277792-5 2.336217+1 2.305801-5 2.851606+1 2.332087-5 3.447951+1 2.364022-5 4.360936+1 2.379906-5 4.911612+1 2.402710-5 5.848412+1 2.411990-5 6.288207+1 2.432744-5 7.417080+1 2.450868-5 8.598880+1 2.468504-5 9.969756+1 2.485038-5 1.150208+2 2.500539-5 1.320901+2 2.515071-5 1.510407+2 2.528695-5 1.720103+2 2.541467-5 1.951389+2 2.553484-5 2.206682+2 2.564666-5 2.484448+2 2.575190-5 2.789156+2 2.585056-5 3.121304+2 2.594306-5 3.482394+2 2.602977-5 3.873930+2 2.611107-5 4.297419+2 2.618728-5 4.754385+2 2.625873-5 5.246380+2 2.632572-5 5.775008+2 2.638852-5 6.341949+2 2.644739-5 6.949013+2 2.650259-5 7.598195+2 2.655433-5 8.291759+2 2.660284-5 9.032285+2 2.664832-5 9.822677+2 2.669095-5 1.066609+3 2.673093-5 1.156575+3 2.676840-5 1.252470+3 2.683866-5 1.470722+3 2.690014-5 1.716389+3 2.695393-5 1.988281+3 2.700100-5 2.282833+3 2.704219-5 2.594564+3 2.707823-5 2.916889+3 2.711011-5 3.246845+3 2.716150-5 3.881576+3 2.724732-5 5.284581+3 2.735055-5 7.674233+3 2.735724-5 7.858809+3 2.749191-5 1.239073+4 2.755925-5 1.519916+4 2.756766-5 1.557114+4 2.762658-5 1.827304+4 2.764973-5 1.936841+4 2.770234-5 2.188181+4 2.773916-5 2.362390+4 2.777468-5 2.525660+4 2.780699-5 2.667580+4 2.783397-5 2.779685+4 2.786866-5 2.913161+4 2.790229-5 3.029063+4 2.793593-5 3.129762+4 2.796718-5 3.208328+4 2.798987-5 3.255787+4 2.802492-5 3.312514+4 2.806083-5 3.349334+4 2.809950-5 3.364810+4 2.812631-5 3.361108+4 2.818811-5 3.309921+4 2.822939-5 3.245299+4 2.824703-5 3.211004+4 2.830696-5 3.068307+4 2.834525-5 2.959055+4 2.838725-5 2.826308+4 2.843441-5 2.664826+4 2.845693-5 2.584253+4 2.849069-5 2.460332+4 2.852446-5 2.333884+4 2.856653-5 2.174599+4 2.861377-5 1.995863+4 2.866591-5 1.801791+4 2.871223-5 1.634641+4 2.877006-5 1.435689+4 2.882128-5 1.270749+4 2.883835-5 1.218412+4 2.890665-5 1.023424+4 2.898699-5 8.250101+3 2.911856-5 5.722773+3 2.919488-5 4.631635+3 2.926101-5 3.875451+3 2.929101-5 3.582965+3 2.934725-5 3.108462+3 2.939646-5 2.762181+3 2.943953-5 2.503941+3 2.947721-5 2.307356+3 2.954315-5 2.018340+3 2.959260-5 1.839263+3 2.966678-5 1.617669+3 2.975599-5 1.407434+3 2.982923-5 1.268364+3 2.990248-5 1.151690+3 2.997572-5 1.052305+3 3.004896-5 9.665355+2 3.012220-5 8.916908+2 3.019544-5 8.257549+2 3.032659-5 7.252591+2 3.041516-5 6.674751+2 3.057572-5 5.782509+2 3.076581-5 4.916969+2 3.101645-5 4.002815+2 3.116839-5 3.558237+2 3.128521-5 3.274119+2 3.138061-5 3.080172+2 3.143646-5 2.982193+2 3.149231-5 2.895205+2 3.157363-5 2.786857+2 3.165653-5 2.696406+2 3.177646-5 2.595015+2 3.187442-5 2.532045+2 3.202288-5 2.458798+2 3.238470-5 2.314945+2 3.260830-5 2.216091+2 3.332993-5 1.890600+2 3.365703-5 1.772558+2 3.409092-5 1.642637+2 3.457845-5 1.520423+2 3.503314-5 1.422993+2 3.537911-5 1.357595+2 3.605356-5 1.246620+2 3.669248-5 1.157856+2 3.730161-5 1.084684+2 3.787267-5 1.024192+2 3.845203-5 9.696869+1 3.937518-5 8.946177+1 4.073803-5 8.014917+1 4.265795-5 6.984535+1 4.450000-5 6.204835+1 4.680852-5 5.393543+1 4.786301-5 5.040921+1 4.838172-5 4.835413+1 4.886407-5 4.606831+1 4.910462-5 4.506242+1 4.922489-5 4.471568+1 4.934516-5 4.452999+1 4.946544-5 4.453874+1 4.957151-5 4.472111+1 4.974623-5 4.536010+1 5.018707-5 4.784944+1 5.030735-5 4.838212+1 5.040000-5 4.866465+1 5.048256-5 4.880800+1 5.058769-5 4.883696+1 5.066816-5 4.874723+1 5.078844-5 4.845472+1 5.102450-5 4.750629+1 5.126888-5 4.638171+1 5.144334-5 4.569425+1 5.168036-5 4.502909+1 5.193855-5 4.461362+1 5.279520-5 4.380041+1 5.371887-5 4.280296+1 5.529344-5 4.131275+1 5.702136-5 3.994718+1 5.924132-5 3.857284+1 6.215265-5 3.726685+1 6.531306-5 3.629089+1 6.900000-5 3.567827+1 7.273648-5 3.549167+1 7.585776-5 3.560992+1 7.900000-5 3.588441+1 8.222426-5 3.628428+1 8.659618-5 3.699573+1 9.900000-5 3.932651+1 1.113498-4 4.153908+1 1.255308-4 4.362364+1 1.360320-4 4.482821+1 1.471574-4 4.566533+1 1.598016-4 4.608787+1 1.724934-4 4.595733+1 1.863322-4 4.524317+1 2.001013-4 4.385706+1 2.111145-4 4.230265+1 2.232489-4 4.009285+1 2.353608-4 3.729772+1 2.446236-4 3.473747+1 2.508770-4 3.283035+1 2.590773-4 3.002207+1 2.641970-4 2.813176+1 2.695253-4 2.600777+1 2.757462-4 2.334604+1 2.809934-4 2.094309+1 2.853773-4 1.882883+1 2.888533-4 1.708411+1 2.922036-4 1.534665+1 2.954833-4 1.360340+1 2.980310-4 1.222902+1 2.995368-4 1.141121+1 3.021404-4 9.993252+0 3.045813-4 8.669841+0 3.068697-4 7.449351+0 3.090515-4 6.322195+0 3.100181-4 5.840151+0 3.111356-4 5.300500+0 3.129118-4 4.492224+0 3.138898-4 4.079587+0 3.163367-4 3.181827+0 3.174015-4 2.867031+0 3.178903-4 2.741227+0 3.193469-4 2.446966+0 3.202419-4 2.334932+0 3.207124-4 2.300227+0 3.213525-4 2.282801+0 3.219725-4 2.301917+0 3.225732-4 2.357759+0 3.228357-4 2.394570+0 3.231552-4 2.450136+0 3.237189-4 2.578212+0 3.242650-4 2.740239+0 3.247941-4 2.933343+0 3.253066-4 3.153407+0 3.267501-4 3.916931+0 3.272015-4 4.182354+0 3.276388-4 4.440744+0 3.280624-4 4.685054+0 3.286892-4 5.019857+0 3.292525-4 5.276051+0 3.299816-4 5.518632+0 3.305913-4 5.628001+0 3.313544-4 5.635852+0 3.318085-4 5.576360+0 3.324367-4 5.431573+0 3.334366-4 5.139414+0 3.339139-4 5.033150+0 3.343619-4 4.999832+0 3.345754-4 5.019240+0 3.350054-4 5.156910+0 3.353770-4 5.418022+0 3.357406-4 5.845670+0 3.360815-4 6.446273+0 3.364011-4 7.229821+0 3.367007-4 8.201807+0 3.369816-4 9.363370+0 3.372449-4 1.071157+1 3.374918-4 1.223979+1 3.377232-4 1.393822+1 3.379402-4 1.579440+1 3.381436-4 1.779378+1 3.391508-4 3.237782+1 3.396299-4 4.284671+1 3.399967-4 5.283733+1 3.404086-4 6.644346+1 3.407526-4 8.000906+1 3.411120-4 9.658572+1 3.413754-4 1.104492+2 3.415454-4 1.202187+2 3.418272-4 1.379208+2 3.421373-4 1.596983+2 3.424899-4 1.875727+2 3.427970-4 2.146733+2 3.430250-4 2.365636+2 3.435582-4 2.938014+2 3.437419-4 3.155145+2 3.445817-4 4.275445+2 3.450081-4 4.919526+2 3.455020-4 5.720435+2 3.457845-4 6.200610+2 3.460153-4 6.602223+2 3.461918-4 6.914146+2 3.464479-4 7.371685+2 3.467075-4 7.839209+2 3.470527-4 8.461489+2 3.473171-4 8.933859+2 3.477035-4 9.609905+2 3.480955-4 1.026724+3 3.482232-4 1.047308+3 3.486749-4 1.116094+3 3.489973-4 1.160623+3 3.494014-4 1.210048+3 3.497925-4 1.250297+3 3.501622-4 1.280810+3 3.505744-4 1.305665+3 3.509304-4 1.319072+3 3.511053-4 1.322896+3 3.514988-4 1.324875+3 3.518816-4 1.318181+3 3.522002-4 1.306395+3 3.528838-4 1.263595+3 3.533597-4 1.221392+3 3.538167-4 1.172951+3 3.541211-4 1.137130+3 3.544877-4 1.090978+3 3.549614-4 1.027667+3 3.552005-4 9.946111+2 3.557386-4 9.188366+2 3.562630-4 8.447469+2 3.566080-4 7.967125+2 3.572511-4 7.103089+2 3.580817-4 6.075864+2 3.596615-4 4.485749+2 3.603014-4 3.987849+2 3.608000-4 3.656214+2 3.612617-4 3.390368+2 3.619650-4 3.054988+2 3.624032-4 2.884093+2 3.628818-4 2.726716+2 3.634116-4 2.583754+2 3.637143-4 2.514959+2 3.643813-4 2.391459+2 3.645671-4 2.363035+2 3.651328-4 2.289904+2 3.662130-4 2.194126+2 3.671890-4 2.141218+2 3.679688-4 2.113310+2 3.687839-4 2.092771+2 3.706944-4 2.063277+2 3.731444-4 2.041571+2 3.757851-4 2.026302+2 3.806189-4 2.010508+2 3.863748-4 2.002521+2 4.022493-4 1.999847+2 4.102397-4 1.993495+2 4.146420-4 1.981536+2 4.207603-4 1.954389+2 4.231746-4 1.951297+2 4.251182-4 1.960722+2 4.266599-4 1.978769+2 4.284041-4 2.011168+2 4.303823-4 2.060424+2 4.342600-4 2.167741+2 4.358272-4 2.205043+2 4.372543-4 2.233480+2 4.392564-4 2.264724+2 4.412695-4 2.288114+2 4.468041-4 2.331758+2 4.520444-4 2.362239+2 4.593332-4 2.397185+2 4.688459-4 2.436780+2 4.849103-4 2.486953+2 5.165051-4 2.556817+2 5.449197-4 2.600410+2 5.759199-4 2.632375+2 6.160966-4 2.656781+2 6.703397-4 2.664870+2 7.161434-4 2.653822+2 7.870741-4 2.618428+2 8.677966-4 2.572264+2 9.613702-4 2.509704+2 1.116582-3 2.401995+2 1.312706-3 2.263472+2 1.501561-3 2.139519+2 1.731779-3 2.002820+2 1.957385-3 1.880354+2 2.114895-3 1.799132+2 2.293817-3 1.712008+2 2.478988-3 1.624310+2 2.683799-3 1.531870+2 2.893711-3 1.439487+2 3.004341-3 1.391377+2 3.114987-3 1.342661+2 3.201424-3 1.304377+2 3.279299-3 1.269099+2 3.363730-3 1.229418+2 3.488798-3 1.167828+2 3.551839-3 1.134636+2 3.608621-3 1.102619+2 3.681132-3 1.057803+2 3.717204-3 1.033295+2 3.750269-3 1.009043+2 3.797541-3 9.701739+1 3.821923-3 9.473361+1 3.845892-3 9.221001+1 3.867490-3 8.960041+1 3.886356-3 8.695821+1 3.901929-3 8.444946+1 3.916978-3 8.170686+1 3.934937-3 7.806894+1 3.965540-3 7.179461+1 3.978263-3 6.972412+1 3.987394-3 6.864872+1 3.997960-3 6.795326+1 4.006438-3 6.787597+1 4.010343-3 6.799086+1 4.016201-3 6.834082+1 4.022058-3 6.889794+1 4.028632-3 6.975467+1 4.037747-3 7.130174+1 4.052455-3 7.446931+1 4.079505-3 8.121273+1 4.089143-3 8.355946+1 4.105580-3 8.722164+1 4.122936-3 9.051472+1 4.135640-3 9.255430+1 4.146915-3 9.413280+1 4.158396-3 9.554913+1 4.177191-3 9.753352+1 4.209436-3 1.002450+2 4.233123-3 1.018524+2 4.258472-3 1.033147+2 4.287327-3 1.047252+2 4.347723-3 1.070238+2 4.414892-3 1.088354+2 4.487071-3 1.101562+2 4.603890-3 1.114247+2 4.720274-3 1.119502+2 4.877375-3 1.118062+2 5.066374-3 1.108288+2 5.308844-3 1.088013+2 5.574000-3 1.060611+2 5.967346-3 1.015356+2 6.487978-3 9.546591+1 7.000163-3 8.968866+1 7.874931-3 8.076176+1 8.768884-3 7.296118+1 9.752061-3 6.563704+1 1.093049-2 5.822027+1 1.209423-2 5.201649+1 1.348963-2 4.569721+1 1.490602-2 4.026729+1 1.605554-2 3.646601+1 1.770344-2 3.178899+1 1.974591-2 2.707188+1 2.230337-2 2.247969+1 2.608223-2 1.758070+1 3.650078-2 1.024510+1 4.330147-2 7.745177+0 5.326711-2 5.473954+0 6.162613-2 4.260155+0 7.297026-2 3.162043+0 8.821789-2 2.242156+0 1.089557-1 1.520441+0 1.381188-1 9.729388-1 1.861564-1 5.504033-1 2.484019-1 3.149971-1 3.458138-1 1.647758-1 5.434808-1 6.736571-2 1.120601+0 1.593201-2 3.384160+0 1.749604-3 1.022000+1 1.918729-4 3.086391+1 2.103884-5 9.320751+1 2.306868-6 2.814822+2 2.529431-7 8.500626+2 2.773466-8 3.162278+3 2.004124-9 1.000000+4 2.00412-10 3.162278+4 2.00412-11 1.000000+5 2.00412-12 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.582400-6 1.258900-6 2.507900-6 1.584900-6 3.974700-6 1.995300-6 6.299400-6 2.511900-6 9.983900-6 3.162300-6 1.582300-5 3.981100-6 2.507800-5 5.011900-6 3.974600-5 6.309600-6 6.299300-5 7.943300-6 9.983600-5 1.000000-5 1.582300-4 1.258900-5 2.507700-4 1.584900-5 3.972600-4 1.995300-5 6.292300-4 2.511900-5 9.967600-4 3.162300-5 1.579200-3 3.981100-5 2.502100-3 5.011900-5 3.964100-3 6.309600-5 6.279700-3 7.943300-5 9.937000-3 1.000000-4 1.571700-2 1.258900-4 2.482000-2 1.584900-4 3.911800-2 1.995300-4 6.144900-2 2.511900-4 9.607900-2 3.162300-4 1.491700-1 3.981100-4 2.289300-1 5.011900-4 3.457200-1 6.309600-4 5.095100-1 7.943300-4 7.266400-1 1.000000-3 9.954400-1 1.258900-3 1.306900+0 1.584900-3 1.656900+0 1.995300-3 2.061800+0 2.511900-3 2.549500+0 3.162300-3 3.131300+0 3.981100-3 3.800000+0 5.011900-3 4.546400+0 6.309600-3 5.331000+0 7.943300-3 6.105200+0 1.000000-2 6.841500+0 1.258900-2 7.550300+0 1.584900-2 8.203400+0 1.995300-2 8.799300+0 2.511900-2 9.339800+0 3.162300-2 9.689100+0 3.981100-2 9.892900+0 5.011900-2 9.962800+0 6.309600-2 9.903300+0 7.943300-2 9.714000+0 1.000000-1 9.406500+0 1.258900-1 9.002100+0 1.584900-1 8.525600+0 1.995300-1 7.999000+0 2.511900-1 7.442700+0 3.162300-1 6.874200+0 3.981100-1 6.307800+0 5.011900-1 5.753200+0 6.309600-1 5.217800+0 7.943300-1 4.705000+0 1.000000+0 4.217900+0 1.258900+0 3.758600+0 1.584900+0 3.328700+0 1.995300+0 2.929600+0 2.511900+0 2.562300+0 3.162300+0 2.227400+0 3.981100+0 1.925000+0 5.011900+0 1.654500+0 6.309600+0 1.414600+0 7.943300+0 1.203700+0 1.000000+1 1.019700+0 1.258900+1 8.604200-1 1.584900+1 7.233500-1 1.995300+1 6.061100-1 2.511900+1 5.063500-1 3.162300+1 4.218800-1 3.981100+1 3.506300-1 5.011900+1 2.907800-1 6.309600+1 2.406600-1 7.943300+1 1.988100-1 1.000000+2 1.639700-1 1.258900+2 1.350400-1 1.584900+2 1.110500-1 1.995300+2 9.120900-2 2.511900+2 7.482500-2 3.162300+2 6.131800-2 3.981100+2 5.019800-2 5.011900+2 4.105700-2 6.309600+2 3.355000-2 7.943300+2 2.739400-2 1.000000+3 2.235000-2 1.258900+3 1.822200-2 1.584900+3 1.484600-2 1.995300+3 1.208800-2 2.511900+3 9.836100-3 3.162300+3 7.999100-3 3.981100+3 6.501600-3 5.011900+3 5.281700-3 6.309600+3 4.288600-3 7.943300+3 3.480500-3 1.000000+4 2.823400-3 1.258900+4 2.289400-3 1.584900+4 1.855600-3 1.995300+4 1.503400-3 2.511900+4 1.217500-3 3.162300+4 9.856800-4 3.981100+4 7.976900-4 5.011900+4 6.453400-4 6.309600+4 5.219000-4 7.943300+4 4.219400-4 1.000000+5 3.410200-4 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510167-4 3.162278-4 3.159553-4 3.981072-4 3.976782-4 5.011872-4 5.005116-4 6.309573-4 6.298946-4 7.943282-4 7.926674-4 1.000000-3 9.974161-4 1.258925-3 1.254920-3 1.584893-3 1.578694-3 1.995262-3 1.985594-3 2.511886-3 2.496749-3 3.162278-3 3.138487-3 3.981072-3 3.943661-3 5.011872-3 4.953458-3 6.309573-3 6.218580-3 7.943282-3 7.802265-3 1.000000-2 9.782075-3 1.258925-2 1.225232-2 1.584893-2 1.532702-2 1.995262-2 1.914716-2 2.511886-2 2.388629-2 3.162278-2 2.974377-2 3.981072-2 3.695788-2 5.011872-2 4.580952-2 6.309573-2 5.662453-2 7.943282-2 6.978195-2 1.000000-1 8.573429-2 1.258925-1 1.049881-1 1.584893-1 1.281090-1 1.995262-1 1.557901-1 2.511886-1 1.887897-1 3.162278-1 2.279993-1 3.981072-1 2.744337-1 5.011872-1 3.292798-1 6.309573-1 3.938692-1 7.943282-1 4.698924-1 1.000000+0 5.593628-1 1.258925+0 6.647354-1 1.584893+0 7.890896-1 1.995262+0 9.361830-1 2.511886+0 1.110722+0 3.162278+0 1.318416+0 3.981072+0 1.566320+0 5.011872+0 1.863095+0 6.309573+0 2.219239+0 7.943282+0 2.647725+0 1.000000+1 3.164296+0 1.258925+1 3.788296+0 1.584893+1 4.543404+0 1.995262+1 5.458603+0 2.511886+1 6.569323+0 3.162278+1 7.919269+0 3.981072+1 9.561705+0 5.011872+1 1.156244+1 6.309573+1 1.400206+1 7.943282+1 1.697969+1 1.000000+2 2.061705+1 1.258925+2 2.506430+1 1.584893+2 3.050595+1 1.995262+2 3.716915+1 2.511886+2 4.533417+1 3.162278+2 5.534665+1 3.981072+2 6.763128+1 5.011872+2 8.271410+1 6.309573+2 1.012433+2 7.943282+2 1.240190+2 1.000000+3 1.520276+2 1.258925+3 1.864927+2 1.584893+3 2.289220+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88202-10 1.995262-5 1.090640-9 2.511886-5 1.728519-9 3.162278-5 2.739543-9 3.981072-5 4.341919-9 5.011872-5 6.881151-9 6.309573-5 1.090515-8 7.943282-5 1.727728-8 1.000000-4 2.737428-8 1.258925-4 4.336235-8 1.584893-4 6.866474-8 1.995262-4 1.086958-7 2.511886-4 1.719755-7 3.162278-4 2.724891-7 3.981072-4 4.289651-7 5.011872-4 6.756743-7 6.309573-4 1.062737-6 7.943282-4 1.660849-6 1.000000-3 2.583899-6 1.258925-3 4.004929-6 1.584893-3 6.199515-6 1.995262-3 9.668607-6 2.511886-3 1.513768-5 3.162278-3 2.379062-5 3.981072-3 3.741118-5 5.011872-3 5.841386-5 6.309573-3 9.099383-5 7.943282-3 1.410169-4 1.000000-2 2.179253-4 1.258925-2 3.369363-4 1.584893-2 5.219128-4 1.995262-2 8.054677-4 2.511886-2 1.232572-3 3.162278-2 1.879004-3 3.981072-2 2.852834-3 5.011872-2 4.309207-3 6.309573-2 6.471202-3 7.943282-2 9.650876-3 1.000000-1 1.426571-2 1.258925-1 2.090443-2 1.584893-1 3.038029-2 1.995262-1 4.373612-2 2.511886-1 6.239897-2 3.162278-1 8.822850-2 3.981072-1 1.236734-1 5.011872-1 1.719074-1 6.309573-1 2.370882-1 7.943282-1 3.244358-1 1.000000+0 4.406372-1 1.258925+0 5.941900-1 1.584893+0 7.958036-1 1.995262+0 1.059079+0 2.511886+0 1.401165+0 3.162278+0 1.843862+0 3.981072+0 2.414752+0 5.011872+0 3.148777+0 6.309573+0 4.090334+0 7.943282+0 5.295558+0 1.000000+1 6.835704+0 1.258925+1 8.800958+0 1.584893+1 1.130553+1 1.995262+1 1.449402+1 2.511886+1 1.854954+1 3.162278+1 2.370351+1 3.981072+1 3.024901+1 5.011872+1 3.855628+1 6.309573+1 4.909368+1 7.943282+1 6.245314+1 1.000000+2 7.938295+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623571+2 2.511886+2 2.058545+2 3.162278+2 2.608811+2 3.981072+2 3.304759+2 5.011872+2 4.184731+2 6.309573+2 5.297140+2 7.943282+2 6.703092+2 1.000000+3 8.479724+2 1.258925+3 1.072433+3 1.584893+3 1.355971+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.450000-6 5.558480+5 5.495409-6 5.171685+5 5.580000-6 4.498600+5 5.688529-6 3.745367+5 5.770000-6 3.253240+5 5.850000-6 2.824280+5 5.920000-6 2.486960+5 6.000000-6 2.143400+5 6.070000-6 1.874678+5 6.150000-6 1.600548+5 6.230000-6 1.359066+5 6.290000-6 1.197160+5 6.350000-6 1.050298+5 6.400000-6 9.385060+4 6.460000-6 8.161660+4 6.520000-6 7.059980+4 6.580000-6 6.069440+4 6.620000-6 5.467100+4 6.670000-6 4.775120+4 6.715000-6 4.206860+4 6.760830-6 3.678124+4 6.810000-6 3.163380+4 6.850000-6 2.782400+4 6.890000-6 2.433420+4 6.930000-6 2.114960+4 6.970000-6 1.825332+4 7.000000-6 1.626128+4 7.035000-6 1.412348+4 7.060000-6 1.271472+4 7.085000-6 1.140036+4 7.115000-6 9.944180+3 7.140000-6 8.827280+3 7.170000-6 7.599400+3 7.192000-6 6.773560+3 7.215000-6 5.976100+3 7.240000-6 5.182600+3 7.260000-6 4.601540+3 7.280000-6 4.066640+3 7.300000-6 3.576480+3 7.320000-6 3.130200+3 7.340000-6 2.726260+3 7.365000-6 2.279520+3 7.390000-6 1.895108+3 7.440000-6 1.304840+3 7.455000-6 1.172260+3 7.470000-6 1.059488+3 7.480000-6 9.950900+2 7.490000-6 9.391740+2 7.500000-6 8.916220+2 7.510000-6 8.523080+2 7.518000-6 8.267340+2 7.527000-6 8.040920+2 7.535000-6 7.893640+2 7.542000-6 7.805940+2 7.550000-6 7.752280+2 7.557000-6 7.745620+2 7.565000-6 7.783560+2 7.574000-6 7.883620+2 7.581000-6 8.003460+2 7.588000-6 8.158840+2 7.596000-6 8.379960+2 7.605000-6 8.683600+2 7.615000-6 9.088240+2 7.627000-6 9.665880+2 7.642000-6 1.052658+3 7.660000-6 1.175934+3 7.685000-6 1.382038+3 7.730000-6 1.851342+3 7.760000-6 2.230880+3 7.780000-6 2.512300+3 7.800000-6 2.815420+3 7.820000-6 3.139700+3 7.840000-6 3.484500+3 7.865000-6 3.943600+3 7.890000-6 4.432420+3 7.920000-6 5.056820+3 7.950000-6 5.720900+3 7.980000-6 6.422420+3 8.010000-6 7.159880+3 8.035261-6 7.807254+3 8.070000-6 8.735120+3 8.100000-6 9.569900+3 8.140000-6 1.072806+4 8.180000-6 1.193480+4 8.222426-6 1.326416+4 8.270000-6 1.481038+4 8.317638-6 1.641307+4 8.365000-6 1.805558+4 8.420000-6 2.001820+4 8.480000-6 2.222100+4 8.520000-6 2.372040+4 8.570000-6 2.562720+4 8.620000-6 2.756440+4 8.680000-6 2.992680+4 8.740000-6 3.232160+4 8.810489-6 3.517087+4 8.880000-6 3.801180+4 8.960000-6 4.130900+4 9.050000-6 4.504120+4 9.150000-6 4.920140+4 9.240000-6 5.294520+4 9.350000-6 5.750520+4 9.460000-6 6.203320+4 9.600000-6 6.772840+4 9.700000-6 7.173820+4 9.850000-6 7.764460+4 1.000000-5 8.340480+4 1.015000-5 8.900400+4 1.035142-5 9.625102+4 1.055000-5 1.030758+5 1.077000-5 1.102542+5 1.100000-5 1.173244+5 1.127000-5 1.250590+5 1.150000-5 1.311746+5 1.180000-5 1.385180+5 1.215000-5 1.462206+5 1.250000-5 1.530528+5 1.290000-5 1.598844+5 1.333521-5 1.662517+5 1.383600-5 1.723635+5 1.440000-5 1.778920+5 1.500000-5 1.824200+5 1.570000-5 1.862314+5 1.650000-5 1.890120+5 1.737801-5 1.905403+5 1.840772-5 1.908092+5 1.950000-5 1.897700+5 2.089296-5 1.870688+5 2.238721-5 1.831042+5 2.426610-5 1.772225+5 2.630268-5 1.702370+5 2.851018-5 1.624352+5 3.126079-5 1.527729+5 3.360000-5 1.447479+5 3.360000-5 3.683948+6 3.400000-5 3.497633+6 3.401000-5 3.492705+6 3.401000-5 5.258521+6 3.427678-5 5.069152+6 3.440000-5 4.984493+6 3.469000-5 4.786146+6 3.507519-5 4.526801+6 3.550000-5 4.254849+6 3.580000-5 4.069308+6 3.650000-5 3.666962+6 3.672823-5 3.543926+6 3.715352-5 3.325039+6 3.801894-5 2.927840+6 3.960000-5 2.339055+6 4.030000-5 2.129512+6 4.073803-5 2.011579+6 4.150000-5 1.830783+6 4.168694-5 1.790210+6 4.220000-5 1.688108+6 4.229500-5 1.670338+6 4.300000-5 1.550113+6 4.370000-5 1.448798+6 4.420000-5 1.386593+6 4.450000-5 1.352713+6 4.466836-5 1.334823+6 4.479900-5 1.321132+6 4.518559-5 1.284108+6 4.540000-5 1.264936+6 4.590000-5 1.224963+6 4.610000-5 1.210109+6 4.650000-5 1.183815+6 4.680000-5 1.165541+6 4.720000-5 1.144129+6 4.740000-5 1.134248+6 4.786301-5 1.114530+6 4.820000-5 1.101417+6 4.850000-5 1.091749+6 4.900000-5 1.077215+6 4.920000-5 1.072463+6 4.970000-5 1.062042+6 5.000000-5 1.057116+6 5.040000-5 1.051601+6 5.080000-5 1.047771+6 5.128614-5 1.044145+6 5.150000-5 1.043429+6 5.230000-5 1.042318+6 5.248075-5 1.042749+6 5.316000-5 1.045764+6 5.316000-5 1.472740+6 5.350000-5 1.475128+6 5.370318-5 1.477234+6 5.432503-5 1.484783+6 5.500000-5 1.492883+6 5.623413-5 1.512795+6 5.650000-5 1.516815+6 5.688529-5 1.523098+6 5.888437-5 1.559813+6 6.025596-5 1.586034+6 6.095369-5 1.598926+6 6.531306-5 1.679979+6 6.839116-5 1.729392+6 6.900000-5 1.738179+6 6.918310-5 1.740662+6 7.000000-5 1.751701+6 7.161434-5 1.772493+6 7.244360-5 1.781604+6 7.413102-5 1.798505+6 7.500000-5 1.806601+6 7.585776-5 1.812884+6 7.852356-5 1.829907+6 7.900000-5 1.831641+6 8.222426-5 1.840709+6 8.317638-5 1.840749+6 8.609938-5 1.838915+6 8.800000-5 1.832998+6 9.015711-5 1.825129+6 9.332543-5 1.807030+6 9.440609-5 1.800490+6 9.900000-5 1.765122+6 1.023293-4 1.733774+6 1.047129-4 1.712304+6 1.060000-4 1.698995+6 1.109175-4 1.649084+6 1.161449-4 1.593393+6 1.174898-4 1.579500+6 1.244515-4 1.504665+6 1.288250-4 1.457396+6 1.318257-4 1.426241+6 1.380384-4 1.360644+6 1.400000-4 1.341150+6 1.412538-4 1.327933+6 1.496236-4 1.244519+6 1.500000-4 1.240909+6 1.548817-4 1.193706+6 1.603245-4 1.144159+6 1.659587-4 1.093769+6 1.698244-4 1.061388+6 1.720000-4 1.043714+6 1.737801-4 1.029158+6 1.862087-4 9.349921+5 1.883649-4 9.196746+5 1.905461-4 9.043558+5 2.018366-4 8.309647+5 2.041738-4 8.165612+5 2.065380-4 8.021828+5 2.162719-4 7.471191+5 2.187762-4 7.338508+5 2.213095-4 7.204305+5 2.344229-4 6.560223+5 2.371374-4 6.438431+5 2.400000-4 6.310500+5 2.600160-4 5.504028+5 2.630268-4 5.394539+5 2.722701-4 5.075496+5 2.851018-4 4.676927+5 2.900000-4 4.534593+5 3.126079-4 3.951421+5 3.162278-4 3.867058+5 3.311311-4 3.542270+5 3.427678-4 3.316702+5 3.467369-4 3.243422+5 3.552000-4 3.093717+5 3.552000-4 1.756200+6 3.557000-4 1.797068+6 3.563000-4 1.837487+6 3.568000-4 1.865104+6 3.577000-4 1.904518+6 3.585000-4 1.930917+6 3.590400-4 1.944643+6 3.590400-4 2.653783+6 3.594000-4 2.678014+6 3.596000-4 2.690079+6 3.600000-4 2.710899+6 3.601000-4 2.716144+6 3.605000-4 2.734451+6 3.608000-4 2.745862+6 3.616000-4 2.771350+6 3.620000-4 2.781906+6 3.628000-4 2.797431+6 3.635000-4 2.807392+6 3.639000-4 2.810910+6 3.650000-4 2.816568+6 3.665000-4 2.811946+6 3.673000-4 2.807020+6 3.680000-4 2.800334+6 3.700000-4 2.775759+6 3.780800-4 2.665688+6 3.801894-4 2.636478+6 3.890451-4 2.518754+6 3.900000-4 2.506523+6 3.950000-4 2.441878+6 4.050000-4 2.326298+6 4.168694-4 2.188288+6 4.200000-4 2.153033+6 4.216965-4 2.134071+6 4.315191-4 2.028676+6 4.341100-4 2.002117+6 4.341100-4 2.257081+6 4.365158-4 2.231384+6 4.430000-4 2.165221+6 4.677351-4 1.939952+6 4.700000-4 1.920574+6 4.731513-4 1.893311+6 4.786301-4 1.847200+6 4.897788-4 1.758339+6 5.150000-4 1.579323+6 5.188000-4 1.554173+6 5.248075-4 1.515195+6 5.308844-4 1.477081+6 5.559043-4 1.333921+6 5.821032-4 1.201330+6 5.888437-4 1.170336+6 5.956621-4 1.140148+6 6.025596-4 1.110724+6 6.100000-4 1.079256+6 6.309573-4 9.966672+5 6.606934-4 8.944083+5 6.700000-4 8.653443+5 6.760830-4 8.468766+5 6.839116-4 8.239124+5 7.161434-4 7.382528+5 7.413102-4 6.797063+5 7.585776-4 6.424817+5 7.673615-4 6.246640+5 7.762471-4 6.073377+5 8.035261-4 5.579600+5 8.200000-4 5.308766+5 8.222426-4 5.273169+5 8.413951-4 4.979896+5 8.709636-4 4.570942+5 8.810489-4 4.442323+5 9.120108-4 4.076730+5 9.332543-4 3.850325+5 9.440609-4 3.740750+5 9.549926-4 3.633735+5 9.700000-4 3.493670+5 9.885531-4 3.329851+5 1.059254-3 2.796115+5 1.071519-3 2.715436+5 1.083927-3 2.636818+5 1.096478-3 2.560136+5 1.109175-3 2.485741+5 1.135011-3 2.343427+5 1.202264-3 2.023018+5 1.216186-3 1.963993+5 1.230269-3 1.906071+5 1.258925-3 1.795395+5 1.303167-3 1.641497+5 1.350000-3 1.498180+5 1.364583-3 1.457150+5 1.380384-3 1.414220+5 1.396368-3 1.372232+5 1.400000-3 1.362933+5 1.428894-3 1.291734+5 1.531087-3 1.077952+5 1.548817-3 1.046035+5 1.566751-3 1.014863+5 1.570000-3 1.009354+5 1.584893-3 9.844329+4 1.594930-3 9.680588+4 1.603245-3 9.547726+4 1.778279-3 7.256735+4 1.798871-3 7.038202+4 1.800000-3 7.026488+4 1.819701-3 6.824917+4 1.840772-3 6.617218+4 2.018366-3 5.172262+4 2.041738-3 5.014863+4 2.065380-3 4.862272+4 2.089296-3 4.713467+4 2.113489-3 4.568870+4 2.137962-3 4.428838+4 2.290868-3 3.676043+4 2.317395-3 3.563999+4 2.371374-3 3.348440+4 2.400000-3 3.240812+4 2.454709-3 3.047596+4 2.483133-3 2.953523+4 2.600160-3 2.605863+4 2.630268-3 2.525711+4 2.660725-3 2.448047+4 2.754229-3 2.227709+4 2.786121-3 2.158498+4 2.851018-3 2.026276+4 2.884032-3 1.963319+4 2.951209-3 1.843262+4 3.000000-3 1.762375+4 3.054921-3 1.677086+4 3.198895-3 1.477551+4 3.235937-3 1.431360+4 3.273407-3 1.386542+4 3.349654-3 1.301184+4 3.388442-3 1.260510+4 3.427678-3 1.221134+4 3.507519-3 1.146098+4 3.715352-3 9.771961+3 3.758374-3 9.464673+3 3.801894-3 9.166621+3 3.890451-3 8.599125+3 3.935501-3 8.328696+3 4.015000-3 7.879341+3 4.015000-3 6.867392+4 4.043000-3 6.764798+4 4.168694-3 6.330489+4 4.270000-3 5.969982+4 4.315191-3 5.813723+4 4.365158-3 5.647456+4 4.415704-3 5.485924+4 4.518559-3 5.176656+4 4.570882-3 5.028650+4 4.623810-3 4.884871+4 4.677351-3 4.745071+4 5.011872-3 3.960064+4 5.069907-3 3.842479+4 5.188000-3 3.617672+4 5.248075-3 3.510267+4 5.308844-3 3.406063+4 5.800000-3 2.701396+4 5.821032-3 2.675905+4 6.095369-3 2.371850+4 6.165950-3 2.301335+4 6.309573-3 2.166535+4 6.683439-3 1.854704+4 7.000000-3 1.636871+4 7.079458-3 1.587702+4 7.161434-3 1.539073+4 7.244360-3 1.491937+4 7.762471-3 1.237973+4 7.943282-3 1.163313+4 8.128305-3 1.091638+4 8.222426-3 1.057440+4 8.317638-3 1.024314+4 8.511380-3 9.611501+3 9.015711-3 8.197740+3 9.120108-3 7.940991+3 9.549926-3 6.991990+3 9.772372-3 6.554490+3 1.000000-2 6.144412+3 1.059254-2 5.228044+3 1.083927-2 4.900991+3 1.096478-2 4.745221+3 1.122018-2 4.444725+3 1.148154-2 4.162984+3 1.174898-2 3.899136+3 1.258925-2 3.203820+3 1.288250-2 3.000787+3 1.303167-2 2.904152+3 1.318257-2 2.809341+3 1.333521-2 2.717541+3 1.348963-2 2.628736+3 1.380384-2 2.459756+3 1.500000-2 1.935348+3 1.548817-2 1.764544+3 1.566751-2 1.706901+3 1.603245-2 1.595702+3 1.640590-2 1.491752+3 1.798871-2 1.139428+3 1.840772-2 1.065214+3 1.862087-2 1.029942+3 1.883649-2 9.958056+2 1.905461-2 9.627994+2 1.949845-2 8.992822+2 2.162719-2 6.614912+2 2.213095-2 6.178584+2 2.238721-2 5.971148+2 2.264644-2 5.770679+2 2.317395-2 5.389714+2 2.371374-2 5.029928+2 2.660725-2 3.560967+2 2.722701-2 3.323099+2 2.754229-2 3.210192+2 2.786121-2 3.101127+2 2.851018-2 2.893968+2 2.917427-2 2.698652+2 2.985383-2 2.516520+2 3.235937-2 1.970608+2 3.273407-2 1.902901+2 3.388442-2 1.713427+2 3.427678-2 1.654554+2 3.507519-2 1.542806+2 3.548134-2 1.489797+2 3.935501-2 1.084123+2 3.981072-2 1.046473+2 4.000000-2 1.031344+2 4.027170-2 1.010130+2 4.168694-2 9.085032+1 4.415704-2 7.613289+1 4.466836-2 7.348892+1 4.500000-2 7.183885+1 4.897788-2 5.525616+1 4.954502-2 5.331844+1 5.128614-2 4.790368+1 5.888437-2 3.121279+1 6.237348-2 2.607189+1 6.309573-2 2.514951+1 6.531306-2 2.257363+1 6.760830-2 2.026146+1 7.079458-2 1.754280+1 7.244360-2 1.632353+1 7.673615-2 1.363349+1 8.317638-2 1.059553+1 8.413951-2 1.022055+1 8.609938-2 9.507279+0 8.810489-2 8.843797+0 9.015711-2 8.226637+0 9.440609-2 7.118471+0 9.660509-2 6.621714+0 1.059254-1 4.958030+0 1.135011-1 3.990885+0 1.161449-1 3.712420+0 1.244515-1 2.988296+0 1.258925-1 2.882169+0 1.333521-1 2.405444+0 1.364583-1 2.237621+0 1.445440-1 1.867525+0 1.462177-1 1.801205+0 1.479108-1 1.737241+0 1.548817-1 1.503449+0 1.566751-1 1.450635+0 1.584893-1 1.399676+0 1.659587-1 1.213125+0 1.678804-1 1.170511+0 1.757924-1 1.014508+0 1.798871-1 9.444892-1 1.883649-1 8.186160-1 1.905461-1 7.898618-1 1.927525-1 7.624030-1 1.949845-1 7.359010-1 1.972423-1 7.103211-1 2.018366-1 6.617995-1 2.137962-1 5.545048-1 2.162719-1 5.352308-1 2.213095-1 4.986705-1 2.264644-1 4.646089-1 2.290868-1 4.484787-1 2.317395-1 4.331262-1 2.344229-1 4.183017-1 2.426610-1 3.768042-1 2.454709-1 3.639078-1 2.511886-1 3.394250-1 2.630268-1 2.952898-1 2.660725-1 2.851970-1 2.691535-1 2.756084-1 2.722701-1 2.663442-1 2.754229-1 2.573914-1 2.786121-1 2.487400-1 2.985383-1 2.026070-1 3.019952-1 1.957972-1 3.054921-1 1.892257-1 3.090295-1 1.829831-1 3.126079-1 1.769475-1 3.273407-1 1.547318-1 3.349654-1 1.446932-1 3.388442-1 1.399208-1 3.427678-1 1.353060-1 3.467369-1 1.309364-1 3.507519-1 1.267089-1 3.589219-1 1.186592-1 3.672823-1 1.111210-1 3.715352-1 1.075335-1 3.758374-1 1.040618-1 3.845918-1 9.745110-2 3.890451-1 9.437844-2 3.935501-1 9.140331-2 4.000000-1 8.736170-2 4.120975-1 8.041226-2 4.168694-1 7.787755-2 4.265795-1 7.304545-2 4.315191-1 7.080008-2 4.365158-1 6.862435-2 4.518559-1 6.249025-2 4.623810-1 5.870858-2 4.731513-1 5.515593-2 4.786301-1 5.350455-2 4.841724-1 5.190303-2 4.954502-1 4.884247-2 5.011872-1 4.738056-2 5.069907-1 4.596243-2 5.128614-1 4.458678-2 5.188000-1 4.325231-2 5.248075-1 4.198905-2 5.308844-1 4.076579-2 5.432503-1 3.842516-2 5.559043-1 3.621898-2 5.688529-1 3.413954-2 5.754399-1 3.317131-2 5.821032-1 3.223300-2 5.888437-1 3.132124-2 5.956621-1 3.043532-2 6.025596-1 2.957445-2 6.095369-1 2.873794-2 6.237348-1 2.713526-2 6.309573-1 2.639021-2 6.382635-1 2.566773-2 6.531306-1 2.428160-2 6.683439-1 2.297034-2 6.839117-1 2.172990-2 6.918310-1 2.115331-2 6.998420-1 2.059386-2 7.079458-1 2.004922-2 7.161434-1 1.951899-2 7.328245-1 1.850023-2 7.498942-1 1.756402-2 7.585776-1 1.711505-2 7.673615-1 1.667771-2 7.852356-1 1.583630-2 8.035261-1 1.503734-2 8.222427-1 1.430141-2 8.317638-1 1.394797-2 8.413951-1 1.360341-2 8.609938-1 1.293960-2 8.810489-1 1.230818-2 8.912509-1 1.200414-2 9.015711-1 1.171492-2 9.120108-1 1.143277-2 9.225714-1 1.115743-2 9.332543-1 1.088949-2 9.660509-1 1.012370-2 9.772372-1 9.889986-3 9.885531-1 9.661777-3 1.000000+0 9.438843-3 1.022000+0 9.032634-3 1.047129+0 8.599828-3 1.059254+0 8.402008-3 1.071519+0 8.208750-3 1.083927+0 8.024288-3 1.096478+0 7.843983-3 1.130300+0 7.387403-3 1.135011+0 7.327022-3 1.148154+0 7.163000-3 1.161449+0 7.002657-3 1.216186+0 6.416552-3 1.230269+0 6.277858-3 1.250000+0 6.091114-3 1.258925+0 6.009417-3 1.273503+0 5.879958-3 1.288250+0 5.753291-3 1.333521+0 5.401603-3 1.348963+0 5.289214-3 1.364583+0 5.179173-3 1.396368+0 4.965911-3 1.412538+0 4.862939-3 1.428894+0 4.762114-3 1.479108+0 4.482056-3 1.500000+0 4.373086-3 1.548817+0 4.134101-3 1.584893+0 3.970958-3 1.640590+0 3.746324-3 1.678804+0 3.603675-3 1.698244+0 3.534402-3 1.717908+0 3.466464-3 1.757924+0 3.334937-3 1.778279+0 3.273356-3 1.840772+0 3.095345-3 1.883649+0 2.982084-3 1.905461+0 2.927018-3 1.927525+0 2.872972-3 1.972423+0 2.768233-3 1.995262+0 2.719159-3 2.044000+0 2.619093-3 2.113489+0 2.486529-3 2.137962+0 2.442450-3 2.187762+0 2.356624-3 2.238721+0 2.274081-3 2.264644+0 2.235218-3 2.317395+0 2.159472-3 2.398833+0 2.050640-3 2.426610+0 2.015597-3 2.483133+0 1.947300-3 2.540973+0 1.881524-3 2.570396+0 1.850521-3 2.630268+0 1.790039-3 2.754229+0 1.674940-3 2.786121+0 1.647342-3 2.851018+0 1.593505-3 2.917427+0 1.541593-3 2.951209+0 1.517114-3 3.019952+0 1.469315-3 3.198895+0 1.356305-3 3.235937+0 1.334769-3 3.311311+0 1.292719-3 3.388442+0 1.252122-3 3.427678+0 1.232953-3 3.507519+0 1.195493-3 3.715352+0 1.106745-3 3.758374+0 1.089804-3 3.845918+0 1.056695-3 3.935501+0 1.024692-3 4.000000+0 1.003387-3 4.073803+0 9.799547-4 4.365158+0 8.962556-4 4.415704+0 8.830188-4 4.518559+0 8.571290-4 4.623810+0 8.320719-4 4.731513+0 8.084638-4 4.841724+0 7.855258-4 5.248075+0 7.102480-4 5.308844+0 7.001004-4 5.432503+0 6.802383-4 5.559043+0 6.609920-4 5.688529+0 6.428136-4 5.821032+0 6.251350-4 6.382635+0 5.591507-4 6.456542+0 5.514087-4 6.606934+0 5.362450-4 6.760830+0 5.215382-4 6.918310+0 5.076391-4 7.079458+0 4.941106-4 7.852356+0 4.375573-4 7.943282+0 4.316877-4 8.222427+0 4.145475-4 8.511380+0 3.981262-4 8.709636+0 3.878053-4 9.015711+0 3.728236-4 9.885531+0 3.356415-4 1.000000+1 3.312626-4 1.035142+1 3.184660-4 1.071519+1 3.061941-4 1.100000+1 2.974123-4 1.135011+1 2.872530-4 1.273503+1 2.528139-4 1.288250+1 2.496057-4 1.318257+1 2.433112-4 1.400000+1 2.276043-4 1.445440+1 2.196991-4 1.479108+1 2.142915-4 1.500000+1 2.110629-4 1.659587+1 1.891852-4 1.698244+1 1.845287-4 1.819701+1 1.712358-4 1.972423+1 1.569329-4 2.000000+1 1.545969-4 2.162719+1 1.423114-4 2.238721+1 1.372021-4 2.691535+1 1.128948-4 2.754229+1 1.101763-4 2.800000+1 1.082961-4 3.090295+1 9.769498-5 3.890451+1 7.681422-5 3.935501+1 7.591021-5 3.981072+1 7.501685-5 4.841724+1 6.134371-5 6.760830+1 4.352080-5 6.839116+1 4.301501-5 8.709636+1 3.365255-5 1.333521+2 2.183721-5 1.348963+2 2.158358-5 1.737801+2 1.671945-5 2.660725+2 1.088197-5 2.691535+2 1.075644-5 6.918310+2 4.173597-6 1.059254+3 2.722629-6 1.071519+3 2.691384-6 2.113489+3 1.364211-6 2.137962+3 1.348590-6 1.000000+5 2.879962-8 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.450000-6 5.450000-6 3.360000-5 5.450000-6 3.360000-5 3.249394-5 3.401000-5 3.244391-5 3.401000-5 3.296981-5 3.715352-5 3.260778-5 4.479900-5 3.134827-5 4.740000-5 3.111511-5 5.000000-5 3.108230-5 5.316000-5 3.123467-5 5.316000-5 3.759125-5 5.688529-5 3.770887-5 7.500000-5 3.753010-5 1.161449-4 3.716576-5 1.659587-4 3.710084-5 2.630268-4 3.730627-5 3.552000-4 3.760311-5 3.552000-4 6.529394-5 3.577000-4 6.583102-5 3.590400-4 6.598135-5 3.590400-4 6.747047-5 3.639000-4 6.778917-5 4.216965-4 6.788065-5 4.341100-4 6.787204-5 4.341100-4 7.271447-5 7.413102-4 7.539631-5 1.096478-3 7.787972-5 1.570000-3 8.049719-5 2.137962-3 8.297476-5 2.851018-3 8.539147-5 3.758374-3 8.770734-5 4.015000-3 8.826524-5 4.015000-3 1.322937-4 5.308844-3 1.329698-4 9.772372-3 1.338358-4 2.371374-2 1.344298-4 1.258925-1 1.347616-4 1.000000+5 1.348143-4 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.450000-6 0.0 3.552000-4 0.0 3.552000-4 6.389458-8 3.568000-4 6.480511-8 3.590400-4 6.547572-8 3.590400-4 6.858862-8 3.620000-4 6.912390-8 3.673000-4 6.942543-8 4.341100-4 6.941640-8 4.341100-4 7.591210-8 5.308844-4 7.702344-8 8.035261-4 7.961068-8 1.135011-3 8.214870-8 1.584893-3 8.494146-8 2.137962-3 8.769891-8 2.786121-3 9.026765-8 3.507519-3 9.253238-8 4.015000-3 9.383160-8 4.015000-3 5.239634-4 4.365158-3 5.264577-4 6.309573-3 5.314423-4 1.000000-2 5.350728-4 1.949845-2 5.375418-4 7.244360-2 5.386833-4 1.000000+5 5.387123-4 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.450000-6 0.0 3.360000-5 2.815000-5 3.360000-5 1.106056-6 3.401000-5 1.566086-6 3.401000-5 1.040193-6 3.469000-5 1.782596-6 3.550000-5 2.678632-6 3.672823-5 4.060534-6 3.801894-5 5.538491-6 4.030000-5 8.204010-6 4.370000-5 1.219499-5 4.540000-5 1.412316-5 4.740000-5 1.628489-5 4.920000-5 1.812820-5 5.150000-5 2.036345-5 5.316000-5 2.192533-5 5.316000-5 1.556875-5 5.650000-5 1.879515-5 6.095369-5 2.324761-5 1.109175-4 7.372782-5 2.400000-4 2.027575-4 3.552000-4 3.175969-4 3.552000-4 2.898421-4 3.590400-4 2.929931-4 3.590400-4 2.915009-4 3.950000-4 3.270495-4 4.341100-4 3.661685-4 4.341100-4 3.613196-4 1.603245-3 1.522503-3 4.015000-3 3.926641-3 4.015000-3 3.358743-3 1.603245-2 1.536118-2 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.015000-3 6.079458+4 4.168694-3 5.620881+4 4.270000-3 5.306280+4 4.677351-3 4.230506+4 6.309573-3 1.945336+4 7.943282-3 1.048687+4 9.549926-3 6.317846+3 1.096478-2 4.293989+3 1.303167-2 2.631779+3 1.566751-2 1.548605+3 1.905461-2 8.743565+2 2.317395-2 4.898114+2 2.851018-2 2.631476+2 3.548134-2 1.355218+2 4.500000-2 6.536860+1 5.888437-2 2.840719+1 8.413951-2 9.302720+0 1.548817-1 1.368364+0 1.905461-1 7.188833-1 2.290868-1 4.081704-1 2.660725-1 2.595540-1 3.054921-1 1.722066-1 3.427678-1 1.231379-1 3.845918-1 8.868646-2 4.265795-1 6.647568-2 4.731513-1 5.019518-2 5.188000-1 3.936106-2 5.688529-1 3.106829-2 6.237348-1 2.469416-2 6.839117-1 1.977520-2 7.328245-1 1.683593-2 8.035261-1 1.368525-2 8.912509-1 1.092530-2 9.660509-1 9.213725-3 1.071519+0 7.470944-3 1.161449+0 6.373363-3 1.288250+0 5.236305-3 1.428894+0 4.334179-3 1.584893+0 3.614121-3 1.757924+0 3.035246-3 1.972423+0 2.519476-3 2.238721+0 2.069745-3 2.540973+0 1.712456-3 2.917427+0 1.403069-3 3.388442+0 1.139613-3 3.935501+0 9.326200-4 4.623810+0 7.573121-4 5.559043+0 6.016047-4 6.760830+0 4.746802-4 8.511380+0 3.623538-4 1.071519+1 2.786824-4 1.445440+1 1.999617-4 2.000000+1 1.407100-4 2.754229+1 1.002811-4 3.890451+1 6.991507-5 6.760830+1 3.961204-5 1.348963+2 1.964505-5 2.691535+2 9.790368-6 1.071519+3 2.449639-6 1.000000+5 2.621300-8 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.015000-3 1.380000-4 1.000000+5 1.380000-4 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.015000-3 5.918600-4 1.000000+5 5.918600-4 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.015000-3 3.285140-3 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.341100-4 2.549634+5 4.700000-4 2.344152+5 5.248075-4 2.028716+5 6.100000-4 1.650780+5 7.161434-4 1.299403+5 7.762471-4 1.144098+5 8.810489-4 9.267305+4 9.700000-4 7.854540+4 1.083927-3 6.434185+4 1.216186-3 5.200837+4 1.364583-3 4.172112+4 1.548817-3 3.252060+4 1.778279-3 2.456479+4 2.018366-3 1.885660+4 2.317395-3 1.402451+4 2.660725-3 1.034788+4 3.054921-3 7.577891+3 3.507519-3 5.509888+3 4.043000-3 3.941807+3 4.623810-3 2.853891+3 5.308844-3 2.033302+3 6.095369-3 1.439177+3 7.000000-3 1.011456+3 8.128305-3 6.862451+2 9.549926-3 4.480720+2 1.122018-2 2.903052+2 1.318257-2 1.867070+2 1.566751-2 1.154597+2 1.862087-2 7.084983+1 2.213095-2 4.315670+1 2.660725-2 2.523969+1 3.235937-2 1.415994+1 3.935501-2 7.883545+0 4.897788-2 4.063623+0 6.237348-2 1.937322+0 8.317638-2 7.949993-1 1.479108-1 1.321353-1 1.905461-1 6.041899-2 2.264644-1 3.560643-2 2.630268-1 2.267486-2 3.019952-1 1.505901-2 3.427678-1 1.042116-2 3.845918-1 7.512234-3 4.265795-1 5.634678-3 4.731513-1 4.257103-3 5.248075-1 3.241291-3 5.754399-1 2.561407-3 6.309573-1 2.038281-3 6.918310-1 1.634142-3 7.498942-1 1.356664-3 8.222427-1 1.104765-3 9.225714-1 8.617328-4 1.000000+0 7.288523-4 1.135011+0 5.658934-4 1.258925+0 4.641434-4 1.396368+0 3.835562-4 1.548817+0 3.193094-4 1.717908+0 2.677538-4 1.927525+0 2.219029-4 2.187762+0 1.820352-4 2.483133+0 1.504270-4 2.851018+0 1.230991-4 3.311311+0 9.986300-5 3.845918+0 8.163164-5 4.518559+0 6.621583-5 5.432503+0 5.255267-5 6.606934+0 4.142901-5 8.222427+0 3.202400-5 1.035142+1 2.460101-5 1.400000+1 1.758200-5 1.972423+1 1.212653-5 2.754229+1 8.514868-6 3.890451+1 5.936540-6 6.760830+1 3.363445-6 1.333521+2 1.687579-6 2.660725+2 8.409546-7 1.059254+3 2.104097-7 1.000000+5 2.225800-9 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.341100-4 1.107400-4 1.000000+5 1.107400-4 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.341100-4 1.269200-7 1.000000+5 1.269200-7 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.341100-4 3.232431-4 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.590400-4 7.091400+5 3.596000-4 7.326300+5 3.601000-4 7.496800+5 3.608000-4 7.691400+5 3.616000-4 7.865600+5 3.628000-4 8.062200+5 3.639000-4 8.186300+5 3.650000-4 8.270600+5 3.665000-4 8.335900+5 3.680000-4 8.354200+5 3.700000-4 8.321500+5 3.780800-4 8.047200+5 3.900000-4 7.584200+5 4.200000-4 6.479000+5 4.430000-4 5.760700+5 4.700000-4 5.073200+5 5.188000-4 4.055800+5 5.559043-4 3.446400+5 6.025596-4 2.831400+5 6.606934-4 2.241400+5 7.413102-4 1.662600+5 8.200000-4 1.269400+5 9.440609-4 8.638800+4 1.071519-3 6.059900+4 1.216186-3 4.224500+4 1.400000-3 2.804600+4 1.584893-3 1.941600+4 1.819701-3 1.279500+4 2.089296-3 8.365000+3 2.400000-3 5.421400+3 2.786121-3 3.373800+3 3.235937-3 2.080400+3 3.758374-3 1.273300+3 4.365158-3 7.735400+2 5.069907-3 4.664600+2 5.821032-3 2.905200+2 6.683439-3 1.798500+2 7.762471-3 1.062800+2 9.120108-3 5.988600+1 1.083927-2 3.214900+1 1.288250-2 1.713500+1 1.548817-2 8.692200+0 1.883649-2 4.193100+0 2.317395-2 1.922700+0 2.917427-2 8.023000-1 4.000000-2 2.398680-1 7.079458-2 2.682511-2 8.810489-2 1.165925-2 1.059254-1 5.819746-3 1.244515-1 3.190120-3 1.445440-1 1.838075-3 1.659587-1 1.112736-3 1.883649-1 7.072340-4 2.137962-1 4.527148-4 2.426610-1 2.920244-4 2.754229-1 1.898624-4 3.054921-1 1.344029-4 3.388442-1 9.582178-5 3.758374-1 6.886020-5 4.168694-1 4.987133-5 4.623810-1 3.640809-5 5.069907-1 2.771488-5 5.559043-1 2.123816-5 6.095369-1 1.638489-5 6.683439-1 1.272560-5 7.328245-1 9.959180-6 8.222427-1 7.390999-6 8.810489-1 6.220579-6 9.332543-1 5.421304-6 9.885531-1 4.756411-6 1.059254+0 4.102270-6 1.135011+0 3.563396-6 1.216186+0 3.120490-6 1.333521+0 2.636827-6 1.479108+0 2.200538-6 1.698244+0 1.738448-6 1.905461+0 1.438649-6 2.137962+0 1.199957-6 2.426610+0 9.902582-7 2.786121+0 8.093891-7 3.235937+0 6.558600-7 3.758374+0 5.355333-7 4.415704+0 4.339324-7 5.308844+0 3.440581-7 6.456542+0 2.709920-7 7.943282+0 2.121304-7 1.000000+1 1.627700-7 1.318257+1 1.195596-7 1.819701+1 8.413119-8 2.691535+1 5.549572-8 3.935501+1 3.732702-8 6.839116+1 2.115166-8 1.348963+2 1.061409-8 2.691535+2 5.289493-9 1.071519+3 1.323454-9 1.000000+5 1.41630-11 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.590400-4 7.155400-5 1.000000+5 7.155400-5 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.590400-4 7.712500-8 1.000000+5 7.712500-8 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.590400-4 2.874089-4 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.552000-4 1.446828+6 3.557000-4 1.488548+6 3.563000-4 1.529984+6 3.568000-4 1.558444+6 3.577000-4 1.599368+6 3.585000-4 1.627100+6 3.594000-4 1.651528+6 3.605000-4 1.673188+6 3.620000-4 1.690768+6 3.635000-4 1.697640+6 3.650000-4 1.696244+6 3.673000-4 1.682796+6 3.950000-4 1.453095+6 4.050000-4 1.388060+6 4.168694-4 1.305232+6 4.365158-4 1.178386+6 4.677351-4 1.014727+6 5.150000-4 8.147840+5 5.559043-4 6.796139+5 6.025596-4 5.573407+5 6.700000-4 4.249400+5 7.413102-4 3.262927+5 8.222426-4 2.469073+5 9.332543-4 1.744701+5 1.059254-3 1.222706+5 1.202264-3 8.514520+4 1.380384-3 5.690821+4 1.570000-3 3.881480+4 1.800000-3 2.565552+4 2.065380-3 1.678629+4 2.371374-3 1.088205+4 2.754229-3 6.751099+3 3.198895-3 4.156011+3 3.715352-3 2.539142+3 4.315191-3 1.539760+3 5.011872-3 9.265520+2 5.800000-3 5.603440+2 6.683439-3 3.416167+2 7.762471-3 2.012268+2 9.015711-3 1.177460+2 1.059254-2 6.566547+1 1.258925-2 3.486448+1 1.500000-2 1.820668+1 1.798871-2 9.212357+0 2.162719-2 4.584438+0 2.660725-2 2.074528+0 3.427678-2 7.800742-1 4.415704-2 2.912661-1 7.244360-2 4.222514-2 9.440609-2 1.513126-2 1.135011-1 7.462047-3 1.333521-1 4.048181-3 1.548817-1 2.309327-3 1.757924-1 1.445915-3 1.972423-1 9.509797-4 2.213095-1 6.299932-4 2.454709-1 4.379341-4 2.722701-1 3.066652-4 2.985383-1 2.249209-4 3.273407-1 1.660784-4 3.589219-1 1.235083-4 3.935501-1 9.254429-5 4.265795-1 7.236610-5 4.623810-1 5.695621-5 5.011872-1 4.513842-5 5.432503-1 3.602553-5 5.888437-1 2.896272-5 6.309573-1 2.418164-5 6.839117-1 1.972592-5 7.498942-1 1.574944-5 8.222427-1 1.265743-5 8.912509-1 1.052402-5 9.772372-1 8.589719-6 1.047129+0 7.436049-6 1.135011+0 6.319988-6 1.230269+0 5.415500-6 1.348963+0 4.570946-6 1.500000+0 3.788900-6 1.678804+0 3.123821-6 1.883649+0 2.584039-6 2.113489+0 2.154353-6 2.398833+0 1.776818-6 2.754229+0 1.451218-6 3.198895+0 1.175131-6 3.715352+0 9.589919-7 4.365158+0 7.766286-7 5.248075+0 6.154751-7 6.382635+0 4.845496-7 7.852356+0 3.791412-7 9.885531+0 2.908242-7 1.288250+1 2.162812-7 1.698244+1 1.598852-7 2.238721+1 1.189305-7 3.090295+1 8.465181-8 4.841724+1 5.314838-8 8.709636+1 2.915797-8 1.737801+2 1.449135-8 6.918310+2 3.617096-9 1.000000+5 2.49760-11 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.552000-4 7.121500-5 1.000000+5 7.121500-5 1 20000 7 7 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.552000-4 7.755700-8 1.000000+5 7.755700-8 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.552000-4 2.839074-4 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.316000-5 4.269760+5 5.623413-5 4.347802+5 6.025596-5 4.405084+5 6.531306-5 4.437542+5 7.000000-5 4.437200+5 7.413102-5 4.410895+5 7.852356-5 4.355331+5 8.317638-5 4.267254+5 8.800000-5 4.148660+5 9.332543-5 3.994887+5 9.900000-5 3.817280+5 1.060000-4 3.594740+5 1.161449-4 3.288703+5 1.288250-4 2.950166+5 1.412538-4 2.660815+5 1.548817-4 2.381911+5 1.698244-4 2.116005+5 1.905461-4 1.810187+5 2.162719-4 1.513655+5 2.400000-4 1.298368+5 2.722701-4 1.069589+5 3.162278-4 8.434079+4 3.600000-4 6.817840+4 4.216965-4 5.217120+4 4.897788-4 4.020574+4 5.821032-4 2.951630+4 6.839116-4 2.194760+4 8.035261-4 1.620839+4 9.549926-4 1.162851+4 1.135011-3 8.279545+3 1.350000-3 5.839660+3 1.594930-3 4.141900+3 1.840772-3 3.061321+3 2.137962-3 2.216074+3 2.483133-3 1.591909+3 2.884032-3 1.134854+3 3.349654-3 8.027654+2 3.890451-3 5.636468+2 4.570882-3 3.821665+2 5.308844-3 2.645105+2 6.165950-3 1.818078+2 7.244360-3 1.204616+2 8.511380-3 7.918911+1 1.000000-2 5.165693+1 1.174898-2 3.343676+1 1.380384-2 2.148757+1 1.640590-2 1.327836+1 1.949845-2 8.143239+0 2.317395-2 4.955428+0 2.786121-2 2.894664+0 3.388442-2 1.622217+0 4.168694-2 8.717534-1 5.128614-2 4.650452-1 6.531306-2 2.214838-1 9.015711-2 8.163981-2 1.548817-1 1.513063-2 1.927525-1 7.703686-3 2.317395-1 4.388786-3 2.691535-1 2.798103-3 3.090295-1 1.860557-3 3.467369-1 1.332773-3 3.890451-1 9.615358-4 4.315191-1 7.217330-4 4.786301-1 5.456956-4 5.248075-1 4.284772-4 5.754399-1 3.387012-4 6.309573-1 2.696428-4 6.918310-1 2.162475-4 7.585776-1 1.747065-4 8.317638-1 1.421702-4 9.015711-1 1.194433-4 9.772372-1 1.009932-4 1.130300+0 7.551700-5 1.258925+0 6.140588-5 1.396368+0 5.072885-5 1.548817+0 4.222584-5 1.717908+0 3.540825-5 1.927525+0 2.934556-5 2.187762+0 2.407198-5 2.483133+0 1.989149-5 2.851018+0 1.627772-5 3.311311+0 1.320559-5 3.845918+0 1.079518-5 4.518559+0 8.756563-6 5.432503+0 6.949579-6 6.606934+0 5.478540-6 8.222427+0 4.234937-6 1.035142+1 3.253299-6 1.400000+1 2.325100-6 1.972423+1 1.603608-6 2.754229+1 1.125976-6 3.981072+1 7.665808-7 6.839116+1 4.395855-7 1.348963+2 2.205931-7 2.691535+2 1.099299-7 2.137962+3 1.377588-8 1.000000+5 2.94340-10 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.316000-5 5.316000-5 1.000000+5 5.316000-5 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.316000-5 0.0 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.401000-5 1.765816+6 3.440000-5 1.677488+6 3.507519-5 1.524026+6 3.580000-5 1.368638+6 3.672823-5 1.188291+6 3.801894-5 9.749349+5 4.030000-5 6.959960+5 4.150000-5 5.910100+5 4.220000-5 5.407100+5 4.300000-5 4.918180+5 4.370000-5 4.557180+5 4.450000-5 4.211580+5 4.518559-5 3.965520+5 4.590000-5 3.752120+5 4.650000-5 3.602860+5 4.720000-5 3.459100+5 4.786301-5 3.349519+5 4.850000-5 3.265540+5 4.920000-5 3.194260+5 5.000000-5 3.136080+5 5.080000-5 3.098960+5 5.150000-5 3.081100+5 5.248075-5 3.075146+5 5.370318-5 3.092710+5 5.500000-5 3.134120+5 5.650000-5 3.202700+5 5.888437-5 3.339563+5 6.531306-5 3.752092+5 6.900000-5 3.967140+5 7.244360-5 4.137192+5 7.585776-5 4.271291+5 7.900000-5 4.363700+5 8.222426-5 4.429352+5 8.609938-5 4.473079+5 9.015711-5 4.482948+5 9.440609-5 4.460439+5 9.900000-5 4.406980+5 1.047129-4 4.311637+5 1.109175-4 4.184209+5 1.174898-4 4.033197+5 1.244515-4 3.862587+5 1.318257-4 3.676229+5 1.400000-4 3.468820+5 1.496236-4 3.228764+5 1.603245-4 2.973793+5 1.737801-4 2.679642+5 1.883649-4 2.395858+5 2.041738-4 2.126830+5 2.213095-4 1.873806+5 2.400000-4 1.637318+5 2.630268-4 1.395008+5 2.900000-4 1.167252+5 3.162278-4 9.898053+4 3.467369-4 8.247739+4 3.890451-4 6.508313+4 4.315191-4 5.218173+4 4.786301-4 4.152185+4 5.308844-4 3.283306+4 5.888437-4 2.579812+4 6.606934-4 1.959497+4 7.413102-4 1.478230+4 8.413951-4 1.076007+4 9.549926-4 7.771335+3 1.083927-3 5.569550+3 1.230269-3 3.960655+3 1.396368-3 2.793948+3 1.566751-3 2.020167+3 1.778279-3 1.403202+3 2.018366-3 9.670048+2 2.290868-3 6.610656+2 2.600160-3 4.485908+2 2.951209-3 3.022898+2 3.388442-3 1.950591+2 3.890451-3 1.249496+2 4.518559-3 7.654692+1 5.248075-3 4.652762+1 6.095369-3 2.806051+1 7.079458-3 1.679293+1 8.222426-3 9.971807+0 9.549926-3 5.879029+0 1.122018-2 3.303195+0 1.333521-2 1.767430+0 1.603245-2 9.000004-1 1.949845-2 4.359306-1 2.371374-2 2.093942-1 2.985383-2 8.763551-2 4.027170-2 2.799193-2 6.760830-2 3.854211-3 8.609938-2 1.537483-3 1.059254-1 7.044811-4 1.258925-1 3.702531-4 1.462177-1 2.134754-4 1.678804-1 1.292765-4 1.905461-1 8.216540-5 2.162719-1 5.259232-5 2.426610-1 3.529658-5 2.722701-1 2.385955-5 3.019952-1 1.688498-5 3.349654-1 1.203231-5 3.715352-1 8.635580-6 4.120975-1 6.244090-6 4.518559-1 4.711266-6 4.954502-1 3.578357-6 5.432503-1 2.737372-6 5.956621-1 2.108873-6 6.531306-1 1.636138-6 7.161434-1 1.278544-6 7.852356-1 1.006468-6 8.609938-1 7.945920-7 9.120108-1 6.892252-7 9.660509-1 6.017322-7 1.022000+0 5.309300-7 1.096478+0 4.577736-7 1.161449+0 4.081333-7 1.250000+0 3.553900-7 1.364583+0 3.035575-7 1.640590+0 2.212288-7 1.840772+0 1.826608-7 2.044000+0 1.544800-7 2.317395+0 1.273592-7 2.630268+0 1.055741-7 3.019952+0 8.667295-8 3.507519+0 7.052426-8 4.073803+0 5.780979-8 4.841724+0 4.633690-8 5.821032+0 3.687776-8 7.079458+0 2.914686-8 9.015711+0 2.199189-8 1.135011+1 1.694582-8 1.500000+1 1.245600-8 2.000000+1 9.126200-9 2.754229+1 6.503895-9 3.890451+1 4.534439-9 6.760830+1 2.569089-9 1.348963+2 1.274120-9 2.691535+2 6.34953-10 1.071519+3 1.58867-10 1.000000+5 1.70010-12 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.401000-5 3.401000-5 1.000000+5 3.401000-5 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.401000-5 0.0 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.360000-5 3.539200+6 3.400000-5 3.354160+6 3.469000-5 3.035549+6 3.550000-5 2.685772+6 3.650000-5 2.301696+6 3.960000-5 1.442920+6 4.073803-5 1.233570+6 4.168694-5 1.093222+6 4.229500-5 1.017502+6 4.300000-5 9.419880+5 4.370000-5 8.786200+5 4.420000-5 8.396880+5 4.479900-5 7.992813+5 4.540000-5 7.648760+5 4.610000-5 7.316760+5 4.680000-5 7.049600+5 4.740000-5 6.865840+5 4.820000-5 6.677000+5 4.900000-5 6.543320+5 4.970000-5 6.464720+5 5.040000-5 6.416520+5 5.128614-5 6.392336+5 5.230000-5 6.405800+5 5.350000-5 6.466040+5 5.500000-5 6.590520+5 5.688529-5 6.797403+5 6.531306-5 7.894406+5 6.839116-5 8.250478+5 7.161434-5 8.567296+5 7.500000-5 8.832120+5 7.852356-5 9.032953+5 8.222426-5 9.165554+5 8.609938-5 9.226880+5 9.015711-5 9.219240+5 9.440609-5 9.148912+5 9.900000-5 9.018680+5 1.047129-4 8.800294+5 1.109175-4 8.519166+5 1.174898-4 8.191849+5 1.244515-4 7.829536+5 1.318257-4 7.438756+5 1.400000-4 7.005080+5 1.500000-4 6.488200+5 1.603245-4 5.983672+5 1.720000-4 5.456400+5 1.862087-4 4.883285+5 2.018366-4 4.332325+5 2.187762-4 3.814809+5 2.371374-4 3.334857+5 2.600160-4 2.837034+5 2.851018-4 2.396892+5 3.126079-4 2.010975+5 3.427678-4 1.674571+5 3.801894-4 1.352837+5 4.216965-4 1.085127+5 4.731513-4 8.416952+4 5.308844-4 6.476991+4 5.956621-4 4.945316+4 6.760830-4 3.644690+4 7.673615-4 2.663665+4 8.709636-4 1.931831+4 9.885531-4 1.390096+4 1.109175-3 1.023866+4 1.258925-3 7.258204+3 1.428894-3 5.104128+3 1.603245-3 3.679936+3 1.819701-3 2.548090+3 2.041738-3 1.811814+3 2.317395-3 1.235598+3 2.630268-3 8.364278+2 3.000000-3 5.536400+2 3.427678-3 3.618444+2 3.935501-3 2.311415+2 4.570882-3 1.411325+2 5.308844-3 8.550001+1 6.095369-3 5.345897+1 7.079458-3 3.188954+1 8.222426-3 1.887310+1 9.549926-3 1.108518+1 1.122018-2 6.203263+0 1.318257-2 3.446123+0 1.566751-2 1.821646+0 1.840772-2 9.975590-1 2.238721-2 4.762321-1 2.754229-2 2.159689-1 3.507519-2 8.516022-2 4.466836-2 3.335216-2 7.673615-2 4.064114-3 9.660509-2 1.669043-3 1.161449-1 8.245162-4 1.364583-1 4.480457-4 1.584893-1 2.562225-4 1.798871-1 1.607727-4 2.018366-1 1.059508-4 2.264644-1 7.033127-5 2.511886-1 4.897948-5 2.786121-1 3.435893-5 3.054921-1 2.523894-5 3.349654-1 1.866692-5 3.672823-1 1.390900-5 4.000000-1 1.066600-5 4.365158-1 8.192960-6 4.731513-1 6.467212-6 5.128614-1 5.138812-6 5.559043-1 4.110746-6 6.025596-1 3.311328-6 6.531306-1 2.687636-6 7.079458-1 2.196895-6 7.673615-1 1.808189-6 8.413951-1 1.457813-6 9.120108-1 1.216096-6 9.772372-1 1.048122-6 1.083927+0 8.476029-7 1.161449+0 7.394353-7 1.273503+0 6.211377-7 1.412538+0 5.144484-7 1.584893+0 4.206841-7 1.778279+0 3.466551-7 1.995262+0 2.879155-7 2.264644+0 2.366722-7 2.570396+0 1.959407-7 2.951209+0 1.606470-7 3.427678+0 1.305595-7 4.000000+0 1.062400-7 4.731513+0 8.559765-8 5.688529+0 6.806183-8 6.918310+0 5.374769-8 8.709636+0 4.106226-8 1.100000+1 3.149100-8 1.479108+1 2.269387-8 2.000000+1 1.637600-8 2.754229+1 1.167071-8 3.935501+1 8.040218-9 6.760830+1 4.609884-9 1.333521+2 2.313049-9 2.660725+2 1.152561-9 2.113489+3 1.44436-10 1.000000+5 3.05060-12 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.360000-5 3.360000-5 1.000000+5 3.360000-5 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.360000-5 0.0 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.450000-6 5.558480+5 5.495409-6 5.171685+5 5.580000-6 4.498600+5 5.688529-6 3.745367+5 5.770000-6 3.253240+5 5.850000-6 2.824280+5 5.920000-6 2.486960+5 6.000000-6 2.143400+5 6.070000-6 1.874678+5 6.150000-6 1.600548+5 6.230000-6 1.359066+5 6.290000-6 1.197160+5 6.350000-6 1.050298+5 6.400000-6 9.385060+4 6.460000-6 8.161660+4 6.520000-6 7.059980+4 6.580000-6 6.069440+4 6.620000-6 5.467100+4 6.670000-6 4.775120+4 6.715000-6 4.206860+4 6.760830-6 3.678124+4 6.810000-6 3.163380+4 6.850000-6 2.782400+4 6.890000-6 2.433420+4 6.930000-6 2.114960+4 6.970000-6 1.825332+4 7.000000-6 1.626128+4 7.035000-6 1.412348+4 7.060000-6 1.271472+4 7.085000-6 1.140036+4 7.115000-6 9.944180+3 7.140000-6 8.827280+3 7.170000-6 7.599400+3 7.192000-6 6.773560+3 7.215000-6 5.976100+3 7.240000-6 5.182600+3 7.260000-6 4.601540+3 7.280000-6 4.066640+3 7.300000-6 3.576480+3 7.320000-6 3.130200+3 7.340000-6 2.726260+3 7.365000-6 2.279520+3 7.390000-6 1.895108+3 7.440000-6 1.304840+3 7.455000-6 1.172260+3 7.470000-6 1.059488+3 7.480000-6 9.950900+2 7.490000-6 9.391740+2 7.500000-6 8.916220+2 7.510000-6 8.523080+2 7.518000-6 8.267340+2 7.527000-6 8.040920+2 7.535000-6 7.893640+2 7.542000-6 7.805940+2 7.550000-6 7.752280+2 7.557000-6 7.745620+2 7.565000-6 7.783560+2 7.574000-6 7.883620+2 7.581000-6 8.003460+2 7.588000-6 8.158840+2 7.596000-6 8.379960+2 7.605000-6 8.683600+2 7.615000-6 9.088240+2 7.627000-6 9.665880+2 7.642000-6 1.052658+3 7.660000-6 1.175934+3 7.685000-6 1.382038+3 7.730000-6 1.851342+3 7.760000-6 2.230880+3 7.780000-6 2.512300+3 7.800000-6 2.815420+3 7.820000-6 3.139700+3 7.840000-6 3.484500+3 7.865000-6 3.943600+3 7.890000-6 4.432420+3 7.920000-6 5.056820+3 7.950000-6 5.720900+3 7.980000-6 6.422420+3 8.010000-6 7.159880+3 8.035261-6 7.807254+3 8.070000-6 8.735120+3 8.100000-6 9.569900+3 8.140000-6 1.072806+4 8.180000-6 1.193480+4 8.222426-6 1.326416+4 8.270000-6 1.481038+4 8.317638-6 1.641307+4 8.365000-6 1.805558+4 8.420000-6 2.001820+4 8.480000-6 2.222100+4 8.520000-6 2.372040+4 8.570000-6 2.562720+4 8.620000-6 2.756440+4 8.680000-6 2.992680+4 8.740000-6 3.232160+4 8.810489-6 3.517087+4 8.880000-6 3.801180+4 8.960000-6 4.130900+4 9.050000-6 4.504120+4 9.150000-6 4.920140+4 9.240000-6 5.294520+4 9.350000-6 5.750520+4 9.460000-6 6.203320+4 9.600000-6 6.772840+4 9.700000-6 7.173820+4 9.850000-6 7.764460+4 1.000000-5 8.340480+4 1.015000-5 8.900400+4 1.035142-5 9.625102+4 1.055000-5 1.030758+5 1.077000-5 1.102542+5 1.100000-5 1.173244+5 1.127000-5 1.250590+5 1.150000-5 1.311746+5 1.180000-5 1.385180+5 1.215000-5 1.462206+5 1.250000-5 1.530528+5 1.290000-5 1.598844+5 1.333521-5 1.662517+5 1.383600-5 1.723635+5 1.440000-5 1.778920+5 1.500000-5 1.824200+5 1.570000-5 1.862314+5 1.650000-5 1.890120+5 1.737801-5 1.905403+5 1.840772-5 1.908092+5 1.950000-5 1.897700+5 2.089296-5 1.870688+5 2.238721-5 1.831042+5 2.426610-5 1.772225+5 2.630268-5 1.702370+5 2.851018-5 1.624352+5 3.126079-5 1.527729+5 3.427678-5 1.426055+5 3.715352-5 1.334015+5 4.073803-5 1.227037+5 4.466836-5 1.120016+5 4.900000-5 1.014466+5 5.432503-5 9.008846+4 6.095369-5 7.823816+4 6.918310-5 6.645791+4 8.222426-5 5.274537+4 1.023293-4 3.900758+4 1.380384-4 2.552024+4 1.659587-4 1.956373+4 1.883649-4 1.617413+4 2.065380-4 1.400481+4 2.344229-4 1.138958+4 2.722701-4 8.846115+3 3.311311-4 6.315387+3 4.365158-4 3.871203+3 5.248075-4 2.772968+3 6.309573-4 1.971874+3 7.585776-4 1.391977+3 9.120108-4 9.750657+2 1.096478-3 6.777276+2 1.303167-3 4.782874+2 1.531087-3 3.429905+2 1.798871-3 2.441466+2 2.113489-3 1.724647+2 2.454709-3 1.240060+2 2.851018-3 8.852144+1 3.273407-3 6.438176+1 3.801894-3 4.524991+1 4.415704-3 3.157033+1 5.188000-3 2.125906+1 6.095369-3 1.420830+1 7.161434-3 9.420723+0 8.317638-3 6.386439+0 9.772372-3 4.169884+0 1.148154-2 2.701991+0 1.348963-2 1.738117+0 1.603245-2 1.075104+0 1.905461-2 6.599722-1 2.264644-2 4.021652-1 2.722701-2 2.352985-1 3.273407-2 1.366423-1 3.981072-2 7.612579-2 4.954502-2 3.927661-2 6.309573-2 1.872824-2 8.609938-2 7.161129-3 1.566751-1 1.110071-3 1.949845-1 5.654178-4 2.344229-1 3.222485-4 2.722701-1 2.055794-4 3.126079-1 1.367996-4 3.507519-1 9.807398-5 3.935501-1 7.082578-5 4.365158-1 5.321753-5 4.841724-1 4.028490-5 5.308844-1 3.166854-5 5.821032-1 2.506573-5 6.382635-1 1.998627-5 6.998420-1 1.605727-5 7.673615-1 1.299943-5 8.317638-1 1.087520-5 9.120108-1 8.934919-6 1.000000+0 7.398200-6 1.148154+0 5.626761-6 1.273503+0 4.615852-6 1.412538+0 3.814886-6 1.548817+0 3.240964-6 1.717908+0 2.717439-6 1.905461+0 2.294177-6 2.137962+0 1.914536-6 2.426610+0 1.580124-6 2.786121+0 1.291328-6 3.198895+0 1.063023-6 3.715352+0 8.674892-7 4.365158+0 7.025179-7 5.248075+0 5.567449-7 6.382635+0 4.383152-7 7.852356+0 3.429641-7 9.885531+0 2.630740-7 1.273503+1 1.981519-7 1.659587+1 1.482945-7 2.162719+1 1.115954-7 2.800000+1 8.495800-8 3.890451+1 6.025865-8 6.760830+1 3.414042-8 1.333521+2 1.713016-8 2.660725+2 8.536179-9 2.113489+3 1.069647-9 1.000000+5 2.25930-11 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.450000-6 5.450000-6 1.000000+5 5.450000-6 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.450000-6 0.0 1.000000+5 1.000000+5 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.657690-8 1.028750+0 1.657690-7 1.035300+0 1.246810-6 1.036640+0 1.657690-6 1.038200+0 2.237110-6 1.039700+0 2.906450-6 1.041500+0 3.867000-6 1.043800+0 5.367530-6 1.046400+0 7.467910-6 1.048300+0 9.297750-6 1.051200+0 1.261220-5 1.054080+0 1.657690-5 1.057700+0 2.259530-5 1.061100+0 2.939070-5 1.065100+0 3.890980-5 1.070400+0 5.428290-5 1.076200+0 7.501850-5 1.080600+0 9.368570-5 1.087100+0 1.262260-4 1.093710+0 1.657690-4 1.102600+0 2.298460-4 1.110700+0 2.997790-4 1.120600+0 4.010420-4 1.133300+0 5.576680-4 1.147500+0 7.700210-4 1.158200+0 9.569480-4 1.174100+0 1.278880-3 1.190110+0 1.657690-3 1.205100+0 2.062730-3 1.227500+0 2.759920-3 1.250000+0 3.569000-3 1.280300+0 4.824070-3 1.307700+0 6.115330-3 1.343000+0 7.985840-3 1.382200+0 1.031800-2 1.433800+0 1.376650-2 1.500000+0 1.878000-2 1.562500+0 2.409280-2 1.617200+0 2.917550-2 1.712900+0 3.894400-2 1.784700+0 4.690900-2 1.892300+0 5.968580-2 2.000000+0 7.323000-2 2.044000+0 7.891000-2 2.215800+0 1.015180-1 2.359600+0 1.206960-1 2.588300+0 1.512010-1 2.862800+0 1.874030-1 3.000000+0 2.053000-1 3.437500+0 2.613290-1 4.000000+0 3.300000-1 4.750000+0 4.140660-1 5.000000+0 4.405000-1 6.000000+0 5.393000-1 7.000000+0 6.271000-1 8.000000+0 7.062000-1 9.000000+0 7.777000-1 1.000000+1 8.426000-1 1.100000+1 9.015000-1 1.200000+1 9.554000-1 1.300000+1 1.005000+0 1.400000+1 1.052000+0 1.500000+1 1.095000+0 1.600000+1 1.136000+0 1.800000+1 1.211000+0 2.000000+1 1.277000+0 2.200000+1 1.337000+0 2.400000+1 1.392000+0 2.600000+1 1.442000+0 2.800000+1 1.489000+0 3.000000+1 1.531000+0 4.000000+1 1.706000+0 5.000000+1 1.836000+0 6.000000+1 1.938000+0 8.000000+1 2.090000+0 1.000000+2 2.199000+0 1.500000+2 2.376000+0 2.000000+2 2.484000+0 3.000000+2 2.611000+0 4.000000+2 2.686000+0 5.000000+2 2.736000+0 6.000000+2 2.772000+0 8.000000+2 2.820000+0 1.000000+3 2.851000+0 1.500000+3 2.897000+0 2.000000+3 2.922000+0 3.000000+3 2.949000+0 4.000000+3 2.964000+0 5.000000+3 2.973000+0 6.000000+3 2.979000+0 8.000000+3 2.988000+0 1.000000+4 2.993000+0 1.500000+4 3.001000+0 2.000000+4 3.005000+0 3.000000+4 3.009000+0 4.000000+4 3.011000+0 5.000000+4 3.012000+0 6.000000+4 3.013000+0 8.000000+4 3.015000+0 1.000000+5 3.015000+0 1 20000 7 8 4.008000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.008460-7 2.119500+0 1.127240-6 2.127900+0 1.528740-6 2.136250+0 2.008460-6 2.147000+0 2.753740-6 2.156900+0 3.576780-6 2.169000+0 4.773430-6 2.184500+0 6.635230-6 2.201800+0 9.180030-6 2.214800+0 1.143760-5 2.234200+0 1.538560-5 2.253680+0 2.008460-5 2.281500+0 2.813210-5 2.307000+0 3.695140-5 2.338200+0 4.968440-5 2.377400+0 6.880700-5 2.410200+0 8.751110-5 2.446800+0 1.113190-4 2.485900+0 1.401570-4 2.532900+0 1.793700-4 2.556430+0 2.008460-4 2.611900+0 2.560990-4 2.660400+0 3.096080-4 2.745300+0 4.143860-4 2.809000+0 5.018420-4 2.904500+0 6.464870-4 3.000000+0 8.070000-4 3.125000+0 1.040660-3 3.234400+0 1.266340-3 3.425800+0 1.705570-3 3.569300+0 2.068430-3 3.784700+0 2.659470-3 4.000000+0 3.295000-3 4.250000+0 4.072100-3 4.625000+0 5.293630-3 5.000000+0 6.564000-3 5.500000+0 8.309020-3 6.000000+0 1.008000-2 6.750000+0 1.272080-2 7.000000+0 1.359000-2 8.000000+0 1.699000-2 9.000000+0 2.025000-2 1.000000+1 2.335000-2 1.100000+1 2.630000-2 1.200000+1 2.907000-2 1.300000+1 3.170000-2 1.400000+1 3.420000-2 1.500000+1 3.657000-2 1.600000+1 3.883000-2 1.800000+1 4.302000-2 2.000000+1 4.685000-2 2.200000+1 5.037000-2 2.400000+1 5.361000-2 2.600000+1 5.662000-2 2.800000+1 5.941000-2 3.000000+1 6.202000-2 4.000000+1 7.292000-2 5.000000+1 8.131000-2 6.000000+1 8.804000-2 8.000000+1 9.834000-2 1.000000+2 1.060000-1 1.500000+2 1.189000-1 2.000000+2 1.272000-1 3.000000+2 1.377000-1 4.000000+2 1.441000-1 5.000000+2 1.486000-1 6.000000+2 1.519000-1 8.000000+2 1.566000-1 1.000000+3 1.598000-1 1.500000+3 1.646000-1 2.000000+3 1.674000-1 3.000000+3 1.705000-1 4.000000+3 1.723000-1 5.000000+3 1.734000-1 6.000000+3 1.742000-1 8.000000+3 1.753000-1 1.000000+4 1.760000-1 1.500000+4 1.769000-1 2.000000+4 1.775000-1 3.000000+4 1.780000-1 4.000000+4 1.783000-1 5.000000+4 1.785000-1 6.000000+4 1.786000-1 8.000000+4 1.788000-1 1.000000+5 1.789000-1 1 20000 7 8 4.008000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 20000 7 9 4.008000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.000000+1 1.000000+5 2.000000+1 5.000000+5 1.998800+1 7.500000+5 1.997450+1 1.000000+6 1.995700+1 1.250000+6 1.993460+1 1.500000+6 1.990700+1 1.875000+6 1.985510+1 2.000000+6 1.983700+1 2.375000+6 1.977070+1 2.500000+6 1.974800+1 2.875000+6 1.966970+1 3.000000+6 1.964300+1 3.437500+6 1.953710+1 3.812500+6 1.943900+1 4.000000+6 1.938800+1 4.437500+6 1.926030+1 4.812500+6 1.914640+1 5.000000+6 1.908800+1 5.500000+6 1.892250+1 5.875000+6 1.879460+1 6.000000+6 1.875240+1 6.437500+6 1.859780+1 7.000000+6 1.839800+1 7.500000+6 1.821730+1 8.156200+6 1.797910+1 8.500000+6 1.785400+1 9.000000+6 1.767500+1 1.000000+7 1.731900+1 1.187500+7 1.668420+1 1.250000+7 1.648300+1 1.500000+7 1.571500+1 1.750000+7 1.499000+1 2.000000+7 1.429300+1 2.250000+7 1.361070+1 2.375000+7 1.327640+1 2.500000+7 1.294700+1 2.750000+7 1.230370+1 2.875000+7 1.199180+1 3.000000+7 1.168900+1 3.250000+7 1.110800+1 3.437500+7 1.069950+1 3.812500+7 9.960360+0 4.000000+7 9.629500+0 4.500000+7 8.863820+0 4.750000+7 8.540260+0 5.000000+7 8.252400+0 5.500000+7 7.769510+0 5.750000+7 7.563830+0 6.000000+7 7.376700+0 7.000000+7 6.749800+0 7.750000+7 6.340820+0 8.000000+7 6.209500+0 8.750000+7 5.819450+0 9.000000+7 5.690900+0 9.500000+7 5.434910+0 1.000000+8 5.181400+0 1.062500+8 4.869110+0 1.109400+8 4.639070+0 1.179700+8 4.303930+0 1.187500+8 4.267610+0 1.250000+8 3.982100+0 1.312500+8 3.708770+0 1.406300+8 3.332120+0 1.437500+8 3.216820+0 1.500000+8 3.002000+0 1.718800+8 2.401660+0 1.812500+8 2.204460+0 1.937500+8 1.985480+0 2.000000+8 1.891800+0 2.125000+8 1.731960+0 2.253900+8 1.601260+0 2.341800+8 1.529720+0 2.375000+8 1.506070+0 2.447300+8 1.460400+0 2.500000+8 1.431900+0 3.000000+8 1.250100+0 3.125000+8 1.201190+0 3.500000+8 1.068400+0 4.000000+8 9.473000-1 4.179700+8 9.031520-1 4.330100+8 8.651290-1 4.569300+8 8.050110-1 4.892300+8 7.287440-1 5.000000+8 7.051000-1 5.343800+8 6.352780-1 5.578100+8 5.908960-1 5.789100+8 5.522490-1 6.000000+8 5.145000-1 6.250000+8 4.711530-1 6.625000+8 4.147940-1 6.812500+8 3.916710-1 7.000000+8 3.722000-1 7.250000+8 3.514580-1 7.625000+8 3.249170-1 7.812500+8 3.115380-1 8.000000+8 2.972000-1 8.183600+8 2.819710-1 8.352100+8 2.674240-1 8.558000+8 2.494630-1 8.822400+8 2.269220-1 9.116800+8 2.034090-1 1.000000+9 1.472000-1 1.031300+9 1.324980-1 1.089800+9 1.104790-1 1.141100+9 9.541410-2 1.230800+9 7.544430-2 1.399100+9 5.079340-2 1.466400+9 4.376670-2 1.500000+9 4.067400-2 1.589800+9 3.352410-2 1.665000+9 2.861770-2 1.784700+9 2.242270-2 1.928200+9 1.698400-2 2.000000+9 1.487400-2 2.363300+9 8.072260-3 2.846700+9 4.050090-3 3.385000+9 2.118260-3 4.192500+9 9.454870-4 5.000000+9 4.852600-4 7.250000+9 1.186710-4 8.000000+9 8.180900-5 9.500000+9 4.285980-5 1.00000+10 3.537200-5 1.20500+10 1.769660-5 1.41820+10 9.727330-6 1.71170+10 4.910310-6 2.01490+10 2.731560-6 2.26440+10 1.801110-6 2.74790+10 9.084980-7 3.20120+10 5.321740-7 3.62610+10 3.450400-7 4.42280+10 1.739860-7 5.12000+10 1.054920-7 6.34000+10 5.113670-8 7.94120+10 2.402760-8 1.00000+11 1.117400-8 1.26840+11 5.111930-9 1.58400+11 2.477790-9 2.01970+11 1.130200-9 2.73980+11 4.26183-10 3.88950+11 1.40747-10 6.15400+11 3.36300-11 1.00720+12 7.38886-12 1.85540+12 1.15949-12 4.35530+12 9.09402-14 2.49740+13 5.45894-16 1.00000+14 9.57510-18 5.62340+14 5.95124-20 5.42470+15 6.98379-23 1.00000+17 1.10980-26 1 20000 7 0 4.008000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.20000-12 1.000000+2 7.20000-10 1.000000+3 7.200000-8 1.000000+4 7.200000-6 1.000000+5 7.200000-4 5.000000+5 1.800000-2 7.500000+5 4.050000-2 1.000000+6 7.200000-2 1.250000+6 1.118630-1 1.500000+6 1.598000-1 1.875000+6 2.458430-1 2.000000+6 2.781000-1 2.375000+6 3.845160-1 2.500000+6 4.230000-1 2.875000+6 5.462200-1 3.000000+6 5.897000-1 3.437500+6 7.495310-1 3.812500+6 8.941550-1 4.000000+6 9.685000-1 4.437500+6 1.144960+0 4.812500+6 1.298180+0 5.000000+6 1.375000+0 5.500000+6 1.578330+0 5.875000+6 1.728500+0 6.000000+6 1.777960+0 6.437500+6 1.947700+0 7.000000+6 2.157500+0 7.500000+6 2.334470+0 8.156200+6 2.554250+0 8.500000+6 2.663710+0 9.000000+6 2.817200+0 1.000000+7 3.105000+0 1.187500+7 3.601700+0 1.250000+7 3.761800+0 1.500000+7 4.401000+0 1.750000+7 5.047700+0 2.000000+7 5.690000+0 2.250000+7 6.309550+0 2.375000+7 6.608260+0 2.500000+7 6.899300+0 2.750000+7 7.455440+0 2.875000+7 7.721590+0 3.000000+7 7.981000+0 3.250000+7 8.476430+0 3.437500+7 8.828880+0 3.812500+7 9.485250+0 4.000000+7 9.790000+0 4.500000+7 1.052470+1 4.750000+7 1.085320+1 5.000000+7 1.115700+1 5.500000+7 1.169600+1 5.750000+7 1.193640+1 6.000000+7 1.216300+1 7.000000+7 1.295300+1 7.750000+7 1.347090+1 8.000000+7 1.363500+1 8.750000+7 1.410490+1 9.000000+7 1.425600+1 9.500000+7 1.454770+1 1.000000+8 1.483000+1 1.062500+8 1.516330+1 1.109400+8 1.539880+1 1.179700+8 1.573160+1 1.187500+8 1.576660+1 1.250000+8 1.603800+1 1.312500+8 1.628780+1 1.406300+8 1.662490+1 1.437500+8 1.672750+1 1.500000+8 1.692100+1 1.718800+8 1.747010+1 1.812500+8 1.765840+1 1.937500+8 1.787370+1 2.000000+8 1.797000+1 2.125000+8 1.813810+1 2.253900+8 1.828870+1 2.341800+8 1.838150+1 2.375000+8 1.841360+1 2.447300+8 1.848210+1 2.500000+8 1.853100+1 3.000000+8 1.890600+1 3.125000+8 1.898310+1 3.500000+8 1.919100+1 4.000000+8 1.941100+1 4.179700+8 1.947430+1 4.330100+8 1.952530+1 4.569300+8 1.959370+1 4.892300+8 1.967400+1 5.000000+8 1.969800+1 5.343800+8 1.976020+1 5.578100+8 1.979610+1 5.789100+8 1.982310+1 6.000000+8 1.984800+1 6.250000+8 1.987070+1 6.625000+8 1.990070+1 6.812500+8 1.991250+1 7.000000+8 1.992400+1 7.250000+8 1.993440+1 7.625000+8 1.994930+1 7.812500+8 1.995580+1 8.000000+8 1.996100+1 8.183600+8 1.996460+1 8.352100+8 1.996780+1 8.558000+8 1.997160+1 8.822400+8 1.997640+1 9.116800+8 1.998070+1 1.000000+9 1.998900+1 1.031300+9 1.999020+1 1.089800+9 1.999230+1 1.141100+9 1.999410+1 1.230800+9 1.999700+1 1.399100+9 1.999850+1 1.466400+9 1.999880+1 1.500000+9 1.999900+1 1.589800+9 1.999920+1 1.665000+9 1.999940+1 1.784700+9 1.999960+1 1.928200+9 1.999990+1 2.000000+9 2.000000+1 2.363300+9 2.000000+1 2.846700+9 2.000000+1 3.385000+9 2.000000+1 4.192500+9 2.000000+1 5.000000+9 2.000000+1 7.250000+9 2.000000+1 8.000000+9 2.000000+1 9.500000+9 2.000000+1 1.00000+10 2.000000+1 1.20500+10 2.000000+1 1.41820+10 2.000000+1 1.71170+10 2.000000+1 2.01490+10 2.000000+1 2.26440+10 2.000000+1 2.74790+10 2.000000+1 3.20120+10 2.000000+1 3.62610+10 2.000000+1 4.42280+10 2.000000+1 5.12000+10 2.000000+1 6.34000+10 2.000000+1 7.94120+10 2.000000+1 1.00000+11 2.000000+1 1.26840+11 2.000000+1 1.58400+11 2.000000+1 2.01970+11 2.000000+1 2.73980+11 2.000000+1 3.88950+11 2.000000+1 6.15400+11 2.000000+1 1.00720+12 2.000000+1 1.85540+12 2.000000+1 4.35530+12 2.000000+1 2.49740+13 2.000000+1 1.00000+14 2.000000+1 5.62340+14 2.000000+1 5.42470+15 2.000000+1 1.00000+17 2.000000+1 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.272866-6 0.0 2.282656-6 3.365802+0 2.284055-6 3.841725+0 2.287838-6 5.987212+0 2.289649-6 8.270631+0 2.295244-6 1.693636+1 2.299100-6 2.408964+1 2.300838-6 2.810514+1 2.304731-6 3.811586+1 2.311166-6 5.943634+1 2.323216-6 1.066483+2 2.329160-6 1.263618+2 2.335310-6 1.388304+2 2.339999-6 1.421153+2 2.344747-6 1.381724+2 2.350424-6 1.249535+2 2.360943-6 8.575797+1 2.367971-6 5.773352+1 2.372306-6 4.264660+1 2.377937-6 2.693605+1 2.383569-6 1.501785+1 2.384754-6 1.320892+1 2.389200-6 8.024740+0 2.397647-6 2.039921+0 2.400462-6 0.0 3.396363-6 0.0 3.404723-6 1.45379-15 3.413082-6 2.87666-15 3.421442-6 5.25445-15 3.429802-6 8.85972-15 3.438161-6 1.37901-14 3.446521-6 1.98138-14 3.454881-6 2.62798-14 3.463241-6 3.21759-14 3.471600-6 3.63658-14 3.479960-6 3.79410-14 3.488320-6 3.65409-14 3.496679-6 3.24866-14 3.505039-6 2.66613-14 3.521759-6 1.41254-14 3.530118-6 9.11885-15 3.538478-6 5.43418-15 3.546838-6 2.98939-15 3.555197-6 1.51805-15 3.563557-6 0.0 3.911923-6 0.0 3.912460-6 2.236612-7 3.931720-6 2.023863-5 3.941350-6 3.685479-5 3.946473-6 5.008978-5 3.950816-6 1.532292-2 3.965900-6 1.825630-1 3.970265-6 2.404833-1 3.975614-6 3.383789-1 3.979989-6 4.315016-1 3.985328-6 5.796221-1 3.989713-6 7.154666-1 4.000211-6 1.132646+0 4.024183-6 2.269984+0 4.037226-6 2.709528+0 4.049276-6 2.807565+0 4.059000-6 2.650496+0 4.069254-6 2.286718+0 4.095430-6 1.057884+0 4.101892-6 8.017903-1 4.106407-6 6.421584-1 4.111606-6 4.947396-1 4.116131-6 3.799001-1 4.121320-6 2.822881-1 4.125855-6 2.075650-1 4.140747-6 3.655214-2 4.145304-6 0.0 4.489838-6 0.0 4.489848-6 4.92103-15 4.500899-6 1.30384-11 4.511950-6 2.57980-11 4.523353-6 4.81459-11 4.523597-6 2.903326-8 4.536558-6 3.872451-6 4.538403-6 9.777288-4 4.558891-6 3.605957-2 4.560744-6 3.984412-2 4.570057-6 6.619393-2 4.571915-6 7.228506-2 4.583086-6 1.211116-1 4.594256-6 1.873973-1 4.625888-6 4.185072-1 4.638939-6 4.844490-1 4.650110-6 5.033395-1 4.661281-6 4.828942-1 4.672451-6 4.277722-1 4.705964-6 1.842618-1 4.717134-6 1.186316-1 4.728305-6 7.051801-2 4.737549-6 4.362863-2 4.739476-6 3.870097-2 4.750646-6 1.911018-2 4.759882-6 2.431909-3 4.761817-6 0.0 4.788663-6 0.0 4.800450-6 8.42846-12 4.812237-6 1.66776-11 4.813580-6 1.82453-11 4.814546-6 1.611381-4 4.838247-6 1.330450-2 4.850097-6 2.422055-2 4.861948-6 4.071227-2 4.873798-6 6.318522-2 4.908364-6 1.442930-1 4.921200-6 1.650216-1 4.933050-6 1.718247-1 4.944900-6 1.651755-1 4.956751-6 1.465942-1 4.992302-6 7.015443-2 5.004152-6 5.271013-2 5.016003-6 4.367861-2 5.027853-6 4.282217-2 5.051554-6 5.481162-2 5.064152-6 6.825584-2 5.076376-6 7.858295-2 5.088600-6 8.384829-2 5.100824-6 8.406981-2 5.113048-6 8.015862-2 5.145538-6 6.602803-2 5.161944-6 6.220922-2 5.198872-6 6.209335-2 5.212891-6 6.029976-2 5.237883-6 5.934467-2 5.348837-6 4.991963-2 5.392087-6 4.461535-2 5.423476-6 4.130909-2 5.487726-6 3.894483-2 5.548623-6 3.724844-2 5.809862-6 2.528297-2 5.993649-6 1.865975-2 6.169903-6 1.362346-2 6.334947-6 9.887215-3 6.456193-6 7.649761-3 6.599970-6 5.480861-3 6.720846-6 4.013439-3 6.839971-6 2.845382-3 6.924975-6 2.163478-3 7.017478-6 1.550853-3 7.099984-6 1.108583-3 7.171740-6 7.972566-4 7.233115-6 5.813562-4 7.289993-6 4.200554-4 7.340149-6 3.070362-4 7.375929-6 2.423589-4 7.416376-6 1.845443-4 7.445624-6 1.524806-4 7.480000-6 1.248740-4 7.510000-6 1.094021-4 7.535000-6 1.024626-4 7.565000-6 1.010742-4 7.592000-6 1.061135-4 7.618000-6 1.164328-4 7.645374-6 1.329288-4 7.680000-6 1.618632-4 7.717317-6 2.026357-4 7.762022-6 2.642422-4 7.809994-6 3.450561-4 7.877490-6 4.831165-4 7.964986-6 7.015908-4 8.084986-6 1.066711-3 8.211799-6 1.525173-3 8.406216-6 2.351708-3 8.712561-6 3.892100-3 8.890031-6 4.885580-3 9.700000-6 9.943067-3 1.143030-5 2.113007-2 1.292747-5 2.959955-2 1.500000-5 3.910760-2 1.773873-5 4.833870-2 2.146151-5 5.691672-2 2.553484-5 6.267539-2 2.733049-5 6.435410-2 2.735724-5 3.897563-1 2.749191-5 1.683273+1 2.755925-5 3.052911+1 2.762658-5 5.117577+1 2.770234-5 8.361891+1 2.778643-5 1.288975+2 2.786866-5 1.768256+2 2.795676-5 2.182290+2 2.802492-5 2.376384+2 2.806752-5 2.435527+2 2.812631-5 2.440327+2 2.820165-5 2.317441+2 2.832056-5 1.976492+2 2.863632-5 8.222312+1 2.870396-5 5.663518+1 2.877006-5 4.001176+1 2.883835-5 2.585355+1 2.890665-5 1.543350+1 2.897494-5 8.519775+0 2.909143-5 1.331550+0 2.911152-5 6.601913-2 3.086451-5 6.780281-2 3.101645-5 1.947404-1 3.109242-5 2.996325-1 3.116839-5 4.586472-1 3.124435-5 6.760907-1 3.128521-5 8.209928-1 3.138061-5 1.208350+0 3.149231-5 1.727991+0 3.161662-5 2.190870+0 3.177646-5 2.628611+0 3.197271-5 3.051381+0 3.212669-5 3.235213+0 3.236071-5 3.121545+0 3.245840-5 3.021422+0 3.305221-5 2.751076+0 3.457845-5 2.400515+0 3.730161-5 1.738634+0 3.937518-5 1.361749+0 4.120975-5 1.120164+0 4.300000-5 9.555832-1 4.509950-5 8.347931-1 4.680852-5 7.819418-1 4.886407-5 7.579910-1 4.910462-5 8.238506-1 4.922489-5 8.793268-1 4.934516-5 9.631328-1 4.946544-5 1.076982+0 4.981103-5 1.480395+0 4.994653-5 1.589147+0 5.006680-5 1.622546+0 5.018707-5 1.588375+0 5.030735-5 1.494476+0 5.066816-5 1.089829+0 5.078844-5 9.880119-1 5.090014-5 9.262559-1 5.102450-5 8.940370-1 5.126888-5 9.072533-1 5.168036-5 1.065829+0 5.193855-5 1.113246+0 5.304686-5 1.113872+0 6.215265-5 1.440862+0 7.585776-5 1.965724+0 8.659618-5 2.274201+0 9.900000-5 2.497244+0 1.113498-4 2.617633+0 1.360320-4 2.687190+0 1.724934-4 2.563743+0 3.138898-4 1.760797+0 3.412222-4 1.638415+0 3.429020-4 4.584591+0 3.437419-4 7.024015+0 3.445817-4 1.072323+1 3.450081-4 1.331026+1 3.455020-4 1.684954+1 3.478163-4 3.694940+1 3.489715-4 4.604054+1 3.499512-4 5.041971+1 3.508306-4 5.157195+1 3.517394-4 5.011507+1 3.530004-4 4.459333+1 3.560000-4 2.690346+1 3.570250-4 2.203201+1 3.580817-4 1.765227+1 3.590400-4 1.600278+1 3.598500-4 1.511102+1 3.619650-4 1.395035+1 3.662130-4 1.460013+1 3.863748-4 1.411784+1 4.231746-4 1.290040+1 4.293866-4 1.347817+1 4.342600-4 1.395778+1 5.587054-4 1.054820+1 6.551729-4 8.554162+0 7.681901-4 6.849285+0 8.906299-4 5.512276+0 1.030758-3 4.419498+0 1.177924-3 3.593392+0 1.312706-3 3.026557+0 1.501561-3 2.438047+0 1.671684-3 2.044717+0 1.881344-3 1.681091+0 2.114895-3 1.380917+0 2.387827-3 1.123210+0 2.683799-3 9.186224-1 3.004341-3 7.549764-1 3.363730-3 6.193941-1 3.821923-3 4.942408-1 3.916978-3 4.793710-1 3.934937-3 5.132815-1 3.945006-3 5.593839-1 3.955635-3 6.493915-1 3.965540-3 7.875395-1 3.975253-3 9.874471-1 3.984635-3 1.243916+0 3.997960-3 1.707295+0 4.028632-3 2.897879+0 4.047389-3 3.423994+0 4.067854-3 3.721912+0 4.105580-3 3.830444+0 5.001430-3 2.853300+0 5.702120-3 2.306027+0 6.487978-3 1.865861+0 7.317707-3 1.520913+0 8.258443-3 1.235248+0 9.337194-3 9.946557-1 1.050058-2 8.053367-1 1.174898-2 6.560208-1 1.303167-2 5.416091-1 1.452203-2 4.417487-1 1.605554-2 3.651708-1 1.770344-2 3.026091-1 1.974591-2 2.448447-1 2.157472-2 2.058157-1 2.390150-2 1.681145-1 2.677252-2 1.340155-1 2.962937-2 1.092115-1 3.225091-2 9.191400-2 3.534438-2 7.627728-2 3.876592-2 6.302528-2 4.330147-2 5.011957-2 4.849978-2 3.954302-2 5.326711-2 3.248390-2 5.888437-2 2.630634-2 6.550243-2 2.097748-2 7.297026-2 1.667009-2 8.055214-2 1.350762-2 8.821789-2 1.112236-2 9.643775-2 9.190160-3 1.055466-1 7.572868-3 1.161449-1 6.166378-3 1.263101-1 5.154272-3 1.381188-1 4.257871-3 1.502912-1 3.555926-3 1.642564-1 2.946005-3 1.806612-1 2.410926-3 1.964058-1 2.023479-3 2.133519-1 1.704857-3 2.341293-1 1.407824-3 2.561933-1 1.172771-3 2.789632-1 9.899219-4 3.054921-1 8.278679-4 3.371417-1 6.853331-4 3.687180-1 5.799464-4 4.088321-1 4.811239-4 4.565232-1 3.971168-4 5.113874-1 3.289683-4 5.824175-1 2.683364-4 6.531306-1 2.269937-4 7.334358-1 1.939085-4 8.293733-1 1.666581-4 9.660509-1 1.400354-4 1.173413+0 1.147332-4 1.410753+0 9.502296-5 1.696098+0 7.869881-5 2.039158+0 6.517901-5 2.451607+0 5.398180-5 2.947480+0 4.470818-5 3.543651+0 3.702768-5 4.260405+0 3.066664-5 5.122134+0 2.539836-5 6.158159+0 2.103514-5 7.403736+0 1.742148-5 8.901248+0 1.442861-5 9.760024+0 1.313090-5 1.000000+1 2.595560-5 1 20000 7 0 4.008000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-1.953304+1 1.560930-6-1.833178+1 1.830668-6-1.672275+1 1.961665-6-1.508749+1 2.048000-6-1.318776+1 2.098773-6-1.142004+1 2.138383-6-9.400135+0 2.162056-6-7.744307+0 2.181561-6-5.986672+0 2.197633-6-4.150170+0 2.206743-6-2.895360+0 2.214750-6-1.626425+0 2.218383-6-9.895219-1 2.221788-6-3.525390-1 2.224980-6 2.833693-1 2.230966-6 1.590769+0 2.236204-6 2.878920+0 2.240786-6 4.138681+0 2.244796-6 5.361786+0 2.251375-6 7.670361+0 2.258469-6 1.071725+1 2.264768-6 1.413297+1 2.270589-6 1.829109+1 2.282656-6 3.064138+1 2.287365-6 3.749932+1 2.291048-6 4.395679+1 2.300838-6 5.731052+1 2.306667-6 6.334887+1 2.312672-6 6.505789+1 2.316152-6 6.247374+1 2.320236-6 5.623610+1 2.323216-6 4.897489+1 2.326712-6 3.806127+1 2.328548-6 3.106639+1 2.329160-6 2.812692+1 2.332929-6 1.201741+1 2.333851-6 7.577047+0 2.334266-6 5.331917+0 2.334492-6 3.876945+0 2.334664-6 2.880780+0 2.334997-6 1.094300+0 2.335310-6-5.008291-1 2.335896-6-3.388114+0 2.339078-6-1.881383+1 2.339307-6-2.000348+1 2.339999-6-1.607186+1 2.344150-6 5.984467+0 2.344411-6 7.594511+0 2.345376-6 1.257235+1 2.350424-6 3.563782+1 2.353131-6 4.546873+1 2.357481-6 5.761887+1 2.360943-6 6.418840+1 2.365006-6 6.853701+1 2.367971-6 6.915156+1 2.372306-6 6.690061+1 2.377937-6 6.094015+1 2.383569-6 5.267376+1 2.389904-6 4.218613+1 2.400110-6 2.952608+1 2.402406-6 2.611389+1 2.407252-6 2.146100+1 2.413036-6 1.738488+1 2.420700-6 1.329329+1 2.428307-6 1.014705+1 2.435856-6 7.628146+0 2.443345-6 5.555247+0 2.450776-6 3.814246+0 2.458149-6 2.328459+0 2.465478-6 1.041565+0 2.472751-6-8.283914-2 2.479967-6-1.074366+0 2.487126-6-1.955695+0 2.494230-6-2.744527+0 2.508270-6-4.098118+0 2.528923-6-5.708984+0 2.555766-6-7.327930+0 2.594557-6-9.051137+0 2.655271-6-1.088489+1 2.733127-6-1.240032+1 2.865848-6-1.394524+1 3.102212-6-1.536839+1 3.563557-6-1.662456+1 3.922090-6-1.758810+1 4.006900-6-1.868288+1 4.033896-6-1.783096+1 4.072526-6-1.566314+1 4.095430-6-1.535133+1 4.178974-6-1.650479+1 4.625888-6-1.745897+1 4.717134-6-1.702999+1 4.944900-6-1.734331+1 1.500000-5-1.971613+1 1.645222-5-2.001360+1 1.976444-5-1.807846+1 2.182259-5-1.579320+1 2.305801-5-1.350100+1 2.390942-5-1.112124+1 2.450868-5-8.760855+0 2.485038-5-7.021204+0 2.515071-5-5.155153+0 2.528695-5-4.175187+0 2.541467-5-3.164603+0 2.553484-5-2.119947+0 2.564666-5-1.055021+0 2.575190-5 4.218696-2 2.585056-5 1.166258+0 2.594306-5 2.316204+0 2.602977-5 3.490641+0 2.611107-5 4.688051+0 2.625873-5 7.145092+0 2.638852-5 9.672692+0 2.655433-5 1.355999+1 2.669095-5 1.751015+1 2.683866-5 2.285759+1 2.695393-5 2.814268+1 2.707823-5 3.548803+1 2.718262-5 4.373259+1 2.726811-5 5.291458+1 2.733049-5 6.242801+1 2.749191-5 9.534515+1 2.763500-5 1.270653+2 2.771707-5 1.380983+2 2.778643-5 1.375442+2 2.783397-5 1.297640+2 2.786866-5 1.194255+2 2.793173-5 9.351282+1 2.797759-5 6.775000+1 2.803543-5 3.322133+1 2.804463-5 2.691669+1 2.805319-5 2.053250+1 2.806752-5 1.144502+1 2.809457-5-4.868385+0 2.810806-5-1.332634+1 2.811471-5-1.810182+1 2.811821-5-2.056372+1 2.812631-5-1.537908+1 2.818267-5 1.714343+1 2.818811-5 2.055902+1 2.820779-5 3.087689+1 2.824703-5 4.842005+1 2.832056-5 7.770244+1 2.838725-5 9.693992+1 2.845693-5 1.112538+2 2.854690-5 1.231421+2 2.863632-5 1.265876+2 2.869921-5 1.220894+2 2.900807-5 7.397055+1 2.915848-5 5.424641+1 2.926101-5 4.536737+1 2.939646-5 3.712804+1 2.954315-5 3.058632+1 2.966678-5 2.626594+1 2.982923-5 2.170011+1 3.004896-5 1.688647+1 3.019544-5 1.428218+1 3.041516-5 1.100536+1 3.063488-5 8.264357+0 3.098543-5 4.466935+0 3.116839-5 2.652297+0 3.128521-5 1.603729+0 3.138061-5 8.853732-1 3.143646-5 5.302304-1 3.149231-5 2.462554-1 3.157363-5-8.289031-2 3.165653-5-3.525779-1 3.177646-5-6.875378-1 3.187442-5-9.241213-1 3.197271-5-1.093742+0 3.230372-5-1.424723+0 3.238470-5-1.539288+0 3.318616-5-3.172944+0 3.372769-5-4.047576+0 3.457845-5-5.117344+0 3.605356-5-6.495645+0 3.787267-5-7.727152+0 4.120975-5-9.294785+0 4.886407-5-1.172032+1 4.970000-5-1.207089+1 5.048256-5-1.132957+1 5.179708-5-1.191063+1 6.531306-5-1.279221+1 8.659618-5-1.290165+1 1.598016-4-1.208257+1 2.111145-4-1.234074+1 2.508770-4-1.323452+1 2.809934-4-1.465104+1 3.021404-4-1.648895+1 3.163367-4-1.868196+1 3.264050-4-2.142797+1 3.305913-4-2.320683+1 3.357406-4-2.134968+1 3.385250-4-1.927763+1 3.401595-4-1.714591+1 3.411120-4-1.503618+1 3.415454-4-1.357952+1 3.427970-4-1.032938+1 3.446924-4-4.152378+0 3.450081-4-3.260240+0 3.455020-4-2.095766+0 3.456527-4-1.906242+0 3.457845-4-1.826886+0 3.460153-4-1.832039+0 3.461918-4-1.942221+0 3.464479-4-2.241266+0 3.467075-4-2.682815+0 3.468916-4-3.096542+0 3.471937-4-4.028331+0 3.475329-4-5.412722+0 3.478163-4-6.868060+0 3.481350-4-8.940863+0 3.488291-4-1.463445+1 3.497717-4-2.445422+1 3.501622-4-2.902099+1 3.502248-4-2.889564+1 3.511053-4-2.014448+1 3.516300-4-1.529688+1 3.518816-4-1.295960+1 3.522002-4-1.054236+1 3.530004-4-4.962774+0 3.532045-4-3.796801+0 3.533597-4-3.003422+0 3.535871-4-1.944732+0 3.538167-4-9.538308-1 3.540232-4-1.535755-1 3.541211-4 1.457304-1 3.543328-4 8.091742-1 3.544877-4 1.199282+0 3.546425-4 1.528178+0 3.549614-4 2.092723+0 3.552005-4 2.436724+0 3.555592-4 2.792426+0 3.557386-4 2.885160+0 3.562630-4 2.787448+0 3.564355-4 2.695305+0 3.572511-4 1.802493+0 3.575726-4 1.309108+0 3.577334-4 9.788534-1 3.578942-4 5.148330-1 3.580817-4-1.316138-1 3.582205-4-5.798656-1 3.586370-4-1.649514+0 3.596615-4-3.859824+0 3.603014-4-4.976885+0 3.624032-4-7.873485+0 3.637143-4-8.845932+0 3.651328-4-9.398792+0 3.687839-4-9.989615+0 3.757851-4-1.013232+1 4.146420-4-8.577695+0 4.231746-4-8.659574+0 4.284041-4-8.862034+0 4.317249-4-8.573623+0 4.392564-4-7.495795+0 4.520444-4-6.539682+0 4.749051-4-5.348305+0 5.021050-4-4.317494+0 5.347182-4-3.376221+0 5.676263-4-2.658879+0 6.025596-4-2.073207+0 6.359125-4-1.643587+0 6.703397-4-1.299247+0 7.077070-4-1.021121+0 7.496329-4-7.673275-1 7.799739-4-6.332651-1 8.287766-4-4.643690-1 8.677966-4-3.721854-1 9.216000-4-2.807883-1 9.406705-4-2.528897-1 9.843607-4-2.078808-1 1.030758-3-1.842985-1 1.059254-3-1.753381-1 1.099639-3-1.706564-1 1.158527-3-1.743604-1 1.233815-3-1.888088-1 1.312706-3-2.206194-1 1.553767-3-3.508573-1 1.957385-3-6.070167-1 2.683799-3-1.106884+0 3.114987-3-1.469542+0 3.363730-3-1.756407+0 3.551839-3-2.062183+0 3.681132-3-2.365396+0 3.797541-3-2.779133+0 3.867490-3-3.175897+0 3.916978-3-3.639200+0 3.951293-3-4.206526+0 3.997960-3-5.213578+0 4.016201-3-5.319625+0 4.037747-3-5.063273+0 4.089143-3-3.839933+0 4.122936-3-3.290005+0 4.158396-3-2.903629+0 4.209436-3-2.506254+0 4.287327-3-2.070852+0 4.382596-3-1.688971+0 4.487071-3-1.377701+0 4.603890-3-1.108027+0 4.720274-3-8.909989-1 4.833096-3-7.222778-1 4.936486-3-5.918438-1 5.066374-3-4.546361-1 5.186192-3-3.487122-1 5.308844-3-2.559087-1 5.424690-3-1.806389-1 5.499345-3-1.368115-1 5.574000-3-9.664210-2 5.702120-3-3.595252-2 5.848268-3 2.424183-2 6.009014-3 8.125736-2 6.157460-3 1.262969-1 6.355138-3 1.792974-1 6.487978-3 2.081620-1 6.654197-3 2.392482-1 7.000163-3 2.885723-1 7.531790-3 3.365211-1 8.258443-3 3.707439-1 9.055639-3 3.815972-1 1.050058-2 3.690564-1 1.658654-2 2.435196-1 1.974591-2 1.928021-1 2.312957-2 1.514352-1 2.677252-2 1.180228-1 3.049478-2 9.227438-2 3.432615-2 7.191831-2 3.876592-2 5.396669-2 4.210939-2 4.325777-2 4.609812-2 3.287169-2 4.972359-2 2.509131-2 5.326711-2 1.871524-2 5.667584-2 1.349531-2 6.029948-2 8.751194-3 6.386548-2 4.708992-3 6.550243-2 3.047393-3 6.704129-2 1.571399-3 6.845400-2 2.843913-4 6.977641-2-8.613172-4 7.142826-2-2.209624-3 7.297026-2-3.403959-3 7.643723-2-5.857040-3 8.190451-2-9.187482-3 8.821789-2-1.241056-2 9.643775-2-1.580991-2 1.089557-1-1.973184-2 1.263101-1-2.351705-2 1.502912-1-2.690269-2 1.907582-1-3.016323-2 2.647814-1-3.289403-2 4.242613-1-3.484506-2 1.018885+0-3.591035-2 3.086391+0-3.610945-2 9.320751+0-3.613113-2 1.000000+1-3.612691-2 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.916773-2 1.068031-6 1.079178-1 1.135826-6 1.452151-1 1.171321-6 1.689762-1 1.207924-6 1.970835-1 1.245672-6 2.304520-1 1.284599-6 2.702235-1 1.324743-6 3.178044-1 1.363681-6 3.713456-1 1.401402-6 4.312948-1 1.437944-6 4.981611-1 1.473345-6 5.724805-1 1.507639-6 6.548146-1 1.540861-6 7.457254-1 1.573045-6 8.457806-1 1.604224-6 9.557022-1 1.634428-6 1.076202+0 1.663688-6 1.208010+0 1.692034-6 1.351894+0 1.719494-6 1.508661+0 1.746096-6 1.679158+0 1.771866-6 1.864276+0 1.796831-6 2.064949+0 1.821016-6 2.282156+0 1.844446-6 2.516931+0 1.867143-6 2.770564+0 1.889131-6 3.045435+0 1.920000-6 3.484811+0 1.951057-6 3.995942+0 1.970422-6 4.358525+0 1.989183-6 4.748860+0 2.007357-6 5.167827+0 2.024963-6 5.617512+0 2.048000-6 6.278625+0 2.074549-6 7.153181+0 2.090055-6 7.731607+0 2.105077-6 8.349990+0 2.119629-6 9.011120+0 2.133727-6 9.716797+0 2.160614-6 1.126045+1 2.186248-6 1.302165+1 2.210280-6 1.500101+1 2.232809-6 1.722060+1 2.253931-6 1.970268+1 2.273732-6 2.247074+1 2.292296-6 2.554941+1 2.309700-6 2.896452+1 2.326016-6 3.274302+1 2.341312-6 3.691291+1 2.355652-6 4.150310+1 2.369096-6 4.654327+1 2.381700-6 5.206373+1 2.393515-6 5.809532+1 2.404593-6 6.466922+1 2.414978-6 7.181681+1 2.424714-6 7.956953+1 2.433841-6 8.795869+1 2.442399-6 9.701537+1 2.450421-6 1.067703+2 2.457942-6 1.172542+2 2.464992-6 1.284973+2 2.471602-6 1.405303+2 2.477799-6 1.533838+2 2.483609-6 1.670892+2 2.489056-6 1.816790+2 2.494162-6 1.971881+2 2.498949-6 2.136546+2 2.503437-6 2.311208+2 2.507644-6 2.496329+2 2.511588-6 2.692395+2 2.515286-6 2.899893+2 2.522220-6 3.367298+2 2.528287-6 3.887780+2 2.533595-6 4.460480+2 2.538240-6 5.080494+2 2.542304-6 5.739066+2 2.545860-6 6.424615+2 2.548972-6 7.124142+2 2.551695-6 7.824615+2 2.554077-6 8.514063+2 2.558247-6 9.916809+2 2.563719-6 1.220224+3 2.580246-6 2.316905+3 2.583409-6 2.610694+3 2.588155-6 3.106624+3 2.592182-6 3.578939+3 2.596092-6 4.080321+3 2.602466-6 4.976158+3 2.604657-6 5.302045+3 2.609637-6 6.064250+3 2.613123-6 6.605450+3 2.616011-6 7.050992+3 2.618812-6 7.474705+3 2.621958-6 7.933641+3 2.624585-6 8.297632+3 2.627963-6 8.731722+3 2.630752-6 9.055002+3 2.634001-6 9.384343+3 2.638471-6 9.741484+3 2.641297-6 9.903722+3 2.645186-6 1.004025+4 2.647318-6 1.007094+4 2.653756-6 9.971717+3 2.655471-6 9.897509+3 2.660233-6 9.592504+3 2.662777-6 9.373972+3 2.666209-6 9.024795+3 2.669806-6 8.600384+3 2.671951-6 8.323544+3 2.675016-6 7.902912+3 2.678218-6 7.439408+3 2.682144-6 6.849695+3 2.685331-6 6.363259+3 2.686925-6 6.120010+3 2.690510-6 5.578086+3 2.693106-6 5.194419+3 2.696256-6 4.743056+3 2.698877-6 4.382429+3 2.705251-6 3.573782+3 2.708737-6 3.177486+3 2.714015-6 2.642978+3 2.720922-6 2.061874+3 2.731999-6 1.382082+3 2.735665-6 1.215033+3 2.739317-6 1.072316+3 2.742954-6 9.507554+2 2.746578-6 8.473978+2 2.750187-6 7.595577+2 2.753782-6 6.848422+2 2.757363-6 6.211550+2 2.760930-6 5.666878+2 2.764483-6 5.199014+2 2.768022-6 4.795004+2 2.775073-6 4.136131+2 2.782068-6 3.626388+2 2.789009-6 3.221691+2 2.795896-6 2.892772+2 2.802729-6 2.620072+2 2.809508-6 2.390272+2 2.816235-6 2.194047+2 2.822909-6 2.024665+2 2.829530-6 1.877120+2 2.836101-6 1.747589+2 2.842619-6 1.633088+2 2.849087-6 1.531248+2 2.861922-6 1.357664+2 2.874556-6 1.216247+2 2.886993-6 1.099157+2 2.899235-6 1.000906+2 2.911286-6 9.175302+1 2.923149-6 8.460823+1 2.934826-6 7.843265+1 2.946321-6 7.305370+1 2.957637-6 6.833544+1 2.968775-6 6.416854+1 2.990704-6 5.710065+1 3.011948-6 5.139813+1 3.032528-6 4.671819+1 3.052465-6 4.282471+1 3.071779-6 3.954535+1 3.090489-6 3.675350+1 3.108614-6 3.435521+1 3.126173-6 3.227664+1 3.160194-6 2.879888+1 3.192089-6 2.606207+1 3.221990-6 2.390029+1 3.250022-6 2.226352+1 3.670505-6 6.422389+0 3.691739-6 5.460885+0 3.698550-6 5.217948+0 3.703090-6 5.092934+0 3.705360-6 5.044475+0 3.707631-6 5.006771+0 3.711555-6 4.970083+0 3.716712-6 4.984826+0 3.718982-6 5.016839+0 3.725793-6 5.218745+0 3.726974-6 5.271138+0 3.730518-6 5.461228+0 3.734874-6 5.765175+0 3.737996-6 6.032239+0 3.740976-6 6.326142+0 3.745260-6 6.815436+0 3.749848-6 7.424642+0 3.764835-6 9.952587+0 3.771199-6 1.120947+1 3.776307-6 1.225810+1 3.781415-6 1.331608+1 3.788368-6 1.472575+1 3.790496-6 1.514169+1 3.798442-6 1.658977+1 3.801564-6 1.710136+1 3.807523-6 1.796743+1 3.809794-6 1.825535+1 3.813199-6 1.864061+1 3.816605-6 1.896782+1 3.818875-6 1.915294+1 3.822848-6 1.941261+1 3.825828-6 1.955374+1 3.830297-6 1.968082+1 3.834767-6 1.971004+1 3.841578-6 1.958051+1 3.843848-6 1.949474+1 3.848389-6 1.926648+1 3.852929-6 1.897133+1 3.859069-6 1.848525+1 3.866859-6 1.776354+1 3.875994-6 1.683276+1 3.904980-6 1.396654+1 3.914162-6 1.321490+1 3.921981-6 1.265004+1 3.931225-6 1.206748+1 3.940469-6 1.156781+1 3.952642-6 1.101532+1 3.976228-6 1.019116+1 3.998339-6 9.604118+0 4.019069-6 9.150526+0 4.057937-6 8.451017+0 4.193975-6 6.499680+0 4.227984-6 6.000574+0 4.253491-6 5.586289+0 4.272621-6 5.231788+0 4.286969-6 4.929391+0 4.297730-6 4.678083+0 4.305800-6 4.475890+0 4.317906-6 4.155631+0 4.341656-6 3.544681+0 4.348004-6 3.415203+0 4.352651-6 3.339103+0 4.366765-6 3.250769+0 4.372643-6 3.298863+0 4.377461-6 3.384966+0 4.383301-6 3.552716+0 4.385729-6 3.644451+0 4.388156-6 3.749750+0 4.394454-6 4.088516+0 4.398118-6 4.330385+0 4.399867-6 4.457576+0 4.405920-6 4.956194+0 4.415156-6 5.884314+0 4.424991-6 7.066166+0 4.430939-6 7.854739+0 4.436287-6 8.594910+0 4.441634-6 9.350287+0 4.447749-6 1.021359+1 4.449081-6 1.039955+1 4.456076-6 1.134921+1 4.459740-6 1.182131+1 4.469067-6 1.290866+1 4.472731-6 1.328075+1 4.479726-6 1.388948+1 4.484413-6 1.421664+1 4.487087-6 1.437295+1 4.491767-6 1.459242+1 4.495277-6 1.471179+1 4.500543-6 1.481930+1 4.505808-6 1.484406+1 4.511703-6 1.478014+1 4.519404-6 1.456669+1 4.527199-6 1.422550+1 4.533021-6 1.390626+1 4.537895-6 1.360692+1 4.543680-6 1.322420+1 4.559286-6 1.212484+1 4.580447-6 1.070961+1 4.589037-6 1.020951+1 4.597359-6 9.775162+0 4.613483-6 9.071890+0 4.628599-6 8.558150+0 4.642771-6 8.176570+0 4.669342-6 7.638549+0 4.692592-6 7.285320+0 4.733280-6 6.807801+0 4.794311-6 6.257233+0 4.867293-6 5.697522+0 4.903145-6 5.411001+0 4.927047-6 5.198023+0 4.961987-6 4.864633+0 4.984197-6 4.680783+0 4.998752-6 4.601363+0 5.010840-6 4.574391+0 5.023053-6 4.591740+0 5.027352-6 4.609478+0 5.034875-6 4.655396+0 5.040518-6 4.702027+0 5.053213-6 4.841928+0 5.071907-6 5.113602+0 5.084120-6 5.309145+0 5.096333-6 5.496873+0 5.108547-6 5.658914+0 5.114083-6 5.719901+0 5.122387-6 5.793837+0 5.130691-6 5.844882+0 5.137939-6 5.870026+0 5.145187-6 5.877276+0 5.157400-6 5.851619+0 5.169613-6 5.784891+0 5.181826-6 5.686554+0 5.203939-6 5.460189+0 5.246719-6 4.995235+0 5.259633-6 4.871938+0 5.272547-6 4.762031+0 5.285461-6 4.667637+0 5.298375-6 4.590518+0 5.311289-6 4.531818+0 5.320686-6 4.500768+0 5.334782-6 4.471392+0 5.348877-6 4.459064+0 5.388774-6 4.454317+0 5.402387-6 4.438359+0 5.412822-6 4.414741+0 5.431257-6 4.346054+0 5.450386-6 4.243730+0 5.477991-6 4.079375+0 5.492087-6 4.011853+0 5.505001-6 3.973127+0 5.511735-6 3.964389+0 5.518468-6 3.964613+0 5.529340-6 3.985287+0 5.537494-6 4.017787+0 5.549724-6 4.093251+0 5.561955-6 4.197654+0 5.575252-6 4.336878+0 5.601846-6 4.651725+0 5.615144-6 4.802092+0 5.623033-6 4.882332+0 5.630922-6 4.953418+0 5.638619-6 5.012475+0 5.650165-6 5.079881+0 5.661710-6 5.120630+0 5.678448-6 5.133790+0 5.691863-6 5.109877+0 5.705279-6 5.061950+0 5.722771-6 4.975013+0 5.783399-6 4.628307+0 5.816061-6 4.475543+0 5.862533-6 4.303627+0 5.977381-6 3.962697+0 6.031092-6 3.788199+0 6.076648-6 3.635221+0 6.102778-6 3.568325+0 6.121409-6 3.541891+0 6.136756-6 3.537964+0 6.147132-6 3.545468+0 6.163336-6 3.573689+0 6.179540-6 3.620067+0 6.225850-6 3.803063+0 6.240770-6 3.856856+0 6.259852-6 3.907013+0 6.277781-6 3.928727+0 6.292194-6 3.926441+0 6.300451-6 3.917342+0 6.315371-6 3.887783+0 6.330291-6 3.843987+0 6.360132-6 3.729793+0 6.402535-6 3.563849+0 6.423607-6 3.501841+0 6.440196-6 3.467647+0 6.458438-6 3.445418+0 6.471438-6 3.438458+0 6.502680-6 3.442755+0 6.534147-6 3.456394+0 6.560462-6 3.458639+0 6.598163-6 3.436952+0 6.680187-6 3.348418+0 6.720345-6 3.315880+0 6.925747-6 3.181802+0 7.012946-6 3.107520+0 7.114769-6 3.015907+0 7.218347-6 2.950612+0 7.476211-6 2.811595+0 8.445000-6 2.346276+0 9.429952-6 1.986639+0 9.924418-6 1.832082+0 1.122018-5 1.493524+0 1.260420-5 1.196212+0 1.357853-5 1.011329+0 1.424204-5 8.994701-1 1.479108-5 8.132599-1 1.515000-5 7.615388-1 1.641569-5 6.057987-1 1.680399-5 5.699689-1 1.702917-5 5.525353-1 1.725083-5 5.378710-1 1.746903-5 5.261562-1 1.768382-5 5.176632-1 1.789526-5 5.126486-1 1.810339-5 5.112282-1 1.830826-5 5.133882-1 1.850994-5 5.191483-1 1.860920-5 5.234436-1 1.874100-5 5.308338-1 1.890236-5 5.427068-1 1.920000-5 5.701933-1 1.932904-5 5.796062-1 1.949073-5 5.861844-1 1.967322-5 5.922714-1 1.980000-5 5.994405-1 1.994164-5 6.117892-1 2.002971-5 6.220118-1 2.020449-5 6.484164-1 2.037654-5 6.828323-1 2.054590-5 7.255953-1 2.071261-5 7.771001-1 2.089296-5 8.442164-1 2.103827-5 9.076927-1 2.119729-5 9.878037-1 2.135382-5 1.078411+0 2.160000-5 1.245465+0 2.180891-5 1.413187+0 2.195589-5 1.547890+0 2.224525-5 1.856637+0 2.252557-5 2.216852+0 2.306021-5 3.109780+0 2.403283-5 5.693178+0 2.468539-5 8.464152+0 2.527866-5 1.211040+1 2.570396-5 1.566922+1 2.615011-5 2.055482+1 2.646175-5 2.491001+1 2.677188-5 3.027511+1 2.698641-5 3.472193+1 2.715954-5 3.884279+1 2.733750-5 4.366779+1 2.754229-5 5.009213+1 2.775491-5 5.794664+1 2.797120-5 6.746056+1 2.817397-5 7.811387+1 2.836511-5 9.007167+1 2.854229-5 1.032221+2 2.870937-5 1.178793+2 2.886601-5 1.340734+2 2.902038-5 1.528987+2 2.915052-5 1.714772+2 2.928572-5 1.940004+2 2.940059-5 2.162752+2 2.951402-5 2.417202+2 2.962037-5 2.693416+2 2.972007-5 2.992479+2 2.981354-5 3.315470+2 2.990117-5 3.663473+2 2.998332-5 4.037586+2 3.006033-5 4.438927+2 3.013253-5 4.868661+2 3.020022-5 5.328021+2 3.026368-5 5.818359+2 3.032318-5 6.341195+2 3.037895-5 6.898263+2 3.043606-5 7.550123+2 3.048026-5 8.123106+2 3.052622-5 8.795236+2 3.056930-5 9.510031+2 3.065008-5 1.113166+3 3.072077-5 1.295087+3 3.078262-5 1.496006+3 3.083674-5 1.713464+3 3.088409-5 1.943587+3 3.092553-5 2.181642+3 3.096178-5 2.422652+3 3.102126-5 2.895304+3 3.108806-5 3.560994+3 3.124638-5 5.855141+3 3.129997-5 6.894825+3 3.136923-5 8.445316+3 3.141053-5 9.475989+3 3.148746-5 1.158109+4 3.149708-5 1.185850+4 3.156439-5 1.386261+4 3.159084-5 1.466918+4 3.164865-5 1.643543+4 3.168638-5 1.756780+4 3.170438-5 1.809637+4 3.173140-5 1.886925+4 3.177333-5 2.000790+4 3.180923-5 2.090838+4 3.184885-5 2.180562+4 3.188266-5 2.247954+4 3.191935-5 2.310559+4 3.196093-5 2.367309+4 3.201023-5 2.414142+4 3.205135-5 2.435996+4 3.209751-5 2.442234+4 3.214486-5 2.429519+4 3.219568-5 2.396135+4 3.224156-5 2.350439+4 3.228591-5 2.294197+4 3.231669-5 2.249190+4 3.236906-5 2.163316+4 3.242785-5 2.055909+4 3.245591-5 2.001540+4 3.249801-5 1.917180+4 3.255472-5 1.799707+4 3.259857-5 1.706991+4 3.265100-5 1.595111+4 3.272803-5 1.430861+4 3.278903-5 1.302616+4 3.286738-5 1.142700+4 3.293095-5 1.018717+4 3.298957-5 9.102719+3 3.300912-5 8.755667+3 3.308729-5 7.448204+3 3.318060-5 6.072491+3 3.331300-5 4.486880+3 3.341334-5 3.561634+3 3.346065-5 3.200338+3 3.350647-5 2.891551+3 3.355087-5 2.627725+3 3.359388-5 2.402130+3 3.363554-5 2.208873+3 3.368472-5 2.009135+3 3.375410-5 1.772154+3 3.382742-5 1.568397+3 3.389615-5 1.411839+3 3.396058-5 1.288952+3 3.402099-5 1.190497+3 3.407762-5 1.110131+3 3.418920-5 9.780584+2 3.427672-5 8.931060+2 3.435802-5 8.253304+2 3.442916-5 7.731192+2 3.455365-5 6.944777+2 3.464701-5 6.440631+2 3.478706-5 5.792054+2 3.492711-5 5.245666+2 3.503216-5 4.889260+2 3.520419-5 4.384356+2 3.537622-5 3.956916+2 3.561486-5 3.458991+2 3.611195-5 2.648550+2 3.628972-5 2.414896+2 3.637861-5 2.310681+2 3.646749-5 2.216242+2 3.656052-5 2.128906+2 3.666645-5 2.044604+2 3.674796-5 1.990736+2 3.682303-5 1.949130+2 3.692545-5 1.903376+2 3.701567-5 1.871792+2 3.712874-5 1.840670+2 3.728771-5 1.806363+2 3.760232-5 1.746311+2 3.784466-5 1.695386+2 3.821721-5 1.608851+2 3.879879-5 1.479947+2 3.922607-5 1.400878+2 3.967041-5 1.331566+2 4.024347-5 1.253940+2 4.105827-5 1.160355+2 4.164862-5 1.101945+2 4.233038-5 1.042813+2 4.315191-5 9.808387+1 4.413051-5 9.164795+1 4.503533-5 8.656148+1 4.597346-5 8.184897+1 4.701256-5 7.724272+1 4.901816-5 6.981032+1 5.106845-5 6.360678+1 5.331633-5 5.786897+1 5.509555-5 5.344105+1 5.580000-5 5.116198+1 5.628736-5 4.927039+1 5.656445-5 4.842659+1 5.670299-5 4.820782+1 5.684153-5 4.818753+1 5.698008-5 4.839889+1 5.707916-5 4.869903+1 5.722778-5 4.936855+1 5.737640-5 5.025057+1 5.767280-5 5.225562+1 5.781134-5 5.309380+1 5.794989-5 5.374764+1 5.805736-5 5.409017+1 5.821032-5 5.430391+1 5.834589-5 5.423302+1 5.849021-5 5.393122+1 5.877475-5 5.292395+1 5.906957-5 5.180816+1 5.923442-5 5.131533+1 5.952410-5 5.075976+1 5.986467-5 5.048456+1 6.098313-5 4.996529+1 6.167130-5 4.957668+1 6.553600-5 4.783006+1 6.904743-5 4.682404+1 7.413102-5 4.614718+1 7.931859-5 4.619275+1 8.511380-5 4.680975+1 9.018893-5 4.768860+1 9.500000-5 4.869331+1 1.212037-4 5.442960+1 1.273503-4 5.564369+1 1.382000-4 5.745092+1 1.511395-4 5.908068+1 1.669168-4 6.034019+1 1.808204-4 6.073476+1 1.983076-4 6.041803+1 2.159506-4 5.926850+1 2.338332-4 5.732992+1 2.454709-4 5.547956+1 2.598317-4 5.257445+1 2.744560-4 4.889467+1 2.889744-4 4.445501+1 2.986823-4 4.097960+1 3.074222-4 3.750132+1 3.144595-4 3.440589+1 3.199749-4 3.179377+1 3.257547-4 2.887537+1 3.313494-4 2.587322+1 3.351716-4 2.371489+1 3.387550-4 2.161040+1 3.421955-4 1.952182+1 3.452639-4 1.760830+1 3.482165-4 1.572871+1 3.509845-4 1.394179+1 3.535796-4 1.225612+1 3.557806-4 1.083033+1 3.576797-4 9.613281+0 3.598318-4 8.262952+0 3.618493-4 7.042374+0 3.632110-4 6.254972+0 3.637408-4 5.958807+0 3.651741-4 5.192538+0 3.664282-4 4.573091+0 3.686618-4 3.625471+0 3.695936-4 3.303016+0 3.701046-4 3.147057+0 3.707923-4 2.961837+0 3.714586-4 2.810109+0 3.721040-4 2.689190+0 3.727293-4 2.595828+0 3.733350-4 2.526328+0 3.739218-4 2.476735+0 3.744903-4 2.443051+0 3.753077-4 2.414136+0 3.763337-4 2.399101+0 3.782335-4 2.394642+0 3.787736-4 2.397156+0 3.793891-4 2.406183+0 3.799793-4 2.426808+0 3.803585-4 2.450162+0 3.807258-4 2.483611+0 3.810817-4 2.529372+0 3.814264-4 2.589751+0 3.817603-4 2.667119+0 3.820838-4 2.763902+0 3.823972-4 2.882563+0 3.827008-4 3.025593+0 3.829950-4 3.195497+0 3.832799-4 3.394776+0 3.835559-4 3.625910+0 3.837280-4 3.791712+0 3.840907-4 4.203994+0 3.845921-4 4.943251+0 3.850621-4 5.861271+0 3.855028-4 6.972880+0 3.859224-4 8.312728+0 3.863032-4 9.818123+0 3.866663-4 1.156196+1 3.870067-4 1.351941+1 3.876250-4 1.804811+1 3.886614-4 2.939328+1 3.894703-4 4.276711+1 3.900896-4 5.659317+1 3.905764-4 7.014607+1 3.910962-4 8.768122+1 3.915409-4 1.055450+2 3.920054-4 1.273705+2 3.925250-4 1.560251+2 3.929002-4 1.797481+2 3.932701-4 2.057920+2 3.936018-4 2.314913+2 3.940841-4 2.729846+2 3.942048-4 2.841427+2 3.948382-4 3.479007+2 3.951700-4 3.847536+2 3.953963-4 4.112229+2 3.958562-4 4.682287+2 3.961389-4 5.052873+2 3.967925-4 5.962053+2 3.971768-4 6.525238+2 3.975654-4 7.111171+2 3.980653-4 7.880144+2 3.983665-4 8.347025+2 3.988352-4 9.070509+2 3.992933-4 9.763717+2 3.996796-4 1.032879+3 4.001679-4 1.100609+3 4.006730-4 1.164931+3 4.011257-4 1.216455+3 4.016460-4 1.267291+3 4.020922-4 1.302897+3 4.025214-4 1.329631+3 4.030121-4 1.350726+3 4.034092-4 1.360233+3 4.039167-4 1.362533+3 4.043071-4 1.356939+3 4.051773-4 1.322819+3 4.056708-4 1.291427+3 4.062200-4 1.247697+3 4.065730-4 1.215355+3 4.070898-4 1.163050+3 4.076656-4 1.099306+3 4.082850-4 1.026319+3 4.088522-4 9.572757+2 4.093729-4 8.933760+2 4.100370-4 8.128955+2 4.106807-4 7.375837+2 4.116422-4 6.329950+2 4.135200-4 4.654542+2 4.139750-4 4.329608+2 4.144906-4 3.999461+2 4.150750-4 3.672468+2 4.157000-4 3.374957+2 4.164003-4 3.100199+2 4.169258-4 2.930511+2 4.172411-4 2.842209+2 4.176307-4 2.745833+2 4.180203-4 2.662312+2 4.185061-4 2.574262+2 4.193250-4 2.460105+2 4.200000-4 2.392189+2 4.208117-4 2.334352+2 4.222041-4 2.276756+2 4.236371-4 2.249540+2 4.253256-4 2.236473+2 4.345982-4 2.213968+2 4.391674-4 2.207192+2 4.623822-4 2.201359+2 4.682509-4 2.193421+2 4.728695-4 2.179003+2 4.792752-4 2.148757+2 4.819357-4 2.143279+2 4.840517-4 2.150260+2 4.857192-4 2.166005+2 4.869815-4 2.184656+2 4.891600-4 2.229605+2 4.936727-4 2.349969+2 4.965214-4 2.419540+2 4.981386-4 2.451438+2 5.002483-4 2.484392+2 5.026408-4 2.512150+2 5.084325-4 2.557289+2 5.154213-4 2.597745+2 5.225803-4 2.631394+2 5.416498-4 2.703011+2 5.685490-4 2.769419+2 6.007331-4 2.829125+2 6.375214-4 2.872422+2 6.588317-4 2.891714+2 7.121735-4 2.916811+2 7.497263-4 2.917806+2 8.372601-4 2.886163+2 9.240403-4 2.844098+2 1.040369-3 2.765904+2 1.175532-3 2.673564+2 1.351883-3 2.542628+2 1.555200-3 2.404529+2 1.818985-3 2.232756+2 1.983308-3 2.138890+2 2.230581-3 2.001802+2 2.331717-3 1.949767+2 2.635004-3 1.798772+2 2.847418-3 1.698462+2 2.964218-3 1.645751+2 3.194942-3 1.542495+2 3.331131-3 1.482427+2 3.457480-3 1.426824+2 3.571507-3 1.376911+2 3.671172-3 1.331987+2 3.760627-3 1.290834+2 3.838850-3 1.253772+2 3.910947-3 1.218007+2 3.970135-3 1.187159+2 4.019648-3 1.160056+2 4.068171-3 1.132023+2 4.107150-3 1.108146+2 4.150735-3 1.079459+2 4.184629-3 1.055228+2 4.217919-3 1.029272+2 4.248215-3 1.003167+2 4.277430-3 9.748192+1 4.301727-3 9.477548+1 4.322712-3 9.206997+1 4.340034-3 8.950063+1 4.356772-3 8.668947+1 4.380264-3 8.227117+1 4.410906-3 7.648101+1 4.424938-3 7.435888+1 4.435094-3 7.323753+1 4.446847-3 7.249735+1 4.456277-3 7.239206+1 4.466766-3 7.280918+1 4.473059-3 7.332404+1 4.479872-3 7.409109+1 4.492265-3 7.597878+1 4.508140-3 7.909650+1 4.541048-3 8.649413+1 4.552303-3 8.891369+1 4.563127-3 9.107647+1 4.571779-3 9.267074+1 4.584934-3 9.485660+1 4.597561-3 9.669485+1 4.610484-3 9.833954+1 4.634355-3 1.008636+2 4.655336-3 1.026658+2 4.693765-3 1.052917+2 4.717552-3 1.066082+2 4.747279-3 1.080081+2 4.807612-3 1.102128+2 4.889380-3 1.122646+2 4.981060-3 1.137054+2 5.055760-3 1.144359+2 5.175423-3 1.150369+2 5.308300-3 1.150511+2 5.449062-3 1.145715+2 5.700902-3 1.128532+2 5.981900-3 1.101939+2 6.256355-3 1.071938+2 6.623549-3 1.029972+2 7.101366-3 9.754136+1 7.704242-3 9.093956+1 8.629492-3 8.186209+1 9.699696-3 7.296929+1 1.081871-2 6.516148+1 1.167646-2 5.998585+1 1.302433-2 5.295985+1 1.448238-2 4.657122+1 1.603068-2 4.084742+1 1.764022-2 3.582941+1 1.947477-2 3.107332+1 2.168759-2 2.644151+1 2.481256-2 2.145617+1 2.991293-2 1.591394+1 3.917302-2 1.029114+1 4.766957-2 7.433485+0 5.699419-2 5.497617+0 6.651056-2 4.207029+0 7.709070-2 3.238032+0 9.725022-2 2.122856+0 1.138599-1 1.586074+0 1.482126-1 9.643868-1 1.976373-1 5.562696-1 2.622709-1 3.215502-1 3.666797-1 1.667190-1 5.787620-1 6.755053-2 1.228714+0 1.506636-2 3.710658+0 1.654269-3 1.120601+1 1.814146-4 3.384160+1 1.989204-5 1.022000+2 2.181123-6 3.086391+2 2.391554-7 9.320751+2 2.622287-8 3.162278+3 2.278149-9 1.000000+4 2.27815-10 3.162278+4 2.27815-11 1.000000+5 2.27815-12 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.466800-6 1.258900-6 2.324700-6 1.584900-6 3.684400-6 1.995300-6 5.839300-6 2.511900-6 9.254700-6 3.162300-6 1.466800-5 3.981100-6 2.324700-5 5.011900-6 3.684300-5 6.309600-6 5.839200-5 7.943300-6 9.254400-5 1.000000-5 1.466700-4 1.258900-5 2.324500-4 1.584900-5 3.682300-4 1.995300-5 5.832300-4 2.511900-5 9.238600-4 3.162300-5 1.463600-3 3.981100-5 2.319000-3 5.011900-5 3.674500-3 6.309600-5 5.822400-3 7.943300-5 9.210900-3 1.000000-4 1.456500-2 1.258900-4 2.302900-2 1.584900-4 3.631500-2 1.995300-4 5.715300-2 2.511900-4 8.954500-2 3.162300-4 1.393800-1 3.981100-4 2.147700-1 5.011900-4 3.262500-1 6.309600-4 4.849200-1 7.943300-4 6.996000-1 1.000000-3 9.722800-1 1.258900-3 1.295700+0 1.584900-3 1.663500+0 1.995300-3 2.085800+0 2.511900-3 2.585600+0 3.162300-3 3.186000+0 3.981100-3 3.879000+0 5.011900-3 4.653000+0 6.309600-3 5.480800+0 7.943300-3 6.314000+0 1.000000-2 7.106900+0 1.258900-2 7.853800+0 1.584900-2 8.562500+0 1.995300-2 9.207500+0 2.511900-2 9.680700+0 3.162300-2 1.011400+1 3.981100-2 1.033600+1 5.011900-2 1.041600+1 6.309600-2 1.036000+1 7.943300-2 1.017000+1 1.000000-1 9.854300+0 1.258900-1 9.437000+0 1.584900-1 8.942100+0 1.995300-1 8.390900+0 2.511900-1 7.808400+0 3.162300-1 7.212800+0 3.981100-1 6.618900+0 5.011900-1 6.037200+0 6.309600-1 5.475400+0 7.943300-1 4.937400+0 1.000000+0 4.426300+0 1.258900+0 3.944400+0 1.584900+0 3.493200+0 1.995300+0 3.074300+0 2.511900+0 2.688900+0 3.162300+0 2.337400+0 3.981100+0 2.020100+0 5.011900+0 1.736200+0 6.309600+0 1.484500+0 7.943300+0 1.263200+0 1.000000+1 1.070100+0 1.258900+1 9.029300-1 1.584900+1 7.590900-1 1.995300+1 6.360600-1 2.511900+1 5.313700-1 3.162300+1 4.427200-1 3.981100+1 3.679600-1 5.011900+1 3.051400-1 6.309600+1 2.525500-1 7.943300+1 2.086400-1 1.000000+2 1.720800-1 1.258900+2 1.417100-1 1.584900+2 1.165400-1 1.995300+2 9.571600-2 2.511900+2 7.852300-2 3.162300+2 6.434800-2 3.981100+2 5.267800-2 5.011900+2 4.308500-2 6.309600+2 3.520800-2 7.943300+2 2.874800-2 1.000000+3 2.345500-2 1.258900+3 1.912200-2 1.584900+3 1.558000-2 1.995300+3 1.268500-2 2.511900+3 1.032200-2 3.162300+3 8.394300-3 3.981100+3 6.822900-3 5.011900+3 5.542700-3 6.309600+3 4.500500-3 7.943300+3 3.652500-3 1.000000+4 2.962900-3 1.258900+4 2.402500-3 1.584900+4 1.947200-3 1.995300+4 1.577600-3 2.511900+4 1.277700-3 3.162300+4 1.034400-3 3.981100+4 8.371000-4 5.011900+4 6.772200-4 6.309600+4 5.476900-4 7.943300+4 4.427900-4 1.000000+5 3.578700-4 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159557-4 3.981072-4 3.976776-4 5.011872-4 5.005101-4 6.309573-4 6.298931-4 7.943282-4 7.926619-4 1.000000-3 9.973994-4 1.258925-3 1.254889-3 1.584893-3 1.578645-3 1.995262-3 1.985546-3 2.511886-3 2.496664-3 3.162278-3 3.138426-3 3.981072-3 3.943656-3 5.011872-3 4.953329-3 6.309573-3 6.218303-3 7.943282-3 7.801669-3 1.000000-2 9.781181-3 1.258925-2 1.225143-2 1.584893-2 1.532730-2 1.995262-2 1.914845-2 2.511886-2 2.388230-2 3.162278-2 2.974038-2 3.981072-2 3.695423-2 5.011872-2 4.580478-2 6.309573-2 5.661690-2 7.943282-2 6.977501-2 1.000000-1 8.571962-2 1.258925-1 1.049668-1 1.584893-1 1.280807-1 1.995262-1 1.557642-1 2.511886-1 1.887657-1 3.162278-1 2.279762-1 3.981072-1 2.744152-1 5.011872-1 3.292656-1 6.309573-1 3.938580-1 7.943282-1 4.698854-1 1.000000+0 5.593534-1 1.258925+0 6.647540-1 1.584893+0 7.890917-1 1.995262+0 9.361813-1 2.511886+0 1.110720+0 3.162278+0 1.318415+0 3.981072+0 1.566331+0 5.011872+0 1.863086+0 6.309573+0 2.219248+0 7.943282+0 2.647728+0 1.000000+1 3.164289+0 1.258925+1 3.788312+0 1.584893+1 4.543404+0 1.995262+1 5.458593+0 2.511886+1 6.569327+0 3.162278+1 7.919261+0 3.981072+1 9.561718+0 5.011872+1 1.156245+1 6.309573+1 1.400210+1 7.943282+1 1.697969+1 1.000000+2 2.061706+1 1.258925+2 2.506432+1 1.584893+2 3.050595+1 1.995262+2 3.716912+1 2.511886+2 4.533428+1 3.162278+2 5.534684+1 3.981072+2 6.763128+1 5.011872+2 8.271459+1 6.309573+2 1.012439+2 7.943282+2 1.240193+2 1.000000+3 1.520274+2 1.258925+3 1.864944+2 1.584893+3 2.289232+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88196-10 1.995262-5 1.090625-9 2.511886-5 1.728496-9 3.162278-5 2.739513-9 3.981072-5 4.341884-9 5.011872-5 6.881405-9 6.309573-5 1.090598-8 7.943282-5 1.727644-8 1.000000-4 2.737316-8 1.258925-4 4.337417-8 1.584893-4 6.868542-8 1.995262-4 1.087561-7 2.511886-4 1.720981-7 3.162278-4 2.720809-7 3.981072-4 4.295676-7 5.011872-4 6.771195-7 6.309573-4 1.064232-6 7.943282-4 1.666352-6 1.000000-3 2.600561-6 1.258925-3 4.036423-6 1.584893-3 6.248536-6 1.995262-3 9.716733-6 2.511886-3 1.522225-5 3.162278-3 2.385205-5 3.981072-3 3.741609-5 5.011872-3 5.854342-5 6.309573-3 9.127087-5 7.943282-3 1.416135-4 1.000000-2 2.188185-4 1.258925-2 3.378228-4 1.584893-2 5.216273-4 1.995262-2 8.041688-4 2.511886-2 1.236561-3 3.162278-2 1.882399-3 3.981072-2 2.856491-3 5.011872-2 4.313948-3 6.309573-2 6.478835-3 7.943282-2 9.657818-3 1.000000-1 1.428038-2 1.258925-1 2.092578-2 1.584893-1 3.040859-2 1.995262-1 4.376207-2 2.511886-1 6.242290-2 3.162278-1 8.825159-2 3.981072-1 1.236920-1 5.011872-1 1.719216-1 6.309573-1 2.370993-1 7.943282-1 3.244428-1 1.000000+0 4.406466-1 1.258925+0 5.941714-1 1.584893+0 7.958015-1 1.995262+0 1.059081+0 2.511886+0 1.401167+0 3.162278+0 1.843863+0 3.981072+0 2.414741+0 5.011872+0 3.148787+0 6.309573+0 4.090326+0 7.943282+0 5.295554+0 1.000000+1 6.835711+0 1.258925+1 8.800942+0 1.584893+1 1.130553+1 1.995262+1 1.449403+1 2.511886+1 1.854954+1 3.162278+1 2.370352+1 3.981072+1 3.024900+1 5.011872+1 3.855628+1 6.309573+1 4.909364+1 7.943282+1 6.245313+1 1.000000+2 7.938294+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623571+2 2.511886+2 2.058544+2 3.162278+2 2.608809+2 3.981072+2 3.304759+2 5.011872+2 4.184726+2 6.309573+2 5.297134+2 7.943282+2 6.703090+2 1.000000+3 8.479726+2 1.258925+3 1.072431+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.900000-6 7.022820+5 5.956621-6 6.513025+5 6.050000-6 5.697440+5 6.165950-6 4.814142+5 6.270000-6 4.124580+5 6.350000-6 3.654000+5 6.460000-6 3.081200+5 6.550000-6 2.669620+5 6.650000-6 2.266200+5 6.730000-6 1.980722+5 6.810000-6 1.724670+5 6.890000-6 1.495190+5 6.960000-6 1.314462+5 7.020000-6 1.173304+5 7.040000-6 1.128118+5 7.040000-6 9.141838+5 7.080000-6 9.138301+5 7.080000-6 1.442102+6 7.100000-6 1.444902+6 7.170000-6 1.455478+6 7.244360-6 1.468392+6 7.310000-6 1.481127+6 7.365000-6 1.492697+6 7.413102-6 1.503435+6 7.420000-6 1.504853+6 7.480000-6 1.517507+6 7.520000-6 1.526384+6 7.570000-6 1.537952+6 7.620000-6 1.550021+6 7.670000-6 1.562566+6 7.715000-6 1.574244+6 7.762471-6 1.586942+6 7.790000-6 1.593700+6 7.830000-6 1.603725+6 7.865000-6 1.612689+6 7.900000-6 1.621826+6 7.930000-6 1.629790+6 7.960000-6 1.637873+6 7.990000-6 1.646072+6 8.020000-6 1.654381+6 8.050000-6 1.662799+6 8.070000-6 1.668469+6 8.100000-6 1.677060+6 8.128305-6 1.685257+6 8.150000-6 1.691598+6 8.180000-6 1.700447+6 8.200000-6 1.706396+6 8.210000-6 1.709223+6 8.222426-6 1.712744+6 8.240000-6 1.717538+6 8.290000-6 1.731324+6 8.310000-6 1.736898+6 8.330000-6 1.742506+6 8.345000-6 1.746732+6 8.357000-6 1.750127+6 8.369000-6 1.753533+6 8.380000-6 1.756665+6 8.390000-6 1.759520+6 8.400000-6 1.762383+6 8.410000-6 1.765253+6 8.420000-6 1.768131+6 8.430000-6 1.771016+6 8.440000-6 1.773908+6 8.450000-6 1.776808+6 8.460000-6 1.779715+6 8.470000-6 1.782628+6 8.480000-6 1.785549+6 8.490000-6 1.788477+6 8.502000-6 1.791999+6 8.515000-6 1.795826+6 8.527000-6 1.799368+6 8.542000-6 1.803810+6 8.560000-6 1.809158+6 8.585000-6 1.816621+6 8.609938-6 1.824102+6 8.650000-6 1.835595+6 8.680000-6 1.844258+6 8.709636-6 1.852863+6 8.710000-6 1.852965+6 8.740000-6 1.861400+6 8.770000-6 1.869877+6 8.800000-6 1.878396+6 8.830000-6 1.886954+6 8.865000-6 1.896988+6 8.900000-6 1.907071+6 8.930000-6 1.915753+6 8.960000-6 1.924468+6 9.000000-6 1.936140+6 9.035000-6 1.946399+6 9.070000-6 1.956698+6 9.110000-6 1.968517+6 9.120108-6 1.971506+6 9.150000-6 1.979914+6 9.200000-6 1.994023+6 9.225714-6 2.001296+6 9.240000-6 2.005197+6 9.295000-6 2.020231+6 9.350000-6 2.035325+6 9.400000-6 2.049098+6 9.460000-6 2.065681+6 9.520000-6 2.082322+6 9.600000-6 2.104588+6 9.670000-6 2.124139+6 9.700000-6 2.132521+6 9.730000-6 2.140479+6 9.810000-6 2.161698+6 9.850000-6 2.172301+6 9.890000-6 2.182586+6 1.000000-5 2.210840+6 1.010000-5 2.236556+6 1.020000-5 2.262289+6 1.031000-5 2.290602+6 1.035142-5 2.301230+6 1.042000-5 2.317966+6 1.050000-5 2.337393+6 1.055000-5 2.349149+6 1.070000-5 2.384218+6 1.085000-5 2.419168+6 1.100000-5 2.453983+6 1.109175-5 2.475161+6 1.115000-5 2.487911+6 1.122018-5 2.503112+6 1.135011-5 2.530237+6 1.157000-5 2.575682+6 1.180000-5 2.622749+6 1.188502-5 2.639932+6 1.202264-5 2.666176+6 1.207000-5 2.674813+6 1.230269-5 2.716618+6 1.260000-5 2.769247+6 1.273503-5 2.792767+6 1.290000-5 2.819495+6 1.303167-5 2.840472+6 1.320000-5 2.865869+6 1.350000-5 2.910308+6 1.380384-5 2.954476+6 1.412538-5 2.996525+6 1.420000-5 3.005662+6 1.462177-5 3.056077+6 1.479108-5 3.075795+6 1.513561-5 3.111919+6 1.515000-5 3.113314+6 1.570000-5 3.165024+6 1.584893-5 3.178588+6 1.621810-5 3.207605+6 1.630000-5 3.213373+6 1.698244-5 3.259545+6 1.737801-5 3.280493+6 1.778279-5 3.298243+6 1.819701-5 3.315439+6 1.850000-5 3.324411+6 1.874100-5 3.329581+6 1.927525-5 3.340079+6 1.980000-5 3.344365+6 2.041738-5 3.343988+6 2.089296-5 3.338597+6 2.162719-5 3.324721+6 2.213095-5 3.310044+6 2.230000-5 3.303972+6 2.290868-5 3.282032+6 2.350000-5 3.255605+6 2.371374-5 3.244833+6 2.426610-5 3.217204+6 2.483133-5 3.184561+6 2.540973-5 3.148888+6 2.570396-5 3.131007+6 2.630268-5 3.090241+6 2.730000-5 3.020287+6 2.754229-5 3.002064+6 2.786121-5 2.978297+6 2.900000-5 2.891884+6 2.951209-5 2.851688+6 2.985383-5 2.824154+6 3.090295-5 2.742668+6 3.150000-5 2.695201+6 3.235937-5 2.627073+6 3.300000-5 2.578301+6 3.350000-5 2.539275+6 3.507519-5 2.419552+6 3.548134-5 2.390314+6 3.589219-5 2.360017+6 3.801894-5 2.209550+6 3.845918-5 2.179292+6 3.890451-5 2.149318+6 3.906000-5 2.138722+6 3.906000-5 4.394438+6 3.950000-5 4.275246+6 3.960000-5 4.246173+6 3.960000-5 5.366607+6 4.000000-5 5.214114+6 4.050000-5 5.017141+6 4.073803-5 4.924802+6 4.120975-5 4.741819+6 4.130000-5 4.707816+6 4.168694-5 4.562841+6 4.216965-5 4.386152+6 4.220000-5 4.375357+6 4.315191-5 4.052551+6 4.466836-5 3.606622+6 4.518559-5 3.471584+6 4.570882-5 3.346032+6 4.610000-5 3.256402+6 4.623810-5 3.226092+6 4.720000-5 3.032935+6 4.800000-5 2.893725+6 4.820000-5 2.861403+6 4.870000-5 2.784664+6 4.900000-5 2.742100+6 4.954502-5 2.668250+6 4.970000-5 2.648720+6 5.000000-5 2.612362+6 5.011872-5 2.598173+6 5.040000-5 2.566437+6 5.080000-5 2.523404+6 5.110000-5 2.493451+6 5.150000-5 2.455493+6 5.190000-5 2.419940+6 5.233200-5 2.383663+6 5.248075-5 2.372156+6 5.270000-5 2.355130+6 5.308844-5 2.326466+6 5.350000-5 2.298750+6 5.400000-5 2.267035+6 5.432503-5 2.248410+6 5.495409-5 2.214424+6 5.500000-5 2.212170+6 5.580000-5 2.173818+6 5.623413-5 2.156075+6 5.688529-5 2.129498+6 5.690000-5 2.128937+6 5.800000-5 2.092105+6 5.821032-5 2.085623+6 5.900000-5 2.064373+6 5.956621-5 2.049809+6 6.000000-5 2.040133+6 6.025596-5 2.034378+6 6.091000-5 2.020893+6 6.091000-5 2.453389+6 6.095369-5 2.452463+6 6.150000-5 2.441073+6 6.165950-5 2.438175+6 6.237348-5 2.426405+6 6.400000-5 2.400858+6 6.456542-5 2.392918+6 6.606934-5 2.374887+6 6.683439-5 2.367179+6 6.839116-5 2.352563+6 7.079458-5 2.334342+6 7.161434-5 2.328565+6 7.413102-5 2.312213+6 7.500000-5 2.306387+6 7.762471-5 2.290857+6 7.852356-5 2.285245+6 8.000000-5 2.275498+6 8.128305-5 2.267605+6 8.222426-5 2.260648+6 8.511380-5 2.240362+6 8.709636-5 2.222909+6 8.900000-5 2.207465+6 8.912509-5 2.206404+6 9.015711-5 2.196027+6 9.225714-5 2.175103+6 9.300000-5 2.168118+6 9.332543-5 2.164894+6 9.500000-5 2.146279+6 9.549926-5 2.140658+6 9.660509-5 2.128376+6 9.772372-5 2.115673+6 9.800000-5 2.112209+6 1.000000-4 2.087726+6 1.011579-4 2.073585+6 1.023293-4 2.058993+6 1.040000-4 2.036938+6 1.060000-4 2.011437+6 1.071519-4 1.996200+6 1.083927-4 1.979002+6 1.109175-4 1.945245+6 1.122018-4 1.928138+6 1.148154-4 1.891503+6 1.150000-4 1.888968+6 1.174898-4 1.855681+6 1.190000-4 1.835643+6 1.202264-4 1.818689+6 1.244515-4 1.762333+6 1.260000-4 1.742221+6 1.273503-4 1.724230+6 1.303167-4 1.686002+6 1.318257-4 1.667264+6 1.333521-4 1.648093+6 1.400000-4 1.566433+6 1.412538-4 1.551679+6 1.428894-4 1.531931+6 1.462177-4 1.493263+6 1.480000-4 1.473148+6 1.500000-4 1.450721+6 1.580000-4 1.363732+6 1.584893-4 1.358630+6 1.603245-4 1.339797+6 1.690000-4 1.252309+6 1.720000-4 1.223953+6 1.737801-4 1.207039+6 1.757924-4 1.188220+6 1.778279-4 1.169695+6 1.819701-4 1.133512+6 1.862087-4 1.097907+6 1.905461-4 1.062333+6 1.949845-4 1.027671+6 1.950000-4 1.027553+6 1.972423-4 1.010748+6 2.000000-4 9.904180+5 2.018366-4 9.772583+5 2.150000-4 8.887194+5 2.162719-4 8.807762+5 2.187762-4 8.653751+5 2.238721-4 8.345065+5 2.317395-4 7.903048+5 2.371374-4 7.617890+5 2.454709-4 7.197740+5 2.483133-4 7.062016+5 2.511886-4 6.928743+5 2.540973-4 6.796302+5 2.580000-4 6.624868+5 2.722701-4 6.040134+5 2.730000-4 6.012279+5 2.818383-4 5.686830+5 2.951209-4 5.237782+5 3.019952-4 5.026937+5 3.100000-4 4.795362+5 3.126079-4 4.722068+5 3.162278-4 4.622652+5 3.311311-4 4.245504+5 3.388442-4 4.066936+5 3.548134-4 3.725486+5 3.589219-4 3.644750+5 3.600000-4 3.623995+5 3.630781-4 3.565352+5 3.715352-4 3.409916+5 4.027170-4 2.909006+5 4.073803-4 2.843274+5 4.088600-4 2.822875+5 4.088600-4 1.370115+6 4.094000-4 1.427869+6 4.099000-4 1.474863+6 4.104000-4 1.515744+6 4.110000-4 1.557648+6 4.116000-4 1.593736+6 4.120975-4 1.619475+6 4.121000-4 1.619606+6 4.129000-4 1.654899+6 4.136800-4 1.682914+6 4.136800-4 2.215024+6 4.137000-4 2.216808+6 4.141500-4 2.253485+6 4.145000-4 2.280589+6 4.148000-4 2.301875+6 4.150000-4 2.314538+6 4.157000-4 2.354010+6 4.159000-4 2.364200+6 4.162000-4 2.377536+6 4.170000-4 2.409197+6 4.178000-4 2.432146+6 4.185000-4 2.448878+6 4.188000-4 2.454162+6 4.200000-4 2.469599+6 4.205000-4 2.474163+6 4.210700-4 2.476348+6 4.225000-4 2.476865+6 4.228000-4 2.476018+6 4.240000-4 2.468933+6 4.255000-4 2.456380+6 4.270000-4 2.441252+6 4.310000-4 2.395871+6 4.415704-4 2.278544+6 4.518559-4 2.172290+6 4.570882-4 2.120946+6 4.623810-4 2.070492+6 4.650000-4 2.046180+6 4.800000-4 1.906411+6 4.841724-4 1.869325+6 4.897788-4 1.821084+6 4.942900-4 1.783527+6 4.942900-4 2.017767+6 5.041700-4 1.933384+6 5.069907-4 1.910416+6 5.188000-4 1.820078+6 5.248075-4 1.776556+6 5.308844-4 1.734096+6 5.370318-4 1.691630+6 5.400000-4 1.671413+6 5.500000-4 1.605519+6 5.559043-4 1.568374+6 5.688529-4 1.491197+6 5.900000-4 1.376561+6 5.956621-4 1.347455+6 6.025596-4 1.312855+6 6.200000-4 1.230976+6 6.382635-4 1.152977+6 6.456542-4 1.123426+6 6.500000-4 1.106243+6 6.531306-4 1.093984+6 6.760830-4 1.009839+6 6.839116-4 9.832965+5 7.000000-4 9.315597+5 7.079458-4 9.069839+5 7.161434-4 8.823612+5 7.244360-4 8.583564+5 7.673615-4 7.478986+5 7.762471-4 7.276131+5 7.852356-4 7.078935+5 7.943282-4 6.887228+5 8.035261-4 6.700749+5 8.200000-4 6.378896+5 8.810489-4 5.354652+5 8.912509-4 5.203709+5 9.015711-4 5.056349+5 9.120108-4 4.913131+5 9.332543-4 4.639069+5 9.885531-4 4.020035+5 1.000000-3 3.906803+5 1.011579-3 3.796353+5 1.030000-3 3.627971+5 1.047129-3 3.479919+5 1.071519-3 3.283388+5 1.122018-3 2.923664+5 1.135011-3 2.839770+5 1.148154-3 2.756992+5 1.174898-3 2.598732+5 1.258925-3 2.177405+5 1.273503-3 2.114341+5 1.288250-3 2.053119+5 1.303167-3 1.993694+5 1.318257-3 1.935418+5 1.348963-3 1.822877+5 1.412538-3 1.617566+5 1.450000-3 1.511649+5 1.462177-3 1.479134+5 1.496236-3 1.392863+5 1.513561-3 1.351649+5 1.566751-3 1.234371+5 1.584893-3 1.197654+5 1.659587-3 1.061682+5 1.698244-3 9.993106+4 1.717908-3 9.693890+4 1.757924-3 9.118433+4 1.778279-3 8.844052+4 1.862087-3 7.828134+4 1.883649-3 7.593490+4 1.927525-3 7.142531+4 1.950000-3 6.925822+4 1.972423-3 6.717942+4 2.000000-3 6.472175+4 2.089296-3 5.757794+4 2.113489-3 5.583263+4 2.150000-3 5.333552+4 2.162719-3 5.249598+4 2.187762-3 5.089493+4 2.213095-3 4.934398+4 2.220000-3 4.893274+4 2.264644-3 4.637749+4 2.290868-3 4.496303+4 2.398833-3 3.969988+4 2.426610-3 3.848587+4 2.454709-3 3.730903+4 2.483133-3 3.616842+4 2.511886-3 3.505473+4 2.540973-3 3.397625+4 2.570396-3 3.293184+4 2.650000-3 3.031322+4 2.722701-3 2.815668+4 2.786121-3 2.644620+4 2.818383-3 2.563096+4 2.851018-3 2.484087+4 2.917427-3 2.332302+4 2.951209-3 2.260021+4 3.000000-3 2.161031+4 3.054921-3 2.056374+4 3.090295-3 1.992345+4 3.162278-3 1.870339+4 3.235937-3 1.755953+4 3.273407-3 1.701436+4 3.467369-3 1.451922+4 3.507519-3 1.406712+4 3.520240-3 1.392694+4 3.548134-3 1.362630+4 3.630781-3 1.278661+4 3.758374-3 1.162513+4 4.027170-3 9.598960+3 4.073803-3 9.297016+3 4.120975-3 9.004076+3 4.168694-3 8.720630+3 4.216965-3 8.446221+3 4.315191-3 7.923768+3 4.365158-3 7.672917+3 4.465800-3 7.199521+3 4.465800-3 6.194092+4 4.623810-3 5.692735+4 4.677351-3 5.535819+4 4.731513-3 5.383251+4 4.786301-3 5.229105+4 4.841724-3 5.079385+4 5.000000-3 4.683520+4 5.069907-3 4.522191+4 5.188000-3 4.266827+4 5.248075-3 4.140883+4 5.308844-3 4.018674+4 5.432503-3 3.784910+4 5.500000-3 3.665222+4 5.559043-3 3.564768+4 5.623413-3 3.459547+4 5.688529-3 3.356405+4 5.754399-3 3.256350+4 5.888437-3 3.064929+4 6.025596-3 2.884777+4 6.095369-3 2.798725+4 6.309573-3 2.555633+4 6.382635-3 2.479403+4 6.456542-3 2.405452+4 6.531306-3 2.333700+4 6.606934-3 2.264097+4 6.683439-3 2.196500+4 6.918310-3 2.005622+4 7.000000-3 1.944605+4 7.328245-3 1.717960+4 7.413102-3 1.665310+4 7.500000-3 1.613661+4 7.673615-3 1.516852+4 7.762471-3 1.470320+4 8.000000-3 1.355165+4 8.128305-3 1.298071+4 8.511380-3 1.145988+4 8.709636-3 1.076779+4 8.810489-3 1.043758+4 9.000000-3 9.841194+3 9.015711-3 9.793804+3 9.332543-3 8.901057+3 9.500000-3 8.473671+3 9.549926-3 8.351646+3 9.885531-3 7.590349+3 1.023293-2 6.898568+3 1.035142-2 6.682316+3 1.047129-2 6.472819+3 1.050000-2 6.423975+3 1.059254-2 6.269753+3 1.096478-2 5.690098+3 1.122018-2 5.333806+3 1.161449-2 4.840655+3 1.216186-2 4.253428+3 1.230269-2 4.116467+3 1.318257-2 3.381874+3 1.333521-2 3.272888+3 1.364583-2 3.065307+3 1.380384-2 2.966515+3 1.445440-2 2.602219+3 1.479108-2 2.434823+3 1.566751-2 2.061966+3 1.603245-2 1.929338+3 1.621810-2 1.866252+3 1.659587-2 1.746210+3 1.717908-2 1.580488+3 1.737801-2 1.528768+3 1.798871-2 1.381776+3 1.862087-2 1.248925+3 1.905461-2 1.167528+3 1.927525-2 1.128844+3 2.000000-2 1.013251+3 2.041738-2 9.538194+2 2.113489-2 8.620406+2 2.187762-2 7.781441+2 2.213095-2 7.520347+2 2.317395-2 6.560640+2 2.344229-2 6.340515+2 2.426610-2 5.723457+2 2.511886-2 5.165980+2 2.570396-2 4.824854+2 2.660725-2 4.349919+2 2.722701-2 4.059546+2 2.851018-2 3.535680+2 2.917427-2 3.299689+2 3.054921-2 2.873522+2 3.162278-2 2.590447+2 3.198895-2 2.501514+2 3.507519-2 1.891585+2 3.548134-2 1.826649+2 3.630781-2 1.703279+2 3.715352-2 1.588247+2 3.890451-2 1.380968+2 3.935501-2 1.333517+2 4.073803-2 1.199491+2 4.315191-2 1.005387+2 4.466836-2 9.042703+1 4.786301-2 7.315354+1 4.897788-2 6.816260+1 5.011872-2 6.351232+1 5.128614-2 5.914128+1 5.308844-2 5.314250+1 5.370318-2 5.128133+1 5.956621-2 3.719749+1 6.309573-2 3.112025+1 6.606934-2 2.698176+1 6.760830-2 2.511027+1 6.839116-2 2.422381+1 6.918310-2 2.336805+1 7.000000-2 2.252665+1 7.079458-2 2.174622+1 7.585776-2 1.752557+1 7.673615-2 1.690652+1 7.852356-2 1.573326+1 8.128305-2 1.412417+1 8.912509-2 1.059312+1 9.120108-2 9.858041+0 9.225714-2 9.509724+0 9.332543-2 9.173722+0 9.440609-2 8.849593+0 9.772372-2 7.944332+0 1.011580-1 7.131680+0 1.023293-1 6.878956+0 1.059254-1 6.173235+0 1.071519-1 5.954474+0 1.109175-1 5.343590+0 1.174898-1 4.461563+0 1.216186-1 4.003882+0 1.303167-1 3.224580+0 1.333521-1 3.000124+0 1.364583-1 2.791287+0 1.380384-1 2.692388+0 1.412538-1 2.504973+0 1.462177-1 2.248045+0 1.479108-1 2.169075+0 1.500000-1 2.076609+0 1.513561-1 2.019363+0 1.531088-1 1.948425+0 1.548817-1 1.879983+0 1.566751-1 1.813953+0 1.584893-1 1.750242+0 1.603245-1 1.688814+0 1.621810-1 1.629541+0 1.678804-1 1.463923+0 1.698244-1 1.412546+0 1.737801-1 1.315141+0 1.819701-1 1.140020+0 1.840772-1 1.100013+0 1.862087-1 1.061807+0 1.949845-1 9.217976-1 1.972423-1 8.897858-1 2.041738-1 8.003352-1 2.065380-1 7.725637-1 2.213095-1 6.250447-1 2.238721-1 6.033573-1 2.264644-1 5.824223-1 2.290868-1 5.624915-1 2.317395-1 5.432433-1 2.344229-1 5.246545-1 2.454709-1 4.565348-1 2.483133-1 4.409346-1 2.511886-1 4.258678-1 2.540973-1 4.113155-1 2.570396-1 3.972608-1 2.630268-1 3.705767-1 2.691535-1 3.460744-1 2.722701-1 3.344379-1 2.786121-1 3.123596-1 2.818383-1 3.018734-1 2.851018-1 2.917394-1 2.917427-1 2.724811-1 3.019952-1 2.459509-1 3.054921-1 2.378378-1 3.090295-1 2.299924-1 3.126079-1 2.224059-1 3.198895-1 2.079998-1 3.349654-1 1.819268-1 3.388442-1 1.759361-1 3.427678-1 1.701428-1 3.467369-1 1.646518-1 3.507519-1 1.593382-1 3.672823-1 1.397797-1 3.715352-1 1.352774-1 3.758374-1 1.309202-1 3.801894-1 1.267034-1 3.845918-1 1.226225-1 3.935501-1 1.150144-1 4.027170-1 1.078938-1 4.073803-1 1.045005-1 4.216965-1 9.494805-2 4.265795-1 9.196211-2 4.315191-1 8.913569-2 4.365158-1 8.639620-2 4.415705-1 8.374690-2 4.623810-1 7.393811-2 4.677351-1 7.167102-2 4.731513-1 6.947340-2 4.786301-1 6.739615-2 4.841724-1 6.538100-2 4.954502-1 6.153923-2 5.069907-1 5.792321-2 5.128614-1 5.619570-2 5.188000-1 5.451980-2 5.248075-1 5.289384-2 5.308844-1 5.135686-2 5.370318-1 4.986498-2 5.559043-1 4.565374-2 5.688529-1 4.304592-2 5.754399-1 4.179841-2 5.821032-1 4.061924-2 5.888437-1 3.947374-2 6.025596-1 3.728391-2 6.095369-1 3.623498-2 6.165950-1 3.521562-2 6.309573-1 3.326214-2 6.382635-1 3.235385-2 6.456542-1 3.147071-2 6.531306-1 3.061393-2 6.606935-1 2.978048-2 6.683439-1 2.896977-2 6.760830-1 2.818113-2 6.918310-1 2.666769-2 6.998420-1 2.596622-2 7.079458-1 2.528347-2 7.085700-1 2.523196-2 7.161434-1 2.462071-2 7.244360-1 2.397550-2 7.413102-1 2.273541-2 7.444800-1 2.251276-2 7.498942-1 2.213963-2 7.673615-1 2.102925-2 7.762471-1 2.049534-2 7.943282-1 1.947052-2 8.035261-1 1.897751-2 8.222427-1 1.802860-2 8.413951-1 1.715326-2 8.511380-1 1.673185-2 8.609938-1 1.632170-2 8.912509-1 1.515062-2 9.120108-1 1.441696-2 9.225714-1 1.406371-2 9.332543-1 1.373049-2 9.440609-1 1.340517-2 9.660509-1 1.277953-2 9.772372-1 1.247775-2 9.885531-1 1.218311-2 1.000000+0 1.189555-2 1.023293+0 1.135947-2 1.035142+0 1.110117-2 1.047129+0 1.084873-2 1.059254+0 1.060206-2 1.071519+0 1.036101-2 1.083927+0 1.012542-2 1.096478+0 9.895207-3 1.109175+0 9.670214-3 1.130300+0 9.312541-3 1.135011+0 9.235487-3 1.148154+0 9.033613-3 1.161449+0 8.836843-3 1.174898+0 8.644369-3 1.188502+0 8.456102-3 1.250000+0 7.678259-3 1.258925+0 7.574479-3 1.273503+0 7.415297-3 1.364583+0 6.530734-3 1.380384+0 6.393930-3 1.396368+0 6.259992-3 1.412538+0 6.133544-3 1.548817+0 5.212389-3 1.566751+0 5.111737-3 1.584893+0 5.013031-3 1.621810+0 4.821298-3 1.698244+0 4.459552-3 1.717908+0 4.373443-3 1.737801+0 4.288995-3 1.757924+0 4.209312-3 1.778279+0 4.131116-3 1.798871+0 4.054368-3 1.840772+0 3.905128-3 1.927525+0 3.622925-3 1.949845+0 3.555620-3 1.972423+0 3.489570-3 2.000000+0 3.414288-3 2.018366+0 3.365616-3 2.065380+0 3.246066-3 2.162719+0 3.019555-3 2.187762+0 2.965443-3 2.213095+0 2.912303-3 2.238721+0 2.862209-3 2.264644+0 2.812979-3 2.317395+0 2.717042-3 2.426610+0 2.534876-3 2.454709+0 2.491276-3 2.511886+0 2.406317-3 2.540973+0 2.366519-3 2.570396+0 2.327382-3 2.630268+0 2.251038-3 2.754229+0 2.105782-3 2.786121+0 2.070958-3 2.851018+0 2.003030-3 2.917427+0 1.939589-3 2.951209+0 1.908627-3 3.019952+0 1.848178-3 3.198895+0 1.705301-3 3.235937+0 1.678080-3 3.311311+0 1.624936-3 3.388442+0 1.575274-3 3.427678+0 1.551017-3 3.507519+0 1.503616-3 3.715352+0 1.391357-3 3.758374+0 1.369932-3 3.845918+0 1.328068-3 3.935501+0 1.288870-3 4.000000+0 1.261896-3 4.120975+0 1.213913-3 4.365158+0 1.126318-3 4.415704+0 1.109573-3 4.518559+0 1.076826-3 4.623810+0 1.046088-3 4.731513+0 1.016227-3 4.897788+0 9.730279-4 5.248075+0 8.920599-4 5.308844+0 8.792365-4 5.432503+0 8.541402-4 5.559043+0 8.305278-4 5.688529+0 8.075692-4 5.888437+0 7.743155-4 6.382635+0 7.019520-4 6.456542+0 6.921821-4 6.606934+0 6.730486-4 6.760830+0 6.550073-4 6.918310+0 6.374502-4 7.244360+0 6.037354-4 7.943282+0 5.415611-4 8.000000+0 5.370335-4 8.222427+0 5.199341-4 8.413951+0 5.064024-4 8.511380+0 4.997694-4 8.609938+0 4.932232-4 9.015711+0 4.678850-4 1.000000+1 4.155318-4 1.011579+1 4.100893-4 1.047129+1 3.941852-4 1.071519+1 3.841949-4 1.096478+1 3.744577-4 1.109175+1 3.696819-4 1.161449+1 3.511807-4 1.303167+1 3.088781-4 1.318257+1 3.049389-4 1.348963+1 2.972108-4 1.364583+1 2.934283-4 1.380384+1 2.897732-4 1.400000+1 2.853556-4 1.412538+1 2.825991-4 1.500000+1 2.647067-4 1.513561+1 2.621257-4 1.778279+1 2.199376-4 1.798871+1 2.171980-4 1.800000+1 2.170497-4 1.819701+1 2.144972-4 1.840772+1 2.118309-4 1.862087+1 2.092527-4 1.883649+1 2.067057-4 2.018366+1 1.920623-4 2.570396+1 1.485098-4 2.722701+1 1.396994-4 2.800000+1 1.356065-4 2.818383+1 1.346864-4 2.917427+1 1.299326-4 3.162278+1 1.194827-4 3.198895+1 1.180613-4 3.235937+1 1.166568-4 4.570882+1 8.146780-5 4.677351+1 7.954135-5 4.731513+1 7.860874-5 4.786301+1 7.768710-5 4.841724+1 7.677734-5 4.897788+1 7.587827-5 8.413951+1 4.361947-5 8.709636+1 4.210514-5 8.810489+1 4.161694-5 8.912509+1 4.113442-5 9.120108+1 4.018686-5 9.225714+1 3.972130-5 1.678804+2 2.167078-5 1.737801+2 2.092636-5 1.757924+2 2.068525-5 1.778279+2 2.044693-5 1.819701+2 1.997872-5 1.840772+2 1.974867-5 3.349654+2 1.081376-5 3.467369+2 1.044449-5 6.918310+2 5.226703-6 6.998420+2 5.166743-6 7.079458+2 5.107470-6 7.244360+2 4.990993-6 7.328245+2 4.933755-6 2.660725+3 1.355568-6 2.754229+3 1.309463-6 1.096478+4 3.288536-7 1.109175+4 3.250886-7 1.122018+4 3.213670-7 1.148154+4 3.140508-7 1.161449+4 3.104555-7 1.000000+5 3.604974-8 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.900000-6 5.900000-6 7.040000-6 5.900000-6 7.040000-6 6.899322-6 7.080000-6 6.909855-6 7.080000-6 6.972183-6 7.570000-6 7.030289-6 8.369000-6 7.055160-6 1.350000-5 6.999615-6 3.906000-5 6.981490-6 3.906000-5 1.033265-5 3.960000-5 1.027697-5 3.960000-5 1.097764-5 4.168694-5 1.071202-5 4.610000-5 1.007589-5 4.820000-5 9.839824-6 5.011872-5 9.695832-6 5.190000-5 9.627576-6 5.400000-5 9.621570-6 5.623413-5 9.687251-6 5.900000-5 9.836618-6 6.091000-5 9.968431-6 6.091000-5 1.170494-5 7.079458-5 1.236982-5 7.762471-5 1.274879-5 8.511380-5 1.307392-5 9.332543-5 1.333185-5 1.040000-4 1.356217-5 1.190000-4 1.377206-5 1.428894-4 1.398316-5 1.778279-4 1.417138-5 2.483133-4 1.438574-5 3.715352-4 1.461394-5 4.088600-4 1.466993-5 4.088600-4 2.510511-5 4.104000-4 2.538390-5 4.129000-4 2.561560-5 4.136800-4 2.566061-5 4.136800-4 2.620290-5 4.178000-4 2.638318-5 4.270000-4 2.645485-5 4.942900-4 2.644693-5 4.942900-4 2.827626-5 9.332543-4 2.944797-5 1.348963-3 3.033056-5 1.883649-3 3.123523-5 2.570396-3 3.214586-5 3.273407-3 3.288300-5 4.315191-3 3.371712-5 4.465800-3 3.381611-5 4.465800-3 5.044941-5 7.000000-3 5.080305-5 1.380384-2 5.109555-5 3.935501-2 5.129093-5 4.786301-1 5.137750-5 1.000000+5 5.138262-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.900000-6 0.0 3.906000-5 0.0 3.906000-5 1.083036-9 3.960000-5 1.065105-9 3.960000-5 1.229434-9 4.050000-5 1.197121-9 4.216965-5 1.125425-9 4.518559-5 9.89834-10 4.623810-5 9.46988-10 4.720000-5 9.11925-10 4.820000-5 8.80628-10 4.900000-5 8.59886-10 4.970000-5 8.44757-10 5.040000-5 8.32819-10 5.110000-5 8.23686-10 5.190000-5 8.16988-10 5.270000-5 8.13913-10 5.350000-5 8.14427-10 5.432503-5 8.17908-10 5.500000-5 8.22627-10 5.580000-5 8.31095-10 5.690000-5 8.46317-10 5.821032-5 8.68620-10 6.000000-5 9.04677-10 6.091000-5 9.24859-10 6.091000-5 1.129410-9 6.839116-5 1.279116-9 7.161434-5 1.339510-9 7.500000-5 1.397455-9 7.852356-5 1.451116-9 8.222426-5 1.500958-9 8.511380-5 1.535405-9 9.015711-5 1.586303-9 9.549926-5 1.630467-9 1.023293-4 1.675939-9 1.109175-4 1.720008-9 1.202264-4 1.757056-9 1.333521-4 1.796979-9 1.500000-4 1.833506-9 1.720000-4 1.866107-9 2.018366-4 1.894903-9 2.454709-4 1.921063-9 3.126079-4 1.943401-9 4.088600-4 1.959639-9 4.088600-4 1.789910-7 4.099000-4 1.824684-7 4.110000-4 1.849386-7 4.129000-4 1.876349-7 4.136800-4 1.883958-7 4.136800-4 1.978497-7 4.159000-4 1.999546-7 4.188000-4 2.012931-7 4.240000-4 2.020772-7 4.942900-4 2.018587-7 4.942900-4 2.120920-7 8.810489-4 2.159686-7 1.659587-3 2.212670-7 2.722701-3 2.264666-7 4.027170-3 2.309811-7 4.465800-3 2.321752-7 4.465800-3 6.789994-4 5.623413-3 6.844585-4 8.128305-3 6.898139-4 1.333521-2 6.940873-4 2.851018-2 6.967763-4 2.041738-1 6.977664-4 1.000000+5 6.977793-4 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.900000-6 0.0 7.040000-6 1.140000-6 7.040000-6 1.406778-7 7.080000-6 1.701446-7 7.080000-6 1.078171-7 7.100000-6 1.244672-7 7.170000-6 1.833276-7 7.244360-6 2.471258-7 7.310000-6 3.044581-7 7.420000-6 4.024891-7 7.570000-6 5.397109-7 7.762471-6 7.205943-7 8.020000-6 9.691136-7 8.420000-6 1.364750-6 9.240000-6 2.192614-6 1.207000-5 5.061161-6 1.980000-5 1.280883-5 3.906000-5 3.207851-5 3.906000-5 2.872627-5 3.960000-5 2.932197-5 3.960000-5 2.862113-5 4.720000-5 3.725614-5 5.110000-5 4.144868-5 5.580000-5 4.613072-5 6.091000-5 5.094064-5 6.091000-5 4.920393-5 7.852356-5 6.572971-5 1.000000-4 8.651036-5 1.603245-4 1.462324-4 4.088600-4 3.941881-4 4.088600-4 3.835759-4 4.136800-4 3.878310-4 4.136800-4 3.872793-4 4.942900-4 4.676412-4 4.942900-4 4.658017-4 4.465800-3 4.431752-3 4.465800-3 3.736351-3 1.798871-2 1.724199-2 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.465800-3 5.474140+4 4.731513-3 4.770517+4 5.188000-3 3.793373+4 5.623413-3 3.082025+4 7.000000-3 1.741472+4 8.810489-3 9.385190+3 1.059254-2 5.651304+3 1.216186-2 3.839554+3 1.445440-2 2.352527+3 1.737801-2 1.383787+3 2.113489-2 7.810695+2 2.570396-2 4.374920+2 3.162278-2 2.350204+2 3.935501-2 1.210341+2 5.011872-2 5.766389+1 6.606934-2 2.450192+1 1.011580-1 6.477407+0 1.462177-1 2.041525+0 1.840772-1 9.989361-1 2.264644-1 5.288956-1 2.630268-1 3.365059-1 3.019952-1 2.233327-1 3.427678-1 1.544963-1 3.845918-1 1.113443-1 4.265795-1 8.350395-2 4.731513-1 6.308366-2 5.248075-1 4.802915-2 5.754399-1 3.795454-2 6.309573-1 3.020340-2 6.918310-1 2.421557-2 7.498942-1 2.010428-2 8.222427-1 1.637205-2 9.225714-1 1.277212-2 1.000000+0 1.080301-2 1.135011+0 8.387554-3 1.258925+0 6.879143-3 1.396368+0 5.685306-3 1.548817+0 4.733990-3 1.737801+0 3.895352-3 1.972423+0 3.169295-3 2.213095+0 2.644998-3 2.511886+0 2.185450-3 2.851018+0 1.819181-3 3.311311+0 1.475795-3 3.845918+0 1.206177-3 4.518559+0 9.779943-4 5.432503+0 7.757451-4 6.606934+0 6.112742-4 8.222427+0 4.722136-4 1.047129+1 3.580058-4 1.364583+1 2.664943-4 1.840772+1 1.923840-4 2.800000+1 1.231500-4 4.677351+1 7.223966-5 8.709636+1 3.824017-5 1.737801+2 1.900560-5 3.467369+2 9.485124-6 2.754229+3 1.189193-6 1.000000+5 3.274100-8 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.465800-3 5.263700-5 1.000000+5 5.263700-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.465800-3 7.682700-4 1.000000+5 7.682700-4 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.465800-3 3.644893-3 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.942900-4 2.342400+5 5.400000-4 2.088486+5 6.839116-4 1.502704+5 7.161434-4 1.403542+5 8.200000-4 1.141416+5 8.912509-4 9.971129+4 1.030000-3 7.804160+4 1.135011-3 6.574424+4 1.303167-3 5.101892+4 1.450000-3 4.166240+4 1.659587-3 3.198842+4 1.883649-3 2.477192+4 2.150000-3 1.882958+4 2.483133-3 1.384744+4 2.851018-3 1.022964+4 3.273407-3 7.500399+3 3.758374-3 5.459847+3 4.315191-3 3.946828+3 5.000000-3 2.771820+3 5.754399-3 1.964671+3 6.606934-3 1.391515+3 7.673615-3 9.507015+2 9.000000-3 6.285120+2 1.050000-2 4.180000+2 1.230269-2 2.728742+2 1.445440-2 1.755403+2 1.717908-2 1.085683+2 2.041738-2 6.663890+1 2.426610-2 4.060447+1 2.917427-2 2.375714+1 3.548134-2 1.333444+1 4.315191-2 7.427741+0 5.370318-2 3.831791+0 6.839116-2 1.828856+0 9.120108-2 7.519764-1 1.584893-1 1.352742-1 1.972423-1 6.905659-2 2.344229-1 4.083467-2 2.722701-1 2.608238-2 3.126079-1 1.737207-2 3.507519-1 1.246146-2 3.935501-1 9.003061-3 4.365158-1 6.767492-3 4.841724-1 5.124093-3 5.370318-1 3.910119-3 5.888437-1 3.096183-3 6.456542-1 2.469000-3 7.085700-1 1.979632-3 7.762471-1 1.608325-3 8.511380-1 1.313117-3 9.440609-1 1.052004-3 1.023293+0 8.917229-4 1.148154+0 7.091077-4 1.273503+0 5.820896-4 1.412538+0 4.814829-4 1.548817+0 4.093183-4 1.737801+0 3.367996-4 1.972423+0 2.740271-4 2.213095+0 2.287066-4 2.511886+0 1.889737-4 2.851018+0 1.573008-4 3.311311+0 1.276047-4 3.845918+0 1.042890-4 4.518559+0 8.456065-5 5.432503+0 6.707505-5 6.606934+0 5.285423-5 8.222427+0 4.082969-5 1.047129+1 3.095502-5 1.348963+1 2.333580-5 1.800000+1 1.704100-5 2.570396+1 1.165986-5 3.162278+1 9.380843-6 4.786301+1 6.099803-6 8.912509+1 3.229931-6 1.778279+2 1.605570-6 7.079458+2 4.007670-7 1.122018+4 2.523780-8 1.000000+5 2.831000-9 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.942900-4 4.220500-5 1.000000+5 4.220500-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.942900-4 2.900100-7 1.000000+5 2.900100-7 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.942900-4 4.517950-4 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.136800-4 5.321100+5 4.141500-4 5.575400+5 4.145000-4 5.750000+5 4.150000-4 5.967700+5 4.157000-4 6.226500+5 4.162000-4 6.384700+5 4.170000-4 6.599500+5 4.178000-4 6.778200+5 4.188000-4 6.954100+5 4.200000-4 7.109800+5 4.210700-4 7.208900+5 4.225000-4 7.291600+5 4.240000-4 7.330200+5 4.255000-4 7.330600+5 4.270000-4 7.303900+5 4.310000-4 7.175821+5 4.570882-4 6.343568+5 4.800000-4 5.712300+5 5.041700-4 5.106500+5 5.370318-4 4.440900+5 5.956621-4 3.491500+5 6.500000-4 2.828700+5 7.079458-4 2.285000+5 8.035261-4 1.645100+5 8.810489-4 1.288800+5 1.000000-3 9.125100+4 1.122018-3 6.629000+4 1.303167-3 4.334000+4 1.462177-3 3.105800+4 1.698244-3 1.997400+4 1.950000-3 1.317500+4 2.220000-3 8.856100+3 2.570396-3 5.609000+3 3.000000-3 3.435700+3 3.507519-3 2.075500+3 4.073803-3 1.271300+3 4.731513-3 7.730500+2 5.500000-3 4.653700+2 6.456542-3 2.688100+2 7.500000-3 1.597900+2 8.709636-3 9.445700+1 1.035142-2 5.107000+1 1.230269-2 2.740400+1 1.479108-2 1.399900+1 1.798871-2 6.802200+0 2.187762-2 3.280600+0 2.722701-2 1.441000+0 3.507519-2 5.514500-1 7.000000-2 3.949582-2 9.225714-2 1.387017-2 1.109175-1 6.949252-3 1.303167-1 3.824013-3 1.479108-1 2.406598-3 1.698244-1 1.462341-3 1.949845-1 8.952976-4 2.213095-1 5.748526-4 2.483133-1 3.868099-4 2.786121-1 2.621400-4 3.090295-1 1.859789-4 3.427678-1 1.328459-4 3.801894-1 9.557226-5 4.216965-1 6.926635-5 4.623810-1 5.237243-5 5.069907-1 3.986468-5 5.559043-1 3.056052-5 6.095369-1 2.360590-5 6.683439-1 1.837157-5 7.244360-1 1.486124-5 7.943282-1 1.174461-5 9.440609-1 7.641850-6 9.885531-1 6.853577-6 1.047129+0 6.031688-6 1.109175+0 5.344289-6 1.174898+0 4.769872-6 1.258925+0 4.194556-6 1.364583+0 3.634502-6 1.698244+0 2.504301-6 1.927525+0 2.032479-6 2.162719+0 1.693755-6 2.426610+0 1.421653-6 2.754229+0 1.181138-6 3.198895+0 9.564939-7 3.715352+0 7.803945-7 4.365158+0 6.317566-7 5.248075+0 5.003861-7 6.382635+0 3.937582-7 7.943282+0 3.037923-7 1.000000+1 2.330900-7 1.303167+1 1.732444-7 1.778279+1 1.233938-7 2.570396+1 8.333448-8 3.235937+1 6.545264-8 4.897788+1 4.257335-8 9.225714+1 2.228767-8 1.840772+2 1.108159-8 7.328245+2 2.766796-9 1.161449+4 1.74251-10 1.000000+5 2.02330-11 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.136800-4 2.791800-5 1.000000+5 2.791800-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.136800-4 2.277500-7 1.000000+5 2.277500-7 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.136800-4 3.855343-4 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.088600-4 1.087828+6 4.094000-4 1.146320+6 4.099000-4 1.193996+6 4.104000-4 1.235556+6 4.110000-4 1.278272+6 4.116000-4 1.315168+6 4.121000-4 1.341708+6 4.129000-4 1.378092+6 4.137000-4 1.407916+6 4.148000-4 1.439664+6 4.159000-4 1.462492+6 4.170000-4 1.477928+6 4.185000-4 1.489436+6 4.205000-4 1.491804+6 4.228000-4 1.482256+6 4.650000-4 1.217508+6 5.069907-4 9.980279+5 5.308844-4 9.006782+5 5.900000-4 7.041280+5 6.456542-4 5.657911+5 7.000000-4 4.617920+5 8.035261-4 3.224309+5 8.810489-4 2.521866+5 1.011579-3 1.726532+5 1.135011-3 1.251273+5 1.318257-3 8.158420+4 1.513561-3 5.450806+4 1.717908-3 3.740451+4 1.972423-3 2.461890+4 2.290868-3 1.551066+4 2.650000-3 9.812440+3 3.054921-3 6.228882+3 3.507519-3 3.978845+3 4.027170-3 2.525547+3 4.623810-3 1.592972+3 5.308844-3 9.983316+2 6.095369-3 6.217500+2 7.000000-3 3.844932+2 8.128305-3 2.272676+2 9.500000-3 1.303432+2 1.122018-2 7.149104+1 1.333521-2 3.804577+1 1.603245-2 1.925316+1 1.927525-2 9.670083+0 2.344229-2 4.616058+0 2.917427-2 2.003345+0 3.715352-2 7.896836-1 8.128305-2 3.788669-2 1.011580-1 1.632616-2 1.216186-1 8.093863-3 1.412538-1 4.602734-3 1.621810-1 2.752943-3 1.840772-1 1.730902-3 2.065380-1 1.142682-3 2.317395-1 7.599487-4 2.570396-1 5.302368-4 2.851018-1 3.727294-4 3.126079-1 2.743537-4 3.427678-1 2.033655-4 3.758374-1 1.518958-4 4.073803-1 1.184441-4 4.415705-1 9.295444-5 4.731513-1 7.594677-5 5.128614-1 6.040581-5 5.559043-1 4.836460-5 6.095369-1 3.780454-5 6.606935-1 3.066698-5 7.161434-1 2.504743-5 7.762471-1 2.060986-5 8.413951-1 1.708589-5 9.120108-1 1.426929-5 9.772372-1 1.229777-5 1.059254+0 1.041965-5 1.161449+0 8.683180-6 1.273503+0 7.291397-6 1.412538+0 6.037240-6 1.566751+0 5.035345-6 1.757924+0 4.146534-6 2.000000+0 3.362900-6 2.238721+0 2.819332-6 2.540973+0 2.331174-6 2.917427+0 1.910231-6 3.388442+0 1.551383-6 3.935501+0 1.269347-6 4.623810+0 1.030275-6 5.559043+0 8.179960-7 6.760830+0 6.451421-7 8.413951+0 4.987971-7 1.071519+1 3.784332-7 1.380384+1 2.854922-7 1.840772+1 2.087152-7 2.800000+1 1.336100-7 4.677351+1 7.837193-8 8.709636+1 4.148667-8 1.737801+2 2.061844-8 6.918310+2 5.145843-9 1.096478+4 3.24033-10 1.000000+5 3.55210-11 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.088600-4 2.781300-5 1.000000+5 2.781300-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.088600-4 2.249300-7 1.000000+5 2.249300-7 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.088600-4 3.808221-4 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.091000-5 4.324960+5 6.606934-5 4.270094+5 8.000000-5 4.197100+5 8.511380-5 4.150958+5 9.015711-5 4.081733+5 9.500000-5 3.992780+5 1.000000-4 3.881180+5 1.060000-4 3.728960+5 1.122018-4 3.561789+5 1.202264-4 3.345759+5 1.318257-4 3.054233+5 1.462177-4 2.736996+5 1.603245-4 2.465757+5 1.737801-4 2.235918+5 1.905461-4 1.985276+5 2.162719-4 1.670987+5 2.454709-4 1.396166+5 2.722701-4 1.197038+5 3.126079-4 9.667186+4 3.600000-4 7.716360+4 4.120975-4 6.169562+4 4.841724-4 4.687993+4 5.559043-4 3.678478+4 6.531306-4 2.752501+4 7.673615-4 2.043475+4 9.015711-4 1.506531+4 1.071519-3 1.078634+4 1.273503-3 7.663557+3 1.513561-3 5.402076+3 1.778279-3 3.868763+3 2.089296-3 2.748637+3 2.426610-3 1.985954+3 2.818383-3 1.424130+3 3.235937-3 1.040491+3 3.758374-3 7.351604+2 4.365158-3 5.156576+2 5.069907-3 3.591695+2 5.888437-3 2.484355+2 6.918310-3 1.657597+2 8.128305-3 1.097280+2 9.549926-3 7.207157+1 1.122018-2 4.696529+1 1.318257-2 3.037530+1 1.566751-2 1.889347+1 1.862087-2 1.165995+1 2.213095-2 7.140031+0 2.660725-2 4.197378+0 3.198895-2 2.448749+0 3.890451-2 1.370842+0 4.786301-2 7.360339-1 5.956621-2 3.786405-1 7.852356-2 1.621062-1 1.059254-1 6.420645-2 1.548817-1 1.974737-2 1.949845-1 9.729351-3 2.344229-1 5.554920-3 2.722701-1 3.548252-3 3.126079-1 2.363462-3 3.507519-1 1.695546-3 3.935501-1 1.225105-3 4.365158-1 9.208291-4 4.841724-1 6.971788-4 5.308844-1 5.480848-4 5.821032-1 4.337579-4 6.382635-1 3.457349-4 6.998420-1 2.775906-4 7.673615-1 2.245114-4 8.413951-1 1.828722-4 9.120108-1 1.537728-4 9.885531-1 1.301365-4 1.135011+0 9.879723-5 1.258925+0 8.098921-5 1.396368+0 6.691618-5 1.548817+0 5.571256-5 1.737801+0 4.584136-5 1.972423+0 3.729860-5 2.213095+0 3.112985-5 2.511886+0 2.572157-5 2.851018+0 2.141043-5 3.311311+0 1.736884-5 3.845918+0 1.419553-5 4.518559+0 1.150959-5 5.432503+0 9.129498-6 6.606934+0 7.194125-6 8.222427+0 5.557430-6 1.047129+1 4.213467-6 1.348963+1 3.176306-6 1.819701+1 2.292463-6 2.722701+1 1.493004-6 4.570882+1 8.706211-7 8.413951+1 4.661451-7 1.678804+2 2.316125-7 3.349654+2 1.155737-7 2.660725+3 1.448798-8 1.000000+5 3.85330-10 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.091000-5 1.981900-5 1.000000+5 1.981900-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.091000-5 2.085200-9 1.000000+5 2.085200-9 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.091000-5 4.108891-5 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.960000-5 1.120434+6 4.000000-5 1.081020+6 4.050000-5 1.028150+6 4.130000-5 9.417500+5 4.220000-5 8.473480+5 4.315191-5 7.549840+5 4.610000-5 5.311060+5 4.720000-5 4.712140+5 4.820000-5 4.265500+5 4.900000-5 3.968280+5 4.970000-5 3.747520+5 5.040000-5 3.559880+5 5.110000-5 3.401820+5 5.190000-5 3.253660+5 5.270000-5 3.135980+5 5.350000-5 3.044840+5 5.432503-5 2.974841+5 5.500000-5 2.933280+5 5.580000-5 2.899780+5 5.688529-5 2.877462+5 5.800000-5 2.877080+5 5.900000-5 2.892200+5 6.025596-5 2.927231+5 6.165950-5 2.982293+5 6.400000-5 3.098160+5 7.161434-5 3.535382+5 7.500000-5 3.715140+5 7.852356-5 3.879313+5 8.222426-5 4.022690+5 8.511380-5 4.112524+5 8.900000-5 4.202460+5 9.300000-5 4.260080+5 9.660509-5 4.285229+5 1.011579-4 4.286566+5 1.060000-4 4.257800+5 1.109175-4 4.203805+5 1.174898-4 4.104143+5 1.244515-4 3.977909+5 1.318257-4 3.830024+5 1.400000-4 3.657140+5 1.480000-4 3.483400+5 1.580000-4 3.265300+5 1.690000-4 3.031200+5 1.819701-4 2.770843+5 1.972423-4 2.491998+5 2.150000-4 2.207000+5 2.317395-4 1.972173+5 2.511886-4 1.734590+5 2.730000-4 1.507866+5 3.019952-4 1.261549+5 3.311311-4 1.064250+5 3.630781-4 8.911579+4 4.027170-4 7.236188+4 4.415704-4 5.976544+4 4.897788-4 4.785152+4 5.500000-4 3.698340+4 6.200000-4 2.810620+4 7.000000-4 2.109640+4 7.943282-4 1.551873+4 9.015711-4 1.131332+4 1.011579-3 8.431492+3 1.148154-3 6.056390+3 1.288250-3 4.454448+3 1.462177-3 3.152351+3 1.659587-3 2.213637+3 1.883649-3 1.542407+3 2.113489-3 1.102866+3 2.398833-3 7.567673+2 2.722701-3 5.154124+2 3.090295-3 3.485272+2 3.548134-3 2.256783+2 4.073803-3 1.450250+2 4.677351-3 9.253566+1 5.432503-3 5.645005+1 6.309573-3 3.417744+1 7.328245-3 2.053505+1 8.511380-3 1.224433+1 9.885531-3 7.247074+0 1.161449-2 4.088309+0 1.380384-2 2.196354+0 1.659587-2 1.123106+0 2.000000-2 5.651803-1 2.426610-2 2.751579-1 3.054921-2 1.158080-1 4.073803-2 3.891898-2 7.079458-2 4.753431-3 9.120108-2 1.825495-3 1.109175-1 8.777447-4 1.303167-1 4.835199-4 1.513561-1 2.798534-4 1.737801-1 1.700922-4 1.972423-1 1.084860-4 2.238721-1 6.968341-5 2.511886-1 4.692107-5 2.818383-1 3.182414-5 3.126079-1 2.259005-5 3.467369-1 1.614531-5 3.845918-1 1.162444-5 4.216965-1 8.739561-6 4.677351-1 6.389640-6 5.188000-1 4.708766-6 5.688529-1 3.614386-6 6.165950-1 2.884745-6 6.760830-1 2.245829-6 7.413102-1 1.761537-6 8.609938-1 1.200445-6 9.120108-1 1.041738-6 9.660509-1 9.098081-7 1.023293+0 8.007207-7 1.096478+0 6.923478-7 1.161449+0 6.172695-7 1.250000+0 5.374600-7 1.364583+0 4.590731-7 1.621810+0 3.412263-7 1.840772+0 2.762399-7 2.065380+0 2.295455-7 2.317395+0 1.921335-7 2.630268+0 1.592021-7 3.019952+0 1.307053-7 3.507519+0 1.063277-7 4.120975+0 8.583621-8 4.897788+0 6.880145-8 5.888437+0 5.475123-8 7.244360+0 4.268827-8 9.015711+0 3.308465-8 1.161449+1 2.483193-8 1.513561+1 1.853651-8 2.018366+1 1.358295-8 2.917427+1 9.194084-9 4.731513+1 5.563122-9 8.810489+1 2.945298-9 1.757924+2 1.463946-9 6.998420+2 3.65386-10 1.109175+4 2.30086-11 1.000000+5 2.55140-12 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.960000-5 1.363300-5 1.000000+5 1.363300-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.960000-5 1.852200-9 1.000000+5 1.852200-9 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.960000-5 2.596515-5 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.906000-5 2.255716+6 3.950000-5 2.166000+6 4.000000-5 2.056460+6 4.073803-5 1.893199+6 4.168694-5 1.691256+6 4.315191-5 1.413552+6 4.518559-5 1.109951+6 4.623810-5 9.887545+5 4.720000-5 8.972120+5 4.800000-5 8.336680+5 4.870000-5 7.864960+5 4.954502-5 7.389428+5 5.011872-5 7.119060+5 5.080000-5 6.847360+5 5.150000-5 6.618360+5 5.233200-5 6.404314+5 5.308844-5 6.257444+5 5.400000-5 6.132120+5 5.495409-5 6.051906+5 5.580000-5 6.017120+5 5.690000-5 6.013520+5 5.821032-5 6.057772+5 5.956621-5 6.145008+5 6.150000-5 6.319280+5 6.456542-5 6.661436+5 7.079458-5 7.402033+5 7.413102-5 7.761050+5 7.762471-5 8.087553+5 8.128305-5 8.367644+5 8.511380-5 8.590846+5 8.912509-5 8.749942+5 9.332543-5 8.841135+5 9.772372-5 8.864070+5 1.023293-4 8.822672+5 1.071519-4 8.724496+5 1.122018-4 8.578151+5 1.190000-4 8.333120+5 1.260000-4 8.045200+5 1.333521-4 7.722068+5 1.412538-4 7.362617+5 1.500000-4 6.961360+5 1.603245-4 6.493091+5 1.720000-4 5.983040+5 1.862087-4 5.409084+5 2.018366-4 4.844763+5 2.187762-4 4.308375+5 2.371374-4 3.803999+5 2.580000-4 3.311792+5 2.818383-4 2.842452+5 3.100000-4 2.392452+5 3.388442-4 2.023292+5 3.715352-4 1.688394+5 4.120975-4 1.366322+5 4.518559-4 1.125390+5 5.041700-4 8.863478+4 5.688529-4 6.751488+4 6.382635-4 5.166340+4 7.244360-4 3.814838+4 8.200000-4 2.812260+4 9.332543-4 2.028446+4 1.047129-3 1.506355+4 1.174898-3 1.111731+4 1.318257-3 8.151939+3 1.496236-3 5.750851+3 1.698244-3 4.025658+3 1.927525-3 2.795943+3 2.162719-3 1.993069+3 2.454709-3 1.363101+3 2.786121-3 9.253025+2 3.162278-3 6.236245+2 3.630781-3 4.023494+2 4.168694-3 2.576103+2 4.786301-3 1.637581+2 5.559043-3 9.949315+1 6.382635-3 6.237391+1 7.413102-3 3.732984+1 8.511380-3 2.308096+1 9.885531-3 1.360817+1 1.161449-2 7.642613+0 1.364583-2 4.259775+0 1.621810-2 2.259745+0 1.905461-2 1.241587+0 2.317395-2 5.951794-1 2.851018-2 2.711087-1 3.630781-2 1.074481-1 4.466836-2 4.830654-2 7.673615-2 5.943715-3 9.772372-2 2.342805-3 1.174898-1 1.160647-3 1.380384-1 6.323247-4 1.603245-1 3.623996-4 1.819701-1 2.278143-4 2.041738-1 1.503843-4 2.290868-1 9.998288-5 2.540973-1 6.973631-5 2.818383-1 4.900715-5 3.090295-1 3.606399-5 3.388442-1 2.672466-5 3.715352-1 1.994968-5 4.073803-1 1.500710-5 4.415705-1 1.177495-5 4.786301-1 9.300209-6 5.128614-1 7.640672-6 5.559043-1 6.116708-6 6.025596-1 4.930771-6 6.531306-1 4.001534-6 7.079458-1 3.269494-6 7.673615-1 2.689482-6 8.413951-1 2.167229-6 9.120108-1 1.807391-6 9.772372-1 1.557513-6 1.083927+0 1.259422-6 1.161449+0 1.098643-6 1.273503+0 9.228685-7 1.412538+0 7.644622-7 1.584893+0 6.253165-7 1.778279+0 5.153193-7 2.018366+0 4.197743-7 2.264644+0 3.508405-7 2.570396+0 2.903023-7 2.951209+0 2.380454-7 3.427678+0 1.934339-7 4.000000+0 1.573700-7 4.731513+0 1.267312-7 5.688529+0 1.007118-7 6.918310+0 7.949817-8 8.609938+0 6.151470-8 1.109175+1 4.610380-8 1.412538+1 3.525697-8 1.883649+1 2.578865-8 2.818383+1 1.680630-8 4.677351+1 9.926189-9 8.709636+1 5.254411-9 1.737801+2 2.611489-9 3.467369+2 1.303300-9 2.754229+3 1.63397-10 1.000000+5 4.49890-12 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.906000-5 1.351000-5 1.000000+5 1.351000-5 1 21000 7 7 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.906000-5 2.109900-9 1.000000+5 2.109900-9 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.906000-5 2.554789-5 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 7.080000-6 5.282720+5 7.413102-6 5.741206+5 7.762471-6 6.200174+5 8.222426-6 6.770837+5 8.709636-6 7.331490+5 9.225714-6 7.880705+5 9.850000-6 8.483720+5 1.050000-5 9.053800+5 1.122018-5 9.620181+5 1.202264-5 1.017730+6 1.303167-5 1.078058+6 1.412538-5 1.132922+6 1.513561-5 1.174314+6 1.621810-5 1.209319+6 1.737801-5 1.236693+6 1.850000-5 1.252856+6 1.980000-5 1.260692+6 2.089296-5 1.258925+6 2.213095-5 1.248631+6 2.350000-5 1.228332+6 2.483133-5 1.201390+6 2.630268-5 1.165596+6 2.786121-5 1.122929+6 2.951209-5 1.074474+6 3.150000-5 1.014516+6 3.350000-5 9.548560+5 3.589219-5 8.861154+5 3.890451-5 8.056491+5 4.216965-5 7.268297+5 4.570882-5 6.504798+5 4.900000-5 5.871840+5 5.248075-5 5.269478+5 5.623413-5 4.691469+5 6.000000-5 4.174720+5 6.400000-5 3.692052+5 6.839116-5 3.230253+5 7.413102-5 2.725043+5 8.128305-5 2.223113+5 8.912509-5 1.800876+5 9.800000-5 1.440532+5 1.083927-4 1.127721+5 1.190000-4 8.914920+4 1.303167-4 7.035641+4 1.428894-4 5.496365+4 1.584893-4 4.136088+4 1.757924-4 3.093518+4 1.949845-4 2.297664+4 2.187762-4 1.637754+4 2.483133-4 1.120580+4 2.818383-4 7.610371+3 3.162278-4 5.316393+3 3.589219-4 3.555416+3 4.073803-4 2.359817+3 4.623810-4 1.554807+3 5.248075-4 1.017052+3 5.956621-4 6.605225+2 6.760830-4 4.257908+2 7.673615-4 2.725062+2 8.810489-4 1.662193+2 9.885531-4 1.093329+2 1.122018-3 6.845451+1 1.258925-3 4.441519+1 1.412538-3 2.861960+1 1.566751-3 1.914765+1 1.757924-3 1.216379+1 1.972423-3 7.673791+0 2.213095-3 4.803970+0 2.511886-3 2.849022+0 2.917427-3 1.524230+0 3.507519-3 7.006220-1 4.216965-3 3.194747-1 5.248075-3 1.246357-1 6.025596-3 6.841804-2 6.918310-3 3.724819-2 8.000000-3 1.949976-2 9.332543-3 9.730222-3 1.096478-2 4.665212-3 1.318257-2 1.997946-3 1.862087-2 4.026885-4 2.511886-2 9.963168-5 3.198895-2 3.207126-5 4.897788-2 4.330862-6 6.309573-2 1.326367-6 7.585776-2 5.645920-7 8.912509-2 2.693773-7 1.023293-1 1.438321-7 1.174898-1 7.737102-8 1.333521-1 4.415200-8 1.500000-1 2.640600-8 1.678804-1 1.625651-8 1.862087-1 1.047175-8 2.065380-1 6.790701-9 2.290868-1 4.435070-9 2.540973-1 2.918638-9 2.786121-1 2.025724-9 3.054921-1 1.415345-9 3.349654-1 9.95684-10 3.672823-1 7.05397-10 4.027170-1 5.03349-10 4.415705-1 3.61784-10 4.841724-1 2.62073-10 5.248075-1 1.98978-10 5.688529-1 1.52059-10 6.309573-1 1.08583-10 6.760830-1 8.73007-11 7.244360-1 7.06732-11 7.673615-1 5.96344-11 8.413951-1 4.58700-11 8.912509-1 3.91554-11 9.332543-1 3.46774-11 9.772372-1 3.08901-11 1.023293+0 2.77069-11 1.071519+0 2.50263-11 1.130300+0 2.24110-11 1.188502+0 2.03305-11 1.273503+0 1.79146-11 1.380384+0 1.55653-11 1.798871+0 9.96475-12 2.018366+0 8.26534-12 2.264644+0 6.90834-12 2.570396+0 5.71628-12 2.951209+0 4.68715-12 3.427678+0 3.80872-12 4.000000+0 3.09860-12 4.731513+0 2.49528-12 5.688529+0 1.98300-12 6.918310+0 1.56530-12 8.511380+0 1.22746-12 1.096478+1 9.19610-13 1.400000+1 7.01050-13 1.862087+1 5.14111-13 2.800000+1 3.33200-13 4.677351+1 1.95445-13 8.709636+1 1.03460-13 1.737801+2 5.14205-14 6.918310+2 1.28326-14 1.096478+4 8.08105-16 1.000000+5 8.85830-17 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 7.080000-6 7.080000-6 1.000000+5 7.080000-6 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 7.080000-6 0.0 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 7.040000-6 8.013720+5 7.413102-6 8.786323+5 7.762471-6 9.477823+5 8.200000-6 1.029414+6 8.609938-6 1.100801+6 9.120108-6 1.183365+6 9.700000-6 1.269156+6 1.035142-5 1.355974+6 1.109175-5 1.444299+6 1.188502-5 1.528076+6 1.273503-5 1.606615+6 1.380384-5 1.690341+6 1.479108-5 1.754013+6 1.584893-5 1.808680+6 1.698244-5 1.851881+6 1.819701-5 1.882069+6 1.927525-5 1.895608+6 2.041738-5 1.896836+6 2.162719-5 1.885310+6 2.290868-5 1.860286+6 2.426610-5 1.822616+6 2.570396-5 1.772774+6 2.730000-5 1.708464+6 2.900000-5 1.634100+6 3.090295-5 1.548033+6 3.300000-5 1.452888+6 3.548134-5 1.344456+6 3.801894-5 1.240725+6 4.120975-5 1.121121+6 4.466836-5 1.005575+6 4.800000-5 9.058680+5 5.150000-5 8.124420+5 5.500000-5 7.285620+5 5.900000-5 6.435600+5 6.237348-5 5.798326+5 6.683439-5 5.057919+5 7.161434-5 4.381613+5 7.852356-5 3.586051+5 8.709636-5 2.834988+5 9.549926-5 2.285280+5 1.040000-4 1.861968+5 1.148154-4 1.456355+5 1.273503-4 1.114685+5 1.412538-4 8.452620+4 1.603245-4 5.968756+4 1.778279-4 4.458771+4 1.950000-4 3.420018+4 2.187762-4 2.437696+4 2.483133-4 1.667026+4 2.818383-4 1.131615+4 3.162278-4 7.902477+3 3.589219-4 5.283278+3 4.073803-4 3.505178+3 4.623810-4 2.307921+3 5.308844-4 1.451274+3 6.025596-4 9.414741+2 6.839116-4 6.063753+2 7.762471-4 3.877051+2 8.810489-4 2.460662+2 1.000000-3 1.550654+2 1.135011-3 9.696889+1 1.273503-3 6.283782+1 1.412538-3 4.226198+1 1.584893-3 2.700433+1 1.778279-3 1.713455+1 2.000000-3 1.069400+1 2.264644-3 6.437184+0 2.570396-3 3.809558+0 2.951209-3 2.133939+0 3.520240-3 1.013308+0 4.120975-3 5.171649-1 4.841724-3 2.580051-1 5.688529-3 1.277563-1 6.683439-3 6.279667-2 7.762471-3 3.224382-2 8.810489-3 1.821413-2 1.023293-2 9.205203-3 1.216186-2 4.155377-3 1.479108-2 1.673504-3 1.905461-2 5.132671-4 2.511886-2 1.402322-4 3.162278-2 4.729901-5 5.128614-2 4.789300-6 6.918310-2 1.169918-6 8.128305-2 5.514393-7 9.440609-2 2.762967-7 1.071519-1 1.550283-7 1.216186-1 8.763190-8 1.364583-1 5.255380-8 1.531088-1 3.176068-8 1.698244-1 2.033023-8 1.862087-1 1.376360-8 2.041738-1 9.380833-9 2.238721-1 6.441280-9 2.454709-1 4.455411-9 2.691535-1 3.105235-9 2.917427-1 2.278592-9 3.198895-1 1.611721-9 3.467369-1 1.199013-9 3.758374-1 8.98844-10 4.027170-1 7.06919-10 4.315191-1 5.59981-10 4.623810-1 4.46677-10 4.954502-1 3.58881-10 5.308844-1 2.90874-10 5.754399-1 2.29568-10 6.382635-1 1.70835-10 6.918310-1 1.36720-10 7.444800-1 1.12420-10 8.035261-1 9.24342-11 8.609938-1 7.78195-11 9.225714-1 6.59649-11 9.772372-1 5.78607-11 1.035142+0 5.11073-11 1.109175+0 4.43138-11 1.174898+0 3.95831-11 1.273503+0 3.40524-11 1.396368+0 2.88628-11 1.621810+0 2.22903-11 1.840772+0 1.80475-11 2.065380+0 1.50006-11 2.317395+0 1.25566-11 2.630268+0 1.04040-11 3.019952+0 8.54097-12 3.507519+0 6.94811-12 4.120975+0 5.60916-12 4.897788+0 4.49603-12 5.888437+0 3.57792-12 7.244360+0 2.78957-12 9.015711+0 2.16196-12 1.161449+1 1.62271-12 1.500000+1 1.22330-12 2.018366+1 8.87623-13 2.917427+1 6.00818-13 4.786301+1 3.59246-13 8.912509+1 1.90225-13 1.778279+2 9.45617-14 7.079458+2 2.36033-14 1.122018+4 1.48638-15 1.000000+5 1.66730-16 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 7.040000-6 7.040000-6 1.000000+5 7.040000-6 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.040000-6 0.0 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.900000-6 7.022820+5 5.956621-6 6.513025+5 6.050000-6 5.697440+5 6.165950-6 4.814142+5 6.270000-6 4.124580+5 6.350000-6 3.654000+5 6.460000-6 3.081200+5 6.550000-6 2.669620+5 6.650000-6 2.266200+5 6.730000-6 1.980722+5 6.810000-6 1.724670+5 6.890000-6 1.495190+5 6.960000-6 1.314462+5 7.020000-6 1.173304+5 7.100000-6 1.003402+5 7.170000-6 8.704980+4 7.244360-6 7.440724+4 7.310000-6 6.440940+4 7.365000-6 5.680560+4 7.420000-6 4.986260+4 7.480000-6 4.299360+4 7.520000-6 3.879840+4 7.570000-6 3.396240+4 7.620000-6 2.955600+4 7.670000-6 2.555420+4 7.715000-6 2.228020+4 7.762471-6 1.914259+4 7.790000-6 1.746484+4 7.830000-6 1.520590+4 7.865000-6 1.339436+4 7.900000-6 1.173100+4 7.930000-6 1.041864+4 7.960000-6 9.206640+3 7.990000-6 8.091720+3 8.020000-6 7.070160+3 8.050000-6 6.138760+3 8.070000-6 5.566280+3 8.100000-6 4.777860+3 8.128305-6 4.108942+3 8.150000-6 3.643960+3 8.180000-6 3.066840+3 8.210000-6 2.563720+3 8.240000-6 2.131940+3 8.290000-6 1.563590+3 8.310000-6 1.387020+3 8.330000-6 1.238394+3 8.345000-6 1.144844+3 8.357000-6 1.080840+3 8.369000-6 1.026352+3 8.380000-6 9.845720+2 8.390000-6 9.533000+2 8.400000-6 9.283420+2 8.410000-6 9.096080+2 8.420000-6 8.970260+2 8.430000-6 8.905120+2 8.440000-6 8.900240+2 8.450000-6 8.954220+2 8.460000-6 9.066580+2 8.470000-6 9.236580+2 8.480000-6 9.463460+2 8.490000-6 9.746540+2 8.502000-6 1.015932+3 8.515000-6 1.069536+3 8.527000-6 1.127054+3 8.542000-6 1.209626+3 8.560000-6 1.324070+3 8.585000-6 1.510114+3 8.650000-6 2.134420+3 8.680000-6 2.487400+3 8.710000-6 2.879180+3 8.740000-6 3.308140+3 8.770000-6 3.772660+3 8.800000-6 4.271500+3 8.830000-6 4.803140+3 8.865000-6 5.462840+3 8.900000-6 6.163440+3 8.930000-6 6.794820+3 8.960000-6 7.453080+3 9.000000-6 8.371500+3 9.035000-6 9.210920+3 9.070000-6 1.008154+4 9.110000-6 1.111364+4 9.150000-6 1.218190+4 9.200000-6 1.356620+4 9.240000-6 1.470886+4 9.295000-6 1.632904+4 9.350000-6 1.799956+4 9.400000-6 1.955914+4 9.460000-6 2.147560+4 9.520000-6 2.343760+4 9.600000-6 2.611340+4 9.670000-6 2.850420+4 9.730000-6 3.058440+4 9.810000-6 3.339500+4 9.890000-6 3.623960+4 1.000000-5 4.019200+4 1.010000-5 4.381180+4 1.020000-5 4.744440+4 1.031000-5 5.144160+4 1.042000-5 5.542760+4 1.055000-5 6.010840+4 1.070000-5 6.544980+4 1.085000-5 7.070780+4 1.100000-5 7.586580+4 1.115000-5 8.091080+4 1.135011-5 8.744747+4 1.157000-5 9.435600+4 1.180000-5 1.012580+5 1.207000-5 1.089246+5 1.230269-5 1.151499+5 1.260000-5 1.225914+5 1.290000-5 1.295284+5 1.320000-5 1.359092+5 1.350000-5 1.417580+5 1.380384-5 1.471681+5 1.420000-5 1.534972+5 1.462177-5 1.594075+5 1.515000-5 1.657282+5 1.570000-5 1.711772+5 1.630000-5 1.759704+5 1.698244-5 1.801636+5 1.778279-5 1.836744+5 1.874100-5 1.862503+5 1.980000-5 1.874922+5 2.089296-5 1.874543+5 2.230000-5 1.859816+5 2.371374-5 1.833774+5 2.540973-5 1.793136+5 2.754229-5 1.733492+5 2.985383-5 1.662949+5 3.235937-5 1.584213+5 3.507519-5 1.499397+5 3.845918-5 1.397243+5 4.168694-5 1.304635+5 4.570882-5 1.196821+5 5.000000-5 1.091952+5 5.500000-5 9.829160+4 6.095369-5 8.699639+4 6.839116-5 7.525586+4 7.762471-5 6.367092+4 9.225714-5 5.028864+4 1.150000-4 3.688940+4 1.737801-4 2.037247+4 2.000000-4 1.654198+4 2.238721-4 1.387583+4 2.540973-4 1.130234+4 2.951209-4 8.797736+3 3.548134-4 6.421176+3 4.570882-4 4.124643+3 5.188000-4 3.286770+3 6.382635-4 2.243303+3 7.852356-4 1.521207+3 9.120108-4 1.140155+3 1.122018-3 7.580936+2 1.348963-3 5.236020+2 1.584893-3 3.762001+2 1.862087-3 2.683641+2 2.187762-3 1.899834+2 2.540973-3 1.368444+2 3.000000-3 9.429153+1 3.467369-3 6.761452+1 4.027170-3 4.758807+1 4.731513-3 3.234278+1 5.559043-3 2.180972+1 6.531306-3 1.459097+1 7.673615-3 9.685455+0 9.015711-3 6.379311+0 1.047129-2 4.298690+0 1.230269-2 2.789029+0 1.445440-2 1.796434+0 1.717908-2 1.112661+0 2.041738-2 6.838833-1 2.426610-2 4.172623-1 2.917427-2 2.444697-1 3.507519-2 1.421541-1 4.315191-2 7.662528-2 5.308844-2 4.098617-2 6.760830-2 1.958300-2 9.332543-2 7.248808-3 1.566751-1 1.452798-3 1.949845-1 7.417082-4 2.344229-1 4.234788-4 2.722701-1 2.705116-4 3.126079-1 1.801988-4 3.507519-1 1.292875-4 3.935501-1 9.343123-5 4.365158-1 7.024067-5 4.841724-1 5.319692-5 5.308844-1 4.183692-5 5.821032-1 3.312658-5 6.382635-1 2.641839-5 6.998420-1 2.122466-5 7.673615-1 1.718029-5 8.413951-1 1.401407-5 9.225714-1 1.152104-5 1.000000+0 9.769200-6 1.148154+0 7.428287-6 1.273503+0 6.093875-6 1.412538+0 5.037381-6 1.548817+0 4.280686-6 1.717908+0 3.590296-6 1.949845+0 2.919265-6 2.187762+0 2.434716-6 2.454709+0 2.044900-6 2.786121+0 1.700040-6 3.235937+0 1.377552-6 3.758374+0 1.124615-6 4.415704+0 9.108998-7 5.308844+0 7.218267-7 6.456542+0 5.682725-7 8.000000+0 4.408800-7 1.011579+1 3.366628-7 1.318257+1 2.503151-7 1.798871+1 1.783405-7 2.570396+1 1.219522-7 3.198895+1 9.693797-8 4.841724+1 6.304301-8 9.120108+1 3.299892-8 1.819701+2 1.640614-8 7.244360+2 4.095858-9 1.148154+4 2.57940-10 1.000000+5 2.96080-11 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.900000-6 5.900000-6 1.000000+5 5.900000-6 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.900000-6 0.0 1.000000+5 1.000000+5 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.849980-8 1.028750+0 1.849980-7 1.034000+0 1.025110-6 1.035300+0 1.391440-6 1.036640+0 1.849980-6 1.038200+0 2.496610-6 1.039700+0 3.243600-6 1.041500+0 4.315570-6 1.043800+0 5.990150-6 1.046400+0 8.334180-6 1.048300+0 1.037630-5 1.051200+0 1.407520-5 1.054080+0 1.849980-5 1.057700+0 2.521630-5 1.061100+0 3.280000-5 1.065100+0 4.342340-5 1.070400+0 6.057980-5 1.076200+0 8.372070-5 1.080600+0 1.045530-4 1.087100+0 1.408690-4 1.093710+0 1.849980-4 1.102600+0 2.565060-4 1.110700+0 3.345490-4 1.120600+0 4.475540-4 1.133300+0 6.223390-4 1.147500+0 8.593120-4 1.158200+0 1.067910-3 1.174100+0 1.427190-3 1.190110+0 1.849980-3 1.205100+0 2.302100-3 1.227500+0 3.080290-3 1.250000+0 3.983000-3 1.280300+0 5.381760-3 1.307700+0 6.818680-3 1.343000+0 8.896430-3 1.382200+0 1.148140-2 1.433800+0 1.529500-2 1.500000+0 2.083000-2 1.562500+0 2.669370-2 1.617200+0 3.230590-2 1.712900+0 4.310250-2 1.784700+0 5.191780-2 1.892300+0 6.606580-2 2.000000+0 8.107000-2 2.044000+0 8.736000-2 2.215800+0 1.123680-1 2.359600+0 1.335460-1 2.588300+0 1.671710-1 2.862800+0 2.070130-1 3.000000+0 2.267000-1 3.437500+0 2.883700-1 4.000000+0 3.640000-1 4.750000+0 4.565970-1 5.000000+0 4.857000-1 6.000000+0 5.944000-1 7.000000+0 6.910000-1 8.000000+0 7.780000-1 9.000000+0 8.567000-1 1.000000+1 9.280000-1 1.100000+1 9.928000-1 1.200000+1 1.052000+0 1.300000+1 1.107000+0 1.400000+1 1.158000+0 1.500000+1 1.206000+0 1.600000+1 1.251000+0 1.800000+1 1.333000+0 2.000000+1 1.406000+0 2.200000+1 1.472000+0 2.400000+1 1.532000+0 2.600000+1 1.587000+0 2.800000+1 1.638000+0 3.000000+1 1.685000+0 4.000000+1 1.877000+0 5.000000+1 2.020000+0 6.000000+1 2.132000+0 8.000000+1 2.298000+0 1.000000+2 2.418000+0 1.500000+2 2.612000+0 2.000000+2 2.731000+0 3.000000+2 2.871000+0 4.000000+2 2.952000+0 5.000000+2 3.007000+0 6.000000+2 3.046000+0 8.000000+2 3.099000+0 1.000000+3 3.133000+0 1.500000+3 3.183000+0 2.000000+3 3.210000+0 3.000000+3 3.239000+0 4.000000+3 3.255000+0 5.000000+3 3.266000+0 6.000000+3 3.273000+0 8.000000+3 3.282000+0 1.000000+4 3.288000+0 1.500000+4 3.296000+0 2.000000+4 3.300000+0 3.000000+4 3.305000+0 4.000000+4 3.307000+0 5.000000+4 3.309000+0 6.000000+4 3.310000+0 8.000000+4 3.311000+0 1.000000+5 3.312000+0 1 21000 7 8 4.495800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.108760-7 2.119500+0 1.183530-6 2.127900+0 1.605090-6 2.136250+0 2.108760-6 2.147000+0 2.891260-6 2.156900+0 3.755400-6 2.169000+0 5.011810-6 2.184500+0 6.966590-6 2.201800+0 9.638470-6 2.214800+0 1.200880-5 2.234200+0 1.615390-5 2.253680+0 2.108760-5 2.281500+0 2.953690-5 2.307000+0 3.879670-5 2.338200+0 5.216550-5 2.377400+0 7.224300-5 2.410200+0 9.188110-5 2.446800+0 1.168780-4 2.485900+0 1.471560-4 2.532900+0 1.883270-4 2.556430+0 2.108760-4 2.611900+0 2.688890-4 2.660400+0 3.250720-4 2.745300+0 4.350850-4 2.809000+0 5.269100-4 2.904500+0 6.787780-4 3.000000+0 8.473000-4 3.125000+0 1.092600-3 3.234400+0 1.329500-3 3.425800+0 1.790530-3 3.569300+0 2.171390-3 3.784700+0 2.791790-3 4.000000+0 3.459000-3 4.250000+0 4.275100-3 4.625000+0 5.558180-3 5.000000+0 6.892000-3 5.500000+0 8.722230-3 6.000000+0 1.058000-2 6.750000+0 1.335590-2 7.000000+0 1.427000-2 8.000000+0 1.784000-2 9.000000+0 2.126000-2 1.000000+1 2.452000-2 1.100000+1 2.760000-2 1.200000+1 3.052000-2 1.300000+1 3.327000-2 1.400000+1 3.590000-2 1.500000+1 3.838000-2 1.600000+1 4.075000-2 1.800000+1 4.515000-2 2.000000+1 4.917000-2 2.200000+1 5.286000-2 2.400000+1 5.626000-2 2.600000+1 5.941000-2 2.800000+1 6.234000-2 3.000000+1 6.507000-2 4.000000+1 7.649000-2 5.000000+1 8.527000-2 6.000000+1 9.232000-2 8.000000+1 1.031000-1 1.000000+2 1.111000-1 1.500000+2 1.246000-1 2.000000+2 1.333000-1 3.000000+2 1.441000-1 4.000000+2 1.508000-1 5.000000+2 1.555000-1 6.000000+2 1.589000-1 8.000000+2 1.638000-1 1.000000+3 1.670000-1 1.500000+3 1.720000-1 2.000000+3 1.749000-1 3.000000+3 1.780000-1 4.000000+3 1.799000-1 5.000000+3 1.810000-1 6.000000+3 1.819000-1 8.000000+3 1.830000-1 1.000000+4 1.837000-1 1.500000+4 1.846000-1 2.000000+4 1.852000-1 3.000000+4 1.857000-1 4.000000+4 1.861000-1 5.000000+4 1.863000-1 6.000000+4 1.864000-1 8.000000+4 1.865000-1 1.000000+5 1.867000-1 1 21000 7 8 4.495800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 21000 7 9 4.495800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.100000+1 1.000000+5 2.100000+1 5.000000+5 2.098700+1 1.000000+6 2.095800+1 1.375000+6 2.092510+1 1.500000+6 2.091300+1 1.875000+6 2.086330+1 2.000000+6 2.084600+1 2.375000+6 2.078340+1 2.500000+6 2.076200+1 2.875000+6 2.068740+1 3.000000+6 2.066200+1 3.437500+6 2.055980+1 3.812500+6 2.046630+1 4.000000+6 2.041800+1 4.437500+6 2.029560+1 4.812500+6 2.018650+1 5.000000+6 2.013000+1 5.500000+6 1.996790+1 5.875000+6 1.984150+1 6.000000+6 1.979960+1 6.437500+6 1.964570+1 7.000000+6 1.944600+1 7.687500+6 1.919560+1 8.437500+6 1.891930+1 8.500000+6 1.889600+1 9.000000+6 1.871200+1 9.750000+6 1.843200+1 1.000000+7 1.834100+1 1.125000+7 1.789040+1 1.187500+7 1.767240+1 1.250000+7 1.745800+1 1.500000+7 1.663200+1 1.750000+7 1.585900+1 2.000000+7 1.512500+1 2.250000+7 1.440980+1 2.375000+7 1.406010+1 2.500000+7 1.371600+1 2.750000+7 1.304470+1 2.875000+7 1.271880+1 3.000000+7 1.240200+1 3.250000+7 1.179150+1 3.437500+7 1.135980+1 3.625000+7 1.095150+1 3.812500+7 1.056660+1 4.000000+7 1.020600+1 4.500000+7 9.356070+0 5.000000+7 8.662100+0 5.500000+7 8.107750+0 5.750000+7 7.871850+0 6.000000+7 7.659600+0 6.750000+7 7.131620+0 7.000000+7 6.980100+0 8.000000+7 6.442900+0 8.750000+7 6.072490+0 9.000000+7 5.951900+0 9.750000+7 5.591980+0 1.000000+8 5.473400+0 1.062500+8 5.178370+0 1.109400+8 4.959070+0 1.179700+8 4.635780+0 1.250000+8 4.319500+0 1.312500+8 4.046370+0 1.406300+8 3.661810+0 1.437500+8 3.542020+0 1.500000+8 3.315500+0 1.625000+8 2.914870+0 1.718800+8 2.657040+0 2.000000+8 2.069200+0 2.125000+8 1.877880+0 2.218800+8 1.759360+0 2.315400+8 1.658220+0 2.375000+8 1.605750+0 2.381300+8 1.600730+0 2.460400+8 1.542960+0 2.500000+8 1.518500+0 3.000000+8 1.316500+0 3.500000+8 1.114500+0 4.000000+8 9.958000-1 4.179700+8 9.532670-1 4.330100+8 9.162370-1 4.569300+8 8.571950-1 4.856400+8 7.898650-1 5.000000+8 7.585000-1 5.343800+8 6.892940-1 5.578100+8 6.448200-1 5.789100+8 6.055800-1 6.000000+8 5.667000-1 6.250000+8 5.214120-1 6.718800+8 4.486150-1 6.906300+8 4.256400-1 7.000000+8 4.156000-1 7.250000+8 3.929900-1 7.625000+8 3.639520-1 7.812500+8 3.493530-1 8.000000+8 3.338000-1 8.183600+8 3.173270-1 8.352100+8 3.016110-1 8.558000+8 2.821860-1 8.822400+8 2.577870-1 9.116800+8 2.321990-1 1.000000+9 1.703000-1 1.031300+9 1.538600-1 1.500000+9 4.819200-2 1.562500+9 4.216990-2 1.671900+9 3.357220-2 1.753900+9 2.844790-2 1.877000+9 2.239360-2 2.000000+9 1.784500-2 2.187500+9 1.291150-2 2.539100+9 7.492030-3 2.846700+9 4.913490-3 3.385000+9 2.578340-3 4.192500+9 1.154410-3 5.000000+9 5.937900-4 7.250000+9 1.459060-4 8.000000+9 1.007100-4 9.500000+9 5.287460-5 1.00000+10 4.366500-5 1.20500+10 2.189810-5 1.41820+10 1.206320-5 1.71170+10 6.105380-6 2.01490+10 3.404290-6 2.26440+10 2.248480-6 2.74790+10 1.137370-6 3.20120+10 6.677410-7 3.62610+10 4.337300-7 4.42280+10 2.193440-7 5.12000+10 1.332750-7 6.34000+10 6.479930-8 7.94120+10 3.054040-8 1.00000+11 1.424500-8 1.26840+11 6.535490-9 1.58400+11 3.175600-9 2.01970+11 1.452080-9 2.73980+11 5.49100-10 3.88950+11 1.81883-10 6.15400+11 4.35982-11 1.00720+12 9.60683-12 2.47350+12 6.38630-13 6.23720+12 4.12006-14 1.00000+14 1.25550-17 5.62340+14 7.82137-20 5.42470+15 9.22355-23 1.00000+17 1.47750-26 1 21000 7 0 4.495800+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.70000-12 1.000000+2 6.70000-10 1.000000+3 6.700000-8 1.000000+4 6.700000-6 1.000000+5 6.700000-4 5.000000+5 1.675000-2 1.000000+6 6.700000-2 1.375000+6 1.254910-1 1.500000+6 1.488000-1 1.875000+6 2.294140-1 2.000000+6 2.597000-1 2.375000+6 3.599320-1 2.500000+6 3.963000-1 2.875000+6 5.132580-1 3.000000+6 5.547000-1 3.437500+6 7.079110-1 3.812500+6 8.477260-1 4.000000+6 9.200000-1 4.437500+6 1.092890+0 4.812500+6 1.244420+0 5.000000+6 1.321000+0 5.500000+6 1.525420+0 5.875000+6 1.678130+0 6.000000+6 1.728640+0 6.437500+6 1.903410+0 7.000000+6 2.122000+0 7.687500+6 2.376830+0 8.437500+6 2.639120+0 8.500000+6 2.660230+0 9.000000+6 2.825500+0 9.750000+6 3.060550+0 1.000000+7 3.136000+0 1.125000+7 3.494630+0 1.187500+7 3.665900+0 1.250000+7 3.834200+0 1.500000+7 4.492000+0 1.750000+7 5.147800+0 2.000000+7 5.801000+0 2.250000+7 6.436670+0 2.375000+7 6.744530+0 2.500000+7 7.045600+0 2.750000+7 7.622710+0 2.875000+7 7.899270+0 3.000000+7 8.169000+0 3.250000+7 8.685270+0 3.437500+7 9.054520+0 3.625000+7 9.408100+0 3.812500+7 9.746610+0 4.000000+7 1.007100+1 4.500000+7 1.086560+1 5.000000+7 1.156100+1 5.500000+7 1.216260+1 5.750000+7 1.243140+1 6.000000+7 1.268400+1 6.750000+7 1.334750+1 7.000000+7 1.354500+1 8.000000+7 1.425600+1 8.750000+7 1.473350+1 9.000000+7 1.488500+1 9.750000+7 1.531980+1 1.000000+8 1.546000+1 1.062500+8 1.579520+1 1.109400+8 1.603580+1 1.179700+8 1.637590+1 1.250000+8 1.669400+1 1.312500+8 1.695550+1 1.406300+8 1.731160+1 1.437500+8 1.742260+1 1.500000+8 1.763000+1 1.625000+8 1.799300+1 1.718800+8 1.822880+1 2.000000+8 1.878200+1 2.125000+8 1.896790+1 2.218800+8 1.909210+1 2.315400+8 1.920560+1 2.375000+8 1.927190+1 2.381300+8 1.927850+1 2.460400+8 1.935800+1 2.500000+8 1.939700+1 3.000000+8 1.979400+1 3.500000+8 2.009300+1 4.000000+8 2.032600+1 4.179700+8 2.039540+1 4.330100+8 2.044860+1 4.569300+8 2.052580+1 4.856400+8 2.060440+1 5.000000+8 2.064100+1 5.343800+8 2.071170+1 5.578100+8 2.075280+1 5.789100+8 2.078410+1 6.000000+8 2.081300+1 6.250000+8 2.083970+1 6.718800+8 2.088220+1 6.906300+8 2.089620+1 7.000000+8 2.090300+1 7.250000+8 2.091580+1 7.625000+8 2.093430+1 7.812500+8 2.094240+1 8.000000+8 2.094900+1 8.183600+8 2.095360+1 8.352100+8 2.095760+1 8.558000+8 2.096250+1 8.822400+8 2.096860+1 9.116800+8 2.097420+1 1.000000+9 2.098500+1 1.031300+9 2.098660+1 1.500000+9 2.099900+1 1.562500+9 2.099910+1 1.671900+9 2.099940+1 1.753900+9 2.099950+1 1.877000+9 2.099980+1 2.000000+9 2.100000+1 2.187500+9 2.100000+1 2.539100+9 2.100000+1 2.846700+9 2.100000+1 3.385000+9 2.100000+1 4.192500+9 2.100000+1 5.000000+9 2.100000+1 7.250000+9 2.100000+1 8.000000+9 2.100000+1 9.500000+9 2.100000+1 1.00000+10 2.100000+1 1.20500+10 2.100000+1 1.41820+10 2.100000+1 1.71170+10 2.100000+1 2.01490+10 2.100000+1 2.26440+10 2.100000+1 2.74790+10 2.100000+1 3.20120+10 2.100000+1 3.62610+10 2.100000+1 4.42280+10 2.100000+1 5.12000+10 2.100000+1 6.34000+10 2.100000+1 7.94120+10 2.100000+1 1.00000+11 2.100000+1 1.26840+11 2.100000+1 1.58400+11 2.100000+1 2.01970+11 2.100000+1 2.73980+11 2.100000+1 3.88950+11 2.100000+1 6.15400+11 2.100000+1 1.00720+12 2.100000+1 2.47350+12 2.100000+1 6.23720+12 2.100000+1 1.00000+14 2.100000+1 5.62340+14 2.100000+1 5.42470+15 2.100000+1 1.00000+17 2.100000+1 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.570754-6 0.0 2.581827-6 3.311995+0 2.583409-6 3.780309+0 2.589737-6 6.916774+0 2.596092-6 1.551239+1 2.602466-6 2.581599+1 2.608840-6 4.008479+1 2.616011-6 6.077032+1 2.631648-6 1.111978+2 2.634736-6 1.200613+2 2.641297-6 1.332593+2 2.647318-6 1.381769+2 2.654136-6 1.334085+2 2.660980-6 1.191429+2 2.668499-6 9.603733+1 2.678957-6 6.019586+1 2.685331-6 4.104856+1 2.691706-6 2.586352+1 2.697306-6 1.554511+1 2.698080-6 1.436034+1 2.704454-6 7.899744+0 2.714015-6 2.008147+0 2.717203-6 0.0 3.670505-6 0.0 3.686316-6 3.06257-14 3.688574-6 3.49561-14 3.689468-6 3.78099-14 3.705360-6 1.455903-1 3.707631-6 1.661767-1 3.711555-6 2.254485-1 3.716712-6 3.300590-1 3.725793-6 5.845234-1 3.730518-6 7.587070-1 3.736009-6 9.933434-1 3.745260-6 1.466291+0 3.771199-6 2.922534+0 3.781415-6 3.260888+0 3.790496-6 3.352618+0 3.799577-6 3.224733+0 3.809794-6 2.850967+0 3.822848-6 2.174701+0 3.834767-6 1.512220+0 3.843848-6 1.068050+0 3.852929-6 7.096823-1 3.859069-6 5.219782-1 3.866859-6 3.130028-1 3.871092-6 2.196785-1 3.875994-6 1.600783-1 3.886615-6 7.590404-2 3.894265-6 2.173743-2 3.895798-6 1.912241-2 3.904980-6 9.710573-3 3.914162-6 4.37971-15 3.921981-6 2.58842-15 3.931225-6 1.31443-15 3.940469-6 0.0 4.330012-6 0.0 4.330500-6 1.851467-7 4.345374-6 1.421676-5 4.350635-6 1.847603-2 4.366765-6 1.978720-1 4.372643-6 2.790252-1 4.377461-6 3.674677-1 4.383301-6 4.955667-1 4.388156-6 6.307121-1 4.394454-6 8.331443-1 4.405920-6 1.299190+0 4.430939-6 2.491885+0 4.441634-6 2.886548+0 4.449081-6 3.044989+0 4.459740-6 3.090428+0 4.470399-6 2.902273+0 4.481356-6 2.505826+0 4.508755-6 1.214245+0 4.511703-6 1.084722+0 4.521971-6 7.051500-1 4.527199-6 5.564650-1 4.533021-6 4.104256-1 4.537895-6 3.184439-1 4.543680-6 2.242838-1 4.559286-6 4.450441-2 4.564805-6 0.0 4.855342-6 0.0 4.867293-6 2.211246-9 4.879244-6 4.375447-9 4.891194-6 7.992112-9 4.896392-6 1.037360-8 4.903145-6 1.426769-8 4.915096-6 2.315305-8 4.927047-6 3.419274-8 4.953799-6 6.276018-8 4.954033-6 8.950786-8 4.959781-6 1.723830-6 4.961987-6 1.230790-3 4.984197-6 4.155497-2 4.986801-6 4.750836-2 4.996405-6 7.632253-2 4.998752-6 8.460609-2 5.010840-6 1.407335-1 5.023053-6 2.176522-1 5.057444-6 4.841366-1 5.071907-6 5.617194-1 5.084120-6 5.834147-1 5.096333-6 5.595295-1 5.108547-6 4.955043-1 5.145187-6 2.132612-1 5.157400-6 1.372689-1 5.169613-6 8.157824-2 5.179523-6 5.101393-2 5.181826-6 4.476226-2 5.197907-6 1.464772-2 5.203939-6 3.089620-3 5.206253-6 0.0 5.230156-6 0.0 5.245587-6 9.40981-12 5.246719-6 2.056746-4 5.272547-6 1.587945-2 5.285461-6 2.890146-2 5.298375-6 4.856985-2 5.311289-6 7.536489-2 5.348877-6 1.718336-1 5.362946-6 1.966973-1 5.375860-6 2.047770-1 5.388774-6 1.968265-1 5.402387-6 1.730173-1 5.439257-6 9.046972-2 5.450386-6 7.379774-2 5.455576-6 7.249096-2 5.466259-6 7.551049-2 5.477991-6 8.694030-2 5.487624-6 1.066391-1 5.492087-6 1.190219-1 5.505001-6 1.632151-1 5.518468-6 2.268291-1 5.561955-6 4.612812-1 5.575252-6 5.156541-1 5.588549-6 5.473838-1 5.601846-6 5.518184-1 5.615144-6 5.285818-1 5.630922-6 4.700083-1 5.674372-6 2.449054-1 5.678448-6 2.246287-1 5.691863-6 1.730276-1 5.705279-6 1.345997-1 5.717201-6 1.055492-1 5.722771-6 9.820239-2 5.731418-6 8.948664-2 5.758215-6 7.167170-2 5.824855-6 6.335263-2 5.887470-6 5.703977-2 6.031092-6 5.031602-2 6.061728-6 5.367115-2 6.076648-6 6.154736-2 6.091569-6 7.252879-2 6.106489-6 8.972734-2 6.121409-6 1.149879-1 6.136756-6 1.476248-1 6.179540-6 2.535185-1 6.196010-6 2.824375-1 6.210930-6 2.944661-1 6.225850-6 2.905852-1 6.240770-6 2.714629-1 6.259852-6 2.303100-1 6.300451-6 1.268512-1 6.315371-6 9.622113-2 6.330291-6 7.199234-2 6.341166-6 6.096728-2 6.356112-6 5.038079-2 6.360132-6 4.827329-2 6.371172-6 4.660774-2 6.377712-6 4.771268-2 6.393333-6 5.363824-2 6.402535-6 5.968255-2 6.408954-6 6.533305-2 6.423607-6 8.167132-2 6.471438-6 1.496899-1 6.487059-6 1.669562-1 6.502680-6 1.770515-1 6.518301-6 1.787935-1 6.534147-6 1.711380-1 6.582159-6 1.289805-1 6.598163-6 1.202645-1 6.614167-6 1.179492-1 6.639156-6 1.219314-1 6.680187-6 1.367025-1 6.720345-6 1.399289-1 6.797077-6 1.379318-1 6.905278-6 1.401054-1 6.981779-6 1.335100-1 7.025002-6 1.301077-1 7.084084-6 1.339706-1 7.182462-6 1.476879-1 8.042489-6 1.910826-1 9.429952-6 2.776603-1 1.641569-5 7.558429-1 2.037654-5 9.740468-1 2.447474-5 1.121356+0 2.951402-5 1.203031+0 3.121557-5 1.212765+0 3.125666-5 1.600208+0 3.140020-5 1.519621+1 3.141053-5 1.621553+1 3.148746-5 2.842104+1 3.156439-5 4.678425+1 3.164865-5 7.463275+1 3.182636-5 1.479183+2 3.188266-5 1.715932+2 3.197010-5 1.966747+2 3.205135-5 2.077768+2 3.213009-5 2.065910+2 3.225089-5 1.884300+2 3.259857-5 1.147167+2 3.272803-5 8.293394+1 3.279534-5 6.372639+1 3.293095-5 3.660622+1 3.300912-5 2.406277+1 3.308729-5 1.483114+1 3.316545-5 8.705895+0 3.332179-5 1.216177+0 3.611195-5 1.211030+0 3.628972-5 1.323195+0 3.637861-5 1.416164+0 3.646749-5 1.557323+0 3.656052-5 1.761478+0 3.666645-5 2.050386+0 3.682303-5 2.565885+0 3.692545-5 2.833075+0 3.701567-5 3.008309+0 3.712874-5 3.139345+0 3.728771-5 3.236736+0 3.760232-5 3.317553+0 3.821721-5 3.161289+0 4.024347-5 2.941420+0 4.413051-5 2.373345+0 4.701256-5 2.066450+0 4.995084-5 1.872829+0 5.331633-5 1.765382+0 5.628736-5 1.736517+0 5.670299-5 1.875336+0 5.698008-5 2.100288+0 5.737640-5 2.557417+0 5.753426-5 2.682438+0 5.767280-5 2.719913+0 5.781134-5 2.680459+0 5.805736-5 2.456789+0 5.834589-5 2.142601+0 5.849021-5 2.025492+0 5.868961-5 1.942273+0 5.906957-5 1.962557+0 5.952410-5 2.111514+0 6.013423-5 2.137504+0 6.904743-5 2.318664+0 9.018893-5 2.831267+0 1.060000-4 3.048616+0 1.273503-4 3.139218+0 1.669168-4 3.037560+0 3.257547-4 2.039973+0 3.921536-4 1.727103+0 3.940841-4 4.797914+0 3.950493-4 7.341208+0 3.960146-4 1.119732+1 3.970662-4 1.721627+1 4.001679-4 4.110187+1 4.011257-4 4.689720+1 4.021463-4 5.068527+1 4.031257-4 5.174207+1 4.041908-4 5.010376+1 4.054915-4 4.530358+1 4.096400-4 2.493193+1 4.115084-4 1.755315+1 4.125787-4 1.570501+1 4.137626-4 1.450666+1 4.150750-4 1.396384+1 4.164003-4 1.354834+1 4.200000-4 1.454732+1 4.271516-4 1.486595+1 4.819357-4 1.310218+1 4.879945-4 1.352748+1 4.936727-4 1.417299+1 6.215620-4 1.088803+1 7.497263-4 8.484915+0 8.826787-4 6.732299+0 1.018884-3 5.436425+0 1.175532-3 4.366796+0 1.351883-3 3.508019+0 1.555200-3 2.802484+0 1.749600-3 2.313023+0 1.983308-3 1.879372+0 2.230581-3 1.542562+0 2.528661-3 1.246190+0 2.847418-3 1.015945+0 3.194942-3 8.315733-1 3.571507-3 6.841350-1 4.019648-3 5.552062-1 4.353304-3 4.858072-1 4.371101-3 5.078397-1 4.384196-3 5.485160-1 4.394940-3 6.140626-1 4.402805-3 6.892699-1 4.410906-3 7.961799-1 4.421591-3 9.938884-1 4.432026-3 1.250068+0 4.446847-3 1.712898+0 4.479872-3 2.868742+0 4.498240-3 3.353423+0 4.512795-3 3.601548+0 4.541048-3 3.800633+0 4.677351-3 3.708679+0 5.449062-3 2.928889+0 6.256355-3 2.339761+0 7.101366-3 1.901041+0 8.109078-3 1.516418+0 9.144648-3 1.232753+0 1.006534-2 1.040346+0 1.123432-2 8.547332-1 1.261817-2 6.919777-1 1.396890-2 5.735284-1 1.547946-2 4.730683-1 1.699956-2 3.965325-1 1.888919-2 3.239497-1 2.100483-2 2.639211-1 2.311527-2 2.187173-1 2.572165-2 1.773004-1 2.827102-2 1.467986-1 3.163273-2 1.172060-1 3.483402-2 9.635052-2 3.806074-2 8.041758-2 4.171809-2 6.660284-2 4.639954-2 5.344145-2 5.205346-2 4.209705-2 5.791632-2 3.364704-2 6.325135-2 2.796503-2 7.069260-2 2.211363-2 7.709070-2 1.838982-2 8.468612-2 1.506500-2 9.440609-2 1.196374-2 1.034755-1 9.843326-3 1.138599-1 8.023907-3 1.239153-1 6.699078-3 1.358796-1 5.503819-3 1.482126-1 4.574278-3 1.652644-1 3.637686-3 1.808348-1 3.009573-3 1.976373-1 2.502439-3 2.174654-1 2.053469-3 2.379332-1 1.708336-3 2.622709-1 1.403931-3 2.882897-1 1.165126-3 3.162487-1 9.737618-4 3.467369-1 8.176359-4 3.890709-1 6.615666-4 4.273476-1 5.599636-4 4.760113-1 4.660022-4 5.373217-1 3.828970-4 6.022148-1 3.218511-4 6.903387-1 2.648647-4 7.852356-1 2.244897-4 9.036820-1 1.902429-4 1.005773+0 1.693102-4 1.173413+0 1.446073-4 1.410753+0 1.197043-4 1.696098+0 9.908985-5 2.039158+0 8.202546-5 2.451607+0 6.789975-5 2.947480+0 5.620665-5 3.543651+0 4.652723-5 4.260405+0 3.851472-5 5.122134+0 3.188205-5 6.158159+0 2.639160-5 7.403736+0 2.184667-5 8.901248+0 1.808443-5 9.760024+0 1.645373-5 1.000000+1 3.256582-5 1 21000 7 0 4.495800+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.065598+1 1.719494-6-1.949913+1 2.048000-6-1.794202+1 2.210280-6-1.628445+1 2.309700-6-1.446467+1 2.381700-6-1.227588+1 2.424714-6-1.027053+1 2.450421-6-8.635626+0 2.471602-6-6.908716+0 2.489056-6-5.113421+0 2.498949-6-3.891992+0 2.507644-6-2.661042+0 2.515286-6-1.429502+0 2.522220-6-1.642784-1 2.528287-6 1.082614+0 2.533595-6 2.302319+0 2.538240-6 3.486819+0 2.542304-6 4.629114+0 2.548972-6 6.764831+0 2.554077-6 8.676952+0 2.561373-6 1.199127+1 2.565477-6 1.429227+1 2.570095-6 1.758100+1 2.581827-6 2.772528+1 2.588946-6 3.623242+1 2.592182-6 4.140159+1 2.604657-6 5.554986+1 2.611031-6 6.037294+1 2.617505-6 6.102594+1 2.621958-6 5.766842+1 2.626274-6 5.145515+1 2.631648-6 3.909677+1 2.634001-6 3.207239+1 2.639031-6 1.433710+1 2.640291-6 9.259420+0 2.640711-6 7.231230+0 2.640911-6 6.205028+0 2.641297-6 4.459056+0 2.642020-6 1.405946+0 2.645186-6-1.146254+1 2.646748-6-1.843402+1 2.647234-6-2.092572+1 2.653460-6 6.248290+0 2.653756-6 7.785780+0 2.654848-6 1.250658+1 2.660980-6 3.545897+1 2.664493-6 4.565517+1 2.668499-6 5.529806+1 2.673703-6 6.286896+1 2.678218-6 6.569619+1 2.684535-6 6.434648+1 2.691706-6 5.777737+1 2.697306-6 5.060292+1 2.698877-6 4.788681+1 2.706645-6 3.791491+1 2.716804-6 2.732570+1 2.719064-6 2.434599+1 2.724628-6 1.965085+1 2.731999-6 1.520424+1 2.739317-6 1.183564+1 2.746578-6 9.147454+0 2.753782-6 6.934392+0 2.760930-6 5.072342+0 2.768022-6 3.479507+0 2.775073-6 2.096362+0 2.782068-6 8.847263-1 2.789009-6-1.864368-1 2.795896-6-1.140881+0 2.802729-6-1.997150+0 2.809508-6-2.769970+0 2.822909-6-4.110508+0 2.842619-6-5.730296+0 2.861922-6-7.015943+0 2.899235-6-8.925724+0 2.946321-6-1.064179+1 3.011948-6-1.228676+1 3.126173-6-1.407659+1 3.250022-6-1.526802+1 3.689468-6-1.812015+1 3.747707-6-1.922961+1 3.772334-6-1.847368+1 3.813199-6-1.581853+1 3.834767-6-1.534600+1 3.931225-6-1.684545+1 4.337937-6-1.864323+1 4.410324-6-1.970679+1 4.440297-6-1.885189+1 4.484413-6-1.638216+1 4.511703-6-1.606476+1 4.597359-6-1.730589+1 5.057444-6-1.844562+1 5.145187-6-1.793549+1 5.375860-6-1.841326+1 5.575252-6-1.855827+1 5.691863-6-1.819539+1 6.210930-6-1.865191+1 1.870769-5-2.099008+1 1.985286-5-2.096727+1 2.331507-5-1.894097+1 2.546419-5-1.666552+1 2.677188-5-1.440988+1 2.775491-5-1.184091+1 2.836511-5-9.572544+0 2.870937-5-7.935253+0 2.902038-5-6.138469+0 2.928572-5-4.292175+0 2.940059-5-3.381593+0 2.951402-5-2.399643+0 2.962037-5-1.396104+0 2.972007-5-3.722250-1 2.981354-5 6.708185-1 2.990117-5 1.731593+0 2.998332-5 2.808524+0 3.006033-5 3.900034+0 3.020022-5 6.119850+0 3.032318-5 8.376435+0 3.048026-5 1.179593+1 3.056930-5 1.407592+1 3.072077-5 1.871862+1 3.083674-5 2.315611+1 3.096178-5 2.920632+1 3.104555-5 3.434322+1 3.114384-5 4.215851+1 3.121557-5 5.013904+1 3.125666-5 5.681971+1 3.129997-5 6.397163+1 3.141053-5 8.044608+1 3.157401-5 1.077180+2 3.166237-5 1.162566+2 3.173140-5 1.150901+2 3.178638-5 1.099359+2 3.184885-5 9.734626+1 3.188266-5 8.577094+1 3.194686-5 6.136617+1 3.197010-5 4.999926+1 3.202227-5 2.691165+1 3.203280-5 2.149491+1 3.203794-5 1.841486+1 3.205135-5 1.178588+1 3.207240-5 2.267220+0 3.209751-5-8.943396+0 3.210990-5-1.492647+1 3.211858-5-1.966777+1 3.212136-5-2.081914+1 3.214022-5-1.265981+1 3.215735-5-5.922825+0 3.216449-5-3.231447+0 3.217696-5 1.370546+0 3.220972-5 1.330076+1 3.222199-5 1.814475+1 3.225089-5 2.752141+1 3.230180-5 4.132478+1 3.236906-5 5.634099+1 3.245591-5 7.198186+1 3.258936-5 9.079700+1 3.271841-5 1.011560+2 3.278272-5 1.018529+2 3.293095-5 9.179671+1 3.320711-5 6.085888+1 3.332179-5 4.961689+1 3.338931-5 4.331980+1 3.350647-5 3.608596+1 3.363554-5 3.026840+1 3.382742-5 2.388540+1 3.402099-5 1.910317+1 3.427672-5 1.434619+1 3.442916-5 1.208228+1 3.464701-5 9.369554+0 3.492711-5 6.543229+0 3.520419-5 4.266522+0 3.537622-5 3.042986+0 3.548889-5 2.304636+0 3.561486-5 1.528004+0 3.572069-5 9.088776-1 3.580630-5 4.250126-1 3.590648-5-1.250857-1 3.637861-5-2.681521+0 3.656052-5-3.590260+0 3.666645-5-4.029463+0 3.682303-5-4.459218+0 3.712874-5-4.738577+0 3.796642-5-5.500347+0 3.912643-5-6.782974+0 4.105827-5-8.127321+0 4.413051-5-9.532994+0 4.995084-5-1.116875+1 5.628736-5-1.258667+1 5.722778-5-1.294058+1 5.805736-5-1.208306+1 5.868961-5-1.228406+1 5.967764-5-1.256871+1 7.413102-5-1.305017+1 1.060000-4-1.277823+1 1.669168-4-1.195615+1 2.159506-4-1.192970+1 2.598317-4-1.238832+1 2.986823-4-1.338042+1 3.313494-4-1.499494+1 3.535796-4-1.704034+1 3.679053-4-1.939246+1 3.776828-4-2.219319+1 3.845921-4-2.038102+1 3.881684-4-1.838794+1 3.903425-4-1.625805+1 3.916838-4-1.408576+1 3.921536-4-1.281003+1 3.929002-4-1.086218+1 3.939635-4-8.372024+0 3.942048-4-7.598736+0 3.949438-4-5.566244+0 3.951700-4-4.775264+0 3.959354-4-2.745545+0 3.961389-4-2.070437+0 3.970091-4-2.572477-1 3.970662-4-8.940037-2 3.971768-4 1.025708-1 3.973841-4 2.872751-1 3.975654-4 3.271903-1 3.977242-4 2.875444-1 3.980019-4 7.094329-2 3.980653-4-1.293951-2 3.982102-4-2.054254-1 3.983665-4-4.742860-1 3.986008-4-9.759385-1 3.988352-4-1.602164+0 3.990018-4-2.119515+0 3.992933-4-3.155786+0 3.995144-4-4.070042+0 3.997989-4-5.432775+0 4.000757-4-7.020226+0 4.008245-4-1.239006+1 4.019253-4-2.224407+1 4.025214-4-2.799646+1 4.034092-4-2.033256+1 4.043071-4-1.320520+1 4.052866-4-6.810472+0 4.056708-4-4.800315+0 4.059846-4-3.409853+0 4.062200-4-2.473206+0 4.065730-4-1.202368+0 4.069260-4-1.645460-2 4.070898-4 5.022394-1 4.073969-4 1.305770+0 4.076656-4 1.892712+0 4.079007-4 2.328995+0 4.083121-4 2.927133+0 4.086207-4 3.245541+0 4.088522-4 3.407646+0 4.091993-4 3.507981+0 4.093729-4 3.483035+0 4.104048-4 2.714545+0 4.106807-4 2.432833+0 4.108876-4 2.174976+0 4.111980-4 1.649517+0 4.113532-4 1.293270+0 4.114308-4 1.075478+0 4.115084-4 7.748948-1 4.116422-4 3.008938-1 4.118500-4-1.728144-1 4.123000-4-1.163589+0 4.125787-4-1.758162+0 4.137626-4-4.053405+0 4.144906-4-5.219920+0 4.169258-4-8.249212+0 4.180203-4-9.000040+0 4.200000-4-9.661487+0 4.236371-4-1.005236+1 4.345982-4-9.910360+0 4.682509-4-8.573747+0 4.792752-4-8.479259+0 4.879945-4-8.802992+0 4.926839-4-8.384105+0 5.002483-4-7.376823+0 5.154213-4-6.359487+0 5.416498-4-5.147162+0 5.685490-4-4.250563+0 6.007331-4-3.404377+0 6.375214-4-2.671230+0 6.588317-4-2.316712+0 7.022065-4-1.750841+0 7.342095-4-1.422793+0 7.762471-4-1.098879+0 8.128305-4-8.678920-1 8.372601-4-7.429303-1 8.880780-4-5.390194-1 9.076790-4-4.736526-1 9.469204-4-3.752751-1 1.009255-3-2.628772-1 1.040369-3-2.214374-1 1.077706-3-1.863681-1 1.145678-3-1.389500-1 1.175532-3-1.266086-1 1.207531-3-1.205327-1 1.268016-3-1.219296-1 1.330945-3-1.310326-1 1.433013-3-1.639729-1 1.555200-3-2.160746-1 2.069052-3-5.061036-1 2.847418-3-9.800433-1 3.331131-3-1.326883+0 3.671172-3-1.645809+0 3.910947-3-1.965291+0 4.068171-3-2.270088+0 4.184629-3-2.597774+0 4.277430-3-2.996057+0 4.340034-3-3.431779+0 4.380264-3-3.913428+0 4.446847-3-5.169802+0 4.466766-3-5.274237+0 4.487407-3-5.075970+0 4.552303-3-3.714010+0 4.584934-3-3.249106+0 4.634355-3-2.786024+0 4.693765-3-2.397583+0 4.777917-3-1.995668+0 4.889380-3-1.613656+0 5.018182-3-1.289411+0 5.175423-3-9.888332-1 5.308300-3-7.922595-1 5.449062-3-6.212899-1 5.580584-3-4.901968-1 5.700902-3-3.869171-1 5.852235-3-2.773968-1 5.981900-3-1.983350-1 6.069338-3-1.503806-1 6.156775-3-1.064907-1 6.256355-3-6.305072-2 6.434511-3 7.447695-3 6.623549-3 7.067864-2 6.755614-3 1.077153-1 6.917571-3 1.488097-1 7.101366-3 1.896172-1 7.301551-3 2.262910-1 7.704242-3 2.809021-1 8.109078-3 3.180788-1 8.743386-3 3.542547-1 9.362812-3 3.729707-1 1.042142-2 3.773125-1 1.216933-2 3.563604-1 1.826580-2 2.406176-1 2.168759-2 1.903913-1 2.481256-2 1.545522-1 2.900834-2 1.179945-1 3.262703-2 9.404804-2 3.696526-2 7.180597-2 4.043752-2 5.782449-2 4.504512-2 4.296519-2 4.866023-2 3.355228-2 5.333878-2 2.365200-2 5.791632-2 1.575448-2 6.176587-2 1.020779-2 6.482955-2 6.382604-3 6.782375-2 3.058736-3 6.951258-2 1.342571-3 7.084093-2 6.589444-5 7.116181-2-2.402350-4 7.275341-2-1.686030-3 7.425820-2-2.983579-3 7.709070-2-5.259066-3 8.107557-2-8.100916-3 8.686230-2-1.165394-2 9.440609-2-1.545766-2 1.034755-1-1.913116-2 1.174318-1-2.337882-2 1.358796-1-2.728447-2 1.652644-1-3.121015-2 2.118539-1-3.460106-2 2.987531-1-3.739763-2 5.040806-1-3.938531-2 1.546860+0-4.037258-2 4.671441+0-4.047695-2 1.000000+1-4.048156-2 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.896034-2 1.112188-6 7.971639-2 1.182786-6 1.065740-1 1.257865-6 1.435352-1 1.297174-6 1.671031-1 1.337710-6 1.950002-1 1.379514-6 2.281418-1 1.422623-6 2.676685-1 1.466748-6 3.146118-1 1.509494-6 3.673403-1 1.550904-6 4.262734-1 1.591021-6 4.918600-1 1.629883-6 5.647090-1 1.667531-6 6.453874-1 1.704003-6 7.344747-1 1.739334-6 8.325814-1 1.773562-6 9.403497-1 1.806720-6 1.058455+0 1.838842-6 1.187609+0 1.869960-6 1.328557+0 1.900106-6 1.482086+0 1.929309-6 1.649019+0 1.957600-6 1.830223+0 1.985007-6 2.026706+0 2.011557-6 2.240456+0 2.062195-6 2.716916+0 2.086333-6 2.983422+0 2.109717-6 3.270773+0 2.132370-6 3.579722+0 2.154316-6 3.911523+0 2.175575-6 4.267484+0 2.196170-6 4.648967+0 2.216122-6 5.057403+0 2.235450-6 5.494457+0 2.254174-6 5.962708+0 2.272313-6 6.464596+0 2.304000-6 7.463086+0 2.323399-6 8.163330+0 2.339374-6 8.803979+0 2.354851-6 9.488473+0 2.369844-6 1.021841+1 2.398892-6 1.184046+1 2.426125-6 1.365946+1 2.451656-6 1.569991+1 2.475591-6 1.798351+1 2.498030-6 2.053220+1 2.519067-6 2.336900+1 2.538789-6 2.651805+1 2.557279-6 3.000453+1 2.574612-6 3.385457+1 2.590863-6 3.809517+1 2.606098-6 4.275405+1 2.620380-6 4.785959+1 2.633770-6 5.344062+1 2.646323-6 5.952629+1 2.658092-6 6.614592+1 2.669125-6 7.332883+1 2.679468-6 8.110418+1 2.689165-6 8.950087+1 2.698256-6 9.854743+1 2.706779-6 1.082721+2 2.714769-6 1.187028+2 2.722259-6 1.298674+2 2.729282-6 1.417936+2 2.735866-6 1.545096+2 2.742038-6 1.680438+2 2.747824-6 1.824263+2 2.753249-6 1.976896+2 2.758334-6 2.138694+2 2.763102-6 2.310051+2 2.767572-6 2.491387+2 2.771763-6 2.683129+2 2.779620-6 3.114517+2 2.786495-6 3.594362+2 2.792510-6 4.122216+2 2.797774-6 4.694017+2 2.802380-6 5.302138+2 2.806410-6 5.936231+2 2.809936-6 6.584477+2 2.813021-6 7.234865+2 2.815721-6 7.876230+2 2.820446-6 9.184687+2 2.826647-6 1.132563+3 2.835492-6 1.540404+3 2.845085-6 2.149380+3 2.848574-6 2.419403+3 2.853806-6 2.875500+3 2.858031-6 3.288330+3 2.862528-6 3.769528+3 2.864272-6 3.967054+3 2.869505-6 4.591743+3 2.873873-6 5.143419+3 2.879367-6 5.861692+3 2.883214-6 6.369674+3 2.886401-6 6.786667+3 2.889491-6 7.182236+3 2.892962-6 7.609579+3 2.895861-6 7.947655+3 2.899588-6 8.349737+3 2.902665-6 8.648261+3 2.906621-6 8.979665+3 2.911181-6 9.277981+3 2.914399-6 9.428838+3 2.918624-6 9.546659+3 2.922373-6 9.572215+3 2.925966-6 9.526321+3 2.929164-6 9.428371+3 2.934753-6 9.134335+3 2.938541-6 8.853379+3 2.942665-6 8.481803+3 2.945756-6 8.164727+3 2.949227-6 7.776042+3 2.952125-6 7.430081+3 2.955852-6 6.964222+3 2.959369-6 6.510596+3 2.962886-6 6.050882+3 2.966402-6 5.591993+3 2.969919-6 5.140186+3 2.974161-6 4.612324+3 2.977831-6 4.176475+3 2.984864-6 3.409809+3 2.988710-6 3.033708+3 2.994534-6 2.525988+3 3.002197-6 1.970621+3 3.014544-6 1.318591+3 3.018631-6 1.158674+3 3.022701-6 1.022189+3 3.026756-6 9.060553+2 3.030795-6 8.074084+2 3.034818-6 7.236477+2 3.038825-6 6.524586+2 3.042816-6 5.918175+2 3.046792-6 5.399817+2 3.050753-6 4.954710+2 3.054698-6 4.570422+2 3.062557-6 3.943707+2 3.070355-6 3.458661+2 3.078092-6 3.073336+2 3.085768-6 2.759960+2 3.093384-6 2.500001+2 3.100941-6 2.280843+2 3.108439-6 2.093650+2 3.115879-6 1.932033+2 3.123260-6 1.791235+2 3.130583-6 1.667618+2 3.137850-6 1.558341+2 3.145059-6 1.461145+2 3.159366-6 1.295474+2 3.173449-6 1.160505+2 3.187311-6 1.048756+2 3.200958-6 9.549942+1 3.214391-6 8.754346+1 3.227614-6 8.072640+1 3.240630-6 7.483476+1 3.253444-6 6.970378+1 3.266056-6 6.520372+1 3.278472-6 6.123015+1 3.302916-6 5.449171+1 3.326596-6 4.905676+1 3.349536-6 4.459834+1 3.371759-6 4.089103+1 3.393287-6 3.777020+1 3.414143-6 3.511498+1 3.434347-6 3.283576+1 3.453920-6 3.086211+1 3.491842-6 2.756446+1 3.527394-6 2.497372+1 3.560724-6 2.290205+1 3.600000-6 2.081034+1 3.648727-6 1.863567+1 3.700220-6 1.672883+1 3.745277-6 1.530756+1 3.784701-6 1.422750+1 3.853694-6 1.260783+1 3.905438-6 1.157270+1 4.090656-6 8.707434+0 4.200599-6 7.394732+0 4.260568-6 6.746805+0 4.367002-6 5.644052+0 4.406914-6 5.228741+0 4.441838-6 4.857013+0 4.472396-6 4.519965+0 4.499134-6 4.211479+0 4.522530-6 3.927403+0 4.550550-6 3.563883+0 4.560915-6 3.421218+0 4.576588-6 3.194953+0 4.590302-6 2.984687+0 4.602302-6 2.789726+0 4.612802-6 2.609900+0 4.621990-6 2.445380+0 4.630029-6 2.296418+0 4.637063-6 2.163103+0 4.649373-6 1.927436+0 4.670723-6 1.549334+0 4.677539-6 1.452761+0 4.681921-6 1.401365+0 4.686303-6 1.360381+0 4.691700-6 1.326959+0 4.693527-6 1.320495+0 4.695508-6 1.316532+0 4.709372-6 1.392393+0 4.714021-6 1.464877+0 4.716905-6 1.523227+0 4.720907-6 1.622021+0 4.724790-6 1.738350+0 4.729168-6 1.894243+0 4.734583-6 2.123747+0 4.752673-6 3.167710+0 4.758773-6 3.599980+0 4.764161-6 4.004452+0 4.769402-6 4.410721+0 4.774167-6 4.784261+0 4.778941-6 5.155883+0 4.784528-6 5.578491+0 4.789526-6 5.936884+0 4.795041-6 6.301563+0 4.798792-6 6.526580+0 4.803381-6 6.772294+0 4.807970-6 6.981770+0 4.810045-6 7.063770+0 4.820242-6 7.344961+0 4.823964-6 7.396677+0 4.832236-6 7.419392+0 4.836334-6 7.388304+0 4.842191-6 7.304409+0 4.849722-6 7.149106+0 4.861720-6 6.879242+0 4.865720-6 6.808753+0 4.872509-6 6.741974+0 4.877270-6 6.750714+0 4.880901-6 6.796548+0 4.885069-6 6.897893+0 4.888819-6 7.039059+0 4.897236-6 7.551355+0 4.900437-6 7.823744+0 4.902473-6 8.020462+0 4.908197-6 8.674681+0 4.912989-6 9.338838+0 4.918537-6 1.024053+1 4.928848-6 1.227719+1 4.939558-6 1.482574+1 4.944202-6 1.603832+1 4.949825-6 1.756839+1 4.956308-6 1.938562+1 4.964324-6 2.165078+1 4.969443-6 2.307291+1 4.975784-6 2.477049+1 4.981466-6 2.620247+1 4.993489-6 2.883705+1 4.994898-6 2.910359+1 5.004760-6 3.068195+1 5.008893-6 3.118434+1 5.012838-6 3.157216+1 5.016783-6 3.186913+1 5.022418-6 3.213564+1 5.027021-6 3.221753+1 5.030473-6 3.220097+1 5.035650-6 3.205573+1 5.040828-6 3.177389+1 5.046839-6 3.128940+1 5.052851-6 3.065415+1 5.061868-6 2.946485+1 5.064873-6 2.901645+1 5.076896-6 2.703740+1 5.087415-6 2.516109+1 5.091924-6 2.434276+1 5.106953-6 2.166249+1 5.132369-6 1.767154+1 5.148877-6 1.559941+1 5.158621-6 1.457267+1 5.167756-6 1.373145+1 5.184884-6 1.242789+1 5.199871-6 1.152377+1 5.212984-6 1.086931+1 5.235933-6 9.939057+0 5.270356-6 8.847329+0 5.319322-6 7.596071+0 5.348077-6 7.022954+0 5.361176-6 6.831648+0 5.374275-6 6.700367+0 5.387374-6 6.638589+0 5.391961-6 6.634428+0 5.399987-6 6.649099+0 5.406006-6 6.677983+0 5.415035-6 6.748119+0 5.424064-6 6.846541+0 5.439771-6 7.066724+0 5.465969-6 7.471613+0 5.479068-6 7.638913+0 5.484957-6 7.698499+0 5.493789-6 7.765799+0 5.502621-6 7.804187+0 5.510493-6 7.813071+0 5.518366-6 7.798340+0 5.531465-6 7.725012+0 5.544564-6 7.599397+0 5.557663-6 7.434198+0 5.570762-6 7.243004+0 5.613120-6 6.585325+0 5.631170-6 6.335382+0 5.640752-6 6.217289+0 5.654568-6 6.068098+0 5.668384-6 5.946286+0 5.682200-6 5.853500+0 5.692229-6 5.804435+0 5.707272-6 5.758072+0 5.722314-6 5.739843+0 5.751280-6 5.753065+0 5.782888-6 5.768225+0 5.798602-6 5.753330+0 5.820360-6 5.700466+0 5.846629-6 5.598105+0 5.899554-6 5.375021+0 5.944508-6 5.241584+0 6.047463-6 4.988771+0 6.215842-6 4.577484+0 6.370171-6 4.207980+0 6.431107-6 4.055220+0 6.554495-6 3.694378+0 6.585283-6 3.578321+0 6.631466-6 3.360909+0 6.654557-6 3.230087+0 6.700258-6 2.957388+0 6.716709-6 2.875678+0 6.733161-6 2.818592+0 6.736217-6 2.811658+0 6.749612-6 2.798084+0 6.766063-6 2.825472+0 6.771037-6 2.844598+0 6.785958-6 2.934644+0 6.794248-6 3.006324+0 6.800465-6 3.070132+0 6.809792-6 3.181334+0 6.819118-6 3.309724+0 6.835699-6 3.573105+0 6.852279-6 3.866195+0 6.868859-6 4.167473+0 6.885440-6 4.453984+0 6.890622-6 4.537052+0 6.906170-6 4.759451+0 6.910861-6 4.817313+0 6.920399-6 4.919992+0 6.931642-6 5.013653+0 6.941701-6 5.071501+0 6.951761-6 5.105006+0 6.963479-6 5.114773+0 6.979931-6 5.080864+0 6.991318-6 5.029979+0 7.001502-6 4.969389+0 7.018082-6 4.848506+0 7.041104-6 4.655398+0 7.074295-6 4.372687+0 7.102023-6 4.161161+0 7.150546-6 3.862536+0 7.268276-6 3.325968+0 7.332032-6 3.050814+0 7.349991-6 2.983030+0 7.372796-6 2.914206+0 7.385908-6 2.887018+0 7.405512-6 2.867922+0 7.419892-6 2.872547+0 7.435957-6 2.897393+0 7.449237-6 2.933165+0 7.462516-6 2.981305+0 7.479582-6 3.057611+0 7.515866-6 3.243337+0 7.535720-6 3.336190+0 7.553823-6 3.402346+0 7.571508-6 3.443402+0 7.584919-6 3.456879+0 7.593577-6 3.457283+0 7.605035-6 3.448120+0 7.619368-6 3.422332+0 7.644336-6 3.347012+0 7.680585-6 3.202637+0 7.698398-6 3.132383+0 7.719619-6 3.059972+0 7.737160-6 3.013449+0 7.755036-6 2.980001+0 7.772913-6 2.960092+0 7.795462-6 2.950856+0 7.881943-6 2.966370+0 7.908235-6 2.959953+0 7.931595-6 2.947737+0 8.023545-6 2.880620+0 8.217064-6 2.771971+0 8.301934-6 2.704691+0 8.418081-6 2.607767+0 8.486754-6 2.567332+0 8.609182-6 2.514527+0 8.896243-6 2.385312+0 9.899985-6 1.994787+0 1.008748-5 1.935722+0 1.180000-5 1.529365+0 1.288250-5 1.357129+0 1.380384-5 1.262456+0 1.480000-5 1.212172+0 1.500188-5 1.207686+0 1.584893-5 1.198428+0 1.659587-5 1.212148+0 1.748101-5 1.253801+0 1.802729-5 1.292638+0 1.856266-5 1.339671+0 1.908129-5 1.393999+0 1.958373-5 1.455050+0 2.006665-5 1.523281+0 2.076312-5 1.638247+0 2.120948-5 1.724268+0 2.185320-5 1.869199+0 2.216343-5 1.947612+0 2.256481-5 2.060954+0 2.276064-5 2.112775+0 2.284523-5 2.130810+0 2.296511-5 2.150933+0 2.338789-5 2.205716+0 2.366234-5 2.257226+0 2.384198-5 2.301544+0 2.401881-5 2.353845+0 2.419287-5 2.414004+0 2.436422-5 2.481967+0 2.453289-5 2.558141+0 2.469893-5 2.643274+0 2.486237-5 2.738056+0 2.502325-5 2.842980+0 2.518163-5 2.958272+0 2.540973-5 3.146278+0 2.557200-5 3.296838+0 2.579311-5 3.526956+0 2.608580-5 3.881103+0 2.636934-5 4.285862+0 2.664402-5 4.744327+0 2.691535-5 5.269553+0 2.716790-5 5.832710+0 2.741762-5 6.471277+0 2.765955-5 7.178863+0 2.789391-5 7.959142+0 2.818383-5 9.068335+0 2.855396-5 1.076174+1 2.880000-5 1.209412+1 2.915404-5 1.436100+1 2.952349-5 1.727431+1 2.987021-5 2.064909+1 3.003549-5 2.252466+1 3.029607-5 2.589434+1 3.050098-5 2.895652+1 3.072000-5 3.271108+1 3.092417-5 3.674028+1 3.115216-5 4.196139+1 3.130892-5 4.607376+1 3.154955-5 5.337983+1 3.177515-5 6.154963+1 3.198895-5 7.076207+1 3.218493-5 8.076044+1 3.240000-5 9.385957+1 3.254508-5 1.042436+2 3.270846-5 1.177781+2 3.286162-5 1.326160+2 3.300522-5 1.488338+2 3.313983-5 1.665070+2 3.326604-5 1.857106+2 3.338435-5 2.065194+2 3.350000-5 2.300386+2 3.359927-5 2.532513+2 3.369676-5 2.793241+2 3.378815-5 3.073018+2 3.387384-5 3.372616+2 3.395417-5 3.692832+2 3.402947-5 4.034511+2 3.410040-5 4.400376+2 3.416627-5 4.786097+2 3.422832-5 5.198246+2 3.428649-5 5.636382+2 3.434103-5 6.101976+2 3.439216-5 6.596546+2 3.444009-5 7.121535+2 3.452997-5 8.309152+2 3.460861-5 9.636605+2 3.467742-5 1.109788+3 3.473763-5 1.267503+3 3.479032-5 1.434020+3 3.483642-5 1.605960+3 3.487675-5 1.779779+3 3.494510-5 2.132595+3 3.499697-5 2.456964+3 3.520302-5 4.357078+3 3.526173-5 5.104999+3 3.533218-5 6.129447+3 3.539103-5 7.085444+3 3.547771-5 8.634677+3 3.548855-5 8.837816+3 3.556440-5 1.029722+4 3.559419-5 1.088010+4 3.566022-5 1.216298+4 3.568971-5 1.272234+4 3.571739-5 1.323390+4 3.576280-5 1.403536+4 3.579756-5 1.460876+4 3.582596-5 1.504597+4 3.586322-5 1.557142+4 3.591113-5 1.615646+4 3.597036-5 1.672357+4 3.601744-5 1.704267+4 3.606134-5 1.723245+4 3.611125-5 1.732312+4 3.616410-5 1.728034+4 3.621570-5 1.711187+4 3.624483-5 1.696687+4 3.629551-5 1.663946+4 3.634878-5 1.620824+4 3.640847-5 1.564291+4 3.648491-5 1.483244+4 3.654221-5 1.418671+4 3.667189-5 1.268335+4 3.671682-5 1.216212+4 3.682305-5 1.094237+4 3.691129-5 9.943685+3 3.695134-5 9.494539+3 3.706368-5 8.249958+3 3.713390-5 7.488741+3 3.717603-5 7.041256+3 3.724221-5 6.357211+3 3.726428-5 6.135403+3 3.735252-5 5.286410+3 3.744077-5 4.510261+3 3.752901-5 3.818911+3 3.778783-5 2.313279+3 3.782986-5 2.137714+3 3.789247-5 1.906867+3 3.795969-5 1.695699+3 3.802481-5 1.522679+3 3.808790-5 1.380369+3 3.815924-5 1.244608+3 3.820822-5 1.164401+3 3.826557-5 1.081775+3 3.838254-5 9.435026+2 3.848088-5 8.510835+2 3.857855-5 7.750587+2 3.867011-5 7.146651+2 3.875595-5 6.655633+2 3.883643-5 6.248975+2 3.898732-5 5.597758+2 3.911936-5 5.121595+2 3.923488-5 4.761140+2 3.933597-5 4.481094+2 3.951287-5 4.055751+2 3.964555-5 3.780935+2 3.984456-5 3.424816+2 4.006632-5 3.090561+2 4.033926-5 2.747637+2 4.055941-5 2.512375+2 4.126960-5 1.906994+2 4.147276-5 1.768692+2 4.157434-5 1.707677+2 4.167592-5 1.653313+2 4.177750-5 1.606345+2 4.184688-5 1.578736+2 4.191626-5 1.554767+2 4.200890-5 1.528210+2 4.210154-5 1.507316+2 4.220466-5 1.489624+2 4.241712-5 1.465444+2 4.294577-5 1.420049+2 4.316904-5 1.396560+2 4.351899-5 1.354112+2 4.419817-5 1.265810+2 4.468686-5 1.213048+2 4.520790-5 1.166710+2 4.623944-5 1.087397+2 4.697404-5 1.038683+2 4.788284-5 9.867771+1 4.905542-5 9.285055+1 5.042030-5 8.718606+1 5.181579-5 8.217299+1 5.332699-5 7.762059+1 5.468200-5 7.402720+1 5.650000-5 6.990950+1 5.981485-5 6.366966+1 6.169285-5 6.037170+1 6.271856-5 5.818024+1 6.331294-5 5.645458+1 6.370557-5 5.524765+1 6.401917-5 5.461382+1 6.417598-5 5.454417+1 6.433278-5 5.470384+1 6.448958-5 5.512217+1 6.468524-5 5.600680+1 6.493681-5 5.761425+1 6.527360-5 6.001820+1 6.543040-5 6.097331+1 6.558721-5 6.169901+1 6.569721-5 6.204212+1 6.590024-5 6.229770+1 6.603952-5 6.221170+1 6.619540-5 6.191641+1 6.685441-5 5.994142+1 6.704420-5 5.953828+1 6.737579-5 5.915424+1 7.327867-5 5.831779+1 7.740161-5 5.810322+1 8.317638-5 5.844327+1 8.822957-5 5.914906+1 9.500295-5 6.057620+1 1.014344-4 6.222085+1 1.243917-4 6.834446+1 1.340810-4 7.054980+1 1.518609-4 7.406033+1 1.700078-4 7.650147+1 1.894821-4 7.799931+1 2.063315-4 7.834254+1 2.263693-4 7.776185+1 2.474104-4 7.619397+1 2.668394-4 7.388108+1 2.875743-4 7.022220+1 3.067887-4 6.570343+1 3.248769-4 6.035332+1 3.376501-4 5.585579+1 3.489158-4 5.130570+1 3.588211-4 4.681310+1 3.671266-4 4.265292+1 3.732476-4 3.933067+1 3.785515-4 3.625108+1 3.832106-4 3.339417+1 3.865218-4 3.127430+1 3.911526-4 2.818162+1 3.944957-4 2.585935+1 3.965615-4 2.438491+1 4.001520-4 2.175032+1 4.030591-4 1.956020+1 4.055720-4 1.763728+1 4.079441-4 1.580538+1 4.110610-4 1.339076+1 4.132522-4 1.170544+1 4.153993-4 1.008319+1 4.173195-4 8.676522+0 4.184816-4 7.856005+0 4.198707-4 6.917508+0 4.207136-4 6.376701+0 4.222320-4 5.472911+0 4.239532-4 4.590789+0 4.243788-4 4.401332+0 4.253753-4 4.009586+0 4.261645-4 3.755842+0 4.267878-4 3.593850+0 4.275137-4 3.450675+0 4.281841-4 3.364113+0 4.287970-4 3.325118+0 4.295845-4 3.333949+0 4.300891-4 3.376148+0 4.305782-4 3.445756+0 4.310558-4 3.542548+0 4.315693-4 3.680564+0 4.319667-4 3.813406+0 4.324009-4 3.986808+0 4.328216-4 4.185599+0 4.336238-4 4.661304+0 4.340063-4 4.939838+0 4.346015-4 5.453091+0 4.350834-4 5.952431+0 4.354202-4 6.353913+0 4.360728-4 7.279061+0 4.366846-4 8.362859+0 4.372581-4 9.620105+0 4.377959-4 1.106424+1 4.384045-4 1.308723+1 4.387990-4 1.466726+1 4.392157-4 1.661116+1 4.396310-4 1.887750+1 4.400204-4 2.134839+1 4.407278-4 2.686566+1 4.413495-4 3.305356+1 4.424244-4 4.760501+1 4.438366-4 7.687770+1 4.446989-4 1.023467+2 4.453711-4 1.271786+2 4.459888-4 1.543969+2 4.463425-4 1.720546+2 4.467572-4 1.948030+2 4.472213-4 2.230004+2 4.476040-4 2.485175+2 4.481182-4 2.860995+2 4.482526-4 2.965556+2 4.490929-4 3.678540+2 4.493502-4 3.916865+2 4.503105-4 4.884045+2 4.504477-4 5.031414+2 4.511550-4 5.821983+2 4.517215-4 6.485676+2 4.521681-4 7.021537+2 4.527179-4 7.688820+2 4.531686-4 8.235234+2 4.535661-4 8.711353+2 4.541285-4 9.367112+2 4.546504-4 9.946948+2 4.549270-4 1.023959+3 4.556055-4 1.090384+3 4.560463-4 1.128741+3 4.567464-4 1.180609+3 4.573178-4 1.213805+3 4.577274-4 1.232174+3 4.582765-4 1.249439+3 4.587301-4 1.257246+3 4.595851-4 1.256248+3 4.600293-4 1.247907+3 4.603117-4 1.239965+3 4.611589-4 1.204747+3 4.617396-4 1.171753+3 4.623857-4 1.127897+3 4.629546-4 1.084125+3 4.635649-4 1.032959+3 4.641423-4 9.815742+2 4.645890-4 9.404794+2 4.650370-4 8.985451+2 4.657764-4 8.288426+2 4.664966-4 7.616875+2 4.675000-4 6.718109+2 4.687000-4 5.734036+2 4.705462-4 4.477592+2 4.713700-4 4.028262+2 4.721310-4 3.673959+2 4.728757-4 3.381124+2 4.739945-4 3.032746+2 4.744000-4 2.930993+2 4.747313-4 2.856586+2 4.750912-4 2.784096+2 4.758407-4 2.658330+2 4.765542-4 2.566233+2 4.775108-4 2.477246+2 4.782063-4 2.432347+2 4.794676-4 2.382044+2 4.801658-4 2.366677+2 4.817278-4 2.352017+2 4.826501-4 2.350974+2 4.886846-4 2.370104+2 5.053659-4 2.381271+2 5.178417-4 2.386726+2 5.250010-4 2.383688+2 5.313988-4 2.373427+2 5.433978-4 2.330686+2 5.460443-4 2.335866+2 5.481798-4 2.353507+2 5.499381-4 2.378534+2 5.521763-4 2.423158+2 5.575066-4 2.557590+2 5.598713-4 2.612614+2 5.617523-4 2.649497+2 5.641943-4 2.687749+2 5.673137-4 2.723835+2 5.731743-4 2.770775+2 5.850049-4 2.837379+2 5.952164-4 2.883783+2 6.137295-4 2.949518+2 6.464314-4 3.027922+2 6.830551-4 3.090961+2 7.056322-4 3.116883+2 7.500943-4 3.146096+2 8.163473-4 3.161809+2 9.120125-4 3.147931+2 9.713275-4 3.124648+2 1.064985-3 3.069234+2 1.183383-3 2.991296+2 1.347179-3 2.871820+2 1.584341-3 2.701106+2 1.791252-3 2.556926+2 2.000000-3 2.424459+2 2.334130-3 2.227894+2 2.635004-3 2.065403+2 2.970918-3 1.897533+2 3.222724-3 1.778961+2 3.360840-3 1.715660+2 3.507519-3 1.650157+2 3.642966-3 1.590350+2 3.784797-3 1.528135+2 3.932506-3 1.463668+2 4.040141-3 1.416170+2 4.143306-3 1.369996+2 4.233230-3 1.328450+2 4.317520-3 1.288187+2 4.389467-3 1.252334+2 4.491670-3 1.197737+2 4.577654-3 1.146668+2 4.644289-3 1.101865+2 4.679682-3 1.075069+2 4.701343-3 1.057198+2 4.732568-3 1.028783+2 4.759083-3 1.001278+2 4.782300-3 9.735614+1 4.801462-3 9.473227+1 4.819980-3 9.186567+1 4.845969-3 8.736021+1 4.883348-3 8.089628+1 4.898175-3 7.891383+1 4.909716-3 7.781906+1 4.919632-3 7.726503+1 4.930065-3 7.711065+1 4.941625-3 7.747275+1 4.948561-3 7.795419+1 4.956032-3 7.868115+1 4.969624-3 8.049378+1 4.987034-3 8.351918+1 5.027242-3 9.159061+1 5.047338-3 9.531414+1 5.057383-3 9.698758+1 5.074717-3 9.955520+1 5.084003-3 1.007692+2 5.101714-3 1.028042+2 5.118336-3 1.044282+2 5.141610-3 1.063389+2 5.182144-3 1.089556+2 5.234473-3 1.114818+2 5.296369-3 1.136807+2 5.364877-3 1.153923+2 5.460686-3 1.169204+2 5.585221-3 1.179951+2 5.718859-3 1.183856+2 5.908131-3 1.180655+2 6.124945-3 1.168092+2 6.426053-3 1.142170+2 6.680573-3 1.116048+2 7.123210-3 1.066535+2 7.676869-3 1.004207+2 8.285996-3 9.391109+1 9.376755-3 8.342139+1 1.031906-2 7.571009+1 1.161882-2 6.674263+1 1.254517-2 6.128745+1 1.388832-2 5.441110+1 1.550771-2 4.747043+1 1.711893-2 4.168096+1 1.906746-2 3.586939+1 2.137243-2 3.033097+1 2.374789-2 2.581963+1 2.711789-2 2.094005+1 3.911128-2 1.158598+1 4.680129-2 8.602373+0 5.723428-2 6.128199+0 6.771719-2 4.581015+0 7.985277-2 3.419331+0 1.025274-1 2.170739+0 1.219896-1 1.571027+0 1.647109-1 8.896547-1 2.178141-1 5.204018-1 2.928849-1 2.926638-1 4.241909-1 1.412879-1 6.978306-1 5.262691-2 1.859734+0 7.441677-3 5.616308+0 8.164876-4 1.696098+1 8.953241-5 5.122134+1 9.817109-6 1.546860+2 1.076426-6 4.671441+2 1.180277-7 1.584893+3 1.025382-8 5.011872+3 1.025382-9 1.584893+4 1.02538-10 5.011872+4 1.02538-11 1.000000+5 2.57564-12 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.367500-6 1.258900-6 2.167400-6 1.584900-6 3.435100-6 1.995300-6 5.444200-6 2.511900-6 8.628400-6 3.162300-6 1.367500-5 3.981100-6 2.167300-5 5.011900-6 3.435000-5 6.309600-6 5.444000-5 7.943300-6 8.628200-5 1.000000-5 1.367500-4 1.258900-5 2.167200-4 1.584900-5 3.433300-4 1.995300-5 5.438200-4 2.511900-5 8.614900-4 3.162300-5 1.364900-3 3.981100-5 2.162600-3 5.011900-5 3.426700-3 6.309600-5 5.429900-3 7.943300-5 8.593100-3 1.000000-4 1.359400-2 1.258900-4 2.149900-2 1.584900-4 3.390100-2 1.995300-4 5.338700-2 2.511900-4 8.373000-2 3.162300-4 1.305900-1 3.981100-4 2.018100-1 5.011900-4 3.078300-1 6.309600-4 4.603000-1 7.943300-4 6.698300-1 1.000000-3 9.405500-1 1.258900-3 1.268500+0 1.584900-3 1.646400+0 1.995300-3 2.080500+0 2.511900-3 2.593700+0 3.162300-3 3.206900+0 3.981100-3 3.925400+0 5.011900-3 4.727300+0 6.309600-3 5.595400+0 7.943300-3 6.486900+0 1.000000-2 7.341000+0 1.258900-2 8.137500+0 1.584900-2 8.882400+0 1.995300-2 9.561000+0 2.511900-2 1.006800+1 3.162300-2 1.053300+1 3.981100-2 1.077500+1 5.011900-2 1.086600+1 6.309600-2 1.081500+1 7.943300-2 1.061200+1 1.000000-1 1.030100+1 1.258900-1 9.867600+0 1.584900-1 9.355100+0 1.995300-1 8.782000+0 2.511900-1 8.174500+0 3.162300-1 7.552500+0 3.981100-1 6.931700+0 5.011900-1 6.323400+0 6.309600-1 5.735400+0 7.943300-1 5.172200+0 1.000000+0 4.636900+0 1.258900+0 4.132200+0 1.584900+0 3.659700+0 1.995300+0 3.220900+0 2.511900+0 2.817100+0 3.162300+0 2.448900+0 3.981100+0 2.116500+0 5.011900+0 1.819000+0 6.309600+0 1.555300+0 7.943300+0 1.323400+0 1.000000+1 1.121200+0 1.258900+1 9.460100-1 1.584900+1 7.953000-1 1.995300+1 6.664000-1 2.511900+1 5.567200-1 3.162300+1 4.638400-1 3.981100+1 3.855100-1 5.011900+1 3.197000-1 6.309600+1 2.646000-1 7.943300+1 2.185900-1 1.000000+2 1.802900-1 1.258900+2 1.484700-1 1.584900+2 1.221000-1 1.995300+2 1.002800-1 2.511900+2 8.226900-2 3.162300+2 6.741800-2 3.981100+2 5.519200-2 5.011900+2 4.514100-2 6.309600+2 3.688800-2 7.943300+2 3.011900-2 1.000000+3 2.457400-2 1.258900+3 2.003500-2 1.584900+3 1.632300-2 1.995300+3 1.329000-2 2.511900+3 1.081500-2 3.162300+3 8.794800-3 3.981100+3 7.148400-3 5.011900+3 5.807100-3 6.309600+3 4.715200-3 7.943300+3 3.826700-3 1.000000+4 3.104300-3 1.258900+4 2.517100-3 1.584900+4 2.040200-3 1.995300+4 1.652900-3 2.511900+4 1.338600-3 3.162300+4 1.083700-3 3.981100+4 8.770400-4 5.011900+4 7.095300-4 6.309600+4 5.738200-4 7.943300+4 4.639200-4 1.000000+5 3.749500-4 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159555-4 3.981072-4 3.976761-4 5.011872-4 5.005091-4 6.309573-4 6.298907-4 7.943282-4 7.926563-4 1.000000-3 9.973907-4 1.258925-3 1.254865-3 1.584893-3 1.578605-3 1.995262-3 1.985490-3 2.511886-3 2.496599-3 3.162278-3 3.138290-3 3.981072-3 3.943530-3 5.011872-3 4.953045-3 6.309573-3 6.217858-3 7.943282-3 7.801049-3 1.000000-2 9.780150-3 1.258925-2 1.225020-2 1.584893-2 1.532609-2 1.995262-2 1.914740-2 2.511886-2 2.388057-2 3.162278-2 2.973752-2 3.981072-2 3.695038-2 5.011872-2 4.580015-2 6.309573-2 5.661126-2 7.943282-2 6.977926-2 1.000000-1 8.570189-2 1.258925-1 1.049487-1 1.584893-1 1.280531-1 1.995262-1 1.557331-1 2.511886-1 1.887287-1 3.162278-1 2.279358-1 3.981072-1 2.743697-1 5.011872-1 3.292188-1 6.309573-1 3.938102-1 7.943282-1 4.698379-1 1.000000+0 5.593064-1 1.258925+0 6.647038-1 1.584893+0 7.890488-1 1.995262+0 9.361383-1 2.511886+0 1.110681+0 3.162278+0 1.318369+0 3.981072+0 1.566286+0 5.011872+0 1.863039+0 6.309573+0 2.219212+0 7.943282+0 2.647694+0 1.000000+1 3.164261+0 1.258925+1 3.788268+0 1.584893+1 4.543352+0 1.995262+1 5.458564+0 2.511886+1 6.569298+0 3.162278+1 7.919239+0 3.981072+1 9.561681+0 5.011872+1 1.156240+1 6.309573+1 1.400207+1 7.943282+1 1.697967+1 1.000000+2 2.061703+1 1.258925+2 2.506429+1 1.584893+2 3.050593+1 1.995262+2 3.716913+1 2.511886+2 4.533425+1 3.162278+2 5.534678+1 3.981072+2 6.763126+1 5.011872+2 8.271457+1 6.309573+2 1.012436+2 7.943282+2 1.240188+2 1.000000+3 1.520295+2 1.258925+3 1.864933+2 1.584893+3 2.289232+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88205-10 1.995262-5 1.090648-9 2.511886-5 1.728532-9 3.162278-5 2.739559-9 3.981072-5 4.341938-9 5.011872-5 6.881464-9 6.309573-5 1.090606-8 7.943282-5 1.727816-8 1.000000-4 2.737722-8 1.258925-4 4.337769-8 1.584893-4 6.868767-8 1.995262-4 1.087767-7 2.511886-4 1.721576-7 3.162278-4 2.722449-7 3.981072-4 4.310928-7 5.011872-4 6.781548-7 6.309573-4 1.066635-6 7.943282-4 1.671924-6 1.000000-3 2.609289-6 1.258925-3 4.060063-6 1.584893-3 6.288401-6 1.995262-3 9.772201-6 2.511886-3 1.528747-5 3.162278-3 2.398766-5 3.981072-3 3.754197-5 5.011872-3 5.882760-5 6.309573-3 9.171546-5 7.943282-3 1.422338-4 1.000000-2 2.198503-4 1.258925-2 3.390560-4 1.584893-2 5.228443-4 1.995262-2 8.052251-4 2.511886-2 1.238294-3 3.162278-2 1.885253-3 3.981072-2 2.860332-3 5.011872-2 4.318576-3 6.309573-2 6.484472-3 7.943282-2 9.653565-3 1.000000-1 1.429811-2 1.258925-1 2.094386-2 1.584893-1 3.043623-2 1.995262-1 4.379317-2 2.511886-1 6.245995-2 3.162278-1 8.829193-2 3.981072-1 1.237374-1 5.011872-1 1.719685-1 6.309573-1 2.371472-1 7.943282-1 3.244903-1 1.000000+0 4.406936-1 1.258925+0 5.942216-1 1.584893+0 7.958444-1 1.995262+0 1.059124+0 2.511886+0 1.401205+0 3.162278+0 1.843908+0 3.981072+0 2.414786+0 5.011872+0 3.148834+0 6.309573+0 4.090361+0 7.943282+0 5.295588+0 1.000000+1 6.835739+0 1.258925+1 8.800986+0 1.584893+1 1.130558+1 1.995262+1 1.449406+1 2.511886+1 1.854957+1 3.162278+1 2.370354+1 3.981072+1 3.024904+1 5.011872+1 3.855632+1 6.309573+1 4.909366+1 7.943282+1 6.245316+1 1.000000+2 7.938297+1 1.258925+2 1.008282+2 1.584893+2 1.279834+2 1.995262+2 1.623571+2 2.511886+2 2.058544+2 3.162278+2 2.608810+2 3.981072+2 3.304759+2 5.011872+2 4.184727+2 6.309573+2 5.297137+2 7.943282+2 6.703094+2 1.000000+3 8.479705+2 1.258925+3 1.072432+3 1.584893+3 1.355970+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.280000-6 8.654560+5 6.320000-6 8.281980+5 6.480000-6 6.762920+5 6.606934-6 5.743961+5 6.700000-6 5.085560+5 6.850000-6 4.161260+5 6.950000-6 3.629200+5 7.079458-6 3.026770+5 7.170000-6 2.657800+5 7.270000-6 2.293740+5 7.380000-6 1.940880+5 7.460000-6 1.712850+5 7.550000-6 1.482310+5 7.620000-6 1.320362+5 7.700000-6 1.152432+5 7.770000-6 1.019322+5 7.852356-6 8.778689+4 7.940000-6 7.438960+4 8.000000-6 6.612740+4 8.070000-6 5.735320+4 8.130000-6 5.052460+4 8.200000-6 4.331100+4 8.255000-6 3.817500+4 8.317638-6 3.285953+4 8.340000-6 3.107318+4 8.340000-6 1.199781+6 8.365000-6 1.203299+6 8.390000-6 1.206861+6 8.390000-6 1.977168+6 8.420000-6 1.985835+6 8.460000-6 1.997558+6 8.511380-6 2.012942+6 8.560000-6 2.027823+6 8.600000-6 2.040291+6 8.635000-6 2.051361+6 8.680000-6 2.065808+6 8.720000-6 2.078843+6 8.755000-6 2.090394+6 8.790000-6 2.102075+6 8.820000-6 2.112188+6 8.850000-6 2.122392+6 8.880000-6 2.132685+6 8.912509-6 2.143935+6 8.940000-6 2.153525+6 8.970000-6 2.164069+6 9.000000-6 2.174693+6 9.035000-6 2.187185+6 9.100000-6 2.210654+6 9.128000-6 2.220868+6 9.150000-6 2.228936+6 9.165000-6 2.234458+6 9.177000-6 2.238888+6 9.193000-6 2.244811+6 9.205000-6 2.249266+6 9.220000-6 2.254849+6 9.230000-6 2.258579+6 9.240000-6 2.262317+6 9.250000-6 2.266062+6 9.260000-6 2.269814+6 9.270000-6 2.273573+6 9.283000-6 2.278470+6 9.295000-6 2.283001+6 9.306000-6 2.287162+6 9.320000-6 2.292470+6 9.335000-6 2.298172+6 9.350000-6 2.303888+6 9.365000-6 2.309619+6 9.380000-6 2.315364+6 9.400000-6 2.323046+6 9.420000-6 2.330753+6 9.450000-6 2.342359+6 9.500000-6 2.361819+6 9.520000-6 2.369391+6 9.560000-6 2.384597+6 9.585000-6 2.394143+6 9.620000-6 2.407560+6 9.650000-6 2.419109+6 9.685000-6 2.432638+6 9.700000-6 2.438451+6 9.715000-6 2.444158+6 9.750000-6 2.457508+6 9.790000-6 2.472829+6 9.830000-6 2.488216+6 9.870000-6 2.503668+6 9.910000-6 2.519182+6 9.960000-6 2.538660+6 1.000000-5 2.554308+6 1.005000-5 2.573947+6 1.010000-5 2.593671+6 1.015000-5 2.613476+6 1.021500-5 2.639339+6 1.023293-5 2.646488+6 1.027000-5 2.660793+6 1.033000-5 2.684009+6 1.039000-5 2.707315+6 1.047129-5 2.739026+6 1.055000-5 2.769051+6 1.062000-5 2.795854+6 1.071519-5 2.832445+6 1.081000-5 2.869042+6 1.092000-5 2.911679+6 1.100000-5 2.942781+6 1.102000-5 2.950264+6 1.110000-5 2.980171+6 1.122018-5 3.025210+6 1.123000-5 3.028817+6 1.135011-5 3.072847+6 1.150000-5 3.127933+6 1.165000-5 3.183192+6 1.180000-5 3.238566+6 1.195000-5 3.291601+6 1.202264-5 3.317237+6 1.215000-5 3.361027+6 1.230269-5 3.413452+6 1.250000-5 3.481188+6 1.273503-5 3.561842+6 1.288250-5 3.609980+6 1.300000-5 3.647222+6 1.330000-5 3.741857+6 1.357000-5 3.826742+6 1.364583-5 3.850460+6 1.380384-5 3.897586+6 1.390000-5 3.925379+6 1.420000-5 4.011503+6 1.460000-5 4.125596+6 1.462177-5 4.131760+6 1.479108-5 4.177133+6 1.500000-5 4.231077+6 1.550000-5 4.358861+6 1.570000-5 4.409443+6 1.584893-5 4.444688+6 1.603245-5 4.486200+6 1.659587-5 4.611974+6 1.690000-5 4.678977+6 1.698244-5 4.695703+6 1.717908-5 4.733552+6 1.778279-5 4.847996+6 1.800000-5 4.888559+6 1.819701-5 4.923123+6 1.850000-5 4.971048+6 1.927525-5 5.091144+6 2.018366-5 5.204227+6 2.041738-5 5.232624+6 2.113489-5 5.299084+6 2.162719-5 5.343339+6 2.238721-5 5.388796+6 2.290868-5 5.418808+6 2.371374-5 5.440684+6 2.426610-5 5.454882+6 2.511886-5 5.453050+6 2.540973-5 5.452239+6 2.570396-5 5.447229+6 2.660725-5 5.423055+6 2.691535-5 5.410411+6 2.818383-5 5.346928+6 2.851018-5 5.326321+6 2.900000-5 5.291047+6 2.985383-5 5.231035+6 3.019952-5 5.202659+6 3.126079-5 5.109380+6 3.162278-5 5.078491+6 3.198895-5 5.043394+6 3.350000-5 4.893861+6 3.400000-5 4.841889+6 3.570000-5 4.663735+6 3.589219-5 4.642921+6 3.672823-5 4.550340+6 3.801894-5 4.414526+6 3.845918-5 4.367056+6 4.000000-5 4.202252+6 4.073803-5 4.127469+6 4.120975-5 4.078405+6 4.365158-5 3.833511+6 4.415704-5 3.786204+6 4.442000-5 3.760014+6 4.442000-5 5.417726+6 4.495000-5 5.304292+6 4.510000-5 5.270671+6 4.510000-5 6.089119+6 4.540000-5 6.007213+6 4.550000-5 5.978825+6 4.601000-5 5.833068+6 4.623810-5 5.768237+6 4.677351-5 5.615143+6 4.700000-5 5.551010+6 4.731513-5 5.461669+6 4.770000-5 5.354605+6 4.786301-5 5.309764+6 4.810000-5 5.245181+6 4.850000-5 5.138298+6 5.069907-5 4.612547+6 5.128614-5 4.491762+6 5.150000-5 4.448501+6 5.190000-5 4.368645+6 5.270000-5 4.221972+6 5.308844-5 4.155916+6 5.370318-5 4.056692+6 5.415200-5 3.989272+6 5.450000-5 3.939240+6 5.500000-5 3.871813+6 5.540000-5 3.818952+6 5.559043-5 3.795210+6 5.580000-5 3.768958+6 5.623413-5 3.716447+6 5.650000-5 3.685984+6 5.690000-5 3.641762+6 5.730000-5 3.599903+6 5.760000-5 3.569754+6 5.830000-5 3.503838+6 5.850000-5 3.485858+6 5.900000-5 3.443773+6 5.920000-5 3.426269+6 5.950000-5 3.400885+6 6.000000-5 3.361133+6 6.030000-5 3.338225+6 6.095369-5 3.291161+6 6.110000-5 3.281071+6 6.165950-5 3.244694+6 6.201600-5 3.221908+6 6.220000-5 3.210587+6 6.309573-5 3.159510+6 6.357300-5 3.131847+6 6.400000-5 3.108765+6 6.500000-5 3.057637+6 6.531306-5 3.042821+6 6.683439-5 2.975747+6 6.839116-5 2.911827+6 6.861000-5 2.903256+6 6.861000-5 3.328248+6 6.900000-5 3.311991+6 6.918310-5 3.304623+6 7.079458-5 3.244413+6 7.161434-5 3.214948+6 7.245600-5 3.185458+6 7.500000-5 3.105078+6 7.585776-5 3.081171+6 7.673615-5 3.056127+6 7.900000-5 2.995307+6 8.000000-5 2.970401+6 8.035261-5 2.962084+6 8.128305-5 2.939856+6 8.222426-5 2.917970+6 8.317638-5 2.896060+6 8.413951-5 2.874473+6 8.709636-5 2.811015+6 8.810489-5 2.790874+6 8.912509-5 2.769551+6 9.120108-5 2.728139+6 9.225714-5 2.707902+6 9.500000-5 2.654544+6 9.650000-5 2.626884+6 9.660509-5 2.624870+6 9.800000-5 2.597878+6 9.900000-5 2.578929+6 1.000000-4 2.559991+6 1.035142-4 2.494136+6 1.047129-4 2.472036+6 1.059254-4 2.448649+6 1.080000-4 2.410500+6 1.083927-4 2.403390+6 1.096478-4 2.379906+6 1.135011-4 2.308226+6 1.148154-4 2.284713+6 1.150000-4 2.281396+6 1.190000-4 2.208462+6 1.205000-4 2.181830+6 1.220000-4 2.154815+6 1.244515-4 2.111842+6 1.260000-4 2.085249+6 1.273503-4 2.062580+6 1.288250-4 2.037413+6 1.303167-4 2.012475+6 1.318257-4 1.987679+6 1.350000-4 1.936798+6 1.364583-4 1.913521+6 1.396368-4 1.864714+6 1.400000-4 1.859272+6 1.428894-4 1.816466+6 1.430000-4 1.814857+6 1.479108-4 1.744039+6 1.480000-4 1.742803+6 1.513561-4 1.696805+6 1.531087-4 1.672971+6 1.580000-4 1.609643+6 1.584893-4 1.603464+6 1.603245-4 1.580514+6 1.640590-4 1.534287+6 1.678804-4 1.489578+6 1.698244-4 1.467429+6 1.720000-4 1.442593+6 1.737801-4 1.422776+6 1.778279-4 1.379184+6 1.800000-4 1.356458+6 1.819701-4 1.335772+6 1.900000-4 1.257018+6 1.905461-4 1.251925+6 1.927525-4 1.231325+6 1.972423-4 1.189998+6 2.018366-4 1.150204+6 2.041738-4 1.130819+6 2.089296-4 1.092596+6 2.113489-4 1.073354+6 2.213095-4 9.997813+5 2.220000-4 9.950058+5 2.264644-4 9.646220+5 2.344229-4 9.129704+5 2.371374-4 8.963857+5 2.400000-4 8.793377+5 2.454709-4 8.478371+5 2.483133-4 8.318103+5 2.511886-4 8.160841+5 2.600160-4 7.707563+5 2.660725-4 7.416521+5 2.691535-4 7.271329+5 2.818383-4 6.716076+5 2.851018-4 6.582785+5 2.884032-4 6.452118+5 3.000000-4 6.015278+5 3.054921-4 5.823140+5 3.162278-4 5.471384+5 3.349654-4 4.922264+5 3.350000-4 4.921332+5 3.388442-4 4.818409+5 3.427678-4 4.716683+5 3.467369-4 4.616671+5 3.548134-4 4.419443+5 3.672823-4 4.139548+5 3.801894-4 3.875229+5 3.935501-4 3.622731+5 4.000000-4 3.509143+5 4.027170-4 3.462895+5 4.200000-4 3.186832+5 4.315191-4 3.018270+5 4.466836-4 2.816126+5 4.518559-4 2.751021+5 4.570882-4 2.687421+5 4.623810-4 2.625305+5 4.652400-4 2.592137+5 4.652400-4 1.113102+6 4.653800-4 1.126441+6 4.657000-4 1.161670+6 4.661000-4 1.201616+6 4.665000-4 1.237720+6 4.670000-4 1.278483+6 4.675000-4 1.314784+6 4.682000-4 1.359378+6 4.690000-4 1.402463+6 4.697000-4 1.434608+6 4.705000-4 1.465706+6 4.712200-4 1.488261+6 4.712200-4 1.904951+6 4.713700-4 1.916912+6 4.715000-4 1.928028+6 4.717000-4 1.943821+6 4.721000-4 1.973531+6 4.725000-4 2.001033+6 4.726000-4 2.007379+6 4.731513-4 2.039084+6 4.735000-4 2.057593+6 4.737000-4 2.067043+6 4.742000-4 2.088480+6 4.750000-4 2.119898+6 4.757000-4 2.140309+6 4.765000-4 2.160712+6 4.775000-4 2.177234+6 4.785000-4 2.190185+6 4.786301-4 2.191394+6 4.800000-4 2.199127+6 4.815600-4 2.197944+6 4.830000-4 2.192911+6 4.845000-4 2.183332+6 4.870000-4 2.162729+6 4.897788-4 2.136284+6 5.020000-4 2.025319+6 5.128614-4 1.933119+6 5.188000-4 1.885188+6 5.248075-4 1.838446+6 5.300000-4 1.799373+6 5.350000-4 1.761176+6 5.432503-4 1.699177+6 5.559043-4 1.609916+6 5.574400-4 1.599542+6 5.574400-4 1.810707+6 5.623413-4 1.775980+6 5.650000-4 1.757974+6 5.754399-4 1.690751+6 5.821032-4 1.649772+6 6.000000-4 1.546786+6 6.025596-4 1.532497+6 6.050000-4 1.518880+6 6.095369-4 1.493696+6 6.237348-4 1.418669+6 6.531306-4 1.279930+6 6.606934-4 1.247521+6 6.700000-4 1.209271+6 6.760830-4 1.184742+6 6.839116-4 1.153957+6 7.079458-4 1.066376+6 7.328245-4 9.855631+5 7.413102-4 9.593258+5 7.498942-4 9.337265+5 7.673615-4 8.846133+5 7.943282-4 8.158335+5 8.000000-4 8.021383+5 8.035261-4 7.936372+5 8.317638-4 7.300103+5 8.609938-4 6.715173+5 9.120108-4 5.844691+5 9.225714-4 5.684067+5 9.332543-4 5.526145+5 9.440609-4 5.371716+5 9.700000-4 5.025032+5 9.772372-4 4.933992+5 1.000000-3 4.662441+5 1.011579-3 4.531545+5 1.035142-3 4.276240+5 1.071519-3 3.920702+5 1.109175-3 3.595175+5 1.122018-3 3.492908+5 1.150000-3 3.284023+5 1.161449-3 3.203642+5 1.174898-3 3.112278+5 1.202264-3 2.934783+5 1.258925-3 2.610090+5 1.288250-3 2.461774+5 1.300000-3 2.405355+5 1.318257-3 2.320865+5 1.333521-3 2.252769+5 1.348963-3 2.186723+5 1.364583-3 2.122609+5 1.412538-3 1.941524+5 1.428894-3 1.884766+5 1.479108-3 1.724451+5 1.500000-3 1.663063+5 1.513561-3 1.624859+5 1.531087-3 1.577051+5 1.584893-3 1.440757+5 1.603245-3 1.398075+5 1.621810-3 1.356694+5 1.650000-3 1.297032+5 1.698244-3 1.202619+5 1.737801-3 1.132282+5 1.757924-3 1.098551+5 1.778279-3 1.065595+5 1.840772-3 9.727074+4 1.883649-3 9.154345+4 1.905461-3 8.881130+4 1.972423-3 8.104795+4 2.000000-3 7.811203+4 2.065380-3 7.167628+4 2.089296-3 6.950702+4 2.162719-3 6.339674+4 2.213095-3 5.960973+4 2.238721-3 5.780276+4 2.264644-3 5.605054+4 2.290868-3 5.435289+4 2.300000-3 5.377630+4 2.344229-3 5.108254+4 2.371374-3 4.952156+4 2.454709-3 4.512756+4 2.540973-3 4.110457+4 2.570396-3 3.984615+4 2.600160-3 3.862623+4 2.650000-3 3.669759+4 2.660725-3 3.629761+4 2.691535-3 3.517770+4 2.851018-3 3.009001+4 2.884032-3 2.915943+4 2.951209-3 2.738479+4 3.000000-3 2.618909+4 3.019952-3 2.572061+4 3.054921-3 2.492703+4 3.090295-3 2.415185+4 3.126079-3 2.340146+4 3.273407-3 2.063242+4 3.427678-3 1.818043+4 3.467369-3 1.761546+4 3.507519-3 1.706799+4 3.548134-3 1.653660+4 3.589219-3 1.601949+4 3.630781-3 1.551898+4 3.715352-3 1.456581+4 3.935501-3 1.242082+4 4.027170-3 1.165618+4 4.073803-3 1.129179+4 4.120975-3 1.093822+4 4.168694-3 1.059440+4 4.265795-3 9.939739+3 4.518559-3 8.466151+3 4.677351-3 7.691482+3 4.731513-3 7.449490+3 4.786301-3 7.214793+3 4.800000-3 7.157717+3 4.841724-3 6.986919+3 4.897788-3 6.766187+3 4.940600-3 6.604013+3 4.940600-3 5.534591+4 4.954502-3 5.500545+4 5.069907-3 5.229061+4 5.070000-3 5.228850+4 5.230000-3 4.848388+4 5.248075-3 4.806200+4 5.432503-3 4.403658+4 5.500000-3 4.268097+4 5.623413-3 4.034876+4 5.688529-3 3.918906+4 5.754399-3 3.806280+4 5.821032-3 3.696775+4 5.956621-3 3.479543+4 6.095369-3 3.275124+4 6.309573-3 2.990866+4 6.382635-3 2.901712+4 6.531306-3 2.731291+4 6.606934-3 2.649887+4 6.683439-3 2.570880+4 6.918310-3 2.347510+4 7.079458-3 2.209527+4 7.244360-3 2.079680+4 7.413102-3 1.956949+4 7.498942-3 1.898315+4 7.585776-3 1.841444+4 7.673615-3 1.786281+4 7.762471-3 1.732757+4 7.852356-3 1.680782+4 7.943282-3 1.629084+4 8.222426-3 1.483364+4 8.413951-3 1.393551+4 8.709636-3 1.268952+4 8.810489-3 1.229940+4 9.015711-3 1.155485+4 9.225714-3 1.085452+4 9.549926-3 9.883001+3 9.772372-3 9.284248+3 9.885531-3 8.998652+3 1.023293-2 8.176092+3 1.047129-2 7.669855+3 1.059254-2 7.428383+3 1.083927-2 6.967945+3 1.096478-2 6.748568+3 1.109175-2 6.536102+3 1.161449-2 5.751203+3 1.188502-2 5.394927+3 1.202264-2 5.225165+3 1.216186-2 5.060724+3 1.230269-2 4.901455+3 1.244515-2 4.744227+3 1.273503-2 4.444716+3 1.303167-2 4.164139+3 1.318257-2 4.030576+3 1.396368-2 3.424450+3 1.412538-2 3.314646+3 1.445440-2 3.105487+3 1.496236-2 2.815951+3 1.500000-2 2.795972+3 1.548817-2 2.549917+3 1.621810-2 2.233621+3 1.659587-2 2.090526+3 1.698244-2 1.956590+3 1.717908-2 1.892817+3 1.757924-2 1.771442+3 1.778279-2 1.713708+3 1.798871-2 1.657855+3 1.819701-2 1.603818+3 1.862087-2 1.499632+3 1.972423-2 1.267855+3 2.018366-2 1.185508+3 2.113489-2 1.036380+3 2.137962-2 1.002131+3 2.162719-2 9.690113+2 2.187762-2 9.369887+2 2.213095-2 9.060221+2 2.264644-2 8.464063+2 2.317395-2 7.907159+2 2.344229-2 7.642623+2 2.398833-2 7.139755+2 2.511886-2 6.230337+2 2.660725-2 5.254814+2 2.691535-2 5.078872+2 2.722701-2 4.908817+2 2.818383-2 4.426791+2 2.884032-2 4.132015+2 3.019952-2 3.599593+2 3.198895-2 3.029544+2 3.349654-2 2.639272+2 3.388442-2 2.548876+2 3.467369-2 2.377272+2 3.630781-2 2.067697+2 3.672823-2 1.996824+2 4.073803-2 1.458916+2 4.168694-2 1.360628+2 4.216965-2 1.313545+2 4.365158-2 1.181740+2 4.415704-2 1.140813+2 4.623810-2 9.908021+1 5.011872-2 7.741947+1 5.188000-2 6.965190+1 5.308844-2 6.490778+1 5.370318-2 6.263838+1 5.495409-2 5.833494+1 5.688529-2 5.242799+1 6.309573-2 3.806090+1 6.531306-2 3.420714+1 6.760830-2 3.074125+1 6.839116-2 2.966586+1 6.918310-2 2.862014+1 7.328245-2 2.391935+1 7.673615-2 2.072120+1 7.852356-2 1.928632+1 7.943282-2 1.860660+1 8.128305-2 1.731822+1 8.413951-2 1.555102+1 8.609938-2 1.447419+1 9.332543-2 1.125788+1 9.440609-2 1.086091+1 9.549926-2 1.047794+1 9.885531-2 9.408194+0 1.000000-1 9.076475+0 1.071519-1 7.317893+0 1.083927-1 7.059881+0 1.109175-1 6.570835+0 1.135011-1 6.115673+0 1.148154-1 5.900055+0 1.188502-1 5.297788+0 1.202264-1 5.111026+0 1.216186-1 4.930842+0 1.258925-1 4.427540+0 1.333521-1 3.700262+0 1.348963-1 3.569819+0 1.364583-1 3.443985+0 1.380384-1 3.323058+0 1.396368-1 3.206377+0 1.412538-1 3.093791+0 1.513561-1 2.496642+0 1.548817-1 2.324515+0 1.566751-1 2.242958+0 1.584893-1 2.164264+0 1.603245-1 2.088339+0 1.640590-1 1.944388+0 1.717908-1 1.685580+0 1.757924-1 1.569395+0 1.778279-1 1.514344+0 1.798871-1 1.461222+0 1.819701-1 1.409965+0 1.840772-1 1.360508+0 1.862087-1 1.313319+0 1.905461-1 1.223793+0 1.949845-1 1.140371+0 1.972423-1 1.100818+0 1.995262-1 1.062641+0 2.018366-1 1.025821+0 2.041738-1 9.902753-1 2.113489-1 8.908677-1 2.137962-1 8.600014-1 2.187762-1 8.014396-1 2.290868-1 6.973048-1 2.317395-1 6.734592-1 2.344229-1 6.504298-1 2.371374-1 6.281916-1 2.540973-1 5.099866-1 2.570396-1 4.928004-1 2.630268-1 4.601461-1 2.722701-1 4.151778-1 2.754229-1 4.011897-1 2.818383-1 3.746483-1 2.884032-1 3.498635-1 2.917427-1 3.380932-1 2.951209-1 3.269117-1 2.985383-1 3.161000-1 3.090295-1 2.857642-1 3.126079-1 2.763139-1 3.162278-1 2.671781-1 3.198895-1 2.583578-1 3.235937-1 2.498285-1 3.273407-1 2.415810-1 3.311311-1 2.336060-1 3.388442-1 2.187178-1 3.507519-1 1.981465-1 3.548134-1 1.917289-1 3.589219-1 1.855313-1 3.630781-1 1.795339-1 3.672823-1 1.737306-1 3.715352-1 1.681151-1 3.801894-1 1.576322-1 3.845918-1 1.526385-1 3.890451-1 1.478031-1 3.935501-1 1.431208-1 3.981072-1 1.385870-1 4.027170-1 1.342064-1 4.120975-1 1.258568-1 4.168694-1 1.219637-1 4.315191-1 1.109921-1 4.365158-1 1.075589-1 4.415705-1 1.042319-1 4.518559-1 9.789811-2 4.570882-1 9.487700-2 4.623810-1 9.201929-2 4.731513-1 8.655946-2 4.786301-1 8.395239-2 4.841724-1 8.142382-2 4.897788-1 7.897155-2 5.069907-1 7.206590-2 5.128614-1 6.995606-2 5.248075-1 6.592004-2 5.308844-1 6.399025-2 5.370318-1 6.211701-2 5.432503-1 6.029918-2 5.495409-1 5.853855-2 5.559043-1 5.682934-2 5.754399-1 5.211662-2 5.821032-1 5.063423-2 5.888437-1 4.919406-2 5.956621-1 4.779535-2 6.025596-1 4.643965-2 6.095369-1 4.512246-2 6.165950-1 4.387869-2 6.309573-1 4.149308-2 6.382635-1 4.034936-2 6.456542-1 3.923723-2 6.531306-1 3.815612-2 6.606935-1 3.710745-2 6.683439-1 3.608762-2 6.839117-1 3.419163-2 6.918310-1 3.328133-2 6.998420-1 3.239527-2 7.079458-1 3.153284-2 7.085700-1 3.146780-2 7.161434-1 3.069613-2 7.244360-1 2.988181-2 7.328245-1 2.908912-2 7.585776-1 2.690205-2 7.673615-1 2.621020-2 7.762471-1 2.553620-2 7.852356-1 2.488148-2 8.035261-1 2.362198-2 8.317638-1 2.190189-2 8.413951-1 2.135686-2 8.511380-1 2.082540-2 8.609938-1 2.030851-2 8.810489-1 1.931294-2 8.912509-1 1.884966-2 9.015711-1 1.839748-2 9.120108-1 1.795618-2 9.225714-1 1.752547-2 9.440609-1 1.669519-2 9.549926-1 1.629624-2 9.660509-1 1.592107-2 9.772372-1 1.555456-2 9.885531-1 1.519651-2 1.000000+0 1.484670-2 1.022000+0 1.420760-2 1.023293+0 1.417132-2 1.035142+0 1.384605-2 1.059254+0 1.321770-2 1.071519+0 1.292134-2 1.083927+0 1.263160-2 1.096478+0 1.234837-2 1.135011+0 1.153624-2 1.148154+0 1.127757-2 1.161449+0 1.102570-2 1.174898+0 1.077945-2 1.202264+0 1.031951-2 1.216186+0 1.009694-2 1.250000+0 9.585936-3 1.258925+0 9.457647-3 1.273503+0 9.253682-3 1.288250+0 9.054797-3 1.303167+0 8.860198-3 1.333521+0 8.496371-3 1.364583+0 8.147473-3 1.396368+0 7.812918-3 1.412538+0 7.650826-3 1.428894+0 7.492661-3 1.445440+0 7.337762-3 1.479108+0 7.047960-3 1.548817+0 6.502226-3 1.566751+0 6.372536-3 1.603245+0 6.121728-3 1.659587+0 5.776473-3 1.698244+0 5.557194-3 1.717908+0 5.450701-3 1.737801+0 5.346246-3 1.757924+0 5.244140-3 1.778279+0 5.143994-3 1.798871+0 5.045755-3 1.862087+0 4.771863-3 1.905461+0 4.597581-3 1.927525+0 4.512844-3 1.949845+0 4.429669-3 1.972423+0 4.348303-3 2.018366+0 4.190035-3 2.065380+0 4.042740-3 2.137962+0 3.831457-3 2.162719+0 3.763511-3 2.187762+0 3.696773-3 2.213095+0 3.631442-3 2.290868+0 3.442303-3 2.344229+0 3.325848-3 2.426610+0 3.158516-3 2.454709+0 3.104630-3 2.483133+0 3.051667-3 2.511886+0 2.999788-3 2.600160+0 2.849387-3 2.660725+0 2.756526-3 2.754229+0 2.622879-3 2.818383+0 2.537401-3 2.851018+0 2.495714-3 2.884032+0 2.454848-3 2.985383+0 2.336231-3 3.054921+0 2.262755-3 3.198895+0 2.122665-3 3.273407+0 2.055907-3 3.311311+0 2.023321-3 3.349654+0 1.991356-3 3.467369+0 1.898462-3 3.548134+0 1.840856-3 3.715352+0 1.730836-3 3.801894+0 1.678317-3 3.845918+0 1.652659-3 3.890451+0 1.627474-3 4.027170+0 1.554201-3 4.120975+0 1.508674-3 4.168694+0 1.486414-3 4.365158+0 1.400610-3 4.466836+0 1.359583-3 4.518559+0 1.339524-3 4.570882+0 1.319820-3 4.786301+0 1.243864-3 4.897788+0 1.208568-3 4.954502+0 1.191298-3 5.248075+0 1.108579-3 5.370318+0 1.077123-3 5.432503+0 1.061732-3 5.495409+0 1.046566-3 5.559043+0 1.031655-3 5.754399+0 9.881859-4 5.888437+0 9.610325-4 6.000000+0 9.394526-4 6.309573+0 8.839698-4 6.456542+0 8.596807-4 6.531306+0 8.477878-4 6.606934+0 8.360638-4 6.683439+0 8.245304-4 7.000000+0 7.797540-4 7.161434+0 7.591753-4 7.328245+0 7.389444-4 7.762471+0 6.906946-4 8.000000+0 6.667010-4 8.128305+0 6.543735-4 8.222427+0 6.455985-4 8.317638+0 6.369616-4 8.709636+0 6.035538-4 8.810489+0 5.954794-4 9.015711+0 5.800755-4 9.120108+0 5.725238-4 9.660509+0 5.362146-4 1.000000+1 5.155439-4 1.011579+1 5.088327-4 1.035142+1 4.956744-4 1.059254+1 4.828838-4 1.122018+1 4.523338-4 1.135011+1 4.464594-4 1.161449+1 4.352156-4 1.174898+1 4.297004-4 1.230269+1 4.083301-4 1.273503+1 3.930028-4 1.303167+1 3.831056-4 1.348963+1 3.687289-4 1.364583+1 3.640578-4 1.412538+1 3.504216-4 1.513561+1 3.246629-4 1.531087+1 3.205578-4 1.566751+1 3.126804-4 1.640590+1 2.975018-4 1.678804+1 2.901912-4 1.717908+1 2.830604-4 1.800000+1 2.691409-4 1.819701+1 2.659946-4 1.905461+1 2.531091-4 2.065380+1 2.320432-4 2.089296+1 2.291805-4 2.137962+1 2.236613-4 2.264644+1 2.104381-4 2.371374+1 2.004246-4 2.426610+1 1.955981-4 2.570396+1 1.840367-4 2.754229+1 1.710795-4 2.951209+1 1.590346-4 2.985383+1 1.571112-4 3.019952+1 1.552414-4 3.054921+1 1.533939-4 3.162278+1 1.479821-4 3.349654+1 1.393835-4 3.467369+1 1.344661-4 3.801894+1 1.221866-4 3.845918+1 1.207345-4 4.518559+1 1.021273-4 4.786301+1 9.620136-5 4.841724+1 9.507380-5 4.954502+1 9.285819-5 5.248075+1 8.754240-5 5.495409+1 8.350979-5 6.237348+1 7.335388-5 6.309573+1 7.249513-5 8.128305+1 5.594951-5 8.709636+1 5.213280-5 8.912509+1 5.093087-5 9.015711+1 5.034034-5 9.885531+1 4.585604-5 1.047129+2 4.325853-5 1.216186+2 3.717364-5 1.244515+2 3.631726-5 1.621810+2 2.777875-5 1.737801+2 2.590283-5 1.778279+2 2.530951-5 1.798871+2 2.501796-5 1.972423+2 2.280328-5 2.089296+2 2.151981-5 2.426610+2 1.851101-5 2.483133+2 1.808722-5 3.235937+2 1.385806-5 3.467369+2 1.292789-5 7.079458+2 6.322461-6 7.161434+2 6.249939-6 7.852356+2 5.698926-6 8.317638+2 5.379493-6 9.660509+2 4.630304-6 9.885531+2 4.524718-6 2.570396+3 1.737185-6 2.754229+3 1.621035-6 1.122018+4 3.978570-7 1.135011+4 3.933021-7 2.483133+4 1.797587-7 5.248075+4 8.504623-8 1.000000+5 4.462997-8 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.280000-6 6.280000-6 8.340000-6 6.280000-6 8.340000-6 8.286648-6 8.390000-6 8.293308-6 8.390000-6 8.330980-6 9.250000-6 8.358817-6 1.420000-5 8.295744-6 4.442000-5 8.289443-6 4.442000-5 1.066983-5 4.510000-5 1.061668-5 4.510000-5 1.136634-5 4.700000-5 1.115117-5 5.128614-5 1.061379-5 5.308844-5 1.044083-5 5.500000-5 1.031023-5 5.690000-5 1.023965-5 5.920000-5 1.022366-5 6.201600-5 1.028961-5 6.531306-5 1.044869-5 6.861000-5 1.066039-5 6.861000-5 1.227961-5 8.413951-5 1.339472-5 9.225714-5 1.390483-5 1.000000-4 1.430326-5 1.096478-4 1.469309-5 1.220000-4 1.506575-5 1.364583-4 1.538841-5 1.584893-4 1.575512-5 1.819701-4 1.603051-5 2.113489-4 1.627703-5 2.600160-4 1.656065-5 3.350000-4 1.684714-5 4.518559-4 1.714226-5 4.652400-4 1.716896-5 4.652400-4 2.867817-5 4.665000-4 2.904794-5 4.682000-4 2.934943-5 4.712200-4 2.962883-5 4.712200-4 3.020896-5 4.750000-4 3.044552-5 4.815600-4 3.055947-5 5.574400-4 3.055777-5 5.574400-4 3.262968-5 1.000000-3 3.385177-5 1.500000-3 3.493529-5 2.162719-3 3.605506-5 2.951209-3 3.708159-5 3.935501-3 3.806166-5 4.940600-3 3.883157-5 4.940600-3 5.718791-5 7.244360-3 5.755484-5 1.318257-2 5.788313-5 3.388442-2 5.812591-5 2.371374-1 5.825201-5 1.000000+5 5.826592-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.280000-6 0.0 4.442000-5 0.0 4.442000-5 4.50249-10 4.510000-5 4.40235-10 4.510000-5 5.58835-10 4.550000-5 5.51859-10 4.623810-5 5.36836-10 4.810000-5 4.93462-10 5.069907-5 4.34145-10 5.190000-5 4.10516-10 5.270000-5 3.97030-10 5.370318-5 3.82421-10 5.450000-5 3.72771-10 5.540000-5 3.64166-10 5.650000-5 3.57075-10 5.730000-5 3.53930-10 5.850000-5 3.52091-10 5.950000-5 3.53295-10 6.030000-5 3.55893-10 6.110000-5 3.59600-10 6.220000-5 3.66371-10 6.357300-5 3.77286-10 6.531306-5 3.94488-10 6.683439-5 4.11236-10 6.861000-5 4.33319-10 6.861000-5 5.65951-10 7.245600-5 6.12338-10 8.035261-5 7.10775-10 8.413951-5 7.55355-10 8.912509-5 8.08995-10 9.225714-5 8.40395-10 9.800000-5 8.90864-10 1.035142-4 9.32723-10 1.096478-4 9.72317-10 1.150000-4 1.002045-9 1.220000-4 1.035578-9 1.318257-4 1.075052-9 1.430000-4 1.112174-9 1.531087-4 1.139884-9 1.640590-4 1.165264-9 1.819701-4 1.198102-9 2.041738-4 1.228542-9 2.344229-4 1.259047-9 2.691535-4 1.284117-9 3.162278-4 1.307272-9 3.801894-4 1.328139-9 4.652400-4 1.345401-9 4.652400-4 2.512552-7 4.661000-4 2.571108-7 4.670000-4 2.615813-7 4.682000-4 2.658067-7 4.697000-4 2.694038-7 4.712200-4 2.718539-7 4.712200-4 2.945058-7 4.726000-4 2.980378-7 4.750000-4 3.017624-7 4.786301-4 3.045292-7 4.845000-4 3.059050-7 5.574400-4 3.053900-7 5.574400-4 3.194381-7 9.440609-4 3.239541-7 1.840772-3 3.307287-7 3.090295-3 3.374813-7 4.731513-3 3.435940-7 4.940600-3 3.442529-7 4.940600-3 8.632812-4 5.500000-3 8.679368-4 8.222426-3 8.767413-4 1.303167-2 8.826303-4 2.511886-2 8.865242-4 9.549926-2 8.883480-4 1.000000+5 8.885404-4 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.280000-6 0.0 8.340000-6 2.060000-6 8.340000-6 5.335203-8 8.390000-6 9.669157-8 8.390000-6 5.902041-8 8.460000-6 1.238871-7 8.560000-6 2.176908-7 8.680000-6 3.318656-7 8.850000-6 4.961414-7 9.100000-6 7.419155-7 9.520000-6 1.162245-6 1.071519-5 2.377235-6 1.300000-5 4.695520-6 1.850000-5 1.021160-5 4.442000-5 3.613056-5 4.442000-5 3.374972-5 4.510000-5 3.448288-5 4.510000-5 3.373311-5 5.308844-5 4.264722-5 5.760000-5 4.737232-5 6.357300-5 5.321735-5 6.861000-5 5.794918-5 6.861000-5 5.632983-5 9.225714-5 7.835147-5 1.150000-4 1.001300-4 1.698244-4 1.539239-4 4.027170-4 3.856831-4 4.652400-4 4.480697-4 4.652400-4 4.363106-4 4.712200-4 4.413193-4 4.712200-4 4.407165-4 5.574400-4 5.265769-4 5.574400-4 5.244909-4 4.940600-3 4.901424-3 4.940600-3 4.020131-3 1.412538-2 1.318418-2 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.940600-3 4.874190+4 5.070000-3 4.614680+4 5.230000-3 4.285460+4 5.821032-3 3.279767+4 7.244360-3 1.855022+4 7.852356-3 1.502086+4 9.885531-3 8.075159+3 1.230269-2 4.410787+3 1.500000-2 2.521080+3 1.819701-2 1.448250+3 2.213095-2 8.190324+2 2.722701-2 4.441250+2 3.349654-2 2.389295+2 4.168694-2 1.232313+2 5.308844-2 5.880782+1 6.839116-2 2.688379+1 1.364583-1 3.121724+0 1.840772-1 1.232982+0 2.187762-1 7.263014-1 2.540973-1 4.621879-1 2.917427-1 3.063897-1 3.311311-1 2.116990-1 3.715352-1 1.523489-1 4.120975-1 1.140553-1 4.570882-1 8.597887-2 5.069907-1 6.530652-2 5.559043-1 5.150093-2 6.095369-1 4.089266-2 6.683439-1 3.270596-2 7.328245-1 2.636304-2 8.035261-1 2.140694-2 8.810489-1 1.750136-2 9.549926-1 1.477001-2 1.059254+0 1.198106-2 1.174898+0 9.771209-3 1.303167+0 8.031164-3 1.445440+0 6.651009-3 1.603245+0 5.548752-3 1.798871+0 4.573399-3 2.018366+0 3.797820-3 2.290868+0 3.120040-3 2.600160+0 2.582630-3 2.985383+0 2.117531-3 3.467369+0 1.720745-3 4.027170+0 1.408711-3 4.786301+0 1.127418-3 5.754399+0 8.956879-4 7.000000+0 7.067600-4 8.810489+0 5.397328-4 1.135011+1 4.046588-4 1.531087+1 2.905462-4 2.089296+1 2.077245-4 2.985383+1 1.424028-4 4.786301+1 8.719457-5 8.709636+1 4.725191-5 1.737801+2 2.347862-5 3.467369+2 1.171788-5 2.754229+3 1.469265-6 1.000000+5 4.045500-8 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.940600-3 5.967500-5 1.000000+5 5.967500-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.940600-3 9.802000-4 1.000000+5 9.802000-4 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.940600-3 3.900725-3 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.574400-4 2.111654+5 6.050000-4 1.910477+5 6.531306-4 1.707921+5 7.413102-4 1.428996+5 7.943282-4 1.292074+5 9.332543-4 1.005062+5 1.011579-3 8.799448+4 1.174898-3 6.801748+4 1.288250-3 5.768449+4 1.479108-3 4.463072+4 1.650000-3 3.619260+4 1.905461-3 2.722143+4 2.162719-3 2.101847+4 2.454709-3 1.612223+4 2.851018-3 1.168069+4 3.273407-3 8.604538+3 3.715352-3 6.460058+3 4.265795-3 4.693332+3 4.954502-3 3.294283+3 5.754399-3 2.294234+3 6.683439-3 1.585538+3 7.762471-3 1.087553+3 9.015711-3 7.404363+2 1.047129-2 5.005246+2 1.230269-2 3.257807+2 1.445440-2 2.104461+2 1.698244-2 1.349679+2 2.018366-2 8.322638+1 2.398833-2 5.093667+1 2.884032-2 2.993641+1 3.467369-2 1.746124+1 4.216965-2 9.772716+0 5.188000-2 5.245538+0 6.531306-2 2.606561+0 8.609938-2 1.116641+0 1.513561-1 1.951083-1 1.995262-1 8.364349-2 2.371374-1 4.956178-2 2.754229-1 3.171945-2 3.162278-1 2.116374-2 3.548134-1 1.520351-2 3.981072-1 1.100053-2 4.415705-1 8.280410-3 4.897788-1 6.278092-3 5.432503-1 4.797132-3 5.956621-1 3.802941-3 6.531306-1 3.036119-3 7.085700-1 2.503348-3 7.762471-1 2.034140-3 8.511380-1 1.660958-3 9.440609-1 1.330722-3 1.023293+0 1.128010-3 1.148154+0 8.971271-4 1.273503+0 7.364703-4 1.412538+0 6.090750-4 1.566751+0 5.073758-4 1.737801+0 4.255958-4 1.949845+0 3.526531-4 2.187762+0 2.942537-4 2.483133+0 2.429234-4 2.851018+0 1.986662-4 3.311311+0 1.610627-4 3.845918+0 1.315673-4 4.518559+0 1.066274-4 5.495409+0 8.332078-5 6.606934+0 6.655567-5 8.222427+0 5.139107-5 1.035142+1 3.945495-5 1.364583+1 2.897708-5 1.819701+1 2.117089-5 2.570396+1 1.465068-5 3.801894+1 9.724892-6 6.237348+1 5.838431-6 1.216186+2 2.959373-6 2.426610+2 1.474060-6 9.660509+2 3.686184-7 1.000000+5 3.555400-9 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.574400-4 4.832400-5 1.000000+5 4.832400-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.574400-4 4.258500-7 1.000000+5 4.258500-7 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.574400-4 5.086902-4 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.712200-4 4.166900+5 4.713700-4 4.239000+5 4.717000-4 4.418500+5 4.721000-4 4.618500+5 4.726000-4 4.841000+5 4.731513-4 5.057600+5 4.737000-4 5.249500+5 4.742000-4 5.404300+5 4.750000-4 5.622600+5 4.757000-4 5.785700+5 4.765000-4 5.942700+5 4.775000-4 6.102100+5 4.786301-4 6.242000+5 4.800000-4 6.363000+5 4.815600-4 6.447300+5 4.830000-4 6.484900+5 4.845000-4 6.492900+5 4.870000-4 6.457600+5 5.020000-4 6.052763+5 5.350000-4 5.269500+5 5.650000-4 4.631100+5 6.025596-4 4.005500+5 6.760830-4 3.052200+5 7.328245-4 2.507000+5 7.943282-4 2.046200+5 9.120108-4 1.426200+5 1.000000-3 1.115000+5 1.161449-3 7.389900+4 1.300000-3 5.385600+4 1.513561-3 3.484000+4 1.737801-3 2.325000+4 1.972423-3 1.594600+4 2.290868-3 1.012400+4 2.660725-3 6.370900+3 3.054921-3 4.123700+3 3.507519-3 2.651500+3 4.073803-3 1.631500+3 4.731513-3 9.965700+2 5.500000-3 6.027000+2 6.382635-3 3.639700+2 7.413102-3 2.176500+2 8.709636-3 1.241500+2 1.023293-2 7.028200+1 1.216186-2 3.791600+1 1.445440-2 2.030700+1 1.757924-2 9.926600+0 2.137962-2 4.816600+0 2.660725-2 2.129000+0 3.388442-2 8.567800-1 7.673615-2 3.855451-2 9.549926-2 1.692270-2 1.148154-1 8.520940-3 1.348963-1 4.708062-3 1.566751-1 2.733965-3 1.798871-1 1.667671-3 2.041738-1 1.067519-3 2.317395-1 6.884005-4 2.630268-1 4.474496-4 2.951209-1 3.046928-4 3.273407-1 2.170768-4 3.630781-1 1.557310-4 4.027170-1 1.125484-4 4.415705-1 8.489703-5 4.841724-1 6.447558-5 5.308844-1 4.933283-5 5.821032-1 3.801039-5 6.382635-1 2.948854-5 6.998420-1 2.303624-5 7.673615-1 1.812252-5 8.609938-1 1.349736-5 9.120108-1 1.170981-5 9.660509-1 1.022448-5 1.022000+0 9.021969-6 1.096478+0 7.779385-6 1.161449+0 6.936056-6 1.250000+0 6.039689-6 1.364583+0 5.158609-6 1.659587+0 3.684874-6 1.862087+0 3.042240-6 2.065380+0 2.576831-6 2.344229+0 2.120035-6 2.660725+0 1.757123-6 3.054921+0 1.442377-6 3.548134+0 1.173459-6 4.120975+0 9.616967-7 4.897788+0 7.704687-7 5.888437+0 6.126490-7 7.161434+0 4.839877-7 9.015711+0 3.698076-7 1.161449+1 2.774781-7 1.566751+1 1.993485-7 2.137962+1 1.426167-7 3.019952+1 9.899619-8 4.786301+1 6.134918-8 8.709636+1 3.324642-8 1.737801+2 1.651924-8 3.467369+2 8.244655-9 2.754229+3 1.033786-9 1.000000+5 2.84640-11 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.712200-4 3.228100-5 1.000000+5 3.228100-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.712200-4 3.754100-7 1.000000+5 3.754100-7 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.712200-4 4.385636-4 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.652400-4 8.538880+5 4.653800-4 8.673880+5 4.657000-4 9.029840+5 4.661000-4 9.433880+5 4.665000-4 9.799480+5 4.670000-4 1.021280+6 4.675000-4 1.058148+6 4.682000-4 1.103532+6 4.690000-4 1.147516+6 4.697000-4 1.180444+6 4.705000-4 1.212432+6 4.715000-4 1.244976+6 4.725000-4 1.270396+6 4.735000-4 1.289740+6 4.750000-4 1.309284+6 4.765000-4 1.319696+6 4.785000-4 1.322984+6 4.800000-4 1.319772+6 4.830000-4 1.304464+6 5.300000-4 1.063836+6 5.623413-4 9.244700+5 6.000000-4 7.978120+5 6.700000-4 6.137240+5 7.328245-4 4.922357+5 8.000000-4 3.937304+5 9.225714-4 2.704034+5 1.011579-3 2.109311+5 1.174898-3 1.393366+5 1.318257-3 1.006220+5 1.531087-3 6.533294+4 1.757924-3 4.348701+4 2.000000-3 2.952988+4 2.300000-3 1.926792+4 2.650000-3 1.240164+4 3.054921-3 7.908170+3 3.548134-3 4.886642+3 4.120975-3 2.996748+3 4.800000-3 1.807016+3 5.623413-3 1.060287+3 6.606934-3 6.109938+2 7.673615-3 3.635001+2 9.015711-3 2.061713+2 1.059254-2 1.160202+2 1.244515-2 6.482814+1 1.496236-2 3.307184+1 1.798871-2 1.673409+1 2.187762-2 8.048265+0 2.691535-2 3.678007+0 3.349654-2 1.596681+0 4.365158-2 5.766702-1 7.852356-2 5.965041-2 9.885531-2 2.463285-2 1.188502-1 1.222461-2 1.396368-1 6.668773-3 1.603245-1 3.989690-3 1.819701-1 2.508533-3 2.041738-1 1.656366-3 2.290868-1 1.101762-3 2.540973-1 7.688138-4 2.818383-1 5.405173-4 3.090295-1 3.978967-4 3.388442-1 2.949433-4 3.672823-1 2.283731-4 4.027170-1 1.717515-4 4.365158-1 1.347273-4 4.731513-1 1.063442-4 5.128614-1 8.447828-5 5.559043-1 6.755864-5 6.025596-1 5.440406-5 6.531306-1 4.413754-5 7.079458-1 3.606116-5 7.673615-1 2.966864-5 8.317638-1 2.457952-5 9.015711-1 2.050597-5 9.772372-1 1.722348-5 1.059254+0 1.458828-5 1.148154+0 1.243167-5 1.258925+0 1.043020-5 1.396368+0 8.628900-6 1.566751+0 7.048438-6 1.757924+0 5.800495-6 1.972423+0 4.808938-6 2.213095+0 4.014931-6 2.511886+0 3.316744-6 2.884032+0 2.714348-6 3.349654+0 2.201980-6 3.890451+0 1.799780-6 4.570882+0 1.459323-6 5.495409+0 1.157304-6 6.606934+0 9.244490-7 8.222427+0 7.138069-7 1.035142+1 5.480177-7 1.348963+1 4.076291-7 1.800000+1 2.975400-7 2.570396+1 2.034903-7 3.845918+1 1.334659-7 6.309573+1 8.014394-8 1.244515+2 4.015761-8 2.483133+2 2.000514-8 9.885531+2 5.003336-9 1.000000+5 4.93830-11 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.652400-4 3.217200-5 1.000000+5 3.217200-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.652400-4 3.271200-7 1.000000+5 3.271200-7 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.652400-4 4.327409-4 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.861000-5 4.249920+5 7.161434-5 4.157374+5 7.500000-5 4.088560+5 8.000000-5 4.026680+5 9.225714-5 3.930772+5 9.800000-5 3.868480+5 1.035142-4 3.788014+5 1.083927-4 3.700641+5 1.148154-4 3.567395+5 1.220000-4 3.404400+5 1.303167-4 3.212203+5 1.428894-4 2.937066+5 1.584893-4 2.636243+5 1.737801-4 2.379451+5 1.900000-4 2.138400+5 2.089296-4 1.893400+5 2.371374-4 1.595152+5 2.691535-4 1.333963+5 3.000000-4 1.136194+5 3.427678-4 9.249884+4 3.935501-4 7.423779+4 4.466836-4 6.024598+4 5.248075-4 4.581486+4 6.025596-4 3.596928+4 7.079458-4 2.692395+4 8.317638-4 1.998974+4 9.700000-4 1.494652+4 1.150000-3 1.075270+4 1.364583-3 7.663856+3 1.621810-3 5.402350+3 1.905461-3 3.869363+3 2.213095-3 2.818848+3 2.570396-3 2.039153+3 3.000000-3 1.448546+3 3.467369-3 1.043630+3 4.027170-3 7.381904+2 4.677351-3 5.183510+2 5.432503-3 3.613754+2 6.309573-3 2.501696+2 7.413102-3 1.670628+2 8.709636-3 1.106996+2 1.023293-2 7.278547+1 1.202264-2 4.748170+1 1.412538-2 3.074342+1 1.659587-2 1.976307+1 1.972423-2 1.221618+1 2.344229-2 7.494917+0 2.818383-2 4.415864+0 3.349654-2 2.669429+0 4.073803-2 1.497141+0 5.011872-2 8.052548-1 6.309573-2 4.008096-1 8.413951-2 1.661069-1 1.083927-1 7.607107-2 1.584893-1 2.351582-2 1.972423-1 1.203780-2 2.344229-1 7.130647-3 2.722701-1 4.560656-3 3.126079-1 3.041099-3 3.548134-1 2.113100-3 3.981072-1 1.529090-3 4.415705-1 1.150875-3 4.897788-1 8.725342-4 5.370318-1 6.867800-4 5.888437-1 5.441715-4 6.456542-1 4.342592-4 7.079458-1 3.490535-4 7.762471-1 2.826092-4 8.511380-1 2.304042-4 9.225714-1 1.939178-4 1.000000+0 1.642800-4 1.148154+0 1.248445-4 1.273503+0 1.024320-4 1.412538+0 8.468925-5 1.566751+0 7.054004-5 1.737801+0 5.917018-5 1.949845+0 4.903002-5 2.187762+0 4.090967-5 2.483133+0 3.377325-5 2.851018+0 2.762080-5 3.311311+0 2.239325-5 3.845918+0 1.829260-5 4.518559+0 1.482474-5 5.432503+0 1.175101-5 6.531306+0 9.382378-6 8.128305+0 7.241629-6 1.011579+1 5.630876-6 1.303167+1 4.239350-6 1.717908+1 3.132271-6 2.426610+1 2.164347-6 3.467369+1 1.488182-6 5.495409+1 9.242443-7 1.047129+2 4.788237-7 2.089296+2 2.382614-7 8.317638+2 5.953473-8 5.248075+4 9.41861-10 1.000000+5 4.94310-10 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.861000-5 2.334100-5 1.000000+5 2.334100-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.861000-5 1.472000-9 1.000000+5 1.472000-9 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.861000-5 4.526753-5 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.510000-5 8.184480+5 4.550000-5 7.974060+5 4.601000-5 7.669155+5 4.677351-5 7.185515+5 4.770000-5 6.587040+5 4.850000-5 6.088340+5 5.190000-5 4.356580+5 5.308844-5 3.920578+5 5.415200-5 3.600240+5 5.500000-5 3.388100+5 5.580000-5 3.219940+5 5.650000-5 3.095900+5 5.730000-5 2.978000+5 5.830000-5 2.862320+5 5.920000-5 2.784620+5 6.000000-5 2.733760+5 6.095369-5 2.692389+5 6.201600-5 2.667221+5 6.309573-5 2.660333+5 6.400000-5 2.666440+5 6.531306-5 2.690793+5 6.683439-5 2.736599+5 6.900000-5 2.824000+5 7.245600-5 2.992586+5 7.900000-5 3.328320+5 8.317638-5 3.521552+5 8.709636-5 3.677743+5 9.120108-5 3.812437+5 9.500000-5 3.909980+5 9.900000-5 3.984540+5 1.035142-4 4.035913+5 1.083927-4 4.057101+5 1.135011-4 4.048275+5 1.190000-4 4.011500+5 1.244515-4 3.954006+5 1.318257-4 3.852794+5 1.400000-4 3.721400+5 1.480000-4 3.582300+5 1.580000-4 3.400400+5 1.678804-4 3.216656+5 1.778279-4 3.032181+5 1.905461-4 2.804082+5 2.041738-4 2.574873+5 2.220000-4 2.303680+5 2.400000-4 2.062820+5 2.600160-4 1.827904+5 2.818383-4 1.606309+5 3.054921-4 1.401727+5 3.350000-4 1.191102+5 3.672823-4 1.005293+5 4.027170-4 8.418940+4 4.466836-4 6.837847+4 4.897788-4 5.648598+4 5.432503-4 4.522349+4 6.095369-4 3.501814+4 6.839116-4 2.689979+4 7.673615-4 2.049616+4 8.609938-4 1.550622+4 9.772372-4 1.131607+4 1.109175-3 8.192564+3 1.258925-3 5.884676+3 1.428894-3 4.194974+3 1.621810-3 2.967503+3 1.840772-3 2.083088+3 2.065380-3 1.499865+3 2.344229-3 1.037153+3 2.660725-3 7.117537+2 3.019952-3 4.848196+2 3.427678-3 3.277905+2 3.935501-3 2.122289+2 4.518559-3 1.363765+2 5.248075-3 8.379274+1 6.095369-3 5.108232+1 7.079458-3 3.090553+1 8.222426-3 1.856223+1 9.549926-3 1.106469+1 1.109175-2 6.547947+0 1.303167-2 3.694074+0 1.548817-2 1.985161+0 1.862087-2 1.015577+0 2.264644-2 4.941926-1 2.818383-2 2.191019-1 3.672823-2 8.114921-2 7.328245-2 5.952187-3 9.440609-2 2.298293-3 1.135011-1 1.158239-3 1.333521-1 6.401640-4 1.548817-1 3.716450-4 1.778279-1 2.265044-4 2.018366-1 1.448441-4 2.290868-1 9.330448-5 2.570396-1 6.299644-5 2.884032-1 4.284510-5 3.198895-1 3.048993-5 3.548134-1 2.184634-5 3.935501-1 1.576711-5 4.365158-1 1.146626-5 4.786301-1 8.698754-6 5.248075-1 6.646178-6 5.754399-1 5.114607-6 6.309573-1 3.963240-6 6.918310-1 3.092370-6 7.585776-1 2.430021-6 8.609938-1 1.757043-6 9.120108-1 1.524477-6 9.660509-1 1.331210-6 1.022000+0 1.174700-6 1.096478+0 1.012964-6 1.161449+0 9.031756-7 1.250000+0 7.864500-7 1.364583+0 6.716963-7 1.659587+0 4.797658-7 1.862087+0 3.960955-7 2.065380+0 3.355084-7 2.344229+0 2.760336-7 2.660725+0 2.287751-7 3.054921+0 1.877922-7 3.548134+0 1.527905-7 4.168694+0 1.233543-7 4.954502+0 9.887070-8 6.000000+0 7.795900-8 7.328245+0 6.132050-8 9.120108+0 4.751764-8 1.174898+1 3.566702-8 1.566751+1 2.595625-8 2.137962+1 1.856809-8 3.054921+1 1.273504-8 4.841724+1 7.893621-9 8.912509+1 4.228522-9 1.778279+2 2.101479-9 7.079458+2 5.24591-10 1.122018+4 3.30378-11 1.000000+5 3.70610-12 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.510000-5 1.619400-5 1.000000+5 1.619400-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.510000-5 1.322600-9 1.000000+5 1.322600-9 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.510000-5 2.890468-5 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.442000-5 1.657712+6 4.495000-5 1.596056+6 4.540000-5 1.539312+6 4.623810-5 1.428429+6 4.700000-5 1.327820+6 4.810000-5 1.189848+6 5.069907-5 9.212871+5 5.190000-5 8.271800+5 5.270000-5 7.744960+5 5.370318-5 7.188971+5 5.450000-5 6.823240+5 5.540000-5 6.482680+5 5.623413-5 6.228561+5 5.690000-5 6.063280+5 5.760000-5 5.922040+5 5.850000-5 5.783840+5 5.950000-5 5.679720+5 6.030000-5 5.628440+5 6.110000-5 5.601360+5 6.220000-5 5.597400+5 6.357300-5 5.635871+5 6.500000-5 5.714600+5 6.683439-5 5.856559+5 6.918310-5 6.079774+5 7.673615-5 6.880265+5 8.035261-5 7.234939+5 8.413951-5 7.561776+5 8.810489-5 7.847665+5 9.225714-5 8.081945+5 9.650000-5 8.253360+5 1.000000-4 8.346000+5 1.047129-4 8.408009+5 1.096478-4 8.406167+5 1.150000-4 8.341960+5 1.205000-4 8.225840+5 1.273503-4 8.033183+5 1.350000-4 7.778120+5 1.430000-4 7.484600+5 1.513561-4 7.163698+5 1.603245-4 6.811225+5 1.698244-4 6.437868+5 1.800000-4 6.045600+5 1.927525-4 5.574375+5 2.089296-4 5.024783+5 2.264644-4 4.496307+5 2.454709-4 3.994469+5 2.660725-4 3.522991+5 2.884032-4 3.083400+5 3.162278-4 2.627565+5 3.467369-4 2.223043+5 3.801894-4 1.867659+5 4.200000-4 1.533612+5 4.623810-4 1.259115+5 5.128614-4 1.010922+5 5.754399-4 7.847256+4 6.531306-4 5.883255+4 7.328245-4 4.488846+4 8.317638-4 3.305338+4 9.440609-4 2.412657+4 1.071519-3 1.747235+4 1.202264-3 1.293924+4 1.348963-3 9.523008+3 1.531087-3 6.748530+3 1.737801-3 4.744565+3 1.972423-3 3.309557+3 2.238721-3 2.290238+3 2.540973-3 1.572664+3 2.884032-3 1.071815+3 3.273407-3 7.250316+2 3.715352-3 4.869878+2 4.265795-3 3.130821+2 4.897788-3 1.997787+2 5.688529-3 1.218410+2 6.606934-3 7.373765+1 7.585776-3 4.606036+1 8.810489-3 2.745917+1 1.023293-2 1.624704+1 1.188502-2 9.542954+0 1.396368-2 5.339891+0 1.659587-2 2.844089+0 1.972423-2 1.503590+0 2.344229-2 7.893841-1 2.884032-2 3.611956-1 3.630781-2 1.502819-1 4.623810-2 5.939929-2 7.943282-2 7.386502-3 1.000000-1 3.055375-3 1.202264-1 1.518581-3 1.412538-1 8.297867-4 1.640590-1 4.769590-4 1.862087-1 3.006524-4 2.113489-1 1.909896-4 2.371374-1 1.274071-4 2.630268-1 8.913920-5 2.917427-1 6.283752-5 3.198895-1 4.637385-5 3.507519-1 3.446787-5 3.845918-1 2.581342-5 4.168694-1 2.017945-5 4.518559-1 1.587784-5 4.897788-1 1.257349-5 5.308844-1 1.002095-5 5.754399-1 8.040152-6 6.165950-1 6.695152-6 6.683439-1 5.445256-6 7.244360-1 4.459843-6 7.852356-1 3.677831-6 8.609938-1 2.970302-6 9.225714-1 2.546557-6 9.885531-1 2.197325-6 1.096478+0 1.778858-6 1.174898+0 1.553316-6 1.288250+0 1.305992-6 1.428894+0 1.082513-6 1.603245+0 8.856298-7 1.798871+0 7.299129-7 2.018366+0 6.060144-7 2.290868+0 4.978434-7 2.600160+0 4.120930-7 2.985383+0 3.378883-7 3.467369+0 2.745805-7 4.027170+0 2.247909-7 4.786301+0 1.798977-7 5.754399+0 1.429229-7 7.000000+0 1.127800-7 8.709636+0 8.727794-8 1.122018+1 6.540962-8 1.513561+1 4.694929-8 2.065380+1 3.355558-8 2.951209+1 2.299724-8 4.786301+1 1.391326-8 8.709636+1 7.539938-9 1.737801+2 3.746503-9 3.467369+2 1.869816-9 2.754229+3 2.34452-10 1.000000+5 6.45540-12 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.442000-5 1.606900-5 1.000000+5 1.606900-5 1 22000 7 7 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.442000-5 1.471500-9 1.000000+5 1.471500-9 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.442000-5 2.834953-5 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 8.390000-6 7.703072+5 9.700000-6 9.619360+5 1.047129-5 1.074778+6 1.122018-5 1.179723+6 1.202264-5 1.286972+6 1.288250-5 1.394455+6 1.380384-5 1.500906+6 1.479108-5 1.605743+6 1.584893-5 1.707394+6 1.698244-5 1.803810+6 1.800000-5 1.878968+6 1.927525-5 1.957716+6 2.041738-5 2.014463+6 2.162719-5 2.059091+6 2.290868-5 2.089664+6 2.426610-5 2.105640+6 2.570396-5 2.105098+6 2.691535-5 2.092418+6 2.851018-5 2.061171+6 3.019952-5 2.013940+6 3.198895-5 1.952813+6 3.400000-5 1.875344+6 3.589219-5 1.797774+6 3.845918-5 1.690860+6 4.120975-5 1.578915+6 4.415704-5 1.464647+6 4.786301-5 1.331939+6 5.150000-5 1.213152+6 5.559043-5 1.091958+6 5.900000-5 1.000000+6 6.309573-5 8.989572+5 6.683439-5 8.155881+5 7.079458-5 7.354381+5 7.585776-5 6.449570+5 8.128305-5 5.614806+5 8.810489-5 4.741915+5 9.660509-5 3.877528+5 1.047129-4 3.233873+5 1.150000-4 2.601016+5 1.260000-4 2.086432+5 1.364583-4 1.709104+5 1.479108-4 1.388605+5 1.640590-4 1.054826+5 1.819701-4 7.957193+4 2.018366-4 5.960867+4 2.220000-4 4.539768+4 2.483133-4 3.269733+4 2.851018-4 2.162860+4 3.162278-4 1.576627+4 3.548134-4 1.101797+4 4.000000-4 7.531600+3 4.518559-4 5.077268+3 5.128614-4 3.345861+3 5.821032-4 2.189198+3 6.606934-4 1.421239+3 7.498942-4 9.156505+2 8.609938-4 5.622937+2 9.772372-4 3.570631+2 1.109175-3 2.250968+2 1.258925-3 1.408275+2 1.412538-3 9.131517+1 1.584893-3 5.880631+1 1.778279-3 3.761024+1 2.000000-3 2.366514+1 2.264644-3 1.436476+1 2.570396-3 8.571005+0 2.951209-3 4.841206+0 3.427678-3 2.587106+0 4.027170-3 1.306759+0 4.786301-3 6.236127-1 5.956621-3 2.430590-1 6.918310-3 1.266804-1 7.943282-3 6.893352-2 9.225714-3 3.531032-2 1.096478-2 1.618016-2 1.318257-2 6.980976-3 1.621810-2 2.689232-3 2.162719-2 7.078024-4 3.198895-2 1.141841-4 5.495409-2 9.126384-6 6.760830-2 3.489777-6 8.128305-2 1.495480-6 9.440609-2 7.560452-7 1.071519-1 4.272217-7 1.216186-1 2.430504-7 1.380384-1 1.392768-7 1.566751-1 8.042406-8 1.757924-1 4.917022-8 1.949845-1 3.179282-8 2.137962-1 2.171858-8 2.371374-1 1.424874-8 2.630268-1 9.416974-9 2.917427-1 6.269547-9 3.273407-1 4.016528-9 3.589219-1 2.833823-9 3.890451-1 2.102573-9 4.120975-1 1.707723-9 4.518559-1 1.234382-9 5.069907-1 8.30336-10 5.495409-1 6.31323-10 5.956621-1 4.83414-10 6.382635-1 3.88084-10 6.839117-1 3.13712-10 8.035261-1 1.93834-10 8.511380-1 1.64107-10 9.015711-1 1.39910-10 9.440609-1 1.23908-10 9.885531-1 1.10443-10 1.035142+0 9.91555-11 1.083927+0 8.96549-11 1.135011+0 8.15692-11 1.202264+0 7.30174-11 1.303167+0 6.31360-11 1.428894+0 5.39380-11 1.778279+0 3.72936-11 1.972423+0 3.14804-11 2.213095+0 2.62827-11 2.511886+0 2.17126-11 2.884032+0 1.77687-11 3.349654+0 1.44142-11 3.890451+0 1.17811-11 4.570882+0 9.55271-12 5.559043+0 7.46826-12 6.683439+0 5.96822-12 8.317638+0 4.61024-12 1.059254+1 3.49487-12 1.412538+1 2.53607-12 1.905461+1 1.83173-12 2.754229+1 1.23814-12 4.518559+1 7.39342-13 8.128305+1 4.05061-13 1.621810+2 2.01148-13 3.235937+2 1.00353-13 2.570396+3 1.25800-14 1.000000+5 3.23250-16 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 8.390000-6 8.390000-6 1.000000+5 8.390000-6 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 8.390000-6 0.0 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 8.340000-6 1.168708+6 9.500000-6 1.428012+6 1.023293-5 1.591007+6 1.100000-5 1.755696+6 1.180000-5 1.918116+6 1.273503-5 2.095698+6 1.364583-5 2.255645+6 1.462177-5 2.412727+6 1.570000-5 2.569152+6 1.690000-5 2.722164+6 1.819701-5 2.862678+6 1.927525-5 2.959265+6 2.041738-5 3.041026+6 2.162719-5 3.105695+6 2.290868-5 3.150465+6 2.426610-5 3.171640+6 2.540973-5 3.171010+6 2.660725-5 3.153615+6 2.818383-5 3.109142+6 2.985383-5 3.041374+6 3.162278-5 2.951797+6 3.350000-5 2.843268+6 3.570000-5 2.707776+6 3.801894-5 2.562021+6 4.073803-5 2.393385+6 4.415704-5 2.193298+6 4.731513-5 2.021766+6 5.128614-5 1.824930+6 5.500000-5 1.658196+6 5.900000-5 1.494708+6 6.309573-5 1.343695+6 6.683439-5 1.218263+6 7.161434-5 1.075292+6 7.585776-5 9.628932+5 8.222426-5 8.185569+5 8.912509-5 6.901148+5 9.660509-5 5.785337+5 1.080000-4 4.492200+5 1.190000-4 3.573480+5 1.288250-4 2.943070+5 1.396368-4 2.401340+5 1.531087-4 1.888738+5 1.720000-4 1.382124+5 1.905461-4 1.042556+5 2.113489-4 7.780010+4 2.344229-4 5.760662+4 2.660725-4 3.958828+4 3.000000-4 2.754024+4 3.388442-4 1.890125+4 3.801894-4 1.314583+4 4.315191-4 8.748593+3 4.897788-4 5.777383+3 5.559043-4 3.788401+3 6.237348-4 2.564168+3 7.079458-4 1.656870+3 8.035261-4 1.062731+3 9.120108-4 6.767425+2 1.035142-3 4.280759+2 1.174898-3 2.687547+2 1.333521-3 1.674192+2 1.500000-3 1.070637+2 1.698244-3 6.628522+1 1.905461-3 4.218657+1 2.089296-3 2.922627+1 2.371374-3 1.750566+1 2.691535-3 1.040647+1 3.126079-3 5.580589+0 3.630781-3 2.969975+0 4.265795-3 1.493651+0 5.069907-3 7.094315-1 6.531306-3 2.355064-1 7.498942-3 1.283060-1 8.413951-3 7.686764-2 9.772372-3 3.915775-2 1.161449-2 1.783749-2 1.396368-2 7.648462-3 1.717908-2 2.925964-3 2.317395-2 7.227747-4 3.349654-2 1.280601-4 5.688529-2 1.055075-5 6.918310-2 4.220947-6 8.128305-2 1.998153-6 9.440609-2 1.004829-6 1.109175-1 4.829402-7 1.258925-1 2.735104-7 1.412538-1 1.643226-7 1.548817-1 1.100156-7 1.717908-1 7.059586-8 1.905461-1 4.563899-8 2.137962-1 2.832608-8 2.344229-1 1.947669-8 2.540973-1 1.412947-8 2.754229-1 1.032578-8 2.985383-1 7.606313-9 3.235937-1 5.649898-9 3.507519-1 4.228777-9 3.801894-1 3.187020-9 4.315191-1 2.060633-9 4.623810-1 1.635596-9 4.897788-1 1.357329-9 5.069907-1 1.218360-9 5.432503-1 9.90511-10 5.821032-1 8.10999-10 6.606935-1 5.65953-10 7.161434-1 4.53154-10 7.762471-1 3.65571-10 8.413951-1 2.97244-10 8.912509-1 2.57965-10 9.440609-1 2.25286-10 1.000000+0 1.98140-10 1.071519+0 1.71278-10 1.135011+0 1.52468-10 1.216186+0 1.33584-10 1.333521+0 1.12839-10 1.479108+0 9.40308-11 1.698244+0 7.42180-11 1.905461+0 6.13753-11 2.137962+0 5.11328-11 2.426610+0 4.21550-11 2.754229+0 3.50053-11 3.198895+0 2.83289-11 3.715352+0 2.31019-11 4.365158+0 1.86926-11 5.248075+0 1.47961-11 6.309573+0 1.17977-11 7.762471+0 9.21785-12 9.660509+0 7.15688-12 1.230269+1 5.45060-12 1.640590+1 3.97133-12 2.264644+1 2.80932-12 3.162278+1 1.97602-12 4.954502+1 1.24012-12 9.015711+1 6.72320-13 1.798871+2 3.34160-13 7.161434+2 8.34220-14 1.135011+4 5.25389-15 1.000000+5 5.96190-16 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 8.340000-6 8.340000-6 1.000000+5 8.340000-6 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 8.340000-6 0.0 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.280000-6 8.654560+5 6.320000-6 8.281980+5 6.480000-6 6.762920+5 6.606934-6 5.743961+5 6.700000-6 5.085560+5 6.850000-6 4.161260+5 6.950000-6 3.629200+5 7.079458-6 3.026770+5 7.170000-6 2.657800+5 7.270000-6 2.293740+5 7.380000-6 1.940880+5 7.460000-6 1.712850+5 7.550000-6 1.482310+5 7.620000-6 1.320362+5 7.700000-6 1.152432+5 7.770000-6 1.019322+5 7.852356-6 8.778689+4 7.940000-6 7.438960+4 8.000000-6 6.612740+4 8.070000-6 5.735320+4 8.130000-6 5.052460+4 8.200000-6 4.331100+4 8.255000-6 3.817500+4 8.317638-6 3.285953+4 8.365000-6 2.919600+4 8.420000-6 2.530380+4 8.460000-6 2.270540+4 8.511380-6 1.963985+4 8.560000-6 1.700682+4 8.600000-6 1.502642+4 8.635000-6 1.342462+4 8.680000-6 1.153806+4 8.720000-6 1.001682+4 8.755000-6 8.801200+3 8.790000-6 7.688660+3 8.820000-6 6.814500+3 8.850000-6 6.010720+3 8.880000-6 5.275460+3 8.912509-6 4.552994+3 8.940000-6 4.000580+3 8.970000-6 3.457000+3 9.000000-6 2.973000+3 9.035000-6 2.481220+3 9.100000-6 1.766154+3 9.128000-6 1.533752+3 9.150000-6 1.381704+3 9.165000-6 1.293068+3 9.177000-6 1.230784+3 9.193000-6 1.159460+3 9.205000-6 1.114626+3 9.220000-6 1.068838+3 9.230000-6 1.044558+3 9.240000-6 1.025212+3 9.250000-6 1.010732+3 9.260000-6 1.001066+3 9.270000-6 9.961600+2 9.283000-6 9.968020+2 9.295000-6 1.004346+3 9.306000-6 1.017000+3 9.320000-6 1.041036+3 9.335000-6 1.076430+3 9.350000-6 1.121620+3 9.365000-6 1.176436+3 9.380000-6 1.240710+3 9.400000-6 1.340748+3 9.420000-6 1.456986+3 9.450000-6 1.660738+3 9.520000-6 2.266720+3 9.560000-6 2.690660+3 9.585000-6 2.982740+3 9.620000-6 3.425040+3 9.650000-6 3.834360+3 9.685000-6 4.345540+3 9.715000-6 4.811060+3 9.750000-6 5.385380+3 9.790000-6 6.080720+3 9.830000-6 6.815240+3 9.870000-6 7.587500+3 9.910000-6 8.394920+3 9.960000-6 9.451600+3 1.000000-5 1.033238+4 1.005000-5 1.147442+4 1.010000-5 1.265978+4 1.015000-5 1.388486+4 1.021500-5 1.553274+4 1.027000-5 1.697152+4 1.033000-5 1.858332+4 1.039000-5 2.023500+4 1.047129-5 2.252939+4 1.055000-5 2.480540+4 1.062000-5 2.686800+4 1.071519-5 2.972206+4 1.081000-5 3.261000+4 1.092000-5 3.600440+4 1.102000-5 3.911920+4 1.110000-5 4.162400+4 1.123000-5 4.570640+4 1.135011-5 4.947879+4 1.150000-5 5.416920+4 1.165000-5 5.882500+4 1.180000-5 6.342640+4 1.195000-5 6.795960+4 1.215000-5 7.387860+4 1.230269-5 7.828918+4 1.250000-5 8.383700+4 1.273503-5 9.020713+4 1.300000-5 9.706260+4 1.330000-5 1.043940+5 1.357000-5 1.105972+5 1.390000-5 1.176732+5 1.420000-5 1.236334+5 1.460000-5 1.309058+5 1.500000-5 1.374482+5 1.550000-5 1.446758+5 1.603245-5 1.513165+5 1.659587-5 1.572814+5 1.717908-5 1.624340+5 1.778279-5 1.668013+5 1.850000-5 1.708878+5 1.927525-5 1.741626+5 2.018366-5 1.767490+5 2.113489-5 1.782979+5 2.238721-5 1.789355+5 2.371374-5 1.782955+5 2.511886-5 1.765674+5 2.691535-5 1.733228+5 2.900000-5 1.686188+5 3.126079-5 1.628429+5 3.400000-5 1.554300+5 3.672823-5 1.479213+5 4.000000-5 1.390836+5 4.365158-5 1.295868+5 4.731513-5 1.205758+5 5.150000-5 1.110006+5 5.623413-5 1.011552+5 6.165950-5 9.108252+4 6.839116-5 8.030038+4 7.673615-5 6.926731+4 8.912509-5 5.663668+4 1.059254-4 4.455714+4 1.303167-4 3.316252+4 1.972423-4 1.818956+4 2.213095-4 1.529618+4 2.511886-4 1.254413+4 2.884032-4 1.002337+4 3.349654-4 7.796289+3 4.570882-4 4.564423+3 5.188000-4 3.650816+3 6.095369-4 2.724644+3 7.943282-4 1.664757+3 9.225714-4 1.252246+3 1.122018-3 8.541774+2 1.348963-3 5.915818+2 1.603245-3 4.161998+2 1.883649-3 2.976860+2 2.213095-3 2.113497+2 2.600160-3 1.488892+2 3.090295-3 1.014344+2 3.589219-3 7.212962+1 4.168694-3 5.090639+1 4.841724-3 3.566691+1 5.688529-3 2.412878+1 6.683439-3 1.619335+1 7.852356-3 1.078253+1 9.225714-3 7.124639+0 1.083927-2 4.671148+0 1.273503-2 3.039063+0 1.500000-2 1.949243+0 1.778279-2 1.218902+0 2.113489-2 7.511299-1 2.511886-2 4.594708-1 3.019952-2 2.699151-1 3.630781-2 1.573465-1 4.415704-2 8.802715-2 5.370318-2 4.889781-2 6.839116-2 2.345091-2 9.332543-2 9.035405-3 1.584893-1 1.759473-3 1.972423-1 9.007109-4 2.344229-1 5.335359-4 2.722701-1 3.412500-4 3.126079-1 2.275665-4 3.507519-1 1.634082-4 3.935501-1 1.181748-4 4.365158-1 8.889058-5 4.841724-1 6.735090-5 5.308844-1 5.298406-5 5.821032-1 4.196241-5 6.382635-1 3.347177-5 6.998420-1 2.689616-5 7.673615-1 2.177388-5 8.413951-1 1.776171-5 9.225714-1 1.460156-5 1.000000+0 1.238100-5 1.148154+0 9.415369-6 1.273503+0 7.724276-6 1.412538+0 6.384123-6 1.548817+0 5.423196-6 1.717908+0 4.545598-6 1.927525+0 3.764009-6 2.162719+0 3.138558-6 2.454709+0 2.589312-6 2.818383+0 2.116225-6 3.273407+0 1.714634-6 3.801894+0 1.399823-6 4.466836+0 1.133882-6 5.370318+0 8.983856-7 6.456542+0 7.169705-7 8.000000+0 5.560100-7 1.000000+1 4.299600-7 1.273503+1 3.277675-7 1.678804+1 2.420338-7 2.371374+1 1.671363-7 3.349654+1 1.162770-7 5.248075+1 7.303133-8 9.885531+1 3.825754-8 1.972423+2 1.902838-8 7.852356+2 4.753180-9 2.483133+4 1.50063-10 1.000000+5 3.72540-11 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.280000-6 6.280000-6 1.000000+5 6.280000-6 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.280000-6 0.0 1.000000+5 1.000000+5 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.056200-8 1.028750+0 2.056200-7 1.034000+0 1.139380-6 1.035300+0 1.546550-6 1.036640+0 2.056200-6 1.038200+0 2.774910-6 1.039700+0 3.605160-6 1.041500+0 4.796630-6 1.043800+0 6.657880-6 1.046400+0 9.263200-6 1.048300+0 1.153290-5 1.051200+0 1.564420-5 1.054080+0 2.056200-5 1.057700+0 2.802730-5 1.061100+0 3.645630-5 1.065100+0 4.826390-5 1.070400+0 6.733280-5 1.076200+0 9.305340-5 1.080600+0 1.162080-4 1.087100+0 1.565720-4 1.093710+0 2.056200-4 1.102600+0 2.850980-4 1.110700+0 3.718380-4 1.120600+0 4.974340-4 1.133300+0 6.916940-4 1.147500+0 9.550690-4 1.158200+0 1.186920-3 1.174100+0 1.586240-3 1.190110+0 2.056200-3 1.205100+0 2.558800-3 1.227500+0 3.423880-3 1.250000+0 4.427000-3 1.280300+0 5.979750-3 1.307700+0 7.572650-3 1.343000+0 9.872080-3 1.382200+0 1.272720-2 1.433800+0 1.693040-2 1.500000+0 2.302000-2 1.562500+0 2.946860-2 1.617200+0 3.564220-2 1.712900+0 4.752500-2 1.784700+0 5.723310-2 1.892300+0 7.281850-2 2.000000+0 8.934000-2 2.044000+0 9.626000-2 2.215800+0 1.237520-1 2.359600+0 1.470130-1 2.588300+0 1.839140-1 2.862800+0 2.276080-1 3.000000+0 2.492000-1 3.437500+0 3.168500-1 4.000000+0 3.998000-1 4.750000+0 5.012300-1 5.000000+0 5.331000-1 6.000000+0 6.522000-1 7.000000+0 7.580000-1 8.000000+0 8.532000-1 9.000000+0 9.394000-1 1.000000+1 1.017000+0 1.100000+1 1.088000+0 1.200000+1 1.153000+0 1.300000+1 1.214000+0 1.400000+1 1.269000+0 1.500000+1 1.322000+0 1.600000+1 1.371000+0 1.800000+1 1.460000+0 2.000000+1 1.541000+0 2.200000+1 1.613000+0 2.400000+1 1.679000+0 2.600000+1 1.739000+0 2.800000+1 1.795000+0 3.000000+1 1.846000+0 4.000000+1 2.056000+0 5.000000+1 2.212000+0 6.000000+1 2.334000+0 8.000000+1 2.517000+0 1.000000+2 2.648000+0 1.500000+2 2.860000+0 2.000000+2 2.989000+0 3.000000+2 3.141000+0 4.000000+2 3.230000+0 5.000000+2 3.289000+0 6.000000+2 3.332000+0 8.000000+2 3.389000+0 1.000000+3 3.426000+0 1.500000+3 3.480000+0 2.000000+3 3.509000+0 3.000000+3 3.541000+0 4.000000+3 3.558000+0 5.000000+3 3.569000+0 6.000000+3 3.577000+0 8.000000+3 3.587000+0 1.000000+4 3.593000+0 1.500000+4 3.602000+0 2.000000+4 3.607000+0 3.000000+4 3.611000+0 4.000000+4 3.614000+0 5.000000+4 3.616000+0 6.000000+4 3.617000+0 8.000000+4 3.618000+0 1.000000+5 3.619000+0 1 22000 7 8 4.790000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.209060-7 2.119500+0 1.239820-6 2.127900+0 1.681430-6 2.136250+0 2.209060-6 2.147000+0 3.028780-6 2.156900+0 3.934020-6 2.169000+0 5.250190-6 2.184500+0 7.297940-6 2.201800+0 1.009690-5 2.214800+0 1.258000-5 2.234200+0 1.692230-5 2.253680+0 2.209060-5 2.281500+0 3.094180-5 2.307000+0 4.064200-5 2.338200+0 5.464680-5 2.377400+0 7.567930-5 2.410200+0 9.625150-5 2.446800+0 1.224370-4 2.485900+0 1.541550-4 2.532900+0 1.972850-4 2.556430+0 2.209060-4 2.611900+0 2.816780-4 2.660400+0 3.405310-4 2.745300+0 4.557730-4 2.809000+0 5.519640-4 2.904500+0 7.110550-4 3.000000+0 8.876000-4 3.125000+0 1.144600-3 3.234400+0 1.392820-3 3.425800+0 1.875910-3 3.569300+0 2.275010-3 3.784700+0 2.925060-3 4.000000+0 3.624000-3 4.250000+0 4.478580-3 4.625000+0 5.822070-3 5.000000+0 7.220000-3 5.500000+0 9.141660-3 6.000000+0 1.109000-2 6.750000+0 1.398650-2 7.000000+0 1.494000-2 8.000000+0 1.868000-2 9.000000+0 2.227000-2 1.000000+1 2.568000-2 1.100000+1 2.891000-2 1.200000+1 3.196000-2 1.300000+1 3.484000-2 1.400000+1 3.759000-2 1.500000+1 4.020000-2 1.600000+1 4.268000-2 1.800000+1 4.728000-2 2.000000+1 5.148000-2 2.200000+1 5.534000-2 2.400000+1 5.890000-2 2.600000+1 6.219000-2 2.800000+1 6.526000-2 3.000000+1 6.812000-2 4.000000+1 8.005000-2 5.000000+1 8.923000-2 6.000000+1 9.659000-2 8.000000+1 1.078000-1 1.000000+2 1.162000-1 1.500000+2 1.302000-1 2.000000+2 1.392000-1 3.000000+2 1.505000-1 4.000000+2 1.574000-1 5.000000+2 1.622000-1 6.000000+2 1.658000-1 8.000000+2 1.708000-1 1.000000+3 1.742000-1 1.500000+3 1.792000-1 2.000000+3 1.822000-1 3.000000+3 1.854000-1 4.000000+3 1.873000-1 5.000000+3 1.885000-1 6.000000+3 1.893000-1 8.000000+3 1.904000-1 1.000000+4 1.911000-1 1.500000+4 1.921000-1 2.000000+4 1.927000-1 3.000000+4 1.932000-1 4.000000+4 1.936000-1 5.000000+4 1.938000-1 6.000000+4 1.939000-1 8.000000+4 1.941000-1 1.000000+5 1.942000-1 1 22000 7 8 4.790000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 22000 7 9 4.790000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.200000+1 1.000000+5 2.200000+1 5.000000+5 2.198600+1 8.750000+5 2.196650+1 1.000000+6 2.195900+1 1.500000+6 2.191800+1 2.000000+6 2.185500+1 2.375000+6 2.179640+1 2.500000+6 2.177500+1 2.875000+6 2.170530+1 3.000000+6 2.168000+1 3.437500+6 2.158140+1 3.812500+6 2.149130+1 4.000000+6 2.144600+1 4.500000+6 2.131260+1 5.000000+6 2.117100+1 5.500000+6 2.101430+1 5.875000+6 2.089120+1 6.000000+6 2.085030+1 6.437500+6 2.069920+1 7.000000+6 2.050200+1 7.687500+6 2.025300+1 8.437500+6 1.997680+1 8.500000+6 1.995350+1 9.000000+6 1.976900+1 9.750000+6 1.948700+1 1.000000+7 1.939500+1 1.125000+7 1.893490+1 1.187500+7 1.870800+1 1.250000+7 1.848500+1 1.437500+7 1.782920+1 1.500000+7 1.761800+1 1.750000+7 1.680600+1 2.000000+7 1.603500+1 2.250000+7 1.528350+1 2.375000+7 1.491630+1 2.500000+7 1.455500+1 2.750000+7 1.385030+1 2.875000+7 1.350760+1 3.000000+7 1.317400+1 3.250000+7 1.252860+1 3.437500+7 1.206950+1 3.625000+7 1.163310+1 4.000000+7 1.082900+1 4.500000+7 9.896440+0 5.000000+7 9.122400+0 5.500000+7 8.490830+0 5.750000+7 8.221720+0 6.000000+7 7.978600+0 6.750000+7 7.382750+0 7.000000+7 7.217300+0 8.000000+7 6.657100+0 9.000000+7 6.178500+0 9.750000+7 5.837160+0 1.000000+8 5.725400+0 1.062500+8 5.446980+0 1.109400+8 5.239910+0 1.179700+8 4.931530+0 1.250000+8 4.626700+0 1.312500+8 4.359700+0 1.394500+8 4.023860+0 1.437500+8 3.855680+0 1.500000+8 3.623700+0 1.625000+8 3.203090+0 1.750000+8 2.840270+0 1.789100+8 2.737600+0 2.000000+8 2.265100+0 2.171900+8 1.968900+0 2.289100+8 1.812730+0 2.375000+8 1.720960+0 2.381300+8 1.714930+0 2.460400+8 1.647440+0 2.500000+8 1.619000+0 3.000000+8 1.389300+0 3.500000+8 1.159600+0 3.625000+8 1.123750+0 4.000000+8 1.042400+0 4.179700+8 1.001340+0 4.330100+8 9.650800-1 4.569300+8 9.066340-1 4.856400+8 8.394270-1 5.000000+8 8.080000-1 5.343800+8 7.385460-1 5.578100+8 6.939030-1 5.789100+8 6.543880-1 6.000000+8 6.152000-1 6.250000+8 5.693780-1 6.718800+8 4.948620-1 6.906300+8 4.708770-1 7.000000+8 4.603000-1 7.250000+8 4.361450-1 7.625000+8 4.043150-1 7.812500+8 3.882630-1 8.000000+8 3.712000-1 8.183600+8 3.532470-1 8.352100+8 3.361290-1 8.558000+8 3.150260-1 8.822400+8 2.885030-1 9.116800+8 2.606930-1 1.000000+9 1.931000-1 1.060500+9 1.604270-1 1.141100+9 1.284390-1 1.365400+9 7.547690-2 1.455100+9 6.216820-2 1.500000+9 5.652600-2 1.589800+9 4.684400-2 1.665000+9 4.015860-2 1.784700+9 3.166130-2 1.928200+9 2.413850-2 2.000000+9 2.120100-2 2.187500+9 1.538430-2 2.539100+9 8.966720-3 2.846700+9 5.897610-3 3.385000+9 3.106280-3 4.192500+9 1.396020-3 5.000000+9 7.199600-4 8.000000+9 1.228500-4 9.500000+9 6.463840-5 1.00000+10 5.341500-5 1.20500+10 2.685350-5 1.41820+10 1.482570-5 1.71170+10 7.523100-6 2.01490+10 4.204190-6 2.26440+10 2.781420-6 2.74790+10 1.410960-6 3.20120+10 8.301570-7 3.62610+10 5.401920-7 4.42280+10 2.739200-7 5.12000+10 1.667810-7 6.34000+10 8.132160-8 7.94120+10 3.843950-8 1.00000+11 1.798000-8 1.17140+11 1.071790-8 1.55940+11 4.237090-9 2.04410+11 1.777030-9 2.51720+11 9.15808-10 3.60730+11 2.94426-10 4.99630+11 1.06579-10 8.44540+11 2.11502-11 1.81520+12 2.08195-12 4.94530+12 1.05606-13 2.22380+13 1.29780-15 1.00000+14 1.62970-17 5.62340+14 1.01791-19 7.49890+15 4.58535-23 1.00000+17 1.94890-26 1 22000 7 0 4.790000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.30000-12 1.000000+2 6.30000-10 1.000000+3 6.300000-8 1.000000+4 6.300000-6 1.000000+5 6.300000-4 5.000000+5 1.575000-2 8.750000+5 4.823438-2 1.000000+6 6.300000-2 1.500000+6 1.391000-1 2.000000+6 2.432000-1 2.375000+6 3.376490-1 2.500000+6 3.720000-1 2.875000+6 4.828960-1 3.000000+6 5.223000-1 3.437500+6 6.683910-1 3.812500+6 8.024210-1 4.000000+6 8.721000-1 4.500000+6 1.064210+0 5.000000+6 1.263000+0 5.500000+6 1.464600+0 5.875000+6 1.616190+0 6.000000+6 1.666540+0 6.437500+6 1.841610+0 7.000000+6 2.062600+0 7.687500+6 2.323390+0 8.437500+6 2.594810+0 8.500000+6 2.616760+0 9.000000+6 2.789000+0 9.750000+6 3.034870+0 1.000000+7 3.114000+0 1.125000+7 3.490760+0 1.187500+7 3.670310+0 1.250000+7 3.845600+0 1.437500+7 4.355350+0 1.500000+7 4.523000+0 1.750000+7 5.192700+0 2.000000+7 5.860000+0 2.250000+7 6.513340+0 2.375000+7 6.831910+0 2.500000+7 7.143600+0 2.750000+7 7.743140+0 2.875000+7 8.031010+0 3.000000+7 8.312000+0 3.250000+7 8.850280+0 3.437500+7 9.235990+0 3.625000+7 9.606240+0 4.000000+7 1.030400+1 4.500000+7 1.114960+1 5.000000+7 1.190100+1 5.500000+7 1.256150+1 5.750000+7 1.285940+1 6.000000+7 1.314000+1 6.750000+7 1.387520+1 7.000000+7 1.409300+1 8.000000+7 1.485600+1 9.000000+7 1.550900+1 9.750000+7 1.595350+1 1.000000+8 1.609500+1 1.062500+8 1.643530+1 1.109400+8 1.667910+1 1.179700+8 1.702770+1 1.250000+8 1.735300+1 1.312500+8 1.762400+1 1.394500+8 1.795190+1 1.437500+8 1.811370+1 1.500000+8 1.833400+1 1.625000+8 1.872340+1 1.750000+8 1.905670+1 1.789100+8 1.915140+1 2.000000+8 1.958500+1 2.171900+8 1.986100+1 2.289100+8 2.001790+1 2.375000+8 2.012300+1 2.381300+8 2.013010+1 2.460400+8 2.021660+1 2.500000+8 2.025900+1 3.000000+8 2.068200+1 3.500000+8 2.099400+1 3.625000+8 2.105900+1 4.000000+8 2.123900+1 4.179700+8 2.131310+1 4.330100+8 2.137020+1 4.569300+8 2.145370+1 4.856400+8 2.153980+1 5.000000+8 2.158000+1 5.343800+8 2.165860+1 5.578100+8 2.170470+1 5.789100+8 2.174190+1 6.000000+8 2.177400+1 6.250000+8 2.180490+1 6.718800+8 2.185440+1 6.906300+8 2.187090+1 7.000000+8 2.187900+1 7.250000+8 2.189460+1 7.625000+8 2.191690+1 7.812500+8 2.192690+1 8.000000+8 2.193500+1 8.183600+8 2.194070+1 8.352100+8 2.194580+1 8.558000+8 2.195180+1 8.822400+8 2.195950+1 9.116800+8 2.196630+1 1.000000+9 2.198000+1 1.060500+9 2.198510+1 1.141100+9 2.199060+1 1.365400+9 2.199550+1 1.455100+9 2.199720+1 1.500000+9 2.199800+1 1.589800+9 2.199840+1 1.665000+9 2.199870+1 1.784700+9 2.199920+1 1.928200+9 2.199970+1 2.000000+9 2.200000+1 2.187500+9 2.200000+1 2.539100+9 2.200000+1 2.846700+9 2.200000+1 3.385000+9 2.200000+1 4.192500+9 2.200000+1 5.000000+9 2.200000+1 8.000000+9 2.200000+1 9.500000+9 2.200000+1 1.00000+10 2.200000+1 1.20500+10 2.200000+1 1.41820+10 2.200000+1 1.71170+10 2.200000+1 2.01490+10 2.200000+1 2.26440+10 2.200000+1 2.74790+10 2.200000+1 3.20120+10 2.200000+1 3.62610+10 2.200000+1 4.42280+10 2.200000+1 5.12000+10 2.200000+1 6.34000+10 2.200000+1 7.94120+10 2.200000+1 1.00000+11 2.200000+1 1.17140+11 2.200000+1 1.55940+11 2.200000+1 2.04410+11 2.200000+1 2.51720+11 2.200000+1 3.60730+11 2.200000+1 4.99630+11 2.200000+1 8.44540+11 2.200000+1 1.81520+12 2.200000+1 4.94530+12 2.200000+1 2.22380+13 2.200000+1 1.00000+14 2.200000+1 5.62340+14 2.200000+1 7.49890+15 2.200000+1 1.00000+17 2.200000+1 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.834619-6 0.0 2.846829-6 3.269884+0 2.848574-6 3.732244+0 2.855551-6 6.817248+0 2.857389-6 8.047539+0 2.862528-6 1.426492+1 2.869505-6 2.436699+1 2.872334-6 2.935678+1 2.879367-6 4.402866+1 2.888049-6 6.664226+1 2.902665-6 1.072585+2 2.907060-6 1.180012+2 2.914399-6 1.301689+2 2.921636-6 1.340052+2 2.928366-6 1.296317+2 2.936017-6 1.155631+2 2.945756-6 8.890110+1 2.955852-6 5.856950+1 2.962886-6 4.000843+1 2.969919-6 2.499530+1 2.974161-6 1.800264+1 2.976952-6 1.418115+1 2.983985-6 7.801168+0 2.994534-6 1.983088+0 2.998051-6 0.0 4.060672-6 0.0 4.070667-6 2.34602-15 4.080661-6 4.64213-15 4.090656-6 8.47924-15 4.100651-6 1.42972-14 4.110646-6 2.22534-14 4.120641-6 3.19740-14 4.130636-6 4.24084-14 4.140630-6 5.19231-14 4.150625-6 5.86844-14 4.160620-6 6.12264-14 4.170615-6 5.89670-14 4.180610-6 5.24244-14 4.190604-6 4.30241-14 4.210594-6 2.27945-14 4.220589-6 1.47153-14 4.230584-6 8.76928-15 4.240579-6 4.82405-15 4.250573-6 2.44971-15 4.260568-6 0.0 4.686303-6 0.0 4.692471-6 2.198891-2 4.709372-6 2.136395-1 4.715571-6 2.976230-1 4.722460-6 4.312081-1 4.728077-6 5.596516-1 4.734583-6 7.512156-1 4.739895-6 9.298217-1 4.751844-6 1.424143+0 4.778941-6 2.737236+0 4.793662-6 3.256519+0 4.798792-6 3.349824+0 4.808692-6 3.416538+0 4.820242-6 3.233783+0 4.832236-6 2.807041+0 4.849722-6 1.975951+0 4.865720-6 1.421912+0 4.873479-6 1.229581+0 4.877270-6 1.171726+0 4.885069-6 1.127073+0 4.888819-6 1.175461+0 4.897945-6 1.385070+0 4.908975-6 1.808554+0 4.922154-6 2.566846+0 4.952819-6 4.849079+0 4.964324-6 5.491879+0 4.970852-6 5.752525+0 4.981466-6 5.953280+0 4.994898-6 5.757567+0 5.006263-6 5.288265+0 5.022418-6 4.253825+0 5.046839-6 2.518739+0 5.052851-6 2.114535+0 5.064873-6 1.439692+0 5.076896-6 9.123267-1 5.087415-6 5.192937-1 5.088919-6 4.836319-1 5.100941-6 2.815493-1 5.112964-6 1.522467-1 5.124987-6 3.440811-2 5.136798-6 1.766454-2 5.148877-6 0.0 5.304780-6 0.0 5.319322-6 1.20151-11 5.321879-6 1.518394-3 5.348077-6 5.335648-2 5.361176-6 9.669471-2 5.374275-6 1.618447-1 5.387374-6 2.501848-1 5.424064-6 5.543971-1 5.439771-6 6.446478-1 5.452870-6 6.693190-1 5.465969-6 6.417131-1 5.479068-6 5.681151-1 5.518366-6 2.443215-1 5.531465-6 1.572257-1 5.544564-6 9.341867-2 5.557663-6 5.124898-2 5.570762-6 2.518000-2 5.581178-6 3.838402-3 5.583861-6 0.0 5.603585-6 0.0 5.611812-6 4.39390-12 5.613120-6 2.600723-4 5.640752-6 1.868373-2 5.654568-6 3.399628-2 5.668384-6 5.711758-2 5.682200-6 8.860755-2 5.722314-6 2.016598-1 5.737464-6 2.310780-1 5.751280-6 2.405304-1 5.765096-6 2.311565-1 5.782888-6 1.980098-1 5.814316-6 1.214746-1 5.820360-6 1.094281-1 5.832817-6 9.162509-2 5.846629-6 8.313463-2 5.861808-6 8.568247-2 5.888068-6 1.041892-1 5.899554-6 1.159319-1 5.913760-6 1.249563-1 5.929913-6 1.264924-1 5.944508-6 1.235236-1 5.973700-6 1.105914-1 6.003414-6 1.036912-1 6.112894-6 9.453977-2 6.207227-6 8.271422-2 6.266396-6 7.728414-2 6.683807-6 4.979245-2 6.716709-6 9.419545-2 6.733161-6 1.315101-1 6.736217-6 1.420883-1 6.749612-6 2.002396-1 6.766063-6 2.939014-1 6.785958-6 4.393915-1 6.819118-6 7.198262-1 6.835699-6 8.410314-1 6.852279-6 9.233123-1 6.868859-6 9.528733-1 6.885440-6 9.251702-1 6.906170-6 8.170756-1 6.941701-6 5.387480-1 6.963479-6 3.645479-1 6.979931-6 2.583391-1 7.001502-6 1.520836-1 7.012833-6 1.068613-1 7.018082-6 9.410998-2 7.034663-6 6.632578-2 7.067823-6 3.226826-2 7.074295-6 3.095312-2 7.296115-6 2.310717-2 7.313215-6 2.492264-2 7.332032-6 3.559910-2 7.349991-6 4.749541-2 7.367216-6 6.704446-2 7.385908-6 1.035512-1 7.405512-6 1.543314-1 7.435957-6 2.560878-1 7.462516-6 3.498149-1 7.479582-6 3.985017-1 7.497475-6 4.304305-1 7.515866-6 4.373974-1 7.535720-6 4.144828-1 7.553823-6 3.709435-1 7.605035-6 1.982891-1 7.619368-6 1.574859-1 7.637326-6 1.171915-1 7.644336-6 1.051618-1 7.659451-6 8.561582-2 7.673225-6 7.886826-2 7.680585-6 8.071987-2 7.698398-6 9.371850-2 7.719619-6 1.208191-1 7.737160-6 1.497202-1 7.772913-6 2.150348-1 7.795462-6 2.421214-1 7.815843-6 2.520420-1 7.838123-6 2.495736-1 7.908235-6 2.071243-1 7.931595-6 2.029956-1 7.983681-6 2.091610-1 8.023545-6 2.177549-1 8.198539-6 2.233145-1 8.313307-6 2.106193-1 8.402375-6 2.220478-1 8.486754-6 2.388928-1 8.609182-6 2.515769-1 9.500260-6 3.209433-1 1.100000-5 4.631167-1 1.380384-5 7.694592-1 2.102229-5 1.589114+0 2.540973-5 1.980406+0 3.029607-5 2.249944+0 3.515910-5 2.371627+0 3.521766-5 2.799081+0 3.536161-5 1.334169+1 3.539103-5 1.558690+1 3.547771-5 2.629391+1 3.556440-5 4.237002+1 3.566022-5 6.698793+1 3.592215-5 1.482651+2 3.600740-5 1.672972+2 3.610199-5 1.763843+2 3.619564-5 1.735465+2 3.637138-5 1.498469+2 3.654221-5 1.240049+2 3.683408-5 8.950712+1 3.693632-5 7.077342+1 3.695134-5 6.757823+1 3.717603-5 3.324419+1 3.726428-5 2.231034+1 3.735252-5 1.426349+1 3.744077-5 8.924543+0 3.761726-5 2.396753+0 4.126960-5 2.403777+0 4.157434-5 2.590660+0 4.177750-5 2.894319+0 4.210154-5 3.641295+0 4.231399-5 3.958268+0 4.252380-5 4.032261+0 4.316904-5 4.105882+0 4.393691-5 3.966628+0 4.623944-5 3.813200+0 5.181579-5 3.253788+0 5.650000-5 2.981463+0 6.370557-5 2.851224+0 6.417598-5 2.997055+0 6.460139-5 3.354182+0 6.493681-5 3.715315+0 6.511680-5 3.848151+0 6.527360-5 3.887055+0 6.558721-5 3.733680+0 6.619540-5 3.176800+0 6.651245-5 3.094993+0 6.757139-5 3.275880+0 1.080000-4 3.722520+0 1.340810-4 3.741298+0 1.894821-4 3.418726+0 3.067887-4 2.536665+0 4.030591-4 1.994296+0 4.459202-4 1.811228+0 4.481182-4 4.830623+0 4.492130-4 7.320482+0 4.503105-4 1.110474+1 4.514767-4 1.670342+1 4.535661-4 3.011344+1 4.549270-4 3.905767+1 4.561883-4 4.523504+1 4.573178-4 4.842335+1 4.584277-4 4.914170+1 4.598679-4 4.686036+1 4.617396-4 4.079247+1 4.664966-4 2.275848+1 4.680303-4 1.772276+1 4.696554-4 1.515766+1 4.709959-4 1.406464+1 4.721310-4 1.366349+1 4.741316-4 1.340444+1 4.782063-4 1.459934+1 4.846751-4 1.504387+1 5.433978-4 1.326612+1 5.509804-4 1.372969+1 5.575066-4 1.435956+1 6.916369-4 1.113551+1 8.301942-4 8.714155+0 9.713275-4 6.963951+0 1.118324-3 5.638128+0 1.288250-3 4.539296+0 1.457363-3 3.736642+0 1.654817-3 3.048600+0 1.850827-3 2.540292+0 2.068680-3 2.113646+0 2.334130-3 1.726847+0 2.635004-3 1.405636+0 2.970918-3 1.143687+0 3.360840-3 9.233776-1 3.784797-3 7.496848-1 4.233230-3 6.151904-1 4.782300-3 4.952105-1 4.819980-3 4.940505-1 4.841806-3 5.261876-1 4.854470-3 5.715378-1 4.867549-3 6.593834-1 4.877675-3 7.682142-1 4.889324-3 9.468065-1 4.900785-3 1.183895+0 4.916743-3 1.612203+0 4.956032-3 2.836631+0 4.975800-3 3.308590+0 4.994572-3 3.591126+0 5.027242-3 3.778042+0 5.205119-3 3.656046+0 6.065562-3 2.882003+0 6.955316-3 2.305306+0 7.865023-3 1.883199+0 8.859854-3 1.536384+0 1.003356-2 1.240079+0 1.121211-2 1.018006+0 1.254517-2 8.329686-1 1.388832-2 6.914428-1 1.550771-2 5.640995-1 1.711893-2 4.686931-1 1.906746-2 3.820371-1 2.137243-2 3.068691-1 2.374789-2 2.501583-1 2.618501-2 2.065057-1 2.883160-2 1.706989-1 3.152263-2 1.429146-1 3.481147-2 1.170483-1 3.781226-2 9.896257-2 4.143886-2 8.219270-2 4.564862-2 6.735710-2 5.084520-2 5.393182-2 5.636425-2 4.352871-2 6.203835-2 3.561771-2 6.920432-2 2.832444-2 7.638971-2 2.297768-2 8.395194-2 1.882099-2 9.175547-2 1.559568-2 1.025274-1 1.232538-2 1.125468-1 1.012046-2 1.253350-1 8.058108-3 1.366389-1 6.710349-3 1.492253-1 5.574696-3 1.647109-1 4.528161-3 1.798369-1 3.765727-3 1.972947-1 3.106327-3 2.178141-1 2.533711-3 2.379744-1 2.118323-3 2.592687-1 1.783223-3 2.847974-1 1.480710-3 3.132280-1 1.232018-3 3.447953-1 1.027108-3 3.812852-1 8.534135-4 4.241909-1 7.064676-4 4.741737-1 5.843374-4 5.278931-1 4.905196-4 5.824175-1 4.216277-4 6.645077-1 3.480030-4 7.328245-1 3.051080-4 8.420008-1 2.569654-4 9.556800-1 2.226697-4 1.120601+0 1.890830-4 1.347258+0 1.564415-4 1.619761+0 1.294349-4 1.947381+0 1.070905-4 2.341267+0 8.860336-5 2.814822+0 7.330770-5 3.384160+0 6.065254-5 4.068655+0 5.018205-5 4.891600+0 4.151909-5 5.880996+0 3.435162-5 7.070513+0 2.842148-5 8.500626+0 2.351506-5 9.760024+0 2.039955-5 1.000000+1 4.042795-5 1 22000 7 0 4.790000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.172935+1 1.869960-6-2.059170+1 2.254174-6-1.901997+1 2.451656-6-1.717748+1 2.557279-6-1.535159+1 2.633770-6-1.316725+1 2.679468-6-1.117700+1 2.714769-6-9.003944+0 2.735866-6-7.282557+0 2.753249-6-5.510440+0 2.767572-6-3.715709+0 2.771763-6-3.117486+0 2.779620-6-1.886696+0 2.786495-6-6.728733-1 2.792510-6 5.153183-1 2.797774-6 1.670015+0 2.802380-6 2.784326+0 2.806410-6 3.852457+0 2.813021-6 5.832816+0 2.820446-6 8.495212+0 2.826647-6 1.122684+1 2.831630-6 1.395845+1 2.834619-6 1.612653+1 2.846829-6 2.517470+1 2.854678-6 3.293039+1 2.859155-6 3.908653+1 2.864272-6 4.467971+1 2.873873-6 5.335722+1 2.880906-6 5.724526+1 2.888049-6 5.696834+1 2.892962-6 5.326699+1 2.897724-6 4.687684+1 2.903654-6 3.445418+1 2.906250-6 2.754962+1 2.911799-6 1.029049+1 2.912958-6 6.260126+0 2.913480-6 4.226093+0 2.913764-6 2.914801+0 2.913980-6 2.012759+0 2.914399-6 3.881541-1 2.915185-6-2.488729+0 2.919140-6-1.659052+1 2.920511-6-2.195340+1 2.921440-6-1.774072+1 2.923041-6-1.165605+1 2.925966-6-1.155240+0 2.926843-6 2.107586+0 2.927501-6 4.743237+0 2.927940-6 6.785904+0 2.928366-6 8.502829+0 2.929863-6 1.384931+1 2.936017-6 3.371542+1 2.938541-6 4.032760+1 2.942665-6 4.972415+1 2.947018-6 5.672230+1 2.952125-6 6.157640+1 2.955852-6 6.271347+1 2.962886-6 6.081903+1 2.969919-6 5.509036+1 2.984864-6 3.729305+1 2.997611-6 2.539412+1 3.000125-6 2.245233+1 3.004264-6 1.917916+1 3.010442-6 1.546417+1 3.018631-6 1.169199+1 3.026756-6 8.750356+0 3.034818-6 6.363916+0 3.042816-6 4.377147+0 3.050753-6 2.691474+0 3.054698-6 1.939788+0 3.062557-6 5.841765-1 3.070355-6-6.030175-1 3.078092-6-1.652327+0 3.085768-6-2.587106+0 3.093384-6-3.425581+0 3.108439-6-4.868658+0 3.130583-6-6.593804+0 3.159366-6-8.337134+0 3.200958-6-1.020462+1 3.266056-6-1.220761+1 3.371759-6-1.421805+1 3.527394-6-1.590620+1 3.784701-6-1.739436+1 4.621990-6-2.005688+1 4.695508-6-2.094073+1 4.761135-6-2.201154+1 4.795041-6-2.096634+1 4.834421-6-1.909937+1 4.861720-6-1.923558+1 4.924207-6-2.166306+1 4.949825-6-2.114456+1 4.981466-6-1.865390+1 5.012838-6-1.607896+1 5.035650-6-1.520471+1 5.064873-6-1.536916+1 5.136798-6-1.724394+1 5.235933-6-1.819533+1 5.424064-6-1.897823+1 5.518366-6-1.847373+1 5.737464-6-1.910034+1 6.716709-6-1.995517+1 6.835699-6-1.996865+1 6.951761-6-1.912555+1 7.479582-6-1.994774+1 7.644336-6-1.973355+1 1.584893-5-2.111583+1 2.320179-5-2.218256+1 2.716790-5-1.992596+1 2.952349-5-1.744733+1 3.092417-5-1.499431+1 3.177515-5-1.277547+1 3.240000-5-1.052096+1 3.286162-5-8.327009+0 3.313983-5-6.680174+0 3.338435-5-4.959727+0 3.359927-5-3.173587+0 3.369676-5-2.258806+0 3.378815-5-1.331425+0 3.387384-5-3.928049-1 3.395417-5 5.555260-1 3.402947-5 1.512194+0 3.410040-5 2.480382+0 3.422832-5 4.415964+0 3.434103-5 6.363236+0 3.444009-5 8.304220+0 3.452997-5 1.029149+1 3.467742-5 1.414857+1 3.479032-5 1.776994+1 3.491205-5 2.260713+1 3.503750-5 2.914787+1 3.512490-5 3.530025+1 3.520302-5 4.318711+1 3.526173-5 5.100682+1 3.539103-5 6.572562+1 3.557523-5 8.901691+1 3.567495-5 9.599683+1 3.574161-5 9.486686+1 3.582596-5 8.703270+1 3.589317-5 7.506682+1 3.598483-5 4.905640+1 3.601744-5 3.685390+1 3.607451-5 1.750948+1 3.608603-5 1.296248+1 3.609178-5 1.031086+1 3.610199-5 6.396004+0 3.611125-5 3.108157+0 3.611935-5 3.350483-1 3.616710-5-1.566401+1 3.618213-5-2.142883+1 3.620109-5-1.521660+1 3.622425-5-8.542347+0 3.624483-5-3.077834+0 3.628796-5 7.889651+0 3.631014-5 1.300462+1 3.634878-5 2.072972+1 3.640847-5 3.073880+1 3.647000-5 3.906694+1 3.652963-5 4.488378+1 3.682305-5 7.064803+1 3.692130-5 7.802446+1 3.709297-5 7.689686+1 3.717603-5 7.347981+1 3.726428-5 6.719582+1 3.749592-5 4.779792+1 3.761726-5 3.895150+1 3.767870-5 3.446963+1 3.778783-5 2.907077+1 3.795969-5 2.300169+1 3.815924-5 1.792275+1 3.838254-5 1.367639+1 3.857855-5 1.075565+1 3.883643-5 7.696458+0 3.898732-5 6.205716+0 3.923488-5 4.117141+0 3.933597-5 3.368124+0 3.951287-5 2.175061+0 3.964555-5 1.365298+0 3.984456-5 2.647451-1 4.006632-5-8.282299-1 4.024070-5-1.605536+0 4.055941-5-2.879717+0 4.167592-5-6.753435+0 4.191626-5-7.411322+0 4.220466-5-7.699254+0 4.252380-5-7.727600+0 4.520790-5-9.379530+0 4.905542-5-1.074589+1 5.650000-5-1.220927+1 6.370557-5-1.337052+1 6.481102-5-1.368927+1 6.569721-5-1.278408+1 6.651245-5-1.301921+1 6.781495-5-1.316345+1 9.500295-5-1.317195+1 1.700078-4-1.187056+1 2.263693-4-1.161309+1 2.875743-4-1.200794+1 3.376501-4-1.304511+1 3.732476-4-1.449840+1 4.001520-4-1.651040+1 4.173195-4-1.882001+1 4.281841-4-2.132705+1 4.366846-4-1.962788+1 4.413495-4-1.752586+1 4.438366-4-1.547129+1 4.453711-4-1.336766+1 4.459202-4-1.210255+1 4.467572-4-1.023675+1 4.479782-4-7.815432+0 4.482526-4-7.069508+0 4.490929-4-5.126653+0 4.493502-4-4.370600+0 4.503105-4-2.224256+0 4.504477-4-1.872429+0 4.514081-4-2.892061-1 4.514767-4-1.396624-1 4.516053-4 2.873499-2 4.518304-4 1.896264-1 4.521681-4 2.339844-1 4.525057-4 1.271302-1 4.526525-4 3.671215-2 4.529278-4-2.742706-1 4.531686-4-6.605723-1 4.533819-4-1.086459+0 4.535661-4-1.516904+0 4.538865-4-2.406572+0 4.541285-4-3.206040+0 4.544462-4-4.444009+0 4.547525-4-5.907034+0 4.556055-4-1.088668+1 4.559732-4-1.338422+1 4.570702-4-2.173968+1 4.577274-4-2.707421+1 4.587301-4-2.005606+1 4.598679-4-1.288333+1 4.603117-4-1.062853+1 4.612875-4-6.157853+0 4.617396-4-4.454431+0 4.621088-4-3.288574+0 4.623857-4-2.510429+0 4.628011-4-1.467390+0 4.632165-4-5.273006-1 4.634440-4-6.031707-2 4.636953-4 3.626838-1 4.638423-4 6.153579-1 4.641423-4 1.034822+0 4.645890-4 1.527522+0 4.650370-4 1.867990+0 4.655299-4 2.074970+0 4.657764-4 2.108714+0 4.660924-4 2.034543+0 4.664966-4 1.905317+0 4.668520-4 1.717690+0 4.671185-4 1.522825+0 4.675183-4 1.075811+0 4.677182-4 7.671708-1 4.678181-4 5.692136-1 4.679180-4 2.935356-1 4.680303-4 9.306208-3 4.681034-4-1.749683-1 4.682000-4-3.582994-1 4.687000-4-1.264615+0 4.700221-4-3.450133+0 4.709959-4-4.991839+0 4.721310-4-6.445965+0 4.744000-4-8.842474+0 4.758407-4-9.675205+0 4.782063-4-1.023084+1 4.826501-4-1.040269+1 5.250010-4-8.730804+0 5.399312-4-8.480539+0 5.509804-4-8.820855+0 5.562692-4-8.349790+0 5.641943-4-7.391206+0 5.791056-4-6.451937+0 6.057377-4-5.279465+0 6.343530-4-4.359651+0 6.713951-4-3.448736+0 7.056322-4-2.793726+0 7.500943-4-2.132712+0 7.901937-4-1.677154+0 8.301942-4-1.319885+0 8.743199-4-1.019421+0 9.253659-4-7.528075-1 9.605056-4-6.093843-1 1.012797-3-4.382888-1 1.039153-3-3.695546-1 1.077312-3-2.969201-1 1.118324-3-2.333709-1 1.150310-3-1.923302-1 1.183383-3-1.570932-1 1.207032-3-1.383460-1 1.244515-3-1.157189-1 1.288250-3-9.557679-2 1.333522-3-8.047372-2 1.365320-3-7.733095-2 1.436626-3-8.308542-2 1.499462-3-9.768618-2 1.559317-3-1.132511-1 1.600033-3-1.268985-1 1.775131-3-2.007578-1 2.425956-3-5.451411-1 3.222724-3-9.930930-1 3.642966-3-1.266841+0 4.040141-3-1.595493+0 4.317520-3-1.921092+0 4.491670-3-2.217775+0 4.644289-3-2.608929+0 4.732568-3-2.958980+0 4.801462-3-3.388701+0 4.845969-3-3.865198+0 4.919632-3-5.108093+0 4.941625-3-5.213027+0 4.964488-3-5.019375+0 5.035701-3-3.687420+0 5.074717-3-3.190393+0 5.118336-3-2.817555+0 5.182144-3-2.424557+0 5.268184-3-2.037239+0 5.364877-3-1.712660+0 5.501753-3-1.374552+0 5.632575-3-1.121519+0 5.814611-3-8.497455-1 5.992118-3-6.416053-1 6.166123-3-4.842413-1 6.331510-3-3.590747-1 6.510845-3-2.466644-1 6.680573-3-1.580970-1 6.842880-3-8.641547-2 7.006059-3-2.445041-2 7.082985-3 6.913890-4 7.164337-3 2.736537-2 7.346108-3 7.975311-2 7.518863-3 1.224522-1 7.676869-3 1.563519-1 7.865023-3 1.927387-1 8.075118-3 2.273462-1 8.513501-3 2.808542-1 9.097794-3 3.256092-1 9.897057-3 3.594874-1 1.088675-2 3.745709-1 1.254517-2 3.648872-1 2.065186-2 2.278337-1 2.448263-2 1.787415-1 2.792885-2 1.443914-1 3.247017-2 1.095825-1 3.672823-2 8.503508-2 4.143886-2 6.403389-2 4.564862-2 4.936245-2 4.959852-2 3.811326-2 5.356339-2 2.879195-2 5.846004-2 1.931167-2 6.203835-2 1.348518-2 6.637479-2 7.466802-3 6.920432-2 4.039849-3 7.061809-2 2.451624-3 7.208686-2 8.809392-4 7.296214-2-1.125068-5 7.353885-2-5.977992-4 7.497336-2-1.991091-3 7.785557-2-4.602716-3 8.198545-2-7.924038-3 8.804659-2-1.210588-2 9.653560-2-1.685858-2 1.056938-1-2.091290-2 1.179750-1-2.514194-2 1.366389-1-2.970830-2 1.647109-1-3.409202-2 2.103461-1-3.806408-2 2.928849-1-4.132184-2 4.897788-1-4.373497-2 1.347258+0-4.494931-2 4.068655+0-4.511384-2 1.000000+1-4.512400-2 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.307369-2 1.155224-6 6.325901-2 1.228554-6 8.417611-2 1.306538-6 1.127707-1 1.347368-6 1.309014-1 1.389473-6 1.522693-1 1.432894-6 1.775328-1 1.477672-6 2.075069-1 1.523849-6 2.432064-1 1.571469-6 2.858876-1 1.618660-6 3.349875-1 1.664377-6 3.900669-1 1.708664-6 4.516162-1 1.751568-6 5.201436-1 1.793131-6 5.961843-1 1.833395-6 6.803023-1 1.872401-6 7.730912-1 1.910187-6 8.751759-1 1.946794-6 9.872143-1 1.982256-6 1.109898+0 2.016610-6 1.243943+0 2.049890-6 1.389969+0 2.082130-6 1.548533+0 2.113363-6 1.720712+0 2.143620-6 1.907504+0 2.172931-6 2.109838+0 2.201326-6 2.328689+0 2.228834-6 2.565074+0 2.255483-6 2.820061+0 2.281298-6 3.094766+0 2.306307-6 3.390356+0 2.330534-6 3.708052+0 2.354005-6 4.049128+0 2.376741-6 4.414914+0 2.398768-6 4.806797+0 2.420106-6 5.226223+0 2.460802-6 6.153788+0 2.498994-6 7.210397+0 2.534837-6 8.410006+0 2.551923-6 9.068836+0 2.568474-6 9.771166+0 2.584509-6 1.051921+1 2.615576-6 1.218047+1 2.644701-6 1.404233+1 2.672006-6 1.612933+1 2.697605-6 1.846334+1 2.721603-6 2.106635+1 2.744102-6 2.396139+1 2.765194-6 2.717256+1 2.784968-6 3.072490+1 2.803507-6 3.464436+1 2.820886-6 3.895766+1 2.837180-6 4.369218+1 2.852455-6 4.887581+1 2.866775-6 5.453684+1 2.880201-6 6.070374+1 2.892787-6 6.740506+1 2.904586-6 7.466921+1 2.915649-6 8.252435+1 2.926019-6 9.099827+1 2.935742-6 1.001183+2 2.944857-6 1.099113+2 2.953402-6 1.204038+2 2.961413-6 1.316223+2 2.968924-6 1.435931+2 2.975965-6 1.563425+2 2.982566-6 1.698978+2 2.988754-6 1.842876+2 2.994556-6 1.995430+2 2.999995-6 2.156983+2 3.005094-6 2.327908+2 3.009874-6 2.508594+2 3.014356-6 2.699428+2 3.022759-6 3.127876+2 3.030112-6 3.602824+2 3.036546-6 4.123148+2 3.042175-6 4.684241+2 3.047101-6 5.278210+2 3.051411-6 5.894780+2 3.055182-6 6.522509+2 3.058482-6 7.149979+2 3.061369-6 7.766728+2 3.066422-6 9.019696+2 3.073054-6 1.105787+3 3.082529-6 1.492026+3 3.092958-6 2.075130+3 3.096751-6 2.333624+3 3.102439-6 2.770406+3 3.108166-6 3.269566+3 3.113817-6 3.817662+3 3.119505-6 4.418960+3 3.124423-6 4.971042+3 3.126097-6 5.164096+3 3.132074-6 5.866556+3 3.136258-6 6.361675+3 3.139724-6 6.767125+3 3.143086-6 7.150941+3 3.146861-6 7.564696+3 3.150015-6 7.891331+3 3.154069-6 8.278914+3 3.158850-6 8.678572+3 3.162197-6 8.914872+3 3.166680-6 9.167757+3 3.170180-6 9.310205+3 3.175015-6 9.422343+3 3.177415-6 9.440379+3 3.184909-6 9.334624+3 3.187001-6 9.262103+3 3.192799-6 8.968766+3 3.196441-6 8.720221+3 3.200927-6 8.354159+3 3.204289-6 8.042322+3 3.208064-6 7.660432+3 3.211217-6 7.320730+3 3.215271-6 6.863471+3 3.219097-6 6.418307+3 3.222922-6 5.967179+3 3.226747-6 5.516814+3 3.230572-6 5.073309+3 3.233279-6 4.766533+3 3.238222-6 4.227415+3 3.245873-6 3.462110+3 3.251013-6 3.003209+3 3.257348-6 2.503356+3 3.265363-6 1.974751+3 3.277841-6 1.361986+3 3.281970-6 1.207724+3 3.286084-6 1.074314+3 3.290181-6 9.592809+2 3.294262-6 8.602904+2 3.298328-6 7.751838+2 3.302377-6 7.020035+2 3.306411-6 6.390028+2 3.310429-6 5.846456+2 3.314431-6 5.375980+2 3.322404-6 4.608906+2 3.330315-6 4.018535+2 3.338164-6 3.553895+2 3.345952-6 3.179899+2 3.353679-6 2.872584+2 3.361346-6 2.615520+2 3.368952-6 2.397268+2 3.376500-6 2.209685+2 3.383988-6 2.046811+2 3.391418-6 1.904173+2 3.398789-6 1.778326+2 3.406103-6 1.666566+2 3.420617-6 1.476420+2 3.434905-6 1.321816+2 3.448969-6 1.194000+2 3.462813-6 1.086871+2 3.476441-6 9.960425+1 3.489856-6 9.182651+1 3.503061-6 8.510810+1 3.516060-6 7.925946+1 3.528856-6 7.413148+1 3.541452-6 6.960470+1 3.566250-6 6.193264+1 3.590274-6 5.575051+1 3.613547-6 5.068234+1 3.636092-6 4.646994+1 3.657933-6 4.292591+1 3.679091-6 3.991252+1 3.699588-6 3.732706+1 3.719445-6 3.508896+1 3.757917-6 3.135361+1 3.793985-6 2.842255+1 3.827798-6 2.607754+1 3.859498-6 2.416931+1 3.889217-6 2.259451+1 3.917078-6 2.127914+1 3.969319-6 1.914319+1 4.015029-6 1.755654+1 4.055025-6 1.635138+1 4.096000-6 1.526399+1 4.151266-6 1.397989+1 4.197200-6 1.304948+1 4.266100-6 1.184197+1 4.367010-6 1.037069+1 4.484380-6 9.003592+0 4.659973-6 7.391935+0 4.827333-6 6.055319+0 4.869173-6 5.704846+0 4.900552-6 5.415243+0 4.924087-6 5.168505+0 4.954977-6 4.786346+0 4.974834-6 4.507190+0 5.000839-6 4.147561+0 5.013133-6 4.011376+0 5.019280-6 3.959536+0 5.031573-6 3.901048+0 5.043867-6 3.918863+0 5.046941-6 3.937172+0 5.056161-6 4.028195+0 5.063680-6 4.143661+0 5.067269-6 4.211814+0 5.072652-6 4.329369+0 5.081787-6 4.568058+0 5.093042-6 4.918900+0 5.108410-6 5.459704+0 5.117630-6 5.791568+0 5.129924-6 6.208390+0 5.132997-6 6.304160+0 5.142218-6 6.563220+0 5.149702-6 6.736754+0 5.156847-6 6.867520+0 5.163992-6 6.962169+0 5.171545-6 7.022423+0 5.179099-6 7.042860+0 5.185246-6 7.031873+0 5.191393-6 6.998239+0 5.203687-6 6.872976+0 5.215980-6 6.688963+0 5.228274-6 6.468711+0 5.263240-6 5.804518+0 5.286751-6 5.418059+0 5.308792-6 5.121119+0 5.353200-6 4.668103+0 5.530928-6 3.369976+0 5.585171-6 2.970565+0 5.612292-6 2.756606+0 5.625852-6 2.645564+0 5.642731-6 2.504723+0 5.670509-6 2.273153+0 5.712176-6 1.956635+0 5.753842-6 1.698813+0 5.767731-6 1.618295+0 5.781620-6 1.534098+0 5.795509-6 1.442186+0 5.802453-6 1.392372+0 5.809398-6 1.339716+0 5.815484-6 1.291236+0 5.824613-6 1.214795+0 5.833743-6 1.134968+0 5.842404-6 1.057990+0 5.858009-6 9.257359-1 5.864953-6 8.749298-1 5.871898-6 8.333451-1 5.878842-6 8.048965-1 5.885787-6 7.942920-1 5.889259-6 7.973892-1 5.892731-6 8.071122-1 5.898328-6 8.389005-1 5.902526-6 8.778130-1 5.905674-6 9.166708-1 5.908036-6 9.517945-1 5.911578-6 1.014943+0 5.915120-6 1.091766+0 5.917814-6 1.160174+0 5.920509-6 1.237856+0 5.924236-6 1.361763+0 5.929029-6 1.551629+0 5.934858-6 1.833939+0 5.938345-6 2.032430+0 5.954880-6 3.325440+0 5.962297-6 4.121893+0 5.968097-6 4.849821+0 5.974560-6 5.776289+0 5.984505-6 7.450684+0 5.990030-6 8.514289+0 5.996505-6 9.882381+0 6.005238-6 1.192987+1 6.010829-6 1.335653+1 6.013064-6 1.395053+1 6.020677-6 1.606703+1 6.025632-6 1.751402+1 6.031069-6 1.915393+1 6.036932-6 2.097088+1 6.042974-6 2.288004+1 6.049738-6 2.503827+1 6.056656-6 2.723973+1 6.063700-6 2.944293+1 6.070938-6 3.163156+1 6.078119-6 3.369166+1 6.081200-6 3.453344+1 6.088160-6 3.632403+1 6.092876-6 3.743960+1 6.107861-6 4.037021+1 6.109564-6 4.063861+1 6.121484-6 4.211821+1 6.126479-6 4.252500+1 6.136015-6 4.294807+1 6.141703-6 4.298244+1 6.149833-6 4.275909+1 6.155059-6 4.245419+1 6.160286-6 4.203070+1 6.168739-6 4.111440+1 6.176890-6 3.999006+1 6.186872-6 3.834466+1 6.194138-6 3.699855+1 6.207436-6 3.430918+1 6.216256-6 3.242971+1 6.225236-6 3.049012+1 6.237606-6 2.784794+1 6.252334-6 2.485301+1 6.281656-6 1.972128+1 6.296930-6 1.756806+1 6.306094-6 1.644668+1 6.316786-6 1.528983+1 6.327479-6 1.428296+1 6.342498-6 1.309145+1 6.355177-6 1.225809+1 6.378675-6 1.103972+1 6.397580-6 1.028867+1 6.422496-6 9.511888+0 6.457675-6 8.682227+0 6.483038-6 8.208912+0 6.516217-6 7.694457+0 6.550713-6 7.251751+0 6.587897-6 6.857085+0 6.615638-6 6.610810+0 6.647023-6 6.376036+0 6.687128-6 6.132507+0 6.740720-6 5.875579+0 6.818627-6 5.570096+0 6.915282-6 5.242168+0 7.062434-6 4.824970+0 7.279946-6 4.326809+0 7.539790-6 3.823510+0 7.603585-6 3.703862+0 7.664793-6 3.585544+0 7.728851-6 3.451979+0 7.790998-6 3.300249+0 7.838242-6 3.158870+0 7.918272-6 2.889654+0 7.935537-6 2.844546+0 7.954974-6 2.810478+0 7.974410-6 2.800564+0 7.985321-6 2.807736+0 7.996231-6 2.824971+0 8.009789-6 2.860913+0 8.019957-6 2.898366+0 8.035210-6 2.970390+0 8.050463-6 3.058876+0 8.093680-6 3.357811+0 8.113170-6 3.489601+0 8.132660-6 3.602426+0 8.141050-6 3.642739+0 8.153635-6 3.692240+0 8.168629-6 3.732732+0 8.178437-6 3.748059+0 8.190655-6 3.755068+0 8.207650-6 3.744063+0 8.227109-6 3.706034+0 8.246523-6 3.647440+0 8.269089-6 3.562697+0 8.346387-6 3.247914+0 8.404777-6 3.046901+0 8.544703-6 2.647513+0 8.565735-6 2.599476+0 8.586766-6 2.559384+0 8.607798-6 2.529600+0 8.628830-6 2.512075+0 8.644604-6 2.507673+0 8.668264-6 2.515075+0 8.691925-6 2.537323+0 8.755020-6 2.630030+0 8.776052-6 2.655334+0 8.803402-6 2.672584+0 8.823006-6 2.671425+0 8.842610-6 2.658576+0 8.862076-6 2.635372+0 8.881210-6 2.604531+0 8.966408-6 2.442102+0 9.002515-6 2.391871+0 9.042568-6 2.355583+0 9.130945-6 2.304043+0 9.169085-6 2.277059+0 9.200781-6 2.250431+0 9.272785-6 2.180629+0 9.355532-6 2.091205+0 9.466929-6 1.970764+0 9.517905-6 1.931649+0 9.557253-6 1.914169+0 9.592110-6 1.908175+0 9.640879-6 1.911637+0 9.766335-6 1.940420+0 9.817324-6 1.947130+0 9.899651-6 1.947750+0 1.017999-5 1.901844+0 1.060889-5 1.793538+0 1.138244-5 1.611454+0 1.200985-5 1.496647+0 1.350394-5 1.295146+0 1.386000-5 1.267213+0 1.488856-5 1.231601+0 1.548817-5 1.244306+0 1.659587-5 1.324545+0 1.691619-5 1.361327+0 1.778279-5 1.483479+0 1.863763-5 1.640710+0 1.980000-5 1.912196+0 2.041738-5 2.081520+0 2.114750-5 2.301765+0 2.257445-5 2.795354+0 2.522830-5 3.920931+0 2.600160-5 4.312140+0 2.628499-5 4.455635+0 2.651069-5 4.552573+0 2.678141-5 4.635790+0 2.716543-5 4.736781+0 2.754229-5 4.859117+0 2.790106-5 5.005390+0 2.825186-5 5.181433+0 2.859178-5 5.388343+0 2.892116-5 5.629234+0 2.924033-5 5.906371+0 2.955204-5 6.223147+0 2.985400-5 6.579288+0 3.014653-5 6.979671+0 3.042992-5 7.427582+0 3.072000-5 7.954303+0 3.097041-5 8.471033+0 3.127800-5 9.195205+0 3.147764-5 9.726596+0 3.171943-5 1.044544+1 3.198895-5 1.135497+1 3.218059-5 1.207976+1 3.240041-5 1.300231+1 3.261337-5 1.400031+1 3.281967-5 1.507758+1 3.301952-5 1.623885+1 3.321313-5 1.748783+1 3.350000-5 1.958980+1 3.375840-5 2.178052+1 3.392892-5 2.341094+1 3.409411-5 2.515404+1 3.425413-5 2.701548+1 3.440916-5 2.899878+1 3.467369-5 3.284816+1 3.484577-5 3.571540+1 3.511458-5 4.087995+1 3.537085-5 4.674186+1 3.561111-5 5.327142+1 3.583635-5 6.052206+1 3.604752-5 6.854664+1 3.624548-5 7.739775+1 3.643108-5 8.712825+1 3.660507-5 9.779132+1 3.676819-5 1.094405+2 3.692111-5 1.221294+2 3.706448-5 1.359116+2 3.719889-5 1.508399+2 3.732489-5 1.669668+2 3.744302-5 1.843441+2 3.755377-5 2.030230+2 3.765759-5 2.230551+2 3.775493-5 2.444919+2 3.784618-5 2.673862+2 3.793173-5 2.917932+2 3.801193-5 3.177723+2 3.808712-5 3.453902+2 3.815761-5 3.747228+2 3.822370-5 4.058572+2 3.828565-5 4.388903+2 3.834374-5 4.739249+2 3.840000-5 5.123786+2 3.850029-5 5.949465+2 3.858962-5 6.886441+2 3.866779-5 7.918923+2 3.873619-5 9.035894+2 3.879604-5 1.021895+3 3.884840-5 1.144486+3 3.889423-5 1.268859+3 3.893432-5 1.392602+3 3.896940-5 1.513581+3 3.903079-5 1.757190+3 3.913727-5 2.290989+3 3.927500-5 3.228335+3 3.933849-5 3.763849+3 3.940802-5 4.426050+3 3.946834-5 5.061314+3 3.948844-5 5.284604+3 3.958516-5 6.425931+3 3.959725-5 6.574949+3 3.968188-5 7.640463+3 3.972046-5 8.130860+3 3.975728-5 8.595391+3 3.980617-5 9.198729+3 3.984859-5 9.701956+3 3.989622-5 1.023518+4 3.993601-5 1.064777+4 3.998715-5 1.112517+4 4.003606-5 1.151713+4 4.008496-5 1.183863+4 4.014662-5 1.213558+4 4.019217-5 1.227416+4 4.022123-5 1.232648+4 4.027542-5 1.235034+4 4.032244-5 1.229668+4 4.037934-5 1.214699+4 4.044187-5 1.188903+4 4.050893-5 1.152469+4 4.058461-5 1.103557+4 4.067694-5 1.037692+4 4.077561-5 9.656266+3 4.108393-5 7.651922+3 4.121970-5 6.884516+3 4.128126-5 6.541582+3 4.136759-5 6.056538+3 4.143060-5 5.697006+3 4.150439-5 5.270076+3 4.156492-5 4.917103+3 4.165125-5 4.415255+3 4.168825-5 4.202958+3 4.176225-5 3.787996+3 4.186091-5 3.264529+3 4.195958-5 2.787466+3 4.208711-5 2.253867+3 4.223697-5 1.753654+3 4.232880-5 1.511293+3 4.237364-5 1.408885+3 4.246191-5 1.234439+3 4.254743-5 1.095391+3 4.263028-5 9.840321+2 4.271053-5 8.940866+2 4.278828-5 8.206223+2 4.286360-5 7.598551+2 4.293657-5 7.089262+2 4.307794-5 6.274239+2 4.321047-5 5.662963+2 4.333472-5 5.187232+2 4.345121-5 4.806454+2 4.356042-5 4.495059+2 4.366280-5 4.236056+2 4.385476-5 3.819504+2 4.402273-5 3.513726+2 4.416970-5 3.281646+2 4.429830-5 3.100986+2 4.452335-5 2.825984+2 4.469213-5 2.647857+2 4.494532-5 2.416306+2 4.522514-5 2.199415+2 4.542100-5 2.066673+2 4.578172-5 1.852819+2 4.645531-5 1.520941+2 4.668062-5 1.429833+2 4.679495-5 1.389961+2 4.690929-5 1.355405+2 4.702362-5 1.326714+2 4.714449-5 1.302959+2 4.726675-5 1.285467+2 4.736834-5 1.275290+2 4.748131-5 1.267626+2 4.784646-5 1.255488+2 4.830311-5 1.239111+2 4.861190-5 1.223800+2 4.902714-5 1.197707+2 4.969497-5 1.147379+2 5.005875-5 1.123595+2 5.144673-5 1.051224+2 5.276010-5 9.949841+1 5.432504-5 9.396497+1 5.591135-5 8.932022+1 5.791072-5 8.440291+1 6.027500-5 7.974906+1 6.260000-5 7.608248+1 6.853106-5 6.882178+1 6.987520-5 6.692466+1 7.070000-5 6.520591+1 7.124587-5 6.397342+1 7.159660-5 6.363067+1 7.177196-5 6.375613+1 7.194732-5 6.414641+1 7.212269-5 6.482769+1 7.234101-5 6.607021+1 7.272557-5 6.899120+1 7.300782-5 7.119072+1 7.318621-5 7.234961+1 7.337512-5 7.324988+1 7.353444-5 7.370054+1 7.374104-5 7.385571+1 7.387381-5 7.372205+1 7.406994-5 7.325637+1 7.443371-5 7.188707+1 7.476098-5 7.054021+1 7.504530-5 6.952951+1 7.580415-5 6.794979+1 7.625704-5 6.768544+1 7.676151-5 6.782756+1 7.772504-5 6.866066+1 7.920452-5 6.958790+1 8.763546-5 7.155904+1 9.755698-5 7.415245+1 1.070250-4 7.716856+1 1.257301-4 8.340284+1 1.383224-4 8.704582+1 1.496236-4 8.977323+1 1.640590-4 9.269607+1 1.835600-4 9.574599+1 2.037329-4 9.768058+1 2.255077-4 9.856056+1 2.472643-4 9.832111+1 2.702797-4 9.678748+1 2.921134-4 9.437002+1 3.159629-4 9.051224+1 3.381215-4 8.569746+1 3.597015-4 7.973289+1 3.756292-4 7.440495+1 3.903066-4 6.867384+1 4.026159-4 6.315709+1 4.131400-4 5.786034+1 4.221314-4 5.285849+1 4.296601-4 4.826054+1 4.364802-4 4.374593+1 4.418698-4 3.991822+1 4.473632-4 3.578128+1 4.517300-4 3.231572+1 4.551190-4 2.951591+1 4.583091-4 2.679814+1 4.610429-4 2.441125+1 4.642145-4 2.158308+1 4.670494-4 1.901270+1 4.698130-4 1.648734+1 4.715493-4 1.490656+1 4.734567-4 1.320076+1 4.752468-4 1.167120+1 4.772577-4 1.012304+1 4.788731-4 9.099484+0 4.803187-4 8.419994+0 4.816718-4 8.031371+0 4.829438-4 7.908659+0 4.841409-4 8.018370+0 4.855436-4 8.430940+0 4.865901-4 8.944411+0 4.875721-4 9.597376+0 4.886079-4 1.048765+1 4.897710-4 1.178431+1 4.901704-4 1.231718+1 4.910573-4 1.369834+1 4.916698-4 1.484326+1 4.923499-4 1.634268+1 4.930496-4 1.819389+1 4.935854-4 1.987100+1 4.941458-4 2.191751+1 4.946712-4 2.415895+1 4.954973-4 2.845731+1 4.960585-4 3.203586+1 4.968448-4 3.816346+1 4.973954-4 4.338110+1 4.978704-4 4.860836+1 4.984556-4 5.611131+1 4.994158-4 7.142836+1 5.017767-4 1.303398+2 5.028546-4 1.702814+2 5.035789-4 2.026328+2 5.041246-4 2.301501+2 5.047974-4 2.679192+2 5.052613-4 2.964691+2 5.062085-4 3.610193+2 5.064985-4 3.823998+2 5.075848-4 4.686053+2 5.080063-4 5.043271+2 5.088182-4 5.758724+2 5.092434-4 6.143858+2 5.096494-4 6.515266+2 5.102100-4 7.029898+2 5.107537-4 7.525366+2 5.111699-4 7.898393+2 5.117648-4 8.415857+2 5.123197-4 8.875364+2 5.126232-4 9.114846+2 5.133131-4 9.621374+2 5.139557-4 1.003834+3 5.142794-4 1.022575+3 5.149874-4 1.057779+3 5.156308-4 1.082437+3 5.162972-4 1.100248+3 5.168113-4 1.108518+3 5.176517-4 1.111855+3 5.182294-4 1.107045+3 5.188443-4 1.095919+3 5.195990-4 1.074443+3 5.206009-4 1.034247+3 5.213376-4 9.975763+2 5.219616-4 9.627079+2 5.225436-4 9.276647+2 5.233926-4 8.732962+2 5.242880-4 8.133210+2 5.251500-4 7.545647+2 5.260353-4 6.946072+2 5.272395-4 6.158980+2 5.290000-4 5.114882+2 5.305144-4 4.353923+2 5.311250-4 4.087641+2 5.320500-4 3.729910+2 5.323753-4 3.617111+2 5.332688-4 3.341093+2 5.342690-4 3.088147+2 5.348766-4 2.961276+2 5.356000-4 2.834274+2 5.359908-4 2.775687+2 5.365000-4 2.709001+2 5.371000-4 2.643262+2 5.376768-4 2.591779+2 5.381957-4 2.554157+2 5.393000-4 2.497071+2 5.404992-4 2.462619+2 5.421465-4 2.446247+2 5.447021-4 2.456480+2 5.509519-4 2.507192+2 5.562829-4 2.529849+2 5.692495-4 2.553043+2 5.806800-4 2.564396+2 5.899011-4 2.564631+2 5.966801-4 2.555475+2 6.051616-4 2.527634+2 6.087974-4 2.519783+2 6.117483-4 2.525267+2 6.141233-4 2.541745+2 6.163302-4 2.568119+2 6.198906-4 2.630739+2 6.274239-4 2.791902+2 6.308264-4 2.852942+2 6.349353-4 2.910112+2 6.415461-4 2.974440+2 6.473217-4 3.015143+2 6.527996-4 3.046471+2 6.715420-4 3.130916+2 6.922044-4 3.200565+2 7.212509-4 3.270605+2 7.698358-4 3.353592+2 8.109482-4 3.385895+2 8.650301-4 3.412778+2 9.436363-4 3.420790+2 1.015382-3 3.403652+2 1.143207-3 3.342383+2 1.238771-3 3.285348+2 1.454824-3 3.131722+2 1.628827-3 3.001553+2 1.905461-3 2.806563+2 2.095879-3 2.678169+2 2.358717-3 2.514558+2 2.656283-3 2.341205+2 2.870058-3 2.223713+2 3.103548-3 2.102367+2 3.365168-3 1.973181+2 3.640550-3 1.844933+2 3.937569-3 1.712480+2 4.090755-3 1.645548+2 4.235782-3 1.583136+2 4.356660-3 1.530860+2 4.473756-3 1.479969+2 4.581735-3 1.432551+2 4.677351-3 1.389331+2 4.757844-3 1.351844+2 4.839550-3 1.312333+2 4.912874-3 1.275021+2 4.968036-3 1.245350+2 5.020658-3 1.215375+2 5.067622-3 1.186912+2 5.113247-3 1.157110+2 5.152488-3 1.129099+2 5.176129-3 1.110800+2 5.210544-3 1.081548+2 5.239750-3 1.053322+2 5.264628-3 1.025739+2 5.285508-3 9.992830+1 5.306798-3 9.687279+1 5.335412-3 9.225876+1 5.376566-3 8.560931+1 5.392890-3 8.354985+1 5.406851-3 8.230974+1 5.416514-3 8.179892+1 5.428790-3 8.160651+1 5.440841-3 8.193305+1 5.448546-3 8.240474+1 5.456941-3 8.313844+1 5.472213-3 8.499167+1 5.491776-3 8.810312+1 5.534320-3 9.589151+1 5.559536-3 1.001161+2 5.570416-3 1.017319+2 5.585000-3 1.036870+2 5.600191-3 1.054766+2 5.621462-3 1.076082+2 5.645102-3 1.095604+2 5.669344-3 1.112167+2 5.717461-3 1.137904+2 5.748156-3 1.150822+2 5.821032-3 1.174070+2 5.907969-3 1.192488+2 6.018766-3 1.206570+2 6.107481-3 1.212783+2 6.226641-3 1.215961+2 6.407368-3 1.213741+2 6.642651-3 1.201460+2 6.914421-3 1.179452+2 7.249798-3 1.146184+2 7.683214-3 1.099021+2 8.291262-3 1.032038+2 9.135820-3 9.441354+1 9.982180-3 8.649472+1 1.130070-2 7.597643+1 1.266421-2 6.699713+1 1.414273-2 5.894493+1 1.567336-2 5.194225+1 1.732942-2 4.558346+1 1.865692-2 4.121566+1 2.080081-2 3.527632+1 2.316543-2 3.002312+1 2.573221-2 2.549705+1 3.041392-2 1.949467+1 3.986805-2 1.256729+1 5.336719-2 7.717469+0 6.325440-2 5.772465+0 7.520074-2 4.263436+0 9.037953-2 3.064041+0 1.092719-1 2.165791+0 1.352737-1 1.451786+0 1.788880-1 8.536383-1 2.402549-1 4.838269-1 3.268465-1 2.655125-1 4.847388-1 1.221067-1 8.420969-1 4.074623-2 2.567148+0 4.398816-3 7.752663+0 4.824938-4 2.341267+1 5.290648-5 7.070513+1 5.801106-6 2.135261+2 6.360789-7 6.448384+2 6.974467-8 1.995262+3 7.284719-9 6.309573+3 7.28472-10 1.995262+4 7.28472-11 6.309573+4 7.28472-12 1.000000+5 2.90010-12 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.280500-6 1.258900-6 2.029500-6 1.584900-6 3.216500-6 1.995300-6 5.097800-6 2.511900-6 8.079400-6 3.162300-6 1.280500-5 3.981100-6 2.029400-5 5.011900-6 3.216400-5 6.309600-6 5.097700-5 7.943300-6 8.079200-5 1.000000-5 1.280400-4 1.258900-5 2.029300-4 1.584900-5 3.215000-4 1.995300-5 5.092800-4 2.511900-5 8.068000-4 3.162300-5 1.278300-3 3.981100-5 2.025400-3 5.011900-5 3.209400-3 6.309600-5 5.085700-3 7.943300-5 8.048300-3 1.000000-4 1.273200-2 1.258900-4 2.014100-2 1.584900-4 3.178300-2 1.995300-4 5.008900-2 2.511900-4 7.864600-2 3.162300-4 1.228300-1 3.981100-4 1.902500-1 5.011900-4 2.910600-1 6.309600-4 4.373500-1 7.943300-4 6.405000-1 1.000000-3 9.069600-1 1.258900-3 1.235000+0 1.584900-3 1.617600+0 1.995300-3 2.057700+0 2.511900-3 2.578300+0 3.162300-3 3.201700+0 3.981100-3 3.933900+0 5.011900-3 4.760200+0 6.309600-3 5.667800+0 7.943300-3 6.606700+0 1.000000-2 7.531400+0 1.258900-2 8.388700+0 1.584900-2 9.179900+0 1.995300-2 9.896100+0 2.511900-2 1.049700+1 3.162300-2 1.093900+1 3.981100-2 1.120800+1 5.011900-2 1.131300+1 6.309600-2 1.126300+1 7.943300-2 1.107400+1 1.000000-1 1.074500+1 1.258900-1 1.030100+1 1.584900-1 9.767200+0 1.995300-1 9.171000+0 2.511900-1 8.538200+0 3.162300-1 7.889700+0 3.981100-1 7.242300+0 5.011900-1 6.607800+0 6.309600-1 5.994300+0 7.943300-1 5.406400+0 1.000000+0 4.847600+0 1.258900+0 4.320600+0 1.584900+0 3.826800+0 1.995300+0 3.368200+0 2.511900+0 2.946100+0 3.162300+0 2.561200+0 3.981100+0 2.213600+0 5.011900+0 1.902600+0 6.309600+0 1.626800+0 7.943300+0 1.384300+0 1.000000+1 1.172700+0 1.258900+1 9.895200-1 1.584900+1 8.318900-1 1.995300+1 6.970700-1 2.511900+1 5.823400-1 3.162300+1 4.851900-1 3.981100+1 4.032500-1 5.011900+1 3.344200-1 6.309600+1 2.767700-1 7.943300+1 2.286500-1 1.000000+2 1.885800-1 1.258900+2 1.553000-1 1.584900+2 1.277200-1 1.995300+2 1.049000-1 2.511900+2 8.605600-2 3.162300+2 7.052100-2 3.981100+2 5.773200-2 5.011900+2 4.721900-2 6.309600+2 3.858600-2 7.943300+2 3.150600-2 1.000000+3 2.570500-2 1.258900+3 2.095700-2 1.584900+3 1.707400-2 1.995300+3 1.390200-2 2.511900+3 1.131200-2 3.162300+3 9.199700-3 3.981100+3 7.477400-3 5.011900+3 6.074400-3 6.309600+3 4.932200-3 7.943300+3 4.002900-3 1.000000+4 3.247200-3 1.258900+4 2.633000-3 1.584900+4 2.134100-3 1.995300+4 1.729000-3 2.511900+4 1.400300-3 3.162300+4 1.133600-3 3.981100+4 9.174100-4 5.011900+4 7.421900-4 6.309600+4 6.002300-4 7.943300+4 4.852700-4 1.000000+5 3.922100-4 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159554-4 3.981072-4 3.976757-4 5.011872-4 5.005068-4 6.309573-4 6.298889-4 7.943282-4 7.926487-4 1.000000-3 9.973815-4 1.258925-3 1.254852-3 1.584893-3 1.578572-3 1.995262-3 1.985433-3 2.511886-3 2.496563-3 3.162278-3 3.138263-3 3.981072-3 3.943409-3 5.011872-3 4.952839-3 6.309573-3 6.217616-3 7.943282-3 7.800175-3 1.000000-2 9.778936-3 1.258925-2 1.224847-2 1.584893-2 1.532423-2 1.995262-2 1.914518-2 2.511886-2 2.388106-2 3.162278-2 2.973482-2 3.981072-2 3.694720-2 5.011872-2 4.579400-2 6.309573-2 5.661196-2 7.943282-2 6.975365-2 1.000000-1 8.569308-2 1.258925-1 1.049177-1 1.584893-1 1.280311-1 1.995262-1 1.557093-1 2.511886-1 1.887034-1 3.162278-1 2.279061-1 3.981072-1 2.743361-1 5.011872-1 3.291765-1 6.309573-1 3.937388-1 7.943282-1 4.697534-1 1.000000+0 5.592345-1 1.258925+0 6.645537-1 1.584893+0 7.888613-1 1.995262+0 9.359315-1 2.511886+0 1.110444+0 3.162278+0 1.318127+0 3.981072+0 1.566041+0 5.011872+0 1.862780+0 6.309573+0 2.218946+0 7.943282+0 2.647429+0 1.000000+1 3.163984+0 1.258925+1 3.788013+0 1.584893+1 4.543096+0 1.995262+1 5.458303+0 2.511886+1 6.569039+0 3.162278+1 7.918980+0 3.981072+1 9.561560+0 5.011872+1 1.156216+1 6.309573+1 1.400183+1 7.943282+1 1.697941+1 1.000000+2 2.061678+1 1.258925+2 2.506405+1 1.584893+2 3.050560+1 1.995262+2 3.716911+1 2.511886+2 4.533400+1 3.162278+2 5.534661+1 3.981072+2 6.763106+1 5.011872+2 8.271422+1 6.309573+2 1.012436+2 7.943282+2 1.240197+2 1.000000+3 1.520284+2 1.258925+3 1.864931+2 1.584893+3 2.289207+2 1.995262+3 2.811797+2 2.511886+3 3.455637+2 3.162278+3 4.249396+2 3.981072+3 5.228232+2 5.011872+3 6.435820+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88214-10 1.995262-5 1.090669-9 2.511886-5 1.728565-9 3.162278-5 2.739603-9 3.981072-5 4.341989-9 5.011872-5 6.881520-9 6.309573-5 1.090612-8 7.943282-5 1.727816-8 1.000000-4 2.737711-8 1.258925-4 4.338145-8 1.584893-4 6.870246-8 1.995262-4 1.088060-7 2.511886-4 1.722242-7 3.162278-4 2.723799-7 3.981072-4 4.314255-7 5.011872-4 6.804815-7 6.309573-4 1.068493-6 7.943282-4 1.679490-6 1.000000-3 2.618521-6 1.258925-3 4.073702-6 1.584893-3 6.320926-6 1.995262-3 9.828886-6 2.511886-3 1.532335-5 3.162278-3 2.401516-5 3.981072-3 3.766242-5 5.011872-3 5.903308-5 6.309573-3 9.195790-5 7.943282-3 1.431076-4 1.000000-2 2.210638-4 1.258925-2 3.407879-4 1.584893-2 5.247043-4 1.995262-2 8.074440-4 2.511886-2 1.237801-3 3.162278-2 1.887954-3 3.981072-2 2.863518-3 5.011872-2 4.324721-3 6.309573-2 6.483778-3 7.943282-2 9.679177-3 1.000000-1 1.430692-2 1.258925-1 2.097480-2 1.584893-1 3.045819-2 1.995262-1 4.381689-2 2.511886-1 6.248529-2 3.162278-1 8.832164-2 3.981072-1 1.237711-1 5.011872-1 1.720107-1 6.309573-1 2.372185-1 7.943282-1 3.245749-1 1.000000+0 4.407655-1 1.258925+0 5.943717-1 1.584893+0 7.960318-1 1.995262+0 1.059331+0 2.511886+0 1.401442+0 3.162278+0 1.844151+0 3.981072+0 2.415031+0 5.011872+0 3.149092+0 6.309573+0 4.090627+0 7.943282+0 5.295853+0 1.000000+1 6.836016+0 1.258925+1 8.801241+0 1.584893+1 1.130584+1 1.995262+1 1.449432+1 2.511886+1 1.854983+1 3.162278+1 2.370380+1 3.981072+1 3.024916+1 5.011872+1 3.855656+1 6.309573+1 4.909391+1 7.943282+1 6.245341+1 1.000000+2 7.938322+1 1.258925+2 1.008285+2 1.584893+2 1.279837+2 1.995262+2 1.623571+2 2.511886+2 2.058546+2 3.162278+2 2.608812+2 3.981072+2 3.304761+2 5.011872+2 4.184730+2 6.309573+2 5.297138+2 7.943282+2 6.703085+2 1.000000+3 8.479716+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714083+3 2.511886+3 2.166323+3 3.162278+3 2.737338+3 3.981072+3 3.458249+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.630000-6 1.047841+6 6.850000-6 8.149860+5 7.000000-6 6.852660+5 7.100000-6 6.096920+5 7.244360-6 5.137397+5 7.350000-6 4.520560+5 7.500000-6 3.757620+5 7.600000-6 3.312900+5 7.730000-6 2.801300+5 7.852356-6 2.381867+5 7.960000-6 2.057220+5 8.050000-6 1.814220+5 8.150000-6 1.571704+5 8.240000-6 1.376024+5 8.317638-6 1.222971+5 8.420000-6 1.041606+5 8.520000-6 8.849120+4 8.609938-6 7.597202+4 8.680000-6 6.717040+4 8.740000-6 6.024720+4 8.810489-6 5.279213+4 8.880000-6 4.611300+4 8.940000-6 4.085040+4 9.000000-6 3.602580+4 9.070000-6 3.091660+4 9.120108-6 2.758267+4 9.170000-6 2.451800+4 9.225714-6 2.138012+4 9.280000-6 1.859570+4 9.332543-6 1.614544+4 9.380000-6 1.412828+4 9.420000-6 1.256558+4 9.460000-6 1.112414+4 9.500000-6 9.798500+3 9.530000-6 8.875173+3 9.530000-6 1.418849+6 9.535000-6 1.419552+6 9.570000-6 1.424500+6 9.610000-6 1.430257+6 9.610000-6 2.359717+6 9.650000-6 2.370046+6 9.685000-6 2.379168+6 9.715000-6 2.387048+6 9.750000-6 2.396310+6 9.790000-6 2.406982+6 9.830000-6 2.417744+6 9.910000-6 2.439524+6 9.937000-6 2.446948+6 9.960000-6 2.453301+6 9.980000-6 2.458845+6 1.000000-5 2.464408+6 1.001500-5 2.468900+6 1.002700-5 2.472501+6 1.004200-5 2.477011+6 1.005500-5 2.480929+6 1.007000-5 2.485460+6 1.008500-5 2.490000+6 1.010000-5 2.494551+6 1.011579-5 2.499352+6 1.012700-5 2.502911+6 1.014200-5 2.507681+6 1.015500-5 2.511824+6 1.017000-5 2.516613+6 1.018500-5 2.521412+6 1.020000-5 2.526221+6 1.021500-5 2.531039+6 1.023293-5 2.536811+6 1.025000-5 2.542318+6 1.028000-5 2.552026+6 1.031000-5 2.561769+6 1.040500-5 2.592846+6 1.044000-5 2.604377+6 1.048000-5 2.617608+6 1.052000-5 2.630892+6 1.056000-5 2.644227+6 1.059254-5 2.655109+6 1.060000-5 2.657704+6 1.063500-5 2.669893+6 1.067000-5 2.682120+6 1.071519-5 2.697960+6 1.075000-5 2.710502+6 1.079000-5 2.724959+6 1.083927-5 2.742828+6 1.088000-5 2.757651+6 1.094000-5 2.779567+6 1.100000-5 2.801575+6 1.107000-5 2.827362+6 1.112000-5 2.845851+6 1.117000-5 2.864397+6 1.123000-5 2.886722+6 1.131000-5 2.916604+6 1.138000-5 2.942854+6 1.146000-5 2.972965+6 1.154000-5 3.003189+6 1.165000-5 3.044920+6 1.176000-5 3.086838+6 1.185000-5 3.121265+6 1.195000-5 3.159646+6 1.207000-5 3.205872+6 1.218000-5 3.248398+6 1.230269-5 3.295990+6 1.245000-5 3.353340+6 1.260000-5 3.411955+6 1.275000-5 3.470775+6 1.288250-5 3.522879+6 1.290000-5 3.529592+6 1.310000-5 3.606293+6 1.318257-5 3.637980+6 1.330000-5 3.682338+6 1.350000-5 3.757944+6 1.372000-5 3.841308+6 1.400000-5 3.947684+6 1.412538-5 3.995328+6 1.428894-5 4.055453+6 1.430000-5 4.059430+6 1.462177-5 4.174816+6 1.496236-5 4.297058+6 1.531087-5 4.422254+6 1.548817-5 4.483163+6 1.570000-5 4.554018+6 1.610000-5 4.687501+6 1.659587-5 4.852767+6 1.678804-5 4.913691+6 1.710000-5 5.009568+6 1.770000-5 5.193163+6 1.778279-5 5.218382+6 1.800000-5 5.281156+6 1.830000-5 5.364725+6 1.905461-5 5.573437+6 1.927525-5 5.630304+6 1.980000-5 5.759539+6 2.041738-5 5.910099+6 2.070000-5 5.970517+6 2.162719-5 6.166158+6 2.187762-5 6.213757+6 2.270000-5 6.359047+6 2.300000-5 6.411267+6 2.317395-5 6.438140+6 2.400000-5 6.554092+6 2.426610-5 6.590797+6 2.454709-5 6.624092+6 2.540973-5 6.712842+6 2.570396-5 6.742484+6 2.600160-5 6.766755+6 2.691535-5 6.827731+6 2.754229-5 6.857337+6 2.818383-5 6.878757+6 2.884032-5 6.889687+6 2.900000-5 6.892219+6 2.951209-5 6.893939+6 3.054921-5 6.880101+6 3.090295-5 6.871520+6 3.198895-5 6.826788+6 3.273407-5 6.789778+6 3.349654-5 6.740161+6 3.350000-5 6.739938+6 3.467369-5 6.654407+6 3.548134-5 6.585495+6 3.630781-5 6.509584+6 3.672823-5 6.471809+6 3.758374-5 6.385565+6 3.900000-5 6.237988+6 3.935501-5 6.198434+6 4.000000-5 6.127918+6 4.168694-5 5.940785+6 4.265795-5 5.829938+6 4.466836-5 5.603197+6 4.570882-5 5.485306+6 4.650000-5 5.395519+6 4.800000-5 5.232932+6 4.900000-5 5.124192+6 4.979000-5 5.038298+6 4.979000-5 6.354258+6 5.040000-5 6.244977+6 5.065000-5 6.197646+6 5.065000-5 6.842908+6 5.069907-5 6.832034+6 5.110000-5 6.744360+6 5.120000-5 6.721778+6 5.188000-5 6.567416+6 5.190000-5 6.562757+6 5.270000-5 6.375279+6 5.300000-5 6.306387+6 5.308844-5 6.285902+6 5.370318-5 6.145282+6 5.500000-5 5.864867+6 5.559043-5 5.745258+6 5.650000-5 5.566533+6 5.688529-5 5.495562+6 5.754399-5 5.376453+6 5.760000-5 5.366658+6 5.850000-5 5.217062+6 5.888437-5 5.157219+6 5.956621-5 5.055618+6 6.000000-5 4.994665+6 6.025596-5 4.958853+6 6.030000-5 4.952733+6 6.095369-5 4.865724+6 6.110000-5 4.846244+6 6.180000-5 4.758749+6 6.194100-5 4.741685+6 6.260000-5 4.665434+6 6.350000-5 4.569075+6 6.400000-5 4.519839+6 6.450000-5 4.469681+6 6.456542-5 4.463306+6 6.531306-5 4.394013+6 6.540000-5 4.385875+6 6.606934-5 4.327236+6 6.650000-5 4.290211+6 6.760830-5 4.202737+6 6.770000-5 4.195777+6 6.839116-5 4.145943+6 6.850000-5 4.137860+6 6.900000-5 4.101687+6 6.918310-5 4.089077+6 6.950000-5 4.066840+6 7.070000-5 3.986393+6 7.079458-5 3.980411+6 7.244360-5 3.881522+6 7.300000-5 3.851043+6 7.328245-5 3.834989+6 7.413102-5 3.786476+6 7.500000-5 3.739274+6 7.642000-5 3.667436+6 7.642000-5 4.078658+6 7.673615-5 4.061933+6 7.800000-5 3.997947+6 7.900000-5 3.946110+6 8.128305-5 3.838255+6 8.150000-5 3.828561+6 8.317638-5 3.758061+6 8.413951-5 3.717047+6 8.511380-5 3.676487+6 8.609938-5 3.637876+6 8.810489-5 3.563550+6 8.912509-5 3.527113+6 9.015711-5 3.489614+6 9.225714-5 3.417869+6 9.332543-5 3.382467+6 9.440609-5 3.348169+6 9.549926-5 3.314332+6 9.660509-5 3.280927+6 9.885531-5 3.212529+6 1.000000-4 3.179330+6 1.023293-4 3.113543+6 1.040000-4 3.068822+6 1.059254-4 3.016512+6 1.060000-4 3.014505+6 1.083927-4 2.951374+6 1.096478-4 2.918654+6 1.106700-4 2.892904+6 1.109200-4 2.886589+6 1.135011-4 2.822939+6 1.150000-4 2.786338+6 1.174898-4 2.725505+6 1.190000-4 2.689946+6 1.205000-4 2.654459+6 1.240000-4 2.574996+6 1.244515-4 2.565081+6 1.260000-4 2.530152+6 1.303167-4 2.435677+6 1.318257-4 2.403163+6 1.333521-4 2.370821+6 1.350000-4 2.337066+6 1.380384-4 2.277145+6 1.462177-4 2.121179+6 1.480000-4 2.088879+6 1.496236-4 2.060107+6 1.500000-4 2.053484+6 1.548817-4 1.970989+6 1.621810-4 1.855212+6 1.650000-4 1.813593+6 1.659587-4 1.799210+6 1.760000-4 1.660537+6 1.778279-4 1.636516+6 1.840772-4 1.558373+6 1.862087-4 1.533170+6 1.950000-4 1.432863+6 1.980000-4 1.401309+6 1.995262-4 1.385532+6 2.000000-4 1.380522+6 2.113489-4 1.268843+6 2.137962-4 1.246612+6 2.187762-4 1.202157+6 2.213095-4 1.180447+6 2.264644-4 1.138126+6 2.317395-4 1.097048+6 2.344229-4 1.076677+6 2.426610-4 1.017885+6 2.454709-4 9.988910+5 2.511886-4 9.616570+5 2.570396-4 9.251268+5 2.660725-4 8.730505+5 2.691535-4 8.562150+5 2.722701-4 8.396842+5 2.754229-4 8.231109+5 2.786121-4 8.067985+5 2.851018-4 7.752025+5 2.884032-4 7.598827+5 2.951209-4 7.298542+5 3.000000-4 7.087765+5 3.090295-4 6.721949+5 3.126079-4 6.584440+5 3.198895-4 6.315481+5 3.200000-4 6.311529+5 3.388442-4 5.679421+5 3.427678-4 5.560260+5 3.467369-4 5.442582+5 3.507519-4 5.326904+5 3.589219-4 5.099190+5 3.630781-4 4.989021+5 3.758374-4 4.673196+5 3.801894-4 4.571716+5 3.850000-4 4.463301+5 4.027170-4 4.089993+5 4.100000-4 3.949596+5 4.216965-4 3.737192+5 4.265795-4 3.652119+5 4.518559-4 3.255318+5 4.570882-4 3.180739+5 4.623810-4 3.107514+5 4.731513-4 2.964021+5 4.786301-4 2.894839+5 5.000000-4 2.646853+5 5.069907-4 2.572138+5 5.128614-4 2.511787+5 5.245400-4 2.396042+5 5.245400-4 9.245442+5 5.247000-4 9.385393+5 5.250000-4 9.692009+5 5.254500-4 1.011328+6 5.260000-4 1.057714+6 5.265000-4 1.095477+6 5.270000-4 1.129945+6 5.277000-4 1.172919+6 5.282000-4 1.200190+6 5.290000-4 1.238924+6 5.298000-4 1.272188+6 5.305000-4 1.297249+6 5.308844-4 1.308673+6 5.315000-4 1.327222+6 5.318800-4 1.336244+6 5.318800-4 1.669584+6 5.320500-4 1.680934+6 5.323500-4 1.703296+6 5.325200-4 1.715300+6 5.327000-4 1.727197+6 5.331500-4 1.755052+6 5.335000-4 1.775534+6 5.340000-4 1.800481+6 5.345000-4 1.823786+6 5.350000-4 1.845177+6 5.352000-4 1.852756+6 5.360000-4 1.879851+6 5.365000-4 1.895012+6 5.367000-4 1.900283+6 5.375000-4 1.918679+6 5.380000-4 1.928835+6 5.382000-4 1.932184+6 5.393000-4 1.947309+6 5.400000-4 1.954731+6 5.405000-4 1.958604+6 5.417000-4 1.964529+6 5.420000-4 1.965183+6 5.432503-4 1.964839+6 5.450000-4 1.959955+6 5.470000-4 1.950184+6 5.495409-4 1.933536+6 5.500000-4 1.929879+6 5.559043-4 1.883682+6 5.688529-4 1.787804+6 5.754399-4 1.741636+6 6.000000-4 1.583852+6 6.095369-4 1.526665+6 6.165950-4 1.486171+6 6.237900-4 1.446452+6 6.237900-4 1.638701+6 6.309573-4 1.597824+6 6.362600-4 1.568504+6 6.456542-4 1.519187+6 6.531306-4 1.481354+6 6.760830-4 1.373550+6 6.800000-4 1.356130+6 6.839116-4 1.338812+6 7.000000-4 1.269691+6 7.161434-4 1.205917+6 7.328245-4 1.144812+6 7.500000-4 1.086532+6 7.585776-4 1.058931+6 7.673615-4 1.031454+6 7.762471-4 1.004212+6 7.943282-4 9.518550+5 8.317638-4 8.553811+5 8.413951-4 8.326761+5 8.709636-4 7.671343+5 9.015711-4 7.063570+5 9.120108-4 6.870369+5 9.225714-4 6.679858+5 9.332543-4 6.494770+5 9.549926-4 6.140059+5 9.772372-4 5.805250+5 1.023293-3 5.189879+5 1.035142-3 5.046809+5 1.047129-3 4.906141+5 1.059254-3 4.769431+5 1.083927-3 4.504181+5 1.096478-3 4.377296+5 1.100000-3 4.342609+5 1.122018-3 4.134215+5 1.135011-3 4.017254+5 1.150000-3 3.887190+5 1.161449-3 3.791800+5 1.174898-3 3.682765+5 1.230269-3 3.277710+5 1.244515-3 3.183807+5 1.303167-3 2.834704+5 1.318257-3 2.753301+5 1.350000-3 2.591759+5 1.364583-3 2.521301+5 1.396368-3 2.376790+5 1.420000-3 2.276861+5 1.428894-3 2.240757+5 1.462177-3 2.111833+5 1.479108-3 2.049960+5 1.496236-3 1.989917+5 1.513561-3 1.931685+5 1.566751-3 1.765999+5 1.584893-3 1.714083+5 1.603245-3 1.663739+5 1.650000-3 1.544404+5 1.678804-3 1.476443+5 1.698244-3 1.432918+5 1.737801-3 1.349411+5 1.798871-3 1.232406+5 1.819701-3 1.195773+5 1.840772-3 1.160231+5 1.862087-3 1.125559+5 1.900000-3 1.067399+5 1.905461-3 1.059367+5 2.000000-3 9.323454+4 2.018366-3 9.100049+4 2.041738-3 8.826505+4 2.113489-3 8.054962+4 2.162719-3 7.576238+4 2.187762-3 7.347846+4 2.213095-3 7.125566+4 2.264644-3 6.701218+4 2.290868-3 6.498883+4 2.317395-3 6.301374+4 2.371374-3 5.924388+4 2.400000-3 5.737238+4 2.454709-3 5.399903+4 2.540973-3 4.921886+4 2.570396-3 4.771856+4 2.600160-3 4.626407+4 2.630268-3 4.485518+4 2.691535-3 4.214798+4 2.722701-3 4.085825+4 2.786121-3 3.838086+4 2.900000-3 3.443113+4 2.917427-3 3.387575+4 2.985383-3 3.182580+4 3.000000-3 3.140731+4 3.019952-3 3.084786+4 3.054921-3 2.989442+4 3.090295-3 2.897137+4 3.162278-3 2.721234+4 3.311311-3 2.399047+4 3.388442-3 2.252511+4 3.467369-3 2.115082+4 3.507519-3 2.049573+4 3.589219-3 1.924031+4 3.630781-3 1.864235+4 3.845918-3 1.590696+4 4.027170-3 1.401156+4 4.073803-3 1.357465+4 4.120975-3 1.314937+4 4.168694-3 1.273781+4 4.415704-3 1.085566+4 4.518559-3 1.018477+4 4.570882-3 9.864629+3 4.677351-3 9.255068+3 4.786301-3 8.683399+3 4.800000-3 8.614692+3 4.841724-3 8.408237+3 5.069907-3 7.392058+3 5.308844-3 6.501211+3 5.370318-3 6.295771+3 5.432503-3 6.096951+3 5.439600-3 6.074790+3 5.439600-3 5.025657+4 5.559043-3 4.772776+4 5.585000-3 4.720133+4 5.623413-3 4.641639+4 5.688529-3 4.512743+4 5.754399-3 4.387451+4 5.821032-3 4.261099+4 6.237348-3 3.576142+4 6.382635-3 3.373292+4 6.400000-3 3.350129+4 6.456542-3 3.273950+4 6.500000-3 3.216956+4 6.606934-3 3.082383+4 6.683439-3 2.990848+4 6.760830-3 2.902043+4 6.839116-3 2.815882+4 7.000000-3 2.649620+4 7.244360-3 2.420142+4 7.498942-3 2.209243+4 7.500000-3 2.208420+4 7.762471-3 2.016471+4 7.852356-3 1.956040+4 8.000000-3 1.862083+4 8.128305-3 1.785427+4 8.413951-3 1.628589+4 8.709636-3 1.485544+4 8.800000-3 1.445234+4 8.810489-3 1.440561+4 9.120108-3 1.311447+4 9.225714-3 1.271039+4 9.332543-3 1.231880+4 9.772372-3 1.086974+4 9.885531-3 1.053500+4 1.011579-2 9.896130+3 1.023293-2 9.591059+3 1.035142-2 9.295343+3 1.047129-2 9.008706+3 1.059254-2 8.730952+3 1.071519-2 8.461785+3 1.083927-2 8.200916+3 1.135011-2 7.216291+3 1.174898-2 6.556369+3 1.216186-2 5.956209+3 1.230269-2 5.768570+3 1.244515-2 5.586852+3 1.258925-2 5.410882+3 1.333521-2 4.610884+3 1.380384-2 4.182255+3 1.412538-2 3.918630+3 1.428894-2 3.793120+3 1.445440-2 3.671615+3 1.479108-2 3.440132+3 1.496236-2 3.329926+3 1.566751-2 2.923373+3 1.584893-2 2.828715+3 1.621810-2 2.648506+3 1.678804-2 2.399269+3 1.717908-2 2.246281+3 1.737801-2 2.173470+3 1.819701-2 1.905115+3 1.862087-2 1.782206+3 1.905461-2 1.667237+3 1.995262-2 1.458899+3 2.041738-2 1.364705+3 2.065380-2 1.319916+3 2.089296-2 1.276593+3 2.187762-2 1.117067+3 2.264644-2 1.009386+3 2.317395-2 9.433683+2 2.371374-2 8.816734+2 2.426610-2 8.240101+2 2.454709-2 7.966098+2 2.511886-2 7.445146+2 2.600160-2 6.726878+2 2.660725-2 6.286985+2 2.691535-2 6.075574+2 2.818383-2 5.298004+2 2.884032-2 4.947359+2 2.951209-2 4.619946+2 3.019952-2 4.314213+2 3.090295-2 4.028733+2 3.198895-2 3.635535+2 3.235937-2 3.513197+2 3.311311-2 3.278113+2 3.349654-2 3.166538+2 3.548134-2 2.663080+2 3.715352-2 2.318630+2 3.801894-2 2.163501+2 3.935501-2 1.950063+2 3.981072-2 1.883642+2 4.000000-2 1.856938+2 4.073803-2 1.756503+2 4.315191-2 1.474384+2 4.570882-2 1.237601+2 4.841724-2 1.038864+2 5.011872-2 9.352071+1 5.069907-2 9.030030+1 5.248075-2 8.120830+1 5.370318-2 7.566167+1 6.025596-2 5.312141+1 6.309573-2 4.610870+1 6.606934-2 4.002148+1 6.760830-2 3.726539+1 6.998420-2 3.348317+1 7.585776-2 2.608451+1 7.762471-2 2.428853+1 8.222426-2 2.031870+1 8.317638-2 1.960628+1 8.413951-2 1.891880+1 8.511380-2 1.825545+1 8.810489-2 1.640176+1 9.120108-2 1.473634+1 9.549926-2 1.277007+1 9.660509-2 1.232097+1 9.885531-2 1.146962+1 1.035142-1 9.939057+0 1.059254-1 9.252190+0 1.071519-1 8.926794+0 1.083927-1 8.612809+0 1.109175-1 8.017607+0 1.161449-1 6.947780+0 1.230269-1 5.809018+0 1.258925-1 5.407627+0 1.364583-1 4.208968+0 1.396368-1 3.918167+0 1.412538-1 3.780384+0 1.445440-1 3.519199+0 1.462177-1 3.396034+0 1.548817-1 2.841942+0 1.584893-1 2.646647+0 1.603245-1 2.554094+0 1.621810-1 2.464784+0 1.678804-1 2.215168+0 1.717908-1 2.062975+0 1.778279-1 1.854064+0 1.819701-1 1.726680+0 1.862087-1 1.608055+0 1.905461-1 1.498808+0 1.972423-1 1.348703+0 2.018366-1 1.257083+0 2.065380-1 1.171696+0 2.089296-1 1.131204+0 2.137962-1 1.054449+0 2.187762-1 9.829048-1 2.213095-1 9.489748-1 2.317395-1 8.261246-1 2.344229-1 7.979833-1 2.371374-1 7.708006-1 2.398833-1 7.445453-1 2.426610-1 7.191889-1 2.454709-1 6.946960-1 2.540973-1 6.261921-1 2.570396-1 6.048932-1 2.600160-1 5.846070-1 2.630268-1 5.650021-1 2.638800-1 5.596067-1 2.691535-1 5.277436-1 2.754229-1 4.929425-1 2.786121-1 4.764126-1 2.818383-1 4.604398-1 2.917427-1 4.157240-1 2.951209-1 4.018065-1 2.985383-1 3.883548-1 3.000000-1 3.828843-1 3.198895-1 3.177562-1 3.235937-1 3.073090-1 3.273407-1 2.972216-1 3.388442-1 2.689032-1 3.507519-1 2.437624-1 3.589219-1 2.283226-1 3.630781-1 2.209750-1 3.801894-1 1.939215-1 3.845918-1 1.878211-1 3.890451-1 1.819131-1 4.027170-1 1.652807-1 4.073803-1 1.600831-1 4.120975-1 1.550591-1 4.216965-1 1.454790-1 4.415705-1 1.284249-1 4.466836-1 1.244835-1 4.518559-1 1.206643-1 4.570882-1 1.169702-1 4.598600-1 1.150758-1 4.677351-1 1.099181-1 4.841724-1 1.003578-1 4.897788-1 9.735969-2 4.954502-1 9.445108-2 5.011872-1 9.163029-2 5.069907-1 8.889979-2 5.188000-1 8.368051-2 5.308844-1 7.888869-2 5.370318-1 7.659673-2 5.432503-1 7.437141-2 5.495409-1 7.221150-2 5.559043-1 7.011906-2 5.688529-1 6.611435-2 5.821032-1 6.243461-2 5.888437-1 6.067232-2 6.000000-1 5.790553-2 6.025596-1 5.729600-2 6.237348-1 5.259365-2 6.309573-1 5.115586-2 6.456542-1 4.839727-2 6.531306-1 4.707430-2 6.606935-1 4.578751-2 6.839117-1 4.214479-2 7.079458-1 3.888968-2 7.244360-1 3.686057-2 7.328245-1 3.588908-2 7.413102-1 3.497161-2 7.498942-1 3.407759-2 7.673615-1 3.235760-2 7.762471-1 3.153045-2 7.943282-1 2.993906-2 8.035261-1 2.917605-2 8.128305-1 2.845517-2 8.413951-1 2.639776-2 8.511380-1 2.574556-2 8.609938-1 2.510947-2 8.709636-1 2.448913-2 8.810489-1 2.388620-2 8.912509-1 2.329815-2 9.015711-1 2.272458-2 9.120108-1 2.218078-2 9.332543-1 2.113196-2 9.440609-1 2.062629-2 9.549926-1 2.013451-2 9.660509-1 1.965448-2 9.772372-1 1.918593-2 1.000000+0 1.831727-2 1.011579+0 1.789782-2 1.023293+0 1.748797-2 1.059254+0 1.631660-2 1.071519+0 1.594388-2 1.096478+0 1.522374-2 1.109175+0 1.487597-2 1.122018+0 1.454745-2 1.135011+0 1.422617-2 1.148154+0 1.391201-2 1.161449+0 1.360585-2 1.174898+0 1.330644-2 1.188502+0 1.301365-2 1.216186+0 1.244722-2 1.250000+0 1.182546-2 1.273503+0 1.142095-2 1.303167+0 1.094165-2 1.333521+0 1.048250-2 1.348963+0 1.026019-2 1.364583+0 1.004980-2 1.380384+0 9.843733-3 1.412538+0 9.444175-3 1.445440+0 9.062169-3 1.479108+0 8.695632-3 1.500000+0 8.479661-3 1.531087+0 8.183984-3 1.566751+0 7.864345-3 1.603245+0 7.558261-3 1.640590+0 7.264092-3 1.659587+0 7.121336-3 1.678804+0 6.981386-3 1.698244+0 6.848981-3 1.737801+0 6.591662-3 1.778279+0 6.344910-3 1.840772+0 5.991996-3 1.862087+0 5.878780-3 1.883649+0 5.771644-3 1.905461+0 5.666465-3 1.927525+0 5.563205-3 1.949845+0 5.461871-3 1.972423+0 5.362717-3 1.995262+0 5.265365-3 2.044000+0 5.066995-3 2.065380+0 4.983789-3 2.089296+0 4.893319-3 2.113489+0 4.807354-3 2.137962+0 4.722904-3 2.187762+0 4.558427-3 2.213095+0 4.478383-3 2.238721+0 4.399973-3 2.264644+0 4.322936-3 2.317395+0 4.172886-3 2.344229+0 4.099829-3 2.371374+0 4.028050-3 2.398833+0 3.959801-3 2.426610+0 3.892711-3 2.483133+0 3.761923-3 2.511886+0 3.698213-3 2.570396+0 3.574369-3 2.600160+0 3.514011-3 2.660725+0 3.396342-3 2.691535+0 3.338994-3 2.722701+0 3.282616-3 2.754229+0 3.229047-3 2.786121+0 3.176357-3 2.851018+0 3.073540-3 2.884032+0 3.023407-3 2.951209+0 2.925880-3 3.000000+0 2.858352-3 3.054921+0 2.785458-3 3.090295+0 2.740167-3 3.126079+0 2.695613-3 3.162278+0 2.653262-3 3.198895+0 2.611581-3 3.273407+0 2.530172-3 3.311311+0 2.490441-3 3.388442+0 2.413060-3 3.467369+0 2.338085-3 3.548134+0 2.265442-3 3.589219+0 2.229972-3 3.630781+0 2.195057-3 3.672823+0 2.161780-3 3.715352+0 2.129009-3 3.801894+0 2.064949-3 3.845918+0 2.033658-3 3.981072+0 1.942844-3 4.073803+0 1.884566-3 4.168694+0 1.828037-3 4.265795+0 1.773206-3 4.315191+0 1.746410-3 4.365158+0 1.720829-3 4.415704+0 1.695624-3 4.518559+0 1.646316-3 4.570882+0 1.622211-3 4.677351+0 1.575193-3 4.786301+0 1.529536-3 4.897788+0 1.485205-3 5.011872+0 1.442160-3 5.069907+0 1.421107-3 5.128614+0 1.401035-3 5.188000+0 1.381249-3 5.308844+0 1.342509-3 5.370318+0 1.323556-3 5.495409+0 1.286548-3 5.688529+0 1.232968-3 5.888437+0 1.181621-3 6.095369+0 1.132413-3 6.237348+0 1.100751-3 6.309573+0 1.085650-3 6.456542+0 1.056068-3 6.683439+0 1.013200-3 6.760830+0 9.993054-4 6.839116+0 9.856383-4 7.079458+0 9.457476-4 7.244360+0 9.200556-4 7.413102+0 8.950623-4 7.585776+0 8.707478-4 7.673615+0 8.591675-4 7.852356+0 8.364670-4 8.222427+0 7.928494-4 8.317638+0 7.823087-4 8.511380+0 7.616932-4 8.810489+0 7.317839-4 9.120108+0 7.030499-4 9.332543+0 6.845238-4 9.549926+0 6.664859-4 9.660509+0 6.578569-4 9.885531+0 6.409326-4 1.047129+1 6.005020-4 1.059254+1 5.927299-4 1.096478+1 5.700632-4 1.135011+1 5.482628-4 1.161449+1 5.341947-4 1.188502+1 5.204883-4 1.202264+1 5.137675-4 1.216186+1 5.072771-4 1.258925+1 4.882947-4 1.380384+1 4.410754-4 1.396368+1 4.355051-4 1.445440+1 4.192426-4 1.500000+1 4.024718-4 1.548817+1 3.885173-4 1.584893+1 3.787848-4 1.603245+1 3.740103-4 1.621810+1 3.693982-4 1.640590+1 3.648430-4 1.678804+1 3.559009-4 1.819701+1 3.262940-4 1.840772+1 3.222715-4 1.949845+1 3.029229-4 2.065380+1 2.847362-4 2.137962+1 2.743526-4 2.200000+1 2.660406-4 2.213095+1 2.643479-4 2.238721+1 2.611514-4 2.264644+1 2.579935-4 2.317395+1 2.517919-4 2.540973+1 2.284409-4 2.600160+1 2.229508-4 2.917427+1 1.974523-4 3.090295+1 1.858185-4 3.126079+1 1.835753-4 3.162278+1 1.813592-4 3.198895+1 1.791700-4 3.235937+1 1.770429-4 3.273407+1 1.749410-4 3.589219+1 1.590002-4 3.715352+1 1.534052-4 5.011872+1 1.125020-4 5.308844+1 1.059889-4 5.370318+1 1.047323-4 5.432503+1 1.034906-4 5.495409+1 1.022807-4 5.754399+1 9.758115-5 5.888437+1 9.531334-5 9.332543+1 5.958543-5 1.000000+2 5.553132-5 1.011579+2 5.488301-5 1.023293+2 5.424221-5 1.035142+2 5.360894-5 1.047129+2 5.298836-5 1.059254+2 5.237502-5 1.109175+2 4.999180-5 1.161449+2 4.771724-5 1.862087+2 2.961687-5 1.995262+2 2.762018-5 2.018366+2 2.730074-5 2.041738+2 2.698499-5 2.065380+2 2.667290-5 2.089296+2 2.636576-5 2.113489+2 2.606215-5 2.213095+2 2.488228-5 2.317395+2 2.375590-5 3.715352+2 1.477914-5 3.981072+2 1.378748-5 4.027170+2 1.362880-5 4.073803+2 1.347194-5 4.120975+2 1.331690-5 4.168694+2 1.316424-5 4.216965+2 1.301333-5 8.810489+2 6.221926-6 9.225714+2 5.941508-6 2.951209+3 1.854895-6 6.309573+3 8.668463-7 6.382635+3 8.569123-7 6.456542+3 8.470922-7 6.531306+3 8.373845-7 6.606934+3 8.277984-7 6.683439+3 8.183218-7 1.000000+5 5.467997-8 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.630000-6 6.630000-6 9.530000-6 6.630000-6 9.530000-6 9.511860-6 9.610000-6 9.516384-6 9.610000-6 9.553258-6 1.112000-5 9.546769-6 1.496236-5 9.488517-6 2.900000-5 9.492289-6 4.979000-5 9.494072-6 4.979000-5 1.136685-5 5.065000-5 1.131736-5 5.065000-5 1.200626-5 5.308844-5 1.178057-5 5.688529-5 1.140707-5 5.956621-5 1.121796-5 6.194100-5 1.112365-5 6.456542-5 1.109410-5 6.770000-5 1.114411-5 7.079458-5 1.125895-5 7.500000-5 1.147911-5 7.642000-5 1.156402-5 7.642000-5 1.308866-5 8.413951-5 1.358808-5 9.885531-5 1.459310-5 1.083927-4 1.515398-5 1.190000-4 1.566543-5 1.318257-4 1.615156-5 1.500000-4 1.668207-5 1.659587-4 1.705517-5 1.862087-4 1.743453-5 2.137962-4 1.782360-5 2.511886-4 1.821270-5 3.000000-4 1.858146-5 3.630781-4 1.891915-5 4.623810-4 1.929175-5 5.245400-4 1.946831-5 5.245400-4 3.163046-5 5.260000-4 3.218858-5 5.277000-4 3.257499-5 5.305000-4 3.292652-5 5.318800-4 3.302908-5 5.318800-4 3.361964-5 5.352000-4 3.387844-5 5.420000-4 3.405064-5 6.237900-4 3.406208-5 6.237900-4 3.634861-5 1.083927-3 3.762847-5 1.603245-3 3.876847-5 2.290868-3 3.995188-5 3.090295-3 4.103226-5 4.120975-3 4.210576-5 5.439600-3 4.313075-5 5.439600-3 6.255435-5 8.413951-3 6.298547-5 1.621810-2 6.334793-5 4.315191-2 6.359277-5 3.589219-1 6.371421-5 1.000000+5 6.372513-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.630000-6 0.0 4.979000-5 0.0 4.979000-5 2.48581-10 5.040000-5 2.44310-10 5.065000-5 2.42034-10 5.065000-5 3.31075-10 5.120000-5 3.25495-10 5.190000-5 3.17149-10 5.559043-5 2.67733-10 5.650000-5 2.56552-10 5.760000-5 2.44487-10 5.850000-5 2.35962-10 5.956621-5 2.27388-10 6.030000-5 2.22562-10 6.110000-5 2.18314-10 6.194100-5 2.15049-10 6.260000-5 2.13176-10 6.350000-5 2.11624-10 6.456542-5 2.11259-10 6.540000-5 2.11982-10 6.650000-5 2.14213-10 6.770000-5 2.17977-10 6.918310-5 2.24424-10 7.079458-5 2.33237-10 7.244360-5 2.43661-10 7.500000-5 2.62424-10 7.642000-5 2.73669-10 7.642000-5 3.71461-10 7.900000-5 3.91258-10 8.413951-5 4.34044-10 9.332543-5 5.11559-10 1.000000-4 5.63955-10 1.060000-4 6.06198-10 1.109200-4 6.37796-10 1.174898-4 6.75041-10 1.244515-4 7.09559-10 1.318257-4 7.41606-10 1.380384-4 7.65580-10 1.480000-4 7.99617-10 1.548817-4 8.20906-10 1.659587-4 8.50935-10 1.778279-4 8.78474-10 1.862087-4 8.95915-10 2.000000-4 9.20226-10 2.187762-4 9.47711-10 2.426610-4 9.76068-10 2.722701-4 1.004024-9 3.090295-4 1.030105-9 3.589219-4 1.055832-9 4.216965-4 1.078847-9 5.000000-4 1.098416-9 5.245400-4 1.103237-9 5.245400-4 4.972715-7 5.254500-4 5.127405-7 5.260000-4 5.200047-7 5.270000-4 5.302069-7 5.282000-4 5.390668-7 5.298000-4 5.473087-7 5.318800-4 5.541928-7 5.318800-4 5.981422-7 5.335000-4 6.072520-7 5.360000-4 6.158109-7 5.393000-4 6.218431-7 5.432503-4 6.250973-7 5.500000-4 6.263876-7 6.237900-4 6.250161-7 6.237900-4 6.457220-7 1.135011-3 6.508355-7 3.388442-3 6.619377-7 5.439600-3 6.687168-7 5.439600-3 1.080964-3 6.683439-3 1.089605-3 9.885531-3 1.099139-3 1.584893-2 1.106058-3 3.311311-2 1.110664-3 1.717908-1 1.112415-3 1.000000+5 1.112575-3 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.630000-6 0.0 9.530000-6 2.900000-6 9.530000-6 1.814005-8 9.570000-6 5.576651-8 9.610000-6 9.361591-8 9.610000-6 5.674189-8 9.685000-6 1.296219-7 9.830000-6 2.717111-7 1.005500-5 4.947767-7 1.044000-5 8.816333-7 1.138000-5 1.838773-6 1.350000-5 3.997517-6 1.710000-5 7.619269-6 4.979000-5 4.029593-5 4.979000-5 3.842290-5 5.065000-5 3.933240-5 5.065000-5 3.864341-5 5.888437-5 4.762547-5 6.456542-5 5.347111-5 7.328245-5 6.189996-5 7.642000-5 6.485571-5 7.642000-5 6.333097-5 1.109200-4 9.563218-5 1.462177-4 1.296340-4 2.264644-4 2.084943-4 5.245400-4 5.050706-4 5.245400-4 4.924123-4 5.318800-4 4.982968-4 5.318800-4 4.976622-4 6.237900-4 5.891029-4 6.237900-4 5.867957-4 5.439600-3 5.395801-3 5.439600-3 4.296081-3 1.380384-2 1.263612-2 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.439600-3 4.418178+4 5.585000-3 4.155800+4 5.754399-3 3.868697+4 6.400000-3 2.965240+4 7.000000-3 2.350920+4 8.128305-3 1.589945+4 8.800000-3 1.289262+4 1.083927-2 7.343765+3 1.333521-2 4.140469+3 1.566751-2 2.629500+3 1.819701-2 1.715822+3 2.187762-2 1.007302+3 2.660725-2 5.674585+2 3.235937-2 3.173235+2 4.000000-2 1.678252+2 5.069907-2 8.164995+1 6.606934-2 3.620004+1 9.120108-2 1.333216+1 1.445440-1 3.184162+0 1.862087-1 1.454604+0 2.213095-1 8.584439-1 2.570396-1 5.472115-1 2.985383-1 3.513002-1 3.388442-1 2.432442-1 3.801894-1 1.754157-1 4.216965-1 1.316000-1 4.677351-1 9.943229-2 5.188000-1 7.569804-2 5.688529-1 5.980685-2 6.237348-1 4.757522-2 6.839117-1 3.812294-2 7.328245-1 3.246790-2 8.035261-1 2.639970-2 9.015711-1 2.056400-2 9.772372-1 1.735944-2 1.109175+0 1.345865-2 1.216186+0 1.126140-2 1.348963+0 9.283046-3 1.500000+0 7.672188-3 1.678804+0 6.316639-3 1.862087+0 5.318920-3 2.089296+0 4.427343-3 2.371374+0 3.644514-3 2.722701+0 2.970023-3 3.126079+0 2.438913-3 3.630781+0 1.986033-3 4.315191+0 1.580103-3 5.069907+0 1.285781-3 6.237348+0 9.959269-4 7.585776+0 7.878256-4 9.549926+0 6.030178-4 1.202264+1 4.648398-4 1.603245+1 3.383925-4 2.213095+1 2.391736-4 3.198895+1 1.621082-4 5.432503+1 9.363845-5 1.035142+2 4.850584-5 2.065380+2 2.413434-5 4.120975+2 1.204863-5 6.531306+3 7.576498-7 1.000000+5 4.947700-8 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.439600-3 6.522500-5 1.000000+5 6.522500-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.439600-3 1.229500-3 1.000000+5 1.229500-3 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.439600-3 4.144875-3 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.237900-4 1.922496+5 6.800000-4 1.720503+5 7.000000-4 1.645434+5 7.500000-4 1.495650+5 8.709636-4 1.203603+5 1.035142-3 9.173822+4 1.122018-3 8.024187+4 1.303167-3 6.190420+4 1.428894-3 5.245220+4 1.650000-3 4.008760+4 1.840772-3 3.245942+4 2.113489-3 2.466003+4 2.400000-3 1.900094+4 2.722701-3 1.457424+4 3.162278-3 1.054665+4 3.630781-3 7.761099+3 4.168694-3 5.669578+3 4.800000-3 4.084920+3 5.559043-3 2.881822+3 6.456542-3 2.003764+3 7.500000-3 1.382192+3 8.709636-3 9.470562+2 1.011579-2 6.439214+2 1.174898-2 4.347362+2 1.380384-2 2.825959+2 1.621810-2 1.823354+2 1.905461-2 1.168035+2 2.264644-2 7.195045+1 2.691535-2 4.399106+1 3.235937-2 2.582892+1 3.935501-2 1.455083+1 4.841724-2 7.859739+0 6.025596-2 4.069778+0 7.762471-2 1.883196+0 9.885531-2 8.962665-1 1.548817-1 2.248539-1 2.089296-1 9.019680-2 2.454709-1 5.551702-2 2.818383-1 3.686517-2 3.235937-1 2.465510-2 3.630781-1 1.774967-2 4.073803-1 1.287163-2 4.518559-1 9.707795-3 5.011872-1 7.377299-3 5.495409-1 5.818055-3 6.025596-1 4.618759-3 6.606935-1 3.693549-3 7.244360-1 2.974617-3 7.943282-1 2.412937-3 8.709636-1 1.970677-3 9.440609-1 1.661664-3 1.023293+0 1.410509-3 1.148154+0 1.122671-3 1.273503+0 9.212551-4 1.412538+0 7.615836-4 1.566751+0 6.340985-4 1.737801+0 5.316038-4 1.949845+0 4.404129-4 2.213095+0 3.610980-4 2.511886+0 2.981675-4 2.884032+0 2.437795-4 3.311311+0 2.008206-4 3.845918+0 1.639886-4 4.570882+0 1.308139-4 5.370318+0 1.067284-4 6.760830+0 8.057403-5 8.317638+0 6.307841-5 1.059254+1 4.779342-5 1.396368+1 3.511629-5 1.840772+1 2.598649-5 2.600160+1 1.797883-5 3.715352+1 1.237115-5 5.888437+1 7.688587-6 1.161449+2 3.849221-6 2.317395+2 1.916834-6 9.225714+2 4.790703-7 1.000000+5 4.412700-9 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.237900-4 5.355200-5 1.000000+5 5.355200-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.237900-4 8.015100-7 1.000000+5 8.015100-7 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.237900-4 5.694365-4 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.318800-4 3.333400+5 5.320500-4 3.406300+5 5.323500-4 3.557900+5 5.327000-4 3.722500+5 5.331500-4 3.917100+5 5.335000-4 4.056200+5 5.340000-4 4.240000+5 5.345000-4 4.407000+5 5.352000-4 4.614800+5 5.360000-4 4.823700+5 5.367000-4 4.982100+5 5.375000-4 5.138200+5 5.382000-4 5.256300+5 5.393000-4 5.410300+5 5.405000-4 5.541100+5 5.417000-4 5.638900+5 5.432503-4 5.722700+5 5.450000-4 5.772500+5 5.470000-4 5.786300+5 5.495409-4 5.759600+5 6.000000-4 4.739700+5 6.362600-4 4.112200+5 6.760830-4 3.576500+5 7.585776-4 2.715300+5 8.317638-4 2.162000+5 9.015711-4 1.760400+5 1.035142-3 1.222500+5 1.135011-3 9.539700+4 1.318257-3 6.303100+4 1.462177-3 4.705000+4 1.698244-3 3.058200+4 1.905461-3 2.181300+4 2.187762-3 1.444700+4 2.540973-3 9.162500+3 2.900000-3 6.084500+3 3.311311-3 4.009200+3 3.845918-3 2.485100+3 4.518559-3 1.472300+3 5.308844-3 8.650500+2 6.237348-3 5.040900+2 7.244360-3 3.031300+2 8.413951-3 1.810200+2 9.885531-3 1.031400+2 1.174898-2 5.599500+1 1.412538-2 2.894400+1 1.717908-2 1.423500+1 2.089296-2 6.946100+0 2.600160-2 3.089400+0 3.311311-2 1.251300+0 4.570882-2 3.715000-1 7.585776-2 5.485579-2 9.549926-2 2.314890-2 1.161449-1 1.119526-2 1.364583-1 6.197832-3 1.584893-1 3.604403-3 1.819701-1 2.200927-3 2.065380-1 1.410409-3 2.317395-1 9.476928-4 2.600160-1 6.414501-4 2.917427-1 4.374042-4 3.273407-1 3.005940-4 3.630781-1 2.159263-4 4.027170-1 1.562427-4 4.415705-1 1.179659-4 4.841724-1 8.970247-5 5.308844-1 6.866183-5 5.821032-1 5.290644-5 6.456542-1 3.975182-5 7.079458-1 3.105853-5 7.762471-1 2.445291-5 8.609938-1 1.880168-5 9.120108-1 1.634138-5 9.660509-1 1.429258-5 1.023293+0 1.259383-5 1.096478+0 1.089951-5 1.161449+0 9.721031-6 1.250000+0 8.463692-6 1.364583+0 7.224319-6 1.640590+0 5.253831-6 1.840772+0 4.332942-6 2.044000+0 3.661700-6 2.317395+0 3.015595-6 2.660725+0 2.454363-6 3.054921+0 2.012954-6 3.548134+0 1.637263-6 4.168694+0 1.320974-6 4.897788+0 1.073253-6 5.888437+0 8.537878-7 7.244360+0 6.647926-7 9.120108+0 5.080347-7 1.161449+1 3.860697-7 1.548817+1 2.808004-7 2.137962+1 1.982934-7 3.126079+1 1.326971-7 5.370318+1 7.571644-8 1.023293+2 3.921735-8 2.041738+2 1.951087-8 4.073803+2 9.740465-9 6.456542+3 6.12467-10 1.000000+5 3.95380-11 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.318800-4 3.598700-5 1.000000+5 3.598700-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.318800-4 7.743200-7 1.000000+5 7.743200-7 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.318800-4 4.951187-4 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.245400-4 6.849400+5 5.247000-4 6.990880+5 5.250000-4 7.300360+5 5.254500-4 7.725920+5 5.260000-4 8.195000+5 5.265000-4 8.577360+5 5.270000-4 8.926760+5 5.277000-4 9.363080+5 5.282000-4 9.640480+5 5.290000-4 1.003528+6 5.298000-4 1.037536+6 5.305000-4 1.063244+6 5.315000-4 1.094140+6 5.325200-4 1.119462+6 5.335000-4 1.138664+6 5.350000-4 1.159840+6 5.365000-4 1.172836+6 5.380000-4 1.179400+6 5.400000-4 1.180664+6 5.420000-4 1.175980+6 5.495409-4 1.140276+6 6.456542-4 7.840829+5 6.839116-4 6.849723+5 7.673615-4 5.182052+5 8.413951-4 4.112961+5 9.120108-4 3.338511+5 1.059254-3 2.241451+5 1.161449-3 1.742653+5 1.350000-3 1.144632+5 1.513561-3 8.256748+4 1.737801-3 5.526622+4 2.000000-3 3.643296+4 2.290868-3 2.417555+4 2.630268-3 1.580771+4 3.019952-3 1.025976+4 3.507519-3 6.372364+3 4.073803-3 3.926737+3 4.786301-3 2.311867+3 5.559043-3 1.402942+3 6.500000-3 8.260920+2 7.500000-3 5.053240+2 8.709636-3 3.003138+2 1.023293-2 1.700759+2 1.216186-2 9.170816+1 1.445440-2 4.906026+1 1.717908-2 2.604555+1 2.065380-2 1.316720+1 2.511886-2 6.327604+0 3.090295-2 2.890569+0 3.981072-2 1.099901+0 8.413951-2 6.188000-2 1.035142-1 2.805223-2 1.258925-1 1.339051-2 1.462177-1 7.656581-3 1.678804-1 4.602893-3 1.905461-1 2.907430-3 2.137962-1 1.926905-3 2.371374-1 1.339274-3 2.638800-1 9.269679-4 2.917427-1 6.609816-4 3.198895-1 4.879484-4 3.507519-1 3.627367-4 3.845918-1 2.717102-4 4.216965-1 2.051216-4 4.598600-1 1.586297-4 5.011872-1 1.237782-4 5.432503-1 9.881157-5 5.888437-1 7.944679-5 6.309573-1 6.633371-5 6.839117-1 5.411398-5 7.498942-1 4.321430-5 8.128305-1 3.568938-5 8.810489-1 2.966216-5 9.549926-1 2.481929-5 1.011579+0 2.195509-5 1.122018+0 1.778842-5 1.216186+0 1.522781-5 1.348963+0 1.257487-5 1.500000+0 1.041700-5 1.678804+0 8.579688-6 1.883649+0 7.088966-6 2.113489+0 5.903930-6 2.398833+0 4.862921-6 2.754229+0 3.965676-6 3.162278+0 3.258744-6 3.672823+0 2.655160-6 4.365158+0 2.113576-6 5.128614+0 1.720794-6 6.309573+0 1.333452-6 7.585776+0 1.069711-6 9.549926+0 8.187514-7 1.202264+1 6.311294-7 1.621810+1 4.537256-7 2.238721+1 3.207825-7 3.198895+1 2.201011-7 5.495409+1 1.256411-7 1.047129+2 6.509348-8 2.089296+2 3.239024-8 4.168694+2 1.617196-8 6.606934+3 1.016902-9 1.000000+5 6.71770-11 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.245400-4 3.588500-5 1.000000+5 3.588500-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.245400-4 6.708400-7 1.000000+5 6.708400-7 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.245400-4 4.879842-4 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 7.642000-5 4.112220+5 7.900000-5 4.004800+5 8.150000-5 3.929940+5 8.511380-5 3.855478+5 9.015711-5 3.790988+5 1.040000-4 3.675780+5 1.109200-4 3.599910+5 1.174898-4 3.506027+5 1.240000-4 3.394820+5 1.303167-4 3.275296+5 1.380384-4 3.122778+5 1.500000-4 2.890840+5 1.659587-4 2.610448+5 1.840772-4 2.334846+5 2.000000-4 2.121340+5 2.187762-4 1.898079+5 2.426610-4 1.656081+5 2.754229-4 1.391441+5 3.090295-4 1.179498+5 3.467369-4 9.918467+4 4.027170-4 7.851451+4 4.570882-4 6.398286+4 5.308844-4 4.980094+4 6.095369-4 3.926381+4 7.161434-4 2.949619+4 8.317638-4 2.245503+4 9.772372-4 1.661343+4 1.150000-3 1.216258+4 1.364583-3 8.696247+3 1.603245-3 6.294907+3 1.900000-3 4.444960+3 2.213095-3 3.229483+3 2.570396-3 2.345031+3 3.000000-3 1.672518+3 3.467369-3 1.209884+3 4.027170-3 8.594361+2 4.677351-3 6.059190+2 5.432503-3 4.240850+2 6.382635-3 2.865215+2 7.498942-3 1.920537+2 8.810489-3 1.277181+2 1.035142-2 8.427189+1 1.216186-2 5.517588+1 1.428894-2 3.585566+1 1.678804-2 2.312896+1 1.995262-2 1.434703+1 2.371374-2 8.832146+0 2.818383-2 5.397538+0 3.349654-2 3.274754+0 4.073803-2 1.843953+0 5.011872-2 9.957400-1 6.309573-2 4.975936-1 8.317638-2 2.145613-1 1.071519-1 9.863550-2 1.603245-1 2.853941-2 2.018366-1 1.414520-2 2.398833-1 8.400238-3 2.786121-1 5.385958-3 3.198895-1 3.599882-3 3.589219-1 2.590194-3 4.027170-1 1.877145-3 4.466836-1 1.414795-3 4.954502-1 1.074103-3 5.432503-1 8.464514-4 6.000000-1 6.595100-4 6.606935-1 5.218690-4 7.244360-1 4.202989-4 7.943282-1 3.409542-4 8.709636-1 2.784669-4 9.440609-1 2.348073-4 1.023293+0 1.993248-4 1.148154+0 1.586492-4 1.273503+0 1.301836-4 1.412538+0 1.076200-4 1.566751+0 8.960358-5 1.737801+0 7.511757-5 1.927525+0 6.339274-5 2.187762+0 5.194408-5 2.483133+0 4.286528-5 2.851018+0 3.502216-5 3.273407+0 2.883235-5 3.801894+0 2.353167-5 4.518559+0 1.876178-5 5.308844+0 1.529937-5 6.683439+0 1.154446-5 8.222427+0 9.034142-6 1.047129+1 6.842503-6 1.380384+1 5.025610-6 1.819701+1 3.718103-6 2.540973+1 2.603261-6 3.589219+1 1.812092-6 5.754399+1 1.112425-6 1.109175+2 5.699460-7 2.213095+2 2.837196-7 8.810489+2 7.089496-8 1.000000+5 6.23560-10 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 7.642000-5 2.668600-5 1.000000+5 2.668600-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.642000-5 1.243600-9 1.000000+5 1.243600-9 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.642000-5 4.973276-5 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.065000-5 6.452620+5 5.120000-5 6.268880+5 5.188000-5 6.004153+5 5.270000-5 5.657160+5 5.370318-5 5.224242+5 5.500000-5 4.685620+5 5.754399-5 3.795346+5 5.888437-5 3.429991+5 6.000000-5 3.179880+5 6.110000-5 2.978040+5 6.180000-5 2.870880+5 6.260000-5 2.766900+5 6.350000-5 2.671500+5 6.450000-5 2.589240+5 6.540000-5 2.534120+5 6.650000-5 2.487840+5 6.760830-5 2.461229+5 6.850000-5 2.452120+5 6.950000-5 2.452880+5 7.079458-5 2.468083+5 7.244360-5 2.505616+5 7.413102-5 2.559327+5 7.673615-5 2.661767+5 8.609938-5 3.083610+5 9.015711-5 3.252280+5 9.440609-5 3.407098+5 9.885531-5 3.542374+5 1.023293-4 3.628396+5 1.060000-4 3.700620+5 1.106700-4 3.765510+5 1.150000-4 3.800420+5 1.205000-4 3.814400+5 1.260000-4 3.801040+5 1.318257-4 3.764255+5 1.380384-4 3.705910+5 1.462177-4 3.608007+5 1.548817-4 3.488288+5 1.650000-4 3.337360+5 1.760000-4 3.165720+5 1.862087-4 3.003898+5 1.980000-4 2.818260+5 2.113489-4 2.615506+5 2.264644-4 2.400981+5 2.454709-4 2.157126+5 2.660725-4 1.924149+5 2.884032-4 1.703525+5 3.126079-4 1.496475+5 3.427678-4 1.280203+5 3.758374-4 1.087079+5 4.100000-4 9.253700+4 4.518559-4 7.665686+4 5.000000-4 6.251300+4 5.500000-4 5.126000+4 6.095369-4 4.106086+4 6.839116-4 3.176214+4 7.585776-4 2.503056+4 8.413951-4 1.959666+4 9.332543-4 1.525344+4 1.047129-3 1.146625+4 1.174898-3 8.562375+3 1.318257-3 6.351808+3 1.479108-3 4.682257+3 1.678804-3 3.323875+3 1.905461-3 2.341307+3 2.162719-3 1.636464+3 2.454709-3 1.135057+3 2.786121-3 7.813454+2 3.162278-3 5.338048+2 3.589219-3 3.620061+2 4.073803-3 2.437971+2 4.677351-3 1.571928+2 5.370318-3 1.006159+2 6.237348-3 6.158052+1 7.244360-3 3.740479+1 8.413951-3 2.254801+1 9.772372-3 1.349463+1 1.135011-2 8.018323+0 1.333521-2 4.542699+0 1.584893-2 2.451669+0 1.905461-2 1.259566+0 2.317395-2 6.157285-1 2.884032-2 2.743487-1 3.715352-2 1.067129-1 7.585776-2 7.285514-3 9.660509-2 2.951491-3 1.161449-1 1.492657-3 1.364583-1 8.275813-4 1.584893-1 4.818855-4 1.819701-1 2.945527-4 2.065380-1 1.888672-4 2.344229-1 1.219851-4 2.630268-1 8.256451-5 2.951209-1 5.629890-5 3.273407-1 4.016514-5 3.630781-1 2.885465-5 4.027170-1 2.088226-5 4.466836-1 1.523169-5 4.897788-1 1.158405-5 5.370318-1 8.867200-6 5.888437-1 6.833799-6 6.456542-1 5.305184-6 7.079458-1 4.148855-6 7.762471-1 3.268594-6 8.609938-1 2.510811-6 9.120108-1 2.180245-6 9.660509-1 1.905200-6 1.023293+0 1.677529-6 1.096478+0 1.451135-6 1.161449+0 1.294071-6 1.250000+0 1.126800-6 1.364583+0 9.621147-7 1.659587+0 6.864954-7 1.862087+0 5.665537-7 2.065380+0 4.799537-7 2.344229+0 3.948180-7 2.691535+0 3.215545-7 3.090295+0 2.639009-7 3.589219+0 2.147733-7 4.265795+0 1.707822-7 5.011872+0 1.388952-7 6.095369+0 1.090579-7 7.413102+0 8.619274-8 9.332543+0 6.592181-8 1.188502+1 5.013279-8 1.584893+1 3.648451-8 2.200000+1 2.562700-8 3.162278+1 1.746884-8 5.370318+1 1.008853-8 1.011579+2 5.286734-9 2.018366+2 2.629874-9 4.027170+2 1.312858-9 6.382635+3 8.25481-11 1.000000+5 5.26790-12 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.065000-5 1.862300-5 1.000000+5 1.862300-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.065000-5 1.186300-9 1.000000+5 1.186300-9 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.065000-5 3.202581-5 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.979000-5 1.315960+6 5.040000-5 1.271108+6 5.110000-5 1.212380+6 5.190000-5 1.141496+6 5.300000-5 1.043872+6 5.650000-5 7.812720+5 5.760000-5 7.196160+5 5.850000-5 6.767000+5 5.956621-5 6.341361+5 6.030000-5 6.096720+5 6.110000-5 5.871200+5 6.194100-5 5.676420+5 6.260000-5 5.551280+5 6.350000-5 5.415360+5 6.456542-5 5.300639+5 6.540000-5 5.241240+5 6.650000-5 5.197760+5 6.770000-5 5.188040+5 6.900000-5 5.213240+5 7.070000-5 5.289080+5 7.244360-5 5.403104+5 7.500000-5 5.612040+5 8.413951-5 6.467149+5 8.810489-5 6.808213+5 9.225714-5 7.121472+5 9.660509-5 7.394845+5 1.000000-4 7.567960+5 1.040000-4 7.726760+5 1.083927-4 7.847223+5 1.135011-4 7.922689+5 1.190000-4 7.937000+5 1.244515-4 7.895071+5 1.303167-4 7.801844+5 1.380384-4 7.626056+5 1.462177-4 7.399308+5 1.548817-4 7.132450+5 1.650000-4 6.801800+5 1.760000-4 6.432280+5 1.862087-4 6.087766+5 1.995262-4 5.648528+5 2.137962-4 5.201335+5 2.317395-4 4.685788+5 2.511886-4 4.191567+5 2.722701-4 3.722461+5 2.951209-4 3.281125+5 3.200000-4 2.869404+5 3.507519-4 2.445972+5 3.850000-4 2.065400+5 4.216965-4 1.737833+5 4.623810-4 1.448331+5 5.128614-4 1.171352+5 5.688529-4 9.399379+4 6.309573-4 7.482616+4 7.000000-4 5.914600+4 7.762471-4 4.648800+4 8.709636-4 3.528855+4 9.772372-4 2.659184+4 1.100000-3 1.973588+4 1.244515-3 1.435425+4 1.420000-3 1.013044+4 1.603245-3 7.294016+3 1.819701-3 5.141294+3 2.041738-3 3.717356+3 2.317395-3 2.581687+3 2.630268-3 1.779306+3 2.985383-3 1.217050+3 3.388442-3 8.260846+2 3.845918-3 5.567200+2 4.415704-3 3.591535+2 5.069907-3 2.299214+2 5.821032-3 1.461279+2 6.760830-3 8.873089+1 7.852356-3 5.347882+1 9.120108-3 3.198687+1 1.059254-2 1.898563+1 1.230269-2 1.118622+1 1.445440-2 6.279892+0 1.717908-2 3.355749+0 2.041738-2 1.779715+0 2.454709-2 8.981670-1 3.019952-2 4.123808-1 3.801894-2 1.722535-1 5.011872-2 5.986684-2 8.511380-2 7.858250-3 1.059254-1 3.415154-3 1.258925-1 1.780906-3 1.462177-1 1.019638-3 1.678804-1 6.132271-4 1.905461-1 3.874821-4 2.137962-1 2.570226-4 2.371374-1 1.787640-4 2.630268-1 1.251845-4 2.917427-1 8.832780-5 3.198895-1 6.523113-5 3.507519-1 4.850918-5 3.845918-1 3.634094-5 4.216965-1 2.743785-5 4.570882-1 2.160237-5 4.954502-1 1.712221-5 5.370318-1 1.367158-5 5.821032-1 1.099226-5 6.309573-1 8.896754-6 6.839117-1 7.248276-6 7.413102-1 5.944721-6 8.128305-1 4.776716-6 8.810489-1 3.969128-6 9.440609-1 3.408799-6 1.011579+0 2.947635-6 1.122018+0 2.390413-6 1.216186+0 2.046245-6 1.348963+0 1.688902-6 1.500000+0 1.398200-6 1.678804+0 1.151476-6 1.883649+0 9.514714-7 2.113489+0 7.924520-7 2.398833+0 6.527267-7 2.754229+0 5.322884-7 3.162278+0 4.373950-7 3.672823+0 3.563779-7 4.365158+0 2.836896-7 5.128614+0 2.309722-7 6.309573+0 1.789808-7 7.673615+0 1.416449-7 9.660509+0 1.084602-7 1.216186+1 8.363025-8 1.640590+1 6.014368-8 2.264644+1 4.253242-8 3.235937+1 2.918947-8 5.495409+1 1.686399-8 1.059254+2 8.635653-9 2.113489+2 4.297362-9 4.216965+2 2.145791-9 6.683439+3 1.34936-10 1.000000+5 9.01680-12 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.979000-5 1.853700-5 1.000000+5 1.853700-5 1 23000 7 7 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.979000-5 1.200300-9 1.000000+5 1.200300-9 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.979000-5 3.125180-5 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 9.610000-6 9.294601+5 1.011579-5 9.861705+5 1.071519-5 1.061925+6 1.318257-5 1.411216+6 1.428894-5 1.567250+6 1.548817-5 1.729183+6 1.678804-5 1.894298+6 1.800000-5 2.037132+6 1.927525-5 2.174283+6 2.041738-5 2.284148+6 2.187762-5 2.405344+6 2.317395-5 2.495713+6 2.454709-5 2.571993+6 2.600160-5 2.630065+6 2.754229-5 2.668626+6 2.900000-5 2.684880+6 3.054921-5 2.682556+6 3.198895-5 2.664626+6 3.350000-5 2.632092+6 3.548134-5 2.573067+6 3.758374-5 2.496270+6 4.000000-5 2.396736+6 4.265795-5 2.280439+6 4.570882-5 2.146076+6 4.900000-5 2.005152+6 5.308844-5 1.839585+6 5.688529-5 1.697032+6 6.095369-5 1.554885+6 6.531306-5 1.414573+6 6.918310-5 1.299294+6 7.328245-5 1.186193+6 7.800000-5 1.067783+6 8.317638-5 9.510094+5 8.912509-5 8.339298+5 9.549926-5 7.262562+5 1.040000-4 6.082020+5 1.150000-4 4.890516+5 1.244515-4 4.093902+5 1.350000-4 3.387972+5 1.480000-4 2.711592+5 1.621810-4 2.153124+5 1.778279-4 1.694535+5 1.950000-4 1.325316+5 2.137962-4 1.031180+5 2.344229-4 7.968953+4 2.570396-4 6.118372+4 2.851018-4 4.516139+4 3.198895-4 3.203203+4 3.589219-4 2.253755+4 4.027170-4 1.573746+4 4.518559-4 1.091412+4 5.069907-4 7.517051+3 5.754399-4 4.949519+3 6.531306-4 3.234699+3 7.328245-4 2.182705+3 8.317638-4 1.405395+3 9.549926-4 8.622793+2 1.083927-3 5.471147+2 1.230269-3 3.446441+2 1.396368-3 2.154895+2 1.584893-3 1.336997+2 1.798871-3 8.229811+1 2.018366-3 5.256961+1 2.264644-3 3.333171+1 2.570396-3 2.003777+1 2.917427-3 1.195355+1 3.311311-3 7.074813+0 3.845918-3 3.775828+0 4.570882-3 1.814551+0 5.821032-3 6.442575-1 6.839116-3 3.208161-1 8.000000-3 1.616436-1 9.332543-3 8.175242-2 1.059254-2 4.641183-2 1.244515-2 2.240271-2 1.496236-2 9.664001-3 1.862087-2 3.529784-3 2.691535-2 6.414507-4 5.370318-2 2.590578-5 6.760830-2 8.942532-6 8.222426-2 3.648078-6 9.549926-2 1.849283-6 1.083927-1 1.047378-6 1.230269-1 5.971936-7 1.396368-1 3.429538-7 1.584893-1 1.984355-7 1.778279-1 1.215424-7 1.972423-1 7.871583-8 2.187762-1 5.138027-8 2.426610-1 3.378784-8 2.691535-1 2.238320-8 2.985383-1 1.493836-8 3.273407-1 1.047589-8 3.589219-1 7.398590-9 3.890451-1 5.493745-9 4.120975-1 4.464100-9 4.518559-1 3.228450-9 5.069907-1 2.172581-9 5.559043-1 1.589840-9 6.025596-1 1.217599-9 6.531306-1 9.40195-10 7.079458-1 7.31618-10 8.035261-1 4.97925-10 8.511380-1 4.20611-10 8.912509-1 3.69437-10 9.332543-1 3.26321-10 9.772372-1 2.90121-10 1.023293+0 2.59850-10 1.071519+0 2.34514-10 1.122018+0 2.13064-10 1.188502+0 1.90466-10 1.273503+0 1.67911-10 1.380384+0 1.45977-10 1.531087+0 1.22667-10 1.778279+0 9.51360-11 1.972423+0 8.02992-11 2.238721+0 6.58850-11 2.570396+0 5.35171-11 2.951209+0 4.38076-11 3.388442+0 3.61308-11 3.981072+0 2.90896-11 4.677351+0 2.35860-11 5.495409+0 1.92628-11 6.839116+0 1.47571-11 8.511380+0 1.14045-11 1.096478+1 8.53542-12 1.445440+1 6.27776-12 1.949845+1 4.53546-12 2.917427+1 2.95656-12 5.011872+1 1.68478-12 9.332543+1 8.92484-13 1.862087+2 4.43677-13 3.715352+2 2.21432-13 2.951209+3 2.77873-14 1.000000+5 8.19440-16 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 9.610000-6 9.610000-6 1.000000+5 9.610000-6 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.610000-6 0.0 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 9.530000-6 1.409974+6 1.000000-5 1.489918+6 1.059254-5 1.604103+6 1.288250-5 2.095388+6 1.412538-5 2.361187+6 1.531087-5 2.603776+6 1.659587-5 2.850560+6 1.778279-5 3.061673+6 1.905461-5 3.267872+6 2.041738-5 3.464261+6 2.162719-5 3.615921+6 2.300000-5 3.759930+6 2.426610-5 3.865941+6 2.570396-5 3.956315+6 2.691535-5 4.007833+6 2.818383-5 4.037968+6 2.951209-5 4.047136+6 3.090295-5 4.033316+6 3.273407-5 3.985323+6 3.467369-5 3.906169+6 3.672823-5 3.798197+6 3.900000-5 3.659814+6 4.168694-5 3.484327+6 4.466836-5 3.285147+6 4.800000-5 3.066354+6 5.188000-5 2.825697+6 5.559043-5 2.610172+6 6.000000-5 2.373930+6 6.400000-5 2.176128+6 6.839116-5 1.975489+6 7.300000-5 1.783319+6 7.800000-5 1.593954+6 8.317638-5 1.419769+6 8.912509-5 1.243951+6 9.660509-5 1.058237+6 1.059254-4 8.718482+5 1.150000-4 7.287570+5 1.260000-4 5.930226+5 1.380384-4 4.784852+5 1.496236-4 3.928246+5 1.621810-4 3.204532+5 1.778279-4 2.521471+5 1.995262-4 1.852697+5 2.213095-4 1.392852+5 2.426610-4 1.073314+5 2.691535-4 7.946361+4 3.000000-4 5.764050+4 3.388442-4 3.988819+4 3.801894-4 2.795571+4 4.265795-4 1.944762+4 4.786301-4 1.343170+4 5.432503-4 8.870976+3 6.165950-4 5.813137+3 7.000000-4 3.777228+3 7.943282-4 2.439163+3 9.015711-4 1.562322+3 1.023293-3 9.940425+2 1.161449-3 6.278152+2 1.318257-3 3.935808+2 1.496236-3 2.448679+2 1.698244-3 1.511498+2 1.905461-3 9.680425+1 2.113489-3 6.442598+1 2.371374-3 4.070137+1 2.691535-3 2.437184+1 3.054921-3 1.448127+1 3.507519-3 8.136652+0 4.120975-3 4.116789+0 4.841724-3 2.070590+0 5.688529-3 1.034069+0 6.683439-3 5.127776-1 7.852356-3 2.524851-1 9.225714-3 1.234809-1 1.047129-2 6.995091-2 1.216186-2 3.545108-2 1.445440-2 1.605419-2 1.862087-2 4.984776-3 2.426610-2 1.455100-3 3.198895-2 3.997133-4 5.248075-2 3.922061-5 6.998420-2 1.024349-5 8.317638-2 4.608810-6 9.660509-2 2.322589-6 1.109175-1 1.241601-6 1.258925-1 7.043911-7 1.412538-1 4.239031-7 1.548817-1 2.840915-7 1.717908-1 1.824001-7 1.905461-1 1.179841-7 2.137962-1 7.331992-8 2.344229-1 5.047808-8 2.540973-1 3.665035-8 2.754229-1 2.679290-8 3.000000-1 1.937300-8 3.235937-1 1.464241-8 3.507519-1 1.094709-8 3.801894-1 8.243186-9 4.216965-1 5.771456-9 4.518559-1 4.578732-9 4.841724-1 3.658773-9 5.069907-1 3.166915-9 5.432503-1 2.572999-9 5.821032-1 2.104827-9 6.531306-1 1.518017-9 7.079458-1 1.216052-9 7.673615-1 9.81409-10 8.413951-1 7.74907-10 8.912509-1 6.72517-10 9.440609-1 5.87273-10 1.000000+0 5.16440-10 1.071519+0 4.46373-10 1.135011+0 3.97348-10 1.216186+0 3.48168-10 1.333521+0 2.94127-10 1.479108+0 2.45095-10 1.698244+0 1.93332-10 1.905461+0 1.59822-10 2.137962+0 1.33174-10 2.426610+0 1.09756-10 2.786121+0 8.95675-11 3.198895+0 7.36505-11 3.715352+0 6.00429-11 4.415704+0 4.78213-11 5.188000+0 3.89547-11 6.456542+0 2.97804-11 7.852356+0 2.35891-11 9.885531+0 1.80757-11 1.258925+1 1.37693-11 1.678804+1 1.00369-11 2.317395+1 7.10139-12 3.273407+1 4.93476-12 5.495409+1 2.88552-12 1.059254+2 1.47759-12 2.113489+2 7.35299-13 4.216965+2 3.67141-13 6.683439+3 2.30873-14 1.000000+5 1.54280-15 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 9.530000-6 9.530000-6 1.000000+5 9.530000-6 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.530000-6 0.0 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.630000-6 1.047841+6 6.850000-6 8.149860+5 7.000000-6 6.852660+5 7.100000-6 6.096920+5 7.244360-6 5.137397+5 7.350000-6 4.520560+5 7.500000-6 3.757620+5 7.600000-6 3.312900+5 7.730000-6 2.801300+5 7.852356-6 2.381867+5 7.960000-6 2.057220+5 8.050000-6 1.814220+5 8.150000-6 1.571704+5 8.240000-6 1.376024+5 8.317638-6 1.222971+5 8.420000-6 1.041606+5 8.520000-6 8.849120+4 8.609938-6 7.597202+4 8.680000-6 6.717040+4 8.740000-6 6.024720+4 8.810489-6 5.279213+4 8.880000-6 4.611300+4 8.940000-6 4.085040+4 9.000000-6 3.602580+4 9.070000-6 3.091660+4 9.120108-6 2.758267+4 9.170000-6 2.451800+4 9.225714-6 2.138012+4 9.280000-6 1.859570+4 9.332543-6 1.614544+4 9.380000-6 1.412828+4 9.420000-6 1.256558+4 9.460000-6 1.112414+4 9.500000-6 9.798500+3 9.535000-6 8.730240+3 9.570000-6 7.744620+3 9.610000-6 6.715260+3 9.650000-6 5.785840+3 9.685000-6 5.051220+3 9.715000-6 4.477980+3 9.750000-6 3.872900+3 9.790000-6 3.262280+3 9.830000-6 2.734660+3 9.910000-6 1.915054+3 9.937000-6 1.705800+3 9.960000-6 1.553190+3 9.980000-6 1.439180+3 1.000000-5 1.342182+3 1.001500-5 1.280388+3 1.002700-5 1.237560+3 1.004200-5 1.192256+3 1.005500-5 1.160244+3 1.007000-5 1.131554+3 1.008500-5 1.111558+3 1.010000-5 1.100120+3 1.011579-5 1.097175+3 1.012700-5 1.100606+3 1.014200-5 1.112408+3 1.015500-5 1.129148+3 1.017000-5 1.155868+3 1.018500-5 1.190394+3 1.020000-5 1.232604+3 1.021500-5 1.282374+3 1.023293-5 1.351585+3 1.025000-5 1.427114+3 1.028000-5 1.582302+3 1.031000-5 1.765170+3 1.040500-5 2.516640+3 1.044000-5 2.855760+3 1.048000-5 3.281720+3 1.052000-5 3.747020+3 1.056000-5 4.249800+3 1.060000-5 4.788260+3 1.063500-5 5.287520+3 1.067000-5 5.811840+3 1.071519-5 6.524225+3 1.075000-5 7.098840+3 1.079000-5 7.785720+3 1.083927-5 8.668809+3 1.088000-5 9.428100+3 1.094000-5 1.059172+4 1.100000-5 1.180554+4 1.107000-5 1.327984+4 1.112000-5 1.436822+4 1.117000-5 1.548374+4 1.123000-5 1.685548+4 1.131000-5 1.873560+4 1.138000-5 2.042360+4 1.146000-5 2.239580+4 1.154000-5 2.440840+4 1.165000-5 2.723100+4 1.176000-5 3.010560+4 1.185000-5 3.248780+4 1.195000-5 3.515880+4 1.207000-5 3.838740+4 1.218000-5 4.136020+4 1.230269-5 4.468053+4 1.245000-5 4.866080+4 1.260000-5 5.269220+4 1.275000-5 5.668880+4 1.290000-5 6.063900+4 1.310000-5 6.581840+4 1.330000-5 7.088060+4 1.350000-5 7.581180+4 1.372000-5 8.107140+4 1.400000-5 8.750040+4 1.430000-5 9.404420+4 1.462177-5 1.006578+5 1.496236-5 1.072003+5 1.531087-5 1.134153+5 1.570000-5 1.197998+5 1.610000-5 1.257810+5 1.659587-5 1.324282+5 1.710000-5 1.383792+5 1.770000-5 1.444950+5 1.830000-5 1.496628+5 1.905461-5 1.549794+5 1.980000-5 1.591148+5 2.070000-5 1.628558+5 2.162719-5 1.655302+5 2.270000-5 1.674234+5 2.400000-5 1.683546+5 2.540973-5 1.680886+5 2.691535-5 1.667643+5 2.884032-5 1.640024+5 3.090295-5 1.601416+5 3.349654-5 1.545259+5 3.630781-5 1.479656+5 3.935501-5 1.406815+5 4.265795-5 1.328722+5 4.650000-5 1.240582+5 5.069907-5 1.149383+5 5.559043-5 1.051002+5 6.025596-5 9.654156+4 6.606934-5 8.697435+4 7.328245-5 7.671635+4 8.128305-5 6.719412+4 9.332543-5 5.585533+4 1.096478-4 4.468155+4 1.333521-4 3.382421+4 2.113489-4 1.732933+4 2.426610-4 1.407085+4 2.786121-4 1.133478+4 3.090295-4 9.583619+3 3.630781-4 7.314634+3 4.731513-4 4.649041+3 5.559043-4 3.504401+3 6.309573-4 2.789894+3 7.673615-4 1.943332+3 9.225714-4 1.375246+3 1.096478-3 9.860050+2 1.303167-3 7.014261+2 1.566751-3 4.838418+2 1.862087-3 3.391005+2 2.213095-3 2.358191+2 2.600160-3 1.667613+2 3.090295-3 1.141090+2 3.589219-3 8.147221+1 4.168694-3 5.773909+1 4.841724-3 4.062188+1 5.623413-3 2.837634+1 6.606934-3 1.913511+1 7.762471-3 1.280255+1 9.120108-3 8.498927+0 1.071519-2 5.598302+0 1.258925-2 3.659509+0 1.479108-2 2.374388+0 1.737801-2 1.529235+0 2.065380-2 9.471140-1 2.454709-2 5.821718-1 2.951209-2 3.436977-1 3.548134-2 2.013081-1 4.315191-2 1.131522-1 5.248075-2 6.313574-2 6.606934-2 3.150821-2 8.810489-2 1.310048-2 1.621810-1 2.006247-3 2.065380-1 9.605292-4 2.426610-1 5.909960-4 2.818383-1 3.791606-4 3.235937-1 2.536063-4 3.630781-1 1.826163-4 4.073803-1 1.324660-4 4.518559-1 9.993144-5 5.011872-1 7.594940-5 5.495409-1 5.991954-5 6.025596-1 4.759247-5 6.606935-1 3.807750-5 7.244360-1 3.068722-5 7.943282-1 2.491518-5 8.709636-1 2.037918-5 9.549926-1 1.680011-5 1.059254+0 1.363966-5 1.174898+0 1.112901-5 1.303167+0 9.145518-6 1.445440+0 7.570196-6 1.603245+0 6.311575-6 1.778279+0 5.299106-6 1.995262+0 4.397401-6 2.264644+0 3.610768-6 2.600160+0 2.934892-6 3.000000+0 2.387300-6 3.467369+0 1.952864-6 4.073803+0 1.573958-6 4.786301+0 1.277474-6 5.688529+0 1.029674-6 7.079458+0 7.898435-7 8.810489+0 6.111636-7 1.135011+1 4.579638-7 1.500000+1 3.362000-7 2.065380+1 2.378400-7 3.090295+1 1.552643-7 5.308844+1 8.857196-8 1.000000+2 4.640900-8 1.995262+2 2.308406-8 3.981072+2 1.152274-8 6.309573+3 7.24520-10 1.000000+5 4.57070-11 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.630000-6 6.630000-6 1.000000+5 6.630000-6 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.630000-6 0.0 1.000000+5 1.000000+5 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.276820-8 1.028750+0 2.276820-7 1.033200+0 1.027730-6 1.034000+0 1.261630-6 1.035300+0 1.712480-6 1.036640+0 2.276820-6 1.038200+0 3.072640-6 1.039700+0 3.991980-6 1.041500+0 5.311280-6 1.043800+0 7.372240-6 1.046400+0 1.025710-5 1.048300+0 1.277040-5 1.051200+0 1.732270-5 1.054080+0 2.276820-5 1.057700+0 3.103440-5 1.061100+0 4.036790-5 1.065100+0 5.344250-5 1.070400+0 7.455750-5 1.076200+0 1.030380-4 1.080600+0 1.286770-4 1.087100+0 1.733720-4 1.093710+0 2.276820-4 1.102600+0 3.156860-4 1.110700+0 4.117310-4 1.120600+0 5.507970-4 1.133300+0 7.658900-4 1.147500+0 1.057510-3 1.158200+0 1.314220-3 1.174100+0 1.756400-3 1.190110+0 2.276820-3 1.205100+0 2.833450-3 1.227500+0 3.791490-3 1.250000+0 4.902000-3 1.280300+0 6.619290-3 1.307700+0 8.378600-3 1.343000+0 1.091420-2 1.382200+0 1.405640-2 1.433800+0 1.867290-2 1.500000+0 2.535000-2 1.562500+0 3.241840-2 1.617200+0 3.918660-2 1.712900+0 5.221870-2 1.784700+0 6.286780-2 1.892300+0 7.995640-2 2.000000+0 9.804000-2 2.044000+0 1.056000-1 2.163500+0 1.264250-1 2.372600+0 1.633560-1 2.529500+0 1.910630-1 2.764700+0 2.321900-1 3.000000+0 2.728000-1 3.437500+0 3.467260-1 4.000000+0 4.373000-1 4.750000+0 5.480320-1 5.000000+0 5.828000-1 6.000000+0 7.126000-1 7.000000+0 8.280000-1 8.000000+0 9.318000-1 9.000000+0 1.026000+0 1.000000+1 1.111000+0 1.100000+1 1.188000+0 1.200000+1 1.259000+0 1.300000+1 1.325000+0 1.400000+1 1.386000+0 1.500000+1 1.443000+0 1.600000+1 1.496000+0 1.800000+1 1.594000+0 2.000000+1 1.681000+0 2.200000+1 1.760000+0 2.400000+1 1.832000+0 2.600000+1 1.898000+0 2.800000+1 1.958000+0 3.000000+1 2.014000+0 4.000000+1 2.242000+0 5.000000+1 2.413000+0 6.000000+1 2.546000+0 8.000000+1 2.744000+0 1.000000+2 2.887000+0 1.500000+2 3.117000+0 2.000000+2 3.257000+0 3.000000+2 3.422000+0 4.000000+2 3.519000+0 5.000000+2 3.582000+0 6.000000+2 3.628000+0 8.000000+2 3.689000+0 1.000000+3 3.729000+0 1.500000+3 3.787000+0 2.000000+3 3.818000+0 3.000000+3 3.853000+0 4.000000+3 3.871000+0 5.000000+3 3.883000+0 6.000000+3 3.891000+0 8.000000+3 3.901000+0 1.000000+4 3.908000+0 1.500000+4 3.917000+0 2.000000+4 3.922000+0 3.000000+4 3.928000+0 4.000000+4 3.930000+0 5.000000+4 3.932000+0 6.000000+4 3.933000+0 8.000000+4 3.935000+0 1.000000+5 3.936000+0 1 23000 7 8 5.094200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.309610-7 2.114000+0 1.041170-6 2.119500+0 1.296250-6 2.127900+0 1.757970-6 2.136250+0 2.309610-6 2.147000+0 3.166640-6 2.156900+0 4.113080-6 2.169000+0 5.489160-6 2.184500+0 7.630120-6 2.201800+0 1.055650-5 2.214800+0 1.315260-5 2.234200+0 1.769250-5 2.253680+0 2.309610-5 2.281500+0 3.235020-5 2.307000+0 4.249190-5 2.338200+0 5.713400-5 2.377400+0 7.912390-5 2.410200+0 1.006320-4 2.446800+0 1.280100-4 2.485900+0 1.611720-4 2.532900+0 2.062650-4 2.556430+0 2.309610-4 2.611900+0 2.945000-4 2.660400+0 3.560330-4 2.745300+0 4.765240-4 2.809000+0 5.770960-4 2.904500+0 7.434280-4 3.000000+0 9.280000-4 3.125000+0 1.196660-3 3.234400+0 1.456130-3 3.425800+0 1.961040-3 3.569300+0 2.378140-3 3.784700+0 3.057500-3 4.000000+0 3.788000-3 4.250000+0 4.681340-3 4.625000+0 6.085910-3 5.000000+0 7.547000-3 5.500000+0 9.554190-3 6.000000+0 1.159000-2 6.750000+0 1.462180-2 7.000000+0 1.562000-2 8.000000+0 1.953000-2 9.000000+0 2.328000-2 1.000000+1 2.684000-2 1.100000+1 3.022000-2 1.200000+1 3.341000-2 1.300000+1 3.642000-2 1.400000+1 3.929000-2 1.500000+1 4.201000-2 1.600000+1 4.460000-2 1.800000+1 4.940000-2 2.000000+1 5.379000-2 2.200000+1 5.782000-2 2.400000+1 6.154000-2 2.600000+1 6.497000-2 2.800000+1 6.817000-2 3.000000+1 7.116000-2 4.000000+1 8.361000-2 5.000000+1 9.318000-2 6.000000+1 1.009000-1 8.000000+1 1.126000-1 1.000000+2 1.212000-1 1.500000+2 1.358000-1 2.000000+2 1.452000-1 3.000000+2 1.568000-1 4.000000+2 1.639000-1 5.000000+2 1.689000-1 6.000000+2 1.725000-1 8.000000+2 1.776000-1 1.000000+3 1.811000-1 1.500000+3 1.863000-1 2.000000+3 1.892000-1 3.000000+3 1.925000-1 4.000000+3 1.945000-1 5.000000+3 1.957000-1 6.000000+3 1.965000-1 8.000000+3 1.976000-1 1.000000+4 1.983000-1 1.500000+4 1.993000-1 2.000000+4 1.999000-1 3.000000+4 2.005000-1 4.000000+4 2.008000-1 5.000000+4 2.010000-1 6.000000+4 2.011000-1 8.000000+4 2.013000-1 1.000000+5 2.014000-1 1 23000 7 8 5.094200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 23000 7 9 5.094200+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.300000+1 1.000000+5 2.300000+1 5.000000+5 2.298500+1 1.000000+6 2.295900+1 1.500000+6 2.292200+1 2.000000+6 2.286200+1 2.375000+6 2.280640+1 2.500000+6 2.278600+1 2.875000+6 2.271920+1 3.000000+6 2.269500+1 3.500000+6 2.258800+1 4.000000+6 2.247300+1 4.500000+6 2.234470+1 5.000000+6 2.220800+1 5.500000+6 2.205630+1 5.875000+6 2.193680+1 6.000000+6 2.189710+1 6.437500+6 2.174990+1 7.000000+6 2.155700+1 7.687500+6 2.131120+1 8.437500+6 2.104000+1 8.500000+6 2.101670+1 9.000000+6 2.083300+1 9.750000+6 2.055190+1 1.000000+7 2.046000+1 1.109400+7 2.005170+1 1.187500+7 1.976360+1 1.250000+7 1.953500+1 1.437500+7 1.885750+1 1.500000+7 1.863900+1 1.750000+7 1.779800+1 2.000000+7 1.699300+1 2.250000+7 1.620780+1 2.500000+7 1.544700+1 2.750000+7 1.471050+1 2.875000+7 1.435150+1 3.000000+7 1.400100+1 3.250000+7 1.331980+1 3.437500+7 1.283220+1 3.625000+7 1.236730+1 4.000000+7 1.150300+1 4.500000+7 1.048850+1 5.000000+7 9.634000+0 5.500000+7 8.924350+0 5.750000+7 8.618180+0 6.000000+7 8.341500+0 6.750000+7 7.663290+0 7.000000+7 7.476700+0 8.000000+7 6.868300+0 9.000000+7 6.383400+0 9.750000+7 6.052560+0 1.000000+8 5.946000+0 1.085900+8 5.583600+0 1.144500+8 5.339190+0 1.214800+8 5.047430+0 1.250000+8 4.902000+0 1.312500+8 4.644950+0 1.394500+8 4.317450+0 1.464800+8 4.048430+0 1.500000+8 3.919100+0 1.562500+8 3.698020+0 1.671900+8 3.339770+0 1.750000+8 3.106350+0 1.753900+8 3.095240+0 1.877000+8 2.764900+0 2.000000+8 2.475500+0 2.171900+8 2.137660+0 2.289100+8 1.957710+0 2.375000+8 1.851640+0 2.381300+8 1.844650+0 2.460400+8 1.766730+0 2.500000+8 1.734000+0 3.000000+8 1.469100+0 3.062500+8 1.433090+0 3.390600+8 1.249430+0 3.500000+8 1.204200+0 3.617200+8 1.168280+0 3.835900+8 1.120120+0 4.000000+8 1.087900+0 4.179700+8 1.048260+0 4.330100+8 1.012620+0 4.569300+8 9.544940-1 4.856400+8 8.870470-1 5.000000+8 8.554000-1 5.343800+8 7.854470-1 5.578100+8 7.405360-1 5.859400+8 6.878840-1 6.000000+8 6.618000-1 6.250000+8 6.160900-1 6.718800+8 5.407380-1 7.000000+8 5.051000-1 7.625000+8 4.454300-1 7.812500+8 4.281410-1 8.000000+8 4.099000-1 8.183600+8 3.907910-1 8.352100+8 3.726020-1 8.558000+8 3.502300-1 8.822400+8 3.220760-1 9.116800+8 2.924260-1 1.000000+9 2.195000-1 1.062500+9 1.824930-1 1.117200+9 1.572420-1 1.356400+9 8.920180-2 1.452100+9 7.263890-2 1.500000+9 6.569200-2 1.562500+9 5.770230-2 1.671900+9 4.622880-2 1.753900+9 3.934540-2 1.877000+9 3.116160-2 2.000000+9 2.496200-2 2.275400+9 1.579940-2 2.528100+9 1.081940-2 2.837100+9 7.113900-3 3.233600+9 4.399380-3 3.864500+9 2.270330-3 5.000000+9 8.656500-4 8.000000+9 1.486300-4 9.500000+9 7.837240-5 1.00000+10 6.480600-5 1.20500+10 3.265830-5 1.41820+10 1.806940-5 1.71170+10 9.192410-6 2.01490+10 5.148580-6 2.26440+10 3.411730-6 2.74790+10 1.735360-6 3.20120+10 1.023200-6 3.62610+10 6.669530-7 4.42280+10 3.391190-7 5.12000+10 2.068860-7 6.34000+10 1.011600-7 7.94120+10 4.795560-8 1.00000+11 2.249200-8 1.17140+11 1.343150-8 1.55940+11 5.325870-9 2.04410+11 2.239490-9 2.99030+11 6.71528-10 4.21500+11 2.29365-10 7.29680+11 4.21129-11 1.17140+12 9.95730-12 2.36600+12 1.20380-12 6.03280+12 7.53774-14 1.00000+14 2.09620-17 5.62340+14 1.31301-19 7.49890+15 5.95191-23 1.00000+17 2.54920-26 1 23000 7 0 5.094200+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.90000-12 1.000000+2 5.90000-10 1.000000+3 5.900000-8 1.000000+4 5.900000-6 1.000000+5 5.900000-4 5.000000+5 1.475000-2 1.000000+6 5.900000-2 1.500000+6 1.307000-1 2.000000+6 2.287000-1 2.375000+6 3.180470-1 2.500000+6 3.506000-1 2.875000+6 4.557620-1 3.000000+6 4.932000-1 3.500000+6 6.533790-1 4.000000+6 8.279000-1 4.500000+6 1.013140+0 5.000000+6 1.206000+0 5.500000+6 1.403170+0 5.875000+6 1.552250+0 6.000000+6 1.602000+0 6.437500+6 1.775770+0 7.000000+6 1.996400+0 7.687500+6 2.258940+0 8.437500+6 2.534540+0 8.500000+6 2.556850+0 9.000000+6 2.732900+0 9.750000+6 2.985520+0 1.000000+7 3.067000+0 1.109400+7 3.408120+0 1.187500+7 3.639570+0 1.250000+7 3.819600+0 1.437500+7 4.339930+0 1.500000+7 4.510000+0 1.750000+7 5.184900+0 2.000000+7 5.858000+0 2.250000+7 6.521960+0 2.500000+7 7.167300+0 2.750000+7 7.785630+0 2.875000+7 8.083660+0 3.000000+7 8.375000+0 3.250000+7 8.934420+0 3.437500+7 9.335580+0 3.625000+7 9.722360+0 4.000000+7 1.045400+1 4.500000+7 1.134950+1 5.000000+7 1.215600+1 5.500000+7 1.287580+1 5.750000+7 1.320370+1 6.000000+7 1.351400+1 6.750000+7 1.433290+1 7.000000+7 1.457400+1 8.000000+7 1.541300+1 9.000000+7 1.611100+1 9.750000+7 1.657410+1 1.000000+8 1.672100+1 1.085900+8 1.719750+1 1.144500+8 1.749980+1 1.214800+8 1.784460+1 1.250000+8 1.801000+1 1.312500+8 1.828840+1 1.394500+8 1.863230+1 1.464800+8 1.890380+1 1.500000+8 1.903200+1 1.562500+8 1.924720+1 1.671900+8 1.958690+1 1.750000+8 1.980450+1 1.753900+8 1.981490+1 1.877000+8 2.011820+1 2.000000+8 2.037900+1 2.171900+8 2.068080+1 2.289100+8 2.085430+1 2.375000+8 2.096730+1 2.381300+8 2.097540+1 2.460400+8 2.107010+1 2.500000+8 2.111600+1 3.000000+8 2.156900+1 3.062500+8 2.161380+1 3.390600+8 2.183050+1 3.500000+8 2.189600+1 3.617200+8 2.195970+1 3.835900+8 2.207370+1 4.000000+8 2.215200+1 4.179700+8 2.222990+1 4.330100+8 2.229030+1 4.569300+8 2.237890+1 4.856400+8 2.247160+1 5.000000+8 2.251500+1 5.343800+8 2.260190+1 5.578100+8 2.265350+1 5.859400+8 2.270810+1 6.000000+8 2.273200+1 6.250000+8 2.276740+1 6.718800+8 2.282450+1 7.000000+8 2.285300+1 7.625000+8 2.289760+1 7.812500+8 2.290930+1 8.000000+8 2.291900+1 8.183600+8 2.292590+1 8.352100+8 2.293200+1 8.558000+8 2.293940+1 8.822400+8 2.294860+1 9.116800+8 2.295700+1 1.000000+9 2.297400+1 1.062500+9 2.297970+1 1.117200+9 2.298440+1 1.356400+9 2.299530+1 1.452100+9 2.299710+1 1.500000+9 2.299800+1 1.562500+9 2.299830+1 1.671900+9 2.299880+1 1.753900+9 2.299910+1 1.877000+9 2.299960+1 2.000000+9 2.300000+1 2.275400+9 2.300000+1 2.528100+9 2.300000+1 2.837100+9 2.300000+1 3.233600+9 2.300000+1 3.864500+9 2.300000+1 5.000000+9 2.300000+1 8.000000+9 2.300000+1 9.500000+9 2.300000+1 1.00000+10 2.300000+1 1.20500+10 2.300000+1 1.41820+10 2.300000+1 1.71170+10 2.300000+1 2.01490+10 2.300000+1 2.26440+10 2.300000+1 2.74790+10 2.300000+1 3.20120+10 2.300000+1 3.62610+10 2.300000+1 4.42280+10 2.300000+1 5.12000+10 2.300000+1 6.34000+10 2.300000+1 7.94120+10 2.300000+1 1.00000+11 2.300000+1 1.17140+11 2.300000+1 1.55940+11 2.300000+1 2.04410+11 2.300000+1 2.99030+11 2.300000+1 4.21500+11 2.300000+1 7.29680+11 2.300000+1 1.17140+12 2.300000+1 2.36600+12 2.300000+1 6.03280+12 2.300000+1 1.00000+14 2.300000+1 5.62340+14 2.300000+1 7.49890+15 2.300000+1 1.00000+17 2.300000+1 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.005094-6 0.0 3.081581-6 0.0 3.094854-6 3.282276+0 3.096751-6 3.746388+0 3.104336-6 6.843085+0 3.108166-6 9.211659+0 3.111920-6 1.340502+1 3.119505-6 2.356322+1 3.124423-6 3.139085+1 3.132074-6 4.622413+1 3.141517-6 6.852625+1 3.154069-6 1.004117+2 3.162197-6 1.179573+2 3.170180-6 1.293136+2 3.177415-6 1.329596+2 3.185372-6 1.280652+2 3.193695-6 1.141136+2 3.204289-6 8.785971+1 3.215271-6 5.800340+1 3.222922-6 3.968536+1 3.230572-6 2.459702+1 3.233279-6 2.047977+1 3.238222-6 1.423694+1 3.245873-6 7.831858+0 3.257348-6 1.990890+0 3.261174-6 0.0 4.334999-6 0.0 4.345670-6 5.24983-15 4.356340-6 1.03880-14 4.367010-6 1.89745-14 4.377680-6 3.19936-14 4.388350-6 4.97977-14 4.399020-6 7.15501-14 4.409690-6 9.48997-14 4.420360-6 1.16191-13 4.431030-6 1.31321-13 4.441700-6 1.37010-13 4.452370-6 1.31954-13 4.463040-6 1.17313-13 4.473710-6 9.62775-14 4.495050-6 5.10085-14 4.505720-6 3.29293-14 4.516390-6 1.96235-14 4.527060-6 1.07951-14 4.537730-6 5.48185-15 4.548401-6 0.0 4.994692-6 0.0 5.013133-6 6.819460-2 5.019280-6 9.063864-2 5.031573-6 1.655666-1 5.043867-6 2.791708-1 5.056161-6 4.345321-1 5.093042-6 1.013926+0 5.105336-6 1.145981+0 5.117630-6 1.195651+0 5.129924-6 1.151562+0 5.142218-6 1.023825+0 5.179099-6 4.452276-1 5.191393-6 2.874414-1 5.203687-6 1.713070-1 5.215980-6 9.424548-2 5.234421-6 2.396927-2 5.240568-6 1.857650-5 5.250893-6 1.018384-5 5.262759-6 2.423176-7 5.263240-6 0.0 5.639413-6 0.0 5.642731-6 2.41392-12 5.670509-6 1.784258-2 5.684398-6 3.259125-2 5.698287-6 5.495391-2 5.712176-6 8.553630-2 5.753842-6 1.995870-1 5.767731-6 2.255807-1 5.781620-6 2.353564-1 5.795509-6 2.266755-1 5.809398-6 2.015292-1 5.851064-6 8.763292-2 5.864953-6 5.657444-2 5.878842-6 3.371541-2 5.892731-6 1.854777-2 5.917814-6 1.832715-3 5.920509-6 2.351586-6 5.929029-6 4.004645-8 5.929274-6 2.93578-13 5.930108-6 3.02983-13 5.959300-6 4.238530-1 5.973897-6 7.745514-1 5.984505-6 1.168193+0 5.989016-6 1.377627+0 6.006146-6 2.406546+0 6.024086-6 3.759624+0 6.054421-6 6.219778+0 6.066186-6 7.017561+0 6.081200-6 7.704005+0 6.092876-6 7.967484+0 6.109564-6 7.780361+0 6.123300-6 7.261867+0 6.141703-6 6.138351+0 6.179607-6 3.377606+0 6.194138-6 2.442968+0 6.213316-6 1.435792+0 6.219197-6 1.142457+0 6.222341-6 1.014833+0 6.233924-6 7.038573-1 6.248652-6 4.291111-1 6.263380-6 2.530595-1 6.276416-6 1.079639-1 6.278165-6 9.077293-2 6.306094-6 4.212202-2 6.342498-6 3.855325-2 6.516217-6 3.327165-2 6.545558-6 3.484329-2 6.568373-6 3.822443-2 6.587897-6 4.317937-2 6.615638-6 5.390544-2 6.662962-6 7.395129-2 6.694867-6 8.290360-2 6.727886-6 8.658775-2 6.782844-6 8.509606-2 7.062434-6 6.451108-2 7.333100-6 4.853827-2 7.603585-6 3.595542-2 7.838242-6 2.730321-2 7.896664-6 2.542552-2 7.935537-6 6.221482-2 7.954974-6 9.301888-2 7.974410-6 1.400360-1 7.996231-6 2.142362-1 8.050463-6 4.388913-1 8.074190-6 5.031406-1 8.093680-6 5.181307-1 8.113170-6 4.942404-1 8.132660-6 4.367825-1 8.190655-6 1.956006-1 8.207650-6 1.374012-1 8.227109-6 8.827137-2 8.246523-6 5.560994-2 8.285396-6 1.529476-2 8.461345-6 1.185628-2 8.502998-6 1.538701-2 8.523824-6 1.855822-2 8.544703-6 2.378553-2 8.565735-6 3.912531-2 8.586766-6 5.606731-2 8.607798-6 7.911761-2 8.628830-6 1.082667-1 8.691925-6 2.125742-1 8.712957-6 2.393550-1 8.733988-6 2.537623-1 8.755020-6 2.524037-1 8.776052-6 2.360733-1 8.803402-6 1.955733-1 8.842610-6 1.281021-1 8.862076-6 1.032511-1 8.881210-6 8.512777-2 8.902242-6 7.747255-2 8.923274-6 7.999902-2 8.966408-6 1.044728-1 9.002515-6 1.371915-1 9.026317-6 1.548600-1 9.042568-6 1.630593-1 9.064770-6 1.675968-1 9.130945-6 1.578022-1 9.169085-6 1.504998-1 9.200781-6 1.519877-1 9.392409-6 1.723688-1 9.454038-6 1.883043-1 9.513450-6 2.216606-1 9.620148-6 2.902819-1 9.676704-6 3.144788-1 9.766335-6 3.327973-1 1.114497-5 4.556078-1 1.200985-5 5.487634-1 1.386000-5 7.728724-1 1.778279-5 1.327008+0 2.522830-5 2.413947+0 3.014653-5 2.967087+0 3.561111-5 3.346186+0 3.921497-5 3.483541+0 3.929500-5 3.940863+0 3.944823-5 1.273845+1 3.948844-5 1.513383+1 3.958516-5 2.453084+1 3.968188-5 3.860946+1 3.980617-5 6.421924+1 3.998715-5 1.083962+2 4.008496-5 1.293451+2 4.019217-5 1.461089+2 4.029235-5 1.507506+2 4.039415-5 1.456406+2 4.065747-5 1.118719+2 4.077561-5 9.966970+1 4.092344-5 9.105272+1 4.108393-5 8.350818+1 4.117766-5 7.528740+1 4.123928-5 6.769867+1 4.128126-5 6.399294+1 4.156492-5 3.042761+1 4.166358-5 2.089855+1 4.176225-5 1.388590+1 4.186091-5 9.233520+0 4.205824-5 3.546045+0 4.645531-5 3.590808+0 4.679495-5 3.764617+0 4.702362-5 4.048432+0 4.748131-5 4.867028+0 4.771334-5 5.028825+0 4.811150-5 4.988636+0 4.861190-5 5.146826+0 4.949755-5 4.984567+0 5.432504-5 4.671171+0 6.027500-5 4.274800+0 6.853106-5 4.055788+0 7.124587-5 4.032751+0 7.177196-5 4.183181+0 7.234101-5 4.644861+0 7.282944-5 5.064914+0 7.318621-5 5.052221+0 7.406994-5 4.307104+0 7.443371-5 4.181128+0 7.504530-5 4.172187+0 7.772504-5 4.453100+0 1.150000-4 4.582018+0 1.496236-4 4.405995+0 2.921134-4 3.105262+0 3.756292-4 2.514390+0 4.772577-4 1.989056+0 5.026323-4 1.892885+0 5.051067-4 4.771469+0 5.063485-4 7.170800+0 5.075848-4 1.078892+1 5.089728-4 1.648913+1 5.104999-4 2.439516+1 5.126232-4 3.619766+1 5.142794-4 4.263442+1 5.155715-4 4.524696+1 5.168113-4 4.551148+1 5.183895-4 4.324264+1 5.209747-4 3.668052+1 5.274591-4 1.833046+1 5.290000-4 1.600344+1 5.299630-4 1.483961+1 5.311250-4 1.394880+1 5.323753-4 1.351190+1 5.351552-4 1.340326+1 5.393000-4 1.459438+1 5.447021-4 1.512249+1 5.692495-4 1.454766+1 6.087974-4 1.340509+1 6.180824-4 1.389772+1 6.274239-4 1.441086+1 7.802642-4 1.108323+1 9.292338-4 8.729965+0 1.071520-3 7.107339+0 1.238771-3 5.711275+0 1.417362-3 4.640432+0 1.628827-3 3.723637+0 1.841855-3 3.053676+0 2.095879-3 2.470799+0 2.358717-3 2.029275+0 2.656283-3 1.660641+0 2.992305-3 1.354630+0 3.365168-3 1.105731+0 3.788070-3 8.993142-1 4.235782-3 7.387931-1 4.757844-3 6.012840-1 5.285508-3 4.990257-1 5.315832-3 5.075493-1 5.335412-3 5.398223-1 5.349130-3 5.911054-1 5.361041-3 6.677457-1 5.372467-3 7.793801-1 5.383145-3 9.255877-1 5.395764-3 1.153660+0 5.413333-3 1.569970+0 5.456941-3 2.794984+0 5.479152-3 3.281902+0 5.497511-3 3.544802+0 5.527766-3 3.742503+0 5.600191-3 3.754764+0 6.558395-3 2.950190+0 7.459884-3 2.391770+0 8.510112-3 1.924498+0 9.592690-3 1.569465+0 1.071774-2 1.297051+0 1.184302-2 1.087035+0 1.310468-2 9.079724-1 1.468184-2 7.384658-1 1.620896-2 6.156398-1 1.797858-2 5.074714-1 2.014171-2 4.092105-1 2.243470-2 3.332900-1 2.490068-2 2.723661-1 2.773782-2 2.206134-1 3.041392-2 1.839908-1 3.372017-2 1.498370-1 3.722973-2 1.228333-1 4.126910-2 9.977959-2 4.531858-2 8.243910-2 5.016624-2 6.696440-2 5.564992-2 5.404471-2 6.137093-2 4.411414-2 6.806433-2 3.555658-2 7.520074-2 2.885979-2 8.263256-2 2.366605-2 9.037953-2 1.960901-2 9.984804-2 1.589920-2 1.092719-1 1.313991-2 1.195579-1 1.087189-2 1.309079-1 8.973639-3 1.438691-1 7.355175-3 1.586890-1 5.988702-3 1.734991-1 4.971173-3 1.901578-1 4.106464-3 2.083577-1 3.403926-3 2.267880-1 2.863313-3 2.475996-1 2.399267-3 2.700568-1 2.019692-3 2.970445-1 1.676435-3 3.268465-1 1.397328-3 3.562004-1 1.189553-3 3.942498-1 9.897387-4 4.388779-1 8.203060-4 4.847388-1 6.943952-4 5.404263-1 5.829298-4 5.980242-1 4.997044-4 6.824767-1 4.138159-4 7.740810-1 3.514720-4 8.810489-1 3.012732-4 1.022000+0 2.564221-4 1.228714+0 2.120483-4 1.477239+0 1.753534-4 1.776032+0 1.450085-4 2.135261+0 1.199148-4 2.567148+0 9.916355-5 3.086391+0 8.200331-5 3.710658+0 6.781265-5 4.461192+0 5.607768-5 5.363532+0 4.637344-5 6.448384+0 3.834852-5 7.752663+0 3.171232-5 9.320751+0 2.622450-5 9.760024+0 2.500789-5 1.000000+1 4.962502-5 1 23000 7 0 5.094200+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.277769+1 2.016610-6-2.163744+1 2.460802-6-1.997276+1 2.672006-6-1.811315+1 2.784968-6-1.627428+1 2.866775-6-1.408047+1 2.915649-6-1.208748+1 2.953402-6-9.917837+0 2.982566-6-7.620868+0 2.999995-6-5.851366+0 3.014356-6-4.073357+0 3.022759-6-2.857208+0 3.030112-6-1.659750+0 3.036546-6-4.893997-1 3.042175-6 6.462584-1 3.047101-6 1.740636+0 3.051411-6 2.788246+0 3.058482-6 4.726999+0 3.061369-6 5.612905+0 3.066422-6 7.326519+0 3.073054-6 9.986169+0 3.078383-6 1.264005+1 3.081581-6 1.474684+1 3.094854-6 2.357276+1 3.104336-6 3.197698+1 3.113817-6 4.271685+1 3.126097-6 5.231419+1 3.133747-6 5.546715+1 3.141517-6 5.436428+1 3.146861-6 5.030269+1 3.152042-6 4.365948+1 3.158850-6 3.019445+1 3.161360-6 2.396279+1 3.162197-6 2.137716+1 3.166680-6 8.978965+0 3.167856-6 5.460464+0 3.168613-6 3.032809+0 3.168991-6 1.730424+0 3.169180-6 1.036762+0 3.169369-6 2.612040-1 3.169489-6-2.467119-1 3.169724-6-1.130656+0 3.170180-6-2.723939+0 3.171035-6-5.546474+0 3.175677-6-2.052392+1 3.176406-6-2.296879+1 3.177415-6-1.880951+1 3.184670-6 5.701158+0 3.184909-6 6.693836+0 3.185372-6 8.365185+0 3.187001-6 1.357543+1 3.193695-6 3.294374+1 3.196441-6 3.939621+1 3.200927-6 4.857705+1 3.205662-6 5.541817+1 3.211217-6 6.016697+1 3.215271-6 6.128837+1 3.222922-6 5.948274+1 3.230572-6 5.373080+1 3.239179-6 4.398243+1 3.248503-6 3.458435+1 3.260217-6 2.485361+1 3.263270-6 2.154199+1 3.269537-6 1.716384+1 3.273695-6 1.491342+1 3.281970-6 1.128695+1 3.290181-6 8.433113+0 3.298328-6 6.100428+0 3.306411-6 4.146035+0 3.314431-6 2.478747+0 3.322404-6 1.033605+0 3.330315-6-2.307232-1 3.338164-6-1.347454+0 3.345952-6-2.341845+0 3.353679-6-3.233525+0 3.368952-6-4.767796+0 3.391418-6-6.601731+0 3.420617-6-8.455185+0 3.462813-6-1.044123+1 3.528856-6-1.257211+1 3.613547-6-1.434895+1 3.757917-6-1.617825+1 4.015029-6-1.788519+1 4.548401-6-1.946349+1 5.013133-6-2.060452+1 5.087415-6-2.076030+1 5.163992-6-1.959920+1 5.353200-6-2.037122+1 5.864953-6-2.188713+1 5.938345-6-2.315372+1 6.013064-6-2.104477+1 6.042974-6-2.148117+1 6.070475-6-2.309166+1 6.126479-6-1.771592+1 6.149833-6-1.630375+1 6.176890-6-1.564661+1 6.219197-6-1.628271+1 6.287766-6-1.810080+1 6.397580-6-1.916727+1 6.782844-6-2.008216+1 8.068258-6-2.092610+1 8.227109-6-2.060934+1 8.755020-6-2.100930+1 1.691619-5-2.222204+1 2.691535-5-2.334257+1 3.127800-5-2.091493+1 3.375840-5-1.832911+1 3.511458-5-1.598265+1 3.604752-5-1.356562+1 3.676819-5-1.087047+1 3.719889-5-8.682949+0 3.755377-5-6.375702+0 3.775493-5-4.784063+0 3.793173-5-3.160565+0 3.801193-5-2.340178+0 3.808712-5-1.515889+0 3.815761-5-6.889766-1 3.822370-5 1.390936-1 3.828565-5 9.669241-1 3.834374-5 1.793152+0 3.840000-5 2.646318+0 3.850029-5 4.304052+0 3.858962-5 5.961218+0 3.866779-5 7.577103+0 3.879604-5 1.064729+1 3.893432-5 1.474355+1 3.903079-5 1.829506+1 3.913727-5 2.323749+1 3.921497-5 2.802286+1 3.928500-5 3.384855+1 3.933849-5 3.946343+1 3.948844-5 5.261291+1 3.959725-5 6.381089+1 3.972046-5 7.433160+1 3.982880-5 7.782871+1 3.991896-5 7.402150+1 3.998715-5 6.666889+1 4.007273-5 5.268518+1 4.015587-5 3.401939+1 4.018015-5 2.736893+1 4.019217-5 2.331872+1 4.025591-5 6.093111+0 4.026632-5 3.126405+0 4.027152-5 1.541796+0 4.027412-5 6.963089-1 4.027542-5 2.465129-1 4.027672-5-2.578735-1 4.027823-5-8.357755-1 4.028120-5-1.824761+0 4.028695-5-3.578629+0 4.029740-5-6.523091+0 4.032244-5-1.302715+1 4.035981-5-2.215754+1 4.038551-5-1.501957+1 4.040450-5-1.062415+1 4.042929-5-5.505746+0 4.044187-5-3.085178+0 4.048578-5 4.966253+0 4.050893-5 8.691484+0 4.053912-5 1.292700+1 4.058461-5 1.828941+1 4.063799-5 2.312199+1 4.067694-5 2.526037+1 4.077561-5 2.911122+1 4.089100-5 3.262110+1 4.098481-5 3.725276+1 4.106075-5 4.246978+1 4.119059-5 5.331655+1 4.139027-5 6.002260+1 4.150439-5 6.000334+1 4.163892-5 5.457986+1 4.192258-5 3.693624+1 4.205824-5 2.948138+1 4.211466-5 2.624229+1 4.223697-5 2.151845+1 4.237364-5 1.762903+1 4.254743-5 1.383700+1 4.271053-5 1.102762+1 4.293657-5 7.927871+0 4.307794-5 6.325808+0 4.321047-5 5.003598+0 4.333472-5 3.894482+0 4.345121-5 2.951653+0 4.356042-5 2.141291+0 4.366280-5 1.438264+0 4.385476-5 2.473164-1 4.402273-5-6.792348-1 4.416970-5-1.415480+0 4.429830-5-2.011271+0 4.452335-5-2.959225+0 4.469213-5-3.601844+0 4.494532-5-4.474268+0 4.542100-5-5.884135+0 4.702362-5-9.782135+0 4.736834-5-1.019961+1 4.800314-5-1.019685+1 5.144673-5-1.145253+1 5.791072-5-1.265561+1 7.124587-5-1.409984+1 7.248136-5-1.437408+1 7.353444-5-1.333878+1 7.676151-5-1.393187+1 1.640590-4-1.199178+1 2.255077-4-1.137518+1 2.921134-4-1.143647+1 3.597015-4-1.226642+1 4.026159-4-1.341764+1 4.364802-4-1.503545+1 4.610429-4-1.712309+1 4.772577-4-1.955947+1 4.816718-4-2.053087+1 4.916698-4-1.901967+1 4.968448-4-1.724061+1 5.001509-4-1.511164+1 5.019706-4-1.307744+1 5.026323-4-1.181698+1 5.035789-4-1.005391+1 5.049520-4-7.785225+0 5.052613-4-7.083279+0 5.062085-4-5.265506+0 5.064985-4-4.557990+0 5.075848-4-2.569897+0 5.077357-4-2.253996+0 5.080063-4-1.851897+0 5.088182-4-9.050004-1 5.089728-4-7.118078-1 5.092434-4-5.517045-1 5.096494-4-5.019854-1 5.100553-4-5.611081-1 5.102100-4-6.072082-1 5.104999-4-8.518139-1 5.107537-4-1.175817+0 5.109757-4-1.534856+0 5.111699-4-1.905260+0 5.115099-4-2.681930+0 5.117648-4-3.377984+0 5.120994-4-4.460484+0 5.124285-4-5.781023+0 5.126232-4-6.798217+0 5.136490-4-1.173199+1 5.152435-4-2.164051+1 5.159251-4-2.619959+1 5.168113-4-2.108898+1 5.183895-4-1.337577+1 5.192352-4-1.025336+1 5.206009-4-6.003155+0 5.209747-4-5.043333+0 5.216536-4-3.619078+0 5.219616-4-3.074549+0 5.225436-4-2.188824+0 5.230442-4-1.558915+0 5.234863-4-1.095340+0 5.238990-4-7.437686-1 5.245501-4-3.090760-1 5.247000-4-2.539902-1 5.250578-4-9.996134-2 5.251500-4-8.143637-2 5.254386-4-6.247024-3 5.255250-4-6.057803-3 5.257221-4-6.009493-3 5.258250-4-6.153581-3 5.259130-4 4.204654-4 5.260098-4 7.494250-3 5.260353-4 1.081372-3 5.265000-4-1.162250-1 5.265810-4-1.301534-1 5.270200-4-3.890814-1 5.272395-4-6.187516-1 5.273500-4-7.743693-1 5.276163-4-1.278087+0 5.282000-4-2.021622+0 5.296515-4-3.770059+0 5.311250-4-5.679551+0 5.323753-4-7.116999+0 5.356000-4-9.831031+0 5.376768-4-1.056936+1 5.404992-4-1.084963+1 5.544080-4-1.024080+1 5.899011-4-8.775723+0 6.051616-4-8.541362+0 6.180824-4-8.766535+0 6.274239-4-7.935665+0 6.349353-4-7.278473+0 6.527996-4-6.275057+0 6.850415-4-5.038996+0 7.212509-4-4.048063+0 7.698358-4-3.054530+0 8.109482-4-2.436398+0 8.524353-4-1.930130+0 8.935398-4-1.533355+0 9.436363-4-1.157190+0 9.929641-4-8.842140-1 1.046846-3-6.494880-1 1.071520-3-5.615183-1 1.119197-3-4.235808-1 1.150480-3-3.459796-1 1.183496-3-2.782620-1 1.223940-3-2.189920-1 1.263603-3-1.713982-1 1.296463-3-1.385418-1 1.318257-3-1.201176-1 1.359684-3-9.147244-2 1.404430-3-7.066288-2 1.450996-3-5.463134-2 1.489790-3-4.707212-2 1.525263-3-4.352472-2 1.552829-3-4.457565-2 1.606276-3-5.167320-2 1.649644-3-6.023288-2 1.710508-3-7.709947-2 1.811862-3-1.060332-1 1.905461-3-1.392738-1 2.032556-3-1.926296-1 2.358717-3-3.486084-1 3.640550-3-1.022129+0 4.090755-3-1.292213+0 4.473756-3-1.588901+0 4.757844-3-1.896753+0 4.968036-3-2.230874+0 5.113247-3-2.576293+0 5.210544-3-2.925106+0 5.285508-3-3.346155+0 5.335412-3-3.827051+0 5.416514-3-5.063652+0 5.440841-3-5.166691+0 5.465875-3-4.973131+0 5.546198-3-3.615979+0 5.585000-3-3.171936+0 5.645102-3-2.717318+0 5.717461-3-2.335108+0 5.821032-3-1.937918+0 5.953013-3-1.573456+0 6.107481-3-1.257724+0 6.295968-3-9.682206-1 6.476391-3-7.504493-1 6.698560-3-5.419795-1 6.914421-3-3.850377-1 7.077079-3-2.850830-1 7.249798-3-1.985103-1 7.354704-3-1.509082-1 7.459884-3-1.074491-1 7.571549-3-6.531017-2 7.683214-3-2.684024-2 7.767500-3-1.722806-3 7.839305-3 1.977289-2 8.030807-3 7.051516-2 8.291262-3 1.303250-1 8.510112-3 1.713763-1 8.915383-3 2.324476-1 9.333168-3 2.775778-1 9.592690-3 2.993394-1 1.030682-2 3.388829-1 1.130070-2 3.659457-1 1.266421-2 3.699873-1 1.468184-2 3.484267-1 2.159432-2 2.375303-1 2.573221-2 1.854605-1 3.041392-2 1.410013-1 3.478121-2 1.096666-1 3.859895-2 8.799179-2 4.269744-2 6.937911-2 4.757150-2 5.174657-2 5.200838-2 3.894168-2 5.673787-2 2.776415-2 6.137093-2 1.875381-2 6.538750-2 1.219174-2 6.937850-2 6.570456-3 7.109733-2 4.394079-3 7.276575-2 2.391643-3 7.428307-2 6.572526-4 7.520074-2-3.299132-4 7.616716-2-1.362132-3 7.788799-2-3.106546-3 7.943953-2-4.606642-3 8.263256-2-7.464630-3 8.845501-2-1.200096-2 9.535447-2-1.648135-2 1.060238-1-2.198851-2 1.195579-1-2.722033-2 1.392342-1-3.258734-2 1.684290-1-3.762720-2 2.143333-1-4.204434-2 2.970445-1-4.569960-2 4.847388-1-4.838011-2 1.228714+0-4.981004-2 3.710658+0-5.004452-2 1.000000+1-5.006159-2 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.741045-2 1.101364-6 2.728782-2 1.135781-6 3.159084-2 1.171275-6 3.665331-2 1.207877-6 4.262668-2 1.245623-6 4.969718-2 1.284549-6 5.809523-2 1.324691-6 6.810768-2 1.366087-6 8.008974-2 1.407240-6 9.393165-2 1.447107-6 1.094760-1 1.485728-6 1.268620-1 1.559388-6 1.674870-1 1.594500-6 1.909215-1 1.628515-6 2.167625-1 1.661467-6 2.452009-1 1.693389-6 2.764190-1 1.724314-6 3.106079-1 1.754272-6 3.479679-1 1.783295-6 3.887090-1 1.811410-6 4.330509-1 1.838647-6 4.812237-1 1.865032-6 5.334681-1 1.890593-6 5.900359-1 1.915355-6 6.511901-1 1.939343-6 7.172058-1 1.962582-6 7.883699-1 1.985095-6 8.649820-1 2.006904-6 9.473545-1 2.028031-6 1.035810+0 2.048498-6 1.130676+0 2.068326-6 1.232296+0 2.087534-6 1.341047+0 2.124168-6 1.581519+0 2.158548-6 1.855353+0 2.190813-6 2.166235+0 2.206193-6 2.337280+0 2.221093-6 2.519654+0 2.249961-6 2.924852+0 2.277025-6 3.379589+0 2.304000-6 3.923890+0 2.326184-6 4.456710+0 2.348484-6 5.090819+0 2.369390-6 5.796533+0 2.388989-6 6.579672+0 2.407364-6 7.446464+0 2.424590-6 8.403384+0 2.440739-6 9.457134+0 2.455879-6 1.061462+1 2.470073-6 1.188294+1 2.483380-6 1.326933+1 2.495855-6 1.478113+1 2.507551-6 1.642576+1 2.518515-6 1.821070+1 2.528794-6 2.014340+1 2.538431-6 2.223129+1 2.547465-6 2.448174+1 2.555935-6 2.690203+1 2.563876-6 2.949940+1 2.571320-6 3.228105+1 2.578299-6 3.525419+1 2.584841-6 3.842607+1 2.590975-6 4.180406+1 2.596726-6 4.539581+1 2.602117-6 4.920946+1 2.607171-6 5.325393+1 2.611909-6 5.753916+1 2.616351-6 6.207607+1 2.620515-6 6.687637+1 2.624419-6 7.195183+1 2.631740-6 8.337168+1 2.638145-6 9.607641+1 2.643750-6 1.100528+2 2.648654-6 1.251893+2 2.652945-6 1.412790+2 2.656699-6 1.580433+2 2.659985-6 1.751659+2 2.662859-6 1.923276+2 2.665375-6 2.092333+2 2.669776-6 2.436671+2 2.675554-6 2.998511+2 2.692888-6 5.676063+2 2.696189-6 6.388358+2 2.701490-6 7.678764+2 2.705063-6 8.649109+2 2.709397-6 9.928114+2 2.716001-6 1.206165+3 2.718271-6 1.283528+3 2.723430-6 1.463950+3 2.727042-6 1.591606+3 2.730034-6 1.696399+3 2.732936-6 1.795784+3 2.736195-6 1.903091+3 2.738917-6 1.987907+3 2.742416-6 2.088637+3 2.745305-6 2.163266+3 2.748672-6 2.238799+3 2.753302-6 2.319710+3 2.756230-6 2.355706+3 2.760260-6 2.384653+3 2.762475-6 2.390081+3 2.769138-6 2.361248+3 2.772045-6 2.327979+3 2.775435-6 2.274318+3 2.778495-6 2.213161+3 2.782062-6 2.128200+3 2.785817-6 2.025157+3 2.788055-6 1.958178+3 2.791253-6 1.856683+3 2.794594-6 1.745160+3 2.798691-6 1.603668+3 2.802016-6 1.487252+3 2.805758-6 1.356963+3 2.809499-6 1.229519+3 2.813864-6 1.086923+3 2.817293-6 9.809494+2 2.822801-6 8.241610+2 2.826439-6 7.305834+2 2.831947-6 6.046537+2 2.838558-6 4.782792+2 2.849511-6 3.227068+2 2.853057-6 2.846532+2 2.856549-6 2.521415+2 2.859986-6 2.243995+2 2.863369-6 2.007329+2 2.866700-6 1.805281+2 2.869978-6 1.632500+2 2.873205-6 1.484370+2 2.876382-6 1.356956+2 2.882636-6 1.150045+2 2.888695-6 9.931229+1 2.894564-6 8.715057+1 2.900250-6 7.751365+1 2.905758-6 6.971440+1 2.911095-6 6.328077+1 2.916264-6 5.788441+1 2.921272-6 5.329295+1 2.930975-6 4.579216+1 2.940071-6 4.003872+1 2.948599-6 3.549116+1 2.956593-6 3.181211+1 2.971115-6 2.624036+1 2.995818-6 1.905525+1 3.005906-6 1.668999+1 3.041211-6 9.923817+0 3.050037-6 8.486643+0 3.056656-6 7.470663+0 3.061621-6 6.750080+0 3.076515-6 4.904790+0 3.080302-6 4.547768+0 3.084088-6 4.255883+0 3.085981-6 4.138291+0 3.088821-6 4.002171+0 3.090241-6 3.953894+0 3.091660-6 3.919868+0 3.092691-6 3.904564+0 3.094236-6 3.897172+0 3.096126-6 3.914932+0 3.098045-6 3.965053+0 3.099140-6 4.008933+0 3.101056-6 4.113812+0 3.106805-6 4.660773+0 3.108650-6 4.915796+0 3.111021-6 5.304233+0 3.113751-6 5.838755+0 3.117254-6 6.665732+0 3.122913-6 8.342370+0 3.128292-6 1.031961+1 3.134381-6 1.296715+1 3.137251-6 1.434419+1 3.139699-6 1.557200+1 3.142572-6 1.706308+1 3.145422-6 1.858232+1 3.148544-6 2.027179+1 3.151936-6 2.211247+1 3.155296-6 2.391239+1 3.157413-6 2.502130+1 3.161701-6 2.717482+1 3.165168-6 2.879547+1 3.169745-6 3.072490+1 3.172218-6 3.165370+1 3.179882-6 3.396869+1 3.183914-6 3.483555+1 3.186265-6 3.523261+1 3.189481-6 3.565461+1 3.192523-6 3.593583+1 3.196870-6 3.616731+1 3.202459-6 3.624152+1 3.220319-6 3.601230+1 3.228057-6 3.620348+1 3.234406-6 3.659472+1 3.241471-6 3.723599+1 3.255161-6 3.863217+1 3.262962-6 3.914945+1 3.267082-6 3.924996+1 3.271015-6 3.920765+1 3.274948-6 3.901738+1 3.279943-6 3.855257+1 3.284759-6 3.786843+1 3.286365-6 3.759075+1 3.292215-6 3.638492+1 3.294166-6 3.592111+1 3.300016-6 3.437410+1 3.301967-6 3.381457+1 3.309768-6 3.142470+1 3.314190-6 3.000542+1 3.323704-6 2.694419+1 3.345584-6 2.074955+1 3.355225-6 1.861277+1 3.361536-6 1.741648+1 3.367748-6 1.638161+1 3.379978-6 1.469806+1 3.391826-6 1.341930+1 3.403304-6 1.241981+1 3.414423-6 1.161379+1 3.425195-6 1.094547+1 3.446065-6 9.874727+0 3.465630-6 9.060518+0 3.483973-6 8.416387+0 3.501169-6 7.893236+0 3.517291-6 7.459648+0 3.547519-6 6.761885+0 3.573968-6 6.246763+0 3.600000-6 5.807074+0 3.637612-6 5.261874+0 3.667988-6 4.883638+0 3.713551-6 4.397184+0 3.777619-6 3.832444+0 3.842387-6 3.368905+0 3.944166-6 2.787055+0 4.048407-6 2.299785+0 4.152648-6 1.868390+0 4.183311-6 1.745406+0 4.213975-6 1.621664+0 4.234418-6 1.537397+0 4.255933-6 1.445858+0 4.266382-6 1.399908+0 4.276832-6 1.352697+0 4.297731-6 1.253381+0 4.308181-6 1.200565+0 4.316187-6 1.158302+0 4.336630-6 1.041621+0 4.339530-6 1.023898+0 4.349980-6 9.574617-1 4.357072-6 9.101501-1 4.360430-6 8.872015-1 4.370879-6 8.142350-1 4.381515-6 7.399286-1 4.392299-6 6.697403-1 4.397691-6 6.390679-1 4.403084-6 6.130882-1 4.405929-6 6.017977-1 4.408774-6 5.925006-1 4.413268-6 5.825283-1 4.415748-6 5.798441-1 4.419430-6 5.800696-1 4.427715-6 6.021168-1 4.430477-6 6.170852-1 4.434993-6 6.508796-1 4.436499-6 6.648770-1 4.441329-6 7.196390-1 4.446611-6 7.977914-1 4.449810-6 8.549187-1 4.454477-6 9.520055-1 4.461298-6 1.123836+0 4.472646-6 1.486967+0 4.478973-6 1.727740+0 4.483662-6 1.921080+0 4.487598-6 2.091490+0 4.492216-6 2.298795+0 4.495587-6 2.453654+0 4.501013-6 2.706205+0 4.505421-6 2.911398+0 4.510267-6 3.133423+0 4.513243-6 3.266430+0 4.515790-6 3.377447+0 4.519610-6 3.537948+0 4.524109-6 3.715713+0 4.534296-6 4.060974+0 4.538032-6 4.164142+0 4.545163-6 4.321755+0 4.550638-6 4.405932+0 4.553763-6 4.439310+0 4.556497-6 4.459791+0 4.561282-6 4.476324+0 4.564871-6 4.473029+0 4.567562-6 4.462065+0 4.573618-6 4.412315+0 4.579018-6 4.341123+0 4.585514-6 4.226476+0 4.588628-6 4.161869+0 4.596325-6 3.980719+0 4.604103-6 3.774815+0 4.610361-6 3.599214+0 4.625806-6 3.157842+0 4.651125-6 2.509736+0 4.658817-6 2.344619+0 4.673240-6 2.077277+0 4.685860-6 1.883887+0 4.707945-6 1.614141+0 4.757636-6 1.162668+0 4.775048-6 1.020917+0 4.786801-6 9.283341-1 4.808300-6 7.752135-1 4.818227-6 7.182807-1 4.825948-6 6.835193-1 4.828959-6 6.727140-1 4.831970-6 6.636386-1 4.843805-6 6.469801-1 4.845386-6 6.472827-1 4.856457-6 6.679943-1 4.860794-6 6.854225-1 4.869074-6 7.337647-1 4.874068-6 7.724521-1 4.879412-6 8.215394-1 4.887050-6 9.046456-1 4.904333-6 1.138927+0 4.913148-6 1.275143+0 4.917555-6 1.345391+0 4.926554-6 1.489983+0 4.929331-6 1.534307+0 4.939773-6 1.696409+0 4.945137-6 1.775420+0 4.950257-6 1.847272+0 4.955376-6 1.915134+0 4.959494-6 1.966552+0 4.966700-6 2.049253+0 4.972105-6 2.104907+0 4.980212-6 2.177803+0 4.988319-6 2.237826+0 5.008043-6 2.330478+0 5.017998-6 2.349354+0 5.030350-6 2.348428+0 5.038069-6 2.335311+0 5.049709-6 2.299965+0 5.064945-6 2.232893+0 5.093937-6 2.086971+0 5.105986-6 2.036301+0 5.118034-6 1.997068+0 5.131802-6 1.966054+0 5.168875-6 1.912339+0 5.182650-6 1.880834+0 5.190915-6 1.854625+0 5.198431-6 1.825432+0 5.205948-6 1.791077+0 5.218305-6 1.724075+0 5.229923-6 1.650990+0 5.243020-6 1.560254+0 5.255378-6 1.470077+0 5.267735-6 1.378679+0 5.287095-6 1.238772+0 5.304126-6 1.123042+0 5.356347-6 8.277157-1 5.369403-6 7.699037-1 5.382458-6 7.195904-1 5.393337-6 6.839910-1 5.404216-6 6.547523-1 5.414872-6 6.329105-1 5.424856-6 6.191587-1 5.454758-6 6.227457-1 5.459286-6 6.297552-1 5.472871-6 6.616451-1 5.478944-6 6.811778-1 5.484259-6 7.008834-1 5.493559-6 7.409796-1 5.505765-6 8.034125-1 5.535409-6 9.867034-1 5.540059-6 1.017337+0 5.555539-6 1.117890+0 5.558908-6 1.138993+0 5.582490-6 1.270831+0 5.586694-6 1.290466+0 5.594052-6 1.321340+0 5.616126-6 1.383696+0 5.622216-6 1.392155+0 5.640485-6 1.393556+0 5.648192-6 1.383394+0 5.659754-6 1.356750+0 5.671315-6 1.317600+0 5.677235-6 1.293315+0 5.683154-6 1.266570+0 5.699165-6 1.184846+0 5.710793-6 1.120564+0 5.734678-6 9.911761-1 5.745028-6 9.416943-1 5.754869-6 9.007588-1 5.760645-6 8.799610-1 5.775323-6 8.388651-1 5.779915-6 8.295604-1 5.787159-6 8.182631-1 5.793136-6 8.119302-1 5.800162-6 8.076984-1 5.807496-6 8.066241-1 5.822251-6 8.128814-1 5.841720-6 8.321835-1 5.866336-6 8.615104-1 5.877883-6 8.736585-1 5.896165-6 8.884443-1 5.911208-6 8.960281-1 5.940326-6 8.998916-1 5.964106-6 8.945141-1 5.977115-6 8.890945-1 6.016141-6 8.667623-1 6.049669-6 8.480374-1 6.063799-6 8.422287-1 6.096031-6 8.346596-1 6.179585-6 8.282548-1 6.233318-6 8.188216-1 6.282196-6 8.058994-1 6.334438-6 7.870883-1 6.400949-6 7.628424-1 6.448684-6 7.512820-1 6.503433-6 7.442228-1 6.820660-6 7.229653-1 7.051191-6 7.107580-1 7.295971-6 7.050457-1 7.368694-6 7.045073-1 7.837356-6 7.187694-1 8.101092-6 7.367547-1 8.609938-6 7.866125-1 9.174966-6 8.627686-1 9.772372-6 9.643861-1 1.035069-5 1.080287+0 1.092370-5 1.210958+0 1.174898-5 1.421659+0 1.310000-5 1.821418+0 1.538826-5 2.637508+0 1.638400-5 3.045515+0 1.730000-5 3.456442+0 2.087528-5 5.269874+0 2.282986-5 6.406591+0 2.490327-5 7.680983+0 2.598941-5 8.384171+0 2.712706-5 9.122280+0 2.801715-5 9.792196+0 2.891318-5 1.053771+1 2.975451-5 1.133767+1 3.054921-5 1.221651+1 3.137625-5 1.326001+1 3.199345-5 1.415644+1 3.238730-5 1.480109+1 3.276800-5 1.548546+1 3.311311-5 1.616009+1 3.356413-5 1.712273+1 3.384944-5 1.779389+1 3.429723-5 1.896433+1 3.465298-5 2.000901+1 3.490426-5 2.082312+1 3.514770-5 2.168041+1 3.555369-5 2.326857+1 3.583329-5 2.449403+1 3.625538-5 2.659731+1 3.665151-5 2.890786+1 3.702327-5 3.144518+1 3.737215-5 3.422828+1 3.769958-5 3.728119+1 3.785565-5 3.891655+1 3.819643-5 4.296404+1 3.845448-5 4.654176+1 3.875204-5 5.135240+1 3.895650-5 5.518029+1 3.919010-5 6.019215+1 3.944588-5 6.662938+1 3.961440-5 7.153057+1 3.980688-5 7.790917+1 4.000000-5 8.531708+1 4.015650-5 9.221468+1 4.033224-5 1.011195+2 4.046378-5 1.087457+2 4.060317-5 1.179072+2 4.073803-5 1.280333+2 4.085636-5 1.381417+2 4.097122-5 1.492599+2 4.107889-5 1.610751+2 4.120078-5 1.764119+2 4.127448-5 1.868880+2 4.136320-5 2.009349+2 4.144638-5 2.157790+2 4.152436-5 2.314531+2 4.159746-5 2.479954+2 4.166600-5 2.654494+2 4.173025-5 2.838625+2 4.179049-5 3.032834+2 4.190343-5 3.468496+2 4.200226-5 3.951614+2 4.208873-5 4.481410+2 4.216439-5 5.053009+2 4.223060-5 5.657749+2 4.228853-5 6.284349+2 4.233922-5 6.920415+2 4.238357-5 7.553814+2 4.242238-5 8.173697+2 4.249030-5 9.423898+2 4.257943-5 1.142945+3 4.279419-5 1.830918+3 4.283201-5 1.985113+3 4.290421-5 2.307203+3 4.297417-5 2.652093+3 4.299748-5 2.773603+3 4.310280-5 3.355685+3 4.311596-5 3.431475+3 4.320811-5 3.971788+3 4.324814-5 4.207713+3 4.328635-5 4.430648+3 4.334212-5 4.747666+3 4.338944-5 5.004471+3 4.344008-5 5.261887+3 4.347885-5 5.443881+3 4.353426-5 5.676869+3 4.358698-5 5.864597+3 4.361879-5 5.960236+3 4.366529-5 6.074505+3 4.371579-5 6.162820+3 4.373132-5 6.182318+3 4.379924-5 6.225184+3 4.385709-5 6.208374+3 4.391539-5 6.144836+3 4.397542-5 6.035369+3 4.403036-5 5.901499+3 4.410116-5 5.691175+3 4.417656-5 5.434506+3 4.427954-5 5.058372+3 4.450577-5 4.281620+3 4.460940-5 3.991315+3 4.471522-5 3.740779+3 4.494404-5 3.296212+3 4.506955-5 3.061741+3 4.513206-5 2.938575+3 4.521243-5 2.771393+3 4.527755-5 2.628448+3 4.534035-5 2.484986+3 4.541512-5 2.308796+3 4.549587-5 2.115152+3 4.557663-5 1.922136+3 4.568430-5 1.673004+3 4.571122-5 1.613129+3 4.587610-5 1.276175+3 4.613785-5 8.683068+2 4.619228-5 8.033199+2 4.626334-5 7.277547+2 4.633439-5 6.617927+2 4.641003-5 6.009712+2 4.644733-5 5.741643+2 4.652710-5 5.230466+2 4.664676-5 4.597836+2 4.671286-5 4.304734+2 4.676643-5 4.091434+2 4.689907-5 3.640082+2 4.693945-5 3.520879+2 4.703219-5 3.273472+2 4.717052-5 2.961564+2 4.728605-5 2.743762+2 4.740159-5 2.558321+2 4.751712-5 2.400886+2 4.759511-5 2.308683+2 4.766226-5 2.237506+2 4.776300-5 2.143660+2 4.786373-5 2.063574+2 4.800818-5 1.968868+2 4.810977-5 1.913852+2 4.829147-5 1.833450+2 4.870087-5 1.706915+2 4.883515-5 1.676619+2 4.908430-5 1.630920+2 4.966469-5 1.551929+2 5.049223-5 1.451692+2 5.094425-5 1.404542+2 5.155893-5 1.349114+2 5.253780-5 1.273619+2 5.343221-5 1.217317+2 5.449742-5 1.162113+2 5.595463-5 1.101134+2 5.750579-5 1.049928+2 5.974501-5 9.911498+1 6.189463-5 9.471973+1 6.393721-5 9.134903+1 6.648750-5 8.799697+1 7.198387-5 8.212714+1 7.352292-5 8.008543+1 7.420455-5 7.902569+1 7.456984-5 7.876009+1 7.475248-5 7.881269+1 7.493513-5 7.902540+1 7.515960-5 7.952095+1 7.559100-5 8.107627+1 7.605320-5 8.296271+1 7.623182-5 8.353597+1 7.646502-5 8.404844+1 7.673803-5 8.428617+1 7.715773-5 8.407217+1 7.782159-5 8.340285+1 7.831555-5 8.323512+1 8.829866-5 8.646256+1 1.000000-4 9.131779+1 1.273442-4 1.025443+2 1.450000-4 1.087162+2 1.620050-4 1.135956+2 1.792411-4 1.175634+2 1.995263-4 1.208477+2 2.209946-4 1.229283+2 2.444339-4 1.239104+2 2.678253-4 1.237669+2 2.920578-4 1.224922+2 3.171392-4 1.201022+2 3.388442-4 1.170807+2 3.616784-4 1.128991+2 3.852663-4 1.073191+2 4.076001-4 1.007991+2 4.270428-4 9.402747+1 4.442158-4 8.701795+1 4.589833-4 8.004010+1 4.702662-4 7.400949+1 4.807563-4 6.775620+1 4.902056-4 6.150949+1 4.981334-4 5.573529+1 5.053233-4 5.001000+1 5.118551-4 4.436647+1 5.180263-4 3.861273+1 5.231866-4 3.346905+1 5.269471-4 2.954780+1 5.306315-4 2.571106+1 5.339110-4 2.268583+1 5.367544-4 2.080687+1 5.371472-4 2.062125+1 5.397096-4 1.989447+1 5.421900-4 1.996771+1 5.442285-4 2.055321+1 5.463072-4 2.164769+1 5.476143-4 2.264710+1 5.491802-4 2.427908+1 5.506294-4 2.639047+1 5.517662-4 2.862728+1 5.528293-4 3.135577+1 5.539078-4 3.495709+1 5.545850-4 3.775829+1 5.553301-4 4.142464+1 5.559821-4 4.521737+1 5.565526-4 4.904884+1 5.570517-4 5.284059+1 5.578708-4 6.005927+1 5.585334-4 6.691213+1 5.595544-4 7.948357+1 5.614583-4 1.104945+2 5.629056-4 1.415587+2 5.635726-4 1.581924+2 5.647914-4 1.923514+2 5.662085-4 2.377501+2 5.668406-4 2.596902+2 5.678370-4 2.958880+2 5.684225-4 3.178100+2 5.691469-4 3.452733+2 5.698590-4 3.722831+2 5.703199-4 3.895919+2 5.709548-4 4.129674+2 5.717237-4 4.401897+2 5.726518-4 4.707978+2 5.734559-4 4.947423+2 5.743817-4 5.187505+2 5.751587-4 5.355908+2 5.759772-4 5.498106+2 5.767097-4 5.593701+2 5.776030-4 5.669631+2 5.785231-4 5.702306+2 5.791086-4 5.700191+2 5.795191-4 5.688657+2 5.802901-4 5.645997+2 5.809918-4 5.585216+2 5.818499-4 5.485618+2 5.827287-4 5.358702+2 5.833608-4 5.254176+2 5.839360-4 5.150951+2 5.847055-4 5.002786+2 5.857088-4 4.796382+2 5.870340-4 4.509640+2 5.886521-4 4.154103+2 5.918762-4 3.500734+2 5.932344-4 3.269905+2 5.946250-4 3.068872+2 5.963083-4 2.875445+2 5.975811-4 2.764224+2 5.987137-4 2.688305+2 5.997169-4 2.637077+2 6.011337-4 2.586390+2 6.032188-4 2.547072+2 6.058470-4 2.535341+2 6.094805-4 2.550347+2 6.161250-4 2.595892+2 6.256156-4 2.652008+2 6.317957-4 2.678935+2 6.367092-4 2.695256+2 6.445906-4 2.713941+2 6.529173-4 2.722522+2 6.600338-4 2.717692+2 6.686524-4 2.695617+2 6.729348-4 2.690927+2 6.760862-4 2.701038+2 6.793751-4 2.730381+2 6.814378-4 2.759443+2 6.851132-4 2.827976+2 6.905104-4 2.943840+2 6.936182-4 3.004458+2 6.970917-4 3.060315+2 7.004031-4 3.101858+2 7.070231-4 3.161122+2 7.132778-4 3.202174+2 7.212758-4 3.245604+2 7.434469-4 3.341041+2 7.719844-4 3.436967+2 8.044288-4 3.521559+2 8.399160-4 3.587149+2 8.925345-4 3.655297+2 9.631011-4 3.706722+2 1.017512-3 3.715255+2 1.128084-3 3.695462+2 1.233815-3 3.658784+2 1.375427-3 3.574429+2 1.525847-3 3.477519+2 1.752077-3 3.316203+2 2.037335-3 3.119436+2 2.356769-3 2.902999+2 2.641131-3 2.719796+2 2.951129-3 2.532402+2 3.263036-3 2.356246+2 3.543691-3 2.208446+2 3.831934-3 2.064422+2 3.976260-3 1.994809+2 4.165871-3 1.906078+2 4.331913-3 1.829919+2 4.486402-3 1.760552+2 4.648831-3 1.689022+2 4.786301-3 1.628844+2 4.916819-3 1.571455+2 5.034610-3 1.519258+2 5.123085-3 1.479004+2 5.222933-3 1.432587+2 5.312666-3 1.389459+2 5.385797-3 1.352914+2 5.449350-3 1.319551+2 5.507842-3 1.287059+2 5.559043-3 1.256778+2 5.632062-3 1.209243+2 5.670227-3 1.181392+2 5.707029-3 1.151590+2 5.738719-3 1.122561+2 5.765966-3 1.094027+2 5.788835-3 1.066723+2 5.814640-3 1.031661+2 5.845266-3 9.849055+1 5.890704-3 9.160688+1 5.909590-3 8.941995+1 5.925991-3 8.814947+1 5.938241-3 8.766835+1 5.950303-3 8.762174+1 5.958414-3 8.783322+1 5.966525-3 8.823598+1 5.983234-3 8.962614+1 5.998499-3 9.145881+1 6.020315-3 9.472792+1 6.055829-3 1.006596+2 6.082005-3 1.047704+2 6.105378-3 1.079580+2 6.120717-3 1.097721+2 6.150000-3 1.126693+2 6.171030-3 1.143629+2 6.213261-3 1.170482+2 6.245027-3 1.186187+2 6.279431-3 1.200147+2 6.315370-3 1.212170+2 6.360279-3 1.224391+2 6.456542-3 1.243069+2 6.531674-3 1.252304+2 6.655297-3 1.260825+2 6.832418-3 1.263091+2 7.025780-3 1.257454+2 7.239230-3 1.244405+2 7.575740-3 1.215136+2 8.015050-3 1.169626+2 8.474713-3 1.118698+2 9.093896-3 1.051019+2 9.842943-3 9.742536+1 1.083318-2 8.827693+1 1.224938-2 7.726876+1 1.330706-2 7.034424+1 1.483713-2 6.182779+1 1.645004-2 5.432424+1 1.836366-2 4.695789+1 2.036030-2 4.064266+1 2.263372-2 3.479311+1 2.493507-2 2.999836+1 2.782749-2 2.520965+1 3.920065-2 1.445813+1 5.170010-2 9.095333+0 6.125325-2 6.816162+0 7.254505-2 5.077967+0 8.568329-2 3.774657+0 1.041482-1 2.648890+0 1.236856-1 1.924702+0 1.662575-1 1.099852+0 2.219673-1 6.320114-1 2.985383-1 3.554751-1 4.229120-1 1.793945-1 6.790932-1 7.017771-2 1.619761+0 1.239543-2 4.891600+0 1.360423-3 1.477239+1 1.491830-4 4.461192+1 1.635778-5 1.347258+2 1.793597-6 4.068655+2 1.966641-7 1.258925+3 2.054125-8 3.981072+3 2.054125-9 1.258925+4 2.05412-10 3.981072+4 2.05412-11 1.000000+5 3.25557-12 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.010500-6 1.258900-6 1.601500-6 1.584900-6 2.538200-6 1.995300-6 4.022700-6 2.511900-6 6.375600-6 3.162300-6 1.010500-5 3.981100-6 1.601500-5 5.011900-6 2.538100-5 6.309600-6 4.022700-5 7.943300-6 6.375400-5 1.000000-5 1.010400-4 1.258900-5 1.601400-4 1.584900-5 2.537100-4 1.995300-5 4.019200-4 2.511900-5 6.367600-4 3.162300-5 1.008900-3 3.981100-5 1.598600-3 5.011900-5 2.533200-3 6.309600-5 4.014200-3 7.943300-5 6.355500-3 1.000000-4 1.006000-2 1.258900-4 1.591200-2 1.584900-4 2.511000-2 1.995300-4 3.960200-2 2.511900-4 6.226400-2 3.162300-4 9.737400-2 3.981100-4 1.510700-1 5.011900-4 2.317100-1 6.309600-4 3.495400-1 7.943300-4 5.153600-1 1.000000-3 7.384600-1 1.258900-3 1.025100+0 1.584900-3 1.380400+0 1.995300-3 1.816600+0 2.511900-3 2.351600+0 3.162300-3 2.998300+0 3.981100-3 3.759600+0 5.011900-3 4.629500+0 6.309600-3 5.593100+0 7.943300-3 6.612800+0 1.000000-2 7.624300+0 1.258900-2 8.566300+0 1.584900-2 9.426400+0 1.995300-2 1.019600+1 2.511900-2 1.084600+1 3.162300-2 1.133100+1 3.981100-2 1.162800+1 5.011900-2 1.175000+1 6.309600-2 1.171100+1 7.943300-2 1.152000+1 1.000000-1 1.118600+1 1.258900-1 1.073000+1 1.584900-1 1.017800+1 1.995300-1 9.560100+0 2.511900-1 8.904100+0 3.162300-1 8.230800+0 3.981100-1 7.557200+0 5.011900-1 6.896100+0 6.309600-1 6.255200+0 7.943300-1 5.642500+0 1.000000+0 5.059200+0 1.258900+0 4.509200+0 1.584900+0 3.993800+0 1.995300+0 3.515100+0 2.511900+0 3.074500+0 3.162300+0 2.672800+0 3.981100+0 2.310000+0 5.011900+0 1.985400+0 6.309600+0 1.697600+0 7.943300+0 1.444500+0 1.000000+1 1.223700+0 1.258900+1 1.032600+0 1.584900+1 8.680800-1 1.995300+1 7.273800-1 2.511900+1 6.076700-1 3.162300+1 5.062900-1 3.981100+1 4.207900-1 5.011900+1 3.489600-1 6.309600+1 2.888100-1 7.943300+1 2.385900-1 1.000000+2 1.967800-1 1.258900+2 1.620600-1 1.584900+2 1.332700-1 1.995300+2 1.094600-1 2.511900+2 8.979700-2 3.162300+2 7.358700-2 3.981100+2 6.024200-2 5.011900+2 4.927200-2 6.309600+2 4.026300-2 7.943300+2 3.287500-2 1.000000+3 2.682200-2 1.258900+3 2.186800-2 1.584900+3 1.781700-2 1.995300+3 1.450700-2 2.511900+3 1.180400-2 3.162300+3 9.599600-3 3.981100+3 7.802500-3 5.011900+3 6.338600-3 6.309600+3 5.146700-3 7.943300+3 4.176900-3 1.000000+4 3.388400-3 1.258900+4 2.747500-3 1.584900+4 2.226800-3 1.995300+4 1.804200-3 2.511900+4 1.461100-3 3.162300+4 1.182900-3 3.981100+4 9.573000-4 5.011900+4 7.744600-4 6.309600+4 6.263300-4 7.943300+4 5.063700-4 1.000000+5 4.092600-4 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159552-4 3.981072-4 3.976755-4 5.011872-4 5.005061-4 6.309573-4 6.298874-4 7.943282-4 7.926445-4 1.000000-3 9.973651-4 1.258925-3 1.254818-3 1.584893-3 1.578490-3 1.995262-3 1.985268-3 2.511886-3 2.496256-3 3.162278-3 3.137809-3 3.981072-3 3.942803-3 5.011872-3 4.952125-3 6.309573-3 6.216490-3 7.943282-3 7.798743-3 1.000000-2 9.776593-3 1.258925-2 1.224535-2 1.584893-2 1.532051-2 1.995262-2 1.914130-2 2.511886-2 2.387638-2 3.162278-2 2.972817-2 3.981072-2 3.694013-2 5.011872-2 4.578593-2 6.309573-2 5.659462-2 7.943282-2 6.974447-2 1.000000-1 8.567836-2 1.258925-1 1.048995-1 1.584893-1 1.280069-1 1.995262-1 1.556784-1 2.511886-1 1.886599-1 3.162278-1 2.278460-1 3.981072-1 2.742677-1 5.011872-1 3.290818-1 6.309573-1 3.937369-1 7.943282-1 4.697172-1 1.000000+0 5.592157-1 1.258925+0 6.645655-1 1.584893+0 7.889057-1 1.995262+0 9.360042-1 2.511886+0 1.110530+0 3.162278+0 1.318227+0 3.981072+0 1.566162+0 5.011872+0 1.862917+0 6.309573+0 2.219090+0 7.943282+0 2.647578+0 1.000000+1 3.164137+0 1.258925+1 3.788138+0 1.584893+1 4.543258+0 1.995262+1 5.458481+0 2.511886+1 6.569176+0 3.162278+1 7.919108+0 3.981072+1 9.561568+0 5.011872+1 1.156234+1 6.309573+1 1.400195+1 7.943282+1 1.697952+1 1.000000+2 2.061689+1 1.258925+2 2.506420+1 1.584893+2 3.050585+1 1.995262+2 3.716904+1 2.511886+2 4.533417+1 3.162278+2 5.534662+1 3.981072+2 6.763098+1 5.011872+2 8.271438+1 6.309573+2 1.012434+2 7.943282+2 1.240199+2 1.000000+3 1.520281+2 1.258925+3 1.864925+2 1.584893+3 2.289202+2 1.995262+3 2.811803+2 2.511886+3 3.455660+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88222-10 1.995262-5 1.090689-9 2.511886-5 1.728597-9 3.162278-5 2.739643-9 3.981072-5 4.342037-9 5.011872-5 6.881572-9 6.309573-5 1.090619-8 7.943282-5 1.728026-8 1.000000-4 2.738210-8 1.258925-4 4.338299-8 1.584893-4 6.870364-8 1.995262-4 1.088309-7 2.511886-4 1.722885-7 3.162278-4 2.725243-7 3.981072-4 4.317122-7 5.011872-4 6.811081-7 6.309573-4 1.069978-6 7.943282-4 1.683748-6 1.000000-3 2.634929-6 1.258925-3 4.106939-6 1.584893-3 6.403059-6 1.995262-3 9.994039-6 2.511886-3 1.563089-5 3.162278-3 2.446842-5 3.981072-3 3.826857-5 5.011872-3 5.974743-5 6.309573-3 9.308392-5 7.943282-3 1.445396-4 1.000000-2 2.234073-4 1.258925-2 3.439018-4 1.584893-2 5.284232-4 1.995262-2 8.113272-4 2.511886-2 1.242486-3 3.162278-2 1.894611-3 3.981072-2 2.870586-3 5.011872-2 4.332794-3 6.309573-2 6.501119-3 7.943282-2 9.688352-3 1.000000-1 1.432164-2 1.258925-1 2.099308-2 1.584893-1 3.048238-2 1.995262-1 4.384785-2 2.511886-1 6.252873-2 3.162278-1 8.838178-2 3.981072-1 1.238395-1 5.011872-1 1.721054-1 6.309573-1 2.372204-1 7.943282-1 3.246111-1 1.000000+0 4.407843-1 1.258925+0 5.943599-1 1.584893+0 7.959875-1 1.995262+0 1.059258+0 2.511886+0 1.401356+0 3.162278+0 1.844051+0 3.981072+0 2.414910+0 5.011872+0 3.148955+0 6.309573+0 4.090484+0 7.943282+0 5.295704+0 1.000000+1 6.835863+0 1.258925+1 8.801116+0 1.584893+1 1.130567+1 1.995262+1 1.449414+1 2.511886+1 1.854969+1 3.162278+1 2.370367+1 3.981072+1 3.024915+1 5.011872+1 3.855638+1 6.309573+1 4.909378+1 7.943282+1 6.245330+1 1.000000+2 7.938311+1 1.258925+2 1.008283+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608811+2 3.981072+2 3.304762+2 5.011872+2 4.184729+2 6.309573+2 5.297140+2 7.943282+2 6.703083+2 1.000000+3 8.479719+2 1.258925+3 1.072433+3 1.584893+3 1.355973+3 1.995262+3 1.714082+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.960000-6 6.591749+5 6.200000-6 5.025670+5 6.350000-6 4.239310+5 6.370000-6 4.141815+5 6.370000-6 3.448681+6 6.460000-6 3.468570+6 6.460000-6 5.446418+6 6.531306-6 5.496239+6 6.606934-6 5.551128+6 6.683439-6 5.604915+6 6.760830-6 5.661351+6 6.839116-6 5.717519+6 6.918310-6 5.776193+6 6.930000-6 5.784337+6 7.079458-6 5.891530+6 7.161434-6 5.952818+6 7.200000-6 5.980463+6 7.244360-6 6.012464+6 7.328245-6 6.068991+6 7.460000-6 6.160270+6 7.585776-6 6.250113+6 7.600000-6 6.260392+6 7.673615-6 6.310774+6 7.700000-6 6.327333+6 7.810000-6 6.397020+6 7.920000-6 6.467981+6 8.020000-6 6.533478+6 8.128305-6 6.605356+6 8.222426-6 6.659856+6 8.310000-6 6.711037+6 8.380000-6 6.752242+6 8.460000-6 6.799625+6 8.520000-6 6.835346+6 8.600000-6 6.883201+6 8.609938-6 6.889158+6 8.650000-6 6.909749+6 8.709636-6 6.940479+6 8.770000-6 6.971679+6 8.830000-6 7.002779+6 8.880000-6 7.028754+6 8.940000-6 7.059990+6 9.000000-6 7.091289+6 9.050000-6 7.117414+6 9.100000-6 7.143575+6 9.150000-6 7.169767+6 9.200000-6 7.195987+6 9.225714-6 7.209478+6 9.240000-6 7.215892+6 9.280000-6 7.233849+6 9.310000-6 7.247322+6 9.350000-6 7.265294+6 9.380000-6 7.278777+6 9.420000-6 7.296759+6 9.460000-6 7.314744+6 9.500000-6 7.332732+6 9.550000-6 7.355219+6 9.620000-6 7.386700+6 9.660000-6 7.404687+6 9.685000-6 7.415927+6 9.707000-6 7.425817+6 9.723000-6 7.433009+6 9.740000-6 7.440650+6 9.755000-6 7.447391+6 9.772372-6 7.455198+6 9.785000-6 7.460871+6 9.800000-6 7.467610+6 9.815000-6 7.474348+6 9.830000-6 7.481085+6 9.845000-6 7.487821+6 9.860000-6 7.494556+6 9.875000-6 7.501290+6 9.885531-6 7.506017+6 9.890000-6 7.507720+6 9.905000-6 7.513435+6 9.920000-6 7.519149+6 9.937000-6 7.525624+6 9.960000-6 7.534380+6 9.980000-6 7.541992+6 1.001000-5 7.553404+6 1.005000-5 7.568611+6 1.015000-5 7.606572+6 1.020000-5 7.625522+6 1.023293-5 7.637990+6 1.027000-5 7.652014+6 1.031000-5 7.667131+6 1.035142-5 7.682769+6 1.039000-5 7.697319+6 1.044000-5 7.716152+6 1.048000-5 7.731200+6 1.052000-5 7.746230+6 1.057000-5 7.764992+6 1.062000-5 7.783726+6 1.067000-5 7.802431+6 1.071519-5 7.819307+6 1.073000-5 7.823927+6 1.079000-5 7.842606+6 1.085000-5 7.861241+6 1.092000-5 7.882926+6 1.100000-5 7.907634+6 1.107000-5 7.929186+6 1.115000-5 7.953739+6 1.123000-5 7.978208+6 1.131000-5 8.002592+6 1.142000-5 8.035978+6 1.150000-5 8.060155+6 1.161449-5 8.094602+6 1.172000-5 8.126186+6 1.174898-5 8.134825+6 1.185000-5 8.159676+6 1.200000-5 8.196320+6 1.216186-5 8.235532+6 1.230269-5 8.269372+6 1.245000-5 8.304494+6 1.260000-5 8.339967+6 1.280000-5 8.386816+6 1.300000-5 8.433155+6 1.310000-5 8.456117+6 1.320000-5 8.474835+6 1.340000-5 8.511901+6 1.365000-5 8.557616+6 1.390000-5 8.602658+6 1.420000-5 8.655843+6 1.450000-5 8.708114+6 1.479108-5 8.757982+6 1.480000-5 8.759332+6 1.500000-5 8.789343+6 1.515000-5 8.809656+6 1.554900-5 8.862735+6 1.603245-5 8.925409+6 1.650000-5 8.984405+6 1.698244-5 9.043709+6 1.717908-5 9.067403+6 1.730000-5 9.080722+6 1.757924-5 9.106720+6 1.819701-5 9.162729+6 1.883649-5 9.218791+6 1.950000-5 9.275055+6 2.018366-5 9.331110+6 2.041738-5 9.344437+6 2.137962-5 9.397532+6 2.238721-5 9.450574+6 2.300000-5 9.481620+6 2.317395-5 9.487585+6 2.371374-5 9.500543+6 2.511886-5 9.532624+6 2.580000-5 9.547403+6 2.691535-5 9.541254+6 2.818383-5 9.534304+6 2.900000-5 9.507367+6 3.054921-5 9.458206+6 3.080000-5 9.447475+6 3.150000-5 9.405744+6 3.300000-5 9.319746+6 3.311311-5 9.312144+6 3.467369-5 9.184053+6 3.548134-5 9.120590+6 3.758374-5 8.909271+6 3.800000-5 8.865387+6 3.845918-5 8.810550+6 4.000000-5 8.633448+6 4.027170-5 8.600701+6 4.265795-5 8.296396+6 4.300000-5 8.252030+6 4.315191-5 8.230531+6 4.518559-5 7.954760+6 4.570882-5 7.883568+6 4.800000-5 7.562337+6 4.897788-5 7.427242+6 4.900000-5 7.424244+6 5.020000-5 7.253791+6 5.020000-5 9.412615+6 5.060000-5 9.292515+6 5.125000-5 9.089639+6 5.125000-5 1.014368+7 5.128614-5 1.012995+7 5.160000-5 1.000554+7 5.190000-5 9.886541+6 5.220000-5 9.766909+6 5.248075-5 9.654920+6 5.300000-5 9.450522+6 5.308844-5 9.415797+6 5.400000-5 9.067802+6 5.450000-5 8.886383+6 5.500000-5 8.710896+6 5.545300-5 8.556421+6 5.650000-5 8.219080+6 5.850000-5 7.640632+6 5.900000-5 7.511517+6 6.025596-5 7.203026+6 6.070000-5 7.099897+6 6.165950-5 6.888946+6 6.220000-5 6.777724+6 6.260000-5 6.698489+6 6.350000-5 6.530221+6 6.382635-5 6.471937+6 6.480000-5 6.304711+6 6.531306-5 6.222669+6 6.580000-5 6.144749+6 6.690000-5 5.981075+6 6.800000-5 5.831199+6 6.900000-5 5.705749+6 6.918310-5 5.684170+6 7.000000-5 5.587584+6 7.110000-5 5.463234+6 7.215600-5 5.352986+6 7.230000-5 5.338460+6 7.330000-5 5.242230+6 7.350000-5 5.223635+6 7.450000-5 5.134645+6 7.500000-5 5.092876+6 7.585776-5 5.020878+6 7.673615-5 4.949362+6 7.730000-5 4.904567+6 7.900000-5 4.779249+6 7.919000-5 4.766154+6 7.919000-5 5.086066+6 8.000000-5 5.036826+6 8.080000-5 4.988627+6 8.128305-5 4.960603+6 8.150000-5 4.947318+6 8.317638-5 4.848002+6 8.511380-5 4.740045+6 8.709636-5 4.635724+6 8.730000-5 4.624643+6 9.015711-5 4.475725+6 9.120108-5 4.424518+6 9.332543-5 4.324504+6 9.400000-5 4.292944+6 9.440609-5 4.274072+6 9.549926-5 4.223106+6 9.772372-5 4.123272+6 9.900000-5 4.068848+6 9.950000-5 4.047100+6 1.011579-4 3.975902+6 1.020000-4 3.940406+6 1.023293-4 3.926646+6 1.040000-4 3.859102+6 1.060000-4 3.780927+6 1.071519-4 3.737268+6 1.083927-4 3.690197+6 1.100000-4 3.628835+6 1.135011-4 3.503530+6 1.150000-4 3.452210+6 1.174898-4 3.367726+6 1.190000-4 3.318257+6 1.202264-4 3.278447+6 1.230269-4 3.191028+6 1.244515-4 3.147851+6 1.260000-4 3.101021+6 1.273503-4 3.061088+6 1.303167-4 2.976620+6 1.318257-4 2.934743+6 1.333521-4 2.893294+6 1.350000-4 2.849761+6 1.364583-4 2.811768+6 1.380384-4 2.770863+6 1.430000-4 2.648124+6 1.445440-4 2.611162+6 1.450000-4 2.600469+6 1.479108-4 2.533584+6 1.500000-4 2.487174+6 1.513561-4 2.456910+6 1.531087-4 2.418505+6 1.584893-4 2.307325+6 1.621810-4 2.234254+6 1.640590-4 2.198364+6 1.678804-4 2.127704+6 1.698244-4 2.092175+6 1.760000-4 1.986789+6 1.778279-4 1.957391+6 1.900000-4 1.771529+6 1.905461-4 1.763907+6 1.927525-4 1.733034+6 1.937980-4 1.718666+6 1.949845-4 1.702490+6 2.018366-4 1.613314+6 2.041738-4 1.584589+6 2.113489-4 1.500270+6 2.137962-4 1.473211+6 2.150000-4 1.460106+6 2.162719-4 1.446418+6 2.187762-4 1.419861+6 2.317395-4 1.292919+6 2.344229-4 1.268773+6 2.350000-4 1.263644+6 2.400000-4 1.219762+6 2.483133-4 1.152108+6 2.511886-4 1.129980+6 2.540973-4 1.107857+6 2.570396-4 1.086126+6 2.660725-4 1.023390+6 2.691535-4 1.003066+6 2.754229-4 9.629551+5 2.818383-4 9.246316+5 2.851018-4 9.060379+5 2.917427-4 8.695209+5 2.951209-4 8.515219+5 3.100000-4 7.787299+5 3.126079-4 7.669170+5 3.162278-4 7.509506+5 3.311311-4 6.893117+5 3.388442-4 6.604492+5 3.467369-4 6.326333+5 3.507519-4 6.189123+5 3.700000-4 5.591028+5 3.758374-4 5.426264+5 3.801894-4 5.306250+5 3.890451-4 5.073522+5 3.935501-4 4.961012+5 4.027170-4 4.743291+5 4.100000-4 4.579398+5 4.265795-4 4.231480+5 4.365158-4 4.041322+5 4.415704-4 3.948676+5 4.500000-4 3.800935+5 4.841724-4 3.274003+5 4.897788-4 3.197353+5 4.954502-4 3.122448+5 5.128614-4 2.904613+5 5.370318-4 2.638610+5 5.495409-4 2.514255+5 5.500000-4 2.509856+5 5.559043-4 2.453352+5 5.623413-4 2.393793+5 5.808100-4 2.233785+5 5.808100-4 1.080691+6 5.814000-4 1.111842+6 5.821032-4 1.142123+6 5.827000-4 1.162457+6 5.835000-4 1.184879+6 5.845000-4 1.207011+6 5.858000-4 1.230160+6 5.872000-4 1.250181+6 5.888437-4 1.269021+6 5.890000-4 1.270830+6 5.897400-4 1.277186+6 5.897400-4 1.690076+6 5.903000-4 1.710043+6 5.907500-4 1.724426+6 5.912000-4 1.737423+6 5.915000-4 1.744987+6 5.920000-4 1.756256+6 5.931000-4 1.776793+6 5.935000-4 1.782902+6 5.940000-4 1.788303+6 5.950000-4 1.796553+6 5.965000-4 1.805910+6 5.990000-4 1.815330+6 5.995000-4 1.816724+6 6.015000-4 1.817374+6 6.025596-4 1.816912+6 6.030000-4 1.816717+6 6.065000-4 1.808125+6 6.095369-4 1.793173+6 6.130000-4 1.776454+6 6.165950-4 1.756651+6 6.180000-4 1.748810+6 6.237348-4 1.711935+6 6.280000-4 1.685240+6 6.309573-4 1.665522+6 6.382635-4 1.618170+6 6.390000-4 1.613500+6 6.531306-4 1.529319+6 6.606934-4 1.486772+6 6.873400-4 1.347456+6 6.873400-4 1.518349+6 6.930000-4 1.489844+6 7.000000-4 1.455353+6 7.079458-4 1.417615+6 7.328245-4 1.313068+6 7.413102-4 1.279970+6 7.500000-4 1.247608+6 7.673615-4 1.185764+6 8.000000-4 1.079425+6 8.035261-4 1.068782+6 8.222426-4 1.013385+6 8.511380-4 9.355925+5 8.810489-4 8.638791+5 9.120108-4 7.961795+5 9.225714-4 7.748438+5 9.332543-4 7.540719+5 9.700000-4 6.880913+5 9.772372-4 6.759893+5 9.850000-4 6.631059+5 1.000000-3 6.390934+5 1.035142-3 5.874884+5 1.047129-3 5.712319+5 1.096478-3 5.103101+5 1.161449-3 4.429264+5 1.174898-3 4.304853+5 1.190000-3 4.171012+5 1.216186-3 3.952559+5 1.244515-3 3.729522+5 1.258925-3 3.622914+5 1.303167-3 3.320068+5 1.333521-3 3.132557+5 1.350000-3 3.036967+5 1.364583-3 2.955431+5 1.380384-3 2.869866+5 1.462177-3 2.478555+5 1.479108-3 2.406642+5 1.500000-3 2.321919+5 1.513561-3 2.269149+5 1.548817-3 2.139671+5 1.611800-3 1.929869+5 1.640590-3 1.843096+5 1.698244-3 1.684929+5 1.717908-3 1.635341+5 1.757924-3 1.540607+5 1.778279-3 1.495380+5 1.840772-3 1.366274+5 1.862087-3 1.325803+5 1.927525-3 1.210960+5 1.949845-3 1.174954+5 2.000000-3 1.099365+5 2.018366-3 1.073189+5 2.065380-3 1.009778+5 2.089296-3 9.793576+4 2.162719-3 8.935541+4 2.187762-3 8.667050+4 2.213095-3 8.406725+4 2.264644-3 7.909955+4 2.300000-3 7.592604+4 2.344229-3 7.217247+4 2.371374-3 6.998825+4 2.454709-3 6.378791+4 2.483133-3 6.184917+4 2.570396-3 5.638647+4 2.660725-3 5.141955+4 2.691535-3 4.984820+4 2.786121-3 4.539391+4 2.818383-3 4.400196+4 3.000000-3 3.717886+4 3.019952-3 3.652169+4 3.054921-3 3.540169+4 3.090295-3 3.430394+4 3.185290-3 3.157893+4 3.198895-3 3.121363+4 3.467369-3 2.506626+4 3.507519-3 2.429067+4 3.548134-3 2.353981+4 3.589219-3 2.280451+4 3.630781-3 2.209231+4 3.890451-3 1.827282+4 4.027170-3 1.662509+4 4.073803-3 1.610886+4 4.120975-3 1.560519+4 4.216965-3 1.464284+4 4.265795-3 1.418481+4 4.466836-3 1.249539+4 4.518559-3 1.210603+4 4.570882-3 1.172852+4 4.623810-3 1.136312+4 4.677351-3 1.100943+4 4.731513-3 1.066425+4 4.786301-3 1.032829+4 4.897788-3 9.686398+3 4.954502-3 9.380305+3 5.011872-3 9.084146+3 5.069907-3 8.797602+3 5.248075-3 7.991478+3 5.308844-3 7.739348+3 5.370318-3 7.495374+3 5.432503-3 7.256949+3 5.559043-3 6.803037+3 5.623413-3 6.585188+3 5.698200-3 6.344013+3 5.731900-3 6.238353+3 5.754399-3 6.169161+3 5.821032-3 5.970353+3 5.888437-3 5.779531+3 5.956621-3 5.595004+3 5.957600-3 5.592440+3 5.957600-3 4.530653+4 6.025596-3 4.424366+4 6.150000-3 4.239723+4 6.165950-3 4.212164+4 6.237348-3 4.091794+4 6.456542-3 3.751029+4 6.500000-3 3.688050+4 6.606934-3 3.539186+4 6.683439-3 3.437772+4 6.760830-3 3.339214+4 6.839116-3 3.243498+4 6.918310-3 3.150514+4 7.000000-3 3.058417+4 7.079458-3 2.968661+4 7.161434-3 2.879823+4 7.244360-3 2.793551+4 7.498942-3 2.549989+4 7.500000-3 2.549039+4 7.585776-3 2.473561+4 8.035261-3 2.124525+4 8.128305-3 2.060930+4 8.317638-3 1.939416+4 8.413951-3 1.881316+4 8.609938-3 1.770301+4 8.709636-3 1.717284+4 8.810489-3 1.665835+4 9.332543-3 1.430940+4 9.549926-3 1.344232+4 9.660509-3 1.302878+4 9.772372-3 1.262754+4 9.885531-3 1.223869+4 1.000000-2 1.186191+4 1.011579-2 1.149678+4 1.023293-2 1.114278+4 1.083927-2 9.529947+3 1.096478-2 9.236650+3 1.122018-2 8.676930+3 1.135011-2 8.409628+3 1.161449-2 7.899553+3 1.174898-2 7.656269+3 1.188502-2 7.415310+3 1.216186-2 6.955807+3 1.230269-2 6.736840+3 1.288250-2 5.927930+3 1.318257-2 5.560752+3 1.333521-2 5.385606+3 1.355400-2 5.147408+3 1.364583-2 5.051645+3 1.400000-2 4.704210+3 1.445440-2 4.304357+3 1.462177-2 4.168731+3 1.548817-2 3.541864+3 1.566751-2 3.428193+3 1.584893-2 3.318173+3 1.659587-2 2.912272+3 1.698244-2 2.728340+3 1.717908-2 2.640789+3 1.737801-2 2.556047+3 1.778279-2 2.394641+3 1.819701-2 2.241320+3 1.862087-2 2.097684+3 1.883649-2 2.029360+3 1.905461-2 1.963253+3 1.972423-2 1.777596+3 2.018366-2 1.663683+3 2.113489-2 1.457318+3 2.137962-2 1.409860+3 2.187762-2 1.318329+3 2.238721-2 1.232749+3 2.264644-2 1.192068+3 2.398833-2 1.007930+3 2.426610-2 9.746672+2 2.540973-2 8.522501+2 2.576800-2 8.181433+2 2.600160-2 7.966414+2 2.691535-2 7.194441+2 2.754229-2 6.721792+2 2.851018-2 6.070450+2 2.951209-2 5.482283+2 3.019952-2 5.122181+2 3.054921-2 4.950936+2 3.126079-2 4.625446+2 3.198895-2 4.318078+2 3.273407-2 4.031114+2 3.427678-2 3.513159+2 3.507519-2 3.279719+2 3.630781-2 2.958342+2 3.715352-2 2.761610+2 3.845918-2 2.490766+2 4.168694-2 1.952673+2 4.216965-2 1.885952+2 4.365158-2 1.699168+2 4.415704-2 1.641115+2 4.677351-2 1.379061+2 4.786301-2 1.286351+2 5.000000-2 1.125814+2 5.011872-2 1.117695+2 5.069907-2 1.079108+2 5.308844-2 9.376346+1 5.432503-2 8.740171+1 5.688529-2 7.593493+1 6.165950-2 5.936805+1 6.309573-2 5.530297+1 6.760830-2 4.470344+1 6.839116-2 4.314602+1 7.079458-2 3.878856+1 7.244360-2 3.613101+1 7.673615-2 3.025641+1 7.762471-2 2.920153+1 8.128305-2 2.533737+1 8.222426-2 2.445407+1 8.317638-2 2.360156+1 8.413951-2 2.277439+1 8.609938-2 2.120601+1 8.912509-2 1.905376+1 9.549926-2 1.538058+1 9.772372-2 1.432094+1 9.885531-2 1.381884+1 1.047129-1 1.156024+1 1.059254-1 1.115493+1 1.071519-1 1.076386+1 1.109175-1 9.670963+0 1.122019-1 9.331905+0 1.174898-1 8.090508+0 1.258925-1 6.531171+0 1.273503-1 6.302220+0 1.288250-1 6.081294+0 1.380384-1 4.909313+0 1.428894-1 4.410980+0 1.445440-1 4.256376+0 1.479108-1 3.963246+0 1.500000-1 3.794674+0 1.548817-1 3.436169+0 1.584893-1 3.201507+0 1.603245-1 3.090335+0 1.621810-1 2.983021+0 1.698244-1 2.589820+0 1.717908-1 2.499907+0 1.757924-1 2.329335+0 1.819701-1 2.095057+0 1.840772-1 2.022324+0 1.862087-1 1.952116+0 1.927525-1 1.755786+0 1.949845-1 1.695390+0 2.018366-1 1.526395+0 2.065380-1 1.423197+0 2.089296-1 1.374251+0 2.113489-1 1.326989+0 2.137962-1 1.281353+0 2.162719-1 1.237336+0 2.187762-1 1.194833+0 2.238721-1 1.114159+0 2.317395-1 1.003246+0 2.344229-1 9.692578-1 2.371374-1 9.364209-1 2.398833-1 9.046978-1 2.426610-1 8.740496-1 2.454709-1 8.444407-1 2.483133-1 8.158405-1 2.511886-1 7.882093-1 2.540973-1 7.615473-1 2.660725-1 6.636214-1 2.691535-1 6.411752-1 2.754229-1 5.992035-1 2.851018-1 5.413414-1 2.884032-1 5.233269-1 2.951209-1 4.891254-1 2.985383-1 4.728719-1 3.000000-1 4.661413-1 3.054921-1 4.419703-1 3.090295-1 4.272853-1 3.235937-1 3.741733-1 3.273407-1 3.619611-1 3.311311-1 3.501507-1 3.349654-1 3.387446-1 3.507519-1 2.967175-1 3.548134-1 2.872458-1 3.589219-1 2.780765-1 3.672823-1 2.606074-1 3.715352-1 2.522910-1 3.801894-1 2.364748-1 3.890451-1 2.216502-1 3.935501-1 2.145901-1 4.000000-1 2.052090-1 4.073803-1 1.951475-1 4.120975-1 1.890663-1 4.168694-1 1.831765-1 4.216965-1 1.774818-1 4.265795-1 1.719642-1 4.365158-1 1.614387-1 4.466836-1 1.517767-1 4.518559-1 1.471649-1 4.570882-1 1.426932-1 4.623810-1 1.383588-1 4.731513-1 1.300991-1 4.786301-1 1.261561-1 4.841724-1 1.223326-1 4.954502-1 1.152082-1 5.000000-1 1.124963-1 5.011872-1 1.118033-1 5.069907-1 1.084991-1 5.128614-1 1.052936-1 5.188000-1 1.021898-1 5.370318-1 9.341655-2 5.432503-1 9.073331-2 5.495409-1 8.812731-2 5.559043-1 8.559619-2 5.623413-1 8.313861-2 5.821032-1 7.619686-2 5.888437-1 7.401423-2 5.956621-1 7.195086-2 6.025596-1 6.994503-2 6.095369-1 6.799514-2 6.165950-1 6.610031-2 6.309573-1 6.247679-2 6.382635-1 6.074020-2 6.456542-1 5.905200-2 6.531306-1 5.745911-2 6.606935-1 5.590925-2 6.683439-1 5.440122-2 6.760830-1 5.293440-2 6.839117-1 5.151084-2 6.918310-1 5.012558-2 7.085700-1 4.736700-2 7.161434-1 4.623280-2 7.244360-1 4.503521-2 7.328245-1 4.386867-2 7.413102-1 4.273279-2 7.498942-1 4.162932-2 7.762471-1 3.848712-2 7.852356-1 3.752236-2 7.943282-1 3.658180-2 8.035261-1 3.566482-2 8.128305-1 3.477118-2 8.413951-1 3.222921-2 8.511380-1 3.142392-2 8.609938-1 3.065804-2 8.810489-1 2.918190-2 8.912509-1 2.847103-2 9.015711-1 2.777968-2 9.120108-1 2.710515-2 9.332543-1 2.580490-2 9.440609-1 2.517835-2 9.549926-1 2.458994-2 9.660509-1 2.401555-2 9.772372-1 2.345657-2 1.011579+0 2.185651-2 1.022000+0 2.140306-2 1.023293+0 2.134928-2 1.035142+0 2.086581-2 1.047129+0 2.039328-2 1.059254+0 1.993162-2 1.096478+0 1.860838-2 1.109175+0 1.818815-2 1.122018+0 1.777744-2 1.135011+0 1.737597-2 1.148154+0 1.698361-2 1.161449+0 1.661482-2 1.174898+0 1.625421-2 1.202264+0 1.555634-2 1.216186+0 1.521970-2 1.230269+0 1.489035-2 1.250000+0 1.444693-2 1.273503+0 1.394455-2 1.288250+0 1.365255-2 1.303167+0 1.336681-2 1.333521+0 1.281315-2 1.348963+0 1.254579-2 1.364583+0 1.228403-2 1.412538+0 1.153109-2 1.428894+0 1.129828-2 1.445440+0 1.107026-2 1.479108+0 1.062795-2 1.500000+0 1.036801-2 1.531087+0 9.999262-3 1.566751+0 9.600951-3 1.584893+0 9.413997-3 1.603245+0 9.230764-3 1.640590+0 8.874923-3 1.659587+0 8.702734-3 1.678804+0 8.533886-3 1.717908+0 8.205957-3 1.737801+0 8.046752-3 1.757924+0 7.895976-3 1.778279+0 7.748100-3 1.798871+0 7.602986-3 1.840772+0 7.320867-3 1.862087+0 7.184211-3 1.883649+0 7.050105-3 1.927525+0 6.789359-3 1.949845+0 6.662630-3 1.972423+0 6.542776-3 2.000000+0 6.401163-3 2.044000+0 6.185354-3 2.065380+0 6.084752-3 2.113489+0 5.868576-3 2.162719+0 5.660080-3 2.213095+0 5.459004-3 2.238721+0 5.364374-3 2.264644+0 5.271424-3 2.317395+0 5.090326-3 2.344229+0 5.002128-3 2.398833+0 4.830799-3 2.454709+0 4.665338-3 2.511886+0 4.505554-3 2.540973+0 4.430279-3 2.570396+0 4.356296-3 2.630268+0 4.212016-3 2.660725+0 4.141681-3 2.754229+0 3.938240-3 2.818383+0 3.808197-3 2.884032+0 3.682453-3 2.917427+0 3.623170-3 2.951209+0 3.564866-3 3.019952+0 3.451057-3 3.054921+0 3.395525-3 3.162278+0 3.234716-3 3.235937+0 3.131765-3 3.311311+0 3.032096-3 3.349654+0 2.985006-3 3.388442+0 2.938665-3 3.507519+0 2.803919-3 3.548134+0 2.760393-3 3.672823+0 2.634190-3 3.758374+0 2.553277-3 3.845918+0 2.474853-3 3.890451+0 2.437749-3 3.935501+0 2.401214-3 4.120975+0 2.260474-3 4.315191+0 2.128350-3 4.415704+0 2.065214-3 4.518559+0 2.003953-3 4.570882+0 1.974891-3 4.623810+0 1.946262-3 4.677351+0 1.918049-3 4.897788+0 1.809225-3 5.188000+0 1.682147-3 5.370318+0 1.610226-3 5.495409+0 1.563998-3 5.559043+0 1.542059-3 5.623413+0 1.520436-3 5.688529+0 1.499117-3 5.888437+0 1.436936-3 6.165950+0 1.358251-3 6.382635+0 1.302079-3 6.531306+0 1.265929-3 6.606934+0 1.248722-3 6.683439+0 1.231754-3 6.839116+0 1.198508-3 7.161434+0 1.134684-3 7.244360+0 1.119301-3 7.762471+0 1.031286-3 8.035261+0 9.899089-4 8.222427+0 9.632517-4 8.317638+0 9.505386-4 8.511380+0 9.256223-4 8.912509+0 8.777318-4 9.772372+0 7.894573-4 1.011579+1 7.586937-4 1.035142+1 7.388539-4 1.047129+1 7.293613-4 1.071519+1 7.107479-4 1.135011+1 6.662646-4 1.258925+1 5.932478-4 1.303167+1 5.707323-4 1.333521+1 5.561996-4 1.348963+1 5.492266-4 1.380384+1 5.355464-4 1.513561+1 4.841487-4 1.640590+1 4.433201-4 1.698244+1 4.268938-4 1.778279+1 4.059357-4 1.819701+1 3.960385-4 1.905461+1 3.769672-4 2.113489+1 3.373476-4 2.264644+1 3.133199-4 2.317395+1 3.056971-4 2.426610+1 2.910039-4 2.454709+1 2.875004-4 2.483133+1 2.840391-4 2.630268+1 2.673509-4 3.162278+1 2.202586-4 3.198895+1 2.176114-4 3.349654+1 2.073371-4 3.388442+1 2.048452-4 3.548134+1 1.951739-4 3.589219+1 1.928644-4 3.890451+1 1.774479-4 5.069907+1 1.349552-4 5.128614+1 1.333604-4 5.559043+1 1.227121-4 5.623413+1 1.212620-4 6.025596+1 1.129142-4 6.095369+1 1.115975-4 6.606934+1 1.028019-4 8.709636+1 7.758203-5 8.810489+1 7.667825-5 1.011579+2 6.662010-5 1.023293+2 6.584400-5 1.174898+2 5.720709-5 1.202264+2 5.589196-5 1.318257+2 5.092722-5 1.737801+2 3.852586-5 1.757924+2 3.808076-5 2.018366+2 3.312417-5 2.041738+2 3.274147-5 2.344229+2 2.847988-5 2.398833+2 2.782924-5 2.630268+2 2.537216-5 6.918310+2 9.612695-6 6.998420+2 9.502307-6 8.035261+2 8.272483-6 8.128305+2 8.177485-6 9.332543+2 7.119130-6 9.549926+2 6.957017-6 2.089296+3 3.179095-6 1.000000+5 6.633041-8 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.960000-6 5.960000-6 6.370000-6 5.960000-6 6.370000-6 6.320760-6 6.460000-6 6.325869-6 6.460000-6 6.374578-6 8.020000-6 6.401884-6 5.020000-5 6.403705-6 5.020000-5 7.865219-6 5.125000-5 7.790794-6 5.125000-5 8.312968-6 5.650000-5 7.809248-6 5.900000-5 7.607359-6 6.165950-5 7.436954-6 6.382635-5 7.333875-6 6.690000-5 7.240735-6 7.000000-5 7.202311-6 7.350000-5 7.214610-6 7.730000-5 7.275611-6 7.919000-5 7.319749-6 7.919000-5 8.044621-6 8.730000-5 8.416233-6 9.950000-5 8.919379-6 1.135011-4 9.435115-6 1.273503-4 9.879204-6 1.380384-4 1.017566-5 1.531087-4 1.053007-5 1.698244-4 1.084953-5 1.949845-4 1.123625-5 2.187762-4 1.153844-5 2.511886-4 1.186947-5 2.917427-4 1.219136-5 3.467369-4 1.251831-5 4.100000-4 1.280351-5 4.954502-4 1.308888-5 5.808100-4 1.331080-5 5.808100-4 2.135978-5 5.827000-4 2.152162-5 5.872000-4 2.168854-5 5.897400-4 2.174283-5 5.897400-4 2.218359-5 5.950000-4 2.228718-5 6.130000-4 2.235508-5 6.873400-4 2.234414-5 6.873400-4 2.380853-5 8.035261-4 2.408675-5 1.258925-3 2.486231-5 1.862087-3 2.567382-5 2.660725-3 2.650696-5 3.630781-3 2.729033-5 4.677351-3 2.792170-5 5.957600-3 2.855970-5 5.957600-3 4.037956-5 9.549926-3 4.069774-5 1.972423-2 4.093973-5 5.688529-2 4.109507-5 6.683439-1 4.116639-5 1.000000+5 4.116988-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.960000-6 0.0 5.020000-5 0.0 5.020000-5 2.06018-10 5.060000-5 2.02393-10 5.125000-5 1.95525-10 5.125000-5 2.71526-10 5.220000-5 2.59046-10 5.500000-5 2.19687-10 5.650000-5 1.99935-10 5.850000-5 1.76474-10 5.900000-5 1.71214-10 6.025596-5 1.58820-10 6.070000-5 1.54906-10 6.165950-5 1.46970-10 6.260000-5 1.40059-10 6.382635-5 1.32295-10 6.480000-5 1.27141-10 6.580000-5 1.22791-10 6.690000-5 1.19033-10 6.800000-5 1.16253-10 6.918310-5 1.14338-10 7.000000-5 1.13551-10 7.110000-5 1.13324-10 7.230000-5 1.13918-10 7.350000-5 1.15280-10 7.450000-5 1.16923-10 7.585776-5 1.19902-10 7.730000-5 1.23939-10 7.919000-5 1.30208-10 7.919000-5 1.83941-10 8.317638-5 2.04998-10 9.120108-5 2.47449-10 9.950000-5 2.89898-10 1.060000-4 3.21528-10 1.135011-4 3.55974-10 1.202264-4 3.84654-10 1.273503-4 4.12743-10 1.333521-4 4.34665-10 1.430000-4 4.66548-10 1.531087-4 4.95579-10 1.621810-4 5.18461-10 1.698244-4 5.36259-10 1.778279-4 5.53078-10 1.927525-4 5.81399-10 2.041738-4 6.00891-10 2.187762-4 6.23079-10 2.400000-4 6.50869-10 2.570396-4 6.69862-10 2.754229-4 6.87950-10 2.951209-4 7.04808-10 3.311311-4 7.30394-10 3.758374-4 7.55579-10 4.265795-4 7.77430-10 4.954502-4 7.99782-10 5.623413-4 8.16399-10 5.808100-4 8.20324-10 5.808100-4 1.002901-6 5.821032-4 1.018117-6 5.835000-4 1.028200-6 5.858000-4 1.038781-6 5.897400-4 1.050163-6 5.897400-4 1.153365-6 5.920000-4 1.164509-6 5.950000-4 1.171303-6 6.030000-4 1.178620-6 6.180000-4 1.183519-6 6.873400-4 1.181038-6 6.873400-4 1.209779-6 1.096478-3 1.214730-6 4.265795-3 1.223569-6 5.559043-3 1.225830-6 5.957600-3 1.228804-6 5.957600-3 1.337351-3 6.237348-3 1.341947-3 8.413951-3 1.354665-3 1.188502-2 1.364500-3 2.137962-2 1.373078-3 5.069907-2 1.377745-3 3.235937+0 1.379077-3 1.000000+5 1.379133-3 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.960000-6 0.0 6.370000-6 4.100000-7 6.370000-6 4.924039-8 6.460000-6 1.341309-7 6.460000-6 8.542173-8 6.606934-6 2.271084-7 6.839116-6 4.526546-7 7.244360-6 8.499696-7 8.128305-6 1.725844-6 5.020000-5 4.379629-5 5.020000-5 4.233457-5 5.125000-5 4.345901-5 5.125000-5 4.293676-5 6.070000-5 5.320712-5 6.918310-5 6.197516-5 7.919000-5 7.187012-5 7.919000-5 7.114519-5 1.244515-4 1.146583-4 1.905461-4 1.793700-4 3.935501-4 3.808130-4 5.808100-4 5.674984-4 5.808100-4 5.584473-4 6.030000-4 5.794849-4 6.873400-4 6.638148-4 6.873400-4 6.623217-4 5.957600-3 5.927811-3 5.957600-3 4.579870-3 1.174898-2 1.034388-2 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.957600-3 3.971409+4 6.150000-3 3.727500+4 7.000000-3 2.701640+4 9.332543-3 1.274232+4 1.174898-2 6.846639+3 1.462177-2 3.738748+3 1.778279-2 2.152022+3 2.137962-2 1.268878+3 2.576800-2 7.371918+2 3.126079-2 4.171586+2 3.845918-2 2.248006+2 4.786301-2 1.161612+2 6.165950-2 5.363384+1 8.317638-2 2.132786+1 1.548817-1 3.105534+0 1.927525-1 1.586736+0 2.317395-1 9.066615-1 2.691535-1 5.794329-1 3.090295-1 3.861240-1 3.507519-1 2.681345-1 3.935501-1 1.939163-1 4.365158-1 1.458895-1 4.841724-1 1.105503-1 5.370318-1 8.442070-2 5.888437-1 6.688617-2 6.456542-1 5.336405-2 7.085700-1 4.280501-2 7.762471-1 3.478694-2 8.511380-1 2.840808-2 9.440609-1 2.276105-2 1.022000+0 1.934600-2 1.148154+0 1.535054-2 1.273503+0 1.260421-2 1.412538+0 1.042297-2 1.566751+0 8.678379-3 1.737801+0 7.273413-3 1.949845+0 6.022339-3 2.213095+0 4.934426-3 2.511886+0 4.072620-3 2.884032+0 3.328577-3 3.311311+0 2.740700-3 3.845918+0 2.237032-3 4.518559+0 1.811372-3 5.495409+0 1.413705-3 6.531306+0 1.144276-3 8.222427+0 8.706866-4 1.035142+1 6.678528-4 1.333521+1 5.027470-4 1.778279+1 3.669242-4 2.426610+1 2.630405-4 3.548134+1 1.764204-4 6.025596+1 1.020635-4 1.174898+2 5.171057-5 2.344229+2 2.574295-5 9.332543+2 6.435377-6 1.000000+5 5.996100-8 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.957600-3 4.204400-5 1.000000+5 4.204400-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.957600-3 1.525500-3 1.000000+5 1.525500-3 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.957600-3 4.390056-3 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.873400-4 1.708923+5 7.500000-4 1.575930+5 7.673615-4 1.535028+5 9.332543-4 1.156285+5 9.850000-4 1.064484+5 1.161449-3 8.181122+4 1.258925-3 7.139859+4 1.462177-3 5.493014+4 1.611800-3 4.599463+4 1.862087-3 3.502764+4 2.065380-3 2.862400+4 2.371374-3 2.170173+4 2.691535-3 1.670679+4 3.054921-3 1.277829+4 3.548134-3 9.228357+3 4.073803-3 6.778621+3 4.677351-3 4.943120+3 5.370318-3 3.579388+3 6.165950-3 2.574306+3 7.161434-3 1.787915+3 8.317638-3 1.232347+3 9.660509-3 8.431660+2 1.122018-2 5.727719+2 1.318257-2 3.747147+2 1.548817-2 2.432281+2 1.819701-2 1.567240+2 2.137962-2 1.002627+2 2.540973-2 6.167448+1 3.019952-2 3.767116+1 3.630781-2 2.209471+1 4.415704-2 1.243601+1 5.432503-2 6.713109+0 6.839116-2 3.356216+0 8.912509-2 1.499387+0 1.584893-1 2.565975-1 2.137962-1 1.033200-1 2.511886-1 6.374973-2 2.884032-1 4.242651-2 3.311311-1 2.844041-2 3.715352-1 2.051922-2 4.168694-1 1.491397-2 4.623810-1 1.127275-2 5.128614-1 8.584884-3 5.623413-1 6.783534-3 6.165950-1 5.396451-3 6.760830-1 4.324038-3 7.413102-1 3.489243-3 8.128305-1 2.835529-3 8.912509-1 2.320309-3 9.660509-1 1.960191-3 1.096478+0 1.520521-3 1.202264+0 1.271069-3 1.333521+0 1.046543-3 1.479108+0 8.679259-4 1.640590+0 7.247649-4 1.840772+0 5.977860-4 2.065380+0 4.968313-4 2.344229+0 4.084505-4 2.660725+0 3.381794-4 3.054921+0 2.772858-4 3.548134+0 2.254088-4 4.120975+0 1.845863-4 4.897788+0 1.477343-4 5.888437+0 1.173321-4 7.161434+0 9.265538-5 8.912509+0 7.167670-5 1.135011+1 5.440854-5 1.513561+1 3.953194-5 2.113489+1 2.754493-5 3.162278+1 1.798772-5 5.069907+1 1.102107-5 8.709636+1 6.334820-6 1.737801+2 3.147245-6 6.918310+2 7.851032-7 1.000000+5 5.420800-9 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.873400-4 3.535500-5 1.000000+5 3.535500-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.873400-4 1.436400-6 1.000000+5 1.436400-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.873400-4 6.505486-4 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.897400-4 4.128900+5 5.903000-4 4.280200+5 5.907500-4 4.385000+5 5.912000-4 4.475800+5 5.920000-4 4.608800+5 5.931000-4 4.749800+5 5.935000-4 4.787381+5 5.950000-4 4.861324+5 5.990000-4 4.978463+5 6.015000-4 5.027377+5 6.065000-4 5.086788+5 6.130000-4 5.107331+5 6.180000-4 5.084029+5 6.280000-4 4.943665+5 6.390000-4 4.739826+5 6.606934-4 4.399055+5 6.930000-4 3.931300+5 7.413102-4 3.335500+5 8.035261-4 2.755900+5 8.810489-4 2.198300+5 9.700000-4 1.723000+5 1.047129-3 1.411000+5 1.216186-3 9.459400+4 1.350000-3 7.098100+4 1.548817-3 4.830300+4 1.778279-3 3.249900+4 2.018366-3 2.245900+4 2.344229-3 1.438400+4 2.660725-3 9.797400+3 3.054921-3 6.400700+3 3.548134-3 4.002500+3 4.120975-3 2.483100+3 4.786301-3 1.528800+3 5.559043-3 9.345900+2 6.456542-3 5.673300+2 7.500000-3 3.418700+2 8.709636-3 2.048300+2 1.023293-2 1.170600+2 1.216186-2 6.374900+1 1.445440-2 3.445500+1 1.737801-2 1.773600+1 2.113489-2 8.691200+0 2.600160-2 4.053100+0 3.273407-2 1.723200+0 4.415704-2 5.618900-1 7.762471-2 6.749576-2 9.772372-2 2.861017-2 1.174898-1 1.448776-2 1.380384-1 8.041972-3 1.621810-1 4.498866-3 1.862087-1 2.754978-3 2.113489-1 1.770240-3 2.371374-1 1.192590-3 2.660725-1 8.092626-4 2.985383-1 5.532562-4 3.349654-1 3.811949-4 3.715352-1 2.745275-4 4.120975-1 1.991459-4 4.518559-1 1.506815-4 4.954502-1 1.147506-4 5.432503-1 8.796669-5 5.956621-1 6.789738-5 6.531306-1 5.277830-5 7.161434-1 4.132769-5 7.852356-1 3.260768-5 8.609938-1 2.582777-5 9.120108-1 2.244897-5 9.660509-1 1.963417-5 1.023293+0 1.730008-5 1.096478+0 1.497239-5 1.161449+0 1.335402-5 1.250000+0 1.162800-5 1.364583+0 9.926176-6 1.640590+0 7.217643-6 1.840772+0 5.949974-6 2.044000+0 5.025200-6 2.317395+0 4.135947-6 2.630268+0 3.422166-6 3.019952+0 2.804062-6 3.507519+0 2.278176-6 4.120975+0 1.836616-6 4.897788+0 1.469857-6 5.888437+0 1.167382-6 7.161434+0 9.218933-7 8.912509+0 7.131566-7 1.135011+1 5.413457-7 1.513561+1 3.933296-7 2.113489+1 2.740621-7 3.198895+1 1.768325-7 5.128614+1 1.083647-7 8.810489+1 6.229527-8 1.757924+2 3.095183-8 6.998420+2 7.722003-9 1.000000+5 5.39350-11 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.897400-4 2.354700-5 1.000000+5 2.354700-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.897400-4 1.472600-6 1.000000+5 1.472600-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.897400-4 5.647204-4 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.808100-4 8.573120+5 5.814000-4 8.889480+5 5.821032-4 9.198036+5 5.827000-4 9.406240+5 5.835000-4 9.636960+5 5.845000-4 9.866360+5 5.858000-4 1.010828+6 5.872000-4 1.031964+6 5.890000-4 1.054036+6 5.915000-4 1.077636+6 5.940000-4 1.094224+6 5.965000-4 1.104436+6 5.995000-4 1.109192+6 6.030000-4 1.106088+6 6.065000-4 1.095916+6 6.165950-4 1.051247+6 7.079458-4 7.332676+5 8.035261-4 5.406510+5 8.810489-4 4.302105+5 9.772372-4 3.299883+5 1.096478-3 2.431021+5 1.216186-3 1.838277+5 1.364583-3 1.335606+5 1.548817-3 9.343394+4 1.778279-3 6.270009+4 2.000000-3 4.440920+4 2.300000-3 2.924600+4 2.660725-3 1.876219+4 3.019952-3 1.266982+4 3.467369-3 8.199665+3 4.027170-3 5.077654+3 4.731513-3 3.004183+3 5.559043-3 1.762328+3 6.500000-3 1.042000+3 7.500000-3 6.398720+2 8.709636-3 3.818288+2 1.011579-2 2.261652+2 1.188502-2 1.277254+2 1.400000-2 7.094440+1 1.659587-2 3.824240+1 1.972423-2 2.027916+1 2.398833-2 9.805500+0 2.951209-2 4.507526+0 3.715352-2 1.885033+0 5.000000-2 6.068564-1 8.609938-2 7.564162-2 1.059254-1 3.441031-2 1.288250-1 1.647788-2 1.500000-1 9.359811-3 1.717908-1 5.693719-3 1.949845-1 3.604796-3 2.187762-1 2.394728-3 2.426610-1 1.668098-3 2.691535-1 1.170029-3 2.985383-1 8.270020-4 3.273407-1 6.117586-4 3.589219-1 4.557364-4 3.935501-1 3.420737-4 4.265795-1 2.678778-4 4.623810-1 2.111338-4 5.011872-1 1.676040-4 5.432503-1 1.339494-4 5.888437-1 1.077801-4 6.382635-1 8.734649-5 6.918310-1 7.126762-5 7.498942-1 5.852401-5 8.413951-1 4.456919-5 9.015711-1 3.806279-5 9.660509-1 3.271830-5 1.035142+0 2.832806-5 1.135011+0 2.352846-5 1.230269+0 2.016380-5 1.364583+0 1.666508-5 1.531087+0 1.359707-5 1.717908+0 1.116301-5 1.927525+0 9.233358-6 2.162719+0 7.695500-6 2.454709+0 6.343332-6 2.818383+0 5.177901-6 3.235937+0 4.258430-6 3.758374+0 3.471939-6 4.415704+0 2.808281-6 5.370318+0 2.189563-6 6.382635+0 1.770590-6 8.035261+0 1.346141-6 1.011579+1 1.031777-6 1.303167+1 7.761992-7 1.698244+1 5.805037-7 2.317395+1 4.156594-7 3.388442+1 2.785774-7 5.623413+1 1.648952-7 1.023293+2 8.952233-8 2.041738+2 4.452896-8 8.128305+2 1.112232-8 1.000000+5 9.02370-11 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.808100-4 2.345700-5 1.000000+5 2.345700-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.808100-4 1.264000-6 1.000000+5 1.264000-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.808100-4 5.560890-4 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 7.919000-5 3.199120+5 8.000000-5 3.254940+5 8.150000-5 3.337380+5 8.317638-5 3.406035+5 8.511380-5 3.461511+5 8.730000-5 3.500120+5 9.015711-5 3.524383+5 9.400000-5 3.526900+5 9.900000-5 3.500100+5 1.060000-4 3.435480+5 1.150000-4 3.334120+5 1.244515-4 3.216597+5 1.333521-4 3.097533+5 1.430000-4 2.960040+5 1.531087-4 2.809838+5 1.640590-4 2.645234+5 1.760000-4 2.470120+5 1.927525-4 2.242261+5 2.150000-4 1.979312+5 2.400000-4 1.733308+5 2.660725-4 1.519317+5 2.951209-4 1.320070+5 3.311311-4 1.120268+5 3.801894-4 9.128555+4 4.265795-4 7.646710+4 4.841724-4 6.244185+4 5.623413-4 4.876335+4 6.382635-4 3.930021+4 7.413102-4 3.021556+4 8.511380-4 2.355775+4 1.000000-3 1.747834+4 1.161449-3 1.315839+4 1.380384-3 9.408127+3 1.640590-3 6.671010+3 1.927525-3 4.805469+3 2.264644-3 3.436823+3 2.660725-3 2.440063+3 3.090295-3 1.762600+3 3.589219-3 1.264163+3 4.027170-3 9.749524+2 4.518559-3 7.582974+2 4.897788-3 6.321309+2 5.248075-3 5.371797+2 5.559043-3 4.660831+2 5.698200-3 4.375994+2 5.821032-3 4.124564+2 5.956621-3 3.886602+2 6.025596-3 3.783868+2 6.165950-3 3.612904+2 6.456542-3 3.318494+2 6.683439-3 3.060919+2 6.918310-3 2.804369+2 7.498942-3 2.256931+2 8.035261-3 1.860673+2 8.810489-3 1.455979+2 9.885531-3 1.080373+2 1.355400-2 4.841843+1 1.584893-2 3.180723+1 1.883649-2 1.984204+1 2.264644-2 1.189802+1 2.691535-2 7.312380+0 3.198895-2 4.461440+0 3.845918-2 2.613226+0 4.677351-2 1.469064+0 5.688529-2 8.197649-1 7.244360-2 3.955139-1 9.885531-2 1.535712-1 1.621810-1 3.367062-2 2.065380-1 1.615996-2 2.454709-1 9.621666-3 2.851018-1 6.184065-3 3.273407-1 4.143105-3 3.672823-1 2.987504-3 4.120975-1 2.170009-3 4.570882-1 1.638932-3 5.069907-1 1.246988-3 5.559043-1 9.846738-4 6.095369-1 7.827248-4 6.683439-1 6.266258-4 7.328245-1 5.052189-4 8.035261-1 4.102544-4 8.810489-1 3.353929-4 9.549926-1 2.830732-4 1.047129+0 2.350121-4 1.161449+0 1.915715-4 1.288250+0 1.573366-4 1.428894+0 1.301744-4 1.584893+0 1.084569-4 1.757924+0 9.096718-5 1.972423+0 7.538078-5 2.238721+0 6.180497-5 2.540973+0 5.104285-5 2.917427+0 4.174534-5 3.349654+0 3.439345-5 3.890451+0 2.808896-5 4.570882+0 2.275606-5 5.559043+0 1.776778-5 6.606934+0 1.438856-5 8.317638+0 1.095268-5 1.047129+1 8.404581-6 1.348963+1 6.328687-6 1.819701+1 4.563072-6 2.483133+1 3.273028-6 3.589219+1 2.222529-6 6.095369+1 1.286035-6 1.202264+2 6.441075-7 2.398833+2 3.206960-7 9.549926+2 8.017915-8 1.000000+5 7.64490-10 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 7.919000-5 1.884400-5 1.000000+5 1.884400-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.919000-5 9.84470-10 1.000000+5 9.84470-10 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.919000-5 6.034502-5 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.125000-5 1.054040+6 5.160000-5 1.027892+6 5.220000-5 9.789580+5 5.308844-5 9.031638+5 5.400000-5 8.270260+5 5.545300-5 7.148849+5 6.070000-5 4.264900+5 6.220000-5 3.731460+5 6.350000-5 3.352220+5 6.480000-5 3.040260+5 6.580000-5 2.840680+5 6.690000-5 2.657300+5 6.800000-5 2.507600+5 6.900000-5 2.397420+5 7.000000-5 2.309080+5 7.110000-5 2.234160+5 7.215600-5 2.181431+5 7.330000-5 2.142700+5 7.450000-5 2.119660+5 7.585776-5 2.111834+5 7.730000-5 2.120840+5 7.900000-5 2.149500+5 8.080000-5 2.195780+5 8.317638-5 2.273999+5 9.332543-5 2.675425+5 9.772372-5 2.836131+5 1.020000-4 2.973060+5 1.060000-4 3.082720+5 1.100000-4 3.174680+5 1.150000-4 3.265580+5 1.202264-4 3.333959+5 1.260000-4 3.381420+5 1.318257-4 3.403674+5 1.380384-4 3.403248+5 1.450000-4 3.377620+5 1.513561-4 3.335242+5 1.584893-4 3.271643+5 1.678804-4 3.170547+5 1.778279-4 3.050090+5 1.900000-4 2.894820+5 2.018366-4 2.742473+5 2.162719-4 2.560772+5 2.317395-4 2.374643+5 2.483133-4 2.186470+5 2.660725-4 1.999070+5 2.851018-4 1.816072+5 3.100000-4 1.604268+5 3.388442-4 1.395430+5 3.700000-4 1.206582+5 4.027170-4 1.041142+5 4.365158-4 8.988094+4 4.841724-4 7.380463+4 5.370318-4 6.010132+4 5.888437-4 4.971194+4 6.531306-4 3.984394+4 7.328245-4 3.089784+4 8.222426-4 2.374988+4 9.332543-4 1.761337+4 1.047129-3 1.331905+4 1.190000-3 9.679520+3 1.333521-3 7.235006+3 1.500000-3 5.319580+3 1.698244-3 3.819647+3 1.927525-3 2.702222+3 2.187762-3 1.897280+3 2.483133-3 1.322200+3 2.818383-3 9.145177+2 3.198895-3 6.277608+2 3.630781-3 4.277417+2 4.120975-3 2.893953+2 4.731513-3 1.874935+2 5.432503-3 1.205487+2 6.237348-3 7.694717+1 7.244360-3 4.695442+1 8.413951-3 2.844412+1 9.772372-3 1.710415+1 1.135011-2 1.021117+1 1.333521-2 5.814373+0 1.566751-2 3.286421+0 1.862087-2 1.770017+0 2.238721-2 9.079263-1 2.754229-2 4.249761-1 3.507519-2 1.738684-1 4.365158-2 7.696889-2 7.673615-2 9.320611-3 9.772372-2 3.792363-3 1.174898-1 1.924014-3 1.380384-1 1.069617-3 1.603245-1 6.243349-4 1.840772-1 3.824772-4 2.089296-1 2.457416-4 2.371374-1 1.590435-4 2.660725-1 1.078475-4 2.985383-1 7.367586-5 3.311311-1 5.265217-5 3.672823-1 3.788862-5 4.073803-1 2.746483-5 4.518559-1 2.006314-5 5.000000-1 1.487700-5 5.495409-1 1.133594-5 6.025596-1 8.757529-6 6.606935-1 6.814361-6 7.244360-1 5.340893-6 8.609938-1 3.435570-6 9.120108-1 2.984032-6 9.660509-1 2.608260-6 1.023293+0 2.297151-6 1.096478+0 1.987481-6 1.161449+0 1.772472-6 1.250000+0 1.543400-6 1.364583+0 1.317823-6 1.659587+0 9.400205-7 1.862087+0 7.754310-7 2.065380+0 6.564873-7 2.344229+0 5.397067-7 2.660725+0 4.468533-7 3.054921+0 3.663908-7 3.548134+0 2.978438-7 4.120975+0 2.439036-7 4.897788+0 1.952099-7 5.888437+0 1.550406-7 7.244360+0 1.207654-7 8.912509+0 9.470994-8 1.135011+1 7.189233-8 1.513561+1 5.223542-8 2.113489+1 3.639628-8 3.198895+1 2.348356-8 5.128614+1 1.439119-8 8.810489+1 8.273028-9 1.757924+2 4.110495-9 6.998420+2 1.025511-9 1.000000+5 7.16280-12 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.125000-5 1.281600-5 1.000000+5 1.281600-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.125000-5 9.26930-10 1.000000+5 9.26930-10 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.125000-5 3.843307-5 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.020000-5 2.158824+6 5.060000-5 2.093780+6 5.128614-5 1.972398+6 5.190000-5 1.861524+6 5.300000-5 1.668860+6 5.450000-5 1.430980+6 5.850000-5 9.576640+5 6.025596-5 8.146107+5 6.165950-5 7.232514+5 6.260000-5 6.719800+5 6.382635-5 6.157091+5 6.480000-5 5.786520+5 6.580000-5 5.468480+5 6.690000-5 5.183760+5 6.800000-5 4.959200+5 6.900000-5 4.800800+5 7.000000-5 4.680640+5 7.110000-5 4.586960+5 7.230000-5 4.524400+5 7.350000-5 4.496800+5 7.450000-5 4.496320+5 7.585776-5 4.522807+5 7.730000-5 4.578680+5 7.900000-5 4.672440+5 8.150000-5 4.847800+5 9.120108-5 5.652659+5 9.549926-5 5.979482+5 9.950000-5 6.245360+5 1.040000-4 6.496920+5 1.083927-4 6.695036+5 1.135011-4 6.870711+5 1.190000-4 7.000600+5 1.244515-4 7.075442+5 1.303167-4 7.103577+5 1.364583-4 7.083634+5 1.430000-4 7.017200+5 1.500000-4 6.905480+5 1.584893-4 6.727253+5 1.678804-4 6.495235+5 1.778279-4 6.227136+5 1.905461-4 5.874597+5 2.041738-4 5.501193+5 2.187762-4 5.115273+5 2.350000-4 4.711080+5 2.511886-4 4.334535+5 2.691535-4 3.948925+5 2.917427-4 3.515580+5 3.162278-4 3.106873+5 3.467369-4 2.677659+5 3.758374-4 2.335063+5 4.100000-4 1.999820+5 4.500000-4 1.680364+5 4.954502-4 1.393718+5 5.500000-4 1.128576+5 6.025596-4 9.316534+4 6.606934-4 7.630531+4 7.328245-4 6.055806+4 8.222426-4 4.644984+4 9.225714-4 3.533455+4 1.035142-3 2.668581+4 1.161449-3 2.000170+4 1.303167-3 1.489204+4 1.462177-3 1.101341+4 1.640590-3 8.098135+3 1.840772-3 5.913580+3 2.089296-3 4.153326+3 2.371374-3 2.895466+3 2.691535-3 2.003250+3 3.054921-3 1.375479+3 3.467369-3 9.371761+2 4.027170-3 5.911937+2 4.466836-3 4.337170+2 4.786301-3 3.509098+2 5.069907-3 2.925102+2 5.370318-3 2.422308+2 5.698200-3 1.978010+2 5.821032-3 1.825757+2 5.956621-3 1.684279+2 6.025596-3 1.623879+2 6.165950-3 1.523996+2 6.456542-3 1.355481+2 6.606934-3 1.261051+2 6.839116-3 1.122904+2 7.079458-3 9.928830+1 7.585776-3 7.704497+1 8.035261-3 6.199119+1 8.709636-3 4.638358+1 9.549926-3 3.356215+1 1.083927-2 2.170756+1 1.355400-2 1.012405+1 1.584893-2 5.777230+0 1.883649-2 3.084633+0 2.264644-2 1.567033+0 2.754229-2 7.572193-1 3.427678-2 3.332258-1 4.216965-2 1.520990-1 8.413951-2 1.090392-2 1.047129-1 4.751280-3 1.258925-1 2.377225-3 1.479108-1 1.306627-3 1.698244-1 7.873891-4 1.927525-1 4.984614-4 2.162719-1 3.311950-4 2.398833-1 2.307067-4 2.660725-1 1.618076-4 2.951209-1 1.143437-4 3.235937-1 8.455775-5 3.548134-1 6.296565-5 3.890451-1 4.723532-5 4.216965-1 3.696895-5 4.570882-1 2.911771-5 4.954502-1 2.308619-5 5.370318-1 1.843639-5 5.821032-1 1.482438-5 6.309573-1 1.199959-5 6.839117-1 9.777489-6 7.413102-1 8.019905-6 8.128305-1 6.444280-6 8.810489-1 5.353874-6 9.440609-1 4.597494-6 1.011579+0 3.975289-6 1.122018+0 3.223737-6 1.216186+0 2.759938-6 1.348963+0 2.278262-6 1.500000+0 1.886100-6 1.678804+0 1.552930-6 1.883649+0 1.282586-6 2.113489+0 1.067477-6 2.398833+0 8.787740-7 2.754229+0 7.163796-7 3.162278+0 5.884528-7 3.672823+0 4.792159-7 4.315191+0 3.871996-7 5.188000+0 3.059936-7 6.165950+0 2.470669-7 7.762471+0 1.876030-7 9.772372+0 1.436187-7 1.258925+1 1.079328-7 1.640590+1 8.065891-8 2.264644+1 5.700180-8 3.349654+1 3.772987-8 5.559043+1 2.232939-8 1.011579+2 1.212053-8 2.018366+2 6.028476-9 8.035261+2 1.505653-9 1.000000+5 1.20760-11 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.020000-5 1.277600-5 1.000000+5 1.277600-5 1 24000 7 7 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.020000-5 8.98250-10 1.000000+5 8.98250-10 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.020000-5 3.742310-5 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 6.460000-6 1.977848+6 6.760830-6 2.107778+6 7.161434-6 2.264440+6 7.600000-6 2.415940+6 8.128305-6 2.574084+6 8.609938-6 2.698279+6 9.225714-6 2.833722+6 9.885531-6 2.956479+6 1.071519-5 3.083057+6 1.174898-5 3.208131+6 1.310000-5 3.335140+6 1.500000-5 3.469000+6 1.717908-5 3.580008+6 2.018366-5 3.689238+6 2.317395-5 3.755850+6 2.580000-5 3.783520+6 2.818383-5 3.781741+6 3.054921-5 3.755880+6 3.300000-5 3.702920+6 3.548134-5 3.626572+6 3.758374-5 3.545102+6 4.000000-5 3.436800+6 4.265795-5 3.304609+6 4.518559-5 3.169671+6 4.800000-5 3.015240+6 5.128614-5 2.834184+6 5.500000-5 2.634900+6 5.900000-5 2.432140+6 6.382635-5 2.206790+6 6.918310-5 1.982659+6 7.500000-5 1.768514+6 8.128305-5 1.565891+6 8.709636-5 1.401772+6 9.440609-5 1.221856+6 1.011579-4 1.077789+6 1.083927-4 9.444898+5 1.174898-4 8.028010+5 1.273503-4 6.768179+5 1.380384-4 5.667767+5 1.500000-4 4.691520+5 1.640590-4 3.801463+5 1.778279-4 3.126731+5 1.937980-4 2.520000+5 2.113489-4 2.011340+5 2.317395-4 1.571826+5 2.540973-4 1.219925+5 2.818383-4 9.101877+4 3.126079-4 6.738695+4 3.467369-4 4.953375+4 3.890451-4 3.491534+4 4.365158-4 2.444107+4 4.897788-4 1.698309+4 5.495409-4 1.170606+4 6.237348-4 7.709898+3 7.000000-4 5.234200+3 8.000000-4 3.315440+3 9.120108-4 2.103083+3 1.035142-3 1.344028+3 1.174898-3 8.527962+2 1.333521-3 5.371781+2 1.513561-3 3.358848+2 1.717908-3 2.084688+2 1.949845-3 1.284009+2 2.213095-3 7.847315+1 2.483133-3 4.980907+1 2.818383-3 2.995999+1 3.507519-3 1.235893+1 3.890451-3 8.062233+0 4.265795-3 5.475945+0 4.623810-3 3.878196+0 4.731513-3 3.509049+0 5.011872-3 2.683537+0 5.248075-3 2.177012+0 5.432503-3 1.869488+0 5.623413-3 1.613423+0 5.731900-3 1.490848+0 6.237348-3 1.092778+0 6.456542-3 9.574107-1 6.683439-3 8.269149-1 6.918310-3 7.101375-1 7.244360-3 5.759027-1 8.035261-3 3.551631-1 8.609938-3 2.606497-1 9.332543-3 1.831018-1 1.000000-2 1.357861-1 1.161449-2 6.957423-2 1.364583-2 3.360494-2 1.717908-2 1.177186-2 2.187762-2 3.880383-3 3.054921-2 8.300770-4 5.011872-2 8.393444-5 6.760830-2 2.116283-5 8.128305-2 9.126548-6 9.549926-2 4.403995-6 1.109175-1 2.255670-6 1.273503-1 1.225712-6 1.445440-1 7.059879-7 1.621810-1 4.304528-7 1.819701-1 2.643630-7 2.018366-1 1.716519-7 2.238721-1 1.122960-7 2.483133-1 7.399036-8 2.754229-1 4.910350-8 3.054921-1 3.282712-8 3.349654-1 2.309606-8 3.672823-1 1.636090-8 4.000000-1 1.196800-8 4.365158-1 8.760955-9 4.731513-1 6.613020-9 5.188000-1 4.831586-9 5.623413-1 3.695877-9 6.095369-1 2.845133-9 6.606935-1 2.203979-9 7.161434-1 1.718996-9 7.762471-1 1.350387-9 8.511380-1 1.027317-9 8.912509-1 9.00059-10 9.332543-1 7.93222-10 9.772372-1 7.04051-10 1.011579+0 6.47339-10 1.059254+0 5.82674-10 1.109175+0 5.27967-10 1.161449+0 4.81467-10 1.230269+0 4.32295-10 1.333521+0 3.75017-10 1.531087+0 2.97614-10 1.798871+0 2.26363-10 2.000000+0 1.90350-10 2.264644+0 1.56759-10 2.570396+0 1.29546-10 2.951209+0 1.06021-10 3.388442+0 8.73995-11 3.935501+0 7.14173-11 4.677351+0 5.70402-11 5.688529+0 4.45806-11 6.839116+0 3.56419-11 8.511380+0 2.75298-11 1.071519+1 2.11404-11 1.380384+1 1.59285-11 1.905461+1 1.12097-11 2.630268+1 7.95093-12 3.890451+1 5.27691-12 6.606934+1 3.05728-12 1.318257+2 1.51493-12 2.630268+2 7.54657-13 2.089296+3 9.45368-14 1.000000+5 1.97370-15 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 6.460000-6 6.460000-6 1.000000+5 6.460000-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.460000-6 0.0 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 6.370000-6 3.034500+6 6.606934-6 3.195117+6 6.918310-6 3.389053+6 7.244360-6 3.573768+6 7.673615-6 3.790195+6 8.128305-6 3.989197+6 8.609938-6 4.172980+6 9.225714-6 4.371907+6 9.885531-6 4.549061+6 1.071519-5 4.731819+6 1.174898-5 4.912713+6 1.310000-5 5.093970+6 1.479108-5 5.263193+6 1.730000-5 5.444730+6 2.018366-5 5.585116+6 2.300000-5 5.671650+6 2.580000-5 5.707080+6 2.818383-5 5.697357+6 3.080000-5 5.644140+6 3.311311-5 5.561751+6 3.548134-5 5.444906+6 3.800000-5 5.292630+6 4.027170-5 5.132833+6 4.300000-5 4.923270+6 4.570882-5 4.702651+6 4.900000-5 4.427430+6 5.248075-5 4.140060+6 5.650000-5 3.820080+6 6.025596-5 3.541122+6 6.531306-5 3.196172+6 7.000000-5 2.909988+6 7.585776-5 2.592642+6 8.128305-5 2.333210+6 8.709636-5 2.088073+6 9.332543-5 1.855872+6 9.900000-5 1.669566+6 1.071519-4 1.437045+6 1.150000-4 1.247229+6 1.230269-4 1.083451+6 1.350000-4 8.851290+5 1.479108-4 7.197939+5 1.621810-4 5.801471+5 1.778279-4 4.640356+5 1.949845-4 3.680398+5 2.137962-4 2.893226+5 2.344229-4 2.258178+5 2.570396-4 1.750409+5 2.851018-4 1.304153+5 3.162278-4 9.642585+4 3.507519-4 7.079077+4 3.935501-4 4.983357+4 4.415704-4 3.484314+4 4.954502-4 2.417977+4 5.559043-4 1.664360+4 6.309573-4 1.094563+4 7.079458-4 7.425925+3 8.035261-4 4.810313+3 9.120108-4 3.095644+3 1.035142-3 1.976619+3 1.174898-3 1.253205+3 1.333521-3 7.888038+2 1.513561-3 4.928311+2 1.717908-3 3.055966+2 1.949845-3 1.880348+2 2.187762-3 1.200726+2 2.454709-3 7.601691+1 2.786121-3 4.562817+1 3.185290-3 2.638810+1 3.630781-3 1.533752+1 4.216965-3 8.183100+0 4.897788-3 4.333790+0 5.754399-3 2.169629+0 7.079458-3 8.851931-1 8.317638-3 4.376183-1 9.660509-3 2.259452-1 1.096478-2 1.282182-1 1.288250-2 6.187457-2 1.548817-2 2.669760-2 1.905461-2 1.029316-2 2.426610-2 3.358232-3 3.273407-2 8.323328-4 5.308844-2 8.704283-5 7.079458-2 2.286436-5 8.413951-2 1.032348-5 9.772372-2 5.218218-6 1.122019-1 2.797538-6 1.273503-1 1.591296-6 1.428894-1 9.597462-7 1.584893-1 6.130397-7 1.757924-1 3.943752-7 1.949845-1 2.556474-7 2.137962-1 1.750326-7 2.344229-1 1.206781-7 2.540973-1 8.772338-8 2.754229-1 6.418683-8 3.000000-1 4.643600-8 3.235937-1 3.509872-8 3.507519-1 2.623787-8 3.801894-1 1.975647-8 4.168694-1 1.440174-8 4.466836-1 1.143044-8 4.786301-1 9.131257-9 5.069907-1 7.616730-9 5.432503-1 6.175859-9 5.888437-1 4.873753-9 6.456542-1 3.742878-9 6.918310-1 3.089594-9 7.413102-1 2.567390-9 7.943282-1 2.149707-9 8.511380-1 1.811376-9 9.120108-1 1.537359-9 9.660509-1 1.349586-9 1.023293+0 1.192530-9 1.109175+0 1.011094-9 1.202264+0 8.64282-10 1.303167+0 7.43976-10 1.428894+0 6.31161-10 1.659587+0 4.87238-10 1.862087+0 4.02021-10 2.065380+0 3.40414-10 2.344229+0 2.79867-10 2.660725+0 2.31713-10 3.054921+0 1.89984-10 3.548134+0 1.54441-10 4.120975+0 1.26471-10 4.897788+0 1.01221-10 5.888437+0 8.03918-11 7.161434+0 6.34838-11 8.912509+0 4.91104-11 1.135011+1 3.72786-11 1.513561+1 2.70861-11 2.113489+1 1.88730-11 3.162278+1 1.23255-11 5.069907+1 7.55121-12 8.709636+1 4.34037-12 1.737801+2 2.15640-12 6.918310+2 5.37925-13 1.000000+5 3.71420-15 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 6.370000-6 6.370000-6 1.000000+5 6.370000-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.370000-6 0.0 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.960000-6 6.591749+5 6.200000-6 5.025670+5 6.350000-6 4.239310+5 6.531306-6 3.442199+5 6.683439-6 2.882517+5 6.839116-6 2.398085+5 6.930000-6 2.150200+5 7.079458-6 1.791419+5 7.200000-6 1.541720+5 7.328245-6 1.309817+5 7.460000-6 1.103210+5 7.585776-6 9.321316+4 7.700000-6 7.963420+4 7.810000-6 6.812590+4 7.920000-6 5.799340+4 8.020000-6 4.985520+4 8.128305-6 4.207525+4 8.222426-6 3.610484+4 8.310000-6 3.114830+4 8.380000-6 2.756760+4 8.460000-6 2.385860+4 8.520000-6 2.132630+4 8.600000-6 1.826090+4 8.650000-6 1.651400+4 8.709636-6 1.458973+4 8.770000-6 1.280840+4 8.830000-6 1.119440+4 8.880000-6 9.962130+3 8.940000-6 8.610890+3 9.000000-6 7.391190+3 9.050000-6 6.469530+3 9.100000-6 5.629550+3 9.150000-6 4.867070+3 9.200000-6 4.178340+3 9.240000-6 3.677880+3 9.280000-6 3.220470+3 9.310000-6 2.904570+3 9.350000-6 2.518160+3 9.380000-6 2.253670+3 9.420000-6 1.933400+3 9.460000-6 1.648740+3 9.500000-6 1.398290+3 9.550000-6 1.131110+3 9.620000-6 8.380940+2 9.660000-6 7.107240+2 9.685000-6 6.452160+2 9.707000-6 5.962630+2 9.723000-6 5.656570+2 9.740000-6 5.376590+2 9.755000-6 5.167550+2 9.772372-6 4.969171+2 9.785000-6 4.853940+2 9.800000-6 4.748270+2 9.815000-6 4.675920+2 9.830000-6 4.636370+2 9.845000-6 4.629060+2 9.860000-6 4.653470+2 9.875000-6 4.709090+2 9.890000-6 4.795380+2 9.905000-6 4.911840+2 9.920000-6 5.057970+2 9.937000-6 5.258820+2 9.960000-6 5.588930+2 9.980000-6 5.929350+2 1.001000-5 6.530520+2 1.005000-5 7.495360+2 1.015000-5 1.067270+3 1.020000-5 1.264210+3 1.023293-5 1.406818+3 1.027000-5 1.579020+3 1.031000-5 1.778110+3 1.035142-5 1.998106+3 1.039000-5 2.215040+3 1.044000-5 2.512580+3 1.048000-5 2.763210+3 1.052000-5 3.024430+3 1.057000-5 3.365030+3 1.062000-5 3.720320+3 1.067000-5 4.089330+3 1.073000-5 4.548960+3 1.079000-5 5.025520+3 1.085000-5 5.517580+3 1.092000-5 6.109450+3 1.100000-5 6.806890+3 1.107000-5 7.433450+3 1.115000-5 8.165800+3 1.123000-5 8.913220+3 1.131000-5 9.673490+3 1.142000-5 1.073600+4 1.150000-5 1.151880+4 1.161449-5 1.264992+4 1.172000-5 1.370020+4 1.185000-5 1.499980+4 1.200000-5 1.650050+4 1.216186-5 1.811363+4 1.230269-5 1.950626+4 1.245000-5 2.094720+4 1.260000-5 2.239400+4 1.280000-5 2.428460+4 1.300000-5 2.612520+4 1.320000-5 2.791060+4 1.340000-5 2.963710+4 1.365000-5 3.170850+4 1.390000-5 3.368090+4 1.420000-5 3.591540+4 1.450000-5 3.800620+4 1.480000-5 3.995560+4 1.515000-5 4.205630+4 1.554900-5 4.423166+4 1.603245-5 4.657159+4 1.650000-5 4.854740+4 1.698244-5 5.031683+4 1.757924-5 5.216230+4 1.819701-5 5.371748+4 1.883649-5 5.499716+4 1.950000-5 5.601980+4 2.041738-5 5.700354+4 2.137962-5 5.759603+4 2.238721-5 5.783844+4 2.371374-5 5.772107+4 2.511886-5 5.721083+4 2.691535-5 5.616490+4 2.900000-5 5.461970+4 3.150000-5 5.254560+4 3.467369-5 4.982591+4 3.845918-5 4.669294+4 4.315191-5 4.310392+4 4.897788-5 3.917155+4 5.500000-5 3.564940+4 6.165950-5 3.227248+4 6.918310-5 2.898338+4 7.673615-5 2.611356+4 8.511380-5 2.335112+4 9.332543-5 2.099555+4 1.023293-4 1.875919+4 1.135011-4 1.641068+4 1.273503-4 1.403728+4 1.445440-4 1.173549+4 1.698244-4 9.270528+3 2.137962-4 6.554292+3 2.754229-4 4.450709+3 3.388442-4 3.219650+3 3.890451-4 2.577173+3 4.365158-4 2.124989+3 5.128614-4 1.608625+3 6.095369-4 1.186033+3 7.413102-4 8.322233+2 8.810489-4 6.046317+2 1.047129-3 4.359292+2 1.244515-3 3.118646+2 1.479108-3 2.214338+2 1.757924-3 1.560530+2 2.162719-3 1.016599+2 2.570396-3 7.062701+1 3.000000-3 5.060093+1 3.507519-3 3.576703+1 4.027170-3 2.618495+1 4.570882-3 1.978367+1 4.954502-3 1.645325+1 5.308844-3 1.396417+1 5.698200-3 1.171499+1 5.888437-3 1.073435+1 6.025596-3 1.014724+1 6.165950-3 9.651579+0 6.456542-3 8.832406+0 6.760830-3 7.979945+0 7.161434-3 6.974825+0 7.585776-3 6.051042+0 8.128305-3 5.061467+0 8.810489-3 4.075117+0 1.000000-2 2.868697+0 1.230269-2 1.671634+0 1.462177-2 1.058178+0 1.698244-2 7.064516-1 2.018366-2 4.397351-1 2.398833-2 2.715866-1 2.851018-2 1.665000-1 3.427678-2 9.802751-2 4.168694-2 5.538376-2 5.069907-2 3.105563-2 6.309573-2 1.612681-2 8.222426-2 7.233308-3 1.071519-1 3.222204-3 1.621810-1 9.045851-4 2.065380-1 4.341770-4 2.454709-1 2.585245-4 2.851018-1 1.661732-4 3.273407-1 1.113415-4 3.672823-1 8.029600-5 4.120975-1 5.833466-5 4.570882-1 4.406851-5 5.069907-1 3.354087-5 5.559043-1 2.649597-5 6.095369-1 2.107264-5 6.683439-1 1.688053-5 7.328245-1 1.362064-5 8.035261-1 1.107174-5 8.810489-1 9.066870-6 9.549926-1 7.661998-6 1.059254+0 6.221957-6 1.174898+0 5.077778-6 1.303167+0 4.173702-6 1.445440+0 3.454106-6 1.603245+0 2.879101-6 1.778279+0 2.416527-6 2.000000+0 1.996600-6 2.264644+0 1.644452-6 2.570396+0 1.358973-6 2.951209+0 1.112112-6 3.388442+0 9.167628-7 3.935501+0 7.491079-7 4.623810+0 6.071881-7 5.623413+0 4.743317-7 6.683439+0 3.843022-7 8.317638+0 2.966097-7 1.047129+1 2.276009-7 1.348963+1 1.713856-7 1.819701+1 1.235669-7 2.454709+1 8.972064-8 3.589219+1 6.018793-8 6.095369+1 3.482626-8 1.202264+2 1.744238-8 2.398833+2 8.684636-9 9.549926+2 2.171285-9 1.000000+5 2.07030-11 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.960000-6 5.960000-6 1.000000+5 5.960000-6 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.960000-6 0.0 1.000000+5 1.000000+5 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.512310-8 1.028750+0 2.512310-7 1.033200+0 1.134020-6 1.034000+0 1.392120-6 1.035300+0 1.889600-6 1.036640+0 2.512310-6 1.038200+0 3.390440-6 1.039700+0 4.404870-6 1.041500+0 5.860630-6 1.043800+0 8.134740-6 1.046400+0 1.131800-5 1.048300+0 1.409120-5 1.051200+0 1.911440-5 1.054080+0 2.512310-5 1.057700+0 3.424430-5 1.061100+0 4.454320-5 1.065100+0 5.897000-5 1.070400+0 8.226900-5 1.076200+0 1.136950-4 1.080600+0 1.419870-4 1.087100+0 1.913040-4 1.093710+0 2.512310-4 1.102600+0 3.483360-4 1.110700+0 4.543110-4 1.120600+0 6.077550-4 1.133300+0 8.450830-4 1.147500+0 1.166850-3 1.158200+0 1.450100-3 1.174100+0 1.938010-3 1.190110+0 2.512310-3 1.205100+0 3.126620-3 1.227500+0 4.183910-3 1.250000+0 5.409000-3 1.280300+0 7.301580-3 1.307700+0 9.237810-3 1.343000+0 1.202380-2 1.382200+0 1.546980-2 1.433800+0 2.052290-2 1.500000+0 2.782000-2 1.562500+0 3.554490-2 1.617200+0 4.294520-2 1.712900+0 5.720070-2 1.784700+0 6.884870-2 1.892300+0 8.751620-2 2.000000+0 1.072000-1 2.044000+0 1.154000-1 2.163500+0 1.379950-1 2.372600+0 1.781430-1 2.647100+0 2.308810-1 3.000000+0 2.976000-1 3.437500+0 3.781070-1 4.000000+0 4.765000-1 4.750000+0 5.968160-1 5.000000+0 6.346000-1 6.000000+0 7.756000-1 7.000000+0 9.010000-1 8.000000+0 1.014000+0 9.000000+0 1.116000+0 1.000000+1 1.208000+0 1.100000+1 1.292000+0 1.200000+1 1.369000+0 1.300000+1 1.440000+0 1.400000+1 1.507000+0 1.500000+1 1.568000+0 1.600000+1 1.626000+0 1.800000+1 1.733000+0 2.000000+1 1.827000+0 2.200000+1 1.913000+0 2.400000+1 1.991000+0 2.600000+1 2.062000+0 2.800000+1 2.128000+0 3.000000+1 2.189000+0 4.000000+1 2.436000+0 5.000000+1 2.621000+0 6.000000+1 2.766000+0 8.000000+1 2.982000+0 1.000000+2 3.136000+0 1.500000+2 3.386000+0 2.000000+2 3.537000+0 3.000000+2 3.715000+0 4.000000+2 3.818000+0 5.000000+2 3.886000+0 6.000000+2 3.935000+0 8.000000+2 4.001000+0 1.000000+3 4.043000+0 1.500000+3 4.105000+0 2.000000+3 4.139000+0 3.000000+3 4.175000+0 4.000000+3 4.195000+0 5.000000+3 4.207000+0 6.000000+3 4.216000+0 8.000000+3 4.227000+0 1.000000+4 4.234000+0 1.500000+4 4.244000+0 2.000000+4 4.250000+0 3.000000+4 4.255000+0 4.000000+4 4.258000+0 5.000000+4 4.260000+0 6.000000+4 4.261000+0 8.000000+4 4.263000+0 1.000000+5 4.264000+0 1 24000 7 8 5.199600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.409910-7 2.114000+0 1.086390-6 2.119500+0 1.352550-6 2.127900+0 1.834310-6 2.136250+0 2.409910-6 2.147000+0 3.304160-6 2.156900+0 4.291700-6 2.169000+0 5.727540-6 2.184500+0 7.961480-6 2.201800+0 1.101490-5 2.214800+0 1.372370-5 2.234200+0 1.846090-5 2.253680+0 2.409910-5 2.281500+0 3.375510-5 2.307000+0 4.433720-5 2.338200+0 5.961520-5 2.377400+0 8.256010-5 2.410200+0 1.050030-4 2.446800+0 1.335690-4 2.485900+0 1.681710-4 2.532900+0 2.152220-4 2.556430+0 2.409910-4 2.611900+0 3.072890-4 2.660400+0 3.714940-4 2.745300+0 4.972160-4 2.809000+0 6.021540-4 2.904500+0 7.757100-4 3.000000+0 9.683000-4 3.125000+0 1.248640-3 3.234400+0 1.519390-3 3.425800+0 2.046300-3 3.569300+0 2.481590-3 3.784700+0 3.190590-3 4.000000+0 3.953000-3 4.250000+0 4.885360-3 4.625000+0 6.351030-3 5.000000+0 7.875000-3 5.500000+0 9.967240-3 6.000000+0 1.209000-2 6.750000+0 1.525670-2 7.000000+0 1.630000-2 8.000000+0 2.038000-2 9.000000+0 2.428000-2 1.000000+1 2.800000-2 1.100000+1 3.152000-2 1.200000+1 3.485000-2 1.300000+1 3.799000-2 1.400000+1 4.098000-2 1.500000+1 4.382000-2 1.600000+1 4.652000-2 1.800000+1 5.153000-2 2.000000+1 5.610000-2 2.200000+1 6.030000-2 2.400000+1 6.417000-2 2.600000+1 6.776000-2 2.800000+1 7.109000-2 3.000000+1 7.420000-2 4.000000+1 8.717000-2 5.000000+1 9.712000-2 6.000000+1 1.051000-1 8.000000+1 1.173000-1 1.000000+2 1.262000-1 1.500000+2 1.413000-1 2.000000+2 1.509000-1 3.000000+2 1.628000-1 4.000000+2 1.701000-1 5.000000+2 1.751000-1 6.000000+2 1.788000-1 8.000000+2 1.839000-1 1.000000+3 1.873000-1 1.500000+3 1.924000-1 2.000000+3 1.954000-1 3.000000+3 1.986000-1 4.000000+3 2.005000-1 5.000000+3 2.016000-1 6.000000+3 2.024000-1 8.000000+3 2.035000-1 1.000000+4 2.042000-1 1.500000+4 2.052000-1 2.000000+4 2.057000-1 3.000000+4 2.062000-1 4.000000+4 2.066000-1 5.000000+4 2.068000-1 6.000000+4 2.069000-1 8.000000+4 2.071000-1 1.000000+5 2.072000-1 1 24000 7 8 5.199600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 24000 7 9 5.199600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.400000+1 1.000000+5 2.400000+1 5.000000+5 2.398500+1 7.187500+5 2.397400+1 8.125000+5 2.397030+1 1.000000+6 2.396400+1 1.500000+6 2.393400+1 1.750000+6 2.390920+1 2.000000+6 2.388400+1 2.500000+6 2.382000+1 3.000000+6 2.374400+1 3.500000+6 2.365280+1 4.000000+6 2.355500+1 4.500000+6 2.344740+1 5.000000+6 2.333100+1 5.500000+6 2.319950+1 6.156200+6 2.301570+1 6.500000+6 2.291620+1 6.718700+6 2.284870+1 7.000000+6 2.276500+1 7.500000+6 2.260960+1 8.250000+6 2.236710+1 8.500000+6 2.228640+1 9.000000+6 2.212100+1 1.000000+7 2.178000+1 1.125000+7 2.134510+1 1.187500+7 2.112350+1 1.250000+7 2.090200+1 1.437500+7 2.022740+1 1.500000+7 2.000500+1 1.687500+7 1.934400+1 1.750000+7 1.912600+1 1.937500+7 1.847100+1 2.000000+7 1.825400+1 2.250000+7 1.738910+1 2.500000+7 1.654600+1 2.750000+7 1.572890+1 2.875000+7 1.533100+1 3.000000+7 1.494300+1 3.250000+7 1.419070+1 3.437500+7 1.365380+1 3.625000+7 1.314280+1 4.000000+7 1.219600+1 4.500000+7 1.108820+1 5.000000+7 1.015300+1 5.500000+7 9.370360+0 6.000000+7 8.723700+0 6.750000+7 7.964980+0 7.000000+7 7.756900+0 7.750000+7 7.236090+0 8.000000+7 7.088600+0 9.000000+7 6.581400+0 1.000000+8 6.145900+0 1.085900+8 5.794720+0 1.144500+8 5.560130+0 1.214800+8 5.281160+0 1.250000+8 5.142200+0 1.335900+8 4.804730+0 1.429700+8 4.446850+0 1.500000+8 4.189400+0 1.589800+8 3.876130+0 1.665000+8 3.628330+0 1.748800+8 3.368810+0 1.750000+8 3.365210+0 1.838500+8 3.110040+0 1.946200+8 2.824220+0 2.000000+8 2.691500+0 2.218800+8 2.230610+0 2.250000+8 2.177150+0 2.315400+8 2.075380+0 2.381300+8 1.986960+0 2.460400+8 1.898890+0 2.500000+8 1.861800+0 2.562500+8 1.812290+0 2.671900+8 1.742700+0 2.877000+8 1.630400+0 2.959000+8 1.582230+0 3.000000+8 1.556200+0 3.062500+8 1.513830+0 3.335900+8 1.331320+0 3.445300+8 1.274050+0 3.500000+8 1.250700+0 3.562500+8 1.228550+0 3.671900+8 1.198500+0 4.000000+8 1.133600+0 4.179700+8 1.094280+0 4.330100+8 1.058290+0 4.569300+8 9.992560-1 5.000000+8 8.994000-1 5.437500+8 8.128280-1 5.718800+8 7.606310-1 5.929700+8 7.216140-1 6.000000+8 7.086000-1 6.250000+8 6.623640-1 6.812500+8 5.715460-1 7.000000+8 5.476000-1 7.625000+8 4.846440-1 7.875000+8 4.601990-1 8.000000+8 4.473000-1 8.125000+8 4.338000-1 8.359400+8 4.075020-1 8.564500+8 3.842090-1 8.743900+8 3.640970-1 9.057900+8 3.303350-1 9.529000+8 2.848340-1 1.000000+9 2.466000-1 1.062500+9 2.064300-1 1.281300+9 1.207830-1 1.390600+9 9.516310-2 1.472700+9 8.009350-2 1.500000+9 7.569800-2 1.562500+9 6.660600-2 1.671900+9 5.352910-2 1.753900+9 4.566090-2 1.877000+9 3.628270-2 2.000000+9 2.915000-2 2.187500+9 2.131240-2 2.363300+9 1.621390-2 2.692900+9 1.015400-2 2.981300+9 7.018890-3 3.485900+9 3.953740-3 4.243000+9 1.906590-3 5.000000+9 1.032900-3 8.000000+9 1.784700-4 9.500000+9 9.430940-5 1.00000+10 7.803400-5 1.20500+10 3.941750-5 1.41820+10 2.185550-5 1.71170+10 1.114630-5 2.01490+10 6.256680-6 2.26440+10 4.152580-6 2.74790+10 2.117760-6 3.20120+10 1.251260-6 3.62610+10 8.169860-7 4.42280+10 4.165090-7 5.12000+10 2.545880-7 6.34000+10 1.248270-7 7.94120+10 5.933900-8 1.00000+11 2.790600-8 1.17140+11 1.669360-8 1.55940+11 6.638950-9 2.04410+11 2.798710-9 2.99030+11 8.41904-10 4.21500+11 2.88301-10 7.29680+11 5.31150-11 1.17140+12 1.25888-11 2.36600+12 1.52631-12 6.03280+12 9.58098-14 1.00000+14 2.67420-17 5.62340+14 1.68008-19 7.49890+15 7.66634-23 1.00000+17 3.30970-26 1 24000 7 0 5.199600+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.60000-12 1.000000+2 4.60000-10 1.000000+3 4.600000-8 1.000000+4 4.600000-6 1.000000+5 4.600000-4 5.000000+5 1.150000-2 7.187500+5 2.376367-2 8.125000+5 3.036719-2 1.000000+6 4.600000-2 1.500000+6 1.035000-1 1.750000+6 1.400230-1 2.000000+6 1.814000-1 2.500000+6 2.784000-1 3.000000+6 3.922000-1 3.500000+6 5.204880-1 4.000000+6 6.609000-1 4.500000+6 8.108300-1 5.000000+6 9.680000-1 5.500000+6 1.130210+0 6.156200+6 1.348010+0 6.500000+6 1.463310+0 6.718700+6 1.536680+0 7.000000+6 1.631200+0 7.500000+6 1.798290+0 8.250000+6 2.046600+0 8.500000+6 2.128470+0 9.000000+6 2.290800+0 1.000000+7 2.609000+0 1.125000+7 2.996940+0 1.187500+7 3.187850+0 1.250000+7 3.377200+0 1.437500+7 3.937730+0 1.500000+7 4.123000+0 1.687500+7 4.674660+0 1.750000+7 4.857300+0 1.937500+7 5.398610+0 2.000000+7 5.577000+0 2.250000+7 6.274830+0 2.500000+7 6.947500+0 2.750000+7 7.590310+0 2.875000+7 7.901120+0 3.000000+7 8.206000+0 3.250000+7 8.794220+0 3.437500+7 9.219470+0 3.625000+7 9.630870+0 4.000000+7 1.041500+1 4.500000+7 1.138300+1 5.000000+7 1.226400+1 5.500000+7 1.305900+1 6.000000+7 1.377000+1 6.750000+7 1.468760+1 7.000000+7 1.496000+1 7.750000+7 1.568500+1 8.000000+7 1.590200+1 9.000000+7 1.667000+1 1.000000+8 1.732300+1 1.085900+8 1.782330+1 1.144500+8 1.813950+1 1.214800+8 1.849670+1 1.250000+8 1.866800+1 1.335900+8 1.906180+1 1.429700+8 1.945580+1 1.500000+8 1.973000+1 1.589800+8 2.005050+1 1.665000+8 2.029600+1 1.748800+8 2.054660+1 1.750000+8 2.054990+1 1.838500+8 2.078960+1 1.946200+8 2.104930+1 2.000000+8 2.116800+1 2.218800+8 2.157300+1 2.250000+8 2.162340+1 2.315400+8 2.172330+1 2.381300+8 2.181720+1 2.460400+8 2.192010+1 2.500000+8 2.197000+1 2.562500+8 2.204180+1 2.671900+8 2.215960+1 2.877000+8 2.235210+1 2.959000+8 2.242180+1 3.000000+8 2.245600+1 3.062500+8 2.250300+1 3.335900+8 2.269490+1 3.445300+8 2.276410+1 3.500000+8 2.279800+1 3.562500+8 2.283360+1 3.671900+8 2.289470+1 4.000000+8 2.306500+1 4.179700+8 2.314510+1 4.330100+8 2.320970+1 4.569300+8 2.330330+1 5.000000+8 2.344900+1 5.437500+8 2.356780+1 5.718800+8 2.363030+1 5.929700+8 2.367280+1 6.000000+8 2.368600+1 6.250000+8 2.372580+1 6.812500+8 2.380140+1 7.000000+8 2.382300+1 7.625000+8 2.387490+1 7.875000+8 2.389240+1 8.000000+8 2.390000+1 8.125000+8 2.390580+1 8.359400+8 2.391640+1 8.564500+8 2.392550+1 8.743900+8 2.393320+1 9.057900+8 2.394360+1 9.529000+8 2.395560+1 1.000000+9 2.396700+1 1.062500+9 2.397550+1 1.281300+9 2.399060+1 1.390600+9 2.399520+1 1.472700+9 2.399670+1 1.500000+9 2.399700+1 1.562500+9 2.399740+1 1.671900+9 2.399810+1 1.753900+9 2.399860+1 1.877000+9 2.399930+1 2.000000+9 2.400000+1 2.187500+9 2.400000+1 2.363300+9 2.400000+1 2.692900+9 2.400000+1 2.981300+9 2.400000+1 3.485900+9 2.400000+1 4.243000+9 2.400000+1 5.000000+9 2.400000+1 8.000000+9 2.400000+1 9.500000+9 2.400000+1 1.00000+10 2.400000+1 1.20500+10 2.400000+1 1.41820+10 2.400000+1 1.71170+10 2.400000+1 2.01490+10 2.400000+1 2.26440+10 2.400000+1 2.74790+10 2.400000+1 3.20120+10 2.400000+1 3.62610+10 2.400000+1 4.42280+10 2.400000+1 5.12000+10 2.400000+1 6.34000+10 2.400000+1 7.94120+10 2.400000+1 1.00000+11 2.400000+1 1.17140+11 2.400000+1 1.55940+11 2.400000+1 2.04410+11 2.400000+1 2.99030+11 2.400000+1 4.21500+11 2.400000+1 7.29680+11 2.400000+1 1.17140+12 2.400000+1 2.36600+12 2.400000+1 6.03280+12 2.400000+1 1.00000+14 2.400000+1 5.62340+14 2.400000+1 7.49890+15 2.400000+1 1.00000+17 2.400000+1 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.682982-6 0.0 2.694538-6 1.610681+0 2.696189-6 1.838431+0 2.702248-6 3.232201+0 2.702793-6 3.510830+0 2.709397-6 7.665229+0 2.716001-6 1.271293+1 2.722605-6 1.968916+1 2.730034-6 2.978366+1 2.746234-6 5.433407+1 2.749433-6 5.864120+1 2.756980-6 6.534993+1 2.762475-6 6.742324+1 2.769531-6 6.510634+1 2.776626-6 5.817744+1 2.785817-6 4.472221+1 2.795365-6 2.937814+1 2.802016-6 2.002293+1 2.808667-6 1.264689+1 2.815319-6 6.977105+0 2.821970-6 3.838163+0 2.831947-6 9.756766-1 2.835272-6 0.0 3.076515-6 0.0 3.090241-6 5.48565-14 3.091660-6 6.04764-14 3.095781-6 8.76498-14 3.111140-6 5.801370-1 3.118963-6 1.076504+0 3.126614-6 1.809448+0 3.134381-6 2.825836+0 3.157413-6 6.479854+0 3.165168-6 7.279561+0 3.172218-6 7.604995+0 3.180428-6 7.415209+0 3.192523-6 6.278356+0 3.202459-6 5.198777+0 3.210079-6 4.599062+0 3.218652-6 4.344541+0 3.226272-6 4.425105+0 3.241471-6 4.896607+0 3.256136-6 4.776164+0 3.262962-6 4.437141+0 3.277802-6 3.100579+0 3.286365-6 2.230970+0 3.294166-6 1.539305+0 3.301967-6 9.910824-1 3.309768-6 5.960051-1 3.314190-6 4.409820-1 3.322039-6 1.919372-1 3.325370-6 9.679854-2 3.329887-6 6.579538-2 3.337735-6 3.341162-2 3.345584-6 0.0 3.759114-6 0.0 3.768367-6 7.43064-16 3.777619-6 1.47032-15 3.786872-6 2.68566-15 3.796125-6 4.52839-15 3.805377-6 7.04840-15 3.814630-6 1.01272-14 3.823882-6 1.34322-14 3.833135-6 1.64458-14 3.842387-6 1.85873-14 3.851640-6 1.93925-14 3.860893-6 1.86768-14 3.870145-6 1.66046-14 3.879398-6 1.36272-14 3.897903-6 7.21977-15 3.907155-6 4.66084-15 3.916408-6 2.77752-15 3.925661-6 1.52794-15 3.934913-6 7.75904-16 3.944166-6 0.0 4.152648-6 0.0 4.162869-6 1.218751-8 4.173090-6 2.411573-8 4.183311-6 4.404934-8 4.193533-6 7.427325-8 4.203754-6 1.156057-7 4.213975-6 1.661039-7 4.224196-6 2.203101-7 4.234418-6 2.697385-7 4.245483-6 3.059517-7 4.255933-6 3.244282-7 4.266382-6 3.170287-7 4.276832-6 2.924748-7 4.297731-6 2.314263-7 4.308181-6 2.127526-7 4.316187-6 2.057023-7 4.339530-6 2.113713-7 4.349980-6 2.068633-7 4.357072-6 1.930711-7 4.360430-6 1.907190-7 4.370879-6 1.695579-7 4.380675-6 1.410611-7 4.381515-6 2.870028-7 4.403084-6 9.753379-6 4.408774-6 1.385127-5 4.414766-6 1.433219-2 4.430477-6 1.323626-1 4.436499-6 1.865245-1 4.441329-6 2.463936-1 4.447365-6 3.334689-1 4.458232-6 5.509759-1 4.470327-6 8.806279-1 4.495587-6 1.693980+0 4.507970-6 1.995218+0 4.513243-6 2.079617+0 4.524109-6 2.128533+0 4.535655-6 1.998047+0 4.547067-6 1.721067+0 4.575636-6 8.127132-1 4.582400-6 6.279985-1 4.588628-6 4.788375-1 4.599495-6 2.827429-1 4.604103-6 2.240156-1 4.610361-6 1.542063-1 4.625806-6 3.411176-2 4.632094-6 0.0 4.774199-6 0.0 4.775048-6 1.878685-9 4.798555-6 2.592243-7 4.808300-6 4.347168-7 4.831970-6 8.492874-2 4.843805-6 1.551289-1 4.856457-6 2.715920-1 4.869074-6 4.311011-1 4.904333-6 9.837113-1 4.917555-6 1.135679+0 4.929331-6 1.204504+0 4.941724-6 1.206972+0 4.988319-6 9.847796-1 5.017998-6 8.570700-1 5.030350-6 7.831892-1 5.049709-6 6.061840-1 5.070024-6 4.592044-1 5.079754-6 4.135550-1 5.087912-6 3.907998-1 5.099961-6 3.877030-1 5.124059-6 4.373732-1 5.131802-6 4.472765-1 5.140134-6 4.466225-1 5.144160-6 4.502514-1 5.156518-6 4.315026-1 5.168875-6 3.818659-1 5.205948-6 1.640570-1 5.218305-6 1.055427-1 5.229923-6 6.504728-2 5.240319-6 3.996770-2 5.243020-6 3.438401-2 5.255378-6 1.684059-2 5.265022-6 2.749271-3 5.267735-6 0.0 5.287095-6 0.0 5.302779-6 4.33734-12 5.304126-6 2.021588-4 5.330237-6 1.310700-2 5.343292-6 2.383912-2 5.356347-6 4.003683-2 5.369403-6 6.208730-2 5.382458-6 8.934247-2 5.414872-6 1.802097-1 5.454758-6 3.219088-1 5.472871-6 4.080918-1 5.521460-6 6.913711-1 5.540059-6 7.559721-1 5.558908-6 7.706287-1 5.586694-6 7.348981-1 5.616126-6 6.502809-1 5.640485-6 5.454956-1 5.683154-6 3.071912-1 5.699165-6 2.403698-1 5.710793-6 2.064053-1 5.722624-6 1.832142-1 5.734678-6 1.774544-1 5.745028-6 1.870205-1 5.754869-6 2.091130-1 5.775323-6 2.760731-1 5.807496-6 4.203727-1 5.826046-6 4.711621-1 5.841720-6 4.884072-1 5.877883-6 4.780730-1 5.911208-6 4.584296-1 5.964106-6 4.554237-1 6.016141-6 4.223605-1 6.041757-6 4.237313-1 6.106775-6 4.708771-1 6.210774-6 4.686882-1 6.282196-6 4.754284-1 6.359191-6 4.677807-1 6.625565-6 5.266587-1 1.638400-5 2.100684+0 2.697402-5 3.679424+0 3.384944-5 4.477174+0 4.127448-5 5.000084+0 4.269404-5 5.060637+0 4.278686-5 5.399193+0 4.299748-5 1.314834+1 4.310280-5 1.965938+1 4.320811-5 2.944590+1 4.334212-5 4.713065+1 4.361879-5 8.929479+1 4.373132-5 1.010612+2 4.385013-5 1.076811+2 4.398128-5 1.033351+2 4.416114-5 8.741432+1 4.429125-5 7.469373+1 4.439220-5 6.759893+1 4.450577-5 6.341007+1 4.470034-5 6.165924+1 4.483168-5 5.900015+1 4.490250-5 5.557478+1 4.494404-5 5.440706+1 4.504914-5 4.892380+1 4.536128-5 2.557790+1 4.546895-5 1.888260+1 4.557663-5 1.381101+1 4.568430-5 1.030205+1 4.589966-5 5.781513+0 4.613785-5 5.370240+0 4.644733-5 5.166655+0 4.703219-5 5.215552+0 4.740159-5 5.477215+0 4.810977-5 6.759641+0 4.913549-5 7.541640+0 5.013863-5 7.571043+0 5.974501-5 6.262350+0 6.648750-5 5.750085+0 7.420455-5 5.480322+0 7.493513-5 5.614962+0 7.585776-5 6.051396+0 7.646502-5 5.963295+0 7.715773-5 5.711496+0 1.000000-4 5.757165+0 1.450000-4 5.393213+0 2.678253-4 3.875407+0 3.388442-4 3.201704+0 4.270428-4 2.580252+0 5.306315-4 2.054465+0 5.606386-4 1.939539+0 5.633985-4 3.831416+0 5.647914-4 5.424570+0 5.663112-4 8.168974+0 5.678370-4 1.198610+1 5.703199-4 1.977616+1 5.719207-4 2.504368+1 5.736117-4 2.907259+1 5.750261-4 3.106840+1 5.765619-4 3.164917+1 5.785231-4 3.065007+1 5.833608-4 2.614526+1 5.874072-4 2.121303+1 5.886521-4 1.948213+1 5.918762-4 1.673861+1 5.946250-4 1.563004+1 5.979857-4 1.524223+1 6.058470-4 1.560433+1 6.445906-4 1.457984+1 6.729348-4 1.376620+1 6.831485-4 1.430165+1 6.905104-4 1.472335+1 8.474713-4 1.146218+1 1.005499-3 9.076070+0 1.155717-3 7.416524+0 1.335892-3 5.962877+0 1.540203-3 4.784989+0 1.758551-3 3.873936+0 2.009807-3 3.122493+0 2.264644-3 2.564039+0 2.566104-3 2.080402+0 2.840652-3 1.751875+0 3.263036-3 1.381010+0 3.688911-3 1.116631+0 4.165871-3 9.030922-1 4.648831-3 7.450406-1 5.222933-3 6.054813-1 5.788835-3 5.037263-1 5.814640-3 5.056091-1 5.840165-3 5.335389-1 5.855531-3 5.765563-1 5.869838-3 6.500439-1 5.881722-3 7.461138-1 5.895769-3 9.099216-1 5.909590-3 1.131105+0 5.925991-3 1.472201+0 5.983234-3 2.898767+0 6.011813-3 3.397812+0 6.035781-3 3.626107+0 6.082005-3 3.754534+0 7.430857-3 2.781012+0 8.474713-3 2.240141+0 9.599202-3 1.821384+0 1.083318-2 1.480177+0 1.224938-2 1.195607+0 1.381244-2 9.657688-1 1.537680-2 7.957289-1 1.705187-2 6.582384-1 1.905461-2 5.354750-1 2.106189-2 4.439272-1 2.341497-2 3.624867-1 2.579009-2 3.012307-1 2.863442-2 2.457438-1 3.125886-2 2.070182-1 3.476511-2 1.676467-1 3.795040-2 1.408349-1 4.180605-2 1.158671-1 4.628090-2 9.434410-2 5.170010-2 7.525471-2 5.747533-2 6.055813-2 6.365382-2 4.905410-2 6.961932-2 4.070646-2 7.729822-2 3.273673-2 8.568329-2 2.640084-2 9.380679-2 2.183783-2 1.041482-1 1.752793-2 1.139922-1 1.449818-2 1.236856-1 1.221910-2 1.358370-1 1.003323-2 1.484300-1 8.332938-3 1.614678-1 6.989613-3 1.773210-1 5.760027-3 1.950573-1 4.728481-3 2.152993-1 3.866998-3 2.345903-1 3.249749-3 2.607487-1 2.630844-3 2.884032-1 2.160835-3 3.153189-1 1.820237-3 3.477675-1 1.514276-3 3.852756-1 1.256129-3 4.229120-1 1.065827-3 4.740032-1 8.784635-4 5.250300-1 7.447224-4 5.825222-1 6.343858-4 6.458866-1 5.456570-4 7.085700-1 4.804085-4 8.128305-1 4.045115-4 9.413476-1 3.413715-4 1.120601+0 2.845975-4 1.347258+0 2.352287-4 1.619761+0 1.944239-4 1.947381+0 1.606974-4 2.341267+0 1.328214-4 2.814822+0 1.097810-4 3.384160+0 9.073742-5 4.068655+0 7.499731-5 4.891600+0 6.198761-5 5.880996+0 5.123469-5 7.070513+0 4.234706-5 8.500626+0 3.500117-5 9.760024+0 3.034079-5 1.000000+1 6.028526-5 1 24000 7 0 5.199600+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.383874+1 2.006904-6-2.281160+1 2.326184-6-2.143116+1 2.483380-6-1.959470+1 2.563876-6-1.750904+1 2.607171-6-1.544553+1 2.631740-6-1.360572+1 2.652945-6-1.123888+1 2.665375-6-9.237639+0 2.673078-6-7.596811+0 2.677411-6-6.456455+0 2.681589-6-5.099152+0 2.683807-6-4.126547+0 2.689586-6-1.905077+0 2.692888-6-5.650473-1 2.694538-6 1.770766-1 2.696189-6 1.024939+0 2.699219-6 2.685088+0 2.700733-6 3.592412+0 2.701490-6 4.103869+0 2.703619-6 5.843601+0 2.705063-6 6.754297+0 2.709397-6 9.190996+0 2.718271-6 1.379608+1 2.723430-6 1.578184+1 2.729209-6 1.655783+1 2.732936-6 1.609290+1 2.736195-6 1.477079+1 2.738917-6 1.310194+1 2.741541-6 1.094104+1 2.745305-6 6.821582+0 2.746234-6 5.693840+0 2.747627-6 3.846310+0 2.748324-6 2.822374+0 2.748672-6 2.268772+0 2.749433-6 9.055428-1 2.752528-6-4.063114+0 2.753883-6-6.370368+0 2.755406-6-9.305773+0 2.756230-6-1.117707+1 2.761761-6-2.204330+1 2.762475-6-2.384951+1 2.768935-6-1.107268+1 2.770269-6-8.306058+0 2.772045-6-5.109077+0 2.774588-6-7.875644-1 2.775012-6-4.023375-2 2.775849-6 1.579749+0 2.776626-6 2.860967+0 2.777306-6 3.888629+0 2.778495-6 5.553971+0 2.782894-6 1.100926+1 2.785817-6 1.369641+1 2.788055-6 1.525400+1 2.792281-6 1.717908+1 2.795365-6 1.760585+1 2.800353-6 1.716215+1 2.807940-6 1.416727+1 2.814591-6 1.025891+1 2.815734-6 9.260813+0 2.817293-6 8.189820+0 2.822801-6 4.820142+0 2.824256-6 4.018935+0 2.826439-6 2.938583+0 2.831947-6 3.835323-1 2.833610-6-4.527429-1 2.834441-6-9.156356-1 2.834857-6-1.171952+0 2.835744-6-1.823953+0 2.836684-6-2.359429+0 2.838558-6-3.246381+0 2.840417-6-4.001957+0 2.844091-6-5.276311+0 2.849511-6-6.812942+0 2.856549-6-8.415712+0 2.866700-6-1.022400+1 2.882636-6-1.232413+1 2.905758-6-1.445190+1 2.948599-6-1.697214+1 3.041211-6-2.022191+1 3.094236-6-2.240764+1 3.118609-6-2.397550+1 3.139699-6-2.290277+1 3.156131-6-2.387109+1 3.157413-6-2.407271+1 3.186265-6-1.951365+1 3.200364-6-1.855972+1 3.232355-6-1.909488+1 3.256136-6-1.760370+1 3.274948-6-1.641113+1 3.292215-6-1.642051+1 3.348814-6-1.882728+1 3.446065-6-2.019422+1 3.768367-6-2.158701+1 4.405929-6-2.310322+1 4.485152-6-2.372935+1 4.561282-6-2.139547+1 4.775048-6-2.275551+1 4.902934-6-2.332701+1 5.017998-6-2.225767+1 5.267735-6-2.258169+1 5.521460-6-2.311564+1 5.683154-6-2.260180+1 5.849370-6-2.296425+1 1.845765-5-2.363397+1 2.778418-5-2.370037+1 3.384944-5-2.142426+1 3.702327-5-1.906090+1 3.875204-5-1.675460+1 3.980688-5-1.450258+1 4.060317-5-1.190849+1 4.107889-5-9.685872+0 4.144638-5-7.382280+0 4.166600-5-5.636470+0 4.179049-5-4.478334+0 4.190343-5-3.294487+0 4.200226-5-2.132990+0 4.208873-5-1.001253+0 4.216439-5 9.403599-2 4.223060-5 1.147046+0 4.228853-5 2.152993+0 4.233922-5 3.108128+0 4.242238-5 4.855789+0 4.249030-5 6.488455+0 4.257943-5 9.006177+0 4.267255-5 1.232161+1 4.276365-5 1.678102+1 4.280794-5 1.992731+1 4.298583-5 2.975071+1 4.311596-5 3.841893+1 4.324814-5 4.568295+1 4.335858-5 4.816794+1 4.344008-5 4.661176+1 4.351051-5 4.302299+1 4.356543-5 3.861542+1 4.360550-5 3.392345+1 4.368854-5 2.267271+1 4.371179-5 1.877870+1 4.373132-5 1.535808+1 4.378566-5 6.736544+0 4.380943-5 2.720945+0 4.381707-5 1.342347+0 4.382281-5 2.636619-1 4.383140-5-1.463579+0 4.383570-5-2.410856+0 4.383893-5-3.205324+0 4.384095-5-3.812893+0 4.384654-5-5.146451+0 4.386362-5-8.528827+0 4.390002-5-1.474916+1 4.394646-5-2.222141+1 4.398128-5-1.609781+1 4.401742-5-1.106515+1 4.407590-5-3.850620+0 4.408894-5-2.416377+0 4.410116-5-1.183151+0 4.411262-5-1.022556-1 4.412337-5 8.530245-1 4.414351-5 2.507012+0 4.416114-5 3.817796+0 4.419006-5 5.706731+0 4.421367-5 7.010165+0 4.424467-5 8.372388+0 4.427456-5 9.206533+0 4.429125-5 9.254633+0 4.436696-5 1.017939+1 4.450577-5 9.513874+0 4.452790-5 9.597534+0 4.460940-5 1.039649+1 4.465570-5 1.144146+1 4.470034-5 1.297777+1 4.481281-5 1.839384+1 4.484705-5 2.053449+1 4.489314-5 2.206367+1 4.492356-5 2.306270+1 4.494404-5 2.432098+1 4.506955-5 3.007770+1 4.517224-5 3.257527+1 4.527755-5 3.333657+1 4.536128-5 3.231115+1 4.546895-5 2.937458+1 4.571122-5 2.037284+1 4.588788-5 1.448310+1 4.592597-5 1.281914+1 4.597622-5 1.122078+1 4.608341-5 8.534593+0 4.619228-5 6.345727+0 4.626334-5 5.116388+0 4.633439-5 4.012565+0 4.644733-5 2.419552+0 4.652710-5 1.432193+0 4.664676-5 1.157296-1 4.676643-5-1.053632+0 4.693945-5-2.569111+0 4.713855-5-4.097729+0 4.740159-5-5.867303+0 4.766226-5-7.297452+0 4.786373-5-8.070778+0 4.829147-5-9.061362+0 4.900286-5-1.029211+1 5.094425-5-1.158548+1 5.343221-5-1.251577+1 5.974501-5-1.354782+1 7.456984-5-1.470097+1 7.564600-5-1.475347+1 7.693132-5-1.429340+1 7.948443-5-1.439923+1 1.620050-4-1.200272+1 2.209946-4-1.112479+1 2.920578-4-1.088032+1 3.616784-4-1.125286+1 4.270428-4-1.226760+1 4.702662-4-1.355843+1 5.053233-4-1.542291+1 5.269471-4-1.746976+1 5.371472-4-1.899387+1 5.506294-4-1.818651+1 5.565526-4-1.692425+1 5.595544-4-1.548687+1 5.635726-4-1.162041+1 5.663112-4-8.786944+0 5.668406-4-8.426887+0 5.680730-4-7.976689+0 5.687403-4-8.153003+0 5.698590-4-8.998190+0 5.706959-4-1.023370+1 5.715454-4-1.211806+1 5.732288-4-1.760292+1 5.755338-4-2.684708+1 5.773239-4-2.176748+1 5.785231-4-1.884844+1 5.813552-4-1.411890+1 5.839360-4-1.113703+1 5.857088-4-9.579357+0 5.874072-4-8.619029+0 5.882540-4-8.562170+0 5.886521-4-8.751845+0 5.905554-4-9.108438+0 5.946250-4-1.075636+1 5.987137-4-1.198848+1 6.032188-4-1.216221+1 6.445906-4-9.679432+0 6.653171-4-9.028299+0 6.814378-4-9.199021+0 6.874677-4-8.792666+0 7.004031-4-7.584806+0 7.212758-4-6.508702+0 7.600112-4-5.150856+0 8.044288-4-4.016839+0 8.474713-4-3.194760+0 8.925345-4-2.526760+0 9.495109-4-1.891621+0 9.914024-4-1.519904+0 1.038126-3-1.198387+0 1.079330-3-9.690084-1 1.128084-3-7.509723-1 1.155717-3-6.467417-1 1.202968-3-4.984338-1 1.233815-3-4.155228-1 1.282699-3-3.106728-1 1.335892-3-2.238578-1 1.375427-3-1.720964-1 1.440184-3-1.136810-1 1.480092-3-8.482730-2 1.525847-3-6.130510-2 1.562248-3-4.666814-2 1.582624-3-4.100464-2 1.642657-3-2.621768-2 1.688069-3-2.116605-2 1.693793-3-2.112750-2 1.752077-3-2.358557-2 1.806654-3-2.866457-2 1.855400-3-3.657943-2 1.886362-3-4.268011-2 1.948442-3-5.963831-2 2.065380-3-9.722696-2 2.222670-3-1.615479-1 2.499698-3-2.881325-1 3.396298-3-7.203333-1 4.165871-3-1.093820+0 4.648831-3-1.381324+0 5.034610-3-1.688348+0 5.312666-3-2.006169+0 5.507842-3-2.335156+0 5.632062-3-2.640511+0 5.738719-3-3.035859+0 5.814640-3-3.507127+0 5.865268-3-4.068008+0 5.932315-3-5.016032+0 5.958414-3-5.121090+0 5.991109-3-4.875002+0 6.069035-3-3.666859+0 6.120717-3-3.124272+0 6.189513-3-2.662787+0 6.279431-3-2.249382+0 6.407550-3-1.834880+0 6.531674-3-1.536844+0 6.710968-3-1.210739+0 6.884794-3-9.693329-1 7.098296-3-7.335027-1 7.296675-3-5.639036-1 7.478164-3-4.352208-1 7.673615-3-3.195240-1 7.906217-3-2.073441-1 8.015050-3-1.615783-1 8.131191-3-1.169632-1 8.247332-3-7.606802-2 8.409554-3-2.633853-2 8.608437-3 2.749130-2 8.861352-3 8.691278-2 9.093896-3 1.328048-1 9.332543-3 1.738060-1 9.599202-3 2.128181-1 9.842943-3 2.414593-1 1.035251-2 2.867665-1 1.113664-2 3.300577-1 1.224938-2 3.606098-1 1.330706-2 3.667131-1 1.537680-2 3.522881-1 2.424865-2 2.236594-1 2.927417-2 1.687193-1 3.350179-2 1.334519-1 3.795040-2 1.043561-1 4.338125-2 7.702899-2 4.734918-2 6.125602-2 5.170010-2 4.705291-2 5.588080-2 3.566175-2 5.999165-2 2.629010-2 6.365382-2 1.912927-2 6.799301-2 1.180201-2 7.126910-2 6.973732-3 7.254505-2 5.220145-3 7.543264-2 1.537184-3 7.671465-2 3.094108-5 7.729822-2-6.503647-4 7.928369-2-2.834573-3 8.069858-2-4.329938-3 8.398830-2-7.533866-3 8.879024-2-1.170779-2 9.600353-2-1.697880-2 1.041482-1-2.187282-2 1.172048-1-2.792952-2 1.358370-1-3.410463-2 1.614678-1-3.970034-2 2.010033-1-4.479151-2 2.690627-1-4.916655-2 4.088321-1-5.253963-2 8.128305-1-5.461226-2 2.451607+0-5.524205-2 7.403736+0-5.531128-2 1.000000+1-5.530555-2 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.674651-2 1.180402-6 3.448931-2 1.255329-6 4.544019-2 1.335013-6 6.017857-2 1.419756-6 8.016433-2 1.509877-6 1.075049-1 1.557060-6 1.248489-1 1.605719-6 1.452958-1 1.655897-6 1.694777-1 1.707644-6 1.981768-1 1.761008-6 2.323673-1 1.816039-6 2.732533-1 1.870303-6 3.200478-1 1.922871-6 3.725172-1 1.973796-6 4.311209-1 2.023129-6 4.962964-1 2.070921-6 5.683324-1 2.117220-6 6.477214-1 2.162071-6 7.352094-1 2.205521-6 8.314224-1 2.247613-6 9.369759-1 2.288390-6 1.052516+0 2.327893-6 1.178723+0 2.366161-6 1.316309+0 2.403233-6 1.466024+0 2.439146-6 1.628654+0 2.473938-6 1.805024+0 2.507642-6 1.995996+0 2.540293-6 2.202477+0 2.571923-6 2.425413+0 2.602566-6 2.665797+0 2.632250-6 2.924665+0 2.661007-6 3.203101+0 2.688865-6 3.502237+0 2.715853-6 3.823253+0 2.741997-6 4.167382+0 2.767324-6 4.535908+0 2.791860-6 4.930167+0 2.838656-6 5.801507+0 2.882572-6 6.793213+0 2.923786-6 7.918839+0 2.943433-6 8.538047+0 2.962465-6 9.197965+0 2.999341-6 1.066400+1 3.033911-6 1.230766+1 3.066321-6 1.415076+1 3.096705-6 1.621235+1 3.125191-6 1.851214+1 3.151896-6 2.107082+1 3.176932-6 2.390989+1 3.200403-6 2.705161+1 3.222407-6 3.051901+1 3.243036-6 3.433583+1 3.262376-6 3.852633+1 3.280507-6 4.311527+1 3.297504-6 4.812770+1 3.313440-6 5.358882+1 3.328379-6 5.952386+1 3.342385-6 6.595790+1 3.355515-6 7.291572+1 3.367825-6 8.042169+1 3.379365-6 8.849968+1 3.390184-6 9.717305+1 3.400327-6 1.064647+2 3.409836-6 1.163973+2 3.418751-6 1.269930+2 3.427108-6 1.382740+2 3.434943-6 1.502625+2 3.442289-6 1.629816+2 3.449175-6 1.764557+2 3.455631-6 1.907118+2 3.461684-6 2.057793+2 3.467358-6 2.216896+2 3.472677-6 2.384740+2 3.482651-6 2.760940+2 3.491379-6 3.177224+2 3.499015-6 3.632806+2 3.505697-6 4.123946+2 3.511544-6 4.644035+2 3.516660-6 5.184325+2 3.521136-6 5.734956+2 3.525053-6 6.285993+2 3.528480-6 6.828260+2 3.534478-6 7.931875+2 3.542349-6 9.732418+2 3.553563-6 1.314830+3 3.567772-6 1.925784+3 3.576516-6 2.415465+3 3.582759-6 2.820190+3 3.588500-6 3.231569+3 3.590422-6 3.377240+3 3.596190-6 3.835827+3 3.598376-6 4.017254+3 3.606027-6 4.678077+3 3.607940-6 4.847976+3 3.613678-6 5.363179+3 3.616855-6 5.648950+3 3.619737-6 5.906414+3 3.624465-6 6.320747+3 3.628085-6 6.627235+3 3.631041-6 6.868001+3 3.634921-6 7.167662+3 3.639910-6 7.519486+3 3.645375-6 7.852439+3 3.649203-6 8.047739+3 3.654353-6 8.255151+3 3.658872-6 8.380611+3 3.664365-6 8.457616+3 3.668998-6 8.456231+3 3.673956-6 8.387319+3 3.677790-6 8.287228+3 3.684480-6 8.019939+3 3.688683-6 7.796550+3 3.693861-6 7.469594+3 3.697740-6 7.192084+3 3.702097-6 6.852915+3 3.705736-6 6.551569+3 3.710414-6 6.146187+3 3.714828-6 5.751594+3 3.719242-6 5.351625+3 3.723657-6 4.952128+3 3.728071-6 4.558427+3 3.736899-6 3.806455+3 3.745728-6 3.124559+3 3.751660-6 2.714782+3 3.758971-6 2.267511+3 3.768612-6 1.775321+3 3.781062-6 1.291191+3 3.789284-6 1.051604+3 3.793371-6 9.524471+2 3.797442-6 8.651694+2 3.801497-6 7.884475+2 3.805536-6 7.210469+2 3.809559-6 6.618322+2 3.817575-6 5.637686+2 3.825528-6 4.874819+2 3.833418-6 4.274708+2 3.841247-6 3.795754+2 3.849015-6 3.407222+2 3.856722-6 3.086752+2 3.864369-6 2.818208+2 3.871956-6 2.589945+2 3.879484-6 2.393492+2 3.886953-6 2.222604+2 3.894364-6 2.072598+2 3.909070-6 1.820818+2 3.923546-6 1.619019+2 3.937795-6 1.454015+2 3.951823-6 1.316922+2 3.965630-6 1.201510+2 3.979223-6 1.103266+2 3.992602-6 1.018831+2 4.005773-6 9.456429+1 4.018738-6 8.817128+1 4.031500-6 8.254670+1 4.056626-6 7.305804+1 4.080967-6 6.545543+1 4.104547-6 5.925038+1 4.127390-6 5.411113+1 4.149520-6 4.980086+1 4.170958-6 4.614623+1 4.191725-6 4.301757+1 4.211844-6 4.031405+1 4.250825-6 3.581618+1 4.287369-6 3.230117+1 4.321629-6 2.949650+1 4.353748-6 2.722036+1 4.383859-6 2.534630+1 4.412088-6 2.378275+1 4.465018-6 2.125021+1 4.511332-6 1.937379+1 4.551857-6 1.794880+1 4.587316-6 1.684307+1 4.649369-6 1.515606+1 4.695909-6 1.406104+1 4.765720-6 1.263780+1 4.883138-6 1.066801+1 5.073570-6 8.246428+0 5.195158-6 6.958513+0 5.286348-6 6.020892+0 5.350467-6 5.332799+0 5.376648-6 5.031528+0 5.399557-6 4.751501+0 5.419602-6 4.489250+0 5.437142-6 4.242431+0 5.452489-6 4.009696+0 5.465918-6 3.790693+0 5.477668-6 3.585937+0 5.496946-6 3.223446+0 5.512689-6 2.909712+0 5.539994-6 2.393818+0 5.544976-6 2.317209+0 5.548712-6 2.266346+0 5.554316-6 2.203136+0 5.557118-6 2.178450+0 5.559920-6 2.159052+0 5.566647-6 2.137309+0 5.570039-6 2.141543+0 5.572195-6 2.150185+0 5.587290-6 2.364931+0 5.594050-6 2.564927+0 5.597471-6 2.694504+0 5.600975-6 2.848286+0 5.603234-6 2.959175+0 5.609163-6 3.295897+0 5.614660-6 3.669347+0 5.627140-6 4.744718+0 5.638658-6 6.015917+0 5.645418-6 6.878047+0 5.652032-6 7.794765+0 5.658443-6 8.741780+0 5.663895-6 9.582914+0 5.669400-6 1.045627+1 5.676242-6 1.156024+1 5.682604-6 1.258790+1 5.691078-6 1.392809+1 5.696246-6 1.471319+1 5.697810-6 1.494423+1 5.706022-6 1.609425+1 5.711242-6 1.675989+1 5.723526-6 1.807936+1 5.728442-6 1.849749+1 5.737825-6 1.910556+1 5.742743-6 1.932163+1 5.745550-6 1.941311+1 5.750461-6 1.951805+1 5.754145-6 1.955148+1 5.759670-6 1.953119+1 5.765195-6 1.943033+1 5.774496-6 1.909425+1 5.784776-6 1.851403+1 5.792565-6 1.795755+1 5.801910-6 1.719184+1 5.806250-6 1.680978+1 5.815617-6 1.595020+1 5.833620-6 1.426439+1 5.861186-6 1.192070+1 5.875001-6 1.094139+1 5.888815-6 1.010635+1 5.899524-6 9.552994+0 5.920272-6 8.682634+0 5.939723-6 8.057958+0 5.957958-6 7.592931+0 5.992150-6 6.922517+0 6.022067-6 6.465009+0 6.152956-6 4.958032+0 6.192223-6 4.509287+0 6.231490-6 4.046544+0 6.252200-6 3.831685+0 6.265844-6 3.720165+0 6.277504-6 3.653149+0 6.281191-6 3.638528+0 6.296538-6 3.617201+0 6.300375-6 3.622712+0 6.311885-6 3.667282+0 6.317173-6 3.702186+0 6.321801-6 3.740192+0 6.329899-6 3.823111+0 6.340528-6 3.961772+0 6.354194-6 4.182592+0 6.373273-6 4.543755+0 6.392928-6 4.929102+0 6.405850-6 5.159959+0 6.409757-6 5.223176+0 6.421479-6 5.388901+0 6.426964-6 5.452409+0 6.436561-6 5.539529+0 6.443760-6 5.583760+0 6.454558-6 5.615412+0 6.465355-6 5.606277+0 6.473029-6 5.576455+0 6.480702-6 5.528921+0 6.496049-6 5.388301+0 6.511396-6 5.201410+0 6.529202-6 4.950508+0 6.571916-6 4.344499+0 6.588013-6 4.155172+0 6.604110-6 4.000953+0 6.620207-6 3.885705+0 6.631809-6 3.827152+0 6.640511-6 3.796148+0 6.656400-6 3.765300+0 6.666616-6 3.760418+0 6.684593-6 3.772154+0 6.726487-6 3.827960+0 6.744703-6 3.834168+0 6.757477-6 3.825851+0 6.770250-6 3.806599+0 6.781173-6 3.782141+0 6.797270-6 3.735234+0 6.870129-6 3.479840+0 6.911082-6 3.366120+0 6.969475-6 3.224439+0 7.039749-6 3.042175+0 7.102215-6 2.869000+0 7.160524-6 2.697732+0 7.209535-6 2.545138+0 7.263096-6 2.371354+0 7.311760-6 2.209241+0 7.356583-6 2.056125+0 7.393497-6 1.926084+0 7.413288-6 1.854521+0 7.480171-6 1.601541+0 7.532906-6 1.388534+0 7.579049-6 1.191456+0 7.599237-6 1.102103+0 7.624383-6 9.883818-1 7.652540-6 8.584734-1 7.668134-6 7.858107-1 7.682754-6 7.176083-1 7.696460-6 6.539586-1 7.709310-6 5.949369-1 7.724720-6 5.256638-1 7.732649-6 4.909900-1 7.743237-6 4.461314-1 7.753163-6 4.060385-1 7.779371-6 3.143272-1 7.787039-6 2.932073-1 7.794227-6 2.767343-1 7.800966-6 2.648271-1 7.807284-6 2.573764-1 7.813207-6 2.542423-1 7.818759-6 2.552538-1 7.823965-6 2.602090-1 7.828845-6 2.688777-1 7.833421-6 2.810050-1 7.837710-6 2.963159-1 7.841732-6 3.145201-1 7.845501-6 3.353182-1 7.849036-6 3.584061-1 7.852349-6 3.834809-1 7.855456-6 4.102449-1 7.858368-6 4.384098-1 7.863658-6 4.978553-1 7.868307-6 5.598079-1 7.875984-6 6.846830-1 7.902051-6 1.382503+0 7.911729-6 1.782360+0 7.918752-6 2.132819+0 7.927843-6 2.671879+0 7.936396-6 3.277562+0 7.943970-6 3.902340+0 7.948078-6 4.278604+0 7.960401-6 5.578147+0 7.964167-6 6.029395+0 7.972640-6 7.142928+0 7.981264-6 8.421432+0 7.988131-6 9.547928+0 7.996220-6 1.100031+1 8.014533-6 1.479057+1 8.018044-6 1.559458+1 8.034068-6 1.955827+1 8.040940-6 2.139258+1 8.050729-6 2.412282+1 8.058963-6 2.650777+1 8.067772-6 2.912614+1 8.077271-6 3.199720+1 8.085706-6 3.456062+1 8.095025-6 3.737634+1 8.106275-6 4.070364+1 8.116608-6 4.364156+1 8.126756-6 4.637202+1 8.137162-6 4.897131+1 8.147894-6 5.140002+1 8.157312-6 5.329308+1 8.178895-6 5.669223+1 8.181214-6 5.697493+1 8.197445-6 5.848822+1 8.204247-6 5.887834+1 8.219706-6 5.923358+1 8.224035-6 5.920331+1 8.237020-6 5.878468+1 8.249387-6 5.795092+1 8.261200-6 5.678888+1 8.270000-6 5.571124+1 8.282947-6 5.383313+1 8.289000-6 5.284867+1 8.298119-6 5.125470+1 8.310791-6 4.885322+1 8.323011-6 4.638026+1 8.335957-6 4.364921+1 8.350797-6 4.045185+1 8.355744-6 3.938388+1 8.375531-6 3.517538+1 8.395319-6 3.118070+1 8.451057-6 2.189822+1 8.470929-6 1.939923+1 8.482088-6 1.817607+1 8.498282-6 1.661383+1 8.503886-6 1.612773+1 8.525175-6 1.450944+1 8.545798-6 1.323954+1 8.565959-6 1.222607+1 8.585131-6 1.142804+1 8.603881-6 1.077059+1 8.642189-6 9.703479+0 8.674265-6 9.008924+0 8.706194-6 8.439634+0 8.736127-6 7.986770+0 8.792251-6 7.288672+0 8.841359-6 6.793736+0 8.884329-6 6.424686+0 8.959527-6 5.882619+0 9.017323-6 5.531378+0 9.100523-6 5.096120+0 9.162269-6 4.812805+0 9.436943-6 3.784540+0 9.504893-6 3.558590+0 9.577508-6 3.315838+0 9.666397-6 3.003405+0 9.735234-6 2.733604+0 9.781124-6 2.528199+0 9.813216-6 2.367609+0 9.837285-6 2.237446+0 9.855336-6 2.135173+0 9.882413-6 1.977771+0 9.924573-6 1.743947+0 9.942883-6 1.658753+0 9.961192-6 1.592191+0 9.967296-6 1.575351+0 9.991709-6 1.541886+0 1.001612-5 1.575050+0 1.002222-5 1.595493+0 1.004053-5 1.688856+0 1.004545-5 1.722373+0 1.005281-5 1.779537+0 1.006018-5 1.845014+0 1.006688-5 1.911778+0 1.007787-5 2.036001+0 1.009358-5 2.244045+0 1.013819-5 2.998744+0 1.015955-5 3.417201+0 1.016870-5 3.601340+0 1.018701-5 3.969848+0 1.019110-5 4.051166+0 1.021971-5 4.594840+0 1.023213-5 4.809828+0 1.025584-5 5.170299+0 1.026535-5 5.293460+0 1.029390-5 5.578608+0 1.030290-5 5.640776+0 1.031640-5 5.708414+0 1.032990-5 5.745432+0 1.034911-5 5.746806+0 1.036351-5 5.710425+0 1.037432-5 5.663644+0 1.039052-5 5.565011+0 1.040673-5 5.436300+0 1.042237-5 5.288172+0 1.044227-5 5.073205+0 1.046700-5 4.777666+0 1.049173-5 4.465971+0 1.052586-5 4.034420+0 1.059638-5 3.233709+0 1.063688-5 2.869315+0 1.066293-5 2.681460+0 1.068898-5 2.534287+0 1.071819-5 2.420976+0 1.072833-5 2.394744+0 1.074354-5 2.368025+0 1.075875-5 2.356101+0 1.078135-5 2.364050+0 1.079264-5 2.378509+0 1.080394-5 2.399151+0 1.082371-5 2.447937+0 1.085009-5 2.531384+0 1.087647-5 2.625284+0 1.090826-5 2.736324+0 1.092596-5 2.791254+0 1.094367-5 2.838309+0 1.095688-5 2.867325+0 1.097669-5 2.900123+0 1.099650-5 2.919642+0 1.101563-5 2.926244+0 1.103476-5 2.921864+0 1.106114-5 2.900764+0 1.111274-5 2.827521+0 1.117043-5 2.734681+0 1.120375-5 2.690061+0 1.126720-5 2.634068+0 1.130430-5 2.616510+0 1.146507-5 2.573244+0 1.155091-5 2.533042+0 1.164703-5 2.470489+0 1.180209-5 2.362728+0 1.189200-5 2.316155+0 1.201319-5 2.271662+0 1.217584-5 2.221360+0 1.237497-5 2.156906+0 1.314122-5 1.917498+0 1.351161-5 1.818568+0 1.393385-5 1.720147+0 1.490000-5 1.553615+0 1.513561-5 1.524468+0 1.584893-5 1.463119+0 1.678804-5 1.438258+0 1.800000-5 1.500816+0 1.864402-5 1.572124+0 1.957201-5 1.735026+0 2.000000-5 1.831782+0 2.050000-5 1.964456+0 2.150000-5 2.283797+0 2.219713-5 2.545969+0 2.279568-5 2.801164+0 2.426610-5 3.534088+0 2.576766-5 4.427059+0 2.712025-5 5.345946+0 2.851018-5 6.384803+0 3.019952-5 7.751668+0 3.198895-5 9.289372+0 3.320209-5 1.036606+1 3.532222-5 1.230544+1 3.594069-5 1.286348+1 3.639436-5 1.319605+1 3.733578-5 1.380850+1 3.781648-5 1.418847+1 3.827499-5 1.462167+1 3.871463-5 1.510844+1 3.927067-5 1.583878+1 3.953573-5 1.624538+1 3.983966-5 1.676938+1 4.028223-5 1.766039+1 4.051568-5 1.820005+1 4.074183-5 1.877528+1 4.096091-5 1.938846+1 4.117315-5 2.004290+1 4.137876-5 2.074202+1 4.157794-5 2.148883+1 4.177089-5 2.228557+1 4.195782-5 2.313366+1 4.220000-5 2.435671+1 4.248427-5 2.599805+1 4.267372-5 2.723667+1 4.280840-5 2.819825+1 4.300000-5 2.969692+1 4.325757-5 3.198755+1 4.353412-5 3.486616+1 4.379777-5 3.810622+1 4.404494-5 4.168597+1 4.427667-5 4.562731+1 4.449391-5 4.995142+1 4.469757-5 5.467947+1 4.488851-5 5.983302+1 4.506751-5 6.543397+1 4.523532-5 7.150416+1 4.539265-5 7.806473+1 4.554014-5 8.513567+1 4.567842-5 9.273595+1 4.580805-5 1.008841+2 4.594912-5 1.111108+2 4.608000-5 1.221429+2 4.615033-5 1.288047+2 4.625046-5 1.393372+2 4.634434-5 1.505191+2 4.643236-5 1.623762+2 4.651487-5 1.749381+2 4.659222-5 1.882383+2 4.666474-5 2.023142+2 4.673273-5 2.172048+2 4.679646-5 2.329480+2 4.691597-5 2.683586+2 4.702054-5 3.076904+2 4.711204-5 3.508011+2 4.719210-5 3.972219+2 4.726216-5 4.462004+2 4.732345-5 4.968023+2 4.737709-5 5.480283+2 4.742402-5 5.989177+2 4.746508-5 6.486224+2 4.753695-5 7.486404+2 4.763126-5 9.086968+2 4.785109-5 1.435945+3 4.793501-5 1.701727+3 4.800753-5 1.961078+3 4.806647-5 2.191310+3 4.812541-5 2.437592+3 4.824328-5 2.969629+3 4.825801-5 3.038948+3 4.836115-5 3.532930+3 4.840167-5 3.727831+3 4.847903-5 4.093099+3 4.852139-5 4.285801+3 4.856671-5 4.483318+3 4.860373-5 4.636280+3 4.865231-5 4.823292+3 4.869916-5 4.986400+3 4.874425-5 5.125189+3 4.878292-5 5.228620+3 4.884002-5 5.352746+3 4.890909-5 5.454398+3 4.896135-5 5.494619+3 4.899815-5 5.503797+3 4.905852-5 5.485108+3 4.911687-5 5.428792+3 4.917752-5 5.333460+3 4.923384-5 5.215036+3 4.928592-5 5.083639+3 4.934755-5 4.906227+3 4.941950-5 4.677511+3 4.951175-5 4.366909+3 4.967094-5 3.843082+3 4.981341-5 3.445392+3 4.991248-5 3.226419+3 4.997893-5 3.106953+3 5.004302-5 3.010925+3 5.011872-5 2.918269+3 5.022284-5 2.818053+3 5.043706-5 2.648724+3 5.055155-5 2.545380+3 5.061778-5 2.474950+3 5.068516-5 2.393920+3 5.073354-5 2.329800+3 5.079703-5 2.238425+3 5.085825-5 2.143304+3 5.093905-5 2.009179+3 5.099943-5 1.904280+3 5.107492-5 1.770023+3 5.112021-5 1.688920+3 5.125888-5 1.445090+3 5.132153-5 1.340051+3 5.143335-5 1.164926+3 5.169148-5 8.364503+2 5.181861-5 7.151355+2 5.188069-5 6.647627+2 5.194180-5 6.203287+2 5.206211-5 5.461047+2 5.217866-5 4.883427+2 5.229156-5 4.429547+2 5.240094-5 4.067763+2 5.250690-5 3.774505+2 5.261088-5 3.529714+2 5.270899-5 3.329789+2 5.290166-5 3.003704+2 5.308228-5 2.757114+2 5.325162-5 2.563757+2 5.341037-5 2.408076+2 5.355920-5 2.280173+2 5.383826-5 2.077331+2 5.408243-5 1.930580+2 5.429609-5 1.820381+2 5.448303-5 1.735283+2 5.486441-5 1.587588+2 5.505556-5 1.524040+2 5.550448-5 1.395444+2 5.596342-5 1.286081+2 5.692665-5 1.097282+2 5.707478-5 1.072808+2 5.735574-5 1.033223+2 5.749622-5 1.017968+2 5.763671-5 1.006380+2 5.777719-5 9.986721+1 5.788567-5 9.953175+1 5.811246-5 9.945721+1 5.882493-5 1.010953+2 6.021392-5 1.019372+2 6.040188-5 1.018502+2 6.195760-5 9.958189+1 6.709181-5 9.454730+1 7.079378-5 9.189730+1 7.441032-5 9.015665+1 8.317638-5 8.774963+1 8.511380-5 8.675894+1 8.586534-5 8.600809+1 8.661811-5 8.503531+1 8.692300-5 8.478163+1 8.738359-5 8.498608+1 8.754499-5 8.531425+1 8.775889-5 8.600215+1 8.797279-5 8.698820+1 8.818358-5 8.822855+1 8.882840-5 9.287921+1 8.906025-5 9.443390+1 8.928338-5 9.565854+1 8.950742-5 9.654230+1 8.966541-5 9.694320+1 8.989799-5 9.722032+1 9.011962-5 9.719904+1 9.094052-5 9.618802+1 9.133409-5 9.589888+1 9.170579-5 9.589030+1 9.457619-5 9.771185+1 1.336137-4 1.186002+2 1.480000-4 1.252348+2 1.638231-4 1.312794+2 1.820000-4 1.367215+2 2.016325-4 1.410555+2 2.223980-4 1.444450+2 2.441639-4 1.466097+2 2.659059-4 1.476985+2 2.921290-4 1.477583+2 3.162278-4 1.466889+2 3.418091-4 1.445763+2 3.715353-4 1.407814+2 3.998912-4 1.357292+2 4.271428-4 1.294646+2 4.521053-4 1.222423+2 4.744284-4 1.145396+2 4.940484-4 1.065870+2 5.112925-4 9.847067+1 5.248075-4 9.121846+1 5.370604-4 8.379234+1 5.478463-4 7.646851+1 5.573261-4 6.931261+1 5.645713-4 6.330263+1 5.716722-4 5.688139+1 5.771505-4 5.153844+1 5.810551-4 4.750391+1 5.856189-4 4.252705+1 5.898075-4 3.771766+1 5.930026-4 3.398076+1 5.959074-4 3.075045+1 5.989911-4 2.792333+1 6.016679-4 2.639157+1 6.019173-4 2.630428+1 6.046042-4 2.602985+1 6.067444-4 2.671110+1 6.089187-4 2.825068+1 6.108337-4 3.040470+1 6.125463-4 3.314305+1 6.140514-4 3.642202+1 6.153743-4 4.023875+1 6.165370-4 4.456619+1 6.176216-4 4.966912+1 6.188645-4 5.713446+1 6.196285-4 6.277134+1 6.203784-4 6.922176+1 6.210478-4 7.584658+1 6.218414-4 8.488860+1 6.228761-4 9.884899+1 6.249760-4 1.359595+2 6.264605-4 1.702112+2 6.279273-4 2.109772+2 6.283976-4 2.254815+2 6.295783-4 2.647499+2 6.299297-4 2.771638+2 6.313774-4 3.312028+2 6.319407-4 3.532040+2 6.331745-4 4.023862+2 6.337441-4 4.251906+2 6.345274-4 4.562246+2 6.350391-4 4.760840+2 6.358543-4 5.066708+2 6.364824-4 5.290646+2 6.372424-4 5.544264+2 6.378386-4 5.727716+2 6.388757-4 6.009170+2 6.396293-4 6.180516+2 6.405765-4 6.353099+2 6.414430-4 6.467743+2 6.424113-4 6.546737+2 6.431716-4 6.573318+2 6.444085-4 6.553946+2 6.453976-4 6.487744+2 6.462038-4 6.404474+2 6.472216-4 6.266978+2 6.482356-4 6.099875+2 6.495564-4 5.846936+2 6.510435-4 5.527658+2 6.524607-4 5.201703+2 6.540283-4 4.828804+2 6.558543-4 4.393290+2 6.583691-4 3.822403+2 6.606072-4 3.374217+2 6.621980-4 3.104749+2 6.637086-4 2.892868+2 6.640316-4 2.853377+2 6.657250-4 2.679827+2 6.668373-4 2.595401+2 6.676354-4 2.548252+2 6.683500-4 2.514835+2 6.693064-4 2.481952+2 6.701518-4 2.462942+2 6.710771-4 2.451462+2 6.728125-4 2.450861+2 6.743983-4 2.467301+2 6.765000-4 2.503192+2 6.792500-4 2.558617+2 6.829000-4 2.627115+2 6.864403-4 2.679729+2 6.920499-4 2.738053+2 6.997530-4 2.788712+2 7.061002-4 2.817625+2 7.155861-4 2.848752+2 7.250785-4 2.867475+2 7.333501-4 2.870425+2 7.490304-4 2.846111+2 7.525381-4 2.856883+2 7.552620-4 2.878491+2 7.581304-4 2.915737+2 7.616787-4 2.980522+2 7.693977-4 3.150522+2 7.725366-4 3.211987+2 7.753184-4 3.257818+2 7.791483-4 3.307884+2 7.824219-4 3.341199+2 7.888982-4 3.392056+2 8.000645-4 3.460452+2 8.199311-4 3.554316+2 8.459548-4 3.648624+2 8.728961-4 3.720278+2 9.147246-4 3.803209+2 9.602549-4 3.869830+2 1.034317-3 3.933905+2 1.082376-3 3.950248+2 1.174237-3 3.947657+2 1.288814-3 3.912703+2 1.411670-3 3.845961+2 1.573494-3 3.743374+2 1.744978-3 3.615871+2 1.923369-3 3.481877+2 2.254888-3 3.240836+2 2.437109-3 3.115435+2 2.647833-3 2.977852+2 2.974661-3 2.773491+2 3.219289-3 2.629583+2 3.624718-3 2.408671+2 3.927014-3 2.253711+2 4.246902-3 2.098794+2 4.613840-3 1.932886+2 4.797736-3 1.852422+2 4.980603-3 1.774147+2 5.151904-3 1.702120+2 5.300548-3 1.639992+2 5.426909-3 1.587165+2 5.547795-3 1.535912+2 5.657842-3 1.488464+2 5.757496-3 1.444337+2 5.844270-3 1.404465+2 5.975911-3 1.340147+2 6.040259-3 1.306081+2 6.098407-3 1.273049+2 6.143803-3 1.245268+2 6.181154-3 1.220653+2 6.224473-3 1.189356+2 6.263365-3 1.157611+2 6.294814-3 1.128207+2 6.320972-3 1.100258+2 6.351943-3 1.062225+2 6.386192-3 1.014421+2 6.435452-3 9.453634+1 6.458431-3 9.206030+1 6.470200-3 9.115085+1 6.483267-3 9.049181+1 6.499075-3 9.023923+1 6.511986-3 9.049287+1 6.520968-3 9.090915+1 6.530416-3 9.154803+1 6.547605-3 9.318223+1 6.569622-3 9.596926+1 6.617504-3 1.031692+2 6.645885-3 1.072227+2 6.674543-3 1.107330+2 6.706742-3 1.139091+2 6.730431-3 1.157899+2 6.758170-3 1.176054+2 6.783617-3 1.189879+2 6.840489-3 1.213932+2 6.915784-3 1.236241+2 7.015466-3 1.255611+2 7.110793-3 1.267043+2 7.223956-3 1.274469+2 7.413102-3 1.277019+2 7.649417-3 1.269661+2 7.924416-3 1.252466+2 8.300309-3 1.219539+2 8.708713-3 1.178095+2 9.288474-3 1.116623+2 9.869282-3 1.056233+2 1.067768-2 9.775875+1 1.176880-2 8.822198+1 1.318221-2 7.777587+1 1.470089-2 6.847269+1 1.654862-2 5.918013+1 1.840772-2 5.150411+1 1.978885-2 4.666574+1 2.187762-2 4.045558+1 2.446915-2 3.422146+1 2.686089-2 2.958432+1 3.600860-2 1.843436+1 4.093940-2 1.493032+1 5.693175-2 8.566341+0 6.797593-2 6.311513+0 8.086421-2 4.648877+0 1.016816-1 3.075721+0 1.182769-1 2.326913+0 1.506382-1 1.475827+0 1.988276-1 8.693669-1 2.645705-1 5.007817-1 3.728576-1 2.561028-1 5.757506-1 1.085554-1 1.120601+0 2.883468-2 3.384160+0 3.168234-3 1.022000+1 3.474700-4 3.086391+1 3.810030-5 9.320751+1 4.177626-6 2.814822+2 4.580677-7 8.500626+2 5.022613-8 3.162278+3 3.629372-9 1.000000+4 3.62937-10 3.162278+4 3.62937-11 1.000000+5 3.62937-12 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.138800-6 1.258900-6 1.804900-6 1.584900-6 2.860600-6 1.995300-6 4.533700-6 2.511900-6 7.185500-6 3.162300-6 1.138800-5 3.981100-6 1.804900-5 5.011900-6 2.860500-5 6.309600-6 4.533600-5 7.943300-6 7.185300-5 1.000000-5 1.138800-4 1.258900-5 1.804800-4 1.584900-5 2.860400-4 1.995300-5 4.533300-4 2.511900-5 7.184600-4 3.162300-5 1.138600-3 3.981100-5 1.803900-3 5.011900-5 2.858200-3 6.309600-5 4.528800-3 7.943300-5 7.167000-3 1.000000-4 1.133800-2 1.258900-4 1.794200-2 1.584900-4 2.833600-2 1.995300-4 4.468800-2 2.511900-4 7.028400-2 3.162300-4 1.099800-1 3.981100-4 1.709100-1 5.011900-4 2.627500-1 6.309600-4 3.975000-1 7.943300-4 5.877900-1 1.000000-3 8.433500-1 1.258900-3 1.166200+0 1.584900-3 1.550800+0 1.995300-3 1.996700+0 2.511900-3 2.521400+0 3.162300-3 3.151700+0 3.981100-3 3.901900+0 5.011900-3 4.765600+0 6.309600-3 5.729800+0 7.943300-3 6.765900+0 1.000000-2 7.816500+0 1.258900-2 8.809600+0 1.584900-2 9.714100+0 1.995300-2 1.052000+1 2.511900-2 1.120900+1 3.162300-2 1.172700+1 3.981100-2 1.205100+1 5.011900-2 1.218900+1 6.309600-2 1.215700+1 7.943300-2 1.196600+1 1.000000-1 1.162600+1 1.258900-1 1.115800+1 1.584900-1 1.058800+1 1.995300-1 9.949300+0 2.511900-1 9.269600+0 3.162300-1 8.569800+0 3.981100-1 7.869300+0 5.011900-1 7.181600+0 6.309600-1 6.514400+0 7.943300-1 5.876700+0 1.000000+0 5.269200+0 1.258900+0 4.696400+0 1.584900+0 4.159700+0 1.995300+0 3.661200+0 2.511900+0 3.202300+0 3.162300+0 2.783800+0 3.981100+0 2.406000+0 5.011900+0 2.067900+0 6.309600+0 1.768100+0 7.943300+0 1.504500+0 1.000000+1 1.274600+0 1.258900+1 1.075500+0 1.584900+1 9.041600-1 1.995300+1 7.576100-1 2.511900+1 6.329200-1 3.162300+1 5.273300-1 3.981100+1 4.382800-1 5.011900+1 3.634600-1 6.309600+1 3.008100-1 7.943300+1 2.485100-1 1.000000+2 2.049600-1 1.258900+2 1.687900-1 1.584900+2 1.388100-1 1.995300+2 1.140100-1 2.511900+2 9.352900-2 3.162300+2 7.664500-2 3.981100+2 6.274600-2 5.011900+2 5.132000-2 6.309600+2 4.193700-2 7.943300+2 3.424200-2 1.000000+3 2.793700-2 1.258900+3 2.277700-2 1.584900+3 1.855700-2 1.995300+3 1.510900-2 2.511900+3 1.229500-2 3.162300+3 9.998600-3 3.981100+3 8.126800-3 5.011900+3 6.602000-3 6.309600+3 5.360600-3 7.943300+3 4.350500-3 1.000000+4 3.529200-3 1.258900+4 2.861600-3 1.584900+4 2.319400-3 1.995300+4 1.879100-3 2.511900+4 1.521900-3 3.162300+4 1.232100-3 3.981100+4 9.970900-4 5.011900+4 8.066500-4 6.309600+4 6.523600-4 7.943300+4 5.274200-4 1.000000+5 4.262700-4 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159552-4 3.981072-4 3.976753-4 5.011872-4 5.005056-4 6.309573-4 6.298862-4 7.943282-4 7.926425-4 1.000000-3 9.973630-4 1.258925-3 1.254823-3 1.584893-3 1.578521-3 1.995262-3 1.985367-3 2.511886-3 2.496446-3 3.162278-3 3.138137-3 3.981072-3 3.943213-3 5.011872-3 4.952587-3 6.309573-3 6.216968-3 7.943282-3 7.799101-3 1.000000-2 9.776553-3 1.258925-2 1.224472-2 1.584893-2 1.531937-2 1.995262-2 1.913978-2 2.511886-2 2.387384-2 3.162278-2 2.972489-2 3.981072-2 3.693534-2 5.011872-2 4.577971-2 6.309573-2 5.658704-2 7.943282-2 6.973259-2 1.000000-1 8.566527-2 1.258925-1 1.048812-1 1.584893-1 1.279841-1 1.995262-1 1.556465-1 2.511886-1 1.886205-1 3.162278-1 2.278116-1 3.981072-1 2.742305-1 5.011872-1 3.290467-1 6.309573-1 3.937029-1 7.943282-1 4.696883-1 1.000000+0 5.591839-1 1.258925+0 6.645413-1 1.584893+0 7.888863-1 1.995262+0 9.359811-1 2.511886+0 1.110513+0 3.162278+0 1.318205+0 3.981072+0 1.566164+0 5.011872+0 1.862910+0 6.309573+0 2.219080+0 7.943282+0 2.647557+0 1.000000+1 3.164133+0 1.258925+1 3.788145+0 1.584893+1 4.543270+0 1.995262+1 5.458445+0 2.511886+1 6.569164+0 3.162278+1 7.919130+0 3.981072+1 9.561581+0 5.011872+1 1.156234+1 6.309573+1 1.400192+1 7.943282+1 1.697952+1 1.000000+2 2.061694+1 1.258925+2 2.506420+1 1.584893+2 3.050584+1 1.995262+2 3.716905+1 2.511886+2 4.533418+1 3.162278+2 5.534673+1 3.981072+2 6.763090+1 5.011872+2 8.271449+1 6.309573+2 1.012439+2 7.943282+2 1.240198+2 1.000000+3 1.520278+2 1.258925+3 1.864919+2 1.584893+3 2.289202+2 1.995262+3 2.811787+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739882-9 3.981072-5 4.342086-9 5.011872-5 6.881404-9 6.309573-5 1.090580-8 7.943282-5 1.727795-8 1.000000-4 2.737718-8 1.258925-4 4.338630-8 1.584893-4 6.871828-8 1.995262-4 1.088338-7 2.511886-4 1.723121-7 3.162278-4 2.725757-7 3.981072-4 4.318986-7 5.011872-4 6.816761-7 6.309573-4 1.071132-6 7.943282-4 1.685746-6 1.000000-3 2.636990-6 1.258925-3 4.102756-6 1.584893-3 6.372195-6 1.995262-3 9.895178-6 2.511886-3 1.544023-5 3.162278-3 2.414085-5 3.981072-3 3.785867-5 5.011872-3 5.928552-5 6.309573-3 9.260537-5 7.943282-3 1.441812-4 1.000000-2 2.234475-4 1.258925-2 3.445366-4 1.584893-2 5.295638-4 1.995262-2 8.128479-4 2.511886-2 1.245024-3 3.162278-2 1.897885-3 3.981072-2 2.875377-3 5.011872-2 4.339015-3 6.309573-2 6.508699-3 7.943282-2 9.700232-3 1.000000-1 1.433473-2 1.258925-1 2.101133-2 1.584893-1 3.050522-2 1.995262-1 4.387969-2 2.511886-1 6.256810-2 3.162278-1 8.841617-2 3.981072-1 1.238766-1 5.011872-1 1.721406-1 6.309573-1 2.372544-1 7.943282-1 3.246399-1 1.000000+0 4.408161-1 1.258925+0 5.943841-1 1.584893+0 7.960069-1 1.995262+0 1.059281+0 2.511886+0 1.401373+0 3.162278+0 1.844072+0 3.981072+0 2.414907+0 5.011872+0 3.148962+0 6.309573+0 4.090493+0 7.943282+0 5.295725+0 1.000000+1 6.835867+0 1.258925+1 8.801109+0 1.584893+1 1.130566+1 1.995262+1 1.449418+1 2.511886+1 1.854970+1 3.162278+1 2.370365+1 3.981072+1 3.024914+1 5.011872+1 3.855638+1 6.309573+1 4.909381+1 7.943282+1 6.245330+1 1.000000+2 7.938306+1 1.258925+2 1.008283+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608810+2 3.981072+2 3.304763+2 5.011872+2 4.184727+2 6.309573+2 5.297134+2 7.943282+2 6.703085+2 1.000000+3 8.479722+2 1.258925+3 1.072434+3 1.584893+3 1.355973+3 1.995262+3 1.714084+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.250000-6 1.477103+6 7.500000-6 1.164594+6 7.700000-6 9.631700+5 7.900000-6 7.946180+5 8.100000-6 6.536940+5 8.270000-6 5.523920+5 8.420000-6 4.748560+5 8.600000-6 3.947540+5 8.770000-6 3.302440+5 8.920000-6 2.810520+5 9.050000-6 2.435720+5 9.200000-6 2.055980+5 9.332543-6 1.762449+5 9.460000-6 1.513174+5 9.550000-6 1.354858+5 9.660509-6 1.178732+5 9.772372-6 1.019192+5 9.890000-6 8.699820+4 1.000000-5 7.460460+4 1.010000-5 6.453440+4 1.020000-5 5.550920+4 1.027000-5 4.976860+4 1.035142-5 4.364785+4 1.042000-5 3.892960+4 1.050000-5 3.389920+4 1.057000-5 2.989140+4 1.065000-5 2.573300+4 1.071519-5 2.265756+4 1.077000-5 2.027780+4 1.083927-5 1.752492+4 1.090000-5 1.533406+4 1.096478-5 1.321341+4 1.102000-5 1.157384+4 1.107000-5 1.021584+4 1.112000-5 8.973480+3 1.117000-5 7.841440+3 1.122018-5 6.811884+3 1.127000-5 5.890920+3 1.133000-5 4.909080+3 1.138000-5 4.192680+3 1.144000-5 3.449040+3 1.157000-5 2.243180+3 1.161449-5 1.949392+3 1.165000-5 1.755702+3 1.168000-5 1.619434+3 1.170000-5 1.542148+3 1.172000-5 1.475486+3 1.172000-5 1.766144+6 1.174000-5 1.767043+6 1.176000-5 1.767951+6 1.178000-5 1.768867+6 1.180000-5 1.769793+6 1.182000-5 1.770727+6 1.183500-5 1.771433+6 1.185000-5 1.772145+6 1.185000-5 2.936169+6 1.185500-5 2.936533+6 1.187000-5 2.937632+6 1.189200-5 2.939252+6 1.191000-5 2.940583+6 1.192700-5 2.941846+6 1.195000-5 2.943563+6 1.197700-5 2.945589+6 1.200000-5 2.947325+6 1.203000-5 2.949601+6 1.206000-5 2.951891+6 1.211000-5 2.955738+6 1.216186-5 2.959765+6 1.220000-5 2.963987+6 1.224000-5 2.969196+6 1.230269-5 2.977393+6 1.235000-5 2.983605+6 1.240000-5 2.990194+6 1.245000-5 2.996805+6 1.250000-5 3.003436+6 1.255800-5 3.011153+6 1.258925-5 3.015314+6 1.260000-5 3.017040+6 1.262000-5 3.020627+6 1.267000-5 3.029594+6 1.273503-5 3.041281+6 1.280000-5 3.052981+6 1.287000-5 3.065610+6 1.295000-5 3.080069+6 1.303167-5 3.094854+6 1.310000-5 3.109886+6 1.318257-5 3.128076+6 1.325000-5 3.142948+6 1.335000-5 3.165028+6 1.345000-5 3.187131+6 1.348963-5 3.195877+6 1.350000-5 3.198318+6 1.357000-5 3.216337+6 1.369300-5 3.248001+6 1.380384-5 3.276570+6 1.395000-5 3.314283+6 1.410000-5 3.353021+6 1.412538-5 3.359563+6 1.420000-5 3.379797+6 1.425000-5 3.394362+6 1.440000-5 3.438030+6 1.455000-5 3.481758+6 1.470000-5 3.525537+6 1.480000-5 3.554708+6 1.490000-5 3.585029+6 1.507000-5 3.636562+6 1.513561-5 3.656426+6 1.531087-5 3.712314+6 1.550000-5 3.772691+6 1.570000-5 3.836653+6 1.584893-5 3.884331+6 1.590000-5 3.901056+6 1.621810-5 4.005272+6 1.650000-5 4.097881+6 1.678804-5 4.192733+6 1.680000-5 4.196715+6 1.717908-5 4.322889+6 1.757924-5 4.456533+6 1.800000-5 4.597552+6 1.850000-5 4.765788+6 1.905461-5 4.953242+6 1.950000-5 5.104430+6 2.000000-5 5.269312+6 2.070000-5 5.495806+6 2.150000-5 5.755712+6 2.187762-5 5.873337+6 2.238721-5 6.027814+6 2.330000-5 6.304648+6 2.331800-5 6.310104+6 2.371374-5 6.423878+6 2.426610-5 6.577029+6 2.511886-5 6.812940+6 2.540973-5 6.888322+6 2.660725-5 7.183976+6 2.691535-5 7.259650+6 2.818383-5 7.532600+6 2.851018-5 7.602226+6 3.000000-5 7.872276+6 3.019952-5 7.908017+6 3.162278-5 8.115263+6 3.198895-5 8.163602+6 3.311311-5 8.288584+6 3.350000-5 8.326154+6 3.427678-5 8.386928+6 3.500000-5 8.442394+6 3.507519-5 8.447167+6 3.672823-5 8.520957+6 3.682900-5 8.524166+6 3.850000-5 8.544582+6 3.890451-5 8.545002+6 3.981072-5 8.530817+6 4.027170-5 8.523593+6 4.073803-5 8.511622+6 4.220000-5 8.452866+6 4.300000-5 8.413809+6 4.315191-5 8.404233+6 4.466836-5 8.310644+6 4.518559-5 8.274916+6 4.677351-5 8.148316+6 4.731513-5 8.106431+6 4.800000-5 8.048957+6 5.011872-5 7.854756+6 5.069907-5 7.799697+6 5.128614-5 7.744914+6 5.370318-5 7.505394+6 5.495409-5 7.381488+6 5.500000-5 7.376660+6 5.754399-5 7.119507+6 5.900000-5 6.974242+6 6.000000-5 6.871926+6 6.078000-5 6.794213+6 6.078000-5 7.735313+6 6.160000-5 7.624980+6 6.200000-5 7.569097+6 6.209000-5 7.556280+6 6.209000-5 8.010828+6 6.240000-5 7.962060+6 6.280000-5 7.897302+6 6.334000-5 7.809453+6 6.350000-5 7.782856+6 6.420000-5 7.663134+6 6.500000-5 7.529152+6 6.531306-5 7.477551+6 6.683439-5 7.234280+6 6.800000-5 7.054852+6 6.839116-5 6.997770+6 6.950000-5 6.835847+6 7.000000-5 6.766907+6 7.079458-5 6.661226+6 7.150000-5 6.572284+6 7.161434-5 6.558254+6 7.190000-5 6.522501+6 7.270000-5 6.426706+6 7.300000-5 6.391833+6 7.328245-5 6.360180+6 7.350000-5 6.334950+6 7.413102-5 6.263582+6 7.470000-5 6.201963+6 7.500000-5 6.170358+6 7.585776-5 6.083753+6 7.620000-5 6.050271+6 7.673615-5 5.999877+6 7.690000-5 5.984170+6 7.730000-5 5.946628+6 7.800000-5 5.883609+6 7.852356-5 5.835647+6 7.900000-5 5.793759+6 8.000000-5 5.708828+6 8.040000-5 5.676394+6 8.128305-5 5.607024+6 8.150000-5 5.589689+6 8.300000-5 5.476884+6 8.317638-5 5.464100+6 8.450000-5 5.367409+6 8.511380-5 5.324372+6 8.609938-5 5.258281+6 8.650000-5 5.231097+6 8.709636-5 5.191697+6 8.810489-5 5.126699+6 8.912509-5 5.060692+6 9.120108-5 4.934167+6 9.258000-5 4.852241+6 9.258000-5 5.228519+6 9.300000-5 5.202220+6 9.332543-5 5.182143+6 9.500000-5 5.077922+6 9.660509-5 4.984896+6 9.772372-5 4.920912+6 9.885531-5 4.859513+6 9.900000-5 4.851820+6 1.011579-4 4.734683+6 1.035142-4 4.616490+6 1.040000-4 4.592556+6 1.047129-4 4.557519+6 1.060000-4 4.496840+6 1.083927-4 4.385125+6 1.100000-4 4.313153+6 1.109175-4 4.273857+6 1.135011-4 4.165083+6 1.148154-4 4.111717+6 1.150000-4 4.104109+6 1.174898-4 4.004275+6 1.202264-4 3.900180+6 1.220000-4 3.834787+6 1.244515-4 3.747207+6 1.273503-4 3.646868+6 1.300000-4 3.558239+6 1.303167-4 3.547892+6 1.330000-4 3.461742+6 1.350000-4 3.399429+6 1.380384-4 3.305550+6 1.400000-4 3.246816+6 1.412538-4 3.210558+6 1.428894-4 3.164058+6 1.430000-4 3.160918+6 1.445440-4 3.117389+6 1.480000-4 3.022456+6 1.513561-4 2.933151+6 1.548817-4 2.842611+6 1.584893-4 2.754019+6 1.603245-4 2.710222+6 1.621810-4 2.666252+6 1.659587-4 2.580322+6 1.678804-4 2.538242+6 1.720000-4 2.450825+6 1.778279-4 2.333077+6 1.800000-4 2.291222+6 1.819701-4 2.254123+6 1.820000-4 2.253569+6 1.883649-4 2.140407+6 1.900000-4 2.112088+6 1.927525-4 2.065795+6 1.950000-4 2.029067+6 2.000000-4 1.951116+6 2.041738-4 1.889042+6 2.089296-4 1.822054+6 2.113489-4 1.789259+6 2.120000-4 1.780507+6 2.162719-4 1.723809+6 2.264644-4 1.599856+6 2.300000-4 1.559710+6 2.317395-4 1.540408+6 2.344229-4 1.510959+6 2.426610-4 1.425993+6 2.454709-4 1.398365+6 2.483133-4 1.371087+6 2.511886-4 1.344420+6 2.580000-4 1.284381+6 2.600160-4 1.267216+6 2.650000-4 1.225720+6 2.786121-4 1.122627+6 2.818383-4 1.100249+6 2.851018-4 1.077976+6 2.884032-4 1.055719+6 3.054921-4 9.519346+5 3.100000-4 9.269246+5 3.126079-4 9.128176+5 3.162278-4 8.938121+5 3.311311-4 8.210773+5 3.350000-4 8.034527+5 3.507519-4 7.370676+5 3.548134-4 7.213428+5 3.589219-4 7.058264+5 3.630781-4 6.903727+5 3.935501-4 5.911174+5 3.981072-4 5.779309+5 4.216965-4 5.158053+5 4.315191-4 4.929966+5 4.365158-4 4.818139+5 4.415704-4 4.707819+5 4.518559-4 4.494417+5 4.731513-4 4.096413+5 4.786301-4 4.001324+5 4.897788-4 3.816440+5 4.954502-4 3.727228+5 5.128614-4 3.471888+5 5.150000-4 3.442244+5 5.248075-4 3.309126+5 5.495409-4 3.004091+5 5.559043-4 2.932423+5 5.688529-4 2.794051+5 5.800000-4 2.681083+5 5.888437-4 2.595710+5 6.165950-4 2.351921+5 6.237348-4 2.294710+5 6.309573-4 2.238832+5 6.382635-4 2.183568+5 6.522200-4 2.082771+5 6.522200-4 6.661011+5 6.523800-4 6.767456+5 6.527000-4 7.028149+5 6.530000-4 7.259145+5 6.533000-4 7.480744+5 6.538000-4 7.825802+5 6.543000-4 8.144228+5 6.547000-4 8.383232+5 6.552000-4 8.663074+5 6.558000-4 8.971601+5 6.563000-4 9.208702+5 6.571000-4 9.554049+5 6.579000-4 9.861019+5 6.587000-4 1.013245+6 6.595000-4 1.037138+6 6.605000-4 1.062852+6 6.615000-4 1.084409+6 6.625000-4 1.102269+6 6.629700-4 1.108851+6 6.629700-4 1.330171+6 6.632000-4 1.341250+6 6.636000-4 1.362751+6 6.638000-4 1.372919+6 6.639500-4 1.380066+6 6.643000-4 1.395874+6 6.647000-4 1.413154+6 6.653000-4 1.437797+6 6.658500-4 1.456845+6 6.665000-4 1.477833+6 6.670000-4 1.492788+6 6.672000-4 1.498198+6 6.680000-4 1.517613+6 6.687000-4 1.532990+6 6.690100-4 1.539103+6 6.695300-4 1.547953+6 6.705000-4 1.562231+6 6.715000-4 1.574835+6 6.725000-4 1.582965+6 6.737500-4 1.590712+6 6.750000-4 1.596034+6 6.765000-4 1.597275+6 6.780000-4 1.596091+6 6.800000-4 1.591568+6 6.822000-4 1.583788+6 6.839116-4 1.575952+6 6.850000-4 1.570998+6 6.918310-4 1.534473+6 7.000000-4 1.492292+6 7.328245-4 1.338338+6 7.664700-4 1.203000+6 7.664700-4 1.362162+6 7.673615-4 1.358638+6 7.762471-4 1.323980+6 7.852356-4 1.290159+6 7.943282-4 1.257214+6 8.222426-4 1.164033+6 8.317638-4 1.134010+6 8.413951-4 1.104420+6 8.609938-4 1.047185+6 8.709636-4 1.019694+6 8.810489-4 9.929999+5 9.120108-4 9.171324+5 9.332543-4 8.696355+5 9.500000-4 8.341408+5 9.700000-4 7.941202+5 9.850000-4 7.658892+5 9.885531-4 7.594068+5 1.000000-3 7.390542+5 1.030000-3 6.893224+5 1.047129-3 6.626945+5 1.059254-3 6.445992+5 1.083927-3 6.096787+5 1.110000-3 5.756403+5 1.122018-3 5.608477+5 1.135011-3 5.451794+5 1.230269-3 4.466914+5 1.258925-3 4.220357+5 1.273503-3 4.102238+5 1.288250-3 3.987515+5 1.318257-3 3.766388+5 1.333521-3 3.659353+5 1.380384-3 3.354681+5 1.400000-3 3.237775+5 1.412538-3 3.165735+5 1.445440-3 2.987020+5 1.450000-3 2.963376+5 1.462177-3 2.900791+5 1.550000-3 2.498471+5 1.584893-3 2.360425+5 1.621810-3 2.225758+5 1.640590-3 2.161052+5 1.659587-3 2.098276+5 1.698244-3 1.978280+5 1.701200-3 1.969460+5 1.717908-3 1.920152+5 1.737801-3 1.863659+5 1.757924-3 1.808876+5 1.778279-3 1.755727+5 1.798871-3 1.703874+5 1.862087-3 1.557423+5 1.883649-3 1.511533+5 1.905461-3 1.467030+5 2.000000-3 1.292149+5 2.018366-3 1.261610+5 2.041738-3 1.224166+5 2.065380-3 1.187844+5 2.070000-3 1.180924+5 2.113489-3 1.118087+5 2.187762-3 1.021189+5 2.213095-3 9.907022+4 2.264644-3 9.319844+4 2.290868-3 9.039687+4 2.317395-3 8.767957+4 2.398833-3 7.997735+4 2.400000-3 7.987400+4 2.454709-3 7.522890+4 2.511886-3 7.076989+4 2.570396-3 6.656739+4 2.600160-3 6.454633+4 2.660725-3 6.068860+4 2.722701-3 5.704308+4 2.818383-3 5.199197+4 2.851018-3 5.041122+4 2.884032-3 4.887413+4 2.917427-3 4.738527+4 2.951209-3 4.594241+4 3.019952-3 4.317076+4 3.054921-3 4.184192+4 3.311311-3 3.364440+4 3.349654-3 3.261108+4 3.388442-3 3.160309+4 3.427678-3 3.062723+4 3.467369-3 2.967560+4 3.758374-3 2.381224+4 3.801894-3 2.307752+4 3.845918-3 2.236557+4 3.890451-3 2.167334+4 3.935501-3 2.099900+4 4.073803-3 1.908848+4 4.265795-3 1.681562+4 4.315191-3 1.629203+4 4.466836-3 1.481874+4 4.518559-3 1.435699+4 4.677351-3 1.304146+4 4.841724-3 1.184959+4 4.897788-3 1.147757+4 5.128614-3 1.010482+4 5.188000-3 9.788041+3 5.308844-3 9.179280+3 5.432503-3 8.606414+3 5.559043-3 8.070225+3 5.623413-3 7.815062+3 5.956621-3 6.657588+3 6.000000-3 6.523653+3 6.025596-3 6.446186+3 6.165950-3 6.042785+3 6.300000-3 5.689393+3 6.309573-3 5.665148+3 6.382635-3 5.484723+3 6.456542-3 5.310152+3 6.510900-3 5.186562+3 6.510900-3 4.181322+4 6.606934-3 4.030642+4 6.839116-3 3.696491+4 6.918310-3 3.591297+4 7.000000-3 3.485360+4 7.328245-3 3.100846+4 7.413102-3 3.011091+4 7.673615-3 2.757177+4 7.762471-3 2.677415+4 7.852356-3 2.597180+4 8.222426-3 2.299339+4 8.511380-3 2.098599+4 8.609938-3 2.035645+4 8.709636-3 1.974584+4 9.120108-3 1.748179+4 9.225714-3 1.695711+4 9.549926-3 1.547602+4 9.660509-3 1.501166+4 9.885531-3 1.412434+4 1.000000-2 1.370045+4 1.023293-2 1.289057+4 1.047129-2 1.210800+4 1.059254-2 1.173479+4 1.122018-2 1.003298+4 1.135011-2 9.723481+3 1.148154-2 9.423516+3 1.150000-2 9.382403+3 1.161449-2 9.132751+3 1.202264-2 8.313292+3 1.230269-2 7.808349+3 1.244515-2 7.567253+3 1.300000-2 6.719627+3 1.318257-2 6.463680+3 1.333521-2 6.259750+3 1.348963-2 6.062222+3 1.350000-2 6.049262+3 1.412538-2 5.332442+3 1.445440-2 5.001268+3 1.462177-2 4.843314+3 1.496236-2 4.542236+3 1.566751-2 3.995192+3 1.584893-2 3.869037+3 1.603245-2 3.746873+3 1.621810-2 3.628546+3 1.659587-2 3.399012+3 1.698244-2 3.184026+3 1.737801-2 2.982445+3 1.819701-2 2.616826+3 1.840772-2 2.532666+3 1.883649-2 2.372362+3 1.905461-2 2.296054+3 1.949845-2 2.150713+3 2.000000-2 2.001068+3 2.137962-2 1.650648+3 2.187762-2 1.544544+3 2.213095-2 1.494075+3 2.264644-2 1.398035+3 2.290868-2 1.352357+3 2.317395-2 1.308165+3 2.371374-2 1.224072+3 2.454709-2 1.107853+3 2.600160-2 9.360568+2 2.630268-2 9.050368+2 2.754229-2 7.909099+2 2.786121-2 7.647048+2 2.818383-2 7.393656+2 2.851018-2 7.148416+2 3.019952-2 6.039026+2 3.090295-2 5.640450+2 3.235937-2 4.920442+2 3.273407-2 4.755303+2 3.388442-2 4.292424+2 3.467369-2 4.008891+2 3.630781-2 3.496781+2 3.715352-2 3.265823+2 3.981072-2 2.654483+2 4.073803-2 2.477304+2 4.120975-2 2.393124+2 4.365158-2 2.013259+2 4.518559-2 1.814952+2 4.623810-2 1.693714+2 4.841724-2 1.472968+2 4.954502-2 1.373637+2 5.128614-2 1.236942+2 5.370318-2 1.075616+2 5.432503-2 1.038689+2 5.754399-2 8.722076+1 5.821032-2 8.422629+1 5.956621-2 7.849445+1 6.165950-2 7.061999+1 6.839116-2 5.141513+1 7.161434-2 4.465090+1 7.585776-2 3.743346+1 7.762471-2 3.488459+1 7.852356-2 3.367515+1 7.943282-2 3.249770+1 8.222426-2 2.920677+1 8.511380-2 2.624922+1 8.912509-2 2.276662+1 9.015711-2 2.197074+1 9.660509-2 1.774661+1 9.885531-2 1.652750+1 1.000000-1 1.594974+1 1.011580-1 1.539217+1 1.047129-1 1.383378+1 1.096478-1 1.199818+1 1.122019-1 1.117387+1 1.135011-1 1.078323+1 1.188502-1 9.352548+0 1.202264-1 9.025601+0 1.288250-1 7.290445+0 1.303167-1 7.035601+0 1.348963-1 6.323315+0 1.412538-1 5.484510+0 1.445440-1 5.107829+0 1.462177-1 4.929308+0 1.479108-1 4.757026+0 1.513561-1 4.432890+0 1.566751-1 3.987647+0 1.621810-1 3.587136+0 1.640590-1 3.462779+0 1.659587-1 3.342741+0 1.737801-1 2.902830+0 1.798871-1 2.611342+0 1.840772-1 2.433469+0 1.883649-1 2.267862+0 1.927525-1 2.113531+0 1.972423-1 1.970895+0 2.041738-1 1.774797+0 2.065380-1 1.713868+0 2.113489-1 1.598213+0 2.137962-1 1.543349+0 2.162719-1 1.490374+0 2.213095-1 1.389821+0 2.213400-1 1.389241+0 2.290868-1 1.251728+0 2.371374-1 1.129000+0 2.398833-1 1.090826+0 2.426610-1 1.053943+0 2.454709-1 1.018308+0 2.483133-1 9.838796-1 2.511886-1 9.506158-1 2.540973-1 9.184817-1 2.570396-1 8.874349-1 2.600160-1 8.574374-1 2.660725-1 8.005238-1 2.691535-1 7.739180-1 2.722701-1 7.481979-1 2.786121-1 6.992954-1 2.818383-1 6.760561-1 2.884032-1 6.318692-1 2.917427-1 6.108717-1 3.000000-1 5.628284-1 3.019952-1 5.519855-1 3.054921-1 5.336757-1 3.090295-1 5.162722-1 3.273407-1 4.374063-1 3.311311-1 4.231424-1 3.349654-1 4.093477-1 3.388442-1 3.960028-1 3.427678-1 3.830934-1 3.467369-1 3.706259-1 3.548134-1 3.473521-1 3.630781-1 3.255396-1 3.672823-1 3.151532-1 3.715352-1 3.050982-1 3.758374-1 2.953670-1 3.845918-1 2.768259-1 3.890451-1 2.680128-1 3.981072-1 2.515675-1 4.073803-1 2.361323-1 4.120975-1 2.287737-1 4.168694-1 2.216445-1 4.265795-1 2.080501-1 4.315191-1 2.015813-1 4.415705-1 1.895111-1 4.466836-1 1.837499-1 4.570882-1 1.727476-1 4.623810-1 1.674962-1 4.677351-1 1.624061-1 4.731513-1 1.574709-1 4.786301-1 1.526960-1 4.841724-1 1.481787-1 5.011872-1 1.354131-1 5.069907-1 1.314072-1 5.128614-1 1.275201-1 5.188000-1 1.237493-1 5.248075-1 1.200899-1 5.308844-1 1.165469-1 5.495409-1 1.067771-1 5.559043-1 1.037063-1 5.623413-1 1.007238-1 5.688529-1 9.782819-2 5.754399-1 9.501579-2 5.821032-1 9.229060-2 5.956621-1 8.720702-2 6.025596-1 8.477132-2 6.095369-1 8.240376-2 6.165950-1 8.010234-2 6.309573-1 7.569226-2 6.382635-1 7.358453-2 6.456542-1 7.159452-2 6.531306-1 6.965839-2 6.606935-1 6.777470-2 6.683439-1 6.594198-2 6.760830-1 6.415881-2 6.918310-1 6.073720-2 6.998420-1 5.910032-2 7.161434-1 5.606227-2 7.328245-1 5.318052-2 7.413102-1 5.179569-2 7.498942-1 5.044748-2 7.585776-1 4.913790-2 7.762471-1 4.669133-2 7.852356-1 4.551412-2 8.128305-1 4.215763-2 8.222427-1 4.109519-2 8.317638-1 4.006235-2 8.511380-1 3.812756-2 8.609938-1 3.719549-2 8.709636-1 3.628623-2 8.810489-1 3.539922-2 8.912509-1 3.453391-2 9.120108-1 3.286711-2 9.225714-1 3.206414-2 9.332543-1 3.128082-2 9.549926-1 2.982893-2 9.660509-1 2.912850-2 9.772372-1 2.844487-2 9.885531-1 2.777734-2 1.011579+0 2.648894-2 1.023293+0 2.588700-2 1.035142+0 2.529881-2 1.059254+0 2.416223-2 1.083927+0 2.307674-2 1.096478+0 2.255243-2 1.109175+0 2.204019-2 1.130300+0 2.122587-2 1.135011+0 2.105045-2 1.161449+0 2.014261-2 1.174898+0 1.970348-2 1.202264+0 1.885382-2 1.216186+0 1.844298-2 1.230269+0 1.804109-2 1.250000+0 1.750011-2 1.258925+0 1.726349-2 1.273503+0 1.690088-2 1.333521+0 1.552513-2 1.364583+0 1.488012-2 1.396368+0 1.426195-2 1.412538+0 1.397337-2 1.479108+0 1.287633-2 1.531087+0 1.211078-2 1.548817+0 1.186585-2 1.603245+0 1.118658-2 1.640590+0 1.075546-2 1.659587+0 1.054628-2 1.698244+0 1.014003-2 1.717908+0 9.942824-3 1.737801+0 9.749460-3 1.798871+0 9.211931-3 1.840772+0 8.870149-3 1.862087+0 8.704117-3 1.905461+0 8.381316-3 1.927525+0 8.224441-3 1.949845+0 8.070512-3 2.000000+0 7.753026-3 2.018366+0 7.641837-3 2.065380+0 7.368778-3 2.089296+0 7.235989-3 2.137962+0 6.977549-3 2.162719+0 6.851813-3 2.187762+0 6.728353-3 2.213095+0 6.607121-3 2.264644+0 6.379993-3 2.290868+0 6.269371-3 2.344229+0 6.053854-3 2.371374+0 5.948937-3 2.426610+0 5.744530-3 2.454709+0 5.644977-3 2.483133+0 5.547156-3 2.511886+0 5.451034-3 2.570396+0 5.270627-3 2.600160+0 5.182675-3 2.660725+0 5.011154-3 2.691535+0 4.927570-3 2.754229+0 4.764562-3 2.818383+0 4.606952-3 2.851018+0 4.530118-3 2.884032+0 4.454566-3 2.951209+0 4.312517-3 2.985383+0 4.243199-3 3.054921+0 4.107891-3 3.090295+0 4.041893-3 3.162278+0 3.913058-3 3.273407+0 3.727474-3 3.311311+0 3.667592-3 3.349654+0 3.608675-3 3.427678+0 3.497690-3 3.467369+0 3.443485-3 3.548134+0 3.337583-3 3.589219+0 3.285883-3 3.672823+0 3.184872-3 3.801894+0 3.039152-3 3.845918+0 2.992078-3 3.890451+0 2.945736-3 4.000000+0 2.840499-3 4.027170+0 2.815420-3 4.168694+0 2.690869-3 4.216965+0 2.650607-3 4.315191+0 2.571879-3 4.466836+0 2.458155-3 4.518559+0 2.421378-3 4.570882+0 2.385151-3 4.731513+0 2.283123-3 4.954502+0 2.153845-3 5.011872+0 2.122698-3 5.128614+0 2.061750-3 5.308844+0 1.973596-3 5.370318+0 1.945058-3 5.432503+0 1.916933-3 5.495409+0 1.889286-3 5.688529+0 1.810989-3 6.000000+0 1.696466-3 6.025596+0 1.687643-3 6.237348+0 1.617728-3 6.456542+0 1.550712-3 6.606934+0 1.507586-3 6.683439+0 1.486527-3 7.000000+0 1.406960-3 7.328245+0 1.332368-3 7.585776+0 1.278792-3 7.673615+0 1.261416-3 7.943282+0 1.210695-3 8.128305+0 1.178021-3 8.222427+0 1.162055-3 8.709636+0 1.087378-3 9.120108+0 1.031106-3 9.440609+0 9.908368-4 9.772372+0 9.521411-4 1.011579+1 9.149585-4 1.023293+1 9.029150-4 1.109175+1 8.247006-4 1.122018+1 8.140951-4 1.188502+1 7.630759-4 1.230269+1 7.340211-4 1.258925+1 7.152695-4 1.303167+1 6.880365-4 1.318257+1 6.792091-4 1.462177+1 6.062079-4 1.479108+1 5.985973-4 1.566751+1 5.619535-4 1.621810+1 5.410587-4 1.659587+1 5.275625-4 1.717908+1 5.079477-4 1.737801+1 5.015846-4 2.000000+1 4.314106-4 2.018366+1 4.272019-4 2.113489+1 4.066151-4 2.200000+1 3.894957-4 2.213095+1 3.870252-4 2.290868+1 3.729549-4 2.426610+1 3.506326-4 2.454709+1 3.463381-4 2.884032+1 2.923293-4 3.090295+1 2.718428-4 3.235937+1 2.589918-4 3.349654+1 2.497541-4 3.589219+1 2.322558-4 4.315191+1 1.920274-4 4.623810+1 1.788080-4 4.841724+1 1.705059-4 4.897788+1 1.684913-4 5.248075+1 1.568941-4 6.237348+1 1.312747-4 7.498942+1 1.088235-4 7.762471+1 1.050628-4 8.222427+1 9.908250-5 8.317638+1 9.792792-5 9.332543+1 8.709690-5 1.230269+2 6.574084-5 1.244515+2 6.498087-5 1.479108+2 5.458788-5 1.548817+2 5.210893-5 1.640590+2 4.916823-5 1.659587+2 4.860032-5 1.862087+2 4.326973-5 2.454709+2 3.274110-5 2.483133+2 3.236483-5 2.951209+2 2.721495-5 3.090295+2 2.598584-5 3.273407+2 2.452729-5 3.311311+2 2.424555-5 3.715352+2 2.160021-5 9.772372+2 8.184596-6 9.885531+2 8.090847-6 1.174898+3 6.807135-6 1.230269+3 6.500648-6 1.303167+3 6.136880-6 1.318257+3 6.066606-6 2.951209+3 2.709068-6 1.000000+5 7.984965-8 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.250000-6 7.250000-6 1.172000-5 7.250000-6 1.172000-5 1.171627-5 1.185000-5 1.171675-5 1.185000-5 1.176958-5 1.757924-5 1.167590-5 3.500000-5 1.169634-5 6.078000-5 1.170744-5 6.078000-5 1.308205-5 6.209000-5 1.303660-5 6.209000-5 1.360795-5 6.950000-5 1.315488-5 7.328245-5 1.301469-5 7.730000-5 1.297631-5 8.150000-5 1.303381-5 8.709636-5 1.321138-5 9.258000-5 1.344503-5 9.258000-5 1.482923-5 9.900000-5 1.512675-5 1.273503-4 1.670126-5 1.412538-4 1.735697-5 1.584893-4 1.802735-5 1.820000-4 1.877544-5 2.089296-4 1.947962-5 2.344229-4 2.002159-5 2.650000-4 2.054936-5 3.126079-4 2.120091-5 3.630781-4 2.173398-5 4.365158-4 2.231316-5 5.248075-4 2.283421-5 6.382635-4 2.332414-5 6.522200-4 2.337635-5 6.522200-4 3.571349-5 6.533000-4 3.634761-5 6.547000-4 3.690552-5 6.563000-4 3.732445-5 6.587000-4 3.771985-5 6.625000-4 3.805491-5 6.629700-4 3.807966-5 6.629700-4 3.864958-5 6.672000-4 3.900028-5 6.750000-4 3.921297-5 7.664700-4 3.924774-5 7.664700-4 4.177069-5 1.047129-3 4.258830-5 1.621810-3 4.391961-5 2.317395-3 4.517897-5 3.054921-3 4.624645-5 4.073803-3 4.741775-5 5.432503-3 4.860954-5 6.510900-3 4.934977-5 6.510900-3 6.922022-5 1.059254-2 6.971763-5 2.137962-2 7.011541-5 6.165950-2 7.037462-5 8.128305-1 7.049566-5 1.000000+5 7.049723-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.250000-6 0.0 6.078000-5 0.0 6.078000-5 1.45582-10 6.160000-5 1.42881-10 6.209000-5 1.40752-10 6.209000-5 2.02796-10 6.280000-5 1.98956-10 6.350000-5 1.94651-10 6.683439-5 1.71073-10 6.800000-5 1.63248-10 6.950000-5 1.54431-10 7.079458-5 1.48056-10 7.190000-5 1.43593-10 7.300000-5 1.40122-10 7.413102-5 1.37618-10 7.500000-5 1.36310-10 7.620000-5 1.35355-10 7.730000-5 1.35314-10 7.852356-5 1.36165-10 8.000000-5 1.38309-10 8.150000-5 1.41440-10 8.317638-5 1.46064-10 8.511380-5 1.52656-10 8.709636-5 1.60425-10 8.810489-5 1.64577-10 9.120108-5 1.78779-10 9.258000-5 1.85411-10 9.258000-5 2.62328-10 9.500000-5 2.73398-10 9.900000-5 2.93660-10 1.060000-4 3.31860-10 1.174898-4 3.95661-10 1.244515-4 4.32036-10 1.303167-4 4.60876-10 1.380384-4 4.96014-10 1.445440-4 5.22910-10 1.513561-4 5.49012-10 1.621810-4 5.86423-10 1.720000-4 6.17410-10 1.820000-4 6.46595-10 1.950000-4 6.81079-10 2.089296-4 7.14076-10 2.162719-4 7.30202-10 2.317395-4 7.60436-10 2.483133-4 7.89223-10 2.650000-4 8.14718-10 2.884032-4 8.46176-10 3.126079-4 8.74564-10 3.350000-4 8.97497-10 3.630781-4 9.22008-10 3.981072-4 9.47678-10 4.415704-4 9.74275-10 4.954502-4 1.000945-9 5.559043-4 1.024506-9 6.382635-4 1.049498-9 6.522200-4 1.053066-9 6.522200-4 1.275650-6 6.530000-4 1.324814-6 6.538000-4 1.364554-6 6.547000-4 1.398572-6 6.558000-4 1.430099-6 6.571000-4 1.457755-6 6.587000-4 1.482444-6 6.605000-4 1.501966-6 6.629700-4 1.519378-6 6.629700-4 1.626999-6 6.647000-4 1.655571-6 6.672000-4 1.682903-6 6.705000-4 1.704101-6 6.750000-4 1.718806-6 6.822000-4 1.726087-6 7.664700-4 1.722839-6 7.664700-4 1.764221-6 1.333521-3 1.769425-6 6.510900-3 1.777043-6 6.510900-3 1.623372-3 8.222426-3 1.636770-3 1.161449-2 1.649853-3 1.905461-2 1.661206-3 3.715352-2 1.668178-3 1.840772-1 1.671326-3 1.000000+5 1.671527-3 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.250000-6 0.0 1.172000-5 4.470000-6 1.172000-5 3.734362-9 1.176000-5 4.347212-8 1.185000-5 1.332517-7 1.185000-5 8.042498-8 1.203000-5 2.610215-7 1.235000-5 5.843718-7 1.310000-5 1.349091-6 1.531087-5 3.608780-6 1.800000-5 6.326578-6 6.078000-5 4.907256-5 6.078000-5 4.769780-5 6.209000-5 4.905326-5 6.209000-5 4.848184-5 7.300000-5 5.997873-5 8.150000-5 6.846605-5 9.258000-5 7.913479-5 9.258000-5 7.775051-5 1.445440-4 1.270474-4 2.120000-4 1.924466-4 3.630781-4 3.413432-4 6.522200-4 6.288426-4 6.522200-4 6.152309-4 6.605000-4 6.210882-4 6.629700-4 6.233710-4 6.629700-4 6.226934-4 7.664700-4 7.254994-4 7.664700-4 7.229351-4 6.510900-3 6.459773-3 6.510900-3 4.818308-3 1.412538-2 1.240023-2 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.510900-3 3.662666+4 6.918310-3 3.153852+4 7.762471-3 2.361299+4 1.023293-2 1.144972+4 1.300000-2 5.995400+3 1.621810-2 3.247357+3 2.000000-2 1.794662+3 2.454709-2 9.951862+2 3.019952-2 5.431418+2 3.715352-2 2.939768+2 4.623810-2 1.525609+2 5.821032-2 7.590326+1 7.852356-2 3.035946+1 1.479108-1 4.288747+0 1.927525-1 1.905944+0 2.290868-1 1.128718+0 2.660725-1 7.218274-1 3.054921-1 4.812191-1 3.467369-1 3.341895-1 3.890451-1 2.416612-1 4.315191-1 1.817624-1 4.786301-1 1.376847-1 5.308844-1 1.050916-1 5.821032-1 8.322075-2 6.382635-1 6.635435-2 6.998420-1 5.329458-2 7.585776-1 4.431356-2 8.317638-1 3.613140-2 9.332543-1 2.821378-2 1.011579+0 2.389191-2 1.135011+0 1.898675-2 1.258925+0 1.557104-2 1.396368+0 1.286377-2 1.548817+0 1.070256-2 1.737801+0 8.793643-3 1.949845+0 7.279290-3 2.213095+0 5.959329-3 2.511886+0 4.916595-3 2.884032+0 4.017833-3 3.349654+0 3.254876-3 3.890451+0 2.656932-3 4.570882+0 2.151312-3 5.495409+0 1.704026-3 6.683439+0 1.340761-3 8.222427+0 1.048111-3 1.023293+1 8.143809-4 1.318257+1 6.126119-4 1.737801+1 4.524027-4 2.454709+1 3.123800-4 3.589219+1 2.094851-4 6.237348+1 1.184047-4 1.230269+2 5.929532-5 2.454709+2 2.953122-5 9.772372+2 7.382213-6 1.000000+5 7.202200-8 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.510900-3 7.203400-5 1.000000+5 7.203400-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.510900-3 1.853000-3 1.000000+5 1.853000-3 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.510900-3 4.585866-3 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 7.664700-4 1.591619+5 8.222426-4 1.470613+5 8.709636-4 1.350964+5 9.120108-4 1.266156+5 1.059254-3 1.013347+5 1.122018-3 9.248164+4 1.288250-3 7.397549+4 1.400000-3 6.418300+4 1.621810-3 4.948927+4 1.778279-3 4.179870+4 2.070000-3 3.132280+4 2.317395-3 2.509258+4 2.660725-3 1.898151+4 3.019952-3 1.458330+4 3.427678-3 1.113190+4 3.935501-3 8.228767+3 4.518559-3 6.036486+3 5.188000-3 4.396198+3 5.956621-3 3.179267+3 6.839116-3 2.283657+3 7.852356-3 1.629633+3 9.120108-3 1.122549+3 1.059254-2 7.676186+2 1.230269-2 5.211486+2 1.445440-2 3.407578+2 1.698244-2 2.210847+2 2.000000-2 1.414570+2 2.371374-2 8.818520+1 2.818383-2 5.420201+1 3.388442-2 3.199667+1 4.073803-2 1.874562+1 4.954502-2 1.054118+1 6.165950-2 5.493660+0 7.762471-2 2.745026+0 1.047129-1 1.104169+0 1.840772-1 1.972741-1 2.213095-1 1.131490-1 2.600160-1 7.006409-2 3.019952-1 4.522127-2 3.427678-1 3.144000-2 3.845918-1 2.275094-2 4.265795-1 1.711659-2 4.731513-1 1.296583-2 5.248075-1 9.894107-3 5.754399-1 7.832030-3 6.309573-1 6.241306-3 6.918310-1 5.009399-3 7.498942-1 4.161679-3 8.222427-1 3.390690-3 9.332543-1 2.581868-3 1.011579+0 2.186301-3 1.135011+0 1.737425-3 1.258925+0 1.424906-3 1.396368+0 1.177118-3 1.548817+0 9.793064-4 1.737801+0 8.046376-4 1.949845+0 6.660914-4 2.213095+0 5.453342-4 2.511886+0 4.499157-4 2.884032+0 3.676610-4 3.349654+0 2.978426-4 3.890451+0 2.431261-4 4.570882+0 1.968538-4 5.432503+0 1.581819-4 6.606934+0 1.244093-4 8.128305+0 9.720931-5 1.011579+1 7.550501-5 1.303167+1 5.677924-5 1.717908+1 4.191955-5 2.426610+1 2.893588-5 3.589219+1 1.916938-5 6.237348+1 1.083435-5 1.244515+2 5.362991-6 2.483133+2 2.671222-6 9.885531+2 6.677722-7 1.000000+5 6.590500-9 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 7.664700-4 6.084000-5 1.000000+5 6.084000-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.664700-4 2.077000-6 1.000000+5 2.077000-6 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.664700-4 7.035530-4 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 6.629700-4 2.213200+5 6.632000-4 2.291600+5 6.636000-4 2.450000+5 6.639500-4 2.579600+5 6.643000-4 2.702300+5 6.647000-4 2.834500+5 6.653000-4 3.019700+5 6.658500-4 3.174900+5 6.665000-4 3.342900+5 6.672000-4 3.508100+5 6.680000-4 3.677800+5 6.687000-4 3.810100+5 6.695300-4 3.949800+5 6.705000-4 4.091800+5 6.715000-4 4.217000+5 6.725000-4 4.322500+5 6.737500-4 4.430100+5 6.750000-4 4.513300+5 6.765000-4 4.585800+5 6.780000-4 4.633600+5 6.800000-4 4.667200+5 6.822000-4 4.675200+5 6.850000-4 4.655200+5 7.673615-4 3.558100+5 7.943282-4 3.271300+5 8.413951-4 2.851800+5 9.500000-4 2.118400+5 1.047129-3 1.656600+5 1.135011-3 1.343400+5 1.333521-3 8.723800+4 1.462177-3 6.772400+4 1.698244-3 4.449300+4 1.905461-3 3.197600+4 2.187762-3 2.137300+4 2.511886-3 1.416800+4 2.851018-3 9.658500+3 3.311311-3 6.092300+3 3.845918-3 3.810100+3 4.466836-3 2.364100+3 5.128614-3 1.511700+3 6.000000-3 9.028800+2 7.000000-3 5.401700+2 8.222426-3 3.135200+2 9.549926-3 1.877400+2 1.122018-2 1.073100+2 1.318257-2 6.089600+1 1.566751-2 3.294600+1 1.883649-2 1.698000+1 2.290868-2 8.333400+0 2.851018-2 3.732400+0 3.630781-2 1.524000+0 7.762471-2 8.922650-2 9.885531-2 3.636282-2 1.188502-1 1.847422-2 1.412538-1 9.863773-3 1.640590-1 5.764808-3 1.883649-1 3.537866-3 2.113489-1 2.370924-3 2.398833-1 1.538298-3 2.691535-1 1.045609-3 3.019952-1 7.158388-4 3.349654-1 5.124183-4 3.715352-1 3.692768-4 4.120975-1 2.680179-4 4.570882-1 1.960227-4 5.011872-1 1.494557-4 5.495409-1 1.147348-4 6.025596-1 8.870444-5 6.531306-1 7.125650-5 7.161434-1 5.589678-5 7.852356-1 4.415748-5 8.709636-1 3.396466-5 9.225714-1 2.951692-5 9.772372-1 2.581636-5 1.035142+0 2.275420-5 1.109175+0 1.970041-5 1.174898+0 1.758682-5 1.273503+0 1.512995-5 1.396368+0 1.283943-5 1.698244+0 9.174193-6 1.905461+0 7.577905-6 2.137962+0 6.306141-6 2.426610+0 5.192204-6 2.754229+0 4.305829-6 3.162278+0 3.536019-6 3.672823+0 2.878207-6 4.315191+0 2.324260-6 5.128614+0 1.863100-6 6.237348+0 1.462026-6 7.673615+0 1.140012-6 9.440609+0 8.954291-7 1.230269+1 6.634224-7 1.621810+1 4.890997-7 2.200000+1 3.520200-7 3.235937+1 2.340809-7 4.897788+1 1.522653-7 8.317638+1 8.849183-8 1.659587+2 4.393565-8 3.311311+2 2.191622-8 1.318257+3 5.485408-9 1.000000+5 7.22230-11 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 6.629700-4 4.150500-5 1.000000+5 4.150500-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.629700-4 2.166200-6 1.000000+5 2.166200-6 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.629700-4 6.192988-4 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.522200-4 4.578240+5 6.523800-4 4.685800+5 6.527000-4 4.948720+5 6.530000-4 5.181800+5 6.533000-4 5.405480+5 6.538000-4 5.754000+5 6.543000-4 6.075880+5 6.547000-4 6.317640+5 6.552000-4 6.600920+5 6.558000-4 6.913560+5 6.563000-4 7.154080+5 6.571000-4 7.504880+5 6.579000-4 7.817280+5 6.587000-4 8.094120+5 6.595000-4 8.338440+5 6.605000-4 8.602280+5 6.615000-4 8.824520+5 6.625000-4 9.009760+5 6.638000-4 9.201600+5 6.653000-4 9.363760+5 6.670000-4 9.484320+5 6.690100-4 9.558820+5 6.715000-4 9.576720+5 6.750000-4 9.514400+5 8.317638-4 5.750886+5 9.332543-4 4.329230+5 1.030000-3 3.369872+5 1.122018-3 2.694797+5 1.318257-3 1.744813+5 1.450000-3 1.341412+5 1.701200-3 8.538301+4 1.905461-3 6.153879+4 2.213095-3 3.963261+4 2.570396-3 2.529021+4 2.951209-3 1.657365+4 3.349654-3 1.117987+4 3.890451-3 6.965731+3 4.518559-3 4.305234+3 5.308844-3 2.542277+3 6.300000-3 1.439628+3 7.328245-3 8.644230+2 8.511380-3 5.181349+2 9.885531-3 3.084111+2 1.150000-2 1.813372+2 1.350000-2 1.025472+2 1.603245-2 5.521638+1 1.905461-2 2.943614+1 2.290868-2 1.494187+1 2.786121-2 7.213375+0 3.467369-2 3.171389+0 4.623810-2 1.065795+0 8.511380-2 1.039561-1 1.096478-1 3.984401-2 1.303167-1 2.085819-2 1.513561-1 1.198525-2 1.737801-1 7.235242-3 1.972423-1 4.588277-3 2.213400-1 3.052298-3 2.454709-1 2.129684-3 2.722701-1 1.495546-3 3.000000-1 1.081799-3 3.311311-1 7.841356-4 3.630781-1 5.851301-4 3.981072-1 4.399795-4 4.315191-1 3.451767-4 4.677351-1 2.725215-4 5.069907-1 2.165683-4 5.495409-1 1.732846-4 5.956621-1 1.395674-4 6.456542-1 1.131472-4 6.998420-1 9.228743-5 7.585776-1 7.577920-5 8.222427-1 6.265567-5 8.912509-1 5.214147-5 9.549926-1 4.482776-5 1.023293+0 3.881143-5 1.130300+0 3.176099-5 1.230269+0 2.698638-5 1.364583+0 2.228574-5 1.531087+0 1.816969-5 1.717908+0 1.491853-5 1.927525+0 1.233897-5 2.162719+0 1.027767-5 2.454709+0 8.468053-6 2.818383+0 6.910471-6 3.273407+0 5.591112-6 3.801894+0 4.558840-6 4.466836+0 3.687413-6 5.308844+0 2.960190-6 6.456542+0 2.326071-6 7.943282+0 1.816031-6 9.772372+0 1.428155-6 1.258925+1 1.072868-6 1.659587+1 7.914115-7 2.290868+1 5.593731-7 3.349654+1 3.746201-7 5.248075+1 2.352777-7 9.332543+1 1.305883-7 1.862087+2 6.490197-8 3.715352+2 3.239012-8 2.951209+3 4.062624-9 1.000000+5 1.19840-10 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.522200-4 4.132600-5 1.000000+5 4.132600-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.522200-4 1.855500-6 1.000000+5 1.855500-6 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.522200-4 6.090385-4 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 9.258000-5 3.762780+5 9.500000-5 3.645680+5 9.772372-5 3.549225+5 1.011579-4 3.464059+5 1.047129-4 3.403248+5 1.100000-4 3.343800+5 1.273503-4 3.216855+5 1.350000-4 3.146780+5 1.430000-4 3.055060+5 1.513561-4 2.943619+5 1.603245-4 2.814238+5 1.720000-4 2.644160+5 1.900000-4 2.400000+5 2.113489-4 2.147727+5 2.317395-4 1.937152+5 2.511886-4 1.757800+5 2.786121-4 1.538704+5 3.162278-4 1.296971+5 3.548134-4 1.102785+5 3.935501-4 9.464694+4 4.518559-4 7.655745+4 5.128614-4 6.263416+4 5.888437-4 4.989430+4 6.839116-4 3.870686+4 7.852356-4 3.038945+4 9.120108-4 2.322272+4 1.059254-3 1.761358+4 1.230269-3 1.327025+4 1.445440-3 9.711394+3 1.717908-3 6.894019+3 2.041738-3 4.854743+3 2.400000-3 3.470080+3 2.818383-3 2.467524+3 3.311311-3 1.739111+3 3.845918-3 1.247770+3 4.466836-3 8.887030+2 5.188000-3 6.283064+2 6.025596-3 4.409835+2 7.000000-3 3.071657+2 8.222426-3 2.067034+2 9.660509-3 1.379224+2 1.135011-2 9.131525+1 1.333521-2 5.999616+1 1.566751-2 3.912139+1 1.840772-2 2.532092+1 2.187762-2 1.576312+1 2.600160-2 9.736997+0 3.090295-2 5.969763+0 3.715352-2 3.514263+0 4.518559-2 1.985476+0 5.432503-2 1.151968+0 6.839116-2 5.785332-1 9.015711-2 2.510073-1 1.659587-1 3.902255-2 2.137962-1 1.814685-2 2.511886-1 1.121464-2 2.917427-1 7.225439-3 3.311311-1 5.014278-3 3.715352-1 3.620942-3 4.168694-1 2.633998-3 4.623810-1 1.992027-3 5.128614-1 1.517677-3 5.623413-1 1.199803-3 6.165950-1 9.548453-4 6.760830-1 7.652803-4 7.413102-1 6.176784-4 8.128305-1 5.020523-4 8.912509-1 4.108854-4 9.660509-1 3.471110-4 1.096478+0 2.691827-4 1.202264+0 2.249577-4 1.333521+0 1.851683-4 1.479108+0 1.535425-4 1.640590+0 1.282293-4 1.840772+0 1.057632-4 2.065380+0 8.785499-5 2.344229+0 7.218476-5 2.660725+0 5.974889-5 3.054921+0 4.897962-5 3.548134+0 3.979746-5 4.168694+0 3.208481-5 4.954502+0 2.567957-5 6.000000+0 2.022900-5 7.328245+0 1.588636-5 9.120108+0 1.229351-5 1.188502+1 9.098558-6 1.566751+1 6.701238-6 2.113489+1 4.848324-6 3.090295+1 3.241483-6 4.623810+1 2.131916-6 7.762471+1 1.252806-6 1.548817+2 6.216210-7 3.090295+2 3.099745-7 1.230269+3 7.756263-8 1.000000+5 9.52950-10 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 9.258000-5 3.267900-5 1.000000+5 3.267900-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.258000-5 1.254200-9 1.000000+5 1.254200-9 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.258000-5 5.989975-5 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.209000-5 4.545480+5 6.280000-5 4.432520+5 6.350000-5 4.296060+5 6.420000-5 4.144620+5 6.531306-5 3.889793+5 6.683439-5 3.539643+5 7.000000-5 2.909060+5 7.150000-5 2.675420+5 7.270000-5 2.520660+5 7.350000-5 2.432740+5 7.470000-5 2.322400+5 7.585776-5 2.238458+5 7.690000-5 2.179940+5 7.800000-5 2.133860+5 7.900000-5 2.104260+5 8.040000-5 2.080040+5 8.150000-5 2.073060+5 8.300000-5 2.077660+5 8.450000-5 2.095520+5 8.650000-5 2.135040+5 8.912509-5 2.205875+5 9.300000-5 2.332540+5 1.011579-4 2.619598+5 1.060000-4 2.778640+5 1.109175-4 2.922567+5 1.150000-4 3.025960+5 1.202264-4 3.135917+5 1.244515-4 3.206636+5 1.300000-4 3.275680+5 1.350000-4 3.316000+5 1.412538-4 3.340076+5 1.480000-4 3.338580+5 1.548817-4 3.314620+5 1.621810-4 3.271349+5 1.720000-4 3.192900+5 1.820000-4 3.097020+5 1.927525-4 2.983437+5 2.041738-4 2.856006+5 2.162719-4 2.717103+5 2.300000-4 2.558320+5 2.454709-4 2.383122+5 2.650000-4 2.175280+5 2.851018-4 1.980245+5 3.100000-4 1.765122+5 3.350000-4 1.575408+5 3.630781-4 1.389151+5 3.981072-4 1.192980+5 4.365158-4 1.016745+5 4.786301-4 8.602407+4 5.248075-4 7.219755+4 5.800000-4 5.923240+4 6.382635-4 4.867790+4 7.000000-4 4.000520+4 7.762471-4 3.189135+4 8.609938-4 2.523853+4 9.700000-4 1.911348+4 1.083927-3 1.464512+4 1.230269-3 1.071598+4 1.380384-3 8.008660+3 1.550000-3 5.932720+3 1.757924-3 4.251652+3 2.000000-3 2.998220+3 2.264644-3 2.125798+3 2.570396-3 1.486077+3 2.917427-3 1.031050+3 3.311311-3 7.099896+2 3.758374-3 4.853413+2 4.265795-3 3.294076+2 4.841724-3 2.220265+2 5.559043-3 1.432772+2 6.382635-3 9.178467+1 7.328245-3 5.839371+1 8.511380-3 3.551160+1 9.885531-3 2.144259+1 1.148154-2 1.285472+1 1.348963-2 7.352040+0 1.584893-2 4.173263+0 1.883649-2 2.257487+0 2.264644-2 1.163335+0 2.754229-2 5.707820-1 3.467369-2 2.449904-1 4.365158-2 1.044297-1 7.943282-2 1.125209-2 1.000000-1 4.800417-3 1.202264-1 2.444414-3 1.412538-1 1.363362-3 1.640590-1 7.982409-4 1.883649-1 4.904469-4 2.137962-1 3.159666-4 2.426610-1 2.050608-4 2.722701-1 1.394083-4 3.054921-1 9.548380-5 3.388442-1 6.838855-5 3.758374-1 4.932624-5 4.120975-1 3.712677-5 4.570882-1 2.717269-5 5.069907-1 2.004665-5 5.559043-1 1.540279-5 6.095369-1 1.191652-5 6.683439-1 9.287760-6 7.328245-1 7.291050-6 8.609938-1 4.834304-6 9.120108-1 4.198230-6 9.660509-1 3.668694-6 1.023293+0 3.230194-6 1.096478+0 2.793917-6 1.161449+0 2.491178-6 1.250000+0 2.168800-6 1.364583+0 1.851553-6 1.659587+0 1.320844-6 1.862087+0 1.089570-6 2.089296+0 9.053895-7 2.371374+0 7.444340-7 2.691535+0 6.165679-7 3.090295+0 5.057309-7 3.589219+0 4.111709-7 4.216965+0 3.316772-7 5.011872+0 2.656018-7 6.025596+0 2.111840-7 7.328245+0 1.667131-7 9.120108+0 1.290206-7 1.188502+1 9.548402-8 1.566751+1 7.032661-8 2.113489+1 5.088064-8 3.090295+1 3.401820-8 4.623810+1 2.237274-8 7.762471+1 1.314778-8 1.548817+2 6.523582-9 3.090295+2 3.253016-9 1.230269+3 8.13976-10 1.000000+5 1.00010-11 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.209000-5 2.310600-5 1.000000+5 2.310600-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.209000-5 1.234200-9 1.000000+5 1.234200-9 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.209000-5 3.898277-5 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 6.078000-5 9.411000+5 6.160000-5 9.104680+5 6.240000-5 8.754760+5 6.350000-5 8.229320+5 6.500000-5 7.504080+5 6.800000-5 6.231880+5 6.950000-5 5.729160+5 7.079458-5 5.372310+5 7.190000-5 5.122120+5 7.300000-5 4.919480+5 7.413102-5 4.755151+5 7.500000-5 4.656440+5 7.620000-5 4.555120+5 7.730000-5 4.493600+5 7.852356-5 4.455745+5 8.000000-5 4.446080+5 8.150000-5 4.468880+5 8.317638-5 4.524683+5 8.511380-5 4.618663+5 8.810489-5 4.804364+5 9.900000-5 5.598000+5 1.040000-4 5.934760+5 1.083927-4 6.196501+5 1.135011-4 6.454849+5 1.174898-4 6.620844+5 1.220000-4 6.770800+5 1.273503-4 6.898549+5 1.330000-4 6.978960+5 1.380384-4 7.009015+5 1.445440-4 6.998907+5 1.513561-4 6.940991+5 1.584893-4 6.841666+5 1.678804-4 6.670644+5 1.778279-4 6.459409+5 1.883649-4 6.215356+5 2.000000-4 5.932640+5 2.120000-4 5.633960+5 2.264644-4 5.274962+5 2.426610-4 4.885259+5 2.600160-4 4.491754+5 2.818383-4 4.043406+5 3.054921-4 3.614037+5 3.311311-4 3.206223+5 3.589219-4 2.823252+5 3.935501-4 2.420248+5 4.315191-4 2.059855+5 4.731513-4 1.740166+5 5.150000-4 1.479872+5 5.688529-4 1.214406+5 6.309573-4 9.807435+4 6.918310-4 8.056056+4 7.762471-4 6.247108+4 8.709636-4 4.803354+4 9.850000-4 3.592928+4 1.110000-3 2.687900+4 1.258925-3 1.962385+4 1.412538-3 1.461270+4 1.584893-3 1.080880+4 1.798871-3 7.700524+3 2.018366-3 5.620841+3 2.290868-3 3.946435+3 2.600160-3 2.749858+3 2.951209-3 1.901653+3 3.349654-3 1.305093+3 3.801894-3 8.890933+2 4.315191-3 6.013255+2 4.897788-3 4.038521+2 5.623413-3 2.595673+2 6.456542-3 1.655853+2 7.413102-3 1.048862+2 8.609938-3 6.347707+1 1.000000-2 3.813124+1 1.161449-2 2.273671+1 1.348963-2 1.346063+1 1.566751-2 7.913789+0 1.840772-2 4.433549+0 2.213095-2 2.268547+0 2.630268-2 1.200783+0 3.235937-2 5.551171-1 4.120975-2 2.237172-1 5.754399-2 6.316069-2 8.912509-2 1.197755-2 1.135011-1 4.812095-3 1.348963-1 2.526235-3 1.566751-1 1.455249-3 1.798871-1 8.809065-4 2.041738-1 5.601830-4 2.290868-1 3.738337-4 2.540973-1 2.615456-4 2.818383-1 1.843192-4 3.090295-1 1.359511-4 3.388442-1 1.009579-4 3.715352-1 7.550843-5 4.073803-1 5.689885-5 4.415705-1 4.470528-5 4.786301-1 3.534809-5 5.188000-1 2.813864-5 5.623413-1 2.255455-5 6.095369-1 1.820109-5 6.606935-1 1.478773-5 7.161434-1 1.209599-5 7.762471-1 9.961325-6 8.511380-1 8.036622-6 9.120108-1 6.883310-6 9.772372-1 5.932805-6 1.083927+0 4.798275-6 1.161449+0 4.185960-6 1.273503+0 3.515800-6 1.412538+0 2.910809-6 1.603245+0 2.331708-6 1.798871+0 1.920204-6 2.018366+0 1.592575-6 2.290868+0 1.306568-6 2.600160+0 1.080095-6 2.985383+0 8.843794-7 3.467369+0 7.177295-7 4.027170+0 5.868379-7 4.731513+0 4.758859-7 5.688529+0 3.775094-7 7.000000+0 2.932400-7 8.709636+0 2.266124-7 1.109175+1 1.718686-7 1.462177+1 1.263163-7 2.000000+1 8.989200-8 2.884032+1 6.091265-8 4.315191+1 4.001082-8 7.498942+1 2.267947-8 1.479108+2 1.138112-8 2.951209+2 5.673952-9 1.174898+3 1.419424-9 1.000000+5 1.66540-11 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 6.078000-5 2.300600-5 1.000000+5 2.300600-5 1 25000 7 7 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.078000-5 1.196600-9 1.000000+5 1.196600-9 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.078000-5 3.777280-5 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.185000-5 1.164024+6 1.220000-5 1.172854+6 1.260000-5 1.190270+6 1.303167-5 1.216747+6 1.348963-5 1.251968+6 1.412538-5 1.309836+6 1.480000-5 1.380082+6 1.584893-5 1.501577+6 2.000000-5 2.032020+6 2.187762-5 2.268814+6 2.371374-5 2.486972+6 2.540973-5 2.672057+6 2.691535-5 2.819727+6 2.851018-5 2.957943+6 3.019952-5 3.083064+6 3.162278-5 3.169430+6 3.311311-5 3.240524+6 3.500000-5 3.304320+6 3.672823-5 3.339195+6 3.850000-5 3.353420+6 4.027170-5 3.348064+6 4.220000-5 3.323240+6 4.466836-5 3.269491+6 4.731513-5 3.192478+6 5.011872-5 3.095711+6 5.370318-5 2.959714+6 5.754399-5 2.809526+6 6.200000-5 2.635755+6 6.683439-5 2.453723+6 7.161434-5 2.281820+6 7.673615-5 2.106395+6 8.128305-5 1.958902+6 8.609938-5 1.810540+6 9.120108-5 1.663072+6 9.660509-5 1.518432+6 1.035142-4 1.350677+6 1.109175-4 1.192908+6 1.202264-4 1.023530+6 1.303167-4 8.722345+5 1.428894-4 7.204855+5 1.548817-4 6.048323+5 1.659587-4 5.175728+5 1.800000-4 4.276160+5 1.950000-4 3.517120+5 2.113489-4 2.872810+5 2.344229-4 2.197126+5 2.580000-4 1.701614+5 2.851018-4 1.292542+5 3.162278-4 9.635631+4 3.507519-4 7.133976+4 3.935501-4 5.070206+4 4.365158-4 3.700622+4 4.897788-4 2.587060+4 5.495409-4 1.795628+4 6.165950-4 1.237375+4 6.918310-4 8.466340+3 7.762471-4 5.754021+3 8.709636-4 3.883506+3 9.885531-4 2.502025+3 1.122018-3 1.600084+3 1.273503-3 1.015717+3 1.445440-3 6.400738+2 1.640590-3 4.005411+2 1.862087-3 2.488285+2 2.113489-3 1.534046+2 2.398833-3 9.383987+1 2.722701-3 5.695773+1 3.054921-3 3.592822+1 3.467369-3 2.147363+1 3.935501-3 1.274173+1 4.518559-3 7.152336+0 5.308844-3 3.616423+0 6.165950-3 1.907621+0 7.673615-3 7.431895-1 9.120108-3 3.504674-1 1.047129-2 1.908546-1 1.244515-2 8.851441-2 1.496236-2 3.868071-2 1.819701-2 1.590897-2 2.290868-2 5.547208-3 5.128614-2 1.355784-4 6.839116-2 3.628652-5 8.222426-2 1.571637-5 9.660509-2 7.610660-6 1.122019-1 3.908114-6 1.288250-1 2.128269-6 1.462177-1 1.228414-6 1.640590-1 7.508786-7 1.840772-1 4.623136-7 2.065380-1 2.867239-7 2.290868-1 1.877187-7 2.540973-1 1.238218-7 2.786121-1 8.614552-8 3.054921-1 6.035969-8 3.349654-1 4.260136-8 3.672823-1 3.027596-8 4.120975-1 1.992397-8 4.466836-1 1.494048-8 4.841724-1 1.127886-8 5.128614-1 9.276353-9 5.559043-1 7.109774-9 6.165950-1 5.096056-9 6.760830-1 3.813688-9 7.328245-1 2.978652-9 8.511380-1 1.904129-9 8.912509-1 1.666892-9 9.332543-1 1.467914-9 9.772372-1 1.302053-9 1.011579+0 1.196722-9 1.059254+0 1.076760-9 1.109175+0 9.75375-10 1.161449+0 8.89288-10 1.230269+0 7.98356-10 1.333521+0 6.92567-10 1.531087+0 5.49752-10 1.798871+0 4.18201-10 2.000000+0 3.51540-10 2.264644+0 2.89314-10 2.570396+0 2.39008-10 2.951209+0 1.95566-10 3.427678+0 1.58620-10 4.000000+0 1.28810-10 4.731513+0 1.03524-10 5.688529+0 8.21235-11 7.000000+0 6.37920-11 8.709636+0 4.92977-11 1.122018+1 3.69045-11 1.479108+1 2.71338-11 2.018366+1 1.93642-11 2.884032+1 1.32506-11 4.315191+1 8.70399-12 7.498942+1 4.93369-12 1.479108+2 2.47583-12 2.951209+2 1.23428-12 1.174898+3 3.08793-13 1.000000+5 3.62290-15 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.185000-5 1.185000-5 1.000000+5 1.185000-5 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.185000-5 0.0 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.172000-5 1.764669+6 1.216186-5 1.785510+6 1.258925-5 1.819047+6 1.303167-5 1.865204+6 1.350000-5 1.924254+6 1.420000-5 2.027397+6 1.513561-5 2.184357+6 1.678804-5 2.492039+6 1.950000-5 3.022530+6 2.150000-5 3.404430+6 2.331800-5 3.731601+6 2.511886-5 4.029238+6 2.691535-5 4.294206+6 2.851018-5 4.497991+6 3.019952-5 4.679098+6 3.198895-5 4.832008+6 3.350000-5 4.929600+6 3.507519-5 5.000623+6 3.682900-5 5.046025+6 3.890451-5 5.058203+6 4.073803-5 5.038220+6 4.300000-5 4.980900+6 4.518559-5 4.897465+6 4.800000-5 4.762440+6 5.128614-5 4.582501+6 5.495409-5 4.366225+6 5.900000-5 4.124340+6 6.334000-5 3.870709+6 6.839116-5 3.586127+6 7.328245-5 3.325363+6 7.800000-5 3.085470+6 8.317638-5 2.837014+6 8.810489-5 2.614632+6 9.332543-5 2.394280+6 9.900000-5 2.174580+6 1.060000-4 1.930593+6 1.148154-4 1.666111+6 1.244515-4 1.424241+6 1.350000-4 1.207794+6 1.480000-4 9.941610+5 1.603245-4 8.325326+5 1.720000-4 7.080390+5 1.883649-4 5.692262+5 2.089296-4 4.393364+5 2.317395-4 3.361397+5 2.580000-4 2.524524+5 2.851018-4 1.916646+5 3.162278-4 1.428149+5 3.548134-4 1.021589+5 3.981072-4 7.250582+4 4.415704-4 5.284334+4 4.954502-4 3.689279+4 5.559043-4 2.557337+4 6.237348-4 1.759878+4 7.000000-4 1.201614+4 7.852356-4 8.161659+3 8.810489-4 5.500494+3 1.000000-3 3.538410+3 1.135011-3 2.259416+3 1.288250-3 1.432101+3 1.462177-3 9.010950+2 1.659587-3 5.629976+2 1.883649-3 3.491582+2 2.113489-3 2.246330+2 2.398833-3 1.372407+2 2.722701-3 8.318944+1 3.054921-3 5.240752+1 3.467369-3 3.127674+1 3.935501-3 1.853015+1 4.466836-3 1.090102+1 5.128614-3 6.057791+0 6.606934-3 2.037997+0 7.852356-3 9.641807-1 9.225714-3 4.762296-1 1.047129-2 2.720556-1 1.230269-2 1.323855-1 1.462177-2 6.073460-2 1.737801-2 2.764159-2 2.137962-2 1.066113-2 2.786121-2 3.127919-3 5.370318-2 1.480637-4 7.161434-2 3.911106-5 8.511380-2 1.771775-5 9.885531-2 8.981304-6 1.135011-1 4.828830-6 1.288250-1 2.753650-6 1.445440-1 1.664022-6 1.621810-1 1.012753-6 1.798871-1 6.524486-7 1.972423-1 4.443006-7 2.162719-1 3.047102-7 2.371374-1 2.105282-7 2.570396-1 1.533143-7 2.786121-1 1.123538-7 3.019952-1 8.288064-8 3.273407-1 6.156198-8 3.548134-1 4.605411-8 3.845918-1 3.470779-8 4.120975-1 2.740512-8 4.466836-1 2.095734-8 4.841724-1 1.614943-8 5.248075-1 1.253777-8 5.688529-1 9.808913-9 6.095369-1 7.999086-9 6.531306-1 6.563480-9 6.998420-1 5.418430-9 7.762471-1 4.104491-9 8.317638-1 3.432767-9 8.810489-1 2.975070-9 9.332543-1 2.594092-9 9.885531-1 2.277306-9 1.059254+0 1.965063-9 1.135011+0 1.707459-9 1.216186+0 1.495857-9 1.333521+0 1.263659-9 1.479108+0 1.053141-9 1.698244+0 8.30618-10 1.905461+0 6.86207-10 2.137962+0 5.71092-10 2.426610+0 4.70216-10 2.754229+0 3.89937-10 3.162278+0 3.20218-10 3.672823+0 2.60649-10 4.315191+0 2.10485-10 5.128614+0 1.68724-10 6.237348+0 1.32401-10 7.585776+0 1.04651-10 9.440609+0 8.10897-11 1.230269+1 6.00792-11 1.621810+1 4.42928-11 2.213095+1 3.16773-11 3.235937+1 2.11989-11 4.841724+1 1.39538-11 8.222427+1 8.10834-12 1.640590+2 4.02531-12 3.273407+2 2.00784-12 1.303167+3 5.02511-13 1.000000+5 6.54040-15 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.172000-5 1.172000-5 1.000000+5 1.172000-5 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.172000-5 0.0 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.250000-6 1.477103+6 7.500000-6 1.164594+6 7.700000-6 9.631700+5 7.900000-6 7.946180+5 8.100000-6 6.536940+5 8.270000-6 5.523920+5 8.420000-6 4.748560+5 8.600000-6 3.947540+5 8.770000-6 3.302440+5 8.920000-6 2.810520+5 9.050000-6 2.435720+5 9.200000-6 2.055980+5 9.332543-6 1.762449+5 9.460000-6 1.513174+5 9.550000-6 1.354858+5 9.660509-6 1.178732+5 9.772372-6 1.019192+5 9.890000-6 8.699820+4 1.000000-5 7.460460+4 1.010000-5 6.453440+4 1.020000-5 5.550920+4 1.027000-5 4.976860+4 1.035142-5 4.364785+4 1.042000-5 3.892960+4 1.050000-5 3.389920+4 1.057000-5 2.989140+4 1.065000-5 2.573300+4 1.071519-5 2.265756+4 1.077000-5 2.027780+4 1.083927-5 1.752492+4 1.090000-5 1.533406+4 1.096478-5 1.321341+4 1.102000-5 1.157384+4 1.107000-5 1.021584+4 1.112000-5 8.973480+3 1.117000-5 7.841440+3 1.122018-5 6.811884+3 1.127000-5 5.890920+3 1.133000-5 4.909080+3 1.138000-5 4.192680+3 1.144000-5 3.449040+3 1.157000-5 2.243180+3 1.161449-5 1.949392+3 1.165000-5 1.755702+3 1.168000-5 1.619434+3 1.170000-5 1.542148+3 1.172000-5 1.475486+3 1.174000-5 1.419258+3 1.176000-5 1.373274+3 1.178000-5 1.337352+3 1.180000-5 1.311312+3 1.182000-5 1.294974+3 1.183500-5 1.288982+3 1.185500-5 1.289202+3 1.187000-5 1.295430+3 1.189200-5 1.313804+3 1.191000-5 1.336866+3 1.192700-5 1.365178+3 1.195000-5 1.413384+3 1.197700-5 1.484222+3 1.200000-5 1.556422+3 1.203000-5 1.666586+3 1.206000-5 1.794388+3 1.211000-5 2.045260+3 1.224000-5 2.904820+3 1.230269-5 3.418295+3 1.235000-5 3.845220+3 1.240000-5 4.331340+3 1.245000-5 4.851620+3 1.250000-5 5.404400+3 1.255800-5 6.084157+3 1.262000-5 6.853920+3 1.267000-5 7.505280+3 1.273503-5 8.390802+3 1.280000-5 9.315980+3 1.287000-5 1.035488+4 1.295000-5 1.159142+4 1.303167-5 1.290319+4 1.310000-5 1.403572+4 1.318257-5 1.544270+4 1.325000-5 1.662026+4 1.335000-5 1.840858+4 1.345000-5 2.024120+4 1.357000-5 2.248980+4 1.369300-5 2.484122+4 1.380384-5 2.699242+4 1.395000-5 2.986500+4 1.410000-5 3.284260+4 1.425000-5 3.583780+4 1.440000-5 3.883940+4 1.455000-5 4.183780+4 1.470000-5 4.482440+4 1.490000-5 4.877580+4 1.507000-5 5.209600+4 1.531087-5 5.672484+4 1.550000-5 6.028640+4 1.570000-5 6.397440+4 1.590000-5 6.757540+4 1.621810-5 7.311129+4 1.650000-5 7.781080+4 1.680000-5 8.259220+4 1.717908-5 8.830586+4 1.757924-5 9.394110+4 1.800000-5 9.943720+4 1.850000-5 1.054160+5 1.905461-5 1.113806+5 1.950000-5 1.156920+5 2.000000-5 1.200558+5 2.070000-5 1.253808+5 2.150000-5 1.304780+5 2.238721-5 1.350385+5 2.330000-5 1.387014+5 2.426610-5 1.416215+5 2.540973-5 1.440287+5 2.660725-5 1.455574+5 2.818383-5 1.463562+5 3.000000-5 1.460076+5 3.198895-5 1.445386+5 3.427678-5 1.418856+5 3.672823-5 1.382971+5 3.981072-5 1.331818+5 4.315191-5 1.272701+5 4.677351-5 1.207616+5 5.069907-5 1.137885+5 5.500000-5 1.064100+5 6.000000-5 9.832020+4 6.531306-5 9.037401+4 7.079458-5 8.287604+4 7.800000-5 7.412480+4 8.709636-5 6.471646+4 9.885531-5 5.487013+4 1.150000-4 4.466260+4 1.400000-4 3.386760+4 1.819701-4 2.317882+4 2.483133-4 1.472179+4 2.884032-4 1.175704+4 3.126079-4 1.036897+4 3.589219-4 8.296129+3 4.216965-4 6.346693+3 5.559043-4 3.965318+3 6.382635-4 3.117415+3 7.328245-4 2.433988+3 8.810489-4 1.734077+3 1.047129-3 1.255155+3 1.230269-3 9.211193+2 1.462177-3 6.560092+2 1.737801-3 4.638886+2 2.065380-3 3.256013+2 2.454709-3 2.268317+2 2.884032-3 1.607004+2 3.388442-3 1.130058+2 4.073803-3 7.498695+1 4.677351-3 5.468541+1 5.432503-3 3.855181+1 6.309573-3 2.697667+1 7.413102-3 1.822979+1 8.709636-3 1.222319+1 1.023293-2 8.131946+0 1.202264-2 5.368743+0 1.412538-2 3.517643+0 1.659587-2 2.287430+0 1.949845-2 1.476630+0 2.317395-2 9.167001-1 2.754229-2 5.647471-1 3.273407-2 3.453801-1 3.981072-2 1.962159-1 4.841724-2 1.106144-1 5.956621-2 5.978039-2 7.585776-2 2.891622-2 1.011580-1 1.208175-2 1.640590-1 2.760474-3 2.113489-1 1.283347-3 2.483133-1 7.927526-4 2.884032-1 5.104928-4 3.311311-1 3.426280-4 3.715352-1 2.474503-4 4.168694-1 1.800274-4 4.623810-1 1.361689-4 5.128614-1 1.037656-4 5.623413-1 8.205481-5 6.165950-1 6.532596-5 6.760830-1 5.238113-5 7.413102-1 4.230342-5 8.128305-1 3.441319-5 8.912509-1 2.819964-5 9.772372-1 2.328960-5 1.130300+0 1.742600-5 1.258925+0 1.416758-5 1.396368+0 1.169753-5 1.548817+0 9.728323-6 1.717908+0 8.148736-6 1.927525+0 6.741241-6 2.187762+0 5.515051-6 2.483133+0 4.547024-6 2.851018+0 3.713351-6 3.311311+0 3.006352-6 3.845918+0 2.452676-6 4.518559+0 1.984874-6 5.370318+0 1.594186-6 6.606934+0 1.235855-6 8.128305+0 9.657150-7 1.011579+1 7.500861-7 1.303167+1 5.640624-7 1.717908+1 4.164390-7 2.426610+1 2.874513-7 3.589219+1 1.904360-7 6.237348+1 1.076321-7 1.230269+2 5.390261-8 2.454709+2 2.684538-8 9.772372+2 6.710813-9 1.000000+5 6.54720-11 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.250000-6 7.250000-6 1.000000+5 7.250000-6 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.250000-6 0.0 1.000000+5 1.000000+5 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.762190-8 1.028750+0 2.762190-7 1.033200+0 1.246820-6 1.034000+0 1.530580-6 1.035300+0 2.077550-6 1.036640+0 2.762190-6 1.038200+0 3.727660-6 1.039700+0 4.842990-6 1.041500+0 6.443540-6 1.043800+0 8.943840-6 1.046400+0 1.244370-5 1.048300+0 1.549270-5 1.051200+0 2.101550-5 1.054080+0 2.762190-5 1.057700+0 3.765040-5 1.061100+0 4.897360-5 1.065100+0 6.483540-5 1.070400+0 9.045180-5 1.076200+0 1.250040-4 1.080600+0 1.561090-4 1.087100+0 2.103310-4 1.093710+0 2.762190-4 1.102600+0 3.829810-4 1.110700+0 4.994940-4 1.120600+0 6.681950-4 1.133300+0 9.291170-4 1.147500+0 1.282870-3 1.158200+0 1.594290-3 1.174100+0 2.130730-3 1.190110+0 2.762190-3 1.205100+0 3.437700-3 1.227500+0 4.600300-3 1.250000+0 5.947000-3 1.280300+0 8.025720-3 1.307700+0 1.014990-2 1.343000+0 1.320190-2 1.382200+0 1.697030-2 1.433800+0 2.248400-2 1.500000+0 3.043000-2 1.562500+0 3.883180-2 1.617200+0 4.687260-2 1.712900+0 6.234230-2 1.784700+0 7.498290-2 1.892300+0 9.524240-2 2.000000+0 1.166000-1 2.044000+0 1.255000-1 2.163500+0 1.500320-1 2.372600+0 1.936530-1 2.647100+0 2.509930-1 3.000000+0 3.235000-1 3.437500+0 4.107790-1 4.000000+0 5.173000-1 4.750000+0 6.477360-1 5.000000+0 6.887000-1 6.000000+0 8.414000-1 7.000000+0 9.771000-1 8.000000+0 1.099000+0 9.000000+0 1.210000+0 1.000000+1 1.310000+0 1.100000+1 1.401000+0 1.200000+1 1.484000+0 1.300000+1 1.561000+0 1.400000+1 1.633000+0 1.500000+1 1.699000+0 1.600000+1 1.762000+0 1.800000+1 1.877000+0 2.000000+1 1.980000+0 2.200000+1 2.072000+0 2.400000+1 2.157000+0 2.600000+1 2.234000+0 2.800000+1 2.305000+0 3.000000+1 2.371000+0 4.000000+1 2.638000+0 5.000000+1 2.839000+0 6.000000+1 2.995000+0 8.000000+1 3.228000+0 1.000000+2 3.395000+0 1.500000+2 3.664000+0 2.000000+2 3.827000+0 3.000000+2 4.018000+0 4.000000+2 4.129000+0 5.000000+2 4.202000+0 6.000000+2 4.254000+0 8.000000+2 4.324000+0 1.000000+3 4.370000+0 1.500000+3 4.436000+0 2.000000+3 4.472000+0 3.000000+3 4.511000+0 4.000000+3 4.532000+0 5.000000+3 4.545000+0 6.000000+3 4.554000+0 8.000000+3 4.566000+0 1.000000+4 4.574000+0 1.500000+4 4.584000+0 2.000000+4 4.590000+0 3.000000+4 4.596000+0 4.000000+4 4.599000+0 5.000000+4 4.601000+0 6.000000+4 4.602000+0 8.000000+4 4.604000+0 1.000000+5 4.605000+0 1 25000 7 8 5.493800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.511200-7 2.114000+0 1.132050-6 2.119500+0 1.409400-6 2.127900+0 1.911410-6 2.136250+0 2.511200-6 2.147000+0 3.443030-6 2.156900+0 4.472080-6 2.169000+0 5.968280-6 2.184500+0 8.296100-6 2.201800+0 1.147790-5 2.214800+0 1.430060-5 2.234200+0 1.923680-5 2.253680+0 2.511200-5 2.281500+0 3.517380-5 2.307000+0 4.620070-5 2.338200+0 6.212080-5 2.377400+0 8.603000-5 2.410200+0 1.094160-4 2.446800+0 1.391830-4 2.485900+0 1.752390-4 2.532900+0 2.242680-4 2.556430+0 2.511200-4 2.611900+0 3.202050-4 2.660400+0 3.871100-4 2.745300+0 5.181200-4 2.809000+0 6.274710-4 2.904500+0 8.083220-4 3.000000+0 1.009000-3 3.125000+0 1.301090-3 3.234400+0 1.583170-3 3.425800+0 2.132060-3 3.569300+0 2.585460-3 3.784700+0 3.323920-3 4.000000+0 4.118000-3 4.250000+0 5.089150-3 4.625000+0 6.615840-3 5.000000+0 8.203000-3 5.500000+0 1.038110-2 6.000000+0 1.259000-2 6.750000+0 1.588450-2 7.000000+0 1.697000-2 8.000000+0 2.122000-2 9.000000+0 2.529000-2 1.000000+1 2.916000-2 1.100000+1 3.283000-2 1.200000+1 3.629000-2 1.300000+1 3.956000-2 1.400000+1 4.267000-2 1.500000+1 4.563000-2 1.600000+1 4.844000-2 1.800000+1 5.365000-2 2.000000+1 5.841000-2 2.200000+1 6.278000-2 2.400000+1 6.681000-2 2.600000+1 7.053000-2 2.800000+1 7.400000-2 3.000000+1 7.723000-2 4.000000+1 9.071000-2 5.000000+1 1.011000-1 6.000000+1 1.093000-1 8.000000+1 1.219000-1 1.000000+2 1.312000-1 1.500000+2 1.468000-1 2.000000+2 1.568000-1 3.000000+2 1.691000-1 4.000000+2 1.766000-1 5.000000+2 1.818000-1 6.000000+2 1.856000-1 8.000000+2 1.910000-1 1.000000+3 1.945000-1 1.500000+3 1.999000-1 2.000000+3 2.030000-1 3.000000+3 2.063000-1 4.000000+3 2.083000-1 5.000000+3 2.095000-1 6.000000+3 2.104000-1 8.000000+3 2.115000-1 1.000000+4 2.123000-1 1.500000+4 2.133000-1 2.000000+4 2.139000-1 3.000000+4 2.144000-1 4.000000+4 2.148000-1 5.000000+4 2.150000-1 6.000000+4 2.151000-1 8.000000+4 2.153000-1 1.000000+5 2.154000-1 1 25000 7 8 5.493800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 25000 7 9 5.493800+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.500000+1 1.000000+5 2.500000+1 5.000000+5 2.498400+1 1.000000+6 2.496100+1 1.375000+6 2.493920+1 1.500000+6 2.492900+1 1.875000+6 2.489010+1 2.000000+6 2.487500+1 2.500000+6 2.480600+1 3.000000+6 2.472300+1 3.500000+6 2.462410+1 4.000000+6 2.451800+1 4.500000+6 2.440070+1 5.000000+6 2.427400+1 5.500000+6 2.413150+1 5.875000+6 2.401940+1 6.437500+6 2.384250+1 6.500000+6 2.382280+1 7.000000+6 2.366000+1 7.500000+6 2.349060+1 8.250000+6 2.322730+1 8.500000+6 2.313990+1 9.000000+6 2.296200+1 9.750000+6 2.268810+1 1.000000+7 2.259800+1 1.109400+7 2.219190+1 1.187500+7 2.189790+1 1.250000+7 2.166500+1 1.437500+7 2.096590+1 1.500000+7 2.073900+1 1.750000+7 1.985800+1 2.000000+7 1.900000+1 2.250000+7 1.816280+1 2.500000+7 1.734800+1 2.750000+7 1.655610+1 2.875000+7 1.616740+1 3.000000+7 1.578600+1 3.250000+7 1.503790+1 3.500000+7 1.432180+1 3.625000+7 1.397610+1 4.000000+7 1.299700+1 4.500000+7 1.182400+1 5.000000+7 1.080900+1 5.750000+7 9.560770+0 6.000000+7 9.210100+0 6.750000+7 8.338670+0 7.000000+7 8.098300+0 7.750000+7 7.500540+0 8.000000+7 7.333100+0 9.000000+7 6.778200+0 1.000000+8 6.331200+0 1.109400+8 5.895590+0 1.187500+8 5.598290+0 1.203100+8 5.539950+0 1.250000+8 5.364000+0 1.312500+8 5.130470+0 1.406300+8 4.786120+0 1.500000+8 4.452600+0 1.589800+8 4.145150+0 1.665000+8 3.897910+0 1.748800+8 3.634440+0 1.750000+8 3.630780+0 1.838500+8 3.366410+0 1.946200+8 3.064580+0 2.000000+8 2.922000+0 2.250000+8 2.357640+0 2.312500+8 2.249260+0 2.406300+8 2.112460+0 2.476600+8 2.029450+0 2.500000+8 2.005500+0 2.562500+8 1.949700+0 2.671900+8 1.870810+0 2.835900+8 1.767010+0 2.918000+8 1.712730+0 3.000000+8 1.653100+0 3.062500+8 1.603230+0 3.335900+8 1.391360+0 3.418000+8 1.341320+0 3.500000+8 1.300700+0 3.562500+8 1.276670+0 3.671900+8 1.244970+0 4.000000+8 1.180600+0 4.125000+8 1.153490+0 4.234400+8 1.127440+0 4.425800+8 1.079040+0 4.712900+8 1.006400+0 5.000000+8 9.404000-1 5.500000+8 8.439970-1 5.750000+8 7.989590-1 6.000000+8 7.535000-1 7.000000+8 5.903000-1 7.625000+8 5.240620-1 7.875000+8 4.982700-1 8.000000+8 4.847000-1 8.125000+8 4.705400-1 8.359400+8 4.429980-1 8.564500+8 4.186430-1 8.743900+8 3.975930-1 9.057900+8 3.621640-1 9.529000+8 3.142080-1 1.000000+9 2.736000-1 1.062500+9 2.304990-1 1.281300+9 1.368750-1 1.390600+9 1.083570-1 1.472700+9 9.148080-2 1.500000+9 8.654900-2 1.562500+9 7.631310-2 1.671900+9 6.153690-2 1.753900+9 5.261140-2 1.877000+9 4.193410-2 2.000000+9 3.378100-2 2.187500+9 2.478260-2 2.363300+9 1.890480-2 2.692900+9 1.188620-2 2.981300+9 8.237270-3 3.485900+9 4.655920-3 4.243000+9 2.253150-3 5.000000+9 1.223700-3 8.000000+9 2.128000-4 9.500000+9 1.127000-4 1.00000+10 9.331200-5 1.20500+10 4.724960-5 1.41820+10 2.625450-5 1.71170+10 1.342340-5 2.01490+10 7.551360-6 2.26440+10 5.019720-6 2.74790+10 2.566620-6 3.20120+10 1.519480-6 3.62610+10 9.937320-7 4.42280+10 5.079630-7 5.12000+10 3.110530-7 6.34000+10 1.529140-7 7.94120+10 7.288320-8 1.00000+11 3.436500-8 1.17140+11 2.059040-8 1.55940+11 8.212880-9 2.04410+11 3.470550-9 2.99030+11 1.047320-9 4.21500+11 3.59506-10 7.29680+11 6.64595-11 1.61310+12 6.02891-12 4.52640+12 2.81185-13 2.12750+13 3.05101-15 1.00000+14 3.38620-17 5.62340+14 2.13438-19 7.49890+15 9.80679-23 1.00000+17 4.26850-26 1 25000 7 0 5.493800+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.20000-12 1.000000+2 5.20000-10 1.000000+3 5.200000-8 1.000000+4 5.200000-6 1.000000+5 5.200000-4 5.000000+5 1.300000-2 1.000000+6 5.200000-2 1.375000+6 9.823390-2 1.500000+6 1.167000-1 1.875000+6 1.805820-1 2.000000+6 2.047000-1 2.500000+6 3.146000-1 3.000000+6 4.441000-1 3.500000+6 5.906170-1 4.000000+6 7.513000-1 4.500000+6 9.232920-1 5.000000+6 1.104000+0 5.500000+6 1.290890+0 5.875000+6 1.433800+0 6.437500+6 1.650090+0 6.500000+6 1.674200+0 7.000000+6 1.866300+0 7.500000+6 2.056190+0 8.250000+6 2.335360+0 8.500000+6 2.426400+0 9.000000+6 2.605500+0 9.750000+6 2.864890+0 1.000000+7 2.949000+0 1.109400+7 3.302240+0 1.187500+7 3.542370+0 1.250000+7 3.728300+0 1.437500+7 4.261880+0 1.500000+7 4.435000+0 1.750000+7 5.115500+0 2.000000+7 5.791000+0 2.250000+7 6.461640+0 2.500000+7 7.121600+0 2.750000+7 7.761890+0 2.875000+7 8.074010+0 3.000000+7 8.380000+0 3.250000+7 8.971380+0 3.500000+7 9.538330+0 3.625000+7 9.813270+0 4.000000+7 1.060400+1 4.500000+7 1.158460+1 5.000000+7 1.248600+1 5.750000+7 1.369570+1 6.000000+7 1.406200+1 6.750000+7 1.504930+1 7.000000+7 1.534600+1 7.750000+7 1.613860+1 8.000000+7 1.637600+1 9.000000+7 1.721100+1 1.000000+8 1.791000+1 1.109400+8 1.857040+1 1.187500+8 1.899570+1 1.203100+8 1.907580+1 1.250000+8 1.931200+1 1.312500+8 1.960950+1 1.406300+8 2.002710+1 1.500000+8 2.041100+1 1.589800+8 2.074650+1 1.665000+8 2.100540+1 1.748800+8 2.127130+1 1.750000+8 2.127490+1 1.838500+8 2.152930+1 1.946200+8 2.180870+1 2.000000+8 2.193800+1 2.250000+8 2.243530+1 2.312500+8 2.253820+1 2.406300+8 2.268110+1 2.476600+8 2.278050+1 2.500000+8 2.281200+1 2.562500+8 2.289010+1 2.671900+8 2.301800+1 2.835900+8 2.318740+1 2.918000+8 2.326320+1 3.000000+8 2.333700+1 3.062500+8 2.338690+1 3.335900+8 2.358980+1 3.418000+8 2.364450+1 3.500000+8 2.369800+1 3.562500+8 2.373510+1 3.671900+8 2.379870+1 4.000000+8 2.397600+1 4.125000+8 2.403470+1 4.234400+8 2.408470+1 4.425800+8 2.416940+1 4.712900+8 2.428020+1 5.000000+8 2.438000+1 5.500000+8 2.452260+1 5.750000+8 2.458240+1 6.000000+8 2.463600+1 7.000000+8 2.479000+1 7.625000+8 2.485050+1 7.875000+8 2.486960+1 8.000000+8 2.487900+1 8.125000+8 2.488590+1 8.359400+8 2.489840+1 8.564500+8 2.490910+1 8.743900+8 2.491830+1 9.057900+8 2.493070+1 9.529000+8 2.494520+1 1.000000+9 2.495900+1 1.062500+9 2.496940+1 1.281300+9 2.498990+1 1.390600+9 2.499360+1 1.472700+9 2.499540+1 1.500000+9 2.499600+1 1.562500+9 2.499660+1 1.671900+9 2.499750+1 1.753900+9 2.499820+1 1.877000+9 2.499910+1 2.000000+9 2.500000+1 2.187500+9 2.500000+1 2.363300+9 2.500000+1 2.692900+9 2.500000+1 2.981300+9 2.500000+1 3.485900+9 2.500000+1 4.243000+9 2.500000+1 5.000000+9 2.500000+1 8.000000+9 2.500000+1 9.500000+9 2.500000+1 1.00000+10 2.500000+1 1.20500+10 2.500000+1 1.41820+10 2.500000+1 1.71170+10 2.500000+1 2.01490+10 2.500000+1 2.26440+10 2.500000+1 2.74790+10 2.500000+1 3.20120+10 2.500000+1 3.62610+10 2.500000+1 4.42280+10 2.500000+1 5.12000+10 2.500000+1 6.34000+10 2.500000+1 7.94120+10 2.500000+1 1.00000+11 2.500000+1 1.17140+11 2.500000+1 1.55940+11 2.500000+1 2.04410+11 2.500000+1 2.99030+11 2.500000+1 4.21500+11 2.500000+1 7.29680+11 2.500000+1 1.61310+12 2.500000+1 4.52640+12 2.500000+1 2.12750+13 2.500000+1 1.00000+14 2.500000+1 5.62340+14 2.500000+1 7.49890+15 2.500000+1 1.00000+17 2.500000+1 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.033911-6 0.0 3.552470-6 0.0 3.567772-6 3.170174+0 3.569958-6 3.618436+0 3.578702-6 6.609368+0 3.586815-6 1.081622+1 3.596190-6 2.124602+1 3.606027-6 3.428836+1 3.615318-6 4.992476+1 3.639910-6 9.807647+1 3.649203-6 1.131153+2 3.658872-6 1.227362+2 3.668126-6 1.245273+2 3.676913-6 1.189022+2 3.685515-6 1.070239+2 3.697740-6 8.256141+1 3.710414-6 5.473896+1 3.719242-6 3.750356+1 3.728071-6 2.306788+1 3.736899-6 1.374681+1 3.745728-6 7.562231+0 3.758971-6 1.922350+0 3.763385-6 0.0 4.835530-6 0.0 4.847432-6 6.10171-15 4.859334-6 1.20736-14 4.871236-6 2.20534-14 4.883138-6 3.71851-14 4.895040-6 5.78783-14 4.906942-6 8.31604-14 4.918844-6 1.10299-13 4.930746-6 1.35045-13 4.942648-6 1.52631-13 4.954550-6 1.59242-13 4.966452-6 1.53366-13 4.978354-6 1.36349-13 4.990256-6 1.11900-13 5.014060-6 5.92856-14 5.025962-6 3.82727-14 5.037864-6 2.28078-14 5.049766-6 1.25468-14 5.061668-6 6.37138-15 5.073570-6 0.0 5.559920-6 0.0 5.568889-6 3.519933-2 5.587290-6 2.664999-1 5.596303-6 4.016435-1 5.600975-6 4.984828-1 5.610591-6 7.341485-1 5.614660-6 8.620326-1 5.624458-6 1.213403+0 5.642171-6 2.048066+0 5.669400-6 3.520427+0 5.683855-6 4.134252+0 5.696246-6 4.430861+0 5.709623-6 4.446762+0 5.723526-6 4.123018+0 5.739536-6 3.419188+0 5.765195-6 2.028699+0 5.774496-6 1.562626+0 5.788203-6 9.972336-1 5.792565-6 8.570866-1 5.801910-6 5.878997-1 5.806250-6 4.953771-1 5.815617-6 3.201544-1 5.833620-6 8.614215-2 5.843031-6 4.125832-5 5.847372-6 3.405477-5 5.861186-6 1.872248-5 5.875001-6 9.439813-6 5.888334-6 2.004044-7 5.888815-6 0.0 6.231490-6 0.0 6.235150-6 2.699270-3 6.262166-6 6.826750-2 6.265844-6 7.888244-2 6.277504-6 1.256328-1 6.281191-6 1.427256-1 6.296538-6 2.385302-1 6.311885-6 3.682050-1 6.354194-6 8.067384-1 6.373273-6 9.441465-1 6.388620-6 9.792685-1 6.405850-6 9.251205-1 6.421479-6 8.084135-1 6.465355-6 3.559507-1 6.480702-6 2.289043-1 6.492236-6 1.572374-1 6.496049-6 1.359210-1 6.507574-6 8.840595-2 6.511396-6 7.452130-2 6.529202-6 3.005623-2 6.537878-6 7.839017-3 6.538250-6 6.983460-3 6.539723-6 4.732534-3 6.542090-6 2.584957-3 6.571916-6 2.904446-2 6.588013-6 5.280755-2 6.604110-6 8.865867-2 6.620207-6 1.374452-1 6.666616-6 3.111825-1 6.684593-6 3.576271-1 6.700690-6 3.720790-1 6.716787-6 3.628930-1 6.736188-6 3.188729-1 6.770250-6 2.203941-1 6.781173-6 1.960364-1 6.797270-6 1.740552-1 6.813367-6 1.705635-1 6.841424-6 1.887834-1 6.853384-6 1.980627-1 6.861657-6 1.996575-1 6.870129-6 2.080828-1 6.886875-6 2.162565-1 6.911082-6 2.119307-1 6.969475-6 1.919195-1 7.102215-6 1.733207-1 7.160524-6 1.593533-1 7.234295-6 1.468261-1 7.413288-6 1.334738-1 7.823965-6 9.588197-2 7.936396-6 8.723450-2 7.975465-6 6.618895-1 7.994999-6 1.137842+0 8.015754-6 1.921841+0 8.034068-6 2.848623+0 8.044416-6 3.540413+0 8.096550-6 7.309741+0 8.119993-6 8.628514+0 8.140888-6 9.355153+0 8.157312-6 9.601721+0 8.181214-6 9.430875+0 8.204247-6 8.850215+0 8.237020-6 7.557108+0 8.276641-6 5.451681+0 8.327084-6 2.597390+0 8.335957-6 2.226573+0 8.355744-6 1.516005+0 8.375531-6 9.672532-1 8.395319-6 5.838985-1 8.411313-6 3.824235-1 8.431185-6 1.551567-1 8.434893-6 1.165144-1 8.470929-6 5.477114-2 8.792251-6 4.067062-2 9.100523-6 3.005429-2 9.391052-6 2.216880-2 9.666397-6 1.624673-2 9.918469-6 1.193230-2 9.967296-6 1.128782-1 9.991709-6 1.965674-1 1.001612-5 3.236575-1 1.004053-5 4.975858-1 1.006688-5 7.557420-1 1.011377-5 1.251322+0 1.013819-5 1.473243+0 1.016870-5 1.652750+0 1.019110-5 1.711799+0 1.022423-5 1.681575+0 1.025584-5 1.563150+0 1.029390-5 1.334355+0 1.040673-5 4.117465-1 1.042237-5 3.248551-1 1.044227-5 2.286490-1 1.046700-5 1.393645-1 1.049173-5 7.951706-2 1.050110-5 6.481489-2 1.052586-5 2.944347-2 1.054118-5 7.056666-3 1.055061-5 4.717475-3 1.058477-5 4.447935-3 1.059638-5 1.276011-2 1.063688-5 4.340737-2 1.066293-5 7.583196-2 1.068898-5 1.251860-1 1.071819-5 2.028309-1 1.080394-5 5.268247-1 1.082371-5 5.897899-1 1.085009-5 6.501413-1 1.087647-5 6.792855-1 1.090826-5 6.792993-1 1.094367-5 6.414909-1 1.103476-5 4.869262-1 1.106114-5 4.536470-1 1.111274-5 4.126653-1 1.120375-5 4.415426-1 1.130430-5 4.865328-1 1.138608-5 4.882702-1 1.154139-5 4.769709-1 1.161809-5 4.669494-1 1.173292-5 4.632586-1 1.201319-5 5.028654-1 1.351161-5 6.189229-1 1.513561-5 7.921977-1 1.678804-5 1.008742+0 2.000000-5 1.507329+0 2.601711-5 2.618364+0 3.365324-5 4.011074+0 4.004125-5 4.880669+0 4.775253-5 5.508849+0 4.788966-5 5.950498+0 4.812541-5 1.370434+1 4.824328-5 2.020852+1 4.836115-5 2.988908+1 4.849376-5 4.488593+1 4.878292-5 8.337139+1 4.884002-5 9.017117+1 4.896135-5 9.981681+1 4.908362-5 1.022727+2 4.922124-5 9.739888+1 4.941950-5 7.943172+1 4.958046-5 6.363372+1 4.967094-5 5.696706+1 4.979926-5 5.242128+1 4.995120-5 5.248864+1 5.018234-5 5.519076+1 5.030933-5 5.423636+1 5.043706-5 5.114440+1 5.055155-5 4.554947+1 5.087866-5 2.397425+1 5.099943-5 1.748899+1 5.112021-5 1.271740+1 5.124098-5 9.553194+0 5.148252-5 5.687070+0 5.707478-5 5.850950+0 5.763671-5 6.112717+0 5.835828-5 6.948555+0 5.882493-5 6.987593+0 5.934186-5 6.990071+0 5.998865-5 7.237370+0 6.137050-5 7.113544+0 7.852356-5 6.555904+0 8.692300-5 6.477046+0 8.775889-5 6.717256+0 8.882840-5 7.462143+0 8.928338-5 7.459871+0 9.037222-5 6.885652+0 1.336137-4 6.578592+0 2.659059-4 4.634344+0 3.418091-4 3.784010+0 4.271428-4 3.074030+0 5.248075-4 2.485070+0 6.249760-4 2.043653+0 6.251136-4 2.053354+0 6.281909-4 4.294758+0 6.297295-4 6.154542+0 6.313774-4 9.253597+0 6.331745-4 1.396346+1 6.378386-4 2.887481+1 6.396293-4 3.263293+1 6.411411-4 3.410045+1 6.427483-4 3.388181+1 6.456725-4 3.060787+1 6.517688-4 2.339632+1 6.545018-4 2.033174+1 6.564271-4 1.771193+1 6.590165-4 1.522802+1 6.606072-4 1.415078+1 6.621980-4 1.353784+1 6.640316-4 1.336570+1 6.670146-4 1.348056+1 6.728125-4 1.483173+1 6.792500-4 1.532320+1 7.061002-4 1.477104+1 7.490304-4 1.370049+1 7.598883-4 1.425624+1 7.693977-4 1.482341+1 9.293964-4 1.167988+1 1.082376-3 9.477550+0 1.259553-3 7.598663+0 1.461126-3 6.077981+0 1.663222-3 4.967038+0 1.913100-3 3.975654+0 2.190395-3 3.191699+0 2.495946-3 2.571764+0 2.862044-3 2.044546+0 3.219289-3 1.673083+0 3.624718-3 1.363683+0 4.091981-3 1.104444+0 4.613840-3 8.946301-1 5.151904-3 7.359651-1 5.844270-3 5.873276-1 6.343239-3 5.098293-1 6.372834-3 5.291926-1 6.391925-3 5.663410-1 6.407590-3 6.271333-1 6.419056-3 6.972330-1 6.432331-3 8.125836-1 6.446445-3 9.845137-1 6.461659-3 1.228667+0 6.483267-3 1.673495+0 6.530416-3 2.779490+0 6.556485-3 3.255129+0 6.588426-3 3.598857+0 6.632561-3 3.747205+0 8.002335-3 2.831346+0 9.153663-3 2.269118+0 1.042180-2 1.829387+0 1.176880-2 1.484426+0 1.318221-2 1.219884+0 1.470089-2 1.004254+0 1.654862-2 8.118658-1 1.840772-2 6.675053-1 2.062119-2 5.408745-1 2.268689-2 4.517068-1 2.534808-2 3.659832-1 2.774119-2 3.075132-1 3.062220-2 2.540286-1 3.380393-2 2.092560-1 3.733418-2 1.720065-1 4.093940-2 1.430801-1 4.490576-2 1.188821-1 4.904842-2 9.945957-2 5.355971-2 8.315827-2 5.972004-2 6.660034-2 6.666626-2 5.306657-2 7.297422-2 4.403353-2 8.086421-2 3.559334-2 8.837746-2 2.956487-2 9.733010-2 2.416597-2 1.074892-1 1.963502-2 1.182769-1 1.607603-2 1.291803-1 1.337004-2 1.417208-1 1.101534-2 1.548526-1 9.164427-3 1.728579-1 7.303843-3 1.930594-1 5.815021-3 2.137812-1 4.725935-3 2.333920-1 3.957255-3 2.574098-1 3.255703-3 2.804972-1 2.753242-3 3.081414-1 2.296222-3 3.427678-1 1.880187-3 3.847573-1 1.523132-3 4.321768-1 1.242250-3 4.841724-1 1.027229-3 5.354883-1 8.741415-4 5.891615-1 7.558976-4 6.683439-1 6.307486-4 7.594651-1 5.328593-4 8.772532-1 4.486461-4 1.012672+0 3.833237-4 1.228714+0 3.138898-4 1.477239+0 2.593083-4 1.776032+0 2.142178-4 2.135261+0 1.769679-4 2.567148+0 1.461954-4 3.086391+0 1.207738-4 3.710658+0 9.977275-5 4.461192+0 8.242350-5 5.363532+0 6.809108-5 6.448384+0 5.625088-5 7.752663+0 4.646955-5 9.320751+0 3.838907-5 9.760024+0 3.659884-5 1.000000+1 7.281339-5 1 25000 7 0 5.493800+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.484175+1 2.327893-6-2.367398+1 2.860962-6-2.194261+1 3.096705-6-2.010274+1 3.243036-6-1.789963+1 3.328379-6-1.569968+1 3.390184-6-1.321054+1 3.427108-6-1.106316+1 3.455631-6-8.836327+0 3.472677-6-7.151896+0 3.482651-6-5.999034+0 3.491379-6-4.863293+0 3.499015-6-3.752666+0 3.505697-6-2.674370+0 3.511544-6-1.634691+0 3.516660-6-6.388781-1 3.521136-6 3.089049-1 3.525053-6 1.205587+0 3.528480-6 2.049148+0 3.534478-6 3.682343+0 3.538976-6 5.067904+0 3.544880-6 7.168315+0 3.550573-6 9.680067+0 3.553563-6 1.148782+1 3.567772-6 1.897195+1 3.578702-6 2.651608+1 3.586308-6 3.301779+1 3.588500-6 3.555818+1 3.598376-6 4.253187+1 3.607940-6 4.741730+1 3.616855-6 4.923674+1 3.624465-6 4.685128+1 3.631041-6 4.213499+1 3.636168-6 3.662311+1 3.639910-6 3.111837+1 3.645375-6 2.158459+1 3.648244-6 1.568613+1 3.649203-6 1.325735+1 3.653323-6 4.021397+0 3.654353-6 1.644548+0 3.655126-6-1.957020-1 3.655705-6-1.620718+0 3.656574-6-3.864545+0 3.657226-6-5.702329+0 3.657853-6-7.694874+0 3.659797-6-1.288608+1 3.664526-6-2.504659+1 3.666306-6-1.974372+1 3.668126-6-1.439204+1 3.672812-6-2.314838+0 3.673956-6 6.983110-1 3.674528-6 2.284761+0 3.674814-6 3.123458+0 3.675376-6 4.961614+0 3.675910-6 6.485287+0 3.677790-6 1.124575+1 3.685515-6 2.896784+1 3.688683-6 3.488560+1 3.693861-6 4.333378+1 3.699324-6 4.963523+1 3.705736-6 5.401759+1 3.710414-6 5.508164+1 3.718139-6 5.401688+1 3.727519-6 4.833334+1 3.746831-6 3.150459+1 3.762281-6 2.078887+1 3.764432-6 1.867528+1 3.768612-6 1.580426+1 3.772775-6 1.356743+1 3.776927-6 1.167327+1 3.785181-6 8.555897+0 3.793371-6 6.047263+0 3.801497-6 3.960838+0 3.805536-6 3.040142+0 3.809559-6 2.187556+0 3.817575-6 6.534330-1 3.825528-6-6.876209-1 3.833418-6-1.871873+0 3.841247-6-2.926587+0 3.849015-6-3.872812+0 3.864369-6-5.502417+0 3.886953-6-7.453876+0 3.909070-6-8.990768+0 3.951823-6-1.125676+1 4.005773-6-1.327765+1 4.080967-6-1.520224+1 4.211844-6-1.727987+1 4.412088-6-1.905587+1 4.859334-6-2.094333+1 5.512689-6-2.286321+1 5.610010-6-2.438654+1 5.655089-6-2.461979+1 5.693245-6-2.284381+1 5.737825-6-2.003263+1 5.765195-6-1.944768+1 5.888815-6-2.130151+1 6.350778-6-2.284036+1 6.459956-6-2.194651+1 6.684593-6-2.268249+1 7.599237-6-2.371498+1 7.872393-6-2.510557+1 7.916004-6-2.482356+1 8.047674-6-2.147533+1 8.088417-6-2.215408+1 8.134797-6-2.505525+1 8.140888-6-2.497537+1 8.204247-6-2.026065+1 8.256807-6-1.771748+1 8.298119-6-1.690685+1 8.327084-6-1.705168+1 8.470929-6-2.005529+1 8.642189-6-2.126510+1 9.322216-6-2.250263+1 9.961192-6-2.355805+1 1.011377-5-2.385499+1 1.032990-5-2.205425+1 1.055061-5-2.269184+1 1.082371-5-2.325579+1 1.112716-5-2.301232+1 2.576766-5-2.479036+1 3.665849-5-2.540742+1 4.117315-5-2.276499+1 4.353412-5-2.005994+1 4.488851-5-1.732397+1 4.567842-5-1.480842+1 4.625046-5-1.215215+1 4.666474-5-9.451760+0 4.691597-5-7.296283+0 4.711204-5-5.204360+0 4.719210-5-4.211816+0 4.726216-5-3.261616+0 4.732345-5-2.357644+0 4.737709-5-1.502816+0 4.742402-5-6.991105-1 4.746508-5 5.239753-2 4.753695-5 1.493797+0 4.759084-5 2.700859+0 4.766158-5 4.494542+0 4.772979-5 6.535122+0 4.781252-5 9.602444+0 4.787037-5 1.225594+1 4.791084-5 1.483005+1 4.811067-5 2.428889+1 4.825801-5 3.260857+1 4.840167-5 3.910021+1 4.852139-5 4.150562+1 4.860373-5 4.007336+1 4.868355-5 3.637000+1 4.876635-5 2.979173+1 4.882154-5 2.398060+1 4.891945-5 1.086211+1 4.894276-5 7.271403+0 4.895053-5 5.797375+0 4.895421-5 5.045114+0 4.896135-5 3.796703+0 4.897473-5 1.654755+0 4.899815-5-1.870843+0 4.904864-5-9.469554+0 4.906717-5-1.267725+1 4.908362-5-1.569140+1 4.914096-5-2.400481+1 4.919295-5-1.691812+1 4.921430-5-1.335973+1 4.924528-5-9.302542+0 4.927279-5-6.207553+0 4.933288-5-1.036609-1 4.934755-5 1.198563+0 4.936130-5 2.305405+0 4.937418-5 3.264094+0 4.939835-5 4.882186+0 4.941950-5 6.122533+0 4.945419-5 7.823723+0 4.949315-5 9.242194+0 4.952569-5 9.993838+0 4.955707-5 1.022877+1 4.958046-5 9.880174+0 4.962570-5 9.511620+0 4.965963-5 8.881092+0 4.967094-5 8.408976+0 4.979171-5 5.106853+0 4.979926-5 4.745255+0 4.981341-5 4.318737+0 4.983818-5 3.811066+0 4.991248-5 2.772285+0 4.992063-5 2.620981+0 4.993640-5 2.487776+0 4.995120-5 2.446202+0 4.997893-5 2.514303+0 5.000320-5 2.699219+0 5.002444-5 2.944922+0 5.004302-5 3.220545+0 5.007553-5 3.837513+0 5.009992-5 4.417870+0 5.011872-5 4.944233+0 5.014564-5 5.840486+0 5.016622-5 6.715030+0 5.018234-5 7.639483+0 5.023499-5 9.706101+0 5.025890-5 1.038823+1 5.028537-5 1.153290+1 5.030933-5 1.294309+1 5.040205-5 1.755111+1 5.043706-5 1.976484+1 5.057804-5 2.597286+1 5.068516-5 2.850803+1 5.079703-5 2.922672+1 5.087866-5 2.831075+1 5.099943-5 2.541070+1 5.125888-5 1.696777+1 5.147023-5 1.100145+1 5.150051-5 9.826303+0 5.153198-5 8.907783+0 5.162640-5 6.755316+0 5.169148-5 5.548334+0 5.175555-5 4.501883+0 5.181861-5 3.577680+0 5.188069-5 2.751120+0 5.194180-5 2.004941+0 5.206211-5 6.957547-1 5.217866-5-4.095164-1 5.229156-5-1.358589+0 5.240094-5-2.184540+0 5.250690-5-2.910553+0 5.270899-5-4.129111+0 5.290166-5-5.127287+0 5.325162-5-6.633437+0 5.355920-5-7.713114+0 5.429609-5-9.686014+0 5.505556-5-1.114518+1 5.777719-5-1.473993+1 5.835828-5-1.488914+1 5.914998-5-1.484121+1 7.441032-5-1.545232+1 8.661811-5-1.573441+1 8.843509-5-1.602943+1 8.989799-5-1.503915+1 9.233088-5-1.517507+1 1.480000-4-1.286258+1 2.016325-4-1.152903+1 2.659059-4-1.080281+1 3.418091-4-1.068148+1 4.271428-4-1.127225+1 4.940484-4-1.243370+1 5.370604-4-1.381568+1 5.716722-4-1.577781+1 5.930026-4-1.793062+1 6.019173-4-1.932889+1 6.140514-4-1.811903+1 6.203784-4-1.647352+1 6.237948-4-1.464916+1 6.251136-4-1.329218+1 6.264605-4-1.181292+1 6.281909-4-1.002905+1 6.299297-4-7.886200+0 6.315823-4-6.088771+0 6.319407-4-5.829345+0 6.331745-4-5.213163+0 6.337441-4-5.201191+0 6.345274-4-5.548811+0 6.350391-4-5.960739+0 6.358543-4-6.890955+0 6.367962-4-8.510363+0 6.374733-4-1.014000+1 6.390793-4-1.541121+1 6.413947-4-2.463334+1 6.431716-4-1.919907+1 6.448389-4-1.529132+1 6.462038-4-1.304292+1 6.482356-4-1.070695+1 6.500435-4-9.256929+0 6.540283-4-6.939971+0 6.552458-4-6.582898+0 6.558543-4-6.635764+0 6.564271-4-6.918696+0 6.587239-4-7.645929+0 6.640316-4-1.096732+1 6.676354-4-1.247505+1 6.710771-4-1.283374+1 6.920499-4-1.106998+1 7.155861-4-9.792034+0 7.398101-4-9.083810+0 7.598883-4-9.271617+0 7.662668-4-8.764183+0 7.753184-4-7.859095+0 7.888982-4-7.062870+0 8.199311-4-5.822619+0 8.542607-4-4.807747+0 8.998698-4-3.814839+0 9.482736-4-3.007742+0 9.774571-4-2.613371+0 1.034317-3-1.996705+0 1.082376-3-1.583438+0 1.144853-3-1.166886+0 1.174237-3-1.009065+0 1.228728-3-7.764823-1 1.288814-3-5.708030-1 1.350026-3-4.092560-1 1.411670-3-2.838303-1 1.450000-3-2.195170-1 1.482105-3-1.772134-1 1.516879-3-1.392385-1 1.557276-3-1.036297-1 1.585806-3-8.164555-2 1.632641-3-5.306239-2 1.663222-3-3.945691-2 1.688496-3-2.902859-2 1.714063-3-2.003884-2 1.747017-3-9.649282-3 1.785348-3-2.023077-3 1.790045-3-1.255918-3 1.804674-3 6.072127-4 1.812367-3 1.599264-3 1.827350-3 2.588582-3 1.829486-3 2.641477-3 1.843200-3 2.682699-3 1.865997-3 2.491686-3 1.873602-3 2.587636-3 1.904947-3 1.571470-3 1.911988-3 1.362476-3 1.923369-3 7.140455-4 1.935253-3-5.531191-4 1.941507-3-1.211057-3 1.953411-3-2.954764-3 1.973488-3-6.143485-3 2.004725-3-1.326117-2 2.076779-3-2.979834-2 2.106531-3-3.798558-2 2.142579-3-5.006874-2 2.254888-3-8.006891-2 2.364459-3-1.173638-1 2.647833-3-2.280009-1 3.927014-3-7.856198-1 4.797736-3-1.199865+0 5.300548-3-1.509143+0 5.657842-3-1.816153+0 5.915771-3-2.137740+0 6.098407-3-2.476835+0 6.224473-3-2.829454+0 6.320972-3-3.257104+0 6.380706-3-3.709824+0 6.443327-3-4.506004+0 6.489744-3-5.035417+0 6.520968-3-5.064669+0 6.556485-3-4.722214+0 6.632561-3-3.619308+0 6.689709-3-3.072229+0 6.758170-3-2.656190+0 6.840489-3-2.297423+0 6.964888-3-1.905502+0 7.110793-3-1.568054+0 7.282471-3-1.268827+0 7.466636-3-1.021630+0 7.700193-3-7.765071-1 7.924416-3-5.905986-1 8.115331-3-4.624805-1 8.300309-3-3.571664-1 8.507513-3-2.578661-1 8.708713-3-1.763998-1 8.930569-3-9.917092-2 9.153663-3-3.317953-2 9.288474-3 6.027104-4 9.374159-3 2.219993-2 9.620826-3 7.576146-2 9.869282-3 1.216882-1 1.015500-2 1.675614-1 1.042180-2 2.039524-1 1.067768-2 2.324446-1 1.120019-2 2.763796-1 1.203611-2 3.215402-1 1.318221-2 3.529141-1 1.470089-2 3.612295-1 1.714847-2 3.422731-1 2.534808-2 2.305069-1 2.948712-2 1.847184-1 3.483402-2 1.390439-1 3.977173-2 1.070104-1 4.490576-2 8.092049-2 5.057058-2 5.870437-2 5.531109-2 4.381108-2 5.972004-2 3.245912-2 6.498486-2 2.110350-2 6.797593-2 1.555982-2 7.131845-2 1.002114-2 7.297422-2 7.502176-3 7.613274-2 3.066413-3 7.771839-2 1.009905-3 7.835424-2 2.231975-4 7.930432-2-9.426994-4 8.086421-2-2.779161-3 8.392483-2-6.163077-3 8.837746-2-1.054690-2 9.522188-2-1.633333-2 1.044106-1-2.263904-2 1.142643-1-2.800888-2 1.291803-1-3.419610-2 1.506382-1-4.045433-2 1.821396-1-4.629845-2 2.333920-1-5.157890-2 3.305783-1-5.601315-2 5.527134-1-5.907853-2 1.619761+0-6.065430-2 4.891600+0-6.083914-2 1.000000+1-6.084536-2 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.242301-2 1.103678-6 1.893226-2 1.173736-6 2.472938-2 1.248240-6 3.243589-2 1.327474-6 4.273766-2 1.411738-6 5.659665-2 1.501350-6 7.537907-2 1.596651-6 1.010538-1 1.646546-6 1.173296-1 1.698001-6 1.365066-1 1.751063-6 1.591724-1 1.805784-6 1.860530-1 1.862215-6 2.180513-1 1.920409-6 2.562869-1 1.978596-6 3.007999-1 2.089571-6 4.056643-1 2.142472-6 4.671298-1 2.193719-6 5.352922-1 2.243365-6 6.107151-1 2.291460-6 6.939329-1 2.338052-6 7.855075-1 2.383187-6 8.860298-1 2.426912-6 9.961209-1 2.469271-6 1.116433+0 2.510306-6 1.247652+0 2.550059-6 1.390497+0 2.588569-6 1.545723+0 2.625876-6 1.714120+0 2.662017-6 1.896519+0 2.697029-6 2.093788+0 2.730946-6 2.306836+0 2.763804-6 2.536615+0 2.795635-6 2.784121+0 2.826471-6 3.050392+0 2.856344-6 3.336514+0 2.885283-6 3.643621+0 2.913317-6 3.972893+0 2.940476-6 4.325562+0 2.966786-6 4.702915+0 2.992273-6 5.106375+0 3.016965-6 5.537824+0 3.040884-6 5.999343+0 3.072000-6 6.670967+0 3.108251-6 7.566759+0 3.129318-6 8.156374+0 3.149726-6 8.786109+0 3.189268-6 1.018756+1 3.226338-6 1.175951+1 3.261091-6 1.352280+1 3.293672-6 1.549590+1 3.324217-6 1.769748+1 3.352853-6 2.014711+1 3.379699-6 2.286523+1 3.404868-6 2.587309+1 3.428463-6 2.919268+1 3.450583-6 3.284663+1 3.471321-6 3.685809+1 3.490763-6 4.125063+1 3.508990-6 4.604808+1 3.526078-6 5.127443+1 3.542097-6 5.695362+1 3.557116-6 6.310944+1 3.571195-6 6.976537+1 3.584395-6 7.694444+1 3.596770-6 8.466916+1 3.608371-6 9.296152+1 3.619247-6 1.018430+2 3.629444-6 1.113348+2 3.639003-6 1.214576+2 3.647965-6 1.322319+2 3.656366-6 1.436783+2 3.664243-6 1.558179+2 3.671627-6 1.686731+2 3.678550-6 1.822685+2 3.685040-6 1.966309+2 3.691125-6 2.117891+2 3.696829-6 2.277717+2 3.707524-6 2.635659+2 3.716882-6 3.031329+2 3.725071-6 3.463939+2 3.732236-6 3.929915+2 3.738505-6 4.422976+2 3.743991-6 4.934832+2 3.748791-6 5.456159+2 3.752991-6 5.977582+2 3.756666-6 6.490454+2 3.763097-6 7.533586+2 3.771538-6 9.233926+2 3.783555-6 1.245361+3 3.798684-6 1.816223+3 3.807993-6 2.273053+3 3.814976-6 2.670804+3 3.821267-6 3.068415+3 3.827190-6 3.474224+3 3.832434-6 3.855776+3 3.840663-6 4.487334+3 3.842720-6 4.649696+3 3.850067-6 5.236151+3 3.855210-6 5.645713+3 3.860646-6 6.069256+3 3.864503-6 6.359259+3 3.870016-6 6.751572+3 3.875110-6 7.083709+3 3.877104-6 7.204112+3 3.882981-6 7.522641+3 3.887095-6 7.709268+3 3.892606-6 7.906545+3 3.897434-6 8.025712+3 3.903103-6 8.097662+3 3.908117-6 8.098196+3 3.913482-6 8.032843+3 3.917585-6 7.937745+3 3.924712-6 7.684353+3 3.929189-6 7.472305+3 3.934704-6 7.161612+3 3.938836-6 6.897642+3 3.943477-6 6.574737+3 3.947353-6 6.287601+3 3.952336-6 5.901010+3 3.957039-6 5.524375+3 3.961741-6 5.142297+3 3.966877-6 4.725308+3 3.971145-6 4.383716+3 3.980549-6 3.663571+3 3.989953-6 3.009739+3 3.996271-6 2.616460+3 4.004059-6 2.186866+3 4.016003-6 1.646249+3 4.028316-6 1.226467+3 4.036444-6 1.014618+3 4.040485-6 9.257337+2 4.044509-6 8.467612+2 4.048518-6 7.766753+2 4.052511-6 7.145140+2 4.060467-6 6.102900+2 4.068360-6 5.280994+2 4.076192-6 4.628395+2 4.083962-6 4.104907+2 4.091672-6 3.679634+2 4.099321-6 3.329276+2 4.106911-6 3.036486+2 4.114441-6 2.788435+2 4.121913-6 2.575638+2 4.129326-6 2.391046+2 4.136681-6 2.229366+2 4.151277-6 1.958582+2 4.165644-6 1.741908+2 4.179787-6 1.564855+2 4.193709-6 1.417760+2 4.207414-6 1.293896+2 4.220904-6 1.188411+2 4.234184-6 1.097702+2 4.247256-6 1.019029+2 4.260124-6 9.502657+1 4.272791-6 8.897335+1 4.297728-6 7.875531+1 4.321887-6 7.056373+1 4.345290-6 6.387425+1 4.367962-6 5.833028+1 4.389926-6 5.367799+1 4.411203-6 4.973139+1 4.431816-6 4.635082+1 4.451784-6 4.342797+1 4.490472-6 3.856391+1 4.526743-6 3.476273+1 4.560746-6 3.172841+1 4.592625-6 2.926475+1 4.622510-6 2.723500+1 4.650528-6 2.554004+1 4.703062-6 2.279414+1 4.749029-6 2.076047+1 4.789250-6 1.921592+1 4.824444-6 1.801706+1 4.886033-6 1.618925+1 4.932224-6 1.500370+1 5.001511-6 1.346405+1 5.108242-6 1.150158+1 5.320421-6 8.594697+0 5.446960-6 7.188031+0 5.541864-6 6.171273+0 5.577453-6 5.781300+0 5.608593-6 5.426944+0 5.635841-6 5.101151+0 5.662400-6 4.763155+0 5.680545-6 4.516453+0 5.698799-6 4.251347+0 5.714771-6 4.002143+0 5.728747-6 3.768530+0 5.740975-6 3.551120+0 5.751675-6 3.351038+0 5.761038-6 3.169437+0 5.777423-6 2.843756+0 5.798927-6 2.437786+0 5.805840-6 2.326544+0 5.811024-6 2.254132+0 5.814912-6 2.207657+0 5.820744-6 2.153273+0 5.823660-6 2.134110+0 5.826576-6 2.121039+0 5.834050-6 2.119460+0 5.837711-6 2.137822+0 5.839904-6 2.155587+0 5.855259-6 2.447141+0 5.862769-6 2.715185+0 5.866355-6 2.876597+0 5.870855-6 3.111920+0 5.878541-6 3.602678+0 5.884571-6 4.070011+0 5.903863-6 6.068285+0 5.911690-6 7.091153+0 5.919051-6 8.152868+0 5.926181-6 9.260796+0 5.932958-6 1.037219+1 5.938610-6 1.133122+1 5.941307-6 1.179583+1 5.948478-6 1.304214+1 5.955144-6 1.419878+1 5.961060-6 1.520717+1 5.966732-6 1.614497+1 5.974308-6 1.733197+1 5.981098-6 1.831217+1 5.994566-6 1.995409+1 6.001664-6 2.062912+1 6.007339-6 2.106453+1 6.014807-6 2.149066+1 6.021109-6 2.171875+1 6.026256-6 2.181646+1 6.030116-6 2.183862+1 6.035907-6 2.179251+1 6.041697-6 2.165584+1 6.049547-6 2.133751+1 6.052164-6 2.120023+1 6.063042-6 2.048493+1 6.070380-6 1.989209+1 6.075776-6 1.941215+1 6.084721-6 1.855599+1 6.095676-6 1.744506+1 6.113404-6 1.562390+1 6.146440-6 1.260798+1 6.153691-6 1.205242+1 6.168195-6 1.106712+1 6.182699-6 1.024123+1 6.203003-6 9.316493+0 6.222037-6 8.643625+0 6.239882-6 8.138097+0 6.273341-6 7.405531+0 6.302618-6 6.905625+0 6.430703-6 5.262567+0 6.469129-6 4.777486+0 6.522668-6 4.111167+0 6.533731-6 4.000756+0 6.543660-6 3.918990+0 6.555607-6 3.848497+0 6.560912-6 3.828700+0 6.575715-6 3.816830+0 6.580049-6 3.826483+0 6.593052-6 3.893655+0 6.598382-6 3.938078+0 6.603046-6 3.984973+0 6.611208-6 4.084602+0 6.621921-6 4.247149+0 6.635695-6 4.501314+0 6.655853-6 4.933103+0 6.673400-6 5.322217+0 6.677418-6 5.407912+0 6.689470-6 5.648510+0 6.693487-6 5.721596+0 6.705540-6 5.913605+0 6.716433-6 6.046285+0 6.725329-6 6.122530+0 6.732001-6 6.159916+0 6.742009-6 6.183985+0 6.752017-6 6.170693+0 6.760031-6 6.134754+0 6.768045-6 6.078283+0 6.779853-6 5.962427+0 6.795870-6 5.756481+0 6.819380-6 5.394802+0 6.852950-6 4.870340+0 6.869735-6 4.644933+0 6.886520-6 4.460296+0 6.903305-6 4.322566+0 6.915374-6 4.253452+0 6.924425-6 4.217489+0 6.938003-6 4.186963+0 6.951580-6 4.180607+0 6.970445-6 4.201129+0 7.012408-6 4.286234+0 7.029193-6 4.306010+0 7.041781-6 4.309052+0 7.054370-6 4.301090+0 7.071302-6 4.274084+0 7.088496-6 4.231353+0 7.156070-6 4.021659+0 7.174464-6 3.973784+0 7.208851-6 3.899156+0 7.267060-6 3.789359+0 7.340316-6 3.641744+0 7.453071-6 3.400591+0 7.605869-6 3.081128+0 7.658859-6 2.969234+0 7.711882-6 2.855216+0 7.794506-6 2.674306+0 7.866000-6 2.510842+0 7.954916-6 2.297743+0 8.055036-6 2.048382+0 8.104289-6 1.921407+0 8.138301-6 1.831498+0 8.196639-6 1.672486+0 8.246867-6 1.530362+0 8.277446-6 1.441272+0 8.312798-6 1.335650+0 8.345941-6 1.233938+0 8.377013-6 1.136173+0 8.406143-6 1.042454+0 8.433452-6 9.529042-1 8.459054-6 8.676504-1 8.483056-6 7.868211-1 8.505558-6 7.105441-1 8.526654-6 6.389445-1 8.546431-6 5.721399-1 8.568572-6 4.983380-1 8.582355-6 4.532984-1 8.598650-6 4.013834-1 8.613928-6 3.544963-1 8.628250-6 3.126132-1 8.641678-6 2.756850-1 8.654266-6 2.436499-1 8.677131-6 1.940184-1 8.687503-6 1.763296-1 8.697228-6 1.633531-1 8.706344-6 1.550698-1 8.714890-6 1.514590-1 8.722903-6 1.524864-1 8.730414-6 1.580941-1 8.737457-6 1.681915-1 8.744059-6 1.826496-1 8.750248-6 2.012979-1 8.756050-6 2.239244-1 8.761490-6 2.502786-1 8.766590-6 2.800766-1 8.771371-6 3.130069-1 8.775854-6 3.487380-1 8.783872-6 4.258902-1 8.811596-6 8.649645-1 8.821991-6 1.121302+0 8.832705-6 1.454192+0 8.837897-6 1.644277+0 8.845809-6 1.974560+0 8.854142-6 2.380866+0 8.860837-6 2.755388+0 8.868988-6 3.274660+0 8.878771-6 3.998614+0 8.887946-6 4.786806+0 8.893057-6 5.274939+0 8.900722-6 6.076964+0 8.908387-6 6.966697+0 8.912567-6 7.490245+0 8.921972-6 8.770526+0 8.931597-6 1.023122+1 8.939282-6 1.150876+1 8.948333-6 1.314025+1 8.968828-6 1.732603+1 8.977239-6 1.922822+1 8.992346-6 2.287739+1 9.000896-6 2.505399+1 9.004976-6 2.611581+1 9.017218-6 2.936881+1 9.028239-6 3.235123+1 9.034809-6 3.413600+1 9.044198-6 3.667500+1 9.054572-6 3.943636+1 9.067199-6 4.268782+1 9.078813-6 4.552558+1 9.091304-6 4.836826+1 9.101873-6 5.057386+1 9.127167-6 5.499655+1 9.131297-6 5.559584+1 9.151540-6 5.801485+1 9.163677-6 5.905269+1 9.171393-6 5.955456+1 9.194542-6 6.034940+1 9.202518-6 6.038620+1 9.211621-6 6.028655+1 9.238930-6 5.912992+1 9.244479-6 5.874597+1 9.261124-6 5.731261+1 9.274773-6 5.584029+1 9.285049-6 5.456863+1 9.302199-6 5.216546+1 9.318594-6 4.958460+1 9.342074-6 4.552321+1 9.349901-6 4.410235+1 9.366546-6 4.101938+1 9.372095-6 3.998284+1 9.394289-6 3.586072+1 9.416483-6 3.188836+1 9.434179-6 2.891196+1 9.478756-6 2.244910+1 9.501044-6 1.983790+1 9.510895-6 1.881485+1 9.530290-6 1.702243+1 9.549079-6 1.554436+1 9.567280-6 1.432660+1 9.584913-6 1.332055+1 9.601994-6 1.248460+1 9.635090-6 1.117438+1 9.668204-6 1.016642+1 9.695205-6 9.502507+0 9.722475-6 8.936487+0 9.773607-6 8.075318+0 9.818346-6 7.471294+0 9.857494-6 7.023615+0 9.926002-6 6.370967+0 9.977383-6 5.962232+0 1.005445-5 5.441874+0 1.008729-5 5.246106+0 1.018140-5 4.747305+0 1.038144-5 3.883551+0 1.042922-5 3.699041+0 1.050827-5 3.400345+0 1.058437-5 3.111993+0 1.066046-5 2.810235+0 1.071119-5 2.591848+0 1.076456-5 2.337040+0 1.078729-5 2.219048+0 1.081265-5 2.081090+0 1.083737-5 1.942229+0 1.087332-5 1.741222+0 1.090398-5 1.585209+0 1.092410-5 1.500274+0 1.094422-5 1.436874+0 1.095092-5 1.421759+0 1.097774-5 1.398488+0 1.100457-5 1.446500+0 1.101475-5 1.486136+0 1.103418-5 1.597027+0 1.104092-5 1.646553+0 1.105103-5 1.731578+0 1.106114-5 1.829356+0 1.107303-5 1.960148+0 1.109548-5 2.250767+0 1.112734-5 2.744912+0 1.114282-5 3.010020+0 1.115984-5 3.312387+0 1.117005-5 3.496548+0 1.119727-5 3.984641+0 1.120408-5 4.103652+0 1.122450-5 4.447052+0 1.123130-5 4.555760+0 1.124322-5 4.737537+0 1.127895-5 5.204643+0 1.128868-5 5.308470+0 1.129767-5 5.394508+0 1.133340-5 5.638442+0 1.134495-5 5.682492+0 1.135859-5 5.712378+0 1.137371-5 5.717655+0 1.138405-5 5.704745+0 1.139956-5 5.661046+0 1.141508-5 5.589540+0 1.143372-5 5.469612+0 1.146953-5 5.150753+0 1.149675-5 4.849060+0 1.152398-5 4.515721+0 1.155120-5 4.168550+0 1.157226-5 3.901185+0 1.162923-5 3.238582+0 1.165771-5 2.964769+0 1.168620-5 2.741414+0 1.171468-5 2.573250+0 1.173043-5 2.504489+0 1.174618-5 2.452663+0 1.175967-5 2.421247+0 1.177990-5 2.395116+0 1.179002-5 2.390764+0 1.180013-5 2.391691+0 1.181653-5 2.403251+0 1.183292-5 2.425458+0 1.186183-5 2.483956+0 1.194032-5 2.686186+0 1.197648-5 2.764749+0 1.203451-5 2.842179+0 1.208497-5 2.858354+0 1.211498-5 2.848912+0 1.213143-5 2.839010+0 1.218100-5 2.795496+0 1.227010-5 2.704624+0 1.231219-5 2.671139+0 1.235279-5 2.647741+0 1.252672-5 2.587702+0 1.259971-5 2.549168+0 1.274160-5 2.450183+0 1.283907-5 2.386565+0 1.294155-5 2.335665+0 1.305806-5 2.294859+0 1.329815-5 2.229435+0 1.360000-5 2.141474+0 1.450191-5 1.889292+0 1.494731-5 1.788173+0 1.541442-5 1.699024+0 1.584893-5 1.633405+0 1.640590-5 1.563542+0 1.690000-5 1.522245+0 1.740143-5 1.497736+0 1.800000-5 1.492927+0 1.862087-5 1.525849+0 2.019000-5 1.706652+0 2.113489-5 1.908601+0 2.141822-5 1.980767+0 2.216503-5 2.202661+0 2.264644-5 2.368002+0 2.317395-5 2.571358+0 2.373889-5 2.812028+0 2.511886-5 3.507091+0 2.641660-5 4.285193+0 2.710800-5 4.752929+0 2.900000-5 6.193474+0 3.054921-5 7.532973+0 3.235937-5 9.251442+0 3.409044-5 1.101027+1 3.520810-5 1.218485+1 3.650000-5 1.358463+1 3.816517-5 1.539060+1 3.984264-5 1.721549+1 4.122530-5 1.871095+1 4.169076-5 1.918447+1 4.310313-5 2.040708+1 4.379626-5 2.116309+1 4.431678-5 2.184184+1 4.480529-5 2.258568+1 4.526373-5 2.342129+1 4.569397-5 2.436517+1 4.609775-5 2.542560+1 4.650000-5 2.668524+1 4.683229-5 2.791037+1 4.716603-5 2.935252+1 4.747924-5 3.095203+1 4.777317-5 3.272529+1 4.804902-5 3.468369+1 4.831201-5 3.687447+1 4.855857-5 3.927865+1 4.879865-5 4.201814+1 4.900641-5 4.477495+1 4.920956-5 4.789123+1 4.940002-5 5.126939+1 4.957857-5 5.492200+1 4.974596-5 5.886157+1 4.990290-5 6.310035+1 5.005002-5 6.765009+1 5.018795-5 7.252202+1 5.031725-5 7.772695+1 5.043848-5 8.327548+1 5.055213-5 8.917834+1 5.067282-5 9.633940+1 5.075856-5 1.020935+2 5.085220-5 1.091328+2 5.094000-5 1.165814+2 5.102230-5 1.244588+2 5.109946-5 1.327864+2 5.117180-5 1.415864+2 5.130743-5 1.613822+2 5.142611-5 1.834177+2 5.152995-5 2.076851+2 5.162082-5 2.339937+2 5.170032-5 2.619751+2 5.176989-5 2.911292+2 5.184000-5 3.257927+2 5.188403-5 3.506882+2 5.193063-5 3.800036+2 5.201219-5 4.395701+2 5.211923-5 5.362897+2 5.242161-5 9.544857+2 5.251411-5 1.132007+3 5.264273-5 1.418159+3 5.268889-5 1.531113+3 5.281794-5 1.870240+3 5.283407-5 1.914525+3 5.294699-5 2.230740+3 5.299135-5 2.355791+3 5.307604-5 2.590550+3 5.311702-5 2.700382+3 5.315421-5 2.796842+3 5.321521-5 2.946649+3 5.326191-5 3.052627+3 5.330005-5 3.132557+3 5.335011-5 3.227239+3 5.341448-5 3.329887+3 5.347126-5 3.400803+3 5.354688-5 3.464343+3 5.360409-5 3.487932+3 5.364438-5 3.491692+3 5.370761-5 3.476389+3 5.377465-5 3.432841+3 5.384515-5 3.358888+3 5.389659-5 3.288562+3 5.399166-5 3.128304+3 5.404900-5 3.016768+3 5.412955-5 2.847649+3 5.421958-5 2.650527+3 5.445436-5 2.169613+3 5.453594-5 2.033153+3 5.462151-5 1.913414+3 5.468164-5 1.844313+3 5.473924-5 1.789585+3 5.481120-5 1.736044+3 5.488626-5 1.695828+3 5.496567-5 1.667521+3 5.506003-5 1.647488+3 5.532775-5 1.612140+3 5.544766-5 1.580647+3 5.553285-5 1.546191+3 5.561543-5 1.502151+3 5.569059-5 1.453052+3 5.575336-5 1.405938+3 5.583408-5 1.338261+3 5.590034-5 1.277818+3 5.596661-5 1.214114+3 5.604945-5 1.131592+3 5.609915-5 1.081365+3 5.623168-5 9.485575+2 5.633379-5 8.507712+2 5.649675-5 7.091932+2 5.667913-5 5.772759+2 5.675092-5 5.334332+2 5.682159-5 4.945761+2 5.689116-5 4.602742+2 5.695964-5 4.300737+2 5.702705-5 4.035215+2 5.715976-5 3.593445+2 5.729522-5 3.234618+2 5.741287-5 2.982337+2 5.753353-5 2.768220+2 5.765041-5 2.594422+2 5.776364-5 2.450745+2 5.787333-5 2.329929+2 5.808586-5 2.134880+2 5.828511-5 1.986597+2 5.847191-5 1.869811+2 5.864703-5 1.775443+2 5.881120-5 1.697680+2 5.911903-5 1.573909+2 5.938838-5 1.483986+2 5.962406-5 1.416202+2 5.997199-5 1.330686+2 6.019116-5 1.283974+2 6.052938-5 1.220457+2 6.095066-5 1.152589+2 6.157546-5 1.067291+2 6.248036-5 9.645045+1 6.256231-5 9.569145+1 6.287029-5 9.336099+1 6.305340-5 9.248177+1 6.321739-5 9.207570+1 6.333225-5 9.201117+1 6.357586-5 9.241556+1 6.431255-5 9.540287+1 6.466792-5 9.624502+1 6.542014-5 9.749756+1 6.598413-5 9.880933+1 6.622950-5 9.916682+1 6.649333-5 9.932900+1 7.729672-5 9.809583+1 8.357045-5 9.842804+1 9.044258-5 9.943657+1 9.249567-5 9.925303+1 9.407209-5 9.839042+1 9.479979-5 9.780261+1 9.508216-5 9.772018+1 9.555402-5 9.811117+1 9.578270-5 9.865344+1 9.601673-5 9.949921+1 9.633364-5 1.011187+2 9.683224-5 1.044991+2 9.720000-5 1.071549+2 9.744122-5 1.087133+2 9.768376-5 1.099990+2 9.795793-5 1.110313+2 9.823131-5 1.116046+2 9.869364-5 1.117478+2 9.987579-5 1.109562+2 1.003786-4 1.110754+2 1.125000-4 1.206450+2 1.209691-4 1.266944+2 1.327265-4 1.343866+2 1.482000-4 1.434304+2 1.598638-4 1.493987+2 1.753489-4 1.561537+2 1.927525-4 1.621343+2 2.117510-4 1.671346+2 2.323301-4 1.711637+2 2.526388-4 1.738336+2 2.734482-4 1.756270+2 2.980965-4 1.764914+2 3.245264-4 1.762807+2 3.507519-4 1.749196+2 3.770174-4 1.726107+2 4.078202-4 1.685939+2 4.365158-4 1.634648+2 4.660211-4 1.569902+2 4.944277-4 1.494003+2 5.197341-4 1.413435+2 5.426841-4 1.327195+2 5.623413-4 1.240670+2 5.800569-4 1.150290+2 5.935959-4 1.071303+2 6.069110-4 9.833695+1 6.185296-4 8.966756+1 6.282666-4 8.150046+1 6.371340-4 7.319694+1 6.448477-4 6.518238+1 6.503151-4 5.897029+1 6.551987-4 5.301549+1 6.597816-4 4.724244+1 6.639956-4 4.241565+1 6.675397-4 3.958250+1 6.687167-4 3.902864+1 6.718584-4 3.869669+1 6.746344-4 3.991952+1 6.770030-4 4.224674+1 6.794264-4 4.621501+1 6.814555-4 5.129559+1 6.830686-4 5.696023+1 6.844244-4 6.320227+1 6.852176-4 6.762018+1 6.861154-4 7.341026+1 6.870505-4 8.044307+1 6.879224-4 8.802360+1 6.891351-4 1.003837+2 6.910506-4 1.246681+2 6.932100-4 1.595339+2 6.945973-4 1.860509+2 6.960463-4 2.167682+2 6.977560-4 2.560111+2 6.983316-4 2.696886+2 6.996501-4 3.013066+2 7.006522-4 3.251099+2 7.016063-4 3.471130+2 7.022572-4 3.615443+2 7.026863-4 3.707288+2 7.037205-4 3.915693+2 7.047477-4 4.101124+2 7.050834-4 4.156463+2 7.061496-4 4.313390+2 7.069534-4 4.411682+2 7.080228-4 4.514686+2 7.089012-4 4.575387+2 7.100567-4 4.623242+2 7.110139-4 4.636892+2 7.122130-4 4.623907+2 7.135083-4 4.577326+2 7.150170-4 4.488722+2 7.167173-4 4.356092+2 7.176406-4 4.273571+2 7.199465-4 4.046162+2 7.217818-4 3.850795+2 7.240800-4 3.595526+2 7.253780-4 3.448781+2 7.312095-4 2.830383+2 7.330000-4 2.679546+2 7.345647-4 2.571870+2 7.362625-4 2.483154+2 7.376294-4 2.433326+2 7.386069-4 2.409039+2 7.394100-4 2.395717+2 7.405000-4 2.386405+2 7.415000-4 2.385794+2 7.426673-4 2.393263+2 7.443700-4 2.416603+2 7.464300-4 2.458110+2 7.523000-4 2.598779+2 7.565866-4 2.687199+2 7.596190-4 2.737377+2 7.651485-4 2.807161+2 7.715663-4 2.864550+2 7.775725-4 2.904724+2 7.870584-4 2.953206+2 7.966810-4 2.987572+2 8.037558-4 3.002002+2 8.119898-4 3.004685+2 8.220553-4 2.994496+2 8.265015-4 3.001819+2 8.298956-4 3.022381+2 8.331918-4 3.058809+2 8.354683-4 3.093693+2 8.402209-4 3.186512+2 8.455229-4 3.301879+2 8.489367-4 3.370362+2 8.524907-4 3.431309+2 8.568089-4 3.490394+2 8.612167-4 3.537276+2 8.698542-4 3.607176+2 8.769857-4 3.654026+2 8.885779-4 3.719250+2 9.006271-4 3.777757+2 9.171369-4 3.848717+2 9.468281-4 3.950765+2 9.717884-4 4.011843+2 1.022937-3 4.102329+2 1.052795-3 4.140818+2 1.112372-3 4.187460+2 1.202264-3 4.222292+2 1.272661-3 4.225684+2 1.336995-3 4.211178+2 1.504408-3 4.135046+2 1.642607-3 4.057418+2 1.820700-3 3.924911+2 2.039400-3 3.767491+2 2.340315-3 3.543577+2 2.660725-3 3.315410+2 3.010891-3 3.081238+2 3.333039-3 2.882900+2 3.751450-3 2.641278+2 4.136912-3 2.435850+2 4.317520-3 2.346586+2 4.695441-3 2.165649+2 4.886581-3 2.078806+2 5.097027-3 1.986132+2 5.293586-3 1.901908+2 5.470196-3 1.827950+2 5.646227-3 1.755529+2 5.810195-3 1.688579+2 5.955493-3 1.629034+2 6.079463-3 1.577747+2 6.278437-3 1.493145+2 6.375329-3 1.450205+2 6.445758-3 1.417652+2 6.528736-3 1.377173+2 6.593202-3 1.343733+2 6.650991-3 1.311857+2 6.702235-3 1.281478+2 6.772550-3 1.234746+2 6.814100-3 1.202835+2 6.848314-3 1.172835+2 6.876772-3 1.144391+2 6.911815-3 1.104114+2 6.951988-3 1.051530+2 7.001317-3 9.872406+1 7.023540-3 9.643597+1 7.041672-3 9.510953+1 7.060018-3 9.438796+1 7.068055-3 9.428817+1 7.079458-3 9.437996+1 7.095810-3 9.498247+1 7.107093-3 9.570320+1 7.126676-3 9.746801+1 7.152204-3 1.005035+2 7.206778-3 1.079884+2 7.225061-3 1.103552+2 7.253745-3 1.136655+2 7.284169-3 1.165788+2 7.299536-3 1.178288+2 7.327449-3 1.197733+2 7.351981-3 1.211947+2 7.384902-3 1.227777+2 7.444421-3 1.249716+2 7.521012-3 1.269599+2 7.625703-3 1.287331+2 7.726434-3 1.297624+2 7.855921-3 1.304310+2 8.030955-3 1.305172+2 8.258849-3 1.297547+2 8.579214-3 1.277256+2 8.980556-3 1.242480+2 9.440874-3 1.196686+2 1.000540-2 1.138068+2 1.080812-2 1.057414+2 1.170459-2 9.743403+1 1.288571-2 8.769723+1 1.460075-2 7.592782+1 1.636693-2 6.607602+1 1.824175-2 5.749635+1 1.982026-2 5.142380+1 2.139366-2 4.622352+1 2.355526-2 4.016696+1 2.620674-2 3.412365+1 3.009830-2 2.735799+1 3.879270-2 1.812542+1 4.551676-2 1.385721+1 5.822156-2 9.138509+0 7.043453-2 6.574919+0 8.392976-2 4.823807+0 1.027518-1 3.348924+0 1.218428-1 2.444679+0 1.591550-1 1.477368+0 2.152450-1 8.295834-1 2.940610-1 4.532976-1 4.184989-1 2.269672-1 6.433730-1 9.690422-2 1.347258+0 2.222175-2 4.068655+0 2.440276-3 1.228714+1 2.676160-4 3.710658+1 2.934405-5 1.120601+2 3.217518-6 3.384160+2 3.527939-7 1.258925+3 2.549311-8 3.981072+3 2.549311-9 1.258925+4 2.54931-10 3.981072+4 2.54931-11 1.000000+5 4.04039-12 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.080800-6 1.258900-6 1.712900-6 1.584900-6 2.714800-6 1.995300-6 4.302700-6 2.511900-6 6.819300-6 3.162300-6 1.080800-5 3.981100-6 1.712900-5 5.011900-6 2.714800-5 6.309600-6 4.302600-5 7.943300-6 6.819100-5 1.000000-5 1.080700-4 1.258900-5 1.712800-4 1.584900-5 2.714600-4 1.995300-5 4.302300-4 2.511900-5 6.818400-4 3.162300-5 1.080500-3 3.981100-5 1.711700-3 5.011900-5 2.711700-3 6.309600-5 4.296200-3 7.943300-5 6.805300-3 1.000000-4 1.077000-2 1.258900-4 1.704100-2 1.584900-4 2.692300-2 1.995300-4 4.246300-2 2.511900-4 6.678300-2 3.162300-4 1.046100-1 3.981100-4 1.627600-1 5.011900-4 2.507000-1 6.309600-4 3.804200-1 7.943300-4 5.648500-1 1.000000-3 8.146000-1 1.258900-3 1.134200+0 1.584900-3 1.519200+0 1.995300-3 1.969100+0 2.511900-3 2.500100+0 3.162300-3 3.139200+0 3.981100-3 3.904000+0 5.011900-3 4.788600+0 6.309600-3 5.784100+0 7.943300-3 6.861600+0 1.000000-2 7.966300+0 1.258900-2 9.021600+0 1.584900-2 9.982000+0 1.995300-2 1.081200+1 2.511900-2 1.156200+1 3.162300-2 1.211600+1 3.981100-2 1.246900+1 5.011900-2 1.262500+1 6.309600-2 1.259700+1 7.943300-2 1.241000+1 1.000000-1 1.206400+1 1.258900-1 1.158500+1 1.584900-1 1.099700+1 1.995300-1 1.033800+1 2.511900-1 9.633800+0 3.162300-1 8.907900+0 3.981100-1 8.180900+0 5.011900-1 7.466600+0 6.309600-1 6.773400+0 7.943300-1 6.110600+0 1.000000+0 5.479000+0 1.258900+0 4.883500+0 1.584900+0 4.325500+0 1.995300+0 3.807200+0 2.511900+0 3.330000+0 3.162300+0 2.895000+0 3.981100+0 2.501900+0 5.011900+0 2.150400+0 6.309600+0 1.838700+0 7.943300+0 1.564600+0 1.000000+1 1.325500+0 1.258900+1 1.118400+0 1.584900+1 9.402400-1 1.995300+1 7.878400-1 2.511900+1 6.581800-1 3.162300+1 5.483700-1 3.981100+1 4.557700-1 5.011900+1 3.779600-1 6.309600+1 3.128200-1 7.943300+1 2.584300-1 1.000000+2 2.131400-1 1.258900+2 1.755300-1 1.584900+2 1.443500-1 1.995300+2 1.185600-1 2.511900+2 9.726200-2 3.162300+2 7.970400-2 3.981100+2 6.525000-2 5.011900+2 5.336700-2 6.309600+2 4.361000-2 7.943300+2 3.560800-2 1.000000+3 2.905200-2 1.258900+3 2.368600-2 1.584900+3 1.929800-2 1.995300+3 1.571200-2 2.511900+3 1.278500-2 3.162300+3 1.039800-2 3.981100+3 8.451100-3 5.011900+3 6.865400-3 6.309600+3 5.574500-3 7.943300+3 4.524100-3 1.000000+4 3.670000-3 1.258900+4 2.975800-3 1.584900+4 2.412000-3 1.995300+4 1.954100-3 2.511900+4 1.582600-3 3.162300+4 1.281200-3 3.981100+4 1.036900-3 5.011900+4 8.388400-4 6.309600+4 6.784000-4 7.943300+4 5.484600-4 1.000000+5 4.432800-4 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159551-4 3.981072-4 3.976751-4 5.011872-4 5.005051-4 6.309573-4 6.298851-4 7.943282-4 7.926399-4 1.000000-3 9.973571-4 1.258925-3 1.254810-3 1.584893-3 1.578498-3 1.995262-3 1.985328-3 2.511886-3 2.496408-3 3.162278-3 3.138056-3 3.981072-3 3.943092-3 5.011872-3 4.952279-3 6.309573-3 6.216534-3 7.943282-3 7.798614-3 1.000000-2 9.775697-3 1.258925-2 1.224331-2 1.584893-2 1.531741-2 1.995262-2 1.913679-2 2.511886-2 2.387099-2 3.162278-2 2.972106-2 3.981072-2 3.692994-2 5.011872-2 4.577297-2 6.309573-2 5.658697-2 7.943282-2 6.972503-2 1.000000-1 8.564785-2 1.258925-1 1.048639-1 1.584893-1 1.279619-1 1.995262-1 1.556155-1 2.511886-1 1.885877-1 3.162278-1 2.277755-1 3.981072-1 2.741948-1 5.011872-1 3.290201-1 6.309573-1 3.936676-1 7.943282-1 4.696553-1 1.000000+0 5.591453-1 1.258925+0 6.645075-1 1.584893+0 7.888590-1 1.995262+0 9.359531-1 2.511886+0 1.110485+0 3.162278+0 1.318228+0 3.981072+0 1.566116+0 5.011872+0 1.862887+0 6.309573+0 2.219049+0 7.943282+0 2.647541+0 1.000000+1 3.164119+0 1.258925+1 3.788129+0 1.584893+1 4.543255+0 1.995262+1 5.458410+0 2.511886+1 6.569159+0 3.162278+1 7.919121+0 3.981072+1 9.561566+0 5.011872+1 1.156233+1 6.309573+1 1.400189+1 7.943282+1 1.697954+1 1.000000+2 2.061693+1 1.258925+2 2.506419+1 1.584893+2 3.050581+1 1.995262+2 3.716904+1 2.511886+2 4.533415+1 3.162278+2 5.534664+1 3.981072+2 6.763118+1 5.011872+2 8.271440+1 6.309573+2 1.012436+2 7.943282+2 1.240200+2 1.000000+3 1.520276+2 1.258925+3 1.864912+2 1.584893+3 2.289203+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739840-9 3.981072-5 4.341899-9 5.011872-5 6.881063-9 6.309573-5 1.090538-8 7.943282-5 1.728182-8 1.000000-4 2.738162-8 1.258925-4 4.338684-8 1.584893-4 6.872421-8 1.995262-4 1.088422-7 2.511886-4 1.723068-7 3.162278-4 2.726521-7 3.981072-4 4.320988-7 5.011872-4 6.821167-7 6.309573-4 1.072282-6 7.943282-4 1.688342-6 1.000000-3 2.642916-6 1.258925-3 4.115029-6 1.584893-3 6.395560-6 1.995262-3 9.934017-6 2.511886-3 1.547831-5 3.162278-3 2.422117-5 3.981072-3 3.797989-5 5.011872-3 5.959285-5 6.309573-3 9.303976-5 7.943282-3 1.446682-4 1.000000-2 2.243028-4 1.258925-2 3.459423-4 1.584893-2 5.315180-4 1.995262-2 8.158331-4 2.511886-2 1.247877-3 3.162278-2 1.901718-3 3.981072-2 2.880778-3 5.011872-2 4.345754-3 6.309573-2 6.508760-3 7.943282-2 9.707797-3 1.000000-1 1.435215-2 1.258925-1 2.102868-2 1.584893-1 3.052738-2 1.995262-1 4.391077-2 2.511886-1 6.260096-2 3.162278-1 8.845222-2 3.981072-1 1.239123-1 5.011872-1 1.721671-1 6.309573-1 2.372897-1 7.943282-1 3.246729-1 1.000000+0 4.408547-1 1.258925+0 5.944179-1 1.584893+0 7.960342-1 1.995262+0 1.059309+0 2.511886+0 1.401401+0 3.162278+0 1.844049+0 3.981072+0 2.414955+0 5.011872+0 3.148986+0 6.309573+0 4.090524+0 7.943282+0 5.295742+0 1.000000+1 6.835881+0 1.258925+1 8.801125+0 1.584893+1 1.130568+1 1.995262+1 1.449421+1 2.511886+1 1.854970+1 3.162278+1 2.370366+1 3.981072+1 3.024915+1 5.011872+1 3.855639+1 6.309573+1 4.909384+1 7.943282+1 6.245329+1 1.000000+2 7.938307+1 1.258925+2 1.008284+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608811+2 3.981072+2 3.304760+2 5.011872+2 4.184728+2 6.309573+2 5.297138+2 7.943282+2 6.703082+2 1.000000+3 8.479724+2 1.258925+3 1.072434+3 1.584893+3 1.355973+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.530000-6 1.722320+6 7.600000-6 1.630228+6 7.762471-6 1.415276+6 8.000000-6 1.150546+6 8.222426-6 9.458783+5 8.420000-6 7.934640+5 8.609938-6 6.688789+5 8.810489-6 5.569272+5 9.015711-6 4.603220+5 9.200000-6 3.866200+5 9.350000-6 3.344800+5 9.500000-6 2.885340+5 9.660509-6 2.454679+5 9.772372-6 2.187764+5 9.930000-6 1.853152+5 1.005000-5 1.627674+5 1.020000-5 1.377692+5 1.031000-5 1.214696+5 1.044000-5 1.042155+5 1.055000-5 9.116260+4 1.065000-5 8.042500+4 1.077000-5 6.884280+4 1.088000-5 5.937200+4 1.096478-5 5.276273+4 1.105000-5 4.668200+4 1.115000-5 4.021760+4 1.123000-5 3.553300+4 1.131000-5 3.125320+4 1.138000-5 2.782200+4 1.146000-5 2.423640+4 1.154000-5 2.099000+4 1.161449-5 1.825270+4 1.168000-5 1.606046+4 1.174898-5 1.395890+4 1.182000-5 1.200396+4 1.188502-5 1.039086+4 1.195000-5 8.938420+3 1.201500-5 7.637360+3 1.207000-5 6.649180+3 1.213000-5 5.683680+3 1.218000-5 4.964840+3 1.224000-5 4.200480+3 1.230269-5 3.511202+3 1.242000-5 2.502560+3 1.247000-5 2.177300+3 1.251000-5 1.959620+3 1.253500-5 1.842160+3 1.256500-5 1.719600+3 1.259000-5 1.632454+3 1.262000-5 1.545448+3 1.264200-5 1.493558+3 1.266000-5 1.458460+3 1.268500-5 1.420498+3 1.271000-5 1.394836+3 1.272700-5 1.384284+3 1.274000-5 1.381140+3 1.274000-5 1.912059+6 1.275000-5 1.912014+6 1.277000-5 1.911931+6 1.279500-5 1.911837+6 1.282000-5 1.911756+6 1.284200-5 1.911693+6 1.287000-5 1.911625+6 1.290000-5 1.911568+6 1.291000-5 1.911552+6 1.291000-5 3.172349+6 1.292000-5 3.172273+6 1.295000-5 3.172055+6 1.299000-5 3.171787+6 1.303167-5 3.171535+6 1.317000-5 3.170884+6 1.322000-5 3.172265+6 1.330000-5 3.174530+6 1.335000-5 3.175977+6 1.337000-5 3.176924+6 1.342000-5 3.179300+6 1.348963-5 3.182640+6 1.355000-5 3.185564+6 1.360000-5 3.188003+6 1.361000-5 3.188825+6 1.368000-5 3.194575+6 1.370000-5 3.196217+6 1.376000-5 3.202406+6 1.382000-5 3.208601+6 1.390000-5 3.216876+6 1.397000-5 3.224130+6 1.405000-5 3.232431+6 1.412538-5 3.240252+6 1.415000-5 3.243509+6 1.420000-5 3.250094+6 1.425000-5 3.257680+6 1.435000-5 3.272830+6 1.445800-5 3.289191+6 1.455000-5 3.303122+6 1.462177-5 3.313975+6 1.465000-5 3.318879+6 1.470000-5 3.327526+6 1.480000-5 3.346495+6 1.495000-5 3.374896+6 1.507000-5 3.397596+6 1.513561-5 3.409975+6 1.522000-5 3.427693+6 1.531087-5 3.446709+6 1.540000-5 3.466837+6 1.560000-5 3.511907+6 1.580000-5 3.556930+6 1.584893-5 3.567907+6 1.603245-5 3.612834+6 1.621810-5 3.660690+6 1.640590-5 3.709102+6 1.670000-5 3.784901+6 1.678804-5 3.807539+6 1.690000-5 3.838176+6 1.700000-5 3.866626+6 1.730000-5 3.951906+6 1.760000-5 4.037294+6 1.785000-5 4.108525+6 1.800000-5 4.151241+6 1.819701-5 4.211012+6 1.862087-5 4.339804+6 1.905461-5 4.472033+6 1.950000-5 4.608267+6 2.000000-5 4.761752+6 2.055000-5 4.931257+6 2.113489-5 5.112295+6 2.170000-5 5.287987+6 2.238721-5 5.502691+6 2.264644-5 5.583901+6 2.317395-5 5.744522+6 2.400000-5 5.991408+6 2.483133-5 6.240882+6 2.500000-5 6.289402+6 2.511886-5 6.323523+6 2.610000-5 6.597600+6 2.691535-5 6.825643+6 2.710800-5 6.876663+6 2.730000-5 6.925551+6 2.851018-5 7.232995+6 2.884032-5 7.316690+6 2.900000-5 7.354631+6 3.019952-5 7.625937+6 3.054921-5 7.704637+6 3.090295-5 7.778085+6 3.198895-5 7.990654+6 3.235937-5 8.062639+6 3.273407-5 8.128391+6 3.400000-5 8.332859+6 3.427678-5 8.377107+6 3.467369-5 8.432697+6 3.630781-5 8.637432+6 3.650000-5 8.657511+6 3.801894-5 8.795877+6 3.850000-5 8.830749+6 3.900000-5 8.860870+6 4.000000-5 8.919967+6 4.027170-5 8.930688+6 4.216965-5 8.984217+6 4.220000-5 8.985048+6 4.415704-5 8.985894+6 4.570882-5 8.947435+6 4.650000-5 8.928217+6 4.677351-5 8.919083+6 4.900000-5 8.812740+6 4.954502-5 8.782986+6 5.188000-5 8.629181+6 5.248075-5 8.586447+6 5.400000-5 8.465978+6 5.500000-5 8.389242+6 5.559043-5 8.340901+6 5.888437-5 8.057451+6 5.900000-5 8.047947+6 6.309573-5 7.678026+6 6.382635-5 7.608029+6 6.645000-5 7.367817+6 6.645000-5 8.194197+6 6.720000-5 8.107906+6 6.800000-5 8.013226+6 6.804000-5 8.007918+6 6.804000-5 8.403898+6 6.870000-5 8.309976+6 6.900000-5 8.267023+6 6.918310-5 8.240359+6 6.950000-5 8.194641+6 7.000000-5 8.122337+6 7.030000-5 8.078759+6 7.150000-5 7.907286+6 7.328245-5 7.664630+6 7.450000-5 7.497395+6 7.585776-5 7.323316+6 7.620000-5 7.280815+6 7.650000-5 7.244839+6 7.760000-5 7.117153+6 7.800000-5 7.072847+6 7.852356-5 7.016341+6 7.950000-5 6.907729+6 8.080000-5 6.772726+6 8.190000-5 6.666233+6 8.317638-5 6.550808+6 8.413951-5 6.465341+6 8.450000-5 6.432845+6 8.570000-5 6.330394+6 8.709636-5 6.218976+6 8.730000-5 6.203249+6 8.810489-5 6.143344+6 8.850000-5 6.112924+6 8.912509-5 6.065986+6 9.015711-5 5.988938+6 9.120108-5 5.913885+6 9.150000-5 5.893178+6 9.225714-5 5.841954+6 9.332543-5 5.771418+6 9.350000-5 5.759453+6 9.400000-5 5.725783+6 9.500000-5 5.660840+6 9.549926-5 5.627891+6 9.800000-5 5.470977+6 9.900000-5 5.411621+6 1.010100-4 5.291411+6 1.010100-4 5.639943+6 1.011579-4 5.631263+6 1.035142-4 5.493280+6 1.059254-4 5.361466+6 1.060000-4 5.357344+6 1.071519-4 5.294197+6 1.100000-4 5.141095+6 1.109175-4 5.094122+6 1.122018-4 5.029486+6 1.135011-4 4.963675+6 1.150000-4 4.890005+6 1.161449-4 4.833881+6 1.188502-4 4.705835+6 1.202264-4 4.644112+6 1.205000-4 4.631676+6 1.216186-4 4.581326+6 1.230269-4 4.518919+6 1.258925-4 4.395826+6 1.260000-4 4.391337+6 1.300000-4 4.229540+6 1.303167-4 4.216969+6 1.315000-4 4.170744+6 1.333521-4 4.098882+6 1.364583-4 3.982778+6 1.396368-4 3.869086+6 1.412538-4 3.813982+6 1.428894-4 3.757149+6 1.445440-4 3.701610+6 1.462177-4 3.646432+6 1.479108-4 3.592030+6 1.513561-4 3.484454+6 1.520000-4 3.464671+6 1.548817-4 3.378285+6 1.566751-4 3.325776+6 1.584893-4 3.273219+6 1.621810-4 3.170605+6 1.650000-4 3.095291+6 1.659587-4 3.069882+6 1.698244-4 2.970039+6 1.737801-4 2.871302+6 1.760000-4 2.818270+6 1.778279-4 2.775793+6 1.800000-4 2.726029+6 1.819701-4 2.681582+6 1.840772-4 2.634962+6 1.905461-4 2.500087+6 1.950000-4 2.411228+6 1.980000-4 2.354219+6 2.018366-4 2.284092+6 2.065380-4 2.201959+6 2.089296-4 2.161940+6 2.113489-4 2.122132+6 2.150000-4 2.064354+6 2.162719-4 2.044530+6 2.190000-4 2.002777+6 2.290868-4 1.859987+6 2.317395-4 1.824792+6 2.344229-4 1.789602+6 2.371374-4 1.755051+6 2.450000-4 1.660757+6 2.454709-4 1.655291+6 2.540973-4 1.559672+6 2.580000-4 1.519336+6 2.600160-4 1.498821+6 2.630268-4 1.468809+6 2.691535-4 1.409808+6 2.754229-4 1.353527+6 2.800000-4 1.314645+6 2.818383-4 1.299334+6 2.851018-4 1.272461+6 3.019952-4 1.145949+6 3.054921-4 1.122215+6 3.162278-4 1.052491+6 3.280000-4 9.833662+5 3.311311-4 9.661041+5 3.400000-4 9.190269+5 3.467369-4 8.855824+5 3.507519-4 8.665138+5 3.548134-4 8.478975+5 3.589219-4 8.294501+5 3.758374-4 7.588154+5 3.801894-4 7.421523+5 3.850000-4 7.242686+5 3.890451-4 7.096921+5 3.935501-4 6.937442+5 4.073803-4 6.479365+5 4.120975-4 6.334070+5 4.168694-4 6.191231+5 4.216965-4 6.051331+5 4.315191-4 5.777979+5 4.365158-4 5.645747+5 4.518559-4 5.266562+5 4.623810-4 5.027292+5 4.841724-4 4.574979+5 4.897788-4 4.468429+5 4.954502-4 4.364534+5 5.000000-4 4.283243+5 5.069907-4 4.162371+5 5.188000-4 3.966811+5 5.370318-4 3.690931+5 5.400000-4 3.648672+5 5.559043-4 3.432776+5 5.623413-4 3.349644+5 5.821032-4 3.111673+5 5.956621-4 2.962617+5 6.025596-4 2.890440+5 6.165950-4 2.751156+5 6.500000-4 2.454251+5 6.531306-4 2.428836+5 6.760830-4 2.252607+5 6.839116-4 2.195996+5 7.161434-4 1.984008+5 7.206900-4 1.956392+5 7.206900-4 5.753592+5 7.208600-4 5.853247+5 7.211500-4 6.061030+5 7.214500-4 6.266872+5 7.217500-4 6.464596+5 7.222000-4 6.744628+5 7.226500-4 7.008504+5 7.230000-4 7.202541+5 7.235000-4 7.465851+5 7.242000-4 7.805864+5 7.248000-4 8.073041+5 7.253000-4 8.280415+5 7.261000-4 8.585596+5 7.269000-4 8.860074+5 7.277000-4 9.105529+5 7.285000-4 9.324521+5 7.295000-4 9.563895+5 7.307000-4 9.805666+5 7.319000-4 1.000311+6 7.330000-4 1.014945+6 7.335500-4 1.020527+6 7.335500-4 1.203337+6 7.337000-4 1.209206+6 7.340500-4 1.225095+6 7.343500-4 1.238225+6 7.345000-4 1.244541+6 7.346500-4 1.250530+6 7.351000-4 1.267680+6 7.355500-4 1.283913+6 7.357000-4 1.289059+6 7.360000-4 1.298803+6 7.365000-4 1.314069+6 7.372000-4 1.334069+6 7.373000-4 1.336739+6 7.377000-4 1.346539+6 7.385000-4 1.364655+6 7.392000-4 1.379172+6 7.394100-4 1.383108+6 7.400000-4 1.393060+6 7.410000-4 1.407961+6 7.413102-4 1.411939+6 7.415000-4 1.414392+6 7.420000-4 1.419963+6 7.430000-4 1.429292+6 7.440000-4 1.437027+6 7.450000-4 1.442968+6 7.454800-4 1.445138+6 7.470000-4 1.449100+6 7.485000-4 1.450647+6 7.500000-4 1.450265+6 7.523000-4 1.445663+6 7.550000-4 1.437046+6 7.585776-4 1.422344+6 7.673615-4 1.384154+6 7.943282-4 1.275630+6 8.000000-4 1.254343+6 8.280000-4 1.156345+6 8.317638-4 1.143680+6 8.429600-4 1.107085+6 8.429600-4 1.254195+6 8.609938-4 1.194892+6 8.810489-4 1.134692+6 9.120108-4 1.050150+6 9.225714-4 1.023040+6 9.332543-4 9.964304+5 9.440609-4 9.690998+5 9.549926-4 9.425358+5 9.660509-4 9.168385+5 9.700000-4 9.079058+5 9.772372-4 8.918495+5 9.885531-4 8.681921+5 1.023293-3 8.006090+5 1.047129-3 7.585230+5 1.059254-3 7.381855+5 1.083927-3 6.991688+5 1.096478-3 6.801606+5 1.135011-3 6.262546+5 1.150000-3 6.069254+5 1.202264-3 5.452135+5 1.216186-3 5.299801+5 1.244515-3 5.007919+5 1.258925-3 4.868212+5 1.318257-3 4.343631+5 1.333521-3 4.220732+5 1.348963-3 4.101338+5 1.364583-3 3.985422+5 1.380384-3 3.872869+5 1.412538-3 3.657349+5 1.428894-3 3.554140+5 1.496236-3 3.167898+5 1.513561-3 3.077602+5 1.548817-3 2.902601+5 1.570000-3 2.803693+5 1.584893-3 2.736955+5 1.603245-3 2.657698+5 1.659587-3 2.433753+5 1.678804-3 2.363179+5 1.737801-3 2.162149+5 1.757924-3 2.099095+5 1.778279-3 2.037936+5 1.800000-3 1.975364+5 1.819701-3 1.920633+5 1.862087-3 1.809934+5 1.905461-3 1.705718+5 1.949845-3 1.607139+5 1.950000-3 1.606809+5 1.972423-3 1.559533+5 2.000000-3 1.503726+5 2.018366-3 1.468107+5 2.065380-3 1.382101+5 2.162719-3 1.225288+5 2.187762-3 1.188895+5 2.213095-3 1.153598+5 2.238721-3 1.119355+5 2.264644-3 1.085908+5 2.290868-3 1.053457+5 2.344229-3 9.911273+4 2.454709-3 8.775915+4 2.483133-3 8.512375+4 2.540973-3 8.009229+4 2.570396-3 7.767389+4 2.630268-3 7.302858+4 2.660725-3 7.081249+4 2.818383-3 6.072555+4 2.851018-3 5.889171+4 2.917427-3 5.538032+4 2.951209-3 5.369164+4 3.019952-3 5.044949+4 3.090295-3 4.740853+4 3.198895-3 4.319335+4 3.235937-3 4.187508+4 3.273407-3 4.059388+4 3.311311-3 3.935303+4 3.349654-3 3.815015+4 3.388442-3 3.697775+4 3.427678-3 3.583449+4 3.589219-3 3.161346+4 3.630781-3 3.063971+4 3.715352-3 2.878308+4 3.758374-3 2.789553+4 3.801894-3 2.703546+4 3.890451-3 2.538467+4 4.120975-3 2.167543+4 4.168694-3 2.100296+4 4.216965-3 2.035137+4 4.265795-3 1.972058+4 4.315191-3 1.910944+4 4.365158-3 1.851594+4 4.415704-3 1.793694+4 4.466836-3 1.737649+4 4.677351-3 1.529792+4 4.841724-3 1.390777+4 5.011872-3 1.264527+4 5.069907-3 1.224694+4 5.128614-3 1.186150+4 5.188000-3 1.148849+4 5.370318-3 1.043474+4 5.559043-3 9.479915+3 5.623413-3 9.181826+3 5.754399-3 8.613638+3 5.821032-3 8.341056+3 5.888437-3 8.076690+3 5.956621-3 7.820928+3 6.095369-3 7.334033+3 6.165950-3 7.101246+3 6.309573-3 6.658064+3 6.531306-3 6.045628+3 6.606934-3 5.854405+3 6.760830-3 5.487290+3 6.839116-3 5.312296+3 6.918310-3 5.143024+3 6.998420-3 4.979274+3 7.079458-3 4.820871+3 7.083400-3 4.813343+3 7.083400-3 3.835082+4 7.161434-3 3.723811+4 7.220000-3 3.643154+4 7.244360-3 3.613033+4 7.500000-3 3.317098+4 7.585776-3 3.222079+4 7.673615-3 3.128653+4 7.852356-3 2.949674+4 8.128305-3 2.700248+4 8.222426-3 2.621909+4 8.317638-3 2.545850+4 8.413951-3 2.471974+4 8.511380-3 2.400249+4 8.912509-3 2.124755+4 9.120108-3 1.998984+4 9.549926-3 1.769367+4 9.660509-3 1.716222+4 9.772372-3 1.664659+4 1.035142-2 1.429241+4 1.047129-2 1.386277+4 1.059254-2 1.344605+4 1.109175-2 1.190085+4 1.122018-2 1.153378+4 1.135011-2 1.117803+4 1.148154-2 1.083315+4 1.202264-2 9.557164+3 1.230269-2 8.976162+3 1.244515-2 8.699041+3 1.303167-2 7.673588+3 1.318257-2 7.436749+3 1.350000-2 6.970219+3 1.380384-2 6.560302+3 1.400000-2 6.313040+3 1.412538-2 6.158367+3 1.445440-2 5.775814+3 1.479108-2 5.417029+3 1.531087-2 4.920220+3 1.548817-2 4.764966+3 1.584893-2 4.469048+3 1.603245-2 4.328070+3 1.659587-2 3.931221+3 1.698244-2 3.686858+3 1.737801-2 3.457684+3 1.757924-2 3.346573+3 1.778279-2 3.239044+3 1.798871-2 3.134959+3 1.819701-2 3.034224+3 1.905461-2 2.662682+3 1.927525-2 2.577134+3 1.949845-2 2.494338+3 2.000000-2 2.320808+3 2.137962-2 1.920415+3 2.162719-2 1.857752+3 2.290868-2 1.573827+3 2.300000-2 1.555889+3 2.371374-2 1.424621+3 2.426610-2 1.333083+3 2.540973-2 1.167296+3 2.570396-2 1.129182+3 2.600160-2 1.092313+3 2.630268-2 1.056201+3 2.691535-2 9.875236+2 2.722701-2 9.548787+2 2.754229-2 9.232804+2 2.786121-2 8.927302+2 2.818383-2 8.631879+2 3.019952-2 7.053697+2 3.126079-2 6.376485+2 3.162278-2 6.165527+2 3.235937-2 5.759701+2 3.273407-2 5.566735+2 3.349654-2 5.199996+2 3.388442-2 5.025768+2 3.467369-2 4.694638+2 3.630781-2 4.096403+2 3.845918-2 3.454741+2 3.890451-2 3.339025+2 4.027170-2 3.010856+2 4.168694-2 2.714925+2 4.365158-2 2.365130+2 4.570882-2 2.060416+2 4.731513-2 1.857949+2 4.841724-2 1.734039+2 4.897788-2 1.674637+2 5.069907-2 1.508348+2 5.248075-2 1.358581+2 5.432503-2 1.223694+2 5.821032-2 9.927893+1 6.025596-2 8.941514+1 6.165950-2 8.338953+1 6.531306-2 6.993328+1 7.161434-2 5.277333+1 7.328245-2 4.918697+1 7.673615-2 4.272417+1 7.943282-2 3.844050+1 8.035261-2 3.711032+1 8.128305-2 3.582621+1 8.317638-2 3.337465+1 8.413951-2 3.221256+1 8.511380-2 3.109093+1 8.709636-2 2.896351+1 9.120108-2 2.513570+1 9.332543-2 2.341597+1 9.660509-2 2.105453+1 9.885531-2 1.961342+1 1.023293-1 1.763463+1 1.047129-1 1.642759+1 1.071519-1 1.530325+1 1.083927-1 1.477024+1 1.135011-1 1.281772+1 1.148154-1 1.237133+1 1.230269-1 1.000132+1 1.244515-1 9.653063+0 1.258925-1 9.316953+0 1.288250-1 8.679394+0 1.364583-1 7.270044+0 1.412538-1 6.536819+0 1.445440-1 6.089579+0 1.479108-1 5.672961+0 1.513561-1 5.284844+0 1.603245-1 4.426841+0 1.621810-1 4.272739+0 1.659587-1 3.983220+0 1.678804-1 3.845920+0 1.717908-1 3.585368+0 1.737801-1 3.461785+0 1.778279-1 3.227465+0 1.798871-1 3.116318+0 1.840772-1 2.905383+0 1.927525-1 2.525387+0 1.972423-1 2.354461+0 2.000000-1 2.257043+0 2.089296-1 1.976089+0 2.137962-1 1.842353+0 2.162719-1 1.779756+0 2.187762-1 1.719287+0 2.213095-1 1.660875+0 2.213400-1 1.660187+0 2.238721-1 1.604450+0 2.344229-1 1.397510+0 2.371374-1 1.350088+0 2.454709-1 1.217265+0 2.511886-1 1.136065+0 2.570396-1 1.061396+0 2.600160-1 1.025923+0 2.630268-1 9.916366-1 2.722701-1 8.956281-1 2.754229-1 8.657384-1 2.786121-1 8.368481-1 2.818383-1 8.089214-1 2.884032-1 7.558331-1 2.917427-1 7.310175-1 3.000000-1 6.741993-1 3.019952-1 6.613680-1 3.090295-1 6.187278-1 3.126079-1 5.984505-1 3.162278-1 5.788374-1 3.273407-1 5.237732-1 3.311311-1 5.066083-1 3.427678-1 4.592938-1 3.467369-1 4.445507-1 3.548134-1 4.164708-1 3.630781-1 3.901645-1 3.715352-1 3.655215-1 3.801894-1 3.429025-1 3.845918-1 3.321236-1 3.981072-1 3.018330-1 4.120975-1 2.743066-1 4.168694-1 2.657008-1 4.265795-1 2.496613-1 4.315191-1 2.420237-1 4.365158-1 2.346204-1 4.466836-1 2.204859-1 4.623810-1 2.008650-1 4.677351-1 1.948704-1 4.731513-1 1.890552-1 4.786301-1 1.834260-1 4.841724-1 1.779643-1 5.069907-1 1.576966-1 5.128614-1 1.530014-1 5.188000-1 1.485588-1 5.248075-1 1.442451-1 5.308844-1 1.400664-1 5.432503-1 1.320685-1 5.495409-1 1.282425-1 5.623413-1 1.209202-1 5.688529-1 1.175068-1 5.754399-1 1.141910-1 5.821032-1 1.109764-1 5.888437-1 1.078523-1 5.956621-1 1.048162-1 6.165950-1 9.621147-2 6.237348-1 9.357907-2 6.309573-1 9.101966-2 6.382635-1 8.853677-2 6.456542-1 8.612165-2 6.683439-1 7.926478-2 6.760830-1 7.710271-2 6.839117-1 7.505907-2 6.918310-1 7.307041-2 6.998420-1 7.114029-2 7.244360-1 6.565080-2 7.413102-1 6.222859-2 7.498942-1 6.063299-2 7.585776-1 5.908322-2 7.852356-1 5.466787-2 8.128305-1 5.058251-2 8.222427-1 4.932810-2 8.317638-1 4.810821-2 8.609938-1 4.462812-2 8.709636-1 4.352504-2 8.912509-1 4.139999-2 9.015711-1 4.041174-2 9.120108-1 3.944708-2 9.225714-1 3.850596-2 9.332543-1 3.758730-2 9.440609-1 3.669368-2 9.660509-1 3.496966-2 9.772372-1 3.416884-2 9.885531-1 3.338636-2 1.011579+0 3.187547-2 1.023293+0 3.114786-2 1.035142+0 3.043694-2 1.047129+0 2.974220-2 1.059254+0 2.906340-2 1.096478+0 2.711856-2 1.109175+0 2.651583-2 1.135011+0 2.535032-2 1.148154+0 2.478913-2 1.161449+0 2.424040-2 1.174898+0 2.370386-2 1.202264+0 2.266617-2 1.230269+0 2.170506-2 1.250000+0 2.106488-2 1.258925+0 2.078478-2 1.288250+0 1.990662-2 1.333521+0 1.865853-2 1.364583+0 1.789607-2 1.396368+0 1.716483-2 1.428894+0 1.646592-2 1.479108+0 1.547059-2 1.513561+0 1.486136-2 1.531087+0 1.456582-2 1.548817+0 1.427614-2 1.566751+0 1.399327-2 1.621810+0 1.317787-2 1.640590+0 1.291677-2 1.659587+0 1.266931-2 1.678804+0 1.242660-2 1.737801+0 1.172605-2 1.757924+0 1.150223-2 1.798871+0 1.106735-2 1.819701+0 1.085611-2 1.840772+0 1.064891-2 1.862087+0 1.045229-2 1.883649+0 1.025930-2 1.949845+0 9.701490-3 1.972423+0 9.522994-3 2.000000+0 9.312104-3 2.044000+0 8.990928-3 2.065380+0 8.841293-3 2.089296+0 8.684126-3 2.113489+0 8.529753-3 2.187762+0 8.082936-3 2.213095+0 7.939785-3 2.264644+0 7.661064-3 2.317395+0 7.392121-3 2.344229+0 7.261214-3 2.371374+0 7.137010-3 2.398833+0 7.014933-3 2.483133+0 6.661110-3 2.511886+0 6.547603-3 2.570396+0 6.326369-3 2.630268+0 6.112613-3 2.660725+0 6.008459-3 2.691535+0 5.909431-3 2.722701+0 5.812038-3 2.818383+0 5.529397-3 2.851018+0 5.438313-3 2.884032+0 5.349006-3 2.951209+0 5.174783-3 3.019952+0 5.006233-3 3.054921+0 4.924030-3 3.090295+0 4.845730-3 3.126079+0 4.768674-3 3.273407+0 4.472532-3 3.311311+0 4.401448-3 3.349654+0 4.331703-3 3.427678+0 4.195518-3 3.507519+0 4.063615-3 3.548134+0 3.999228-3 3.589219+0 3.937887-3 3.630781+0 3.877486-3 3.801894+0 3.645024-3 3.845918+0 3.589142-3 3.890451+0 3.534273-3 4.027170+0 3.374655-3 4.120975+0 3.272268-3 4.168694+0 3.222245-3 4.216965+0 3.174510-3 4.265795+0 3.127481-3 4.466836+0 2.946243-3 4.518559+0 2.902617-3 4.570882+0 2.859759-3 4.731513+0 2.734953-3 4.841724+0 2.654791-3 4.954502+0 2.576978-3 5.011872+0 2.540121-3 5.069907+0 2.503790-3 5.308844+0 2.363601-3 5.370318+0 2.329811-3 5.432503+0 2.296598-3 5.623413+0 2.199777-3 5.754399+0 2.137508-3 5.956621+0 2.047395-3 6.025596+0 2.019025-3 6.095369+0 1.991048-3 6.456542+0 1.856880-3 6.531306+0 1.831161-3 6.606934+0 1.805862-3 6.839116+0 1.732045-3 7.079458+0 1.661245-3 7.328245+0 1.593340-3 7.413102+0 1.571932-3 7.498942+0 1.550810-3 8.000000+0 1.437326-3 8.035261+0 1.429921-3 8.128305+0 1.410770-3 8.317638+0 1.373234-3 8.609938+0 1.318796-3 9.015711+0 1.249554-3 9.120108+0 1.233212-3 9.225714+0 1.217085-3 1.035142+1 1.066973-3 1.047129+1 1.053024-3 1.059254+1 1.039289-3 1.083927+1 1.012356-3 1.122018+1 9.732597-4 1.161449+1 9.356721-4 1.174898+1 9.237730-4 1.318257+1 8.128007-4 1.333521+1 8.024682-4 1.364583+1 7.822353-4 1.412538+1 7.528395-4 1.479108+1 7.153572-4 1.531087+1 6.884752-4 1.548817+1 6.799242-4 1.757924+1 5.925979-4 1.778279+1 5.852407-4 1.840772+1 5.637531-4 1.905461+1 5.430551-4 2.000000+1 5.153101-4 2.065380+1 4.976676-4 2.089296+1 4.916175-4 2.113489+1 4.856410-4 2.454709+1 4.142498-4 2.511886+1 4.042418-4 2.630268+1 3.849752-4 2.754229+1 3.666275-4 2.917427+1 3.449176-4 3.019952+1 3.325138-4 3.054921+1 3.285476-4 3.090295+1 3.246288-4 3.548134+1 2.810949-4 3.672823+1 2.711582-4 3.935501+1 2.523521-4 4.216965+1 2.348508-4 4.518559+1 2.185633-4 4.677351+1 2.108482-4 4.731513+1 2.083685-4 4.786301+1 2.059180-4 6.000000+1 1.632462-4 6.237348+1 1.568679-4 6.606934+1 1.478709-4 6.839116+1 1.427224-4 7.161434+1 1.361356-4 7.244360+1 1.345369-4 7.328245+1 1.329723-4 7.413102+1 1.314259-4 1.188502+2 8.135598-5 1.244515+2 7.763728-5 1.318257+2 7.323016-5 1.364583+2 7.070694-5 1.428894+2 6.747734-5 1.445440+2 6.669325-5 1.462177+2 6.592369-5 1.479108+2 6.516300-5 2.371374+2 4.048951-5 2.483133+2 3.865292-5 2.630268+2 3.647487-5 2.722701+2 3.522741-5 2.851018+2 3.363025-5 2.884032+2 3.324239-5 2.917427+2 3.286072-5 2.951209+2 3.248343-5 9.440609+2 1.011874-5 9.885531+2 9.661989-6 1.047129+3 9.120065-6 1.083927+3 8.809618-6 1.135011+3 8.412061-6 1.148154+3 8.315506-6 1.161449+3 8.220289-6 1.174898+3 8.126162-6 1.000000+5 9.534007-8 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.530000-6 7.530000-6 1.274000-5 7.530000-6 1.274000-5 1.273624-5 1.291000-5 1.273563-5 1.291000-5 1.280493-5 1.862087-5 1.270518-5 2.900000-5 1.271018-5 6.645000-5 1.274468-5 6.645000-5 1.398939-5 6.804000-5 1.394399-5 6.804000-5 1.447474-5 7.650000-5 1.404963-5 7.950000-5 1.395919-5 8.317638-5 1.391899-5 8.850000-5 1.397340-5 9.549926-5 1.417099-5 1.010100-4 1.437852-5 1.010100-4 1.567981-5 1.333521-4 1.728961-5 1.520000-4 1.810267-5 1.698244-4 1.877075-5 1.950000-4 1.956630-5 2.190000-4 2.021815-5 2.454709-4 2.083047-5 2.818383-4 2.151519-5 3.311311-4 2.226790-5 3.890451-4 2.295857-5 4.623810-4 2.362628-5 5.400000-4 2.417667-5 6.531306-4 2.478842-5 7.206900-4 2.508135-5 7.206900-4 3.715264-5 7.217500-4 3.785594-5 7.230000-4 3.844138-5 7.248000-4 3.899891-5 7.269000-4 3.941462-5 7.307000-4 3.984016-5 7.335500-4 4.000960-5 7.335500-4 4.055566-5 7.377000-4 4.090889-5 7.454800-4 4.115111-5 7.673615-4 4.121511-5 8.429600-4 4.122184-5 8.429600-4 4.392209-5 1.244515-3 4.504799-5 1.862087-3 4.641752-5 2.660725-3 4.779994-5 3.715352-3 4.921403-5 5.011872-3 5.054202-5 6.606934-3 5.176630-5 7.083400-3 5.206229-5 7.083400-3 7.142328-5 1.148154-2 7.192778-5 2.300000-2 7.233830-5 6.531306-2 7.261325-5 7.585776-1 7.274297-5 1.000000+5 7.274722-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.530000-6 0.0 6.645000-5 0.0 6.645000-5 1.30600-10 6.720000-5 1.28679-10 6.804000-5 1.25809-10 6.804000-5 1.83468-10 6.918310-5 1.78122-10 7.030000-5 1.71923-10 7.328245-5 1.54201-10 7.450000-5 1.47593-10 7.620000-5 1.39529-10 7.760000-5 1.34079-10 7.852356-5 1.31124-10 7.950000-5 1.28647-10 8.080000-5 1.26266-10 8.190000-5 1.24998-10 8.317638-5 1.24330-10 8.450000-5 1.24604-10 8.570000-5 1.25571-10 8.730000-5 1.27754-10 8.912509-5 1.31375-10 9.150000-5 1.37647-10 9.400000-5 1.45564-10 9.549926-5 1.50980-10 9.900000-5 1.64555-10 1.010100-4 1.73018-10 1.010100-4 2.46036-10 1.071519-4 2.75449-10 1.216186-4 3.46693-10 1.260000-4 3.67954-10 1.364583-4 4.16308-10 1.462177-4 4.57697-10 1.566751-4 4.98469-10 1.659587-4 5.31541-10 1.778279-4 5.70084-10 1.905461-4 6.08268-10 2.065380-4 6.51944-10 2.190000-4 6.83053-10 2.344229-4 7.17767-10 2.454709-4 7.40771-10 2.691535-4 7.83871-10 2.851018-4 8.09584-10 3.054921-4 8.39973-10 3.311311-4 8.73910-10 3.589219-4 9.05782-10 3.935501-4 9.39637-10 4.365158-4 9.74981-10 4.841724-4 1.007697-9 5.400000-4 1.039241-9 6.165950-4 1.073486-9 6.839116-4 1.097417-9 7.206900-4 1.108712-9 7.206900-4 1.810610-6 7.214500-4 1.888963-6 7.217500-4 1.915843-6 7.222000-4 1.951274-6 7.230000-4 2.003418-6 7.235000-4 2.030589-6 7.242000-4 2.063073-6 7.253000-4 2.104183-6 7.269000-4 2.148873-6 7.285000-4 2.181200-6 7.307000-4 2.212311-6 7.335500-4 2.237455-6 7.335500-4 2.387194-6 7.355500-4 2.435505-6 7.377000-4 2.470971-6 7.410000-4 2.505762-6 7.454800-4 2.531302-6 7.523000-4 2.545955-6 8.000000-4 2.546625-6 8.429600-4 2.544120-6 8.429600-4 2.600759-6 1.570000-3 2.605666-6 6.606934-3 2.604807-6 7.083400-3 2.605122-6 7.083400-3 1.951668-3 9.120108-3 1.968558-3 1.244515-2 1.982934-3 2.000000-2 1.996542-3 3.890451-2 2.005441-3 1.513561-1 2.009320-3 1.000000+5 2.010016-3 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.530000-6 0.0 1.274000-5 5.210000-6 1.274000-5 3.763345-9 1.277000-5 3.376570-8 1.287000-5 1.341025-7 1.291000-5 1.743692-7 1.291000-5 1.050691-7 1.317000-5 3.671367-7 1.370000-5 9.056280-7 1.670000-5 3.971594-6 1.950000-5 6.800391-6 6.645000-5 5.370532-5 6.645000-5 5.246048-5 6.804000-5 5.409588-5 6.804000-5 5.356508-5 7.950000-5 6.554068-5 9.015711-5 7.614645-5 1.010100-4 8.663131-5 1.010100-4 8.532994-5 1.584893-4 1.401290-4 2.454709-4 2.246397-4 4.365158-4 4.131044-4 7.206900-4 6.956075-4 7.206900-4 6.817268-4 7.285000-4 6.866875-4 7.335500-4 6.913029-4 7.335500-4 6.906071-4 8.429600-4 7.991940-4 8.429600-4 7.964372-4 7.083400-3 7.028733-3 7.083400-3 5.060309-3 1.412538-2 1.206561-2 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.083400-3 3.353748+4 7.220000-3 3.186980+4 7.500000-3 2.907220+4 8.511380-3 2.113555+4 1.109175-2 1.055175+4 1.400000-2 5.622160+3 1.737801-2 3.088921+3 2.137962-2 1.719430+3 2.600160-2 9.795263+2 3.162278-2 5.535431+2 3.890451-2 3.000508+2 4.841724-2 1.559376+2 6.165950-2 7.503290+1 8.128305-2 3.224907+1 1.621810-1 3.846858+0 2.137962-1 1.658710+0 2.511886-1 1.022826+0 2.884032-1 6.805027-1 3.311311-1 4.561191-1 3.715352-1 3.290894-1 4.168694-1 2.392194-1 4.623810-1 1.808466-1 5.128614-1 1.377576-1 5.623413-1 1.088767-1 6.165950-1 8.663317-2 6.760830-1 6.943123-2 7.413102-1 5.603723-2 8.128305-1 4.554585-2 8.912509-1 3.727528-2 9.660509-1 3.149138-2 1.096478+0 2.442540-2 1.202264+0 2.041457-2 1.333521+0 1.680433-2 1.479108+0 1.393275-2 1.640590+0 1.163254-2 1.840772+0 9.590275-3 2.065380+0 7.962432-3 2.344229+0 6.539388-3 2.660725+0 5.411142-3 3.054921+0 4.434517-3 3.548134+0 3.601675-3 4.168694+0 2.901931-3 4.954502+0 2.320790-3 5.956621+0 1.843857-3 7.328245+0 1.434948-3 9.015711+0 1.125327-3 1.161449+1 8.426556-4 1.531087+1 6.200337-4 2.065380+1 4.481921-4 3.019952+1 2.994584-4 4.677351+1 1.898867-4 7.244360+1 1.211673-4 1.445440+2 6.006649-5 2.884032+2 2.993936-5 1.148154+3 7.489432-6 1.000000+5 8.587000-8 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.083400-3 7.420200-5 1.000000+5 7.420200-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.083400-3 2.231400-3 1.000000+5 2.231400-3 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.083400-3 4.777798-3 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.429600-4 1.471096+5 9.120108-4 1.335954+5 9.549926-4 1.247478+5 9.885531-4 1.188430+5 1.150000-3 9.470020+4 1.202264-3 8.837877+4 1.428894-3 6.663078+4 1.548817-3 5.798407+4 1.800000-3 4.435140+4 1.972423-3 3.744823+4 2.290868-3 2.812543+4 2.570396-3 2.240018+4 2.951209-3 1.691560+4 3.349654-3 1.297636+4 3.801894-3 9.890827+3 4.365158-3 7.300114+3 5.011872-3 5.347312+3 5.754399-3 3.888708+3 6.606934-3 2.808383+3 7.673615-3 1.958957+3 8.912509-3 1.356025+3 1.035142-2 9.317643+2 1.202264-2 6.356276+2 1.412538-2 4.177124+2 1.659587-2 2.723097+2 1.949845-2 1.761980+2 2.300000-2 1.119474+2 2.722701-2 6.991630+1 3.235937-2 4.286954+1 3.890451-2 2.524952+1 4.731513-2 1.427271+1 5.821032-2 7.739188+0 7.328245-2 3.887616+0 9.660509-2 1.686647+0 1.737801-1 2.827681-1 2.238721-1 1.319239-1 2.630268-1 8.178067-2 3.019952-1 5.465800-2 3.427678-1 3.803489-2 3.845918-1 2.754288-2 4.265795-1 2.073351-2 4.731513-1 1.571371-2 5.248075-1 1.199650-2 5.754399-1 9.499683-3 6.309573-1 7.572592-3 6.918310-1 6.079416-3 7.498942-1 5.051358-3 8.222427-1 4.115965-3 9.332543-1 3.134255-3 1.011579+0 2.654124-3 1.135011+0 2.109397-3 1.258925+0 1.730105-3 1.396368+0 1.429321-3 1.548817+0 1.189017-3 1.737801+0 9.765566-4 1.949845+0 8.079762-4 2.187762+0 6.730612-4 2.483133+0 5.547149-4 2.851018+0 4.528791-4 3.311311+0 3.665179-4 3.845918+0 2.988767-4 4.518559+0 2.416995-4 5.370318+0 1.940102-4 6.531306+0 1.524894-4 8.035261+0 1.190641-4 1.047129+1 8.768848-5 1.333521+1 6.682433-5 1.778279+1 4.873480-5 2.511886+1 3.366187-5 3.672823+1 2.257962-5 6.237348+1 1.306440-5 1.244515+2 6.466950-6 2.483133+2 3.220638-6 9.885531+2 8.050870-7 1.000000+5 7.946100-9 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.429600-4 6.424300-5 1.000000+5 6.424300-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.429600-4 3.027000-6 1.000000+5 3.027000-6 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.429600-4 7.756900-4 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 7.335500-4 1.828100+5 7.337000-4 1.871500+5 7.340500-4 1.994600+5 7.343500-4 2.095100+5 7.346500-4 2.191600+5 7.351000-4 2.329700+5 7.355500-4 2.458500+5 7.360000-4 2.581200+5 7.365000-4 2.708800+5 7.372000-4 2.873600+5 7.377000-4 2.983500+5 7.385000-4 3.145100+5 7.392000-4 3.273100+5 7.400000-4 3.405300+5 7.410000-4 3.551700+5 7.420000-4 3.678800+5 7.430000-4 3.788800+5 7.440000-4 3.882800+5 7.454800-4 3.995800+5 7.470000-4 4.083600+5 7.485000-4 4.146300+5 7.500000-4 4.189400+5 7.523000-4 4.224900+5 7.550000-4 4.233300+5 7.585776-4 4.209700+5 8.280000-4 3.427000+5 8.609938-4 3.100100+5 9.225714-4 2.625000+5 1.047129-3 1.920300+5 1.150000-3 1.513600+5 1.258925-3 1.194900+5 1.496236-3 7.502300+4 1.659587-3 5.628300+4 1.905461-3 3.810000+4 2.162719-3 2.643000+4 2.454709-3 1.823000+4 2.851018-3 1.164800+4 3.235937-3 7.921600+3 3.715352-3 5.166200+3 4.315191-3 3.225200+3 5.011872-3 1.997800+3 5.821032-3 1.228300+3 6.760830-3 7.499600+2 7.852356-3 4.547600+2 9.120108-3 2.739400+2 1.059254-2 1.639600+2 1.244515-2 9.367000+1 1.479108-2 5.102200+1 1.778279-2 2.647600+1 2.162719-2 1.308200+1 2.691535-2 5.898900+0 3.388442-2 2.530800+0 4.570882-2 8.347900-1 8.035261-2 1.024400-1 1.023293-1 4.195565-2 1.230269-1 2.139849-2 1.445440-1 1.195503-2 1.678804-1 7.010501-3 1.927525-1 4.314816-3 2.187762-1 2.785473-3 2.454709-1 1.884488-3 2.754229-1 1.283879-3 3.090295-1 8.811951-4 3.467369-1 6.094379-4 3.845918-1 4.404581-4 4.265795-1 3.207142-4 4.677351-1 2.435893-4 5.128614-1 1.862543-4 5.623413-1 1.433727-4 6.165950-1 1.111342-4 6.760830-1 8.676476-5 7.413102-1 6.821003-5 8.609938-1 4.660241-5 9.120108-1 4.046720-5 9.660509-1 3.535953-5 1.023293+0 3.113091-5 1.096478+0 2.692613-5 1.161449+0 2.400979-5 1.250000+0 2.090490-5 1.364583+0 1.784807-5 1.678804+0 1.248172-5 1.883649+0 1.029822-5 2.113489+0 8.559222-6 2.398833+0 7.039508-6 2.722701+0 5.832412-6 3.126079+0 4.785383-6 3.630781+0 3.891194-6 4.265795+0 3.138626-6 5.069907+0 2.512810-6 6.095369+0 1.998192-6 7.498942+0 1.556378-6 9.225714+0 1.221620-6 1.174898+1 9.273149-7 1.548817+1 6.825397-7 2.113489+1 4.874617-7 3.090295+1 3.258568-7 4.786301+1 2.067122-7 7.413102+1 1.319408-7 1.479108+2 6.542166-8 2.951209+2 3.261317-8 1.174898+3 8.158861-9 1.000000+5 9.57280-11 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 7.335500-4 4.360400-5 1.000000+5 4.360400-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.335500-4 3.223100-6 1.000000+5 3.223100-6 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.335500-4 6.867229-4 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 7.206900-4 3.797200+5 7.208600-4 3.897876+5 7.211500-4 4.107400+5 7.214500-4 4.315040+5 7.217500-4 4.514560+5 7.222000-4 4.797280+5 7.226500-4 5.063840+5 7.230000-4 5.259960+5 7.235000-4 5.526240+5 7.242000-4 5.870400+5 7.248000-4 6.141120+5 7.253000-4 6.351440+5 7.261000-4 6.661320+5 7.269000-4 6.940480+5 7.277000-4 7.190600+5 7.285000-4 7.414240+5 7.295000-4 7.659400+5 7.307000-4 7.908080+5 7.319000-4 8.112400+5 7.330000-4 8.265000+5 7.345000-4 8.426640+5 7.357000-4 8.522640+5 7.373000-4 8.611880+5 7.394100-4 8.675226+5 7.415000-4 8.692160+5 7.450000-4 8.653120+5 7.500000-4 8.522560+5 7.585776-4 8.268295+5 9.332543-4 5.032318+5 9.772372-4 4.454192+5 1.083927-3 3.429696+5 1.202264-3 2.620345+5 1.318257-3 2.047061+5 1.513561-3 1.404213+5 1.678804-3 1.050301+5 1.950000-3 6.850560+4 2.238721-3 4.576636+4 2.540973-3 3.141809+4 2.917427-3 2.068971+4 3.388442-3 1.304659+4 3.890451-3 8.459910+3 4.466836-3 5.447851+3 5.188000-3 3.356438+3 6.095369-3 1.975533+3 7.161434-3 1.153110+3 8.317638-3 6.943810+2 9.660509-3 4.152982+2 1.135011-2 2.370008+2 1.350000-2 1.284936+2 1.603245-2 6.946961+1 1.905461-2 3.717538+1 2.290868-2 1.894117+1 2.786121-2 9.181772+0 3.467369-2 4.055142+0 4.365158-2 1.702789+0 8.709636-2 1.237246-1 1.083927-1 5.416467-2 1.288250-1 2.840744-2 1.513561-1 1.566855-2 1.737801-1 9.470460-3 1.972423-1 6.012300-3 2.213400-1 4.003409-3 2.454709-1 2.795525-3 2.722701-1 1.964631-3 3.000000-1 1.422103-3 3.311311-1 1.031623-3 3.630781-1 7.703175-4 3.981072-1 5.795327-4 4.315191-1 4.547826-4 4.677351-1 3.590962-4 5.069907-1 2.853390-4 5.495409-1 2.282080-4 5.956621-1 1.837164-4 6.456542-1 1.488875-4 6.998420-1 1.214752-4 7.585776-1 9.979876-5 8.222427-1 8.256023-5 8.912509-1 6.878350-5 9.660509-1 5.775662-5 1.047129+0 4.888977-5 1.148154+0 4.070868-5 1.258925+0 3.415373-5 1.396368+0 2.824392-5 1.566751+0 2.305083-5 1.757924+0 1.894625-5 1.972423+0 1.568501-5 2.213095+0 1.307564-5 2.511886+0 1.078401-5 2.884032+0 8.809768-6 3.349654+0 7.134037-6 3.890451+0 5.820686-6 4.570882+0 4.709500-6 5.432503+0 3.782152-6 6.606934+0 2.974029-6 8.128305+0 2.323254-6 1.059254+1 1.711661-6 1.364583+1 1.288221-6 1.840772+1 9.284835-7 2.630268+1 6.340265-7 3.935501+1 4.155812-7 6.606934+1 2.435996-7 1.318257+2 1.206590-7 2.630268+2 6.011047-8 1.047129+3 1.503064-8 1.000000+5 1.57150-10 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 7.206900-4 4.337200-5 1.000000+5 4.337200-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.206900-4 2.742900-6 1.000000+5 2.742900-6 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.206900-4 6.745751-4 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.010100-4 3.485323+5 1.071519-4 3.440308+5 1.135011-4 3.375260+5 1.303167-4 3.159622+5 1.396368-4 3.049718+5 1.566751-4 2.852035+5 1.659587-4 2.742751+5 1.760000-4 2.616600+5 1.905461-4 2.435219+5 2.113489-4 2.198876+5 2.344229-4 1.971175+5 2.540973-4 1.799088+5 2.754229-4 1.631374+5 3.054921-4 1.427370+5 3.467369-4 1.203107+5 3.850000-4 1.038142+5 4.315191-4 8.772586+4 5.000000-4 6.995080+4 5.623413-4 5.803434+4 6.500000-4 4.569840+4 7.500000-4 3.583220+4 8.609938-4 2.812759+4 9.885531-4 2.193984+4 1.150000-3 1.658998+4 1.333521-3 1.253414+4 1.570000-3 9.133040+3 1.862087-3 6.506985+3 2.213095-3 4.579319+3 2.630268-3 3.196246+3 3.090295-3 2.267973+3 3.589219-3 1.637900+3 4.168694-3 1.174470+3 4.841724-3 8.362131+2 5.623413-3 5.911155+2 6.531306-3 4.148193+2 7.585776-3 2.890064+2 8.912509-3 1.943110+2 1.047129-2 1.296189+2 1.230269-2 8.580342+1 1.445440-2 5.636682+1 1.698244-2 3.674936+1 2.000000-2 2.363193+1 2.371374-2 1.480645+1 2.818383-2 9.146080+0 3.349654-2 5.606930+0 4.027170-2 3.301360+0 4.897788-2 1.865951+0 6.025596-2 1.011237+0 7.673615-2 4.907427-1 1.023293-1 2.057805-1 1.659587-1 4.729260-2 2.137962-1 2.204888-2 2.511886-1 1.364601-2 2.917427-1 8.802711-3 3.311311-1 6.114514-3 3.715352-1 4.418811-3 4.168694-1 3.216643-3 4.623810-1 2.434067-3 5.128614-1 1.855386-3 5.688529-1 1.425547-3 6.237348-1 1.135831-3 6.839117-1 9.113415-4 7.498942-1 7.363476-4 8.317638-1 5.840634-4 9.120108-1 4.789679-4 9.885531-1 4.053966-4 1.135011+0 3.078480-4 1.258925+0 2.523645-4 1.396368+0 2.084212-4 1.548817+0 1.733567-4 1.737801+0 1.423926-4 1.949845+0 1.178131-4 2.187762+0 9.812455-5 2.483133+0 8.086826-5 2.818383+0 6.713247-5 3.273407+0 5.430097-5 3.801894+0 4.425558-5 4.466836+0 3.577083-5 5.308844+0 2.869779-5 6.456542+0 2.254501-5 8.000000+0 1.745000-5 1.035142+1 1.295414-5 1.318257+1 9.868666-6 1.757924+1 7.194917-6 2.454709+1 5.029370-6 3.548134+1 3.412865-6 6.000000+1 1.982000-6 1.188502+2 9.879469-7 2.371374+2 4.918500-7 9.440609+2 1.229233-7 1.000000+5 1.158600-9 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.010100-4 3.543600-5 1.000000+5 3.543600-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.010100-4 1.354600-9 1.000000+5 1.354600-9 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.010100-4 6.557265-5 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.804000-5 3.959800+5 6.870000-5 3.884940+5 6.950000-5 3.770080+5 7.030000-5 3.638740+5 7.150000-5 3.427580+5 7.328245-5 3.109112+5 7.650000-5 2.606740+5 7.800000-5 2.420240+5 7.950000-5 2.266780+5 8.080000-5 2.159480+5 8.190000-5 2.086080+5 8.317638-5 2.019196+5 8.450000-5 1.968414+5 8.570000-5 1.936788+5 8.709636-5 1.914979+5 8.850000-5 1.906948+5 9.015711-5 1.912285+5 9.150000-5 1.926192+5 9.350000-5 1.959266+5 9.549926-5 2.003448+5 9.900000-5 2.097900+5 1.100000-4 2.435540+5 1.150000-4 2.579600+5 1.205000-4 2.721060+5 1.258925-4 2.839148+5 1.315000-4 2.938840+5 1.364583-4 3.007790+5 1.412538-4 3.058140+5 1.462177-4 3.094341+5 1.520000-4 3.117820+5 1.584893-4 3.123382+5 1.659587-4 3.108068+5 1.737801-4 3.073720+5 1.840772-4 3.009007+5 1.950000-4 2.923900+5 2.065380-4 2.822160+5 2.190000-4 2.704660+5 2.317395-4 2.579866+5 2.454709-4 2.443609+5 2.600160-4 2.300691+5 2.800000-4 2.113000+5 3.019952-4 1.923331+5 3.280000-4 1.722354+5 3.548134-4 1.539440+5 3.801894-4 1.386130+5 4.120975-4 1.217994+5 4.518559-4 1.042991+5 4.954502-4 8.864894+4 5.400000-4 7.561360+4 5.956621-4 6.256901+4 6.531306-4 5.203575+4 7.161434-4 4.300099+4 7.943282-4 3.442203+4 8.810489-4 2.736190+4 9.700000-4 2.197000+4 1.083927-3 1.692874+4 1.216186-3 1.282161+4 1.380384-3 9.363161+3 1.548817-3 6.984120+3 1.737801-3 5.175043+3 1.949845-3 3.809800+3 2.187762-3 2.786965+3 2.483133-3 1.961703+3 2.818383-3 1.370637+3 3.198895-3 9.505618+2 3.630781-3 6.543790+2 4.120975-3 4.472052+2 4.677351-3 3.034251+2 5.370318-3 1.972055+2 6.165950-3 1.271725+2 7.079458-3 8.139838+1 8.222426-3 4.982008+1 9.549926-3 3.026375+1 1.109175-2 1.825266+1 1.303167-2 1.050684+1 1.531087-2 6.001864+0 1.819701-2 3.267456+0 2.162719-2 1.765570+0 2.630268-2 8.718961-1 3.273407-2 3.930650-1 4.168694-2 1.616807-1 8.317638-2 1.254453-2 1.047129-1 5.380105-3 1.258925-1 2.752137-3 1.479108-1 1.541489-3 1.717908-1 9.062012-4 1.972423-1 5.590339-4 2.238721-1 3.615717-4 2.511886-1 2.449238-4 2.818383-1 1.670713-4 3.126079-1 1.191916-4 3.467369-1 8.560319-5 3.845918-1 6.190228-5 4.265795-1 4.508768-5 4.731513-1 3.309442-5 5.188000-1 2.531623-5 5.688529-1 1.949904-5 6.237348-1 1.512203-5 6.839117-1 1.180998-5 7.498942-1 9.289745-6 8.609938-1 6.543819-6 9.120108-1 5.686637-6 9.660509-1 4.972259-6 1.023293+0 4.379794-6 1.096478+0 3.789696-6 1.161449+0 3.379647-6 1.250000+0 2.942300-6 1.364583+0 2.511477-6 1.659587+0 1.790357-6 1.862087+0 1.476178-6 2.089296+0 1.226032-6 2.371374+0 1.007661-6 2.691535+0 8.343450-7 3.090295+0 6.841598-7 3.589219+0 5.559956-7 4.216965+0 4.482176-7 5.011872+0 3.586498-7 6.025596+0 2.850769-7 7.413102+0 2.219540-7 9.120108+0 1.741395-7 1.161449+1 1.321379-7 1.531087+1 9.722946-8 2.065380+1 7.028179-8 3.019952+1 4.695796-8 4.677351+1 2.977656-8 7.328245+1 1.877884-8 1.462177+2 9.310318-9 2.917427+2 4.640900-9 1.161449+3 1.160996-9 1.000000+5 1.34650-11 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.804000-5 2.520800-5 1.000000+5 2.520800-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.804000-5 1.349500-9 1.000000+5 1.349500-9 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.804000-5 4.283065-5 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 6.645000-5 8.263800+5 6.720000-5 8.056520+5 6.800000-5 7.794720+5 6.900000-5 7.430000+5 7.000000-5 7.051200+5 7.450000-5 5.516640+5 7.620000-5 5.084120+5 7.760000-5 4.796640+5 7.852356-5 4.639585+5 7.950000-5 4.500040+5 8.080000-5 4.353240+5 8.190000-5 4.260600+5 8.317638-5 4.185086+5 8.450000-5 4.138360+5 8.570000-5 4.120040+5 8.730000-5 4.125280+5 8.912509-5 4.164515+5 9.120108-5 4.241594+5 9.400000-5 4.382800+5 9.800000-5 4.626040+5 1.060000-4 5.146760+5 1.109175-4 5.446918+5 1.161449-4 5.732508+5 1.216186-4 5.987884+5 1.260000-4 6.158000+5 1.315000-4 6.328160+5 1.364583-4 6.441263+5 1.412538-4 6.516557+5 1.479108-4 6.571146+5 1.548817-4 6.575430+5 1.621810-4 6.533768+5 1.698244-4 6.451825+5 1.800000-4 6.300880+5 1.905461-4 6.113531+5 2.018366-4 5.892768+5 2.150000-4 5.619240+5 2.290868-4 5.317469+5 2.450000-4 4.975720+5 2.630268-4 4.600779+5 2.818383-4 4.232544+5 3.054921-4 3.812250+5 3.311311-4 3.409780+5 3.589219-4 3.026425+5 3.890451-4 2.666316+5 4.216965-4 2.332561+5 4.623810-4 1.988482+5 5.069907-4 1.682464+5 5.559043-4 1.412657+5 6.165950-4 1.150606+5 6.760830-4 9.525529+4 7.413102-4 7.834994+4 8.317638-4 6.083933+4 9.225714-4 4.809640+4 1.023293-3 3.775161+4 1.135011-3 2.944912+4 1.258925-3 2.282591+4 1.412538-3 1.708184+4 1.584893-3 1.269259+4 1.778279-3 9.370043+3 2.018366-3 6.661304+3 2.264644-3 4.853328+3 2.570396-3 3.399729+3 2.917427-3 2.363148+3 3.311311-3 1.630753+3 3.758374-3 1.117116+3 4.265795-3 7.596033+2 4.841724-3 5.127941+2 5.559043-3 3.314446+2 6.309573-3 2.206162+2 7.244360-3 1.404992+2 8.413951-3 8.551308+1 9.772372-3 5.163931+1 1.135011-2 3.095392+1 1.318257-2 1.842271+1 1.531087-2 1.088804+1 1.798871-2 6.132454+0 2.137962-2 3.289475+0 2.570396-2 1.679249+0 3.126079-2 8.154161-1 3.845918-2 3.763981-1 5.069907-2 1.330731-1 9.120108-2 1.443630-2 1.148154-1 6.080575-3 1.364583-1 3.200945-3 1.603245-1 1.772212-3 1.840772-1 1.075714-3 2.089296-1 6.858580-4 2.344229-1 4.588891-4 2.600160-1 3.218057-4 2.884032-1 2.273008-4 3.162278-1 1.679804-4 3.467369-1 1.249799-4 3.801894-1 9.365971-5 4.120975-1 7.323029-5 4.466836-1 5.761706-5 4.841724-1 4.562371-5 5.248075-1 3.637214-5 5.688529-1 2.919367-5 6.165950-1 2.358883-5 6.683439-1 1.918761-5 7.244360-1 1.571084-5 7.852356-1 1.294853-5 8.609938-1 1.044736-5 9.225714-1 8.950439-6 9.885531-1 7.718625-6 1.096478+0 6.246322-6 1.174898+0 5.454119-6 1.288250+0 4.585777-6 1.428894+0 3.800729-6 1.621810+0 3.046701-6 1.819701+0 2.509666-6 2.044000+0 2.078000-6 2.317395+0 1.708201-6 2.630268+0 1.412592-6 3.019952+0 1.157045-6 3.507519+0 9.391933-7 4.120975+0 7.563226-7 4.841724+0 6.134856-7 5.754399+0 4.938889-7 7.079458+0 3.838776-7 8.609938+0 3.047193-7 1.122018+1 2.248999-7 1.479108+1 1.653199-7 2.000000+1 1.190900-7 2.917427+1 7.970906-8 4.518559+1 5.051598-8 7.161434+1 3.147078-8 1.428894+2 1.560020-8 2.851018+2 7.774980-9 1.135011+3 1.944757-9 1.000000+5 2.20430-11 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 6.645000-5 2.508700-5 1.000000+5 2.508700-5 1 26000 7 7 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.645000-5 1.295000-9 1.000000+5 1.295000-9 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.645000-5 4.136171-5 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.291000-5 1.260797+6 1.335000-5 1.258118+6 1.370000-5 1.262242+6 1.420000-5 1.278146+6 1.470000-5 1.303428+6 1.531087-5 1.343740+6 1.603245-5 1.402535+6 1.690000-5 1.484698+6 1.800000-5 1.601059+6 2.317395-5 2.216209+6 2.511886-5 2.444817+6 2.710800-5 2.664994+6 2.900000-5 2.856192+6 3.090295-5 3.027329+6 3.273407-5 3.170578+6 3.467369-5 3.295693+6 3.650000-5 3.387360+6 3.850000-5 3.461112+6 4.027170-5 3.504028+6 4.220000-5 3.529032+6 4.415704-5 3.533120+6 4.650000-5 3.514272+6 4.900000-5 3.472440+6 5.188000-5 3.403686+6 5.500000-5 3.311352+6 5.900000-5 3.178128+6 6.309573-5 3.034841+6 6.800000-5 2.860848+6 7.328245-5 2.677577+6 7.852356-5 2.501161+6 8.413951-5 2.319168+6 8.912509-5 2.164399+6 9.500000-5 1.990097+6 1.011579-4 1.818903+6 1.071519-4 1.664081+6 1.150000-4 1.480286+6 1.230269-4 1.314692+6 1.333521-4 1.132203+6 1.445440-4 9.679282+5 1.566751-4 8.218526+5 1.698244-4 6.922864+5 1.819701-4 5.938400+5 1.980000-4 4.883400+5 2.162719-4 3.945402+5 2.371374-4 3.134162+5 2.580000-4 2.523312+5 2.800000-4 2.032946+5 3.054921-4 1.604040+5 3.400000-4 1.188394+5 3.758374-4 8.911435+4 4.168694-4 6.575340+4 4.623810-4 4.813043+4 5.188000-4 3.375393+4 5.821032-4 2.349723+4 6.531306-4 1.622663+4 7.413102-4 1.071000+4 8.317638-4 7.287463+3 9.440609-4 4.733107+3 1.059254-3 3.176215+3 1.202264-3 2.032767+3 1.364583-3 1.291157+3 1.548817-3 8.142121+2 1.757924-3 5.098983+2 2.000000-3 3.141672+2 2.264644-3 1.956510+2 2.570396-3 1.198521+2 2.917427-3 7.285697+1 3.273407-3 4.600964+1 3.715352-3 2.754698+1 4.216965-3 1.637154+1 4.841724-3 9.207798+0 5.559043-3 5.140382+0 6.839116-3 2.124362+0 8.128305-3 1.009505+0 9.660509-3 4.760932-1 1.148154-2 2.228310-1 1.380384-2 9.836104-2 1.584893-2 5.295779-2 1.927525-2 2.183959-2 2.426610-2 7.638981-3 4.841724-2 3.212341-4 6.531306-2 8.187628-5 7.943282-2 3.371048-5 9.332543-2 1.634310-5 1.083927-1 8.401806-6 1.244515-1 4.578393-6 1.412538-1 2.642578-6 1.603245-1 1.536478-6 1.798871-1 9.452387-7 2.000000-1 6.084800-7 2.213095-1 4.022839-7 2.454709-1 2.652296-7 2.722701-1 1.761414-7 3.019952-1 1.178593-7 3.311311-1 8.301673-8 3.630781-1 5.887784-8 3.981072-1 4.206834-8 4.365158-1 3.032660-8 4.786301-1 2.202354-8 5.308844-1 1.548321-8 5.821032-1 1.140296-8 6.309573-1 8.786033-9 6.839117-1 6.816651-9 7.413102-1 5.326227-9 8.609938-1 3.408051-9 9.015711-1 2.987530-9 9.440609-1 2.635337-9 9.772372-1 2.410383-9 1.011579+0 2.215247-9 1.059254+0 1.993077-9 1.109175+0 1.805470-9 1.161449+0 1.646212-9 1.230269+0 1.477991-9 1.333521+0 1.282235-9 1.531087+0 1.017763-9 1.798871+0 7.73803-10 2.000000+0 6.50150-10 2.264644+0 5.34804-10 2.570396+0 4.41664-10 2.951209+0 3.61287-10 3.427678+0 2.92918-10 4.027170+0 2.35621-10 4.731513+0 1.90925-10 5.623413+0 1.53554-10 6.839116+0 1.20910-10 8.317638+0 9.58521-11 1.083927+1 7.06707-11 1.412538+1 5.25549-11 1.905461+1 3.79124-11 2.754229+1 2.55932-11 4.216965+1 1.63958-11 6.839116+1 9.96726-12 1.364583+2 4.93845-12 2.722701+2 2.46075-12 1.083927+3 6.15411-13 1.000000+5 6.66080-15 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.291000-5 1.291000-5 1.000000+5 1.291000-5 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.291000-5 0.0 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.274000-5 1.910678+6 1.317000-5 1.908854+6 1.360000-5 1.920247+6 1.412538-5 1.950956+6 1.462177-5 1.993263+6 1.513561-5 2.047927+6 1.584893-5 2.138228+6 1.678804-5 2.275857+6 1.800000-5 2.474690+6 2.264644-5 3.313969+6 2.483133-5 3.702185+6 2.691535-5 4.049114+6 2.884032-5 4.341439+6 3.054921-5 4.573220+6 3.235937-5 4.785771+6 3.427678-5 4.972544+6 3.630781-5 5.127235+6 3.801894-5 5.222037+6 4.000000-5 5.294808+6 4.220000-5 5.331456+6 4.415704-5 5.331279+6 4.677351-5 5.292050+6 4.954502-5 5.210739+6 5.248075-5 5.092599+6 5.559043-5 4.946347+6 5.900000-5 4.770972+6 6.309573-5 4.550183+6 6.800000-5 4.286448+6 7.328245-5 4.007569+6 7.852356-5 3.740701+6 8.317638-5 3.512578+6 8.810489-5 3.279128+6 9.332543-5 3.043628+6 9.900000-5 2.801189+6 1.059254-4 2.526625+6 1.122018-4 2.300072+6 1.202264-4 2.040136+6 1.300000-4 1.768392+6 1.412538-4 1.507067+6 1.513561-4 1.312041+6 1.650000-4 1.095149+6 1.778279-4 9.289956+5 1.905461-4 7.934444+5 2.089296-4 6.371777+5 2.317395-4 4.928460+5 2.580000-4 3.741624+5 2.851018-4 2.869585+5 3.162278-4 2.158400+5 3.548134-4 1.557217+5 3.935501-4 1.152441+5 4.365158-4 8.464797+4 4.841724-4 6.175181+4 5.370318-4 4.474537+4 6.025596-4 3.104466+4 6.760830-4 2.137328+4 7.673615-4 1.406617+4 8.609938-4 9.545850+3 9.660509-4 6.431765+3 1.096478-3 4.134713+3 1.244515-3 2.638593+3 1.412538-3 1.671496+3 1.603245-3 1.051224+3 1.819701-3 6.563242+2 2.065380-3 4.067386+2 2.344229-3 2.501847+2 2.660725-3 1.527192+2 3.019952-3 9.250340+1 3.427678-3 5.558102+1 3.890451-3 3.314226+1 4.415704-3 1.960914+1 5.069907-3 1.097660+1 5.888437-3 5.809832+0 6.998420-3 2.759970+0 9.120108-3 8.722613-1 1.059254-2 4.520205-1 1.244515-2 2.210396-1 1.479108-2 1.019205-1 1.757924-2 4.657442-2 2.137962-2 1.902105-2 2.754229-2 5.917341-3 5.432503-2 2.551043-4 7.161434-2 7.144080-5 8.511380-2 3.245801-5 9.885531-2 1.649035-5 1.135011-1 8.878470-6 1.288250-1 5.069282-6 1.445440-1 3.067332-6 1.603245-1 1.964834-6 1.778279-1 1.267366-6 1.972423-1 8.235526-7 2.162719-1 5.649142-7 2.371374-1 3.901667-7 2.570396-1 2.840046-7 2.786121-1 2.080491-7 3.019952-1 1.534423-7 3.273407-1 1.139910-7 3.548134-1 8.530257-8 3.845918-1 6.430793-8 4.168694-1 4.882785-8 4.466836-1 3.879346-8 4.786301-1 3.101278-8 5.069907-1 2.586925-8 5.432503-1 2.095192-8 5.888437-1 1.651045-8 6.382635-1 1.310266-8 6.918310-1 1.047560-8 7.585776-1 8.184556-9 8.128305-1 6.835700-9 8.709636-1 5.749818-9 9.225714-1 5.009546-9 9.772372-1 4.393222-9 1.035142+0 3.879900-9 1.109175+0 3.364007-9 1.174898+0 3.005007-9 1.288250+0 2.531346-9 1.428894+0 2.103873-9 1.678804+0 1.592527-9 1.883649+0 1.314128-9 2.113489+0 1.092475-9 2.398833+0 8.98570-10 2.722701+0 7.44445-10 3.126079+0 6.10758-10 3.630781+0 4.96638-10 4.265795+0 4.00580-10 5.069907+0 3.20700-10 6.095369+0 2.55031-10 7.498942+0 1.98643-10 9.225714+0 1.55914-10 1.174898+1 1.18354-10 1.548817+1 8.71119-11 2.089296+1 6.29868-11 3.054921+1 4.20945-11 4.731513+1 2.66984-11 7.328245+1 1.70389-11 1.462177+2 8.44752-12 2.917427+2 4.21080-12 1.161449+3 1.05340-12 1.000000+5 1.22180-14 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.274000-5 1.274000-5 1.000000+5 1.274000-5 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.274000-5 0.0 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.530000-6 1.722320+6 7.600000-6 1.630228+6 7.762471-6 1.415276+6 8.000000-6 1.150546+6 8.222426-6 9.458783+5 8.420000-6 7.934640+5 8.609938-6 6.688789+5 8.810489-6 5.569272+5 9.015711-6 4.603220+5 9.200000-6 3.866200+5 9.350000-6 3.344800+5 9.500000-6 2.885340+5 9.660509-6 2.454679+5 9.772372-6 2.187764+5 9.930000-6 1.853152+5 1.005000-5 1.627674+5 1.020000-5 1.377692+5 1.031000-5 1.214696+5 1.044000-5 1.042155+5 1.055000-5 9.116260+4 1.065000-5 8.042500+4 1.077000-5 6.884280+4 1.088000-5 5.937200+4 1.096478-5 5.276273+4 1.105000-5 4.668200+4 1.115000-5 4.021760+4 1.123000-5 3.553300+4 1.131000-5 3.125320+4 1.138000-5 2.782200+4 1.146000-5 2.423640+4 1.154000-5 2.099000+4 1.161449-5 1.825270+4 1.168000-5 1.606046+4 1.174898-5 1.395890+4 1.182000-5 1.200396+4 1.188502-5 1.039086+4 1.195000-5 8.938420+3 1.201500-5 7.637360+3 1.207000-5 6.649180+3 1.213000-5 5.683680+3 1.218000-5 4.964840+3 1.224000-5 4.200480+3 1.230269-5 3.511202+3 1.242000-5 2.502560+3 1.247000-5 2.177300+3 1.251000-5 1.959620+3 1.253500-5 1.842160+3 1.256500-5 1.719600+3 1.259000-5 1.632454+3 1.262000-5 1.545448+3 1.264200-5 1.493558+3 1.266000-5 1.458460+3 1.268500-5 1.420498+3 1.271000-5 1.394836+3 1.272700-5 1.384284+3 1.275000-5 1.378728+3 1.277000-5 1.381912+3 1.279500-5 1.396180+3 1.282000-5 1.421650+3 1.284200-5 1.453142+3 1.287000-5 1.505254+3 1.290000-5 1.575698+3 1.292000-5 1.630872+3 1.295000-5 1.725666+3 1.299000-5 1.873942+3 1.303167-5 2.054131+3 1.322000-5 3.171340+3 1.330000-5 3.782620+3 1.337000-5 4.377740+3 1.342000-5 4.835180+3 1.348963-5 5.514477+3 1.355000-5 6.141080+3 1.361000-5 6.796360+3 1.368000-5 7.599360+3 1.376000-5 8.564360+3 1.382000-5 9.318920+3 1.390000-5 1.036298+4 1.397000-5 1.130960+4 1.405000-5 1.242614+4 1.415000-5 1.386912+4 1.425000-5 1.535918+4 1.435000-5 1.689080+4 1.445800-5 1.858576+4 1.455000-5 2.005880+4 1.465000-5 2.168580+4 1.480000-5 2.416900+4 1.495000-5 2.669220+4 1.507000-5 2.873200+4 1.522000-5 3.130000+4 1.540000-5 3.439640+4 1.560000-5 3.784020+4 1.580000-5 4.127220+4 1.603245-5 4.522811+4 1.621810-5 4.835056+4 1.640590-5 5.146737+4 1.670000-5 5.624840+4 1.700000-5 6.098180+4 1.730000-5 6.555460+4 1.760000-5 6.995580+4 1.785000-5 7.348760+4 1.819701-5 7.818036+4 1.862087-5 8.358038+4 1.905461-5 8.873152+4 1.950000-5 9.363580+4 2.000000-5 9.869280+4 2.055000-5 1.037334+5 2.113489-5 1.085282+5 2.170000-5 1.126450+5 2.238721-5 1.170268+5 2.317395-5 1.212828+5 2.400000-5 1.249742+5 2.500000-5 1.285234+5 2.610000-5 1.314450+5 2.730000-5 1.336580+5 2.851018-5 1.350446+5 3.019952-5 1.358678+5 3.198895-5 1.356872+5 3.400000-5 1.345522+5 3.630781-5 1.323815+5 3.900000-5 1.290928+5 4.216965-5 1.246091+5 4.570882-5 1.192111+5 4.954502-5 1.132310+5 5.400000-5 1.063262+5 5.888437-5 9.902292+4 6.382635-5 9.203483+4 6.918310-5 8.499840+4 7.585776-5 7.700754+4 8.317638-5 6.924875+4 9.225714-5 6.098626+4 1.035142-4 5.253492+4 1.188502-4 4.359286+4 1.428894-4 3.369796+4 1.800000-4 2.417820+4 2.691535-4 1.344584+4 3.054921-4 1.111680+4 3.507519-4 8.946223+3 4.073803-4 7.015246+3 4.897788-4 5.152493+3 5.821032-4 3.840979+3 6.839116-4 2.898044+3 8.000000-4 2.187822+3 9.440609-4 1.613791+3 1.135011-3 1.141324+3 1.348963-3 8.186690+2 1.603245-3 5.828121+2 1.905461-3 4.117391+2 2.238721-3 2.955588+2 2.660725-3 2.056907+2 3.311311-3 1.288123+2 3.890451-3 9.058326+1 4.415704-3 6.820686+1 5.128614-3 4.840251+1 5.956621-3 3.408886+1 6.918310-3 2.384579+1 8.128305-3 1.610272+1 9.549926-3 1.078817+1 1.122018-2 7.172174+0 1.318257-2 4.731978+0 1.548817-2 3.098489+0 1.819701-2 2.013801+0 2.137962-2 1.299422+0 2.540973-2 8.063684-1 3.019952-2 4.966338-1 3.630781-2 2.937868-1 4.365158-2 1.724984-1 5.248075-2 1.005739-1 6.531306-2 5.254504-2 8.413951-2 2.457332-2 1.071519-1 1.181968-2 1.659587-1 3.125309-3 2.137962-1 1.457179-3 2.511886-1 9.018849-4 2.917427-1 5.818167-4 3.311311-1 4.041596-4 3.715352-1 2.920978-4 4.168694-1 2.126573-4 4.623810-1 1.609473-4 5.128614-1 1.227099-4 5.623413-1 9.706757-5 6.165950-1 7.729858-5 6.760830-1 6.199509-5 7.413102-1 5.007560-5 8.128305-1 4.073799-5 8.912509-1 3.337882-5 9.660509-1 2.822107-5 1.109175+0 2.140832-5 1.230269+0 1.751932-5 1.364583+0 1.444216-5 1.513561+0 1.199029-5 1.678804+0 1.002535-5 1.883649+0 8.277675-6 2.113489+0 6.882030-6 2.398833+0 5.660137-6 2.722701+0 4.689535-6 3.126079+0 3.847664-6 3.630781+0 3.128737-6 4.265795+0 2.523594-6 5.069907+0 2.020351-6 6.095369+0 1.606639-6 7.498942+0 1.251425-6 9.225714+0 9.822636-7 1.174898+1 7.455928-7 1.548817+1 5.487944-7 2.113489+1 3.919387-7 3.090295+1 2.620057-7 4.786301+1 1.662059-7 7.328245+1 1.073408-7 1.462177+2 5.321678-8 2.917427+2 2.652693-8 1.161449+3 6.636138-9 1.000000+5 7.69690-11 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.530000-6 7.530000-6 1.000000+5 7.530000-6 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.530000-6 0.0 1.000000+5 1.000000+5 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.028330-8 1.028750+0 3.028330-7 1.033200+0 1.366950-6 1.034000+0 1.678050-6 1.035300+0 2.277720-6 1.036640+0 3.028330-6 1.038200+0 4.086830-6 1.039700+0 5.309610-6 1.041500+0 7.064380-6 1.043800+0 9.805590-6 1.046400+0 1.364260-5 1.048300+0 1.698550-5 1.051200+0 2.304040-5 1.054080+0 3.028330-5 1.057700+0 4.127800-5 1.061100+0 5.369220-5 1.065100+0 7.108240-5 1.070400+0 9.916710-5 1.076200+0 1.370480-4 1.080600+0 1.711510-4 1.087100+0 2.305970-4 1.093710+0 3.028330-4 1.102600+0 4.198800-4 1.110700+0 5.476170-4 1.120600+0 7.325660-4 1.133300+0 1.018620-3 1.147500+0 1.406440-3 1.158200+0 1.747860-3 1.174100+0 2.335980-3 1.190110+0 3.028330-3 1.205100+0 3.769030-3 1.227500+0 5.043800-3 1.250000+0 6.520000-3 1.265600+0 7.652180-3 1.294900+0 1.000480-2 1.331800+0 1.335740-2 1.362600+0 1.645810-2 1.411700+0 2.191680-2 1.455800+0 2.731870-2 1.500000+0 3.320000-2 1.562500+0 4.231890-2 1.617200+0 5.104100-2 1.712900+0 6.781110-2 1.784700+0 8.150450-2 1.892300+0 1.034290-1 2.000000+0 1.265000-1 2.044000+0 1.361000-1 2.163500+0 1.625730-1 2.372600+0 2.097480-1 2.647100+0 2.719010-1 3.000000+0 3.506000-1 3.437500+0 4.450560-1 4.000000+0 5.600000-1 4.750000+0 7.006890-1 5.000000+0 7.449000-1 6.000000+0 9.097000-1 7.000000+0 1.056000+0 8.000000+0 1.188000+0 9.000000+0 1.307000+0 1.000000+1 1.415000+0 1.100000+1 1.513000+0 1.200000+1 1.603000+0 1.300000+1 1.685000+0 1.400000+1 1.763000+0 1.500000+1 1.835000+0 1.600000+1 1.903000+0 1.800000+1 2.027000+0 2.000000+1 2.138000+0 2.200000+1 2.239000+0 2.400000+1 2.330000+0 2.600000+1 2.414000+0 2.800000+1 2.490000+0 3.000000+1 2.561000+0 4.000000+1 2.848000+0 5.000000+1 3.063000+0 6.000000+1 3.231000+0 8.000000+1 3.483000+0 1.000000+2 3.663000+0 1.500000+2 3.953000+0 2.000000+2 4.128000+0 3.000000+2 4.332000+0 4.000000+2 4.451000+0 5.000000+2 4.529000+0 6.000000+2 4.585000+0 8.000000+2 4.660000+0 1.000000+3 4.708000+0 1.500000+3 4.779000+0 2.000000+3 4.817000+0 3.000000+3 4.859000+0 4.000000+3 4.881000+0 5.000000+3 4.896000+0 6.000000+3 4.905000+0 8.000000+3 4.918000+0 1.000000+4 4.926000+0 1.500000+4 4.938000+0 2.000000+4 4.944000+0 3.000000+4 4.950000+0 4.000000+4 4.953000+0 5.000000+4 4.956000+0 6.000000+4 4.957000+0 8.000000+4 4.959000+0 1.000000+5 4.960000+0 1 26000 7 8 5.584700+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.610750-7 2.114000+0 1.176930-6 2.119500+0 1.465270-6 2.127900+0 1.987180-6 2.136250+0 2.610750-6 2.147000+0 3.579520-6 2.156900+0 4.649370-6 2.169000+0 6.204870-6 2.184500+0 8.624980-6 2.201800+0 1.193290-5 2.214800+0 1.486750-5 2.234200+0 1.999940-5 2.253680+0 2.610750-5 2.281500+0 3.656820-5 2.307000+0 4.803220-5 2.338200+0 6.458350-5 2.377400+0 8.944050-5 2.410200+0 1.137530-4 2.446800+0 1.447010-4 2.485900+0 1.821860-4 2.532900+0 2.331590-4 2.556430+0 2.610750-4 2.611900+0 3.328980-4 2.660400+0 4.024540-4 2.745300+0 5.386550-4 2.809000+0 6.523390-4 2.904500+0 8.403590-4 3.000000+0 1.049000-3 3.125000+0 1.352700-3 3.234400+0 1.646020-3 3.425800+0 2.216820-3 3.569300+0 2.688340-3 3.784700+0 3.456300-3 4.000000+0 4.282000-3 4.250000+0 5.291600-3 4.625000+0 6.878760-3 5.000000+0 8.530000-3 5.500000+0 1.079920-2 6.000000+0 1.310000-2 6.750000+0 1.652270-2 7.000000+0 1.765000-2 8.000000+0 2.207000-2 9.000000+0 2.630000-2 1.000000+1 3.032000-2 1.100000+1 3.413000-2 1.200000+1 3.773000-2 1.300000+1 4.113000-2 1.400000+1 4.437000-2 1.500000+1 4.743000-2 1.600000+1 5.035000-2 1.800000+1 5.577000-2 2.000000+1 6.072000-2 2.200000+1 6.525000-2 2.400000+1 6.943000-2 2.600000+1 7.330000-2 2.800000+1 7.690000-2 3.000000+1 8.026000-2 4.000000+1 9.425000-2 5.000000+1 1.050000-1 6.000000+1 1.136000-1 8.000000+1 1.266000-1 1.000000+2 1.362000-1 1.500000+2 1.524000-1 2.000000+2 1.626000-1 3.000000+2 1.753000-1 4.000000+2 1.830000-1 5.000000+2 1.883000-1 6.000000+2 1.922000-1 8.000000+2 1.976000-1 1.000000+3 2.013000-1 1.500000+3 2.067000-1 2.000000+3 2.099000-1 3.000000+3 2.133000-1 4.000000+3 2.153000-1 5.000000+3 2.165000-1 6.000000+3 2.174000-1 8.000000+3 2.186000-1 1.000000+4 2.193000-1 1.500000+4 2.203000-1 2.000000+4 2.209000-1 3.000000+4 2.215000-1 4.000000+4 2.218000-1 5.000000+4 2.220000-1 6.000000+4 2.222000-1 8.000000+4 2.223000-1 1.000000+5 2.224000-1 1 26000 7 8 5.584700+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 26000 7 9 5.584700+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.600000+1 1.000000+5 2.600000+1 5.000000+5 2.598300+1 6.718700+5 2.597360+1 7.890600+5 2.596850+1 9.296900+5 2.596330+1 1.000000+6 2.596100+1 1.125000+6 2.595380+1 1.500000+6 2.593200+1 2.000000+6 2.588000+1 2.500000+6 2.581400+1 3.000000+6 2.573500+1 3.500000+6 2.564030+1 4.000000+6 2.553800+1 4.500000+6 2.542450+1 5.000000+6 2.530200+1 5.500000+6 2.516440+1 5.875000+6 2.505620+1 6.437500+6 2.488470+1 6.500000+6 2.486550+1 7.000000+6 2.470700+1 7.500000+6 2.454130+1 8.250000+6 2.428320+1 8.500000+6 2.419750+1 9.000000+6 2.402300+1 9.750000+6 2.375450+1 1.000000+7 2.366600+1 1.109400+7 2.326340+1 1.187500+7 2.296960+1 1.250000+7 2.273600+1 1.437500+7 2.203190+1 1.500000+7 2.180300+1 1.750000+7 2.091100+1 2.000000+7 2.003300+1 2.250000+7 1.917560+1 2.500000+7 1.834000+1 2.750000+7 1.752510+1 2.875000+7 1.712370+1 3.000000+7 1.672900+1 3.343800+7 1.566760+1 3.437500+7 1.538720+1 3.718800+7 1.457530+1 4.000000+7 1.380900+1 4.437500+7 1.270830+1 4.500000+7 1.256050+1 5.000000+7 1.146800+1 5.750000+7 1.010270+1 6.000000+7 9.716500+0 6.750000+7 8.740790+0 7.000000+7 8.469700+0 7.750000+7 7.793040+0 8.000000+7 7.604200+0 8.750000+7 7.126090+0 9.000000+7 6.988900+0 1.000000+8 6.515000+0 1.125000+8 6.016100+0 1.187500+8 5.784680+0 1.218800+8 5.670980+0 1.250000+8 5.558600+0 1.312500+8 5.335490+0 1.406300+8 5.006540+0 1.500000+8 4.686600+0 1.589800+8 4.388310+0 1.665000+8 4.145230+0 1.748800+8 3.882380+0 1.750000+8 3.878700+0 1.838500+8 3.610460+0 1.919300+8 3.374690+0 2.000000+8 3.148800+0 2.250000+8 2.544630+0 2.281300+8 2.483780+0 2.359400+8 2.347910+0 2.429700+8 2.244810+0 2.500000+8 2.159400+0 2.562500+8 2.097470+0 2.835900+8 1.889890+0 2.918000+8 1.826980+0 3.000000+8 1.757800+0 3.062500+8 1.700090+0 3.335900+8 1.457540+0 3.418000+8 1.401230+0 3.500000+8 1.356200+0 3.589800+8 1.320240+0 3.665000+8 1.297870+0 3.712900+8 1.286260+0 4.000000+8 1.230400+0 4.125000+8 1.202240+0 4.234400+8 1.174730+0 4.425800+8 1.123410+0 5.000000+8 9.789000-1 5.625000+8 8.615970-1 5.875000+8 8.176330-1 6.000000+8 7.953000-1 7.000000+8 6.317000-1 7.625000+8 5.632150-1 7.875000+8 5.365960-1 8.000000+8 5.227000-1 8.242200+8 4.942570-1 8.461900+8 4.677090-1 8.743900+8 4.337560-1 9.057900+8 3.973550-1 9.529000+8 3.475930-1 1.000000+9 3.048000-1 1.218800+9 1.778870-1 1.289100+9 1.522840-1 1.394500+9 1.218140-1 1.473600+9 1.036070-1 1.500000+9 9.824100-2 1.562500+9 8.674500-2 1.671900+9 7.014820-2 1.753900+9 6.012230-2 1.877000+9 4.809480-2 2.000000+9 3.887300-2 2.187500+9 2.863800-2 2.445700+9 1.943980-2 2.682600+9 1.402670-2 2.972200+9 9.721200-3 3.344000+9 6.344220-3 3.935400+9 3.493300-3 5.000000+9 1.440300-3 8.000000+9 2.521200-4 9.500000+9 1.338190-4 1.00000+10 1.108700-4 1.20500+10 5.627380-5 1.41820+10 3.133480-5 1.56500+10 2.205920-5 1.86390+10 1.189760-5 2.17050+10 6.984430-6 2.41520+10 4.820820-6 2.88920+10 2.601670-6 3.54200+10 1.299990-6 4.14090+10 7.674530-7 4.87330+10 4.449520-7 5.81320+10 2.477230-7 7.30850+10 1.166370-7 9.32710+10 5.267320-8 1.00000+11 4.202700-8 1.17140+11 2.522290-8 1.55940+11 1.008880-8 2.04410+11 4.273620-9 2.99030+11 1.293630-9 4.21500+11 4.45147-10 7.29680+11 8.25676-11 1.61310+12 7.51834-12 4.52640+12 3.51828-13 2.12750+13 3.82888-15 1.00000+14 4.25890-17 5.62340+14 2.69377-19 7.49890+15 1.24664-22 1.00000+17 5.47220-26 1 26000 7 0 5.584700+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.00000-12 1.000000+2 5.00000-10 1.000000+3 5.000000-8 1.000000+4 5.000000-6 1.000000+5 5.000000-4 5.000000+5 1.250000-2 6.718700+5 2.257046-2 7.890600+5 3.113078-2 9.296900+5 4.321617-2 1.000000+6 5.000000-2 1.125000+6 6.314710-2 1.500000+6 1.109000-1 2.000000+6 1.947000-1 2.500000+6 2.995000-1 3.000000+6 4.233000-1 3.500000+6 5.637240-1 4.000000+6 7.183000-1 4.500000+6 8.845850-1 5.000000+6 1.060000+0 5.500000+6 1.241960+0 5.875000+6 1.381440+0 6.437500+6 1.593470+0 6.500000+6 1.617060+0 7.000000+6 1.806500+0 7.500000+6 1.994700+0 8.250000+6 2.273090+0 8.500000+6 2.364290+0 9.000000+6 2.544200+0 9.750000+6 2.805890+0 1.000000+7 2.891000+0 1.109400+7 3.249700+0 1.187500+7 3.494390+0 1.250000+7 3.684100+0 1.437500+7 4.228930+0 1.500000+7 4.405000+0 1.750000+7 5.096300+0 2.000000+7 5.781000+0 2.250000+7 6.463650+0 2.500000+7 7.138100+0 2.750000+7 7.795410+0 2.875000+7 8.116620+0 3.000000+7 8.432000+0 3.343800+7 9.265570+0 3.437500+7 9.485050+0 3.718800+7 1.012300+1 4.000000+7 1.073300+1 4.437500+7 1.162630+1 4.500000+7 1.174950+1 5.000000+7 1.268700+1 5.750000+7 1.395530+1 6.000000+7 1.434300+1 6.750000+7 1.539690+1 7.000000+7 1.571600+1 7.750000+7 1.657330+1 8.000000+7 1.683100+1 8.750000+7 1.752600+1 9.000000+7 1.773700+1 1.000000+8 1.848800+1 1.125000+8 1.927920+1 1.187500+8 1.963040+1 1.218800+8 1.979650+1 1.250000+8 1.995900+1 1.312500+8 2.026710+1 1.406300+8 2.069920+1 1.500000+8 2.109700+1 1.589800+8 2.144630+1 1.665000+8 2.171700+1 1.748800+8 2.199630+1 1.750000+8 2.200010+1 1.838500+8 2.227060+1 1.919300+8 2.249680+1 2.000000+8 2.270400+1 2.250000+8 2.324050+1 2.281300+8 2.329690+1 2.359400+8 2.343220+1 2.429700+8 2.354480+1 2.500000+8 2.365000+1 2.562500+8 2.373460+1 2.835900+8 2.405640+1 2.918000+8 2.413910+1 3.000000+8 2.421600+1 3.062500+8 2.426940+1 3.335900+8 2.448350+1 3.418000+8 2.454140+1 3.500000+8 2.459800+1 3.589800+8 2.465330+1 3.665000+8 2.469860+1 3.712900+8 2.472700+1 4.000000+8 2.488700+1 4.125000+8 2.494810+1 4.234400+8 2.500020+1 4.425800+8 2.508840+1 5.000000+8 2.531000+1 5.625000+8 2.549450+1 5.875000+8 2.555540+1 6.000000+8 2.558500+1 7.000000+8 2.575500+1 7.625000+8 2.582340+1 7.875000+8 2.584530+1 8.000000+8 2.585600+1 8.242200+8 2.587120+1 8.461900+8 2.588460+1 8.743900+8 2.590140+1 9.057900+8 2.591580+1 9.529000+8 2.593280+1 1.000000+9 2.594900+1 1.218800+9 2.598170+1 1.289100+9 2.598760+1 1.394500+9 2.599200+1 1.473600+9 2.599430+1 1.500000+9 2.599500+1 1.562500+9 2.599560+1 1.671900+9 2.599650+1 1.753900+9 2.599720+1 1.877000+9 2.599810+1 2.000000+9 2.599900+1 2.187500+9 2.599910+1 2.445700+9 2.599920+1 2.682600+9 2.599930+1 2.972200+9 2.599940+1 3.344000+9 2.599960+1 3.935400+9 2.599970+1 5.000000+9 2.600000+1 8.000000+9 2.600000+1 9.500000+9 2.600000+1 1.00000+10 2.600000+1 1.20500+10 2.600000+1 1.41820+10 2.600000+1 1.56500+10 2.600000+1 1.86390+10 2.600000+1 2.17050+10 2.600000+1 2.41520+10 2.600000+1 2.88920+10 2.600000+1 3.54200+10 2.600000+1 4.14090+10 2.600000+1 4.87330+10 2.600000+1 5.81320+10 2.600000+1 7.30850+10 2.600000+1 9.32710+10 2.600000+1 1.00000+11 2.600000+1 1.17140+11 2.600000+1 1.55940+11 2.600000+1 2.04410+11 2.600000+1 2.99030+11 2.600000+1 4.21500+11 2.600000+1 7.29680+11 2.600000+1 1.61310+12 2.600000+1 4.52640+12 2.600000+1 2.12750+13 2.600000+1 1.00000+14 2.600000+1 5.62340+14 2.600000+1 7.49890+15 2.600000+1 1.00000+17 2.600000+1 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.016965-6 0.0 3.782391-6 0.0 3.798684-6 3.134823+0 3.801011-6 3.578085+0 3.810321-6 6.535665+0 3.819631-6 1.102003+1 3.820679-6 1.170894+1 3.830083-6 2.170563+1 3.840663-6 3.464750+1 3.850067-6 4.888246+1 3.877104-6 9.644154+1 3.887095-6 1.108235+2 3.897434-6 1.199581+2 3.907174-6 1.216678+2 3.916651-6 1.161740+2 3.925814-6 1.046819+2 3.936908-6 8.475789+1 3.952336-6 5.376557+1 3.961741-6 3.671455+1 3.968589-6 2.621323+1 3.971145-6 2.280444+1 3.980549-6 1.358981+1 3.989953-6 7.475867+0 4.004059-6 1.900396+0 4.008761-6 0.0 5.070799-6 0.0 5.083280-6 6.14564-15 5.095761-6 1.21605-14 5.108242-6 2.22122-14 5.120723-6 3.74528-14 5.133204-6 5.82950-14 5.145685-6 8.37592-14 5.158167-6 1.11093-13 5.170648-6 1.36018-13 5.183129-6 1.53730-13 5.195610-6 1.60389-13 5.208091-6 1.54470-13 5.220572-6 1.37331-13 5.233053-6 1.12706-13 5.258016-6 5.97125-14 5.270497-6 3.85483-14 5.282978-6 2.29720-14 5.295459-6 1.26371-14 5.307940-6 6.41726-15 5.320421-6 0.0 5.826576-6 0.0 5.836541-6 4.047742-2 5.855259-6 2.843929-1 5.865273-6 4.399705-1 5.870855-6 5.641861-1 5.880177-6 8.007521-1 5.884571-6 9.462129-1 5.895099-6 1.339799+0 5.910743-6 2.092024+0 5.941307-6 3.802626+0 5.956285-6 4.473717+0 5.968415-6 4.787309+0 5.981098-6 4.869513+0 5.995719-6 4.578492+0 6.014807-6 3.735521+0 6.046930-6 1.954931+0 6.052164-6 1.683310+0 6.066668-6 1.068276+0 6.075776-6 7.852996-1 6.081172-6 6.256260-1 6.084721-6 5.472107-1 6.095676-6 3.381233-1 6.113404-6 9.926080-2 6.123859-6 5.672088-5 6.139188-6 3.281097-5 6.153691-6 1.803964-5 6.168195-6 9.101302-6 6.182239-6 1.759781-7 6.182699-6 0.0 6.507555-6 0.0 6.511605-6 3.198166-3 6.539590-6 7.599690-2 6.543660-6 8.858522-2 6.555607-6 1.399266-1 6.560912-6 1.681631-1 6.575715-6 2.675979-1 6.593052-6 4.271093-1 6.635695-6 9.012502-1 6.655853-6 1.057000+0 6.673400-6 1.092103+0 6.689470-6 1.037957+0 6.705540-6 9.110455-1 6.752017-6 3.977949-1 6.768045-6 2.557545-1 6.779853-6 1.771187-1 6.784072-6 1.518318-1 6.795870-6 9.969938-2 6.800100-6 8.322811-2 6.819380-6 3.215774-2 6.827905-6 1.698284-2 6.832155-6 1.292557-2 6.850900-6 3.071795-2 6.852950-6 3.304276-2 6.869735-6 6.006003-2 6.886520-6 1.008095-1 6.903305-6 1.562457-1 6.951580-6 3.531062-1 6.970445-6 4.062226-1 6.987230-6 4.236146-1 7.004015-6 4.147444-1 7.020800-6 3.769206-1 7.054370-6 2.727659-1 7.071302-6 2.319975-1 7.088496-6 2.102375-1 7.105689-6 2.097342-1 7.140076-6 2.347336-1 7.156070-6 2.403669-1 7.174464-6 2.526457-1 7.208851-6 2.476880-1 7.267060-6 2.272855-1 7.431026-6 1.998862-1 7.600000-6 1.793796-1 7.711882-6 1.628328-1 8.104289-6 1.219190-1 8.483056-6 9.116649-2 8.860837-6 6.753929-2 8.881386-6 6.643380-2 8.925107-6 7.010803-1 8.946967-6 1.226465+0 8.970194-6 2.091718+0 8.992346-6 3.216569+0 9.024235-6 5.246531+0 9.056269-6 7.504510+0 9.082618-6 8.894694+0 9.101873-6 9.542911+0 9.131297-6 9.755475+0 9.159267-6 9.410329+0 9.202518-6 8.421268+0 9.244479-6 7.151883+0 9.274773-6 5.919373+0 9.302199-6 4.621984+0 9.318594-6 3.727779+0 9.349901-6 2.434567+0 9.372095-6 1.649836+0 9.394289-6 1.044169+0 9.416483-6 6.213775-1 9.434179-6 4.021671-1 9.456467-6 1.514576-1 9.460872-6 1.062957-1 9.501044-6 3.926631-2 9.818346-6 2.937857-2 1.008729-5 2.261880-2 1.038144-5 1.665972-2 1.066046-5 1.216406-2 1.089728-5 9.092165-3 1.095092-5 1.240435-1 1.097774-5 2.192737-1 1.100457-5 3.638146-1 1.103418-5 5.866933-1 1.106748-5 8.985562-1 1.111186-5 1.369200+0 1.114963-5 1.649267+0 1.117005-5 1.753374+0 1.120408-5 1.801973+0 1.123130-5 1.766088+0 1.128868-5 1.569298+0 1.133340-5 1.350883+0 1.138405-5 1.007705+0 1.142440-5 6.935384-1 1.143372-5 6.132403-1 1.146953-5 3.941497-1 1.149675-5 2.575189-1 1.152398-5 1.560150-1 1.155120-5 8.799469-2 1.157226-5 5.562612-2 1.160566-5 3.138370-2 1.161610-5 3.684879-2 1.162923-5 4.697581-2 1.165771-5 8.328499-2 1.168620-5 1.385277-1 1.171468-5 2.143059-1 1.174618-5 3.193903-1 1.180013-5 5.279691-1 1.183292-5 6.264627-1 1.186183-5 6.833207-1 1.189074-5 7.108307-1 1.191965-5 7.161638-1 1.208497-5 6.118119-1 1.213143-5 5.706278-1 1.218100-5 5.404018-1 1.223830-5 5.271013-1 1.241401-5 5.837090-1 1.255900-5 5.626826-1 1.269528-5 5.463433-1 1.289421-5 5.624297-1 1.315142-5 5.945325-1 1.476236-5 7.054553-1 1.640590-5 8.713208-1 1.862087-5 1.160551+0 2.141822-5 1.595069+0 2.641660-5 2.526190+0 3.675700-5 4.561471+0 4.406065-5 5.659085+0 5.225686-5 6.426401+0 5.243078-5 6.832852+0 5.266581-5 1.242506+1 5.268889-5 1.302170+1 5.281794-5 1.819214+1 5.294699-5 2.585313+1 5.309719-5 3.811392+1 5.347126-5 7.311962+1 5.360409-5 8.059515+1 5.373755-5 8.233318+1 5.388476-5 7.740230+1 5.400741-5 6.986967+1 5.424365-5 5.062187+1 5.438447-5 4.187308+1 5.452089-5 3.735972+1 5.465343-5 3.676493+1 5.483498-5 4.001719+1 5.496567-5 4.234412+1 5.517140-5 4.533693+1 5.532775-5 4.317361+1 5.546863-5 3.830493+1 5.583408-5 2.105838+1 5.596661-5 1.595418+1 5.609915-5 1.219930+1 5.623168-5 9.710177+0 5.649675-5 6.671879+0 6.256231-5 6.910718+0 6.321739-5 7.197312+0 6.397016-5 7.956788+0 6.466792-5 7.938252+0 6.517724-5 8.016274+0 6.598413-5 8.268357+0 6.758415-5 8.175272+0 9.044258-5 7.725847+0 9.555402-5 7.772621+0 9.658747-5 8.297564+0 9.744122-5 8.699595+0 9.891776-5 8.134025+0 1.327265-4 7.826684+0 2.734482-4 5.363437+0 3.507519-4 4.348522+0 4.365158-4 3.526815+0 5.197341-4 2.939602+0 6.282666-4 2.375275+0 6.909443-4 2.132908+0 6.943456-4 3.988508+0 6.960463-4 5.529562+0 6.977560-4 7.882786+0 6.996501-4 1.153671+1 7.050834-4 2.425854+1 7.069534-4 2.705542+1 7.085504-4 2.813096+1 7.103432-4 2.779857+1 7.170702-4 2.201836+1 7.232000-4 1.899509+1 7.253780-4 1.714591+1 7.295000-4 1.454585+1 7.312095-4 1.379009+1 7.330000-4 1.340453+1 7.380273-4 1.354802+1 7.443700-4 1.489048+1 7.523000-4 1.540202+1 8.265015-4 1.388336+1 8.455229-4 1.498182+1 1.022937-3 1.173077+1 1.202264-3 9.380193+0 1.398851-3 7.502305+0 1.631173-3 5.937966+0 1.874522-3 4.773979+0 2.150692-3 3.827985+0 2.448856-3 3.095813+0 2.761325-3 2.534843+0 3.089462-3 2.098333+0 3.482371-3 1.711175+0 3.818343-3 1.460207+0 4.317520-3 1.179225+0 4.886581-3 9.484179-1 5.470196-3 7.763145-1 6.192959-3 6.219261-1 6.876772-3 5.156596-1 6.911815-3 5.165277-1 6.943927-3 5.479464-1 6.961836-3 5.924735-1 6.978666-3 6.678064-1 6.993183-3 7.700276-1 7.009885-3 9.391872-1 7.027223-3 1.180185+0 7.048652-3 1.568363+0 7.107093-3 2.809840+0 7.135155-3 3.267217+0 7.170902-3 3.600953+0 7.206778-3 3.719795+0 7.481880-3 3.573196+0 8.643302-3 2.850814+0 9.818185-3 2.310951+0 1.109175-2 1.888991+0 1.264401-2 1.508300+0 1.424857-2 1.226088+0 1.576470-2 1.023545+0 1.763357-2 8.373332-1 1.982026-2 6.756929-1 2.220772-2 5.471733-1 2.440884-2 4.581308-1 2.714999-2 3.742340-1 3.009830-2 3.068745-1 3.323246-2 2.532987-1 3.691630-2 2.061261-1 4.111395-2 1.665788-1 4.551676-2 1.359934-1 5.083606-2 1.088964-1 5.572058-2 9.040940-2 6.195334-2 7.290244-2 6.928265-2 5.792061-2 7.664427-2 4.704265-2 8.567540-2 3.736322-2 9.518393-2 3.003467-2 1.053174-1 2.433619-2 1.149603-1 2.028617-2 1.255845-1 1.688399-2 1.374100-1 1.400148-2 1.508403-1 1.153371-2 1.679431-1 9.238619-3 1.837492-1 7.685657-3 2.034927-1 6.238718-3 2.218778-1 5.236536-3 2.437906-1 4.335607-3 2.678475-1 3.604460-3 2.940610-1 3.008361-3 3.216368-1 2.537436-3 3.560762-1 2.101271-3 3.946844-1 1.746795-3 4.321768-1 1.491461-3 4.820865-1 1.242148-3 5.372596-1 1.044792-3 6.126277-1 8.570921-4 7.059111-1 7.044612-4 8.128305-1 5.886237-4 9.386420-1 4.990172-4 1.120601+0 4.152850-4 1.347258+0 3.428982-4 1.619761+0 2.831289-4 1.947381+0 2.337778-4 2.341267+0 1.930289-4 2.814822+0 1.593828-4 3.384160+0 1.316014-4 4.068655+0 1.086624-4 4.891600+0 8.972189-5 5.880996+0 7.408281-5 7.070513+0 6.116971-5 8.500626+0 5.050745-5 9.760024+0 4.374916-5 1.000000+1 8.715107-5 1 26000 7 0 5.584700+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.586374+1 2.469271-6-2.470966+1 3.040884-6-2.301306+1 3.324217-6-2.088611+1 3.471321-6-1.864974+1 3.557116-6-1.643542+1 3.619247-6-1.395154+1 3.664243-6-1.128277+1 3.691125-6-9.089408+0 3.707524-6-7.414070+0 3.725071-6-5.218274+0 3.732236-6-4.164343+0 3.738505-6-3.148185+0 3.743991-6-2.174909+0 3.748791-6-1.248564+0 3.752991-6-3.721350-1 3.756666-6 4.524198-1 3.763097-6 2.049020+0 3.767921-6 3.403866+0 3.774252-6 5.458714+0 3.778321-6 7.021102+0 3.781374-6 8.420009+0 3.783555-6 9.691048+0 3.798684-6 1.693991+1 3.810321-6 2.417048+1 3.819631-6 3.122411+1 3.822369-6 3.405276+1 3.832434-6 4.025674+1 3.842720-6 4.463006+1 3.852124-6 4.586858+1 3.860646-6 4.347179+1 3.867654-6 3.884394+1 3.873117-6 3.341614+1 3.877104-6 2.797444+1 3.882981-6 1.853470+1 3.886067-6 1.275343+1 3.887095-6 1.038995+1 3.891504-6 1.407734+0 3.892606-6-9.015818-1 3.894052-6-4.071235+0 3.895447-6-7.409110+0 3.896348-6-9.946880+0 3.898419-6-1.495789+1 3.903189-6-2.605621+1 3.905353-6-2.027766+1 3.907174-6-1.539829+1 3.912244-6-3.506495+0 3.913482-6-5.432857-1 3.914101-6 1.016668+0 3.914410-6 1.841271+0 3.915014-6 3.635390+0 3.915583-6 5.112446+0 3.917585-6 9.731127+0 3.925814-6 2.697399+1 3.929189-6 3.274743+1 3.934704-6 4.102633+1 3.940524-6 4.721000+1 3.947353-6 5.153459+1 3.952336-6 5.265464+1 3.960565-6 5.167883+1 3.968589-6 4.727205+1 3.993186-6 2.812237+1 4.007586-6 1.905431+1 4.009798-6 1.703345+1 4.013939-6 1.436269+1 4.020123-6 1.134575+1 4.028316-6 8.212170+0 4.036444-6 5.699655+0 4.044509-6 3.610342+0 4.048518-6 2.687753+0 4.052511-6 1.832874+0 4.060467-6 2.929742-1 4.068360-6-1.055219+0 4.076192-6-2.247654+0 4.083962-6-3.311291+0 4.099321-6-5.130792+0 4.114441-6-6.633317+0 4.136681-6-8.457019+0 4.165644-6-1.033569+1 4.207414-6-1.238270+1 4.272791-6-1.462652+1 4.367962-6-1.674314+1 4.526743-6-1.882787+1 4.824444-6-2.082324+1 5.777423-6-2.389004+1 5.870855-6-2.535819+1 5.922950-6-2.586530+1 5.956285-6-2.455554+1 6.007339-6-2.109410+1 6.038802-6-2.018354+1 6.084721-6-2.078703+1 6.168195-6-2.215117+1 6.628808-6-2.382268+1 6.747013-6-2.279027+1 6.961012-6-2.358890+1 7.866000-6-2.406623+1 8.628250-6-2.534939+1 8.809497-6-2.612261+1 8.900722-6-2.446746+1 9.000896-6-2.207805+1 9.044198-6-2.249906+1 9.093476-6-2.523797+1 9.101873-6-2.590029+1 9.131297-6-2.467723+1 9.197316-6-2.114020+1 9.274773-6-1.844790+1 9.318594-6-1.790339+1 9.388741-6-1.884640+1 9.510895-6-2.113664+1 9.722475-6-2.240888+1 1.094422-5-2.466759+1 1.111186-5-2.497291+1 1.135859-5-2.314018+1 1.153804-5-2.346441+1 1.181653-5-2.429895+1 1.252672-5-2.410529+1 2.805400-5-2.585703+1 4.220000-5-2.637653+1 4.650000-5-2.382362+1 4.855857-5-2.146866+1 4.990290-5-1.876183+1 5.075856-5-1.586339+1 5.117180-5-1.378396+1 5.152995-5-1.132590+1 5.176989-5-9.125070+0 5.193063-5-7.261534+0 5.207336-5-5.213598+0 5.215364-5-3.827425+0 5.220525-5-2.810526+0 5.223106-5-2.252277+0 5.225686-5-1.639559+0 5.230034-5-5.464827-1 5.233295-5 3.211717-1 5.235741-5 1.022116+0 5.239410-5 2.196495+0 5.241244-5 2.874801+0 5.242161-5 3.257885+0 5.244120-5 4.250760+0 5.245943-5 4.988187+0 5.251411-5 6.902778+0 5.266581-5 1.196598+1 5.283407-5 1.863834+1 5.299135-5 2.355903+1 5.311702-5 2.517148+1 5.318674-5 2.449016+1 5.326191-5 2.256088+1 5.332866-5 1.980495+1 5.339839-5 1.563915+1 5.345102-5 1.121576+1 5.347126-5 9.086742+0 5.353176-5 3.331726+0 5.354688-5 1.833451+0 5.355822-5 6.635649-1 5.357523-5-1.205438+0 5.358374-5-2.225190+0 5.358799-5-2.776334+0 5.359628-5-4.009897+0 5.360409-5-5.013333+0 5.364438-5-9.592265+0 5.370761-5-1.676559+1 5.374449-5-2.173281+1 5.377583-5-2.496293+1 5.385237-5-1.686695+1 5.389659-5-1.252866+1 5.399166-5-4.498353+0 5.400741-5-3.348990+0 5.402218-5-2.386990+0 5.403602-5-1.562903+0 5.404900-5-8.495156-1 5.407333-5 3.500972-1 5.409462-5 1.264010+0 5.411325-5 1.965518+0 5.412955-5 2.506024+0 5.415807-5 3.287442+0 5.417947-5 3.731933+0 5.419552-5 3.979849+0 5.421958-5 4.193481+0 5.423162-5 4.208988+0 5.430992-5 3.579970+0 5.432649-5 3.385109+0 5.435134-5 2.952918+0 5.436376-5 2.638572+0 5.436998-5 2.436727+0 5.438447-5 1.789485+0 5.440000-5 1.312327+0 5.445436-5-8.027464-2 5.448154-5-8.586817-1 5.449513-5-1.328371+0 5.450193-5-1.606520+0 5.451287-5-2.214969+0 5.452089-5-2.562659+0 5.453594-5-3.091232+0 5.456227-5-3.855873+0 5.463139-5-5.683492+0 5.465343-5-6.497649+0 5.468164-5-7.136828+0 5.473924-5-7.919466+0 5.479761-5-8.450647+0 5.485282-5-8.310157+0 5.489630-5-7.765328+0 5.491952-5-7.220056+0 5.501182-5-5.651486+0 5.503648-5-5.217844+0 5.507180-5-4.290605+0 5.512749-5-2.299241+0 5.514944-5-1.408051+0 5.516042-5-9.007170-1 5.516591-5-6.173070-1 5.517140-5-2.769099-1 5.530394-5 5.832830+0 5.532775-5 7.042126+0 5.546863-5 1.245594+1 5.553285-5 1.408144+1 5.564276-5 1.580849+1 5.575336-5 1.631241+1 5.583408-5 1.571734+1 5.595004-5 1.397303+1 5.609915-5 1.069880+1 5.625437-5 7.090854+0 5.645498-5 3.216274+0 5.647587-5 2.759609+0 5.650815-5 1.872186+0 5.652952-5 1.389340+0 5.656693-5 6.767237-1 5.662303-5-2.309441-1 5.667913-5-1.018070+0 5.675092-5-1.903539+0 5.682159-5-2.674845+0 5.695964-5-3.969923+0 5.715976-5-5.494953+0 5.741287-5-7.022581+0 5.776364-5-8.657866+0 5.828511-5-1.044243+1 5.911903-5-1.238153+1 6.052938-5-1.439678+1 6.357586-5-1.717124+1 6.480209-5-1.696065+1 6.598413-5-1.695614+1 9.479979-5-1.664102+1 9.658747-5-1.694083+1 9.823131-5-1.593203+1 1.017651-4-1.589185+1 1.482000-4-1.343646+1 1.927525-4-1.192679+1 2.526388-4-1.084488+1 3.245264-4-1.034747+1 4.078202-4-1.043242+1 4.944277-4-1.116199+1 5.623413-4-1.238549+1 6.069110-4-1.383397+1 6.371340-4-1.548383+1 6.597816-4-1.758294+1 6.687167-4-1.886340+1 6.814555-4-1.777958+1 6.870505-4-1.650300+1 6.898506-4-1.525552+1 6.932100-4-1.266070+1 6.979596-4-8.742538+0 6.996501-4-7.972504+0 7.006522-4-8.034181+0 7.019028-4-8.740981+0 7.026863-4-9.500202+0 7.041144-4-1.151613+1 7.049474-4-1.321128+1 7.065047-4-1.726092+1 7.087034-4-2.385705+1 7.107480-4-1.937350+1 7.127904-4-1.626551+1 7.150170-4-1.424440+1 7.170702-4-1.326571+1 7.205719-4-1.191946+1 7.240800-4-1.028502+1 7.286051-4-1.042092+1 7.330000-4-1.211955+1 7.362625-4-1.323372+1 7.394100-4-1.396527+1 7.443700-4-1.384559+1 7.651485-4-1.166988+1 7.870584-4-1.034521+1 8.119898-4-9.481952+0 8.265015-4-9.494578+0 8.354683-4-9.573217+0 8.426322-4-9.071797+0 8.524907-4-8.125275+0 8.698542-4-7.152411+0 9.006271-4-5.980560+0 9.468281-4-4.681513+0 9.915476-4-3.795327+0 1.052795-3-2.883126+0 1.112372-3-2.216369+0 1.168190-3-1.731083+0 1.202264-3-1.484056+0 1.243106-3-1.232123+0 1.301402-3-9.447570-1 1.336995-3-8.008383-1 1.398851-3-5.956212-1 1.464941-3-4.274395-1 1.533421-3-2.890704-1 1.578190-3-2.165456-1 1.611341-3-1.750089-1 1.642607-3-1.416702-1 1.689413-3-9.711032-2 1.730900-3-6.454309-2 1.768702-3-4.211226-2 1.808798-3-2.260449-2 1.820700-3-1.783326-2 1.847475-3-9.053425-3 1.873498-3-2.098402-3 1.882294-3-7.960531-5 1.884322-3 3.762698-4 1.889182-3 1.407417-3 1.892476-3 2.072692-3 1.939001-3 1.586658-2 1.990519-3 2.568373-2 2.009671-3 2.760534-2 2.039400-3 2.897221-2 2.076037-3 2.890901-2 2.150692-3 2.240400-2 2.181415-3 1.881333-2 2.209789-3 1.369907-2 2.227874-3 1.094516-2 2.274443-3 3.279262-3 2.282640-3 1.699421-3 2.324315-3-6.725683-3 2.334287-3-9.213056-3 2.384327-3-2.390636-2 2.563009-3-7.927329-2 2.660725-3-1.143213-1 3.089462-3-2.858242-1 3.988595-3-6.579718-1 4.886581-3-1.025303+0 5.470196-3-1.310474+0 5.955493-3-1.625339+0 6.278437-3-1.922093+0 6.528736-3-2.258465+0 6.702235-3-2.609522+0 6.814100-3-2.952185+0 6.901030-3-3.372153+0 6.961836-3-3.880335+0 7.052860-3-4.949681+0 7.088004-3-5.047838+0 7.126676-3-4.763352+0 7.206778-3-3.692918+0 7.253745-3-3.230894+0 7.327449-3-2.756530+0 7.418211-3-2.362160+0 7.521012-3-2.033969+0 7.681226-3-1.656883+0 7.855921-3-1.352855+0 8.089923-3-1.047285+0 8.374158-3-7.698078-1 8.643302-3-5.694208-1 8.870423-3-4.334310-1 9.097169-3-3.204191-1 9.327299-3-2.254766-1 9.549926-3-1.473273-1 9.684056-3-1.053926-1 9.818185-3-6.693545-2 1.000540-2-2.013376-2 1.011011-2 3.016917-3 1.023548-2 3.089986-2 1.053174-2 8.814911-2 1.080812-2 1.328357-1 1.109175-2 1.727588-1 1.140896-2 2.106877-1 1.170459-2 2.388212-1 1.231838-2 2.828839-1 1.326435-2 3.241792-1 1.460075-2 3.521352-1 1.636693-2 3.543699-1 1.902357-2 3.317426-1 2.714999-2 2.283701-1 3.223817-2 1.764574-1 3.786276-2 1.323243-1 4.252261-2 1.041399-1 4.681682-2 8.295512-2 5.224308-2 6.139577-2 5.699612-2 4.601794-2 6.195334-2 3.284797-2 6.651202-2 2.268444-2 7.043453-2 1.509637-2 7.394588-2 9.143114-3 7.664427-2 4.972112-3 7.826112-2 2.646937-3 8.008846-2 1.802011-4 8.026299-2-5.328858-5 8.216512-2-2.476350-3 8.392976-2-4.614562-3 8.740110-2-8.524013-3 9.257017-2-1.370529-2 1.001587-1-2.008972-2 1.086844-1-2.599133-2 1.218428-1-3.308061-2 1.413608-1-4.059391-2 1.679431-1-4.739411-2 2.104384-1-5.381535-2 2.762540-1-5.889349-2 4.184989-1-6.315939-2 8.128305-1-6.576923-2 2.451607+0-6.661879-2 7.403736+0-6.671220-2 1.000000+1-6.670477-2 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.484491-3 1.112714-6 1.492765-2 1.220325-6 2.223573-2 1.297787-6 2.914471-2 1.380166-6 3.836670-2 1.467774-6 5.075080-2 1.560943-6 6.749795-2 1.660027-6 9.033051-2 1.765399-6 1.217589-1 1.820568-6 1.417973-1 1.877461-6 1.655117-1 1.936131-6 1.936753-1 1.996636-6 2.272428-1 2.059030-6 2.672944-1 2.119986-6 3.123752-1 2.179037-6 3.628506-1 2.236242-6 4.192006-1 2.291660-6 4.818837-1 2.345346-6 5.513825-1 2.397354-6 6.282049-1 2.447737-6 7.128850-1 2.496545-6 8.059845-1 2.543829-6 9.080938-1 2.589634-6 1.019833+0 2.634008-6 1.141854+0 2.676996-6 1.274841+0 2.718640-6 1.419510+0 2.758983-6 1.576616+0 2.798065-6 1.746946+0 2.835926-6 1.931327+0 2.872603-6 2.130624+0 2.908135-6 2.345743+0 2.942556-6 2.577631+0 2.975901-6 2.827279+0 3.008204-6 3.095771+0 3.039498-6 3.384254+0 3.099183-6 4.023891+0 3.127634-6 4.377743+0 3.155195-6 4.756227+0 3.207762-6 5.592356+0 3.257094-6 6.543472+0 3.303391-6 7.622442+0 3.325461-6 8.215725+0 3.346840-6 8.847794+0 3.388263-6 1.025136+1 3.427097-6 1.182412+1 3.463504-6 1.358689+1 3.497636-6 1.555788+1 3.529634-6 1.775541+1 3.559633-6 2.019863+1 3.587756-6 2.290752+1 3.614122-6 2.590282+1 3.638840-6 2.920592+1 3.662013-6 3.283883+1 3.683738-6 3.682398+1 3.704105-6 4.118418+1 3.723199-6 4.594243+1 3.741099-6 5.112179+1 3.757881-6 5.674526+1 3.773614-6 6.283561+1 3.788364-6 6.941523+1 3.802191-6 7.650605+1 3.815155-6 8.412947+1 3.827308-6 9.230642+1 3.838702-6 1.010574+2 3.849384-6 1.104024+2 3.859398-6 1.203611+2 3.868786-6 1.309528+2 3.877587-6 1.421964+2 3.885839-6 1.541117+2 3.893574-6 1.667196+2 3.900826-6 1.800431+2 3.907625-6 1.941077+2 3.913999-6 2.089401+2 3.925950-6 2.421782+2 3.936408-6 2.789881+2 3.945558-6 3.193747+2 3.953564-6 3.630904+2 3.960570-6 4.096181+2 3.966700-6 4.582204+2 3.972063-6 5.080280+2 3.976756-6 5.581358+2 3.980863-6 6.076861+2 3.984456-6 6.559269+2 3.990744-6 7.527226+2 3.998997-6 9.074228+2 4.010842-6 1.195637+3 4.026880-6 1.737983+3 4.036749-6 2.171362+3 4.039216-6 2.292131+3 4.047852-6 2.753485+3 4.054323-6 3.136838+3 4.060566-6 3.533915+3 4.063385-6 3.720990+3 4.071844-6 4.304928+3 4.075272-6 4.548652+3 4.083064-6 5.108800+3 4.088518-6 5.498862+3 4.093854-6 5.871877+3 4.098820-6 6.205727+3 4.102967-6 6.470841+3 4.108300-6 6.788077+3 4.115005-6 7.140067+3 4.119824-6 7.354579+3 4.122334-6 7.451958+3 4.128177-6 7.637383+3 4.133298-6 7.748961+3 4.139297-6 7.815494+3 4.144600-6 7.814789+3 4.150312-6 7.751169+3 4.154668-6 7.659590+3 4.162227-6 7.416647+3 4.166975-6 7.213550+3 4.172823-6 6.915969+3 4.177206-6 6.663049+3 4.182127-6 6.353497+3 4.186238-6 6.078067+3 4.191523-6 5.706976+3 4.196510-6 5.345151+3 4.201496-6 4.977799+3 4.206991-6 4.573007+3 4.211469-6 4.247581+3 4.221443-6 3.553285+3 4.231416-6 2.921994+3 4.238117-6 2.541829+3 4.246376-6 2.126150+3 4.258499-6 1.622124+3 4.274645-6 1.129531+3 4.282624-6 9.496490+2 4.290540-6 8.048783+2 4.298410-6 6.886450+2 4.306219-6 5.955977+2 4.313967-6 5.209151+2 4.321654-6 4.606239+2 4.329281-6 4.115348+2 4.336849-6 3.711423+2 4.344357-6 3.375109+2 4.351807-6 3.091637+2 4.359199-6 2.849817+2 4.366532-6 2.641195+2 4.373809-6 2.459364+2 4.388248-6 2.156605+2 4.402462-6 1.915721+2 4.416454-6 1.719596+2 4.430227-6 1.557033+2 4.443785-6 1.420348+2 4.457131-6 1.304056+2 4.470268-6 1.204117+2 4.483200-6 1.117475+2 4.495930-6 1.041769+2 4.508462-6 9.751428+1 4.533132-6 8.627334+1 4.557032-6 7.726889+1 4.580185-6 6.991790+1 4.608000-6 6.248687+1 4.624343-6 5.870193+1 4.645393-6 5.435554+1 4.665785-6 5.063209+1 4.685539-6 4.741341+1 4.723813-6 4.206015+1 4.759696-6 3.787945+1 4.793335-6 3.454269+1 4.824872-6 3.183424+1 4.854438-6 2.960369+1 4.882156-6 2.774153+1 4.934128-6 2.472745+1 4.979603-6 2.249763+1 5.019393-6 2.080459+1 5.054210-6 1.949050+1 5.115140-6 1.748900+1 5.160837-6 1.619211+1 5.229383-6 1.450916+1 5.337049-6 1.233198+1 5.558732-6 9.044486+0 5.690210-6 7.488430+0 5.796800-6 6.277019+0 5.858153-6 5.552745+0 5.886464-6 5.197364+0 5.911237-6 4.868517+0 5.932913-6 4.562176+0 5.951879-6 4.275646+0 5.968475-6 4.007453+0 5.982996-6 3.757290+0 5.995702-6 3.525797+0 6.006820-6 3.314106+0 6.016548-6 3.123313+0 6.025060-6 2.954051+0 6.039956-6 2.661310+0 6.051128-6 2.456530+0 6.059507-6 2.320779+0 6.065791-6 2.234318+0 6.070505-6 2.180793+0 6.074039-6 2.148291+0 6.079342-6 2.113903+0 6.081993-6 2.104022+0 6.084644-6 2.099563+0 6.090134-6 2.109435+0 6.094251-6 2.135689+0 6.096810-6 2.160997+0 6.099033-6 2.188992+0 6.114597-6 2.565288+0 6.120114-6 2.785894+0 6.124942-6 3.021587+0 6.130957-6 3.374826+0 6.137005-6 3.800539+0 6.146543-6 4.622996+0 6.160818-6 6.210801+0 6.170789-6 7.568123+0 6.178403-6 8.730375+0 6.185425-6 9.886749+0 6.191663-6 1.097058+1 6.197731-6 1.206508+1 6.203614-6 1.315236+1 6.208229-6 1.401579+1 6.215232-6 1.532871+1 6.220808-6 1.636357+1 6.227609-6 1.759491+1 6.234410-6 1.877319+1 6.237750-6 1.932634+1 6.244671-6 2.040710+1 6.246598-6 2.069025+1 6.260664-6 2.248240+1 6.267850-6 2.318791+1 6.273595-6 2.364010+1 6.281532-6 2.409546+1 6.289237-6 2.434778+1 6.292384-6 2.439761+1 6.297891-6 2.441243+1 6.302020-6 2.436487+1 6.308215-6 2.420375+1 6.314410-6 2.394179+1 6.324269-6 2.333946+1 6.332829-6 2.265987+1 6.335682-6 2.240629+1 6.346934-6 2.130247+1 6.355079-6 2.042753+1 6.365689-6 1.923570+1 6.384176-6 1.714401+1 6.420591-6 1.352705+1 6.435760-6 1.233125+1 6.450929-6 1.132520+1 6.466098-6 1.049045+1 6.485326-6 9.637895+0 6.503353-6 9.001720+0 6.537153-6 8.097214+0 6.566728-6 7.496237+0 6.696118-6 5.593311+0 6.734935-6 5.048145+0 6.784869-6 4.362128+0 6.804867-6 4.147364+0 6.811571-6 4.091457+0 6.823771-6 4.016902+0 6.828254-6 3.999555+0 6.844938-6 3.989876+0 6.849109-6 4.002112+0 6.861622-6 4.076465+0 6.867311-6 4.129282+0 6.872289-6 4.185219+0 6.881000-6 4.304391+0 6.892434-6 4.499283+0 6.907135-6 4.804254+0 6.928356-6 5.313622+0 6.945040-6 5.726485+0 6.949211-6 5.826066+0 6.961724-6 6.106235+0 6.965895-6 6.191548+0 6.978407-6 6.416337+0 6.988295-6 6.555605+0 6.997733-6 6.653158+0 7.007171-6 6.714351+0 7.017815-6 6.739336+0 7.028458-6 6.719121+0 7.036800-6 6.673783+0 7.045142-6 6.604949+0 7.057189-6 6.469632+0 7.061826-6 6.407939+0 7.078509-6 6.152902+0 7.088720-6 5.979557+0 7.123104-6 5.383040+0 7.141064-6 5.106919+0 7.158512-6 4.884921+0 7.175960-6 4.717712+0 7.188476-6 4.633275+0 7.200000-6 4.581037+0 7.211944-6 4.550683+0 7.226025-6 4.541746+0 7.245752-6 4.565745+0 7.289372-6 4.671877+0 7.306820-6 4.700009+0 7.319906-6 4.708162+0 7.332992-6 4.704124+0 7.350440-6 4.680850+0 7.367888-6 4.641090+0 7.449354-6 4.402687+0 7.475789-6 4.343524+0 7.613262-6 4.097487+0 7.854216-6 3.649130+0 7.935962-6 3.503556+0 8.024811-6 3.341259+0 8.163796-6 3.088095+0 8.222426-6 2.982296+0 8.316804-6 2.809641+0 8.420999-6 2.614473+0 8.512069-6 2.441381+0 8.617235-6 2.238042+0 8.718880-6 2.036541+0 8.840326-6 1.785544+0 8.954374-6 1.536850+0 9.004270-6 1.423407+0 9.051047-6 1.314162+0 9.106993-6 1.179700+0 9.136014-6 1.108307+0 9.185969-6 9.828234-1 9.210692-6 9.195533-1 9.252600-6 8.107219-1 9.278975-6 7.413953-1 9.306101-6 6.696685-1 9.334014-6 5.957501-1 9.360182-6 5.267872-1 9.384715-6 4.629363-1 9.407715-6 4.043317-1 9.429277-6 3.510702-1 9.449492-6 3.031963-1 9.468443-6 2.606908-1 9.486209-6 2.234685-1 9.502866-6 1.913878-1 9.518481-6 1.642722-1 9.533120-6 1.419380-1 9.546844-6 1.242225-1 9.559711-6 1.110057-1 9.571773-6 1.022214-1 9.583082-6 9.785676-2 9.593684-6 9.794136-2 9.603623-6 1.025295-1 9.612941-6 1.116791-1 9.621676-6 1.254312-1 9.629866-6 1.437914-1 9.633705-6 1.545038-1 9.637424-6 1.663120-1 9.641026-6 1.792028-1 9.644516-6 1.931592-1 9.651173-6 2.241839-1 9.657420-6 2.591833-1 9.666704-6 3.234139-1 9.691671-6 5.908183-1 9.702415-6 7.617448-1 9.711452-6 9.389166-1 9.721122-6 1.168007+0 9.731980-6 1.481754+0 9.741049-6 1.796463+0 9.746879-6 2.027131+0 9.752709-6 2.281993+0 9.763212-6 2.807714+0 9.771651-6 3.298174+0 9.781288-6 3.939842+0 9.792114-6 4.773955+0 9.801110-6 5.565650+0 9.807013-6 6.136889+0 9.815869-6 7.074209+0 9.824725-6 8.111899+0 9.833976-6 9.306842+0 9.844733-6 1.084232+1 9.850384-6 1.171224+1 9.858860-6 1.309874+1 9.868843-6 1.485521+1 9.891445-6 1.929455+1 9.900721-6 2.128173+1 9.917379-6 2.504155+1 9.926788-6 2.724751+1 9.938014-6 2.992712+1 9.944750-6 3.154698+1 9.956002-6 3.424937+1 9.968135-6 3.712291+1 9.978909-6 3.960489+1 9.988864-6 4.181383+1 9.995173-6 4.316142+1 1.000573-5 4.531038+1 1.001713-5 4.746062+1 1.003120-5 4.984599+1 1.004110-5 5.133106+1 1.006606-5 5.434919+1 1.007916-5 5.552314+1 1.009464-5 5.657298+1 1.010992-5 5.728454+1 1.012184-5 5.764133+1 1.013888-5 5.788915+1 1.016080-5 5.782234+1 1.018689-5 5.726103+1 1.021520-5 5.609681+1 1.024281-5 5.436977+1 1.026751-5 5.228057+1 1.027719-5 5.131571+1 1.029100-5 4.979979+1 1.030913-5 4.757338+1 1.032660-5 4.520079+1 1.034475-5 4.254917+1 1.036244-5 3.983669+1 1.038084-5 3.694501+1 1.038698-5 3.597743+1 1.041152-5 3.215485+1 1.043100-5 2.924239+1 1.047290-5 2.362116+1 1.051331-5 1.924497+1 1.052980-5 1.776553+1 1.054578-5 1.649205+1 1.056126-5 1.539768+1 1.059124-5 1.362209+1 1.061935-5 1.230163+1 1.064571-5 1.130013+1 1.067042-5 1.052209+1 1.071675-5 9.366908+0 1.075728-5 8.581276+0 1.079275-5 8.011384+0 1.085482-5 7.196570+0 1.090138-5 6.694356+0 1.097121-5 6.062575+0 1.104104-5 5.535386+0 1.109539-5 5.177754+0 1.117692-5 4.704825+0 1.134123-5 3.901746+0 1.142436-5 3.538605+0 1.151804-5 3.139687+0 1.156740-5 2.925935+0 1.164604-5 2.565223+0 1.170146-5 2.285139+0 1.172917-5 2.135503+0 1.175688-5 1.980922+0 1.178459-5 1.824859+0 1.183871-5 1.541704+0 1.184599-5 1.508870+0 1.186784-5 1.423164+0 1.188241-5 1.379312+0 1.188970-5 1.362182+0 1.189698-5 1.348611+0 1.192612-5 1.335130+0 1.193341-5 1.343171+0 1.195526-5 1.397954+0 1.196528-5 1.439247+0 1.198440-5 1.547460+0 1.199288-5 1.607840+0 1.200255-5 1.685983+0 1.200980-5 1.750928+0 1.202068-5 1.858208+0 1.204631-5 2.154162+0 1.207448-5 2.537425+0 1.209671-5 2.869912+0 1.210783-5 3.042092+0 1.213053-5 3.398228+0 1.213748-5 3.507025+0 1.216342-5 3.904639+0 1.217562-5 4.083921+0 1.219890-5 4.406433+0 1.220806-5 4.524876+0 1.222523-5 4.732407+0 1.224130-5 4.908057+0 1.226655-5 5.144909+0 1.234542-5 5.545848+0 1.235461-5 5.556924+0 1.238217-5 5.543640+0 1.238914-5 5.529215+0 1.241003-5 5.459449+0 1.242149-5 5.404606+0 1.245672-5 5.167842+0 1.247494-5 5.009322+0 1.249195-5 4.843019+0 1.251396-5 4.607047+0 1.252130-5 4.524458+0 1.254883-5 4.204536+0 1.258989-5 3.726497+0 1.263777-5 3.229933+0 1.265229-5 3.101702+0 1.267540-5 2.923971+0 1.268890-5 2.836095+0 1.270915-5 2.726812+0 1.272940-5 2.644138+0 1.273948-5 2.612482+0 1.275460-5 2.576097+0 1.276972-5 2.552023+0 1.278539-5 2.538672+0 1.280107-5 2.535568+0 1.283242-5 2.553464+0 1.286378-5 2.592841+0 1.294258-5 2.720642+0 1.298107-5 2.777000+0 1.301231-5 2.815483+0 1.306513-5 2.863189+0 1.311029-5 2.884270+0 1.315134-5 2.885998+0 1.319685-5 2.869292+0 1.323235-5 2.845682+0 1.332676-5 2.768432+0 1.341147-5 2.715876+0 1.354680-5 2.655426+0 1.364483-5 2.595976+0 1.379210-5 2.497900+0 1.388776-5 2.448882+0 1.402371-5 2.400033+0 1.446027-5 2.283878+0 1.487869-5 2.165266+0 1.564992-5 1.965823+0 1.613216-5 1.863245+0 1.653741-5 1.789825+0 1.698244-5 1.720625+0 1.725000-5 1.685839+0 1.778279-5 1.632203+0 1.822843-5 1.599551+0 1.862087-5 1.585314+0 1.936771-5 1.587540+0 2.000000-5 1.618998+0 2.070000-5 1.700412+0 2.250000-5 2.036861+0 2.264644-5 2.072953+0 2.317395-5 2.229609+0 2.422322-5 2.592131+0 2.483133-5 2.842074+0 2.580000-5 3.299608+0 2.709272-5 4.024064+0 3.019952-5 6.298937+0 3.235937-5 8.283288+0 3.416293-5 1.015817+1 3.630781-5 1.259905+1 3.850000-5 1.526702+1 4.042423-5 1.768087+1 4.227120-5 2.001380+1 4.371290-5 2.181870+1 4.528886-5 2.375167+1 4.714496-5 2.598321+1 4.831666-5 2.729759+1 4.951245-5 2.860575+1 5.018439-5 2.951415+1 5.079698-5 3.053839+1 5.135392-5 3.170892+1 5.188000-5 3.309797+1 5.232059-5 3.454671+1 5.273911-5 3.625793+1 5.299677-5 3.752472+1 5.311960-5 3.819836+1 5.335758-5 3.965504+1 5.358068-5 4.123513+1 5.378984-5 4.294604+1 5.398592-5 4.479449+1 5.416975-5 4.678654+1 5.437815-5 4.941423+1 5.450366-5 5.122412+1 5.465513-5 5.368060+1 5.479714-5 5.630272+1 5.493027-5 5.909583+1 5.505508-5 6.206529+1 5.517209-5 6.521669+1 5.528178-5 6.855613+1 5.538462-5 7.209055+1 5.548103-5 7.582814+1 5.557142-5 7.977846+1 5.565615-5 8.395237+1 5.581007-5 9.301791+1 5.594971-5 1.034800+2 5.607190-5 1.151002+2 5.617881-5 1.278571+2 5.627236-5 1.416346+2 5.635422-5 1.562286+2 5.642584-5 1.713744+2 5.648851-5 1.867798+2 5.654335-5 2.021565+2 5.659133-5 2.172439+2 5.667530-5 2.478029+2 5.673828-5 2.746406+2 5.678551-5 2.972306+2 5.689178-5 3.566721+2 5.715216-5 5.616065+2 5.720796-5 6.176854+2 5.734757-5 7.771749+2 5.742557-5 8.775594+2 5.756623-5 1.075431+3 5.758381-5 1.101367+3 5.770688-5 1.287192+3 5.775523-5 1.360986+3 5.784753-5 1.500017+3 5.788880-5 1.560391+3 5.795899-5 1.658929+3 5.801273-5 1.729675+3 5.805662-5 1.783687+3 5.811422-5 1.848542+3 5.817439-5 1.907915+3 5.824919-5 1.968178+3 5.827828-5 1.987215+3 5.836070-5 2.026816+3 5.842306-5 2.042132+3 5.846697-5 2.045177+3 5.853588-5 2.037093+3 5.856501-5 2.029031+3 5.869606-5 1.960675+3 5.875841-5 1.911469+3 5.883269-5 1.841141+3 5.891460-5 1.751750+3 5.898643-5 1.666053+3 5.906421-5 1.568822+3 5.916911-5 1.436298+3 5.939685-5 1.176625+3 5.945798-5 1.119396+3 5.953977-5 1.053481+3 5.959220-5 1.017994+3 5.968042-5 9.703525+2 5.973630-5 9.478017+2 5.978810-5 9.318577+2 5.982777-5 9.226567+2 5.988445-5 9.136186+2 5.996835-5 9.078515+2 6.006095-5 9.094872+2 6.021703-5 9.220917+2 6.033412-5 9.316784+2 6.043225-5 9.352211+2 6.047892-5 9.346716+2 6.058197-5 9.271703+2 6.065399-5 9.162811+2 6.073992-5 8.969858+2 6.079148-5 8.821883+2 6.084421-5 8.646893+2 6.091343-5 8.383834+2 6.098017-5 8.098489+2 6.107482-5 7.650622+2 6.114722-5 7.282654+2 6.123772-5 6.803914+2 6.129202-5 6.511958+2 6.143683-5 5.739655+2 6.151475-5 5.339386+2 6.176736-5 4.182435+2 6.195418-5 3.499591+2 6.203141-5 3.261791+2 6.210743-5 3.051772+2 6.218227-5 2.866918+2 6.225594-5 2.704554+2 6.240097-5 2.435133+2 6.254147-5 2.227364+2 6.267758-5 2.065479+2 6.280944-5 1.937369+2 6.293718-5 1.834108+2 6.306092-5 1.749278+2 6.330068-5 1.616177+2 6.352545-5 1.517908+2 6.373617-5 1.442036+2 6.393373-5 1.381578+2 6.419280-5 1.314278+2 6.450853-5 1.246270+2 6.477004-5 1.198858+2 6.516155-5 1.139301+2 6.567567-5 1.076425+2 6.598101-5 1.045196+2 6.654749-5 9.957940+1 6.739099-5 9.343437+1 6.797420-5 8.980910+1 6.818531-5 8.876606+1 6.858301-5 8.758854+1 6.885662-5 8.760166+1 6.906522-5 8.810816+1 6.923332-5 8.879063+1 6.990824-5 9.246903+1 7.011470-5 9.337752+1 7.052325-5 9.455450+1 7.107689-5 9.572506+1 7.198088-5 9.866067+1 7.227214-5 9.943085+1 7.253162-5 9.990322+1 7.287698-5 1.002813+2 7.504633-5 1.018142+2 7.939074-5 1.041047+2 8.490000-5 1.062661+2 9.010000-5 1.085179+2 9.741705-5 1.120202+2 1.006448-4 1.129219+2 1.022676-4 1.126537+2 1.030676-4 1.122962+2 1.035161-4 1.123132+2 1.040257-4 1.129471+2 1.042805-4 1.136407+2 1.045656-4 1.147728+2 1.048802-4 1.164541+2 1.058597-4 1.231942+2 1.061201-4 1.248025+2 1.063950-4 1.261820+2 1.067077-4 1.272804+2 1.070536-4 1.279299+2 1.077168-4 1.280545+2 1.081787-4 1.278667+2 1.089375-4 1.279186+2 1.221707-4 1.403006+2 1.310720-4 1.477580+2 1.438513-4 1.575361+2 1.584893-4 1.674547+2 1.747833-4 1.770070+2 1.889646-4 1.838460+2 2.041738-4 1.898856+2 2.225871-4 1.956502+2 2.374789-4 1.993406+2 2.580327-4 2.030560+2 2.802205-4 2.058372+2 3.035168-4 2.075577+2 3.292493-4 2.081550+2 3.540483-4 2.077946+2 3.815322-4 2.063468+2 4.111618-4 2.038262+2 4.365158-4 2.007561+2 4.683245-4 1.955383+2 5.017285-4 1.888403+2 5.329596-4 1.812481+2 5.630624-4 1.725187+2 5.911454-4 1.628036+2 6.149565-4 1.531305+2 6.358010-4 1.432151+2 6.544162-4 1.329275+2 6.698370-4 1.231224+2 6.842150-4 1.126196+2 6.951865-4 1.035008+2 7.024844-4 9.676824+1 7.100502-4 8.910514+1 7.154912-4 8.309396+1 7.208387-4 7.670386+1 7.266046-4 6.922762+1 7.314554-4 6.263958+1 7.355941-4 5.741602+1 7.391363-4 5.405813+1 7.411881-4 5.291186+1 7.444509-4 5.270884+1 7.473696-4 5.460837+1 7.495314-4 5.761843+1 7.518339-4 6.276732+1 7.536125-4 6.848422+1 7.550278-4 7.435389+1 7.565539-4 8.220287+1 7.572798-4 8.654457+1 7.589008-4 9.776176+1 7.608144-4 1.138207+2 7.639396-4 1.463584+2 7.656589-4 1.669726+2 7.675172-4 1.905058+2 7.683738-4 2.015053+2 7.694701-4 2.154671+2 7.707700-4 2.315248+2 7.717973-4 2.435683+2 7.729195-4 2.558192+2 7.740676-4 2.671454+2 7.752699-4 2.774803+2 7.764625-4 2.860279+2 7.773739-4 2.913582+2 7.786442-4 2.970284+2 7.792033-4 2.988858+2 7.809218-4 3.022958+2 7.821419-4 3.028151+2 7.835887-4 3.017381+2 7.856062-4 2.979597+2 7.877666-4 2.921726+2 7.949805-4 2.704725+2 7.978037-4 2.615931+2 8.024134-4 2.457732+2 8.052611-4 2.365096+2 8.072000-4 2.313915+2 8.090190-4 2.279482+2 8.108000-4 2.260998+2 8.131793-4 2.261125+2 8.139158-4 2.266709+2 8.153678-4 2.284640+2 8.165000-4 2.304281+2 8.181000-4 2.338928+2 8.210024-4 2.415678+2 8.239421-4 2.501000+2 8.280625-4 2.615930+2 8.317638-4 2.705206+2 8.362795-4 2.793667+2 8.424030-4 2.884221+2 8.474713-4 2.941408+2 8.538214-4 2.998825+2 8.629856-4 3.064481+2 8.720610-4 3.113864+2 8.797818-4 3.142934+2 8.882361-4 3.158673+2 8.985824-4 3.157703+2 9.040559-4 3.163326+2 9.078386-4 3.180547+2 9.115678-4 3.213934+2 9.145985-4 3.254448+2 9.199510-4 3.350873+2 9.273309-4 3.503721+2 9.306860-4 3.567356+2 9.341560-4 3.624656+2 9.391861-4 3.691678+2 9.443136-4 3.744329+2 9.522477-4 3.807642+2 9.632744-4 3.878809+2 9.730270-4 3.933070+2 9.885531-4 4.008108+2 1.018986-3 4.126703+2 1.049372-3 4.217373+2 1.088616-3 4.305638+2 1.138692-3 4.380148+2 1.191041-3 4.434734+2 1.281622-3 4.489193+2 1.364828-3 4.506306+2 1.440184-3 4.501235+2 1.623762-3 4.416058+2 1.742845-3 4.346178+2 1.956786-3 4.193682+2 2.152240-3 4.047965+2 2.335810-3 3.911349+2 2.637045-3 3.689111+2 3.030549-3 3.416896+2 3.388442-3 3.181276+2 3.621116-3 3.037382+2 3.928930-3 2.856351+2 4.263877-3 2.671220+2 4.579521-3 2.506970+2 4.963423-3 2.320023+2 5.349301-3 2.144010+2 5.559043-3 2.053405+2 5.752673-3 1.971770+2 5.950200-3 1.890433+2 6.136833-3 1.814939+2 6.306766-3 1.746977+2 6.448662-3 1.690294+2 6.701633-3 1.588196+2 6.819894-3 1.539086+2 6.997629-3 1.461717+2 7.137423-3 1.395474+2 7.235104-3 1.344008+2 7.282524-3 1.316587+2 7.344285-3 1.277276+2 7.388691-3 1.245245+2 7.425790-3 1.214804+2 7.456648-3 1.185991+2 7.494942-3 1.144904+2 7.538290-3 1.091971+2 7.594456-3 1.023948+2 7.621088-3 9.993322+1 7.640365-3 9.873540+1 7.657068-3 9.818360+1 7.673889-3 9.812362+1 7.692026-3 9.862154+1 7.713635-3 9.992476+1 7.733924-3 1.017393+2 7.773650-3 1.063503+2 7.825521-3 1.128206+2 7.856595-3 1.162418+2 7.890348-3 1.193485+2 7.931859-3 1.223372+2 7.963994-3 1.241412+2 7.998741-3 1.257204+2 8.066050-3 1.280221+2 8.147563-3 1.299402+2 8.255299-3 1.315733+2 8.370585-3 1.325752+2 8.511743-3 1.331088+2 8.742930-3 1.329141+2 9.017739-3 1.316833+2 9.382385-3 1.290768+2 9.758002-3 1.257155+2 1.026687-2 1.207071+2 1.094114-2 1.139132+2 1.199012-2 1.039066+2 1.319265-2 9.364813+1 1.483906-2 8.174338+1 1.648406-2 7.192796+1 1.860367-2 6.161418+1 2.064220-2 5.355231+1 2.296341-2 4.603748+1 2.469244-2 4.134308+1 2.721168-2 3.558080+1 3.320516-2 2.584644+1 3.910592-2 1.980748+1 5.540968-2 1.099367+1 6.698655-2 7.929851+0 8.156359-2 5.611956+0 1.000877-1 3.886288+0 1.174898-1 2.895357+0 1.463602-1 1.916997+0 1.927525-1 1.135438+0 2.630268-1 6.237017-1 3.685895-1 3.228318-1 5.535094-1 1.447598-1 1.011579+0 4.364195-2 3.086391+0 4.701301-3 9.320751+0 5.156450-4 2.814822+1 5.654125-5 8.500626+1 6.199647-6 2.567148+2 6.797781-7 7.752663+2 7.453619-8 2.511886+3 7.100174-9 7.943282+3 7.10017-10 2.511886+4 7.10017-11 7.943282+4 7.10017-12 1.000000+5 4.47991-12 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.028600-6 1.258900-6 1.630200-6 1.584900-6 2.583600-6 1.995300-6 4.094700-6 2.511900-6 6.489700-6 3.162300-6 1.028500-5 3.981100-6 1.630100-5 5.011900-6 2.583600-5 6.309600-6 4.094600-5 7.943300-6 6.489500-5 1.000000-5 1.028500-4 1.258900-5 1.630000-4 1.584900-5 2.583400-4 1.995300-5 4.094300-4 2.511900-5 6.488900-4 3.162300-5 1.028200-3 3.981100-5 1.628800-3 5.011900-5 2.580300-3 6.309600-5 4.087800-3 7.943300-5 6.476400-3 1.000000-4 1.025200-2 1.258900-4 1.622300-2 1.584900-4 2.562000-2 1.995300-4 4.043500-2 2.511900-4 6.364100-2 3.162300-4 9.977600-2 3.981100-4 1.554000-1 5.011900-4 2.397400-1 6.309600-4 3.647100-1 7.943300-4 5.434700-1 1.000000-3 7.875600-1 1.258900-3 1.103100+0 1.584900-3 1.487300+0 1.995300-3 1.940100+0 2.511900-3 2.475600+0 3.162300-3 3.122600+0 3.981100-3 3.900700+0 5.011900-3 4.809000+0 6.309600-3 5.829300+0 7.943300-3 6.945000+0 1.000000-2 8.099900+0 1.258900-2 9.216700+0 1.584900-2 1.023500+1 1.995300-2 1.113600+1 2.511900-2 1.190500+1 3.162300-2 1.249700+1 3.981100-2 1.278800+1 5.011900-2 1.305800+1 6.309600-2 1.304000+1 7.943300-2 1.285200+1 1.000000-1 1.250200+1 1.258900-1 1.201000+1 1.584900-1 1.140600+1 1.995300-1 1.072600+1 2.511900-1 9.997300+0 3.162300-1 9.245500+0 3.981100-1 8.491800+0 5.011900-1 7.751100+0 6.309600-1 7.032900+0 7.943300-1 6.344200+0 1.000000+0 5.688800+0 1.258900+0 5.070400+0 1.584900+0 4.491100+0 1.995300+0 3.953000+0 2.511900+0 3.457600+0 3.162300+0 3.005900+0 3.981100+0 2.597800+0 5.011900+0 2.232800+0 6.309600+0 1.909100+0 7.943300+0 1.624500+0 1.000000+1 1.376200+0 1.258900+1 1.161200+0 1.584900+1 9.762600-1 1.995300+1 8.180300-1 2.511900+1 6.834000-1 3.162300+1 5.693800-1 3.981100+1 4.732300-1 5.011900+1 3.924500-1 6.309600+1 3.248000-1 7.943300+1 2.683300-1 1.000000+2 2.213100-1 1.258900+2 1.822500-1 1.584900+2 1.498800-1 1.995300+2 1.231000-1 2.511900+2 1.009900-1 3.162300+2 8.275800-2 3.981100+2 6.775000-2 5.011900+2 5.541200-2 6.309600+2 4.528200-2 7.943300+2 3.697300-2 1.000000+3 3.016500-2 1.258900+3 2.459300-2 1.584900+3 2.003700-2 1.995300+3 1.631400-2 2.511900+3 1.327500-2 3.162300+3 1.079600-2 3.981100+3 8.775000-3 5.011900+3 7.128500-3 6.309600+3 5.788100-3 7.943300+3 4.697500-3 1.000000+4 3.810600-3 1.258900+4 3.089900-3 1.584900+4 2.504400-3 1.995300+4 2.029000-3 2.511900+4 1.643200-3 3.162300+4 1.330300-3 3.981100+4 1.076600-3 5.011900+4 8.709800-4 6.309600+4 7.043900-4 7.943300+4 5.694800-4 1.000000+5 4.602700-4 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159550-4 3.981072-4 3.976749-4 5.011872-4 5.005047-4 6.309573-4 6.298841-4 7.943282-4 7.926409-4 1.000000-3 9.973519-4 1.258925-3 1.254800-3 1.584893-3 1.578468-3 1.995262-3 1.985293-3 2.511886-3 2.496337-3 3.162278-3 3.137980-3 3.981072-3 3.942974-3 5.011872-3 4.952200-3 6.309573-3 6.216231-3 7.943282-3 7.798155-3 1.000000-2 9.774899-3 1.258925-2 1.224195-2 1.584893-2 1.531536-2 1.995262-2 1.913492-2 2.511886-2 2.386834-2 3.162278-2 2.971695-2 3.981072-2 3.691807-2 5.011872-2 4.576504-2 6.309573-2 5.657842-2 7.943282-2 6.971342-2 1.000000-1 8.563572-2 1.258925-1 1.048470-1 1.584893-1 1.279432-1 1.995262-1 1.555875-1 2.511886-1 1.885579-1 3.162278-1 2.277447-1 3.981072-1 2.741568-1 5.011872-1 3.289764-1 6.309573-1 3.935754-1 7.943282-1 4.696083-1 1.000000+0 5.591288-1 1.258925+0 6.644761-1 1.584893+0 7.888301-1 1.995262+0 9.359502-1 2.511886+0 1.110471+0 3.162278+0 1.318207+0 3.981072+0 1.566072+0 5.011872+0 1.862855+0 6.309573+0 2.219022+0 7.943282+0 2.647525+0 1.000000+1 3.164103+0 1.258925+1 3.788114+0 1.584893+1 4.543230+0 1.995262+1 5.458385+0 2.511886+1 6.569156+0 3.162278+1 7.919106+0 3.981072+1 9.561553+0 5.011872+1 1.156231+1 6.309573+1 1.400187+1 7.943282+1 1.697955+1 1.000000+2 2.061692+1 1.258925+2 2.506418+1 1.584893+2 3.050580+1 1.995262+2 3.716902+1 2.511886+2 4.533416+1 3.162278+2 5.534665+1 3.981072+2 6.763117+1 5.011872+2 8.271448+1 6.309573+2 1.012437+2 7.943282+2 1.240200+2 1.000000+3 1.520275+2 1.258925+3 1.864908+2 1.584893+3 2.289206+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739824-9 3.981072-5 4.341826-9 5.011872-5 6.880930-9 6.309573-5 1.090520-8 7.943282-5 1.728272-8 1.000000-4 2.738396-8 1.258925-4 4.338911-8 1.584893-4 6.871998-8 1.995262-4 1.088583-7 2.511886-4 1.723573-7 3.162278-4 2.727311-7 3.981072-4 4.322542-7 5.011872-4 6.824949-7 6.309573-4 1.073257-6 7.943282-4 1.687360-6 1.000000-3 2.648111-6 1.258925-3 4.125838-6 1.584893-3 6.424895-6 1.995262-3 9.969558-6 2.511886-3 1.554958-5 3.162278-3 2.429777-5 3.981072-3 3.809793-5 5.011872-3 5.967227-5 6.309573-3 9.334214-5 7.943282-3 1.451270-4 1.000000-2 2.251014-4 1.258925-2 3.473051-4 1.584893-2 5.335711-4 1.995262-2 8.177065-4 2.511886-2 1.250521-3 3.162278-2 1.905822-3 3.981072-2 2.892647-3 5.011872-2 4.353682-3 6.309573-2 6.517309-3 7.943282-2 9.719404-3 1.000000-1 1.436428-2 1.258925-1 2.104553-2 1.584893-1 3.054612-2 1.995262-1 4.393874-2 2.511886-1 6.263076-2 3.162278-1 8.848309-2 3.981072-1 1.239503-1 5.011872-1 1.722108-1 6.309573-1 2.373819-1 7.943282-1 3.247199-1 1.000000+0 4.408712-1 1.258925+0 5.944494-1 1.584893+0 7.960631-1 1.995262+0 1.059312+0 2.511886+0 1.401415+0 3.162278+0 1.844071+0 3.981072+0 2.415000+0 5.011872+0 3.149017+0 6.309573+0 4.090551+0 7.943282+0 5.295757+0 1.000000+1 6.835897+0 1.258925+1 8.801140+0 1.584893+1 1.130570+1 1.995262+1 1.449424+1 2.511886+1 1.854971+1 3.162278+1 2.370367+1 3.981072+1 3.024916+1 5.011872+1 3.855642+1 6.309573+1 4.909386+1 7.943282+1 6.245328+1 1.000000+2 7.938308+1 1.258925+2 1.008284+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608811+2 3.981072+2 3.304760+2 5.011872+2 4.184727+2 6.309573+2 5.297137+2 7.943282+2 6.703082+2 1.000000+3 8.479725+2 1.258925+3 1.072435+3 1.584893+3 1.355973+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 1.986718+6 7.852356-6 1.926151+6 7.960000-6 1.769008+6 8.222426-6 1.431398+6 8.500000-6 1.142876+6 8.770000-6 9.165900+5 9.015711-6 7.480586+5 9.225714-6 6.275752+5 9.440609-6 5.230400+5 9.650000-6 4.366000+5 9.850000-6 3.661920+5 1.005000-5 3.059880+5 1.023293-5 2.586517+5 1.042000-5 2.168620+5 1.060000-5 1.821592+5 1.077000-5 1.537336+5 1.092700-5 1.307950+5 1.105000-5 1.148190+5 1.120000-5 9.747140+4 1.131000-5 8.611000+4 1.142000-5 7.580080+4 1.154000-5 6.566060+4 1.165000-5 5.729940+4 1.177100-5 4.905099+4 1.188502-5 4.211465+4 1.199500-5 3.613250+4 1.207000-5 3.242380+4 1.216186-5 2.826543+4 1.226000-5 2.425960+4 1.235000-5 2.095700+4 1.242000-5 1.861928+4 1.250000-5 1.618036+4 1.258000-5 1.397656+4 1.265000-5 1.223052+4 1.272000-5 1.064568+4 1.277000-5 9.607820+3 1.282000-5 8.645200+3 1.288250-5 7.543692+3 1.295000-5 6.475280+3 1.302000-5 5.494040+3 1.310000-5 4.522220+3 1.318257-5 3.677080+3 1.332000-5 2.600200+3 1.337000-5 2.303880+3 1.342000-5 2.055480+3 1.346000-5 1.890028+3 1.348963-5 1.785979+3 1.352300-5 1.687132+3 1.355000-5 1.621064+3 1.358000-5 1.561892+3 1.361000-5 1.517380+3 1.364000-5 1.487184+3 1.366500-5 1.472714+3 1.369000-5 1.467764+3 1.371000-5 1.470532+3 1.372000-5 1.475568+3 1.372000-5 2.044112+6 1.374000-5 2.043126+6 1.377000-5 2.041664+6 1.380000-5 2.040219+6 1.382000-5 2.039265+6 1.385000-5 2.037848+6 1.388500-5 2.036214+6 1.392000-5 2.034603+6 1.393000-5 2.034147+6 1.393000-5 3.382501+6 1.397000-5 3.379266+6 1.402000-5 3.375269+6 1.412538-5 3.367002+6 1.423000-5 3.362403+6 1.432000-5 3.358571+6 1.435000-5 3.357314+6 1.440400-5 3.356094+6 1.447000-5 3.354640+6 1.455000-5 3.352937+6 1.462177-5 3.351461+6 1.470000-5 3.352520+6 1.479108-5 3.353802+6 1.487000-5 3.356660+6 1.496236-5 3.360034+6 1.507000-5 3.364003+6 1.513561-5 3.366427+6 1.518000-5 3.369429+6 1.530000-5 3.377527+6 1.531087-5 3.378258+6 1.540100-5 3.386266+6 1.550000-5 3.395056+6 1.560000-5 3.403929+6 1.570000-5 3.412793+6 1.585000-5 3.430054+6 1.590000-5 3.435783+6 1.600000-5 3.449084+6 1.615000-5 3.468970+6 1.630000-5 3.488801+6 1.645000-5 3.512111+6 1.650000-5 3.519854+6 1.660000-5 3.536994+6 1.680000-5 3.571169+6 1.698244-5 3.602240+6 1.700000-5 3.605600+6 1.717908-5 3.639707+6 1.723400-5 3.650965+6 1.750000-5 3.705287+6 1.778279-5 3.762880+6 1.800000-5 3.810721+6 1.830000-5 3.880475+6 1.862087-5 3.954996+6 1.900000-5 4.048549+6 1.935000-5 4.138386+6 1.980000-5 4.253977+6 2.000000-5 4.305329+6 2.018366-5 4.354806+6 2.020000-5 4.359356+6 2.070000-5 4.498569+6 2.130000-5 4.666243+6 2.190000-5 4.834590+6 2.250000-5 5.003619+6 2.317395-5 5.194305+6 2.400000-5 5.429246+6 2.483133-5 5.667072+6 2.580000-5 5.945979+6 2.600160-5 6.002214+6 2.691535-5 6.252911+6 2.818383-5 6.602635+6 2.951209-5 6.944468+6 3.019952-5 7.121634+6 3.090295-5 7.286683+6 3.230000-5 7.613809+6 3.235937-5 7.627088+6 3.273407-5 7.704886+6 3.427678-5 8.023482+6 3.450000-5 8.065789+6 3.467369-5 8.096810+6 3.630781-5 8.386363+6 3.650000-5 8.416875+6 3.672823-5 8.450395+6 3.850000-5 8.707564+6 3.935501-5 8.805037+6 4.027170-5 8.908135+6 4.070000-5 8.949251+6 4.216965-5 9.071040+6 4.220000-5 9.073520+6 4.300000-5 9.126392+6 4.415704-5 9.188552+6 4.518559-5 9.226154+6 4.650000-5 9.259700+6 4.731513-5 9.267254+6 4.900000-5 9.265244+6 5.000000-5 9.249254+6 5.188000-5 9.201328+6 5.300000-5 9.158075+6 5.308844-5 9.153934+6 5.500000-5 9.066198+6 5.623413-5 8.997038+6 5.754399-5 8.916162+6 5.821032-5 8.875903+6 5.956621-5 8.782627+6 6.237348-5 8.581095+6 6.382635-5 8.469161+6 6.683439-5 8.234346+6 6.800000-5 8.139588+6 6.839116-5 8.108353+6 7.161434-5 7.847962+6 7.226000-5 7.794607+6 7.226000-5 8.531899+6 7.270000-5 8.487210+6 7.328245-5 8.426025+6 7.360000-5 8.391896+6 7.413102-5 8.333083+6 7.417000-5 8.328801+6 7.417000-5 8.679211+6 7.450000-5 8.640257+6 7.498942-5 8.581319+6 7.585776-5 8.476672+6 7.590000-5 8.471515+6 7.673615-5 8.368998+6 7.700000-5 8.335837+6 7.810000-5 8.199082+6 7.852356-5 8.147307+6 8.000000-5 7.968048+6 8.080000-5 7.874467+6 8.128305-5 7.820007+6 8.222426-5 7.716351+6 8.230000-5 7.707771+6 8.317638-5 7.611584+6 8.350000-5 7.576956+6 8.413951-5 7.510805+6 8.450000-5 7.472807+6 8.485300-5 7.436295+6 8.610000-5 7.312834+6 8.730000-5 7.201484+6 8.738900-5 7.193535+6 8.810489-5 7.130866+6 8.850000-5 7.094991+6 8.912509-5 7.040479+6 8.950000-5 7.008154+6 9.015711-5 6.953732+6 9.070000-5 6.907815+6 9.190000-5 6.811462+6 9.225714-5 6.783600+6 9.332543-5 6.703524+6 9.400000-5 6.651632+6 9.450000-5 6.614488+6 9.549926-5 6.542191+6 9.580000-5 6.519965+6 9.720000-5 6.421362+6 9.800000-5 6.366968+6 9.885531-5 6.310859+6 9.900000-5 6.301475+6 1.000000-4 6.234661+6 1.011579-4 6.160334+6 1.035142-4 6.010916+6 1.040000-4 5.981475+6 1.047129-4 5.939234+6 1.080000-4 5.743804+6 1.096900-4 5.646278+6 1.096900-4 5.973234+6 1.109175-4 5.903426+6 1.122018-4 5.828796+6 1.150000-4 5.674441+6 1.190000-4 5.462851+6 1.205000-4 5.385190+6 1.230269-4 5.259185+6 1.244515-4 5.189565+6 1.260000-4 5.116135+6 1.300000-4 4.928366+6 1.303167-4 4.914242+6 1.318257-4 4.847904+6 1.350000-4 4.710248+6 1.364583-4 4.649826+6 1.400000-4 4.504332+6 1.412538-4 4.455062+6 1.462177-4 4.265899+6 1.520000-4 4.057115+6 1.531087-4 4.018729+6 1.548817-4 3.957792+6 1.566751-4 3.898225+6 1.584893-4 3.839758+6 1.603245-4 3.780914+6 1.650000-4 3.635435+6 1.659587-4 3.606843+6 1.678804-4 3.548938+6 1.720000-4 3.430305+6 1.737801-4 3.380038+6 1.778279-4 3.269320+6 1.800000-4 3.211537+6 1.820000-4 3.159685+6 1.850000-4 3.083661+6 1.883649-4 3.000462+6 1.900000-4 2.961387+6 1.927525-4 2.897304+6 1.949845-4 2.845633+6 2.000000-4 2.735735+6 2.041738-4 2.647954+6 2.065380-4 2.599634+6 2.120000-4 2.492797+6 2.137962-4 2.459185+6 2.162719-4 2.413390+6 2.238721-4 2.280206+6 2.264644-4 2.237007+6 2.300000-4 2.180242+6 2.344229-4 2.111708+6 2.371374-4 2.070846+6 2.450000-4 1.959326+6 2.454709-4 1.952879+6 2.511886-4 1.876754+6 2.600160-4 1.767744+6 2.660725-4 1.697056+6 2.722701-4 1.629094+6 2.730000-4 1.621327+6 2.786121-4 1.563402+6 2.851018-4 1.499704+6 2.884032-4 1.468733+6 2.985383-4 1.378968+6 3.000000-4 1.366734+6 3.054921-4 1.321312+6 3.162278-4 1.238927+6 3.235937-4 1.186651+6 3.280000-4 1.156705+6 3.311311-4 1.136040+6 3.349654-4 1.111369+6 3.507519-4 1.018221+6 3.589219-4 9.738597+5 3.600000-4 9.681980+5 3.715352-4 9.105421+5 3.801894-4 8.708711+5 3.890451-4 8.323454+5 3.935501-4 8.136338+5 4.000000-4 7.878106+5 4.120975-4 7.425852+5 4.216965-4 7.090910+5 4.365158-4 6.613324+5 4.415704-4 6.460990+5 4.500000-4 6.218059+5 4.623810-4 5.881883+5 4.731513-4 5.610224+5 4.841724-4 5.351102+5 4.897788-4 5.225707+5 4.954502-4 5.103031+5 5.069907-4 4.863677+5 5.370318-4 4.312768+5 5.400000-4 4.263414+5 5.432503-4 4.209586+5 5.495409-4 4.108030+5 5.559043-4 4.008693+5 5.888437-4 3.545682+5 6.000000-4 3.405452+5 6.025596-4 3.374346+5 6.095369-4 3.291501+5 6.200000-4 3.172144+5 6.456542-4 2.904865+5 6.531306-4 2.832486+5 6.683439-4 2.693368+5 6.760830-4 2.626303+5 7.161434-4 2.313692+5 7.413102-4 2.142092+5 7.498942-4 2.087899+5 7.500000-4 2.087242+5 7.585776-4 2.034600+5 7.922900-4 1.845507+5 7.922900-4 5.020627+5 7.924600-4 5.109393+5 7.928000-4 5.322300+5 7.931000-4 5.501960+5 7.934000-4 5.676063+5 7.939000-4 5.951024+5 7.943282-4 6.173478+5 7.947000-4 6.357663+5 7.952000-4 6.593891+5 7.958000-4 6.859123+5 7.965000-4 7.145484+5 7.972000-4 7.409735+5 7.980000-4 7.686682+5 7.987000-4 7.908117+5 7.997000-4 8.192785+5 8.007000-4 8.443234+5 8.018000-4 8.682398+5 8.030000-4 8.903962+5 8.045000-4 9.129490+5 8.059200-4 9.296557+5 8.072000-4 9.413496+5 8.075400-4 9.435743+5 8.075400-4 1.095734+6 8.077000-4 1.100864+6 8.080500-4 1.113904+6 8.083500-4 1.124701+6 8.086500-4 1.135204+6 8.090000-4 1.146976+6 8.091000-4 1.150173+6 8.095500-4 1.163537+6 8.100000-4 1.176416+6 8.106000-4 1.192679+6 8.108000-4 1.197751+6 8.111000-4 1.204852+6 8.118000-4 1.220355+6 8.124000-4 1.232814+6 8.130000-4 1.244516+6 8.137000-4 1.256034+6 8.145000-4 1.268069+6 8.150000-4 1.274824+6 8.153700-4 1.279391+6 8.164000-4 1.290435+6 8.175000-4 1.300512+6 8.180000-4 1.304302+6 8.187000-4 1.308590+6 8.198000-4 1.313740+6 8.212000-4 1.318404+6 8.222426-4 1.320399+6 8.228000-4 1.321493+6 8.236900-4 1.322094+6 8.243000-4 1.322522+6 8.265000-4 1.321419+6 8.290000-4 1.317292+6 8.317638-4 1.310288+6 8.350000-4 1.300056+6 8.413951-4 1.277107+6 8.511380-4 1.243237+6 8.780000-4 1.156243+6 8.810489-4 1.146261+6 9.050000-4 1.071807+6 9.120108-4 1.050725+6 9.225714-4 1.020023+6 9.229500-4 1.018983+6 9.229500-4 1.155613+6 9.440609-4 1.096020+6 9.549926-4 1.067392+6 9.700000-4 1.029827+6 9.850000-4 9.941383+5 1.011579-3 9.346685+5 1.023293-3 9.098502+5 1.071519-3 8.166834+5 1.083927-3 7.949532+5 1.096478-3 7.737147+5 1.135011-3 7.133896+5 1.148154-3 6.943577+5 1.150000-3 6.917023+5 1.216186-3 6.048596+5 1.230269-3 5.884023+5 1.273503-3 5.417409+5 1.288250-3 5.266122+5 1.364583-3 4.571847+5 1.380384-3 4.444510+5 1.450000-3 3.930111+5 1.462177-3 3.848921+5 1.513561-3 3.531482+5 1.548817-3 3.334847+5 1.566751-3 3.240021+5 1.621810-3 2.971753+5 1.640590-3 2.886340+5 1.678804-3 2.721979+5 1.717908-3 2.566566+5 1.737801-3 2.492302+5 1.778279-3 2.350191+5 1.795500-3 2.293164+5 1.800000-3 2.278448+5 1.819701-3 2.215262+5 1.949845-3 1.854045+5 1.950000-3 1.853666+5 2.018366-3 1.695723+5 2.041738-3 1.646085+5 2.050000-3 1.629029+5 2.089296-3 1.551201+5 2.150000-3 1.439174+5 2.187762-3 1.374820+5 2.290868-3 1.218343+5 2.317395-3 1.182163+5 2.371374-3 1.113048+5 2.426610-3 1.047388+5 2.483133-3 9.857154+4 2.500000-3 9.682764+4 2.600160-3 8.725607+4 2.630268-3 8.463917+4 2.691535-3 7.964226+4 2.722701-3 7.723938+4 2.800000-3 7.167773+4 2.818383-3 7.043139+4 2.884032-3 6.621646+4 2.917427-3 6.420721+4 2.951209-3 6.225922+4 3.000000-3 5.958897+4 3.090295-3 5.505317+4 3.198895-3 5.018133+4 3.349654-3 4.430054+4 3.388442-3 4.294430+4 3.427678-3 4.163021+4 3.548134-3 3.792768+4 3.630781-3 3.563410+4 3.672823-3 3.453701+4 3.801894-3 3.142997+4 3.845918-3 3.045941+4 4.000000-3 2.737268+4 4.073803-3 2.604659+4 4.120975-3 2.524066+4 4.168694-3 2.445971+4 4.265795-3 2.295640+4 4.315191-3 2.224071+4 4.365158-3 2.154798+4 4.677351-3 1.783160+4 4.786301-3 1.673709+4 4.800000-3 1.660615+4 4.841724-3 1.621284+4 4.897788-3 1.570283+4 5.000000-3 1.482883+4 5.308844-3 1.256441+4 5.432503-3 1.179148+4 5.559043-3 1.106289+4 5.623413-3 1.071319+4 5.688529-3 1.037484+4 6.095369-3 8.557526+3 6.309573-3 7.774599+3 6.382635-3 7.528900+3 6.456542-3 7.291195+3 6.531306-3 7.059264+3 6.683439-3 6.617693+3 7.000000-3 5.812139+3 7.328245-3 5.113090+3 7.413102-3 4.950577+3 7.498942-3 4.792075+3 7.585776-3 4.638732+3 7.680700-3 4.478735+3 7.680700-3 3.505659+4 7.852356-3 3.322808+4 7.943282-3 3.231376+4 8.035261-3 3.139280+4 8.150000-3 3.029474+4 8.511380-3 2.711769+4 8.609938-3 2.633132+4 8.709636-3 2.556749+4 8.810489-3 2.482591+4 9.150000-3 2.253914+4 9.225714-3 2.205268+4 9.332543-3 2.139048+4 9.800000-3 1.879431+4 1.000000-2 1.781478+4 1.011579-2 1.727938+4 1.035142-2 1.625648+4 1.083927-2 1.438942+4 1.135011-2 1.273714+4 1.148154-2 1.235427+4 1.161449-2 1.198297+4 1.174898-2 1.162273+4 1.190000-2 1.123572+4 1.216186-2 1.058906+4 1.258925-2 9.638694+3 1.273503-2 9.341288+3 1.318257-2 8.503034+3 1.348963-2 7.985948+3 1.364583-2 7.739357+3 1.380384-2 7.500320+3 1.428894-2 6.826597+3 1.462177-2 6.411515+3 1.513561-2 5.835837+3 1.548817-2 5.473475+3 1.566751-2 5.300644+3 1.621810-2 4.814274+3 1.678804-2 4.372443+3 1.717908-2 4.100708+3 1.800000-2 3.600640+3 1.819701-2 3.493091+3 1.840772-2 3.382720+3 1.883649-2 3.172352+3 1.905461-2 3.070364+3 1.927525-2 2.971648+3 1.972423-2 2.783608+3 2.018366-2 2.607493+3 2.137962-2 2.214493+3 2.162719-2 2.143240+3 2.238721-2 1.942954+3 2.290868-2 1.819937+3 2.317395-2 1.761378+3 2.344229-2 1.703874+3 2.398833-2 1.594447+3 2.540973-2 1.350685+3 2.660725-2 1.182655+3 2.754229-2 1.070492+3 2.786121-2 1.035524+3 2.818383-2 1.001694+3 2.884032-2 9.365204+2 2.985383-2 8.466333+2 3.019952-2 8.186335+2 3.162278-2 7.154997+2 3.273407-2 6.467694+2 3.349654-2 6.046617+2 3.427678-2 5.652960+2 3.548134-2 5.103931+2 3.630781-2 4.767892+2 3.801894-2 4.160197+2 3.935501-2 3.755810+2 4.216965-2 3.061237+2 4.365158-2 2.760709+2 4.415704-2 2.667144+2 4.466836-2 2.576751+2 4.570882-2 2.405056+2 4.786301-2 2.095211+2 5.248075-2 1.590206+2 5.308844-2 1.535792+2 5.432503-2 1.432392+2 5.623413-2 1.290187+2 5.821032-2 1.162109+2 6.237348-2 9.428531+1 6.606934-2 7.921084+1 6.760830-2 7.387468+1 6.918310-2 6.885553+1 7.079458-2 6.417757+1 7.328245-2 5.775002+1 8.317638-2 3.922157+1 8.413951-2 3.786622+1 8.609938-2 3.529252+1 8.709636-2 3.407208+1 9.015711-2 3.065795+1 9.120108-2 2.959777+1 9.225714-2 2.856989+1 9.660509-2 2.480328+1 9.772372-2 2.394196+1 1.011580-1 2.153337+1 1.047129-1 1.936720+1 1.071519-1 1.804567+1 1.083927-1 1.741909+1 1.135011-1 1.512294+1 1.148154-1 1.459786+1 1.161449-1 1.409095+1 1.174898-1 1.360166+1 1.273503-1 1.062088+1 1.288250-1 1.025212+1 1.303167-1 9.896181+0 1.318257-1 9.552600+0 1.364583-1 8.591817+0 1.396368-1 8.005642+0 1.479108-1 6.709287+0 1.500000-1 6.426636+0 1.513561-1 6.251577+0 1.584893-1 5.427742+0 1.621810-1 5.057504+0 1.659587-1 4.712527+0 1.678804-1 4.550624+0 1.717908-1 4.243352+0 1.737801-1 4.097583+0 1.757924-1 3.956829+0 1.819701-1 3.562932+0 1.840772-1 3.440556+0 1.862087-1 3.322384+0 1.883649-1 3.208271+0 2.000000-1 2.675024+0 2.018366-1 2.601887+0 2.065380-1 2.426400+0 2.089296-1 2.343151+0 2.113489-1 2.262759+0 2.162719-1 2.110156+0 2.187762-1 2.038709+0 2.213095-1 1.969691+0 2.238721-1 1.903011+0 2.264644-1 1.838589+0 2.290868-1 1.776423+0 2.317395-1 1.716360+0 2.371374-1 1.602267+0 2.426610-1 1.495759+0 2.540973-1 1.303514+0 2.570396-1 1.260103+0 2.600160-1 1.218147+0 2.630268-1 1.177591+0 2.660725-1 1.138385+0 2.818383-1 9.613089-1 2.851018-1 9.293472-1 2.884032-1 8.984484-1 2.917427-1 8.685799-1 2.985383-1 8.126498-1 3.019952-1 7.860562-1 3.090295-1 7.354527-1 3.126079-1 7.114246-1 3.162278-1 6.881811-1 3.198895-1 6.656999-1 3.235937-1 6.439527-1 3.311311-1 6.025677-1 3.388442-1 5.645175-1 3.427678-1 5.464079-1 3.467369-1 5.288794-1 3.507519-1 5.119144-1 3.589219-1 4.796573-1 3.672823-1 4.494327-1 3.715352-1 4.350425-1 3.801894-1 4.081732-1 3.845918-1 3.953719-1 3.890451-1 3.829725-1 3.935501-1 3.709622-1 3.981072-1 3.593508-1 4.000000-1 3.546734-1 4.168694-1 3.164283-1 4.216965-1 3.067471-1 4.265795-1 2.973621-1 4.315191-1 2.882670-1 4.365158-1 2.794507-1 4.415705-1 2.709209-1 4.518559-1 2.546351-1 4.570882-1 2.468634-1 4.623810-1 2.393291-1 4.677351-1 2.321989-1 4.731513-1 2.252811-1 4.786301-1 2.185719-1 4.841724-1 2.120627-1 4.897788-1 2.057616-1 4.954502-1 1.996480-1 5.069907-1 1.879605-1 5.128614-1 1.823759-1 5.248075-1 1.719538-1 5.308844-1 1.669702-1 5.370318-1 1.621315-1 5.495409-1 1.528920-1 5.623413-1 1.441791-1 5.754399-1 1.361676-1 5.821032-1 1.323321-1 5.888437-1 1.286048-1 5.956621-1 1.249914-1 6.165950-1 1.147487-1 6.237348-1 1.116141-1 6.309573-1 1.085653-1 6.382635-1 1.056010-1 6.456542-1 1.027178-1 6.760830-1 9.197866-2 6.804800-1 9.059995-2 6.839117-1 8.954442-2 6.918310-1 8.717472-2 6.998420-1 8.486871-2 7.085700-1 8.245440-2 7.328245-1 7.625936-2 7.413102-1 7.424895-2 7.585776-1 7.049609-2 7.673615-1 6.869221-2 7.762471-1 6.693455-2 7.943282-1 6.356234-2 8.035261-1 6.194050-2 8.128305-1 6.036016-2 8.317638-1 5.740699-2 8.413951-1 5.598509-2 8.511380-1 5.459901-2 8.609938-1 5.324723-2 8.709636-1 5.193210-2 8.912509-1 4.939852-2 9.015711-1 4.822068-2 9.120108-1 4.707093-2 9.332543-1 4.485426-2 9.549926-1 4.274201-2 9.660509-1 4.172738-2 9.772372-1 4.077399-2 9.885531-1 3.984238-2 1.000000+0 3.893252-2 1.011579+0 3.804349-2 1.023293+0 3.717469-2 1.035142+0 3.632589-2 1.059254+0 3.468954-2 1.083927+0 3.312695-2 1.096478+0 3.237226-2 1.109175+0 3.165458-2 1.130300+0 3.051278-2 1.135011+0 3.026667-2 1.148154+0 2.959609-2 1.161449+0 2.894258-2 1.202264+0 2.706753-2 1.230269+0 2.592147-2 1.258925+0 2.482405-2 1.273503+0 2.429311-2 1.333521+0 2.228604-2 1.348963+0 2.181072-2 1.364583+0 2.136082-2 1.380384+0 2.092023-2 1.396368+0 2.048875-2 1.412538+0 2.006633-2 1.428894+0 1.965388-2 1.479108+0 1.846673-2 1.513561+0 1.771540-2 1.548817+0 1.701643-2 1.566751+0 1.667739-2 1.603245+0 1.601973-2 1.659587+0 1.508463-2 1.678804+0 1.478523-2 1.717908+0 1.422460-2 1.737801+0 1.395232-2 1.778279+0 1.342360-2 1.840772+0 1.267061-2 1.862087+0 1.243875-2 1.883649+0 1.221114-2 1.905461+0 1.198771-2 1.949845+0 1.155330-2 2.018366+0 1.093354-2 2.041738+0 1.074120-2 2.065380+0 1.055225-2 2.113489+0 1.018429-2 2.264644+0 9.155945-3 2.290868+0 8.994943-3 2.398833+0 8.380226-3 2.426610+0 8.237088-3 2.454709+0 8.096398-3 2.483133+0 7.958121-3 2.660725+0 7.176948-3 2.691535+0 7.054420-3 2.786121+0 6.700247-3 2.818383+0 6.589759-3 2.851018+0 6.481100-3 2.884032+0 6.374235-3 3.019952+0 5.964317-3 3.054921+0 5.866026-3 3.126079+0 5.674980-3 3.162278+0 5.585126-3 3.235937+0 5.409678-3 3.507519+0 4.838138-3 3.548134+0 4.761576-3 3.630781+0 4.612517-3 3.672823+0 4.542055-3 3.758374+0 4.404351-3 4.120975+0 3.894244-3 4.168694+0 3.834783-3 4.265795+0 3.718911-3 4.315191+0 3.664043-3 4.415704+0 3.556731-3 4.841724+0 3.158167-3 4.954502+0 3.065711-3 5.069907+0 2.976222-3 5.128614+0 2.933797-3 5.248075+0 2.850758-3 5.754399+0 2.541575-3 5.956621+0 2.434481-3 6.095369+0 2.365786-3 6.165950+0 2.333116-3 6.382635+0 2.237793-3 7.079458+0 1.974656-3 7.328245+0 1.894009-3 7.498942+0 1.842211-3 7.585776+0 1.816847-3 7.852356+0 1.744907-3 8.609938+0 1.566758-3 8.912509+0 1.504746-3 9.225714+0 1.445316-3 9.332543+0 1.426033-3 9.440609+0 1.407405-3 1.000000+1 1.317856-3 1.122018+1 1.155535-3 1.135011+1 1.140445-3 1.161449+1 1.110922-3 1.216186+1 1.055425-3 1.479108+1 8.489124-4 1.513561+1 8.274838-4 1.566751+1 7.969899-4 1.972423+1 6.205464-4 2.018366+1 6.052384-4 2.041738+1 5.978674-4 2.137962+1 5.692721-4 2.818383+1 4.242701-4 2.851018+1 4.191048-4 2.917427+1 4.089776-4 2.951209+1 4.040892-4 2.985383+1 3.992592-4 3.126079+1 3.805106-4 4.120975+1 2.851463-4 4.168694+1 2.817389-4 4.315191+1 2.717728-4 4.415704+1 2.654156-4 4.518559+1 2.592071-4 4.841724+1 2.414400-4 7.498942+1 1.540066-4 7.673615+1 1.504049-4 8.035261+1 1.434596-4 8.128305+1 1.417938-4 8.413951+1 1.369118-4 8.709636+1 1.321978-4 9.225714+1 1.246993-4 1.348963+2 8.482270-5 1.380384+2 8.286472-5 1.396368+2 8.190275-5 1.531087+2 7.460231-5 1.548817+2 7.373671-5 1.678804+2 6.798439-5 1.737801+2 6.565858-5 1.840772+2 6.195775-5 2.691535+2 4.224875-5 2.754229+2 4.127967-5 2.786121+2 4.080350-5 3.054921+2 3.718836-5 3.090295+2 3.675960-5 3.349654+2 3.390720-5 3.467369+2 3.275352-5 3.672823+2 3.091733-5 2.137962+3 5.290888-6 2.187762+3 5.170191-6 2.213095+3 5.110880-6 2.426610+3 4.660320-6 2.454709+3 4.606868-6 2.660725+3 4.250090-6 2.754229+3 4.105771-6 2.917427+3 3.876050-6 1.000000+5 1.130032-7 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 7.810000-6 1.372000-5 7.810000-6 1.372000-5 1.371573-5 1.393000-5 1.371457-5 1.393000-5 1.380044-5 2.020000-5 1.369275-5 3.273407-5 1.370492-5 7.226000-5 1.374196-5 7.226000-5 1.489501-5 7.417000-5 1.484865-5 7.417000-5 1.534845-5 8.350000-5 1.495093-5 8.850000-5 1.485415-5 9.400000-5 1.487041-5 1.011579-4 1.501994-5 1.096900-4 1.529348-5 1.096900-4 1.653965-5 1.531087-4 1.843482-5 1.737801-4 1.922000-5 2.000000-4 2.005480-5 2.300000-4 2.088292-5 2.600160-4 2.158917-5 3.000000-4 2.237230-5 3.507519-4 2.318841-5 4.000000-4 2.384196-5 4.731513-4 2.462049-5 5.559043-4 2.531189-5 6.531306-4 2.594668-5 7.585776-4 2.649231-5 7.922900-4 2.664599-5 7.922900-4 3.831595-5 7.934000-4 3.911956-5 7.947000-4 3.978185-5 7.965000-4 4.039430-5 7.987000-4 4.087669-5 8.018000-4 4.128962-5 8.072000-4 4.164283-5 8.075400-4 4.165454-5 8.075400-4 4.217354-5 8.124000-4 4.256509-5 8.212000-4 4.281415-5 8.511380-4 4.288780-5 9.229500-4 4.289172-5 9.229500-4 4.576420-5 1.380384-3 4.701142-5 2.018366-3 4.840632-5 2.884032-3 4.988415-5 4.000000-3 5.135695-5 5.308844-3 5.268702-5 7.000000-3 5.398896-5 7.680700-3 5.441920-5 7.680700-3 7.295506-5 1.216186-2 7.346315-5 2.398833-2 7.388730-5 6.760830-2 7.418106-5 6.309573-1 7.432205-5 1.000000+5 7.432980-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 0.0 7.226000-5 0.0 7.226000-5 1.24076-10 7.270000-5 1.23239-10 7.360000-5 1.20894-10 7.417000-5 1.19049-10 7.417000-5 1.75275-10 7.498942-5 1.71980-10 7.590000-5 1.67798-10 7.852356-5 1.54026-10 8.080000-5 1.42742-10 8.230000-5 1.36203-10 8.350000-5 1.31744-10 8.485300-5 1.27619-10 8.610000-5 1.24618-10 8.738900-5 1.22364-10 8.850000-5 1.21061-10 8.950000-5 1.20428-10 9.070000-5 1.20256-10 9.225714-5 1.20939-10 9.400000-5 1.22720-10 9.580000-5 1.25599-10 9.800000-5 1.30355-10 1.000000-4 1.35564-10 1.011579-4 1.38954-10 1.040000-4 1.48020-10 1.080000-4 1.62349-10 1.096900-4 1.68798-10 1.096900-4 2.41456-10 1.150000-4 2.63930-10 1.244515-4 3.05935-10 1.364583-4 3.60005-10 1.462177-4 4.02381-10 1.548817-4 4.37950-10 1.603245-4 4.59051-10 1.678804-4 4.87226-10 1.800000-4 5.28777-10 1.949845-4 5.75465-10 2.065380-4 6.08980-10 2.238721-4 6.55878-10 2.371374-4 6.88846-10 2.511886-4 7.21384-10 2.730000-4 7.66329-10 3.000000-4 8.15423-10 3.349654-4 8.70744-10 3.715352-4 9.20553-10 4.120975-4 9.67331-10 4.623810-4 1.015504-9 5.069907-4 1.051631-9 5.559043-4 1.085590-9 6.200000-4 1.122614-9 6.760830-4 1.149627-9 7.585776-4 1.182808-9 7.922900-4 1.194684-9 7.922900-4 2.712678-6 7.931000-4 2.853839-6 7.934000-4 2.899027-6 7.939000-4 2.965102-6 7.947000-4 3.052566-6 7.952000-4 3.098549-6 7.958000-4 3.146526-6 7.965000-4 3.194483-6 7.980000-4 3.275854-6 7.997000-4 3.342994-6 8.018000-4 3.401611-6 8.045000-4 3.451454-6 8.075400-4 3.485517-6 8.075400-4 3.635156-6 8.100000-4 3.700014-6 8.130000-4 3.750600-6 8.175000-4 3.793201-6 8.243000-4 3.820016-6 8.350000-4 3.829208-6 9.229500-4 3.821759-6 9.229500-4 3.903332-6 1.678804-3 3.909415-6 6.095369-3 3.896569-6 7.680700-3 3.896531-6 7.680700-3 2.315081-3 9.332543-3 2.333650-3 1.318257-2 2.353257-3 2.018366-2 2.369050-3 3.630781-2 2.379778-3 1.161449-1 2.386069-3 1.000000+5 2.387155-3 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 0.0 1.372000-5 5.910000-6 1.372000-5 4.266208-9 1.377000-5 5.438183-8 1.392000-5 2.053369-7 1.393000-5 2.154344-7 1.393000-5 1.295566-7 1.423000-5 4.323439-7 1.487000-5 1.083091-6 1.800000-5 4.281220-6 2.130000-5 7.613312-6 7.226000-5 5.851804-5 7.226000-5 5.736486-5 7.417000-5 5.932123-5 7.417000-5 5.882138-5 8.738900-5 7.252302-5 1.011579-4 8.613782-5 1.096900-4 9.439635-5 1.096900-4 9.315011-5 1.820000-4 1.625014-4 2.884032-4 2.662446-4 5.495409-4 5.242756-4 7.922900-4 7.656428-4 7.922900-4 7.512614-4 7.997000-4 7.553211-4 8.236900-4 7.770312-4 9.229500-4 8.762365-4 9.229500-4 8.732825-4 7.680700-3 7.622384-3 7.680700-3 5.292664-3 1.258925-2 1.016445-2 3.589219-1 3.564613-1 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.680700-3 3.057786+4 7.943282-3 2.824007+4 8.150000-3 2.650560+4 9.150000-3 1.980758+4 1.190000-2 9.943440+3 1.513561-2 5.188889+3 1.883649-2 2.829639+3 2.317395-2 1.574680+3 2.818383-2 8.969559+2 3.427678-2 5.067996+2 4.216965-2 2.747007+2 5.248075-2 1.427968+2 6.760830-2 6.637537+1 9.120108-2 2.660492+1 1.659587-1 4.236633+0 2.162719-1 1.897264+0 2.540973-1 1.171939+0 2.917427-1 7.808920-1 3.311311-1 5.417357-1 3.715352-1 3.911222-1 4.168694-1 2.844836-1 4.623810-1 2.151689-1 5.128614-1 1.639704-1 5.623413-1 1.296354-1 6.165950-1 1.031790-1 6.760830-1 8.271021-2 7.413102-1 6.676627-2 8.128305-1 5.427185-2 8.912509-1 4.441625-2 9.660509-1 3.752695-2 1.096478+0 2.911724-2 1.202264+0 2.434597-2 1.348963+0 1.961688-2 1.513561+0 1.593250-2 1.678804+0 1.329712-2 1.840772+0 1.139552-2 2.018366+0 9.833288-3 2.398833+0 7.536949-3 2.786121+0 6.026075-3 3.126079+0 5.104041-3 3.630781+0 4.148482-3 4.265795+0 3.344782-3 5.069907+0 2.676817-3 6.095369+0 2.127795-3 7.585776+0 1.634057-3 9.332543+0 1.282574-3 1.161449+1 9.991844-4 1.513561+1 7.442531-4 2.018366+1 5.443612-4 2.917427+1 3.678418-4 4.315191+1 2.444361-4 8.035261+1 1.290293-4 1.548817+2 6.632049-5 3.090295+2 3.306202-5 2.454709+3 4.143582-6 1.000000+5 1.016400-7 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.680700-3 7.567000-5 1.000000+5 7.567000-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.680700-3 2.653600-3 1.000000+5 2.653600-3 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.680700-3 4.951430-3 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 9.229500-4 1.366302+5 9.850000-4 1.256643+5 1.083927-3 1.093244+5 1.273503-3 8.562600+4 1.548817-3 6.217248+4 1.678804-3 5.407865+4 1.950000-3 4.137900+4 2.150000-3 3.452000+4 2.500000-3 2.584700+4 2.800000-3 2.064180+4 3.198895-3 1.573813+4 3.672823-3 1.177697+4 4.168694-3 8.966973+3 4.800000-3 6.569960+3 5.559043-3 4.712717+3 6.456542-3 3.330743+3 7.413102-3 2.400342+3 8.511380-3 1.718332+3 9.800000-3 1.213660+3 1.135011-2 8.390747+2 1.318257-2 5.718913+2 1.548817-2 3.755032+2 1.819701-2 2.446094+2 2.137962-2 1.581602+2 2.540973-2 9.834576+1 3.019952-2 6.067569+1 3.630781-2 3.596427+1 4.365158-2 2.115349+1 5.308844-2 1.194283+1 6.606934-2 6.251990+0 8.413951-2 3.031755+0 1.148154-1 1.184641+0 1.883649-1 2.644245-1 2.264644-1 1.523294-1 2.660725-1 9.468629-2 3.090295-1 6.132378-2 3.507519-1 4.276734-2 3.935501-1 3.103610-2 4.365158-1 2.341126-2 4.841724-1 1.778008-2 5.370318-1 1.360306-2 5.888437-1 1.079282-2 6.456542-1 8.620723-3 7.085700-1 6.920995-3 7.762471-1 5.627609-3 8.609938-1 4.484253-3 9.549926-1 3.595968-3 1.035142+0 3.051647-3 1.148154+0 2.484858-3 1.273503+0 2.039953-3 1.412538+0 1.685712-3 1.603245+0 1.346240-3 1.778279+0 1.128152-3 1.949845+0 9.708357-4 2.290868+0 7.559747-4 2.691535+0 5.929108-4 3.054921+0 4.930376-4 3.548134+0 4.002584-4 4.168694+0 3.223633-4 4.954502+0 2.577100-4 5.956621+0 2.046587-4 7.328245+0 1.592089-4 8.912509+0 1.264731-4 1.135011+1 9.587256-5 1.479108+1 7.137322-5 1.972423+1 5.217456-5 2.851018+1 3.523936-5 4.168694+1 2.368737-5 7.673615+1 1.264514-5 1.396368+2 6.885099-6 2.786121+2 3.430752-6 2.213095+3 4.297471-7 1.000000+5 9.503100-9 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 9.229500-4 6.718700-5 1.000000+5 6.718700-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.229500-4 4.511700-6 1.000000+5 4.511700-6 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.229500-4 8.512513-4 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.075400-4 1.521600+5 8.077000-4 1.562400+5 8.080500-4 1.669800+5 8.083500-4 1.758000+5 8.086500-4 1.843200+5 8.091000-4 1.965600+5 8.095500-4 2.080800+5 8.100000-4 2.191100+5 8.106000-4 2.329000+5 8.111000-4 2.436600+5 8.118000-4 2.577900+5 8.124000-4 2.690700+5 8.130000-4 2.795900+5 8.137000-4 2.909300+5 8.145000-4 3.027600+5 8.153700-4 3.143800+5 8.164000-4 3.266100+5 8.175000-4 3.379500+5 8.187000-4 3.485100+5 8.198000-4 3.566500+5 8.212000-4 3.651000+5 8.228000-4 3.724900+5 8.243000-4 3.775300+5 8.265000-4 3.822700+5 8.290000-4 3.847200+5 8.317638-4 3.849100+5 8.350000-4 3.830000+5 9.050000-4 3.168958+5 9.440609-4 2.839900+5 1.023293-3 2.333000+5 1.150000-3 1.744800+5 1.273503-3 1.344300+5 1.380384-3 1.088000+5 1.640590-3 6.819500+4 1.800000-3 5.272100+4 2.089296-3 3.457500+4 2.371374-3 2.396500+4 2.722701-3 1.596000+4 3.198895-3 9.833600+3 3.630781-3 6.674200+3 4.168694-3 4.344600+3 4.841724-3 2.707300+3 5.688529-3 1.612800+3 6.683439-3 9.526300+2 7.852356-3 5.582500+2 9.225714-3 3.246200+2 1.083927-2 1.873600+2 1.273503-2 1.073600+2 1.513561-2 5.867400+1 1.800000-2 3.175600+1 2.162719-2 1.645700+1 2.660725-2 7.775200+0 3.349654-2 3.352900+0 4.466836-2 1.161400+0 8.317638-2 1.163934-1 1.047129-1 4.997191-2 1.273503-1 2.453868-2 1.500000-1 1.363364-2 1.737801-1 8.095178-3 2.000000-1 4.954693-3 2.264644-1 3.232753-3 2.540973-1 2.191633-3 2.851018-1 1.497131-3 3.162278-1 1.069672-3 3.507519-1 7.696768-4 3.890451-1 5.578449-4 4.315191-1 4.073383-4 4.786301-1 2.997361-4 5.308844-1 2.223177-4 5.821032-1 1.716377-4 6.382635-1 1.333888-4 6.998420-1 1.043745-4 7.673615-1 8.225161-5 8.609938-1 6.144191-5 9.120108-1 5.338976-5 9.660509-1 4.668325-5 1.023293+0 4.112620-5 1.096478+0 3.559163-5 1.161449+0 3.175336-5 1.258925+0 2.730432-5 1.380384+0 2.312407-5 1.678804+0 1.644512-5 1.862087+0 1.382305-5 2.041738+0 1.193254-5 2.426610+0 9.148460-6 2.818383+0 7.319747-6 3.126079+0 6.305972-6 3.630781+0 5.125410-6 4.265795+0 4.132406-6 5.069907+0 3.307121-6 6.095369+0 2.628890-6 7.498942+0 2.046742-6 9.225714+0 1.605729-6 1.161449+1 1.234474-6 1.513561+1 9.195085-7 2.018366+1 6.725450-7 2.917427+1 4.544580-7 4.315191+1 3.019878-7 8.128305+1 1.575496-7 1.548817+2 8.193803-8 3.090295+2 4.084667-8 2.454709+3 5.119258-9 1.000000+5 1.25570-10 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.075400-4 4.539200-5 1.000000+5 4.539200-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.075400-4 4.563100-6 1.000000+5 4.563100-6 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.075400-4 7.575849-4 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 7.922900-4 3.175120+5 7.924600-4 3.264772+5 7.928000-4 3.479448+5 7.931000-4 3.660668+5 7.934000-4 3.836328+5 7.939000-4 4.113880+5 7.943282-4 4.338548+5 7.947000-4 4.524680+5 7.952000-4 4.763520+5 7.958000-4 5.031880+5 7.965000-4 5.321880+5 7.972000-4 5.589760+5 7.980000-4 5.870840+5 7.987000-4 6.095880+5 7.997000-4 6.385680+5 8.007000-4 6.641240+5 8.018000-4 6.886000+5 8.030000-4 7.113640+5 8.045000-4 7.346720+5 8.059200-4 7.520892+5 8.072000-4 7.644200+5 8.090000-4 7.771640+5 8.108000-4 7.854480+5 8.130000-4 7.908400+5 8.150000-4 7.923160+5 8.180000-4 7.903000+5 8.780000-4 6.698320+5 9.225714-4 5.881764+5 1.011579-3 4.685763+5 1.148154-3 3.409222+5 1.273503-3 2.607472+5 1.380384-3 2.104659+5 1.621810-3 1.356535+5 1.795500-3 1.020491+5 2.089296-3 6.623076+4 2.371374-3 4.576691+4 2.691535-3 3.144365+4 3.090295-3 2.071939+4 3.548134-3 1.355281+4 4.073803-3 8.801334+3 4.677351-3 5.675383+3 5.432503-3 3.501568+3 6.309573-3 2.144084+3 7.328245-3 1.303369+3 8.609938-3 7.566409+2 1.000000-2 4.534080+2 1.161449-2 2.699120+2 1.364583-2 1.532963+2 1.621810-2 8.293618+1 1.927525-2 4.453412+1 2.290868-2 2.374295+1 2.786121-2 1.155637+1 3.427678-2 5.350523+0 4.365158-2 2.161523+0 9.015711-2 1.393881-1 1.161449-1 5.386742-2 1.364583-1 2.960574-2 1.584893-1 1.710264-2 1.819701-1 1.038164-2 2.065380-1 6.617801-3 2.317395-1 4.426803-3 2.600160-1 2.984123-3 2.884032-1 2.107986-3 3.162278-1 1.557846-3 3.467369-1 1.159028-3 3.801894-1 8.685211-4 4.168694-1 6.557851-4 4.518559-1 5.163180-4 4.897788-1 4.091161-4 5.308844-1 3.262941-4 5.754399-1 2.620216-4 6.237348-1 2.118469-4 6.804800-1 1.696697-4 7.413102-1 1.374868-4 8.035261-1 1.135784-4 8.912509-1 8.961543-5 9.549926-1 7.701578-5 1.023293+0 6.666410-5 1.130300+0 5.456093-5 1.230269+0 4.637380-5 1.364583+0 3.829129-5 1.548817+0 3.056274-5 1.717908+0 2.555155-5 1.883649+0 2.192881-5 2.065380+0 1.895255-5 2.454709+0 1.454045-5 2.851018+0 1.163924-5 3.162278+0 1.003264-5 3.672823+0 8.158994-6 4.315191+0 6.581787-6 5.128614+0 5.270185-6 6.165950+0 4.191206-6 7.585776+0 3.264429-6 9.440609+0 2.528342-6 1.161449+1 1.996097-6 1.513561+1 1.486798-6 2.041738+1 1.074084-6 2.985383+1 7.172044-7 4.518559+1 4.655847-7 8.709636+1 2.374175-7 1.737801+2 1.179575-7 3.467369+2 5.883660-8 2.754229+3 7.376932-9 1.000000+5 2.03040-10 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 7.922900-4 4.509900-5 1.000000+5 4.509900-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.922900-4 4.288700-6 1.000000+5 4.288700-6 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.922900-4 7.429023-4 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.096900-4 3.269561+5 1.566751-4 2.792393+5 1.678804-4 2.693775+5 1.778279-4 2.593689+5 1.883649-4 2.479454+5 2.041738-4 2.307935+5 2.264644-4 2.086512+5 2.511886-4 1.872758+5 2.730000-4 1.705250+5 2.985383-4 1.530262+5 3.349654-4 1.319014+5 3.801894-4 1.111492+5 4.216965-4 9.599277+4 4.731513-4 8.094212+4 5.495409-4 6.428948+4 6.200000-4 5.302660+4 7.161434-4 4.177602+4 8.222426-4 3.301189+4 9.549926-4 2.536912+4 1.096478-3 1.976446+4 1.288250-3 1.465271+4 1.513561-3 1.077466+4 1.778279-3 7.861932+3 2.089296-3 5.694614+3 2.483133-3 3.998475+3 2.917427-3 2.852991+3 3.427678-3 2.020940+3 4.000000-3 1.441798+3 4.677351-3 1.016389+3 5.432503-3 7.221736+2 6.309573-3 5.094304+2 7.328245-3 3.567920+2 8.511380-3 2.481109+2 1.000000-2 1.664704+2 1.174898-2 1.108294+2 1.380384-2 7.322115+1 1.621810-2 4.800822+1 1.905461-2 3.124393+1 2.238721-2 2.018650+1 2.660725-2 1.254456+1 3.162278-2 7.736686+0 3.801894-2 4.583738+0 4.570882-2 2.695437+0 5.432503-2 1.627500+0 6.760830-2 8.518549-1 8.709636-2 3.992352-1 1.083927-1 2.063103-1 1.678804-1 5.483556-2 2.187762-1 2.477384-2 2.570396-1 1.536967-2 2.985383-1 9.938573-3 3.388442-1 6.918411-3 3.801894-1 5.010452-3 4.265795-1 3.655541-3 4.731513-1 2.771962-3 5.248075-1 2.117560-3 5.754399-1 1.677917-3 6.309573-1 1.338472-3 6.918310-1 1.075127-3 7.585776-1 8.696092-4 8.413951-1 6.904290-4 9.120108-1 5.806403-4 9.885531-1 4.914942-4 1.135011+0 3.733913-4 1.258925+0 3.062243-4 1.396368+0 2.527530-4 1.566751+0 2.057369-4 1.737801+0 1.721258-4 1.905461+0 1.478741-4 2.113489+0 1.256391-4 2.483133+0 9.817721-5 2.884032+0 7.863604-5 3.235937+0 6.673955-5 3.758374+0 5.433901-5 4.415704+0 4.388148-5 5.248075+0 3.517385-5 6.382635+0 2.760810-5 7.852356+0 2.153005-5 1.000000+1 1.625900-5 1.216186+1 1.302462-5 1.566751+1 9.834968-6 2.137962+1 7.024138-6 3.126079+1 4.694633-6 4.841724+1 2.978681-6 9.225714+1 1.538359-6 1.840772+2 7.647022-7 3.672823+2 3.815622-7 2.917427+3 4.784893-8 1.000000+5 1.395100-9 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.096900-4 3.806000-5 1.000000+5 3.806000-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.096900-4 1.496200-9 1.000000+5 1.496200-9 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.096900-4 7.162850-5 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 7.417000-5 3.504100+5 7.498942-5 3.432440+5 7.590000-5 3.329800+5 7.700000-5 3.184960+5 7.810000-5 3.029720+5 8.000000-5 2.760380+5 8.317638-5 2.362352+5 8.450000-5 2.226200+5 8.610000-5 2.087540+5 8.738900-5 1.996108+5 8.850000-5 1.931066+5 8.950000-5 1.882758+5 9.070000-5 1.836514+5 9.190000-5 1.802028+5 9.332543-5 1.774498+5 9.450000-5 1.761534+5 9.580000-5 1.756058+5 9.720000-5 1.759102+5 9.900000-5 1.774260+5 1.011579-4 1.805535+5 1.040000-4 1.862220+5 1.080000-4 1.960078+5 1.190000-4 2.257700+5 1.244515-4 2.395869+5 1.303167-4 2.528952+5 1.350000-4 2.621320+5 1.400000-4 2.705280+5 1.462177-4 2.788796+5 1.520000-4 2.846580+5 1.584893-4 2.890122+5 1.650000-4 2.913300+5 1.720000-4 2.918620+5 1.800000-4 2.905000+5 1.900000-4 2.866780+5 2.000000-4 2.812360+5 2.120000-4 2.732380+5 2.238721-4 2.642841+5 2.371374-4 2.535730+5 2.511886-4 2.417446+5 2.660725-4 2.290276+5 2.851018-4 2.129778+5 3.054921-4 1.966514+5 3.311311-4 1.778560+5 3.589219-4 1.596318+5 3.890451-4 1.421871+5 4.216965-4 1.256436+5 4.623810-4 1.081779+5 5.069907-4 9.243550+4 5.559043-4 7.838451+4 6.095369-4 6.593268+4 6.760830-4 5.383609+4 7.500000-4 4.358920+4 8.236900-4 3.575336+4 9.120108-4 2.863301+4 1.011579-3 2.267995+4 1.135011-3 1.735841+4 1.273503-3 1.318163+4 1.450000-3 9.575400+3 1.621810-3 7.214325+3 1.819701-3 5.356269+3 2.050000-3 3.907680+3 2.317395-3 2.805504+3 2.630268-3 1.977455+3 3.000000-3 1.364330+3 3.388442-3 9.607169+2 3.845918-3 6.622986+2 4.365158-3 4.532694+2 5.000000-3 2.994664+2 5.688529-3 2.005267+2 6.531306-3 1.295276+2 7.498942-3 8.304889+1 8.709636-3 5.091397+1 1.011579-2 3.097587+1 1.174898-2 1.871182+1 1.380384-2 1.079012+1 1.621810-2 6.174107+0 1.927525-2 3.367893+0 2.317395-2 1.750076+0 2.818383-2 8.660880-1 3.548134-2 3.754224-1 4.415704-2 1.685194-1 8.609938-2 1.442156-2 1.071519-1 6.481282-3 1.288250-1 3.327529-3 1.513561-1 1.869762-3 1.757924-1 1.102522-3 2.018366-1 6.820986-4 2.290868-1 4.423684-4 2.570396-1 3.004065-4 2.884032-1 2.054322-4 3.235937-1 1.415613-4 3.589219-1 1.019618-4 4.000000-1 7.288900-5 4.415705-1 5.403997-5 4.841724-1 4.116399-5 5.308844-1 3.157257-5 5.821032-1 2.438298-5 6.382635-1 1.895366-5 6.998420-1 1.483228-5 7.673615-1 1.168933-5 8.609938-1 8.734017-6 9.120108-1 7.590526-6 9.660509-1 6.637880-6 1.023293+0 5.848231-6 1.096478+0 5.061533-6 1.161449+0 4.515783-6 1.258925+0 3.883009-6 1.380384+0 3.288406-6 1.678804+0 2.338240-6 1.862087+0 1.965384-6 2.018366+0 1.727527-6 2.398833+0 1.324017-6 2.786121+0 1.058646-6 3.126079+0 8.966925-7 3.630781+0 7.288160-7 4.265795+0 5.876190-7 5.069907+0 4.702711-7 6.095369+0 3.738194-7 7.498942+0 2.910342-7 9.225714+0 2.283313-7 1.161449+1 1.755400-7 1.513561+1 1.307483-7 2.018366+1 9.563410-8 2.917427+1 6.462289-8 4.315191+1 4.294220-8 8.128305+1 2.240307-8 1.548817+2 1.165098-8 3.090295+2 5.808331-9 2.454709+3 7.27954-10 1.000000+5 1.78560-11 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 7.417000-5 2.722800-5 1.000000+5 2.722800-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 7.417000-5 1.511700-9 1.000000+5 1.511700-9 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 7.417000-5 4.694049-5 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 7.226000-5 7.372920+5 7.270000-5 7.284840+5 7.360000-5 7.065960+5 7.450000-5 6.815320+5 7.585776-5 6.408199+5 8.080000-5 5.035600+5 8.230000-5 4.716880+5 8.350000-5 4.501160+5 8.485300-5 4.299029+5 8.610000-5 4.149160+5 8.730000-5 4.035480+5 8.850000-5 3.949060+5 8.950000-5 3.895820+5 9.070000-5 3.852056+5 9.225714-5 3.823953+5 9.400000-5 3.824832+5 9.580000-5 3.854564+5 9.800000-5 3.921292+5 1.000000-4 4.003240+5 1.035142-4 4.178634+5 1.150000-4 4.832720+5 1.205000-4 5.125760+5 1.260000-4 5.386880+5 1.318257-4 5.623221+5 1.364583-4 5.779703+5 1.412538-4 5.912282+5 1.462177-4 6.018740+5 1.520000-4 6.105560+5 1.584893-4 6.159702+5 1.659587-4 6.173729+5 1.737801-4 6.143930+5 1.820000-4 6.075320+5 1.927525-4 5.944873+5 2.041738-4 5.774437+5 2.162719-4 5.573205+5 2.300000-4 5.328840+5 2.450000-4 5.052040+5 2.600160-4 4.771723+5 2.786121-4 4.432011+5 3.000000-4 4.063080+5 3.235937-4 3.690308+5 3.507519-4 3.308449+5 3.801894-4 2.943739+5 4.120975-4 2.599092+5 4.500000-4 2.250940+5 4.954502-4 1.908016+5 5.400000-4 1.634600+5 5.888437-4 1.389331+5 6.456542-4 1.160523+5 7.161434-4 9.408891+4 7.943282-4 7.563415+4 8.810489-4 6.032350+4 9.700000-4 4.860200+4 1.083927-3 3.757172+4 1.216186-3 2.854626+4 1.364583-3 2.151601+4 1.548817-3 1.563344+4 1.737801-3 1.160700+4 1.949845-3 8.561007+3 2.187762-3 6.272754+3 2.483133-3 4.422990+3 2.818383-3 3.095978+3 3.198895-3 2.150890+3 3.630781-3 1.483111+3 4.120975-3 1.015142+3 4.677351-3 6.897756+2 5.308844-3 4.653317+2 6.095369-3 3.005201+2 7.000000-3 1.924768+2 8.035261-3 1.225398+2 9.332543-3 7.448588+1 1.083927-2 4.492834+1 1.258925-2 2.690522+1 1.462177-2 1.599886+1 1.717908-2 9.069132+0 2.018366-2 5.102980+0 2.398833-2 2.734959+0 2.884032-2 1.395427+0 3.548134-2 6.492343-1 4.466836-2 2.749869-1 6.237348-2 7.838448-2 9.225714-2 1.794298-2 1.174898-1 7.265064-3 1.396368-1 3.835599-3 1.621810-1 2.220333-3 1.862087-1 1.350341-3 2.113489-1 8.624379-4 2.371374-1 5.779216-4 2.630268-1 4.058538-4 2.917427-1 2.870899-4 3.198895-1 2.124675-4 3.507519-1 1.583206-4 3.845918-1 1.188327-4 4.168694-1 9.304565-5 4.518559-1 7.330704-5 4.897788-1 5.811599-5 5.308844-1 4.636573-5 5.754399-1 3.723369-5 6.237348-1 3.010992-5 6.760830-1 2.452337-5 7.328245-1 2.010774-5 8.035261-1 1.615211-5 8.709636-1 1.339990-5 9.332543-1 1.149088-5 1.000000+0 9.921300-6 1.109175+0 8.038521-6 1.202264+0 6.874172-6 1.333521+0 5.667594-6 1.479108+0 4.705950-6 1.659587+0 3.847472-6 1.840772+0 3.232182-6 2.018366+0 2.788563-6 2.398833+0 2.137303-6 2.786121+0 1.708897-6 3.126079+0 1.447457-6 3.630781+0 1.176488-6 4.265795+0 9.485593-7 5.069907+0 7.591174-7 6.095369+0 6.034285-7 7.498942+0 4.697957-7 9.225714+0 3.685778-7 1.161449+1 2.833615-7 1.513561+1 2.110591-7 2.018366+1 1.543748-7 2.951209+1 1.030564-7 4.415704+1 6.768530-8 8.413951+1 3.491123-8 1.678804+2 1.733779-8 3.349654+2 8.646887-9 2.660725+3 1.084028-9 1.000000+5 2.88230-11 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 7.226000-5 2.708500-5 1.000000+5 2.708500-5 1 27000 7 7 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.226000-5 1.435800-9 1.000000+5 1.435800-9 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.226000-5 4.517356-5 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.393000-5 1.348354+6 1.435000-5 1.333674+6 1.479108-5 1.326899+6 1.531087-5 1.330278+6 1.590000-5 1.346358+6 1.650000-5 1.373137+6 1.717908-5 1.414015+6 1.800000-5 1.474651+6 1.900000-5 1.560994+6 2.018366-5 1.675591+6 2.600160-5 2.315066+6 2.818383-5 2.552629+6 3.019952-5 2.760285+6 3.230000-5 2.957864+6 3.450000-5 3.141320+6 3.650000-5 3.285324+6 3.850000-5 3.404212+6 4.070000-5 3.505348+6 4.300000-5 3.580892+6 4.518559-5 3.625630+6 4.731513-5 3.646345+6 5.000000-5 3.644004+6 5.300000-5 3.611832+6 5.623413-5 3.552263+6 5.956621-5 3.471369+6 6.382635-5 3.350073+6 6.839116-5 3.210291+6 7.328245-5 3.055737+6 7.852356-5 2.890199+6 8.413951-5 2.716159+6 9.015711-5 2.533444+6 9.549926-5 2.376305+6 1.011579-4 2.215315+6 1.080000-4 2.029639+6 1.150000-4 1.852432+6 1.230269-4 1.665919+6 1.318257-4 1.483849+6 1.412538-4 1.312807+6 1.531087-4 1.130306+6 1.659587-4 9.656456+5 1.778279-4 8.386916+5 1.927525-4 7.058637+5 2.065380-4 6.046449+5 2.238721-4 5.011865+5 2.454709-4 4.010351+5 2.722701-4 3.092637+5 3.000000-4 2.403845+5 3.280000-4 1.891316+5 3.600000-4 1.461726+5 4.000000-4 1.083978+5 4.415704-4 8.129126+4 4.897788-4 5.970097+4 5.432503-4 4.352504+4 6.025596-4 3.151381+4 6.760830-4 2.184827+4 7.585776-4 1.503411+4 8.511380-4 1.027278+4 9.440609-4 7.246049+3 1.071519-3 4.692569+3 1.216186-3 3.016031+3 1.380384-3 1.923911+3 1.566751-3 1.218194+3 1.778279-3 7.657317+2 2.018366-3 4.778487+2 2.290868-3 2.961411+2 2.600160-3 1.821928+2 2.951209-3 1.112527+2 3.349654-3 6.739908+1 3.801894-3 4.052483+1 4.315191-3 2.418473+1 4.897788-3 1.433084+1 5.623413-3 8.036402+0 6.683439-3 3.866478+0 7.852356-3 1.938316+0 9.332543-3 9.179039-1 1.148154-2 3.712215-1 1.380384-2 1.647330-1 1.566751-2 9.375037-2 1.883649-2 4.095150-2 2.344229-2 1.519102-2 5.248075-2 3.835226-4 6.918310-2 1.093746-4 8.317638-2 4.770204-5 9.772372-2 2.323527-5 1.135011-1 1.199389-5 1.303167-1 6.561760-6 1.479108-1 3.802303-6 1.659587-1 2.331563-6 1.862087-1 1.439715-6 2.089296-1 8.953991-7 2.317395-1 5.878026-7 2.570396-1 3.887619-7 2.818383-1 2.711022-7 3.090295-1 1.903709-7 3.388442-1 1.346310-7 3.715352-1 9.585822-8 4.216965-1 6.066337-8 4.570882-1 4.561863-8 4.954502-1 3.453741-8 5.308844-1 2.740599-8 5.754399-1 2.106515-8 6.382635-1 1.513386-8 6.998420-1 1.136064-8 7.585776-1 8.899382-9 8.035261-1 7.502099-9 8.511380-1 6.309776-9 8.912509-1 5.522225-9 9.332543-1 4.861993-9 9.772372-1 4.312021-9 1.011579+0 3.963048-9 1.059254+0 3.565974-9 1.109175+0 3.230672-9 1.161449+0 2.946103-9 1.230269+0 2.645458-9 1.333521+0 2.294663-9 1.479108+0 1.928988-9 1.778279+0 1.406896-9 1.949845+0 1.209133-9 2.264644+0 9.58283-10 2.660725+0 7.51149-10 3.019952+0 6.24127-10 3.507519+0 5.06375-10 4.120975+0 4.07607-10 4.841724+0 3.30513-10 5.754399+0 2.65978-10 7.079458+0 2.06638-10 8.609938+0 1.63950-10 1.122018+1 1.20953-10 1.479108+1 8.88824-11 1.972423+1 6.49744-11 2.818383+1 4.44218-11 4.120975+1 2.98533-11 7.498942+1 1.61227-11 1.348963+2 8.87871-12 2.691535+2 4.42350-12 2.137962+3 5.54007-13 1.000000+5 1.18340-14 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.393000-5 1.393000-5 1.000000+5 1.393000-5 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.393000-5 0.0 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.372000-5 2.042636+6 1.412538-5 2.022824+6 1.462177-5 2.015423+6 1.513561-5 2.024980+6 1.570000-5 2.052011+6 1.630000-5 2.096006+6 1.698244-5 2.161384+6 1.778279-5 2.254071+6 1.862087-5 2.365333+6 2.000000-5 2.570039+6 2.580000-5 3.537778+6 2.818383-5 3.927791+6 3.019952-5 4.236521+6 3.235937-5 4.538325+6 3.427678-5 4.774919+6 3.630781-5 4.989941+6 3.850000-5 5.180238+6 4.027170-5 5.300892+6 4.220000-5 5.399310+6 4.415704-5 5.466918+6 4.650000-5 5.507376+6 4.900000-5 5.509812+6 5.188000-5 5.471147+6 5.500000-5 5.389398+6 5.821032-5 5.274328+6 6.237348-5 5.098383+6 6.683439-5 4.891052+6 7.161434-5 4.660119+6 7.673615-5 4.413674+6 8.222426-5 4.152460+6 8.810489-5 3.879908+6 9.332543-5 3.645143+6 9.900000-5 3.397241+6 1.047129-4 3.159087+6 1.109175-4 2.913588+6 1.190000-4 2.617553+6 1.260000-4 2.385411+6 1.364583-4 2.078128+6 1.462177-4 1.832789+6 1.603245-4 1.536802+6 1.720000-4 1.334222+6 1.850000-4 1.145466+6 2.000000-4 9.648954+5 2.137962-4 8.282373+5 2.344229-4 6.652376+5 2.600160-4 5.148165+5 2.884032-4 3.946898+5 3.162278-4 3.090255+5 3.507519-4 2.324882+5 3.935501-4 1.678192+5 4.365158-4 1.242246+5 4.841724-4 9.124540+4 5.370318-4 6.653016+4 6.000000-4 4.708746+4 6.683439-4 3.340153+4 7.498942-4 2.298318+4 8.413951-4 1.569973+4 9.440609-4 1.064846+4 1.071519-3 6.892766+3 1.216186-3 4.426183+3 1.380384-3 2.820314+3 1.566751-3 1.783833+3 1.778279-3 1.120190+3 2.018366-3 6.983097+2 2.290868-3 4.322262+2 2.600160-3 2.655572+2 2.951209-3 1.619307+2 3.349654-3 9.796545+1 3.801894-3 5.882133+1 4.265795-3 3.674709+1 4.841724-3 2.174726+1 5.559043-3 1.217865+1 6.382635-3 6.771345+0 7.413102-3 3.559283+0 8.810489-3 1.681036+0 1.135011-2 5.534197-1 1.348963-2 2.575442-1 1.548817-2 1.388116-1 1.840772-2 6.357771-2 2.290868-2 2.344246-2 2.985383-2 6.944430-3 5.623413-2 3.741329-4 7.079458-2 1.301617-4 8.709636-2 5.069871-5 1.011580-1 2.583178-5 1.161449-1 1.395960-5 1.318257-1 7.997668-6 1.479108-1 4.853109-6 1.659587-1 2.965457-6 1.840772-1 1.917428-6 2.018366-1 1.309959-6 2.213095-1 9.013110-7 2.426610-1 6.246474-7 2.660725-1 4.362356-7 2.884032-1 3.207488-7 3.126079-1 2.373669-7 3.388442-1 1.768562-7 3.672823-1 1.327188-7 3.981072-1 1.003498-7 4.315191-1 7.652151-8 4.677351-1 5.880672-8 5.069907-1 4.553785-8 5.495409-1 3.552622-8 5.956621-1 2.793443-8 6.382635-1 2.288078-8 6.839117-1 1.885405-8 7.328245-1 1.562977-8 7.943282-1 1.261998-8 8.511380-1 1.057723-8 9.015711-1 9.186487-9 9.549926-1 8.030163-9 1.011579+0 7.070571-9 1.083927+0 6.116597-9 1.148154+0 5.451348-9 1.230269+0 4.782173-9 1.364583+0 3.959955-9 1.659587+0 2.812210-9 1.840772+0 2.361934-9 2.018366+0 2.037263-9 2.398833+0 1.561348-9 2.786121+0 1.248389-9 3.126079+0 1.057414-9 3.630781+0 8.59472-10 4.265795+0 6.92973-10 5.069907+0 5.54582-10 6.095369+0 4.40839-10 7.498942+0 3.43213-10 9.225714+0 2.69266-10 1.161449+1 2.07008-10 1.513561+1 1.54195-10 2.018366+1 1.12777-10 2.917427+1 7.62081-11 4.315191+1 5.06411-11 8.128305+1 2.64193-11 1.531087+2 1.39010-11 3.054921+2 6.92933-12 2.426610+3 8.68419-13 1.000000+5 2.10570-14 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.372000-5 1.372000-5 1.000000+5 1.372000-5 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.372000-5 0.0 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.810000-6 1.986718+6 7.852356-6 1.926151+6 7.960000-6 1.769008+6 8.222426-6 1.431398+6 8.500000-6 1.142876+6 8.770000-6 9.165900+5 9.015711-6 7.480586+5 9.225714-6 6.275752+5 9.440609-6 5.230400+5 9.650000-6 4.366000+5 9.850000-6 3.661920+5 1.005000-5 3.059880+5 1.023293-5 2.586517+5 1.042000-5 2.168620+5 1.060000-5 1.821592+5 1.077000-5 1.537336+5 1.092700-5 1.307950+5 1.105000-5 1.148190+5 1.120000-5 9.747140+4 1.131000-5 8.611000+4 1.142000-5 7.580080+4 1.154000-5 6.566060+4 1.165000-5 5.729940+4 1.177100-5 4.905099+4 1.188502-5 4.211465+4 1.199500-5 3.613250+4 1.207000-5 3.242380+4 1.216186-5 2.826543+4 1.226000-5 2.425960+4 1.235000-5 2.095700+4 1.242000-5 1.861928+4 1.250000-5 1.618036+4 1.258000-5 1.397656+4 1.265000-5 1.223052+4 1.272000-5 1.064568+4 1.277000-5 9.607820+3 1.282000-5 8.645200+3 1.288250-5 7.543692+3 1.295000-5 6.475280+3 1.302000-5 5.494040+3 1.310000-5 4.522220+3 1.318257-5 3.677080+3 1.332000-5 2.600200+3 1.337000-5 2.303880+3 1.342000-5 2.055480+3 1.346000-5 1.890028+3 1.348963-5 1.785979+3 1.352300-5 1.687132+3 1.355000-5 1.621064+3 1.358000-5 1.561892+3 1.361000-5 1.517380+3 1.364000-5 1.487184+3 1.366500-5 1.472714+3 1.369000-5 1.467764+3 1.371000-5 1.470532+3 1.374000-5 1.485680+3 1.377000-5 1.513744+3 1.380000-5 1.554416+3 1.382000-5 1.588386+3 1.385000-5 1.649410+3 1.388500-5 1.735530+3 1.392000-5 1.837292+3 1.397000-5 2.008940+3 1.402000-5 2.210360+3 1.423000-5 3.355100+3 1.432000-5 3.979620+3 1.440400-5 4.627377+3 1.447000-5 5.177300+3 1.455000-5 5.888980+3 1.462177-5 6.566842+3 1.470000-5 7.345220+3 1.479108-5 8.299701+3 1.487000-5 9.165340+3 1.496236-5 1.022026+4 1.507000-5 1.150160+4 1.518000-5 1.286268+4 1.530000-5 1.440018+4 1.540100-5 1.573180+4 1.550000-5 1.706628+4 1.560000-5 1.844008+4 1.570000-5 1.983658+4 1.585000-5 2.196720+4 1.600000-5 2.413240+4 1.615000-5 2.632340+4 1.630000-5 2.853280+4 1.645000-5 3.075360+4 1.660000-5 3.297940+4 1.680000-5 3.594560+4 1.700000-5 3.889960+4 1.723400-5 4.232695+4 1.750000-5 4.616920+4 1.778279-5 5.017432+4 1.800000-5 5.318540+4 1.830000-5 5.724040+4 1.862087-5 6.143341+4 1.900000-5 6.618400+4 1.935000-5 7.036660+4 1.980000-5 7.545300+4 2.020000-5 7.969920+4 2.070000-5 8.464780+4 2.130000-5 9.007460+4 2.190000-5 9.496680+4 2.250000-5 9.935520+4 2.317395-5 1.037258+5 2.400000-5 1.083524+5 2.483133-5 1.122720+5 2.580000-5 1.160196+5 2.691535-5 1.193962+5 2.818383-5 1.222152+5 2.951209-5 1.242097+5 3.090295-5 1.254500+5 3.273407-5 1.260557+5 3.467369-5 1.257482+5 3.672823-5 1.246446+5 3.935501-5 1.224065+5 4.216965-5 1.193467+5 4.518559-5 1.156235+5 4.900000-5 1.105712+5 5.308844-5 1.050243+5 5.754399-5 9.899987+4 6.237348-5 9.268532+4 6.800000-5 8.571780+4 7.413102-5 7.869479+4 8.128305-5 7.125816+4 8.912509-5 6.405470+4 9.885531-5 5.638779+4 1.122018-4 4.782784+4 1.300000-4 3.916140+4 1.548817-4 3.063835+4 1.949845-4 2.199286+4 2.884032-4 1.243543+4 3.235937-4 1.045258+4 3.715352-4 8.424855+3 4.216965-4 6.868670+3 5.069907-4 5.057252+3 6.531306-4 3.291949+3 7.413102-4 2.641675+3 8.511380-4 2.063251+3 1.023293-3 1.471506+3 1.230269-3 1.041505+3 1.462177-3 7.475775+2 1.717908-3 5.445239+2 2.041738-3 3.847574+2 2.426610-3 2.697278+2 2.884032-3 1.875945+2 3.427678-3 1.294381+2 4.120975-3 8.640920+1 4.786301-3 6.174599+1 5.559043-3 4.378667+1 6.531306-3 3.000303+1 7.585776-3 2.097058+1 8.810489-3 1.455581+1 1.035142-2 9.748777+0 1.216186-2 6.478932+0 1.428894-2 4.273131+0 1.678804-2 2.797193+0 1.972423-2 1.817661+0 2.317395-2 1.172627+0 2.754229-2 7.276119-1 3.273407-2 4.480742-1 3.935501-2 2.650710-1 4.786301-2 1.505364-1 5.821032-2 8.479368-2 7.328245-2 4.280388-2 9.660509-2 1.868700-2 1.717908-1 3.271848-3 2.238721-1 1.479452-3 2.630268-1 9.188785-4 3.019952-1 6.150005-4 3.427678-1 4.284017-4 3.845918-1 3.104925-4 4.265795-1 2.338919-4 4.731513-1 1.773869-4 5.248075-1 1.355431-4 5.754399-1 1.074346-4 6.309573-1 8.573084-5 6.918310-1 6.889215-5 7.585776-1 5.575318-5 8.317638-1 4.543645-5 9.120108-1 3.730037-5 9.885531-1 3.159677-5 1.135011+0 2.401312-5 1.273503+0 1.928291-5 1.428894+0 1.559090-5 1.603245+0 1.270408-5 1.778279+0 1.064663-5 1.949845+0 9.162855-6 2.290868+0 7.134780-6 2.691535+0 5.595910-6 3.054921+0 4.653416-6 3.548134+0 3.777728-6 4.168694+0 3.042526-6 4.954502+0 2.432324-6 5.956621+0 1.931667-6 7.328245+0 1.502570-6 8.912509+0 1.193734-6 1.135011+1 9.048620-7 1.479108+1 6.736277-7 1.972423+1 4.924210-7 2.851018+1 3.325957-7 4.168694+1 2.235604-7 7.673615+1 1.193551-7 1.380384+2 6.574199-8 2.754229+2 3.275683-8 2.187762+3 4.103044-9 1.000000+5 8.96910-11 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.810000-6 7.810000-6 1.000000+5 7.810000-6 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.810000-6 0.0 1.000000+5 1.000000+5 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.311660-8 1.028750+0 3.311660-7 1.032000+0 1.067110-6 1.033200+0 1.494840-6 1.034000+0 1.835050-6 1.035300+0 2.490820-6 1.036640+0 3.311660-6 1.038200+0 4.469190-6 1.039700+0 5.806380-6 1.041500+0 7.725320-6 1.043800+0 1.072300-5 1.046400+0 1.491900-5 1.048300+0 1.857460-5 1.051200+0 2.519610-5 1.054080+0 3.311660-5 1.057700+0 4.514000-5 1.061100+0 5.871570-5 1.065100+0 7.773300-5 1.070400+0 1.084450-4 1.076200+0 1.498710-4 1.080600+0 1.871640-4 1.087100+0 2.521720-4 1.093710+0 3.311660-4 1.102600+0 4.591630-4 1.110700+0 5.988480-4 1.120600+0 8.010950-4 1.133300+0 1.113900-3 1.147500+0 1.537990-3 1.158200+0 1.911340-3 1.174100+0 2.554490-3 1.190110+0 3.311660-3 1.205100+0 4.121770-3 1.227500+0 5.515960-3 1.250000+0 7.130000-3 1.265600+0 8.367290-3 1.294900+0 1.093630-2 1.331800+0 1.459230-2 1.362600+0 1.796860-2 1.411700+0 2.390150-2 1.455800+0 2.976090-2 1.500000+0 3.613000-2 1.562500+0 4.599150-2 1.617200+0 5.541300-2 1.712900+0 7.351130-2 1.784700+0 8.828430-2 1.892300+0 1.119500-1 2.000000+0 1.369000-1 2.044000+0 1.473000-1 2.163500+0 1.759670-1 2.372600+0 2.269750-1 2.647100+0 2.940350-1 3.000000+0 3.788000-1 3.437500+0 4.805080-1 4.000000+0 6.043000-1 4.750000+0 7.558060-1 5.000000+0 8.034000-1 6.000000+0 9.807000-1 7.000000+0 1.138000+0 8.000000+0 1.280000+0 9.000000+0 1.408000+0 1.000000+1 1.524000+0 1.100000+1 1.630000+0 1.200000+1 1.726000+0 1.300000+1 1.815000+0 1.400000+1 1.899000+0 1.500000+1 1.976000+0 1.600000+1 2.049000+0 1.800000+1 2.183000+0 2.000000+1 2.302000+0 2.200000+1 2.410000+0 2.400000+1 2.508000+0 2.600000+1 2.598000+0 2.800000+1 2.680000+0 3.000000+1 2.756000+0 4.000000+1 3.065000+0 5.000000+1 3.296000+0 6.000000+1 3.478000+0 8.000000+1 3.748000+0 1.000000+2 3.941000+0 1.500000+2 4.251000+0 2.000000+2 4.437000+0 3.000000+2 4.655000+0 4.000000+2 4.781000+0 5.000000+2 4.864000+0 6.000000+2 4.924000+0 8.000000+2 5.003000+0 1.000000+3 5.054000+0 1.500000+3 5.129000+0 2.000000+3 5.169000+0 3.000000+3 5.213000+0 4.000000+3 5.237000+0 5.000000+3 5.252000+0 6.000000+3 5.262000+0 8.000000+3 5.276000+0 1.000000+4 5.285000+0 1.500000+4 5.296000+0 2.000000+4 5.303000+0 3.000000+4 5.309000+0 4.000000+4 5.313000+0 5.000000+4 5.315000+0 6.000000+4 5.317000+0 8.000000+4 5.319000+0 1.000000+5 5.320000+0 1 27000 7 8 5.893320+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.710300-7 2.114000+0 1.221810-6 2.119500+0 1.521140-6 2.127900+0 2.062950-6 2.136250+0 2.710300-6 2.147000+0 3.716010-6 2.156900+0 4.826650-6 2.169000+0 6.441470-6 2.184500+0 8.953860-6 2.201800+0 1.238790-5 2.214800+0 1.543440-5 2.234200+0 2.076200-5 2.253680+0 2.710300-5 2.281500+0 3.796260-5 2.307000+0 4.986380-5 2.338200+0 6.704620-5 2.377400+0 9.285120-5 2.410200+0 1.180910-4 2.446800+0 1.502190-4 2.485900+0 1.891340-4 2.532900+0 2.420500-4 2.556430+0 2.710300-4 2.611900+0 3.455910-4 2.660400+0 4.177970-4 2.745300+0 5.591870-4 2.809000+0 6.772030-4 2.904500+0 8.723920-4 3.000000+0 1.089000-3 3.125000+0 1.404330-3 3.234400+0 1.708910-3 3.425800+0 2.301710-3 3.569300+0 2.791480-3 3.784700+0 3.589230-3 4.000000+0 4.447000-3 4.250000+0 5.495750-3 4.625000+0 7.144050-3 5.000000+0 8.858000-3 5.500000+0 1.121190-2 6.000000+0 1.360000-2 6.750000+0 1.715890-2 7.000000+0 1.833000-2 8.000000+0 2.291000-2 9.000000+0 2.730000-2 1.000000+1 3.148000-2 1.100000+1 3.543000-2 1.200000+1 3.917000-2 1.300000+1 4.270000-2 1.400000+1 4.606000-2 1.500000+1 4.924000-2 1.600000+1 5.227000-2 1.800000+1 5.789000-2 2.000000+1 6.302000-2 2.200000+1 6.773000-2 2.400000+1 7.206000-2 2.600000+1 7.608000-2 2.800000+1 7.981000-2 3.000000+1 8.328000-2 4.000000+1 9.778000-2 5.000000+1 1.089000-1 6.000000+1 1.178000-1 8.000000+1 1.313000-1 1.000000+2 1.412000-1 1.500000+2 1.578000-1 2.000000+2 1.684000-1 3.000000+2 1.814000-1 4.000000+2 1.893000-1 5.000000+2 1.947000-1 6.000000+2 1.987000-1 8.000000+2 2.042000-1 1.000000+3 2.080000-1 1.500000+3 2.135000-1 2.000000+3 2.167000-1 3.000000+3 2.201000-1 4.000000+3 2.222000-1 5.000000+3 2.234000-1 6.000000+3 2.243000-1 8.000000+3 2.255000-1 1.000000+4 2.262000-1 1.500000+4 2.273000-1 2.000000+4 2.278000-1 3.000000+4 2.284000-1 4.000000+4 2.288000-1 5.000000+4 2.290000-1 6.000000+4 2.291000-1 8.000000+4 2.293000-1 1.000000+5 2.294000-1 1 27000 7 8 5.893320+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 27000 7 9 5.893320+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.700000+1 1.000000+5 2.700000+1 5.000000+5 2.698300+1 7.500000+5 2.697070+1 1.000000+6 2.696200+1 1.500000+6 2.693500+1 1.875000+6 2.689890+1 2.000000+6 2.688500+1 2.500000+6 2.682200+1 3.000000+6 2.674500+1 3.500000+6 2.665450+1 4.000000+6 2.655600+1 4.500000+6 2.644700+1 5.000000+6 2.632900+1 5.500000+6 2.619590+1 6.156200+6 2.600910+1 6.500000+6 2.590730+1 6.718700+6 2.583750+1 7.000000+6 2.575100+1 7.500000+6 2.558910+1 8.250000+6 2.533660+1 8.500000+6 2.525280+1 9.000000+6 2.508200+1 9.750000+6 2.481900+1 1.000000+7 2.473200+1 1.062500+7 2.450590+1 1.156300+7 2.415960+1 1.187500+7 2.404110+1 1.250000+7 2.380800+1 1.437500+7 2.310300+1 1.500000+7 2.287300+1 1.750000+7 2.197200+1 2.000000+7 2.107900+1 2.250000+7 2.020540+1 2.500000+7 1.935200+1 2.750000+7 1.851700+1 3.000000+7 1.769800+1 3.250000+7 1.689490+1 3.437500+7 1.630900+1 3.578100+7 1.588220+1 3.859400+7 1.505510+1 4.000000+7 1.465900+1 4.437500+7 1.349610+1 4.500000+7 1.333980+1 5.000000+7 1.217200+1 5.750000+7 1.069270+1 6.000000+7 1.027000+1 6.750000+7 9.187580+0 7.000000+7 8.884300+0 7.750000+7 8.121480+0 8.000000+7 7.908600+0 8.750000+7 7.371440+0 9.000000+7 7.218900+0 1.000000+8 6.704300+0 1.125000+8 6.187700+0 1.187500+8 5.957090+0 1.250000+8 5.735800+0 1.359400+8 5.361560+0 1.453100+8 5.051330+0 1.500000+8 4.899000+0 1.589800+8 4.611730+0 1.665000+8 4.375190+0 1.748800+8 4.116250+0 1.750000+8 4.112610+0 1.838500+8 3.844480+0 1.919300+8 3.605330+0 2.000000+8 3.372600+0 2.281300+8 2.672390+0 2.359400+8 2.526600+0 2.375000+8 2.500270+0 2.453100+8 2.382500+0 2.500000+8 2.322600+0 2.562500+8 2.254690+0 2.781300+8 2.066230+0 2.890600+8 1.973830+0 2.972700+8 1.897020+0 3.000000+8 1.869800+0 3.062500+8 1.803880+0 3.335900+8 1.529590+0 3.418000+8 1.466790+0 3.500000+8 1.417000+0 3.589800+8 1.377780+0 3.665000+8 1.353770+0 3.712900+8 1.341470+0 4.000000+8 1.283100+0 4.125000+8 1.253040+0 4.234400+8 1.223430+0 4.425800+8 1.167620+0 5.000000+8 1.015400+0 5.750000+8 8.782710-1 6.000000+8 8.353000-1 6.250000+8 7.902010-1 7.000000+8 6.731000-1 7.625000+8 6.018480-1 7.875000+8 5.738750-1 8.000000+8 5.593000-1 8.250000+8 5.285930-1 8.468800+8 5.009890-1 8.660200+8 4.768860-1 8.995100+8 4.359430-1 9.246300+8 4.069450-1 1.000000+9 3.317000-1 1.218800+9 1.972660-1 1.315400+9 1.606410-1 1.381300+9 1.403280-1 1.460400+9 1.197680-1 1.500000+9 1.107700-1 1.562500+9 9.805210-2 1.671900+9 7.959190-2 1.753900+9 6.836800-2 1.877000+9 5.484920-2 2.000000+9 4.444100-2 2.187500+9 3.284430-2 2.445700+9 2.237530-2 2.682600+9 1.618960-2 2.972200+9 1.125250-2 3.344000+9 7.364480-3 3.935400+9 4.069590-3 5.000000+9 1.685100-3 8.000000+9 2.969300-4 9.500000+9 1.579600-4 1.00000+10 1.309600-4 1.20500+10 6.663520-5 1.41820+10 3.718450-5 1.71170+10 1.910590-5 2.01490+10 1.079420-5 2.26440+10 7.197330-6 2.74790+10 3.698620-6 3.20120+10 2.198260-6 3.62610+10 1.442210-6 4.42280+10 7.408800-7 5.12000+10 4.553060-7 6.34000+10 2.249800-7 7.94120+10 1.077730-7 1.00000+11 5.107100-8 1.17140+11 3.069920-8 1.55940+11 1.231210-8 2.04410+11 5.227590-9 2.99030+11 1.587100-9 4.21500+11 5.47432-10 7.29680+11 1.01874-10 1.61310+12 9.31121-12 4.52640+12 4.37240-13 2.12750+13 4.77348-15 1.00000+14 5.32360-17 5.62340+14 3.37961-19 7.49890+15 1.57593-22 1.00000+17 6.97750-26 1 27000 7 0 5.893320+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.70000-12 1.000000+2 4.70000-10 1.000000+3 4.700000-8 1.000000+4 4.700000-6 1.000000+5 4.700000-4 5.000000+5 1.175000-2 7.500000+5 2.643750-2 1.000000+6 4.700000-2 1.500000+6 1.056000-1 1.875000+6 1.636590-1 2.000000+6 1.856000-1 2.500000+6 2.858000-1 3.000000+6 4.044000-1 3.500000+6 5.392230-1 4.000000+6 6.881000-1 4.500000+6 8.488380-1 5.000000+6 1.019000+0 5.500000+6 1.196090+0 6.156200+6 1.435720+0 6.500000+6 1.563290+0 6.718700+6 1.644700+0 7.000000+6 1.749700+0 7.500000+6 1.935790+0 8.250000+6 2.212460+0 8.500000+6 2.303440+0 9.000000+6 2.483400+0 9.750000+6 2.746250+0 1.000000+7 2.832000+0 1.062500+7 3.041480+0 1.156300+7 3.344790+0 1.187500+7 3.442950+0 1.250000+7 3.635800+0 1.437500+7 4.190000+0 1.500000+7 4.369000+0 1.750000+7 5.069700+0 2.000000+7 5.764000+0 2.250000+7 6.456570+0 2.500000+7 7.142800+0 2.750000+7 7.815210+0 3.000000+7 8.469000+0 3.250000+7 9.097990+0 3.437500+7 9.554430+0 3.578100+7 9.887910+0 3.859400+7 1.053230+1 4.000000+7 1.084400+1 4.437500+7 1.176770+1 4.500000+7 1.189530+1 5.000000+7 1.286700+1 5.750000+7 1.418860+1 6.000000+7 1.459600+1 6.750000+7 1.571060+1 7.000000+7 1.605000+1 7.750000+7 1.697080+1 8.000000+7 1.724900+1 8.750000+7 1.800140+1 9.000000+7 1.822900+1 1.000000+8 1.903900+1 1.125000+8 1.988210+1 1.187500+8 2.025110+1 1.250000+8 2.059600+1 1.359400+8 2.114560+1 1.453100+8 2.157480+1 1.500000+8 2.177700+1 1.589800+8 2.214000+1 1.665000+8 2.242230+1 1.748800+8 2.271480+1 1.750000+8 2.271870+1 1.838500+8 2.300310+1 1.919300+8 2.324210+1 2.000000+8 2.346200+1 2.281300+8 2.409880+1 2.359400+8 2.424290+1 2.375000+8 2.427110+1 2.453100+8 2.440430+1 2.500000+8 2.448000+1 2.562500+8 2.457180+1 2.781300+8 2.485740+1 2.890600+8 2.498010+1 2.972700+8 2.506440+1 3.000000+8 2.509200+1 3.062500+8 2.514890+1 3.335900+8 2.537620+1 3.418000+8 2.543730+1 3.500000+8 2.549700+1 3.589800+8 2.555570+1 3.665000+8 2.560390+1 3.712900+8 2.563410+1 4.000000+8 2.579900+1 4.125000+8 2.586230+1 4.234400+8 2.591620+1 4.425800+8 2.600760+1 5.000000+8 2.623800+1 5.750000+8 2.646680+1 6.000000+8 2.653100+1 6.250000+8 2.658410+1 7.000000+8 2.671700+1 7.625000+8 2.679330+1 7.875000+8 2.681800+1 8.000000+8 2.683000+1 8.250000+8 2.684800+1 8.468800+8 2.686340+1 8.660200+8 2.687650+1 8.995100+8 2.689610+1 9.246300+8 2.690700+1 1.000000+9 2.693800+1 1.218800+9 2.697740+1 1.315400+9 2.698710+1 1.381300+9 2.698960+1 1.460400+9 2.699260+1 1.500000+9 2.699400+1 1.562500+9 2.699470+1 1.671900+9 2.699590+1 1.753900+9 2.699670+1 1.877000+9 2.699790+1 2.000000+9 2.699900+1 2.187500+9 2.699910+1 2.445700+9 2.699920+1 2.682600+9 2.699930+1 2.972200+9 2.699940+1 3.344000+9 2.699960+1 3.935400+9 2.699970+1 5.000000+9 2.700000+1 8.000000+9 2.700000+1 9.500000+9 2.700000+1 1.00000+10 2.700000+1 1.20500+10 2.700000+1 1.41820+10 2.700000+1 1.71170+10 2.700000+1 2.01490+10 2.700000+1 2.26440+10 2.700000+1 2.74790+10 2.700000+1 3.20120+10 2.700000+1 3.62610+10 2.700000+1 4.42280+10 2.700000+1 5.12000+10 2.700000+1 6.34000+10 2.700000+1 7.94120+10 2.700000+1 1.00000+11 2.700000+1 1.17140+11 2.700000+1 1.55940+11 2.700000+1 2.04410+11 2.700000+1 2.99030+11 2.700000+1 4.21500+11 2.700000+1 7.29680+11 2.700000+1 1.61310+12 2.700000+1 4.52640+12 2.700000+1 2.12750+13 2.700000+1 1.00000+14 2.700000+1 5.62340+14 2.700000+1 7.49890+15 2.700000+1 1.00000+17 2.700000+1 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.008204-6 0.0 4.009609-6 0.0 4.026880-6 3.108315+0 4.029347-6 3.547829+0 4.039216-6 6.480400+0 4.049085-6 1.092685+1 4.051898-6 1.265674+1 4.060566-6 2.135637+1 4.073091-6 3.571623+1 4.085246-6 5.308677+1 4.108300-6 9.075057+1 4.122334-6 1.089589+2 4.133298-6 1.176252+2 4.143596-6 1.192263+2 4.153678-6 1.138779+2 4.163395-6 1.027187+2 4.175161-6 8.329030+1 4.191523-6 5.296665+1 4.201496-6 3.605502+1 4.206991-6 2.818124+1 4.211469-6 2.260217+1 4.221443-6 1.346928+1 4.231416-6 7.409560+0 4.246376-6 1.883540+0 4.251362-6 0.0 5.297928-6 0.0 5.310968-6 7.96004-15 5.324009-6 1.57507-14 5.337049-6 2.87700-14 5.350089-6 4.85101-14 5.363129-6 7.55056-14 5.376169-6 1.08488-13 5.389209-6 1.43891-13 5.402250-6 1.76174-13 5.415290-6 1.99116-13 5.428330-6 2.07741-13 5.441370-6 2.00075-13 5.454410-6 1.77875-13 5.467451-6 1.45980-13 5.493531-6 7.73415-14 5.506571-6 4.99290-14 5.519611-6 2.97541-14 5.532651-6 1.63680-14 5.545692-6 8.31184-15 5.558732-6 0.0 6.084644-6 0.0 6.095624-6 4.630702-2 6.114597-6 3.033020-1 6.125631-6 4.814182-1 6.130957-6 6.052102-1 6.141124-6 8.725714-1 6.153960-6 1.343451+0 6.161432-6 1.688464+0 6.174146-6 2.337243+0 6.208229-6 4.294676+0 6.220808-6 4.856061+0 6.235113-6 5.234968+0 6.246598-6 5.282374+0 6.261831-6 4.964155+0 6.281532-6 4.059755+0 6.314410-6 2.163661+0 6.324269-6 1.656207+0 6.335682-6 1.163003+0 6.350685-6 6.846850-1 6.365689-6 3.723829-1 6.384176-6 1.137102-1 6.395696-6 7.183563-5 6.405423-6 5.312035-5 6.420591-6 3.163839-5 6.435760-6 1.739557-5 6.450929-6 8.780108-6 6.465647-6 1.585817-7 6.466098-6 0.0 6.773753-6 0.0 6.778203-6 3.765068-3 6.804867-6 7.819684-2 6.811571-6 9.918581-2 6.823771-6 1.553969-1 6.828254-6 1.792756-1 6.844938-6 2.993191-1 6.861622-6 4.616115-1 6.907135-6 1.003902+0 6.928356-6 1.179863+0 6.945040-6 1.222914+0 6.961724-6 1.170590+0 6.978407-6 1.034774+0 7.028458-6 4.432538-1 7.045142-6 2.849156-1 7.057189-6 1.988986-1 7.061826-6 1.691072-1 7.073862-6 1.120849-1 7.078509-6 9.267907-2 7.088720-6 6.426841-2 7.107207-6 2.971466-2 7.111877-6 2.488875-2 7.123104-6 3.679764-2 7.141064-6 6.801172-2 7.158512-6 1.141290-1 7.175960-6 1.768502-1 7.226025-6 3.989828-1 7.245752-6 4.594444-1 7.263200-6 4.817891-1 7.280648-6 4.717036-1 7.298096-6 4.307655-1 7.332992-6 3.181185-1 7.350440-6 2.745970-1 7.367888-6 2.535326-1 7.385336-6 2.515869-1 7.420992-6 2.765103-1 7.449354-6 2.906699-1 7.475789-6 2.928428-1 7.554821-6 2.675562-1 7.710529-6 2.384780-1 7.746063-6 2.322544-1 7.898658-6 2.111864-1 8.024811-6 1.927375-1 8.420999-6 1.469884-1 8.840326-6 1.095537-1 9.252600-6 8.136250-2 9.651173-6 6.036564-2 9.795008-6 5.399330-2 9.843227-6 7.390138-1 9.867336-6 1.305903+0 9.892952-6 2.239304+0 9.917379-6 3.452343+0 9.995173-6 8.236163+0 1.001713-5 9.210720+0 1.004110-5 9.769083+0 1.006926-5 9.740140+0 1.016453-5 7.882382+0 1.021520-5 7.113224+0 1.024281-5 6.412993+0 1.026751-5 5.474754+0 1.027719-5 5.001879+0 1.033243-5 2.837041+0 1.036244-5 1.767616+0 1.038698-5 1.113706+0 1.041152-5 6.574564-1 1.043100-5 4.218756-1 1.045565-5 1.512850-1 1.046059-5 1.017524-1 1.050493-5 3.013093-2 1.085482-5 2.197043-2 1.117692-5 1.605792-2 1.142436-5 1.238599-2 1.170146-5 9.037650-3 1.183871-5 7.643005-3 1.189698-5 1.350982-1 1.192612-5 2.406363-1 1.195526-5 4.007995-1 1.198735-5 6.476648-1 1.205864-5 1.336014+0 1.207448-5 1.494967+0 1.210783-5 1.729709+0 1.213748-5 1.840987+0 1.216785-5 1.854014+0 1.222523-5 1.710509+0 1.234542-5 1.328124+0 1.238914-5 1.097784+0 1.242149-5 8.606688-1 1.249195-5 4.230765-1 1.252130-5 2.758778-1 1.254883-5 1.931260-1 1.257883-5 1.408488-1 1.258989-5 1.348909-1 1.261376-5 1.303185-1 1.263777-5 1.408431-1 1.264458-5 1.527166-1 1.267540-5 2.348196-1 1.273948-5 4.568837-1 1.276972-5 5.697267-1 1.280107-5 6.571855-1 1.283242-5 7.095136-1 1.286378-5 7.358289-1 1.298107-5 7.117669-1 1.308453-5 7.552990-1 1.315134-5 7.051726-1 1.323235-5 6.294303-1 1.328553-5 6.235419-1 1.343246-5 6.742387-1 1.367143-5 6.301768-1 1.413051-5 6.770578-1 1.564992-5 7.633619-1 1.725000-5 9.021824-1 1.936771-5 1.149447+0 2.264644-5 1.634358+0 2.709272-5 2.441936+0 4.093994-5 5.249335+0 4.903035-5 6.492256+0 5.692721-5 7.285770+0 5.714427-5 7.636115+0 5.742557-5 1.229396+1 5.756623-5 1.616782+1 5.772446-5 2.282897+1 5.786883-5 3.086950+1 5.826949-5 5.641849+1 5.842306-5 6.222093+1 5.856501-5 6.349474+1 5.870792-5 6.032568+1 5.896033-5 4.754943+1 5.921695-5 3.331799+1 5.927383-5 3.071127+1 5.941744-5 2.642855+1 5.954829-5 2.514976+1 5.968908-5 2.610840+1 6.002289-5 3.242695+1 6.015566-5 3.522088+1 6.030442-5 3.605111+1 6.044922-5 3.464030+1 6.060816-5 3.086684+1 6.100242-5 1.826008+1 6.114722-5 1.447987+1 6.129202-5 1.170002+1 6.143683-5 9.858526+0 6.172643-5 7.613649+0 6.818531-5 7.922242+0 6.906522-5 8.335524+0 6.973676-5 8.934734+0 7.107689-5 8.968511+0 7.198088-5 9.274758+0 1.006448-4 8.916812+0 1.040257-4 8.978282+0 1.061201-4 9.877632+0 1.077168-4 9.376113+0 1.584893-4 8.705557+0 2.802205-4 6.201490+0 3.540483-4 5.064608+0 4.365158-4 4.131100+0 5.329596-4 3.341782+0 6.358010-4 2.732820+0 7.596512-4 2.204958+0 7.598688-4 2.212704+0 7.636094-4 3.646530+0 7.654798-4 4.838887+0 7.675172-4 6.867520+0 7.694701-4 9.533663+0 7.744905-4 1.769898+1 7.764625-4 2.038373+1 7.773739-4 2.123088+1 7.792033-4 2.200904+1 7.811291-4 2.165024+1 7.877666-4 1.747567+1 7.918251-4 1.686734+1 7.949805-4 1.677018+1 8.048207-4 1.355671+1 8.072000-4 1.327993+1 8.131793-4 1.381718+1 8.210024-4 1.511770+1 8.317638-4 1.550958+1 9.040559-4 1.401157+1 9.171805-4 1.463850+1 9.273309-4 1.510104+1 1.110510-3 1.193522+1 1.301293-3 9.570136+0 1.513034-3 7.654843+0 1.742845-3 6.171424+0 2.005403-3 4.948884+0 2.299727-3 3.970392+0 2.637045-3 3.173124+0 3.006576-3 2.549516+0 3.388442-3 2.083229+0 3.778378-3 1.728974+0 4.263877-3 1.402882+0 4.784087-3 1.147606+0 5.349301-3 9.421683-1 5.950200-3 7.795789-1 6.701633-3 6.301748-1 7.456648-3 5.204210-1 7.494942-3 5.211152-1 7.529709-3 5.517140-1 7.549410-3 5.962736-1 7.567856-3 6.720991-1 7.582876-3 7.684458-1 7.600986-3 9.344970-1 7.621088-3 1.190920+0 7.640365-3 1.507754+0 7.713635-3 2.910069+0 7.743600-3 3.322790+0 7.783559-3 3.620321+0 7.845758-3 3.724037+0 9.266124-3 2.891613+0 1.054283-2 2.337659+0 1.199012-2 1.888574+0 1.352530-2 1.534877+0 1.557144-2 1.201932+0 1.740733-2 9.849765-1 1.937888-2 8.119242-1 2.139827-2 6.766347-1 2.385909-2 5.531788-1 2.629383-2 4.607383-1 2.931078-2 3.748097-1 3.217754-2 3.133419-1 3.576701-2 2.552347-1 3.910592-2 2.142499-1 4.329151-2 1.754546-1 4.737221-2 1.465648-1 5.295255-2 1.173529-1 5.875017-2 9.503764-2 6.570735-2 7.575570-2 7.300799-2 6.105226-2 8.156359-2 4.861604-2 8.955847-2 4.011458-2 1.000877-1 3.188541-2 1.109549-1 2.574892-2 1.215503-1 2.132484-2 1.333162-1 1.761741-2 1.463602-1 1.452467-2 1.598697-1 1.209623-2 1.741733-1 1.014770-2 1.927525-1 8.257257-3 2.096842-1 6.955785-3 2.306150-1 5.751333-3 2.540973-1 4.741657-3 2.804708-1 3.916616-3 3.047374-1 3.340207-3 3.344062-1 2.806309-3 3.685895-1 2.348136-3 4.105271-1 1.940105-3 4.645487-1 1.572425-3 5.137617-1 1.335307-3 5.689918-1 1.140989-3 6.433730-1 9.537864-4 7.415770-1 7.876732-4 8.585192-1 6.583197-4 9.660509-1 5.771377-4 1.173413+0 4.722518-4 1.410753+0 3.897378-4 1.696098+0 3.216410-4 2.039158+0 2.654425-4 2.451607+0 2.190631-4 2.947480+0 1.807874-4 3.543651+0 1.491994-4 4.260405+0 1.231306-4 5.122134+0 1.016167-4 6.158159+0 8.386176-5 7.403736+0 6.920905-5 8.901248+0 5.711653-5 9.760024+0 5.188732-5 1.000000+1 1.034957-4 1 27000 7 0 5.893320+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.688091+1 2.634008-6-2.569524+1 3.257094-6-2.388075+1 3.529634-6-2.187882+1 3.683738-6-1.965504+1 3.788364-6-1.698642+1 3.849384-6-1.448684+1 3.893574-6-1.183244+1 3.913999-6-1.021265+1 3.936408-6-8.002528+0 3.953564-6-5.878466+0 3.966700-6-3.894151+0 3.972063-6-2.967122+0 3.976756-6-2.088236+0 3.980863-6-1.259750+0 3.984456-6-4.829605-1 3.990744-6 1.013972+0 3.995460-6 2.277017+0 3.998997-6 3.324371+0 4.001650-6 4.180539+0 4.005629-6 5.618770+0 4.008614-6 6.900677+0 4.010842-6 8.108549+0 4.026880-6 1.517975+1 4.039216-6 2.217538+1 4.049085-6 2.874445+1 4.054323-6 3.320301+1 4.063385-6 3.830154+1 4.075272-6 4.246674+1 4.085246-6 4.322986+1 4.093854-6 4.089958+1 4.101190-6 3.626482+1 4.106967-6 3.054533+1 4.116681-6 1.723724+1 4.119824-6 1.226926+1 4.121239-6 9.714621+0 4.122334-6 7.426136+0 4.127009-6-1.260462+0 4.129054-6-5.222956+0 4.130697-6-8.662622+0 4.131560-6-1.069485+1 4.132741-6-1.360252+1 4.139059-6-2.706446+1 4.141598-6-2.102735+1 4.143596-6-1.605647+1 4.148994-6-4.468351+0 4.150312-6-1.579139+0 4.150971-6-5.798315-2 4.151300-6 7.460975-1 4.151942-6 2.492257+0 4.152546-6 3.927882+0 4.153678-6 6.392059+0 4.154668-6 8.420371+0 4.163395-6 2.523872+1 4.166975-6 3.088446+1 4.172823-6 3.901415+1 4.178996-6 4.509206+1 4.186238-6 4.936053+1 4.191523-6 5.052393+1 4.200250-6 4.959215+1 4.210350-6 4.394313+1 4.234844-6 2.644694+1 4.248869-6 1.836642+1 4.252384-6 1.556946+1 4.256465-6 1.307835+1 4.262559-6 1.024452+1 4.270632-6 7.277526+0 4.278642-6 4.880204+0 4.282624-6 3.835524+0 4.286590-6 2.873673+0 4.290540-6 1.983768+0 4.298410-6 3.832450-1 4.306219-6-1.016208+0 4.313967-6-2.253120+0 4.321654-6-3.356069+0 4.329281-6-4.346896+0 4.344357-6-6.057070+0 4.366532-6-8.112569+0 4.402462-6-1.064600+1 4.443785-6-1.277652+1 4.508462-6-1.511705+1 4.608000-6-1.742673+1 4.759696-6-1.951911+1 5.054210-6-2.161814+1 6.025060-6-2.485223+1 6.122873-6-2.630420+1 6.181516-6-2.710538+1 6.217858-6-2.581180+1 6.273595-6-2.189703+1 6.308215-6-2.087784+1 6.365689-6-2.178231+1 6.450929-6-2.309622+1 6.899784-6-2.480186+1 7.017815-6-2.363939+1 7.235889-6-2.449976+1 7.935962-6-2.471954+1 9.360182-6-2.611759+1 9.691671-6-2.714234+1 9.797736-6-2.561750+1 9.920800-6-2.277047+1 9.968135-6-2.317189+1 1.001127-5-2.514567+1 1.004110-5-2.720692+1 1.012184-5-2.342676+1 1.027719-5-1.921364+1 1.034475-5-1.917859+1 1.051331-5-2.209718+1 1.075728-5-2.348329+1 1.188970-5-2.573877+1 1.206656-5-2.607789+1 1.226655-5-2.460487+1 1.248314-5-2.419984+1 1.276972-5-2.527900+1 1.382975-5-2.519147+1 3.102652-5-2.692485+1 4.864830-5-2.718331+1 5.260401-5-2.461016+1 5.450366-5-2.201068+1 5.557142-5-1.925648+1 5.617881-5-1.659557+1 5.654335-5-1.414514+1 5.678551-5-1.180757+1 5.692721-5-9.917169+0 5.705270-5-7.767265+0 5.712710-5-6.093313+0 5.715216-5-5.257406+0 5.720796-5-3.803777+0 5.734757-5-7.154534-1 5.738657-5 1.974929-1 5.740607-5 6.855376-1 5.742557-5 1.256873+0 5.756623-5 4.893113+0 5.758381-5 5.423974+0 5.772446-5 8.494141+0 5.775523-5 8.974329+0 5.786883-5 1.006103+1 5.792623-5 9.934525+0 5.798765-5 9.238573+0 5.805662-5 7.843829+0 5.811422-5 6.158462+0 5.816051-5 4.398608+0 5.817439-5 3.779176+0 5.822889-5 9.307833-1 5.824919-5-2.462356-1 5.825934-5-8.897513-1 5.827828-5-2.281316+0 5.836070-5-7.723939+0 5.840088-5-1.076952+1 5.842306-5-1.285768+1 5.854660-5-2.271040+1 5.856501-5-2.455063+1 5.869300-5-1.762958+1 5.873977-5-1.425223+1 5.878899-5-1.149672+1 5.883269-5-9.398595+0 5.889763-5-6.556342+0 5.893051-5-5.368508+0 5.896033-5-4.479796+0 5.898643-5-3.821811+0 5.900927-5-3.331289+0 5.902925-5-2.965521+0 5.906421-5-2.467596+0 5.909044-5-2.216237+0 5.911011-5-2.100852+0 5.913961-5-2.060262+0 5.915436-5-2.112893+0 5.921695-5-2.798448+0 5.924086-5-3.167836+0 5.925880-5-3.562284+0 5.927383-5-4.048266+0 5.935867-5-5.890115+0 5.939685-5-6.904095+0 5.943218-5-8.196954+0 5.953054-5-1.094052+1 5.956621-5-1.210498+1 5.970584-5-1.512374+1 5.980926-5-1.609384+1 5.996835-5-1.613495+1 6.006095-5-1.517113+1 6.012977-5-1.357974+1 6.027073-5-9.193312+0 6.030442-5-7.840893+0 6.041207-5-4.359822+0 6.043225-5-3.529886+0 6.044922-5-2.951103+0 6.047892-5-2.059661+0 6.056801-5 4.150389-1 6.058197-5 8.369999-1 6.060816-5 1.460099+0 6.065399-5 2.335405+0 6.068836-5 2.868790+0 6.073992-5 3.512396+0 6.079148-5 3.998153+0 6.084421-5 4.329722+0 6.091343-5 4.490785+0 6.095792-5 4.417368+0 6.098017-5 4.313603+0 6.111102-5 3.135659+0 6.112938-5 2.917717+0 6.118342-5 2.116590+0 6.123772-5 1.419454+0 6.126487-5 1.042740+0 6.129202-5 5.857969-1 6.143683-5-1.609124+0 6.146516-5-2.062505+0 6.151475-5-2.725686+0 6.169497-5-5.008619+0 6.176736-5-6.205369+0 6.188412-5-7.497692+0 6.210743-5-9.238423+0 6.240097-5-1.085483+1 6.293718-5-1.284735+1 6.373617-5-1.470079+1 6.516155-5-1.658198+1 6.942276-5-1.939570+1 7.067276-5-1.906481+1 7.198088-5-1.900804+1 1.006448-4-1.749932+1 1.054333-4-1.772369+1 1.070536-4-1.680714+1 1.584893-4-1.373981+1 2.041738-4-1.197702+1 2.580327-4-1.080807+1 3.292493-4-1.011061+1 4.111618-4-9.966978+0 5.017285-4-1.036615+1 5.911454-4-1.140493+1 6.544162-4-1.282645+1 6.951865-4-1.444882+1 7.208387-4-1.616738+1 7.391363-4-1.823696+1 7.411881-4-1.856185+1 7.536125-4-1.758366+1 7.589008-4-1.623085+1 7.678636-4-1.147103+1 7.698681-4-1.105182+1 7.713291-4-1.147097+1 7.729195-4-1.262487+1 7.749037-4-1.491756+1 7.770412-4-1.888173+1 7.789892-4-2.311591+1 7.818034-4-1.899303+1 7.842023-4-1.691922+1 7.866529-4-1.596771+1 7.918251-4-1.560666+1 7.949805-4-1.465660+1 7.978037-4-1.377690+1 8.024134-4-1.345781+1 8.108000-4-1.506363+1 8.153678-4-1.538082+1 8.362795-4-1.284159+1 8.538214-4-1.143379+1 8.797818-4-1.013275+1 8.985824-4-9.709589+0 9.145985-4-9.830016+0 9.231064-4-9.297997+0 9.341560-4-8.311279+0 9.522477-4-7.338000+0 9.885531-4-6.031290+0 1.031239-3-4.918678+0 1.088616-3-3.820278+0 1.138692-3-3.098151+0 1.191041-3-2.492283+0 1.255365-3-1.916476+0 1.301293-3-1.578367+0 1.364828-3-1.212494+0 1.408478-3-9.992435-1 1.449329-3-8.376520-1 1.513034-3-6.370568-1 1.585288-3-4.540684-1 1.623762-3-3.709905-1 1.663590-3-2.958582-1 1.707803-3-2.293512-1 1.742845-3-1.855095-1 1.776680-3-1.468266-1 1.829836-3-9.259710-2 1.873959-3-6.048003-2 1.919444-3-3.569019-2 1.950177-3-2.200213-2 1.956786-3-1.875538-2 1.998184-3-8.646474-4 2.000386-3-5.475989-5 2.001701-3 4.313637-4 2.003118-3 8.812658-4 2.050572-3 1.480864-2 2.072703-3 2.139065-2 2.105899-3 2.957205-2 2.152240-3 3.554219-2 2.205147-3 3.765552-2 2.232615-3 3.752828-2 2.260863-3 3.608408-2 2.321138-3 2.995895-2 2.393006-3 1.877765-2 2.409212-3 1.578305-2 2.437722-3 9.952693-3 2.460547-3 6.397147-3 2.472603-3 4.269980-3 2.510898-3-3.480797-3 2.571843-3-1.653476-2 2.714876-3-5.438278-2 2.863354-3-9.990710-2 3.161034-3-2.034866-1 5.148448-3-9.538683-1 5.752673-3-1.211328+0 6.306766-3-1.511208+0 6.701633-3-1.806444+0 6.997629-3-2.125966+0 7.235104-3-2.519709+0 7.388691-3-2.931360+0 7.483035-3-3.348937+0 7.549410-3-3.858118+0 7.648102-3-4.919215+0 7.681637-3-5.020697+0 7.723939-3-4.772821+0 7.825521-3-3.558430+0 7.890348-3-3.038643+0 7.963994-3-2.653069+0 8.066050-3-2.272846+0 8.208311-3-1.893293+0 8.370585-3-1.571797+0 8.581917-3-1.258690+0 8.797995-3-1.013715+0 9.098447-3-7.503273-1 9.382385-3-5.580128-1 9.632930-3-4.223725-1 9.876629-3-3.131889-1 1.013121-2-2.171160-1 1.026687-2-1.724971-1 1.040135-2-1.318643-1 1.054283-2-9.292056-2 1.069611-2-5.410775-2 1.085195-2-1.802124-2 1.094114-2-1.224297-4 1.109209-2 3.025352-2 1.128851-2 6.461987-2 1.159023-2 1.126647-1 1.199012-2 1.674680-1 1.225289-2 1.962630-1 1.258068-2 2.270855-1 1.319265-2 2.693797-1 1.385416-2 3.011720-1 1.483906-2 3.308722-1 1.598028-2 3.479078-1 1.799095-2 3.467475-1 2.064220-2 3.246701-1 2.931078-2 2.224396-1 3.442858-2 1.735250-1 4.040232-2 1.291868-1 4.613061-2 9.687412-2 5.168466-2 7.216619-2 5.699290-2 5.327544-2 6.277505-2 3.649273-2 6.698655-2 2.637236-2 7.132476-2 1.736483-2 7.442838-2 1.161592-2 7.809043-2 5.545271-3 7.959242-2 3.226004-3 8.156359-2 3.672517-4 8.325085-2-1.971104-3 8.521923-2-4.545916-3 8.719745-2-6.989065-3 9.146623-2-1.181790-2 9.747792-2-1.776883-2 1.052550-1-2.424678-2 1.141983-1-3.037398-2 1.293464-1-3.836902-2 1.502888-1-4.615591-2 1.799877-1-5.339520-2 2.232287-1-5.965105-2 3.047374-1-6.543592-2 4.645487-1-6.956538-2 9.660509-1-7.212832-2 2.947480+0-7.282205-2 8.901248+0-7.289635-2 1.000000+1-7.288367-2 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.355610-3 1.107478-6 1.130755-2 1.214582-6 1.677246-2 1.332045-6 2.508404-2 1.416598-6 3.297043-2 1.506519-6 4.353272-2 1.602148-6 5.777092-2 1.703846-6 7.710952-2 1.812001-6 1.036082-1 1.868626-6 1.204389-1 1.927020-6 1.402980-1 1.987240-6 1.638046-1 2.113383-6 2.243848-1 2.179426-6 2.634915-1 2.243721-6 3.076873-1 2.306006-6 3.572155-1 2.366345-6 4.125058-1 2.424799-6 4.740086-1 2.481425-6 5.421981-1 2.536283-6 6.175731-1 2.589425-6 7.006580-1 2.640908-6 7.920043-1 2.690781-6 8.921916-1 2.739096-6 1.001829+0 2.785901-6 1.121555+0 2.831243-6 1.252042+0 2.875168-6 1.393993+0 2.917721-6 1.548146+0 2.958944-6 1.715275+0 2.998879-6 1.896190+0 3.037566-6 2.091738+0 3.075043-6 2.302807+0 3.111350-6 2.530325+0 3.146522-6 2.775260+0 3.180595-6 3.038624+0 3.213603-6 3.321473+0 3.245580-6 3.624909+0 3.276557-6 3.950078+0 3.306566-6 4.298175+0 3.363801-6 5.068175+0 3.417514-6 5.945452+0 3.467923-6 6.941465+0 3.491952-6 7.488399+0 3.515230-6 8.071432+0 3.537781-6 8.692477+0 3.581473-6 1.007127+1 3.622435-6 1.161579+1 3.660836-6 1.334634+1 3.696837-6 1.528065+1 3.730588-6 1.743652+1 3.762230-6 1.983257+1 3.791894-6 2.248817+1 3.819704-6 2.542342+1 3.845776-6 2.865907+1 3.870218-6 3.221637+1 3.893133-6 3.611702+1 3.914616-6 4.038300+1 3.934756-6 4.503648+1 3.953637-6 5.009966+1 3.971338-6 5.559461+1 3.987933-6 6.154315+1 4.003491-6 6.796671+1 4.018076-6 7.488621+1 4.031750-6 8.232200+1 4.044569-6 9.029393+1 4.056587-6 9.882133+1 4.067853-6 1.079231+2 4.078416-6 1.176178+2 4.088318-6 1.279235+2 4.097602-6 1.388581+2 4.106305-6 1.504402+2 4.114465-6 1.626895+2 4.122114-6 1.756279+2 4.129285-6 1.892793+2 4.136009-6 2.036689+2 4.148614-6 2.358888+2 4.159644-6 2.715289+2 4.169296-6 3.105796+2 4.177741-6 3.527867+2 4.185130-6 3.976392+2 4.191596-6 4.444189+2 4.197253-6 4.922870+2 4.202203-6 5.403768+2 4.206535-6 5.878714+2 4.210325-6 6.340583+2 4.216957-6 7.265944+2 4.225663-6 8.741648+2 4.238159-6 1.148359+3 4.255105-6 1.663519+3 4.265534-6 2.074308+3 4.268141-6 2.188695+3 4.275962-6 2.559663+3 4.283185-6 2.937823+3 4.290907-6 3.376248+3 4.294247-6 3.575470+3 4.304270-6 4.199734+3 4.307894-6 4.432361+3 4.311353-6 4.656157+3 4.317448-6 5.051130+3 4.321401-6 5.305162+3 4.326694-6 5.638661+3 4.330712-6 5.884069+3 4.334644-6 6.115468+3 4.339805-6 6.402477+3 4.345196-6 6.677405+3 4.353029-6 7.021197+3 4.357641-6 7.187637+3 4.363819-6 7.363285+3 4.369231-6 7.469054+3 4.375308-6 7.530913+3 4.381179-6 7.531619+3 4.387217-6 7.471294+3 4.391822-6 7.384322+3 4.399811-6 7.153246+3 4.404830-6 6.959794+3 4.411276-6 6.662869+3 4.415539-6 6.440313+3 4.420099-6 6.182596+3 4.425220-6 5.873311+3 4.429497-6 5.602416+3 4.434996-6 5.242422+3 4.439741-6 4.925664+3 4.445425-6 4.544344+3 4.451865-6 4.117056+3 4.461255-6 3.518435+3 4.463725-6 3.367838+3 4.474268-6 2.766900+3 4.480033-6 2.470301+3 4.488764-6 2.067781+3 4.501041-6 1.597202+3 4.516891-6 1.141743+3 4.524723-6 9.710477+2 4.528617-6 8.976093+2 4.536373-6 7.710858+2 4.544069-6 6.680793+2 4.551704-6 5.842500+2 4.559280-6 5.158698+2 4.566797-6 4.598215+2 4.574255-6 4.135578+2 4.581654-6 3.750354+2 4.588996-6 3.426403+2 4.596281-6 3.151119+2 4.603509-6 2.914734+2 4.610680-6 2.709706+2 4.624910-6 2.370559+2 4.638918-6 2.102646+2 4.652707-6 1.885576+2 4.666281-6 1.706217+2 4.679642-6 1.555710+2 4.692795-6 1.427819+2 4.705742-6 1.317999+2 4.718487-6 1.222835+2 4.731033-6 1.139707+2 4.743382-6 1.066561+2 4.767696-6 9.431675+1 4.791250-6 8.443318+1 4.814068-6 7.636628+1 4.836172-6 6.968155+1 4.857586-6 6.407173+1 4.878331-6 5.931215+1 4.898427-6 5.523388+1 4.917896-6 5.170670+1 4.955616-6 4.583868+1 4.990978-6 4.125718+1 5.024131-6 3.760152+1 5.055211-6 3.463550+1 5.084349-6 3.219250+1 5.120000-6 2.956852+1 5.162885-6 2.683986+1 5.207701-6 2.439374+1 5.246916-6 2.253764+1 5.281229-6 2.109677+1 5.341276-6 1.890385+1 5.386311-6 1.748407+1 5.453864-6 1.564265+1 5.562188-6 1.322182+1 5.738862-6 1.024916+1 5.793223-6 9.495719+0 5.929600-6 7.772086+0 6.031882-6 6.546299+0 6.070238-6 6.081009+0 6.103800-6 5.660778+0 6.133166-6 5.276656+0 6.158862-6 4.922296+0 6.181345-6 4.593214+0 6.201018-6 4.286430+0 6.218232-6 4.000366+0 6.233295-6 3.734739+0 6.246474-6 3.490254+0 6.258006-6 3.268077+0 6.268097-6 3.069264+0 6.276926-6 2.894312+0 6.298171-6 2.491198+0 6.308311-6 2.324642+0 6.315916-6 2.220541+0 6.321619-6 2.158532+0 6.325897-6 2.123180+0 6.329105-6 2.103920+0 6.333918-6 2.088267+0 6.336324-6 2.087030+0 6.338730-6 2.090591+0 6.344747-6 2.122584+0 6.347756-6 2.152164+0 6.350764-6 2.191677+0 6.354209-6 2.249978+0 6.369934-6 2.721021+0 6.375981-6 3.005168+0 6.381271-6 3.306990+0 6.387714-6 3.746143+0 6.397876-6 4.608770+0 6.413933-6 6.418176+0 6.422552-6 7.615412+0 6.425315-6 8.031175+0 6.434130-6 9.454422+0 6.441079-6 1.067065+1 6.448115-6 1.197320+1 6.455008-6 1.330383+1 6.461814-6 1.465393+1 6.468349-6 1.596744+1 6.475162-6 1.733575+1 6.480580-6 1.841013+1 6.489436-6 2.011068+1 6.494750-6 2.108223+1 6.510352-6 2.362639+1 6.513155-6 2.402380+1 6.526929-6 2.565836+1 6.531957-6 2.611260+1 6.541556-6 2.675460+1 6.547163-6 2.699064+1 6.550363-6 2.707948+1 6.555962-6 2.715590+1 6.560161-6 2.714861+1 6.566461-6 2.703770+1 6.572760-6 2.681310+1 6.580561-6 2.639015+1 6.588362-6 2.582455+1 6.598486-6 2.491197+1 6.601861-6 2.457044+1 6.613388-6 2.329676+1 6.617230-6 2.284385+1 6.632133-6 2.101418+1 6.650770-6 1.870807+1 6.688878-6 1.458895+1 6.696789-6 1.388527+1 6.712610-6 1.264379+1 6.728432-6 1.160945+1 6.744253-6 1.075559+1 6.762428-6 9.956964+0 6.779468-6 9.346196+0 6.811417-6 8.450362+0 6.839372-6 7.837004+0 6.961678-6 5.831441+0 6.998369-6 5.259493+0 7.048585-6 4.514493+0 7.057249-6 4.408488+0 7.070723-6 4.269919+0 7.074577-6 4.237418+0 7.088127-6 4.153612+0 7.091905-6 4.139670+0 7.109233-6 4.136264+0 7.113565-6 4.152148+0 7.126561-6 4.242608+0 7.132634-6 4.307234+0 7.142597-6 4.443725+0 7.150734-6 4.582103+0 7.161414-6 4.797151+0 7.175145-6 5.120096+0 7.195872-6 5.669256+0 7.213200-6 6.137553+0 7.217532-6 6.250014+0 7.230528-6 6.565139+0 7.234860-6 6.660633+0 7.247856-6 6.910686+0 7.257197-6 7.051637+0 7.262527-6 7.116056+0 7.271855-6 7.199413+0 7.278851-6 7.236926+0 7.289345-6 7.253198+0 7.299839-6 7.223243+0 7.308503-6 7.166143+0 7.317167-6 7.082648+0 7.334495-6 6.849795+0 7.351823-6 6.554191+0 7.389055-6 5.850259+0 7.407153-6 5.536837+0 7.425251-6 5.272889+0 7.434300-6 5.163800+0 7.443349-6 5.071256+0 7.456298-6 4.968162+0 7.466010-6 4.913095+0 7.480578-6 4.863804+0 7.495146-6 4.849382+0 7.505444-6 4.856167+0 7.515742-6 4.873544+0 7.557766-6 4.987508+0 7.575248-6 5.024718+0 7.599267-6 5.043939+0 7.613679-6 5.035723+0 7.624331-6 5.020902+0 7.642429-6 4.982011+0 7.715728-6 4.770369+0 7.753249-6 4.687066+0 7.892491-6 4.458782+0 7.996253-6 4.270616+0 8.255754-6 3.806163+0 8.427270-6 3.550608+0 8.535282-6 3.392490+0 8.625542-6 3.249441+0 8.726301-6 3.081185+0 8.835231-6 2.894008+0 8.928662-6 2.731759+0 9.026548-6 2.562282+0 9.130532-6 2.384493+0 9.229998-6 2.217666+0 9.346758-6 2.026480+0 9.447796-6 1.861937+0 9.495734-6 1.781368+0 9.549926-6 1.686937+0 9.646616-6 1.510480+0 9.730272-6 1.351395+0 9.813515-6 1.187762+0 9.864835-6 1.084208+0 9.912948-6 9.852797-1 9.958054-6 8.910111-1 1.000034-5 8.014715-1 1.003998-5 7.167461-1 1.007715-5 6.369314-1 1.011199-5 5.621374-1 1.014495-5 4.918667-1 1.017528-5 4.281166-1 1.020399-5 3.691606-1 1.023091-5 3.157418-1 1.025614-5 2.679455-1 1.027980-5 2.257943-1 1.030198-5 1.892247-1 1.032277-5 1.580767-1 1.034226-5 1.321027-1 1.037767-5 9.443802-2 1.039373-5 8.213916-2 1.040878-5 7.388517-2 1.042290-5 6.955805-2 1.043613-5 6.914210-2 1.044854-5 7.271202-2 1.046017-5 8.040817-2 1.046562-5 8.576114-2 1.047091-5 9.217648-2 1.047602-5 9.967492-2 1.048098-5 1.082755-1 1.048578-5 1.179949-1 1.049043-5 1.288465-1 1.049931-5 1.539824-1 1.050763-5 1.837122-1 1.051561-5 2.187926-1 1.052933-5 2.974651-1 1.055050-5 4.783605-1 1.056531-5 6.625331-1 1.057370-5 7.936815-1 1.058132-5 9.322846-1 1.059382-5 1.206203+0 1.060339-5 1.460790+0 1.061120-5 1.701600+0 1.062146-5 2.067982+0 1.062805-5 2.336713+0 1.063464-5 2.633762+0 1.064609-5 3.223002+0 1.065720-5 3.891937+0 1.066965-5 4.767763+0 1.068100-5 5.693359+0 1.068761-5 6.291270+0 1.069400-5 6.913317+0 1.070358-5 7.929450+0 1.071317-5 9.048404+0 1.072337-5 1.035547+1 1.073522-5 1.202458+1 1.074139-5 1.295674+1 1.075063-5 1.443589+1 1.076151-5 1.629842+1 1.078616-5 2.095001+1 1.079628-5 2.300574+1 1.081443-5 2.684443+1 1.082461-5 2.905061+1 1.083676-5 3.169666+1 1.084732-5 3.398133+1 1.085734-5 3.611111+1 1.086706-5 3.812127+1 1.088331-5 4.130435+1 1.089640-5 4.365885+1 1.090966-5 4.581173+1 1.092333-5 4.775651+1 1.093812-5 4.951723+1 1.095195-5 5.083422+1 1.096328-5 5.167646+1 1.097953-5 5.253360+1 1.099239-5 5.294406+1 1.100865-5 5.317458+1 1.102825-5 5.311869+1 1.105938-5 5.258316+1 1.111917-5 5.133556+1 1.117355-5 5.043594+1 1.120314-5 4.966257+1 1.122722-5 4.865606+1 1.125070-5 4.724438+1 1.126915-5 4.580844+1 1.128456-5 4.439104+1 1.129942-5 4.284979+1 1.131778-5 4.073856+1 1.133120-5 3.907965+1 1.135133-5 3.646108+1 1.135803-5 3.556552+1 1.138487-5 3.194954+1 1.140633-5 2.910538+1 1.143854-5 2.509649+1 1.150068-5 1.874036+1 1.151376-5 1.766325+1 1.153910-5 1.582373+1 1.156286-5 1.437110+1 1.158513-5 1.321822+1 1.160732-5 1.224128+1 1.164516-5 1.089235+1 1.168232-5 9.860493+0 1.170940-5 9.241236+0 1.176185-5 8.265029+0 1.180120-5 7.671115+0 1.186021-5 6.931966+0 1.191922-5 6.322178+0 1.200724-5 5.575294+0 1.206591-5 5.153341+0 1.226724-5 3.979142+0 1.233935-5 3.618660+0 1.241301-5 3.263958+0 1.251640-5 2.763077+0 1.257639-5 2.454335+0 1.260638-5 2.291775+0 1.263638-5 2.123998+0 1.266637-5 1.953153+0 1.271137-5 1.701917+0 1.274861-5 1.516644+0 1.275495-5 1.488926+0 1.279930-5 1.343485+0 1.281137-5 1.322706+0 1.284275-5 1.317295+0 1.285059-5 1.328194+0 1.287413-5 1.393225+0 1.288491-5 1.439874+0 1.290550-5 1.558916+0 1.291459-5 1.623813+0 1.292495-5 1.706880+0 1.293856-5 1.829837+0 1.299375-5 2.462126+0 1.300383-5 2.594119+0 1.301983-5 2.809127+0 1.303916-5 3.072634+0 1.305949-5 3.347633+0 1.306632-5 3.438174+0 1.309378-5 3.786926+0 1.310998-5 3.977658+0 1.312544-5 4.147242+0 1.314367-5 4.330286+0 1.315739-5 4.455467+0 1.316975-5 4.559121+0 1.318830-5 4.698549+0 1.320685-5 4.819441+0 1.321863-5 4.887029+0 1.325397-5 5.049251+0 1.326652-5 5.092651+0 1.328534-5 5.143771+0 1.330416-5 5.177585+0 1.331820-5 5.190973+0 1.333975-5 5.190586+0 1.336228-5 5.161291+0 1.338287-5 5.107223+0 1.340415-5 5.023341+0 1.342542-5 4.911440+0 1.344488-5 4.786026+0 1.346435-5 4.641107+0 1.348394-5 4.478987+0 1.351178-5 4.228881+0 1.354795-5 3.890524+0 1.360846-5 3.369145+0 1.364397-5 3.127094+0 1.366500-5 3.012570+0 1.368507-5 2.923731+0 1.370514-5 2.854088+0 1.373031-5 2.791368+0 1.373870-5 2.775885+0 1.377244-5 2.736136+0 1.380617-5 2.723575+0 1.383023-5 2.725466+0 1.388437-5 2.748315+0 1.395501-5 2.800353+0 1.405293-5 2.895973+0 1.411076-5 2.941235+0 1.414002-5 2.953501+0 1.416772-5 2.956947+0 1.421443-5 2.945373+0 1.428488-5 2.899454+0 1.440104-5 2.814187+0 1.464736-5 2.678447+0 1.480781-5 2.596640+0 1.501825-5 2.518019+0 1.555247-5 2.356934+0 1.625429-5 2.170658+0 1.713181-5 1.983459+0 1.778279-5 1.869074+0 1.819701-5 1.809054+0 1.867056-5 1.754803+0 1.927525-5 1.708872+0 1.983747-5 1.683556+0 2.018366-5 1.680854+0 2.113489-5 1.713249+0 2.162719-5 1.753248+0 2.239464-5 1.855962+0 2.330000-5 2.022106+0 2.400000-5 2.198151+0 2.505164-5 2.519296+0 2.592382-5 2.849849+0 2.737910-5 3.519802+0 2.854283-5 4.180408+0 3.162278-5 6.444147+0 3.338469-5 8.063959+0 3.515866-5 9.906730+0 3.630781-5 1.121509+1 3.801894-5 1.330332+1 3.984261-5 1.567725+1 4.121295-5 1.754874+1 4.265795-5 1.959559+1 4.370206-5 2.108151+1 4.518559-5 2.323110+1 4.731513-5 2.629849+1 4.950247-5 2.936839+1 5.096529-5 3.134700+1 5.283903-5 3.379081+1 5.646243-5 3.827835+1 5.716822-5 3.942963+1 5.771681-5 4.059572+1 5.821032-5 4.194481+1 5.862553-5 4.339674+1 5.882194-5 4.422134+1 5.900608-5 4.509766+1 5.917871-5 4.602905+1 5.934055-5 4.701881+1 5.949228-5 4.807006+1 5.963452-5 4.918569+1 5.979071-5 5.058611+1 5.989289-5 5.162092+1 6.001009-5 5.294594+1 6.011997-5 5.434659+1 6.022298-5 5.582644+1 6.031956-5 5.738973+1 6.041009-5 5.904132+1 6.049497-5 6.078653+1 6.064915-5 6.457965+1 6.071909-5 6.663732+1 6.085022-5 7.125253+1 6.096496-5 7.634938+1 6.106536-5 8.189181+1 6.115321-5 8.780530+1 6.123008-5 9.398643+1 6.129734-5 1.003164+2 6.135619-5 1.066747+2 6.140769-5 1.129492+2 6.149780-5 1.257573+2 6.156539-5 1.371039+2 6.161608-5 1.467188+2 6.169212-5 1.631100+2 6.176816-5 1.821059+2 6.188218-5 2.160418+2 6.211023-5 3.061087+2 6.222426-5 3.629774+2 6.232620-5 4.203297+2 6.249345-5 5.259582+2 6.251254-5 5.387496+2 6.264615-5 6.309539+2 6.269863-5 6.678527+2 6.279884-5 7.378581+2 6.285951-5 7.791715+2 6.292442-5 8.217457+2 6.299731-5 8.667294+2 6.305819-5 9.013567+2 6.313647-5 9.410452+2 6.323149-5 9.805624+2 6.329607-5 1.001257+3 6.337768-5 1.019596+3 6.344285-5 1.027663+3 6.351191-5 1.029673+3 6.358631-5 1.024330+3 6.363373-5 1.016953+3 6.370737-5 9.996498+2 6.378008-5 9.760816+2 6.382014-5 9.605890+2 6.390614-5 9.221059+2 6.397417-5 8.874351+2 6.404895-5 8.461099+2 6.413668-5 7.948739+2 6.423648-5 7.353323+2 6.447845-5 6.011674+2 6.464508-5 5.293897+2 6.467461-5 5.190276+2 6.479203-5 4.854205+2 6.485711-5 4.720338+2 6.492262-5 4.622077+2 6.494344-5 4.598187+2 6.509851-5 4.520135+2 6.518403-5 4.540203+2 6.528515-5 4.604662+2 6.557120-5 4.874377+2 6.561445-5 4.909654+2 6.577205-5 4.992033+2 6.582284-5 4.999107+2 6.593699-5 4.974432+2 6.599744-5 4.937635+2 6.608383-5 4.856572+2 6.613937-5 4.787421+2 6.619491-5 4.705770+2 6.628140-5 4.556007+2 6.636479-5 4.389101+2 6.647139-5 4.150735+2 6.655019-5 3.961770+2 6.664869-5 3.716960+2 6.670779-5 3.568284+2 6.690479-5 3.082847+2 6.726263-5 2.333180+2 6.738183-5 2.136081+2 6.746096-5 2.020267+2 6.754235-5 1.913125+2 6.762247-5 1.818859+2 6.770134-5 1.736142+2 6.785661-5 1.599225+2 6.802938-5 1.480536+2 6.815275-5 1.412906+2 6.829391-5 1.349096+2 6.843067-5 1.298089+2 6.856315-5 1.256516+2 6.881983-5 1.191938+2 6.906046-5 1.144758+2 6.928606-5 1.108597+2 6.949756-5 1.079941+2 6.976423-5 1.049337+2 7.006761-5 1.020293+2 7.039291-5 9.943541+1 7.081188-5 9.668751+1 7.129408-5 9.412108+1 7.182076-5 9.181873+1 7.242411-5 8.958913+1 7.363328-5 8.587765+1 7.395460-5 8.528780+1 7.431866-5 8.521355+1 7.454016-5 8.560063+1 7.468518-5 8.605370+1 7.494211-5 8.722646+1 7.564461-5 9.169377+1 7.583294-5 9.279068+1 7.603313-5 9.376756+1 7.643047-5 9.512121+1 7.721389-5 9.711116+1 7.813234-5 1.007549+2 7.851516-5 1.020776+2 7.881300-5 1.028329+2 7.934822-5 1.037308+2 8.147974-5 1.064369+2 8.473835-5 1.097910+2 8.845916-5 1.128745+2 9.332543-5 1.165628+2 1.012782-4 1.227496+2 1.062638-4 1.263283+2 1.090185-4 1.278462+2 1.108425-4 1.281035+2 1.118455-4 1.280212+2 1.122267-4 1.282060+2 1.128000-4 1.291369+2 1.131219-4 1.301569+2 1.134697-4 1.317260+2 1.140629-4 1.353742+2 1.147332-4 1.400275+2 1.150552-4 1.419904+2 1.153763-4 1.435635+2 1.157661-4 1.448711+2 1.161536-4 1.455641+2 1.170434-4 1.458553+2 1.179882-4 1.460731+2 1.211511-4 1.492239+2 1.321139-4 1.611069+2 1.416172-4 1.703316+2 1.540000-4 1.811584+2 1.666767-4 1.911035+2 1.814471-4 2.013982+2 1.971386-4 2.106702+2 2.122634-4 2.178972+2 2.269942-4 2.236303+2 2.412682-4 2.282574+2 2.566678-4 2.322433+2 2.778178-4 2.364026+2 2.970009-4 2.391171+2 3.184359-4 2.411378+2 3.441033-4 2.423093+2 3.680059-4 2.423843+2 3.941574-4 2.416251+2 4.216965-4 2.399336+2 4.517925-4 2.369475+2 4.844773-4 2.325908+2 5.188966-4 2.269783+2 5.490257-4 2.210824+2 5.850426-4 2.126716+2 6.166518-4 2.038689+2 6.465841-4 1.940435+2 6.723025-4 1.841712+2 6.933239-4 1.748757+2 7.116784-4 1.656679+2 7.283561-4 1.561698+2 7.449571-4 1.453343+2 7.593968-4 1.344784+2 7.709285-4 1.245617+2 7.809064-4 1.148486+2 7.894748-4 1.054472+2 7.968942-4 9.630695+1 8.035261-4 8.716583+1 8.081961-4 8.023530+1 8.128027-4 7.357467+1 8.160673-4 6.970612+1 8.195538-4 6.733163+1 8.204004-4 6.714694+1 8.238364-4 6.844744+1 8.259844-4 7.121750+1 8.280664-4 7.553848+1 8.295389-4 7.961760+1 8.305980-4 8.308090+1 8.323125-4 8.960030+1 8.334723-4 9.461401+1 8.380348-4 1.179461+2 8.400824-4 1.293759+2 8.414299-4 1.368333+2 8.431690-4 1.460726+2 8.446163-4 1.532112+2 8.458109-4 1.586010+2 8.474078-4 1.649605+2 8.482728-4 1.679606+2 8.496158-4 1.719623+2 8.508376-4 1.748979+2 8.524871-4 1.778166+2 8.549310-4 1.801433+2 8.571476-4 1.806392+2 8.635003-4 1.794538+2 8.662501-4 1.802579+2 8.691096-4 1.825749+2 8.770233-4 1.917889+2 8.831644-4 1.975397+2 8.848947-4 1.994964+2 8.869576-4 2.024341+2 8.881750-4 2.045525+2 8.910634-4 2.108392+2 8.945046-4 2.204671+2 9.000000-4 2.385982+2 9.026800-4 2.475549+2 9.063886-4 2.591200+2 9.095569-4 2.678873+2 9.136561-4 2.775851+2 9.190100-4 2.877686+2 9.252306-4 2.969437+2 9.325974-4 3.054035+2 9.401691-4 3.123894+2 9.487745-4 3.188284+2 9.583234-4 3.243375+2 9.673265-4 3.277903+2 9.852680-4 3.307495+2 9.897601-4 3.328183+2 9.937152-4 3.361877+2 9.974493-4 3.409531+2 1.003314-3 3.512211+2 1.011406-3 3.677600+2 1.016041-3 3.764500+2 1.021300-3 3.846477+2 1.026433-3 3.909458+2 1.035142-3 3.989738+2 1.044582-3 4.058079+2 1.057956-3 4.139707+2 1.081553-3 4.254809+2 1.110761-3 4.363599+2 1.147061-3 4.466832+2 1.186441-3 4.555062+2 1.239209-3 4.643284+2 1.294852-3 4.706804+2 1.368982-3 4.762049+2 1.445050-3 4.791241+2 1.547639-3 4.780235+2 1.709071-3 4.718890+2 1.913049-3 4.598731+2 2.050863-3 4.505385+2 2.390379-3 4.256776+2 2.731641-3 3.997517+2 3.077190-3 3.745943+2 3.364075-3 3.547711+2 3.698645-3 3.328494+2 3.993983-3 3.145748+2 4.313194-3 2.958510+2 4.669542-3 2.762602+2 5.055335-3 2.565045+2 5.408443-3 2.395469+2 5.614024-3 2.302005+2 5.834530-3 2.204756+2 6.065836-3 2.106257+2 6.295968-3 2.011619+2 6.510149-3 1.925742+2 6.698089-3 1.851642+2 6.879294-3 1.781130+2 7.150550-3 1.675691+2 7.379766-3 1.584464+2 7.576499-3 1.501975+2 7.717428-3 1.437989+2 7.822232-3 1.385573+2 7.910463-3 1.335835+2 7.942387-3 1.315893+2 7.988064-3 1.284677+2 8.027244-3 1.254412+2 8.060601-3 1.225201+2 8.102195-3 1.183422+2 8.149093-3 1.129891+2 8.209570-3 1.061416+2 8.236952-3 1.037441+2 8.256459-3 1.025434+2 8.275393-3 1.018745+2 8.292859-3 1.017322+2 8.307942-3 1.019837+2 8.329466-3 1.029177+2 8.350064-3 1.043724+2 8.375486-3 1.067528+2 8.451158-3 1.153027+2 8.481378-3 1.184633+2 8.503078-3 1.204794+2 8.526162-3 1.223724+2 8.550500-3 1.240979+2 8.595117-3 1.266427+2 8.652614-3 1.290487+2 8.699990-3 1.305376+2 8.782475-3 1.324438+2 8.892233-3 1.340746+2 9.026221-3 1.351584+2 9.185557-3 1.356347+2 9.435204-3 1.352980+2 9.744285-3 1.337677+2 1.011579-2 1.310446+2 1.057956-2 1.269351+2 1.121577-2 1.207472+2 1.202414-2 1.128851+2 1.303167-2 1.037598+2 1.424821-2 9.387716+1 1.572906-2 8.350904+1 1.728565-2 7.430627+1 1.873174-2 6.701803+1 2.094433-2 5.768604+1 2.299950-2 5.056225+1 2.545657-2 4.351794+1 2.819110-2 3.713634+1 3.685399-2 2.413307+1 4.066592-2 2.050083+1 5.881025-2 1.095334+1 7.481573-2 7.206931+0 9.023995-2 5.166966+0 1.072459-1 3.781547+0 1.266421-1 2.779499+0 1.634698-1 1.717350+0 2.163315-1 1.005245+0 2.917427-1 5.635671-1 4.100639-1 2.894370-1 6.433730-1 1.188002-1 1.286622+0 2.988035-2 3.885536+0 3.282301-3 1.173413+1 3.599700-4 3.543651+1 3.947081-5 1.070165+2 4.327899-6 3.231848+2 4.745448-7 9.760024+2 5.203280-8 3.162278+3 4.956544-9 1.000000+4 4.95654-10 3.162278+4 4.95654-11 1.000000+5 4.95654-12 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.807500-7 1.258900-6 1.554400-6 1.584900-6 2.463500-6 1.995300-6 3.904400-6 2.511900-6 6.188100-6 3.162300-6 9.807400-6 3.981100-6 1.554400-5 5.011900-6 2.463500-5 6.309600-6 3.904300-5 7.943300-6 6.187900-5 1.000000-5 9.807000-5 1.258900-5 1.554300-4 1.584900-5 2.463300-4 1.995300-5 3.904000-4 2.511900-5 6.187300-4 3.162300-5 9.804600-4 3.981100-5 1.553200-3 5.011900-5 2.460500-3 6.309600-5 3.898200-3 7.943300-5 6.175900-3 1.000000-4 9.775100-3 1.258900-4 1.547000-2 1.584900-4 2.444700-2 1.995300-4 3.859200-2 2.511900-4 6.075000-2 3.162300-4 9.530100-2 3.981100-4 1.486400-1 5.011900-4 2.297100-1 6.309600-4 3.502700-1 7.943300-4 5.236200-1 1.000000-3 7.620100-1 1.258900-3 1.073000+0 1.584900-3 1.455300+0 1.995300-3 1.908400+0 2.511900-3 2.446300+0 3.162300-3 3.095700+0 3.981100-3 3.879000+0 5.011900-3 4.803600+0 6.309600-3 5.846000+0 7.943300-3 6.994600+0 1.000000-2 8.197500+0 1.258900-2 9.378000+0 1.584900-2 1.046100+1 1.995300-2 1.141600+1 2.511900-2 1.223200+1 3.162300-2 1.286500+1 3.981100-2 1.328600+1 5.011900-2 1.348200+1 6.309600-2 1.347800+1 7.943300-2 1.328300+1 1.000000-1 1.293500+1 1.258900-1 1.243300+1 1.584900-1 1.181300+1 1.995300-1 1.111300+1 2.511900-1 1.036000+1 3.162300-1 9.582300+0 3.981100-1 8.802200+0 5.011900-1 8.035000+0 6.309600-1 7.291000+0 7.943300-1 6.577300+0 1.000000+0 5.897800+0 1.258900+0 5.256900+0 1.584900+0 4.656400+0 1.995300+0 4.098500+0 2.511900+0 3.584900+0 3.162300+0 3.116500+0 3.981100+0 2.693500+0 5.011900+0 2.315000+0 6.309600+0 1.979400+0 7.943300+0 1.684300+0 1.000000+1 1.426900+0 1.258900+1 1.204000+0 1.584900+1 1.012200+0 1.995300+1 8.481600-1 2.511900+1 7.085700-1 3.162300+1 5.903500-1 3.981100+1 4.906600-1 5.011900+1 4.069000-1 6.309600+1 3.367600-1 7.943300+1 2.782100-1 1.000000+2 2.294600-1 1.258900+2 1.889600-1 1.584900+2 1.554000-1 1.995300+2 1.276300-1 2.511900+2 1.047100-1 3.162300+2 8.580600-2 3.981100+2 7.024500-2 5.011900+2 5.745300-2 6.309600+2 4.694900-2 7.943300+2 3.833400-2 1.000000+3 3.127600-2 1.258900+3 2.549900-2 1.584900+3 2.077500-2 1.995300+3 1.691500-2 2.511900+3 1.376400-2 3.162300+3 1.119400-2 3.981100+3 9.098100-3 5.011900+3 7.391000-3 6.309600+3 6.001300-3 7.943300+3 4.870500-3 1.000000+4 3.951000-3 1.258900+4 3.203700-3 1.584900+4 2.596600-3 1.995300+4 2.103700-3 2.511900+4 1.703800-3 3.162300+4 1.379300-3 3.981100+4 1.116300-3 5.011900+4 9.030600-4 6.309600+4 7.303300-4 7.943300+4 5.904500-4 1.000000+5 4.772200-4 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159550-4 3.981072-4 3.976758-4 5.011872-4 5.005059-4 6.309573-4 6.298832-4 7.943282-4 7.926389-4 1.000000-3 9.973474-4 1.258925-3 1.254790-3 1.584893-3 1.578450-3 1.995262-3 1.985251-3 2.511886-3 2.496311-3 3.162278-3 3.137917-3 3.981072-3 3.942810-3 5.011872-3 4.952044-3 6.309573-3 6.215967-3 7.943282-3 7.797709-3 1.000000-2 9.774084-3 1.258925-2 1.224047-2 1.584893-2 1.531312-2 1.995262-2 1.913191-2 2.511886-2 2.386428-2 3.162278-2 2.971292-2 3.981072-2 3.691784-2 5.011872-2 4.575764-2 6.309573-2 5.656159-2 7.943282-2 6.971971-2 1.000000-1 8.562633-2 1.258925-1 1.048291-1 1.584893-1 1.279174-1 1.995262-1 1.555586-1 2.511886-1 1.885264-1 3.162278-1 2.277125-1 3.981072-1 2.741236-1 5.011872-1 3.289546-1 6.309573-1 3.935507-1 7.943282-1 4.695936-1 1.000000+0 5.590968-1 1.258925+0 6.644463-1 1.584893+0 7.888030-1 1.995262+0 9.359190-1 2.511886+0 1.110445+0 3.162278+0 1.318177+0 3.981072+0 1.566069+0 5.011872+0 1.862824+0 6.309573+0 2.219000+0 7.943282+0 2.647504+0 1.000000+1 3.164082+0 1.258925+1 3.788099+0 1.584893+1 4.543225+0 1.995262+1 5.458372+0 2.511886+1 6.569138+0 3.162278+1 7.919089+0 3.981072+1 9.561541+0 5.011872+1 1.156230+1 6.309573+1 1.400186+1 7.943282+1 1.697953+1 1.000000+2 2.061690+1 1.258925+2 2.506417+1 1.584893+2 3.050579+1 1.995262+2 3.716900+1 2.511886+2 4.533415+1 3.162278+2 5.534669+1 3.981072+2 6.763104+1 5.011872+2 8.271447+1 6.309573+2 1.012439+2 7.943282+2 1.240196+2 1.000000+3 1.520276+2 1.258925+3 1.864907+2 1.584893+3 2.289215+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739832-9 3.981072-5 4.341863-9 5.011872-5 6.880997-9 6.309573-5 1.090529-8 7.943282-5 1.728277-8 1.000000-4 2.738280-8 1.258925-4 4.339045-8 1.584893-4 6.873272-8 1.995262-4 1.088682-7 2.511886-4 1.723761-7 3.162278-4 2.727941-7 3.981072-4 4.313983-7 5.011872-4 6.813289-7 6.309573-4 1.074174-6 7.943282-4 1.689310-6 1.000000-3 2.652606-6 1.258925-3 4.135400-6 1.584893-3 6.443327-6 1.995262-3 1.001124-5 2.511886-3 1.557571-5 3.162278-3 2.436051-5 3.981072-3 3.826177-5 5.011872-3 5.982811-5 6.309573-3 9.360646-5 7.943282-3 1.455730-4 1.000000-2 2.259162-4 1.258925-2 3.487858-4 1.584893-2 5.358146-4 1.995262-2 8.207084-4 2.511886-2 1.254583-3 3.162278-2 1.909855-3 3.981072-2 2.892874-3 5.011872-2 4.361085-3 6.309573-2 6.534148-3 7.943282-2 9.713115-3 1.000000-1 1.437367-2 1.258925-1 2.106349-2 1.584893-1 3.057188-2 1.995262-1 4.396760-2 2.511886-1 6.266226-2 3.162278-1 8.851525-2 3.981072-1 1.239835-1 5.011872-1 1.722327-1 6.309573-1 2.374067-1 7.943282-1 3.247346-1 1.000000+0 4.409032-1 1.258925+0 5.944792-1 1.584893+0 7.960902-1 1.995262+0 1.059343+0 2.511886+0 1.401442+0 3.162278+0 1.844101+0 3.981072+0 2.415003+0 5.011872+0 3.149048+0 6.309573+0 4.090573+0 7.943282+0 5.295779+0 1.000000+1 6.835918+0 1.258925+1 8.801155+0 1.584893+1 1.130571+1 1.995262+1 1.449425+1 2.511886+1 1.854973+1 3.162278+1 2.370369+1 3.981072+1 3.024918+1 5.011872+1 3.855642+1 6.309573+1 4.909387+1 7.943282+1 6.245329+1 1.000000+2 7.938310+1 1.258925+2 1.008284+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608811+2 3.981072+2 3.304761+2 5.011872+2 4.184728+2 6.309573+2 5.297135+2 7.943282+2 6.703087+2 1.000000+3 8.479724+2 1.258925+3 1.072435+3 1.584893+3 1.355972+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.090000-6 2.269579+6 8.413951-6 1.776706+6 8.709636-6 1.421950+6 9.015711-6 1.128344+6 9.280000-6 9.227740+5 9.549926-6 7.502071+5 9.772372-6 6.313501+5 1.000000-5 5.279380+5 1.023293-5 4.383428+5 1.042000-5 3.766140+5 1.060000-5 3.246500+5 1.077000-5 2.814840+5 1.096478-5 2.382017+5 1.115000-5 2.024600+5 1.127000-5 1.818046+5 1.142000-5 1.584824+5 1.157000-5 1.376814+5 1.172000-5 1.191546+5 1.188502-5 1.011431+5 1.202264-5 8.783326+4 1.218400-5 7.401635+4 1.230269-5 6.497244+4 1.245000-5 5.494680+4 1.255000-5 4.883980+4 1.265000-5 4.325360+4 1.275000-5 3.815500+4 1.285000-5 3.351260+4 1.295000-5 2.929600+4 1.305000-5 2.547780+4 1.315000-5 2.203180+4 1.325000-5 1.893364+4 1.333521-5 1.655083+4 1.342000-5 1.440100+4 1.350000-5 1.256344+4 1.357000-5 1.109974+4 1.365000-5 9.583220+3 1.372000-5 8.386340+3 1.380384-5 7.104139+3 1.387000-5 6.203120+3 1.395000-5 5.237240+3 1.402500-5 4.448533+3 1.425000-5 2.703420+3 1.430000-5 2.432080+3 1.435000-5 2.199940+3 1.438500-5 2.060000+3 1.442000-5 1.938140+3 1.446000-5 1.820396+3 1.448500-5 1.758194+3 1.452000-5 1.685476+3 1.455000-5 1.636198+3 1.457000-5 1.609900+3 1.460000-5 1.580096+3 1.463000-5 1.561643+3 1.466000-5 1.554284+3 1.466000-5 2.164228+6 1.468500-5 2.162188+6 1.471000-5 2.160160+6 1.473500-5 2.158144+6 1.476500-5 2.155742+6 1.480000-5 2.152962+6 1.483500-5 2.150206+6 1.487000-5 2.147473+6 1.491000-5 2.144378+6 1.492000-5 2.143610+6 1.492000-5 3.511292+6 1.496236-5 3.508322+6 1.503000-5 3.503646+6 1.513561-5 3.496498+6 1.515000-5 3.495538+6 1.526000-5 3.491212+6 1.535000-5 3.487779+6 1.542000-5 3.485171+6 1.550000-5 3.482255+6 1.557000-5 3.481759+6 1.565000-5 3.481235+6 1.573200-5 3.480741+6 1.580000-5 3.480364+6 1.590000-5 3.479859+6 1.600000-5 3.479409+6 1.603245-5 3.479268+6 1.610000-5 3.481072+6 1.621810-5 3.484242+6 1.635000-5 3.487821+6 1.645000-5 3.490556+6 1.659587-5 3.494573+6 1.660000-5 3.494801+6 1.675000-5 3.503004+6 1.690000-5 3.511205+6 1.705000-5 3.521819+6 1.717908-5 3.530921+6 1.720000-5 3.532898+6 1.737801-5 3.549630+6 1.750000-5 3.561033+6 1.757924-5 3.569837+6 1.778279-5 3.592317+6 1.800000-5 3.620837+6 1.819701-5 3.646579+6 1.822000-5 3.649909+6 1.850000-5 3.690227+6 1.873700-5 3.728786+6 1.883649-5 3.744890+6 1.905461-5 3.782676+6 1.927525-5 3.820711+6 1.935000-5 3.834860+6 1.950000-5 3.863131+6 1.965000-5 3.893024+6 2.000000-5 3.962554+6 2.018366-5 3.998904+6 2.041738-5 4.048795+6 2.070000-5 4.111984+6 2.113489-5 4.209163+6 2.150000-5 4.290647+6 2.162719-5 4.320742+6 2.213095-5 4.444223+6 2.270000-5 4.583982+6 2.317395-5 4.700565+6 2.330000-5 4.732341+6 2.350000-5 4.782667+6 2.400000-5 4.911716+6 2.483133-5 5.127081+6 2.570396-5 5.354381+6 2.660725-5 5.591028+6 2.770000-5 5.879206+6 2.851018-5 6.094154+6 2.884032-5 6.179266+6 2.900000-5 6.220404+6 3.019952-5 6.523585+6 3.090295-5 6.701992+6 3.162278-5 6.877174+6 3.311311-5 7.228923+6 3.333800-5 7.282030+6 3.388442-5 7.403603+6 3.507519-5 7.657342+6 3.570000-5 7.790172+6 3.630781-5 7.909705+6 3.730000-5 8.095033+6 3.801894-5 8.228657+6 3.850000-5 8.310238+6 3.981072-5 8.517838+6 4.027170-5 8.590296+6 4.073803-5 8.655741+6 4.265795-5 8.900800+6 4.300000-5 8.937927+6 4.500000-5 9.131972+6 4.518559-5 9.146857+6 4.570882-5 9.183395+6 4.731513-5 9.293584+6 4.900000-5 9.362330+6 5.000000-5 9.402091+6 5.248075-5 9.437877+6 5.308844-5 9.433080+6 5.500000-5 9.418052+6 5.559043-5 9.408661+6 5.754399-5 9.352328+6 5.821032-5 9.333534+6 5.900000-5 9.305567+6 6.165950-5 9.185154+6 6.237348-5 9.149390+6 6.531306-5 8.980266+6 6.683439-5 8.888067+6 6.760830-5 8.835710+6 7.000000-5 8.679252+6 7.161434-5 8.570344+6 7.328245-5 8.450211+6 7.500000-5 8.330894+6 7.673615-5 8.207871+6 7.821000-5 8.098538+6 7.821000-5 8.764294+6 7.910000-5 8.684983+6 8.000000-5 8.602555+6 8.035261-5 8.569358+6 8.048000-5 8.556977+6 8.048000-5 8.870737+6 8.110000-5 8.807318+6 8.128305-5 8.788381+6 8.200000-5 8.713268+6 8.230000-5 8.681712+6 8.300000-5 8.607850+6 8.413951-5 8.482840+6 8.570000-5 8.316831+6 8.609938-5 8.275335+6 8.709636-5 8.170805+6 8.730000-5 8.149844+6 8.912509-5 7.970249+6 9.015711-5 7.869773+6 9.070000-5 7.818338+6 9.150000-5 7.745283+6 9.190000-5 7.709581+6 9.225714-5 7.678674+6 9.300000-5 7.612936+6 9.350000-5 7.569757+6 9.450000-5 7.486913+6 9.500000-5 7.446598+6 9.549926-5 7.407717+6 9.580000-5 7.383154+6 9.650000-5 7.327158+6 9.720000-5 7.273195+6 9.800000-5 7.213109+6 9.850000-5 7.175336+6 9.950000-5 7.101728+6 1.000000-4 7.066191+6 1.011579-4 6.986152+6 1.015000-4 6.961831+6 1.030000-4 6.858248+6 1.047129-4 6.746876+6 1.050000-4 6.727992+6 1.059254-4 6.668893+6 1.060000-4 6.664178+6 1.080000-4 6.541482+6 1.100000-4 6.419299+6 1.109175-4 6.365410+6 1.120000-4 6.300702+6 1.128000-4 6.254233+6 1.150000-4 6.131479+6 1.174898-4 5.991517+6 1.186400-4 5.927516+6 1.186400-4 6.227094+6 1.188502-4 6.215383+6 1.220000-4 6.046452+6 1.240000-4 5.940177+6 1.244515-4 5.916632+6 1.280000-4 5.733904+6 1.303167-4 5.621811+6 1.330000-4 5.491836+6 1.333521-4 5.474829+6 1.364583-4 5.329619+6 1.380384-4 5.258449+6 1.396368-4 5.186051+6 1.421600-4 5.075984+6 1.428894-4 5.044799+6 1.450000-4 4.954980+6 1.480000-4 4.832931+6 1.500000-4 4.754339+6 1.513561-4 4.700765+6 1.531087-4 4.633066+6 1.540000-4 4.598765+6 1.580000-4 4.449478+6 1.605800-4 4.358184+6 1.620000-4 4.308874+6 1.621810-4 4.302492+6 1.650000-4 4.205717+6 1.659587-4 4.173563+6 1.678804-4 4.109456+6 1.720000-4 3.976683+6 1.737801-4 3.921655+6 1.757924-4 3.860980+6 1.778279-4 3.798574+6 1.800000-4 3.733085+6 1.840772-4 3.615246+6 1.883649-4 3.496631+6 1.905461-4 3.438761+6 1.927525-4 3.380769+6 1.950000-4 3.321671+6 1.980000-4 3.245408+6 2.018366-4 3.151988+6 2.080000-4 3.006904+6 2.089296-4 2.985806+6 2.137962-4 2.878509+6 2.187762-4 2.774531+6 2.213095-4 2.723101+6 2.220000-4 2.709287+6 2.264644-4 2.621738+6 2.290868-4 2.572046+6 2.350000-4 2.465706+6 2.400000-4 2.379847+6 2.426610-4 2.335707+6 2.500000-4 2.219758+6 2.540973-4 2.158965+6 2.660725-4 1.991795+6 2.691535-4 1.951726+6 2.786121-4 1.835461+6 2.800000-4 1.819339+6 2.818383-4 1.798017+6 2.851018-4 1.760942+6 2.900000-4 1.706941+6 3.000000-4 1.604248+6 3.019952-4 1.584876+6 3.054921-4 1.551714+6 3.100000-4 1.510091+6 3.126079-4 1.486492+6 3.200000-4 1.422305+6 3.280000-4 1.357491+6 3.311311-4 1.333134+6 3.430000-4 1.246746+6 3.467369-4 1.220882+6 3.507519-4 1.193885+6 3.548134-4 1.167558+6 3.715352-4 1.067337+6 3.758374-4 1.043739+6 3.801894-4 1.020392+6 3.850000-4 9.953130+5 4.027170-4 9.098860+5 4.073803-4 8.893571+5 4.168694-4 8.495307+5 4.200000-4 8.368281+5 4.216965-4 8.300053+5 4.415704-4 7.556775+5 4.518559-4 7.210447+5 4.623810-4 6.877009+5 4.677351-4 6.715822+5 4.700000-4 6.648948+5 4.786301-4 6.402549+5 4.954502-4 5.959120+5 5.069907-4 5.678445+5 5.128614-4 5.542901+5 5.248075-4 5.280491+5 5.308844-4 5.153573+5 5.432503-4 4.908755+5 5.623413-4 4.560617+5 5.688529-4 4.450132+5 5.888437-4 4.131775+5 6.095369-4 3.833842+5 6.237348-4 3.647308+5 6.309573-4 3.557063+5 6.382635-4 3.468913+5 6.456542-4 3.382688+5 6.760830-4 3.056221+5 6.839116-4 2.979968+5 6.918310-4 2.905295+5 7.000000-4 2.830915+5 7.079458-4 2.761091+5 7.500000-4 2.426340+5 7.852356-4 2.189407+5 7.943282-4 2.133011+5 8.035261-4 2.077952+5 8.128305-4 2.024171+5 8.222426-4 1.971848+5 8.609938-4 1.775221+5 8.670200-4 1.746976+5 8.670200-4 4.421912+5 8.671800-4 4.486471+5 8.675000-4 4.662135+5 8.678500-4 4.847090+5 8.682000-4 5.025596+5 8.686500-4 5.244451+5 8.690000-4 5.407789+5 8.695000-4 5.630250+5 8.700000-4 5.842255+5 8.705000-4 6.043328+5 8.712000-4 6.307175+5 8.718000-4 6.518484+5 8.725000-4 6.749107+5 8.733000-4 6.992726+5 8.743000-4 7.268496+5 8.751000-4 7.467741+5 8.762000-4 7.712816+5 8.774000-4 7.944987+5 8.785000-4 8.128266+5 8.800000-4 8.337003+5 8.810489-4 8.452931+5 8.815000-4 8.503415+5 8.830000-4 8.632855+5 8.849800-4 8.755398+5 8.849800-4 1.003070+6 8.850000-4 1.003589+6 8.851600-4 1.007381+6 8.855000-4 1.017751+6 8.858500-4 1.028061+6 8.862000-4 1.038043+6 8.866500-4 1.050464+6 8.870000-4 1.059712+6 8.873000-4 1.067335+6 8.875000-4 1.072113+6 8.880000-4 1.083272+6 8.885000-4 1.093893+6 8.890000-4 1.104065+6 8.897000-4 1.117569+6 8.900000-4 1.122884+6 8.905000-4 1.131101+6 8.912509-4 1.142277+6 8.913000-4 1.143025+6 8.922000-4 1.155247+6 8.930000-4 1.165142+6 8.940000-4 1.175076+6 8.950000-4 1.183784+6 8.960000-4 1.191326+6 8.965000-4 1.194439+6 8.973000-4 1.198794+6 8.989200-4 1.205278+6 9.000000-4 1.208346+6 9.015711-4 1.211254+6 9.026800-4 1.212043+6 9.035000-4 1.212439+6 9.058000-4 1.211008+6 9.082500-4 1.207256+6 9.115000-4 1.199812+6 9.150000-4 1.189849+6 9.200000-4 1.174189+6 9.225714-4 1.166802+6 9.240000-4 1.162725+6 9.500000-4 1.090151+6 9.660509-4 1.048494+6 9.700000-4 1.038596+6 9.772372-4 1.020183+6 9.885531-4 9.902879+5 1.000000-3 9.612682+5 1.006500-3 9.452979+5 1.006500-3 1.073189+6 1.030000-3 1.014171+6 1.035142-3 1.002059+6 1.059254-3 9.492326+5 1.083927-3 8.991859+5 1.109175-3 8.518166+5 1.110000-3 8.503302+5 1.122018-3 8.290097+5 1.135011-3 8.068155+5 1.174898-3 7.439865+5 1.190000-3 7.219199+5 1.216186-3 6.857980+5 1.244515-3 6.491121+5 1.258925-3 6.315174+5 1.333521-3 5.499712+5 1.350000-3 5.339998+5 1.364583-3 5.202408+5 1.396368-3 4.918747+5 1.400000-3 4.887739+5 1.412538-3 4.782053+5 1.428894-3 4.649037+5 1.462177-3 4.392917+5 1.479108-3 4.270264+5 1.513561-3 4.031767+5 1.531087-3 3.917557+5 1.570000-3 3.678433+5 1.584893-3 3.592359+5 1.603245-3 3.490196+5 1.621810-3 3.391008+5 1.698244-3 3.022363+5 1.701200-3 3.009264+5 1.717908-3 2.936250+5 1.737801-3 2.852516+5 1.778279-3 2.690751+5 1.800000-3 2.609234+5 1.819701-3 2.537807+5 1.840772-3 2.464444+5 1.862087-3 2.393253+5 1.883649-3 2.323868+5 1.905461-3 2.256544+5 1.927525-3 2.190453+5 2.000000-3 1.991471+5 2.018366-3 1.944933+5 2.065380-3 1.832472+5 2.089296-3 1.778772+5 2.162719-3 1.627180+5 2.213095-3 1.532905+5 2.238721-3 1.487890+5 2.290868-3 1.401084+5 2.300000-3 1.386615+5 2.344229-3 1.319069+5 2.371374-3 1.279893+5 2.400000-3 1.240308+5 2.426610-3 1.204848+5 2.511886-3 1.100274+5 2.600160-3 1.004260+5 2.660725-3 9.450521+4 2.691535-3 9.166960+4 2.754229-3 8.625823+4 2.786121-3 8.367473+4 2.800000-3 8.257703+4 2.917427-3 7.404427+4 2.951209-3 7.180073+4 3.000000-3 6.872410+4 3.019952-3 6.751413+4 3.054921-3 6.546448+4 3.126079-3 6.155520+4 3.300000-3 5.323279+4 3.349654-3 5.114601+4 3.388442-3 4.958299+4 3.427678-3 4.806914+4 3.467369-3 4.660282+4 3.507519-3 4.518253+4 3.548134-3 4.380102+4 3.801894-3 3.632281+4 3.845918-3 3.520997+4 3.890451-3 3.412404+4 3.935501-3 3.307255+4 3.981072-3 3.205440+4 4.027170-3 3.106850+4 4.073803-3 3.011301+4 4.315191-3 2.572938+4 4.415704-3 2.416441+4 4.466836-3 2.341440+4 4.518559-3 2.268837+4 4.570882-3 2.198488+4 4.623810-3 2.130328+4 4.897788-3 1.817809+4 5.011872-3 1.706346+4 5.069907-3 1.653276+4 5.188000-3 1.551605+4 5.248075-3 1.503173+4 5.308844-3 1.456254+4 5.370318-3 1.410472+4 5.559043-3 1.281418+4 5.754399-3 1.164439+4 5.821032-3 1.127935+4 5.888437-3 1.092607+4 6.095369-3 9.927277+3 6.165950-3 9.615344+3 6.237348-3 9.310916+3 6.309573-3 9.016363+3 6.382635-3 8.730574+3 6.683439-3 7.677068+3 6.760830-3 7.434570+3 6.839116-3 7.199943+3 7.079458-3 6.537685+3 7.161434-3 6.330925+3 7.244360-3 6.129138+3 7.328245-3 5.933939+3 7.413102-3 5.745052+3 7.673615-3 5.213349+3 7.852356-3 4.887019+3 8.035261-3 4.581644+3 8.222426-3 4.294614+3 8.302800-3 4.178840+3 8.302800-3 3.249153+4 8.317638-3 3.232315+4 8.413951-3 3.125712+4 8.420000-3 3.119175+4 8.470000-3 3.082921+4 8.511380-3 3.045295+4 8.709636-3 2.873675+4 8.810489-3 2.791524+4 8.850000-3 2.760235+4 9.120108-3 2.555102+4 9.332543-3 2.408416+4 9.440609-3 2.338278+4 9.549926-3 2.270157+4 9.660509-3 2.204021+4 9.772372-3 2.139742+4 1.000000-2 2.016778+4 1.011579-2 1.957988+4 1.023293-2 1.899015+4 1.109175-2 1.533131+4 1.122018-2 1.486970+4 1.135011-2 1.442138+4 1.161449-2 1.356505+4 1.174898-2 1.315622+4 1.188502-2 1.275977+4 1.202264-2 1.237528+4 1.303167-2 9.989986+3 1.318257-2 9.681165+3 1.333521-2 9.381528+3 1.380384-2 8.537223+3 1.412538-2 8.017089+3 1.531087-2 6.434219+3 1.548817-2 6.234971+3 1.566751-2 6.041894+3 1.603245-2 5.673529+3 1.621810-2 5.497869+3 1.659587-2 5.162744+3 1.678804-2 4.999507+3 1.778279-2 4.257622+3 1.819701-2 3.992441+3 1.862087-2 3.743717+3 1.883649-2 3.625238+3 1.905461-2 3.510513+3 1.927525-2 3.399428+3 1.949845-2 3.291864+3 2.018366-2 2.989219+3 2.065380-2 2.803085+3 2.089296-2 2.712888+3 2.137962-2 2.540936+3 2.187762-2 2.379876+3 2.213095-2 2.303207+3 2.238721-2 2.229012+3 2.344229-2 1.955408+3 2.426610-2 1.772522+3 2.454709-2 1.715449+3 2.483133-2 1.660157+3 2.540973-2 1.554859+3 2.630268-2 1.407271+3 2.660725-2 1.361260+3 2.917427-2 1.043413+3 3.019952-2 9.443119+2 3.054921-2 9.134145+2 3.090295-2 8.835274+2 3.162278-2 8.259585+2 3.198895-2 7.985986+2 3.273407-2 7.465696+2 3.311311-2 7.218392+2 3.467369-2 6.308514+2 3.589219-2 5.701646+2 3.801894-2 4.817143+2 3.910850-2 4.430178+2 3.935501-2 4.348444+2 4.120975-2 3.793712+2 4.168694-2 3.666460+2 4.315191-2 3.309417+2 4.570882-2 2.789921+2 4.731513-2 2.518268+2 5.069907-2 2.047290+2 5.188000-2 1.910636+2 5.432503-2 1.664066+2 5.559043-2 1.552991+2 5.623413-2 1.500267+2 5.956621-2 1.262328+2 6.237348-2 1.097997+2 6.382635-2 1.023975+2 6.606934-2 9.221863+1 6.760830-2 8.600157+1 7.079458-2 7.479726+1 7.413102-2 6.505345+1 7.762471-2 5.657962+1 7.852356-2 5.462344+1 8.128305-2 4.914722+1 8.511380-2 4.268966+1 8.709636-2 3.978661+1 9.332543-2 3.220960+1 9.549926-2 3.001959+1 9.660509-2 2.898111+1 1.011580-1 2.517429+1 1.023293-1 2.430353+1 1.035142-1 2.346287+1 1.047129-1 2.265090+1 1.071519-1 2.111034+1 1.122019-1 1.833648+1 1.161449-1 1.649812+1 1.174898-1 1.592729+1 1.230269-1 1.383482+1 1.288250-1 1.201733+1 1.303167-1 1.160158+1 1.333521-1 1.081278+1 1.380384-1 9.728994+0 1.396368-1 9.392461+0 1.445440-1 8.451116+0 1.462177-1 8.158805+0 1.500000-1 7.545959+0 1.531088-1 7.087216+0 1.621810-1 5.943524+0 1.640590-1 5.737973+0 1.659587-1 5.539538+0 1.678804-1 5.349725+0 1.698244-1 5.166413+0 1.717908-1 4.989413+0 1.778279-1 4.493966+0 1.840772-1 4.047737+0 1.862087-1 3.909197+0 1.883649-1 3.775398+0 1.905461-1 3.646178+0 2.041738-1 2.958645+0 2.065380-1 2.857391+0 2.089296-1 2.759602+0 2.162719-1 2.485877+0 2.213095-1 2.320771+0 2.238721-1 2.242391+0 2.264644-1 2.166658+0 2.290868-1 2.093572+0 2.317395-1 2.022954+0 2.344229-1 1.954721+0 2.426610-1 1.763535+0 2.454709-1 1.704056+0 2.483133-1 1.646585+0 2.540973-1 1.537391+0 2.600160-1 1.436902+0 2.630268-1 1.389165+0 2.660725-1 1.343013+0 2.691535-1 1.298453+0 2.722701-1 1.255373+0 2.754229-1 1.213721+0 2.818383-1 1.134520+0 2.884032-1 1.060487+0 2.917427-1 1.025305+0 2.951209-1 9.918133-1 2.985383-1 9.594145-1 3.019952-1 9.280751-1 3.054921-1 8.977664-1 3.090295-1 8.684480-1 3.126079-1 8.401325-1 3.198895-1 7.862412-1 3.235937-1 7.606076-1 3.273407-1 7.358114-1 3.311311-1 7.118237-1 3.427678-1 6.456032-1 3.467369-1 6.249335-1 3.507519-1 6.049261-1 3.589219-1 5.668814-1 3.715352-1 5.142555-1 3.758374-1 4.981377-1 3.801894-1 4.825252-1 3.845918-1 4.674021-1 3.890451-1 4.527584-1 3.935501-1 4.385734-1 3.981072-1 4.248593-1 4.027170-1 4.115748-1 4.120975-1 3.862387-1 4.168694-1 3.744150-1 4.216965-1 3.629541-1 4.315191-1 3.410741-1 4.365158-1 3.306375-1 4.415705-1 3.205402-1 4.518559-1 3.012626-1 4.570882-1 2.920635-1 4.677351-1 2.748936-1 4.731513-1 2.666910-1 4.786301-1 2.587333-1 4.841724-1 2.510157-1 4.897788-1 2.435451-1 4.954502-1 2.362975-1 5.069907-1 2.224431-1 5.128614-1 2.159897-1 5.188000-1 2.097236-1 5.308844-1 1.977314-1 5.370318-1 1.919975-1 5.432503-1 1.864428-1 5.495409-1 1.810489-1 5.559043-1 1.758112-1 5.623413-1 1.707251-1 5.688529-1 1.659145-1 5.754399-1 1.612394-1 5.821032-1 1.566964-1 5.888437-1 1.522831-1 5.956621-1 1.480045-1 6.000000-1 1.453699-1 6.025596-1 1.438462-1 6.165950-1 1.358771-1 6.237348-1 1.321633-1 6.382635-1 1.250381-1 6.456542-1 1.216223-1 6.531306-1 1.183086-1 6.606935-1 1.150853-1 6.760830-1 1.089001-1 6.839117-1 1.060225-1 6.998420-1 1.004934-1 7.079458-1 9.783908-2 7.085700-1 9.763880-2 7.244360-1 9.275517-2 7.328245-1 9.031361-2 7.498942-1 8.576587-2 7.673615-1 8.144716-2 7.762471-1 7.937102-2 7.943282-1 7.538724-2 8.035261-1 7.347115-2 8.413951-1 6.648365-2 8.511380-1 6.484324-2 8.609938-1 6.324404-2 8.912509-1 5.869011-2 9.015711-1 5.724633-2 9.120108-1 5.587580-2 9.225714-1 5.453820-2 9.332543-1 5.323326-2 9.549926-1 5.071631-2 9.660509-1 4.950731-2 9.772372-1 4.832724-2 1.000000+0 4.613878-2 1.011579+0 4.508255-2 1.023293+0 4.405042-2 1.035142+0 4.304213-2 1.059254+0 4.109843-2 1.071519+0 4.015980-2 1.083927+0 3.924256-2 1.096478+0 3.834631-2 1.109175+0 3.747055-2 1.122018+0 3.661486-2 1.148154+0 3.501542-2 1.161449+0 3.424247-2 1.174898+0 3.348954-2 1.216186+0 3.132887-2 1.244515+0 3.001393-2 1.258925+0 2.937735-2 1.273503+0 2.875422-2 1.288250+0 2.814635-2 1.303167+0 2.755137-2 1.348963+0 2.584081-2 1.364583+0 2.529460-2 1.380384+0 2.477537-2 1.412538+0 2.376865-2 1.428894+0 2.328103-2 1.513561+0 2.099560-2 1.566751+0 1.977678-2 1.584893+0 1.938664-2 1.621810+0 1.863173-2 1.640590+0 1.826537-2 1.659587+0 1.790623-2 1.678804+0 1.755416-2 1.698244+0 1.720900-2 1.757924+0 1.624675-2 1.778279+0 1.593828-2 1.798871+0 1.563663-2 1.819701+0 1.534070-2 1.862087+0 1.476555-2 1.883649+0 1.448612-2 1.905461+0 1.421198-2 1.972423+0 1.344672-2 2.000000+0 1.315098-2 2.044000+0 1.270192-2 2.089296+0 1.226513-2 2.113489+0 1.204176-2 2.137962+0 1.182246-2 2.162719+0 1.160717-2 2.238721+0 1.100514-2 2.264644+0 1.081159-2 2.317395+0 1.043579-2 2.371374+0 1.007305-2 2.398833+0 9.896454-3 2.426610+0 9.722950-3 2.454709+0 9.552498-3 2.540973+0 9.075087-3 2.570396+0 8.921391-3 2.630268+0 8.622694-3 2.691535+0 8.333999-3 2.722701+0 8.193305-3 2.786121+0 7.919000-3 2.818383+0 7.785320-3 2.917427+0 7.410101-3 2.951209+0 7.289151-3 3.019952+0 7.053863-3 3.090295+0 6.826176-3 3.126079+0 6.715107-3 3.198895+0 6.498363-3 3.235937+0 6.392634-3 3.349654+0 6.095198-3 3.388442+0 5.999160-3 3.427678+0 5.904963-3 3.507519+0 5.720982-3 3.589219+0 5.542735-3 3.630781+0 5.455708-3 3.715352+0 5.285735-3 3.758374+0 5.202750-3 3.890451+0 4.968912-3 3.935501+0 4.893326-3 4.000000+0 4.788903-3 4.120975+0 4.603260-3 4.216965+0 4.464741-3 4.265795+0 4.397055-3 4.365158+0 4.264748-3 4.415704+0 4.200099-3 4.570882+0 4.017521-3 4.623810+0 3.958445-3 4.731513+0 3.843262-3 4.897788+0 3.676744-3 5.011872+0 3.569760-3 5.069907+0 3.517443-3 5.188000+0 3.415100-3 5.248075+0 3.365053-3 5.495409+0 3.177524-3 5.559043+0 3.132299-3 5.688529+0 3.044054-3 5.888437+0 2.916324-3 6.025596+0 2.834164-3 6.095369+0 2.793958-3 6.237348+0 2.715249-3 6.309573+0 2.676732-3 6.606934+0 2.532171-3 6.683439+0 2.497268-3 6.918310+0 2.395722-3 7.161434+0 2.298304-3 7.328245+0 2.235571-3 7.498942+0 2.174552-3 7.673615+0 2.115198-3 7.762471+0 2.086134-3 8.128305+0 1.976857-3 8.222427+0 1.950445-3 8.511380+0 1.873526-3 8.810489+0 1.799640-3 9.120108+0 1.728669-3 9.332543+0 1.682918-3 9.660509+0 1.616552-3 9.885531+0 1.573771-3 1.035142+1 1.493632-3 1.047129+1 1.474243-3 1.071519+1 1.436325-3 1.109175+1 1.381266-3 1.135011+1 1.345739-3 1.161449+1 1.311126-3 1.216186+1 1.244550-3 1.303167+1 1.150972-3 1.364583+1 1.094032-3 1.380384+1 1.080243-3 1.400000+1 1.063624-3 1.412538+1 1.053255-3 1.428894+1 1.040016-3 1.500000+1 9.859766-4 1.757924+1 8.282438-4 1.840772+1 7.881716-4 1.862087+1 7.784604-4 1.883649+1 7.688890-4 1.905461+1 7.594352-4 1.927525+1 7.500981-4 2.041738+1 7.051066-4 2.454709+1 5.784898-4 2.570396+1 5.510737-4 2.600160+1 5.444252-4 2.630268+1 5.378700-4 2.660725+1 5.313937-4 2.722701+1 5.186745-4 2.851018+1 4.941420-4 3.715352+1 3.739885-4 3.890451+1 3.565817-4 3.935501+1 3.523580-4 3.981072+1 3.481854-4 4.027170+1 3.440685-4 4.120975+1 3.359802-4 4.265795+1 3.242029-4 6.382635+1 2.138095-4 6.839116+1 1.992639-4 6.918310+1 1.969377-4 6.998420+1 1.946391-4 7.161434+1 1.901274-4 7.328245+1 1.857203-4 1.202264+2 1.121704-4 1.273503+2 1.058339-4 1.303167+2 1.034007-4 1.318257+2 1.022052-4 1.333521+2 1.010245-4 1.364583+2 9.870373-5 2.398833+2 5.585417-5 2.540973+2 5.271717-5 2.600160+2 5.151227-5 2.630268+2 5.092024-5 2.660725+2 5.033527-5 2.722701+2 4.918541-5 9.549926+2 1.395958-5 1.011579+3 1.317820-5 1.035142+3 1.287803-5 1.047129+3 1.273052-5 1.059254+3 1.258475-5 1.083927+3 1.229819-5 1.000000+5 1.330992-7 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.090000-6 8.090000-6 1.466000-5 8.090000-6 1.466000-5 1.465528-5 1.492000-5 1.465411-5 1.492000-5 1.475768-5 2.213095-5 1.464441-5 7.673615-5 1.470281-5 7.821000-5 1.470322-5 7.821000-5 1.578985-5 8.048000-5 1.574131-5 8.048000-5 1.621661-5 9.015711-5 1.585649-5 9.580000-5 1.576075-5 1.015000-4 1.577693-5 1.100000-4 1.593904-5 1.186400-4 1.618726-5 1.186400-4 1.736067-5 1.678804-4 1.930726-5 1.905461-4 2.007784-5 2.220000-4 2.099010-5 2.540973-4 2.181007-5 2.900000-4 2.259511-5 3.311311-4 2.336131-5 3.850000-4 2.421140-5 4.518559-4 2.507864-5 5.308844-4 2.590159-5 6.309573-4 2.672714-5 7.500000-4 2.749521-5 8.670200-4 2.809372-5 8.670200-4 3.928807-5 8.682000-4 4.018821-5 8.695000-4 4.089814-5 8.712000-4 4.153489-5 8.733000-4 4.205888-5 8.762000-4 4.251685-5 8.810489-4 4.292545-5 8.849800-4 4.309183-5 8.849800-4 4.359812-5 8.900000-4 4.400206-5 8.989200-4 4.427856-5 9.240000-4 4.437048-5 1.006500-3 4.439316-5 1.006500-3 4.742814-5 1.603245-3 4.898538-5 2.400000-3 5.060750-5 3.388442-3 5.215698-5 4.623810-3 5.366315-5 6.165950-3 5.509716-5 8.035261-3 5.639892-5 8.302800-3 5.656291-5 8.302800-3 7.411272-5 1.412538-2 7.466781-5 2.660725-2 7.505325-5 7.413102-2 7.534737-5 6.760830-1 7.549124-5 1.000000+5 7.550042-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.090000-6 0.0 7.821000-5 0.0 7.821000-5 1.22596-10 7.910000-5 1.20932-10 8.000000-5 1.18598-10 8.048000-5 1.17054-10 8.048000-5 1.73553-10 8.128305-5 1.70706-10 8.230000-5 1.66336-10 8.609938-5 1.48285-10 8.730000-5 1.42854-10 8.912509-5 1.35538-10 9.070000-5 1.30324-10 9.190000-5 1.27053-10 9.350000-5 1.23721-10 9.500000-5 1.21586-10 9.650000-5 1.20442-10 9.800000-5 1.20164-10 9.950000-5 1.20740-10 1.015000-4 1.22594-10 1.030000-4 1.24728-10 1.050000-4 1.28430-10 1.080000-4 1.35434-10 1.109175-4 1.43745-10 1.128000-4 1.49533-10 1.150000-4 1.56749-10 1.186400-4 1.69486-10 1.186400-4 2.41809-10 1.244515-4 2.65008-10 1.333521-4 3.02348-10 1.480000-4 3.64986-10 1.605800-4 4.16630-10 1.720000-4 4.60502-10 1.840772-4 5.03462-10 1.980000-4 5.48372-10 2.137962-4 5.95833-10 2.290868-4 6.38818-10 2.500000-4 6.93256-10 2.691535-4 7.38759-10 2.900000-4 7.83251-10 3.100000-4 8.22068-10 3.311311-4 8.60548-10 3.548134-4 8.99919-10 3.850000-4 9.45548-10 4.200000-4 9.92372-10 4.518559-4 1.030379-9 4.954502-4 1.075929-9 5.432503-4 1.119718-9 6.095369-4 1.171013-9 6.839116-4 1.218256-9 7.500000-4 1.253548-9 8.222426-4 1.286306-9 8.670200-4 1.303979-9 8.670200-4 3.737515-6 8.671800-4 3.773647-6 8.675000-4 3.866186-6 8.678500-4 3.956445-6 8.682000-4 4.037323-6 8.686500-4 4.129080-6 8.695000-4 4.273734-6 8.705000-4 4.408547-6 8.712000-4 4.485678-6 8.725000-4 4.601872-6 8.733000-4 4.659967-6 8.751000-4 4.763205-6 8.774000-4 4.856153-6 8.800000-4 4.926812-6 8.830000-4 4.979084-6 8.849800-4 5.001927-6 8.849800-4 5.157047-6 8.880000-4 5.242896-6 8.913000-4 5.301541-6 8.965000-4 5.352625-6 9.035000-4 5.380746-6 9.240000-4 5.389226-6 1.006500-3 5.382734-6 1.006500-3 5.495297-6 2.065380-3 5.499874-6 7.328245-3 5.477211-6 8.302800-3 5.476223-6 8.302800-3 2.719170-3 1.023293-2 2.740497-3 1.412538-2 2.762256-3 2.187762-2 2.781337-3 3.935501-2 2.794281-3 1.303167-1 2.801361-3 1.000000+5 2.802912-3 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.090000-6 0.0 1.466000-5 6.570000-6 1.466000-5 4.718377-9 1.473500-5 7.981868-8 1.492000-5 2.658898-7 1.492000-5 1.623232-7 1.526000-5 5.043735-7 1.590000-5 1.153204-6 1.965000-5 4.980052-6 2.350000-5 8.861356-6 7.821000-5 6.350678-5 7.821000-5 6.242003-5 8.048000-5 6.473857-5 8.048000-5 6.426322-5 9.580000-5 8.003913-5 1.150000-4 9.892372-5 1.186400-4 1.024526-4 1.186400-4 1.012791-4 2.018366-4 1.814141-4 3.430000-4 3.194436-4 7.079458-4 6.807004-4 8.670200-4 8.389250-4 8.670200-4 8.239944-4 8.743000-4 8.273350-4 9.026800-4 8.529784-4 1.006500-3 9.567241-4 1.006500-3 9.535766-4 8.302800-3 8.240761-3 8.302800-3 5.509518-3 1.412538-2 1.128846-2 3.126079-1 3.097305-1 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.302800-3 2.831269+4 8.420000-3 2.717538+4 8.470000-3 2.687960+4 8.850000-3 2.411380+4 1.011579-2 1.719064+4 1.303167-2 8.829615+3 1.659587-2 4.584842+3 2.065380-2 2.497046+3 2.540973-2 1.388224+3 3.090295-2 7.901066+2 3.801894-2 4.313333+2 4.731513-2 2.257074+2 5.956621-2 1.132188+2 7.762471-2 5.077160+1 1.659587-1 4.973374+0 2.162719-1 2.232009+0 2.540973-1 1.380334+0 2.917427-1 9.205466-1 3.311311-1 6.390953-1 3.715352-1 4.617134-1 4.120975-1 3.467802-1 4.570882-1 2.622301-1 5.069907-1 1.997250-1 5.623413-1 1.532959-1 6.165950-1 1.220087-1 6.760830-1 9.778840-2 7.328245-1 8.110342-2 8.035261-1 6.598333-2 9.015711-1 5.141713-2 9.772372-1 4.340764-2 1.122018+0 3.288741-2 1.216186+0 2.813952-2 1.364583+0 2.271989-2 1.513561+0 1.885813-2 1.698244+0 1.545706-2 1.905461+0 1.276517-2 2.162719+0 1.042547-2 2.454709+0 8.580005-3 2.818383+0 6.992748-3 3.235937+0 5.741893-3 3.758374+0 4.673141-3 4.415704+0 3.772559-3 5.248075+0 3.022478-3 6.309573+0 2.404253-3 7.762471+0 1.873772-3 9.885531+0 1.413575-3 1.303167+1 1.033792-3 1.757924+1 7.439455-4 2.454709+1 5.196131-4 3.715352+1 3.359254-4 6.382635+1 1.920481-4 1.202264+2 1.007551-4 2.398833+2 5.017125-5 9.549926+2 1.253941-5 1.000000+5 1.195600-7 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.302800-3 7.670300-5 1.000000+5 7.670300-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.302800-3 3.119700-3 1.000000+5 3.119700-3 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.302800-3 5.106397-3 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.006500-3 1.278908+5 1.135011-3 1.071809+5 1.174898-3 1.020358+5 1.364583-3 8.120835+4 1.428894-3 7.551269+4 1.701200-3 5.653500+4 1.862087-3 4.827457+4 2.162719-3 3.684706+4 2.400000-3 3.030860+4 2.786121-3 2.270455+4 3.126079-3 1.802916+4 3.548134-3 1.390306+4 4.073803-3 1.038387+4 4.623810-3 7.893135+3 5.308844-3 5.809580+3 6.165950-3 4.133102+3 7.161434-3 2.915913+3 8.317638-3 2.040724+3 9.660509-3 1.417172+3 1.122018-2 9.768155+2 1.318257-2 6.489911+2 1.531087-2 4.406960+2 1.778279-2 2.972048+2 2.089296-2 1.930174+2 2.454709-2 1.244410+2 2.917427-2 7.715186+1 3.467369-2 4.748575+1 4.168694-2 2.806910+1 5.069907-2 1.592836+1 6.237348-2 8.671301+0 7.852356-2 4.375961+0 1.035142-1 1.908992+0 1.840772-1 3.358472-1 2.264644-1 1.808420-1 2.660725-1 1.125558-1 3.090295-1 7.297968-2 3.507519-1 5.094050-2 3.935501-1 3.699397-2 4.365158-1 2.792234-2 4.841724-1 2.121762-2 5.370318-1 1.624058-2 5.888437-1 1.288964-2 6.456542-1 1.029816-2 7.085700-1 8.269284-3 7.762471-1 6.724767-3 8.609938-1 5.358970-3 9.549926-1 4.297904-3 1.035142+0 3.646667-3 1.161449+0 2.901308-3 1.273503+0 2.436520-3 1.428894+0 1.972756-3 1.584893+0 1.642473-3 1.778279+0 1.350351-3 2.000000+0 1.114199-3 2.264644+0 9.161870-4 2.570396+0 7.559755-4 2.951209+0 6.176677-4 3.388442+0 5.083431-4 3.935501+0 4.146540-4 4.623810+0 3.354506-4 5.559043+0 2.654184-4 6.683439+0 2.116119-4 8.222427+0 1.652800-4 1.047129+1 1.249270-4 1.380384+1 9.155533-5 1.862087+1 6.597829-5 2.600160+1 4.614400-5 3.981072+1 2.951019-5 6.998420+1 1.649690-5 1.318257+2 8.664950-6 2.630268+2 4.316945-6 1.047129+3 1.079325-6 1.000000+5 1.128600-8 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.006500-3 6.986100-5 1.000000+5 6.986100-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.006500-3 6.327300-6 1.000000+5 6.327300-6 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.006500-3 9.303117-4 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.849800-4 1.275300+5 8.851600-4 1.311200+5 8.855000-4 1.402200+5 8.858500-4 1.492200+5 8.862000-4 1.578900+5 8.866500-4 1.686200+5 8.870000-4 1.765500+5 8.875000-4 1.875000+5 8.880000-4 1.978600+5 8.885000-4 2.076800+5 8.890000-4 2.170500+5 8.897000-4 2.294300+5 8.905000-4 2.425400+5 8.913000-4 2.545600+5 8.922000-4 2.668900+5 8.930000-4 2.768800+5 8.940000-4 2.881800+5 8.950000-4 2.982500+5 8.960000-4 3.071500+5 8.973000-4 3.171000+5 8.989200-4 3.272200+5 9.000000-4 3.327000+5 9.015711-4 3.391000+5 9.035000-4 3.447600+5 9.058000-4 3.489600+5 9.082500-4 3.511500+5 9.115000-4 3.515000+5 9.150000-4 3.498200+5 9.240000-4 3.426288+5 9.700000-4 3.059789+5 1.030000-3 2.616900+5 1.110000-3 2.176000+5 1.258925-3 1.588800+5 1.400000-3 1.209000+5 1.531087-3 9.540500+4 1.800000-3 6.149000+4 2.000000-3 4.582300+4 2.300000-3 3.081100+4 2.660725-3 2.017300+4 3.000000-3 1.414800+4 3.507519-3 8.836500+3 4.073803-3 5.580500+3 4.623810-3 3.758900+3 5.370318-3 2.339200+3 6.309573-3 1.391600+3 7.413102-3 8.209800+2 8.709636-3 4.805500+2 1.023293-2 2.791700+2 1.202264-2 1.610000+2 1.412538-2 9.219700+1 1.678804-2 5.036400+1 2.018366-2 2.622200+1 2.483133-2 1.247600+1 3.054921-2 5.891800+0 3.935501-2 2.336300+0 8.511380-2 1.366557-1 1.071519-1 5.892426-2 1.303167-1 2.903999-2 1.531088-1 1.632983-2 1.778279-1 9.636731-3 2.041738-1 5.963588-3 2.317395-1 3.869575-3 2.600160-1 2.630169-3 2.917427-1 1.801379-3 3.235937-1 1.290134-3 3.589219-1 9.306135-4 3.981072-1 6.761160-4 4.415705-1 4.948623-4 4.897788-1 3.649301-4 5.432503-1 2.712511-4 6.000000-1 2.056713-4 6.606935-1 1.583971-4 7.244360-1 1.243019-4 7.943282-1 9.827335-5 8.609938-1 8.022802-5 9.120108-1 6.978026-5 9.660509-1 6.106059-5 1.023293+0 5.381450-5 1.096478+0 4.658496-5 1.174898+0 4.062753-5 1.273503+0 3.497242-5 1.412538+0 2.905178-5 1.659587+0 2.196870-5 1.862087+0 1.810745-5 2.089296+0 1.503275-5 2.371374+0 1.234621-5 2.691535+0 1.021346-5 3.090295+0 8.366745-6 3.589219+0 6.793546-6 4.216965+0 5.472447-6 5.011872+0 4.375655-6 6.025596+0 3.473929-6 7.328245+0 2.740079-6 9.120108+0 2.118637-6 1.135011+1 1.649348-6 1.412538+1 1.291122-6 1.905461+1 9.309323-7 2.660725+1 6.514170-7 4.027170+1 4.218045-7 6.998420+1 2.386331-7 1.318257+2 1.253367-7 2.630268+2 6.244632-8 1.047129+3 1.561354-8 1.000000+5 1.63260-10 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.849800-4 4.707400-5 1.000000+5 4.707400-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.849800-4 6.222000-6 1.000000+5 6.222000-6 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.849800-4 8.316840-4 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.670200-4 2.674936+5 8.671800-4 2.740236+5 8.675000-4 2.917380+5 8.678500-4 3.103952+5 8.682000-4 3.284072+5 8.686500-4 3.505000+5 8.690000-4 3.669948+5 8.695000-4 3.894704+5 8.700000-4 4.109000+5 8.705000-4 4.312360+5 8.712000-4 4.579400+5 8.718000-4 4.793440+5 8.725000-4 5.027240+5 8.733000-4 5.274480+5 8.743000-4 5.554760+5 8.751000-4 5.757600+5 8.762000-4 6.007600+5 8.774000-4 6.245120+5 8.785000-4 6.433280+5 8.800000-4 6.648640+5 8.815000-4 6.821640+5 8.830000-4 6.957640+5 8.850000-4 7.090120+5 8.873000-4 7.186320+5 8.900000-4 7.241120+5 8.930000-4 7.250200+5 8.965000-4 7.217200+5 9.026800-4 7.104594+5 9.200000-4 6.759916+5 9.772372-4 5.876030+5 1.035142-3 5.050593+5 1.216186-3 3.368198+5 1.350000-3 2.572976+5 1.479108-3 2.020508+5 1.737801-3 1.301418+5 1.905461-3 1.006938+5 2.238721-3 6.356630+4 2.511886-3 4.545621+4 2.917427-3 2.916331+4 3.349654-3 1.920457+4 3.845918-3 1.255547+4 4.415704-3 8.149604+3 5.069907-3 5.252874+3 5.888437-3 3.239464+3 6.839116-3 1.982725+3 8.035261-3 1.159254+3 9.440609-3 6.723507+2 1.109175-2 3.869352+2 1.303167-2 2.209941+2 1.531087-2 1.253126+2 1.819701-2 6.770132+1 2.187762-2 3.482835+1 2.660725-2 1.704595+1 3.273407-2 7.935864+0 4.120975-2 3.366531+0 5.559043-2 1.094410+0 9.332543-2 1.554523-1 1.161449-1 6.861875-2 1.380384-1 3.623880-2 1.621810-1 2.011974-2 1.840772-1 1.275374-2 2.089296-1 8.143597-3 2.344229-1 5.455728-3 2.600160-1 3.829779-3 2.884032-1 2.707307-3 3.198895-1 1.928379-3 3.507519-1 1.436298-3 3.845918-1 1.077467-3 4.168694-1 8.432239-4 4.518559-1 6.640401-4 4.897788-1 5.262725-4 5.308844-1 4.199383-4 5.754399-1 3.373647-4 6.237348-1 2.728526-4 6.760830-1 2.222220-4 7.328245-1 1.822201-4 7.943282-1 1.503776-4 8.912509-1 1.153542-4 9.549926-1 9.902358-5 1.023293+0 8.563381-5 1.122018+0 7.108714-5 1.216186+0 6.080816-5 1.348963+0 5.018945-5 1.513561+0 4.089589-5 1.698244+0 3.352882-5 1.905461+0 2.768316-5 2.137962+0 2.302041-5 2.426610+0 1.893270-5 2.786121+0 1.541970-5 3.198895+0 1.265388-5 3.715352+0 1.029277-5 4.365158+0 8.304799-6 5.188000+0 6.650270-6 6.237348+0 5.287487-6 7.673615+0 4.119140-6 9.660509+0 3.147706-6 1.216186+1 2.423218-6 1.500000+1 1.918900-6 2.041738+1 1.372231-6 2.851018+1 9.616726-7 4.265795+1 6.310039-7 7.328245+1 3.615271-7 1.364583+2 1.922129-7 2.722701+2 9.577670-8 1.083927+3 2.395061-8 1.000000+5 2.59260-10 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.670200-4 4.659900-5 1.000000+5 4.659900-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.670200-4 6.177600-6 1.000000+5 6.177600-6 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.670200-4 8.142434-4 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.186400-4 2.995783+5 1.650000-4 2.645100+5 1.737801-4 2.587785+5 1.840772-4 2.505836+5 1.950000-4 2.407120+5 2.089296-4 2.274571+5 2.290868-4 2.089500+5 2.540973-4 1.884912+5 2.786121-4 1.708458+5 3.019952-4 1.557221+5 3.311311-4 1.389994+5 3.715352-4 1.196480+5 4.200000-4 1.012612+5 4.700000-4 8.620440+4 5.308844-4 7.183724+4 6.095369-4 5.800111+4 6.918310-4 4.729963+4 8.035261-4 3.686949+4 9.225714-4 2.907505+4 1.083927-3 2.184856+4 1.258925-3 1.662135+4 1.462177-3 1.255429+4 1.717908-3 9.207361+3 2.018366-3 6.700630+3 2.371374-3 4.840438+3 2.800000-3 3.435200+3 3.300000-3 2.428880+3 3.845918-3 1.746241+3 4.518559-3 1.224386+3 5.248075-3 8.742692+2 6.095369-3 6.198311+2 7.079458-3 4.362982+2 8.222426-3 3.049462+2 9.549926-3 2.116150+2 1.122018-2 1.416857+2 1.318257-2 9.412868+1 1.548817-2 6.205781+1 1.819701-2 4.060832+1 2.137962-2 2.637801+1 2.540973-2 1.648319+1 3.019952-2 1.022028+1 3.589219-2 6.289518+0 4.315191-2 3.718950+0 5.188000-2 2.182704+0 6.382635-2 1.188099+0 8.128305-2 5.794990-1 1.047129-1 2.711653-1 1.698244-1 6.305078-2 2.213095-1 2.857072-2 2.600160-1 1.775955-2 3.019952-1 1.150453-2 3.427678-1 8.020758-3 3.845918-1 5.817051-3 4.315191-1 4.250157-3 4.786301-1 3.227066-3 5.308844-1 2.468511-3 5.821032-1 1.958285-3 6.382635-1 1.563929-3 6.998420-1 1.257568-3 7.673615-1 1.018213-3 8.511380-1 8.093198-4 9.225714-1 6.812947-4 1.000000+0 5.771800-4 1.148154+0 4.388185-4 1.273503+0 3.597795-4 1.412538+0 2.972827-4 1.566751+0 2.474109-4 1.757924+0 2.032812-4 1.972423+0 1.682324-4 2.238721+0 1.376626-4 2.540973+0 1.135174-4 2.917427+0 9.271009-5 3.388442+0 7.505234-5 3.935501+0 6.121966-5 4.623810+0 4.952471-5 5.559043+0 3.918561-5 6.683439+0 3.124271-5 8.222427+0 2.440116-5 1.047129+1 1.844484-5 1.380384+1 1.351691-5 1.862087+1 9.741280-6 2.600160+1 6.812557-6 3.935501+1 4.409417-6 6.918310+1 2.464419-6 1.303167+2 1.294210-6 2.600160+2 6.447752-7 1.035142+3 1.612028-7 1.000000+5 1.666300-9 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.186400-4 4.057800-5 1.000000+5 4.057800-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.186400-4 1.672800-9 1.000000+5 1.672800-9 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.186400-4 7.806033-5 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 8.048000-5 3.137600+5 8.110000-5 3.099580+5 8.200000-5 3.025100+5 8.300000-5 2.925500+5 8.413951-5 2.800019+5 8.570000-5 2.619200+5 9.015711-5 2.148976+5 9.150000-5 2.034840+5 9.300000-5 1.925488+5 9.450000-5 1.835116+5 9.580000-5 1.771468+5 9.720000-5 1.717124+5 9.850000-5 1.678732+5 1.000000-4 1.647448+5 1.015000-4 1.628392+5 1.030000-4 1.619960+5 1.047129-4 1.621330+5 1.060000-4 1.628844+5 1.080000-4 1.649558+5 1.100000-4 1.678942+5 1.128000-4 1.730634+5 1.174898-4 1.833752+5 1.280000-4 2.084620+5 1.333521-4 2.205394+5 1.396368-4 2.333752+5 1.450000-4 2.429640+5 1.513561-4 2.524947+5 1.580000-4 2.603300+5 1.650000-4 2.663580+5 1.720000-4 2.702940+5 1.800000-4 2.725240+5 1.883649-4 2.726814+5 1.980000-4 2.707600+5 2.089296-4 2.666875+5 2.213095-4 2.604600+5 2.350000-4 2.522060+5 2.500000-4 2.420900+5 2.660725-4 2.305751+5 2.818383-4 2.189691+5 3.000000-4 2.056360+5 3.200000-4 1.914414+5 3.467369-4 1.738415+5 3.758374-4 1.565958+5 4.073803-4 1.399545+5 4.415704-4 1.241076+5 4.786301-4 1.092421+5 5.248075-4 9.373991+4 5.688529-4 8.147368+4 6.237348-4 6.889253+4 6.839116-4 5.780774+4 7.500000-4 4.818680+4 8.222426-4 3.991850+4 9.015711-4 3.284014+4 1.000000-3 2.618880+4 1.110000-3 2.069280+4 1.244515-3 1.585482+4 1.396368-3 1.203023+4 1.570000-3 9.011700+3 1.778279-3 6.574476+3 2.018366-3 4.732090+3 2.290868-3 3.378589+3 2.600160-3 2.394404+3 2.951209-3 1.683525+3 3.349654-3 1.175215+3 3.801894-3 8.144569+2 4.315191-3 5.603296+2 4.897788-3 3.827290+2 5.559043-3 2.595730+2 6.382635-3 1.686507+2 7.328245-3 1.087483+2 8.413951-3 6.961150+1 9.772372-3 4.260475+1 1.135011-2 2.588395+1 1.333521-2 1.501622+1 1.566751-2 8.644597+0 1.862087-2 4.745778+0 2.213095-2 2.585194+0 2.660725-2 1.342063+0 3.311311-2 6.110563-1 4.168694-2 2.648167-1 9.549926-2 1.274399-2 1.174898-1 6.012348-3 1.396368-1 3.237003-3 1.640590-1 1.829407-3 1.883649-1 1.129439-3 2.162719-1 7.025269-4 2.454709-1 4.580347-4 2.754229-1 3.126471-4 3.090295-1 2.149771-4 3.427678-1 1.545077-4 3.801894-1 1.118161-4 4.216965-1 8.152118-5 4.677351-1 5.989439-5 5.188000-1 4.435562-5 5.688529-1 3.419810-5 6.237348-1 2.654892-5 6.839117-1 2.075830-5 7.498942-1 1.634525-5 8.609938-1 1.152215-5 9.120108-1 1.001314-5 9.660509-1 8.755017-6 1.023293+0 7.711440-6 1.096478+0 6.673476-6 1.174898+0 5.818523-6 1.258925+0 5.111513-6 1.380384+0 4.331708-6 1.678804+0 3.087865-6 1.883649+0 2.546587-6 2.113489+0 2.115696-6 2.398833+0 1.738821-6 2.722701+0 1.439350-6 3.126079+0 1.179803-6 3.630781+0 9.585308-7 4.265795+0 7.725548-7 5.069907+0 6.180290-7 6.095369+0 4.909073-7 7.498942+0 3.820912-7 9.332543+0 2.956617-7 1.161449+1 2.303525-7 1.428894+1 1.827106-7 1.927525+1 1.317738-7 2.722701+1 9.112054-8 4.120975+1 5.902895-8 7.161434+1 3.340691-8 1.333521+2 1.775707-8 2.660725+2 8.847029-9 1.059254+3 2.212155-9 1.000000+5 2.34000-11 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 8.048000-5 2.917900-5 1.000000+5 2.917900-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.048000-5 1.714400-9 1.000000+5 1.714400-9 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.048000-5 5.129929-5 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 7.821000-5 6.657560+5 7.910000-5 6.507800+5 8.000000-5 6.321640+5 8.128305-5 6.019388+5 8.230000-5 5.766560+5 8.730000-5 4.625280+5 8.912509-5 4.305832+5 9.070000-5 4.080600+5 9.190000-5 3.939568+5 9.350000-5 3.790248+5 9.500000-5 3.687020+5 9.650000-5 3.615540+5 9.800000-5 3.571780+5 9.950000-5 3.551984+5 1.011579-4 3.553710+5 1.030000-4 3.579476+5 1.050000-4 3.629864+5 1.080000-4 3.737136+5 1.120000-4 3.916812+5 1.240000-4 4.521560+5 1.303167-4 4.817246+5 1.364583-4 5.071460+5 1.421600-4 5.273432+5 1.480000-4 5.444480+5 1.540000-4 5.582480+5 1.605800-4 5.691646+5 1.678804-4 5.765320+5 1.757924-4 5.796461+5 1.840772-4 5.784843+5 1.927525-4 5.735271+5 2.018366-4 5.653062+5 2.137962-4 5.512737+5 2.264644-4 5.339624+5 2.400000-4 5.137880+5 2.540973-4 4.915502+5 2.691535-4 4.672521+5 2.851018-4 4.414162+5 3.054921-4 4.093363+5 3.280000-4 3.761440+5 3.548134-4 3.401218+5 3.850000-4 3.041272+5 4.168694-4 2.706845+5 4.518559-4 2.386978+5 4.954502-4 2.051313+5 5.432503-4 1.749484+5 5.888437-4 1.512844+5 6.456542-4 1.271551+5 7.079458-4 1.061597+5 7.852356-4 8.599751+4 8.609938-4 7.078873+4 9.500000-4 5.713440+4 1.059254-3 4.473361+4 1.190000-3 3.412900+4 1.333521-3 2.598365+4 1.513561-3 1.901182+4 1.698244-3 1.420167+4 1.927525-3 1.022054+4 2.162719-3 7.524827+3 2.426610-3 5.504876+3 2.754229-3 3.874952+3 3.126079-3 2.707399+3 3.548134-3 1.877303+3 4.027170-3 1.292161+3 4.570882-3 8.829729+2 5.188000-3 5.990932+2 5.888437-3 4.036548+2 6.683439-3 2.700832+2 7.673615-3 1.729459+2 8.810489-3 1.099520+2 1.023293-2 6.679427+1 1.188502-2 4.026857+1 1.380384-2 2.410005+1 1.603245-2 1.432205+1 1.883649-2 8.116412+0 2.213095-2 4.566377+0 2.630268-2 2.447697+0 3.198895-2 1.197727+0 3.910850-2 5.705459-1 5.069907-2 2.169503-1 7.413102-2 5.219206-2 1.011580-1 1.630017-2 1.230269-1 7.875489-3 1.445440-1 4.354191-3 1.678804-1 2.528680-3 1.905461-1 1.607255-3 2.162719-1 1.029039-3 2.426610-1 6.912110-4 2.691535-1 4.865347-4 2.985383-1 3.450201-4 3.273407-1 2.559364-4 3.589219-1 1.911579-4 3.935501-1 1.438092-4 4.315191-1 1.090115-4 4.677351-1 8.610649-5 5.069907-1 6.845233-5 5.495409-1 5.478650-5 6.000000-1 4.330400-5 6.531306-1 3.476937-5 7.079458-1 2.841989-5 7.673615-1 2.338444-5 8.511380-1 1.835150-5 9.120108-1 1.571207-5 9.772372-1 1.353859-5 1.071519+0 1.120764-5 1.174898+0 9.341683-6 1.288250+0 7.851180-6 1.428894+0 6.504673-6 1.621810+0 5.211413-6 1.819701+0 4.290904-6 2.044000+0 3.551600-6 2.317395+0 2.917869-6 2.630268+0 2.410789-6 3.019952+0 1.972543-6 3.507519+0 1.599734-6 4.120975+0 1.287206-6 4.897788+0 1.028152-6 5.888437+0 8.154879-7 7.161434+0 6.426630-7 8.810489+0 5.031964-7 1.109175+1 3.862289-7 1.400000+1 2.975100-7 1.883649+1 2.150636-7 2.630268+1 1.504544-7 3.981072+1 9.739915-8 6.998420+1 5.444843-8 1.318257+2 2.859821-8 2.630268+2 1.424764-8 1.047129+3 3.562459-9 1.000000+5 3.72510-11 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 7.821000-5 2.900800-5 1.000000+5 2.900800-5 1 28000 7 7 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.821000-5 1.613900-9 1.000000+5 1.613900-9 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.821000-5 4.920039-5 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.492000-5 1.367682+6 1.690000-5 1.379581+6 1.750000-5 1.392541+6 1.819701-5 1.419248+6 1.883649-5 1.452297+6 1.950000-5 1.493690+6 2.041738-5 1.560385+6 2.162719-5 1.661213+6 2.317395-5 1.804790+6 2.900000-5 2.399011+6 3.162278-5 2.660997+6 3.388442-5 2.872086+6 3.630781-5 3.076205+6 3.850000-5 3.239584+6 4.073803-5 3.381707+6 4.300000-5 3.497568+6 4.518559-5 3.585008+6 4.731513-5 3.646903+6 5.000000-5 3.695776+6 5.248075-5 3.714930+6 5.500000-5 3.712384+6 5.821032-5 3.683524+6 6.165950-5 3.628954+6 6.531306-5 3.552584+6 7.000000-5 3.436704+6 7.500000-5 3.302016+6 8.035261-5 3.152743+6 8.609938-5 2.990380+6 9.225714-5 2.817923+6 9.800000-5 2.658762+6 1.047129-4 2.476230+6 1.109175-4 2.312995+6 1.174898-4 2.146301+6 1.244515-4 1.979665+6 1.330000-4 1.790422+6 1.428894-4 1.593848+6 1.531087-4 1.415687+6 1.659587-4 1.223807+6 1.778279-4 1.073349+6 1.927525-4 9.142999+5 2.080000-4 7.791008+5 2.220000-4 6.754016+5 2.426610-4 5.507990+5 2.660725-4 4.419717+5 2.900000-4 3.572096+5 3.126079-4 2.950906+5 3.430000-4 2.312115+5 3.758374-4 1.803382+5 4.200000-4 1.321581+5 4.623810-4 1.003138+5 5.069907-4 7.651095+4 5.623413-4 5.599417+4 6.309573-4 3.926202+4 7.000000-4 2.831046+4 7.852356-4 1.955981+4 8.810489-4 1.340494+4 9.885531-4 9.121496+3 1.109175-3 6.162934+3 1.244515-3 4.135481+3 1.412538-3 2.646252+3 1.603245-3 1.680586+3 1.819701-3 1.059508+3 2.065380-3 6.631804+2 2.344229-3 4.122701+2 2.660725-3 2.544506+2 3.019952-3 1.558973+2 3.427678-3 9.479625+1 3.890451-3 5.721791+1 4.415704-3 3.427929+1 5.011872-3 2.038902+1 5.754399-3 1.147822+1 6.683439-3 6.111257+0 7.852356-3 3.074657+0 9.332543-3 1.461004+0 1.161449-2 5.645769-1 1.380384-2 2.645873-1 1.603245-2 1.363223-1 1.949845-2 5.680647-2 2.426610-2 2.116958-2 3.273407-2 5.432402-3 5.188000-2 6.676272-4 6.606934-2 2.234826-4 8.128305-2 8.809396-5 9.660509-2 4.083314-5 1.122019-1 2.111962-5 1.288250-1 1.157305-5 1.462177-1 6.713825-6 1.659587-1 3.923545-6 1.862087-1 2.425083-6 2.065380-1 1.583074-6 2.290868-1 1.040386-6 2.540973-1 6.885943-7 2.818383-1 4.591935-7 3.126079-1 3.086489-7 3.427678-1 2.183342-7 3.758374-1 1.555078-7 4.120975-1 1.115573-7 4.518559-1 8.062736-8 4.954502-1 5.871630-8 5.432503-1 4.309634-8 5.956621-1 3.188164-8 6.531306-1 2.376250-8 7.079458-1 1.849829-8 7.673615-1 1.449746-8 8.035261-1 1.264539-8 8.511380-1 1.063195-8 8.912509-1 9.302375-9 9.332543-1 8.187840-9 9.772372-1 7.259371-9 1.011579+0 6.670105-9 1.059254+0 6.000130-9 1.109175+0 5.435097-9 1.161449+0 4.954230-9 1.216186+0 4.541721-9 1.303167+0 4.016132-9 1.428894+0 3.436341-9 1.513561+0 3.123734-9 1.798871+0 2.326916-9 2.000000+0 1.954300-9 2.264644+0 1.606759-9 2.570396+0 1.325795-9 2.951209+0 1.083334-9 3.427678+0 8.77521-10 4.000000+0 7.11670-10 4.731513+0 5.71127-10 5.688529+0 4.52338-10 6.918310+0 3.55993-10 8.511380+0 2.78395-10 1.071519+1 2.13442-10 1.380384+1 1.60582-10 1.862087+1 1.15720-10 2.600160+1 8.09327-11 3.935501+1 5.23832-11 6.918310+1 2.92771-11 1.303167+2 1.53755-11 2.600160+2 7.65977-12 1.035142+3 1.91506-12 1.000000+5 1.97960-14 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.492000-5 1.492000-5 1.000000+5 1.492000-5 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.492000-5 0.0 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.466000-5 2.162674+6 1.515000-5 2.123592+6 1.550000-5 2.105962+6 1.603245-5 2.095048+6 1.659587-5 2.100856+6 1.717908-5 2.122277+6 1.778279-5 2.158186+6 1.850000-5 2.215464+6 1.927525-5 2.291756+6 2.018366-5 2.395975+6 2.150000-5 2.567448+6 2.350000-5 2.857344+6 2.851018-5 3.636601+6 3.090295-5 3.999107+6 3.333800-5 4.344710+6 3.570000-5 4.648378+6 3.801894-5 4.908669+6 4.027170-5 5.123163+6 4.265795-5 5.307579+6 4.500000-5 5.443584+6 4.731513-5 5.538426+6 5.000000-5 5.601072+6 5.248075-5 5.620562+6 5.559043-5 5.603065+6 5.900000-5 5.540256+6 6.237348-5 5.445082+6 6.683439-5 5.288756+6 7.161434-5 5.098293+6 7.673615-5 4.880979+6 8.300000-5 4.611859+6 8.912509-5 4.348014+6 9.549926-5 4.078007+6 1.011579-4 3.842739+6 1.080000-4 3.564946+6 1.150000-4 3.293467+6 1.220000-4 3.035179+6 1.303167-4 2.751302+6 1.380384-4 2.510492+6 1.500000-4 2.181686+6 1.620000-4 1.900536+6 1.757924-4 1.629812+6 1.905461-4 1.388520+6 2.018366-4 1.232139+6 2.187762-4 1.034189+6 2.350000-4 8.788752+5 2.540973-4 7.312615+5 2.800000-4 5.770272+5 3.100000-4 4.459075+5 3.430000-4 3.416616+5 3.801894-4 2.579583+5 4.216965-4 1.928169+5 4.677351-4 1.430156+5 5.128614-4 1.089663+5 5.688529-4 7.962502+4 6.382635-4 5.574263+4 7.079458-4 4.016291+4 7.943282-4 2.768415+4 8.912509-4 1.894208+4 1.000000-3 1.286947+4 1.122018-3 8.681191+3 1.258925-3 5.815666+3 1.428894-3 3.714552+3 1.621810-3 2.354873+3 1.840772-3 1.481953+3 2.089296-3 9.259078+2 2.371374-3 5.744519+2 2.691535-3 3.538088+2 3.054921-3 2.163002+2 3.467369-3 1.312360+2 3.935501-3 7.903017+1 4.466836-3 4.723121+1 5.069907-3 2.802057+1 5.821032-3 1.572510+1 6.760830-3 8.341922+0 7.673615-3 4.847906+0 9.120108-3 2.293689+0 1.161449-2 7.972552-1 1.380384-2 3.721152-1 1.603245-2 1.909754-1 1.927525-2 8.334573-2 2.344229-2 3.426046-2 3.019952-2 1.074798-2 5.623413-2 6.168958-4 7.079458-2 2.154263-4 8.709636-2 8.419731-5 1.023293-1 4.084645-5 1.174898-1 2.212474-5 1.333521-1 1.270258-5 1.500000-1 7.641400-6 1.678804-1 4.732982-6 1.862087-1 3.067922-6 2.065380-1 2.003667-6 2.264644-1 1.381449-6 2.483133-1 9.591901-7 2.722701-1 6.710614-7 2.951209-1 4.941826-7 3.198895-1 3.663742-7 3.467369-1 2.735507-7 3.758374-1 2.057682-7 4.027170-1 1.622185-7 4.365158-1 1.239158-7 4.731513-1 9.539505-8 5.128614-1 7.399119-8 5.559043-1 5.781503-8 6.025596-1 4.553411-8 6.531306-1 3.616491-8 7.079458-1 2.895584-8 7.943282-1 2.129978-8 8.511380-1 1.784029-8 9.015711-1 1.548468-8 9.549926-1 1.352698-8 1.011579+0 1.190383-8 1.083927+0 1.029264-8 1.161449+0 8.964162-9 1.244515+0 7.871628-9 1.380384+0 6.529279-9 1.640590+0 4.835128-9 1.862087+0 3.907586-9 2.089296+0 3.244136-9 2.371374+0 2.664403-9 2.691535+0 2.204114-9 3.090295+0 1.805544-9 3.589219+0 1.466031-9 4.216965+0 1.180946-9 5.011872+0 9.44282-10 6.025596+0 7.49697-10 7.328245+0 5.91330-10 9.120108+0 4.57207-10 1.135011+1 3.55935-10 1.412538+1 2.78631-10 1.905461+1 2.00900-10 2.660725+1 1.40580-10 4.027170+1 9.10278-11 6.998420+1 5.14992-11 1.318257+2 2.70486-11 2.630268+2 1.34760-11 1.047129+3 3.36946-12 1.000000+5 3.52330-14 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.466000-5 1.466000-5 1.000000+5 1.466000-5 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.466000-5 0.0 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.090000-6 2.269579+6 8.413951-6 1.776706+6 8.709636-6 1.421950+6 9.015711-6 1.128344+6 9.280000-6 9.227740+5 9.549926-6 7.502071+5 9.772372-6 6.313501+5 1.000000-5 5.279380+5 1.023293-5 4.383428+5 1.042000-5 3.766140+5 1.060000-5 3.246500+5 1.077000-5 2.814840+5 1.096478-5 2.382017+5 1.115000-5 2.024600+5 1.127000-5 1.818046+5 1.142000-5 1.584824+5 1.157000-5 1.376814+5 1.172000-5 1.191546+5 1.188502-5 1.011431+5 1.202264-5 8.783326+4 1.218400-5 7.401635+4 1.230269-5 6.497244+4 1.245000-5 5.494680+4 1.255000-5 4.883980+4 1.265000-5 4.325360+4 1.275000-5 3.815500+4 1.285000-5 3.351260+4 1.295000-5 2.929600+4 1.305000-5 2.547780+4 1.315000-5 2.203180+4 1.325000-5 1.893364+4 1.333521-5 1.655083+4 1.342000-5 1.440100+4 1.350000-5 1.256344+4 1.357000-5 1.109974+4 1.365000-5 9.583220+3 1.372000-5 8.386340+3 1.380384-5 7.104139+3 1.387000-5 6.203120+3 1.395000-5 5.237240+3 1.402500-5 4.448533+3 1.425000-5 2.703420+3 1.430000-5 2.432080+3 1.435000-5 2.199940+3 1.438500-5 2.060000+3 1.442000-5 1.938140+3 1.446000-5 1.820396+3 1.448500-5 1.758194+3 1.452000-5 1.685476+3 1.455000-5 1.636198+3 1.457000-5 1.609900+3 1.460000-5 1.580096+3 1.463000-5 1.561643+3 1.466000-5 1.554284+3 1.468500-5 1.556456+3 1.471000-5 1.566028+3 1.473500-5 1.582864+3 1.476500-5 1.612468+3 1.480000-5 1.659678+3 1.483500-5 1.720202+3 1.487000-5 1.793688+3 1.491000-5 1.893114+3 1.496236-5 2.047355+3 1.503000-5 2.285460+3 1.513561-5 2.739831+3 1.526000-5 3.394560+3 1.535000-5 3.942360+3 1.542000-5 4.408260+3 1.550000-5 4.980680+3 1.557000-5 5.514420+3 1.565000-5 6.159660+3 1.573200-5 6.857517+3 1.580000-5 7.462420+3 1.590000-5 8.392060+3 1.600000-5 9.365660+3 1.610000-5 1.037930+4 1.621810-5 1.162299+4 1.635000-5 1.306494+4 1.645000-5 1.419112+4 1.660000-5 1.592668+4 1.675000-5 1.770968+4 1.690000-5 1.953180+4 1.705000-5 2.138560+4 1.720000-5 2.326400+4 1.737801-5 2.551677+4 1.757924-5 2.808322+4 1.778279-5 3.068939+4 1.800000-5 3.346940+4 1.822000-5 3.627300+4 1.850000-5 3.980820+4 1.873700-5 4.276022+4 1.905461-5 4.664318+4 1.935000-5 5.016660+4 1.965000-5 5.364820+4 2.000000-5 5.757720+4 2.041738-5 6.206443+4 2.070000-5 6.497680+4 2.113489-5 6.925557+4 2.162719-5 7.380204+4 2.213095-5 7.813080+4 2.270000-5 8.263640+4 2.330000-5 8.696260+4 2.400000-5 9.149000+4 2.483133-5 9.619754+4 2.570396-5 1.004220+5 2.660725-5 1.041040+5 2.770000-5 1.077366+5 2.884032-5 1.107030+5 3.019952-5 1.133144+5 3.162278-5 1.151597+5 3.311311-5 1.163076+5 3.507519-5 1.168725+5 3.730000-5 1.165376+5 3.981072-5 1.152570+5 4.265795-5 1.130232+5 4.570882-5 1.100572+5 4.900000-5 1.064594+5 5.308844-5 1.017166+5 5.754399-5 9.642996+4 6.237348-5 9.075781+4 6.760830-5 8.483277+4 7.328245-5 7.876640+4 8.000000-5 7.210900+4 8.709636-5 6.574513+4 9.549926-5 5.906411+4 1.059254-4 5.196127+4 1.188502-4 4.474006+4 1.364583-4 3.710792+4 1.621810-4 2.915291+4 2.018366-4 2.129679+4 3.019952-4 1.185258+4 3.507519-4 9.457829+3 4.027170-4 7.625269+3 4.677351-4 5.981542+3 5.688529-4 4.317066+3 6.760830-4 3.214093+3 8.128305-4 2.330454+3 9.660509-4 1.710762+3 1.135011-3 1.272151+3 1.333521-3 9.390936+2 1.584893-3 6.731131+2 1.883649-3 4.786731+2 2.213095-3 3.456200+2 2.660725-3 2.362651+2 3.388442-3 1.420179+2 3.981072-3 1.004135+2 4.570882-3 7.399204+1 5.308844-3 5.275830+1 6.237348-3 3.635612+1 7.244360-3 2.554974+1 8.511380-3 1.733994+1 1.000000-2 1.167491+1 1.174898-2 7.798345+0 1.380384-2 5.168997+0 1.621810-2 3.400438+0 1.905461-2 2.220516+0 2.238721-2 1.439426+0 2.660725-2 8.975962-1 3.162278-2 5.554097-1 3.801894-2 3.301551-1 4.570882-2 1.947676-1 5.432503-2 1.179574-1 6.760830-2 6.198198-2 8.709636-2 2.917413-2 1.071519-1 1.566059-2 1.717908-1 3.771312-3 2.238721-1 1.709640-3 2.630268-1 1.063296-3 3.054921-1 6.892521-4 3.467369-1 4.808895-4 3.890451-1 3.490491-4 4.315191-1 2.632934-4 4.786301-1 1.999531-4 5.308844-1 1.529840-4 5.821032-1 1.213896-4 6.382635-1 9.697243-5 6.998420-1 7.800672-5 7.673615-1 6.319246-5 8.413951-1 5.155021-5 9.225714-1 4.236332-5 1.000000+0 3.591100-5 1.148154+0 2.731172-5 1.273503+0 2.239982-5 1.412538+0 1.850328-5 1.566751+0 1.539221-5 1.757924+0 1.264525-5 1.972423+0 1.046625-5 2.238721+0 8.566483-6 2.540973+0 7.063988-6 2.917427+0 5.768388-6 3.349654+0 4.744798-6 3.890451+0 3.868190-6 4.570882+0 3.127631-6 5.495409+0 2.473398-6 6.606934+0 1.971160-6 8.128305+0 1.538913-6 1.035142+1 1.162790-6 1.364583+1 8.517758-7 1.840772+1 6.136694-7 2.570396+1 4.290674-7 3.890451+1 2.776455-7 6.839116+1 1.551477-7 1.273503+2 8.242315-8 2.540973+2 4.105647-8 1.011579+3 1.026390-8 1.000000+5 1.03680-10 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.090000-6 8.090000-6 1.000000+5 8.090000-6 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.090000-6 0.0 1.000000+5 1.000000+5 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.612170-8 1.028750+0 3.612170-7 1.032000+0 1.163940-6 1.033200+0 1.630490-6 1.034000+0 2.001570-6 1.035300+0 2.716850-6 1.036640+0 3.612170-6 1.038200+0 4.874740-6 1.039700+0 6.333270-6 1.041500+0 8.426340-6 1.043800+0 1.169600-5 1.046400+0 1.627280-5 1.048300+0 2.026010-5 1.051200+0 2.748240-5 1.054080+0 3.612170-5 1.057700+0 4.923610-5 1.061100+0 6.404380-5 1.065100+0 8.478680-5 1.070400+0 1.182860-4 1.076200+0 1.634710-4 1.080600+0 2.041480-4 1.087100+0 2.750560-4 1.093710+0 3.612170-4 1.102600+0 5.008260-4 1.110700+0 6.531830-4 1.120600+0 8.737740-4 1.133300+0 1.214950-3 1.147500+0 1.677500-3 1.158200+0 2.084720-3 1.174100+0 2.786230-3 1.190110+0 3.612170-3 1.205100+0 4.495940-3 1.227500+0 6.016860-3 1.250000+0 7.777000-3 1.265600+0 9.125440-3 1.294900+0 1.192250-2 1.331800+0 1.589680-2 1.362600+0 1.956100-2 1.411700+0 2.598810-2 1.455800+0 3.232570-2 1.500000+0 3.921000-2 1.562500+0 4.987150-2 1.617200+0 6.006170-2 1.712900+0 7.964040-2 1.784700+0 9.561150-2 1.892300+0 1.211370-1 2.000000+0 1.479000-1 2.044000+0 1.590000-1 2.163500+0 1.896230-1 2.372600+0 2.443230-1 2.647100+0 3.166040-1 3.000000+0 4.082000-1 3.437500+0 5.177310-1 4.000000+0 6.505000-1 4.750000+0 8.131600-1 5.000000+0 8.642000-1 6.000000+0 1.054000+0 7.000000+0 1.223000+0 8.000000+0 1.375000+0 9.000000+0 1.513000+0 1.000000+1 1.637000+0 1.100000+1 1.751000+0 1.200000+1 1.854000+0 1.300000+1 1.950000+0 1.400000+1 2.039000+0 1.500000+1 2.123000+0 1.600000+1 2.201000+0 1.800000+1 2.344000+0 2.000000+1 2.471000+0 2.200000+1 2.587000+0 2.400000+1 2.692000+0 2.600000+1 2.788000+0 2.800000+1 2.876000+0 3.000000+1 2.957000+0 4.000000+1 3.289000+0 5.000000+1 3.537000+0 6.000000+1 3.732000+0 8.000000+1 4.021000+0 1.000000+2 4.228000+0 1.500000+2 4.559000+0 2.000000+2 4.757000+0 3.000000+2 4.989000+0 4.000000+2 5.122000+0 5.000000+2 5.210000+0 6.000000+2 5.273000+0 8.000000+2 5.356000+0 1.000000+3 5.411000+0 1.500000+3 5.489000+0 2.000000+3 5.532000+0 3.000000+3 5.578000+0 4.000000+3 5.603000+0 5.000000+3 5.619000+0 6.000000+3 5.630000+0 8.000000+3 5.644000+0 1.000000+4 5.653000+0 1.500000+4 5.665000+0 2.000000+4 5.672000+0 3.000000+4 5.679000+0 4.000000+4 5.683000+0 5.000000+4 5.685000+0 6.000000+4 5.686000+0 8.000000+4 5.689000+0 1.000000+5 5.690000+0 1 28000 7 8 5.871000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.812340-7 2.114000+0 1.267800-6 2.119500+0 1.578410-6 2.127900+0 2.140620-6 2.136250+0 2.812340-6 2.147000+0 3.855920-6 2.156900+0 5.008370-6 2.169000+0 6.683990-6 2.184500+0 9.290960-6 2.201800+0 1.285430-5 2.214800+0 1.601550-5 2.234200+0 2.154360-5 2.253680+0 2.812340-5 2.281500+0 3.939180-5 2.307000+0 5.174100-5 2.338200+0 6.957030-5 2.377400+0 9.634650-5 2.410200+0 1.225370-4 2.446800+0 1.558740-4 2.485900+0 1.962530-4 2.532900+0 2.511620-4 2.556430+0 2.812340-4 2.611900+0 3.586040-4 2.660400+0 4.335330-4 2.745300+0 5.802560-4 2.809000+0 7.027230-4 2.904500+0 9.052900-4 3.000000+0 1.130000-3 3.125000+0 1.457100-3 3.234400+0 1.772970-3 3.425800+0 2.387580-3 3.569300+0 2.895240-3 3.784700+0 3.722010-3 4.000000+0 4.611000-3 4.250000+0 5.698180-3 4.625000+0 7.407430-3 5.000000+0 9.185000-3 5.500000+0 1.162570-2 6.000000+0 1.410000-2 6.750000+0 1.778540-2 7.000000+0 1.900000-2 8.000000+0 2.376000-2 9.000000+0 2.831000-2 1.000000+1 3.264000-2 1.100000+1 3.674000-2 1.200000+1 4.061000-2 1.300000+1 4.426000-2 1.400000+1 4.775000-2 1.500000+1 5.104000-2 1.600000+1 5.418000-2 1.800000+1 6.001000-2 2.000000+1 6.532000-2 2.200000+1 7.020000-2 2.400000+1 7.469000-2 2.600000+1 7.884000-2 2.800000+1 8.271000-2 3.000000+1 8.631000-2 4.000000+1 1.013000-1 5.000000+1 1.128000-1 6.000000+1 1.220000-1 8.000000+1 1.359000-1 1.000000+2 1.461000-1 1.500000+2 1.632000-1 2.000000+2 1.740000-1 3.000000+2 1.874000-1 4.000000+2 1.954000-1 5.000000+2 2.010000-1 6.000000+2 2.051000-1 8.000000+2 2.107000-1 1.000000+3 2.145000-1 1.500000+3 2.201000-1 2.000000+3 2.233000-1 3.000000+3 2.268000-1 4.000000+3 2.289000-1 5.000000+3 2.301000-1 6.000000+3 2.310000-1 8.000000+3 2.322000-1 1.000000+4 2.330000-1 1.500000+4 2.340000-1 2.000000+4 2.346000-1 3.000000+4 2.352000-1 4.000000+4 2.355000-1 5.000000+4 2.358000-1 6.000000+4 2.359000-1 8.000000+4 2.360000-1 1.000000+5 2.362000-1 1 28000 7 8 5.871000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 28000 7 9 5.871000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.800000+1 1.000000+5 2.800000+1 5.000000+5 2.798400+1 7.500000+5 2.797170+1 1.000000+6 2.796300+1 1.250000+6 2.795150+1 1.500000+6 2.793800+1 2.000000+6 2.789000+1 2.500000+6 2.782900+1 3.000000+6 2.775500+1 3.500000+6 2.766800+1 4.000000+6 2.757300+1 4.500000+6 2.746740+1 5.000000+6 2.735300+1 5.500000+6 2.722600+1 6.156200+6 2.704420+1 6.500000+6 2.694270+1 6.718700+6 2.687870+1 7.000000+6 2.679300+1 7.500000+6 2.663520+1 8.250000+6 2.638840+1 8.500000+6 2.630640+1 9.000000+6 2.613900+1 9.750000+6 2.588060+1 1.000000+7 2.579500+1 1.062500+7 2.557200+1 1.156300+7 2.522920+1 1.187500+7 2.511160+1 1.250000+7 2.488000+1 1.375000+7 2.440910+1 1.500000+7 2.394600+1 1.750000+7 2.303900+1 2.000000+7 2.213500+1 2.250000+7 2.124830+1 2.500000+7 2.038000+1 2.750000+7 1.952790+1 3.000000+7 1.868900+1 3.250000+7 1.786280+1 3.500000+7 1.706030+1 3.578100+7 1.681560+1 3.859400+7 1.595550+1 4.000000+7 1.554200+1 4.437500+7 1.432160+1 4.500000+7 1.415690+1 4.812500+7 1.336450+1 5.000000+7 1.291800+1 5.500000+7 1.182260+1 5.750000+7 1.132740+1 6.000000+7 1.086800+1 6.750000+7 9.679070+0 7.000000+7 9.342500+0 7.750000+7 8.488910+0 8.000000+7 8.249500+0 8.750000+7 7.644980+0 9.000000+7 7.474100+0 1.000000+8 6.906000+0 1.125000+8 6.358250+0 1.250000+8 5.901300+0 1.375000+8 5.485720+0 1.468800+8 5.188470+0 1.500000+8 5.091400+0 1.589800+8 4.815480+0 1.665000+8 4.586810+0 1.748800+8 4.334060+0 1.750000+8 4.330480+0 1.838500+8 4.065460+0 1.919300+8 3.825970+0 2.000000+8 3.590100+0 2.125000+8 3.239670+0 2.312500+8 2.800400+0 2.375000+8 2.682850+0 2.406300+8 2.629690+0 2.476600+8 2.524120+0 2.500000+8 2.492900+0 2.562500+8 2.419300+0 2.808600+8 2.184930+0 2.875000+8 2.121330+0 2.877000+8 2.119350+0 2.959000+8 2.034120+0 3.000000+8 1.988200+0 3.062500+8 1.913960+0 3.335900+8 1.607570+0 3.418000+8 1.538130+0 3.479500+8 1.495760+0 3.500000+8 1.483500+0 3.562500+8 1.452100+0 3.617200+8 1.430400+0 3.712900+8 1.401610+0 4.000000+8 1.339100+0 4.125000+8 1.306380+0 4.234400+8 1.274000+0 4.425800+8 1.213560+0 4.856400+8 1.085650+0 5.000000+8 1.050200+0 5.250000+8 9.986950-1 5.718800+8 9.187520-1 6.000000+8 8.724000-1 6.250000+8 8.295940-1 7.000000+8 7.138000-1 7.625000+8 6.408440-1 7.875000+8 6.121000-1 8.000000+8 5.972000-1 8.250000+8 5.659370-1 8.564500+8 5.256760-1 8.827600+8 4.923950-1 9.246300+8 4.420860-1 9.811600+8 3.819130-1 1.000000+9 3.641000-1 1.125000+9 2.701740-1 1.218800+9 2.196260-1 1.315400+9 1.792940-1 1.381300+9 1.568220-1 1.460400+9 1.340640-1 1.500000+9 1.241100-1 1.562500+9 1.100420-1 1.671900+9 8.959360-2 1.753900+9 7.715470-2 1.877000+9 6.212000-2 2.000000+9 5.049600-2 2.187500+9 3.747560-2 2.445700+9 2.564220-2 2.682600+9 1.861000-2 2.972200+9 1.297100-2 3.344000+9 8.512130-3 3.580600+9 6.650940-3 4.290300+9 3.440490-3 5.000000+9 1.960500-3 8.000000+9 3.477800-4 9.500000+9 1.854330-4 1.00000+10 1.538400-4 1.20500+10 7.846780-5 1.41820+10 4.388060-5 1.71170+10 2.260180-5 2.01490+10 1.279620-5 2.26440+10 8.545020-6 2.74790+10 4.402000-6 3.20120+10 2.621320-6 3.62610+10 1.722420-6 4.42280+10 8.869530-7 5.12000+10 5.460220-7 6.34000+10 2.704650-7 7.94120+10 1.298830-7 1.00000+11 6.169600-8 1.17140+11 3.714390-8 1.55940+11 1.493630-8 2.04410+11 6.356470-9 2.99030+11 1.935510-9 4.21500+11 6.69193-10 7.29680+11 1.24947-10 1.61310+12 1.14624-11 4.52640+12 5.40148-13 2.12750+13 5.91704-15 1.00000+14 6.61710-17 5.62340+14 4.21750-19 7.49890+15 1.98196-22 1.00000+17 8.85400-26 1 28000 7 0 5.871000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.50000-12 1.000000+2 4.50000-10 1.000000+3 4.500000-8 1.000000+4 4.500000-6 1.000000+5 4.500000-4 5.000000+5 1.125000-2 7.500000+5 2.531250-2 1.000000+6 4.500000-2 1.250000+6 7.030780-2 1.500000+6 1.009000-1 2.000000+6 1.774000-1 2.500000+6 2.734000-1 3.000000+6 3.872000-1 3.500000+6 5.168970-1 4.000000+6 6.605000-1 4.500000+6 8.159590-1 5.000000+6 9.810000-1 5.500000+6 1.153280+0 6.156200+6 1.387330+0 6.500000+6 1.512240+0 6.718700+6 1.592210+0 7.000000+6 1.695500+0 7.500000+6 1.879070+0 8.250000+6 2.153190+0 8.500000+6 2.243720+0 9.000000+6 2.423000+0 9.750000+6 2.685980+0 1.000000+7 2.772000+0 1.062500+7 2.982590+0 1.156300+7 3.288270+0 1.187500+7 3.387330+0 1.250000+7 3.582000+0 1.375000+7 3.958370+0 1.500000+7 4.322000+0 1.750000+7 5.028700+0 2.000000+7 5.726000+0 2.250000+7 6.422360+0 2.500000+7 7.114900+0 2.750000+7 7.796140+0 3.000000+7 8.461000+0 3.250000+7 9.103040+0 3.500000+7 9.722590+0 3.578100+7 9.911970+0 3.859400+7 1.057350+1 4.000000+7 1.089400+1 4.437500+7 1.184480+1 4.500000+7 1.197630+1 4.812500+7 1.261120+1 5.000000+7 1.298000+1 5.500000+7 1.391270+1 5.750000+7 1.435380+1 6.000000+7 1.478000+1 6.750000+7 1.595620+1 7.000000+7 1.631700+1 7.750000+7 1.730240+1 8.000000+7 1.760200+1 8.750000+7 1.841680+1 9.000000+7 1.866400+1 1.000000+8 1.954300+1 1.125000+8 2.045040+1 1.250000+8 2.120900+1 1.375000+8 2.186370+1 1.468800+8 2.230630+1 1.500000+8 2.244500+1 1.589800+8 2.282350+1 1.665000+8 2.311840+1 1.748800+8 2.342440+1 1.750000+8 2.342850+1 1.838500+8 2.372690+1 1.919300+8 2.397850+1 2.000000+8 2.421100+1 2.125000+8 2.453430+1 2.312500+8 2.495320+1 2.375000+8 2.507580+1 2.406300+8 2.513620+1 2.476600+8 2.526040+1 2.500000+8 2.530100+1 2.562500+8 2.540020+1 2.808600+8 2.574320+1 2.875000+8 2.582380+1 2.877000+8 2.582610+1 2.959000+8 2.591720+1 3.000000+8 2.596200+1 3.062500+8 2.602440+1 3.335900+8 2.626830+1 3.418000+8 2.633190+1 3.479500+8 2.637860+1 3.500000+8 2.639400+1 3.562500+8 2.643710+1 3.617200+8 2.647420+1 3.712900+8 2.653800+1 4.000000+8 2.671000+1 4.125000+8 2.677570+1 4.234400+8 2.683170+1 4.425800+8 2.692650+1 4.856400+8 2.711080+1 5.000000+8 2.716600+1 5.250000+8 2.725290+1 5.718800+8 2.739820+1 6.000000+8 2.747500+1 6.250000+8 2.753200+1 7.000000+8 2.767600+1 7.625000+8 2.776070+1 7.875000+8 2.778850+1 8.000000+8 2.780200+1 8.250000+8 2.782400+1 8.564500+8 2.784950+1 8.827600+8 2.786660+1 9.246300+8 2.789280+1 9.811600+8 2.791800+1 1.000000+9 2.792600+1 1.125000+9 2.796000+1 1.218800+9 2.797210+1 1.315400+9 2.798350+1 1.381300+9 2.798670+1 1.460400+9 2.799030+1 1.500000+9 2.799200+1 1.562500+9 2.799300+1 1.671900+9 2.799460+1 1.753900+9 2.799580+1 1.877000+9 2.799750+1 2.000000+9 2.799900+1 2.187500+9 2.799910+1 2.445700+9 2.799920+1 2.682600+9 2.799930+1 2.972200+9 2.799940+1 3.344000+9 2.799960+1 3.580600+9 2.799960+1 4.290300+9 2.799980+1 5.000000+9 2.800000+1 8.000000+9 2.800000+1 9.500000+9 2.800000+1 1.00000+10 2.800000+1 1.20500+10 2.800000+1 1.41820+10 2.800000+1 1.71170+10 2.800000+1 2.01490+10 2.800000+1 2.26440+10 2.800000+1 2.74790+10 2.800000+1 3.20120+10 2.800000+1 3.62610+10 2.800000+1 4.42280+10 2.800000+1 5.12000+10 2.800000+1 6.34000+10 2.800000+1 7.94120+10 2.800000+1 1.00000+11 2.800000+1 1.17140+11 2.800000+1 1.55940+11 2.800000+1 2.04410+11 2.800000+1 2.99030+11 2.800000+1 4.21500+11 2.800000+1 7.29680+11 2.800000+1 1.61310+12 2.800000+1 4.52640+12 2.800000+1 2.12750+13 2.800000+1 1.00000+14 2.800000+1 5.62340+14 2.800000+1 7.49890+15 2.800000+1 1.00000+17 2.800000+1 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.037566-6 0.0 4.236855-6 0.0 4.255105-6 3.079415+0 4.257712-6 3.514843+0 4.268141-6 6.420147+0 4.278569-6 1.082525+1 4.283185-6 1.348800+1 4.288998-6 1.881448+1 4.305588-6 3.661726+1 4.317448-6 5.219902+1 4.329707-6 7.067147+1 4.351711-6 1.003391+2 4.357641-6 1.070941+2 4.369231-6 1.153230+2 4.380117-6 1.168108+2 4.390775-6 1.116130+2 4.401047-6 1.007719+2 4.415539-6 7.844570+1 4.439741-6 3.791942+1 4.445425-6 2.989282+1 4.451865-6 2.237978+1 4.462408-6 1.333675+1 4.472950-6 7.336655+0 4.488764-6 1.865007+0 4.494035-6 0.0 5.521417-6 0.0 5.535008-6 8.32506-15 5.548598-6 1.64730-14 5.562188-6 3.00893-14 5.575778-6 5.07346-14 5.589369-6 7.89680-14 5.602959-6 1.13462-13 5.616549-6 1.50490-13 5.630139-6 1.84253-13 5.643730-6 2.08246-13 5.657320-6 2.17267-13 5.670910-6 2.09249-13 5.684501-6 1.86032-13 5.698091-6 1.52674-13 5.725271-6 8.08881-14 5.738862-6 5.22185-14 5.752452-6 3.11185-14 5.766042-6 1.71186-14 5.779632-6 8.69299-15 5.793223-6 0.0 6.338730-6 0.0 6.350764-6 5.254801-2 6.369934-6 3.216462-1 6.382904-6 5.441667-1 6.387714-6 6.634275-1 6.398284-6 9.523487-1 6.413642-6 1.545657+0 6.435487-6 2.707697+0 6.468349-6 4.645443+0 6.480580-6 5.225662+0 6.494750-6 5.639752+0 6.511327-6 5.649517+0 6.528757-6 5.147070+0 6.543506-6 4.425018+0 6.572760-6 2.658778+0 6.588362-6 1.808741+0 6.601861-6 1.213119+0 6.617230-6 7.172598-1 6.632133-6 3.992662-1 6.650770-6 1.291640-1 6.663396-6 8.292748-5 6.680968-6 5.110347-5 6.696789-6 3.043747-5 6.712610-6 1.673545-5 6.728432-6 8.447925-6 6.743792-6 1.495728-7 6.744253-6 0.0 7.035061-6 0.0 7.039921-6 4.382455-3 7.070723-6 9.657913-2 7.074577-6 1.102059-1 7.088127-6 1.776334-1 7.091905-6 1.990940-1 7.109233-6 3.322493-1 7.126561-6 5.121657-1 7.175145-6 1.127159+0 7.195872-6 1.307035+0 7.213200-6 1.354273+0 7.230528-6 1.295920+0 7.251105-6 1.104561+0 7.299839-6 4.901832-1 7.317167-6 3.150090-1 7.334495-6 1.869288-1 7.349182-6 1.141894-1 7.351823-6 1.029013-1 7.381379-6 4.415587-2 7.386593-6 3.874942-2 7.389055-6 4.203191-2 7.407153-6 7.635100-2 7.425251-6 1.280854-1 7.443349-6 1.984275-1 7.495146-6 4.468102-1 7.515742-6 5.150702-1 7.533840-6 5.429524-1 7.551938-6 5.315745-1 7.584856-6 4.381155-1 7.613679-6 3.458372-1 7.624331-6 3.213777-1 7.642429-6 3.008594-1 7.660527-6 2.981820-1 7.706240-6 3.298222-1 7.715728-6 3.276519-1 7.731577-6 3.367398-1 7.753249-6 3.380530-1 7.892491-6 2.968099-1 7.945751-6 2.889552-1 8.019429-6 2.669970-1 8.625542-6 1.871000-1 9.026548-6 1.446632-1 9.447796-6 1.098239-1 9.864835-6 8.305563-2 1.027980-5 6.222194-2 1.068100-5 4.646074-2 1.073358-5 7.724474-1 1.075987-5 1.373117+0 1.078780-5 2.362079+0 1.081443-5 3.646310+0 1.088331-5 7.682639+0 1.091883-5 9.389874+0 1.094754-5 9.943396+0 1.097953-5 9.692149+0 1.105938-5 7.568190+0 1.109222-5 7.131268+0 1.117355-5 6.897079+0 1.119947-5 6.381699+0 1.121107-5 6.035560+0 1.122722-5 5.650265+0 1.125858-5 4.558461+0 1.130437-5 2.766955+0 1.133120-5 1.867673+0 1.135803-5 1.173886+0 1.138487-5 6.898428-1 1.140633-5 4.383097-1 1.143328-5 1.513231-1 1.143854-5 1.002827-1 1.148718-5 2.454939-2 1.180120-5 1.864428-2 1.215392-5 1.335265-2 1.241301-5 1.023541-2 1.271137-5 7.337185-3 1.274861-5 7.021078-3 1.281137-5 1.453420-1 1.284275-5 2.598477-1 1.287413-5 4.336050-1 1.290866-5 7.012548-1 1.300383-5 1.584863+0 1.303916-5 1.828551+0 1.306632-5 1.918326+0 1.309967-5 1.898252+0 1.320685-5 1.502379+0 1.326652-5 1.408943+0 1.331820-5 1.349639+0 1.333975-5 1.291707+0 1.337258-5 1.141294+0 1.346435-5 6.138594-1 1.348394-5 5.089454-1 1.351178-5 3.917550-1 1.352842-5 3.431054-1 1.354795-5 3.032193-1 1.357005-5 2.899443-1 1.357996-5 2.922782-1 1.360846-5 3.286503-1 1.364397-5 3.946528-1 1.370514-5 5.996351-1 1.373870-5 6.911598-1 1.377244-5 7.424621-1 1.380617-5 7.543943-1 1.390242-5 7.108025-1 1.395501-5 7.538805-1 1.405293-5 8.815136-1 1.408942-5 8.754664-1 1.422489-5 7.312773-1 1.428488-5 7.165399-1 1.440104-5 7.541784-1 1.449071-5 7.513708-1 1.464736-5 7.267573-1 1.713181-5 8.648198-1 1.927525-5 1.053726+0 2.162719-5 1.337386+0 2.505164-5 1.861278+0 2.970657-5 2.719168+0 4.518559-5 5.907852+0 5.414969-5 7.294218+0 6.184417-5 8.183560+0 6.204459-5 8.464645+0 6.234076-5 1.150243+1 6.251254-5 1.455888+1 6.266523-5 1.850259+1 6.281994-5 2.373435+1 6.313647-5 3.627886+1 6.329607-5 4.153407+1 6.344285-5 4.444595+1 6.358631-5 4.500245+1 6.374439-5 4.264760+1 6.397417-5 3.533916+1 6.426332-5 2.495549+1 6.436064-5 2.195414+1 6.447845-5 1.921863+1 6.464508-5 1.739238+1 6.481661-5 1.760691+1 6.511044-5 2.101175+1 6.528940-5 2.443737+1 6.547101-5 2.666060+1 6.561445-5 2.729382+1 6.579605-5 2.621809+1 6.596923-5 2.369062+1 6.639259-5 1.551058+1 6.655019-5 1.302381+1 6.670779-5 1.119642+1 6.690479-5 9.806709+0 6.719585-5 8.516636+0 7.431866-5 8.970737+0 7.533658-5 9.661273+0 7.603313-5 9.933717+0 7.699788-5 9.845583+0 7.813234-5 1.024339+1 1.128000-4 1.017181+1 1.150552-4 1.103922+1 1.170434-4 1.058580+1 1.666767-4 9.892066+0 2.970009-4 6.942931+0 3.680059-4 5.725044+0 4.517925-4 4.661932+0 5.490257-4 3.771234+0 6.465841-4 3.119848+0 7.709285-4 2.517104+0 8.318920-4 2.292510+0 8.359872-4 3.269257+0 8.380348-4 4.083478+0 8.400824-4 5.319350+0 8.424874-4 7.380337+0 8.482728-4 1.332380+1 8.504405-4 1.495498+1 8.526561-4 1.572486+1 8.549310-4 1.546952+1 8.617514-4 1.273153+1 8.639989-4 1.254975+1 8.671800-4 1.307744+1 8.707723-4 1.384788+1 8.758384-4 1.382245+1 8.826087-4 1.308710+1 8.869576-4 1.332584+1 9.000000-4 1.519781+1 9.136561-4 1.553769+1 9.852680-4 1.416982+1 9.974493-4 1.456409+1 1.011406-3 1.525698+1 1.186441-3 1.235083+1 1.368982-3 1.011347+1 1.604688-3 7.999285+0 1.866387-3 6.355969+0 2.151242-3 5.079105+0 2.472916-3 4.058074+0 2.826799-3 3.257807+0 3.182439-3 2.673223+0 3.555242-3 2.217017+0 3.993983-3 1.816750+0 4.484111-3 1.487221+0 5.055335-3 1.205741+0 5.614024-3 1.002166+0 6.295968-3 8.176037-1 7.040088-3 6.692292-1 7.942387-3 5.382392-1 8.102195-3 5.253391-1 8.139922-3 5.555664-1 8.162526-3 6.037413-1 8.180036-3 6.699783-1 8.197052-3 7.685216-1 8.216630-3 9.327156-1 8.236952-3 1.167622+0 8.256459-3 1.455440+0 8.329466-3 2.755458+0 8.369353-3 3.293600+0 8.407157-3 3.574933+0 8.470000-3 3.707323+0 1.011579-2 2.834010+0 1.153238-2 2.281311+0 1.303167-2 1.862821+0 1.465225-2 1.521283+0 1.632407-2 1.261998+0 1.822595-2 1.037093+0 2.018366-2 8.635613-1 2.227424-2 7.210972-1 2.451110-2 6.043478-1 2.729913-2 4.940538-1 3.008581-2 4.111498-1 3.334724-2 3.376803-1 3.685399-2 2.784664-1 4.066592-2 2.297352-1 4.471180-2 1.906500-1 4.957252-2 1.554331-1 5.545738-2 1.241887-1 6.190222-2 9.957770-2 6.856779-2 8.089495-2 7.613603-2 6.538282-2 8.419110-2 5.319781-2 9.416079-2 4.226358-2 1.047901-1 3.392219-2 1.162938-1 2.738521-2 1.266421-1 2.297765-2 1.412505-1 1.834617-2 1.548463-1 1.517909-2 1.721161-1 1.222559-2 1.885766-1 1.015631-2 2.099846-1 8.173299-3 2.296751-1 6.832130-3 2.550906-1 5.551396-3 2.818383-1 4.578921-3 3.126079-1 3.759914-3 3.436510-1 3.153415-3 3.812852-1 2.612609-3 4.249998-1 2.162742-3 4.739819-1 1.801517-3 5.276473-1 1.516945-3 5.890556-1 1.282839-3 6.739687-1 1.058670-3 7.687431-1 8.924862-4 8.861352-1 7.539436-4 1.022000+0 6.463619-4 1.228714+0 5.331563-4 1.477239+0 4.397779-4 1.776032+0 3.627540-4 2.135261+0 2.992203-4 2.567148+0 2.468141-4 3.086391+0 2.035864-4 3.710658+0 1.679297-4 4.461192+0 1.385181-4 5.363532+0 1.142576-4 6.448384+0 9.424625-5 7.752663+0 7.773971-5 9.320751+0 6.412417-5 9.760024+0 6.111058-5 1.000000+1 1.220492-4 1 28000 7 0 5.871000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.789513+1 2.785901-6-2.670707+1 3.443119-6-2.490888+1 3.730588-6-2.292572+1 3.893133-6-2.072679+1 4.003491-6-1.809235+1 4.067853-6-1.562853+1 4.114465-6-1.301594+1 4.148614-6-1.033092+1 4.169296-6-8.195753+0 4.185130-6-6.174759+0 4.197253-6-4.313131+0 4.206535-6-2.640239+0 4.210325-6-1.879399+0 4.216957-6-4.135881-1 4.221932-6 8.228888-1 4.225663-6 1.848087+0 4.228461-6 2.686128+0 4.232658-6 4.094118+0 4.235806-6 5.349876+0 4.238159-6 6.535717+0 4.255105-6 1.344261+1 4.268141-6 2.023305+1 4.278569-6 2.646736+1 4.284638-6 3.109284+1 4.290907-6 3.482588+1 4.307894-6 4.021460+1 4.317448-6 4.066079+1 4.326694-6 3.854018+1 4.330712-6 3.611009+1 4.339805-6 2.860601+1 4.345196-6 2.291958+1 4.353029-6 1.243109+1 4.355994-6 7.848497+0 4.357641-6 4.780844+0 4.362583-6-3.657430+0 4.365440-6-8.799598+0 4.367395-6-1.280266+1 4.369231-6-1.680642+1 4.375029-6-2.807476+1 4.377999-6-2.164267+1 4.380117-6-1.680849+1 4.387217-6-2.750175+0 4.387913-6-1.271937+0 4.388262-6-4.905713-1 4.388939-6 1.205994+0 4.389578-6 2.601408+0 4.390775-6 4.997489+0 4.391822-6 6.970511+0 4.401047-6 2.335749+1 4.404830-6 2.886010+1 4.412759-6 3.860425+1 4.420099-6 4.445371+1 4.427664-6 4.789884+1 4.434996-6 4.865441+1 4.441323-6 4.698637+1 4.451865-6 4.103862+1 4.476574-6 2.477348+1 4.491400-6 1.680546+1 4.495038-6 1.409594+1 4.499044-6 1.177419+1 4.505027-6 9.114993+0 4.508997-6 7.631807+0 4.516891-6 5.114848+0 4.520815-6 4.025713+0 4.524723-6 3.025678+0 4.528617-6 2.102261+0 4.536373-6 4.446819-1 4.544069-6-1.002360+0 4.551704-6-2.280277+0 4.559280-6-3.419364+0 4.566797-6-4.442560+0 4.581654-6-6.208934+0 4.603509-6-8.333514+0 4.638918-6-1.095606+1 4.679642-6-1.316624+1 4.743382-6-1.560057+1 4.836172-6-1.791020+1 4.990978-6-2.019943+1 5.281229-6-2.240355+1 5.929600-6-2.459505+1 6.298171-6-2.605246+1 6.420461-6-2.804561+1 6.459440-6-2.784806+1 6.494750-6-2.568146+1 6.543506-6-2.228245+1 6.572760-6-2.159737+1 6.632133-6-2.256286+1 6.712610-6-2.391153+1 7.161414-6-2.582281+1 7.289345-6-2.450590+1 7.495146-6-2.545552+1 7.832306-6-2.540469+1 1.007715-5-2.702648+1 1.054489-5-2.818610+1 1.068020-5-2.655664+1 1.081813-5-2.351659+1 1.086706-5-2.401090+1 1.091802-5-2.635216+1 1.095043-5-2.827818+1 1.100865-5-2.523484+1 1.105938-5-2.414569+1 1.114519-5-2.312813+1 1.123309-5-2.068488+1 1.129446-5-2.005329+1 1.139023-5-2.147360+1 1.151376-5-2.329585+1 1.180120-5-2.466858+1 1.281137-5-2.682482+1 1.298367-5-2.716090+1 1.320685-5-2.571602+1 1.348394-5-2.535707+1 1.373870-5-2.617949+1 3.388442-5-2.797018+1 5.472657-5-2.799840+1 5.637821-5-2.768700+1 5.917871-5-2.543157+1 6.049497-5-2.320352+1 6.129734-5-2.058392+1 6.173014-5-1.797895+1 6.199218-5-1.522989+1 6.211023-5-1.325118+1 6.234076-5-1.002146+1 6.251254-5-7.301664+0 6.266523-5-5.323317+0 6.269863-5-5.018131+0 6.281994-5-4.347846+0 6.285951-5-4.364009+0 6.292442-5-4.708870+0 6.299731-5-5.496941+0 6.305819-5-6.485197+0 6.312179-5-7.911637+0 6.323149-5-1.124451+1 6.329607-5-1.377313+1 6.340562-5-1.865750+1 6.357101-5-2.709712+1 6.376342-5-1.793319+1 6.390614-5-1.318454+1 6.397417-5-1.154670+1 6.404895-5-1.032306+1 6.413668-5-9.518736+0 6.420071-5-9.433432+0 6.428344-5-9.783346+0 6.434381-5-1.045301+1 6.447109-5-1.247352+1 6.467461-5-1.670474+1 6.487161-5-2.016968+1 6.515177-5-2.219821+1 6.528515-5-2.147379+1 6.544146-5-1.916266+1 6.561445-5-1.549555+1 6.582284-5-1.105987+1 6.596923-5-8.546689+0 6.608383-5-7.363911+0 6.619491-5-6.714653+0 6.628140-5-6.500534+0 6.636479-5-6.566900+0 6.653049-5-7.428495+0 6.686539-5-1.032313+1 6.719585-5-1.302026+1 6.746096-5-1.465520+1 6.802938-5-1.653464+1 6.906046-5-1.830804+1 7.081188-5-1.974577+1 7.533658-5-2.161066+1 7.678085-5-2.117975+1 9.332543-5-1.948549+1 1.118455-4-1.850476+1 1.143823-4-1.859911+1 1.161536-4-1.771565+1 1.540000-4-1.498267+1 1.971386-4-1.277736+1 2.412682-4-1.135659+1 2.970009-4-1.032928+1 3.680059-4-9.733062+0 4.517925-4-9.601615+0 5.490257-4-9.975274+0 6.465841-4-1.094685+1 7.116784-4-1.215127+1 7.593968-4-1.365342+1 7.894748-4-1.523312+1 8.081961-4-1.682615+1 8.204004-4-1.848258+1 8.295389-4-1.774268+1 8.414299-4-1.447666+1 8.431690-4-1.443302+1 8.458109-4-1.539870+1 8.482728-4-1.736729+1 8.508376-4-2.053588+1 8.521465-4-2.231488+1 8.553204-4-1.935565+1 8.583961-4-1.797020+1 8.615689-4-1.781398+1 8.671800-4-1.855979+1 8.735705-4-1.733273+1 8.792768-4-1.643681+1 8.914935-4-1.693819+1 9.026800-4-1.544699+1 9.190100-4-1.331079+1 9.401691-4-1.167572+1 9.673265-4-1.041760+1 9.852680-4-1.013750+1 1.000208-3-1.009537+1 1.021300-3-8.430162+0 1.044582-3-7.315051+0 1.081553-3-6.083992+0 1.130728-3-4.899604+0 1.186441-3-3.902263+0 1.239209-3-3.168626+0 1.294852-3-2.559731+0 1.351512-3-2.063123+0 1.418494-3-1.590805+0 1.496077-3-1.172485+0 1.547639-3-9.516264-1 1.604688-3-7.555178-1 1.647855-3-6.314072-1 1.721155-3-4.556409-1 1.757924-3-3.813559-1 1.808123-3-2.957914-1 1.880941-3-1.939945-1 1.933081-3-1.342110-1 1.978820-3-9.116281-2 2.009129-3-6.753137-2 2.023189-3-5.791192-2 2.061087-3-3.565184-2 2.094426-3-1.955216-2 2.104129-3-1.512433-2 2.128848-3-4.861709-3 2.140536-3-4.223375-4 2.144029-3 9.114012-4 2.151242-3 3.491806-3 2.198480-3 1.932320-2 2.219744-3 2.551517-2 2.271376-3 3.599821-2 2.296877-3 3.971886-2 2.365121-3 4.698659-2 2.390379-3 4.850373-2 2.445893-3 4.867486-2 2.535931-3 4.432875-2 2.559322-3 4.208077-2 2.620822-3 3.373951-2 2.700941-3 1.914280-2 2.768242-3 5.567954-3 2.794560-3-3.916171-5 2.796594-3-4.692660-4 2.799360-3-1.074478-3 2.826799-3-7.271997-3 2.978264-3-4.750080-2 3.166084-3-1.042052-1 3.555242-3-2.344760-1 5.834530-3-1.040727+0 6.510149-3-1.332392+0 7.040088-3-1.638339+0 7.379766-3-1.912029+0 7.639899-3-2.207792+0 7.866495-3-2.596483+0 7.988064-3-2.915321+0 8.089361-3-3.329442+0 8.162526-3-3.850398+0 8.267003-3-4.887170+0 8.307942-3-4.984749+0 8.350064-3-4.736707+0 8.451158-3-3.612115+0 8.503078-3-3.185549+0 8.573341-3-2.790863+0 8.699990-3-2.316435+0 8.835424-3-1.959413+0 9.026221-3-1.595525+0 9.260981-3-1.268585+0 9.504830-3-1.010882+0 9.804067-3-7.669795-1 1.011579-2-5.692727-1 1.036091-2-4.432942-1 1.057956-2-3.466676-1 1.078633-2-2.700950-1 1.106641-2-1.805309-1 1.121577-2-1.384369-1 1.137408-2-9.767212-2 1.153238-2-6.029154-2 1.175337-2-1.480709-2 1.181480-2-3.672874-3 1.202414-2 3.447279-2 1.237371-2 8.980508-2 1.269916-2 1.330985-1 1.303167-2 1.718260-1 1.333521-2 2.017472-1 1.394360-2 2.475819-1 1.465225-2 2.848335-1 1.572906-2 3.192684-1 1.728565-2 3.421037-1 1.873174-2 3.438674-1 2.227424-2 3.181798-1 3.128695-2 2.187383-1 3.685399-2 1.686907-1 4.343935-2 1.231912-1 4.795662-2 9.859906-2 5.394416-2 7.212410-2 5.881025-2 5.463318-2 6.456906-2 3.764543-2 6.856779-2 2.761630-2 7.317127-2 1.763212-2 7.613603-2 1.193171-2 7.937569-2 6.294904-3 8.105308-2 3.571628-3 8.265782-2 1.074192-3 8.332330-2 7.746387-5 8.419110-2-1.217648-3 8.634902-2-4.241081-3 9.023995-2-9.295561-3 9.610840-2-1.600758-2 1.047901-1-2.426185-2 1.162938-1-3.287798-2 1.298487-1-4.066164-2 1.499862-1-4.904172-2 1.765489-1-5.650403-2 2.231208-1-6.432301-2 3.020152-1-7.075757-2 4.570882-1-7.548084-2 9.120108-1-7.841746-2 2.814822+0-7.930929-2 8.500626+0-7.940234-2 1.000000+1-7.938898-2 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.824192-3 1.113973-6 6.062953-3 1.184684-6 7.919813-3 1.259884-6 1.041001-2 1.339857-6 1.377103-2 1.417889-6 1.791767-2 1.491120-6 2.276377-2 1.559845-6 2.835246-2 1.625366-6 3.478476-2 1.686792-6 4.194960-2 1.744379-6 4.985954-2 1.798367-6 5.849665-2 1.848980-6 6.783478-2 1.896431-6 7.784038-2 1.940915-6 8.847338-2 1.982619-6 9.968873-2 2.092734-6 1.360971-1 2.157165-6 1.626813-1 2.213543-6 1.902207-1 2.262873-6 2.182447-1 2.306036-6 2.462860-1 2.343805-6 2.739443-1 2.376852-6 3.010947-1 2.434685-6 3.554001-1 2.478059-6 4.027029-1 2.510590-6 4.430109-1 2.559387-6 5.120796-1 2.627442-6 6.278189-1 2.678800-6 7.355020-1 2.723738-6 8.479739-1 2.779485-6 1.016362+0 2.811666-6 1.130403+0 2.835801-6 1.226423+0 2.872005-6 1.389363+0 2.922525-6 1.660366+0 2.958315-6 1.892637+0 2.994106-6 2.167021+0 3.029897-6 2.493624+0 3.051372-6 2.720320+0 3.085585-6 3.136676+0 3.117660-6 3.600845+0 3.147730-6 4.118974+0 3.175920-6 4.696441+0 3.202349-6 5.338360+0 3.227126-6 6.050020+0 3.250355-6 6.836924+0 3.272131-6 7.704767+0 3.292547-6 8.659418+0 3.311686-6 9.706892+0 3.329630-6 1.085332+1 3.346452-6 1.210492+1 3.362222-6 1.346795+1 3.377007-6 1.494869+1 3.390868-6 1.655339+1 3.403862-6 1.828826+1 3.416045-6 2.015940+1 3.427466-6 2.217285+1 3.438173-6 2.433451+1 3.448211-6 2.665025+1 3.457622-6 2.912586+1 3.466444-6 3.176715+1 3.474715-6 3.457991+1 3.482469-6 3.757012+1 3.489739-6 4.074404+1 3.496554-6 4.410847+1 3.502943-6 4.767088+1 3.508933-6 5.143945+1 3.514548-6 5.542279+1 3.519813-6 5.962945+1 3.529684-6 6.907349+1 3.538321-6 7.954385+1 3.545878-6 9.101881+1 3.552491-6 1.033998+2 3.558277-6 1.165150+2 3.563340-6 1.301389+2 3.567770-6 1.440190+2 3.571647-6 1.579024+2 3.575038-6 1.715565+2 3.580974-6 1.993171+2 3.588764-6 2.445240+2 3.599888-6 3.302488+2 3.612067-6 4.590109+2 3.616496-6 5.160631+2 3.623140-6 6.124256+2 3.629709-6 7.204213+2 3.634212-6 8.014565+2 3.636427-6 8.432698+2 3.643070-6 9.756796+2 3.648694-6 1.094578+3 3.650649-6 1.137005+3 3.657628-6 1.291327+3 3.662514-6 1.400037+3 3.666562-6 1.489014+3 3.670488-6 1.573198+3 3.674897-6 1.663887+3 3.678579-6 1.735424+3 3.683314-6 1.820222+3 3.688898-6 1.907516+3 3.692806-6 1.959015+3 3.698041-6 2.013948+3 3.702129-6 2.044705+3 3.707823-6 2.068649+3 3.710578-6 2.072089+3 3.719329-6 2.047519+3 3.721772-6 2.031213+3 3.728542-6 1.965761+3 3.732796-6 1.910561+3 3.738035-6 1.829462+3 3.741961-6 1.760496+3 3.746370-6 1.676144+3 3.750052-6 1.601187+3 3.754786-6 1.500384+3 3.759253-6 1.402337+3 3.763720-6 1.303053+3 3.768187-6 1.204011+3 3.772654-6 1.106542+3 3.775939-6 1.036557+3 3.781588-6 9.208189+2 3.790523-6 7.529894+2 3.796525-6 6.524505+2 3.803924-6 5.430305+2 3.812592-6 4.351247+2 3.829213-6 2.836748+2 3.835771-6 2.407870+2 3.840000-6 2.172628+2 3.845524-6 1.907820+2 3.851967-6 1.651144+2 3.858360-6 1.442633+2 3.864703-6 1.272731+2 3.870996-6 1.133533+2 3.877240-6 1.018630+2 3.883435-6 9.229181+1 3.889582-6 8.423846+1 3.895681-6 7.739067+1 3.901732-6 7.150697+1 3.907736-6 6.640111+1 3.919650-6 5.795077+1 3.931378-6 5.127297+1 3.942923-6 4.586244+1 3.954287-6 4.139285+1 3.965474-6 3.764354+1 3.976486-6 3.445898+1 3.987326-6 3.172566+1 3.997996-6 2.935831+1 4.008500-6 2.729141+1 4.018840-6 2.547369+1 4.039196-6 2.240978+1 4.058916-6 1.995840+1 4.078020-6 1.795970+1 4.096527-6 1.630495+1 4.114455-6 1.491725+1 4.131823-6 1.374048+1 4.148649-6 1.273275+1 4.164948-6 1.186208+1 4.180739-6 1.110351+1 4.211332-6 9.829979+0 4.240014-6 8.825494+0 4.266903-6 8.017008+0 4.292111-6 7.355966+0 4.315744-6 6.808072+0 4.337900-6 6.348055+0 4.379442-6 5.599106+0 4.415792-6 5.041821+0 4.447598-6 4.616318+0 4.475428-6 4.284407+0 4.524130-6 3.776845+0 4.615448-6 3.015876+0 4.796685-6 1.964064+0 4.900142-6 1.534854+0 5.095243-6 8.896277-1 5.141801-6 7.527185-1 5.182540-6 6.395106-1 5.218186-6 5.434775-1 5.249377-6 4.609830-1 5.276668-6 3.897710-1 5.300548-6 3.282654-1 5.321443-6 2.753362-1 5.339727-6 2.301706-1 5.355724-6 1.921718-1 5.369723-6 1.608764-1 5.381971-6 1.358885-1 5.392688-6 1.168283-1 5.402066-6 1.032869-1 5.410271-6 9.479394-2 5.417451-6 9.080339-2 5.423733-6 9.070229-2 5.429230-6 9.383706-2 5.434040-6 9.954829-2 5.438249-6 1.072048-1 5.441931-6 1.162309-1 5.445154-6 1.261238-1 5.447973-6 1.364619-1 5.450440-6 1.469055-1 5.452599-6 1.571911-1 5.456140-6 1.765655-1 5.459959-6 2.012411-1 5.467020-6 2.585415-1 5.478934-6 3.961426-1 5.480834-6 4.235482-1 5.494625-6 6.749634-1 5.499971-6 7.996110-1 5.505118-6 9.351265-1 5.509274-6 1.056014+0 5.515527-6 1.257366+0 5.520139-6 1.420878+0 5.524965-6 1.605284+0 5.531092-6 1.858070+0 5.534897-6 2.024829+0 5.537316-6 2.134443+0 5.545648-6 2.530519+0 5.551512-6 2.822950+0 5.556344-6 3.069448+0 5.561645-6 3.342706+0 5.567361-6 3.636951+0 5.572301-6 3.887601+0 5.577557-6 4.147194+0 5.582557-6 4.384153+0 5.588518-6 4.649676+0 5.590747-6 4.743320+0 5.597961-6 5.021563+0 5.603180-6 5.196115+0 5.610055-6 5.387456+0 5.613218-6 5.459643+0 5.625999-6 5.642968+0 5.630702-6 5.665525+0 5.633693-6 5.667302+0 5.642664-6 5.615469+0 5.646393-6 5.569683+0 5.652736-6 5.461316+0 5.655326-6 5.406688+0 5.659859-6 5.297717+0 5.665808-6 5.131152+0 5.671545-6 4.948484+0 5.678248-6 4.712440+0 5.683038-6 4.531837+0 5.690411-6 4.239879+0 5.692868-6 4.139866+0 5.700456-6 3.826411+0 5.706349-6 3.581513+0 5.713193-6 3.299879+0 5.719831-6 3.033103+0 5.736871-6 2.396982+0 5.746793-6 2.068474+0 5.754453-6 1.838685+0 5.765649-6 1.540808+0 5.787094-6 1.089479+0 5.807302-6 7.856714-1 5.826267-6 5.811293-1 5.861297-6 3.360586-1 5.877188-6 2.609671-1 5.936780-6 8.923875-2 5.959126-6 5.642334-2 5.968903-6 4.638117-2 5.978069-6 3.913300-2 5.986662-6 3.412569-2 5.994717-6 3.093115-2 6.002270-6 2.923027-2 6.009350-6 2.879429-2 6.015987-6 2.946501-2 6.022113-6 3.110105-2 6.030602-6 3.522360-2 6.036430-6 3.952098-2 6.044163-6 4.746390-2 6.048555-6 5.332179-2 6.052742-6 5.996598-2 6.056668-6 6.725275-2 6.060348-6 7.512329-2 6.067033-6 9.235980-2 6.078405-6 1.323217-1 6.090667-6 1.949924-1 6.101555-6 2.732563-1 6.110304-6 3.559211-1 6.119584-6 4.675807-1 6.138404-6 7.940582-1 6.145659-6 9.661218-1 6.155210-6 1.243008+0 6.164772-6 1.589152+0 6.176069-6 2.107588+0 6.187366-6 2.772514+0 6.194897-6 3.313915+0 6.205553-6 4.239161+0 6.213544-6 5.074139+0 6.224033-6 6.381452+0 6.233726-6 7.829850+0 6.240993-6 9.082463+0 6.249839-6 1.081421+1 6.258511-6 1.274199+1 6.266077-6 1.461435+1 6.270519-6 1.579532+1 6.282274-6 1.920122+1 6.288817-6 2.125911+1 6.300335-6 2.511384+1 6.305513-6 2.692030+1 6.315398-6 3.043961+1 6.322110-6 3.284120+1 6.327349-6 3.469621+1 6.334836-6 3.728013+1 6.342657-6 3.984230+1 6.349371-6 4.188310+1 6.355813-6 4.366601+1 6.362931-6 4.539658+1 6.370460-6 4.691107+1 6.377704-6 4.802439+1 6.384964-6 4.877350+1 6.391788-6 4.912514+1 6.407618-6 4.859277+1 6.413228-6 4.795985+1 6.416113-6 4.754795+1 6.424768-6 4.598006+1 6.430237-6 4.475133+1 6.435199-6 4.349392+1 6.442289-6 4.148992+1 6.449127-6 3.936463+1 6.455604-6 3.721580+1 6.461114-6 3.531277+1 6.468199-6 3.280423+1 6.475876-6 3.006026+1 6.483553-6 2.734807+1 6.492189-6 2.440472+1 6.498906-6 2.223911+1 6.518711-6 1.677370+1 6.523791-6 1.564292+1 6.531411-6 1.418326+1 6.535221-6 1.356430+1 6.539031-6 1.302125+1 6.544597-6 1.236634+1 6.548846-6 1.197784+1 6.555047-6 1.158406+1 6.557925-6 1.147063+1 6.561004-6 1.139735+1 6.571332-6 1.150513+1 6.575179-6 1.167926+1 6.579470-6 1.195487+1 6.583863-6 1.232186+1 6.588858-6 1.283745+1 6.595127-6 1.362121+1 6.602904-6 1.478046+1 6.625582-6 1.900628+1 6.634900-6 2.093454+1 6.638538-6 2.169229+1 6.647951-6 2.362349+1 6.655049-6 2.501749+1 6.663118-6 2.649611+1 6.669887-6 2.762243+1 6.686174-6 2.978635+1 6.688025-6 2.997666+1 6.700981-6 3.095911+1 6.704870-6 3.113112+1 6.712636-6 3.130299+1 6.717642-6 3.129382+1 6.725699-6 3.108797+1 6.731085-6 3.082487+1 6.735124-6 3.056532+1 6.744211-6 2.980144+1 6.747241-6 2.949598+1 6.755249-6 2.858094+1 6.763257-6 2.753142+1 6.777305-6 2.545022+1 6.779311-6 2.513494+1 6.795404-6 2.252412+1 6.799843-6 2.179392+1 6.813163-6 1.963221+1 6.830011-6 1.705221+1 6.866533-6 1.245242+1 6.874952-6 1.160982+1 6.887473-6 1.050136+1 6.898914-6 9.628510+0 6.917823-6 8.440954+0 6.932292-6 7.710955+0 6.951980-6 6.911108+0 6.969486-6 6.342705+0 6.987979-6 5.849700+0 7.004873-6 5.471467+0 7.016547-6 5.241401+0 7.039279-6 4.850539+0 7.065132-6 4.476581+0 7.086530-6 4.210174+0 7.102772-6 4.028840+0 7.131540-6 3.743634+0 7.171111-6 3.410589+0 7.207905-6 3.147651+0 7.240626-6 2.942927+0 7.296336-6 2.642907+0 7.367995-6 2.323086+0 7.547145-6 1.711783+0 7.690366-6 1.320837+0 7.783633-6 1.085290+0 7.839594-6 9.448430-1 7.876900-6 8.488563-1 7.914207-6 7.490289-1 7.932860-6 6.971506-1 7.951514-6 6.438270-1 7.982606-6 5.524293-1 8.005925-6 4.840754-1 8.036531-6 4.029835-1 8.046369-6 3.816764-1 8.053747-6 3.681089-1 8.064815-6 3.526900-1 8.070349-6 3.476438-1 8.075882-6 3.446654-1 8.080616-6 3.439329-1 8.085349-6 3.450306-1 8.090792-6 3.487507-1 8.097003-6 3.564931-1 8.115638-6 4.053923-1 8.120395-6 4.247830-1 8.125152-6 4.472438-1 8.127639-6 4.602513-1 8.140699-6 5.433742-1 8.148629-6 6.064380-1 8.174141-6 8.750230-1 8.185798-6 1.029281+0 8.193953-6 1.147393+0 8.200909-6 1.253793+0 8.209071-6 1.384061+0 8.215027-6 1.481952+0 8.221948-6 1.597693+0 8.229411-6 1.723587+0 8.238168-6 1.870687+0 8.245802-6 1.996421+0 8.255130-6 2.144183+0 8.263584-6 2.269973+0 8.268035-6 2.332277+0 8.276197-6 2.438222+0 8.284360-6 2.531880+0 8.285604-6 2.544970+0 8.304261-6 2.699656+0 8.311918-6 2.738904+0 8.324162-6 2.770873+0 8.329554-6 2.772933+0 8.335709-6 2.766494+0 8.340324-6 2.755686+0 8.347248-6 2.730276+0 8.354171-6 2.694483+0 8.363685-6 2.630004+0 8.372859-6 2.553404+0 8.385375-6 2.431239+0 8.399168-6 2.281630+0 8.437766-6 1.870372+0 8.447272-6 1.788639+0 8.458382-6 1.709739+0 8.463537-6 1.679974+0 8.478999-6 1.618986+0 8.485167-6 1.606911+0 8.491909-6 1.601737+0 8.498027-6 1.604160+0 8.503379-6 1.611653+0 8.512161-6 1.634223+0 8.519333-6 1.661388+0 8.528745-6 1.707485+0 8.540847-6 1.780867+0 8.573060-6 2.014110+0 8.584657-6 2.096193+0 8.602696-6 2.205125+0 8.609783-6 2.238908+0 8.623313-6 2.285715+0 8.633754-6 2.304194+0 8.643721-6 2.306549+0 8.653689-6 2.293745+0 8.661557-6 2.273102+0 8.667458-6 2.251735+0 8.676310-6 2.210732+0 8.685161-6 2.159805+0 8.695469-6 2.089471+0 8.705778-6 2.009206+0 8.721240-6 1.875106+0 8.731320-6 1.782150+0 8.747010-6 1.634811+0 8.788291-6 1.283073+0 8.798165-6 1.215622+0 8.813686-6 1.127370+0 8.819057-6 1.102223+0 8.835169-6 1.043903+0 8.842729-6 1.025305+0 8.849345-6 1.013464+0 8.855134-6 1.006354+0 8.865264-6 1.000745+0 8.872862-6 1.001747+0 8.878560-6 1.005106+0 8.891381-6 1.019545+0 8.908376-6 1.049257+0 8.938552-6 1.111057+0 8.945699-6 1.124006+0 8.967531-6 1.152231+0 8.973001-6 1.155885+0 8.989413-6 1.157168+0 8.994300-6 1.154633+0 9.002852-6 1.146974+0 9.009266-6 1.138616+0 9.018888-6 1.122147+0 9.028509-6 1.101457+0 9.047543-6 1.051062+0 9.091515-6 9.238109-1 9.114438-6 8.770380-1 9.123038-6 8.662801-1 9.139455-6 8.579426-1 9.144130-6 8.586375-1 9.158156-6 8.689195-1 9.168568-6 8.841962-1 9.177072-6 9.010930-1 9.188233-6 9.285402-1 9.202583-6 9.707915-1 9.227779-6 1.055082+0 9.252778-6 1.136267+0 9.272221-6 1.187448+0 9.281185-6 1.205727+0 9.298300-6 1.229639+0 9.304495-6 1.234553+0 9.315337-6 1.238326+0 9.323468-6 1.237225+0 9.336993-6 1.228431+0 9.347861-6 1.215727+0 9.367198-6 1.183269+0 9.383325-6 1.149624+0 9.427766-6 1.051148+0 9.439950-6 1.027639+0 9.472208-6 9.804831-1 9.484771-6 9.686864-1 9.502146-6 9.581910-1 9.518266-6 9.537297-1 9.548746-6 9.551661-1 9.601878-6 9.674447-1 9.618447-6 9.694497-1 9.645186-6 9.687558-1 9.668372-6 9.641671-1 9.707642-6 9.500696-1 9.781528-6 9.182275-1 9.820986-6 9.053445-1 9.875618-6 8.944082-1 9.965718-6 8.868297-1 1.018108-5 8.726260-1 1.041631-5 8.539650-1 1.074501-5 8.345165-1 1.091290-5 8.269693-1 1.113485-5 8.219205-1 1.138740-5 8.207727-1 1.161232-5 8.230465-1 1.184989-5 8.301259-1 1.234522-5 8.546113-1 1.277179-5 8.886296-1 1.316345-5 9.299016-1 1.390549-5 1.029926+0 1.451000-5 1.135532+0 1.484757-5 1.201843+0 1.577494-5 1.410492+0 1.673179-5 1.673104+0 1.777753-5 2.005480+0 2.317395-5 4.547162+0 2.800000-5 8.022083+0 2.960798-5 9.446903+0 3.276800-5 1.267678+1 3.589219-5 1.637189+1 3.715352-5 1.800805+1 4.073803-5 2.305076+1 4.415704-5 2.833933+1 4.746000-5 3.378374+1 5.069907-5 3.932202+1 5.463865-5 4.611611+1 5.659921-5 4.943870+1 5.843386-5 5.254852+1 6.070785-5 5.621123+1 6.266227-5 5.920552+1 6.480000-5 6.221462+1 6.618140-5 6.383433+1 6.711000-5 6.466294+1 6.789103-5 6.518128+1 6.815398-5 6.544479+1 6.840019-5 6.593503+1 6.857850-5 6.657922+1 6.872883-5 6.741308+1 6.885702-5 6.839925+1 6.902810-5 7.019762+1 6.914438-5 7.177865+1 6.933283-5 7.500787+1 6.942150-5 7.681409+1 6.957215-5 8.027435+1 6.999778-5 9.181196+1 7.018146-5 9.684761+1 7.034357-5 1.008400+2 7.042008-5 1.024885+2 7.056653-5 1.050936+2 7.070844-5 1.068085+2 7.078320-5 1.073588+2 7.093175-5 1.077039+2 7.098481-5 1.075886+2 7.111664-5 1.067907+2 7.127729-5 1.049512+2 7.142600-5 1.026043+2 7.167208-5 9.803418+1 7.195811-5 9.297323+1 7.210580-5 9.092894+1 7.220132-5 8.989904+1 7.238105-5 8.864386+1 7.248297-5 8.832596+1 7.263912-5 8.833822+1 7.285525-5 8.913190+1 7.325979-5 9.157083+1 7.348857-5 9.262364+1 7.367325-5 9.302358+1 7.388860-5 9.295220+1 7.424683-5 9.197247+1 7.446520-5 9.128196+1 7.475775-5 9.076533+1 7.504383-5 9.095234+1 7.533587-5 9.176506+1 7.607452-5 9.456651+1 7.692889-5 9.734038+1 7.727115-5 9.886810+1 7.805334-5 1.033562+2 7.844375-5 1.054705+2 7.871088-5 1.066760+2 7.909663-5 1.080614+2 7.973048-5 1.097576+2 8.069840-5 1.118912+2 8.137828-5 1.131571+2 8.297071-5 1.155697+2 8.455886-5 1.175857+2 8.634754-5 1.195002+2 9.075174-5 1.233276+2 9.748146-5 1.285477+2 1.120252-4 1.398436+2 1.150570-4 1.412534+2 1.159471-4 1.426635+2 1.165543-4 1.445403+2 1.178617-4 1.500605+2 1.183598-4 1.518172+2 1.189031-4 1.531688+2 1.194547-4 1.540378+2 1.217107-4 1.567512+2 1.310000-4 1.697894+2 1.419777-4 1.834770+2 1.540000-4 1.971154+2 1.690928-4 2.118132+2 1.838073-4 2.241137+2 1.966080-4 2.334672+2 2.104195-4 2.423239+2 2.238721-4 2.496514+2 2.396500-4 2.569812+2 2.555642-4 2.630450+2 2.735875-4 2.685222+2 2.904575-4 2.725717+2 3.117095-4 2.764139+2 3.359310-4 2.794055+2 3.590745-4 2.810814+2 3.791606-4 2.816566+2 4.062246-4 2.814567+2 4.374000-4 2.801358+2 4.671017-4 2.779405+2 4.968648-4 2.749473+2 5.324146-4 2.704478+2 5.631512-4 2.656391+2 5.982650-4 2.591524+2 6.275120-4 2.528212+2 6.651484-4 2.432521+2 7.003311-4 2.324612+2 7.274896-4 2.229538+2 7.557683-4 2.116844+2 7.818528-4 1.997371+2 8.038780-4 1.880983+2 8.222426-4 1.769648+2 8.380601-4 1.660826+2 8.528697-4 1.544484+2 8.659643-4 1.426788+2 8.766223-4 1.317491+2 8.851163-4 1.218823+2 8.923739-4 1.123853+2 8.974254-4 1.050192+2 9.029793-4 9.598207+1 9.076277-4 8.749325+1 9.115488-4 7.963975+1 9.141503-4 7.414484+1 9.162838-4 6.955479+1 9.194983-4 6.273613+1 9.233825-4 5.531493+1 9.244649-4 5.354861+1 9.253847-4 5.219013+1 9.263434-4 5.093282+1 9.273484-4 4.980938+1 9.282628-4 4.897773+1 9.292257-4 4.831518+1 9.302390-4 4.787133+1 9.314740-4 4.770512+1 9.323159-4 4.783971+1 9.333217-4 4.827394+1 9.342892-4 4.897932+1 9.354493-4 5.020274+1 9.364626-4 5.160998+1 9.379637-4 5.427077+1 9.389073-4 5.628872+1 9.400538-4 5.908814+1 9.415184-4 6.319668+1 9.430561-4 6.811446+1 9.478918-4 8.705677+1 9.500750-4 9.702808+1 9.524150-4 1.084719+2 9.549914-4 1.217856+2 9.565757-4 1.302544+2 9.587000-4 1.418415+2 9.603315-4 1.508482+2 9.617446-4 1.586742+2 9.630000-4 1.656129+2 9.657000-4 1.803607+2 9.682500-4 1.938800+2 9.704256-4 2.049534+2 9.740650-4 2.222662+2 9.775625-4 2.372662+2 9.809648-4 2.502397+2 9.840000-4 2.605040+2 9.882500-4 2.729711+2 9.924731-4 2.834280+2 9.975000-4 2.937843+2 1.002025-3 3.015271+2 1.006506-3 3.080282+2 1.013731-3 3.166992+2 1.020511-3 3.234028+2 1.028123-3 3.297318+2 1.037073-3 3.357432+2 1.045250-3 3.398184+2 1.054044-3 3.426497+2 1.066391-3 3.459640+2 1.071136-3 3.486601+2 1.075844-3 3.530579+2 1.079351-3 3.576072+2 1.086279-3 3.692977+2 1.095717-3 3.872026+2 1.101184-3 3.964300+2 1.107377-3 4.050364+2 1.115018-3 4.132264+2 1.123663-3 4.203607+2 1.135011-3 4.280097+2 1.151705-3 4.376634+2 1.183000-3 4.524902+2 1.219426-3 4.663124+2 1.257449-3 4.776580+2 1.305630-3 4.885789+2 1.372113-3 4.993274+2 1.439945-3 5.068400+2 1.482333-3 5.097870+2 1.591750-3 5.125199+2 1.700670-3 5.113823+2 1.858769-3 5.059414+2 2.028747-3 4.976954+2 2.312397-3 4.784852+2 2.462145-3 4.675977+2 2.731205-3 4.470227+2 3.067035-3 4.214352+2 3.417826-3 3.956177+2 3.713634-3 3.749895+2 4.110007-3 3.483374+2 4.561025-3 3.203602+2 4.923591-3 2.993307+2 5.349888-3 2.762926+2 5.751165-3 2.562378+2 6.241123-3 2.336274+2 6.494936-3 2.226236+2 6.758170-3 2.116440+2 6.989961-3 2.022989+2 7.200146-3 1.940352+2 7.550636-3 1.805167+2 7.841064-3 1.693337+2 8.075070-3 1.600109+2 8.171126-3 1.560077+2 8.263482-3 1.519951+2 8.345552-3 1.482397+2 8.420321-3 1.446004+2 8.521302-3 1.391758+2 8.571219-3 1.361571+2 8.618460-3 1.329759+2 8.658329-3 1.299428+2 8.692814-3 1.269815+2 8.731592-3 1.232211+2 8.787292-3 1.171603+2 8.845893-3 1.109528+2 8.875563-3 1.085331+2 8.894065-3 1.074569+2 8.914140-3 1.067468+2 8.932130-3 1.065514+2 8.956133-3 1.069539+2 8.977490-3 1.079155+2 9.000770-3 1.095209+2 9.035797-3 1.127283+2 9.100442-3 1.195293+2 9.142201-3 1.235332+2 9.170687-3 1.258728+2 9.200194-3 1.279406+2 9.225622-3 1.294548+2 9.256677-3 1.310155+2 9.287451-3 1.323053+2 9.329388-3 1.337441+2 9.420047-3 1.359897+2 9.535413-3 1.377620+2 9.660413-3 1.388299+2 9.797188-3 1.393522+2 9.976908-3 1.393602+2 1.022022-2 1.385677+2 1.050317-2 1.369220+2 1.088675-2 1.340411+2 1.138274-2 1.295715+2 1.206250-2 1.230351+2 1.289408-2 1.150867+2 1.383893-2 1.066573+2 1.497764-2 9.744785+1 1.650358-2 8.667325+1 1.827619-2 7.622613+1 2.046903-2 6.563315+1 2.291153-2 5.610675+1 2.536960-2 4.831242+1 2.825998-2 4.090784+1 3.594702-2 2.781406+1 3.962413-2 2.369081+1 5.715315-2 1.270182+1 7.338720-2 8.221899+0 8.885546-2 5.858289+0 1.068427-1 4.199811+0 1.279423-1 3.008539+0 1.626648-1 1.912915+0 2.153789-1 1.118739+0 2.943405-1 6.113052-1 4.231974-1 3.002692-1 6.433730-1 1.311663-1 1.286622+0 3.299701-2 3.885536+0 3.624905-3 1.173413+1 3.975465-4 3.543651+1 4.359111-5 1.070165+2 4.779683-6 3.231848+2 5.240819-7 9.760024+2 5.746444-8 3.162278+3 5.473952-9 1.000000+4 5.47395-10 3.162278+4 5.47395-11 1.000000+5 5.47395-12 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.875500-7 1.258900-6 1.248200-6 1.584900-6 1.978200-6 1.995300-6 3.135300-6 2.511900-6 4.969100-6 3.162300-6 7.875400-6 3.981100-6 1.248200-5 5.011900-6 1.978200-5 6.309600-6 3.135200-5 7.943300-6 4.968900-5 1.000000-5 7.875100-5 1.258900-5 1.248100-4 1.584900-5 1.977600-4 1.995300-5 3.133300-4 2.511900-5 4.964500-4 3.162300-5 7.866500-4 3.981100-5 1.246500-3 5.011900-5 1.975400-3 6.309600-5 3.130300-3 7.943300-5 4.955900-3 1.000000-4 7.844100-3 1.258900-4 1.241800-2 1.584900-4 1.962600-2 1.995300-4 3.099700-2 2.511900-4 4.883700-2 3.162300-4 7.669800-2 3.981100-4 1.198200-1 5.011900-4 1.855200-1 6.309600-4 2.835200-1 7.943300-4 4.256800-1 1.000000-3 6.248900-1 1.258900-3 8.925800-1 1.584900-3 1.239100+0 1.995300-3 1.678000+0 2.511900-3 2.228000+0 3.162300-3 2.905400+0 3.981100-3 3.719500+0 5.011900-3 4.664700+0 6.309600-3 5.742800+0 7.943300-3 6.937200+0 1.000000-2 8.208000+0 1.258900-2 9.468500+0 1.584900-2 1.063300+1 1.995300-2 1.165900+1 2.511900-2 1.249700+1 3.162300-2 1.321600+1 3.981100-2 1.367600+1 5.011900-2 1.389900+1 6.309600-2 1.390800+1 7.943300-2 1.371500+1 1.000000-1 1.335000+1 1.258900-1 1.285300+1 1.584900-1 1.221800+1 1.995300-1 1.149800+1 2.511900-1 1.072200+1 3.162300-1 9.919600+0 3.981100-1 9.113600+0 5.011900-1 8.320600+0 6.309600-1 7.550700+0 7.943300-1 6.809600+0 1.000000+0 6.108800+0 1.258900+0 5.445100+0 1.584900+0 4.823200+0 1.995300+0 4.245400+0 2.511900+0 3.713400+0 3.162300+0 3.228300+0 3.981100+0 2.790100+0 5.011900+0 2.398100+0 6.309600+0 2.050500+0 7.943300+0 1.744800+0 1.000000+1 1.478200+0 1.258900+1 1.247200+0 1.584900+1 1.048600+0 1.995300+1 8.786100-1 2.511900+1 7.340100-1 3.162300+1 6.115500-1 3.981100+1 5.082800-1 5.011900+1 4.215100-1 6.309600+1 3.488600-1 7.943300+1 2.882000-1 1.000000+2 2.377000-1 1.258900+2 1.957500-1 1.584900+2 1.609800-1 1.995300+2 1.322200-1 2.511900+2 1.084700-1 3.162300+2 8.888700-2 3.981100+2 7.276800-2 5.011900+2 5.951600-2 6.309600+2 4.863500-2 7.943300+2 3.971100-2 1.000000+3 3.239900-2 1.258900+3 2.641500-2 1.584900+3 2.152100-2 1.995300+3 1.752300-2 2.511900+3 1.425800-2 3.162300+3 1.159600-2 3.981100+3 9.424800-3 5.011900+3 7.656400-3 6.309600+3 6.216800-3 7.943300+3 5.045400-3 1.000000+4 4.092900-3 1.258900+4 3.318700-3 1.584900+4 2.689800-3 1.995300+4 2.179300-3 2.511900+4 1.764900-3 3.162300+4 1.428800-3 3.981100+4 1.156300-3 5.011900+4 9.354800-4 6.309600+4 7.565600-4 7.943300+4 6.116500-4 1.000000+5 4.943500-4 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976755-4 5.011872-4 5.005054-4 6.309573-4 6.298822-4 7.943282-4 7.926363-4 1.000000-3 9.973437-4 1.258925-3 1.254767-3 1.584893-3 1.578384-3 1.995262-3 1.985095-3 2.511886-3 2.495991-3 3.162278-3 3.137411-3 3.981072-3 3.942270-3 5.011872-3 4.951242-3 6.309573-3 6.215247-3 7.943282-3 7.796536-3 1.000000-2 9.772382-3 1.258925-2 1.223793-2 1.584893-2 1.530950-2 1.995262-2 1.912725-2 2.511886-2 2.385819-2 3.162278-2 2.970555-2 3.981072-2 3.690748-2 5.011872-2 4.575123-2 6.309573-2 5.655000-2 7.943282-2 6.970639-2 1.000000-1 8.563746-2 1.258925-1 1.048195-1 1.584893-1 1.278953-1 1.995262-1 1.555306-1 2.511886-1 1.884900-1 3.162278-1 2.276716-1 3.981072-1 2.740755-1 5.011872-1 3.289040-1 6.309573-1 3.934858-1 7.943282-1 4.696512-1 1.000000+0 5.590420-1 1.258925+0 6.643795-1 1.584893+0 7.887418-1 1.995262+0 9.358434-1 2.511886+0 1.110391+0 3.162278+0 1.318121+0 3.981072+0 1.566059+0 5.011872+0 1.862778+0 6.309573+0 2.218957+0 7.943282+0 2.647452+0 1.000000+1 3.164036+0 1.258925+1 3.788054+0 1.584893+1 4.543159+0 1.995262+1 5.458318+0 2.511886+1 6.569084+0 3.162278+1 7.919050+0 3.981072+1 9.561504+0 5.011872+1 1.156224+1 6.309573+1 1.400190+1 7.943282+1 1.697947+1 1.000000+2 2.061687+1 1.258925+2 2.506413+1 1.584893+2 3.050577+1 1.995262+2 3.716899+1 2.511886+2 4.533409+1 3.162278+2 5.534660+1 3.981072+2 6.763114+1 5.011872+2 8.271444+1 6.309573+2 1.012439+2 7.943282+2 1.240200+2 1.000000+3 1.520272+2 1.258925+3 1.864905+2 1.584893+3 2.289197+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88242-10 1.995262-5 1.090736-9 2.511886-5 1.728669-9 3.162278-5 2.739738-9 3.981072-5 4.342147-9 5.011872-5 6.881694-9 6.309573-5 1.090632-8 7.943282-5 1.728016-8 1.000000-4 2.738169-8 1.258925-4 4.339305-8 1.584893-4 6.873583-8 1.995262-4 1.088870-7 2.511886-4 1.724233-7 3.162278-4 2.728908-7 3.981072-4 4.316423-7 5.011872-4 6.818034-7 6.309573-4 1.075105-6 7.943282-4 1.691948-6 1.000000-3 2.656287-6 1.258925-3 4.158834-6 1.584893-3 6.508810-6 1.995262-3 1.016701-5 2.511886-3 1.589586-5 3.162278-3 2.486660-5 3.981072-3 3.880139-5 5.011872-3 6.062994-5 6.309573-3 9.432629-5 7.943282-3 1.467467-4 1.000000-2 2.276183-4 1.258925-2 3.513238-4 1.584893-2 5.394281-4 1.995262-2 8.253699-4 2.511886-2 1.260670-3 3.162278-2 1.917230-3 3.981072-2 2.903234-3 5.011872-2 4.367496-3 6.309573-2 6.545731-3 7.943282-2 9.726437-3 1.000000-1 1.436254-2 1.258925-1 2.107304-2 1.584893-1 3.059398-2 1.995262-1 4.399559-2 2.511886-1 6.269862-2 3.162278-1 8.855613-2 3.981072-1 1.240316-1 5.011872-1 1.722832-1 6.309573-1 2.374716-1 7.943282-1 3.246771-1 1.000000+0 4.409580-1 1.258925+0 5.945459-1 1.584893+0 7.961514-1 1.995262+0 1.059419+0 2.511886+0 1.401495+0 3.162278+0 1.844157+0 3.981072+0 2.415013+0 5.011872+0 3.149094+0 6.309573+0 4.090617+0 7.943282+0 5.295830+0 1.000000+1 6.835964+0 1.258925+1 8.801200+0 1.584893+1 1.130577+1 1.995262+1 1.449431+1 2.511886+1 1.854978+1 3.162278+1 2.370373+1 3.981072+1 3.024921+1 5.011872+1 3.855648+1 6.309573+1 4.909384+1 7.943282+1 6.245336+1 1.000000+2 7.938313+1 1.258925+2 1.008284+2 1.584893+2 1.279835+2 1.995262+2 1.623572+2 2.511886+2 2.058545+2 3.162278+2 2.608812+2 3.981072+2 3.304760+2 5.011872+2 4.184728+2 6.309573+2 5.297134+2 7.943282+2 6.703083+2 1.000000+3 8.479728+2 1.258925+3 1.072435+3 1.584893+3 1.355973+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.110000-6 1.398650+6 7.328245-6 1.184722+6 7.600000-6 9.618950+5 7.852356-6 7.935760+5 8.128305-6 6.434854+5 8.420000-6 5.154110+5 8.700000-6 4.163680+5 8.920000-6 3.517200+5 9.120108-6 3.013694+5 9.350000-6 2.519780+5 9.600000-6 2.069240+5 9.772372-6 1.803242+5 9.800000-6 1.762938+5 9.800000-6 3.032570+6 1.000000-5 3.028617+6 1.009000-5 3.027812+6 1.009000-5 4.906908+6 1.020000-5 4.913291+6 1.035142-5 4.923249+6 1.055000-5 4.945275+6 1.071519-5 4.965135+6 1.089200-5 4.992385+6 1.100000-5 5.009584+6 1.105000-5 5.019192+6 1.122018-5 5.052363+6 1.135011-5 5.078256+6 1.150000-5 5.111706+6 1.165000-5 5.145684+6 1.180000-5 5.180099+6 1.190000-5 5.203257+6 1.200000-5 5.226555+6 1.203000-5 5.234043+6 1.216186-5 5.267040+6 1.226000-5 5.291735+6 1.230269-5 5.302502+6 1.235000-5 5.315192+6 1.245000-5 5.342070+6 1.255600-5 5.370658+6 1.265000-5 5.396084+6 1.275000-5 5.423200+6 1.285000-5 5.450377+6 1.295000-5 5.477607+6 1.303167-5 5.499879+6 1.312700-5 5.525910+6 1.320000-5 5.545864+6 1.327000-5 5.565011+6 1.335000-5 5.586909+6 1.342000-5 5.606080+6 1.350000-5 5.627999+6 1.357200-5 5.647733+6 1.365000-5 5.669115+6 1.390000-5 5.737659+6 1.397000-5 5.756847+6 1.402000-5 5.770551+6 1.406000-5 5.781512+6 1.410000-5 5.792471+6 1.413500-5 5.802059+6 1.417000-5 5.811645+6 1.420000-5 5.819860+6 1.423000-5 5.828074+6 1.426000-5 5.836286+6 1.429400-5 5.845592+6 1.432000-5 5.852706+6 1.435000-5 5.860914+6 1.437000-5 5.866384+6 1.440000-5 5.874588+6 1.443500-5 5.884158+6 1.447000-5 5.893724+6 1.451000-5 5.904654+6 1.455000-5 5.915580+6 1.460000-5 5.929232+6 1.465000-5 5.942877+6 1.472000-5 5.961969+6 1.496236-5 6.027959+6 1.507000-5 6.057206+6 1.515000-5 6.078918+6 1.522000-5 6.097896+6 1.531087-5 6.122506+6 1.540000-5 6.146614+6 1.550000-5 6.173624+6 1.560000-5 6.200595+6 1.570000-5 6.227524+6 1.580000-5 6.254411+6 1.584893-5 6.267548+6 1.590000-5 6.280641+6 1.603245-5 6.314532+6 1.616600-5 6.348621+6 1.630000-5 6.382739+6 1.645000-5 6.420828+6 1.660000-5 6.458806+6 1.675000-5 6.496672+6 1.690000-5 6.534426+6 1.705000-5 6.572067+6 1.717908-5 6.604364+6 1.720000-5 6.609470+6 1.740000-5 6.658140+6 1.760000-5 6.706603+6 1.785000-5 6.766891+6 1.808000-5 6.822069+6 1.819701-5 6.850025+6 1.834300-5 6.883099+6 1.862087-5 6.945719+6 1.885000-5 6.997054+6 1.920000-5 7.074950+6 1.950000-5 7.141224+6 1.990000-5 7.228894+6 2.000000-5 7.250680+6 2.020000-5 7.292714+6 2.065380-5 7.387353+6 2.113489-5 7.486621+6 2.162719-5 7.582118+6 2.213095-5 7.678715+6 2.272000-5 7.790277+6 2.317395-5 7.875237+6 2.344229-5 7.923683+6 2.426610-5 8.070560+6 2.454709-5 8.120039+6 2.511886-5 8.214897+6 2.610000-5 8.374940+6 2.691535-5 8.505494+6 2.722701-5 8.554810+6 2.800000-5 8.671186+6 2.900000-5 8.819085+6 2.917427-5 8.843086+6 3.054921-5 9.029504+6 3.198895-5 9.219611+6 3.311311-5 9.357736+6 3.350000-5 9.401029+6 3.548134-5 9.617898+6 3.589219-5 9.661902+6 3.715352-5 9.786249+6 3.758374-5 9.823312+6 4.000000-5 1.002614+7 4.027170-5 1.004622+7 4.073803-5 1.008043+7 4.365158-5 1.025620+7 4.415704-5 1.028148+7 4.731513-5 1.039913+7 5.069907-5 1.044957+7 5.188000-5 1.044201+7 5.432503-5 1.042681+7 5.754399-5 1.034164+7 5.800000-5 1.033001+7 5.821032-5 1.032224+7 6.165950-5 1.017367+7 6.382635-5 1.005093+7 6.531306-5 9.969887+6 6.918310-5 9.714012+6 7.161434-5 9.529754+6 7.413102-5 9.348932+6 7.786000-5 9.050713+6 7.786000-5 9.989841+6 7.840000-5 9.939603+6 7.910000-5 9.869198+6 7.943282-5 9.833537+6 7.985000-5 9.786487+6 8.000000-5 9.768716+6 8.050000-5 9.707812+6 8.050000-5 1.014810+7 8.080000-5 1.011044+7 8.105000-5 1.007800+7 8.150000-5 1.001871+7 8.190000-5 9.965284+6 8.222426-5 9.921128+6 8.317638-5 9.791097+6 8.350000-5 9.747043+6 8.413951-5 9.659803+6 8.511380-5 9.529032+6 8.609938-5 9.398980+6 8.650000-5 9.344014+6 8.810489-5 9.130102+6 8.850000-5 9.079443+6 9.015711-5 8.873813+6 9.225714-5 8.633233+6 9.230000-5 8.628311+6 9.332543-5 8.514254+6 9.400000-5 8.439169+6 9.549926-5 8.280944+6 9.580000-5 8.250470+6 9.660509-5 8.170694+6 9.772372-5 8.064269+6 9.800000-5 8.038689+6 9.950000-5 7.905253+6 1.010000-4 7.780191+6 1.011579-4 7.767529+6 1.025000-4 7.653652+6 1.040000-4 7.533498+6 1.055000-4 7.420141+6 1.070000-4 7.313095+6 1.071519-4 7.302526+6 1.083927-4 7.218920+6 1.085000-4 7.211780+6 1.090000-4 7.179002+6 1.096478-4 7.137761+6 1.100000-4 7.113621+6 1.110000-4 7.046519+6 1.115000-4 7.013934+6 1.128000-4 6.931408+6 1.135011-4 6.888314+6 1.150000-4 6.798857+6 1.170000-4 6.685758+6 1.174898-4 6.658942+6 1.180000-4 6.629613+6 1.190000-4 6.573622+6 1.198000-4 6.528050+6 1.202264-4 6.504220+6 1.212600-4 6.447321+6 1.212600-4 6.689071+6 1.225000-4 6.627142+6 1.230269-4 6.600839+6 1.244515-4 6.531859+6 1.260000-4 6.457956+6 1.273503-4 6.394688+6 1.280000-4 6.361997+6 1.310000-4 6.214910+6 1.318257-4 6.175601+6 1.333521-4 6.104044+6 1.348963-4 6.033875+6 1.350000-4 6.029201+6 1.364583-4 5.961101+6 1.380384-4 5.886859+6 1.400000-4 5.797011+6 1.430000-4 5.665430+6 1.450000-4 5.580575+6 1.479108-4 5.452989+6 1.480000-4 5.449178+6 1.540000-4 5.202933+6 1.548817-4 5.166947+6 1.603245-4 4.951040+6 1.650000-4 4.778608+6 1.659587-4 4.742563+6 1.720000-4 4.524868+6 1.737801-4 4.464472+6 1.760000-4 4.390510+6 1.778279-4 4.330145+6 1.798871-4 4.262168+6 1.800000-4 4.258481+6 1.820000-4 4.194039+6 1.880000-4 4.009844+6 1.905461-4 3.936194+6 1.927525-4 3.870705+6 1.950000-4 3.805951+6 2.000000-4 3.668544+6 2.041738-4 3.559658+6 2.065380-4 3.499204+6 2.089296-4 3.438379+6 2.137962-4 3.319145+6 2.162719-4 3.261084+6 2.187762-4 3.204028+6 2.190000-4 3.198941+6 2.238721-4 3.090345+6 2.264644-4 3.034952+6 2.290868-4 2.979358+6 2.300000-4 2.960439+6 2.317395-4 2.924850+6 2.350000-4 2.859295+6 2.371374-4 2.817473+6 2.454709-4 2.662031+6 2.483133-4 2.610544+6 2.580000-4 2.446676+6 2.600160-4 2.414348+6 2.630268-4 2.366919+6 2.660725-4 2.319446+6 2.754229-4 2.183109+6 2.786121-4 2.139250+6 2.800000-4 2.120400+6 2.820000-4 2.093568+6 2.951209-4 1.928324+6 2.985383-4 1.888324+6 3.000000-4 1.871465+6 3.054921-4 1.809957+6 3.162278-4 1.697460+6 3.200000-4 1.660231+6 3.235937-4 1.625799+6 3.273407-4 1.590827+6 3.311311-4 1.556597+6 3.388442-4 1.489705+6 3.430000-4 1.455165+6 3.507519-4 1.393758+6 3.589219-4 1.333001+6 3.630781-4 1.303369+6 3.672823-4 1.274009+6 3.845918-4 1.163058+6 3.890451-4 1.136820+6 3.935501-4 1.110922+6 4.000000-4 1.074847+6 4.216965-4 9.659460+5 4.265795-4 9.434340+5 4.315191-4 9.213674+5 4.466836-4 8.579117+5 4.623810-4 7.990749+5 4.677351-4 7.800081+5 4.731513-4 7.614378+5 5.011872-4 6.749029+5 5.128614-4 6.427807+5 5.188000-4 6.272083+5 5.432503-4 5.684803+5 5.688529-4 5.147458+5 5.754399-4 5.021296+5 5.888437-4 4.776388+5 5.956621-4 4.656566+5 6.309573-4 4.104138+5 6.382635-4 4.001946+5 6.456542-4 3.901889+5 6.500000-4 3.844494+5 7.000000-4 3.259518+5 7.079458-4 3.178836+5 7.500000-4 2.789923+5 7.762471-4 2.581867+5 7.800000-4 2.553776+5 7.852356-4 2.514821+5 8.511380-4 2.090434+5 8.609938-4 2.035747+5 8.709636-4 1.981958+5 8.810489-4 1.929521+5 9.374900-4 1.669895+5 9.374900-4 5.069735+5 9.376200-4 5.115147+5 9.380000-4 5.300340+5 9.385000-4 5.521054+5 9.390000-4 5.719240+5 9.395000-4 5.898629+5 9.402000-4 6.124405+5 9.408000-4 6.297876+5 9.414000-4 6.455392+5 9.421000-4 6.622907+5 9.429000-4 6.796546+5 9.440609-4 7.019956+5 9.451000-4 7.196120+5 9.462000-4 7.362713+5 9.478000-4 7.574535+5 9.496000-4 7.777165+5 9.500000-4 7.814472+5 9.515000-4 7.956345+5 9.535000-4 8.111755+5 9.558000-4 8.253764+5 9.580000-4 8.356998+5 9.585300-4 8.375334+5 9.585300-4 9.963934+5 9.587000-4 1.000223+6 9.590500-4 1.009718+6 9.593500-4 1.017371+6 9.596500-4 1.024626+6 9.600000-4 1.032579+6 9.601000-4 1.034767+6 9.607000-4 1.046524+6 9.612000-4 1.055594+6 9.618000-4 1.065597+6 9.625000-4 1.076394+6 9.630000-4 1.083437+6 9.633000-4 1.087318+6 9.640000-4 1.095485+6 9.651000-4 1.107084+6 9.660509-4 1.116009+6 9.663000-4 1.118388+6 9.665000-4 1.120063+6 9.675000-4 1.127273+6 9.690000-4 1.136713+6 9.705000-4 1.144837+6 9.708400-4 1.146406+6 9.720000-4 1.150570+6 9.742000-4 1.156658+6 9.760000-4 1.160237+6 9.772372-4 1.160842+6 9.785000-4 1.161505+6 9.815000-4 1.160689+6 9.820000-4 1.160210+6 9.840000-4 1.157454+6 9.865000-4 1.152751+6 9.885531-4 1.147870+6 9.900000-4 1.144456+6 9.950000-4 1.130081+6 1.000000-3 1.113827+6 1.008000-3 1.087031+6 1.023293-3 1.042604+6 1.035142-3 1.012061+6 1.047129-3 9.824177+5 1.071519-3 9.256104+5 1.083927-3 8.979109+5 1.086100-3 8.931774+5 1.086100-3 1.008547+6 1.109175-3 9.578776+5 1.122018-3 9.312638+5 1.130000-3 9.152564+5 1.135011-3 9.056468+5 1.150000-3 8.785205+5 1.174898-3 8.360225+5 1.183000-3 8.229180+5 1.202264-3 7.925001+5 1.205000-3 7.883138+5 1.216186-3 7.713354+5 1.244515-3 7.306294+5 1.258925-3 7.111046+5 1.273503-3 6.918815+5 1.288250-3 6.730755+5 1.303167-3 6.547830+5 1.318257-3 6.369918+5 1.380384-3 5.705650+5 1.400000-3 5.516671+5 1.412538-3 5.399018+5 1.428894-3 5.249845+5 1.479108-3 4.825729+5 1.513561-3 4.562371+5 1.566751-3 4.192160+5 1.603245-3 3.957438+5 1.678804-3 3.527324+5 1.698244-3 3.427380+5 1.717908-3 3.329798+5 1.737801-3 3.235068+5 1.778279-3 3.052537+5 1.800000-3 2.960540+5 1.819701-3 2.880434+5 1.840772-3 2.798127+5 1.900000-3 2.582552+5 1.972423-3 2.349473+5 1.995262-3 2.281286+5 2.018366-3 2.214663+5 2.041738-3 2.149757+5 2.065380-3 2.086771+5 2.137962-3 1.908834+5 2.213400-3 1.745682+5 2.238721-3 1.694944+5 2.290868-3 1.596432+5 2.344229-3 1.503761+5 2.398833-3 1.416075+5 2.426610-3 1.374179+5 2.540973-3 1.218846+5 2.570396-3 1.182532+5 2.600160-3 1.147140+5 2.660725-3 1.079206+5 2.722701-3 1.015399+5 2.851018-3 8.990653+4 2.917427-3 8.461020+4 2.951209-3 8.208364+4 2.985383-3 7.961421+4 3.000000-3 7.858588+4 3.019952-3 7.720291+4 3.090295-3 7.259005+4 3.349654-3 5.854858+4 3.388442-3 5.676191+4 3.427678-3 5.502208+4 3.507519-3 5.170492+4 3.555660-3 4.983710+4 3.801894-3 4.162175+4 3.845918-3 4.035573+4 3.890451-3 3.911204+4 3.935501-3 3.790280+4 4.000000-3 3.625924+4 4.073803-3 3.449664+4 4.315191-3 2.950160+4 4.365158-3 2.859510+4 4.415704-3 2.771721+4 4.518559-3 2.602205+4 4.570882-3 2.521225+4 4.623810-3 2.442774+4 4.677351-3 2.366767+4 4.841724-3 2.153026+4 4.897788-3 2.086282+4 4.954502-3 2.021641+4 5.011872-3 1.959059+4 5.069907-3 1.898046+4 5.128614-3 1.838625+4 5.188000-3 1.780945+4 5.432503-3 1.568084+4 5.559043-3 1.471569+4 5.688529-3 1.381127+4 5.754399-3 1.338072+4 5.888437-3 1.255404+4 5.956621-3 1.215807+4 6.309573-3 1.035755+4 6.382635-3 1.003139+4 6.456542-3 9.715668+3 6.683439-3 8.828489+3 6.839116-3 8.278761+3 7.000000-3 7.756740+3 7.328245-3 6.822292+3 7.413102-3 6.605969+3 7.585776-3 6.194235+3 7.673615-3 5.998361+3 7.762471-3 5.808735+3 7.943282-3 5.444627+3 8.222426-3 4.939738+3 8.413951-3 4.629389+3 8.511380-3 4.481757+3 8.709636-3 4.200518+3 8.810489-3 4.066765+3 8.912509-3 3.937312+3 8.943200-3 3.899484+3 8.943200-3 2.950742+4 9.015711-3 2.922968+4 9.050000-3 2.909994+4 9.120108-3 2.853902+4 9.150000-3 2.830447+4 9.225714-3 2.776998+4 9.660509-3 2.468168+4 9.772372-3 2.396493+4 9.885531-3 2.326908+4 1.023293-2 2.130075+4 1.035142-2 2.068253+4 1.047129-2 2.008231+4 1.059254-2 1.949891+4 1.071519-2 1.893258+4 1.109175-2 1.727289+4 1.135011-2 1.624841+4 1.161449-2 1.528467+4 1.188502-2 1.437819+4 1.216186-2 1.352562+4 1.244515-2 1.272280+4 1.273503-2 1.196754+4 1.318257-2 1.091816+4 1.333521-2 1.058932+4 1.364583-2 9.961004+3 1.380384-2 9.660978+3 1.400000-2 9.305582+3 1.428894-2 8.801097+3 1.462177-2 8.264649+3 1.513561-2 7.520577+3 1.548817-2 7.062234+3 1.566751-2 6.843683+3 1.603245-2 6.426646+3 1.659587-2 5.848265+3 1.678804-2 5.667113+3 1.730000-2 5.220501+3 1.778279-2 4.842229+3 1.819701-2 4.540807+3 1.840772-2 4.397225+3 1.862087-2 4.258194+3 1.883649-2 4.123550+3 1.927525-2 3.866880+3 1.972423-2 3.625954+3 2.065380-2 3.188300+3 2.162719-2 2.803487+3 2.187762-2 2.714789+3 2.213095-2 2.628904+3 2.238721-2 2.544302+3 2.264644-2 2.462417+3 2.317395-2 2.306312+3 2.483133-2 1.895007+3 2.600160-2 1.662443+3 2.630268-2 1.608915+3 2.660725-2 1.557104+3 2.722701-2 1.458335+3 2.754229-2 1.410640+3 2.786121-2 1.364505+3 2.818383-2 1.319880+3 3.054921-2 1.045860+3 3.126079-2 9.785917+2 3.130000-2 9.750561+2 3.162278-2 9.465652+2 3.198895-2 9.155852+2 3.273407-2 8.566369+2 3.349654-2 8.014898+2 3.467369-2 7.244114+2 3.715352-2 5.917983+2 3.801894-2 5.531866+2 3.845918-2 5.348352+2 3.935501-2 4.999402+2 4.027170-2 4.673248+2 4.120975-2 4.368393+2 4.466836-2 3.440302+2 4.623810-2 3.105259+2 4.731513-2 2.900238+2 4.841724-2 2.708766+2 4.954502-2 2.529937+2 5.128614-2 2.283602+2 5.308844-2 2.059012+2 5.370318-2 1.989163+2 5.432503-2 1.921686+2 5.623413-2 1.732510+2 5.688529-2 1.673688+2 5.821032-2 1.561971+2 6.531306-2 1.105835+2 6.683439-2 1.031364+2 6.839116-2 9.618498+1 7.079458-2 8.662687+1 7.328245-2 7.801913+1 8.317638-2 5.315821+1 8.413951-2 5.133604+1 8.511380-2 4.957496+1 8.609938-2 4.787436+1 8.912509-2 4.308633+1 9.120108-2 4.016353+1 9.660509-2 3.369512+1 9.885531-2 3.140974+1 1.047129-1 2.635188+1 1.059254-1 2.544263+1 1.083927-1 2.371709+1 1.122019-1 2.134581+1 1.135011-1 2.060911+1 1.148154-1 1.989783+1 1.188502-1 1.790800+1 1.202264-1 1.729002+1 1.230269-1 1.611729+1 1.303167-1 1.352192+1 1.318257-1 1.305535+1 1.364583-1 1.175009+1 1.412538-1 1.057534+1 1.462177-1 9.518160+0 1.500000-1 8.805043+0 1.531088-1 8.271142+0 1.548817-1 7.985815+0 1.603245-1 7.187589+0 1.659587-1 6.469157+0 1.698244-1 6.030591+0 1.737801-1 5.625777+0 1.798871-1 5.069003+0 1.840772-1 4.728801+0 1.862087-1 4.567492+0 1.883649-1 4.411686+0 1.905461-1 4.261204+0 1.927525-1 4.115858+0 2.065380-1 3.342192+0 2.089296-1 3.228203+0 2.137962-1 3.011757+0 2.162719-1 2.909044+0 2.187762-1 2.810987+0 2.238721-1 2.624680+0 2.264644-1 2.536313+0 2.290868-1 2.450935+0 2.344229-1 2.288708+0 2.371374-1 2.211670+0 2.398833-1 2.137227+0 2.426610-1 2.065294+0 2.454709-1 1.995782+0 2.511886-1 1.863702+0 2.540973-1 1.800975+0 2.630268-1 1.627630+0 2.660725-1 1.573710+0 2.683120-1 1.535590+0 2.722701-1 1.471196+0 2.917427-1 1.202022+0 2.951209-1 1.162831+0 2.985383-1 1.124918+0 3.019952-1 1.088245+0 3.054921-1 1.052768+0 3.090295-1 1.018500+0 3.198895-1 9.222692-1 3.273407-1 8.632215-1 3.311311-1 8.351343-1 3.388442-1 7.825967-1 3.467369-1 7.333651-1 3.507519-1 7.099643-1 3.589219-1 6.653907-1 3.630781-1 6.441656-1 3.715352-1 6.037283-1 3.758374-1 5.848380-1 3.845918-1 5.488127-1 3.890451-1 5.316413-1 3.935501-1 5.150383-1 3.981072-1 4.989600-1 4.027170-1 4.833841-1 4.120975-1 4.536766-1 4.168694-1 4.398097-1 4.265795-1 4.133349-1 4.315191-1 4.007020-1 4.365158-1 3.884800-1 4.415705-1 3.766305-1 4.466836-1 3.651465-1 4.570882-1 3.432192-1 4.623810-1 3.329912-1 4.677351-1 3.230688-1 4.731513-1 3.134419-1 4.786301-1 3.041022-1 4.897788-1 2.862881-1 4.954502-1 2.777792-1 5.011872-1 2.695237-1 5.069907-1 2.615140-1 5.128614-1 2.539363-1 5.308844-1 2.324960-1 5.432503-1 2.192496-1 5.495409-1 2.129152-1 5.559043-1 2.067639-1 5.623413-1 2.007904-1 5.888437-1 1.791237-1 6.000000-1 1.710000-1 6.025596-1 1.692102-1 6.165950-1 1.598488-1 6.382635-1 1.471122-1 6.456542-1 1.430966-1 6.531306-1 1.392011-1 6.606935-1 1.354118-1 6.760830-1 1.281429-1 6.918310-1 1.214664-1 7.079458-1 1.151382-1 7.085700-1 1.149026-1 7.161434-1 1.121083-1 7.244360-1 1.091589-1 7.328245-1 1.062885-1 7.413102-1 1.035798-1 7.498942-1 1.009401-1 7.585776-1 9.836786-2 7.673615-1 9.586121-2 7.762471-1 9.341846-2 7.943282-1 8.873119-2 8.000000-1 8.733098-2 8.035261-1 8.647689-2 8.128305-1 8.434378-2 8.511380-1 7.632527-2 8.609938-1 7.444272-2 8.709636-1 7.261110-2 8.912509-1 6.908353-2 9.015711-1 6.738453-2 9.120108-1 6.577150-2 9.225714-1 6.419712-2 9.332543-1 6.266054-2 9.440609-1 6.116073-2 9.549926-1 5.969753-2 9.660509-1 5.827456-2 9.772372-1 5.688568-2 1.011579+0 5.306836-2 1.023293+0 5.185366-2 1.035142+0 5.066726-2 1.059254+0 4.838060-2 1.071519+0 4.727635-2 1.096478+0 4.514280-2 1.109175+0 4.411239-2 1.122018+0 4.310566-2 1.135011+0 4.215403-2 1.161449+0 4.031361-2 1.174898+0 3.942766-2 1.188600+0 3.855511-2 1.216186+0 3.688519-2 1.230269+0 3.610285-2 1.273503+0 3.385426-2 1.288250+0 3.313824-2 1.303167+0 3.243772-2 1.318257+0 3.175204-2 1.333521+0 3.108090-2 1.364583+0 2.978079-2 1.396368+0 2.857222-2 1.428894+0 2.741268-2 1.462177+0 2.630402-2 1.479108+0 2.576665-2 1.531087+0 2.421949-2 1.548817+0 2.374207-2 1.584893+0 2.281541-2 1.621810+0 2.192814-2 1.698244+0 2.025581-2 1.717908+0 1.985808-2 1.737801+0 1.948106-2 1.778279+0 1.874844-2 1.819701+0 1.804598-2 1.905461+0 1.671909-2 1.927525+0 1.640293-2 1.949845+0 1.610278-2 2.000000+0 1.546002-2 2.018366+0 1.523586-2 2.044000+0 1.493170-2 2.137962+0 1.389705-2 2.162719+0 1.364376-2 2.187762+0 1.340331-2 2.264644+0 1.270713-2 2.290868+0 1.248402-2 2.317395+0 1.226483-2 2.426610+0 1.142590-2 2.454709+0 1.122530-2 2.483133+0 1.103466-2 2.570396+0 1.048198-2 2.600160+0 1.030463-2 2.630268+0 1.013028-2 2.754229+0 9.461889-3 2.786121+0 9.301811-3 2.851018+0 8.999770-3 2.951209+0 8.565033-3 2.985383+0 8.425348-3 3.019952+0 8.287945-3 3.162278+0 7.760387-3 3.235937+0 7.509351-3 3.311311+0 7.274232-3 3.427678+0 6.935307-3 3.467369+0 6.826268-3 3.507519+0 6.718946-3 3.672823+0 6.306273-3 3.758374+0 6.109551-3 3.845918+0 5.924729-3 4.000000+0 5.622259-3 4.073803+0 5.487249-3 4.120975+0 5.403901-3 4.315191+0 5.082978-3 4.415704+0 4.929745-3 4.518559+0 4.785628-3 4.731513+0 4.509930-3 4.786301+0 4.443750-3 4.841724+0 4.378540-3 5.128614+0 4.066577-3 5.248075+0 3.948112-3 5.370318+0 3.836508-3 5.623413+0 3.622691-3 5.688529+0 3.571282-3 5.754399+0 3.520603-3 5.821032+0 3.470643-3 6.237348+0 3.185429-3 6.382635+0 3.095668-3 6.531306+0 3.010789-3 6.839116+0 2.847959-3 6.918310+0 2.808774-3 7.000000+0 2.769376-3 7.079458+0 2.732015-3 7.498942+0 2.549173-3 7.673615+0 2.479512-3 7.943282+0 2.380978-3 8.609938+0 2.166035-3 8.709636+0 2.137045-3 8.912509+0 2.080223-3 9.015711+0 2.052381-3 9.332543+0 1.971073-3 9.440609+0 1.944694-3 9.660509+0 1.894262-3 1.100000+1 1.633400-3 1.122018+1 1.596970-3 1.161449+1 1.535412-3 1.174898+1 1.515425-3 1.202264+1 1.476230-3 1.216186+1 1.457014-3 1.230269+1 1.438488-3 1.412538+1 1.233737-3 1.445440+1 1.202644-3 1.479108+1 1.172335-3 1.513561+1 1.142789-3 1.531087+1 1.128298-3 1.566751+1 1.100354-3 1.949845+1 8.671020-4 1.972423+1 8.563217-4 2.000000+1 8.434989-4 2.018366+1 8.351619-4 2.041738+1 8.247790-4 2.065380+1 8.147243-4 2.722701+1 6.069742-4 2.754229+1 5.995870-4 2.800000+1 5.891705-4 2.818383+1 5.850852-4 2.884032+1 5.709345-4 4.216965+1 3.838147-4 4.265795+1 3.792303-4 4.315191+1 3.747015-4 4.365158+1 3.702269-4 4.415704+1 3.658057-4 4.518559+1 3.571213-4 6.918310+1 2.305104-4 6.998420+1 2.278018-4 7.161434+1 2.224806-4 7.328245+1 2.172836-4 7.498942+1 2.122081-4 7.762471+1 2.048164-4 1.318257+2 1.196059-4 1.333521+2 1.182165-4 1.364583+2 1.154861-4 1.396368+2 1.128189-4 1.412538+2 1.115084-4 1.445440+2 1.089330-4 1.500000+2 1.049133-4 1.531087+2 1.027520-4 2.630268+2 5.956391-5 2.660725+2 5.887718-5 2.722701+2 5.752747-5 2.786121+2 5.620869-5 2.818383+2 5.556068-5 2.884032+2 5.428699-5 2.985383+2 5.243102-5 3.054921+2 5.122911-5 1.047129+3 1.489139-5 1.059254+3 1.472048-5 1.083927+3 1.438452-5 1.109175+3 1.405623-5 1.122018+3 1.389491-5 1.148154+3 1.357779-5 1.188502+3 1.311564-5 1.216186+3 1.281631-5 1.000000+5 1.555997-7 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.110000-6 7.110000-6 9.800000-6 7.110000-6 9.800000-6 9.643621-6 1.009000-5 9.676349-6 1.009000-5 9.834756-6 1.165000-5 9.894844-6 1.584893-5 9.910854-6 7.786000-5 9.908299-6 7.786000-5 1.083002-5 8.050000-5 1.078078-5 8.050000-5 1.117500-5 8.511380-5 1.099817-5 9.015711-5 1.079338-5 9.580000-5 1.063055-5 1.011579-4 1.054878-5 1.071519-4 1.053130-5 1.150000-4 1.058951-5 1.212600-4 1.067665-5 1.212600-4 1.132023-5 1.350000-4 1.167888-5 1.820000-4 1.275817-5 2.089296-4 1.330269-5 2.371374-4 1.379238-5 2.820000-4 1.446335-5 3.311311-4 1.510945-5 3.845918-4 1.571203-5 4.466836-4 1.630525-5 5.188000-4 1.688576-5 5.956621-4 1.740770-5 7.000000-4 1.798662-5 7.852356-4 1.838519-5 8.810489-4 1.876756-5 9.374900-4 1.896913-5 9.374900-4 2.652352-5 9.390000-4 2.695864-5 9.408000-4 2.727435-5 9.440609-4 2.760256-5 9.500000-4 2.790830-5 9.585300-4 2.811452-5 9.585300-4 2.851302-5 9.640000-4 2.872278-5 9.772372-4 2.888595-5 1.023293-3 2.891458-5 1.086100-3 2.891812-5 1.086100-3 3.086861-5 1.258925-3 3.125894-5 1.840772-3 3.220142-5 2.660725-3 3.324427-5 3.555660-3 3.415347-5 4.841724-3 3.518589-5 6.456542-3 3.617918-5 8.511380-3 3.712539-5 8.943200-3 3.729535-5 8.943200-3 4.741588-5 1.318257-2 4.772250-5 2.483133-2 4.800787-5 5.821032-2 4.820716-5 2.722701-1 4.832938-5 1.000000+5 4.835367-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.110000-6 0.0 7.786000-5 0.0 7.786000-5 1.53017-10 7.840000-5 1.52315-10 7.910000-5 1.50489-10 8.000000-5 1.47047-10 8.050000-5 1.44823-10 8.050000-5 2.15260-10 8.150000-5 2.10394-10 8.222426-5 2.05997-10 8.350000-5 1.97280-10 8.650000-5 1.75181-10 8.850000-5 1.61317-10 9.015711-5 1.50578-10 9.230000-5 1.38360-10 9.400000-5 1.30090-10 9.580000-5 1.22770-10 9.660509-5 1.19938-10 9.800000-5 1.15625-10 9.950000-5 1.11859-10 1.011579-4 1.08746-10 1.025000-4 1.07041-10 1.040000-4 1.05875-10 1.055000-4 1.05409-10 1.071519-4 1.05646-10 1.090000-4 1.06737-10 1.110000-4 1.08871-10 1.135011-4 1.12697-10 1.150000-4 1.15415-10 1.180000-4 1.21862-10 1.212600-4 1.30147-10 1.212600-4 1.89080-10 1.260000-4 2.07251-10 1.333521-4 2.34075-10 1.480000-4 2.86824-10 1.603245-4 3.30533-10 1.737801-4 3.77014-10 1.820000-4 4.04544-10 1.950000-4 4.45751-10 2.065380-4 4.79837-10 2.190000-4 5.14640-10 2.350000-4 5.55676-10 2.483133-4 5.87640-10 2.754229-4 6.48182-10 3.000000-4 6.99014-10 3.235937-4 7.44330-10 3.430000-4 7.79318-10 3.672823-4 8.19864-10 4.000000-4 8.69301-10 4.315191-4 9.12461-10 4.731513-4 9.64287-10 5.128614-4 1.008704-9 5.432503-4 1.039979-9 5.956621-4 1.087435-9 6.500000-4 1.130692-9 7.079458-4 1.171051-9 7.852356-4 1.217908-9 8.709636-4 1.261689-9 9.374900-4 1.291256-9 9.374900-4 5.422146-6 9.376200-4 5.446631-6 9.380000-4 5.541195-6 9.385000-4 5.645889-6 9.390000-4 5.733303-6 9.395000-4 5.807624-6 9.402000-4 5.895349-6 9.414000-4 6.013731-6 9.429000-4 6.124922-6 9.451000-4 6.243701-6 9.478000-4 6.347184-6 9.515000-4 6.445509-6 9.558000-4 6.521247-6 9.585300-4 6.554238-6 9.585300-4 6.834646-6 9.612000-4 6.923792-6 9.651000-4 6.998116-6 9.720000-4 7.066553-6 9.820000-4 7.106260-6 1.000000-3 7.111170-6 1.086100-3 7.084074-6 1.086100-3 7.219815-6 1.972423-3 7.239924-6 8.943200-3 7.208855-6 8.943200-3 3.158355-3 9.120108-3 3.168742-3 1.135011-2 3.194888-3 1.603245-2 3.221654-3 2.483133-2 3.242816-3 4.623810-2 3.257396-3 1.548817-1 3.264844-3 1.000000+5 3.266705-3 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.110000-6 0.0 9.800000-6 2.690000-6 9.800000-6 1.563791-7 1.000000-5 3.331972-7 1.009000-5 4.136508-7 1.009000-5 2.552436-7 1.035142-5 5.010488-7 1.071519-5 8.477094-7 1.122018-5 1.335403-6 1.203000-5 2.128866-6 1.365000-5 3.738064-6 7.786000-5 6.795170-5 7.786000-5 6.702982-5 8.050000-5 6.971908-5 8.050000-5 6.932479-5 9.950000-5 8.893303-5 1.212600-4 1.105832-4 1.212600-4 1.099396-4 2.454709-4 2.315441-4 5.432503-4 5.261852-4 9.374900-4 9.185196-4 9.374900-4 9.055443-4 9.558000-4 9.212117-4 1.008000-3 9.719770-4 1.086100-3 1.050098-3 1.086100-3 1.048012-3 8.943200-3 8.898696-3 8.943200-3 5.737429-3 9.225714-3 6.007046-3 1.566751-2 1.239946-2 2.454709-1 2.421574-1 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.943200-3 2.560794+4 9.050000-3 2.532860+4 9.150000-3 2.464860+4 9.225714-3 2.419832+4 1.071519-2 1.659531+4 1.400000-2 8.216480+3 1.778279-2 4.295918+3 2.213095-2 2.339718+3 2.722701-2 1.300900+3 3.349654-2 7.162195+2 4.120975-2 3.908643+2 5.128614-2 2.045224+2 6.531306-2 9.911070+1 8.609938-2 4.293082+1 1.698244-1 5.410341+0 2.162719-1 2.610176+0 2.540973-1 1.615860+0 2.917427-1 1.078446+0 3.311311-1 7.492858-1 3.715352-1 5.416716-1 4.120975-1 4.070490-1 4.570882-1 3.079497-1 5.069907-1 2.346453-1 5.623413-1 1.801654-1 6.165950-1 1.434364-1 6.760830-1 1.149906-1 7.328245-1 9.538612-2 8.035261-1 7.761310-2 9.015711-1 6.048336-2 9.772372-1 5.106154-2 1.122018+0 3.869243-2 1.216186+0 3.310879-2 1.364583+0 2.673204-2 1.531087+0 2.173994-2 1.717908+0 1.782507-2 1.927525+0 1.472357-2 2.162719+0 1.224663-2 2.454709+0 1.007586-2 2.786121+0 8.349315-3 3.235937+0 6.740438-3 3.758374+0 5.483991-3 4.415704+0 4.424964-3 5.248075+0 3.543871-3 6.382635+0 2.778721-3 7.673615+0 2.225614-3 9.440609+0 1.745569-3 1.216186+1 1.307833-3 1.531087+1 1.012807-3 2.041738+1 7.403632-4 2.884032+1 5.124971-4 4.518559+1 3.205682-4 7.762471+1 1.838516-4 1.531087+2 9.223626-5 3.054921+2 4.598620-5 1.216186+3 1.150503-5 1.000000+5 1.396800-7 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.943200-3 4.895700-5 1.000000+5 4.895700-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.943200-3 3.638200-3 1.000000+5 3.638200-3 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.943200-3 5.256043-3 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.086100-3 1.153700+5 1.183000-3 1.056450+5 1.205000-3 1.031352+5 1.428894-3 7.969790+4 1.513561-3 7.284180+4 1.840772-3 5.259706+4 2.018366-3 4.474235+4 2.344229-3 3.411924+4 2.600160-3 2.806993+4 3.000000-3 2.126780+4 3.388442-3 1.665747+4 3.845918-3 1.283705+4 4.415704-3 9.581375+3 5.011872-3 7.278379+3 5.754399-3 5.353733+3 6.683439-3 3.806345+3 7.762471-3 2.683688+3 9.015711-3 1.877027+3 1.047129-2 1.302685+3 1.216186-2 8.973921+2 1.428894-2 5.958503+2 1.659587-2 4.043912+2 1.927525-2 2.726043+2 2.264644-2 1.769607+2 2.660725-2 1.140447+2 3.130000-2 7.273340+1 3.715352-2 4.492833+1 4.466836-2 2.656693+1 5.432503-2 1.508210+1 6.683439-2 8.216123+0 8.413951-2 4.150206+0 1.122019-1 1.751993+0 1.840772-1 3.952060-1 2.238721-1 2.206177-1 2.630268-1 1.374310-1 3.054921-1 8.915295-2 3.467369-1 6.223745-2 3.890451-1 4.519629-2 4.315191-1 3.410885-2 4.786301-1 2.591324-2 5.308844-1 1.982801-2 5.888437-1 1.528803-2 6.456542-1 1.221762-2 7.085700-1 9.812653-3 7.762471-1 7.981160-3 8.609938-1 6.360952-3 9.549926-1 5.101661-3 1.035142+0 4.328824-3 1.161449+0 3.444443-3 1.273503+0 2.892859-3 1.428894+0 2.342126-3 1.584893+0 1.949538-3 1.778279+0 1.602068-3 2.000000+0 1.321198-3 2.264644+0 1.085923-3 2.570396+0 8.958105-4 2.951209+0 7.318002-4 3.427678+0 5.925873-4 4.000000+0 4.804100-4 4.731513+0 3.853258-4 5.623413+0 3.095376-4 6.839116+0 2.433485-4 8.609938+0 1.850688-4 1.100000+1 1.395600-4 1.412538+1 1.054180-4 1.949845+1 7.411530-5 2.722701+1 5.188105-5 4.216965+1 3.280558-5 6.918310+1 1.970170-5 1.318257+2 1.022161-5 2.630268+2 5.092328-6 1.047129+3 1.273015-6 1.000000+5 1.330600-8 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.086100-3 4.596900-5 1.000000+5 4.596900-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.086100-3 8.270700-6 1.000000+5 8.270700-6 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.086100-3 1.031860-3 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 9.585300-4 1.588600+5 9.587000-4 1.621000+5 9.590500-4 1.703800+5 9.593500-4 1.769900+5 9.596500-4 1.832000+5 9.601000-4 1.919000+5 9.607000-4 2.023400+5 9.612000-4 2.103100+5 9.618000-4 2.189900+5 9.625000-4 2.282400+5 9.633000-4 2.378100+5 9.640000-4 2.454000+5 9.651000-4 2.560900+5 9.663000-4 2.664000+5 9.675000-4 2.755800+5 9.690000-4 2.857100+5 9.705000-4 2.945200+5 9.720000-4 3.022000+5 9.742000-4 3.116700+5 9.760000-4 3.180000+5 9.785000-4 3.249900+5 9.815000-4 3.309700+5 9.840000-4 3.342100+5 9.865000-4 3.361300+5 9.900000-4 3.369900+5 9.950000-4 3.354600+5 1.000000-3 3.317800+5 1.130000-3 2.367100+5 1.174898-3 2.144400+5 1.273503-3 1.756600+5 1.412538-3 1.350900+5 1.566751-3 1.031600+5 1.698244-3 8.318800+4 1.995262-3 5.357700+4 2.238721-3 3.877400+4 2.570396-3 2.612900+4 2.985383-3 1.687000+4 3.349654-3 1.198100+4 3.890451-3 7.618900+3 4.518559-3 4.803600+3 5.128614-3 3.231300+3 5.956621-3 2.007900+3 7.000000-3 1.192000+3 8.222426-3 7.028200+2 9.660509-3 4.109200+2 1.135011-2 2.384600+2 1.333521-2 1.374000+2 1.566751-2 7.863400+1 1.862087-2 4.293800+1 2.238721-2 2.235400+1 2.754229-2 1.064000+1 3.467369-2 4.626000+0 4.623810-2 1.618600+0 8.511380-2 1.729500-1 1.083927-1 7.178485-2 1.303167-1 3.697997-2 1.548817-1 2.000663-2 1.798871-1 1.183070-2 2.065380-1 7.339836-3 2.344229-1 4.773585-3 2.630268-1 3.250638-3 2.951209-1 2.229783-3 3.273407-1 1.599263-3 3.630781-1 1.155471-3 4.027170-1 8.407789-4 4.466836-1 6.162444-4 4.954502-1 4.549564-4 5.432503-1 3.497148-4 6.000000-1 2.652485-4 6.606935-1 2.044268-4 7.244360-1 1.605464-4 7.943282-1 1.270270-4 8.609938-1 1.037682-4 9.225714-1 8.787379-5 9.772372-1 7.702202-5 1.035142+0 6.799017-5 1.109175+0 5.893823-5 1.188600+0 5.146579-5 1.303167+0 4.343872-5 1.462177+0 3.541144-5 1.698244+0 2.733522-5 1.905461+0 2.255005-5 2.137962+0 1.874212-5 2.426610+0 1.540970-5 2.754229+0 1.276084-5 3.162278+0 1.046348-5 3.672823+0 8.503275-6 4.315191+0 6.853942-6 5.128614+0 5.483361-6 6.237348+0 4.295526-6 7.498942+0 3.437609-6 9.332543+0 2.658344-6 1.202264+1 1.991066-6 1.513561+1 1.541476-6 2.018366+1 1.126545-6 2.818383+1 7.891382-7 4.415704+1 4.933942-7 7.498942+1 2.862278-7 1.412538+2 1.503792-7 2.818383+2 7.494344-8 1.122018+3 1.874218-8 1.000000+5 2.09920-10 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 9.585300-4 3.061400-5 1.000000+5 3.061400-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.585300-4 8.313000-6 1.000000+5 8.313000-6 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.585300-4 9.196030-4 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 9.374900-4 3.399840+5 9.376200-4 3.445788+5 9.380000-4 3.632548+5 9.385000-4 3.855320+5 9.390000-4 4.055560+5 9.395000-4 4.237000+5 9.402000-4 4.465640+5 9.408000-4 4.641560+5 9.414000-4 4.801520+5 9.421000-4 4.971880+5 9.429000-4 5.148760+5 9.440609-4 5.376858+5 9.451000-4 5.557200+5 9.462000-4 5.728200+5 9.478000-4 5.946400+5 9.496000-4 6.156160+5 9.515000-4 6.342920+5 9.535000-4 6.506280+5 9.558000-4 6.657360+5 9.580000-4 6.769200+5 9.600000-4 6.846440+5 9.630000-4 6.924120+5 9.665000-4 6.966360+5 9.708400-4 6.962746+5 9.760000-4 6.902560+5 9.820000-4 6.787920+5 1.008000-3 6.216320+5 1.023293-3 5.953369+5 1.071519-3 5.295827+5 1.135011-3 4.550750+5 1.258925-3 3.510637+5 1.400000-3 2.673864+5 1.566751-3 1.988619+5 1.737801-3 1.500989+5 1.972423-3 1.058833+5 2.213400-3 7.640003+4 2.540973-3 5.134665+4 2.951209-3 3.303783+4 3.349654-3 2.260056+4 3.845918-3 1.482893+4 4.415704-3 9.659119+3 5.069907-3 6.247536+3 5.888437-3 3.866731+3 6.839116-3 2.374906+3 7.943282-3 1.447993+3 9.225714-3 8.766915+2 1.071519-2 5.272129+2 1.244515-2 3.149802+2 1.462177-2 1.795873+2 1.730000-2 9.915840+1 2.065380-2 5.263356+1 2.483133-2 2.702785+1 3.054921-2 1.266685+1 3.801894-2 5.644332+0 4.841724-2 2.291937+0 9.660509-2 1.719393-1 1.188502-1 7.950944-2 1.412538-1 4.211468-2 1.659587-1 2.344587-2 1.883649-1 1.489736-2 2.137962-1 9.535798-3 2.398833-1 6.403306-3 2.683120-1 4.379707-3 2.985383-1 3.073039-3 3.273407-1 2.278152-3 3.589219-1 1.700229-3 3.935501-1 1.278199-3 4.265795-1 1.002433-3 4.623810-1 7.911254-4 5.011872-1 6.284149-4 5.432503-1 5.027122-4 5.888437-1 4.048314-4 6.382635-1 3.281534-4 6.918310-1 2.677526-4 7.498942-1 2.198648-4 8.128305-1 1.816669-4 9.015711-1 1.431757-4 9.660509-1 1.229935-4 1.035142+0 1.064569-4 1.135011+0 8.844755-5 1.230269+0 7.574284-5 1.364583+0 6.257894-5 1.548817+0 5.000625-5 1.737801+0 4.103699-5 1.949845+0 3.391229-5 2.187762+0 2.822563-5 2.483133+0 2.323810-5 2.851018+0 1.894839-5 3.311311+0 1.531617-5 3.845918+0 1.247532-5 4.518559+0 1.007647-5 5.370318+0 8.078327-6 6.531306+0 6.339840-6 7.943282+0 5.013478-6 9.660509+0 3.989054-6 1.230269+1 3.029516-6 1.566751+1 2.317415-6 2.065380+1 1.716005-6 2.884032+1 1.202691-6 4.518559+1 7.522641-7 7.762471+1 4.314460-7 1.500000+2 2.209800-7 2.985383+2 1.104412-7 1.188502+3 2.762781-8 1.000000+5 3.27780-10 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 9.374900-4 3.023400-5 1.000000+5 3.023400-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.374900-4 8.084700-6 1.000000+5 8.084700-6 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.374900-4 8.991713-4 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.212600-4 2.417500+5 1.225000-4 2.464860+5 1.244515-4 2.520926+5 1.260000-4 2.552020+5 1.280000-4 2.580200+5 1.310000-4 2.602780+5 1.348963-4 2.611000+5 1.400000-4 2.601880+5 1.479108-4 2.568408+5 1.650000-4 2.478700+5 1.800000-4 2.395160+5 1.927525-4 2.317681+5 2.041738-4 2.241881+5 2.162719-4 2.155677+5 2.300000-4 2.053560+5 2.454709-4 1.937685+5 2.660725-4 1.789534+5 2.951209-4 1.602116+5 3.273407-4 1.424390+5 3.630781-4 1.257090+5 4.000000-4 1.109854+5 4.466836-4 9.550355+4 5.128614-4 7.846311+4 5.754399-4 6.615463+4 6.500000-4 5.479860+4 7.500000-4 4.356620+4 8.511380-4 3.533513+4 9.772372-4 2.789433+4 1.122018-3 2.187534+4 1.303167-3 1.667717+4 1.513561-3 1.262202+4 1.778279-3 9.273365+3 2.065380-3 6.916130+3 2.426610-3 5.006380+3 2.851018-3 3.596830+3 3.349654-3 2.565511+3 3.935501-3 1.816352+3 4.623810-3 1.276106+3 5.432503-3 8.895028+2 6.309573-3 6.316183+2 7.328245-3 4.453427+2 8.511380-3 3.117513+2 9.885531-3 2.166825+2 1.161449-2 1.453250+2 1.364583-2 9.670685+1 1.603245-2 6.386267+1 1.883649-2 4.185831+1 2.213095-2 2.723346+1 2.630268-2 1.704702+1 3.126079-2 1.058756+1 3.715352-2 6.526565+0 4.466836-2 3.866039+0 5.308844-2 2.349899+0 6.531306-2 1.282224+0 8.317638-2 6.271812-1 1.059254-1 3.046238-1 1.737801-1 6.882550-2 2.264644-1 3.129215-2 2.660725-1 1.949843-2 3.090295-1 1.266094-2 3.507519-1 8.846517-3 3.935501-1 6.429633-3 4.415705-1 4.708314-3 4.897788-1 3.582437-3 5.432503-1 2.746353-3 6.000000-1 2.144398-3 6.606935-1 1.699677-3 7.244360-1 1.370537-3 8.000000-1 1.095300-3 8.709636-1 9.092005-4 9.440609-1 7.667477-4 1.023293+0 6.508512-4 1.161449+0 5.067611-4 1.288250+0 4.160215-4 1.428894+0 3.439695-4 1.584893+0 2.863158-4 1.778279+0 2.352755-4 2.000000+0 1.940400-4 2.264644+0 1.594948-4 2.570396+0 1.315707-4 2.951209+0 1.074773-4 3.427678+0 8.703273-5 4.000000+0 7.055900-5 4.731513+0 5.659439-5 5.623413+0 4.546333-5 6.839116+0 3.574177-5 8.609938+0 2.718143-5 1.100000+1 2.049700-5 1.412538+1 1.548395-5 1.949845+1 1.088515-5 2.754229+1 7.527570-6 4.265795+1 4.761010-6 6.998420+1 2.859723-6 1.333521+2 1.483912-6 2.660725+2 7.393081-7 1.059254+3 1.848316-7 1.000000+5 1.954300-9 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.212600-4 2.848400-5 1.000000+5 2.848400-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.212600-4 1.760800-9 1.000000+5 1.760800-9 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.212600-4 9.277424-5 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 8.050000-5 4.402900+5 8.105000-5 4.373920+5 8.150000-5 4.334680+5 8.222426-5 4.245837+5 8.317638-5 4.099066+5 8.413951-5 3.931251+5 8.511380-5 3.750359+5 8.650000-5 3.490240+5 8.850000-5 3.127400+5 9.400000-5 2.309680+5 9.580000-5 2.108760+5 9.772372-5 1.928761+5 9.950000-5 1.792158+5 1.011579-4 1.688074+5 1.025000-4 1.618956+5 1.040000-4 1.556284+5 1.055000-4 1.507530+5 1.070000-4 1.471214+5 1.085000-4 1.445928+5 1.100000-4 1.430344+5 1.115000-4 1.423224+5 1.135011-4 1.424952+5 1.150000-4 1.433334+5 1.170000-4 1.452232+5 1.198000-4 1.490262+5 1.230269-4 1.545868+5 1.364583-4 1.824461+5 1.430000-4 1.954988+5 1.480000-4 2.045360+5 1.540000-4 2.141380+5 1.603245-4 2.227837+5 1.659587-4 2.292639+5 1.720000-4 2.349900+5 1.798871-4 2.406572+5 1.880000-4 2.444940+5 1.950000-4 2.463520+5 2.041738-4 2.470489+5 2.137962-4 2.460332+5 2.238721-4 2.434290+5 2.350000-4 2.391360+5 2.483133-4 2.326615+5 2.630268-4 2.245502+5 2.800000-4 2.145720+5 3.000000-4 2.025340+5 3.200000-4 1.905352+5 3.430000-4 1.771208+5 3.672823-4 1.636133+5 3.935501-4 1.499499+5 4.265795-4 1.344366+5 4.623810-4 1.196753+5 5.011872-4 1.058328+5 5.432503-4 9.295463+4 5.888437-4 8.107188+4 6.456542-4 6.882306+4 7.079458-4 5.801510+4 7.762471-4 4.856089+4 8.511380-4 4.035586+4 9.500000-4 3.208060+4 1.047129-3 2.599431+4 1.150000-3 2.109180+4 1.288250-3 1.624779+4 1.428894-3 1.271539+4 1.603245-3 9.608105+3 1.800000-3 7.195980+3 2.041738-3 5.209127+3 2.290868-3 3.850420+3 2.600160-3 2.740883+3 2.951209-3 1.935803+3 3.349654-3 1.357249+3 3.801894-3 9.446892+2 4.315191-3 6.527597+2 4.897788-3 4.478061+2 5.559043-3 3.050141+2 6.382635-3 1.990897+2 7.328245-3 1.289496+2 8.413951-3 8.289318+1 9.772372-3 5.095201+1 1.135011-2 3.108198+1 1.318257-2 1.882673+1 1.548817-2 1.088989+1 1.819701-2 6.252849+0 2.162719-2 3.424425+0 2.600160-2 1.787320+0 3.198895-2 8.529860-1 4.027170-2 3.718635-1 5.623413-2 1.105024-1 8.912509-2 2.061871-2 1.135011-1 8.598853-3 1.364583-1 4.447530-3 1.603245-1 2.515831-3 1.862087-1 1.493281-3 2.137962-1 9.296187-4 2.426610-1 6.064453-4 2.722701-1 4.141034-4 3.054921-1 2.848014-4 3.388442-1 2.047067-4 3.758374-1 1.481393-4 4.168694-1 1.079874-4 4.623810-1 7.932385-5 5.128614-1 5.873081-5 5.623413-1 4.527078-5 6.165950-1 3.513224-5 6.760830-1 2.745686-5 7.413102-1 2.160872-5 8.609938-1 1.479940-5 9.120108-1 1.286451-5 9.660509-1 1.125069-5 1.023293+0 9.911497-6 1.096478+0 8.578985-6 1.174898+0 7.480836-6 1.273503+0 6.434864-6 1.396368+0 5.457203-6 1.698244+0 3.889908-6 1.905461+0 3.208634-6 2.137962+0 2.666854-6 2.426610+0 2.192672-6 2.754229+0 1.815682-6 3.162278+0 1.488761-6 3.672823+0 1.209885-6 4.315191+0 9.752196-7 5.128614+0 7.802041-7 6.237348+0 6.111961-7 7.498942+0 4.891241-7 9.332543+0 3.782451-7 1.202264+1 2.832978-7 1.513561+1 2.193380-7 2.018366+1 1.602933-7 2.818383+1 1.122814-7 4.365158+1 7.104700-8 7.328245+1 4.169553-8 1.396368+2 2.164709-8 2.786121+2 1.078748-8 1.109175+3 2.697695-9 1.000000+5 2.98680-11 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 8.050000-5 1.986700-5 1.000000+5 1.986700-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.050000-5 1.768300-9 1.000000+5 1.768300-9 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.050000-5 6.063123-5 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 7.786000-5 9.391280+5 7.840000-5 9.301160+5 7.910000-5 9.124560+5 7.985000-5 8.882400+5 8.080000-5 8.527320+5 8.190000-5 8.082640+5 8.350000-5 7.422800+5 8.511380-5 6.780950+5 9.015711-5 5.114100+5 9.230000-5 4.584040+5 9.400000-5 4.235600+5 9.549926-5 3.977285+5 9.660509-5 3.814175+5 9.800000-5 3.638976+5 9.950000-5 3.485712+5 1.010000-4 3.365344+5 1.025000-4 3.274384+5 1.040000-4 3.209484+5 1.055000-4 3.167492+5 1.071519-4 3.144239+5 1.090000-4 3.142500+5 1.110000-4 3.164460+5 1.128000-4 3.201356+5 1.150000-4 3.263692+5 1.180000-4 3.370996+5 1.230269-4 3.584338+5 1.318257-4 3.982560+5 1.380384-4 4.245099+5 1.430000-4 4.433600+5 1.480000-4 4.602320+5 1.540000-4 4.776280+5 1.603245-4 4.927122+5 1.659587-4 5.035032+5 1.737801-4 5.146725+5 1.820000-4 5.221040+5 1.905461-4 5.257074+5 2.000000-4 5.254680+5 2.089296-4 5.218599+5 2.190000-4 5.147240+5 2.317395-4 5.023598+5 2.454709-4 4.862797+5 2.600160-4 4.675151+5 2.754229-4 4.468625+5 2.951209-4 4.203158+5 3.162278-4 3.925501+5 3.388442-4 3.639404+5 3.630781-4 3.349425+5 3.890451-4 3.062285+5 4.216965-4 2.737572+5 4.623810-4 2.388350+5 5.011872-4 2.105217+5 5.432503-4 1.842946+5 5.888437-4 1.602810+5 6.500000-4 1.339372+5 7.079458-4 1.139793+5 7.800000-4 9.422280+4 8.609938-4 7.695373+4 9.500000-4 6.246440+4 1.047129-3 5.048291+4 1.174898-3 3.889097+4 1.318257-3 2.970842+4 1.479108-3 2.250668+4 1.678804-3 1.643500+4 1.900000-3 1.198324+4 2.137962-3 8.801017+3 2.398833-3 6.467744+3 2.722701-3 4.575135+3 3.090295-3 3.212503+3 3.507519-3 2.238309+3 4.000000-3 1.526592+3 4.570882-3 1.026833+3 5.188000-3 6.995828+2 5.888437-3 4.732879+2 6.683439-3 3.179268+2 7.673615-3 2.044315+2 8.810489-3 1.304831+2 1.023293-2 7.959374+1 1.188502-2 4.817055+1 1.380384-2 2.893548+1 1.603245-2 1.725822+1 1.883649-2 9.818537+0 2.213095-2 5.545081+0 2.630268-2 2.984036+0 3.162278-2 1.529255+0 3.845918-2 7.459907-1 4.954502-2 2.919228-1 9.885531-2 2.217668-2 1.230269-1 9.860401-3 1.462177-1 5.237504-3 1.698244-1 3.048014-3 1.927525-1 1.940836-3 2.187762-1 1.244899-3 2.454709-1 8.376256-4 2.722701-1 5.904753-4 3.019952-1 4.193327-4 3.311311-1 3.114902-4 3.630781-1 2.329543-4 3.981072-1 1.754769-4 4.365158-1 1.331967-4 4.731513-1 1.053344-4 5.128614-1 8.383642-5 5.559043-1 6.717109-5 6.025596-1 5.417473-5 6.531306-1 4.399210-5 7.079458-1 3.596152-5 7.673615-1 2.959109-5 8.511380-1 2.322001-5 9.120108-1 1.987775-5 9.772372-1 1.712570-5 1.071519+0 1.417572-5 1.174898+0 1.181696-5 1.288250+0 9.932782-6 1.428894+0 8.229125-6 1.621810+0 6.590362-6 1.819701+0 5.423244-6 2.044000+0 4.487100-6 2.317395+0 3.685508-6 2.630268+0 3.044270-6 3.019952+0 2.490189-6 3.507519+0 2.018938-6 4.120975+0 1.623824-6 4.841724+0 1.315577-6 5.754399+0 1.057870-6 7.000000+0 8.321700-7 8.912509+0 6.251153-7 1.161449+1 4.614896-7 1.479108+1 3.524465-7 2.000000+1 2.536200-7 2.818383+1 1.759202-7 4.415704+1 1.099903-7 7.498942+1 6.380726-8 1.445440+2 3.275168-8 2.884032+2 1.632467-8 1.148154+3 4.082979-9 1.000000+5 4.67960-11 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 7.786000-5 1.971300-5 1.000000+5 1.971300-5 1 29000 7 7 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.786000-5 1.627700-9 1.000000+5 1.627700-9 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.786000-5 5.814537-5 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.009000-5 1.879096+6 1.071519-5 1.914179+6 1.135011-5 1.965039+6 1.230269-5 2.057886+6 1.717908-5 2.568331+6 2.000000-5 2.823936+6 2.317395-5 3.072982+6 2.722701-5 3.348999+6 3.198895-5 3.620574+6 3.589219-5 3.803998+6 4.000000-5 3.956384+6 4.365158-5 4.054440+6 4.731513-5 4.116615+6 5.069907-5 4.143080+6 5.432503-5 4.138968+6 5.821032-5 4.103489+6 6.165950-5 4.048243+6 6.531306-5 3.970222+6 6.918310-5 3.872241+6 7.413102-5 3.730032+6 8.000000-5 3.549496+6 8.609938-5 3.358023+6 9.332543-5 3.136284+6 1.011579-4 2.907151+6 1.096478-4 2.676034+6 1.190000-4 2.439680+6 1.273503-4 2.244641+6 1.364583-4 2.047220+6 1.450000-4 1.876036+6 1.548817-4 1.694853+6 1.650000-4 1.526892+6 1.760000-4 1.364724+6 1.905461-4 1.178967+6 2.041738-4 1.031592+6 2.187762-4 8.979305+5 2.371374-4 7.583519+5 2.580000-4 6.300520+5 2.786121-4 5.278627+5 2.985383-4 4.474169+5 3.235937-4 3.664801+5 3.507519-4 2.982752+5 3.845918-4 2.339540+5 4.216965-4 1.820793+5 4.623810-4 1.406749+5 5.128614-4 1.043992+5 5.688529-4 7.687549+4 6.309573-4 5.618668+4 7.000000-4 4.074080+4 7.762471-4 2.936780+4 8.709636-4 2.024852+4 9.660509-4 1.439165+4 1.083927-3 9.778698+3 1.216186-3 6.598840+3 1.380384-3 4.248251+3 1.566751-3 2.713712+3 1.778279-3 1.720451+3 2.018366-3 1.082698+3 2.290868-3 6.765937+2 2.600160-3 4.197917+2 2.951209-3 2.585990+2 3.349654-3 1.581724+2 3.801894-3 9.604999+1 4.315191-3 5.791995+1 4.841724-3 3.632482+1 5.559043-3 2.058105+1 6.382635-3 1.157421+1 7.413102-3 6.157035+0 8.709636-3 3.095886+0 1.059254-2 1.331718+0 1.273503-2 5.976761-1 1.513561-2 2.799901-1 1.840772-2 1.175604-1 2.187762-2 5.430083-2 2.786121-2 1.825308-2 5.370318-2 9.317139-4 6.839116-2 3.133948-4 8.317638-2 1.306261-4 9.885531-2 6.078127-5 1.148154-1 3.153747-5 1.318257-1 1.733274-5 1.500000-1 9.976100-6 1.698244-1 5.910956-6 1.905461-1 3.663784-6 2.137962-1 2.287558-6 2.371374-1 1.507469-6 2.630268-1 1.000599-6 2.917427-1 6.693934-7 3.198895-1 4.715253-7 3.507519-1 3.343795-7 3.845918-1 2.387399-7 4.265795-1 1.647062-7 4.677351-1 1.193360-7 5.069907-1 9.064219-8 5.495409-1 6.934509-8 6.025596-1 5.145310-8 6.606935-1 3.843814-8 7.161434-1 2.997975-8 7.762471-1 2.353840-8 8.511380-1 1.788076-8 8.912509-1 1.565163-8 9.332543-1 1.378158-8 9.772372-1 1.222246-8 1.011579+0 1.123216-8 1.059254+0 1.010584-8 1.109175+0 9.155759-9 1.161449+0 8.346758-9 1.230269+0 7.493256-9 1.333521+0 6.502361-9 1.479108+0 5.466896-9 1.819701+0 3.840627-9 2.018366+0 3.239141-9 2.290868+0 2.653797-9 2.600160+0 2.190657-9 2.985383+0 1.790870-9 3.467369+0 1.451109-9 4.073803+0 1.166496-9 4.786301+0 9.44592-10 5.688529+0 7.59168-10 6.918310+0 5.97097-10 8.709636+0 4.54285-10 1.122018+1 3.39493-10 1.445440+1 2.55720-10 1.972423+1 1.82126-10 2.754229+1 1.27514-10 4.315191+1 7.96932-11 7.161434+1 4.73158-11 1.364583+2 2.45582-11 2.722701+2 1.22374-11 1.083927+3 3.05976-12 1.000000+5 3.31050-14 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.009000-5 1.009000-5 1.000000+5 1.009000-5 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.009000-5 0.0 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 9.800000-6 2.856276+6 1.035142-5 2.917315+6 1.100000-5 3.009132+6 1.200000-5 3.174828+6 1.584893-5 3.828793+6 1.819701-5 4.173222+6 2.113489-5 4.546071+6 2.454709-5 4.917477+6 2.900000-5 5.327952+6 3.311311-5 5.643674+6 3.715352-5 5.895366+6 4.073803-5 6.065764+6 4.415704-5 6.181458+6 4.731513-5 6.246943+6 5.069907-5 6.272260+6 5.432503-5 6.255024+6 5.800000-5 6.193200+6 6.165950-5 6.095281+6 6.531306-5 5.970762+6 6.918310-5 5.814124+6 7.413102-5 5.592749+6 7.943282-5 5.341279+6 8.609938-5 5.020803+6 9.225714-5 4.731552+6 1.011579-4 4.336418+6 1.096478-4 3.985383+6 1.174898-4 3.686018+6 1.273503-4 3.336646+6 1.350000-4 3.086358+6 1.450000-4 2.784456+6 1.540000-4 2.536002+6 1.650000-4 2.263212+6 1.778279-4 1.983224+6 1.905461-4 1.744474+6 2.065380-4 1.491313+6 2.264644-4 1.235239+6 2.454709-4 1.038993+6 2.630268-4 8.899042+5 2.820000-4 7.567260+5 3.054921-4 6.236167+5 3.311311-4 5.096582+5 3.589219-4 4.137433+5 3.935501-4 3.235430+5 4.315191-4 2.511664+5 4.731513-4 1.936118+5 5.188000-4 1.482542+5 5.754399-4 1.089820+5 6.382635-4 7.953753+4 7.079458-4 5.763268+4 7.852356-4 4.145100+4 8.810489-4 2.852443+4 9.885531-4 1.947506+4 1.109175-3 1.320220+4 1.244515-3 8.888882+3 1.412538-3 5.708349+3 1.603245-3 3.636893+3 1.819701-3 2.299382+3 2.065380-3 1.443148+3 2.344229-3 8.994946+2 2.660725-3 5.566260+2 3.019952-3 3.419725+2 3.427678-3 2.085897+2 3.890451-3 1.262894+2 4.365158-3 7.950672+1 4.954502-3 4.734502+1 5.688529-3 2.668147+1 6.683439-3 1.355161+1 7.762471-3 7.171303+0 9.120108-3 3.586998+0 1.109175-2 1.533773+0 1.318257-2 7.195079-1 1.566751-2 3.350269-1 1.883649-2 1.470675-1 2.238721-2 6.748056-2 2.818383-2 2.367192-2 5.821032-2 8.550190-4 7.328245-2 3.000014-4 8.912509-2 1.240787-4 1.047129-1 6.041318-5 1.202264-1 3.282041-5 1.364583-1 1.889433-5 1.531088-1 1.151794-5 1.698244-1 7.426188-6 1.883649-1 4.821107-6 2.089296-1 3.152932-6 2.290868-1 2.176220-6 2.511886-1 1.513181-6 2.722701-1 1.108383-6 2.951209-1 8.173615-7 3.198895-1 6.069964-7 3.467369-1 4.539938-7 3.758374-1 3.419715-7 4.120975-1 2.494397-7 4.466836-1 1.906516-7 4.786301-1 1.523955-7 5.069907-1 1.270850-7 5.432503-1 1.028738-7 5.888437-1 8.099899-8 6.382635-1 6.421420-8 6.918310-1 5.128108-8 7.585776-1 4.001442-8 8.128305-1 3.339144-8 8.709636-1 2.806688-8 9.225714-1 2.444199-8 9.772372-1 2.142818-8 1.035142+0 1.892189-8 1.109175+0 1.640654-8 1.188600+0 1.432700-8 1.318257+0 1.184144-8 1.479108+0 9.658064-9 1.698244+0 7.605929-9 1.905461+0 6.274635-9 2.137962+0 5.214915-9 2.426610+0 4.287614-9 2.754229+0 3.550628-9 3.162278+0 2.911454-9 3.672823+0 2.366052-9 4.315191+0 1.907094-9 5.128614+0 1.525716-9 6.237348+0 1.195264-9 7.498942+0 9.56524-10 9.332543+0 7.39673-10 1.202264+1 5.54003-10 1.513561+1 4.28914-10 2.018366+1 3.13448-10 2.818383+1 2.19577-10 4.365158+1 1.38934-10 7.328245+1 8.15397-11 1.396368+2 4.23322-11 2.786121+2 2.10955-11 1.109175+3 5.27543-12 1.000000+5 5.84090-14 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 9.800000-6 9.800000-6 1.000000+5 9.800000-6 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.800000-6 0.0 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.110000-6 1.398650+6 7.328245-6 1.184722+6 7.600000-6 9.618950+5 7.852356-6 7.935760+5 8.128305-6 6.434854+5 8.420000-6 5.154110+5 8.700000-6 4.163680+5 8.920000-6 3.517200+5 9.120108-6 3.013694+5 9.350000-6 2.519780+5 9.600000-6 2.069240+5 9.772372-6 1.803242+5 1.000000-5 1.499640+5 1.020000-5 1.271590+5 1.035142-5 1.119903+5 1.055000-5 9.450600+4 1.071519-5 8.180722+4 1.089200-5 6.985123+4 1.105000-5 6.044370+4 1.122018-5 5.150777+4 1.135011-5 4.544000+4 1.150000-5 3.917070+4 1.165000-5 3.360730+4 1.180000-5 2.868520+4 1.190000-5 2.572900+4 1.203000-5 2.224270+4 1.216186-5 1.908618+4 1.226000-5 1.696550+4 1.235000-5 1.518020+4 1.245000-5 1.336410+4 1.255600-5 1.161936+4 1.265000-5 1.021700+4 1.275000-5 8.864770+3 1.285000-5 7.647200+3 1.295000-5 6.555340+3 1.303167-5 5.751061+3 1.312700-5 4.905504+3 1.320000-5 4.322150+3 1.327000-5 3.812200+3 1.335000-5 3.285660+3 1.342000-5 2.871710+3 1.350000-5 2.449280+3 1.357200-5 2.112928+3 1.365000-5 1.792950+3 1.390000-5 1.050600+3 1.397000-5 9.130610+2 1.402000-5 8.320280+2 1.406000-5 7.771280+2 1.410000-5 7.307790+2 1.413500-5 6.970380+2 1.417000-5 6.694910+2 1.420000-5 6.506860+2 1.423000-5 6.362160+2 1.426000-5 6.259850+2 1.429400-5 6.193937+2 1.432000-5 6.178620+2 1.435000-5 6.197870+2 1.437000-5 6.232280+2 1.440000-5 6.315590+2 1.443500-5 6.459830+2 1.447000-5 6.653480+2 1.451000-5 6.933600+2 1.455000-5 7.274620+2 1.460000-5 7.783720+2 1.465000-5 8.381560+2 1.472000-5 9.361100+2 1.496236-5 1.392080+3 1.507000-5 1.646490+3 1.515000-5 1.853900+3 1.522000-5 2.047290+3 1.531087-5 2.313804+3 1.540000-5 2.590960+3 1.550000-5 2.918990+3 1.560000-5 3.263520+3 1.570000-5 3.623040+3 1.580000-5 3.996140+3 1.590000-5 4.381480+3 1.603245-5 4.908634+3 1.616600-5 5.456976+3 1.630000-5 6.021660+3 1.645000-5 6.668120+3 1.660000-5 7.326900+3 1.675000-5 7.995330+3 1.690000-5 8.670990+3 1.705000-5 9.351720+3 1.720000-5 1.003560+4 1.740000-5 1.094920+4 1.760000-5 1.186160+4 1.785000-5 1.299550+4 1.808000-5 1.402810+4 1.834300-5 1.519186+4 1.862087-5 1.639729+4 1.885000-5 1.736990+4 1.920000-5 1.881390+4 1.950000-5 2.000830+4 1.990000-5 2.153490+4 2.020000-5 2.262820+4 2.065380-5 2.419885+4 2.113489-5 2.575210+4 2.162719-5 2.722403+4 2.213095-5 2.861034+4 2.272000-5 3.008402+4 2.344229-5 3.168710+4 2.426610-5 3.326349+4 2.511886-5 3.463993+4 2.610000-5 3.593900+4 2.691535-5 3.681513+4 2.800000-5 3.773400+4 2.917427-5 3.846054+4 3.054921-5 3.902126+4 3.198895-5 3.933774+4 3.350000-5 3.943370+4 3.548134-5 3.928301+4 3.758374-5 3.888100+4 4.027170-5 3.812884+4 4.365158-5 3.696319+4 4.731513-5 3.557369+4 5.188000-5 3.378895+4 5.754399-5 3.164101+4 6.382635-5 2.942085+4 7.161434-5 2.692026+4 8.000000-5 2.453140+4 8.810489-5 2.247789+4 9.800000-5 2.025920+4 1.083927-4 1.821904+4 1.202264-4 1.620040+4 1.333521-4 1.428979+4 1.479108-4 1.250871+4 1.659587-4 1.070976+4 1.927525-4 8.674192+3 2.290868-4 6.743065+3 2.951209-4 4.616256+3 3.935501-4 2.993061+3 4.677351-4 2.296169+3 5.188000-4 1.948121+3 5.956621-4 1.552340+3 7.000000-4 1.180480+3 8.810489-4 7.919533+2 1.035142-3 5.933318+2 1.202264-3 4.504052+2 1.428894-3 3.251367+2 1.717908-3 2.279501+2 2.018366-3 1.659129+2 2.398833-3 1.169730+2 2.917427-3 7.806245+1 3.555660-3 5.160855+1 4.073803-3 3.858762+1 4.677351-3 2.848176+1 5.432503-3 2.034302+1 6.456542-3 1.367788+1 7.585776-3 9.369312+0 8.912509-3 6.366872+0 1.035142-2 4.415054+0 1.216186-2 2.953970+0 1.428894-2 1.961196+0 1.678804-2 1.292279+0 1.972423-2 8.452289-1 2.317395-2 5.487802-1 2.754229-2 3.428011-1 3.273407-2 2.124698-1 3.935501-2 1.265258-1 4.731513-2 7.477391-2 5.688529-2 4.385587-2 7.079458-2 2.308419-2 9.120108-2 1.088958-2 1.122019-1 5.854095-3 1.737801-1 1.572767-3 2.264644-1 7.151099-4 2.660725-1 4.456174-4 3.090295-1 2.893827-4 3.507519-1 2.022269-4 3.935501-1 1.470015-4 4.415705-1 1.076650-4 4.897788-1 8.193675-5 5.432503-1 6.283299-5 6.000000-1 4.908000-5 6.606935-1 3.891844-5 7.244360-1 3.139907-5 7.943282-1 2.551149-5 8.709636-1 2.087272-5 9.549926-1 1.720783-5 1.059254+0 1.397139-5 1.188600+0 1.114800-5 1.318257+0 9.166920-6 1.462177+0 7.588773-6 1.621810+0 6.325759-6 1.819701+0 5.206392-6 2.044000+0 4.308400-6 2.317395+0 3.538628-6 2.630268+0 2.922974-6 3.019952+0 2.391032-6 3.507519+0 1.938516-6 4.120975+0 1.559163-6 4.841724+0 1.263261-6 5.821032+0 1.001328-6 7.079458+0 7.882611-7 9.015711+0 5.922198-7 1.174898+1 4.373894-7 1.479108+1 3.384117-7 2.000000+1 2.435200-7 2.800000+1 1.700900-7 4.365158+1 1.068810-7 7.328245+1 6.272592-8 1.396368+2 3.256523-8 2.786121+2 1.622858-8 1.109175+3 4.058259-9 1.000000+5 4.49330-11 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.110000-6 7.110000-6 1.000000+5 7.110000-6 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.110000-6 0.0 1.000000+5 1.000000+5 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.930790-8 1.028750+0 3.930790-7 1.032000+0 1.266610-6 1.033200+0 1.774310-6 1.034000+0 2.178120-6 1.035300+0 2.956500-6 1.036640+0 3.930790-6 1.038200+0 5.304730-6 1.039700+0 6.891910-6 1.041500+0 9.169600-6 1.043800+0 1.272770-5 1.046400+0 1.770820-5 1.048300+0 2.204720-5 1.051200+0 2.990660-5 1.054080+0 3.930790-5 1.057700+0 5.357920-5 1.061100+0 6.969300-5 1.065100+0 9.226570-5 1.070400+0 1.287200-4 1.076200+0 1.778910-4 1.080600+0 2.221560-4 1.087100+0 2.993180-4 1.093710+0 3.930790-4 1.102600+0 5.450010-4 1.110700+0 7.107930-4 1.120600+0 9.508340-4 1.133300+0 1.322090-3 1.147500+0 1.825420-3 1.158200+0 2.268540-3 1.174100+0 3.031930-3 1.190110+0 3.930790-3 1.205100+0 4.892650-3 1.227500+0 6.547950-3 1.250000+0 8.463000-3 1.265600+0 9.929300-3 1.294900+0 1.296900-2 1.331800+0 1.728090-2 1.362600+0 2.124890-2 1.411700+0 2.819770-2 1.455800+0 3.503790-2 1.500000+0 4.246000-2 1.562500+0 5.394830-2 1.617200+0 6.492570-2 1.712900+0 8.601120-2 1.784700+0 1.032050-1 1.892300+0 1.306620-1 2.000000+0 1.594000-1 2.044000+0 1.713000-1 2.163500+0 2.041310-1 2.372600+0 2.628130-1 2.647100+0 3.404090-1 3.000000+0 4.388000-1 3.437500+0 5.562110-1 4.000000+0 6.983000-1 4.750000+0 8.724680-1 5.000000+0 9.272000-1 6.000000+0 1.131000+0 7.000000+0 1.312000+0 8.000000+0 1.474000+0 9.000000+0 1.621000+0 1.000000+1 1.755000+0 1.100000+1 1.875000+0 1.200000+1 1.986000+0 1.300000+1 2.089000+0 1.400000+1 2.185000+0 1.500000+1 2.274000+0 1.600000+1 2.357000+0 1.800000+1 2.510000+0 2.000000+1 2.646000+0 2.200000+1 2.770000+0 2.400000+1 2.882000+0 2.600000+1 2.985000+0 2.800000+1 3.079000+0 3.000000+1 3.166000+0 4.000000+1 3.521000+0 5.000000+1 3.787000+0 6.000000+1 3.995000+0 8.000000+1 4.304000+0 1.000000+2 4.525000+0 1.500000+2 4.876000+0 2.000000+2 5.087000+0 3.000000+2 5.332000+0 4.000000+2 5.473000+0 5.000000+2 5.566000+0 6.000000+2 5.632000+0 8.000000+2 5.720000+0 1.000000+3 5.778000+0 1.500000+3 5.860000+0 2.000000+3 5.905000+0 3.000000+3 5.954000+0 4.000000+3 5.980000+0 5.000000+3 5.996000+0 6.000000+3 6.008000+0 8.000000+3 6.023000+0 1.000000+4 6.032000+0 1.500000+4 6.045000+0 2.000000+4 6.052000+0 3.000000+4 6.060000+0 4.000000+4 6.064000+0 5.000000+4 6.066000+0 6.000000+4 6.067000+0 8.000000+4 6.070000+0 1.000000+5 6.071000+0 1 29000 7 8 6.354000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 2.911900-7 2.114000+0 1.312690-6 2.119500+0 1.634290-6 2.127900+0 2.216400-6 2.136250+0 2.911900-6 2.147000+0 3.992420-6 2.156900+0 5.185670-6 2.169000+0 6.920610-6 2.184500+0 9.619870-6 2.201800+0 1.330940-5 2.214800+0 1.658240-5 2.234200+0 2.230630-5 2.253680+0 2.911900-5 2.281500+0 4.078630-5 2.307000+0 5.357270-5 2.338200+0 7.203320-5 2.377400+0 9.975750-5 2.410200+0 1.268750-4 2.446800+0 1.613920-4 2.485900+0 2.032010-4 2.532900+0 2.600540-4 2.556430+0 2.911900-4 2.611900+0 3.712980-4 2.660400+0 4.488770-4 2.745300+0 6.007880-4 2.809000+0 7.275850-4 2.904500+0 9.372930-4 3.000000+0 1.170000-3 3.125000+0 1.508730-3 3.234400+0 1.835880-3 3.425800+0 2.472520-3 3.569300+0 2.998440-3 3.784700+0 3.855010-3 4.000000+0 4.776000-3 4.250000+0 5.902120-3 4.625000+0 7.672040-3 5.000000+0 9.512000-3 5.500000+0 1.203770-2 6.000000+0 1.460000-2 6.750000+0 1.842180-2 7.000000+0 1.968000-2 8.000000+0 2.460000-2 9.000000+0 2.931000-2 1.000000+1 3.379000-2 1.100000+1 3.804000-2 1.200000+1 4.205000-2 1.300000+1 4.583000-2 1.400000+1 4.943000-2 1.500000+1 5.285000-2 1.600000+1 5.610000-2 1.800000+1 6.212000-2 2.000000+1 6.762000-2 2.200000+1 7.266000-2 2.400000+1 7.731000-2 2.600000+1 8.161000-2 2.800000+1 8.560000-2 3.000000+1 8.932000-2 4.000000+1 1.048000-1 5.000000+1 1.167000-1 6.000000+1 1.261000-1 8.000000+1 1.405000-1 1.000000+2 1.510000-1 1.500000+2 1.685000-1 2.000000+2 1.796000-1 3.000000+2 1.932000-1 4.000000+2 2.013000-1 5.000000+2 2.069000-1 6.000000+2 2.110000-1 8.000000+2 2.166000-1 1.000000+3 2.204000-1 1.500000+3 2.259000-1 2.000000+3 2.291000-1 3.000000+3 2.325000-1 4.000000+3 2.346000-1 5.000000+3 2.358000-1 6.000000+3 2.367000-1 8.000000+3 2.378000-1 1.000000+4 2.386000-1 1.500000+4 2.396000-1 2.000000+4 2.401000-1 3.000000+4 2.407000-1 4.000000+4 2.410000-1 5.000000+4 2.413000-1 6.000000+4 2.414000-1 8.000000+4 2.415000-1 1.000000+5 2.417000-1 1 29000 7 8 6.354000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 29000 7 9 6.354000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 2.900000+1 1.000000+5 2.900000+1 5.000000+5 2.898400+1 8.750000+5 2.897030+1 1.000000+6 2.896700+1 1.375000+6 2.895410+1 1.500000+6 2.894700+1 1.875000+6 2.891750+1 2.000000+6 2.890600+1 2.500000+6 2.885400+1 3.000000+6 2.879100+1 3.500000+6 2.871700+1 4.000000+6 2.863500+1 4.500000+6 2.854620+1 5.000000+6 2.844800+1 5.687500+6 2.829340+1 6.437500+6 2.810880+1 6.500000+6 2.809340+1 7.000000+6 2.796200+1 7.500000+6 2.782390+1 8.250000+6 2.760710+1 9.000000+6 2.738700+1 1.000000+7 2.708100+1 1.125000+7 2.667250+1 1.187500+7 2.645860+1 1.250000+7 2.624300+1 1.437500+7 2.557780+1 1.500000+7 2.535600+1 1.750000+7 2.446100+1 2.000000+7 2.353800+1 2.250000+7 2.261080+1 2.500000+7 2.168800+1 2.750000+7 2.077330+1 2.875000+7 2.031800+1 3.000000+7 1.986900+1 3.250000+7 1.897820+1 3.437500+7 1.832620+1 3.578100+7 1.785030+1 3.859400+7 1.692520+1 4.000000+7 1.648100+1 4.437500+7 1.517170+1 4.500000+7 1.499510+1 4.812500+7 1.414620+1 5.000000+7 1.366700+1 5.500000+7 1.249160+1 5.750000+7 1.195930+1 6.000000+7 1.146400+1 6.750000+7 1.017660+1 7.000000+7 9.809100+0 7.750000+7 8.871860+0 8.000000+7 8.607800+0 8.750000+7 7.938440+0 9.000000+7 7.749200+0 9.750000+7 7.263760+0 1.000000+8 7.123500+0 1.125000+8 6.534990+0 1.250000+8 6.061900+0 1.375000+8 5.648590+0 1.437500+8 5.454130+0 1.500000+8 5.264800+0 1.589800+8 4.998120+0 1.665000+8 4.776540+0 1.748800+8 4.530720+0 1.750000+8 4.527210+0 1.838500+8 4.266880+0 1.919300+8 4.029420+0 2.000000+8 3.793300+0 2.062500+8 3.612610+0 2.281300+8 3.053320+0 2.375000+8 2.864320+0 2.390600+8 2.835950+0 2.472700+8 2.702760+0 2.500000+8 2.664100+0 2.562500+8 2.586050+0 2.808600+8 2.328850+0 2.875000+8 2.258040+0 2.877000+8 2.255860+0 2.959000+8 2.161210+0 3.000000+8 2.110300+0 3.062500+8 2.028250+0 3.308600+8 1.720440+0 3.377000+8 1.652050+0 3.459000+8 1.584320+0 3.500000+8 1.556600+0 3.562500+8 1.522480+0 3.617200+8 1.498910+0 3.712900+8 1.467620+0 4.000000+8 1.398900+0 4.125000+8 1.362510+0 4.234400+8 1.326460+0 5.000000+8 1.083400+0 6.000000+8 9.070000-1 6.250000+8 8.651220-1 7.000000+8 7.498000-1 7.625000+8 6.753870-1 7.875000+8 6.460200-1 8.000000+8 6.308000-1 8.250000+8 5.990360-1 8.564500+8 5.581140-1 8.827600+8 5.242860-1 9.246300+8 4.730070-1 9.811600+8 4.113050-1 1.000000+9 3.929000-1 1.125000+9 2.948990-1 1.218800+9 2.413130-1 1.315400+9 1.980920-1 1.381300+9 1.738530-1 1.460400+9 1.491270-1 1.500000+9 1.382700-1 1.562500+9 1.228790-1 1.671900+9 1.004020-1 1.753900+9 8.666610-2 1.877000+9 6.999500-2 2.000000+9 5.705100-2 2.187500+9 4.248640-2 2.363300+9 3.278710-2 2.528100+9 2.606160-2 2.837100+9 1.748200-2 3.225700+9 1.111450-2 3.758000+9 6.424690-3 4.379000+9 3.685190-3 5.000000+9 2.268900-3 8.000000+9 4.052700-4 9.500000+9 2.165700-4 1.00000+10 1.797900-4 1.20500+10 9.192400-5 1.41820+10 5.151350-5 1.71170+10 2.659750-5 2.01490+10 1.508980-5 2.26440+10 1.009160-5 2.74790+10 5.211380-6 3.41360+10 2.505110-6 4.02450+10 1.444930-6 4.77140+10 8.217210-7 5.73000+10 4.500910-7 7.25500+10 2.086050-7 9.31370+10 9.313080-8 1.00000+11 7.412600-8 1.34280+11 2.894310-8 1.77440+11 1.198940-8 2.20390+11 6.072530-9 3.19980+11 1.903210-9 4.48160+11 6.73863-10 7.69150+11 1.29906-10 1.68320+12 1.23613-11 4.67300+12 6.04390-13 1.00000+14 8.18280-17 5.62340+14 5.23716-19 7.49890+15 2.48096-22 1.00000+17 1.11860-25 1 29000 7 0 6.354000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.60000-12 1.000000+2 3.60000-10 1.000000+3 3.600000-8 1.000000+4 3.600000-6 1.000000+5 3.600000-4 5.000000+5 9.000000-3 8.750000+5 2.756250-2 1.000000+6 3.600000-2 1.375000+6 6.834960-2 1.500000+6 8.130000-2 1.875000+6 1.260730-1 2.000000+6 1.430000-1 2.500000+6 2.205000-1 3.000000+6 3.125000-1 3.500000+6 4.176700-1 4.000000+6 5.344000-1 4.500000+6 6.610010-1 5.000000+6 7.960000-1 5.687500+6 9.927600-1 6.437500+6 1.218440+0 6.500000+6 1.237670+0 7.000000+6 1.393000+0 7.500000+6 1.550360+0 8.250000+6 1.789000+0 9.000000+6 2.028800+0 1.000000+7 2.348000+0 1.125000+7 2.744900+0 1.187500+7 2.942390+0 1.250000+7 3.139200+0 1.437500+7 3.724810+0 1.500000+7 3.919000+0 1.750000+7 4.691800+0 2.000000+7 5.455000+0 2.250000+7 6.203370+0 2.500000+7 6.931000+0 2.750000+7 7.633460+0 2.875000+7 7.974970+0 3.000000+7 8.310000+0 3.250000+7 8.960520+0 3.437500+7 9.432700+0 3.578100+7 9.778610+0 3.859400+7 1.045060+1 4.000000+7 1.077800+1 4.437500+7 1.175760+1 4.500000+7 1.189380+1 4.812500+7 1.255560+1 5.000000+7 1.294200+1 5.500000+7 1.392630+1 5.750000+7 1.439390+1 6.000000+7 1.484700+1 6.750000+7 1.610580+1 7.000000+7 1.649400+1 7.750000+7 1.755960+1 8.000000+7 1.788500+1 8.750000+7 1.877310+1 9.000000+7 1.904300+1 9.750000+7 1.977740+1 1.000000+8 2.000200+1 1.125000+8 2.098590+1 1.250000+8 2.180200+1 1.375000+8 2.249670+1 1.437500+8 2.281120+1 1.500000+8 2.310700+1 1.589800+8 2.350320+1 1.665000+8 2.381150+1 1.748800+8 2.413140+1 1.750000+8 2.413570+1 1.838500+8 2.444820+1 1.919300+8 2.471220+1 2.000000+8 2.495700+1 2.062500+8 2.513440+1 2.281300+8 2.567880+1 2.375000+8 2.587740+1 2.390600+8 2.590970+1 2.472700+8 2.606810+1 2.500000+8 2.611900+1 2.562500+8 2.622560+1 2.808600+8 2.659470+1 2.875000+8 2.668150+1 2.877000+8 2.668390+1 2.959000+8 2.678190+1 3.000000+8 2.683000+1 3.062500+8 2.689690+1 3.308600+8 2.713460+1 3.377000+8 2.719160+1 3.459000+8 2.725820+1 3.500000+8 2.729100+1 3.562500+8 2.733630+1 3.617200+8 2.737530+1 3.712900+8 2.744240+1 4.000000+8 2.762200+1 4.125000+8 2.769020+1 4.234400+8 2.774830+1 5.000000+8 2.809500+1 6.000000+8 2.841800+1 6.250000+8 2.847890+1 7.000000+8 2.863400+1 7.625000+8 2.872660+1 7.875000+8 2.875710+1 8.000000+8 2.877200+1 8.250000+8 2.879650+1 8.564500+8 2.882500+1 8.827600+8 2.884430+1 9.246300+8 2.887390+1 9.811600+8 2.890280+1 1.000000+9 2.891200+1 1.125000+9 2.895160+1 1.218800+9 2.896600+1 1.315400+9 2.897960+1 1.381300+9 2.898350+1 1.460400+9 2.898790+1 1.500000+9 2.899000+1 1.562500+9 2.899110+1 1.671900+9 2.899300+1 1.753900+9 2.899430+1 1.877000+9 2.899620+1 2.000000+9 2.899800+1 2.187500+9 2.899820+1 2.363300+9 2.899840+1 2.528100+9 2.899850+1 2.837100+9 2.899880+1 3.225700+9 2.899900+1 3.758000+9 2.899940+1 4.379000+9 2.899970+1 5.000000+9 2.900000+1 8.000000+9 2.900000+1 9.500000+9 2.900000+1 1.00000+10 2.900000+1 1.20500+10 2.900000+1 1.41820+10 2.900000+1 1.71170+10 2.900000+1 2.01490+10 2.900000+1 2.26440+10 2.900000+1 2.74790+10 2.900000+1 3.41360+10 2.900000+1 4.02450+10 2.900000+1 4.77140+10 2.900000+1 5.73000+10 2.900000+1 7.25500+10 2.900000+1 9.31370+10 2.900000+1 1.00000+11 2.900000+1 1.34280+11 2.900000+1 1.77440+11 2.900000+1 2.20390+11 2.900000+1 3.19980+11 2.900000+1 4.48160+11 2.900000+1 7.69150+11 2.900000+1 1.68320+12 2.900000+1 4.67300+12 2.900000+1 1.00000+14 2.900000+1 5.62340+14 2.900000+1 7.49890+15 2.900000+1 1.00000+17 2.900000+1 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.608183-6 0.0 2.614603-6 1.550525-8 2.621022-6 3.068061-8 2.627442-6 5.604065-8 2.633862-6 9.449224-8 2.640281-6 1.470764-7 2.646701-6 2.113215-7 2.653121-6 2.802840-7 2.659541-6 3.431679-7 2.665960-6 3.878547-7 2.672380-6 4.046555-7 2.678800-6 3.897227-7 2.685219-6 3.464814-7 2.691639-6 2.843531-7 2.704479-6 1.506525-7 2.710898-6 9.725599-8 2.717318-6 5.795761-8 2.723738-6 3.188296-8 2.730157-6 1.619052-8 2.736577-6 0.0 2.908208-6 0.0 2.915366-6 1.350292-8 2.922525-6 2.671856-8 2.929683-6 4.880363-8 2.936841-6 8.228963-8 2.943999-6 1.280831-7 2.951157-6 1.840317-7 2.958315-6 2.440885-7 2.965474-6 2.988517-7 2.972632-6 3.377677-7 2.979790-6 3.523988-7 2.986948-6 3.393944-7 2.994106-6 3.017372-7 3.001265-6 2.476322-7 3.015581-6 1.311974-7 3.022739-6 8.469648-8 3.029897-6 5.047304-8 3.037055-6 2.776564-8 3.044214-6 1.409970-8 3.051372-6 0.0 3.598781-6 0.0 3.614282-6 1.540923+0 3.616496-6 1.758809+0 3.625354-6 3.212609+0 3.629709-6 4.294985+0 3.634212-6 6.314255+0 3.643070-6 1.107730+1 3.648694-6 1.467469+1 3.657628-6 2.162602+1 3.668656-6 3.208699+1 3.683314-6 4.705114+1 3.692806-6 5.528829+1 3.703127-6 6.084487+1 3.710578-6 6.232996+1 3.719870-6 6.003190+1 3.729589-6 5.348523+1 3.741961-6 4.117249+1 3.754786-6 2.717421+1 3.763720-6 1.858948+1 3.772654-6 1.152557+1 3.775939-6 9.522162+0 3.781588-6 6.662992+0 3.790523-6 3.665366+0 3.803924-6 9.317510-1 3.808391-6 0.0 4.670238-6 0.0 4.681733-6 2.21401-15 4.693228-6 4.38091-15 4.704724-6 8.00209-15 4.716219-6 1.34926-14 4.727714-6 2.10011-14 4.739209-6 3.01747-14 4.750704-6 4.00220-14 4.762200-6 4.90012-14 4.773695-6 5.53821-14 4.785190-6 5.77811-14 4.796685-6 5.56488-14 4.808180-6 4.94743-14 4.819676-6 4.06030-14 4.842666-6 2.15118-14 4.854161-6 1.38873-14 4.865656-6 8.27581-15 4.877152-6 4.55259-15 4.888647-6 2.31186-15 4.900142-6 0.0 5.467709-6 0.0 5.477167-6 2.769399-2 5.494625-6 1.886864-1 5.504129-6 2.935095-1 5.509274-6 3.746637-1 5.517611-6 5.221618-1 5.531092-6 8.586263-1 5.545648-6 1.346682+0 5.582557-6 2.760211+0 5.590747-6 2.992421+0 5.604280-6 3.212026+0 5.613218-6 3.227696+0 5.627041-6 3.022936+0 5.644589-6 2.472461+0 5.673457-6 1.336696+0 5.683038-6 1.001940+0 5.692868-6 7.131696-1 5.706349-6 4.199538-1 5.713193-6 3.193359-1 5.719831-6 2.284418-1 5.736871-6 6.605624-2 5.746793-6 2.438281-6 5.753685-6 1.527987-7 5.754453-6 0.0 6.115553-6 0.0 6.119584-6 2.512914-3 6.145659-6 5.479129-2 6.149709-6 6.448532-2 6.160711-6 1.009230-1 6.164772-6 1.165213-1 6.179835-6 1.944919-1 6.194897-6 2.998701-1 6.237892-6 6.660447-1 6.255147-6 1.198306+0 6.268600-6 1.555596+0 6.284977-6 2.217524+0 6.300335-6 3.110163+0 6.317214-6 4.464050+0 6.355813-6 8.197857+0 6.371864-6 9.475272+0 6.380170-6 9.858361+0 6.392257-6 1.010714+1 6.408690-6 9.581710+0 6.427213-6 8.107549+0 6.468199-6 3.802437+0 6.483553-6 2.506144+0 6.498906-6 1.570743+0 6.506998-6 1.255095+0 6.514260-6 1.070236+0 6.539031-6 8.485620-1 6.544968-6 8.557797-1 6.556048-6 1.165583+0 6.572376-6 1.793879+0 6.590334-6 2.733655+0 6.638538-6 5.755019+0 6.655049-6 6.456694+0 6.669887-6 6.734541+0 6.688025-6 6.483852+0 6.702334-6 5.923420+0 6.731085-6 4.146350+0 6.747241-6 3.065976+0 6.763257-6 2.136382+0 6.779311-6 1.407413+0 6.795404-6 8.920071-1 6.813163-6 5.274067-1 6.827322-6 2.615180-1 6.859777-6 1.699269-1 6.969486-6 1.588838-1 7.027609-6 1.495302-1 7.367995-6 1.212436-1 7.783633-6 9.322818-2 8.085349-6 7.701411-2 8.125152-6 2.256559-1 8.145053-6 3.492034-1 8.166197-6 5.530569-1 8.187624-6 8.388939-1 8.245802-6 1.767627+0 8.265703-6 1.977573+0 8.285604-6 2.049461+0 8.305505-6 1.966634+0 8.326038-6 1.737040+0 8.375917-6 9.305967-1 8.385375-6 8.028883-1 8.403766-6 6.053534-1 8.417150-6 5.078421-1 8.423667-6 4.690639-1 8.437766-6 4.345286-1 8.443568-6 4.306931-1 8.458382-6 4.630306-1 8.478999-6 5.510648-1 8.485167-6 5.957503-1 8.540847-6 1.177797+0 8.564041-6 1.337355+0 8.584657-6 1.386364+0 8.605273-6 1.332498+0 8.627110-6 1.174505+0 8.685161-6 5.679864-1 8.705778-6 3.875798-1 8.726394-6 2.534424-1 8.736247-6 2.209932-1 8.747010-6 1.912431-1 8.770722-6 1.620815-1 8.788291-6 1.579497-1 8.792204-6 1.659180-1 8.798165-6 1.847209-1 8.813686-6 2.408747-1 8.835169-6 3.468732-1 8.895655-6 7.179421-1 8.921098-6 8.295670-1 8.942580-6 8.618996-1 8.967531-6 8.159929-1 8.994300-6 6.893766-1 9.028509-6 4.820141-1 9.053888-6 3.731874-1 9.071474-6 3.162979-1 9.091515-6 2.973859-1 9.114438-6 3.355087-1 9.139455-6 4.436188-1 9.158156-6 5.457156-1 9.202583-6 8.642808-1 9.227779-6 9.851625-1 9.252778-6 1.024024+0 9.275481-6 9.897888-1 9.304495-6 8.746565-1 9.347861-6 6.669268-1 9.367198-6 5.993443-1 9.383325-6 5.574730-1 9.405545-6 5.327953-1 9.427766-6 5.372296-1 9.472208-6 5.840362-1 9.518266-6 6.830983-1 9.556997-6 7.244808-1 9.601878-6 7.165427-1 9.668372-6 6.662458-1 9.765442-6 6.541953-1 9.965718-6 6.946027-1 1.161232-5 8.533096-1 1.451000-5 1.227216+0 2.000000-5 2.076081+0 2.960798-5 3.767382+0 4.746000-5 7.056821+0 5.843386-5 8.614275+0 6.914438-5 9.677938+0 6.957215-5 1.011652+1 6.999778-5 1.116312+1 7.056653-5 1.281909+1 7.090369-5 1.288392+1 7.138418-5 1.162911+1 7.178714-5 1.055530+1 7.220132-5 1.018736+1 7.257296-5 1.038257+1 7.325979-5 1.128161+1 7.367325-5 1.126342+1 7.446520-5 1.054560+1 7.522546-5 1.084419+1 7.607452-5 1.109875+1 7.727115-5 1.122937+1 7.871088-5 1.166878+1 1.074608-4 1.119402+1 1.159471-4 1.126361+1 1.183598-4 1.172972+1 1.217107-4 1.161876+1 1.540000-4 1.146646+1 2.396500-4 9.492973+0 3.359310-4 7.279037+0 4.062246-4 6.054623+0 4.968648-4 4.885554+0 5.982650-4 3.948756+0 7.003311-4 3.263322+0 8.380601-4 2.597729+0 9.141503-4 2.337046+0 9.194983-4 2.436014+0 9.233825-4 2.663739+0 9.263434-4 3.005346+0 9.292257-4 3.533261+0 9.323159-4 4.341678+0 9.364626-4 5.758237+0 9.464634-4 9.481966+0 9.587000-4 1.311248+1 9.657000-4 1.471302+1 9.740650-4 1.578656+1 9.882500-4 1.614601+1 1.066391-3 1.441013+1 1.082720-3 1.498594+1 1.095717-3 1.538897+1 1.305630-3 1.218626+1 1.511947-3 9.898899+0 1.752024-3 7.947662+0 2.028747-3 6.345897+0 2.312397-3 5.157831+0 2.650603-3 4.135960+0 3.019137-3 3.338937+0 3.442509-3 2.679960+0 3.889402-3 2.179174+0 4.365158-3 1.787033+0 4.923591-3 1.449201+0 5.535094-3 1.180163+0 6.241123-3 9.539244-1 6.989961-3 7.792372-1 7.841064-3 6.337182-1 8.692814-3 5.268019-1 8.746757-3 5.360794-1 8.779779-3 5.711474-1 8.801296-3 6.228005-1 8.819980-3 6.974490-1 8.836250-3 7.920645-1 8.854666-3 9.399241-1 8.875563-3 1.163352+0 8.905244-3 1.578721+0 8.977490-3 2.766883+0 9.012309-3 3.210390+0 9.044674-3 3.477874+0 9.100442-3 3.669332+0 9.287451-3 3.626987+0 1.062732-2 2.943309+0 1.206250-2 2.389422+0 1.352515-2 1.974253+0 1.531850-2 1.595799+0 1.695801-2 1.338390+0 1.872868-2 1.123216+0 2.124852-2 8.961074-1 2.364744-2 7.373882-1 2.613410-2 6.130318-1 2.925155-2 4.965780-1 3.225870-2 4.126631-1 3.594702-2 3.355510-1 3.962413-2 2.779527-1 4.364086-2 2.302931-1 4.800690-2 1.909045-1 5.407187-2 1.508941-1 5.918936-2 1.259052-1 6.547121-2 1.028912-1 7.338720-2 8.161799-2 8.117177-2 6.649822-2 9.070987-2 5.301276-2 1.015602-1 4.206657-2 1.128484-1 3.388267-2 1.239016-1 2.797277-2 1.364583-1 2.295898-2 1.495256-1 1.903690-2 1.626648-1 1.601510-2 1.782303-1 1.330156-2 1.960274-1 1.098003-2 2.153789-1 9.083088-3 2.350490-1 7.642110-3 2.581815-1 6.354258-3 2.866430-1 5.195616-3 3.150567-1 4.346018-3 3.436510-1 3.700491-3 3.822467-1 3.054291-3 4.231974-1 2.559183-3 4.690833-1 2.152718-3 5.202954-1 1.822629-3 5.888437-1 1.509778-3 6.741399-1 1.245278-3 7.673615-1 1.052722-3 8.886894-1 8.844982-4 1.022000+0 7.608614-4 1.228714+0 6.272841-4 1.477239+0 5.171578-4 1.776032+0 4.263652-4 2.135261+0 3.515123-4 2.567148+0 2.898006-4 3.086391+0 2.389230-4 3.710658+0 1.969775-4 4.461192+0 1.623960-4 5.363532+0 1.338857-4 6.448384+0 1.103806-4 7.752663+0 9.100215-5 9.320751+0 7.502576-5 9.760024+0 7.149079-5 1.000000+1 1.429638-4 1 29000 7 0 6.354000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.892441+1 2.717318-6-2.788784+1 3.175920-6-2.636734+1 3.377007-6-2.434434+1 3.474715-6-2.204363+1 3.529684-6-1.953355+1 3.563340-6-1.687972+1 3.580974-6-1.474346+1 3.591268-6-1.302387+1 3.598781-6-1.124475+1 3.614282-6-7.100092+0 3.623140-6-4.061619+0 3.625354-6-3.149260+0 3.628621-6-1.679874+0 3.630835-6-4.857261-1 3.634212-6 1.003324+0 3.636427-6 1.883615+0 3.648694-6 5.882131+0 3.650649-6 6.355378+0 3.657628-6 7.675314+0 3.659583-6 7.846370+0 3.665446-6 7.751462+0 3.668656-6 7.342590+0 3.672092-6 6.454806+0 3.674897-6 5.443945+0 3.677001-6 4.514957+0 3.678579-6 3.716001+0 3.680947-6 2.332774+0 3.682130-6 1.540152+0 3.683314-6 6.280303-1 3.687781-6-2.996719+0 3.688898-6-3.978117+0 3.691410-6-6.433699+0 3.692806-6-8.113234+0 3.699415-6-1.557859+1 3.703127-6-2.074218+1 3.709567-6-2.895400+1 3.710578-6-2.725606+1 3.721772-6-1.206885+1 3.727984-6-4.850521+0 3.728542-6-4.137965+0 3.729589-6-2.989364+0 3.731422-6-1.196721+0 3.732796-6 3.460936-2 3.738035-6 4.335417+0 3.740129-6 5.716814+0 3.743564-6 7.539516+0 3.746370-6 8.688953+0 3.750052-6 9.762297+0 3.753603-6 1.028722+1 3.759253-6 1.013873+1 3.762604-6 9.729894+0 3.770421-6 7.633224+0 3.772654-6 6.734881+0 3.780176-6 3.417685+0 3.782705-6 2.161325+0 3.790523-6-1.012980+0 3.791639-6-1.513465+0 3.793594-6-2.246615+0 3.799457-6-4.168186+0 3.806157-6-6.375584+0 3.808391-6-7.339118+0 3.810914-6-8.385806+0 3.815943-6-9.865527+0 3.825915-6-1.202490+1 3.840000-6-1.420731+1 3.864703-6-1.682265+1 3.901732-6-1.928111+1 3.965474-6-2.171559+1 4.078020-6-2.389002+1 4.315744-6-2.582821+1 4.900142-6-2.749128+1 5.452599-6-2.898961+1 5.495813-6-2.887946+1 5.561645-6-2.835050+1 5.590747-6-2.922120+1 5.652736-6-2.664923+1 5.706349-6-2.687232+1 5.844347-6-2.828892+1 6.063799-6-2.910170+1 6.219538-6-2.703501+1 6.318917-6-2.436484+1 6.344462-6-2.508949+1 6.371864-6-2.744245+1 6.387172-6-2.922772+1 6.416113-6-2.544394+1 6.439251-6-2.362976+1 6.466428-6-2.323641+1 6.498906-6-2.463455+1 6.575999-6-2.896057+1 6.618661-6-2.927718+1 6.655049-6-2.746436+1 6.712636-6-2.330712+1 6.747241-6-2.253962+1 6.827322-6-2.432464+1 6.917823-6-2.568400+1 7.296336-6-2.702852+1 8.097003-6-2.856718+1 8.229411-6-2.899006+1 8.359608-6-2.709440+1 8.534796-6-2.814895+1 8.680735-6-2.710749+1 8.895655-6-2.812764+1 9.053888-6-2.777028+1 9.221480-6-2.820875+1 9.383325-6-2.782296+1 2.113489-5-2.888843+1 4.244754-5-2.843978+1 6.755064-5-2.619540+1 6.914438-5-2.640670+1 7.013876-5-2.556014+1 7.056653-5-2.636176+1 7.117763-5-2.408295+1 7.167208-5-2.382957+1 7.285525-5-2.528872+1 7.410623-5-2.418818+1 7.552117-5-2.469794+1 7.871088-5-2.393188+1 8.833189-5-2.192399+1 1.074608-4-2.007395+1 1.174163-4-1.966900+1 1.203438-4-1.910942+1 1.603245-4-1.570918+1 1.966080-4-1.354834+1 2.396500-4-1.179168+1 2.904575-4-1.050492+1 3.590745-4-9.586061+0 4.374000-4-9.181860+0 5.324146-4-9.220384+0 6.275120-4-9.675887+0 7.274896-4-1.066588+1 8.038780-4-1.204078+1 8.528697-4-1.356036+1 8.851163-4-1.522544+1 9.076277-4-1.723399+1 9.194983-4-1.918855+1 9.364626-4-2.336676+1 9.445805-4-2.372089+1 9.587000-4-2.218543+1 9.840000-4-1.664319+1 9.975000-4-1.459336+1 1.013731-3-1.299894+1 1.037073-3-1.155648+1 1.060401-3-1.078253+1 1.079351-3-1.067746+1 1.091004-3-9.961112+0 1.107377-3-8.753636+0 1.135011-3-7.532438+0 1.183000-3-6.076922+0 1.243121-3-4.759191+0 1.305630-3-3.755803+0 1.372113-3-2.952645+0 1.439945-3-2.316144+0 1.511947-3-1.793693+0 1.572864-3-1.437880+0 1.623762-3-1.191142+0 1.700670-3-8.978961-1 1.752024-3-7.343993-1 1.811861-3-5.798843-1 1.883649-3-4.271095-1 1.953280-3-3.089629-1 2.009671-3-2.267935-1 2.071642-3-1.572320-1 2.095506-3-1.339103-1 2.145571-3-9.296448-2 2.177749-3-6.978157-2 2.235803-3-3.328836-2 2.258135-3-2.201364-2 2.286169-3-9.234727-3 2.307515-3-5.270965-4 2.309072-3 5.864029-5 2.312397-3 1.318657-3 2.347369-3 1.362269-2 2.374362-3 2.204662-2 2.412197-3 3.268009-2 2.462145-3 4.058486-2 2.488947-3 4.420108-2 2.588958-3 5.336888-2 2.650603-3 5.369036-2 2.731205-3 4.688220-2 2.828977-3 3.349294-2 2.899784-3 2.057327-2 2.974661-3 8.077338-3 3.006942-3 2.069716-3 3.019137-3-3.977664-4 3.046008-3-5.821307-3 3.128228-3-2.550352-2 3.222213-3-5.064717-2 3.442509-3-1.114199-1 4.729917-3-5.206612-1 6.241123-3-1.016305+0 6.989961-3-1.313638+0 7.550636-3-1.608668+0 7.966034-3-1.916862+0 8.263482-3-2.240386+0 8.480941-3-2.598311+0 8.618460-3-2.942421+0 8.721416-3-3.351201+0 8.794459-3-3.846111+0 8.905244-3-4.860537+0 8.944132-3-4.964481+0 8.990253-3-4.752427+0 9.118326-3-3.474296+0 9.200194-3-2.944223+0 9.287451-3-2.574812+0 9.420047-3-2.175289+0 9.585060-3-1.818575+0 9.797188-3-1.482787+0 1.004991-2-1.184358+0 1.029782-2-9.578316-1 1.062732-2-7.228868-1 1.088675-2-5.721050-1 1.110372-2-4.668808-1 1.138274-2-3.529982-1 1.162807-2-2.685537-1 1.188798-2-1.918287-1 1.206250-2-1.454165-1 1.223998-2-1.025797-1 1.254520-2-3.889266-2 1.282167-2 1.022014-2 1.289408-2 2.315035-2 1.326402-2 7.871849-2 1.352515-2 1.115476-1 1.383893-2 1.472103-1 1.421085-2 1.841565-1 1.462177-2 2.176117-1 1.531850-2 2.586930-1 1.611724-2 2.910667-1 1.747144-2 3.232238-1 1.872868-2 3.366288-1 2.124852-2 3.322768-1 2.536960-2 2.966816-1 3.350524-2 2.128589-1 3.962413-2 1.615305-1 4.636385-2 1.179756-1 5.067058-2 9.556291-2 5.715315-2 6.805801-2 6.280003-2 4.877683-2 6.736897-2 3.578329-2 7.146311-2 2.557064-2 7.462265-2 1.854814-2 7.823905-2 1.132903-2 8.117177-2 5.970750-3 8.292967-2 2.984764-3 8.458876-2 3.341013-4 8.501888-2-3.472357-4 8.702392-2-3.376701-3 8.885546-2-6.018978-3 9.246804-2-1.088104-2 9.624826-2-1.551648-2 1.042244-1-2.393258-2 1.128484-1-3.147288-2 1.239016-1-3.924203-2 1.402164-1-4.797862-2 1.626648-1-5.650043-2 1.960274-1-6.475342-2 2.515997-1-7.253471-2 3.436510-1-7.856192-2 5.559043-1-8.322372-2 1.347258+0-8.574951-2 4.068655+0-8.621071-2 1.000000+1-8.623917-2 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.604086-3 1.109887-6 7.104716-3 1.217224-6 1.047731-2 1.334942-6 1.556378-2 1.464045-6 2.330238-2 1.556977-6 3.064537-2 1.655809-6 4.047836-2 1.760914-6 5.372903-2 1.872691-6 7.171669-2 1.991562-6 9.634137-2 2.117980-6 1.299237-1 2.184167-6 1.512008-1 2.252422-6 1.764557-1 2.322810-6 2.065495-1 2.395398-6 2.425476-1 2.467107-6 2.838447-1 2.536575-6 3.301783-1 2.603873-6 3.819612-1 2.669067-6 4.396216-1 2.732224-6 5.036097-1 2.793407-6 5.743992-1 2.852679-6 6.524879-1 2.910098-6 7.383993-1 2.965722-6 8.326832-1 3.019609-6 9.359170-1 3.071811-6 1.048707+0 3.122383-6 1.171689+0 3.171373-6 1.305530+0 3.218833-6 1.450929+0 3.264810-6 1.608619+0 3.309350-6 1.779367+0 3.352498-6 1.963976+0 3.394298-6 2.163284+0 3.434791-6 2.378169+0 3.474019-6 2.609548+0 3.512022-6 2.858378+0 3.548836-6 3.125657+0 3.584500-6 3.412425+0 3.619050-6 3.719767+0 3.652520-6 4.048811+0 3.716355-6 4.776746+0 3.776262-6 5.606184+0 3.832484-6 6.547932+0 3.859284-6 7.065062+0 3.885247-6 7.616334+0 3.910398-6 8.203584+0 3.959129-6 9.507259+0 4.004814-6 1.096748+1 4.047644-6 1.260328+1 4.087797-6 1.443053+1 4.125440-6 1.646523+1 4.160730-6 1.872527+1 4.193815-6 2.122952+1 4.224833-6 2.399710+1 4.253911-6 2.704753+1 4.281172-6 3.040072+1 4.306730-6 3.407697+1 4.330690-6 3.809684+1 4.353152-6 4.248102+1 4.374211-6 4.725022+1 4.393953-6 5.242498+1 4.412462-6 5.802559+1 4.429813-6 6.407193+1 4.446081-6 7.058339+1 4.461331-6 7.757879+1 4.475629-6 8.507642+1 4.489032-6 9.309412+1 4.501598-6 1.016493+2 4.513379-6 1.107587+2 4.524423-6 1.204389+2 4.534778-6 1.307060+2 4.544485-6 1.415766+2 4.553585-6 1.530682+2 4.562116-6 1.652003+2 4.570115-6 1.779943+2 4.577613-6 1.914727+2 4.591673-6 2.216262+2 4.603975-6 2.549429+2 4.614739-6 2.914093+2 4.624158-6 3.307841+2 4.632399-6 3.725868+2 4.639611-6 4.161457+2 4.645920-6 4.606791+2 4.651442-6 5.053815+2 4.656273-6 5.494966+2 4.660500-6 5.923669+2 4.667897-6 6.781769+2 4.677606-6 8.148255+2 4.691532-6 1.067997+3 4.710292-6 1.538596+3 4.721836-6 1.912542+3 4.727608-6 2.124732+3 4.736266-6 2.474013+3 4.744510-6 2.839263+3 4.752510-6 3.220782+3 4.756349-6 3.411963+3 4.762108-6 3.706780+3 4.769326-6 4.086430+3 4.775712-6 4.427367+3 4.781168-6 4.718800+3 4.786878-6 5.020393+3 4.793290-6 5.350256+3 4.798645-6 5.614712+3 4.805530-6 5.934204+3 4.811302-6 6.179446+3 4.817074-6 6.399714+3 4.824289-6 6.634047+3 4.830692-6 6.798749+3 4.837499-6 6.924494+3 4.843532-6 6.990493+3 4.849938-6 7.011743+3 4.854784-6 6.993791+3 4.861663-6 6.918081+3 4.867914-6 6.799369+3 4.873934-6 6.642297+3 4.879236-6 6.471607+3 4.882787-6 6.341634+3 4.887781-6 6.139527+3 4.892854-6 5.913611+3 4.898551-6 5.638926+3 4.903309-6 5.395645+3 4.909427-6 5.068977+3 4.914477-6 4.791312+3 4.920971-6 4.429175+3 4.926814-6 4.103262+3 4.932818-6 3.772956+3 4.941759-6 3.298368+3 4.944496-6 3.158710+3 4.956174-6 2.600431+3 4.962560-6 2.324248+3 4.972231-6 1.948675+3 4.982839-6 1.596568+3 5.005434-6 1.039993+3 5.012862-6 9.065689+2 5.020233-6 7.941545+2 5.027546-6 6.997405+2 5.034802-6 6.205608+2 5.042002-6 5.541415+2 5.049145-6 4.983203+2 5.056232-6 4.512436+2 5.063264-6 4.113485+2 5.070241-6 3.773359+2 5.077164-6 3.481388+2 5.090901-6 3.007227+2 5.104423-6 2.642189+2 5.117734-6 2.352996+2 5.130837-6 2.118193+2 5.143735-6 1.923692+2 5.156432-6 1.759965+2 5.168930-6 1.620338+2 5.181233-6 1.499973+2 5.193344-6 1.395257+2 5.205265-6 1.303422+2 5.228736-6 1.149127+2 5.251473-6 1.026097+2 5.273499-6 9.260317+1 5.294838-6 8.433282+1 5.315509-6 7.740595+1 5.335535-6 7.153771+1 5.354934-6 6.651528+1 5.373728-6 6.217606+1 5.410140-6 5.497013+1 5.444276-6 4.935827+1 5.476279-6 4.488742+1 5.506282-6 4.126272+1 5.534409-6 3.827975+1 5.560779-6 3.579044+1 5.610222-6 3.177033+1 5.653485-6 2.880703+1 5.691339-6 2.656010+1 5.724462-6 2.481692+1 5.782427-6 2.217034+1 5.825901-6 2.046118+1 5.891112-6 1.824852+1 5.985644-6 1.560261+1 6.102930-6 1.300808+1 6.249537-6 1.047392+1 6.505252-6 6.899025+0 6.546350-6 6.338441+0 6.582309-6 5.840585+0 6.613774-6 5.390867+0 6.641306-6 4.979720+0 6.665397-6 4.601087+0 6.686476-6 4.251245+0 6.704920-6 3.928298+0 6.721058-6 3.631860+0 6.735180-6 3.362580+0 6.747536-6 3.121492+0 6.758348-6 2.909360+0 6.776085-6 2.571191+0 6.789666-6 2.337813+0 6.800757-6 2.180219+0 6.809075-6 2.091892+0 6.815313-6 2.048033+0 6.819992-6 2.030435+0 6.823501-6 2.027089+0 6.828765-6 2.039910+0 6.832713-6 2.065148+0 6.834029-6 2.076794+0 6.841139-6 2.170412+0 6.844694-6 2.238369+0 6.848856-6 2.337690+0 6.852237-6 2.435179+0 6.856095-6 2.566121+0 6.864777-6 2.944281+0 6.869457-6 3.200292+0 6.877272-6 3.716797+0 6.885807-6 4.417789+0 6.905175-6 6.586281+0 6.915350-6 8.060406+0 6.923009-6 9.319758+0 6.929811-6 1.054037+1 6.937519-6 1.203062+1 6.943764-6 1.331223+1 6.950613-6 1.478240+1 6.957866-6 1.639724+1 6.965015-6 1.802883+1 6.969566-6 1.907842+1 6.976316-6 2.063734+1 6.983214-6 2.221490+1 6.986717-6 2.300336+1 6.994478-6 2.470303+1 7.002240-6 2.631340+1 7.005694-6 2.699383+1 7.012377-6 2.823589+1 7.020112-6 2.953313+1 7.022084-6 2.983722+1 7.036934-6 3.174277+1 7.042354-6 3.225712+1 7.052703-6 3.295491+1 7.058748-6 3.318803+1 7.062198-6 3.326375+1 7.068235-6 3.329781+1 7.076158-6 3.315840+1 7.081252-6 3.296372+1 7.086345-6 3.269169+1 7.094756-6 3.208610+1 7.103167-6 3.130693+1 7.114252-6 3.005984+1 7.122161-6 2.904920+1 7.134803-6 2.728888+1 7.151659-6 2.480053+1 7.170451-6 2.203847+1 7.215168-6 1.642762+1 7.232254-6 1.478456+1 7.249341-6 1.341489+1 7.266427-6 1.228613+1 7.283513-6 1.135812+1 7.299682-6 1.062818+1 7.329997-6 9.542144+0 7.356524-6 8.794222+0 7.402945-6 7.733893+0 7.472577-6 6.371646+0 7.507392-6 5.708153+0 7.547937-6 4.982573+0 7.557226-6 4.837900+0 7.566515-6 4.707114+0 7.579336-6 4.555591+0 7.585698-6 4.495411+0 7.597901-6 4.412971+0 7.604369-6 4.388965+0 7.621226-6 4.399006+0 7.626347-6 4.424391+0 7.641711-6 4.566501+0 7.650518-6 4.692911+0 7.655543-6 4.779424+0 7.664338-6 4.954877+0 7.675881-6 5.227938+0 7.690722-6 5.638325+0 7.716396-6 6.440633+0 7.731567-6 6.919673+0 7.737401-6 7.096106+0 7.753739-6 7.547253+0 7.758407-6 7.661081+0 7.772410-6 7.952196+0 7.782149-6 8.104605+0 7.787707-6 8.171664+0 7.797433-6 8.252990+0 7.804728-6 8.283640+0 7.815670-6 8.281646+0 7.826611-6 8.224849+0 7.840573-6 8.080721+0 7.845227-6 8.016932+0 7.857799-6 7.811793+0 7.864778-6 7.680727+0 7.882668-6 7.307069+0 7.932532-6 6.242198+0 7.942211-6 6.070045+0 7.951890-6 5.916910+0 7.961569-6 5.784541+0 7.968462-6 5.703510+0 7.980523-6 5.588538+0 7.989569-6 5.524333+0 8.003139-6 5.461303+0 8.016708-6 5.433871+0 8.033428-6 5.439450+0 8.058360-6 5.499382+0 8.097076-6 5.616595+0 8.106930-6 5.637339+0 8.125638-6 5.658668+0 8.136491-6 5.659437+0 8.156518-6 5.639820+0 8.176544-6 5.598269+0 8.267947-6 5.343323+0 8.318607-6 5.243345+0 8.439842-6 5.039271+0 8.591348-6 4.780807+0 8.717050-6 4.589930+0 9.093896-6 4.009044+0 9.332543-6 3.673083+0 9.536192-6 3.396926+0 9.660509-6 3.230166+0 9.775889-6 3.073618+0 9.903330-6 2.901520+0 9.999830-6 2.773058+0 1.014906-5 2.576122+0 1.023662-5 2.460695+0 1.034905-5 2.312760+0 1.046535-5 2.159429+0 1.059547-5 1.986554+0 1.069858-5 1.848162+0 1.081649-5 1.687965+0 1.093849-5 1.519458+0 1.106689-5 1.337164+0 1.116798-5 1.189154+0 1.126885-5 1.037164+0 1.133480-5 9.355733-1 1.139663-5 8.390501-1 1.145459-5 7.477653-1 1.150893-5 6.618291-1 1.155988-5 5.813180-1 1.160837-5 5.051724-1 1.165242-5 4.368841-1 1.169439-5 3.731469-1 1.173375-5 3.152039-1 1.177064-5 2.631656-1 1.180523-5 2.171307-1 1.183766-5 1.771616-1 1.186806-5 1.432462-1 1.189656-5 1.152548-1 1.192328-5 9.290715-2 1.194833-5 7.576950-2 1.197181-5 6.328967-2 1.199382-5 5.486662-2 1.201446-5 4.993634-2 1.203381-5 4.805199-2 1.204288-5 4.815190-2 1.205167-5 4.890468-2 1.206018-5 5.030705-2 1.206843-5 5.236695-2 1.207642-5 5.510271-2 1.208416-5 5.854191-2 1.209165-5 6.271995-2 1.209892-5 6.767855-2 1.210595-5 7.346413-2 1.211277-5 8.012621-2 1.212577-5 9.628384-2 1.213792-5 1.164621-1 1.214648-5 1.343535-1 1.215732-5 1.623011-1 1.216757-5 1.953818-1 1.217720-5 2.334794-1 1.220293-5 3.792159-1 1.222425-5 5.663692-1 1.224182-5 7.830873-1 1.225210-5 9.427920-1 1.226109-5 1.105938+0 1.227590-5 1.429416+0 1.228188-5 1.581633+0 1.229242-5 1.884633+0 1.230626-5 2.356358+0 1.231516-5 2.709199+0 1.232406-5 3.104864+0 1.233733-5 3.782066+0 1.235013-5 4.543419+0 1.236495-5 5.571599+0 1.237852-5 6.663004+0 1.238602-5 7.331904+0 1.239328-5 8.025356+0 1.240417-5 9.153342+0 1.241506-5 1.038938+1 1.242726-5 1.190427+1 1.244136-5 1.382786+1 1.244850-5 1.487140+1 1.246725-5 1.782308+1 1.247540-5 1.919686+1 1.250230-5 2.405553+1 1.251211-5 2.592754+1 1.253310-5 3.002846+1 1.254466-5 3.230605+1 1.255846-5 3.499670+1 1.257052-5 3.729243+1 1.258214-5 3.941901+1 1.259427-5 4.152297+1 1.260465-5 4.320488+1 1.261780-5 4.514726+1 1.262835-5 4.653105+1 1.264327-5 4.819288+1 1.265716-5 4.940036+1 1.266328-5 4.982275+1 1.267736-5 5.053392+1 1.269214-5 5.088618+1 1.271935-5 5.051750+1 1.273292-5 4.988527+1 1.275063-5 4.868273+1 1.276986-5 4.699902+1 1.279238-5 4.471301+1 1.284255-5 3.958427+1 1.286405-5 3.783279+1 1.287552-5 3.708541+1 1.288174-5 3.674146+1 1.289924-5 3.601976+1 1.291441-5 3.569527+1 1.292258-5 3.563555+1 1.293706-5 3.571866+1 1.295171-5 3.602914+1 1.296892-5 3.664201+1 1.299720-5 3.806342+1 1.302850-5 3.987655+1 1.306175-5 4.157179+1 1.309110-5 4.249457+1 1.310185-5 4.264771+1 1.311212-5 4.268997+1 1.313022-5 4.250676+1 1.313706-5 4.235044+1 1.314904-5 4.196287+1 1.315803-5 4.157905+1 1.317151-5 4.086019+1 1.318530-5 3.995877+1 1.320064-5 3.877961+1 1.321629-5 3.741196+1 1.323976-5 3.511792+1 1.324758-5 3.430501+1 1.327888-5 3.091966+1 1.330432-5 2.812973+1 1.332004-5 2.644138+1 1.335754-5 2.265114+1 1.341060-5 1.811363+1 1.343306-5 1.651954+1 1.345271-5 1.528051+1 1.348711-5 1.343422+1 1.351290-5 1.228681+1 1.355160-5 1.087865+1 1.359029-5 9.764966+0 1.362374-5 8.979759+0 1.365719-5 8.317917+0 1.369064-5 7.750057+0 1.373360-5 7.124674+0 1.379100-5 6.421593+0 1.385790-5 5.736384+0 1.403263-5 4.346464+0 1.412550-5 3.737001+0 1.419241-5 3.322785+0 1.426235-5 2.895435+0 1.429149-5 2.715994+0 1.433844-5 2.423595+0 1.436031-5 2.286747+0 1.439473-5 2.073319+0 1.447560-5 1.622117+0 1.449066-5 1.555120+0 1.451429-5 1.467843+0 1.453921-5 1.404912+0 1.454637-5 1.393302+0 1.455353-5 1.384860+0 1.458918-5 1.394751+0 1.459363-5 1.402529+0 1.462482-5 1.500728+0 1.463708-5 1.560694+0 1.466047-5 1.708398+0 1.467706-5 1.838390+0 1.469551-5 2.005432+0 1.474031-5 2.487644+0 1.476487-5 2.779267+0 1.477186-5 2.863446+0 1.478746-5 3.050250+0 1.480305-5 3.232986+0 1.483870-5 3.617457+0 1.484316-5 3.660952+0 1.487435-5 3.928689+0 1.488671-5 4.015157+0 1.491031-5 4.146940+0 1.492747-5 4.215274+0 1.494149-5 4.254614+0 1.495200-5 4.275011+0 1.497565-5 4.295472+0 1.500858-5 4.277993+0 1.510251-5 4.137125+0 1.512997-5 4.117467+0 1.515952-5 4.117754+0 1.519236-5 4.141252+0 1.527949-5 4.242464+0 1.531302-5 4.259613+0 1.532787-5 4.258873+0 1.536130-5 4.235940+0 1.539086-5 4.190980+0 1.540928-5 4.152123+0 1.544612-5 4.053379+0 1.547494-5 3.960912+0 1.552778-5 3.770093+0 1.561316-5 3.443846+0 1.566686-5 3.252271+0 1.568946-5 3.180215+0 1.572761-5 3.076086+0 1.576298-5 3.004385+0 1.579476-5 2.963755+0 1.580991-5 2.952699+0 1.583238-5 2.946037+0 1.584813-5 2.947955+0 1.588298-5 2.969126+0 1.592646-5 3.019609+0 1.601583-5 3.142945+0 1.603551-5 3.163967+0 1.606747-5 3.188832+0 1.611240-5 3.202334+0 1.615244-5 3.194401+0 1.620183-5 3.164958+0 1.638400-5 3.011803+0 1.645441-5 2.969265+0 1.658885-5 2.911999+0 1.681214-5 2.826061+0 1.707542-5 2.715272+0 1.724993-5 2.656374+0 1.765240-5 2.546157+0 1.849285-5 2.352339+0 1.950000-5 2.174700+0 2.018366-5 2.075545+0 2.070000-5 2.013444+0 2.124189-5 1.963373+0 2.162719-5 1.940627+0 2.264644-5 1.912944+0 2.371374-5 1.947781+0 2.398010-5 1.967260+0 2.485000-5 2.062544+0 2.547885-5 2.160894+0 2.691535-5 2.479488+0 2.786121-5 2.765881+0 2.858900-5 3.034001+0 3.126079-5 4.307197+0 3.360994-5 5.855219+0 3.507519-5 7.043391+0 3.801894-5 9.895696+0 4.027170-5 1.251237+1 4.163585-5 1.426045+1 4.315191-5 1.635529+1 4.570882-5 2.017661+1 4.841724-5 2.456846+1 5.128614-5 2.953186+1 5.432503-5 3.500931+1 5.688529-5 3.973683+1 6.025596-5 4.598850+1 6.382635-5 5.257646+1 6.794068-5 6.000810+1 7.212776-5 6.732123+1 7.526807-5 7.257199+1 7.762330-5 7.634158+1 8.131783-5 8.188490+1 8.272997-5 8.379198+1 8.384175-5 8.512171+1 8.536911-5 8.668160+1 8.595522-5 8.770552+1 8.637836-5 8.908562+1 8.658992-5 9.006283+1 8.686057-5 9.160710+1 8.786878-5 9.885440+1 8.816052-5 1.006711+2 8.841269-5 1.019399+2 8.885487-5 1.035233+2 8.947199-5 1.050831+2 8.999040-5 1.066854+2 9.057988-5 1.092031+2 9.122604-5 1.122029+2 9.163201-5 1.137998+2 9.197248-5 1.148762+2 9.240000-5 1.159391+2 9.502686-5 1.207253+2 9.745749-5 1.247277+2 1.000551-4 1.286131+2 1.059994-4 1.364557+2 1.161449-4 1.491553+2 1.212872-4 1.552726+2 1.255761-4 1.598544+2 1.282832-4 1.619463+2 1.298477-4 1.626967+2 1.304599-4 1.632809+2 1.311570-4 1.647269+2 1.316598-4 1.665562+2 1.321898-4 1.692742+2 1.334678-4 1.775258+2 1.338016-4 1.794488+2 1.342287-4 1.814528+2 1.347140-4 1.830333+2 1.352149-4 1.839844+2 1.372578-4 1.855769+2 1.487364-4 2.014633+2 1.586677-4 2.140711+2 1.690037-4 2.258642+2 1.825501-4 2.399891+2 1.980000-4 2.542376+2 2.091485-4 2.633993+2 2.205688-4 2.717078+2 2.343543-4 2.803420+2 2.490015-4 2.881427+2 2.626486-4 2.943448+2 2.776290-4 2.999527+2 2.963978-4 3.056034+2 3.147291-4 3.100424+2 3.374781-4 3.141209+2 3.630570-4 3.171441+2 3.888000-4 3.186800+2 4.135244-4 3.191220+2 4.399817-4 3.188369+2 4.688302-4 3.175706+2 4.988049-4 3.155307+2 5.329973-4 3.122707+2 5.664023-4 3.081720+2 6.008278-4 3.030738+2 6.366868-4 2.967744+2 6.741088-4 2.889282+2 7.146353-4 2.788510+2 7.542553-4 2.676066+2 7.906928-4 2.557379+2 8.182025-4 2.455714+2 8.475561-4 2.331853+2 8.722911-4 2.211827+2 8.925344-4 2.099771+2 9.128256-4 1.971432+2 9.300135-4 1.846773+2 9.440608-4 1.730248+2 9.571115-4 1.606603+2 9.686309-4 1.481025+2 9.776665-4 1.367880+2 9.853590-4 1.257369+2 9.914457-4 1.157036+2 9.970208-4 1.052214+2 1.000926-3 9.709739+1 1.004051-3 9.023768+1 1.006018-3 8.584058+1 1.012836-3 7.146722+1 1.015121-3 6.753442+1 1.016210-3 6.592283+1 1.017244-3 6.457991+1 1.018290-3 6.342553+1 1.019220-3 6.258473+1 1.020479-3 6.174938+1 1.021517-3 6.133698+1 1.022737-3 6.118947+1 1.023905-3 6.140302+1 1.025226-3 6.207441+1 1.026386-3 6.304529+1 1.027761-3 6.465971+1 1.028804-3 6.621690+1 1.030749-3 6.986563+1 1.031878-3 7.240974+1 1.033010-3 7.526406+1 1.034329-3 7.894866+1 1.035839-3 8.360626+1 1.043000-3 1.109370+2 1.045465-3 1.218463+2 1.048576-3 1.363423+2 1.050555-3 1.458681+2 1.053356-3 1.595969+2 1.056014-3 1.727214+2 1.058786-3 1.863157+2 1.061453-3 1.991262+2 1.064211-3 2.119146+2 1.068248-3 2.294844+2 1.071482-3 2.423798+2 1.075818-3 2.578600+2 1.080117-3 2.711813+2 1.085000-3 2.840632+2 1.089559-3 2.942453+2 1.095367-3 3.051510+2 1.100683-3 3.135659+2 1.108436-3 3.238773+2 1.115993-3 3.322547+2 1.125051-3 3.405403+2 1.134777-3 3.474326+2 1.144001-3 3.519222+2 1.157766-3 3.558701+2 1.163766-3 3.583342+2 1.168081-3 3.613612+2 1.173216-3 3.668947+2 1.179634-3 3.768450+2 1.193055-3 4.026815+2 1.198069-3 4.114771+2 1.203725-3 4.199862+2 1.209246-3 4.269424+2 1.220331-3 4.381976+2 1.230255-3 4.465331+2 1.240827-3 4.542179+2 1.251291-3 4.608504+2 1.269325-3 4.707251+2 1.282078-3 4.767570+2 1.317396-3 4.905969+2 1.356174-3 5.026439+2 1.415672-3 5.165681+2 1.470583-3 5.258986+2 1.535500-3 5.327571+2 1.640590-3 5.375981+2 1.732806-3 5.387016+2 1.817084-3 5.374183+2 1.994141-3 5.298376+2 2.137962-3 5.216641+2 2.361158-3 5.058450+2 2.714876-3 4.791435+2 3.054921-3 4.530457+2 3.386561-3 4.281150+2 3.711131-3 4.047118+2 4.034781-3 3.823139+2 4.363981-3 3.609893+2 4.766498-3 3.361211+2 5.156090-3 3.136982+2 5.591135-3 2.902723+2 5.820974-3 2.786848+2 6.309573-3 2.553950+2 6.817448-3 2.332301+2 7.079873-3 2.224579+2 7.337196-3 2.122976+2 7.582365-3 2.029373+2 7.804432-3 1.946267+2 8.178795-3 1.808902+2 8.441240-3 1.712571+2 8.692055-3 1.618046+2 8.891341-3 1.538157+2 9.037251-3 1.474147+2 9.105135-3 1.441638+2 9.165387-3 1.410588+2 9.218890-3 1.380548+2 9.270255-3 1.348521+2 9.314091-3 1.317656+2 9.351413-3 1.287984+2 9.391128-3 1.252442+2 9.451999-3 1.191248+2 9.519666-3 1.124982+2 9.549627-3 1.102632+2 9.571239-3 1.091233+2 9.591133-3 1.084950+2 9.613258-3 1.083112+2 9.640821-3 1.088497+2 9.668922-3 1.102061+2 9.707092-3 1.130663+2 9.793479-3 1.212462+2 9.830735-3 1.245089+2 9.873956-3 1.277072+2 9.904590-3 1.295758+2 9.963845-3 1.323907+2 1.004207-2 1.349573+2 1.014659-2 1.371845+2 1.026727-2 1.387518+2 1.040907-2 1.397300+2 1.063915-2 1.401165+2 1.092770-2 1.393518+2 1.133601-2 1.369655+2 1.182054-2 1.332332+2 1.231927-2 1.288318+2 1.308840-2 1.217310+2 1.411812-2 1.124915+2 1.552308-2 1.010634+2 1.708461-2 9.002427+1 1.895290-2 7.895397+1 2.100529-2 6.890205+1 2.297032-2 6.088609+1 2.528299-2 5.299530+1 2.811419-2 4.507901+1 3.326804-2 3.451694+1 3.690978-2 2.919981+1 4.048433-2 2.504149+1 5.877324-2 1.325373+1 7.855571-2 7.980683+0 9.887198-2 5.292021+0 1.164574-1 3.924677+0 1.428894-1 2.678290+0 1.899366-1 1.560165+0 2.590530-1 8.585472-1 3.548134-1 4.652885-1 5.262016-1 2.142252-1 9.166353-1 7.116769-2 2.814822+0 7.576064-3 8.500626+0 8.310461-4 2.567148+1 9.112659-5 7.752663+1 9.991882-6 2.341267+2 1.095589-6 7.070513+2 1.201289-7 2.511886+3 9.518080-9 7.943282+3 9.51808-10 2.511886+4 9.51808-11 7.943282+4 9.51808-12 1.000000+5 6.00550-12 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.993000-7 1.258900-6 1.425300-6 1.584900-6 2.258900-6 1.995300-6 3.580100-6 2.511900-6 5.674100-6 3.162300-6 8.992800-6 3.981100-6 1.425300-5 5.011900-6 2.258900-5 6.309600-6 3.580100-5 7.943300-6 5.674000-5 1.000000-5 8.992500-5 1.258900-5 1.425200-4 1.584900-5 2.258700-4 1.995300-5 3.579800-4 2.511900-5 5.673400-4 3.162300-5 8.990900-4 3.981100-5 1.424600-3 5.011900-5 2.257400-3 6.309600-5 3.577000-3 7.943300-5 5.662900-3 1.000000-4 8.963100-3 1.258900-4 1.418900-2 1.584900-4 2.242600-2 1.995300-4 3.542000-2 2.511900-4 5.580600-2 3.162300-4 8.764400-2 3.981100-4 1.369300-1 5.011900-4 2.121400-1 6.309600-4 3.245200-1 7.943300-4 4.877700-1 1.000000-3 7.152800-1 1.258900-3 1.016300+0 1.584900-3 1.393100+0 1.995300-3 1.844700+0 2.511900-3 2.382700+0 3.162300-3 3.032900+0 3.981100-3 3.823100+0 5.011900-3 4.762000+0 6.309600-3 5.836900+0 7.943300-3 7.038500+0 1.000000-2 8.327000+0 1.258900-2 9.628000+0 1.584900-2 1.083800+1 1.995300-2 1.190900+1 2.511900-2 1.284300+1 3.162300-2 1.356800+1 3.981100-2 1.406400+1 5.011900-2 1.431500+1 6.309600-2 1.433700+1 7.943300-2 1.415700+1 1.000000-1 1.379500+1 1.258900-1 1.327500+1 1.584900-1 1.262400+1 1.995300-1 1.188300+1 2.511900-1 1.108300+1 3.162300-1 1.025500+1 3.981100-1 9.422100+0 5.011900-1 8.602600+0 6.309600-1 7.807000+0 7.943300-1 7.040700+0 1.000000+0 6.316400+0 1.258900+0 5.630200+0 1.584900+0 4.987200+0 1.995300+0 4.389700+0 2.511900+0 3.839700+0 3.162300+0 3.338100+0 3.981100+0 2.885000+0 5.011900+0 2.479700+0 6.309600+0 2.120200+0 7.943300+0 1.804100+0 1.000000+1 1.528400+0 1.258900+1 1.289700+0 1.584900+1 1.084200+0 1.995300+1 9.084900-1 2.511900+1 7.589700-1 3.162300+1 6.323500-1 3.981100+1 5.255600-1 5.011900+1 4.358500-1 6.309600+1 3.607200-1 7.943300+1 2.980000-1 1.000000+2 2.457800-1 1.258900+2 2.024100-1 1.584900+2 1.664500-1 1.995300+2 1.367100-1 2.511900+2 1.121600-1 3.162300+2 9.191000-2 3.981100+2 7.524300-2 5.011900+2 6.154000-2 6.309600+2 5.028900-2 7.943300+2 4.106100-2 1.000000+3 3.350100-2 1.258900+3 2.731300-2 1.584900+3 2.225300-2 1.995300+3 1.811900-2 2.511900+3 1.474300-2 3.162300+3 1.199000-2 3.981100+3 9.745400-3 5.011900+3 7.916900-3 6.309600+3 6.428200-3 7.943300+3 5.217000-3 1.000000+4 4.232100-3 1.258900+4 3.431600-3 1.584900+4 2.781300-3 1.995300+4 2.253400-3 2.511900+4 1.825000-3 3.162300+4 1.477400-3 3.981100+4 1.195700-3 5.011900+4 9.673000-4 6.309600+4 7.822900-4 7.943300+4 6.324600-4 1.000000+5 5.111700-4 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976755-4 5.011872-4 5.005053-4 6.309573-4 6.298819-4 7.943282-4 7.926356-4 1.000000-3 9.973442-4 1.258925-3 1.254767-3 1.584893-3 1.578426-3 1.995262-3 1.985208-3 2.511886-3 2.496232-3 3.162278-3 3.137812-3 3.981072-3 3.942731-3 5.011872-3 4.951796-3 6.309573-3 6.215519-3 7.943282-3 7.796907-3 1.000000-2 9.772571-3 1.258925-2 1.223762-2 1.584893-2 1.530791-2 1.995262-2 1.912478-2 2.511886-2 2.385578-2 3.162278-2 2.970129-2 3.981072-2 3.690172-2 5.011872-2 4.573904-2 6.309573-2 5.653991-2 7.943282-2 6.967973-2 1.000000-1 8.559639-2 1.258925-1 1.047927-1 1.584893-1 1.278717-1 1.995262-1 1.555036-1 2.511886-1 1.884641-1 3.162278-1 2.276459-1 3.981072-1 2.740519-1 5.011872-1 3.288792-1 6.309573-1 3.934712-1 7.943282-1 4.696281-1 1.000000+0 5.590218-1 1.258925+0 6.643718-1 1.584893+0 7.887314-1 1.995262+0 9.358525-1 2.511886+0 1.110380+0 3.162278+0 1.318110+0 3.981072+0 1.566040+0 5.011872+0 1.862773+0 6.309573+0 2.218942+0 7.943282+0 2.647451+0 1.000000+1 3.164030+0 1.258925+1 3.788046+0 1.584893+1 4.543178+0 1.995262+1 5.458315+0 2.511886+1 6.569094+0 3.162278+1 7.919046+0 3.981072+1 9.561496+0 5.011872+1 1.156226+1 6.309573+1 1.400181+1 7.943282+1 1.697949+1 1.000000+2 2.061687+1 1.258925+2 2.506413+1 1.584893+2 3.050577+1 1.995262+2 3.716897+1 2.511886+2 4.533403+1 3.162278+2 5.534669+1 3.981072+2 6.763114+1 5.011872+2 8.271445+1 6.309573+2 1.012439+2 7.943282+2 1.240195+2 1.000000+3 1.520274+2 1.258925+3 1.864947+2 1.584893+3 2.289214+2 1.995262+3 2.811792+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739901-9 3.981072-5 4.342174-9 5.011872-5 6.881563-9 6.309573-5 1.090604-8 7.943282-5 1.727988-8 1.000000-4 2.738148-8 1.258925-4 4.339293-8 1.584893-4 6.873591-8 1.995262-4 1.088874-7 2.511886-4 1.724242-7 3.162278-4 2.728925-7 3.981072-4 4.316536-7 5.011872-4 6.819237-7 6.309573-4 1.075452-6 7.943282-4 1.692640-6 1.000000-3 2.655754-6 1.258925-3 4.158147-6 1.584893-3 6.466908-6 1.995262-3 1.005448-5 2.511886-3 1.565469-5 3.162278-3 2.446517-5 3.981072-3 3.834078-5 5.011872-3 6.007603-5 6.309573-3 9.405460-5 7.943282-3 1.463752-4 1.000000-2 2.274292-4 1.258925-2 3.516346-4 1.584893-2 5.410180-4 1.995262-2 8.278459-4 2.511886-2 1.263087-3 3.162278-2 1.921491-3 3.981072-2 2.909000-3 5.011872-2 4.379681-3 6.309573-2 6.555823-3 7.943282-2 9.753089-3 1.000000-1 1.440361-2 1.258925-1 2.109982-2 1.584893-1 3.061764-2 1.995262-1 4.402259-2 2.511886-1 6.272452-2 3.162278-1 8.858186-2 3.981072-1 1.240552-1 5.011872-1 1.723080-1 6.309573-1 2.374861-1 7.943282-1 3.247002-1 1.000000+0 4.409782-1 1.258925+0 5.945536-1 1.584893+0 7.961618-1 1.995262+0 1.059410+0 2.511886+0 1.401506+0 3.162278+0 1.844168+0 3.981072+0 2.415031+0 5.011872+0 3.149099+0 6.309573+0 4.090632+0 7.943282+0 5.295831+0 1.000000+1 6.835970+0 1.258925+1 8.801208+0 1.584893+1 1.130575+1 1.995262+1 1.449431+1 2.511886+1 1.854977+1 3.162278+1 2.370373+1 3.981072+1 3.024922+1 5.011872+1 3.855646+1 6.309573+1 4.909392+1 7.943282+1 6.245333+1 1.000000+2 7.938313+1 1.258925+2 1.008284+2 1.584893+2 1.279835+2 1.995262+2 1.623573+2 2.511886+2 2.058546+2 3.162278+2 2.608811+2 3.981072+2 3.304760+2 5.011872+2 4.184728+2 6.309573+2 5.297134+2 7.943282+2 6.703087+2 1.000000+3 8.479726+2 1.258925+3 1.072431+3 1.584893+3 1.355972+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.610000-6 2.887780+6 8.710000-6 2.712740+6 9.015711-6 2.214771+6 9.332543-6 1.796575+6 9.660509-6 1.447562+6 1.000000-5 1.157040+6 1.023293-5 9.919647+5 1.050000-5 8.306800+5 1.075600-5 6.998435+5 1.100000-5 5.935840+5 1.127000-5 4.937200+5 1.150000-5 4.211280+5 1.174898-5 3.536178+5 1.200400-5 2.946817+5 1.222000-5 2.517400+5 1.244515-5 2.128928+5 1.260000-5 1.892694+5 1.280000-5 1.620854+5 1.300000-5 1.382590+5 1.320000-5 1.174062+5 1.340000-5 9.919180+4 1.357000-5 8.556380+4 1.372000-5 7.481480+4 1.385000-5 6.638380+4 1.400000-5 5.759460+4 1.415000-5 4.972960+4 1.430000-5 4.271040+4 1.445440-5 3.629330+4 1.460000-5 3.092900+4 1.470000-5 2.760200+4 1.480000-5 2.454660+4 1.490000-5 2.174720+4 1.500000-5 1.918928+4 1.511000-5 1.663774+4 1.522000-5 1.434408+4 1.531087-5 1.263208+4 1.540000-5 1.110472+4 1.550000-5 9.560160+3 1.560000-5 8.184400+3 1.570000-5 6.967620+3 1.580000-5 5.900480+3 1.590000-5 4.974140+3 1.617000-5 3.112760+3 1.625000-5 2.724700+3 1.632000-5 2.441300+3 1.637000-5 2.269640+3 1.642000-5 2.122740+3 1.646000-5 2.023779+3 1.646000-5 2.374166+6 1.647000-5 2.372811+6 1.651000-5 2.367422+6 1.655000-5 2.362071+6 1.658500-5 2.357422+6 1.662000-5 2.352801+6 1.666000-5 2.347556+6 1.670000-5 2.342348+6 1.673500-5 2.337821+6 1.677000-5 2.333322+6 1.681000-5 2.328213+6 1.685000-5 2.323141+6 1.685000-5 3.756529+6 1.688500-5 3.752189+6 1.692000-5 3.747875+6 1.697100-5 3.741636+6 1.700000-5 3.738114+6 1.702000-5 3.736340+6 1.707000-5 3.731936+6 1.712000-5 3.727569+6 1.720000-5 3.720661+6 1.730000-5 3.712156+6 1.750000-5 3.695561+6 1.760000-5 3.687463+6 1.770000-5 3.682460+6 1.782000-5 3.676570+6 1.793000-5 3.671275+6 1.804000-5 3.666075+6 1.815000-5 3.660965+6 1.819701-5 3.658803+6 1.826000-5 3.657706+6 1.840000-5 3.655315+6 1.855000-5 3.652841+6 1.870000-5 3.650448+6 1.883649-5 3.648333+6 1.885000-5 3.648485+6 1.900000-5 3.650144+6 1.915000-5 3.651830+6 1.927525-5 3.653255+6 1.944700-5 3.655229+6 1.950000-5 3.655829+6 1.965000-5 3.661020+6 1.985000-5 3.667906+6 2.000000-5 3.673053+6 2.018366-5 3.681524+6 2.020000-5 3.682613+6 2.047000-5 3.700455+6 2.070000-5 3.715525+6 2.075800-5 3.720155+6 2.089296-5 3.730836+6 2.100000-5 3.741223+6 2.130000-5 3.770131+6 2.150000-5 3.789248+6 2.162719-5 3.803084+6 2.200000-5 3.849831+6 2.238721-5 3.898029+6 2.239600-5 3.899223+6 2.264644-5 3.933023+6 2.285000-5 3.963783+6 2.330000-5 4.031406+6 2.371374-5 4.097566+6 2.426610-5 4.193204+6 2.450000-5 4.233555+6 2.485000-5 4.297084+6 2.511886-5 4.345743+6 2.540973-5 4.401874+6 2.580000-5 4.477049+6 2.610000-5 4.537285+6 2.690000-5 4.697869+6 2.691535-5 4.700947+6 2.770000-5 4.865615+6 2.786121-5 4.899465+6 2.851018-5 5.039541+6 2.951209-5 5.256593+6 3.054921-5 5.482386+6 3.162278-5 5.717331+6 3.300000-5 6.020572+6 3.450000-5 6.353250+6 3.467369-5 6.391900+6 3.507519-5 6.478018+6 3.630781-5 6.737014+6 3.758374-5 7.005961+6 3.801894-5 7.093616+6 4.027170-5 7.531537+6 4.073803-5 7.616463+6 4.265795-5 7.952639+6 4.300000-5 8.012366+6 4.315191-5 8.036870+6 4.518559-5 8.347676+6 4.570882-5 8.427150+6 4.841724-5 8.773572+6 5.128614-5 9.064410+6 5.188000-5 9.109719+6 5.400000-5 9.268833+6 5.432503-5 9.288534+6 5.559043-5 9.353657+6 5.688529-5 9.419072+6 6.000000-5 9.506985+6 6.025596-5 9.511984+6 6.309573-5 9.531364+6 6.382635-5 9.531077+6 6.500000-5 9.517075+6 6.683439-5 9.495552+6 6.760830-5 9.481516+6 7.000000-5 9.416941+6 7.079458-5 9.396006+6 7.161434-5 9.369962+6 7.500000-5 9.239022+6 7.585776-5 9.202900+6 7.673615-5 9.166404+6 8.035261-5 8.994687+6 8.222426-5 8.902086+6 8.609938-5 8.696055+6 8.912509-5 8.533128+6 9.059000-5 8.449332+6 9.059000-5 9.006640+6 9.120108-5 8.966181+6 9.240000-5 8.884094+6 9.300000-5 8.841955+6 9.350000-5 8.805606+6 9.374000-5 8.787749+6 9.374000-5 9.045817+6 9.470000-5 8.971674+6 9.500000-5 8.948365+6 9.549926-5 8.909054+6 9.550000-5 8.908993+6 9.660509-5 8.817078+6 9.720000-5 8.767974+6 9.780000-5 8.718909+6 9.800000-5 8.702518+6 9.960000-5 8.574333+6 1.000000-4 8.542796+6 1.011579-4 8.449579+6 1.023293-4 8.359290+6 1.030000-4 8.305804+6 1.047129-4 8.175054+6 1.050000-4 8.154041+6 1.065000-4 8.046953+6 1.071519-4 8.002361+6 1.080000-4 7.943208+6 1.090000-4 7.876006+6 1.096478-4 7.833525+6 1.105000-4 7.775560+6 1.110000-4 7.742272+6 1.122018-4 7.664898+6 1.128000-4 7.627326+6 1.135011-4 7.584696+6 1.148154-4 7.506802+6 1.150000-4 7.495665+6 1.161449-4 7.427965+6 1.165000-4 7.407521+6 1.171100-4 7.372981+6 1.180000-4 7.319837+6 1.198000-4 7.217299+6 1.202264-4 7.193686+6 1.205000-4 7.178620+6 1.220000-4 7.098471+6 1.230269-4 7.042647+6 1.244515-4 6.967729+6 1.260000-4 6.883752+6 1.273503-4 6.813135+6 1.303167-4 6.665005+6 1.318257-4 6.589890+6 1.350000-4 6.429674+6 1.364583-4 6.359417+6 1.374300-4 6.313653+6 1.374300-4 6.589551+6 1.380384-4 6.560720+6 1.401800-4 6.458017+6 1.412538-4 6.405256+6 1.462177-4 6.173216+6 1.480000-4 6.092345+6 1.500000-4 6.003549+6 1.548817-4 5.789080+6 1.566751-4 5.713697+6 1.603245-4 5.562758+6 1.620000-4 5.494024+6 1.621810-4 5.486629+6 1.678804-4 5.263808+6 1.690000-4 5.221389+6 1.720000-4 5.109405+6 1.760000-4 4.962684+6 1.819701-4 4.756730+6 1.820000-4 4.755720+6 1.862087-4 4.615557+6 1.900000-4 4.492772+6 1.949845-4 4.338313+6 1.950000-4 4.337850+6 1.980000-4 4.248410+6 2.000000-4 4.189701+6 2.041738-4 4.068496+6 2.065380-4 4.002632+6 2.089296-4 3.936845+6 2.162719-4 3.743598+6 2.238721-4 3.551941+6 2.264644-4 3.489631+6 2.300000-4 3.406421+6 2.317395-4 3.366643+6 2.371374-4 3.245379+6 2.400000-4 3.183949+6 2.483133-4 3.011977+6 2.500000-4 2.979016+6 2.511886-4 2.955531+6 2.540973-4 2.899110+6 2.600160-4 2.788870+6 2.660725-4 2.681804+6 2.691535-4 2.629790+6 2.722701-4 2.578361+6 2.754229-4 2.526984+6 2.818383-4 2.427522+6 2.851018-4 2.378605+6 2.951209-4 2.237016+6 3.000000-4 2.172171+6 3.019952-4 2.146409+6 3.054921-4 2.101827+6 3.126079-4 2.014880+6 3.198895-4 1.932028+6 3.200000-4 1.930796+6 3.280000-4 1.843436+6 3.311311-4 1.810911+6 3.388442-4 1.733887+6 3.430000-4 1.694390+6 3.467369-4 1.659720+6 3.548134-4 1.587491+6 3.630781-4 1.518548+6 3.700000-4 1.463580+6 3.715352-4 1.451694+6 3.801894-4 1.387521+6 3.935501-4 1.295691+6 3.981072-4 1.266357+6 4.000000-4 1.254367+6 4.120975-4 1.181062+6 4.200000-4 1.136815+6 4.265795-4 1.101504+6 4.350000-4 1.058566+6 4.415704-4 1.026509+6 4.466836-4 1.002427+6 4.600000-4 9.435991+5 4.677351-4 9.117217+5 4.700000-4 9.026157+5 4.786301-4 8.687961+5 4.897788-4 8.279740+5 4.954502-4 8.082258+5 5.069907-4 7.698964+5 5.188000-4 7.331369+5 5.370318-4 6.810380+5 5.400000-4 6.730593+5 5.559043-4 6.324710+5 5.688529-4 6.017217+5 5.888437-4 5.582365+5 6.095369-4 5.177280+5 6.309573-4 4.799633+5 6.382635-4 4.679592+5 6.531306-4 4.447021+5 6.683439-4 4.225890+5 7.000000-4 3.811362+5 7.244360-4 3.528898+5 7.328245-4 3.438538+5 7.673615-4 3.097643+5 7.762471-4 3.017743+5 8.035261-4 2.789827+5 8.317638-4 2.577040+5 8.500000-4 2.451930+5 8.511380-4 2.444379+5 8.609938-4 2.380402+5 8.912509-4 2.198092+5 9.015711-4 2.139958+5 9.332543-4 1.974691+5 9.549926-4 1.871484+5 9.660509-4 1.821844+5 9.772372-4 1.773383+5 1.011579-3 1.634591+5 1.026000-3 1.580916+5 1.026000-3 3.518776+5 1.026180-3 3.574106+5 1.026500-3 3.708302+5 1.026850-3 3.850830+5 1.027200-3 3.989228+5 1.027650-3 4.160534+5 1.028000-3 4.289855+5 1.028500-3 4.467285+5 1.029000-3 4.638107+5 1.029500-3 4.802023+5 1.030000-3 4.958799+5 1.030600-3 5.138383+5 1.031100-3 5.281275+5 1.031800-3 5.471678+5 1.032600-3 5.675605+5 1.033300-3 5.842589+5 1.034100-3 6.020903+5 1.035142-3 6.233906+5 1.036000-3 6.393894+5 1.037100-3 6.579668+5 1.038500-3 6.786907+5 1.040000-3 6.975509+5 1.041500-3 7.132819+5 1.043000-3 7.261994+5 1.045000-3 7.395882+5 1.047300-3 7.503875+5 1.050000-3 7.580621+5 1.050500-3 7.586822+5 1.050500-3 8.499862+5 1.050610-3 8.518188+5 1.050900-3 8.580920+5 1.051200-3 8.644619+5 1.051500-3 8.706552+5 1.051950-3 8.796458+5 1.052400-3 8.883771+5 1.052850-3 8.967892+5 1.053000-3 8.994708+5 1.053300-3 9.045890+5 1.053700-3 9.110789+5 1.054300-3 9.204440+5 1.055000-3 9.308371+5 1.055600-3 9.393030+5 1.056100-3 9.460415+5 1.056500-3 9.510647+5 1.056900-3 9.558225+5 1.057700-3 9.645140+5 1.058500-3 9.725771+5 1.059500-3 9.817882+5 1.060400-3 9.893133+5 1.061500-3 9.975679+5 1.062700-3 1.004620+6 1.064000-3 1.011010+6 1.065500-3 1.016927+6 1.067000-3 1.021427+6 1.068500-3 1.024660+6 1.070500-3 1.027265+6 1.072700-3 1.028229+6 1.075000-3 1.027574+6 1.078000-3 1.024749+6 1.081500-3 1.019482+6 1.083927-3 1.014902+6 1.085000-3 1.012882+6 1.090000-3 1.002007+6 1.094000-3 9.938189+5 1.096478-3 9.886381+5 1.113000-3 9.550528+5 1.120000-3 9.416935+5 1.135011-3 9.111835+5 1.143000-3 8.955099+5 1.145000-3 8.914606+5 1.148154-3 8.849881+5 1.165000-3 8.514716+5 1.174898-3 8.323114+5 1.175000-3 8.321171+5 1.184400-3 8.152129+5 1.184400-3 9.265542+5 1.202264-3 8.931387+5 1.216186-3 8.687630+5 1.273503-3 7.778432+5 1.303167-3 7.360341+5 1.350000-3 6.767460+5 1.364583-3 6.596738+5 1.380384-3 6.418661+5 1.428894-3 5.910622+5 1.450000-3 5.707417+5 1.462177-3 5.593220+5 1.500000-3 5.256759+5 1.513561-3 5.143147+5 1.548817-3 4.863458+5 1.584893-3 4.599333+5 1.603245-3 4.472772+5 1.610000-3 4.427450+5 1.621810-3 4.349484+5 1.670000-3 4.045338+5 1.698244-3 3.880367+5 1.737801-3 3.664792+5 1.757924-3 3.561598+5 1.778279-3 3.461366+5 1.840772-3 3.171508+5 1.883649-3 2.992238+5 1.905461-3 2.906547+5 1.995262-3 2.587935+5 2.000000-3 2.572428+5 2.018366-3 2.513506+5 2.089296-3 2.302980+5 2.113489-3 2.236894+5 2.162719-3 2.108316+5 2.187762-3 2.046834+5 2.238721-3 1.928884+5 2.264644-3 1.872550+5 2.317395-3 1.764815+5 2.371374-3 1.661997+5 2.454709-3 1.519105+5 2.540973-3 1.388713+5 2.570396-3 1.347597+5 2.660725-3 1.231518+5 2.691535-3 1.195150+5 2.722701-3 1.159696+5 2.754229-3 1.124988+5 2.800000-3 1.077107+5 2.818383-3 1.058671+5 2.917427-3 9.661768+4 3.054921-3 8.555487+4 3.126079-3 8.046789+4 3.235937-3 7.340817+4 3.311311-3 6.903109+4 3.467369-3 6.105385+4 3.500000-3 5.955083+4 3.507519-3 5.921030+4 3.548134-3 5.740254+4 3.650000-3 5.319224+4 3.715352-3 5.070268+4 3.758374-3 4.915194+4 3.890451-3 4.478382+4 3.935501-3 4.341721+4 4.027170-3 4.081123+4 4.073803-3 3.956803+4 4.168694-3 3.717177+4 4.265795-3 3.490926+4 4.365158-3 3.278712+4 4.466836-3 3.079746+4 4.570882-3 2.893184+4 4.623810-3 2.804154+4 4.677351-3 2.717668+4 4.800000-3 2.531986+4 4.841724-3 2.472462+4 5.069907-3 2.178957+4 5.188000-3 2.045892+4 5.308844-3 1.921081+4 5.370318-3 1.861446+4 5.432503-3 1.803315+4 5.495409-3 1.746672+4 5.754399-3 1.537706+4 5.888437-3 1.443050+4 6.165950-3 1.271183+4 6.237348-3 1.231489+4 6.309573-3 1.192520+4 6.531306-3 1.083000+4 6.683439-3 1.015785+4 6.918310-3 9.228450+3 7.079458-3 8.657867+3 7.161434-3 8.386318+3 7.244360-3 8.120690+3 7.585776-3 7.135680+3 7.673615-3 6.909206+3 8.128305-3 5.882179+3 8.230370-3 5.681066+3 8.317638-3 5.516596+3 8.413951-3 5.340634+3 8.511380-3 5.170235+3 8.810489-3 4.689611+3 9.549926-3 3.738068+3 9.622400-3 3.659646+3 9.622400-3 2.773924+4 9.660509-3 2.746978+4 9.690000-3 2.726377+4 9.772372-3 2.669906+4 1.000000-2 2.522110+4 1.011579-2 2.451291+4 1.023293-2 2.382465+4 1.071519-2 2.115067+4 1.109175-2 1.934500+4 1.122018-2 1.877824+4 1.135011-2 1.822742+4 1.150000-2 1.761943+4 1.174898-2 1.667005+4 1.288250-2 1.304884+4 1.303167-2 1.265564+4 1.333521-2 1.190363+4 1.350000-2 1.152095+4 1.364583-2 1.119625+4 1.412538-2 1.021297+4 1.428894-2 9.904883+3 1.531087-2 8.231566+3 1.548817-2 7.976507+3 1.566751-2 7.729393+3 1.584893-2 7.489912+3 1.603245-2 7.257822+3 1.698244-2 6.200841+3 1.778279-2 5.467543+3 1.798871-2 5.298035+3 1.840772-2 4.974665+3 1.862087-2 4.820454+3 1.883649-2 4.671029+3 1.905461-2 4.526225+3 2.041738-2 3.732011+3 2.065380-2 3.613947+3 2.113489-2 3.388678+3 2.137962-2 3.281377+3 2.162719-2 3.177478+3 2.187762-2 3.076862+3 2.238721-2 2.885103+3 2.264644-2 2.793763+3 2.300000-2 2.675400+3 2.400000-2 2.375390+3 2.426610-2 2.302015+3 2.483133-2 2.155872+3 2.540973-2 2.019022+3 2.570396-2 1.953886+3 2.600160-2 1.890854+3 2.754229-2 1.604960+3 2.800000-2 1.531378+3 2.851018-2 1.454625+3 2.951209-2 1.318236+3 3.000000-2 1.258046+3 3.019952-2 1.234151+3 3.126079-2 1.116790+3 3.198895-2 1.044823+3 3.388442-2 8.845765+2 3.427678-2 8.555794+2 3.467369-2 8.275317+2 3.507519-2 8.004013+2 3.589219-2 7.487833+2 3.672823-2 7.004908+2 3.801894-2 6.330483+2 3.935501-2 5.721061+2 4.027170-2 5.347775+2 4.216965-2 4.672092+2 4.315191-2 4.367008+2 4.415704-2 4.081828+2 4.518559-2 3.815266+2 4.841724-2 3.108456+2 5.069907-2 2.711272+2 5.128614-2 2.620181+2 5.308844-2 2.364841+2 5.559043-2 2.062700+2 5.623413-2 1.993407+2 5.754399-2 1.860447+2 5.888437-2 1.736363+2 6.095369-2 1.565435+2 6.165950-2 1.512285+2 6.237348-2 1.460941+2 6.531306-2 1.272401+2 6.998420-2 1.034245+2 7.161434-2 9.652206+1 7.244360-2 9.321731+1 7.762471-2 7.562098+1 7.852356-2 7.302995+1 8.511380-2 5.721478+1 8.709636-2 5.336142+1 8.912509-2 4.976786+1 9.120108-2 4.641642+1 9.225714-2 4.482636+1 9.549926-2 4.037233+1 9.660509-2 3.898237+1 9.772372-2 3.764036+1 1.011580-1 3.388530+1 1.035142-1 3.159237+1 1.096478-1 2.651621+1 1.161449-1 2.225608+1 1.174898-1 2.149002+1 1.188502-1 2.075038+1 1.202264-1 2.003619+1 1.216186-1 1.934660+1 1.318257-1 1.514050+1 1.348963-1 1.411643+1 1.396368-1 1.270877+1 1.428894-1 1.184922+1 1.445440-1 1.144153+1 1.531088-1 9.604155+0 1.566751-1 8.954696+0 1.640590-1 7.784616+0 1.678804-1 7.258246+0 1.698244-1 7.010869+0 1.737801-1 6.541138+0 1.757924-1 6.318208+0 1.778279-1 6.102913+0 1.819701-1 5.694067+0 1.883649-1 5.131618+0 1.905461-1 4.956906+0 1.927525-1 4.788161+0 1.949845-1 4.625158+0 2.065380-1 3.889726+0 2.089296-1 3.757316+0 2.162719-1 3.386539+0 2.187762-1 3.272698+0 2.264644-1 2.953635+0 2.290868-1 2.854346+0 2.371374-1 2.576445+0 2.426610-1 2.406388+0 2.454709-1 2.325621+0 2.483133-1 2.247567+0 2.540973-1 2.099230+0 2.660725-1 1.834929+0 2.691535-1 1.774229+0 2.722701-1 1.715632+0 2.786121-1 1.604179+0 2.917427-1 1.402527+0 2.951209-1 1.356905+0 2.985383-1 1.312766+0 3.019952-1 1.270069+0 3.126079-1 1.150134+0 3.198895-1 1.076673+0 3.235937-1 1.041722+0 3.311311-1 9.751875-1 3.467369-1 8.566080-1 3.548134-1 8.028414-1 3.630781-1 7.525542-1 3.672823-1 7.286071-1 3.715352-1 7.054229-1 3.758374-1 6.834007-1 3.845918-1 6.413975-1 3.890451-1 6.213747-1 3.981072-1 5.831841-1 4.000000-1 5.756142-1 4.027170-1 5.650059-1 4.073803-1 5.474113-1 4.120975-1 5.303658-1 4.265795-1 4.833111-1 4.315191-1 4.685730-1 4.365158-1 4.542856-1 4.466836-1 4.270045-1 4.518559-1 4.140165-1 4.570882-1 4.014238-1 4.677351-1 3.779087-1 4.731513-1 3.666736-1 4.954502-1 3.249768-1 5.011872-1 3.153411-1 5.069907-1 3.059916-1 5.128614-1 2.971447-1 5.188000-1 2.885538-1 5.495409-1 2.491846-1 5.559043-1 2.420008-1 5.623413-1 2.350243-1 5.688529-1 2.284228-1 5.956621-1 2.038200-1 6.025596-1 1.980955-1 6.165950-1 1.871561-1 6.237348-1 1.820556-1 6.456542-1 1.675730-1 6.531306-1 1.630065-1 6.606935-1 1.585646-1 6.760830-1 1.500663-1 6.839117-1 1.461101-1 6.918310-1 1.422582-1 6.998420-1 1.385080-1 7.079458-1 1.348568-1 7.161434-1 1.313020-1 7.244360-1 1.278515-1 7.328245-1 1.244935-1 7.498942-1 1.182349-1 7.585776-1 1.152246-1 7.673615-1 1.122912-1 7.852356-1 1.066467-1 7.943282-1 1.039393-1 8.000000-1 1.023006-1 8.035261-1 1.013010-1 8.128305-1 9.880405-2 8.222427-1 9.636859-2 8.511380-1 8.941711-2 8.609938-1 8.721323-2 8.709636-1 8.506390-2 8.912509-1 8.093352-2 9.015711-1 7.894416-2 9.120108-1 7.705493-2 9.225714-1 7.521094-2 9.332543-1 7.341125-2 9.440609-1 7.165463-2 9.549926-1 6.994087-2 9.660509-1 6.827407-2 9.772372-1 6.664719-2 1.011579+0 6.217328-2 1.023293+0 6.074967-2 1.035142+0 5.935922-2 1.059254+0 5.667937-2 1.071519+0 5.538527-2 1.109175+0 5.167740-2 1.122018+0 5.049763-2 1.135011+0 4.938216-2 1.161449+0 4.722491-2 1.174898+0 4.618647-2 1.188600+0 4.516374-2 1.216186+0 4.320650-2 1.230269+0 4.228914-2 1.273503+0 3.965260-2 1.288250+0 3.881306-2 1.303167+0 3.799174-2 1.318257+0 3.718782-2 1.364583+0 3.487680-2 1.428894+0 3.209977-2 1.462177+0 3.079980-2 1.479108+0 3.016974-2 1.531087+0 2.835583-2 1.548817+0 2.779581-2 1.584893+0 2.670889-2 1.621810+0 2.566830-2 1.640590+0 2.516331-2 1.698244+0 2.370723-2 1.717908+0 2.324088-2 1.737801+0 2.279930-2 1.778279+0 2.194127-2 1.798871+0 2.152601-2 1.819701+0 2.111862-2 1.840772+0 2.071896-2 1.905461+0 1.956479-2 1.927525+0 1.919456-2 1.949845+0 1.884418-2 2.000000+0 1.809377-2 2.044000+0 1.747695-2 2.065380+0 1.718950-2 2.137962+0 1.626883-2 2.187762+0 1.568264-2 2.213095+0 1.540678-2 2.264644+0 1.486957-2 2.317395+0 1.435297-2 2.344229+0 1.410145-2 2.426610+0 1.337304-2 2.483133+0 1.290848-2 2.511886+0 1.268959-2 2.570396+0 1.226291-2 2.630268+0 1.185209-2 2.660725+0 1.165187-2 2.786121+0 1.088426-2 2.851018+0 1.051965-2 2.884032+0 1.034769-2 2.951209+0 1.001218-2 3.019952+0 9.688735-3 3.054921+0 9.530958-3 3.198895+0 8.925127-3 3.273407+0 8.636826-3 3.311311+0 8.500593-3 3.427678+0 8.104681-3 3.507519+0 7.851948-3 3.548134+0 7.728557-3 3.715352+0 7.254084-3 3.801894+0 7.027898-3 3.845918+0 6.920835-3 4.000000+0 6.567693-3 4.120975+0 6.312771-3 4.168694+0 6.216943-3 4.365158+0 5.847967-3 4.466836+0 5.671783-3 4.518559+0 5.588277-3 4.731513+0 5.266392-3 4.841724+0 5.112984-3 4.954502+0 4.964049-3 5.188000+0 4.679070-3 5.308844+0 4.542784-3 5.370318+0 4.478057-3 5.623413+0 4.228265-3 5.821032+0 4.050669-3 5.956621+0 3.936438-3 6.237348+0 3.717552-3 6.382635+0 3.612721-3 6.456542+0 3.562822-3 6.839116+0 3.323491-3 7.079458+0 3.188100-3 7.244360+0 3.100920-3 7.585776+0 2.933649-3 7.762471+0 2.853432-3 7.943282+0 2.777346-3 8.511380+0 2.561060-3 8.912509+0 2.426691-3 9.120108+0 2.362176-3 9.440609+0 2.268605-3 9.660509+0 2.208296-3 9.772372+0 2.179501-3 1.059254+1 1.988193-3 1.135011+1 1.837997-3 1.188502+1 1.744227-3 1.230269+1 1.677052-3 1.258925+1 1.633715-3 1.273503+1 1.612986-3 1.333521+1 1.532674-3 1.348963+1 1.513228-3 1.428894+1 1.419864-3 1.496236+1 1.349338-3 1.640590+1 1.218622-3 1.698244+1 1.172939-3 1.717908+1 1.158453-3 1.757924+1 1.130014-3 1.778279+1 1.116059-3 1.819701+1 1.088728-3 1.840772+1 1.075315-3 2.317395+1 8.391975-4 2.426610+1 7.986026-4 2.454709+1 7.889491-4 2.511886+1 7.699919-4 2.540973+1 7.606844-4 2.570396+1 7.515084-4 2.600160+1 7.424431-4 3.427678+1 5.548416-4 3.630781+1 5.221758-4 3.672823+1 5.159741-4 3.758374+1 5.037909-4 3.801894+1 4.978077-4 3.845918+1 4.919054-4 3.935501+1 4.803102-4 5.432503+1 3.439421-4 5.754399+1 3.240310-4 5.821032+1 3.202378-4 5.956621+1 3.127844-4 6.095369+1 3.055045-4 6.165950+1 3.019332-4 6.456542+1 2.880608-4 9.772372+1 1.886445-4 9.885531+1 1.864393-4 1.059254+2 1.737393-4 1.083927+2 1.697370-4 1.122018+2 1.639059-4 1.148154+2 1.601301-4 1.174898+2 1.564449-4 1.273503+2 1.442020-4 1.949845+2 9.373656-5 1.972423+2 9.265169-5 2.113489+2 8.640112-5 2.162719+2 8.442475-5 2.238721+2 8.154473-5 2.290868+2 7.967948-5 2.344229+2 7.785777-5 2.540973+2 7.180358-5 3.890451+2 4.680830-5 4.466836+2 4.074326-5 4.570882+2 3.981175-5 4.677351+2 3.890191-5 5.069907+2 3.587814-5 7.762471+2 2.339295-5 7.852356+2 2.312410-5 8.413951+2 2.157467-5 8.609938+2 2.108335-5 3.090295+3 5.870740-6 3.548134+3 5.112886-6 7.244360+3 2.503388-6 7.413102+3 2.446386-6 8.035261+3 2.256906-6 4.897788+4 3.700485-7 4.954502+4 3.658112-7 1.000000+5 1.812001-7 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.610000-6 8.610000-6 1.646000-5 8.610000-6 1.646000-5 1.645331-5 1.685000-5 1.645400-5 1.685000-5 1.660511-5 2.610000-5 1.648454-5 8.222426-5 1.655417-5 9.059000-5 1.655718-5 9.059000-5 1.755649-5 9.374000-5 1.750258-5 9.374000-5 1.794336-5 1.050000-4 1.761487-5 1.122018-4 1.753423-5 1.205000-4 1.758723-5 1.318257-4 1.780227-5 1.374300-4 1.793868-5 1.374300-4 1.908712-5 2.000000-4 2.103360-5 2.317395-4 2.189169-5 2.818383-4 2.307183-5 3.311311-4 2.406785-5 4.000000-4 2.524243-5 4.700000-4 2.625538-5 5.559043-4 2.728755-5 6.531306-4 2.825161-5 7.673615-4 2.917747-5 9.015711-4 3.005893-5 1.026000-3 3.072925-5 1.026000-3 4.093450-5 1.027200-3 4.193889-5 1.028500-3 4.274407-5 1.030000-3 4.341239-5 1.031800-3 4.398490-5 1.034100-3 4.449421-5 1.037100-3 4.493216-5 1.041500-3 4.531215-5 1.047300-3 4.556193-5 1.050500-3 4.563166-5 1.050500-3 4.609317-5 1.056900-3 4.656168-5 1.067000-3 4.685266-5 1.094000-3 4.696625-5 1.184400-3 4.699969-5 1.184400-3 5.032151-5 1.840772-3 5.197456-5 2.660725-3 5.361279-5 3.650000-3 5.517245-5 4.841724-3 5.665739-5 6.531306-3 5.828427-5 8.511380-3 5.972641-5 9.622400-3 6.038666-5 9.622400-3 7.555300-5 1.603245-2 7.610125-5 3.198895-2 7.652769-5 9.225714-2 7.683119-5 9.015711-1 7.698091-5 1.000000+5 7.698220-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.610000-6 0.0 9.059000-5 0.0 9.059000-5 1.22053-10 9.120108-5 1.21252-10 9.240000-5 1.18859-10 9.374000-5 1.15347-10 9.374000-5 1.73100-10 9.500000-5 1.68987-10 9.800000-5 1.57051-10 1.011579-4 1.44168-10 1.030000-4 1.37672-10 1.050000-4 1.31765-10 1.065000-4 1.28119-10 1.080000-4 1.25265-10 1.096478-4 1.22994-10 1.110000-4 1.21876-10 1.128000-4 1.21209-10 1.150000-4 1.21595-10 1.165000-4 1.22612-10 1.180000-4 1.24118-10 1.205000-4 1.27708-10 1.230269-4 1.32336-10 1.244515-4 1.35353-10 1.273503-4 1.42321-10 1.303167-4 1.50126-10 1.318257-4 1.54358-10 1.374300-4 1.71339-10 1.374300-4 2.49431-10 1.412538-4 2.62504-10 1.500000-4 2.93682-10 1.760000-4 3.90198-10 1.900000-4 4.39630-10 2.065380-4 4.94412-10 2.162719-4 5.24478-10 2.300000-4 5.64713-10 2.540973-4 6.31366-10 2.754229-4 6.86405-10 2.951209-4 7.34056-10 3.126079-4 7.73821-10 3.430000-4 8.37322-10 3.715352-4 8.91733-10 4.000000-4 9.42489-10 4.415704-4 1.010201-9 4.786301-4 1.064539-9 5.188000-4 1.117210-9 5.688529-4 1.176615-9 6.095369-4 1.220675-9 6.683439-4 1.277099-9 7.328245-4 1.331039-9 8.035261-4 1.382451-9 8.912509-4 1.437619-9 9.772372-4 1.483473-9 1.026000-3 1.506623-9 1.026000-3 5.646107-6 1.026180-3 5.719269-6 1.026500-3 5.886470-6 1.026850-3 6.051386-6 1.027200-3 6.200337-6 1.027650-3 6.371124-6 1.028000-3 6.491104-6 1.028500-3 6.644572-6 1.029000-3 6.781371-6 1.030000-3 7.013173-6 1.031100-3 7.218552-6 1.031800-3 7.328775-6 1.033300-3 7.523688-6 1.035142-3 7.705643-6 1.037100-3 7.850164-6 1.040000-3 8.001318-6 1.043000-3 8.104740-6 1.047300-3 8.194028-6 1.050500-3 8.231130-6 1.050500-3 8.540803-6 1.053700-3 8.722456-6 1.057700-3 8.870157-6 1.062700-3 8.981442-6 1.068500-3 9.050029-6 1.078000-3 9.093153-6 1.148154-3 9.102528-6 1.184400-3 9.091683-6 1.184400-3 9.274736-6 2.187762-3 9.296835-6 8.810489-3 9.239725-6 9.622400-3 9.236825-6 9.622400-3 3.633483-3 1.174898-2 3.663899-3 1.698244-2 3.697434-3 2.754229-2 3.723946-3 5.128614-2 3.740209-3 1.927525-1 3.748729-3 1.000000+5 3.750426-3 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.610000-6 0.0 1.646000-5 7.850000-6 1.646000-5 6.691471-9 1.655000-5 9.615195-8 1.677000-5 3.158044-7 1.685000-5 3.959958-7 1.685000-5 2.448947-7 1.720000-5 5.949659-7 1.793000-5 1.330617-6 1.965000-5 3.080719-6 2.330000-5 6.793973-6 2.851018-5 1.203071-5 9.059000-5 7.403282-5 9.059000-5 7.303339-5 9.374000-5 7.623731-5 9.374000-5 7.579647-5 1.128000-4 9.526673-5 1.374300-4 1.194911-4 1.374300-4 1.183426-4 2.600160-4 2.374394-4 5.069907-4 4.802649-4 1.026000-3 9.952692-4 1.026000-3 9.794194-4 1.032600-3 9.809762-4 1.068500-3 1.012576-3 1.184400-3 1.128309-3 1.184400-3 1.124804-3 9.622400-3 9.552777-3 9.622400-3 5.913364-3 1.428894-2 1.052934-2 4.841724-2 4.460146-2 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 9.622400-3 2.407959+4 1.023293-2 2.075021+4 1.174898-2 1.459221+4 1.428894-2 8.717020+3 1.531087-2 7.256635+3 1.905461-2 4.007735+3 2.400000-2 2.110420+3 3.000000-2 1.120470+3 3.672823-2 6.249090+2 4.518559-2 3.407817+2 5.623413-2 1.782199+2 7.161434-2 8.635400+1 9.549926-2 3.613954+1 1.678804-1 6.499636+0 2.162719-1 3.032800+0 2.540973-1 1.879888+0 2.917427-1 1.255983+0 3.311311-1 8.733208-1 3.715352-1 6.317422-1 4.120975-1 4.749856-1 4.570882-1 3.595196-1 5.069907-1 2.740568-1 5.623413-1 2.105042-1 6.165950-1 1.676361-1 6.760830-1 1.344215-1 7.328245-1 1.115219-1 8.035261-1 9.075465-2 9.015711-1 7.073259-2 9.772372-1 5.971632-2 1.122018+0 4.524628-2 1.216186+0 3.871335-2 1.364583+0 3.125019-2 1.531087+0 2.540704-2 1.717908+0 2.082372-2 1.927525+0 1.719829-2 2.187762+0 1.405208-2 2.483133+0 1.156644-2 2.851018+0 9.425818-3 3.273407+0 7.738617-3 3.801894+0 6.297031-3 4.466836+0 5.081923-3 5.308844+0 4.070368-3 6.382635+0 3.236992-3 7.762471+0 2.556665-3 9.660509+0 1.978631-3 1.258925+1 1.463827-3 1.698244+1 1.050980-3 2.426610+1 7.155753-4 3.630781+1 4.678928-4 5.754399+1 2.903459-4 1.059254+2 1.556782-4 2.113489+2 7.742036-5 8.413951+2 1.933088-5 1.000000+5 1.623700-7 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 9.622400-3 7.785800-5 1.000000+5 7.785800-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.622400-3 4.184300-3 1.000000+5 4.184300-3 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.622400-3 5.360242-3 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.184400-3 1.113413+5 1.303167-3 9.582510+4 1.380384-3 8.817379+4 1.610000-3 6.949520+4 1.670000-3 6.552480+4 1.995262-3 4.864037+4 2.187762-3 4.133563+4 2.540973-3 3.149003+4 2.818383-3 2.588362+4 3.235937-3 1.978437+4 3.650000-3 1.553006+4 4.168694-3 1.180781+4 4.800000-3 8.752440+3 5.432503-3 6.684662+3 6.237348-3 4.913305+3 7.161434-3 3.584553+3 8.317638-3 2.527021+3 9.690000-3 1.754266+3 1.122018-2 1.226348+3 1.303167-2 8.447064+2 1.531087-2 5.608007+2 1.778279-2 3.805830+2 2.065380-2 2.565450+2 2.426610-2 1.665446+2 2.851018-2 1.073321+2 3.388442-2 6.652659+1 4.027170-2 4.093108+1 4.841724-2 2.419934+1 5.888437-2 1.373677+1 7.244360-2 7.484885+0 9.225714-2 3.655570+0 1.883649-1 4.312740-1 2.290868-1 2.414210-1 2.691535-1 1.507497-1 3.126079-1 9.801147-2 3.548134-1 6.857083-2 4.000000-1 4.925892-2 4.466836-1 3.659697-2 4.954502-1 2.788205-2 5.495409-1 2.139725-2 6.025596-1 1.702069-2 6.606935-1 1.362939-2 7.161434-1 1.128802-2 7.852356-1 9.171638-3 8.709636-1 7.316607-3 9.549926-1 6.015395-3 1.035142+0 5.104005-3 1.161449+0 4.060866-3 1.273503+0 3.410119-3 1.428894+0 2.760228-3 1.584893+0 2.297013-3 1.778279+0 1.887172-3 2.000000+0 1.555999-3 2.264644+0 1.278635-3 2.570396+0 1.054489-3 2.951209+0 8.611219-4 3.427678+0 6.970038-4 4.000000+0 5.648200-4 4.731513+0 4.528840-4 5.623413+0 3.636336-4 6.839116+0 2.858105-4 8.511380+0 2.202222-4 1.059254+1 1.709702-4 1.348963+1 1.301428-4 1.778279+1 9.600824-5 2.540973+1 6.544148-5 3.801894+1 4.282821-5 6.095369+1 2.628375-5 1.148154+2 1.377683-5 2.290868+2 6.855860-6 4.570882+2 3.423140-6 7.244360+3 2.152642-7 1.000000+5 1.559400-8 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.184400-3 7.464300-5 1.000000+5 7.464300-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.184400-3 1.061500-5 1.000000+5 1.061500-5 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.184400-3 1.099142-3 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.050500-3 9.130400+4 1.050610-3 9.300000+4 1.050900-3 9.891300+4 1.051200-3 1.049100+5 1.051500-3 1.107300+5 1.051950-3 1.191600+5 1.052400-3 1.273300+5 1.052850-3 1.351800+5 1.053300-3 1.428000+5 1.053700-3 1.493000+5 1.054300-3 1.586800+5 1.055000-3 1.690900+5 1.055600-3 1.775700+5 1.056100-3 1.843200+5 1.056900-3 1.945200+5 1.057700-3 2.040300+5 1.058500-3 2.129100+5 1.059500-3 2.231400+5 1.060400-3 2.315800+5 1.061500-3 2.409500+5 1.062700-3 2.500700+5 1.064000-3 2.586900+5 1.065500-3 2.671700+5 1.067000-3 2.742200+5 1.068500-3 2.799900+5 1.070500-3 2.859600+5 1.072700-3 2.906000+5 1.075000-3 2.937600+5 1.078000-3 2.958700+5 1.081500-3 2.963000+5 1.085000-3 2.953400+5 1.094000-3 2.901300+5 1.113000-3 2.784100+5 1.143000-3 2.627500+5 1.165000-3 2.501300+5 1.202264-3 2.296100+5 1.462177-3 1.402900+5 1.621810-3 1.074000+5 1.778279-3 8.418100+4 2.113489-3 5.258800+4 2.317395-3 4.066400+4 2.691535-3 2.655700+4 3.054921-3 1.837100+4 3.500000-3 1.228900+4 4.073803-3 7.773600+3 4.623810-3 5.271400+3 5.308844-3 3.428300+3 6.165950-3 2.134400+3 7.161434-3 1.318900+3 8.317638-3 8.092500+2 9.772372-3 4.746100+2 1.150000-2 2.747900+2 1.350000-2 1.592800+2 1.584893-2 9.167800+1 1.883649-2 5.022800+1 2.264644-2 2.624100+1 2.754229-2 1.306600+1 3.427678-2 5.948400+0 4.518559-2 2.183200+0 8.709636-2 1.993300-1 1.096478-1 8.660100-2 1.318257-1 4.475225-2 1.566751-1 2.427732-2 1.819701-1 1.439063-2 2.089296-1 8.947664-3 2.371374-1 5.830839-3 2.660725-1 3.977734-3 2.985383-1 2.733314-3 3.311311-1 1.963468-3 3.672823-1 1.420566-3 4.073803-1 1.035031-3 4.518559-1 7.595314-4 5.011872-1 5.613950-4 5.495409-1 4.320237-4 6.025596-1 3.347187-4 6.606935-1 2.612940-4 7.244360-1 2.054299-4 8.609938-1 1.328661-4 9.225714-1 1.124803-4 9.772372-1 9.856184-5 1.035142+0 8.698263-5 1.109175+0 7.538578-5 1.188600+0 6.581996-5 1.303167+0 5.555142-5 1.462177+0 4.528271-5 1.698244+0 3.494536-5 1.905461+0 2.882204-5 2.137962+0 2.395288-5 2.426610+0 1.968910-5 2.786121+0 1.602597-5 3.198895+0 1.314279-5 3.715352+0 1.068241-5 4.365158+0 8.611952-6 5.188000+0 6.890757-6 6.237348+0 5.474924-6 7.585776+0 4.320578-6 9.440609+0 3.341055-6 1.230269+1 2.469894-6 1.640590+1 1.794596-6 2.317395+1 1.235859-6 3.427678+1 8.170703-7 5.432503+1 5.065403-7 9.772372+1 2.778277-7 1.949845+2 1.380684-7 7.762471+2 3.445651-8 4.897788+4 5.44943-10 1.000000+5 2.66980-10 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.050500-3 4.992800-5 1.000000+5 4.992800-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.050500-3 1.111400-5 1.000000+5 1.111400-5 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.050500-3 9.894580-4 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.026000-3 1.937860+5 1.026180-3 1.993844+5 1.026500-3 2.129200+5 1.026850-3 2.272996+5 1.027200-3 2.412660+5 1.027650-3 2.585592+5 1.028000-3 2.716176+5 1.028500-3 2.895408+5 1.029000-3 3.068028+5 1.029500-3 3.233740+5 1.030000-3 3.392308+5 1.030600-3 3.574052+5 1.031100-3 3.718740+5 1.031800-3 3.911652+5 1.032600-3 4.118440+5 1.033300-3 4.287920+5 1.034100-3 4.469080+5 1.035142-3 4.685779+5 1.036000-3 4.848800+5 1.037100-3 5.038449+5 1.038500-3 5.250600+5 1.040000-3 5.444440+5 1.041500-3 5.606960+5 1.043000-3 5.741320+5 1.045000-3 5.882080+5 1.047300-3 5.997920+5 1.050000-3 6.083800+5 1.053000-3 6.131200+5 1.056500-3 6.141960+5 1.061500-3 6.107360+5 1.090000-3 5.725480+5 1.120000-3 5.386360+5 1.145000-3 5.080640+5 1.175000-3 4.732240+5 1.450000-3 2.770316+5 1.621810-3 2.067433+5 1.778279-3 1.615363+5 2.113489-3 1.003681+5 2.317395-3 7.740169+4 2.722701-3 4.866393+4 3.054921-3 3.468578+4 3.507519-3 2.295664+4 4.073803-3 1.455350+4 4.677351-3 9.483324+3 5.370318-3 6.136903+3 6.237348-3 3.800641+3 7.244360-3 2.335622+3 8.511380-3 1.371330+3 1.000000-2 7.986240+2 1.174898-2 4.614842+2 1.364583-2 2.754587+2 1.603245-2 1.569384+2 1.905461-2 8.524068+1 2.300000-2 4.345920+1 2.800000-2 2.130996+1 3.467369-2 9.741671+0 4.415704-2 3.983676+0 6.095369-2 1.197871+0 9.660509-2 2.142898-1 1.202264-1 9.521486-2 1.428894-1 5.055541-2 1.678804-1 2.820525-2 1.905461-1 1.795246-2 2.162719-1 1.151122-2 2.426610-1 7.741882-3 2.691535-1 5.454113-3 2.985383-1 3.869588-3 3.311311-1 2.765884-3 3.630781-1 2.066869-3 3.981072-1 1.555959-3 4.315191-1 1.222019-3 4.677351-1 9.657688-4 5.069907-1 7.681836-4 5.495409-1 6.151680-4 5.956621-1 4.958355-4 6.456542-1 4.022284-4 6.998420-1 3.283581-4 7.585776-1 2.697646-4 8.222427-1 2.230378-4 9.015711-1 1.806065-4 9.660509-1 1.552050-4 1.035142+0 1.343677-4 1.135011+0 1.116448-4 1.230269+0 9.559979-5 1.364583+0 7.896067-5 1.548817+0 6.306493-5 1.737801+0 5.173646-5 1.949845+0 4.274936-5 2.213095+0 3.494803-5 2.511886+0 2.878442-5 2.884032+0 2.347446-5 3.311311+0 1.928423-5 3.845918+0 1.570039-5 4.518559+0 1.267747-5 5.370318+0 1.015926-5 6.456542+0 8.083055-6 7.943282+0 6.300260-6 9.772372+0 4.944667-6 1.273503+1 3.659703-6 1.717908+1 2.628406-6 2.454709+1 1.790096-6 3.672823+1 1.170752-6 5.821032+1 7.266494-7 1.083927+2 3.851251-7 2.162719+2 1.915696-7 8.609938+2 4.783975-8 1.000000+5 4.11200-10 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.026000-3 4.926000-5 1.000000+5 4.926000-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.026000-3 1.025100-5 1.000000+5 1.025100-5 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.026000-3 9.664890-4 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.374300-4 2.758974+5 2.041738-4 2.268849+5 2.162719-4 2.191066+5 2.300000-4 2.093540+5 2.483133-4 1.961072+5 2.754229-4 1.779274+5 3.019952-4 1.621469+5 3.280000-4 1.482440+5 3.548134-4 1.352488+5 3.935501-4 1.188536+5 4.466836-4 1.006714+5 4.954502-4 8.732821+4 5.559043-4 7.396404+4 6.382635-4 6.009109+4 7.244360-4 4.932163+4 8.317638-4 3.941921+4 9.549926-4 3.128566+4 1.096478-3 2.463933+4 1.273503-3 1.888075+4 1.500000-3 1.398424+4 1.737801-3 1.059542+4 2.018366-3 7.934944+3 2.371374-3 5.767368+3 2.800000-3 4.118340+3 3.311311-3 2.907659+3 3.890451-3 2.065595+3 4.570882-3 1.456454+3 5.370318-3 1.018977+3 6.237348-3 7.261400+2 7.244360-3 5.138316+2 8.413951-3 3.610386+2 9.772372-3 2.518687+2 1.135011-2 1.744853+2 1.333521-2 1.166161+2 1.566751-2 7.733883+1 1.840772-2 5.090447+1 2.162719-2 3.325707+1 2.540973-2 2.157092+1 3.019952-2 1.346131+1 3.589219-2 8.335488+0 4.315191-2 4.960113+0 5.128614-2 3.027740+0 6.237348-2 1.716295+0 7.852356-2 8.729575-1 1.011580-1 4.117961-1 1.757924-1 7.878121-2 2.290868-1 3.592417-2 2.691535-1 2.242728-2 3.126079-1 1.458854-2 3.548134-1 1.020929-2 4.000000-1 7.335282-3 4.466836-1 5.449332-3 4.954502-1 4.151673-3 5.495409-1 3.186920-3 6.025596-1 2.536022-3 6.606935-1 2.031677-3 7.244360-1 1.638570-3 8.000000-1 1.309700-3 8.709636-1 1.087276-3 9.440609-1 9.169671-4 1.023293+0 7.783680-4 1.161449+0 6.059878-4 1.288250+0 4.973886-4 1.428894+0 4.111481-4 1.584893+0 3.421583-4 1.778279+0 2.811068-4 2.000000+0 2.318000-4 2.264644+0 1.904967-4 2.570396+0 1.571023-4 2.951209+0 1.282867-4 3.427678+0 1.038343-4 4.000000+0 8.414100-5 4.731513+0 6.746606-5 5.623413+0 5.417046-5 6.839116+0 4.257792-5 8.511380+0 3.280623-5 1.059254+1 2.547031-5 1.348963+1 1.938718-5 1.778279+1 1.430193-5 2.540973+1 9.748791-6 3.801894+1 6.380129-6 6.095369+1 3.915558-6 1.148154+2 2.052253-6 2.290868+2 1.021299-6 4.570882+2 5.099486-7 7.244360+3 3.206697-8 1.000000+5 2.323100-9 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.374300-4 4.536800-5 1.000000+5 4.536800-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.374300-4 2.036500-9 1.000000+5 2.036500-9 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.374300-4 9.205996-5 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 9.374000-5 2.580680+5 9.470000-5 2.543380+5 9.550000-5 2.500240+5 9.660509-5 2.428069+5 9.780000-5 2.339980+5 9.960000-5 2.197920+5 1.050000-4 1.799874+5 1.071519-4 1.675428+5 1.090000-4 1.587802+5 1.105000-4 1.529594+5 1.122018-4 1.476890+5 1.135011-4 1.445543+5 1.150000-4 1.418132+5 1.165000-4 1.399224+5 1.180000-4 1.387908+5 1.198000-4 1.383090+5 1.220000-4 1.388162+5 1.244515-4 1.405228+5 1.273503-4 1.437180+5 1.303167-4 1.479275+5 1.350000-4 1.557740+5 1.480000-4 1.798088+5 1.548817-4 1.918830+5 1.621810-4 2.034286+5 1.690000-4 2.127900+5 1.760000-4 2.207980+5 1.820000-4 2.263700+5 1.900000-4 2.320460+5 1.980000-4 2.358800+5 2.065380-4 2.381694+5 2.162719-4 2.388617+5 2.264644-4 2.378717+5 2.371374-4 2.354773+5 2.511886-4 2.308624+5 2.660725-4 2.246868+5 2.818383-4 2.171159+5 3.000000-4 2.076020+5 3.200000-4 1.965966+5 3.388442-4 1.861277+5 3.630781-4 1.729769+5 3.935501-4 1.575242+5 4.265795-4 1.423411+5 4.600000-4 1.285042+5 4.954502-4 1.154098+5 5.400000-4 1.010754+5 5.888437-4 8.783098+4 6.382635-4 7.659547+4 7.000000-4 6.497420+4 7.673615-4 5.473477+4 8.500000-4 4.487800+4 9.332543-4 3.715278+4 1.030000-3 3.021220+4 1.148154-3 2.387617+4 1.273503-3 1.892259+4 1.428894-3 1.449549+4 1.584893-3 1.132219+4 1.778279-3 8.541321+3 2.000000-3 6.356540+3 2.264644-3 4.613851+3 2.570396-3 3.301276+3 2.917427-3 2.343897+3 3.311311-3 1.651643+3 3.758374-3 1.155106+3 4.265795-3 8.020251+2 4.841724-3 5.529192+2 5.495409-3 3.784526+2 6.309573-3 2.483050+2 7.244360-3 1.616344+2 8.317638-3 1.044069+2 9.660509-3 6.450736+1 1.122018-2 3.954425+1 1.303167-2 2.406036+1 1.531087-2 1.398099+1 1.798871-2 8.063661+0 2.137962-2 4.436993+0 2.570396-2 2.327289+0 3.126079-2 1.163222+0 3.935501-2 5.100017-1 5.308844-2 1.729959-1 9.120108-2 2.430713-2 1.161449-1 1.018317-2 1.396368-1 5.285676-3 1.640590-1 2.999215-3 1.905461-1 1.785437-3 2.187762-1 1.114655-3 2.483133-1 7.291457-4 2.786121-1 4.991661-4 3.126079-1 3.442209-4 3.467369-1 2.480261-4 3.845918-1 1.799213-4 4.265795-1 1.314459-4 4.731513-1 9.676087-5 5.188000-1 7.419601-5 5.688529-1 5.727704-5 6.237348-1 4.451182-5 6.839117-1 3.482645-5 7.498942-1 2.744036-5 8.609938-1 1.937836-5 9.225714-1 1.640397-5 9.772372-1 1.437365-5 1.035142+0 1.268479-5 1.109175+0 1.099372-5 1.188600+0 9.598900-6 1.303167+0 8.101377-6 1.462177+0 6.603786-6 1.698244+0 5.095944-6 1.905461+0 4.203013-6 2.137962+0 3.493297-6 2.426610+0 2.871573-6 2.786121+0 2.337243-6 3.198895+0 1.916695-6 3.715352+0 1.557876-6 4.365158+0 1.255931-6 5.188000+0 1.004917-6 6.237348+0 7.984251-7 7.585776+0 6.300851-7 9.440609+0 4.872328-7 1.230269+1 3.601942-7 1.640590+1 2.617043-7 2.317395+1 1.802241-7 3.427678+1 1.191547-7 5.432503+1 7.386908-8 9.885531+1 4.004397-8 1.972423+2 1.990248-8 7.852356+2 4.967185-9 4.954502+4 7.85611-11 1.000000+5 3.89340-11 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 9.374000-5 3.295300-5 1.000000+5 3.295300-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.374000-5 2.139700-9 1.000000+5 2.139700-9 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.374000-5 6.078486-5 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 9.059000-5 5.573080+5 9.120108-5 5.511633+5 9.240000-5 5.353360+5 9.350000-5 5.181000+5 9.500000-5 4.924920+5 9.720000-5 4.541960+5 1.011579-4 3.927492+5 1.030000-4 3.697256+5 1.047129-4 3.519156+5 1.065000-4 3.369680+5 1.080000-4 3.271408+5 1.096478-4 3.189813+5 1.110000-4 3.141600+5 1.128000-4 3.100660+5 1.148154-4 3.082185+5 1.161449-4 3.083503+5 1.180000-4 3.100384+5 1.205000-4 3.145640+5 1.230269-4 3.211339+5 1.260000-4 3.306616+5 1.318257-4 3.524976+5 1.412538-4 3.900592+5 1.480000-4 4.154680+5 1.548817-4 4.388211+5 1.620000-4 4.597000+5 1.690000-4 4.766880+5 1.760000-4 4.901200+5 1.820000-4 4.988880+5 1.900000-4 5.069080+5 1.980000-4 5.111880+5 2.065380-4 5.122937+5 2.162719-4 5.100800+5 2.264644-4 5.047422+5 2.400000-4 4.942840+5 2.540973-4 4.807422+5 2.691535-4 4.644514+5 2.851018-4 4.457696+5 3.019952-4 4.251642+5 3.200000-4 4.028120+5 3.430000-4 3.746856+5 3.700000-4 3.435152+5 4.000000-4 3.118132+5 4.350000-4 2.787720+5 4.700000-4 2.495584+5 5.069907-4 2.223406+5 5.559043-4 1.917285+5 6.095369-4 1.640578+5 6.683439-4 1.393234+5 7.328245-4 1.173484+5 8.035261-4 9.818822+4 8.912509-4 7.971202+4 9.772372-4 6.573896+4 1.083927-3 5.255714+4 1.202264-3 4.170529+4 1.350000-3 3.191556+4 1.513561-3 2.431011+4 1.698244-3 1.833391+4 1.905461-3 1.372387+4 2.162719-3 9.895493+3 2.454709-3 7.075608+3 2.754229-3 5.180128+3 3.126079-3 3.649125+3 3.548134-3 2.551438+3 4.027170-3 1.770760+3 4.570882-3 1.219897+3 5.188000-3 8.344309+2 5.888437-3 5.667816+2 6.683439-3 3.822460+2 7.673615-3 2.468212+2 8.810489-3 1.581681+2 1.011579-2 1.006000+2 1.174898-2 6.114809+1 1.364583-2 3.688911+1 1.584893-2 2.209580+1 1.862087-2 1.262730+1 2.187762-2 7.162061+0 2.600160-2 3.870926+0 3.126079-2 1.992406+0 3.801894-2 9.761805-1 4.841724-2 4.006658-1 6.531306-2 1.319120-1 9.772372-2 2.948703-2 1.216186-1 1.314470-2 1.445440-1 6.993237-3 1.678804-1 4.074217-3 1.927525-1 2.492551-3 2.187762-1 1.600554-3 2.454709-1 1.077869-3 2.722701-1 7.603374-4 3.019952-1 5.402452-4 3.311311-1 4.013950-4 3.630781-1 3.002566-4 3.981072-1 2.262377-4 4.365158-1 1.718303-4 4.731513-1 1.359574-4 5.128614-1 1.082509-4 5.559043-1 8.674732-5 6.025596-1 6.996979-5 6.531306-1 5.682796-5 7.079458-1 4.645889-5 7.673615-1 3.822787-5 8.511380-1 2.998114-5 9.120108-1 2.565189-5 9.772372-1 2.208974-5 1.071519+0 1.827690-5 1.174898+0 1.523260-5 1.288250+0 1.280293-5 1.428894+0 1.060660-5 1.640590+0 8.325897-6 1.840772+0 6.854616-6 2.065380+0 5.685200-6 2.344229+0 4.663911-6 2.660725+0 3.853558-6 3.054921+0 3.152613-6 3.548134+0 2.556396-6 4.168694+0 2.056412-6 4.954502+0 1.641993-6 5.956621+0 1.302141-6 7.244360+0 1.025783-6 9.120108+0 7.814192-7 1.188502+1 5.770032-7 1.496236+1 4.465233-7 1.840772+1 3.557565-7 2.600160+1 2.456640-7 3.935501+1 1.589276-7 6.456542+1 9.530858-8 1.273503+2 4.770901-8 2.540973+2 2.376178-8 5.069907+2 1.186768-8 8.035261+3 7.46579-10 1.000000+5 5.99890-11 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 9.059000-5 3.270700-5 1.000000+5 3.270700-5 1 30000 7 7 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.059000-5 1.972500-9 1.000000+5 1.972500-9 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.059000-5 5.788103-5 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.685000-5 1.433388+6 2.000000-5 1.439212+6 2.070000-5 1.448680+6 2.150000-5 1.470460+6 2.238721-5 1.505770+6 2.330000-5 1.552008+6 2.450000-5 1.624780+6 2.580000-5 1.715060+6 2.786121-5 1.875426+6 3.507519-5 2.495195+6 3.801894-5 2.741523+6 4.073803-5 2.951832+6 4.315191-5 3.122412+6 4.570882-5 3.282233+6 4.841724-5 3.424468+6 5.128614-5 3.545874+6 5.432503-5 3.642108+6 5.688529-5 3.698965+6 6.000000-5 3.740276+6 6.309573-5 3.755552+6 6.683439-5 3.747311+6 7.079458-5 3.713419+6 7.500000-5 3.656212+6 8.035261-5 3.564163+6 8.609938-5 3.450786+6 9.300000-5 3.303232+6 1.000000-4 3.148476+6 1.071519-4 2.986416+6 1.148154-4 2.811793+6 1.220000-4 2.648280+6 1.303167-4 2.461875+6 1.380384-4 2.294817+6 1.462177-4 2.125725+6 1.566751-4 1.925368+6 1.678804-4 1.730992+6 1.819701-4 1.517045+6 1.950000-4 1.345312+6 2.089296-4 1.186379+6 2.238721-4 1.038712+6 2.400000-4 9.024440+5 2.600160-4 7.609118+5 2.818383-4 6.354881+5 3.054921-4 5.270712+5 3.311311-4 4.343506+5 3.630781-4 3.452851+5 3.981072-4 2.719944+5 4.415704-4 2.059141+5 4.897788-4 1.545419+5 5.370318-4 1.189003+5 5.888437-4 9.087729+4 6.531306-4 6.665736+4 7.244360-4 4.853711+4 8.035261-4 3.509909+4 9.015711-4 2.427667+4 1.011579-3 1.667399+4 1.135011-3 1.136162+4 1.273503-3 7.683745+3 1.428894-3 5.159584+3 1.621810-3 3.304270+3 1.840772-3 2.099895+3 2.089296-3 1.324621+3 2.371374-3 8.296627+2 2.691535-3 5.159381+2 3.054921-3 3.185839+2 3.467369-3 1.953631+2 3.935501-3 1.189440+2 4.466836-3 7.188687+1 5.069907-3 4.313666+1 5.754399-3 2.570349+1 6.531306-3 1.521038+1 7.585776-3 8.117928+0 8.810489-3 4.299406+0 1.071519-2 1.855751+0 1.288250-2 8.353388-1 1.548817-2 3.731779-1 1.883649-2 1.573179-1 2.238721-2 7.290958-2 2.851018-2 2.462282-2 5.559043-2 1.208286-3 6.998420-2 4.300619-4 8.511380-2 1.799905-4 1.011580-1 8.407322-5 1.174898-1 4.376317-5 1.348963-1 2.412432-5 1.531088-1 1.407448-5 1.737801-1 8.275608-6 1.949845-1 5.143532-6 2.187762-1 3.219532-6 2.426610-1 2.126642-6 2.691535-1 1.415220-6 2.951209-1 9.921566-7 3.235937-1 7.002991-7 3.548134-1 4.976665-7 3.890451-1 3.560295-7 4.315191-1 2.459966-7 4.731513-1 1.784281-7 5.128614-1 1.356395-7 5.559043-1 1.038201-7 6.025596-1 7.997784-8 6.531306-1 6.200213-8 7.079458-1 4.837570-8 7.673615-1 3.798774-8 8.035261-1 3.316146-8 8.511380-1 2.788234-8 8.912509-1 2.439227-8 9.332543-1 2.146509-8 9.772372-1 1.902627-8 1.011579+0 1.747879-8 1.059254+0 1.572020-8 1.109175+0 1.423810-8 1.161449+0 1.297772-8 1.216186+0 1.189756-8 1.318257+0 1.031378-8 1.531087+0 8.020482-9 1.798871+0 6.087304-9 2.000000+0 5.109800-9 2.264644+0 4.199451-9 2.570396+0 3.463248-9 2.951209+0 2.827946-9 3.427678+0 2.288983-9 4.000000+0 1.854900-9 4.731513+0 1.487255-9 5.623413+0 1.194180-9 6.839116+0 9.38604-10 8.511380+0 7.23196-10 1.059254+1 5.61476-10 1.333521+1 4.32914-10 1.757924+1 3.19253-10 2.511886+1 2.17556-10 3.758374+1 1.42350-10 5.956621+1 8.83821-11 1.122018+2 4.63112-11 2.238721+2 2.30430-11 4.466836+2 1.15044-11 3.548134+3 1.44376-12 1.000000+5 5.12110-14 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.685000-5 1.685000-5 1.000000+5 1.685000-5 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.685000-5 0.0 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.646000-5 2.372142+6 1.700000-5 2.302434+6 1.760000-5 2.248398+6 1.819701-5 2.214839+6 1.883649-5 2.198063+6 1.950000-5 2.198394+6 2.018366-5 2.214215+6 2.089296-5 2.244508+6 2.162719-5 2.288320+6 2.264644-5 2.365973+6 2.371374-5 2.463780+6 2.511886-5 2.611690+6 2.691535-5 2.822937+6 3.467369-5 3.834465+6 3.758374-5 4.201213+6 4.027170-5 4.515358+6 4.300000-5 4.800666+6 4.570882-5 5.046052+6 4.841724-5 5.251807+6 5.128614-5 5.423360+6 5.400000-5 5.543910+6 5.688529-5 5.629609+6 6.025596-5 5.682873+6 6.382635-5 5.692907+6 6.760830-5 5.660175+6 7.161434-5 5.590760+6 7.673615-5 5.468140+6 8.222426-5 5.307742+6 8.912509-5 5.086165+6 9.549926-5 4.871238+6 1.023293-4 4.635366+6 1.096478-4 4.381421+6 1.171100-4 4.120941+6 1.244515-4 3.868397+6 1.318257-4 3.619999+6 1.401800-4 3.349225+6 1.500000-4 3.051330+6 1.603245-4 2.763289+6 1.720000-4 2.472708+6 1.862087-4 2.163521+6 2.000000-4 1.905798+6 2.162719-4 1.645668+6 2.317395-4 1.434822+6 2.500000-4 1.224996+6 2.722701-4 1.015541+6 2.951209-4 8.440160+5 3.198895-4 6.969670+5 3.467369-4 5.718470+5 3.801894-4 4.521911+5 4.200000-4 3.473472+5 4.677351-4 2.586221+5 5.188000-4 1.931480+5 5.688529-4 1.478841+5 6.309573-4 1.086421+5 7.000000-4 7.916340+4 7.762471-4 5.735365+4 8.609938-4 4.124472+4 9.660509-4 2.837605+4 1.083927-3 1.937076+4 1.216186-3 1.312452+4 1.364583-3 8.828951+3 1.548817-3 5.664005+3 1.757924-3 3.605574+3 2.000000-3 2.257950+3 2.264644-3 1.428297+3 2.570396-3 8.891584+2 2.917427-3 5.495481+2 3.311311-3 3.372847+2 3.758374-3 2.055333+2 4.265795-3 1.243419+2 4.841724-3 7.467399+1 5.495409-3 4.450841+1 6.309573-3 2.510767+1 7.079458-3 1.547616+1 8.230370-3 8.150390+0 9.660509-3 4.089257+0 1.174898-2 1.749531+0 1.412538-2 7.807760-1 1.698244-2 3.457391-1 2.041738-2 1.519619-1 2.483133-2 6.287467-2 3.198895-2 1.989003-2 5.754399-2 1.365082-3 7.244360-2 4.803908-4 8.912509-2 1.890628-4 1.035142-1 9.706591-5 1.188502-1 5.281577-5 1.348963-1 3.044573-5 1.531088-1 1.768618-5 1.698244-1 1.141212-5 1.883649-1 7.414496-6 2.065380-1 5.086684-6 2.264644-1 3.513357-6 2.483133-1 2.443764-6 2.722701-1 1.712491-6 2.951209-1 1.262686-6 3.198895-1 9.369696-7 3.467369-1 6.999852-7 3.758374-1 5.267097-7 4.027170-1 4.152932-7 4.365158-1 3.172802-7 4.731513-1 2.442413-7 5.128614-1 1.893777-7 5.559043-1 1.478832-7 6.025596-1 1.163948-7 6.456542-1 9.544944-8 6.918310-1 7.875043-8 7.585776-1 6.146853-8 8.128305-1 5.129435-8 8.709636-1 4.311377-8 9.225714-1 3.754309-8 9.772372-1 3.290981-8 1.035142+0 2.905514-8 1.109175+0 2.518856-8 1.188600+0 2.199400-8 1.318257+0 1.817699-8 1.479108+0 1.482298-8 1.698244+0 1.166906-8 1.905461+0 9.624760-9 2.137962+0 7.999726-9 2.426610+0 6.576006-9 2.786121+0 5.352347-9 3.198895+0 4.389236-9 3.715352+0 3.567493-9 4.365158+0 2.876015-9 5.188000+0 2.301218-9 6.237348+0 1.828403-9 7.585776+0 1.442893-9 9.440609+0 1.115737-9 1.230269+1 8.24850-10 1.640590+1 5.99307-10 2.317395+1 4.12720-10 3.427678+1 2.72877-10 5.432503+1 1.69161-10 9.772372+1 9.27817-11 1.949845+2 4.61090-11 3.890451+2 2.30111-11 3.090295+3 2.88610-12 1.000000+5 8.91590-14 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.646000-5 1.646000-5 1.000000+5 1.646000-5 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.646000-5 0.0 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.610000-6 2.887780+6 8.710000-6 2.712740+6 9.015711-6 2.214771+6 9.332543-6 1.796575+6 9.660509-6 1.447562+6 1.000000-5 1.157040+6 1.023293-5 9.919647+5 1.050000-5 8.306800+5 1.075600-5 6.998435+5 1.100000-5 5.935840+5 1.127000-5 4.937200+5 1.150000-5 4.211280+5 1.174898-5 3.536178+5 1.200400-5 2.946817+5 1.222000-5 2.517400+5 1.244515-5 2.128928+5 1.260000-5 1.892694+5 1.280000-5 1.620854+5 1.300000-5 1.382590+5 1.320000-5 1.174062+5 1.340000-5 9.919180+4 1.357000-5 8.556380+4 1.372000-5 7.481480+4 1.385000-5 6.638380+4 1.400000-5 5.759460+4 1.415000-5 4.972960+4 1.430000-5 4.271040+4 1.445440-5 3.629330+4 1.460000-5 3.092900+4 1.470000-5 2.760200+4 1.480000-5 2.454660+4 1.490000-5 2.174720+4 1.500000-5 1.918928+4 1.511000-5 1.663774+4 1.522000-5 1.434408+4 1.531087-5 1.263208+4 1.540000-5 1.110472+4 1.550000-5 9.560160+3 1.560000-5 8.184400+3 1.570000-5 6.967620+3 1.580000-5 5.900480+3 1.590000-5 4.974140+3 1.617000-5 3.112760+3 1.625000-5 2.724700+3 1.632000-5 2.441300+3 1.637000-5 2.269640+3 1.642000-5 2.122740+3 1.647000-5 1.999804+3 1.651000-5 1.918218+3 1.655000-5 1.851128+3 1.658500-5 1.804024+3 1.662000-5 1.767500+3 1.666000-5 1.738410+3 1.670000-5 1.722486+3 1.673500-5 1.719090+3 1.677000-5 1.725298+3 1.681000-5 1.743876+3 1.685000-5 1.774400+3 1.688500-5 1.810664+3 1.692000-5 1.855638+3 1.697100-5 1.936346+3 1.702000-5 2.030360+3 1.707000-5 2.142360+3 1.712000-5 2.270080+3 1.720000-5 2.505820+3 1.730000-5 2.852100+3 1.750000-5 3.702280+3 1.760000-5 4.199180+3 1.770000-5 4.739560+3 1.782000-5 5.441140+3 1.793000-5 6.131160+3 1.804000-5 6.862340+3 1.815000-5 7.631320+3 1.826000-5 8.434900+3 1.840000-5 9.502960+3 1.855000-5 1.069764+4 1.870000-5 1.193802+4 1.885000-5 1.321808+4 1.900000-5 1.453234+4 1.915000-5 1.587570+4 1.927525-5 1.701633+4 1.944700-5 1.860364+4 1.965000-5 2.050700+4 1.985000-5 2.240300+4 2.000000-5 2.383420+4 2.020000-5 2.574900+4 2.047000-5 2.833640+4 2.075800-5 3.108638+4 2.100000-5 3.337980+4 2.130000-5 3.619100+4 2.162719-5 3.920555+4 2.200000-5 4.256180+4 2.239600-5 4.602241+4 2.285000-5 4.984440+4 2.330000-5 5.346880+4 2.371374-5 5.665154+4 2.426610-5 6.067260+4 2.485000-5 6.463900+4 2.540973-5 6.817199+4 2.610000-5 7.217680+4 2.690000-5 7.635220+4 2.770000-5 8.005940+4 2.851018-5 8.337387+4 2.951209-5 8.691551+4 3.054921-5 8.999888+4 3.162278-5 9.263679+4 3.300000-5 9.530540+4 3.450000-5 9.744240+4 3.630781-5 9.915663+4 3.801894-5 1.000824+5 4.027170-5 1.004870+5 4.265795-5 1.001513+5 4.518559-5 9.918190+4 4.841724-5 9.729664+4 5.188000-5 9.475711+4 5.559043-5 9.169306+4 6.000000-5 8.779180+4 6.500000-5 8.325640+4 7.000000-5 7.874980+4 7.585776-5 7.364669+4 8.222426-5 6.838116+4 8.912509-5 6.307770+4 9.800000-5 5.690300+4 1.080000-4 5.080300+4 1.202264-4 4.447285+4 1.364583-4 3.769576+4 1.603245-4 3.027019+4 1.949845-4 2.298449+4 3.126079-4 1.162256+4 3.715352-4 9.010355+3 4.120975-4 7.695200+3 4.786301-4 6.073393+3 5.688529-4 4.582558+3 7.328245-4 3.002617+3 8.511380-4 2.326602+3 9.772372-4 1.824817+3 1.174898-3 1.308970+3 1.380384-3 9.718081+2 1.603245-3 7.319667+2 1.883649-3 5.354183+2 2.238721-3 3.801293+2 2.660725-3 2.678006+2 3.126079-3 1.917279+2 3.715352-3 1.329808+2 4.365158-3 9.395457+1 5.069907-3 6.753176+1 5.888437-3 4.818596+1 6.918310-3 3.326132+1 8.128305-3 2.277995+1 9.549926-3 1.547790+1 1.109175-2 1.073221+1 1.303167-2 7.179788+0 1.531087-2 4.766445+0 1.798871-2 3.140570+0 2.113489-2 2.054004+0 2.483133-2 1.333631+0 2.951209-2 8.331500-1 3.507519-2 5.164113-1 4.216965-2 3.075941-1 5.069907-2 1.818321-1 6.165950-2 1.031506-1 7.762471-2 5.251094-2 1.011580-1 2.395573-2 1.778279-1 4.429640-3 2.290868-1 2.090515-3 2.691535-1 1.305164-3 3.126079-1 8.490463-4 3.548134-1 5.942269-4 4.000000-1 4.269900-4 4.466836-1 3.172393-4 4.954502-1 2.417258-4 5.495409-1 1.855874-4 6.025596-1 1.477163-4 6.606935-1 1.183763-4 7.244360-1 9.551204-5 7.943282-1 7.760066-5 8.709636-1 6.347306-5 9.549926-1 5.231384-5 1.059254+0 4.246654-5 1.188600+0 3.387800-5 1.318257+0 2.785469-5 1.462177+0 2.305528-5 1.621810+0 1.921169-5 1.819701+0 1.580714-5 2.044000+0 1.308200-5 2.317395+0 1.074510-5 2.630268+0 8.872355-6 3.019952+0 7.253292-6 3.507519+0 5.878024-6 4.120975+0 4.725703-6 4.841724+0 3.827479-6 5.821032+0 3.032347-6 7.079458+0 2.386623-6 8.912509+0 1.816588-6 1.135011+1 1.375831-6 1.428894+1 1.063041-6 1.819701+1 8.152484-7 2.570396+1 5.628159-7 3.845918+1 3.684196-7 6.165950+1 2.261440-7 1.174898+2 1.171662-7 2.344229+2 5.831976-8 4.677351+2 2.912073-8 7.413102+3 1.831445-9 1.000000+5 1.35760-10 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.610000-6 8.610000-6 1.000000+5 8.610000-6 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.610000-6 0.0 1.000000+5 1.000000+5 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.263350-8 1.028750+0 4.263350-7 1.032000+0 1.373770-6 1.033200+0 1.924420-6 1.034000+0 2.362400-6 1.035300+0 3.206630-6 1.036640+0 4.263350-6 1.038200+0 5.753530-6 1.039700+0 7.474990-6 1.041500+0 9.945390-6 1.043800+0 1.380450-5 1.046400+0 1.920640-5 1.048300+0 2.391250-5 1.051200+0 3.243680-5 1.054080+0 4.263350-5 1.057700+0 5.811220-5 1.061100+0 7.558930-5 1.065100+0 1.000720-4 1.070400+0 1.396100-4 1.076200+0 1.929410-4 1.080600+0 2.409520-4 1.087100+0 3.246420-4 1.093710+0 4.263350-4 1.102600+0 5.911090-4 1.110700+0 7.709230-4 1.120600+0 1.031270-3 1.133300+0 1.433910-3 1.147500+0 1.979820-3 1.158200+0 2.460410-3 1.174100+0 3.288400-3 1.190110+0 4.263350-3 1.205100+0 5.306710-3 1.227500+0 7.102230-3 1.250000+0 9.179000-3 1.265600+0 1.076840-2 1.294900+0 1.406110-2 1.331800+0 1.872630-2 1.362600+0 2.301380-2 1.411700+0 3.051020-2 1.455800+0 3.787680-2 1.500000+0 4.586000-2 1.562500+0 5.820380-2 1.617200+0 6.998920-2 1.712900+0 9.261280-2 1.784700+0 1.110570-1 1.892300+0 1.405220-1 2.000000+0 1.714000-1 2.044000+0 1.842000-1 2.163500+0 2.194890-1 2.372600+0 2.824450-1 2.647100+0 3.655040-1 3.000000+0 4.706000-1 3.437500+0 5.960560-1 4.000000+0 7.480000-1 4.750000+0 9.341560-1 5.000000+0 9.925000-1 6.000000+0 1.209000+0 7.000000+0 1.402000+0 8.000000+0 1.576000+0 9.000000+0 1.733000+0 1.000000+1 1.875000+0 1.100000+1 2.004000+0 1.200000+1 2.123000+0 1.300000+1 2.232000+0 1.400000+1 2.334000+0 1.500000+1 2.429000+0 1.600000+1 2.518000+0 1.800000+1 2.682000+0 2.000000+1 2.828000+0 2.200000+1 2.960000+0 2.400000+1 3.079000+0 2.600000+1 3.189000+0 2.800000+1 3.289000+0 3.000000+1 3.382000+0 4.000000+1 3.761000+0 5.000000+1 4.045000+0 6.000000+1 4.266000+0 8.000000+1 4.595000+0 1.000000+2 4.829000+0 1.500000+2 5.203000+0 2.000000+2 5.426000+0 3.000000+2 5.686000+0 4.000000+2 5.835000+0 5.000000+2 5.933000+0 6.000000+2 6.004000+0 8.000000+2 6.097000+0 1.000000+3 6.158000+0 1.500000+3 6.245000+0 2.000000+3 6.293000+0 3.000000+3 6.344000+0 4.000000+3 6.372000+0 5.000000+3 6.389000+0 6.000000+3 6.401000+0 8.000000+3 6.417000+0 1.000000+4 6.427000+0 1.500000+4 6.441000+0 2.000000+4 6.448000+0 3.000000+4 6.456000+0 4.000000+4 6.460000+0 5.000000+4 6.463000+0 6.000000+4 6.465000+0 8.000000+4 6.467000+0 1.000000+5 6.468000+0 1 30000 7 8 6.537000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.011450-7 2.114000+0 1.357560-6 2.119500+0 1.690160-6 2.127900+0 2.292170-6 2.136250+0 3.011450-6 2.147000+0 4.128910-6 2.156900+0 5.362960-6 2.169000+0 7.157200-6 2.184500+0 9.948750-6 2.201800+0 1.376440-5 2.214800+0 1.714930-5 2.234200+0 2.306890-5 2.253680+0 3.011450-5 2.281500+0 4.218070-5 2.307000+0 5.540430-5 2.338200+0 7.449590-5 2.377400+0 1.031680-4 2.410200+0 1.312130-4 2.446800+0 1.669100-4 2.485900+0 2.101490-4 2.532900+0 2.689440-4 2.556430+0 3.011450-4 2.611900+0 3.839910-4 2.660400+0 4.642210-4 2.745300+0 6.213220-4 2.809000+0 7.524520-4 2.904500+0 9.693290-4 3.000000+0 1.210000-3 3.125000+0 1.560350-3 3.234400+0 1.898740-3 3.425800+0 2.557300-3 3.569300+0 3.101350-3 3.784700+0 3.987420-3 4.000000+0 4.940000-3 4.250000+0 6.104480-3 4.625000+0 7.934770-3 5.000000+0 9.839000-3 5.500000+0 1.245660-2 6.000000+0 1.511000-2 6.750000+0 1.905230-2 7.000000+0 2.035000-2 8.000000+0 2.544000-2 9.000000+0 3.032000-2 1.000000+1 3.495000-2 1.100000+1 3.934000-2 1.200000+1 4.348000-2 1.300000+1 4.739000-2 1.400000+1 5.112000-2 1.500000+1 5.465000-2 1.600000+1 5.801000-2 1.800000+1 6.424000-2 2.000000+1 6.992000-2 2.200000+1 7.513000-2 2.400000+1 7.993000-2 2.600000+1 8.436000-2 2.800000+1 8.849000-2 3.000000+1 9.233000-2 4.000000+1 1.083000-1 5.000000+1 1.206000-1 6.000000+1 1.303000-1 8.000000+1 1.451000-1 1.000000+2 1.559000-1 1.500000+2 1.739000-1 2.000000+2 1.852000-1 3.000000+2 1.992000-1 4.000000+2 2.075000-1 5.000000+2 2.133000-1 6.000000+2 2.175000-1 8.000000+2 2.233000-1 1.000000+3 2.272000-1 1.500000+3 2.330000-1 2.000000+3 2.363000-1 3.000000+3 2.398000-1 4.000000+3 2.419000-1 5.000000+3 2.432000-1 6.000000+3 2.441000-1 8.000000+3 2.453000-1 1.000000+4 2.461000-1 1.500000+4 2.471000-1 2.000000+4 2.478000-1 3.000000+4 2.483000-1 4.000000+4 2.487000-1 5.000000+4 2.489000-1 6.000000+4 2.491000-1 8.000000+4 2.492000-1 1.000000+5 2.493000-1 1 30000 7 8 6.537000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 30000 7 9 6.537000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.000000+1 1.000000+5 3.000000+1 5.000000+5 2.998400+1 8.750000+5 2.996870+1 1.000000+6 2.996500+1 1.375000+6 2.994980+1 1.500000+6 2.994200+1 1.875000+6 2.991050+1 2.000000+6 2.989800+1 2.500000+6 2.984100+1 3.000000+6 2.977300+1 3.500000+6 2.969280+1 4.000000+6 2.960300+1 4.500000+6 2.950510+1 5.000000+6 2.939700+1 5.687500+6 2.922830+1 6.156200+6 2.910510+1 6.500000+6 2.901090+1 6.718700+6 2.894860+1 7.000000+6 2.886800+1 7.500000+6 2.871780+1 8.250000+6 2.848230+1 9.000000+6 2.824400+1 9.750000+6 2.799630+1 1.000000+7 2.791400+1 1.062500+7 2.769760+1 1.156300+7 2.736230+1 1.187500+7 2.724670+1 1.250000+7 2.701900+1 1.375000+7 2.655400+1 1.500000+7 2.609500+1 1.750000+7 2.518400+1 2.000000+7 2.426600+1 2.250000+7 2.336150+1 2.500000+7 2.247100+1 2.750000+7 2.159140+1 3.000000+7 2.072000+1 3.343800+7 1.953710+1 3.500000+7 1.901120+1 3.718800+7 1.828930+1 4.000000+7 1.739200+1 4.250000+7 1.662390+1 4.500000+7 1.588870+1 4.625000+7 1.553370+1 5.000000+7 1.451900+1 5.500000+7 1.328440+1 5.750000+7 1.271960+1 6.000000+7 1.218900+1 6.750000+7 1.079050+1 7.000000+7 1.038700+1 7.750000+7 9.343670+0 8.000000+7 9.046900+0 8.750000+7 8.289970+0 9.000000+7 8.075400+0 9.750000+7 7.526080+0 1.000000+8 7.368400+0 1.109400+8 6.790620+0 1.125000+8 6.719080+0 1.250000+8 6.219400+0 1.437500+8 5.611520+0 1.500000+8 5.427700+0 1.617200+8 5.092900+0 1.712900+8 4.822330+0 1.750000+8 4.717110+0 1.815400+8 4.530280+0 1.907700+8 4.264630+0 2.000000+8 3.997200+0 2.062500+8 3.816620+0 2.335900+8 3.131580+0 2.375000+8 3.054270+0 2.445300+8 2.929310+0 2.500000+8 2.844800+0 2.781300+8 2.512800+0 2.859400+8 2.422700+0 2.875000+8 2.403820+0 2.929700+8 2.335610+0 3.000000+8 2.241200+0 3.062500+8 2.151260+0 3.308600+8 1.815550+0 3.377000+8 1.741240+0 3.459000+8 1.667660+0 3.500000+8 1.637600+0 3.562500+8 1.600530+0 3.617200+8 1.574870+0 3.712900+8 1.540660+0 4.000000+8 1.463900+0 4.125000+8 1.422840+0 4.234400+8 1.382440+0 4.425800+8 1.307880+0 4.856400+8 1.156140+0 5.000000+8 1.116500+0 5.125000+8 1.087390+0 6.000000+8 9.408000-1 6.250000+8 8.994000-1 7.000000+8 7.837000-1 7.625000+8 7.086000-1 7.875000+8 6.790930-1 8.000000+8 6.639000-1 8.250000+8 6.321840-1 8.564500+8 5.913540-1 8.827600+8 5.574970-1 9.246300+8 5.058750-1 9.811600+8 4.431070-1 1.000000+9 4.242000-1 1.089800+9 3.471270-1 1.165000+9 2.957780-1 1.248800+9 2.490980-1 1.338500+9 2.085180-1 1.419300+9 1.784190-1 1.500000+9 1.532000-1 1.562500+9 1.364110-1 1.671900+9 1.118350-1 1.753900+9 9.676870-2 1.877000+9 7.842050-2 2.000000+9 6.411300-2 2.187500+9 4.793210-2 2.363300+9 3.710070-2 2.605300+9 2.668400-2 2.827400+9 2.013720-2 3.099000+9 1.461990-2 3.447500+9 1.002480-2 4.002000+9 5.868460-3 5.000000+9 2.613100-3 8.000000+9 4.700100-4 9.500000+9 2.517420-4 1.00000+10 2.091300-4 1.20500+10 1.071860-4 1.41820+10 6.019320-5 1.71170+10 3.115430-5 2.01490+10 1.771170-5 2.26440+10 1.186240-5 2.74790+10 6.140580-6 3.41360+10 2.959550-6 4.02450+10 1.710380-6 4.77140+10 9.746310-7 5.73000+10 5.349240-7 7.25500+10 2.485500-7 9.08500+10 1.204820-7 1.00000+11 8.861000-8 1.34280+11 3.469400-8 1.77440+11 1.440640-8 2.63330+11 4.199830-9 3.75720+11 1.400290-9 6.61190+11 2.49219-10 1.48990+12 2.16555-11 4.26460+12 9.66037-13 2.06510+13 9.75846-15 1.00000+14 1.00710-16 5.62340+14 6.47428-19 7.49890+15 3.09304-22 1.00000+17 1.40780-25 1 30000 7 0 6.537000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.10000-12 1.000000+2 4.10000-10 1.000000+3 4.100000-8 1.000000+4 4.100000-6 1.000000+5 4.100000-4 5.000000+5 1.025000-2 8.750000+5 3.139063-2 1.000000+6 4.100000-2 1.375000+6 7.785900-2 1.500000+6 9.260000-2 1.875000+6 1.437530-1 2.000000+6 1.631000-1 2.500000+6 2.517000-1 3.000000+6 3.571000-1 3.500000+6 4.776380-1 4.000000+6 6.115000-1 4.500000+6 7.568610-1 5.000000+6 9.120000-1 5.687500+6 1.138090+0 6.156200+6 1.298580+0 6.500000+6 1.418620+0 6.718700+6 1.495820+0 7.000000+6 1.595600+0 7.500000+6 1.773810+0 8.250000+6 2.041650+0 9.000000+6 2.307300+0 9.750000+6 2.568230+0 1.000000+7 2.654000+0 1.062500+7 2.864870+0 1.156300+7 3.172770+0 1.187500+7 3.272900+0 1.250000+7 3.470000+0 1.375000+7 3.851630+0 1.500000+7 4.220000+0 1.750000+7 4.932200+0 2.000000+7 5.631000+0 2.250000+7 6.328250+0 2.500000+7 7.023600+0 2.750000+7 7.711450+0 3.000000+7 8.388000+0 3.343800+7 9.287650+0 3.500000+7 9.684290+0 3.718800+7 1.022730+1 4.000000+7 1.090100+1 4.250000+7 1.147710+1 4.500000+7 1.203460+1 4.625000+7 1.230540+1 5.000000+7 1.309400+1 5.500000+7 1.408740+1 5.750000+7 1.456050+1 6.000000+7 1.502000+1 6.750000+7 1.630830+1 7.000000+7 1.670900+1 7.750000+7 1.782040+1 8.000000+7 1.816300+1 8.750000+7 1.910630+1 9.000000+7 1.939500+1 9.750000+7 2.018480+1 1.000000+8 2.042700+1 1.109400+8 2.136820+1 1.125000+8 2.148880+1 1.250000+8 2.236500+1 1.437500+8 2.343460+1 1.500000+8 2.374500+1 1.617200+8 2.427900+1 1.712900+8 2.467550+1 1.750000+8 2.482190+1 1.815400+8 2.506470+1 1.907700+8 2.538490+1 2.000000+8 2.568300+1 2.062500+8 2.586750+1 2.335900+8 2.657350+1 2.375000+8 2.665940+1 2.445300+8 2.681010+1 2.500000+8 2.691900+1 2.781300+8 2.739260+1 2.859400+8 2.750600+1 2.875000+8 2.752640+1 2.929700+8 2.759740+1 3.000000+8 2.768700+1 3.062500+8 2.775910+1 3.308600+8 2.801430+1 3.377000+8 2.807500+1 3.459000+8 2.814610+1 3.500000+8 2.818100+1 3.562500+8 2.822890+1 3.617200+8 2.827020+1 3.712900+8 2.834120+1 4.000000+8 2.853000+1 4.125000+8 2.860250+1 4.234400+8 2.866420+1 4.425800+8 2.876240+1 4.856400+8 2.896070+1 5.000000+8 2.902100+1 5.125000+8 2.906850+1 6.000000+8 2.935800+1 6.250000+8 2.942250+1 7.000000+8 2.958800+1 7.625000+8 2.968900+1 7.875000+8 2.972260+1 8.000000+8 2.973900+1 8.250000+8 2.976620+1 8.564500+8 2.979790+1 8.827600+8 2.981960+1 9.246300+8 2.985280+1 9.811600+8 2.988550+1 1.000000+9 2.989600+1 1.089800+9 2.992930+1 1.165000+9 2.994940+1 1.248800+9 2.996500+1 1.338500+9 2.997600+1 1.419300+9 2.998220+1 1.500000+9 2.998800+1 1.562500+9 2.998940+1 1.671900+9 2.999180+1 1.753900+9 2.999340+1 1.877000+9 2.999580+1 2.000000+9 2.999800+1 2.187500+9 2.999820+1 2.363300+9 2.999840+1 2.605300+9 2.999860+1 2.827400+9 2.999880+1 3.099000+9 2.999900+1 3.447500+9 2.999920+1 4.002000+9 2.999950+1 5.000000+9 3.000000+1 8.000000+9 3.000000+1 9.500000+9 3.000000+1 1.00000+10 3.000000+1 1.20500+10 3.000000+1 1.41820+10 3.000000+1 1.71170+10 3.000000+1 2.01490+10 3.000000+1 2.26440+10 3.000000+1 2.74790+10 3.000000+1 3.41360+10 3.000000+1 4.02450+10 3.000000+1 4.77140+10 3.000000+1 5.73000+10 3.000000+1 7.25500+10 3.000000+1 9.08500+10 3.000000+1 1.00000+11 3.000000+1 1.34280+11 3.000000+1 1.77440+11 3.000000+1 2.63330+11 3.000000+1 3.75720+11 3.000000+1 6.61190+11 3.000000+1 1.48990+12 3.000000+1 4.26460+12 3.000000+1 2.06510+13 3.000000+1 1.00000+14 3.000000+1 5.62340+14 3.000000+1 7.49890+15 3.000000+1 1.00000+17 3.000000+1 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.019609-6 0.0 4.690089-6 0.0 4.710292-6 3.026724+0 4.713178-6 3.454701+0 4.724722-6 6.310294+0 4.736266-6 1.064002+1 4.744510-6 1.486568+1 4.747810-6 1.754883+1 4.769326-6 3.807677+1 4.784213-6 5.533568+1 4.811302-6 8.847922+1 4.828618-6 1.051812+2 4.842988-6 1.117078+2 4.853575-6 1.117634+2 4.865621-6 1.056667+2 4.876869-6 9.480687+1 4.892854-6 7.316869+1 4.914477-6 4.170290+1 4.920971-6 3.269361+1 4.931358-6 2.196436+1 4.943036-6 1.308918+1 4.954714-6 7.200468+0 4.972231-6 1.830388+0 4.978070-6 0.0 5.956323-6 0.0 5.970983-6 1.06464-14 5.985644-6 2.10663-14 6.000305-6 3.84794-14 6.014966-6 6.48816-14 6.029626-6 1.00988-13 6.044287-6 1.45100-13 6.058948-6 1.92452-13 6.073609-6 2.35631-13 6.088269-6 2.66314-13 6.102930-6 2.77850-13 6.117591-6 2.67597-13 6.132251-6 2.37906-13 6.146912-6 1.95246-13 6.176234-6 1.03443-13 6.190894-6 6.67793-14 6.205555-6 3.97957-14 6.220216-6 2.18919-14 6.234877-6 1.11170-14 6.249537-6 0.0 6.834029-6 0.0 6.848249-6 6.642728-2 6.867671-6 3.584272-1 6.882278-6 6.220449-1 6.890063-6 8.367175-1 6.899657-6 1.122947+0 6.916712-6 1.840324+0 6.938550-6 3.083812+0 6.973529-6 5.299629+0 6.986717-6 5.987724+0 7.003784-6 6.501700+0 7.020112-6 6.535782+0 7.038905-6 5.981812+0 7.054806-6 5.162043+0 7.086345-6 3.125638+0 7.103167-6 2.134600+0 7.117947-6 1.426107+0 7.134803-6 8.378231-1 7.151659-6 4.547669-1 7.170451-6 1.634145-1 7.185371-6 9.682145-5 7.198082-6 7.332666-5 7.215168-6 4.731267-5 7.232254-6 2.818142-5 7.249341-6 1.549591-5 7.266427-6 7.827627-6 7.283073-6 1.224523-7 7.283513-6 0.0 7.542208-6 0.0 7.547937-6 5.822867-3 7.579336-6 1.111656-1 7.585698-6 1.374579-1 7.597901-6 2.050804-1 7.604369-6 2.478893-1 7.621226-6 3.939622-1 7.641711-6 6.338554-1 7.690722-6 1.336848+0 7.709286-6 1.534448+0 7.721064-6 1.597314+0 7.737401-6 1.622536+0 7.753739-6 1.551864+0 7.775798-6 1.313925+0 7.826611-6 5.908284-1 7.845227-6 3.791882-1 7.857799-6 2.712317-1 7.864778-6 2.204739-1 7.876364-6 1.696392-1 7.882668-6 1.467552-1 7.903495-6 1.023536-1 7.913492-6 8.839662-2 7.919503-6 8.639779-2 7.922853-6 9.454023-2 7.942211-6 1.585196-1 7.961569-6 2.454594-1 8.016708-6 5.507763-1 8.039002-6 6.392382-1 8.058360-6 6.769916-1 8.077718-6 6.644851-1 8.097076-6 6.148787-1 8.136491-6 4.756575-1 8.156518-6 4.305885-1 8.176544-6 4.083134-1 8.202135-6 4.115929-1 8.235588-6 4.346947-1 8.267947-6 4.409681-1 8.318607-6 4.323571-1 8.462236-6 3.891915-1 8.500340-6 3.825461-1 8.561944-6 3.708068-1 8.644962-6 3.598424-1 8.811478-6 3.188153-1 9.332543-6 2.401119-1 9.775889-6 1.878007-1 1.023662-5 1.450954-1 1.069858-5 1.115042-1 1.116798-5 8.472064-2 1.165242-5 6.323028-2 1.213792-5 4.654005-2 1.237852-5 3.973153-2 1.243945-5 8.269280-1 1.246992-5 1.478133+0 1.250230-5 2.550205+0 1.253310-5 3.939573+0 1.261034-5 8.187847+0 1.263202-5 9.205418+0 1.266328-5 1.015353+1 1.268657-5 1.038455+1 1.272463-5 9.703062+0 1.275775-5 8.536753+0 1.280942-5 6.211964+0 1.284255-5 5.137517+0 1.287197-5 4.695921+0 1.290230-5 4.777915+0 1.294067-5 5.459659+0 1.296892-5 6.069832+0 1.299585-5 6.535894+0 1.302850-5 6.982761+0 1.306175-5 6.830935+0 1.309501-5 6.136361+0 1.313706-5 4.749696+0 1.318530-5 2.991019+0 1.321629-5 2.022900+0 1.324758-5 1.268530+0 1.327888-5 7.422303-1 1.330432-5 4.647817-1 1.333575-5 1.529080-1 1.334148-5 1.010860-1 1.339862-5 1.910634-2 1.379100-5 1.389985-2 1.412550-5 1.035194-2 1.446896-5 7.442292-3 1.448224-5 7.341737-3 1.455353-5 1.638296-1 1.458918-5 2.933600-1 1.462482-5 4.898884-1 1.466414-5 7.934342-1 1.477186-5 1.790039+0 1.480305-5 1.990009+0 1.484316-5 2.068506+0 1.487884-5 1.995994+0 1.491946-5 1.780125+0 1.498353-5 1.322036+0 1.501693-5 1.144507+0 1.505258-5 1.056118+0 1.509336-5 1.086726+0 1.515952-5 1.286574+0 1.522520-5 1.426118+0 1.526831-5 1.394975+0 1.532787-5 1.214494+0 1.537244-5 1.049900+0 1.540928-5 9.489889-1 1.544612-5 8.942460-1 1.554231-5 8.662137-1 1.555684-5 8.645699-1 1.568946-5 7.022969-1 1.572761-5 6.916869-1 1.576298-5 7.189947-1 1.580991-5 8.140367-1 1.589205-5 1.017334+0 1.592646-5 1.069397+0 1.596697-5 1.103700+0 1.601583-5 1.085438+0 1.615244-5 9.234323-1 1.627526-5 8.981262-1 1.666666-5 9.140112-1 1.707542-5 9.078223-1 1.950000-5 1.020030+0 2.162719-5 1.176915+0 2.398010-5 1.422366+0 2.691535-5 1.811343+0 3.235864-5 2.726676+0 4.073803-5 4.436160+0 5.128614-5 6.644671+0 6.025596-5 8.191892+0 7.212776-5 9.640311+0 8.658992-5 1.084621+1 8.816052-5 1.171772+1 8.999040-5 1.171406+1 9.163201-5 1.211970+1 1.311570-4 1.249284+1 1.338016-4 1.331483+1 1.372578-4 1.296594+1 1.825501-4 1.237137+1 3.374781-4 8.436676+0 4.135244-4 6.941221+0 4.988049-4 5.686465+0 6.008278-4 4.593136+0 7.146353-4 3.720999+0 8.475561-4 2.993831+0 9.970208-4 2.415133+0 1.006018-3 2.447515+0 1.010574-3 2.590240+0 1.014002-3 2.846015+0 1.017244-3 3.264912+0 1.020479-3 3.896779+0 1.023905-3 4.792162+0 1.037566-3 9.224140+0 1.048576-3 1.211036+1 1.058786-3 1.419696+1 1.068248-3 1.529199+1 1.080117-3 1.567405+1 1.163766-3 1.437214+1 1.193055-3 1.546725+1 1.397896-3 1.246799+1 1.602769-3 1.026678+1 1.868407-3 8.167764+0 2.137962-3 6.644867+0 2.465540-3 5.299401+0 2.840652-3 4.215758+0 3.259863-3 3.358723+0 3.711131-3 2.701896+0 4.205596-3 2.184620+0 4.766498-3 1.761163+0 5.367834-3 1.431935+0 6.022880-3 1.169083+0 6.817448-3 9.380776-1 7.582365-3 7.756033-1 8.575532-3 6.213895-1 9.381897-3 5.317289-1 9.423089-3 5.509816-1 9.457262-3 6.010970-1 9.480125-3 6.711793-1 9.499846-3 7.664348-1 9.522534-3 9.259918-1 9.545621-3 1.150251+0 9.571239-3 1.472714+0 9.654978-3 2.746150+0 9.700185-3 3.268589+0 9.744536-3 3.552808+0 9.809160-3 3.680610+0 1.174898-2 2.803685+0 1.343390-2 2.244614+0 1.511511-2 1.843428+0 1.708461-2 1.491583+0 1.946252-2 1.188552+0 2.146837-2 9.968284-1 2.355445-2 8.440447-1 2.616994-2 6.954915-1 2.907372-2 5.726353-1 3.257665-2 4.623552-1 3.554171-2 3.918635-1 3.928488-2 3.235332-1 4.316454-2 2.696521-1 4.777820-2 2.211770-1 5.276911-2 1.818676-1 5.877324-2 1.469207-1 6.480442-2 1.208610-1 7.181085-2 9.841231-2 8.048993-2 7.807155-2 8.971650-2 6.267694-2 9.887198-2 5.141882-2 1.093314-1 4.187456-2 1.197947-1 3.474811-2 1.338919-1 2.768713-2 1.471083-1 2.285188-2 1.613467-1 1.891729-2 1.778279-1 1.553664-2 1.956886-1 1.281530-2 2.156931-1 1.054486-2 2.366458-1 8.783337-3 2.590530-1 7.358832-3 2.855092-1 6.106699-3 3.127425-1 5.143297-3 3.429528-1 4.338107-3 3.773066-1 3.652904-3 4.123942-1 3.125466-3 4.578906-1 2.619412-3 5.070243-1 2.220476-3 5.672180-1 1.868625-3 6.456542-1 1.548468-3 7.307183-1 1.310962-3 8.450356-1 1.098270-3 9.779407-1 9.318701-4 1.173413+0 7.709471-4 1.410753+0 6.352771-4 1.696098+0 5.234821-4 2.039158+0 4.313606-4 2.451607+0 3.554505-4 2.947480+0 2.928989-4 3.543651+0 2.413551-4 4.260405+0 1.988818-4 5.122134+0 1.638829-4 6.158159+0 1.350431-4 7.403736+0 1.112784-4 8.901248+0 9.169584-5 9.760024+0 8.323748-5 1.000000+1 1.666673-4 1 30000 7 0 6.537000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-2.991705+1 3.019609-6-2.881921+1 3.804819-6-2.699879+1 4.160730-6-2.474519+1 4.353152-6-2.212793+1 4.461331-6-1.944796+1 4.534778-6-1.648198+1 4.577613-6-1.391520+1 4.614739-6-1.078817+1 4.639611-6-7.907647+0 4.656273-6-5.407052+0 4.660500-6-4.669947+0 4.667897-6-3.249558+0 4.673445-6-2.050943+0 4.677606-6-1.056683+0 4.680727-6-2.435137-1 4.685408-6 1.123923+0 4.687749-6 1.908315+0 4.688919-6 2.345774+0 4.691532-6 3.498638+0 4.710292-6 1.013035+1 4.724722-6 1.659142+1 4.736266-6 2.235894+1 4.744510-6 2.720163+1 4.750317-6 3.064228+1 4.756349-6 3.273473+1 4.771880-6 3.585307+1 4.781168-6 3.581568+1 4.789209-6 3.391786+1 4.798645-6 2.940457+1 4.805530-6 2.428073+1 4.814188-6 1.595591+1 4.817074-6 1.252523+1 4.824289-6 3.418622+0 4.826454-6 4.590032-1 4.827536-6-1.130085+0 4.828077-6-1.973929+0 4.829340-6-4.136386+0 4.837499-6-1.662909+1 4.840252-6-2.156339+1 4.844554-6-2.904071+1 4.845448-6-2.966728+1 4.851375-6-1.938043+1 4.853575-6-1.503752+1 4.861663-6-1.565030+0 4.862457-6-1.681571-1 4.862853-6 5.683040-1 4.863611-6 2.133684+0 4.864310-6 3.400717+0 4.865621-6 5.579373+0 4.867914-6 9.101303+0 4.874794-6 1.914519+1 4.876869-6 2.217212+1 4.882787-6 2.902334+1 4.890487-6 3.644126+1 4.898551-6 4.131661+1 4.906368-6 4.377660+1 4.914477-6 4.384298+1 4.920971-6 4.200328+1 4.931358-6 3.703042+1 4.943036-6 3.047238+1 4.958728-6 2.138966+1 4.975151-6 1.365167+1 4.978070-6 1.180817+1 4.980934-6 1.002481+1 4.986642-6 7.485459+0 4.990430-6 6.090188+0 4.994203-6 4.847609+0 4.997961-6 3.723668+0 5.001705-6 2.696493+0 5.005434-6 1.750646+0 5.012862-6 5.616778-2 5.020233-6-1.422126+0 5.027546-6-2.728530+0 5.034802-6-3.894593+0 5.049145-6-5.894290+0 5.070241-6-8.282423+0 5.090901-6-1.016373+1 5.130837-6-1.294669+1 5.181233-6-1.544539+1 5.251473-6-1.784600+1 5.373728-6-2.046604+1 5.560779-6-2.273277+1 5.956323-6-2.506979+1 6.767808-6-2.795103+1 6.869457-6-2.956495+1 6.902875-6-2.999902+1 6.952791-6-2.979146+1 6.969566-6-3.000696+1 7.022084-6-2.609972+1 7.062198-6-2.352055+1 7.098961-6-2.302045+1 7.232254-6-2.562811+1 7.675881-6-2.784689+1 7.804728-6-2.626084+1 8.016708-6-2.734934+1 8.318607-6-2.723316+1 1.160837-5-2.913517+1 1.218624-5-3.024731+1 1.236834-5-2.856586+1 1.253731-5-2.521883+1 1.259427-5-2.589967+1 1.265545-5-2.886039+1 1.268202-5-3.033987+1 1.275063-5-2.652499+1 1.280303-5-2.550090+1 1.289574-5-2.703866+1 1.296058-5-2.737645+1 1.302850-5-2.580313+1 1.312239-5-2.271700+1 1.318530-5-2.224265+1 1.343306-5-2.547896+1 1.385790-5-2.711024+1 1.455353-5-2.885562+1 1.474709-5-2.921865+1 1.497565-5-2.762607+1 1.521699-5-2.795898+1 1.547494-5-2.776137+1 1.596697-5-2.810827+1 3.758374-5-2.998781+1 5.432503-5-2.922296+1 8.536911-5-2.593510+1 8.786878-5-2.598029+1 8.999040-5-2.540081+1 1.000551-4-2.335578+1 1.255761-4-2.070822+1 1.330094-4-2.052520+1 1.352149-4-1.964394+1 1.690037-4-1.658493+1 2.091485-4-1.395520+1 2.490015-4-1.213656+1 2.963978-4-1.073137+1 3.630570-4-9.605001+0 4.399817-4-9.011653+0 5.329973-4-8.845659+0 6.366868-4-9.105284+0 7.542553-4-9.897633+0 8.475561-4-1.107608+1 9.128256-4-1.249574+1 9.571115-4-1.411489+1 9.853590-4-1.585795+1 1.000926-3-1.747568+1 1.014002-3-1.993593+1 1.026386-3-2.264919+1 1.035839-3-2.305228+1 1.050555-3-2.165621+1 1.080117-3-1.622747+1 1.095367-3-1.433633+1 1.115993-3-1.269261+1 1.144001-3-1.130746+1 1.163766-3-1.100138+1 1.176262-3-1.093362+1 1.188066-3-1.017341+1 1.203725-3-9.016476+0 1.230255-3-7.748053+0 1.269325-3-6.448143+0 1.317396-3-5.301416+0 1.375935-3-4.256520+0 1.447369-3-3.296727+0 1.517105-3-2.585992+0 1.602769-3-1.928088+0 1.686029-3-1.439326+0 1.732806-3-1.219702+0 1.801450-3-9.506438-1 1.868407-3-7.392225-1 1.910013-3-6.338606-1 1.958968-3-5.240352-1 2.010766-3-4.238889-1 2.068838-3-3.280183-1 2.137962-3-2.304942-1 2.188054-3-1.770878-1 2.229077-3-1.403133-1 2.287999-3-9.367233-2 2.340858-3-6.051012-2 2.361158-3-4.897370-2 2.406613-3-2.836470-2 2.425930-3-2.179543-2 2.460574-3-6.575916-3 2.465540-3-4.705004-3 2.501178-3 8.114423-3 2.520134-3 1.407761-2 2.559012-3 2.531419-2 2.607654-3 3.753952-2 2.697837-3 5.400678-2 2.762571-3 6.099071-2 2.840652-3 6.279865-2 2.907145-3 6.074317-2 2.955460-3 5.670355-2 3.081000-3 4.313875-2 3.108136-3 3.948642-2 3.176388-3 2.773532-2 3.285010-3 6.755744-3 3.311311-3 9.196769-4 3.325136-3-2.133440-3 3.373204-3-1.321333-2 3.439706-3-2.961562-2 3.546538-3-5.461232-2 3.632741-3-7.689767-2 4.205596-3-2.417024-1 6.553225-3-9.515223-1 7.337196-3-1.227476+0 7.999674-3-1.527928+0 8.441240-3-1.802630+0 8.788068-3-2.108436+0 9.037251-3-2.430881+0 9.218890-3-2.784122+0 9.351413-3-3.192599+0 9.434454-3-3.624961+0 9.581562-3-4.840935+0 9.629869-3-4.933307+0 9.678107-3-4.683907+0 9.809160-3-3.457420+0 9.873956-3-3.045015+0 9.963845-3-2.657848+0 1.009136-2-2.269388+0 1.026727-2-1.885316+0 1.047468-2-1.556879+0 1.072028-2-1.264333+0 1.102714-2-9.888926-1 1.133601-2-7.769745-1 1.162075-2-6.159648-1 1.189447-2-4.864720-1 1.217022-2-3.779428-1 1.247173-2-2.785289-1 1.278372-2-1.918879-1 1.308840-2-1.202912-1 1.343390-2-5.079102-2 1.378056-2 8.078386-3 1.411812-2 5.706961-2 1.441339-2 9.386429-2 1.472998-2 1.283936-1 1.511511-2 1.654670-1 1.552308-2 1.988998-1 1.593182-2 2.262197-1 1.669468-2 2.635329-1 1.754212-2 2.915549-1 1.895290-2 3.196435-1 2.046758-2 3.306065-1 2.297032-2 3.240635-1 2.708015-2 2.906346-1 3.690978-2 1.970843-1 4.316454-2 1.495162-1 4.936959-2 1.123853-1 5.532277-2 8.375795-2 6.063905-2 6.296121-2 6.602213-2 4.520314-2 7.041355-2 3.288502-2 7.556915-2 2.049810-2 7.855571-2 1.405705-2 8.222879-2 6.888139-3 8.447964-2 2.874258-3 8.620822-2-6.888154-5 8.639151-2-3.790439-4 8.858360-2-3.889275-3 9.251820-2-9.718287-3 9.650586-2-1.505654-2 1.040501-1-2.380271-2 1.123577-1-3.187375-2 1.234614-1-4.060474-2 1.382753-1-4.960587-2 1.613467-1-5.960932-2 1.956886-1-6.919097-2 2.517429-1-7.798242-2 3.429528-1-8.470621-2 5.495409-1-8.991632-2 1.286622+0-9.279446-2 3.885536+0-9.336504-2 1.000000+1-9.340337-2 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.550515-3 1.110590-6 1.220542-2 1.140310-6 1.383428-2 1.250186-6 2.167560-2 1.275543-6 2.400179-2 1.324673-6 2.918257-2 1.370732-6 3.497179-2 1.413912-6 4.140995-2 1.454394-6 4.855212-2 1.492345-6 5.642825-2 1.527924-6 6.504553-2 1.561280-6 7.441205-2 1.592551-6 8.459810-2 1.621868-6 9.564909-2 1.649352-6 1.076042-1 1.675118-6 1.205048-1 1.699275-6 1.343813-1 1.721921-6 1.492527-1 1.743152-6 1.651777-1 1.763056-6 1.822341-1 1.781716-6 2.004887-1 1.799210-6 2.200037-1 1.815610-6 2.408440-1 1.830985-6 2.630776-1 1.845400-6 2.867757-1 1.858913-6 3.120127-1 1.871582-6 3.388654-1 1.883459-6 3.674135-1 1.894594-6 3.977376-1 1.905033-6 4.299186-1 1.914819-6 4.640376-1 1.923994-6 5.001795-1 1.932596-6 5.384351-1 1.940659-6 5.789004-1 1.948219-6 6.216746-1 1.955306-6 6.668591-1 1.961951-6 7.145594-1 1.968180-6 7.648857-1 1.974020-6 8.179515-1 1.979494-6 8.738720-1 1.984627-6 9.327640-1 1.989439-6 9.947508-1 1.993950-6 1.059971+0 1.998179-6 1.128590+0 2.006109-6 1.282284+0 2.013047-6 1.453830+0 2.019118-6 1.646062+0 2.024430-6 1.861356+0 2.029079-6 2.100514+0 2.033146-6 2.362053+0 2.036705-6 2.642206+0 2.039818-6 2.935511+0 2.042543-6 3.235664+0 2.044927-6 3.536341+0 2.048839-6 4.117316+0 2.052033-6 4.682806+0 2.063568-6 7.523290+0 2.066690-6 8.519317+0 2.069228-6 9.395928+0 2.071765-6 1.032665+1 2.076839-6 1.231505+1 2.077473-6 1.257198+1 2.081914-6 1.438869+1 2.083658-6 1.509818+1 2.086988-6 1.641498+1 2.088732-6 1.707243+1 2.090397-6 1.767111+1 2.092062-6 1.823553+1 2.094282-6 1.892475+1 2.096423-6 1.950946+1 2.098405-6 1.997124+1 2.100070-6 2.029407+1 2.102528-6 2.065319+1 2.105502-6 2.088779+1 2.107751-6 2.091328+1 2.110848-6 2.073057+1 2.113346-6 2.040165+1 2.115707-6 1.994824+1 2.118148-6 1.934283+1 2.119379-6 1.898901+1 2.122975-6 1.779024+1 2.124937-6 1.704694+1 2.126591-6 1.638072+1 2.128773-6 1.545722+1 2.130472-6 1.471075+1 2.132658-6 1.372789+1 2.134878-6 1.271582+1 2.137197-6 1.165860+1 2.140269-6 1.028189+1 2.142489-6 9.318985+0 2.145502-6 8.073253+0 2.147881-6 7.150283+0 2.152955-6 5.390119+0 2.154908-6 4.794499+0 2.156469-6 4.351909+0 2.158030-6 3.939198+0 2.160250-6 3.403188+0 2.163104-6 2.799814+0 2.166119-6 2.262609+0 2.171386-6 1.550949+0 2.173283-6 1.359019+0 2.175004-6 1.211804+0 2.176509-6 1.102883+0 2.181779-6 8.552706-1 2.182438-6 8.378210-1 2.183503-6 8.155072-1 2.184328-6 8.030979-1 2.185226-6 7.943094-1 2.186152-6 7.902596-1 2.187174-6 7.915363-1 2.187955-6 7.964743-1 2.189004-6 8.083659-1 2.189861-6 8.224394-1 2.190504-6 8.355082-1 2.191468-6 8.590602-1 2.192432-6 8.872395-1 2.195123-6 9.893842-1 2.197142-6 1.087445+0 2.197815-6 1.123995+0 2.204165-6 1.554179+0 2.208918-6 1.959440+0 2.210652-6 2.120403+0 2.214301-6 2.473799+0 2.216864-6 2.728505+0 2.218105-6 2.852192+0 2.220020-6 3.041497+0 2.222081-6 3.241157+0 2.224234-6 3.442375+0 2.226076-6 3.606367+0 2.228410-6 3.800156+0 2.230450-6 3.954149+0 2.232974-6 4.121443+0 2.235422-6 4.256045+0 2.237056-6 4.329275+0 2.239530-6 4.413348+0 2.241926-6 4.462642+0 2.242943-6 4.473817+0 2.245433-6 4.476588+0 2.247903-6 4.445228+0 2.251983-6 4.322539+0 2.254546-6 4.203955+0 2.257029-6 4.062028+0 2.259763-6 3.879269+0 2.262413-6 3.680166+0 2.264768-6 3.488948+0 2.267039-6 3.295184+0 2.267796-6 3.229079+0 2.270487-6 2.990092+0 2.273179-6 2.748424+0 2.276207-6 2.478571+0 2.278562-6 2.273391+0 2.283945-6 1.831208+0 2.285796-6 1.690291+0 2.287562-6 1.561869+0 2.289328-6 1.439702+0 2.292020-6 1.266011+0 2.295368-6 1.071340+0 2.298643-6 9.036749-1 2.302552-6 7.317191-1 2.306441-6 5.887997-1 2.309022-6 5.079982-1 2.311593-6 4.375551-1 2.316704-6 3.235050-1 2.324296-6 2.049282-1 2.334282-6 1.117272-1 2.341669-6 7.106470-2 2.346545-6 5.250860-2 2.351384-6 3.868539-2 2.353789-6 3.315066-2 2.356185-6 2.837031-2 2.358572-6 2.424508-2 2.360949-6 2.069052-2 2.365675-6 1.501414-2 2.375018-6 7.902509-3 2.377331-6 6.766694-3 2.379635-6 5.822074-3 2.381929-6 5.041536-3 2.384215-6 4.400693-3 2.386492-6 3.877697-3 2.388760-6 3.453099-3 2.391020-6 3.109766-3 2.393270-6 2.832797-3 2.396628-6 2.514578-3 2.399964-6 2.283345-3 2.400518-6 2.251394-3 2.404381-6 2.068919-3 2.406579-6 1.991840-3 2.408769-6 1.931700-3 2.410950-6 1.887612-3 2.413122-6 1.859688-3 2.417451-6 1.856647-3 2.421745-6 1.936267-3 2.426006-6 2.116196-3 2.430233-6 2.413892-3 2.434427-6 2.843759-3 2.438589-6 3.415716-3 2.446847-6 5.009617-3 2.454977-6 7.187842-3 2.462979-6 9.907187-3 2.470856-6 1.311429-2 2.478610-6 1.676264-2 2.493876-6 2.532845-2 2.508665-6 3.532325-2 2.596563-6 1.159584-1 2.737891-6 3.344819-1 2.766545-6 3.955950-1 2.891536-6 8.195458-1 2.910431-6 9.147229-1 2.938775-6 1.080843+0 2.967118-6 1.281883+0 2.989028-6 1.468811+0 3.008800-6 1.667682+0 3.018240-6 1.774712+0 3.040150-6 2.059592+0 3.054756-6 2.283739+0 3.069363-6 2.541948+0 3.083969-6 2.841827+0 3.098575-6 3.193547+0 3.113182-6 3.610917+0 3.127498-6 4.101891+0 3.135158-6 4.406171+0 3.142819-6 4.745562+0 3.150479-6 5.126192+0 3.161058-6 5.734391+0 3.173460-6 6.605234+0 3.181120-6 7.256381+0 3.188780-6 8.023049+0 3.196440-6 8.941129+0 3.204100-6 1.006210+1 3.209221-6 1.095984+1 3.214342-6 1.200922+1 3.220711-6 1.358056+1 3.227081-6 1.552657+1 3.230911-6 1.691943+1 3.234741-6 1.851042+1 3.238571-6 2.032734+1 3.242402-6 2.239975+1 3.246232-6 2.475835+1 3.250062-6 2.743427+1 3.257722-6 3.385875+1 3.271258-6 4.922840+1 3.276329-6 5.640346+1 3.282830-6 6.669604+1 3.286856-6 7.362417+1 3.294906-6 8.846853+1 3.295912-6 9.039055+1 3.302957-6 1.040023+2 3.305724-6 1.093275+2 3.311007-6 1.192219+2 3.313775-6 1.241660+2 3.316416-6 1.286694+2 3.319058-6 1.329151+2 3.322580-6 1.380973+2 3.325976-6 1.424880+2 3.329121-6 1.459469+2 3.331763-6 1.483552+2 3.335662-6 1.510112+2 3.340379-6 1.526903+2 3.343948-6 1.527920+2 3.348861-6 1.512559+2 3.352393-6 1.489667+2 3.356178-6 1.454573+2 3.359982-6 1.409002+2 3.362706-6 1.370550+2 3.366488-6 1.309990+2 3.369814-6 1.250786+2 3.372263-6 1.204208+2 3.375412-6 1.141335+2 3.378839-6 1.070044+2 3.382595-6 9.898587+1 3.385475-6 9.278407+1 3.388116-6 8.711526+1 3.391513-6 7.993616+1 3.396187-6 7.042007+1 3.400066-6 6.298624+1 3.406199-6 5.235998+1 3.414975-6 4.005647+1 3.417819-6 3.687312+1 3.421265-6 3.355763+1 3.422767-6 3.229656+1 3.424481-6 3.099210+1 3.427696-6 2.892526+1 3.429892-6 2.778841+1 3.432192-6 2.682701+1 3.434499-6 2.608733+1 3.435881-6 2.574655+1 3.438620-6 2.528443+1 3.440564-6 2.511743+1 3.442955-6 2.507958+1 3.445390-6 2.521336+1 3.447814-6 2.549964+1 3.450665-6 2.600432+1 3.454330-6 2.686930+1 3.460248-6 2.861256+1 3.468414-6 3.126306+1 3.473292-6 3.273943+1 3.477955-6 3.394476+1 3.481496-6 3.467585+1 3.485648-6 3.529186+1 3.489641-6 3.561342+1 3.491356-6 3.566601+1 3.497176-6 3.545509+1 3.499560-6 3.519719+1 3.502966-6 3.466273+1 3.505156-6 3.422094+1 3.509075-6 3.325268+1 3.513237-6 3.200134+1 3.516713-6 3.080615+1 3.520064-6 2.954741+1 3.522276-6 2.867036+1 3.526106-6 2.708464+1 3.529936-6 2.544109+1 3.530981-6 2.498661+1 3.537381-6 2.219075+1 3.539340-6 2.134234+1 3.546654-6 1.827487+1 3.550860-6 1.661575+1 3.554874-6 1.512302+1 3.562463-6 1.257567+1 3.584681-6 7.232035+0 3.593251-6 5.887754+0 3.601842-6 4.828176+0 3.612165-6 3.837027+0 3.627614-6 2.740101+0 3.636204-6 2.267367+0 3.644795-6 1.868639+0 3.651204-6 1.613081+0 3.673983-6 9.500231-1 3.682352-6 7.864933-1 3.686801-6 7.134055-1 3.693476-6 6.189965-1 3.704600-6 4.938832-1 3.715883-6 3.957428-1 3.724624-6 3.324852-1 3.731298-6 2.893066-1 3.735748-6 2.624956-1 3.740197-6 2.371064-1 3.744647-6 2.130887-1 3.749097-6 1.904490-1 3.755771-6 1.591784-1 3.757996-6 1.495057-1 3.766895-6 1.148001-1 3.778020-6 8.079175-2 3.784694-6 6.540110-2 3.789144-6 5.714301-2 3.792481-6 5.195325-2 3.794588-6 4.910434-2 3.796562-6 4.672830-2 3.800447-6 4.285711-2 3.804212-6 4.010461-2 3.816579-6 3.802847-2 3.819839-6 3.941424-2 3.826057-6 4.475945-2 3.831985-6 5.386759-2 3.837542-6 6.697149-2 3.842752-6 8.439455-2 3.847637-6 1.064262-1 3.852216-6 1.332807-1 3.864306-6 2.434131-1 3.867843-6 2.896679-1 3.874269-6 3.949593-1 3.880098-6 5.190205-1 3.885198-6 6.544519-1 3.889661-6 7.969884-1 3.893566-6 9.425863-1 3.896983-6 1.087698+0 3.902589-6 1.365496+0 3.904878-6 1.494341+0 3.908967-6 1.748505+0 3.914142-6 2.117417+0 3.919634-6 2.570677+0 3.922861-6 2.868004+0 3.924840-6 3.062086+0 3.928885-6 3.486657+0 3.930778-6 3.698135+0 3.935603-6 4.274030+0 3.940429-6 4.900665+0 3.950081-6 6.288118+0 3.951287-6 6.472071+0 3.959732-6 7.803008+0 3.963050-6 8.337545+0 3.969383-6 9.353338+0 3.974058-6 1.008176+1 3.977030-6 1.052751+1 3.980932-6 1.108402+1 3.983440-6 1.142076+1 3.985948-6 1.173818+1 3.989045-6 1.210008+1 3.993110-6 1.251799+1 3.997847-6 1.291270+1 3.998940-6 1.298853+1 4.003465-6 1.323740+1 4.007671-6 1.337084+1 4.009970-6 1.340259+1 4.014764-6 1.337393+1 4.018998-6 1.324288+1 4.023268-6 1.301367+1 4.027516-6 1.269468+1 4.031362-6 1.233447+1 4.037299-6 1.166299+1 4.041228-6 1.115530+1 4.044485-6 1.070500+1 4.048058-6 1.018810+1 4.053027-6 9.444656+0 4.057933-6 8.702390+0 4.064581-6 7.719383+0 4.081629-6 5.579898+0 4.086085-6 5.152148+0 4.089818-6 4.841408+0 4.093593-6 4.571096+0 4.097549-6 4.333947+0 4.101337-6 4.148901+0 4.104245-6 4.032717+0 4.114418-6 3.775796+0 4.118277-6 3.726067+0 4.123491-6 3.686589+0 4.133407-6 3.656062+0 4.138369-6 3.642067+0 4.145064-6 3.605135+0 4.150184-6 3.554327+0 4.154636-6 3.490259+0 4.158165-6 3.425164+0 4.160144-6 3.382990+0 4.166923-6 3.208103+0 4.171521-6 3.064404+0 4.174212-6 2.972017+0 4.178627-6 2.809127+0 4.180429-6 2.739184+0 4.183584-6 2.612980+0 4.187724-6 2.441948+0 4.191717-6 2.273928+0 4.196957-6 2.053566+0 4.202091-6 1.843483+0 4.207166-6 1.646833+0 4.216768-6 1.321367+0 4.221425-6 1.191735+0 4.223694-6 1.136288+0 4.226564-6 1.073752+0 4.229108-6 1.025715+0 4.231185-6 9.917543-1 4.234300-6 9.498661-1 4.237416-6 9.189732-1 4.239535-6 9.042791-1 4.241304-6 8.959160-1 4.243579-6 8.903624-1 4.245857-6 8.906023-1 4.247254-6 8.935834-1 4.248645-6 8.986600-1 4.249894-6 9.049876-1 4.253782-6 9.351266-1 4.256744-6 9.682769-1 4.264708-6 1.096942+0 4.269598-6 1.200547+0 4.281062-6 1.494450+0 4.286723-6 1.653609+0 4.291227-6 1.780667+0 4.296084-6 1.913668+0 4.300282-6 2.022010+0 4.303554-6 2.100439+0 4.306993-6 2.175766+0 4.312192-6 2.273241+0 4.316158-6 2.332447+0 4.320497-6 2.380719+0 4.325213-6 2.412540+0 4.328980-6 2.422195+0 4.338652-6 2.384752+0 4.342724-6 2.344437+0 4.347515-6 2.281262+0 4.352827-6 2.194950+0 4.358618-6 2.087032+0 4.364810-6 1.963363+0 4.378793-6 1.696597+0 4.381065-6 1.659456+0 4.386083-6 1.587202+0 4.390047-6 1.541039+0 4.392260-6 1.519914+0 4.396777-6 1.487769+0 4.400279-6 1.473371+0 4.410153-6 1.482777+0 4.414530-6 1.509511+0 4.418557-6 1.545097+0 4.423628-6 1.603033+0 4.430883-6 1.705849+0 4.444418-6 1.927989+0 4.450887-6 2.031342+0 4.456102-6 2.106280+0 4.461038-6 2.166998+0 4.466113-6 2.216543+0 4.469247-6 2.239740+0 4.474554-6 2.265093+0 4.478379-6 2.272092+0 4.487949-6 2.248427+0 4.496785-6 2.179086+0 4.502447-6 2.115386+0 4.509050-6 2.027701+0 4.517108-6 1.910089+0 4.531391-6 1.707359+0 4.539007-6 1.618311+0 4.543912-6 1.571853+0 4.549517-6 1.530655+0 4.553997-6 1.507247+0 4.558953-6 1.491173+0 4.564091-6 1.484922+0 4.567355-6 1.486050+0 4.572394-6 1.494721+0 4.579004-6 1.516738+0 4.588065-6 1.560437+0 4.599805-6 1.625988+0 4.608534-6 1.671151+0 4.617547-6 1.707871+0 4.624462-6 1.726961+0 4.634468-6 1.739543+0 4.643301-6 1.736966+0 4.654369-6 1.719815+0 4.687828-6 1.638876+0 4.692831-6 1.629189+0 4.713547-6 1.603160+0 4.734268-6 1.593652+0 4.765433-6 1.583526+0 4.817018-6 1.553769+0 4.835351-6 1.551635+0 4.850684-6 1.557760+0 4.870041-6 1.576492+0 4.892721-6 1.611274+0 4.954250-6 1.726485+0 4.989338-6 1.779673+0 5.009501-6 1.799175+0 5.024862-6 1.804169+0 5.033939-6 1.801415+0 5.063278-6 1.753711+0 5.076550-6 1.710576+0 5.088089-6 1.663275+0 5.096559-6 1.624009+0 5.106814-6 1.573064+0 5.139030-6 1.411593+0 5.149924-6 1.363494+0 5.159487-6 1.325890+0 5.172849-6 1.281408+0 5.185674-6 1.247821+0 5.197698-6 1.224257+0 5.212047-6 1.205627+0 5.220743-6 1.199067+0 5.229445-6 1.195879+0 5.238733-6 1.196039+0 5.256718-6 1.206257+0 5.273692-6 1.227223+0 5.298805-6 1.277206+0 5.330741-6 1.371715+0 5.365174-6 1.510421+0 5.423738-6 1.828342+0 5.492236-6 2.330644+0 5.543950-6 2.819850+0 5.593544-6 3.396255+0 5.728536-6 5.643646+0 5.801660-6 7.431725+0 5.853153-6 9.031910+0 5.895793-6 1.062596+1 5.930468-6 1.214497+1 5.968152-6 1.407413+1 6.003481-6 1.620286+1 6.036603-6 1.854166+1 6.067654-6 2.110043+1 6.096764-6 2.388868+1 6.125271-6 2.706164+1 6.149640-6 3.019306+1 6.173626-6 3.372979+1 6.196113-6 3.753649+1 6.217195-6 4.162254+1 6.236959-6 4.599622+1 6.255487-6 5.066472+1 6.272858-6 5.563441+1 6.289143-6 6.091135+1 6.311865-6 6.949231+1 6.332142-6 7.865027+1 6.344721-6 8.522404+1 6.356515-6 9.214311+1 6.367571-6 9.941810+1 6.377937-6 1.070602+2 6.397372-6 1.240813+2 6.414378-6 1.427720+2 6.429258-6 1.630865+2 6.442278-6 1.848401+2 6.453670-6 2.077129+2 6.463639-6 2.312888+2 6.472361-6 2.551114+2 6.479993-6 2.787360+2 6.492515-6 3.238853+2 6.510410-6 4.043617+2 6.538946-6 5.784647+2 6.549499-6 6.584117+2 6.561560-6 7.601484+2 6.569601-6 8.338864+2 6.581662-6 9.526954+2 6.599753-6 1.146749+3 6.606789-6 1.226360+3 6.617844-6 1.354995+3 6.629905-6 1.499017+3 6.642971-6 1.658041+3 6.652424-6 1.774581+3 6.665491-6 1.937815+3 6.680159-6 2.125098+3 6.702600-6 2.425074+3 6.726481-6 2.768646+3 6.743915-6 3.032493+3 6.756628-6 3.225180+3 6.767039-6 3.377567+3 6.778405-6 3.531993+3 6.789439-6 3.663136+3 6.799996-6 3.764781+3 6.809507-6 3.831531+3 6.819118-6 3.871245+3 6.823388-6 3.879156+3 6.839662-6 3.850841+3 6.848213-6 3.798071+3 6.857589-6 3.710889+3 6.866552-6 3.600517+3 6.873979-6 3.490820+3 6.880253-6 3.386640+3 6.888320-6 3.239281+3 6.895490-6 3.097730+3 6.904710-6 2.904607+3 6.912905-6 2.725787+3 6.921100-6 2.543452+3 6.930319-6 2.337746+3 6.937490-6 2.179654+3 6.953880-6 1.833174+3 6.959514-6 1.720855+3 6.970269-6 1.518450+3 6.984611-6 1.275929+3 7.005208-6 9.856136+2 7.025231-6 7.666190+2 7.038449-6 6.524208+2 7.045020-6 6.035449+2 7.058109-6 5.198524+2 7.071096-6 4.523228+2 7.083982-6 3.978463+2 7.096767-6 3.537472+2 7.109452-6 3.178064+2 7.122039-6 2.882376+2 7.134526-6 2.636361+2 7.146917-6 2.429170+2 7.159210-6 2.252528+2 7.171407-6 2.100158+2 7.195612-6 1.849500+2 7.219438-6 1.652372+2 7.242891-6 1.493013+2 7.265979-6 1.361482+2 7.288705-6 1.251157+2 7.311077-6 1.157409+2 7.333098-6 1.076876+2 7.354776-6 1.007036+2 7.376115-6 9.459546+1 7.407770-6 8.669183+1 7.438476-6 8.010390+1 7.478538-6 7.277753+1 7.517349-6 6.677467+1 7.554947-6 6.178198+1 7.591369-6 5.757544+1 7.629569-6 5.371416+1 7.660836-6 5.090697+1 7.693950-6 4.822937+1 7.758108-6 4.374988+1 7.829788-6 3.960268+1 7.874645-6 3.737175+1 7.927509-6 3.504628+1 7.977070-6 3.312147+1 8.069995-6 3.002971+1 8.151306-6 2.775321+1 8.222452-6 2.602898+1 8.284705-6 2.469316+1 8.393648-6 2.266071+1 8.499141-6 2.097892+1 8.597916-6 1.960823+1 9.063906-6 1.466696+1 9.268817-6 1.277406+1 9.358108-6 1.187942+1 9.425075-6 1.111273+1 9.475301-6 1.043640+1 9.512971-6 9.844410+0 9.541223-6 9.347035+0 9.562412-6 8.949622+0 9.617040-6 7.941523+0 9.625979-6 7.802366+0 9.640692-6 7.608610+0 9.649067-6 7.523506+0 9.673365-6 7.417276+0 9.688150-6 7.483563+0 9.697058-6 7.581781+0 9.716820-6 7.979249+0 9.719788-6 8.062053+0 9.740562-6 8.823710+0 9.751172-6 9.339384+0 9.755413-6 9.569692+0 9.771099-6 1.053892+1 9.791110-6 1.202591+1 9.815524-6 1.414787+1 9.833294-6 1.582844+1 9.842179-6 1.668707+1 9.857727-6 1.818277+1 9.862910-6 1.867197+1 9.886603-6 2.077924+1 9.889565-6 2.102234+1 9.910296-6 2.255318+1 9.918441-6 2.306106+1 9.933989-6 2.386435+1 9.945096-6 2.429674+1 9.954166-6 2.455999+1 9.960968-6 2.470435+1 9.971172-6 2.483684+1 9.981376-6 2.487159+1 9.993222-6 2.479616+1 1.000540-5 2.459961+1 1.002179-5 2.416872+1 1.002736-5 2.398465+1 1.004920-5 2.311864+1 1.007294-5 2.199870+1 1.010028-5 2.061654+1 1.014956-5 1.825254+1 1.017400-5 1.724484+1 1.019844-5 1.636931+1 1.023477-5 1.529704+1 1.027176-5 1.443378+1 1.034508-5 1.313893+1 1.044249-5 1.177484+1 1.047380-5 1.139174+1 1.051810-5 1.094147+1 1.055114-5 1.071971+1 1.057692-5 1.064033+1 1.060270-5 1.065671+1 1.062675-5 1.076182+1 1.063823-5 1.084125+1 1.066407-5 1.108007+1 1.073160-5 1.191058+1 1.076511-5 1.228101+1 1.078832-5 1.246698+1 1.080134-5 1.253885+1 1.082087-5 1.259906+1 1.084040-5 1.260191+1 1.086050-5 1.254897+1 1.088628-5 1.241164+1 1.091030-5 1.223352+1 1.099274-5 1.155538+1 1.102773-5 1.134886+1 1.104873-5 1.126165+1 1.107477-5 1.118864+1 1.112671-5 1.112495+1 1.122422-5 1.106744+1 1.126552-5 1.101523+1 1.193171-5 9.901412+0 1.304334-5 8.429460+0 1.421585-5 7.163482+0 1.456440-5 6.820558+0 1.526775-5 6.146746+0 1.562643-5 5.818173+0 1.596825-5 5.509519+0 1.629517-5 5.213962+0 1.667487-5 4.868725+0 1.704112-5 4.535230+0 1.744995-5 4.145140+0 1.788671-5 3.713534+0 1.811000-5 3.487486+0 1.852000-5 3.057081+0 1.883649-5 2.706521+0 1.910144-5 2.396940+0 1.930676-5 2.143563+0 1.945624-5 1.950131+0 1.960653-5 1.747636+0 1.972489-5 1.582849+0 1.983350-5 1.427977+0 1.991367-5 1.311675+0 2.002617-5 1.146053+0 2.007950-5 1.066780+0 2.015712-5 9.508440-1 2.024986-5 8.122182-1 2.029811-5 7.405053-1 2.037175-5 6.323710-1 2.042202-5 5.600687-1 2.047823-5 4.814628-1 2.053093-5 4.107438-1 2.058033-5 3.479465-1 2.062665-5 2.930308-1 2.067007-5 2.458847-1 2.071078-5 2.063447-1 2.074894-5 1.742295-1 2.078472-5 1.493782-1 2.080149-5 1.397830-1 2.081774-5 1.319116-1 2.083348-5 1.257618-1 2.084873-5 1.213363-1 2.086350-5 1.186418-1 2.087781-5 1.176890-1 2.089167-5 1.184920-1 2.090510-5 1.210676-1 2.091811-5 1.254342-1 2.093071-5 1.316113-1 2.094292-5 1.396182-1 2.095475-5 1.494735-1 2.096048-5 1.550531-1 2.097167-5 1.675961-1 2.098248-5 1.819544-1 2.099426-5 2.003270-1 2.100440-5 2.186795-1 2.101431-5 2.390678-1 2.102390-5 2.613461-1 2.104221-5 3.115175-1 2.105938-5 3.690238-1 2.113165-5 7.617239-1 2.116505-5 1.058012+0 2.118459-5 1.277293+0 2.120169-5 1.502091+0 2.122975-5 1.948372+0 2.124121-5 2.162023+0 2.126126-5 2.585733+0 2.128757-5 3.250273+0 2.130448-5 3.750992+0 2.132140-5 4.315959+0 2.134436-5 5.196190+0 2.135912-5 5.837400+0 2.137388-5 6.542449+0 2.139684-5 7.775774+0 2.141529-5 8.896326+0 2.144298-5 1.081215+1 2.146416-5 1.248067+1 2.148095-5 1.393436+1 2.153132-5 1.902770+1 2.155239-5 2.149259+1 2.155899-5 2.230512+1 2.159363-5 2.688231+1 2.160848-5 2.899875+1 2.166127-5 3.719604+1 2.167828-5 4.002939+1 2.171594-5 4.654279+1 2.173417-5 4.977708+1 2.176022-5 5.443915+1 2.177697-5 5.743469+1 2.180400-5 6.221596+1 2.182087-5 6.513871+1 2.184499-5 6.919325+1 2.186727-5 7.277437+1 2.187934-5 7.463581+1 2.190452-5 7.831080+1 2.193463-5 8.229510+1 2.196740-5 8.606944+1 2.198943-5 8.825689+1 2.204282-5 9.237603+1 2.206499-5 9.360723+1 2.209923-5 9.499468+1 2.213095-5 9.577001+1 2.217655-5 9.613871+1 2.221823-5 9.582719+1 2.225842-5 9.503743+1 2.229661-5 9.389769+1 2.233380-5 9.244810+1 2.237886-5 9.024695+1 2.243388-5 8.687034+1 2.247577-5 8.376841+1 2.250259-5 8.153833+1 2.254926-5 7.722056+1 2.257260-5 7.486965+1 2.261195-5 7.065827+1 2.262796-5 6.886982+1 2.266825-5 6.422932+1 2.268168-5 6.265079+1 2.272196-5 5.787489+1 2.273539-5 5.628260+1 2.278910-5 5.001260+1 2.281203-5 4.742221+1 2.286605-5 4.163116+1 2.297409-5 3.178215+1 2.302811-5 2.782766+1 2.308628-5 2.426857+1 2.313906-5 2.160392+1 2.318523-5 1.965297+1 2.322564-5 1.819409+1 2.329634-5 1.609410+1 2.334938-5 1.481720+1 2.342892-5 1.325194+1 2.350847-5 1.198865+1 2.362420-5 1.050827+1 2.375472-5 9.164170+0 2.391351-5 7.805954+0 2.420283-5 5.668784+0 2.426484-5 5.228559+0 2.431855-5 4.853266+0 2.444863-5 4.012598+0 2.449374-5 3.766386+0 2.452381-5 3.622731+0 2.455388-5 3.498893+0 2.461402-5 3.322064+0 2.467416-5 3.255980+0 2.468919-5 3.258461+0 2.473430-5 3.313190+0 2.474742-5 3.342423+0 2.477039-5 3.407718+0 2.478761-5 3.468170+0 2.481345-5 3.576383+0 2.483929-5 3.704128+0 2.488093-5 3.945670+0 2.497618-5 4.607526+0 2.504517-5 5.113444+0 2.509883-5 5.483052+0 2.512672-5 5.659726+0 2.515334-5 5.816284+0 2.517996-5 5.960042+0 2.520567-5 6.086257+0 2.524424-5 6.252314+0 2.528280-5 6.391608+0 2.537545-5 6.632286+0 2.543742-5 6.735382+0 2.549657-5 6.801255+0 2.555573-5 6.839378+0 2.560957-5 6.849834+0 2.565298-5 6.840066+0 2.570783-5 6.802434+0 2.576268-5 6.735192+0 2.581497-5 6.644064+0 2.587893-5 6.501138+0 2.593539-5 6.353748+0 2.603196-5 6.083645+0 2.614956-5 5.787427+0 2.622922-5 5.639233+0 2.626576-5 5.588311+0 2.634517-5 5.512106+0 2.646871-5 5.460501+0 2.667512-5 5.411499+0 2.678961-5 5.357864+0 2.713696-5 5.131186+0 2.802691-5 4.571302+0 2.870000-5 4.242930+0 2.958087-5 3.870285+0 3.004307-5 3.712507+0 3.047510-5 3.626248+0 3.120000-5 3.499218+0 3.190000-5 3.362614+0 3.330000-5 3.103377+0 3.408003-5 2.990706+0 3.500000-5 2.902366+0 3.589219-5 2.872601+0 3.641246-5 2.885926+0 3.722721-5 2.951229+0 3.758374-5 2.998723+0 3.850000-5 3.180745+0 3.938175-5 3.427299+0 4.000000-5 3.652944+0 4.083476-5 4.020830+0 4.168694-5 4.471805+0 4.234138-5 4.874892+0 4.518829-5 7.178032+0 4.677351-5 8.843573+0 4.804144-5 1.034136+1 4.930936-5 1.199637+1 5.099936-5 1.438330+1 5.248075-5 1.663006+1 5.370318-5 1.858148+1 5.450000-5 1.988910+1 5.580000-5 2.208003+1 5.650000-5 2.328200+1 5.800000-5 2.590846+1 6.008614-5 2.963562+1 6.070000-5 3.074849+1 6.237348-5 3.380110+1 6.309573-5 3.512510+1 6.531306-5 3.922914+1 6.650000-5 4.143091+1 6.872310-5 4.561707+1 7.161434-5 5.109211+1 7.585776-5 5.922652+1 8.145265-5 7.008568+1 8.613000-5 7.934507+1 9.146396-5 8.985579+1 9.650109-5 9.951302+1 1.002518-4 1.062999+2 1.020352-4 1.103472+2 1.027634-4 1.133091+2 1.041689-4 1.207007+2 1.045563-4 1.222248+2 1.049510-4 1.233042+2 1.063588-4 1.253873+2 1.069315-4 1.267538+2 1.084643-4 1.318423+2 1.091924-4 1.337080+2 1.118092-4 1.388087+2 1.144500-4 1.444976+2 1.173535-4 1.500689+2 1.206118-4 1.557397+2 1.247200-4 1.624316+2 1.306600-4 1.717229+2 1.365000-4 1.803684+2 1.420965-4 1.878675+2 1.490002-4 1.982600+2 1.492562-4 1.992436+2 1.499910-4 2.029860+2 1.521547-4 2.182150+2 1.526159-4 2.202241+2 1.529835-4 2.210667+2 1.533592-4 2.212196+2 1.539585-4 2.202113+2 1.556271-4 2.147720+2 1.568236-4 2.131565+2 1.577848-4 2.136221+2 1.587405-4 2.150332+2 1.632564-4 2.244627+2 1.678952-4 2.324754+2 1.753296-4 2.436141+2 1.838132-4 2.550631+2 1.932586-4 2.668134+2 2.053525-4 2.797879+2 2.190680-4 2.924759+2 2.317395-4 3.024895+2 2.437109-4 3.108197+2 2.571588-4 3.191009+2 2.736293-4 3.278793+2 2.917427-4 3.358455+2 3.085851-4 3.417865+2 3.273651-4 3.471214+2 3.507519-4 3.520172+2 3.779212-4 3.558586+2 4.004055-4 3.578900+2 4.290422-4 3.589277+2 4.597270-4 3.589051+2 4.912576-4 3.578025+2 5.202954-4 3.559898+2 5.544846-4 3.531167+2 5.888437-4 3.493665+2 6.237348-4 3.447235+2 6.598460-4 3.390918+2 7.003320-4 3.317303+2 7.452684-4 3.215754+2 7.852356-4 3.114838+2 8.265433-4 2.998213+2 8.652354-4 2.874552+2 9.015712-4 2.741480+2 9.332643-4 2.608146+2 9.585866-4 2.486263+2 9.815785-4 2.360172+2 1.002896-3 2.226373+2 1.021132-3 2.095291+2 1.036026-3 1.972760+2 1.049861-3 1.842498+2 1.061684-3 1.714741+2 1.071691-3 1.589572+2 1.081019-3 1.452399+2 1.088230-3 1.327127+2 1.093817-3 1.216199+2 1.097450-3 1.138135+2 1.099985-3 1.081931+2 1.105230-3 9.664589+1 1.108993-3 8.912879+1 1.111352-3 8.510431+1 1.113576-3 8.199488+1 1.114812-3 8.061070+1 1.116146-3 7.942330+1 1.117415-3 7.861151+1 1.119108-3 7.804022+1 1.120754-3 7.806957+1 1.122505-3 7.874935+1 1.123993-3 7.985277+1 1.125401-3 8.133528+1 1.126548-3 8.284900+1 1.127908-3 8.498643+1 1.129603-3 8.814322+1 1.131171-3 9.152014+1 1.133439-3 9.710212+1 1.136129-3 1.046677+2 1.144130-3 1.318664+2 1.148406-3 1.486022+2 1.151530-3 1.615560+2 1.154425-3 1.739710+2 1.157325-3 1.866510+2 1.159950-3 1.981906+2 1.163587-3 2.139968+2 1.167002-3 2.283414+2 1.170000-3 2.403211+2 1.174295-3 2.562114+2 1.179688-3 2.738015+2 1.184056-3 2.861547+2 1.190628-3 3.019450+2 1.197665-3 3.159068+2 1.205730-3 3.291679+2 1.213407-3 3.397352+2 1.222767-3 3.504060+2 1.231251-3 3.582335+2 1.240318-3 3.649174+2 1.269567-3 3.817680+2 1.279153-3 3.900941+2 1.288178-3 4.005256+2 1.311796-3 4.325926+2 1.318105-3 4.403194+2 1.324586-3 4.474108+2 1.334058-3 4.562767+2 1.345733-3 4.652566+2 1.357826-3 4.730540+2 1.374083-3 4.820940+2 1.387981-3 4.888383+2 1.411014-3 4.985393+2 1.447836-3 5.110125+2 1.490566-3 5.220423+2 1.556832-3 5.346414+2 1.617315-3 5.427254+2 1.702219-3 5.496720+2 1.811455-3 5.532103+2 1.927525-3 5.531873+2 2.052048-3 5.493400+2 2.275015-3 5.381185+2 2.436378-3 5.275590+2 2.697966-3 5.089411+2 3.035201-3 4.829602+2 3.415368-3 4.539425+2 3.771563-3 4.279006+2 4.047950-3 4.088597+2 4.402456-3 3.851500+2 4.877017-3 3.556492+2 5.281533-3 3.321320+2 5.733733-3 3.077608+2 6.224893-3 2.833813+2 6.714552-3 2.608908+2 7.268672-3 2.375954+2 7.543129-3 2.267997+2 7.823096-3 2.161574+2 8.093288-3 2.062378+2 8.539881-3 1.904495+2 8.902901-3 1.779061+2 9.076844-3 1.718690+2 9.348903-3 1.621971+2 9.557588-3 1.542937+2 9.649450-3 1.505745+2 9.733024-3 1.469895+2 9.847251-3 1.416076+2 9.940909-3 1.364903+2 9.989469-3 1.334111+2 1.003140-2 1.304099+2 1.008075-2 1.263884+2 1.013924-2 1.210016+2 1.021500-2 1.140564+2 1.025287-2 1.113877+2 1.028111-2 1.100696+2 1.030897-2 1.094645+2 1.033777-2 1.096180+2 1.036490-2 1.104652+2 1.039109-2 1.118503+2 1.043667-2 1.152260+2 1.051817-2 1.222933+2 1.056637-2 1.260282+2 1.060000-2 1.282331+2 1.064915-2 1.308561+2 1.071249-2 1.333664+2 1.076468-2 1.349010+2 1.086577-2 1.369974+2 1.098584-2 1.385403+2 1.114002-2 1.396076+2 1.130693-2 1.400157+2 1.158771-2 1.396066+2 1.196587-2 1.378282+2 1.223635-2 1.360853+2 1.271671-2 1.324483+2 1.334643-2 1.270812+2 1.412511-2 1.202665+2 1.521399-2 1.110525+2 1.660414-2 1.004246+2 1.840772-2 8.849054+1 2.038100-2 7.760526+1 2.187762-2 7.060325+1 2.409271-2 6.170923+1 2.617436-2 5.467237+1 2.904003-2 4.664937+1 3.491122-2 3.486071+1 3.891326-2 2.921500+1 4.618645-2 2.183022+1 5.739026-2 1.506884+1 7.697168-2 9.020783+0 9.558230-2 6.135134+0 1.138223-1 4.467054+0 1.363952-1 3.191094+0 1.765768-1 1.958274+0 2.335402-1 1.145772+0 3.240014-1 6.070793-1 4.732364-1 2.886680-1 7.673615-1 1.108052-1 1.776032+0 2.079088-2 5.363532+0 2.282157-3 1.619761+1 2.502637-4 4.891600+1 2.744123-5 1.477239+2 3.008876-6 4.461192+2 3.299167-7 1.584893+3 2.614003-8 5.011872+3 2.614003-9 1.584893+4 2.61400-10 5.011872+4 2.61400-11 1.000000+5 6.56608-12 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.508100-7 1.258900-6 1.506900-6 1.584900-6 2.388300-6 1.995300-6 3.785200-6 2.511900-6 5.999200-6 3.162300-6 9.508000-6 3.981100-6 1.506900-5 5.011900-6 2.388300-5 6.309600-6 3.785100-5 7.943300-6 5.999000-5 1.000000-5 9.507700-5 1.258900-5 1.506800-4 1.584900-5 2.387600-4 1.995300-5 3.782800-4 2.511900-5 5.993700-4 3.162300-5 9.497400-4 3.981100-5 1.505000-3 5.011900-5 2.384900-3 6.309600-5 3.779300-3 7.943300-5 5.983300-3 1.000000-4 9.470400-3 1.258900-4 1.499300-2 1.584900-4 2.369600-2 1.995300-4 3.742400-2 2.511900-4 5.896500-2 3.162300-4 9.260400-2 3.981100-4 1.446700-1 5.011900-4 2.238500-1 6.309600-4 3.418400-1 7.943300-4 5.125800-1 1.000000-3 7.506400-1 1.258900-3 1.067300+0 1.584900-3 1.467900+0 1.995300-3 1.951500+0 2.511900-3 2.519500+0 3.162300-3 3.182900+0 3.981100-3 3.968200+0 5.011900-3 4.898500+0 6.309600-3 5.972900+0 7.943300-3 7.170500+0 1.000000-2 8.470900+0 1.258900-2 9.800800+0 1.584900-2 1.106700+1 1.995300-2 1.217800+1 2.511900-2 1.312600+1 3.162300-2 1.392000+1 3.981100-2 1.445100+1 5.011900-2 1.472800+1 6.309600-2 1.476200+1 7.943300-2 1.458800+1 1.000000-1 1.422300+1 1.258900-1 1.369200+1 1.584900-1 1.302700+1 1.995300-1 1.226600+1 2.511900-1 1.144300+1 3.162300-1 1.058900+1 3.981100-1 9.731000+0 5.011900-1 8.885500+0 6.309600-1 8.063700+0 7.943300-1 7.272900+0 1.000000+0 6.525000+0 1.258900+0 5.816500+0 1.584900+0 5.152400+0 1.995300+0 4.535400+0 2.511900+0 3.967400+0 3.162300+0 3.449500+0 3.981100+0 2.981600+0 5.011900+0 2.562900+0 6.309600+0 2.191600+0 7.943300+0 1.865000+0 1.000000+1 1.580100+0 1.258900+1 1.333300+0 1.584900+1 1.121000+0 1.995300+1 9.393300-1 2.511900+1 7.847700-1 3.162300+1 6.538600-1 3.981100+1 5.434500-1 5.011900+1 4.506900-1 6.309600+1 3.730200-1 7.943300+1 3.081700-1 1.000000+2 2.541700-1 1.258900+2 2.093100-1 1.584900+2 1.721400-1 1.995300+2 1.413800-1 2.511900+2 1.159900-1 3.162300+2 9.504800-2 3.981100+2 7.781200-2 5.011900+2 6.364200-2 6.309600+2 5.200700-2 7.943300+2 4.246400-2 1.000000+3 3.464500-2 1.258900+3 2.824600-2 1.584900+3 2.301300-2 1.995300+3 1.873800-2 2.511900+3 1.524700-2 3.162300+3 1.240000-2 3.981100+3 1.007800-2 5.011900+3 8.187300-3 6.309600+3 6.647800-3 7.943300+3 5.395200-3 1.000000+4 4.376600-3 1.258900+4 3.548800-3 1.584900+4 2.876300-3 1.995300+4 2.330400-3 2.511900+4 1.887300-3 3.162300+4 1.527900-3 3.981100+4 1.236500-3 5.011900+4 1.000300-3 6.309600+4 8.090100-4 7.943300+4 6.540600-4 1.000000+5 5.286300-4 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976755-4 5.011872-4 5.005055-4 6.309573-4 6.298825-4 7.943282-4 7.926371-4 1.000000-3 9.973461-4 1.258925-3 1.254774-3 1.584893-3 1.578419-3 1.995262-3 1.985178-3 2.511886-3 2.496224-3 3.162278-3 3.137880-3 3.981072-3 3.942946-3 5.011872-3 4.952162-3 6.309573-3 6.216139-3 7.943282-3 7.797222-3 1.000000-2 9.773100-3 1.258925-2 1.223782-2 1.584893-2 1.530779-2 1.995262-2 1.912332-2 2.511886-2 2.385291-2 3.162278-2 2.969760-2 3.981072-2 3.689598-2 5.011872-2 4.573106-2 6.309573-2 5.653069-2 7.943282-2 6.966786-2 1.000000-1 8.558214-2 1.258925-1 1.047830-1 1.584893-1 1.278462-1 1.995262-1 1.554769-1 2.511886-1 1.884338-1 3.162278-1 2.276138-1 3.981072-1 2.740176-1 5.011872-1 3.288445-1 6.309573-1 3.934970-1 7.943282-1 4.695854-1 1.000000+0 5.589779-1 1.258925+0 6.643235-1 1.584893+0 7.886716-1 1.995262+0 9.357639-1 2.511886+0 1.110238+0 3.162278+0 1.317860+0 3.981072+0 1.565642+0 5.011872+0 1.862225+0 6.309573+0 2.218210+0 7.943282+0 2.646520+0 1.000000+1 3.162880+0 1.258925+1 3.786642+0 1.584893+1 4.541548+0 1.995262+1 5.456418+0 2.511886+1 6.566938+0 3.162278+1 7.916633+0 3.981072+1 9.558819+0 5.011872+1 1.155938+1 6.309573+1 1.399871+1 7.943282+1 1.697622+1 1.000000+2 2.061344+1 1.258925+2 2.506057+1 1.584893+2 3.050245+1 1.995262+2 3.716529+1 2.511886+2 4.533030+1 3.162278+2 5.534292+1 3.981072+2 6.762828+1 5.011872+2 8.271052+1 6.309573+2 1.012402+2 7.943282+2 1.240159+2 1.000000+3 1.520237+2 1.258925+3 1.864910+2 1.584893+3 2.289180+2 1.995262+3 2.811797+2 2.511886+3 3.455627+2 3.162278+3 4.249389+2 3.981072+3 5.228211+2 5.011872+3 6.435789+2 6.309573+3 7.926353+2 7.943282+3 9.766612+2 1.000000+4 1.203929+3 1.258925+4 1.484738+3 1.584893+4 1.831808+3 1.995262+4 2.260833+3 2.511886+4 2.791392+3 3.162278+4 3.447713+3 3.981072+4 4.259667+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88242-10 1.995262-5 1.090737-9 2.511886-5 1.728670-9 3.162278-5 2.739739-9 3.981072-5 4.342148-9 5.011872-5 6.881695-9 6.309573-5 1.090632-8 7.943282-5 1.728018-8 1.000000-4 2.738174-8 1.258925-4 4.339312-8 1.584893-4 6.873603-8 1.995262-4 1.088874-7 2.511886-4 1.724241-7 3.162278-4 2.728919-7 3.981072-4 4.316332-7 5.011872-4 6.816930-7 6.309573-4 1.074820-6 7.943282-4 1.691159-6 1.000000-3 2.653922-6 1.258925-3 4.151489-6 1.584893-3 6.474387-6 1.995262-3 1.008417-5 2.511886-3 1.566279-5 3.162278-3 2.439717-5 3.981072-3 3.812602-5 5.011872-3 5.970992-5 6.309573-3 9.343479-5 7.943282-3 1.460599-4 1.000000-2 2.268996-4 1.258925-2 3.514367-4 1.584893-2 5.411426-4 1.995262-2 8.292988-4 2.511886-2 1.265955-3 3.162278-2 1.925176-3 3.981072-2 2.914738-3 5.011872-2 4.387666-3 6.309573-2 6.565043-3 7.943282-2 9.764961-3 1.000000-1 1.441786-2 1.258925-1 2.110956-2 1.584893-1 3.064315-2 1.995262-1 4.404932-2 2.511886-1 6.275485-2 3.162278-1 8.861401-2 3.981072-1 1.240896-1 5.011872-1 1.723428-1 6.309573-1 2.374603-1 7.943282-1 3.247429-1 1.000000+0 4.410221-1 1.258925+0 5.946019-1 1.584893+0 7.962216-1 1.995262+0 1.059498+0 2.511886+0 1.401648+0 3.162278+0 1.844418+0 3.981072+0 2.415430+0 5.011872+0 3.149648+0 6.309573+0 4.091363+0 7.943282+0 5.296762+0 1.000000+1 6.837120+0 1.258925+1 8.802612+0 1.584893+1 1.130738+1 1.995262+1 1.449620+1 2.511886+1 1.855193+1 3.162278+1 2.370614+1 3.981072+1 3.025190+1 5.011872+1 3.855935+1 6.309573+1 4.909702+1 7.943282+1 6.245661+1 1.000000+2 7.938656+1 1.258925+2 1.008320+2 1.584893+2 1.279869+2 1.995262+2 1.623609+2 2.511886+2 2.058583+2 3.162278+2 2.608848+2 3.981072+2 3.304789+2 5.011872+2 4.184767+2 6.309573+2 5.297171+2 7.943282+2 6.703123+2 1.000000+3 8.479763+2 1.258925+3 1.072434+3 1.584893+3 1.355975+3 1.995262+3 1.714083+3 2.511886+3 2.166324+3 3.162278+3 2.737339+3 3.981072+3 3.458251+3 5.011872+3 4.368293+3 6.309573+3 5.516938+3 7.943282+3 6.966621+3 1.000000+4 8.796071+3 1.258925+4 1.110452+4 1.584893+4 1.401712+4 1.995262+4 1.769179+4 2.511886+4 2.232747+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.880000-6 1.327467+7 5.000000-6 1.263023+7 5.000000-6 1.924209+7 5.308844-6 1.705897+7 5.432503-6 1.627628+7 5.888437-6 1.375761+7 6.025596-6 1.310351+7 6.531306-6 1.100432+7 6.700000-6 1.040650+7 7.079458-6 9.199455+6 7.328245-6 8.507323+6 7.852356-6 7.251694+6 8.035261-6 6.871298+6 8.609938-6 5.825781+6 8.810489-6 5.509946+6 9.440609-6 4.644845+6 9.549926-6 4.512925+6 1.023293-5 3.783078+6 1.035142-5 3.672165+6 1.109175-5 3.060463+6 1.122018-5 2.967881+6 1.169000-5 2.653683+6 1.169000-5 3.886251+6 1.188502-5 3.632642+6 1.202264-5 3.465485+6 1.216186-5 3.307030+6 1.252000-5 2.936316+6 1.280000-5 2.684808+6 1.288250-5 2.615804+6 1.310000-5 2.445505+6 1.318257-5 2.384423+6 1.335000-5 2.266235+6 1.360000-5 2.103840+6 1.385000-5 1.957063+6 1.396368-5 1.894772+6 1.410000-5 1.823704+6 1.428894-5 1.730786+6 1.435000-5 1.702017+6 1.455000-5 1.611884+6 1.479108-5 1.511992+6 1.500000-5 1.432448+6 1.522000-5 1.354486+6 1.531087-5 1.323993+6 1.540000-5 1.294786+6 1.555000-5 1.247582+6 1.570000-5 1.202860+6 1.585000-5 1.160468+6 1.600000-5 1.120266+6 1.610000-5 1.094579+6 1.615000-5 1.082012+6 1.630000-5 1.045488+6 1.645000-5 1.010807+6 1.659587-5 9.787415+5 1.660000-5 9.778466+5 1.675000-5 9.460578+5 1.685000-5 9.257438+5 1.698244-5 8.998688+5 1.710000-5 8.778393+5 1.720000-5 8.597645+5 1.732100-5 8.386755+5 1.737801-5 8.290214+5 1.740000-5 8.253153+5 1.750000-5 8.087758+5 1.760000-5 7.927654+5 1.774000-5 7.712029+5 1.778279-5 7.647993+5 1.811000-5 7.179319+5 1.819701-5 7.062671+5 1.826000-5 6.980200+5 1.832000-5 6.903148+5 1.837000-5 6.840035+5 1.842000-5 6.777900+5 1.847000-5 6.716725+5 1.852000-5 6.656495+5 1.857000-5 6.597191+5 1.862000-5 6.538797+5 1.866000-5 6.492727+5 1.870000-5 6.447220+5 1.873000-5 6.413455+5 1.877000-5 6.368917+5 1.881000-5 6.324920+5 1.883649-5 6.296092+5 1.885000-5 6.281297+5 1.890000-5 6.227122+5 1.896000-5 6.163194+5 1.902000-5 6.100424+5 1.905461-5 6.064746+5 1.907000-5 6.048708+5 1.912000-5 5.997164+5 1.920000-5 5.916304+5 1.931000-5 5.808269+5 1.965000-5 5.496022+5 1.980000-5 5.367985+5 1.995262-5 5.243386+5 2.010000-5 5.128225+5 2.025000-5 5.015967+5 2.040000-5 4.908459+5 2.041738-5 4.896256+5 2.055000-5 4.804459+5 2.070000-5 4.704686+5 2.085000-5 4.607306+5 2.100000-5 4.513977+5 2.115000-5 4.424506+5 2.130000-5 4.338708+5 2.150000-5 4.229727+5 2.170600-5 4.123577+5 2.190000-5 4.028916+5 2.213095-5 3.922510+5 2.238721-5 3.810630+5 2.240000-5 3.805204+5 2.270000-5 3.681734+5 2.300000-5 3.567658+5 2.330000-5 3.462147+5 2.360000-5 3.364464+5 2.398833-5 3.248550+5 2.400000-5 3.245186+5 2.435000-5 3.149126+5 2.454709-5 3.098098+5 2.473400-5 3.051944+5 2.520000-5 2.944548+5 2.570396-5 2.841065+5 2.613100-5 2.762396+5 2.660725-5 2.682821+5 2.670000-5 2.668583+5 2.687000-5 2.641944+5 2.687000-5 1.853234+6 2.730000-5 1.802081+6 2.737000-5 1.793953+6 2.737000-5 2.709214+6 2.740000-5 2.705837+6 2.754229-5 2.692695+6 2.800000-5 2.651908+6 2.860000-5 2.611774+6 2.870000-5 2.607188+6 2.920000-5 2.584606+6 2.951209-5 2.576414+6 2.980000-5 2.568904+6 3.019952-5 2.565446+6 3.040000-5 2.563854+6 3.100000-5 2.568124+6 3.120000-5 2.572703+6 3.126079-5 2.574713+6 3.170000-5 2.589015+6 3.190000-5 2.598497+6 3.235937-5 2.625118+6 3.260000-5 2.642229+6 3.311311-5 2.683743+6 3.330000-5 2.701535+6 3.349654-5 2.721945+6 3.350000-5 2.722305+6 3.400000-5 2.774381+6 3.467369-5 2.859533+6 3.471900-5 2.865289+6 3.500000-5 2.903243+6 3.548134-5 2.974747+6 3.570000-5 3.007626+6 3.589219-5 3.038184+6 3.610000-5 3.071479+6 3.690000-5 3.209960+6 3.758374-5 3.336398+6 3.801894-5 3.422282+6 3.845918-5 3.510721+6 3.850000-5 3.519000+6 3.935501-5 3.699791+6 4.000000-5 3.839833+6 4.073803-5 4.004410+6 4.120975-5 4.112013+6 4.168694-5 4.222521+6 4.300000-5 4.536616+6 4.315191-5 4.573901+6 4.350000-5 4.657120+6 4.365158-5 4.693667+6 4.500000-5 5.019336+6 4.518559-5 5.065218+6 4.570882-5 5.190524+6 4.677351-5 5.444121+6 4.731513-5 5.569887+6 4.850000-5 5.841436+6 4.900000-5 5.951991+6 5.011872-5 6.193811+6 5.080000-5 6.334231+6 5.188000-5 6.550066+6 5.248075-5 6.663065+6 5.308844-5 6.772417+6 5.370318-5 6.883463+6 5.450000-5 7.016459+6 5.559043-5 7.188905+6 5.580000-5 7.222175+6 5.650000-5 7.322804+6 5.754399-5 7.463551+6 5.800000-5 7.525140+6 5.850000-5 7.585590+6 5.956621-5 7.704993+6 6.025596-5 7.782182+6 6.070000-5 7.826306+6 6.165950-5 7.913029+6 6.237348-5 7.977385+6 6.309573-5 8.033700+6 6.400000-5 8.096213+6 6.456542-5 8.135144+6 6.531306-5 8.186261+6 6.606934-5 8.228914+6 6.650000-5 8.249933+6 6.683439-5 8.266207+6 6.839116-5 8.341426+6 6.918310-5 8.371747+6 7.000000-5 8.397391+6 7.161434-5 8.447524+6 7.244360-5 8.466105+6 7.328245-5 8.484759+6 7.413102-5 8.498374+6 7.500000-5 8.512209+6 7.585776-5 8.525636+6 7.650000-5 8.531055+6 7.762471-5 8.540477+6 8.000000-5 8.547865+6 8.035261-5 8.548955+6 8.128305-5 8.545458+6 8.300000-5 8.538996+6 8.609938-5 8.515266+6 8.810489-5 8.487879+6 8.912509-5 8.470368+6 9.120108-5 8.435344+6 9.332543-5 8.388097+6 9.660509-5 8.304607+6 9.885531-5 8.236439+6 9.900000-5 8.232122+6 1.023293-4 8.121463+6 1.047129-4 8.030648+6 1.059254-4 7.980834+6 1.072800-4 7.926213+6 1.072800-4 8.282912+6 1.083927-4 8.233680+6 1.086000-4 8.223434+6 1.100000-4 8.153600+6 1.109175-4 8.108669+6 1.110100-4 8.103824+6 1.110100-4 8.266706+6 1.122018-4 8.202821+6 1.135011-4 8.133606+6 1.137000-4 8.122155+6 1.140000-4 8.105205+6 1.152000-4 8.037874+6 1.170000-4 7.940964+6 1.172800-4 7.925215+6 1.174898-4 7.913688+6 1.183000-4 7.869526+6 1.190000-4 7.832110+6 1.202264-4 7.768587+6 1.205000-4 7.753295+6 1.216186-4 7.692943+6 1.225000-4 7.646117+6 1.230269-4 7.619134+6 1.245000-4 7.540780+6 1.247200-4 7.529321+6 1.260000-4 7.464388+6 1.273503-4 7.397759+6 1.280000-4 7.364004+6 1.303167-4 7.247390+6 1.303300-4 7.246733+6 1.306100-4 7.232276+6 1.306600-4 7.229729+6 1.333521-4 7.096632+6 1.348963-4 7.023352+6 1.350000-4 7.018497+6 1.365000-4 6.945035+6 1.380384-4 6.871966+6 1.400000-4 6.777823+6 1.412538-4 6.719517+6 1.445440-4 6.572908+6 1.450000-4 6.552026+6 1.462177-4 6.497239+6 1.500000-4 6.328303+6 1.531087-4 6.197422+6 1.548817-4 6.125786+6 1.566751-4 6.051402+6 1.577500-4 6.006014+6 1.577500-4 6.265958+6 1.609000-4 6.135140+6 1.621810-4 6.083870+6 1.640590-4 6.010366+6 1.659587-4 5.937504+6 1.678804-4 5.862463+6 1.698244-4 5.786523+6 1.760000-4 5.556641+6 1.778279-4 5.491569+6 1.820000-4 5.338583+6 1.862087-4 5.191203+6 1.883649-4 5.119146+6 1.900000-4 5.062692+6 1.950000-4 4.893464+6 1.972423-4 4.820124+6 2.018366-4 4.676795+6 2.041738-4 4.602319+6 2.089296-4 4.456222+6 2.137962-4 4.314638+6 2.150000-4 4.280609+6 2.162719-4 4.244006+6 2.190000-4 4.165914+6 2.213095-4 4.101333+6 2.238721-4 4.031900+6 2.300000-4 3.873033+6 2.317395-4 3.829874+6 2.350000-4 3.747692+6 2.371374-4 3.694861+6 2.400000-4 3.626238+6 2.426610-4 3.564222+6 2.483133-4 3.438812+6 2.511886-4 3.377321+6 2.600160-4 3.192369+6 2.620000-4 3.153313+6 2.630268-4 3.133188+6 2.650000-4 3.094935+6 2.660725-4 3.074427+6 2.691535-4 3.016840+6 2.730000-4 2.946499+6 2.754229-4 2.902737+6 2.818383-4 2.790265+6 2.851018-4 2.735920+6 2.917427-4 2.630479+6 3.054921-4 2.422950+6 3.090295-4 2.373873+6 3.100000-4 2.360704+6 3.126079-4 2.325374+6 3.162278-4 2.277145+6 3.235937-4 2.182261+6 3.311311-4 2.091855+6 3.349654-4 2.047444+6 3.388442-4 2.004086+6 3.548134-4 1.836337+6 3.672823-4 1.719024+6 3.700000-4 1.695085+6 3.715352-4 1.681678+6 3.801894-4 1.607917+6 4.027170-4 1.436009+6 4.073803-4 1.403833+6 4.100000-4 1.385961+6 4.120975-4 1.371702+6 4.365158-4 1.221149+6 4.415704-4 1.193143+6 4.466836-4 1.165276+6 4.518559-4 1.137790+6 4.570882-4 1.110938+6 4.731513-4 1.034482+6 4.786301-4 1.010174+6 4.850000-4 9.827625+5 5.011872-4 9.170227+5 5.069907-4 8.951293+5 5.128614-4 8.738109+5 5.150000-4 8.662233+5 5.188000-4 8.529165+5 5.308844-4 8.122017+5 5.370318-4 7.924524+5 5.559043-4 7.359492+5 5.623413-4 7.180068+5 5.754399-4 6.831387+5 5.821032-4 6.663404+5 5.888437-4 6.499856+5 6.025596-4 6.180888+5 6.095369-4 6.027025+5 6.165950-4 5.877314+5 6.456542-4 5.311769+5 6.500000-4 5.234032+5 6.606934-4 5.048000+5 6.683439-4 4.920339+5 6.760830-4 4.796164+5 6.839116-4 4.674001+5 7.079458-4 4.327121+5 7.244360-4 4.110469+5 7.328245-4 4.005251+5 7.413102-4 3.902930+5 7.800000-4 3.477236+5 7.943282-4 3.336731+5 8.000000-4 3.283167+5 8.035261-4 3.250311+5 8.128305-4 3.165944+5 8.222426-4 3.083051+5 8.317638-4 3.002474+5 8.413951-4 2.924144+5 8.511380-4 2.847742+5 8.810489-4 2.630305+5 8.912509-4 2.561421+5 9.015711-4 2.494104+5 9.225714-4 2.363564+5 9.440609-4 2.240268+5 9.660509-4 2.123413+5 9.772372-4 2.067116+5 9.885531-4 2.012199+5 1.000000-3 1.958246+5 1.023293-3 1.854375+5 1.059254-3 1.709373+5 1.071519-3 1.663614+5 1.096478-3 1.575441+5 1.122000-3 1.491349+5 1.122000-3 3.091185+5 1.122018-3 3.092600+5 1.122250-3 3.155272+5 1.122500-3 3.264240+5 1.122800-3 3.393758+5 1.123100-3 3.522104+5 1.123400-3 3.649595+5 1.123800-3 3.815618+5 1.124200-3 3.979107+5 1.124600-3 4.137885+5 1.125000-3 4.292129+5 1.125500-3 4.478662+5 1.126000-3 4.657423+5 1.126500-3 4.827346+5 1.126900-3 4.957013+5 1.127100-3 4.959835+5 1.128100-3 5.193300+5 1.128300-3 5.232867+5 1.130000-3 5.489372+5 1.131500-3 5.689248+5 1.133400-3 5.868050+5 1.135011-3 5.974902+5 1.136000-3 6.041829+5 1.139000-3 6.216045+5 1.142300-3 6.351528+5 1.143000-3 6.367557+5 1.146000-3 6.492040+5 1.150400-3 6.559263+5 1.150400-3 7.319793+5 1.150510-3 7.338258+5 1.150800-3 7.403880+5 1.151100-3 7.471301+5 1.151400-3 7.538418+5 1.151700-3 7.604839+5 1.152100-3 7.692037+5 1.152550-3 7.788220+5 1.153000-3 7.881614+5 1.153500-3 7.976298+5 1.154000-3 8.067085+5 1.154500-3 8.153674+5 1.155000-3 8.236265+5 1.155600-3 8.330018+5 1.156300-3 8.431634+5 1.156900-3 8.511994+5 1.157300-3 8.562236+5 1.158000-3 8.643564+5 1.158700-3 8.716796+5 1.159500-3 8.791396+5 1.160400-3 8.864566+5 1.161449-3 8.936617+5 1.161500-3 8.939945+5 1.162700-3 9.001656+5 1.164000-3 9.053598+5 1.165000-3 9.084594+5 1.166500-3 9.119101+5 1.168500-3 9.148338+5 1.170000-3 9.160886+5 1.173000-3 9.165410+5 1.178000-3 9.150397+5 1.180000-3 9.141413+5 1.188502-3 9.053151+5 1.190000-3 9.037764+5 1.202264-3 8.875654+5 1.205000-3 8.835492+5 1.215000-3 8.676313+5 1.216186-3 8.655908+5 1.225000-3 8.506158+5 1.240000-3 8.240300+5 1.258925-3 7.931362+5 1.273503-3 7.704249+5 1.288250-3 7.485999+5 1.290000-3 7.460665+5 1.290700-3 7.450331+5 1.290700-3 8.470510+5 1.318257-3 8.045703+5 1.333521-3 7.821224+5 1.350000-3 7.588747+5 1.364583-3 7.392089+5 1.365000-3 7.386565+5 1.390000-3 7.070730+5 1.396368-3 6.994049+5 1.412538-3 6.805742+5 1.428894-3 6.622634+5 1.462177-3 6.266742+5 1.500000-3 5.894652+5 1.513561-3 5.768898+5 1.554900-3 5.408169+5 1.566751-3 5.310471+5 1.570000-3 5.284131+5 1.584893-3 5.164247+5 1.603245-3 5.021829+5 1.621810-3 4.882465+5 1.678804-3 4.487482+5 1.698244-3 4.363097+5 1.757924-3 4.010725+5 1.778279-3 3.898391+5 1.819701-3 3.682072+5 1.820000-3 3.680572+5 1.862087-3 3.476488+5 1.905461-3 3.282432+5 1.927525-3 3.189608+5 1.950000-3 3.097621+5 1.972423-3 3.008893+5 2.000000-3 2.904650+5 2.041738-3 2.756414+5 2.065380-3 2.677147+5 2.089296-3 2.600157+5 2.187762-3 2.313992+5 2.213095-3 2.247199+5 2.238721-3 2.182386+5 2.300000-3 2.037776+5 2.317395-3 1.998734+5 2.344229-3 1.940193+5 2.371374-3 1.883343+5 2.400000-3 1.825881+5 2.483133-3 1.671834+5 2.511886-3 1.622822+5 2.540973-3 1.575284+5 2.570396-3 1.528550+5 2.600160-3 1.483244+5 2.630268-3 1.439297+5 2.660725-3 1.396646+5 2.786121-3 1.238633+5 2.800000-3 1.222713+5 2.818383-3 1.201935+5 2.851018-3 1.166254+5 2.884032-3 1.131659+5 2.917427-3 1.098119+5 2.951209-3 1.065583+5 2.985383-3 1.033690+5 3.019952-3 1.002617+5 3.090295-3 9.433206+4 3.126079-3 9.148984+4 3.162278-3 8.873545+4 3.198895-3 8.606636+4 3.273407-3 8.097267+4 3.349654-3 7.618296+4 3.388442-3 7.388002+4 3.427678-3 7.164115+4 3.548134-3 6.533438+4 3.589219-3 6.336182+4 3.630781-3 6.143724+4 3.672823-3 5.957264+4 3.715352-3 5.776609+4 3.801894-3 5.431828+4 3.845918-3 5.267288+4 3.890451-3 5.105773+4 4.027170-3 4.651138+4 4.073803-3 4.509047+4 4.120975-3 4.370673+4 4.216965-3 4.106863+4 4.315191-3 3.859294+4 4.365158-3 3.741214+4 4.415704-3 3.626844+4 4.466836-3 3.516060+4 4.518559-3 3.407622+4 4.570882-3 3.302543+4 4.623810-3 3.200808+4 4.677351-3 3.101598+4 4.786301-3 2.912547+4 4.897788-3 2.735250+4 5.011872-3 2.568902+4 5.069907-3 2.489663+4 5.128614-3 2.412687+4 5.188000-3 2.337694+4 5.308844-3 2.194839+4 5.370318-3 2.126755+4 5.432503-3 2.060374+4 5.559043-3 1.933873+4 5.688529-3 1.815254+4 5.888437-3 1.651180+4 6.025596-3 1.549420+4 6.095369-3 1.500987+4 6.165950-3 1.453811+4 6.237348-3 1.408141+4 6.309573-3 1.363902+4 6.456542-3 1.279592+4 6.683439-3 1.163052+4 6.839116-3 1.091481+4 6.918310-3 1.057225+4 6.928200-3 1.053040+4 6.998420-3 1.023754+4 7.079458-3 9.913410+3 7.161434-3 9.599703+3 7.244360-3 9.295973+3 7.413102-3 8.717167+3 7.585776-3 8.175349+3 7.943282-3 7.193224+3 8.000000-3 7.051999+3 8.035261-3 6.966135+3 8.128305-3 6.743978+3 8.222426-3 6.529020+3 8.413951-3 6.119695+3 8.511380-3 5.925006+3 8.609938-3 5.736446+3 9.120108-3 4.882078+3 9.225714-3 4.727538+3 9.332543-3 4.577367+3 9.440609-3 4.430786+3 9.772372-3 4.018118+3 9.885531-3 3.889502+3 1.000000-2 3.764972+3 1.033100-2 3.434435+3 1.033100-2 2.568681+4 1.048000-2 2.487907+4 1.059254-2 2.418417+4 1.060000-2 2.413906+4 1.080000-2 2.305133+4 1.083927-2 2.284580+4 1.085000-2 2.279001+4 1.096478-2 2.217997+4 1.109175-2 2.153127+4 1.135011-2 2.029021+4 1.148154-2 1.969692+4 1.161449-2 1.912106+4 1.188502-2 1.801947+4 1.230269-2 1.648547+4 1.244515-2 1.600388+4 1.258925-2 1.552213+4 1.288250-2 1.460023+4 1.303167-2 1.416010+4 1.348963-2 1.291772+4 1.364583-2 1.252842+4 1.368540-2 1.243235+4 1.428894-2 1.108520+4 1.462177-2 1.042744+4 1.479108-2 1.011339+4 1.500000-2 9.742966+3 1.540000-2 9.084238+3 1.548817-2 8.945666+3 1.566751-2 8.672585+3 1.584893-2 8.407867+3 1.640590-2 7.661234+3 1.659587-2 7.427449+3 1.717908-2 6.758229+3 1.737801-2 6.548863+3 1.757924-2 6.345763+3 1.840772-2 5.594333+3 1.862087-2 5.420826+3 1.949845-2 4.779000+3 2.000000-2 4.458245+3 2.018366-2 4.348160+3 2.041738-2 4.213220+3 2.065380-2 4.079811+3 2.089296-2 3.950629+3 2.162719-2 3.587069+3 2.187762-2 3.473496+3 2.213095-2 3.363508+3 2.290868-2 3.054009+3 2.371374-2 2.773056+3 2.398833-2 2.685181+3 2.454709-2 2.517711+3 2.511886-2 2.360705+3 2.570396-2 2.213476+3 2.630268-2 2.073045+3 2.691535-2 1.941541+3 2.722701-2 1.878952+3 2.800000-2 1.735062+3 2.917427-2 1.543440+3 3.054921-2 1.353718+3 3.162278-2 1.226876+3 3.198895-2 1.186749+3 3.235937-2 1.147937+3 3.311311-2 1.074086+3 3.427678-2 9.720182+2 3.507519-2 9.094287+2 3.589219-2 8.508747+2 3.630781-2 8.230282+2 3.801894-2 7.204595+2 3.890451-2 6.740743+2 3.935501-2 6.517342+2 3.981072-2 6.301132+2 4.265795-2 5.146616+2 4.365158-2 4.810902+2 4.623810-2 4.064301+2 4.677351-2 3.929521+2 4.800000-2 3.642319+2 4.897788-2 3.430906+2 5.069907-2 3.096956+2 5.188000-2 2.892603+2 5.623413-2 2.277851+2 5.688529-2 2.201426+2 5.754399-2 2.127493+2 5.956621-2 1.920273+2 6.025596-2 1.855180+2 6.309573-2 1.616157+2 6.382635-2 1.561374+2 6.683439-2 1.360204+2 7.000000-2 1.184171+2 7.079458-2 1.144777+2 7.498942-2 9.633639+1 7.585776-2 9.306905+1 7.943282-2 8.097426+1 8.035261-2 7.820443+1 8.609938-2 6.346641+1 8.810489-2 5.919943+1 9.015711-2 5.521642+1 9.225714-2 5.150152+1 9.332543-2 4.973899+1 9.549926-2 4.639293+1 1.000000-1 4.036130+1 1.011580-1 3.898016+1 1.023293-1 3.764643+1 1.035142-1 3.635816+1 1.047129-1 3.511401+1 1.071519-1 3.274397+1 1.148154-1 2.655133+1 1.174898-1 2.475947+1 1.188502-1 2.390922+1 1.202264-1 2.308816+1 1.230269-1 2.152963+1 1.244515-1 2.079030+1 1.288250-1 1.872128+1 1.348963-1 1.627953+1 1.380384-1 1.518087+1 1.396368-1 1.465969+1 1.428894-1 1.367039+1 1.445440-1 1.320108+1 1.479108-1 1.231028+1 1.513561-1 1.147959+1 1.531088-1 1.108553+1 1.566751-1 1.033758+1 1.621810-1 9.309217+0 1.678804-1 8.390661+0 1.698244-1 8.105078+0 1.717908-1 7.829234+0 1.737801-1 7.562767+0 1.798871-1 6.816639+0 1.883649-1 5.935156+0 1.927525-1 5.538523+0 1.949845-1 5.350260+0 1.972423-1 5.168405+0 2.065380-1 4.500786+0 2.137962-1 4.061502+0 2.162719-1 3.924817+0 2.187762-1 3.792741+0 2.213095-1 3.665111+0 2.238721-1 3.541780+0 2.290868-1 3.307444+0 2.317395-1 3.196263+0 2.344229-1 3.088841+0 2.426610-1 2.787759+0 2.454709-1 2.694068+0 2.483133-1 2.604823+0 2.511886-1 2.518537+0 2.540973-1 2.435114+0 2.691535-1 2.057675+0 2.722701-1 1.989618+0 2.754229-1 1.923826+0 2.786121-1 1.860216+0 2.851018-1 1.739244+0 2.985383-1 1.523739+0 3.000000-1 1.502511+0 3.054921-1 1.426220+0 3.090295-1 1.379830+0 3.126079-1 1.334952+0 3.162278-1 1.291601+0 3.198895-1 1.249672+0 3.235937-1 1.209102+0 3.273407-1 1.169851+0 3.349654-1 1.096428+0 3.427678-1 1.027619+0 3.507519-1 9.631315-1 3.548134-1 9.324220-1 3.589219-1 9.027460-1 3.672823-1 8.462133-1 3.801894-1 7.694677-1 3.890451-1 7.222140-1 3.935501-1 6.996864-1 4.000000-1 6.690698-1 4.027170-1 6.567445-1 4.120975-1 6.165126-1 4.168694-1 5.977444-1 4.216965-1 5.795488-1 4.315191-1 5.448024-1 4.365158-1 5.282186-1 4.415705-1 5.121394-1 4.466836-1 4.965515-1 4.518559-1 4.814699-1 4.570882-1 4.668513-1 4.623810-1 4.529928-1 4.731513-1 4.264991-1 4.786301-1 4.138393-1 4.841724-1 4.015563-1 4.954502-1 3.780737-1 5.011872-1 3.668780-1 5.069907-1 3.560178-1 5.128614-1 3.457380-1 5.188000-1 3.357557-1 5.308844-1 3.166493-1 5.370318-1 3.075077-1 5.432503-1 2.986302-1 5.495409-1 2.900089-1 5.559043-1 2.816573-1 5.623413-1 2.735495-1 5.688529-1 2.658762-1 5.821032-1 2.511700-1 5.888437-1 2.441248-1 6.095369-1 2.241532-1 6.165950-1 2.178857-1 6.237348-1 2.119556-1 6.382635-1 2.005758-1 6.456542-1 1.951171-1 6.606935-1 1.846414-1 6.683439-1 1.796166-1 6.760830-1 1.747440-1 6.839117-1 1.701431-1 6.998420-1 1.613020-1 7.079458-1 1.570552-1 7.161434-1 1.529203-1 7.244360-1 1.488943-1 7.328245-1 1.449864-1 7.585776-1 1.342026-1 7.673615-1 1.307892-1 7.762471-1 1.274628-1 7.852356-1 1.242209-1 7.943282-1 1.210618-1 8.035261-1 1.179916-1 8.511380-1 1.041610-1 8.609938-1 1.015959-1 8.810489-1 9.665415-2 8.820400-1 9.641923-2 8.912509-1 9.427997-2 9.015711-1 9.196458-2 9.120108-1 8.976500-2 9.225714-1 8.761807-2 9.332543-1 8.552275-2 9.549926-1 8.148157-2 9.660509-1 7.953413-2 9.772372-1 7.764065-2 9.885531-1 7.586272-2 1.000000+0 7.412593-2 1.011579+0 7.242897-2 1.035142+0 6.915053-2 1.047129+0 6.756735-2 1.059254+0 6.602114-2 1.071519+0 6.451037-2 1.083927+0 6.303408-2 1.096478+0 6.159536-2 1.109175+0 6.018940-2 1.122018+0 5.881578-2 1.161449+0 5.500391-2 1.174898+0 5.378902-2 1.188600+0 5.259342-2 1.202264+0 5.144547-2 1.216186+0 5.031453-2 1.230269+0 4.924718-2 1.258925+0 4.718000-2 1.288250+0 4.519964-2 1.303167+0 4.424100-2 1.333521+0 4.238527-2 1.348963+0 4.148937-2 1.364583+0 4.061250-2 1.380384+0 3.977888-2 1.412538+0 3.816267-2 1.428894+0 3.737939-2 1.445440+0 3.661225-2 1.462177+0 3.586124-2 1.479108+0 3.512563-2 1.500000+0 3.424980-2 1.513561+0 3.370133-2 1.603245+0 3.050628-2 1.621810+0 2.990485-2 1.659587+0 2.873745-2 1.678804+0 2.817096-2 1.698244+0 2.761733-2 1.717908+0 2.709170-2 1.737801+0 2.657606-2 1.798871+0 2.508733-2 1.840772+0 2.414189-2 1.883649+0 2.323217-2 1.905461+0 2.279024-2 1.927525+0 2.235793-2 1.949845+0 2.194607-2 1.972423+0 2.154183-2 2.065380+0 1.999796-2 2.089296+0 1.962978-2 2.137962+0 1.891373-2 2.162719+0 1.856671-2 2.187762+0 1.823781-2 2.213095+0 1.791477-2 2.317395+0 1.667878-2 2.344229+0 1.638350-2 2.398833+0 1.580860-2 2.426610+0 1.552970-2 2.454709+0 1.526505-2 2.483133+0 1.500492-2 2.630268+0 1.376930-2 2.660725+0 1.353478-2 2.722701+0 1.307772-2 2.754229+0 1.285572-2 2.786121+0 1.264465-2 2.818383+0 1.243705-2 3.019952+0 1.126109-2 3.054921+0 1.107629-2 3.162278+0 1.053992-2 3.198895+0 1.036749-2 3.273407+0 1.004145-2 3.507519+0 9.123607-3 3.548134+0 8.979076-3 3.672823+0 8.559118-3 3.715352+0 8.423961-3 3.801894+0 8.168160-3 4.120975+0 7.332547-3 4.168694+0 7.220417-3 4.315191+0 6.894245-3 4.365158+0 6.789144-3 4.466836+0 6.589870-3 4.897788+0 5.849615-3 4.954502+0 5.763170-3 5.128614+0 5.511449-3 5.188000+0 5.430242-3 5.308844+0 5.275955-3 5.888437+0 4.634176-3 5.956621+0 4.567900-3 6.165950+0 4.374717-3 6.237348+0 4.312328-3 6.382635+0 4.193575-3 7.161434+0 3.647130-3 7.244360+0 3.596586-3 7.498942+0 3.449130-3 7.585776+0 3.401460-3 7.762471+0 3.310573-3 8.912509+0 2.814059-3 9.015711+0 2.776223-3 9.440609+0 2.629912-3 9.549926+0 2.594646-3 9.772372+0 2.527334-3 1.100000+1 2.207994-3 1.109175+1 2.187165-3 1.122018+1 2.158620-3 1.188502+1 2.021393-3 1.216186+1 1.969087-3 1.258925+1 1.894819-3 1.445440+1 1.624730-3 1.462177+1 1.604049-3 1.479108+1 1.583631-3 1.566751+1 1.485380-3 1.584893+1 1.466516-3 1.603245+1 1.447893-3 1.659587+1 1.394621-3 1.927525+1 1.185528-3 1.972423+1 1.156278-3 2.018366+1 1.127749-3 2.187762+1 1.033334-3 2.213095+1 1.020535-3 2.264644+1 9.959405-4 2.570396+1 8.708957-4 2.600160+1 8.603380-4 2.722701+1 8.193817-4 2.951209+1 7.523436-4 3.273407+1 6.741507-4 3.311311+1 6.659807-4 3.349654+1 6.579229-4 3.388442+1 6.500957-4 3.427678+1 6.423620-4 3.758374+1 5.837143-4 3.845918+1 5.699089-4 4.027170+1 5.432759-4 4.415704+1 4.936858-4 5.128614+1 4.225734-4 5.248075+1 4.125820-4 5.308844+1 4.076815-4 5.370318+1 4.029030-4 5.495409+1 3.935135-4 6.165950+1 3.497483-4 6.382635+1 3.375937-4 6.683439+1 3.220450-4 7.413102+1 2.896289-4 8.810489+1 2.426906-4 9.015711+1 2.370362-4 9.120108+1 2.342610-4 9.225714+1 2.315183-4 9.332543+1 2.288318-4 9.549926+1 2.235519-4 1.135011+2 1.876482-4 1.202264+2 1.770109-4 1.303167+2 1.631252-4 1.479108+2 1.434726-4 1.757924+2 1.204328-4 1.798871+2 1.176544-4 1.819701+2 1.162904-4 1.840772+2 1.149422-4 1.862087+2 1.136202-4 1.905461+2 1.110215-4 2.264644+2 9.333506-5 2.398833+2 8.808947-5 2.600160+2 8.123781-5 2.951209+2 7.153160-5 3.507519+2 6.013729-5 7.161434+2 2.935500-5 7.244360+2 2.901751-5 7.328245+2 2.868391-5 7.413102+2 2.835526-5 7.585776+2 2.770922-5 9.015711+2 2.331063-5 9.549926+2 2.200546-5 1.035142+3 2.030014-5 1.174898+3 1.788337-5 2.786121+3 7.535552-6 8.222427+3 2.550919-6 1.135011+4 1.847447-6 1.148154+4 1.826282-6 1.161449+4 1.805360-6 2.317395+4 9.048437-7 3.019952+4 6.943481-7 3.715352+4 5.643921-7 4.677351+4 4.483167-7 4.786301+4 4.381122-7 1.000000+5 2.097001-7 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.880000-6 4.880000-6 5.000000-6 4.880000-6 5.000000-6 4.921234-6 1.169000-5 4.922824-6 1.169000-5 7.069109-6 1.252000-5 6.633384-6 1.335000-5 6.233883-6 1.410000-5 5.910889-6 1.479108-5 5.649823-6 1.540000-5 5.450912-6 1.610000-5 5.261164-6 1.675000-5 5.124450-6 1.740000-5 5.026741-6 1.778279-5 4.987749-6 1.842000-5 4.953812-6 1.907000-5 4.958212-6 1.965000-5 4.994593-6 2.025000-5 5.062764-6 2.085000-5 5.159933-6 2.150000-5 5.295192-6 2.213095-5 5.452310-6 2.300000-5 5.704480-6 2.400000-5 6.032144-6 2.570396-5 6.644328-6 2.687000-5 7.070919-6 2.687000-5 1.480082-5 2.737000-5 1.482000-5 2.737000-5 1.510682-5 3.690000-5 1.554821-5 4.300000-5 1.570676-5 5.308844-5 1.580411-5 8.810489-5 1.585928-5 1.072800-4 1.586614-5 1.072800-4 1.653191-5 1.110100-4 1.651031-5 1.110100-4 1.679917-5 1.205000-4 1.675863-5 1.306600-4 1.684269-5 1.462177-4 1.711287-5 1.577500-4 1.736558-5 1.577500-4 1.842135-5 2.162719-4 1.992857-5 2.630268-4 2.097265-5 3.162278-4 2.197105-5 3.801894-4 2.301581-5 4.570882-4 2.406719-5 5.370318-4 2.499510-5 6.165950-4 2.578457-5 7.328245-4 2.674693-5 8.511380-4 2.754848-5 1.000000-3 2.837580-5 1.122000-3 2.894103-5 1.122000-3 3.796291-5 1.122250-3 3.813863-5 1.123100-3 3.901117-5 1.124200-3 3.987371-5 1.125500-3 4.061646-5 1.126900-3 4.118922-5 1.128300-3 4.147875-5 1.131500-3 4.190528-5 1.139000-3 4.235541-5 1.146000-3 4.258857-5 1.150400-3 4.266543-5 1.150400-3 4.309532-5 1.155600-3 4.357742-5 1.162700-3 4.386065-5 1.180000-3 4.400753-5 1.290700-3 4.410022-5 1.290700-3 4.696592-5 2.000000-3 4.841729-5 2.917427-3 4.987047-5 4.073803-3 5.129237-5 5.559043-3 5.269510-5 7.413102-3 5.403198-5 9.885531-3 5.535931-5 1.033100-2 5.555955-5 1.033100-2 6.899532-5 1.737801-2 6.948424-5 3.630781-2 6.986977-5 1.071519-1 7.012286-5 1.479108+0 7.024110-5 1.000000+5 7.024095-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.880000-6 0.0 2.737000-5 0.0 2.737000-5 4.45939-11 2.800000-5 4.56444-11 2.870000-5 4.65234-11 2.920000-5 4.69977-11 2.980000-5 4.73656-11 3.040000-5 4.75381-11 3.190000-5 4.74463-11 3.400000-5 4.75527-11 3.589219-5 4.78112-11 3.690000-5 4.79566-11 3.801894-5 4.81982-11 4.365158-5 4.92679-11 4.900000-5 5.00618-11 5.308844-5 5.04942-11 5.850000-5 5.09696-11 6.456542-5 5.12786-11 7.500000-5 5.16430-11 8.300000-5 5.18512-11 9.900000-5 5.21218-11 1.023293-4 5.21059-11 1.072800-4 5.21771-11 1.072800-4 1.64628-10 1.100000-4 1.62009-10 1.110100-4 1.60956-10 1.110100-4 2.15293-10 1.140000-4 2.11401-10 1.152000-4 2.10065-10 1.174898-4 2.08329-10 1.190000-4 2.07815-10 1.205000-4 2.07880-10 1.230269-4 2.09610-10 1.247200-4 2.11453-10 1.280000-4 2.16741-10 1.306600-4 2.22335-10 1.350000-4 2.33329-10 1.400000-4 2.48449-10 1.450000-4 2.65094-10 1.531087-4 2.95267-10 1.577500-4 3.13690-10 1.577500-4 4.12462-10 1.862087-4 5.34059-10 1.972423-4 5.79690-10 2.137962-4 6.45316-10 2.238721-4 6.83758-10 2.426610-4 7.51493-10 2.650000-4 8.26735-10 2.851018-4 8.88717-10 3.126079-4 9.67363-10 3.349654-4 1.027562-9 3.548134-4 1.078860-9 3.801894-4 1.139788-9 4.120975-4 1.210149-9 4.518559-4 1.290677-9 4.850000-4 1.352453-9 5.188000-4 1.412187-9 5.623413-4 1.481454-9 6.165950-4 1.558621-9 6.839116-4 1.643551-9 7.413102-4 1.707748-9 8.317638-4 1.794905-9 9.225714-4 1.869784-9 1.023293-3 1.940183-9 1.122000-3 1.999228-9 1.122000-3 6.603840-6 1.122250-3 6.732058-6 1.122500-3 6.936330-6 1.122800-3 7.162093-6 1.123100-3 7.369463-6 1.123400-3 7.561031-6 1.123800-3 7.791401-6 1.124200-3 7.999525-6 1.124600-3 8.186019-6 1.125000-3 8.354077-6 1.125500-3 8.541993-6 1.126000-3 8.708126-6 1.126900-3 8.960173-6 1.127100-3 8.963949-6 1.128300-3 9.171070-6 1.130000-3 9.350995-6 1.131500-3 9.481125-6 1.133400-3 9.593718-6 1.139000-3 9.805918-6 1.146000-3 9.972563-6 1.150400-3 1.002626-5 1.150400-3 1.042625-5 1.153000-3 1.067868-5 1.155600-3 1.086138-5 1.158700-3 1.100708-5 1.162700-3 1.111329-5 1.170000-3 1.119118-5 1.190000-3 1.124597-5 1.225000-3 1.127191-5 1.290700-3 1.126016-5 1.290700-3 1.149897-5 2.344229-3 1.153368-5 1.033100-2 1.147014-5 1.033100-2 4.138789-3 1.288250-2 4.176384-3 1.840772-2 4.213663-3 2.917427-2 4.242883-3 5.623413-2 4.262388-3 1.972423-1 4.271359-3 1.000000+5 4.273911-3 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.880000-6 0.0 5.000000-6 1.200000-7 5.000000-6 7.876627-8 1.169000-5 6.767176-6 1.169000-5 4.620891-6 1.252000-5 5.886616-6 1.335000-5 7.116117-6 1.428894-5 8.453847-6 1.522000-5 9.713571-6 1.615000-5 1.090051-5 1.710000-5 1.203306-5 1.811000-5 1.314443-5 1.912000-5 1.415984-5 2.025000-5 1.518724-5 2.150000-5 1.620481-5 2.300000-5 1.729552-5 2.520000-5 1.874046-5 2.687000-5 1.979908-5 2.687000-5 1.206918-5 2.737000-5 1.255000-5 2.737000-5 1.226313-5 3.758374-5 2.201157-5 4.570882-5 2.996292-5 8.128305-5 6.542773-5 1.072800-4 9.141381-5 1.072800-4 9.074793-5 1.110100-4 9.449953-5 1.110100-4 9.421061-5 1.380384-4 1.210805-4 1.577500-4 1.403841-4 1.577500-4 1.393282-4 3.126079-4 2.906980-4 6.839116-4 6.575447-4 1.122000-3 1.093057-3 1.122000-3 1.077433-3 1.127100-3 1.076941-3 1.170000-3 1.114854-3 1.290700-3 1.235340-3 1.290700-3 1.232235-3 1.033100-2 1.026397-2 1.033100-2 6.123216-3 1.462177-2 1.036134-2 3.630781-2 3.198630-2 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.033100-2 2.225238+4 1.048000-2 2.158040+4 1.060000-2 2.094440+4 1.085000-2 1.979816+4 1.244515-2 1.397703+4 1.540000-2 7.981440+3 1.659587-2 6.537921+3 2.041738-2 3.723967+3 2.570396-2 1.963267+3 3.162278-2 1.090680+3 3.890451-2 6.002695+2 4.800000-2 3.247740+2 5.956621-2 1.713915+2 7.585776-2 8.313024+1 1.047129-1 3.138296+1 1.621810-1 8.321676+0 2.065380-1 4.023895+0 2.454709-1 2.408533+0 2.851018-1 1.554936+0 3.273407-1 1.045914+0 3.672823-1 7.565862-1 4.120975-1 5.512309-1 4.570882-1 4.174352-1 5.069907-1 3.183431-1 5.623413-1 2.446107-1 6.165950-1 1.948490-1 6.760830-1 1.562766-1 7.328245-1 1.296735-1 8.035261-1 1.055401-1 9.015711-1 8.226632-2 9.772372-1 6.945724-2 1.122018+0 5.261633-2 1.216186+0 4.501206-2 1.364583+0 3.633273-2 1.513561+0 3.014999-2 1.698244+0 2.470689-2 1.927525+0 2.000180-2 2.162719+0 1.661003-2 2.426610+0 1.389309-2 2.754229+0 1.150096-2 3.198895+0 9.274960-3 3.715352+0 7.536270-3 4.365158+0 6.073737-3 5.188000+0 4.858037-3 6.237348+0 3.857929-3 7.585776+0 3.043047-3 9.549926+0 2.321256-3 1.216186+1 1.761583-3 1.603245+1 1.295317-3 2.213095+1 9.130039-4 3.349654+1 5.886006-4 5.308844+1 3.647268-4 9.225714+1 2.071251-4 1.840772+2 1.028313-4 7.328245+2 2.566200-5 1.161449+4 1.615158-6 1.000000+5 1.876100-7 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.033100-2 7.106900-5 1.000000+5 7.106900-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.033100-2 4.775800-3 1.000000+5 4.775800-3 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.033100-2 5.484131-3 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.290700-3 1.020179+5 1.350000-3 9.504355+4 1.365000-3 9.323980+4 1.390000-3 9.083620+4 1.428894-3 8.767661+4 1.554900-3 7.703146+4 1.820000-3 6.003500+4 2.187762-3 4.397468+4 2.400000-3 3.728280+4 2.800000-3 2.810040+4 3.090295-3 2.328107+4 3.589219-3 1.735860+4 4.073803-3 1.342369+4 4.623810-3 1.031471+4 5.370318-3 7.486516+3 6.095369-3 5.667673+3 6.928200-3 4.251149+3 8.035261-3 3.023340+3 9.332543-3 2.125526+3 1.083927-2 1.482488+3 1.258925-2 1.026146+3 1.479108-2 6.848189+2 1.737801-2 4.532363+2 2.018366-2 3.067296+2 2.371374-2 1.999585+2 2.800000-2 1.276464+2 3.311311-2 8.052730+1 3.935501-2 4.974018+1 4.677351-2 3.050830+1 5.688529-2 1.739388+1 7.000000-2 9.511760+0 8.810489-2 4.830944+0 1.174898-1 2.051934+0 1.883649-1 5.012596-1 2.290868-1 2.813054-1 2.691535-1 1.757578-1 3.126079-1 1.144072-1 3.548134-1 8.010875-2 4.000000-1 5.758689-2 4.466836-1 4.280872-2 4.954502-1 3.263089-2 5.495409-1 2.505287-2 6.095369-1 1.938287-2 6.683439-1 1.553857-2 7.244360-1 1.288393-2 7.943282-1 1.047857-2 8.820400-1 8.346787-3 9.660509-1 6.884219-3 1.083927+0 5.453934-3 1.188600+0 4.550294-3 1.333521+0 3.668095-3 1.500000+0 2.964697-3 1.678804+0 2.438551-3 1.905461+0 1.972880-3 2.137962+0 1.637271-3 2.398833+0 1.368490-3 2.722701+0 1.132092-3 3.162278+0 9.124144-4 3.672823+0 7.409260-4 4.315191+0 5.968140-4 5.128614+0 4.771214-4 6.165950+0 3.787207-4 7.498942+0 2.985957-4 9.440609+0 2.276701-4 1.188502+1 1.749805-4 1.566751+1 1.285740-4 2.187762+1 8.945816-5 3.311311+1 5.765911-5 5.248075+1 3.572115-5 9.015711+1 2.052116-5 1.798871+2 1.018668-5 7.161434+2 2.541549-6 1.135011+4 1.599608-7 1.000000+5 1.815700-8 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.290700-3 6.789400-5 1.000000+5 6.789400-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.290700-3 1.324300-5 1.000000+5 1.324300-5 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.290700-3 1.209563-3 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.150400-3 7.605300+4 1.150510-3 7.773000+4 1.150800-3 8.384500+4 1.151100-3 9.012400+4 1.151400-3 9.637200+4 1.151700-3 1.025500+5 1.152100-3 1.106500+5 1.152550-3 1.195700+5 1.153000-3 1.282100+5 1.153500-3 1.375500+5 1.154000-3 1.465000+5 1.154500-3 1.550300+5 1.155000-3 1.631600+5 1.155600-3 1.723800+5 1.156300-3 1.823600+5 1.156900-3 1.902400+5 1.157300-3 1.951600+5 1.158000-3 2.031100+5 1.158700-3 2.102500+5 1.159500-3 2.175000+5 1.160400-3 2.245800+5 1.161500-3 2.318500+5 1.162700-3 2.382400+5 1.164000-3 2.436700+5 1.165000-3 2.469500+5 1.166500-3 2.506700+5 1.168500-3 2.539500+5 1.170000-3 2.554700+5 1.173000-3 2.569900+5 1.178000-3 2.572500+5 1.205000-3 2.545900+5 1.215000-3 2.521200+5 1.225000-3 2.481800+5 1.273503-3 2.244900+5 1.318257-3 2.059800+5 1.396368-3 1.775300+5 1.603245-3 1.251700+5 1.778279-3 9.565200+4 1.950000-3 7.487500+4 2.317395-3 4.667300+4 2.540973-3 3.605700+4 2.985383-3 2.274000+4 3.388442-3 1.570200+4 3.845918-3 1.078200+4 4.466836-3 6.855400+3 5.069907-3 4.644200+3 5.888437-3 2.909800+3 6.918310-3 1.743200+3 8.035261-3 1.075100+3 9.440609-3 6.338500+2 1.109175-2 3.708900+2 1.303167-2 2.154500+2 1.548817-2 1.194800+2 1.840772-2 6.576600+1 2.213095-2 3.452200+1 2.691535-2 1.727400+1 3.311311-2 8.236900+0 4.265795-2 3.305900+0 9.225714-2 2.011600-1 1.148154-1 9.156000-2 1.380384-1 4.751905-2 1.621810-1 2.695277-2 1.883649-1 1.603969-2 2.162719-1 1.000845-2 2.454709-1 6.542609-3 2.754229-1 4.475818-3 3.090295-1 3.083634-3 3.427678-1 2.219571-3 3.801894-1 1.608824-3 4.168694-1 1.216681-3 4.623810-1 8.956170-4 5.128614-1 6.645319-4 5.688529-1 4.968614-4 6.237348-1 3.861958-4 6.839117-1 3.022986-4 7.328245-1 2.529481-4 8.035261-1 2.008443-4 9.332543-1 1.394201-4 9.885531-1 1.219083-4 1.047129+0 1.074822-4 1.109175+0 9.532775-5 1.174898+0 8.504147-5 1.258925+0 7.472704-5 1.380384+0 6.338191-5 1.717908+0 4.348461-5 1.949845+0 3.519388-5 2.187762+0 2.924201-5 2.454709+0 2.447545-5 2.786121+0 2.027456-5 3.273407+0 1.609708-5 3.801894+0 1.309432-5 4.466836+0 1.056449-5 5.308844+0 8.458501-6 6.382635+0 6.723355-6 7.762471+0 5.307885-6 9.772372+0 4.051870-6 1.258925+1 3.037817-6 1.659587+1 2.235951-6 2.264644+1 1.597072-6 3.388442+1 1.042609-6 5.370318+1 6.461586-7 9.332543+1 3.670084-7 1.862087+2 1.822181-7 7.413102+2 4.547775-8 4.677351+4 7.19102-10 1.000000+5 3.36340-10 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.150400-3 4.680300-5 1.000000+5 4.680300-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.150400-3 1.387600-5 1.000000+5 1.387600-5 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.150400-3 1.089721-3 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.122000-3 1.599836+5 1.122018-3 1.601308+5 1.122250-3 1.664720+5 1.122500-3 1.774484+5 1.122800-3 1.904956+5 1.123100-3 2.034256+5 1.123400-3 2.162700+5 1.123800-3 2.329992+5 1.124200-3 2.494748+5 1.124600-3 2.654792+5 1.125000-3 2.810300+5 1.125500-3 2.998412+5 1.126000-3 3.178748+5 1.126500-3 3.350244+5 1.126900-3 3.481168+5 1.127100-3 3.484618+5 1.128100-3 3.721216+5 1.128300-3 3.761408+5 1.130000-3 4.023213+5 1.131500-3 4.227743+5 1.133400-3 4.412408+5 1.136000-3 4.594154+5 1.139000-3 4.777484+5 1.142300-3 4.922894+5 1.143000-3 4.941016+5 1.146000-3 5.074418+5 1.153000-3 5.202385+5 1.161449-3 5.248566+5 1.170000-3 5.257047+5 1.180000-3 5.248880+5 1.190000-3 5.181480+5 1.202264-3 5.062875+5 1.240000-3 4.661880+5 1.290000-3 4.220080+5 1.350000-3 3.746032+5 1.570000-3 2.546140+5 1.757924-3 1.892831+5 1.927525-3 1.477374+5 2.300000-3 9.065400+4 2.540973-3 6.834013+4 2.951209-3 4.435948+4 3.349654-3 3.052657+4 3.845918-3 2.017328+4 4.466836-3 1.276834+4 5.128614-3 8.308899+3 5.888437-3 5.369626+3 6.839116-3 3.320671+3 7.943282-3 2.038076+3 9.225714-3 1.241843+3 1.080000-2 7.316960+2 1.258925-2 4.342543+2 1.479108-2 2.491136+2 1.757924-2 1.362624+2 2.089296-2 7.395866+1 2.511886-2 3.823317+1 3.054921-2 1.881682+1 3.801894-2 8.449105+0 4.897788-2 3.315471+0 1.035142-1 2.049344-1 1.288250-1 9.158248-2 1.513561-1 5.090311-2 1.737801-1 3.097781-2 1.972423-1 1.978075-2 2.238721-1 1.272037-2 2.511886-1 8.580300-3 2.786121-1 6.063169-3 3.054921-1 4.482113-3 3.349654-1 3.334673-3 3.672823-1 2.497473-3 4.027170-1 1.883271-3 4.415705-1 1.430491-3 4.786301-1 1.131887-3 5.188000-1 9.016636-4 5.623413-1 7.232670-4 6.095369-1 5.839523-4 6.683439-1 4.608442-4 7.244360-1 3.771435-4 7.852356-1 3.106661-4 8.609938-1 2.508480-4 9.225714-1 2.147834-4 9.885531-1 1.851430-4 1.083927+0 1.533494-4 1.174898+0 1.307827-4 1.288250+0 1.099000-4 1.428894+0 9.104719-5 1.621810+0 7.293400-5 1.840772+0 5.887265-5 2.089296+0 4.786895-5 2.344229+0 3.995382-5 2.660725+0 3.300730-5 3.054921+0 2.701063-5 3.548134+0 2.189504-5 4.168694+0 1.760697-5 4.954502+0 1.405370-5 5.956621+0 1.113980-5 7.244360+0 8.771119-6 9.015711+0 6.770190-6 1.122018+1 5.263444-6 1.479108+1 3.861503-6 2.018366+1 2.749779-6 2.951209+1 1.834391-6 4.415704+1 1.203684-6 7.413102+1 7.061300-7 1.479108+2 3.499935-7 2.951209+2 1.743991-7 1.174898+3 4.363226-8 3.715352+4 1.377399-9 1.000000+5 5.11730-10 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.122000-3 4.637300-5 1.000000+5 4.637300-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.122000-3 1.275800-5 1.000000+5 1.275800-5 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.122000-3 1.062869-3 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.577500-4 2.599438+5 2.089296-4 2.270699+5 2.190000-4 2.205600+5 2.350000-4 2.094100+5 2.650000-4 1.901446+5 2.851018-4 1.782129+5 3.054921-4 1.664831+5 3.311311-4 1.525942+5 3.715352-4 1.336183+5 4.120975-4 1.177765+5 4.518559-4 1.045051+5 5.128614-4 8.790191+4 5.754399-4 7.461900+4 6.500000-4 6.222220+4 7.413102-4 5.078663+4 8.413951-4 4.145856+4 9.772372-4 3.235419+4 1.122018-3 2.553462+4 1.288250-3 2.001882+4 1.500000-3 1.519124+4 1.757924-3 1.129873+4 2.041738-3 8.482497+3 2.371374-3 6.323978+3 2.786121-3 4.575383+3 3.273407-3 3.285335+3 3.845918-3 2.341464+3 4.518559-3 1.656477+3 5.308844-3 1.163031+3 6.237348-3 8.102008+2 7.244360-3 5.750124+2 8.511380-3 3.943319+2 9.885531-3 2.756703+2 1.161449-2 1.861064+2 1.364583-2 1.246906+2 1.584893-2 8.536006+1 1.862087-2 5.632532+1 2.187762-2 3.688931+1 2.570396-2 2.398596+1 3.054921-2 1.500700+1 3.630781-2 9.315744+0 4.365158-2 5.557708+0 5.188000-2 3.400256+0 6.309573-2 1.932475+0 7.943282-2 9.858399-1 1.023293-1 4.664438-1 1.798871-1 8.679204-2 2.317395-1 4.107165-2 2.722701-1 2.568893-2 3.162278-1 1.673948-2 3.589219-1 1.173263-2 4.027170-1 8.551725-3 4.518559-1 6.280405-3 5.011872-1 4.791015-3 5.559043-1 3.682338-3 6.095369-1 2.933537-3 6.683439-1 2.352698-3 7.328245-1 1.899482-3 8.035261-1 1.543933-3 8.810489-1 1.262907-3 9.549926-1 1.066050-3 1.047129+0 8.849359-4 1.174898+0 7.053055-4 1.303167+0 5.791189-4 1.445440+0 4.792037-4 1.603245+0 3.993083-4 1.798871+0 3.283810-4 2.065380+0 2.618026-4 2.317395+0 2.183586-4 2.630268+0 1.802680-4 3.019952+0 1.474307-4 3.507519+0 1.194344-4 4.120975+0 9.598899-5 4.897788+0 7.657779-5 5.888437+0 6.066938-5 7.161434+0 4.774776-5 8.912509+0 3.684103-5 1.100000+1 2.890200-5 1.445440+1 2.126844-5 1.927525+1 1.551850-5 2.600160+1 1.126127-5 3.845918+1 7.460464-6 6.382635+1 4.419128-6 1.202264+2 2.318012-6 2.398833+2 1.153175-6 9.549926+2 2.882565-7 3.019952+4 9.097608-9 1.000000+5 2.747400-9 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.577500-4 4.281500-5 1.000000+5 4.281500-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.577500-4 2.694600-9 1.000000+5 2.694600-9 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.577500-4 1.149323-4 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.110100-4 1.628814+5 1.122018-4 1.607761+5 1.140000-4 1.564550+5 1.183000-4 1.456624+5 1.205000-4 1.414644+5 1.225000-4 1.387838+5 1.245000-4 1.371662+5 1.260000-4 1.365828+5 1.280000-4 1.365268+5 1.306600-4 1.374904+5 1.333521-4 1.394079+5 1.365000-4 1.425394+5 1.400000-4 1.468404+5 1.450000-4 1.540034+5 1.621810-4 1.821084+5 1.698244-4 1.939675+5 1.760000-4 2.024740+5 1.820000-4 2.096260+5 1.883649-4 2.159292+5 1.950000-4 2.212160+5 2.018366-4 2.253495+5 2.089296-4 2.284251+5 2.190000-4 2.310860+5 2.300000-4 2.321920+5 2.400000-4 2.318480+5 2.511886-4 2.301272+5 2.630268-4 2.269817+5 2.754229-4 2.225427+5 2.917427-4 2.154948+5 3.100000-4 2.066960+5 3.311311-4 1.960255+5 3.548134-4 1.840881+5 3.801894-4 1.716077+5 4.073803-4 1.587562+5 4.365158-4 1.458342+5 4.731513-4 1.311227+5 5.150000-4 1.163832+5 5.559043-4 1.037764+5 6.025596-4 9.131661+4 6.606934-4 7.832125+4 7.244360-4 6.666245+4 7.943282-4 5.629614+4 8.810489-4 4.616703+4 9.660509-4 3.842410+4 1.071519-3 3.101217+4 1.190000-3 2.476920+4 1.318257-3 1.973666+4 1.462177-3 1.557689+4 1.621810-3 1.220759+4 1.819701-3 9.241266+3 2.065380-3 6.742970+3 2.317395-3 5.024439+3 2.600160-3 3.717933+3 2.917427-3 2.733178+3 3.273407-3 1.996426+3 3.715352-3 1.403091+3 4.216965-3 9.788725+2 4.786301-3 6.780270+2 5.432503-3 4.663075+2 6.165950-3 3.184753+2 7.079458-3 2.084837+2 8.128305-3 1.354146+2 9.332543-3 8.730874+1 1.083927-2 5.383786+1 1.258925-2 3.295876+1 1.462177-2 2.003467+1 1.717908-2 1.162835+1 2.018366-2 6.699191+0 2.398833-2 3.682456+0 2.917427-2 1.853779+0 3.589219-2 8.888489-1 4.623810-2 3.588980-1 9.549926-2 2.623597-2 1.202264-1 1.151025-2 1.445440-1 5.998120-3 1.698244-1 3.416012-3 1.949845-1 2.122803-3 2.238721-1 1.328891-3 2.540973-1 8.714772-4 2.851018-1 5.980060-4 3.198895-1 4.133895-4 3.548134-1 2.985396-4 3.935501-1 2.170794-4 4.365158-1 1.590159-4 4.841724-1 1.173686-4 5.370318-1 8.730424-5 5.888437-1 6.757483-5 6.456542-1 5.268084-5 7.079458-1 4.136222-5 7.762471-1 3.270235-5 8.609938-1 2.520839-5 9.225714-1 2.133318-5 9.772372-1 1.868694-5 1.035142+0 1.648587-5 1.109175+0 1.428521-5 1.188600+0 1.246800-5 1.288250+0 1.073617-5 1.428894+0 8.928793-6 1.698244+0 6.626798-6 1.927525+0 5.360890-6 2.162719+0 4.451255-6 2.426610+0 3.723172-6 2.754229+0 3.082145-6 3.198895+0 2.485599-6 3.715352+0 2.019618-6 4.365158+0 1.627683-6 5.188000+0 1.301880-6 6.237348+0 1.033830-6 7.585776+0 8.154845-7 9.549926+0 6.220401-7 1.216186+1 4.720739-7 1.603245+1 3.471074-7 2.213095+1 2.446640-7 3.349654+1 1.577370-7 5.308844+1 9.774005-8 9.120108+1 5.615953-8 1.819701+2 2.788004-8 7.244360+2 6.956571-9 1.148154+4 4.37849-10 1.000000+5 5.02760-11 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.110100-4 3.117100-5 1.000000+5 3.117100-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.110100-4 2.918700-9 1.000000+5 2.918700-9 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.110100-4 7.983608-5 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.072800-4 3.566988+5 1.086000-4 3.505936+5 1.137000-4 3.235100+5 1.152000-4 3.173996+5 1.172800-4 3.111755+5 1.190000-4 3.080336+5 1.205000-4 3.066624+5 1.225000-4 3.065456+5 1.247200-4 3.082968+5 1.273503-4 3.123280+5 1.306100-4 3.194517+5 1.350000-4 3.315280+5 1.412538-4 3.516427+5 1.566751-4 4.055447+5 1.640590-4 4.294656+5 1.698244-4 4.459809+5 1.760000-4 4.611200+5 1.820000-4 4.731560+5 1.883649-4 4.831934+5 1.950000-4 4.908920+5 2.041738-4 4.976313+5 2.137962-4 5.008258+5 2.238721-4 5.008637+5 2.350000-4 4.977600+5 2.483133-4 4.905290+5 2.620000-4 4.798560+5 2.754229-4 4.669622+5 2.917427-4 4.492211+5 3.100000-4 4.282360+5 3.311311-4 4.038610+5 3.548134-4 3.771940+5 3.801894-4 3.497554+5 4.073803-4 3.219903+5 4.415704-4 2.900306+5 4.786301-4 2.593172+5 5.188000-4 2.303564+5 5.623413-4 2.031313+5 6.165950-4 1.744997+5 6.760830-4 1.488058+5 7.413102-4 1.259401+5 8.128305-4 1.057820+5 9.015711-4 8.627416+4 9.885531-4 7.144667+4 1.096478-3 5.736569+4 1.216186-3 4.571310+4 1.364583-3 3.520696+4 1.513561-3 2.762724+4 1.678804-3 2.153551+4 1.862087-3 1.667935+4 2.089296-3 1.246712+4 2.344229-3 9.251075+3 2.630268-3 6.817423+3 2.951209-3 4.991140+3 3.349654-3 3.515335+3 3.801894-3 2.457786+3 4.315191-3 1.705625+3 4.897788-3 1.174947+3 5.559043-3 8.036903+2 6.309573-3 5.458597+2 7.161434-3 3.681686+2 8.222426-3 2.377695+2 9.440609-3 1.523661+2 1.096478-2 9.332038+1 1.288250-2 5.457270+1 1.500000-2 3.263085+1 1.757924-2 1.893074+1 2.065380-2 1.080405+1 2.454709-2 5.876559+0 2.917427-2 3.172578+0 3.507519-2 1.630711+0 4.365158-2 7.337133-1 5.754399-2 2.651649-1 1.000000-1 3.427687-2 1.244515-1 1.533335-2 1.479108-1 8.181673-3 1.717908-1 4.778911-3 1.949845-1 3.052107-3 2.213095-1 1.963355-3 2.483133-1 1.324413-3 2.754229-1 9.356946-4 3.054921-1 6.659122-4 3.349654-1 4.955216-4 3.672823-1 3.712044-4 4.027170-1 2.800618-4 4.415705-1 2.128986-4 4.786301-1 1.685795-4 5.188000-1 1.343542-4 5.623413-1 1.077900-4 6.095369-1 8.704430-5 6.606935-1 7.075635-5 7.161434-1 5.789318-5 7.762471-1 4.767792-5 8.511380-1 3.844596-5 9.120108-1 3.291013-5 9.772372-1 2.835118-5 1.071519+0 2.346301-5 1.174898+0 1.955269-5 1.288250+0 1.642946-5 1.428894+0 1.361019-5 1.621810+0 1.090229-5 1.840772+0 8.800407-6 2.089296+0 7.155264-6 2.344229+0 5.972001-6 2.660725+0 4.933727-6 3.054921+0 4.037462-6 3.548134+0 3.272776-6 4.168694+0 2.631843-6 4.954502+0 2.100770-6 5.956621+0 1.665120-6 7.244360+0 1.311053-6 9.015711+0 1.012035-6 1.109175+1 7.971170-7 1.462177+1 5.846179-7 1.972423+1 4.213983-7 2.722701+1 2.985980-7 4.027170+1 1.979802-7 6.683439+1 1.173602-7 1.303167+2 5.947473-8 2.600160+2 2.960623-8 1.035142+3 7.403395-9 8.222427+3 9.30529-10 1.000000+5 7.64920-11 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.072800-4 3.132600-5 1.000000+5 3.132600-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.072800-4 2.663400-9 1.000000+5 2.663400-9 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.072800-4 7.595134-5 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.737000-5 9.152614+5 3.120000-5 9.253480+5 3.190000-5 9.340080+5 3.260000-5 9.496400+5 3.330000-5 9.716400+5 3.400000-5 9.994640+5 3.471900-5 1.033520+6 3.570000-5 1.088136+6 3.690000-5 1.166204+6 3.850000-5 1.286468+6 4.365158-5 1.751873+6 4.570882-5 1.950352+6 4.731513-5 2.103032+6 4.900000-5 2.257328+6 5.080000-5 2.412900+6 5.248075-5 2.547128+6 5.450000-5 2.692700+6 5.650000-5 2.819412+6 5.850000-5 2.929052+6 6.070000-5 3.030264+6 6.309573-5 3.118892+6 6.606934-5 3.202247+6 6.918310-5 3.264942+6 7.328245-5 3.318692+6 7.762471-5 3.347547+6 8.300000-5 3.354220+6 8.810489-5 3.339765+6 9.332543-5 3.306636+6 9.900000-5 3.250556+6 1.047129-4 3.175137+6 1.109175-4 3.076088+6 1.170000-4 2.965248+6 1.230269-4 2.845998+6 1.303300-4 2.696075+6 1.380384-4 2.537999+6 1.462177-4 2.374581+6 1.566751-4 2.177229+6 1.678804-4 1.982178+6 1.778279-4 1.822022+6 1.900000-4 1.642468+6 2.018366-4 1.483946+6 2.162719-4 1.311300+6 2.317395-4 1.150720+6 2.511886-4 9.803196+5 2.691535-4 8.495636+5 2.917427-4 7.134691+5 3.126079-4 6.103368+5 3.388442-4 5.048586+5 3.700000-4 4.071400+5 4.027170-4 3.288130+5 4.415704-4 2.586346+5 4.850000-4 2.007736+5 5.370318-4 1.512068+5 5.888437-4 1.162519+5 6.456542-4 8.877529+4 7.079458-4 6.737388+4 7.800000-4 5.010360+4 8.511380-4 3.817168+4 9.440609-4 2.745758+4 1.059254-3 1.889677+4 1.188502-3 1.290468+4 1.333521-3 8.747220+3 1.500000-3 5.835720+3 1.698244-3 3.778059+3 1.927525-3 2.405395+3 2.187762-3 1.520047+3 2.483133-3 9.535619+2 2.818383-3 5.938760+2 3.198895-3 3.672767+2 3.630781-3 2.255588+2 4.120975-3 1.375503+2 4.677351-3 8.329187+1 5.308844-3 5.008237+1 6.025596-3 2.990381+1 6.918310-3 1.690370+1 8.000000-3 9.202280+0 9.225714-3 5.031875+0 1.135011-2 2.069705+0 1.368540-2 9.214653-1 1.640590-2 4.176786-1 2.000000-2 1.746253-1 2.454709-2 7.021694-2 3.198895-2 2.143823-2 5.623413-2 1.696601-3 7.079458-2 6.062257-4 8.609938-2 2.545183-4 1.011580-1 1.253755-4 1.174898-1 6.541022-5 1.348963-1 3.613387-5 1.531088-1 2.112033-5 1.737801-1 1.243913-5 1.949845-1 7.742494-6 2.187762-1 4.854602-6 2.426610-1 3.211084-6 2.691535-1 2.138744-6 2.985383-1 1.435065-6 3.273407-1 1.013480-6 3.589219-1 7.206461-7 3.935501-1 5.161069-7 4.315191-1 3.726893-7 4.731513-1 2.710461-7 5.308844-1 1.835210-7 5.821032-1 1.353134-7 6.237348-1 1.083139-7 6.760830-1 8.413467-8 7.328245-1 6.581914-8 8.511380-1 4.220333-8 8.912509-1 3.696462-8 9.332543-1 3.256482-8 9.772372-1 2.889161-8 1.011579+0 2.655519-8 1.059254+0 2.389415-8 1.109175+0 2.164655-8 1.161449+0 1.973085-8 1.230269+0 1.770842-8 1.333521+0 1.536180-8 1.479108+0 1.291238-8 1.840772+0 8.898338-9 2.065380+0 7.363828-9 2.317395+0 6.141629-9 2.630268+0 5.070267-9 3.019952+0 4.146764-9 3.507519+0 3.359359-9 4.120975+0 2.699929-9 4.897788+0 2.153933-9 5.888437+0 1.706502-9 7.161434+0 1.343053-9 8.912509+0 1.036258-9 1.100000+1 8.12960-10 1.445440+1 5.98233-10 1.927525+1 4.36495-10 2.570396+1 3.20661-10 3.758374+1 2.14939-10 6.165950+1 1.28789-10 1.135011+2 6.91205-11 2.264644+2 3.43696-11 9.015711+2 8.58900-12 1.000000+5 7.72790-14 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.737000-5 1.566900-5 1.000000+5 1.566900-5 1 31000 7 7 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.737000-5 1.32000-10 1.000000+5 1.32000-10 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.737000-5 1.170087-5 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.687000-5 1.589040+6 2.740000-5 1.533810+6 2.800000-5 1.485786+6 2.860000-5 1.450800+6 2.920000-5 1.428066+6 2.980000-5 1.416126+6 3.040000-5 1.414230+6 3.100000-5 1.421370+6 3.170000-5 1.440126+6 3.235937-5 1.467207+6 3.311311-5 1.508385+6 3.400000-5 1.569426+6 3.500000-5 1.652808+6 3.610000-5 1.760130+6 3.758374-5 1.926817+6 4.315191-5 2.692074+6 4.518559-5 2.992008+6 4.677351-5 3.222122+6 4.850000-5 3.462858+6 5.011872-5 3.675785+6 5.188000-5 3.890207+6 5.370318-5 4.090919+6 5.580000-5 4.293606+6 5.800000-5 4.474002+6 6.025596-5 4.626789+6 6.237348-5 4.743501+6 6.531306-5 4.868511+6 6.839116-5 4.960931+6 7.161434-5 5.024398+6 7.585776-5 5.070119+6 8.035261-5 5.084944+6 8.609938-5 5.064633+6 9.120108-5 5.016420+6 9.660509-5 4.937865+6 1.023293-4 4.828376+6 1.083927-4 4.685157+6 1.135011-4 4.546277+6 1.202264-4 4.347381+6 1.273503-4 4.126212+6 1.350000-4 3.885030+6 1.445440-4 3.592523+6 1.548817-4 3.294810+6 1.659587-4 2.999159+6 1.778279-4 2.710447+6 1.883649-4 2.475389+6 2.018366-4 2.203124+6 2.150000-4 1.966824+6 2.317395-4 1.705425+6 2.511886-4 1.451968+6 2.730000-4 1.219668+6 2.917427-4 1.055115+6 3.162278-4 8.781314+5 3.388442-4 7.454107+5 3.715352-4 5.946971+5 4.100000-4 4.629702+5 4.466836-4 3.694703+5 4.850000-4 2.955324+5 5.308844-4 2.297825+5 5.888437-4 1.708892+5 6.500000-4 1.278348+5 7.244360-4 9.219938+4 8.000000-4 6.792360+4 8.912509-4 4.833067+4 1.000000-3 3.337278+4 1.122018-3 2.285754+4 1.258925-3 1.553391+4 1.412538-3 1.047855+4 1.603245-3 6.740850+3 1.819701-3 4.301285+3 2.065380-3 2.723178+3 2.344229-3 1.711282+3 2.660725-3 1.067494+3 3.019952-3 6.611377+2 3.427678-3 4.066808+2 3.890451-3 2.483754+2 4.415704-3 1.506038+2 5.011872-3 9.065651+1 5.688529-3 5.416668+1 6.456542-3 3.213765+1 7.413102-3 1.804884+1 8.511380-3 1.006111+1 1.000000-2 5.047320+0 1.188502-2 2.390861+0 1.428894-2 1.068754+0 1.717908-2 4.741143-1 2.065380-2 2.088025-1 2.570396-2 7.810216-2 3.427678-2 2.122490-2 6.025596-2 1.633666-3 7.498942-2 6.083604-4 9.015711-2 2.666856-4 1.071519-1 1.240610-4 1.230269-1 6.771535-5 1.396368-1 3.914721-5 1.566751-1 2.395357-5 1.737801-1 1.549498-5 1.927525-1 1.009239-5 2.137962-1 6.620702-6 2.344229-1 4.583235-6 2.540973-1 3.342735-6 2.754229-1 2.453723-6 3.000000-1 1.781000-6 3.235937-1 1.349923-6 3.507519-1 1.011750-6 3.801894-1 7.633528-7 4.216965-1 5.356733-7 4.518559-1 4.254383-7 4.841724-1 3.400324-7 5.069907-1 2.941164-7 5.432503-1 2.383344-7 5.888437-1 1.879781-7 6.456542-1 1.444391-7 6.998420-1 1.155124-7 7.585776-1 9.301648-8 8.511380-1 6.880876-8 9.015711-1 5.950930-8 9.549926-1 5.181529-8 1.000000+0 4.665000-8 1.059254+0 4.119878-8 1.122018+0 3.659007-8 1.188600+0 3.267800-8 1.288250+0 2.815336-8 1.412538+0 2.391448-8 1.737801+0 1.674527-8 1.972423+0 1.356183-8 2.213095+0 1.127618-8 2.483133+0 9.444656-9 2.818383+0 7.828999-9 3.273407+0 6.321178-9 3.801894+0 5.142014-9 4.466836+0 4.148459-9 5.308844+0 3.321426-9 6.382635+0 2.640096-9 7.762471+0 2.084266-9 9.772372+0 1.591121-9 1.258925+1 1.192876-9 1.659587+1 8.78000-10 2.264644+1 6.27148-10 3.427678+1 4.04480-10 5.495409+1 2.47779-10 9.549926+1 1.40777-10 1.905461+2 6.99089-11 7.585776+2 1.74503-11 4.786301+4 2.75949-13 1.000000+5 1.32070-13 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.687000-5 1.608600-5 1.000000+5 1.608600-5 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.687000-5 1.078400-5 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.169000-5 1.232568+6 1.188502-5 1.096065+6 1.216186-5 9.257787+5 1.252000-5 7.421860+5 1.280000-5 6.233440+5 1.310000-5 5.154800+5 1.335000-5 4.390060+5 1.360000-5 3.728500+5 1.385000-5 3.156240+5 1.410000-5 2.662120+5 1.435000-5 2.235960+5 1.455000-5 1.938034+5 1.479108-5 1.623634+5 1.500000-5 1.386232+5 1.522000-5 1.167422+5 1.540000-5 1.009718+5 1.555000-5 8.915780+4 1.570000-5 7.845160+4 1.585000-5 6.876760+4 1.600000-5 6.002580+4 1.615000-5 5.215620+4 1.630000-5 4.509020+4 1.645000-5 3.876600+4 1.660000-5 3.312640+4 1.675000-5 2.811860+4 1.685000-5 2.510700+4 1.698244-5 2.149417+4 1.710000-5 1.862408+4 1.720000-5 1.641712+4 1.732100-5 1.401776+4 1.740000-5 1.260290+4 1.750000-5 1.097482+4 1.760000-5 9.519720+3 1.774000-5 7.755880+3 1.811000-5 4.469540+3 1.819701-5 3.956384+3 1.826000-5 3.640860+3 1.832000-5 3.382420+3 1.837000-5 3.197340+3 1.842000-5 3.039020+3 1.847000-5 2.906720+3 1.852000-5 2.799720+3 1.857000-5 2.717320+3 1.862000-5 2.658820+3 1.866000-5 2.628760+3 1.870000-5 2.613240+3 1.873000-5 2.610940+3 1.877000-5 2.620060+3 1.881000-5 2.642820+3 1.885000-5 2.678900+3 1.890000-5 2.742260+3 1.896000-5 2.844360+3 1.902000-5 2.973920+3 1.907000-5 3.102180+3 1.912000-5 3.248340+3 1.920000-5 3.518080+3 1.931000-5 3.957740+3 1.965000-5 5.769680+3 1.980000-5 6.761420+3 1.995262-5 7.875897+3 2.010000-5 9.043580+3 2.025000-5 1.031558+4 2.040000-5 1.166366+4 2.055000-5 1.308018+4 2.070000-5 1.455806+4 2.085000-5 1.609068+4 2.100000-5 1.767198+4 2.115000-5 1.929624+4 2.130000-5 2.095820+4 2.150000-5 2.322440+4 2.170600-5 2.560865+4 2.190000-5 2.789080+4 2.213095-5 3.064351+4 2.240000-5 3.388420+4 2.270000-5 3.752180+4 2.300000-5 4.116600+4 2.330000-5 4.479960+4 2.360000-5 4.840900+4 2.398833-5 5.302543+4 2.435000-5 5.725180+4 2.473400-5 6.164609+4 2.520000-5 6.683220+4 2.570396-5 7.224190+4 2.613100-5 7.665291+4 2.670000-5 8.227280+4 2.730000-5 8.787260+4 2.800000-5 9.397940+4 2.870000-5 9.963260+4 2.951209-5 1.056398+5 3.040000-5 1.115612+5 3.126079-5 1.166948+5 3.235937-5 1.224412+5 3.350000-5 1.275294+5 3.467369-5 1.319155+5 3.610000-5 1.362284+5 3.758374-5 1.396665+5 3.935501-5 1.425783+5 4.120975-5 1.444677+5 4.315191-5 1.453995+5 4.518559-5 1.454348+5 4.731513-5 1.446442+5 5.011872-5 1.426230+5 5.308844-5 1.395985+5 5.650000-5 1.353466+5 6.025596-5 1.300751+5 6.456542-5 1.236697+5 6.918310-5 1.167103+5 7.500000-5 1.081928+5 8.128305-5 9.958439+4 8.912509-5 8.988995+4 9.885531-5 7.952283+4 1.122018-4 6.794879+4 1.303167-4 5.596251+4 1.531087-4 4.505446+4 2.426610-4 2.380065+4 2.818383-4 1.924923+4 3.235937-4 1.569984+4 3.801894-4 1.227835+4 4.570882-4 9.196929+3 5.821032-4 6.242060+3 6.839116-4 4.784855+3 8.035261-4 3.637372+3 9.885531-4 2.534252+3 1.161449-3 1.899938+3 1.364583-3 1.414354+3 1.621810-3 1.022940+3 1.905461-3 7.505036+2 2.238721-3 5.466181+2 2.630268-3 3.952527+2 3.126079-3 2.770862+2 3.672823-3 1.974796+2 4.365158-3 1.363216+2 5.128614-3 9.574479+1 6.309573-3 6.020234+1 7.244360-3 4.386730+1 8.413951-3 3.088971+1 9.772372-3 2.158894+1 1.148154-2 1.457651+1 1.348963-2 9.766231+0 1.584893-2 6.493112+0 1.862087-2 4.284434+0 2.187762-2 2.806080+0 2.570396-2 1.824568+0 3.054921-2 1.141578+0 3.630781-2 7.086583-1 4.365158-2 4.228021-1 5.188000-2 2.587048-1 6.382635-2 1.422400-1 8.035261-2 7.256655-2 1.023293-1 3.553166-2 1.798871-1 6.613486-3 2.317395-1 3.129871-3 2.722701-1 1.957726-3 3.162278-1 1.275755-3 3.589219-1 8.942095-4 4.027170-1 6.518129-4 4.518559-1 4.787346-4 5.011872-1 3.652416-4 5.559043-1 2.807584-4 6.095369-1 2.237004-4 6.683439-1 1.794432-4 7.328245-1 1.449123-4 8.035261-1 1.178255-4 8.810489-1 9.642910-5 9.660509-1 7.952616-5 1.083927+0 6.312520-5 1.216186+0 5.042282-5 1.348963+0 4.150772-5 1.500000+0 3.427200-5 1.678804+0 2.818587-5 1.905461+0 2.280392-5 2.137962+0 1.892693-5 2.398833+0 1.582069-5 2.722701+0 1.308766-5 3.162278+0 1.054765-5 3.672823+0 8.564978-6 4.315191+0 6.898956-6 5.128614+0 5.515376-6 6.165950+0 4.377926-6 7.498942+0 3.451660-6 9.440609+0 2.631884-6 1.188502+1 2.022746-6 1.566751+1 1.486235-6 2.187762+1 1.034159-6 3.273407+1 6.746188-7 5.128614+1 4.228588-7 8.810489+1 2.428505-7 1.757924+2 1.205319-7 3.507519+2 6.013561-8 2.786121+3 7.537560-9 1.000000+5 2.09890-10 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.169000-5 1.169000-5 1.000000+5 1.169000-5 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.169000-5 0.0 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.000000-6 6.611860+6 5.308844-6 5.888077+6 5.888437-6 4.774576+6 6.531306-6 3.837636+6 7.079458-6 3.219998+6 7.852356-6 2.549373+6 8.609938-6 2.056148+6 9.440609-6 1.644874+6 1.023293-5 1.343843+6 1.109175-5 1.090224+6 1.202264-5 8.783948+5 1.288250-5 7.252953+5 1.396368-5 5.757516+5 1.500000-5 4.658529+5 1.610000-5 3.754163+5 1.737801-5 2.952255+5 1.883649-5 2.273547+5 2.041738-5 1.736962+5 2.213095-5 1.317234+5 2.400000-5 9.906557+4 2.660725-5 6.837334+4 3.019952-5 4.297822+4 3.548134-5 2.374042+4 3.845918-5 1.775500+4 4.073803-5 1.451494+4 4.300000-5 1.209739+4 4.500000-5 1.045056+4 4.677351-5 9.282710+3 4.850000-5 8.354858+3 5.011872-5 7.636854+3 5.188000-5 6.990708+3 5.370318-5 6.441806+3 5.559043-5 5.977793+3 5.754399-5 5.587563+3 5.956621-5 5.260231+3 6.165950-5 4.986219+3 6.400000-5 4.741862+3 6.650000-5 4.537262+3 6.918310-5 4.365789+3 7.244360-5 4.206303+3 7.650000-5 4.059129+3 8.128305-5 3.930075+3 1.059254-4 3.505474+3 1.174898-4 3.330082+3 1.303167-4 3.140877+3 1.445440-4 2.940252+3 1.609000-4 2.727769+3 1.778279-4 2.525260+3 1.972423-4 2.314421+3 2.213095-4 2.088294+3 2.426610-4 1.911071+3 2.660725-4 1.737129+3 2.917427-4 1.567244+3 3.090295-4 1.462291+3 3.388442-4 1.298817+3 3.715352-4 1.145230+3 4.073803-4 1.002893+3 4.518559-4 8.572005+2 5.069907-4 7.143040+2 5.623413-4 6.026963+2 6.165950-4 5.148324+2 6.760830-4 4.367407+2 7.413102-4 3.679048+2 8.222426-4 3.010911+2 9.225714-4 2.392066+2 1.023293-3 1.932757+2 1.135011-3 1.549961+2 1.258925-3 1.234244+2 1.396368-3 9.762216+1 1.566751-3 7.466731+1 1.757924-3 5.668188+1 1.972423-3 4.271119+1 2.213095-3 3.195479+1 2.570396-3 2.171120+1 2.884032-3 1.605103+1 3.162278-3 1.252687+1 3.548134-3 9.122259+0 4.027170-3 6.386187+0 4.570882-3 4.440555+0 5.188000-3 3.065658+0 5.888437-3 2.101619+0 6.683439-3 1.430820+0 7.585776-3 9.675209-1 8.609938-3 6.497494-1 9.885531-3 4.177666-1 1.161449-2 2.475389-1 1.348963-2 1.511313-1 1.566751-2 9.160415-2 1.840772-2 5.300741-2 2.162719-2 3.045021-2 2.630268-2 1.540105-2 3.162278-2 8.051990-3 3.935501-2 3.696987-3 5.188000-2 1.371141-3 9.332543-2 1.648676-4 1.188502-1 6.937190-5 1.428894-1 3.612884-5 1.678804-1 2.056152-5 1.949845-1 1.227463-5 2.238721-1 7.681619-6 2.540973-1 5.035847-6 2.851018-1 3.454525-6 3.162278-1 2.476479-6 3.507519-1 1.786856-6 3.890451-1 1.298024-6 4.315191-1 9.497142-7 4.786301-1 7.001343-7 5.308844-1 5.202400-7 5.821032-1 4.023307-7 6.382635-1 3.133450-7 6.998420-1 2.457979-7 7.673615-1 1.941968-7 8.609938-1 1.455593-7 9.225714-1 1.232795-7 9.772372-1 1.080507-7 1.035142+0 9.536510-8 1.109175+0 8.264876-8 1.188600+0 7.215300-8 1.303167+0 6.088557-8 1.462177+0 4.962998-8 1.698244+0 3.832080-8 1.927525+0 3.100347-8 2.162719+0 2.574350-8 2.426610+0 2.153252-8 2.754229+0 1.782481-8 3.198895+0 1.437457-8 3.715352+0 1.167972-8 4.365158+0 9.413093-9 5.188000+0 7.529107-9 6.237348+0 5.979110-9 7.585776+0 4.716224-9 9.549926+0 3.597410-9 1.216186+1 2.730141-9 1.603245+1 2.007432-9 2.213095+1 1.415004-9 3.349654+1 9.12237-10 5.308844+1 5.65264-10 9.225714+1 3.21004-10 1.840772+2 1.59373-10 7.328245+2 3.97710-11 1.161449+4 2.50322-12 1.000000+5 2.90760-13 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.000000-6 5.000000-6 1.000000+5 5.000000-6 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.000000-6 0.0 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.880000-6 1.327467+7 5.432503-6 1.065620+7 6.025596-6 8.555180+6 6.700000-6 6.776137+6 7.328245-6 5.528476+6 8.035261-6 4.455344+6 8.810489-6 3.565374+6 9.549926-6 2.914869+6 1.035142-5 2.367880+6 1.122018-5 1.910789+6 1.216186-5 1.530452+6 1.318257-5 1.216745+6 1.428894-5 9.596883+5 1.531087-5 7.779199+5 1.659587-5 6.042242+5 1.778279-5 4.835333+5 1.905461-5 3.846354+5 2.070000-5 2.902195+5 2.238721-5 2.208390+5 2.454709-5 1.589806+5 2.754229-5 1.045665+5 3.349654-5 5.097804+4 3.589219-5 3.976520+4 3.801894-5 3.250823+4 4.000000-5 2.737361+4 4.168694-5 2.392870+4 4.350000-5 2.096041+4 4.518559-5 1.873798+4 4.677351-5 1.702074+4 4.850000-5 1.548781+4 5.011872-5 1.430714+4 5.188000-5 1.324902+4 5.370318-5 1.235343+4 5.559043-5 1.159911+4 5.754399-5 1.096742+4 5.956621-5 1.043986+4 6.165950-5 9.999955+3 6.400000-5 9.608538+3 6.683439-5 9.241082+3 7.000000-5 8.928204+3 7.413102-5 8.624307+3 8.000000-5 8.311537+3 9.885531-5 7.596285+3 1.100000-4 7.205137+3 1.216186-4 6.802213+3 1.348963-4 6.360698+3 1.500000-4 5.891790+3 1.678804-4 5.388540+3 1.862087-4 4.930282+3 2.137962-4 4.339532+3 2.371374-4 3.914958+3 2.600160-4 3.548623+3 2.851018-4 3.193800+3 3.054921-4 2.934528+3 3.349654-4 2.598335+3 3.672823-4 2.284260+3 4.027170-4 1.994784+3 4.466836-4 1.699988+3 5.011872-4 1.411861+3 5.559043-4 1.187989+3 6.095369-4 1.012496+3 6.683439-4 8.569316+2 7.328245-4 7.203868+2 8.317638-4 5.621358+2 9.225714-4 4.558239+2 1.023293-3 3.670676+2 1.135011-3 2.935258+2 1.258925-3 2.329463+2 1.412538-3 1.787525+2 1.584893-3 1.361436+2 1.778279-3 1.029495+2 2.000000-3 7.680954+1 2.238721-3 5.752429+1 2.511886-3 4.251668+1 2.851018-3 3.025360+1 3.273407-3 2.070295+1 3.715352-3 1.451344+1 4.216965-3 1.009939+1 4.786301-3 6.976295+0 5.432503-3 4.784374+0 6.165950-3 3.257956+0 6.998420-3 2.203100+0 8.000000-3 1.446507+0 9.120108-3 9.506057-1 1.059254-2 5.838130-1 1.230269-2 3.559210-1 1.428894-2 2.153508-1 1.659587-2 1.293102-1 1.949845-2 7.406870-2 2.290868-2 4.210674-2 2.722701-2 2.281660-2 3.235937-2 1.227436-2 3.981072-2 5.784376-3 5.069907-2 2.384312-3 6.683439-2 8.592645-4 1.011580-1 1.854110-4 1.244515-1 8.657411-5 1.479108-1 4.620874-5 1.717908-1 2.699798-5 1.949845-1 1.724701-5 2.213095-1 1.109762-5 2.483133-1 7.488180-6 2.754229-1 5.291975-6 3.054921-1 3.767484-6 3.349654-1 2.804394-6 3.672823-1 2.101768-6 4.027170-1 1.586708-6 4.415705-1 1.207302-6 4.786301-1 9.568402-7 5.188000-1 7.632608-7 5.623413-1 6.129035-7 6.095369-1 4.954871-7 6.606935-1 4.033633-7 7.161434-1 3.306061-7 7.762471-1 2.728089-7 8.511380-1 2.207219-7 9.225714-1 1.847286-7 1.000000+0 1.557700-7 1.096478+0 1.292363-7 1.202264+0 1.079852-7 1.333521+0 8.897171-8 1.479108+0 7.381518-8 1.659587+0 6.041240-8 1.883649+0 4.883623-8 2.137962+0 3.976539-8 2.398833+0 3.323767-8 2.722701+0 2.749654-8 3.162278+0 2.216133-8 3.672823+0 1.799617-8 4.315191+0 1.449593-8 5.128614+0 1.158870-8 6.165950+0 9.198425-9 7.498942+0 7.252314-9 9.440609+0 5.529808-9 1.188502+1 4.249911-9 1.584893+1 3.083482-9 2.213095+1 2.146154-9 3.349654+1 1.383560-9 5.308844+1 8.57360-10 9.225714+1 4.86885-10 1.840772+2 2.41724-10 7.328245+2 6.03222-11 2.317395+4 1.90370-12 1.000000+5 4.41010-13 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.880000-6 4.880000-6 1.000000+5 4.880000-6 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.880000-6 0.0 1.000000+5 1.000000+5 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.614490-8 1.028750+0 4.614490-7 1.031000+0 1.086730-6 1.032000+0 1.486920-6 1.033200+0 2.082920-6 1.034000+0 2.556980-6 1.035300+0 3.470730-6 1.036640+0 4.614490-6 1.038200+0 6.227400-6 1.039700+0 8.090650-6 1.041500+0 1.076450-5 1.043800+0 1.494150-5 1.046400+0 2.078830-5 1.048300+0 2.588200-5 1.051200+0 3.510840-5 1.054080+0 4.614490-5 1.057700+0 6.289840-5 1.061100+0 8.181500-5 1.065100+0 1.083140-4 1.070400+0 1.511090-4 1.076200+0 2.088320-4 1.080600+0 2.607980-4 1.087100+0 3.513810-4 1.093710+0 4.614490-4 1.102600+0 6.397920-4 1.110700+0 8.344130-4 1.120600+0 1.116190-3 1.133300+0 1.551990-3 1.147500+0 2.142830-3 1.158200+0 2.663000-3 1.174100+0 3.559180-3 1.190110+0 4.614490-3 1.205100+0 5.743930-3 1.227500+0 7.687540-3 1.250000+0 9.935000-3 1.265600+0 1.165420-2 1.294900+0 1.521310-2 1.331800+0 2.024930-2 1.362600+0 2.487160-2 1.411700+0 3.294180-2 1.455800+0 4.086220-2 1.500000+0 4.944000-2 1.562500+0 6.270360-2 1.617200+0 7.536880-2 1.712900+0 9.967990-2 1.784700+0 1.194830-1 1.892300+0 1.510510-1 2.000000+0 1.840000-1 2.044000+0 1.976000-1 2.163500+0 2.351120-1 2.372600+0 3.022030-1 2.647100+0 3.910250-1 3.000000+0 5.036000-1 3.437500+0 6.375550-1 4.000000+0 7.994000-1 4.750000+0 9.978950-1 5.000000+0 1.060000+0 6.000000+0 1.290000+0 7.000000+0 1.496000+0 8.000000+0 1.680000+0 9.000000+0 1.848000+0 1.000000+1 1.999000+0 1.100000+1 2.137000+0 1.200000+1 2.263000+0 1.300000+1 2.379000+0 1.400000+1 2.487000+0 1.500000+1 2.588000+0 1.600000+1 2.683000+0 1.800000+1 2.858000+0 2.000000+1 3.013000+0 2.200000+1 3.154000+0 2.400000+1 3.282000+0 2.600000+1 3.398000+0 2.800000+1 3.506000+0 3.000000+1 3.604000+0 4.000000+1 4.008000+0 5.000000+1 4.309000+0 6.000000+1 4.545000+0 8.000000+1 4.894000+0 1.000000+2 5.143000+0 1.500000+2 5.539000+0 2.000000+2 5.775000+0 3.000000+2 6.050000+0 4.000000+2 6.209000+0 5.000000+2 6.313000+0 6.000000+2 6.387000+0 8.000000+2 6.486000+0 1.000000+3 6.550000+0 1.500000+3 6.643000+0 2.000000+3 6.693000+0 3.000000+3 6.748000+0 4.000000+3 6.777000+0 5.000000+3 6.796000+0 6.000000+3 6.809000+0 8.000000+3 6.825000+0 1.000000+4 6.836000+0 1.500000+4 6.850000+0 2.000000+4 6.858000+0 3.000000+4 6.867000+0 4.000000+4 6.871000+0 5.000000+4 6.874000+0 6.000000+4 6.876000+0 8.000000+4 6.878000+0 1.000000+5 6.879000+0 1 31000 7 8 6.972000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.113490-7 2.106600+0 1.014410-6 2.114000+0 1.403560-6 2.119500+0 1.747430-6 2.127900+0 2.369840-6 2.136250+0 3.113490-6 2.147000+0 4.268810-6 2.156900+0 5.544680-6 2.169000+0 7.399720-6 2.184500+0 1.028590-5 2.201800+0 1.423080-5 2.214800+0 1.773040-5 2.234200+0 2.385060-5 2.253680+0 3.113490-5 2.281500+0 4.360990-5 2.307000+0 5.728150-5 2.338200+0 7.701990-5 2.377400+0 1.066630-4 2.410200+0 1.356580-4 2.446800+0 1.725640-4 2.485900+0 2.172680-4 2.532900+0 2.780570-4 2.556430+0 3.113490-4 2.611900+0 3.970050-4 2.660400+0 4.799590-4 2.745300+0 6.423960-4 2.809000+0 7.779800-4 2.904500+0 1.002240-3 3.000000+0 1.251000-3 3.125000+0 1.613090-3 3.234400+0 1.962720-3 3.425800+0 2.642970-3 3.569300+0 3.204820-3 3.784700+0 4.119900-3 4.000000+0 5.104000-3 4.250000+0 6.307860-3 4.625000+0 8.201120-3 5.000000+0 1.017000-2 5.500000+0 1.287200-2 6.000000+0 1.561000-2 6.750000+0 1.968700-2 7.000000+0 2.103000-2 8.000000+0 2.629000-2 9.000000+0 3.132000-2 1.000000+1 3.611000-2 1.100000+1 4.064000-2 1.200000+1 4.492000-2 1.300000+1 4.896000-2 1.400000+1 5.281000-2 1.500000+1 5.645000-2 1.600000+1 5.991000-2 1.800000+1 6.635000-2 2.000000+1 7.221000-2 2.200000+1 7.759000-2 2.400000+1 8.254000-2 2.600000+1 8.712000-2 2.800000+1 9.137000-2 3.000000+1 9.534000-2 4.000000+1 1.118000-1 5.000000+1 1.244000-1 6.000000+1 1.345000-1 8.000000+1 1.497000-1 1.000000+2 1.608000-1 1.500000+2 1.793000-1 2.000000+2 1.909000-1 3.000000+2 2.052000-1 4.000000+2 2.138000-1 5.000000+2 2.197000-1 6.000000+2 2.241000-1 8.000000+2 2.301000-1 1.000000+3 2.341000-1 1.500000+3 2.400000-1 2.000000+3 2.434000-1 3.000000+3 2.471000-1 4.000000+3 2.493000-1 5.000000+3 2.506000-1 6.000000+3 2.515000-1 8.000000+3 2.528000-1 1.000000+4 2.536000-1 1.500000+4 2.546000-1 2.000000+4 2.553000-1 3.000000+4 2.559000-1 4.000000+4 2.563000-1 5.000000+4 2.565000-1 6.000000+4 2.566000-1 8.000000+4 2.568000-1 1.000000+5 2.569000-1 1 31000 7 8 6.972000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 31000 7 9 6.972000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.100000+1 1.000000+5 3.100000+1 5.000000+5 3.097900+1 8.750000+5 3.096120+1 1.000000+6 3.095700+1 1.500000+6 3.093200+1 2.000000+6 3.088100+1 2.500000+6 3.081500+1 3.000000+6 3.073500+1 3.500000+6 3.064080+1 4.000000+6 3.053900+1 4.500000+6 3.042830+1 5.000000+6 3.030600+1 5.687500+6 3.011490+1 6.437500+6 2.988600+1 6.500000+6 2.986590+1 7.000000+6 2.970600+1 7.500000+6 2.953830+1 8.250000+6 2.927780+1 9.000000+6 2.901600+1 9.750000+6 2.874630+1 1.000000+7 2.865700+1 1.109400+7 2.824460+1 1.187500+7 2.794470+1 1.203100+7 2.788490+1 1.250000+7 2.770300+1 1.375000+7 2.721510+1 1.500000+7 2.674000+1 1.687500+7 2.604720+1 1.750000+7 2.581900+1 2.000000+7 2.490700+1 2.250000+7 2.402050+1 2.500000+7 2.315700+1 2.750000+7 2.231010+1 3.000000+7 2.147300+1 3.343800+7 2.033400+1 3.718800+7 1.912390+1 3.750000+7 1.902540+1 4.000000+7 1.824600+1 4.250000+7 1.748840+1 4.500000+7 1.675680+1 4.625000+7 1.640100+1 5.000000+7 1.537400+1 5.500000+7 1.410170+1 5.750000+7 1.351120+1 6.000000+7 1.295100+1 6.750000+7 1.145040+1 7.000000+7 1.101100+1 8.000000+7 9.535100+0 8.750000+7 8.688390+0 9.000000+7 8.447300+0 9.750000+7 7.827780+0 1.000000+8 7.649900+0 1.062500+8 7.257150+0 1.125000+8 6.922980+0 1.156300+8 6.773400+0 1.250000+8 6.382100+0 1.437500+8 5.763850+0 1.500000+8 5.583700+0 1.625000+8 5.237320+0 1.718800+8 4.980410+0 1.750000+8 4.894130+0 1.815400+8 4.712960+0 1.881300+8 4.528370+0 1.960400+8 4.303880+0 2.000000+8 4.190700+0 2.062500+8 4.011930+0 2.335900+8 3.323600+0 2.375000+8 3.244310+0 2.445300+8 3.115410+0 2.500000+8 3.027600+0 2.781300+8 2.672430+0 2.859400+8 2.574320+0 2.875000+8 2.553960+0 2.929700+8 2.479690+0 3.000000+8 2.377400+0 3.062500+8 2.280190+0 3.308600+8 1.918740+0 3.377000+8 1.838830+0 3.459000+8 1.759620+0 3.500000+8 1.727200+0 3.562500+8 1.687080+0 3.617200+8 1.659160+0 3.712900+8 1.621560+0 4.000000+8 1.534800+0 4.125000+8 1.488200+0 5.000000+8 1.150000+0 5.125000+8 1.119400+0 5.343800+8 1.075790+0 5.835900+8 9.984550-1 6.000000+8 9.733000-1 6.250000+8 9.328530-1 7.000000+8 8.182000-1 7.625000+8 7.421400-1 7.875000+8 7.122820-1 8.000000+8 6.969000-1 8.250000+8 6.649080-1 8.564500+8 6.237810-1 8.827600+8 5.896200-1 9.246300+8 5.374500-1 9.748800+8 4.802160-1 1.000000+9 4.542000-1 1.089800+9 3.745580-1 1.165000+9 3.208510-1 1.248800+9 2.715630-1 1.311600+9 2.404000-1 1.405800+9 2.010770-1 1.500000+9 1.688900-1 1.562500+9 1.507180-1 1.671900+9 1.240030-1 1.753900+9 1.075550-1 1.877000+9 8.743900-2 2.000000+9 7.169000-2 2.187500+9 5.379440-2 2.363300+9 4.175680-2 2.605300+9 3.013450-2 2.827400+9 2.279880-2 3.099000+9 1.659370-2 3.447500+9 1.140860-2 4.002000+9 6.700380-3 4.667300+9 3.845540-3 5.000000+9 2.995800-3 8.000000+9 5.426600-4 1.00000+10 2.421900-4 1.20500+10 1.244390-4 1.41820+10 7.003230-5 1.71170+10 3.633490-5 2.01490+10 2.069950-5 2.26440+10 1.388390-5 2.74790+10 7.203980-6 3.41360+10 3.481050-6 4.02450+10 2.015580-6 4.77140+10 1.150740-6 5.73000+10 6.328420-7 7.25500+10 2.947720-7 9.08500+10 1.432070-7 1.00000+11 1.054200-7 1.34280+11 4.138620-8 1.77440+11 1.722570-8 2.63330+11 5.036990-9 3.75720+11 1.683550-9 6.61190+11 3.00684-10 1.48990+12 2.62313-11 4.26460+12 1.17484-12 2.06510+13 1.19160-14 1.00000+14 1.23430-16 5.62340+14 7.97299-19 7.49890+15 3.84157-22 1.00000+17 1.76540-25 1 31000 7 0 6.972000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.40000-12 1.000000+2 4.40000-10 1.000000+3 4.400000-8 1.000000+4 4.400000-6 1.000000+5 4.400000-4 5.000000+5 1.100000-2 8.750000+5 3.368750-2 1.000000+6 4.400000-2 1.500000+6 9.820000-2 2.000000+6 1.727000-1 2.500000+6 2.663000-1 3.000000+6 3.773000-1 3.500000+6 5.039570-1 4.000000+6 6.444000-1 4.500000+6 7.967210-1 5.000000+6 9.590000-1 5.687500+6 1.194930+0 6.437500+6 1.464630+0 6.500000+6 1.487560+0 7.000000+6 1.672400+0 7.500000+6 1.859150+0 8.250000+6 2.140910+0 9.000000+6 2.421800+0 9.750000+6 2.699340+0 1.000000+7 2.791000+0 1.109400+7 3.184860+0 1.187500+7 3.458680+0 1.203100+7 3.512320+0 1.250000+7 3.672600+0 1.375000+7 4.086420+0 1.500000+7 4.483000+0 1.687500+7 5.049620+0 1.750000+7 5.232600+0 2.000000+7 5.939000+0 2.250000+7 6.619660+0 2.500000+7 7.287400+0 2.750000+7 7.946640+0 3.000000+7 8.599000+0 3.343800+7 9.478190+0 3.718800+7 1.040810+1 3.750000+7 1.048410+1 4.000000+7 1.108200+1 4.250000+7 1.166030+1 4.500000+7 1.222140+1 4.625000+7 1.249450+1 5.000000+7 1.329000+1 5.500000+7 1.429190+1 5.750000+7 1.476910+1 6.000000+7 1.523300+1 6.750000+7 1.653850+1 7.000000+7 1.694700+1 8.000000+7 1.844500+1 8.750000+7 1.942930+1 9.000000+7 1.973400+1 9.750000+7 2.057240+1 1.000000+8 2.083100+1 1.062500+8 2.142800+1 1.125000+8 2.196840+1 1.156300+8 2.221970+1 1.250000+8 2.290700+1 1.437500+8 2.404290+1 1.500000+8 2.437000+1 1.625000+8 2.496560+1 1.718800+8 2.537000+1 1.750000+8 2.549860+1 1.815400+8 2.575230+1 1.881300+8 2.599400+1 1.960400+8 2.626940+1 2.000000+8 2.640000+1 2.062500+8 2.659430+1 2.335900+8 2.734150+1 2.375000+8 2.743290+1 2.445300+8 2.759360+1 2.500000+8 2.771000+1 2.781300+8 2.821860+1 2.859400+8 2.834080+1 2.875000+8 2.836280+1 2.929700+8 2.843940+1 3.000000+8 2.853600+1 3.062500+8 2.861370+1 3.308600+8 2.888850+1 3.377000+8 2.895360+1 3.459000+8 2.902960+1 3.500000+8 2.906700+1 3.562500+8 2.911790+1 3.617200+8 2.916170+1 3.712900+8 2.923710+1 4.000000+8 2.943600+1 4.125000+8 2.951180+1 5.000000+8 2.994700+1 5.125000+8 2.999640+1 5.343800+8 3.008020+1 5.835900+8 3.024690+1 6.000000+8 3.029800+1 6.250000+8 3.036570+1 7.000000+8 3.054100+1 7.625000+8 3.064950+1 7.875000+8 3.068770+1 8.000000+8 3.070500+1 8.250000+8 3.073490+1 8.564500+8 3.076990+1 8.827600+8 3.079390+1 9.246300+8 3.083070+1 9.748800+8 3.086330+1 1.000000+9 3.087900+1 1.089800+9 3.091660+1 1.165000+9 3.093960+1 1.248800+9 3.095760+1 1.311600+9 3.096800+1 1.405800+9 3.097680+1 1.500000+9 3.098500+1 1.562500+9 3.098680+1 1.671900+9 3.098990+1 1.753900+9 3.099210+1 1.877000+9 3.099510+1 2.000000+9 3.099800+1 2.187500+9 3.099820+1 2.363300+9 3.099840+1 2.605300+9 3.099860+1 2.827400+9 3.099880+1 3.099000+9 3.099900+1 3.447500+9 3.099920+1 4.002000+9 3.099950+1 4.667300+9 3.099980+1 5.000000+9 3.100000+1 8.000000+9 3.100000+1 1.00000+10 3.100000+1 1.20500+10 3.100000+1 1.41820+10 3.100000+1 1.71170+10 3.100000+1 2.01490+10 3.100000+1 2.26440+10 3.100000+1 2.74790+10 3.100000+1 3.41360+10 3.100000+1 4.02450+10 3.100000+1 4.77140+10 3.100000+1 5.73000+10 3.100000+1 7.25500+10 3.100000+1 9.08500+10 3.100000+1 1.00000+11 3.100000+1 1.34280+11 3.100000+1 1.77440+11 3.100000+1 2.63330+11 3.100000+1 3.75720+11 3.100000+1 6.61190+11 3.100000+1 1.48990+12 3.100000+1 4.26460+12 3.100000+1 2.06510+13 3.100000+1 1.00000+14 3.100000+1 5.62340+14 3.100000+1 7.49890+15 3.100000+1 1.00000+17 3.100000+1 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.061616-6 0.0 2.069228-6 3.630235-1 2.071765-6 4.824963-1 2.076839-6 8.813190-1 2.081914-6 1.486025+0 2.087622-6 2.439012+0 2.096423-6 4.255037+0 2.102528-6 5.440630+0 2.107751-6 6.123772+0 2.113074-6 6.330816+0 2.118148-6 6.033470+0 2.123551-6 5.248687+0 2.132111-6 3.504783+0 2.137732-6 2.369225+0 2.143124-6 1.490949+0 2.147881-6 9.114660-1 2.152955-6 5.014049-1 2.160250-6 1.433705-1 2.163104-6 0.0 2.187049-6 0.0 2.195123-6 1.736652-1 2.197815-6 2.308193-1 2.203198-6 4.216104-1 2.208918-6 7.355623-1 2.214301-6 1.136639+0 2.223737-6 2.012712+0 2.230450-6 2.602719+0 2.236218-6 2.934840+0 2.241637-6 3.028571+0 2.246757-6 2.902202+0 2.252614-6 2.522861+0 2.261088-6 1.748536+0 2.267796-6 1.133403+0 2.273179-6 7.316855-1 2.278562-6 4.360322-1 2.283945-6 2.398649-1 2.292020-6 6.097463-2 2.294711-6 0.0 2.967118-6 0.0 2.974421-6 1.612722-7 2.981725-6 3.191133-7 2.986745-6 5.003048-7 2.989028-6 6.308349-7 2.996331-6 1.183446-6 3.001448-6 1.671851-6 3.003634-6 1.910943-6 3.008800-6 2.561132-6 3.032847-6 6.328501-6 3.040150-6 7.170711-6 3.047453-6 7.591884-6 3.054756-6 7.515206-6 3.062060-6 6.958155-6 3.069363-6 6.026044-6 3.083969-6 3.693870-6 3.092551-6 2.451359-6 3.098575-6 1.721887-6 3.104369-6 1.172456-6 3.111720-6 6.119620-7 3.112178-6 5.852591-7 3.113182-6 5.460428-7 3.119072-6 4.518903-7 3.127498-6 4.322340-7 3.133775-6 4.935050-7 3.135158-6 5.375232-7 3.142819-6 9.063379-7 3.150479-6 1.410707-6 3.173460-6 3.291552-6 3.181120-6 3.720173-6 3.188780-6 3.881320-6 3.196440-6 3.738089-6 3.204100-6 3.323333-6 3.227081-6 1.445008-6 3.234741-6 9.328469-7 3.242402-6 5.559100-7 3.250062-6 3.058107-7 3.257722-6 1.552940-7 3.265382-6 0.0 3.270374-6 0.0 3.270755-6 3.137372-3 3.286856-6 1.319037+0 3.294906-6 2.407747+0 3.302957-6 4.057322+0 3.312014-6 6.654930+0 3.325976-6 1.159996+1 3.335662-6 1.482418+1 3.343948-6 1.667844+1 3.352393-6 1.723545+1 3.360443-6 1.642013+1 3.369014-6 1.427940+1 3.382595-6 9.530184+0 3.391513-6 6.440403+0 3.396187-6 5.128210+0 3.400066-6 4.211338+0 3.407945-6 2.883584+0 3.412906-6 2.387106+0 3.416014-6 2.168223+0 3.421787-6 2.068884+0 3.429892-6 2.152821+0 3.432005-6 2.263163+0 3.439329-6 3.244371+0 3.462614-6 6.916204+0 3.472365-6 7.896303+0 3.480547-6 8.141239+0 3.488662-6 7.787990+0 3.497176-6 6.865130+0 3.521182-6 3.172085+0 3.529936-6 2.129825+0 3.538295-6 1.438720+0 3.546654-6 1.023476+0 3.558889-6 6.983991-1 3.562973-6 5.714378-1 3.567479-6 6.082365-1 3.576070-6 6.345835-1 3.584681-6 6.110019-1 3.593251-6 5.433544-1 3.612165-6 3.191344-1 3.615606-6 2.767084-1 3.619060-6 2.406948-1 3.627614-6 1.691404-1 3.633405-6 1.355252-1 3.636204-6 1.217781-1 3.642305-6 1.066669-1 3.644795-6 1.033790-1 3.651204-6 1.071800-1 3.660103-6 1.231064-1 3.661976-6 1.283470-1 3.686801-6 2.743014-1 3.695701-6 3.100205-1 3.704600-6 3.234497-1 3.713499-6 3.115136-1 3.722399-6 2.769499-1 3.735748-6 1.997735-1 3.749097-6 1.204197-1 3.757996-6 7.773877-2 3.766895-6 4.632675-2 3.775795-6 2.548472-2 3.789144-6 6.478320-3 3.793594-6 0.0 3.920902-6 0.0 3.921126-6 4.786812-4 3.940429-6 4.083618-1 3.950081-6 7.456649-1 3.959732-6 1.256917+0 3.970418-6 2.049807+0 3.998940-6 4.597170+0 4.008875-6 5.173322+0 4.018998-6 5.348004+0 4.028649-6 5.102113+0 4.038679-6 4.471907+0 4.062683-6 2.511543+0 4.067088-6 2.194814+0 4.076494-6 1.708371+0 4.085501-6 1.485571+0 4.095301-6 1.502413+0 4.114778-6 1.954738+0 4.126472-6 2.430821+0 4.137256-6 2.697609+0 4.147074-6 2.751429+0 4.157034-6 2.603088+0 4.168556-6 2.212012+0 4.193047-6 1.142034+0 4.198261-6 9.427082-1 4.205921-6 6.867056-1 4.215881-6 4.450141-1 4.222978-6 3.372169-1 4.225841-6 3.204514-1 4.240546-6 3.139649-1 4.243971-6 3.119968-1 4.245857-6 3.232295-1 4.254455-6 4.491921-1 4.264708-6 6.678212-1 4.276720-6 1.024057+0 4.306993-6 2.102176+0 4.318872-6 2.360828+0 4.328980-6 2.423194+0 4.339892-6 2.296001+0 4.356480-6 1.841815+0 4.377056-6 1.199009+0 4.381065-6 1.092260+0 4.389418-6 9.376815-1 4.400279-6 8.904753-1 4.410728-6 9.590844-1 4.430883-6 1.314437+0 4.447595-6 1.784345+0 4.456102-6 1.982037+0 4.466909-6 2.148410+0 4.478379-6 2.199737+0 4.487949-6 2.151272+0 4.498989-6 2.000616+0 4.531391-6 1.318285+0 4.542044-6 1.160178+0 4.550535-6 1.097554+0 4.561788-6 1.097562+0 4.574025-6 1.209127+0 4.599805-6 1.524639+0 4.619274-6 1.664914+0 4.638639-6 1.644528+0 4.678703-6 1.443738+0 4.723641-6 1.448684+0 4.743373-6 1.470093+0 4.817018-6 1.396677+0 4.870041-6 1.344066+0 5.009501-6 1.377383+0 6.217195-6 1.089666+0 6.533418-6 1.028462+0 6.565581-6 3.981573+0 6.581662-6 6.424494+0 6.597743-6 1.013005+1 6.613824-6 1.519866+1 6.642971-6 2.679116+1 6.661272-6 3.402153+1 6.680159-6 4.256233+1 6.702600-6 4.875377+1 6.743915-6 5.896152+1 6.798809-6 8.007250+1 6.809507-6 8.248312+1 6.823388-6 8.289036+1 6.840654-6 7.768484+1 6.861174-6 6.444814+1 6.904710-6 3.037253+1 6.921100-6 1.994546+1 6.937490-6 1.227075+1 6.953880-6 7.177623+0 6.982562-6 1.740167+0 6.986659-6 9.479201-1 8.393648-6 7.437865-1 9.625979-6 6.093317-1 9.645596-6 6.387767-1 9.673365-6 7.907512-1 9.697058-6 9.539381-1 9.716820-6 1.160105+0 9.742285-6 1.552096+0 9.773876-6 2.215890+0 9.815524-6 3.212480+0 9.842179-6 3.723445+0 9.862910-6 3.974309+0 9.889565-6 3.981078+0 9.913258-6 3.729482+0 9.939913-6 3.206206+0 9.993222-6 1.951102+0 1.000540-5 1.685045+0 1.002736-5 1.297465+0 1.004920-5 1.012748+0 1.007294-5 8.085776-1 1.010028-5 6.499927-1 1.012042-5 5.638260-1 1.047380-5 5.360625-1 1.052536-5 5.931834-1 1.055114-5 6.425372-1 1.057692-5 7.176547-1 1.061145-5 8.625269-1 1.067268-5 1.161993+0 1.070582-5 1.274669+0 1.073160-5 1.300584+0 1.075738-5 1.265085+0 1.078832-5 1.151129+0 1.086050-5 8.025911-1 1.088628-5 7.108456-1 1.091030-5 6.569434-1 1.093915-5 6.321988-1 1.098670-5 6.524538-1 1.104873-5 7.657901-1 1.107477-5 7.990046-1 1.110081-5 8.151079-1 1.115382-5 7.991851-1 1.122422-5 7.435168-1 1.135690-5 7.135934-1 1.193171-5 6.098736-1 1.282145-5 4.896008-1 1.385074-5 3.880950-1 1.487112-5 3.152826-1 1.596825-5 2.580870-1 1.704112-5 2.168706-1 1.852000-5 1.765318-1 2.015712-5 1.467900-1 2.144681-5 1.307839-1 2.155239-5 1.011516+0 2.160518-5 1.739869+0 2.166127-5 2.938720+0 2.171594-5 4.540818+0 2.187934-5 1.050498+1 2.194073-5 1.201956+1 2.198943-5 1.266364+1 2.205144-5 1.264132+1 2.221823-5 1.079665+1 2.237886-5 9.019867+0 2.243388-5 8.156112+0 2.247577-5 7.210012+0 2.250259-5 6.461851+0 2.262796-5 3.600308+0 2.268168-5 2.503957+0 2.273539-5 1.641601+0 2.278910-5 1.025582+0 2.281203-5 8.429572-1 2.286605-5 4.529817-1 2.289653-5 2.534842-1 2.292007-5 2.177560-1 2.302811-5 1.173477-1 2.443360-5 1.094055-1 2.455388-5 2.416330-1 2.461402-5 3.511232-1 2.467416-5 5.172823-1 2.473430-5 7.446125-1 2.488093-5 1.429396+0 2.497618-5 1.829408+0 2.504517-5 1.940802+0 2.510897-5 1.922160+0 2.528280-5 1.607933+0 2.537545-5 1.532217+0 2.555573-5 1.540159+0 2.570783-5 1.384208+0 2.593539-5 1.079289+0 2.603196-5 1.004371+0 2.614956-5 9.908218-1 2.636487-5 1.165488+0 2.646871-5 1.188859+0 2.678961-5 1.101309+0 2.759998-5 1.059768+0 3.004307-5 1.103362+0 3.190000-5 1.186707+0 3.408003-5 1.358452+0 3.641246-5 1.630325+0 3.938175-5 2.088105+0 4.306145-5 2.805692+0 5.850000-5 6.342971+0 6.872310-5 8.205929+0 8.145265-5 9.949423+0 9.650109-5 1.145998+1 1.027634-4 1.199615+1 1.045563-4 1.271292+1 1.069315-4 1.276298+1 1.091924-4 1.308739+1 1.420965-4 1.358055+1 1.499910-4 1.371625+1 1.529835-4 1.508728+1 1.556271-4 1.416626+1 2.053525-4 1.341024+1 3.507519-4 9.420181+0 4.290422-4 7.762359+0 5.202954-4 6.310220+0 6.237348-4 5.115061+0 7.452684-4 4.112220+0 8.652354-4 3.395620+0 1.021132-3 2.723827+0 1.097450-3 2.495643+0 1.103628-3 2.596262+0 1.107844-3 2.816572+0 1.111352-3 3.168064+0 1.114812-3 3.710119+0 1.119108-3 4.663094+0 1.133439-3 8.662923+0 1.151530-3 1.241192+1 1.163587-3 1.440571+1 1.174295-3 1.517771+1 1.197665-3 1.528316+1 1.265192-3 1.432938+1 1.279153-3 1.485334+1 1.295686-3 1.553736+1 1.490566-3 1.276893+1 1.741493-3 1.022883+1 2.026071-3 8.151441+0 2.344229-3 6.510024+0 2.697966-3 5.201806+0 3.115063-3 4.118117+0 3.574369-3 3.277697+0 4.047950-3 2.657822+0 4.607205-3 2.131749+0 5.069907-3 1.806904+0 5.733733-3 1.457761+0 6.456478-3 1.182710+0 7.268672-3 9.582747-1 8.093288-3 7.908244-1 9.076844-3 6.428224-1 1.006665-2 5.357233-1 1.011448-2 5.565093-1 1.014860-2 6.026096-1 1.017089-2 6.624601-1 1.019521-2 7.669319-1 1.021500-2 8.899312-1 1.023647-2 1.068154+0 1.026642-2 1.395666+0 1.030897-2 1.982723+0 1.036490-2 2.775554+0 1.040186-2 3.182865+0 1.045397-2 3.523492+0 1.051817-2 3.660609+0 1.271671-2 2.751239+0 1.455098-2 2.200413+0 1.660414-2 1.762648+0 1.888150-2 1.410531+0 2.135970-2 1.135693+0 2.409271-2 9.148947-1 2.717001-2 7.353910-1 3.023764-2 6.033447-1 3.367643-2 4.932252-1 3.744223-2 4.035881-1 4.180097-2 3.268477-1 4.618645-2 2.695720-1 5.102338-2 2.220139-1 5.739026-2 1.761760-1 6.324852-2 1.452866-1 7.054725-2 1.168602-1 7.830001-2 9.477956-2 8.750417-2 7.570413-2 9.782221-2 6.041133-2 1.075896-1 4.980986-2 1.170165-1 4.199442-2 1.279143-1 3.503728-2 1.406452-1 2.887931-2 1.551605-1 2.365034-2 1.708367-1 1.947379-2 1.867441-1 1.628332-2 2.056621-1 1.342457-2 2.256511-1 1.117836-2 2.495904-1 9.170722-3 2.757699-1 7.565753-3 3.010009-1 6.413871-3 3.343183-1 5.275814-3 3.697393-1 4.398678-3 4.097713-1 3.673579-3 4.548326-1 3.080648-3 5.072057-1 2.582102-3 5.664498-1 2.179299-3 6.461190-1 1.801205-3 7.307183-1 1.526748-3 8.460018-1 1.277684-3 9.772373-1 1.086359-3 1.173413+0 8.978895-4 1.410753+0 7.396220-4 1.696098+0 6.092516-4 2.039158+0 5.018612-4 2.451607+0 4.134001-4 2.947480+0 3.405316-4 3.543651+0 2.805074-4 4.260405+0 2.310635-4 5.122134+0 1.903348-4 6.158159+0 1.567852-4 7.403736+0 1.291493-4 8.901248+0 1.063847-4 9.760024+0 9.655449-5 1.000000+1 1.935027-4 1 31000 7 0 6.972000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.089391+1 1.955306-6-3.001374+1 2.048839-6-2.890954+1 2.090397-6-2.653324+1 2.101944-6-2.770259+1 2.115923-6-3.090776+1 2.128218-6-2.844567+1 2.141538-6-2.822271+1 2.183640-6-3.107110+1 2.220020-6-2.967552+1 2.240808-6-3.086441+1 2.261088-6-2.916909+1 2.341669-6-3.076913+1 2.493876-6-3.081271+1 3.069363-6-2.907645+1 3.204100-6-2.736737+1 3.253892-6-2.546957+1 3.271258-6-2.377472+1 3.305724-6-1.941520+1 3.316416-6-1.901659+1 3.325976-6-1.993311+1 3.335159-6-2.227747+1 3.344862-6-2.612686+1 3.356178-6-3.120509+1 3.369014-6-2.619251+1 3.379995-6-2.399426+1 3.390664-6-2.381346+1 3.407945-6-2.638907+1 3.435581-6-3.110563+1 3.451169-6-3.018566+1 3.466933-6-3.100356+1 3.499560-6-2.568321+1 3.516713-6-2.488538+1 3.576070-6-2.809993+1 3.695701-6-3.022844+1 3.831985-6-3.115277+1 3.922861-6-2.953664+1 3.977030-6-2.788364+1 3.998940-6-2.883926+1 4.024596-6-3.124615+1 4.049517-6-2.949078+1 4.077038-6-2.998596+1 4.120063-6-3.136784+1 4.183584-6-2.965534+1 4.249894-6-3.138566+1 4.298395-6-3.073042+1 4.328980-6-3.135654+1 4.373582-6-3.068235+1 4.418557-6-3.135662+1 4.466113-6-3.153881+1 4.531391-6-3.091629+1 4.608534-6-3.166350+1 5.106814-6-3.172456+1 5.930468-6-2.694863+1 6.173626-6-2.412280+1 6.311865-6-2.119959+1 6.397372-6-1.821602+1 6.453670-6-1.518788+1 6.486672-6-1.265170+1 6.510410-6-1.018129+1 6.520476-6-8.848922+0 6.530183-6-7.247662+0 6.535428-6-6.030495+0 6.538946-6-5.331258+0 6.557540-6-2.030856+0 6.561560-6-1.261186+0 6.565581-6-3.739258-1 6.569601-6 5.325034-1 6.578647-6 2.427811+0 6.581662-6 3.170251+0 6.599753-6 7.165726+0 6.617844-6 1.025260+1 6.629905-6 1.137981+1 6.639956-6 1.172991+1 6.661272-6 1.115258+1 6.668655-6 1.042286+1 6.675775-6 9.069259+0 6.680159-6 7.650398+0 6.697141-6 3.314210+0 6.702600-6 2.049596+0 6.712152-6 2.705365-3 6.726481-6-2.913357+0 6.733646-6-4.278426+0 6.739019-6-5.145697+0 6.741867-6-5.354555+0 6.743915-6-5.650548+0 6.747755-6-6.411866+0 6.754056-6-7.994239+0 6.764507-6-1.129705+1 6.776646-6-1.608543+1 6.786172-6-2.094935+1 6.800464-6-3.071918+1 6.807173-6-2.506222+1 6.820999-6-1.308459+1 6.823388-6-1.048879+1 6.839150-6 3.806766+0 6.839662-6 4.399604+0 6.840654-6 5.369572+0 6.842515-6 6.990846+0 6.848213-6 1.127536+1 6.857589-6 1.756988+1 6.866552-6 2.217656+1 6.877564-6 2.648560+1 6.888320-6 2.855166+1 6.900100-6 2.891870+1 6.919051-6 2.578278+1 6.937490-6 2.014597+1 6.959514-6 1.288567+1 6.978464-6 7.818243+0 6.984611-6 5.919903+0 6.988353-6 4.348592+0 6.991736-6 3.265339+0 6.995112-6 2.348835+0 6.998482-6 1.531274+0 7.005208-6 9.593455-2 7.011909-6-1.147170+0 7.018583-6-2.248344+0 7.025231-6-3.237676+0 7.038449-6-4.956563+0 7.058109-6-7.061661+0 7.083982-6-9.264111+0 7.122039-6-1.173718+1 7.171407-6-1.409329+1 7.242891-6-1.649830+1 7.354776-6-1.896127+1 7.554947-6-2.150926+1 7.927509-6-2.383592+1 8.597916-6-2.564608+1 9.608101-6-2.754650+1 9.783637-6-2.875026+1 9.862910-6-2.723974+1 9.954166-6-2.494068+1 1.002736-5-2.494621+1 1.023477-5-2.634556+1 1.067268-5-2.721317+1 1.086050-5-2.661696+1 1.126552-5-2.700664+1 1.960653-5-2.938866+1 2.096048-5-3.106974+1 2.135912-5-2.947361+1 2.172566-5-2.470183+1 2.182087-5-2.517021+1 2.190452-5-2.726177+1 2.198943-5-3.050762+1 2.204582-5-2.989809+1 2.217655-5-2.647923+1 2.250259-5-2.136109+1 2.262796-5-2.122158+1 2.302811-5-2.513332+1 2.350847-5-2.686722+1 2.488093-5-2.937980+1 2.528280-5-2.824772+1 2.603196-5-2.818416+1 4.804144-5-3.090998+1 6.309573-5-3.043181+1 1.063588-4-2.591449+1 1.247200-4-2.300063+1 1.533592-4-2.019810+1 1.587405-4-1.997242+1 1.678952-4-1.869737+1 2.053525-4-1.548276+1 2.437109-4-1.324660+1 2.917427-4-1.137185+1 3.507519-4-9.969492+0 4.290422-4-9.009574+0 5.202954-4-8.575879+0 6.237348-4-8.571962+0 7.452684-4-9.018172+0 8.652354-4-9.953446+0 9.585866-4-1.125450+1 1.021132-3-1.274919+1 1.061684-3-1.438098+1 1.088230-3-1.620944+1 1.103628-3-1.817318+1 1.122505-3-2.190222+1 1.131171-3-2.226157+1 1.154425-3-2.053650+1 1.184056-3-1.572397+1 1.205730-3-1.355185+1 1.231251-3-1.190373+1 1.258440-3-1.088885+1 1.291851-3-1.055202+1 1.324586-3-8.528271+0 1.357826-3-7.271965+0 1.411014-3-5.895497+0 1.473221-3-4.732738+0 1.533275-3-3.877339+0 1.617315-3-2.960407+0 1.662775-3-2.567304+0 1.760556-3-1.901178+0 1.851576-3-1.424491+0 1.927525-3-1.113901+0 2.001014-3-8.746662-1 2.079081-3-6.716997-1 2.153547-3-5.163116-1 2.238994-3-3.714667-1 2.329096-3-2.464950-1 2.397754-3-1.721014-1 2.436378-3-1.372927-1 2.494296-3-9.181244-2 2.564853-3-4.467613-2 2.595420-3-2.788691-2 2.631688-3-9.991502-3 2.638799-3-7.201197-3 2.666709-3 2.540999-3 2.697966-3 1.304395-2 2.737419-3 2.533813-2 2.754845-3 3.006895-2 2.809103-3 4.285862-2 2.869912-3 5.342074-2 2.978065-3 6.635085-2 3.035201-3 6.962807-2 3.090295-3 7.052736-2 3.215400-3 6.212973-2 3.396298-3 3.992849-2 3.459891-3 2.946682-2 3.524931-3 1.756002-2 3.546738-3 1.325035-2 3.609636-3 3.800257-5 3.646489-3-7.608059-3 3.705463-3-2.119897-2 3.806789-3-4.476867-2 3.924190-3-7.186693-2 4.143252-3-1.296239-1 6.456478-3-7.731756-1 7.543129-3-1.100606+0 8.328420-3-1.394916+0 8.902901-3-1.686730+0 9.348903-3-2.012135+0 9.649450-3-2.339234+0 9.885531-3-2.738413+0 1.003140-2-3.138916+0 1.012814-2-3.593422+0 1.023647-2-4.450258+0 1.029743-2-4.853558+0 1.035132-2-4.869766+0 1.041561-2-4.448737+0 1.051817-2-3.531091+0 1.060000-2-3.028962+0 1.071249-2-2.588091+0 1.086577-2-2.179736+0 1.106617-2-1.803358+0 1.130693-2-1.471637+0 1.158771-2-1.186002+0 1.185087-2-9.772816-1 1.223635-2-7.361931-1 1.259120-2-5.592819-1 1.295919-2-4.137841-1 1.334643-2-2.919789-1 1.372405-2-1.935007-1 1.392458-2-1.482712-1 1.412511-2-1.072105-1 1.433805-2-6.757947-2 1.455098-2-3.134532-2 1.476473-2 1.430442-4 1.484869-2 1.256894-2 1.521399-2 6.015203-2 1.569064-2 1.135186-1 1.614627-2 1.548187-1 1.660414-2 1.897288-1 1.703853-2 2.169545-1 1.792567-2 2.580724-1 1.939001-2 2.980183-1 2.135970-2 3.212511-1 2.409271-2 3.185376-1 2.810420-2 2.907646-1 3.891326-2 1.937350-1 4.618645-2 1.416413-1 5.256695-2 1.058028-1 5.925873-2 7.561568-2 6.524278-2 5.383744-2 7.054725-2 3.764045-2 7.534303-2 2.508505-2 7.964744-2 1.519165-2 8.351816-2 7.289492-3 8.528840-2 3.905532-3 8.741289-2 9.981588-5 8.750417-2-6.161090-5 8.949014-2-3.447276-3 9.126480-2-6.348001-3 9.558230-2-1.284517-2 1.003274-1-1.923403-2 1.075896-1-2.772345-2 1.170165-1-3.687327-2 1.279143-1-4.546929-2 1.460075-1-5.633659-2 1.708367-1-6.671327-2 2.110195-1-7.717030-2 2.757699-1-8.624533-2 3.957225-1-9.344270-2 6.751555-1-9.830355-2 2.039158+0-1.006384-1 6.158159+0-1.008936-1 1.000000+1-1.008892-1 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.813677-3 1.125000-6 2.997391-3 1.267044-6 5.037546-3 1.306639-6 5.770838-3 1.389580-6 7.597350-3 1.477786-6 1.005025-2 1.571591-6 1.337068-2 1.620703-6 1.546019-2 1.720953-6 2.065648-2 1.769006-6 2.363927-2 1.860653-6 3.044786-2 1.946662-6 3.840109-2 1.987662-6 4.287063-2 2.065857-6 5.276704-2 2.140406-6 6.416499-2 2.210296-6 7.703094-2 2.275817-6 9.149204-2 2.337244-6 1.076300-1 2.394831-6 1.255869-1 2.458173-6 1.492110-1 2.499434-6 1.670363-1 2.546884-6 1.908313-1 2.591369-6 2.168325-1 2.633074-6 2.451049-1 2.672172-6 2.757614-1 2.708826-6 3.089369-1 2.743190-6 3.448085-1 2.777597-6 3.862661-1 2.805608-6 4.249536-1 2.833922-6 4.696688-1 2.864397-6 5.252157-1 2.885353-6 5.687678-1 2.908684-6 6.236281-1 2.930556-6 6.823319-1 2.953910-6 7.542858-1 2.970286-6 8.116077-1 2.988308-6 8.826449-1 3.005204-6 9.582902-1 3.021044-6 1.038726+0 3.037109-6 1.131607+0 3.049816-6 1.214722+0 3.062867-6 1.310746+0 3.075103-6 1.412471+0 3.086574-6 1.520169+0 3.097329-6 1.634111+0 3.107411-6 1.754551+0 3.116863-6 1.881731+0 3.125724-6 2.015884+0 3.139725-6 2.264386+0 3.149121-6 2.462877+0 3.162811-6 2.813933+0 3.174790-6 3.205396+0 3.185272-6 3.643948+0 3.194443-6 4.136720+0 3.202468-6 4.688711+0 3.209490-6 5.300218+0 3.215634-6 5.965624+0 3.221010-6 6.673949+0 3.225714-6 7.410629+0 3.230309-6 8.253722+0 3.233432-6 8.905659+0 3.239341-6 1.033636+1 3.247785-6 1.289173+1 3.261729-6 1.862257+1 3.266663-6 2.112143+1 3.270674-6 2.332290+1 3.274684-6 2.566235+1 3.282705-6 3.066697+1 3.283707-6 3.131427+1 3.290726-6 3.589475+1 3.293483-6 3.768521+1 3.298746-6 4.101023+1 3.301503-6 4.267111+1 3.304135-6 4.418379+1 3.306767-6 4.561000+1 3.310276-6 4.735125+1 3.313660-6 4.882763+1 3.318297-6 5.047589+1 3.322386-6 5.152453+1 3.327070-6 5.221458+1 3.331080-6 5.234746+1 3.332476-6 5.229237+1 3.336460-6 5.184685+1 3.339978-6 5.110325+1 3.343066-6 5.018965+1 3.346933-6 4.872074+1 3.349591-6 4.751699+1 3.355142-6 4.455332+1 3.358729-6 4.236452+1 3.361344-6 4.066067+1 3.364792-6 3.830265+1 3.367479-6 3.639988+1 3.370933-6 3.389895+1 3.374442-6 3.132922+1 3.378108-6 2.865112+1 3.382964-6 2.517410+1 3.386473-6 2.274975+1 3.387476-6 2.207459+1 3.391235-6 1.962356+1 3.394995-6 1.731551+1 3.403016-6 1.293549+1 3.406102-6 1.146029+1 3.408569-6 1.036646+1 3.411037-6 9.348227+0 3.414546-6 8.028076+0 3.418846-6 6.608514+0 3.422030-6 5.691242+0 3.426475-6 4.589448+0 3.431778-6 3.524016+0 3.438673-6 2.496811+0 3.440690-6 2.264238+0 3.442581-6 2.071639+0 3.444354-6 1.912363+0 3.446016-6 1.780910+0 3.447574-6 1.672723+0 3.450496-6 1.507173+0 3.453052-6 1.400023+0 3.455289-6 1.333460+0 3.458103-6 1.283840+0 3.459708-6 1.271802+0 3.461113-6 1.270618+0 3.462342-6 1.276565+0 3.463418-6 1.287003+0 3.464359-6 1.300075+0 3.466006-6 1.331635+0 3.467241-6 1.362424+0 3.468863-6 1.411909+0 3.470947-6 1.490351+0 3.472701-6 1.568998+0 3.475035-6 1.691122+0 3.477263-6 1.825896+0 3.479490-6 1.978016+0 3.488034-6 2.714187+0 3.497111-6 3.735419+0 3.498112-6 3.861089+0 3.505654-6 4.873735+0 3.508407-6 5.266265+0 3.513664-6 6.034963+0 3.516600-6 6.468737+0 3.520104-6 6.982973+0 3.523416-6 7.459115+0 3.526545-6 7.894196+0 3.529962-6 8.345952+0 3.532886-6 8.708047+0 3.536590-6 9.127047+0 3.539827-6 9.450885+0 3.543832-6 9.789199+0 3.547626-6 1.003943+1 3.550115-6 1.016385+1 3.554019-6 1.029257+1 3.556979-6 1.033476+1 3.565320-6 1.019622+1 3.567619-6 1.009326+1 3.574001-6 9.673045+0 3.577411-6 9.375106+0 3.578561-6 9.264405+0 3.583078-6 8.785259+0 3.586348-6 8.400426+0 3.589502-6 8.005278+0 3.592689-6 7.587390+0 3.596694-6 7.044083+0 3.599096-6 6.712318+0 3.603368-6 6.119498+0 3.606572-6 5.677854+0 3.608708-6 5.387169+0 3.612445-6 4.889420+0 3.616183-6 4.409965+0 3.624726-6 3.403873+0 3.627663-6 3.091407+0 3.630466-6 2.810329+0 3.633270-6 2.546385+0 3.637541-6 2.177342+0 3.641813-6 1.847887+0 3.645535-6 1.592094+0 3.649763-6 1.335256+0 3.653957-6 1.113616+0 3.658215-6 9.198093-1 3.662248-6 7.626046-1 3.664301-6 6.916404-1 3.668390-6 5.668217-1 3.672447-6 4.626868-1 3.676473-6 3.764222-1 3.680467-6 3.054724-1 3.688361-6 2.006180-1 3.692262-6 1.629062-1 3.696133-6 1.328654-1 3.699973-6 1.091611-1 3.703784-6 9.064933-2 3.707564-6 7.635510-2 3.711315-6 6.545193-2 3.715037-6 5.724298-2 3.718730-6 5.114405-2 3.722394-6 4.666843-2 3.726029-6 4.341374-2 3.731693-6 3.999096-2 3.736751-6 3.798961-2 3.750219-6 3.417881-2 3.756537-6 3.218727-2 3.762062-6 3.013430-2 3.768687-6 2.731604-2 3.775234-6 2.428605-2 3.781679-6 2.126730-2 3.794268-6 1.608412-2 3.800416-6 1.423878-2 3.812518-6 1.248981-2 3.824243-6 1.352601-2 3.835601-6 1.718659-2 3.846604-6 2.313780-2 3.867923-6 4.086020-2 3.889140-6 6.589341-2 3.908153-6 9.430605-2 3.944589-6 1.647025-1 4.049372-6 4.545480-1 4.083955-6 5.845140-1 4.109892-6 6.999425-1 4.148799-6 9.045695-1 4.198012-6 1.228126+0 4.281073-6 2.026083+0 4.312150-6 2.447423+0 4.332868-6 2.781677+0 4.363944-6 3.386560+0 4.384662-6 3.877993+0 4.395021-6 4.156695+0 4.415738-6 4.794703+0 4.432500-6 5.406748+0 4.442629-6 5.827678+0 4.453510-6 6.330899+0 4.464990-6 6.929102+0 4.475820-6 7.568928+0 4.486650-6 8.297102+0 4.497480-6 9.133086+0 4.508310-6 1.010313+1 4.519140-6 1.124366+1 4.529970-6 1.260632+1 4.540800-6 1.426534+1 4.551630-6 1.632701+1 4.562460-6 1.894083+1 4.573290-6 2.231048+1 4.578705-6 2.435921+1 4.584120-6 2.670144+1 4.589544-6 2.938481+1 4.594968-6 3.245209+1 4.600409-6 3.596378+1 4.605850-6 3.996203+1 4.616731-6 4.962143+1 4.638031-6 7.611001+1 4.646508-6 8.971825+1 4.655155-6 1.053623+2 4.660863-6 1.165739+2 4.672279-6 1.406624+2 4.673706-6 1.437879+2 4.683694-6 1.659668+2 4.687619-6 1.746656+2 4.695110-6 1.908643+2 4.699035-6 1.989783+2 4.702780-6 2.063821+2 4.706526-6 2.133757+2 4.711521-6 2.219335+2 4.716337-6 2.292091+2 4.720796-6 2.349648+2 4.724542-6 2.389933+2 4.730072-6 2.434772+2 4.736761-6 2.463996+2 4.741822-6 2.466994+2 4.748788-6 2.443647+2 4.753796-6 2.407402+2 4.758191-6 2.362658+2 4.763525-6 2.293002+2 4.767478-6 2.231321+2 4.775379-6 2.085456+2 4.780484-6 1.977746+2 4.784205-6 1.893963+2 4.789113-6 1.778162+2 4.792937-6 1.684895+2 4.797854-6 1.562629+2 4.802848-6 1.437492+2 4.808066-6 1.307777+2 4.814978-6 1.140811+2 4.819972-6 1.025701+2 4.826750-6 8.794827+1 4.832815-6 7.603363+1 4.841176-6 6.167371+1 4.851364-6 4.768552+1 4.853180-6 4.560862+1 4.859534-6 3.932651+1 4.863208-6 3.638419+1 4.866472-6 3.418223+1 4.869482-6 3.248673+1 4.870073-6 3.219055+1 4.874443-6 3.036625+1 4.876953-6 2.959995+1 4.879078-6 2.910536+1 4.881509-6 2.870610+1 4.883830-6 2.848477+1 4.886524-6 2.841472+1 4.889195-6 2.853342+1 4.892252-6 2.888520+1 4.895171-6 2.942118+1 4.898835-6 3.034747+1 4.901458-6 3.116790+1 4.905207-6 3.254281+1 4.912219-6 3.564376+1 4.925351-6 4.261010+1 4.932100-6 4.638535+1 4.937449-6 4.930089+1 4.943187-6 5.224551+1 4.948443-6 5.469423+1 4.953932-6 5.692501+1 4.958990-6 5.863055+1 4.961468-6 5.933092+1 4.966709-6 6.049797+1 4.970985-6 6.111998+1 4.982032-6 6.130485+1 4.986482-6 6.080369+1 4.994614-6 5.908094+1 5.000167-6 5.735403+1 5.003416-6 5.615775+1 5.008746-6 5.393145+1 5.010922-6 5.293801+1 5.014731-6 5.109686+1 5.019730-6 4.851130+1 5.024551-6 4.587555+1 5.029412-6 4.311713+1 5.035382-6 3.965150+1 5.039859-6 3.703435+1 5.042786-6 3.532938+1 5.047809-6 3.243852+1 5.052832-6 2.961813+1 5.054324-6 2.879796+1 5.063464-6 2.399739+1 5.069031-6 2.129271+1 5.073099-6 1.943462+1 5.077166-6 1.768146+1 5.082905-6 1.539154+1 5.089378-6 1.306870+1 5.094967-6 1.128139+1 5.100385-6 9.735822+0 5.105797-6 8.366376+0 5.112756-6 6.844610+0 5.120897-6 5.372870+0 5.125128-6 4.725316+0 5.134406-6 3.548713+0 5.149870-6 2.185895+0 5.162241-6 1.487960+0 5.165334-6 1.353943+0 5.174612-6 1.027919+0 5.177705-6 9.409957-1 5.182345-6 8.278636-1 5.186984-6 7.331879-1 5.190077-6 6.792601-1 5.194716-6 6.108433-1 5.199355-6 5.561536-1 5.205541-6 5.028370-1 5.208633-6 4.841552-1 5.211726-6 4.706734-1 5.217912-6 4.593968-1 5.221005-6 4.618313-1 5.222551-6 4.651542-1 5.224097-6 4.699270-1 5.230283-6 5.044070-1 5.233376-6 5.316444-1 5.236469-6 5.662523-1 5.246017-6 7.268522-1 5.248840-6 7.923212-1 5.256413-6 1.017014+0 5.261211-6 1.202022+0 5.278632-6 2.235151+0 5.285259-6 2.813465+0 5.290186-6 3.322823+0 5.295417-6 3.944804+0 5.300088-6 4.575368+0 5.304547-6 5.246944+0 5.309006-6 5.989094+0 5.314555-6 7.013925+0 5.320105-6 8.151898+0 5.333136-6 1.125498+1 5.335477-6 1.187220+1 5.346166-6 1.488185+1 5.351180-6 1.637979+1 5.359197-6 1.884074+1 5.362226-6 1.977907+1 5.365683-6 2.084720+1 5.368276-6 2.164241+1 5.372166-6 2.281856+1 5.376055-6 2.396541+1 5.381266-6 2.543747+1 5.385256-6 2.650010+1 5.388514-6 2.731774+1 5.392791-6 2.831175+1 5.398289-6 2.943887+1 5.405211-6 3.058167+1 5.410460-6 3.121986+1 5.413995-6 3.153079+1 5.420467-6 3.184173+1 5.425666-6 3.184433+1 5.429549-6 3.170241+1 5.435151-6 3.128511+1 5.439969-6 3.073284+1 5.443575-6 3.020872+1 5.453322-6 2.836566+1 5.457670-6 2.736893+1 5.463273-6 2.595615+1 5.467987-6 2.467753+1 5.473029-6 2.324173+1 5.478692-6 2.157560+1 5.483422-6 2.016397+1 5.489503-6 1.835455+1 5.496018-6 1.646223+1 5.502534-6 1.465814+1 5.508380-6 1.314355+1 5.525923-6 9.384033+0 5.530762-6 8.585958+0 5.534900-6 7.991212+0 5.536547-6 7.777105+0 5.542312-6 7.129330+0 5.545195-6 6.864303+0 5.548077-6 6.637965+0 5.552189-6 6.380850+0 5.555361-6 6.234044+0 5.557307-6 6.165649+0 5.560769-6 6.083530+0 5.563483-6 6.053513+0 5.566255-6 6.052912+0 5.568462-6 6.073399+0 5.570264-6 6.103457+0 5.575670-6 6.261954+0 5.579810-6 6.448061+0 5.583945-6 6.684928+0 5.590109-6 7.122664+0 5.597363-6 7.747726+0 5.615891-6 9.705516+0 5.625252-6 1.078565+1 5.632100-6 1.157190+1 5.639300-6 1.237103+1 5.646410-6 1.311285+1 5.653160-6 1.375747+1 5.659262-6 1.427916+1 5.665224-6 1.472480+1 5.672194-6 1.515695+1 5.685573-6 1.569249+1 5.692872-6 1.581221+1 5.699278-6 1.581476+1 5.704168-6 1.575249+1 5.709748-6 1.561463+1 5.717073-6 1.532914+1 5.724725-6 1.491136+1 5.731835-6 1.442317+1 5.739312-6 1.381861+1 5.742876-6 1.350199+1 5.755138-6 1.230517+1 5.759615-6 1.183912+1 5.768267-6 1.091935+1 5.777848-6 9.908627+0 5.795393-6 8.235480+0 5.802929-6 7.642510+0 5.805878-6 7.437242+0 5.814844-6 6.916842+0 5.819891-6 6.697443+0 5.821574-6 6.636594+0 5.834831-6 6.376108+0 5.839599-6 6.376509+0 5.845317-6 6.439544+0 5.850698-6 6.557476+0 5.856479-6 6.741970+0 5.861913-6 6.963837+0 5.867616-6 7.239671+0 5.880053-6 7.952165+0 5.893570-6 8.806733+0 5.897237-6 9.037373+0 5.904394-6 9.471484+0 5.912140-6 9.902422+0 5.914834-6 1.003975+1 5.922167-6 1.037414+1 5.929240-6 1.063503+1 5.938999-6 1.088500+1 5.946761-6 1.098907+1 5.949661-6 1.100654+1 5.958359-6 1.099203+1 5.966526-6 1.089400+1 5.974682-6 1.072597+1 5.987417-6 1.035663+1 5.998554-6 9.967264+0 6.022931-6 9.092243+0 6.036230-6 8.693200+0 6.048282-6 8.415203+0 6.058191-6 8.252611+0 6.063381-6 8.190923+0 6.071217-6 8.126290+0 6.081245-6 8.087844+0 6.092048-6 8.090585+0 6.112861-6 8.170372+0 6.138822-6 8.284247+0 6.160693-6 8.318172+0 6.185386-6 8.280802+0 6.235988-6 8.140343+0 6.269561-6 8.108916+0 6.456919-6 8.204768+0 6.511476-6 8.213079+0 6.575398-6 8.143190+0 6.629208-6 8.079946+0 6.690152-6 8.057216+0 6.836908-6 8.104928+0 6.873252-6 8.097675+0 6.907301-6 8.047778+0 6.925643-6 7.997110+0 6.964258-6 7.837249+0 7.042814-6 7.428877+0 7.068173-6 7.321729+0 7.096292-6 7.233901+0 7.127071-6 7.180868+0 7.156889-6 7.175736+0 7.187157-6 7.219326+0 7.213758-6 7.300026+0 7.249597-6 7.475043+0 7.267128-6 7.589965+0 7.298403-6 7.846133+0 7.329508-6 8.170701+0 7.364219-6 8.623420+0 7.397935-6 9.165245+0 7.429360-6 9.772403+0 7.474001-6 1.083085+1 7.508298-6 1.182712+1 7.544106-6 1.307001+1 7.583909-6 1.474348+1 7.609148-6 1.599496+1 7.642692-6 1.793395+1 7.666315-6 1.952246+1 7.692247-6 2.151921+1 7.716558-6 2.367492+1 7.745967-6 2.672618+1 7.760718-6 2.847368+1 7.780750-6 3.112173+1 7.799530-6 3.393877+1 7.817136-6 3.692742+1 7.840697-6 4.156555+1 7.863624-6 4.695887+1 7.877224-6 5.067475+1 7.889974-6 5.458757+1 7.901928-6 5.870448+1 7.924341-6 6.789602+1 7.943952-6 7.801168+1 7.961112-6 8.900926+1 7.976127-6 1.007645+2 7.989265-6 1.130811+2 8.000761-6 1.257178+2 8.010819-6 1.384202+2 8.019621-6 1.509489+2 8.029613-6 1.669387+2 8.050907-6 2.080466+2 8.083717-6 2.925059+2 8.102422-6 3.524540+2 8.116040-6 4.009203+2 8.121013-6 4.194754+2 8.140904-6 4.970223+2 8.143390-6 5.069670+2 8.160794-6 5.768525+2 8.167632-6 6.039808+2 8.183172-6 6.634896+2 8.194050-6 7.024096+2 8.205549-6 7.402522+2 8.217670-6 7.758502+2 8.230413-6 8.081882+2 8.242845-6 8.348631+2 8.259161-6 8.638382+2 8.295768-6 9.218397+2 8.308067-6 9.470931+2 8.320824-6 9.809639+2 8.332176-6 1.019914+3 8.347121-6 1.086737+3 8.356650-6 1.139685+3 8.371134-6 1.236387+3 8.377063-6 1.281552+3 8.420620-6 1.691042+3 8.434846-6 1.839110+3 8.446688-6 1.959326+3 8.457679-6 2.064268+3 8.470158-6 2.171141+3 8.480680-6 2.247744+3 8.491299-6 2.309835+3 8.498617-6 2.342638+3 8.518721-6 2.386592+3 8.526330-6 2.384791+3 8.539773-6 2.356842+3 8.549491-6 2.317646+3 8.558910-6 2.265490+3 8.569277-6 2.193458+3 8.579324-6 2.110823+3 8.588255-6 2.028426+3 8.596867-6 1.942477+3 8.609944-6 1.802925+3 8.620151-6 1.689153+3 8.631633-6 1.559026+3 8.640564-6 1.457994+3 8.660978-6 1.234168+3 8.667995-6 1.161041+3 8.681391-6 1.028709+3 8.700529-6 8.588106+2 8.740555-6 5.825065+2 8.751538-6 5.246170+2 8.762478-6 4.737987+2 8.773375-6 4.293954+2 8.784230-6 3.907342+2 8.795042-6 3.571523+2 8.805812-6 3.280174+2 8.816540-6 3.027408+2 8.827226-6 2.807864+2 8.850670-6 2.417851+2 8.869636-6 2.173564+2 8.890594-6 1.957423+2 8.911387-6 1.784127+2 8.932018-6 1.642098+2 8.953156-6 1.519805+2 8.972798-6 1.422442+2 8.992949-6 1.335440+2 9.012943-6 1.259583+2 9.041698-6 1.165171+2 9.072146-6 1.080223+2 9.110896-6 9.893982+1 9.149041-6 9.146539+1 9.186590-6 8.521600+1 9.223552-6 7.992007+1 9.279936-6 7.312118+1 9.331008-6 6.800214+1 9.365714-6 6.497292+1 9.434040-6 5.985604+1 9.511000-6 5.513594+1 9.564354-6 5.236619+1 9.626473-6 4.956033+1 9.716280-6 4.613564+1 9.801423-6 4.342461+1 9.930616-6 4.005239+1 1.003778-5 3.775332+1 1.014495-5 3.580634+1 1.028428-5 3.367921+1 1.044277-5 3.168023+1 1.058144-5 3.021705+1 1.074608-5 2.874197+1 1.091512-5 2.742662+1 1.107438-5 2.635813+1 1.197867-5 2.171326+1 1.221093-5 2.047767+1 1.232917-5 1.963290+1 1.236717-5 1.929626+1 1.248119-5 1.818744+1 1.250208-5 1.801882+1 1.254263-5 1.780597+1 1.257335-5 1.779695+1 1.259439-5 1.789182+1 1.260407-5 1.796707+1 1.262517-5 1.820551+1 1.263286-5 1.831885+1 1.265594-5 1.874496+1 1.268035-5 1.933283+1 1.270074-5 1.992208+1 1.275000-5 2.161219+1 1.277903-5 2.268338+1 1.281749-5 2.402765+1 1.284827-5 2.493443+1 1.287134-5 2.546930+1 1.289563-5 2.587459+1 1.290723-5 2.600803+1 1.292462-5 2.613530+1 1.294200-5 2.617769+1 1.296366-5 2.612014+1 1.299526-5 2.584719+1 1.303417-5 2.528364+1 1.305598-5 2.489879+1 1.313597-5 2.338977+1 1.318624-5 2.254148+1 1.328173-5 2.130609+1 1.343316-5 2.002482+1 1.349929-5 1.964986+1 1.353235-5 1.951899+1 1.356542-5 1.943477+1 1.362139-5 1.940877+1 1.369011-5 1.955738+1 1.379686-5 1.992070+1 1.383965-5 2.000248+1 1.387034-5 2.001722+1 1.392912-5 1.994254+1 1.413758-5 1.929997+1 1.421478-5 1.915591+1 1.439282-5 1.891713+1 1.609892-5 1.651050+1 1.739978-5 1.497122+1 1.914537-5 1.316609+1 2.015979-5 1.219988+1 2.099000-5 1.145259+1 2.148860-5 1.101700+1 2.209913-5 1.048591+1 2.297987-5 9.731734+0 2.347650-5 9.307768+0 2.406476-5 8.795325+0 2.466363-5 8.270374+0 2.512474-5 7.851436+0 2.575543-5 7.255689+0 2.625911-5 6.761788+0 2.681722-5 6.183327+0 2.722789-5 5.724589+0 2.771391-5 5.143088+0 2.806330-5 4.696456+0 2.840676-5 4.226263+0 2.870863-5 3.782150+0 2.897395-5 3.362456+0 2.909431-5 3.161168+0 2.920714-5 2.965590+0 2.934247-5 2.721953+0 2.950507-5 2.416160+0 2.959223-5 2.246550+0 2.971144-5 2.008664+0 2.982237-5 1.782371+0 2.988970-5 1.643765+0 2.995282-5 1.514149+0 3.001199-5 1.394305+0 3.006747-5 1.285125+0 3.016824-5 1.102403+0 3.022692-5 1.011803+0 3.025681-5 9.722458-1 3.029699-5 9.280529-1 3.035231-5 8.882626-1 3.040204-5 8.790202-1 3.044724-5 8.981901-1 3.049477-5 9.534574-1 3.051797-5 9.959286-1 3.053984-5 1.046614+0 3.057253-5 1.143971+0 3.061184-5 1.300368+0 3.064669-5 1.480939+0 3.067732-5 1.677473+0 3.070424-5 1.883562+0 3.072867-5 2.100863+0 3.076874-5 2.528454+0 3.082448-5 3.296607+0 3.093292-5 5.548553+0 3.098371-5 7.046958+0 3.103036-5 8.732395+0 3.107808-5 1.080468+1 3.112036-5 1.296882+1 3.114907-5 1.462755+1 3.120387-5 1.824779+1 3.123447-5 2.053953+1 3.127465-5 2.384936+1 3.133328-5 2.929240+1 3.134644-5 3.061209+1 3.141823-5 3.839879+1 3.144456-5 4.148129+1 3.150330-5 4.871949+1 3.153524-5 5.282033+1 3.155959-5 5.599930+1 3.160099-5 6.147144+1 3.163269-5 6.567653+1 3.166829-5 7.036752+1 3.170758-5 7.544961+1 3.173626-5 7.905860+1 3.177428-5 8.366892+1 3.181469-5 8.829160+1 3.186419-5 9.348381+1 3.190466-5 9.728231+1 3.195238-5 1.011849+2 3.197696-5 1.029354+2 3.205654-5 1.073209+2 3.207326-5 1.079867+2 3.215444-5 1.099421+2 3.219688-5 1.101299+2 3.222386-5 1.099588+2 3.230480-5 1.081487+2 3.233148-5 1.071475+2 3.238240-5 1.047218+2 3.242158-5 1.024294+2 3.244394-5 1.009685+2 3.248306-5 9.816838+1 3.253441-5 9.407685+1 3.256742-5 9.123466+1 3.262195-5 8.625210+1 3.264348-5 8.420814+1 3.269282-5 7.941077+1 3.275102-5 7.364473+1 3.282863-5 6.599246+1 3.292563-5 5.686240+1 3.303621-5 4.751200+1 3.318638-5 3.713861+1 3.322544-5 3.489796+1 3.330357-5 3.095304+1 3.333691-5 2.947358+1 3.340152-5 2.692263+1 3.346814-5 2.468226+1 3.351887-5 2.320668+1 3.362534-5 2.064270+1 3.371850-5 1.886415+1 3.380001-5 1.757337+1 3.396076-5 1.553879+1 3.404965-5 1.462002+1 3.421013-5 1.320980+1 3.445521-5 1.145821+1 3.479361-5 9.457796+0 3.504740-5 8.071976+0 3.513200-5 7.616251+0 3.529455-5 6.766160+0 3.537545-5 6.373266+0 3.546455-5 5.984661+0 3.549440-5 5.868396+0 3.558134-5 5.580639+0 3.566828-5 5.383421+0 3.569001-5 5.350136+0 3.575522-5 5.291374+0 3.580768-5 5.289817+0 3.585776-5 5.326061+0 3.590784-5 5.397521+0 3.596277-5 5.513008+0 3.603339-5 5.710207+0 3.611954-5 6.005828+0 3.623014-5 6.430900+0 3.633285-5 6.825449+0 3.642094-5 7.135812+0 3.647318-5 7.301236+0 3.655154-5 7.519148+0 3.662990-5 7.699100+0 3.674232-5 7.891702+0 3.686795-5 8.019749+0 3.692289-5 8.048023+0 3.698771-5 8.060348+0 3.704952-5 8.051523+0 3.711449-5 8.021698+0 3.722798-5 7.924755+0 3.732233-5 7.810038+0 3.764013-5 7.353104+0 3.780307-5 7.160908+0 3.800559-5 6.988901+0 3.870890-5 6.559876+0 4.103328-5 5.256794+0 4.200000-5 4.786654+0 4.400000-5 3.926743+0 4.470000-5 3.680899+0 4.540000-5 3.469343+0 4.623810-5 3.268926+0 4.691124-5 3.150685+0 4.761135-5 3.073798+0 4.820000-5 3.048601+0 4.857324-5 3.055075+0 4.970904-5 3.164642+0 5.080000-5 3.398887+0 5.125207-5 3.536059+0 5.188000-5 3.775694+0 5.297877-5 4.311577+0 5.325004-5 4.468812+0 5.440924-5 5.244914+0 5.524661-5 5.900734+0 5.644422-5 6.989113+0 5.875092-5 9.525670+0 5.991903-5 1.102607+1 6.070000-5 1.209729+1 6.166359-5 1.348402+1 6.237348-5 1.454687+1 6.318674-5 1.580276+1 6.400000-5 1.709719+1 6.490000-5 1.856940+1 6.580000-5 2.008034+1 6.670415-5 2.163020+1 6.819726-5 2.424763+1 6.950000-5 2.658388+1 7.055717-5 2.850476+1 7.161434-5 3.044865+1 7.287268-5 3.278993+1 7.413102-5 3.517354+1 7.680000-5 4.027521+1 8.005250-5 4.663013+1 8.413951-5 5.489741+1 8.810489-5 6.317976+1 9.359443-5 7.505923+1 9.831153-5 8.556337+1 1.023293-4 9.452215+1 1.083927-4 1.077533+2 1.111725-4 1.135011+2 1.140230-4 1.190813+2 1.161874-4 1.229979+2 1.184775-4 1.268156+2 1.190332-4 1.279482+2 1.200003-4 1.308905+2 1.209441-4 1.352838+2 1.216996-4 1.392142+2 1.221969-4 1.414912+2 1.226280-4 1.431048+2 1.233913-4 1.452322+2 1.241536-4 1.470294+2 1.251692-4 1.499771+2 1.264304-4 1.543727+2 1.272658-4 1.569365+2 1.279301-4 1.586148+2 1.317497-4 1.664059+2 1.367852-4 1.762202+2 1.417087-4 1.851787+2 1.479842-4 1.957566+2 1.548226-4 2.062482+2 1.588673-4 2.117260+2 1.625989-4 2.161264+2 1.652475-4 2.184359+2 1.678447-4 2.195587+2 1.685518-4 2.204412+2 1.690200-4 2.216258+2 1.698244-4 2.254435+2 1.703133-4 2.291292+2 1.710082-4 2.361326+2 1.723548-4 2.523071+2 1.726644-4 2.555821+2 1.730638-4 2.591048+2 1.735403-4 2.620284+2 1.738405-4 2.630988+2 1.742019-4 2.636255+2 1.748874-4 2.627492+2 1.765365-4 2.571866+2 1.772997-4 2.558313+2 1.779006-4 2.556881+2 1.790926-4 2.570424+2 1.814140-4 2.611417+2 1.925551-4 2.779712+2 2.041738-4 2.936889+2 2.160000-4 3.074968+2 2.277995-4 3.196927+2 2.398833-4 3.305362+2 2.520890-4 3.403780+2 2.648741-4 3.496357+2 2.855452-4 3.624520+2 3.037649-4 3.714887+2 3.314339-4 3.816682+2 3.520374-4 3.873564+2 3.688911-4 3.910628+2 3.919468-4 3.946880+2 4.165882-4 3.973777+2 4.628765-4 3.995552+2 4.890477-4 3.994945+2 5.202252-4 3.985441+2 5.543066-4 3.965268+2 5.854637-4 3.939669+2 6.214948-4 3.901401+2 6.556343-4 3.855956+2 6.938251-4 3.791819+2 7.317555-4 3.721629+2 7.706816-4 3.643477+2 8.152467-4 3.545664+2 8.567002-4 3.443957+2 9.015711-4 3.320131+2 9.437029-4 3.187612+2 9.815819-4 3.051210+2 1.013948-3 2.917276+2 1.043931-3 2.775053+2 1.070528-3 2.627113+2 1.093130-3 2.482135+2 1.111483-3 2.348874+2 1.129245-3 2.202811+2 1.143981-3 2.064073+2 1.157065-3 1.922362+2 1.167579-3 1.790747+2 1.176898-3 1.654874+2 1.184678-3 1.521871+2 1.190578-3 1.406168+2 1.194148-3 1.329989+2 1.197322-3 1.259351+2 1.201606-3 1.162795+2 1.207391-3 1.041555+2 1.209859-3 9.979541+1 1.212285-3 9.625531+1 1.213454-3 9.486585+1 1.214582-3 9.374325+1 1.216019-3 9.264516+1 1.217356-3 9.197826+1 1.218886-3 9.165461+1 1.220355-3 9.179916+1 1.222027-3 9.251423+1 1.223558-3 9.368129+1 1.224780-3 9.495726+1 1.226639-3 9.746165+1 1.228375-3 1.003813+2 1.230419-3 1.044716+2 1.233534-3 1.118882+2 1.240000-3 1.306317+2 1.243923-3 1.434714+2 1.250671-3 1.672520+2 1.253938-3 1.794167+2 1.257449-3 1.928992+2 1.261000-3 2.068547+2 1.264519-3 2.208204+2 1.268197-3 2.353085+2 1.272200-3 2.505960+2 1.275813-3 2.636874+2 1.279799-3 2.771206+2 1.285947-3 2.954848+2 1.290090-3 3.062603+2 1.296633-3 3.209549+2 1.305000-3 3.364612+2 1.313000-3 3.487566+2 1.323000-3 3.615398+2 1.330547-3 3.696172+2 1.341919-3 3.796278+2 1.353141-3 3.874254+2 1.377074-3 4.017646+2 1.387042-3 4.095979+2 1.398394-3 4.210003+2 1.425046-3 4.537888+2 1.432065-3 4.619335+2 1.439642-3 4.698152+2 1.449300-3 4.784429+2 1.458375-3 4.853227+2 1.473525-3 4.949948+2 1.487143-3 5.024319+2 1.502364-3 5.097185+2 1.542075-3 5.252742+2 1.577203-3 5.361385+2 1.623269-3 5.472421+2 1.669068-3 5.552799+2 1.744692-3 5.647804+2 1.828890-3 5.710884+2 1.929780-3 5.743642+2 2.065380-3 5.739720+2 2.199711-3 5.693950+2 2.376299-3 5.598007+2 2.607654-3 5.449172+2 2.916115-3 5.216035+2 3.136636-3 5.044965+2 3.453267-3 4.798349+2 3.901665-3 4.473361+2 4.376406-3 4.139261+2 4.763110-3 3.890492+2 5.307412-3 3.559335+2 5.704769-3 3.339936+2 5.935476-3 3.219762+2 6.407091-3 2.984691+2 6.949180-3 2.736739+2 7.493548-3 2.508535+2 8.089024-3 2.279502+2 8.639805-3 2.083464+2 8.897026-3 1.996324+2 9.345878-3 1.848258+2 9.689594-3 1.735999+2 9.854645-3 1.681404+2 1.012084-2 1.590323+2 1.030683-2 1.522246+2 1.040431-2 1.483895+2 1.054321-2 1.423747+2 1.059075-2 1.400838+2 1.064912-2 1.370179+2 1.070114-2 1.339572+2 1.074606-2 1.309776+2 1.079681-2 1.271585+2 1.086157-2 1.216517+2 1.094658-2 1.144860+2 1.098330-2 1.121253+2 1.101371-2 1.108083+2 1.104340-2 1.102029+2 1.107509-2 1.103526+2 1.110191-2 1.111023+2 1.114130-2 1.130902+2 1.119689-2 1.170880+2 1.127958-2 1.235921+2 1.133275-2 1.271762+2 1.136057-2 1.287632+2 1.140000-2 1.306818+2 1.145838-2 1.329096+2 1.151014-2 1.344144+2 1.161375-2 1.365493+2 1.173630-2 1.381262+2 1.187834-2 1.391499+2 1.205593-2 1.396536+2 1.235437-2 1.393153+2 1.271248-2 1.377873+2 1.300072-2 1.360827+2 1.349691-2 1.325731+2 1.407361-2 1.279710+2 1.496235-2 1.205904+2 1.603245-2 1.119214+2 1.742967-2 1.016255+2 1.913193-2 9.062683+1 2.098674-2 8.044130+1 2.287070-2 7.167915+1 2.489662-2 6.362256+1 2.680196-2 5.711730+1 2.991745-2 4.830581+1 3.535611-2 3.713785+1 3.892106-2 3.176604+1 4.441277-2 2.539824+1 5.582793-2 1.719418+1 7.180004-2 1.108240+1 8.914371-2 7.558150+0 1.080972-1 5.341012+0 1.284338-1 3.886768+0 1.596338-1 2.582831+0 2.068534-1 1.576017+0 2.852557-1 8.474771-1 3.981072-1 4.420387-1 6.099756-1 1.905057-1 1.120601+0 5.684096-2 3.384160+0 6.250047-3 1.022000+1 6.855203-4 3.086391+1 7.516842-5 9.320751+1 8.242084-6 2.814822+2 9.037269-7 8.500626+2 9.909169-8 3.162278+3 7.160429-9 1.000000+4 7.16043-10 3.162278+4 7.16043-11 1.000000+5 7.16043-12 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.172100-7 1.258900-6 1.453700-6 1.584900-6 2.303900-6 1.995300-6 3.651500-6 2.511900-6 5.787200-6 3.162300-6 9.172000-6 3.981100-6 1.453700-5 5.011900-6 2.303900-5 6.309600-6 3.651400-5 7.943300-6 5.787000-5 1.000000-5 9.171600-5 1.258900-5 1.453600-4 1.584900-5 2.303700-4 1.995300-5 3.651100-4 2.511900-5 5.786400-4 3.162300-5 9.169500-4 3.981100-5 1.452700-3 5.011900-5 2.301400-3 6.309600-5 3.646300-3 7.943300-5 5.777400-3 1.000000-4 9.149700-3 1.258900-4 1.448300-2 1.584900-4 2.289700-2 1.995300-4 3.617900-2 2.511900-4 5.704800-2 3.162300-4 8.970900-2 3.981100-4 1.404300-1 5.011900-4 2.180300-1 6.309600-4 3.346900-1 7.943300-4 5.053600-1 1.000000-3 7.466500-1 1.258900-3 1.072900+0 1.584900-3 1.492100+0 1.995300-3 2.006100+0 2.511900-3 2.613900+0 3.162300-3 3.315500+0 3.981100-3 4.122200+0 5.011900-3 5.054100+0 6.309600-3 6.127100+0 7.943300-3 7.335300+0 1.000000-2 8.638500+0 1.258900-2 9.988000+0 1.584900-2 1.129200+1 1.995300-2 1.246400+1 2.511900-2 1.346700+1 3.162300-2 1.426900+1 3.981100-2 1.483500+1 5.011900-2 1.513500+1 6.309600-2 1.518000+1 7.943300-2 1.501000+1 1.000000-1 1.464800+1 1.258900-1 1.410800+1 1.584900-1 1.342900+1 1.995300-1 1.264900+1 2.511900-1 1.180300+1 3.162300-1 1.092500+1 3.981100-1 1.004100+1 5.011900-1 9.170400+0 6.309600-1 8.324600+0 7.943300-1 7.512400+0 1.000000+0 6.738000+0 1.258900+0 6.007000+0 1.584900+0 5.321600+0 1.995300+0 4.684600+0 2.511900+0 4.097900+0 3.162300+0 3.562800+0 3.981100+0 3.079300+0 5.011900+0 2.646800+0 6.309600+0 2.263100+0 7.943300+0 1.925800+0 1.000000+1 1.631500+0 1.258900+1 1.376700+0 1.584900+1 1.157400+0 1.995300+1 9.698100-1 2.511900+1 8.102000-1 3.162300+1 6.750400-1 3.981100+1 5.610400-1 5.011900+1 4.652700-1 6.309600+1 3.850800-1 7.943300+1 3.181200-1 1.000000+2 2.623800-1 1.258900+2 2.160700-1 1.584900+2 1.776900-1 1.995300+2 1.459500-1 2.511900+2 1.197300-1 3.162300+2 9.811600-2 3.981100+2 8.032300-2 5.011900+2 6.569500-2 6.309600+2 5.368500-2 7.943300+2 4.383400-2 1.000000+3 3.576300-2 1.258900+3 2.915700-2 1.584900+3 2.375500-2 1.995300+3 1.934200-2 2.511900+3 1.573900-2 3.162300+3 1.280000-2 3.981100+3 1.040300-2 5.011900+3 8.451400-3 6.309600+3 6.862200-3 7.943300+3 5.569200-3 1.000000+4 4.517800-3 1.258900+4 3.663300-3 1.584900+4 2.969100-3 1.995300+4 2.405600-3 2.511900+4 1.948200-3 3.162300+4 1.577200-3 3.981100+4 1.276400-3 5.011900+4 1.032600-3 6.309600+4 8.351100-4 7.943300+4 6.751600-4 1.000000+5 5.456800-4 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976752-4 5.011872-4 5.005048-4 6.309573-4 6.298806-4 7.943282-4 7.926327-4 1.000000-3 9.973368-4 1.258925-3 1.254755-3 1.584893-3 1.578374-3 1.995262-3 1.985130-3 2.511886-3 2.496118-3 3.162278-3 3.137788-3 3.981072-3 3.942929-3 5.011872-3 4.952218-3 6.309573-3 6.216315-3 7.943282-3 7.797941-3 1.000000-2 9.773710-3 1.258925-2 1.223833-2 1.584893-2 1.530775-2 1.995262-2 1.912285-2 2.511886-2 2.385168-2 3.162278-2 2.969503-2 3.981072-2 3.689094-2 5.011872-2 4.572739-2 6.309573-2 5.652797-2 7.943282-2 6.967187-2 1.000000-1 8.556865-2 1.258925-1 1.047658-1 1.584893-1 1.278472-1 1.995262-1 1.554493-1 2.511886-1 1.884016-1 3.162278-1 2.275754-1 3.981072-1 2.739715-1 5.011872-1 3.287863-1 6.309573-1 3.933473-1 7.943282-1 4.693647-1 1.000000+0 5.588288-1 1.258925+0 6.641523-1 1.584893+0 7.884860-1 1.995262+0 9.355819-1 2.511886+0 1.110091+0 3.162278+0 1.317801+0 3.981072+0 1.565706+0 5.011872+0 1.862452+0 6.309573+0 2.218613+0 7.943282+0 2.647127+0 1.000000+1 3.163703+0 1.258925+1 3.787702+0 1.584893+1 4.542864+0 1.995262+1 5.457989+0 2.511886+1 6.568784+0 3.162278+1 7.918743+0 3.981072+1 9.561295+0 5.011872+1 1.156197+1 6.309573+1 1.400160+1 7.943282+1 1.697919+1 1.000000+2 2.061657+1 1.258925+2 2.506383+1 1.584893+2 3.050540+1 1.995262+2 3.716893+1 2.511886+2 4.533374+1 3.162278+2 5.534643+1 3.981072+2 6.763090+1 5.011872+2 8.271392+1 6.309573+2 1.012434+2 7.943282+2 1.240188+2 1.000000+3 1.520282+2 1.258925+3 1.864930+2 1.584893+3 2.289188+2 1.995262+3 2.811793+2 2.511886+3 3.455635+2 3.162278+3 4.249393+2 3.981072+3 5.228228+2 5.011872+3 6.435818+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739849-9 3.981072-5 4.341940-9 5.011872-5 6.881138-9 6.309573-5 1.090549-8 7.943282-5 1.728340-8 1.000000-4 2.738679-8 1.258925-4 4.339508-8 1.584893-4 6.874179-8 1.995262-4 1.089029-7 2.511886-4 1.724681-7 3.162278-4 2.730071-7 3.981072-4 4.319275-7 5.011872-4 6.824830-7 6.309573-4 1.076773-6 7.943282-4 1.695568-6 1.000000-3 2.663235-6 1.258925-3 4.170197-6 1.584893-3 6.518960-6 1.995262-3 1.013197-5 2.511886-3 1.576873-5 3.162278-3 2.448937-5 3.981072-3 3.814237-5 5.011872-3 5.965479-5 6.309573-3 9.325840-5 7.943282-3 1.453409-4 1.000000-2 2.262903-4 1.258925-2 3.509264-4 1.584893-2 5.411783-4 1.995262-2 8.297719-4 2.511886-2 1.267182-3 3.162278-2 1.927749-3 3.981072-2 2.919773-3 5.011872-2 4.391329-3 6.309573-2 6.567767-3 7.943282-2 9.760951-3 1.000000-1 1.443135-2 1.258925-1 2.112675-2 1.584893-1 3.064216-2 1.995262-1 4.407689-2 2.511886-1 6.278704-2 3.162278-1 8.865242-2 3.981072-1 1.241356-1 5.011872-1 1.724009-1 6.309573-1 2.376101-1 7.943282-1 3.249635-1 1.000000+0 4.411712-1 1.258925+0 5.947732-1 1.584893+0 7.964072-1 1.995262+0 1.059680+0 2.511886+0 1.401796+0 3.162278+0 1.844476+0 3.981072+0 2.415365+0 5.011872+0 3.149421+0 6.309573+0 4.090961+0 7.943282+0 5.296155+0 1.000000+1 6.836297+0 1.258925+1 8.801552+0 1.584893+1 1.130607+1 1.995262+1 1.449463+1 2.511886+1 1.855008+1 3.162278+1 2.370403+1 3.981072+1 3.024942+1 5.011872+1 3.855675+1 6.309573+1 4.909413+1 7.943282+1 6.245364+1 1.000000+2 7.938343+1 1.258925+2 1.008287+2 1.584893+2 1.279839+2 1.995262+2 1.623573+2 2.511886+2 2.058549+2 3.162278+2 2.608813+2 3.981072+2 3.304763+2 5.011872+2 4.184733+2 6.309573+2 5.297139+2 7.943282+2 6.703094+2 1.000000+3 8.479718+2 1.258925+3 1.072432+3 1.584893+3 1.355974+3 1.995262+3 1.714083+3 2.511886+3 2.166323+3 3.162278+3 2.737338+3 3.981072+3 3.458249+3 5.011872+3 4.368291+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.290000-6 2.553047+7 6.500000-6 2.433558+7 6.500000-6 3.682485+7 6.606934-6 3.598848+7 6.683439-6 3.537790+7 7.000000-6 3.294598+7 7.100000-6 3.219497+7 7.500000-6 2.938516+7 7.943282-6 2.650039+7 8.000000-6 2.615600+7 8.413951-6 2.374270+7 8.511380-6 2.321155+7 8.912509-6 2.112416+7 9.015711-6 2.062264+7 9.440609-6 1.866686+7 9.549926-6 1.819838+7 1.000000-5 1.638102+7 1.011579-5 1.594750+7 1.059254-5 1.427364+7 1.071519-5 1.387609+7 1.122018-5 1.234853+7 1.135011-5 1.198754+7 1.188502-5 1.060781+7 1.202264-5 1.028339+7 1.258925-5 9.049453+6 1.273503-5 8.760433+6 1.333521-5 7.667321+6 1.350000-5 7.395596+6 1.412538-5 6.453547+6 1.428894-5 6.230782+6 1.478000-5 5.607181+6 1.478000-5 6.052813+6 1.500000-5 5.745752+6 1.507000-5 5.652361+6 1.513561-5 5.565887+6 1.522000-5 5.455503+6 1.550000-5 5.109046+6 1.580000-5 4.769817+6 1.603245-5 4.527607+6 1.610000-5 4.460186+6 1.630000-5 4.263494+6 1.650000-5 4.078170+6 1.670000-5 3.903547+6 1.690000-5 3.738876+6 1.710000-5 3.583490+6 1.717908-5 3.524394+6 1.730000-5 3.435858+6 1.750000-5 3.293261+6 1.765000-5 3.191530+6 1.778279-5 3.105002+6 1.796800-5 2.989571+6 1.808000-5 2.922598+6 1.822000-5 2.841740+6 1.835000-5 2.769384+6 1.850000-5 2.689013+6 1.862087-5 2.625929+6 1.865000-5 2.610795+6 1.877000-5 2.549638+6 1.892000-5 2.475927+6 1.905461-5 2.412257+6 1.920000-5 2.346004+6 1.935000-5 2.280268+6 1.955300-5 2.195322+6 1.980000-5 2.097822+6 1.992000-5 2.052642+6 2.000000-5 2.023281+6 2.007000-5 1.997849+6 2.012000-5 1.979958+6 2.018366-5 1.957506+6 2.022000-5 1.944651+6 2.027000-5 1.927157+6 2.032000-5 1.909884+6 2.037000-5 1.892829+6 2.041738-5 1.876866+6 2.047000-5 1.859360+6 2.053000-5 1.839680+6 2.058000-5 1.823505+6 2.064000-5 1.804361+6 2.070000-5 1.785502+6 2.077000-5 1.763853+6 2.082000-5 1.748619+6 2.089296-5 1.726725+6 2.097000-5 1.704031+6 2.105000-5 1.680916+6 2.115000-5 1.652653+6 2.130000-5 1.611531+6 2.162719-5 1.526844+6 2.180000-5 1.484367+6 2.187762-5 1.465844+6 2.195000-5 1.448657+6 2.210000-5 1.413955+6 2.225000-5 1.380465+6 2.240000-5 1.348138+6 2.255000-5 1.316926+6 2.270000-5 1.286784+6 2.285000-5 1.257669+6 2.300000-5 1.229539+6 2.322000-5 1.189982+6 2.344229-5 1.151961+6 2.360000-5 1.126112+6 2.371374-5 1.107997+6 2.385000-5 1.086781+6 2.410000-5 1.049427+6 2.426610-5 1.025693+6 2.435000-5 1.013911+6 2.460000-5 9.799856+5 2.493000-5 9.379186+5 2.520000-5 9.056378+5 2.550000-5 8.718622+5 2.580000-5 8.401348+5 2.610000-5 8.103095+5 2.650000-5 7.732703+5 2.660725-5 7.637959+5 2.691535-5 7.376599+5 2.730000-5 7.071418+5 2.770000-5 6.777421+5 2.800000-5 6.570729+5 2.818383-5 6.450348+5 2.870000-5 6.132258+5 2.920000-5 5.851748+5 2.985383-5 5.521165+5 3.060000-5 5.187595+5 3.126079-5 4.925758+5 3.198895-5 4.668647+5 3.273407-5 4.435002+5 3.311311-5 4.325361+5 3.357300-5 4.204242+5 3.467369-5 3.943683+5 3.548134-5 3.775416+5 3.589219-5 3.699140+5 3.715352-5 3.489163+5 3.801894-5 3.361388+5 3.819000-5 3.338701+5 3.819000-5 1.376976+6 3.845918-5 1.361908+6 3.850000-5 1.359660+6 3.880000-5 1.343152+6 3.882000-5 1.342278+6 3.882000-5 1.978150+6 3.950000-5 1.949968+6 4.000000-5 1.934495+6 4.027170-5 1.928729+6 4.073803-5 1.919296+6 4.130000-5 1.914017+6 4.168694-5 1.914340+6 4.200000-5 1.914494+6 4.220000-5 1.917736+6 4.265795-5 1.925423+6 4.315191-5 1.941412+6 4.330000-5 1.946273+6 4.350000-5 1.955918+6 4.400000-5 1.979979+6 4.415704-5 1.989974+6 4.470000-5 2.025061+6 4.518559-5 2.063799+6 4.540000-5 2.081036+6 4.570882-5 2.110418+6 4.623810-5 2.161778+6 4.720000-5 2.272643+6 4.731513-5 2.286888+6 4.820000-5 2.406357+6 4.850000-5 2.449655+6 4.900000-5 2.526928+6 4.954502-5 2.613745+6 5.011872-5 2.710318+6 5.080000-5 2.831558+6 5.150000-5 2.961120+6 5.188000-5 3.034067+6 5.248075-5 3.152198+6 5.400000-5 3.468514+6 5.432503-5 3.537306+6 5.450000-5 3.574832+6 5.495409-5 3.671802+6 5.580000-5 3.857664+6 5.623413-5 3.951857+6 5.650000-5 4.010479+6 5.754399-5 4.240546+6 5.821032-5 4.385413+6 5.900000-5 4.556326+6 5.956621-5 4.675143+6 6.025596-5 4.818423+6 6.070000-5 4.912342+6 6.095369-5 4.963216+6 6.165950-5 5.101484+6 6.237348-5 5.243710+6 6.400000-5 5.542098+6 6.456542-5 5.635867+6 6.500000-5 5.708547+6 6.531306-5 5.761246+6 6.580000-5 5.843631+6 6.683439-5 5.998139+6 6.760830-5 6.115032+6 6.918310-5 6.323876+6 6.950000-5 6.366243+6 7.000000-5 6.423677+6 7.079458-5 6.515096+6 7.161434-5 6.609846+6 7.413102-5 6.855010+6 7.500000-5 6.925249+6 7.673615-5 7.065346+6 7.943282-5 7.241676+6 8.000000-5 7.278621+6 8.035261-5 7.296640+6 8.128305-5 7.344077+6 8.413951-5 7.488208+6 8.511380-5 7.525565+6 8.810489-5 7.639033+6 8.912509-5 7.666236+6 9.332543-5 7.776004+6 9.800000-5 7.844633+6 9.885531-5 7.851976+6 1.023293-4 7.866598+6 1.040000-4 7.863822+6 1.071519-4 7.846076+6 1.083927-4 7.831751+6 1.109175-4 7.792887+6 1.122018-4 7.773487+6 1.135011-4 7.746257+6 1.161449-4 7.681254+6 1.174898-4 7.648955+6 1.190000-4 7.604401+6 1.230269-4 7.475480+6 1.244515-4 7.424326+6 1.249800-4 7.403847+6 1.249800-4 7.685923+6 1.258925-4 7.652204+6 1.273503-4 7.599143+6 1.280000-4 7.575825+6 1.291200-4 7.537040+6 1.293800-4 7.526873+6 1.293800-4 7.653300+6 1.303167-4 7.617266+6 1.310000-4 7.589222+6 1.320000-4 7.549284+6 1.350000-4 7.433739+6 1.364583-4 7.379869+6 1.380000-4 7.318086+6 1.380384-4 7.316464+6 1.428894-4 7.120037+6 1.445440-4 7.056263+6 1.450000-4 7.039007+6 1.462177-4 6.989626+6 1.540000-4 6.680130+6 1.548817-4 6.647422+6 1.566751-4 6.574306+6 1.603245-4 6.432004+6 1.621810-4 6.362608+6 1.650000-4 6.261061+6 1.698244-4 6.078419+6 1.757924-4 5.868508+6 1.760000-4 5.861234+6 1.778279-4 5.794216+6 1.792500-4 5.742706+6 1.792500-4 5.985036+6 1.798871-4 5.961988+6 1.800000-4 5.957926+6 1.828300-4 5.858258+6 1.850000-4 5.784150+6 1.862087-4 5.743344+6 1.900000-4 5.608248+6 1.905461-4 5.589273+6 1.972423-4 5.365284+6 1.980000-4 5.339882+6 2.018366-4 5.209787+6 2.041738-4 5.133796+6 2.065380-4 5.058890+6 2.089296-4 4.984506+6 2.120000-4 4.886253+6 2.162719-4 4.755284+6 2.220000-4 4.587503+6 2.238721-4 4.533697+6 2.264644-4 4.458753+6 2.290868-4 4.384223+6 2.330000-4 4.277382+6 2.371374-4 4.169172+6 2.400000-4 4.096584+6 2.426610-4 4.028107+6 2.450000-4 3.969586+6 2.454709-4 3.957932+6 2.483133-4 3.888929+6 2.511886-4 3.820632+6 2.570396-4 3.688323+6 2.580000-4 3.667297+6 2.600160-4 3.623072+6 2.691535-4 3.427163+6 2.730000-4 3.349905+6 2.754229-4 3.302250+6 2.786121-4 3.241320+6 2.800000-4 3.214982+6 2.818383-4 3.179748+6 2.884032-4 3.058255+6 2.951209-4 2.940812+6 2.985383-4 2.883732+6 3.000000-4 2.859510+6 3.019952-4 2.826878+6 3.054921-4 2.769973+6 3.126079-4 2.658921+6 3.198895-4 2.552381+6 3.200000-4 2.550821+6 3.235937-4 2.500128+6 3.273407-4 2.447996+6 3.311311-4 2.396587+6 3.350000-4 2.345948+6 3.467369-4 2.202151+6 3.507519-4 2.155755+6 3.548134-4 2.109969+6 3.550000-4 2.107865+6 3.672823-4 1.975973+6 3.758374-4 1.891953+6 3.780000-4 1.871400+6 3.801894-4 1.850845+6 3.850000-4 1.806489+6 3.890451-4 1.769956+6 3.981072-4 1.692335+6 4.027170-4 1.654841+6 4.073803-4 1.617661+6 4.120975-4 1.581396+6 4.216965-4 1.510791+6 4.315191-4 1.442511+6 4.350000-4 1.419386+6 4.500000-4 1.325027+6 4.518559-4 1.313935+6 4.600000-4 1.266959+6 4.677351-4 1.224267+6 4.731513-4 1.195575+6 4.786301-4 1.167343+6 4.841724-4 1.139836+6 4.954502-4 1.086810+6 5.011872-4 1.061139+6 5.069907-4 1.035859+6 5.128614-4 1.011099+6 5.370318-4 9.173053+5 5.495409-4 8.737244+5 5.500000-4 8.721784+5 5.559043-4 8.526095+5 5.623413-4 8.315778+5 5.821032-4 7.717888+5 5.888437-4 7.529077+5 5.956621-4 7.343917+5 6.095369-4 6.986544+5 6.165950-4 6.812702+5 6.456542-4 6.156125+5 6.531306-4 6.002927+5 6.683439-4 5.705520+5 6.760830-4 5.561278+5 6.839116-4 5.420936+5 6.918310-4 5.284386+5 7.079458-4 5.020077+5 7.161434-4 4.892195+5 7.300000-4 4.687033+5 7.328245-4 4.646374+5 7.585776-4 4.297140+5 7.762471-4 4.080039+5 7.943282-4 3.871980+5 8.000000-4 3.809839+5 8.035261-4 3.771962+5 8.222426-4 3.578280+5 8.511380-4 3.306172+5 8.609938-4 3.219994+5 8.709636-4 3.136205+5 8.810489-4 3.054219+5 9.000000-4 2.907012+5 9.225714-4 2.745153+5 9.332543-4 2.672687+5 9.549926-4 2.533058+5 9.700000-4 2.442920+5 9.772372-4 2.400738+5 9.885531-4 2.336563+5 1.000000-3 2.274197+5 1.023293-3 2.154710+5 1.030000-3 2.121923+5 1.059254-3 1.986572+5 1.071519-3 1.933449+5 1.083927-3 1.881250+5 1.109175-3 1.780853+5 1.135011-3 1.686114+5 1.148154-3 1.640501+5 1.161449-3 1.596050+5 1.174898-3 1.552862+5 1.190000-3 1.506390+5 1.216186-3 1.429740+5 1.222800-3 1.411143+5 1.222800-3 2.984139+5 1.222970-3 3.041793+5 1.223250-3 3.174562+5 1.223500-3 3.292943+5 1.223750-3 3.410269+5 1.224100-3 3.572669+5 1.224400-3 3.709505+5 1.224700-3 3.842810+5 1.225000-3 3.973611+5 1.225400-3 4.141997+5 1.225850-3 4.322186+5 1.226350-3 4.510787+5 1.226800-3 4.669680+5 1.227300-3 4.833420+5 1.227700-3 4.954513+5 1.228000-3 5.029112+5 1.229500-3 5.313134+5 1.230269-3 5.436651+5 1.230300-3 5.441712+5 1.230500-3 5.469027+5 1.232500-3 5.688000+5 1.235000-3 5.885616+5 1.236000-3 5.931290+5 1.240000-3 6.038810+5 1.245000-3 6.093151+5 1.255400-3 6.090953+5 1.255400-3 6.842773+5 1.255600-3 6.872358+5 1.255900-3 6.941506+5 1.256200-3 7.010104+5 1.256500-3 7.078172+5 1.256800-3 7.145711+5 1.257150-3 7.222153+5 1.257500-3 7.297295+5 1.257850-3 7.369738+5 1.258200-3 7.439482+5 1.258650-3 7.525411+5 1.258925-3 7.574952+5 1.259000-3 7.588756+5 1.259500-3 7.673873+5 1.260000-3 7.752091+5 1.260500-3 7.822322+5 1.261000-3 7.886354+5 1.261700-3 7.965643+5 1.262200-3 8.015279+5 1.263000-3 8.083602+5 1.263800-3 8.139329+5 1.264500-3 8.179132+5 1.265600-3 8.227657+5 1.266500-3 8.256730+5 1.268000-3 8.289197+5 1.269500-3 8.307548+5 1.272200-3 8.326160+5 1.275000-3 8.330082+5 1.283000-3 8.296923+5 1.288000-3 8.260807+5 1.288250-3 8.258863+5 1.290000-3 8.245279+5 1.303167-3 8.109235+5 1.305000-3 8.090685+5 1.313000-3 8.001064+5 1.318257-3 7.933240+5 1.323000-3 7.872696+5 1.348963-3 7.514854+5 1.364583-3 7.310537+5 1.368000-3 7.266899+5 1.380384-3 7.103890+5 1.396368-3 6.900995+5 1.402300-3 6.825674+5 1.402300-3 7.753996+5 1.412538-3 7.619354+5 1.445440-3 7.208896+5 1.450000-3 7.153498+5 1.462177-3 7.008340+5 1.500000-3 6.587794+5 1.513561-3 6.446496+5 1.531087-3 6.270214+5 1.570000-3 5.902928+5 1.621810-3 5.457364+5 1.640590-3 5.307529+5 1.698244-3 4.882618+5 1.717908-3 4.748831+5 1.757924-3 4.488904+5 1.778279-3 4.364383+5 1.819701-3 4.124266+5 1.840772-3 4.009164+5 1.905461-3 3.683265+5 1.927525-3 3.579471+5 1.949845-3 3.478684+5 1.972423-3 3.380816+5 1.995262-3 3.285113+5 2.041738-3 3.100934+5 2.065380-3 3.012739+5 2.089296-3 2.927101+5 2.137962-3 2.761137+5 2.150000-3 2.722146+5 2.162719-3 2.681535+5 2.213095-3 2.528882+5 2.220000-3 2.508916+5 2.290868-3 2.316257+5 2.317395-3 2.249543+5 2.344229-3 2.184724+5 2.350000-3 2.171130+5 2.426610-3 2.000428+5 2.500000-3 1.854198+5 2.570396-3 1.726106+5 2.630268-3 1.625672+5 2.660725-3 1.577673+5 2.691535-3 1.531124+5 2.722701-3 1.485986+5 2.754229-3 1.442213+5 2.786121-3 1.399760+5 2.818383-3 1.358287+5 2.884032-3 1.279051+5 2.917427-3 1.241096+5 2.951209-3 1.204301+5 3.000000-3 1.153775+5 3.019952-3 1.133839+5 3.090295-3 1.067290+5 3.126079-3 1.035535+5 3.162278-3 1.004745+5 3.198895-3 9.748951+4 3.200000-3 9.740049+4 3.300000-3 8.979155+4 3.311311-3 8.897983+4 3.427678-3 8.115211+4 3.467369-3 7.870307+4 3.548134-3 7.403063+4 3.630781-3 6.963954+4 3.672823-3 6.754439+4 3.715352-3 6.549998+4 3.758374-3 6.351918+4 3.845918-3 5.973695+4 3.890451-3 5.791440+4 3.935501-3 5.614882+4 4.027170-3 5.278195+4 4.073803-3 5.117693+4 4.168694-3 4.811447+4 4.265795-3 4.521707+4 4.315191-3 4.383510+4 4.365158-3 4.248984+4 4.415704-3 4.118222+4 4.466836-3 3.991580+4 4.570882-3 3.750187+4 4.623810-3 3.635170+4 4.841724-3 3.210053+4 4.897788-3 3.111196+4 5.011872-3 2.921350+4 5.069907-3 2.830933+4 5.188000-3 2.657962+4 5.248075-3 2.575583+4 5.495409-3 2.271358+4 5.623413-3 2.133264+4 5.688529-3 2.066628+4 5.754399-3 2.002073+4 5.888437-3 1.879112+4 5.956621-3 1.820571+4 6.000000-3 1.784516+4 6.095369-3 1.708637+4 6.237348-3 1.603759+4 6.382635-3 1.505423+4 6.456542-3 1.458289+4 6.500000-3 1.431526+4 6.531306-3 1.412565+4 6.683439-3 1.325222+4 6.839116-3 1.243345+4 6.918310-3 1.204359+4 7.079458-3 1.129910+4 7.161434-3 1.094452+4 7.328245-3 1.026930+4 7.413102-3 9.945373+3 7.673615-3 9.030766+3 7.762471-3 8.745499+3 7.852356-3 8.469207+3 7.943282-3 8.201771+3 8.035261-3 7.942359+3 8.317638-3 7.213112+3 8.511380-3 6.765524+3 8.609938-3 6.550748+3 8.810489-3 6.140054+3 9.015711-3 5.755781+3 9.225714-3 5.395645+3 9.332543-3 5.223808+3 9.660509-3 4.741291+3 9.772372-3 4.590828+3 9.885531-3 4.445272+3 1.000000-2 4.303239+3 1.035142-2 3.902774+3 1.047129-2 3.777910+3 1.059254-2 3.657013+3 1.071519-2 3.540017+3 1.083927-2 3.426852+3 1.096478-2 3.317163+3 1.106700-2 3.231378+3 1.106700-2 2.396274+4 1.109175-2 2.383216+4 1.114000-2 2.358047+4 1.122018-2 2.317048+4 1.122500-2 2.314616+4 1.135011-2 2.247842+4 1.140000-2 2.221957+4 1.150000-2 2.173867+4 1.174898-2 2.060168+4 1.202264-2 1.940078+4 1.216186-2 1.882691+4 1.230269-2 1.826998+4 1.244515-2 1.773757+4 1.273503-2 1.671913+4 1.303167-2 1.575920+4 1.333521-2 1.485472+4 1.364583-2 1.397520+4 1.396368-2 1.314762+4 1.412538-2 1.275244+4 1.428894-2 1.236919+4 1.462177-2 1.163691+4 1.500000-2 1.087015+4 1.513561-2 1.061215+4 1.548817-2 9.979687+3 1.584893-2 9.384347+3 1.640590-2 8.557188+3 1.659587-2 8.298044+3 1.678804-2 8.046732+3 1.730000-2 7.426390+3 1.778279-2 6.888094+3 1.819701-2 6.467882+3 1.840772-2 6.267270+3 1.862087-2 6.072899+3 1.883649-2 5.884509+3 1.927525-2 5.525135+3 1.949845-2 5.353775+3 2.137962-2 4.161309+3 2.187762-2 3.907036+3 2.213095-2 3.783265+3 2.264644-2 3.547328+3 2.290868-2 3.434942+3 2.344229-2 3.220731+3 2.371374-2 3.118700+3 2.483133-2 2.741968+3 2.500000-2 2.690574+3 2.511886-2 2.655100+3 2.600160-2 2.410527+3 2.630268-2 2.334118+3 2.660725-2 2.260137+3 2.691535-2 2.188488+3 2.754229-2 2.051923+3 2.786121-2 1.985756+3 2.851018-2 1.859765+3 2.951209-2 1.685637+3 2.985383-2 1.631239+3 3.090295-2 1.478372+3 3.162278-2 1.384517+3 3.198895-2 1.339846+3 3.235937-2 1.296617+3 3.311311-2 1.214285+3 3.349654-2 1.175104+3 3.388442-2 1.137189+3 3.467369-2 1.064005+3 3.507519-2 1.029202+3 3.548134-2 9.955010+2 3.758374-2 8.428659+2 3.801894-2 8.152705+2 4.027170-2 6.902842+2 4.073803-2 6.676875+2 4.120975-2 6.458322+2 4.168694-2 6.246916+2 4.216965-2 6.039719+2 4.365158-2 5.458496+2 4.518559-2 4.933276+2 4.786301-2 4.167805+2 5.011872-2 3.641966+2 5.069907-2 3.521103+2 5.128614-2 3.404254+2 5.248075-2 3.179717+2 5.308844-2 3.073064+2 5.623413-2 2.591094+2 5.821032-2 2.339034+2 6.000000-2 2.138316+2 6.025596-2 2.111517+2 6.095369-2 2.040712+2 6.165950-2 1.972215+2 6.249250-2 1.895274+2 6.382635-2 1.780220+2 6.456542-2 1.719911+2 7.328245-2 1.177239+2 7.498942-2 1.098843+2 7.673615-2 1.025605+2 8.128305-2 8.631715+1 8.222426-2 8.339111+1 8.912509-2 6.536816+1 9.015711-2 6.313352+1 9.225714-2 5.889109+1 9.332543-2 5.687808+1 9.549926-2 5.305626+1 9.772372-2 4.948864+1 9.885531-2 4.779599+1 1.035142-1 4.158509+1 1.047129-1 4.016265+1 1.071519-1 3.746237+1 1.135011-1 3.147958+1 1.188502-1 2.738951+1 1.216186-1 2.554836+1 1.230269-1 2.467480+1 1.364583-1 1.804188+1 1.396368-1 1.682944+1 1.428894-1 1.569848+1 1.445440-1 1.516185+1 1.462177-1 1.464362+1 1.479108-1 1.414311+1 1.566751-1 1.188581+1 1.584893-1 1.147959+1 1.621810-1 1.070832+1 1.678804-1 9.647562+0 1.717908-1 8.999508+0 1.737801-1 8.691989+0 1.778279-1 8.113602+0 1.819701-1 7.573697+0 1.840772-1 7.317407+0 1.862087-1 7.069795+0 1.883649-1 6.830729+0 1.927525-1 6.376605+0 1.949845-1 6.161010+0 2.000000-1 5.710859+0 2.137962-1 4.679072+0 2.162719-1 4.520884+0 2.187762-1 4.368056+0 2.213095-1 4.220407+0 2.238721-1 4.077754+0 2.317395-1 3.683020+0 2.344229-1 3.560148+0 2.454709-1 3.108848+0 2.483133-1 3.005278+0 2.540973-1 2.808375+0 2.570396-1 2.714818+0 2.630268-1 2.536952+0 2.722701-1 2.295262+0 2.754229-1 2.219950+0 2.818383-1 2.076883+0 2.851018-1 2.008845+0 3.000060-1 1.733497+0 3.019952-1 1.700672+0 3.054921-1 1.645849+0 3.090295-1 1.592794+0 3.162278-1 1.491763+0 3.198895-1 1.443690+0 3.311311-1 1.308790+0 3.349654-1 1.266689+0 3.388442-1 1.225942+0 3.427678-1 1.186507+0 3.548134-1 1.077611+0 3.589219-1 1.043581+0 3.630781-1 1.010634+0 3.672823-1 9.787895-1 3.715352-1 9.479491-1 3.801894-1 8.891527-1 3.845918-1 8.611383-1 3.890451-1 8.345411-1 3.935501-1 8.087646-1 3.981072-1 7.837850-1 4.027170-1 7.595794-1 4.073803-1 7.361285-1 4.168694-1 6.914641-1 4.265795-1 6.495126-1 4.365158-1 6.109179-1 4.415705-1 5.924909-1 4.466836-1 5.746203-1 4.518559-1 5.572889-1 4.570882-1 5.405220-1 4.623810-1 5.242604-1 4.731513-1 4.931918-1 4.786301-1 4.786960-1 4.841724-1 4.646261-1 4.897788-1 4.509703-1 5.011872-1 4.248508-1 5.069907-1 4.123972-1 5.128614-1 4.003091-1 5.188000-1 3.885773-1 5.248075-1 3.771890-1 5.308844-1 3.664128-1 5.370318-1 3.559443-1 5.559043-1 3.262997-1 5.623413-1 3.170043-1 5.688529-1 3.079739-1 5.821032-1 2.906788-1 6.025596-1 2.671563-1 6.095369-1 2.597471-1 6.165950-1 2.525645-1 6.237348-1 2.455810-1 6.382635-1 2.321886-1 6.531306-1 2.198676-1 6.606935-1 2.139550-1 6.683439-1 2.082015-1 6.760830-1 2.026195-1 6.839117-1 1.971873-1 6.998420-1 1.867567-1 7.079458-1 1.819189-1 7.161434-1 1.772069-1 7.244360-1 1.726170-1 7.328245-1 1.681461-1 7.413102-1 1.638056-1 7.673615-1 1.514455-1 7.762471-1 1.476546-1 7.852356-1 1.439585-1 8.035261-1 1.368418-1 8.128305-1 1.334167-1 8.222427-1 1.300885-1 8.317638-1 1.268434-1 8.511380-1 1.205948-1 8.609938-1 1.176610-1 8.810489-1 1.120062-1 8.912509-1 1.092816-1 9.015711-1 1.066330-1 9.225714-1 1.015279-1 9.332543-1 9.906774-2 9.440609-1 9.666745-2 9.660509-1 9.220245-2 9.772372-1 9.005691-2 9.885531-1 8.796142-2 1.000000+0 8.591499-2 1.023293+0 8.196385-2 1.035142+0 8.010352-2 1.047129+0 7.828549-2 1.059254+0 7.650900-2 1.083927+0 7.307601-2 1.096478+0 7.142221-2 1.109175+0 6.980576-2 1.122018+0 6.822617-2 1.135011+0 6.668224-2 1.148154+0 6.517344-2 1.174898+0 6.236011-2 1.188600+0 6.098991-2 1.202264+0 5.966864-2 1.244515+0 5.586103-2 1.250000+0 5.540748-2 1.258925+0 5.468159-2 1.288250+0 5.239698-2 1.303167+0 5.129078-2 1.333521+0 4.914800-2 1.380384+0 4.611103-2 1.396368+0 4.514120-2 1.412538+0 4.421911-2 1.428894+0 4.331591-2 1.462177+0 4.156449-2 1.479108+0 4.071553-2 1.496236+0 3.988694-2 1.513561+0 3.907528-2 1.531087+0 3.828011-2 1.548817+0 3.750112-2 1.584893+0 3.603915-2 1.640590+0 3.395251-2 1.659587+0 3.328418-2 1.678804+0 3.263147-2 1.698244+0 3.199154-2 1.717908+0 3.136421-2 1.737801+0 3.074916-2 1.778279+0 2.959374-2 1.819701+0 2.848181-2 1.840772+0 2.794162-2 1.862087+0 2.741168-2 1.883649+0 2.689375-2 1.905461+0 2.638559-2 1.927525+0 2.588705-2 1.949845+0 2.539794-2 2.000000+0 2.438615-2 2.018366+0 2.403196-2 2.065380+0 2.316242-2 2.089296+0 2.273953-2 2.113489+0 2.232457-2 2.137962+0 2.191854-2 2.162719+0 2.151989-2 2.187762+0 2.112851-2 2.213095+0 2.074429-2 2.264644+0 2.002121-2 2.290868+0 1.966921-2 2.344229+0 1.898367-2 2.371374+0 1.864992-2 2.398833+0 1.832220-2 2.426610+0 1.800127-2 2.454709+0 1.768597-2 2.483133+0 1.737619-2 2.511886+0 1.707187-2 2.570396+0 1.649843-2 2.600160+0 1.621901-2 2.660725+0 1.567428-2 2.691535+0 1.540882-2 2.722701+0 1.514798-2 2.754229+0 1.489236-2 2.818383+0 1.439399-2 2.851018+0 1.415110-2 2.884032+0 1.391232-2 2.951209+0 1.346164-2 2.985383+0 1.324182-2 3.054921+0 1.281290-2 3.090295+0 1.260368-2 3.126079+0 1.239797-2 3.162278+0 1.219626-2 3.235937+0 1.180263-2 3.273407+0 1.161060-2 3.311311+0 1.142172-2 3.388442+0 1.106447-2 3.467369+0 1.071843-2 3.548134+0 1.038321-2 3.589219+0 1.021956-2 3.630781+0 1.005856-2 3.672823+0 9.900588-3 3.758374+0 9.592052-3 3.801894+0 9.441408-3 3.845918+0 9.293145-3 3.935501+0 9.012209-3 4.027170+0 8.739792-3 4.168694+0 8.346525-3 4.216965+0 8.219411-3 4.265795+0 8.094291-3 4.315191+0 7.971444-3 4.415704+0 7.731320-3 4.466836+0 7.613982-3 4.518559+0 7.498440-3 4.623810+0 7.279259-3 4.731513+0 7.066504-3 4.954502+0 6.659469-3 5.011872+0 6.561429-3 5.069907+0 6.464876-3 5.128614+0 6.370021-3 5.248075+0 6.184469-3 5.308844+0 6.093731-3 5.370318+0 6.004331-3 5.495409+0 5.834519-3 5.623413+0 5.669524-3 5.956621+0 5.277163-3 6.025596+0 5.202011-3 6.095369+0 5.127961-3 6.165950+0 5.055161-3 6.309573+0 4.912649-3 6.456542+0 4.774153-3 6.531306+0 4.706382-3 6.683439+0 4.577390-3 6.839116+0 4.451944-3 7.244360+0 4.153163-3 7.328245+0 4.095859-3 7.413102+0 4.039368-3 7.498942+0 3.983803-3 7.673615+0 3.874956-3 7.852356+0 3.769084-3 7.943282+0 3.717240-3 8.035261+0 3.666111-3 8.222427+0 3.568719-3 8.413951+0 3.473923-3 8.912509+0 3.247802-3 9.015711+0 3.204377-3 9.120108+0 3.161548-3 9.225714+0 3.119397-3 9.549926+0 2.996288-3 9.772372+0 2.916927-3 9.885531+0 2.878039-3 1.011579+1 2.801817-3 1.035142+1 2.729453-3 1.059254+1 2.658963-3 1.135011+1 2.458231-3 1.148154+1 2.426281-3 1.161449+1 2.394758-3 1.174898+1 2.363713-3 1.216186+1 2.272975-3 1.244515+1 2.214425-3 1.273503+1 2.157387-3 1.318257+1 2.074574-3 1.348963+1 2.022428-3 1.364583+1 1.996850-3 1.445440+1 1.873731-3 1.462177+1 1.850035-3 1.479108+1 1.826645-3 1.496236+1 1.803550-3 1.513561+1 1.780796-3 1.566751+1 1.714240-3 1.603245+1 1.671258-3 1.678804+1 1.588499-3 1.778279+1 1.490795-3 1.840772+1 1.436209-3 1.883649+1 1.400936-3 1.995262+1 1.316497-3 2.000000+1 1.313129-3 2.018366+1 1.300230-3 2.041738+1 1.284203-3 2.089296+1 1.252741-3 2.213095+1 1.177417-3 2.371374+1 1.092987-3 2.454709+1 1.053773-3 2.540973+1 1.015967-3 2.818383+1 9.104960-4 2.851018+1 8.994749-4 2.884032+1 8.885869-4 2.917427+1 8.778485-4 2.985383+1 8.567646-4 3.090295+1 8.260849-4 3.273407+1 7.773744-4 3.507519+1 7.226999-4 3.630781+1 6.972263-4 3.758374+1 6.726519-4 4.265795+1 5.897270-4 4.315191+1 5.827154-4 4.365158+1 5.757873-4 4.466836+1 5.621961-4 4.570882+1 5.489288-4 4.786301+1 5.233259-4 5.128614+1 4.871439-4 5.559043+1 4.480819-4 5.821032+1 4.274572-4 5.956621+1 4.175040-4 7.079458+1 3.498813-4 7.244360+1 3.417345-4 7.498942+1 3.298808-4 7.673615+1 3.222088-4 8.317638+1 2.967351-4 9.440609+1 2.607126-4 1.071519+2 2.290637-4 1.135011+2 2.160975-4 1.148154+2 2.135938-4 1.318257+2 1.857184-4 1.348963+2 1.814399-4 1.396368+2 1.752107-4 1.462177+2 1.672372-4 1.659587+2 1.471318-4 1.883649+2 1.294438-4 2.137962+2 1.138823-4 2.264644+2 1.074826-4 2.290868+2 1.062465-4 2.630268+2 9.247686-5 2.691535+2 9.036206-5 2.786121+2 8.728177-5 2.917427+2 8.333771-5 3.311311+2 7.338649-5 3.758374+2 6.462358-5 8.511380+2 2.844072-5 9.015711+2 2.684853-5 9.120108+2 2.654096-5 1.047129+3 2.311366-5 1.071519+3 2.258713-5 1.109175+3 2.181991-5 1.161449+3 2.083738-5 1.318257+3 1.835761-5 2.985383+3 8.102954-6 5.370318+4 4.498176-7 5.688529+4 4.246611-7 5.754399+4 4.198012-7 1.000000+5 2.416025-7 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.290000-6 6.290000-6 6.500000-6 6.290000-6 6.500000-6 6.361222-6 1.478000-5 6.365335-6 1.478000-5 6.984856-6 1.580000-5 6.787492-6 1.690000-5 6.619746-6 1.808000-5 6.489285-6 1.920000-5 6.412495-6 2.032000-5 6.382194-6 2.130000-5 6.394690-6 2.240000-5 6.452578-6 2.344229-5 6.550177-6 2.460000-5 6.705854-6 2.580000-5 6.916947-6 2.691535-5 7.153361-6 2.818383-5 7.462276-6 2.985383-5 7.917853-6 3.548134-5 9.574065-6 3.801894-5 1.025151-5 3.819000-5 1.029415-5 3.819000-5 2.106238-5 3.882000-5 2.109538-5 3.882000-5 2.216439-5 4.315191-5 2.255489-5 5.011872-5 2.337509-5 5.450000-5 2.372010-5 6.025596-5 2.396958-5 7.000000-5 2.414298-5 9.332543-5 2.426028-5 1.249800-4 2.430302-5 1.249800-4 2.513002-5 1.293800-4 2.517162-5 1.293800-4 2.553297-5 1.462177-4 2.585348-5 1.698244-4 2.647312-5 1.792500-4 2.675699-5 1.792500-4 2.813351-5 2.290868-4 2.980448-5 2.818383-4 3.130315-5 3.350000-4 3.259534-5 4.027170-4 3.402088-5 4.841724-4 3.546845-5 5.821032-4 3.692911-5 6.918310-4 3.828947-5 8.222426-4 3.961250-5 9.772372-4 4.088040-5 1.161449-3 4.208501-5 1.222800-3 4.243052-5 1.222800-3 5.633143-5 1.223750-3 5.791224-5 1.224700-3 5.915793-5 1.225850-3 6.024897-5 1.227300-3 6.117767-5 1.228000-3 6.148546-5 1.230500-3 6.211031-5 1.235000-3 6.264408-5 1.245000-3 6.298003-5 1.255400-3 6.310521-5 1.255400-3 6.383671-5 1.260000-3 6.457523-5 1.265600-3 6.492590-5 1.290000-3 6.515494-5 1.402300-3 6.529854-5 1.402300-3 6.952249-5 1.840772-3 7.085653-5 2.660725-3 7.282320-5 3.845918-3 7.502574-5 5.248075-3 7.701556-5 7.161434-3 7.909714-5 9.332543-3 8.087166-5 1.106700-2 8.199802-5 1.106700-2 1.002371-4 1.927525-2 1.009548-4 4.168694-2 1.015083-4 1.364583-1 1.018649-4 2.985383+0 1.020035-4 1.000000+5 1.020035-4 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.290000-6 0.0 3.882000-5 0.0 3.882000-5 8.35410-11 3.950000-5 8.48422-11 4.027170-5 8.58822-11 4.073803-5 8.63676-11 4.130000-5 8.66814-11 4.350000-5 8.70198-11 4.570882-5 8.79738-11 4.820000-5 8.94995-11 5.248075-5 9.24755-11 5.495409-5 9.39622-11 5.650000-5 9.48445-11 6.025596-5 9.64806-11 6.580000-5 9.82138-11 7.161434-5 9.93692-11 8.128305-5 1.00461-10 9.332543-5 1.01243-10 1.109175-4 1.01977-10 1.249800-4 1.02390-10 1.249800-4 2.22522-10 1.280000-4 2.26140-10 1.293800-4 2.28321-10 1.293800-4 2.85966-10 1.320000-4 2.91767-10 1.364583-4 3.03281-10 1.450000-4 3.29378-10 1.548817-4 3.63964-10 1.621810-4 3.93074-10 1.650000-4 4.04833-10 1.792500-4 4.69248-10 1.792500-4 5.90001-10 1.980000-4 6.80836-10 2.162719-4 7.66834-10 2.330000-4 8.40292-10 2.511886-4 9.15760-10 2.754229-4 1.009348-9 2.951209-4 1.080120-9 3.273407-4 1.187383-9 3.550000-4 1.273199-9 3.801894-4 1.346047-9 4.073803-4 1.419723-9 4.350000-4 1.490034-9 4.841724-4 1.605100-9 5.128614-4 1.667529-9 5.623413-4 1.765283-9 6.165950-4 1.862255-9 6.760830-4 1.958581-9 7.328245-4 2.040487-9 8.222426-4 2.153534-9 9.000000-4 2.239395-9 1.000000-3 2.334412-9 1.109175-3 2.423564-9 1.222800-3 2.502389-9 1.222800-3 8.250595-6 1.222970-3 8.393279-6 1.223250-3 8.700615-6 1.223500-3 8.953748-6 1.223750-3 9.187310-6 1.224100-3 9.485335-6 1.224400-3 9.716246-6 1.225000-3 1.011718-5 1.225400-3 1.034628-5 1.225850-3 1.057189-5 1.226350-3 1.078900-5 1.226800-3 1.095855-5 1.227700-3 1.123608-5 1.228000-3 1.130411-5 1.229500-3 1.154852-5 1.230500-3 1.167324-5 1.232500-3 1.184127-5 1.235000-3 1.198709-5 1.240000-3 1.211460-5 1.245000-3 1.217992-5 1.255400-3 1.224746-5 1.255400-3 1.278116-5 1.258200-3 1.314294-5 1.260500-3 1.334875-5 1.263000-3 1.348351-5 1.266500-3 1.357759-5 1.275000-3 1.365162-5 1.313000-3 1.374376-5 1.402300-3 1.375007-5 1.402300-3 1.399561-5 2.500000-3 1.401123-5 8.317638-3 1.385108-5 1.106700-2 1.380850-5 1.106700-2 4.680852-3 1.462177-2 4.729503-3 1.949845-2 4.762642-3 3.162278-2 4.797790-3 6.249250-2 4.820286-3 2.570396-1 4.829067-3 1.000000+5 4.832603-3 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.290000-6 0.0 6.500000-6 2.100000-7 6.500000-6 1.387778-7 1.478000-5 8.414665-6 1.478000-5 7.795144-6 1.610000-5 9.363315-6 1.750000-5 1.095301-5 1.905461-5 1.263476-5 2.070000-5 1.431731-5 2.240000-5 1.594742-5 2.426610-5 1.761044-5 2.610000-5 1.912306-5 2.818383-5 2.072155-5 3.198895-5 2.344254-5 3.589219-5 2.620105-5 3.819000-5 2.789585-5 3.819000-5 1.712762-5 3.882000-5 1.772462-5 3.882000-5 1.665553-5 4.265795-5 2.015821-5 5.011872-5 2.674354-5 5.495409-5 3.120768-5 6.237348-5 3.834817-5 8.128305-5 5.706408-5 1.249800-4 1.006769-4 1.249800-4 9.984975-5 1.293800-4 1.042082-4 1.293800-4 1.038467-4 1.792500-4 1.524925-4 1.792500-4 1.511159-4 3.126079-4 2.805342-4 6.095369-4 5.722382-4 1.222800-3 1.180367-3 1.222800-3 1.158218-3 1.226800-3 1.154940-3 1.240000-3 1.165021-3 1.255400-3 1.180047-3 1.255400-3 1.178782-3 1.288000-3 1.209159-3 1.402300-3 1.323251-3 1.402300-3 1.318782-3 1.106700-2 1.097119-2 1.106700-2 6.285911-3 1.584893-2 1.100854-2 3.801894-2 3.311132-2 1.000000+5 9.999999+4 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.106700-2 2.073136+4 1.122500-2 2.004146+4 1.140000-2 1.924732+4 1.174898-2 1.787264+4 1.230269-2 1.587585+4 1.333521-2 1.294990+4 1.462177-2 1.017263+4 1.730000-2 6.522020+3 2.187762-2 3.447616+3 2.754229-2 1.817011+3 3.388442-2 1.009321+3 4.168694-2 5.553901+2 5.128614-2 3.030590+2 6.382635-2 1.586385+2 8.222426-2 7.437006+1 1.737801-1 7.757575+0 2.238721-1 3.639714+0 2.630268-1 2.264487+0 3.019952-1 1.518038+0 3.427678-1 1.059112+0 3.845918-1 7.686995-1 4.265795-1 5.798191-1 4.731513-1 4.402894-1 5.248075-1 3.367368-1 5.821032-1 2.595154-1 6.382635-1 2.072999-1 6.998420-1 1.667453-1 7.673615-1 1.352444-1 8.511380-1 1.077241-1 9.440609-1 8.635124-2 1.023293+0 7.320976-2 1.148154+0 5.820575-2 1.244515+0 4.989371-2 1.396368+0 4.032162-2 1.548817+0 3.349583-2 1.737801+0 2.746512-2 1.949845+0 2.268534-2 2.213095+0 1.852903-2 2.511886+0 1.524894-2 2.884032+0 1.242659-2 3.311311+0 1.020190-2 3.845918+0 8.300669-3 4.518559+0 6.697621-3 5.370318+0 5.363108-3 6.531306+0 4.203770-3 8.035261+0 3.274572-3 1.011579+1 2.502568-3 1.318257+1 1.852996-3 1.778279+1 1.331576-3 2.371374+1 9.762519-4 3.507519+1 6.455121-4 5.559043+1 4.002237-4 1.071519+2 2.046000-4 2.137962+2 1.017230-4 8.511380+2 2.540463-5 5.370318+4 4.017991-7 1.000000+5 2.158200-7 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.106700-2 1.030800-4 1.000000+5 1.030800-4 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.106700-2 5.408300-3 1.000000+5 5.408300-3 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.106700-2 5.555620-3 1.000000+5 9.999999+4 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.402300-3 9.283222+4 1.445440-3 8.982218+4 1.570000-3 7.957480+4 1.717908-3 6.904161+4 1.995262-3 5.426558+4 2.350000-3 4.110880+4 2.570396-3 3.502345+4 3.000000-3 2.636020+4 3.311311-3 2.182944+4 3.845918-3 1.626849+4 4.315191-3 1.287718+4 4.897788-3 9.897854+3 5.623413-3 7.366912+3 6.382635-3 5.582480+3 7.328245-3 4.096004+3 8.511380-3 2.904352+3 9.885531-3 2.042413+3 1.150000-2 1.419384+3 1.333521-2 9.865813+2 1.548817-2 6.780782+2 1.819701-2 4.491931+2 2.137962-2 2.951734+2 2.500000-2 1.949404+2 2.951209-2 1.246015+2 3.507519-2 7.758072+1 4.168694-2 4.794028+1 5.011872-2 2.846918+1 6.095369-2 1.623592+1 7.498942-2 8.887943+0 9.549926-2 4.363974+0 1.862087-1 6.000295-1 2.344229-1 3.044757-1 2.754229-1 1.906907-1 3.198895-1 1.244263-1 3.630781-1 8.731758-2 4.073803-1 6.371885-2 4.518559-1 4.829699-2 5.011872-1 3.686536-2 5.559043-1 2.834367-2 6.095369-1 2.258499-2 6.683439-1 1.811751-2 7.328245-1 1.462952-2 8.128305-1 1.159253-2 8.912509-1 9.491556-3 9.660509-1 8.019729-3 1.083927+0 6.365225-3 1.202264+0 5.198948-3 1.333521+0 4.277117-3 1.479108+0 3.542993-3 1.659587+0 2.896299-3 1.862087+0 2.385485-3 2.113489+0 1.942434-3 2.398833+0 1.594198-3 2.722701+0 1.317930-3 3.126079+0 1.078838-3 3.630781+0 8.752741-4 4.265795+0 7.043728-4 5.069907+0 5.625851-4 6.095369+0 4.462174-4 7.413102+0 3.514774-4 9.120108+0 2.750842-4 1.161449+1 2.083706-4 1.496236+1 1.569254-4 2.018366+1 1.131362-4 2.884032+1 7.731447-5 4.365158+1 5.009926-5 7.244360+1 2.973362-5 1.348963+2 1.579376-5 2.691535+2 7.865137-6 1.071519+3 1.966534-6 1.000000+5 2.104000-8 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.402300-3 1.005800-4 1.000000+5 1.005800-4 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.402300-3 1.580100-5 1.000000+5 1.580100-5 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.402300-3 1.285919-3 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.255400-3 7.518200+4 1.255600-3 7.814400+4 1.255900-3 8.506400+4 1.256200-3 9.192900+4 1.256500-3 9.874100+4 1.256800-3 1.055000+5 1.257150-3 1.131500+5 1.257500-3 1.206700+5 1.257850-3 1.279200+5 1.258200-3 1.349000+5 1.258650-3 1.435000+5 1.259000-3 1.498400+5 1.259500-3 1.583600+5 1.260000-3 1.661900+5 1.260500-3 1.733500+5 1.261000-3 1.798900+5 1.261700-3 1.880100+5 1.262200-3 1.931100+5 1.263000-3 2.001600+5 1.263800-3 2.059500+5 1.264500-3 2.101200+5 1.265600-3 2.152700+5 1.266500-3 2.184200+5 1.268000-3 2.220700+5 1.269500-3 2.243068+5 1.272200-3 2.268871+5 1.275000-3 2.280196+5 1.288000-3 2.295626+5 1.305000-3 2.305521+5 1.313000-3 2.300400+5 1.323000-3 2.275300+5 1.396368-3 2.004200+5 1.500000-3 1.664700+5 1.778279-3 1.078800+5 1.972423-3 8.225500+4 2.150000-3 6.526900+4 2.570396-3 3.992600+4 2.884032-3 2.881700+4 3.300000-3 1.956000+4 3.845918-3 1.246800+4 4.365158-3 8.533300+3 5.069907-3 5.410200+3 5.956621-3 3.281200+3 6.918310-3 2.045700+3 7.943282-3 1.313900+3 9.225714-3 8.078600+2 1.083927-2 4.748700+2 1.273503-2 2.770800+2 1.500000-2 1.591800+2 1.778279-2 8.882800+1 2.137962-2 4.687100+1 2.600160-2 2.357900+1 3.235937-2 1.084700+1 4.120975-2 4.561300+0 9.015711-2 2.696900-1 1.135011-1 1.180800-1 1.364583-1 6.140700-2 1.621810-1 3.351499-2 1.883649-1 1.997921-2 2.162719-1 1.248519-2 2.454709-1 8.172112-3 2.754229-1 5.596671-3 3.090295-1 3.859825-3 3.427678-1 2.780708-3 3.801894-1 2.017174-3 4.168694-1 1.526433-3 4.623810-1 1.124277-3 5.128614-1 8.346299-4 5.688529-1 6.243882-4 6.237348-1 4.855794-4 6.839117-1 3.802578-4 7.328245-1 3.182337-4 8.035261-1 2.526895-4 9.332543-1 1.754120-4 9.885531-1 1.533829-4 1.047129+0 1.352361-4 1.109175+0 1.199572-4 1.174898+0 1.070272-4 1.258925+0 9.405126-5 1.380384+0 7.976032-5 1.737801+0 5.358714-5 1.949845+0 4.422231-5 2.187762+0 3.677514-5 2.483133+0 3.024474-5 2.851018+0 2.463057-5 3.273407+0 2.020931-5 3.801894+0 1.643405-5 4.466836+0 1.325347-5 5.308844+0 1.060735-5 6.456542+0 8.310239-6 7.943282+0 6.470655-6 9.885531+0 5.009270-6 1.273503+1 3.754469-6 1.678804+1 2.764632-6 2.213095+1 2.048446-6 3.273407+1 1.352751-6 5.128614+1 8.476993-7 9.440609+1 4.536332-7 1.883649+2 2.252976-7 3.758374+2 1.124196-7 2.985383+3 1.409577-8 1.000000+5 4.20670-10 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.255400-3 6.976300-5 1.000000+5 6.976300-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.255400-3 1.710500-5 1.000000+5 1.710500-5 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.255400-3 1.168532-3 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.222800-3 1.572996+5 1.222970-3 1.631124+5 1.223250-3 1.764672+5 1.223500-3 1.883748+5 1.223750-3 2.001768+5 1.224100-3 2.165140+5 1.224400-3 2.302808+5 1.224700-3 2.436944+5 1.225000-3 2.568576+5 1.225400-3 2.738068+5 1.225850-3 2.919500+5 1.226350-3 3.109480+5 1.226800-3 3.269612+5 1.227300-3 3.434728+5 1.227700-3 3.556920+5 1.228000-3 3.632342+5 1.229500-3 3.920470+5 1.230300-3 4.051231+5 1.230500-3 4.079090+5 1.232500-3 4.303495+5 1.235000-3 4.507857+5 1.236000-3 4.556216+5 1.240000-3 4.674399+5 1.245000-3 4.741897+5 1.260000-3 4.777324+5 1.275000-3 4.774000+5 1.283000-3 4.750440+5 1.290000-3 4.708080+5 1.368000-3 4.087720+5 1.462177-3 3.431846+5 1.717908-3 2.266060+5 1.905461-3 1.724328+5 2.089296-3 1.344565+5 2.500000-3 8.173520+4 2.786121-3 6.001422+4 3.198895-3 4.022414+4 3.672823-3 2.672002+4 4.168694-3 1.825483+4 4.841724-3 1.154335+4 5.623413-3 7.238085+3 6.500000-3 4.571560+3 7.413102-3 2.994147+3 8.609938-3 1.836376+3 1.000000-2 1.118184+3 1.174898-2 6.503626+2 1.364583-2 3.905209+2 1.584893-2 2.330314+2 1.862087-2 1.327608+2 2.213095-2 7.211742+1 2.660725-2 3.732434+1 3.235937-2 1.839181+1 4.027170-2 8.272502+0 5.248075-2 3.117768+0 9.772372-2 3.108629-1 1.216186-1 1.390530-1 1.445440-1 7.407257-2 1.678804-1 4.322067-2 1.927525-1 2.648300-2 2.187762-1 1.702430-2 2.454709-1 1.147510-2 2.722701-1 8.101355-3 3.000060-1 5.887356-3 3.311311-1 4.285344-3 3.630781-1 3.207948-3 3.981072-1 2.417911-3 4.365158-1 1.835632-3 4.731513-1 1.451605-3 5.128614-1 1.155305-3 5.559043-1 9.257535-4 6.025596-1 7.466324-4 6.531306-1 6.060797-4 7.079458-1 4.951565-4 7.673615-1 4.072108-4 8.317638-1 3.371286-4 9.015711-1 2.807049-4 9.660509-1 2.414883-4 1.035142+0 2.092396-4 1.135011+0 1.740170-4 1.250000+0 1.444998-4 1.380384+0 1.203427-4 1.584893+0 9.424980-5 1.778279+0 7.739651-5 2.000000+0 6.375794-5 2.264644+0 5.234683-5 2.570396+0 4.313602-5 2.951209+0 3.519910-5 3.388442+0 2.893165-5 3.935501+0 2.356657-5 4.623810+0 1.903464-5 5.495409+0 1.525727-5 6.683439+0 1.196997-5 8.222427+0 9.332688-6 1.035142+1 7.137959-6 1.348963+1 5.289510-6 1.840772+1 3.755699-6 2.454709+1 2.755918-6 3.630781+1 1.823453-6 5.821032+1 1.117873-6 1.135011+2 5.652124-7 2.264644+2 2.811433-7 9.015711+2 7.023553-8 5.688529+4 1.110961-9 1.000000+5 6.32080-10 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.222800-3 6.880200-5 1.000000+5 6.880200-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.222800-3 1.565000-5 1.000000+5 1.565000-5 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.222800-3 1.138348-3 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.792500-4 2.423298+5 2.162719-4 2.258866+5 2.264644-4 2.199414+5 2.426610-4 2.089896+5 2.818383-4 1.857337+5 3.000000-4 1.757158+5 3.200000-4 1.647528+5 3.548134-4 1.471943+5 3.981072-4 1.289286+5 4.350000-4 1.155852+5 4.841724-4 1.004330+5 5.500000-4 8.437240+4 6.095369-4 7.278961+4 7.079458-4 5.817733+4 7.943282-4 4.862622+4 9.225714-4 3.820262+4 1.059254-3 3.033060+4 1.216186-3 2.391699+4 1.412538-3 1.834717+4 1.640590-3 1.396526+4 1.905461-3 1.055199+4 2.213095-3 7.915609+3 2.570396-3 5.896737+3 3.000000-3 4.320060+3 3.548134-3 3.057557+3 4.168694-3 2.177015+3 4.897788-3 1.538476+3 5.688529-3 1.107008+3 6.683439-3 7.708478+2 7.762471-3 5.468829+2 9.015711-3 3.852640+2 1.047129-2 2.694794+2 1.216186-2 1.871790+2 1.428894-2 1.255076+2 1.659587-2 8.597968+1 1.949845-2 5.677871+1 2.290868-2 3.721700+1 2.691535-2 2.421967+1 3.162278-2 1.565095+1 3.758374-2 9.729400+0 4.518559-2 5.813410+0 5.308844-2 3.680284+0 6.456542-2 2.096055+0 8.128305-2 1.071980+0 1.035142-1 5.261322-1 1.819701-1 9.853430-2 2.317395-1 4.835947-2 2.722701-1 3.028873-2 3.162278-1 1.975903-2 3.589219-1 1.386061-2 4.027170-1 1.010978-2 4.518559-1 7.429461-3 5.011872-1 5.670512-3 5.559043-1 4.360240-3 6.095369-1 3.474722-3 6.683439-1 2.787438-3 7.328245-1 2.250912-3 8.128305-1 1.783746-3 8.912509-1 1.460497-3 9.660509-1 1.234008-3 1.083927+0 9.793828-4 1.202264+0 7.999531-4 1.333521+0 6.581195-4 1.479108+0 5.451515-4 1.659587+0 4.456142-4 1.862087+0 3.670185-4 2.089296+0 3.044323-4 2.371374+0 2.497004-4 2.691535+0 2.062860-4 3.090295+0 1.687439-4 3.589219+0 1.368214-4 4.216965+0 1.100466-4 5.011872+0 8.784942-5 6.025596+0 6.964500-5 7.328245+0 5.483468-5 9.015711+0 4.289858-5 1.148154+1 3.248257-5 1.462177+1 2.476949-5 2.018366+1 1.740712-5 2.917427+1 1.175217-5 4.466836+1 7.526589-6 7.498942+1 4.416259-6 1.396368+2 2.346710-6 2.786121+2 1.168872-6 1.109175+3 2.922851-7 1.000000+5 3.237400-9 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.792500-4 6.075400-5 1.000000+5 6.075400-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.792500-4 3.451600-9 1.000000+5 3.451600-9 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.792500-4 1.184925-4 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.293800-4 1.264272+5 1.320000-4 1.272094+5 1.350000-4 1.288862+5 1.380384-4 1.315813+5 1.445440-4 1.387390+5 1.540000-4 1.504008+5 1.621810-4 1.617481+5 1.760000-4 1.823842+5 1.828300-4 1.919425+5 1.900000-4 2.007460+5 1.972423-4 2.081099+5 2.041738-4 2.137531+5 2.120000-4 2.186480+5 2.220000-4 2.230720+5 2.330000-4 2.260200+5 2.450000-4 2.272920+5 2.570396-4 2.268465+5 2.691535-4 2.248968+5 2.818383-4 2.214989+5 2.951209-4 2.168093+5 3.126079-4 2.095602+5 3.350000-4 1.995448+5 3.550000-4 1.903762+5 3.780000-4 1.797002+5 4.027170-4 1.683124+5 4.315191-4 1.556115+5 4.677351-4 1.409495+5 5.069907-4 1.267063+5 5.495409-4 1.129992+5 5.956621-4 1.000251+5 6.531306-4 8.636427+4 7.079458-4 7.545795+4 7.762471-4 6.415626+4 8.511380-4 5.418374+4 9.332543-4 4.543069+4 1.030000-3 3.733820+4 1.135011-3 3.056817+4 1.258925-3 2.449694+4 1.396368-3 1.949260+4 1.570000-3 1.491918+4 1.757924-3 1.143222+4 1.972423-3 8.648421+3 2.220000-3 6.441400+3 2.500000-3 4.754360+3 2.818383-3 3.473449+3 3.200000-3 2.471180+3 3.630781-3 1.747819+3 4.073803-3 1.266386+3 4.623810-3 8.824385+2 5.248075-3 6.105829+2 6.000000-3 4.104260+2 6.839116-3 2.763047+2 7.852356-3 1.805795+2 9.015711-3 1.170944+2 1.035142-2 7.539187+1 1.202264-2 4.642555+1 1.396368-2 2.837190+1 1.640590-2 1.656548+1 1.927525-2 9.600431+0 2.290868-2 5.310313+0 2.754229-2 2.801423+0 3.349654-2 1.408689+0 4.216965-2 6.221432-1 5.623413-2 2.220310-1 9.225714-2 3.754793-2 1.188502-1 1.522187-2 1.428894-1 7.948865-3 1.678804-1 4.533721-3 1.949845-1 2.711755-3 2.238721-1 1.700221-3 2.540973-1 1.116488-3 2.851018-1 7.669837-4 3.198895-1 5.307155-4 3.548134-1 3.835556-4 3.935501-1 2.790726-4 4.365158-1 2.044991-4 4.841724-1 1.510029-4 5.308844-1 1.161271-4 5.821032-1 8.990176-5 6.382635-1 7.005328-5 6.998420-1 5.495354-5 7.673615-1 4.341065-5 8.609938-1 3.253703-5 9.225714-1 2.755921-5 9.772372-1 2.415780-5 1.035142+0 2.132532-5 1.109175+0 1.848494-5 1.188600+0 1.613900-5 1.303167+0 1.361804-5 1.462177+0 1.109669-5 1.698244+0 8.559087-6 1.905461+0 7.055286-6 2.137962+0 5.858611-6 2.426610+0 4.811762-6 2.754229+0 3.980275-6 3.162278+0 3.260026-6 3.672823+0 2.646414-6 4.315191+0 2.130801-6 5.128614+0 1.702771-6 6.165950+0 1.351236-6 7.498942+0 1.064777-6 9.225714+0 8.336994-7 1.161449+1 6.400365-7 1.479108+1 4.882070-7 2.018366+1 3.474984-7 2.917427+1 2.346073-7 4.466836+1 1.502471-7 7.498942+1 8.816152-8 1.396368+2 4.684704-8 2.786121+2 2.333434-8 1.109175+3 5.834903-9 1.000000+5 6.46260-11 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.293800-4 4.704600-5 1.000000+5 4.704600-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.293800-4 3.717900-9 1.000000+5 3.717900-9 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.293800-4 8.233028-5 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.249800-4 2.820760+5 1.280000-4 2.863752+5 1.310000-4 2.931356+5 1.566751-4 3.683890+5 1.698244-4 4.097265+5 1.778279-4 4.328008+5 1.850000-4 4.503360+5 1.905461-4 4.615161+5 1.980000-4 4.733320+5 2.065380-4 4.829027+5 2.162719-4 4.897395+5 2.264644-4 4.932713+5 2.371374-4 4.937685+5 2.483133-4 4.912815+5 2.600160-4 4.857512+5 2.730000-4 4.766960+5 2.884032-4 4.630842+5 3.054921-4 4.458953+5 3.273407-4 4.227018+5 3.507519-4 3.977284+5 3.758374-4 3.714046+5 4.027170-4 3.440227+5 4.350000-4 3.132492+5 4.731513-4 2.806859+5 5.128614-4 2.508513+5 5.559043-4 2.223960+5 6.095369-4 1.922638+5 6.683439-4 1.649493+5 7.300000-4 1.413704+5 8.035261-4 1.185831+5 8.810489-4 9.952848+4 9.700000-4 8.224320+4 1.071519-3 6.704242+4 1.190000-3 5.362120+4 1.318257-3 4.279604+4 1.450000-3 3.447912+4 1.621810-3 2.654214+4 1.819701-3 2.011522+4 2.041738-3 1.512543+4 2.317395-3 1.095787+4 2.630268-3 7.869445+3 2.951209-3 5.782716+3 3.311311-3 4.221366+3 3.758374-3 2.964673+3 4.265795-3 2.066490+3 4.841724-3 1.430109+3 5.495409-3 9.824803+2 6.237348-3 6.701642+2 7.079458-3 4.539797+2 8.035261-3 3.054535+2 9.225714-3 1.967323+2 1.059254-2 1.257855+2 1.216186-2 7.984798+1 1.412538-2 4.843408+1 1.640590-2 2.916489+1 1.927525-2 1.676044+1 2.264644-2 9.559640+0 2.691535-2 5.198023+0 3.198895-2 2.805823+0 3.801894-2 1.504319+0 4.786301-2 6.497286-1 6.249250-2 2.438041-1 9.772372-2 4.677968-2 1.216186-1 2.099215-2 1.462177-1 1.076712-2 1.717908-1 6.043293-3 1.949845-1 3.864565-3 2.213095-1 2.488612-3 2.483133-1 1.680076-3 2.754229-1 1.187712-3 3.054921-1 8.457126-4 3.349654-1 6.295369-4 3.672823-1 4.717764-4 4.027170-1 3.561112-4 4.415705-1 2.709310-4 4.841724-1 2.077437-4 5.248075-1 1.657586-4 5.688529-1 1.330958-4 6.165950-1 1.075768-4 6.683439-1 8.754876-5 7.244360-1 7.171399-5 7.852356-1 5.911796-5 8.609938-1 4.767793-5 9.225714-1 4.082721-5 9.885531-1 3.519393-5 1.083927+0 2.914725-5 1.174898+0 2.485970-5 1.288250+0 2.089236-5 1.428894+0 1.730676-5 1.640590+0 1.358145-5 1.840772+0 1.117581-5 2.065380+0 9.261637-6 2.344229+0 7.591060-6 2.660725+0 6.267476-6 3.054921+0 5.123924-6 3.548134+0 4.152061-6 4.168694+0 3.337642-6 4.954502+0 2.662971-6 5.956621+0 2.110132-6 7.244360+0 1.660708-6 8.912509+0 1.298736-6 1.135011+1 9.829655-7 1.445440+1 7.493578-7 1.995262+1 5.264578-7 2.818383+1 3.640801-7 4.265795+1 2.358244-7 7.079458+1 1.399091-7 1.318257+2 7.429863-8 2.630268+2 3.699409-8 1.047129+3 9.248782-9 1.000000+5 9.66960-11 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.249800-4 4.683700-5 1.000000+5 4.683700-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.249800-4 3.375700-9 1.000000+5 3.375700-9 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.249800-4 7.813962-5 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.882000-5 6.358716+5 4.200000-5 6.390680+5 4.265795-5 6.433064+5 4.330000-5 6.512240+5 4.400000-5 6.641280+5 4.470000-5 6.814360+5 4.540000-5 7.029800+5 4.623810-5 7.341789+5 4.720000-5 7.769120+5 4.820000-5 8.286880+5 4.954502-5 9.093591+5 5.150000-5 1.046192+6 5.450000-5 1.289344+6 5.650000-5 1.463588+6 5.821032-5 1.614147+6 5.956621-5 1.731414+6 6.095369-5 1.848032+6 6.237348-5 1.961888+6 6.400000-5 2.084096+6 6.580000-5 2.208340+6 6.760830-5 2.320820+6 6.950000-5 2.425380+6 7.161434-5 2.527282+6 7.413102-5 2.630402+6 7.673615-5 2.719476+6 8.000000-5 2.810492+6 8.413951-5 2.901491+6 8.810489-5 2.967897+6 9.332543-5 3.029238+6 9.885531-5 3.067279+6 1.040000-4 3.079720+6 1.083927-4 3.072288+6 1.135011-4 3.043400+6 1.190000-4 2.991832+6 1.244515-4 2.924918+6 1.303167-4 2.839214+6 1.380000-4 2.714432+6 1.462177-4 2.573947+6 1.548817-4 2.425326+6 1.650000-4 2.256372+6 1.757924-4 2.083408+6 1.862087-4 1.924028+6 1.980000-4 1.754072+6 2.089296-4 1.607734+6 2.220000-4 1.447784+6 2.400000-4 1.255376+6 2.580000-4 1.092372+6 2.786121-4 9.353290+5 2.985383-4 8.081101+5 3.200000-4 6.928360+5 3.467369-4 5.759857+5 3.801894-4 4.621709+5 4.120975-4 3.786616+5 4.500000-4 3.022368+5 4.954502-4 2.340931+5 5.370318-4 1.879608+5 5.888437-4 1.453239+5 6.531306-4 1.078623+5 7.328245-4 7.678055+4 8.222426-4 5.414347+4 9.225714-4 3.784756+4 1.023293-3 2.722666+4 1.148154-3 1.873669+4 1.288250-3 1.279299+4 1.445440-3 8.671811+3 1.621810-3 5.835801+3 1.819701-3 3.899849+3 2.065380-3 2.483922+3 2.344229-3 1.569904+3 2.660725-3 9.848143+2 3.019952-3 6.133540+2 3.427678-3 3.794511+2 3.890451-3 2.330983+2 4.415704-3 1.421812+2 5.011872-3 8.612011+1 5.688529-3 5.180475+1 6.456542-3 3.094626+1 7.413102-3 1.750637+1 8.511380-3 9.830627+0 9.885531-3 5.221659+0 1.109175-2 3.192619+0 1.244515-2 1.910855+0 1.303167-2 1.562834+0 1.412538-2 1.114281+0 1.513561-2 8.355866-1 1.659587-2 5.617575-1 1.840772-2 3.565895-1 2.630268-2 7.328173-2 3.548134-2 1.924772-2 5.821032-2 2.096523-3 7.328245-2 7.524347-4 8.912509-2 3.172305-4 1.047129-1 1.568793-4 1.216186-1 8.217750-5 1.396368-1 4.557426-5 1.584893-1 2.673301-5 1.778279-1 1.656746-5 2.000000-1 1.024000-5 2.238721-1 6.502753-6 2.483133-1 4.313825-6 2.754229-1 2.881641-6 3.054921-1 1.939044-6 3.388442-1 1.314853-6 3.715352-1 9.374499-7 4.073803-1 6.731335-7 4.466836-1 4.870358-7 4.897788-1 3.550933-7 5.370318-1 2.609263-7 5.821032-1 2.006103-7 6.237348-1 1.610805-7 6.760830-1 1.255414-7 7.413102-1 9.513036-8 8.035261-1 7.500790-8 8.511380-1 6.295920-8 8.912509-1 5.498980-8 9.332543-1 4.831062-8 9.660509-1 4.404735-8 1.000000+0 4.035200-8 1.047129+0 3.618660-8 1.096478+0 3.269862-8 1.148154+0 2.975018-8 1.202264+0 2.723567-8 1.288250+0 2.406592-8 1.412538+0 2.058619-8 1.513561+0 1.836523-8 1.819701+0 1.339498-8 2.018366+0 1.128706-8 2.290868+0 9.237786-9 2.600160+0 7.617425-9 2.985383+0 6.220059-9 3.467369+0 5.034255-9 4.027170+0 4.105128-9 4.731513+0 3.319151-9 5.623413+0 2.663061-9 6.839116+0 2.091188-9 8.413951+0 1.631845-9 1.059254+1 1.249048-9 1.364583+1 9.38260-10 1.883649+1 6.58089-10 2.540973+1 4.77289-10 3.758374+1 3.16017-10 5.956621+1 1.96157-10 1.148154+2 1.00370-10 2.290868+2 4.99301-11 9.120108+2 1.24743-11 5.754399+4 1.97315-13 1.000000+5 1.13570-13 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.882000-5 2.442100-5 1.000000+5 2.442100-5 1 32000 7 7 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.882000-5 2.59890-10 1.000000+5 2.59890-10 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.882000-5 1.439874-5 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.819000-5 1.043106+6 3.880000-5 1.017078+6 3.950000-5 9.956580+5 4.000000-5 9.851340+5 4.073803-5 9.769554+5 4.130000-5 9.763980+5 4.200000-5 9.824580+5 4.265795-5 9.946717+5 4.330000-5 1.012518+6 4.400000-5 1.038498+6 4.470000-5 1.071054+6 4.540000-5 1.109982+6 4.623810-5 1.164645+6 4.731513-5 1.247114+6 4.850000-5 1.352604+6 5.011872-5 1.518952+6 5.400000-5 1.994658+6 5.580000-5 2.235486+6 5.754399-5 2.470534+6 5.900000-5 2.663274+6 6.070000-5 2.879688+6 6.237348-5 3.080133+6 6.400000-5 3.260598+6 6.580000-5 3.442392+6 6.760830-5 3.605782+6 6.950000-5 3.756708+6 7.161434-5 3.903150+6 7.413102-5 4.050469+6 7.673615-5 4.176997+6 8.000000-5 4.305468+6 8.413951-5 4.431440+6 8.810489-5 4.522377+6 9.332543-5 4.606073+6 9.800000-5 4.648980+6 1.023293-4 4.662421+6 1.071519-4 4.649172+6 1.122018-4 4.606012+6 1.174898-4 4.532000+6 1.230269-4 4.427572+6 1.291200-4 4.291461+6 1.364583-4 4.107940+6 1.450000-4 3.883950+6 1.548817-4 3.625758+6 1.650000-4 3.368478+6 1.760000-4 3.101010+6 1.862087-4 2.865808+6 1.972423-4 2.625655+6 2.089296-4 2.389393+6 2.238721-4 2.118028+6 2.400000-4 1.862400+6 2.600160-4 1.594232+6 2.800000-4 1.370964+6 3.019952-4 1.165860+6 3.235937-4 9.988664+5 3.548134-4 8.057280+5 3.850000-4 6.615060+5 4.216965-4 5.269010+5 4.600000-4 4.203180+5 5.011872-4 3.341435+5 5.559043-4 2.513146+5 6.165950-4 1.872833+5 6.918310-4 1.337622+5 7.762471-4 9.469039+4 8.709636-4 6.639519+4 9.772372-4 4.617453+4 1.083927-3 3.305696+4 1.216186-3 2.264643+4 1.348963-3 1.600124+4 1.513561-3 1.079722+4 1.698244-3 7.235002+3 1.905461-3 4.814596+3 2.137962-3 3.184633+3 2.426610-3 2.005767+3 2.754229-3 1.253860+3 3.126079-3 7.782189+2 3.548134-3 4.796504+2 4.027170-3 2.935284+2 4.570882-3 1.783550+2 5.188000-3 1.076077+2 5.888437-3 6.446667+1 6.683439-3 3.834174+1 7.673615-3 2.158565+1 9.015711-3 1.097431+1 1.000000-2 7.057391+0 1.096478-2 4.734563+0 1.122018-2 4.276474+0 1.244515-2 2.687634+0 1.303167-2 2.195261+0 1.396368-2 1.637048+0 1.513561-2 1.169120+0 1.678804-2 7.477462-1 1.883649-2 4.514187-1 2.137962-2 2.570025-1 2.483133-2 1.309497-1 3.090295-2 4.843840-2 6.000000-2 2.398445-3 7.498942-2 8.784774-4 9.015711-2 3.859671-4 1.071519-1 1.798965-4 1.230269-1 9.834670-5 1.396368-1 5.695088-5 1.566751-1 3.490557-5 1.737801-1 2.261464-5 1.927525-1 1.475070-5 2.137962-1 9.689583-6 2.344229-1 6.713753-6 2.570396-1 4.684761-6 2.818383-1 3.294156-6 3.054921-1 2.437330-6 3.311311-1 1.816315-6 3.589219-1 1.363317-6 3.890451-1 1.030843-6 4.168694-1 8.164536-7 4.518559-1 6.263789-7 4.897788-1 4.837502-7 5.370318-1 3.623187-7 5.821032-1 2.834449-7 6.165950-1 2.391735-7 6.606935-1 1.963762-7 7.079458-1 1.623245-7 7.762471-1 1.271090-7 8.317638-1 1.065631-7 8.810489-1 9.254889-8 9.332543-1 8.085367-8 9.885531-1 7.108938-8 1.059254+0 6.141451-8 1.135011+0 5.339623-8 1.202264+0 4.777757-8 1.333521+0 3.948672-8 1.513561+0 3.154647-8 1.717908+0 2.533813-8 1.927525+0 2.090343-8 2.162719+0 1.737255-8 2.454709+0 1.427801-8 2.818383+0 1.161947-8 3.235937+0 9.528011-9 3.758374+0 7.743887-9 4.415704+0 6.241939-9 5.248075+0 4.993134-9 6.309573+0 3.965749-9 7.673615+0 3.127867-9 9.549926+0 2.418459-9 1.216186+1 1.834586-9 1.566751+1 1.383610-9 2.089296+1 1.010899-9 3.090295+1 6.66696-10 4.786301+1 4.22356-10 8.317638+1 2.39463-10 1.659587+2 1.18787-10 3.311311+2 5.92284-11 1.318257+3 1.48193-11 1.000000+5 1.95150-13 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.819000-5 2.450900-5 1.000000+5 2.450900-5 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.819000-5 1.368100-5 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.478000-5 4.456320+5 1.500000-5 3.912600+5 1.522000-5 3.429340+5 1.550000-5 2.889160+5 1.580000-5 2.391820+5 1.603245-5 2.057991+5 1.630000-5 1.722130+5 1.650000-5 1.501702+5 1.670000-5 1.304610+5 1.690000-5 1.128574+5 1.710000-5 9.717480+4 1.730000-5 8.324160+4 1.750000-5 7.090280+4 1.765000-5 6.260660+4 1.778279-5 5.589629+4 1.796800-5 4.745911+4 1.808000-5 4.284460+4 1.822000-5 3.755680+4 1.835000-5 3.309860+4 1.850000-5 2.845780+4 1.865000-5 2.432220+4 1.877000-5 2.135380+4 1.892000-5 1.804102+4 1.905461-5 1.542074+4 1.920000-5 1.294016+4 1.935000-5 1.073634+4 1.955300-5 8.284217+3 1.980000-5 6.047100+3 1.992000-5 5.229840+3 2.000000-5 4.775820+3 2.007000-5 4.435720+3 2.012000-5 4.224280+3 2.018366-5 3.992017+3 2.022000-5 3.877540+3 2.027000-5 3.740920+3 2.032000-5 3.628040+3 2.037000-5 3.538280+3 2.041738-5 3.474033+3 2.047000-5 3.425840+3 2.053000-5 3.399780+3 2.058000-5 3.400980+3 2.064000-5 3.429220+3 2.070000-5 3.485640+3 2.077000-5 3.586080+3 2.082000-5 3.680120+3 2.089296-5 3.849098+3 2.097000-5 4.067320+3 2.105000-5 4.335740+3 2.115000-5 4.727920+3 2.130000-5 5.428340+3 2.162719-5 7.376513+3 2.180000-5 8.612000+3 2.195000-5 9.786260+3 2.210000-5 1.104780+4 2.225000-5 1.238866+4 2.240000-5 1.380168+4 2.255000-5 1.528114+4 2.270000-5 1.682024+4 2.285000-5 1.841410+4 2.300000-5 2.005700+4 2.322000-5 2.254480+4 2.344229-5 2.514031+4 2.360000-5 2.702420+4 2.385000-5 3.007100+4 2.410000-5 3.317760+4 2.435000-5 3.633020+4 2.460000-5 3.951580+4 2.493000-5 4.375240+4 2.520000-5 4.723100+4 2.550000-5 5.109500+4 2.580000-5 5.494500+4 2.610000-5 5.877000+4 2.650000-5 6.381440+4 2.691535-5 6.896599+4 2.730000-5 7.364340+4 2.770000-5 7.839980+4 2.818383-5 8.399159+4 2.870000-5 8.974880+4 2.920000-5 9.510980+4 2.985383-5 1.017891+5 3.060000-5 1.089458+5 3.126079-5 1.148692+5 3.198895-5 1.209514+5 3.273407-5 1.267039+5 3.357300-5 1.326285+5 3.467369-5 1.395551+5 3.589219-5 1.461720+5 3.715352-5 1.519510+5 3.850000-5 1.570338+5 4.000000-5 1.615218+5 4.168694-5 1.652758+5 4.350000-5 1.679924+5 4.518559-5 1.694618+5 4.731513-5 1.701325+5 4.954502-5 1.696569+5 5.188000-5 1.681402+5 5.495409-5 1.649618+5 5.821032-5 1.605745+5 6.165950-5 1.551984+5 6.531306-5 1.490611+5 7.000000-5 1.409792+5 7.500000-5 1.324802+5 8.128305-5 1.223476+5 8.912509-5 1.108907+5 9.885531-5 9.856493+4 1.109175-4 8.587032+4 1.258925-4 7.322815+4 1.445440-4 6.105992+4 1.800000-4 4.525900+4 2.400000-4 3.042120+4 2.754229-4 2.498498+4 3.235937-4 1.967268+4 3.890451-4 1.485863+4 4.786301-4 1.074117+4 5.821032-4 7.858271+3 6.760830-4 6.139601+3 8.035261-4 4.582176+3 9.885531-4 3.199711+3 1.161449-3 2.402809+3 1.380384-3 1.754039+3 1.640590-3 1.270667+3 1.949845-3 9.134174+2 2.290868-3 6.662683+2 2.691535-3 4.825485+2 3.162278-3 3.470300+2 3.715352-3 2.478202+2 4.415704-3 1.714294+2 5.188000-3 1.206452+2 6.095369-3 8.428833+1 7.161434-3 5.844230+1 8.317638-3 4.132186+1 9.660509-3 2.899153+1 1.135011-2 1.964479+1 1.333521-2 1.321608+1 1.548817-2 9.082587+0 1.819701-2 6.017354+0 2.137962-2 3.956656+0 2.511886-2 2.582896+0 2.985383-2 1.622799+0 3.548134-2 1.011398+0 4.216965-2 6.257314-1 5.069907-2 3.721030-1 6.165950-2 2.123612-1 7.673615-2 1.125504-1 9.885531-2 5.352355-2 1.840772-1 8.457145-3 2.344229-1 4.152481-3 2.754229-1 2.602269-3 3.198895-1 1.698748-3 3.630781-1 1.192522-3 4.073803-1 8.704871-4 4.570882-1 6.402381-4 5.069907-1 4.890761-4 5.623413-1 3.764120-4 6.165950-1 3.002404-4 6.760830-1 2.410819-4 7.413102-1 1.948739-4 8.222427-1 1.546072-4 9.015711-1 1.267570-4 9.772372-1 1.072258-4 1.122018+0 8.140401-5 1.244515+0 6.664490-5 1.380384+0 5.495257-5 1.531087+0 4.561793-5 1.717908+0 3.737765-5 1.927525+0 3.085156-5 2.187762+0 2.517703-5 2.483133+0 2.070588-5 2.851018+0 1.686369-5 3.273407+0 1.383682-5 3.801894+0 1.125168-5 4.466836+0 9.074202-6 5.308844+0 7.262683-6 6.456542+0 5.689886-6 7.852356+0 4.491468-6 9.772372+0 3.475649-6 1.244515+1 2.638250-6 1.603245+1 1.991258-6 2.089296+1 1.492058-6 3.090295+1 9.839570-7 4.786301+1 6.233732-7 8.317638+1 3.534366-7 1.659587+2 1.753185-7 3.311311+2 8.741810-8 1.318257+3 2.187135-8 1.000000+5 2.88020-10 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.478000-5 1.478000-5 1.000000+5 1.478000-5 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.478000-5 0.0 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 6.500000-6 1.248927+7 6.683439-6 1.204298+7 7.100000-6 1.102374+7 7.500000-6 1.010841+7 7.943282-6 9.162226+6 8.413951-6 8.248638+6 8.912509-6 7.369172+6 9.440609-6 6.539214+6 1.000000-5 5.760796+6 1.059254-5 5.037585+6 1.122018-5 4.372356+6 1.188502-5 3.767647+6 1.258925-5 3.224162+6 1.333521-5 2.739684+6 1.412538-5 2.311617+6 1.507000-5 1.895041+6 1.610000-5 1.535167+6 1.717908-5 1.239376+6 1.850000-5 9.629738+5 2.000000-5 7.324737+5 2.162719-5 5.527554+5 2.371374-5 3.937709+5 2.660725-5 2.554871+5 3.548134-5 8.517326+4 3.845918-5 6.296305+4 4.073803-5 5.101179+4 4.315191-5 4.160872+4 4.518559-5 3.558872+4 4.720000-5 3.090408+4 4.900000-5 2.755081+4 5.080000-5 2.481995+4 5.248075-5 2.272395+4 5.432503-5 2.083075+4 5.623413-5 1.923097+4 5.821032-5 1.788413+4 6.025596-5 1.675559+4 6.237348-5 1.581242+4 6.456542-5 1.502420+4 6.683439-5 1.436543+4 6.918310-5 1.381588+4 7.161434-5 1.335639+4 7.500000-5 1.284974+4 7.943282-5 1.234640+4 8.511380-5 1.186306+4 1.135011-4 1.028227+4 1.273503-4 9.647235+3 1.428894-4 8.984347+3 1.603245-4 8.297582+3 1.798871-4 7.602260+3 2.018366-4 6.914178+3 2.238721-4 6.300468+3 2.454709-4 5.761453+3 2.691535-4 5.232403+3 2.951209-4 4.717186+3 3.198895-4 4.274527+3 3.507519-4 3.792364+3 3.890451-4 3.289112+3 4.315191-4 2.832408+3 4.786301-4 2.422261+3 5.370318-4 2.020930+3 5.888437-4 1.737079+3 6.456542-4 1.481876+3 7.161434-4 1.229552+3 8.000000-4 9.992538+2 9.000000-4 7.952337+2 1.000000-3 6.440857+2 1.109175-3 5.195812+2 1.230269-3 4.161588+2 1.364583-3 3.310422+2 1.531087-3 2.547615+2 1.717908-3 1.945654+2 1.927525-3 1.474734+2 2.162719-3 1.109749+2 2.426610-3 8.292259+1 2.722701-3 6.153377+1 3.090295-3 4.404218+1 3.467369-3 3.224234+1 3.935501-3 2.270167+1 4.466836-3 1.587184+1 5.069907-3 1.101784+1 5.754399-3 7.594407+0 6.531306-3 5.198602+0 7.413102-3 3.534448+0 8.810489-3 2.070688+0 9.772372-3 1.493197+0 1.071519-2 1.109734+0 1.122018-2 9.536516-1 1.273503-2 6.225792-1 1.333521-2 5.359326-1 1.513561-2 3.578982-1 1.659587-2 2.637781-1 1.862087-2 1.786341-1 2.371374-2 7.788921-2 2.851018-2 4.106565-2 3.467369-2 2.063608-2 4.365158-2 9.109265-3 6.025596-2 2.872321-3 9.332543-2 5.969616-4 1.188502-1 2.521559-4 1.428894-1 1.316796-4 1.678804-1 7.509882-5 1.949845-1 4.491174-5 2.238721-1 2.815219-5 2.540973-1 1.848208-5 2.851018-1 1.269355-5 3.198895-1 8.781693-6 3.548134-1 6.345824-6 3.935501-1 4.616653-6 4.365158-1 3.382763-6 4.841724-1 2.497597-6 5.308844-1 1.920343-6 5.821032-1 1.486286-6 6.382635-1 1.158089-6 6.998420-1 9.085670-7 7.673615-1 7.177981-7 8.609938-1 5.378892-7 9.225714-1 4.554903-7 9.772372-1 3.991987-7 1.035142+0 3.523406-7 1.109175+0 3.053870-7 1.188600+0 2.666300-7 1.303167+0 2.249935-7 1.462177+0 1.833524-7 1.698244+0 1.414183-7 1.905461+0 1.165704-7 2.137962+0 9.680816-8 2.426610+0 7.951275-8 2.754229+0 6.577019-8 3.162278+0 5.386676-8 3.672823+0 4.372824-8 4.315191+0 3.520934-8 5.128614+0 2.813654-8 6.165950+0 2.232638-8 7.498942+0 1.759361-8 9.225714+0 1.377548-8 1.174898+1 1.043854-8 1.513561+1 7.864223-9 2.041738+1 5.670997-9 2.985383+1 3.783450-9 4.570882+1 2.424115-9 7.673615+1 1.422775-9 1.462177+2 7.38848-10 2.917427+2 3.68115-10 1.161449+3 9.20613-11 1.000000+5 1.06790-12 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 6.500000-6 6.500000-6 1.000000+5 6.500000-6 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.500000-6 0.0 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 6.290000-6 2.553047+7 6.606934-6 2.376285+7 7.000000-6 2.169115+7 7.500000-6 1.927675+7 8.000000-6 1.711196+7 8.511380-6 1.514683+7 9.015711-6 1.342749+7 9.549926-6 1.182284+7 1.011579-5 1.033920+7 1.071519-5 8.979189+6 1.135011-5 7.743435+6 1.202264-5 6.631315+6 1.273503-5 5.639580+6 1.350000-5 4.753441+6 1.428894-5 3.999430+6 1.513561-5 3.336249+6 1.610000-5 2.728327+6 1.730000-5 2.142501+6 1.862087-5 1.659641+6 2.018366-5 1.244746+6 2.187762-5 9.268304+5 2.426610-5 6.293145+5 2.800000-5 3.649578+5 3.311311-5 1.923041+5 3.589219-5 1.421668+5 3.801894-5 1.151791+5 4.027170-5 9.393539+4 4.220000-5 8.012207+4 4.415704-5 6.916733+4 4.570882-5 6.218229+4 4.731513-5 5.620887+4 4.900000-5 5.105694+4 5.080000-5 4.656762+4 5.248075-5 4.313565+4 5.432503-5 4.004461+4 5.623413-5 3.744400+4 5.821032-5 3.526631+4 6.025596-5 3.344687+4 6.237348-5 3.192560+4 6.500000-5 3.043152+4 6.760830-5 2.927313+4 7.079458-5 2.816958+4 7.500000-5 2.706500+4 8.035261-5 2.601100+4 1.040000-4 2.285088+4 1.161449-4 2.148122+4 1.303167-4 1.998926+4 1.450000-4 1.856022+4 1.621810-4 1.703815+4 1.828300-4 1.542049+4 2.065380-4 1.382438+4 2.290868-4 1.250166+4 2.511886-4 1.135611+4 2.754229-4 1.024573+4 3.000000-4 9.252564+3 3.311311-4 8.140663+3 3.672823-4 7.058963+3 4.073803-4 6.074869+3 4.518559-4 5.193186+3 5.069907-4 4.329233+3 5.623413-4 3.652092+3 6.165950-4 3.117490+3 6.839116-4 2.586465+3 7.585776-4 2.129596+3 8.609938-4 1.665123+3 9.549926-4 1.352103+3 1.059254-3 1.090160+3 1.174898-3 8.727344+2 1.303167-3 6.940169+2 1.462177-3 5.340403+2 1.640590-3 4.078898+2 1.840772-3 3.091549+2 2.041738-3 2.393092+2 2.290868-3 1.786700+2 2.570396-3 1.324420+2 2.917427-3 9.453845+1 3.311311-3 6.699129+1 3.758374-3 4.711837+1 4.265795-3 3.289387+1 4.841724-3 2.279510+1 5.495409-3 1.568293+1 6.237348-3 1.071352+1 7.079458-3 7.267879+0 8.317638-3 4.395387+0 9.332543-3 3.052737+0 1.035142-2 2.183268+0 1.114000-2 1.712999+0 1.273503-2 1.084874+0 1.333521-2 9.319308-1 1.513561-2 6.187234-1 1.659587-2 4.539534-1 1.840772-2 3.180470-1 2.344229-2 1.368841-1 2.786121-2 7.437895-2 3.311311-2 4.011433-2 4.073803-2 1.896150-2 5.248075-2 7.521043-3 6.456542-2 3.509865-3 9.885531-2 7.289899-4 1.230269-1 3.273705-4 1.479108-1 1.680349-4 1.717908-1 9.832248-5 1.949845-1 6.288683-5 2.213095-1 4.050734-5 2.483133-1 2.735514-5 2.754229-1 1.934450-5 3.054921-1 1.377899-5 3.349654-1 1.026015-5 3.672823-1 7.691608-6 4.027170-1 5.807945-6 4.415705-1 4.420107-6 4.786301-1 3.503458-6 5.188000-1 2.794557-6 5.623413-1 2.243638-6 6.095369-1 1.813310-6 6.606935-1 1.475673-6 7.161434-1 1.208969-6 7.762471-1 9.970610-7 8.511380-1 8.058446-7 9.225714-1 6.737804-7 1.000000+0 5.677700-7 1.096478+0 4.709378-7 1.202264+0 3.935371-7 1.333521+0 3.242885-7 1.496236+0 2.636068-7 1.678804+0 2.157215-7 1.883649+0 1.777707-7 2.113489+0 1.475189-7 2.398833+0 1.210718-7 2.722701+0 1.000923-7 3.126079+0 8.193512-8 3.630781+0 6.647421-8 4.265795+0 5.349447-8 5.069907+0 4.272635-8 6.095369+0 3.388867-8 7.413102+0 2.669335-8 9.120108+0 2.089153-8 1.148154+1 1.603295-8 1.462177+1 1.222591-8 2.000000+1 8.677400-9 2.851018+1 5.943665-9 4.315191+1 3.850644-9 7.079458+1 2.312042-9 1.318257+2 1.227776-9 2.630268+2 6.11328-10 1.047129+3 1.52842-10 1.000000+5 1.59790-12 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 6.290000-6 6.290000-6 1.000000+5 6.290000-6 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.290000-6 0.0 1.000000+5 1.000000+5 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.983740-8 1.028750+0 4.983740-7 1.031000+0 1.173690-6 1.032000+0 1.605900-6 1.033200+0 2.249590-6 1.034000+0 2.761580-6 1.035300+0 3.748460-6 1.036640+0 4.983740-6 1.038200+0 6.725720-6 1.039700+0 8.738060-6 1.041500+0 1.162590-5 1.043800+0 1.613710-5 1.046400+0 2.245180-5 1.048300+0 2.795310-5 1.051200+0 3.791770-5 1.054080+0 4.983740-5 1.057700+0 6.793160-5 1.061100+0 8.836190-5 1.065100+0 1.169810-4 1.070400+0 1.632010-4 1.076200+0 2.255440-4 1.080600+0 2.816670-4 1.087100+0 3.794980-4 1.093710+0 4.983740-4 1.102600+0 6.909860-4 1.110700+0 9.011770-4 1.120600+0 1.205500-3 1.133300+0 1.676150-3 1.147500+0 2.314250-3 1.158200+0 2.876030-3 1.174100+0 3.843920-3 1.190110+0 4.983740-3 1.205100+0 6.203690-3 1.227500+0 8.303020-3 1.250000+0 1.073000-2 1.265600+0 1.258580-2 1.294900+0 1.642500-2 1.331800+0 2.185190-2 1.362600+0 2.682710-2 1.411700+0 3.550120-2 1.455800+0 4.400220-2 1.500000+0 5.320000-2 1.562500+0 6.740910-2 1.617200+0 8.097310-2 1.712900+0 1.070020-1 1.784700+0 1.281870-1 1.892300+0 1.619300-1 2.000000+0 1.971000-1 2.044000+0 2.116000-1 2.163500+0 2.515860-1 2.372600+0 3.231050-1 2.647100+0 4.178060-1 3.000000+0 5.378000-1 3.437500+0 6.804070-1 4.000000+0 8.526000-1 4.750000+0 1.063930+0 5.000000+0 1.130000+0 6.000000+0 1.374000+0 7.000000+0 1.592000+0 8.000000+0 1.788000+0 9.000000+0 1.966000+0 1.000000+1 2.127000+0 1.100000+1 2.274000+0 1.200000+1 2.408000+0 1.300000+1 2.533000+0 1.400000+1 2.648000+0 1.500000+1 2.755000+0 1.600000+1 2.856000+0 1.800000+1 3.040000+0 2.000000+1 3.205000+0 2.200000+1 3.354000+0 2.400000+1 3.490000+0 2.600000+1 3.614000+0 2.800000+1 3.728000+0 3.000000+1 3.833000+0 4.000000+1 4.262000+0 5.000000+1 4.581000+0 6.000000+1 4.831000+0 8.000000+1 5.201000+0 1.000000+2 5.464000+0 1.500000+2 5.883000+0 2.000000+2 6.134000+0 3.000000+2 6.425000+0 4.000000+2 6.592000+0 5.000000+2 6.703000+0 6.000000+2 6.781000+0 8.000000+2 6.886000+0 1.000000+3 6.954000+0 1.500000+3 7.052000+0 2.000000+3 7.106000+0 3.000000+3 7.164000+0 4.000000+3 7.195000+0 5.000000+3 7.215000+0 6.000000+3 7.228000+0 8.000000+3 7.246000+0 1.000000+4 7.257000+0 1.500000+4 7.273000+0 2.000000+4 7.281000+0 3.000000+4 7.290000+0 4.000000+4 7.295000+0 5.000000+4 7.297000+0 6.000000+4 7.299000+0 8.000000+4 7.302000+0 1.000000+5 7.303000+0 1 32000 7 8 7.259000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.213040-7 2.106600+0 1.046840-6 2.114000+0 1.448440-6 2.119500+0 1.803300-6 2.127900+0 2.445610-6 2.136250+0 3.213040-6 2.147000+0 4.405300-6 2.156900+0 5.721960-6 2.169000+0 7.636310-6 2.184500+0 1.061470-5 2.201800+0 1.468580-5 2.214800+0 1.829730-5 2.234200+0 2.461320-5 2.253680+0 3.213040-5 2.281500+0 4.500430-5 2.307000+0 5.911310-5 2.338200+0 7.948270-5 2.377400+0 1.100740-4 2.410200+0 1.399960-4 2.446800+0 1.780830-4 2.485900+0 2.242160-4 2.532900+0 2.869480-4 2.556430+0 3.213040-4 2.611900+0 4.096960-4 2.660400+0 4.952980-4 2.745300+0 6.629180-4 2.809000+0 8.028280-4 2.904500+0 1.034220-3 3.000000+0 1.291000-3 3.125000+0 1.664780-3 3.234400+0 2.025770-3 3.425800+0 2.728260-3 3.569300+0 3.308510-3 3.784700+0 4.253400-3 4.000000+0 5.269000-3 4.250000+0 6.510210-3 4.625000+0 8.460690-3 5.000000+0 1.049000-2 5.500000+0 1.328050-2 6.000000+0 1.611000-2 6.750000+0 2.031520-2 7.000000+0 2.170000-2 8.000000+0 2.713000-2 9.000000+0 3.232000-2 1.000000+1 3.726000-2 1.100000+1 4.194000-2 1.200000+1 4.636000-2 1.300000+1 5.052000-2 1.400000+1 5.449000-2 1.500000+1 5.825000-2 1.600000+1 6.182000-2 1.800000+1 6.846000-2 2.000000+1 7.450000-2 2.200000+1 8.004000-2 2.400000+1 8.515000-2 2.600000+1 8.987000-2 2.800000+1 9.425000-2 3.000000+1 9.834000-2 4.000000+1 1.153000-1 5.000000+1 1.283000-1 6.000000+1 1.386000-1 8.000000+1 1.542000-1 1.000000+2 1.656000-1 1.500000+2 1.846000-1 2.000000+2 1.966000-1 3.000000+2 2.113000-1 4.000000+2 2.201000-1 5.000000+2 2.262000-1 6.000000+2 2.307000-1 8.000000+2 2.368000-1 1.000000+3 2.409000-1 1.500000+3 2.470000-1 2.000000+3 2.505000-1 3.000000+3 2.543000-1 4.000000+3 2.565000-1 5.000000+3 2.579000-1 6.000000+3 2.589000-1 8.000000+3 2.601000-1 1.000000+4 2.609000-1 1.500000+4 2.620000-1 2.000000+4 2.627000-1 3.000000+4 2.633000-1 4.000000+4 2.637000-1 5.000000+4 2.639000-1 6.000000+4 2.641000-1 8.000000+4 2.642000-1 1.000000+5 2.643000-1 1 32000 7 8 7.259000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 32000 7 9 7.259000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.200000+1 1.000000+5 3.200000+1 5.000000+5 3.198300+1 6.718700+5 3.197320+1 7.890600+5 3.196790+1 9.296900+5 3.196240+1 1.000000+6 3.196000+1 1.500000+6 3.193000+1 1.875000+6 3.189190+1 2.000000+6 3.187700+1 2.500000+6 3.180900+1 3.000000+6 3.172700+1 3.500000+6 3.162920+1 4.000000+6 3.152200+1 4.500000+6 3.140440+1 5.000000+6 3.127500+1 5.687500+6 3.107480+1 6.437500+6 3.083470+1 6.500000+6 3.081370+1 7.000000+6 3.064500+1 7.500000+6 3.046700+1 8.250000+6 3.018850+1 8.500000+6 3.009580+1 9.000000+6 2.990700+1 9.750000+6 2.961550+1 1.000000+7 2.951900+1 1.109400+7 2.907540+1 1.187500+7 2.874980+1 1.203100+7 2.868530+1 1.250000+7 2.849100+1 1.375000+7 2.796850+1 1.500000+7 2.746000+1 1.687500+7 2.671890+1 1.750000+7 2.647800+1 1.937500+7 2.575910+1 2.000000+7 2.552700+1 2.250000+7 2.462160+1 2.375000+7 2.418700+1 2.500000+7 2.376100+1 2.875000+7 2.252060+1 3.000000+7 2.211800+1 3.250000+7 2.131880+1 3.625000+7 2.014850+1 3.750000+7 1.976530+1 4.000000+7 1.901400+1 4.250000+7 1.827850+1 4.625000+7 1.721260+1 4.750000+7 1.686740+1 5.000000+7 1.619200+1 5.437500+7 1.506200+1 5.750000+7 1.430080+1 6.000000+7 1.372300+1 6.500000+7 1.264540+1 7.000000+7 1.168000+1 8.000000+7 1.007700+1 9.000000+7 8.867300+0 9.750000+7 8.169060+0 1.000000+8 7.968100+0 1.062500+8 7.524950+0 1.125000+8 7.150920+0 1.156300+8 6.984680+0 1.250000+8 6.555900+0 1.437500+8 5.908410+0 1.500000+8 5.727400+0 1.625000+8 5.386990+0 1.718800+8 5.138180+0 1.750000+8 5.055070+0 1.815400+8 4.880110+0 1.920900+8 4.592450+0 2.000000+8 4.373200+0 2.062500+8 4.198130+0 2.375000+8 3.432770+0 2.390600+8 3.402330+0 2.500000+8 3.210800+0 2.781300+8 2.834550+0 2.859400+8 2.729120+0 2.875000+8 2.707020+0 2.929700+8 2.627310+0 3.000000+8 2.517800+0 3.062500+8 2.414040+0 3.308600+8 2.029230+0 3.377000+8 1.944080+0 3.459000+8 1.859500+0 3.500000+8 1.824700+0 3.562500+8 1.781460+0 3.617200+8 1.751120+0 4.000000+8 1.611200+0 4.125000+8 1.557940+0 5.000000+8 1.184300+0 5.125000+8 1.151650+0 5.343800+8 1.106040+0 6.000000+8 1.003900+0 6.250000+8 9.646950-1 7.000000+8 8.526000-1 7.625000+8 7.762030-1 7.875000+8 7.461360-1 8.000000+8 7.307000-1 8.250000+8 6.987230-1 8.468800+8 6.701960-1 8.851600+8 6.205280-1 9.138700+8 5.844360-1 9.569300+8 5.333650-1 1.000000+9 4.868000-1 1.062500+9 4.275040-1 1.141100+9 3.647760-1 1.206900+9 3.204850-1 1.280200+9 2.783100-1 1.358700+9 2.400600-1 1.452900+9 2.018170-1 1.500000+9 1.853100-1 1.562500+9 1.656870-1 1.671900+9 1.367750-1 1.753900+9 1.189230-1 1.877000+9 9.701320-2 2.000000+9 7.978600-2 2.187500+9 6.010810-2 2.363300+9 4.680150-2 2.605300+9 3.389200-2 2.827400+9 2.570760-2 3.099000+9 1.875990-2 3.447500+9 1.293170-2 3.835600+9 8.864650-3 4.501000+9 4.997650-3 5.000000+9 3.419800-3 8.000000+9 6.239200-4 1.00000+10 2.793000-4 1.20500+10 1.438610-4 1.41820+10 8.113420-5 1.71170+10 4.219650-5 2.01490+10 2.408820-5 2.26440+10 1.618020-5 2.74790+10 8.415310-6 3.41360+10 4.076840-6 4.02450+10 2.365040-6 4.77140+10 1.352840-6 5.73000+10 7.454640-7 7.25500+10 3.480840-7 9.08500+10 1.694890-7 1.00000+11 1.248800-7 1.34280+11 4.915740-8 1.77440+11 2.050830-8 2.63330+11 6.015100-9 3.75720+11 2.015450-9 6.61190+11 3.61198-10 1.48990+12 3.16384-11 4.26460+12 1.42265-12 2.06510+13 1.44912-14 1.00000+14 1.50660-16 5.62340+14 9.77956-19 7.49890+15 4.75429-22 1.00000+17 2.20690-25 1 32000 7 0 7.259000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.20000-12 1.000000+2 4.20000-10 1.000000+3 4.200000-8 1.000000+4 4.200000-6 1.000000+5 4.200000-4 5.000000+5 1.050000-2 6.718700+5 1.895919-2 7.890600+5 2.614986-2 9.296900+5 3.630159-2 1.000000+6 4.200000-2 1.500000+6 9.490000-2 1.875000+6 1.472790-1 2.000000+6 1.671000-1 2.500000+6 2.582000-1 3.000000+6 3.667000-1 3.500000+6 4.911540-1 4.000000+6 6.300000-1 4.500000+6 7.815440-1 5.000000+6 9.440000-1 5.687500+6 1.181900+0 6.437500+6 1.456120+0 6.500000+6 1.479550+0 7.000000+6 1.669100+0 7.500000+6 1.861660+0 8.250000+6 2.154310+0 8.500000+6 2.252220+0 9.000000+6 2.448600+0 9.750000+6 2.741790+0 1.000000+7 2.839000+0 1.109400+7 3.258150+0 1.187500+7 3.551100+0 1.203100+7 3.608670+0 1.250000+7 3.781000+0 1.375000+7 4.228340+0 1.500000+7 4.659000+0 1.687500+7 5.274650+0 1.750000+7 5.472300+0 1.937500+7 6.044370+0 2.000000+7 6.229000+0 2.250000+7 6.940480+0 2.375000+7 7.282720+0 2.500000+7 7.618800+0 2.875000+7 8.594270+0 3.000000+7 8.912000+0 3.250000+7 9.537820+0 3.625000+7 1.045210+1 3.750000+7 1.075110+1 4.000000+7 1.133800+1 4.250000+7 1.191040+1 4.625000+7 1.274030+1 4.750000+7 1.300910+1 5.000000+7 1.353600+1 5.437500+7 1.441840+1 5.750000+7 1.501990+1 6.000000+7 1.548600+1 6.500000+7 1.637580+1 7.000000+7 1.721500+1 8.000000+7 1.874100+1 9.000000+7 2.007400+1 9.750000+7 2.095250+1 1.000000+8 2.122400+1 1.062500+8 2.185550+1 1.125000+8 2.242960+1 1.156300+8 2.269730+1 1.250000+8 2.343000+1 1.437500+8 2.463730+1 1.500000+8 2.498300+1 1.625000+8 2.560950+1 1.718800+8 2.603340+1 1.750000+8 2.616560+1 1.815400+8 2.643200+1 1.920900+8 2.683070+1 2.000000+8 2.710900+1 2.062500+8 2.731290+1 2.375000+8 2.819760+1 2.390600+8 2.823600+1 2.500000+8 2.849200+1 2.781300+8 2.903610+1 2.859400+8 2.916720+1 2.875000+8 2.919090+1 2.929700+8 2.927320+1 3.000000+8 2.937700+1 3.062500+8 2.946050+1 3.308600+8 2.975560+1 3.377000+8 2.982540+1 3.459000+8 2.990690+1 3.500000+8 2.994700+1 3.562500+8 3.000140+1 3.617200+8 3.004820+1 4.000000+8 3.034000+1 4.125000+8 3.041960+1 5.000000+8 3.087200+1 5.125000+8 3.092310+1 5.343800+8 3.100980+1 6.000000+8 3.123600+1 6.250000+8 3.130710+1 7.000000+8 3.149200+1 7.625000+8 3.160820+1 7.875000+8 3.164930+1 8.000000+8 3.166800+1 8.250000+8 3.170060+1 8.468800+8 3.172840+1 8.851600+8 3.176770+1 9.138700+8 3.179570+1 9.569300+8 3.182970+1 1.000000+9 3.186000+1 1.062500+9 3.189010+1 1.141100+9 3.192270+1 1.206900+9 3.193950+1 1.280200+9 3.195710+1 1.358700+9 3.196710+1 1.452900+9 3.197720+1 1.500000+9 3.198200+1 1.562500+9 3.198410+1 1.671900+9 3.198770+1 1.753900+9 3.199020+1 1.877000+9 3.199370+1 2.000000+9 3.199700+1 2.187500+9 3.199730+1 2.363300+9 3.199750+1 2.605300+9 3.199790+1 2.827400+9 3.199810+1 3.099000+9 3.199840+1 3.447500+9 3.199880+1 3.835600+9 3.199910+1 4.501000+9 3.199970+1 5.000000+9 3.200000+1 8.000000+9 3.200000+1 1.00000+10 3.200000+1 1.20500+10 3.200000+1 1.41820+10 3.200000+1 1.71170+10 3.200000+1 2.01490+10 3.200000+1 2.26440+10 3.200000+1 2.74790+10 3.200000+1 3.41360+10 3.200000+1 4.02450+10 3.200000+1 4.77140+10 3.200000+1 5.73000+10 3.200000+1 7.25500+10 3.200000+1 9.08500+10 3.200000+1 1.00000+11 3.200000+1 1.34280+11 3.200000+1 1.77440+11 3.200000+1 2.63330+11 3.200000+1 3.75720+11 3.200000+1 6.61190+11 3.200000+1 1.48990+12 3.200000+1 4.26460+12 3.200000+1 2.06510+13 3.200000+1 1.00000+14 3.200000+1 5.62340+14 3.200000+1 7.49890+15 3.200000+1 1.00000+17 3.200000+1 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.005204-6 0.0 3.258643-6 0.0 3.270674-6 5.774558-1 3.274684-6 7.674994-1 3.282705-6 1.401900+0 3.290726-6 2.363797+0 3.299749-6 3.879699+0 3.313660-6 6.768421+0 3.323310-6 8.654325+0 3.331566-6 9.740989+0 3.339978-6 1.007033+1 3.347999-6 9.597347+0 3.356538-6 8.349004+0 3.370069-6 5.575004+0 3.378954-6 3.768689+0 3.387476-6 2.371629+0 3.394995-6 1.449855+0 3.403016-6 7.975770-1 3.414546-6 2.280572-1 3.419057-6 0.0 3.470947-6 0.0 3.485898-6 3.147074-1 3.488034-6 3.592069-1 3.496577-6 6.561207-1 3.505654-6 1.144701+0 3.514731-6 1.815786+0 3.529962-6 3.206874+0 3.539827-6 4.050417+0 3.549220-6 4.572759+0 3.556979-6 4.725450+0 3.565829-6 4.509310+0 3.575002-6 3.926139+0 3.588451-6 2.721116+0 3.599096-6 1.763830+0 3.607640-6 1.138668+0 3.616183-6 6.785644-1 3.624726-6 3.732838-1 3.637541-6 9.489026-2 3.641813-6 0.0 4.187705-6 0.0 4.208562-6 7.017422-7 4.218920-6 1.611952-6 4.229279-6 2.812597-6 4.239638-6 4.548152-6 4.249997-6 6.819857-6 4.270715-6 1.225126-5 4.281073-6 1.469032-5 4.291432-6 1.636260-5 4.301791-6 1.693369-5 4.312150-6 1.628519-5 4.322509-6 1.455445-5 4.332868-6 1.208746-5 4.353585-6 6.685250-6 4.363944-6 4.449600-6 4.374303-6 2.749121-6 4.384662-6 1.557640-6 4.393855-6 7.411607-7 4.395021-6 6.785799-7 4.410839-6 1.631682-7 4.415738-6 2.68522-15 4.420866-6 3.54883-15 4.442629-6 6.233179-7 4.453510-6 1.138541-6 4.464990-6 1.978327-6 4.475820-6 3.053494-6 4.497480-6 5.746371-6 4.508310-6 7.004616-6 4.519140-6 7.890478-6 4.529970-6 8.213051-6 4.540800-6 7.898507-6 4.551630-6 7.017541-6 4.562460-6 5.759539-6 4.584120-6 3.057381-6 4.594968-6 1.975886-6 4.605850-6 1.177487-6 4.616731-6 6.477451-7 4.630107-6 2.536556-7 4.637592-6 2.733827-8 4.638031-6 3.269028-3 4.660863-6 1.686226+0 4.672279-6 3.078382+0 4.683694-6 5.188001+0 4.696537-6 8.510530+0 4.716337-6 1.483677+1 4.730072-6 1.896254+1 4.741822-6 2.133613+1 4.753796-6 2.205032+1 4.765212-6 2.100861+1 4.777366-6 1.827084+1 4.796625-6 1.219525+1 4.809270-6 8.241897+0 4.821399-6 5.219862+0 4.832101-6 3.252147+0 4.843517-6 1.894779+0 4.849896-6 1.464465+0 4.866349-6 9.519001-1 4.874443-6 1.360264+0 4.886524-6 2.270562+0 4.898835-6 3.567446+0 4.913575-6 5.572136+0 4.937449-6 9.089138+0 4.948443-6 1.037011+1 4.959661-6 1.114545+1 4.970985-6 1.122619+1 4.982754-6 1.052214+1 4.996586-6 8.849120+0 5.029412-6 3.910476+0 5.041351-6 2.527846+0 5.052832-6 1.542276+0 5.064769-6 9.197372-1 5.088644-6 2.575275-1 5.109277-6 4.468298-1 5.125128-6 5.878277-1 5.137499-6 6.643737-1 5.149870-6 6.931524-1 5.162241-6 6.675733-1 5.174612-6 5.935034-1 5.194716-6 4.133507-1 5.211726-6 2.580593-1 5.224097-6 1.665941-1 5.236469-6 9.927818-2 5.248840-6 5.461374-2 5.266624-6 1.561612-2 5.273582-6 0.0 5.293780-6 0.0 5.294044-6 6.583753-4 5.320105-6 6.451020-1 5.333136-6 1.178000+0 5.346981-6 2.054614+0 5.360251-6 3.200565+0 5.399103-6 7.297385+0 5.412516-6 8.236886+0 5.425666-6 8.567646+0 5.439117-6 8.217779+0 5.455548-6 7.004082+0 5.489503-6 3.615347+0 5.503264-6 2.488515+0 5.516379-6 1.786553+0 5.529383-6 1.364962+0 5.536547-6 1.257232+0 5.548077-6 1.121962+0 5.554965-6 1.102928+0 5.562265-6 1.285249+0 5.576917-6 1.795336+0 5.593095-6 2.522886+0 5.617289-6 3.792357+0 5.632100-6 4.399264+0 5.646410-6 4.802608+0 5.661651-6 5.038032+0 5.704168-6 5.253226+0 5.728986-6 5.163559+0 5.742876-6 4.882873+0 5.756766-6 4.396825+0 5.791899-6 2.710405+0 5.805878-6 2.107235+0 5.818209-6 1.803473+0 5.821574-6 1.737444+0 5.834831-6 1.671638+0 5.848474-6 1.831466+0 5.864179-6 2.239757+0 5.877549-6 2.690101+0 5.897237-6 3.519673+0 5.914834-6 4.084587+0 5.931055-6 4.401382+0 5.946761-6 4.514284+0 5.963863-6 4.392063+0 6.004205-6 3.742106+0 6.022931-6 3.416063+0 6.050417-6 3.146076+0 6.092048-6 3.360741+0 6.129690-6 3.624198+0 6.167143-6 3.554460+0 6.228796-6 3.412064+0 6.544327-6 3.449832+0 8.081231-6 2.966932+0 8.121013-6 5.324138+0 8.140904-6 7.277370+0 8.160794-6 1.024234+1 8.183172-6 1.491804+1 8.240358-6 2.943453+1 8.263823-6 3.311328+1 8.282547-6 3.403339+1 8.295768-6 3.352990+1 8.308067-6 3.339900+1 8.326588-6 3.199245+1 8.349034-6 3.008082+1 8.358967-6 2.988466+1 8.377063-6 3.092103+1 8.397785-6 3.518591+1 8.425286-6 4.500209+1 8.461267-6 5.971431+1 8.480680-6 6.461295+1 8.498617-6 6.670987+1 8.519957-6 6.382465+1 8.542165-6 5.584428+1 8.574300-6 3.955860+1 8.599737-6 2.662071+1 8.620151-6 1.817019+1 8.640564-6 1.194896+1 8.660978-6 7.818795+0 8.701805-6 2.763342+0 1.138282-5 1.937438+0 1.250208-5 1.660652+0 1.257335-5 1.788612+0 1.262517-5 1.993228+0 1.268035-5 2.362444+0 1.275768-5 2.895796+0 1.277903-5 2.984049+0 1.281749-5 2.997226+0 1.284827-5 2.894853+0 1.289563-5 2.574126+0 1.296366-5 2.048503+0 1.299526-5 1.855768+0 1.303417-5 1.691739+0 1.309561-5 1.545747+0 1.313597-5 1.506260+0 1.343316-5 1.443586+0 1.356542-5 1.489993+0 1.373074-5 1.680469+0 1.379686-5 1.665973+0 1.396218-5 1.440279+0 1.402354-5 1.413673+0 1.421478-5 1.425201+0 1.474370-5 1.287549+0 1.609892-5 1.028041+0 1.739978-5 8.380599-1 1.863677-5 6.984989-1 2.015979-5 5.674701-1 2.148860-5 4.805730-1 2.297987-5 4.058551-1 2.466363-5 3.432429-1 2.681722-5 2.863845-1 2.934247-5 2.426131-1 3.111192-5 2.219228-1 3.126508-5 1.019221+0 3.134165-5 1.678752+0 3.141823-5 2.679165+0 3.150330-5 4.232476+0 3.155959-5 5.565536+0 3.173626-5 1.005190+1 3.182390-5 1.180916+1 3.190466-5 1.281482+1 3.197696-5 1.316202+1 3.207326-5 1.286925+1 3.218146-5 1.187685+1 3.233148-5 9.861643+0 3.253441-5 6.235659+0 3.264348-5 4.149078+0 3.269282-5 3.437469+0 3.277042-5 2.450270+0 3.284803-5 1.662870+0 3.292563-5 1.090682+0 3.300324-5 7.086723-1 3.306919-5 4.060548-1 3.308084-5 3.580942-1 3.314731-5 2.949058-1 3.330357-5 2.037660-1 3.532053-5 1.924635-1 3.549440-5 2.865974-1 3.558134-5 3.646956-1 3.566828-5 4.833414-1 3.575522-5 6.457256-1 3.603339-5 1.314927+0 3.611954-5 1.467925+0 3.623014-5 1.559603+0 3.633285-5 1.565023+0 3.662990-5 1.438873+0 3.692289-5 1.407674+0 3.732233-5 1.118202+0 3.746660-5 1.066371+0 3.772675-5 1.088435+0 3.786540-5 1.128045+0 3.911185-5 1.095433+0 4.200000-5 1.151300+0 4.400000-5 1.247462+0 4.623810-5 1.431420+0 4.857324-5 1.712150+0 5.188000-5 2.254081+0 5.644422-5 3.229299+0 6.950000-5 6.321132+0 8.005250-5 8.331134+0 9.359443-5 1.040838+1 1.083927-4 1.213404+1 1.200003-4 1.306988+1 1.226280-4 1.373295+1 1.257789-4 1.396711+1 1.479842-4 1.464588+1 1.690200-4 1.481785+1 1.710082-4 1.555314+1 1.726644-4 1.656568+1 1.738405-4 1.630068+1 1.758701-4 1.523683+1 1.925551-4 1.521155+1 2.855452-4 1.270652+1 3.919468-4 9.785427+0 4.890477-4 7.813500+0 5.854637-4 6.387188+0 6.938251-4 5.213752+0 8.152467-4 4.257405+0 9.437029-4 3.517598+0 1.111483-3 2.819275+0 1.194148-3 2.568379+0 1.201606-3 2.652794+0 1.206108-3 2.845153+0 1.209859-3 3.165487+0 1.213454-3 3.661089+0 1.217356-3 4.437277+0 1.223558-3 6.085389+0 1.233534-3 8.847264+0 1.240000-3 1.016591+1 1.264519-3 1.393024+1 1.275813-3 1.490376+1 1.296633-3 1.514137+1 1.371498-3 1.426953+1 1.387042-3 1.473266+1 1.405684-3 1.547152+1 1.653123-3 1.233123+1 1.929780-3 9.858556+0 2.250365-3 7.806743+0 2.607654-3 6.205486+0 2.984376-3 4.995765+0 3.429528-3 3.977868+0 3.934439-3 3.164667+0 4.453998-3 2.564852+0 4.983104-3 2.117018+0 5.467138-3 1.803054+0 6.173888-3 1.457887+0 6.949180-3 1.183449+0 7.799245-3 9.636227-1 8.639805-3 8.023245-1 9.689594-3 6.521762-1 1.074606-2 5.409429-1 1.079681-2 5.411214-1 1.084828-2 5.739786-1 1.087707-2 6.209451-1 1.090118-2 6.897503-1 1.092605-2 8.013929-1 1.095214-2 9.714561-1 1.098330-2 1.252945+0 1.102616-2 1.767739+0 1.110191-2 2.769633+0 1.115324-2 3.268549+0 1.119689-2 3.511302+0 1.125658-2 3.640708+0 1.173630-2 3.471763+0 1.338338-2 2.819499+0 1.522299-2 2.276097+0 1.736824-2 1.826019+0 1.960267-2 1.480328+0 2.193141-2 1.217869+0 2.427517-2 1.015301+0 2.680196-2 8.496298-1 2.991745-2 6.945144-1 3.280806-2 5.854350-1 3.647396-2 4.800885-1 4.012007-2 4.007851-1 4.441277-2 3.299669-1 4.905377-2 2.723813-1 5.418582-2 2.243823-1 6.000000-2 1.836678-1 6.682176-2 1.484477-1 7.432065-2 1.200693-1 8.315488-2 9.593717-2 9.296198-2 7.660178-2 1.030365-1 6.222704-2 1.136478-1 5.105432-2 1.244515-1 4.248872-2 1.363952-1 3.530184-2 1.497044-1 2.923472-2 1.637124-1 2.440593-2 1.802844-1 2.009936-2 1.998872-1 1.636715-2 2.220956-1 1.327815-2 2.437986-1 1.107206-2 2.668976-1 9.294068-3 2.947048-1 7.700181-3 3.264366-1 6.369703-3 3.567334-1 5.421682-3 3.981072-1 4.467529-3 4.479711-1 3.656828-3 4.963199-1 3.095638-3 5.461900-1 2.666769-3 6.099756-1 2.263876-3 6.998420-1 1.870763-3 7.679138-1 1.662133-3 9.015711-1 1.376045-3 1.070165+0 1.145026-3 1.286622+0 9.428672-4 1.546860+0 7.764004-4 1.859734+0 6.393239-4 2.235892+0 5.264488-4 2.688134+0 4.335022-4 3.231848+0 3.569657-4 3.885536+0 2.939421-4 4.671441+0 2.420455-4 5.616308+0 1.993114-4 6.752287+0 1.641222-4 8.118035+0 1.351458-4 9.760024+0 1.112853-4 1.000000+1 2.232216-4 1 32000 7 0 7.259000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.194800+1 2.930556-6-3.099519+1 3.185272-6-2.977510+1 3.250500-6-2.825898+1 3.299749-6-2.495130+1 3.314788-6-2.566324+1 3.329419-6-2.836594+1 3.344374-6-3.211005+1 3.359892-6-2.869764+1 3.374442-6-2.754329+1 3.394995-6-2.853393+1 3.438673-6-3.162865+1 3.459708-6-3.210933+1 3.520104-6-2.981369+1 3.543832-6-3.099825+1 3.556979-6-3.213834+1 3.585020-6-2.970840+1 3.615249-6-3.000794+1 3.680467-6-3.178613+1 3.775234-6-3.216583+1 4.395021-6-2.955686+1 4.551630-6-2.744470+1 4.611291-6-2.534692+1 4.636656-6-2.336433+1 4.687619-6-1.745034+1 4.699035-6-1.689266+1 4.711521-6-1.748310+1 4.722937-6-1.942406+1 4.735423-6-2.307959+1 4.759545-6-3.261515+1 4.767478-6-2.944931+1 4.781973-6-2.519618+1 4.792937-6-2.339745+1 4.806862-6-2.295503+1 4.821399-6-2.424763+1 4.866714-6-3.147642+1 4.875360-6-3.261332+1 4.903601-6-2.981931+1 4.925351-6-2.957325+1 4.947108-6-3.162623+1 4.956129-6-3.261182+1 4.986482-6-2.730931+1 5.006258-6-2.531338+1 5.026158-6-2.502005+1 5.089378-6-2.915294+1 5.137499-6-3.087059+1 5.248840-6-3.290678+1 5.320105-6-3.007857+1 5.365683-6-2.828752+1 5.394165-6-2.922138+1 5.428924-6-3.296689+1 5.459660-6-2.981721+1 5.489503-6-2.928880+1 5.563483-6-3.311537+1 5.610587-6-3.191248+1 5.672194-6-3.323286+1 5.774718-6-3.048556+1 5.820733-6-3.174997+1 5.874530-6-3.368591+1 5.926953-6-3.338391+1 5.998554-6-3.194763+1 6.129690-6-3.260512+1 6.964258-6-3.294244+1 7.583909-6-2.859885+1 7.817136-6-2.550973+1 7.943952-6-2.248368+1 8.019621-6-1.943707+1 8.064174-6-1.651109+1 8.081231-6-1.467010+1 8.121013-6-1.014352+1 8.143390-6-7.211925+0 8.163281-6-4.796376+0 8.167632-6-4.352667+0 8.183172-6-3.047386+0 8.187523-6-2.812280+0 8.194050-6-2.612766+0 8.200576-6-2.526868+0 8.205549-6-2.556028+0 8.209279-6-2.662937+0 8.214873-6-2.940612+0 8.220467-6-3.393295+0 8.230413-6-4.457324+0 8.237872-6-5.516325+0 8.258074-6-9.426839+0 8.263823-6-1.093456+1 8.280140-6-1.448116+1 8.287354-6-1.596613+1 8.298965-6-1.722601+1 8.308067-6-1.870363+1 8.326588-6-2.071203+1 8.334362-6-2.075722+1 8.351905-6-1.981618+1 8.374682-6-1.672713+1 8.377063-6-1.615368+1 8.400484-6-1.302825+1 8.410078-6-1.270630+1 8.423028-6-1.291100+1 8.431373-6-1.383589+1 8.442871-6-1.612188+1 8.453898-6-1.949589+1 8.475059-6-2.934391+1 8.478894-6-3.124374+1 8.496326-6-2.099975+1 8.498617-6-1.917111+1 8.518083-6-7.072747+0 8.519957-6-5.742921+0 8.522275-6-4.346751+0 8.526330-6-2.133924+0 8.538497-6 4.031303+0 8.539773-6 4.740878+0 8.542165-6 5.864818+0 8.546351-6 7.582830+0 8.554201-6 1.030875+1 8.561462-6 1.253260+1 8.569277-6 1.426902+1 8.579324-6 1.559318+1 8.588255-6 1.610282+1 8.596867-6 1.606441+1 8.615048-6 1.431018+1 8.638332-6 1.015844+1 8.663530-6 4.788973+0 8.667995-6 3.930157+0 8.691598-6-3.550010-2 8.696701-6-9.929718-1 8.699253-6-1.533944+0 8.700529-6-1.837904+0 8.701805-6-2.211448+0 8.704588-6-2.935677+0 8.707369-6-3.499972+0 8.712925-6-4.460007+0 8.724005-6-6.023113+0 8.740555-6-7.872057+0 8.762478-6-9.792153+0 8.795042-6-1.197014+1 8.850670-6-1.460617+1 8.932018-6-1.715599+1 9.041698-6-1.933336+1 9.223552-6-2.149612+1 9.564354-6-2.354882+1 1.028428-5-2.528621+1 1.256362-5-2.730182+1 1.272696-5-2.736614+1 1.294200-5-2.587446+1 1.369011-5-2.689651+1 2.771391-5-2.923748+1 3.022692-5-3.084792+1 3.061184-5-3.115712+1 3.108654-5-2.929382+1 3.153524-5-2.524227+1 3.166829-5-2.569734+1 3.180964-5-2.812122+1 3.193715-5-3.151300+1 3.216384-5-2.584083+1 3.238240-5-2.243416+1 3.253441-5-2.135409+1 3.264348-5-2.137627+1 3.322544-5-2.537480+1 3.380001-5-2.701718+1 3.601574-5-2.958303+1 3.711449-5-2.868980+1 5.780982-5-3.190104+1 7.413102-5-3.162290+1 1.200003-4-2.713069+1 1.417087-4-2.379719+1 1.652475-4-2.148997+1 1.698244-4-2.172192+1 1.716554-4-2.170205+1 1.742019-4-1.967522+1 1.790926-4-1.972118+1 2.160000-4-1.632789+1 2.520890-4-1.399594+1 3.037649-4-1.171303+1 3.520374-4-1.037341+1 4.165882-4-9.279025+0 4.890477-4-8.633090+0 5.854637-4-8.305364+0 7.317555-4-8.466088+0 8.567002-4-9.057538+0 9.815819-4-1.015958+1 1.070528-3-1.153980+1 1.129245-3-1.308433+1 1.167579-3-1.478858+1 1.190578-3-1.655441+1 1.204683-3-1.854762+1 1.222027-3-2.176243+1 1.232118-3-2.194902+1 1.261000-3-1.948561+1 1.285947-3-1.577300+1 1.305000-3-1.388367+1 1.330547-3-1.220564+1 1.363340-3-1.090835+1 1.387042-3-1.063110+1 1.401779-3-1.050669+1 1.439642-3-8.406599+0 1.473525-3-7.215699+0 1.523657-3-5.974864+0 1.577203-3-4.979184+0 1.653123-3-3.921353+0 1.722860-3-3.178037+0 1.810090-3-2.460823+0 1.893302-3-1.930167+0 1.998439-3-1.413192+0 2.089296-3-1.070385+0 2.168149-3-8.367875-1 2.250365-3-6.407714-1 2.312523-3-5.185490-1 2.376299-3-4.113711-1 2.472415-3-2.796384-1 2.534093-3-2.088970-1 2.594878-3-1.494643-1 2.674161-3-8.787416-2 2.712806-3-6.259466-2 2.744523-3-4.371599-2 2.780258-3-2.408646-2 2.793555-3-1.789315-2 2.853552-3 7.993861-3 2.856825-3 9.318995-3 2.916115-3 2.911209-2 2.933015-3 3.433532-2 2.984376-3 4.689440-2 3.061487-3 6.311979-2 3.136636-3 7.261903-2 3.198895-3 7.786967-2 3.311311-3 8.183156-2 3.364147-3 8.075536-2 3.429528-3 7.755174-2 3.595591-3 5.802760-2 3.672823-3 4.755203-2 3.775739-3 3.128804-2 3.901665-3 7.718696-3 3.934439-3 9.222994-4 4.044595-3-2.251682-2 4.323346-3-8.662923-2 5.173089-3-3.054000-1 7.493548-3-9.174768-1 8.383861-3-1.186856+0 9.142509-3-1.477099+0 9.689594-3-1.764493+0 1.012084-2-2.091724+0 1.040431-2-2.412248+0 1.059075-2-2.723015+0 1.074606-2-3.119672+0 1.084828-2-3.564005+0 1.095744-2-4.358631+0 1.102616-2-4.805788+0 1.107509-2-4.872397+0 1.112879-2-4.639553+0 1.127958-2-3.425314+0 1.136057-2-2.983566+0 1.145838-2-2.623287+0 1.161375-2-2.219688+0 1.181069-2-1.853851+0 1.205593-2-1.524511+0 1.235437-2-1.227859+0 1.271248-2-9.617207-1 1.300072-2-7.881631-1 1.338338-2-6.013261-1 1.379202-2-4.428282-1 1.407361-2-3.537899-1 1.443482-2-2.556079-1 1.462177-2-2.107571-1 1.496235-2-1.391323-1 1.522299-2-9.235247-2 1.562248-2-2.871398-2 1.600940-2 2.293242-2 1.603245-2 2.603499-2 1.634035-2 6.039006-2 1.681333-2 1.079358-1 1.742967-2 1.605409-1 1.780054-2 1.853229-1 1.827394-2 2.125782-1 1.913193-2 2.487940-1 2.011243-2 2.768937-1 2.193141-2 3.063286-1 2.344229-2 3.145885-1 2.680196-2 3.049038-1 3.280806-2 2.581006-1 4.146552-2 1.860485-1 4.905377-2 1.348471-1 5.582793-2 9.891394-2 6.120789-2 7.530703-2 6.682176-2 5.480552-2 7.180004-2 3.920752-2 7.626279-2 2.700678-2 7.967857-2 1.864975-2 8.315488-2 1.095093-2 8.670152-2 3.768998-3 8.836394-2 5.943471-4 9.074074-2-3.650377-3 9.296198-2-7.421527-3 9.622530-2-1.265500-2 1.030365-1-2.226248-2 1.106783-1-3.141891-2 1.204307-1-4.112818-2 1.325439-1-5.080240-2 1.497044-1-6.130547-2 1.737801-1-7.180477-2 2.146438-1-8.305679-2 2.754229-1-9.231219-2 3.825059-1-9.981475-2 6.382635-1-1.054547-1 1.776032+0-1.083242-1 5.363532+0-1.087006-1 1.000000+1-1.087075-1 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.334266-4 1.136596-6 5.670134-4 1.325641-6 1.092803-3 1.466095-6 1.691357-3 1.559158-6 2.218372-3 1.695655-6 3.228985-3 1.803290-6 4.277061-3 1.859642-6 4.932737-3 2.103223-6 8.829771-3 2.245913-6 1.215497-2 2.316646-6 1.418492-2 2.446532-6 1.871230-2 2.513611-6 2.156499-2 2.640420-6 2.807942-2 2.759790-6 3.588083-2 2.816693-6 4.033270-2 2.935337-6 5.137957-2 2.981201-6 5.647397-2 3.077183-6 6.873377-2 3.171150-6 8.338851-2 3.265667-6 1.014600-1 3.341833-6 1.189997-1 3.424369-6 1.418873-1 3.491848-6 1.641126-1 3.559899-6 1.907003-1 3.623697-6 2.203112-1 3.693411-6 2.588627-1 3.739579-6 2.886518-1 3.792147-6 3.280048-1 3.841429-6 3.710723-1 3.887631-6 4.180671-1 3.930946-6 4.691985-1 3.971553-6 5.247295-1 4.009622-6 5.849319-1 4.048711-6 6.566192-1 4.078772-6 7.199625-1 4.110140-6 7.953570-1 4.139548-6 8.764215-1 4.167117-6 9.634505-1 4.192964-6 1.056747+0 4.217195-6 1.156640+0 4.239912-6 1.263490+0 4.261209-6 1.377621+0 4.281175-6 1.499297+0 4.304818-6 1.665723+0 4.317441-6 1.766496+0 4.333892-6 1.912829+0 4.349315-6 2.068252+0 4.363775-6 2.233192+0 4.377330-6 2.408038+0 4.390038-6 2.593157+0 4.404592-6 2.835601+0 4.413122-6 2.995705+0 4.434064-6 3.460740+0 4.452389-6 3.980902+0 4.468423-6 4.564653+0 4.482453-6 5.222661+0 4.495524-6 6.020038+0 4.505471-6 6.797491+0 4.514870-6 7.717507+0 4.523094-6 8.713996+0 4.530290-6 9.768597+0 4.536587-6 1.085869+1 4.542096-6 1.196058+1 4.546917-6 1.305202+1 4.551135-6 1.411394+1 4.558517-6 1.623584+1 4.584010-6 2.656372+1 4.591938-6 3.079726+1 4.598639-6 3.473667+1 4.603212-6 3.759669+1 4.614487-6 4.511735+1 4.615896-6 4.609201+1 4.625762-6 5.300095+1 4.629637-6 5.570710+1 4.637036-6 6.074044+1 4.640912-6 6.325827+1 4.644612-6 6.555337+1 4.648311-6 6.771882+1 4.653244-6 7.036428+1 4.658000-6 7.260816+1 4.662405-6 7.437790+1 4.666104-6 7.561173+1 4.671565-6 7.697516+1 4.678172-6 7.784255+1 4.683170-6 7.790242+1 4.690050-6 7.712906+1 4.694920-6 7.598970+1 4.698531-6 7.483883+1 4.703681-6 7.277036+1 4.708509-6 7.040740+1 4.716312-6 6.583103+1 4.721354-6 6.245925+1 4.725029-6 5.983913+1 4.729877-6 5.621991+1 4.733653-6 5.330552+1 4.738509-6 4.948377+1 4.743442-6 4.556814+1 4.748594-6 4.150073+1 4.755421-6 3.624280+1 4.760354-6 3.259405+1 4.761763-6 3.158070+1 4.767048-6 2.791329+1 4.771672-6 2.489365+1 4.772333-6 2.447773+1 4.783608-6 1.801587+1 4.787946-6 1.586011+1 4.791414-6 1.426965+1 4.795302-6 1.262543+1 4.799815-6 1.089605+1 4.804374-6 9.337451+0 4.809778-6 7.721244+0 4.813559-6 6.731110+0 4.818366-6 5.626813+0 4.825028-6 4.358104+0 4.836592-6 2.775344+0 4.841650-6 2.291497+0 4.844778-6 2.046881+0 4.847711-6 1.852357+0 4.851748-6 1.635660+0 4.852997-6 1.579965+0 4.872347-6 1.302361+0 4.874766-6 1.336282+0 4.876882-6 1.377325+0 4.880586-6 1.474140+0 4.883364-6 1.567264+0 4.885447-6 1.648490+0 4.888181-6 1.769772+0 4.892073-6 1.970897+0 4.896561-6 2.244081+0 4.903737-6 2.771901+0 4.909758-6 3.299837+0 4.915778-6 3.903263+0 4.927818-6 5.320056+0 4.931392-6 5.788482+0 4.938800-6 6.815161+0 4.943997-6 7.570154+0 4.951899-6 8.747791+0 4.956037-6 9.367229+0 4.960976-6 1.009717+1 4.965444-6 1.073983+1 4.970053-6 1.137540+1 4.974498-6 1.195286+1 4.978989-6 1.249221+1 4.984210-6 1.305203+1 4.988772-6 1.347303+1 4.994416-6 1.389456+1 4.999464-6 1.417003+1 5.002532-6 1.428778+1 5.008512-6 1.440550+1 5.012879-6 1.439660+1 5.020959-6 1.417061+1 5.026089-6 1.389132+1 5.028454-6 1.372905+1 5.036933-6 1.298899+1 5.041739-6 1.247214+1 5.045790-6 1.199066+1 5.049726-6 1.148901+1 5.054335-6 1.086706+1 5.058780-6 1.024069+1 5.063271-6 9.589906+0 5.067845-6 8.917605+0 5.072301-6 8.261420+0 5.078322-6 7.385996+0 5.083589-6 6.641786+0 5.085847-6 6.331512+0 5.091114-6 5.632334+0 5.096382-6 4.973089+0 5.108422-6 3.640453+0 5.113055-6 3.197177+0 5.116759-6 2.871169+0 5.120463-6 2.570191+0 5.125730-6 2.184340+0 5.132080-6 1.782444+0 5.138605-6 1.436594+0 5.154474-6 8.399119-1 5.160652-6 6.847324-1 5.163705-6 6.209745-1 5.166734-6 5.652320-1 5.169739-6 5.166717-1 5.173331-6 4.665817-1 5.175679-6 4.380525-1 5.178615-6 4.066122-1 5.181527-6 3.795891-1 5.184417-6 3.564275-1 5.190129-6 3.197148-1 5.195752-6 2.929893-1 5.201287-6 2.734462-1 5.209419-6 2.529238-1 5.212746-6 2.463527-1 5.220287-6 2.335691-1 5.227987-6 2.217104-1 5.235642-6 2.096224-1 5.245322-6 1.927501-1 5.254812-6 1.742046-1 5.264081-6 1.546155-1 5.273060-6 1.350167-1 5.281758-6 1.162490-1 5.290185-6 9.895909-2 5.298348-6 8.356695-2 5.314165-6 5.885950-2 5.328992-6 4.284711-2 5.342893-6 3.442097-2 5.368958-6 3.506087-2 5.391764-6 5.163235-2 5.454785-6 1.645079-1 5.551409-6 5.027311-1 5.572959-6 6.088977-1 5.592401-6 7.178211-1 5.614110-6 8.560397-1 5.627827-6 9.532568-1 5.647058-6 1.103639+0 5.674386-6 1.348931+0 5.701714-6 1.637382+0 5.751281-6 2.301389+0 5.806150-6 3.338387+0 5.833584-6 4.030879+0 5.862434-6 4.937020+0 5.883983-6 5.771044+0 5.905723-6 6.793680+0 5.912949-6 7.183748+0 5.927431-6 8.058192+0 5.941914-6 9.082435+0 5.956397-6 1.029882+1 5.967134-6 1.135940+1 5.977871-6 1.259201+1 5.988858-6 1.407773+1 5.999845-6 1.585232+1 6.014327-6 1.877201+1 6.028810-6 2.257959+1 6.036051-6 2.491270+1 6.043293-6 2.759296+1 6.050534-6 3.067167+1 6.057775-6 3.420396+1 6.068327-6 4.028293+1 6.084464-6 5.209953+1 6.106310-6 7.390242+1 6.118927-6 8.989544+1 6.130189-6 1.063029+2 6.139025-6 1.204954+2 6.141971-6 1.254598+2 6.157015-6 1.522909+2 6.158895-6 1.557797+2 6.172058-6 1.805838+2 6.177229-6 1.903341+2 6.187102-6 2.085232+2 6.192273-6 2.176502+2 6.197347-6 2.262141+2 6.202145-6 2.338728+2 6.208727-6 2.435339+2 6.215074-6 2.517607+2 6.220950-6 2.582801+2 6.225886-6 2.628518+2 6.233202-6 2.679727+2 6.240471-6 2.709659+2 6.247740-6 2.717647+2 6.250897-6 2.714134+2 6.258535-6 2.688109+2 6.265177-6 2.645635+2 6.270654-6 2.597254+2 6.277548-6 2.520196+2 6.284067-6 2.432099+2 6.287438-6 2.381288+2 6.294556-6 2.263617+2 6.300903-6 2.148523+2 6.307352-6 2.023866+2 6.312776-6 1.914522+2 6.318580-6 1.794489+2 6.323023-6 1.701384+2 6.329373-6 1.567915+2 6.336773-6 1.413936+2 6.345530-6 1.237151+2 6.352582-6 1.101415+2 6.357048-6 1.019281+2 6.362337-6 9.263847+1 6.368566-6 8.235940+1 6.383847-6 6.045133+1 6.389922-6 5.310495+1 6.411201-6 3.342411+1 6.416898-6 2.967267+1 6.422157-6 2.673741+1 6.425552-6 2.510049+1 6.428494-6 2.384004+1 6.432276-6 2.242774+1 6.437839-6 2.075852+1 6.448269-6 1.884544+1 6.451232-6 1.857044+1 6.454418-6 1.839846+1 6.457600-6 1.834926+1 6.459192-6 1.836900+1 6.464764-6 1.865965+1 6.468246-6 1.900711+1 6.471787-6 1.948248+1 6.486639-6 2.264880+1 6.490961-6 2.387097+1 6.510800-6 3.063508+1 6.516813-6 3.290240+1 6.524544-6 3.584064+1 6.530365-6 3.801488+1 6.536712-6 4.029345+1 6.543111-6 4.244219+1 6.549876-6 4.449480+1 6.557533-6 4.648027+1 6.563374-6 4.771270+1 6.568264-6 4.853683+1 6.575441-6 4.937859+1 6.581851-6 4.974348+1 6.587058-6 4.976502+1 6.591934-6 4.956178+1 6.598260-6 4.898176+1 6.601626-6 4.853207+1 6.613359-6 4.625127+1 6.618970-6 4.480708+1 6.623944-6 4.336178+1 6.630431-6 4.127614+1 6.634133-6 3.999954+1 6.640206-6 3.779595+1 6.647026-6 3.520077+1 6.652722-6 3.297209+1 6.658215-6 3.079992+1 6.662022-6 2.929455+1 6.668939-6 2.658845+1 6.675855-6 2.395567+1 6.684748-6 2.073793+1 6.691664-6 1.840350+1 6.697099-6 1.669004+1 6.706177-6 1.409039+1 6.725195-6 9.806924+0 6.731051-6 8.818215+0 6.735756-6 8.137469+0 6.739857-6 7.626702+0 6.744202-6 7.169098+0 6.746276-6 6.980904+0 6.749387-6 6.735103+0 6.752497-6 6.532985+0 6.754895-6 6.406906+0 6.759093-6 6.248490+0 6.762240-6 6.181578+0 6.764601-6 6.160568+0 6.766372-6 6.161223+0 6.768696-6 6.183438+0 6.771716-6 6.248572+0 6.772616-6 6.275909+0 6.805019-6 9.706535+0 6.816388-6 1.203733+1 6.822728-6 1.358149+1 6.839396-6 1.839795+1 6.844767-6 2.015185+1 6.855022-6 2.370396+1 6.859806-6 2.542738+1 6.864925-6 2.729804+1 6.869105-6 2.883429+1 6.874592-6 3.084417+1 6.878119-6 3.212224+1 6.884617-6 3.442297+1 6.889491-6 3.608196+1 6.893472-6 3.738061+1 6.898696-6 3.899156+1 6.905413-6 4.087619+1 6.914355-6 4.299448+1 6.920580-6 4.416594+1 6.926732-6 4.505318+1 6.932132-6 4.559726+1 6.938847-6 4.595591+1 6.940006-6 4.598161+1 6.956170-6 4.523374+1 6.961937-6 4.448436+1 6.964637-6 4.405205+1 6.971725-6 4.268621+1 6.976964-6 4.147894+1 6.982586-6 4.001807+1 6.989294-6 3.808357+1 6.995188-6 3.624401+1 7.001761-6 3.407763+1 7.009141-6 3.155160+1 7.015306-6 2.940791+1 7.021250-6 2.734533+1 7.030798-6 2.411376+1 7.040449-6 2.104553+1 7.056075-6 1.673721+1 7.063888-6 1.497218+1 7.069748-6 1.384356+1 7.071701-6 1.350650+1 7.079282-6 1.239104+1 7.084104-6 1.184583+1 7.086720-6 1.160463+1 7.095878-6 1.106909+1 7.098168-6 1.101099+1 7.101173-6 1.098103+1 7.105036-6 1.101979+1 7.107349-6 1.108455+1 7.114132-6 1.145326+1 7.117575-6 1.174155+1 7.118995-6 1.188011+1 7.133546-6 1.394217+1 7.139536-6 1.511551+1 7.149114-6 1.734957+1 7.165526-6 2.204569+1 7.174152-6 2.484276+1 7.182776-6 2.777547+1 7.186956-6 2.922179+1 7.191136-6 3.067136+1 7.198338-6 3.314745+1 7.203852-6 3.499680+1 7.208074-6 3.636912+1 7.214108-6 3.824220+1 7.220774-6 4.015921+1 7.223494-6 4.088689+1 7.231550-6 4.282860+1 7.238332-6 4.418517+1 7.244255-6 4.513989+1 7.250747-6 4.592373+1 7.257513-6 4.643648+1 7.275282-6 4.628938+1 7.282957-6 4.558592+1 7.290788-6 4.451148+1 7.297073-6 4.341723+1 7.304744-6 4.184282+1 7.313161-6 3.987251+1 7.322235-6 3.754556+1 7.330293-6 3.537705+1 7.341946-6 3.220418+1 7.361325-6 2.724608+1 7.374583-6 2.434919+1 7.384345-6 2.256241+1 7.396970-6 2.073414+1 7.402803-6 2.007768+1 7.408371-6 1.956083+1 7.413939-6 1.914857+1 7.422655-6 1.870395+1 7.429193-6 1.852132+1 7.436680-6 1.845744+1 7.444475-6 1.853912+1 7.451325-6 1.872054+1 7.460259-6 1.908763+1 7.469819-6 1.961171+1 7.485677-6 2.068262+1 7.506920-6 2.227000+1 7.518539-6 2.310499+1 7.529715-6 2.383319+1 7.542598-6 2.454225+1 7.554821-6 2.505880+1 7.569827-6 2.546477+1 7.582176-6 2.561001+1 7.591757-6 2.561326+1 7.602181-6 2.552092+1 7.614573-6 2.530410+1 7.628075-6 2.497227+1 7.675966-6 2.362039+1 7.694523-6 2.324096+1 7.711228-6 2.302054+1 7.732732-6 2.289829+1 7.761312-6 2.294346+1 7.843740-6 2.337872+1 7.994154-6 2.372784+1 8.101920-6 2.403835+1 8.164330-6 2.404101+1 8.293452-6 2.383745+1 8.400133-6 2.389502+1 8.570043-6 2.414055+1 8.665270-6 2.430989+1 8.714461-6 2.430930+1 8.768997-6 2.410985+1 8.822370-6 2.369339+1 8.884846-6 2.311160+1 8.923310-6 2.282662+1 8.959408-6 2.266796+1 8.993285-6 2.264154+1 9.025078-6 2.274301+1 9.040233-6 2.283962+1 9.069596-6 2.312608+1 9.097124-6 2.352852+1 9.122931-6 2.404223+1 9.147293-6 2.466841+1 9.169808-6 2.538985+1 9.191073-6 2.621907+1 9.211008-6 2.715002+1 9.229698-6 2.818238+1 9.247219-6 2.931679+1 9.263978-6 3.058202+1 9.281376-6 3.212092+1 9.298230-6 3.388055+1 9.314558-6 3.589911+1 9.331603-6 3.842152+1 9.356773-6 4.317594+1 9.373425-6 4.721905+1 9.392119-6 5.289313+1 9.405444-6 5.785254+1 9.418906-6 6.380241+1 9.429960-6 6.950984+1 9.444019-6 7.800321+1 9.456393-6 8.677363+1 9.469805-6 9.781571+1 9.497311-6 1.261033+2 9.525221-6 1.633033+2 9.546287-6 1.970530+2 9.556858-6 2.156427+2 9.580266-6 2.598509+2 9.584128-6 2.674342+2 9.603673-6 3.062856+2 9.611720-6 3.222100+2 9.627081-6 3.517704+2 9.635128-6 3.665190+2 9.643273-6 3.807255+2 9.650489-6 3.925758+2 9.660730-6 4.079978+2 9.670605-6 4.210916+2 9.684138-6 4.358330+2 9.695659-6 4.452216+2 9.700230-6 4.481120+2 9.710471-6 4.528604+2 9.722175-6 4.554468+2 9.735361-6 4.550363+2 9.751251-6 4.507158+2 9.779384-6 4.377326+2 9.797583-6 4.304936+2 9.810106-6 4.284369+2 9.821106-6 4.297933+2 9.826480-6 4.318068+2 9.836156-6 4.380570+2 9.844334-6 4.462917+2 9.851296-6 4.556568+2 9.860379-6 4.713854+2 9.869887-6 4.923762+2 9.878144-6 5.145244+2 9.886822-6 5.418148+2 9.896172-6 5.758383+2 9.910421-6 6.366518+2 9.949379-6 8.496447+2 9.961650-6 9.264074+2 9.971992-6 9.926077+2 9.984712-6 1.074123+3 9.997020-6 1.151129+3 1.000802-5 1.216711+3 1.001521-5 1.257230+3 1.002984-5 1.332177+3 1.004174-5 1.384026+3 1.005561-5 1.432398+3 1.006671-5 1.460665+3 1.007368-5 1.473381+3 1.008365-5 1.484639+3 1.009194-5 1.487700+3 1.009674-5 1.486862+3 1.011266-5 1.470661+3 1.012417-5 1.446652+3 1.013532-5 1.414302+3 1.014760-5 1.369405+3 1.015949-5 1.317819+3 1.017007-5 1.266388+3 1.018027-5 1.212786+3 1.019575-5 1.125899+3 1.020784-5 1.055215+3 1.022144-5 9.745516+2 1.023201-5 9.120638+2 1.025921-5 7.575812+2 1.028036-5 6.480739+2 1.030853-5 5.214847+2 1.034438-5 3.947594+2 1.036813-5 3.307788+2 1.038388-5 2.959973+2 1.039958-5 2.666534+2 1.041521-5 2.419968+2 1.043078-5 2.213161+2 1.044939-5 2.008396+2 1.046175-5 1.893621+2 1.047714-5 1.770208+2 1.049389-5 1.656276+2 1.052301-5 1.497134+2 1.055331-5 1.369362+2 1.058338-5 1.268816+2 1.061321-5 1.187279+2 1.064280-5 1.119548+2 1.067217-5 1.062225+2 1.071730-5 9.886555+1 1.075890-5 9.326765+1 1.081582-5 8.696561+1 1.087185-5 8.191130+1 1.092700-5 7.777413+1 1.100002-5 7.326032+1 1.103474-5 7.141865+1 1.109181-5 6.873374+1 1.119011-5 6.489962+1 1.129048-5 6.174793+1 1.142278-5 5.839937+1 1.148230-5 5.712269+1 1.157314-5 5.541467+1 1.174716-5 5.275711+1 1.190318-5 5.082744+1 1.202265-5 4.955666+1 1.217416-5 4.817520+1 1.244937-5 4.609746+1 1.277217-5 4.414937+1 1.326503-5 4.182713+1 1.454351-5 3.721381+1 1.503978-5 3.547551+1 1.524160-5 3.451443+1 1.539400-5 3.367001+1 1.546978-5 3.344566+1 1.550767-5 3.346023+1 1.554556-5 3.358801+1 1.558345-5 3.384061+1 1.562360-5 3.424230+1 1.569712-5 3.525017+1 1.577290-5 3.638174+1 1.581079-5 3.685825+1 1.584868-5 3.721762+1 1.588776-5 3.743837+1 1.593438-5 3.749225+1 1.596235-5 3.742230+1 1.600024-5 3.722488+1 1.607602-5 3.659149+1 1.620745-5 3.531565+1 1.640267-5 3.393455+1 1.652379-5 3.341200+1 1.660453-5 3.321084+1 1.671789-5 3.311680+1 1.685240-5 3.311460+1 1.693779-5 3.304793+1 1.708901-5 3.274356+1 1.730102-5 3.222730+1 1.903849-5 2.899200+1 2.156307-5 2.505777+1 2.462443-5 2.125246+1 2.694958-5 1.882396+1 2.795656-5 1.785770+1 2.931631-5 1.661405+1 3.007871-5 1.594455+1 3.124541-5 1.492008+1 3.251044-5 1.382618+1 3.322263-5 1.319024+1 3.388442-5 1.259540+1 3.474390-5 1.180279+1 3.570000-5 1.087063+1 3.641241-5 1.012844+1 3.710956-5 9.339655+0 3.770000-5 8.620589+0 3.829569-5 7.827307+0 3.866744-5 7.284654+0 3.900000-5 6.756684+0 3.928134-5 6.270524+0 3.954107-5 5.782452+0 3.975557-5 5.346339+0 3.995054-5 4.920752+0 4.015354-5 4.445824+0 4.034083-5 3.981353+0 4.052122-5 3.527122+0 4.066986-5 3.182539+0 4.079233-5 2.961410+0 4.089325-5 2.860291+0 4.097640-5 2.861372+0 4.106496-5 2.978826+0 4.113043-5 3.164952+0 4.117290-5 3.340300+0 4.122668-5 3.633870+0 4.127255-5 3.955724+0 4.131327-5 4.303467+0 4.136564-5 4.846171+0 4.141018-5 5.401769+0 4.146745-5 6.257743+0 4.154779-5 7.761390+0 4.171812-5 1.234239+1 4.180491-5 1.551720+1 4.187223-5 1.840565+1 4.189467-5 1.945263+1 4.197321-5 2.344609+1 4.199084-5 2.441159+1 4.209404-5 3.053872+1 4.214330-5 3.372332+1 4.219966-5 3.754184+1 4.223508-5 4.002067+1 4.229120-5 4.404706+1 4.235076-5 4.840793+1 4.239914-5 5.197913+1 4.245591-5 5.615571+1 4.249734-5 5.916511+1 4.254222-5 6.236140+1 4.260312-5 6.654602+1 4.265359-5 6.983675+1 4.271032-5 7.329688+1 4.277390-5 7.681660+1 4.283302-5 7.969500+1 4.289367-5 8.220505+1 4.292873-5 8.343512+1 4.301666-5 8.575921+1 4.304972-5 8.634018+1 4.312565-5 8.705208+1 4.318175-5 8.701934+1 4.323659-5 8.653622+1 4.330015-5 8.543939+1 4.335241-5 8.412978+1 4.342711-5 8.167621+1 4.349914-5 7.874203+1 4.357445-5 7.518558+1 4.364177-5 7.168020+1 4.371750-5 6.748363+1 4.381279-5 6.200650+1 4.390671-5 5.659703+1 4.403940-5 4.928554+1 4.433527-5 3.582838+1 4.443976-5 3.219869+1 4.454426-5 2.912841+1 4.460638-5 2.754482+1 4.470151-5 2.542957+1 4.479875-5 2.360438+1 4.488991-5 2.215224+1 4.497538-5 2.097917+1 4.513562-5 1.916338+1 4.527584-5 1.788029+1 4.544814-5 1.657481+1 4.561323-5 1.552157+1 4.577425-5 1.462646+1 4.682662-5 1.018869+1 4.705354-5 9.311842+0 4.748221-5 7.776321+0 4.759851-5 7.450607+0 4.771481-5 7.194809+0 4.774745-5 7.137607+0 4.784539-5 7.008100+0 4.788549-5 6.973981+0 4.794564-5 6.943775+0 4.800580-5 6.938508+0 4.805257-5 6.951137+0 4.812273-5 6.995961+0 4.819290-5 7.069070+0 4.830847-5 7.240579+0 4.842424-5 7.457888+0 4.868553-5 8.005178+0 4.881224-5 8.252851+0 4.920490-5 8.787731+0 4.937250-5 8.885821+0 4.948542-5 8.906609+0 4.961169-5 8.889333+0 4.972319-5 8.842664+0 4.982296-5 8.780474+0 5.005475-5 8.588185+0 5.044221-5 8.241321+0 5.066765-5 8.071190+0 5.192199-5 7.328611+0 5.324146-5 6.603865+0 5.392331-5 6.242356+0 5.470000-5 5.835639+0 5.550000-5 5.429051+0 5.774200-5 4.431677+0 5.850000-5 4.158067+0 5.920000-5 3.944153+0 6.000000-5 3.750344+0 6.068750-5 3.633211+0 6.144000-5 3.561843+0 6.237348-5 3.557736+0 6.313345-5 3.628531+0 6.371585-5 3.734731+0 6.480000-5 4.048185+0 6.576105-5 4.454382+0 6.628529-5 4.735223+0 6.769809-5 5.667729+0 6.899655-5 6.765506+0 7.099828-5 8.870935+0 7.244360-5 1.068514+1 7.372180-5 1.247196+1 7.517888-5 1.469155+1 7.650000-5 1.683277+1 7.730000-5 1.818675+1 7.900000-5 2.116663+1 7.950000-5 2.206759+1 8.104110-5 2.489836+1 8.222426-5 2.712127+1 8.317638-5 2.894788+1 8.511380-5 3.271261+1 8.640000-5 3.524098+1 8.738900-5 3.722283+1 9.015711-5 4.284926+1 9.332543-5 4.946580+1 9.660509-5 5.653832+1 1.000000-4 6.409275+1 1.011579-4 6.673848+1 1.060000-4 7.807028+1 1.109348-4 9.003983+1 1.161449-4 1.028529+2 1.208950-4 1.143217+2 1.249107-4 1.236671+2 1.292583-4 1.331727+2 1.326920-4 1.399938+2 1.369444-4 1.473773+2 1.380680-4 1.502378+2 1.389282-4 1.534612+2 1.406536-4 1.612790+2 1.416892-4 1.649493+2 1.431528-4 1.690732+2 1.442562-4 1.728449+2 1.457505-4 1.787162+2 1.468344-4 1.823909+2 1.478246-4 1.850626+2 1.525005-4 1.954908+2 1.562870-4 2.035065+2 1.619123-4 2.145440+2 1.685856-4 2.266647+2 1.745697-4 2.366784+2 1.800694-4 2.449113+2 1.841334-4 2.498878+2 1.863811-4 2.517667+2 1.882005-4 2.528027+2 1.891870-4 2.540602+2 1.897690-4 2.555869+2 1.907112-4 2.601272+2 1.911942-4 2.636469+2 1.921420-4 2.726183+2 1.929674-4 2.812702+2 1.934378-4 2.856902+2 1.939943-4 2.897632+2 1.942943-4 2.912840+2 1.947982-4 2.926638+2 1.955218-4 2.922449+2 1.965274-4 2.886220+2 1.977277-4 2.838446+2 1.985000-4 2.821400+2 1.991758-4 2.817354+2 2.006688-4 2.833733+2 2.033133-4 2.891393+2 2.065381-4 2.969615+2 2.101343-4 3.045374+2 2.180834-4 3.180933+2 2.288258-4 3.335809+2 2.376096-4 3.444507+2 2.477525-4 3.557186+2 2.621440-4 3.692676+2 2.748644-4 3.799892+2 2.900681-4 3.912832+2 3.072558-4 4.021201+2 3.349654-4 4.157600+2 3.543211-4 4.228238+2 3.715352-4 4.278482+2 3.934838-4 4.327364+2 4.402095-4 4.396274+2 4.717175-4 4.419360+2 5.034730-4 4.426632+2 5.651882-4 4.411764+2 6.010644-4 4.388194+2 6.393839-4 4.352060+2 6.797080-4 4.298153+2 7.187245-4 4.238605+2 7.602448-4 4.170595+2 8.004290-4 4.097815+2 8.486918-4 4.002478+2 8.887861-4 3.913708+2 9.369550-4 3.796185+2 9.835049-4 3.667180+2 1.027536-3 3.528788+2 1.064794-3 3.393831+2 1.100067-3 3.242958+2 1.129624-3 3.102042+2 1.155614-3 2.964132+2 1.179705-3 2.820768+2 1.202264-3 2.669137+2 1.221106-3 2.524951+2 1.237741-3 2.379524+2 1.251400-3 2.242928+2 1.261946-3 2.122895+2 1.272380-3 1.986840+2 1.281507-3 1.847894+2 1.289210-3 1.710450+2 1.295198-3 1.588675+2 1.298970-3 1.506124+2 1.303716-3 1.399424+2 1.310052-3 1.264441+2 1.312953-3 1.211644+2 1.315598-3 1.171643+2 1.316927-3 1.155137+2 1.318290-3 1.141014+2 1.319570-3 1.130515+2 1.321165-3 1.121407+2 1.322855-3 1.116784+2 1.325075-3 1.118796+2 1.327164-3 1.129101+2 1.329074-3 1.145472+2 1.330572-3 1.162735+2 1.332095-3 1.184020+2 1.334135-3 1.217910+2 1.336167-3 1.257090+2 1.339745-3 1.336762+2 1.349683-3 1.600799+2 1.357841-3 1.843808+2 1.369588-3 2.240322+2 1.375000-3 2.439287+2 1.379000-3 2.587511+2 1.383000-3 2.732553+2 1.387641-3 2.892299+2 1.393000-3 3.060599+2 1.399263-3 3.231948+2 1.406135-3 3.389571+2 1.414251-3 3.541750+2 1.423776-3 3.685768+2 1.431898-3 3.787389+2 1.442781-3 3.900935+2 1.454046-3 3.996730+2 1.465735-3 4.076921+2 1.496737-3 4.259122+2 1.503772-3 4.311519+2 1.517409-3 4.438135+2 1.543313-3 4.747329+2 1.550817-3 4.833418+2 1.559262-3 4.919883+2 1.570000-3 5.013568+2 1.582085-3 5.101453+2 1.594043-3 5.175545+2 1.615008-3 5.286674+2 1.633280-3 5.369860+2 1.673718-3 5.518039+2 1.717373-3 5.638821+2 1.767274-3 5.740540+2 1.845082-3 5.849303+2 1.936088-3 5.928218+2 2.024813-3 5.962736+2 2.173181-3 5.965602+2 2.300000-3 5.930821+2 2.478097-3 5.835504+2 2.663684-3 5.715165+2 2.954762-3 5.494995+2 3.320856-3 5.203470+2 3.765057-3 4.856215+2 4.215827-3 4.521969+2 4.623810-3 4.241768+2 5.147539-3 3.909113+2 5.583095-3 3.654442+2 6.022809-3 3.414933+2 6.501935-3 3.173757+2 7.018539-3 2.933644+2 7.559769-3 2.701420+2 8.175230-3 2.460106+2 8.508503-3 2.338028+2 9.112861-3 2.130175+2 9.398155-3 2.037143+2 9.903452-3 1.877883+2 1.031506-2 1.751196+2 1.064922-2 1.646831+2 1.089786-2 1.565273+2 1.109337-2 1.495998+2 1.118183-2 1.461916+2 1.125244-2 1.432831+2 1.132563-2 1.400197+2 1.138582-2 1.370591+2 1.144099-2 1.340262+2 1.148796-2 1.311202+2 1.154021-2 1.274701+2 1.161621-2 1.214657+2 1.170029-2 1.149251+2 1.173954-2 1.125786+2 1.177880-2 1.110713+2 1.180378-2 1.106422+2 1.183168-2 1.106839+2 1.186696-2 1.115013+2 1.190150-2 1.130259+2 1.195693-2 1.165186+2 1.205663-2 1.236740+2 1.211347-2 1.271679+2 1.217308-2 1.300707+2 1.224634-2 1.326871+2 1.234398-2 1.350359+2 1.245338-2 1.367335+2 1.258925-2 1.380198+2 1.277890-2 1.388872+2 1.305866-2 1.389436+2 1.327777-2 1.383566+2 1.370086-2 1.363347+2 1.425813-2 1.326947+2 1.490049-2 1.279175+2 1.565463-2 1.219872+2 1.683631-2 1.128269+2 1.821000-2 1.030253+2 1.963793-2 9.395254+1 2.161500-2 8.305273+1 2.384661-2 7.275201+1 2.599772-2 6.438394+1 2.894222-2 5.489398+1 3.248494-2 4.594708+1 3.643115-2 3.834799+1 4.021303-2 3.260761+1 5.612154-2 1.848020+1 7.242954-2 1.182769+1 9.126467-2 7.854548+0 1.093489-1 5.670275+0 1.312459-1 4.048870+0 1.630897-1 2.691239+0 2.166263-1 1.565462+0 3.022126-1 8.223021-1 4.244744-1 4.231708-1 6.360083-1 1.904668-1 1.175215+0 5.616062-2 3.543651+0 6.193316-3 1.070165+1 6.792874-4 3.231848+1 7.448484-5 9.760024+1 8.167130-6 2.947480+2 8.955083-7 8.901248+2 9.819054-8 3.162278+3 7.779854-9 1.000000+4 7.77985-10 3.162278+4 7.77985-11 1.000000+5 7.77985-12 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.726500-7 1.258900-6 1.383100-6 1.584900-6 2.192000-6 1.995300-6 3.474100-6 2.511900-6 5.506000-6 3.162300-6 8.726400-6 3.981100-6 1.383000-5 5.011900-6 2.192000-5 6.309600-6 3.474000-5 7.943300-6 5.505900-5 1.000000-5 8.726100-5 1.258900-5 1.383000-4 1.584900-5 2.191800-4 1.995300-5 3.473700-4 2.511900-5 5.505400-4 3.162300-5 8.724000-4 3.981100-5 1.382100-3 5.011900-5 2.189500-3 6.309600-5 3.469000-3 7.943300-5 5.496400-3 1.000000-4 8.705200-3 1.258900-4 1.378300-2 1.584900-4 2.179700-2 1.995300-4 3.445200-2 2.511900-4 5.435400-2 3.162300-4 8.554300-2 3.981100-4 1.340800-1 5.011900-4 2.086100-1 6.309600-4 3.211700-1 7.943300-4 4.871400-1 1.000000-3 7.238200-1 1.258900-3 1.047300+0 1.584900-3 1.469000+0 1.995300-3 1.994500+0 2.511900-3 2.629400+0 3.162300-3 3.376600+0 3.981100-3 4.230900+0 5.011900-3 5.197600+0 6.309600-3 6.287100+0 7.943300-3 7.500000+0 1.000000-2 8.813400+0 1.258900-2 1.018100+1 1.584900-2 1.151900+1 1.995300-2 1.273400+1 2.511900-2 1.377800+1 3.162300-2 1.456800+1 3.981100-2 1.521500+1 5.011900-2 1.554200+1 6.309600-2 1.560600+1 7.943300-2 1.544300+1 1.000000-1 1.505900+1 1.258900-1 1.452400+1 1.584900-1 1.383000+1 1.995300-1 1.303100+1 2.511900-1 1.216200+1 3.162300-1 1.126000+1 3.981100-1 1.035200+1 5.011900-1 9.456000+0 6.309600-1 8.584400+0 7.943300-1 7.747100+0 1.000000+0 6.948500+0 1.258900+0 6.194800+0 1.584900+0 5.488000+0 1.995300+0 4.831000+0 2.511900+0 4.226000+0 3.162300+0 3.674100+0 3.981100+0 3.175500+0 5.011900+0 2.729400+0 6.309600+0 2.333800+0 7.943300+0 1.985900+0 1.000000+1 1.682500+0 1.258900+1 1.419600+0 1.584900+1 1.193500+0 1.995300+1 1.000100+0 2.511900+1 8.354800-1 3.162300+1 6.960900-1 3.981100+1 5.785400-1 5.011900+1 4.797800-1 6.309600+1 3.970900-1 7.943300+1 3.280500-1 1.000000+2 2.705600-1 1.258900+2 2.228100-1 1.584900+2 1.832400-1 1.995300+2 1.505000-1 2.511900+2 1.234600-1 3.162300+2 1.011800-1 3.981100+2 8.282800-2 5.011900+2 6.774400-2 6.309600+2 5.535900-2 7.943300+2 4.520100-2 1.000000+3 3.687900-2 1.258900+3 3.006700-2 1.584900+3 2.449600-2 1.995300+3 1.994500-2 2.511900+3 1.623000-2 3.162300+3 1.319900-2 3.981100+3 1.072800-2 5.011900+3 8.715000-3 6.309600+3 7.076300-3 7.943300+3 5.742900-3 1.000000+4 4.658700-3 1.258900+4 3.777500-3 1.584900+4 3.061700-3 1.995300+4 2.480600-3 2.511900+4 2.009000-3 3.162300+4 1.626400-3 3.981100+4 1.316200-3 5.011900+4 1.064800-3 6.309600+4 8.611500-4 7.943300+4 6.962200-4 1.000000+5 5.627000-4 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159547-4 3.981072-4 3.976751-4 5.011872-4 5.005043-4 6.309573-4 6.298794-4 7.943282-4 7.926300-4 1.000000-3 9.973308-4 1.258925-3 1.254743-3 1.584893-3 1.578360-3 1.995262-3 1.985081-3 2.511886-3 2.496018-3 3.162278-3 3.137613-3 3.981072-3 3.942699-3 5.011872-3 4.952134-3 6.309573-3 6.216470-3 7.943282-3 7.798143-3 1.000000-2 9.774105-3 1.258925-2 1.223876-2 1.584893-2 1.530787-2 1.995262-2 1.912211-2 2.511886-2 2.385010-2 3.162278-2 2.969129-2 3.981072-2 3.688649-2 5.011872-2 4.572091-2 6.309573-2 5.651938-2 7.943282-2 6.964578-2 1.000000-1 8.558264-2 1.258925-1 1.047492-1 1.584893-1 1.278227-1 1.995262-1 1.554228-1 2.511886-1 1.883711-1 3.162278-1 2.275371-1 3.981072-1 2.739178-1 5.011872-1 3.287193-1 6.309573-1 3.932849-1 7.943282-1 4.693146-1 1.000000+0 5.587889-1 1.258925+0 6.641324-1 1.584893+0 7.885286-1 1.995262+0 9.355961-1 2.511886+0 1.110126+0 3.162278+0 1.317847+0 3.981072+0 1.565764+0 5.011872+0 1.862524+0 6.309573+0 2.218696+0 7.943282+0 2.647217+0 1.000000+1 3.163801+0 1.258925+1 3.787801+0 1.584893+1 4.542905+0 1.995262+1 5.458086+0 2.511886+1 6.569005+0 3.162278+1 7.918838+0 3.981072+1 9.561362+0 5.011872+1 1.156206+1 6.309573+1 1.400167+1 7.943282+1 1.697930+1 1.000000+2 2.061662+1 1.258925+2 2.506383+1 1.584893+2 3.050553+1 1.995262+2 3.716881+1 2.511886+2 4.533393+1 3.162278+2 5.534647+1 3.981072+2 6.763084+1 5.011872+2 8.271395+1 6.309573+2 1.012437+2 7.943282+2 1.240189+2 1.000000+3 1.520280+2 1.258925+3 1.864926+2 1.584893+3 2.289192+2 1.995262+3 2.811787+2 2.511886+3 3.455636+2 3.162278+3 4.249406+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739844-9 3.981072-5 4.341918-9 5.011872-5 6.881098-9 6.309573-5 1.090543-8 7.943282-5 1.728333-8 1.000000-4 2.738736-8 1.258925-4 4.339789-8 1.584893-4 6.874890-8 1.995262-4 1.089163-7 2.511886-4 1.724991-7 3.162278-4 2.730823-7 3.981072-4 4.321171-7 5.011872-4 6.829634-7 6.309573-4 1.077930-6 7.943282-4 1.698283-6 1.000000-3 2.669194-6 1.258925-3 4.182530-6 1.584893-3 6.533670-6 1.995262-3 1.018094-5 2.511886-3 1.586886-5 3.162278-3 2.466501-5 3.981072-3 3.837232-5 5.011872-3 5.973880-5 6.309573-3 9.310333-5 7.943282-3 1.451398-4 1.000000-2 2.258954-4 1.258925-2 3.504896-4 1.584893-2 5.410572-4 1.995262-2 8.305083-4 2.511886-2 1.268761-3 3.162278-2 1.931485-3 3.981072-2 2.924229-3 5.011872-2 4.397814-3 6.309573-2 6.576357-3 7.943282-2 9.787041-3 1.000000-1 1.441736-2 1.258925-1 2.114338-2 1.584893-1 3.066660-2 1.995262-1 4.410343-2 2.511886-1 6.281753-2 3.162278-1 8.869070-2 3.981072-1 1.241894-1 5.011872-1 1.724680-1 6.309573-1 2.376725-1 7.943282-1 3.250136-1 1.000000+0 4.412111-1 1.258925+0 5.947930-1 1.584893+0 7.963646-1 1.995262+0 1.059666+0 2.511886+0 1.401760+0 3.162278+0 1.844430+0 3.981072+0 2.415308+0 5.011872+0 3.149348+0 6.309573+0 4.090878+0 7.943282+0 5.296066+0 1.000000+1 6.836199+0 1.258925+1 8.801453+0 1.584893+1 1.130603+1 1.995262+1 1.449454+1 2.511886+1 1.854986+1 3.162278+1 2.370394+1 3.981072+1 3.024936+1 5.011872+1 3.855666+1 6.309573+1 4.909407+1 7.943282+1 6.245352+1 1.000000+2 7.938338+1 1.258925+2 1.008287+2 1.584893+2 1.279838+2 1.995262+2 1.623574+2 2.511886+2 2.058547+2 3.162278+2 2.608813+2 3.981072+2 3.304763+2 5.011872+2 4.184733+2 6.309573+2 5.297136+2 7.943282+2 6.703093+2 1.000000+3 8.479720+2 1.258925+3 1.072433+3 1.584893+3 1.355974+3 1.995262+3 1.714084+3 2.511886+3 2.166323+3 3.162278+3 2.737337+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 3.479900+7 8.035261-6 3.394201+7 8.120000-6 3.357229+7 8.120000-6 5.041249+7 8.317638-6 4.928451+7 8.413951-6 4.872545+7 8.609938-6 4.750586+7 8.709636-6 4.687770+7 8.912509-6 4.554311+7 9.100000-6 4.432656+7 9.225714-6 4.347330+7 9.500000-6 4.162895+7 9.660509-6 4.053693+7 9.930000-6 3.874776+7 1.000000-5 3.827384+7 1.035142-5 3.595979+7 1.071519-5 3.361662+7 1.120000-5 3.063051+7 1.122018-5 3.051157+7 1.165000-5 2.801474+7 1.174898-5 2.746824+7 1.216186-5 2.525097+7 1.230269-5 2.453530+7 1.273503-5 2.242622+7 1.290000-5 2.167083+7 1.333521-5 1.977311+7 1.350000-5 1.910016+7 1.400000-5 1.717820+7 1.420000-5 1.646990+7 1.462177-5 1.505720+7 1.496236-5 1.401616+7 1.531087-5 1.302125+7 1.570000-5 1.200315+7 1.610000-5 1.104019+7 1.659587-5 9.967580+6 1.698244-5 9.206680+6 1.770000-5 7.967430+6 1.786000-5 7.715855+6 1.786000-5 7.886504+6 1.798871-5 7.679069+6 1.800000-5 7.661145+6 1.825000-5 7.274252+6 1.845000-5 6.982799+6 1.867000-5 6.679483+6 1.883649-5 6.461159+6 1.890000-5 6.379064+6 1.910000-5 6.129024+6 1.927525-5 5.920243+6 1.932000-5 5.867989+6 1.949845-5 5.665316+6 1.970000-5 5.447223+6 1.985000-5 5.291966+6 2.000000-5 5.142437+6 2.018366-5 4.966786+6 2.035000-5 4.812251+6 2.047000-5 4.704652+6 2.062000-5 4.574538+6 2.070000-5 4.507054+6 2.078000-5 4.440344+6 2.095000-5 4.302794+6 2.113489-5 4.159477+6 2.162719-5 3.807341+6 2.175000-5 3.725689+6 2.186400-5 3.651962+6 2.187762-5 3.643285+6 2.195000-5 3.597023+6 2.202000-5 3.553022+6 2.210000-5 3.503605+6 2.217000-5 3.461111+6 2.222000-5 3.431177+6 2.227000-5 3.401586+6 2.232000-5 3.372334+6 2.238721-5 3.333540+6 2.245000-5 3.297569+6 2.252000-5 3.258075+6 2.257000-5 3.230250+6 2.262000-5 3.202741+6 2.269000-5 3.164752+6 2.275000-5 3.132667+6 2.281000-5 3.101017+6 2.289000-5 3.059479+6 2.297000-5 3.018684+6 2.304000-5 2.983585+6 2.315000-5 2.929530+6 2.326000-5 2.876785+6 2.344229-5 2.792163+6 2.377000-5 2.648314+6 2.400000-5 2.553317+6 2.420000-5 2.474456+6 2.426610-5 2.449115+6 2.442000-5 2.390894+6 2.460000-5 2.325171+6 2.477000-5 2.265362+6 2.483133-5 2.244297+6 2.493000-5 2.210794+6 2.511886-5 2.148554+6 2.530000-5 2.091122+6 2.550000-5 2.030165+6 2.570396-5 1.970534+6 2.595000-5 1.901826+6 2.620000-5 1.835431+6 2.650000-5 1.760026+6 2.680000-5 1.688976+6 2.710000-5 1.621988+6 2.740000-5 1.558789+6 2.770000-5 1.499127+6 2.800000-5 1.442770+6 2.840000-5 1.372398+6 2.851018-5 1.353872+6 2.885000-5 1.299096+6 2.935000-5 1.224369+6 2.985383-5 1.155558+6 3.040000-5 1.087557+6 3.100000-5 1.019904+6 3.162278-5 9.565990+5 3.235937-5 8.896983+5 3.311311-5 8.290209+5 3.349654-5 8.007335+5 3.388442-5 7.743002+5 3.470000-5 7.233586+5 3.570000-5 6.687145+5 3.589219-5 6.590112+5 3.650000-5 6.304095+5 3.672823-5 6.205488+5 3.770000-5 5.814448+5 3.900000-5 5.362646+5 4.027170-5 4.997530+5 4.120975-5 4.759105+5 4.168694-5 4.651762+5 4.315191-5 4.353829+5 4.415704-5 4.177171+5 4.466836-5 4.096242+5 4.518559-5 4.015568+5 4.623810-5 3.869704+5 4.650000-5 3.836433+5 4.677351-5 3.800847+5 4.800000-5 3.657498+5 4.850000-5 3.604701+5 5.000000-5 3.456607+5 5.011872-5 3.445908+5 5.055000-5 3.409548+5 5.055000-5 1.077125+6 5.080000-5 1.071544+6 5.132000-5 1.059885+6 5.132000-5 1.512752+6 5.150000-5 1.509867+6 5.188000-5 1.506456+6 5.240000-5 1.502248+6 5.308844-5 1.501609+6 5.330000-5 1.501351+6 5.370318-5 1.503588+6 5.400000-5 1.505426+6 5.470000-5 1.514424+6 5.480000-5 1.515991+6 5.550000-5 1.531960+6 5.559043-5 1.534434+6 5.623413-5 1.556303+6 5.630000-5 1.558932+6 5.690000-5 1.585694+6 5.700000-5 1.590826+6 5.754399-5 1.621273+6 5.774200-5 1.632593+6 5.821032-5 1.664561+6 5.850000-5 1.684537+6 5.920000-5 1.741026+6 5.950000-5 1.766889+6 5.956621-5 1.773032+6 6.000000-5 1.813990+6 6.030000-5 1.844063+6 6.110000-5 1.931097+6 6.150000-5 1.977827+6 6.165950-5 1.997641+6 6.237348-5 2.088742+6 6.309573-5 2.187717+6 6.382635-5 2.294832+6 6.400000-5 2.321040+6 6.531306-5 2.531476+6 6.606934-5 2.660428+6 6.650000-5 2.736597+6 6.683439-5 2.797172+6 6.800000-5 3.012174+6 6.839116-5 3.086191+6 6.850000-5 3.107080+6 6.918310-5 3.236360+6 6.950000-5 3.297887+6 7.000000-5 3.395043+6 7.079458-5 3.547498+6 7.161434-5 3.706509+6 7.244360-5 3.865171+6 7.300000-5 3.970966+6 7.328245-5 4.022719+6 7.400000-5 4.156663+6 7.413102-5 4.180758+6 7.450000-5 4.249124+6 7.500000-5 4.337962+6 7.585776-5 4.488554+6 7.650000-5 4.597334+6 7.673615-5 4.636212+6 7.730000-5 4.730025+6 7.800000-5 4.840654+6 7.900000-5 4.994728+6 7.950000-5 5.067301+6 8.035261-5 5.186660+6 8.080000-5 5.249930+6 8.128305-5 5.313148+6 8.222426-5 5.430779+6 8.300000-5 5.528861+6 8.317638-5 5.549386+6 8.511380-5 5.764563+6 8.738900-5 5.986372+6 8.800000-5 6.037568+6 9.015711-5 6.219037+6 9.332543-5 6.444899+6 9.660509-5 6.642683+6 1.000000-4 6.813209+6 1.011579-4 6.866868+6 1.047129-4 7.008433+6 1.060000-4 7.054187+6 1.080000-4 7.112932+6 1.096478-4 7.160863+6 1.100000-4 7.171056+6 1.109175-4 7.193765+6 1.150000-4 7.268303+6 1.161449-4 7.284498+6 1.190000-4 7.307517+6 1.202264-4 7.312580+6 1.205000-4 7.313692+6 1.230269-4 7.311073+6 1.240000-4 7.310074+6 1.244515-4 7.307871+6 1.288250-4 7.265909+6 1.303167-4 7.239978+6 1.333521-4 7.188398+6 1.350000-4 7.148137+6 1.380384-4 7.075666+6 1.396368-4 7.033633+6 1.437800-4 6.909094+6 1.437800-4 7.218503+6 1.445440-4 7.198052+6 1.462177-4 7.148959+6 1.489500-4 7.060482+6 1.489500-4 7.171313+6 1.519300-4 7.088279+6 1.530000-4 7.056998+6 1.531087-4 7.053800+6 1.540000-4 7.027757+6 1.545000-4 7.011674+6 1.560800-4 6.960981+6 1.580000-4 6.900066+6 1.603245-4 6.827475+6 1.621810-4 6.767010+6 1.635000-4 6.721476+6 1.690000-4 6.538837+6 1.698244-4 6.512574+6 1.720000-4 6.441121+6 1.737801-4 6.381431+6 1.800000-4 6.179702+6 1.819701-4 6.116217+6 1.820000-4 6.115267+6 1.883649-4 5.908511+6 1.905461-4 5.840996+6 1.927525-4 5.771528+6 1.949845-4 5.698729+6 1.950000-4 5.698231+6 2.018366-4 5.484786+6 2.020000-4 5.479710+6 2.020200-4 5.479077+6 2.020200-4 5.690714+6 2.040000-4 5.629795+6 2.041738-4 5.624188+6 2.089296-4 5.475673+6 2.137962-4 5.330111+6 2.162719-4 5.256842+6 2.187762-4 5.179542+6 2.230000-4 5.054518+6 2.238721-4 5.029281+6 2.260000-4 4.968475+6 2.264644-4 4.955252+6 2.290868-4 4.879724+6 2.300000-4 4.853732+6 2.330000-4 4.767103+6 2.350000-4 4.710789+6 2.371374-4 4.651552+6 2.398833-4 4.576808+6 2.426610-4 4.503543+6 2.454709-4 4.429284+6 2.483133-4 4.354125+6 2.500000-4 4.310665+6 2.540973-4 4.207383+6 2.600160-4 4.065268+6 2.630268-4 3.995083+6 2.650000-4 3.949762+6 2.660725-4 3.924876+6 2.691535-4 3.854589+6 2.770000-4 3.685621+6 2.786121-4 3.652154+6 2.800000-4 3.623607+6 2.851018-4 3.520147+6 2.884032-4 3.454242+6 2.917427-4 3.389779+6 2.951209-4 3.325578+6 3.019952-4 3.201335+6 3.054921-4 3.140162+6 3.126079-4 3.017010+6 3.200000-4 2.897180+6 3.235937-4 2.841586+6 3.273407-4 2.784040+6 3.280000-4 2.774118+6 3.311311-4 2.726791+6 3.388442-4 2.615447+6 3.427678-4 2.561458+6 3.467369-4 2.508715+6 3.507519-4 2.456690+6 3.548134-4 2.405250+6 3.589219-4 2.354061+6 3.630781-4 2.303981+6 3.715352-4 2.206950+6 3.801894-4 2.113575+6 3.850000-4 2.063884+6 3.890451-4 2.023372+6 3.935501-4 1.979082+6 4.100000-4 1.828567+6 4.120975-4 1.810620+6 4.168694-4 1.770729+6 4.216965-4 1.731374+6 4.265795-4 1.691950+6 4.365158-4 1.616031+6 4.500000-4 1.520949+6 4.518559-4 1.508525+6 4.600000-4 1.454836+6 4.731513-4 1.373123+6 4.786301-4 1.341068+6 4.841724-4 1.309827+6 4.897788-4 1.279379+6 4.954502-4 1.249427+6 5.011872-4 1.219987+6 5.150000-4 1.152573+6 5.308844-4 1.081684+6 5.370318-4 1.055808+6 5.432503-4 1.030598+6 5.500000-4 1.004095+6 5.559043-4 9.815057+5 5.688529-4 9.344064+5 5.754399-4 9.117237+5 5.888437-4 8.676897+5 5.956621-4 8.465375+5 6.000000-4 8.333828+5 6.025596-4 8.257678+5 6.095369-4 8.054510+5 6.237348-4 7.659826+5 6.309573-4 7.468784+5 6.531306-4 6.924495+5 6.606934-4 6.752696+5 6.700000-4 6.547725+5 6.839116-4 6.256527+5 7.161434-4 5.647763+5 7.244360-4 5.505018+5 7.300000-4 5.412284+5 7.328245-4 5.365986+5 7.413102-4 5.229400+5 7.852356-4 4.590587+5 8.128305-4 4.246272+5 8.200000-4 4.162482+5 8.222426-4 4.136407+5 8.609938-4 3.720985+5 9.015711-4 3.348210+5 9.120108-4 3.260154+5 9.440609-4 3.008885+5 9.549926-4 2.929376+5 9.772372-4 2.776550+5 9.885531-4 2.703327+5 1.000000-3 2.631163+5 1.011579-3 2.561030+5 1.023293-3 2.492867+5 1.035142-3 2.426218+5 1.083927-3 2.176838+5 1.096478-3 2.118696+5 1.109175-3 2.061456+5 1.122018-3 2.005844+5 1.148154-3 1.899317+5 1.150000-3 1.892078+5 1.161449-3 1.847823+5 1.202264-3 1.701887+5 1.216186-3 1.655528+5 1.230269-3 1.610365+5 1.244515-3 1.566494+5 1.273503-3 1.482199+5 1.328300-3 1.338859+5 1.328300-3 4.914399+5 1.331600-3 5.086532+5 1.333521-3 5.162465+5 1.335900-3 5.258712+5 1.340500-3 5.383626+5 1.342000-3 5.418249+5 1.350000-3 5.502301+5 1.353000-3 5.527160+5 1.365000-3 5.566376+5 1.365700-3 5.566543+5 1.365700-3 6.331243+5 1.365820-3 6.349342+5 1.366100-3 6.419750+5 1.366400-3 6.494913+5 1.366700-3 6.569286+5 1.367000-3 6.642560+5 1.367300-3 6.714135+5 1.367600-3 6.783310+5 1.367850-3 6.839573+5 1.368200-3 6.915061+5 1.368500-3 6.976338+5 1.368900-3 7.053341+5 1.369350-3 7.133457+5 1.369700-3 7.190749+5 1.370200-3 7.264780+5 1.370650-3 7.323700+5 1.371000-3 7.364794+5 1.371500-3 7.416629+5 1.372200-3 7.477121+5 1.373000-3 7.531143+5 1.373300-3 7.547727+5 1.375000-3 7.588699+5 1.376500-3 7.621427+5 1.380384-3 7.642930+5 1.381500-3 7.649192+5 1.383000-3 7.652214+5 1.385000-3 7.648345+5 1.393000-3 7.611616+5 1.395000-3 7.598839+5 1.396368-3 7.586259+5 1.404000-3 7.516816+5 1.412538-3 7.432081+5 1.419000-3 7.357074+5 1.430000-3 7.245027+5 1.445000-3 7.077695+5 1.462177-3 6.887605+5 1.470000-3 6.803278+5 1.500000-3 6.474639+5 1.519200-3 6.267876+5 1.519200-3 7.117635+5 1.531087-3 6.986657+5 1.548817-3 6.796391+5 1.566751-3 6.611537+5 1.570000-3 6.578821+5 1.630000-3 6.014528+5 1.640590-3 5.920650+5 1.659587-3 5.757224+5 1.678804-3 5.598434+5 1.698244-3 5.444100+5 1.737801-3 5.146507+5 1.757924-3 5.004011+5 1.840772-3 4.472769+5 1.850000-3 4.418603+5 1.883649-3 4.228537+5 1.905461-3 4.111516+5 1.927525-3 3.997277+5 1.949845-3 3.885004+5 1.972423-3 3.775966+5 2.070000-3 3.351179+5 2.113489-3 3.183492+5 2.137962-3 3.092917+5 2.162719-3 3.004975+5 2.187762-3 2.919158+5 2.213095-3 2.835802+5 2.290868-3 2.600039+5 2.300000-3 2.573886+5 2.317395-3 2.524725+5 2.426610-3 2.244224+5 2.454709-3 2.179202+5 2.511886-3 2.054917+5 2.540973-3 1.995522+5 2.600160-3 1.881184+5 2.691535-3 1.721963+5 2.722701-3 1.671991+5 2.754229-3 1.623477+5 2.800000-3 1.555230+5 2.851018-3 1.483600+5 2.951209-3 1.355863+5 3.054921-3 1.239281+5 3.090295-3 1.202332+5 3.126079-3 1.166516+5 3.162278-3 1.131795+5 3.235937-3 1.065472+5 3.349654-3 9.728184+4 3.427678-3 9.156245+4 3.467369-3 8.883217+4 3.507519-3 8.618555+4 3.548134-3 8.360624+4 3.589219-3 8.108049+4 3.672823-3 7.624011+4 3.715352-3 7.393214+4 3.801894-3 6.952639+4 3.845918-3 6.742356+4 3.935501-3 6.341005+4 4.027170-3 5.964214+4 4.073803-3 5.784527+4 4.120975-3 5.609745+4 4.216965-3 5.271922+4 4.265795-3 5.110915+4 4.365158-3 4.803626+4 4.466836-3 4.514959+4 4.518559-3 4.377378+4 4.570882-3 4.244104+4 4.623810-3 4.114996+4 4.677351-3 3.988757+4 4.786301-3 3.746399+4 4.841724-3 3.630947+4 4.954502-3 3.410705+4 5.128614-3 3.105682+4 5.188000-3 3.010293+4 5.300000-3 2.841231+4 5.308844-3 2.828357+4 5.432503-3 2.656553+4 5.495409-3 2.573798+4 5.623413-3 2.416020+4 5.821032-3 2.197699+4 5.888437-3 2.129528+4 6.025596-3 1.999640+4 6.165950-3 1.877791+4 6.237348-3 1.819345+4 6.309573-3 1.762714+4 6.382635-3 1.707549+4 6.606934-3 1.551912+4 6.683439-3 1.503343+4 6.760830-3 1.456336+4 7.000000-3 1.323374+4 7.079458-3 1.282676+4 7.328245-3 1.165742+4 7.498942-3 1.093298+4 7.673615-3 1.025481+4 7.762471-3 9.932120+3 8.035261-3 9.025376+3 8.317638-3 8.196632+3 8.413951-3 7.937722+3 8.511380-3 7.686559+3 8.609938-3 7.442343+3 8.810489-3 6.977543+3 9.225714-3 6.135442+3 9.332543-3 5.941612+3 9.549926-3 5.569575+3 9.660509-3 5.392545+3 9.772372-3 5.221094+3 9.800000-3 5.179911+3 9.885531-3 5.054921+3 1.011579-2 4.737139+3 1.023293-2 4.585999+3 1.059254-2 4.161657+3 1.071519-2 4.029281+3 1.083927-2 3.901220+3 1.096478-2 3.776283+3 1.122018-2 3.538487+3 1.150000-2 3.300763+3 1.174898-2 3.106221+3 1.182900-2 3.047053+3 1.182900-2 2.228342+4 1.202264-2 2.143934+4 1.203000-2 2.140817+4 1.216186-2 2.082302+4 1.258925-2 1.907311+4 1.273503-2 1.850851+4 1.303167-2 1.742916+4 1.318257-2 1.691344+4 1.330000-2 1.652659+4 1.350000-2 1.590274+4 1.364583-2 1.546802+4 1.412538-2 1.414983+4 1.445440-2 1.333435+4 1.450000-2 1.322654+4 1.479108-2 1.254359+4 1.513561-2 1.179556+4 1.531087-2 1.143852+4 1.584893-2 1.043098+4 1.603245-2 1.011526+4 1.640590-2 9.512029+3 1.737801-2 8.157197+3 1.757924-2 7.910092+3 1.798871-2 7.438205+3 1.840772-2 6.994490+3 1.862087-2 6.782698+3 1.883649-2 6.572278+3 1.905461-2 6.368359+3 1.927525-2 6.170722+3 2.041738-2 5.271035+3 2.065380-2 5.107340+3 2.113489-2 4.795086+3 2.213095-2 4.226742+3 2.264644-2 3.968425+3 2.290868-2 3.845236+3 2.344229-2 3.610179+3 2.400000-2 3.380577+3 2.426610-2 3.277881+3 2.483133-2 3.073397+3 2.600160-2 2.701927+3 2.630268-2 2.616316+3 2.660725-2 2.533424+3 2.691535-2 2.453163+3 2.754229-2 2.300201+3 2.818383-2 2.156748+3 2.884032-2 2.022102+3 2.917427-2 1.957973+3 3.054921-2 1.717287+3 3.162278-2 1.556429+3 3.235937-2 1.457668+3 3.349654-2 1.321170+3 3.388442-2 1.278529+3 3.427678-2 1.237256+3 3.467369-2 1.197317+3 3.548134-2 1.121261+3 3.630781-2 1.050043+3 3.672823-2 1.015669+3 3.715352-2 9.824208+2 3.890451-2 8.599790+2 3.935501-2 8.318351+2 4.120975-2 7.280819+2 4.216965-2 6.811633+2 4.315191-2 6.372671+2 4.365158-2 6.163930+2 4.466836-2 5.766737+2 4.500000-2 5.644660+2 4.677351-2 5.040463+2 4.897788-2 4.403938+2 4.954502-2 4.257800+2 5.069907-2 3.979879+2 5.128614-2 3.847805+2 5.432503-2 3.250405+2 5.495409-2 3.142563+2 5.559043-2 3.038297+2 5.623413-2 2.936421+2 6.000000-2 2.422964+2 6.025596-2 2.392572+2 6.237348-2 2.159679+2 6.606934-2 1.820840+2 6.839116-2 1.643641+2 7.000000-2 1.534073+2 7.413102-2 1.292035+2 7.498942-2 1.248246+2 7.585776-2 1.205943+2 7.762471-2 1.125592+2 8.035261-2 1.014997+2 8.511380-2 8.543049+1 9.015711-2 7.189608+1 9.120108-2 6.945840+1 9.225714-2 6.710342+1 9.440609-2 6.260284+1 9.549926-2 6.046688+1 1.000000-1 5.262779+1 1.023293-1 4.909821+1 1.071519-1 4.273410+1 1.083927-1 4.127641+1 1.109175-1 3.850866+1 1.174898-1 3.237192+1 1.216186-1 2.917028+1 1.230269-1 2.817505+1 1.244515-1 2.721381+1 1.273503-1 2.538869+1 1.333521-1 2.209780+1 1.396368-1 1.923361+1 1.412538-1 1.857756+1 1.428894-1 1.794397+1 1.462177-1 1.674088+1 1.496236-1 1.561847+1 1.513561-1 1.508585+1 1.566751-1 1.359460+1 1.584893-1 1.313104+1 1.621810-1 1.225081+1 1.659587-1 1.142961+1 1.717908-1 1.029995+1 1.737801-1 9.948772+0 1.757924-1 9.612840+0 1.840772-1 8.378919+0 1.862087-1 8.096266+0 1.927525-1 7.304256+0 1.949845-1 7.057875+0 1.972423-1 6.819813+0 1.995262-1 6.589789+0 2.000000-1 6.543373+0 2.065380-1 5.945290+0 2.113489-1 5.551046+0 2.162719-1 5.182948+0 2.213095-1 4.839268+0 2.238721-1 4.676084+0 2.290868-1 4.369887+0 2.317395-1 4.224395+0 2.344229-1 4.083762+0 2.371374-1 3.948004+0 2.398833-1 3.816762+0 2.511886-1 3.334001+0 2.570396-1 3.116041+0 2.600160-1 3.012465+0 2.630268-1 2.912345+0 2.722701-1 2.635484+0 2.754229-1 2.549173+0 2.786121-1 2.465835+0 2.818383-1 2.385221+0 2.851018-1 2.307249+0 2.884032-1 2.231823+0 2.917427-1 2.158873+0 3.019952-1 1.954020+0 3.054921-1 1.891158+0 3.090295-1 1.830318+0 3.162278-1 1.714448+0 3.198895-1 1.659303+0 3.273407-1 1.554476+0 3.388442-1 1.409524+0 3.427678-1 1.364277+0 3.467369-1 1.321273+0 3.507519-1 1.279629+0 3.548134-1 1.239300+0 3.630781-1 1.162415+0 3.715352-1 1.090453+0 3.801894-1 1.022946+0 3.845918-1 9.907800-1 3.890451-1 9.602346-1 4.027170-1 8.741382-1 4.073803-1 8.471904-1 4.168694-1 7.958794-1 4.216965-1 7.714038-1 4.265795-1 7.476810-1 4.466836-1 6.616101-1 4.518559-1 6.416884-1 4.570882-1 6.224080-1 4.623810-1 6.037164-1 4.677351-1 5.855860-1 4.731513-1 5.679999-1 4.841724-1 5.351507-1 4.954502-1 5.042019-1 5.000000-1 4.924176-1 5.011872-1 4.894059-1 5.069907-1 4.750781-1 5.188000-1 4.476800-1 5.248075-1 4.345792-1 5.308844-1 4.221797-1 5.432503-1 3.984317-1 5.495409-1 3.870645-1 5.559043-1 3.760218-1 5.623413-1 3.653202-1 5.688529-1 3.549274-1 5.754399-1 3.448305-1 5.821032-1 3.350208-1 5.888437-1 3.257388-1 6.025596-1 3.079412-1 6.095369-1 2.994106-1 6.165950-1 2.911374-1 6.237348-1 2.830965-1 6.382635-1 2.676748-1 6.456542-1 2.604836-1 6.606935-1 2.466754-1 6.683439-1 2.400484-1 6.760830-1 2.336161-1 6.839117-1 2.273591-1 6.918310-1 2.212696-1 6.998420-1 2.153439-1 7.244360-1 1.990534-1 7.328245-1 1.939021-1 7.413102-1 1.888984-1 7.498942-1 1.840262-1 7.673615-1 1.746565-1 7.852356-1 1.660271-1 7.943282-1 1.618737-1 8.035261-1 1.578242-1 8.128305-1 1.538760-1 8.222427-1 1.500380-1 8.413951-1 1.426507-1 8.511380-1 1.390946-1 8.609938-1 1.357113-1 8.912509-1 1.260477-1 9.015711-1 1.229921-1 9.225714-1 1.171049-1 9.332543-1 1.142678-1 9.440609-1 1.114995-1 9.549926-1 1.088948-1 9.660509-1 1.063513-1 9.772372-1 1.038761-1 9.885531-1 1.014598-1 1.000000+0 9.910018-2 1.011579+0 9.679548-2 1.023293+0 9.454425-2 1.035142+0 9.239968-2 1.047129+0 9.030361-2 1.059254+0 8.825543-2 1.083927+0 8.429735-2 1.096478+0 8.238991-2 1.109175+0 8.052554-2 1.122018+0 7.870448-2 1.148154+0 7.518506-2 1.161449+0 7.354593-2 1.174898+0 7.194256-2 1.188600+0 7.036328-2 1.202264+0 6.884037-2 1.216186+0 6.734433-2 1.230269+0 6.588082-2 1.244515+0 6.445003-2 1.250000+0 6.391175-2 1.258925+0 6.307502-2 1.303167+0 5.916630-2 1.318257+0 5.791803-2 1.333521+0 5.669614-2 1.348963+0 5.550352-2 1.364583+0 5.433617-2 1.380384+0 5.319398-2 1.396368+0 5.207587-2 1.412538+0 5.098120-2 1.428894+0 4.994245-2 1.445440+0 4.892482-2 1.479108+0 4.695144-2 1.513561+0 4.506333-2 1.531087+0 4.414803-2 1.584893+0 4.151347-2 1.659587+0 3.835104-2 1.698244+0 3.686629-2 1.717908+0 3.614612-2 1.778279+0 3.406897-2 1.798871+0 3.342660-2 1.840772+0 3.217798-2 1.862087+0 3.157338-2 1.883649+0 3.098014-2 1.905461+0 3.039846-2 1.972423+0 2.871830-2 2.044000+0 2.713844-2 2.065380+0 2.669527-2 2.089296+0 2.621337-2 2.113489+0 2.574021-2 2.137962+0 2.527585-2 2.264644+0 2.307676-2 2.344229+0 2.188684-2 2.371374+0 2.150515-2 2.398833+0 2.113013-2 2.426610+0 2.076169-2 2.454709+0 2.039987-2 2.600160+0 1.868321-2 2.691535+0 1.775317-2 2.722701+0 1.745448-2 2.754229+0 1.716081-2 2.786121+0 1.687213-2 2.818383+0 1.658846-2 3.000000+0 1.513087-2 3.054921+0 1.474608-2 3.090295+0 1.450781-2 3.126079+0 1.427338-2 3.162278+0 1.404276-2 3.198895+0 1.381602-2 3.467369+0 1.232807-2 3.548134+0 1.194559-2 3.589219+0 1.175942-2 3.630781+0 1.157615-2 3.672823+0 1.139576-2 3.715352+0 1.121828-2 4.073803+0 9.894446-3 4.168694+0 9.597679-3 4.216965+0 9.453083-3 4.265795+0 9.310666-3 4.315191+0 9.170407-3 4.365158+0 9.032345-3 4.786301+0 8.000091-3 4.897788+0 7.767916-3 4.954502+0 7.654696-3 5.011872+0 7.543128-3 5.069907+0 7.433185-3 5.128614+0 7.324856-3 5.188000+0 7.218168-3 5.688529+0 6.418743-3 5.821032+0 6.238409-3 5.956621+0 6.063641-3 6.025596+0 5.978100-3 6.095369+0 5.893768-3 6.165950+0 5.810633-3 6.237348+0 5.728716-3 6.918310+0 5.041518-3 7.079458+0 4.904204-3 7.244360+0 4.770991-3 7.328245+0 4.705747-3 7.413102+0 4.641397-3 7.498942+0 4.577931-3 7.673615+0 4.453654-3 8.511380+0 3.934861-3 8.709636+0 3.830701-3 9.015711+0 3.679986-3 9.120108+0 3.631077-3 9.225714+0 3.582818-3 9.332543+0 3.535205-3 9.549926+0 3.441911-3 1.071519+1 3.011103-3 1.100000+1 2.923013-3 1.135011+1 2.821424-3 1.148154+1 2.784989-3 1.161449+1 2.749025-3 1.174898+1 2.713528-3 1.202264+1 2.643938-3 1.364583+1 2.291884-3 1.380384+1 2.262304-3 1.412538+1 2.205551-3 1.462177+1 2.123254-3 1.479108+1 2.096510-3 1.513561+1 2.044028-3 1.531087+1 2.018283-3 1.600000+1 1.922830-3 1.778279+1 1.711793-3 1.800000+1 1.689074-3 1.840772+1 1.648656-3 1.862087+1 1.628294-3 1.972423+1 1.530197-3 2.018366+1 1.492634-3 2.089296+1 1.438010-3 2.137962+1 1.402712-3 2.213095+1 1.351403-3 2.400000+1 1.238214-3 2.426610+1 1.223571-3 2.483133+1 1.194108-3 2.511886+1 1.179669-3 2.722701+1 1.083370-3 2.786121+1 1.057329-3 2.800000+1 1.051792-3 2.985383+1 9.829022-4 3.126079+1 9.362210-4 3.162278+1 9.249045-4 3.349654+1 8.703437-4 3.548134+1 8.190012-4 3.589219+1 8.091021-4 3.630781+1 7.994815-4 3.890451+1 7.441999-4 3.981072+1 7.266354-4 4.027170+1 7.180095-4 4.518559+1 6.371851-4 4.841724+1 5.931276-4 4.897788+1 5.860884-4 4.954502+1 5.791327-4 5.308844+1 5.390997-4 5.688529+1 5.018340-4 5.754399+1 4.958784-4 5.821032+1 4.900677-4 6.237348+1 4.566459-4 6.531306+1 4.356408-4 7.762471+1 3.651216-4 8.413951+1 3.362403-4 8.609938+1 3.284176-4 9.225714+1 3.060254-4 9.885531+1 2.851600-4 1.011579+2 2.785261-4 1.023293+2 2.752986-4 1.122018+2 2.507906-4 1.216186+2 2.311425-4 1.548817+2 1.809615-4 1.678804+2 1.667846-4 1.717908+2 1.629424-4 1.840772+2 1.519387-4 1.972423+2 1.416781-4 2.018366+2 1.384143-4 2.041738+2 1.368196-4 2.238721+2 1.247056-4 2.426610+2 1.149890-4 3.090295+2 9.015044-5 3.349654+2 8.312637-5 3.427678+2 8.122206-5 3.672823+2 7.576701-5 3.935501+2 7.067833-5 4.027170+2 6.905923-5 4.073803+2 6.826726-5 4.466836+2 6.224994-5 9.660509+2 2.874240-5 1.230269+3 2.255953-5 1.333521+3 2.080972-5 1.364583+3 2.033519-5 2.917427+3 9.498590-6 3.126079+3 8.863508-6 3.198895+3 8.661394-6 3.235937+3 8.562229-6 3.548134+3 7.808721-6 1.000000+5 2.769024-7 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 7.810000-6 8.120000-6 7.810000-6 8.120000-6 7.913555-6 1.786000-5 7.922243-6 1.786000-5 8.137276-6 1.970000-5 8.010180-6 2.113489-5 7.952603-6 2.281000-5 7.937397-6 2.442000-5 7.981269-6 2.595000-5 8.080761-6 2.740000-5 8.228766-6 2.885000-5 8.428575-6 3.040000-5 8.696430-6 3.235937-5 9.105903-6 3.470000-5 9.673770-6 4.120975-5 1.138929-5 4.315191-5 1.186354-5 4.518559-5 1.231318-5 4.677351-5 1.263130-5 4.850000-5 1.294068-5 5.055000-5 1.325638-5 5.055000-5 2.371918-5 5.132000-5 2.376723-5 5.132000-5 2.523286-5 5.559043-5 2.566621-5 6.400000-5 2.696030-5 6.850000-5 2.745212-5 7.328245-5 2.776418-5 8.080000-5 2.800823-5 9.660509-5 2.819367-5 1.350000-4 2.831677-5 1.437800-4 2.832405-5 1.437800-4 2.939242-5 1.489500-4 2.946368-5 1.489500-4 2.984018-5 1.883649-4 3.089222-5 2.020200-4 3.130306-5 2.020200-4 3.260180-5 2.350000-4 3.380588-5 2.917427-4 3.542995-5 3.630781-4 3.714205-5 4.365158-4 3.863273-5 5.370318-4 4.034772-5 6.309573-4 4.169573-5 7.413102-4 4.303184-5 8.609938-4 4.424746-5 1.035142-3 4.568357-5 1.244515-3 4.704719-5 1.328300-3 4.750633-5 1.328300-3 6.966333-5 1.335900-3 7.032252-5 1.342000-3 7.063643-5 1.365700-3 7.115527-5 1.365700-3 7.214915-5 1.369350-3 7.300008-5 1.373300-3 7.338821-5 1.396368-3 7.365128-5 1.519200-3 7.382183-5 1.519200-3 7.833328-5 1.757924-3 7.915888-5 2.691535-3 8.148854-5 3.845918-3 8.368326-5 5.308844-3 8.583750-5 7.328245-3 8.806989-5 9.885531-3 9.017004-5 1.182900-2 9.140517-5 1.182900-2 1.107463-4 2.065380-2 1.115187-4 4.500000-2 1.121074-4 1.566751-1 1.124899-4 5.188000+0 1.126232-4 1.000000+5 1.126226-4 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 0.0 5.132000-5 0.0 5.132000-5 2.27737-10 5.240000-5 2.32596-10 5.330000-5 2.35441-10 5.400000-5 2.36894-10 5.630000-5 2.39160-10 5.850000-5 2.42962-10 6.110000-5 2.49014-10 6.531306-5 2.60019-10 6.918310-5 2.68809-10 7.079458-5 2.72011-10 7.413102-5 2.77259-10 7.673615-5 2.80530-10 8.035261-5 2.83956-10 8.511380-5 2.87255-10 9.332543-5 2.90684-10 1.047129-4 2.93581-10 1.202264-4 2.95933-10 1.437800-4 2.98315-10 1.437800-4 4.77701-10 1.489500-4 4.89442-10 1.489500-4 5.60989-10 1.580000-4 6.04292-10 1.720000-4 6.64248-10 1.820000-4 7.13177-10 2.020200-4 8.19639-10 2.020200-4 9.75013-10 2.187762-4 1.078491-9 2.290868-4 1.138374-9 2.398833-4 1.196752-9 2.630268-4 1.312315-9 2.800000-4 1.392024-9 2.951209-4 1.459972-9 3.235937-4 1.579519-9 3.589219-4 1.716584-9 3.935501-4 1.841052-9 4.365158-4 1.981279-9 4.897788-4 2.138683-9 5.370318-4 2.265850-9 5.888437-4 2.392430-9 6.531306-4 2.533943-9 7.244360-4 2.674291-9 7.852356-4 2.780956-9 8.609938-4 2.900381-9 9.772372-4 3.058375-9 1.109175-3 3.208610-9 1.244515-3 3.337680-9 1.328300-3 3.407390-9 1.328300-3 1.380136-5 1.331600-3 1.400593-5 1.335900-3 1.420567-5 1.342000-3 1.439673-5 1.353000-3 1.457471-5 1.365700-3 1.470366-5 1.365700-3 1.544542-5 1.367850-3 1.585981-5 1.369700-3 1.611392-5 1.371500-3 1.626799-5 1.373300-3 1.635725-5 1.376500-3 1.641872-5 1.385000-3 1.648636-5 1.412538-3 1.655830-5 1.519200-3 1.658960-5 1.519200-3 1.686376-5 2.600160-3 1.687015-5 8.317638-3 1.663546-5 1.182900-2 1.655237-5 1.182900-2 5.238707-3 1.531087-2 5.291788-3 2.113489-2 5.334383-3 3.349654-2 5.371640-3 6.025596-2 5.395466-3 2.000000-1 5.407782-3 1.216186+2 5.412135-3 1.000000+5 5.412158-3 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.810000-6 0.0 8.120000-6 3.100000-7 8.120000-6 2.064451-7 1.610000-5 8.178251-6 1.786000-5 9.937757-6 1.786000-5 9.722724-6 2.000000-5 1.200508-5 2.227000-5 1.433419-5 2.442000-5 1.643873-5 2.680000-5 1.863884-5 2.935000-5 2.084092-5 3.162278-5 2.267923-5 3.470000-5 2.502623-5 4.168694-5 3.017694-5 4.650000-5 3.392043-5 5.055000-5 3.729362-5 5.055000-5 2.683082-5 5.132000-5 2.755277-5 5.132000-5 2.608691-5 5.559043-5 2.992398-5 6.400000-5 3.703945-5 6.918310-5 4.167509-5 7.673615-5 4.883375-5 9.332543-5 6.515548-5 1.437800-4 1.154556-4 1.437800-4 1.143871-4 1.489500-4 1.194858-4 1.489500-4 1.191093-4 2.020200-4 1.707161-4 2.020200-4 1.694172-4 3.054921-4 2.697086-4 5.754399-4 5.345082-4 1.273503-3 1.226290-3 1.328300-3 1.280790-3 1.328300-3 1.244835-3 1.365700-3 1.279841-3 1.365700-3 1.278105-3 1.385000-3 1.294932-3 1.519200-3 1.428789-3 1.519200-3 1.424003-3 1.182900-2 1.172104-2 1.182900-2 6.479546-3 1.640590-2 1.099271-2 3.672823-2 3.123850-2 1.000000+5 9.999999+4 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.182900-2 1.923637+4 1.203000-2 1.850304+4 1.258925-2 1.651799+4 1.330000-2 1.434076+4 1.450000-2 1.151702+4 1.862087-2 5.947438+3 2.344229-2 3.180534+3 2.917427-2 1.730759+3 3.630781-2 9.305174+2 4.500000-2 5.011100+2 5.559043-2 2.700682+2 7.000000-2 1.364980+2 9.225714-2 5.975622+1 1.737801-1 8.865030+0 2.238721-1 4.167083+0 2.630268-1 2.595422+0 3.019952-1 1.741405+0 3.427678-1 1.215871+0 3.845918-1 8.830353-1 4.265795-1 6.664106-1 4.731513-1 5.062832-1 5.248075-1 3.873712-1 5.821032-1 2.986423-1 6.382635-1 2.386150-1 6.998420-1 1.919743-1 7.673615-1 1.557342-1 8.511380-1 1.240613-1 9.440609-1 9.944985-2 1.023293+0 8.431907-2 1.148154+0 6.704576-2 1.250000+0 5.699892-2 1.412538+0 4.546922-2 1.584893+0 3.702393-2 1.778279+0 3.038507-2 1.972423+0 2.561270-2 2.264644+0 2.058129-2 2.600160+0 1.666286-2 3.000000+0 1.349500-2 3.467369+0 1.099519-2 4.073803+0 8.824722-3 4.786301+0 7.135176-3 5.688529+0 5.724807-3 6.918310+0 4.496483-3 8.511380+0 3.509482-3 1.071519+1 2.685569-3 1.380384+1 2.017734-3 1.800000+1 1.506500-3 2.426610+1 1.091298-3 3.589219+1 7.216468-4 5.754399+1 4.422813-4 1.011579+2 2.484250-4 2.018366+2 1.234562-4 4.027170+2 6.159591-5 3.198895+3 7.725361-6 1.000000+5 2.469800-7 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.182900-2 1.138100-4 1.000000+5 1.138100-4 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.182900-2 6.065900-3 1.000000+5 6.065900-3 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.182900-2 5.649290-3 1.000000+5 9.999999+4 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.519200-3 8.497586+4 1.630000-3 7.837420+4 1.698244-3 7.374332+4 1.850000-3 6.433420+4 2.162719-3 4.990864+4 2.540973-3 3.790883+4 2.800000-3 3.182380+4 3.235937-3 2.436139+4 3.589219-3 1.996669+4 4.120975-3 1.520780+4 4.623810-3 1.203310+4 5.300000-3 9.054580+3 6.165950-3 6.542542+3 7.000000-3 4.946940+3 8.035261-3 3.625532+3 9.332543-3 2.566420+3 1.083927-2 1.801856+3 1.258925-2 1.255097+3 1.479108-2 8.431254+2 1.737801-2 5.615896+2 2.041738-2 3.710133+2 2.400000-2 2.428740+2 2.818383-2 1.582104+2 3.349654-2 9.900677+1 3.935501-2 6.347669+1 4.677351-2 3.914937+1 5.623413-2 2.320588+1 6.839116-2 1.321284+1 8.511380-2 6.985157+0 1.109175-1 3.201936+0 1.840772-1 7.137426-1 2.344229-1 3.508220-1 2.754229-1 2.200077-1 3.198895-1 1.437143-1 3.630781-1 1.009376-1 4.073803-1 7.370825-2 4.518559-1 5.589944-2 5.011872-1 4.268926-2 5.559043-1 3.283528-2 6.095369-1 2.617243-2 6.683439-1 2.100095-2 7.328245-1 1.696142-2 8.128305-1 1.344246-2 8.912509-1 1.100674-2 9.660509-1 9.300305-3 1.083927+0 7.382308-3 1.202264+0 6.030083-3 1.333521+0 4.960204-3 1.479108+0 4.107291-3 1.659587+0 3.354747-3 1.840772+0 2.815333-3 2.044000+0 2.374508-3 2.344229+0 1.915166-3 2.691535+0 1.553384-3 3.054921+0 1.290595-3 3.548134+0 1.045428-3 4.168694+0 8.399989-4 4.897788+0 6.798614-4 5.821032+0 5.459927-4 7.079458+0 4.292415-4 8.709636+0 3.352890-4 1.100000+1 2.558400-4 1.412538+1 1.930679-4 1.840772+1 1.443097-4 2.483133+1 1.045321-4 3.630781+1 6.999258-5 5.821032+1 4.290461-5 1.011579+2 2.438589-5 2.018366+2 1.211873-5 4.027170+2 6.046558-6 3.198895+3 7.583451-7 1.000000+5 2.424400-8 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.519200-3 1.116100-4 1.000000+5 1.116100-4 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.519200-3 1.888600-5 1.000000+5 1.888600-5 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.519200-3 1.388704-3 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.365700-3 7.647000+4 1.365820-3 7.827700+4 1.366100-3 8.531100+4 1.366400-3 9.282000+4 1.366700-3 1.002500+5 1.367000-3 1.075700+5 1.367300-3 1.147200+5 1.367600-3 1.216300+5 1.367850-3 1.272500+5 1.368200-3 1.347900+5 1.368500-3 1.409100+5 1.368900-3 1.486000+5 1.369350-3 1.566000+5 1.369700-3 1.623200+5 1.370200-3 1.697100+5 1.370650-3 1.755900+5 1.371000-3 1.796900+5 1.371500-3 1.848600+5 1.372200-3 1.908900+5 1.373000-3 1.962700+5 1.373300-3 1.979200+5 1.376500-3 2.056054+5 1.381500-3 2.095858+5 1.385000-3 2.111295+5 1.393000-3 2.124863+5 1.404000-3 2.123073+5 1.412538-3 2.113185+5 1.419000-3 2.093945+5 1.430000-3 2.074900+5 1.445000-3 2.030600+5 1.470000-3 1.952200+5 1.500000-3 1.869200+5 1.531087-3 1.775700+5 1.905461-3 1.011900+5 2.113489-3 7.714300+4 2.300000-3 6.149700+4 2.754229-3 3.742800+4 3.054921-3 2.791400+4 3.507519-3 1.876600+4 4.073803-3 1.208600+4 4.623810-3 8.276600+3 5.432503-3 5.067300+3 6.382635-3 3.073000+3 7.328245-3 1.987300+3 8.413951-3 1.277200+3 9.800000-3 7.785900+2 1.150000-2 4.598000+2 1.350000-2 2.692500+2 1.584893-2 1.565600+2 1.883649-2 8.671100+1 2.264644-2 4.581700+1 2.754229-2 2.308400+1 3.388442-2 1.108700+1 4.365158-2 4.487300+0 9.440609-2 2.799800-1 1.174898-1 1.283100-1 1.412538-1 6.697900-2 1.659587-1 3.818782-2 1.927525-1 2.283060-2 2.213095-1 1.430592-2 2.511886-1 9.388250-3 2.818383-1 6.445164-3 3.162278-1 4.455852-3 3.507519-1 3.217543-3 3.890451-1 2.339655-3 4.265795-1 1.774675-3 4.731513-1 1.310331-3 5.248075-1 9.750615-4 5.821032-1 7.309768-4 6.382635-1 5.696033-4 6.998420-1 4.469640-4 7.673615-1 3.536919-4 8.511380-1 2.740055-4 9.440609-1 2.131772-4 9.885531-1 1.916351-4 1.047129+0 1.690077-4 1.109175+0 1.499392-4 1.174898+0 1.337852-4 1.258925+0 1.175529-4 1.380384+0 9.965646-5 1.717908+0 6.818515-5 1.905461+0 5.730231-5 2.113489+0 4.850571-5 2.426610+0 3.912676-5 2.786121+0 3.179396-5 3.162278+0 2.646418-5 3.672823+0 2.147466-5 4.315191+0 1.728284-5 5.128614+0 1.380398-5 6.165950+0 1.094920-5 7.498942+0 8.626960-6 9.332543+0 6.661892-6 1.174898+1 5.113381-6 1.531087+1 3.803659-6 2.137962+1 2.643244-6 3.126079+1 1.764141-6 4.897788+1 1.104443-6 8.609938+1 6.189415-7 1.717908+2 3.071883-7 3.427678+2 1.531510-7 1.364583+3 3.831850-8 1.000000+5 5.22260-10 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.365700-3 7.938400-5 1.000000+5 7.938400-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.365700-3 2.084500-5 1.000000+5 2.084500-5 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.365700-3 1.265471-3 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.328300-3 3.575540+5 1.331600-3 3.755645+5 1.335900-3 3.938161+5 1.340500-3 4.074048+5 1.342000-3 4.112220+5 1.350000-3 4.214965+5 1.353000-3 4.246751+5 1.365000-3 4.313134+5 1.375000-3 4.337769+5 1.383000-3 4.335701+5 1.395000-3 4.285400+5 1.470000-3 3.804432+5 1.927525-3 1.878867+5 2.113489-3 1.469931+5 2.290868-3 1.180433+5 2.754229-3 7.059202+4 3.054921-3 5.245093+4 3.548134-3 3.391869+4 4.120975-3 2.171257+4 4.677351-3 1.479373+4 5.432503-3 9.325955+3 6.309573-3 5.830842+3 7.328245-3 3.616828+3 8.511380-3 2.226363+3 9.885531-3 1.360460+3 1.150000-2 8.211200+2 1.350000-2 4.772920+2 1.603245-2 2.646429+2 1.905461-2 1.451625+2 2.290868-2 7.587780+1 2.754229-2 3.934111+1 3.388442-2 1.863316+1 4.216965-2 8.396519+0 5.495409-2 3.173553+0 1.023293-1 3.193130-1 1.273503-1 1.432548-1 1.513561-1 7.662589-2 1.757924-1 4.486513-2 2.000000-1 2.847968-2 2.317395-1 1.713576-2 2.600160-1 1.160484-2 2.884032-1 8.230246-3 3.162278-1 6.103446-3 3.467369-1 4.555662-3 3.801894-1 3.423218-3 4.168694-1 2.590241-3 4.570882-1 1.974443-3 5.000000-1 1.527195-3 5.432503-1 1.213370-3 5.888437-1 9.768180-4 6.382635-1 7.915515-4 6.918310-1 6.457149-4 7.498942-1 5.302439-4 8.128305-1 4.383068-4 8.912509-1 3.550912-4 9.549926-1 3.051337-4 1.023293+0 2.640852-4 1.122018+0 2.194585-4 1.230269+0 1.836081-4 1.348963+0 1.546856-4 1.513561+0 1.259025-4 1.698244+0 1.030148-4 1.883649+0 8.655901-5 2.089296+0 7.323654-5 2.398833+0 5.904077-5 2.754229+0 4.794531-5 3.126079+0 3.988262-5 3.630781+0 3.234467-5 4.265795+0 2.601681-5 5.069907+0 2.076845-5 6.095369+0 1.646550-5 7.413102+0 1.296771-5 9.225714+0 1.000996-5 1.161449+1 7.680417-6 1.513561+1 5.711394-6 2.089296+1 4.017114-6 2.985383+1 2.745760-6 4.518559+1 1.780017-6 7.762471+1 1.019951-6 1.548817+2 5.056853-7 3.090295+2 2.519972-7 1.230269+3 6.302198-8 1.000000+5 7.74270-10 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.328300-3 7.796000-5 1.000000+5 7.796000-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.328300-3 1.896800-5 1.000000+5 1.896800-5 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.328300-3 1.231372-3 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.020200-4 2.116368+5 2.162719-4 2.181184+5 2.230000-4 2.199100+5 2.290868-4 2.199032+5 2.350000-4 2.183280+5 2.426610-4 2.145585+5 2.540973-4 2.071945+5 2.917427-4 1.850400+5 3.126079-4 1.745469+5 3.311311-4 1.651903+5 3.589219-4 1.515508+5 4.120975-4 1.294893+5 4.500000-4 1.163494+5 5.011872-4 1.011105+5 5.688529-4 8.511243+4 6.309573-4 7.341250+4 7.300000-4 5.907520+4 8.222426-4 4.913203+4 9.549926-4 3.863287+4 1.083927-3 3.130438+4 1.244515-3 2.472497+4 1.462177-3 1.861229+4 1.698244-3 1.418484+4 1.972423-3 1.073116+4 2.300000-3 7.998420+3 2.691535-3 5.876008+3 3.162278-3 4.249822+3 3.715352-3 3.050455+3 4.365158-3 2.173091+3 5.128614-3 1.536527+3 6.025596-3 1.078265+3 7.079458-3 7.508698+2 8.317638-3 5.186933+2 9.660509-3 3.652703+2 1.122018-2 2.553976+2 1.318257-2 1.724268+2 1.531087-2 1.188811+2 1.798871-2 7.903876+1 2.113489-2 5.214924+1 2.483133-2 3.415565+1 2.917427-2 2.221143+1 3.467369-2 1.389739+1 4.120975-2 8.630034+0 4.954502-2 5.151597+0 6.000000-2 2.986880+0 7.413102-2 1.622723+0 9.440609-2 8.013685-1 1.840772-1 1.113485-1 2.344229-1 5.479217-2 2.754229-1 3.438181-2 3.198895-1 2.246833-2 3.630781-1 1.578537-2 4.073803-1 1.153009-2 4.570882-1 8.485269-3 5.069907-1 6.484750-3 5.623413-1 4.992678-3 6.165950-1 3.983241-3 6.760830-1 3.198806-3 7.413102-1 2.585755-3 8.222427-1 2.051134-3 9.015711-1 1.681103-3 9.772372-1 1.421742-3 1.109175+0 1.103991-3 1.230269+0 9.031565-4 1.364583+0 7.440234-4 1.531087+0 6.044673-4 1.698244+0 5.046635-4 1.883649+0 4.241485-4 2.113489+0 3.524302-4 2.426610+0 2.842922-4 2.786121+0 2.310010-4 3.162278+0 1.922706-4 3.672823+0 1.560209-4 4.315191+0 1.255652-4 5.128614+0 1.002900-4 6.165950+0 7.955146-5 7.498942+0 6.267912-5 9.332543+0 4.840159-5 1.174898+1 3.715112-5 1.531087+1 2.763529-5 2.137962+1 1.920436-5 3.126079+1 1.281786-5 4.841724+1 8.120569-6 8.413951+1 4.603730-6 1.678804+2 2.284404-6 3.349654+2 1.138819-6 1.333521+3 2.848986-7 1.000000+5 3.794500-9 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.020200-4 6.622500-5 1.000000+5 6.622500-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.020200-4 4.997500-9 1.000000+5 4.997500-9 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.020200-4 1.357900-4 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.489500-4 1.108302+5 1.530000-4 1.245752+5 1.545000-4 1.292506+5 1.560800-4 1.335921+5 1.580000-4 1.380438+5 1.603245-4 1.424502+5 1.635000-4 1.473350+5 1.690000-4 1.544240+5 1.950000-4 1.877164+5 2.020000-4 1.958844+5 2.089296-4 2.027578+5 2.162719-4 2.086091+5 2.238721-4 2.132476+5 2.330000-4 2.172600+5 2.426610-4 2.200881+5 2.540973-4 2.219965+5 2.660725-4 2.225194+5 2.786121-4 2.215134+5 2.917427-4 2.189804+5 3.054921-4 2.150662+5 3.200000-4 2.099680+5 3.388442-4 2.024903+5 3.630781-4 1.922892+5 3.850000-4 1.829118+5 4.100000-4 1.721852+5 4.365158-4 1.609628+5 4.731513-4 1.463772+5 5.150000-4 1.314520+5 5.559043-4 1.184162+5 6.025596-4 1.052216+5 6.606934-4 9.123142+4 7.161434-4 8.000129+4 7.852356-4 6.830870+4 8.609938-4 5.789929+4 9.440609-4 4.874245+4 1.035142-3 4.073827+4 1.150000-3 3.294480+4 1.273503-3 2.659595+4 1.412538-3 2.124640+4 1.570000-3 1.676768+4 1.757924-3 1.291245+4 1.972423-3 9.814757+3 2.187762-3 7.615893+3 2.426610-3 5.874374+3 2.722701-3 4.371571+3 3.054921-3 3.230850+3 3.427678-3 2.371898+3 3.845918-3 1.730370+3 4.365158-3 1.214478+3 4.954502-3 8.462068+2 5.623413-3 5.854033+2 6.382635-3 4.021909+2 7.328245-3 2.649964+2 8.317638-3 1.795166+2 9.549926-3 1.165184+2 1.096478-2 7.509005+1 1.273503-2 4.628635+1 1.479108-2 2.831686+1 1.737801-2 1.655347+1 2.041738-2 9.605155+0 2.426610-2 5.320441+0 2.917427-2 2.811511+0 3.548134-2 1.416667+0 4.466836-2 6.274289-1 6.237348-2 1.907244-1 9.549926-2 4.164536-2 1.216186-1 1.766692-2 1.462177-1 9.257199-3 1.717908-1 5.296233-3 1.995262-1 3.177215-3 2.290868-1 1.997511-3 2.600160-1 1.315108-3 2.917427-1 9.056370-4 3.273407-1 6.282674-4 3.630781-1 4.551487-4 4.027170-1 3.320028-4 4.466836-1 2.439753-4 4.954502-1 1.806372-4 5.495409-1 1.347722-4 6.025596-1 1.045997-4 6.606935-1 8.177080-5 7.244360-1 6.436951-5 8.413951-1 4.414060-5 9.015711-1 3.728468-5 9.549926-1 3.259011-5 1.011579+0 2.868268-5 1.083927+0 2.480239-5 1.161449+0 2.160331-5 1.244515+0 1.896839-5 1.380384+0 1.572364-5 1.659587+0 1.138768-5 1.862087+0 9.371190-6 2.065380+0 7.921545-6 2.371374+0 6.382121-6 2.722701+0 5.179615-6 3.090295+0 4.305925-6 3.589219+0 3.490000-6 4.216965+0 2.805715-6 5.011872+0 2.238565-6 6.025596+0 1.773894-6 7.328245+0 1.396508-6 9.120108+0 1.077465-6 1.148154+1 8.264282-7 1.479108+1 6.222352-7 2.018366+1 4.428407-7 2.786121+1 3.137693-7 3.981072+1 2.156522-7 6.531306+1 1.292832-7 1.216186+2 6.860348-8 2.426610+2 3.413915-8 9.660509+2 8.528025-9 1.000000+5 8.22320-11 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.489500-4 5.382500-5 1.000000+5 5.382500-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.489500-4 5.118900-9 1.000000+5 5.118900-9 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.489500-4 9.511988-5 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.437800-4 3.094089+5 1.720000-4 3.797430+5 1.737801-4 3.857820+5 1.883649-4 4.250525+5 1.950000-4 4.409240+5 2.020000-4 4.549440+5 2.089296-4 4.657916+5 2.162719-4 4.742374+5 2.260000-4 4.814960+5 2.371374-4 4.857692+5 2.500000-4 4.868720+5 2.630268-4 4.844573+5 2.770000-4 4.782920+5 2.917427-4 4.683510+5 3.054921-4 4.567489+5 3.235937-4 4.395629+5 3.467369-4 4.165250+5 3.715352-4 3.917707+5 3.935501-4 3.700202+5 4.216965-4 3.429692+5 4.518559-4 3.156388+5 4.897788-4 2.845009+5 5.308844-4 2.546449+5 5.754399-4 2.261981+5 6.237348-4 1.994822+5 6.839116-4 1.716294+5 7.413102-4 1.494844+5 8.200000-4 1.246812+5 9.015711-4 1.043858+5 9.885531-4 8.721192+4 1.096478-3 7.070401+4 1.202264-3 5.829552+4 1.333521-3 4.657011+4 1.462177-3 3.791801+4 1.640590-3 2.909397+4 1.840772-3 2.213489+4 2.070000-3 1.661328+4 2.317395-3 1.250989+4 2.600160-3 9.299844+3 2.951209-3 6.657133+3 3.349654-3 4.726755+3 3.801894-3 3.329546+3 4.265795-3 2.405629+3 4.841724-3 1.670740+3 5.495409-3 1.151972+3 6.237348-3 7.886292+2 7.079458-3 5.361697+2 8.035261-3 3.620571+2 9.225714-3 2.340693+2 1.059254-2 1.502134+2 1.216186-2 9.568809+1 1.412538-2 5.825120+1 1.640590-2 3.519778+1 1.927525-2 2.029992+1 2.264644-2 1.161773+1 2.691535-2 6.339111+0 3.235937-2 3.295219+0 3.935501-2 1.631153+0 4.897788-2 7.372525-1 6.606934-2 2.464052-1 1.000000-1 5.364666-2 1.244515-1 2.415013-2 1.496236-1 1.242191-2 1.737801-1 7.281421-3 1.972423-1 4.664563-3 2.238721-1 3.009186-3 2.511886-1 2.034976-3 2.786121-1 1.440834-3 3.090295-1 1.027587-3 3.388442-1 7.660252-4 3.715352-1 5.748334-4 4.073803-1 4.344117-4 4.466836-1 3.307561-4 4.841724-1 2.622486-4 5.248075-1 2.092719-4 5.688529-1 1.680868-4 6.165950-1 1.358910-4 6.683439-1 1.105928-4 7.244360-1 9.058716-5 7.852356-1 7.467549-5 8.609938-1 6.024007-5 9.225714-1 5.159656-5 9.885531-1 4.448642-5 1.083927+0 3.686097-5 1.188600+0 3.075400-5 1.303167+0 2.584885-5 1.445440+0 2.142322-5 1.659587+0 1.681044-5 1.840772+0 1.410457-5 2.044000+0 1.189500-5 2.344229+0 9.594697-6 2.691535+0 7.782123-6 3.054921+0 6.465342-6 3.548134+0 5.237086-6 4.168694+0 4.207929-6 4.897788+0 3.405722-6 5.821032+0 2.735198-6 7.079458+0 2.150301-6 8.709636+0 1.679664-6 1.100000+1 1.281600-6 1.412538+1 9.671613-7 1.862087+1 7.139047-7 2.511886+1 5.172963-7 3.630781+1 3.506285-7 5.821032+1 2.149302-7 1.023293+2 1.207403-7 2.041738+2 6.001047-8 4.073803+2 2.994228-8 3.235937+3 3.755427-9 1.000000+5 1.21450-10 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.437800-4 5.324900-5 1.000000+5 5.324900-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.437800-4 4.483400-9 1.000000+5 4.483400-9 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.437800-4 9.052652-5 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 5.132000-5 4.528673+5 5.470000-5 4.729120+5 5.550000-5 4.797600+5 5.630000-5 4.901000+5 5.700000-5 5.022160+5 5.774200-5 5.182424+5 5.850000-5 5.380080+5 5.920000-5 5.593600+5 6.000000-5 5.873760+5 6.110000-5 6.321160+5 6.237348-5 6.927565+5 6.400000-5 7.831040+5 6.800000-5 1.054784+6 6.950000-5 1.168348+6 7.079458-5 1.268464+6 7.244360-5 1.396193+6 7.400000-5 1.514220+6 7.500000-5 1.587964+6 7.650000-5 1.694144+6 7.800000-5 1.794364+6 7.950000-5 1.887644+6 8.128305-5 1.989604+6 8.317638-5 2.087226+6 8.511380-5 2.176727+6 8.738900-5 2.269556+6 9.015711-5 2.367356+6 9.332543-5 2.462676+6 9.660509-5 2.546491+6 1.000000-4 2.620412+6 1.047129-4 2.704699+6 1.100000-4 2.776664+6 1.150000-4 2.822696+6 1.190000-4 2.843212+6 1.240000-4 2.849100+6 1.288250-4 2.836253+6 1.333521-4 2.810214+6 1.380384-4 2.771338+6 1.445440-4 2.701393+6 1.519300-4 2.606735+6 1.603245-4 2.489991+6 1.698244-4 2.354324+6 1.800000-4 2.209352+6 1.905461-4 2.060977+6 2.018366-4 1.906293+6 2.137962-4 1.749690+6 2.264644-4 1.593934+6 2.426610-4 1.413227+6 2.600160-4 1.244440+6 2.800000-4 1.078240+6 3.019952-4 9.242704+5 3.235937-4 7.971853+5 3.507519-4 6.652285+5 3.801894-4 5.513842+5 4.168694-4 4.415304+5 4.518559-4 3.609511+5 4.954502-4 2.842660+5 5.432503-4 2.222313+5 5.956621-4 1.726083+5 6.606934-4 1.287298+5 7.413102-4 9.207343+4 8.200000-4 6.811960+4 9.015711-4 5.098110+4 9.885531-4 3.828027+4 1.096478-3 2.754709+4 1.216186-3 1.969834+4 1.350000-3 1.395892+4 1.500000-3 9.798640+3 1.678804-3 6.670064+3 1.883649-3 4.467067+3 2.137962-3 2.851464+3 2.426610-3 1.806367+3 2.754229-3 1.135633+3 3.126079-3 7.087897+2 3.548134-3 4.392940+2 4.027170-3 2.703568+2 4.570882-3 1.652413+2 5.188000-3 1.003039+2 5.888437-3 6.047222+1 6.683439-3 3.620931+1 7.673615-3 2.053471+1 8.810489-3 1.155716+1 1.023293-2 6.153682+0 1.202264-2 3.098250+0 1.445440-2 1.403233+0 1.757924-2 6.000083-1 2.113489-2 2.678020-1 2.660725-2 9.686562-2 3.672823-2 2.310712-2 6.025596-2 2.539685-3 7.585776-2 9.155949-4 9.120108-2 4.076101-4 1.071519-1 2.022076-4 1.244515-1 1.062443-4 1.428894-1 5.909654-5 1.621810-1 3.476866-5 1.840772-1 2.061339-5 2.065380-1 1.290897-5 2.317395-1 8.144257-6 2.570396-1 5.417926-6 2.851018-1 3.629846-6 3.162278-1 2.449716-6 3.467369-1 1.738705-6 3.801894-1 1.242838-6 4.073803-1 9.712917-7 4.466836-1 7.045797-7 4.954502-1 4.949795-7 5.432503-1 3.634829-7 5.888437-1 2.791470-7 6.237348-1 2.325455-7 6.760830-1 1.814561-7 7.413102-1 1.377738-7 8.035261-1 1.088048-7 8.609938-1 8.825678-8 9.015711-1 7.718212-8 9.440609-1 6.791304-8 9.772372-1 6.200545-8 1.011579+0 5.689715-8 1.059254+0 5.111521-8 1.109175+0 4.626766-8 1.161449+0 4.216285-8 1.216186+0 3.865649-8 1.303167+0 3.419900-8 1.428894+0 2.927878-8 1.513561+0 2.661748-8 1.798871+0 1.977317-8 1.972423+0 1.696945-8 2.264644+0 1.363753-8 2.600160+0 1.104098-8 3.000000+0 8.940900-9 3.467369+0 7.284690-9 4.073803+0 5.846692-9 4.786301+0 4.727333-9 5.688529+0 3.792895-9 6.918310+0 2.979029-9 8.511380+0 2.325109-9 1.071519+1 1.779301-9 1.364583+1 1.354093-9 1.778279+1 1.011371-9 2.400000+1 7.31580-10 3.548134+1 4.83916-10 5.688529+1 2.96513-10 9.885531+1 1.68490-10 1.972423+2 8.37185-11 3.935501+2 4.17644-11 3.126079+3 5.23760-12 1.000000+5 1.63630-13 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 5.132000-5 2.866300-5 1.000000+5 2.866300-5 1 33000 7 7 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.132000-5 7.60730-10 1.000000+5 7.60730-10 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.132000-5 2.265624-5 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 5.055000-5 7.361700+5 5.150000-5 7.229400+5 5.240000-5 7.168440+5 5.330000-5 7.169820+5 5.400000-5 7.217280+5 5.480000-5 7.323360+5 5.559043-5 7.483517+5 5.623413-5 7.655657+5 5.690000-5 7.873920+5 5.774200-5 8.209043+5 5.850000-5 8.567520+5 5.950000-5 9.122640+5 6.030000-5 9.633540+5 6.150000-5 1.050762+6 6.309573-5 1.185922+6 6.683439-5 1.571442+6 6.850000-5 1.763832+6 7.000000-5 1.941654+6 7.161434-5 2.133256+6 7.300000-5 2.294688+6 7.450000-5 2.463480+6 7.585776-5 2.609147+6 7.730000-5 2.755152+6 7.900000-5 2.914680+6 8.080000-5 3.068484+6 8.300000-5 3.235968+6 8.511380-5 3.377391+6 8.738900-5 3.510843+6 9.015711-5 3.651113+6 9.332543-5 3.787541+6 9.660509-5 3.907180+6 1.011579-4 4.044271+6 1.060000-4 4.157868+6 1.109175-4 4.241698+6 1.161449-4 4.296104+6 1.205000-4 4.314402+6 1.244515-4 4.310549+6 1.288250-4 4.285267+6 1.333521-4 4.238695+6 1.396368-4 4.146929+6 1.462177-4 4.027594+6 1.540000-4 3.868626+6 1.621810-4 3.691128+6 1.720000-4 3.475260+6 1.820000-4 3.257256+6 1.927525-4 3.028836+6 2.040000-4 2.797632+6 2.162719-4 2.556875+6 2.300000-4 2.307672+6 2.454709-4 2.055778+6 2.650000-4 1.780260+6 2.851018-4 1.541332+6 3.054921-4 1.335767+6 3.280000-4 1.144494+6 3.548134-4 9.575926+5 3.890451-4 7.706605+5 4.216965-4 6.331938+5 4.600000-4 5.082774+5 5.011872-4 4.060647+5 5.500000-4 3.162984+5 6.095369-4 2.379109+5 6.700000-4 1.815756+5 7.328245-4 1.397741+5 8.128305-4 1.025703+5 9.120108-4 7.206965+4 1.023293-3 5.022635+4 1.148154-3 3.470330+4 1.273503-3 2.471995+4 1.412538-3 1.749385+4 1.566751-3 1.230755+4 1.757924-3 8.266660+3 1.972423-3 5.514891+3 2.213095-3 3.654028+3 2.511886-3 2.305944+3 2.851018-3 1.444182+3 3.235937-3 8.979678+2 3.672823-3 5.544016+2 4.216965-3 3.250155+2 4.786301-3 1.977760+2 5.432503-3 1.194908+2 6.165950-3 7.167797+1 7.000000-3 4.265532+1 8.035261-3 2.407734+1 9.225714-3 1.347586+1 1.071519-2 7.130855+0 1.258925-2 3.566321+0 1.513561-2 1.602525+0 1.840772-2 6.799142-1 2.213095-2 3.012190-1 2.754229-2 1.132821-1 3.715352-2 2.943318-2 6.025596-2 3.312284-3 7.498942-2 1.241023-3 9.015711-2 5.468421-4 1.071519-1 2.555569-4 1.230269-1 1.399546-4 1.396368-1 8.113867-5 1.566751-1 4.976615-5 1.757924-1 3.075227-5 1.949845-1 2.008305-5 2.162719-1 1.320655-5 2.371374-1 9.162623-6 2.570396-1 6.696128-6 2.786121-1 4.925911-6 3.019952-1 3.648764-6 3.273407-1 2.722295-6 3.548134-1 2.044805-6 3.845918-1 1.545771-6 4.265795-1 1.086408-6 4.623810-1 8.317383-7 4.954502-1 6.659588-7 5.308844-1 5.378039-7 5.754399-1 4.224547-7 6.456542-1 3.020242-7 6.918310-1 2.484769-7 7.413102-1 2.057832-7 7.943282-1 1.717575-7 8.511380-1 1.443061-7 9.015711-1 1.255375-7 9.549926-1 1.098827-7 1.011579+0 9.685177-8 1.083927+0 8.385422-8 1.161449+0 7.307060-8 1.250000+0 6.362100-8 1.396368+0 5.203881-8 1.659587+0 3.843561-8 1.862087+0 3.163190-8 2.065380+0 2.674137-8 2.371374+0 2.154552-8 2.722701+0 1.748567-8 3.090295+0 1.453572-8 3.589219+0 1.178105-8 4.216965+0 9.471059-9 5.011872+0 7.556732-9 6.025596+0 5.988241-9 7.328245+0 4.714036-9 9.120108+0 3.637350-9 1.148154+1 2.789794-9 1.479108+1 2.100468-9 2.018366+1 1.494945-9 2.800000+1 1.053600-9 4.027170+1 7.19308-10 6.531306+1 4.36425-10 1.216186+2 2.31581-10 2.426610+2 1.15245-10 9.660509+2 2.87880-11 1.000000+5 2.77590-13 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 5.055000-5 2.856500-5 1.000000+5 2.856500-5 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 5.055000-5 2.198500-5 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.786000-5 1.706484+5 1.798871-5 1.582466+5 1.825000-5 1.344442+5 1.845000-5 1.182384+5 1.867000-5 1.022382+5 1.890000-5 8.733420+4 1.910000-5 7.578980+4 1.932000-5 6.445920+4 1.949845-5 5.625659+4 1.970000-5 4.797000+4 1.985000-5 4.242280+4 2.000000-5 3.737140+4 2.018366-5 3.181573+4 2.035000-5 2.734440+4 2.047000-5 2.442900+4 2.062000-5 2.112780+4 2.078000-5 1.800334+4 2.095000-5 1.510310+4 2.113489-5 1.240482+4 2.162719-5 7.279338+3 2.175000-5 6.416660+3 2.186400-5 5.749740+3 2.195000-5 5.327960+3 2.202000-5 5.034240+3 2.210000-5 4.751320+3 2.217000-5 4.548380+3 2.222000-5 4.428260+3 2.227000-5 4.328160+3 2.232000-5 4.247900+3 2.238721-5 4.170193+3 2.245000-5 4.128200+3 2.252000-5 4.115220+3 2.257000-5 4.126980+3 2.262000-5 4.156160+3 2.269000-5 4.225076+3 2.275000-5 4.309740+3 2.281000-5 4.417320+3 2.289000-5 4.595060+3 2.297000-5 4.811160+3 2.304000-5 5.030260+3 2.315000-5 5.429540+3 2.326000-5 5.892580+3 2.344229-5 6.792136+3 2.377000-5 8.785220+3 2.400000-5 1.043976+4 2.420000-5 1.202948+4 2.442000-5 1.392318+4 2.460000-5 1.557436+4 2.477000-5 1.720958+4 2.493000-5 1.880976+4 2.511886-5 2.076741+4 2.530000-5 2.270780+4 2.550000-5 2.491300+4 2.570396-5 2.722317+4 2.595000-5 3.007940+4 2.620000-5 3.304720+4 2.650000-5 3.667840+4 2.680000-5 4.036780+4 2.710000-5 4.409840+4 2.740000-5 4.785520+4 2.770000-5 5.162440+4 2.800000-5 5.539480+4 2.840000-5 6.040540+4 2.885000-5 6.599520+4 2.935000-5 7.211840+4 2.985383-5 7.816808+4 3.040000-5 8.456420+4 3.100000-5 9.137100+4 3.162278-5 9.817072+4 3.235937-5 1.058419+5 3.311311-5 1.132577+5 3.388442-5 1.203824+5 3.470000-5 1.274034+5 3.570000-5 1.353020+5 3.672823-5 1.426316+5 3.770000-5 1.488518+5 3.900000-5 1.561596+5 4.027170-5 1.622619+5 4.168694-5 1.679344+5 4.315191-5 1.726768+5 4.466836-5 1.765002+5 4.650000-5 1.798258+5 4.850000-5 1.820754+5 5.080000-5 1.831812+5 5.308844-5 1.829942+5 5.559043-5 1.816186+5 5.821032-5 1.791869+5 6.165950-5 1.748555+5 6.531306-5 1.693578+5 6.918310-5 1.629736+5 7.413102-5 1.544837+5 8.035261-5 1.439138+5 8.800000-5 1.317288+5 9.660509-5 1.193945+5 1.080000-4 1.053300+5 1.202264-4 9.270109+4 1.350000-4 8.015480+4 1.531087-4 6.790437+4 1.927525-4 4.954502+4 2.426610-4 3.598028+4 2.786121-4 2.949970+4 3.273407-4 2.321061+4 3.935501-4 1.753338+4 4.841724-4 1.267884+4 5.888437-4 9.281468+3 6.839116-4 7.256546+3 8.128305-4 5.421804+3 9.772372-4 3.941537+3 1.161449-3 2.901286+3 1.396368-3 2.075917+3 1.659587-3 1.506289+3 1.972423-3 1.084701+3 2.317395-3 7.925476+2 2.754229-3 5.618646+2 3.235937-3 4.046146+2 3.801894-3 2.893287+2 4.466836-3 2.054341+2 5.308844-3 1.412314+2 6.237348-3 9.882251+1 7.328245-3 6.864842+1 8.609938-3 4.734287+1 1.011579-2 3.240744+1 1.174898-2 2.263275+1 1.364583-2 1.568586+1 1.603245-2 1.048637+1 1.883649-2 6.955968+0 2.213095-2 4.579771+0 2.600160-2 2.993500+0 3.054921-2 1.942846+0 3.630781-2 1.213130+0 4.315191-2 7.519360-1 5.128614-2 4.628331-1 6.237348-2 2.647918-1 7.762471-2 1.407119-1 1.000000-1 6.711500-2 1.862087-1 1.067870-2 2.344229-1 5.436429-3 2.754229-1 3.411536-3 3.198895-1 2.229559-3 3.630781-1 1.566490-3 4.073803-1 1.144261-3 4.570882-1 8.421142-4 5.069907-1 6.435969-4 5.623413-1 4.955384-4 6.165950-1 3.953779-4 6.760830-1 3.175496-4 7.413102-1 2.567265-4 8.222427-1 2.036883-4 9.015711-1 1.669798-4 9.772372-1 1.412382-4 1.109175+0 1.096819-4 1.230269+0 8.973043-5 1.364583+0 7.391795-5 1.531087+0 6.005065-5 1.698244+0 5.013691-5 1.883649+0 4.213815-5 2.113489+0 3.501093-5 2.426610+0 2.824121-5 2.786121+0 2.294802-5 3.162278+0 1.910099-5 3.672823+0 1.549989-5 4.315191+0 1.247423-5 5.128614+0 9.963177-6 6.165950+0 7.902936-6 7.498942+0 6.226822-6 9.332543+0 4.808420-6 1.174898+1 3.690755-6 1.531087+1 2.745461-6 2.137962+1 1.907860-6 3.162278+1 1.257986-6 4.954502+1 7.877409-7 8.609938+1 4.467434-7 1.717908+2 2.217223-7 3.427678+2 1.105428-7 1.364583+3 2.765800-8 1.000000+5 3.76960-10 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.786000-5 1.786000-5 1.000000+5 1.786000-5 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.786000-5 0.0 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 8.120000-6 1.684020+7 8.317638-6 1.654462+7 8.609938-6 1.604601+7 8.912509-6 1.547419+7 9.225714-6 1.485241+7 9.660509-6 1.394257+7 1.000000-5 1.322460+7 1.035142-5 1.247608+7 1.071519-5 1.171191+7 1.120000-5 1.072820+7 1.165000-5 9.856410+6 1.216186-5 8.922360+6 1.273503-5 7.956867+6 1.333521-5 7.040917+6 1.400000-5 6.139180+6 1.462177-5 5.397379+6 1.531087-5 4.680069+6 1.610000-5 3.979780+6 1.698244-5 3.328169+6 1.800000-5 2.718930+6 1.927525-5 2.126627+6 2.070000-5 1.634750+6 2.238721-5 1.215821+6 2.483133-5 8.152924+5 2.851018-5 4.743496+5 3.589219-5 1.913528+5 3.900000-5 1.386890+5 4.168694-5 1.077814+5 4.415704-5 8.727738+4 4.623810-5 7.419638+4 4.800000-5 6.537740+4 5.000000-5 5.731200+4 5.188000-5 5.122219+4 5.370318-5 4.641377+4 5.559043-5 4.234866+4 5.754399-5 3.892341+4 5.956621-5 3.604592+4 6.165950-5 3.363646+4 6.382635-5 3.162587+4 6.606934-5 2.995224+4 6.839116-5 2.855956+4 7.079458-5 2.739833+4 7.328245-5 2.642642+4 7.673615-5 2.536545+4 8.035261-5 2.450479+4 8.511380-5 2.362024+4 9.332543-5 2.247650+4 1.161449-4 2.013913+4 1.303167-4 1.888812+4 1.462177-4 1.757440+4 1.621810-4 1.634784+4 1.819701-4 1.496296+4 2.041738-4 1.359175+4 2.264644-4 1.238565+4 2.483133-4 1.132991+4 2.691535-4 1.041107+4 2.951209-4 9.381955+3 3.235937-4 8.391608+3 3.548134-4 7.454286+3 3.935501-4 6.475551+3 4.365158-4 5.586829+3 4.841724-4 4.787642+3 5.432503-4 4.005006+3 6.000000-4 3.408850+3 6.606934-4 2.892320+3 7.328245-4 2.405316+3 8.128305-4 1.985832+3 9.120108-4 1.593045+3 1.011579-3 1.298326+3 1.122018-3 1.050392+3 1.244515-3 8.438823+2 1.380384-3 6.734288+2 1.548817-3 5.201914+2 1.737801-3 3.988154+2 1.949845-3 3.034593+2 2.187762-3 2.291975+2 2.454709-3 1.718661+2 2.754229-3 1.279768+2 3.090295-3 9.463624+1 3.507519-3 6.737267+1 4.073803-3 4.475981+1 4.570882-3 3.242350+1 5.188000-3 2.256456+1 5.888437-3 1.558545+1 6.760830-3 1.033278+1 7.762471-3 6.796041+0 8.810489-3 4.595826+0 1.011579-2 2.977544+0 1.174898-2 1.845830+0 1.364583-2 1.135651+0 1.584893-2 6.935463-1 1.862087-2 4.045893-1 2.213095-2 2.252664-1 2.630268-2 1.244808-1 3.162278-2 6.562829-2 3.890451-2 3.168082-2 5.069907-2 1.238347-2 8.035261-2 2.389543-3 1.083927-1 8.227667-4 1.333521-1 3.959665-4 1.584893-1 2.168086-4 1.840772-1 1.295232-4 2.113489-1 8.106739-5 2.398833-1 5.312019-5 2.722701-1 3.506706-5 3.054921-1 2.421357-5 3.427678-1 1.684616-5 3.801894-1 1.223739-5 4.216965-1 8.951793-6 4.677351-1 6.596938-6 5.188000-1 4.899593-6 5.688529-1 3.787091-6 6.237348-1 2.946933-6 6.839117-1 2.309138-6 7.498942-1 1.821954-6 8.609938-1 1.288573-6 9.225714-1 1.091274-6 9.772372-1 9.564648-7 1.035142+0 8.442425-7 1.109175+0 7.317845-7 1.188600+0 6.389400-7 1.318257+0 5.280089-7 1.479108+0 4.304310-7 1.698244+0 3.384229-7 1.905461+0 2.789273-7 2.137962+0 2.318525-7 2.454709+0 1.871310-7 2.818383+0 1.521580-7 3.198895+0 1.267327-7 3.715352+0 1.029004-7 4.365158+0 8.285804-8 5.188000+0 6.621307-8 6.237348+0 5.254593-8 7.673615+0 4.085227-8 9.549926+0 3.157161-8 1.202264+1 2.425125-8 1.600000+1 1.763700-8 2.213095+1 1.239764-8 3.349654+1 7.985987-9 5.308844+1 4.946860-9 9.225714+1 2.808269-9 1.840772+2 1.394603-9 3.672823+2 6.95515-10 2.917427+3 8.72005-11 1.000000+5 2.54230-12 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 8.120000-6 8.120000-6 1.000000+5 8.120000-6 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 8.120000-6 0.0 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 7.810000-6 3.479900+7 8.035261-6 3.394201+7 8.413951-6 3.234873+7 8.709636-6 3.102461+7 9.100000-6 2.923020+7 9.500000-6 2.736200+7 9.930000-6 2.538020+7 1.035142-5 2.348371+7 1.071519-5 2.190471+7 1.122018-5 1.982484+7 1.174898-5 1.780303+7 1.230269-5 1.586478+7 1.290000-5 1.398134+7 1.350000-5 1.229868+7 1.420000-5 1.058344+7 1.496236-5 8.990226+6 1.570000-5 7.686980+6 1.659587-5 6.372453+6 1.770000-5 5.085000+6 1.883649-5 4.060095+6 2.018366-5 3.140576+6 2.187762-5 2.311266+6 2.426610-5 1.545536+6 3.349654-5 4.327133+5 3.650000-5 3.101260+5 3.900000-5 2.414160+5 4.120975-5 1.973076+5 4.315191-5 1.677422+5 4.518559-5 1.436387+5 4.677351-5 1.285857+5 4.850000-5 1.151664+5 5.011872-5 1.048327+5 5.188000-5 9.557844+4 5.370318-5 8.776291+4 5.559043-5 8.118944+4 5.754399-5 7.567923+4 5.956621-5 7.107054+4 6.165950-5 6.722335+4 6.400000-5 6.379040+4 6.650000-5 6.089900+4 6.918310-5 5.845568+4 7.244360-5 5.614562+4 7.650000-5 5.396380+4 8.222426-5 5.166701+4 1.096478-4 4.450874+4 1.230269-4 4.161247+4 1.380384-4 3.858755+4 1.531087-4 3.577825+4 1.720000-4 3.259080+4 1.949845-4 2.920845+4 2.187762-4 2.622301+4 2.398833-4 2.391600+4 2.630268-4 2.165148+4 2.884032-4 1.945706+4 3.126079-4 1.761104+4 3.427678-4 1.560920+4 3.801894-4 1.352547+4 4.265795-4 1.144173+4 4.786301-4 9.602357+3 5.370318-4 8.000182+3 5.956621-4 6.740965+3 6.531306-4 5.744511+3 7.244360-4 4.762445+3 8.128305-4 3.835176+3 9.015711-4 3.136146+3 1.000000-3 2.547505+3 1.109175-3 2.054890+3 1.230269-3 1.646496+3 1.380384-3 1.277367+3 1.548817-3 9.832395+2 1.737801-3 7.510693+2 1.949845-3 5.694228+2 2.187762-3 4.286252+2 2.454709-3 3.203253+2 2.754229-3 2.376604+2 3.090295-3 1.750270+2 3.467369-3 1.279405+2 3.935501-3 8.996074+1 4.518559-3 6.080777+1 5.128614-3 4.216051+1 5.821032-3 2.902641+1 6.606934-3 1.983997+1 7.498942-3 1.346618+1 8.511380-3 9.076492+0 9.772372-3 5.856815+0 1.122018-2 3.751217+0 1.303167-2 2.297186+0 1.513561-2 1.395826+0 1.757924-2 8.416162-1 2.065380-2 4.842556-1 2.426610-2 2.765661-1 2.884032-2 1.506137-1 3.427678-2 8.139524-2 4.216965-2 3.857738-2 5.432503-2 1.535413-2 6.606934-2 7.493938-3 1.000000-1 1.634357-3 1.244515-1 7.363042-4 1.496236-1 3.789267-4 1.737801-1 2.221818-4 1.972423-1 1.423636-4 2.238721-1 9.185941-5 2.511886-1 6.213183-5 2.786121-1 4.399953-5 3.090295-1 3.138584-5 3.388442-1 2.340084-5 3.715352-1 1.756482-5 4.073803-1 1.327961-5 4.466836-1 1.011757-5 4.841724-1 8.026909-6 5.248075-1 6.408923-6 5.688529-1 5.150314-6 6.165950-1 4.166214-6 6.683439-1 3.392919-6 7.244360-1 2.781413-6 7.852356-1 2.295088-6 8.609938-1 1.855375-6 9.332543-1 1.552076-6 1.000000+0 1.340500-6 1.096478+0 1.111729-6 1.188600+0 9.494900-7 1.318257+0 7.818783-7 1.479108+0 6.349288-7 1.659587+0 5.188337-7 1.840772+0 4.353421-7 2.044000+0 3.671400-7 2.344229+0 2.961291-7 2.691535+0 2.401917-7 3.054921+0 1.995558-7 3.548134+0 1.616416-7 4.168694+0 1.298768-7 4.954502+0 1.035711-7 5.956621+0 8.203104-8 7.244360+0 6.454860-8 9.015711+0 4.978525-8 1.135011+1 3.816978-8 1.462177+1 2.872916-8 1.972423+1 2.069730-8 2.722701+1 1.465673-8 3.890451+1 1.006948-8 6.237348+1 6.178980-9 1.122018+2 3.393821-9 2.238721+2 1.687928-9 4.466836+2 8.42555-10 3.548134+3 1.05706-10 1.000000+5 3.74860-12 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 7.810000-6 7.810000-6 1.000000+5 7.810000-6 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.810000-6 0.0 1.000000+5 1.000000+5 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.378540-8 1.028750+0 5.378540-7 1.031000+0 1.266660-6 1.032000+0 1.733120-6 1.033200+0 2.427800-6 1.034000+0 2.980350-6 1.035300+0 4.045400-6 1.036640+0 5.378540-6 1.038200+0 7.258510-6 1.039700+0 9.430260-6 1.041500+0 1.254690-5 1.043800+0 1.741540-5 1.046400+0 2.423030-5 1.048300+0 3.016740-5 1.051200+0 4.092150-5 1.054080+0 5.378540-5 1.057700+0 7.331300-5 1.061100+0 9.536180-5 1.065100+0 1.262480-4 1.070400+0 1.761300-4 1.076200+0 2.434110-4 1.080600+0 3.039810-4 1.087100+0 4.095620-4 1.093710+0 5.378540-4 1.102600+0 7.457210-4 1.110700+0 9.725580-4 1.120600+0 1.300970-3 1.133300+0 1.808890-3 1.147500+0 2.497510-3 1.158200+0 3.103770-3 1.174100+0 4.148340-3 1.190110+0 5.378540-3 1.205100+0 6.695330-3 1.227500+0 8.961270-3 1.250000+0 1.158000-2 1.265600+0 1.358120-2 1.294900+0 1.771740-2 1.331800+0 2.355530-2 1.362600+0 2.889850-2 1.411700+0 3.819730-2 1.455800+0 4.729520-2 1.500000+0 5.713000-2 1.562500+0 7.232120-2 1.617200+0 8.682470-2 1.712900+0 1.146600-1 1.784700+0 1.373080-1 1.892300+0 1.733440-1 2.000000+0 2.108000-1 2.044000+0 2.262000-1 2.163500+0 2.686640-1 2.372600+0 3.446780-1 2.647100+0 4.454680-1 3.000000+0 5.732000-1 3.437500+0 7.247380-1 4.000000+0 9.075000-1 4.750000+0 1.131940+0 5.000000+0 1.202000+0 6.000000+0 1.460000+0 7.000000+0 1.691000+0 8.000000+0 1.899000+0 9.000000+0 2.088000+0 1.000000+1 2.259000+0 1.100000+1 2.415000+0 1.200000+1 2.558000+0 1.300000+1 2.689000+0 1.400000+1 2.811000+0 1.500000+1 2.925000+0 1.600000+1 3.032000+0 1.800000+1 3.227000+0 2.000000+1 3.401000+0 2.200000+1 3.560000+0 2.400000+1 3.704000+0 2.600000+1 3.835000+0 2.800000+1 3.956000+0 3.000000+1 4.068000+0 4.000000+1 4.522000+0 5.000000+1 4.861000+0 6.000000+1 5.125000+0 8.000000+1 5.517000+0 1.000000+2 5.795000+0 1.500000+2 6.238000+0 2.000000+2 6.502000+0 3.000000+2 6.810000+0 4.000000+2 6.987000+0 5.000000+2 7.103000+0 6.000000+2 7.186000+0 8.000000+2 7.297000+0 1.000000+3 7.369000+0 1.500000+3 7.473000+0 2.000000+3 7.530000+0 3.000000+3 7.591000+0 4.000000+3 7.624000+0 5.000000+3 7.644000+0 6.000000+3 7.659000+0 8.000000+3 7.678000+0 1.000000+4 7.689000+0 1.500000+4 7.706000+0 2.000000+4 7.715000+0 3.000000+4 7.724000+0 4.000000+4 7.729000+0 5.000000+4 7.732000+0 6.000000+4 7.734000+0 8.000000+4 7.737000+0 1.000000+5 7.738000+0 1 33000 7 8 7.492160+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.312590-7 2.106600+0 1.079280-6 2.114000+0 1.493320-6 2.119500+0 1.859170-6 2.127900+0 2.521390-6 2.136250+0 3.312590-6 2.147000+0 4.541790-6 2.156900+0 5.899240-6 2.169000+0 7.872910-6 2.184500+0 1.094360-5 2.201800+0 1.514080-5 2.214800+0 1.886420-5 2.234200+0 2.537580-5 2.253680+0 3.312590-5 2.281500+0 4.639870-5 2.307000+0 6.094460-5 2.338200+0 8.194530-5 2.377400+0 1.134850-4 2.410200+0 1.443330-4 2.446800+0 1.836000-4 2.485900+0 2.311630-4 2.532900+0 2.958380-4 2.556430+0 3.312590-4 2.611900+0 4.223900-4 2.660400+0 5.106440-4 2.745300+0 6.834590-4 2.809000+0 8.277040-4 2.904500+0 1.066270-3 3.000000+0 1.331000-3 3.125000+0 1.716350-3 3.234400+0 2.088520-3 3.425800+0 2.812770-3 3.569300+0 3.411040-3 3.784700+0 4.385420-3 4.000000+0 5.433000-3 4.250000+0 6.713790-3 4.625000+0 8.726790-3 5.000000+0 1.082000-2 5.500000+0 1.369470-2 6.000000+0 1.661000-2 6.750000+0 2.095140-2 7.000000+0 2.238000-2 8.000000+0 2.797000-2 9.000000+0 3.333000-2 1.000000+1 3.842000-2 1.100000+1 4.324000-2 1.200000+1 4.779000-2 1.300000+1 5.208000-2 1.400000+1 5.617000-2 1.500000+1 6.004000-2 1.600000+1 6.373000-2 1.800000+1 7.056000-2 2.000000+1 7.679000-2 2.200000+1 8.250000-2 2.400000+1 8.775000-2 2.600000+1 9.261000-2 2.800000+1 9.713000-2 3.000000+1 1.013000-1 4.000000+1 1.188000-1 5.000000+1 1.321000-1 6.000000+1 1.427000-1 8.000000+1 1.588000-1 1.000000+2 1.705000-1 1.500000+2 1.900000-1 2.000000+2 2.022000-1 3.000000+2 2.173000-1 4.000000+2 2.264000-1 5.000000+2 2.326000-1 6.000000+2 2.372000-1 8.000000+2 2.435000-1 1.000000+3 2.477000-1 1.500000+3 2.539000-1 2.000000+3 2.575000-1 3.000000+3 2.613000-1 4.000000+3 2.636000-1 5.000000+3 2.650000-1 6.000000+3 2.659000-1 8.000000+3 2.672000-1 1.000000+4 2.681000-1 1.500000+4 2.692000-1 2.000000+4 2.698000-1 3.000000+4 2.704000-1 4.000000+4 2.708000-1 5.000000+4 2.711000-1 6.000000+4 2.712000-1 8.000000+4 2.714000-1 1.000000+5 2.715000-1 1 33000 7 8 7.492160+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 33000 7 9 7.492160+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.300000+1 1.000000+5 3.300000+1 5.000000+5 3.298600+1 8.750000+5 3.296740+1 1.000000+6 3.296300+1 1.375000+6 3.294120+1 1.500000+6 3.293100+1 1.875000+6 3.289200+1 2.000000+6 3.287700+1 2.500000+6 3.280900+1 3.000000+6 3.272600+1 3.500000+6 3.262860+1 4.000000+6 3.252100+1 4.750000+6 3.233480+1 5.000000+6 3.226800+1 5.500000+6 3.212260+1 6.250000+6 3.188470+1 6.500000+6 3.179770+1 7.000000+6 3.162500+1 7.875000+6 3.130020+1 8.500000+6 3.105660+1 8.625000+6 3.100600+1 9.000000+6 3.085900+1 1.000000+7 3.045000+1 1.109400+7 2.998100+1 1.187500+7 2.963580+1 1.203100+7 2.956730+1 1.250000+7 2.936100+1 1.375000+7 2.880470+1 1.500000+7 2.825900+1 1.687500+7 2.746110+1 1.750000+7 2.720100+1 1.937500+7 2.643340+1 2.000000+7 2.618700+1 2.250000+7 2.523580+1 2.375000+7 2.478280+1 2.500000+7 2.434600+1 2.875000+7 2.309370+1 3.000000+7 2.269500+1 3.250000+7 2.191410+1 3.500000+7 2.115460+1 3.625000+7 2.078200+1 4.000000+7 1.969100+1 4.250000+7 1.898210+1 4.625000+7 1.794920+1 4.750000+7 1.761280+1 5.000000+7 1.695100+1 5.437500+7 1.583230+1 5.750000+7 1.507100+1 5.812500+7 1.492170+1 6.000000+7 1.448500+1 6.500000+7 1.338050+1 7.000000+7 1.237400+1 8.000000+7 1.066300+1 9.000000+7 9.334600+0 1.000000+8 8.327700+0 1.062500+8 7.828930+0 1.125000+8 7.408720+0 1.156300+8 7.222600+0 1.250000+8 6.747000+0 1.375000+8 6.257280+0 1.437500+8 6.052260+0 1.500000+8 5.864900+0 1.671900+8 5.402560+0 1.750000+8 5.201610+0 1.789100+8 5.100800+0 1.894500+8 4.825810+0 1.973600+8 4.614810+0 2.000000+8 4.543800+0 2.375000+8 3.618400+0 2.500000+8 3.392400+0 2.750000+8 3.040150+0 2.835900+8 2.919340+0 2.875000+8 2.861550+0 2.894500+8 2.831840+0 2.964800+8 2.719750+0 3.000000+8 2.660800+0 3.062500+8 2.551300+0 3.308600+8 2.145970+0 3.377000+8 2.056000+0 3.459000+8 1.966280+0 3.500000+8 1.929200+0 3.562500+8 1.882820+0 3.617200+8 1.849970+0 4.000000+8 1.692600+0 4.125000+8 1.632770+0 5.000000+8 1.219500+0 5.179700+8 1.170900+0 5.330100+8 1.138600+0 5.712900+8 1.074990+0 6.000000+8 1.033000+0 6.250000+8 9.950500-1 6.812500+8 9.114310-1 7.000000+8 8.860000-1 7.625000+8 8.090560-1 7.875000+8 7.785320-1 8.000000+8 7.629000-1 8.250000+8 7.306170-1 8.468800+8 7.018860-1 8.851600+8 6.518870-1 9.138700+8 6.155350-1 9.569300+8 5.639140-1 1.000000+9 5.166000-1 1.062500+9 4.559510-1 1.141100+9 3.912290-1 1.206900+9 3.451500-1 1.280200+9 3.009980-1 1.358700+9 2.606420-1 1.429300+9 2.294940-1 1.500000+9 2.024200-1 1.562500+9 1.814040-1 1.671900+9 1.502880-1 1.753900+9 1.309850-1 1.877000+9 1.071930-1 2.000000+9 8.840400-2 2.184600+9 6.713010-2 2.360500+9 5.239870-2 2.605300+9 3.792520-2 2.755000+9 3.147470-2 3.035600+9 2.265320-2 3.281200+9 1.732580-2 3.710900+9 1.126630-2 4.274900+9 6.818480-3 5.000000+9 3.888000-3 8.000000+9 7.145400-4 1.00000+10 3.208400-4 1.20500+10 1.656670-4 1.41820+10 9.363090-5 1.71170+10 4.881320-5 2.01490+10 2.792240-5 2.26440+10 1.878270-5 2.74790+10 9.791660-6 3.41360+10 4.755690-6 4.02450+10 2.764020-6 4.77140+10 1.584040-6 5.73000+10 8.745080-7 7.25500+10 4.093750-7 9.08500+10 1.997640-7 1.00000+11 1.473200-7 1.34280+11 5.814390-8 1.77440+11 2.431380-8 2.63330+11 7.152790-9 3.75720+11 2.402530-9 6.61190+11 4.32053-10 1.48990+12 3.79973-11 4.26460+12 1.71562-12 1.00000+14 1.83240-16 5.62340+14 1.19556-18 7.49890+15 5.86621-22 1.00000+17 2.75110-25 1 33000 7 0 7.492160+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 4.00000-12 1.000000+2 4.00000-10 1.000000+3 4.000000-8 1.000000+4 4.000000-6 1.000000+5 4.000000-4 5.000000+5 1.000000-2 8.750000+5 3.062500-2 1.000000+6 4.000000-2 1.375000+6 7.589800-2 1.500000+6 9.030000-2 1.875000+6 1.403370-1 2.000000+6 1.593000-1 2.500000+6 2.463000-1 3.000000+6 3.504000-1 3.500000+6 4.701250-1 4.000000+6 6.041000-1 4.750000+6 8.286620-1 5.000000+6 9.090000-1 5.500000+6 1.076450+0 6.250000+6 1.342190+0 6.500000+6 1.433870+0 7.000000+6 1.621200+0 7.875000+6 1.957740+0 8.500000+6 2.202450+0 8.625000+6 2.251610+0 9.000000+6 2.399500+0 1.000000+7 2.793000+0 1.109400+7 3.219640+0 1.187500+7 3.520360+0 1.203100+7 3.579700+0 1.250000+7 3.757700+0 1.375000+7 4.222710+0 1.500000+7 4.675000+0 1.687500+7 5.330160+0 1.750000+7 5.543200+0 1.937500+7 6.163590+0 2.000000+7 6.365000+0 2.250000+7 7.142580+0 2.375000+7 7.514780+0 2.500000+7 7.877700+0 2.875000+7 8.908280+0 3.000000+7 9.236000+0 3.250000+7 9.871780+0 3.500000+7 1.048520+1 3.625000+7 1.078440+1 4.000000+7 1.165800+1 4.250000+7 1.222160+1 4.625000+7 1.303960+1 4.750000+7 1.330620+1 5.000000+7 1.382800+1 5.437500+7 1.470680+1 5.750000+7 1.530830+1 5.812500+7 1.542550+1 6.000000+7 1.577500+1 6.500000+7 1.666690+1 7.000000+7 1.751100+1 8.000000+7 1.905600+1 9.000000+7 2.042000+1 1.000000+8 2.161200+1 1.062500+8 2.227340+1 1.125000+8 2.287830+1 1.156300+8 2.316130+1 1.250000+8 2.393800+1 1.375000+8 2.482510+1 1.437500+8 2.521790+1 1.500000+8 2.558300+1 1.671900+8 2.646870+1 1.750000+8 2.682420+1 1.789100+8 2.699350+1 1.894500+8 2.741830+1 1.973600+8 2.771510+1 2.000000+8 2.781000+1 2.375000+8 2.895290+1 2.500000+8 2.926400+1 2.750000+8 2.978640+1 2.835900+8 2.994200+1 2.875000+8 3.000930+1 2.894500+8 3.004090+1 2.964800+8 3.015350+1 3.000000+8 3.020900+1 3.062500+8 3.029760+1 3.308600+8 3.061430+1 3.377000+8 3.069290+1 3.459000+8 3.077940+1 3.500000+8 3.082200+1 3.562500+8 3.088060+1 3.617200+8 3.093110+1 4.000000+8 3.124100+1 4.125000+8 3.132470+1 5.000000+8 3.179600+1 5.179700+8 3.187150+1 5.330100+8 3.193290+1 5.712900+8 3.207560+1 6.000000+8 3.217300+1 6.250000+8 3.224740+1 6.812500+8 3.239690+1 7.000000+8 3.244200+1 7.625000+8 3.256520+1 7.875000+8 3.260900+1 8.000000+8 3.262900+1 8.250000+8 3.266430+1 8.468800+8 3.269430+1 8.851600+8 3.273760+1 9.138700+8 3.276830+1 9.569300+8 3.280610+1 1.000000+9 3.284000+1 1.062500+9 3.287430+1 1.141100+9 3.291060+1 1.206900+9 3.293110+1 1.280200+9 3.294960+1 1.358700+9 3.296230+1 1.429300+9 3.297250+1 1.500000+9 3.297900+1 1.562500+9 3.298140+1 1.671900+9 3.298540+1 1.753900+9 3.298820+1 1.877000+9 3.299220+1 2.000000+9 3.299600+1 2.184600+9 3.299640+1 2.360500+9 3.299670+1 2.605300+9 3.299720+1 2.755000+9 3.299740+1 3.035600+9 3.299780+1 3.281200+9 3.299820+1 3.710900+9 3.299870+1 4.274900+9 3.299930+1 5.000000+9 3.300000+1 8.000000+9 3.300000+1 1.00000+10 3.300000+1 1.20500+10 3.300000+1 1.41820+10 3.300000+1 1.71170+10 3.300000+1 2.01490+10 3.300000+1 2.26440+10 3.300000+1 2.74790+10 3.300000+1 3.41360+10 3.300000+1 4.02450+10 3.300000+1 4.77140+10 3.300000+1 5.73000+10 3.300000+1 7.25500+10 3.300000+1 9.08500+10 3.300000+1 1.00000+11 3.300000+1 1.34280+11 3.300000+1 1.77440+11 3.300000+1 2.63330+11 3.300000+1 3.75720+11 3.300000+1 6.61190+11 3.300000+1 1.48990+12 3.300000+1 4.26460+12 3.300000+1 1.00000+14 3.300000+1 5.62340+14 3.300000+1 7.49890+15 3.300000+1 1.00000+17 3.300000+1 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.077183-6 0.0 4.580663-6 0.0 4.598639-6 7.549431-1 4.603212-6 9.447645-1 4.614487-6 1.725690+0 4.625762-6 2.909750+0 4.638446-6 4.775771+0 4.658000-6 8.331686+0 4.671565-6 1.065317+1 4.683170-6 1.199081+1 4.694920-6 1.239932+1 4.706271-6 1.181399+1 4.718274-6 1.027733+1 4.737295-6 6.862631+0 4.749784-6 4.639122+0 4.761763-6 2.919391+0 4.772333-6 1.784720+0 4.783608-6 9.817889-1 4.799815-6 2.807303-1 4.806157-6 0.0 4.891697-6 0.0 4.912768-6 3.812864-1 4.915778-6 4.352001-1 4.927818-6 7.949285-1 4.939858-6 1.340359+0 4.953404-6 2.199930+0 4.974498-6 3.855167+0 4.988772-6 4.907317+0 5.001165-6 5.523495+0 5.012879-6 5.726316+0 5.026089-6 5.429081+0 5.038344-6 4.756747+0 5.057298-6 3.296792+0 5.072301-6 2.136984+0 5.084342-6 1.379562+0 5.096382-6 8.221204-1 5.108422-6 4.522552-1 5.125730-6 1.293167-1 5.132503-6 0.0 5.551409-6 0.0 5.572959-6 8.754239-7 5.578737-6 1.328714-6 5.592401-6 2.763483-6 5.600393-6 3.874679-6 5.606065-6 4.807001-6 5.614110-6 6.428474-6 5.619730-6 7.743883-6 5.627827-6 9.887737-6 5.660722-6 2.048695-5 5.674386-6 2.434966-5 5.688050-6 2.684091-5 5.701714-6 2.744722-5 5.715378-6 2.604296-5 5.729042-6 2.293251-5 5.770035-6 1.001432-5 5.778716-6 7.721844-6 5.783699-6 6.546617-6 5.792433-6 4.790900-6 5.797363-6 3.972315-6 5.806150-6 2.753434-6 5.819867-6 1.288454-6 5.824691-6 8.948710-7 5.833584-6 5.493676-7 5.847301-6 0.0 5.862434-6 0.0 5.883983-6 7.49316-15 5.912949-6 9.877658-7 5.927431-6 1.804235-6 5.941914-6 3.042188-6 5.956397-6 4.735141-6 5.999845-6 1.104833-5 6.014327-6 1.248703-5 6.028810-6 1.302793-5 6.043293-6 1.254716-5 6.057775-6 1.115501-5 6.101223-6 4.850273-6 6.111396-6 3.643662-6 6.111884-6 2.916304-3 6.141971-6 1.779183+0 6.157015-6 3.248354+0 6.172058-6 5.474877+0 6.188982-6 8.981873+0 6.215074-6 1.566020+1 6.233202-6 2.001816+1 6.249151-6 2.255318+1 6.265177-6 2.330842+1 6.280272-6 2.220669+1 6.297201-6 1.918682+1 6.338478-6 9.552637+0 6.353522-6 6.855740+0 6.368566-6 4.946624+0 6.383847-6 3.697796+0 6.402925-6 2.659254+0 6.413015-6 1.999809+0 6.423494-6 1.914724+0 6.432276-6 2.020460+0 6.455845-6 2.163048+0 6.470830-6 2.500025+0 6.486639-6 3.250038+0 6.502660-6 4.467126+0 6.549876-6 9.329861+0 6.567415-6 1.051937+1 6.583224-6 1.086255+1 6.598260-6 1.043403+1 6.616232-6 9.059954+0 6.662022-6 4.406288+0 6.675855-6 3.301182+0 6.691664-6 2.395829+0 6.707473-6 1.796096+0 6.725195-6 1.341180+0 6.738580-6 9.341095-1 6.754895-6 8.206405-1 6.771716-6 6.617053-1 6.805540-6 1.125291+0 6.821687-6 1.625369+0 6.839396-6 2.589288+0 6.856686-6 3.972665+0 6.906465-6 8.938842+0 6.924969-6 1.015755+1 6.940006-6 1.057029+1 6.958631-6 1.013073+1 6.974627-6 9.105282+0 7.012664-6 5.455273+0 7.023231-6 4.398166+0 7.038366-6 3.102958+0 7.056075-6 1.952544+0 7.071701-6 1.218677+0 7.079282-6 9.840014-1 7.082708-6 9.202346-1 7.105036-6 7.245423-1 7.114132-6 8.777109-1 7.118995-6 1.014836+0 7.133546-6 1.521902+0 7.150213-6 2.415446+0 7.167474-6 3.698339+0 7.223494-6 8.984427+0 7.242429-6 1.011893+1 7.258300-6 1.052735+1 7.276321-6 1.021132+1 7.297073-6 9.021603+0 7.341946-6 5.679290+0 7.361325-6 4.717466+0 7.380191-6 4.227448+0 7.399091-6 4.085907+0 7.432461-6 4.145568+0 7.518539-6 5.643224+0 7.554821-6 6.321800+0 7.582176-6 6.518425+0 7.646633-6 5.867912+0 7.675966-6 5.587138+0 7.719829-6 5.580120+0 7.752956-6 5.724507+0 7.871755-6 5.812029+0 8.196561-6 5.895183+0 9.510042-6 5.652695+0 9.556858-6 7.393209+0 9.580266-6 8.836788+0 9.606599-6 1.140388+1 9.630007-6 1.448864+1 9.697304-6 2.522919+1 9.724918-6 2.794915+1 9.746269-6 2.865215+1 9.772543-6 2.733670+1 9.797583-6 2.435004+1 9.824206-6 2.041068+1 9.867608-6 1.679831+1 9.886822-6 1.665032+1 9.896172-6 1.707432+1 9.917538-6 1.933918+1 9.945262-6 2.523347+1 9.991683-6 3.879180+1 1.001521-5 4.618503+1 1.004271-5 5.162462+1 1.006671-5 5.298071+1 1.008919-5 5.102401+1 1.011549-5 4.505495+1 1.018367-5 2.320272+1 1.020784-5 1.688291+1 1.023201-5 1.222869+1 1.025619-5 9.136991+0 1.030453-5 5.348295+0 1.454351-5 3.187069+0 1.539400-5 2.822419+0 1.554556-5 2.917175+0 1.573501-5 3.295308+0 1.581079-5 3.256379+0 1.600024-5 2.726726+0 1.615180-5 2.526019+0 1.652379-5 2.411515+0 1.681102-5 2.424686+0 1.708901-5 2.255067+0 1.903849-5 1.691471+0 2.047000-5 1.379473+0 2.220296-5 1.093934+0 2.406391-5 8.708967-1 2.581655-5 7.167683-1 2.795656-5 5.809577-1 3.007871-5 4.853700-1 3.251044-5 4.082298-1 3.474390-5 3.584516-1 3.770000-5 3.137402-1 4.167668-5 2.776068-1 4.188185-5 9.000766-1 4.198443-5 1.415042+0 4.209404-5 2.269343+0 4.214330-5 2.781905+0 4.219966-5 3.495534+0 4.239914-5 6.519357+0 4.254222-5 8.755923+0 4.261555-5 9.738363+0 4.272179-5 1.073269+1 4.283302-5 1.116785+1 4.292873-5 1.106735+1 4.304972-5 1.035881+1 4.321541-5 8.734414+0 4.352315-5 4.929056+0 4.372832-5 2.614937+0 4.381279-5 2.003087+0 4.390671-5 1.443513+0 4.401044-5 9.907932-1 4.412628-5 6.483485-1 4.421790-5 4.021419-1 4.433527-5 3.334618-1 4.454426-5 2.623056-1 4.724961-5 2.530336-1 4.748221-5 3.221839-1 4.759851-5 3.795421-1 4.771481-5 4.666950-1 4.784539-5 6.038619-1 4.805257-5 8.770265-1 4.819290-5 1.077945+0 4.830847-5 1.207293+0 4.842424-5 1.296402+0 4.854178-5 1.336969+0 4.923612-5 1.322347+0 4.937250-5 1.298618+0 4.982296-5 1.119444+0 5.020370-5 1.085496+0 5.124701-5 1.111329+0 5.470000-5 1.186496+0 5.704926-5 1.302423+0 5.920000-5 1.476477+0 6.144000-5 1.735150+0 6.371585-5 2.079562+0 6.628529-5 2.562690+0 7.099828-5 3.641859+0 8.222426-5 6.383658+0 9.332543-5 8.596731+0 1.109348-4 1.140637+1 1.249107-4 1.303932+1 1.389282-4 1.417506+1 1.416892-4 1.467876+1 1.478246-4 1.523801+1 1.800694-4 1.591107+1 1.897690-4 1.596621+1 1.916825-4 1.652358+1 1.939943-4 1.772623+1 1.955218-4 1.721781+1 1.977277-4 1.619652+1 2.065381-4 1.639905+1 2.621440-4 1.505585+1 3.934838-4 1.114577+1 5.034730-4 8.705079+0 6.010644-4 7.140653+0 7.187245-4 5.762790+0 8.486918-4 4.671949+0 9.835049-4 3.851197+0 1.155614-3 3.093260+0 1.295198-3 2.647735+0 1.303716-3 2.726502+0 1.308717-3 2.921718+0 1.312953-3 3.268811+0 1.316927-3 3.805005+0 1.321165-3 4.628770+0 1.329074-3 6.652520+0 1.336167-3 8.456922+0 1.343772-3 9.845475+0 1.365800-3 1.265724+1 1.379000-3 1.435525+1 1.393000-3 1.502673+1 1.465735-3 1.436424+1 1.491439-3 1.426915+1 1.521754-3 1.530848+1 1.810835-3 1.206695+1 2.113489-3 9.629707+0 2.434481-3 7.755749+0 2.802205-3 6.224995+0 3.209631-3 5.000381+0 3.651741-3 4.047497+0 4.138806-3 3.284532+0 4.729651-3 2.620088+0 5.344297-3 2.124718+0 6.022809-3 1.726273+0 6.748413-3 1.414052+0 7.559769-3 1.156977+0 8.508503-3 9.369653-1 9.669483-3 7.444660-1 1.089786-2 5.994487-1 1.154021-2 5.455152-1 1.159441-2 5.765586-1 1.163226-2 6.373359-1 1.165817-2 7.136420-1 1.168301-2 8.239096-1 1.171190-2 1.008713+0 1.173954-2 1.244979+0 1.177880-2 1.673253+0 1.186696-2 2.754396+0 1.191758-2 3.219816+0 1.197496-2 3.515839+0 1.205663-2 3.638525+0 1.434356-2 2.791984+0 1.621810-2 2.277695+0 1.821000-2 1.876457+0 2.065895-2 1.509102+0 2.334025-2 1.220526+0 2.599772-2 1.006023+0 2.894222-2 8.295922-1 3.248494-2 6.703797-1 3.643115-2 5.422754-1 4.021303-2 4.500001-1 4.481804-2 3.664054-1 4.954502-2 3.020687-1 5.438789-2 2.522412-1 5.943697-2 2.120461-1 6.547354-2 1.753074-1 7.242954-2 1.436503-1 7.992339-2 1.180000-1 8.977573-2 9.358222-2 9.869286-2 7.736103-2 1.093489-1 6.293372-2 1.201400-1 5.207200-2 1.312459-1 4.358069-2 1.433044-1 3.650113-2 1.574853-1 3.018064-2 1.731190-1 2.494536-2 1.910938-1 2.050256-2 2.097491-1 1.705565-2 2.309072-1 1.411184-2 2.548641-1 1.165665-2 2.818383-1 9.622964-3 3.131949-1 7.899271-3 3.449238-1 6.621755-3 3.816755-1 5.529661-3 4.244744-1 4.603581-3 4.690833-1 3.902879-3 5.206945-1 3.306728-3 5.863069-1 2.763656-3 6.685071-1 2.295337-3 7.687431-1 1.914374-3 9.015711-1 1.587146-3 1.070165+0 1.320644-3 1.292737+0 1.081893-3 1.546860+0 8.948549-4 1.859734+0 7.366075-4 2.235892+0 6.063447-4 2.688134+0 4.991178-4 3.231848+0 4.108531-4 3.885536+0 3.381972-4 4.671441+0 2.783899-4 5.616308+0 2.291590-4 6.752287+0 1.886342-4 8.118035+0 1.552759-4 9.760024+0 1.278167-4 1.000000+1 2.566069-4 1 33000 7 0 7.492160+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.297772+1 3.077183-6-3.268040+1 4.281175-6-3.151842+1 4.505471-6-3.006864+1 4.573656-6-2.833927+1 4.629637-6-2.475384+1 4.648311-6-2.458902+1 4.666104-6-2.614638+1 4.684450-6-2.973956+1 4.701132-6-3.356694+1 4.722824-6-2.938050+1 4.741328-6-2.798279+1 4.767048-6-2.879173+1 4.829130-6-3.276631+1 4.852997-6-3.358288+1 4.960976-6-3.037337+1 4.988772-6-3.139778+1 5.012879-6-3.359241+1 5.054335-6-3.088100+1 5.093748-6-3.127983+1 5.178615-6-3.344244+1 5.245322-6-3.356824+1 5.862434-6-3.037955+1 6.014327-6-2.827192+1 6.084464-6-2.598337+1 6.111884-6-2.399944+1 6.177229-6-1.791814+1 6.192273-6-1.730655+1 6.208727-6-1.790000+1 6.223771-6-1.991637+1 6.233202-6-2.198465+1 6.248220-6-2.612190+1 6.274662-6-3.439870+1 6.292265-6-2.953054+1 6.307352-6-2.673143+1 6.326652-6-2.520662+1 6.338478-6-2.533196+1 6.367625-6-2.745444+1 6.448269-6-3.443082+1 6.464764-6-3.364390+1 6.510800-6-3.092808+1 6.543111-6-3.150953+1 6.575441-6-3.476811+1 6.616232-6-3.014130+1 6.647026-6-2.905273+1 6.691664-6-3.062748+1 6.772616-6-3.498368+1 6.859806-6-3.046215+1 6.893472-6-3.090808+1 6.926732-6-3.385179+1 6.940006-6-3.507932+1 6.982586-6-3.085149+1 7.015306-6-2.998765+1 7.056075-6-3.167526+1 7.107349-6-3.555272+1 7.168952-6-3.186423+1 7.206104-6-3.198876+1 7.241455-6-3.465068+1 7.255688-6-3.574493+1 7.297073-6-3.203581+1 7.332884-6-3.122125+1 7.460259-6-3.498799+1 7.550799-6-3.507082+1 7.646633-6-3.385549+1 7.864367-6-3.421759+1 8.768997-6-3.477545+1 9.229698-6-3.028900+1 9.405444-6-2.698397+1 9.487409-6-2.404541+1 9.556858-6-1.932503+1 9.611720-6-1.525583+1 9.635128-6-1.426110+1 9.656341-6-1.424506+1 9.673897-6-1.504945+1 9.695659-6-1.706594+1 9.720712-6-2.075863+1 9.773692-6-2.969643+1 9.802263-6-3.240327+1 9.821806-6-3.210457+1 9.859599-6-2.935618+1 9.894486-6-2.369589+1 9.922723-6-1.889968+1 9.945262-6-1.637712+1 9.957092-6-1.588748+1 9.971992-6-1.611681+1 9.984712-6-1.682107+1 9.999199-6-1.874533+1 1.001204-5-2.157843+1 1.003654-5-2.952148+1 1.004333-5-3.234147+1 1.006242-5-2.470950+1 1.007368-5-1.985435+1 1.008697-5-1.449622+1 1.009194-5-1.239952+1 1.011266-5-5.399417+0 1.011549-5-4.534986+0 1.012045-5-3.210122+0 1.012417-5-2.319060+0 1.012974-5-1.102044+0 1.013532-5 4.048425-2 1.013834-5 6.196028-1 1.014363-5 1.453603+0 1.014760-5 1.976116+0 1.015354-5 2.608555+0 1.015949-5 3.034389+0 1.016554-5 3.317998+0 1.017007-5 3.470526+0 1.017687-5 3.544555+0 1.018027-5 3.490766+0 1.019575-5 2.675390+0 1.020180-5 2.271564+0 1.020482-5 2.005543+0 1.021086-5 1.241307+0 1.022144-5 1.704716-1 1.022673-5-4.051114-1 1.022937-5-7.323620-1 1.023201-5-1.138948+0 1.025619-5-4.217426+0 1.025921-5-4.655654+0 1.026450-5-5.283043+0 1.029849-5-8.877748+0 1.031253-5-1.088526+1 1.033644-5-1.298961+1 1.036813-5-1.489825+1 1.043078-5-1.739660+1 1.052301-5-1.964324+1 1.067217-5-2.172873+1 1.092700-5-2.354489+1 1.148230-5-2.509542+1 1.277217-5-2.597334+1 1.573501-5-2.644994+1 1.603813-5-2.604076+1 1.954864-5-2.671335+1 3.866744-5-2.970729+1 4.097640-5-3.122133+1 4.136564-5-3.103640+1 4.188185-5-2.885217+1 4.226400-5-2.679999+1 4.247662-5-2.753017+1 4.270410-5-3.067668+1 4.275875-5-3.164523+1 4.311283-5-2.567058+1 4.335241-5-2.344843+1 4.357445-5-2.293729+1 4.381279-5-2.375672+1 4.443976-5-2.652494+1 4.561323-5-2.824126+1 4.827958-5-3.003731+1 5.020370-5-2.963000+1 7.328245-5-3.299278+1 9.332543-5-3.233081+1 1.380680-4-2.773217+1 1.685856-4-2.345203+1 1.882005-4-2.175351+1 1.925839-4-2.198399+1 1.942943-4-2.074266+1 2.033133-4-2.020834+1 2.180834-4-1.833559+1 2.477525-4-1.581806+1 2.900681-4-1.332297+1 3.349654-4-1.149594+1 3.934838-4-9.993732+0 4.717175-4-8.848022+0 5.651882-4-8.222101+0 6.797080-4-8.026109+0 8.486918-4-8.389033+0 9.835049-4-9.149942+0 1.100067-3-1.029509+1 1.179705-3-1.159677+1 1.237741-3-1.316252+1 1.272380-3-1.471663+1 1.295198-3-1.645442+1 1.310052-3-1.856873+1 1.325075-3-2.118935+1 1.334135-3-2.149434+1 1.372675-3-1.876178+1 1.399263-3-1.514857+1 1.423776-3-1.312916+1 1.454046-3-1.158258+1 1.485436-3-1.064588+1 1.517409-3-1.043747+1 1.532266-3-9.758144+0 1.559262-3-8.333018+0 1.594043-3-7.186629+0 1.633280-3-6.227194+0 1.698745-3-5.032557+0 1.767274-3-4.096805+0 1.845082-3-3.282984+0 1.936088-3-2.551691+0 2.024813-3-2.001638+0 2.137962-3-1.463396+0 2.219474-3-1.159877+0 2.322820-3-8.556459-1 2.420017-3-6.333705-1 2.478097-3-5.272881-1 2.551966-3-4.091066-1 2.614674-3-3.218396-1 2.723711-3-2.029973-1 2.790134-3-1.409681-1 2.854450-3-9.240801-2 2.903144-3-6.097312-2 2.924258-3-4.824888-2 2.988875-3-1.595280-2 3.013492-3-5.148524-3 3.054921-3 1.141351-2 3.115588-3 3.241579-2 3.138193-3 3.986590-2 3.209631-3 5.657568-2 3.320856-3 7.576199-2 3.377285-3 8.163820-2 3.437337-3 8.503240-2 3.604749-3 8.811891-2 3.701219-3 8.311624-2 3.790967-3 7.420485-2 3.888921-3 6.210261-2 4.138806-3 2.299247-2 4.181100-3 1.580705-2 4.215827-3 9.288906-3 4.250475-3 2.337978-3 4.333861-3-1.425380-2 4.476489-3-4.501276-2 4.786301-3-1.145557-1 8.175230-3-9.518509-1 9.112861-3-1.225339+0 9.903452-3-1.522982+0 1.049826-2-1.839565+0 1.089786-2-2.151320+0 1.118183-2-2.480606+0 1.138582-2-2.839534+0 1.154021-2-3.289121+0 1.164131-2-3.816093+0 1.177880-2-4.750055+0 1.183168-2-4.847174+0 1.188613-2-4.663612+0 1.205663-2-3.402982+0 1.214698-2-2.950369+0 1.229383-2-2.480889+0 1.245338-2-2.128910+0 1.268659-2-1.758191+0 1.293975-2-1.460313+0 1.327777-2-1.162942+0 1.370086-2-8.874302-1 1.416598-2-6.599394-1 1.460952-2-4.876134-1 1.506903-2-3.469743-1 1.547946-2-2.452519-1 1.583951-2-1.707654-1 1.621810-2-1.038089-1 1.662709-2-4.192323-2 1.697480-2 2.675909-3 1.737215-2 4.733019-2 1.780820-2 8.966538-2 1.821000-2 1.230119-1 1.875534-2 1.630789-1 1.914738-2 1.862783-1 1.963793-2 2.109515-1 2.065895-2 2.489627-1 2.220914-2 2.831309-1 2.447846-2 3.048108-1 2.690476-2 3.038974-1 3.173451-2 2.757407-1 4.481804-2 1.729637-1 5.291450-2 1.228633-1 5.943697-2 9.061897-2 6.547354-2 6.578653-2 7.027697-2 4.915076-2 7.680665-2 2.984198-2 7.992339-2 2.172807-2 8.330338-2 1.364487-2 8.542738-2 8.956425-3 8.776056-2 4.111468-3 8.931166-2 9.829503-4 9.009347-2-5.132084-4 9.126467-2-2.733594-3 9.317446-2-6.193894-3 9.681696-2-1.240852-2 1.014903-1-1.961779-2 1.093489-1-3.017371-2 1.201400-1-4.208767-2 1.348205-1-5.468970-2 1.524492-1-6.601529-2 1.792027-1-7.808549-2 2.166263-1-8.886099-2 2.818383-1-9.936202-2 3.950884-1-1.075386-1 6.685071-1-1.135527-1 1.947381+0-1.165074-1 5.880996+0-1.168561-1 1.000000+1-1.168537-1 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.598309-5 1.041383-6 3.072417-5 1.067871-6 3.418464-5 1.107486-6 3.939399-5 1.177786-6 5.115085-5 1.201355-6 5.579545-5 1.252548-6 6.604028-5 1.291690-6 7.552729-5 1.351524-6 9.253025-5 1.373682-6 9.888867-5 1.416609-6 1.127483-4 1.460878-6 1.294782-4 1.520465-6 1.560158-4 1.553610-6 1.718274-4 1.621829-6 2.103479-4 1.652228-6 2.280251-4 1.716462-6 2.716576-4 1.757105-6 3.026489-4 1.824558-6 3.639338-4 1.868641-6 4.064017-4 1.938593-6 4.861566-4 1.987255-6 5.464752-4 2.059755-6 6.524446-4 2.113400-6 7.339387-4 2.188489-6 8.709798-4 2.247551-6 9.891522-4 2.325270-6 1.175881-3 2.390218-6 1.347030-3 2.541940-6 1.854684-3 2.703294-6 2.583085-3 2.874890-6 3.644631-3 3.057378-6 5.215944-3 3.237071-6 7.369010-3 3.405708-6 1.016212-2 3.486095-6 1.183788-2 3.639412-6 1.585662-2 3.712496-6 1.821025-2 3.851883-6 2.371144-2 3.918327-6 2.694597-2 4.047063-6 3.452479-2 4.167753-6 4.349199-2 4.280899-6 5.410858-2 4.386974-6 6.657693-2 4.486419-6 8.112841-2 4.579649-6 9.806179-2 4.667052-6 1.175780-1 4.748992-6 1.398832-1 4.826337-6 1.655202-1 4.897829-6 1.940998-1 4.970114-6 2.290261-1 5.028643-6 2.627396-1 5.087984-6 3.033005-1 5.143616-6 3.484828-1 5.202086-6 4.050770-1 5.244666-6 4.534733-1 5.290506-6 5.141005-1 5.333480-6 5.806958-1 5.375044-6 6.560348-1 5.411539-6 7.330103-1 5.446949-6 8.195261-1 5.480146-6 9.135029-1 5.511268-6 1.015368+0 5.540444-6 1.125562+0 5.567798-6 1.244498+0 5.593441-6 1.372543+0 5.624346-6 1.552927+0 5.640021-6 1.657556+0 5.661150-6 1.815528+0 5.680960-6 1.984581+0 5.699531-6 2.165304+0 5.716941-6 2.358258+0 5.733263-6 2.563974+0 5.748565-6 2.782970+0 5.762911-6 3.015797+0 5.789809-6 3.544294+0 5.813345-6 4.142490+0 5.833939-6 4.821496+0 5.851959-6 5.595070+0 5.868276-6 6.511114+0 5.881522-6 7.470842+0 5.893594-6 8.576314+0 5.904157-6 9.778182+0 5.913400-6 1.105349+1 5.921487-6 1.237423+1 5.928563-6 1.371115+1 5.940172-6 1.632805+1 5.956764-6 2.114311+1 5.979016-6 2.994920+1 5.987638-6 3.414615+1 5.992811-6 3.687459+1 6.000168-6 4.101556+1 6.007525-6 4.544053+1 6.022240-6 5.498695+1 6.024079-6 5.622950+1 6.036954-6 6.507274+1 6.042012-6 6.855381+1 6.051668-6 7.505608+1 6.056726-6 7.832329+1 6.061555-6 8.131095+1 6.066383-6 8.413911+1 6.072820-6 8.760861+1 6.079028-6 9.056732+1 6.084776-6 9.291545+1 6.089604-6 9.456446+1 6.095811-6 9.621254+1 6.104088-6 9.752190+1 6.110985-6 9.779538+1 6.113547-6 9.770291+1 6.120855-6 9.685866+1 6.127211-6 9.543412+1 6.132451-6 9.379219+1 6.139066-6 9.114836+1 6.144945-6 8.830248+1 6.155128-6 8.240717+1 6.161709-6 7.805560+1 6.166505-6 7.467274+1 6.172832-6 7.000070+1 6.177760-6 6.624087+1 6.184097-6 6.131588+1 6.190535-6 5.627868+1 6.197260-6 5.105851+1 6.198812-6 4.986790+1 6.206169-6 4.433407+1 6.212606-6 3.968705+1 6.214446-6 3.839978+1 6.221343-6 3.375473+1 6.227378-6 2.994856+1 6.228240-6 2.942579+1 6.242955-6 2.135896+1 6.248616-6 1.869559+1 6.253143-6 1.674180+1 6.257669-6 1.494102+1 6.264106-6 1.263518+1 6.270055-6 1.075872+1 6.276914-6 8.878963+0 6.282725-6 7.506392+0 6.290087-6 6.030706+0 6.297024-6 4.881239+0 6.315378-6 2.763169+0 6.318111-6 2.542178+0 6.323324-6 2.176439+0 6.328216-6 1.893634+0 6.336056-6 1.547213+0 6.337357-6 1.501224+0 6.342818-6 1.340237+0 6.372830-6 1.220178+0 6.376582-6 1.284439+0 6.383147-6 1.437506+0 6.388071-6 1.586743+0 6.391764-6 1.718496+0 6.396610-6 1.917872+0 6.405674-6 2.374227+0 6.418602-6 3.223332+0 6.426482-6 3.859856+0 6.432392-6 4.397076+0 6.434362-6 4.587448+0 6.450122-6 6.304434+0 6.452091-6 6.541685+0 6.465881-6 8.317788+0 6.471299-6 9.059136+0 6.481641-6 1.051099+1 6.487059-6 1.127631+1 6.493522-6 1.217880+1 6.499371-6 1.297323+1 6.505404-6 1.375782+1 6.511221-6 1.446869+1 6.517101-6 1.512957+1 6.522272-6 1.565400+1 6.528089-6 1.617095+1 6.529905-6 1.631505+1 6.537293-6 1.680926+1 6.543641-6 1.710797+1 6.547916-6 1.723965+1 6.555744-6 1.733080+1 6.562206-6 1.725800+1 6.567283-6 1.710766+1 6.573692-6 1.680436+1 6.579673-6 1.641262+1 6.584904-6 1.598998+1 6.591960-6 1.531330+1 6.596761-6 1.479087+1 6.601555-6 1.422625+1 6.607719-6 1.344772+1 6.611413-6 1.295830+1 6.616692-6 1.223644+1 6.621782-6 1.152304+1 6.627419-6 1.072290+1 6.632590-6 9.987967+0 6.639239-6 9.054068+0 6.647119-6 7.981316+0 6.654014-6 7.088011+0 6.655984-6 6.842256+0 6.663371-6 5.963412+0 6.670758-6 5.158495+0 6.687503-6 3.633116+0 6.706218-6 2.419311+0 6.713051-6 2.093780+0 6.719686-6 1.830405+0 6.725120-6 1.649511+0 6.729394-6 1.527119+0 6.733601-6 1.422075+0 6.737742-6 1.332210+0 6.741819-6 1.255538+0 6.747815-6 1.161364+0 6.753672-6 1.087501+0 6.761270-6 1.012935+0 6.770439-6 9.464897-1 6.775762-6 9.161517-1 6.785630-6 8.696824-1 6.808021-6 7.795862-1 6.819813-6 7.286997-1 6.830879-6 6.759762-1 6.841429-6 6.215952-1 6.851320-6 5.680604-1 6.860592-6 5.168238-1 6.869285-6 4.688949-1 6.885585-6 3.822647-1 6.899847-6 3.127591-1 6.925997-6 2.063897-1 6.943525-6 1.518501-1 6.971603-6 9.179816-2 6.999682-6 6.265427-2 7.015379-6 5.877368-2 7.022071-6 5.971163-2 7.034139-6 6.524819-2 7.051368-6 8.163667-2 7.056639-6 8.863732-2 7.068597-6 1.079909-1 7.085826-6 1.444464-1 7.091206-6 1.579436-1 7.108490-6 2.083083-1 7.143058-6 3.430787-1 7.160342-6 4.290835-1 7.177626-6 5.289007-1 7.194910-6 6.438556-1 7.212194-6 7.755315-1 7.229478-6 9.258206-1 7.264046-6 1.291759+0 7.281330-6 1.513385+0 7.309801-6 1.947661+0 7.344258-6 2.617796+0 7.396088-6 4.053838+0 7.424427-6 5.165012+0 7.446826-6 6.289954+0 7.465155-6 7.435781+0 7.483485-6 8.859569+0 7.501814-6 1.066561+1 7.520144-6 1.300484+1 7.538473-6 1.609007+1 7.554547-6 1.963556+1 7.570621-6 2.422346+1 7.582041-6 2.827722+1 7.593461-6 3.312485+1 7.639089-6 6.291603+1 7.652994-6 7.604897+1 7.662369-6 8.609647+1 7.680267-6 1.079381+2 7.688841-6 1.195737+2 7.707673-6 1.473834+2 7.710027-6 1.510368+2 7.726506-6 1.772820+2 7.732979-6 1.877418+2 7.747302-6 2.105940+2 7.754205-6 2.212244+2 7.759842-6 2.296008+2 7.764071-6 2.356575+2 7.773584-6 2.484130+2 7.776755-6 2.523526+2 7.783939-6 2.606069+2 7.789327-6 2.661240+2 7.796398-6 2.723924+2 7.804354-6 2.780033+2 7.813079-6 2.822578+2 7.821256-6 2.843319+2 7.824534-6 2.846268+2 7.833888-6 2.837531+2 7.842548-6 2.806817+2 7.846248-6 2.787172+2 7.855358-6 2.722705+2 7.863770-6 2.643923+2 7.867929-6 2.598627+2 7.882372-6 2.412540+2 7.890901-6 2.284936+2 7.897118-6 2.185458+2 7.902898-6 2.089055+2 7.910108-6 1.964845+2 7.915629-6 1.867702+2 7.923518-6 1.727309+2 7.931760-6 1.580600+2 7.943078-6 1.382753+2 7.951317-6 1.243774+2 7.954848-6 1.185962+2 7.963088-6 1.055908+2 7.971327-6 9.335027+1 7.981920-6 7.886856+1 7.990159-6 6.865011+1 7.996927-6 6.096362+1 8.004651-6 5.297687+1 8.014789-6 4.375294+1 8.028232-6 3.364911+1 8.044032-6 2.465494+1 8.053418-6 2.065374+1 8.055802-6 1.978496+1 8.066232-6 1.664062+1 8.070143-6 1.572312+1 8.072490-6 1.523761+1 8.075990-6 1.460124+1 8.079764-6 1.402930+1 8.084285-6 1.349459+1 8.091561-6 1.296176+1 8.093069-6 1.289985+1 8.095896-6 1.282709+1 8.100844-6 1.283184+1 8.108265-6 1.313983+1 8.111976-6 1.342265+1 8.115687-6 1.378746+1 8.117439-6 1.398739+1 8.129704-6 1.585592+1 8.136807-6 1.728651+1 8.163091-6 2.440567+1 8.175321-6 2.845473+1 8.184084-6 3.153056+1 8.190923-6 3.398841+1 8.196509-6 3.601009+1 8.203840-6 3.865331+1 8.208552-6 4.033020+1 8.213265-6 4.197762+1 8.218687-6 4.382374+1 8.225804-6 4.614302+1 8.233810-6 4.857557+1 8.236197-6 4.925856+1 8.245514-6 5.171567+1 8.253959-6 5.362408+1 8.258913-6 5.459129+1 8.268786-6 5.616557+1 8.277927-6 5.719725+1 8.285021-6 5.772004+1 8.294842-6 5.806505+1 8.304746-6 5.801190+1 8.314203-6 5.764663+1 8.329343-6 5.660737+1 8.358465-6 5.417577+1 8.372561-6 5.336312+1 8.377338-6 5.319899+1 8.387709-6 5.307703+1 8.397614-6 5.328537+1 8.404161-6 5.360208+1 8.416331-6 5.455230+1 8.427496-6 5.578463+1 8.464413-6 6.097030+1 8.477734-6 6.257979+1 8.487229-6 6.341697+1 8.497821-6 6.393840+1 8.502574-6 6.400830+1 8.511994-6 6.381490+1 8.521002-6 6.319342+1 8.526897-6 6.254901+1 8.535338-6 6.130019+1 8.544385-6 5.954956+1 8.559611-6 5.573368+1 8.568345-6 5.312996+1 8.575981-6 5.066108+1 8.585091-6 4.754215+1 8.594513-6 4.419534+1 8.601004-6 4.186260+1 8.610279-6 3.855201+1 8.622205-6 3.444734+1 8.643017-6 2.809284+1 8.651969-6 2.580178+1 8.660921-6 2.382942+1 8.681383-6 2.063734+1 8.688112-6 2.000668+1 8.707352-6 1.935961+1 8.708725-6 1.937798+1 8.719279-6 1.979746+1 8.723909-6 2.013322+1 8.730027-6 2.071388+1 8.737829-6 2.167238+1 8.746243-6 2.296590+1 8.753962-6 2.437473+1 8.764159-6 2.653508+1 8.795510-6 3.489201+1 8.809475-6 3.918156+1 8.817657-6 4.177456+1 8.828490-6 4.523333+1 8.838500-6 4.839712+1 8.846706-6 5.092454+1 8.858637-6 5.442310+1 8.869310-6 5.730667+1 8.874683-6 5.864966+1 8.885128-6 6.101760+1 8.901101-6 6.393221+1 8.912464-6 6.542710+1 8.921683-6 6.626498+1 8.925464-6 6.650971+1 8.942611-6 6.690223+1 8.954442-6 6.651153+1 8.966640-6 6.559041+1 8.977025-6 6.443775+1 8.989982-6 6.260049+1 8.998879-6 6.113266+1 9.011596-6 5.882598+1 9.034440-6 5.438824+1 9.057988-6 4.997032+1 9.075490-6 4.712602+1 9.088617-6 4.535745+1 9.098817-6 4.423350+1 9.112622-6 4.308321+1 9.124956-6 4.241961+1 9.133818-6 4.214801+1 9.151823-6 4.207841+1 9.170509-6 4.257649+1 9.188617-6 4.344922+1 9.236128-6 4.630463+1 9.259645-6 4.743637+1 9.268674-6 4.776398+1 9.287587-6 4.824025+1 9.307239-6 4.845235+1 9.336431-6 4.837073+1 9.399114-6 4.779818+1 9.432158-6 4.781024+1 9.468956-6 4.817178+1 9.570755-6 4.978105+1 9.654094-6 5.069915+1 9.788091-6 5.175136+1 9.879833-6 5.207205+1 1.001722-5 5.226268+1 1.016742-5 5.295504+1 1.035911-5 5.421046+1 1.045235-5 5.493255+1 1.049378-5 5.516782+1 1.053101-5 5.523687+1 1.058482-5 5.498514+1 1.068677-5 5.377046+1 1.071303-5 5.366548+1 1.073611-5 5.385521+1 1.075639-5 5.436783+1 1.077422-5 5.520010+1 1.078524-5 5.594598+1 1.079747-5 5.702827+1 1.081074-5 5.856009+1 1.082235-5 6.025941+1 1.083251-5 6.206279+1 1.084140-5 6.391247+1 1.084918-5 6.575933+1 1.086194-5 6.929695+1 1.087236-5 7.269812+1 1.088604-5 7.793013+1 1.090197-5 8.522384+1 1.091395-5 9.161280+1 1.092220-5 9.649090+1 1.095059-5 1.162718+2 1.098749-5 1.485492+2 1.101433-5 1.755221+2 1.102020-5 1.816460+2 1.104117-5 2.036493+2 1.105584-5 2.187397+2 1.106800-5 2.307138+2 1.107828-5 2.402666+2 1.108818-5 2.488485+2 1.109724-5 2.560450+2 1.110700-5 2.630128+2 1.112000-5 2.708463+2 1.113573-5 2.778758+2 1.114763-5 2.812830+2 1.116400-5 2.831928+2 1.117705-5 2.824423+2 1.119114-5 2.795085+2 1.120530-5 2.745922+2 1.121471-5 2.704101+2 1.123252-5 2.610262+2 1.127580-5 2.365412+2 1.128858-5 2.308838+2 1.130062-5 2.270321+2 1.130758-5 2.256258+2 1.131813-5 2.248457+2 1.132806-5 2.257987+2 1.133507-5 2.275627+2 1.136024-5 2.422888+2 1.136454-5 2.462131+2 1.137587-5 2.586642+2 1.138543-5 2.715784+2 1.141202-5 3.190995+2 1.145349-5 4.240656+2 1.147279-5 4.825180+2 1.148441-5 5.194130+2 1.149915-5 5.670797+2 1.151154-5 6.070428+2 1.152130-5 6.379353+2 1.153575-5 6.819131+2 1.154895-5 7.193636+2 1.156581-5 7.620291+2 1.157948-5 7.913916+2 1.158594-5 8.034151+2 1.159923-5 8.240595+2 1.161171-5 8.381521+2 1.161975-5 8.443850+2 1.163125-5 8.493652+2 1.164081-5 8.499583+2 1.164635-5 8.488411+2 1.166471-5 8.376889+2 1.167798-5 8.228666+2 1.169085-5 8.035667+2 1.170501-5 7.773352+2 1.171873-5 7.476370+2 1.173093-5 7.183371+2 1.174662-5 6.775923+2 1.176056-5 6.393623+2 1.177799-5 5.901847+2 1.179628-5 5.383583+2 1.180238-5 5.212925+2 1.183375-5 4.373574+2 1.187906-5 3.338392+2 1.191245-5 2.739910+2 1.193350-5 2.433969+2 1.194400-5 2.300624+2 1.195447-5 2.179400+2 1.197538-5 1.969946+2 1.199620-5 1.799329+2 1.202285-5 1.626760+2 1.203761-5 1.549338+2 1.205819-5 1.458778+2 1.208669-5 1.359890+2 1.211945-5 1.273966+2 1.215997-5 1.195252+2 1.220018-5 1.136617+2 1.224007-5 1.090901+2 1.228800-5 1.047033+2 1.233602-5 1.011552+2 1.239655-5 9.753460+1 1.247297-5 9.392348+1 1.254849-5 9.109869+1 1.262283-5 8.883813+1 1.269601-5 8.698800+1 1.276805-5 8.544599+1 1.283896-5 8.414173+1 1.297748-5 8.204732+1 1.315050-5 7.998638+1 1.324381-5 7.906117+1 1.350812-5 7.693435+1 1.372833-5 7.549149+1 1.441832-5 7.193717+1 1.515906-5 6.876165+1 1.640699-5 6.368923+1 1.698356-5 6.141395+1 1.764720-5 5.878990+1 1.815838-5 5.655998+1 1.835043-5 5.561648+1 1.846341-5 5.523915+1 1.853110-5 5.517707+1 1.860444-5 5.528670+1 1.884727-5 5.633349+1 1.890448-5 5.644982+1 1.900253-5 5.634045+1 1.907310-5 5.603894+1 1.946937-5 5.353671+1 1.961278-5 5.290875+1 1.989960-5 5.212076+1 2.020053-5 5.131750+1 2.540973-5 3.857320+1 2.980255-5 3.164763+1 3.276800-5 2.809595+1 3.531195-5 2.544553+1 3.768959-5 2.322040+1 4.013413-5 2.110093+1 4.135828-5 2.007465+1 4.238445-5 1.920823+1 4.359665-5 1.817384+1 4.492791-5 1.700129+1 4.637137-5 1.566514+1 4.773487-5 1.429384+1 4.878730-5 1.310117+1 4.944594-5 1.227161+1 5.005891-5 1.141725+1 5.040138-5 1.088929+1 5.080000-5 1.021045+1 5.111385-5 9.614031+0 5.148799-5 8.810015+0 5.172275-5 8.241391+0 5.197491-5 7.573745+0 5.237614-5 6.522345+0 5.251559-5 6.268444+0 5.263610-5 6.167572+0 5.276435-5 6.242176+0 5.286462-5 6.475155+0 5.295146-5 6.829493+0 5.296580-5 6.903224+0 5.303017-5 7.291541+0 5.308900-5 7.733304+0 5.313851-5 8.173232+0 5.320376-5 8.853025+0 5.326471-5 9.594711+0 5.335438-5 1.087917+1 5.363994-5 1.651474+1 5.375574-5 1.943087+1 5.379838-5 2.058575+1 5.389630-5 2.338697+1 5.394695-5 2.490882+1 5.404760-5 2.805833+1 5.410806-5 3.001589+1 5.419440-5 3.287300+1 5.428114-5 3.578619+1 5.437223-5 3.884873+1 5.444209-5 4.116818+1 5.453751-5 4.424164+1 5.463457-5 4.718585+1 5.467559-5 4.835460+1 5.481102-5 5.179268+1 5.487331-5 5.311335+1 5.497225-5 5.481049+1 5.503597-5 5.561844+1 5.508691-5 5.609392+1 5.515845-5 5.649828+1 5.523083-5 5.659138+1 5.531211-5 5.632236+1 5.535090-5 5.605922+1 5.540909-5 5.550921+1 5.546728-5 5.478365+1 5.556650-5 5.318330+1 5.559957-5 5.255982+1 5.568592-5 5.075439+1 5.577228-5 4.874164+1 5.585897-5 4.657529+1 5.590561-5 4.537094+1 5.599645-5 4.298841+1 5.617296-5 3.840655+1 5.650564-5 3.083736+1 5.663897-5 2.837146+1 5.683898-5 2.530067+1 5.691281-5 2.434238+1 5.705585-5 2.272007+1 5.718995-5 2.144147+1 5.743352-5 1.958385+1 5.770986-5 1.798384+1 5.801707-5 1.659645+1 5.831316-5 1.549600+1 5.888831-5 1.372100+1 5.978430-5 1.128265+1 5.993002-5 1.088142+1 6.024544-5 1.001234+1 6.054201-5 9.250119+0 6.069029-5 8.921011+0 6.083858-5 8.646127+0 6.098687-5 8.438357+0 6.103684-5 8.385144+0 6.118674-5 8.278882+0 6.124799-5 8.258539+0 6.133986-5 8.252267+0 6.143173-5 8.273328+0 6.158271-5 8.359772+0 6.174495-5 8.508419+0 6.225443-5 9.114798+0 6.261667-5 9.464194+0 6.277253-5 9.561805+0 6.289115-5 9.611250+0 6.308862-5 9.644882+0 6.322288-5 9.634496+0 6.337414-5 9.594327+0 6.366110-5 9.455862+0 6.460712-5 8.868675+0 6.566692-5 8.322161+0 6.683439-5 7.717324+0 6.770000-5 7.256703+0 6.850000-5 6.825505+0 6.920000-5 6.449889+0 7.079458-5 5.642049+0 7.244360-5 4.920405+0 7.287180-5 4.758095+0 7.372800-5 4.473101+0 7.444827-5 4.281394+0 7.540000-5 4.103732+0 7.646651-5 4.015935+0 7.744538-5 4.051844+0 7.842992-5 4.213599+0 7.962013-5 4.584761+0 8.087013-5 5.185939+0 8.154541-5 5.607674+0 8.275607-5 6.536014+0 8.586535-5 9.856002+0 8.748000-5 1.205960+1 8.850000-5 1.361465+1 8.925000-5 1.482516+1 9.052020-5 1.697908+1 9.150000-5 1.872343+1 9.300000-5 2.151135+1 9.375000-5 2.294818+1 9.486800-5 2.513997+1 9.580000-5 2.700450+1 9.660509-5 2.863612+1 9.830400-5 3.213629+1 9.980000-5 3.528839+1 1.011647-4 3.819191+1 1.020000-4 3.998418+1 1.036800-4 4.362803+1 1.047129-4 4.589360+1 1.066964-4 5.031197+1 1.087903-4 5.507143+1 1.122018-4 6.303331+1 1.161449-4 7.257982+1 1.190000-4 7.971036+1 1.205730-4 8.371848+1 1.244515-4 9.379248+1 1.291920-4 1.063026+2 1.333521-4 1.172609+2 1.380384-4 1.293276+2 1.421262-4 1.393470+2 1.468848-4 1.503031+2 1.502770-4 1.573972+2 1.527918-4 1.622582+2 1.566347-4 1.689866+2 1.579033-4 1.724269+2 1.592764-4 1.778550+2 1.605805-4 1.834370+2 1.618166-4 1.878913+2 1.636713-4 1.942495+2 1.668226-4 2.075022+2 1.678804-4 2.111615+2 1.689997-4 2.143676+2 1.758579-4 2.312452+2 1.810000-4 2.426424+2 1.865237-4 2.536154+2 1.924782-4 2.645277+2 1.986624-4 2.749274+2 2.041269-4 2.829524+2 2.077303-4 2.870436+2 2.099023-4 2.888882+2 2.110991-4 2.905566+2 2.117310-4 2.921389+2 2.127119-4 2.962414+2 2.133388-4 3.001643+2 2.138932-4 3.044917+2 2.158303-4 3.227496+2 2.163500-4 3.270673+2 2.169347-4 3.308744+2 2.175208-4 3.333041+2 2.181039-4 3.342702+2 2.186473-4 3.339895+2 2.192616-4 3.326243+2 2.206923-4 3.277815+2 2.217566-4 3.252111+2 2.224877-4 3.246704+2 2.233559-4 3.253358+2 2.246174-4 3.280983+2 2.263862-4 3.331703+2 2.291835-4 3.398910+2 2.392997-4 3.572894+2 2.502130-4 3.729868+2 2.622496-4 3.881075+2 2.755341-4 4.019134+2 2.900681-4 4.152471+2 3.019952-4 4.250196+2 3.180534-4 4.366116+2 3.330428-4 4.457943+2 3.517629-4 4.553724+2 3.769207-4 4.652640+2 4.174697-4 4.756897+2 4.597270-4 4.826429+2 5.020825-4 4.861685+2 5.324146-4 4.870157+2 5.991009-4 4.853518+2 6.358368-4 4.828662+2 6.732653-4 4.789172+2 7.513394-4 4.682408+2 7.944031-4 4.616415+2 8.423038-4 4.535085+2 8.912510-4 4.442865+2 9.400572-4 4.340866+2 9.873348-4 4.230577+2 1.041118-3 4.089932+2 1.093507-3 3.926469+2 1.142301-3 3.749918+2 1.181175-3 3.593878+2 1.216420-3 3.436872+2 1.243954-3 3.299968+2 1.272308-3 3.141818+2 1.293799-3 3.006265+2 1.314468-3 2.859612+2 1.332250-3 2.716938+2 1.346053-3 2.591651+2 1.360037-3 2.447574+2 1.371474-3 2.312273+2 1.383023-3 2.152121+2 1.392755-3 1.989816+2 1.400132-3 1.845284+2 1.404394-3 1.753538+2 1.408183-3 1.668445+2 1.419296-3 1.427683+2 1.422494-3 1.371872+2 1.425543-3 1.329384+2 1.427046-3 1.313083+2 1.428508-3 1.300484+2 1.429931-3 1.291495+2 1.431510-3 1.285462+2 1.433415-3 1.283874+2 1.435783-3 1.290688+2 1.438119-3 1.306805+2 1.440573-3 1.333300+2 1.442360-3 1.358286+2 1.444718-3 1.397791+2 1.448759-3 1.479791+2 1.461938-3 1.812161+2 1.466692-3 1.941118+2 1.481683-3 2.383054+2 1.489988-3 2.659034+2 1.494156-3 2.801148+2 1.498121-3 2.934572+2 1.502641-3 3.080946+2 1.507481-3 3.227260+2 1.514207-3 3.408152+2 1.520823-3 3.559585+2 1.528129-3 3.699421+2 1.536633-3 3.833510+2 1.547621-3 3.974023+2 1.558705-3 4.089210+2 1.570632-3 4.190503+2 1.583277-3 4.277015+2 1.620538-3 4.479858+2 1.632648-3 4.569444+2 1.643063-3 4.671648+2 1.665097-3 4.941570+2 1.674086-3 5.047938+2 1.682822-3 5.139179+2 1.694333-3 5.240260+2 1.705973-3 5.324686+2 1.720744-3 5.414405+2 1.736722-3 5.497268+2 1.774384-3 5.656356+2 1.817411-3 5.794729+2 1.871490-3 5.923789+2 1.943645-3 6.045719+2 2.018530-3 6.122837+2 2.119771-3 6.178684+2 2.250835-3 6.199142+2 2.378397-3 6.174437+2 2.567161-3 6.089775+2 2.701045-3 6.004451+2 2.985383-3 5.792244+2 3.300443-3 5.535495+2 3.669687-3 5.235849+2 4.047821-3 4.937548+2 4.538110-3 4.579705+2 4.980416-3 4.281101+2 5.633972-3 3.875794+2 6.022209-3 3.659403+2 6.453632-3 3.433282+2 6.950515-3 3.192626+2 7.507969-3 2.942960+2 8.031544-3 2.727122+2 8.640151-3 2.497131+2 9.309488-3 2.265392+2 9.670777-3 2.148649+2 1.025738-2 1.968657+2 1.072098-2 1.832431+2 1.109728-2 1.723052+2 1.142335-2 1.626464+2 1.168154-2 1.545871+2 1.187472-2 1.480373+2 1.202582-2 1.423021+2 1.214252-2 1.371700+2 1.220183-2 1.341538+2 1.225305-2 1.312247+2 1.231092-2 1.274785+2 1.239200-2 1.215351+2 1.247730-2 1.153360+2 1.252713-2 1.125569+2 1.256544-2 1.112129+2 1.260387-2 1.107200+2 1.263749-2 1.110282+2 1.267812-2 1.122587+2 1.272444-2 1.145769+2 1.286141-2 1.234822+2 1.292801-2 1.272066+2 1.300011-2 1.302852+2 1.308111-2 1.327360+2 1.313967-2 1.340287+2 1.325031-2 1.357560+2 1.342255-2 1.373048+2 1.360541-2 1.380577+2 1.382430-2 1.381886+2 1.418725-2 1.372888+2 1.462518-2 1.351627+2 1.523910-2 1.312964+2 1.587466-2 1.267626+2 1.687682-2 1.192851+2 1.815892-2 1.099992+2 1.951567-2 1.010159+2 2.145599-2 8.969064+1 2.324563-2 8.072817+1 2.558293-2 7.075273+1 2.770628-2 6.304785+1 3.094375-2 5.340675+1 3.539313-2 4.336316+1 3.923925-2 3.671787+1 4.675806-2 2.729701+1 5.537055-2 2.046635+1 6.821926-2 1.420634+1 8.934110-2 8.820678+0 1.070795-1 6.370104+0 1.290606-1 4.519514+0 1.623668-1 2.937485+0 2.115754-1 1.773323+0 2.951209-1 9.324349-1 4.143275-1 4.806114-1 6.199316-1 2.170725-1 1.120601+0 6.691010-2 3.384160+0 7.358911-3 1.022000+1 8.071651-4 3.086391+1 8.850723-5 9.320751+1 9.704665-6 2.814822+2 1.064096-6 8.500626+2 1.166758-7 3.162278+3 8.431067-9 1.000000+4 8.43107-10 3.162278+4 8.43107-11 1.000000+5 8.43107-12 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.270200-7 1.258900-6 1.310700-6 1.584900-6 2.077400-6 1.995300-6 3.292400-6 2.511900-6 5.218100-6 3.162300-6 8.270100-6 3.981100-6 1.310700-5 5.011900-6 2.077300-5 6.309600-6 3.292300-5 7.943300-6 5.218000-5 1.000000-5 8.269800-5 1.258900-5 1.310700-4 1.584900-5 2.077200-4 1.995300-5 3.292100-4 2.511900-5 5.217500-4 3.162300-5 8.268900-4 3.981100-5 1.310500-3 5.011900-5 2.076800-3 6.309600-5 3.291300-3 7.943300-5 5.212800-3 1.000000-4 8.254600-3 1.258900-4 1.307300-2 1.584900-4 2.068200-2 1.995300-4 3.270400-2 2.511900-4 5.163600-2 3.162300-4 8.136000-2 3.981100-4 1.277600-1 5.011900-4 1.996100-1 6.309600-4 3.089700-1 7.943300-4 4.719000-1 1.000000-3 7.077200-1 1.258900-3 1.035900+0 1.584900-3 1.472000+0 1.995300-3 2.022400+0 2.511900-3 2.691900+0 3.162300-3 3.479900+0 3.981100-3 4.377000+0 5.011900-3 5.373300+0 6.309600-3 6.477800+0 7.943300-3 7.689400+0 1.000000-2 9.014300+0 1.258900-2 1.039300+1 1.584900-2 1.175800+1 1.995300-2 1.300900+1 2.511900-2 1.409000+1 3.162300-2 1.496200+1 3.981100-2 1.559500+1 5.011900-2 1.581200+1 6.309600-2 1.603100+1 7.943300-2 1.587000+1 1.000000-1 1.549700+1 1.258900-1 1.494000+1 1.584900-1 1.423200+1 1.995300-1 1.341200+1 2.511900-1 1.252400+1 3.162300-1 1.159700+1 3.981100-1 1.066200+1 5.011900-1 9.739100+0 6.309600-1 8.841400+0 7.943300-1 7.977100+0 1.000000+0 7.157100+0 1.258900+0 6.380200+0 1.584900+0 5.652100+0 1.995300+0 4.975300+0 2.511900+0 4.352100+0 3.162300+0 3.783700+0 3.981100+0 3.270200+0 5.011900+0 2.810800+0 6.309600+0 2.403400+0 7.943300+0 2.045100+0 1.000000+1 1.732600+0 1.258900+1 1.461900+0 1.584900+1 1.229100+0 1.995300+1 1.029900+0 2.511900+1 8.603700-1 3.162300+1 7.168300-1 3.981100+1 5.957800-1 5.011900+1 4.940800-1 6.309600+1 4.089200-1 7.943300+1 3.378200-1 1.000000+2 2.786200-1 1.258900+2 2.294500-1 1.584900+2 1.886900-1 1.995300+2 1.549800-1 2.511900+2 1.271400-1 3.162300+2 1.041900-1 3.981100+2 8.529600-2 5.011900+2 6.976200-2 6.309600+2 5.700800-2 7.943300+2 4.654800-2 1.000000+3 3.797700-2 1.258900+3 3.096200-2 1.584900+3 2.522600-2 1.995300+3 2.053900-2 2.511900+3 1.671300-2 3.162300+3 1.359200-2 3.981100+3 1.104700-2 5.011900+3 8.974600-3 6.309600+3 7.287100-3 7.943300+3 5.914000-3 1.000000+4 4.797500-3 1.258900+4 3.890100-3 1.584900+4 3.152900-3 1.995300+4 2.554500-3 2.511900+4 2.068800-3 3.162300+4 1.674800-3 3.981100+4 1.355400-3 5.011900+4 1.096500-3 6.309600+4 8.868100-4 7.943300+4 7.169600-4 1.000000+5 5.794600-4 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159546-4 3.981072-4 3.976748-4 5.011872-4 5.005033-4 6.309573-4 6.298746-4 7.943282-4 7.926255-4 1.000000-3 9.973161-4 1.258925-3 1.254715-3 1.584893-3 1.578322-3 1.995262-3 1.985006-3 2.511886-3 2.495946-3 3.162278-3 3.137494-3 3.981072-3 3.942571-3 5.011872-3 4.951998-3 6.309573-3 6.216579-3 7.943282-3 7.798296-3 1.000000-2 9.774712-3 1.258925-2 1.223952-2 1.584893-2 1.530842-2 1.995262-2 1.912205-2 2.511886-2 2.384911-2 3.162278-2 2.968982-2 3.981072-2 3.688280-2 5.011872-2 4.570577-2 6.309573-2 5.650272-2 7.943282-2 6.963570-2 1.000000-1 8.553968-2 1.258925-1 1.047254-1 1.584893-1 1.277849-1 1.995262-1 1.553972-1 2.511886-1 1.883299-1 3.162278-1 2.274908-1 3.981072-1 2.738823-1 5.011872-1 3.286986-1 6.309573-1 3.933376-1 7.943282-1 4.694578-1 1.000000+0 5.588334-1 1.258925+0 6.641776-1 1.584893+0 7.885387-1 1.995262+0 9.356611-1 2.511886+0 1.110188+0 3.162278+0 1.317908+0 3.981072+0 1.565853+0 5.011872+0 1.862619+0 6.309573+0 2.218795+0 7.943282+0 2.647276+0 1.000000+1 3.163879+0 1.258925+1 3.787900+0 1.584893+1 4.542994+0 1.995262+1 5.458157+0 2.511886+1 6.569002+0 3.162278+1 7.918917+0 3.981072+1 9.561375+0 5.011872+1 1.156215+1 6.309573+1 1.400177+1 7.943282+1 1.697930+1 1.000000+2 2.061675+1 1.258925+2 2.506402+1 1.584893+2 3.050566+1 1.995262+2 3.716888+1 2.511886+2 4.533402+1 3.162278+2 5.534659+1 3.981072+2 6.763105+1 5.011872+2 8.271424+1 6.309573+2 1.012438+2 7.943282+2 1.240199+2 1.000000+3 1.520292+2 1.258925+3 1.864928+2 1.584893+3 2.289181+2 1.995262+3 2.811788+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728209-8 1.000000-4 2.738592-8 1.258925-4 4.339957-8 1.584893-4 6.875707-8 1.995262-4 1.089339-7 2.511886-4 1.725417-7 3.162278-4 2.731876-7 3.981072-4 4.323838-7 5.011872-4 6.838994-7 6.309573-4 1.082699-6 7.943282-4 1.702784-6 1.000000-3 2.683905-6 1.258925-3 4.210377-6 1.584893-3 6.571141-6 1.995262-3 1.025626-5 2.511886-3 1.593995-5 3.162278-3 2.478324-5 3.981072-3 3.850116-5 5.011872-3 5.987483-5 6.309573-3 9.299465-5 7.943282-3 1.449864-4 1.000000-2 2.252882-4 1.258925-2 3.497383-4 1.584893-2 5.405115-4 1.995262-2 8.305738-4 2.511886-2 1.269757-3 3.162278-2 1.932961-3 3.981072-2 2.927918-3 5.011872-2 4.412955-3 6.309573-2 6.593011-3 7.943282-2 9.797123-3 1.000000-1 1.446032-2 1.258925-1 2.116712-2 1.584893-1 3.070440-2 1.995262-1 4.412901-2 2.511886-1 6.285875-2 3.162278-1 8.873696-2 3.981072-1 1.242249-1 5.011872-1 1.724887-1 6.309573-1 2.376197-1 7.943282-1 3.248705-1 1.000000+0 4.411666-1 1.258925+0 5.947479-1 1.584893+0 7.963545-1 1.995262+0 1.059601+0 2.511886+0 1.401698+0 3.162278+0 1.844369+0 3.981072+0 2.415218+0 5.011872+0 3.149253+0 6.309573+0 4.090778+0 7.943282+0 5.296007+0 1.000000+1 6.836121+0 1.258925+1 8.801354+0 1.584893+1 1.130594+1 1.995262+1 1.449447+1 2.511886+1 1.854986+1 3.162278+1 2.370386+1 3.981072+1 3.024934+1 5.011872+1 3.855658+1 6.309573+1 4.909396+1 7.943282+1 6.245352+1 1.000000+2 7.938325+1 1.258925+2 1.008285+2 1.584893+2 1.279837+2 1.995262+2 1.623574+2 2.511886+2 2.058546+2 3.162278+2 2.608812+2 3.981072+2 3.304761+2 5.011872+2 4.184730+2 6.309573+2 5.297135+2 7.943282+2 6.703083+2 1.000000+3 8.479708+2 1.258925+3 1.072433+3 1.584893+3 1.355975+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 9.400000-6 4.145205+7 9.700000-6 4.105632+7 9.820000-6 4.080057+7 9.820000-6 6.071585+7 1.000000-5 6.031760+7 1.023293-5 5.955718+7 1.035142-5 5.908989+7 1.060000-5 5.804386+7 1.096478-5 5.615343+7 1.135011-5 5.386319+7 1.165000-5 5.190550+7 1.174898-5 5.125351+7 1.202264-5 4.935571+7 1.216186-5 4.838987+7 1.244515-5 4.636691+7 1.258925-5 4.534605+7 1.290000-5 4.311806+7 1.303167-5 4.218931+7 1.333521-5 4.003740+7 1.350000-5 3.889891+7 1.380384-5 3.681384+7 1.400000-5 3.551364+7 1.428894-5 3.363443+7 1.445440-5 3.259342+7 1.480000-5 3.047953+7 1.500000-5 2.931531+7 1.531087-5 2.755683+7 1.566751-5 2.567249+7 1.590000-5 2.449412+7 1.640590-5 2.212228+7 1.659587-5 2.128439+7 1.717908-5 1.891728+7 1.737801-5 1.816987+7 1.800000-5 1.603232+7 1.830000-5 1.509559+7 1.905461-5 1.300356+7 1.927525-5 1.245179+7 2.018366-5 1.044897+7 2.041738-5 9.993758+6 2.099000-5 8.969749+6 2.099000-5 9.036301+6 2.113489-5 8.792278+6 2.135000-5 8.445177+6 2.155000-5 8.137915+6 2.162719-5 8.023103+6 2.177000-5 7.813335+6 2.187762-5 7.659789+6 2.192000-5 7.599907+6 2.213095-5 7.310469+6 2.227000-5 7.127311+6 2.242000-5 6.936219+6 2.257000-5 6.751606+6 2.272000-5 6.573214+6 2.290868-5 6.357273+6 2.317395-5 6.068773+6 2.350000-5 5.736740+6 2.365000-5 5.591822+6 2.371374-5 5.531672+6 2.377000-5 5.478627+6 2.388000-5 5.376795+6 2.398833-5 5.278874+6 2.400000-5 5.268465+6 2.407000-5 5.206187+6 2.415000-5 5.136169+6 2.423000-5 5.067357+6 2.431000-5 4.999728+6 2.438000-5 4.941503+6 2.446000-5 4.876026+6 2.452000-5 4.827652+6 2.460000-5 4.764111+6 2.467000-5 4.709397+6 2.473000-5 4.663145+6 2.481000-5 4.602384+6 2.489000-5 4.542645+6 2.496000-5 4.491194+6 2.505000-5 4.426149+6 2.515000-5 4.355302+6 2.525000-5 4.285922+6 2.540973-5 4.178055+6 2.560000-5 4.054133+6 2.610000-5 3.750607+6 2.630268-5 3.636068+6 2.650000-5 3.528942+6 2.670000-5 3.424570+6 2.691535-5 3.316705+6 2.710000-5 3.227524+6 2.730000-5 3.134488+6 2.754229-5 3.026506+6 2.777000-5 2.929508+6 2.800000-5 2.835720+6 2.830000-5 2.719363+6 2.860000-5 2.609366+6 2.885000-5 2.522267+6 2.920000-5 2.406861+6 2.951209-5 2.309972+6 2.990000-5 2.196883+6 3.020000-5 2.114621+6 3.060000-5 2.011476+6 3.100000-5 1.915257+6 3.150000-5 1.803898+6 3.198895-5 1.703730+6 3.245000-5 1.616458+6 3.300000-5 1.520618+6 3.311311-5 1.501910+6 3.350000-5 1.441154+6 3.420000-5 1.340135+6 3.470000-5 1.274389+6 3.548134-5 1.181125+6 3.589219-5 1.136172+6 3.630781-5 1.093819+6 3.650000-5 1.074967+6 3.715352-5 1.015737+6 3.801894-5 9.450460+5 3.900000-5 8.743041+5 3.935501-5 8.512315+5 4.000000-5 8.124699+5 4.120975-5 7.474604+5 4.150000-5 7.331254+5 4.216965-5 7.027992+5 4.260000-5 6.848493+5 4.365158-5 6.439726+5 4.415704-5 6.266290+5 4.466836-5 6.097077+5 4.570882-5 5.786425+5 4.677351-5 5.505056+5 4.731513-5 5.375975+5 4.900000-5 5.018209+5 5.080000-5 4.702577+5 5.248075-5 4.455013+5 5.308844-5 4.379078+5 5.432503-5 4.227568+5 5.450000-5 4.208266+5 5.559043-5 4.096272+5 5.623413-5 4.030455+5 5.650000-5 4.005510+5 5.821032-5 3.858642+5 5.850000-5 3.835281+5 6.025596-5 3.704847+5 6.095369-5 3.660655+5 6.237348-5 3.569226+5 6.397000-5 3.482021+5 6.397000-5 8.965469+5 6.400000-5 8.963119+5 6.456542-5 8.917168+5 6.491000-5 8.891349+5 6.491000-5 1.247255+6 6.510000-5 1.245699+6 6.606934-5 1.241121+6 6.683439-5 1.242102+6 6.700000-5 1.242396+6 6.760830-5 1.246997+6 6.770000-5 1.247663+6 6.850000-5 1.258518+6 6.918310-5 1.272222+6 6.920000-5 1.272570+6 7.000000-5 1.294544+6 7.079458-5 1.322769+6 7.161434-5 1.358967+6 7.244360-5 1.403232+6 7.330000-5 1.457253+6 7.413102-5 1.517937+6 7.500000-5 1.591009+6 7.540000-5 1.627194+6 7.585776-5 1.671821+6 7.620000-5 1.705971+6 7.673615-5 1.762652+6 7.762471-5 1.864806+6 7.900000-5 2.039620+6 8.035261-5 2.228176+6 8.128305-5 2.368029+6 8.150000-5 2.401828+6 8.230000-5 2.527467+6 8.317638-5 2.670479+6 8.413951-5 2.830481+6 8.485300-5 2.952066+6 8.500000-5 2.976696+6 8.570000-5 3.096660+6 8.609938-5 3.165143+6 8.730000-5 3.370917+6 8.810489-5 3.505331+6 8.850000-5 3.572965+6 9.000000-5 3.817871+6 9.015711-5 3.843387+6 9.120108-5 4.006254+6 9.150000-5 4.053937+6 9.300000-5 4.276387+6 9.450000-5 4.483292+6 9.486800-5 4.533223+6 9.580000-5 4.651995+6 9.660509-5 4.751696+6 9.772372-5 4.882297+6 9.850000-5 4.969304+6 9.980000-5 5.107301+6 1.000000-4 5.127567+6 1.020000-4 5.318078+6 1.023293-4 5.347967+6 1.047129-4 5.547686+6 1.050000-4 5.570432+6 1.059254-4 5.637087+6 1.080000-4 5.787429+6 1.083927-4 5.814335+6 1.109175-4 5.970988+6 1.110000-4 5.976121+6 1.122018-4 6.046483+6 1.150000-4 6.194923+6 1.161449-4 6.251771+6 1.174898-4 6.311722+6 1.190000-4 6.378909+6 1.205000-4 6.440441+6 1.220000-4 6.494751+6 1.240000-4 6.566928+6 1.244515-4 6.581486+6 1.291500-4 6.709018+6 1.303167-4 6.730249+6 1.333521-4 6.784890+6 1.364583-4 6.814442+6 1.380384-4 6.829297+6 1.430000-4 6.832025+6 1.450000-4 6.816214+6 1.480000-4 6.792900+6 1.500000-4 6.761168+6 1.513561-4 6.739966+6 1.540000-4 6.699308+6 1.603245-4 6.559135+6 1.637100-4 6.466026+6 1.637100-4 6.815166+6 1.640590-4 6.806432+6 1.650000-4 6.783028+6 1.659587-4 6.759423+6 1.678804-4 6.712799+6 1.697700-4 6.658129+6 1.697700-4 6.763137+6 1.715000-4 6.726872+6 1.722000-4 6.712376+6 1.730000-4 6.695630+6 1.737801-4 6.678997+6 1.745000-4 6.663288+6 1.755000-4 6.640922+6 1.760000-4 6.629428+6 1.765000-4 6.615825+6 1.778279-4 6.579057+6 1.795000-4 6.532360+6 1.810000-4 6.490468+6 1.819701-4 6.463361+6 1.840772-4 6.405543+6 1.850000-4 6.380414+6 1.862087-4 6.347885+6 1.972423-4 6.029929+6 2.000000-4 5.947160+6 2.018366-4 5.893895+6 2.065380-4 5.762824+6 2.089296-4 5.698916+6 2.113489-4 5.628495+6 2.162719-4 5.489649+6 2.190000-4 5.415735+6 2.238721-4 5.274334+6 2.261000-4 5.211945+6 2.261000-4 5.407524+6 2.264644-4 5.398094+6 2.276000-4 5.368513+6 2.300000-4 5.305922+6 2.306300-4 5.289564+6 2.317395-4 5.259951+6 2.350000-4 5.169761+6 2.400000-4 5.035297+6 2.426610-4 4.965822+6 2.454709-4 4.892424+6 2.500000-4 4.771347+6 2.511886-4 4.740107+6 2.540973-4 4.665327+6 2.550000-4 4.642587+6 2.580000-4 4.567926+6 2.600160-4 4.517382+6 2.620000-4 4.466548+6 2.680000-4 4.318555+6 2.722701-4 4.218040+6 2.730000-4 4.201296+6 2.754229-4 4.146047+6 2.809100-4 4.022981+6 2.884032-4 3.861169+6 2.900000-4 3.827850+6 2.951209-4 3.723941+6 3.019952-4 3.589924+6 3.054921-4 3.522120+6 3.162278-4 3.327648+6 3.235937-4 3.200739+6 3.311311-4 3.076320+6 3.350000-4 3.014708+6 3.388442-4 2.955345+6 3.427678-4 2.895836+6 3.467369-4 2.837674+6 3.507519-4 2.779552+6 3.550000-4 2.719402+6 3.589219-4 2.665578+6 3.630781-4 2.610445+6 3.672823-4 2.555835+6 3.715352-4 2.502491+6 3.722400-4 2.493792+6 3.758374-4 2.449289+6 3.801894-4 2.396733+6 3.935501-4 2.246096+6 3.981072-4 2.197741+6 4.000000-4 2.178067+6 4.027170-4 2.150324+6 4.073803-4 2.103585+6 4.100000-4 2.078043+6 4.216965-4 1.968259+6 4.280000-4 1.912681+6 4.315191-4 1.882442+6 4.415704-4 1.799279+6 4.466836-4 1.759129+6 4.500000-4 1.733439+6 4.570882-4 1.680250+6 4.700000-4 1.588941+6 4.786301-4 1.531681+6 4.850000-4 1.491189+6 4.954502-4 1.427444+6 5.011872-4 1.393972+6 5.069907-4 1.361351+6 5.188000-4 1.298007+6 5.248075-4 1.267408+6 5.308844-4 1.237160+6 5.400000-4 1.193867+6 5.559043-4 1.123184+6 5.650000-4 1.085391+6 5.754399-4 1.044204+6 5.821032-4 1.019169+6 6.025596-4 9.463913+5 6.095369-4 9.233413+5 6.309573-4 8.569374+5 6.382635-4 8.357592+5 6.606934-4 7.749726+5 6.700000-4 7.516275+5 6.760830-4 7.367968+5 6.918310-4 7.004186+5 7.000000-4 6.822842+5 7.244360-4 6.321052+5 7.413102-4 6.005306+5 7.498942-4 5.853042+5 7.585776-4 5.704914+5 7.762471-4 5.417912+5 7.800000-4 5.359764+5 7.852356-4 5.279246+5 8.128305-4 4.881725+5 8.222426-4 4.755796+5 8.317638-4 4.632165+5 8.609938-4 4.281447+5 8.709636-4 4.170375+5 8.810489-4 4.061480+5 9.015711-4 3.852114+5 9.120108-4 3.751263+5 9.332543-4 3.556176+5 9.549926-4 3.371873+5 9.660509-4 3.283093+5 9.772372-4 3.196769+5 1.000000-3 3.030277+5 1.023293-3 2.871348+5 1.035142-3 2.794644+5 1.047129-3 2.720099+5 1.059254-3 2.647309+5 1.071519-3 2.576570+5 1.083927-3 2.507803+5 1.110000-3 2.371168+5 1.148154-3 2.188823+5 1.150000-3 2.180533+5 1.161449-3 2.129940+5 1.174898-3 2.072419+5 1.188502-3 2.016391+5 1.202264-3 1.961943+5 1.216186-3 1.908808+5 1.258925-3 1.756896+5 1.273503-3 1.709134+5 1.303167-3 1.617218+5 1.318257-3 1.573078+5 1.333521-3 1.530196+5 1.350000-3 1.485623+5 1.412538-3 1.330872+5 1.428894-3 1.294117+5 1.438600-3 1.273001+5 1.438600-3 4.694345+5 1.440500-3 4.785945+5 1.443350-3 4.897202+5 1.446300-3 4.986573+5 1.450000-3 5.065212+5 1.453000-3 5.112283+5 1.458000-3 5.160652+5 1.462177-3 5.176004+5 1.466000-3 5.190149+5 1.474000-3 5.183790+5 1.479108-3 5.166605+5 1.481200-3 5.159612+5 1.481200-3 5.933632+5 1.481410-3 5.958091+5 1.481600-3 6.009147+5 1.481850-3 6.076174+5 1.481920-3 6.075941+5 1.482000-3 6.116254+5 1.482150-3 6.156035+5 1.482220-3 6.155802+5 1.482300-3 6.195645+5 1.482600-3 6.273446+5 1.482850-3 6.337115+5 1.482920-3 6.336882+5 1.483000-3 6.374216+5 1.483300-3 6.445818+5 1.483550-3 6.503488+5 1.483850-3 6.569291+5 1.484150-3 6.630895+5 1.484500-3 6.697634+5 1.484850-3 6.758574+5 1.485000-3 6.782977+5 1.485100-3 6.784256+5 1.485200-3 6.793213+5 1.485350-3 6.802061+5 1.485500-3 6.820397+5 1.485650-3 6.823944+5 1.485900-3 6.848027+5 1.486200-3 6.872318+5 1.486400-3 6.884950+5 1.488300-3 6.935010+5 1.491000-3 6.977490+5 1.493000-3 6.994930+5 1.495000-3 7.008729+5 1.499000-3 7.020709+5 1.500000-3 7.019056+5 1.503500-3 7.013314+5 1.504000-3 7.010735+5 1.513561-3 6.942307+5 1.516800-3 6.919435+5 1.519000-3 6.902682+5 1.523000-3 6.868375+5 1.543000-3 6.671193+5 1.545000-3 6.657008+5 1.548817-3 6.621251+5 1.555000-3 6.566295+5 1.570000-3 6.428293+5 1.580000-3 6.338559+5 1.584893-3 6.291176+5 1.590000-3 6.242228+5 1.603245-3 6.120447+5 1.610000-3 6.059648+5 1.621810-3 5.952947+5 1.641500-3 5.772924+5 1.641500-3 6.557200+5 1.650000-3 6.477501+5 1.659587-3 6.388068+5 1.737801-3 5.720783+5 1.760000-3 5.549936+5 1.798871-3 5.261124+5 1.840772-3 4.973174+5 1.862087-3 4.835259+5 1.905461-3 4.570711+5 1.927525-3 4.443363+5 2.000000-3 4.058805+5 2.018366-3 3.968927+5 2.070000-3 3.730925+5 2.089296-3 3.646365+5 2.137962-3 3.444648+5 2.162719-3 3.347455+5 2.264644-3 2.985781+5 2.300000-3 2.873291+5 2.317395-3 2.819469+5 2.344229-3 2.738771+5 2.371374-3 2.660440+5 2.454709-3 2.437815+5 2.483133-3 2.367890+5 2.540973-3 2.232793+5 2.570396-3 2.167856+5 2.630268-3 2.043552+5 2.722701-3 1.870708+5 2.786121-3 1.763163+5 2.851018-3 1.661892+5 2.884032-3 1.613516+5 2.900000-3 1.590805+5 2.917427-3 1.566517+5 2.951209-3 1.520892+5 2.985383-3 1.476092+5 3.000000-3 1.457430+5 3.054921-3 1.390209+5 3.162278-3 1.270105+5 3.198895-3 1.232463+5 3.235937-3 1.195966+5 3.273407-3 1.160544+5 3.311311-3 1.125955+5 3.388442-3 1.059903+5 3.427678-3 1.028368+5 3.500000-3 9.734463+4 3.548134-3 9.389312+4 3.589219-3 9.108151+4 3.630781-3 8.835468+4 3.715352-3 8.314478+4 3.758374-3 8.065922+4 3.801894-3 7.824933+4 3.900000-3 7.312677+4 4.000000-3 6.833310+4 4.073803-3 6.507110+4 4.120975-3 6.309660+4 4.168694-3 6.118365+4 4.216965-3 5.933029+4 4.315191-3 5.579475+4 4.365158-3 5.410871+4 4.466836-3 5.087196+4 4.570882-3 4.781428+4 4.623810-3 4.634996+4 4.677351-3 4.493098+4 4.731513-3 4.355664+4 4.897788-3 3.968444+4 4.954502-3 3.847371+4 5.000000-3 3.753281+4 5.069907-3 3.614875+4 5.188000-3 3.395697+4 5.248075-3 3.290787+4 5.370318-3 3.090764+4 5.559043-3 2.813905+4 5.754399-3 2.562280+4 5.821032-3 2.482527+4 5.888437-3 2.405323+4 6.000000-3 2.284597+4 6.095369-3 2.187942+4 6.165950-3 2.119777+4 6.309573-3 1.989929+4 6.382635-3 1.928100+4 6.531306-3 1.810306+4 6.683439-3 1.699812+4 6.760830-3 1.646758+4 6.839116-3 1.595074+4 6.918310-3 1.545032+4 7.079458-3 1.449731+4 7.161434-3 1.404368+4 7.244360-3 1.360322+4 7.673615-3 1.160479+4 7.762471-3 1.123974+4 7.852356-3 1.088633+4 8.128305-3 9.887999+3 8.222426-3 9.576525+3 8.317638-3 9.275121+3 8.709636-3 8.160897+3 8.810489-3 7.902406+3 8.912509-3 7.652316+3 9.015711-3 7.409984+3 9.332543-3 6.726303+3 9.440609-3 6.513104+3 9.549926-3 6.306842+3 9.660509-3 6.107263+3 1.000000-2 5.545235+3 1.011579-2 5.369834+3 1.023293-2 5.198698+3 1.035142-2 5.033100+3 1.071519-2 4.565633+3 1.096478-2 4.278976+3 1.109175-2 4.142641+3 1.135011-2 3.883204+3 1.148154-2 3.759516+3 1.161449-2 3.639782+3 1.174898-2 3.523964+3 1.202264-2 3.301643+3 1.230269-2 3.092616+3 1.261900-2 2.877847+3 1.261900-2 2.082185+4 1.276000-2 2.032130+4 1.288250-2 1.980806+4 1.303167-2 1.920690+4 1.305000-2 1.913477+4 1.318257-2 1.865956+4 1.333521-2 1.813271+4 1.335000-2 1.808276+4 1.364583-2 1.707540+4 1.412538-2 1.559922+4 1.531087-2 1.267682+4 1.548817-2 1.229503+4 1.584893-2 1.156578+4 1.603245-2 1.121751+4 1.640590-2 1.055137+4 1.659587-2 1.023335+4 1.698244-2 9.625518+3 1.778279-2 8.510365+3 1.798871-2 8.252436+3 1.819701-2 8.002355+3 1.840772-2 7.759886+3 1.862087-2 7.524791+3 1.883649-2 7.296837+3 1.905461-2 7.075482+3 1.927525-2 6.860873+3 1.949845-2 6.652793+3 1.950000-2 6.651378+3 2.089296-2 5.507335+3 2.113489-2 5.336645+3 2.162719-2 5.011015+3 2.213095-2 4.705321+3 2.238721-2 4.559379+3 2.264644-2 4.417976+3 2.290868-2 4.280943+3 2.344229-2 4.019495+3 2.371374-2 3.894799+3 2.454709-2 3.543517+3 2.483133-2 3.431424+3 2.570396-2 3.116021+3 2.600160-2 3.017483+3 2.630268-2 2.921954+3 2.660725-2 2.829454+3 2.691535-2 2.739888+3 2.754229-2 2.569163+3 2.818383-2 2.409079+3 2.851018-2 2.332808+3 2.917427-2 2.187449+3 3.054921-2 1.923388+3 3.090295-2 1.861487+3 3.162278-2 1.743465+3 3.388442-2 1.432452+3 3.467369-2 1.341662+3 3.507519-2 1.298439+3 3.672823-2 1.139051+3 3.758374-2 1.066783+3 3.801894-2 1.032385+3 3.845918-2 9.986188+2 3.890451-2 9.659593+2 4.120975-2 8.180216+2 4.265795-2 7.403846+2 4.365158-2 6.927701+2 4.466836-2 6.481672+2 4.518559-2 6.269529+2 4.677351-2 5.673876+2 4.786301-2 5.304329+2 4.841724-2 5.128694+2 4.954502-2 4.794703+2 5.011872-2 4.635964+2 5.248075-2 4.051904+2 5.308844-2 3.917641+2 5.495409-2 3.540922+2 5.754399-2 3.094425+2 5.956621-2 2.793992+2 6.165950-2 2.522753+2 6.382635-2 2.277872+2 6.456542-2 2.201576+2 6.606934-2 2.056549+2 7.161434-2 1.620216+2 7.328245-2 1.512569+2 7.673615-2 1.318268+2 7.852356-2 1.230697+2 8.035261-2 1.148872+2 9.225714-2 7.603352+1 9.332543-2 7.346301+1 9.440609-2 7.097942+1 9.772372-2 6.398079+1 9.885531-2 6.180499+1 1.000000-1 5.970323+1 1.011580-1 5.767137+1 1.035142-1 5.381264+1 1.083927-1 4.685313+1 1.096478-1 4.525883+1 1.148154-1 3.940606+1 1.216186-1 3.314322+1 1.230269-1 3.201565+1 1.244515-1 3.092648+1 1.258925-1 2.987444+1 1.303167-1 2.692817+1 1.333521-1 2.512750+1 1.428894-1 2.041643+1 1.445440-1 1.972206+1 1.479108-1 1.840350+1 1.500000-1 1.764392+1 1.513561-1 1.717311+1 1.531088-1 1.658911+1 1.584893-1 1.495386+1 1.603245-1 1.444542+1 1.640590-1 1.347982+1 1.698244-1 1.215113+1 1.737801-1 1.133900+1 1.757924-1 1.095352+1 1.778279-1 1.058480+1 1.819701-1 9.884223+0 1.862087-1 9.230039+0 1.883649-1 8.919372+0 1.905461-1 8.619195+0 1.972423-1 7.778535+0 2.018366-1 7.264205+0 2.041738-1 7.019940+0 2.065380-1 6.783916+0 2.089296-1 6.555827+0 2.187762-1 5.717637+0 2.264644-1 5.160126+0 2.290868-1 4.988897+0 2.317395-1 4.823374+0 2.344229-1 4.663346+0 2.371374-1 4.508627+0 2.398833-1 4.359076+0 2.570396-1 3.561326+0 2.600160-1 3.443372+0 2.630268-1 3.329329+0 2.660725-1 3.219063+0 2.786121-1 2.819009+0 2.818383-1 2.727043+0 2.851018-1 2.638212+0 2.884032-1 2.552281+0 2.951209-1 2.388743+0 3.000000-1 2.278712+0 3.054921-1 2.162874+0 3.162278-1 1.961520+0 3.198895-1 1.898666+0 3.235937-1 1.837825+0 3.311311-1 1.722158+0 3.349654-1 1.667084+0 3.467369-1 1.512207+0 3.507519-1 1.464735+0 3.589219-1 1.374216+0 3.672823-1 1.289295+0 3.715352-1 1.248911+0 3.801894-1 1.171897+0 3.845918-1 1.135194+0 3.890451-1 1.099642+0 3.981072-1 1.033161+0 4.073803-1 9.707042-1 4.120975-1 9.409071-1 4.168694-1 9.120936-1 4.216965-1 8.841663-1 4.265795-1 8.570942-1 4.315191-1 8.308508-1 4.415705-1 7.817762-1 4.518559-1 7.356045-1 4.570882-1 7.135514-1 4.623810-1 6.921625-1 4.786301-1 6.319212-1 4.841724-1 6.134603-1 4.954502-1 5.781434-1 5.000000-1 5.646944-1 5.011872-1 5.612567-1 5.069907-1 5.448635-1 5.128614-1 5.289492-1 5.308844-1 4.840646-1 5.370318-1 4.703194-1 5.432503-1 4.569662-1 5.495409-1 4.439921-1 5.623413-1 4.191392-1 5.688529-1 4.072394-1 5.821032-1 3.845121-1 5.888437-1 3.736298-1 5.956621-1 3.633336-1 6.025596-1 3.533209-1 6.165950-1 3.341161-1 6.237348-1 3.249088-1 6.309573-1 3.159593-1 6.382635-1 3.072808-1 6.456542-1 2.988411-1 6.606935-1 2.830881-1 6.760830-1 2.681659-1 6.839117-1 2.610024-1 6.918310-1 2.540535-1 7.085700-1 2.402094-1 7.244360-1 2.284682-1 7.328245-1 2.225927-1 7.413102-1 2.168682-1 7.498942-1 2.112915-1 7.585776-1 2.058760-1 7.762471-1 1.954580-1 7.852356-1 1.905916-1 8.035261-1 1.812194-1 8.317638-1 1.680195-1 8.413951-1 1.638505-1 8.609938-1 1.558203-1 8.709636-1 1.520468-1 8.912509-1 1.447726-1 9.015711-1 1.412671-1 9.120108-1 1.378466-1 9.225714-1 1.345108-1 9.332543-1 1.312558-1 9.440609-1 1.280906-1 9.549926-1 1.250022-1 9.660509-1 1.221035-1 9.772372-1 1.192721-1 9.885531-1 1.165063-1 1.000000+0 1.138062-1 1.011579+0 1.111693-1 1.035142+0 1.060921-1 1.047129+0 1.036411-1 1.059254+0 1.012995-1 1.071519+0 9.901095-2 1.096478+0 9.458801-2 1.109175+0 9.245114-2 1.135011+0 8.832172-2 1.148154+0 8.632793-2 1.161449+0 8.438623-2 1.174898+0 8.255983-2 1.188600+0 8.076040-2 1.202264+0 7.902489-2 1.216186+0 7.731490-2 1.250000+0 7.338943-2 1.258925+0 7.240686-2 1.273503+0 7.084547-2 1.318257+0 6.647834-2 1.333521+0 6.508349-2 1.348963+0 6.371795-2 1.380384+0 6.107237-2 1.396368+0 5.979108-2 1.412538+0 5.853730-2 1.428894+0 5.731349-2 1.462177+0 5.501056-2 1.479108+0 5.389407-2 1.496236+0 5.280019-2 1.531087+0 5.067889-2 1.566751+0 4.864275-2 1.584893+0 4.765927-2 1.678804+0 4.317396-2 1.698244+0 4.232886-2 1.737801+0 4.068819-2 1.757924+0 3.989191-2 1.778279+0 3.911429-2 1.798871+0 3.837793-2 1.819701+0 3.765546-2 1.883649+0 3.556864-2 1.905461+0 3.489905-2 1.949845+0 3.359760-2 1.972423+0 3.296526-2 2.000000+0 3.222140-2 2.018366+0 3.175703-2 2.113489+0 2.951743-2 2.137962+0 2.898266-2 2.213095+0 2.743592-2 2.238721+0 2.693896-2 2.264644+0 2.645275-2 2.290868+0 2.599035-2 2.398833+0 2.422024-2 2.426610+0 2.379689-2 2.511886+0 2.257082-2 2.540973+0 2.217636-2 2.570396+0 2.179021-2 2.600160+0 2.141078-2 2.630268+0 2.105006-2 2.754229+0 1.966688-2 2.786121+0 1.933554-2 2.884032+0 1.837470-2 2.917427+0 1.806518-2 2.951209+0 1.776200-2 2.985383+0 1.746391-2 3.019952+0 1.718022-2 3.162278+0 1.609080-2 3.198895+0 1.582942-2 3.311311+0 1.507055-2 3.349654+0 1.482578-2 3.388442+0 1.458585-2 3.427678+0 1.434982-2 3.507519+0 1.390335-2 3.672823+0 1.305166-2 3.715352+0 1.284702-2 3.845918+0 1.225221-2 3.890451+0 1.206014-2 3.935501+0 1.187175-2 4.000000+0 1.161077-2 4.073803+0 1.133305-2 4.315191+0 1.050127-2 4.365158+0 1.034239-2 4.518559+0 9.880075-3 4.570882+0 9.730616-3 4.623810+0 9.583939-3 4.731513+0 9.297185-3 4.786301+0 9.161247-3 5.128614+0 8.386354-3 5.188000+0 8.263734-3 5.370318+0 7.906558-3 5.432503+0 7.790972-3 5.495409+0 7.677080-3 5.688529+0 7.346395-3 5.754399+0 7.242443-3 6.165950+0 6.648898-3 6.237348+0 6.554815-3 6.456542+0 6.280505-3 6.531306+0 6.191648-3 6.606934+0 6.104055-3 6.839116+0 5.849438-3 7.000000+0 5.688430-3 7.498942+0 5.237187-3 7.585776+0 5.165306-3 7.943282+0 4.887539-3 8.035261+0 4.820468-3 8.128305+0 4.754319-3 8.413951+0 4.561839-3 8.709636+0 4.381897-3 9.332543+0 4.043027-3 9.440609+0 3.989153-3 9.885531+0 3.780760-3 1.000000+1 3.730388-3 1.011579+1 3.680691-3 1.047129+1 3.535926-3 1.059254+1 3.488950-3 1.100000+1 3.342803-3 1.188502+1 3.062042-3 1.202264+1 3.022336-3 1.258925+1 2.868608-3 1.273503+1 2.831414-3 1.288250+1 2.794704-3 1.333521+1 2.687689-3 1.348963+1 2.652934-3 1.412538+1 2.521242-3 1.566751+1 2.248346-3 1.584893+1 2.219909-3 1.640590+1 2.136743-3 1.659587+1 2.109722-3 1.678804+1 2.083042-3 1.698244+1 2.056709-3 1.757924+1 1.979862-3 1.778279+1 1.954891-3 1.883649+1 1.837271-3 2.018366+1 1.705432-3 2.041738+1 1.684397-3 2.065380+1 1.663623-3 2.200000+1 1.554160-3 2.317395+1 1.469468-3 2.400000+1 1.415028-3 2.426610+1 1.398315-3 2.511886+1 1.347330-3 2.540973+1 1.331022-3 2.691535+1 1.252396-3 2.754229+1 1.222262-3 2.800000+1 1.201139-3 2.951209+1 1.136145-3 3.090295+1 1.082135-3 3.273407+1 1.018218-3 3.311311+1 1.006045-3 3.349654+1 9.940317-4 4.265795+1 7.723975-4 4.466836+1 7.361603-4 4.518559+1 7.273704-4 4.677351+1 7.016251-4 4.731513+1 6.932476-4 4.954502+1 6.607273-4 5.011872+1 6.529517-4 5.069907+1 6.452783-4 7.079458+1 4.579945-4 7.498942+1 4.317080-4 7.585776+1 4.266348-4 8.035261+1 4.021492-4 8.413951+1 3.835772-4 8.511380+1 3.790698-4 8.609938+1 3.746618-4 8.709636+1 3.703095-4 1.412538+2 2.266905-4 1.496236+2 2.138260-4 1.513561+2 2.113423-4 1.603245+2 1.993491-4 1.678804+2 1.902466-4 1.698244+2 1.880367-4 1.717908+2 1.858677-4 1.737801+2 1.837250-4 2.818383+2 1.128951-4 2.985383+2 1.065362-4 3.019952+2 1.053081-4 3.198895+2 9.937666-5 3.349654+2 9.487305-5 3.388442+2 9.377938-5 3.427678+2 9.270255-5 3.467369+2 9.163850-5 1.122018+3 2.822841-5 1.188502+3 2.664515-5 1.202264+3 2.633932-5 1.273503+3 2.486202-5 1.333521+3 2.374009-5 1.348963+3 2.346760-5 2.722701+3 1.162290-5 2.754229+3 1.148981-5 1.000000+5 3.160999-7 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 9.400000-6 9.400000-6 9.820000-6 9.400000-6 9.820000-6 9.537763-6 2.099000-5 9.553747-6 2.099000-5 9.637975-6 2.365000-5 9.569792-6 2.560000-5 9.575863-6 2.754229-5 9.640600-6 2.951209-5 9.774434-6 3.150000-5 9.984065-6 3.350000-5 1.027071-5 3.548134-5 1.062347-5 3.801894-5 1.115773-5 4.216965-5 1.214771-5 4.677351-5 1.324934-5 4.900000-5 1.373504-5 5.080000-5 1.408997-5 5.308844-5 1.448748-5 5.623413-5 1.494052-5 5.850000-5 1.520133-5 6.095369-5 1.542628-5 6.397000-5 1.563374-5 6.397000-5 2.564365-5 6.491000-5 2.570267-5 6.491000-5 2.749759-5 6.770000-5 2.769854-5 7.079458-5 2.811468-5 7.900000-5 2.969102-5 8.317638-5 3.029589-5 8.730000-5 3.068971-5 9.300000-5 3.100643-5 1.023293-4 3.125158-5 1.244515-4 3.146788-5 1.637100-4 3.156911-5 1.637100-4 3.290589-5 1.697700-4 3.298701-5 1.697700-4 3.338430-5 1.795000-4 3.372441-5 2.113489-4 3.452130-5 2.261000-4 3.493350-5 2.261000-4 3.622008-5 2.550000-4 3.724599-5 3.162278-4 3.886778-5 3.801894-4 4.031726-5 4.570882-4 4.181123-5 5.650000-4 4.356615-5 6.918310-4 4.526254-5 8.317638-4 4.680266-5 1.000000-3 4.829861-5 1.216186-3 4.981275-5 1.438600-3 5.103570-5 1.438600-3 7.553310-5 1.446300-3 7.618712-5 1.458000-3 7.664411-5 1.481200-3 7.697029-5 1.481200-3 7.820049-5 1.484850-3 7.924270-5 1.491000-3 7.953382-5 1.523000-3 7.978746-5 1.641500-3 7.993057-5 1.641500-3 8.489771-5 1.905461-3 8.584813-5 2.985383-3 8.853120-5 4.216965-3 9.085723-5 5.888437-3 9.328516-5 8.128305-3 9.572357-5 1.109175-2 9.808184-5 1.261900-2 9.903927-5 1.261900-2 1.176890-4 2.238721-2 1.185081-4 5.011872-2 1.191336-4 1.778279-1 1.195303-4 8.128305+0 1.196624-4 1.000000+5 1.196621-4 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.400000-6 0.0 6.491000-5 0.0 6.491000-5 5.47406-10 6.770000-5 5.51118-10 7.000000-5 5.57741-10 7.161434-5 5.65046-10 7.413102-5 5.80696-10 7.620000-5 5.95728-10 7.673615-5 6.00450-10 7.762471-5 6.06664-10 8.035261-5 6.28097-10 8.230000-5 6.41727-10 8.413951-5 6.53624-10 8.730000-5 6.70571-10 9.120108-5 6.86992-10 9.580000-5 7.01017-10 1.000000-4 7.09217-10 1.059254-4 7.17372-10 1.110000-4 7.22613-10 1.244515-4 7.30760-10 1.480000-4 7.40079-10 1.637100-4 7.43011-10 1.637100-4 1.017535-9 1.697700-4 1.034320-9 1.697700-4 1.132830-9 1.737801-4 1.172318-9 1.765000-4 1.193297-9 1.810000-4 1.219906-9 1.972423-4 1.303031-9 2.113489-4 1.388902-9 2.261000-4 1.481543-9 2.261000-4 1.694057-9 2.400000-4 1.802512-9 2.550000-4 1.906272-9 2.754229-4 2.030352-9 3.054921-4 2.198695-9 3.350000-4 2.353086-9 3.758374-4 2.547969-9 4.100000-4 2.698047-9 4.415704-4 2.827892-9 4.954502-4 3.029835-9 5.559043-4 3.235192-9 6.095369-4 3.399944-9 6.760830-4 3.583629-9 7.585776-4 3.788638-9 8.317638-4 3.948641-9 9.332543-4 4.144721-9 1.047129-3 4.334282-9 1.188502-3 4.533901-9 1.350000-3 4.724609-9 1.438600-3 4.814822-9 1.438600-3 1.662720-5 1.443350-3 1.693067-5 1.446300-3 1.706464-5 1.453000-3 1.726849-5 1.462177-3 1.741970-5 1.479108-3 1.755937-5 1.481200-3 1.757033-5 1.481200-3 1.856220-5 1.481600-3 1.864877-5 1.481920-3 1.872326-5 1.482150-3 1.880914-5 1.482220-3 1.880949-5 1.482850-3 1.899678-5 1.484500-3 1.934211-5 1.485200-3 1.942952-5 1.486400-3 1.951508-5 1.493000-3 1.965250-5 1.504000-3 1.975139-5 1.545000-3 1.981938-5 1.641500-3 1.984912-5 1.641500-3 2.018735-5 2.786121-3 2.020009-5 9.015711-3 1.991342-5 1.261900-2 1.981634-5 1.261900-2 5.846690-3 1.640590-2 5.906587-3 2.290868-2 5.955676-3 3.507519-2 5.994806-3 6.382635-2 6.021860-3 2.018366-1 6.036199-3 1.000000+5 6.041481-3 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.400000-6 0.0 9.820000-6 4.200000-7 9.820000-6 2.822367-7 1.400000-5 4.451017-6 2.099000-5 1.143625-5 2.099000-5 1.135202-5 2.400000-5 1.443296-5 2.670000-5 1.709524-5 2.951209-5 1.973766-5 3.245000-5 2.233898-5 3.548134-5 2.485787-5 4.000000-5 2.838008-5 4.731513-5 3.394219-5 5.248075-5 3.809347-5 5.650000-5 4.152705-5 6.237348-5 4.684058-5 6.397000-5 4.833626-5 6.397000-5 3.832635-5 6.491000-5 3.920733-5 6.491000-5 3.741186-5 6.850000-5 4.071258-5 7.244360-5 4.403241-5 7.900000-5 4.930836-5 8.413951-5 5.373437-5 9.150000-5 6.055777-5 1.059254-4 7.461921-5 1.637100-4 1.321401-4 1.637100-4 1.308031-4 1.697700-4 1.367820-4 1.697700-4 1.363846-4 2.261000-4 1.911650-4 2.261000-4 1.898782-4 3.388442-4 2.994387-4 6.700000-4 6.250032-4 1.438600-3 1.387559-3 1.438600-3 1.346440-3 1.481200-3 1.386659-3 1.481200-3 1.384437-3 1.499000-3 1.399616-3 1.641500-3 1.541720-3 1.641500-3 1.536415-3 1.261900-2 1.250014-2 1.261900-2 6.654621-3 1.698244-2 1.095136-2 3.507519-2 2.896147-2 1.000000+5 9.999999+4 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.261900-2 1.794400+4 1.276000-2 1.753258+4 1.305000-2 1.651776+4 1.335000-2 1.562848+4 1.412538-2 1.350844+4 1.531087-2 1.101510+4 1.698244-2 8.389426+3 1.950000-2 5.819640+3 2.454709-2 3.115731+3 3.054921-2 1.696990+3 3.801894-2 9.132415+2 4.677351-2 5.028258+2 5.754399-2 2.745983+2 7.161434-2 1.439219+2 9.440609-2 6.310248+1 1.757924-1 9.744672+0 2.264644-1 4.591218+0 2.660725-1 2.864304+0 3.054921-1 1.924570+0 3.467369-1 1.345614+0 3.890451-1 9.785290-1 4.315191-1 7.393809-1 4.786301-1 5.624013-1 5.308844-1 4.308348-1 5.888437-1 3.325589-1 6.456542-1 2.660092-1 7.085700-1 2.138147-1 7.762471-1 1.740054-1 8.609938-1 1.387470-1 9.549926-1 1.113164-1 1.047129+0 9.229813-2 1.161449+0 7.515145-2 1.273503+0 6.309367-2 1.428894+0 5.104218-2 1.584893+0 4.244367-2 1.778279+0 3.483375-2 2.000000+0 2.869527-2 2.264644+0 2.355834-2 2.600160+0 1.906751-2 2.985383+0 1.555254-2 3.427678+0 1.277933-2 4.000000+0 1.034000-2 4.731513+0 8.279542-3 5.688529+0 6.542300-3 6.839116+0 5.209209-3 8.413951+0 4.062552-3 1.059254+1 3.107068-3 1.348963+1 2.362574-3 1.778279+1 1.740914-3 2.511886+1 1.199924-3 3.273407+1 9.068219-4 4.954502+1 5.884392-4 8.511380+1 3.375983-4 1.698244+2 1.674650-4 3.388442+2 8.351997-5 1.348963+3 2.089921-5 1.000000+5 2.815200-7 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.261900-2 1.206800-4 1.000000+5 1.206800-4 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.261900-2 6.781200-3 1.000000+5 6.781200-3 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.261900-2 5.717120-3 1.000000+5 9.999999+4 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.641500-3 7.842757+4 1.760000-3 7.276940+4 1.905461-3 6.437543+4 2.317395-3 4.669322+4 2.722701-3 3.544530+4 2.985383-3 3.001113+4 3.500000-3 2.234800+4 3.900000-3 1.813106+4 4.466836-3 1.385961+4 5.069907-3 1.069515+4 5.754399-3 8.202533+3 6.683439-3 5.940423+3 7.673615-3 4.374878+3 8.709636-3 3.284481+3 1.011579-2 2.322366+3 1.174898-2 1.628653+3 1.364583-2 1.133282+3 1.603245-2 7.604297+2 1.883649-2 5.059573+2 2.213095-2 3.339359+2 2.600160-2 2.186889+2 3.090295-2 1.378034+2 3.672823-2 8.611822+1 4.365158-2 5.341091+1 5.248075-2 3.183758+1 6.382635-2 1.822645+1 7.852356-2 1.001855+1 1.000000-1 4.942580+0 1.905461-1 7.377438-1 2.398833-1 3.761787-1 2.818383-1 2.364532-1 3.235937-1 1.599265-1 3.672823-1 1.125158-1 4.120975-1 8.228243-2 4.623810-1 6.061887-2 5.128614-1 4.637535-2 5.688529-1 3.574136-2 6.309573-1 2.776156-2 6.839117-1 2.294950-2 7.498942-1 1.859061-2 8.317638-1 1.477817-2 9.332543-1 1.154255-2 1.011579+0 9.776295-3 1.148154+0 7.595085-3 1.250000+0 6.456302-3 1.412538+0 5.150165-3 1.566751+0 4.279587-3 1.757924+0 3.509742-3 1.972423+0 2.900051-3 2.238721+0 2.369952-3 2.540973+0 1.950518-3 2.917427+0 1.589068-3 3.349654+0 1.304163-3 3.890451+0 1.060778-3 4.570882+0 8.558386-4 5.495409+0 6.752569-4 6.606934+0 5.369299-4 8.128305+0 4.182188-4 1.011579+1 3.237444-4 1.288250+1 2.458235-4 1.698244+1 1.809178-4 2.426610+1 1.229909-4 3.311311+1 8.852688-5 5.011872+1 5.745787-5 8.609938+1 3.296975-5 1.717908+2 1.635667-5 3.427678+2 8.157970-6 2.722701+3 1.022141-6 1.000000+5 2.781800-8 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.641500-3 1.214600-4 1.000000+5 1.214600-4 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.641500-3 2.267700-5 1.000000+5 2.267700-5 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.641500-3 1.497363-3 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.481200-3 7.740200+4 1.481410-3 7.991800+4 1.481600-3 8.508700+4 1.481850-3 9.187300+4 1.481920-3 9.187300+4 1.482000-3 9.593100+4 1.482150-3 9.995900+4 1.482220-3 9.995900+4 1.482300-3 1.039700+5 1.482600-3 1.118500+5 1.482850-3 1.183000+5 1.482920-3 1.183000+5 1.483000-3 1.220600+5 1.483300-3 1.293200+5 1.483550-3 1.351700+5 1.483850-3 1.418500+5 1.484150-3 1.481100+5 1.484500-3 1.549000+5 1.484850-3 1.611100+5 1.485000-3 1.636000+5 1.485100-3 1.637610+5 1.485200-3 1.646899+5 1.485350-3 1.656243+5 1.485500-3 1.675076+5 1.485650-3 1.679119+5 1.485900-3 1.704030+5 1.486200-3 1.729313+5 1.486400-3 1.742606+5 1.488300-3 1.798934+5 1.491000-3 1.850285+5 1.495000-3 1.898528+5 1.499000-3 1.931318+5 1.503500-3 1.947216+5 1.519000-3 1.947216+5 1.523000-3 1.943159+5 1.543000-3 1.893304+5 1.545000-3 1.893500+5 1.555000-3 1.871400+5 1.590000-3 1.780200+5 1.621810-3 1.709000+5 1.650000-3 1.638300+5 2.137962-3 8.386800+4 2.371374-3 6.373300+4 2.540973-3 5.286100+4 3.054921-3 3.171600+4 3.427678-3 2.283600+4 3.900000-3 1.572100+4 4.570882-3 9.830200+3 5.188000-3 6.715000+3 6.095369-3 4.099500+3 7.161434-3 2.479300+3 8.317638-3 1.542200+3 9.660509-3 9.524100+2 1.135011-2 5.625000+2 1.333521-2 3.297400+2 1.584893-2 1.846300+2 1.883649-2 1.026100+2 2.264644-2 5.441700+1 2.754229-2 2.752100+1 3.467369-2 1.223100+1 4.518559-2 4.768800+0 9.772372-2 3.012200-1 1.216186-1 1.386200-1 1.445440-1 7.561000-2 1.698244-1 4.324400-2 1.972423-1 2.592552-2 2.264644-1 1.629001-2 2.570396-1 1.071957-2 2.884032-1 7.377676-3 3.235937-1 5.113672-3 3.589219-1 3.699493-3 3.981072-1 2.695025-3 4.415705-1 1.978333-3 4.841724-1 1.514169-3 5.308844-1 1.166380-3 5.888437-1 8.762418-4 6.456542-1 6.842568-4 7.085700-1 5.367495-4 7.762471-1 4.261285-4 8.609938-1 3.304029-4 9.440609-1 2.645430-4 1.000000+0 2.318798-4 1.071519+0 1.999597-4 1.135011+0 1.778239-4 1.202264+0 1.590378-4 1.318257+0 1.342900-4 1.462177+0 1.119230-4 1.737801+0 8.301150-5 1.949845+0 6.848433-5 2.213095+0 5.592289-5 2.511886+0 4.599685-5 2.884032+0 3.744920-5 3.311311+0 3.071727-5 3.845918+0 2.497094-5 4.518559+0 2.013498-5 5.370318+0 1.611175-5 6.456542+0 1.279929-5 7.943282+0 9.961036-6 9.885531+0 7.704907-6 1.258925+1 5.846224-6 1.640590+1 4.354837-6 2.200000+1 3.167200-6 2.951209+1 2.315413-6 4.677351+1 1.430262-6 8.035261+1 8.198306-7 1.603245+2 4.064795-7 3.198895+2 2.026588-7 1.273503+3 5.069788-8 1.000000+5 6.44660-10 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.481200-3 8.640100-5 1.000000+5 8.640100-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.481200-3 2.517400-5 1.000000+5 2.517400-5 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.481200-3 1.369625-3 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.438600-3 3.421344+5 1.440500-3 3.517019+5 1.443350-3 3.634352+5 1.446300-3 3.729967+5 1.450000-3 3.816374+5 1.453000-3 3.869692+5 1.458000-3 3.928371+5 1.466000-3 3.974154+5 1.474000-3 3.983819+5 1.493000-3 3.957539+5 1.504000-3 3.921048+5 1.516800-3 3.853256+5 1.548817-3 3.673077+5 1.580000-3 3.520416+5 1.610000-3 3.357884+5 2.070000-3 1.740184+5 2.300000-3 1.313448+5 2.483133-3 1.064577+5 2.951209-3 6.566182+4 3.273407-3 4.876268+4 3.801894-3 3.151317+4 4.365158-3 2.086844+4 4.954502-3 1.422039+4 5.754399-3 8.965956+3 6.760830-3 5.405819+3 7.852356-3 3.351511+3 9.015711-3 2.141242+3 1.035142-2 1.359752+3 1.202264-2 8.257809+2 1.412538-2 4.790726+2 1.659587-2 2.759000+2 1.950000-2 1.577664+2 2.344229-2 8.266963+1 2.818383-2 4.296474+1 3.467369-2 2.040214+1 4.365158-2 8.840626+0 5.754399-2 3.212229+0 1.035142-1 3.700060-1 1.303167-1 1.597803-1 1.531088-1 8.930261-2 1.778279-1 5.241331-2 2.041738-1 3.229694-2 2.290868-1 2.171296-2 2.570396-1 1.470448-2 2.851018-1 1.042846-2 3.162278-1 7.451827-3 3.467369-1 5.564015-3 3.801894-1 4.181595-3 4.168694-1 3.164716-3 4.570882-1 2.413099-3 4.954502-1 1.916121-3 5.370318-1 1.531107-3 5.821032-1 1.231414-3 6.309573-1 9.972778-4 6.839117-1 8.131524-4 7.413102-1 6.673283-4 8.035261-1 5.510767-4 8.709636-1 4.579927-4 9.549926-1 3.734098-4 1.011579+0 3.305488-4 1.109175+0 2.741915-4 1.202264+0 2.342862-4 1.333521+0 1.931062-4 1.496236+0 1.570624-4 1.698244+0 1.259583-4 1.905461+0 1.038216-4 2.137962+0 8.621679-5 2.426610+0 7.078024-5 2.786121+0 5.751595-5 3.198895+0 4.709130-5 3.715352+0 3.821531-5 4.365158+0 3.076437-5 5.188000+0 2.458100-5 6.237348+0 1.949944-5 7.585776+0 1.536570-5 9.440609+0 1.186620-5 1.202264+1 8.990497-6 1.584893+1 6.604079-6 2.041738+1 5.011290-6 2.754229+1 3.636278-6 4.466836+1 2.190307-6 7.498942+1 1.284485-6 1.496236+2 6.364067-7 2.985383+2 3.171634-7 1.188502+3 7.931791-8 1.000000+5 9.41170-10 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.438600-3 8.464800-5 1.000000+5 8.464800-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.438600-3 2.281200-5 1.000000+5 2.281200-5 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.438600-3 1.331140-3 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.261000-4 1.955794+5 2.276000-4 1.981392+5 2.300000-4 2.008340+5 2.350000-4 2.046880+5 2.400000-4 2.076700+5 2.454709-4 2.098095+5 2.500000-4 2.104680+5 2.550000-4 2.099920+5 2.600160-4 2.084356+5 2.680000-4 2.044140+5 3.054921-4 1.822417+5 3.350000-4 1.685500+5 3.550000-4 1.594754+5 3.801894-4 1.481678+5 4.415704-4 1.246652+5 4.786301-4 1.129656+5 5.248075-4 1.001601+5 6.025596-4 8.295000+4 6.700000-4 7.125700+4 7.800000-4 5.675040+4 8.810489-4 4.694004+4 1.023293-3 3.686649+4 1.174898-3 2.926756+4 1.350000-3 2.305080+4 1.584893-3 1.734892+4 1.840772-3 1.320636+4 2.137962-3 9.979600+3 2.483133-3 7.488008+3 2.900000-3 5.518080+3 3.388442-3 4.033156+3 4.000000-3 2.864880+3 4.731513-3 2.009847+3 5.559043-3 1.419567+3 6.531306-3 9.950144+2 7.673615-3 6.920468+2 8.912509-3 4.905206+2 1.035142-2 3.452174+2 1.202264-2 2.412678+2 1.412538-2 1.627756+2 1.659587-2 1.089510+2 1.949845-2 7.236066+1 2.290868-2 4.769850+1 2.691535-2 3.121443+1 3.162278-2 2.028169+1 3.758374-2 1.267988+1 4.466836-2 7.869357+0 5.308844-2 4.849201+0 6.456542-2 2.778591+0 8.035261-2 1.479266+0 1.011580-1 7.562630-1 1.883649-1 1.210171-1 2.371374-1 6.175363-2 2.786121-1 3.882409-2 3.235937-1 2.541656-2 3.672823-1 1.788451-2 4.120975-1 1.308224-2 4.623810-1 9.641423-3 5.128614-1 7.377985-3 5.688529-1 5.687649-3 6.237348-1 4.542933-3 6.839117-1 3.652319-3 7.498942-1 2.955501-3 8.317638-1 2.346900-3 9.120108-1 1.925547-3 9.885531-1 1.629984-3 1.135011+0 1.238241-3 1.258925+0 1.014459-3 1.396368+0 8.369696-4 1.566751+0 6.811216-4 1.757924+0 5.585746-4 1.972423+0 4.615776-4 2.238721+0 3.772430-4 2.540973+0 3.104797-4 2.917427+0 2.529316-4 3.349654+0 2.075795-4 3.890451+0 1.688399-4 4.570882+0 1.362223-4 5.495409+0 1.074785-4 6.606934+0 8.545945-5 8.128305+0 6.656530-5 1.011579+1 5.152893-5 1.288250+1 3.912686-5 1.678804+1 2.916221-5 2.400000+1 1.980600-5 3.273407+1 1.426203-5 4.954502+1 9.254923-6 8.511380+1 5.309591-6 1.698244+2 2.633849-6 3.388442+2 1.313633-6 1.348963+3 3.286939-7 1.000000+5 4.427700-9 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.261000-4 7.050600-5 1.000000+5 7.050600-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.261000-4 7.357300-9 1.000000+5 7.357300-9 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.261000-4 1.555866-4 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.697700-4 1.050074+5 1.715000-4 1.177666+5 1.722000-4 1.228350+5 1.730000-4 1.282578+5 1.737801-4 1.330507+5 1.745000-4 1.369494+5 1.755000-4 1.415582+5 1.765000-4 1.453388+5 1.778279-4 1.493061+5 1.795000-4 1.530150+5 1.810000-4 1.555196+5 1.840772-4 1.593398+5 1.972423-4 1.720691+5 2.162719-4 1.925045+5 2.238721-4 1.995673+5 2.317395-4 2.054089+5 2.400000-4 2.099480+5 2.500000-4 2.136360+5 2.620000-4 2.161840+5 2.754229-4 2.174103+5 2.900000-4 2.171920+5 3.019952-4 2.158388+5 3.162278-4 2.128789+5 3.311311-4 2.085309+5 3.507519-4 2.016241+5 3.715352-4 1.936484+5 3.981072-4 1.831393+5 4.216965-4 1.737424+5 4.500000-4 1.625662+5 4.786301-4 1.516170+5 5.188000-4 1.373480+5 5.650000-4 1.227864+5 6.095369-4 1.103145+5 6.606934-4 9.772224+4 7.244360-4 8.446107+4 7.852356-4 7.386959+4 8.609938-4 6.288545+4 9.549926-4 5.205167+4 1.047129-3 4.366409+4 1.161449-3 3.555684+4 1.273503-3 2.942695+4 1.412538-3 2.361284+4 1.570000-3 1.872162+4 1.737801-3 1.487473+4 1.927525-3 1.168522+4 2.162719-3 8.867682+3 2.454709-3 6.486891+3 2.786121-3 4.703080+3 3.162278-3 3.380747+3 3.589219-3 2.410421+3 4.073803-3 1.705431+3 4.623810-3 1.197552+3 5.248075-3 8.347992+2 6.000000-3 5.657040+2 6.839116-3 3.838499+2 7.762471-3 2.619155+2 8.912509-3 1.713313+2 1.023293-2 1.112176+2 1.174898-2 7.168074+1 1.364583-2 4.420162+1 1.584893-2 2.705617+1 1.862087-2 1.582593+1 2.213095-2 8.837270+0 2.630268-2 4.897468+0 3.162278-2 2.589916+0 3.890451-2 1.254814+0 5.011872-2 5.131057-1 9.772372-2 4.780678-2 1.230269-1 2.120905-2 1.479108-1 1.114664-2 1.737801-1 6.393335-3 2.018366-1 3.844275-3 2.317395-1 2.422167-3 2.630268-1 1.597882-3 2.951209-1 1.102357-3 3.311311-1 7.661516-4 3.672823-1 5.559162-4 4.073803-1 4.060849-4 4.518559-1 2.987455-4 5.011872-1 2.214595-4 5.495409-1 1.708849-4 6.025596-1 1.327295-4 6.606935-1 1.038103-4 7.244360-1 8.175029-5 8.317638-1 5.773663-5 8.912509-1 4.873604-5 9.440609-1 4.256119-5 1.000000+0 3.741000-5 1.071519+0 3.231469-5 1.148154+0 2.811095-5 1.216186+0 2.518140-5 1.348963+0 2.084127-5 1.584893+0 1.569089-5 1.798871+0 1.262855-5 2.000000+0 1.060100-5 2.264644+0 8.703320-6 2.600160+0 7.044362-6 2.985383+0 5.745869-6 3.427678+0 4.721242-6 4.000000+0 3.820000-6 4.731513+0 3.058832-6 5.688529+0 2.417041-6 6.839116+0 1.924547-6 8.413951+0 1.500882-6 1.047129+1 1.163179-6 1.333521+1 8.841683-7 1.757924+1 6.513077-7 2.511886+1 4.433082-7 3.273407+1 3.350260-7 4.954502+1 2.173965-7 8.413951+1 1.261942-7 1.678804+2 6.259328-8 3.349654+2 3.121536-8 1.333521+3 7.810513-9 1.000000+5 1.04010-10 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.697700-4 5.857500-5 1.000000+5 5.857500-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.697700-4 7.379000-9 1.000000+5 7.379000-9 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.697700-4 1.111876-4 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.637100-4 3.491394+5 2.000000-4 4.191915+5 2.113489-4 4.430324+5 2.190000-4 4.561640+5 2.264644-4 4.658251+5 2.350000-4 4.732400+5 2.454709-4 4.781763+5 2.580000-4 4.800560+5 2.730000-4 4.785240+5 2.884032-4 4.735778+5 3.019952-4 4.663866+5 3.162278-4 4.563625+5 3.311311-4 4.438689+5 3.507519-4 4.257619+5 3.758374-4 4.020041+5 4.027170-4 3.769544+5 4.280000-4 3.538544+5 4.570882-4 3.281298+5 4.954502-4 2.967145+5 5.400000-4 2.644456+5 5.821032-4 2.376003+5 6.309573-4 2.102547+5 6.918310-4 1.814461+5 7.585776-4 1.554358+5 8.222426-4 1.348770+5 9.120108-4 1.114768+5 1.000000-3 9.347640+4 1.110000-3 7.591400+4 1.216186-3 6.289036+4 1.350000-3 5.033200+4 1.500000-3 3.990280+4 1.659587-3 3.171190+4 1.862087-3 2.421947+4 2.089296-3 1.834338+4 2.317395-3 1.418799+4 2.570396-3 1.090878+4 2.884032-3 8.088800+3 3.235937-3 5.956329+3 3.630781-3 4.356645+3 4.073803-3 3.166296+3 4.570882-3 2.286939+3 5.188000-3 1.587720+3 5.888437-3 1.094283+3 6.683439-3 7.488484+2 7.673615-3 4.912679+2 8.709636-3 3.314128+2 1.000000-2 2.141208+2 1.148154-2 1.372942+2 1.318257-2 8.739886+1 1.531087-2 5.317219+1 1.778279-2 3.210927+1 2.089296-2 1.850837+1 2.454709-2 1.059019+1 2.917427-2 5.778661+0 3.507519-2 3.004306+0 4.265795-2 1.487927+0 5.495409-2 5.940500-1 6.606934-2 3.030657-1 1.011580-1 6.364249-2 1.258925-1 2.874007-2 1.513561-1 1.482043-2 1.757924-1 8.706251-3 2.018366-1 5.368394-3 2.290868-1 3.471718-3 2.570396-1 2.353230-3 2.851018-1 1.669757-3 3.162278-1 1.193437-3 3.467369-1 8.913498-4 3.801894-1 6.702471-4 4.168694-1 5.077082-4 4.570882-1 3.875756-4 5.000000-1 3.002079-4 5.432503-1 2.387393-4 5.888437-1 1.923266-4 6.382635-1 1.559152-4 6.918310-1 1.272017-4 7.498942-1 1.044422-4 8.317638-1 8.175975-5 9.015711-1 6.806449-5 9.660509-1 5.856277-5 1.035142+0 5.073533-5 1.135011+0 4.218923-5 1.250000+0 3.503300-5 1.380384+0 2.917200-5 1.584893+0 2.283485-5 1.778279+0 1.874099-5 2.000000+0 1.543400-5 2.264644+0 1.266929-5 2.570396+0 1.043355-5 2.951209+0 8.505750-6 3.388442+0 6.984972-6 3.935501+0 5.684688-6 4.623810+0 4.588757-6 5.495409+0 3.675436-6 6.606934+0 2.922536-6 8.128305+0 2.276408-6 1.011579+1 1.762201-6 1.288250+1 1.338071-6 1.678804+1 9.972543-7 2.400000+1 6.773300-7 3.273407+1 4.877316-7 4.954502+1 3.164891-7 8.511380+1 1.815794-7 1.698244+2 9.007368-8 3.388442+2 4.492101-8 1.348963+3 1.124033-8 1.000000+5 1.51420-10 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.637100-4 5.766300-5 1.000000+5 5.766300-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.637100-4 6.101700-9 1.000000+5 6.101700-9 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.637100-4 1.060409-4 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 6.491000-5 3.581196+5 6.606934-5 3.572507+5 6.700000-5 3.584628+5 6.770000-5 3.606660+5 6.850000-5 3.650584+5 6.920000-5 3.704916+5 7.000000-5 3.787152+5 7.079458-5 3.892426+5 7.161434-5 4.027689+5 7.244360-5 4.193093+5 7.330000-5 4.395480+5 7.413102-5 4.623447+5 7.500000-5 4.896000+5 7.620000-5 5.330680+5 7.762471-5 5.933965+5 8.230000-5 8.507440+5 8.413951-5 9.704019+5 8.570000-5 1.076044+6 8.730000-5 1.185648+6 8.850000-5 1.267168+6 9.000000-5 1.366964+6 9.150000-5 1.463196+6 9.300000-5 1.554528+6 9.450000-5 1.640512+6 9.580000-5 1.710532+6 9.772372-5 1.806274+6 9.980000-5 1.899500+6 1.020000-4 1.987920+6 1.047129-4 2.084074+6 1.080000-4 2.184992+6 1.110000-4 2.265104+6 1.150000-4 2.357580+6 1.190000-4 2.436284+6 1.240000-4 2.517116+6 1.291500-4 2.580097+6 1.333521-4 2.615603+6 1.380384-4 2.639344+6 1.430000-4 2.646776+6 1.480000-4 2.636916+6 1.540000-4 2.605348+6 1.603245-4 2.554543+6 1.678804-4 2.478978+6 1.760000-4 2.387800+6 1.862087-4 2.265807+6 1.972423-4 2.130572+6 2.089296-4 1.988359+6 2.190000-4 1.867248+6 2.306300-4 1.730999+6 2.426610-4 1.596125+6 2.580000-4 1.436472+6 2.754229-4 1.274796+6 2.951209-4 1.116561+6 3.162278-4 9.716021+5 3.388442-4 8.396044+5 3.630781-4 7.205276+5 3.935501-4 5.982352+5 4.315191-4 4.802103+5 4.700000-4 3.887340+5 5.069907-4 3.202650+5 5.559043-4 2.511216+5 6.095369-4 1.956782+5 6.700000-4 1.503196+5 7.413102-4 1.124317+5 8.128305-4 8.581524+4 9.015711-4 6.286325+4 1.023293-3 4.255833+4 1.150000-3 2.944236+4 1.303167-3 1.966207+4 1.462177-3 1.344672+4 1.621810-3 9.492343+3 1.798871-3 6.659700+3 2.000000-3 4.607280+3 2.264644-3 2.967724+3 2.570396-3 1.881579+3 2.917427-3 1.184076+3 3.311311-3 7.395338+2 3.758374-3 4.585675+2 4.315191-3 2.701385+2 4.897788-3 1.651313+2 5.559043-3 1.002402+2 6.382635-3 5.770842+1 7.244360-3 3.454530+1 8.317638-3 1.958609+1 9.549926-3 1.102361+1 1.109175-2 5.869962+0 1.303167-2 2.955448+0 1.584893-2 1.273774+0 1.927525-2 5.449718-1 2.371374-2 2.198614-1 3.090295-2 6.834609-2 4.265795-2 1.635106-2 6.165950-2 3.181182-3 7.673615-2 1.211331-3 9.225714-2 5.409014-4 1.083927-1 2.690461-4 1.258925-1 1.417111-4 1.445440-1 7.900397-5 1.640590-1 4.657928-5 1.862087-1 2.767385-5 2.089296-1 1.736290-5 2.344229-1 1.097437-5 2.600160-1 7.312695-6 2.884032-1 4.907408-6 3.198895-1 3.317252-6 3.507519-1 2.358083-6 3.845918-1 1.688326-6 4.120975-1 1.321446-6 4.518559-1 9.602618-7 5.011872-1 6.757668-7 5.495409-1 4.968695-7 5.956621-1 3.821122-7 6.382635-1 3.075993-7 6.918310-1 2.405698-7 7.585776-1 1.830959-7 8.035261-1 1.548113-7 8.609938-1 1.257653-7 9.015711-1 1.100939-7 9.440609-1 9.696056-8 9.772372-1 8.857768-8 1.011579+0 8.131761-8 1.059254+0 7.308422-8 1.109175+0 6.616707-8 1.161449+0 6.029914-8 1.216186+0 5.527875-8 1.318257+0 4.792761-8 1.531087+0 3.727930-8 1.819701+0 2.771006-8 2.018366+0 2.334805-8 2.290868+0 1.910702-8 2.630268+0 1.547508-8 3.019952+0 1.263055-8 3.507519+0 1.021939-8 4.073803+0 8.330979-9 4.786301+0 6.735455-9 5.754399+0 5.324915-9 7.000000+0 4.181600-9 8.709636+0 3.220774-9 1.100000+1 2.457100-9 1.412538+1 1.853171-9 1.883649+1 1.350378-9 2.540973+1 9.78851-10 3.349654+1 7.30915-10 5.069907+1 4.74477-10 8.709636+1 2.72310-10 1.737801+2 1.35104-10 3.467369+2 6.73887-11 2.754229+3 8.44377-12 1.000000+5 2.32470-13 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 6.491000-5 3.195400-5 1.000000+5 3.195400-5 1 34000 7 7 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.491000-5 1.906500-9 1.000000+5 1.906500-9 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.491000-5 3.295409-5 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 6.397000-5 5.483448+5 6.510000-5 5.455014+5 6.606934-5 5.463436+5 6.700000-5 5.506974+5 6.770000-5 5.566866+5 6.850000-5 5.666436+5 6.920000-5 5.782458+5 7.000000-5 5.950518+5 7.079458-5 6.157181+5 7.161434-5 6.413849+5 7.244360-5 6.720292+5 7.330000-5 7.087620+5 7.413102-5 7.494523+5 7.540000-5 8.212800+5 7.673615-5 9.094456+5 8.150000-5 1.315914+6 8.317638-5 1.483953+6 8.485300-5 1.658283+6 8.609938-5 1.789261+6 8.730000-5 1.914714+6 8.850000-5 2.037960+6 9.015711-5 2.202548+6 9.150000-5 2.329698+6 9.300000-5 2.464014+6 9.486800-5 2.619098+6 9.660509-5 2.750967+6 9.850000-5 2.881806+6 1.000000-4 2.976372+6 1.023293-4 3.109151+6 1.050000-4 3.243108+6 1.083927-4 3.390400+6 1.122018-4 3.531599+6 1.161449-4 3.655965+6 1.205000-4 3.770880+6 1.244515-4 3.855673+6 1.291500-4 3.932451+6 1.333521-4 3.978530+6 1.380384-4 4.005236+6 1.430000-4 4.006692+6 1.480000-4 3.983322+6 1.540000-4 3.928056+6 1.603245-4 3.845356+6 1.678804-4 3.724775+6 1.760000-4 3.580914+6 1.862087-4 3.392217+6 1.972423-4 3.185984+6 2.089296-4 2.968604+6 2.190000-4 2.784114+6 2.317395-4 2.558088+6 2.454709-4 2.328512+6 2.600160-4 2.104687+6 2.809100-4 1.822151+6 3.019952-4 1.581191+6 3.235937-4 1.371311+6 3.467369-4 1.181084+6 3.722400-4 1.006139+6 4.100000-4 8.016600+5 4.466836-4 6.508540+5 4.850000-4 5.289864+5 5.248075-4 4.307833+5 5.821032-4 3.263269+5 6.382635-4 2.531020+5 6.918310-4 2.014678+5 7.800000-4 1.421502+5 8.709636-4 1.022457+5 9.772372-4 7.183341+4 1.083927-3 5.192051+4 1.202264-3 3.726902+4 1.333521-3 2.658990+4 1.462177-3 1.958752+4 1.621810-3 1.381072+4 1.798871-3 9.677801+3 2.018366-3 6.475424+3 2.264644-3 4.301848+3 2.570396-3 2.722271+3 2.917427-3 1.709393+3 3.311311-3 1.065619+3 3.758374-3 6.595432+2 4.315191-3 3.876726+2 4.897788-3 2.364701+2 5.559043-3 1.432371+2 6.309573-3 8.615086+1 7.244360-3 4.908486+1 8.222426-3 2.910775+1 9.440609-3 1.633900+1 1.096478-2 8.673831+0 1.288250-2 4.350979+0 1.531087-2 2.061381+0 1.840772-2 9.218820-1 2.290868-2 3.515915-1 2.851018-2 1.330527-1 3.388442-2 6.137178-2 6.165950-2 4.133594-3 7.673615-2 1.553872-3 9.225714-2 6.867076-4 1.096478-1 3.217953-4 1.258925-1 1.767097-4 1.428894-1 1.027432-4 1.603245-1 6.318992-5 1.778279-1 4.106117-5 1.972423-1 2.686385-5 2.187762-1 1.769595-5 2.398833-1 1.229733-5 2.600160-1 8.999879-6 2.818383-1 6.630176-6 3.054921-1 4.918149-6 3.311311-1 3.674736-6 3.589219-1 2.764222-6 3.890451-1 2.092667-6 4.265795-1 1.531771-6 4.623810-1 1.173686-6 5.000000-1 9.130500-7 5.370318-1 7.315267-7 5.821032-1 5.740260-7 6.382635-1 4.387312-7 6.839117-1 3.610414-7 7.328245-1 2.992020-7 7.852356-1 2.499408-7 8.413951-1 2.101643-7 9.015711-1 1.779355-7 9.549926-1 1.558688-7 1.011579+0 1.374409-7 1.096478+0 1.162708-7 1.174898+0 1.014232-7 1.273503+0 8.718471-8 1.412538+0 7.230810-8 1.678804+0 5.347387-8 1.883649+0 4.403204-8 2.113489+0 3.653666-8 2.398833+0 2.997588-8 2.754229+0 2.434204-8 3.162278+0 1.991793-8 3.672823+0 1.615471-8 4.315191+0 1.299771-8 5.128614+0 1.037984-8 6.165950+0 8.230014-9 7.498942+0 6.482410-9 9.332543+0 5.004055-9 1.188502+1 3.790014-9 1.566751+1 2.783008-9 2.018366+1 2.111175-9 2.691535+1 1.550782-9 4.265795+1 9.56047-10 7.079458+1 5.66904-10 1.412538+2 2.80697-10 2.818383+2 1.39828-10 1.122018+3 3.49629-11 1.000000+5 3.91610-13 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 6.397000-5 3.200000-5 1.000000+5 3.200000-5 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.397000-5 3.197000-5 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.099000-5 6.655260+4 2.113489-5 6.047443+4 2.135000-5 5.220780+4 2.155000-5 4.529260+4 2.177000-5 3.851920+4 2.192000-5 3.434760+4 2.213095-5 2.908628+4 2.227000-5 2.597120+4 2.242000-5 2.290480+4 2.257000-5 2.013440+4 2.272000-5 1.764348+4 2.290868-5 1.488367+4 2.317395-5 1.165599+4 2.350000-5 8.638780+3 2.365000-5 7.572160+3 2.377000-5 6.854320+3 2.388000-5 6.297340+3 2.398833-5 5.839204+3 2.407000-5 5.550900+3 2.415000-5 5.314500+3 2.423000-5 5.122260+3 2.431000-5 4.972600+3 2.438000-5 4.875900+3 2.446000-5 4.803160+3 2.452000-5 4.774220+3 2.460000-5 4.769180+3 2.467000-5 4.795180+3 2.473000-5 4.839340+3 2.481000-5 4.929040+3 2.489000-5 5.052800+3 2.496000-5 5.188200+3 2.505000-5 5.398260+3 2.515000-5 5.677540+3 2.525000-5 6.003200+3 2.540973-5 6.615235+3 2.560000-5 7.482920+3 2.610000-5 1.040004+4 2.630268-5 1.181443+4 2.650000-5 1.330362+4 2.670000-5 1.491618+4 2.691535-5 1.675801+4 2.710000-5 1.841648+4 2.730000-5 2.028740+4 2.754229-5 2.264776+4 2.777000-5 2.494920+4 2.800000-5 2.734500+4 2.830000-5 3.056260+4 2.860000-5 3.386840+4 2.885000-5 3.667900+4 2.920000-5 4.068140+4 2.951209-5 4.429931+4 2.990000-5 4.883980+4 3.020000-5 5.237140+4 3.060000-5 5.708920+4 3.100000-5 6.179880+4 3.150000-5 6.764800+4 3.198895-5 7.330407+4 3.245000-5 7.855880+4 3.300000-5 8.470860+4 3.350000-5 9.016780+4 3.420000-5 9.757600+4 3.470000-5 1.026878+5 3.548134-5 1.103582+5 3.630781-5 1.180358+5 3.715352-5 1.254183+5 3.801894-5 1.324744+5 3.900000-5 1.398684+5 4.000000-5 1.467562+5 4.120975-5 1.542412+5 4.260000-5 1.617520+5 4.415704-5 1.688730+5 4.570882-5 1.747272+5 4.731513-5 1.796071+5 4.900000-5 1.835694+5 5.080000-5 1.866426+5 5.308844-5 1.890528+5 5.559043-5 1.900884+5 5.821032-5 1.897419+5 6.095369-5 1.881596+5 6.400000-5 1.852884+5 6.760830-5 1.808309+5 7.161434-5 1.750086+5 7.585776-5 1.683097+5 8.128305-5 1.594954+5 8.810489-5 1.485986+5 9.660509-5 1.359270+5 1.059254-4 1.234760+5 1.174898-4 1.100301+5 1.303167-4 9.735247+4 1.450000-4 8.519500+4 1.640590-4 7.240967+4 2.000000-4 5.518160+4 2.511886-4 4.012629+4 2.884032-4 3.286543+4 3.427678-4 2.537663+4 4.216965-4 1.846349+4 5.308844-4 1.283944+4 6.309573-4 9.730302+3 7.413102-4 7.451678+3 8.810489-4 5.557226+3 1.059254-3 4.033976+3 1.258925-3 2.965235+3 1.513561-3 2.118665+3 1.798871-3 1.535005+3 2.137962-3 1.103800+3 2.540973-3 7.875222+2 3.000000-3 5.649480+2 3.548134-3 4.007811+2 4.216965-3 2.792660+2 5.000000-3 1.940212+2 5.888437-3 1.357448+2 6.918310-3 9.476846+1 8.128305-3 6.567295+1 9.549926-3 4.515402+1 1.148154-2 2.917044+1 1.318257-2 2.088176+1 1.531087-2 1.442888+1 1.798871-2 9.616706+0 2.113489-2 6.361454+0 2.483133-2 4.178041+0 2.917427-2 2.724577+0 3.467369-2 1.709693+0 4.120975-2 1.064714+0 4.954502-2 6.374638-1 5.956621-2 3.784934-1 7.328245-2 2.089176-1 9.332543-2 1.035791-1 1.148154-1 5.637998-2 1.862087-1 1.356339-2 2.371374-1 6.692321-3 2.786121-1 4.207446-3 3.235937-1 2.754513-3 3.672823-1 1.938298-3 4.120975-1 1.417860-3 4.623810-1 1.044939-3 5.128614-1 7.996283-4 5.688529-1 6.164381-4 6.237348-1 4.923849-4 6.839117-1 3.958734-4 7.498942-1 3.203660-4 8.317638-1 2.544274-4 9.120108-1 2.087785-4 9.885531-1 1.767457-4 1.135011+0 1.342670-4 1.258925+0 1.100102-4 1.396368+0 9.075820-5 1.566751+0 7.385096-5 1.757924+0 6.056381-5 1.972423+0 5.004728-5 2.238721+0 4.090283-5 2.540973+0 3.366356-5 2.917427+0 2.742374-5 3.349654+0 2.250729-5 3.890451+0 1.830741-5 4.570882+0 1.476974-5 5.432503+0 1.182434-5 6.531306+0 9.397834-6 8.035261+0 7.316892-6 1.000000+1 5.661900-6 1.273503+1 4.297690-6 1.659587+1 3.202227-6 2.317395+1 2.229852-6 3.090295+1 1.642849-6 4.731513+1 1.052496-6 8.035261+1 6.105225-7 1.603245+2 3.027018-7 3.198895+2 1.509188-7 1.273503+3 3.775463-8 1.000000+5 4.80080-10 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.099000-5 2.099000-5 1.000000+5 2.099000-5 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.099000-5 0.0 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 9.820000-6 1.991528+7 1.000000-5 1.989195+7 1.035142-5 1.969424+7 1.060000-5 1.946328+7 1.096478-5 1.900255+7 1.135011-5 1.837910+7 1.165000-5 1.782876+7 1.202264-5 1.706859+7 1.244515-5 1.614518+7 1.290000-5 1.511383+7 1.333521-5 1.411403+7 1.380384-5 1.304672+7 1.428894-5 1.197435+7 1.480000-5 1.089849+7 1.531087-5 9.891452+6 1.590000-5 8.823591+6 1.659587-5 7.694168+6 1.737801-5 6.590210+6 1.830000-5 5.493066+6 1.927525-5 4.542659+6 2.041738-5 3.655671+6 2.187762-5 2.795851+6 2.400000-5 1.935315+6 2.691535-5 1.217779+6 3.589219-5 3.771771+5 3.935501-5 2.606853+5 4.216965-5 1.987206+5 4.466836-5 1.594383+5 4.677351-5 1.344355+5 4.900000-5 1.139128+5 5.080000-5 1.007333+5 5.248075-5 9.059939+4 5.450000-5 8.065340+4 5.650000-5 7.272195+4 5.850000-5 6.630437+4 6.025596-5 6.167189+4 6.237348-5 5.708784+4 6.456542-5 5.326916+4 6.683439-5 5.009890+4 6.918310-5 4.747176+4 7.161434-5 4.529425+4 7.413102-5 4.348609+4 7.673615-5 4.198012+4 8.035261-5 4.034315+4 8.500000-5 3.876164+4 9.120108-5 3.719415+4 1.220000-4 3.218112+4 1.364583-4 3.021700+4 1.500000-4 2.846913+4 1.650000-4 2.663273+4 1.819701-4 2.470067+4 2.018366-4 2.265392+4 2.264644-4 2.042956+4 2.500000-4 1.856942+4 2.722701-4 1.699495+4 2.951209-4 1.553201+4 3.235937-4 1.390908+4 3.589219-4 1.219151+4 4.000000-4 1.053577+4 4.466836-4 9.007672+3 5.011872-4 7.590575+3 5.559043-4 6.471365+3 6.095369-4 5.581738+3 6.760830-4 4.689152+3 7.498942-4 3.908493+3 8.317638-4 3.233781+3 9.332543-4 2.599667+3 1.035142-3 2.122035+3 1.148154-3 1.719987+3 1.273503-3 1.384778+3 1.428894-3 1.080118+3 1.603245-3 8.361538+2 1.798871-3 6.424792+2 2.018366-3 4.899614+2 2.264644-3 3.708268+2 2.540973-3 2.786313+2 2.851018-3 2.078867+2 3.198895-3 1.540423+2 3.630781-3 1.099287+2 4.120975-3 7.784755+1 4.677351-3 5.472411+1 5.188000-3 4.086600+1 5.821032-3 2.931744+1 6.683439-3 1.952947+1 7.673615-3 1.290636+1 8.810489-3 8.462842+0 1.011579-2 5.507455+0 1.161449-2 3.558213+0 1.333521-2 2.282571+0 1.548817-2 1.400228+0 1.819701-2 8.207160-1 2.162719-2 4.592433-1 2.570396-2 2.550264-1 3.090295-2 1.351414-1 3.801894-2 6.557949-2 4.841724-2 2.797850-2 9.885531-2 2.216214-3 1.244515-1 9.837347-4 1.500000-1 5.128500-4 1.757924-1 2.969078-4 2.041738-1 1.786366-4 2.344229-1 1.126149-4 2.660725-1 7.432960-5 3.000000-1 5.051200-5 3.349654-1 3.567442-5 3.715352-1 2.589840-5 4.120975-1 1.893181-5 4.570882-1 1.394133-5 5.069907-1 1.034356-5 5.623413-1 7.733913-6 6.165950-1 6.014477-6 6.760830-1 4.710124-6 7.413102-1 3.714344-6 8.609938-1 2.553195-6 9.225714-1 2.163094-6 9.772372-1 1.896342-6 1.035142+0 1.674076-6 1.109175+0 1.451106-6 1.188600+0 1.266900-6 1.318257+0 1.046808-6 1.479108+0 8.532687-7 1.698244+0 6.709823-7 1.905461+0 5.528668-7 2.137962+0 4.591045-7 2.426610+0 3.769105-7 2.786121+0 3.062648-7 3.198895+0 2.507504-7 3.715352+0 2.034912-7 4.365158+0 1.638120-7 5.188000+0 1.308840-7 6.237348+0 1.038297-7 7.585776+0 8.181741-8 9.440609+0 6.318487-8 1.202264+1 4.787275-8 1.584893+1 3.516531-8 2.065380+1 2.635477-8 2.800000+1 1.902500-8 4.518559+1 1.152477-8 7.585776+1 6.759394-9 1.513561+2 3.349439-9 3.019952+2 1.669327-9 1.202264+3 4.17504-10 1.000000+5 5.01150-12 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 9.820000-6 9.820000-6 1.000000+5 9.820000-6 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.820000-6 0.0 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 9.400000-6 4.145205+7 9.700000-6 4.105632+7 1.000000-5 4.042565+7 1.023293-5 3.979726+7 1.060000-5 3.858058+7 1.096478-5 3.715088+7 1.135011-5 3.548409+7 1.174898-5 3.363228+7 1.216186-5 3.163481+7 1.258925-5 2.953908+7 1.303167-5 2.738878+7 1.350000-5 2.517406+7 1.400000-5 2.291616+7 1.445440-5 2.098276+7 1.500000-5 1.882685+7 1.566751-5 1.644674+7 1.640590-5 1.413959+7 1.717908-5 1.206689+7 1.800000-5 1.020993+7 1.905461-5 8.265459+6 2.018366-5 6.630967+6 2.162719-5 5.056689+6 2.371374-5 3.494677+6 3.311311-5 8.923023+5 3.650000-5 6.026674+5 3.900000-5 4.641019+5 4.150000-5 3.657045+5 4.365158-5 3.032952+5 4.570882-5 2.575112+5 4.731513-5 2.289567+5 4.900000-5 2.043387+5 5.080000-5 1.828818+5 5.248075-5 1.664818+5 5.432503-5 1.517307+5 5.623413-5 1.393299+5 5.821032-5 1.289380+5 6.025596-5 1.202589+5 6.237348-5 1.130363+5 6.456542-5 1.070429+5 6.683439-5 1.020731+5 6.918310-5 9.794654+4 7.161434-5 9.450986+4 7.500000-5 9.076571+4 7.900000-5 8.741451+4 8.413951-5 8.415358+4 1.109175-4 7.315225+4 1.244515-4 6.851628+4 1.380384-4 6.412146+4 1.513561-4 6.005839+4 1.659587-4 5.589884+4 1.850000-4 5.096513+4 2.065380-4 4.607142+4 2.306300-4 4.136834+4 2.540973-4 3.740314+4 2.754229-4 3.419954+4 3.019952-4 3.064711+4 3.311311-4 2.727049+4 3.672823-4 2.372870+4 4.073803-4 2.049477+4 4.570882-4 1.728393+4 5.188000-4 1.421238+4 5.754399-4 1.203622+4 6.309573-4 1.031633+4 7.000000-4 8.604357+3 7.762471-4 7.127198+3 8.609938-4 5.859860+3 9.660509-4 4.680715+3 1.071519-3 3.797763+3 1.188502-3 3.059949+3 1.318257-3 2.449174+3 1.479108-3 1.898115+3 1.659587-3 1.460263+3 1.862087-3 1.115006+3 2.089296-3 8.450641+2 2.344229-3 6.357579+2 2.630268-3 4.748799+2 2.951209-3 3.522422+2 3.311311-3 2.595301+2 3.715352-3 1.899350+2 4.168694-3 1.380515+2 4.731513-3 9.642353+1 5.370318-3 6.684298+1 6.165950-3 4.446658+1 7.079458-3 2.935879+1 8.128305-3 1.923028+1 9.332543-3 1.249520+1 1.071519-2 8.056808+0 1.230269-2 5.156370+0 1.412538-2 3.275120+0 1.640590-2 1.987574+0 1.905461-2 1.197371+0 2.238721-2 6.886682-1 2.660725-2 3.777529-1 3.162278-2 2.056162-1 3.845918-2 1.023271-1 4.786301-2 4.652409-2 6.165950-2 1.850961-2 1.083927-1 2.356255-3 1.333521-1 1.111568-3 1.584893-1 5.985435-4 1.819701-1 3.670895-4 2.065380-1 2.360396-4 2.317395-1 1.590058-4 2.600160-1 1.078876-4 2.884032-1 7.663139-5 3.198895-1 5.483576-5 3.507519-1 4.100208-5 3.845918-1 3.086817-5 4.216965-1 2.341151-5 4.623810-1 1.789379-5 5.011872-1 1.423619-5 5.432503-1 1.139849-5 5.888437-1 9.184924-6 6.382635-1 7.450924-6 6.918310-1 6.084404-6 7.498942-1 5.000955-6 8.317638-1 3.920095-6 9.015711-1 3.266422-6 9.660509-1 2.812109-6 1.035142+0 2.437130-6 1.135011+0 2.027020-6 1.250000+0 1.683100-6 1.380384+0 1.401289-6 1.584893+0 1.096681-6 1.778279+0 9.000515-7 2.000000+0 7.412700-7 2.264644+0 6.085185-7 2.570396+0 5.011301-7 2.951209+0 4.085208-7 3.388442+0 3.354843-7 3.935501+0 2.730363-7 4.623810+0 2.203932-7 5.495409+0 1.765257-7 6.606934+0 1.403610-7 8.128305+0 1.093314-7 1.011579+1 8.463470-8 1.288250+1 6.426487-8 1.678804+1 4.789806-8 2.400000+1 3.253100-8 3.273407+1 2.342487-8 4.954502+1 1.520110-8 8.413951+1 8.823874-9 1.678804+2 4.376671-9 3.349654+2 2.182657-9 1.333521+3 5.46139-10 1.000000+5 7.27240-12 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 9.400000-6 9.400000-6 1.000000+5 9.400000-6 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.400000-6 0.0 1.000000+5 1.000000+5 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.787270-8 1.028750+0 5.787270-7 1.030100+0 9.960400-7 1.031000+0 1.362920-6 1.032000+0 1.864820-6 1.033200+0 2.612300-6 1.034000+0 3.206840-6 1.035300+0 4.352820-6 1.036640+0 5.787270-6 1.038200+0 7.810110-6 1.039700+0 1.014690-5 1.041500+0 1.350030-5 1.043800+0 1.873890-5 1.046400+0 2.607170-5 1.048300+0 3.245990-5 1.051200+0 4.403120-5 1.054080+0 5.787270-5 1.057700+0 7.888420-5 1.061100+0 1.026090-4 1.065100+0 1.358430-4 1.070400+0 1.895150-4 1.076200+0 2.619090-4 1.080600+0 3.270810-4 1.087100+0 4.406860-4 1.093710+0 5.787270-4 1.102600+0 8.023890-4 1.110700+0 1.046460-3 1.120600+0 1.399820-3 1.133300+0 1.946320-3 1.147500+0 2.687260-3 1.158200+0 3.339580-3 1.174100+0 4.463530-3 1.190110+0 5.787270-3 1.205100+0 7.204260-3 1.227500+0 9.642600-3 1.250000+0 1.246000-2 1.265600+0 1.461230-2 1.294900+0 1.905820-2 1.331800+0 2.532710-2 1.362600+0 3.105840-2 1.411700+0 4.101950-2 1.455800+0 5.075140-2 1.500000+0 6.126000-2 1.562500+0 7.747690-2 1.617200+0 9.294740-2 1.712900+0 1.226150-1 1.784700+0 1.467420-1 1.892300+0 1.851160-1 2.000000+0 2.250000-1 2.044000+0 2.414000-1 2.163500+0 2.866010-1 2.372600+0 3.674350-1 2.647100+0 4.744840-1 3.000000+0 6.100000-1 3.437500+0 7.706580-1 4.000000+0 9.643000-1 4.750000+0 1.201900+0 5.000000+0 1.276000+0 6.000000+0 1.549000+0 7.000000+0 1.794000+0 8.000000+0 2.013000+0 9.000000+0 2.213000+0 1.000000+1 2.394000+0 1.100000+1 2.560000+0 1.200000+1 2.711000+0 1.300000+1 2.850000+0 1.400000+1 2.979000+0 1.500000+1 3.100000+0 1.600000+1 3.213000+0 1.800000+1 3.419000+0 2.000000+1 3.605000+0 2.200000+1 3.772000+0 2.400000+1 3.925000+0 2.600000+1 4.064000+0 2.800000+1 4.192000+0 3.000000+1 4.310000+0 4.000000+1 4.791000+0 5.000000+1 5.149000+0 6.000000+1 5.428000+0 8.000000+1 5.841000+0 1.000000+2 6.135000+0 1.500000+2 6.602000+0 2.000000+2 6.881000+0 3.000000+2 7.205000+0 4.000000+2 7.392000+0 5.000000+2 7.515000+0 6.000000+2 7.602000+0 8.000000+2 7.719000+0 1.000000+3 7.795000+0 1.500000+3 7.905000+0 2.000000+3 7.964000+0 3.000000+3 8.029000+0 4.000000+3 8.064000+0 5.000000+3 8.086000+0 6.000000+3 8.101000+0 8.000000+3 8.121000+0 1.000000+4 8.133000+0 1.500000+4 8.151000+0 2.000000+4 8.160000+0 3.000000+4 8.170000+0 4.000000+4 8.175000+0 5.000000+4 8.178000+0 6.000000+4 8.180000+0 8.000000+4 8.183000+0 1.000000+5 8.185000+0 1 34000 7 8 7.896000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.412150-7 2.106600+0 1.111720-6 2.114000+0 1.538200-6 2.119500+0 1.915050-6 2.127900+0 2.597170-6 2.136250+0 3.412150-6 2.147000+0 4.678300-6 2.156900+0 6.076550-6 2.169000+0 8.109530-6 2.184500+0 1.127250-5 2.201800+0 1.559590-5 2.214800+0 1.943120-5 2.234200+0 2.613840-5 2.253680+0 3.412150-5 2.281500+0 4.779320-5 2.307000+0 6.277630-5 2.338200+0 8.440820-5 2.377400+0 1.168950-4 2.410200+0 1.486710-4 2.446800+0 1.891180-4 2.485900+0 2.381100-4 2.532900+0 3.047300-4 2.556430+0 3.412150-4 2.611900+0 4.350850-4 2.660400+0 5.259920-4 2.745300+0 7.040010-4 2.809000+0 8.525810-4 2.904500+0 1.098320-3 3.000000+0 1.371000-3 3.125000+0 1.767920-3 3.234400+0 2.151280-3 3.425800+0 2.897300-3 3.569300+0 3.513600-3 3.784700+0 4.517470-3 4.000000+0 5.597000-3 4.250000+0 6.917240-3 4.625000+0 8.992610-3 5.000000+0 1.115000-2 5.500000+0 1.411000-2 6.000000+0 1.711000-2 6.750000+0 2.157870-2 7.000000+0 2.305000-2 8.000000+0 2.881000-2 9.000000+0 3.433000-2 1.000000+1 3.957000-2 1.100000+1 4.454000-2 1.200000+1 4.922000-2 1.300000+1 5.364000-2 1.400000+1 5.785000-2 1.500000+1 6.184000-2 1.600000+1 6.563000-2 1.800000+1 7.267000-2 2.000000+1 7.907000-2 2.200000+1 8.495000-2 2.400000+1 9.036000-2 2.600000+1 9.535000-2 2.800000+1 1.000000-1 3.000000+1 1.043000-1 4.000000+1 1.223000-1 5.000000+1 1.360000-1 6.000000+1 1.469000-1 8.000000+1 1.633000-1 1.000000+2 1.754000-1 1.500000+2 1.954000-1 2.000000+2 2.079000-1 3.000000+2 2.234000-1 4.000000+2 2.328000-1 5.000000+2 2.391000-1 6.000000+2 2.438000-1 8.000000+2 2.503000-1 1.000000+3 2.546000-1 1.500000+3 2.610000-1 2.000000+3 2.646000-1 3.000000+3 2.685000-1 4.000000+3 2.708000-1 5.000000+3 2.722000-1 6.000000+3 2.732000-1 8.000000+3 2.746000-1 1.000000+4 2.754000-1 1.500000+4 2.765000-1 2.000000+4 2.772000-1 3.000000+4 2.778000-1 4.000000+4 2.782000-1 5.000000+4 2.785000-1 6.000000+4 2.786000-1 8.000000+4 2.788000-1 1.000000+5 2.789000-1 1 34000 7 8 7.896000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 34000 7 9 7.896000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.400000+1 1.000000+5 3.400000+1 5.000000+5 3.398800+1 6.718700+5 3.397860+1 7.890600+5 3.397350+1 9.296900+5 3.396830+1 1.000000+6 3.396600+1 1.500000+6 3.393200+1 1.875000+6 3.389380+1 2.000000+6 3.387900+1 2.500000+6 3.381100+1 3.000000+6 3.373000+1 3.750000+6 3.358090+1 4.000000+6 3.352600+1 4.750000+6 3.333900+1 5.000000+6 3.327200+1 5.500000+6 3.312740+1 6.250000+6 3.288790+1 6.500000+6 3.280270+1 7.000000+6 3.262800+1 7.875000+6 3.229890+1 8.500000+6 3.205000+1 8.625000+6 3.199810+1 9.000000+6 3.184700+1 1.000000+7 3.142400+1 1.109400+7 3.093690+1 1.187500+7 3.057720+1 1.203100+7 3.050570+1 1.250000+7 3.029000+1 1.375000+7 2.970550+1 1.437500+7 2.941540+1 1.500000+7 2.912700+1 1.687500+7 2.827110+1 1.750000+7 2.799300+1 1.937500+7 2.717140+1 2.000000+7 2.690800+1 2.250000+7 2.589340+1 2.375000+7 2.541340+1 2.500000+7 2.495300+1 2.750000+7 2.407330+1 2.875000+7 2.365510+1 3.000000+7 2.324900+1 3.437500+7 2.189930+1 3.812500+7 2.081220+1 4.000000+7 2.028900+1 4.437500+7 1.910210+1 4.812500+7 1.812020+1 5.000000+7 1.764200+1 5.437500+7 1.654960+1 5.812500+7 1.565060+1 6.000000+7 1.521600+1 6.500000+7 1.410380+1 7.000000+7 1.307500+1 7.750000+7 1.169520+1 8.000000+7 1.128100+1 9.000000+7 9.845200+0 1.000000+8 8.730600+0 1.062500+8 8.172570+0 1.125000+8 7.700990+0 1.156300+8 7.492540+0 1.250000+8 6.960800+0 1.359400+8 6.480090+0 1.437500+8 6.200090+0 1.500000+8 6.002500+0 1.718800+8 5.415760+0 1.750000+8 5.337620+0 1.841800+8 5.107230+0 1.947300+8 4.839100+0 2.000000+8 4.702400+0 2.375000+8 3.798070+0 2.500000+8 3.570200+0 2.718800+8 3.248380+0 2.815400+8 3.107740+0 2.875000+8 3.015760+0 2.881300+8 3.005670+0 2.960400+8 2.874740+0 3.000000+8 2.805400+0 3.062500+8 2.691130+0 3.335900+8 2.229250+0 3.418000+8 2.124430+0 3.500000+8 2.040700+0 3.562500+8 1.991360+0 3.617200+8 1.955870+0 4.000000+8 1.779300+0 4.121100+8 1.713980+0 4.231000+8 1.649050+0 4.461700+8 1.510200+0 4.730800+8 1.366320+0 4.910300+8 1.288760+0 5.000000+8 1.256400+0 5.125000+8 1.218640+0 5.234400+8 1.190930+0 5.425800+8 1.151330+0 6.000000+8 1.061800+0 6.250000+8 1.024120+0 6.812500+8 9.413410-1 7.000000+8 9.161000-1 7.625000+8 8.391200-1 8.000000+8 7.930000-1 8.359400+8 7.465730-1 8.660200+8 7.072650-1 8.995100+8 6.642750-1 9.354000+8 6.199150-1 1.000000+9 5.468000-1 1.062500+9 4.850480-1 1.141100+9 4.184510-1 1.206900+9 3.706040-1 1.280200+9 3.244260-1 1.358700+9 2.819490-1 1.429300+9 2.489970-1 1.500000+9 2.201900-1 1.562500+9 1.977620-1 1.671900+9 1.644210-1 1.753900+9 1.436420-1 1.877000+9 1.179360-1 2.000000+9 9.754500-2 2.093800+9 8.480490-2 2.275400+9 6.541070-2 2.445700+9 5.193880-2 2.680200+9 3.850610-2 2.895300+9 2.976600-2 3.158400+9 2.216310-2 3.496000+9 1.561620-2 3.872000+9 1.092540-2 4.516600+9 6.331310-3 5.000000+9 4.403500-3 8.000000+9 8.153000-4 1.00000+10 3.672200-4 1.20500+10 1.900920-4 1.41820+10 1.076660-4 1.71170+10 5.626590-5 2.01490+10 3.225130-5 2.26440+10 2.172560-5 2.74790+10 1.135210-5 3.41360+10 5.527400-6 4.02450+10 3.218450-6 4.77140+10 1.847880-6 5.73000+10 1.022130-6 7.25500+10 4.795930-7 9.08500+10 2.345420-7 1.00000+11 1.731200-7 1.34280+11 6.850350-8 1.77440+11 2.871140-8 2.63330+11 8.471610-9 3.75720+11 2.852640-9 6.61190+11 5.14698-10 1.48990+12 4.54569-11 4.26460+12 2.06088-12 1.00000+14 2.22120-16 5.62340+14 1.45707-18 7.49890+15 7.21845-22 1.00000+17 3.42070-25 1 34000 7 0 7.896000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.80000-12 1.000000+2 3.80000-10 1.000000+3 3.800000-8 1.000000+4 3.800000-6 1.000000+5 3.800000-4 5.000000+5 9.500000-3 6.718700+5 1.715355-2 7.890600+5 2.365940-2 9.296900+5 3.284429-2 1.000000+6 3.800000-2 1.500000+6 8.590000-2 1.875000+6 1.336160-1 2.000000+6 1.517000-1 2.500000+6 2.350000-1 3.000000+6 3.350000-1 3.750000+6 5.138290-1 4.000000+6 5.806000-1 4.750000+6 7.999630-1 5.000000+6 8.790000-1 5.500000+6 1.044520+0 6.250000+6 1.309390+0 6.500000+6 1.401450+0 7.000000+6 1.590400+0 7.875000+6 1.932940+0 8.500000+6 2.184530+0 8.625000+6 2.235170+0 9.000000+6 2.388300+0 1.000000+7 2.799000+0 1.109400+7 3.247790+0 1.187500+7 3.565760+0 1.203100+7 3.628640+0 1.250000+7 3.817500+0 1.375000+7 4.312190+0 1.437500+7 4.554420+0 1.500000+7 4.794000+0 1.687500+7 5.491320+0 1.750000+7 5.717200+0 1.937500+7 6.375520+0 2.000000+7 6.589000+0 2.250000+7 7.411130+0 2.375000+7 7.804350+0 2.500000+7 8.186100+0 2.750000+7 8.914530+0 2.875000+7 9.262120+0 3.000000+7 9.601000+0 3.437500+7 1.071540+1 3.812500+7 1.160560+1 4.000000+7 1.203300+1 4.437500+7 1.299490+1 4.812500+7 1.378360+1 5.000000+7 1.416800+1 5.437500+7 1.503530+1 5.812500+7 1.575020+1 6.000000+7 1.609800+1 6.500000+7 1.698830+1 7.000000+7 1.783500+1 7.750000+7 1.901670+1 8.000000+7 1.939100+1 9.000000+7 2.077800+1 1.000000+8 2.200300+1 1.062500+8 2.268870+1 1.125000+8 2.332190+1 1.156300+8 2.361860+1 1.250000+8 2.443400+1 1.359400+8 2.526100+1 1.437500+8 2.578570+1 1.500000+8 2.617100+1 1.718800+8 2.732930+1 1.750000+8 2.747400+1 1.841800+8 2.787840+1 1.947300+8 2.830460+1 2.000000+8 2.850400+1 2.375000+8 2.970030+1 2.500000+8 3.002800+1 2.718800+8 3.052110+1 2.815400+8 3.070920+1 2.875000+8 3.082030+1 2.881300+8 3.083120+1 2.960400+8 3.096710+1 3.000000+8 3.103400+1 3.062500+8 3.112900+1 3.335900+8 3.150310+1 3.418000+8 3.159940+1 3.500000+8 3.169100+1 3.562500+8 3.175350+1 3.617200+8 3.180740+1 4.000000+8 3.213700+1 4.121100+8 3.222270+1 4.231000+8 3.229850+1 4.461700+8 3.243840+1 4.730800+8 3.258660+1 4.910300+8 3.267560+1 5.000000+8 3.271900+1 5.125000+8 3.277360+1 5.234400+8 3.282050+1 5.425800+8 3.290020+1 6.000000+8 3.310900+1 6.250000+8 3.318480+1 6.812500+8 3.334390+1 7.000000+8 3.339000+1 7.625000+8 3.352090+1 8.000000+8 3.358900+1 8.359400+8 3.364320+1 8.660200+8 3.368340+1 8.995100+8 3.372300+1 9.354000+8 3.376170+1 1.000000+9 3.381800+1 1.062500+9 3.385610+1 1.141100+9 3.389650+1 1.206900+9 3.391970+1 1.280200+9 3.394070+1 1.358700+9 3.395550+1 1.429300+9 3.396730+1 1.500000+9 3.397500+1 1.562500+9 3.397830+1 1.671900+9 3.398370+1 1.753900+9 3.398750+1 1.877000+9 3.399290+1 2.000000+9 3.399500+1 2.093800+9 3.399530+1 2.275400+9 3.399570+1 2.445700+9 3.399610+1 2.680200+9 3.399660+1 2.895300+9 3.399700+1 3.158400+9 3.399750+1 3.496000+9 3.399800+1 3.872000+9 3.399860+1 4.516600+9 3.399940+1 5.000000+9 3.400000+1 8.000000+9 3.400000+1 1.00000+10 3.400000+1 1.20500+10 3.400000+1 1.41820+10 3.400000+1 1.71170+10 3.400000+1 2.01490+10 3.400000+1 2.26440+10 3.400000+1 2.74790+10 3.400000+1 3.41360+10 3.400000+1 4.02450+10 3.400000+1 4.77140+10 3.400000+1 5.73000+10 3.400000+1 7.25500+10 3.400000+1 9.08500+10 3.400000+1 1.00000+11 3.400000+1 1.34280+11 3.400000+1 1.77440+11 3.400000+1 2.63330+11 3.400000+1 3.75720+11 3.400000+1 6.61190+11 3.400000+1 1.48990+12 3.400000+1 4.26460+12 3.400000+1 1.00000+14 3.400000+1 5.62340+14 3.400000+1 7.49890+15 3.400000+1 1.00000+17 3.400000+1 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.057378-6 0.0 5.978097-6 0.0 6.000168-6 8.066939-1 6.007525-6 1.072181+0 6.022240-6 1.958426+0 6.036954-6 3.302176+0 6.053508-6 5.419860+0 6.079028-6 9.455346+0 6.097651-6 1.218733+1 6.111876-6 1.360796+1 6.127211-6 1.407157+1 6.142025-6 1.340730+1 6.157690-6 1.166339+1 6.182513-6 7.788166+0 6.198812-6 5.264781+0 6.214446-6 3.313117+0 6.228240-6 2.025417+0 6.242955-6 1.114199+0 6.264106-6 3.185913-1 6.272383-6 0.0 6.402842-6 0.0 6.430422-6 4.269084-1 6.434362-6 4.872730-1 6.450122-6 8.900439-1 6.465881-6 1.500736+0 6.483611-6 2.463158+0 6.511221-6 4.316448+0 6.529905-6 5.494491+0 6.546127-6 6.184397+0 6.562206-6 6.400270+0 6.577980-6 6.112203+0 6.595195-6 5.300648+0 6.621782-6 3.539480+0 6.639239-6 2.392680+0 6.655984-6 1.505709+0 6.670758-6 9.204893-1 6.686518-6 5.063688-1 6.709173-6 1.447899-1 6.718038-6 0.0 6.999682-6 0.0 7.022071-6 1.026375-6 7.034139-6 2.087758-6 7.051368-6 4.113538-6 7.056639-6 4.936210-6 7.068597-6 7.141206-6 7.073922-6 8.345912-6 7.085826-6 1.147136-5 7.091206-6 1.306965-5 7.108490-6 1.895721-5 7.143058-6 3.169299-5 7.160342-6 3.652802-5 7.177626-6 3.899236-5 7.194910-6 3.854769-5 7.212194-6 3.528997-5 7.229478-6 2.991586-5 7.264046-6 1.706167-5 7.275343-6 1.324730-5 7.281330-6 1.147613-5 7.292572-6 8.504804-6 7.298614-6 7.144584-6 7.309801-6 5.063260-6 7.315898-6 4.116339-6 7.333181-6 2.055963-6 7.344258-6 1.042638-6 7.367749-6 0.0 7.424427-6 0.0 7.446826-6 1.16991-14 7.465155-6 6.984656-7 7.483485-6 1.382071-6 7.501814-6 2.524465-6 7.520144-6 4.256595-6 7.538473-6 6.625356-6 7.593461-6 1.545870-5 7.611791-6 1.747171-5 7.630120-6 1.822853-5 7.650620-6 1.732571-5 7.651176-6 2.670519-3 7.688841-6 1.777275+0 7.707673-6 3.244987+0 7.726506-6 5.469396+0 7.747302-6 8.916011+0 7.804354-6 2.046868+1 7.822396-6 2.308141+1 7.842548-6 2.416280+1 7.860651-6 2.347785+1 7.885692-6 2.022566+1 7.926054-6 1.270575+1 7.933662-6 1.123132+1 7.954848-6 7.800881+0 7.971327-6 5.624339+0 7.990159-6 3.767069+0 8.027824-6 1.095603+0 8.036731-6 9.127364-1 8.053418-6 6.164869-1 8.072490-6 3.673821-1 8.075365-6 3.425129-1 8.093069-6 5.637031-1 8.115687-6 9.164155-1 8.129704-6 1.319552+0 8.135565-6 1.530099+0 8.156685-6 2.659364+0 8.175321-6 3.993065+0 8.236197-6 9.480303+0 8.256657-6 1.074411+1 8.277927-6 1.123521+1 8.297144-6 1.090868+1 8.346759-6 8.244633+0 8.368461-6 7.028417+0 8.377338-6 6.681228+0 8.395843-6 6.356799+0 8.416941-6 6.734647+0 8.442293-6 8.043134+0 8.499750-6 1.160349+1 8.521002-6 1.198597+1 8.540030-6 1.157753+1 8.561546-6 1.025964+1 8.622205-6 4.728929+0 8.640459-6 3.472603+0 8.660921-6 2.453560+0 8.681383-6 1.939586+0 8.688112-6 1.900320+0 8.708725-6 1.939846+0 8.722400-6 2.107611+0 8.731977-6 2.474740+0 8.740254-6 2.868357+0 8.809475-6 6.898754+0 8.846706-6 8.601418+0 8.874683-6 9.490485+0 8.925464-6 1.045832+1 8.960139-6 1.058737+1 8.989982-6 1.018976+1 9.039743-6 8.577015+0 9.057988-6 7.872883+0 9.094991-6 6.918249+0 9.128993-6 6.600423+0 9.170509-6 6.863998+0 9.239159-6 8.222583+0 9.268674-6 8.576132+0 9.307239-6 8.484151+0 9.365450-6 8.022699+0 9.418386-6 7.935000+0 9.589457-6 8.378336+0 9.947008-6 8.612118+0 1.090530-5 8.837024+0 1.095730-5 9.956369+0 1.098749-5 1.108916+1 1.101433-5 1.260020+1 1.104704-5 1.515973+1 1.112000-5 2.180967+1 1.115067-5 2.351267+1 1.117841-5 2.387696+1 1.120657-5 2.297472+1 1.124103-5 2.047016+1 1.131472-5 1.377776+1 1.132920-5 1.272537+1 1.136454-5 1.231122+1 1.138543-5 1.248712+1 1.141202-5 1.375466+1 1.144289-5 1.655881+1 1.147565-5 2.164909+1 1.155230-5 3.568969+1 1.158452-5 3.931738+1 1.161171-5 4.018996+1 1.164081-5 3.850332+1 1.166798-5 3.492420+1 1.174662-5 2.041392+1 1.177799-5 1.583048+1 1.180238-5 1.312348+1 1.183375-5 1.091220+1 1.188603-5 8.542814+0 1.350812-5 7.506376+0 1.640699-5 5.191938+0 1.835043-5 3.927266+0 1.860444-5 3.924279+0 1.880210-5 3.970470+0 1.914010-5 3.535664+0 1.961278-5 3.287527+0 2.002093-5 3.136121+0 2.141812-5 2.557316+0 2.286136-5 2.099178+0 2.446000-5 1.708414+0 2.600134-5 1.418546+0 2.786357-5 1.154029+0 2.980255-5 9.498474-1 3.195924-5 7.824431-1 3.444909-5 6.446573-1 3.700156-5 5.452431-1 4.013413-5 4.622543-1 4.359665-5 4.031214-1 4.773487-5 3.607430-1 5.322337-5 3.321611-1 5.348538-5 7.515507-1 5.361638-5 1.098505+0 5.374747-5 1.625290+0 5.389630-5 2.604816+0 5.404760-5 3.800507+0 5.430556-5 6.064132+0 5.444209-5 7.068658+0 5.456965-5 7.712779+0 5.467559-5 8.004957+0 5.482109-5 7.909132+0 5.500201-5 7.180984+0 5.519705-5 5.933049+0 5.556650-5 3.275557+0 5.582564-5 1.739303+0 5.584343-5 1.638999+0 5.599645-5 1.142693+0 5.612874-5 8.355191-1 5.630563-5 5.546277-1 5.639333-5 4.298419-1 5.650564-5 3.904009-1 5.657230-5 3.709518-1 5.683898-5 3.232789-1 6.024544-5 3.194076-1 6.054201-5 3.730660-1 6.069029-5 4.174483-1 6.083858-5 4.847616-1 6.098687-5 5.768166-1 6.124799-5 7.885810-1 6.143173-5 9.570744-1 6.158271-5 1.070752+0 6.174495-5 1.154654+0 6.189617-5 1.204293+0 6.261667-5 1.271952+0 6.289115-5 1.260568+0 6.351730-5 1.132268+0 6.403646-5 1.117474+0 6.920000-5 1.261869+0 7.161434-5 1.395232+0 7.444827-5 1.646594+0 7.744538-5 2.043980+0 8.087013-5 2.668055+0 8.586535-5 3.838136+0 9.772372-5 6.817657+0 1.087903-4 9.079649+0 1.244515-4 1.170631+1 1.380384-4 1.347267+1 1.587050-4 1.516238+1 1.618166-4 1.564453+1 1.689997-4 1.639099+1 1.986624-4 1.700779+1 2.127119-4 1.717501+1 2.163500-4 1.848737+1 2.186473-4 1.781489+1 2.206923-4 1.715043+1 2.291835-4 1.745767+1 3.019952-4 1.550625+1 4.174697-4 1.198880+1 5.324146-4 9.368527+0 6.358368-4 7.667882+0 7.513394-4 6.266212+0 8.912510-4 5.046087+0 1.041118-3 4.108542+0 1.216420-3 3.321664+0 1.400132-3 2.729009+0 1.410583-3 2.781464+0 1.416609-3 2.967053+0 1.420898-3 3.260755+0 1.425543-3 3.805159+0 1.429931-3 4.569590+0 1.435783-3 5.906110+0 1.446932-3 8.627522+0 1.455045-3 9.995281+0 1.477056-3 1.224792+1 1.494156-3 1.425309+1 1.507481-3 1.488773+1 1.570632-3 1.442488+1 1.612283-3 1.417304+1 1.646873-3 1.513298+1 2.018530-3 1.146385+1 2.322132-3 9.321830+0 2.680121-3 7.472612+0 3.099203-3 5.939052+0 3.560762-3 4.740831+0 4.047821-3 3.835523+0 4.607205-3 3.086396+0 5.277345-3 2.448396+0 6.022209-3 1.949609+0 6.693794-3 1.621556+0 7.507969-3 1.324543+0 8.303751-3 1.107753+0 9.309488-3 9.026652-1 1.050102-2 7.266465-1 1.187472-2 5.812197-1 1.231092-2 5.497944-1 1.236961-2 5.792196-1 1.240912-2 6.360511-1 1.243676-2 7.089667-1 1.246809-2 8.393612-1 1.249765-2 1.018755+0 1.253350-2 1.315151+0 1.257931-2 1.802932+0 1.265789-2 2.703113+0 1.270692-2 3.144955+0 1.276906-2 3.478930+0 1.286141-2 3.625862+0 1.523910-2 2.798697+0 1.732145-2 2.263095+0 1.951567-2 1.853313+0 2.200020-2 1.506030+0 2.490050-2 1.213486+0 2.770628-2 1.002184+0 3.094375-2 8.214302-1 3.394114-2 6.926475-1 3.784122-2 5.667217-1 4.205699-2 4.643225-1 4.675806-2 3.801379-1 5.169543-2 3.134084-1 5.710481-2 2.587416-1 6.275614-2 2.151562-1 7.013261-2 1.730869-1 7.846708-2 1.385403-1 8.748141-2 1.116154-1 9.725146-2 9.036398-2 1.070795-1 7.450807-2 1.179709-1 6.136091-2 1.290606-1 5.122360-2 1.417750-1 4.242735-2 1.572823-1 3.445868-2 1.742614-1 2.805721-2 1.911717-1 2.336369-2 2.115754-1 1.913385-2 2.307412-1 1.613626-2 2.567176-1 1.313551-2 2.843479-1 1.082103-2 3.149816-1 8.943677-3 3.477958-1 7.466684-3 3.857350-1 6.217913-3 4.315191-1 5.132941-3 4.841724-1 4.252510-3 5.343817-1 3.643236-3 5.948056-1 3.105434-3 6.763263-1 2.593564-3 7.788522-1 2.163128-3 9.120108-1 1.799400-3 1.070165+0 1.517844-3 1.286622+0 1.248990-3 1.546860+0 1.027758-3 1.859734+0 8.457119-4 2.235892+0 6.959118-4 2.688134+0 5.726456-4 3.231848+0 4.712135-4 3.885536+0 3.877479-4 4.671441+0 3.190665-4 5.616308+0 2.625506-4 6.752287+0 2.160453-4 8.118035+0 1.777774-4 9.760024+0 1.462879-4 1.000000+1 2.939478-4 1 34000 7 0 7.896000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.399377+1 3.057378-6-3.391208+1 5.411539-6-3.296176+1 5.833939-6-3.145433+1 5.949653-6-2.970885+1 6.007525-6-2.690940+1 6.042012-6-2.497294+1 6.066383-6-2.478912+1 6.087535-6-2.632309+1 6.111876-6-3.030604+1 6.135482-6-3.511512+1 6.163628-6-3.040115+1 6.184097-6-2.890460+1 6.211687-6-2.921061+1 6.300331-6-3.416576+1 6.342818-6-3.510168+1 6.489644-6-3.125199+1 6.528089-6-3.228296+1 6.567283-6-3.536411+1 6.611413-6-3.264547+1 6.655984-6-3.273496+1 6.775762-6-3.550093+1 7.424427-6-3.142598+1 7.570621-6-2.910140+1 7.639089-6-2.654975+1 7.732979-6-1.936014+1 7.754205-6-1.860592+1 7.773584-6-1.934308+1 7.796398-6-2.178399+1 7.816873-6-2.578200+1 7.858469-6-3.632289+1 7.887586-6-3.026780+1 7.913053-6-2.733588+1 7.933662-6-2.663772+1 7.963088-6-2.759679+1 8.028996-6-3.261791+1 8.079764-6-3.684039+1 8.163091-6-3.147558+1 8.200698-6-3.054503+1 8.236197-6-3.170517+1 8.301390-6-3.722331+1 8.351743-6-3.585281+1 8.395843-6-3.719649+1 8.445672-6-3.551557+1 8.489573-6-3.677034+1 8.502574-6-3.741353+1 8.565172-6-3.209168+1 8.606304-6-3.129905+1 8.656445-6-3.370062+1 8.721760-6-3.806600+1 8.767401-6-3.599972+1 8.817657-6-3.605218+1 8.903747-6-3.893048+1 9.011596-6-3.507643+1 9.057988-6-3.472361+1 9.212035-6-3.742072+1 9.354609-6-3.618965+1 1.045235-5-3.638749+1 1.058482-5-3.680345+1 1.084140-5-3.292764+1 1.092220-5-3.014266+1 1.103781-5-2.554937+1 1.107828-5-2.550080+1 1.111691-5-2.734562+1 1.117172-5-3.260031+1 1.119584-5-3.486159+1 1.124103-5-3.121861+1 1.127935-5-3.048823+1 1.131472-5-3.188179+1 1.133507-5-3.379006+1 1.136454-5-3.270725+1 1.145349-5-2.391238+1 1.148066-5-2.269340+1 1.150754-5-2.311294+1 1.153052-5-2.501521+1 1.155230-5-2.811033+1 1.158012-5-3.362783+1 1.158265-5-3.382947+1 1.161016-5-2.715819+1 1.164635-5-1.868998+1 1.166798-5-1.452875+1 1.168442-5-1.219874+1 1.170043-5-1.045667+1 1.171187-5-9.659153+0 1.173093-5-9.038303+0 1.174270-5-8.996622+0 1.177101-5-9.918583+0 1.180238-5-1.194088+1 1.183985-5-1.462049+1 1.188603-5-1.752283+1 1.191245-5-1.915527+1 1.197538-5-2.122892+1 1.208669-5-2.316272+1 1.233602-5-2.503535+1 1.283896-5-2.614197+1 1.515906-5-2.594571+1 1.890448-5-2.558363+1 5.040138-5-2.997109+1 5.286462-5-3.143391+1 5.335438-5-3.067319+1 5.403040-5-2.887652+1 5.430556-5-2.972876+1 5.454927-5-3.176241+1 5.503597-5-2.701197+1 5.535090-5-2.547335+1 5.577228-5-2.552342+1 5.663897-5-2.781189+1 5.831316-5-2.922788+1 6.174495-5-3.064529+1 6.521738-5-3.060885+1 8.850000-5-3.404444+1 1.087903-4-3.341181+1 1.579033-4-2.834892+1 1.924782-4-2.351510+1 2.110991-4-2.196685+1 2.149958-4-2.197851+1 2.186473-4-2.002452+1 2.233559-4-2.036041+1 2.502130-4-1.756663+1 2.900681-4-1.469921+1 3.330428-4-1.253763+1 3.769207-4-1.100207+1 4.412974-4-9.567361+0 5.020825-4-8.738317+0 5.991009-4-8.057794+0 7.103953-4-7.809038+0 8.423038-4-7.944219+0 9.873348-4-8.482785+0 1.142301-3-9.576196+0 1.243954-3-1.081334+1 1.314468-3-1.221935+1 1.360037-3-1.368585+1 1.392755-3-1.545304+1 1.410583-3-1.720591+1 1.433415-3-2.085642+1 1.442360-3-2.126014+1 1.471750-3-1.925319+1 1.486225-3-1.839098+1 1.514207-3-1.497724+1 1.536633-3-1.318624+1 1.570632-3-1.152606+1 1.605179-3-1.056486+1 1.643063-3-1.025565+1 1.682822-3-8.308680+0 1.720744-3-7.134469+0 1.774384-3-5.952060+0 1.837649-3-4.909079+0 1.922676-3-3.866524+0 2.018530-3-2.999700+0 2.119771-3-2.309583+0 2.207839-3-1.840604+0 2.322132-3-1.362051+0 2.405964-3-1.087271+0 2.510306-3-8.072543-1 2.594270-3-6.342210-1 2.701045-3-4.522562-1 2.788628-3-3.366205-1 2.884032-3-2.307576-1 2.952312-3-1.683105-1 3.028929-3-1.075492-1 3.099203-3-6.058793-2 3.110653-3-5.397244-2 3.178246-3-2.072757-2 3.194888-3-1.339387-2 3.223605-3-1.665974-3 3.237829-3 4.201173-3 3.261871-3 1.360397-2 3.300443-3 2.732668-2 3.335224-3 3.858113-2 3.414638-3 5.853506-2 3.483438-3 7.148137-2 3.560762-3 8.303037-2 3.669687-3 9.194509-2 3.834864-3 9.474313-2 3.933731-3 9.190977-2 4.047821-3 8.408296-2 4.178234-3 6.862272-2 4.399846-3 3.504117-2 4.511016-3 1.590115-2 4.538110-3 1.138510-2 4.589760-3 2.003667-3 4.607205-3-1.118583-3 4.665600-3-1.204873-2 4.769112-3-3.358997-2 5.150804-3-1.142324-1 8.640151-3-9.236288-1 9.670777-3-1.201791+0 1.050102-2-1.487582+0 1.109728-2-1.769633+0 1.154496-2-2.070998+0 1.187472-2-2.398102+0 1.207629-2-2.692351+0 1.225305-2-3.084328+0 1.236961-2-3.523816+0 1.249765-2-4.334450+0 1.257931-2-4.775304+0 1.263749-2-4.801664+0 1.270692-2-4.478091+0 1.286141-2-3.384384+0 1.294554-2-2.978360+0 1.308111-2-2.548506+0 1.325031-2-2.177808+0 1.350833-2-1.780245+0 1.382430-2-1.434006+0 1.418725-2-1.143507+0 1.462518-2-8.811314-1 1.512933-2-6.510763-1 1.557597-2-4.894782-1 1.606106-2-3.521345-1 1.643568-2-2.648108-1 1.687682-2-1.772214-1 1.709455-2-1.391739-1 1.732145-2-1.033606-1 1.773317-2-4.603705-2 1.812650-2 7.252359-4 1.815892-2 4.599849-3 1.855550-2 4.477269-2 1.900935-2 8.540678-2 1.951567-2 1.250936-1 2.005300-2 1.602924-1 2.056613-2 1.871597-1 2.145599-2 2.229144-1 2.259937-2 2.549878-1 2.391756-2 2.777653-1 2.558293-2 2.938771-1 2.770628-2 2.969222-1 3.213223-2 2.781709-1 4.675806-2 1.700894-1 5.537055-2 1.184316-1 6.275614-2 8.351712-2 6.821926-2 6.185501-2 7.408583-2 4.232752-2 7.846708-2 2.943850-2 8.177545-2 2.065811-2 8.522850-2 1.225542-2 8.748141-2 7.202566-3 8.975557-2 2.365860-3 9.100073-2-2.074489-4 9.138957-2-1.005216-3 9.338968-2-4.896262-3 9.725146-2-1.192895-2 1.017660-1-1.938761-2 1.098795-1-3.106778-2 1.179709-1-4.091951-2 1.290606-1-5.208139-2 1.466697-1-6.571591-2 1.678237-1-7.758920-2 1.973160-1-8.902918-2 2.476567-1-1.008770-1 3.261651-1-1.105152-1 4.841724-1-1.183499-1 9.120108-1-1.234112-1 2.814822+0-1.251842-1 8.500626+0-1.253692-1 1.000000+1-1.253429-1 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.868627-6 1.024000-6 6.660301-6 1.069640-6 8.188431-6 1.136492-6 9.887005-6 1.200000-6 1.095976-5 1.207523-6 1.128359-5 1.245258-6 1.333325-5 1.284172-6 1.529595-5 1.324303-6 1.702455-5 1.350000-6 1.808361-5 1.365687-6 1.897141-5 1.408365-6 2.144769-5 1.452376-6 2.353489-5 1.500000-6 2.530413-5 1.518750-6 2.635692-5 1.544568-6 2.851092-5 1.592836-6 3.248094-5 1.642612-6 3.580635-5 1.687500-6 3.819773-5 1.693943-6 3.860660-5 1.708594-6 3.974896-5 1.746879-6 4.395191-5 1.801469-6 4.955058-5 1.857765-6 5.396269-5 1.898438-6 5.643579-5 1.915820-6 5.793122-5 1.922168-6 5.861347-5 1.975690-6 6.604881-5 2.037430-6 7.358809-5 2.048000-6 7.470709-5 2.101100-6 7.987208-5 2.135742-6 8.269636-5 2.162439-6 8.609196-5 2.234470-6 9.978613-5 2.304297-6 1.106489-4 2.376307-6 1.177749-4 2.402710-6 1.197718-4 2.432744-6 1.238052-4 2.527146-6 1.443049-4 2.606120-6 1.560857-4 2.687561-6 1.611708-4 2.703049-6 1.616704-4 2.736837-6 1.640618-4 2.771547-6 1.690568-4 2.858158-6 1.785159-4 2.871989-6 1.794363-4 2.907889-6 1.825061-4 2.947476-6 1.877557-4 3.039584-6 1.941903-4 3.089632-6 1.958668-4 3.134571-6 1.998553-4 3.232527-6 2.006819-4 3.282734-6 1.989220-4 3.333543-6 2.000209-4 3.437716-6 1.920424-4 3.487905-6 1.857424-4 3.545145-6 1.818167-4 3.655931-6 1.619001-4 3.705899-6 1.505105-4 3.770179-6 1.396259-4 3.884796-6 1.081893-4 3.937518-6 9.220802-5 3.995832-6 7.818885-5 4.096000-6 4.970035-5 4.103398-6 4.749407-5 4.131963-6 3.925028-5 4.183613-6 2.687817-5 4.207603-6 2.243051-5 4.308551-6 7.387227-6 4.390211-6 2.285920-6 4.406344-6 2.686774-6 4.445089-6 6.099493-6 4.501082-6 1.765310-5 4.592859-6 5.960272-5 4.664599-6 1.219084-4 4.681768-6 1.410901-4 4.722907-6 1.934013-4 4.767898-6 2.616060-4 4.851337-6 4.366039-4 4.932169-6 6.945059-4 4.956136-6 7.914114-4 5.018088-6 1.096246-3 5.162191-6 2.078729-3 5.174903-6 2.191404-3 5.265895-6 3.154854-3 5.336619-6 4.131581-3 5.437771-6 5.954735-3 5.500750-6 7.418523-3 5.679979-6 1.351000-2 5.813784-6 2.070916-2 5.989426-6 3.572530-2 6.164832-6 6.086557-2 6.244402-6 7.750565-2 6.318998-6 9.746216-2 6.388932-6 1.210048-1 6.454496-6 1.483955-1 6.515961-6 1.802467-1 6.573585-6 2.170321-1 6.627608-6 2.590231-1 6.678254-6 3.065922-1 6.725734-6 3.603254-1 6.770247-6 4.208700-1 6.811978-6 4.887455-1 6.851101-6 5.643332-1 6.887779-6 6.480242-1 6.922164-6 7.403482-1 6.954401-6 8.419673-1 6.984622-6 9.535845-1 7.012955-6 1.075869+0 7.039517-6 1.209431+0 7.064418-6 1.354845+0 7.087764-6 1.512684+0 7.115972-6 1.737678+0 7.130168-6 1.868087+0 7.149404-6 2.066974+0 7.167438-6 2.280951+0 7.201251-6 2.775295+0 7.230838-6 3.347326+0 7.256726-6 4.010111+0 7.279379-6 4.779851+0 7.299199-6 5.672242+0 7.316543-6 6.696819+0 7.331718-6 7.852270+0 7.344996-6 9.124956+0 7.356615-6 1.049080+1 7.366781-6 1.191918+1 7.375676-6 1.337726+1 7.390270-6 1.626083+1 7.435116-6 3.004321+1 7.449816-6 3.648515+1 7.456252-6 3.962285+1 7.465406-6 4.440867+1 7.474560-6 4.955271+1 7.492867-6 6.075086+1 7.495156-6 6.221827+1 7.511175-6 7.272792+1 7.517468-6 7.689768+1 7.529482-6 8.473988+1 7.535775-6 8.870929+1 7.541783-6 9.235836+1 7.547790-6 9.583203+1 7.555799-6 1.001246+2 7.563523-6 1.038209+2 7.570674-6 1.067886+2 7.576681-6 1.089017+2 7.584405-6 1.110593+2 7.594131-6 1.128073+2 7.602712-6 1.133964+2 7.606471-6 1.133641+2 7.615564-6 1.125469+2 7.623472-6 1.109930+2 7.628658-6 1.095592+2 7.636664-6 1.067298+2 7.643808-6 1.036131+2 7.645537-6 1.027807+2 7.658207-6 9.584616+1 7.666395-6 9.069620+1 7.672362-6 8.668239+1 7.680234-6 8.113032+1 7.686366-6 7.665854+1 7.694250-6 7.080019+1 7.702260-6 6.481180+1 7.710627-6 5.861423+1 7.712558-6 5.720239+1 7.721712-6 5.065115+1 7.729721-6 4.516712+1 7.732010-6 4.365141+1 7.740591-6 3.819695+1 7.748100-6 3.374809+1 7.749173-6 3.313873+1 7.767480-6 2.380109+1 7.774525-6 2.075205+1 7.780156-6 1.852945+1 7.785788-6 1.649334+1 7.793798-6 1.390685+1 7.803734-6 1.117303+1 7.813905-6 8.870646+0 7.842619-6 4.568343+0 7.851929-6 3.709168+0 7.856367-6 3.369203+0 7.860667-6 3.077400+0 7.868867-6 2.610874+0 7.876562-6 2.264498+0 7.888007-6 1.879851+0 7.889246-6 1.846079+0 7.899478-6 1.615284+0 7.905382-6 1.516256+0 7.949666-6 1.362760+0 7.955201-6 1.413541+0 7.964888-6 1.546796+0 7.972153-6 1.687903+0 7.977602-6 1.819406+0 7.981689-6 1.933588+0 7.984754-6 2.028449+0 7.991650-6 2.272438+0 7.997485-6 2.513823+0 8.007572-6 3.012415+0 8.028440-6 4.398605+0 8.033301-6 4.793505+0 8.052977-6 6.666935+0 8.055437-6 6.930679+0 8.072653-6 8.934948+0 8.079417-6 9.785203+0 8.092330-6 1.147047+1 8.099093-6 1.236877+1 8.107163-6 1.343643+1 8.114465-6 1.438364+1 8.121997-6 1.532599+1 8.129261-6 1.618598+1 8.136601-6 1.699130+1 8.143057-6 1.763500+1 8.150320-6 1.827458+1 8.152588-6 1.845402+1 8.161811-6 1.907519+1 8.169737-6 1.945880+1 8.175074-6 1.963369+1 8.184846-6 1.977287+1 8.192000-6 1.972390+1 8.199720-6 1.952898+1 8.207295-6 1.919867+1 8.215202-6 1.871512+1 8.217059-6 1.858215+1 8.230677-6 1.740577+1 8.236057-6 1.685515+1 8.242042-6 1.619574+1 8.249738-6 1.528884+1 8.254350-6 1.472065+1 8.260941-6 1.388598+1 8.269414-6 1.279077+1 8.278023-6 1.167537+1 8.287015-6 1.053193+1 8.298928-6 9.089636+0 8.309996-6 7.857824+0 8.328443-6 6.099269+0 8.349348-6 4.596690+0 8.355689-6 4.241799+0 8.361742-6 3.943632+0 8.367795-6 3.682621+0 8.372714-6 3.495953+0 8.376403-6 3.369886+0 8.383969-6 3.145470+0 8.390174-6 2.992058+0 8.396822-6 2.854070+0 8.402239-6 2.758969+0 8.409075-6 2.657534+0 8.417036-6 2.560383+0 8.424030-6 2.489149+0 8.438870-6 2.365257+0 8.464879-6 2.174444+0 8.476442-6 2.082880+0 8.492967-6 1.937160+0 8.503590-6 1.834379+0 8.514213-6 1.725846+0 8.525920-6 1.601687+0 8.537627-6 1.475275+0 8.556127-6 1.276991+0 8.577083-6 1.063514+0 8.598040-6 8.694030-1 8.621684-6 6.783454-1 8.642699-6 5.343478-1 8.684727-6 3.160124-1 8.705741-6 2.395910-1 8.726756-6 1.841594-1 8.747770-6 1.497430-1 8.768784-6 1.369518-1 8.773301-6 1.371322-1 8.789799-6 1.470154-1 8.831827-6 2.441163-1 8.873856-6 4.664954-1 8.894870-6 6.373918-1 8.915884-6 8.580123-1 8.933347-6 1.086488+0 8.957913-6 1.493162+0 8.985989-6 2.115492+0 9.046529-6 4.397993+0 9.070218-6 5.891273+0 9.093632-6 7.936375+0 9.116015-6 1.065767+1 9.127206-6 1.239435+1 9.149589-6 1.685909+1 9.194354-6 3.146562+1 9.215274-6 4.190554+1 9.228043-6 4.970382+1 9.244459-6 6.150282+1 9.255714-6 7.081713+1 9.274022-6 8.817668+1 9.281650-6 9.621408+1 9.290605-6 1.062345+2 9.312722-6 1.334452+2 9.315646-6 1.372726+2 9.336116-6 1.651451+2 9.344479-6 1.768837+2 9.360446-6 1.993328+2 9.370483-6 2.131545+2 9.381651-6 2.279290+2 9.388831-6 2.369381+2 9.396010-6 2.454557+2 9.400181-6 2.501415+2 9.407479-6 2.578153+2 9.417058-6 2.667382+2 9.428219-6 2.752548+2 9.432172-6 2.777373+2 9.444413-6 2.835059+2 9.453812-6 2.858538+2 9.465246-6 2.861588+2 9.475178-6 2.841149+2 9.482160-6 2.814024+2 9.490463-6 2.768395+2 9.499607-6 2.702047+2 9.510271-6 2.604849+2 9.520960-6 2.488218+2 9.530345-6 2.372164+2 9.541288-6 2.223663+2 9.547994-6 2.127108+2 9.557002-6 1.992535+2 9.563899-6 1.886894+2 9.573755-6 1.733945+2 9.584052-6 1.574160+2 9.586428-6 1.537567+2 9.597806-6 1.365224+2 9.607762-6 1.220029+2 9.612028-6 1.159868+2 9.621984-6 1.025158+2 9.631939-6 8.993264+1 9.638695-6 8.194558+1 9.646695-6 7.309395+1 9.656712-6 6.296398+1 9.660241-6 5.964953+1 9.670830-6 5.049859+1 9.682280-6 4.191085+1 9.700720-6 3.076884+1 9.716633-6 2.355974+1 9.726384-6 2.011707+1 9.734603-6 1.773325+1 9.739534-6 1.651439+1 9.757152-6 1.333878+1 9.762436-6 1.271805+1 9.766198-6 1.236323+1 9.787641-6 1.164937+1 9.792039-6 1.176832+1 9.796256-6 1.196573+1 9.800474-6 1.224474+1 9.802742-6 1.242864+1 9.805547-6 1.268897+1 9.810456-6 1.323268+1 9.817820-6 1.426148+1 9.825183-6 1.555202+1 9.837245-6 1.825290+1 9.846292-6 2.077798+1 9.873432-6 3.110888+1 9.897556-6 4.397958+1 9.908939-6 5.127799+1 9.921680-6 6.034097+1 9.926045-6 6.365235+1 9.933685-6 6.968295+1 9.939415-6 7.438985+1 9.956605-6 8.931501+1 9.965910-6 9.778384+1 9.970351-6 1.018908+2 9.977013-6 1.081018+2 9.987987-6 1.183779+2 9.995534-6 1.253999+2 1.000544-5 1.344470+2 1.001499-5 1.428677+2 1.001818-5 1.455859+2 1.003024-5 1.553684+2 1.004079-5 1.631116+2 1.004532-5 1.661538+2 1.005587-5 1.725195+2 1.006642-5 1.777486+2 1.007010-5 1.792803+2 1.008288-5 1.833648+2 1.009313-5 1.851811+2 1.009703-5 1.855215+2 1.010966-5 1.852770+2 1.011500-5 1.845599+2 1.013116-5 1.802276+2 1.014118-5 1.759968+2 1.015143-5 1.705647+2 1.016175-5 1.640900+2 1.016614-5 1.610658+2 1.018115-5 1.497059+2 1.018811-5 1.440190+2 1.019442-5 1.386898+2 1.020477-5 1.297075+2 1.021640-5 1.194606+2 1.022611-5 1.109415+2 1.023859-5 1.002667+2 1.025392-5 8.792567+1 1.028620-5 6.623043+1 1.029802-5 6.007305+1 1.032241-5 5.066156+1 1.032679-5 4.943577+1 1.033179-5 4.820425+1 1.034304-5 4.606384+1 1.034862-5 4.531283+1 1.035521-5 4.467370+1 1.035906-5 4.441933+1 1.036539-5 4.418326+1 1.038606-5 4.481399+1 1.039591-5 4.575892+1 1.040343-5 4.671233+1 1.041599-5 4.867980+1 1.042555-5 5.043893+1 1.045016-5 5.571320+1 1.047711-5 6.224350+1 1.050934-5 7.052056+1 1.052201-5 7.382989+1 1.053788-5 7.798527+1 1.055889-5 8.343877+1 1.057233-5 8.684957+1 1.058434-5 8.980926+1 1.060477-5 9.454160+1 1.062057-5 9.782616+1 1.063154-5 9.985274+1 1.064286-5 1.016845+2 1.065377-5 1.031691+2 1.066393-5 1.042763+2 1.067742-5 1.053063+2 1.068387-5 1.056129+2 1.070069-5 1.058336+2 1.071200-5 1.055127+2 1.073128-5 1.041384+2 1.074788-5 1.022091+2 1.076645-5 9.939631+1 1.079065-5 9.505067+1 1.084234-5 8.557902+1 1.086097-5 8.281640+1 1.086723-5 8.201661+1 1.088458-5 8.018212+1 1.089836-5 7.914323+1 1.091162-5 7.849374+1 1.092233-5 7.820967+1 1.094129-5 7.818674+1 1.095514-5 7.850355+1 1.097782-5 7.947915+1 1.104969-5 8.384658+1 1.108112-5 8.535684+1 1.111383-5 8.639802+1 1.116084-5 8.714690+1 1.126168-5 8.800868+1 1.137529-5 8.974429+1 1.155241-5 9.271482+1 1.165953-5 9.385327+1 1.180795-5 9.505391+1 1.192344-5 9.658132+1 1.204136-5 9.871198+1 1.208750-5 9.983928+1 1.212069-5 1.008850+2 1.214688-5 1.019355+2 1.217696-5 1.035047+2 1.219141-5 1.044419+2 1.221466-5 1.062733+2 1.223259-5 1.080178+2 1.226174-5 1.116276+2 1.228418-5 1.152045+2 1.229923-5 1.180586+2 1.231187-5 1.207655+2 1.233550-5 1.266523+2 1.235677-5 1.329141+2 1.238814-5 1.437914+2 1.245640-5 1.722392+2 1.248267-5 1.833781+2 1.250080-5 1.904912+2 1.252016-5 1.972114+2 1.253460-5 2.014458+2 1.255497-5 2.060517+2 1.256942-5 2.082221+2 1.258866-5 2.095833+2 1.260620-5 2.092651+2 1.262490-5 2.073261+2 1.263618-5 2.054072+2 1.265964-5 1.998285+2 1.267748-5 1.944220+2 1.269982-5 1.867076+2 1.274497-5 1.704551+2 1.276766-5 1.633717+2 1.277900-5 1.604103+2 1.279224-5 1.575899+2 1.280547-5 1.555698+2 1.282249-5 1.543313+2 1.283573-5 1.545527+2 1.284946-5 1.559823+2 1.285092-5 1.562099+2 1.289623-5 1.709874+2 1.291189-5 1.797025+2 1.294495-5 2.040891+2 1.298330-5 2.413494+2 1.301422-5 2.763056+2 1.303053-5 2.956188+2 1.304867-5 3.171196+2 1.306644-5 3.375853+2 1.308427-5 3.569102+2 1.310186-5 3.741901+2 1.311893-5 3.887497+2 1.313535-5 4.002874+2 1.315190-5 4.091576+2 1.316630-5 4.144500+2 1.317617-5 4.167174+2 1.319084-5 4.180156+2 1.320719-5 4.165669+2 1.322969-5 4.097888+2 1.323881-5 4.055659+2 1.324854-5 4.002024+2 1.326222-5 3.912819+2 1.327951-5 3.779947+2 1.329779-5 3.619740+2 1.331558-5 3.449599+2 1.333732-5 3.230070+2 1.336104-5 2.985762+2 1.338475-5 2.746153+2 1.343416-5 2.294797+2 1.346381-5 2.068779+2 1.348626-5 1.922740+2 1.350617-5 1.811252+2 1.352130-5 1.737260+2 1.353262-5 1.687657+2 1.354581-5 1.635671+2 1.355897-5 1.589590+2 1.358525-5 1.513059+2 1.361142-5 1.454174+2 1.364138-5 1.403488+2 1.367500-5 1.362432+2 1.371509-5 1.328505+2 1.374075-5 1.312593+2 1.379188-5 1.289401+2 1.385000-5 1.271349+2 1.394288-5 1.252053+2 1.404159-5 1.238540+2 1.421194-5 1.224099+2 1.455944-5 1.206983+2 1.532109-5 1.183220+2 1.575503-5 1.168081+2 1.631430-5 1.144131+2 1.672152-5 1.123119+2 1.726030-5 1.094070+2 1.771889-5 1.066871+2 1.847699-5 1.019382+2 1.899879-5 9.866852+1 1.983809-5 9.346430+1 2.048482-5 8.956545+1 2.088426-5 8.715254+1 2.138474-5 8.407717+1 2.154265-5 8.327556+1 2.164792-5 8.290890+1 2.196374-5 8.239447+1 2.209751-5 8.197914+1 2.233219-5 8.063627+1 2.282346-5 7.769342+1 2.738750-5 6.022633+1 3.060885-5 5.193293+1 3.527306-5 4.342433+1 4.285000-5 3.423300+1 4.545323-5 3.178809+1 4.930316-5 2.848951+1 5.200209-5 2.630084+1 5.370318-5 2.493829+1 5.549099-5 2.351074+1 5.746362-5 2.188891+1 5.991574-5 1.972537+1 6.144000-5 1.818695+1 6.254170-5 1.691467+1 6.341914-5 1.571561+1 6.400696-5 1.473352+1 6.449083-5 1.372880+1 6.481464-5 1.290734+1 6.512773-5 1.199815+1 6.536047-5 1.130819+1 6.553600-5 1.084738+1 6.565886-5 1.059349+1 6.575600-5 1.045202+1 6.579588-5 1.041242+1 6.603621-5 1.045772+1 6.611293-5 1.059177+1 6.617724-5 1.075444+1 6.624634-5 1.098288+1 6.634481-5 1.140840+1 6.643663-5 1.191475+1 6.652305-5 1.249021+1 6.659848-5 1.307193+1 6.665160-5 1.352611+1 6.675816-5 1.454731+1 6.693503-5 1.655545+1 6.723400-5 2.069635+1 6.737891-5 2.291116+1 6.752678-5 2.518497+1 6.756464-5 2.575547+1 6.772416-5 2.803867+1 6.775375-5 2.843292+1 6.788883-5 3.007521+1 6.796571-5 3.087521+1 6.808865-5 3.191882+1 6.817110-5 3.244372+1 6.825932-5 3.284359+1 6.833136-5 3.304565+1 6.838540-5 3.312490+1 6.846645-5 3.313139+1 6.854750-5 3.300990+1 6.866930-5 3.260884+1 6.883115-5 3.173461+1 6.895760-5 3.084475+1 6.912090-5 2.952035+1 6.937084-5 2.733052+1 6.970389-5 2.453296+1 6.986484-5 2.333455+1 7.002951-5 2.223694+1 7.019418-5 2.126945+1 7.046955-5 1.991526+1 7.079945-5 1.864097+1 7.109876-5 1.771671+1 7.181897-5 1.599760+1 7.337408-5 1.306550+1 7.391455-5 1.201667+1 7.429356-5 1.125148+1 7.465929-5 1.054160+1 7.484215-5 1.022436+1 7.502502-5 9.949330+0 7.520788-5 9.728205+0 7.544110-5 9.537425+0 7.557901-5 9.475409+0 7.576364-5 9.449659+0 7.598552-5 9.495595+0 7.616155-5 9.579415+0 7.637472-5 9.718724+0 7.678898-5 1.003337+1 7.718800-5 1.029487+1 7.740055-5 1.039072+1 7.765826-5 1.045518+1 7.796056-5 1.045650+1 7.813848-5 1.042338+1 7.832959-5 1.036518+1 7.883992-5 1.013893+1 8.070379-5 9.219749+0 8.179153-5 8.671368+0 8.300000-5 8.031716+0 8.375000-5 7.629503+0 8.470756-5 7.117913+0 8.536035-5 6.776464+0 8.734849-5 5.813948+0 8.835994-5 5.395009+0 8.912509-5 5.120561+0 8.987384-5 4.895151+0 9.041810-5 4.762208+0 9.120108-5 4.621303+0 9.195166-5 4.546553+0 9.281136-5 4.540239+0 9.372443-5 4.633970+0 9.476430-5 4.875246+0 9.578662-5 5.263410+0 9.721440-5 6.063563+0 9.841500-5 6.983065+0 1.001229-4 8.674789+0 1.027454-4 1.209591+1 1.030297-4 1.252479+1 1.047500-4 1.532247+1 1.051398-4 1.600339+1 1.072500-4 1.994729+1 1.092500-4 2.399027+1 1.096478-4 2.482326+1 1.115000-4 2.880942+1 1.119000-4 2.968938+1 1.135011-4 3.326493+1 1.152000-4 3.713670+1 1.169245-4 4.113601+1 1.184000-4 4.460628+1 1.209000-4 5.057233+1 1.235000-4 5.686818+1 1.244825-4 5.927130+1 1.269125-4 6.533709+1 1.288250-4 7.019564+1 1.310958-4 7.603929+1 1.333521-4 8.202395+1 1.380384-4 9.473731+1 1.430000-4 1.085516+2 1.480000-4 1.226307+2 1.531087-4 1.368490+2 1.592097-4 1.530668+2 1.641327-4 1.654123+2 1.690042-4 1.765039+2 1.719231-4 1.823903+2 1.772700-4 1.921341+2 1.786654-4 1.958965+2 1.801841-4 2.016609+2 1.818965-4 2.086920+2 1.850890-4 2.197195+2 1.894289-4 2.363969+2 1.915135-4 2.433446+2 1.949461-4 2.536255+2 1.987560-4 2.634137+2 2.040000-4 2.755566+2 2.125690-4 2.940689+2 2.195760-4 3.075840+2 2.263407-4 3.190122+2 2.337042-4 3.289812+2 2.353573-4 3.325086+2 2.366543-4 3.373252+2 2.383905-4 3.468603+2 2.400000-4 3.560464+2 2.406896-4 3.589518+2 2.414696-4 3.610403+2 2.421687-4 3.617860+2 2.429704-4 3.615297+2 2.450863-4 3.585641+2 2.463668-4 3.579105+2 2.476568-4 3.592983+2 2.489633-4 3.625445+2 2.533365-4 3.764414+2 2.573850-4 3.854506+2 2.667648-4 4.018584+2 2.793996-4 4.200604+2 2.935971-4 4.371813+2 3.090296-4 4.521656+2 3.207989-4 4.625105+2 3.483676-4 4.826714+2 3.660935-4 4.933144+2 3.929841-4 5.058245+2 4.102250-4 5.117889+2 4.327629-4 5.179069+2 4.769111-4 5.260938+2 5.015512-4 5.292664+2 5.566461-4 5.323923+2 6.175348-4 5.316353+2 6.850766-4 5.275134+2 7.290000-4 5.232318+2 8.102123-4 5.111169+2 9.027096-4 4.955548+2 9.474209-4 4.871507+2 1.001035-3 4.761787+2 1.052557-3 4.644951+2 1.104901-3 4.513611+2 1.161641-3 4.353760+2 1.211119-3 4.185852+2 1.252357-3 4.029466+2 1.294444-3 3.853873+2 1.329946-3 3.689502+2 1.357698-3 3.546414+2 1.385458-3 3.386224+2 1.407074-3 3.246697+2 1.426851-3 3.103182+2 1.445440-3 2.950523+2 1.460037-3 2.814814+2 1.471429-3 2.696023+2 1.485776-3 2.523878+2 1.496688-3 2.367487+2 1.506057-3 2.207109+2 1.513101-3 2.067546+2 1.517304-3 1.977136+2 1.523755-3 1.832695+2 1.532876-3 1.640080+2 1.537236-3 1.566746+2 1.540472-3 1.525584+2 1.541901-3 1.511714+2 1.543526-3 1.499431+2 1.545551-3 1.489605+2 1.547507-3 1.486097+2 1.550290-3 1.491395+2 1.552687-3 1.505503+2 1.555502-3 1.532734+2 1.557898-3 1.564180+2 1.560311-3 1.602551+2 1.564817-3 1.688462+2 1.575893-3 1.940099+2 1.580585-3 2.051616+2 1.595672-3 2.431680+2 1.613000-3 2.970938+2 1.617289-3 3.113654+2 1.621810-3 3.260481+2 1.625885-3 3.386485+2 1.631544-3 3.547521+2 1.637279-3 3.691630+2 1.644135-3 3.838584+2 1.648167-3 3.913308+2 1.655628-3 4.032620+2 1.664927-3 4.154696+2 1.676390-3 4.276721+2 1.687500-3 4.373411+2 1.701344-3 4.470535+2 1.713828-3 4.539451+2 1.743649-3 4.666588+2 1.752494-3 4.714009+2 1.760657-3 4.772846+2 1.771840-3 4.882492+2 1.794272-3 5.164316+2 1.803075-3 5.269991+2 1.811939-3 5.363563+2 1.821802-3 5.452076+2 1.836237-3 5.558355+2 1.853872-3 5.663852+2 1.868993-3 5.740351+2 1.894336-3 5.849784+2 1.937654-3 5.996838+2 1.986060-3 6.120626+2 2.043833-3 6.231347+2 2.096560-3 6.305728+2 2.183044-3 6.384982+2 2.292929-3 6.424867+2 2.408345-3 6.428575+2 2.577805-3 6.376142+2 2.726592-3 6.298672+2 2.949152-3 6.147781+2 3.222231-3 5.931091+2 3.548134-3 5.657639+2 3.952528-3 5.320704+2 4.365158-3 4.995643+2 4.812444-3 4.668823+2 5.244300-3 4.378688+2 5.783794-3 4.045185+2 6.343901-3 3.732026+2 6.817448-3 3.487691+2 7.290545-3 3.262387+2 7.596701-3 3.126471+2 8.192529-3 2.876913+2 8.851502-3 2.625988+2 9.602626-3 2.366777+2 9.982180-3 2.245514+2 1.034735-2 2.133870+2 1.096384-2 1.955160+2 1.145426-2 1.819115+2 1.186793-2 1.705618+2 1.217868-2 1.618680+2 1.244515-2 1.540255+2 1.264836-2 1.475437+2 1.275736-2 1.437411+2 1.282456-2 1.412204+2 1.289812-2 1.382357+2 1.296586-2 1.351863+2 1.302426-2 1.322303+2 1.310442-2 1.275311+2 1.319332-2 1.214893+2 1.328414-2 1.153447+2 1.333521-2 1.126615+2 1.337621-2 1.112685+2 1.341821-2 1.107153+2 1.345377-2 1.109794+2 1.347775-2 1.115208+2 1.351379-2 1.128187+2 1.356939-2 1.156748+2 1.368290-2 1.225748+2 1.375866-2 1.265561+2 1.382889-2 1.293959+2 1.387371-2 1.308113+2 1.397466-2 1.331431+2 1.410183-2 1.349875+2 1.427134-2 1.363963+2 1.445017-2 1.371000+2 1.466559-2 1.372670+2 1.499432-2 1.365987+2 1.548816-2 1.344178+2 1.617804-2 1.302659+2 1.697274-2 1.248787+2 1.795476-2 1.179294+2 1.945792-2 1.076880+2 2.104384-2 9.797317+1 2.317637-2 8.657451+1 2.558402-2 7.571406+1 2.817274-2 6.599325+1 3.134788-2 5.627558+1 3.514324-2 4.722135+1 3.908310-2 3.984334+1 4.335381-2 3.349400+1 5.466075-2 2.259328+1 6.475137-2 1.680924+1 8.879238-2 9.620439+0 1.088070-1 6.675769+0 1.314468-1 4.715355+0 1.646154-1 3.090874+0 2.158330-1 1.843634+0 2.970383-1 9.947208-1 4.176012-1 5.113528-1 6.437986-1 2.176996-1 1.173413+0 6.598884-2 3.543651+0 7.256475-3 1.070165+1 7.959154-4 3.231848+1 8.727351-5 9.760024+1 9.569388-6 2.947480+2 1.049263-6 8.901248+2 1.150494-7 3.162278+3 9.115619-9 1.000000+4 9.11562-10 3.162278+4 9.11562-11 1.000000+5 9.11562-12 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.869800-7 1.258900-6 1.247300-6 1.584900-6 1.976800-6 1.995300-6 3.133000-6 2.511900-6 4.965400-6 3.162300-6 7.869700-6 3.981100-6 1.247300-5 5.011900-6 1.976800-5 6.309600-6 3.132900-5 7.943300-6 4.965300-5 1.000000-5 7.869400-5 1.258900-5 1.247200-4 1.584900-5 1.976600-4 1.995300-5 3.132700-4 2.511900-5 4.964800-4 3.162300-5 7.868400-4 3.981100-5 1.247000-3 5.011900-5 1.976300-3 6.309600-5 3.131900-3 7.943300-5 4.960800-3 1.000000-4 7.856500-3 1.258900-4 1.244300-2 1.584900-4 1.969100-2 1.995300-4 3.114600-2 2.511900-4 4.920200-2 3.162300-4 7.758500-2 3.981100-4 1.219900-1 5.011900-4 1.909700-1 6.309600-4 2.964100-1 7.943300-4 4.548800-1 1.000000-3 6.871900-1 1.258900-3 1.015200+0 1.584900-3 1.458000+0 1.995300-3 2.026300+0 2.511900-3 2.724300+0 3.162300-3 3.551400+0 3.981100-3 4.496200+0 5.011900-3 5.538900+0 6.309600-3 6.666300+0 7.943300-3 7.898100+0 1.000000-2 9.223900+0 1.258900-2 1.061300+1 1.584900-2 1.199800+1 1.995300-2 1.328400+1 2.511900-2 1.440000+1 3.162300-2 1.530800+1 3.981100-2 1.596900+1 5.011900-2 1.635200+1 6.309600-2 1.644900+1 7.943300-2 1.629400+1 1.000000-1 1.591900+1 1.258900-1 1.535400+1 1.584900-1 1.463300+1 1.995300-1 1.379300+1 2.511900-1 1.288300+1 3.162300-1 1.193200+1 3.981100-1 1.097200+1 5.011900-1 1.002300+1 6.309600-1 9.100200+0 7.943300-1 8.212900+0 1.000000+0 7.367200+0 1.258900+0 6.567800+0 1.584900+0 5.818400+0 1.995300+0 5.121800+0 2.511900+0 4.480300+0 3.162300+0 3.895200+0 3.981100+0 3.366600+0 5.011900+0 2.893700+0 6.309600+0 2.474200+0 7.943300+0 2.105400+0 1.000000+1 1.783700+0 1.258900+1 1.505000+0 1.584900+1 1.265300+0 1.995300+1 1.060200+0 2.511900+1 8.857400-1 3.162300+1 7.379700-1 3.981100+1 6.133500-1 5.011900+1 5.086500-1 6.309600+1 4.209800-1 7.943300+1 3.477800-1 1.000000+2 2.868400-1 1.258900+2 2.362200-1 1.584900+2 1.942600-1 1.995300+2 1.595500-1 2.511900+2 1.308900-1 3.162300+2 1.072600-1 3.981100+2 8.781100-2 5.011900+2 7.182000-2 6.309600+2 5.868900-2 7.943300+2 4.792000-2 1.000000+3 3.909700-2 1.258900+3 3.187500-2 1.584900+3 2.597000-2 1.995300+3 2.114500-2 2.511900+3 1.720600-2 3.162300+3 1.399300-2 3.981100+3 1.137300-2 5.011900+3 9.239300-3 6.309600+3 7.502000-3 7.943300+3 6.088400-3 1.000000+4 4.939000-3 1.258900+4 4.004800-3 1.584900+4 3.245900-3 1.995300+4 2.629800-3 2.511900+4 2.129800-3 3.162300+4 1.724200-3 3.981100+4 1.395400-3 5.011900+4 1.128900-3 6.309600+4 9.129600-4 7.943300+4 7.381000-4 1.000000+5 5.965500-4 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159545-4 3.981072-4 3.976746-4 5.011872-4 5.005029-4 6.309573-4 6.298736-4 7.943282-4 7.926227-4 1.000000-3 9.973144-4 1.258925-3 1.254700-3 1.584893-3 1.578280-3 1.995262-3 1.984963-3 2.511886-3 2.495857-3 3.162278-3 3.137363-3 3.981072-3 3.942389-3 5.011872-3 4.951878-3 6.309573-3 6.216400-3 7.943282-3 7.798678-3 1.000000-2 9.775177-3 1.258925-2 1.224021-2 1.584893-2 1.530906-2 1.995262-2 1.912222-2 2.511886-2 2.384851-2 3.162278-2 2.968849-2 3.981072-2 3.688075-2 5.011872-2 4.570555-2 6.309573-2 5.649546-2 7.943282-2 6.962475-2 1.000000-1 8.552998-2 1.258925-1 1.047100-1 1.584893-1 1.277636-1 1.995262-1 1.553733-1 2.511886-1 1.883007-1 3.162278-1 2.274533-1 3.981072-1 2.738384-1 5.011872-1 3.286491-1 6.309573-1 3.932296-1 7.943282-1 4.692659-1 1.000000+0 5.587761-1 1.258925+0 6.641309-1 1.584893+0 7.884893-1 1.995262+0 9.356069-1 2.511886+0 1.110139+0 3.162278+0 1.317870+0 3.981072+0 1.565816+0 5.011872+0 1.862580+0 6.309573+0 2.218798+0 7.943282+0 2.647231+0 1.000000+1 3.163837+0 1.258925+1 3.787864+0 1.584893+1 4.542998+0 1.995262+1 5.458125+0 2.511886+1 6.568943+0 3.162278+1 7.918881+0 3.981072+1 9.561343+0 5.011872+1 1.156211+1 6.309573+1 1.400173+1 7.943282+1 1.697925+1 1.000000+2 2.061672+1 1.258925+2 2.506400+1 1.584893+2 3.050564+1 1.995262+2 3.716883+1 2.511886+2 4.533399+1 3.162278+2 5.534657+1 3.981072+2 6.763098+1 5.011872+2 8.271435+1 6.309573+2 1.012438+2 7.943282+2 1.240197+2 1.000000+3 1.520293+2 1.258925+3 1.864923+2 1.584893+3 2.289177+2 1.995262+3 2.811808+2 2.511886+3 3.455665+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728249-8 1.000000-4 2.738688-8 1.258925-4 4.340110-8 1.584893-4 6.876215-8 1.995262-4 1.089451-7 2.511886-4 1.725702-7 3.162278-4 2.732811-7 3.981072-4 4.325683-7 5.011872-4 6.843485-7 6.309573-4 1.083726-6 7.943282-4 1.705562-6 1.000000-3 2.685582-6 1.258925-3 4.225240-6 1.584893-3 6.613037-6 1.995262-3 1.029904-5 2.511886-3 1.602894-5 3.162278-3 2.491505-5 3.981072-3 3.868225-5 5.011872-3 5.999482-5 6.309573-3 9.317344-5 7.943282-3 1.446043-4 1.000000-2 2.248231-4 1.258925-2 3.490462-4 1.584893-2 5.398767-4 1.995262-2 8.304062-4 2.511886-2 1.270351-3 3.162278-2 1.934282-3 3.981072-2 2.929971-3 5.011872-2 4.413169-3 6.309573-2 6.600270-3 7.943282-2 9.808071-3 1.000000-1 1.447002-2 1.258925-1 2.118253-2 1.584893-1 3.072571-2 1.995262-1 4.415294-2 2.511886-1 6.288790-2 3.162278-1 8.877446-2 3.981072-1 1.242687-1 5.011872-1 1.725381-1 6.309573-1 2.377277-1 7.943282-1 3.250623-1 1.000000+0 4.412239-1 1.258925+0 5.947945-1 1.584893+0 7.964039-1 1.995262+0 1.059655+0 2.511886+0 1.401747+0 3.162278+0 1.844407+0 3.981072+0 2.415256+0 5.011872+0 3.149292+0 6.309573+0 4.090775+0 7.943282+0 5.296051+0 1.000000+1 6.836163+0 1.258925+1 8.801391+0 1.584893+1 1.130593+1 1.995262+1 1.449450+1 2.511886+1 1.854992+1 3.162278+1 2.370390+1 3.981072+1 3.024937+1 5.011872+1 3.855661+1 6.309573+1 4.909400+1 7.943282+1 6.245357+1 1.000000+2 7.938328+1 1.258925+2 1.008285+2 1.584893+2 1.279837+2 1.995262+2 1.623574+2 2.511886+2 2.058547+2 3.162278+2 2.608812+2 3.981072+2 3.304762+2 5.011872+2 4.184729+2 6.309573+2 5.297135+2 7.943282+2 6.703085+2 1.000000+3 8.479707+2 1.258925+3 1.072433+3 1.584893+3 1.355975+3 1.995262+3 1.714082+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.103000-5 4.590995+7 1.135011-5 4.642637+7 1.159000-5 4.654256+7 1.159000-5 6.848144+7 1.165000-5 6.858058+7 1.190000-5 6.875950+7 1.220000-5 6.855299+7 1.245000-5 6.802837+7 1.250000-5 6.790518+7 1.273503-5 6.712727+7 1.285000-5 6.669982+7 1.303167-5 6.587721+7 1.320000-5 6.506846+7 1.335000-5 6.424845+7 1.350000-5 6.337961+7 1.370000-5 6.211759+7 1.385000-5 6.114070+7 1.400000-5 6.009125+7 1.420000-5 5.866900+7 1.435000-5 5.754310+7 1.462177-5 5.549958+7 1.470000-5 5.488774+7 1.500000-5 5.255250+7 1.531087-5 5.005757+7 1.550000-5 4.857718+7 1.570000-5 4.698113+7 1.603245-5 4.441308+7 1.610000-5 4.388741+7 1.659587-5 4.017778+7 1.710000-5 3.659189+7 1.717908-5 3.605558+7 1.770000-5 3.265227+7 1.778279-5 3.213904+7 1.840772-5 2.847433+7 1.850000-5 2.796965+7 1.920000-5 2.439961+7 1.927525-5 2.404557+7 2.000000-5 2.087912+7 2.018366-5 2.015173+7 2.110000-5 1.690238+7 2.137962-5 1.603321+7 2.238721-5 1.328470+7 2.300000-5 1.188572+7 2.418000-5 9.644050+6 2.418000-5 9.669615+6 2.426610-5 9.525946+6 2.430000-5 9.469721+6 2.454709-5 9.072100+6 2.470000-5 8.836486+6 2.497000-5 8.438861+6 2.540973-5 7.838138+6 2.560000-5 7.593447+6 2.575000-5 7.407284+6 2.586200-5 7.272018+6 2.595000-5 7.167915+6 2.605000-5 7.051886+6 2.615000-5 6.938216+6 2.625000-5 6.826849+6 2.635000-5 6.717730+6 2.642000-5 6.642656+6 2.650000-5 6.558151+6 2.657000-5 6.485322+6 2.665000-5 6.403338+6 2.673000-5 6.322663+6 2.681000-5 6.243271+6 2.689000-5 6.165139+6 2.696000-5 6.097788+6 2.705000-5 6.012561+6 2.715000-5 5.919630+6 2.722701-5 5.849309+6 2.725000-5 5.828485+6 2.735000-5 5.739007+6 2.750000-5 5.608043+6 2.765000-5 5.480862+6 2.787000-5 5.300909+6 2.851018-5 4.818522+6 2.880000-5 4.618672+6 2.910000-5 4.422905+6 2.937000-5 4.255785+6 2.960000-5 4.119819+6 2.990000-5 3.950824+6 3.020000-5 3.790742+6 3.050000-5 3.639025+6 3.080000-5 3.495164+6 3.110000-5 3.358685+6 3.135000-5 3.250274+6 3.170000-5 3.106139+6 3.210000-5 2.951625+6 3.245000-5 2.824726+6 3.273407-5 2.727035+6 3.280000-5 2.705238+6 3.330000-5 2.547239+6 3.370000-5 2.429736+6 3.420000-5 2.293033+6 3.467369-5 2.173088+6 3.470000-5 2.166725+6 3.520000-5 2.050404+6 3.570000-5 1.942631+6 3.630781-5 1.822081+6 3.690000-5 1.715993+6 3.770000-5 1.586317+6 3.850000-5 1.470481+6 3.890451-5 1.416527+6 3.935501-5 1.360434+6 4.030000-5 1.254698+6 4.129900-5 1.156090+6 4.168694-5 1.120954+6 4.216965-5 1.080511+6 4.220000-5 1.078076+6 4.350000-5 9.812162+5 4.415704-5 9.374542+5 4.466836-5 9.065426+5 4.518559-5 8.767376+5 4.623810-5 8.221181+5 4.786301-5 7.502316+5 4.800000-5 7.447190+5 4.954502-5 6.893963+5 5.000000-5 6.743712+5 5.011872-5 6.706976+5 5.150000-5 6.315828+5 5.188000-5 6.214235+5 5.230000-5 6.110187+5 5.350000-5 5.838966+5 5.370318-5 5.794444+5 5.450000-5 5.634172+5 5.559043-5 5.435469+5 5.580000-5 5.401046+5 5.650000-5 5.285686+5 5.754399-5 5.128121+5 5.821032-5 5.038648+5 5.850000-5 4.999356+5 5.950000-5 4.872555+5 6.025596-5 4.787095+5 6.095369-5 4.713804+5 6.150000-5 4.655578+5 6.237348-5 4.571427+5 6.350000-5 4.471857+5 6.400000-5 4.432016+5 6.450000-5 4.390968+5 6.531306-5 4.328396+5 6.650000-5 4.246504+5 6.683439-5 4.224939+5 6.760830-5 4.173388+5 6.850000-5 4.119869+5 7.000000-5 4.036764+5 7.079458-5 3.994702+5 7.244360-5 3.913954+5 7.328245-5 3.876915+5 7.413102-5 3.841822+5 7.500000-5 3.804092+5 7.585776-5 3.770094+5 7.845000-5 3.675544+5 7.845000-5 7.913920+5 7.852356-5 7.912980+5 7.900000-5 7.906951+5 7.959000-5 7.900477+5 7.959000-5 1.067404+6 8.000000-5 1.067853+6 8.128305-5 1.072212+6 8.222426-5 1.079326+6 8.230000-5 1.079911+6 8.300000-5 1.088626+6 8.330000-5 1.092448+6 8.413951-5 1.107354+6 8.420000-5 1.108537+6 8.511380-5 1.129731+6 8.610000-5 1.159243+6 8.650000-5 1.174072+6 8.709636-5 1.196690+6 8.810489-5 1.242986+6 8.912509-5 1.298897+6 9.015711-5 1.365757+6 9.040000-5 1.382632+6 9.120108-5 1.443101+6 9.150000-5 1.467169+6 9.240200-5 1.545577+6 9.300000-5 1.601643+6 9.400000-5 1.703117+6 9.772372-5 2.157049+6 9.800000-5 2.194415+6 9.885531-5 2.314312+6 9.900000-5 2.335261+6 9.950000-5 2.407937+6 1.005000-4 2.554493+6 1.011579-4 2.653745+6 1.020000-4 2.780945+6 1.025000-4 2.857302+6 1.035142-4 3.011239+6 1.040000-4 3.085342+6 1.052000-4 3.265895+6 1.055000-4 3.311022+6 1.065000-4 3.456600+6 1.071519-4 3.551292+6 1.080000-4 3.670615+6 1.085000-4 3.739705+6 1.096478-4 3.893363+6 1.100000-4 3.939665+6 1.110000-4 4.065557+6 1.115000-4 4.127064+6 1.128000-4 4.279146+6 1.135011-4 4.358499+6 1.150000-4 4.519806+6 1.170000-4 4.715532+6 1.190000-4 4.890587+6 1.198000-4 4.957736+6 1.218400-4 5.117005+6 1.220000-4 5.128835+6 1.230269-4 5.199170+6 1.250000-4 5.335627+6 1.260000-4 5.395044+6 1.288250-4 5.564187+6 1.318257-4 5.716546+6 1.333521-4 5.794410+6 1.380384-4 5.993333+6 1.400000-4 6.060415+6 1.430000-4 6.162733+6 1.462177-4 6.245047+6 1.480000-4 6.290360+6 1.531087-4 6.375639+6 1.548817-4 6.389561+6 1.580000-4 6.413697+6 1.584893-4 6.415837+6 1.621810-4 6.412885+6 1.635000-4 6.411832+6 1.640590-4 6.409677+6 1.678804-4 6.377335+6 1.690000-4 6.368025+6 1.698244-4 6.358930+6 1.747700-4 6.285182+6 1.760000-4 6.264013+6 1.819701-4 6.144702+6 1.820000-4 6.144120+6 1.840772-4 6.092882+6 1.847800-4 6.075764+6 1.847800-4 6.376685+6 1.862087-4 6.348785+6 1.865000-4 6.343156+6 1.900000-4 6.275139+6 1.905461-4 6.263783+6 1.918200-4 6.234175+6 1.918200-4 6.382735+6 2.000000-4 6.212763+6 2.020000-4 6.166620+6 2.041738-4 6.116890+6 2.065380-4 6.064393+6 2.100000-4 5.990376+6 2.113489-4 5.960789+6 2.120000-4 5.945380+6 2.135000-4 5.908281+6 2.187762-4 5.775255+6 2.190000-4 5.770259+6 2.238721-4 5.652665+6 2.264644-4 5.584878+6 2.317395-4 5.452975+6 2.330000-4 5.422539+6 2.350000-4 5.374490+6 2.400000-4 5.246021+6 2.454709-4 5.110477+6 2.483133-4 5.039237+6 2.511886-4 4.964771+6 2.514900-4 4.957092+6 2.514900-4 5.134582+6 2.527000-4 5.107547+6 2.540973-4 5.075800+6 2.560000-4 5.032430+6 2.570396-4 5.008662+6 2.580000-4 4.986776+6 2.590000-4 4.962623+6 2.620000-4 4.890700+6 2.630268-4 4.865821+6 2.665300-4 4.781903+6 2.680000-4 4.747378+6 2.691535-4 4.720320+6 2.722701-4 4.647940+6 2.730000-4 4.631308+6 2.754229-4 4.573868+6 2.786121-4 4.498556+6 2.818383-4 4.423676+6 2.830000-4 4.397278+6 2.851018-4 4.349843+6 2.900000-4 4.242008+6 2.917427-4 4.204533+6 2.985383-4 4.056227+6 3.019952-4 3.984101+6 3.090295-4 3.843144+6 3.126079-4 3.774526+6 3.150000-4 3.729093+6 3.162278-4 3.705497+6 3.235937-4 3.568093+6 3.280000-4 3.489776+6 3.311311-4 3.436071+6 3.350000-4 3.370979+6 3.388442-4 3.307316+6 3.427678-4 3.242468+6 3.467369-4 3.179042+6 3.550000-4 3.052251+6 3.600000-4 2.979294+6 3.630781-4 2.935081+6 3.672823-4 2.875081+6 3.700000-4 2.836986+6 3.715352-4 2.815757+6 3.801894-4 2.700386+6 3.850000-4 2.639594+6 3.890451-4 2.589505+6 3.935501-4 2.534384+6 4.073803-4 2.374255+6 4.168694-4 2.273750+6 4.216965-4 2.224704+6 4.265795-4 2.175449+6 4.500000-4 1.961621+6 4.518559-4 1.946073+6 4.570882-4 1.902853+6 4.623810-4 1.860241+6 4.786301-4 1.736789+6 4.897788-4 1.658344+6 5.011872-4 1.583560+6 5.069907-4 1.546635+6 5.128614-4 1.510649+6 5.150000-4 1.497807+6 5.308844-4 1.406822+6 5.432503-4 1.341677+6 5.559043-4 1.278334+6 5.623413-4 1.247771+6 5.688529-4 1.217754+6 5.956621-4 1.105264+6 6.000000-4 1.088380+6 6.025596-4 1.078528+6 6.095369-4 1.052251+6 6.382635-4 9.529144+5 6.500000-4 9.164497+5 6.606934-4 8.849150+5 6.760830-4 8.411807+5 6.839116-4 8.201226+5 7.079458-4 7.602775+5 7.244360-4 7.228276+5 7.413102-4 6.864506+5 7.585776-4 6.520246+5 7.800000-4 6.127730+5 7.852356-4 6.036849+5 7.943282-4 5.883784+5 8.128305-4 5.584947+5 8.222426-4 5.440790+5 8.511380-4 5.031627+5 8.709636-4 4.776019+5 8.810489-4 4.651912+5 9.015711-4 4.411827+5 9.120108-4 4.296197+5 9.332543-4 4.074464+5 9.549926-4 3.863987+5 9.660509-4 3.762208+5 9.885531-4 3.567074+5 1.023293-3 3.290613+5 1.035142-3 3.203585+5 1.059254-3 3.035960+5 1.071519-3 2.954867+5 1.096478-3 2.799457+5 1.122018-3 2.652097+5 1.135011-3 2.581049+5 1.148154-3 2.511463+5 1.161449-3 2.443815+5 1.202264-3 2.250618+5 1.230269-3 2.130824+5 1.258925-3 2.017321+5 1.270000-3 1.975626+5 1.288250-3 1.909315+5 1.333521-3 1.756891+5 1.348963-3 1.708843+5 1.380384-3 1.616842+5 1.396368-3 1.572804+5 1.400000-3 1.563009+5 1.412538-3 1.529708+5 1.445440-3 1.446023+5 1.513561-3 1.292743+5 1.531087-3 1.257161+5 1.553600-3 1.213395+5 1.553600-3 4.632792+5 1.563500-3 4.700972+5 1.570000-3 4.730848+5 1.575000-3 4.753999+5 1.584893-3 4.759750+5 1.590000-3 4.762842+5 1.602100-3 4.748946+5 1.602100-3 5.523306+5 1.602280-3 5.545273+5 1.602500-3 5.608935+5 1.602700-3 5.666931+5 1.603000-3 5.753934+5 1.603300-3 5.839897+5 1.603600-3 5.923860+5 1.603900-3 6.005724+5 1.604150-3 6.070945+5 1.604500-3 6.157653+5 1.604700-3 6.204930+5 1.605000-3 6.271495+5 1.605200-3 6.312655+5 1.605350-3 6.334676+5 1.605900-3 6.381019+5 1.606000-3 6.399005+5 1.606800-3 6.446033+5 1.606950-3 6.451860+5 1.607100-3 6.464052+5 1.607900-3 6.513097+5 1.608100-3 6.523113+5 1.610200-3 6.566650+5 1.610500-3 6.576621+5 1.613000-3 6.590124+5 1.616000-3 6.581393+5 1.621500-3 6.550407+5 1.621810-3 6.544633+5 1.624000-3 6.529735+5 1.630000-3 6.477185+5 1.640590-3 6.375351+5 1.665000-3 6.149120+5 1.670000-3 6.106679+5 1.698244-3 5.885133+5 1.710000-3 5.788902+5 1.725000-3 5.673708+5 1.737801-3 5.573061+5 1.750000-3 5.479439+5 1.757924-3 5.417042+5 1.769200-3 5.329787+5 1.769200-3 6.059379+5 1.778279-3 5.986524+5 1.780000-3 5.972843+5 1.819701-3 5.664485+5 1.883649-3 5.214809+5 1.905461-3 5.071355+5 1.910000-3 5.042222+5 1.927525-3 4.930320+5 1.949845-3 4.792784+5 1.950000-3 4.791854+5 1.972423-3 4.659798+5 2.018366-3 4.405032+5 2.041738-3 4.282170+5 2.065380-3 4.162534+5 2.089296-3 4.046259+5 2.137962-3 3.822244+5 2.150000-3 3.769574+5 2.162719-3 3.715005+5 2.187762-3 3.610488+5 2.264644-3 3.314599+5 2.290868-3 3.221559+5 2.317395-3 3.131193+5 2.344229-3 3.043422+5 2.371374-3 2.957664+5 2.398833-3 2.873313+5 2.426610-3 2.791432+5 2.540973-3 2.486338+5 2.570396-3 2.415319+5 2.630268-3 2.279458+5 2.691535-3 2.148597+5 2.722701-3 2.086093+5 2.754229-3 2.025339+5 2.851018-3 1.853748+5 2.884032-3 1.799892+5 2.917427-3 1.747647+5 3.019952-3 1.598708+5 3.090295-3 1.506717+5 3.126079-3 1.462691+5 3.198895-3 1.378548+5 3.235937-3 1.337679+5 3.311311-3 1.259610+5 3.349654-3 1.222089+5 3.388442-3 1.185692+5 3.507519-3 1.083049+5 3.548134-3 1.050845+5 3.589219-3 1.019622+5 3.630781-3 9.891607+4 3.672823-3 9.596359+4 3.758374-3 9.032707+4 3.801894-3 8.761931+4 3.845918-3 8.498605+4 3.935501-3 7.996074+4 3.981072-3 7.756201+4 4.000000-3 7.659435+4 4.027170-3 7.523393+4 4.073803-3 7.297677+4 4.120975-3 7.078911+4 4.168694-3 6.864746+4 4.216965-3 6.657223+4 4.265795-3 6.455262+4 4.365158-3 6.068217+4 4.466836-3 5.705010+4 4.518559-3 5.531698+4 4.570882-3 5.363708+4 4.623810-3 5.200955+4 4.731513-3 4.890278+4 4.841724-3 4.598651+4 4.954502-3 4.321009+4 5.011872-3 4.188709+4 5.128614-3 3.935224+4 5.248075-3 3.697381+4 5.370318-3 3.474264+4 5.432503-3 3.367942+4 5.500000-3 3.257534+4 5.559043-3 3.164493+4 5.623413-3 3.066727+4 5.688529-3 2.971979+4 5.821032-3 2.790841+4 6.000000-3 2.569664+4 6.095369-3 2.461701+4 6.165950-3 2.385834+4 6.237348-3 2.312367+4 6.309573-3 2.240753+4 6.382635-3 2.170946+4 6.531306-3 2.037733+4 6.606934-3 1.974309+4 6.839116-3 1.795222+4 6.918310-3 1.739310+4 7.244360-3 1.532994+4 7.413102-3 1.438688+4 7.498942-3 1.393459+4 7.762471-3 1.266292+4 7.852356-3 1.226476+4 8.222426-3 1.079657+4 8.317638-3 1.045837+4 8.511380-3 9.809952+3 8.609938-3 9.501334+3 8.709636-3 9.202238+3 8.810489-3 8.911160+3 9.015711-3 8.357061+3 9.120108-3 8.093408+3 9.440609-3 7.350532+3 9.500000-3 7.223265+3 9.772372-3 6.673228+3 9.885531-3 6.461708+3 1.000000-2 6.256985+3 1.011579-2 6.058904+3 1.023293-2 5.867018+3 1.035142-2 5.680462+3 1.071519-2 5.156525+3 1.083927-2 4.992727+3 1.096478-2 4.834174+3 1.122018-2 4.529991+3 1.135011-2 4.385328+3 1.161449-2 4.109966+3 1.174898-2 3.978986+3 1.202264-2 3.729443+3 1.244515-2 3.383407+3 1.258925-2 3.275477+3 1.273503-2 3.170837+3 1.288250-2 3.068745+3 1.318257-2 2.874558+3 1.333521-2 2.782207+3 1.343500-2 2.724028+3 1.343500-2 1.946601+4 1.359000-2 1.901399+4 1.364583-2 1.880328+4 1.380384-2 1.822401+4 1.390000-2 1.788335+4 1.412538-2 1.718543+4 1.420000-2 1.696269+4 1.428894-2 1.668731+4 1.445440-2 1.619125+4 1.496236-2 1.479014+4 1.500000-2 1.469295+4 1.513561-2 1.435001+4 1.531087-2 1.392900+4 1.548817-2 1.352037+4 1.603245-2 1.236543+4 1.659587-2 1.130941+4 1.678804-2 1.096701+4 1.698244-2 1.063483+4 1.737801-2 1.000049+4 1.757924-2 9.697707+3 1.778279-2 9.403777+3 1.798871-2 9.118706+3 1.883649-2 8.062568+3 1.949845-2 7.351698+3 2.000000-2 6.869410+3 2.041738-2 6.500569+3 2.065380-2 6.303437+3 2.089296-2 6.112304+3 2.113489-2 5.922614+3 2.162719-2 5.560685+3 2.213095-2 5.220949+3 2.290868-2 4.749887+3 2.371374-2 4.321432+3 2.454709-2 3.931174+3 2.483133-2 3.809108+3 2.511886-2 3.690845+3 2.540973-2 3.576257+3 2.600160-2 3.357644+3 2.630268-2 3.253397+3 2.691535-2 3.050594+3 2.722701-2 2.953999+3 2.786121-2 2.769898+3 2.851018-2 2.597089+3 2.951209-2 2.357866+3 3.019952-2 2.210783+3 3.054921-2 2.140727+3 3.126079-2 2.007192+3 3.162278-2 1.943579+3 3.235937-2 1.822354+3 3.300000-2 1.725132+3 3.311311-2 1.708424+3 3.467369-2 1.498461+3 3.548134-2 1.403365+3 3.589219-2 1.358110+3 3.630781-2 1.314316+3 3.672823-2 1.271929+3 3.935501-2 1.044865+3 4.073803-2 9.469259+2 4.300000-2 8.100751+2 4.315191-2 8.018648+2 4.365158-2 7.756325+2 4.518559-2 7.019805+2 4.623810-2 6.568130+2 4.677351-2 6.353327+2 4.897788-2 5.561367+2 5.011872-2 5.203262+2 5.128614-2 4.864310+2 5.188000-2 4.703186+2 5.370318-2 4.251155+2 5.559043-2 3.842624+2 5.623413-2 3.715368+2 6.095369-2 2.934436+2 6.165950-2 2.837184+2 6.237348-2 2.743159+2 6.309573-2 2.651310+2 6.839116-2 2.089012+2 7.673615-2 1.485780+2 7.852356-2 1.387901+2 8.413951-2 1.129248+2 9.225714-2 8.575876+1 9.332543-2 8.285933+1 9.772372-2 7.221041+1 1.047129-1 5.874636+1 1.059254-1 5.676061+1 1.083927-1 5.297451+1 1.096478-1 5.117631+1 1.161449-1 4.306069+1 1.174898-1 4.159914+1 1.230269-1 3.623302+1 1.258925-1 3.381561+1 1.288250-1 3.155944+1 1.333521-1 2.845481+1 1.412538-1 2.394436+1 1.428894-1 2.313209+1 1.445440-1 2.234736+1 1.479108-1 2.085693+1 1.513561-1 1.946593+1 1.584893-1 1.695633+1 1.603245-1 1.638125+1 1.640590-1 1.528892+1 1.659587-1 1.477041+1 1.737801-1 1.286649+1 1.757924-1 1.243018+1 1.798871-1 1.160939+1 1.840772-1 1.084281+1 1.862087-1 1.047873+1 1.905461-1 9.786829+0 1.927525-1 9.458444+0 1.949845-1 9.141128+0 2.000000-1 8.478300+0 2.018366-1 8.251707+0 2.089296-1 7.448898+0 2.113489-1 7.199047+0 2.162719-1 6.724216+0 2.213095-1 6.280717+0 2.264644-1 5.866505+0 2.317395-1 5.484505+0 2.344229-1 5.302944+0 2.371374-1 5.127393+0 2.398833-1 4.957659+0 2.426610-1 4.793790+0 2.511886-1 4.333979+0 2.540973-1 4.190734+0 2.600160-1 3.918326+0 2.630268-1 3.788840+0 2.660725-1 3.663633+0 2.722701-1 3.428913+0 2.818383-1 3.104729+0 2.884032-1 2.906194+0 2.917427-1 2.811742+0 2.951209-1 2.720359+0 3.019952-1 2.546411+0 3.054921-1 2.463656+0 3.126079-1 2.308579+0 3.162278-1 2.234746+0 3.198895-1 2.163282+0 3.235937-1 2.094102+0 3.273407-1 2.027245+0 3.311311-1 1.962544+0 3.349654-1 1.899909+0 3.427678-1 1.780571+0 3.467369-1 1.723749+0 3.548134-1 1.617417+0 3.589219-1 1.566741+0 3.672823-1 1.470103+0 3.715352-1 1.424127+0 3.758374-1 1.379604+0 3.890451-1 1.254227+0 3.935501-1 1.215791+0 4.000000-1 1.163523+0 4.027170-1 1.142425+0 4.073803-1 1.107419+0 4.120975-1 1.073487+0 4.168694-1 1.040664+0 4.265795-1 9.780232-1 4.315191-1 9.481310-1 4.365158-1 9.197525-1 4.415705-1 8.922247-1 4.518559-1 8.396177-1 4.623810-1 7.901183-1 4.677351-1 7.665272-1 4.731513-1 7.436494-1 4.786301-1 7.214554-1 4.841724-1 7.004129-1 4.954502-1 6.601516-1 5.011872-1 6.408996-1 5.128614-1 6.040636-1 5.188000-1 5.864896-1 5.248075-1 5.694354-1 5.308844-1 5.528777-1 5.370318-1 5.371998-1 5.432503-1 5.219666-1 5.559043-1 4.927870-1 5.623413-1 4.788152-1 5.688529-1 4.652396-1 5.754399-1 4.520842-1 5.888437-1 4.268899-1 5.956621-1 4.151395-1 6.025596-1 4.037122-1 6.095369-1 3.925996-1 6.165950-1 3.817932-1 6.237348-1 3.712844-1 6.309573-1 3.610656-1 6.382635-1 3.511595-1 6.456542-1 3.415265-1 6.606935-1 3.235411-1 6.683439-1 3.149070-1 6.760830-1 3.065033-1 6.839117-1 2.983239-1 6.918310-1 2.903867-1 7.085700-1 2.745821-1 7.161434-1 2.680612-1 7.244360-1 2.611744-1 7.328245-1 2.544647-1 7.413102-1 2.479272-1 7.498942-1 2.415579-1 7.585776-1 2.353532-1 7.762471-1 2.234583-1 7.852356-1 2.178999-1 8.035261-1 2.071947-1 8.128305-1 2.020409-1 8.222427-1 1.970158-1 8.413951-1 1.873383-1 8.511380-1 1.826943-1 8.609938-1 1.781655-1 8.912509-1 1.655358-1 9.015711-1 1.615281-1 9.120108-1 1.576180-1 9.225714-1 1.538026-1 9.332543-1 1.500819-1 9.440609-1 1.464517-1 9.549926-1 1.429228-1 9.660509-1 1.396092-1 9.772372-1 1.363731-1 9.885531-1 1.332120-1 1.000000+0 1.301247-1 1.011579+0 1.271107-1 1.023293+0 1.241663-1 1.035142+0 1.212982-1 1.047129+0 1.185629-1 1.059254+0 1.158898-1 1.071519+0 1.132771-1 1.083927+0 1.107231-1 1.096478+0 1.082268-1 1.109175+0 1.057868-1 1.122018+0 1.034019-1 1.135011+0 1.010708-1 1.148154+0 9.879271-2 1.161449+0 9.656718-2 1.174898+0 9.446824-2 1.188600+0 9.240058-2 1.202264+0 9.040680-2 1.230269+0 8.652000-2 1.273503+0 8.100171-2 1.288250+0 7.924255-2 1.303167+0 7.758185-2 1.318257+0 7.595593-2 1.333521+0 7.436416-2 1.364583+0 7.127984-2 1.412538+0 6.689202-2 1.428894+0 6.549114-2 1.445440+0 6.416600-2 1.479108+0 6.159569-2 1.548817+0 5.675970-2 1.584893+0 5.448627-2 1.603245+0 5.338458-2 1.640590+0 5.132181-2 1.659587+0 5.032054-2 1.678804+0 4.933882-2 1.717908+0 4.743247-2 1.737801+0 4.650707-2 1.778279+0 4.471049-2 1.798871+0 4.383890-2 1.819701+0 4.301576-2 1.840772+0 4.220809-2 1.862087+0 4.141560-2 1.883649+0 4.063799-2 1.927525+0 3.912631-2 1.949845+0 3.839168-2 2.000000+0 3.681987-2 2.018366+0 3.627036-2 2.065380+0 3.496989-2 2.089296+0 3.433727-2 2.113489+0 3.371608-2 2.162719+0 3.250724-2 2.213095+0 3.134175-2 2.264644+0 3.021826-2 2.290868+0 2.967199-2 2.344229+0 2.864542-2 2.371374+0 2.814553-2 2.398833+0 2.765438-2 2.454709+0 2.669763-2 2.511886+0 2.577400-2 2.570396+0 2.488247-2 2.600160+0 2.444858-2 2.630268+0 2.402360-2 2.691535+0 2.322249-2 2.722701+0 2.283202-2 2.754229+0 2.244810-2 2.818383+0 2.169955-2 2.884032+0 2.097596-2 2.951209+0 2.027665-2 2.985383+0 1.993598-2 3.019952+0 1.960215-2 3.090295+0 1.897340-2 3.126079+0 1.866663-2 3.198895+0 1.806790-2 3.311311+0 1.720562-2 3.388442+0 1.665385-2 3.427678+0 1.638479-2 3.507519+0 1.586124-2 3.589219+0 1.537021-2 3.630781+0 1.513043-2 3.715352+0 1.466204-2 3.845918+0 1.398650-2 3.935501+0 1.355360-2 4.027170+0 1.313431-2 4.120975+0 1.272914-2 4.216965+0 1.234758-2 4.315191+0 1.197747-2 4.415704+0 1.161846-2 4.570882+0 1.110002-2 4.623810+0 1.093243-2 4.731513+0 1.060498-2 4.841724+0 1.028827-2 5.000000+0 9.874134-3 5.069907+0 9.700569-3 5.188000+0 9.419437-3 5.370318+0 9.012939-3 5.495409+0 8.751779-3 5.623413+0 8.498323-3 5.754399+0 8.252913-3 6.000000+0 7.837336-3 6.095369+0 7.686030-3 6.237348+0 7.470340-3 6.456542+0 7.158101-3 6.606934+0 6.957258-3 6.683439+0 6.858965-3 6.839116+0 6.666613-3 7.000000+0 6.478362-3 7.328245+0 6.132245-3 7.413102+0 6.048238-3 7.585776+0 5.883660-3 7.852356+0 5.645154-3 7.943282+0 5.567827-3 8.128305+0 5.416346-3 8.222427+0 5.342162-3 8.413951+0 5.196890-3 8.609938+0 5.055939-3 9.015711+0 4.792350-3 9.120108+0 4.728629-3 9.225714+0 4.665756-3 9.440609+0 4.542507-3 9.660509+0 4.422515-3 9.885531+0 4.305702-3 1.011579+1 4.191984-3 1.023293+1 4.136255-3 1.059254+1 3.973542-3 1.083927+1 3.868884-3 1.148154+1 3.624846-3 1.161449+1 3.577919-3 1.174898+1 3.531599-3 1.202264+1 3.440754-3 1.244515+1 3.308842-3 1.273503+1 3.223734-3 1.303167+1 3.140817-3 1.318257+1 3.100164-3 1.348963+1 3.020462-3 1.380384+1 2.942983-3 1.445440+1 2.797138-3 1.462177+1 2.761821-3 1.479108+1 2.726951-3 1.566751+1 2.559090-3 1.678804+1 2.371240-3 1.717908+1 2.311745-3 1.757924+1 2.253744-3 1.778279+1 2.225294-3 1.800000+1 2.195692-3 1.840772+1 2.142220-3 1.883649+1 2.089700-3 1.905461+1 2.063924-3 1.927525+1 2.038468-3 2.065380+1 1.892187-3 2.344229+1 1.650724-3 2.371374+1 1.630365-3 2.400000+1 1.609414-3 2.426610+1 1.590399-3 2.454709+1 1.570790-3 2.483133+1 1.551456-3 2.540973+1 1.514111-3 2.570396+1 1.495778-3 2.600160+1 1.477666-3 2.951209+1 1.292345-3 3.235937+1 1.172338-3 3.273407+1 1.158144-3 3.311311+1 1.144122-3 3.349654+1 1.130270-3 3.427678+1 1.103074-3 3.467369+1 1.089743-3 3.630781+1 1.038789-3 3.715352+1 1.014212-3 3.801894+1 9.902177-4 4.570882+1 8.176075-4 5.128614+1 7.253602-4 5.188000+1 7.167289-4 5.248075+1 7.082005-4 5.308844+1 6.997739-4 5.432503+1 6.832239-4 5.495409+1 6.751072-4 5.754399+1 6.440124-4 5.888437+1 6.290062-4 6.025596+1 6.143500-4 7.673615+1 4.796283-4 9.120108+1 4.018938-4 9.225714+1 3.971841-4 9.549926+1 3.833841-4 9.660509+1 3.788916-4 9.772372+1 3.744517-4 1.000000+2 3.657289-4 1.011579+2 3.614485-4 1.071519+2 3.409899-4 1.109175+2 3.292747-4 1.135011+2 3.216893-4 1.462177+2 2.489409-4 1.819701+2 1.994980-4 1.840772+2 1.971867-4 1.905461+2 1.904125-4 1.927525+2 1.882066-4 1.949845+2 1.860261-4 1.995262+2 1.817413-4 2.018366+2 1.796370-4 2.137962+2 1.695246-4 2.213095+2 1.637325-4 2.264644+2 1.599816-4 2.917427+2 1.239805-4 3.630781+2 9.947967-5 3.672823+2 9.833358-5 3.801894+2 9.497395-5 3.845918+2 9.387978-5 3.890451+2 9.279823-5 3.981072+2 9.067245-5 4.027170+2 8.962827-5 4.265795+2 8.460195-5 4.415704+2 8.172251-5 4.518559+2 7.985753-5 1.161449+3 3.099256-5 1.445440+3 2.488928-5 1.462177+3 2.460366-5 1.513561+3 2.376628-5 1.531087+3 2.349354-5 1.548817+3 2.322391-5 1.584893+3 2.269396-5 1.603245+3 2.243358-5 1.698244+3 2.117836-5 1.757924+3 2.045920-5 3.589219+3 1.001875-5 1.000000+5 3.593053-7 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.103000-5 1.103000-5 1.159000-5 1.103000-5 1.159000-5 1.120940-5 2.418000-5 1.123756-5 2.418000-5 1.127178-5 2.735000-5 1.125215-5 2.990000-5 1.131186-5 3.210000-5 1.143333-5 3.420000-5 1.161716-5 3.630781-5 1.187174-5 3.890451-5 1.227595-5 4.168694-5 1.280587-5 4.518559-5 1.356256-5 5.011872-5 1.466977-5 5.370318-5 1.540453-5 5.650000-5 1.589837-5 5.950000-5 1.634429-5 6.237348-5 1.668469-5 6.531306-5 1.695643-5 6.850000-5 1.716844-5 7.244360-5 1.733927-5 7.585776-5 1.742234-5 7.845000-5 1.745908-5 7.845000-5 2.732887-5 7.959000-5 2.740758-5 7.959000-5 2.956906-5 8.300000-5 2.987602-5 8.511380-5 3.018666-5 8.810489-5 3.081617-5 9.400000-5 3.231461-5 9.885531-5 3.332088-5 1.025000-4 3.384203-5 1.071519-4 3.427263-5 1.135011-4 3.460511-5 1.260000-4 3.490623-5 1.531087-4 3.515550-5 1.847800-4 3.523189-5 1.847800-4 3.649222-5 1.918200-4 3.665350-5 1.918200-4 3.727718-5 2.190000-4 3.809457-5 2.514900-4 3.890447-5 2.514900-4 4.010869-5 2.730000-4 4.087683-5 3.162278-4 4.197190-5 3.935501-4 4.364198-5 4.897788-4 4.537473-5 6.095369-4 4.714706-5 7.585776-4 4.893657-5 9.120108-4 5.043259-5 1.096478-3 5.188976-5 1.348963-3 5.345181-5 1.553600-3 5.445568-5 1.553600-3 8.193853-5 1.584893-3 8.268286-5 1.602100-3 8.291769-5 1.602100-3 8.444954-5 1.605200-3 8.565935-5 1.610500-3 8.604827-5 1.769200-3 8.629339-5 1.769200-3 9.177993-5 2.041738-3 9.277103-5 3.198895-3 9.566741-5 4.570882-3 9.826606-5 6.382635-3 1.008900-4 8.810489-3 1.035198-4 1.174898-2 1.058717-4 1.343500-2 1.069466-4 1.343500-2 1.247528-4 2.371374-2 1.256002-4 5.370318-2 1.262667-4 1.927525-1 1.266902-4 1.148154+1 1.268256-4 1.000000+5 1.268258-4 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.103000-5 0.0 7.959000-5 0.0 7.959000-5 1.093052-9 8.330000-5 1.114597-9 8.511380-5 1.129721-9 8.709636-5 1.153245-9 8.912509-5 1.184398-9 9.120108-5 1.221521-9 9.400000-5 1.276179-9 9.900000-5 1.369581-9 1.005000-4 1.394036-9 1.035142-4 1.436518-9 1.065000-4 1.470823-9 1.110000-4 1.509136-9 1.128000-4 1.521312-9 1.190000-4 1.551015-9 1.260000-4 1.570703-9 1.380384-4 1.592494-9 1.580000-4 1.614847-9 1.760000-4 1.625795-9 1.847800-4 1.629606-9 1.847800-4 1.951999-9 1.918200-4 1.993576-9 1.918200-4 2.201993-9 2.065380-4 2.330642-9 2.135000-4 2.391973-9 2.350000-4 2.546070-9 2.514900-4 2.666830-9 2.514900-4 2.954922-9 2.590000-4 3.037482-9 2.691535-4 3.132369-9 2.851018-4 3.261010-9 3.162278-4 3.475117-9 3.550000-4 3.724393-9 3.935501-4 3.951010-9 4.518559-4 4.262707-9 4.897788-4 4.445229-9 5.559043-4 4.735269-9 6.095369-4 4.950233-9 6.839116-4 5.216598-9 7.852356-4 5.537614-9 8.810489-4 5.800769-9 9.660509-4 6.009069-9 1.071519-3 6.238329-9 1.202264-3 6.482851-9 1.348963-3 6.719442-9 1.553600-3 6.994025-9 1.553600-3 2.011171-5 1.570000-3 2.043514-5 1.584893-3 2.063226-5 1.602100-3 2.079185-5 1.602100-3 2.210694-5 1.602280-3 2.214053-5 1.603900-3 2.276990-5 1.605200-3 2.314035-5 1.606800-3 2.329979-5 1.608100-3 2.339216-5 1.613000-3 2.350248-5 1.630000-3 2.354687-5 1.769200-3 2.357759-5 1.769200-3 2.409756-5 2.917427-3 2.417949-5 1.343500-2 2.396083-5 1.343500-2 6.479106-3 1.603245-2 6.528710-3 2.290868-2 6.593278-3 3.467369-2 6.640302-3 6.309573-2 6.674709-3 1.949845-1 6.691861-3 2.951209+1 6.698504-3 1.000000+5 6.698511-3 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.103000-5 0.0 1.159000-5 5.600000-7 1.159000-5 3.805970-7 1.435000-5 3.124824-6 2.418000-5 1.294244-5 2.418000-5 1.290822-5 2.765000-5 1.639482-5 3.080000-5 1.944692-5 3.370000-5 2.213284-5 3.690000-5 2.494483-5 4.030000-5 2.776881-5 4.623810-5 3.243517-5 5.370318-5 3.829865-5 5.950000-5 4.315571-5 6.531306-5 4.835663-5 7.328245-5 5.591739-5 7.845000-5 6.099092-5 7.845000-5 5.112113-5 7.959000-5 5.218242-5 7.959000-5 5.001985-5 8.420000-5 5.416212-5 8.810489-5 5.728755-5 9.400000-5 6.168411-5 9.950000-5 6.607058-5 1.055000-4 7.135455-5 1.150000-4 8.033972-5 1.462177-4 1.111006-4 1.847800-4 1.495465-4 1.847800-4 1.482858-4 1.918200-4 1.551645-4 1.918200-4 1.545406-4 2.514900-4 2.125829-4 2.514900-4 2.113784-4 3.672823-4 3.241717-4 7.413102-4 6.925605-4 1.553600-3 1.499137-3 1.553600-3 1.451550-3 1.602100-3 1.498390-3 1.602100-3 1.495544-3 1.613000-3 1.503405-3 1.769200-3 1.659329-3 1.769200-3 1.653323-3 1.343500-2 1.330409-2 1.343500-2 6.831141-3 1.778279-2 1.110740-2 3.311311-2 2.635049-2 1.000000+5 9.999999+4 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.343500-2 1.674198+4 1.359000-2 1.637705+4 1.390000-2 1.540950+4 1.420000-2 1.463398+4 1.513561-2 1.240702+4 1.659587-2 9.815252+3 2.089296-2 5.339712+3 2.630268-2 2.856236+3 3.300000-2 1.519900+3 4.073803-2 8.363624+2 5.011872-2 4.604142+2 6.237348-2 2.430686+2 7.852356-2 1.231057+2 1.059254-1 5.038791+1 1.757924-1 1.104057+1 2.264644-1 5.211464+0 2.660725-1 3.254764+0 3.054921-1 2.188795+0 3.467369-1 1.531463+0 3.890451-1 1.114356+0 4.315191-1 8.424434-1 4.786301-1 6.410958-1 5.308844-1 4.913253-1 5.888437-1 3.793850-1 6.456542-1 3.035443-1 7.085700-1 2.440386-1 7.762471-1 1.986387-1 8.609938-1 1.584116-1 9.549926-1 1.270907-1 1.035142+0 1.078681-1 1.161449+0 8.587924-2 1.288250+0 7.047127-2 1.428894+0 5.824104-2 1.603245+0 4.747413-2 1.798871+0 3.898526-2 2.018366+0 3.225489-2 2.290868+0 2.638714-2 2.630268+0 2.136334-2 3.019952+0 1.743143-2 3.507519+0 1.410449-2 4.120975+0 1.131933-2 4.841724+0 9.148806-3 5.754399+0 7.338904-3 7.000000+0 5.760900-3 8.609938+0 4.496011-3 1.083927+1 3.440437-3 1.380384+1 2.617104-3 1.840772+1 1.905014-3 2.483133+1 1.379684-3 3.467369+1 9.690868-4 5.495409+1 6.003624-4 1.011579+2 3.214319-4 2.018366+2 1.597501-4 4.027170+2 7.970585-5 1.603245+3 1.995005-5 1.000000+5 3.195300-7 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.343500-2 1.276500-4 1.000000+5 1.276500-4 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.343500-2 7.529400-3 1.000000+5 7.529400-3 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.343500-2 5.777950-3 1.000000+5 9.999999+4 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.769200-3 7.295920+4 1.883649-3 6.817660+4 1.910000-3 6.691400+4 1.949845-3 6.470922+4 2.018366-3 6.141162+4 2.162719-3 5.484998+4 2.540973-3 4.192651+4 2.917427-3 3.307964+4 3.198895-3 2.799071+4 3.758374-3 2.073795+4 4.216965-3 1.658511+4 4.841724-3 1.259985+4 5.559043-3 9.480217+3 6.237348-3 7.437760+3 7.244360-3 5.379439+3 8.317638-3 3.956757+3 9.500000-3 2.924680+3 1.096478-2 2.095447+3 1.273503-2 1.467806+3 1.496236-2 9.917182+2 1.757924-2 6.642319+2 2.041738-2 4.544219+2 2.371374-2 3.087176+2 2.786121-2 2.020914+2 3.311311-2 1.272854+2 3.935501-2 7.952488+1 4.677351-2 4.931002+1 5.623413-2 2.938874+1 6.839116-2 1.682453+1 8.413951-2 9.251066+0 1.083927-1 4.416233+0 1.905461-1 8.405710-1 2.398833-1 4.294641-1 2.818383-1 2.702921-1 3.235937-1 1.829969-1 3.672823-1 1.288569-1 4.120975-1 9.429951-2 4.623810-1 6.951598-2 5.128614-1 5.320810-2 5.688529-1 4.102440-2 6.309573-1 3.187592-2 6.839117-1 2.635611-2 7.585776-1 2.080860-2 8.413951-1 1.655743-2 9.440609-1 1.294338-2 1.023293+0 1.097606-2 1.161449+0 8.539116-3 1.288250+0 7.007060-3 1.428894+0 5.790894-3 1.603245+0 4.720356-3 1.798871+0 3.876368-3 2.018366+0 3.207046-3 2.290868+0 2.623518-3 2.600160+0 2.161138-3 2.985383+0 1.762324-3 3.427678+0 1.448151-3 4.027170+0 1.160936-3 4.731513+0 9.373472-4 5.623413+0 7.511489-4 6.839116+0 5.892574-4 8.413951+0 4.593704-4 1.059254+1 3.512427-4 1.348963+1 2.669844-4 1.800000+1 1.940900-4 2.454709+1 1.388789-4 3.427678+1 9.752843-5 5.432503+1 6.040715-5 1.000000+2 3.233600-5 1.995262+2 1.606938-5 3.981072+2 8.017316-6 1.584893+3 2.006653-6 1.000000+5 3.177000-8 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.769200-3 1.318600-4 1.000000+5 1.318600-4 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.769200-3 2.789600-5 1.000000+5 2.789600-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.769200-3 1.609444-3 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.602100-3 7.743600+4 1.602280-3 7.965300+4 1.602500-3 8.604400+4 1.602700-3 9.186600+4 1.603000-3 1.006000+5 1.603300-3 1.092300+5 1.603600-3 1.176600+5 1.603900-3 1.258800+5 1.604150-3 1.324300+5 1.604500-3 1.411400+5 1.604700-3 1.458900+5 1.605000-3 1.525800+5 1.605200-3 1.567600+5 1.605350-3 1.590100+5 1.605900-3 1.638200+5 1.606000-3 1.656505+5 1.606800-3 1.706085+5 1.606950-3 1.712390+5 1.607100-3 1.725060+5 1.607900-3 1.776653+5 1.608100-3 1.787305+5 1.610200-3 1.837510+5 1.610500-3 1.848432+5 1.613000-3 1.869839+5 1.616000-3 1.875506+5 1.621500-3 1.870720+5 1.621810-3 1.866416+5 1.630000-3 1.849532+5 1.670000-3 1.732256+5 1.710000-3 1.639300+5 1.750000-3 1.564500+5 1.780000-3 1.501500+5 2.041738-3 1.053600+5 2.344229-3 7.350400+4 2.630268-3 5.406200+4 2.917427-3 4.062500+4 3.311311-3 2.855400+4 3.801894-3 1.921900+4 4.265795-3 1.375400+4 5.011872-3 8.525400+3 5.688529-3 5.814100+3 6.606934-3 3.673200+3 7.762471-3 2.219800+3 9.120108-3 1.330000+3 1.071519-2 7.903000+2 1.258925-2 4.660300+2 1.496236-2 2.625300+2 1.778279-2 1.467500+2 2.113489-2 8.144000+1 2.540973-2 4.314500+1 3.126079-2 2.094400+1 3.935501-2 9.305000+0 5.188000-2 3.485700+0 9.332543-2 4.291300-1 1.174898-1 1.899100-1 1.412538-1 9.959300-2 1.659587-1 5.700800-2 1.927525-1 3.420237-2 2.213095-1 2.149205-2 2.511886-1 1.413960-2 2.818383-1 9.729157-3 3.162278-1 6.741351-3 3.548134-1 4.706521-3 3.935501-1 3.428890-3 4.365158-1 2.515991-3 4.786301-1 1.923240-3 5.188000-1 1.529042-3 5.688529-1 1.184383-3 6.237348-1 9.235318-4 6.839117-1 7.249225-4 7.498942-1 5.727935-4 8.222427-1 4.555440-4 9.332543-1 3.351678-4 9.885531-1 2.934555-4 1.047129+0 2.589531-4 1.122018+0 2.245250-4 1.188600+0 2.005317-4 1.288250+0 1.727025-4 1.428894+0 1.436505-4 1.737801+0 1.023301-4 1.949845+0 8.440573-5 2.213095+0 6.890312-5 2.511886+0 5.665307-5 2.884032+0 4.610888-5 3.311311+0 3.781902-5 3.845918+0 3.074344-5 4.570882+0 2.440131-5 5.370318+0 1.981192-5 6.456542+0 1.573389-5 7.943282+0 1.223842-5 9.885531+0 9.464405-6 1.273503+1 7.085801-6 1.717908+1 5.081996-6 2.371374+1 3.585455-6 3.273407+1 2.546781-6 5.188000+1 1.576174-6 9.120108+1 8.837007-7 1.819701+2 4.387388-7 3.630781+2 2.188207-7 1.445440+3 5.475085-8 1.000000+5 7.90470-10 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.602100-3 9.384400-5 1.000000+5 9.384400-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.602100-3 3.017200-5 1.000000+5 3.017200-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.602100-3 1.478084-3 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.553600-3 3.419397+5 1.563500-3 3.506118+5 1.575000-3 3.580334+5 1.590000-3 3.616314+5 1.605000-3 3.625469+5 1.613000-3 3.613728+5 1.624000-3 3.579704+5 1.665000-3 3.379460+5 1.698244-3 3.244480+5 1.725000-3 3.124948+5 2.089296-3 1.891750+5 2.371374-3 1.351955+5 2.630268-3 1.019491+5 3.198895-3 5.887224+4 3.589219-3 4.222603+4 4.120975-3 2.817932+4 4.841724-3 1.738728+4 5.500000-3 1.178844+4 6.309573-3 7.705994+3 7.413102-3 4.637470+3 8.709636-3 2.765631+3 1.023293-2 1.635122+3 1.202264-2 9.588782+2 1.412538-2 5.579388+2 1.678804-2 3.097999+2 2.000000-2 1.692216+2 2.371374-2 9.328615+1 2.851018-2 4.861224+1 3.467369-2 2.413017+1 4.300000-2 1.108304+1 5.559043-2 4.344653+0 1.047129-1 4.260731-1 1.288250-1 2.004435-1 1.513561-1 1.122556-1 1.757924-1 6.592486-2 2.000000-1 4.194914-2 2.264644-1 2.733334-2 2.540973-1 1.851126-2 2.818383-1 1.312435-2 3.126079-1 9.373099-3 3.427678-1 6.995852-3 3.758374-1 5.256696-3 4.120975-1 3.978806-3 4.518559-1 3.034882-3 4.954502-1 2.332379-3 5.432503-1 1.805589-3 5.888437-1 1.452701-3 6.382635-1 1.176379-3 6.918310-1 9.599958-4 7.498942-1 7.887312-4 8.128305-1 6.521333-4 9.015711-1 5.143327-4 9.660509-1 4.419656-4 1.035142+0 3.825807-4 1.135011+0 3.178108-4 1.230269+0 2.720724-4 1.364583+0 2.246260-4 1.548817+0 1.792576-4 1.737801+0 1.468824-4 1.949845+0 1.212229-4 2.213095+0 9.897617-5 2.511886+0 8.138145-5 2.884032+0 6.623191-5 3.311311+0 5.432327-5 3.845918+0 4.415984-5 4.570882+0 3.504991-5 5.370318+0 2.845743-5 6.456542+0 2.259947-5 7.852356+0 1.782293-5 9.660509+0 1.396278-5 1.244515+1 1.044595-5 1.678804+1 7.486697-6 2.344229+1 5.213909-6 3.235937+1 3.702696-6 5.128614+1 2.291034-6 9.225714+1 1.254513-6 1.840772+2 6.229239-7 3.672823+2 3.106985-7 1.462177+3 7.774235-8 1.000000+5 1.135400-9 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.553600-3 9.169100-5 1.000000+5 9.169100-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.553600-3 2.724600-5 1.000000+5 2.724600-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.553600-3 1.434663-3 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.514900-4 1.774900+5 2.527000-4 1.810372+5 2.540973-4 1.841288+5 2.560000-4 1.873934+5 2.590000-4 1.912338+5 2.630268-4 1.950379+5 2.680000-4 1.982160+5 2.730000-4 1.999528+5 2.786121-4 2.002809+5 2.830000-4 1.994958+5 2.900000-4 1.968432+5 2.985383-4 1.922453+5 3.280000-4 1.756670+5 3.700000-4 1.578664+5 3.935501-4 1.483083+5 4.265795-4 1.353786+5 4.897788-4 1.148740+5 5.308844-4 1.037368+5 5.956621-4 8.881374+4 6.760830-4 7.438390+4 7.585776-4 6.277145+4 8.709636-4 5.083722+4 9.885531-4 4.157430+4 1.135011-3 3.316107+4 1.333521-3 2.523286+4 1.531087-3 1.982188+4 1.778279-3 1.515402+4 2.065380-3 1.150178+4 2.426610-3 8.477826+3 2.851018-3 6.198279+3 3.349654-3 4.495475+3 3.935501-3 3.235170+3 4.623810-3 2.310470+3 5.432503-3 1.637685+3 6.382635-3 1.152170+3 7.413102-3 8.255094+2 8.609938-3 5.875178+2 1.011579-2 4.042267+2 1.174898-2 2.835807+2 1.380384-2 1.921035+2 1.603245-2 1.328547+2 1.883649-2 8.863400+1 2.213095-2 5.868234+1 2.600160-2 3.856492+1 3.054921-2 2.516215+1 3.630781-2 1.579892+1 4.315191-2 9.845644+0 5.128614-2 6.091937+0 6.237348-2 3.505175+0 7.673615-2 1.937100+0 9.772372-2 9.619455-1 1.927525-1 1.310352-1 2.398833-1 6.932587-2 2.818383-1 4.366504-2 3.273407-1 2.863486-2 3.715352-1 2.017949-2 4.168694-1 1.478158-2 4.677351-1 1.090899-2 5.188000-1 8.358571-3 5.754399-1 6.451569-3 6.309573-1 5.158780-3 6.918310-1 4.151697-3 7.585776-1 3.362903-3 8.413951-1 2.672967-3 9.225714-1 2.195259-3 1.000000+0 1.860050-3 1.148154+0 1.413995-3 1.273503+0 1.159289-3 1.412538+0 9.570169-4 1.584893+0 7.792917-4 1.778279+0 6.394804-4 2.000000+0 5.266700-4 2.264644+0 4.322194-4 2.570396+0 3.558192-4 2.951209+0 2.899665-4 3.388442+0 2.381307-4 3.935501+0 1.937914-4 4.623810+0 1.563136-4 5.495409+0 1.251351-4 6.683439+0 9.807215-5 8.222427+0 7.638836-5 1.023293+1 5.914220-5 1.318257+1 4.432871-5 1.778279+1 3.182508-5 2.426610+1 2.275093-5 3.349654+1 1.616785-5 5.308844+1 1.000943-5 9.772372+1 5.356548-6 1.949845+2 2.661292-6 3.890451+2 1.327628-6 1.548817+3 3.322700-7 1.000000+5 5.140800-9 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.514900-4 7.374100-5 1.000000+5 7.374100-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.514900-4 1.100100-8 1.000000+5 1.100100-8 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.514900-4 1.777380-4 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.918200-4 1.485601+5 2.187762-4 1.783709+5 2.190000-4 1.791018+5 2.264644-4 1.849953+5 2.400000-4 1.963818+5 2.483133-4 2.021611+5 2.570396-4 2.066285+5 2.665300-4 2.097613+5 2.786121-4 2.118384+5 2.917427-4 2.125609+5 3.090295-4 2.119847+5 3.235937-4 2.103155+5 3.388442-4 2.073675+5 3.550000-4 2.029620+5 3.715352-4 1.975140+5 3.935501-4 1.895851+5 4.216965-4 1.792071+5 4.500000-4 1.687964+5 4.786301-4 1.583768+5 5.128614-4 1.463429+5 5.559043-4 1.323539+5 6.025596-4 1.188786+5 6.500000-4 1.067422+5 7.079458-4 9.377592+4 7.800000-4 8.030280+4 8.511380-4 6.933353+4 9.332543-4 5.891165+4 1.035142-3 4.866466+4 1.135011-3 4.075795+4 1.270000-3 3.254780+4 1.400000-3 2.658120+4 1.570000-3 2.077520+4 1.737801-3 1.657403+4 1.927525-3 1.307433+4 2.150000-3 1.010816+4 2.426610-3 7.537573+3 2.722701-3 5.656765+3 3.090295-3 4.090537+3 3.507519-3 2.933236+3 4.000000-3 2.059600+3 4.518559-3 1.472635+3 5.128614-3 1.031808+3 5.821032-3 7.178182+2 6.606934-3 4.958950+2 7.498942-3 3.402031+2 8.609938-3 2.238446+2 9.885531-3 1.461546+2 1.135011-2 9.471769+1 1.318257-2 5.873793+1 1.531087-2 3.614646+1 1.798871-2 2.125827+1 2.113489-2 1.240788+1 2.511886-2 6.915972+0 3.019952-2 3.678696+0 3.672823-2 1.866437+0 4.623810-2 8.332515-1 6.309573-2 2.779373-1 9.772372-2 5.905762-2 1.230269-1 2.630507-2 1.479108-1 1.386761-2 1.737801-1 7.970364-3 2.018366-1 4.801027-3 2.317395-1 3.029395-3 2.630268-1 2.000869-3 2.951209-1 1.381724-3 3.311311-1 9.610496-4 3.672823-1 6.978000-4 4.073803-1 5.101192-4 4.518559-1 3.756458-4 5.011872-1 2.787345-4 5.559043-1 2.085006-4 6.165950-1 1.572314-4 6.760830-1 1.231918-4 7.413102-1 9.717759-5 8.511380-1 6.876631-5 9.120108-1 5.821328-5 9.660509-1 5.098321-5 1.023293+0 4.495661-5 1.096478+0 3.892883-5 1.174898+0 3.394926-5 1.273503+0 2.920869-5 1.428894+0 2.374782-5 1.678804+0 1.792123-5 1.883649+0 1.475322-5 2.113489+0 1.223954-5 2.398833+0 1.003878-5 2.754229+0 8.148881-6 3.126079+0 6.776980-6 3.630781+0 5.493428-6 4.315191+0 4.348326-6 5.069907+0 3.521573-6 6.095369+0 2.790152-6 7.413102+0 2.195647-6 9.120108+0 1.716635-6 1.161449+1 1.298899-6 1.462177+1 1.002804-6 1.905461+1 7.496506-7 2.570396+1 5.432123-7 3.715352+1 3.682915-7 5.888437+1 2.284189-7 1.109175+2 1.195750-7 2.213095+2 5.947487-8 4.415704+2 2.968441-8 1.757924+3 7.432480-9 1.000000+5 1.30540-10 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.918200-4 6.344900-5 1.000000+5 6.344900-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.918200-4 1.094800-8 1.000000+5 1.094800-8 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.918200-4 1.283601-4 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.847800-4 3.009210+5 1.865000-4 3.088175+5 2.020000-4 3.752458+5 2.100000-4 4.086005+5 2.135000-4 4.193082+5 2.330000-4 4.506680+5 2.400000-4 4.597120+5 2.483133-4 4.673757+5 2.580000-4 4.723280+5 2.691535-4 4.740792+5 2.851018-4 4.722697+5 3.019952-4 4.671723+5 3.162278-4 4.607558+5 3.311311-4 4.518411+5 3.467369-4 4.403152+5 3.672823-4 4.228681+5 3.935501-4 3.992512+5 4.216965-4 3.743751+5 4.518559-4 3.486652+5 4.786301-4 3.265590+5 5.150000-4 2.981548+5 5.623413-4 2.651697+5 6.095369-4 2.365579+5 6.606934-4 2.094383+5 7.244360-4 1.807547+5 7.943282-4 1.549067+5 8.709636-4 1.317320+5 9.549926-4 1.112107+5 1.059254-3 9.123116+4 1.161449-3 7.594446+4 1.288250-3 6.135906+4 1.412538-3 5.042678+4 1.570000-3 3.998840+4 1.757924-3 3.094196+4 1.950000-3 2.428392+4 2.162719-3 1.894068+4 2.426610-3 1.426124+4 2.722701-3 1.065530+4 3.090295-3 7.667668+3 3.507519-3 5.471254+3 3.981072-3 3.872271+3 4.466836-3 2.809205+3 5.011872-3 2.025454+3 5.623413-3 1.451586+3 6.382635-3 9.994071+2 7.244360-3 6.833139+2 8.222426-3 4.639483+2 9.440609-3 3.017609+2 1.083927-2 1.947614+2 1.244515-2 1.247685+2 1.445440-2 7.640866+1 1.678804-2 4.643131+1 1.949845-2 2.801048+1 2.290868-2 1.613067+1 2.722701-2 8.858806+0 3.235937-2 4.828326+0 3.935501-2 2.407418+0 4.897788-2 1.096560+0 6.309573-2 4.374839-1 1.083927-1 6.089123-2 1.333521-1 2.878244-2 1.584893-1 1.552226-2 1.840772-1 9.153868-3 2.113489-1 5.665661-3 2.371374-1 3.824403-3 2.660725-1 2.600500-3 2.951209-1 1.850895-3 3.273407-1 1.327465-3 3.589219-1 9.946110-4 3.935501-1 7.503148-4 4.315191-1 5.702203-4 4.731513-1 4.366372-4 5.188000-1 3.369587-4 5.623413-1 2.703760-4 6.095369-1 2.183659-4 6.606935-1 1.776115-4 7.161434-1 1.454000-4 7.852356-1 1.165601-4 8.609938-1 9.396110-5 9.225714-1 8.042063-5 9.885531-1 6.929319-5 1.083927+0 5.736415-5 1.174898+0 4.891559-5 1.288250+0 4.110393-5 1.428894+0 3.404129-5 1.640590+0 2.669521-5 1.840772+0 2.195163-5 2.065380+0 1.818443-5 2.344229+0 1.489427-5 2.691535+0 1.207473-5 3.090295+0 9.865936-6 3.589219+0 7.992708-6 4.216965+0 6.421209-6 5.000000+0 5.134100-6 6.000000+0 4.074800-6 7.328245+0 3.188339-6 9.015711+0 2.491702-6 1.148154+1 1.884651-6 1.445440+1 1.454598-6 1.883649+1 1.087009-6 2.540973+1 7.875340-7 3.630781+1 5.402641-7 5.754399+1 3.349621-7 1.071519+2 1.773613-7 2.137962+2 8.818965-8 4.265795+2 4.401087-8 1.698244+3 1.101795-8 1.000000+5 1.86940-10 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.847800-4 6.193900-5 1.000000+5 6.193900-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.847800-4 8.461300-9 1.000000+5 8.461300-9 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.847800-4 1.228325-4 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 7.959000-5 2.773568+5 8.128305-5 2.810065+5 8.230000-5 2.844708+5 8.330000-5 2.894592+5 8.413951-5 2.950380+5 8.511380-5 3.033997+5 8.610000-5 3.142924+5 8.709636-5 3.280742+5 8.810489-5 3.451073+5 8.912509-5 3.657138+5 9.015711-5 3.902575+5 9.120108-5 4.190506+5 9.240200-5 4.572619+5 9.400000-5 5.166840+5 9.900000-5 7.603120+5 1.005000-4 8.465400+5 1.020000-4 9.361520+5 1.035142-4 1.028312+6 1.052000-4 1.130828+6 1.065000-4 1.208588+6 1.080000-4 1.295736+6 1.096478-4 1.387321+6 1.110000-4 1.458536+6 1.128000-4 1.547548+6 1.150000-4 1.646972+6 1.170000-4 1.728816+6 1.190000-4 1.803208+6 1.218400-4 1.897518+6 1.250000-4 1.989388+6 1.288250-4 2.085887+6 1.333521-4 2.183627+6 1.380384-4 2.268898+6 1.430000-4 2.342652+6 1.480000-4 2.399892+6 1.531087-4 2.440460+6 1.580000-4 2.462116+6 1.635000-4 2.467824+6 1.690000-4 2.456740+6 1.747700-4 2.429836+6 1.820000-4 2.378968+6 1.900000-4 2.307980+6 2.000000-4 2.208604+6 2.120000-4 2.084092+6 2.238721-4 1.958896+6 2.350000-4 1.841092+6 2.483133-4 1.702500+6 2.620000-4 1.564860+6 2.754229-4 1.437388+6 2.917427-4 1.295101+6 3.126079-4 1.134928+6 3.350000-4 9.881280+5 3.600000-4 8.493840+5 3.850000-4 7.322440+5 4.168694-4 6.095121+5 4.570882-4 4.889960+5 5.011872-4 3.893867+5 5.432503-4 3.166974+5 6.000000-4 2.434148+5 6.606934-4 1.872143+5 7.244360-4 1.446677+5 8.128305-4 1.037883+5 9.015711-4 7.638597+4 9.885531-4 5.779256+4 1.096478-3 4.196711+4 1.230269-3 2.918036+4 1.396368-3 1.938624+4 1.570000-3 1.316780+4 1.757924-3 9.001944+3 1.972423-3 6.066074+3 2.187762-3 4.226577+3 2.426610-3 2.928356+3 2.754229-3 1.856370+3 3.126079-3 1.167913+3 3.548134-3 7.292219+2 4.027170-3 4.520750+2 4.570882-3 2.783770+2 5.248075-3 1.627687+2 6.000000-3 9.602400+1 6.839116-3 5.689920+1 7.852356-3 3.249987+1 9.015711-3 1.842319+1 1.035142-2 1.036735+1 1.202264-2 5.520558+0 1.428894-2 2.646491+0 1.737801-2 1.140681+0 2.162719-2 4.414958-1 2.691535-2 1.695383-1 3.311311-2 6.802480-2 6.095369-2 4.569069-3 7.673615-2 1.658361-3 9.225714-2 7.424140-4 1.083927-1 3.701290-4 1.258925-1 1.953676-4 1.445440-1 1.091145-4 1.640590-1 6.441636-5 1.862087-1 3.831599-5 2.089296-1 2.406771-5 2.344229-1 1.523305-5 2.600160-1 1.016411-5 2.884032-1 6.831062-6 3.198895-1 4.624878-6 3.548134-1 3.155144-6 3.890451-1 2.261278-6 4.265795-1 1.630634-6 4.623810-1 1.232505-6 5.011872-1 9.380478-7 5.432503-1 7.204667-7 5.956621-1 5.368477-7 6.683439-1 3.733803-7 7.328245-1 2.812689-7 8.511380-1 1.796545-7 8.912509-1 1.572659-7 9.332543-1 1.384893-7 9.772372-1 1.228388-7 1.011579+0 1.129011-7 1.059254+0 1.015913-7 1.109175+0 9.203859-8 1.161449+0 8.389515-8 1.230269+0 7.529510-8 1.333521+0 6.529819-8 1.479108+0 5.484062-8 1.819701+0 3.842935-8 2.018366+0 3.237485-8 2.290868+0 2.648323-8 2.600160+0 2.181583-8 2.985383+0 1.779040-8 3.427678+0 1.461880-8 4.027170+0 1.171934-8 4.731513+0 9.462297-9 5.623413+0 7.582735-9 6.839116+0 5.948443-9 8.413951+0 4.637214-9 1.059254+1 3.545740-9 1.348963+1 2.695173-9 1.800000+1 1.959300-9 2.426610+1 1.419351-9 3.349654+1 1.008594-9 5.308844+1 6.24464-10 9.660509+1 3.38116-10 1.927525+2 1.67967-10 3.845918+2 8.37917-11 1.531087+3 2.09697-11 1.000000+5 3.20710-13 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 7.959000-5 3.572600-5 1.000000+5 3.572600-5 1 35000 7 7 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 7.959000-5 4.206600-9 1.000000+5 4.206600-9 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 7.959000-5 4.385979-5 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 7.845000-5 4.238376+5 8.000000-5 4.273170+5 8.128305-5 4.330770+5 8.230000-5 4.405224+5 8.330000-5 4.510020+5 8.420000-5 4.634784+5 8.511380-5 4.794759+5 8.610000-5 5.008998+5 8.709636-5 5.272926+5 8.810489-5 5.592283+5 8.912509-5 5.971842+5 9.040000-5 6.529800+5 9.150000-5 7.088040+5 9.300000-5 7.964400+5 9.772372-5 1.151205+6 9.950000-5 1.308150+6 1.011579-4 1.460867+6 1.025000-4 1.586406+6 1.040000-4 1.726320+6 1.055000-4 1.863672+6 1.071519-4 2.009736+6 1.085000-4 2.123646+6 1.100000-4 2.243964+6 1.115000-4 2.356980+6 1.135011-4 2.496258+6 1.150000-4 2.592168+6 1.170000-4 2.709690+6 1.198000-4 2.856162+6 1.220000-4 2.958516+6 1.250000-4 3.083148+6 1.288250-4 3.221582+6 1.333521-4 3.361312+6 1.380384-4 3.482157+6 1.430000-4 3.585192+6 1.480000-4 3.662718+6 1.531087-4 3.714391+6 1.584893-4 3.739530+6 1.640590-4 3.736327+6 1.698244-4 3.706342+6 1.760000-4 3.650442+6 1.820000-4 3.579006+6 1.905461-4 3.458757+6 2.000000-4 3.312174+6 2.113489-4 3.129137+6 2.238721-4 2.926143+6 2.350000-4 2.747316+6 2.454709-4 2.581231+6 2.580000-4 2.388210+6 2.730000-4 2.169774+6 2.917427-4 1.922226+6 3.150000-4 1.657830+6 3.388442-4 1.429378+6 3.630781-4 1.233427+6 3.890451-4 1.056968+6 4.216965-4 8.756802+5 4.623810-4 7.012597+5 5.011872-4 5.736579+5 5.432503-4 4.661923+5 5.956621-4 3.649348+5 6.606934-4 2.750456+5 7.244360-4 2.122560+5 7.943282-4 1.626945+5 8.810489-4 1.198419+5 9.885531-4 8.454160+4 1.122018-3 5.703986+4 1.258925-3 3.953665+4 1.412538-3 2.719744+4 1.584893-3 1.856162+4 1.778279-3 1.257627+4 2.018366-3 8.124092+3 2.264644-3 5.418993+3 2.540973-3 3.590654+3 2.851018-3 2.362899+3 3.235937-3 1.480441+3 3.672823-3 9.208249+2 4.168694-3 5.686552+2 4.731513-3 3.487204+2 5.370318-3 2.123530+2 6.095369-3 1.284260+2 6.918310-3 7.714917+1 7.852356-3 4.602895+1 9.015711-3 2.599992+1 1.035142-2 1.457729+1 1.202264-2 7.728512+0 1.412538-2 3.872250+0 1.698244-2 1.744048+0 2.065380-2 7.414489-1 2.540973-2 2.975368-1 3.162278-2 1.126379-1 3.935501-2 4.227904-2 6.165950-2 5.627182-3 7.673615-2 2.120806-3 9.225714-2 9.391928-4 1.096478-1 4.409938-4 1.258925-1 2.425728-4 1.428894-1 1.412603-4 1.603245-1 8.701360-5 1.798871-1 5.400367-5 2.000000-1 3.506728-5 2.213095-1 2.337845-5 2.426610-1 1.627579-5 2.660725-1 1.140999-5 2.917427-1 8.058543-6 3.162278-1 5.986566-6 3.427678-1 4.479255-6 3.715352-1 3.376237-6 4.000000-1 2.623500-6 4.315191-1 2.042032-6 4.731513-1 1.517981-6 5.370318-1 1.018420-6 5.754399-1 8.237749-7 6.025596-1 7.179393-7 6.382635-1 6.099963-7 6.839117-1 5.050931-7 7.413102-1 4.083212-7 8.035261-1 3.317750-7 8.609938-1 2.761936-7 9.120108-1 2.383687-7 9.660509-1 2.071627-7 1.011579+0 1.863371-7 1.071519+0 1.644476-7 1.135011+0 1.461306-7 1.202264+0 1.306734-7 1.303167+0 1.126962-7 1.428894+0 9.591010-8 1.798871+0 6.453409-8 2.000000+0 5.413900-8 2.264644+0 4.442945-8 2.570396+0 3.657637-8 2.951209+0 2.980766-8 3.388442+0 2.447897-8 3.935501+0 1.992091-8 4.623810+0 1.606863-8 5.495409+0 1.286327-8 6.606934+0 1.022461-8 8.128305+0 7.960547-9 1.011579+1 6.160922-9 1.303167+1 4.615888-9 1.757924+1 3.312913-9 2.400000+1 2.366500-9 3.311311+1 1.682116-9 5.248075+1 1.041255-9 9.549926+1 5.63692-10 1.905461+2 2.79996-10 3.801894+2 1.39670-10 1.513561+3 3.49525-11 1.000000+5 5.28450-13 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 7.845000-5 3.588800-5 1.000000+5 3.588800-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.845000-5 4.256200-5 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.418000-5 2.556540+4 2.430000-5 2.345520+4 2.454709-5 1.949226+4 2.470000-5 1.734122+4 2.497000-5 1.404112+4 2.540973-5 9.939896+3 2.560000-5 8.610460+3 2.575000-5 7.736500+3 2.586200-5 7.180330+3 2.595000-5 6.798860+3 2.605000-5 6.422600+3 2.615000-5 6.104940+3 2.625000-5 5.844500+3 2.635000-5 5.638980+3 2.642000-5 5.526880+3 2.650000-5 5.430040+3 2.657000-5 5.371920+3 2.665000-5 5.335260+3 2.673000-5 5.329480+3 2.681000-5 5.353780+3 2.689000-5 5.407380+3 2.696000-5 5.477680+3 2.705000-5 5.599340+3 2.715000-5 5.774500+3 2.725000-5 5.990360+3 2.735000-5 6.245520+3 2.750000-5 6.699180+3 2.765000-5 7.233300+3 2.787000-5 8.154280+3 2.851018-5 1.165530+4 2.880000-5 1.358774+4 2.910000-5 1.578178+4 2.937000-5 1.790602+4 2.960000-5 1.981536+4 2.990000-5 2.243020+4 3.020000-5 2.516720+4 3.050000-5 2.801100+4 3.080000-5 3.094560+4 3.110000-5 3.395740+4 3.135000-5 3.651840+4 3.170000-5 4.016420+4 3.210000-5 4.440200+4 3.245000-5 4.815280+4 3.280000-5 5.193040+4 3.330000-5 5.735080+4 3.370000-5 6.168820+4 3.420000-5 6.708720+4 3.470000-5 7.244100+4 3.520000-5 7.773080+4 3.570000-5 8.293800+4 3.630781-5 8.914224+4 3.690000-5 9.503120+4 3.770000-5 1.027296+5 3.850000-5 1.100984+5 3.935501-5 1.175887+5 4.030000-5 1.253898+5 4.129900-5 1.330849+5 4.220000-5 1.395408+5 4.350000-5 1.480602+5 4.466836-5 1.549380+5 4.623810-5 1.630693+5 4.786301-5 1.702236+5 4.954502-5 1.763791+5 5.150000-5 1.820856+5 5.350000-5 1.864926+5 5.580000-5 1.900058+5 5.821032-5 1.921619+5 6.095369-5 1.930360+5 6.400000-5 1.924302+5 6.683439-5 1.907208+5 7.000000-5 1.878430+5 7.413102-5 1.829971+5 7.852356-5 1.770100+5 8.413951-5 1.687289+5 9.015711-5 1.596920+5 9.800000-5 1.482882+5 1.080000-4 1.348780+5 1.190000-4 1.218178+5 1.318257-4 1.086002+5 1.462177-4 9.595550+4 1.621810-4 8.414790+4 1.819701-4 7.219412+4 2.238721-4 5.421856+4 2.722701-4 4.112562+4 3.126079-4 3.359400+4 3.715352-4 2.585468+4 4.518559-4 1.909298+4 5.688529-4 1.323745+4 6.839116-4 9.824024+3 8.128305-4 7.364425+3 9.549926-4 5.591007+3 1.148154-3 4.049310+3 1.380384-3 2.910304+3 1.640590-3 2.119660+3 1.949845-3 1.532631+3 2.317395-3 1.100249+3 2.754229-3 7.839379+2 3.235937-3 5.672699+2 3.801894-3 4.076027+2 4.466836-3 2.908086+2 5.248075-3 2.060106+2 6.165950-3 1.449068+2 7.244360-3 1.012055+2 8.511380-3 7.015903+1 1.000000-2 4.826340+1 1.161449-2 3.386322+1 1.364583-2 2.295949+1 1.603245-2 1.543518+1 1.883649-2 1.029589+1 2.213095-2 6.816208+0 2.600160-2 4.479627+0 3.054921-2 2.923016+0 3.630781-2 1.835489+0 4.315191-2 1.143977+0 5.128614-2 7.079124-1 6.237348-2 4.073558-1 7.673615-2 2.251475-1 9.772372-2 1.118279-1 1.949845-1 1.474812-2 2.398833-1 8.070464-3 2.818383-1 5.083417-3 3.273407-1 3.333767-3 3.715352-1 2.349457-3 4.168694-1 1.721050-3 4.677351-1 1.270196-3 5.188000-1 9.732506-4 5.754399-1 7.512066-4 6.309573-1 6.006887-4 6.918310-1 4.834447-4 7.585776-1 3.916176-4 8.413951-1 3.113157-4 9.225714-1 2.557113-4 1.000000+0 2.166700-4 1.148154+0 1.647077-4 1.273503+0 1.350342-4 1.412538+0 1.114702-4 1.584893+0 9.076856-5 1.778279+0 7.448573-5 2.000000+0 6.134500-5 2.264644+0 5.034199-5 2.570396+0 4.144394-5 2.951209+0 3.377487-5 3.388442+0 2.773659-5 3.935501+0 2.257155-5 4.623810+0 1.820645-5 5.495409+0 1.457489-5 6.606934+0 1.158560-5 8.128305+0 9.020073-6 1.011579+1 6.980847-6 1.303167+1 5.230304-6 1.757924+1 3.753774-6 2.426610+1 2.649945-6 3.349654+1 1.883074-6 5.248075+1 1.179856-6 9.549926+1 6.387186-7 1.905461+2 3.172617-7 3.801894+2 1.582646-7 1.513561+3 3.960441-8 1.000000+5 5.98780-10 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.418000-5 2.418000-5 1.000000+5 2.418000-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.418000-5 0.0 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.159000-5 2.193888+7 1.190000-5 2.230121+7 1.220000-5 2.248804+7 1.245000-5 2.252188+7 1.273503-5 2.244491+7 1.303167-5 2.222343+7 1.335000-5 2.186888+7 1.370000-5 2.133704+7 1.400000-5 2.078504+7 1.435000-5 2.005537+7 1.470000-5 1.925587+7 1.500000-5 1.852987+7 1.531087-5 1.775024+7 1.570000-5 1.675220+7 1.610000-5 1.572205+7 1.659587-5 1.446576+7 1.710000-5 1.323874+7 1.770000-5 1.186669+7 1.840772-5 1.039301+7 1.920000-5 8.938801+6 2.000000-5 7.672932+6 2.110000-5 6.231346+6 2.238721-5 4.910720+6 2.426610-5 3.522480+6 2.722701-5 2.170885+6 3.467369-5 7.821214+5 3.890451-5 4.840401+5 4.216965-5 3.480742+5 4.518559-5 2.641445+5 4.786301-5 2.114172+5 5.011872-5 1.780850+5 5.230000-5 1.529536+5 5.450000-5 1.329991+5 5.650000-5 1.185152+5 5.850000-5 1.067784+5 6.025596-5 9.829719+4 6.237348-5 8.989527+4 6.450000-5 8.307467+4 6.650000-5 7.784366+4 6.850000-5 7.353865+4 7.079458-5 6.951636+4 7.328245-5 6.602930+4 7.585776-5 6.315881+4 7.900000-5 6.041979+4 8.222426-5 5.824979+4 8.650000-5 5.606628+4 9.120108-5 5.425242+4 9.885531-5 5.203238+4 1.230269-4 4.697306+4 1.380384-4 4.419018+4 1.531087-4 4.149718+4 1.678804-4 3.895758+4 1.840772-4 3.632566+4 2.041738-4 3.332251+4 2.264644-4 3.036067+4 2.511886-4 2.748425+4 2.754229-4 2.500030+4 3.019952-4 2.257384+4 3.311311-4 2.022358+4 3.672823-4 1.772151+4 4.073803-4 1.542002+4 4.518559-4 1.332260+4 5.069907-4 1.124135+4 5.688529-4 9.419500+3 6.382635-4 7.831593+3 7.079458-4 6.583086+3 7.852356-4 5.488673+3 8.709636-4 4.543449+3 9.660509-4 3.735785+3 1.071519-3 3.051635+3 1.202264-3 2.418924+3 1.348963-3 1.902301+3 1.513561-3 1.484385+3 1.698244-3 1.149373+3 1.905461-3 8.832560+2 2.137962-3 6.736863+2 2.398833-3 5.100795+2 2.691535-3 3.834532+2 3.019952-3 2.862558+2 3.388442-3 2.122438+2 3.845918-3 1.515643+2 4.365158-3 1.073880+2 4.954502-3 7.551849+1 5.821032-3 4.780433+1 6.531306-3 3.423527+1 7.413102-3 2.354170+1 8.511380-3 1.552568+1 9.772372-3 1.016087+1 1.122018-2 6.599774+0 1.288250-2 4.256191+0 1.500000-2 2.604934+0 1.757924-2 1.548641+0 2.065380-2 9.060415-1 2.454709-2 5.061479-1 2.951209-2 2.698158-1 3.589219-2 1.371156-1 4.518559-2 6.131966-2 6.095369-2 2.135264-2 9.772372-2 4.014951-3 1.230269-1 1.788503-3 1.479108-1 9.428904-4 1.737801-1 5.419368-4 2.018366-1 3.264409-4 2.317395-1 2.059773-4 2.630268-1 1.360410-4 2.951209-1 9.394131-5 3.311311-1 6.533997-5 3.672823-1 4.744003-5 4.073803-1 3.467642-5 4.518559-1 2.552964-5 5.011872-1 1.893671-5 5.559043-1 1.415686-5 6.095369-1 1.100721-5 6.683439-1 8.618088-6 7.328245-1 6.793765-6 8.609938-1 4.536781-6 9.225714-1 3.843402-6 9.772372-1 3.369165-6 1.035142+0 2.974006-6 1.109175+0 2.577696-6 1.188600+0 2.250300-6 1.318257+0 1.859104-6 1.479108+0 1.515305-6 1.717908+0 1.168178-6 1.927525+0 9.630258-7 2.162719+0 8.000120-7 2.454709+0 6.569610-7 2.818383+0 5.339974-7 3.198895+0 4.446439-7 3.715352+0 3.608476-7 4.415704+0 2.859428-7 5.188000+0 2.318112-7 6.237348+0 1.838383-7 7.585776+0 1.447967-7 9.440609+0 1.117870-7 1.202264+1 8.467656-8 1.566751+1 6.297563-8 2.065380+1 4.657515-8 2.951209+1 3.180341-8 4.570882+1 2.012073-8 7.673615+1 1.180314-8 1.462177+2 6.127117-9 2.917427+2 3.052744-9 1.161449+3 7.63247-10 1.000000+5 8.85040-12 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.159000-5 1.159000-5 1.000000+5 1.159000-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.159000-5 0.0 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.103000-5 4.590995+7 1.135011-5 4.642637+7 1.165000-5 4.657129+7 1.190000-5 4.645829+7 1.220000-5 4.606495+7 1.250000-5 4.539695+7 1.285000-5 4.434162+7 1.320000-5 4.303429+7 1.350000-5 4.174196+7 1.385000-5 4.008296+7 1.420000-5 3.830630+7 1.462177-5 3.606947+7 1.500000-5 3.402263+7 1.550000-5 3.132237+7 1.603245-5 2.852339+7 1.659587-5 2.571202+7 1.717908-5 2.300922+7 1.778279-5 2.045817+7 1.850000-5 1.776088+7 1.927525-5 1.523661+7 2.018366-5 1.274663+7 2.137962-5 1.012323+7 2.300000-5 7.492393+6 2.540973-5 4.925756+6 3.273407-5 1.678510+6 3.630781-5 1.087408+6 3.935501-5 7.810782+5 4.168694-5 6.202469+5 4.415704-5 4.959512+5 4.623810-5 4.174131+5 4.800000-5 3.648163+5 5.000000-5 3.169950+5 5.188000-5 2.810743+5 5.370318-5 2.528244+5 5.559043-5 2.290265+5 5.754399-5 2.090543+5 5.950000-5 1.928461+5 6.150000-5 1.793972+5 6.350000-5 1.684715+5 6.531306-5 1.603248+5 6.760830-5 1.519259+5 7.000000-5 1.449645+5 7.244360-5 1.392958+5 7.500000-5 1.345505+5 7.852356-5 1.294640+5 8.300000-5 1.246489+5 8.912509-5 1.198012+5 1.135011-4 1.066719+5 1.260000-4 1.008006+5 1.400000-4 9.447824+4 1.548817-4 8.806678+4 1.698244-4 8.200212+4 1.862087-4 7.584370+4 2.065380-4 6.897423+4 2.317395-4 6.161079+4 2.580000-4 5.507861+4 2.818383-4 4.992228+4 3.090295-4 4.473816+4 3.427678-4 3.919997+4 3.801894-4 3.407288+4 4.265795-4 2.891722+4 4.786301-4 2.435048+4 5.432503-4 1.999660+4 6.095369-4 1.659196+4 6.760830-4 1.393096+4 7.413102-4 1.184818+4 8.222426-4 9.804162+3 9.120108-4 8.057227+3 1.023293-3 6.429160+3 1.148154-3 5.089883+3 1.288250-3 3.998211+3 1.445440-3 3.116380+3 1.621810-3 2.410268+3 1.819701-3 1.849970+3 2.041738-3 1.409286+3 2.290868-3 1.065733+3 2.570396-3 8.001770+2 2.884032-3 5.965303+2 3.235937-3 4.416876+2 3.630781-3 3.248269+2 4.073803-3 2.372595+2 4.623810-3 1.665901+2 5.248075-3 1.160751+2 6.000000-3 7.860224+1 6.839116-3 5.332691+1 7.762471-3 3.638402+1 8.810489-3 2.465311+1 1.011579-2 1.600113+1 1.161449-2 1.030513+1 1.333521-2 6.588174+0 1.548817-2 4.025953+0 1.798871-2 2.441289+0 2.113489-2 1.413147+0 2.483133-2 8.117711-1 2.951209-2 4.447421-1 3.548134-2 2.321262-1 4.365158-2 1.107676-1 5.370318-2 5.247200-2 1.161449-1 3.175062-3 1.412538-1 1.568987-3 1.659587-1 8.838984-4 1.905461-1 5.441153-4 2.162719-1 3.511509-4 2.426610-1 2.374181-4 2.722701-1 1.617299-4 3.019952-1 1.153140-4 3.349654-1 8.285177-5 3.672823-1 6.218350-5 4.027170-1 4.699948-5 4.415705-1 3.579423-5 4.841724-1 2.747202-5 5.248075-1 2.193911-5 5.688529-1 1.763180-5 6.165950-1 1.426220-5 6.683439-1 1.161347-5 7.244360-1 9.517859-6 7.852356-1 7.850362-6 8.609938-1 6.338118-6 9.225714-1 5.431738-6 9.885531-1 4.684975-6 1.083927+0 3.882449-6 1.188600+0 3.238800-6 1.303167+0 2.721501-6 1.445440+0 2.254953-6 1.659587+0 1.769474-6 1.862087+0 1.456111-6 2.089296+0 1.207103-6 2.371374+0 9.893473-7 2.722701+0 8.026282-7 3.126079+0 6.562526-7 3.630781+0 5.319531-7 4.315191+0 4.210716-7 5.069907+0 3.410175-7 6.095369+0 2.701804-7 7.413102+0 2.126166-7 9.225714+0 1.640059-7 1.174898+1 1.241451-7 1.479108+1 9.587251-8 1.927525+1 7.169289-8 2.600160+1 5.195960-8 3.801894+1 3.481489-8 6.025596+1 2.160121-8 1.135011+2 1.131177-8 2.264644+2 5.627138-9 4.518559+2 2.808820-9 3.589219+3 3.52466-10 1.000000+5 1.26410-11 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.103000-5 1.103000-5 1.000000+5 1.103000-5 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.103000-5 0.0 1.000000+5 1.000000+5 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.219230-8 1.028750+0 6.219230-7 1.030100+0 1.070380-6 1.031000+0 1.464650-6 1.032000+0 2.004010-6 1.033200+0 2.807280-6 1.034000+0 3.446190-6 1.035300+0 4.677720-6 1.036640+0 6.219230-6 1.038200+0 8.393050-6 1.039700+0 1.090430-5 1.041500+0 1.450800-5 1.043800+0 2.013760-5 1.046400+0 2.801760-5 1.048300+0 3.488270-5 1.051200+0 4.731770-5 1.054080+0 6.219230-5 1.057700+0 8.477210-5 1.061100+0 1.102670-4 1.065100+0 1.459820-4 1.070400+0 2.036600-4 1.076200+0 2.814580-4 1.080600+0 3.514950-4 1.087100+0 4.735790-4 1.093710+0 6.219230-4 1.102600+0 8.622770-4 1.110700+0 1.124560-3 1.120600+0 1.504290-3 1.133300+0 2.091560-3 1.147500+0 2.887780-3 1.158200+0 3.588770-3 1.174100+0 4.796620-3 1.190110+0 6.219230-3 1.205100+0 7.742150-3 1.227500+0 1.036270-2 1.250000+0 1.339000-2 1.265600+0 1.570170-2 1.294900+0 2.047370-2 1.331800+0 2.719470-2 1.362600+0 3.333170-2 1.411700+0 4.398130-2 1.455800+0 5.436840-2 1.500000+0 6.557000-2 1.562500+0 8.283750-2 1.617200+0 9.929610-2 1.712900+0 1.308390-1 1.838500+0 1.766110-1 1.946200+0 2.184640-1 2.000000+0 2.398000-1 2.044000+0 2.573000-1 2.163500+0 3.054760-1 2.372600+0 3.913710-1 2.647100+0 5.046930-1 3.000000+0 6.479000-1 3.437500+0 8.179570-1 4.000000+0 1.023000+0 4.750000+0 1.273730+0 5.000000+0 1.352000+0 6.000000+0 1.641000+0 7.000000+0 1.899000+0 8.000000+0 2.131000+0 9.000000+0 2.341000+0 1.000000+1 2.533000+0 1.100000+1 2.708000+0 1.200000+1 2.869000+0 1.300000+1 3.016000+0 1.400000+1 3.153000+0 1.500000+1 3.280000+0 1.600000+1 3.399000+0 1.800000+1 3.617000+0 2.000000+1 3.812000+0 2.200000+1 3.989000+0 2.400000+1 4.151000+0 2.600000+1 4.298000+0 2.800000+1 4.433000+0 3.000000+1 4.557000+0 4.000000+1 5.065000+0 5.000000+1 5.443000+0 6.000000+1 5.737000+0 8.000000+1 6.173000+0 1.000000+2 6.482000+0 1.500000+2 6.975000+0 2.000000+2 7.269000+0 3.000000+2 7.611000+0 4.000000+2 7.808000+0 5.000000+2 7.937000+0 6.000000+2 8.030000+0 8.000000+2 8.153000+0 1.000000+3 8.233000+0 1.500000+3 8.349000+0 2.000000+3 8.412000+0 3.000000+3 8.480000+0 4.000000+3 8.516000+0 5.000000+3 8.539000+0 6.000000+3 8.555000+0 8.000000+3 8.576000+0 1.000000+4 8.590000+0 1.500000+4 8.608000+0 2.000000+4 8.618000+0 3.000000+4 8.628000+0 4.000000+4 8.634000+0 5.000000+4 8.637000+0 6.000000+4 8.639000+0 8.000000+4 8.643000+0 1.000000+5 8.644000+0 1 35000 7 8 7.990900+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.514190-7 2.106600+0 1.144960-6 2.114000+0 1.584200-6 2.119500+0 1.972320-6 2.127900+0 2.674840-6 2.136250+0 3.514190-6 2.147000+0 4.818200-6 2.156900+0 6.258260-6 2.169000+0 8.352050-6 2.184500+0 1.160960-5 2.201800+0 1.606220-5 2.214800+0 2.001230-5 2.234200+0 2.692010-5 2.253680+0 3.514190-5 2.281500+0 4.922250-5 2.307000+0 6.465350-5 2.338200+0 8.693230-5 2.377400+0 1.203910-4 2.410200+0 1.531170-4 2.446800+0 1.947740-4 2.485900+0 2.452310-4 2.532900+0 3.138420-4 2.556430+0 3.514190-4 2.611900+0 4.480980-4 2.660400+0 5.417250-4 2.745300+0 7.250620-4 2.809000+0 8.780910-4 2.904500+0 1.131210-3 3.000000+0 1.412000-3 3.125000+0 1.820740-3 3.234400+0 2.215460-3 3.425800+0 2.983470-3 3.569300+0 3.617790-3 3.784700+0 4.650690-3 4.000000+0 5.761000-3 4.250000+0 7.118300-3 4.625000+0 9.251460-3 5.000000+0 1.147000-2 5.500000+0 1.451810-2 6.000000+0 1.761000-2 6.750000+0 2.221430-2 7.000000+0 2.373000-2 8.000000+0 2.966000-2 9.000000+0 3.533000-2 1.000000+1 4.073000-2 1.100000+1 4.583000-2 1.200000+1 5.065000-2 1.300000+1 5.520000-2 1.400000+1 5.953000-2 1.500000+1 6.363000-2 1.600000+1 6.753000-2 1.800000+1 7.477000-2 2.000000+1 8.136000-2 2.200000+1 8.739000-2 2.400000+1 9.295000-2 2.600000+1 9.809000-2 2.800000+1 1.029000-1 3.000000+1 1.073000-1 4.000000+1 1.258000-1 5.000000+1 1.398000-1 6.000000+1 1.510000-1 8.000000+1 1.679000-1 1.000000+2 1.802000-1 1.500000+2 2.007000-1 2.000000+2 2.136000-1 3.000000+2 2.295000-1 4.000000+2 2.391000-1 5.000000+2 2.456000-1 6.000000+2 2.504000-1 8.000000+2 2.570000-1 1.000000+3 2.614000-1 1.500000+3 2.679000-1 2.000000+3 2.716000-1 3.000000+3 2.756000-1 4.000000+3 2.780000-1 5.000000+3 2.794000-1 6.000000+3 2.805000-1 8.000000+3 2.818000-1 1.000000+4 2.827000-1 1.500000+4 2.838000-1 2.000000+4 2.845000-1 3.000000+4 2.851000-1 4.000000+4 2.855000-1 5.000000+4 2.858000-1 6.000000+4 2.859000-1 8.000000+4 2.861000-1 1.000000+5 2.862000-1 1 35000 7 8 7.990900+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 35000 7 9 7.990900+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.500000+1 1.000000+5 3.500000+1 5.000000+5 3.499000+1 7.500000+5 3.497650+1 1.000000+6 3.496700+1 1.375000+6 3.494330+1 1.500000+6 3.493300+1 1.875000+6 3.489540+1 2.000000+6 3.488100+1 2.500000+6 3.481500+1 3.000000+6 3.473500+1 3.750000+6 3.458810+1 4.000000+6 3.453400+1 4.750000+6 3.434700+1 5.000000+6 3.428300+1 5.875000+6 3.402160+1 6.500000+6 3.381640+1 6.625000+6 3.377310+1 7.000000+6 3.364200+1 7.875000+6 3.331240+1 8.500000+6 3.306160+1 8.625000+6 3.300900+1 9.000000+6 3.285600+1 1.000000+7 3.242500+1 1.109400+7 3.192650+1 1.187500+7 3.155640+1 1.203100+7 3.148270+1 1.250000+7 3.126000+1 1.375000+7 3.065270+1 1.437500+7 3.034960+1 1.500000+7 3.004700+1 1.625000+7 2.944140+1 1.750000+7 2.884700+1 1.937500+7 2.797130+1 2.000000+7 2.769000+1 2.250000+7 2.660460+1 2.375000+7 2.609180+1 2.500000+7 2.560100+1 2.750000+7 2.466970+1 3.000000+7 2.380800+1 3.250000+7 2.300130+1 3.500000+7 2.224360+1 3.625000+7 2.187830+1 4.000000+7 2.082900+1 4.437500+7 1.967350+1 4.750000+7 1.888080+1 4.812500+7 1.872550+1 5.000000+7 1.826200+1 5.437500+7 1.720480+1 5.812500+7 1.632940+1 6.000000+7 1.590200+1 6.500000+7 1.479970+1 7.000000+7 1.376500+1 7.500000+7 1.280210+1 8.000000+7 1.191800+1 9.000000+7 1.039100+1 1.000000+8 9.175400+0 1.109400+8 8.154820+0 1.125000+8 8.030990+0 1.203100+8 7.482320+0 1.250000+8 7.202300+0 1.312500+8 6.878840+0 1.406300+8 6.475550+0 1.437500+8 6.358920+0 1.500000+8 6.146700+0 1.750000+8 5.465970+0 1.875000+8 5.159050+0 1.968800+8 4.927090+0 2.000000+8 4.849200+0 2.125000+8 4.534450+0 2.375000+8 3.970430+0 2.406300+8 3.909710+0 2.500000+8 3.742600+0 2.718800+8 3.411270+0 2.815400+8 3.264730+0 2.875000+8 3.168840+0 2.881300+8 3.158400+0 2.960400+8 3.022580+0 3.000000+8 2.950800+0 3.062500+8 2.832870+0 3.335900+8 2.355960+0 3.418000+8 2.246970+0 3.500000+8 2.159100+0 3.589800+8 2.086970+0 3.712900+8 2.013920+0 3.928200+8 1.909340+0 4.000000+8 1.871400+0 4.062500+8 1.834860+0 5.000000+8 1.296100+0 5.125000+8 1.255380+0 5.234400+8 1.225760+0 5.425800+8 1.183670+0 6.000000+8 1.090200+0 6.250000+8 1.051450+0 7.000000+8 9.418000-1 7.625000+8 8.654810-1 8.000000+8 8.202000-1 8.359400+8 7.747440-1 8.660200+8 7.362190-1 8.995100+8 6.938640-1 9.354000+8 6.499550-1 1.000000+9 5.769000-1 1.062500+9 5.143840-1 1.141100+9 4.461340-1 1.206900+9 3.966410-1 1.280200+9 3.484730-1 1.335100+9 3.166050-1 1.417600+9 2.745370-1 1.500000+9 2.385800-1 1.562500+9 2.147380-1 1.671900+9 1.791600-1 1.753900+9 1.568950-1 1.877000+9 1.292420-1 2.000000+9 1.072100-1 2.093800+9 9.339440-2 2.275400+9 7.228210-2 2.445700+9 5.754810-2 2.680200+9 4.280270-2 2.895300+9 3.316880-2 3.158400+9 2.475900-2 3.496000+9 1.749160-2 3.872000+9 1.226610-2 4.516600+9 7.131420-3 5.000000+9 4.969500-3 8.000000+9 9.270200-4 1.00000+10 4.188400-4 1.20500+10 2.173580-4 1.41820+10 1.233730-4 1.71170+10 6.462970-5 2.01490+10 3.712320-5 2.26440+10 2.504270-5 2.74790+10 1.311440-5 3.41360+10 6.401740-6 4.02450+10 3.734400-6 4.77140+10 2.148000-6 5.73000+10 1.190410-6 7.25500+10 5.598980-7 9.08500+10 2.743880-7 1.00000+11 2.027100-7 1.34280+11 8.041940-8 1.77440+11 3.378250-8 2.63330+11 9.997580-9 3.75720+11 3.374690-9 6.61190+11 6.10997-10 1.48990+12 5.41872-11 4.26460+12 2.46724-12 1.00000+14 2.68430-16 5.62340+14 1.77061-18 7.49890+15 8.85927-22 1.00000+17 4.24370-25 1 35000 7 0 7.990900+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.60000-12 1.000000+2 3.60000-10 1.000000+3 3.600000-8 1.000000+4 3.600000-6 1.000000+5 3.600000-4 5.000000+5 9.000000-3 7.500000+5 2.025000-2 1.000000+6 3.600000-2 1.375000+6 6.859330-2 1.500000+6 8.170000-2 1.875000+6 1.272260-1 2.000000+6 1.445000-1 2.500000+6 2.241000-1 3.000000+6 3.200000-1 3.750000+6 4.921300-1 4.000000+6 5.566000-1 4.750000+6 7.691140-1 5.000000+6 8.460000-1 5.875000+6 1.135760+0 6.500000+6 1.359970+0 6.625000+6 1.406120+0 7.000000+6 1.547700+0 7.875000+6 1.890460+0 8.500000+6 2.144140+0 8.625000+6 2.195430+0 9.000000+6 2.350900+0 1.000000+7 2.771000+0 1.109400+7 3.233900+0 1.187500+7 3.563880+0 1.203100+7 3.629320+0 1.250000+7 3.826200+0 1.375000+7 4.343860+0 1.437500+7 4.598830+0 1.500000+7 4.851000+0 1.625000+7 5.345210+0 1.750000+7 5.826100+0 1.937500+7 6.522090+0 2.000000+7 6.748000+0 2.250000+7 7.619550+0 2.375000+7 8.037170+0 2.500000+7 8.442500+0 2.750000+7 9.215470+0 3.000000+7 9.940000+0 3.250000+7 1.061790+1 3.500000+7 1.125680+1 3.625000+7 1.156340+1 4.000000+7 1.244000+1 4.437500+7 1.339590+1 4.750000+7 1.404620+1 4.812500+7 1.417340+1 5.000000+7 1.455200+1 5.437500+7 1.540710+1 5.812500+7 1.611260+1 6.000000+7 1.645600+1 6.500000+7 1.734070+1 7.000000+7 1.818500+1 7.500000+7 1.898510+1 8.000000+7 1.974700+1 9.000000+7 2.114900+1 1.000000+8 2.239900+1 1.109400+8 2.360020+1 1.125000+8 2.376020+1 1.203100+8 2.450690+1 1.250000+8 2.492000+1 1.312500+8 2.542960+1 1.406300+8 2.612490+1 1.437500+8 2.634130+1 1.500000+8 2.674700+1 1.750000+8 2.811370+1 1.875000+8 2.868070+1 1.968800+8 2.906760+1 2.000000+8 2.919000+1 2.125000+8 2.964920+1 2.375000+8 3.044110+1 2.406300+8 3.053040+1 2.500000+8 3.078500+1 2.718800+8 3.130510+1 2.815400+8 3.150450+1 2.875000+8 3.162240+1 2.881300+8 3.163410+1 2.960400+8 3.177880+1 3.000000+8 3.185000+1 3.062500+8 3.195160+1 3.335900+8 3.235240+1 3.418000+8 3.245570+1 3.500000+8 3.255400+1 3.589800+8 3.264970+1 3.712900+8 3.277760+1 3.928200+8 3.297120+1 4.000000+8 3.303000+1 4.062500+8 3.307720+1 5.000000+8 3.364200+1 5.125000+8 3.369850+1 5.234400+8 3.374700+1 5.425800+8 3.382950+1 6.000000+8 3.404500+1 6.250000+8 3.412370+1 7.000000+8 3.433700+1 7.625000+8 3.447490+1 8.000000+8 3.454700+1 8.359400+8 3.460500+1 8.660200+8 3.464800+1 8.995100+8 3.469080+1 9.354000+8 3.473260+1 1.000000+9 3.479400+1 1.062500+9 3.483590+1 1.141100+9 3.488050+1 1.206900+9 3.490660+1 1.280200+9 3.493030+1 1.335100+9 3.494230+1 1.417600+9 3.495940+1 1.500000+9 3.497000+1 1.562500+9 3.497400+1 1.671900+9 3.498080+1 1.753900+9 3.498550+1 1.877000+9 3.499220+1 2.000000+9 3.499500+1 2.093800+9 3.499560+1 2.275400+9 3.499670+1 2.445700+9 3.499760+1 2.680200+9 3.499880+1 2.895300+9 3.499970+1 3.158400+9 3.500090+1 3.496000+9 3.500220+1 3.872000+9 3.500160+1 4.516600+9 3.500060+1 5.000000+9 3.500000+1 8.000000+9 3.500000+1 1.00000+10 3.500000+1 1.20500+10 3.500000+1 1.41820+10 3.500000+1 1.71170+10 3.500000+1 2.01490+10 3.500000+1 2.26440+10 3.500000+1 2.74790+10 3.500000+1 3.41360+10 3.500000+1 4.02450+10 3.500000+1 4.77140+10 3.500000+1 5.73000+10 3.500000+1 7.25500+10 3.500000+1 9.08500+10 3.500000+1 1.00000+11 3.500000+1 1.34280+11 3.500000+1 1.77440+11 3.500000+1 2.63330+11 3.500000+1 3.75720+11 3.500000+1 6.61190+11 3.500000+1 1.48990+12 3.500000+1 4.26460+12 3.500000+1 1.00000+14 3.500000+1 5.62340+14 3.500000+1 7.49890+15 3.500000+1 1.00000+17 3.500000+1 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.039584-6 0.0 7.437944-6 0.0 7.469983-6 1.028060+0 7.474560-6 1.173428+0 7.492867-6 2.143362+0 7.511175-6 3.614002+0 7.531771-6 5.931660+0 7.563523-6 1.034822+1 7.585549-6 1.323157+1 7.604393-6 1.489297+1 7.623472-6 1.540036+1 7.641903-6 1.467336+1 7.661394-6 1.276477+1 7.692279-6 8.523607+0 7.712558-6 5.761937+0 7.732010-6 3.625976+0 7.749173-6 2.216679+0 7.767480-6 1.219413+0 7.793798-6 3.486760-1 7.804096-6 0.0 7.993949-6 0.0 8.028440-6 4.621607-1 8.033301-6 5.266416-1 8.052977-6 9.619539-1 8.072653-6 1.621987+0 8.094789-6 2.662166+0 8.129261-6 4.665190+0 8.152588-6 5.938412+0 8.172840-6 6.684057+0 8.193478-6 6.910044+0 8.213154-6 6.585493+0 8.234102-6 5.728907+0 8.267296-6 3.825448+0 8.289090-6 2.585993+0 8.309996-6 1.627361+0 8.328443-6 9.948591-1 8.348119-6 5.472802-1 8.376403-6 1.564880-1 8.387471-6 0.0 8.514213-6 0.0 8.537627-6 1.168893-6 8.556127-6 2.929306-6 8.577083-6 5.594312-6 8.579656-6 6.029386-6 8.598040-6 9.699839-6 8.621684-6 1.641838-5 8.642699-6 2.410862-5 8.684727-6 4.116562-5 8.705741-6 4.787007-5 8.726756-6 5.150215-5 8.747770-6 5.126416-5 8.768784-6 4.720860-5 8.789799-6 4.021937-5 8.831827-6 2.311107-5 8.852841-6 1.558659-5 8.870477-6 1.054550-5 8.873856-6 9.723235-6 8.891433-6 6.186890-6 8.894870-6 5.610131-6 8.915884-6 2.908278-6 8.933347-6 1.179602-6 8.957913-6 0.0 9.070218-6 0.0 9.093632-6 2.12115-14 9.127206-6 1.355022-6 9.138397-6 1.800967-6 9.160780-6 3.289613-6 9.183163-6 5.546740-6 9.205546-6 8.633455-6 9.244459-6 1.539251-5 9.245094-6 2.454346-3 9.290605-6 1.728209+0 9.312722-6 3.154631+0 9.336116-6 5.475472+0 9.362668-6 9.219381+0 9.432172-6 2.118648+1 9.453812-6 2.376750+1 9.477763-6 2.485209+1 9.499607-6 2.412599+1 9.522231-6 2.173995+1 9.552798-6 1.681512+1 9.586428-6 1.086151+1 9.609184-6 7.393779+0 9.633362-6 4.573870+0 9.654695-6 2.780978+0 9.670830-6 1.879335+0 9.693731-6 6.827643-1 9.700206-6 3.720019-1 9.716633-6 2.344067-1 9.739534-6 1.190343-1 9.762436-6 0.0 9.800474-6 0.0 9.849307-6 8.132856-1 9.860399-6 1.115919+0 9.873432-6 1.508913+0 9.897556-6 2.568978+0 9.908939-6 3.258127+0 9.921680-6 4.264990+0 9.959989-6 7.931747+0 1.001818-5 1.458316+1 1.004532-5 1.721526+1 1.007010-5 1.895134+1 1.009703-5 1.983610+1 1.011500-5 1.990694+1 1.013663-5 1.918211+1 1.016175-5 1.753087+1 1.018811-5 1.498847+1 1.023859-5 9.344150+0 1.027363-5 5.951379+0 1.028620-5 5.064463+0 1.029802-5 4.432629+0 1.032393-5 3.738084+0 1.034741-5 3.695157+0 1.038879-5 4.635782+0 1.040925-5 5.434141+0 1.044457-5 6.837155+0 1.047711-5 7.572478+0 1.052201-5 8.044201+0 1.056635-5 8.368349+0 1.061128-5 9.542111+0 1.068387-5 1.223431+1 1.071200-5 1.269511+1 1.074788-5 1.270064+1 1.081049-5 1.114026+1 1.086723-5 9.581602+0 1.090639-5 9.102958+0 1.095514-5 9.483957+0 1.104969-5 1.082421+1 1.112123-5 1.087650+1 1.121279-5 1.078463+1 1.168523-5 1.152367+1 1.229923-5 1.208951+1 1.238287-5 1.313002+1 1.244433-5 1.491515+1 1.253460-5 1.858238+1 1.258175-5 1.958620+1 1.262673-5 1.937349+1 1.268824-5 1.734154+1 1.277144-5 1.416343+1 1.282911-5 1.294389+1 1.285092-5 1.276736+1 1.291189-5 1.350307+1 1.294854-5 1.476016+1 1.298330-5 1.658383+1 1.303053-5 2.002222+1 1.310373-5 2.588804+1 1.314039-5 2.761924+1 1.316989-5 2.797968+1 1.320719-5 2.686577+1 1.324854-5 2.413712+1 1.332151-5 1.814822+1 1.336104-5 1.566981+1 1.338475-5 1.451234+1 1.342033-5 1.340954+1 1.348626-5 1.222647+1 1.486014-5 1.139027+1 1.899879-5 6.899353+0 2.088426-5 5.266165+0 2.164792-5 4.776044+0 2.196374-5 4.651353+0 2.247444-5 4.206939+0 2.410462-5 3.383011+0 2.582000-5 2.707800+0 2.738750-5 2.238635+0 2.915715-5 1.831779+0 3.111044-5 1.494326+0 3.334924-5 1.209536+0 3.590639-5 9.772264-1 3.881900-5 7.935337-1 4.185834-5 6.631360-1 4.545323-5 5.611974-1 4.930316-5 4.922697-1 5.370318-5 4.453767-1 5.991574-5 4.136627-1 6.575600-5 4.042556-1 6.608096-5 6.154153-1 6.624634-5 7.953194-1 6.634481-5 9.552403-1 6.640340-5 1.073067+0 6.656525-5 1.494486+0 6.675816-5 2.123276+0 6.715001-5 3.535356+0 6.723400-5 3.805231+0 6.740994-5 4.190058+0 6.756464-5 4.339845+0 6.775375-5 4.235117+0 6.792473-5 3.927671+0 6.817110-5 3.249219+0 6.854750-5 2.068136+0 6.866930-5 1.721822+0 6.895760-5 1.054545+0 6.899300-5 9.860419-1 6.912090-5 8.236038-1 6.928419-5 6.692797-1 6.961079-5 4.626899-1 6.986484-5 4.277501-1 7.019418-5 4.043286-1 7.429356-5 4.075528-1 7.465929-5 4.508347-1 7.484215-5 4.865115-1 7.502502-5 5.405352-1 7.520788-5 6.144042-1 7.544110-5 7.337531-1 7.576364-5 9.322945-1 7.598552-5 1.042138+0 7.616155-5 1.110553+0 7.637472-5 1.166685+0 7.712806-5 1.264973+0 7.765826-5 1.264080+0 7.813848-5 1.199539+0 7.917318-5 1.186800+0 8.470756-5 1.357691+0 8.734849-5 1.510855+0 9.041810-5 1.792979+0 9.281136-5 2.106328+0 9.578662-5 2.616699+0 1.001229-4 3.582620+0 1.139000-4 7.164327+0 1.244825-4 9.426308+0 1.430000-4 1.259356+1 1.592097-4 1.459546+1 1.794787-4 1.609419+1 1.894289-4 1.728706+1 2.125690-4 1.802257+1 2.366543-4 1.823203+1 2.406896-4 1.889149+1 2.450863-4 1.804973+1 2.533365-4 1.846398+1 3.207989-4 1.661068+1 4.564308-4 1.246241+1 5.566461-4 1.015563+1 6.518010-4 8.495406+0 7.673615-4 6.979444+0 9.027096-4 5.683250+0 1.052557-3 4.641637+0 1.211119-3 3.834312+0 1.407074-3 3.109415+0 1.517304-3 2.813022+0 1.526052-3 2.917688+0 1.531689-3 3.152685+0 1.535895-3 3.484909+0 1.540472-3 4.049818+0 1.545551-3 4.941740+0 1.562717-3 8.743802+0 1.570960-3 9.963016+0 1.595672-3 1.208964+1 1.613000-3 1.413100+1 1.625885-3 1.487342+1 1.664927-3 1.466879+1 1.735047-3 1.401060+1 1.784648-3 1.501819+1 2.152446-3 1.158706+1 2.462006-3 9.484687+0 2.854450-3 7.550330+0 3.286387-3 6.043218+0 3.756684-3 4.862259+0 4.314463-3 3.866973+0 4.926064-3 3.094957+0 5.462176-3 2.594782+0 6.235666-3 2.065454+0 7.076267-3 1.655902+0 7.900886-3 1.363719+0 8.851502-3 1.114544+0 9.982180-3 8.985671-1 1.121894-2 7.278411-1 1.264836-2 5.853264-1 1.310442-2 5.532971-1 1.316690-2 5.769061-1 1.320443-2 6.182224-1 1.323635-2 6.847437-1 1.326389-2 7.751707-1 1.329557-2 9.281500-1 1.332673-2 1.134860+0 1.336119-2 1.430168+0 1.349814-2 2.854226+0 1.355335-2 3.260549+0 1.360907-2 3.494529+0 1.370186-2 3.614609+0 1.607783-2 2.825884+0 1.839613-2 2.261995+0 2.104384-2 1.804872+0 2.377655-2 1.460531+0 2.671339-2 1.191280+0 3.027951-2 9.513519-1 3.392355-2 7.744185-1 3.768256-2 6.379074-1 4.206816-2 5.197807-1 4.646679-2 4.307781-1 5.116433-2 3.588024-1 5.674999-2 2.939155-1 6.255324-2 2.435656-1 6.954275-2 1.979792-1 7.804476-2 1.578895-1 8.644474-2 1.288787-1 9.681741-2 1.029013-1 1.088070-1 8.158179-2 1.193765-1 6.779271-2 1.314468-1 5.590900-2 1.458140-1 4.544027-2 1.593414-1 3.806578-2 1.757233-1 3.131323-2 1.959338-1 2.527478-2 2.158330-1 2.090321-2 2.387210-1 1.718723-2 2.625581-1 1.431722-2 2.881386-1 1.202232-2 3.171189-1 1.006381-2 3.489376-1 8.463264-3 3.866520-1 7.062163-3 4.328018-1 5.829064-3 4.850223-1 4.841863-3 5.366455-1 4.134912-3 5.948056-1 3.548182-3 6.763263-1 2.964327-3 7.765264-1 2.481895-3 9.139817-1 2.052473-3 1.070165+0 1.734498-3 1.286622+0 1.426770-3 1.546860+0 1.173637-3 1.859734+0 9.654148-4 2.235892+0 7.941343-4 2.688134+0 6.532419-4 3.231848+0 5.373460-4 3.885536+0 4.420120-4 4.671441+0 3.635918-4 5.616308+0 2.990847-4 6.752287+0 2.460222-4 8.118035+0 2.023738-4 9.760024+0 1.664694-4 1.000000+1 3.347940-4 1 35000 7 0 7.990900+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.500297+1 3.039584-6-3.501707+1 6.678254-6-3.433130+1 7.230838-6-3.288305+1 7.390270-6-3.108970+1 7.443379-6-2.918100+1 7.517468-6-2.564764+1 7.547790-6-2.545254+1 7.570674-6-2.681683+1 7.599494-6-3.056378+1 7.633674-6-3.677674+1 7.666395-6-3.184901+1 7.694250-6-2.997760+1 7.726288-6-3.022916+1 7.837737-6-3.570039+1 7.889246-6-3.696020+1 8.102321-6-3.244724+1 8.150320-6-3.357536+1 8.203824-6-3.721518+1 8.254350-6-3.461207+1 8.309996-6-3.475229+1 8.424030-6-3.742146+1 9.046529-6-3.289095+1 9.183163-6-3.045880+1 9.242407-6-2.804434+1 9.344479-6-2.135734+1 9.370483-6-2.062473+1 9.396010-6-2.147911+1 9.420137-6-2.366861+1 9.450839-6-2.899657+1 9.494420-6-3.883210+1 9.526697-6-3.246827+1 9.552798-6-2.935679+1 9.581676-6-2.809873+1 9.612028-6-2.899039+1 9.700720-6-3.555366+1 9.757152-6-3.935339+1 9.933685-6-2.935369+1 9.977013-6-2.864604+1 1.001499-5-2.986836+1 1.006115-5-3.405173+1 1.010966-5-4.027673+1 1.016614-5-3.370252+1 1.019994-5-3.148705+1 1.023859-5-3.113371+1 1.027363-5-3.249354+1 1.036539-5-3.918447+1 1.042555-5-4.144096+1 1.057233-5-4.206881+1 1.065377-5-4.232487+1 1.079504-5-3.761938+1 1.086723-5-3.770384+1 1.099732-5-3.964141+1 1.121279-5-3.864797+1 1.208750-5-3.793946+1 1.229923-5-3.914756+1 1.234713-5-3.932569+1 1.246658-5-3.705891+1 1.253460-5-3.796604+1 1.255954-5-3.842034+1 1.266585-5-3.337539+1 1.272795-5-3.258173+1 1.280925-5-3.413975+1 1.289767-5-3.718041+1 1.298880-5-3.339674+1 1.304584-5-3.296462+1 1.309874-5-3.527491+1 1.311543-5-3.658628+1 1.320719-5-2.685752+1 1.324854-5-2.360167+1 1.328535-5-2.205004+1 1.332151-5-2.176866+1 1.338475-5-2.305964+1 1.352130-5-2.662299+1 1.371509-5-2.810479+1 1.421194-5-2.852577+1 1.726030-5-2.567991+1 2.048482-5-2.486335+1 4.800000-5-2.837657+1 6.400696-5-3.030580+1 6.603621-5-3.161034+1 6.697809-5-3.131682+1 6.723400-5-3.170206+1 6.817110-5-2.822810+1 6.883115-5-2.803710+1 7.046955-5-2.964333+1 7.616155-5-3.140966+1 8.179153-5-3.161926+1 1.051398-4-3.511872+1 1.269125-4-3.436017+1 1.786654-4-2.885061+1 2.195760-4-2.334369+1 2.353573-4-2.203019+1 2.391043-4-2.169658+1 2.429704-4-2.049884+1 2.489633-4-2.057186+1 2.667648-4-1.849796+1 2.935971-4-1.623721+1 3.340027-4-1.379729+1 3.827863-4-1.171239+1 4.327629-4-1.028758+1 5.015512-4-9.040510+0 5.837810-4-8.199772+0 6.850766-4-7.716298+0 8.102123-4-7.591600+0 1.001035-3-7.991517+0 1.161641-3-8.806706+0 1.294444-3-9.963621+0 1.385458-3-1.127237+1 1.445440-3-1.265782+1 1.485776-3-1.415511+1 1.513101-3-1.587242+1 1.529920-3-1.783825+1 1.547507-3-2.048709+1 1.557898-3-2.086041+1 1.585617-3-1.899395+1 1.604314-3-1.825863+1 1.637279-3-1.451927+1 1.655628-3-1.313425+1 1.687500-3-1.161635+1 1.725325-3-1.055303+1 1.767031-3-1.026267+1 1.784648-3-9.566803+0 1.811939-3-8.281819+0 1.853872-3-7.059603+0 1.911670-3-5.872911+0 1.986060-3-4.750412+0 2.073570-3-3.770495+0 2.152446-3-3.089804+0 2.245502-3-2.459736+0 2.347183-3-1.923589+0 2.462006-3-1.451059+0 2.577805-3-1.086331+0 2.664961-3-8.575051-1 2.759744-3-6.638463-1 2.854450-3-5.044226-1 2.949152-3-3.741974-1 3.019952-3-2.941181-1 3.090295-3-2.240128-1 3.222231-3-1.161372-1 3.286387-3-7.457784-2 3.322051-3-5.364637-2 3.359611-3-3.438838-2 3.394542-3-1.803928-2 3.426137-3-4.498460-3 3.439877-3 1.034043-3 3.465810-3 1.033806-2 3.513755-3 2.663926-2 3.548134-3 3.719936-2 3.635968-3 5.951161-2 3.679436-3 6.876647-2 3.813196-3 8.860143-2 3.911921-3 9.496332-2 4.009821-3 9.933082-2 4.120975-3 9.941645-2 4.216965-3 9.546790-2 4.365158-3 8.388405-2 4.556545-3 6.067667-2 4.665600-3 4.460856-2 4.771686-3 2.791091-2 4.880454-3 9.986038-3 4.926064-3 2.186685-3 5.113227-3-3.218431-2 5.244300-3-5.754275-2 5.953866-3-2.076056-1 9.212446-3-9.201821-1 1.034735-2-1.208935+0 1.121894-2-1.494420+0 1.186793-2-1.788914+0 1.230882-2-2.073617+0 1.264836-2-2.392351+0 1.289812-2-2.747906+0 1.307186-2-3.143138+0 1.319332-2-3.621576+0 1.337621-2-4.695876+0 1.343599-2-4.800491+0 1.349814-2-4.626869+0 1.370186-2-3.318951+0 1.378476-2-2.955026+0 1.392999-2-2.526100+0 1.410183-2-2.177069+0 1.436072-2-1.796196+0 1.466559-2-1.472766+0 1.509787-2-1.141156+0 1.548816-2-9.188795-1 1.599438-2-6.952727-1 1.648977-2-5.218966-1 1.697274-2-3.849437-1 1.733777-2-3.000961-1 1.759505-2-2.470673-1 1.795476-2-1.830824-1 1.839613-2-1.149981-1 1.889078-2-4.999952-2 1.934335-2-2.658564-4 1.937258-2 2.963682-3 1.990244-2 5.253508-2 2.039168-2 9.118374-2 2.104384-2 1.361795-1 2.148371-2 1.603473-1 2.203412-2 1.861892-1 2.317637-2 2.259222-1 2.491907-2 2.623180-1 2.671339-2 2.815544-1 2.923767-2 2.876855-1 3.392355-2 2.699152-1 4.966948-2 1.605361-1 5.839683-2 1.111019-1 6.475137-2 8.191621-2 7.144727-2 5.600889-2 7.616036-2 4.036990-2 8.145928-2 2.506946-2 8.644474-2 1.226667-2 8.990006-2 4.345468-3 9.133751-2 1.192785-3 9.244252-2-1.174320-3 9.473193-2-5.807984-3 9.681741-2-9.870467-3 1.006280-1-1.682992-2 1.059292-1-2.545907-2 1.140400-1-3.698263-2 1.230269-1-4.772629-2 1.367844-1-6.104891-2 1.550719-1-7.443762-2 1.823818-1-8.855186-2 2.238092-1-1.019786-1 2.881386-1-1.135951-1 4.022193-1-1.231120-1 6.437986-1-1.297847-1 1.619761+0-1.335350-1 4.891600+0-1.341529-1 1.000000+1-1.341738-1 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.981773-5 1.075793-6 6.236240-5 1.143030-6 7.314990-5 1.152000-6 7.509979-5 1.214470-6 9.657247-5 1.290374-6 1.247916-4 1.371022-6 1.553117-4 1.440000-6 1.823870-4 1.456711-6 1.924844-4 1.502233-6 2.236369-4 1.549178-6 2.566955-4 1.597590-6 2.914198-4 1.647515-6 3.275431-4 1.699000-6 3.647503-4 1.800000-6 4.387893-4 1.863310-6 5.076403-4 1.921539-6 5.738768-4 2.025000-6 6.941879-4 2.107371-6 8.245306-4 2.173226-6 9.327603-4 2.278125-6 1.108831-3 2.383399-6 1.345393-3 2.457881-6 1.516332-3 2.534689-6 1.691263-3 2.562891-6 1.761468-3 2.613898-6 1.916720-3 2.695583-6 2.178010-3 2.779820-6 2.444768-3 2.883252-6 2.777258-3 2.956273-6 3.088945-3 3.048657-6 3.496147-3 3.143927-6 3.907076-3 3.243658-6 4.339750-3 3.343493-6 4.888501-3 3.555726-6 6.133183-3 3.661786-6 6.786552-3 3.781432-6 7.647192-3 3.890648-6 8.435552-3 4.021464-6 9.516652-3 4.133813-6 1.044659-2 4.276733-6 1.182700-2 4.392177-6 1.291470-2 4.548205-6 1.459342-2 4.685896-6 1.603322-2 4.819285-6 1.758996-2 4.958356-6 1.908449-2 5.073687-6 2.050043-2 5.194957-6 2.182543-2 5.268253-6 2.259263-2 5.426247-6 2.443504-2 5.597519-6 2.598896-2 5.746776-6 2.745238-2 5.847012-6 2.811095-2 5.947364-6 2.858641-2 6.038185-6 2.912425-2 6.129315-6 2.945018-2 6.217596-6 2.937296-2 6.388642-6 2.872675-2 6.503203-6 2.801321-2 6.548998-6 2.765029-2 6.699331-6 2.581551-2 6.840269-6 2.316886-2 6.859953-6 2.274771-2 6.972397-6 2.013691-2 7.078410-6 1.712949-2 7.096268-6 1.657882-2 7.194406-6 1.343991-2 7.212397-6 1.285578-2 7.321268-6 9.250952-3 7.423334-6 5.799309-3 7.441810-6 5.204134-3 7.507955-6 3.273772-3 7.519022-6 2.989025-3 7.608728-6 1.196746-3 7.692829-6 6.865555-4 7.771672-6 1.881750-3 7.782497-6 2.218858-3 7.801908-6 2.950028-3 7.845589-6 5.269491-3 7.914885-6 1.133893-2 7.979850-6 2.061484-2 8.040755-6 3.362765-2 8.077489-6 4.407117-2 8.097854-6 5.087300-2 8.151384-6 7.291074-2 8.201568-6 1.004198-1 8.248615-6 1.341022-1 8.292723-6 1.745851-1 8.372839-6 2.783739-1 8.443254-6 4.173652-1 8.475196-6 5.020587-1 8.505142-6 5.979679-1 8.533217-6 7.059081-1 8.559536-6 8.267068-1 8.584211-6 9.612058-1 8.607343-6 1.110269+0 8.629030-6 1.274802+0 8.649361-6 1.455794+0 8.687482-6 1.887593+0 8.720838-6 2.407756+0 8.750025-6 3.033475+0 8.775563-6 3.784263+0 8.797909-6 4.676702+0 8.817462-6 5.718328+0 8.834570-6 6.903791+0 8.849540-6 8.214754+0 8.862639-6 9.622884+0 8.874101-6 1.109432+1 8.892904-6 1.408955+1 8.931656-6 2.319240+1 8.951142-6 2.961592+1 8.962811-6 3.413461+1 8.976370-6 4.004039+1 8.987390-6 4.535550+1 8.998410-6 5.111380+1 9.020450-6 6.380069+1 9.023205-6 6.547803+1 9.042490-6 7.759073+1 9.050067-6 8.244579+1 9.064530-6 9.165774+1 9.072106-6 9.636431+1 9.079338-6 1.007204+2 9.086570-6 1.048968+2 9.096213-6 1.101057+2 9.105511-6 1.146461+2 9.114120-6 1.183448+2 9.121352-6 1.210234+2 9.130650-6 1.238293+2 9.142359-6 1.262446+2 9.152690-6 1.272647+2 9.157215-6 1.273706+2 9.168162-6 1.267535+2 9.177682-6 1.252155+2 9.186233-6 1.230594+2 9.195629-6 1.198850+2 9.204245-6 1.162835+2 9.219499-6 1.084807+2 9.229356-6 1.026282+2 9.236540-6 9.804637+1 9.246015-6 9.168913+1 9.253398-6 8.655800+1 9.262890-6 7.982762+1 9.272532-6 7.294441+1 9.282605-6 6.582360+1 9.284930-6 6.420249+1 9.295950-6 5.668887+1 9.305592-6 5.041463+1 9.308347-6 4.868380+1 9.318678-6 4.247014+1 9.327718-6 3.742347+1 9.329010-6 3.673405+1 9.351050-6 2.624240+1 9.359530-6 2.285591+1 9.366310-6 2.040445+1 9.378600-6 1.651945+1 9.410838-6 9.373140+0 9.422382-6 7.706790+0 9.429781-6 6.837172+0 9.436951-6 6.123648+0 9.443898-6 5.539525+0 9.450683-6 5.058619+0 9.457256-6 4.666417+0 9.463624-6 4.346423+0 9.469792-6 4.084905+0 9.481557-6 3.693853+0 9.495230-6 3.371211+0 9.509268-6 3.135071+0 9.528376-6 2.895440+0 9.544438-6 2.724329+0 9.594075-6 2.274811+0 9.609764-6 2.203257+0 9.622577-6 2.201510+0 9.632187-6 2.245265+0 9.640088-6 2.316402+0 9.644800-6 2.375917+0 9.648854-6 2.438227+0 9.654935-6 2.552297+0 9.661016-6 2.692817+0 9.665289-6 2.808384+0 9.670166-6 2.958165+0 9.677481-6 3.220415+0 9.684796-6 3.530158+0 9.696685-6 4.140886+0 9.732354-6 6.819006+0 9.735327-6 7.099410+0 9.756134-6 9.284603+0 9.764308-6 1.023664+1 9.779913-6 1.216161+1 9.788087-6 1.320709+1 9.795890-6 1.421485+1 9.806665-6 1.560079+1 9.815768-6 1.674498+1 9.824546-6 1.780505+1 9.833417-6 1.881418+1 9.841219-6 1.963537+1 9.849997-6 2.046908+1 9.852737-6 2.070736+1 9.863884-6 2.155601+1 9.873986-6 2.214184+1 9.879913-6 2.239785+1 9.891724-6 2.270435+1 9.899913-6 2.275383+1 9.908284-6 2.266613+1 9.918508-6 2.237386+1 9.928172-6 2.191996+1 9.931442-6 2.172969+1 9.947112-6 2.058777+1 9.955680-6 1.982429+1 9.962010-6 1.920943+1 9.973121-6 1.804895+1 9.983687-6 1.687983+1 9.993927-6 1.571768+1 1.000433-5 1.453777+1 1.001771-5 1.306525+1 1.005691-5 9.421185+0 1.006954-5 8.531690+0 1.007442-5 8.227904+0 1.008173-5 7.812560+0 1.009053-5 7.374418+0 1.009819-5 7.044266+0 1.010551-5 6.770067+0 1.011282-5 6.532085+0 1.012323-5 6.248119+0 1.013541-5 5.982334+0 1.014323-5 5.841406+0 1.015510-5 5.659416+0 1.018614-5 5.270900+0 1.020398-5 5.050115+0 1.021096-5 4.957922+0 1.022648-5 4.737346+0 1.023579-5 4.594025+0 1.024823-5 4.390387+0 1.026688-5 4.063260+0 1.028554-5 3.719220+0 1.031042-5 3.253016+0 1.033531-5 2.799387+0 1.036020-5 2.374258+0 1.038509-5 1.986336+0 1.040998-5 1.639114+0 1.045975-5 1.069105+0 1.050953-5 6.706349-1 1.053441-5 5.444446-1 1.055930-5 4.777081-1 1.058337-5 4.829703-1 1.060908-5 5.867818-1 1.063213-5 7.954013-1 1.064117-5 9.153076-1 1.065231-5 1.099388+0 1.066996-5 1.489246+0 1.071244-5 3.140039+0 1.073271-5 4.457509+0 1.074792-5 5.769674+0 1.077072-5 8.420666+0 1.078213-5 1.012769+1 1.079353-5 1.214169+1 1.080578-5 1.469731+1 1.081803-5 1.771718+1 1.083235-5 2.192032+1 1.084666-5 2.694891+1 1.085897-5 3.201284+1 1.087128-5 3.783192+1 1.088382-5 4.460254+1 1.089657-5 5.241151+1 1.091143-5 6.276146+1 1.093465-5 8.170992+1 1.094574-5 9.194725+1 1.096333-5 1.096634+2 1.097254-5 1.196020+2 1.099599-5 1.465231+2 1.100520-5 1.575488+2 1.102507-5 1.816090+2 1.103680-5 1.956604+2 1.104240-5 2.022343+2 1.105080-5 2.118538+2 1.105920-5 2.210963+2 1.106951-5 2.317814+2 1.107793-5 2.398476+2 1.108899-5 2.493611+2 1.110053-5 2.577927+2 1.110487-5 2.605203+2 1.111744-5 2.669334+2 1.112882-5 2.707116+2 1.113550-5 2.719798+2 1.114881-5 2.723480+2 1.115884-5 2.707067+2 1.116798-5 2.677878+2 1.117993-5 2.619879+2 1.119056-5 2.550434+2 1.119901-5 2.484077+2 1.120969-5 2.387425+2 1.121967-5 2.285798+2 1.123053-5 2.164868+2 1.123968-5 2.056176+2 1.124802-5 1.952982+2 1.125805-5 1.825366+2 1.126573-5 1.726122+2 1.127670-5 1.583730+2 1.128816-5 1.436453+2 1.129081-5 1.402924+2 1.130421-5 1.237085+2 1.131593-5 1.099140+2 1.131928-5 1.061208+2 1.133185-5 9.255928+1 1.134441-5 8.013816+1 1.137289-5 5.655730+1 1.141425-5 3.338581+1 1.142699-5 2.858051+1 1.143696-5 2.547749+1 1.144857-5 2.251517+1 1.145332-5 2.149196+1 1.146219-5 1.985348+1 1.147338-5 1.826264+1 1.148429-5 1.718449+1 1.151764-5 1.660341+1 1.152598-5 1.709401+1 1.153223-5 1.763708+1 1.153692-5 1.814633+1 1.154044-5 1.858734+1 1.154571-5 1.934661+1 1.155277-5 2.055252+1 1.155762-5 2.151279+1 1.157217-5 2.507947+1 1.158344-5 2.860422+1 1.159471-5 3.285012+1 1.163677-5 5.577569+1 1.165257-5 6.744324+1 1.166782-5 8.024939+1 1.168610-5 9.743723+1 1.169420-5 1.056018+2 1.170966-5 1.219279+2 1.172114-5 1.345057+2 1.172662-5 1.405860+2 1.173484-5 1.497401+2 1.174307-5 1.588677+2 1.175398-5 1.708022+2 1.175843-5 1.755781+2 1.176623-5 1.837447+2 1.177646-5 1.939901+2 1.178633-5 2.032242+2 1.179849-5 2.135322+2 1.180914-5 2.214079+2 1.182398-5 2.303103+2 1.183624-5 2.356664+2 1.184477-5 2.382482+2 1.185450-5 2.400143+2 1.186478-5 2.404993+2 1.187418-5 2.397100+2 1.188812-5 2.364395+2 1.190025-5 2.316709+2 1.190742-5 2.280796+2 1.192217-5 2.190791+2 1.193222-5 2.118850+2 1.194552-5 2.013056+2 1.195589-5 1.924155+2 1.196754-5 1.819954+2 1.198353-5 1.673516+2 1.200309-5 1.496330+2 1.204784-5 1.139982+2 1.206415-5 1.036650+2 1.208710-5 9.192456+1 1.209862-5 8.727394+1 1.211786-5 8.126902+1 1.212793-5 7.895109+1 1.213942-5 7.694487+1 1.214491-5 7.621251+1 1.215314-5 7.536949+1 1.216137-5 7.481510+1 1.218347-5 7.460317+1 1.219058-5 7.488754+1 1.220123-5 7.559764+1 1.221318-5 7.676293+1 1.222782-5 7.866533+1 1.224111-5 8.079443+1 1.225586-5 8.355729+1 1.227713-5 8.819259+1 1.233991-5 1.052264+2 1.235292-5 1.091553+2 1.239356-5 1.215225+2 1.241577-5 1.279247+2 1.243018-5 1.317763+2 1.244521-5 1.354446+2 1.245781-5 1.381934+2 1.246689-5 1.399614+2 1.248282-5 1.425961+2 1.250221-5 1.449331+2 1.252026-5 1.462078+2 1.253063-5 1.465447+2 1.255046-5 1.464157+2 1.256562-5 1.456810+2 1.257505-5 1.449758+2 1.260243-5 1.420438+2 1.263863-5 1.369046+2 1.268511-5 1.301852+2 1.271530-5 1.267874+2 1.273416-5 1.252781+2 1.275530-5 1.242073+2 1.278211-5 1.237763+2 1.281208-5 1.243629+2 1.284413-5 1.258994+2 1.293803-5 1.320276+2 1.297858-5 1.341875+2 1.301172-5 1.355638+2 1.309070-5 1.378799+2 1.338640-5 1.450828+2 1.356167-5 1.480647+2 1.367913-5 1.500248+2 1.412926-5 1.597555+2 1.445440-5 1.658815+2 1.483595-5 1.720108+2 1.519375-5 1.767515+2 1.560413-5 1.808117+2 1.591034-5 1.828402+2 1.641046-5 1.846867+2 1.686311-5 1.848734+2 1.730438-5 1.839002+2 1.764493-5 1.824812+2 1.795606-5 1.806474+2 1.851397-5 1.765160+2 1.891442-5 1.730540+2 1.939569-5 1.684883+2 2.006856-5 1.615342+2 2.077381-5 1.540431+2 2.194150-5 1.419174+2 2.369104-5 1.253727+2 2.474453-5 1.165401+2 2.522702-5 1.136142+2 2.570952-5 1.100773+2 2.619211-5 1.066065+2 2.851018-5 9.308360+1 3.101320-5 8.180214+1 3.349654-5 7.315882+1 3.635586-5 6.547697+1 3.874388-5 6.029820+1 4.268098-5 5.356082+1 5.629259-5 3.877697+1 6.030323-5 3.556944+1 6.265000-5 3.378438+1 6.524713-5 3.188091+1 6.800000-5 2.991091+1 7.087696-5 2.787632+1 7.372800-5 2.584207+1 7.500000-5 2.491509+1 7.800000-5 2.274048+1 8.136788-5 2.016741+1 8.390991-5 1.809805+1 8.571988-5 1.648801+1 8.744637-5 1.478065+1 8.843732-5 1.362039+1 8.887160-5 1.303162+1 8.937719-5 1.229117+1 9.003717-5 1.135221+1 9.025735-5 1.108920+1 9.048303-5 1.086535+1 9.072069-5 1.068959+1 9.095962-5 1.058036+1 9.118714-5 1.053861+1 9.140730-5 1.055054+1 9.164252-5 1.061003+1 9.188432-5 1.070773+1 9.280534-5 1.116331+1 9.312093-5 1.127244+1 9.341522-5 1.132994+1 9.362295-5 1.134257+1 9.389666-5 1.132492+1 9.447841-5 1.118142+1 9.519621-5 1.089240+1 9.645530-5 1.031352+1 9.746687-5 9.823873+0 9.914021-5 8.969715+0 1.002895-4 8.361042+0 1.014508-4 7.741595+0 1.045000-4 6.260055+0 1.051250-4 6.005819+0 1.060000-4 5.691973+0 1.067199-4 5.476862+0 1.076316-4 5.268212+0 1.085014-4 5.143021+0 1.093500-4 5.098616+0 1.100000-4 5.122191+0 1.108564-4 5.236412+0 1.119030-4 5.511912+0 1.130671-4 6.002684+0 1.141274-4 6.629950+0 1.151033-4 7.369028+0 1.157663-4 7.962848+0 1.166854-4 8.910456+0 1.193732-4 1.243867+1 1.211430-4 1.533575+1 1.226549-4 1.813899+1 1.235000-4 1.982127+1 1.246239-4 2.217310+1 1.257500-4 2.464313+1 1.272500-4 2.807502+1 1.280000-4 2.984148+1 1.295000-4 3.345842+1 1.305000-4 3.592301+1 1.315000-4 3.842201+1 1.325000-4 4.094845+1 1.335000-4 4.349782+1 1.346500-4 4.645444+1 1.363314-4 5.081820+1 1.380384-4 5.529286+1 1.400000-4 6.048842+1 1.430000-4 6.852380+1 1.465000-4 7.809770+1 1.500000-4 8.788967+1 1.549263-4 1.020410+2 1.600000-4 1.170162+2 1.650000-4 1.319696+2 1.708272-4 1.492235+2 1.766494-4 1.658196+2 1.820000-4 1.802281+2 1.873811-4 1.934111+2 1.901426-4 1.995291+2 1.936100-4 2.065556+2 1.978995-4 2.140178+2 1.996121-4 2.176386+2 2.010223-4 2.218717+2 2.113489-4 2.641021+2 2.132984-4 2.717514+2 2.159778-4 2.813863+2 2.195967-4 2.928745+2 2.236321-4 3.034995+2 2.297634-4 3.177955+2 2.373371-4 3.341114+2 2.457600-4 3.505845+2 2.551778-4 3.673377+2 2.635032-4 3.799097+2 2.715169-4 3.896119+2 2.736555-4 3.945984+2 2.803000-4 4.176574+2 2.843478-4 4.276614+2 2.917427-4 4.426332+2 2.993740-4 4.552783+2 3.109001-4 4.714946+2 3.227904-4 4.853606+2 3.362566-4 4.987702+2 3.630780-4 5.208438+2 3.894478-4 5.380210+2 4.004054-4 5.439566+2 4.196441-4 5.525842+2 4.381893-4 5.590335+2 4.782858-4 5.688935+2 5.289395-4 5.763627+2 5.883804-4 5.798478+2 6.440545-4 5.795771+2 7.125991-4 5.760630+2 7.553096-4 5.715572+2 8.337112-4 5.610789+2 9.202509-4 5.478584+2 9.730270-4 5.388353+2 1.025654-3 5.289602+2 1.084124-3 5.168771+2 1.141563-3 5.036671+2 1.201927-3 4.873120+2 1.257815-3 4.700105+2 1.309117-3 4.528769+2 1.358394-3 4.349747+2 1.400538-3 4.179923+2 1.438692-3 4.008270+2 1.469460-3 3.853639+2 1.492581-3 3.724546+2 1.517972-3 3.566304+2 1.539269-3 3.415671+2 1.561076-3 3.237480+2 1.578782-3 3.067372+2 1.592237-3 2.918233+2 1.602275-3 2.793817+2 1.614219-3 2.624896+2 1.623671-3 2.467462+2 1.631122-3 2.324751+2 1.635511-3 2.233487+2 1.642124-3 2.090132+2 1.650416-3 1.917102+2 1.654961-3 1.836753+2 1.658103-3 1.791583+2 1.661623-3 1.753868+2 1.663232-3 1.741748+2 1.665327-3 1.731154+2 1.667654-3 1.726531+2 1.670659-3 1.731867+2 1.673623-3 1.749400+2 1.676600-3 1.778539+2 1.679959-3 1.823766+2 1.684033-3 1.892952+2 1.698956-3 2.210472+2 1.704231-3 2.325887+2 1.715470-3 2.569211+2 1.726767-3 2.836223+2 1.743000-3 3.283089+2 1.747483-3 3.410280+2 1.752541-3 3.549479+2 1.759250-3 3.721850+2 1.767485-3 3.908845+2 1.773996-3 4.036661+2 1.781379-3 4.162164+2 1.790699-3 4.296222+2 1.803962-3 4.451169+2 1.814267-3 4.549010+2 1.828044-3 4.654555+2 1.841349-3 4.731805+2 1.853624-3 4.783087+2 1.873503-3 4.843543+2 1.881602-3 4.875243+2 1.889367-3 4.919522+2 1.896364-3 4.974960+2 1.907068-3 5.088826+2 1.930664-3 5.397230+2 1.940318-3 5.511781+2 1.950223-3 5.612214+2 1.962991-3 5.718443+2 1.976836-3 5.812402+2 1.993000-3 5.904269+2 2.013211-3 6.001858+2 2.035935-3 6.096134+2 2.082891-3 6.251236+2 2.135385-3 6.380904+2 2.192616-3 6.481192+2 2.278447-3 6.577335+2 2.370183-3 6.635656+2 2.475551-3 6.657780+2 2.581517-3 6.648075+2 2.740893-3 6.592091+2 2.917427-3 6.496594+2 3.143154-3 6.331438+2 3.379919-3 6.137932+2 3.686400-3 5.876312+2 4.059172-3 5.557310+2 4.538722-3 5.170513+2 5.051699-3 4.788345+2 5.800127-3 4.296625+2 6.510613-3 3.888859+2 7.057028-3 3.604719+2 7.582267-3 3.354823+2 8.219191-3 3.079255+2 8.869326-3 2.823914+2 9.586518-3 2.567900+2 9.975295-3 2.439601+2 1.038616-2 2.311005+2 1.114200-2 2.090301+2 1.178708-2 1.914763+2 1.229785-2 1.781430+2 1.271139-2 1.674135+2 1.304811-2 1.584454+2 1.331995-2 1.507591+2 1.344169-2 1.470598+2 1.362094-2 1.410838+2 1.369163-2 1.384507+2 1.375944-2 1.356899+2 1.382513-2 1.327074+2 1.388020-2 1.299008+2 1.395253-2 1.257216+2 1.407856-2 1.175818+2 1.414934-2 1.135358+2 1.419268-2 1.117390+2 1.423360-2 1.107257+2 1.426310-2 1.104642+2 1.430376-2 1.107661+2 1.434451-2 1.117886+2 1.439699-2 1.139606+2 1.453901-2 1.217987+2 1.457542-2 1.236893+2 1.464344-2 1.267277+2 1.472370-2 1.294484+2 1.477415-2 1.307469+2 1.488185-2 1.327558+2 1.496236-2 1.337921+2 1.513779-2 1.352246+2 1.539926-2 1.360726+2 1.574824-2 1.358454+2 1.617436-2 1.344260+2 1.667367-2 1.319131+2 1.721795-2 1.286747+2 1.801254-2 1.235227+2 1.907690-2 1.163844+2 2.043272-2 1.076599+2 2.213885-2 9.765429+1 2.391939-2 8.842670+1 2.626153-2 7.790873+1 2.898147-2 6.771610+1 3.236665-2 5.747280+1 3.560023-2 4.968362+1 3.905549-2 4.287259+1 4.366577-2 3.560666+1 5.337729-2 2.535014+1 6.096379-2 2.012712+1 8.767011-2 1.059180+1 1.073724-1 7.360668+0 1.285400-1 5.292613+0 1.590151-1 3.555007+0 2.074269-1 2.144028+0 2.851018-1 1.160873+0 4.005329-1 5.982058-1 5.939501-1 2.753142-1 1.005773+0 9.674999-2 2.947480+0 1.131066-2 8.901248+0 1.240795-3 2.688134+1 1.360577-4 8.118035+1 1.491852-5 2.451607+2 1.635784-6 7.403736+2 1.793602-7 2.511886+3 1.558217-8 7.943282+3 1.558217-9 2.511886+4 1.55822-10 7.943282+4 1.55822-11 1.000000+5 9.83168-12 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.503100-7 1.258900-6 1.189200-6 1.584900-6 1.884700-6 1.995300-6 2.987000-6 2.511900-6 4.734100-6 3.162300-6 7.503100-6 3.981100-6 1.189100-5 5.011900-6 1.884700-5 6.309600-6 2.987000-5 7.943300-6 4.734000-5 1.000000-5 7.502800-5 1.258900-5 1.189100-4 1.584900-5 1.884600-4 1.995300-5 2.986700-4 2.511900-5 4.733500-4 3.162300-5 7.501300-4 3.981100-5 1.188500-3 5.011900-5 1.883200-3 6.309600-5 2.983900-3 7.943300-5 4.728100-3 1.000000-4 7.490000-3 1.258900-4 1.186300-2 1.584900-4 1.877300-2 1.995300-4 2.970000-2 2.511900-4 4.692900-2 3.162300-4 7.403300-2 3.981100-4 1.164800-1 5.011900-4 1.825500-1 6.309600-4 2.839700-1 7.943300-4 4.369600-1 1.000000-3 6.628200-1 1.258900-3 9.845900-1 1.584900-3 1.423500+0 1.995300-3 1.993700+0 2.511900-3 2.702000+0 3.162300-3 3.552500+0 3.981100-3 4.544000+0 5.011900-3 5.645000+0 6.309600-3 6.826700+0 7.943300-3 8.078900+0 1.000000-2 9.426000+0 1.258900-2 1.083100+1 1.584900-2 1.223900+1 1.995300-2 1.355800+1 2.511900-2 1.471100+1 3.162300-2 1.565200+1 3.981100-2 1.634300+1 5.011900-2 1.675200+1 6.309600-2 1.686500+1 7.943300-2 1.671600+1 1.000000-1 1.633900+1 1.258900-1 1.576500+1 1.584900-1 1.503200+1 1.995300-1 1.417200+1 2.511900-1 1.324100+1 3.162300-1 1.226600+1 3.981100-1 1.128100+1 5.011900-1 1.030700+1 6.309600-1 9.358900+0 7.943300-1 8.446500+0 1.000000+0 7.577000+0 1.258900+0 6.755100+0 1.584900+0 5.984400+0 1.995300+0 5.268100+0 2.511900+0 4.608400+0 3.162300+0 4.006600+0 3.981100+0 3.463000+0 5.011900+0 2.976400+0 6.309600+0 2.545000+0 7.943300+0 2.165600+0 1.000000+1 1.834700+0 1.258900+1 1.548100+0 1.584900+1 1.301500+0 1.995300+1 1.090600+0 2.511900+1 9.110900-1 3.162300+1 7.590900-1 3.981100+1 6.309000-1 5.011900+1 5.232100-1 6.309600+1 4.330200-1 7.943300+1 3.577300-1 1.000000+2 2.950500-1 1.258900+2 2.429800-1 1.584900+2 1.998200-1 1.995300+2 1.641200-1 2.511900+2 1.346400-1 3.162300+2 1.103300-1 3.981100+2 9.032400-2 5.011900+2 7.387500-2 6.309600+2 6.036900-2 7.943300+2 4.929200-2 1.000000+3 4.021600-2 1.258900+3 3.278800-2 1.584900+3 2.671300-2 1.995300+3 2.175000-2 2.511900+3 1.769900-2 3.162300+3 1.439300-2 3.981100+3 1.169900-2 5.011900+3 9.503700-3 6.309600+3 7.716700-3 7.943300+3 6.262700-3 1.000000+4 5.080300-3 1.258900+4 4.119400-3 1.584900+4 3.338800-3 1.995300+4 2.705100-3 2.511900+4 2.190800-3 3.162300+4 1.773600-3 3.981100+4 1.435300-3 5.011900+4 1.161200-3 6.309600+4 9.390900-4 7.943300+4 7.592300-4 1.000000+5 6.136200-4 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159544-4 3.981072-4 3.976745-4 5.011872-4 5.005026-4 6.309573-4 6.298728-4 7.943282-4 7.926210-4 1.000000-3 9.973102-4 1.258925-3 1.254699-3 1.584893-3 1.578262-3 1.995262-3 1.984927-3 2.511886-3 2.495792-3 3.162278-3 3.137211-3 3.981072-3 3.942166-3 5.011872-3 4.951443-3 6.309573-3 6.216104-3 7.943282-3 7.798276-3 1.000000-2 9.775204-3 1.258925-2 1.224054-2 1.584893-2 1.530947-2 1.995262-2 1.912226-2 2.511886-2 2.384768-2 3.162278-2 2.968689-2 3.981072-2 3.687765-2 5.011872-2 4.570022-2 6.309573-2 5.648762-2 7.943282-2 6.961462-2 1.000000-1 8.551753-2 1.258925-1 1.047017-1 1.584893-1 1.277453-1 1.995262-1 1.553485-1 2.511886-1 1.882705-1 3.162278-1 2.274168-1 3.981072-1 2.737964-1 5.011872-1 3.286030-1 6.309573-1 3.932434-1 7.943282-1 4.692151-1 1.000000+0 5.587179-1 1.258925+0 6.640757-1 1.584893+0 7.884328-1 1.995262+0 9.355546-1 2.511886+0 1.110091+0 3.162278+0 1.317810+0 3.981072+0 1.565749+0 5.011872+0 1.862520+0 6.309573+0 2.218740+0 7.943282+0 2.647190+0 1.000000+1 3.163799+0 1.258925+1 3.787823+0 1.584893+1 4.542948+0 1.995262+1 5.458056+0 2.511886+1 6.568893+0 3.162278+1 7.918849+0 3.981072+1 9.561309+0 5.011872+1 1.156207+1 6.309573+1 1.400168+1 7.943282+1 1.697920+1 1.000000+2 2.061670+1 1.258925+2 2.506397+1 1.584893+2 3.050560+1 1.995262+2 3.716880+1 2.511886+2 4.533397+1 3.162278+2 5.534654+1 3.981072+2 6.763090+1 5.011872+2 8.271432+1 6.309573+2 1.012438+2 7.943282+2 1.240195+2 1.000000+3 1.520293+2 1.258925+3 1.864919+2 1.584893+3 2.289173+2 1.995262+3 2.811796+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739883-9 3.981072-5 4.342091-9 5.011872-5 6.881413-9 6.309573-5 1.090587-8 7.943282-5 1.728387-8 1.000000-4 2.738922-8 1.258925-4 4.340225-8 1.584893-4 6.876437-8 1.995262-4 1.089504-7 2.511886-4 1.725848-7 3.162278-4 2.733192-7 3.981072-4 4.326675-7 5.011872-4 6.845979-7 6.309573-4 1.084508-6 7.943282-4 1.707233-6 1.000000-3 2.689787-6 1.258925-3 4.226164-6 1.584893-3 6.631562-6 1.995262-3 1.033524-5 2.511886-3 1.609419-5 3.162278-3 2.506628-5 3.981072-3 3.890575-5 5.011872-3 6.042966-5 6.309573-3 9.346947-5 7.943282-3 1.450061-4 1.000000-2 2.247961-4 1.258925-2 3.487155-4 1.584893-2 5.394666-4 1.995262-2 8.303664-4 2.511886-2 1.271184-3 3.162278-2 1.935885-3 3.981072-2 2.933070-3 5.011872-2 4.418505-3 6.309573-2 6.608110-3 7.943282-2 9.818207-3 1.000000-1 1.448247-2 1.258925-1 2.119080-2 1.584893-1 3.074406-2 1.995262-1 4.417778-2 2.511886-1 6.291815-2 3.162278-1 8.881096-2 3.981072-1 1.243108-1 5.011872-1 1.725842-1 6.309573-1 2.377139-1 7.943282-1 3.251132-1 1.000000+0 4.412821-1 1.258925+0 5.948497-1 1.584893+0 7.964604-1 1.995262+0 1.059708+0 2.511886+0 1.401796+0 3.162278+0 1.844467+0 3.981072+0 2.415323+0 5.011872+0 3.149352+0 6.309573+0 4.090833+0 7.943282+0 5.296092+0 1.000000+1 6.836201+0 1.258925+1 8.801431+0 1.584893+1 1.130598+1 1.995262+1 1.449457+1 2.511886+1 1.854997+1 3.162278+1 2.370393+1 3.981072+1 3.024941+1 5.011872+1 3.855665+1 6.309573+1 4.909405+1 7.943282+1 6.245362+1 1.000000+2 7.938330+1 1.258925+2 1.008286+2 1.584893+2 1.279837+2 1.995262+2 1.623574+2 2.511886+2 2.058547+2 3.162278+2 2.608812+2 3.981072+2 3.304763+2 5.011872+2 4.184729+2 6.309573+2 5.297136+2 7.943282+2 6.703087+2 1.000000+3 8.479707+2 1.258925+3 1.072434+3 1.584893+3 1.355976+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.272000-5 4.850200+7 1.303167-5 4.991079+7 1.333521-5 5.091823+7 1.343000-5 5.112462+7 1.343000-5 7.420242+7 1.360000-5 7.501055+7 1.370000-5 7.537548+7 1.390000-5 7.600743+7 1.396368-5 7.614264+7 1.412538-5 7.640371+7 1.420000-5 7.644913+7 1.445440-5 7.647443+7 1.450000-5 7.642911+7 1.479108-5 7.597153+7 1.480000-5 7.594771+7 1.515000-5 7.484560+7 1.540000-5 7.370161+7 1.550000-5 7.320829+7 1.570000-5 7.206194+7 1.584893-5 7.115904+7 1.603245-5 6.992209+7 1.621810-5 6.862080+7 1.640590-5 6.720303+7 1.659587-5 6.572919+7 1.678804-5 6.415647+7 1.701200-5 6.230039+7 1.717908-5 6.085655+7 1.750000-5 5.810074+7 1.757924-5 5.740102+7 1.800000-5 5.374316+7 1.850000-5 4.944300+7 1.905461-5 4.486790+7 1.950000-5 4.137489+7 1.972423-5 3.971684+7 2.000000-5 3.772755+7 2.041738-5 3.489936+7 2.070000-5 3.308981+7 2.113489-5 3.048372+7 2.150000-5 2.844708+7 2.213095-5 2.526705+7 2.238721-5 2.407870+7 2.350000-5 1.960286+7 2.371374-5 1.885324+7 2.540973-5 1.395723+7 2.744000-5 9.939551+6 2.744000-5 9.949886+6 2.754229-5 9.787283+6 2.775000-5 9.466999+6 2.791000-5 9.229118+6 2.806000-5 9.012809+6 2.818383-5 8.838969+6 2.828000-5 8.706828+6 2.840000-5 8.545371+6 2.851018-5 8.400397+6 2.862000-5 8.258932+6 2.873000-5 8.120199+6 2.884032-5 7.983967+6 2.892000-5 7.887342+6 2.903000-5 7.756335+6 2.915000-5 7.616503+6 2.926000-5 7.491081+6 2.937000-5 7.368230+6 2.948000-5 7.247890+6 2.960000-5 7.119401+6 2.975000-5 6.962777+6 2.990000-5 6.810448+6 3.010000-5 6.613789+6 3.040000-5 6.331986+6 3.101100-5 5.803292+6 3.135000-5 5.533935+6 3.162278-5 5.328602+6 3.190400-5 5.126931+6 3.220000-5 4.925028+6 3.235937-5 4.820500+6 3.245000-5 4.762833+6 3.280000-5 4.548216+6 3.315000-5 4.345850+6 3.349654-5 4.156757+6 3.350000-5 4.154933+6 3.388442-5 3.958496+6 3.427678-5 3.770241+6 3.470000-5 3.580033+6 3.520000-5 3.371152+6 3.570000-5 3.177986+6 3.589219-5 3.107596+6 3.610000-5 3.034705+6 3.670000-5 2.836545+6 3.730000-5 2.655323+6 3.758374-5 2.574985+6 3.785000-5 2.503069+6 3.850000-5 2.338509+6 3.900000-5 2.221787+6 3.920000-5 2.178044+6 4.000000-5 2.014344+6 4.073803-5 1.878212+6 4.120975-5 1.797818+6 4.168694-5 1.722137+6 4.265795-5 1.583772+6 4.365158-5 1.458398+6 4.415704-5 1.400096+6 4.466836-5 1.346349+6 4.570882-5 1.246080+6 4.650000-5 1.177246+6 4.677351-5 1.155423+6 4.680000-5 1.153369+6 4.800000-5 1.065748+6 4.850000-5 1.032213+6 4.954502-5 9.695013+5 5.069907-5 9.078327+5 5.128614-5 8.800408+5 5.188000-5 8.530966+5 5.248075-5 8.277740+5 5.308844-5 8.044319+5 5.400000-5 7.711701+5 5.450000-5 7.543686+5 5.500000-5 7.389712+5 5.623413-5 7.029013+5 5.650000-5 6.957563+5 5.688529-5 6.861529+5 5.821032-5 6.544953+5 5.850000-5 6.481381+5 5.900000-5 6.380088+5 6.025596-5 6.133874+5 6.150000-5 5.927249+5 6.220000-5 5.814343+5 6.237348-5 5.788622+5 6.400000-5 5.566993+5 6.450000-5 5.504487+5 6.606934-5 5.324730+5 6.650000-5 5.280875+5 6.683439-5 5.248666+5 6.800000-5 5.135077+5 6.850000-5 5.091105+5 7.000000-5 4.969518+5 7.079458-5 4.909458+5 7.244360-5 4.795144+5 7.300000-5 4.760947+5 7.328245-5 4.744537+5 7.500000-5 4.641694+5 7.762471-5 4.511752+5 7.800000-5 4.493550+5 8.035261-5 4.392403+5 8.150000-5 4.347129+5 8.222426-5 4.321345+5 8.317638-5 4.285637+5 8.511380-5 4.218081+5 8.650000-5 4.174536+5 8.709636-5 4.156913+5 9.015711-5 4.063278+5 9.332543-5 3.980466+5 9.398000-5 3.962730+5 9.398000-5 7.328052+5 9.535000-5 7.348293+5 9.535000-5 9.554837+5 9.549926-5 9.561926+5 9.630000-5 9.600868+5 9.740000-5 9.670633+5 9.800000-5 9.720053+5 9.850000-5 9.766748+5 9.885531-5 9.807940+5 9.900000-5 9.824850+5 9.960000-5 9.901520+5 1.000000-4 9.962495+5 1.005000-4 1.004633+6 1.011579-4 1.017461+6 1.015000-4 1.024795+6 1.023293-4 1.045238+6 1.025000-4 1.049787+6 1.030000-4 1.064740+6 1.035142-4 1.081216+6 1.040000-4 1.098558+6 1.045000-4 1.117759+6 1.050300-4 1.140154+6 1.055000-4 1.161426+6 1.060000-4 1.186159+6 1.066900-4 1.222846+6 1.071519-4 1.249687+6 1.080000-4 1.302917+6 1.085000-4 1.337179+6 1.096478-4 1.422922+6 1.100000-4 1.451478+6 1.109175-4 1.530964+6 1.115000-4 1.584122+6 1.150000-4 1.958569+6 1.161449-4 2.098328+6 1.162800-4 2.115521+6 1.165000-4 2.143406+6 1.180000-4 2.338297+6 1.190000-4 2.471432+6 1.194000-4 2.525845+6 1.205000-4 2.676360+6 1.220000-4 2.881627+6 1.235000-4 3.084754+6 1.250000-4 3.282911+6 1.258925-4 3.395450+6 1.265000-4 3.474084+6 1.280000-4 3.656484+6 1.288250-4 3.750654+6 1.295000-4 3.829237+6 1.315000-4 4.043643+6 1.335000-4 4.240027+6 1.355400-4 4.421184+6 1.358000-4 4.444674+6 1.380384-4 4.624029+6 1.400000-4 4.767011+6 1.412538-4 4.848615+6 1.430000-4 4.963557+6 1.465000-4 5.164745+6 1.500000-4 5.341137+6 1.548817-4 5.551882+6 1.600000-4 5.732694+6 1.650000-4 5.871150+6 1.659587-4 5.890251+6 1.678804-4 5.928379+6 1.698244-4 5.966736+6 1.705000-4 5.978233+6 1.740000-4 6.020334+6 1.760000-4 6.038260+6 1.800000-4 6.054369+6 1.820000-4 6.055755+6 1.850000-4 6.044129+6 1.862087-4 6.039405+6 1.880000-4 6.027118+6 1.927525-4 5.975624+6 1.950000-4 5.946184+6 2.000000-4 5.865220+6 2.018366-4 5.832312+6 2.041738-4 5.784973+6 2.069600-4 5.729597+6 2.069600-4 6.060005+6 2.080000-4 6.045466+6 2.089296-4 6.031061+6 2.113489-4 5.988881+6 2.137962-4 5.943404+6 2.151200-4 5.919349+6 2.151200-4 6.072972+6 2.162719-4 6.053381+6 2.180000-4 6.022116+6 2.194200-4 5.995594+6 2.240000-4 5.903457+6 2.264644-4 5.854386+6 2.270000-4 5.843231+6 2.290868-4 5.799741+6 2.317395-4 5.745778+6 2.330000-4 5.718374+6 2.380000-4 5.608159+6 2.400000-4 5.564803+6 2.450000-4 5.455152+6 2.511886-4 5.316926+6 2.540973-4 5.252185+6 2.580000-4 5.168170+6 2.600160-4 5.122753+6 2.630268-4 5.056260+6 2.660725-4 4.987269+6 2.691535-4 4.918466+6 2.730000-4 4.830939+6 2.754229-4 4.777053+6 2.781700-4 4.714288+6 2.781700-4 4.876334+6 2.792000-4 4.856848+6 2.803000-4 4.835659+6 2.818383-4 4.805392+6 2.825000-4 4.791743+6 2.851018-4 4.737371+6 2.884032-4 4.668126+6 2.900000-4 4.634847+6 2.917427-4 4.598011+6 2.920000-4 4.592591+6 2.951209-4 4.526976+6 2.965000-4 4.497439+6 2.985383-4 4.453985+6 3.000000-4 4.423046+6 3.050000-4 4.319123+6 3.054921-4 4.309098+6 3.100000-4 4.215981+6 3.126079-4 4.163279+6 3.162278-4 4.089733+6 3.235937-4 3.944894+6 3.240000-4 3.937145+6 3.273407-4 3.874073+6 3.350000-4 3.733460+6 3.388442-4 3.663842+6 3.430000-4 3.591091+6 3.500000-4 3.473654+6 3.507519-4 3.461432+6 3.548134-4 3.395574+6 3.550000-4 3.392601+6 3.600000-4 3.313727+6 3.630781-4 3.266630+6 3.715352-4 3.139851+6 3.780000-4 3.047577+6 3.890451-4 2.897078+6 3.935501-4 2.837172+6 4.027170-4 2.720915+6 4.120975-4 2.607914+6 4.168694-4 2.552914+6 4.265795-4 2.444043+6 4.315191-4 2.391361+6 4.365158-4 2.339247+6 4.415704-4 2.288365+6 4.466836-4 2.238334+6 4.518559-4 2.189323+6 4.570882-4 2.140666+6 4.600000-4 2.114336+6 4.700000-4 2.027632+6 4.731513-4 2.001228+6 4.786301-4 1.956264+6 4.897788-4 1.869257+6 4.954502-4 1.827332+6 5.011872-4 1.785849+6 5.069907-4 1.745008+6 5.188000-4 1.665961+6 5.248075-4 1.627505+6 5.308844-4 1.590013+6 5.370318-4 1.553376+6 5.400000-4 1.535995+6 5.432503-4 1.517224+6 5.495409-4 1.481363+6 5.650000-4 1.398635+6 5.688529-4 1.378952+6 5.754399-4 1.346287+6 5.821032-4 1.314372+6 5.888437-4 1.282909+6 6.165950-4 1.163440+6 6.309573-4 1.107826+6 6.382635-4 1.080980+6 6.456542-4 1.054599+6 6.531306-4 1.028858+6 6.839116-4 9.314920+5 6.850000-4 9.282915+5 6.918310-4 9.084914+5 7.000000-4 8.854308+5 7.161434-4 8.423915+5 7.328245-4 8.007874+5 7.413102-4 7.807650+5 7.500000-4 7.609571+5 7.762471-4 7.047127+5 7.852356-4 6.868872+5 7.943282-4 6.693614+5 8.128305-4 6.357292+5 8.222426-4 6.195264+5 8.317638-4 6.037332+5 8.609938-4 5.582514+5 8.709636-4 5.439096+5 8.810489-4 5.298613+5 8.912509-4 5.161984+5 9.015711-4 5.028470+5 9.225714-4 4.770061+5 9.500000-4 4.460137+5 9.549926-4 4.406844+5 9.660509-4 4.291299+5 9.772372-4 4.178890+5 9.885531-4 4.069063+5 1.011579-3 3.856812+5 1.059254-3 3.464989+5 1.083927-3 3.283920+5 1.096478-3 3.196538+5 1.135011-3 2.946527+5 1.161449-3 2.790793+5 1.190000-3 2.635959+5 1.202264-3 2.573037+5 1.216186-3 2.503200+5 1.230269-3 2.435324+5 1.244515-3 2.369376+5 1.273503-3 2.242723+5 1.318257-3 2.065279+5 1.333521-3 2.009255+5 1.350000-3 1.950722+5 1.364583-3 1.900715+5 1.380384-3 1.848598+5 1.450000-3 1.642204+5 1.462177-3 1.609330+5 1.479108-3 1.565077+5 1.531087-3 1.438680+5 1.548817-3 1.398739+5 1.621810-3 1.250266+5 1.640590-3 1.215646+5 1.650000-3 1.198764+5 1.673400-3 1.157895+5 1.673400-3 4.301554+5 1.675200-3 4.333458+5 1.678000-3 4.358374+5 1.678150-3 4.346530+5 1.678804-3 4.348949+5 1.695000-3 4.410042+5 1.704000-3 4.429820+5 1.714000-3 4.436923+5 1.717908-3 4.434882+5 1.721000-3 4.433296+5 1.728300-3 4.410890+5 1.728300-3 5.174280+5 1.728510-3 5.199439+5 1.728700-3 5.256800+5 1.728900-3 5.317910+5 1.729000-3 5.348080+5 1.729100-3 5.379157+5 1.729400-3 5.470783+5 1.729500-3 5.495878+5 1.729600-3 5.489914+5 1.730000-3 5.544300+5 1.730150-3 5.558168+5 1.730300-3 5.586993+5 1.730600-3 5.630314+5 1.730700-3 5.639065+5 1.730850-3 5.647659+5 1.731000-3 5.665716+5 1.731200-3 5.683847+5 1.731350-3 5.692792+5 1.731500-3 5.711543+5 1.731650-3 5.720726+5 1.731800-3 5.733204+5 1.732000-3 5.744662+5 1.732150-3 5.750213+5 1.732500-3 5.773771+5 1.732600-3 5.772810+5 1.732850-3 5.781422+5 1.733200-3 5.799469+5 1.733350-3 5.803760+5 1.733500-3 5.813021+5 1.733650-3 5.817367+5 1.733800-3 5.826733+5 1.736500-3 5.874146+5 1.737801-3 5.886599+5 1.738000-3 5.888520+5 1.743000-3 5.893939+5 1.744000-3 5.893509+5 1.751000-3 5.877474+5 1.758000-3 5.853531+5 1.768000-3 5.799465+5 1.772000-3 5.780641+5 1.785000-3 5.709944+5 1.787000-3 5.700303+5 1.798000-3 5.634451+5 1.800000-3 5.620531+5 1.819701-3 5.485930+5 1.835000-3 5.384457+5 1.840772-3 5.342976+5 1.862087-3 5.199069+5 1.870000-3 5.147036+5 1.890000-3 5.016294+5 1.902300-3 4.933616+5 1.902300-3 5.619604+5 1.927525-3 5.444687+5 1.949845-3 5.296438+5 1.950000-3 5.295429+5 1.972423-3 5.152300+5 2.000000-3 4.983790+5 2.018366-3 4.875036+5 2.041738-3 4.741469+5 2.100000-3 4.422574+5 2.137962-3 4.231032+5 2.162719-3 4.112157+5 2.187762-3 3.996702+5 2.213095-3 3.884569+5 2.264644-3 3.669806+5 2.317395-3 3.465758+5 2.344229-3 3.368127+5 2.426610-3 3.091731+5 2.454709-3 3.004848+5 2.483133-3 2.919551+5 2.511886-3 2.836709+5 2.540973-3 2.756117+5 2.630268-3 2.526785+5 2.660725-3 2.454761+5 2.722701-3 2.316894+5 2.754229-3 2.250963+5 2.818383-3 2.122680+5 2.884032-3 2.001678+5 2.917427-3 1.943360+5 2.951209-3 1.886610+5 3.054921-3 1.726354+5 3.090295-3 1.676105+5 3.126079-3 1.627360+5 3.162278-3 1.580029+5 3.198895-3 1.533752+5 3.273407-3 1.445216+5 3.349654-3 1.361913+5 3.427678-3 1.282679+5 3.467369-3 1.244853+5 3.507519-3 1.208172+5 3.548134-3 1.172272+5 3.589219-3 1.137437+5 3.672823-3 1.070847+5 3.801894-3 9.775806+4 3.890451-3 9.200813+4 3.935501-3 8.925520+4 4.027170-3 8.400115+4 4.073803-3 8.147573+4 4.265795-3 7.211943+4 4.365158-3 6.786004+4 4.415704-3 6.580742+4 4.466836-3 6.381850+4 4.500000-3 6.257336+4 4.518559-3 6.188842+4 4.570882-3 6.000284+4 4.623810-3 5.817480+4 5.000000-3 4.717007+4 5.011872-3 4.687206+4 5.069907-3 4.544280+4 5.188000-3 4.271744+4 5.248075-3 4.140853+4 5.370318-3 3.891016+4 5.432503-3 3.771475+4 5.688529-3 3.329827+4 5.754399-3 3.227232+4 5.888437-3 3.031696+4 5.956621-3 2.938422+4 6.000000-3 2.880795+4 6.095369-3 2.759513+4 6.382635-3 2.433534+4 6.456542-3 2.358409+4 6.531306-3 2.285663+4 6.606934-3 2.215220+4 6.683439-3 2.146554+4 6.760830-3 2.079639+4 6.839116-3 2.014834+4 6.918310-3 1.952039+4 7.079458-3 1.832311+4 7.413102-3 1.614238+4 7.498942-3 1.564015+4 7.585776-3 1.515392+4 7.673615-3 1.468322+4 7.762471-3 1.422486+4 8.128305-3 1.251968+4 8.317638-3 1.174662+4 8.609938-3 1.067458+4 8.810489-3 1.001625+4 8.912509-3 9.702603+3 9.549926-3 8.002027+3 9.772372-3 7.505448+3 9.885531-3 7.268482+3 1.011579-2 6.817370+3 1.023293-2 6.600931+3 1.035142-2 6.391449+3 1.047129-2 6.187813+3 1.109175-2 5.265183+3 1.135011-2 4.936504+3 1.148154-2 4.779768+3 1.161449-2 4.628134+3 1.174898-2 4.481335+3 1.188502-2 4.338100+3 1.202264-2 4.199547+3 1.216186-2 4.064962+3 1.258925-2 3.687137+3 1.303167-2 3.345278+3 1.305600-2 3.327749+3 1.333521-2 3.135355+3 1.348963-2 3.035213+3 1.364583-2 2.938342+3 1.396368-2 2.752350+3 1.400000-2 2.732137+3 1.428000-2 2.582417+3 1.428000-2 1.825002+4 1.441500-2 1.792892+4 1.475000-2 1.683027+4 1.496236-2 1.623972+4 1.513561-2 1.577932+4 1.548817-2 1.485519+4 1.566751-2 1.441371+4 1.580000-2 1.409916+4 1.584893-2 1.398537+4 1.603245-2 1.356971+4 1.621810-2 1.316590+4 1.640590-2 1.277981+4 1.659587-2 1.240493+4 1.737801-2 1.101275+4 1.757924-2 1.068997+4 1.778279-2 1.036750+4 1.798871-2 1.005471+4 1.840772-2 9.457244+3 1.862087-2 9.172012+3 1.883649-2 8.895339+3 1.927525-2 8.366200+3 1.949845-2 8.113493+3 1.972423-2 7.866474+3 2.018366-2 7.394861+3 2.089296-2 6.740111+3 2.113489-2 6.535017+3 2.187762-2 5.956525+3 2.213095-2 5.775345+3 2.238721-2 5.599483+3 2.290868-2 5.256907+3 2.300000-2 5.199885+3 2.426610-2 4.489410+3 2.454709-2 4.349957+3 2.483133-2 4.214827+3 2.570396-2 3.834154+3 2.600160-2 3.714946+3 2.660725-2 3.487563+3 2.722701-2 3.274132+3 2.754229-2 3.172361+3 2.818383-2 2.978187+3 2.884032-2 2.792405+3 2.951209-2 2.618212+3 3.000000-2 2.500840+3 3.019952-2 2.454903+3 3.126079-2 2.228619+3 3.162278-2 2.157931+3 3.235937-2 2.023228+3 3.349654-2 1.836811+3 3.427678-2 1.722157+3 3.507519-2 1.614657+3 3.548134-2 1.562604+3 3.589219-2 1.512232+3 3.715352-2 1.370503+3 3.845918-2 1.242080+3 3.981072-2 1.125711+3 4.073803-2 1.054265+3 4.120975-2 1.020258+3 4.265795-2 9.246731+2 4.315191-2 8.948112+2 4.365158-2 8.659153+2 4.415704-2 8.375687+2 4.841724-2 6.418118+2 5.069907-2 5.618361+2 5.128614-2 5.434332+2 5.248075-2 5.084186+2 5.370318-2 4.756626+2 5.432503-2 4.599072+2 5.821032-2 3.757527+2 5.956621-2 3.512744+2 6.095369-2 3.283923+2 6.382635-2 2.869659+2 6.683439-2 2.507703+2 6.760830-2 2.423758+2 7.079458-2 2.115183+2 7.161434-2 2.044380+2 7.498942-2 1.784108+2 7.585776-2 1.724339+2 7.852356-2 1.556790+2 7.943282-2 1.504643+2 8.511380-2 1.226484+2 8.810489-2 1.106409+2 9.120108-2 9.980823+1 9.332543-2 9.318277+1 9.440609-2 9.003427+1 1.000000-1 7.581912+1 1.011580-1 7.325773+1 1.071519-1 6.169297+1 1.083927-1 5.960925+1 1.109175-1 5.565082+1 1.135011-1 5.195546+1 1.148154-1 5.020072+1 1.174898-1 4.686719+1 1.188502-1 4.528153+1 1.244515-1 3.945782+1 1.258925-1 3.812256+1 1.303167-1 3.438176+1 1.364583-1 2.995940+1 1.396368-1 2.796647+1 1.412538-1 2.702026+1 1.428894-1 2.610614+1 1.445440-1 2.522299+1 1.531088-1 2.123585+1 1.566751-1 1.982355+1 1.603245-1 1.850532+1 1.621810-1 1.787944+1 1.640590-1 1.727476+1 1.659587-1 1.669054+1 1.678804-1 1.612609+1 1.698244-1 1.558075+1 1.757924-1 1.405338+1 1.798871-1 1.312660+1 1.819701-1 1.268640+1 1.862087-1 1.184989+1 1.905461-1 1.106855+1 1.949845-1 1.033875+1 2.000000-1 9.589626+0 2.065380-1 8.718241+0 2.089296-1 8.426027+0 2.113489-1 8.143613+0 2.137962-1 7.870668+0 2.162719-1 7.607158+0 2.213095-1 7.106330+0 2.238721-1 6.871314+0 2.344229-1 6.006505+0 2.371374-1 5.807901+0 2.398833-1 5.615869+0 2.426610-1 5.430228+0 2.540973-1 4.747057+0 2.570396-1 4.590156+0 2.600160-1 4.438645+0 2.630268-1 4.294279+0 2.660725-1 4.154623+0 2.691535-1 4.019509+0 2.722701-1 3.888796+0 2.818383-1 3.521612+0 2.851018-1 3.407120+0 2.917427-1 3.189203+0 3.000000-1 2.943690+0 3.000060-1 2.943521+0 3.019952-1 2.888292+0 3.054921-1 2.796013+0 3.126079-1 2.620207+0 3.198895-1 2.455455+0 3.235937-1 2.377011+0 3.273407-1 2.301084+0 3.311311-1 2.227602+0 3.349654-1 2.156470+0 3.388442-1 2.087609+0 3.427678-1 2.020949+0 3.467369-1 1.957672+0 3.548134-1 1.837000+0 3.589219-1 1.779490+0 3.630781-1 1.723783+0 3.672823-1 1.669823+0 3.715352-1 1.617552+0 3.758374-1 1.566932+0 3.801894-1 1.517899+0 3.845918-1 1.470401+0 3.890451-1 1.425321+0 3.981072-1 1.339442+0 4.000000-1 1.322406+0 4.027170-1 1.298468+0 4.073803-1 1.258747+0 4.168694-1 1.182914+0 4.216965-1 1.146741+0 4.265795-1 1.111676+0 4.315191-1 1.077687+0 4.365158-1 1.045449+0 4.415705-1 1.014243+0 4.623810-1 8.984740-1 4.677351-1 8.716590-1 4.731513-1 8.456565-1 4.786301-1 8.204314-1 4.841724-1 7.965092-1 4.897788-1 7.733370-1 5.011872-1 7.289990-1 5.128614-1 6.872030-1 5.188000-1 6.672154-1 5.248075-1 6.478167-1 5.308844-1 6.289835-1 5.370318-1 6.111483-1 5.432503-1 5.938617-1 5.559043-1 5.607442-1 5.623413-1 5.448849-1 5.688529-1 5.294761-1 5.754399-1 5.145034-1 5.821032-1 4.999600-1 5.888437-1 4.858283-1 5.956621-1 4.724503-1 6.025596-1 4.594774-1 6.095369-1 4.468618-1 6.165950-1 4.345944-1 6.237348-1 4.226638-1 6.309573-1 4.110609-1 6.382635-1 3.997814-1 6.456542-1 3.888122-1 6.531306-1 3.784303-1 6.606935-1 3.683258-1 6.683439-1 3.585203-1 6.839117-1 3.396854-1 6.998420-1 3.218403-1 7.079458-1 3.132764-1 7.085700-1 3.126303-1 7.161434-1 3.051970-1 7.244360-1 2.973478-1 7.498942-1 2.750542-1 7.673615-1 2.611285-1 7.762471-1 2.544354-1 7.852356-1 2.480978-1 7.943282-1 2.419181-1 8.000000-1 2.381764-1 8.035261-1 2.358989-1 8.317638-1 2.187534-1 8.511380-1 2.080212-1 8.609938-1 2.028569-1 8.810489-1 1.931422-1 9.015711-1 1.839226-1 9.225714-1 1.751431-1 9.332543-1 1.709132-1 9.440609-1 1.667878-1 9.549926-1 1.627622-1 9.772372-1 1.553134-1 9.885531-1 1.517183-1 1.011579+0 1.447776-1 1.035142+0 1.381572-1 1.059254+0 1.319879-1 1.083927+0 1.261075-1 1.109175+0 1.204899-1 1.135011+0 1.151233-1 1.161449+0 1.099957-1 1.174898+0 1.075981-1 1.188600+0 1.052368-1 1.202264+0 1.029675-1 1.273503+0 9.226165-2 1.288250+0 9.025788-2 1.303167+0 8.836084-2 1.318257+0 8.650376-2 1.333521+0 8.469156-2 1.380384+0 7.947935-2 1.428894+0 7.458791-2 1.445440+0 7.307393-2 1.462177+0 7.159084-2 1.479108+0 7.014247-2 1.513561+0 6.733318-2 1.531087+0 6.597103-2 1.603245+0 6.079244-2 1.621810+0 5.960182-2 1.640590+0 5.843461-2 1.659587+0 5.729424-2 1.717908+0 5.400494-2 1.737801+0 5.295109-2 1.798871+0 4.991140-2 1.819701+0 4.896950-2 1.840772+0 4.804544-2 1.862087+0 4.714194-2 1.927525+0 4.453208-2 1.949845+0 4.369473-2 2.000000+0 4.190281-2 2.018366+0 4.127601-2 2.044000+0 4.045425-2 2.065380+0 3.978907-2 2.089296+0 3.906833-2 2.162719+0 3.698349-2 2.187762+0 3.631364-2 2.264644+0 3.437603-2 2.290868+0 3.375339-2 2.317395+0 3.316175-2 2.344229+0 3.258053-2 2.371374+0 3.201143-2 2.454709+0 3.036310-2 2.483133+0 2.983280-2 2.570396+0 2.829680-2 2.600160+0 2.780257-2 2.630268+0 2.733248-2 2.660725+0 2.687036-2 2.691535+0 2.641757-2 2.818383+0 2.468144-2 2.851018+0 2.426558-2 2.951209+0 2.305956-2 2.985383+0 2.267102-2 3.019952+0 2.230116-2 3.054921+0 2.193735-2 3.090295+0 2.158067-2 3.273407+0 1.988239-2 3.311311+0 1.955915-2 3.427678+0 1.862063-2 3.467369+0 1.831790-2 3.507519+0 1.802960-2 3.548134+0 1.774586-2 3.589219+0 1.746752-2 3.801894+0 1.613992-2 3.845918+0 1.588679-2 4.000000+0 1.505262-2 4.027170+0 1.491335-2 4.073803+0 1.468671-2 4.120975+0 1.446353-2 4.168694+0 1.424444-2 4.466836+0 1.299787-2 4.518559+0 1.280100-2 4.731513+0 1.204289-2 4.786301+0 1.186577-2 4.841724+0 1.169125-2 4.954502+0 1.135091-2 5.370318+0 1.023585-2 5.432503+0 1.008578-2 5.688529+0 9.507165-3 5.754399+0 9.371874-3 5.821032+0 9.238516-3 5.956621+0 8.978271-3 6.456542+0 8.123804-3 6.531306+0 8.008574-3 6.839116+0 7.563773-3 6.918310+0 7.459443-3 7.000000+0 7.354556-3 7.244360+0 7.057175-3 7.852356+0 6.405156-3 7.943282+0 6.317069-3 8.035261+0 6.230195-3 8.413951+0 5.894484-3 8.511380+0 5.815597-3 8.609938+0 5.737769-3 8.709636+0 5.661190-3 9.015711+0 5.437555-3 9.660509+0 5.016438-3 9.772372+0 4.949498-3 9.885531+0 4.883452-3 1.059254+1 4.505275-3 1.071519+1 4.446693-3 1.083927+1 4.388870-3 1.100000+1 4.316223-3 1.109175+1 4.275764-3 1.148154+1 4.111559-3 1.216186+1 3.851780-3 1.230269+1 3.801830-3 1.258925+1 3.703870-3 1.364583+1 3.380457-3 1.380384+1 3.337594-3 1.396368+1 3.295276-3 1.412538+1 3.253581-3 1.428894+1 3.212421-3 1.479108+1 3.092037-3 1.621810+1 2.792611-3 1.640590+1 2.757283-3 1.678804+1 2.687965-3 1.778279+1 2.522199-3 1.800000+1 2.489223-3 1.819701+1 2.460079-3 1.840772+1 2.429628-3 1.972423+1 2.254678-3 2.213095+1 1.990639-3 2.238721+1 1.966001-3 2.264644+1 1.941668-3 2.344229+1 1.870459-3 2.371374+1 1.847667-3 2.400000+1 1.824243-3 2.483133+1 1.759377-3 2.851018+1 1.519029-3 3.162278+1 1.360571-3 3.198895+1 1.344019-3 3.235937+1 1.327668-3 3.273407+1 1.311772-3 3.311311+1 1.296070-3 3.507519+1 1.220469-3 4.216965+1 1.006936-3 4.623810+1 9.146177-4 4.677351+1 9.036896-4 4.731513+1 8.928924-4 4.841724+1 8.719584-4 4.897788+1 8.616787-4 4.954502+1 8.515206-4 5.432503+1 7.745442-4 7.079458+1 5.898529-4 7.673615+1 5.429235-4 7.762471+1 5.365315-4 7.852356+1 5.302148-4 8.000000+1 5.202595-4 8.035261+1 5.179366-4 8.128305+1 5.119057-4 8.222427+1 5.059450-4 8.317638+1 5.000540-4 9.549926+1 4.345547-4 1.364583+2 3.023663-4 1.496236+2 2.753501-4 1.513561+2 2.721476-4 1.531087+2 2.689823-4 1.566751+2 2.627615-4 1.584893+2 2.597272-4 1.603245+2 2.567280-4 1.621810+2 2.537636-4 1.640590+2 2.508335-4 1.659587+2 2.479374-4 1.905461+2 2.157051-4 2.722701+2 1.505280-4 2.985383+2 1.371817-4 3.019952+2 1.355989-4 3.054921+2 1.340344-4 3.126079+2 1.309592-4 3.162278+2 1.294545-4 3.198895+2 1.279671-4 3.235937+2 1.264969-4 3.273407+2 1.250436-4 3.311311+2 1.236070-4 3.801894+2 1.076082-4 1.083927+3 3.761403-5 1.188502+3 3.429403-5 1.202264+3 3.390019-5 1.216186+3 3.351086-5 1.244515+3 3.274558-5 1.258925+3 3.237054-5 1.273503+3 3.199977-5 1.288250+3 3.163326-5 1.303167+3 3.127096-5 1.318257+3 3.091281-5 1.513561+3 2.692287-5 1.000000+5 4.070032-7 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.272000-5 1.272000-5 1.343000-5 1.272000-5 1.343000-5 1.294082-5 2.150000-5 1.298385-5 2.744000-5 1.298622-5 2.744000-5 1.300123-5 3.101100-5 1.301835-5 3.388442-5 1.311602-5 3.670000-5 1.330639-5 3.920000-5 1.356258-5 4.168694-5 1.389877-5 4.466836-5 1.439686-5 4.850000-5 1.514690-5 5.500000-5 1.649394-5 5.900000-5 1.723436-5 6.237348-5 1.775693-5 6.606934-5 1.821125-5 7.000000-5 1.856513-5 7.328245-5 1.876812-5 7.800000-5 1.894860-5 8.317638-5 1.903164-5 9.015711-5 1.903158-5 9.398000-5 1.899780-5 9.398000-5 2.869287-5 9.535000-5 2.882044-5 9.535000-5 3.138279-5 9.900000-5 3.179593-5 1.015000-4 3.224417-5 1.045000-4 3.300957-5 1.115000-4 3.525546-5 1.150000-4 3.623756-5 1.190000-4 3.708623-5 1.235000-4 3.772496-5 1.295000-4 3.822817-5 1.380384-4 3.860069-5 1.548817-4 3.893610-5 1.862087-4 3.917067-5 2.069600-4 3.921190-5 2.069600-4 4.063009-5 2.151200-4 4.084758-5 2.151200-4 4.153152-5 2.450000-4 4.227605-5 2.781700-4 4.301377-5 2.781700-4 4.423598-5 2.951209-4 4.485187-5 3.273407-4 4.562886-5 4.265795-4 4.754771-5 5.370318-4 4.930872-5 6.850000-4 5.120268-5 8.709636-4 5.309146-5 1.083927-3 5.480124-5 1.350000-3 5.644137-5 1.673400-3 5.796866-5 1.673400-3 8.764310-5 1.695000-3 8.826558-5 1.728300-3 8.878094-5 1.728300-3 9.064565-5 1.729600-3 9.128303-5 1.732600-3 9.181985-5 1.743000-3 9.215170-5 1.819701-3 9.250145-5 1.902300-3 9.258835-5 1.902300-3 9.817083-5 2.344229-3 9.949785-5 3.548134-3 1.022146-4 5.188000-3 1.050097-4 7.413102-3 1.078100-4 1.023293-2 1.104258-4 1.400000-2 1.129371-4 1.428000-2 1.130915-4 1.428000-2 1.308268-4 2.570396-2 1.317008-4 5.956621-2 1.323712-4 2.238721-1 1.327837-4 1.000000+5 1.329060-4 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.272000-5 0.0 9.535000-5 0.0 9.535000-5 1.961398-9 9.740000-5 1.996316-9 9.900000-5 2.019125-9 1.011579-4 2.060056-9 1.030000-4 2.106812-9 1.040000-4 2.137248-9 1.060000-4 2.207337-9 1.071519-4 2.252770-9 1.150000-4 2.590278-9 1.165000-4 2.650391-9 1.190000-4 2.741519-9 1.220000-4 2.832237-9 1.250000-4 2.907204-9 1.288250-4 2.980969-9 1.315000-4 3.021252-9 1.358000-4 3.070065-9 1.412538-4 3.112725-9 1.500000-4 3.157868-9 1.659587-4 3.208461-9 1.740000-4 3.228454-9 1.760000-4 3.228767-9 1.800000-4 3.239675-9 1.850000-4 3.246036-9 2.069600-4 3.268567-9 2.069600-4 3.738030-9 2.151200-4 3.813557-9 2.151200-4 4.136069-9 2.290868-4 4.276871-9 2.600160-4 4.558451-9 2.781700-4 4.714046-9 2.781700-4 5.102849-9 2.851018-4 5.207266-9 3.000000-4 5.377667-9 3.235937-4 5.591287-9 3.780000-4 6.017556-9 4.315191-4 6.395271-9 4.897788-4 6.765744-9 5.432503-4 7.071566-9 6.165950-4 7.451311-9 7.000000-4 7.833647-9 7.852356-4 8.176466-9 8.709636-4 8.490390-9 9.885531-4 8.868981-9 1.135011-3 9.269960-9 1.318257-3 9.688358-9 1.479108-3 9.997652-9 1.673400-3 1.031325-8 1.673400-3 2.358193-5 1.678000-3 2.375281-5 1.678804-3 2.374441-5 1.704000-3 2.420148-5 1.721000-3 2.440226-5 1.728300-3 2.444419-5 1.728300-3 2.613507-5 1.728510-3 2.618477-5 1.729500-3 2.672027-5 1.730150-3 2.683071-5 1.731000-3 2.701256-5 1.732600-3 2.719524-5 1.733800-3 2.728897-5 1.738000-3 2.742459-5 1.758000-3 2.760279-5 1.800000-3 2.773889-5 1.902300-3 2.778575-5 1.902300-3 2.844118-5 3.273407-3 2.854438-5 1.428000-2 2.832702-5 1.428000-2 7.138469-3 1.513561-2 7.161289-3 1.972423-2 7.227507-3 2.951209-2 7.293385-3 4.841724-2 7.338711-3 9.440609-2 7.365140-3 6.382635-1 7.378045-3 1.000000+5 7.382797-3 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.272000-5 0.0 1.343000-5 7.100000-7 1.343000-5 4.891819-7 1.570000-5 2.736729-6 2.113489-5 8.151715-6 2.744000-5 1.445378-5 2.744000-5 1.443877-5 3.135000-5 1.832456-5 3.470000-5 2.153908-5 3.785000-5 2.443630-5 4.168694-5 2.778817-5 4.650000-5 3.175580-5 5.688529-5 4.002794-5 6.237348-5 4.461655-5 6.850000-5 5.005754-5 7.500000-5 5.615398-5 8.650000-5 6.745560-5 9.398000-5 7.498220-5 9.398000-5 6.528713-5 9.535000-5 6.652956-5 9.535000-5 6.396525-5 1.005000-4 6.845413-5 1.050300-4 7.186067-5 1.115000-4 7.624210-5 1.165000-4 7.990628-5 1.220000-4 8.445366-5 1.295000-4 9.126884-5 1.465000-4 1.076928-4 2.069600-4 1.677448-4 2.069600-4 1.663262-4 2.151200-4 1.742686-4 2.151200-4 1.735843-4 2.781700-4 2.351515-4 2.781700-4 2.339289-4 3.935501-4 3.465945-4 8.317638-4 7.790237-4 1.673400-3 1.615421-3 1.673400-3 1.562175-3 1.728300-3 1.615075-3 1.728300-3 1.611519-3 1.744000-3 1.624340-3 1.902300-3 1.781926-3 1.902300-3 1.775688-3 1.428000-2 1.413858-2 1.428000-2 7.010704-3 1.513561-2 7.843374-3 2.187762-2 1.449814-2 5.128614-2 4.381158-2 1.000000+5 9.999999+4 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.428000-2 1.566760+4 1.441500-2 1.541467+4 1.475000-2 1.447480+4 1.513561-2 1.358999+4 1.621810-2 1.136616+4 1.757924-2 9.260383+3 1.949845-2 7.050310+3 2.238721-2 4.884305+3 2.818383-2 2.610740+3 3.507519-2 1.420326+3 4.365158-2 7.636609+2 5.370318-2 4.202617+2 6.683439-2 2.218756+2 8.511380-2 1.086294+2 1.174898-1 4.154613+1 1.757924-1 1.246340+1 2.213095-1 6.303324+0 2.600160-1 3.937350+0 3.019952-1 2.562170+0 3.427678-1 1.792878+0 3.845918-1 1.304494+0 4.315191-1 9.561612-1 4.786301-1 7.279617-1 5.308844-1 5.581220-1 5.888437-1 4.311218-1 6.456542-1 3.450359-1 7.085700-1 2.774578-1 7.762471-1 2.258654-1 8.609938-1 1.801389-1 9.549926-1 1.445371-1 1.035142+0 1.226769-1 1.161449+0 9.766875-2 1.288250+0 8.014274-2 1.428894+0 6.623014-2 1.603245+0 5.398070-2 1.798871+0 4.431884-2 2.018366+0 3.665123-2 2.290868+0 2.997168-2 2.600160+0 2.468770-2 2.985383+0 2.013101-2 3.467369+0 1.626547-2 4.027170+0 1.324239-2 4.731513+0 1.069365-2 5.688529+0 8.442024-3 6.839116+0 6.716391-3 8.413951+0 5.234124-3 1.059254+1 4.000557-3 1.364583+1 3.001754-3 1.778279+1 2.239680-3 2.344229+1 1.660946-3 3.235937+1 1.178960-3 4.731513+1 7.928625-4 7.852356+1 4.708167-4 1.566751+2 2.333274-4 3.126079+2 1.162909-4 1.244515+3 2.907790-5 1.000000+5 3.614200-7 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.428000-2 1.337500-4 1.000000+5 1.337500-4 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.428000-2 8.310400-3 1.000000+5 8.310400-3 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.428000-2 5.835850-3 1.000000+5 9.999999+4 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.902300-3 6.859873+4 2.041738-3 6.278341+4 2.137962-3 5.843268+4 2.264644-3 5.327112+4 2.917427-3 3.472720+4 3.162278-3 3.019304+4 3.507519-3 2.496543+4 4.027170-3 1.928449+4 4.500000-3 1.553606+4 5.188000-3 1.169836+4 5.956621-3 8.795167+3 6.683439-3 6.895971+3 7.762471-3 4.983520+3 8.912509-3 3.663115+3 1.011579-2 2.745395+3 1.174898-2 1.937456+3 1.364583-2 1.356283+3 1.603245-2 9.157309+2 1.883649-2 6.129473+2 2.213095-2 4.069006+2 2.570396-2 2.761600+2 3.019952-2 1.805875+2 3.589219-2 1.136282+2 4.265795-2 7.092690+1 5.069907-2 4.394271+1 6.095369-2 2.617344+1 7.498942-2 1.449219+1 9.332543-2 7.703515+0 1.244515-1 3.323866+0 1.698244-1 1.335245+0 2.137962-1 6.809214-1 2.570396-1 4.000846-1 3.000060-1 2.579032-1 3.427678-1 1.776998-1 3.890451-1 1.256298-1 4.365158-1 9.232266-2 4.841724-1 7.044794-2 5.370318-1 5.412642-2 5.956621-1 4.189092-2 6.606935-1 3.268644-2 7.244360-1 2.639461-2 8.000000-1 2.111685-2 8.810489-1 1.711068-2 9.549926-1 1.444622-2 1.059254+0 1.172220-2 1.188600+0 9.347246-3 1.318257+0 7.682692-3 1.462177+0 6.355910-3 1.640590+0 5.187189-3 1.840772+0 4.265204-3 2.065380+0 3.532179-3 2.344229+0 2.892239-3 2.660725+0 2.385343-3 3.054921+0 1.947531-3 3.548134+0 1.575572-3 4.120975+0 1.284204-3 4.841724+0 1.038039-3 5.821032+0 8.202538-4 7.000000+0 6.530100-4 8.609938+0 5.094537-4 1.083927+1 3.896944-4 1.396368+1 2.926167-4 1.800000+1 2.210700-4 2.371374+1 1.641026-4 3.311311+1 1.150832-4 4.954502+1 7.561345-5 8.317638+1 4.440180-5 1.659587+2 2.201798-5 3.311311+2 1.097730-5 1.318257+3 2.745494-6 1.000000+5 3.615000-8 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.902300-3 1.383200-4 1.000000+5 1.383200-4 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.902300-3 3.315500-5 1.000000+5 3.315500-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.902300-3 1.730825-3 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.728300-3 7.633900+4 1.728510-3 7.891900+4 1.728700-3 8.471300+4 1.728900-3 9.088500+4 1.729100-3 9.708200+4 1.729400-3 1.063700+5 1.729500-3 1.089213+5 1.729600-3 1.083667+5 1.730000-3 1.139723+5 1.730150-3 1.154217+5 1.730300-3 1.183668+5 1.730600-3 1.228240+5 1.730700-3 1.237408+5 1.730850-3 1.246627+5 1.731000-3 1.265309+5 1.731200-3 1.284274+5 1.731350-3 1.293843+5 1.731500-3 1.313219+5 1.731650-3 1.323026+5 1.731800-3 1.336129+5 1.732000-3 1.348419+5 1.732150-3 1.354594+5 1.732500-3 1.379607+5 1.732600-3 1.379062+5 1.732850-3 1.388713+5 1.733200-3 1.408214+5 1.733350-3 1.413127+5 1.733500-3 1.423011+5 1.733650-3 1.427980+5 1.733800-3 1.437968+5 1.736500-3 1.496557+5 1.738000-3 1.517120+5 1.743000-3 1.543093+5 1.751000-3 1.572565+5 1.758000-3 1.589896+5 1.768000-3 1.593819+5 1.772000-3 1.597875+5 1.787000-3 1.600700+5 1.798000-3 1.589300+5 1.840772-3 1.504100+5 1.890000-3 1.425900+5 2.041738-3 1.172800+5 2.540973-3 6.616200+4 2.884032-3 4.710000+4 3.507519-3 2.733300+4 3.890451-3 2.032800+4 4.518559-3 1.317300+4 5.370318-3 7.889300+3 6.095369-3 5.379100+3 7.079458-3 3.397300+3 8.317638-3 2.052600+3 9.772372-3 1.229600+3 1.135011-2 7.585000+2 1.333521-2 4.475600+2 1.580000-2 2.549200+2 1.862087-2 1.467600+2 2.238721-2 7.841800+1 2.722701-2 3.996800+1 3.349654-2 1.942500+1 4.265795-2 8.301700+0 5.956621-2 2.541500+0 9.440609-2 4.950200-1 1.188502-1 2.198300-1 1.428894-1 1.156000-1 1.678804-1 6.633000-2 1.949845-1 3.989001-2 2.238721-1 2.511966-2 2.540973-1 1.655870-2 2.851018-1 1.141237-2 3.198895-1 7.920172-3 3.589219-1 5.536714-3 3.981072-1 4.040150-3 4.415705-1 2.969901-3 4.897788-1 2.202215-3 5.432503-1 1.646037-3 6.025596-1 1.240188-3 6.606935-1 9.704540-4 7.244360-1 7.644521-4 7.943282-1 6.063596-4 8.609938-1 4.962371-4 9.225714-1 4.207232-4 9.772372-1 3.690158-4 1.035142+0 3.258660-4 1.109175+0 2.825216-4 1.188600+0 2.466533-4 1.318257+0 2.037227-4 1.479108+0 1.659800-4 1.717908+0 1.279289-4 1.927525+0 1.054305-4 2.162719+0 8.753655-5 2.454709+0 7.187056-5 2.818383+0 5.842119-5 3.273407+0 4.706202-5 3.801894+0 3.820749-5 4.466836+0 3.076990-5 5.370318+0 2.423079-5 6.456542+0 1.923155-5 7.852356+0 1.516282-5 9.660509+0 1.187435-5 1.216186+1 9.116939-6 1.621810+1 6.610232-6 2.213095+1 4.713112-6 3.162278+1 3.222521-6 4.677351+1 2.140807-6 7.673615+1 1.286092-6 1.496236+2 6.522462-7 2.985383+2 3.249924-7 1.188502+3 8.124485-8 1.000000+5 9.64270-10 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.728300-3 1.014200-4 1.000000+5 1.014200-4 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.728300-3 3.590500-5 1.000000+5 3.590500-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.728300-3 1.590975-3 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.673400-3 3.143659+5 1.675200-3 3.178623+5 1.678000-3 3.208274+5 1.678150-3 3.196683+5 1.695000-3 3.288170+5 1.704000-3 3.322488+5 1.714000-3 3.345425+5 1.721000-3 3.352691+5 1.729000-3 3.340410+5 1.744000-3 3.300904+5 1.785000-3 3.122000+5 1.835000-3 2.946844+5 1.870000-3 2.810060+5 2.000000-3 2.359144+5 2.454709-3 1.371430+5 2.754229-3 1.004148+5 3.349654-3 5.800389+4 3.672823-3 4.452603+4 4.365158-3 2.686748+4 5.011872-3 1.776624+4 5.688529-3 1.209327+4 6.606934-3 7.614074+3 7.673615-3 4.755339+3 8.912509-3 2.947138+3 1.035142-2 1.812858+3 1.202264-2 1.107182+3 1.400000-2 6.657640+2 1.640590-2 3.892146+2 1.927525-2 2.239823+2 2.300000-2 1.212988+2 2.754229-2 6.438248+1 3.349654-2 3.210457+1 4.120975-2 1.524783+1 5.432503-2 5.595434+0 1.071519-1 4.677354-1 1.303167-1 2.301817-1 1.566751-1 1.189905-1 1.819701-1 7.009154-2 2.065380-1 4.509921-2 2.344229-1 2.923396-2 2.630268-1 1.985913-2 2.917427-1 1.412134-2 3.235937-1 1.011685-2 3.548134-1 7.572713-3 3.890451-1 5.707153-3 4.265795-1 4.333528-3 4.677351-1 3.315462-3 5.128614-1 2.555723-3 5.623413-1 1.985150-3 6.095369-1 1.602096-3 6.606935-1 1.301760-3 7.161434-1 1.065423-3 7.762471-1 8.775353-4 8.609938-1 6.894462-4 9.225714-1 5.895189-4 9.885531-1 5.075407-4 1.083927+0 4.199904-4 1.174898+0 3.580776-4 1.288250+0 3.009204-4 1.428894+0 2.492634-4 1.640590+0 1.954709-4 1.840772+0 1.606888-4 2.065380+0 1.330517-4 2.344229+0 1.089502-4 2.660725+0 8.985571-5 3.054921+0 7.336158-5 3.548134+0 5.934805-5 4.120975+0 4.837194-5 4.841724+0 3.910035-5 5.821032+0 3.089790-5 7.000000+0 2.459700-5 8.709636+0 1.893106-5 1.100000+1 1.443300-5 1.412538+1 1.088219-5 1.819701+1 8.228883-6 2.400000+1 6.102500-6 3.311311+1 4.335205-6 4.897788+1 2.882323-6 8.222427+1 1.692302-6 1.640590+2 8.390908-7 3.273407+2 4.183121-7 1.303167+3 1.046150-7 1.000000+5 1.361700-9 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.673400-3 9.857300-5 1.000000+5 9.857300-5 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.673400-3 3.226400-5 1.000000+5 3.226400-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.673400-3 1.542563-3 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.781700-4 1.620462+5 2.792000-4 1.656760+5 2.803000-4 1.689268+5 2.825000-4 1.739352+5 2.851018-4 1.782830+5 2.884032-4 1.823998+5 2.920000-4 1.856384+5 2.965000-4 1.883532+5 3.000000-4 1.895880+5 3.054921-4 1.901762+5 3.100000-4 1.896250+5 3.162278-4 1.876989+5 3.240000-4 1.840962+5 3.600000-4 1.655782+5 4.027170-4 1.494000+5 4.265795-4 1.407830+5 4.600000-4 1.290822+5 5.308844-4 1.085283+5 5.754399-4 9.786213+4 6.456542-4 8.359840+4 7.328245-4 6.986255+4 8.222426-4 5.884016+4 9.500000-4 4.708780+4 1.083927-3 3.809862+4 1.244515-3 3.031552+4 1.462177-3 2.300842+4 1.678804-3 1.803629+4 1.950000-3 1.375788+4 2.264644-3 1.042358+4 2.660725-3 7.668249+3 3.126079-3 5.596077+3 3.672823-3 4.051300+3 4.265795-3 2.980559+3 5.011872-3 2.126070+3 5.888437-3 1.505123+3 6.918310-3 1.057524+3 8.128305-3 7.373723+2 9.549926-3 5.101347+2 1.109175-2 3.597605+2 1.303167-2 2.450858+2 1.513561-2 1.703816+2 1.778279-2 1.142956+2 2.089296-2 7.607956+1 2.454709-2 5.025814+1 2.884032-2 3.295788+1 3.427678-2 2.080652+1 4.073803-2 1.303273+1 4.841724-2 8.102345+0 5.821032-2 4.842645+0 7.079458-2 2.780953+0 8.810489-2 1.483855+0 1.135011-1 7.109127-1 1.949845-1 1.460931-1 2.398833-1 8.008384-2 2.818383-1 5.050667-2 3.273407-1 3.315831-2 3.715352-1 2.338728-2 4.168694-1 1.714336-2 4.677351-1 1.265987-2 5.188000-1 9.704661-3 5.754399-1 7.493394-3 6.309573-1 5.993525-3 6.998420-1 4.697636-3 7.673615-1 3.808874-3 8.511380-1 3.030378-3 9.332543-1 2.491295-3 1.011579+0 2.112888-3 1.161449+0 1.607156-3 1.288250+0 1.318685-3 1.428894+0 1.089378-3 1.603245+0 8.876793-4 1.798871+0 7.288186-4 2.018366+0 6.027388-4 2.290868+0 4.928783-4 2.600160+0 4.059833-4 2.985383+0 3.310551-4 3.467369+0 2.674933-4 4.027170+0 2.177796-4 4.731513+0 1.758566-4 5.688529+0 1.388318-4 6.839116+0 1.104487-4 8.413951+0 8.607714-5 1.059254+1 6.579159-5 1.364583+1 4.936498-5 1.778279+1 3.683283-5 2.344229+1 2.731511-5 3.273407+1 1.915354-5 4.841724+1 1.273173-5 8.035261+1 7.562627-6 1.603245+2 3.748818-6 3.198895+2 1.868695-6 1.273503+3 4.672889-7 1.000000+5 5.943600-9 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.781700-4 7.979300-5 1.000000+5 7.979300-5 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.781700-4 1.641400-8 1.000000+5 1.641400-8 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.781700-4 1.983606-4 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.151200-4 1.536227+5 2.600160-4 1.945800+5 2.630268-4 1.970610+5 2.730000-4 2.022660+5 2.818383-4 2.053955+5 2.917427-4 2.073413+5 3.050000-4 2.081180+5 3.235937-4 2.073077+5 3.430000-4 2.051560+5 3.600000-4 2.021500+5 3.780000-4 1.978370+5 3.935501-4 1.932138+5 4.168694-4 1.853797+5 4.466836-4 1.750178+5 4.786301-4 1.641617+5 5.069907-4 1.546971+5 5.400000-4 1.439492+5 5.821032-4 1.311135+5 6.309573-4 1.178011+5 6.850000-4 1.048570+5 7.413102-4 9.306201+4 8.128305-4 8.035131+4 8.912509-4 6.887708+4 9.772372-4 5.857478+4 1.083927-3 4.841071+4 1.190000-3 4.048800+4 1.318257-3 3.301497+4 1.450000-3 2.713380+4 1.621810-3 2.136218+4 1.800000-3 1.697506+4 2.018366-3 1.308004+4 2.264644-3 9.981884+3 2.511886-3 7.773401+3 2.818383-3 5.845088+3 3.162278-3 4.362890+3 3.548134-3 3.233570+3 4.027170-3 2.307661+3 4.570882-3 1.633994+3 5.188000-3 1.148364+3 5.888437-3 8.012506+2 6.760830-3 5.367248+2 7.762471-3 3.566198+2 8.912509-3 2.350520+2 1.023293-2 1.537718+2 1.174898-2 9.984428+1 1.364583-2 6.203978+1 1.584893-2 3.825147+1 1.862087-2 2.254198+1 2.187762-2 1.318445+1 2.600160-2 7.365610+0 3.126079-2 3.927528+0 3.845918-2 1.919873+0 4.841724-2 8.596549-1 6.760830-2 2.655791-1 1.000000-1 6.684097-2 1.258925-1 2.990198-2 1.531088-1 1.520549-2 1.798871-1 8.770470-3 2.089296-1 5.300954-3 2.371374-1 3.485442-3 2.691535-1 2.308126-3 3.019952-1 1.597914-3 3.388442-1 1.114465-3 3.758374-1 8.112078-4 4.168694-1 5.945018-4 4.623810-1 4.388265-4 5.128614-1 3.263217-4 5.688529-1 2.445422-4 6.237348-1 1.905869-4 6.839117-1 1.495977-4 7.498942-1 1.182262-4 8.609938-1 8.376591-5 9.225714-1 7.097767-5 9.772372-1 6.222458-5 1.035142+0 5.492660-5 1.109175+0 4.760804-5 1.188600+0 4.156200-5 1.318257+0 3.433529-5 1.479108+0 2.798249-5 1.717908+0 2.157108-5 1.927525+0 1.777640-5 2.162719+0 1.475674-5 2.454709+0 1.211535-5 2.818383+0 9.849050-6 3.273407+0 7.934470-6 3.801894+0 6.441609-6 4.466836+0 5.187651-6 5.370318+0 4.085139-6 6.456542+0 3.242388-6 7.943282+0 2.521435-6 9.772372+0 1.975348-6 1.230269+1 1.517136-6 1.640590+1 1.100420-6 2.238721+1 7.848635-7 3.162278+1 5.433163-7 4.677351+1 3.609265-7 7.762471+1 2.142896-7 1.531087+2 1.074352-7 3.054921+2 5.353750-8 1.216186+3 1.338507-8 1.000000+5 1.62570-10 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.151200-4 6.788500-5 1.000000+5 6.788500-5 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.151200-4 1.656300-8 1.000000+5 1.656300-8 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.151200-4 1.472184-4 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.069600-4 3.304073+5 2.113489-4 3.553922+5 2.180000-4 3.831742+5 2.240000-4 4.033902+5 2.270000-4 4.118558+5 2.330000-4 4.270726+5 2.380000-4 4.347315+5 2.580000-4 4.570040+5 2.660725-4 4.635494+5 2.754229-4 4.678121+5 2.851018-4 4.689460+5 2.985383-4 4.668719+5 3.162278-4 4.609151+5 3.350000-4 4.524760+5 3.550000-4 4.410440+5 3.715352-4 4.294807+5 3.890451-4 4.155936+5 4.120975-4 3.960779+5 4.415704-4 3.712234+5 4.731513-4 3.458299+5 5.011872-4 3.242523+5 5.370318-4 2.979052+5 5.821032-4 2.676129+5 6.382635-4 2.349893+5 6.918310-4 2.081974+5 7.500000-4 1.830548+5 8.317638-4 1.539869+5 9.015711-4 1.337621+5 9.885531-4 1.130397+5 1.096478-3 9.285843+4 1.202264-3 7.740752+4 1.333521-3 6.261501+4 1.479108-3 5.027496+4 1.650000-3 3.956080+4 1.819701-3 3.171885+4 2.041738-3 2.426769+4 2.264644-3 1.893618+4 2.511886-3 1.468641+4 2.818383-3 1.099187+4 3.198895-3 7.923378+3 3.589219-3 5.840745+3 4.073803-3 4.143424+3 4.623810-3 2.916492+3 5.248075-3 2.037240+3 5.956621-3 1.412906+3 6.839116-3 9.399085+2 7.762471-3 6.423548+2 8.810489-3 4.358910+2 1.011579-2 2.834377+2 1.161449-2 1.828759+2 1.333521-2 1.171193+2 1.548817-2 7.170319+1 1.798871-2 4.356104+1 2.113489-2 2.526609+1 2.483133-2 1.454327+1 2.951209-2 7.984844+0 3.548134-2 4.178143+0 4.315191-2 2.083104+0 5.370318-2 9.494219-1 1.109175-1 6.837241-2 1.364583-1 3.242920-2 1.621810-1 1.753958-2 1.862087-1 1.079610-2 2.137962-1 6.695135-3 2.398833-1 4.526904-3 2.691535-1 3.083297-3 3.000000-1 2.163297-3 3.311311-1 1.578331-3 3.630781-1 1.183911-3 4.000000-1 8.814288-4 4.365158-1 6.801390-4 4.786301-1 5.213430-4 5.188000-1 4.158951-4 5.623413-1 3.339086-4 6.095369-1 2.697939-4 6.606935-1 2.194123-4 7.161434-1 1.795691-4 7.762471-1 1.478797-4 8.609938-1 1.160326-4 9.225714-1 9.934078-5 9.885531-1 8.561793-5 1.083927+0 7.089364-5 1.174898+0 6.045528-5 1.288250+0 5.079566-5 1.428894+0 4.206139-5 1.640590+0 3.297634-5 1.840772+0 2.710891-5 2.065380+0 2.244775-5 2.344229+0 1.838195-5 2.660725+0 1.516012-5 3.054921+0 1.237693-5 3.548134+0 1.001266-5 4.120975+0 8.160897-6 4.841724+0 6.596755-6 5.821032+0 5.212775-6 7.000000+0 4.149900-6 8.709636+0 3.193868-6 1.109175+1 2.412061-6 1.428894+1 1.812507-6 1.840772+1 1.370920-6 2.483133+1 9.926506-7 3.507519+1 6.884554-7 5.432503+1 4.368820-7 9.549926+1 2.450880-7 1.905461+2 1.216865-7 3.801894+2 6.071057-8 1.513561+3 1.519360-8 1.000000+5 2.29740-10 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.069600-4 6.522300-5 1.000000+5 6.522300-5 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.069600-4 1.187900-8 1.000000+5 1.187900-8 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.069600-4 1.417251-4 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 9.535000-5 2.206544+5 9.800000-5 2.292612+5 9.900000-5 2.335676+5 1.000000-4 2.389196+5 1.011579-4 2.467859+5 1.023293-4 2.570475+5 1.030000-4 2.641148+5 1.040000-4 2.764404+5 1.050300-4 2.915610+5 1.060000-4 3.082728+5 1.071519-4 3.314682+5 1.085000-4 3.635524+5 1.100000-4 4.058760+5 1.115000-4 4.553560+5 1.162800-4 6.582900+5 1.180000-4 7.450400+5 1.190000-4 7.977440+5 1.205000-4 8.787400+5 1.220000-4 9.609280+5 1.235000-4 1.043044+6 1.250000-4 1.123720+6 1.265000-4 1.202132+6 1.280000-4 1.277364+6 1.295000-4 1.349032+6 1.315000-4 1.438412+6 1.335000-4 1.520660+6 1.358000-4 1.606612+6 1.380384-4 1.682166+6 1.400000-4 1.742496+6 1.430000-4 1.825616+6 1.465000-4 1.910888+6 1.500000-4 1.985872+6 1.548817-4 2.076105+6 1.600000-4 2.154736+6 1.650000-4 2.216180+6 1.698244-4 2.261028+6 1.740000-4 2.288436+6 1.800000-4 2.309372+6 1.862087-4 2.310140+6 1.927525-4 2.291611+6 2.000000-4 2.253952+6 2.080000-4 2.197896+6 2.162719-4 2.129744+6 2.264644-4 2.038451+6 2.400000-4 1.913644+6 2.511886-4 1.810599+6 2.630268-4 1.701975+6 2.754229-4 1.589319+6 2.900000-4 1.461092+6 3.054921-4 1.333358+6 3.273407-4 1.171059+6 3.507519-4 1.021257+6 3.780000-4 8.740920+5 4.027170-4 7.613096+5 4.315191-4 6.503400+5 4.700000-4 5.309080+5 5.188000-4 4.166592+5 5.650000-4 3.354824+5 6.165950-4 2.666897+5 6.839116-4 2.014828+5 7.500000-4 1.559744+5 8.317638-4 1.160168+5 9.225714-4 8.561069+4 1.011579-3 6.495981+4 1.135011-3 4.562060+4 1.273503-3 3.178844+4 1.450000-3 2.094868+4 1.640590-3 1.396362+4 1.862087-3 9.130121+3 2.100000-3 6.048680+3 2.344229-3 4.122270+3 2.630268-3 2.740873+3 2.951209-3 1.810248+3 3.349654-3 1.138714+3 3.801894-3 7.108337+2 4.365158-3 4.217228+2 5.000000-3 2.504528+2 5.688529-3 1.515577+2 6.531306-3 8.783032+1 7.498942-3 5.050187+1 8.609938-3 2.881649+1 9.885531-3 1.632034+1 1.148154-2 8.744566+0 1.348963-2 4.429367+0 1.621810-2 2.018686+0 1.972423-2 8.689444-1 2.454709-2 3.361853-1 3.000000-2 1.398063-1 5.956621-2 6.801846-3 7.585776-2 2.354547-3 9.120108-2 1.056307-3 1.083927-1 5.018963-4 1.258925-1 2.652585-4 1.445440-1 1.483095-4 1.640590-1 8.765055-5 1.862087-1 5.219078-5 2.113489-1 3.132572-5 2.344229-1 2.076693-5 2.600160-1 1.386413-5 2.851018-1 9.744963-6 3.126079-1 6.894977-6 3.427678-1 4.911622-6 3.801894-1 3.378909-6 4.265795-1 2.247651-6 4.677351-1 1.632975-6 5.128614-1 1.195101-6 5.559043-1 9.154513-7 6.025596-1 7.058222-7 6.531306-1 5.483056-7 7.079458-1 4.289155-7 7.673615-1 3.378300-7 8.035261-1 2.954717-7 8.511380-1 2.491588-7 9.015711-1 2.115628-7 9.440609-1 1.868411-7 9.885531-1 1.661991-7 1.035142+0 1.490556-7 1.083927+0 1.346285-7 1.135011+0 1.223650-7 1.188600+0 1.118300-7 1.273503+0 9.859780-8 1.380384+0 8.573726-8 1.513561+0 7.345278-8 1.798871+0 5.454190-8 2.000000+0 4.571900-8 2.264644+0 3.750481-8 2.570396+0 3.087336-8 2.951209+0 2.515970-8 3.427678+0 2.031687-8 4.000000+0 1.642600-8 4.731513+0 1.314357-8 5.688529+0 1.037592-8 6.839116+0 8.254910-9 8.413951+0 6.433120-9 1.059254+1 4.917041-9 1.364583+1 3.689350-9 1.778279+1 2.752740-9 2.344229+1 2.041391-9 3.273407+1 1.431406-9 4.897788+1 9.40265-10 8.128305+1 5.58592-10 1.621810+2 2.76929-10 3.235937+2 1.38049-10 1.288250+3 3.45234-11 1.000000+5 4.44210-13 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 9.535000-5 3.991600-5 1.000000+5 3.991600-5 1 36000 7 7 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.535000-5 8.493300-9 1.000000+5 8.493300-9 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.535000-5 5.542551-5 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 9.398000-5 3.365322+5 9.630000-5 3.461412+5 9.740000-5 3.522708+5 9.850000-5 3.604542+5 9.960000-5 3.711732+5 1.005000-4 3.822126+5 1.015000-4 3.972474+5 1.025000-4 4.155414+5 1.035142-4 4.377803+5 1.045000-4 4.632624+5 1.055000-4 4.933014+5 1.066900-4 5.349010+5 1.080000-4 5.884332+5 1.096478-4 6.676858+5 1.150000-4 1.012644+6 1.165000-4 1.128942+6 1.180000-4 1.250682+6 1.194000-4 1.367352+6 1.205000-4 1.459938+6 1.220000-4 1.585866+6 1.235000-4 1.709784+6 1.250000-4 1.830108+6 1.265000-4 1.945668+6 1.280000-4 2.055600+6 1.295000-4 2.159442+6 1.315000-4 2.288136+6 1.335000-4 2.405838+6 1.358000-4 2.528532+6 1.380384-4 2.636233+6 1.400000-4 2.722206+6 1.430000-4 2.840760+6 1.465000-4 2.962506+6 1.500000-4 3.069486+6 1.548817-4 3.197615+6 1.600000-4 3.307728+6 1.650000-4 3.392022+6 1.705000-4 3.457656+6 1.760000-4 3.495354+6 1.820000-4 3.506520+6 1.880000-4 3.490116+6 1.950000-4 3.443028+6 2.018366-4 3.375887+6 2.089296-4 3.291698+6 2.194200-4 3.152385+6 2.317395-4 2.979682+6 2.450000-4 2.791230+6 2.580000-4 2.607384+6 2.691535-4 2.452138+6 2.818383-4 2.280201+6 2.951209-4 2.107753+6 3.126079-4 1.897438+6 3.350000-4 1.659390+6 3.630781-4 1.408523+6 3.890451-4 1.215033+6 4.168694-4 1.040225+6 4.518559-4 8.609994+5 4.954502-4 6.882055+5 5.432503-4 5.462180+5 5.888437-4 4.430628+5 6.531306-4 3.355799+5 7.161434-4 2.604015+5 7.852356-4 2.007379+5 8.709636-4 1.485200+5 9.549926-4 1.129874+5 1.059254-3 8.247687+4 1.202264-3 5.561346+4 1.350000-3 3.843882+4 1.531087-3 2.551180+4 1.737801-3 1.673479+4 1.972423-3 1.087951+4 2.213095-3 7.298766+3 2.483133-3 4.861010+3 2.754229-3 3.352600+3 3.126079-3 2.113081+3 3.548134-3 1.321674+3 4.027170-3 8.205933+2 4.570882-3 5.058977+2 5.248075-3 2.961462+2 6.000000-3 1.749000+2 6.839116-3 1.037415+2 7.762471-3 6.215488+1 8.912509-3 3.526936+1 1.023293-2 1.985962+1 1.188502-2 1.057558+1 1.396368-2 5.321513+0 1.659587-2 2.529171+0 2.018366-2 1.079483+0 2.426610-2 4.812096-1 3.162278-2 1.492931-1 4.073803-2 4.840832-2 6.382635-2 6.478548-3 7.852356-2 2.576664-3 9.332543-2 1.203130-3 1.083927-1 6.261053-4 1.244515-1 3.450277-4 1.412538-1 2.012290-4 1.603245-1 1.182537-4 1.798871-1 7.348908-5 2.000000-1 4.777934-5 2.213095-1 3.190604-5 2.426610-1 2.224522-5 2.660725-1 1.561492-5 2.917427-1 1.103958-5 3.198895-1 7.862672-6 3.467369-1 5.880868-6 3.758374-1 4.428370-6 4.073803-1 3.359152-6 4.365158-1 2.667375-6 4.677351-1 2.131248-6 5.011872-1 1.714262-6 5.432503-1 1.344014-6 5.956621-1 1.026458-6 6.606935-1 7.605028-7 7.161434-1 6.065733-7 7.673615-1 5.032088-7 8.317638-1 4.080892-7 8.810489-1 3.533296-7 9.332543-1 3.077526-7 9.885531-1 2.699477-7 1.059254+0 2.328563-7 1.135011+0 2.023041-7 1.202264+0 1.809934-7 1.333521+0 1.496414-7 1.531087+0 1.171994-7 1.737801+0 9.411537-8 1.949845+0 7.761702-8 2.187762+0 6.448893-8 2.483133+0 5.298298-8 2.851018+0 4.309662-8 3.311311+0 3.473828-8 3.845918+0 2.821825-8 4.518559+0 2.273759-8 5.432503+0 1.791430-8 6.531306+0 1.422591-8 8.035261+0 1.106772-8 9.885531+0 8.673839-9 1.258925+1 6.577923-9 1.678804+1 4.774748-9 2.264644+1 3.449982-9 3.198895+1 2.388577-9 4.677351+1 1.606131-9 7.762471+1 9.53605-10 1.531087+2 4.78087-10 3.054921+2 2.38250-10 1.216186+3 5.95656-11 1.000000+5 7.23470-13 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 9.398000-5 4.010900-5 1.000000+5 4.010900-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.398000-5 5.387100-5 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.744000-5 1.033514+4 2.754229-5 9.726366+3 2.775000-5 8.539400+3 2.791000-5 7.784220+3 2.806000-5 7.191680+3 2.818383-5 6.785789+3 2.828000-5 6.518040+3 2.840000-5 6.242260+3 2.851018-5 6.045938+3 2.862000-5 5.901540+3 2.873000-5 5.805980+3 2.884032-5 5.757938+3 2.892000-5 5.752380+3 2.903000-5 5.784440+3 2.915000-5 5.870240+3 2.926000-5 5.993640+3 2.937000-5 6.158260+3 2.948000-5 6.362340+3 2.960000-5 6.629080+3 2.975000-5 7.023760+3 2.990000-5 7.484380+3 3.010000-5 8.196240+3 3.040000-5 9.458860+3 3.101100-5 1.267482+4 3.135000-5 1.478188+4 3.162278-5 1.662173+4 3.190400-5 1.863944+4 3.220000-5 2.088240+4 3.245000-5 2.286180+4 3.280000-5 2.575040+4 3.315000-5 2.875800+4 3.350000-5 3.186740+4 3.388442-5 3.538109+4 3.427678-5 3.905476+4 3.470000-5 4.309520+4 3.520000-5 4.794400+4 3.570000-5 5.284620+4 3.610000-5 5.678920+4 3.670000-5 6.270680+4 3.730000-5 6.859980+4 3.785000-5 7.395420+4 3.850000-5 8.019620+4 3.920000-5 8.678860+4 4.000000-5 9.411800+4 4.073803-5 1.006697+5 4.168694-5 1.087569+5 4.265795-5 1.166288+5 4.365158-5 1.242342+5 4.466836-5 1.315327+5 4.570882-5 1.384920+5 4.680000-5 1.452422+5 4.800000-5 1.520322+5 4.954502-5 1.598334+5 5.128614-5 1.674217+5 5.308844-5 1.740240+5 5.500000-5 1.797472+5 5.688529-5 1.842215+5 5.900000-5 1.880082+5 6.150000-5 1.910226+5 6.400000-5 1.926890+5 6.683439-5 1.932250+5 7.000000-5 1.924490+5 7.328245-5 1.904585+5 7.762471-5 1.865000+5 8.222426-5 1.812329+5 8.709636-5 1.749441+5 9.332543-5 1.664773+5 1.011579-4 1.558175+5 1.109175-4 1.432427+5 1.220000-4 1.302992+5 1.355400-4 1.164257+5 1.500000-4 1.036632+5 1.659587-4 9.161443+4 1.850000-4 7.959100+4 2.137962-4 6.538629+4 2.691535-4 4.735266+4 3.100000-4 3.861200+4 3.548134-4 3.153841+4 4.415704-4 2.249605+4 5.248075-4 1.712015+4 6.918310-4 1.095290+4 8.128305-4 8.380576+3 9.660509-4 6.246775+3 1.161449-3 4.530919+3 1.380384-3 3.328797+3 1.640590-3 2.427889+3 1.949845-3 1.757956+3 2.317395-3 1.264064+3 2.754229-3 9.023582+2 3.273407-3 6.392932+2 3.890451-3 4.493779+2 4.570882-3 3.210143+2 5.432503-3 2.221312+2 6.382635-3 1.563798+2 7.498942-3 1.092955+2 8.810489-3 7.583320+1 1.047129-2 5.097974+1 1.216186-2 3.587460+1 1.348963-2 2.798261+1 1.566751-2 1.938101+1 1.840772-2 1.294670+1 2.238721-2 7.863186+0 2.660725-2 5.025358+0 3.126079-2 3.285048+0 3.715352-2 2.066330+0 4.415704-2 1.290029+0 5.248075-2 7.995234-1 6.382635-2 4.609237-1 7.943282-2 2.469670-1 1.011580-1 1.228933-1 1.949845-1 1.805412-2 2.426610-1 9.575467-3 2.851018-1 6.042528-3 3.311311-1 3.969670-3 3.758374-1 2.801876-3 4.216965-1 2.055313-3 4.731513-1 1.518976-3 5.248075-1 1.165347-3 5.821032-1 9.006098-4 6.382635-1 7.209587-4 7.079458-1 5.656144-4 7.762471-1 4.590040-4 8.609938-1 3.655419-4 9.440609-1 3.008389-4 1.035142+0 2.495802-4 1.174898+0 1.944018-4 1.303167+0 1.596339-4 1.445440+0 1.319613-4 1.621810+0 1.076093-4 1.819701+0 8.841813-5 2.044000+0 7.304200-5 2.317395+0 5.987525-5 2.630268+0 4.935087-5 3.019952+0 4.026850-5 3.507519+0 3.255670-5 4.073803+0 2.652085-5 4.786301+0 2.142664-5 5.754399+0 1.692366-5 6.918310+0 1.347032-5 8.511380+0 1.050194-5 1.071519+1 8.030095-6 1.380384+1 6.027471-6 1.778279+1 4.555565-6 2.344229+1 3.378376-6 3.273407+1 2.368916-6 4.841724+1 1.574737-6 8.000000+1 9.395800-7 1.584893+2 4.690963-7 3.162278+2 2.338171-7 1.258925+3 5.846576-8 1.000000+5 7.35120-10 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.744000-5 2.744000-5 1.000000+5 2.744000-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.744000-5 0.0 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.343000-5 2.307780+7 1.370000-5 2.377720+7 1.396368-5 2.433573+7 1.420000-5 2.471680+7 1.450000-5 2.504300+7 1.480000-5 2.518340+7 1.515000-5 2.515360+7 1.540000-5 2.500420+7 1.570000-5 2.469100+7 1.603245-5 2.419802+7 1.640590-5 2.349521+7 1.678804-5 2.264224+7 1.717908-5 2.166028+7 1.757924-5 2.057981+7 1.800000-5 1.939424+7 1.850000-5 1.796412+7 1.905461-5 1.640310+7 1.950000-5 1.519668+7 2.000000-5 1.390940+7 2.070000-5 1.225062+7 2.150000-5 1.057152+7 2.238721-5 8.973519+6 2.371374-5 7.046120+6 2.540973-5 5.226345+6 3.349654-5 1.549989+6 3.758374-5 9.403216+5 4.120975-5 6.342742+5 4.415704-5 4.746911+5 4.677351-5 3.747784+5 4.954502-5 2.978025+5 5.188000-5 2.493201+5 5.400000-5 2.148740+5 5.623413-5 1.861065+5 5.821032-5 1.656938+5 6.025596-5 1.484934+5 6.237348-5 1.340564+5 6.450000-5 1.223172+5 6.650000-5 1.133046+5 6.850000-5 1.058820+5 7.079458-5 9.894338+4 7.300000-5 9.354700+4 7.500000-5 8.951880+4 7.762471-5 8.522790+4 8.035261-5 8.170752+4 8.317638-5 7.882932+4 8.650000-5 7.617860+4 9.015711-5 7.391754+4 9.549926-5 7.142835+4 1.035142-4 6.869734+4 1.258925-4 6.307840+4 1.400000-4 5.985180+4 1.548817-4 5.650150+4 1.698244-4 5.321512+4 1.850000-4 4.999760+4 2.041738-4 4.616570+4 2.264644-4 4.212127+4 2.540973-4 3.773774+4 2.818383-4 3.393735+4 3.100000-4 3.055300+4 3.388442-4 2.749233+4 3.715352-4 2.446751+4 4.120975-4 2.130643+4 4.570882-4 1.843172+4 5.069907-4 1.584172+4 5.688529-4 1.328777+4 6.456542-4 1.086928+4 7.161434-4 9.158507+3 7.943282-4 7.657151+3 8.810489-4 6.355628+3 9.772372-4 5.239957+3 1.096478-3 4.196286+3 1.230269-3 3.333854+3 1.380384-3 2.627829+3 1.548817-3 2.055075+3 1.737801-3 1.594641+3 1.949845-3 1.228066+3 2.187762-3 9.388382+2 2.454709-3 7.125644+2 2.754229-3 5.370017+2 3.090295-3 4.018858+2 3.467369-3 2.987192+2 3.935501-3 2.138878+2 4.466836-3 1.519322+2 5.069907-3 1.071050+2 5.754399-3 7.495605+1 6.531306-3 5.209515+1 7.585776-3 3.368055+1 8.609938-3 2.312668+1 9.772372-3 1.577073+1 1.109175-2 1.068093+1 1.258925-2 7.183883+0 1.396368-2 5.160851+0 1.603245-2 3.296216+0 1.883649-2 1.938026+0 2.290868-2 1.008814+0 2.754229-2 5.415783-1 3.235937-2 3.121959-1 3.981072-2 1.524864-1 5.128614-2 6.296707-2 1.000000-1 5.998729-3 1.258925-1 2.683389-3 1.531088-1 1.364369-3 1.798871-1 7.870106-4 2.089296-1 4.757470-4 2.398833-1 3.012260-4 2.722701-1 1.996112-4 3.054921-1 1.382745-4 3.427678-1 9.648913-5 3.801894-1 7.026766-5 4.216965-1 5.152358-5 4.677351-1 3.805423-5 5.188000-1 2.832053-5 5.688529-1 2.192574-5 6.237348-1 1.708690-5 6.839117-1 1.340681-5 7.498942-1 1.059063-5 8.609938-1 7.501267-6 9.225714-1 6.356165-6 9.772372-1 5.572581-6 1.035142+0 4.919339-6 1.109175+0 4.264034-6 1.188600+0 3.722500-6 1.318257+0 3.075133-6 1.479108+0 2.506093-6 1.717908+0 1.931766-6 1.927525+0 1.591986-6 2.162719+0 1.321721-6 2.454709+0 1.085163-6 2.818383+0 8.821079-7 3.273407+0 7.106001-7 3.801894+0 5.769006-7 4.466836+0 4.646007-7 5.370318+0 3.658619-7 6.456542+0 2.903871-7 7.943282+0 2.258110-7 9.772372+0 1.769102-7 1.230269+1 1.358779-7 1.640590+1 9.855364-8 2.238721+1 7.029121-8 3.162278+1 4.865830-8 4.623810+1 3.271201-8 7.673615+1 1.941827-8 1.513561+2 9.734290-9 3.019952+2 4.850628-9 1.202264+3 1.212672-9 1.000000+5 1.45600-11 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.343000-5 1.343000-5 1.000000+5 1.343000-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.343000-5 0.0 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.272000-5 4.850200+7 1.303167-5 4.991079+7 1.333521-5 5.091823+7 1.360000-5 5.149320+7 1.390000-5 5.180680+7 1.412538-5 5.180718+7 1.445440-5 5.148085+7 1.479108-5 5.079227+7 1.515000-5 4.969200+7 1.550000-5 4.830960+7 1.584893-5 4.669139+7 1.621810-5 4.477677+7 1.659587-5 4.266441+7 1.701200-5 4.022862+7 1.750000-5 3.731328+7 1.800000-5 3.434892+7 1.850000-5 3.147888+7 1.905461-5 2.846480+7 1.972423-5 2.511561+7 2.041738-5 2.201103+7 2.113489-5 1.918433+7 2.213095-5 1.586491+7 2.350000-5 1.228360+7 2.540973-5 8.730883+6 3.235937-5 2.994062+6 3.589219-5 1.904474+6 3.900000-5 1.334136+6 4.168694-5 1.009015+6 4.415704-5 7.975740+5 4.650000-5 6.499640+5 4.850000-5 5.534040+5 5.069907-5 4.704945+5 5.248075-5 4.170909+5 5.450000-5 3.681508+5 5.650000-5 3.292688+5 5.850000-5 2.979156+5 6.025596-5 2.753618+5 6.220000-5 2.547732+5 6.400000-5 2.390632+5 6.606934-5 2.242257+5 6.800000-5 2.129024+5 7.000000-5 2.032352+5 7.244360-5 1.936931+5 7.500000-5 1.857952+5 7.800000-5 1.785748+5 8.150000-5 1.721668+5 8.511380-5 1.671145+5 9.015711-5 1.617521+5 9.885531-5 1.549202+5 1.161449-4 1.441613+5 1.288250-4 1.367307+5 1.412538-4 1.295962+5 1.548817-4 1.219758+5 1.678804-4 1.149954+5 1.850000-4 1.063060+5 2.041738-4 9.735512+4 2.290868-4 8.709579+4 2.580000-4 7.700920+4 2.884032-4 6.807445+4 3.162278-4 6.102609+4 3.500000-4 5.363920+4 3.890451-4 4.648184+4 4.365158-4 3.944728+4 4.897788-4 3.322928+4 5.495409-4 2.777403+4 6.309573-4 2.220145+4 7.000000-4 1.864228+4 7.762471-4 1.554591+4 8.609938-4 1.286509+4 9.660509-4 1.034299+4 1.083927-3 8.249864+3 1.216186-3 6.528986+3 1.364583-3 5.126864+3 1.531087-3 3.994525+3 1.717908-3 3.087985+3 1.927525-3 2.369272+3 2.162719-3 1.804585+3 2.426610-3 1.364695+3 2.722701-3 1.024733+3 3.054921-3 7.640860+2 3.427678-3 5.658127+2 3.890451-3 4.034467+2 4.415704-3 2.854093+2 5.011872-3 2.003310+2 5.688529-3 1.394577+2 6.456542-3 9.635671+1 7.413102-3 6.386659+1 8.810489-3 3.784558+1 1.011579-2 2.471465+1 1.148154-2 1.660704+1 1.305600-2 1.101497+1 1.496236-2 7.051153+0 1.737801-2 4.284969+0 2.089296-2 2.299636+0 2.483133-2 1.274286+0 2.951209-2 7.007992-1 3.507519-2 3.823162-1 4.265795-2 1.908993-1 5.248075-2 9.083173-2 7.161434-2 2.949995-2 1.148154-1 5.331959-3 1.396368-1 2.639768-3 1.659587-1 1.429675-3 1.905461-1 8.812538-4 2.162719-1 5.693537-4 2.426610-1 3.852966-4 2.722701-1 2.626776-4 3.019952-1 1.874108-4 3.349654-1 1.347284-4 3.672823-1 1.011625-4 4.027170-1 7.648824-5 4.415705-1 5.826982-5 4.841724-1 4.473175-5 5.248075-1 3.572669-5 5.688529-1 2.871378-5 6.165950-1 2.322649-5 6.683439-1 1.891272-5 7.244360-1 1.549902-5 7.852356-1 1.278203-5 8.609938-1 1.031615-5 9.225714-1 8.838385-6 9.885531-1 7.621549-6 1.083927+0 6.314891-6 1.188600+0 5.267600-6 1.303167+0 4.426428-6 1.445440+0 3.667770-6 1.659587+0 2.877920-6 1.862087+0 2.367610-6 2.089296+0 1.961693-6 2.371374+0 1.607329-6 2.691535+0 1.326476-6 3.090295+0 1.083683-6 3.589219+0 8.772209-7 4.168694+0 7.153888-7 4.954502+0 5.700037-7 5.956621+0 4.508539-7 7.244360+0 3.543645-7 9.015711+0 2.730009-7 1.148154+1 2.064329-7 1.479108+1 1.552620-7 1.972423+1 1.132034-7 2.851018+1 7.626297-8 4.216965+1 5.055866-8 7.079458+1 2.962174-8 1.364583+2 1.518608-8 2.722701+2 7.561853-9 1.083927+3 1.889764-9 1.000000+5 2.04520-11 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.272000-5 1.272000-5 1.000000+5 1.272000-5 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.272000-5 0.0 1.000000+5 1.000000+5 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.674410-8 1.028750+0 6.674410-7 1.030100+0 1.148720-6 1.031000+0 1.571850-6 1.032000+0 2.150680-6 1.033200+0 3.012740-6 1.034000+0 3.698420-6 1.035300+0 5.020080-6 1.036640+0 6.674410-6 1.038200+0 9.007330-6 1.039700+0 1.170230-5 1.041500+0 1.556980-5 1.043800+0 2.161140-5 1.046400+0 3.006820-5 1.048300+0 3.743570-5 1.051200+0 5.078080-5 1.054080+0 6.674410-5 1.057700+0 9.097660-5 1.061100+0 1.183380-4 1.065100+0 1.566660-4 1.070400+0 2.185660-4 1.076200+0 3.020580-4 1.080600+0 3.772210-4 1.087100+0 5.082410-4 1.093710+0 6.674410-4 1.102600+0 9.253830-4 1.110700+0 1.206860-3 1.120600+0 1.614370-3 1.133300+0 2.244600-3 1.147500+0 3.099060-3 1.158200+0 3.851340-3 1.174100+0 5.147590-3 1.190110+0 6.674410-3 1.205100+0 8.309000-3 1.227500+0 1.112170-2 1.250000+0 1.437000-2 1.265600+0 1.684930-2 1.294900+0 2.196340-2 1.331800+0 2.915740-2 1.362600+0 3.571730-2 1.411700+0 4.708330-2 1.455800+0 5.815280-2 1.500000+0 7.008000-2 1.589800+0 9.704060-2 1.665000+0 1.222990-1 1.748800+0 1.529830-1 1.838500+0 1.882010-1 1.946200+0 2.326100-1 2.000000+0 2.552000-1 2.044000+0 2.737000-1 2.163500+0 3.246300-1 2.372600+0 4.155170-1 2.647100+0 5.355680-1 3.000000+0 6.872000-1 3.437500+0 8.667280-1 4.000000+0 1.083000+0 4.750000+0 1.348310+0 5.000000+0 1.431000+0 6.000000+0 1.735000+0 7.000000+0 2.007000+0 8.000000+0 2.251000+0 9.000000+0 2.474000+0 1.000000+1 2.676000+0 1.100000+1 2.861000+0 1.200000+1 3.030000+0 1.300000+1 3.185000+0 1.400000+1 3.329000+0 1.500000+1 3.463000+0 1.600000+1 3.589000+0 1.800000+1 3.820000+0 2.000000+1 4.026000+0 2.200000+1 4.213000+0 2.400000+1 4.384000+0 2.600000+1 4.539000+0 2.800000+1 4.681000+0 3.000000+1 4.813000+0 4.000000+1 5.348000+0 5.000000+1 5.746000+0 6.000000+1 6.056000+0 8.000000+1 6.514000+0 1.000000+2 6.839000+0 1.500000+2 7.357000+0 2.000000+2 7.666000+0 3.000000+2 8.026000+0 4.000000+2 8.233000+0 5.000000+2 8.369000+0 6.000000+2 8.467000+0 8.000000+2 8.597000+0 1.000000+3 8.681000+0 1.500000+3 8.803000+0 2.000000+3 8.869000+0 3.000000+3 8.941000+0 4.000000+3 8.979000+0 5.000000+3 9.004000+0 6.000000+3 9.021000+0 8.000000+3 9.043000+0 1.000000+4 9.057000+0 1.500000+4 9.076000+0 2.000000+4 9.087000+0 3.000000+4 9.097000+0 4.000000+4 9.103000+0 5.000000+4 9.107000+0 6.000000+4 9.109000+0 8.000000+4 9.112000+0 1.000000+5 9.114000+0 1 36000 7 8 8.380000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.613740-7 2.106600+0 1.177400-6 2.114000+0 1.629080-6 2.119500+0 2.028190-6 2.127900+0 2.750610-6 2.136250+0 3.613740-6 2.147000+0 4.954690-6 2.156900+0 6.435550-6 2.169000+0 8.588640-6 2.184500+0 1.193850-5 2.201800+0 1.651730-5 2.214800+0 2.057920-5 2.234200+0 2.768270-5 2.253680+0 3.613740-5 2.281500+0 5.061680-5 2.307000+0 6.648510-5 2.338200+0 8.939500-5 2.377400+0 1.238010-4 2.410200+0 1.574550-4 2.446800+0 2.002910-4 2.485900+0 2.521780-4 2.532900+0 3.227330-4 2.556430+0 3.613740-4 2.611900+0 4.607900-4 2.660400+0 5.570690-4 2.745300+0 7.455960-4 2.809000+0 9.029560-4 2.904500+0 1.163210-3 3.000000+0 1.452000-3 3.125000+0 1.872360-3 3.234400+0 2.278330-3 3.425800+0 3.068300-3 3.569300+0 3.720830-3 3.784700+0 4.783520-3 4.000000+0 5.926000-3 4.250000+0 7.322760-3 4.625000+0 9.517850-3 5.000000+0 1.180000-2 5.500000+0 1.493320-2 6.000000+0 1.811000-2 6.750000+0 2.284160-2 7.000000+0 2.440000-2 8.000000+0 3.050000-2 9.000000+0 3.633000-2 1.000000+1 4.188000-2 1.100000+1 4.713000-2 1.200000+1 5.209000-2 1.300000+1 5.676000-2 1.400000+1 6.121000-2 1.500000+1 6.542000-2 1.600000+1 6.943000-2 1.800000+1 7.687000-2 2.000000+1 8.364000-2 2.200000+1 8.984000-2 2.400000+1 9.555000-2 2.600000+1 1.008000-1 2.800000+1 1.057000-1 3.000000+1 1.103000-1 4.000000+1 1.292000-1 5.000000+1 1.436000-1 6.000000+1 1.551000-1 8.000000+1 1.724000-1 1.000000+2 1.851000-1 1.500000+2 2.061000-1 2.000000+2 2.193000-1 3.000000+2 2.356000-1 4.000000+2 2.453000-1 5.000000+2 2.520000-1 6.000000+2 2.569000-1 8.000000+2 2.636000-1 1.000000+3 2.681000-1 1.500000+3 2.747000-1 2.000000+3 2.785000-1 3.000000+3 2.825000-1 4.000000+3 2.850000-1 5.000000+3 2.864000-1 6.000000+3 2.874000-1 8.000000+3 2.888000-1 1.000000+4 2.897000-1 1.500000+4 2.908000-1 2.000000+4 2.915000-1 3.000000+4 2.922000-1 4.000000+4 2.926000-1 5.000000+4 2.928000-1 6.000000+4 2.930000-1 8.000000+4 2.931000-1 1.000000+5 2.933000-1 1 36000 7 8 8.380000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 36000 7 9 8.380000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.600000+1 1.000000+5 3.600000+1 5.000000+5 3.599000+1 8.750000+5 3.597300+1 1.000000+6 3.596900+1 1.500000+6 3.593500+1 2.000000+6 3.588400+1 2.500000+6 3.582000+1 3.000000+6 3.574100+1 3.750000+6 3.559480+1 4.000000+6 3.554400+1 4.750000+6 3.535930+1 5.000000+6 3.529600+1 5.875000+6 3.503830+1 6.500000+6 3.483560+1 6.625000+6 3.479280+1 7.000000+6 3.466300+1 7.875000+6 3.433530+1 8.500000+6 3.408450+1 8.625000+6 3.403160+1 9.000000+6 3.387800+1 1.000000+7 3.344300+1 1.109400+7 3.293850+1 1.187500+7 3.256230+1 1.203100+7 3.248730+1 1.250000+7 3.226000+1 1.375000+7 3.163630+1 1.437500+7 3.132310+1 1.500000+7 3.100900+1 1.625000+7 3.037690+1 1.750000+7 2.975200+1 1.937500+7 2.882790+1 2.000000+7 2.853000+1 2.250000+7 2.737510+1 2.375000+7 2.682780+1 2.500000+7 2.630100+1 2.750000+7 2.530660+1 3.000000+7 2.439400+1 3.250000+7 2.354940+1 3.500000+7 2.276610+1 3.625000+7 2.239240+1 4.000000+7 2.133400+1 4.500000+7 2.003660+1 5.000000+7 1.882000+1 5.500000+7 1.765460+1 6.000000+7 1.653500+1 6.500000+7 1.545590+1 7.000000+7 1.443000+1 7.500000+7 1.346120+1 8.000000+7 1.255800+1 8.750000+7 1.133440+1 9.000000+7 1.096300+1 1.000000+8 9.657300+0 1.125000+8 8.399480+0 1.218800+8 7.678850+0 1.250000+8 7.475000+0 1.312500+8 7.112890+0 1.406300+8 6.663350+0 1.437500+8 6.534990+0 1.500000+8 6.302500+0 1.718800+8 5.669280+0 1.812500+8 5.437520+0 1.937500+8 5.136160+0 2.000000+8 4.985300+0 2.125000+8 4.682110+0 2.375000+8 4.134720+0 2.500000+8 3.908200+0 2.671900+8 3.641020+0 2.789100+8 3.460400+0 2.875000+8 3.319580+0 2.881300+8 3.308930+0 2.960400+8 3.169380+0 3.000000+8 3.095900+0 3.062500+8 2.975420+0 3.335900+8 2.487620+0 3.418000+8 2.375110+0 3.500000+8 2.283600+0 3.562500+8 2.228400+0 4.000000+8 1.968800+0 4.062500+8 1.928070+0 5.000000+8 1.339100+0 5.125000+8 1.295040+0 5.234400+8 1.263010+0 5.425800+8 1.217560+0 6.000000+8 1.118200+0 6.250000+8 1.077920+0 7.000000+8 9.662000-1 7.625000+8 8.903750-1 8.000000+8 8.460000-1 8.359400+8 8.014490-1 8.660200+8 7.636320-1 9.138700+8 7.043620-1 9.569300+8 6.534270-1 1.000000+9 6.057000-1 1.062500+9 5.427400-1 1.141100+9 4.732910-1 1.206900+9 4.224690-1 1.280200+9 3.726350-1 1.335100+9 3.394630-1 1.417600+9 2.954330-1 1.500000+9 2.575700-1 1.589800+9 2.221910-1 1.665000+9 1.967110-1 1.784700+9 1.627160-1 1.892300+9 1.378740-1 2.000000+9 1.173900-1 2.093800+9 1.024600-1 2.275400+9 7.956190-2 2.445700+9 6.351420-2 2.680200+9 4.738970-2 2.895300+9 3.681410-2 3.158400+9 2.755090-2 3.496000+9 1.951760-2 3.872000+9 1.372230-2 4.436000+9 8.528190-3 5.000000+9 5.589200-3 8.000000+9 1.050600-3 1.00000+10 4.761700-4 1.20500+10 2.477360-4 1.41820+10 1.409190-4 1.71170+10 7.399950-5 2.01490+10 4.259150-5 2.26440+10 2.877240-5 2.74790+10 1.510210-5 3.41360+10 7.390240-6 4.02450+10 4.318840-6 5.12000+10 1.983000-6 6.34000+10 1.000240-6 8.17000+10 4.472080-7 1.00000+11 2.365500-7 1.34280+11 9.408370-8 1.77440+11 3.961180-8 2.63330+11 1.175730-8 3.75720+11 3.978350-9 6.61190+11 7.22821-10 1.48990+12 6.43694-11 4.26460+12 2.94408-12 1.00000+14 3.23480-16 5.62340+14 2.14626-18 7.49890+15 1.08477-21 1.00000+17 5.25410-25 1 36000 7 0 8.380000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.50000-12 1.000000+2 3.50000-10 1.000000+3 3.500000-8 1.000000+4 3.500000-6 1.000000+5 3.500000-4 5.000000+5 8.750000-3 8.750000+5 2.679688-2 1.000000+6 3.500000-2 1.500000+6 7.790000-2 2.000000+6 1.377000-1 2.500000+6 2.139000-1 3.000000+6 3.056000-1 3.750000+6 4.707070-1 4.000000+6 5.327000-1 4.750000+6 7.376730-1 5.000000+6 8.120000-1 5.875000+6 1.092870+0 6.500000+6 1.311000+0 6.625000+6 1.356150+0 7.000000+6 1.494500+0 7.875000+6 1.831050+0 8.500000+6 2.081130+0 8.625000+6 2.131880+0 9.000000+6 2.285800+0 1.000000+7 2.703000+0 1.109400+7 3.166250+0 1.187500+7 3.498460+0 1.203100+7 3.564520+0 1.250000+7 3.763500+0 1.375000+7 4.288430+0 1.437500+7 4.547850+0 1.500000+7 4.805000+0 1.625000+7 5.310660+0 1.750000+7 5.805000+0 1.937500+7 6.525040+0 2.000000+7 6.760000+0 2.250000+7 7.673160+0 2.375000+7 8.114480+0 2.500000+7 8.545700+0 2.750000+7 9.374800+0 3.000000+7 1.015700+1 3.250000+7 1.088930+1 3.500000+7 1.157620+1 3.625000+7 1.190380+1 4.000000+7 1.282800+1 4.500000+7 1.394420+1 5.000000+7 1.496900+1 5.500000+7 1.593160+1 6.000000+7 1.684900+1 6.500000+7 1.772480+1 7.000000+7 1.856200+1 7.500000+7 1.936070+1 8.000000+7 2.012300+1 8.750000+7 2.119490+1 9.000000+7 2.153500+1 1.000000+8 2.280400+1 1.125000+8 2.419960+1 1.218800+8 2.511730+1 1.250000+8 2.540100+1 1.312500+8 2.593260+1 1.406300+8 2.666040+1 1.437500+8 2.688730+1 1.500000+8 2.731300+1 1.718800+8 2.858700+1 1.812500+8 2.905020+1 1.937500+8 2.961060+1 2.000000+8 2.987000+1 2.125000+8 3.034850+1 2.375000+8 3.117420+1 2.500000+8 3.153400+1 2.671900+8 3.197060+1 2.789100+8 3.223560+1 2.875000+8 3.241740+1 2.881300+8 3.242970+1 2.960400+8 3.258340+1 3.000000+8 3.265900+1 3.062500+8 3.276710+1 3.335900+8 3.319450+1 3.418000+8 3.330490+1 3.500000+8 3.341000+1 3.562500+8 3.348330+1 4.000000+8 3.391900+1 4.062500+8 3.396900+1 5.000000+8 3.456200+1 5.125000+8 3.462070+1 5.234400+8 3.467100+1 5.425800+8 3.475670+1 6.000000+8 3.498000+1 6.250000+8 3.506150+1 7.000000+8 3.528300+1 7.625000+8 3.542780+1 8.000000+8 3.550400+1 8.359400+8 3.556570+1 8.660200+8 3.561170+1 9.138700+8 3.567680+1 9.569300+8 3.572520+1 1.000000+9 3.576900+1 1.062500+9 3.581860+1 1.141100+9 3.586400+1 1.206900+9 3.589340+1 1.280200+9 3.591820+1 1.335100+9 3.593590+1 1.417600+9 3.595090+1 1.500000+9 3.596500+1 1.589800+9 3.597150+1 1.665000+9 3.597660+1 1.784700+9 3.598440+1 1.892300+9 3.599030+1 2.000000+9 3.599300+1 2.093800+9 3.599370+1 2.275400+9 3.599500+1 2.445700+9 3.599610+1 2.680200+9 3.599760+1 2.895300+9 3.599880+1 3.158400+9 3.600010+1 3.496000+9 3.600170+1 3.872000+9 3.600120+1 4.436000+9 3.600060+1 5.000000+9 3.600000+1 8.000000+9 3.600000+1 1.00000+10 3.600000+1 1.20500+10 3.600000+1 1.41820+10 3.600000+1 1.71170+10 3.600000+1 2.01490+10 3.600000+1 2.26440+10 3.600000+1 2.74790+10 3.600000+1 3.41360+10 3.600000+1 4.02450+10 3.600000+1 5.12000+10 3.600000+1 6.34000+10 3.600000+1 8.17000+10 3.600000+1 1.00000+11 3.600000+1 1.34280+11 3.600000+1 1.77440+11 3.600000+1 2.63330+11 3.600000+1 3.75720+11 3.600000+1 6.61190+11 3.600000+1 1.48990+12 3.600000+1 4.26460+12 3.600000+1 1.00000+14 3.600000+1 5.62340+14 3.600000+1 7.49890+15 3.600000+1 1.00000+17 3.600000+1 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.048657-6 0.0 8.954331-6 0.0 8.992900-6 1.108931+0 8.998410-6 1.265734+0 9.020450-6 2.311966+0 9.042490-6 3.898292+0 9.067285-6 6.398265+0 9.105511-6 1.116225+1 9.132028-6 1.427241+1 9.154713-6 1.606450+1 9.177682-6 1.661180+1 9.199871-6 1.582761+1 9.223335-6 1.376889+1 9.260517-6 9.194104+0 9.284930-6 6.215191+0 9.308347-6 3.911208+0 9.329010-6 2.391050+0 9.351050-6 1.315336+0 9.382732-6 3.761041-1 9.395129-6 0.0 9.661016-6 0.0 9.702630-6 4.915760-1 9.708575-6 5.610846-1 9.732354-6 1.024867+0 9.756134-6 1.728066+0 9.782886-6 2.836275+0 9.824546-6 4.970299+0 9.852737-6 6.326791+0 9.877214-6 7.121203+0 9.901330-6 7.371429+0 9.924997-6 7.047324+0 9.951251-6 6.103585+0 9.991367-6 4.075637+0 1.001771-5 2.755120+0 1.004297-5 1.733792+0 1.006527-5 1.059924+0 1.008904-5 5.830731-1 1.012323-5 1.667250-1 1.013660-5 3.879338-6 1.016131-5 7.234310-6 1.018614-5 1.252695-5 1.021096-5 2.005640-5 1.023579-5 2.969181-5 1.028554-5 5.148288-5 1.031042-5 6.025610-5 1.033531-5 6.519285-5 1.036020-5 6.520537-5 1.038509-5 6.029346-5 1.040998-5 5.154364-5 1.045975-5 2.976979-5 1.048464-5 2.011316-5 1.050953-5 1.256379-5 1.053441-5 7.255910-6 1.055930-5 3.854506-6 1.058337-5 1.314601-6 1.060908-5 0.0 1.079353-5 0.0 1.081803-5 3.21113-14 1.087128-5 2.251038-6 1.088801-5 3.418569-6 1.088879-5 2.455610-3 1.091143-5 7.092976-1 1.094239-5 1.806927+0 1.096919-5 3.315296+0 1.099599-5 5.617608+0 1.102507-5 9.129744+0 1.110487-5 2.109345+1 1.113246-5 2.392963+1 1.116039-5 2.495954+1 1.118782-5 2.395525+1 1.121409-5 2.132888+1 1.127670-5 1.201287+1 1.129081-5 9.830764+0 1.131928-5 6.271293+0 1.134441-5 3.885993+0 1.137121-5 2.170183+0 1.139801-5 1.118729+0 1.142399-5 1.461325-1 1.142481-5 1.179969-1 1.144857-5 0.0 1.155099-5 0.0 1.155148-5 7.752139-4 1.157217-5 3.270473-1 1.159471-5 7.158905-1 1.160834-5 1.134160+0 1.163677-5 2.343244+0 1.165257-5 3.253039+0 1.166782-5 4.322323+0 1.168904-5 6.197634+0 1.171383-5 8.899168+0 1.180293-5 2.044986+1 1.183881-5 2.323631+1 1.186926-5 2.362500+1 1.189727-5 2.250746+1 1.193222-5 1.929905+1 1.199866-5 1.209104+1 1.200925-5 1.113299+1 1.203663-5 9.346913+0 1.206415-5 8.487505+0 1.209129-5 8.163975+0 1.212793-5 8.137564+0 1.221762-5 8.704224+0 1.228400-5 8.648872+0 1.233991-5 9.127087+0 1.239356-5 1.028582+1 1.252026-5 1.423265+1 1.256562-5 1.469224+1 1.260622-5 1.430006+1 1.272705-5 1.179156+1 1.276575-5 1.179190+1 1.282624-5 1.236854+1 1.293803-5 1.333762+1 1.367913-5 1.470609+1 1.469088-5 1.597840+1 1.571737-5 1.615909+1 1.709060-5 1.505962+1 2.116640-5 9.180481+0 2.314554-5 6.929952+0 2.474453-5 5.566907+0 2.619211-5 4.588797+0 2.799288-5 3.652153+0 2.980707-5 2.948079+0 3.167001-5 2.402273+0 3.349654-5 1.993985+0 3.575247-5 1.617741+0 3.798700-5 1.342406+0 4.050000-5 1.114205+0 4.268098-5 9.660229-1 4.565129-5 8.179755-1 4.877251-5 7.091200-1 5.308844-5 6.112540-1 5.824673-5 5.449126-1 6.524713-5 5.056418-1 7.500000-5 4.980357-1 8.937719-5 5.221470-1 8.981718-5 5.585064-1 9.003717-5 5.882907-1 9.025735-5 6.333223-1 9.048303-5 6.967790-1 9.095962-5 8.849799-1 9.140730-5 1.066118+0 9.188432-5 1.193168+0 9.261441-5 1.295365+0 9.312093-5 1.331089+0 9.447841-5 1.282918+0 9.746687-5 1.348411+0 1.014508-4 1.488272+0 1.045000-4 1.674936+0 1.076316-4 1.975234+0 1.108564-4 2.424378+0 1.141274-4 3.036962+0 1.187860-4 4.153305+0 1.325000-4 7.841967+0 1.430000-4 1.014114+1 1.600000-4 1.310681+1 1.766494-4 1.524821+1 1.960803-4 1.661532+1 2.018924-4 1.711431+1 2.159778-4 1.864653+1 2.457600-4 1.911775+1 2.736555-4 1.905102+1 2.803000-4 1.939324+1 3.630780-4 1.697173+1 4.782858-4 1.340828+1 5.883804-4 1.081763+1 7.125991-4 8.684362+0 8.337112-4 7.164978+0 9.730270-4 5.877847+0 1.141563-3 4.749592+0 1.309117-3 3.934733+0 1.517972-3 3.192304+0 1.635511-3 2.896672+0 1.644483-3 3.013738+0 1.650416-3 3.263035+0 1.654961-3 3.616020+0 1.659928-3 4.209844+0 1.665327-3 5.112316+0 1.681904-3 8.537484+0 1.690596-3 9.812535+0 1.704231-3 1.081719+1 1.721325-3 1.200783+1 1.743000-3 1.402549+1 1.759250-3 1.457997+1 1.828044-3 1.419479+1 1.881602-3 1.389673+1 1.921447-3 1.492608+1 2.339805-3 1.133516+1 2.703492-3 9.127198+0 3.127337-3 7.278041+0 3.599565-3 5.817093+0 4.083443-3 4.733055+0 4.665600-3 3.792848+0 5.337842-3 3.022581+0 6.058849-3 2.432944+0 6.786244-3 1.999576+0 7.582267-3 1.647079+0 8.535850-3 1.336032+0 9.586518-3 1.086457+0 1.075663-2 8.836125-1 1.205137-2 7.196121-1 1.362094-2 5.758459-1 1.392587-2 5.572439-1 1.399445-2 5.753542-1 1.403493-2 6.112288-1 1.406886-2 6.702252-1 1.409812-2 7.523294-1 1.413180-2 8.931522-1 1.416492-2 1.087757+0 1.420354-2 1.386988+0 1.426310-2 1.962543+0 1.434451-2 2.766697+0 1.441500-2 3.263495+0 1.449420-2 3.531630+0 1.462099-2 3.596660+0 1.695663-2 2.850414+0 1.937222-2 2.290937+0 2.165036-2 1.897991+0 2.443881-2 1.540224+0 2.761524-2 1.244920+0 3.128289-2 9.961367-1 3.482456-2 8.213677-1 3.905549-2 6.646094-1 4.366577-2 5.407207-1 4.826173-2 4.474746-1 5.337729-2 3.699223-1 5.892675-2 3.058925-1 6.508742-2 2.525132-1 7.226207-2 2.059727-1 7.899817-2 1.729657-1 8.767011-2 1.409132-1 9.818129-2 1.125586-1 1.103855-1 8.921374-2 1.209390-1 7.443016-2 1.323759-1 6.219279-2 1.451454-1 5.177354-2 1.590151-1 4.317272-2 1.755503-1 3.546858-2 1.932503-1 2.936462-2 2.143453-1 2.397336-2 2.359867-1 1.990052-2 2.581815-1 1.675114-2 2.851018-1 1.390837-2 3.144975-1 1.160008-2 3.469864-1 9.708075-3 3.861168-1 8.042480-3 4.327629-1 6.626461-3 4.800096-1 5.596361-3 5.355082-1 4.719285-3 5.939501-1 4.046405-3 6.765697-1 3.373461-3 7.780602-1 2.819295-3 9.126673-1 2.340891-3 1.070165+0 1.975456-3 1.289742+0 1.620419-3 1.560588+0 1.323738-3 1.859734+0 1.098379-3 2.235892+0 9.031931-4 2.688134+0 7.426923-4 3.231848+0 6.107131-4 3.885536+0 5.021871-4 4.671441+0 4.129466-4 5.616308+0 3.395644-4 6.752287+0 2.792226-4 8.118035+0 2.296037-4 9.760024+0 1.888023-4 1.000000+1 3.800409-4 1 36000 7 0 8.380000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.600862+1 3.048657-6-3.607222+1 8.077489-6-3.575553+1 8.720838-6-3.426452+1 8.900583-6-3.239238+1 8.962811-6-3.033307+1 9.050067-6-2.662847+1 9.086570-6-2.642862+1 9.114120-6-2.790752+1 9.144942-6-3.141046+1 9.189593-6-3.850278+1 9.229356-6-3.313771+1 9.262890-6-3.112573+1 9.301460-6-3.140361+1 9.436951-6-3.734257+1 9.509268-6-3.885341+1 9.708575-6-3.541861+1 9.795890-6-3.394816+1 9.851251-6-3.522943+1 9.921280-6-3.911844+1 9.980273-6-3.670534+1 1.004855-5-3.711688+1 1.016131-5-3.948572+1 1.073271-5-3.461411+1 1.085897-5-3.186928+1 1.100520-5-2.400552+1 1.103680-5-2.329169+1 1.106951-5-2.438594+1 1.109787-5-2.691919+1 1.113084-5-3.227055+1 1.117737-5-4.130168+1 1.121603-5-3.463708+1 1.125337-5-3.126658+1 1.128816-5-3.054760+1 1.133185-5-3.248817+1 1.147338-5-4.208792+1 1.159471-5-3.583696+1 1.169420-5-2.999028+1 1.172662-5-2.919965+1 1.176623-5-3.018150+1 1.179849-5-3.287904+1 1.185450-5-4.099094+1 1.186926-5-4.346818+1 1.190742-5-3.830057+1 1.194552-5-3.510890+1 1.198666-5-3.426159+1 1.206119-5-3.761401+1 1.215314-5-4.084585+1 1.243018-5-4.495614+1 1.252026-5-4.358820+1 1.263046-5-4.027670+1 1.272705-5-4.044894+1 1.284413-5-4.165219+1 1.663246-5-3.000452+1 1.851397-5-2.630168+1 2.044135-5-2.448854+1 2.314554-5-2.389232+1 4.565129-5-2.744391+1 8.744637-5-3.131750+1 9.229193-5-3.214849+1 1.051250-4-3.354866+1 1.235000-4-3.627720+1 1.465000-4-3.528740+1 1.996121-4-2.938421+1 2.159778-4-2.728141+1 2.457600-4-2.327106+1 2.715169-4-2.099662+1 2.774222-4-2.049734+1 2.993740-4-1.799033+1 3.362566-4-1.521148+1 3.894478-4-1.252218+1 4.381893-4-1.085685+1 5.031056-4-9.435230+0 5.883804-4-8.335419+0 6.732653-4-7.745302+0 7.962354-4-7.394159+0 9.730270-4-7.486233+0 1.141563-3-8.007175+0 1.309117-3-8.966774+0 1.438692-3-1.021950+1 1.517972-3-1.145887+1 1.578782-3-1.299573+1 1.614219-3-1.446858+1 1.639310-3-1.631389+1 1.667654-3-2.006683+1 1.676600-3-2.044499+1 1.695551-3-1.911110+1 1.715470-3-1.815502+1 1.732750-3-1.745930+1 1.767485-3-1.418293+1 1.790699-3-1.272503+1 1.828044-3-1.121257+1 1.863812-3-1.042204+1 1.901855-3-1.019649+1 1.950223-3-8.168495+0 1.993000-3-7.006114+0 2.057898-3-5.761055+0 2.135385-3-4.676037+0 2.219474-3-3.794282+0 2.310734-3-3.054542+0 2.404460-3-2.459183+0 2.521847-3-1.881096+0 2.639630-3-1.436403+0 2.788127-3-1.004769+0 2.852814-3-8.557642-1 2.917427-3-7.249542-1 2.987263-3-6.018668-1 3.067979-3-4.822756-1 3.143154-3-3.864252-1 3.221996-3-2.985027-1 3.309554-3-2.170381-1 3.379919-3-1.610246-1 3.427678-3-1.265362-1 3.507519-3-7.749034-2 3.578903-3-3.945408-2 3.599565-3-2.936185-2 3.630781-3-1.517788-2 3.672823-3 2.327973-3 3.697018-3 1.106932-2 3.762433-3 3.201315-2 3.856266-3 5.610960-2 3.944903-3 7.314745-2 4.059172-3 8.918851-2 4.152997-3 9.679205-2 4.230811-3 9.946287-2 4.441196-3 9.914403-2 4.538722-3 9.469183-2 4.665600-3 8.475491-2 4.837143-3 6.526023-2 5.051699-3 3.536902-2 5.110735-3 2.663087-2 5.225818-3 8.088460-3 5.248800-3 4.469084-3 5.278372-3-3.175744-4 5.337842-3-1.080283-2 5.440327-3-2.863944-2 5.656996-3-6.999577-2 5.950536-3-1.260961-1 9.975295-3-9.558890-1 1.114200-2-1.242967+0 1.205137-2-1.534995+0 1.271139-2-1.832436+0 1.318802-2-2.145015+0 1.353351-2-2.485143+0 1.375944-2-2.824513+0 1.392587-2-3.223474+0 1.404619-2-3.721669+0 1.421939-2-4.681224+0 1.428852-2-4.773053+0 1.436103-2-4.536468+0 1.453901-2-3.429294+0 1.464344-2-2.969897+0 1.477415-2-2.590256+0 1.496236-2-2.212520+0 1.521758-2-1.844648+0 1.551072-2-1.537239+0 1.591035-2-1.227067+0 1.617436-2-1.064741+0 1.667367-2-8.233864-1 1.721795-2-6.201217-1 1.765887-2-4.843682-1 1.801254-2-3.945263-1 1.844057-2-3.017928-1 1.866447-2-2.589773-1 1.907690-2-1.892743-1 1.937222-2-1.443069-1 1.966754-2-1.035848-1 2.014171-2-4.749402-2 2.061087-2-2.726954-4 2.067983-2 6.730647-3 2.125153-2 5.534234-2 2.165036-2 8.362470-2 2.213885-2 1.149917-1 2.271172-2 1.469006-1 2.335017-2 1.760445-1 2.443881-2 2.119417-1 2.561395-2 2.388649-1 2.761524-2 2.655035-1 2.979178-2 2.776003-1 3.357890-2 2.708348-1 3.905549-2 2.404684-1 5.161451-2 1.569124-1 6.096379-2 1.058101-1 6.754286-2 7.652483-2 7.340730-2 5.422458-2 7.899817-2 3.586144-2 8.426613-2 2.074091-2 8.767011-2 1.194925-2 9.021981-2 5.884616-3 9.230664-2 1.124007-3 9.387167-2-2.294483-3 9.569515-2-6.222991-3 1.005959-1-1.578834-2 1.053257-1-2.417822-2 1.121066-1-3.486525-2 1.209390-1-4.666376-2 1.323759-1-5.933240-2 1.495395-1-7.412133-2 1.755503-1-9.007914-2 2.143453-1-1.052941-1 2.759691-1-1.188998-1 3.726699-1-1.292631-1 5.785538-1-1.373414-1 1.228714+0-1.420832-1 3.710658+0-1.432681-1 1.000000+1-1.433526-1 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.098353-1 1.024000-6 7.298989-1 1.042290-6 8.377440-1 1.054194-6 9.176229-1 1.065727-6 1.003779+0 1.076899-6 1.096252+0 1.087722-6 1.195328+0 1.108363-6 1.414707+0 1.127735-6 1.664902+0 1.145915-6 1.949129+0 1.154581-6 2.105204+0 1.162976-6 2.271614+0 1.171109-6 2.449010+0 1.186866-6 2.842658+0 1.201639-6 3.283293+0 1.215488-6 3.776734+0 1.228472-6 4.327774+0 1.240644-6 4.941226+0 1.252056-6 5.622084+0 1.262754-6 6.375504+0 1.272784-6 7.206783+0 1.282187-6 8.121327+0 1.291002-6 9.124620+0 1.299266-6 1.022219+1 1.307014-6 1.141957+1 1.314277-6 1.272225+1 1.321087-6 1.413564+1 1.327471-6 1.566505+1 1.333456-6 1.731561+1 1.339066-6 1.909223+1 1.344327-6 2.099961+1 1.349258-6 2.304219+1 1.353881-6 2.522416+1 1.358215-6 2.754945+1 1.362279-6 3.002182+1 1.366088-6 3.264480+1 1.369659-6 3.542166+1 1.373008-6 3.835547+1 1.376146-6 4.144917+1 1.379089-6 4.470581+1 1.381848-6 4.812881+1 1.384434-6 5.172221+1 1.386859-6 5.549070+1 1.391405-6 6.386526+1 1.395383-6 7.304738+1 1.398864-6 8.303851+1 1.401909-6 9.377791+1 1.404574-6 1.051342+2 1.406906-6 1.169178+2 1.408947-6 1.289064+2 1.410732-6 1.408729+2 1.413661-6 1.639361+2 1.416053-6 1.863664+2 1.424433-6 2.954900+2 1.426732-6 3.345223+2 1.429359-6 3.839314+2 1.431111-6 4.195699+2 1.433738-6 4.766989+2 1.437679-6 5.692553+2 1.439212-6 6.069605+2 1.441620-6 6.675620+2 1.444248-6 7.349475+2 1.447094-6 8.088132+2 1.449280-6 8.659649+2 1.452167-6 9.420721+2 1.455195-6 1.023381+3 1.460130-6 1.162153+3 1.467065-6 1.376646+3 1.470053-6 1.474530+3 1.473133-6 1.574560+3 1.475717-6 1.653923+3 1.477999-6 1.717174+3 1.479706-6 1.758500+3 1.481985-6 1.803332+3 1.483835-6 1.829346+3 1.485883-6 1.845732+3 1.486632-6 1.848220+3 1.490203-6 1.832714+3 1.492066-6 1.806344+3 1.494108-6 1.763386+3 1.495475-6 1.726861+3 1.497233-6 1.671468+3 1.499046-6 1.605416+3 1.500804-6 1.534038+3 1.502366-6 1.465621+3 1.504375-6 1.372463+3 1.506160-6 1.286365+3 1.507946-6 1.198713+3 1.509955-6 1.099977+3 1.511517-6 1.024195+3 1.515088-6 8.583983+2 1.516315-6 8.047339+2 1.518659-6 7.081303+2 1.521783-6 5.925583+2 1.525516-6 4.754263+2 1.530743-6 3.483379+2 1.533341-6 2.994636+2 1.536000-6 2.578192+2 1.538511-6 2.252015+2 1.541082-6 1.975278+2 1.543642-6 1.747414+2 1.546192-6 1.559337+2 1.548732-6 1.403331+2 1.551262-6 1.273004+2 1.553783-6 1.163179+2 1.556293-6 1.069731+2 1.558794-6 9.894135+1 1.561285-6 9.196950+1 1.566247-6 8.044261+1 1.571171-6 7.131346+1 1.576056-6 6.389551+1 1.580903-6 5.774815+1 1.585712-6 5.257504+1 1.590484-6 4.816781+1 1.595218-6 4.437448+1 1.599916-6 4.108083+1 1.604576-6 3.819893+1 1.609200-6 3.565974+1 1.613789-6 3.340817+1 1.622893-6 2.958512+1 1.631855-6 2.648370+1 1.640678-6 2.392535+1 1.649362-6 2.178655+1 1.657911-6 1.997785+1 1.666326-6 1.843255+1 1.674609-6 1.710029+1 1.682763-6 1.594273+1 1.690790-6 1.492997+1 1.698692-6 1.403769+1 1.714247-6 1.252723+1 1.729317-6 1.131035+1 1.743916-6 1.031417+1 1.758058-6 9.487469+0 1.771759-6 8.792477+0 1.785031-6 8.201685+0 1.797889-6 7.695181+0 1.810345-6 7.257539+0 1.834478-6 6.526520+0 1.857103-6 5.951848+0 1.878314-6 5.492569+0 1.898199-6 5.119259+0 1.920000-6 4.761815+0 1.934318-6 4.552384+0 1.967088-6 4.132629+0 1.995762-6 3.820349+0 2.020851-6 3.584254+0 2.064757-6 3.231887+0 2.097687-6 3.008417+0 2.147082-6 2.725467+0 2.218102-6 2.394742+0 2.288384-6 2.136189+0 2.400000-6 1.811269+0 2.564243-6 1.411983+0 2.603936-6 1.308123+0 2.633706-6 1.218893+0 2.656034-6 1.139030+0 2.672780-6 1.065832+0 2.685339-6 9.986146-1 2.694758-6 9.387275-1 2.701823-6 8.879897-1 2.707121-6 8.470937-1 2.711095-6 8.153747-1 2.723016-6 7.225670-1 2.727838-6 6.911647-1 2.731454-6 6.725421-1 2.733600-6 6.641672-1 2.736421-6 6.568686-1 2.743123-6 6.608883-1 2.746111-6 6.745506-1 2.749826-6 7.036697-1 2.752837-6 7.381544-1 2.755149-6 7.717213-1 2.759563-6 8.538188-1 2.762979-6 9.340405-1 2.767130-6 1.051109+0 2.776623-6 1.392386+0 2.779742-6 1.522738+0 2.783105-6 1.670242+0 2.786468-6 1.822423+0 2.790251-6 1.995674+0 2.793194-6 2.129304+0 2.799920-6 2.419510+0 2.800761-6 2.453446+0 2.806646-6 2.670349+0 2.808958-6 2.744023+0 2.813372-6 2.863707+0 2.816406-6 2.928852+0 2.818137-6 2.959534+0 2.821166-6 3.001739+0 2.823438-6 3.023836+0 2.826846-6 3.041977+0 2.830254-6 3.042918+0 2.833550-6 3.028658+0 2.838595-6 2.981323+0 2.843659-6 2.908195+0 2.847003-6 2.849043+0 2.853729-6 2.712548+0 2.857064-6 2.639757+0 2.876270-6 2.231199+0 2.882781-6 2.114630+0 2.888479-6 2.025102+0 2.898450-6 1.895452+0 2.913406-6 1.754035+0 2.928362-6 1.655671+0 2.933993-6 1.625905+0 2.948437-6 1.561580+0 2.962880-6 1.509329+0 2.986024-6 1.441333+0 3.014856-6 1.373179+0 3.056762-6 1.292631+0 3.146741-6 1.146892+0 3.180898-6 1.083537+0 3.197977-6 1.044417+0 3.219506-6 9.899654-1 3.230882-6 9.646156-1 3.238796-6 9.518853-1 3.246709-6 9.455217-1 3.251204-6 9.454765-1 3.259128-6 9.526947-1 3.263937-6 9.619121-1 3.267543-6 9.712460-1 3.275658-6 9.994128-1 3.286277-6 1.048474+0 3.299321-6 1.117792+0 3.307442-6 1.159207+0 3.315563-6 1.194692+0 3.320908-6 1.213376+0 3.324916-6 1.224548+0 3.330929-6 1.236444+0 3.336942-6 1.242461+0 3.341671-6 1.243238+0 3.346296-6 1.240905+0 3.354221-6 1.230793+0 3.362145-6 1.214698+0 3.377994-6 1.172682+0 3.404893-6 1.099437+0 3.429255-6 1.045052+0 3.457732-6 9.919364-1 3.474754-6 9.657388-1 3.483265-6 9.554920-1 3.491775-6 9.479455-1 3.500286-6 9.436133-1 3.511823-6 9.433276-1 3.523360-6 9.490857-1 3.551351-6 9.754438-1 3.559862-6 9.820433-1 3.567125-6 9.856355-1 3.574389-6 9.869179-1 3.585394-6 9.841749-1 3.593905-6 9.784607-1 3.610926-6 9.604697-1 3.636362-6 9.304539-1 3.648888-6 9.193746-1 3.661414-6 9.119185-1 3.680570-6 9.059920-1 3.715937-6 8.979867-1 3.742461-6 8.868157-1 3.787633-6 8.661003-1 3.940900-6 8.067174-1 4.077810-6 7.504527-1 4.192830-6 7.114028-1 4.340174-6 6.620309-1 4.512104-6 6.054577-1 4.690833-6 5.513773-1 4.856405-6 5.036429-1 4.982349-6 4.686279-1 5.112270-6 4.335907-1 5.251459-6 3.970497-1 5.370547-6 3.669346-1 5.487049-6 3.381709-1 5.600947-6 3.108640-1 5.718981-6 2.837182-1 5.830813-6 2.587783-1 5.928855-6 2.376202-1 6.030688-6 2.163417-1 6.102977-6 2.016249-1 6.193160-6 1.837226-1 6.290000-6 1.652562-1 6.373415-6 1.499638-1 6.450000-6 1.363646-1 6.506929-6 1.265563-1 6.560000-6 1.176452-1 6.620000-6 1.078989-1 6.672500-6 9.969403-2 6.732500-6 9.066786-2 6.770000-6 8.519965-2 6.810000-6 7.951507-2 6.850000-6 7.399145-2 6.890000-6 6.862830-2 6.922500-6 6.438327-2 6.960000-6 5.960853-2 7.010000-6 5.346527-2 7.047500-6 4.904794-2 7.085000-6 4.480645-2 7.147500-6 3.812493-2 7.200000-6 3.288085-2 7.274613-6 2.602791-2 7.352464-6 1.965433-2 7.395759-6 1.646453-2 7.436840-6 1.368527-2 7.512090-6 9.242987-3 7.582228-6 5.902754-3 7.626876-6 4.217946-3 7.642523-6 3.709684-3 7.784962-6 7.989029-4 7.819173-6 6.366347-4 7.865216-6 8.568758-4 8.063522-6 5.998580-3 8.099130-6 7.677743-3 8.192000-6 1.362395-2 8.325734-6 2.575540-2 8.410000-6 3.572025-2 8.545257-6 5.564545-2 8.664769-6 7.775541-2 8.850000-6 1.204366-1 8.981524-6 1.577689-1 9.158838-6 2.186385-1 9.363544-6 3.048008-1 9.581900-6 4.107248-1 9.654804-6 4.342367-1 9.660509-6 4.353825-1 9.990117-6 4.080481-1 1.030328-5 3.586972-1 1.056878-5 3.148875-1 1.074721-5 2.847184-1 1.092752-5 2.538345-1 1.112572-5 2.195533-1 1.125542-5 1.970416-1 1.138998-5 1.737557-1 1.152296-5 1.510054-1 1.161603-5 1.353420-1 1.174898-5 1.134488-1 1.184579-5 9.800214-2 1.195531-5 8.119480-2 1.206141-5 6.574079-2 1.216419-5 5.170019-2 1.227833-5 3.747822-2 1.236333-5 2.807160-2 1.247802-5 1.722921-2 1.255003-5 1.168175-2 1.263008-5 6.874553-3 1.268059-5 4.672911-3 1.272506-5 3.313890-3 1.285729-5 2.808625-3 1.287682-5 3.223625-3 1.288915-5 3.555387-3 1.304298-5 1.266272-2 1.307740-5 1.611286-2 1.318720-5 3.128524-2 1.325108-5 4.341679-2 1.332240-5 6.022170-2 1.344916-5 9.966054-2 1.356799-5 1.497215-1 1.367939-5 2.107542-1 1.378383-5 2.829378-1 1.389117-5 3.752077-1 1.397354-5 4.610095-1 1.405960-5 5.674741-1 1.414028-5 6.855187-1 1.429155-5 9.637025-1 1.453974-5 1.648822+0 1.464108-5 2.052174+0 1.472975-5 2.492853+0 1.480734-5 2.968626+0 1.487523-5 3.477980+0 1.493464-5 4.020647+0 1.498662-5 4.597824+0 1.503210-5 5.211564+0 1.507189-5 5.863093+0 1.510672-5 6.550775+0 1.516765-5 8.123007+0 1.521336-5 9.724798+0 1.524763-5 1.123460+1 1.529262-5 1.369057+1 1.535991-5 1.845098+1 1.538825-5 2.081645+1 1.541659-5 2.333973+1 1.542603-5 2.420475+1 1.546382-5 2.769993+1 1.547326-5 2.856371+1 1.550160-5 3.106293+1 1.551105-5 3.184988+1 1.553938-5 3.400535+1 1.554883-5 3.463940+1 1.556300-5 3.549532+1 1.557717-5 3.622396+1 1.558661-5 3.663224+1 1.560078-5 3.711938+1 1.561495-5 3.744681+1 1.563384-5 3.762057+1 1.564801-5 3.754644+1 1.565273-5 3.748216+1 1.567163-5 3.702675+1 1.568579-5 3.647937+1 1.569524-5 3.601903+1 1.571177-5 3.503746+1 1.572830-5 3.384595+1 1.573066-5 3.365974+1 1.576608-5 3.045057+1 1.578062-5 2.894607+1 1.580623-5 2.611693+1 1.582131-5 2.438360+1 1.583402-5 2.290628+1 1.585051-5 2.099314+1 1.586723-5 1.908274+1 1.587943-5 1.772463+1 1.589596-5 1.595353+1 1.591423-5 1.411257+1 1.593611-5 1.210122+1 1.598393-5 8.577982+0 1.599278-5 8.067532+0 1.603057-5 6.398063+0 1.603529-5 6.246359+0 1.605182-5 5.811525+0 1.606835-5 5.521187+0 1.608724-5 5.356522+0 1.609669-5 5.337319+0 1.610613-5 5.358001+0 1.611609-5 5.421130+0 1.612888-5 5.561377+0 1.615287-5 5.990091+0 1.632078-5 1.327128+1 1.634087-5 1.447253+1 1.636096-5 1.571054+1 1.640113-5 1.824706+1 1.644130-5 2.076546+1 1.648147-5 2.312846+1 1.650156-5 2.420593+1 1.652164-5 2.519051+1 1.654173-5 2.606662+1 1.656181-5 2.682149+1 1.658190-5 2.744606+1 1.660199-5 2.793586+1 1.662207-5 2.829164+1 1.664216-5 2.851991+1 1.667229-5 2.865206+1 1.668233-5 2.864959+1 1.677271-5 2.827496+1 1.680284-5 2.835445+1 1.681621-5 2.848366+1 1.683626-5 2.881875+1 1.685631-5 2.935486+1 1.687356-5 3.000230+1 1.689944-5 3.133954+1 1.691446-5 3.233667+1 1.692532-5 3.316570+1 1.694443-5 3.485563+1 1.696353-5 3.685458+1 1.700370-5 4.213148+1 1.704387-5 4.897443+1 1.710403-5 6.252865+1 1.712422-5 6.810000+1 1.716216-5 8.024888+1 1.718660-5 8.943611+1 1.722789-5 1.080268+2 1.727453-5 1.351672+2 1.731046-5 1.621418+2 1.735175-5 2.019811+2 1.737987-5 2.360280+2 1.741368-5 2.861640+2 1.747863-5 4.181178+2 1.753195-5 5.697187+2 1.756125-5 6.719280+2 1.758513-5 7.654831+2 1.760397-5 8.455904+2 1.763152-5 9.722758+2 1.764221-5 1.024167+3 1.768656-5 1.252640+3 1.769199-5 1.281688+3 1.772999-5 1.487577+3 1.774492-5 1.568123+3 1.777342-5 1.717541+3 1.779484-5 1.823228+3 1.780846-5 1.886153+3 1.782634-5 1.962407+3 1.783784-5 2.007014+3 1.784933-5 2.047725+3 1.786292-5 2.090352+3 1.788076-5 2.136382+3 1.789939-5 2.171378+3 1.790912-5 2.183999+3 1.792812-5 2.196955+3 1.794712-5 2.194002+3 1.795604-5 2.187058+3 1.797761-5 2.155637+3 1.799516-5 2.115142+3 1.801310-5 2.060540+3 1.803124-5 1.992773+3 1.804952-5 1.912865+3 1.806503-5 1.837125+3 1.808198-5 1.747240+3 1.809948-5 1.648184+3 1.811670-5 1.546126+3 1.813445-5 1.437974+3 1.815166-5 1.331979+3 1.817059-5 1.215999+3 1.819009-5 1.099241+3 1.820900-5 9.906941+2 1.823286-5 8.628420+2 1.829038-5 6.114369+2 1.833427-5 4.854905+2 1.834391-5 4.660970+2 1.835614-5 4.458449+2 1.836131-5 4.387545+2 1.837027-5 4.285021+2 1.838020-5 4.201437+2 1.839703-5 4.131302+2 1.840440-5 4.128381+2 1.841386-5 4.148960+2 1.842208-5 4.188608+2 1.842969-5 4.243122+2 1.843404-5 4.281750+2 1.844165-5 4.362261+2 1.846447-5 4.698910+2 1.847359-5 4.871454+2 1.851765-5 5.981748+2 1.856692-5 7.672939+2 1.859383-5 8.744722+2 1.861803-5 9.769056+2 1.863655-5 1.057867+3 1.865168-5 1.124887+3 1.867154-5 1.213151+3 1.869389-5 1.311501+3 1.870308-5 1.351321+3 1.872410-5 1.440056+3 1.874511-5 1.524568+3 1.875155-5 1.549416+3 1.877408-5 1.631822+3 1.879380-5 1.697277+3 1.881256-5 1.752978+3 1.882730-5 1.791763+3 1.885114-5 1.844550+3 1.887532-5 1.884652+3 1.889016-5 1.902244+3 1.890202-5 1.912389+3 1.891704-5 1.920197+3 1.894162-5 1.920841+3 1.894653-5 1.919181+3 1.898581-5 1.885288+3 1.900255-5 1.860274+3 1.903614-5 1.793148+3 1.905619-5 1.743619+3 1.909319-5 1.637571+3 1.911054-5 1.582842+3 1.913548-5 1.500597+3 1.916724-5 1.392881+3 1.921303-5 1.239937+3 1.926023-5 1.096255+3 1.930062-5 9.921453+2 1.932124-5 9.472479+2 1.934328-5 9.059680+2 1.935112-5 8.930026+2 1.937760-5 8.559693+2 1.940025-5 8.324905+2 1.941633-5 8.202781+2 1.943615-5 8.100773+2 1.945929-5 8.045041+2 1.947788-5 8.045216+2 1.950243-5 8.099102+2 1.953189-5 8.230252+2 1.957287-5 8.497094+2 1.965312-5 9.111503+2 1.969029-5 9.357900+2 1.972221-5 9.522295+2 1.975555-5 9.636808+2 1.978800-5 9.688234+2 1.982580-5 9.675592+2 1.986816-5 9.580424+2 1.991843-5 9.385251+2 1.997432-5 9.111303+2 2.008876-5 8.555257+2 2.016307-5 8.275143+2 2.024258-5 8.046922+2 2.052057-5 7.420319+2 2.078939-5 6.807930+2 2.127912-5 5.770996+2 2.155421-5 5.306376+2 2.180842-5 4.928342+2 2.205142-5 4.605405+2 2.229536-5 4.316416+2 2.254130-5 4.055804+2 2.280000-5 3.810923+2 2.330000-5 3.408758+2 2.372366-5 3.124815+2 2.398833-5 2.971053+2 2.426610-5 2.825803+2 2.486072-5 2.558610+2 2.540973-5 2.353376+2 2.575255-5 2.242745+2 2.645472-5 2.046329+2 2.708069-5 1.901043+2 2.770000-5 1.778001+2 2.844428-5 1.652027+2 2.952347-5 1.501923+2 3.037437-5 1.404406+2 3.162278-5 1.284794+2 3.280732-5 1.190736+2 3.353000-5 1.140465+2 3.579228-5 1.015853+2 3.779115-5 9.299727+1 4.064287-5 8.344179+1 4.377305-5 7.537634+1 4.704619-5 6.877662+1 4.900000-5 6.550942+1 5.163354-5 6.195831+1 6.000000-5 5.316993+1 6.355198-5 5.001726+1 6.792910-5 4.644931+1 7.082146-5 4.417297+1 7.413102-5 4.170872+1 7.762471-5 3.914574+1 8.150000-5 3.633108+1 8.728751-5 3.215339+1 9.269919-5 2.816312+1 9.624731-5 2.547974+1 1.000000-4 2.263657+1 1.029408-4 2.045885+1 1.060953-4 1.801452+1 1.072836-4 1.705493+1 1.100754-4 1.468494+1 1.115934-4 1.334407+1 1.133630-4 1.180785+1 1.138867-4 1.137896+1 1.147580-4 1.065248+1 1.151180-4 1.033006+1 1.154875-4 9.978663+0 1.160503-4 9.405651+0 1.165326-4 8.894331+0 1.175070-4 7.917677+0 1.179445-4 7.551034+0 1.183820-4 7.246380+0 1.186250-4 7.104543+0 1.190829-4 6.885745+0 1.194764-4 6.739677+0 1.201175-4 6.555354+0 1.207228-4 6.406057+0 1.214717-4 6.211431+0 1.221000-4 6.023483+0 1.230188-4 5.711981+0 1.252000-4 4.966697+0 1.257000-4 4.827538+0 1.263500-4 4.679205+0 1.269000-4 4.588419+0 1.275000-4 4.531667+0 1.283661-4 4.538248+0 1.292924-4 4.675899+0 1.301315-4 4.931469+0 1.307270-4 5.195364+0 1.314911-4 5.640161+0 1.323466-4 6.284075+0 1.332545-4 7.137597+0 1.345086-4 8.599842+0 1.358313-4 1.047662+1 1.371339-4 1.262720+1 1.387495-4 1.565021+1 1.390192-4 1.618795+1 1.406269-4 1.955789+1 1.423000-4 2.330049+1 1.425000-4 2.376061+1 1.442500-4 2.788111+1 1.465000-4 3.337213+1 1.487672-4 3.908652+1 1.492500-4 4.032841+1 1.513561-4 4.585367+1 1.520198-4 4.763327+1 1.540000-4 5.306210+1 1.550000-4 5.587641+1 1.570000-4 6.165005+1 1.595572-4 6.931150+1 1.610000-4 7.377998+1 1.640590-4 8.352151+1 1.670000-4 9.318561+1 1.680000-4 9.652118+1 1.705000-4 1.049249+2 1.717908-4 1.092856+2 1.740000-4 1.167469+2 1.757924-4 1.227788+2 1.780000-4 1.301395+2 1.800000-4 1.367147+2 1.843644-4 1.506268+2 1.895355-4 1.662926+2 1.935984-4 1.779033+2 2.002454-4 1.956232+2 2.069548-4 2.120362+2 2.116972-4 2.226120+2 2.171322-4 2.340446+2 2.219192-4 2.430123+2 2.259266-4 2.497159+2 2.288405-4 2.554141+2 2.302864-4 2.600778+2 2.314513-4 2.654434+2 2.327450-4 2.731343+2 2.340966-4 2.823487+2 2.354954-4 2.915503+2 2.363550-4 2.963421+2 2.377673-4 3.024161+2 2.400742-4 3.099975+2 2.414588-4 3.153203+2 2.441297-4 3.280012+2 2.458630-4 3.356934+2 2.471175-4 3.401842+2 2.487929-4 3.449663+2 2.581783-4 3.675755+2 2.645405-4 3.814077+2 2.725762-4 3.973125+2 2.798601-4 4.101026+2 2.875743-4 4.217498+2 2.978005-4 4.347345+2 3.038183-4 4.410821+2 3.066484-4 4.451507+2 3.092574-4 4.502645+2 3.213106-4 4.808659+2 3.287828-4 4.962441+2 3.362184-4 5.078116+2 3.486185-4 5.237633+2 3.594431-4 5.351851+2 3.772594-4 5.513407+2 3.961835-4 5.655236+2 4.374000-4 5.883043+2 4.680694-4 6.003746+2 5.101298-4 6.113662+2 5.559042-4 6.185488+2 6.053219-4 6.221972+2 6.683439-4 6.220834+2 7.088378-4 6.189866+2 7.964481-4 6.094517+2 8.896975-4 5.966974+2 9.359443-4 5.892384+2 1.038298-3 5.694924+2 1.098057-3 5.573467+2 1.152778-3 5.455537+2 1.216186-3 5.310354+2 1.277747-3 5.155521+2 1.343256-3 4.964211+2 1.400393-3 4.780563+2 1.452889-3 4.598047+2 1.499101-3 4.422670+2 1.541980-3 4.242032+2 1.576740-3 4.078299+2 1.609050-3 3.907774+2 1.636158-3 3.746692+2 1.661021-3 3.578436+2 1.684745-3 3.391854+2 1.704799-3 3.208786+2 1.716579-3 3.086194+2 1.728623-3 2.944165+2 1.740823-3 2.776157+2 1.750877-3 2.613535+2 1.759271-3 2.459077+2 1.765913-3 2.327405+2 1.779031-3 2.073905+2 1.782822-3 2.013476+2 1.786715-3 1.963035+2 1.790553-3 1.927687+2 1.792707-3 1.914983+2 1.797149-3 1.906348+2 1.800616-3 1.916494+2 1.803676-3 1.937474+2 1.805134-3 1.951234+2 1.807982-3 1.984558+2 1.812954-3 2.060354+2 1.818571-3 2.165565+2 1.829397-3 2.392310+2 1.833844-3 2.485203+2 1.838836-3 2.586670+2 1.864959-3 3.133746+2 1.882541-3 3.573805+2 1.887140-3 3.688827+2 1.893337-3 3.836688+2 1.901010-3 4.003586+2 1.907376-3 4.126322+2 1.914044-3 4.239565+2 1.924072-3 4.383648+2 1.936083-3 4.523281+2 1.949778-3 4.650355+2 1.962136-3 4.742380+2 1.977320-3 4.830225+2 1.991330-3 4.888198+2 2.022725-3 4.975540+2 2.031234-3 5.013308+2 2.039890-3 5.070192+2 2.051907-3 5.183392+2 2.076552-3 5.483457+2 2.087003-3 5.603537+2 2.097382-3 5.706868+2 2.109406-3 5.806596+2 2.122753-3 5.897317+2 2.137684-3 5.981818+2 2.158482-3 6.080874+2 2.179412-3 6.165818+2 2.227786-3 6.323736+2 2.286083-3 6.463808+2 2.346338-3 6.567501+2 2.418106-3 6.648739+2 2.517723-3 6.715847+2 2.634397-3 6.750557+2 2.762168-3 6.744469+2 2.957758-3 6.671224+2 3.145728-3 6.560429+2 3.378414-3 6.391161+2 3.701843-3 6.129161+2 4.068262-3 5.819387+2 4.531992-3 5.440507+2 4.982743-3 5.094360+2 5.743072-3 4.570261+2 6.364290-3 4.195397+2 6.972972-3 3.864796+2 7.640557-3 3.538443+2 8.219191-3 3.280431+2 8.871325-3 3.016174+2 9.637565-3 2.735461+2 1.037695-2 2.491973+2 1.116492-2 2.257296+2 1.161701-2 2.132003+2 1.234663-2 1.941938+2 1.293672-2 1.795930+2 1.341782-2 1.678906+2 1.377408-2 1.590695+2 1.408078-2 1.510889+2 1.431062-2 1.445637+2 1.441650-2 1.412804+2 1.451160-2 1.380906+2 1.459107-2 1.351614+2 1.466176-2 1.322582+2 1.472196-2 1.294875+2 1.480311-2 1.252272+2 1.491080-2 1.188210+2 1.500167-2 1.136726+2 1.505477-2 1.113980+2 1.509466-2 1.102794+2 1.514144-2 1.097446+2 1.517131-2 1.098645+2 1.520776-2 1.104800+2 1.526107-2 1.121844+2 1.533259-2 1.154906+2 1.545272-2 1.216380+2 1.551605-2 1.244203+2 1.559790-2 1.272608+2 1.568725-2 1.294855+2 1.581476-2 1.315573+2 1.595675-2 1.329593+2 1.613598-2 1.339562+2 1.635188-2 1.344285+2 1.660414-2 1.343245+2 1.702301-2 1.332054+2 1.749402-2 1.311224+2 1.822110-2 1.270862+2 1.925280-2 1.207671+2 2.025169-2 1.144978+2 2.179756-2 1.051652+2 2.377655-2 9.443254+1 2.567763-2 8.535286+1 2.829305-2 7.461515+1 3.128189-2 6.453126+1 3.523930-2 5.396044+1 3.783345-2 4.830796+1 4.175796-2 4.113288+1 5.159890-2 2.883284+1 5.959589-2 2.248422+1 8.609875-2 1.173701+1 1.085758-1 7.741319+0 1.297641-1 5.583682+0 1.573614-1 3.894951+0 1.985841-1 2.504270+0 2.691535-1 1.394966+0 3.785515-1 7.182447-1 5.543065-1 3.393608-1 9.093896-1 1.271665-1 2.235892+0 2.113644-2 6.752287+0 2.319604-3 2.039158+1 2.543642-4 6.158159+1 2.789078-5 1.859734+2 3.058167-6 5.616308+2 3.353214-7 1.995262+3 2.656826-8 6.309573+3 2.656826-9 1.995262+4 2.65683-10 6.309573+4 2.65683-11 1.000000+5 1.05770-11 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.699700-6 1.258900-6 2.693800-6 1.584900-6 4.269300-6 1.995300-6 6.766400-6 2.511900-6 1.072400-5 3.162300-6 1.699600-5 3.981100-6 2.693700-5 5.011900-6 4.269300-5 6.309600-6 6.766300-5 7.943300-6 1.072400-4 1.000000-5 1.699600-4 1.258900-5 2.693600-4 1.584900-5 4.266600-4 1.995300-5 6.757200-4 2.511900-5 1.070300-3 3.162300-5 1.695500-3 3.981100-5 2.686300-3 5.011900-5 4.255700-3 6.309600-5 6.741100-3 7.943300-5 1.065800-2 1.000000-4 1.683700-2 1.258900-4 2.658500-2 1.584900-4 4.185000-2 1.995300-4 6.566000-2 2.511900-4 1.024000-1 3.162300-4 1.581900-1 3.981100-4 2.404200-1 5.011900-4 3.577200-1 6.309600-4 5.179400-1 7.943300-4 7.264800-1 1.000000-3 9.897300-1 1.258900-3 1.320700+0 1.584900-3 1.745000+0 1.995300-3 2.290200+0 2.511900-3 2.970500+0 3.162300-3 3.793700+0 3.981100-3 4.764800+0 5.011900-3 5.872100+0 6.309600-3 7.069400+0 7.943300-3 8.334600+0 1.000000-2 9.677400+0 1.258900-2 1.106600+1 1.584900-2 1.250200+1 1.995300-2 1.384700+1 2.511900-2 1.502900+1 3.162300-2 1.599900+1 3.981100-2 1.664600+1 5.011900-2 1.715100+1 6.309600-2 1.728000+1 7.943300-2 1.713600+1 1.000000-1 1.676000+1 1.258900-1 1.617800+1 1.584900-1 1.542800+1 1.995300-1 1.455300+1 2.511900-1 1.359900+1 3.162300-1 1.260000+1 3.981100-1 1.159000+1 5.011900-1 1.059000+1 6.309600-1 9.616800+0 7.943300-1 8.679700+0 1.000000+0 7.786300+0 1.258900+0 6.942200+0 1.584900+0 6.150300+0 1.995300+0 5.414200+0 2.511900+0 4.736200+0 3.162300+0 4.117700+0 3.981100+0 3.559100+0 5.011900+0 3.059000+0 6.309600+0 2.615700+0 7.943300+0 2.225800+0 1.000000+1 1.885700+0 1.258900+1 1.591100+0 1.584900+1 1.337700+0 1.995300+1 1.120900+0 2.511900+1 9.363900-1 3.162300+1 7.801700-1 3.981100+1 6.484300-1 5.011900+1 5.377400-1 6.309600+1 4.450500-1 7.943300+1 3.676700-1 1.000000+2 3.032400-1 1.258900+2 2.497300-1 1.584900+2 2.053700-1 1.995300+2 1.686800-1 2.511900+2 1.383800-1 3.162300+2 1.134000-1 3.981100+2 9.283300-2 5.011900+2 7.592700-2 6.309600+2 6.204600-2 7.943300+2 5.066100-2 1.000000+3 4.133300-2 1.258900+3 3.369800-2 1.584900+3 2.745500-2 1.995300+3 2.235400-2 2.511900+3 1.819000-2 3.162300+3 1.479300-2 3.981100+3 1.202400-2 5.011900+3 9.767700-3 6.309600+3 7.931000-3 7.943300+3 6.436600-3 1.000000+4 5.221400-3 1.258900+4 4.233800-3 1.584900+4 3.431600-3 1.995300+4 2.780200-3 2.511900+4 2.251600-3 3.162300+4 1.822800-3 3.981100+4 1.475200-3 5.011900+4 1.193400-3 6.309600+4 9.651700-4 7.943300+4 7.803200-4 1.000000+5 6.306700-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997264-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510168-4 3.162278-4 3.159564-4 3.981072-4 3.976796-4 5.011872-4 5.005140-4 6.309573-4 6.299041-4 7.943282-4 7.926824-4 1.000000-3 9.974279-4 1.258925-3 1.254908-3 1.584893-3 1.578575-3 1.995262-3 1.985336-3 2.511886-3 2.496280-3 3.162278-3 3.137800-3 3.981072-3 3.942705-3 5.011872-3 4.952079-3 6.309573-3 6.216603-3 7.943282-3 7.798985-3 1.000000-2 9.775982-3 1.258925-2 1.224101-2 1.584893-2 1.531062-2 1.995262-2 1.912309-2 2.511886-2 2.384795-2 3.162278-2 2.968625-2 3.981072-2 3.687414-2 5.011872-2 4.569620-2 6.309573-2 5.648090-2 7.943282-2 6.961943-2 1.000000-1 8.550247-2 1.258925-1 1.046790-1 1.584893-1 1.277427-1 1.995262-1 1.553210-1 2.511886-1 1.882404-1 3.162278-1 2.273817-1 3.981072-1 2.737602-1 5.011872-1 3.285509-1 6.309573-1 3.931948-1 7.943282-1 4.691698-1 1.000000+0 5.586676-1 1.258925+0 6.640307-1 1.584893+0 7.883903-1 1.995262+0 9.355098-1 2.511886+0 1.110050+0 3.162278+0 1.317767+0 3.981072+0 1.565765+0 5.011872+0 1.862553+0 6.309573+0 2.218695+0 7.943282+0 2.647154+0 1.000000+1 3.163766+0 1.258925+1 3.787789+0 1.584893+1 4.542916+0 1.995262+1 5.458112+0 2.511886+1 6.568856+0 3.162278+1 7.918822+0 3.981072+1 9.561280+0 5.011872+1 1.156205+1 6.309573+1 1.400166+1 7.943282+1 1.697918+1 1.000000+2 2.061667+1 1.258925+2 2.506394+1 1.584893+2 3.050558+1 1.995262+2 3.716879+1 2.511886+2 4.533394+1 3.162278+2 5.534652+1 3.981072+2 6.763090+1 5.011872+2 8.271431+1 6.309573+2 1.012438+2 7.943282+2 1.240195+2 1.000000+3 1.520282+2 1.258925+3 1.864917+2 1.584893+3 2.289169+2 1.995262+3 2.811793+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88183-10 1.995262-5 1.090595-9 2.511886-5 1.728449-9 3.162278-5 2.739453-9 3.981072-5 4.341814-9 5.011872-5 6.880971-9 6.309573-5 1.090480-8 7.943282-5 1.727323-8 1.000000-4 2.736383-8 1.258925-4 4.335532-8 1.584893-4 6.864405-8 1.995262-4 1.086475-7 2.511886-4 1.718195-7 3.162278-4 2.713660-7 3.981072-4 4.275856-7 5.011872-4 6.732495-7 6.309573-4 1.053271-6 7.943282-4 1.645816-6 1.000000-3 2.572143-6 1.258925-3 4.017611-6 1.584893-3 6.318235-6 1.995262-3 9.926659-6 2.511886-3 1.560655-5 3.162278-3 2.447794-5 3.981072-3 3.836645-5 5.011872-3 5.979295-5 6.309573-3 9.297092-5 7.943282-3 1.442978-4 1.000000-2 2.240182-4 1.258925-2 3.482430-4 1.584893-2 5.383142-4 1.995262-2 8.295303-4 2.511886-2 1.270919-3 3.162278-2 1.936522-3 3.981072-2 2.936582-3 5.011872-2 4.422528-3 6.309573-2 6.614832-3 7.943282-2 9.813391-3 1.000000-1 1.449753-2 1.258925-1 2.121351-2 1.584893-1 3.074666-2 1.995262-1 4.420520-2 2.511886-1 6.294821-2 3.162278-1 8.884603-2 3.981072-1 1.243469-1 5.011872-1 1.726363-1 6.309573-1 2.377625-1 7.943282-1 3.251584-1 1.000000+0 4.413324-1 1.258925+0 5.948947-1 1.584893+0 7.965029-1 1.995262+0 1.059752+0 2.511886+0 1.401836+0 3.162278+0 1.844510+0 3.981072+0 2.415307+0 5.011872+0 3.149319+0 6.309573+0 4.090879+0 7.943282+0 5.296128+0 1.000000+1 6.836234+0 1.258925+1 8.801465+0 1.584893+1 1.130602+1 1.995262+1 1.449451+1 2.511886+1 1.855001+1 3.162278+1 2.370396+1 3.981072+1 3.024944+1 5.011872+1 3.855668+1 6.309573+1 4.909408+1 7.943282+1 6.245365+1 1.000000+2 7.938333+1 1.258925+2 1.008286+2 1.584893+2 1.279837+2 1.995262+2 1.623574+2 2.511886+2 2.058547+2 3.162278+2 2.608812+2 3.981072+2 3.304763+2 5.011872+2 4.184729+2 6.309573+2 5.297136+2 7.943282+2 6.703088+2 1.000000+3 8.479718+2 1.258925+3 1.072434+3 1.584893+3 1.355976+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.020000-6 3.343884+5 4.050000-6 3.164380+5 4.168694-6 2.593343+5 4.265795-6 2.202750+5 4.365158-6 1.862785+5 4.466836-6 1.567117+5 4.570882-6 1.311552+5 4.677351-6 1.090577+5 4.786301-6 9.011343+4 4.880000-6 7.629230+4 4.960000-6 6.604680+4 5.050000-6 5.602800+4 5.150000-6 4.652200+4 5.248075-6 3.862637+4 5.350000-6 3.169860+4 5.432503-6 2.691665+4 5.520000-6 2.254740+4 5.600000-6 1.911200+4 5.688529-6 1.585475+4 5.770000-6 1.330360+4 5.850000-6 1.116490+4 5.960000-6 8.740360+3 6.230000-6 4.803290+3 6.290000-6 4.238000+3 6.350000-6 3.764130+3 6.400000-6 3.433120+3 6.440000-6 3.206910+3 6.480000-6 3.012750+3 6.520000-6 2.848670+3 6.550000-6 2.744150+3 6.590000-6 2.628220+3 6.620000-6 2.557870+3 6.660000-6 2.484900+3 6.685000-6 2.450750+3 6.715000-6 2.420830+3 6.750000-6 2.400400+3 6.790000-6 2.395050+3 6.830000-6 2.407680+3 6.870000-6 2.437080+3 6.910000-6 2.482130+3 6.960000-6 2.558810+3 7.010000-6 2.656300+3 7.070000-6 2.798180+3 7.130000-6 2.964490+3 7.200000-6 3.185830+3 7.550000-6 4.613990+3 7.673615-6 5.202974+3 7.770000-6 5.679870+3 7.880000-6 6.236830+3 8.000000-6 6.853610+3 8.128305-6 7.517024+3 8.270000-6 8.247280+3 8.420000-6 9.010590+3 8.550000-6 9.659410+3 8.709636-6 1.043531+4 8.850000-6 1.109560+4 9.050000-6 1.199680+4 9.225714-6 1.274764+4 9.440609-6 1.361232+4 9.660509-6 1.443537+4 9.885531-6 1.521378+4 1.011579-5 1.594532+4 1.035142-5 1.662813+4 1.060000-5 1.727970+4 1.096478-5 1.811589+4 1.135011-5 1.885919+4 1.174898-5 1.949233+4 1.216186-5 2.001980+4 1.270000-5 2.054140+4 1.330000-5 2.094100+4 1.396368-5 2.120655+4 1.462177-5 2.132933+4 1.548817-5 2.133755+4 1.659587-5 2.117676+4 1.778279-5 2.086308+4 1.927525-5 2.034700+4 1.975000-5 2.015281+4 1.975000-5 7.892975+7 1.995262-5 7.338064+7 2.073000-5 5.507215+7 2.073000-5 9.363454+7 2.114000-5 8.063632+7 2.137962-5 7.412368+7 2.170000-5 6.632839+7 2.190000-5 6.203047+7 2.213095-5 5.751275+7 2.238721-5 5.303594+7 2.270000-5 4.818015+7 2.280000-5 4.677356+7 2.330000-5 4.051566+7 2.371374-5 3.621500+7 2.426610-5 3.143752+7 2.454709-5 2.937691+7 2.485000-5 2.733042+7 2.500000-5 2.639437+7 2.540973-5 2.407882+7 2.580000-5 2.212229+7 2.610000-5 2.077491+7 2.660725-5 1.874281+7 2.691535-5 1.764761+7 2.770000-5 1.522231+7 2.786121-5 1.478456+7 2.900000-5 1.212620+7 2.917427-5 1.178418+7 3.019952-5 9.992601+6 3.054921-5 9.464476+6 3.162278-5 8.066012+6 3.235937-5 7.259207+6 3.350000-5 6.210168+6 3.467369-5 5.325692+6 3.589219-5 4.574181+6 3.672000-5 4.140268+6 3.672000-5 4.184750+6 3.725000-5 3.938854+6 3.758374-5 3.793723+6 3.770000-5 3.745421+6 3.801894-5 3.617003+6 3.850000-5 3.434164+6 3.900000-5 3.257052+6 3.950000-5 3.092023+6 3.981072-5 2.995096+6 4.000000-5 2.938474+6 4.070000-5 2.741229+6 4.120975-5 2.608854+6 4.130000-5 2.586658+6 4.180000-5 2.468170+6 4.260000-5 2.293857+6 4.330000-5 2.155249+6 4.415704-5 2.001234+6 4.420000-5 1.994070+6 4.466836-5 1.917986+6 4.518559-5 1.839563+6 4.623810-5 1.693636+6 4.677351-5 1.625757+6 4.731513-5 1.562655+6 4.841724-5 1.444880+6 4.850000-5 1.436710+6 4.900000-5 1.388513+6 4.954502-5 1.340053+6 5.080000-5 1.237785+6 5.128614-5 1.202137+6 5.230000-5 1.134184+6 5.248075-5 1.122634+6 5.370318-5 1.051824+6 5.450000-5 1.010034+6 5.500000-5 9.862884+5 5.559043-5 9.591686+5 5.580000-5 9.498696+5 5.650000-5 9.205562+5 5.688529-5 9.057872+5 5.800000-5 8.647516+5 5.821032-5 8.575697+5 5.900000-5 8.327465+5 6.000000-5 8.026999+5 6.095369-5 7.777917+5 6.165950-5 7.599937+5 6.309573-5 7.286824+5 6.350000-5 7.201396+5 6.382635-5 7.137550+5 6.531306-5 6.869757+5 6.580000-5 6.791570+5 6.606934-5 6.750534+5 6.730000-5 6.563913+5 6.760830-5 6.521819+5 6.839116-5 6.420991+5 6.918310-5 6.322419+5 6.950000-5 6.282584+5 7.161434-5 6.054699+5 7.300000-5 5.930212+5 7.400000-5 5.840288+5 7.413102-5 5.829216+5 7.650000-5 5.650847+5 7.673615-5 5.634490+5 7.762471-5 5.578817+5 7.900000-5 5.490917+5 8.000000-5 5.431457+5 8.035261-5 5.412439+5 8.150000-5 5.351559+5 8.300000-5 5.277485+5 8.317638-5 5.268480+5 8.413951-5 5.223269+5 8.709636-5 5.095240+5 8.912509-5 5.020687+5 9.120108-5 4.942913+5 9.225714-5 4.905977+5 9.440609-5 4.837643+5 9.549926-5 4.803764+5 1.000000-4 4.667618+5 1.011579-4 4.635425+5 1.023293-4 4.604459+5 1.096478-4 4.412410+5 1.100000-4 4.403355+5 1.174898-4 4.221554+5 1.175700-4 4.219617+5 1.175700-4 6.744519+5 1.192000-4 6.865760+5 1.192000-4 8.569524+5 1.195000-4 8.612092+5 1.204670-4 8.764089+5 1.205000-4 8.769375+5 1.214000-4 8.930150+5 1.215000-4 8.950147+5 1.221000-4 9.077469+5 1.225000-4 9.172854+5 1.230269-4 9.308260+5 1.235000-4 9.443762+5 1.236000-4 9.474353+5 1.244515-4 9.762497+5 1.251000-4 1.001965+6 1.252000-4 1.006281+6 1.258925-4 1.038237+6 1.260000-4 1.043623+6 1.266000-4 1.075590+6 1.267000-4 1.081308+6 1.273503-4 1.120856+6 1.274000-4 1.123966+6 1.275000-4 1.130521+6 1.285000-4 1.201563+6 1.295000-4 1.284591+6 1.305000-4 1.377804+6 1.322000-4 1.561101+6 1.333521-4 1.700073+6 1.335000-4 1.719015+6 1.340000-4 1.782597+6 1.348000-4 1.888578+6 1.350000-4 1.915120+6 1.355000-4 1.983414+6 1.358000-4 2.024840+6 1.365000-4 2.121072+6 1.369000-4 2.177123+6 1.375000-4 2.259989+6 1.380384-4 2.335383+6 1.385000-4 2.398854+6 1.390000-4 2.467511+6 1.396368-4 2.553720+6 1.400000-4 2.602780+6 1.405000-4 2.668157+6 1.412538-4 2.766800+6 1.415000-4 2.798015+6 1.423000-4 2.898515+6 1.425000-4 2.922870+6 1.435000-4 3.043455+6 1.450000-4 3.214328+6 1.465000-4 3.374744+6 1.479108-4 3.515494+6 1.485000-4 3.573342+6 1.496236-4 3.679170+6 1.500000-4 3.713768+6 1.513561-4 3.833951+6 1.520000-4 3.889490+6 1.531087-4 3.980358+6 1.540000-4 4.054656+6 1.550000-4 4.135260+6 1.570000-4 4.288980+6 1.580000-4 4.363790+6 1.603245-4 4.530217+6 1.610000-4 4.577024+6 1.640590-4 4.777238+6 1.649400-4 4.833213+6 1.650000-4 4.836732+6 1.659587-4 4.893163+6 1.670000-4 4.954870+6 1.680000-4 5.011469+6 1.705000-4 5.141751+6 1.717908-4 5.205335+6 1.737801-4 5.292538+6 1.740000-4 5.302214+6 1.757924-4 5.374845+6 1.778279-4 5.445867+6 1.780000-4 5.451886+6 1.800000-4 5.514532+6 1.819701-4 5.565761+6 1.820000-4 5.566539+6 1.840772-4 5.613117+6 1.865000-4 5.655780+6 1.883649-4 5.682774+6 1.905461-4 5.705158+6 1.930000-4 5.723975+6 1.950000-4 5.731177+6 1.972423-4 5.734137+6 1.995262-4 5.737101+6 2.000000-4 5.736002+6 2.018366-4 5.727995+6 2.041738-4 5.717836+6 2.065380-4 5.707728+6 2.150000-4 5.631814+6 2.187762-4 5.582743+6 2.220000-4 5.541795+6 2.238721-4 5.518311+6 2.330000-4 5.371547+6 2.372900-4 5.288992+6 2.372900-4 5.761698+6 2.400000-4 5.707999+6 2.426610-4 5.656300+6 2.429000-4 5.650883+6 2.448000-4 5.604854+6 2.466900-4 5.558397+6 2.466900-4 5.766525+6 2.477000-4 5.741938+6 2.507000-4 5.671837+6 2.511886-4 5.661271+6 2.516200-4 5.651174+6 2.530000-4 5.617377+6 2.550000-4 5.571223+6 2.590000-4 5.484619+6 2.600160-4 5.463611+6 2.630268-4 5.402433+6 2.660725-4 5.333689+6 2.700000-4 5.247708+6 2.754229-4 5.132044+6 2.760000-4 5.119531+6 2.770000-4 5.097586+6 2.851018-4 4.917144+6 2.869000-4 4.878160+6 2.900000-4 4.812384+6 2.917427-4 4.776141+6 2.951209-4 4.701820+6 2.985383-4 4.628769+6 3.090295-4 4.417353+6 3.100000-4 4.397849+6 3.126079-4 4.344698+6 3.131800-4 4.333088+6 3.131800-4 4.486580+6 3.141000-4 4.473204+6 3.150000-4 4.459703+6 3.162278-4 4.440609+6 3.177000-4 4.416792+6 3.193000-4 4.390063+6 3.210000-4 4.360892+6 3.230000-4 4.325903+6 3.235937-4 4.315283+6 3.255000-4 4.281532+6 3.273407-4 4.248554+6 3.280000-4 4.236852+6 3.311311-4 4.176896+6 3.355000-4 4.093711+6 3.467369-4 3.892345+6 3.500000-4 3.833120+6 3.600000-4 3.660104+6 3.630781-4 3.609567+6 3.650000-4 3.578300+6 3.700000-4 3.498703+6 3.850000-4 3.267482+6 3.981072-4 3.083881+6 4.027170-4 3.021118+6 4.100000-4 2.926235+6 4.120975-4 2.899685+6 4.216965-4 2.782032+6 4.265795-4 2.725199+6 4.350000-4 2.628261+6 4.365158-4 2.611333+6 4.430000-4 2.540211+6 4.518559-4 2.447796+6 4.570882-4 2.395742+6 4.600000-4 2.367169+6 4.623810-4 2.343625+6 4.700000-4 2.270082+6 4.897788-4 2.095354+6 4.954502-4 2.049052+6 5.011872-4 2.002264+6 5.128614-4 1.912134+6 5.150000-4 1.896323+6 5.248075-4 1.826376+6 5.370318-4 1.744482+6 5.432503-4 1.704685+6 5.500000-4 1.662089+6 5.623413-4 1.588224+6 5.754399-4 1.514978+6 5.888437-4 1.444684+6 5.956621-4 1.410370+6 6.025596-4 1.376517+6 6.237348-4 1.279747+6 6.382635-4 1.218830+6 6.456542-4 1.189526+6 6.531306-4 1.160669+6 6.839116-4 1.051343+6 6.918310-4 1.025565+6 7.000000-4 9.999296+5 7.079458-4 9.759215+5 7.161434-4 9.516831+5 7.244360-4 9.280768+5 7.328245-4 9.049235+5 7.413102-4 8.823939+5 7.585776-4 8.387473+5 7.673615-4 8.177455+5 7.800000-4 7.887806+5 7.852356-4 7.771188+5 7.943282-4 7.574746+5 8.035261-4 7.382345+5 8.128305-4 7.195071+5 8.413951-4 6.659011+5 8.609938-4 6.324132+5 8.709636-4 6.162058+5 8.810489-4 6.004122+5 8.912509-4 5.849531+5 9.015711-4 5.697876+5 9.200000-4 5.441256+5 9.225714-4 5.406674+5 9.549926-4 4.997537+5 9.700000-4 4.822249+5 9.772372-4 4.740586+5 1.000000-3 4.494182+5 1.011579-3 4.376062+5 1.059254-3 3.933909+5 1.071519-3 3.830355+5 1.083927-3 3.728287+5 1.096478-3 3.629084+5 1.109175-3 3.532690+5 1.110000-3 3.526558+5 1.122018-3 3.438596+5 1.150000-3 3.245911+5 1.161449-3 3.171480+5 1.188502-3 3.004248+5 1.202264-3 2.923492+5 1.216186-3 2.844623+5 1.258925-3 2.620363+5 1.303167-3 2.414627+5 1.318257-3 2.349338+5 1.348963-3 2.223156+5 1.350000-3 2.219069+5 1.355400-3 2.197858+5 1.396368-3 2.045689+5 1.450000-3 1.868781+5 1.496236-3 1.732627+5 1.500000-3 1.722131+5 1.513561-3 1.684794+5 1.548817-3 1.592811+5 1.566751-3 1.548789+5 1.603245-3 1.464529+5 1.621810-3 1.423881+5 1.659587-3 1.346112+5 1.678804-3 1.308739+5 1.698244-3 1.272344+5 1.737801-3 1.202354+5 1.778279-3 1.136364+5 1.805100-3 1.095020+5 1.805100-3 4.371820+5 1.850000-3 4.138573+5 1.862087-3 4.078825+5 1.867100-3 4.054413+5 1.867100-3 5.632907+5 1.883649-3 5.520009+5 1.895000-3 5.444421+5 1.900000-3 5.412916+5 1.905461-3 5.380150+5 1.920000-3 5.294336+5 1.927525-3 5.246156+5 1.949845-3 5.106799+5 1.972423-3 4.971175+5 1.995262-3 4.839001+5 2.018366-3 4.706188+5 2.048000-3 4.536918+5 2.048000-3 5.182714+5 2.065380-3 5.079394+5 2.089296-3 4.941928+5 2.110000-3 4.827176+5 2.113489-3 4.807844+5 2.155000-3 4.582457+5 2.162719-3 4.542020+5 2.187762-3 4.414282+5 2.213095-3 4.289999+5 2.238721-3 4.169298+5 2.264644-3 4.051604+5 2.317395-3 3.826895+5 2.371374-3 3.614864+5 2.426610-3 3.413351+5 2.454709-3 3.316947+5 2.483133-3 3.223108+5 2.540973-3 3.043496+5 2.600160-3 2.873670+5 2.660725-3 2.713433+5 2.691535-3 2.636752+5 2.722701-3 2.561514+5 2.754229-3 2.488471+5 2.786121-3 2.417056+5 2.900000-3 2.184527+5 2.985383-3 2.030363+5 3.054921-3 1.914270+5 3.090295-3 1.858497+5 3.126079-3 1.804313+5 3.162278-3 1.751749+5 3.198895-3 1.700761+5 3.235937-3 1.651302+5 3.273407-3 1.603128+5 3.349654-3 1.510543+5 3.427678-3 1.423431+5 3.467369-3 1.381800+5 3.507519-3 1.341364+5 3.650000-3 1.209917+5 3.758374-3 1.120651+5 3.801894-3 1.087401+5 3.845918-3 1.054940+5 3.890451-3 1.023441+5 3.935501-3 9.929079+4 3.981072-3 9.633047+4 4.027170-3 9.346068+4 4.073803-3 9.067685+4 4.120975-3 8.796095+4 4.265795-3 8.030080+4 4.315191-3 7.788700+4 4.365158-3 7.554524+4 4.415704-3 7.326874+4 4.466836-3 7.106257+4 4.518559-3 6.892410+4 4.677351-3 6.289660+4 4.731513-3 6.100913+4 4.841724-3 5.735220+4 4.897788-3 5.560698+4 5.011872-3 5.226259+4 5.128614-3 4.912476+4 5.248075-3 4.617987+4 5.308844-3 4.477535+4 5.495409-3 4.082002+4 5.500000-3 4.072897+4 5.559043-3 3.957382+4 5.688529-3 3.717800+4 5.821032-3 3.493098+4 5.956621-3 3.281441+4 6.237348-3 2.896644+4 6.309573-3 2.807370+4 6.456542-3 2.636124+4 6.531306-3 2.554566+4 6.606934-3 2.475536+4 6.760830-3 2.324443+4 7.079458-3 2.049956+4 7.161434-3 1.986259+4 7.244360-3 1.924531+4 7.328245-3 1.864769+4 7.413102-3 1.806534+4 7.498942-3 1.750167+4 7.673615-3 1.642779+4 7.762471-3 1.591420+4 8.222426-3 1.358238+4 8.317638-3 1.315654+4 8.511380-3 1.234548+4 8.609938-3 1.195715+4 8.709636-3 1.158133+4 8.912509-3 1.086568+4 9.015711-3 1.052491+4 9.120108-3 1.019373+4 9.332543-3 9.563165+3 9.440609-3 9.262831+3 9.772372-3 8.413129+3 9.885531-3 8.148025+3 1.000000-2 7.890182+3 1.023293-2 7.399344+3 1.059254-2 6.720851+3 1.071519-2 6.508357+3 1.080000-2 6.366723+3 1.096478-2 6.101599+3 1.122018-2 5.719969+3 1.148154-2 5.362781+3 1.150000-2 5.338730+3 1.174898-2 5.027021+3 1.188502-2 4.867215+3 1.230269-2 4.418307+3 1.244515-2 4.278219+3 1.273503-2 4.008508+3 1.303167-2 3.756204+3 1.318257-2 3.636211+3 1.350000-2 3.400508+3 1.355400-2 3.362366+3 1.364583-2 3.298823+3 1.396368-2 3.091206+3 1.412538-2 2.992476+3 1.450000-2 2.779751+3 1.462177-2 2.714552+3 1.500000-2 2.524336+3 1.513561-2 2.460604+3 1.515900-2 2.449835+3 1.515900-2 1.715338+4 1.531087-2 1.677538+4 1.548817-2 1.629135+4 1.566751-2 1.576830+4 1.570000-2 1.567598+4 1.584893-2 1.531175+4 1.610000-2 1.472385+4 1.621810-2 1.444320+4 1.640590-2 1.401198+4 1.698244-2 1.279431+4 1.717908-2 1.241205+4 1.730000-2 1.218829+4 1.737801-2 1.204686+4 1.778279-2 1.134846+4 1.798871-2 1.101466+4 1.819701-2 1.069074+4 1.862087-2 1.007132+4 1.883649-2 9.775267+3 1.900000-2 9.558666+3 1.905461-2 9.485514+3 1.972423-2 8.648010+3 2.018366-2 8.130708+3 2.065380-2 7.644370+3 2.137962-2 6.968915+3 2.213095-2 6.353343+3 2.238721-2 6.160534+3 2.264644-2 5.973513+3 2.300000-2 5.730816+3 2.317395-2 5.616239+3 2.344229-2 5.445591+3 2.371374-2 5.276620+3 2.500000-2 4.566224+3 2.511886-2 4.507321+3 2.540973-2 4.367495+3 2.630268-2 3.973586+3 2.660725-2 3.850362+3 2.691535-2 3.730931+3 2.754229-2 3.502825+3 2.786121-2 3.394075+3 2.818383-2 3.288709+3 2.851018-2 3.186607+3 2.917427-2 2.991839+3 3.054921-2 2.630829+3 3.126079-2 2.467017+3 3.162278-2 2.388982+3 3.198895-2 2.313332+3 3.273407-2 2.169124+3 3.467369-2 1.846748+3 3.548134-2 1.731670+3 3.630781-2 1.623780+3 3.715352-2 1.520997+3 3.758374-2 1.472020+3 3.801894-2 1.424621+3 3.890451-2 1.334351+3 4.265795-2 1.026941+3 4.365158-2 9.618870+2 4.466836-2 9.008952+2 4.518559-2 8.718677+2 4.623810-2 8.158133+2 4.677351-2 7.891496+2 5.000000-2 6.509641+2 5.011872-2 6.465244+2 5.069907-2 6.253976+2 5.188000-2 5.851962+2 5.248075-2 5.660553+2 5.308844-2 5.475415+2 5.432503-2 5.123129+2 5.623413-2 4.636714+2 5.688529-2 4.483296+2 5.821032-2 4.191536+2 6.165950-2 3.542623+2 6.237348-2 3.425447+2 6.382635-2 3.202383+2 6.456542-2 3.096364+2 6.606934-2 2.894750+2 6.918310-2 2.530034+2 7.000000-2 2.444669+2 7.413102-2 2.063910+2 7.585776-2 1.928266+2 7.762471-2 1.801422+2 7.852356-2 1.741168+2 7.943282-2 1.682929+2 8.035261-2 1.626640+2 8.222426-2 1.519649+2 9.015711-2 1.157584+2 9.120108-2 1.118560+2 9.225714-2 1.080853+2 9.549926-2 9.751954+1 1.000000-1 8.501161+1 1.011580-1 8.214396+1 1.023293-1 7.937337+1 1.071519-1 6.919328+1 1.083927-1 6.685946+1 1.161449-1 5.442097+1 1.230269-1 4.584362+1 1.244515-1 4.429783+1 1.258925-1 4.280438+1 1.273503-1 4.136121+1 1.318257-1 3.731629+1 1.412538-1 3.037565+1 1.445440-1 2.836202+1 1.479108-1 2.648195+1 1.500000-1 2.539837+1 1.548817-1 2.308769+1 1.584893-1 2.155753+1 1.603245-1 2.083099+1 1.640590-1 1.945054+1 1.678804-1 1.816164+1 1.717908-1 1.695819+1 1.757924-1 1.583449+1 1.798871-1 1.478539+1 1.819701-1 1.428720+1 1.840772-1 1.380581+1 1.862087-1 1.334070+1 1.883649-1 1.289126+1 1.905461-1 1.246107+1 1.927525-1 1.204553+1 1.972423-1 1.125555+1 2.000000-1 1.080453+1 2.041738-1 1.016683+1 2.089296-1 9.500236+0 2.113489-1 9.183553+0 2.162719-1 8.581509+0 2.187762-1 8.295467+0 2.213095-1 8.018962+0 2.238721-1 7.751680+0 2.300000-1 7.159193+0 2.344229-1 6.773961+0 2.371374-1 6.551256+0 2.398833-1 6.335901+0 2.426610-1 6.127888+0 2.454709-1 5.926745+0 2.511886-1 5.544060+0 2.600160-1 5.015870+0 2.660725-1 4.692027+0 2.691535-1 4.538060+0 2.722701-1 4.391181+0 2.754229-1 4.249054+0 2.786121-1 4.111532+0 2.818383-1 3.978462+0 2.851018-1 3.849890+0 2.884032-1 3.725499+0 2.917427-1 3.605133+0 2.951209-1 3.488655+0 3.000060-1 3.329057+0 3.019952-1 3.266898+0 3.054921-1 3.161374+0 3.090295-1 3.059261+0 3.126079-1 2.960448+0 3.198895-1 2.775449+0 3.235937-1 2.687330+0 3.273407-1 2.602149+0 3.311311-1 2.519678+0 3.388442-1 2.362538+0 3.427678-1 2.287690+0 3.467369-1 2.215215+0 3.507519-1 2.145039+0 3.548134-1 2.077088+0 3.589219-1 2.012531+0 3.672823-1 1.889386+0 3.715352-1 1.830776+0 3.758374-1 1.773983+0 3.801894-1 1.718975+0 3.845918-1 1.665674+0 3.935501-1 1.563979+0 4.000000-1 1.495957+0 4.073803-1 1.424516+0 4.120975-1 1.381290+0 4.168694-1 1.339461+0 4.216965-1 1.298903+0 4.265795-1 1.259588+0 4.315191-1 1.221462+0 4.415705-1 1.148646+0 4.466836-1 1.113885+0 4.518559-1 1.080899+0 4.570882-1 1.048889+0 4.623810-1 1.017830+0 4.677351-1 9.877586-1 4.731513-1 9.585752-1 4.841724-1 9.027987-1 4.897788-1 8.761399-1 4.954502-1 8.502693-1 5.069907-1 8.019209-1 5.128614-1 7.787897-1 5.188000-1 7.563799-1 5.248075-1 7.346177-1 5.308844-1 7.134907-1 5.370318-1 6.929710-1 5.432503-1 6.730417-1 5.495409-1 6.536869-1 5.623413-1 6.175540-1 5.688529-1 6.002452-1 5.754399-1 5.834676-1 5.821032-1 5.671591-1 5.888437-1 5.513130-1 6.025596-1 5.209377-1 6.095369-1 5.063845-1 6.165950-1 4.926137-1 6.237348-1 4.792192-1 6.309573-1 4.661903-1 6.382635-1 4.535501-1 6.531306-1 4.293000-1 6.606935-1 4.176656-1 6.683439-1 4.063467-1 6.760830-1 3.956347-1 6.839117-1 3.852053-1 6.918310-1 3.750817-1 6.998420-1 3.652245-1 7.079458-1 3.556263-1 7.244360-1 3.371885-1 7.328245-1 3.285975-1 7.413102-1 3.202253-1 7.498942-1 3.120670-1 7.585776-1 3.041176-1 7.673615-1 2.963932-1 7.762471-1 2.888651-1 7.943282-1 2.743841-1 8.000000-1 2.701800-1 8.035261-1 2.676136-1 8.222427-1 2.545699-1 8.317638-1 2.482889-1 8.413951-1 2.421631-1 8.511380-1 2.362041-1 8.609938-1 2.303917-1 8.709636-1 2.247264-1 8.810489-1 2.192004-1 8.912509-1 2.138103-1 9.015711-1 2.086702-1 9.225714-1 1.987587-1 9.332543-1 1.939817-1 9.440609-1 1.893195-1 9.549926-1 1.847894-1 9.660509-1 1.803684-1 9.772372-1 1.762170-1 1.000000+0 1.682007-1 1.011579+0 1.643305-1 1.023293+0 1.605496-1 1.035142+0 1.568663-1 1.047129+0 1.532693-1 1.071519+0 1.463215-1 1.096478+0 1.398425-1 1.109175+0 1.367113-1 1.135011+0 1.306597-1 1.148154+0 1.277353-1 1.161449+0 1.248765-1 1.174898+0 1.220907-1 1.188600+0 1.193495-1 1.202264+0 1.167921-1 1.230269+0 1.118063-1 1.250000+0 1.084863-1 1.288250+0 1.024650-1 1.303167+0 1.002613-1 1.318257+0 9.810605-2 1.333521+0 9.606163-2 1.380384+0 9.018098-2 1.412538+0 8.646195-2 1.428894+0 8.466056-2 1.445440+0 8.290198-2 1.462177+0 8.117999-2 1.479108+0 7.954411-2 1.496236+0 7.794121-2 1.513561+0 7.637087-2 1.548817+0 7.332432-2 1.566751+0 7.184699-2 1.584893+0 7.039952-2 1.603245+0 6.898123-2 1.640590+0 6.623842-2 1.678804+0 6.369011-2 1.698244+0 6.245293-2 1.717908+0 6.124012-2 1.737801+0 6.005080-2 1.757924+0 5.888461-2 1.778279+0 5.774120-2 1.798871+0 5.661996-2 1.819701+0 5.552428-2 1.840772+0 5.444982-2 1.883649+0 5.243499-2 1.905461+0 5.145569-2 1.927525+0 5.049495-2 1.949845+0 4.955214-2 1.972423+0 4.862696-2 1.995262+0 4.771914-2 2.000000+0 4.753423-2 2.018366+0 4.682826-2 2.065380+0 4.510176-2 2.113489+0 4.349118-2 2.137962+0 4.270759-2 2.162719+0 4.193826-2 2.213095+0 4.044100-2 2.238721+0 3.971254-2 2.264644+0 3.899726-2 2.290868+0 3.829484-2 2.344229+0 3.693201-2 2.398833+0 3.565841-2 2.426610+0 3.503818-2 2.454709+0 3.442881-2 2.483133+0 3.383010-2 2.511886+0 3.324181-2 2.570396+0 3.209573-2 2.600160+0 3.153763-2 2.630268+0 3.098927-2 2.691535+0 2.992435-2 2.754229+0 2.892897-2 2.786121+0 2.844377-2 2.818383+0 2.796677-2 2.851018+0 2.749781-2 2.884032+0 2.703672-2 2.951209+0 2.613762-2 3.000000+0 2.551567-2 3.019952+0 2.526848-2 3.090295+0 2.443103-2 3.162278+0 2.364782-2 3.198895+0 2.326568-2 3.235937+0 2.288977-2 3.273407+0 2.251997-2 3.311311+0 2.215615-2 3.388442+0 2.144603-2 3.467369+0 2.075873-2 3.507519+0 2.042339-2 3.589219+0 1.977096-2 3.672823+0 1.915921-2 3.715352+0 1.886048-2 3.758374+0 1.856644-2 3.801894+0 1.827700-2 3.845918+0 1.799209-2 3.935501+0 1.743552-2 4.027170+0 1.689620-2 4.120975+0 1.637357-2 4.216965+0 1.586862-2 4.315191+0 1.539397-2 4.365158+0 1.516200-2 4.415704+0 1.493355-2 4.466836+0 1.470856-2 4.518559+0 1.448697-2 4.623810+0 1.405375-2 4.731513+0 1.363350-2 4.841724+0 1.322584-2 4.954502+0 1.283158-2 5.069907+0 1.246109-2 5.128614+0 1.227987-2 5.188000+0 1.210132-2 5.248075+0 1.192537-2 5.308844+0 1.175199-2 5.432503+0 1.141275-2 5.623413+0 1.092219-2 5.754399+0 1.060692-2 5.956621+0 1.015221-2 6.095369+0 9.867725-3 6.237348+0 9.591216-3 6.309573+0 9.455896-3 6.382635+0 9.322493-3 6.456542+0 9.190977-3 6.683439+0 8.807453-3 6.839116+0 8.560720-3 7.000000+0 8.318585-3 7.244360+0 7.974694-3 7.328245+0 7.865817-3 7.498942+0 7.652500-3 7.585776+0 7.548033-3 7.673615+0 7.445000-3 7.762471+0 7.343375-3 8.128305+0 6.950558-3 8.413951+0 6.669815-3 8.609938+0 6.488984-3 8.912509+0 6.227541-3 9.015711+0 6.142790-3 9.120108+0 6.061285-3 9.332543+0 5.901505-3 9.440609+0 5.823210-3 9.549926+0 5.745959-3 9.772372+0 5.594521-3 1.011579+1 5.374817-3 1.047129+1 5.163745-3 1.071519+1 5.027665-3 1.109175+1 4.830704-3 1.122018+1 4.766810-3 1.148154+1 4.644437-3 1.174898+1 4.525209-3 1.202264+1 4.409057-3 1.216186+1 4.352104-3 1.244515+1 4.240399-3 1.300000+1 4.036597-3 1.348963+1 3.871547-3 1.380384+1 3.772185-3 1.445440+1 3.581453-3 1.462177+1 3.535316-3 1.500000+1 3.437392-3 1.513561+1 3.403534-3 1.531087+1 3.360708-3 1.584893+1 3.235445-3 1.603245+1 3.194740-3 1.621810+1 3.154547-3 1.678804+1 3.036978-3 1.757924+1 2.887014-3 1.778279+1 2.850697-3 1.927525+1 2.609395-3 1.972423+1 2.544304-3 2.041738+1 2.451622-3 2.065380+1 2.421484-3 2.089296+1 2.391717-3 2.137962+1 2.333280-3 2.162719+1 2.304600-3 2.264644+1 2.193367-3 2.426610+1 2.036508-3 2.722701+1 1.800044-3 2.754229+1 1.777970-3 2.818383+1 1.735382-3 2.851018+1 1.714472-3 2.884032+1 1.693814-3 2.917427+1 1.673406-3 2.951209+1 1.653245-3 3.090295+1 1.575002-3 3.630781+1 1.329188-3 3.672823+1 1.313202-3 4.168694+1 1.149547-3 4.265795+1 1.122526-3 4.315191+1 1.109254-3 4.365158+1 1.096141-3 4.518559+1 1.057724-3 5.559043+1 8.539084-4 5.688529+1 8.338642-4 7.079458+1 6.654171-4 7.244360+1 6.499850-4 7.328245+1 6.424038-4 7.413102+1 6.349112-4 7.673615+1 6.129548-4 9.772372+1 4.791148-4 9.885531+1 4.735325-4 1.023293+2 4.571728-4 1.348963+2 3.450850-4 1.364583+2 3.410942-4 1.396368+2 3.332512-4 1.412538+2 3.293975-4 1.428894+2 3.255885-4 1.445440+2 3.218236-4 1.462177+2 3.181024-4 1.513561+2 3.071949-4 1.949845+2 2.378447-4 1.972423+2 2.350961-4 2.041738+2 2.270393-4 2.691535+2 1.717699-4 2.722701+2 1.697958-4 2.786121+2 1.659158-4 2.818383+2 1.640091-4 2.851018+2 1.621244-4 2.884032+2 1.602614-4 2.917427+2 1.584198-4 3.019952+2 1.530211-4 3.890451+2 1.186658-4 3.935501+2 1.173028-4 4.073803+2 1.133072-4 1.071519+3 4.293707-5 1.083927+3 4.244526-5 1.109175+3 4.147856-5 1.122018+3 4.100353-5 1.135011+3 4.053389-5 1.148154+3 4.006964-5 1.161449+3 3.961073-5 1.202264+3 3.826531-5 3.090295+3 1.487960-5 3.126079+3 1.470920-5 3.235937+3 1.420964-5 1.000000+5 4.591969-7 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.020000-6 4.020000-6 1.975000-5 4.020000-6 1.975000-5 1.974598-5 2.073000-5 1.974435-5 2.073000-5 2.015028-5 3.672000-5 2.006136-5 3.672000-5 2.010446-5 4.330000-5 2.023128-5 5.370318-5 2.064113-5 6.382635-5 2.102603-5 7.300000-5 2.122867-5 8.709636-5 2.134293-5 1.175700-4 2.132973-5 1.175700-4 2.975264-5 1.192000-4 3.012589-5 1.192000-4 3.286859-5 1.221000-4 3.364645-5 1.244515-4 3.448129-5 1.267000-4 3.549559-5 1.305000-4 3.743122-5 1.335000-4 3.879014-5 1.358000-4 3.960862-5 1.390000-4 4.043175-5 1.425000-4 4.102233-5 1.479108-4 4.156911-5 1.570000-4 4.207246-5 1.717908-4 4.249794-5 1.950000-4 4.276063-5 2.372900-4 4.288867-5 2.372900-4 4.504298-5 2.466900-4 4.504366-5 2.466900-4 4.603236-5 2.600160-4 4.614598-5 3.131800-4 4.704429-5 3.131800-4 4.839330-5 3.210000-4 4.880638-5 3.355000-4 4.917337-5 4.570882-4 5.137359-5 5.754399-4 5.313356-5 7.413102-4 5.511264-5 9.225714-4 5.683551-5 1.161449-3 5.863332-5 1.450000-3 6.031158-5 1.805100-3 6.188620-5 1.805100-3 9.483829-5 1.867100-3 9.498387-5 1.867100-3 9.907691-5 2.048000-3 9.930129-5 2.048000-3 1.049209-4 2.985383-3 1.071870-4 4.365158-3 1.097535-4 6.309573-3 1.124406-4 9.015711-3 1.151904-4 1.244515-2 1.177105-4 1.515900-2 1.192152-4 1.515900-2 1.372715-4 2.851018-2 1.381832-4 7.000000-2 1.388487-4 3.126079-1 1.392346-4 1.000000+5 1.393173-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.020000-6 0.0 3.672000-5 0.0 3.672000-5 5.06205-12 3.725000-5 6.03505-12 3.758374-5 6.70747-12 3.801894-5 7.66131-12 3.850000-5 8.80244-12 3.900000-5 1.00969-11 3.950000-5 1.14963-11 3.981072-5 1.24143-11 4.000000-5 1.30027-11 4.070000-5 1.52914-11 4.130000-5 1.74172-11 4.180000-5 1.92941-11 4.260000-5 2.25095-11 4.330000-5 2.55326-11 4.420000-5 2.96983-11 4.466836-5 3.19385-11 4.518559-5 3.45533-11 4.623810-5 4.00879-11 4.677351-5 4.30021-11 4.731513-5 4.60675-11 4.850000-5 5.29611-11 4.954502-5 5.92253-11 5.128614-5 6.99286-11 5.450000-5 8.99371-11 5.688529-5 1.04236-10 5.900000-5 1.16086-10 6.095369-5 1.26171-10 6.165950-5 1.29580-10 6.350000-5 1.37841-10 6.580000-5 1.46904-10 6.760830-5 1.53025-10 6.950000-5 1.58695-10 7.161434-5 1.63913-10 7.413102-5 1.69008-10 7.673615-5 1.73125-10 8.000000-5 1.76812-10 8.317638-5 1.79362-10 8.709636-5 1.81088-10 9.120108-5 1.81849-10 9.549926-5 1.81865-10 1.023293-4 1.80630-10 1.100000-4 1.78180-10 1.175700-4 1.75195-10 1.175700-4 2.83673-10 1.192000-4 2.88054-10 1.192000-4 3.573489-9 1.205000-4 3.661679-9 1.225000-4 3.782660-9 1.244515-4 3.922212-9 1.260000-4 4.054356-9 1.275000-4 4.205832-9 1.295000-4 4.437124-9 1.340000-4 5.010883-9 1.365000-4 5.299210-9 1.385000-4 5.497999-9 1.405000-4 5.666670-9 1.425000-4 5.802960-9 1.450000-4 5.937810-9 1.479108-4 6.058955-9 1.513561-4 6.161327-9 1.540000-4 6.223736-9 1.603245-4 6.333432-9 1.705000-4 6.459368-9 1.780000-4 6.526902-9 1.905461-4 6.601406-9 2.065380-4 6.651605-9 2.372900-4 6.703180-9 2.372900-4 7.570275-9 2.448000-4 7.580531-9 2.466900-4 7.576862-9 2.466900-4 8.262517-9 2.530000-4 8.279756-9 3.131800-4 8.788420-9 3.131800-4 9.348380-9 3.177000-4 9.469449-9 3.255000-4 9.600611-9 3.630781-4 9.983409-9 4.430000-4 1.071099-8 5.248075-4 1.135276-8 6.025596-4 1.188893-8 7.079458-4 1.251669-8 8.128305-4 1.306155-8 9.225714-4 1.355894-8 1.071519-3 1.413752-8 1.216186-3 1.462069-8 1.396368-3 1.512640-8 1.621810-3 1.565443-8 1.805100-3 1.601648-8 1.805100-3 2.859474-5 1.867100-3 2.867169-5 1.867100-3 3.260392-5 2.048000-3 3.270504-5 2.048000-3 3.352893-5 3.507519-3 3.365170-5 1.515900-2 3.341625-5 1.515900-2 7.825002-3 2.018366-2 7.911377-3 2.851018-2 7.980168-3 4.518559-2 8.034519-3 9.120108-2 8.070736-3 6.998420-1 8.087840-3 1.000000+5 8.092301-3 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.020000-6 0.0 1.975000-5 1.573000-5 1.975000-5 4.016277-9 2.073000-5 9.856473-7 2.073000-5 5.797189-7 2.170000-5 1.555881-6 2.610000-5 5.988157-6 3.672000-5 1.665864-5 3.672000-5 1.661554-5 4.330000-5 2.306869-5 6.580000-5 4.471793-5 8.413951-5 6.280809-5 1.175700-4 9.624009-5 1.175700-4 8.781708-5 1.192000-4 8.907383-5 1.192000-4 8.632784-5 1.236000-4 8.944369-5 1.275000-4 9.160149-5 1.335000-4 9.470492-5 1.380384-4 9.781513-5 1.435000-4 1.023443-4 1.550000-4 1.130081-4 1.840772-4 1.413969-4 2.372900-4 1.943946-4 2.372900-4 1.922395-4 2.466900-4 2.016388-4 2.466900-4 2.006494-4 3.131800-4 2.661269-4 3.131800-4 2.647773-4 3.981072-4 3.477477-4 8.609938-4 8.046936-4 1.805100-3 1.743198-3 1.805100-3 1.681667-3 1.867100-3 1.743444-3 1.867100-3 1.735419-3 2.048000-3 1.915994-3 2.048000-3 1.909550-3 1.515900-2 1.500637-2 1.515900-2 7.196726-3 2.065380-2 1.259927-2 3.890451-2 3.074691-2 1.000000+5 9.999999+4 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.515900-2 1.470354+4 1.531087-2 1.439391+4 1.548817-2 1.398641+4 1.570000-2 1.345810+4 1.610000-2 1.265882+4 1.717908-2 1.069436+4 1.900000-2 8.270220+3 2.344229-2 4.740236+3 2.917427-2 2.617027+3 3.630781-2 1.425432+3 4.518559-2 7.674464+2 5.623413-2 4.089531+2 7.000000-2 2.159200+2 9.015711-2 1.023540+2 1.883649-1 1.141281+1 2.300000-1 6.338662+0 2.691535-1 4.018585+0 3.126079-1 2.621707+0 3.548134-1 1.839492+0 4.000000-1 1.324915+0 4.466836-1 9.866039-1 4.954502-1 7.531802-1 5.495409-1 5.790864-1 6.095369-1 4.486270-1 6.683439-1 3.600295-1 7.244360-1 2.987593-1 7.943282-1 2.431612-1 8.912509-1 1.895287-1 9.660509-1 1.598965-1 1.071519+0 1.297192-1 1.188600+0 1.058108-1 1.318257+0 8.697613-2 1.462177+0 7.196968-2 1.640590+0 5.872263-2 1.840772+0 4.827162-2 2.065380+0 3.998470-2 2.344229+0 3.274176-2 2.691535+0 2.652923-2 3.090295+0 2.165914-2 3.589219+0 1.752779-2 4.216965+0 1.406826-2 4.954502+0 1.137581-2 5.956621+0 9.000399-3 7.244360+0 7.069902-3 9.015711+0 5.445813-3 1.122018+1 4.225961-3 1.462177+1 3.134164-3 1.972423+1 2.255548-3 2.754229+1 1.576195-3 4.168694+1 1.019090-3 7.079458+1 5.899010-4 1.348963+2 3.059300-4 2.691535+2 1.522851-4 1.071519+3 3.806452-5 1.000000+5 4.071200-7 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.515900-2 1.402800-4 1.000000+5 1.402800-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.515900-2 9.123200-3 1.000000+5 9.123200-3 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.515900-2 5.895520-3 1.000000+5 9.999999+4 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.048000-3 6.457961+4 2.155000-3 5.990047+4 2.264644-3 5.539963+4 2.371374-3 5.162957+4 2.540973-3 4.602578+4 3.273407-3 2.984539+4 3.507519-3 2.636938+4 4.265795-3 1.829668+4 4.731513-3 1.495828+4 5.500000-3 1.107760+4 6.237348-3 8.543655+3 7.079458-3 6.539502+3 8.222426-3 4.724710+3 9.440609-3 3.472553+3 1.080000-2 2.555440+3 1.244515-2 1.836217+3 1.450000-2 1.275516+3 1.698244-2 8.676684+2 1.972423-2 5.978040+2 2.300000-2 4.047760+2 2.691535-2 2.695917+2 3.162278-2 1.763737+2 3.715352-2 1.145477+2 4.365158-2 7.388127+1 5.188000-2 4.584957+1 6.237348-2 2.735322+1 7.585776-2 1.568250+1 9.549926-2 8.081604+0 1.273503-1 3.496506+0 1.905461-1 1.077659+0 2.398833-1 5.528592-1 2.818383-1 3.488567-1 3.235937-1 2.366676-1 3.672823-1 1.669330-1 4.120975-1 1.223353-1 4.623810-1 9.029524-2 5.128614-1 6.917573-2 5.688529-1 5.337966-2 6.309573-1 4.150448-2 6.839117-1 3.433200-2 7.585776-1 2.711764-2 8.413951-1 2.158448-2 9.440609-1 1.687583-2 1.023293+0 1.430971-2 1.161449+0 1.113295-2 1.288250+0 9.134691-3 1.428894+0 7.547517-3 1.603245+0 6.149570-3 1.798871+0 5.047488-3 2.018366+0 4.174610-3 2.290868+0 3.414100-3 2.630268+0 2.762731-3 3.019952+0 2.252744-3 3.507519+0 1.820897-3 4.120975+0 1.459881-3 4.841724+0 1.179211-3 5.754399+0 9.455801-4 7.000000+0 7.415700-4 8.609938+0 5.784394-4 1.071519+1 4.482023-4 1.380384+1 3.362718-4 1.778279+1 2.540797-4 2.426610+1 1.814908-4 3.630781+1 1.184590-4 5.559043+1 7.609725-5 9.772372+1 4.269706-5 1.949845+2 2.120271-5 3.890451+2 1.057497-5 3.090295+3 1.326597-6 1.000000+5 4.095800-8 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.048000-3 1.444000-4 1.000000+5 1.444000-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.048000-3 3.931700-5 1.000000+5 3.931700-5 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.048000-3 1.864283-3 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.867100-3 1.578494+5 1.895000-3 1.522076+5 1.995262-3 1.364199+5 2.110000-3 1.193000+5 2.238721-3 1.023400+5 2.754229-3 5.932500+4 3.054921-3 4.489400+4 3.235937-3 3.831700+4 3.801894-3 2.443600+4 4.365158-3 1.642900+4 4.897788-3 1.174900+4 5.821032-3 7.028400+3 6.606934-3 4.787500+3 7.673615-3 3.020800+3 9.015711-3 1.823600+3 1.059254-2 1.091600+3 1.244515-2 6.482200+2 1.462177-2 3.821000+2 1.730000-2 2.184800+2 2.065380-2 1.203300+2 2.500000-2 6.277000+1 3.054921-2 3.144800+1 3.801894-2 1.467700+1 5.011872-2 5.554600+0 1.000000-1 4.833624-1 1.244515-1 2.245487-1 1.500000-1 1.175642-1 1.757924-1 6.828519-2 2.041738-1 4.121172-2 2.344229-1 2.605595-2 2.660725-1 1.724217-2 3.000060-1 1.174321-2 3.388442-1 8.016996-3 3.758374-1 5.832472-3 4.168694-1 4.272802-3 4.570882-1 3.261609-3 5.069907-1 2.426076-3 5.623413-1 1.819001-3 6.237348-1 1.374702-3 6.839117-1 1.079012-3 7.498942-1 8.526506-4 8.609938-1 6.046881-4 9.225714-1 5.128200-4 9.772372-1 4.498771-4 1.035142+0 3.973218-4 1.109175+0 3.444991-4 1.188600+0 3.007605-4 1.318257+0 2.483733-4 1.479108+0 2.022998-4 1.698244+0 1.589376-4 1.905461+0 1.308819-4 2.137962+0 1.086446-4 2.454709+0 8.757348-5 2.818383+0 7.113373-5 3.235937+0 5.821852-5 3.758374+0 4.722488-5 4.415704+0 3.798546-5 5.188000+0 3.078004-5 6.309573+0 2.405041-5 7.585776+0 1.920037-5 9.440609+0 1.481375-5 1.202264+1 1.121398-5 1.584893+1 8.228849-6 2.137962+1 5.935508-6 2.917427+1 4.257705-6 4.315191+1 2.822721-6 7.328245+1 1.634805-6 1.428894+2 8.286086-7 2.851018+2 4.126289-7 1.135011+3 1.031645-7 1.000000+5 1.168900-9 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.867100-3 1.095900-4 1.000000+5 1.095900-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.867100-3 4.270400-5 1.000000+5 4.270400-5 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.867100-3 1.714806-3 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.805100-3 3.276800+5 1.900000-3 2.934642+5 1.920000-3 2.874048+5 2.018366-3 2.549026+5 2.113489-3 2.263424+5 2.691535-3 1.187769+5 2.985383-3 8.955148+4 3.650000-3 5.085840+4 4.073803-3 3.700314+4 4.731513-3 2.383915+4 5.559043-3 1.468302+4 6.309573-3 9.968493+3 7.328245-3 6.260547+3 8.511380-3 3.900545+3 9.885531-3 2.411643+3 1.150000-2 1.472396+3 1.350000-2 8.659840+2 1.584893-2 5.053640+2 1.883649-2 2.807507+2 2.238721-2 1.547489+2 2.660725-2 8.468907+1 3.198895-2 4.419368+1 3.890451-2 2.198097+1 5.000000-2 8.886184+0 8.035261-2 1.584432+0 1.071519-1 5.552380-1 1.318257-1 2.627493-1 1.584893-1 1.361425-1 1.840772-1 8.035581-2 2.089296-1 5.179181-2 2.371374-1 3.362890-2 2.660725-1 2.288026-2 2.951209-1 1.629220-2 3.273407-1 1.168762-2 3.589219-1 8.758636-3 3.935501-1 6.608769-3 4.315191-1 5.024655-3 4.731513-1 3.849108-3 5.188000-1 2.970888-3 5.688529-1 2.310773-3 6.165950-1 1.867018-3 6.683439-1 1.518651-3 7.244360-1 1.243754-3 7.943282-1 9.975410-4 8.912509-1 7.643027-4 9.549926-1 6.555746-4 1.011579+0 5.802293-4 1.109175+0 4.810358-4 1.202264+0 4.109408-4 1.333521+0 3.386978-4 1.496236+0 2.754760-4 1.698244+0 2.207706-4 1.905461+0 1.818451-4 2.137962+0 1.509359-4 2.426610+0 1.238241-4 2.786121+0 1.005219-4 3.198895+0 8.222362-5 3.715352+0 6.665880-5 4.365158+0 5.358891-5 5.128614+0 4.340063-5 6.237348+0 3.389597-5 7.498942+0 2.704853-5 9.332543+0 2.086011-5 1.174898+1 1.599411-5 1.531087+1 1.187852-5 2.089296+1 8.453859-6 2.884032+1 5.988012-6 4.315191+1 3.921722-6 7.413102+1 2.244633-6 1.445440+2 1.137883-6 2.884032+2 5.666821-7 1.148154+3 1.416884-7 1.000000+5 1.624000-9 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.805100-3 1.058500-4 1.000000+5 1.058500-4 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.805100-3 3.814500-5 1.000000+5 3.814500-5 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.805100-3 1.661105-3 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.131800-4 1.534926+5 3.141000-4 1.586680+5 3.150000-4 1.631756+5 3.162278-4 1.684253+5 3.177000-4 1.734656+5 3.193000-4 1.776936+5 3.210000-4 1.809604+5 3.230000-4 1.835474+5 3.255000-4 1.852918+5 3.280000-4 1.858008+5 3.311311-4 1.852519+5 3.355000-4 1.832102+5 4.100000-4 1.511546+5 4.430000-4 1.396606+5 4.700000-4 1.306194+5 5.500000-4 1.083952+5 5.956621-4 9.786866+4 6.918310-4 7.982231+4 7.585776-4 7.003412+4 8.709636-4 5.699893+4 9.772372-4 4.773389+4 1.150000-3 3.677020+4 1.318257-3 2.930215+4 1.513561-3 2.313778+4 1.778279-3 1.742010+4 2.089296-3 1.300360+4 2.454709-3 9.629555+3 2.900000-3 6.998520+3 3.427678-3 5.038533+3 4.027170-3 3.640929+3 4.731513-3 2.610548+3 5.559043-3 1.857655+3 6.531306-3 1.311970+3 7.673615-3 9.195507+2 9.015711-3 6.396210+2 1.059254-2 4.414271+2 1.244515-2 3.022358+2 1.462177-2 2.052860+2 1.717908-2 1.383144+2 2.018366-2 9.246422+1 2.371374-2 6.134095+1 2.818383-2 3.921171+1 3.273407-2 2.642561+1 3.890451-2 1.663041+1 4.623810-2 1.038814+1 5.432503-2 6.650656+0 6.606934-2 3.838948+0 8.222426-2 2.060073+0 1.023293-1 1.097464+0 1.972423-1 1.621871-1 2.426610-1 8.910117-2 2.851018-1 5.629600-2 3.311311-1 3.702229-2 3.758374-1 2.615181-2 4.216965-1 1.919621-2 4.731513-1 1.419526-2 5.248075-1 1.089546-2 5.821032-1 8.423471-3 6.382635-1 6.744980-3 7.079458-1 5.292789-3 7.762471-1 4.295648-3 8.609938-1 3.420902-3 9.440609-1 2.815173-3 1.035142+0 2.335373-3 1.174898+0 1.819013-3 1.303167+0 1.493635-3 1.462177+0 1.209135-3 1.640590+0 9.863900-4 1.840772+0 8.108667-4 2.065380+0 6.717019-4 2.344229+0 5.500387-4 2.691535+0 4.456685-4 3.090295+0 3.638521-4 3.589219+0 2.944563-4 4.216965+0 2.363368-4 4.954502+0 1.910982-4 5.956621+0 1.511956-4 7.244360+0 1.187683-4 8.912509+0 9.273061-5 1.109175+1 7.193385-5 1.445440+1 5.333196-5 1.927525+1 3.885173-5 2.722701+1 2.680271-5 4.168694+1 1.711921-5 7.079458+1 9.909546-6 1.364583+2 5.079623-6 2.722701+2 2.528800-6 1.083927+3 6.321075-7 1.000000+5 6.839200-9 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.131800-4 8.647600-5 1.000000+5 8.647600-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.131800-4 2.515600-8 1.000000+5 2.515600-8 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.131800-4 2.266788-4 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.466900-4 2.081284+5 2.869000-4 2.055043+5 3.500000-4 2.027880+5 3.650000-4 2.006980+5 3.850000-4 1.964300+5 4.100000-4 1.900448+5 4.350000-4 1.829982+5 4.600000-4 1.752248+5 4.897788-4 1.655521+5 5.248075-4 1.544477+5 5.623413-4 1.431121+5 6.025596-4 1.315858+5 6.531306-4 1.183816+5 7.079458-4 1.057765+5 7.673615-4 9.378638+4 8.413951-4 8.111611+4 9.200000-4 6.996200+4 1.011579-3 5.929382+4 1.110000-3 5.009420+4 1.216186-3 4.213587+4 1.350000-3 3.432300+4 1.500000-3 2.767300+4 1.659587-3 2.234783+4 1.850000-3 1.762630+4 2.065380-3 1.375018+4 2.317395-3 1.052130+4 2.600160-3 7.986590+3 2.900000-3 6.106220+3 3.235937-3 4.632530+3 3.650000-3 3.394540+3 4.120975-3 2.462396+3 4.677351-3 1.747738+3 5.248075-3 1.271334+3 5.956621-3 8.896244+2 6.760830-3 6.181800+2 7.762471-3 4.122614+2 8.912509-3 2.727810+2 1.023293-2 1.790911+2 1.174898-2 1.166979+2 1.355400-2 7.436833+1 1.566751-2 4.675120+1 1.819701-2 2.873538+1 2.137962-2 1.688527+1 2.540973-2 9.477402+0 3.054921-2 5.077696+0 3.715352-2 2.595777+0 4.623810-2 1.216683+0 6.165950-2 4.448751-1 1.023293-1 7.527887-2 1.273503-1 3.518348-2 1.548817-1 1.794406-2 1.819701-1 1.037619-2 2.089296-1 6.531527-3 2.398833-1 4.141760-3 2.722701-1 2.748162-3 3.054921-1 1.905778-3 3.427678-1 1.331150-3 3.801894-1 9.701951-4 4.216965-1 7.119462-4 4.677351-1 5.262318-4 5.188000-1 3.919506-4 5.688529-1 3.036864-4 6.237348-1 2.368501-4 6.839117-1 1.859776-4 7.498942-1 1.470132-4 8.609938-1 1.042200-4 9.225714-1 8.833991-5 9.772372-1 7.746513-5 1.035142+0 6.839296-5 1.109175+0 5.928780-5 1.188600+0 5.175900-5 1.318257+0 4.275099-5 1.479108+0 3.482859-5 1.717908+0 2.682959-5 1.927525+0 2.210962-5 2.162719+0 1.836582-5 2.483133+0 1.481331-5 2.851018+0 1.203999-5 3.273407+0 9.860131-6 3.801894+0 8.002785-6 4.466836+0 6.440472-6 5.248075+0 5.221545-6 6.382635+0 4.081838-6 7.673615+0 3.260067-6 9.549926+0 2.516231-6 1.216186+1 1.905610-6 1.603245+1 1.398769-6 2.162719+1 1.009252-6 2.951209+1 7.241418-7 4.365158+1 4.801875-7 7.413102+1 2.781459-7 1.445440+2 1.409999-7 2.884032+2 7.022036-8 1.148154+3 1.755672-8 1.000000+5 2.01240-10 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.466900-4 7.243700-5 1.000000+5 7.243700-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.466900-4 2.657400-8 1.000000+5 2.657400-8 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.466900-4 1.742264-4 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.372900-4 4.727055+5 2.429000-4 4.666342+5 2.448000-4 4.612831+5 2.477000-4 4.511874+5 2.507000-4 4.427800+5 2.530000-4 4.397040+5 2.550000-4 4.392000+5 2.590000-4 4.416080+5 2.700000-4 4.537480+5 2.760000-4 4.582880+5 2.851018-4 4.613271+5 3.126079-4 4.605473+5 3.311311-4 4.565878+5 3.467369-4 4.504772+5 3.630781-4 4.412297+5 3.850000-4 4.264200+5 4.120975-4 4.069585+5 4.365158-4 3.884952+5 4.623810-4 3.681991+5 4.954502-4 3.425747+5 5.370318-4 3.124967+5 5.754399-4 2.867618+5 6.237348-4 2.571980+5 6.839116-4 2.252902+5 7.413102-4 1.991874+5 8.128305-4 1.716433+5 8.912509-4 1.468511+5 9.772372-4 1.247052+5 1.071519-3 1.051964+5 1.188502-3 8.617796+4 1.303167-3 7.170731+4 1.450000-3 5.749800+4 1.603245-3 4.637712+4 1.778279-3 3.690041+4 1.972423-3 2.915252+4 2.187762-3 2.288310+4 2.454709-3 1.735313+4 2.754229-3 1.305631+4 3.090295-3 9.749321+3 3.467369-3 7.227081+3 3.845918-3 5.487319+3 4.315191-3 4.015039+3 4.841724-3 2.918746+3 5.500000-3 2.035444+3 6.237348-3 1.416001+3 7.161434-3 9.427440+2 8.222426-3 6.224860+2 9.332543-3 4.225392+2 1.071519-2 2.747789+2 1.230269-2 1.773147+2 1.412538-2 1.135847+2 1.640590-2 6.955999+1 1.905461-2 4.227417+1 2.238721-2 2.453167+1 2.630268-2 1.412857+1 3.126079-2 7.762697+0 3.758374-2 4.065942+0 4.677351-2 1.869927+0 5.688529-2 9.270729-1 1.230269-1 5.715321-2 1.479108-1 2.958892-2 1.717908-1 1.744221-2 1.972423-1 1.078235-2 2.238721-1 6.985518-3 2.511886-1 4.740354-3 2.786121-1 3.365645-3 3.090295-1 2.406058-3 3.427678-1 1.733141-3 3.758374-1 1.303789-3 4.120975-1 9.878546-4 4.518559-1 7.542216-4 4.954502-1 5.802609-4 5.432503-1 4.499787-4 5.888437-1 3.625858-4 6.382635-1 2.939915-4 6.918310-1 2.398735-4 7.498942-1 1.969559-4 8.317638-1 1.541534-4 9.015711-1 1.282970-4 9.660509-1 1.103640-4 1.035142+0 9.559962-5 1.135011+0 7.948288-5 1.250000+0 6.599000-5 1.380384+0 5.493665-5 1.584893+0 4.297696-5 1.778279+0 3.524738-5 1.995262+0 2.912286-5 2.264644+0 2.380140-5 2.600160+0 1.924774-5 3.000000+0 1.557400-5 3.467369+0 1.267028-5 4.027170+0 1.031194-5 4.731513+0 8.320814-6 5.623413+0 6.665484-6 6.839116+0 5.224389-6 8.413951+0 4.070351-6 1.047129+1 3.151532-6 1.348963+1 2.362858-6 1.757924+1 1.761792-6 2.426610+1 1.242711-6 3.672823+1 8.014210-7 5.688529+1 5.088450-7 1.023293+2 2.789765-7 2.041738+2 1.385915-7 4.073803+2 6.914077-8 3.235937+3 8.674858-9 1.000000+5 2.80460-10 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.372900-4 6.914700-5 1.000000+5 6.914700-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.372900-4 1.727200-8 1.000000+5 1.727200-8 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.372900-4 1.681257-4 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.192000-4 1.703764+5 1.215000-4 1.856216+5 1.225000-4 1.934876+5 1.235000-4 2.029288+5 1.244515-4 2.137316+5 1.252000-4 2.237932+5 1.260000-4 2.363680+5 1.267000-4 2.491140+5 1.275000-4 2.658776+5 1.285000-4 2.904256+5 1.295000-4 3.192488+5 1.305000-4 3.525372+5 1.340000-4 5.026880+5 1.355000-4 5.799760+5 1.365000-4 6.341480+5 1.375000-4 6.895120+5 1.385000-4 7.454040+5 1.396368-4 8.085336+5 1.405000-4 8.557840+5 1.415000-4 9.092120+5 1.425000-4 9.611400+5 1.435000-4 1.011256+6 1.450000-4 1.082752+6 1.465000-4 1.149944+6 1.479108-4 1.209546+6 1.496236-4 1.277612+6 1.513561-4 1.342433+6 1.540000-4 1.434740+6 1.570000-4 1.532148+6 1.603245-4 1.632489+6 1.640590-4 1.736217+6 1.670000-4 1.811104+6 1.705000-4 1.891356+6 1.740000-4 1.961140+6 1.780000-4 2.027408+6 1.820000-4 2.079300+6 1.865000-4 2.121660+6 1.905461-4 2.147021+6 1.950000-4 2.163312+6 2.000000-4 2.169992+6 2.065380-4 2.165150+6 2.150000-4 2.142392+6 2.238721-4 2.104330+6 2.330000-4 2.052688+6 2.426610-4 1.986601+6 2.516200-4 1.917676+6 2.630268-4 1.823096+6 2.754229-4 1.716662+6 2.917427-4 1.578999+6 3.100000-4 1.434648+6 3.280000-4 1.302728+6 3.467369-4 1.175607+6 3.700000-4 1.033968+6 3.981072-4 8.878034+5 4.265795-4 7.639798+5 4.570882-4 6.529597+5 4.954502-4 5.395158+5 5.432503-4 4.303733+5 5.956621-4 3.406577+5 6.531306-4 2.674818+5 7.244360-4 2.021545+5 7.943282-4 1.564674+5 8.810489-4 1.163900+5 9.700000-4 8.782240+4 1.071519-3 6.517686+4 1.202264-3 4.579626+4 1.355400-3 3.142948+4 1.500000-3 2.270992+4 1.678804-3 1.572348+4 1.883649-3 1.071736+4 2.113489-3 7.252274+3 2.371374-3 4.872356+3 2.660725-3 3.250433+3 2.985383-3 2.153449+3 3.349654-3 1.417422+3 3.758374-3 9.268859+2 4.265795-3 5.770053+2 4.841724-3 3.566947+2 5.495409-3 2.189815+2 6.309573-3 1.276305+2 7.244360-3 7.381658+1 8.317638-3 4.236668+1 9.440609-3 2.529504+1 1.096478-2 1.363955+1 1.273503-2 7.298626+0 1.500000-2 3.654852+0 1.798871-2 1.682393+0 2.238721-2 6.553911-1 2.851018-2 2.292685-1 3.801894-2 6.508687-2 5.821032-2 9.987671-3 7.413102-2 3.468843-3 9.120108-2 1.411158-3 1.083927-1 6.718934-4 1.258925-1 3.557083-4 1.445440-1 1.991827-4 1.640590-1 1.178868-4 1.862087-1 7.029763-5 2.089296-1 4.424726-5 2.344229-1 2.805341-5 2.600160-1 1.874440-5 2.884032-1 1.261336-5 3.198895-1 8.550532-6 3.507519-1 6.093757-6 3.845918-1 4.373851-6 4.120975-1 3.430090-6 4.570882-1 2.402956-6 5.370318-1 1.397517-6 5.821032-1 1.072181-6 6.095369-1 9.254729-7 6.531306-1 7.484464-7 7.079458-1 5.884334-7 8.035261-1 4.072920-7 8.609938-1 3.303965-7 9.015711-1 2.888607-7 9.440609-1 2.540597-7 9.772372-1 2.318678-7 1.011579+0 2.126749-7 1.047129+0 1.960318-7 1.096478+0 1.770593-7 1.148154+0 1.610557-7 1.202264+0 1.474281-7 1.288250+0 1.302658-7 1.412538+0 1.114272-7 1.513561+0 9.939030-8 1.819701+0 7.235238-8 2.000000+0 6.183500-8 2.290868+0 4.982846-8 2.630268+0 4.032182-8 3.019952+0 3.287848-8 3.507519+0 2.657593-8 4.120975+0 2.130704-8 4.841724+0 1.721066-8 5.754399+0 1.380068-8 7.000000+0 1.082300-8 8.609938+0 8.442400-9 1.071519+1 6.541590-9 1.380384+1 4.907932-9 1.778279+1 3.708287-9 2.426610+1 2.648879-9 3.630781+1 1.728989-9 5.559043+1 1.110642-9 9.885531+1 6.15895-10 1.972423+2 3.05887-10 3.935501+2 1.52572-10 3.126079+3 1.91392-11 1.000000+5 5.97790-13 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.192000-4 4.392100-5 1.000000+5 4.392100-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.192000-4 1.681300-8 1.000000+5 1.681300-8 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.192000-4 7.526219-5 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.175700-4 2.524902+5 1.195000-4 2.715324+5 1.205000-4 2.830284+5 1.214000-4 2.951064+5 1.221000-4 3.060570+5 1.230269-4 3.231122+5 1.236000-4 3.353688+5 1.244515-4 3.563663+5 1.251000-4 3.748560+5 1.258925-4 4.006874+5 1.266000-4 4.269960+5 1.274000-4 4.606602+5 1.285000-4 5.140500+5 1.322000-4 7.527780+5 1.335000-4 8.546580+5 1.348000-4 9.624000+5 1.358000-4 1.047612+6 1.369000-4 1.142130+6 1.380384-4 1.239366+6 1.390000-4 1.320078+6 1.400000-4 1.401954+6 1.412538-4 1.500933+6 1.423000-4 1.580046+6 1.435000-4 1.666722+6 1.450000-4 1.769094+6 1.465000-4 1.865256+6 1.485000-4 1.984998+6 1.500000-4 2.069376+6 1.520000-4 2.175870+6 1.550000-4 2.325168+6 1.580000-4 2.464104+6 1.610000-4 2.593644+6 1.649400-4 2.749106+6 1.680000-4 2.857248+6 1.717908-4 2.974364+6 1.757924-4 3.076574+6 1.800000-4 3.160248+6 1.840772-4 3.219431+6 1.883649-4 3.261044+6 1.930000-4 3.286254+6 1.995262-4 3.294948+6 2.065380-4 3.279225+6 2.150000-4 3.236736+6 2.238721-4 3.171817+6 2.330000-4 3.087168+6 2.426610-4 2.981333+6 2.511886-4 2.877659+6 2.630268-4 2.724640+6 2.770000-4 2.541024+6 2.917427-4 2.353025+6 3.090295-4 2.145273+6 3.280000-4 1.934418+6 3.467369-4 1.743770+6 3.700000-4 1.531908+6 3.981072-4 1.313507+6 4.265795-4 1.128675+6 4.600000-4 9.496800+5 4.954502-4 7.954122+5 5.432503-4 6.336781+5 5.888437-4 5.162229+5 6.456542-4 4.051564+5 7.079458-4 3.159617+5 7.800000-4 2.413854+5 8.609938-4 1.820983+5 9.549926-4 1.344963+5 1.059254-3 9.854460+4 1.161449-3 7.433961+4 1.318257-3 4.999308+4 1.496236-3 3.330172+4 1.698244-3 2.197836+4 1.927525-3 1.437613+4 2.187762-3 9.319494+3 2.454709-3 6.236958+3 2.754229-3 4.144690+3 3.090295-3 2.735207+3 3.467369-3 1.793257+3 3.935501-3 1.119080+3 4.466836-3 6.931113+2 5.128614-3 4.077110+2 5.821032-3 2.489432+2 6.606934-3 1.509628+2 7.498942-3 9.092152+1 8.511380-3 5.438836+1 9.772372-3 3.082745+1 1.122018-2 1.734137+1 1.303167-2 9.223889+0 1.531087-2 4.636522+0 1.819701-2 2.202229+0 2.238721-2 8.938712-1 2.786121-2 3.423806-1 3.548134-2 1.175811-1 4.466836-2 4.220878-2 6.237348-2 9.504360-3 7.762471-2 3.602515-3 9.225714-2 1.686093-3 1.083927-1 8.360196-4 1.244515-1 4.613295-4 1.412538-1 2.693229-4 1.603245-1 1.583951-4 1.798871-1 9.849803-5 2.000000-1 6.407759-5 2.213095-1 4.280607-5 2.426610-1 2.986312-5 2.660725-1 2.098454-5 2.917427-1 1.486232-5 3.198895-1 1.060795-5 3.507519-1 7.630962-6 3.801894-1 5.758041-6 4.216965-1 4.041297-6 4.518559-1 3.210745-6 4.841724-1 2.567552-6 5.069907-1 2.222490-6 5.432503-1 1.804388-6 5.888437-1 1.424886-6 6.606935-1 1.020703-6 7.079458-1 8.405849-7 7.498942-1 7.188711-7 8.000000-1 6.072100-7 8.511380-1 5.200826-7 9.015711-1 4.532830-7 9.549926-1 3.976749-7 1.011579+0 3.513501-7 1.109175+0 2.909110-7 1.188600+0 2.539400-7 1.303167+0 2.137402-7 1.445440+0 1.773150-7 1.678804+0 1.364163-7 1.883649+0 1.122707-7 2.113489+0 9.310621-8 2.398833+0 7.633119-8 2.754229+0 6.193012-8 3.162278+0 5.062754-8 3.672823+0 4.101953-8 4.315191+0 3.295910-8 5.069907+0 2.667900-8 6.095369+0 2.112820-8 7.328245+0 1.684463-8 9.120108+0 1.298016-8 1.148154+1 9.944612-9 1.513561+1 7.286793-9 2.065380+1 5.184310-9 2.851018+1 3.671214-9 4.265795+1 2.403868-9 7.244360+1 1.391986-9 1.396368+2 7.13713-10 2.786121+2 3.55362-10 1.109175+3 8.88375-11 1.000000+5 9.83620-13 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.175700-4 4.382900-5 1.000000+5 4.382900-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.175700-4 4.64960-10 1.000000+5 4.64960-10 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.175700-4 7.374054-5 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.672000-5 4.448240+4 3.725000-5 4.991640+4 3.770000-5 5.470880+4 3.801894-5 5.818945+4 3.850000-5 6.347700+4 3.900000-5 6.905660+4 3.950000-5 7.464360+4 4.000000-5 8.023220+4 4.070000-5 8.802080+4 4.130000-5 9.460380+4 4.180000-5 9.999800+4 4.260000-5 1.084238+5 4.330000-5 1.155538+5 4.420000-5 1.243554+5 4.518559-5 1.334738+5 4.623810-5 1.425691+5 4.731513-5 1.511645+5 4.850000-5 1.597786+5 4.954502-5 1.666561+5 5.080000-5 1.740518+5 5.230000-5 1.817132+5 5.370318-5 1.878117+5 5.500000-5 1.925972+5 5.688529-5 1.982604+5 5.900000-5 2.029940+5 6.095369-5 2.060706+5 6.309573-5 2.082521+5 6.606934-5 2.096285+5 6.918310-5 2.095065+5 7.300000-5 2.077900+5 7.762471-5 2.041603+5 8.300000-5 1.986482+5 8.912509-5 1.914554+5 9.549926-5 1.834523+5 1.023293-4 1.746465+5 1.096478-4 1.652261+5 1.174898-4 1.553388+5 1.273503-4 1.434711+5 1.380384-4 1.315644+5 1.531087-4 1.167631+5 1.737801-4 1.000855+5 1.972423-4 8.522349+4 2.220000-4 7.282340+4 2.511886-4 6.130035+4 2.985383-4 4.775548+4 3.500000-4 3.768700+4 4.216965-4 2.829680+4 5.128614-4 2.081401+4 6.382635-4 1.463055+4 7.673615-4 1.080011+4 9.225714-4 7.923522+3 1.109175-3 5.768203+3 1.318257-3 4.252418+3 1.566751-3 3.112209+3 1.862087-3 2.261086+3 2.238721-3 1.595792+3 2.660725-3 1.142735+3 3.162278-3 8.123833+2 3.758374-3 5.732261+2 4.466836-3 4.013038+2 5.248075-3 2.855961+2 6.237348-3 1.968037+2 7.328245-3 1.380100+2 8.609938-3 9.608026+1 1.023293-2 6.485099+1 1.188502-2 4.579442+1 1.364583-2 3.298199+1 1.584893-2 2.287756+1 1.862087-2 1.530772+1 2.264644-2 9.319428+0 2.691535-2 5.969495+0 3.162278-2 3.910312+0 3.758374-2 2.464957+0 4.466836-2 1.542186+0 5.248075-2 9.888942-1 6.382635-2 5.716721-1 7.852356-2 3.174787-1 1.000000-1 1.585441-1 1.548817-1 4.433126-2 2.162719-1 1.680094-2 2.600160-1 9.895013-3 3.019952-1 6.478659-3 3.467369-1 4.411893-3 3.935501-1 3.125003-3 4.415705-1 2.300516-3 4.897788-1 1.757764-3 5.432503-1 1.352427-3 6.025596-1 1.048238-3 6.683439-1 8.189578-4 7.413102-1 6.449597-4 8.222427-1 5.119554-4 9.015711-1 4.197422-4 9.772372-1 3.550296-4 1.135011+0 2.632475-4 1.230269+0 2.254594-4 1.412538+0 1.743880-4 1.566751+0 1.447476-4 1.757924+0 1.186246-4 1.972423+0 9.796736-5 2.238721+0 8.001761-5 2.570396+0 6.466644-5 2.951209+0 5.266276-5 3.388442+0 4.320715-5 3.935501+0 3.512666-5 4.623810+0 2.831432-5 5.432503+0 2.299138-5 6.683439+0 1.774347-5 8.128305+0 1.400160-5 1.011579+1 1.082860-5 1.300000+1 8.132400-6 1.678804+1 6.118132-6 2.264644+1 4.419181-6 3.090295+1 3.173653-6 4.518559+1 2.131695-6 7.673615+1 1.235418-6 1.513561+2 6.192323-7 3.019952+2 3.084641-7 1.202264+3 7.714191-8 1.000000+5 9.25960-10 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.672000-5 2.411600-5 1.000000+5 2.411600-5 1 37000 7 7 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.672000-5 4.76220-10 1.000000+5 4.76220-10 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.672000-5 1.260352-5 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.073000-5 3.856239+7 2.190000-5 2.512120+7 2.238721-5 2.126324+7 2.280000-5 1.861258+7 2.330000-5 1.599356+7 2.371374-5 1.420645+7 2.426610-5 1.224351+7 2.485000-5 1.057330+7 2.540973-5 9.267234+6 2.610000-5 7.955940+6 2.691535-5 6.724944+6 2.786121-5 5.610953+6 2.900000-5 4.586280+6 3.019952-5 3.767637+6 3.162278-5 3.034573+6 3.350000-5 2.332560+6 3.589219-5 1.716125+6 3.981072-5 1.091784+6 4.466836-5 6.656785+5 4.841724-5 4.736689+5 5.128614-5 3.737772+5 5.370318-5 3.112176+5 5.580000-5 2.688080+5 5.800000-5 2.334160+5 6.000000-5 2.076060+5 6.165950-5 1.898888+5 6.382635-5 1.708454+5 6.580000-5 1.567464+5 6.760830-5 1.460265+5 6.950000-5 1.366488+5 7.161434-5 1.279767+5 7.400000-5 1.200234+5 7.650000-5 1.133228+5 7.900000-5 1.079202+5 8.150000-5 1.035266+5 8.413951-5 9.974068+4 8.709636-5 9.630140+4 9.120108-5 9.256047+4 9.549926-5 8.954423+4 1.011579-4 8.648952+4 1.096478-4 8.305894+4 1.350000-4 7.557140+4 1.500000-4 7.155120+4 1.650000-4 6.762900+4 1.819701-4 6.335501+4 1.995262-4 5.916225+4 2.187762-4 5.483608+4 2.400000-4 5.038360+4 2.630268-4 4.598303+4 2.900000-4 4.141860+4 3.235937-4 3.653456+4 3.600000-4 3.206360+4 4.027170-4 2.771090+4 4.518559-4 2.368102+4 5.011872-4 2.042271+4 5.623413-4 1.718184+4 6.237348-4 1.461137+4 7.000000-4 1.211090+4 7.852356-4 9.968554+3 8.810489-4 8.140217+3 9.772372-4 6.735877+3 1.083927-3 5.536511+3 1.202264-3 4.520725+3 1.348963-3 3.581679+3 1.513561-3 2.815354+3 1.698244-3 2.193979+3 1.905461-3 1.696641+3 2.162719-3 1.268407+3 2.426610-3 9.668288+2 2.722701-3 7.318229+2 3.054921-3 5.501115+2 3.427678-3 4.106749+2 3.890451-3 2.954571+2 4.415704-3 2.108686+2 5.011872-3 1.493385+2 5.688529-3 1.049781+2 6.456542-3 7.325194+1 7.413102-3 4.908843+1 8.609938-3 3.156671+1 1.059254-2 1.694850+1 1.188502-2 1.194089+1 1.303167-2 8.962552+0 1.364583-2 7.737579+0 1.531087-2 5.312298+0 1.778279-2 3.317469+0 1.972423-2 2.370177+0 2.213095-2 1.618115+0 2.511886-2 1.054774+0 3.890451-2 2.347833-1 5.069907-2 9.377048-2 6.382635-2 4.197388-2 1.011580-1 8.351619-3 1.273503-1 3.749948-3 1.548817-1 1.912616-3 1.819701-1 1.106149-3 2.113489-1 6.702558-4 2.426610-1 4.252943-4 2.754229-1 2.823746-4 3.090295-1 1.959482-4 3.467369-1 1.369684-4 3.845918-1 9.990236-5 4.265795-1 7.337363-5 4.731513-1 5.428253-5 5.248075-1 4.046326-5 5.821032-1 3.040102-5 6.382635-1 2.374452-5 6.998420-1 1.867086-5 7.673615-1 1.478053-5 8.609938-1 1.109950-5 9.225714-1 9.408122-6 9.772372-1 8.249904-6 1.035142+0 7.283644-6 1.109175+0 6.313947-6 1.188600+0 5.512200-6 1.318257+0 4.552953-6 1.479108+0 3.709243-6 1.717908+0 2.857438-6 1.927525+0 2.354715-6 2.162719+0 1.955868-6 2.483133+0 1.577511-6 2.851018+0 1.282203-6 3.273407+0 1.050072-6 3.801894+0 8.522743-7 4.466836+0 6.858983-7 5.248075+0 5.560831-7 6.382635+0 4.347003-7 7.673615+0 3.471875-7 9.549926+0 2.679659-7 1.216186+1 2.029429-7 1.603245+1 1.489665-7 2.162719+1 1.074808-7 2.951209+1 7.711925-8 4.365158+1 5.113844-8 7.413102+1 2.962218-8 1.462177+2 1.484173-8 2.917427+2 7.392151-9 1.161449+3 1.848388-9 1.000000+5 2.14320-11 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.073000-5 2.073000-5 1.000000+5 2.073000-5 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.073000-5 0.0 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.975000-5 7.890960+7 1.995262-5 7.336057+7 2.114000-5 4.752098+7 2.170000-5 3.932284+7 2.213095-5 3.429197+7 2.270000-5 2.894272+7 2.330000-5 2.450332+7 2.371374-5 2.198992+7 2.426610-5 1.917558+7 2.500000-5 1.617292+7 2.580000-5 1.360732+7 2.660725-5 1.156359+7 2.770000-5 9.420760+6 2.900000-5 7.523080+6 3.054921-5 5.878851+6 3.235937-5 4.511374+6 3.467369-5 3.309193+6 3.758374-5 2.322001+6 4.120975-5 1.560162+6 4.415704-5 1.164479+6 4.677351-5 9.179490+5 4.900000-5 7.619360+5 5.080000-5 6.626800+5 5.248075-5 5.869738+5 5.450000-5 5.132880+5 5.650000-5 4.550440+5 5.821032-5 4.144886+5 6.000000-5 3.794092+5 6.165950-5 3.523990+5 6.350000-5 3.274704+5 6.531306-5 3.071532+5 6.730000-5 2.887908+5 6.950000-5 2.722576+5 7.161434-5 2.593366+5 7.413102-5 2.468991+5 7.673615-5 2.366139+5 8.000000-5 2.264868+5 8.317638-5 2.187756+5 8.709636-5 2.112907+5 9.225714-5 2.036963+5 1.000000-4 1.951120+5 1.244515-4 1.756762+5 1.380384-4 1.660715+5 1.513561-4 1.568882+5 1.659587-4 1.472349+5 1.840772-4 1.360094+5 2.018366-4 1.258636+5 2.220000-4 1.152764+5 2.426610-4 1.053790+5 2.660725-4 9.536387+4 2.951209-4 8.460918+4 3.273407-4 7.452715+4 3.630781-4 6.515018+4 4.120975-4 5.475924+4 4.623810-4 4.641322+4 5.150000-4 3.948284+4 5.754399-4 3.317200+4 6.382635-4 2.803044+4 7.161434-4 2.306912+4 8.035261-4 1.885019+4 9.015711-4 1.528679+4 1.000000-3 1.257264+4 1.122018-3 1.004201+4 1.258925-3 7.963165+3 1.396368-3 6.416804+3 1.548817-3 5.133448+3 1.737801-3 3.976057+3 1.949845-3 3.056341+3 2.213095-3 2.270375+3 2.483133-3 1.720370+3 2.786121-3 1.294514+3 3.126079-3 9.672929+2 3.507519-3 7.177988+2 3.981072-3 5.130005+2 4.518559-3 3.636879+2 5.128614-3 2.558385+2 5.821032-3 1.786219+2 6.606934-3 1.237979+2 7.498942-3 8.520395+1 8.709636-3 5.434607+1 1.000000-2 3.561364+1 1.148154-2 2.316383+1 1.318257-2 1.495338+1 1.513561-2 9.581157+0 1.737801-2 6.092010+0 1.972423-2 3.988247+0 2.264644-2 2.493833+0 2.660725-2 1.430512+0 3.467369-2 5.674923-1 4.265795-2 2.731376-1 5.188000-2 1.360120-1 6.918310-2 4.825708-2 1.161449-1 7.434649-3 1.412538-1 3.690565-3 1.678804-1 2.003387-3 1.927525-1 1.237216-3 2.187762-1 8.007027-4 2.454709-1 5.427139-4 2.754229-1 3.705840-4 3.054921-1 2.647775-4 3.388442-1 1.906167-4 3.715352-1 1.433046-4 4.073803-1 1.084856-4 4.466836-1 8.274047-5 4.897788-1 6.358943-5 5.308844-1 5.084198-5 5.754399-1 4.090449-5 6.237348-1 3.312006-5 6.760830-1 2.699054-5 7.328245-1 2.213449-5 8.035261-1 1.777820-5 8.709636-1 1.474881-5 9.332543-1 1.264533-5 1.000000+0 1.091400-5 1.096478+0 9.050071-6 1.202264+0 7.557031-6 1.318257+0 6.354651-6 1.462177+0 5.269357-6 1.678804+0 4.135245-6 1.883649+0 3.403707-6 2.113489+0 2.823239-6 2.398833+0 2.314706-6 2.754229+0 1.877892-6 3.162278+0 1.535108-6 3.672823+0 1.243830-6 4.315191+0 9.994136-7 5.069907+0 8.089541-7 6.095369+0 6.406394-7 7.328245+0 5.107527-7 9.120108+0 3.935876-7 1.148154+1 3.015450-7 1.500000+1 2.231700-7 2.041738+1 1.591620-7 2.818383+1 1.126858-7 4.265795+1 7.289010-8 7.244360+1 4.220703-8 1.412538+2 2.139014-8 2.818383+2 1.065082-8 1.122018+3 2.662760-9 1.000000+5 2.98250-11 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.975000-5 1.975000-5 1.000000+5 1.975000-5 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.975000-5 0.0 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.020000-6 3.343884+5 4.050000-6 3.164380+5 4.168694-6 2.593343+5 4.265795-6 2.202750+5 4.365158-6 1.862785+5 4.466836-6 1.567117+5 4.570882-6 1.311552+5 4.677351-6 1.090577+5 4.786301-6 9.011343+4 4.880000-6 7.629230+4 4.960000-6 6.604680+4 5.050000-6 5.602800+4 5.150000-6 4.652200+4 5.248075-6 3.862637+4 5.350000-6 3.169860+4 5.432503-6 2.691665+4 5.520000-6 2.254740+4 5.600000-6 1.911200+4 5.688529-6 1.585475+4 5.770000-6 1.330360+4 5.850000-6 1.116490+4 5.960000-6 8.740360+3 6.230000-6 4.803290+3 6.290000-6 4.238000+3 6.350000-6 3.764130+3 6.400000-6 3.433120+3 6.440000-6 3.206910+3 6.480000-6 3.012750+3 6.520000-6 2.848670+3 6.550000-6 2.744150+3 6.590000-6 2.628220+3 6.620000-6 2.557870+3 6.660000-6 2.484900+3 6.685000-6 2.450750+3 6.715000-6 2.420830+3 6.750000-6 2.400400+3 6.790000-6 2.395050+3 6.830000-6 2.407680+3 6.870000-6 2.437080+3 6.910000-6 2.482130+3 6.960000-6 2.558810+3 7.010000-6 2.656300+3 7.070000-6 2.798180+3 7.130000-6 2.964490+3 7.200000-6 3.185830+3 7.550000-6 4.613990+3 7.673615-6 5.202974+3 7.770000-6 5.679870+3 7.880000-6 6.236830+3 8.000000-6 6.853610+3 8.128305-6 7.517024+3 8.270000-6 8.247280+3 8.420000-6 9.010590+3 8.550000-6 9.659410+3 8.709636-6 1.043531+4 8.850000-6 1.109560+4 9.050000-6 1.199680+4 9.225714-6 1.274764+4 9.440609-6 1.361232+4 9.660509-6 1.443537+4 9.885531-6 1.521378+4 1.011579-5 1.594532+4 1.035142-5 1.662813+4 1.060000-5 1.727970+4 1.096478-5 1.811589+4 1.135011-5 1.885919+4 1.174898-5 1.949233+4 1.216186-5 2.001980+4 1.270000-5 2.054140+4 1.330000-5 2.094100+4 1.396368-5 2.120655+4 1.462177-5 2.132933+4 1.548817-5 2.133755+4 1.659587-5 2.117676+4 1.778279-5 2.086308+4 1.927525-5 2.034700+4 2.137962-5 1.953282+4 2.454709-5 1.833794+4 2.917427-5 1.678989+4 3.801894-5 1.456119+4 4.731513-5 1.287856+4 5.559043-5 1.168401+4 6.165950-5 1.091066+4 6.839116-5 1.012135+4 7.413102-5 9.490109+3 8.035261-5 8.840076+3 8.709636-5 8.179306+3 9.440609-5 7.507061+3 1.023293-4 6.839702+3 1.100000-4 6.251630+3 1.204670-4 5.541240+3 1.333521-4 4.803100+3 1.500000-4 4.037290+3 1.778279-4 3.114007+3 2.041738-4 2.516147+3 2.600160-4 1.749675+3 3.273407-4 1.220641+3 4.216965-4 8.146851+2 5.956621-4 4.645553+2 7.328245-4 3.293354+2 8.709636-4 2.456387+2 1.096478-3 1.647049+2 1.348963-3 1.141063+2 1.621810-3 8.175432+1 1.927525-3 5.939011+1 2.264644-3 4.374163+1 2.691535-3 3.128749+1 3.198895-3 2.221597+1 3.801894-3 1.565912+1 4.518559-3 1.095290+1 5.308844-3 7.788701+0 6.309573-3 5.362280+0 7.498942-3 3.663121+0 9.120108-3 2.360251+0 1.071519-2 1.631303+0 1.244515-2 1.148932+0 1.396368-2 8.720549-1 1.621810-2 6.038182-1 1.905461-2 4.033416-1 2.317395-2 2.452587-1 2.754229-2 1.569431-1 3.198895-2 1.058845-1 3.801894-2 6.671202-2 4.518559-2 4.171779-2 5.308844-2 2.673792-2 6.456542-2 1.545039-2 7.943282-2 8.577406-3 1.000000-1 4.427000-3 1.603245-1 1.119499-3 2.238721-1 4.247675-4 2.660725-1 2.589413-4 3.090295-1 1.697700-4 3.548134-1 1.158060-4 4.000000-1 8.368800-5 4.466836-1 6.247798-5 4.954502-1 4.780603-5 5.495409-1 3.684635-5 6.095369-1 2.861730-5 6.683439-1 2.301599-5 7.328245-1 1.863419-5 8.035261-1 1.519085-5 8.810489-1 1.247600-5 9.660509-1 1.031686-5 1.135011+0 7.487164-6 1.230269+0 6.412081-6 1.412538+0 4.954949-6 1.548817+0 4.195354-6 1.737801+0 3.435636-6 1.949845+0 2.835389-6 2.213095+0 2.314076-6 2.511886+0 1.901901-6 2.884032+0 1.547041-6 3.311311+0 1.267778-6 3.845918+0 1.029526-6 4.518559+0 8.289796-7 5.308844+0 6.724399-7 6.456542+0 5.259010-7 7.762471+0 4.202088-7 9.772372+0 3.201335-7 1.244515+1 2.426353-7 1.621810+1 1.805042-7 2.162719+1 1.319054-7 2.951209+1 9.463910-8 4.365158+1 6.275491-8 7.413102+1 3.635094-8 1.445440+2 1.842729-8 2.884032+2 9.177045-9 1.148154+3 2.294489-9 1.000000+5 2.63000-11 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.020000-6 4.020000-6 1.000000+5 4.020000-6 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.020000-6 0.0 1.000000+5 1.000000+5 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.152810-8 1.028750+0 7.152810-7 1.030100+0 1.231060-6 1.031000+0 1.684510-6 1.032000+0 2.304830-6 1.033200+0 3.228680-6 1.034000+0 3.963510-6 1.035300+0 5.379900-6 1.036640+0 7.152810-6 1.038200+0 9.652950-6 1.039700+0 1.254110-5 1.041500+0 1.668580-5 1.043800+0 2.316040-5 1.046400+0 3.222340-5 1.048300+0 4.011900-5 1.051200+0 5.442060-5 1.054080+0 7.152810-5 1.057700+0 9.749750-5 1.061100+0 1.268200-4 1.065100+0 1.678960-4 1.070400+0 2.342330-4 1.076200+0 3.237090-4 1.080600+0 4.042600-4 1.087100+0 5.446700-4 1.093710+0 7.152810-4 1.102600+0 9.917080-4 1.110700+0 1.293350-3 1.120600+0 1.730060-3 1.133300+0 2.405450-3 1.147500+0 3.321120-3 1.158200+0 4.127300-3 1.174100+0 5.516460-3 1.190110+0 7.152810-3 1.205100+0 8.904770-3 1.227500+0 1.191940-2 1.250000+0 1.540000-2 1.265600+0 1.805540-2 1.294900+0 2.352870-2 1.331800+0 3.121840-2 1.362600+0 3.822080-2 1.411700+0 5.033410-2 1.455800+0 6.211260-2 1.500000+0 7.479000-2 1.589800+0 1.034250-1 1.665000+0 1.302380-1 1.784700+0 1.774770-1 1.892300+0 2.234710-1 2.000000+0 2.712000-1 2.044000+0 2.908000-1 2.163500+0 3.447280-1 2.372600+0 4.408730-1 2.647100+0 5.677270-1 3.000000+0 7.278000-1 3.437500+0 9.171900-1 4.000000+0 1.145000+0 4.750000+0 1.423920+0 5.000000+0 1.511000+0 6.000000+0 1.832000+0 7.000000+0 2.118000+0 8.000000+0 2.375000+0 9.000000+0 2.609000+0 1.000000+1 2.822000+0 1.100000+1 3.017000+0 1.200000+1 3.195000+0 1.300000+1 3.359000+0 1.400000+1 3.511000+0 1.500000+1 3.652000+0 1.600000+1 3.785000+0 1.800000+1 4.027000+0 2.000000+1 4.245000+0 2.200000+1 4.442000+0 2.400000+1 4.621000+0 2.600000+1 4.785000+0 2.800000+1 4.935000+0 3.000000+1 5.073000+0 4.000000+1 5.636000+0 5.000000+1 6.054000+0 6.000000+1 6.380000+0 8.000000+1 6.862000+0 1.000000+2 7.204000+0 1.500000+2 7.748000+0 2.000000+2 8.073000+0 3.000000+2 8.452000+0 4.000000+2 8.670000+0 5.000000+2 8.813000+0 6.000000+2 8.916000+0 8.000000+2 9.052000+0 1.000000+3 9.141000+0 1.500000+3 9.269000+0 2.000000+3 9.339000+0 3.000000+3 9.414000+0 4.000000+3 9.455000+0 5.000000+3 9.480000+0 6.000000+3 9.498000+0 8.000000+3 9.521000+0 1.000000+4 9.536000+0 1.500000+4 9.557000+0 2.000000+4 9.567000+0 3.000000+4 9.579000+0 4.000000+4 9.585000+0 5.000000+4 9.589000+0 6.000000+4 9.591000+0 8.000000+4 9.595000+0 1.000000+5 9.597000+0 1 37000 7 8 8.547000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.713290-7 2.106600+0 1.209830-6 2.114000+0 1.673950-6 2.119500+0 2.084060-6 2.127900+0 2.826380-6 2.136250+0 3.713290-6 2.147000+0 5.091180-6 2.156900+0 6.612830-6 2.169000+0 8.825240-6 2.184500+0 1.226740-5 2.201800+0 1.697230-5 2.214800+0 2.114610-5 2.234200+0 2.844530-5 2.253680+0 3.713290-5 2.281500+0 5.201120-5 2.307000+0 6.831660-5 2.338200+0 9.185760-5 2.377400+0 1.272120-4 2.410200+0 1.617920-4 2.446800+0 2.058090-4 2.485900+0 2.591250-4 2.532900+0 3.316230-4 2.556430+0 3.713290-4 2.611900+0 4.734840-4 2.660400+0 5.724150-4 2.745300+0 7.661370-4 2.809000+0 9.278320-4 2.904500+0 1.195250-3 3.000000+0 1.492000-3 3.125000+0 1.923930-3 3.234400+0 2.341070-3 3.425800+0 3.152810-3 3.569300+0 3.823360-3 3.784700+0 4.915540-3 4.000000+0 6.090000-3 4.250000+0 7.526320-3 4.625000+0 9.783940-3 5.000000+0 1.213000-2 5.500000+0 1.534750-2 6.000000+0 1.861000-2 6.750000+0 2.347770-2 7.000000+0 2.508000-2 8.000000+0 3.134000-2 9.000000+0 3.733000-2 1.000000+1 4.303000-2 1.100000+1 4.843000-2 1.200000+1 5.352000-2 1.300000+1 5.832000-2 1.400000+1 6.289000-2 1.500000+1 6.722000-2 1.600000+1 7.133000-2 1.800000+1 7.896000-2 2.000000+1 8.591000-2 2.200000+1 9.228000-2 2.400000+1 9.814000-2 2.600000+1 1.036000-1 2.800000+1 1.086000-1 3.000000+1 1.133000-1 4.000000+1 1.327000-1 5.000000+1 1.474000-1 6.000000+1 1.592000-1 8.000000+1 1.769000-1 1.000000+2 1.899000-1 1.500000+2 2.114000-1 2.000000+2 2.250000-1 3.000000+2 2.417000-1 4.000000+2 2.517000-1 5.000000+2 2.586000-1 6.000000+2 2.637000-1 8.000000+2 2.707000-1 1.000000+3 2.754000-1 1.500000+3 2.824000-1 2.000000+3 2.864000-1 3.000000+3 2.908000-1 4.000000+3 2.934000-1 5.000000+3 2.950000-1 6.000000+3 2.961000-1 8.000000+3 2.976000-1 1.000000+4 2.985000-1 1.500000+4 2.998000-1 2.000000+4 3.006000-1 3.000000+4 3.013000-1 4.000000+4 3.018000-1 5.000000+4 3.020000-1 6.000000+4 3.022000-1 8.000000+4 3.024000-1 1.000000+5 3.025000-1 1 37000 7 8 8.547000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 37000 7 9 8.547000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.700000+1 1.000000+5 3.700000+1 5.000000+5 3.697300+1 1.000000+6 3.693800+1 1.375000+6 3.690470+1 1.500000+6 3.688900+1 1.750000+6 3.684720+1 2.000000+6 3.680500+1 2.375000+6 3.672710+1 2.500000+6 3.669900+1 2.875000+6 3.660800+1 3.000000+6 3.657500+1 3.250000+6 3.650130+1 3.625000+6 3.639130+1 4.000000+6 3.627800+1 4.437500+6 3.613880+1 4.812500+6 3.601320+1 5.000000+6 3.594800+1 5.500000+6 3.575530+1 6.156200+6 3.549140+1 6.500000+6 3.535180+1 7.000000+6 3.514600+1 8.000000+6 3.473260+1 8.500000+6 3.452020+1 9.000000+6 3.430600+1 1.000000+7 3.386100+1 1.187500+7 3.304670+1 1.250000+7 3.277500+1 1.437500+7 3.192050+1 1.500000+7 3.163200+1 1.687500+7 3.076050+1 1.750000+7 3.047400+1 2.000000+7 2.932700+1 2.250000+7 2.818200+1 2.500000+7 2.707900+1 2.875000+7 2.555140+1 3.000000+7 2.507900+1 3.250000+7 2.418300+1 3.500000+7 2.335390+1 3.625000+7 2.295960+1 4.000000+7 2.186200+1 4.500000+7 2.055010+1 5.000000+7 1.934600+1 5.500000+7 1.820640+1 6.000000+7 1.711200+1 6.500000+7 1.605520+1 7.000000+7 1.504400+1 7.500000+7 1.408070+1 8.000000+7 1.317400+1 8.750000+7 1.192890+1 9.000000+7 1.154600+1 1.000000+8 1.017400+1 1.125000+8 8.804270+0 1.156300+8 8.517840+0 1.250000+8 7.781700+0 1.312500+8 7.380890+0 1.406300+8 6.885550+0 1.437500+8 6.744030+0 1.500000+8 6.489300+0 1.625000+8 6.071310+0 1.718800+8 5.806420+0 1.859400+8 5.449600+0 2.000000+8 5.112100+0 2.125000+8 4.817840+0 2.375000+8 4.289440+0 2.500000+8 4.065200+0 2.671900+8 3.794700+0 2.789100+8 3.610470+0 2.875000+8 3.466640+0 2.881300+8 3.455660+0 2.960400+8 3.313570+0 3.000000+8 3.239200+0 3.062500+8 3.117360+0 3.335900+8 2.623030+0 3.418000+8 2.507870+0 3.500000+8 2.413200+0 3.562500+8 2.355290+0 4.000000+8 2.070600+0 4.062500+8 2.025580+0 5.000000+8 1.385300+0 5.125000+8 1.337430+0 5.234400+8 1.302550+0 5.425800+8 1.252960+0 5.712900+8 1.195650+0 6.000000+8 1.146400+0 7.000000+8 9.922000-1 7.625000+8 9.170720-1 8.000000+8 8.733000-1 8.359400+8 8.295320-1 8.660200+8 7.923490-1 9.138700+8 7.338450-1 9.569300+8 6.832800-1 1.000000+9 6.356000-1 1.062500+9 5.720930-1 1.117200+9 5.218430-1 1.186000+9 4.649900-1 1.243500+9 4.224590-1 1.307700+9 3.797210-1 1.375000+9 3.398220-1 1.376400+9 3.390390-1 1.458800+9 2.962570-1 1.500000+9 2.771000-1 1.589800+9 2.397610-1 1.665000+9 2.127670-1 1.784700+9 1.766050-1 1.892300+9 1.500550-1 2.000000+9 1.280900-1 2.093800+9 1.120230-1 2.275400+9 8.728410-2 2.445700+9 6.987020-2 2.680200+9 5.229970-2 2.895300+9 4.072960-2 3.158400+9 3.056020-2 3.496000+9 2.170870-2 3.872000+9 1.530030-2 4.436000+9 9.538640-3 5.000000+9 6.265900-3 6.500000+9 2.478090-3 8.000000+9 1.186900-3 1.00000+10 5.396700-4 1.20500+10 2.814960-4 1.41820+10 1.604700-4 1.71170+10 8.447130-5 2.01490+10 4.871780-5 2.26440+10 3.295770-5 2.74790+10 1.733840-5 3.41360+10 8.505470-6 4.02450+10 4.979500-6 5.12000+10 2.292110-6 6.34000+10 1.158630-6 8.17000+10 5.192700-7 1.00000+11 2.751700-7 1.34280+11 1.097200-7 1.77440+11 4.629870-8 2.63330+11 1.378260-8 3.75720+11 4.674930-9 6.61190+11 8.52330-10 1.48990+12 7.62282-11 4.26460+12 3.50208-12 1.00000+14 3.88800-16 5.62340+14 2.59542-18 7.49890+15 1.32560-21 1.00000+17 6.49360-25 1 37000 7 0 8.547000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.80000-12 1.000000+2 7.80000-10 1.000000+3 7.800000-8 1.000000+4 7.800000-6 1.000000+5 7.800000-4 5.000000+5 1.950000-2 1.000000+6 7.800000-2 1.375000+6 1.452270-1 1.500000+6 1.718000-1 1.750000+6 2.305970-1 2.000000+6 2.964000-1 2.375000+6 4.067150-1 2.500000+6 4.462000-1 2.875000+6 5.712450-1 3.000000+6 6.149000-1 3.250000+6 7.044260-1 3.625000+6 8.433220-1 4.000000+6 9.860000-1 4.437500+6 1.154670+0 4.812500+6 1.299670+0 5.000000+6 1.372000+0 5.500000+6 1.562900+0 6.156200+6 1.809830+0 6.500000+6 1.937570+0 7.000000+6 2.121900+0 8.000000+6 2.486540+0 8.500000+6 2.669040+0 9.000000+6 2.852500+0 1.000000+7 3.225000+0 1.187500+7 3.944810+0 1.250000+7 4.189300+0 1.437500+7 4.926630+0 1.500000+7 5.172000+0 1.687500+7 5.896820+0 1.750000+7 6.134600+0 2.000000+7 7.062000+0 2.250000+7 7.953800+0 2.500000+7 8.812500+0 2.875000+7 1.003920+1 3.000000+7 1.043100+1 3.250000+7 1.118380+1 3.500000+7 1.189760+1 3.625000+7 1.223960+1 4.000000+7 1.320600+1 4.500000+7 1.436390+1 5.000000+7 1.541000+1 5.500000+7 1.637380+1 6.000000+7 1.728200+1 6.500000+7 1.814650+1 7.000000+7 1.897400+1 7.500000+7 1.976720+1 8.000000+7 2.052600+1 8.750000+7 2.159720+1 9.000000+7 2.194000+1 1.000000+8 2.322100+1 1.125000+8 2.464320+1 1.156300+8 2.496840+1 1.250000+8 2.588000+1 1.312500+8 2.643140+1 1.406300+8 2.718930+1 1.437500+8 2.742620+1 1.500000+8 2.787100+1 1.625000+8 2.867000+1 1.718800+8 2.920300+1 1.859400+8 2.991460+1 2.000000+8 3.054300+1 2.125000+8 3.104140+1 2.375000+8 3.190140+1 2.500000+8 3.227700+1 2.671900+8 3.273490+1 2.789100+8 3.301390+1 2.875000+8 3.320560+1 2.881300+8 3.321860+1 2.960400+8 3.338100+1 3.000000+8 3.346100+1 3.062500+8 3.357560+1 3.335900+8 3.402930+1 3.418000+8 3.414690+1 3.500000+8 3.425900+1 3.562500+8 3.433730+1 4.000000+8 3.480300+1 4.062500+8 3.485620+1 5.000000+8 3.548200+1 5.125000+8 3.554280+1 5.234400+8 3.559490+1 5.425800+8 3.568360+1 5.712900+8 3.580300+1 6.000000+8 3.591400+1 7.000000+8 3.622800+1 7.625000+8 3.637920+1 8.000000+8 3.645900+1 8.359400+8 3.652170+1 8.660200+8 3.657220+1 9.138700+8 3.664170+1 9.569300+8 3.669610+1 1.000000+9 3.674200+1 1.062500+9 3.679590+1 1.117200+9 3.683100+1 1.186000+9 3.687020+1 1.243500+9 3.689310+1 1.307700+9 3.691750+1 1.375000+9 3.693340+1 1.376400+9 3.693370+1 1.458800+9 3.695080+1 1.500000+9 3.695900+1 1.589800+9 3.696790+1 1.665000+9 3.697490+1 1.784700+9 3.698390+1 1.892300+9 3.698810+1 2.000000+9 3.699200+1 2.093800+9 3.699340+1 2.275400+9 3.699590+1 2.445700+9 3.699810+1 2.680200+9 3.700080+1 2.895300+9 3.700150+1 3.158400+9 3.700120+1 3.496000+9 3.700100+1 3.872000+9 3.700070+1 4.436000+9 3.700030+1 5.000000+9 3.700000+1 6.500000+9 3.700000+1 8.000000+9 3.700000+1 1.00000+10 3.700000+1 1.20500+10 3.700000+1 1.41820+10 3.700000+1 1.71170+10 3.700000+1 2.01490+10 3.700000+1 2.26440+10 3.700000+1 2.74790+10 3.700000+1 3.41360+10 3.700000+1 4.02450+10 3.700000+1 5.12000+10 3.700000+1 6.34000+10 3.700000+1 8.17000+10 3.700000+1 1.00000+11 3.700000+1 1.34280+11 3.700000+1 1.77440+11 3.700000+1 2.63330+11 3.700000+1 3.75720+11 3.700000+1 6.61190+11 3.700000+1 1.48990+12 3.700000+1 4.26460+12 3.700000+1 1.00000+14 3.700000+1 5.62340+14 3.700000+1 7.49890+15 3.700000+1 1.00000+17 3.700000+1 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.423229-6 0.0 1.429359-6 1.819391+0 1.430235-6 2.076652+0 1.433738-6 3.793174+0 1.437241-6 6.395813+0 1.440745-6 9.955029+0 1.447094-6 1.809441+1 1.451303-6 2.342483+1 1.455195-6 2.901161+1 1.460130-6 3.327024+1 1.469313-6 4.030359+1 1.476175-6 4.913150+1 1.481320-6 5.550253+1 1.483835-6 5.722361+1 1.486632-6 5.754303+1 1.490419-6 5.386964+1 1.494889-6 4.464004+1 1.504375-6 2.068262+1 1.507946-6 1.335198+1 1.511517-6 7.956824+0 1.515088-6 4.377114+0 1.520444-6 1.112680+0 1.522230-6 0.0 2.196477-6 0.0 2.205319-6 2.555202-6 2.207289-6 3.992833-6 2.212696-6 8.955577-6 2.216175-6 1.298402-5 2.218102-6 1.577795-5 2.221603-6 2.178443-5 2.223508-6 2.576774-5 2.227031-6 3.390690-5 2.232459-6 4.896147-5 2.243316-6 8.151543-5 2.248744-6 9.397226-5 2.254172-6 1.004772-4 2.259600-6 9.962561-5 2.265028-6 9.158488-5 2.272165-6 7.278388-5 2.282978-6 4.032643-5 2.286741-6 3.055587-5 2.288384-6 2.682662-5 2.292610-6 1.846136-5 2.293791-6 1.655336-5 2.297597-6 1.113946-5 2.303025-6 5.443832-6 2.304603-6 4.253435-6 2.309539-6 2.016716-6 2.313881-6 1.44787-15 2.315182-6 1.59808-15 2.320825-6 2.48741-15 2.326468-6 3.57394-15 2.332111-6 4.74026-15 2.337754-6 5.80377-15 2.343397-6 6.55953-15 2.349040-6 6.84367-15 2.354683-6 6.59112-15 2.360326-6 5.85981-15 2.365969-6 4.80908-15 2.377255-6 2.54789-15 2.382898-6 1.64483-15 2.388541-6 9.80199-16 2.394184-6 5.39215-16 2.400000-6 2.65411-16 2.405470-6 0.0 2.723016-6 0.0 2.732659-6 2.164018-2 2.736421-6 5.162770-2 2.743123-6 1.145692-1 2.746111-6 1.481660-1 2.749826-6 2.039815-1 2.752837-6 2.554554-1 2.759563-6 4.082851-1 2.767130-6 6.329068-1 2.779742-6 1.056143+0 2.787309-6 1.258629+0 2.793194-6 1.358076+0 2.800761-6 1.361305+0 2.807487-6 1.262344+0 2.814427-6 1.076786+0 2.830254-6 5.510927-1 2.833550-6 4.527825-1 2.840277-6 2.871565-1 2.843659-6 2.249411-1 2.847003-6 1.684020-1 2.853729-6 8.758703-2 2.857064-6 6.028041-2 2.867181-6 0.0 2.928362-6 0.0 2.933993-6 2.436517-8 2.942778-6 1.017204-7 2.948437-6 1.670940-7 2.949985-6 1.896340-7 2.955658-6 2.929309-7 2.957193-6 3.268009-7 2.962880-6 4.747325-7 2.971609-6 7.668018-7 2.986024-6 1.314549-6 2.993232-6 1.530226-6 3.000440-6 1.647063-6 3.007648-6 1.639282-6 3.014856-6 1.508682-6 3.022063-6 1.283957-6 3.036479-6 7.353669-7 3.043687-6 4.948905-7 3.049540-6 3.385380-7 3.050895-6 3.079862-7 3.056762-6 1.973055-7 3.058102-6 1.772416-7 3.063983-6 1.062705-7 3.072518-6 2.820835-8 3.078427-6 0.0 3.215055-6 0.0 3.219506-6 1.441426-3 3.230882-6 1.557326-2 3.235355-6 2.201327-2 3.238796-6 2.906202-2 3.243279-6 3.948257-2 3.246709-6 5.013606-2 3.251204-6 6.543782-2 3.259128-6 1.002157-1 3.278363-6 2.026064-1 3.286277-6 2.361421-1 3.290826-6 2.499308-1 3.299321-6 2.569804-1 3.307442-6 2.427218-1 3.315563-6 2.110620-1 3.336942-6 9.847072-2 3.341671-6 7.708685-2 3.346296-6 5.847608-2 3.354221-6 3.458706-2 3.357498-6 2.768615-2 3.362145-6 1.889498-2 3.373325-6 4.539640-3 3.377994-6 5.609561-6 3.385624-6 5.492349-6 3.393737-6 4.972282-6 3.404893-6 3.819636-6 3.418078-6 2.300257-6 3.421134-6 1.985058-6 3.426192-6 1.520088-6 3.429255-6 1.270339-6 3.434305-6 9.286245-7 3.437376-6 7.508619-7 3.442419-6 5.244584-7 3.445497-6 4.099020-7 3.455322-6 1.418575-7 3.457732-6 2.430839-4 3.472331-6 6.181421-3 3.474754-6 7.316766-3 3.480836-6 1.140226-2 3.483265-6 1.324220-2 3.491775-6 2.213677-2 3.500286-6 3.417960-2 3.523360-6 7.427747-2 3.534329-6 8.771606-2 3.542840-6 9.099503-2 3.551351-6 8.717194-2 3.559862-6 7.711618-2 3.585394-6 3.309872-2 3.592154-6 2.367082-2 3.593905-6 2.167845-2 3.602415-6 1.461759-2 3.609837-6 1.098903-2 3.610926-6 1.064173-2 3.618679-6 9.840030-3 3.626062-6 1.017252-2 3.627948-6 1.056814-2 3.636362-6 1.595519-2 3.661414-6 3.574675-2 3.671728-6 4.143712-2 3.680570-6 4.363863-2 3.689412-6 4.281691-2 3.698253-6 3.933733-2 3.715937-6 2.988692-2 3.724778-6 2.641829-2 3.733620-6 2.484514-2 3.742461-6 2.511609-2 3.760145-6 2.753478-2 3.778356-6 2.850405-2 3.787633-6 2.819893-2 3.820200-6 2.578585-2 3.894183-6 2.337644-2 3.940900-6 2.087953-2 3.965900-6 1.854907-2 3.991921-6 1.667456-2 4.023840-6 1.612925-2 4.077810-6 1.707871-2 4.123781-6 1.648811-2 4.290493-6 1.299208-2 4.470108-6 9.981686-3 4.650561-6 7.615653-3 4.809556-6 5.962149-3 4.982349-6 4.530713-3 5.162158-6 3.366266-3 5.330774-6 2.517468-3 5.487049-6 1.899387-3 5.638585-6 1.427529-3 5.789897-6 1.060422-3 5.928855-6 7.991751-4 6.030688-6 6.475600-4 6.156538-6 5.001746-4 6.259928-6 4.074398-4 6.373415-6 3.315914-4 6.484413-6 2.804772-4 6.590000-6 2.501688-4 6.700000-6 2.353986-4 6.810000-6 2.355572-4 6.922500-6 2.490981-4 7.047500-6 2.778228-4 7.200000-6 3.293368-4 7.436840-6 4.372099-4 7.784962-6 6.416113-4 8.664769-6 1.265045-3 9.990117-6 2.220201-3 1.152296-5 3.151690-3 1.344916-5 4.037278-3 1.535047-5 4.681936-3 1.541659-5 5.098967-1 1.542603-5 5.813338-1 1.546382-5 1.057976+0 1.550160-5 1.780668+0 1.553938-5 2.768974+0 1.560787-5 5.029074+0 1.565273-5 6.454460+0 1.569524-5 7.333732+0 1.573066-5 7.592613+0 1.576844-5 7.278789+0 1.581066-5 6.307377+0 1.587333-5 4.263240+0 1.591722-5 2.836288+0 1.595736-5 1.786676+0 1.599278-5 1.094149+0 1.603057-5 6.040974-1 1.608724-5 1.572122-1 1.610613-5 4.891624-3 1.632078-5 4.949768-3 1.636096-5 1.342895-1 1.640113-5 2.608777-1 1.644130-5 4.724160-1 1.648147-5 7.931505-1 1.652164-5 1.231764+0 1.658190-5 2.054909+0 1.664216-5 2.867390+0 1.668233-5 3.240131+0 1.672250-5 3.380275+0 1.676267-5 3.255730+0 1.680284-5 2.895066+0 1.692532-5 1.239991+0 1.696353-5 8.163468-1 1.700370-5 4.885824-1 1.704387-5 2.711189-1 1.710403-5 7.316721-2 1.712422-5 5.232002-3 1.754700-5 5.254773-3 1.755579-5 5.737771-2 1.764221-5 4.988141+0 1.768656-5 9.359801+0 1.772999-5 1.576166+1 1.777816-5 2.569250+1 1.790369-5 5.689816+1 1.795111-5 6.449467+1 1.799516-5 6.673400+1 1.803904-5 6.367537+1 1.809229-5 5.386688+1 1.820900-5 2.500838+1 1.824950-5 1.670690+1 1.828445-5 1.126775+1 1.829173-5 1.044568+1 1.833427-5 7.284243+0 1.837796-5 5.807292+0 1.841924-5 5.284280+0 1.842473-5 5.624661+0 1.846447-5 8.524933+0 1.851765-5 1.416991+1 1.870308-5 4.384957+1 1.875155-5 4.993118+1 1.881256-5 5.521116+1 1.889016-5 5.893921+1 1.894653-5 5.942719+1 1.900255-5 5.782053+1 1.905619-5 5.430319+1 1.913548-5 4.633635+1 1.921303-5 3.782429+1 1.926023-5 3.380519+1 1.932124-5 3.062087+1 1.935112-5 2.951060+1 1.943615-5 2.889943+1 1.955445-5 3.386944+1 1.964659-5 3.880717+1 1.970722-5 4.060034+1 1.975555-5 4.056089+1 1.988052-5 3.717255+1 1.997432-5 3.412649+1 2.010729-5 3.303944+1 2.040872-5 3.091521+1 2.117522-5 2.415917+1 2.205142-5 1.867488+1 2.280000-5 1.530083+1 2.372366-5 1.229073+1 2.458449-5 1.025811+1 2.575255-5 8.250341+0 2.708069-5 6.634588+0 2.844428-5 5.436986+0 2.997176-5 4.448078+0 3.162278-5 3.653957+0 3.353000-5 2.972897+0 3.506333-5 2.552129+0 3.779115-5 2.007432+0 4.064287-5 1.604337+0 4.377305-5 1.296730+0 4.704619-5 1.073323+0 5.087265-5 8.975595-1 5.474155-5 7.824467-1 6.000000-5 6.894081-1 6.553600-5 6.410023-1 7.413102-5 6.182861-1 9.269919-5 6.480579-1 1.122267-4 6.972741-1 1.130607-4 7.490238-1 1.136181-4 8.334964-1 1.138867-4 8.954376-1 1.147580-4 1.134829+0 1.154875-4 1.280884+0 1.165326-4 1.400103+0 1.175070-4 1.422935+0 1.194764-4 1.460930+0 1.238129-4 1.696291+0 1.263500-4 1.929224+0 1.283661-4 2.200616+0 1.307270-4 2.630719+0 1.341872-4 3.478133+0 1.465000-4 7.060373+0 1.610000-4 1.053109+1 1.757924-4 1.349907+1 1.895355-4 1.542340+1 2.116972-4 1.712872+1 2.314513-4 1.811383+1 2.370605-4 1.983594+1 2.427138-4 1.994878+1 2.471175-4 2.046560+1 3.066484-4 1.966129+1 3.143678-4 2.009793+1 3.961835-4 1.763915+1 5.302864-4 1.357641+1 6.382635-4 1.113396+1 7.495982-4 9.235931+0 8.896975-4 7.476752+0 1.038298-3 6.122216+0 1.216186-3 4.951727+0 1.400393-3 4.072529+0 1.636158-3 3.263667+0 1.761374-3 2.955712+0 1.771064-3 3.133431+0 1.775545-3 3.329979+0 1.780808-3 3.733045+0 1.784831-3 4.195311+0 1.790553-3 5.101177+0 1.809683-3 9.106021+0 1.818571-3 1.032497+1 1.829397-3 1.099172+1 1.847808-3 1.170101+1 1.877797-3 1.432683+1 1.893337-3 1.470560+1 2.022725-3 1.373690+1 2.066729-3 1.479379+1 2.158482-3 1.410350+1 2.462317-3 1.159990+1 2.836950-3 9.377016+0 3.244318-3 7.618065+0 3.742250-3 6.072124+0 4.283821-3 4.868597+0 4.880454-3 3.921704+0 5.538829-3 3.168464+0 6.309573-3 2.535260+0 7.169107-3 2.032686+0 7.924817-3 1.705302+0 8.871325-3 1.397846+0 1.003509-2 1.122449+0 1.116492-2 9.268048-1 1.265359-2 7.394771-1 1.431062-2 5.909189-1 1.477414-2 5.606719-1 1.485230-2 5.770998-1 1.489884-2 6.145256-1 1.493652-2 6.767396-1 1.496593-2 7.547015-1 1.500167-2 8.946401-1 1.503684-2 1.088037+0 1.507571-2 1.367976+0 1.514144-2 1.960893+0 1.522591-2 2.743431+0 1.528942-2 3.183197+0 1.535121-2 3.437679+0 1.545272-2 3.580626+0 1.822110-2 2.780683+0 2.104742-2 2.189329+0 2.377655-2 1.782694+0 2.681978-2 1.446385+0 3.042057-2 1.159222+0 3.411493-2 9.436971-1 3.783345-2 7.823451-1 4.175796-2 6.522113-1 4.670625-2 5.299321-1 5.159890-2 4.392176-1 5.771738-2 3.551545-1 6.361143-2 2.945093-1 6.974279-2 2.467113-1 7.809976-2 1.978168-1 8.609875-2 1.634680-1 9.658825-2 1.303375-1 1.085758-1 1.033957-1 1.192543-1 8.587925-2 1.337185-1 6.846766-2 1.466697-1 5.702685-2 1.627795-1 4.639630-2 1.810827-1 3.758922-2 1.985841-1 3.137296-2 2.237966-1 2.486035-2 2.445893-1 2.097563-2 2.691535-1 1.749173-2 3.002904-1 1.427126-2 3.316043-1 1.191251-2 3.659221-1 9.997335-3 4.043140-1 8.416069-3 4.474878-1 7.102844-3 4.995829-1 5.954994-3 5.543065-1 5.078405-3 6.139387-1 4.375474-3 6.923290-1 3.710193-3 7.943282-1 3.119963-3 9.093896-1 2.666229-3 1.070165+0 2.241850-3 1.286622+0 1.842821-3 1.546860+0 1.514816-3 1.859734+0 1.245192-3 2.235892+0 1.023559-3 2.688134+0 8.413749-4 3.231848+0 6.916178-4 3.885536+0 5.685161-4 4.671441+0 4.673254-4 5.616308+0 3.841457-4 6.752287+0 3.157712-4 8.118035+0 2.595668-4 9.760024+0 2.133663-4 1.000000+1 4.298634-4 1 37000 7 0 8.547000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.604803+1 1.240644-6-3.430016+1 1.333456-6-3.198573+1 1.379089-6-2.909869+1 1.401909-6-2.608996+1 1.413661-6-2.337330+1 1.420202-6-2.099778+1 1.430235-6-1.498304+1 1.437679-6-9.722731+0 1.441620-6-7.579815+0 1.444248-6-6.810000+0 1.446437-6-6.588491+0 1.451303-6-7.149734+0 1.452814-6-7.671226+0 1.454271-6-8.592813+0 1.455195-6-9.570393+0 1.460130-6-1.351171+1 1.468265-6-1.864655+1 1.470053-6-1.946732+1 1.473913-6-2.250649+1 1.476926-6-2.642232+1 1.479490-6-3.122783+1 1.482073-6-3.691506+1 1.486440-6-2.444946+1 1.490824-6-1.135530+1 1.492066-6-8.342858+0 1.494108-6-3.882033+0 1.494889-6-2.456440+0 1.495475-6-1.501157+0 1.496354-6-2.001704-1 1.497233-6 1.022676+0 1.497679-6 1.605171+0 1.498460-6 2.427422+0 1.499046-6 2.932688+0 1.499925-6 3.526050+0 1.500804-6 3.891081+0 1.502366-6 4.191170+0 1.503371-6 4.157892+0 1.503873-6 4.039190+0 1.506160-6 2.860471+0 1.507053-6 2.310472+0 1.507500-6 1.962726+0 1.508392-6 1.000859+0 1.509955-6-3.632879-1 1.510736-6-1.088030+0 1.511126-6-1.495330+0 1.511517-6-1.994221+0 1.516315-6-7.093782+0 1.521337-6-1.150689+1 1.523546-6-1.404570+1 1.526827-6-1.642527+1 1.533341-6-1.956230+1 1.543642-6-2.270529+1 1.561285-6-2.588773+1 1.590484-6-2.872005+1 1.649362-6-3.135415+1 1.785031-6-3.351382+1 2.227031-6-3.512579+1 2.746111-6-3.622651+1 2.790251-6-3.589375+1 2.833550-6-3.477473+1 3.072518-6-3.562723+1 9.363544-6-3.767065+1 1.344916-5-3.662799+1 1.493464-5-3.462726+1 1.532878-5-3.267840+1 1.554883-5-2.994006+1 1.563384-5-3.072334+1 1.573066-5-3.418169+1 1.584165-5-3.778563+1 1.594555-5-3.788064+1 1.615287-5-3.470796+1 1.656181-5-3.035649+1 1.668233-5-3.071938+1 1.683626-5-3.186073+1 1.696353-5-3.075112+1 1.722789-5-2.561575+1 1.737987-5-2.149452+1 1.746292-5-1.817389+1 1.751689-5-1.510529+1 1.754700-5-1.265369+1 1.756125-5-1.093672+1 1.758513-5-8.720697+0 1.762084-5-5.714507+0 1.763687-5-4.190300+0 1.764221-5-3.550419+0 1.768656-5 1.069987+0 1.769199-5 1.727623+0 1.772999-5 5.182616+0 1.773542-5 5.738280+0 1.774492-5 6.412310+0 1.777816-5 8.174961+0 1.778706-5 8.362967+0 1.779484-5 8.356140+0 1.780846-5 8.046854+0 1.782634-5 7.128002+0 1.783784-5 6.233234+0 1.784933-5 5.057353+0 1.786292-5 3.378896+0 1.787312-5 1.941549+0 1.788076-5 7.286915-1 1.788649-5-2.710245-1 1.789509-5-1.952826+0 1.789939-5-2.907519+0 1.790912-5-5.472410+0 1.792812-5-1.011580+1 1.794237-5-1.404366+1 1.795604-5-1.862525+1 1.798812-5-2.844839+1 1.800613-5-3.464871+1 1.803683-5-4.424966+1 1.806503-5-3.704261+1 1.809600-5-3.025426+1 1.812107-5-2.678915+1 1.815166-5-2.437046+1 1.818379-5-2.365530+1 1.820900-5-2.464535+1 1.824538-5-2.800242+1 1.828445-5-3.360845+1 1.835614-5-4.528392+1 1.841848-5-3.548442+1 1.844165-5-3.138613+1 1.847359-5-2.681893+1 1.853134-5-2.011409+1 1.856692-5-1.792742+1 1.860673-5-1.692536+1 1.863655-5-1.709518+1 1.867154-5-1.832692+1 1.869708-5-2.019554+1 1.874511-5-2.504635+1 1.879904-5-3.187436+1 1.887737-5-4.267833+1 1.891704-5-4.798761+1 1.903940-5-3.230902+1 1.910244-5-2.640090+1 1.915129-5-2.403829+1 1.920029-5-2.354677+1 1.926023-5-2.539025+1 1.940025-5-3.278663+1 1.947788-5-3.695076+1 1.956642-5-3.862790+1 1.962426-5-3.779166+1 1.970722-5-3.351287+1 1.978800-5-2.896971+1 1.988052-5-2.578099+1 1.993350-5-2.535876+1 2.010729-5-2.550999+1 2.052057-5-2.203995+1 2.091324-5-2.011755+1 2.155421-5-1.890291+1 2.254130-5-1.861831+1 2.952347-5-2.279031+1 3.720590-5-2.526153+1 5.248075-5-2.749468+1 1.072836-4-3.197789+1 1.390192-4-3.740490+1 1.610000-4-3.691453+1 2.259266-4-2.908149+1 2.385665-4-2.878776+1 2.581783-4-2.510373+1 2.875743-4-2.162923+1 3.092574-4-2.008944+1 3.143678-4-1.984992+1 3.362184-4-1.745226+1 3.772594-4-1.462500+1 4.268866-4-1.232503+1 4.888370-4-1.039224+1 5.559042-4-9.075876+0 6.382635-4-8.100788+0 7.495982-4-7.425961+0 8.896975-4-7.150730+0 1.038298-3-7.250249+0 1.216186-3-7.736018+0 1.400393-3-8.679786+0 1.541980-3-9.898959+0 1.636158-3-1.123289+1 1.704799-3-1.285329+1 1.740823-3-1.426604+1 1.765913-3-1.594978+1 1.786715-3-1.854386+1 1.800616-3-2.014375+1 1.812954-3-2.011915+1 1.838836-3-1.793173+1 1.869099-3-1.706019+1 1.907376-3-1.365401+1 1.936083-3-1.209427+1 1.977320-3-1.075027+1 2.013400-3-1.017567+1 2.046262-3-1.005071+1 2.066729-3-9.330053+0 2.097382-3-8.073033+0 2.137684-3-7.010976+0 2.207399-3-5.734598+0 2.286083-3-4.692191+0 2.387193-3-3.698370+0 2.462317-3-3.127364+0 2.583375-3-2.403687+0 2.699561-3-1.875008+0 2.794403-3-1.525353+0 2.875112-3-1.277431+0 2.991361-3-9.834500-1 3.095177-3-7.672195-1 3.215048-3-5.707359-1 3.331027-3-4.176229-1 3.447466-3-2.938613-1 3.540371-3-2.130905-1 3.633276-3-1.444882-1 3.716278-3-9.312601-2 3.790462-3-5.362017-2 3.834864-3-3.333589-2 3.885566-3-1.268766-2 3.918811-3-4.819886-4 3.927014-3 2.569872-3 3.966775-3 1.600255-2 3.992038-3 2.380919-2 4.032245-3 3.501933-2 4.112089-3 5.508145-2 4.201632-3 7.181650-2 4.329111-3 8.690176-2 4.394309-3 9.357528-2 4.531992-3 1.000768-1 4.663070-3 1.000904-1 4.826384-3 9.465242-2 4.982743-3 8.379557-2 5.157787-3 6.494850-2 5.349321-3 3.937750-2 5.449350-3 2.500247-2 5.538829-3 1.298512-2 5.587176-3 6.282347-3 5.603218-3 3.760841-3 5.641554-3-2.768760-3 5.743072-3-1.957522-2 5.914934-3-4.892690-2 6.555407-3-1.663947-1 1.037695-2-9.063809-1 1.161701-2-1.183242+0 1.265359-2-1.479416+0 1.341782-2-1.786076+0 1.393633-2-2.088273+0 1.431062-2-2.411131+0 1.459107-2-2.783917+0 1.477414-2-3.180925+0 1.489884-2-3.644327+0 1.509466-2-4.655815+0 1.517131-2-4.742661+0 1.524582-2-4.508276+0 1.545272-2-3.319913+0 1.556099-2-2.901863+0 1.574803-2-2.438850+0 1.595675-2-2.090060+0 1.624668-2-1.734865+0 1.660414-2-1.417247+0 1.702301-2-1.141448+0 1.749402-2-9.064116-1 1.789870-2-7.470906-1 1.847860-2-5.614821-1 1.903074-2-4.190593-1 1.950560-2-3.177556-1 1.995903-2-2.378709-1 2.025169-2-1.922922-1 2.054436-2-1.510695-1 2.104742-2-8.967026-2 2.162217-2-2.997247-2 2.190164-2-5.686714-3 2.223131-2 2.317996-2 2.265773-2 5.427196-2 2.317972-2 8.862144-2 2.377655-2 1.226234-1 2.438206-2 1.511702-1 2.494751-2 1.725739-1 2.567763-2 1.961970-1 2.681978-2 2.226268-1 2.829305-2 2.455314-1 3.042057-2 2.638147-1 3.288551-2 2.673430-1 3.783345-2 2.509269-1 5.566873-2 1.407362-1 6.361143-2 9.987450-2 6.974279-2 7.320455-2 7.598699-2 4.995638-2 8.210294-2 3.013213-2 8.609875-2 1.870957-2 9.015711-2 8.219622-3 9.241372-2 2.815780-3 9.363232-2 1.044196-5 9.457230-2-2.141810-3 9.800846-2-9.588039-3 1.004353-1-1.458568-2 1.059967-1-2.495684-2 1.135671-1-3.743760-2 1.223806-1-4.978626-2 1.337185-1-6.293536-2 1.516422-1-7.913191-2 1.745555-1-9.416268-2 2.104384-1-1.099276-1 2.603326-1-1.231624-1 3.541279-1-1.358337-1 5.401321-1-1.452786-1 1.070165+0-1.509990-1 3.231848+0-1.527147-1 9.760024+0-1.529028-1 1.000000+1-1.528582-1 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.228251-1 1.097748-6 3.595688-1 1.131446-6 4.222710-1 1.160932-6 4.854778-1 1.209308-6 6.092707-1 1.263630-6 7.860194-1 1.289556-6 8.866111-1 1.309001-6 9.710660-1 1.338168-6 1.113405+0 1.384162-6 1.379993+0 1.424549-6 1.670990+0 1.463105-6 2.010240+0 1.498593-6 2.389038+0 1.532046-6 2.820169+0 1.550702-6 3.096538+0 1.568775-6 3.393368+0 1.586283-6 3.711901+0 1.603244-6 4.053311+0 1.635593-6 4.809653+0 1.665951-6 5.672629+0 1.694442-6 6.653522+0 1.708023-6 7.193475+0 1.721179-6 7.770068+0 1.746272-6 9.029118+0 1.770195-6 1.046204+1 1.792623-6 1.206873+1 1.813648-6 1.386504+1 1.833360-6 1.586688+1 1.851840-6 1.809070+1 1.869165-6 2.055353+1 1.885407-6 2.327281+1 1.900634-6 2.626638+1 1.914909-6 2.955232+1 1.928292-6 3.314885+1 1.940838-6 3.707420+1 1.952601-6 4.134649+1 1.963628-6 4.598357+1 1.973966-6 5.100290+1 1.983658-6 5.642137+1 1.992744-6 6.225525+1 2.001262-6 6.852000+1 2.009248-6 7.523022+1 2.016735-6 8.239959+1 2.023754-6 9.004089+1 2.030334-6 9.816609+1 2.036503-6 1.067864+2 2.042286-6 1.159124+2 2.048000-6 1.261060+2 2.052791-6 1.357185+2 2.057556-6 1.464154+2 2.062024-6 1.576528+2 2.066212-6 1.694410+2 2.070139-6 1.817929+2 2.077501-6 2.092096+2 2.083943-6 2.392653+2 2.089580-6 2.720628+2 2.094512-6 3.075382+2 2.098827-6 3.453851+2 2.102603-6 3.850562+2 2.105908-6 4.258319+2 2.108799-6 4.669193+2 2.111328-6 5.075474+2 2.113542-6 5.470370+2 2.117416-6 6.258610+2 2.130838-6 1.008050+3 2.134277-6 1.133788+3 2.138207-6 1.289352+3 2.139517-6 1.343570+3 2.144758-6 1.568593+3 2.145413-6 1.597303+3 2.149998-6 1.798494+3 2.151799-6 1.876481+3 2.155893-6 2.047953+3 2.158759-6 2.161003+3 2.161789-6 2.272459+3 2.164736-6 2.372023+3 2.168339-6 2.481621+3 2.171614-6 2.570899+3 2.187008-6 2.972401+3 2.190329-6 3.092048+3 2.193238-6 3.217928+3 2.196609-6 3.392943+3 2.199945-6 3.599749+3 2.203343-6 3.845347+3 2.214515-6 4.845881+3 2.218632-6 5.242380+3 2.222032-6 5.554574+3 2.223655-6 5.693985+3 2.227225-6 5.969271+3 2.229956-6 6.142976+3 2.232928-6 6.287907+3 2.234390-6 6.340418+3 2.239925-6 6.416874+3 2.241926-6 6.395027+3 2.244725-6 6.320409+3 2.247190-6 6.213537+3 2.249254-6 6.096077+3 2.251164-6 5.966306+3 2.253218-6 5.805913+3 2.255860-6 5.571762+3 2.258209-6 5.341271+3 2.260473-6 5.102974+3 2.263912-6 4.719280+3 2.266595-6 4.408612+3 2.269615-6 4.055042+3 2.271963-6 3.781566+3 2.277330-6 3.178255+3 2.279176-6 2.981777+3 2.282698-6 2.626891+3 2.286724-6 2.258040+3 2.291382-6 1.884009+3 2.302893-6 1.197121+3 2.306155-6 1.056903+3 2.309405-6 9.370830+2 2.312641-6 8.350664+2 2.315866-6 7.483811+2 2.319077-6 6.747466+2 2.322276-6 6.121151+2 2.325463-6 5.586888+2 2.328637-6 5.129200+2 2.331799-6 4.734980+2 2.338098-6 4.093972+2 2.344347-6 3.599204+2 2.350548-6 3.206535+2 2.356700-6 2.887069+2 2.362804-6 2.621762+2 2.368861-6 2.397772+2 2.374870-6 2.206157+2 2.380832-6 2.040469+2 2.386748-6 1.895903+2 2.392618-6 1.768781+2 2.398441-6 1.656225+2 2.409997-6 1.465427+2 2.421373-6 1.310915+2 2.432571-6 1.183582+2 2.443594-6 1.077153+2 2.454445-6 9.871341+1 2.465126-6 9.102071+1 2.475640-6 8.438711+1 2.485990-6 7.862111+1 2.496179-6 7.357280+1 2.506208-6 6.912173+1 2.525952-6 6.158541+1 2.545080-6 5.551591+1 2.563610-6 5.054380+1 2.581561-6 4.641436+1 2.598951-6 4.294136+1 2.615798-6 3.998857+1 2.632118-6 3.745582+1 2.647928-6 3.526454+1 2.678560-6 3.160510+1 2.707278-6 2.872987+1 2.734200-6 2.642921+1 2.759440-6 2.455623+1 2.783103-6 2.300960+1 2.805287-6 2.171793+1 2.846881-6 1.961663+1 2.883276-6 1.805234+1 2.915122-6 1.686709+1 2.970851-6 1.509561+1 3.012649-6 1.396914+1 3.075345-6 1.253507+1 3.176661-6 1.065417+1 3.292519-6 8.964853+0 3.385591-6 7.780398+0 3.455394-6 6.903083+0 3.507747-6 6.199673+0 3.544558-6 5.641223+0 3.559589-6 5.386058+0 3.584249-6 4.914200+0 3.603129-6 4.488089+0 3.618548-6 4.081277+0 3.630113-6 3.736333+0 3.638786-6 3.458430+0 3.645291-6 3.244583+0 3.659317-6 2.805996+0 3.664805-6 2.663491+0 3.667275-6 2.609116+0 3.675424-6 2.490902+0 3.678141-6 2.478258+0 3.680530-6 2.480813+0 3.682920-6 2.497641+0 3.685328-6 2.530504+0 3.686456-6 2.551817+0 3.694354-6 2.821329+0 3.699376-6 3.118079+0 3.701573-6 3.282477+0 3.705234-6 3.606541+0 3.709810-6 4.104271+0 3.714452-6 4.719250+0 3.725742-6 6.685285+0 3.731025-6 7.823598+0 3.735835-6 8.965731+0 3.740515-6 1.015792+1 3.744495-6 1.122046+1 3.748796-6 1.240290+1 3.753168-6 1.362251+1 3.757233-6 1.475387+1 3.759162-6 1.528483+1 3.762864-6 1.628390+1 3.766567-6 1.724591+1 3.774137-6 1.904515+1 3.775199-6 1.927533+1 3.782635-6 2.069992+1 3.786872-6 2.134955+1 3.790259-6 2.177692+1 3.794894-6 2.222433+1 3.799279-6 2.249971+1 3.802861-6 2.261890+1 3.805547-6 2.264753+1 3.809577-6 2.259678+1 3.813606-6 2.244009+1 3.818946-6 2.208463+1 3.820726-6 2.193239+1 3.826152-6 2.137813+1 3.827960-6 2.116673+1 3.837025-6 1.995530+1 3.847805-6 1.832013+1 3.855155-6 1.717791+1 3.875105-6 1.434178+1 3.883583-6 1.333852+1 3.891796-6 1.249744+1 3.899752-6 1.180020+1 3.907460-6 1.122451+1 3.922393-6 1.034015+1 3.936393-6 9.718773+0 3.949518-6 9.260898+0 3.974127-6 8.605135+0 3.995660-6 8.162803+0 4.033343-6 7.551739+0 4.096000-6 6.753832+0 4.146392-6 6.165241+0 4.166803-6 5.905878+0 4.177009-6 5.764674+0 4.187215-6 5.613876+0 4.197421-6 5.453416+0 4.221659-6 5.051480+0 4.228472-6 4.943113+0 4.242441-6 4.752542+0 4.249287-6 4.684929+0 4.252832-6 4.659107+0 4.259695-6 4.630430+0 4.267639-6 4.637953+0 4.272705-6 4.668483+0 4.280511-6 4.757999+0 4.283874-6 4.812923+0 4.289759-6 4.932698+0 4.297484-6 5.133673+0 4.304932-6 5.369463+0 4.322142-6 6.021954+0 4.335152-6 6.542251+0 4.342958-6 6.832331+0 4.345560-6 6.922127+0 4.353366-6 7.164492+0 4.356952-6 7.260252+0 4.363229-6 7.401245+0 4.367937-6 7.483475+0 4.374998-6 7.567835+0 4.382059-6 7.605869+0 4.387916-6 7.604005+0 4.394997-6 7.564902+0 4.405405-6 7.445255+0 4.415813-6 7.269456+0 4.429481-6 6.986671+0 4.478100-6 5.947394+0 4.488911-6 5.756517+0 4.499983-6 5.583813+0 4.511009-6 5.438039+0 4.522058-6 5.322386+0 4.533107-6 5.241605+0 4.544156-6 5.199243+0 4.551532-6 5.193118+0 4.562596-6 5.216068+0 4.573660-6 5.272904+0 4.588351-6 5.384850+0 4.610449-6 5.570249+0 4.621498-6 5.642217+0 4.627365-6 5.669817+0 4.636165-6 5.694968+0 4.644966-6 5.699718+0 4.656371-6 5.677103+0 4.665693-6 5.638446+0 4.688461-6 5.501829+0 4.711261-6 5.368215+0 4.724800-6 5.312228+0 4.736205-6 5.281138+0 4.759015-6 5.252237+0 4.804635-6 5.219286+0 5.012475-6 4.897704+0 5.143938-6 4.671904+0 5.463761-6 4.274601+0 6.144000-6 3.558875+0 6.606934-6 3.159431+0 6.869562-6 2.947531+0 7.142124-6 2.733254+0 7.421965-6 2.520506+0 7.680000-6 2.331078+0 7.889010-6 2.180449+0 8.150000-6 1.998822+0 8.396311-6 1.833753+0 8.639727-6 1.677458+0 8.863496-6 1.540078+0 9.116700-6 1.391904+0 9.304933-6 1.286581+0 9.449968-6 1.206158+0 9.600000-6 1.122111+0 9.730000-6 1.049687+0 9.887500-6 9.633751-1 1.002500-5 8.900481-1 1.016625-5 8.164183-1 1.027000-5 7.638125-1 1.039000-5 7.042351-1 1.051065-5 6.459218-1 1.057500-5 6.156056-1 1.065000-5 5.808440-1 1.072500-5 5.466088-1 1.082541-5 5.017253-1 1.092276-5 4.593923-1 1.102819-5 4.148928-1 1.115594-5 3.632489-1 1.131965-5 3.013101-1 1.151683-5 2.324459-1 1.167137-5 1.833293-1 1.175335-5 1.593157-1 1.184729-5 1.337210-1 1.202047-5 9.162184-2 1.205715-5 8.357766-2 1.219093-5 5.720687-2 1.235874-5 3.085799-2 1.252392-5 1.294348-2 1.268652-5 3.945340-3 1.284658-5 3.988251-3 1.292536-5 7.531548-3 1.300353-5 1.355987-2 1.308108-5 2.199902-2 1.315803-5 3.222435-2 1.327225-5 4.627865-2 1.333814-5 4.992443-2 1.334751-5 5.003919-2 1.347787-5 4.204510-2 1.355172-5 3.301570-2 1.362499-5 2.403855-2 1.366875-5 1.923481-2 1.369769-5 1.636908-2 1.376982-5 1.041309-2 1.384138-5 6.248155-3 1.398340-5 3.276063-3 1.412320-5 7.700144-3 1.426081-5 2.000800-2 1.439627-5 4.066042-2 1.452962-5 7.010367-2 1.466088-5 1.087780-1 1.480000-5 1.612144-1 1.491728-5 2.154693-1 1.504249-5 2.845470-1 1.516574-5 3.646264-1 1.532500-5 4.872227-1 1.540649-5 5.591187-1 1.564161-5 8.036912-1 1.586938-5 1.100680+0 1.609004-5 1.456127+0 1.630380-5 1.874524+0 1.651088-5 2.359275+0 1.671149-5 2.913542+0 1.690583-5 3.542325+0 1.709410-5 4.251881+0 1.727649-5 5.049099+0 1.762433-5 6.931878+0 1.810639-5 1.056442+1 1.868171-5 1.717147+1 1.906771-5 2.374624+1 1.941864-5 3.193612+1 1.967263-5 3.969953+1 1.983746-5 4.582225+1 1.995262-5 5.071661+1 2.012138-5 5.897516+1 2.029694-5 6.920831+1 2.046153-5 8.068891+1 2.061584-5 9.352030+1 2.076050-5 1.078054+2 2.089612-5 1.236484+2 2.102326-5 1.411547+2 2.114245-5 1.604308+2 2.125420-5 1.815845+2 2.135896-5 2.047245+2 2.145718-5 2.299594+2 2.154925-5 2.573973+2 2.163558-5 2.871438+2 2.171650-5 3.193018+2 2.179237-5 3.539720+2 2.186956-5 3.946763+2 2.193018-5 4.312497+2 2.199269-5 4.740579+2 2.205130-5 5.197794+2 2.210624-5 5.685139+2 2.215775-5 6.203622+2 2.220604-5 6.754289+2 2.225131-5 7.338277+2 2.229376-5 7.956870+2 2.233355-5 8.611551+2 2.237085-5 9.304017+2 2.240582-5 1.003614+3 2.247139-5 1.168515+3 2.252877-5 1.352704+3 2.257897-5 1.556782+3 2.262290-5 1.779885+3 2.266134-5 2.019498+3 2.269497-5 2.271703+3 2.272440-5 2.531705+3 2.275015-5 2.794422+3 2.277268-5 3.055003+3 2.281211-5 3.590173+3 2.286386-5 4.472351+3 2.297345-5 7.187394+3 2.301807-5 8.677155+3 2.304328-5 9.622953+3 2.307150-5 1.076948+4 2.310891-5 1.242486+4 2.311811-5 1.285357+4 2.317474-5 1.565043+4 2.318181-5 1.601545+4 2.323136-5 1.862259+4 2.325082-5 1.965466+4 2.328798-5 2.159536+4 2.330619-5 2.251670+4 2.332271-5 2.332685+4 2.334982-5 2.458701+4 2.337057-5 2.547998+4 2.338752-5 2.615425+4 2.340976-5 2.695368+4 2.343836-5 2.782050+4 2.346139-5 2.837246+4 2.349457-5 2.891722+4 2.351967-5 2.912151+4 2.354579-5 2.913757+4 2.357360-5 2.893298+4 2.359491-5 2.862373+4 2.362311-5 2.801845+4 2.365077-5 2.722058+4 2.367657-5 2.631016+4 2.369957-5 2.537773+4 2.372679-5 2.414731+4 2.374222-5 2.339774+4 2.376847-5 2.205243+4 2.378857-5 2.097543+4 2.380498-5 2.007399+4 2.382652-5 1.887133+4 2.385076-5 1.750633+4 2.386130-5 1.691285+4 2.388607-5 1.552820+4 2.391084-5 1.417078+4 2.394269-5 1.248826+4 2.396746-5 1.124355+4 2.402409-5 8.661986+3 2.404384-5 7.859096+3 2.405920-5 7.272106+3 2.410804-5 5.631402+3 2.415959-5 4.276480+3 2.418833-5 3.687614+3 2.420473-5 3.403489+3 2.422272-5 3.134310+3 2.423979-5 2.918867+3 2.424864-5 2.822251+3 2.426192-5 2.696204+3 2.427583-5 2.588001+3 2.429336-5 2.485276+3 2.430642-5 2.432561+3 2.431820-5 2.401878+3 2.433134-5 2.386020+3 2.434023-5 2.385987+3 2.435565-5 2.405751+3 2.436891-5 2.442147+3 2.438071-5 2.489105+3 2.439241-5 2.548615+3 2.440196-5 2.606451+3 2.441629-5 2.708113+3 2.443609-5 2.876315+3 2.445911-5 3.109141+3 2.450970-5 3.738749+3 2.454834-5 4.302025+3 2.457913-5 4.782726+3 2.460444-5 5.188370+3 2.463108-5 5.616286+3 2.465814-5 6.042920+3 2.467452-5 6.293084+3 2.471143-5 6.823100+3 2.473866-5 7.174132+3 2.475321-5 7.344872+3 2.477979-5 7.622151+3 2.480110-5 7.809325+3 2.485783-5 8.139384+3 2.487667-5 8.192133+3 2.491262-5 8.213077+3 2.494169-5 8.155148+3 2.496710-5 8.052358+3 2.499742-5 7.870671+3 2.501561-5 7.733423+3 2.504624-5 7.459861+3 2.507579-5 7.152722+3 2.508563-5 7.042328+3 2.511851-5 6.650282+3 2.514518-5 6.311636+3 2.518307-5 5.811289+3 2.520473-5 5.520749+3 2.526427-5 4.729467+3 2.529101-5 4.387086+3 2.534204-5 3.771218+3 2.539543-5 3.193917+3 2.549957-5 2.294370+3 2.552809-5 2.100355+3 2.557572-5 1.822497+3 2.560439-5 1.680950+3 2.563306-5 1.556894+3 2.566090-5 1.451675+3 2.568177-5 1.381683+3 2.571308-5 1.289530+3 2.574440-5 1.210937+3 2.577517-5 1.144992+3 2.580595-5 1.088475+3 2.583107-5 1.048202+3 2.585619-5 1.012332+3 2.592944-5 9.264252+2 2.596889-5 8.880587+2 2.617952-5 7.189877+2 2.634369-5 6.064314+2 2.639719-5 5.746831+2 2.645175-5 5.454846+2 2.649854-5 5.231357+2 2.654332-5 5.040830+2 2.658834-5 4.871832+2 2.669511-5 4.555928+2 2.674762-5 4.440924+2 2.681192-5 4.332725+2 2.686970-5 4.263231+2 2.694726-5 4.205091+2 2.701484-5 4.179619+2 2.723975-5 4.144370+2 2.728230-5 4.128473+2 2.737163-5 4.074065+2 2.747586-5 3.976161+2 2.761479-5 3.811830+2 2.777025-5 3.629118+2 2.792635-5 3.476456+2 2.808746-5 3.348989+2 2.834725-5 3.176509+2 2.897397-5 2.830780+2 2.916938-5 2.737885+2 2.970445-5 2.521609+2 3.003530-5 2.408411+2 3.037128-5 2.305718+2 3.072000-5 2.210355+2 3.118692-5 2.097990+2 3.162278-5 2.005329+2 3.197239-5 1.938864+2 3.257961-5 1.836665+2 3.314888-5 1.752553+2 3.368257-5 1.682761+2 3.437642-5 1.603130+2 3.602122-5 1.446811+2 3.716299-5 1.358665+2 3.903654-5 1.238689+2 4.168791-5 1.102169+2 4.271400-5 1.052271+2 4.299599-5 1.042648+2 4.340716-5 1.036351+2 4.371554-5 1.033116+2 4.401692-5 1.025715+2 4.502748-5 9.846819+1 4.852187-5 8.908753+1 5.128614-5 8.306124+1 5.368332-5 7.859206+1 5.800000-5 7.197070+1 6.456542-5 6.418539+1 7.680000-5 5.379341+1 8.511380-5 4.804693+1 9.150000-5 4.397578+1 1.000000-4 3.853111+1 1.071477-4 3.386800+1 1.127767-4 2.996857+1 1.178447-4 2.627072+1 1.203837-4 2.432715+1 1.250710-4 2.056282+1 1.277191-4 1.831530+1 1.307074-4 1.564688+1 1.319062-4 1.452499+1 1.336342-4 1.282242+1 1.347695-4 1.162839+1 1.359790-4 1.024726+1 1.367179-4 9.359585+0 1.377353-4 8.211445+0 1.380745-4 7.889706+0 1.384099-4 7.618651+0 1.386635-4 7.449168+0 1.390528-4 7.251840+0 1.394361-4 7.130337+0 1.398889-4 7.067544+0 1.402315-4 7.063969+0 1.411921-4 7.135297+0 1.417403-4 7.150951+0 1.421178-4 7.126023+0 1.425617-4 7.050098+0 1.429370-4 6.945341+0 1.433058-4 6.809010+0 1.437000-4 6.632637+0 1.442315-4 6.358978+0 1.450188-4 5.918121+0 1.467000-4 5.031923+0 1.472075-4 4.809876+0 1.479108-4 4.552333+0 1.483727-4 4.420425+0 1.487500-4 4.337632+0 1.494000-4 4.253978+0 1.502000-4 4.266634+0 1.507000-4 4.346860+0 1.511101-4 4.457590+0 1.515171-4 4.609493+0 1.520000-4 4.845944+0 1.525130-4 5.165659+0 1.531845-4 5.692719+0 1.536846-4 6.165303+0 1.544351-4 7.002024+0 1.562494-4 9.636361+0 1.571243-4 1.120005+1 1.577495-4 1.242640+1 1.587494-4 1.456471+1 1.601427-4 1.788074+1 1.622500-4 2.353268+1 1.643000-4 2.965019+1 1.647500-4 3.106709+1 1.668161-4 3.786474+1 1.690000-4 4.546592+1 1.693363-4 4.666604+1 1.714150-4 5.420793+1 1.732093-4 6.081689+1 1.737500-4 6.281514+1 1.750000-4 6.743379+1 1.760000-4 7.111720+1 1.770000-4 7.478051+1 1.780000-4 7.841651+1 1.800000-4 8.558812+1 1.823440-4 9.379955+1 1.850000-4 1.028412+2 1.883649-4 1.139672+2 1.932384-4 1.297525+2 1.980000-4 1.451270+2 2.040000-4 1.644639+2 2.089296-4 1.801643+2 2.139230-4 1.954989+2 2.199600-4 2.129613+2 2.240000-4 2.238153+2 2.310995-4 2.410851+2 2.371374-4 2.540912+2 2.405000-4 2.604979+2 2.446265-4 2.675894+2 2.480000-4 2.726536+2 2.508705-4 2.760733+2 2.533672-4 2.781849+2 2.573270-4 2.796825+2 2.580000-4 2.802660+2 2.588223-4 2.817811+2 2.596275-4 2.846868+2 2.606423-4 2.913474+2 2.614810-4 3.000503+2 2.623580-4 3.124316+2 2.634689-4 3.319510+2 2.646815-4 3.547534+2 2.654499-4 3.676585+2 2.659873-4 3.751383+2 2.667327-4 3.827904+2 2.674916-4 3.870797+2 2.680720-4 3.881301+2 2.685189-4 3.878415+2 2.694417-4 3.851959+2 2.704932-4 3.810505+2 2.712678-4 3.788202+2 2.721429-4 3.782782+2 2.725633-4 3.789340+2 2.731472-4 3.808576+2 2.737390-4 3.839147+2 2.748447-4 3.918455+2 2.768604-4 4.078550+2 2.776730-4 4.127826+2 2.787799-4 4.170977+2 2.795316-4 4.185169+2 2.803005-4 4.189891+2 2.836035-4 4.176445+2 2.854642-4 4.185513+2 3.017864-4 4.463880+2 3.096187-4 4.589224+2 3.206418-4 4.741435+2 3.295627-4 4.838115+2 3.382770-4 4.902892+2 3.419002-4 4.938157+2 3.443079-4 4.990114+2 3.462605-4 5.054843+2 3.509687-4 5.239055+2 3.538699-4 5.326140+2 3.600000-4 5.443367+2 3.715352-4 5.605910+2 3.840000-4 5.749784+2 3.957771-4 5.865761+2 4.100000-4 5.985127+2 4.277470-4 6.113651+2 4.610521-4 6.299454+2 4.995385-4 6.453791+2 5.387014-4 6.558957+2 6.012484-4 6.645747+2 6.535371-4 6.670904+2 6.863631-4 6.664168+2 7.635747-4 6.592054+2 8.328869-4 6.511271+2 9.231661-4 6.381897+2 1.025024-3 6.186886+2 1.082052-3 6.073081+2 1.137224-3 5.958614+2 1.197747-3 5.821270+2 1.257601-3 5.672662+2 1.323948-3 5.501682+2 1.388486-3 5.325139+2 1.455443-3 5.123920+2 1.517131-3 4.923118+2 1.571267-3 4.732346+2 1.621810-3 4.535433+2 1.657701-3 4.381428+2 1.691063-3 4.222719+2 1.721628-3 4.058855+2 1.755173-3 3.855347+2 1.780461-3 3.680407+2 1.800206-3 3.526284+2 1.818076-3 3.368917+2 1.836165-3 3.185888+2 1.850000-3 3.022727+2 1.861234-3 2.867913+2 1.871315-3 2.704461+2 1.880164-3 2.537404+2 1.887376-3 2.386149+2 1.901642-3 2.083617+2 1.906090-3 2.005561+2 1.909065-3 1.962717+2 1.910747-3 1.942612+2 1.912996-3 1.920993+2 1.916260-3 1.901513+2 1.918688-3 1.896937+2 1.920589-3 1.899575+2 1.923171-3 1.912087+2 1.925721-3 1.934502+2 1.928305-3 1.967087+2 1.930258-3 1.997906+2 1.933328-3 2.056086+2 1.938752-3 2.182185+2 1.948768-3 2.451525+2 1.950946-3 2.509482+2 1.954429-3 2.598005+2 1.957394-3 2.667948+2 1.961809-3 2.761212+2 1.965230-3 2.824262+2 1.967903-3 2.868303+2 1.971536-3 2.921962+2 1.980916-3 3.040984+2 1.990656-3 3.165683+2 1.999322-3 3.298618+2 2.009676-3 3.486957+2 2.025368-3 3.798351+2 2.030110-3 3.890580+2 2.041738-3 4.102859+2 2.047675-3 4.201784+2 2.056188-3 4.331341+2 2.063855-3 4.435479+2 2.074333-3 4.559408+2 2.086158-3 4.676426+2 2.098199-3 4.774792+2 2.114722-3 4.882097+2 2.130787-3 4.959493+2 2.144701-3 5.006599+2 2.167570-3 5.063308+2 2.176540-3 5.093135+2 2.184973-3 5.133862+2 2.193189-3 5.189067+2 2.206777-3 5.314396+2 2.232227-3 5.603773+2 2.242859-3 5.715758+2 2.253398-3 5.812556+2 2.265803-3 5.908462+2 2.279422-3 5.995669+2 2.297126-3 6.089913+2 2.319983-3 6.192040+2 2.344229-3 6.284034+2 2.396006-3 6.439024+2 2.454306-3 6.562891+2 2.518561-3 6.658565+2 2.623652-3 6.762603+2 2.725152-3 6.812685+2 2.882216-3 6.822427+2 3.059286-3 6.785342+2 3.242954-3 6.695129+2 3.462382-3 6.552775+2 3.721268-3 6.363848+2 4.052820-3 6.096621+2 4.478754-3 5.746800+2 4.885468-3 5.425831+2 5.308845-3 5.112420+2 6.012602-3 4.637164+2 6.541019-3 4.320864+2 7.312443-3 3.906349+2 7.926154-3 3.612115+2 8.508503-3 3.357482+2 9.224914-3 3.072753+2 9.898258-3 2.829351+2 1.071036-2 2.564233+2 1.154989-2 2.318436+2 1.199409-2 2.197993+2 1.245966-2 2.077985+2 1.320073-2 1.897802+2 1.380865-2 1.756991+2 1.429606-2 1.645521+2 1.466381-2 1.559743+2 1.494084-2 1.491754+2 1.517453-2 1.429685+2 1.528789-2 1.396852+2 1.537163-2 1.370760+2 1.546032-2 1.340609+2 1.553584-2 1.311993+2 1.560105-2 1.284306+2 1.568683-2 1.242782+2 1.579978-2 1.180760+2 1.590025-2 1.127958+2 1.595653-2 1.105618+2 1.599881-2 1.094579+2 1.604871-2 1.089184+2 1.608626-2 1.090845+2 1.612229-2 1.096860+2 1.618339-2 1.115451+2 1.627702-2 1.156590+2 1.638562-2 1.206857+2 1.645358-2 1.233532+2 1.649742-2 1.248034+2 1.655656-2 1.264340+2 1.660886-2 1.276021+2 1.667494-2 1.287791+2 1.681389-2 1.304825+2 1.699113-2 1.317309+2 1.722281-2 1.324899+2 1.746232-2 1.326051+2 1.778577-2 1.320721+2 1.827533-2 1.303577+2 1.899984-2 1.268046+2 1.977272-2 1.224444+2 2.079043-2 1.164509+2 2.186102-2 1.101761+2 2.349992-2 1.010777+2 2.581517-2 8.966399+1 2.836798-2 7.885793+1 3.134360-2 6.841009+1 3.462884-2 5.903125+1 3.826736-2 5.060139+1 4.217676-2 4.321765+1 5.197494-2 3.048575+1 5.979909-2 2.393049+1 8.753616-2 1.219704+1 1.094982-1 8.161680+0 1.325392-1 5.750780+0 1.613467-1 3.981617+0 2.074014-1 2.470458+0 2.797169-1 1.388188+0 4.005135-1 6.897449-1 5.905409-1 3.212247-1 1.000000+0 1.129481-1 2.688134+0 1.569728-2 8.118035+0 1.722266-3 2.451607+1 1.888560-4 7.403736+1 2.070781-5 2.235892+2 2.270568-6 6.752287+2 2.489628-7 2.511886+3 1.799021-8 7.943282+3 1.799021-9 2.511886+4 1.79902-10 7.943282+4 1.79902-11 1.000000+5 1.13511-11 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.996000-6 1.258900-6 3.163500-6 1.584900-6 5.013800-6 1.995300-6 7.946300-6 2.511900-6 1.259400-5 3.162300-6 1.996000-5 3.981100-6 3.163400-5 5.011900-6 5.013700-5 6.309600-6 7.946100-5 7.943300-6 1.259400-4 1.000000-5 1.995900-4 1.258900-5 3.163300-4 1.584900-5 5.013400-4 1.995300-5 7.945000-4 2.511900-5 1.258500-3 3.162300-5 1.993300-3 3.981100-5 3.157700-3 5.011900-5 5.002700-3 6.309600-5 7.926200-3 7.943300-5 1.253400-2 1.000000-4 1.981100-2 1.258900-4 3.131000-2 1.584900-4 4.932600-2 1.995300-4 7.752200-2 2.511900-4 1.212100-1 3.162300-4 1.880100-1 3.981100-4 2.878600-1 5.011900-4 4.327100-1 6.309600-4 6.341100-1 7.943300-4 8.982800-1 1.000000-3 1.224400+0 1.258900-3 1.608200+0 1.584900-3 2.058300+0 1.995300-3 2.603400+0 2.511900-3 3.271100+0 3.162300-3 4.074500+0 3.981100-3 5.023600+0 5.011900-3 6.121100+0 6.309600-3 7.327600+0 7.943300-3 8.602000+0 1.000000-2 9.948200+0 1.258900-2 1.135200+1 1.584900-2 1.277700+1 1.995300-2 1.411300+1 2.511900-2 1.534800+1 3.162300-2 1.634600+1 3.981100-2 1.702300+1 5.011900-2 1.742000+1 6.309600-2 1.769400+1 7.943300-2 1.756100+1 1.000000-1 1.716700+1 1.258900-1 1.658900+1 1.584900-1 1.582500+1 1.995300-1 1.493300+1 2.511900-1 1.395600+1 3.162300-1 1.293300+1 3.981100-1 1.189700+1 5.011900-1 1.087200+1 6.309600-1 9.873500+0 7.943300-1 8.909700+0 1.000000+0 7.994700+0 1.258900+0 7.128100+0 1.584900+0 6.315100+0 1.995300+0 5.559400+0 2.511900+0 4.863300+0 3.162300+0 4.228300+0 3.981100+0 3.654600+0 5.011900+0 3.141000+0 6.309600+0 2.685800+0 7.943300+0 2.285500+0 1.000000+1 1.936300+0 1.258900+1 1.633800+0 1.584900+1 1.373600+0 1.995300+1 1.150900+0 2.511900+1 9.615200-1 3.162300+1 8.011100-1 3.981100+1 6.658300-1 5.011900+1 5.521700-1 6.309600+1 4.570000-1 7.943300+1 3.775400-1 1.000000+2 3.113800-1 1.258900+2 2.564300-1 1.584900+2 2.108800-1 1.995300+2 1.732000-1 2.511900+2 1.420900-1 3.162300+2 1.164400-1 3.981100+2 9.532500-2 5.011900+2 7.796500-2 6.309600+2 6.371100-2 7.943300+2 5.202100-2 1.000000+3 4.244300-2 1.258900+3 3.460300-2 1.584900+3 2.819200-2 1.995300+3 2.295400-2 2.511900+3 1.867800-2 3.162300+3 1.519000-2 3.981100+3 1.234600-2 5.011900+3 1.003000-2 6.309600+3 8.143900-3 7.943300+3 6.609400-3 1.000000+4 5.361600-3 1.258900+4 4.347400-3 1.584900+4 3.523700-3 1.995300+4 2.854800-3 2.511900+4 2.312000-3 3.162300+4 1.871800-3 3.981100+4 1.514800-3 5.011900+4 1.225500-3 6.309600+4 9.910800-4 7.943300+4 8.012600-4 1.000000+5 6.475900-4 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510162-4 3.162278-4 3.159560-4 3.981072-4 3.976785-4 5.011872-4 5.005126-4 6.309573-4 6.298969-4 7.943282-4 7.926745-4 1.000000-3 9.974263-4 1.258925-3 1.254928-3 1.584893-3 1.578673-3 1.995262-3 1.985530-3 2.511886-3 2.496596-3 3.162278-3 3.138243-3 3.981072-3 3.943328-3 5.011872-3 4.952708-3 6.309573-3 6.217070-3 7.943282-3 7.799455-3 1.000000-2 9.776820-3 1.258925-2 1.224271-2 1.584893-2 1.531203-2 1.995262-2 1.912351-2 2.511886-2 2.384875-2 3.162278-2 2.968596-2 3.981072-2 3.687295-2 5.011872-2 4.568940-2 6.309573-2 5.647444-2 7.943282-2 6.959596-2 1.000000-1 8.552189-2 1.258925-1 1.046645-1 1.584893-1 1.277234-1 1.995262-1 1.552966-1 2.511886-1 1.882120-1 3.162278-1 2.273508-1 3.981072-1 2.737273-1 5.011872-1 3.285180-1 6.309573-1 3.931611-1 7.943282-1 4.692731-1 1.000000+0 5.586352-1 1.258925+0 6.639977-1 1.584893+0 7.883957-1 1.995262+0 9.354848-1 2.511886+0 1.110022+0 3.162278+0 1.317756+0 3.981072+0 1.565731+0 5.011872+0 1.862499+0 6.309573+0 2.218661+0 7.943282+0 2.647130+0 1.000000+1 3.163743+0 1.258925+1 3.787766+0 1.584893+1 4.542903+0 1.995262+1 5.458103+0 2.511886+1 6.568838+0 3.162278+1 7.918802+0 3.981072+1 9.561261+0 5.011872+1 1.156203+1 6.309573+1 1.400165+1 7.943282+1 1.697916+1 1.000000+2 2.061666+1 1.258925+2 2.506392+1 1.584893+2 3.050557+1 1.995262+2 3.716878+1 2.511886+2 4.533393+1 3.162278+2 5.534651+1 3.981072+2 6.763090+1 5.011872+2 8.271415+1 6.309573+2 1.012438+2 7.943282+2 1.240196+2 1.000000+3 1.520284+2 1.258925+3 1.864917+2 1.584893+3 2.289166+2 1.995262+3 2.811801+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090815-9 2.511886-5 1.728578-9 3.162278-5 2.739425-9 3.981072-5 4.341622-9 5.011872-5 6.880998-9 6.309573-5 1.090545-8 7.943282-5 1.727442-8 1.000000-4 2.736904-8 1.258925-4 4.336689-8 1.584893-4 6.866450-8 1.995262-4 1.087065-7 2.511886-4 1.724262-7 3.162278-4 2.717659-7 3.981072-4 4.286761-7 5.011872-4 6.746136-7 6.309573-4 1.060440-6 7.943282-4 1.653741-6 1.000000-3 2.573663-6 1.258925-3 3.997102-6 1.584893-3 6.220314-6 1.995262-3 9.732775-6 2.511886-3 1.529076-5 3.162278-3 2.403473-5 3.981072-3 3.774361-5 5.011872-3 5.916457-5 6.309573-3 9.250380-5 7.943282-3 1.438272-4 1.000000-2 2.231797-4 1.258925-2 3.465461-4 1.584893-2 5.369060-4 1.995262-2 8.291134-4 2.511886-2 1.270112-3 3.162278-2 1.936816-3 3.981072-2 2.937768-3 5.011872-2 4.429324-3 6.309573-2 6.621298-3 7.943282-2 9.836864-3 1.000000-1 1.447811-2 1.258925-1 2.122806-2 1.584893-1 3.076590-2 1.995262-1 4.422962-2 2.511886-1 6.297669-2 3.162278-1 8.887694-2 3.981072-1 1.243799-1 5.011872-1 1.726692-1 6.309573-1 2.377962-1 7.943282-1 3.250552-1 1.000000+0 4.413648-1 1.258925+0 5.949278-1 1.584893+0 7.964975-1 1.995262+0 1.059777+0 2.511886+0 1.401864+0 3.162278+0 1.844521+0 3.981072+0 2.415340+0 5.011872+0 3.149373+0 6.309573+0 4.090913+0 7.943282+0 5.296152+0 1.000000+1 6.836257+0 1.258925+1 8.801488+0 1.584893+1 1.130603+1 1.995262+1 1.449452+1 2.511886+1 1.855003+1 3.162278+1 2.370397+1 3.981072+1 3.024946+1 5.011872+1 3.855669+1 6.309573+1 4.909408+1 7.943282+1 6.245367+1 1.000000+2 7.938334+1 1.258925+2 1.008286+2 1.584893+2 1.279837+2 1.995262+2 1.623575+2 2.511886+2 2.058547+2 3.162278+2 2.608813+2 3.981072+2 3.304763+2 5.011872+2 4.184731+2 6.309573+2 5.297136+2 7.943282+2 6.703086+2 1.000000+3 8.479716+2 1.258925+3 1.072434+3 1.584893+3 1.355977+3 1.995262+3 1.714082+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.100000-6 1.762245+6 5.308844-6 1.401042+6 5.500000-6 1.137980+6 5.700000-6 9.165320+5 5.920000-6 7.229500+5 6.100000-6 5.953500+5 6.270000-6 4.953800+5 6.456542-6 4.045886+5 6.606934-6 3.432479+5 6.770000-6 2.867540+5 6.930000-6 2.399160+5 7.100000-6 1.980172+5 7.270000-6 1.629436+5 7.420000-6 1.367824+5 7.550000-6 1.172290+5 7.700000-6 9.778360+4 7.852356-6 8.099782+4 8.000000-6 6.719320+4 8.150000-6 5.531040+4 8.270000-6 4.716300+4 8.380000-6 4.063240+4 8.511380-6 3.388053+4 8.650000-6 2.785020+4 8.770000-6 2.343020+4 8.920000-6 1.882184+4 9.280000-6 1.117234+4 9.380000-6 9.749440+3 9.460000-6 8.794980+3 9.520000-6 8.178260+3 9.570000-6 7.725320+3 9.620000-6 7.325020+3 9.670000-6 6.974780+3 9.730000-6 6.617200+3 9.790000-6 6.324260+3 9.850000-6 6.092200+3 9.910000-6 5.917460+3 9.960000-6 5.813160+3 1.000000-5 5.755440+3 1.005000-5 5.713940+3 1.010000-5 5.704880+3 1.015000-5 5.726620+3 1.021500-5 5.798400+3 1.027000-5 5.895300+3 1.033000-5 6.036540+3 1.039000-5 6.212580+3 1.047129-5 6.502686+3 1.055000-5 6.835900+3 1.065000-5 7.326540+3 1.077000-5 8.004180+3 1.122018-5 1.121360+4 1.142000-5 1.288144+4 1.161449-5 1.459937+4 1.180000-5 1.630062+4 1.200000-5 1.818098+4 1.222000-5 2.028180+4 1.244515-5 2.244545+4 1.264200-5 2.433404+4 1.288250-5 2.662205+4 1.310000-5 2.866200+4 1.333521-5 3.082635+4 1.357000-5 3.293560+4 1.380384-5 3.497929+4 1.412538-5 3.768767+4 1.445440-5 4.032880+4 1.480000-5 4.295800+4 1.515000-5 4.546700+4 1.550000-5 4.782160+4 1.590000-5 5.032720+4 1.640590-5 5.322379+4 1.698244-5 5.617672+4 1.757924-5 5.887300+4 1.830000-5 6.168620+4 1.905461-5 6.416859+4 1.995262-5 6.658801+4 2.089296-5 6.859507+4 2.190000-5 7.024500+4 2.317395-5 7.171193+4 2.454709-5 7.265241+4 2.600160-5 7.307877+4 2.720000-5 7.304517+4 2.720000-5 1.450421+7 2.754229-5 1.365391+7 2.820000-5 1.218323+7 2.847000-5 1.165477+7 2.847000-5 1.871215+7 2.930000-5 1.635582+7 2.950000-5 1.585510+7 2.960000-5 1.561175+7 3.080000-5 1.305407+7 3.162278-5 1.163737+7 3.273407-5 1.001220+7 3.388442-5 8.624361+6 3.630781-5 6.401777+6 3.801894-5 5.250138+6 3.845918-5 4.994751+6 3.900000-5 4.701011+6 4.216965-5 3.351021+6 4.365158-5 2.886488+6 4.518559-5 2.491865+6 4.639000-5 2.228297+6 4.639000-5 2.357178+6 4.650000-5 2.335738+6 4.731513-5 2.188147+6 4.850000-5 1.997462+6 4.897788-5 1.927160+6 4.900000-5 1.923995+6 4.970000-5 1.829950+6 5.011872-5 1.776749+6 5.080000-5 1.696041+6 5.128614-5 1.641573+6 5.230000-5 1.539262+6 5.300000-5 1.473997+6 5.308844-5 1.466185+6 5.350000-5 1.430675+6 5.400000-5 1.390678+6 5.559043-5 1.274275+6 5.580000-5 1.260879+6 5.754399-5 1.157394+6 5.800000-5 1.133696+6 5.821032-5 1.123152+6 5.956621-5 1.059193+6 6.025596-5 1.030461+6 6.165950-5 9.767629+5 6.237348-5 9.526965+5 6.300000-5 9.330169+5 6.382635-5 9.078955+5 6.456542-5 8.876241+5 6.531306-5 8.685980+5 6.580000-5 8.564317+5 6.683439-5 8.331037+5 6.800000-5 8.091637+5 6.839116-5 8.019413+5 6.900000-5 7.906742+5 7.000000-5 7.734379+5 7.079458-5 7.612102+5 7.161434-5 7.494681+5 7.244360-5 7.376065+5 7.300000-5 7.304565+5 7.500000-5 7.069515+5 7.737400-5 6.832030+5 7.762471-5 6.809130+5 7.852356-5 6.735211+5 8.000000-5 6.611870+5 8.035261-5 6.584441+5 8.222426-5 6.454474+5 8.230000-5 6.449057+5 8.317638-5 6.389770+5 8.511380-5 6.272637+5 8.650000-5 6.195819+5 8.810489-5 6.111122+5 9.015711-5 6.011545+5 9.120108-5 5.966064+5 9.150000-5 5.952403+5 9.549926-5 5.784393+5 9.660509-5 5.744658+5 9.885531-5 5.661146+5 1.000000-4 5.619757+5 1.035142-4 5.501575+5 1.040000-4 5.486254+5 1.060000-4 5.421131+5 1.122018-4 5.236970+5 1.174898-4 5.086207+5 1.220000-4 4.967316+5 1.273503-4 4.829529+5 1.288250-4 4.791710+5 1.318257-4 4.716958+5 1.380384-4 4.565175+5 1.400000-4 4.518968+5 1.428894-4 4.449804+5 1.430100-4 4.446863+5 1.430100-4 6.935555+5 1.437000-4 6.927308+5 1.442000-4 6.931374+5 1.448000-4 6.949750+5 1.449300-4 6.957088+5 1.449300-4 8.643596+5 1.453000-4 8.666072+5 1.457000-4 8.701988+5 1.458700-4 8.719946+5 1.462177-4 8.765987+5 1.467000-4 8.849630+5 1.471500-4 8.951428+5 1.473000-4 8.990770+5 1.477000-4 9.106017+5 1.479108-4 9.175790+5 1.483000-4 9.317020+5 1.485000-4 9.398071+5 1.488000-4 9.529379+5 1.490000-4 9.625071+5 1.494000-4 9.831721+5 1.496236-4 9.957475+5 1.500000-4 1.018562+6 1.502000-4 1.031652+6 1.507000-4 1.066822+6 1.510000-4 1.089576+6 1.513561-4 1.118341+6 1.520000-4 1.174995+6 1.530000-4 1.274459+6 1.531087-4 1.286170+6 1.540100-4 1.387145+6 1.550000-4 1.507330+6 1.560000-4 1.636205+6 1.566751-4 1.725261+6 1.570000-4 1.770328+6 1.580000-4 1.907839+6 1.590000-4 2.047105+6 1.600000-4 2.186951+6 1.610000-4 2.326513+6 1.621810-4 2.489653+6 1.623000-4 2.506269+6 1.631000-4 2.615038+6 1.635000-4 2.669674+6 1.643000-4 2.777118+6 1.647000-4 2.830723+6 1.655000-4 2.935739+6 1.659587-4 2.995551+6 1.660000-4 3.000998+6 1.670000-4 3.128598+6 1.675000-4 3.191878+6 1.678804-4 3.238020+6 1.685000-4 3.314592+6 1.690000-4 3.375326+6 1.698244-4 3.471775+6 1.705000-4 3.549786+6 1.713000-4 3.638053+6 1.723300-4 3.749635+6 1.730000-4 3.818632+6 1.737801-4 3.896721+6 1.740000-4 3.918993+6 1.745000-4 3.966196+6 1.760000-4 4.104023+6 1.780000-4 4.269028+6 1.800000-4 4.413519+6 1.805000-4 4.447923+6 1.819701-4 4.541541+6 1.820000-4 4.543460+6 1.822500-4 4.558187+6 1.850000-4 4.709498+6 1.880000-4 4.846986+6 1.883649-4 4.862583+6 1.915000-4 4.981366+6 1.927525-4 5.025614+6 1.950000-4 5.095341+6 1.980000-4 5.181752+6 2.000000-4 5.231317+6 2.018366-4 5.271932+6 2.040000-4 5.319698+6 2.060000-4 5.356175+6 2.089296-4 5.401842+6 2.113489-4 5.431042+6 2.137962-4 5.454243+6 2.162719-4 5.469086+6 2.170000-4 5.473423+6 2.187762-4 5.479782+6 2.190000-4 5.480577+6 2.220000-4 5.481871+6 2.240000-4 5.478079+6 2.290868-4 5.454734+6 2.300000-4 5.448610+6 2.371374-4 5.383308+6 2.380000-4 5.374182+6 2.400000-4 5.348375+6 2.426610-4 5.314520+6 2.454709-4 5.279412+6 2.480000-4 5.244981+6 2.540973-4 5.151657+6 2.580000-4 5.088934+6 2.650000-4 4.966795+6 2.660725-4 4.947228+6 2.690000-4 4.894562+6 2.695300-4 4.884161+6 2.695300-4 5.338591+6 2.730000-4 5.272523+6 2.754229-4 5.227357+6 2.800000-4 5.139579+6 2.803200-4 5.133079+6 2.803200-4 5.331214+6 2.851018-4 5.236311+6 2.900000-4 5.137580+6 2.917427-4 5.103354+6 3.000000-4 4.938483+6 3.019952-4 4.898725+6 3.054921-4 4.829838+6 3.090295-4 4.758962+6 3.162278-4 4.620399+6 3.180000-4 4.586354+6 3.200000-4 4.548308+6 3.311311-4 4.338620+6 3.349654-4 4.268298+6 3.350000-4 4.267673+6 3.467369-4 4.054636+6 3.500000-4 3.998584+6 3.503200-4 3.993010+6 3.503200-4 4.169895+6 3.507519-4 4.162229+6 3.600000-4 3.998342+6 3.700000-4 3.832438+6 3.715352-4 3.808041+6 3.780000-4 3.702698+6 3.880000-4 3.547840+6 3.890451-4 3.532199+6 3.935501-4 3.465773+6 3.981072-4 3.399503+6 4.000000-4 3.371921+6 4.027170-4 3.332658+6 4.100000-4 3.231087+6 4.120975-4 3.202675+6 4.200000-4 3.099255+6 4.216965-4 3.077381+6 4.265795-4 3.014273+6 4.350000-4 2.909379+6 4.500000-4 2.736297+6 4.518559-4 2.716068+6 4.570882-4 2.658258+6 4.623810-4 2.601161+6 4.731513-4 2.490924+6 4.850000-4 2.377991+6 4.897788-4 2.334379+6 5.011872-4 2.231766+6 5.080000-4 2.173897+6 5.150000-4 2.116716+6 5.188000-4 2.086406+6 5.300000-4 2.000537+6 5.308844-4 1.993914+6 5.500000-4 1.856667+6 5.559043-4 1.817147+6 5.754399-4 1.694499+6 5.800000-4 1.667362+6 5.821032-4 1.654963+6 5.956621-4 1.578365+6 6.025596-4 1.541375+6 6.237348-4 1.434799+6 6.309573-4 1.401060+6 6.382635-4 1.367420+6 6.456542-4 1.334512+6 6.531306-4 1.302175+6 6.683439-4 1.239799+6 6.839116-4 1.180636+6 6.918310-4 1.152084+6 7.000000-4 1.123158+6 7.244360-4 1.042411+6 7.300000-4 1.025270+6 7.413102-4 9.917176+5 7.500000-4 9.669830+5 7.585776-4 9.434444+5 7.673615-4 9.200618+5 7.800000-4 8.873363+5 8.035261-4 8.309576+5 8.160720-4 8.029808+5 8.317638-4 7.699429+5 8.413951-4 7.503333+5 8.709636-4 6.941186+5 8.810489-4 6.763194+5 9.120108-4 6.257839+5 9.200000-4 6.136637+5 9.225714-4 6.098057+5 9.332543-4 5.940565+5 9.500000-4 5.703701+5 9.549926-4 5.635711+5 9.772372-4 5.346088+5 1.011579-3 4.940974+5 1.023293-3 4.812227+5 1.030000-3 4.740702+5 1.035142-3 4.686201+5 1.059254-3 4.441687+5 1.071519-3 4.324556+5 1.083927-3 4.210404+5 1.110000-3 3.984687+5 1.135011-3 3.783219+5 1.148154-3 3.682484+5 1.150000-3 3.668643+5 1.216186-3 3.216277+5 1.244515-3 3.046248+5 1.258925-3 2.964845+5 1.273503-3 2.885154+5 1.288250-3 2.807334+5 1.350000-3 2.511088+5 1.364583-3 2.447347+5 1.380384-3 2.380914+5 1.428894-3 2.192070+5 1.445440-3 2.131986+5 1.500000-3 1.950037+5 1.513561-3 1.908009+5 1.531087-3 1.855622+5 1.603245-3 1.659767+5 1.621810-3 1.613902+5 1.659587-3 1.526073+5 1.698244-3 1.442323+5 1.717908-3 1.402107+5 1.778279-3 1.288332+5 1.798871-3 1.252504+5 1.819701-3 1.217711+5 1.850000-3 1.169295+5 1.883649-3 1.118320+5 1.927525-3 1.056291+5 1.942400-3 1.036388+5 1.942400-3 4.096340+5 1.950000-3 4.057508+5 1.958000-3 4.017163+5 1.972423-3 3.939790+5 2.010000-3 3.747568+5 2.012100-3 3.738170+5 2.012100-3 5.205276+5 2.040000-3 5.025372+5 2.041738-3 5.014623+5 2.065380-3 4.871557+5 2.070000-3 4.844230+5 2.080000-3 4.785771+5 2.113489-3 4.611912+5 2.130000-3 4.529467+5 2.150000-3 4.428978+5 2.162719-3 4.364256+5 2.187762-3 4.240657+5 2.200100-3 4.181568+5 2.200100-3 4.782676+5 2.220000-3 4.681506+5 2.238721-3 4.589097+5 2.264644-3 4.463495+5 2.290868-3 4.338759+5 2.300000-3 4.296490+5 2.317395-3 4.217550+5 2.344229-3 4.099633+5 2.350000-3 4.074861+5 2.380000-3 3.948066+5 2.454709-3 3.655259+5 2.511886-3 3.451705+5 2.570396-3 3.259737+5 2.600160-3 3.167892+5 2.630268-3 3.078087+5 2.660725-3 2.990224+5 2.722701-3 2.822053+5 2.754229-3 2.741587+5 2.818383-3 2.587633+5 2.884032-3 2.442495+5 2.900000-3 2.408946+5 2.917427-3 2.373031+5 2.951209-3 2.305503+5 3.000000-3 2.212224+5 3.019952-3 2.175610+5 3.090295-3 2.051788+5 3.162278-3 1.935179+5 3.198895-3 1.879440+5 3.235937-3 1.825316+5 3.273407-3 1.772727+5 3.311311-3 1.721653+5 3.349654-3 1.671512+5 3.467369-3 1.528785+5 3.548134-3 1.440667+5 3.570000-3 1.418049+5 3.589219-3 1.398438+5 3.650000-3 1.338881+5 3.672823-3 1.317414+5 3.758374-3 1.241067+5 3.890451-3 1.134877+5 3.935501-3 1.101466+5 3.981072-3 1.068664+5 4.027170-3 1.036859+5 4.120975-3 9.757433+4 4.150000-3 9.578476+4 4.216965-3 9.182364+4 4.365158-3 8.383936+4 4.415704-3 8.133953+4 4.466836-3 7.890098+4 4.500000-3 7.737376+4 4.623810-3 7.201002+4 4.677351-3 6.983628+4 4.731513-3 6.772719+4 5.069907-3 5.637440+4 5.128614-3 5.466521+4 5.188000-3 5.300225+4 5.308844-3 4.980986+4 5.432503-3 4.681140+4 5.754399-3 4.010046+4 5.821032-3 3.888175+4 5.888437-3 3.770104+4 5.956621-3 3.654888+4 6.000000-3 3.583648+4 6.025596-3 3.542479+4 6.095369-3 3.433532+4 6.165950-3 3.327941+4 6.531306-3 2.846187+4 6.683439-3 2.674148+4 6.760830-3 2.591720+4 6.839116-3 2.511356+4 6.918310-3 2.433544+4 7.079458-3 2.284838+4 7.161434-3 2.214010+4 7.413102-3 2.014613+4 7.585776-3 1.892036+4 7.673615-3 1.833213+4 7.762471-3 1.776205+4 8.035261-3 1.614866+4 8.128305-3 1.564316+4 8.317638-3 1.468038+4 8.413951-3 1.422203+4 8.709636-3 1.293211+4 8.810489-3 1.252922+4 9.120108-3 1.138751+4 9.225714-3 1.102900+4 9.549926-3 1.002148+4 9.660509-3 9.706066+3 9.772372-3 9.400852+3 9.885531-3 9.105471+3 1.000000-2 8.819328+3 1.011579-2 8.540367+3 1.059254-2 7.512047+3 1.071519-2 7.275446+3 1.109175-2 6.607112+3 1.122018-2 6.398658+3 1.135011-2 6.196389+3 1.148154-2 5.999240+3 1.161449-2 5.808258+3 1.216186-2 5.103873+3 1.258925-2 4.633593+3 1.273503-2 4.486237+3 1.303167-2 4.205804+3 1.318257-2 4.072404+3 1.348963-2 3.815499+3 1.364583-2 3.693323+3 1.412538-2 3.349917+3 1.462177-2 3.039197+3 1.479108-2 2.942324+3 1.496236-2 2.848236+3 1.513561-2 2.757237+3 1.531087-2 2.669161+3 1.548817-2 2.583936+3 1.584893-2 2.420021+3 1.603245-2 2.341985+3 1.606700-2 2.327682+3 1.606700-2 1.608386+4 1.621810-2 1.575900+4 1.640590-2 1.532334+4 1.659587-2 1.483779+4 1.665000-2 1.470328+4 1.678804-2 1.440145+4 1.717908-2 1.359229+4 1.737801-2 1.318695+4 1.757924-2 1.279355+4 1.778279-2 1.241193+4 1.819701-2 1.168260+4 1.840772-2 1.133378+4 1.862087-2 1.100006+4 1.883649-2 1.067614+4 1.905461-2 1.036180+4 1.949845-2 9.760782+3 1.995262-2 9.194813+3 2.000000-2 9.138421+3 2.018366-2 8.917923+3 2.041738-2 8.647792+3 2.065380-2 8.385864+3 2.089296-2 8.131785+3 2.137962-2 7.646565+3 2.187762-2 7.189826+3 2.213095-2 6.971786+3 2.290868-2 6.356554+3 2.344229-2 5.976986+3 2.371374-2 5.794579+3 2.398833-2 5.617759+3 2.454709-2 5.280177+3 2.483133-2 5.119044+3 2.511886-2 4.962842+3 2.570396-2 4.659219+3 2.600160-2 4.514437+3 2.660725-2 4.238277+3 2.722701-2 3.979015+3 2.786121-2 3.735661+3 2.818383-2 3.619639+3 2.917427-2 3.292802+3 2.951209-2 3.190422+3 3.019952-2 2.995134+3 3.054921-2 2.902014+3 3.090295-2 2.811797+3 3.126079-2 2.724393+3 3.235937-2 2.473620+3 3.273407-2 2.395282+3 3.349654-2 2.245966+3 3.427678-2 2.105975+3 3.507519-2 1.974573+3 3.589219-2 1.851362+3 3.630781-2 1.792661+3 3.890451-2 1.477630+3 3.935501-2 1.430043+3 3.981072-2 1.383992+3 4.027170-2 1.339428+3 4.073803-2 1.296299+3 4.168694-2 1.214075+3 4.265795-2 1.137070+3 4.315191-2 1.100407+3 4.466836-2 9.973740+2 4.841724-2 7.929896+2 4.954502-2 7.419703+2 5.069907-2 6.942375+2 5.128614-2 6.715321+2 5.308844-2 6.077823+2 5.559043-2 5.321048+2 5.821032-2 4.658578+2 6.025596-2 4.216032+2 6.095369-2 4.076513+2 6.165950-2 3.941590+2 6.382635-2 3.563059+2 6.531306-2 3.331146+2 6.760830-2 3.011304+2 7.079458-2 2.632155+2 7.161434-2 2.544993+2 7.413102-2 2.300464+2 7.498942-2 2.224284+2 7.500000-2 2.223366+2 7.585776-2 2.149945+2 8.317638-2 1.638059+2 8.709636-2 1.429860+2 8.810489-2 1.382088+2 9.225714-2 1.206289+2 9.332543-2 1.165948+2 9.440609-2 1.126959+2 9.549926-2 1.089275+2 9.772372-2 1.017646+2 9.885531-2 9.834020+1 1.023293-1 8.874347+1 1.047129-1 8.287207+1 1.135011-1 6.521918+1 1.148154-1 6.302421+1 1.161449-1 6.090322+1 1.174898-1 5.885363+1 1.188502-1 5.687317+1 1.202264-1 5.495918+1 1.216186-1 5.310968+1 1.288250-1 4.475560+1 1.303167-1 4.324974+1 1.333521-1 4.038843+1 1.380384-1 3.644755+1 1.412538-1 3.403663+1 1.445440-1 3.178536+1 1.513561-1 2.772016+1 1.531088-1 2.678784+1 1.566751-1 2.501638+1 1.584893-1 2.417508+1 1.659587-1 2.108359+1 1.698244-1 1.968965+1 1.737801-1 1.838801+1 1.840772-1 1.549815+1 1.862087-1 1.497717+1 1.883649-1 1.447832+1 1.905461-1 1.399637+1 1.949845-1 1.308022+1 1.972423-1 1.264489+1 2.089296-1 1.067661+1 2.137962-1 9.977957+0 2.162719-1 9.645966+0 2.187762-1 9.325071+0 2.213095-1 9.014860+0 2.264644-1 8.425068+0 2.290868-1 8.144819+0 2.300000-1 8.050163+0 2.398833-1 7.125310+0 2.426610-1 6.891586+0 2.454709-1 6.665608+0 2.483133-1 6.447052+0 2.511886-1 6.235665+0 2.570396-1 5.833454+0 2.722701-1 4.937897+0 2.754229-1 4.778190+0 2.786121-1 4.623658+0 2.818383-1 4.474124+0 2.851018-1 4.329640+0 2.917427-1 4.054595+0 3.000000-1 3.748167+0 3.019952-1 3.678862+0 3.054921-1 3.561538+0 3.090295-1 3.447959+0 3.126079-1 3.338002+0 3.235937-1 3.028732+0 3.273407-1 2.932309+0 3.311311-1 2.838964+0 3.349654-1 2.748620+0 3.388442-1 2.661161+0 3.427678-1 2.578034+0 3.507519-1 2.419490+0 3.630781-1 2.199773+0 3.672823-1 2.131068+0 3.715352-1 2.064517+0 3.758374-1 2.000165+0 3.801894-1 1.937843+0 3.845918-1 1.877463+0 3.890451-1 1.820185+0 4.027170-1 1.658626+0 4.073803-1 1.608036+0 4.120975-1 1.558991+0 4.168694-1 1.511442+0 4.216965-1 1.465437+0 4.315191-1 1.377620+0 4.415705-1 1.296793+0 4.466836-1 1.258181+0 4.518559-1 1.220724+0 4.677351-1 1.114910+0 4.731513-1 1.081792+0 4.786301-1 1.049672+0 4.841724-1 1.019196+0 4.897788-1 9.896086-1 4.954502-1 9.608810-1 5.128614-1 8.796138-1 5.188000-1 8.540822-1 5.248075-1 8.293503-1 5.308844-1 8.053497-1 5.370318-1 7.826107-1 5.432503-1 7.605146-1 5.495409-1 7.390422-1 5.623413-1 6.979036-1 5.754399-1 6.590549-1 5.821032-1 6.405000-1 5.888437-1 6.224771-1 6.025596-1 5.888068-1 6.309573-1 5.268374-1 6.382635-1 5.123945-1 6.456542-1 4.983868-1 6.531306-1 4.851305-1 6.606935-1 4.722273-1 6.623700-1 4.694334-1 6.839117-1 4.355446-1 6.918310-1 4.239621-1 6.998420-1 4.127208-1 7.079458-1 4.017777-1 7.085700-1 4.009521-1 7.161434-1 3.914489-1 7.244360-1 3.814179-1 7.498942-1 3.528438-1 7.673615-1 3.349966-1 7.762471-1 3.264391-1 7.852356-1 3.183301-1 7.943282-1 3.104231-1 8.035261-1 3.027161-1 8.128305-1 2.952011-1 8.413951-1 2.737598-1 8.511380-1 2.669647-1 8.609938-1 2.603543-1 8.709636-1 2.540559-1 8.912509-1 2.419191-1 9.015711-1 2.360700-1 9.120108-1 2.303632-1 9.225714-1 2.247947-1 9.332543-1 2.193609-1 9.440609-1 2.140592-1 9.549926-1 2.089048-1 9.660509-1 2.040594-1 9.772372-1 1.993273-1 9.885531-1 1.947052-1 1.011579+0 1.857818-1 1.023293+0 1.814745-1 1.035142+0 1.772788-1 1.047129+0 1.732775-1 1.059254+0 1.693674-1 1.071519+0 1.655472-1 1.109175+0 1.545954-1 1.122018+0 1.511085-1 1.135011+0 1.477004-1 1.161449+0 1.411145-1 1.174898+0 1.380436-1 1.188600+0 1.350186-1 1.202264+0 1.321036-1 1.230269+0 1.264210-1 1.258925+0 1.209839-1 1.273503+0 1.183537-1 1.288250+0 1.157805-1 1.303167+0 1.133504-1 1.318257+0 1.109715-1 1.364583+0 1.041337-1 1.380384+0 1.019497-1 1.396368+0 9.981145-2 1.412538+0 9.771801-2 1.428894+0 9.566864-2 1.445440+0 9.373030-2 1.462177+0 9.183146-2 1.479108+0 8.997210-2 1.531087+0 8.461689-2 1.548817+0 8.290353-2 1.603245+0 7.796964-2 1.621810+0 7.644475-2 1.640590+0 7.494971-2 1.717908+0 6.925946-2 1.737801+0 6.790571-2 1.757924+0 6.657855-2 1.798871+0 6.400193-2 1.840772+0 6.160879-2 1.862087+0 6.044664-2 1.949845+0 5.601314-2 1.972423+0 5.495657-2 2.000000+0 5.370897-2 2.018366+0 5.290319-2 2.044000+0 5.181055-2 2.065380+0 5.095935-2 2.089296+0 5.003389-2 2.187762+0 4.649903-2 2.213095+0 4.565508-2 2.238721+0 4.482654-2 2.264644+0 4.401314-2 2.290868+0 4.321448-2 2.317395+0 4.243296-2 2.344229+0 4.169135-2 2.371374+0 4.096311-2 2.483133+0 3.817516-2 2.511886+0 3.750836-2 2.540973+0 3.685325-2 2.570396+0 3.620969-2 2.600160+0 3.557737-2 2.630268+0 3.495819-2 2.660725+0 3.436925-2 2.691535+0 3.379055-2 2.818383+0 3.157157-2 2.851018+0 3.103999-2 2.884032+0 3.051735-2 2.917427+0 3.000358-2 2.951209+0 2.949851-2 2.985383+0 2.900193-2 3.019952+0 2.851521-2 3.054921+0 2.805065-2 3.126079+0 2.714456-2 3.273407+0 2.541925-2 3.311311+0 2.500534-2 3.349654+0 2.459818-2 3.388442+0 2.419767-2 3.427678+0 2.380375-2 3.467369+0 2.341623-2 3.507519+0 2.303626-2 3.548134+0 2.267406-2 3.630781+0 2.196702-2 3.801894+0 2.061842-2 3.845918+0 2.029442-2 3.890451+0 1.997551-2 3.935501+0 1.966163-2 4.000000+0 1.922688-2 4.027170+0 1.904869-2 4.073803+0 1.875035-2 4.120975+0 1.846552-2 4.216965+0 1.790904-2 4.466836+0 1.659013-2 4.518559+0 1.633825-2 4.570882+0 1.609018-2 4.623810+0 1.584591-2 4.677351+0 1.560538-2 4.731513+0 1.536850-2 4.786301+0 1.513593-2 4.841724+0 1.491371-2 4.954502+0 1.447923-2 5.248075+0 1.344760-2 5.370318+0 1.305584-2 5.432503+0 1.286426-2 5.495409+0 1.267551-2 5.559043+0 1.248955-2 5.623413+0 1.230632-2 5.688529+0 1.212629-2 5.754399+0 1.195374-2 5.956621+0 1.145092-2 6.382635+0 1.050784-2 6.531306+0 1.021107-2 6.606934+0 1.006584-2 6.683439+0 9.922693-3 6.760830+0 9.781596-3 6.839116+0 9.642507-3 6.918310+0 9.505800-3 7.000000+0 9.372314-3 7.244360+0 8.992963-3 7.673615+0 8.390725-3 7.943282+0 8.048923-3 8.035261+0 7.938112-3 8.128305+0 7.828835-3 8.222427+0 7.721073-3 8.413951+0 7.509983-3 8.511380+0 7.406889-3 8.609938+0 7.307832-3 9.000000+0 6.938979-3 9.549926+0 6.474215-3 9.885531+0 6.218041-3 1.011579+1 6.052918-3 1.023293+1 5.972010-3 1.035142+1 5.892196-3 1.059254+1 5.735750-3 1.071519+1 5.659300-3 1.083927+1 5.585794-3 1.135011+1 5.301326-3 1.202264+1 4.966031-3 1.244515+1 4.775117-3 1.300000+1 4.544472-3 1.318257+1 4.473110-3 1.333521+1 4.415052-3 1.380384+1 4.245352-3 1.400000+1 4.178083-3 1.412538+1 4.137136-3 1.462177+1 3.982335-3 1.531087+1 3.784905-3 1.603245+1 3.597263-3 1.717908+1 3.333099-3 1.757924+1 3.249432-3 1.778279+1 3.208395-3 1.862087+1 3.049360-3 1.883649+1 3.010936-3 1.905461+1 2.973820-3 1.949845+1 2.900984-3 2.041738+1 2.760621-3 2.113489+1 2.659825-3 2.290868+1 2.438715-3 2.371374+1 2.349676-3 2.454709+1 2.263895-3 2.660725+1 2.075719-3 2.691535+1 2.050194-3 2.754229+1 2.000994-3 2.818383+1 1.952989-3 2.884032+1 1.906136-3 2.951209+1 1.860407-3 3.162278+1 1.729699-3 3.273407+1 1.667834-3 3.427678+1 1.588781-3 3.715352+1 1.459347-3 3.758374+1 1.441739-3 3.845918+1 1.407682-3 3.935501+1 1.374436-3 4.120975+1 1.310283-3 4.466836+1 1.205136-3 5.248075+1 1.019479-3 5.370318+1 9.954036-4 5.623413+1 9.489472-4 5.888437+1 9.046587-4 6.000000+1 8.872076-4 6.025596+1 8.833521-4 6.095369+1 8.730087-4 6.165950+1 8.627887-4 6.456542+1 8.230913-4 7.328245+1 7.230913-4 9.225714+1 5.713624-4 9.440609+1 5.580637-4 1.000000+2 5.261570-4 1.011579+2 5.199982-4 1.083927+2 4.845287-4 1.096478+2 4.788573-4 1.122018+2 4.678281-4 1.135011+2 4.624096-4 1.202264+2 4.362460-4 1.396368+2 3.749410-4 1.840772+2 2.834942-4 1.883649+2 2.769658-4 1.995262+2 2.612954-4 2.018366+2 2.582693-4 2.162719+2 2.408348-4 2.187762+2 2.380458-4 2.238721+2 2.326022-4 2.264644+2 2.299275-4 2.398833+2 2.170083-4 2.786121+2 1.867148-4 3.672823+2 1.414586-4 3.758374+2 1.382241-4 3.981072+2 1.304578-4 4.027170+2 1.289577-4 8.609938+2 6.010996-5 8.709636+2 5.941879-5 8.912509+2 5.806560-5 9.015711+2 5.740064-5 9.549926+2 5.418835-5 1.109175+3 4.665282-5 1.462177+3 3.538559-5 1.496236+3 3.457977-5 1.584893+3 3.264464-5 1.603245+3 3.227081-5 1.000000+5 5.164956-7 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.100000-6 5.100000-6 2.720000-5 5.100000-6 2.720000-5 1.017133-5 2.847000-5 1.016519-5 2.847000-5 1.017605-5 4.216965-5 1.010198-5 4.639000-5 1.006463-5 4.639000-5 1.034831-5 5.300000-5 1.060557-5 6.580000-5 1.120081-5 7.244360-5 1.144262-5 7.852356-5 1.159340-5 8.650000-5 1.170255-5 9.660509-5 1.175004-5 1.220000-4 1.172230-5 1.430100-4 1.166292-5 1.430100-4 1.644940-5 1.442000-4 1.649721-5 1.449300-4 1.656062-5 1.449300-4 1.819245-5 1.462177-4 1.833161-5 1.477000-4 1.862819-5 1.490000-4 1.901008-5 1.510000-4 1.975842-5 1.540100-4 2.093983-5 1.560000-4 2.158893-5 1.580000-4 2.210059-5 1.600000-4 2.249267-5 1.631000-4 2.293067-5 1.670000-4 2.329832-5 1.723300-4 2.361289-5 1.805000-4 2.387187-5 1.950000-4 2.407777-5 2.240000-4 2.424880-5 2.695300-4 2.431289-5 2.695300-4 2.527708-5 2.803200-4 2.532432-5 2.803200-4 2.579998-5 3.503200-4 2.624960-5 3.503200-4 2.709827-5 4.731513-4 2.802265-5 6.309573-4 2.897082-5 8.317638-4 2.991051-5 1.083927-3 3.081940-5 1.380384-3 3.164132-5 1.778279-3 3.247190-5 1.942400-3 3.275664-5 1.942400-3 5.097242-5 2.012100-3 5.097483-5 2.012100-3 5.331648-5 2.200100-3 5.338236-5 2.200100-3 5.655949-5 3.198895-3 5.778715-5 4.731513-3 5.924414-5 6.839116-3 6.073350-5 9.772372-3 6.226303-5 1.348963-2 6.366064-5 1.606700-2 6.440266-5 1.606700-2 7.272909-5 3.019952-2 7.320797-5 7.161434-2 7.355510-5 3.019952-1 7.377059-5 1.000000+5 7.381986-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.100000-6 0.0 2.720000-5 0.0 2.720000-5 1.193459-8 2.847000-5 1.192013-8 2.847000-5 1.817067-8 3.630781-5 1.804364-8 4.365158-5 1.786532-8 5.230000-5 1.749625-8 6.237348-5 1.704857-8 7.079458-5 1.679799-8 8.035261-5 1.666030-8 9.150000-5 1.661508-8 1.288250-4 1.671891-8 1.430100-4 1.676730-8 1.430100-4 2.301623-8 1.448000-4 2.315064-8 1.449300-4 2.317027-8 1.449300-4 3.174149-8 1.462177-4 3.188434-8 1.473000-4 3.215817-8 1.485000-4 3.265178-8 1.496236-4 3.329826-8 1.513561-4 3.456446-8 1.550000-4 3.753820-8 1.570000-4 3.894684-8 1.590000-4 4.009487-8 1.610000-4 4.100405-8 1.635000-4 4.187376-8 1.670000-4 4.277441-8 1.713000-4 4.353789-8 1.760000-4 4.410293-8 1.822500-4 4.459223-8 1.927525-4 4.503628-8 2.113489-4 4.546441-8 2.426610-4 4.577472-8 2.695300-4 4.587182-8 2.695300-4 4.825898-8 2.803200-4 4.839148-8 2.803200-4 5.025989-8 3.503200-4 5.167508-8 3.503200-4 5.385269-8 4.265795-4 5.564553-8 5.308844-4 5.776874-8 6.531306-4 5.985886-8 8.160720-4 6.211856-8 1.023293-3 6.442134-8 1.258925-3 6.651519-8 1.531087-3 6.842157-8 1.883649-3 7.034799-8 1.942400-3 7.062409-8 1.942400-3 3.361255-5 2.012100-3 3.356588-5 2.012100-3 3.837286-5 2.113489-3 3.837175-5 2.200100-3 3.840092-5 2.200100-3 3.938717-5 3.758374-3 3.951931-5 1.606700-2 3.919911-5 1.606700-2 8.536391-3 1.949845-2 8.608406-3 2.722701-2 8.689290-3 4.073803-2 8.751053-3 7.500000-2 8.799309-3 2.187762-1 8.820136-3 2.600160+0 8.833061-3 1.000000+5 8.832802-3 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.100000-6 0.0 2.720000-5 2.210000-5 2.720000-5 1.701674-5 4.365158-5 3.354409-5 4.639000-5 3.630762-5 4.639000-5 3.602393-5 7.300000-5 6.152443-5 9.150000-5 7.974873-5 1.430100-4 1.313303-4 1.430100-4 1.265376-4 1.449300-4 1.283462-4 1.449300-4 1.267058-4 1.488000-4 1.298231-4 1.566751-4 1.348617-4 1.635000-4 1.404817-4 1.780000-4 1.541441-4 2.540973-4 2.297483-4 2.695300-4 2.451712-4 2.695300-4 2.442047-4 2.803200-4 2.549473-4 2.803200-4 2.544697-4 3.503200-4 3.240187-4 3.503200-4 3.231679-4 1.288250-3 1.256778-3 1.942400-3 1.909573-3 1.942400-3 1.857815-3 2.012100-3 1.927559-3 2.012100-3 1.920411-3 2.200100-3 2.108317-3 2.200100-3 2.104153-3 1.606700-2 1.596340-2 1.606700-2 7.457880-3 1.778279-2 9.132775-3 2.511886-2 1.637193-2 5.821032-2 4.935310-2 1.000000+5 9.999999+4 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.606700-2 1.375618+4 1.621810-2 1.349248+4 1.640590-2 1.312979+4 1.665000-2 1.259982+4 1.717908-2 1.166736+4 1.840772-2 9.751722+3 2.000000-2 7.890400+3 2.344229-2 5.185161+3 2.511886-2 4.313273+3 3.126079-2 2.379400+3 3.890451-2 1.295140+3 4.841724-2 6.968610+2 6.025596-2 3.712255+2 7.500000-2 1.960444+2 9.772372-2 8.983590+1 1.862087-1 1.323599+1 2.300000-1 7.114920+0 2.722701-1 4.364590+0 2.917427-1 3.584132+0 3.388442-1 2.352581+0 3.845918-1 1.659874+0 4.315191-1 1.218059+0 4.786301-1 9.282077-1 5.308844-1 7.122191-1 5.888437-1 5.505359-1 6.456542-1 4.408362-1 7.085700-1 3.546496-1 7.762471-1 2.888033-1 8.609938-1 2.303968-1 9.549926-1 1.848914-1 1.035142+0 1.569105-1 1.161449+0 1.249068-1 1.288250+0 1.024813-1 1.428894+0 8.467781-2 1.603245+0 6.901099-2 1.798871+0 5.664819-2 2.044000+0 4.585798-2 2.317395+0 3.755708-2 2.630268+0 3.094126-2 3.019952+0 2.523864-2 3.507519+0 2.038923-2 4.073803+0 1.659579-2 4.786301+0 1.339666-2 5.688529+0 1.073291-2 6.918310+0 8.413538-3 8.511380+0 6.555815-3 1.071519+1 5.009035-3 1.400000+1 3.698000-3 1.883649+1 2.664978-3 2.691535+1 1.814633-3 3.758374+1 1.276101-3 6.000000+1 7.852800-4 1.096478+2 4.238424-4 2.187762+2 2.106981-4 8.709636+2 5.259245-5 1.000000+5 4.571600-7 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.606700-2 7.413800-5 1.000000+5 7.413800-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.606700-2 9.974200-3 1.000000+5 9.974200-3 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.606700-2 6.018662-3 1.000000+5 9.999999+4 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.200100-3 6.011083+4 2.380000-3 5.325174+4 2.630268-3 4.546808+4 3.019952-3 3.588841+4 3.570000-3 2.686580+4 3.890451-3 2.295112+4 4.623810-3 1.658416+4 5.128614-3 1.353659+4 5.888437-3 1.026282+4 6.683439-3 7.895039+3 7.585776-3 6.038184+3 8.810489-3 4.358533+3 1.000000-2 3.284840+3 1.135011-2 2.461446+3 1.318257-2 1.736466+3 1.548817-2 1.181869+3 1.819701-2 7.972536+2 2.137962-2 5.331907+2 2.511886-2 3.536652+2 2.917427-2 2.398614+2 3.427678-2 1.567572+2 4.073803-2 9.858127+1 4.841724-2 6.151212+1 5.821032-2 3.689968+1 7.079458-2 2.126645+1 8.810489-2 1.138984+1 1.135011-1 5.478594+0 1.883649-1 1.254146+0 2.398833-1 6.235687-1 2.818383-1 3.939923-1 3.235937-1 2.675793-1 3.715352-1 1.830802-1 4.168694-1 1.343520-1 4.677351-1 9.930143-2 5.188000-1 7.617149-2 5.754399-1 5.885015-2 6.382635-1 4.581355-2 6.918310-1 3.793686-2 7.673615-1 2.999725-2 8.511380-1 2.389935-2 9.440609-1 1.915878-2 1.023293+0 1.624557-2 1.161449+0 1.263709-2 1.288250+0 1.036798-2 1.428894+0 8.566583-3 1.603245+0 6.981637-3 1.798871+0 5.731022-3 2.044000+0 4.639186-3 2.290868+0 3.868197-3 2.600160+0 3.184672-3 2.985383+0 2.596236-3 3.467369+0 2.096173-3 4.027170+0 1.705271-3 4.731513+0 1.375879-3 5.623413+0 1.101741-3 6.839116+0 8.632476-4 8.413951+0 6.723476-4 1.059254+1 5.135066-4 1.380384+1 3.800715-4 1.862087+1 2.730133-4 2.660725+1 1.858362-4 3.758374+1 1.290959-4 6.000000+1 7.944300-5 1.096478+2 4.287882-5 2.187762+2 2.131558-5 8.709636+2 5.320585-6 1.000000+5 4.624900-8 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.200100-3 7.866100-5 1.000000+5 7.866100-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.200100-3 4.624800-5 1.000000+5 4.624800-5 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.200100-3 2.075191-3 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.012100-3 1.467106+5 2.040000-3 1.408928+5 2.080000-3 1.334400+5 2.130000-3 1.270200+5 2.238721-3 1.128700+5 2.350000-3 9.985000+4 2.951209-3 5.469100+4 3.349654-3 3.885400+4 4.027170-3 2.324100+4 4.500000-3 1.690300+4 5.188000-3 1.117800+4 6.165950-3 6.686700+3 6.918310-3 4.718800+3 8.035261-3 2.979900+3 9.549926-3 1.736300+3 1.122018-2 1.039700+3 1.318257-2 6.177100+2 1.548817-2 3.643100+2 1.840772-2 2.053500+2 2.213095-2 1.105200+2 2.660725-2 5.903400+1 3.273407-2 2.892900+1 4.168694-2 1.248239+1 5.308844-2 5.349198+0 9.332543-2 7.330260-1 1.202264-1 3.021070-1 1.445440-1 1.596311-1 1.698244-1 9.197405-2 1.972423-1 5.550321-2 2.264644-1 3.507356-2 2.570396-1 2.319011-2 2.917427-1 1.544843-2 3.273407-1 1.075659-2 3.630781-1 7.816612-3 4.027170-1 5.718833-3 4.466836-1 4.213521-3 4.954502-1 3.127504-3 5.495409-1 2.339128-3 6.025596-1 1.819492-3 6.623700-1 1.415781-3 7.244360-1 1.126278-3 8.035261-1 8.711946-4 9.332543-1 6.073414-4 9.885531-1 5.318968-4 1.047129+0 4.693780-4 1.122018+0 4.069463-4 1.188600+0 3.634162-4 1.288250+0 3.129188-4 1.428894+0 2.602221-4 1.737801+0 1.853211-4 1.972423+0 1.498368-4 2.213095+0 1.244288-4 2.511886+0 1.022318-4 2.884032+0 8.319036-5 3.349654+0 6.705591-5 3.890451+0 5.445889-5 4.570882+0 4.386720-5 5.432503+0 3.507420-5 6.606934+0 2.744425-5 8.035261+0 2.164091-5 1.011579+1 1.650193-5 1.300000+1 1.238900-5 1.717908+1 9.086045-6 2.290868+1 6.648036-6 3.162278+1 4.714616-6 5.248075+1 2.779148-6 9.225714+1 1.557635-6 1.840772+2 7.730872-7 3.672823+2 3.855276-7 1.462177+3 9.647951-8 1.000000+5 1.409200-9 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.012100-3 5.928300-5 1.000000+5 5.928300-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.012100-3 5.062100-5 1.000000+5 5.062100-5 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.012100-3 1.902196-3 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.942400-3 3.059952+5 1.958000-3 3.001102+5 2.010000-3 2.795447+5 2.150000-3 2.381548+5 2.264644-3 2.085229+5 2.600160-3 1.441570+5 3.019952-3 9.624489+4 3.311311-3 7.464078+4 3.935501-3 4.578834+4 4.415704-3 3.276191+4 5.069907-3 2.181017+4 5.956621-3 1.341995+4 6.760830-3 9.103794+3 7.762471-3 5.923666+3 9.120108-3 3.557213+3 1.071519-2 2.117351+3 1.258925-2 1.249768+3 1.479108-2 7.318492+2 1.737801-2 4.253645+2 2.065380-2 2.359846+2 2.454709-2 1.299240+2 2.917427-2 7.103907+1 3.507519-2 3.704652+1 4.265795-2 1.841927+1 5.559043-2 7.091269+0 1.135011-1 5.325725-1 1.380384-1 2.637604-1 1.659587-1 1.371795-1 1.905461-1 8.459112-2 2.162719-1 5.468171-2 2.426610-1 3.701879-2 2.722701-1 2.524552-2 3.019952-1 1.801600-2 3.349654-1 1.295374-2 3.672823-1 9.727684-3 4.027170-1 7.355821-3 4.415705-1 5.604431-3 4.841724-1 4.302543-3 5.248075-1 3.436694-3 5.754399-1 2.678628-3 6.309573-1 2.104355-3 6.918310-1 1.665952-3 7.498942-1 1.366770-3 8.128305-1 1.128266-3 9.015711-1 8.886241-4 9.660509-1 7.632162-4 1.035142+0 6.605009-4 1.135011+0 5.485535-4 1.230269+0 4.695243-4 1.364583+0 3.875952-4 1.548817+0 3.092960-4 1.757924+0 2.484876-4 2.000000+0 2.003801-4 2.238721+0 1.671746-4 2.540973+0 1.374504-4 2.917427+0 1.119225-4 3.388442+0 9.026472-5 3.935501+0 7.334791-5 4.623810+0 5.911357-5 5.495409+0 4.728934-5 6.683439+0 3.701933-5 8.128305+0 2.920450-5 1.023293+1 2.227881-5 1.318257+1 1.668563-5 1.757924+1 1.212025-5 2.371374+1 8.764719-6 3.273407+1 6.219946-6 5.370318+1 3.712929-6 9.440609+1 2.081669-6 1.883649+2 1.033420-6 3.758374+2 5.154021-7 1.496236+3 1.289941-7 1.000000+5 1.928000-9 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.942400-3 5.714200-5 1.000000+5 5.714200-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.942400-3 4.497300-5 1.000000+5 4.497300-5 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.942400-3 1.840285-3 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.503200-4 1.768858+5 3.880000-4 1.637184+5 4.731513-4 1.339553+5 5.080000-4 1.239332+5 6.025596-4 1.006154+5 6.531306-4 9.059111+4 7.500000-4 7.477460+4 8.317638-4 6.443361+4 9.500000-4 5.270160+4 1.071519-3 4.368311+4 1.258925-3 3.363253+4 1.428894-3 2.719824+4 1.659587-3 2.101244+4 1.950000-3 1.577798+4 2.300000-3 1.166570+4 2.722701-3 8.495076+3 3.198895-3 6.223791+3 3.758374-3 4.524491+3 4.415704-3 3.263093+3 5.188000-3 2.335200+3 6.095369-3 1.658440+3 7.161434-3 1.169039+3 8.413951-3 8.177991+2 9.885531-3 5.677457+2 1.161449-2 3.910441+2 1.364583-2 2.672164+2 1.584893-2 1.862989+2 1.862087-2 1.253643+2 2.187762-2 8.370582+1 2.570396-2 5.546618+1 3.019952-2 3.648301+1 3.589219-2 2.310385+1 4.265795-2 1.451663+1 5.069907-2 9.053385+0 6.095369-2 5.429430+0 7.413102-2 3.128830+0 9.225714-2 1.676061+0 1.188502-1 8.068434-1 1.972423-1 1.853832-1 2.426610-1 1.020346-1 2.851018-1 6.455212-2 3.311311-1 4.249834-2 3.758374-1 3.004515-2 4.216965-1 2.206949-2 4.731513-1 1.633033-2 5.248075-1 1.254030-2 5.821032-1 9.699030-3 6.456542-1 7.559540-3 7.161434-1 5.938881-3 7.943282-1 4.703194-3 8.709636-1 3.846184-3 9.549926-1 3.168330-3 1.059254+0 2.570403-3 1.188600+0 2.049431-3 1.318257+0 1.684267-3 1.462177+0 1.393216-3 1.640590+0 1.136972-3 1.840772+0 9.346029-4 2.089296+0 7.590019-4 2.344229+0 6.325888-4 2.660725+0 5.214986-4 3.054921+0 4.256336-4 3.548134+0 3.440610-4 4.120975+0 2.802030-4 4.841724+0 2.263096-4 5.754399+0 1.813996-4 7.000000+0 1.422200-4 8.609938+0 1.109004-4 1.083927+1 8.476752-5 1.412538+1 6.278741-5 1.905461+1 4.513166-5 2.754229+1 3.036726-5 3.845918+1 2.136331-5 6.095369+1 1.324911-5 1.122018+2 7.100240-6 2.238721+2 3.530258-6 8.912509+2 8.813244-7 1.000000+5 7.839700-9 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.503200-4 4.625600-5 1.000000+5 4.625600-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.503200-4 1.030100-7 1.000000+5 1.030100-7 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.503200-4 3.039610-4 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.803200-4 1.981341+5 3.090295-4 1.996936+5 3.467369-4 1.995828+5 3.715352-4 1.978362+5 3.890451-4 1.955413+5 4.100000-4 1.913638+5 4.350000-4 1.852542+5 4.570882-4 1.792936+5 4.897788-4 1.699430+5 5.188000-4 1.613794+5 5.500000-4 1.520724+5 5.956621-4 1.391455+5 6.382635-4 1.280096+5 6.839116-4 1.169282+5 7.413102-4 1.044389+5 8.035261-4 9.270692+4 8.709636-4 8.170357+4 9.549926-4 7.020192+4 1.035142-3 6.112803+4 1.135011-3 5.179854+4 1.258925-3 4.267638+4 1.380384-3 3.566126+4 1.531087-3 2.893686+4 1.698244-3 2.329355+4 1.883649-3 1.862211+4 2.113489-3 1.440168+4 2.344229-3 1.134667+4 2.600160-3 8.883440+3 2.917427-3 6.718409+3 3.273407-3 5.042551+3 3.672823-3 3.757612+3 4.120975-3 2.780699+3 4.623810-3 2.044003+3 5.188000-3 1.492766+3 5.888437-3 1.048929+3 6.683439-3 7.318009+2 7.585776-3 5.070072+2 8.709636-3 3.371471+2 1.000000-2 2.224240+2 1.148154-2 1.456346+2 1.318257-2 9.466183+1 1.531087-2 5.889962+1 1.778279-2 3.636982+1 2.089296-2 2.147235+1 2.483133-2 1.210948+1 2.951209-2 6.777803+0 3.589219-2 3.483047+0 4.466836-2 1.641321+0 5.821032-2 6.543405-1 1.047129-1 8.428446-2 1.303167-1 3.953262-2 1.584893-1 2.022793-2 1.862087-1 1.173254-2 2.162719-1 7.129158-3 2.454709-1 4.708701-3 2.786121-1 3.132283-3 3.126079-1 2.177237-3 3.507519-1 1.524380-3 3.890451-1 1.113579-3 4.315191-1 8.192938-4 4.786301-1 6.072289-4 5.308844-1 4.534967-4 5.888437-1 3.413558-4 6.531306-1 2.589974-4 7.161434-1 2.040480-4 7.852356-1 1.618585-4 8.609938-1 1.288595-4 9.225714-1 1.093177-4 9.772372-1 9.591551-5 1.035142+0 8.471330-5 1.109175+0 7.345026-5 1.188600+0 6.412195-5 1.318257+0 5.294874-5 1.479108+0 4.312759-5 1.717908+0 3.323698-5 1.949845+0 2.686189-5 2.187762+0 2.229444-5 2.483133+0 1.830475-5 2.818383+0 1.513859-5 3.273407+0 1.218820-5 3.801894+0 9.887182-6 4.466836+0 7.955365-6 5.248075+0 6.448435-6 6.382635+0 5.038773-6 7.673615+0 4.023296-6 9.549926+0 3.104308-6 1.202264+1 2.381193-6 1.531087+1 1.815117-6 2.041738+1 1.323957-6 2.884032+1 9.143897-7 4.120975+1 6.285538-7 6.456542+1 3.948700-7 1.202264+2 2.093017-7 2.398833+2 1.041243-7 9.549926+2 2.600512-8 1.000000+5 2.47900-10 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.803200-4 3.812300-5 1.000000+5 3.812300-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.803200-4 9.866500-8 1.000000+5 9.866500-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.803200-4 2.420983-4 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.695300-4 4.544300+5 2.851018-4 4.588110+5 3.019952-4 4.602369+5 3.180000-4 4.586266+5 3.350000-4 4.553760+5 3.600000-4 4.459800+5 3.780000-4 4.373520+5 4.000000-4 4.238320+5 4.265795-4 4.058677+5 4.570882-4 3.838014+5 4.850000-4 3.636944+5 5.150000-4 3.419208+5 5.559043-4 3.133780+5 6.025596-4 2.837595+5 6.456542-4 2.588633+5 7.000000-4 2.306480+5 7.673615-4 2.007633+5 8.317638-4 1.765519+5 9.200000-4 1.490188+5 1.011579-3 1.260915+5 1.110000-3 1.063004+5 1.216186-3 8.929229+4 1.350000-3 7.260400+4 1.500000-3 5.845920+4 1.659587-3 4.714398+4 1.850000-3 3.713120+4 2.065380-3 2.892886+4 2.317395-3 2.210600+4 2.600160-3 1.675795+4 2.900000-3 1.279688+4 3.235937-3 9.696008+3 3.650000-3 7.094320+3 4.150000-3 5.041120+3 4.677351-3 3.638859+3 5.308844-3 2.557541+3 6.000000-3 1.805860+3 6.760830-3 1.277753+3 7.673615-3 8.792307+2 8.810489-3 5.801145+2 1.000000-2 3.935552+2 1.148154-2 2.557775+2 1.318257-2 1.649748+2 1.513561-2 1.056393+2 1.757924-2 6.467206+1 2.041738-2 3.929511+1 2.398833-2 2.279925+1 2.818383-2 1.313021+1 3.349654-2 7.215167+0 4.027170-2 3.780898+0 4.954502-2 1.812943+0 6.382635-2 7.319420-1 1.148154-1 8.833362-2 1.412538-1 4.212505-2 1.659587-1 2.383796-2 1.905461-1 1.472851-2 2.187762-1 9.168076-3 2.454709-1 6.218454-3 2.754229-1 4.248867-3 3.054921-1 3.037335-3 3.388442-1 2.187675-3 3.715352-1 1.645271-3 4.073803-1 1.245875-3 4.466836-1 9.504222-4 4.897788-1 7.304604-4 5.370318-1 5.657432-4 5.821032-1 4.553718-4 6.309573-1 3.690124-4 6.839117-1 3.010361-4 7.498942-1 2.403712-4 8.511380-1 1.782913-4 9.120108-1 1.524088-4 9.772372-1 1.311362-4 1.059254+0 1.109817-4 1.161449+0 9.235016-5 1.258925+0 7.919883-5 1.396368+0 6.548250-5 1.621810+0 5.025694-5 1.840772+0 4.048528-5 2.065380+0 3.349156-5 2.317395+0 2.789589-5 2.630268+0 2.298156-5 3.019952+0 1.874553-5 3.507519+0 1.514419-5 4.073803+0 1.232685-5 4.786301+0 9.950521-6 5.688529+0 7.972005-6 6.918310+0 6.249089-6 8.511380+0 4.869320-6 1.071519+1 3.720447-6 1.400000+1 2.746700-6 1.883649+1 1.979447-6 2.691535+1 1.347800-6 3.758374+1 9.478060-7 6.025596+1 5.807084-7 1.096478+2 3.148137-7 2.187762+2 1.564926-7 8.709636+2 3.906301-8 1.000000+5 3.39560-10 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.695300-4 3.564000-5 1.000000+5 3.564000-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.695300-4 7.391600-8 1.000000+5 7.391600-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.695300-4 2.338161-4 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.449300-4 1.686508+5 1.457000-4 1.689376+5 1.462177-4 1.698894+5 1.467000-4 1.714124+5 1.473000-4 1.744272+5 1.479108-4 1.788027+5 1.485000-4 1.845164+5 1.490000-4 1.906612+5 1.496236-4 2.000886+5 1.502000-4 2.106740+5 1.507000-4 2.213916+5 1.513561-4 2.377211+5 1.520000-4 2.562924+5 1.530000-4 2.900744+5 1.550000-4 3.739828+5 1.560000-4 4.225160+5 1.570000-4 4.741360+5 1.580000-4 5.279880+5 1.590000-4 5.831840+5 1.600000-4 6.391080+5 1.610000-4 6.952800+5 1.621810-4 7.614553+5 1.631000-4 8.125720+5 1.643000-4 8.786320+5 1.655000-4 9.436160+5 1.670000-4 1.023040+6 1.685000-4 1.100044+6 1.698244-4 1.165598+6 1.713000-4 1.235628+6 1.730000-4 1.311864+6 1.745000-4 1.374928+6 1.760000-4 1.433460+6 1.780000-4 1.505020+6 1.800000-4 1.568660+6 1.822500-4 1.631716+6 1.850000-4 1.697988+6 1.880000-4 1.759088+6 1.915000-4 1.819088+6 1.950000-4 1.869696+6 2.000000-4 1.930732+6 2.060000-4 1.988140+6 2.113489-4 2.025063+6 2.170000-4 2.049292+6 2.220000-4 2.058636+6 2.290868-4 2.055488+6 2.371374-4 2.034639+6 2.454709-4 2.000563+6 2.540973-4 1.956250+6 2.650000-4 1.890076+6 2.754229-4 1.818345+6 2.851018-4 1.746777+6 3.000000-4 1.634120+6 3.162278-4 1.513884+6 3.311311-4 1.407359+6 3.500000-4 1.279268+6 3.715352-4 1.145265+6 3.935501-4 1.023098+6 4.200000-4 8.943400+5 4.518559-4 7.624571+5 4.897788-4 6.343668+5 5.300000-4 5.259160+5 5.800000-4 4.208840+5 6.309573-4 3.396465+5 6.918310-4 2.665763+5 7.585776-4 2.078928+5 8.317638-4 1.609780+5 9.225714-4 1.198733+5 1.030000-3 8.685000+4 1.135011-3 6.492932+4 1.273503-3 4.562600+4 1.428894-3 3.179448+4 1.603245-3 2.198144+4 1.778279-3 1.566886+4 1.972423-3 1.110477+4 2.220000-3 7.442680+3 2.511886-3 4.860601+3 2.818383-3 3.243837+3 3.162278-3 2.150038+3 3.548134-3 1.415563+3 3.981072-3 9.260329+2 4.466836-3 6.020843+2 5.128614-3 3.565608+2 5.821032-3 2.189611+2 6.683439-3 1.276782+2 7.673615-3 7.387210+1 8.810489-3 4.241202+1 1.011579-2 2.417403+1 1.161449-2 1.367814+1 1.348963-2 7.325743+0 1.584893-2 3.711074+0 1.905461-2 1.692049+0 2.371374-2 6.603471-1 3.019952-2 2.315040-1 6.760830-2 6.822717-3 8.317638-2 2.772734-3 9.885531-2 1.318016-3 1.161449-1 6.631405-4 1.333521-1 3.705629-4 1.531088-1 2.085964-4 1.737801-1 1.240867-4 1.949845-1 7.790182-5 2.187762-1 4.924872-5 2.454709-1 3.136755-5 2.722701-1 2.104272-5 3.054921-1 1.361002-5 3.388442-1 9.259876-6 3.715352-1 6.621998-6 4.073803-1 4.770135-6 4.415705-1 3.603147-6 4.786301-1 2.739429-6 5.128614-1 2.178933-6 5.623413-1 1.619601-6 6.606935-1 9.746717-7 7.161434-1 7.606601-7 7.762471-1 5.979091-7 8.413951-1 4.729149-7 8.912509-1 4.026093-7 9.332543-1 3.561052-7 9.772372-1 3.169603-7 1.023293+0 2.841451-7 1.071519+0 2.566054-7 1.122018+0 2.331969-7 1.188600+0 2.083500-7 1.273503+0 1.834255-7 1.380384+0 1.592255-7 1.531087+0 1.334845-7 1.798871+0 1.010892-7 2.018366+0 8.343870-8 2.264644+0 6.940259-8 2.570396+0 5.710036-8 2.951209+0 4.651859-8 3.427678+0 3.753728-8 4.000000+0 3.032400-8 4.677351+0 2.461106-8 5.559043+0 1.969839-8 6.760830+0 1.542662-8 8.222427+0 1.217575-8 1.035142+1 9.291911-9 1.333521+1 6.961798-9 1.778279+1 5.058849-9 2.454709+1 3.569565-9 3.427678+1 2.504781-9 5.623413+1 1.496520-9 1.000000+2 8.29740-10 1.995262+2 4.12145-10 3.981072+2 2.05607-10 1.584893+3 5.14704-11 1.000000+5 8.14910-13 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.449300-4 2.492400-5 1.000000+5 2.492400-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.449300-4 6.709900-8 1.000000+5 6.709900-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.449300-4 1.199389-4 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.430100-4 2.488692+5 1.437000-4 2.497188+5 1.442000-4 2.513292+5 1.448000-4 2.546010+5 1.453000-4 2.586312+5 1.458700-4 2.649010+5 1.462177-4 2.696804+5 1.467000-4 2.776458+5 1.471500-4 2.866110+5 1.477000-4 2.997234+5 1.483000-4 3.169182+5 1.488000-4 3.336666+5 1.494000-4 3.567744+5 1.500000-4 3.832236+5 1.510000-4 4.346730+5 1.531087-4 5.705206+5 1.540100-4 6.377594+5 1.550000-4 7.161120+5 1.560000-4 7.986780+5 1.570000-4 8.833980+5 1.580000-4 9.692880+5 1.590000-4 1.055562+6 1.600000-4 1.141662+6 1.610000-4 1.227204+6 1.623000-4 1.337094+6 1.635000-4 1.436838+6 1.647000-4 1.534602+6 1.660000-4 1.637892+6 1.675000-4 1.753122+6 1.690000-4 1.863432+6 1.705000-4 1.968156+6 1.723300-4 2.087565+6 1.740000-4 2.187960+6 1.760000-4 2.297118+6 1.780000-4 2.394426+6 1.805000-4 2.500524+6 1.820000-4 2.556726+6 1.850000-4 2.654892+6 1.883649-4 2.746842+6 1.927525-4 2.845774+6 1.980000-4 2.941686+6 2.040000-4 3.026826+6 2.089296-4 3.077536+6 2.137962-4 3.110225+6 2.190000-4 3.126810+6 2.240000-4 3.126942+6 2.300000-4 3.110640+6 2.380000-4 3.068886+6 2.480000-4 2.995938+6 2.580000-4 2.907096+6 2.690000-4 2.794800+6 2.800000-4 2.671740+6 2.917427-4 2.534795+6 3.054921-4 2.375440+6 3.200000-4 2.213136+6 3.350000-4 2.052774+6 3.507519-4 1.893043+6 3.715352-4 1.698455+6 3.981072-4 1.479762+6 4.216965-4 1.311609+6 4.518559-4 1.126452+6 4.897788-4 9.357089+5 5.308844-4 7.716694+5 5.754399-4 6.318482+5 6.309573-4 4.991055+5 6.918310-4 3.913784+5 7.673615-4 2.952423+5 8.413951-4 2.282268+5 9.332543-4 1.695374+5 1.030000-3 1.268406+5 1.150000-3 9.100800+4 1.288250-3 6.410337+4 1.428894-3 4.623288+4 1.603245-3 3.192082+4 1.819701-3 2.105250+4 2.070000-3 1.365732+4 2.344229-3 8.916484+3 2.660725-3 5.727751+3 3.000000-3 3.735894+3 3.349654-3 2.506557+3 3.758374-3 1.641606+3 4.216965-3 1.068329+3 4.731513-3 6.911726+2 5.432503-3 4.065683+2 6.165950-3 2.482529+2 7.079458-3 1.438236+2 8.128305-3 8.267719+1 9.225714-3 4.942777+1 1.059254-2 2.798352+1 1.216186-2 1.572871+1 1.412538-2 8.364040+0 1.659587-2 4.204131+0 1.995262-2 1.899560+0 2.454709-2 7.709735-1 3.090295-2 2.807624-1 4.073803-2 8.283656-2 7.161434-2 6.783829-3 8.709636-2 2.860898-3 1.023293-1 1.414621-3 1.174898-1 7.785672-4 1.333521-1 4.533065-4 1.513561-1 2.658542-4 1.698244-1 1.648269-4 1.883649-1 1.079097-4 2.089296-1 7.113182-5 2.290868-1 4.942075-5 2.511886-1 3.456726-5 2.754229-1 2.435529-5 3.000000-1 1.772358-5 3.235937-1 1.346468-5 3.507519-1 1.011846-5 3.801894-1 7.657789-6 4.073803-1 6.066860-6 4.415705-1 4.656909-6 4.841724-1 3.466365-6 5.432503-1 2.410745-6 5.821032-1 1.950714-6 6.025596-1 1.760102-6 6.382635-1 1.497747-6 6.839117-1 1.242873-6 7.498942-1 9.775237-7 8.035261-1 8.186136-7 8.709636-1 6.581958-7 9.225714-1 5.666389-7 9.660509-1 5.053695-7 1.011579+0 4.535013-7 1.071519+0 3.994081-7 1.135011+0 3.545378-7 1.202264+0 3.169802-7 1.288250+0 2.792777-7 1.412538+0 2.378152-7 1.531087+0 2.072914-7 1.798871+0 1.569801-7 2.018366+0 1.295826-7 2.264644+0 1.077882-7 2.570396+0 8.868186-8 2.951209+0 7.224574-8 3.427678+0 5.829685-8 4.000000+0 4.709400-8 4.677351+0 3.822137-8 5.559043+0 3.059132-8 6.760830+0 2.395834-8 8.222427+0 1.890952-8 1.035142+1 1.443018-8 1.333521+1 1.081197-8 1.778279+1 7.856519-9 2.454709+1 5.543676-9 3.427678+1 3.890053-9 5.623413+1 2.324111-9 1.011579+2 1.273583-9 2.018366+2 6.32677-10 4.027170+2 3.15650-10 1.603245+3 7.90190-11 1.000000+5 1.26560-12 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.430100-4 2.500200-5 1.000000+5 2.500200-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.430100-4 3.418200-8 1.000000+5 3.418200-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.430100-4 1.179738-4 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.639000-5 1.288808+5 4.731513-5 1.361692+5 4.850000-5 1.447134+5 4.970000-5 1.525998+5 5.080000-5 1.592294+5 5.230000-5 1.674134+5 5.400000-5 1.756354+5 5.580000-5 1.833288+5 5.800000-5 1.914770+5 6.025596-5 1.985584+5 6.300000-5 2.056020+5 6.531306-5 2.103237+5 6.839116-5 2.150053+5 7.161434-5 2.181064+5 7.500000-5 2.195680+5 7.852356-5 2.193811+5 8.222426-5 2.176433+5 8.650000-5 2.141540+5 9.120108-5 2.090731+5 9.660509-5 2.023069+5 1.040000-4 1.924326+5 1.122018-4 1.815243+5 1.220000-4 1.690320+5 1.318257-4 1.571687+5 1.428894-4 1.446656+5 1.566751-4 1.304951+5 1.737801-4 1.153104+5 1.950000-4 9.981800+4 2.162719-4 8.712349+4 2.454709-4 7.317557+4 2.900000-4 5.767560+4 3.349654-4 4.659535+4 4.027170-4 3.520291+4 4.897788-4 2.591214+4 5.956621-4 1.893569+4 7.244360-4 1.374567+4 8.810489-4 9.910490+3 1.059254-3 7.234963+3 1.273503-3 5.243813+3 1.513561-3 3.849319+3 1.798871-3 2.805334+3 2.162719-3 1.986158+3 2.570396-3 1.426417+3 3.090295-3 9.942727+2 3.672823-3 7.036858+2 4.365158-3 4.942263+2 5.128614-3 3.528482+2 6.025596-3 2.501337+2 7.079458-3 1.760611+2 8.317638-3 1.230401+2 9.772372-3 8.536305+1 1.148154-2 5.878115+1 1.348963-2 4.016749+1 1.584893-2 2.723512+1 1.862087-2 1.832270+1 2.187762-2 1.223376+1 2.570396-2 8.109242+0 3.019952-2 5.335925+0 3.589219-2 3.379743+0 4.265795-2 2.124091+0 5.069907-2 1.325121+0 6.095369-2 7.944226-1 7.498942-2 4.431579-1 9.440609-2 2.297910-1 1.161449-1 1.263010-1 1.972423-1 2.715740-2 2.426610-1 1.495016-2 2.851018-1 9.459162-3 3.311311-1 6.228009-3 3.758374-1 4.403267-3 4.216965-1 3.234480-3 4.731513-1 2.393382-3 5.248075-1 1.837950-3 5.821032-1 1.421567-3 6.456542-1 1.108007-3 7.161434-1 8.704763-4 7.852356-1 7.071885-4 8.609938-1 5.779244-4 9.440609-1 4.756359-4 1.035142+0 3.945276-4 1.174898+0 3.072499-4 1.303167+0 2.522553-4 1.445440+0 2.085041-4 1.603245+0 1.734813-4 1.798871+0 1.424220-4 2.044000+0 1.152700-4 2.290868+0 9.609578-5 2.600160+0 7.911918-5 2.985383+0 6.451219-5 3.467369+0 5.208693-5 4.027170+0 4.237309-5 4.731513+0 3.418707-5 5.623413+0 2.737605-5 6.839116+0 2.145005-5 8.413951+0 1.670659-5 1.059254+1 1.275944-5 1.380384+1 9.444093-6 1.862087+1 6.783744-6 2.660725+1 4.617651-6 3.715352+1 3.246552-6 5.888437+1 2.012526-6 1.083927+2 1.077977-6 2.162719+2 5.358263-7 8.609938+2 1.337347-7 1.000000+5 1.149200-9 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.639000-5 1.525300-5 1.000000+5 1.525300-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.639000-5 1.794800-8 1.000000+5 1.794800-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.639000-5 3.111905-5 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.847000-5 7.057380+6 2.960000-5 5.869000+6 3.080000-5 4.896040+6 3.273407-5 3.746177+6 3.801894-5 1.964550+6 4.731513-5 7.515923+5 5.011872-5 5.863392+5 5.300000-5 4.637820+5 5.559043-5 3.823881+5 5.800000-5 3.244020+5 6.025596-5 2.817220+5 6.237348-5 2.495336+5 6.456542-5 2.225214+5 6.683439-5 1.999193+5 6.900000-5 1.824040+5 7.079458-5 1.703291+5 7.300000-5 1.579662+5 7.500000-5 1.487006+5 7.737400-5 1.396475+5 8.000000-5 1.316014+5 8.230000-5 1.258988+5 8.511380-5 1.202570+5 8.810489-5 1.155135+5 9.150000-5 1.112886+5 9.549926-5 1.074470+5 1.000000-4 1.041298+5 1.060000-4 1.007548+5 1.174898-4 9.598952+4 1.380384-4 8.930258+4 1.513561-4 8.517446+4 1.659587-4 8.068080+4 1.819701-4 7.585899+4 2.000000-4 7.067760+4 2.187762-4 6.556978+4 2.400000-4 6.023420+4 2.660725-4 5.437178+4 2.917427-4 4.929563+4 3.200000-4 4.438720+4 3.600000-4 3.849120+4 4.027170-4 3.333542+4 4.500000-4 2.867360+4 5.011872-4 2.460555+4 5.559043-4 2.110226+4 6.237348-4 1.766247+4 6.918310-4 1.495546+4 7.800000-4 1.224238+4 8.709636-4 1.011139+4 9.772372-4 8.219246+3 1.083927-3 6.776138+3 1.216186-3 5.426768+3 1.364583-3 4.312037+3 1.531087-3 3.399417+3 1.717908-3 2.657098+3 1.927525-3 2.061107+3 2.187762-3 1.546131+3 2.454709-3 1.181921+3 2.754229-3 8.971988+2 3.090295-3 6.763674+2 3.467369-3 5.064158+2 3.935501-3 3.655138+2 4.466836-3 2.616963+2 5.069907-3 1.859146+2 5.754399-3 1.310881+2 6.531306-3 9.176144+1 7.413102-3 6.378153+1 8.413951-3 4.402995+1 9.660509-3 2.916723+1 1.109175-2 1.918244+1 1.273503-2 1.252668+1 1.462177-2 8.122460+0 1.678804-2 5.229179+0 1.949845-2 3.220161+0 2.290868-2 1.896023+0 2.722701-2 1.066546+0 3.235937-2 5.955185-1 3.981072-2 2.934386-1 5.069907-2 1.274097-1 6.531306-2 5.279524-2 1.023293-1 1.101970-2 1.288250-1 4.966392-3 1.566751-1 2.540840-3 1.840772-1 1.473232-3 2.137962-1 8.948018-4 2.454709-1 5.690286-4 2.786121-1 3.785611-4 3.126079-1 2.631507-4 3.507519-1 1.842465-4 3.890451-1 1.345905-4 4.315191-1 9.901729-5 4.786301-1 7.337769-5 5.308844-1 5.478051-5 5.888437-1 4.121538-5 6.456542-1 3.223328-5 7.079458-1 2.537904-5 7.762471-1 2.011742-5 8.609938-1 1.555681-5 9.225714-1 1.319091-5 9.772372-1 1.156961-5 1.035142+0 1.021589-5 1.109175+0 8.855760-6 1.188600+0 7.730400-6 1.318257+0 6.384207-6 1.479108+0 5.200890-6 1.717908+0 4.008067-6 1.949845+0 3.239316-6 2.187762+0 2.688848-6 2.483133+0 2.207703-6 2.851018+0 1.795050-6 3.311311+0 1.446015-6 3.845918+0 1.173713-6 4.518559+0 9.448968-7 5.370318+0 7.550867-7 6.531306+0 5.905635-7 7.943282+0 4.654863-7 9.885531+0 3.595914-7 1.244515+1 2.761223-7 1.603245+1 2.080133-7 2.113489+1 1.538191-7 2.951209+1 1.076067-7 4.466836+1 6.969299-8 7.328245+1 4.181487-8 1.396368+2 2.168704-8 2.786121+2 1.079976-8 1.109175+3 2.699400-9 1.000000+5 2.98950-11 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.847000-5 1.019400-5 1.000000+5 1.019400-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.847000-5 2.849300-8 1.000000+5 2.849300-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.847000-5 1.824751-5 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.720000-5 1.443116+7 2.820000-5 1.211040+7 2.930000-5 1.012416+7 3.080000-5 8.086320+6 3.845918-5 3.061644+6 4.365158-5 1.755488+6 4.650000-5 1.337524+6 4.900000-5 1.074900+6 5.128614-5 8.948008+5 5.350000-5 7.604600+5 5.559043-5 6.608551+5 5.754399-5 5.861849+5 5.956621-5 5.235598+5 6.165950-5 4.711472+5 6.382635-5 4.273951+5 6.580000-5 3.949492+5 6.800000-5 3.654372+5 7.000000-5 3.435240+5 7.244360-5 3.218149+5 7.500000-5 3.038028+5 7.762471-5 2.891656+5 8.035261-5 2.771167+5 8.317638-5 2.672219+5 8.650000-5 2.580640+5 9.015711-5 2.501893+5 9.549926-5 2.414018+5 1.035142-4 2.315689+5 1.273503-4 2.100653+5 1.400000-4 1.996444+5 1.531087-4 1.889238+5 1.678804-4 1.771765+5 1.850000-4 1.642628+5 2.018366-4 1.524468+5 2.220000-4 1.393968+5 2.454709-4 1.258083+5 2.730000-4 1.120276+5 3.019952-4 9.959550+4 3.311311-4 8.887921+4 3.700000-4 7.695040+4 4.120975-4 6.643066+4 4.623810-4 5.631855+4 5.188000-4 4.740703+4 5.821032-4 3.959864+4 6.531306-4 3.284266+4 7.300000-4 2.721956+4 8.160720-4 2.240592+4 9.120108-4 1.832456+4 1.023293-3 1.477251+4 1.148154-3 1.181514+4 1.288250-3 9.375989+3 1.445440-3 7.382578+3 1.621810-3 5.767522+3 1.819701-3 4.471424+3 2.041738-3 3.440882+3 2.290868-3 2.628671+3 2.570396-3 1.993845+3 2.884032-3 1.501729+3 3.273407-3 1.090839+3 3.672823-3 8.100058+2 4.120975-3 5.974320+2 4.677351-3 4.241483+2 5.308844-3 2.987894+2 6.025596-3 2.088955+2 6.839116-3 1.449819+2 7.762471-3 9.990767+1 8.810489-3 6.837567+1 1.000000-2 4.647580+1 1.135011-2 3.135725+1 1.303167-2 2.025895+1 1.496236-2 1.299309+1 1.737801-2 7.970588+0 2.018366-2 4.853717+0 2.371374-2 2.822226+0 2.786121-2 1.628537+0 3.273407-2 9.331013-1 3.935501-2 4.899932-1 4.841724-2 2.355192-1 6.095369-2 1.034436-1 1.188502-1 9.376657-3 1.445440-1 4.669097-3 1.698244-1 2.646328-3 1.949845-1 1.637408-3 2.213095-1 1.061519-3 2.483133-1 7.206225-4 2.786121-1 4.928375-4 3.090295-1 3.526252-4 3.427678-1 2.542142-4 3.758374-1 1.913564-4 4.120975-1 1.450518-4 4.518559-1 1.107742-4 4.954502-1 8.524082-5 5.432503-1 6.611576-5 5.888437-1 5.328662-5 6.382635-1 4.322491-5 6.918310-1 3.528700-5 7.498942-1 2.898732-5 8.413951-1 2.209346-5 9.120108-1 1.840380-5 9.772372-1 1.584464-5 1.071519+0 1.310591-5 1.174898+0 1.091893-5 1.288250+0 9.172135-6 1.428894+0 7.593515-6 1.640590+0 5.952797-6 1.862087+0 4.798943-6 2.089296+0 3.972770-6 2.371374+0 3.252633-6 2.691535+0 2.683086-6 3.126079+0 2.154902-6 3.630781+0 1.743985-6 4.216965+0 1.421864-6 4.954502+0 1.149635-6 5.956621+0 9.091380-7 7.244360+0 7.139414-7 9.000000+0 5.508700-7 1.135011+1 4.208629-7 1.462177+1 3.162184-7 1.949845+1 2.303729-7 2.818383+1 1.551075-7 3.935501+1 1.091644-7 6.165950+1 6.853171-8 1.135011+2 3.673085-8 2.264644+2 1.826422-8 9.015711+2 4.559998-9 1.000000+5 4.10330-11 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.720000-5 1.019700-5 1.000000+5 1.019700-5 1 38000 7 7 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.720000-5 1.199500-8 1.000000+5 1.199500-8 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.720000-5 1.699101-5 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.100000-6 1.762245+6 5.308844-6 1.401042+6 5.500000-6 1.137980+6 5.700000-6 9.165320+5 5.920000-6 7.229500+5 6.100000-6 5.953500+5 6.270000-6 4.953800+5 6.456542-6 4.045886+5 6.606934-6 3.432479+5 6.770000-6 2.867540+5 6.930000-6 2.399160+5 7.100000-6 1.980172+5 7.270000-6 1.629436+5 7.420000-6 1.367824+5 7.550000-6 1.172290+5 7.700000-6 9.778360+4 7.852356-6 8.099782+4 8.000000-6 6.719320+4 8.150000-6 5.531040+4 8.270000-6 4.716300+4 8.380000-6 4.063240+4 8.511380-6 3.388053+4 8.650000-6 2.785020+4 8.770000-6 2.343020+4 8.920000-6 1.882184+4 9.280000-6 1.117234+4 9.380000-6 9.749440+3 9.460000-6 8.794980+3 9.520000-6 8.178260+3 9.570000-6 7.725320+3 9.620000-6 7.325020+3 9.670000-6 6.974780+3 9.730000-6 6.617200+3 9.790000-6 6.324260+3 9.850000-6 6.092200+3 9.910000-6 5.917460+3 9.960000-6 5.813160+3 1.000000-5 5.755440+3 1.005000-5 5.713940+3 1.010000-5 5.704880+3 1.015000-5 5.726620+3 1.021500-5 5.798400+3 1.027000-5 5.895300+3 1.033000-5 6.036540+3 1.039000-5 6.212580+3 1.047129-5 6.502686+3 1.055000-5 6.835900+3 1.065000-5 7.326540+3 1.077000-5 8.004180+3 1.122018-5 1.121360+4 1.142000-5 1.288144+4 1.161449-5 1.459937+4 1.180000-5 1.630062+4 1.200000-5 1.818098+4 1.222000-5 2.028180+4 1.244515-5 2.244545+4 1.264200-5 2.433404+4 1.288250-5 2.662205+4 1.310000-5 2.866200+4 1.333521-5 3.082635+4 1.357000-5 3.293560+4 1.380384-5 3.497929+4 1.412538-5 3.768767+4 1.445440-5 4.032880+4 1.480000-5 4.295800+4 1.515000-5 4.546700+4 1.550000-5 4.782160+4 1.590000-5 5.032720+4 1.640590-5 5.322379+4 1.698244-5 5.617672+4 1.757924-5 5.887300+4 1.830000-5 6.168620+4 1.905461-5 6.416859+4 1.995262-5 6.658801+4 2.089296-5 6.859507+4 2.190000-5 7.024500+4 2.317395-5 7.171193+4 2.454709-5 7.265241+4 2.600160-5 7.307877+4 2.754229-5 7.303585+4 2.950000-5 7.242740+4 3.162278-5 7.127027+4 3.388442-5 6.962547+4 3.630781-5 6.752177+4 3.900000-5 6.493760+4 4.216965-5 6.173484+4 4.518559-5 5.865971+4 4.897788-5 5.484206+4 5.308844-5 5.090405+4 5.821032-5 4.640512+4 6.382635-5 4.202045+4 7.244360-5 3.635885+4 8.317638-5 3.081596+4 9.885531-5 2.485645+4 1.288250-4 1.768623+4 1.513561-4 1.431501+4 1.678804-4 1.242141+4 1.883649-4 1.053203+4 2.089296-4 9.021821+3 2.426610-4 7.151172+3 3.890451-4 3.382918+3 4.731513-4 2.457628+3 6.683439-4 1.388769+3 8.035261-4 1.016166+3 1.035142-3 6.576824+2 1.244515-3 4.754870+2 1.500000-3 3.395960+2 1.798871-3 2.429991+2 2.162719-3 1.717648+2 2.570396-3 1.233723+2 3.019952-3 8.994206+1 3.589219-3 6.361674+1 4.365158-3 4.259288+1 5.188000-3 2.966681+1 6.095369-3 2.101774+1 7.161434-3 1.478456+1 8.413951-3 1.032540+1 9.885531-3 7.158555+0 1.161449-2 4.926114+0 1.364583-2 3.364283+0 1.603245-2 2.280003+0 1.883649-2 1.533048+0 2.213095-2 1.022953+0 2.600160-2 6.774951-1 3.054921-2 4.454467-1 3.630781-2 2.819720-1 4.315191-2 1.771271-1 5.128614-2 1.104501-1 6.165950-2 6.618793-2 7.585776-2 3.690810-2 9.549926-2 1.913215-2 1.216186-1 9.509688-3 1.949845-1 2.416605-3 2.426610-1 1.287000-3 2.851018-1 8.144418-4 3.311311-1 5.363540-4 3.758374-1 3.793069-4 4.216965-1 2.787148-4 4.731513-1 2.063258-4 5.248075-1 1.585225-4 5.821032-1 1.226883-4 6.382635-1 9.834491-5 6.998420-1 7.934240-5 7.673615-1 6.443334-5 8.413951-1 5.267816-5 9.225714-1 4.336574-5 1.011579+0 3.595504-5 1.161449+0 2.734595-5 1.288250+0 2.246257-5 1.462177+0 1.777869-5 1.603245+0 1.509319-5 1.798871+0 1.238987-5 2.044000+0 1.003100-5 2.317395+0 8.215237-6 2.630268+0 6.768003-6 3.019952+0 5.520554-6 3.507519+0 4.459881-6 4.073803+0 3.630158-6 4.786301+0 2.930384-6 5.688529+0 2.347818-6 6.918310+0 1.840340-6 8.511380+0 1.434053-6 1.071519+1 1.095649-6 1.400000+1 8.089100-7 1.883649+1 5.829402-7 2.691535+1 3.969318-7 3.758374+1 2.791349-7 6.025596+1 1.710185-7 1.096478+2 9.271219-8 2.187762+2 4.608852-8 8.709636+2 1.150417-8 1.000000+5 1.00000-10 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.100000-6 5.100000-6 1.000000+5 5.100000-6 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.100000-6 0.0 1.000000+5 1.000000+5 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.654440-8 1.028750+0 7.654440-7 1.029500+0 1.047530-6 1.030100+0 1.317400-6 1.031000+0 1.802650-6 1.032000+0 2.466470-6 1.033200+0 3.455110-6 1.034000+0 4.241470-6 1.035300+0 5.757190-6 1.036640+0 7.654440-6 1.038200+0 1.032990-5 1.039700+0 1.342060-5 1.041500+0 1.785600-5 1.043800+0 2.478470-5 1.046400+0 3.448320-5 1.048300+0 4.293260-5 1.051200+0 5.823710-5 1.054080+0 7.654440-5 1.057700+0 1.043350-4 1.061100+0 1.357140-4 1.065100+0 1.796710-4 1.070400+0 2.506600-4 1.076200+0 3.464120-4 1.080600+0 4.326120-4 1.087100+0 5.828690-4 1.093710+0 7.654440-4 1.102600+0 1.061250-3 1.110700+0 1.384050-3 1.120600+0 1.851370-3 1.133300+0 2.574100-3 1.147500+0 3.553950-3 1.158200+0 4.416650-3 1.174100+0 5.903230-3 1.190110+0 7.654440-3 1.205100+0 9.529500-3 1.227500+0 1.275580-2 1.250000+0 1.648000-2 1.265600+0 1.931990-2 1.294900+0 2.516920-2 1.331800+0 3.337720-2 1.362600+0 4.084150-2 1.411700+0 5.373400-2 1.455800+0 6.625090-2 1.500000+0 7.971000-2 1.589800+0 1.100930-1 1.665000+0 1.385300-1 1.784700+0 1.886100-1 1.892300+0 2.373230-1 2.000000+0 2.878000-1 2.044000+0 3.085000-1 2.163500+0 3.654330-1 2.372600+0 4.669050-1 2.647100+0 6.007610-1 3.000000+0 7.696000-1 3.437500+0 9.691590-1 4.000000+0 1.209000+0 4.750000+0 1.502490+0 5.000000+0 1.594000+0 6.000000+0 1.931000+0 7.000000+0 2.232000+0 8.000000+0 2.502000+0 9.000000+0 2.748000+0 1.000000+1 2.972000+0 1.100000+1 3.177000+0 1.200000+1 3.365000+0 1.300000+1 3.539000+0 1.400000+1 3.698000+0 1.500000+1 3.847000+0 1.600000+1 3.986000+0 1.800000+1 4.240000+0 2.000000+1 4.468000+0 2.200000+1 4.676000+0 2.400000+1 4.864000+0 2.600000+1 5.036000+0 2.800000+1 5.194000+0 3.000000+1 5.339000+0 4.000000+1 5.931000+0 5.000000+1 6.370000+0 6.000000+1 6.712000+0 8.000000+1 7.218000+0 1.000000+2 7.577000+0 1.500000+2 8.149000+0 2.000000+2 8.490000+0 3.000000+2 8.888000+0 4.000000+2 9.117000+0 5.000000+2 9.267000+0 6.000000+2 9.375000+0 8.000000+2 9.519000+0 1.000000+3 9.612000+0 1.500000+3 9.747000+0 2.000000+3 9.820000+0 3.000000+3 9.899000+0 4.000000+3 9.942000+0 5.000000+3 9.969000+0 6.000000+3 9.988000+0 8.000000+3 1.001000+1 1.000000+4 1.003000+1 1.500000+4 1.005000+1 2.000000+4 1.006000+1 3.000000+4 1.007000+1 4.000000+4 1.008000+1 5.000000+4 1.008000+1 6.000000+4 1.009000+1 8.000000+4 1.009000+1 1.000000+5 1.009000+1 1 38000 7 8 8.762000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.815330-7 2.106600+0 1.243080-6 2.114000+0 1.719950-6 2.119500+0 2.141330-6 2.127900+0 2.904050-6 2.136250+0 3.815330-6 2.147000+0 5.231090-6 2.156900+0 6.794550-6 2.169000+0 9.067750-6 2.184500+0 1.260450-5 2.201800+0 1.743870-5 2.214800+0 2.172720-5 2.234200+0 2.922690-5 2.253680+0 3.815330-5 2.281500+0 5.344040-5 2.307000+0 7.019380-5 2.338200+0 9.438170-5 2.377400+0 1.307070-4 2.410200+0 1.662380-4 2.446800+0 2.114640-4 2.485900+0 2.662450-4 2.532900+0 3.407360-4 2.556430+0 3.815330-4 2.611900+0 4.864970-4 2.660400+0 5.881480-4 2.745300+0 7.871970-4 2.809000+0 9.533410-4 2.904500+0 1.228150-3 3.000000+0 1.533000-3 3.125000+0 1.976750-3 3.234400+0 2.405270-3 3.425800+0 3.239000-3 3.569300+0 3.927570-3 3.784700+0 5.048780-3 4.000000+0 6.254000-3 4.250000+0 7.727300-3 4.625000+0 1.004260-2 5.000000+0 1.245000-2 5.500000+0 1.575630-2 6.000000+0 1.911000-2 6.750000+0 2.410570-2 7.000000+0 2.575000-2 8.000000+0 3.218000-2 9.000000+0 3.833000-2 1.000000+1 4.418000-2 1.100000+1 4.972000-2 1.200000+1 5.494000-2 1.300000+1 5.987000-2 1.400000+1 6.456000-2 1.500000+1 6.900000-2 1.600000+1 7.323000-2 1.800000+1 8.106000-2 2.000000+1 8.819000-2 2.200000+1 9.472000-2 2.400000+1 1.007000-1 2.600000+1 1.063000-1 2.800000+1 1.114000-1 3.000000+1 1.162000-1 4.000000+1 1.361000-1 5.000000+1 1.513000-1 6.000000+1 1.633000-1 8.000000+1 1.815000-1 1.000000+2 1.947000-1 1.500000+2 2.168000-1 2.000000+2 2.307000-1 3.000000+2 2.479000-1 4.000000+2 2.582000-1 5.000000+2 2.654000-1 6.000000+2 2.706000-1 8.000000+2 2.779000-1 1.000000+3 2.828000-1 1.500000+3 2.902000-1 2.000000+3 2.944000-1 3.000000+3 2.990000-1 4.000000+3 3.017000-1 5.000000+3 3.034000-1 6.000000+3 3.046000-1 8.000000+3 3.062000-1 1.000000+4 3.072000-1 1.500000+4 3.086000-1 2.000000+4 3.094000-1 3.000000+4 3.102000-1 4.000000+4 3.107000-1 5.000000+4 3.110000-1 6.000000+4 3.112000-1 8.000000+4 3.114000-1 1.000000+5 3.115000-1 1 38000 7 8 8.762000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 38000 7 9 8.762000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.800000+1 1.000000+5 3.800000+1 5.000000+5 3.797200+1 1.000000+6 3.793200+1 1.375000+6 3.789290+1 1.500000+6 3.787500+1 1.750000+6 3.783190+1 2.000000+6 3.778100+1 2.375000+6 3.769370+1 2.500000+6 3.766200+1 2.875000+6 3.755860+1 3.000000+6 3.752100+1 3.250000+6 3.744130+1 3.625000+6 3.731360+1 4.000000+6 3.718000+1 4.437500+6 3.701840+1 4.812500+6 3.687080+1 5.000000+6 3.679300+1 5.500000+6 3.656960+1 5.875000+6 3.639790+1 6.437500+6 3.613090+1 6.500000+6 3.610220+1 7.000000+6 3.586200+1 7.500000+6 3.562170+1 8.250000+6 3.525720+1 8.500000+6 3.513720+1 9.000000+6 3.489400+1 1.000000+7 3.440600+1 1.250000+7 3.324700+1 1.500000+7 3.211300+1 1.750000+7 3.102200+1 2.000000+7 2.994200+1 2.250000+7 2.885720+1 2.375000+7 2.831990+1 2.500000+7 2.779400+1 2.875000+7 2.627580+1 3.000000+7 2.579700+1 3.500000+7 2.400490+1 3.875000+7 2.280880+1 4.000000+7 2.243800+1 4.500000+7 2.106680+1 4.750000+7 2.043790+1 5.000000+7 1.983900+1 5.500000+7 1.870620+1 5.750000+7 1.816350+1 6.000000+7 1.763600+1 6.500000+7 1.661010+1 7.000000+7 1.562400+1 7.500000+7 1.467760+1 8.000000+7 1.377600+1 8.750000+7 1.251630+1 9.000000+7 1.212500+1 9.750000+7 1.103360+1 1.000000+8 1.069900+1 1.125000+8 9.240120+0 1.187500+8 8.640720+0 1.250000+8 8.122000+0 1.359400+8 7.382130+0 1.437500+8 6.960570+0 1.453100+8 6.885810+0 1.500000+8 6.676600+0 1.625000+8 6.218220+0 1.718800+8 5.936330+0 1.906300+8 5.453050+0 2.000000+8 5.231600+0 2.125000+8 4.945590+0 2.375000+8 4.433150+0 2.500000+8 4.212900+0 2.671900+8 3.940740+0 2.789100+8 3.753920+0 2.875000+8 3.608380+0 2.894500+8 3.574010+0 2.973600+8 3.429530+0 3.000000+8 3.379400+0 3.062500+8 3.257280+0 3.335900+8 2.760420+0 3.445300+8 2.608620+0 3.500000+8 2.545900+0 4.000000+8 2.175800+0 4.062500+8 2.126590+0 5.000000+8 1.435500+0 5.125000+8 1.383380+0 5.234400+8 1.345180+0 5.425800+8 1.290640+0 5.712900+8 1.227500+0 6.000000+8 1.175000+0 7.000000+8 1.018800+0 7.750000+8 9.297820-1 8.000000+8 9.008000-1 8.250000+8 8.708600-1 8.687500+8 8.173860-1 9.015600+8 7.774960-1 9.507800+8 7.194460-1 1.000000+9 6.647000-1 1.062500+9 6.007390-1 1.117200+9 5.497870-1 1.186000+9 4.917660-1 1.243500+9 4.481030-1 1.307700+9 4.039980-1 1.375000+9 3.626080-1 1.376400+9 3.617980-1 1.458800+9 3.172080-1 1.500000+9 2.971300-1 1.589800+9 2.578880-1 1.665000+9 2.293950-1 1.784700+9 1.910540-1 1.892300+9 1.627850-1 2.000000+9 1.392900-1 2.139200+9 1.146390-1 2.272600+9 9.578160-2 2.443000+9 7.685470-2 2.680200+9 5.751380-2 2.825100+9 4.860830-2 3.097000+9 3.604140-2 3.334900+9 2.819430-2 3.751200+9 1.895150-2 4.297500+9 1.187190-2 5.000000+9 7.003100-3 6.500000+9 2.782480-3 8.000000+9 1.337000-3 1.00000+10 6.098700-4 1.20500+10 3.189300-4 1.41820+10 1.822050-4 1.71170+10 9.614490-5 2.01490+10 5.556300-5 2.26440+10 3.764170-5 2.74790+10 1.984790-5 3.41360+10 9.760690-6 4.02450+10 5.723850-6 5.12000+10 2.641470-6 6.34000+10 1.338110-6 8.17000+10 6.011260-7 1.00000+11 3.191400-7 1.34280+11 1.275730-7 1.77440+11 5.395260-8 2.63330+11 1.610840-8 3.75720+11 5.477130-9 6.61190+11 1.002090-9 1.48990+12 9.00098-11 4.26460+12 4.15447-12 1.00000+14 4.66210-16 5.62340+14 3.13189-18 7.49890+15 1.61691-21 1.00000+17 8.01300-25 1 38000 7 0 8.762000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.10000-12 1.000000+2 9.10000-10 1.000000+3 9.100000-8 1.000000+4 9.100000-6 1.000000+5 9.100000-4 5.000000+5 2.275000-2 1.000000+6 9.100000-2 1.375000+6 1.706970-1 1.500000+6 2.023000-1 1.750000+6 2.723850-1 2.000000+6 3.512000-1 2.375000+6 4.845110-1 2.500000+6 5.326000-1 2.875000+6 6.860410-1 3.000000+6 7.400000-1 3.250000+6 8.513380-1 3.625000+6 1.025680+0 4.000000+6 1.206400+0 4.437500+6 1.421870+0 4.812500+6 1.608020+0 5.000000+6 1.701000+0 5.500000+6 1.945970+0 5.875000+6 2.126280+0 6.437500+6 2.389320+0 6.500000+6 2.418000+0 7.000000+6 2.642000+0 7.500000+6 2.856810+0 8.250000+6 3.164270+0 8.500000+6 3.263300+0 9.000000+6 3.457100+0 1.000000+7 3.831000+0 1.250000+7 4.737800+0 1.500000+7 5.653000+0 1.750000+7 6.569500+0 2.000000+7 7.464000+0 2.250000+7 8.326180+0 2.375000+7 8.745850+0 2.500000+7 9.159300+0 2.875000+7 1.035820+1 3.000000+7 1.074600+1 3.500000+7 1.222650+1 3.875000+7 1.325230+1 4.000000+7 1.357600+1 4.500000+7 1.477980+1 4.750000+7 1.533380+1 5.000000+7 1.586000+1 5.500000+7 1.683680+1 5.750000+7 1.729750+1 6.000000+7 1.774500+1 6.500000+7 1.860150+1 7.000000+7 1.942000+1 7.500000+7 2.020390+1 8.000000+7 2.095600+1 8.750000+7 2.202430+1 9.000000+7 2.236700+1 9.750000+7 2.334180+1 1.000000+8 2.365400+1 1.125000+8 2.509270+1 1.187500+8 2.574770+1 1.250000+8 2.636000+1 1.359400+8 2.733360+1 1.437500+8 2.795760+1 1.453100+8 2.807680+1 1.500000+8 2.842300+1 1.625000+8 2.925590+1 1.718800+8 2.981210+1 1.906300+8 3.078170+1 2.000000+8 3.121000+1 2.125000+8 3.172670+1 2.375000+8 3.262540+1 2.500000+8 3.301400+1 2.671900+8 3.349210+1 2.789100+8 3.378450+1 2.875000+8 3.398580+1 2.894500+8 3.402840+1 2.973600+8 3.419890+1 3.000000+8 3.425500+1 3.062500+8 3.437640+1 3.335900+8 3.485810+1 3.445300+8 3.502510+1 3.500000+8 3.510300+1 4.000000+8 3.568200+1 4.062500+8 3.573840+1 5.000000+8 3.639900+1 5.125000+8 3.646240+1 5.234400+8 3.651670+1 5.425800+8 3.660920+1 5.712900+8 3.673310+1 6.000000+8 3.684800+1 7.000000+8 3.717200+1 7.750000+8 3.735950+1 8.000000+8 3.741300+1 8.250000+8 3.745930+1 8.687500+8 3.753700+1 9.015600+8 3.758900+1 9.507800+8 3.765580+1 1.000000+9 3.771300+1 1.062500+9 3.777130+1 1.117200+9 3.780970+1 1.186000+9 3.785270+1 1.243500+9 3.787830+1 1.307700+9 3.790550+1 1.375000+9 3.792370+1 1.376400+9 3.792400+1 1.458800+9 3.794360+1 1.500000+9 3.795300+1 1.589800+9 3.796320+1 1.665000+9 3.797130+1 1.784700+9 3.798170+1 1.892300+9 3.798650+1 2.000000+9 3.799100+1 2.139200+9 3.799330+1 2.272600+9 3.799540+1 2.443000+9 3.799790+1 2.680200+9 3.800110+1 2.825100+9 3.800190+1 3.097000+9 3.800160+1 3.334900+9 3.800130+1 3.751200+9 3.800100+1 4.297500+9 3.800050+1 5.000000+9 3.800000+1 6.500000+9 3.800000+1 8.000000+9 3.800000+1 1.00000+10 3.800000+1 1.20500+10 3.800000+1 1.41820+10 3.800000+1 1.71170+10 3.800000+1 2.01490+10 3.800000+1 2.26440+10 3.800000+1 2.74790+10 3.800000+1 3.41360+10 3.800000+1 4.02450+10 3.800000+1 5.12000+10 3.800000+1 6.34000+10 3.800000+1 8.17000+10 3.800000+1 1.00000+11 3.800000+1 1.34280+11 3.800000+1 1.77440+11 3.800000+1 2.63330+11 3.800000+1 3.75720+11 3.800000+1 6.61190+11 3.800000+1 1.48990+12 3.800000+1 4.26460+12 3.800000+1 1.00000+14 3.800000+1 5.62340+14 3.800000+1 7.49890+15 3.800000+1 1.00000+17 3.800000+1 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.367335-6 0.0 1.370700-6 1.033773-7 1.374066-6 2.045551-7 1.377431-6 3.736366-7 1.380797-6 6.300027-7 1.384162-6 9.805940-7 1.387528-6 1.408932-6 1.390893-6 1.868721-6 1.394259-6 2.287984-6 1.397624-6 2.585922-6 1.400990-6 2.697936-6 1.404356-6 2.598376-6 1.407721-6 2.310075-6 1.411087-6 1.895852-6 1.417818-6 1.004437-6 1.421183-6 6.484294-7 1.424549-6 3.864175-7 1.427914-6 2.125714-7 1.431280-6 1.079461-7 1.434645-6 0.0 1.441812-6 0.0 1.445360-6 1.900113-7 1.448909-6 3.759800-7 1.452458-6 6.867582-7 1.456007-6 1.157969-6 1.459556-6 1.802369-6 1.463105-6 2.589669-6 1.466653-6 3.434780-6 1.470202-6 4.205401-6 1.473751-6 4.753022-6 1.477300-6 4.958909-6 1.480849-6 4.775913-6 1.484398-6 4.246006-6 1.487947-6 3.484646-6 1.495044-6 1.846192-6 1.498593-6 1.191838-6 1.502142-6 7.102499-7 1.505691-6 3.907143-7 1.509240-6 1.984090-7 1.512788-6 0.0 2.129036-6 0.0 2.138207-6 3.580748+0 2.139517-6 4.087064+0 2.144758-6 7.465356+0 2.149998-6 1.258762+1 2.155893-6 2.066005+1 2.164736-6 3.561166+1 2.171614-6 4.645708+1 2.176527-6 5.181966+1 2.187008-6 5.647228+1 2.197489-6 5.375517+1 2.202729-6 5.513092+1 2.208126-6 6.100547+1 2.213905-6 7.246888+1 2.223655-6 9.685285+1 2.229813-6 1.071560+2 2.234390-6 1.093354+2 2.240250-6 1.042305+2 2.246090-6 9.060676+1 2.254539-6 6.279745+1 2.261228-6 4.070537+1 2.266595-6 2.627797+1 2.271963-6 1.565979+1 2.277330-6 8.614579+0 2.285382-6 2.189861+0 2.288066-6 0.0 3.138041-6 0.0 3.145765-6 1.07917-15 3.153489-6 2.13538-15 3.161213-6 3.90045-15 3.168937-6 6.57669-15 3.176661-6 1.02366-14 3.184384-6 1.47080-14 3.192108-6 1.95079-14 3.199832-6 2.38846-14 3.207556-6 2.69948-14 3.215280-6 2.81642-14 3.223004-6 2.71248-14 3.230728-6 2.41152-14 3.238452-6 1.97911-14 3.253899-6 1.04855-14 3.261623-6 6.76905-15 3.269347-6 4.03387-15 3.277071-6 2.21906-15 3.284795-6 1.12687-15 3.292519-6 0.0 3.664805-6 0.0 3.667275-6 8.278957-7 3.682920-6 8.879798-2 3.685328-6 1.375735-1 3.694354-6 3.537775-1 3.701050-6 5.449915-1 3.710115-6 9.263331-1 3.720039-6 1.527270+0 3.738067-6 2.957476+0 3.748796-6 3.840726+0 3.759162-6 4.429892+0 3.766567-6 4.657543+0 3.774137-6 4.636969+0 3.783323-6 4.287686+0 3.794894-6 3.471341+0 3.813606-6 1.912549+0 3.820726-6 1.392573+0 3.827960-6 9.574029-1 3.837025-6 5.610520-1 3.846090-6 2.836102-1 3.847805-6 2.479291-1 3.855155-6 1.388005-1 3.864220-6 0.0 4.146392-6 0.0 4.156598-6 1.45542-11 4.166803-6 2.87988-11 4.177009-6 5.26034-11 4.187215-6 8.86966-11 4.197421-6 1.38056-10 4.221659-6 2.85192-10 4.228472-6 6.982161-3 4.242441-6 6.106254-2 4.249287-6 9.183815-2 4.252832-6 1.144570-1 4.259695-6 1.642309-1 4.270103-6 2.714170-1 4.280511-6 4.145252-1 4.307415-6 8.561313-1 4.318661-6 9.908502-1 4.322142-6 1.023644+0 4.332550-6 1.053026+0 4.342958-6 1.000803+0 4.353366-6 8.787355-1 4.382059-6 4.090815-1 4.387916-6 3.249738-1 4.394997-6 2.363482-1 4.405405-6 1.395746-1 4.415813-6 7.613093-2 4.429481-6 2.149603-2 4.436628-6 0.0 4.445275-6 0.0 4.456217-6 9.14169-12 4.467158-6 1.80889-11 4.478100-6 3.30408-11 4.485339-6 4.80285-11 4.488911-6 1.279487-3 4.507419-6 2.720589-2 4.511009-6 3.302454-2 4.518459-6 5.025620-2 4.522058-6 5.967717-2 4.533107-6 9.961623-2 4.544156-6 1.535981-1 4.573660-6 3.302400-1 4.588351-6 3.923173-1 4.599400-6 4.065701-1 4.610449-6 3.891176-1 4.621498-6 3.439233-1 4.644966-6 2.116276-1 4.656371-6 1.548446-1 4.665693-6 1.210260-1 4.675775-6 1.018727-1 4.679180-6 9.899705-2 4.688461-6 9.990533-2 4.706141-6 1.243274-1 4.711261-6 1.357311-1 4.724800-6 1.743167-1 4.736205-6 2.004608-1 4.747610-6 2.130763-1 4.759015-6 2.128464-1 4.782000-6 1.877242-1 4.793230-6 1.734917-1 4.804635-6 1.634450-1 4.820812-6 1.588329-1 4.851084-6 1.629982-1 4.998284-6 1.398042-1 5.031366-6 1.291780-1 5.074982-6 1.207544-1 5.190643-6 1.172820-1 5.550794-6 8.563679-2 5.857364-6 6.485525-2 6.173800-6 4.860612-2 6.456542-6 3.742472-2 6.739122-6 2.864698-2 7.003868-6 2.215508-2 7.288583-6 1.665810-2 7.552256-6 1.265818-2 7.818407-6 9.475391-3 8.037239-6 7.385943-3 8.270000-6 5.599830-3 8.461909-6 4.410739-3 8.694858-6 3.264173-3 8.863496-6 2.606724-3 9.027671-6 2.089269-3 9.204678-6 1.649789-3 9.354933-6 1.360906-3 9.497500-6 1.151722-3 9.645000-6 9.950539-4 9.805000-6 8.866298-4 9.980000-6 8.327289-4 1.016625-5 8.411920-4 1.033000-5 8.977466-4 1.051065-5 1.007012-3 1.072500-5 1.192032-3 1.102819-5 1.538371-3 1.131965-5 1.948979-3 1.184729-5 2.840314-3 1.284658-5 4.827696-3 1.671149-5 1.309153-2 1.995262-5 1.898895-2 2.293040-5 2.341572-2 2.300486-5 1.253352+0 2.304328-5 7.545635+0 2.310891-5 1.900102+1 2.311811-5 2.071108+1 2.317474-5 3.699835+1 2.323136-5 6.115505+1 2.329738-5 9.991985+1 2.346139-5 2.103859+2 2.351967-5 2.340002+2 2.357929-5 2.392623+2 2.363454-5 2.263615+2 2.369957-5 1.923108+2 2.385486-5 8.591342+1 2.391084-5 5.538554+1 2.396746-5 3.284884+1 2.402409-5 1.782607+1 2.405920-5 1.197408+1 2.413734-5 2.510925-2 2.419243-5 2.520434-2 2.431292-5 9.401226+0 2.437200-5 1.700785+1 2.443248-5 2.884870+1 2.449720-5 4.642819+1 2.467452-5 1.041004+2 2.474390-5 1.175579+2 2.480110-5 1.204407+2 2.485783-5 1.148798+2 2.491906-5 1.005548+2 2.508563-5 4.669382+1 2.514518-5 3.110480+1 2.520473-5 1.968340+1 2.526427-5 1.229075+1 2.538337-5 3.451999+0 2.543399-5 3.765940+0 2.548132-5 4.173982+0 2.555660-5 5.207872+0 2.574440-5 8.873112+0 2.580595-5 9.715711+0 2.585619-5 1.010808+1 2.592944-5 9.761142+0 2.606477-5 7.990897+0 2.612258-5 7.155253+0 2.617952-5 6.566502+0 2.624014-5 6.292144+0 2.631129-5 6.368329+0 2.654332-5 7.429485+0 2.658834-5 7.685931+0 2.681192-5 8.494214+0 2.697726-5 9.621303+0 2.701484-5 9.961435+0 2.712249-5 1.046687+1 2.723975-5 1.021031+1 2.747586-5 8.604548+0 2.761479-5 8.269478+0 2.792635-5 8.255732+0 2.916938-5 6.971399+0 3.118692-5 5.524002+0 3.314888-5 4.501628+0 3.526281-5 3.666045+0 3.773145-5 2.930774+0 4.036222-5 2.342152+0 4.250128-5 1.977770+0 4.299599-5 1.973637+0 4.350995-5 2.016317+0 4.371554-5 1.963482+0 4.427968-5 1.754187+0 4.456853-5 1.715252+0 4.522712-5 1.692902+0 4.744777-5 1.471300+0 5.052548-5 1.250283+0 5.368332-5 1.088408+0 5.800000-5 9.413512-1 6.300000-5 8.413102-1 6.845211-5 7.843939-1 7.680000-5 7.568504-1 9.150000-5 7.791046-1 1.367179-4 8.974853-1 1.377353-4 9.661704-1 1.384099-4 1.078641+0 1.402315-4 1.595190+0 1.411921-4 1.755678+0 1.421178-4 1.818991+0 1.444600-4 1.778658+0 1.462852-4 1.843073+0 1.487500-4 2.043753+0 1.511101-4 2.397316+0 1.536846-4 2.984667+0 1.571243-4 4.021765+0 1.714150-4 8.938376+0 1.800000-4 1.134289+1 1.883649-4 1.308408+1 2.040000-4 1.550663+1 2.240000-4 1.753521+1 2.508705-4 1.865227+1 2.596275-4 1.881248+1 2.621588-4 1.973518+1 2.654499-4 2.264781+1 2.667327-4 2.282954+1 2.704932-4 2.095297+1 2.725633-4 2.089433+1 2.768604-4 2.230381+1 2.836035-4 2.135174+1 3.443079-4 2.044420+1 3.509687-4 2.087652+1 5.387014-4 1.492535+1 6.535371-4 1.216397+1 7.908869-4 9.740644+0 9.231661-4 8.043421+0 1.082052-3 6.546728+0 1.257601-3 5.349220+0 1.455443-3 4.368420+0 1.691063-3 3.527388+0 1.892118-3 3.002672+0 1.901642-3 3.311575+0 1.906090-3 3.578909+0 1.910747-3 4.031544+0 1.916260-3 4.853195+0 1.923171-3 6.305140+0 1.934927-3 9.271258+0 1.939390-3 1.024641+1 1.944269-3 1.103296+1 1.950946-3 1.159562+1 1.961809-3 1.166728+1 1.976243-3 1.155974+1 1.985245-3 1.189559+1 2.009676-3 1.446878+1 2.019084-3 1.499888+1 2.041738-3 1.476857+1 2.156620-3 1.359697+1 2.184973-3 1.384103+1 2.221867-3 1.471510+1 2.649263-3 1.146231+1 3.059286-3 9.218867+0 3.509859-3 7.444039+0 4.043140-3 5.937533+0 4.623004-3 4.766923+0 5.308845-3 3.785105+0 6.051666-3 3.032722+0 6.903391-3 2.419077+0 7.612395-3 2.041799+0 8.508503-3 1.679712+0 9.533981-3 1.374187+0 1.071036-2 1.116814+0 1.199409-2 9.111382-1 1.351734-2 7.340766-1 1.528789-2 5.866029-1 1.568683-2 5.665520-1 1.575764-2 5.903855-1 1.579978-2 6.304132-1 1.584563-2 7.158503-1 1.588082-2 8.238107-1 1.591999-2 9.986876-1 1.596656-2 1.287766+0 1.603274-2 1.826936+0 1.614480-2 2.793010+0 1.621868-2 3.238467+0 1.630354-2 3.492709+0 1.645358-2 3.563975+0 1.914093-2 2.806331+0 2.186102-2 2.255206+0 2.491907-2 1.808933+0 2.836798-2 1.443708+0 3.219228-2 1.156568+0 3.576551-2 9.574844-1 4.073803-2 7.560019-1 4.492569-2 6.311407-1 5.020263-2 5.133595-1 5.558850-2 4.235135-1 6.174830-2 3.470576-1 6.783186-2 2.896272-1 7.659174-2 2.291399-1 8.536955-2 1.853739-1 9.523419-2 1.497261-1 1.067346-1 1.196456-1 1.180831-1 9.802007-2 1.290726-1 8.224743-2 1.412130-1 6.889438-2 1.558709-1 5.667843-2 1.730315-1 4.613834-2 1.934048-1 3.709977-2 2.151127-1 3.018685-2 2.359867-1 2.524251-2 2.625581-1 2.061825-2 2.877812-1 1.737435-2 3.142978-1 1.479109-2 3.494529-1 1.222649-2 3.861168-1 1.026951-2 4.315191-1 8.509237-3 4.794919-1 7.171986-3 5.332428-1 6.080893-3 5.905409-1 5.226523-3 6.456542-1 4.607250-3 7.099864-1 4.056398-3 8.198794-1 3.399625-3 9.549926-1 2.856457-3 1.120601+0 2.413658-3 1.347258+0 1.983356-3 1.619761+0 1.629767-3 1.947381+0 1.339215-3 2.341267+0 1.100463-3 2.814822+0 9.042743-4 3.384160+0 7.430620-4 4.068655+0 6.105904-4 4.891600+0 5.017355-4 5.880996+0 4.122871-4 7.070513+0 3.387853-4 8.500626+0 2.783873-4 9.760024+0 2.402665-4 1.000000+1 4.844814-4 1 38000 7 0 8.762000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.742425+1 1.603244-6-3.554661+1 1.833360-6-3.315972+1 1.952601-6-3.021909+1 2.016735-6-2.709271+1 2.057556-6-2.363929+1 2.083943-6-2.005608+1 2.098827-6-1.711206+1 2.111328-6-1.369120+1 2.117416-6-1.149918+1 2.122500-6-9.227696+0 2.125360-6-7.669490+0 2.128117-6-5.804153+0 2.129692-6-4.309558+0 2.130838-6-3.400233+0 2.136897-6 8.169074-1 2.138207-6 1.795061+0 2.144758-6 7.412989+0 2.145413-6 8.063035+0 2.151799-6 1.311769+1 2.155893-6 1.547935+1 2.158759-6 1.632632+1 2.161789-6 1.655044+1 2.164736-6 1.582208+1 2.168339-6 1.366537+1 2.170304-6 1.200607+1 2.171614-6 1.041675+1 2.175053-6 6.676461+0 2.175626-6 5.943403+0 2.176527-6 4.487239+0 2.186680-6-6.386422+0 2.187008-6-6.907844+0 2.188237-6-8.250551+0 2.190329-6-9.848189+0 2.191930-6-1.071001+1 2.194219-6-1.146362+1 2.196609-6-1.151405+1 2.197489-6-1.111800+1 2.201173-6-9.977483+0 2.202094-6-9.418919+0 2.202729-6-8.736590+0 2.204418-6-7.805105+0 2.206836-6-6.772232+0 2.207440-6-6.368090+0 2.207807-6-5.940763+0 2.208126-6-5.708723+0 2.208725-6-5.437726+0 2.209774-6-5.214793+0 2.213255-6-5.132181+0 2.213905-6-5.280075+0 2.215086-6-5.906439+0 2.216157-6-6.762480+0 2.217914-6-8.673533+0 2.219809-6-1.141448+1 2.221492-6-1.448546+1 2.223351-6-1.880893+1 2.227646-6-3.144069+1 2.229203-6-3.756824+1 2.229358-6-3.779994+1 2.233979-6-2.068297+1 2.234390-6-1.880152+1 2.239758-6 2.167893+0 2.239925-6 3.008460+0 2.240250-6 4.391977+0 2.240860-6 6.721885+0 2.241926-6 1.041419+1 2.245125-6 2.073187+1 2.246090-6 2.381028+1 2.248016-6 2.861861+1 2.251164-6 3.497131+1 2.254539-6 3.918539+1 2.258209-6 4.084695+1 2.261228-6 4.027510+1 2.265924-6 3.697503+1 2.271963-6 2.946311+1 2.279176-6 1.967015+1 2.285382-6 1.282402+1 2.287395-6 1.024317+1 2.288896-6 7.695285+0 2.289725-6 6.622895+0 2.291382-6 4.807906+0 2.293035-6 3.254684+0 2.294686-6 1.877921+0 2.296333-6 6.350868-1 2.297977-6-5.000054-1 2.299618-6-1.545345+0 2.302893-6-3.418287+0 2.306155-6-5.056104+0 2.309405-6-6.507618+0 2.315866-6-8.980387+0 2.325463-6-1.191635+1 2.338098-6-1.488301+1 2.356700-6-1.808788+1 2.386748-6-2.159138+1 2.432571-6-2.490346+1 2.506208-6-2.792716+1 2.647928-6-3.077679+1 2.915122-6-3.299533+1 3.653828-6-3.585281+1 3.734088-6-3.752540+1 3.764715-6-3.537902+1 3.797233-6-3.238147+1 3.827960-6-3.227244+1 3.907460-6-3.404241+1 4.311297-6-3.543163+1 4.387916-6-3.449486+1 4.599400-6-3.515527+1 1.376982-5-3.810845+1 1.727649-5-3.527000+1 1.906771-5-3.208310+1 2.012138-5-2.869625+1 2.089612-5-2.456985+1 2.135896-5-2.078384+1 2.171650-5-1.661480+1 2.193018-5-1.328067+1 2.210624-5-9.813226+0 2.220604-5-7.450615+0 2.229376-5-5.065473+0 2.237085-5-2.673791+0 2.240582-5-1.480262+0 2.247139-5 9.734858-1 2.252877-5 3.391531+0 2.257897-5 5.757059+0 2.262290-5 8.055845+0 2.269497-5 1.240186+1 2.275015-5 1.634698+1 2.281211-5 2.164889+1 2.286386-5 2.706722+1 2.291792-5 3.423265+1 2.297345-5 4.418903+1 2.300094-5 5.086791+1 2.301807-5 5.630962+1 2.311811-5 8.018707+1 2.318181-5 9.736255+1 2.325082-5 1.118548+2 2.330619-5 1.159250+2 2.334982-5 1.108490+2 2.338752-5 1.008850+2 2.341691-5 8.917662+1 2.343836-5 7.751595+1 2.345785-5 6.393056+1 2.349955-5 3.289854+1 2.351074-5 2.326292+1 2.351625-5 1.736264+1 2.351967-5 1.402517+1 2.352610-5 8.247793+0 2.353735-5-1.359841+0 2.355212-5-1.391577+1 2.356509-5-2.570229+1 2.357143-5-3.262951+1 2.357833-5-3.981101+1 2.359491-5-2.519731+1 2.361849-5-5.417954+0 2.362311-5-1.297288+0 2.362542-5 8.963911-1 2.362657-5 2.065750+0 2.362873-5 4.549284+0 2.363071-5 6.514555+0 2.363454-5 9.955347+0 2.364488-5 1.818951+1 2.366109-5 2.958295+1 2.369957-5 5.457075+1 2.372679-5 6.770044+1 2.375622-5 7.780785+1 2.378857-5 8.510427+1 2.382652-5 8.877338+1 2.385486-5 8.686030+1 2.390465-5 7.855473+1 2.396746-5 6.125094+1 2.405920-5 3.357836+1 2.410804-5 2.008005+1 2.412269-5 1.561493+1 2.413367-5 1.177815+1 2.413906-5 9.344925+0 2.414239-5 8.017333+0 2.414865-5 5.795686+0 2.415959-5 2.261643+0 2.418833-5-6.446666+0 2.419502-5-8.747185+0 2.420473-5-1.161271+1 2.422799-5-1.753313+1 2.427583-5-2.802377+1 2.433165-5-4.015338+1 2.439241-5-2.785241+1 2.444285-5-1.915629+1 2.445911-5-1.706442+1 2.449720-5-1.290867+1 2.451684-5-1.183967+1 2.453400-5-1.161158+1 2.455756-5-1.217822+1 2.457913-5-1.355005+1 2.460444-5-1.617540+1 2.462569-5-1.931920+1 2.464985-5-2.418078+1 2.466731-5-2.908900+1 2.467452-5-3.174308+1 2.470591-5-3.936121+1 2.473310-5-2.980485+1 2.474714-5-2.354962+1 2.477979-5-1.106761+1 2.478776-5-7.804499+0 2.479374-5-5.098227+0 2.479756-5-3.017391+0 2.480110-5-1.365157+0 2.485418-5 1.961571+1 2.486468-5 2.397251+1 2.491906-5 4.169584+1 2.495093-5 4.915827+1 2.499742-5 5.598339+1 2.504624-5 5.921583+1 2.508563-5 5.857851+1 2.514518-5 5.358362+1 2.520473-5 4.588601+1 2.529101-5 3.377144+1 2.537303-5 2.390067+1 2.539543-5 2.010249+1 2.543399-5 1.558259+1 2.548132-5 1.133747+1 2.549957-5 9.905761+0 2.552809-5 7.926488+0 2.557572-5 5.007630+0 2.560439-5 3.558989+0 2.563306-5 2.296052+0 2.566090-5 1.231493+0 2.568177-5 5.367363-1 2.571308-5-3.426225-1 2.572878-5-7.026391-1 2.574440-5-9.790900-1 2.577517-5-1.443407+0 2.580595-5-1.777676+0 2.583107-5-1.948026+0 2.585619-5-2.006618+0 2.592944-5-2.279488+0 2.596889-5-2.531957+0 2.600834-5-2.923955+0 2.606477-5-3.669940+0 2.609337-5-4.152915+0 2.612258-5-4.747940+0 2.631129-5-9.078239+0 2.639719-5-1.057284+1 2.654332-5-1.247731+1 2.686970-5-1.514645+1 2.697726-5-1.563833+1 2.720081-5-1.484333+1 2.733896-5-1.449426+1 2.752881-5-1.534170+1 2.777025-5-1.646951+1 2.916938-5-1.906897+1 3.162278-5-2.153464+1 3.602122-5-2.371350+1 4.522712-5-2.603448+1 6.662160-5-2.839206+1 1.203837-4-3.200979+1 1.374112-4-3.454252+1 1.494000-4-3.668569+1 1.601427-4-3.908372+1 1.737500-4-3.913398+1 2.446265-4-3.014482+1 2.580000-4-2.968435+1 2.634689-4-3.094821+1 2.654499-4-2.962086+1 2.680720-4-2.709188+1 2.704932-4-2.690791+1 2.743757-4-2.742620+1 2.803005-4-2.519374+1 3.206418-4-2.115570+1 3.419002-4-1.983755+1 3.485524-4-1.940262+1 3.600000-4-1.800465+1 3.957771-4-1.538754+1 4.460441-4-1.286175+1 4.995385-4-1.101216+1 5.583554-4-9.635974+0 6.273357-4-8.570332+0 7.209540-4-7.704551+0 8.328869-4-7.202104+0 9.744285-4-7.017749+0 1.137224-3-7.176273+0 1.323948-3-7.718378+0 1.517131-3-8.719728+0 1.657701-3-9.926426+0 1.755173-3-1.129141+1 1.818076-3-1.272417+1 1.861234-3-1.434136+1 1.887376-3-1.605987+1 1.909065-3-1.887751+1 1.923171-3-2.074435+1 1.933328-3-2.087186+1 1.944269-3-1.951676+1 1.959943-3-1.731949+1 1.971536-3-1.681017+1 1.999322-3-1.699008+1 2.014780-3-1.652495+1 2.056188-3-1.317492+1 2.086158-3-1.174123+1 2.130787-3-1.047966+1 2.167570-3-1.003995+1 2.199690-3-9.912581+0 2.232227-3-8.707039+0 2.265803-3-7.602445+0 2.319983-3-6.452545+0 2.396006-3-5.296560+0 2.489211-3-4.261477+0 2.582306-3-3.480648+0 2.700941-3-2.713149+0 2.827637-3-2.101187+0 2.962405-3-1.598745+0 3.089712-3-1.227978+0 3.197097-3-9.800985-1 3.328558-3-7.309682-1 3.415675-3-5.952201-1 3.559641-3-4.126452-1 3.682552-3-2.920140-1 3.770968-3-2.194643-1 3.893952-3-1.362955-1 3.963921-3-9.358517-2 4.052820-3-5.048307-2 4.083443-3-3.767280-2 4.133225-3-1.822516-2 4.183820-3-3.341343-4 4.187295-3 7.994634-4 4.231974-3 1.407781-2 4.289919-3 2.937048-2 4.338248-3 4.096494-2 4.412528-3 5.599849-2 4.526695-3 7.522360-2 4.684087-3 9.158458-2 4.826384-3 9.689292-2 4.983534-3 9.716208-2 5.173089-3 9.065285-2 5.308845-3 8.262505-2 5.501344-3 6.349290-2 5.685965-3 3.985757-2 5.932615-3 5.397303-3 5.971585-3 3.415925-5 5.982394-3-1.424668-3 6.051666-3-1.149532-2 6.226234-3-3.895671-2 6.453639-3-7.690511-2 7.079458-3-1.864803-1 1.110893-2-9.235433-1 1.245966-2-1.212933+0 1.351734-2-1.507326+0 1.429606-2-1.813151+0 1.481702-2-2.110659+0 1.517453-2-2.406803+0 1.546032-2-2.762926+0 1.565624-2-3.157076+0 1.578864-2-3.612940+0 1.599881-2-4.628498+0 1.606760-2-4.722650+0 1.614480-2-4.543517+0 1.638562-2-3.274301+0 1.649742-2-2.878195+0 1.667494-2-2.461873+0 1.688705-2-2.119289+0 1.722281-2-1.728905+0 1.763823-2-1.387855+0 1.809894-2-1.111317+0 1.856735-2-8.972038-1 1.899984-2-7.372914-1 1.956609-2-5.687907-1 2.004301-2-4.510580-1 2.053716-2-3.484816-1 2.106881-2-2.568224-1 2.134887-2-2.146510-1 2.186102-2-1.469733-1 2.238721-2-8.747669-2 2.290868-2-3.697887-2 2.344229-2 7.285523-3 2.385493-2 3.634449-2 2.447654-2 7.582279-2 2.512512-2 1.108448-1 2.581517-2 1.420612-1 2.644025-2 1.646067-1 2.771999-2 1.993548-1 2.904178-2 2.232685-1 3.134360-2 2.478323-1 3.396830-2 2.565553-1 3.826736-2 2.473109-1 4.492569-2 2.117859-1 5.779884-2 1.356768-1 6.538322-2 9.766163-2 7.257778-2 6.697323-2 7.940629-2 4.232095-2 8.536955-2 2.364791-2 8.925714-2 1.277862-2 9.280809-2 3.580343-3 9.406704-2 5.634025-4 9.523419-2-2.207960-3 9.772993-2-7.842376-3 1.018021-1-1.653832-2 1.067346-1-2.612162-2 1.154942-1-4.098924-2 1.247631-1-5.436838-2 1.368584-1-6.867604-2 1.558709-1-8.604643-2 1.831004-1-1.036565-1 2.221871-1-1.200233-1 2.877812-1-1.355377-1 4.005135-1-1.478960-1 6.456542-1-1.568824-1 1.546860+0-1.617584-1 4.671441+0-1.626591-1 1.000000+1-1.626979-1 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.093887-1 1.098213-6 1.715202-1 1.152000-6 2.174855-1 1.199305-6 2.665651-1 1.267836-6 3.565622-1 1.310212-6 4.253325-1 1.349940-6 5.011658-1 1.387184-6 5.840308-1 1.422101-6 6.738112-1 1.454836-6 7.702373-1 1.485525-6 8.730820-1 1.514295-6 9.821958-1 1.541268-6 1.097298+0 1.566554-6 1.218039+0 1.590261-6 1.344034+0 1.633321-6 1.610261+0 1.652854-6 1.750821+0 1.689480-6 2.050754+0 1.721527-6 2.359489+0 1.749568-6 2.674503+0 1.774104-6 2.992639+0 1.800000-6 3.378471+0 1.814358-6 3.618256+0 1.830795-6 3.921723+0 1.845178-6 4.216694+0 1.870347-6 4.806900+0 1.889224-6 5.326229+0 1.903382-6 5.773793+0 1.914000-6 6.150328+0 1.929928-6 6.796107+0 1.945855-6 7.569826+0 1.955434-6 8.122886+0 1.965013-6 8.772025+0 1.969803-6 9.145587+0 1.974592-6 9.562314+0 1.979382-6 1.003328+1 1.984171-6 1.057257+1 1.988961-6 1.119703+1 1.993750-6 1.192513+1 1.998539-6 1.277449+1 2.003329-6 1.375810+1 2.011053-6 1.562954+1 2.018945-6 1.782086+1 2.023903-6 1.923745+1 2.028860-6 2.057333+1 2.033817-6 2.171215+1 2.035056-6 2.195173+1 2.038774-6 2.253297+1 2.041872-6 2.283616+1 2.043731-6 2.292987+1 2.044971-6 2.295359+1 2.046830-6 2.292949+1 2.048688-6 2.283286+1 2.051167-6 2.259149+1 2.053646-6 2.222504+1 2.057364-6 2.145829+1 2.058603-6 2.115060+1 2.063560-6 1.971048+1 2.069137-6 1.782943+1 2.073474-6 1.631109+1 2.083389-6 1.316162+1 2.087726-6 1.204891+1 2.093927-6 1.076969+1 2.098298-6 1.005735+1 2.103455-6 9.363946+0 2.109087-6 8.726814+0 2.116822-6 7.985306+0 2.119242-6 7.784134+0 2.124463-6 7.416905+0 2.127199-6 7.270466+0 2.129433-6 7.179327+0 2.132365-6 7.103260+0 2.134251-6 7.082522+0 2.136136-6 7.084925+0 2.138916-6 7.131724+0 2.142724-6 7.279254+0 2.143993-6 7.349189+0 2.149071-6 7.723488+0 2.151870-6 7.986472+0 2.157115-6 8.560039+0 2.167241-6 9.818964+0 2.172850-6 1.052379+1 2.178095-6 1.115951+1 2.183340-6 1.177116+1 2.193830-6 1.297350+1 2.204320-6 1.427825+1 2.214810-6 1.581036+1 2.235789-6 1.963013+1 2.268986-6 2.712638+1 2.297125-6 3.516030+1 2.309890-6 3.961271+1 2.321857-6 4.439346+1 2.333076-6 4.952313+1 2.343594-6 5.502029+1 2.353454-6 6.090164+1 2.362699-6 6.718218+1 2.371365-6 7.387542+1 2.379490-6 8.099373+1 2.387107-6 8.854849+1 2.394248-6 9.655031+1 2.400943-6 1.050089+2 2.407219-6 1.139331+2 2.413103-6 1.233310+2 2.418619-6 1.332103+2 2.423790-6 1.435795+2 2.428639-6 1.544492+2 2.433184-6 1.658325+2 2.441706-6 1.910867+2 2.449163-6 2.187632+2 2.455688-6 2.489569+2 2.461397-6 2.815980+2 2.466393-6 3.163876+2 2.470764-6 3.528055+2 2.474589-6 3.901786+2 2.477935-6 4.277743+2 2.480864-6 4.648875+2 2.483426-6 5.009024+2 2.487910-6 5.726252+2 2.502132-6 8.823685+2 2.507519-6 1.032575+3 2.512137-6 1.173120+3 2.513676-6 1.221847+3 2.519833-6 1.422144+3 2.520602-6 1.447420+3 2.525989-6 1.622083+3 2.528106-6 1.688313+3 2.532916-6 1.829748+3 2.536283-6 1.918614+3 2.539842-6 2.001213+3 2.543594-6 2.074088+3 2.547538-6 2.134269+3 2.551386-6 2.177402+3 2.556100-6 2.212665+3 2.567548-6 2.268842+3 2.570392-6 2.291281+3 2.576215-6 2.370763+3 2.579165-6 2.434897+3 2.582144-6 2.520001+3 2.585306-6 2.635368+3 2.588469-6 2.778409+3 2.589767-6 2.845395+3 2.593537-6 3.066929+3 2.597348-6 3.330010+3 2.607442-6 4.172084+3 2.611256-6 4.518356+3 2.614912-6 4.847156+3 2.618179-6 5.128522+3 2.620289-6 5.299747+3 2.624118-6 5.581465+3 2.627234-6 5.775933+3 2.630379-6 5.934437+3 2.633033-6 6.035191+3 2.639262-6 6.141891+3 2.640991-6 6.138049+3 2.645784-6 6.051872+3 2.648795-6 5.943303+3 2.651713-6 5.801126+3 2.654925-6 5.606760+3 2.658038-6 5.385422+3 2.660805-6 5.165892+3 2.663473-6 4.937825+3 2.667525-6 4.569078+3 2.670687-6 4.269607+3 2.674244-6 3.928135+3 2.677011-6 3.663687+3 2.683336-6 3.079655+3 2.685510-6 2.889334+3 2.689660-6 2.545486+3 2.694404-6 2.188047+3 2.701281-6 1.742727+3 2.712345-6 1.203264+3 2.717749-6 1.009757+3 2.720419-6 9.284592+2 2.723069-6 8.561251+2 2.728326-6 7.342015+2 2.733501-6 6.378061+2 2.738595-6 5.612183+2 2.743610-6 4.998436+2 2.748546-6 4.500964+2 2.753405-6 4.092397+2 2.758189-6 3.752151+2 2.762897-6 3.464890+2 2.767532-6 3.219220+2 2.776657-6 2.818052+2 2.785497-6 2.506838+2 2.794061-6 2.258157+2 2.802357-6 2.054961+2 2.810393-6 1.886024+2 2.818179-6 1.743584+2 2.825721-6 1.622054+2 2.833028-6 1.517300+2 2.847185-6 1.343859+2 2.860456-6 1.209270+2 2.872899-6 1.102269+2 2.884563-6 1.015558+2 2.895499-6 9.441623+1 2.905751-6 8.845567+1 2.924974-6 7.884167+1 2.941794-6 7.177519+1 2.956511-6 6.642051+1 2.969389-6 6.226588+1 2.991925-6 5.597481+1 3.008827-6 5.192781+1 3.034180-6 4.671158+1 3.067064-6 4.113630+1 3.097187-6 3.695101+1 3.127309-6 3.345004+1 3.164963-6 2.980648+1 3.199891-6 2.698971+1 3.238983-6 2.433476+1 3.285894-6 2.168475+1 3.332804-6 1.949364+1 3.377361-6 1.773132+1 3.429823-6 1.593224+1 3.476127-6 1.456995+1 3.615040-6 1.109158+1 3.664604-6 9.854971+0 3.673580-6 9.670046+0 3.682555-6 9.514918+0 3.691531-6 9.396104+0 3.700040-6 9.320270+0 3.713504-6 9.270992+0 3.727434-6 9.288836+0 3.745386-6 9.342341+0 3.759358-6 9.348292+0 3.774348-6 9.287045+0 3.791170-6 9.144820+0 3.819126-6 8.866196+0 3.856180-6 8.585204+0 3.868177-6 8.481651+0 3.883970-6 8.303386+0 3.892568-6 8.183515+0 3.901786-6 8.038553+0 3.921024-6 7.696039+0 3.948815-6 7.165561+0 4.002896-6 6.176187+0 4.043457-6 5.439877+0 4.073878-6 4.842054+0 4.096694-6 4.340913+0 4.113805-6 3.920552+0 4.126639-6 3.575178+0 4.136264-6 3.300020+0 4.143483-6 3.087238+0 4.148898-6 2.926405+0 4.165150-6 2.466719+0 4.170276-6 2.341971+0 4.175402-6 2.235480+0 4.179284-6 2.170876+0 4.181226-6 2.144856+0 4.183167-6 2.123582+0 4.185654-6 2.103969+0 4.191403-6 2.096676+0 4.194277-6 2.116045+0 4.197151-6 2.152996+0 4.199650-6 2.200755+0 4.202149-6 2.264265+0 4.204279-6 2.331692+0 4.205566-6 2.378699+0 4.207819-6 2.472852+0 4.212887-6 2.743832+0 4.215690-6 2.931399+0 4.219587-6 3.240067+0 4.223809-6 3.640802+0 4.228459-6 4.165960+0 4.240977-6 6.036069+0 4.247096-6 7.190652+0 4.252535-6 8.340097+0 4.257389-6 9.453820+0 4.262043-6 1.058807+1 4.265992-6 1.159217+1 4.270284-6 1.271548+1 4.274679-6 1.388802+1 4.276684-6 1.442618+1 4.281672-6 1.576239+1 4.286309-6 1.698494+1 4.288524-6 1.755650+1 4.292593-6 1.857713+1 4.296958-6 1.961759+1 4.300920-6 2.050184+1 4.306463-6 2.162371+1 4.309106-6 2.210509+1 4.317553-6 2.338426+1 4.321550-6 2.384163+1 4.325366-6 2.418547+1 4.329182-6 2.443774+1 4.333988-6 2.462585+1 4.337912-6 2.467467+1 4.340856-6 2.465161+1 4.345271-6 2.452569+1 4.349686-6 2.429723+1 4.356500-6 2.376507+1 4.358772-6 2.354487+1 4.366068-6 2.271737+1 4.368501-6 2.240711+1 4.378797-6 2.096040+1 4.389093-6 1.939703+1 4.401476-6 1.751987+1 4.425853-6 1.427665+1 4.438271-6 1.294990+1 4.450688-6 1.183673+1 4.464055-6 1.084215+1 4.471768-6 1.034829+1 4.486884-6 9.519034+0 4.497560-6 9.027343+0 4.507964-6 8.613599+0 4.518952-6 8.241197+0 4.525819-6 8.040031+0 4.532686-6 7.861675+0 4.543370-6 7.625875+0 4.554053-6 7.434152+0 4.563471-6 7.294254+0 4.585449-6 7.030891+0 4.604401-6 6.820368+0 4.616195-6 6.678885+0 4.628049-6 6.525321+0 4.674898-6 5.895820+0 4.706585-6 5.549099+0 4.720657-6 5.404069+0 4.732792-6 5.269477+0 4.744134-6 5.129582+0 4.759757-6 4.913035+0 4.778981-6 4.631418+0 4.790776-6 4.477809+0 4.801754-6 4.371776+0 4.809081-6 4.330910+0 4.816518-6 4.320540+0 4.822244-6 4.336987+0 4.827969-6 4.376589+0 4.831686-6 4.415251+0 4.837262-6 4.492764+0 4.842837-6 4.593645+0 4.848959-6 4.730476+0 4.857600-6 4.966327+0 4.867323-6 5.281351+0 4.886480-6 5.987169+0 4.900133-6 6.483336+0 4.903092-6 6.583019+0 4.911968-6 6.855771+0 4.915704-6 6.956593+0 4.921308-6 7.089955+0 4.927390-6 7.208456+0 4.935346-6 7.319797+0 4.940601-6 7.365634+0 4.948575-6 7.393772+0 4.955532-6 7.379596+0 4.969285-6 7.258416+0 4.980521-6 7.086130+0 4.993093-6 6.840621+0 5.016063-6 6.327428+0 5.044257-6 5.720340+0 5.054126-6 5.534939+0 5.065241-6 5.349248+0 5.075839-6 5.198032+0 5.083653-6 5.104290+0 5.093150-6 5.012140+0 5.102862-6 4.943918+0 5.114673-6 4.897335+0 5.124109-6 4.888295+0 5.131992-6 4.898628+0 5.142460-6 4.934274+0 5.152249-6 4.985455+0 5.178375-6 5.157887+0 5.190849-6 5.230882+0 5.197814-6 5.262619+0 5.212484-6 5.301392+0 5.222990-6 5.303660+0 5.231110-6 5.291399+0 5.240529-6 5.263941+0 5.263227-6 5.159905+0 5.288134-6 5.035865+0 5.307385-6 4.964509+0 5.330924-6 4.915370+0 5.392852-6 4.864820+0 5.472943-6 4.759429+0 5.609900-6 4.568241+0 5.695065-6 4.451414+0 6.010833-6 4.103454+0 6.474272-6 3.694159+0 6.790650-6 3.468270+0 7.237307-6 3.213563+0 7.775805-6 2.977726+0 8.390056-6 2.773918+0 9.293466-6 2.561598+0 1.006278-5 2.448635+0 1.091000-5 2.362413+0 1.224536-5 2.261639+0 1.280000-5 2.215873+0 1.341831-5 2.151381+0 1.380378-5 2.101965+0 1.418962-5 2.048022+0 1.445783-5 2.006309+0 1.492580-5 1.926788+0 1.544694-5 1.836897+0 1.565658-5 1.807578+0 1.580061-5 1.812151+0 1.594273-5 1.852224+0 1.620000-5 1.980488+0 1.640699-5 2.113338+0 1.659587-5 2.259275+0 1.684794-5 2.492454+0 1.708936-5 2.760810+0 1.737334-5 3.140015+0 1.765000-5 3.583970+0 1.791514-5 4.092015+0 1.830168-5 4.985830+0 1.855000-5 5.673948+0 1.883827-5 6.608423+0 1.902361-5 7.294525+0 1.927525-5 8.352333+0 1.946808-5 9.273536+0 1.998788-5 1.231025+1 2.036592-5 1.515904+1 2.064405-5 1.767872+1 2.081917-5 1.949685+1 2.115318-5 2.356492+1 2.140312-5 2.720795+1 2.162719-5 3.099314+1 2.181799-5 3.468858+1 2.203687-5 3.956037+1 2.226426-5 4.546704+1 2.241946-5 5.009256+1 2.265500-5 5.821566+1 2.287606-5 6.728786+1 2.308681-5 7.756605+1 2.328439-5 8.899469+1 2.346961-5 1.016629+2 2.364327-5 1.156708+2 2.380606-5 1.311034+2 2.398833-5 1.516289+2 2.410177-5 1.665212+2 2.423591-5 1.867068+2 2.436167-5 2.086837+2 2.447957-5 2.325428+2 2.459010-5 2.583734+2 2.469372-5 2.862636+2 2.479086-5 3.162995+2 2.488194-5 3.485640+2 2.496732-5 3.831378+2 2.504736-5 4.200993+2 2.512241-5 4.595255+2 2.519276-5 5.014921+2 2.525871-5 5.460726+2 2.532055-5 5.933376+2 2.537851-5 6.433559+2 2.543286-5 6.961963+2 2.548381-5 7.519322+2 2.553157-5 8.106463+2 2.557635-5 8.724348+2 2.561833-5 9.374084+2 2.569705-5 1.082486+3 2.576592-5 1.242788+3 2.582618-5 1.418950+3 2.587892-5 1.610671+3 2.592506-5 1.816407+3 2.596543-5 2.033409+3 2.600075-5 2.258030+3 2.603167-5 2.486179+3 2.605871-5 2.713762+3 2.610604-5 3.185321+3 2.614154-5 3.610078+3 2.618813-5 4.275967+3 2.634528-5 7.665099+3 2.639340-5 9.112520+3 2.644186-5 1.077128+4 2.648145-5 1.226759+4 2.649465-5 1.279198+4 2.655954-5 1.552306+4 2.656766-5 1.587861+4 2.662918-5 1.862558+4 2.665362-5 1.972018+4 2.667695-5 2.075218+4 2.670836-5 2.210392+4 2.673675-5 2.326984+4 2.675849-5 2.411441+4 2.678955-5 2.523105+4 2.682200-5 2.626115+4 2.686180-5 2.729857+4 2.689410-5 2.793282+4 2.693599-5 2.844933+4 2.696555-5 2.859395+4 2.699962-5 2.852906+4 2.703132-5 2.824664+4 2.705102-5 2.796560+4 2.708331-5 2.733760+4 2.711041-5 2.665903+4 2.712094-5 2.636061+4 2.715656-5 2.521900+4 2.718547-5 2.415925+4 2.721725-5 2.288025+4 2.724546-5 2.166453+4 2.726813-5 2.064616+4 2.729789-5 1.927086+4 2.732817-5 1.784593+4 2.734634-5 1.698757+4 2.737475-5 1.565253+4 2.740316-5 1.433929+4 2.743967-5 1.270542+4 2.746806-5 1.149055+4 2.753701-5 8.801321+3 2.755960-5 8.012062+3 2.761117-5 6.395923+3 2.766032-5 5.102605+3 2.770044-5 4.226006+3 2.780414-5 2.676138+3 2.782499-5 2.482476+3 2.783688-5 2.388710+3 2.784581-5 2.326218+3 2.786121-5 2.233851+3 2.787257-5 2.178144+3 2.790679-5 2.072055+3 2.792176-5 2.053880+3 2.793644-5 2.052179+3 2.794260-5 2.056119+3 2.801051-5 2.272301+3 2.802052-5 2.329398+3 2.808002-5 2.787992+3 2.812847-5 3.293666+3 2.818198-5 3.959596+3 2.821616-5 4.427793+3 2.824415-5 4.827190+3 2.827546-5 5.282775+3 2.830698-5 5.742155+3 2.833480-5 6.140878+3 2.835480-5 6.419829+3 2.839436-5 6.943010+3 2.842577-5 7.322149+3 2.843704-5 7.448747+3 2.846920-5 7.778571+3 2.849478-5 8.004373+3 2.851615-5 8.165965+3 2.854674-5 8.351852+3 2.856923-5 8.452977+3 2.858327-5 8.500457+3 2.862913-5 8.571266+3 2.866202-5 8.543503+3 2.868292-5 8.492940+3 2.869860-5 8.438900+3 2.872213-5 8.333123+3 2.874565-5 8.199411+3 2.876691-5 8.056348+3 2.879481-5 7.839634+3 2.883068-5 7.519175+3 2.886490-5 7.177809+3 2.889912-5 6.810200+3 2.891623-5 6.619164+3 2.895472-5 6.178114+3 2.896755-5 6.029067+3 2.903599-5 5.235963+3 2.907449-5 4.803156+3 2.910638-5 4.458097+3 2.916530-5 3.862366+3 2.925924-5 3.046829+3 2.935680-5 2.383090+3 2.942445-5 2.023771+3 2.946067-5 1.861082+3 2.949688-5 1.716662+3 2.956930-5 1.475150+3 2.964173-5 1.285169+3 2.969530-5 1.170670+3 2.971415-5 1.134749+3 2.978658-5 1.014400+3 2.982672-5 9.579293+2 2.986687-5 9.074999+2 2.994038-5 8.282273+2 3.001389-5 7.626571+2 3.008882-5 7.069102+2 3.016092-5 6.616967+2 3.038146-5 5.603837+2 3.045345-5 5.363696+2 3.051310-5 5.190710+2 3.059472-5 4.986035+2 3.067633-5 4.810225+2 3.090067-5 4.401171+2 3.105227-5 4.133210+2 3.133038-5 3.650072+2 3.141725-5 3.519197+2 3.148973-5 3.421756+2 3.157970-5 3.316414+2 3.165625-5 3.239904+2 3.177911-5 3.139729+2 3.190079-5 3.064242+2 3.201767-5 3.010733+2 3.211409-5 2.978421+2 3.233437-5 2.929499+2 3.256466-5 2.877942+2 3.276621-5 2.810688+2 3.326819-5 2.621135+2 3.367996-5 2.500141+2 3.440602-5 2.322625+2 3.503573-5 2.194045+2 3.578750-5 2.065071+2 3.654004-5 1.956464+2 3.713316-5 1.881180+2 3.801894-5 1.783867+2 3.887944-5 1.701510+2 4.076224-5 1.553121+2 4.164571-5 1.493642+2 4.440317-5 1.339282+2 4.756125-5 1.196365+2 4.940550-5 1.114405+2 4.965888-5 1.107393+2 5.000907-5 1.105646+2 5.049193-5 1.110016+2 5.080383-5 1.106907+2 5.114383-5 1.095320+2 5.185544-5 1.065817+2 5.289233-5 1.039366+2 5.779254-5 9.328003+1 6.165950-5 8.677547+1 6.377272-5 8.451867+1 7.079458-5 7.814030+1 7.690000-5 7.314560+1 8.200723-5 6.919166+1 8.570000-5 6.645138+1 9.015711-5 6.324109+1 9.670506-5 5.860351+1 1.053091-4 5.251727+1 1.129840-4 4.699680+1 1.195364-4 4.213319+1 1.234851-4 3.922987+1 1.288250-4 3.585955+1 1.338300-4 3.256552+1 1.385248-4 2.925665+1 1.420978-4 2.657630+1 1.456619-4 2.380263+1 1.489583-4 2.112004+1 1.521995-4 1.833574+1 1.541488-4 1.659467+1 1.568489-4 1.410689+1 1.586073-4 1.245425+1 1.610483-4 1.036595+1 1.626843-4 9.236036+0 1.631617-4 8.913582+0 1.635613-4 8.633543+0 1.639600-4 8.341101+0 1.645554-4 7.877468+0 1.652036-4 7.342538+0 1.657983-4 6.840570+0 1.671000-4 5.811169+0 1.674942-4 5.541848+0 1.680238-4 5.221573+0 1.685460-4 4.954897+0 1.690125-4 4.757050+0 1.695775-4 4.565310+0 1.704500-4 4.363016+0 1.709000-4 4.300845+0 1.713518-4 4.267881+0 1.715134-4 4.263621+0 1.721200-4 4.286194+0 1.727628-4 4.384687+0 1.732563-4 4.520224+0 1.737500-4 4.714496+0 1.742500-4 4.976633+0 1.747489-4 5.308729+0 1.752000-4 5.672982+0 1.755748-4 6.023663+0 1.759352-4 6.403080+0 1.766997-4 7.347890+0 1.774997-4 8.543461+0 1.789993-4 1.134935+1 1.798996-4 1.337022+1 1.808696-4 1.580549+1 1.820066-4 1.896737+1 1.823848-4 2.008684+1 1.835122-4 2.360700+1 1.839000-4 2.487727+1 1.852561-4 2.954008+1 1.862087-4 3.300589+1 1.870000-4 3.599446+1 1.885000-4 4.190439+1 1.893668-4 4.545038+1 1.907500-4 5.128305+1 1.915000-4 5.452387+1 1.930000-4 6.113975+1 1.937500-4 6.450146+1 1.953995-4 7.197765+1 1.960000-4 7.471495+1 1.976400-4 8.219021+1 1.982500-4 8.495869+1 2.000000-4 9.282350+1 2.020000-4 1.016075+2 2.041450-4 1.106993+2 2.060000-4 1.182542+2 2.080000-4 1.260870+2 2.105000-4 1.354852+2 2.131745-4 1.451515+2 2.170000-4 1.584774+2 2.213094-4 1.732005+2 2.273624-4 1.936556+2 2.325000-4 2.107693+2 2.384206-4 2.297396+2 2.457097-4 2.514717+2 2.520599-4 2.687013+2 2.560080-4 2.785177+2 2.623004-4 2.928846+2 2.689945-4 3.066345+2 2.745986-4 3.167879+2 2.843409-4 3.318265+2 2.876967-4 3.469682+2 2.892299-4 3.645263+2 2.899174-4 3.752710+2 2.914156-4 4.030379+2 2.928581-4 4.294778+2 2.935164-4 4.389909+2 2.942259-4 4.462467+2 2.948452-4 4.496103+2 2.955769-4 4.499101+2 2.963928-4 4.460405+2 2.980470-4 4.300282+2 2.991736-4 4.187548+2 2.998547-4 4.137621+2 3.006523-4 4.105244+2 3.018152-4 4.113369+2 3.028801-4 4.171706+2 3.057157-4 4.420387+2 3.066428-4 4.483116+2 3.073653-4 4.515395+2 3.080577-4 4.531836+2 3.088624-4 4.534748+2 3.119211-4 4.470125+2 3.131355-4 4.452421+2 3.147071-4 4.455621+2 3.183184-4 4.540095+2 3.218184-4 4.640112+2 3.268002-4 4.760547+2 3.335547-4 4.899922+2 3.419546-4 5.049626+2 3.527536-4 5.215697+2 3.622002-4 5.335410+2 3.721063-4 5.435278+2 3.762973-4 5.490563+2 3.788501-4 5.539573+2 3.938569-4 5.889546+2 3.993775-4 5.997341+2 4.089277-4 6.137530+2 4.201820-4 6.269815+2 4.339734-4 6.399509+2 4.630470-4 6.619822+2 4.793194-4 6.721879+2 5.242880-4 6.927494+2 5.629439-4 7.046656+2 6.085680-4 7.135049+2 6.622719-4 7.184309+2 7.113286-4 7.195954+2 7.429122-4 7.189631+2 8.128844-4 7.117847+2 8.926094-4 7.012491+2 9.956919-4 6.857214+2 1.049370-3 6.762996+2 1.162481-3 6.527078+2 1.222767-3 6.399477+2 1.280394-3 6.272870+2 1.340977-3 6.125916+2 1.409549-3 5.952844+2 1.479162-3 5.770346+2 1.550768-3 5.571558+2 1.618109-3 5.362217+2 1.678915-3 5.158836+2 1.732368-3 4.963727+2 1.777680-3 4.781631+2 1.820879-3 4.587381+2 1.857966-3 4.401658+2 1.884043-3 4.256864+2 1.913705-3 4.073423+2 1.938814-3 3.897703+2 1.958281-3 3.743378+2 1.976753-3 3.576962+2 1.994223-3 3.394270+2 2.008246-3 3.222392+2 2.019703-3 3.061711+2 2.032633-3 2.864153+2 2.045213-3 2.681543+2 2.051439-3 2.608902+2 2.056608-3 2.563460+2 2.059292-3 2.546171+2 2.064726-3 2.525581+2 2.069587-3 2.523893+2 2.071449-3 2.527343+2 2.076623-3 2.548063+2 2.081584-3 2.581708+2 2.086608-3 2.627155+2 2.094446-3 2.715272+2 2.109392-3 2.918435+2 2.160242-3 3.774546+2 2.172899-3 3.999913+2 2.178361-3 4.093905+2 2.192273-3 4.320225+2 2.201742-3 4.460823+2 2.207669-3 4.542260+2 2.218699-3 4.679121+2 2.227652-3 4.775996+2 2.239866-3 4.888907+2 2.253300-3 4.990751+2 2.270388-3 5.091804+2 2.286206-3 5.159952+2 2.323509-3 5.260378+2 2.333353-3 5.296213+2 2.343529-3 5.350793+2 2.357270-3 5.458193+2 2.395949-3 5.861063+2 2.406948-3 5.961496+2 2.418998-3 6.055464+2 2.432670-3 6.144419+2 2.451086-3 6.242994+2 2.472022-3 6.335982+2 2.491417-3 6.409731+2 2.519748-3 6.501867+2 2.579312-3 6.654074+2 2.635875-3 6.761114+2 2.707073-3 6.857616+2 2.804727-3 6.935462+2 2.922036-3 6.979344+2 3.071000-3 6.985029+2 3.199863-3 6.950470+2 3.381895-3 6.864453+2 3.659962-3 6.691190+2 3.943382-3 6.477800+2 4.356921-3 6.143157+2 4.758336-3 5.815670+2 5.220063-3 5.458892+2 5.818742-3 5.029281+2 6.517459-3 4.580284+2 7.199073-3 4.193460+2 7.931859-3 3.824186+2 8.466216-3 3.582266+2 9.117025-3 3.311929+2 9.881086-3 3.025162+2 1.069911-2 2.749467+2 1.156445-2 2.487706+2 1.244094-2 2.249082+2 1.289141-2 2.135568+2 1.374438-2 1.933982+2 1.444117-2 1.779451+2 1.496236-2 1.666954+2 1.542144-2 1.567049+2 1.578864-2 1.483364+2 1.605269-2 1.418068+2 1.625732-2 1.361164+2 1.635558-2 1.330167+2 1.643580-2 1.301941+2 1.650410-2 1.275059+2 1.659460-2 1.234507+2 1.670825-2 1.176711+2 1.682357-2 1.120095+2 1.688311-2 1.098120+2 1.692785-2 1.087240+2 1.697896-2 1.081916+2 1.702461-2 1.083888+2 1.706938-2 1.091649+2 1.712971-2 1.109661+2 1.733221-2 1.194397+2 1.740951-2 1.222399+2 1.749530-2 1.246753+2 1.755437-2 1.259728+2 1.761758-2 1.270811+2 1.774784-2 1.286990+2 1.794599-2 1.301104+2 1.816459-2 1.308523+2 1.851943-2 1.309719+2 1.895843-2 1.300288+2 1.949845-2 1.279726+2 2.015859-2 1.247646+2 2.110864-2 1.196365+2 2.223768-2 1.133385+2 2.388499-2 1.043619+2 2.601455-2 9.375630+1 2.832665-2 8.370541+1 3.137125-2 7.254293+1 3.451189-2 6.312263+1 3.717667-2 5.640026+1 4.089865-2 4.849411+1 4.943213-2 3.546318+1 5.510801-2 2.949680+1 6.487074-2 2.217902+1 9.180018-2 1.198050+1 1.136768-1 8.153693+0 1.359195-1 5.871162+0 1.688210-1 3.912017+0 2.184615-1 2.394049+0 3.025622-1 1.276386+0 4.419678-1 6.089289-1 6.844040-1 2.569803-1 1.228714+0 8.028844-2 3.710658+0 8.830516-3 1.120601+1 9.685831-4 3.384160+1 1.062071-4 1.022000+2 1.164542-5 3.086391+2 1.276896-6 9.320751+2 1.400089-7 3.162278+3 1.216346-8 1.000000+4 1.216346-9 3.162278+4 1.21635-10 1.000000+5 1.21635-11 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.905300-6 1.258900-6 3.019700-6 1.584900-6 4.785900-6 1.995300-6 7.585100-6 2.511900-6 1.202100-5 3.162300-6 1.905300-5 3.981100-6 3.019600-5 5.011900-6 4.785800-5 6.309600-6 7.584900-5 7.943300-6 1.202100-4 1.000000-5 1.905200-4 1.258900-5 3.019500-4 1.584900-5 4.783100-4 1.995300-5 7.575900-4 2.511900-5 1.200000-3 3.162300-5 1.901200-3 3.981100-5 3.012200-3 5.011900-5 4.773000-3 6.309600-5 7.563100-3 7.943300-5 1.196400-2 1.000000-4 1.891900-2 1.258900-4 2.991300-2 1.584900-4 4.716900-2 1.995300-4 7.423500-2 2.511900-4 1.163000-1 3.162300-4 1.809900-1 3.981100-4 2.784600-1 5.011900-4 4.218400-1 6.309600-4 6.245000-1 7.943300-4 8.966500-1 1.000000-3 1.241100+0 1.258900-3 1.652400+0 1.584900-3 2.130700+0 1.995300-3 2.697600+0 2.511900-3 3.382100+0 3.162300-3 4.204100+0 3.981100-3 5.167300+0 5.011900-3 6.282400+0 6.309600-3 7.523200+0 7.943300-3 8.834100+0 1.000000-2 1.019500+1 1.258900-2 1.161000+1 1.584900-2 1.304400+1 1.995300-2 1.442900+1 2.511900-2 1.566500+1 3.162300-2 1.664500+1 3.981100-2 1.746500+1 5.011900-2 1.794300+1 6.309600-2 1.810500+1 7.943300-2 1.797800+1 1.000000-1 1.759600+1 1.258900-1 1.699800+1 1.584900-1 1.622000+1 1.995300-1 1.531000+1 2.511900-1 1.431300+1 3.162300-1 1.326600+1 3.981100-1 1.220500+1 5.011900-1 1.115500+1 6.309600-1 1.013100+1 7.943300-1 9.142800+0 1.000000+0 8.204200+0 1.258900+0 7.315100+0 1.584900+0 6.481000+0 1.995300+0 5.705500+0 2.511900+0 4.991100+0 3.162300+0 4.339500+0 3.981100+0 3.750700+0 5.011900+0 3.223700+0 6.309600+0 2.756500+0 7.943300+0 2.345700+0 1.000000+1 1.987300+0 1.258900+1 1.676800+0 1.584900+1 1.409700+0 1.995300+1 1.181200+0 2.511900+1 9.868400-1 3.162300+1 8.222000-1 3.981100+1 6.833600-1 5.011900+1 5.667100-1 6.309600+1 4.690300-1 7.943300+1 3.874800-1 1.000000+2 3.195800-1 1.258900+2 2.631800-1 1.584900+2 2.164300-1 1.995300+2 1.777600-1 2.511900+2 1.458300-1 3.162300+2 1.195100-1 3.981100+2 9.783500-2 5.011900+2 8.001800-2 6.309600+2 6.538900-2 7.943300+2 5.339000-2 1.000000+3 4.356000-2 1.258900+3 3.551400-2 1.584900+3 2.893400-2 1.995300+3 2.355900-2 2.511900+3 1.917000-2 3.162300+3 1.559000-2 3.981100+3 1.267100-2 5.011900+3 1.029400-2 6.309600+3 8.358300-3 7.943300+3 6.783400-3 1.000000+4 5.502700-3 1.258900+4 4.461900-3 1.584900+4 3.616400-3 1.995300+4 2.930000-3 2.511900+4 2.372900-3 3.162300+4 1.921100-3 3.981100+4 1.554700-3 5.011900+4 1.257700-3 6.309600+4 1.017200-3 7.943300+4 8.223600-4 1.000000+5 6.646400-4 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159557-4 3.981072-4 3.976778-4 5.011872-4 5.005094-4 6.309573-4 6.298927-4 7.943282-4 7.926652-4 1.000000-3 9.974047-4 1.258925-3 1.254898-3 1.584893-3 1.578629-3 1.995262-3 1.985489-3 2.511886-3 2.496564-3 3.162278-3 3.138272-3 3.981072-3 3.943401-3 5.011872-3 4.952814-3 6.309573-3 6.217274-3 7.943282-3 7.799661-3 1.000000-2 9.777008-3 1.258925-2 1.224318-2 1.584893-2 1.531283-2 1.995262-2 1.912516-2 2.511886-2 2.384928-2 3.162278-2 2.968502-2 3.981072-2 3.687225-2 5.011872-2 4.568882-2 6.309573-2 5.646786-2 7.943282-2 6.958708-2 1.000000-1 8.547950-2 1.258925-1 1.046501-1 1.584893-1 1.277035-1 1.995262-1 1.552738-1 2.511886-1 1.881814-1 3.162278-1 2.273163-1 3.981072-1 2.736901-1 5.011872-1 3.284840-1 6.309573-1 3.931188-1 7.943282-1 4.692252-1 1.000000+0 5.585851-1 1.258925+0 6.639486-1 1.584893+0 7.883457-1 1.995262+0 9.354339-1 2.511886+0 1.109976+0 3.162278+0 1.317712+0 3.981072+0 1.565689+0 5.011872+0 1.862445+0 6.309573+0 2.218617+0 7.943282+0 2.647089+0 1.000000+1 3.163706+0 1.258925+1 3.787730+0 1.584893+1 4.542864+0 1.995262+1 5.458059+0 2.511886+1 6.568785+0 3.162278+1 7.918770+0 3.981072+1 9.561230+0 5.011872+1 1.156200+1 6.309573+1 1.400161+1 7.943282+1 1.697911+1 1.000000+2 2.061663+1 1.258925+2 2.506390+1 1.584893+2 3.050554+1 1.995262+2 3.716874+1 2.511886+2 4.533391+1 3.162278+2 5.534648+1 3.981072+2 6.763085+1 5.011872+2 8.271427+1 6.309573+2 1.012437+2 7.943282+2 1.240195+2 1.000000+3 1.520282+2 1.258925+3 1.864913+2 1.584893+3 2.289158+2 1.995262+3 2.811792+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88195-10 1.995262-5 1.090624-9 2.511886-5 1.728495-9 3.162278-5 2.739512-9 3.981072-5 4.341883-9 5.011872-5 6.881403-9 6.309573-5 1.090598-8 7.943282-5 1.727642-8 1.000000-4 2.737309-8 1.258925-4 4.337405-8 1.584893-4 6.868506-8 1.995262-4 1.087552-7 2.511886-4 1.720948-7 3.162278-4 2.720612-7 3.981072-4 4.293743-7 5.011872-4 6.778646-7 6.309573-4 1.064598-6 7.943282-4 1.663071-6 1.000000-3 2.595252-6 1.258925-3 4.027319-6 1.584893-3 6.264312-6 1.995262-3 9.773699-6 2.511886-3 1.532269-5 3.162278-3 2.400563-5 3.981072-3 3.767100-5 5.011872-3 5.905883-5 6.309573-3 9.229975-5 7.943282-3 1.436209-4 1.000000-2 2.229924-4 1.258925-2 3.460720-4 1.584893-2 5.361043-4 1.995262-2 8.274655-4 2.511886-2 1.269588-3 3.162278-2 1.937759-3 3.981072-2 2.938472-3 5.011872-2 4.429906-3 6.309573-2 6.627873-3 7.943282-2 9.845748-3 1.000000-1 1.452050-2 1.258925-1 2.124242-2 1.584893-1 3.078582-2 1.995262-1 4.425247-2 2.511886-1 6.300721-2 3.162278-1 8.891142-2 3.981072-1 1.244171-1 5.011872-1 1.727032-1 6.309573-1 2.378386-1 7.943282-1 3.251030-1 1.000000+0 4.414149-1 1.258925+0 5.949768-1 1.584893+0 7.965475-1 1.995262+0 1.059828+0 2.511886+0 1.401910+0 3.162278+0 1.844566+0 3.981072+0 2.415382+0 5.011872+0 3.149428+0 6.309573+0 4.090956+0 7.943282+0 5.296193+0 1.000000+1 6.836294+0 1.258925+1 8.801524+0 1.584893+1 1.130607+1 1.995262+1 1.449456+1 2.511886+1 1.855008+1 3.162278+1 2.370401+1 3.981072+1 3.024949+1 5.011872+1 3.855672+1 6.309573+1 4.909412+1 7.943282+1 6.245371+1 1.000000+2 7.938337+1 1.258925+2 1.008286+2 1.584893+2 1.279838+2 1.995262+2 1.623575+2 2.511886+2 2.058547+2 3.162278+2 2.608813+2 3.981072+2 3.304763+2 5.011872+2 4.184730+2 6.309573+2 5.297136+2 7.943282+2 6.703088+2 1.000000+3 8.479718+2 1.258925+3 1.072434+3 1.584893+3 1.355977+3 1.995262+3 1.714083+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.130000-6 2.675364+6 5.240000-6 2.765428+6 5.240000-6 4.456496+6 5.400000-6 4.674928+6 5.500000-6 4.803286+6 5.623413-6 4.957003+6 5.680000-6 5.022990+6 5.680000-6 6.945966+6 5.700000-6 6.934351+6 5.760000-6 6.900702+6 5.900000-6 6.825223+6 5.956621-6 6.800054+6 5.960000-6 6.798533+6 6.165950-6 6.731265+6 6.237348-6 6.719847+6 6.309573-6 6.709467+6 6.350000-6 6.704193+6 6.550000-6 6.697931+6 6.600000-6 6.700919+6 6.606934-6 6.701041+6 6.770000-6 6.709105+6 7.000000-6 6.746850+6 7.200000-6 6.781260+6 7.350000-6 6.817309+6 7.413102-6 6.834467+6 7.500000-6 6.857360+6 7.550000-6 6.869017+6 7.700000-6 6.907154+6 7.852356-6 6.951145+6 8.000000-6 6.997988+6 8.035261-6 7.008745+6 8.200000-6 7.052959+6 8.350000-6 7.096411+6 8.511380-6 7.146037+6 8.609938-6 7.177558+6 8.650000-6 7.189551+6 8.709636-6 7.207485+6 8.810489-6 7.234019+6 8.920000-6 7.263550+6 9.050000-6 7.299566+6 9.200000-6 7.342235+6 9.225714-6 7.349631+6 9.350000-6 7.382466+6 9.440609-6 7.406724+6 9.500000-6 7.420157+6 9.660509-6 7.456923+6 9.850000-6 7.501186+6 9.885531-6 7.509568+6 1.020000-5 7.575849+6 1.023293-5 7.581445+6 1.035142-5 7.601723+6 1.042000-5 7.613532+6 1.050000-5 7.627364+6 1.057000-5 7.639511+6 1.059254-5 7.643437+6 1.065000-5 7.651692+6 1.071519-5 7.661094+6 1.077000-5 7.669020+6 1.083000-5 7.677716+6 1.083927-5 7.679064+6 1.088000-5 7.683236+6 1.094000-5 7.689406+6 1.100000-5 7.695598+6 1.107000-5 7.702846+6 1.112000-5 7.708038+6 1.117000-5 7.713241+6 1.123000-5 7.719496+6 1.129000-5 7.725763+6 1.135011-5 7.732050+6 1.142000-5 7.737286+6 1.150000-5 7.743300+6 1.157000-5 7.745479+6 1.168000-5 7.748958+6 1.180000-5 7.752820+6 1.200000-5 7.759384+6 1.202264-5 7.760135+6 1.216186-5 7.760132+6 1.230269-5 7.754230+6 1.250000-5 7.746214+6 1.270000-5 7.738366+6 1.273503-5 7.735869+6 1.290000-5 7.717089+6 1.310000-5 7.694781+6 1.330000-5 7.672957+6 1.333521-5 7.669153+6 1.350000-5 7.638442+6 1.372000-5 7.598260+6 1.396368-5 7.554807+6 1.400000-5 7.548410+6 1.420000-5 7.498144+6 1.450000-5 7.424714+6 1.462177-5 7.395529+6 1.480000-5 7.338738+6 1.513561-5 7.234776+6 1.531087-5 7.181953+6 1.550000-5 7.112105+6 1.584893-5 6.987147+6 1.590000-5 6.969258+6 1.621810-5 6.838132+6 1.659587-5 6.688845+6 1.710000-5 6.465316+6 1.730000-5 6.380473+6 1.757924-5 6.247911+6 1.800000-5 6.057125+6 1.862087-5 5.760396+6 1.870000-5 5.724319+6 1.927525-5 5.444646+6 1.950000-5 5.341286+6 2.000000-5 5.101696+6 2.018366-5 5.017845+6 2.070000-5 4.776265+6 2.089296-5 4.690467+6 2.162719-5 4.363764+6 2.238721-5 4.041111+6 2.264644-5 3.932451+6 2.330000-5 3.676364+6 2.344229-5 3.622493+6 2.371374-5 3.518924+6 2.426610-5 3.320616+6 2.454709-5 3.223535+6 2.500000-5 3.069926+6 2.540973-5 2.939530+6 2.570396-5 2.848552+6 2.630268-5 2.669288+6 2.660725-5 2.583964+6 2.691535-5 2.499557+6 2.786121-5 2.255781+6 2.818383-5 2.178321+6 2.917427-5 1.955701+6 2.950000-5 1.887940+6 2.951209-5 1.885410+6 3.040000-5 1.711161+6 3.080000-5 1.638416+6 3.126079-5 1.557474+6 3.162278-5 1.497521+6 3.198895-5 1.438939+6 3.214000-5 1.415086+6 3.214000-5 9.207366+6 3.278000-5 8.659539+6 3.280000-5 8.643079+6 3.311311-5 8.368995+6 3.350000-5 8.044400+6 3.371000-5 7.865811+6 3.371000-5 1.169303+7 3.400000-5 1.136481+7 3.427678-5 1.106218+7 3.438000-5 1.094824+7 3.450000-5 1.081729+7 3.500000-5 1.027629+7 3.540000-5 9.858157+6 3.548134-5 9.775650+6 3.570000-5 9.558150+6 3.589219-5 9.371562+6 3.600000-5 9.266130+6 3.672823-5 8.579457+6 3.690000-5 8.426711+6 3.715352-5 8.207008+6 3.758374-5 7.844861+6 3.801894-5 7.491335+6 3.850000-5 7.121984+6 3.935501-5 6.513094+6 3.950000-5 6.415995+6 4.000000-5 6.089118+6 4.073803-5 5.638417+6 4.168694-5 5.116126+6 4.216965-5 4.867770+6 4.220000-5 4.852622+6 4.365158-5 4.190974+6 4.400000-5 4.048595+6 4.500000-5 3.668813+6 4.518559-5 3.603187+6 4.650000-5 3.177050+6 4.677351-5 3.096316+6 4.731513-5 2.943482+6 4.800000-5 2.763161+6 4.841724-5 2.659714+6 4.954502-5 2.406467+6 5.069907-5 2.177280+6 5.080000-5 2.158562+6 5.128614-5 2.072649+6 5.188000-5 1.973324+6 5.248075-5 1.879710+6 5.300000-5 1.803224+6 5.324000-5 1.769162+6 5.335000-5 1.754140+6 5.335000-5 1.916644+6 5.432503-5 1.794080+6 5.450000-5 1.773316+6 5.500000-5 1.715880+6 5.559043-5 1.653734+6 5.623413-5 1.589615+6 5.650000-5 1.564235+6 5.688529-5 1.528547+6 5.754399-5 1.472005+6 5.850000-5 1.396856+6 5.900000-5 1.359833+6 6.000000-5 1.292607+6 6.025596-5 1.276574+6 6.095369-5 1.234523+6 6.165950-5 1.195832+6 6.237348-5 1.158609+6 6.309573-5 1.123708+6 6.350000-5 1.105793+6 6.400000-5 1.084404+6 6.456542-5 1.061164+6 6.500000-5 1.044328+6 6.531306-5 1.032533+6 6.540000-5 1.029415+6 6.610000-5 1.005013+6 6.683439-5 9.806999+5 6.690000-5 9.786330+5 6.703000-5 9.745699+5 6.735400-5 9.646153+5 6.770000-5 9.547200+5 6.850000-5 9.327269+5 6.900000-5 9.195740+5 6.918310-5 9.147780+5 6.920000-5 9.143506+5 6.950000-5 9.068706+5 7.000000-5 8.953437+5 7.079458-5 8.777633+5 7.161434-5 8.605000+5 7.244360-5 8.454432+5 7.330000-5 8.302769+5 7.400000-5 8.184162+5 7.420000-5 8.154396+5 7.500000-5 8.038789+5 7.585776-5 7.920088+5 7.650000-5 7.834655+5 7.690000-5 7.786632+5 7.800000-5 7.659471+5 7.900000-5 7.553936+5 7.943282-5 7.513318+5 7.950000-5 7.506778+5 8.035261-5 7.425545+5 8.128305-5 7.344094+5 8.150000-5 7.325566+5 8.222426-5 7.269916+5 8.300000-5 7.212031+5 8.317638-5 7.199808+5 8.413951-5 7.130234+5 8.511380-5 7.068168+5 8.570000-5 7.031779+5 8.709636-5 6.952201+5 8.810489-5 6.897924+5 8.912509-5 6.847348+5 9.015711-5 6.797365+5 9.120108-5 6.752735+5 9.150000-5 6.740976+5 9.225714-5 6.709125+5 9.332543-5 6.664898+5 9.440609-5 6.621107+5 9.500000-5 6.601099+5 9.549926-5 6.584318+5 9.660509-5 6.544771+5 9.800000-5 6.495984+5 9.950000-5 6.447232+5 1.000000-4 6.431215+5 1.011579-4 6.397908+5 1.023293-4 6.361712+5 1.040000-4 6.313686+5 1.050000-4 6.285337+5 1.071519-4 6.225672+5 1.083927-4 6.191842+5 1.096478-4 6.158242+5 1.109175-4 6.124956+5 1.122018-4 6.091526+5 1.150000-4 6.020414+5 1.161449-4 5.991812+5 1.174898-4 5.958535+5 1.190000-4 5.920727+5 1.205000-4 5.883499+5 1.230269-4 5.822083+5 1.244515-4 5.787979+5 1.273503-4 5.720044+5 1.280000-4 5.704462+5 1.288250-4 5.684572+5 1.318257-4 5.613490+5 1.330000-4 5.585043+5 1.338300-4 5.564945+5 1.380384-4 5.465498+5 1.428894-4 5.349921+5 1.430000-4 5.347315+5 1.450000-4 5.299916+5 1.480000-4 5.227343+5 1.496236-4 5.188861+5 1.548817-4 5.063180+5 1.566751-4 5.021799+5 1.580000-4 4.991471+5 1.584893-4 4.980157+5 1.603245-4 4.936328+5 1.621810-4 4.892824+5 1.640590-4 4.848179+5 1.665100-4 4.790836+5 1.665100-4 6.981220+5 1.671000-4 6.959901+5 1.677000-4 6.951676+5 1.683000-4 6.960036+5 1.687000-4 6.975367+5 1.687400-4 6.977921+5 1.687400-4 8.463389+5 1.692000-4 8.485872+5 1.692500-4 8.489805+5 1.697000-4 8.532470+5 1.698244-4 8.548285+5 1.698500-4 8.551554+5 1.702000-4 8.603333+5 1.705000-4 8.658536+5 1.707000-4 8.699841+5 1.710000-4 8.772024+5 1.711000-4 8.798308+5 1.715000-4 8.918966+5 1.717000-4 8.984809+5 1.720000-4 9.097419+5 1.721200-4 9.145823+5 1.723000-4 9.219522+5 1.725000-4 9.309693+5 1.728500-4 9.480253+5 1.730000-4 9.559883+5 1.735000-4 9.847153+5 1.740000-4 1.017896+6 1.745000-4 1.054380+6 1.752000-4 1.112322+6 1.760000-4 1.187715+6 1.765000-4 1.240260+6 1.770000-4 1.294918+6 1.773000-4 1.329736+6 1.778279-4 1.392417+6 1.781000-4 1.426446+6 1.785000-4 1.476831+6 1.788000-4 1.515816+6 1.795000-4 1.608708+6 1.796000-4 1.622359+6 1.798871-4 1.660575+6 1.800000-4 1.675937+6 1.803000-4 1.717692+6 1.805000-4 1.745648+6 1.812000-4 1.843563+6 1.812400-4 1.849223+6 1.820000-4 1.956369+6 1.827000-4 2.054951+6 1.828000-4 2.069169+6 1.835000-4 2.167277+6 1.838000-4 2.209681+6 1.845000-4 2.306978+6 1.850000-4 2.377086+6 1.855000-4 2.445708+6 1.862087-4 2.543518+6 1.865000-4 2.582984+6 1.873000-4 2.691332+6 1.875000-4 2.717927+6 1.883649-4 2.832666+6 1.885000-4 2.851056+6 1.900000-4 3.045216+6 1.915000-4 3.233093+6 1.930000-4 3.413618+6 1.945000-4 3.585605+6 1.957000-4 3.715759+6 1.960000-4 3.746868+6 1.972423-4 3.872397+6 1.975000-4 3.898948+6 1.976400-4 3.912804+6 1.990000-4 4.038043+6 1.995262-4 4.084881+6 2.000000-4 4.124152+6 2.010000-4 4.208193+6 2.018366-4 4.269367+6 2.030000-4 4.355720+6 2.041738-4 4.429816+6 2.050000-4 4.482583+6 2.052900-4 4.499924+6 2.065380-4 4.566412+6 2.070000-4 4.591190+6 2.080000-4 4.641436+6 2.089296-4 4.682465+6 2.090000-4 4.685583+6 2.113489-4 4.781026+6 2.120000-4 4.804251+6 2.150000-4 4.901269+6 2.190000-4 5.002339+6 2.205000-4 5.036872+6 2.213095-4 5.052523+6 2.220000-4 5.065877+6 2.238721-4 5.102074+6 2.240000-4 5.104544+6 2.264644-4 5.146682+6 2.300000-4 5.195902+6 2.317395-4 5.216566+6 2.344229-4 5.239621+6 2.350000-4 5.244570+6 2.371374-4 5.258969+6 2.380000-4 5.264765+6 2.400000-4 5.270714+6 2.426610-4 5.273429+6 2.450000-4 5.275790+6 2.454709-4 5.274730+6 2.483133-4 5.262749+6 2.500000-4 5.255657+6 2.511886-4 5.250681+6 2.520000-4 5.245032+6 2.600160-4 5.175308+6 2.630268-4 5.138591+6 2.660725-4 5.102135+6 2.691535-4 5.065907+6 2.754229-4 4.976214+6 2.800000-4 4.912864+6 2.818383-4 4.882697+6 2.884032-4 4.778005+6 2.917427-4 4.726497+6 2.999200-4 4.583838+6 2.999200-4 5.013967+6 3.019952-4 4.982519+6 3.040000-4 4.947834+6 3.054921-4 4.921411+6 3.115000-4 4.817914+6 3.122600-4 4.804806+6 3.122600-4 4.997917+6 3.126079-4 4.991977+6 3.150000-4 4.951536+6 3.200000-4 4.860148+6 3.235937-4 4.795700+6 3.280000-4 4.718964+6 3.311311-4 4.663823+6 3.330000-4 4.629587+6 3.349654-4 4.594032+6 3.350000-4 4.593411+6 3.430000-4 4.451719+6 3.467369-4 4.387582+6 3.507519-4 4.318506+6 3.550000-4 4.244261+6 3.589219-4 4.176887+6 3.630781-4 4.107549+6 3.672823-4 4.039504+6 3.715352-4 3.970405+6 3.758374-4 3.899658+6 3.801894-4 3.829798+6 3.850200-4 3.754584+6 3.857900-4 3.742531+6 3.857900-4 3.912761+6 3.935501-4 3.791451+6 4.000000-4 3.692078+6 4.027170-4 3.651555+6 4.050000-4 3.618094+6 4.073803-4 3.583395+6 4.120975-4 3.514967+6 4.168694-4 3.447726+6 4.216965-4 3.380161+6 4.265795-4 3.314022+6 4.280000-4 3.295025+6 4.365158-4 3.184383+6 4.415704-4 3.120546+6 4.466836-4 3.058100+6 4.518559-4 2.995592+6 4.550000-4 2.958232+6 4.623810-4 2.873567+6 4.677351-4 2.814635+6 4.731513-4 2.756005+6 4.786301-4 2.698210+6 4.954502-4 2.527832+6 5.011872-4 2.473688+6 5.069907-4 2.420109+6 5.150000-4 2.348391+6 5.248075-4 2.263568+6 5.308844-4 2.213464+6 5.370318-4 2.164545+6 5.400000-4 2.141492+6 5.432503-4 2.116457+6 5.495409-4 2.068790+6 5.559043-4 2.022070+6 5.580000-4 2.007044+6 5.623413-4 1.976401+6 5.754399-4 1.886852+6 5.821032-4 1.843371+6 5.888437-4 1.800772+6 5.900000-4 1.793615+6 6.095369-4 1.677805+6 6.237348-4 1.599716+6 6.309573-4 1.561750+6 6.456542-4 1.488711+6 6.606934-4 1.418788+6 6.683439-4 1.385057+6 6.700000-4 1.377920+6 6.760830-4 1.351855+6 6.839116-4 1.319023+6 6.918310-4 1.287050+6 7.079458-4 1.225586+6 7.161434-4 1.195768+6 7.244360-4 1.166661+6 7.328245-4 1.137949+6 7.413102-4 1.109652+6 7.585776-4 1.055302+6 7.762471-4 1.003806+6 7.800000-4 9.932917+5 7.852356-4 9.788493+5 8.000000-4 9.395392+5 8.035261-4 9.305041+5 8.128305-4 9.070530+5 8.222426-4 8.842360+5 8.317638-4 8.620185+5 8.413951-4 8.404009+5 8.511380-4 8.193203+5 8.609938-4 7.987270+5 8.810489-4 7.585667+5 8.912509-4 7.391190+5 9.120108-4 7.017957+5 9.225714-4 6.838938+5 9.332543-4 6.663428+5 9.500000-4 6.399531+5 9.772372-4 6.000565+5 1.000000-3 5.692400+5 1.011579-3 5.544659+5 1.035142-3 5.260281+5 1.047129-3 5.122857+5 1.083927-3 4.730388+5 1.109175-3 4.484168+5 1.110000-3 4.476447+5 1.122018-3 4.365712+5 1.135011-3 4.250492+5 1.174898-3 3.921146+5 1.202264-3 3.715488+5 1.216186-3 3.616242+5 1.230269-3 3.519191+5 1.258925-3 3.333320+5 1.273503-3 3.243568+5 1.303167-3 3.071669+5 1.318257-3 2.988996+5 1.333521-3 2.908611+5 1.350000-3 2.825353+5 1.355400-3 2.798652+5 1.364583-3 2.753902+5 1.380384-3 2.679349+5 1.412538-3 2.535423+5 1.462177-3 2.334063+5 1.479108-3 2.270488+5 1.513561-3 2.148123+5 1.531087-3 2.089254+5 1.566751-3 1.975710+5 1.584893-3 1.921379+5 1.640590-3 1.767612+5 1.650000-3 1.743431+5 1.659587-3 1.719137+5 1.678804-3 1.671650+5 1.757924-3 1.492907+5 1.819701-3 1.372083+5 1.850000-3 1.317769+5 1.862087-3 1.296912+5 1.883649-3 1.260685+5 1.900000-3 1.233954+5 1.905461-3 1.225188+5 1.972423-3 1.124645+5 2.018366-3 1.062439+5 2.041738-3 1.032700+5 2.065380-3 1.003693+5 2.081500-3 9.845400+4 2.081500-3 3.730455+5 2.089296-3 3.701426+5 2.113489-3 3.613245+5 2.145000-3 3.502916+5 2.159700-3 3.444134+5 2.159700-3 4.768178+5 2.168000-3 4.724363+5 2.190000-3 4.622499+5 2.213095-3 4.509030+5 2.264644-3 4.269591+5 2.290868-3 4.154724+5 2.300000-3 4.113657+5 2.317395-3 4.036966+5 2.344229-3 3.922373+5 2.354900-3 3.878067+5 2.354900-3 4.439175+5 2.400000-3 4.242985+5 2.426610-3 4.130321+5 2.430000-3 4.116278+5 2.483133-3 3.901883+5 2.540973-3 3.686220+5 2.570396-3 3.582953+5 2.600160-3 3.481725+5 2.630268-3 3.383253+5 2.691535-3 3.193289+5 2.722701-3 3.102459+5 2.786121-3 2.928609+5 2.818383-3 2.845477+5 2.851018-3 2.764125+5 2.884032-3 2.685097+5 2.900000-3 2.648023+5 2.951209-3 2.533744+5 3.054921-3 2.322837+5 3.090295-3 2.256354+5 3.162278-3 2.128919+5 3.198895-3 2.067992+5 3.235937-3 2.008809+5 3.273407-3 1.950664+5 3.311311-3 1.894232+5 3.349654-3 1.839468+5 3.427678-3 1.734770+5 3.467369-3 1.684550+5 3.548134-3 1.588517+5 3.589219-3 1.542140+5 3.630781-3 1.497097+5 3.650000-3 1.476899+5 3.672823-3 1.453378+5 3.715352-3 1.410677+5 3.801894-3 1.329101+5 3.845918-3 1.289886+5 3.900000-3 1.243909+5 3.981072-3 1.179197+5 4.000000-3 1.164776+5 4.027170-3 1.144506+5 4.073803-3 1.110839+5 4.120975-3 1.078190+5 4.150000-3 1.058690+5 4.168694-3 1.046376+5 4.216965-3 1.015487+5 4.365158-3 9.272078+4 4.415704-3 8.993784+4 4.518559-3 8.462550+4 4.570882-3 8.208967+4 4.623810-3 7.963182+4 4.731513-3 7.494086+4 4.800000-3 7.213963+4 4.897788-3 6.838874+4 4.954502-3 6.633688+4 5.011872-3 6.433468+4 5.069907-3 6.238907+4 5.128614-3 6.050347+4 5.248075-3 5.690352+4 5.370318-3 5.352355+4 5.432503-3 5.190941+4 5.495409-3 5.033028+4 5.500000-3 5.021767+4 5.623413-3 4.730722+4 5.688529-3 4.585914+4 5.754399-3 4.445560+4 5.821032-3 4.309599+4 5.956621-3 4.050201+4 6.095369-3 3.806855+4 6.309573-3 3.469330+4 6.382635-3 3.363066+4 6.606934-3 3.061986+4 6.683439-3 2.967832+4 6.760830-3 2.876211+4 6.918310-3 2.701605+4 7.161434-3 2.459646+4 7.244360-3 2.383671+4 7.413102-3 2.237993+4 7.498942-3 2.168613+4 7.500000-3 2.167776+4 7.585776-3 2.101403+4 7.673615-3 2.036132+4 7.800000-3 1.947082+4 7.852356-3 1.911748+4 8.128305-3 1.739380+4 8.222426-3 1.685163+4 8.413951-3 1.581866+4 8.511380-3 1.532373+4 8.609938-3 1.484469+4 8.709636-3 1.438078+4 8.810489-3 1.393167+4 8.912509-3 1.349542+4 9.000000-3 1.313593+4 9.225714-3 1.226783+4 9.440609-3 1.151309+4 9.549926-3 1.115380+4 9.772372-3 1.046436+4 9.800000-3 1.038289+4 9.885531-3 1.013478+4 1.011579-2 9.506043+3 1.023293-2 9.206847+3 1.035142-2 8.917300+3 1.047129-2 8.636833+3 1.083927-2 7.846220+3 1.096478-2 7.599294+3 1.122018-2 7.126145+3 1.135011-2 6.900997+3 1.148154-2 6.683040+3 1.161449-2 6.471064+3 1.188502-2 6.067621+3 1.202264-2 5.875534+3 1.230269-2 5.509792+3 1.244515-2 5.335320+3 1.258925-2 5.165320+3 1.273503-2 5.000668+3 1.288250-2 4.841395+3 1.303167-2 4.687325+3 1.318257-2 4.538216+3 1.348963-2 4.254419+3 1.350000-2 4.245268+3 1.364583-2 4.118849+3 1.412538-2 3.737725+3 1.445440-2 3.503925+3 1.462177-2 3.391551+3 1.479108-2 3.282867+3 1.496236-2 3.177614+3 1.500000-2 3.155107+3 1.513561-2 3.075819+3 1.531087-2 2.977324+3 1.548817-2 2.882051+3 1.566751-2 2.789901+3 1.584893-2 2.700707+3 1.659587-2 2.370955+3 1.678804-2 2.295163+3 1.700000-2 2.214714+3 1.700000-2 1.518985+4 1.717908-2 1.479854+4 1.737801-2 1.438016+4 1.740000-2 1.433493+4 1.757924-2 1.392327+4 1.760000-2 1.387663+4 1.778279-2 1.352036+4 1.798871-2 1.313422+4 1.819701-2 1.275918+4 1.820000-2 1.275391+4 1.862087-2 1.200785+4 1.883649-2 1.164890+4 1.949845-2 1.063494+4 1.972423-2 1.032157+4 2.018366-2 9.721602+3 2.041738-2 9.434884+3 2.065380-2 9.156525+3 2.089296-2 8.886420+3 2.113489-2 8.624324+3 2.137962-2 8.369979+3 2.162719-2 8.115520+3 2.187762-2 7.868833+3 2.238721-2 7.397820+3 2.264644-2 7.172941+3 2.290868-2 6.954920+3 2.317395-2 6.743554+3 2.371374-2 6.339455+3 2.398833-2 6.146617+3 2.426610-2 5.959621+3 2.454709-2 5.778334+3 2.483133-2 5.602545+3 2.540973-2 5.266883+3 2.570396-2 5.106700+3 2.600160-2 4.951407+3 2.660725-2 4.654904+3 2.691535-2 4.510311+3 2.722701-2 4.370224+3 2.818383-2 3.975147+3 2.851018-2 3.851560+3 2.917427-2 3.615817+3 3.000000-2 3.349372+3 3.019952-2 3.289032+3 3.162278-2 2.898869+3 3.198895-2 2.808702+3 3.235937-2 2.721322+3 3.311311-2 2.554661+3 3.349654-2 2.473653+3 3.427678-2 2.319277+3 3.467369-2 2.245748+3 3.589219-2 2.038881+3 3.715352-2 1.851114+3 3.758374-2 1.792379+3 3.845918-2 1.680451+3 3.935501-2 1.575506+3 3.981072-2 1.525514+3 4.120975-2 1.384877+3 4.168694-2 1.340947+3 4.216965-2 1.297716+3 4.365158-2 1.176220+3 4.415704-2 1.138309+3 4.466836-2 1.101579+3 4.518559-2 1.066037+3 4.677351-2 9.661551+2 4.731513-2 9.349835+2 4.786301-2 9.048151+2 5.128614-2 7.432019+2 5.188000-2 7.192297+2 5.248075-2 6.957272+2 5.308844-2 6.729683+2 5.370318-2 6.509545+2 5.559043-2 5.891464+2 6.244590-2 4.210829+2 6.309573-2 4.086823+2 6.382635-2 3.953058+2 6.606934-2 3.573548+2 6.683439-2 3.455330+2 6.760830-2 3.341007+2 6.839116-2 3.230474+2 7.079458-2 2.920356+2 7.673615-2 2.307742+2 7.762471-2 2.231351+2 8.035261-2 2.017028+2 8.128305-2 1.949658+2 8.222426-2 1.884530+2 8.317638-2 1.821579+2 8.413951-2 1.760734+2 8.709636-2 1.590132+2 9.549926-2 1.211793+2 9.772372-2 1.132152+2 1.000000-1 1.057748+2 1.011580-1 1.022400+2 1.023293-1 9.882394+1 1.035142-1 9.552151+1 1.047129-1 9.232932+1 1.059254-1 8.924409+1 1.096478-1 8.055348+1 1.109175-1 7.784921+1 1.135011-1 7.271037+1 1.161449-1 6.791095+1 1.174898-1 6.563150+1 1.188502-1 6.342873+1 1.202264-1 6.129987+1 1.258925-1 5.347570+1 1.303167-1 4.826923+1 1.318257-1 4.664900+1 1.348963-1 4.357001+1 1.364583-1 4.210780+1 1.380384-1 4.069468+1 1.428894-1 3.673369+1 1.462177-1 3.430980+1 1.479108-1 3.315855+1 1.513561-1 3.097066+1 1.548817-1 2.892733+1 1.584893-1 2.701895+1 1.603245-1 2.611251+1 1.640590-1 2.438986+1 1.659587-1 2.357176+1 1.678804-1 2.278112+1 1.717908-1 2.127858+1 1.737801-1 2.056488+1 1.757924-1 1.987514+1 1.778279-1 1.920858+1 1.798871-1 1.856439+1 1.840772-1 1.734016+1 1.862087-1 1.675867+1 1.883649-1 1.620181+1 1.927525-1 1.514312+1 1.949845-1 1.464002+1 1.972423-1 1.415395+1 2.000000-1 1.358918+1 2.018366-1 1.322972+1 2.041738-1 1.279052+1 2.065380-1 1.236592+1 2.137962-1 1.117498+1 2.187762-1 1.044555+1 2.213095-1 1.009890+1 2.238721-1 9.763774+0 2.264644-1 9.439767+0 2.344229-1 8.541668+0 2.426610-1 7.729109+0 2.454709-1 7.476161+0 2.483133-1 7.231509+0 2.511886-1 6.994867+0 2.540973-1 6.766017+0 2.570396-1 6.544663+0 2.660725-1 5.923120+0 2.722701-1 5.547024+0 2.754229-1 5.368049+0 2.818383-1 5.027255+0 2.851018-1 4.865062+0 2.884032-1 4.708329+0 2.951209-1 4.409874+0 3.000000-1 4.208990+0 3.000060-1 4.208751+0 3.019952-1 4.130412+0 3.054921-1 3.997423+0 3.090295-1 3.868720+0 3.126079-1 3.746200+0 3.198895-1 3.512681+0 3.273407-1 3.293724+0 3.349654-1 3.088748+0 3.388442-1 2.991118+0 3.467369-1 2.805083+0 3.507519-1 2.716452+0 3.548134-1 2.632159+0 3.589219-1 2.550482+0 3.630781-1 2.471340+0 3.672823-1 2.394656+0 3.715352-1 2.320361+0 3.758374-1 2.248502+0 3.801894-1 2.178875+0 3.845918-1 2.111407+0 3.935501-1 1.982719+0 4.000000-1 1.898373+0 4.027170-1 1.864317+0 4.073803-1 1.807803+0 4.120975-1 1.753004+0 4.168694-1 1.699866+0 4.216965-1 1.648448+0 4.265795-1 1.598586+0 4.315191-1 1.550235+0 4.415705-1 1.457909+0 4.466836-1 1.414780+0 4.518559-1 1.372929+0 4.570882-1 1.332315+0 4.623810-1 1.292903+0 4.677351-1 1.254661+0 4.786301-1 1.181696+0 4.841724-1 1.146824+0 4.897788-1 1.112999+0 4.954502-1 1.080909+0 5.011872-1 1.049746+0 5.069907-1 1.019481+0 5.128614-1 9.900887-1 5.188000-1 9.615471-1 5.248075-1 9.338936-1 5.308844-1 9.070400-1 5.370318-1 8.809603-1 5.432503-1 8.556415-1 5.495409-1 8.316567-1 5.623413-1 7.856870-1 5.754399-1 7.422624-1 5.821032-1 7.215160-1 5.888437-1 7.013495-1 5.956621-1 6.817485-1 6.000000-1 6.696828-1 6.025596-1 6.627039-1 6.095369-1 6.446708-1 6.237348-1 6.100672-1 6.309573-1 5.934688-1 6.382635-1 5.773241-1 6.456542-1 5.616625-1 6.531306-1 5.464255-1 6.606935-1 5.316032-1 6.683439-1 5.175604-1 6.760830-1 5.038897-1 6.839117-1 4.905806-1 6.918310-1 4.776231-1 6.998420-1 4.650452-1 7.079458-1 4.527986-1 7.161434-1 4.408746-1 7.244360-1 4.296152-1 7.328245-1 4.186447-1 7.413102-1 4.079609-1 7.498942-1 3.975500-1 7.585776-1 3.874061-1 7.673615-1 3.775212-1 7.852356-1 3.585556-1 8.000000-1 3.443071-1 8.035261-1 3.410266-1 8.128305-1 3.325869-1 8.317638-1 3.163387-1 8.511380-1 3.008852-1 8.609938-1 2.934619-1 8.709636-1 2.862228-1 8.810489-1 2.793085-1 8.912509-1 2.725620-1 9.015711-1 2.659835-1 9.120108-1 2.595640-1 9.225714-1 2.532995-1 9.440609-1 2.412222-1 9.549926-1 2.354223-1 9.660509-1 2.299616-1 9.772372-1 2.246284-1 9.885531-1 2.194230-1 1.000000+0 2.143382-1 1.011579+0 2.093716-1 1.022000+0 2.050471-1 1.023293+0 2.045199-1 1.035142+0 1.997945-1 1.059254+0 1.908813-1 1.071519+0 1.865752-1 1.096478+0 1.782520-1 1.109175+0 1.742306-1 1.122018+0 1.703009-1 1.135011+0 1.664604-1 1.148154+0 1.627089-1 1.161449+0 1.590421-1 1.174898+0 1.555805-1 1.188600+0 1.521705-1 1.202264+0 1.488827-1 1.216186+0 1.456427-1 1.230269+0 1.424743-1 1.244515+0 1.393764-1 1.273503+0 1.333814-1 1.288250+0 1.304812-1 1.318257+0 1.250572-1 1.333521+0 1.224306-1 1.348963+0 1.198591-1 1.364583+0 1.173421-1 1.396368+0 1.124657-1 1.412538+0 1.101040-1 1.428894+0 1.077933-1 1.462177+0 1.034624-1 1.479108+0 1.013627-1 1.513561+0 9.729049-2 1.531087+0 9.531616-2 1.548817+0 9.338200-2 1.566751+0 9.148850-2 1.584893+0 8.963339-2 1.603245+0 8.781594-2 1.640590+0 8.440907-2 1.698244+0 7.954505-2 1.717908+0 7.798688-2 1.737801+0 7.645928-2 1.778279+0 7.349573-2 1.798871+0 7.205730-2 1.819701+0 7.069597-2 1.840772+0 6.936037-2 1.862087+0 6.805001-2 1.905461+0 6.550304-2 1.927525+0 6.426555-2 1.949845+0 6.305156-2 2.000000+0 6.045611-2 2.018366+0 5.954836-2 2.065380+0 5.739968-2 2.137962+0 5.432118-2 2.162719+0 5.333213-2 2.213095+0 5.140797-2 2.264644+0 4.955473-2 2.290868+0 4.865330-2 2.344229+0 4.695980-2 2.426610+0 4.452943-2 2.454709+0 4.374758-2 2.511886+0 4.222501-2 2.570396+0 4.075656-2 2.600160+0 4.004162-2 2.660725+0 3.869674-2 2.786121+0 3.614096-2 2.818383+0 3.552884-2 2.884032+0 3.433564-2 2.951209+0 3.318343-2 2.985383+0 3.262191-2 3.054921+0 3.156514-2 3.198895+0 2.955318-2 3.235937+0 2.907055-2 3.311311+0 2.812892-2 3.349654+0 2.766991-2 3.427678+0 2.677431-2 3.467369+0 2.633745-2 3.548134+0 2.551424-2 3.715352+0 2.394420-2 3.758374+0 2.356703-2 3.845918+0 2.283047-2 3.890451+0 2.247111-2 4.000000+0 2.162749-2 4.073803+0 2.108944-2 4.168694+0 2.045175-2 4.365158+0 1.923364-2 4.415704+0 1.894062-2 4.518559+0 1.836796-2 4.570882+0 1.808834-2 4.677351+0 1.754186-2 4.786301+0 1.701190-2 4.897788+0 1.651546-2 5.128614+0 1.556562-2 5.188000+0 1.533682-2 5.308844+0 1.488931-2 5.370318+0 1.467062-2 5.495409+0 1.424286-2 5.688529+0 1.362450-2 5.821032+0 1.323858-2 6.237348+0 1.214518-2 6.382635+0 1.180116-2 6.531306+0 1.146692-2 6.606934+0 1.130347-2 6.760830+0 1.098355-2 6.918310+0 1.067269-2 7.000000+0 1.052290-2 7.079458+0 1.038086-2 7.413102+0 9.820935-3 7.498942+0 9.685737-3 7.762471+0 9.291242-3 7.852356+0 9.163420-3 8.222427+0 8.669506-3 8.511380+0 8.316630-3 8.709636+0 8.095581-3 8.810489+0 7.987269-3 9.332543+0 7.467067-3 9.440609+0 7.367165-3 9.660509+0 7.171369-3 9.772372+0 7.075485-3 1.023293+1 6.704622-3 1.071519+1 6.353206-3 1.100000+1 6.166387-3 1.109175+1 6.108386-3 1.174898+1 5.721142-3 1.188502+1 5.646694-3 1.202264+1 5.573212-3 1.230269+1 5.429112-3 1.244515+1 5.358503-3 1.303167+1 5.085156-3 1.364583+1 4.825758-3 1.380384+1 4.764509-3 1.412538+1 4.644330-3 1.428894+1 4.585385-3 1.531087+1 4.247090-3 1.548817+1 4.193183-3 1.566751+1 4.139963-3 1.621810+1 3.984332-3 1.640590+1 3.933791-3 1.698244+1 3.785993-3 1.778279+1 3.597537-3 1.800000+1 3.550506-3 1.840772+1 3.465345-3 1.862087+1 3.422370-3 2.041738+1 3.097210-3 2.113489+1 2.983404-3 2.264644+1 2.768197-3 2.290868+1 2.733885-3 2.371374+1 2.633489-3 2.426610+1 2.568615-3 2.454709+1 2.537376-3 2.483133+1 2.506577-3 2.511886+1 2.476153-3 2.754229+1 2.245676-3 2.951209+1 2.087010-3 2.985383+1 2.061677-3 3.388442+1 1.802529-3 3.427678+1 1.780658-3 3.548134+1 1.716633-3 3.589219+1 1.695808-3 3.630781+1 1.675643-3 3.672823+1 1.655718-3 3.935501+1 1.541048-3 4.216965+1 1.434319-3 4.265795+1 1.417264-3 5.069907+1 1.184483-3 5.128614+1 1.170402-3 5.188000+1 1.156489-3 5.559043+1 1.076420-3 5.688529+1 1.050982-3 5.754399+1 1.038641-3 5.821032+1 1.026445-3 5.888437+1 1.014408-3 5.956621+1 1.002512-3 6.095369+1 9.791373-4 6.839116+1 8.701882-4 7.244360+1 8.203476-4 7.328245+1 8.107275-4 8.511380+1 6.954693-4 8.709636+1 6.792571-4 8.810489+1 6.712933-4 9.660509+1 6.108586-4 1.000000+2 5.896258-4 1.047129+2 5.627169-4 1.059254+2 5.561903-4 1.083927+2 5.433633-4 1.109175+2 5.308320-4 1.288250+2 4.561328-4 1.380384+2 4.252966-4 1.396368+2 4.203638-4 1.698244+2 3.447427-4 1.737801+2 3.367933-4 1.757924+2 3.328875-4 1.927525+2 3.032301-4 1.995262+2 2.928031-4 2.089296+2 2.795335-4 2.113489+2 2.763135-4 2.162719+2 2.699843-4 2.213095+2 2.638001-4 2.570396+2 2.269142-4 2.754229+2 2.116757-4 2.786121+2 2.092374-4 3.388442+2 1.718306-4 3.467369+2 1.678950-4 3.507519+2 1.659612-4 3.845918+2 1.512716-4 3.981072+2 1.461047-4 8.317638+2 6.978770-5 8.413951+2 6.898696-5 8.609938+2 6.741293-5 8.810489+2 6.587482-5 1.023293+3 5.669763-5 1.096478+3 5.290463-5 1.109175+3 5.229759-5 1.348963+3 4.298139-5 1.380384+3 4.200077-5 1.396368+3 4.151888-5 1.531087+3 3.785761-5 1.584893+3 3.656945-5 5.248075+4 1.103253-6 5.308844+4 1.090621-6 5.432503+4 1.065789-6 1.000000+5 5.788970-7 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.130000-6 5.130000-6 5.240000-6 5.130000-6 5.240000-6 5.171741-6 5.680000-6 5.172068-6 5.680000-6 5.312688-6 6.350000-6 5.248189-6 7.200000-6 5.205321-6 8.810489-6 5.178784-6 1.870000-5 5.180245-6 3.214000-5 5.205020-6 3.214000-5 9.776766-6 3.371000-5 9.789421-6 3.371000-5 1.004720-5 5.335000-5 1.012527-5 5.335000-5 1.061217-5 6.735400-5 1.135205-5 7.330000-5 1.159203-5 7.950000-5 1.175360-5 8.570000-5 1.183112-5 9.500000-5 1.184522-5 1.450000-4 1.154390-5 1.665100-4 1.145701-5 1.665100-4 1.556781-5 1.677000-4 1.557815-5 1.687400-4 1.565368-5 1.687400-4 1.719460-5 1.698500-4 1.730660-5 1.711000-4 1.754867-5 1.723000-4 1.790381-5 1.735000-4 1.836135-5 1.773000-4 2.003993-5 1.788000-4 2.061653-5 1.805000-4 2.115612-5 1.828000-4 2.171083-5 1.855000-4 2.217092-5 1.885000-4 2.253066-5 1.930000-4 2.289186-5 1.990000-4 2.317936-5 2.080000-4 2.339927-5 2.264644-4 2.359056-5 2.600160-4 2.372657-5 2.999200-4 2.376698-5 2.999200-4 2.477908-5 3.122600-4 2.486066-5 3.122600-4 2.527356-5 3.857900-4 2.572498-5 3.857900-4 2.659511-5 5.623413-4 2.770332-5 7.413102-4 2.858734-5 9.500000-4 2.940042-5 1.230269-3 3.025659-5 1.584893-3 3.108405-5 2.041738-3 3.188574-5 2.081500-3 3.194474-5 2.081500-3 4.956523-5 2.159700-3 4.967194-5 2.159700-3 5.179762-5 2.354900-3 5.189376-5 2.354900-3 5.500296-5 3.427678-3 5.620786-5 5.069907-3 5.762603-5 7.244360-3 5.902950-5 1.035142-2 6.050895-5 1.412538-2 6.181693-5 1.700000-2 6.258183-5 1.700000-2 6.965473-5 3.235937-2 7.010599-5 8.035261-2 7.044259-5 3.548134-1 7.064197-5 1.000000+5 7.068156-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.130000-6 0.0 3.214000-5 0.0 3.214000-5 1.166045-9 3.371000-5 1.169069-9 3.371000-5 1.265603-9 5.335000-5 1.283256-9 5.335000-5 1.300463-9 6.309573-5 1.321100-9 7.079458-5 1.327755-9 8.035261-5 1.323894-9 1.122018-4 1.288484-9 1.338300-4 1.273847-9 1.640590-4 1.265408-9 1.665100-4 1.265144-9 1.665100-4 1.688541-9 1.677000-4 1.689811-9 1.687400-4 1.697766-9 1.687400-4 9.871630-9 1.692500-4 9.807690-9 1.698500-4 9.754923-9 1.705000-4 9.729481-9 1.711000-4 9.742799-9 1.715000-4 9.761861-9 1.721200-4 9.835145-9 1.725000-4 9.894976-9 1.730000-4 1.000386-8 1.735000-4 1.014134-8 1.740000-4 1.030217-8 1.745000-4 1.049428-8 1.752000-4 1.080032-8 1.760000-4 1.119800-8 1.773000-4 1.191302-8 1.798871-4 1.339871-8 1.812400-4 1.410617-8 1.827000-4 1.477999-8 1.835000-4 1.510841-8 1.845000-4 1.547711-8 1.855000-4 1.580228-8 1.875000-4 1.634853-8 1.900000-4 1.688953-8 1.930000-4 1.740071-8 1.960000-4 1.781246-8 1.995262-4 1.817868-8 2.030000-4 1.847650-8 2.070000-4 1.872979-8 2.120000-4 1.894048-8 2.190000-4 1.913142-8 2.350000-4 1.940216-8 2.520000-4 1.958523-8 2.884032-4 1.975696-8 2.999200-4 1.978907-8 2.999200-4 2.095352-8 3.122600-4 2.106725-8 3.122600-4 2.242371-8 3.672823-4 2.310222-8 3.857900-4 2.330506-8 3.857900-4 2.455365-8 5.011872-4 2.591315-8 5.900000-4 2.682507-8 7.244360-4 2.798759-8 8.810489-4 2.909874-8 1.047129-3 3.009209-8 1.273503-3 3.119738-8 1.513561-3 3.214422-8 1.757924-3 3.294665-8 2.081500-3 3.380734-8 2.081500-3 3.865315-5 2.159700-3 3.882169-5 2.159700-3 4.454983-5 2.354900-3 4.466334-5 2.354900-3 4.580215-5 4.120975-3 4.594152-5 1.700000-2 4.547492-5 1.700000-2 9.279802-3 2.264644-2 9.382084-3 3.162278-2 9.461441-3 4.786301-2 9.522498-3 8.709636-2 9.566251-3 2.951209-1 9.587845-3 3.758374+0 9.599704-3 1.000000+5 9.599567-3 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.130000-6 0.0 5.240000-6 1.100000-7 5.240000-6 6.825925-8 5.680000-6 5.079321-7 5.680000-6 3.673122-7 5.960000-6 6.781987-7 6.237348-6 9.806548-7 6.606934-6 1.375478-6 7.200000-6 1.994679-6 8.035261-6 2.848768-6 1.035142-5 5.177164-6 3.214000-5 2.693498-5 3.214000-5 2.236207-5 3.371000-5 2.391941-5 3.371000-5 2.366153-5 5.335000-5 4.322345-5 5.335000-5 4.273653-5 7.330000-5 6.170665-5 9.015711-5 7.830646-5 1.665100-4 1.550517-4 1.665100-4 1.509405-4 1.687400-4 1.530846-4 1.687400-4 1.515355-4 1.725000-4 1.545158-4 1.803000-4 1.591881-4 1.875000-4 1.650594-4 2.030000-4 1.796828-4 2.999200-4 2.761332-4 2.999200-4 2.751200-4 3.122600-4 2.873783-4 3.122600-4 2.869640-4 3.857900-4 3.600417-4 3.857900-4 3.591703-4 1.659587-3 1.628321-3 2.081500-3 2.049521-3 2.081500-3 1.993282-3 2.159700-3 2.071206-3 2.159700-3 2.063353-3 2.354900-3 2.258343-3 2.354900-3 2.254095-3 1.700000-2 1.689194-2 1.700000-2 7.650543-3 2.290868-2 1.345373-2 4.120975-2 3.163386-2 1.000000+5 9.999999+4 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.700000-2 1.297514+4 1.740000-2 1.226196+4 1.760000-2 1.187002+4 1.820000-2 1.092976+4 1.949845-2 9.135097+3 2.137962-2 7.217286+3 2.660725-2 4.039297+3 3.311311-2 2.227577+3 4.168694-2 1.173686+3 5.188000-2 6.311376+2 6.382635-2 3.475186+2 8.035261-2 1.775809+2 1.059254-1 7.866671+1 1.862087-1 1.478515+1 2.264644-1 8.329271+0 2.660725-1 5.227325+0 3.090295-1 3.414539+0 3.507519-1 2.397656+0 3.935501-1 1.750151+0 4.415705-1 1.287024+0 4.897788-1 9.826558-1 5.432503-1 7.555040-1 6.025596-1 5.851964-1 6.606935-1 4.694791-1 7.161434-1 3.893613-1 7.852356-1 3.167324-1 8.709636-1 2.529098-1 9.549926-1 2.080447-1 1.035142+0 1.765717-1 1.161449+0 1.405648-1 1.288250+0 1.153164-1 1.428894+0 9.526452-2 1.603245+0 7.760866-2 1.798871+0 6.368204-2 2.018366+0 5.262689-2 2.290868+0 4.299807-2 2.600160+0 3.538738-2 2.985383+0 2.883025-2 3.467369+0 2.327618-2 4.073803+0 1.863814-2 4.786301+0 1.503453-2 5.688529+0 1.204083-2 6.918310+0 9.432148-3 8.511380+0 7.349950-3 1.071519+1 5.614737-3 1.364583+1 4.264835-3 1.778279+1 3.179378-3 2.426610+1 2.270035-3 3.589219+1 1.498703-3 5.688529+1 9.288130-4 1.000000+2 5.210800-4 1.995262+2 2.587689-4 3.981072+2 1.291133-4 1.584893+3 3.231748-5 1.000000+5 5.116200-7 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.700000-2 7.086200-5 1.000000+5 7.086200-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.700000-2 1.085600-2 1.000000+5 1.085600-2 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.700000-2 6.073138-3 1.000000+5 9.999999+4 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.354900-3 5.611084+4 2.818383-3 4.227791+4 3.090295-3 3.610854+4 3.801894-3 2.518203+4 4.120975-3 2.172265+4 4.954502-3 1.533971+4 5.500000-3 1.248858+4 6.309573-3 9.474685+3 7.161434-3 7.282112+3 8.128305-3 5.564364+3 9.549926-3 3.911621+3 1.096478-2 2.868023+3 1.244515-2 2.144858+3 1.445440-2 1.509966+3 1.678804-2 1.054525+3 1.972423-2 7.102906+2 2.317395-2 4.743548+2 2.722701-2 3.142162+2 3.162278-2 2.128598+2 3.715352-2 1.389505+2 4.415704-2 8.728016+1 5.248075-2 5.440959+1 6.309573-2 3.261087+1 7.673615-2 1.878343+1 9.549926-2 1.005827+1 1.258925-1 4.528562+0 1.949845-1 1.273467+0 2.426610-1 6.783437-1 2.851018-1 4.293501-1 3.273407-1 2.920239-1 3.715352-1 2.064594-1 4.168694-1 1.516160-1 4.677351-1 1.121320-1 5.188000-1 8.605515-2 5.754399-1 6.651304-2 6.382635-1 5.179614-2 6.918310-1 4.289948-2 7.673615-1 3.392775-2 8.511380-1 2.703462-2 9.440609-1 2.167502-2 1.023293+0 1.837924-2 1.161449+0 1.429696-2 1.288250+0 1.172911-2 1.428894+0 9.689609-3 1.603245+0 7.893609-3 1.798871+0 6.476989-3 2.018366+0 5.352767-3 2.290868+0 4.373614-3 2.600160+0 3.599451-3 2.985383+0 2.932379-3 3.467369+0 2.367457-3 4.073803+0 1.895710-3 4.786301+0 1.529175-3 5.688529+0 1.224715-3 6.918310+0 9.593669-4 8.511380+0 7.475732-4 1.071519+1 5.710804-4 1.364583+1 4.337810-4 1.778279+1 3.233791-4 2.454709+1 2.280606-4 3.589219+1 1.524410-4 5.821032+1 9.225256-5 1.047129+2 5.057318-5 2.089296+2 2.512411-5 8.317638+2 6.269404-6 5.248075+4 9.916707-8 1.000000+5 5.203800-8 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.354900-3 7.649200-5 1.000000+5 7.649200-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.354900-3 5.367300-5 1.000000+5 5.367300-5 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.354900-3 2.224735-3 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.159700-3 1.324044+5 2.290868-3 1.161400+5 2.430000-3 1.007100+5 2.570396-3 8.721000+4 3.054921-3 5.514200+4 3.427678-3 4.045600+4 3.672823-3 3.349900+4 4.365158-3 2.065000+4 5.011872-3 1.386400+4 5.623413-3 9.906800+3 6.683439-3 5.918700+3 7.585776-3 4.028400+3 8.810489-3 2.539900+3 1.047129-2 1.477500+3 1.230269-2 8.835800+2 1.445440-2 5.243200+2 1.717908-2 2.974000+2 2.041738-2 1.674100+2 2.454709-2 9.001100+1 3.000000-2 4.542200+1 3.715352-2 2.173700+1 4.786301-2 9.004300+0 1.011580-1 6.532300-1 1.258925-1 3.053000-1 1.513561-1 1.620100-1 1.778279-1 9.371300-2 2.018366-1 6.132000-2 2.344229-1 3.743047-2 2.660725-1 2.482548-2 3.000060-1 1.694277-2 3.349654-1 1.201118-2 3.758374-1 8.449572-3 4.168694-1 6.200208-3 4.623810-1 4.581560-3 5.128614-1 3.410749-3 5.623413-1 2.641522-3 6.095369-1 2.124192-3 6.683439-1 1.667788-3 7.328245-1 1.318303-3 8.609938-1 8.837970-4 9.225714-1 7.495879-4 9.772372-1 6.575253-4 1.035142+0 5.806030-4 1.109175+0 5.033214-4 1.188600+0 4.393712-4 1.318257+0 3.628233-4 1.479108+0 2.955036-4 1.717908+0 2.275991-4 1.927525+0 1.874492-4 2.162719+0 1.555261-4 2.454709+0 1.275854-4 2.818383+0 1.036122-4 3.235937+0 8.477372-5 3.758374+0 6.872578-5 4.415704+0 5.523800-5 5.188000+0 4.472585-5 6.382635+0 3.441764-5 7.498942+0 2.824596-5 9.440609+0 2.148339-5 1.202264+1 1.625307-5 1.566751+1 1.207322-5 2.113489+1 8.700656-6 2.985383+1 6.012025-6 4.265795+1 4.133074-6 7.328245+1 2.364216-6 1.396368+2 1.226137-6 2.786121+2 6.103506-7 1.109175+3 1.525859-7 1.000000+5 1.689800-9 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.159700-3 5.732700-5 1.000000+5 5.732700-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.159700-3 5.945000-5 1.000000+5 5.945000-5 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.159700-3 2.042923-3 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.081500-3 2.745915+5 2.145000-3 2.589544+5 2.168000-3 2.522208+5 2.190000-3 2.471604+5 2.290868-3 2.218212+5 2.400000-3 1.971172+5 2.630268-3 1.544369+5 3.235937-3 8.810728+4 3.548134-3 6.825958+4 4.216965-3 4.183183+4 4.731513-3 2.990296+4 5.432503-3 1.988881+4 6.382635-3 1.222468+4 7.244360-3 8.286998+3 8.413951-3 5.196169+3 9.800000-3 3.203492+3 1.148154-2 1.922703+3 1.350000-2 1.131320+3 1.584893-2 6.638159+2 1.883649-2 3.708778+2 2.238721-2 2.055677+2 2.660725-2 1.131116+2 3.198895-2 5.936254+1 3.845918-2 3.094424+1 4.731513-2 1.476284+1 6.244590-2 5.435040+0 1.096478-1 7.090118-1 1.348963-1 3.372705-1 1.640590-1 1.685666-1 1.883649-1 1.040087-1 2.137962-1 6.725765-2 2.426610-1 4.381470-2 2.722701-1 2.990214-2 3.019952-1 2.135191-2 3.349654-1 1.536074-2 3.672823-1 1.154017-2 4.027170-1 8.729547-3 4.415705-1 6.653013-3 4.841724-1 5.108645-3 5.248075-1 4.081018-3 5.754399-1 3.180969-3 6.309573-1 2.498979-3 6.918310-1 1.978207-3 7.498942-1 1.622838-3 8.128305-1 1.339630-3 8.912509-1 1.083113-3 9.549926-1 9.293522-4 1.022000+0 8.055645-4 1.122018+0 6.667773-4 1.216186+0 5.701431-4 1.348963+0 4.701779-4 1.531087+0 3.747818-4 1.737801+0 3.007032-4 1.949845+0 2.479127-4 2.213095+0 2.021320-4 2.511886+0 1.660328-4 2.884032+0 1.350035-4 3.311311+0 1.105853-4 3.845918+0 8.975320-5 4.518559+0 7.221366-5 5.308844+0 5.853300-5 6.531306+0 4.508452-5 7.762471+0 3.652585-5 9.660509+0 2.818971-5 1.230269+1 2.134189-5 1.621810+1 1.566387-5 2.264644+1 1.088378-5 3.427678+1 7.003168-6 5.188000+1 4.548296-6 8.810489+1 2.639637-6 1.757924+2 1.309306-6 3.507519+2 6.527645-7 1.396368+3 1.633259-7 1.000000+5 2.277800-9 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.081500-3 5.588300-5 1.000000+5 5.588300-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.081500-3 5.250000-5 1.000000+5 5.250000-5 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.081500-3 1.973117-3 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.857900-4 1.702300+5 4.550000-4 1.432356+5 4.786301-4 1.360391+5 5.370318-4 1.201956+5 5.580000-4 1.149664+5 6.606934-4 9.309982+4 7.161434-4 8.359658+4 8.413951-4 6.655154+4 9.225714-4 5.809336+4 1.083927-3 4.530842+4 1.216186-3 3.768768+4 1.412538-3 2.944375+4 1.650000-3 2.258120+4 1.900000-3 1.762188+4 2.213095-3 1.338310+4 2.600160-3 9.927335+3 3.054921-3 7.306992+3 3.589219-3 5.336181+3 4.216965-3 3.866706+3 4.897788-3 2.847200+3 5.688529-3 2.082558+3 6.683439-3 1.476163+3 7.852356-3 1.038471+3 9.225714-3 7.250482+2 1.083927-2 5.023394+2 1.258925-2 3.547967+2 1.479108-2 2.420977+2 1.737801-2 1.638825+2 2.041738-2 1.100694+2 2.398833-2 7.335711+1 2.818383-2 4.852369+1 3.311311-2 3.186147+1 3.935501-2 2.014324+1 4.677351-2 1.263747+1 5.559043-2 7.870419+0 6.683439-2 4.714081+0 8.128305-2 2.714325+0 1.023293-1 1.405984+0 2.065380-1 1.847567-1 2.511886-1 1.054456-1 2.951209-1 6.690148-2 3.388442-1 4.559342-2 3.845918-1 3.230270-2 4.315191-1 2.377740-2 4.841724-1 1.763229-2 5.370318-1 1.356778-2 5.956621-1 1.051518-2 6.606935-1 8.212853-3 7.328245-1 6.465068-3 8.128305-1 5.129233-3 8.912509-1 4.202159-3 9.772372-1 3.468547-3 1.135011+0 2.571417-3 1.230269+0 2.202097-3 1.412538+0 1.702955-3 1.548817+0 1.442376-3 1.737801+0 1.180936-3 1.949845+0 9.739517-4 2.213095+0 7.940961-4 2.511886+0 6.522829-4 2.884032+0 5.303996-4 3.311311+0 4.344708-4 3.845918+0 3.526222-4 4.518559+0 2.837061-4 5.308844+0 2.299603-4 6.531306+0 1.771259-4 7.762471+0 1.434970-4 9.660509+0 1.107478-4 1.230269+1 8.384789-5 1.621810+1 6.153926-5 2.264644+1 4.276136-5 3.388442+1 2.784943-5 5.069907+1 1.829991-5 8.511380+1 1.074255-5 1.698244+2 5.326660-6 3.388442+2 2.654997-6 1.348963+3 6.642578-7 1.000000+5 8.948700-9 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.857900-4 4.572500-5 1.000000+5 4.572500-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.857900-4 5.200400-8 1.000000+5 5.200400-8 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.857900-4 3.400130-4 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.122600-4 1.931108+5 3.330000-4 1.951352+5 3.507519-4 1.960449+5 3.672823-4 1.959573+5 3.801894-4 1.948105+5 4.120975-4 1.908272+5 4.280000-4 1.880706+5 4.518559-4 1.827647+5 4.786301-4 1.760507+5 5.069907-4 1.684997+5 5.495409-4 1.569155+5 5.821032-4 1.480433+5 6.237348-4 1.369548+5 6.760830-4 1.241855+5 7.244360-4 1.134647+5 7.800000-4 1.022492+5 8.511380-4 8.978677+4 9.225714-4 7.912827+4 1.011579-3 6.792280+4 1.110000-3 5.784660+4 1.216186-3 4.902892+4 1.355400-3 3.996015+4 1.479108-3 3.366977+4 1.659587-3 2.664173+4 1.819701-3 2.194279+4 2.041738-3 1.708476+4 2.290868-3 1.318753+4 2.540973-3 1.037579+4 2.851018-3 7.889595+3 3.198895-3 5.953215+3 3.589219-3 4.459033+3 4.027170-3 3.316325+3 4.518559-3 2.449586+3 5.128614-3 1.741853+3 5.821032-3 1.229143+3 6.606934-3 8.609876+2 7.500000-3 5.986300+2 8.609938-3 3.999259+2 9.885531-3 2.649475+2 1.135011-2 1.741619+2 1.303167-2 1.136646+2 1.513561-2 7.103222+1 1.757924-2 4.404203+1 2.041738-2 2.711225+1 2.398833-2 1.595993+1 2.851018-2 8.977403+0 3.427678-2 4.822901+0 4.216965-2 2.378261+0 5.370318-2 1.033624+0 1.109175-1 8.329171-2 1.380384-1 3.926241-2 1.659587-1 2.098807-2 1.927525-1 1.270166-2 2.213095-1 8.042904-3 2.511886-1 5.325597-3 2.851018-1 3.551976-3 3.198895-1 2.475260-3 3.589219-1 1.737697-3 4.000000-1 1.254680-3 4.466836-1 9.076733-4 4.954502-1 6.747881-4 5.495409-1 5.053414-4 6.025596-1 3.934030-4 6.606935-1 3.083881-4 7.244360-1 2.433767-4 8.317638-1 1.724168-4 8.912509-1 1.457570-4 9.440609-1 1.274202-4 1.000000+0 1.120819-4 1.071519+0 9.686128-5 1.148154+0 8.426574-5 1.216186+0 7.546616-5 1.348963+0 6.241297-5 1.584893+0 4.693076-5 1.798871+0 3.773389-5 2.018366+0 3.116971-5 2.290868+0 2.546733-5 2.600160+0 2.095919-5 2.985383+0 1.707498-5 3.467369+0 1.378599-5 4.073803+0 1.103929-5 4.786301+0 8.904811-6 5.688529+0 7.131771-6 6.918310+0 5.586423-6 8.511380+0 4.353171-6 1.071519+1 3.325430-6 1.364583+1 2.525920-6 1.778279+1 1.883056-6 2.454709+1 1.327968-6 3.589219+1 8.876125-7 5.821032+1 5.371940-7 1.047129+2 2.944881-7 2.089296+2 1.463027-7 8.317638+2 3.650726-8 5.248075+4 5.77477-10 1.000000+5 3.03020-10 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.122600-4 3.554700-5 1.000000+5 3.554700-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.122600-4 5.617400-8 1.000000+5 5.617400-8 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.122600-4 2.766568-4 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.999200-4 4.301288+5 3.040000-4 4.369319+5 3.115000-4 4.445166+5 3.200000-4 4.490856+5 3.350000-4 4.531832+5 3.430000-4 4.531434+5 3.550000-4 4.505248+5 3.758374-4 4.416131+5 4.050000-4 4.272600+5 4.265795-4 4.142763+5 4.518559-4 3.975130+5 4.731513-4 3.829977+5 5.069907-4 3.595548+5 5.400000-4 3.374432+5 5.754399-4 3.140975+5 6.237348-4 2.843649+5 6.760830-4 2.557274+5 7.244360-4 2.319596+5 7.852356-4 2.054854+5 8.609938-4 1.776961+5 9.332543-4 1.554436+5 1.035142-3 1.297744+5 1.135011-3 1.097639+5 1.258925-3 9.018628+4 1.380384-3 7.524532+4 1.531087-3 6.091933+4 1.678804-3 5.018611+4 1.883649-3 3.907240+4 2.089296-3 3.096022+4 2.317395-3 2.437831+4 2.600160-3 1.854590+4 2.900000-3 1.420904+4 3.235937-3 1.080253+4 3.650000-3 7.932520+3 4.150000-3 5.658040+3 4.731513-3 3.970961+3 5.370318-3 2.798438+3 6.095369-3 1.957020+3 6.918310-3 1.358513+3 7.800000-3 9.551680+2 8.912509-3 6.411677+2 1.035142-2 4.060806+2 1.188502-2 2.642451+2 1.364583-2 1.706614+2 1.566751-2 1.094221+2 1.819701-2 6.707878+1 2.113489-2 4.081258+1 2.483133-2 2.371431+1 2.917427-2 1.367724+1 3.467369-2 7.527448+0 4.168694-2 3.951430+0 5.128614-2 1.898922+0 6.606934-2 7.689612-1 1.161449-1 1.015664-1 1.428894-1 4.857449-2 1.678804-1 2.754770-2 1.927525-1 1.705262-2 2.187762-1 1.105824-2 2.454709-1 7.507590-3 2.754229-1 5.133901-3 3.054921-1 3.672174-3 3.388442-1 2.645962-3 3.715352-1 1.990463-3 4.073803-1 1.507550-3 4.466836-1 1.150150-3 4.897788-1 8.841438-4 5.308844-1 7.070485-4 5.754399-1 5.689437-4 6.237348-1 4.607142-4 6.760830-1 3.754499-4 7.413102-1 2.993908-4 8.317638-1 2.278234-4 9.015711-1 1.894109-4 9.660509-1 1.627944-4 1.035142+0 1.409189-4 1.135011+0 1.170523-4 1.230269+0 1.001876-4 1.364583+0 8.268636-5 1.566751+0 6.462610-5 1.778279+0 5.192657-5 2.000000+0 4.270800-5 2.264644+0 3.500794-5 2.570396+0 2.879310-5 2.951209+0 2.344186-5 3.427678+0 1.891420-5 4.000000+0 1.527700-5 4.677351+0 1.238973-5 5.495409+0 1.005850-5 6.760830+0 7.758131-6 8.222427+0 6.123155-6 1.023293+1 4.734704-6 1.303167+1 3.591138-6 1.698244+1 2.673853-6 2.371374+1 1.860279-6 3.548134+1 1.212853-6 5.559043+1 7.605120-7 9.660509+1 4.315504-7 1.927525+2 2.142479-7 3.845918+2 1.068732-7 1.531087+3 2.674889-8 1.000000+5 4.09070-10 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.999200-4 3.556500-5 1.000000+5 3.556500-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.999200-4 3.336300-8 1.000000+5 3.336300-8 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.999200-4 2.643216-4 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.687400-4 1.485468+5 1.692500-4 1.477444+5 1.698500-4 1.476900+5 1.705000-4 1.488384+5 1.710000-4 1.506812+5 1.715000-4 1.534652+5 1.720000-4 1.572660+5 1.725000-4 1.622308+5 1.730000-4 1.684668+5 1.735000-4 1.760480+5 1.740000-4 1.850708+5 1.745000-4 1.956180+5 1.752000-4 2.130288+5 1.760000-4 2.368404+5 1.770000-4 2.724288+5 1.785000-4 3.368516+5 1.795000-4 3.858452+5 1.803000-4 4.276080+5 1.812000-4 4.765280+5 1.820000-4 5.211680+5 1.827000-4 5.606920+5 1.835000-4 6.061640+5 1.845000-4 6.629640+5 1.855000-4 7.194080+5 1.865000-4 7.752800+5 1.875000-4 8.304400+5 1.885000-4 8.848280+5 1.900000-4 9.648280+5 1.915000-4 1.042688+6 1.930000-4 1.118056+6 1.945000-4 1.190484+6 1.960000-4 1.259600+6 1.975000-4 1.324708+6 1.990000-4 1.385472+6 2.010000-4 1.459644+6 2.030000-4 1.525232+6 2.050000-4 1.582592+6 2.070000-4 1.632288+6 2.090000-4 1.675448+6 2.120000-4 1.729384+6 2.150000-4 1.773328+6 2.190000-4 1.820764+6 2.240000-4 1.868480+6 2.300000-4 1.912416+6 2.350000-4 1.938684+6 2.400000-4 1.955592+6 2.454709-4 1.963176+6 2.520000-4 1.959096+6 2.600160-4 1.938847+6 2.691535-4 1.902897+6 2.800000-4 1.849972+6 2.917427-4 1.783684+6 3.019952-4 1.719268+6 3.150000-4 1.631772+6 3.280000-4 1.543224+6 3.467369-4 1.417734+6 3.672823-4 1.288746+6 3.850200-4 1.184274+6 4.073803-4 1.062554+6 4.365158-4 9.233502+5 4.677351-4 7.965796+5 5.011872-4 6.817480+5 5.432503-4 5.642611+5 5.900000-4 4.616920+5 6.456542-4 3.676103+5 7.079458-4 2.893277+5 7.762471-4 2.259727+5 8.609938-4 1.698894+5 9.500000-4 1.285540+5 1.047129-3 9.694750+4 1.174898-3 6.882391+4 1.303167-3 5.018740+4 1.462177-3 3.506162+4 1.650000-3 2.385560+4 1.850000-3 1.643912+4 2.065380-3 1.141066+4 2.300000-3 7.937640+3 2.570396-3 5.420395+3 2.900000-3 3.556384+3 3.273407-3 2.311677+3 3.672823-3 1.524509+3 4.168694-3 9.572878+2 4.800000-3 5.651480+2 5.495409-3 3.379659+2 6.309573-3 1.984127+2 7.244360-3 1.155905+2 8.222426-3 6.996434+1 9.440609-3 4.016332+1 1.083927-2 2.289119+1 1.258925-2 1.234925+1 1.462177-2 6.612431+0 1.717908-2 3.349579+0 2.089296-2 1.454430+0 2.600160-2 5.678665-1 3.427678-2 1.715763-1 6.606934-2 9.815303-3 8.317638-2 3.620786-3 1.000000-1 1.641906-3 1.174898-1 8.277060-4 1.364583-1 4.414837-4 1.548817-1 2.611416-4 1.757924-1 1.555671-4 1.972423-1 9.780051-5 2.213095-1 6.190376-5 2.454709-1 4.128548-5 2.722701-1 2.772247-5 3.019952-1 1.875304-5 3.349654-1 1.278956-5 3.672823-1 9.164104-6 4.027170-1 6.611189-6 4.415705-1 4.806157-6 4.897788-1 3.382172-6 5.432503-1 2.392720-6 5.888437-1 1.840084-6 6.095369-1 1.649736-6 6.531306-1 1.335900-6 7.079458-1 1.052106-6 8.035261-1 7.306723-7 8.609938-1 5.944300-7 9.120108-1 5.041006-7 9.549926-1 4.448267-7 9.885531-1 4.069922-7 1.023293+0 3.742092-7 1.071519+0 3.369102-7 1.122018+0 3.055023-7 1.174898+0 2.787975-7 1.244515+0 2.506407-7 1.348963+0 2.177385-7 1.513561+0 1.796163-7 1.819701+0 1.306994-7 2.018366+0 1.099803-7 2.290868+0 8.985376-8 2.600160+0 7.394910-8 2.985383+0 6.024778-8 3.467369+0 4.864195-8 4.073803+0 3.895027-8 4.786301+0 3.141984-8 5.688529+0 2.516310-8 6.918310+0 1.971062-8 8.511380+0 1.535951-8 1.071519+1 1.173302-8 1.380384+1 8.798072-9 1.800000+1 6.556500-9 2.454709+1 4.685684-9 3.589219+1 3.131937-9 5.754399+1 1.918056-9 1.047129+2 1.039037-9 2.089296+2 5.16202-10 8.317638+2 1.28813-10 5.248075+4 2.03754-12 1.000000+5 1.06920-12 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.687400-4 2.443300-5 1.000000+5 2.443300-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.687400-4 4.826800-8 1.000000+5 4.826800-8 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.687400-4 1.442587-4 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.665100-4 2.190384+5 1.671000-4 2.182632+5 1.677000-4 2.188110+5 1.683000-4 2.210082+5 1.687000-4 2.234436+5 1.692000-4 2.277936+5 1.697000-4 2.336886+5 1.702000-4 2.412852+5 1.707000-4 2.507802+5 1.711000-4 2.598492+5 1.717000-4 2.760762+5 1.723000-4 2.956470+5 1.728500-4 3.166494+5 1.735000-4 3.453606+5 1.745000-4 3.977358+5 1.765000-4 5.296836+5 1.773000-4 5.906814+5 1.781000-4 6.550620+5 1.788000-4 7.134480+5 1.796000-4 7.817700+5 1.805000-4 8.598240+5 1.812400-4 9.243961+5 1.820000-4 9.906960+5 1.828000-4 1.060194+6 1.838000-4 1.146330+6 1.850000-4 1.248324+6 1.862087-4 1.349319+6 1.873000-4 1.438866+6 1.885000-4 1.535358+6 1.900000-4 1.652730+6 1.915000-4 1.765908+6 1.930000-4 1.874178+6 1.945000-4 1.976802+6 1.957000-4 2.054352+6 1.976400-4 2.170470+6 1.995262-4 2.271832+6 2.010000-4 2.343036+6 2.030000-4 2.428818+6 2.052900-4 2.512892+6 2.080000-4 2.595546+6 2.113489-4 2.677664+6 2.150000-4 2.748912+6 2.205000-4 2.832492+6 2.264644-4 2.901049+6 2.317395-4 2.944935+6 2.380000-4 2.976054+6 2.450000-4 2.984256+6 2.511886-4 2.971377+6 2.600160-4 2.929571+6 2.691535-4 2.868487+6 2.800000-4 2.782218+6 2.917427-4 2.676086+6 3.019952-4 2.574391+6 3.150000-4 2.438274+6 3.311311-4 2.269403+6 3.507519-4 2.070864+6 3.715352-4 1.875840+6 3.935501-4 1.685469+6 4.168694-4 1.503022+6 4.466836-4 1.300564+6 4.786301-4 1.117677+6 5.150000-4 9.441060+5 5.623413-4 7.646503+5 6.095369-4 6.258316+5 6.700000-4 4.907934+5 7.328245-4 3.870964+5 8.035261-4 3.012888+5 8.810489-4 2.329793+5 9.772372-4 1.731840+5 1.083927-3 1.277363+5 1.202264-3 9.353716+4 1.350000-3 6.546360+4 1.513561-3 4.565002+4 1.678804-3 3.271231+4 1.862087-3 2.330303+4 2.113489-3 1.526938+4 2.400000-3 9.902100+3 2.722701-3 6.387603+3 3.090295-3 4.078404+3 3.467369-3 2.693007+3 3.900000-3 1.750278+3 4.415704-3 1.102510+3 5.069907-3 6.537942+2 5.754399-3 4.019458+2 6.606934-3 2.345751+2 7.585776-3 1.358125+2 8.709636-3 7.804239+1 9.885531-3 4.663471+1 1.135011-2 2.639833+1 1.318257-2 1.413927+1 1.531087-2 7.516011+0 1.798871-2 3.776331+0 2.187762-2 1.623424+0 2.691535-2 6.588342-1 3.467369-2 2.169353-1 4.518559-2 6.741959-2 6.606934-2 1.251607-2 8.222426-2 4.778180-3 9.772372-2 2.249515-3 1.135011-1 1.179084-3 1.303167-1 6.541888-4 1.479108-1 3.839864-4 1.659587-1 2.381474-4 1.840772-1 1.559217-4 2.041738-1 1.027902-4 2.264644-1 6.828422-5 2.483133-1 4.779328-5 2.722701-1 3.367935-5 3.000000-1 2.347872-5 3.273407-1 1.708574-5 3.548134-1 1.281609-5 3.845918-1 9.675442-6 4.216965-1 7.072567-6 4.518559-1 5.627528-6 4.841724-1 4.507811-6 5.069907-1 3.906614-6 5.495409-1 3.071414-6 6.683439-1 1.740397-6 7.161434-1 1.432911-6 7.585776-1 1.225446-6 8.035261-1 1.054251-6 8.511380-1 9.127596-7 9.015711-1 7.954317-7 9.549926-1 6.978892-7 1.011579+0 6.166387-7 1.109175+0 5.105800-7 1.202264+0 4.360303-7 1.318257+0 3.671785-7 1.462177+0 3.047711-7 1.698244+0 2.345278-7 1.905461+0 1.930600-7 2.137962+0 1.600917-7 2.426610+0 1.312477-7 2.786121+0 1.065099-7 3.198895+0 8.708898-8 3.715352+0 7.056217-8 4.365158+0 5.668412-8 5.128614+0 4.587174-8 6.237348+0 3.579476-8 7.413102+0 2.894362-8 9.332543+0 2.200518-8 1.188502+1 1.664049-8 1.548817+1 1.235720-8 2.113489+1 8.792343-9 2.951209+1 6.150259-9 4.216965+1 4.226923-9 7.244360+1 2.417504-9 1.380384+2 1.253685-9 2.754229+2 6.23972-10 1.096478+3 1.55987-10 1.000000+5 1.70760-12 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.665100-4 2.455900-5 1.000000+5 2.455900-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.665100-4 2.614600-9 1.000000+5 2.614600-9 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.665100-4 1.419484-4 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.335000-5 1.625042+5 5.559043-5 1.709379+5 5.850000-5 1.806152+5 6.165950-5 1.897726+5 6.531306-5 1.988914+5 6.900000-5 2.064560+5 7.244360-5 2.119670+5 7.585776-5 2.159022+5 7.943282-5 2.183807+5 8.317638-5 2.192692+5 8.709636-5 2.185280+5 9.150000-5 2.160140+5 9.549926-5 2.125823+5 1.011579-4 2.065377+5 1.083927-4 1.978267+5 1.174898-4 1.865835+5 1.273503-4 1.748097+5 1.380384-4 1.626879+5 1.496236-4 1.502439+5 1.621810-4 1.377088+5 1.800000-4 1.219704+5 2.018366-4 1.059709+5 2.238721-4 9.272547+4 2.500000-4 7.982460+4 2.917427-4 6.416500+4 3.350000-4 5.241020+4 4.027170-4 3.963862+4 4.731513-4 3.083545+4 5.821032-4 2.214951+4 7.328245-4 1.519407+4 9.120108-4 1.053129+4 1.109175-3 7.530909+3 1.333521-3 5.453891+3 1.584893-3 4.001873+3 1.905461-3 2.854044+3 2.264644-3 2.063606+3 2.691535-3 1.481423+3 3.235937-3 1.032295+3 3.845918-3 7.304278+2 4.570882-3 5.130322+2 5.370318-3 3.663249+2 6.309573-3 2.597125+2 7.413102-3 1.828155+2 8.709636-3 1.277764+2 1.023293-2 8.866054+1 1.202264-2 6.106420+1 1.412538-2 4.174024+1 1.659587-2 2.830958+1 1.949845-2 1.905215+1 2.290868-2 1.272477+1 2.691535-2 8.438226+0 3.162278-2 5.554150+0 3.758374-2 3.519346+0 4.466836-2 2.212956+0 5.248075-2 1.425515+0 6.309573-2 8.556117-1 7.762471-2 4.779886-1 9.772372-2 2.482921-1 1.303167-1 1.082338-1 2.000000-1 3.136901-2 2.454709-1 1.742482-2 2.884032-1 1.104495-2 3.349654-1 7.284511-3 3.801894-1 5.157938-3 4.265795-1 3.794108-3 4.786301-1 2.811399-3 5.308844-1 2.161677-3 5.888437-1 1.673995-3 6.531306-1 1.306348-3 7.244360-1 1.027472-3 8.035261-1 8.145531-4 8.810489-1 6.667423-4 9.660509-1 5.498240-4 1.122018+0 4.072737-4 1.216186+0 3.484431-4 1.396368+0 2.692879-4 1.548817+0 2.233187-4 1.737801+0 1.828492-4 1.949845+0 1.507947-4 2.213095+0 1.229319-4 2.511886+0 1.009776-4 2.884032+0 8.211560-5 3.349654+0 6.617691-5 3.890451+0 5.373969-5 4.570882+0 4.325968-5 5.370318+0 3.508266-5 6.606934+0 2.703404-5 7.852356+0 2.191196-5 9.772372+0 1.691849-5 1.244515+1 1.281323-5 1.640590+1 9.407261-6 2.290868+1 6.538809-6 3.427678+1 4.259664-6 5.188000+1 2.766519-6 8.810489+1 1.605596-6 1.757924+2 7.963849-7 3.507519+2 3.970464-7 1.396368+3 9.934764-8 1.000000+5 1.385500-9 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.335000-5 1.586800-5 1.000000+5 1.586800-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.335000-5 1.486200-9 1.000000+5 1.486200-9 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.335000-5 3.748051-5 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.371000-5 3.827220+6 3.427678-5 3.654170+6 3.500000-5 3.423320+6 3.600000-5 3.110500+6 3.715352-5 2.774682+6 3.850000-5 2.422860+6 4.000000-5 2.082700+6 4.168694-5 1.757373+6 4.400000-5 1.396572+6 4.731513-5 1.016402+6 5.188000-5 6.777896+5 5.500000-5 5.274200+5 5.754399-5 4.371235+5 6.000000-5 3.698940+5 6.237348-5 3.189236+5 6.456542-5 2.812481+5 6.683439-5 2.496839+5 6.918310-5 2.233073+5 7.161434-5 2.013262+5 7.400000-5 1.839288+5 7.585776-5 1.726949+5 7.800000-5 1.618048+5 8.035261-5 1.519474+5 8.300000-5 1.429800+5 8.570000-5 1.356768+5 8.810489-5 1.304129+5 9.120108-5 1.249787+5 9.440609-5 1.205719+5 9.800000-5 1.167102+5 1.023293-4 1.131248+5 1.083927-4 1.093828+5 1.174898-4 1.052959+5 1.428894-4 9.695057+4 1.580000-4 9.227560+4 1.720000-4 8.789640+4 1.883649-4 8.283138+4 2.041738-4 7.809591+4 2.220000-4 7.297380+4 2.426610-4 6.740085+4 2.660725-4 6.161978+4 2.917427-4 5.598371+4 3.235937-4 4.987031+4 3.589219-4 4.405028+4 4.000000-4 3.840480+4 4.415704-4 3.367321+4 4.954502-4 2.866098+4 5.559043-4 2.421731+4 6.237348-4 2.030243+4 7.079458-4 1.658692+4 8.000000-4 1.353072+4 8.912509-4 1.122872+4 1.000000-3 9.137660+3 1.122018-3 7.382608+3 1.258925-3 5.918162+3 1.412538-3 4.707353+3 1.566751-3 3.805361+3 1.757924-3 2.982253+3 1.972423-3 2.319630+3 2.213095-3 1.790814+3 2.483133-3 1.372568+3 2.786121-3 1.044606+3 3.162278-3 7.675416+2 3.548134-3 5.759426+2 4.000000-3 4.240560+2 4.518559-3 3.083112+2 5.128614-3 2.197066+2 5.821032-3 1.553803+2 6.606934-3 1.090653+2 7.498942-3 7.601541+1 8.511380-3 5.261650+1 9.772372-3 3.495491+1 1.122018-2 2.304394+1 1.288250-2 1.507975+1 1.496236-2 9.456232+0 1.737801-2 5.882823+0 2.018366-2 3.629937+0 2.371374-2 2.141659+0 2.818383-2 1.207254+0 3.349654-2 6.754600-1 4.120975-2 3.337622-1 5.308844-2 1.397718-1 6.683439-2 6.295598-2 1.047129-1 1.324059-2 1.318257-1 5.991526-3 1.603245-1 3.075906-3 1.883649-1 1.788871-3 2.187762-1 1.089680-3 2.511886-1 6.949036-4 2.851018-1 4.635288-4 3.198895-1 3.230096-4 3.589219-1 2.267307-4 4.000000-1 1.636800-4 4.415705-1 1.224031-4 4.897788-1 9.091058-5 5.432503-1 6.803609-5 6.025596-1 5.132175-5 6.606935-1 4.022729-5 7.244360-1 3.174022-5 8.317638-1 2.247626-5 8.912509-1 1.899676-5 9.440609-1 1.660437-5 1.000000+0 1.460400-5 1.071519+0 1.261992-5 1.148154+0 1.097845-5 1.216186+0 9.831721-6 1.348963+0 8.130919-6 1.584893+0 6.114142-6 1.798871+0 4.916209-6 2.018366+0 4.060670-6 2.290868+0 3.317445-6 2.600160+0 2.730255-6 2.985383+0 2.224455-6 3.467369+0 1.795948-6 4.073803+0 1.438132-6 4.786301+0 1.160134-6 5.688529+0 9.291104-7 6.918310+0 7.277881-7 8.511380+0 5.671206-7 1.071519+1 4.332291-7 1.364583+1 3.290750-7 1.778279+1 2.453195-7 2.454709+1 1.730074-7 3.630781+1 1.142520-7 5.888437+1 6.915707-8 1.059254+2 3.791829-8 2.113489+2 1.883928-8 8.413951+2 4.701474-9 5.308844+4 7.43695-11 1.000000+5 3.94770-11 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.371000-5 1.057700-5 1.000000+5 1.057700-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.371000-5 1.464000-9 1.000000+5 1.464000-9 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.371000-5 2.313154-5 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.214000-5 7.792280+6 3.280000-5 7.326280+6 3.350000-5 6.825080+6 3.450000-5 6.143320+6 3.589219-5 5.290356+6 3.758374-5 4.408910+6 3.950000-5 3.593408+6 4.168694-5 2.858585+6 4.841724-5 1.491851+6 5.080000-5 1.216432+6 5.324000-5 1.003181+6 5.500000-5 8.820760+5 5.688529-5 7.759135+5 5.900000-5 6.797600+5 6.095369-5 6.079233+5 6.309573-5 5.439130+5 6.531306-5 4.905014+5 6.735400-5 4.504990+5 6.950000-5 4.160120+5 7.161434-5 3.881520+5 7.400000-5 3.625700+5 7.650000-5 3.410688+5 7.900000-5 3.238576+5 8.150000-5 3.100280+5 8.413951-5 2.983025+5 8.709636-5 2.878648+5 9.015711-5 2.793112+5 9.440609-5 2.701202+5 1.000000-4 2.610928+5 1.083927-4 2.510675+5 1.318257-4 2.299939+5 1.450000-4 2.189332+5 1.584893-4 2.075738+5 1.720000-4 1.963200+5 1.883649-4 1.832051+5 2.065380-4 1.695574+5 2.264644-4 1.557012+5 2.483133-4 1.418825+5 2.754229-4 1.268040+5 3.054921-4 1.124860+5 3.350000-4 1.004536+5 3.758374-4 8.651430+4 4.216965-4 7.392637+4 4.731513-4 6.264466+4 5.308844-4 5.270648+4 5.888437-4 4.483528+4 6.606934-4 3.720644+4 7.328245-4 3.127141+4 8.222426-4 2.561062+4 9.225714-4 2.082861+4 1.047129-3 1.645432+4 1.174898-3 1.317718+4 1.318257-3 1.047156+4 1.479108-3 8.257851+3 1.659587-3 6.462320+3 1.862087-3 5.019271+3 2.089296-3 3.869505+3 2.344229-3 2.961216+3 2.630268-3 2.249943+3 2.951209-3 1.697566+3 3.311311-3 1.272252+3 3.715352-3 9.470931+2 4.168694-3 7.003168+2 4.731513-3 4.985950+2 5.370318-3 3.522151+2 6.095369-3 2.469176+2 6.918310-3 1.718116+2 7.852356-3 1.186919+2 9.000000-3 7.905707+1 1.047129-2 4.994134+1 1.202264-2 3.262241+1 1.364583-2 2.192166+1 1.548817-2 1.458922+1 1.778279-2 9.284637+0 2.162719-2 4.845439+0 2.540973-2 2.816733+0 3.019952-2 1.563088+0 3.589219-2 8.601555-1 4.365158-2 4.336381-1 5.308844-2 2.170301-1 7.079458-2 7.764271-2 1.202264-1 1.164488-2 1.462177-1 5.814107-3 1.717908-1 3.302467-3 1.972423-1 2.047266-3 2.238721-1 1.329495-3 2.511886-1 9.039586-4 2.818383-1 6.191953-4 3.126079-1 4.436643-4 3.467369-1 3.202962-4 3.801894-1 2.414018-4 4.168694-1 1.832265-4 4.570882-1 1.401058-4 5.011872-1 1.079433-4 5.495409-1 8.381822-5 6.000000-1 6.634200-5 6.531306-1 5.332108-5 7.079458-1 4.360809-5 7.673615-1 3.588638-5 8.511380-1 2.813916-5 9.120108-1 2.406967-5 9.772372-1 2.072181-5 1.071519+0 1.713997-5 1.174898+0 1.427939-5 1.288250+0 1.199503-5 1.428894+0 9.928888-6 1.640590+0 7.779833-6 1.840772+0 6.391846-6 2.065380+0 5.288850-6 2.344229+0 4.327086-6 2.660725+0 3.565616-6 3.054921+0 2.908495-6 3.548134+0 2.351041-6 4.168694+0 1.884683-6 4.897788+0 1.521951-6 5.821032+0 1.220085-6 7.000000+0 9.698700-7 8.709636+0 7.460769-7 1.100000+1 5.682800-7 1.412538+1 4.279930-7 1.840772+1 3.193775-7 2.483133+1 2.310360-7 3.630781+1 1.544584-7 5.956621+1 9.239369-8 1.083927+2 5.007761-8 2.162719+2 2.488522-8 8.609938+2 6.211248-9 5.432503+4 9.82533-11 1.000000+5 5.33710-11 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.214000-5 1.060700-5 1.000000+5 1.060700-5 1 39000 7 7 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.214000-5 1.377800-9 1.000000+5 1.377800-9 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.214000-5 2.153162-5 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.240000-6 1.691068+6 5.500000-6 1.830888+6 5.700000-6 1.931064+6 5.956621-6 2.047021+6 6.309573-6 2.188292+6 6.606934-6 2.292446+6 7.000000-6 2.415596+6 7.413102-6 2.527528+6 8.000000-6 2.662380+6 8.609938-6 2.779466+6 9.225714-6 2.876585+6 9.885531-6 2.958836+6 1.059254-5 3.023620+6 1.135011-5 3.067188+6 1.202264-5 3.084278+6 1.270000-5 3.078480+6 1.333521-5 3.053213+6 1.400000-5 3.008196+6 1.462177-5 2.949515+6 1.531087-5 2.866451+6 1.590000-5 2.782840+6 1.659587-5 2.671598+6 1.730000-5 2.548936+6 1.800000-5 2.420244+6 1.870000-5 2.287472+6 1.950000-5 2.133900+6 2.018366-5 2.003708+6 2.089296-5 1.871807+6 2.162719-5 1.740178+6 2.238721-5 1.610136+6 2.330000-5 1.463136+6 2.426610-5 1.319205+6 2.540973-5 1.164718+6 2.660725-5 1.020658+6 2.786121-5 8.875253+5 2.917427-5 7.656715+5 3.040000-5 6.664600+5 3.162278-5 5.797709+5 3.278000-5 5.076109+5 3.400000-5 4.407400+5 3.540000-5 3.742820+5 3.672823-5 3.200820+5 3.801894-5 2.745428+5 3.935501-5 2.338535+5 4.073803-5 1.977753+5 4.220000-5 1.654136+5 4.365158-5 1.382983+5 4.500000-5 1.169368+5 4.650000-5 9.688240+4 4.800000-5 8.016680+4 4.954502-5 6.587808+4 5.080000-5 5.611640+4 5.248075-5 4.522606+4 5.432503-5 3.567663+4 5.623413-5 2.792895+4 6.165950-5 1.426098+4 6.309573-5 1.211016+4 6.400000-5 1.098460+4 6.500000-5 9.919960+3 6.610000-5 8.943120+3 6.690000-5 8.346720+3 6.770000-5 7.836720+3 6.850000-5 7.405200+3 6.920000-5 7.086360+3 7.000000-5 6.783120+3 7.079458-5 6.540718+3 7.161434-5 6.346222+3 7.244360-5 6.201389+3 7.330000-5 6.101120+3 7.420000-5 6.044120+3 7.500000-5 6.030680+3 7.585776-5 6.051021+3 7.690000-5 6.118680+3 7.800000-5 6.234560+3 7.900000-5 6.374000+3 8.035261-5 6.606064+3 8.222426-5 6.992681+3 8.511380-5 7.693231+3 9.015711-5 9.067038+3 9.332543-5 9.948131+3 9.660509-5 1.083176+4 9.950000-5 1.157364+4 1.023293-4 1.225198+4 1.050000-4 1.284364+4 1.083927-4 1.352931+4 1.122018-4 1.420959+4 1.161449-4 1.480808+4 1.205000-4 1.535808+4 1.244515-4 1.576025+4 1.288250-4 1.609989+4 1.338300-4 1.637743+4 1.380384-4 1.652103+4 1.430000-4 1.659832+4 1.480000-4 1.659736+4 1.548817-4 1.647307+4 1.621810-4 1.623617+4 1.698244-4 1.589924+4 1.778279-4 1.547424+4 1.862087-4 1.497392+4 1.972423-4 1.426266+4 2.089296-4 1.349566+4 2.213095-4 1.268472+4 2.344229-4 1.184346+4 2.483133-4 1.098895+4 2.630268-4 1.013634+4 2.818383-4 9.133946+3 3.019952-4 8.172130+3 3.235937-4 7.269478+3 3.467369-4 6.425781+3 3.758374-4 5.523194+3 4.073803-4 4.712936+3 4.415704-4 3.995430+3 4.786301-4 3.365396+3 5.248075-4 2.746080+3 5.754399-4 2.224215+3 6.309573-4 1.788447+3 6.918310-4 1.428019+3 7.585776-4 1.132674+3 8.317638-4 8.925296+2 9.120108-4 6.986552+2 1.000000-3 5.431960+2 1.109175-3 4.061304+2 1.230269-3 3.012660+2 1.364583-3 2.218381+2 1.513561-3 1.622576+2 1.678804-3 1.177897+2 1.862087-3 8.489019+1 2.065380-3 6.075219+1 2.290868-3 4.318002+1 2.570396-3 2.932250+1 2.884032-3 1.976420+1 3.273407-3 1.270906+1 3.672823-3 8.447645+0 4.120975-3 5.576020+0 4.623810-3 3.654200+0 5.248075-3 2.278205+0 5.956621-3 1.409557+0 6.760830-3 8.659087-1 7.673615-3 5.282335-1 8.810489-3 3.057374-1 1.011579-2 1.755948-1 1.161449-2 1.000745-1 1.348963-2 5.399783-2 1.566751-2 2.891929-2 1.862087-2 1.395455-2 2.264644-2 6.059589-3 2.818383-2 2.366072-3 3.715352-2 7.149547-4 6.683439-2 5.547603-5 8.413951-2 2.048894-5 1.011580-1 9.298890-6 1.188502-1 4.692585-6 1.380384-1 2.505617-6 1.584893-1 1.414831-6 1.798871-1 8.440591-7 2.018366-1 5.313488-7 2.264644-1 3.368590-7 2.540973-1 2.152018-7 2.818383-1 1.447993-7 3.126079-1 9.811176-8 3.467369-1 6.697795-8 3.801894-1 4.804186-8 4.120975-1 3.614003-8 4.518559-1 2.629267-8 4.954502-1 1.926096-8 5.432503-1 1.419650-8 5.956621-1 1.054179-8 6.456542-1 8.188413-9 6.998420-1 6.402605-9 7.673615-1 4.870419-9 8.035261-1 4.257521-9 8.511380-1 3.583881-9 9.015711-1 3.037376-9 9.440609-1 2.678553-9 9.772372-1 2.449155-9 1.011579+0 2.250111-9 1.059254+0 2.023734-9 1.109175+0 1.832867-9 1.161449+0 1.670407-9 1.230269+0 1.499082-9 1.333521+0 1.300137-9 1.479108+0 1.092040-9 1.862087+0 7.35081-10 2.065380+0 6.19636-10 2.344229+0 5.06965-10 2.660725+0 4.17756-10 3.054921+0 3.40767-10 3.548134+0 2.75449-10 4.168694+0 2.20805-10 4.897788+0 1.78307-10 5.821032+0 1.42950-10 7.079458+0 1.12076-10 8.810489+0 8.62278-11 1.109175+1 6.59467-11 1.428894+1 4.95015-11 1.862087+1 3.69509-11 2.511886+1 2.67377-11 3.672823+1 1.78795-11 6.095369+1 1.05709-11 1.109175+2 5.73139-12 2.213095+2 2.84855-12 8.810489+2 7.11102-13 1.000000+5 6.25290-15 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.240000-6 5.240000-6 1.000000+5 5.240000-6 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.240000-6 0.0 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 5.130000-6 2.675364+6 5.400000-6 2.898330+6 5.623413-6 3.064507+6 5.900000-6 3.248634+6 6.237348-6 3.444499+6 6.600000-6 3.627942+6 7.000000-6 3.801786+6 7.500000-6 3.987678+6 8.035261-6 4.153444+6 8.709636-6 4.323040+6 9.440609-6 4.466131+6 1.020000-5 4.574172+6 1.083927-5 4.633776+6 1.150000-5 4.664832+6 1.216186-5 4.665744+6 1.273503-5 4.642525+6 1.333521-5 4.593749+6 1.400000-5 4.511274+6 1.462177-5 4.410915+6 1.531087-5 4.273943+6 1.590000-5 4.139712+6 1.659587-5 3.965005+6 1.730000-5 3.774348+6 1.800000-5 3.575262+6 1.870000-5 3.371400+6 1.950000-5 3.138162+6 2.018366-5 2.942104+6 2.089296-5 2.744138+6 2.162719-5 2.546813+6 2.238721-5 2.352341+6 2.344229-5 2.101122+6 2.454709-5 1.862371+6 2.570396-5 1.638033+6 2.691535-5 1.429559+6 2.818383-5 1.238179+6 2.950000-5 1.065582+6 3.080000-5 9.175980+5 3.198895-5 7.994357+5 3.311311-5 7.011706+5 3.438000-5 6.042334+5 3.570000-5 5.167056+5 3.690000-5 4.475514+5 3.801894-5 3.910174+5 3.935501-5 3.323897+5 4.073803-5 2.805085+5 4.216965-5 2.348798+5 4.365158-5 1.951032+5 4.518559-5 1.607827+5 4.677351-5 1.313849+5 4.800000-5 1.122708+5 4.954502-5 9.198475+4 5.128614-5 7.340980+4 5.300000-5 5.875932+4 5.450000-5 4.835070+4 5.650000-5 3.733200+4 6.095369-5 2.147537+4 6.237348-5 1.825051+4 6.350000-5 1.616388+4 6.456542-5 1.452400+4 6.540000-5 1.344024+4 6.610000-5 1.265382+4 6.703000-5 1.176542+4 6.770000-5 1.122606+4 6.850000-5 1.068204+4 6.920000-5 1.028766+4 7.000000-5 9.921660+3 7.079458-5 9.639540+3 7.161434-5 9.425291+3 7.244360-5 9.280272+3 7.330000-5 9.198540+3 7.420000-5 9.179340+3 7.500000-5 9.213540+3 7.585776-5 9.297872+3 7.690000-5 9.458700+3 7.800000-5 9.688020+3 7.950000-5 1.008228+4 8.128305-5 1.064752+4 8.413951-5 1.170789+4 8.912509-5 1.378073+4 9.225714-5 1.510684+4 9.500000-5 1.624050+4 9.800000-5 1.741890+4 1.011579-4 1.857155+4 1.040000-4 1.953012+4 1.071519-4 2.049637+4 1.109175-4 2.150858+4 1.150000-4 2.244942+4 1.190000-4 2.321370+4 1.230269-4 2.382882+4 1.280000-4 2.441016+4 1.330000-4 2.479692+4 1.380384-4 2.501894+4 1.430000-4 2.509668+4 1.496236-4 2.500312+4 1.566751-4 2.473153+4 1.640590-4 2.429602+4 1.721200-4 2.368823+4 1.798871-4 2.300858+4 1.883649-4 2.219646+4 1.995262-4 2.106450+4 2.113489-4 1.987573+4 2.238721-4 1.862670+4 2.371374-4 1.734300+4 2.511886-4 1.604929+4 2.691535-4 1.451383+4 2.884032-4 1.302605+4 3.126079-4 1.138903+4 3.349654-4 1.008503+4 3.630781-4 8.685045+3 3.935501-4 7.423202+3 4.265795-4 6.303411+3 4.623810-4 5.318105+3 5.069907-4 4.346221+3 5.559043-4 3.525387+3 6.095369-4 2.838291+3 6.683439-4 2.268617+3 7.413102-4 1.749636+3 8.128305-4 1.379367+3 8.912509-4 1.080020+3 9.772372-4 8.400494+2 1.083927-3 6.283185+2 1.202264-3 4.662236+2 1.333521-3 3.432788+2 1.479108-3 2.508631+2 1.640590-3 1.819832+2 1.819701-3 1.310943+2 2.018366-3 9.380421+1 2.264644-3 6.418601+1 2.483133-3 4.703478+1 2.786121-3 3.164947+1 3.235937-3 1.874157+1 3.630781-3 1.244019+1 4.073803-3 8.200038+0 4.570882-3 5.365257+0 5.128614-3 3.486723+0 5.821032-3 2.154060+0 6.606934-3 1.321029+0 7.498942-3 8.044200-1 8.511380-3 4.864443-1 9.772372-3 2.788524-1 1.122018-2 1.585697-1 1.288250-2 8.949937-2 1.500000-2 4.728973-2 1.757924-2 2.411909-2 2.113489-2 1.094422-2 2.570396-2 4.689581-3 3.235937-2 1.715915-3 4.168694-2 5.634937-4 6.839116-2 6.335791-5 8.709636-2 2.194289-5 1.035142-1 1.036225-5 1.202264-1 5.448402-6 1.364583-1 3.183812-6 1.548817-1 1.873832-6 1.737801-1 1.165461-6 1.927525-1 7.653204-7 2.137962-1 5.062623-7 2.344229-1 3.529663-7 2.570396-1 2.477226-7 2.818383-1 1.750822-7 3.090295-1 1.246726-7 3.349654-1 9.323515-8 3.630781-1 7.018946-8 3.935501-1 5.321750-8 4.216965-1 4.225259-8 4.570882-1 3.251392-8 4.954502-1 2.520694-8 5.370318-1 1.968391-8 5.821032-1 1.548724-8 6.309573-1 1.228071-8 6.839117-1 9.814846-9 7.413102-1 7.905715-9 8.035261-1 6.397554-9 8.609938-1 5.373759-9 9.120108-1 4.675239-9 9.660509-1 4.093358-9 1.023293+0 3.609352-9 1.096478+0 3.125239-9 1.174898+0 2.725171-9 1.273503+0 2.344146-9 1.428894+0 1.905118-9 1.698244+0 1.408392-9 1.905461+0 1.159151-9 2.137962+0 9.61016-10 2.426610+0 7.87825-10 2.786121+0 6.39371-10 3.198895+0 5.22813-10 3.715352+0 4.23596-10 4.365158+0 3.40289-10 5.128614+0 2.75382-10 6.237348+0 2.14884-10 7.413102+0 1.73759-10 9.332543+0 1.32105-10 1.174898+1 1.01219-10 1.531087+1 7.51363-11 2.041738+1 5.48006-11 2.754229+1 3.97366-11 3.935501+1 2.72689-11 6.839116+1 1.53955-11 1.288250+2 8.07185-12 2.570396+2 4.01578-12 1.023293+3 1.00349-12 1.000000+5 1.02510-14 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 5.130000-6 5.130000-6 1.000000+5 5.130000-6 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.130000-6 0.0 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.680000-6 1.922976+6 5.760000-6 1.787478+6 5.960000-6 1.466738+6 6.165950-6 1.197618+6 6.350000-6 1.000170+6 6.550000-6 8.227300+5 6.770000-6 6.634060+5 7.000000-6 5.294680+5 7.200000-6 4.346860+5 7.350000-6 3.744700+5 7.550000-6 3.063760+5 7.700000-6 2.631320+5 7.852356-6 2.250620+5 8.035261-6 1.860532+5 8.200000-6 1.562756+5 8.350000-6 1.329554+5 8.511380-6 1.113631+5 8.650000-6 9.534740+4 8.810489-6 7.935284+4 8.920000-6 6.983020+4 9.050000-6 5.982880+4 9.200000-6 4.985500+4 9.350000-6 4.136640+4 9.500000-6 3.417780+4 9.660509-6 2.774515+4 9.850000-6 2.160200+4 1.023293-5 1.307932+4 1.035142-5 1.130414+4 1.042000-5 1.043370+4 1.050000-5 9.552700+3 1.057000-5 8.893120+3 1.065000-5 8.258100+3 1.071519-5 7.828489+3 1.077000-5 7.524820+3 1.083000-5 7.249420+3 1.088000-5 7.063260+3 1.094000-5 6.889240+3 1.100000-5 6.766360+3 1.107000-5 6.683960+3 1.112000-5 6.663140+3 1.117000-5 6.672360+3 1.123000-5 6.721160+3 1.129000-5 6.808980+3 1.135011-5 6.933897+3 1.142000-5 7.122900+3 1.150000-5 7.393200+3 1.157000-5 7.673680+3 1.168000-5 8.190520+3 1.180000-5 8.850200+3 1.200000-5 1.014140+4 1.230269-5 1.246044+4 1.250000-5 1.415258+4 1.270000-5 1.597540+4 1.290000-5 1.787972+4 1.310000-5 1.984270+4 1.330000-5 2.184500+4 1.350000-5 2.387040+4 1.372000-5 2.610900+4 1.396368-5 2.858396+4 1.420000-5 3.096480+4 1.450000-5 3.394060+4 1.480000-5 3.684720+4 1.513561-5 3.999982+4 1.550000-5 4.328820+4 1.584893-5 4.629553+4 1.621810-5 4.931739+4 1.659587-5 5.224175+4 1.710000-5 5.587500+4 1.757924-5 5.904919+4 1.800000-5 6.161940+4 1.862087-5 6.506125+4 1.927525-5 6.826794+4 2.000000-5 7.135920+4 2.070000-5 7.392880+4 2.162719-5 7.677303+4 2.264644-5 7.926392+4 2.371374-5 8.127134+4 2.500000-5 8.300840+4 2.630268-5 8.412818+4 2.786121-5 8.477827+4 2.951209-5 8.482310+4 3.126079-5 8.431003+4 3.311311-5 8.328611+4 3.548134-5 8.146350+4 3.801894-5 7.905100+4 4.073803-5 7.611371+4 4.365158-5 7.275452+4 4.677351-5 6.906989+4 5.069907-5 6.450269+4 5.500000-5 5.970600+4 6.025596-5 5.431612+4 6.683439-5 4.839834+4 7.585776-5 4.166205+4 8.810489-5 3.462702+4 1.096478-4 2.616062+4 1.603245-4 1.593267+4 1.778279-4 1.383756+4 2.000000-4 1.170230+4 2.264644-4 9.709290+3 2.630268-4 7.687470+3 3.758374-4 4.363833+3 4.677351-4 3.049392+3 6.839116-4 1.616465+3 8.511380-4 1.115158+3 1.035142-3 7.943846+2 1.273503-3 5.499604+2 1.640590-3 3.476002+2 2.018366-3 2.371730+2 2.426610-3 1.676458+2 2.884032-3 1.202475+2 3.349654-3 8.952284+1 3.981072-3 6.321283+1 4.731513-3 4.429302+1 5.623413-3 3.079896+1 6.683439-3 2.124841+1 7.852356-3 1.491780+1 9.225714-3 1.039858+1 1.083927-2 7.195298+0 1.273503-2 4.941574+0 1.496236-2 3.368286+0 1.757924-2 2.278372+0 2.065380-2 1.528933+0 2.426610-2 1.018369+0 2.851018-2 6.733509-1 3.349654-2 4.419497-1 3.981072-2 2.793092-1 4.731513-2 1.752081-1 5.559043-2 1.125904-1 6.760830-2 6.529009-2 8.413951-2 3.521535-2 1.035142-1 1.948536-2 2.065380-1 2.647351-3 2.511886-1 1.511304-3 2.951209-1 9.591010-4 3.388442-1 6.537961-4 3.845918-1 4.633453-4 4.315191-1 3.411634-4 4.841724-1 2.530900-4 5.370318-1 1.948394-4 5.956621-1 1.510944-4 6.606935-1 1.181010-4 7.244360-1 9.551691-5 8.000000-1 7.655100-5 8.810489-1 6.217323-5 9.660509-1 5.134659-5 1.122018+0 3.807412-5 1.216186+0 3.257528-5 1.396368+0 2.516242-5 1.548817+0 2.086056-5 1.737801+0 1.707820-5 1.949845+0 1.408610-5 2.213095+0 1.148672-5 2.511886+0 9.435473-6 2.884032+0 7.671738-6 3.311311+0 6.283956-6 3.845918+0 5.100098-6 4.518559+0 4.103465-6 5.308844+0 3.326086-6 6.531306+0 2.561871-6 7.762471+0 2.075480-6 9.660509+0 1.601873-6 1.230269+1 1.212759-6 1.621810+1 8.900712-7 2.264644+1 6.184788-7 3.427678+1 3.979439-7 5.128614+1 2.615500-7 8.709636+1 1.517658-7 1.737801+2 7.527063-8 3.467369+2 3.752375-8 1.380384+3 9.388585-9 1.000000+5 1.29430-10 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.680000-6 5.680000-6 1.000000+5 5.680000-6 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.680000-6 0.0 1.000000+5 1.000000+5 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.183930-8 1.028750+0 8.183930-7 1.029500+0 1.119990-6 1.030100+0 1.408530-6 1.031000+0 1.927340-6 1.032000+0 2.637090-6 1.033200+0 3.694120-6 1.034000+0 4.534870-6 1.035300+0 6.155440-6 1.036640+0 8.183930-6 1.038200+0 1.104450-5 1.039700+0 1.434900-5 1.041500+0 1.909120-5 1.043800+0 2.649910-5 1.046400+0 3.686860-5 1.048300+0 4.590240-5 1.051200+0 6.226560-5 1.054080+0 8.183930-5 1.057700+0 1.115520-4 1.061100+0 1.451020-4 1.065100+0 1.920990-4 1.070400+0 2.679990-4 1.076200+0 3.703750-4 1.080600+0 4.625380-4 1.087100+0 6.231890-4 1.093710+0 8.183930-4 1.102600+0 1.134660-3 1.110700+0 1.479780-3 1.120600+0 1.979410-3 1.133300+0 2.752100-3 1.147500+0 3.799700-3 1.158200+0 4.722060-3 1.174100+0 6.311470-3 1.190110+0 8.183930-3 1.205100+0 1.018890-2 1.227500+0 1.363880-2 1.250000+0 1.762000-2 1.265600+0 2.065430-2 1.294900+0 2.689940-2 1.331800+0 3.564910-2 1.362600+0 4.359740-2 1.397000+0 5.307650-2 1.455800+0 7.057930-2 1.500000+0 8.484000-2 1.589800+0 1.169970-1 1.665000+0 1.470720-1 1.784700+0 2.000160-1 1.892300+0 2.515150-1 2.000000+0 3.049000-1 2.044000+0 3.268000-1 2.163500+0 3.869950-1 2.372600+0 4.941200-1 2.647100+0 6.351650-1 3.000000+0 8.128000-1 3.437500+0 1.022670+0 4.000000+0 1.275000+0 4.750000+0 1.583840+0 5.000000+0 1.680000+0 6.000000+0 2.033000+0 7.000000+0 2.348000+0 8.000000+0 2.632000+0 9.000000+0 2.890000+0 1.000000+1 3.125000+0 1.100000+1 3.341000+0 1.200000+1 3.538000+0 1.300000+1 3.720000+0 1.400000+1 3.887000+0 1.500000+1 4.043000+0 1.600000+1 4.189000+0 1.800000+1 4.457000+0 2.000000+1 4.698000+0 2.200000+1 4.916000+0 2.400000+1 5.114000+0 2.600000+1 5.295000+0 2.800000+1 5.460000+0 3.000000+1 5.613000+0 4.000000+1 6.234000+0 5.000000+1 6.694000+0 6.000000+1 7.053000+0 8.000000+1 7.583000+0 1.000000+2 7.959000+0 1.500000+2 8.558000+0 2.000000+2 8.916000+0 3.000000+2 9.333000+0 4.000000+2 9.574000+0 5.000000+2 9.732000+0 6.000000+2 9.845000+0 8.000000+2 9.996000+0 1.000000+3 1.009000+1 1.500000+3 1.023000+1 2.000000+3 1.031000+1 3.000000+3 1.040000+1 4.000000+3 1.044000+1 5.000000+3 1.047000+1 6.000000+3 1.049000+1 8.000000+3 1.051000+1 1.000000+4 1.053000+1 1.500000+4 1.055000+1 2.000000+4 1.056000+1 3.000000+4 1.058000+1 4.000000+4 1.058000+1 5.000000+4 1.059000+1 6.000000+4 1.059000+1 8.000000+4 1.059000+1 1.000000+5 1.060000+1 1 39000 7 8 8.890500+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 3.914880-7 2.106600+0 1.275510-6 2.114000+0 1.764830-6 2.119500+0 2.197200-6 2.127900+0 2.979820-6 2.136250+0 3.914880-6 2.147000+0 5.367580-6 2.156900+0 6.971830-6 2.169000+0 9.304350-6 2.184500+0 1.293340-5 2.201800+0 1.789370-5 2.214800+0 2.229410-5 2.234200+0 2.998950-5 2.253680+0 3.914880-5 2.281500+0 5.483480-5 2.307000+0 7.202530-5 2.338200+0 9.684430-5 2.377400+0 1.341180-4 2.410200+0 1.705750-4 2.446800+0 2.169820-4 2.485900+0 2.731920-4 2.532900+0 3.496270-4 2.556430+0 3.914880-4 2.611900+0 4.991910-4 2.660400+0 6.034940-4 2.745300+0 8.077380-4 2.809000+0 9.782170-4 2.904500+0 1.260200-3 3.000000+0 1.573000-3 3.125000+0 2.028330-3 3.234400+0 2.468020-3 3.425800+0 3.323530-3 3.569300+0 4.030140-3 3.784700+0 5.180840-3 4.000000+0 6.418000-3 4.250000+0 7.930750-3 4.625000+0 1.030840-2 5.000000+0 1.278000-2 5.500000+0 1.617170-2 6.000000+0 1.961000-2 6.750000+0 2.473300-2 7.000000+0 2.642000-2 8.000000+0 3.302000-2 9.000000+0 3.933000-2 1.000000+1 4.533000-2 1.100000+1 5.101000-2 1.200000+1 5.637000-2 1.300000+1 6.143000-2 1.400000+1 6.624000-2 1.500000+1 7.079000-2 1.600000+1 7.512000-2 1.800000+1 8.315000-2 2.000000+1 9.046000-2 2.200000+1 9.715000-2 2.400000+1 1.033000-1 2.600000+1 1.090000-1 2.800000+1 1.143000-1 3.000000+1 1.192000-1 4.000000+1 1.396000-1 5.000000+1 1.551000-1 6.000000+1 1.674000-1 8.000000+1 1.860000-1 1.000000+2 1.996000-1 1.500000+2 2.222000-1 2.000000+2 2.364000-1 3.000000+2 2.540000-1 4.000000+2 2.646000-1 5.000000+2 2.719000-1 6.000000+2 2.773000-1 8.000000+2 2.848000-1 1.000000+3 2.898000-1 1.500000+3 2.973000-1 2.000000+3 3.016000-1 3.000000+3 3.064000-1 4.000000+3 3.092000-1 5.000000+3 3.109000-1 6.000000+3 3.121000-1 8.000000+3 3.137000-1 1.000000+4 3.148000-1 1.500000+4 3.162000-1 2.000000+4 3.170000-1 3.000000+4 3.178000-1 4.000000+4 3.183000-1 5.000000+4 3.186000-1 6.000000+4 3.188000-1 8.000000+4 3.190000-1 1.000000+5 3.192000-1 1 39000 7 8 8.890500+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 39000 7 9 8.890500+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 3.900000+1 1.000000+5 3.900000+1 5.000000+5 3.897600+1 1.000000+6 3.893700+1 1.375000+6 3.889770+1 1.500000+6 3.888000+1 1.875000+6 3.881360+1 2.000000+6 3.878800+1 2.375000+6 3.870300+1 2.500000+6 3.867200+1 2.875000+6 3.857070+1 3.000000+6 3.853400+1 3.437500+6 3.839170+1 3.812500+6 3.826270+1 4.000000+6 3.819800+1 4.437500+6 3.803510+1 4.812500+6 3.788570+1 5.000000+6 3.780700+1 5.500000+6 3.758150+1 5.875000+6 3.740770+1 6.437500+6 3.713530+1 6.500000+6 3.710590+1 7.000000+6 3.685800+1 7.500000+6 3.660720+1 8.250000+6 3.622350+1 8.500000+6 3.609690+1 9.000000+6 3.584000+1 1.000000+7 3.532200+1 1.187500+7 3.437700+1 1.250000+7 3.406900+1 1.500000+7 3.285900+1 1.750000+7 3.170800+1 2.000000+7 3.059400+1 2.250000+7 2.949430+1 2.375000+7 2.895110+1 2.500000+7 2.842100+1 2.875000+7 2.688400+1 3.000000+7 2.639900+1 3.500000+7 2.458370+1 4.000000+7 2.299000+1 4.500000+7 2.158830+1 4.750000+7 2.094670+1 5.000000+7 2.033800+1 5.500000+7 1.919690+1 5.750000+7 1.865610+1 6.000000+7 1.813400+1 6.500000+7 1.712760+1 7.000000+7 1.616600+1 7.500000+7 1.524300+1 8.000000+7 1.435800+1 8.500000+7 1.351210+1 9.000000+7 1.270900+1 9.750000+7 1.158970+1 1.000000+8 1.124200+1 1.187500+8 9.052880+0 1.250000+8 8.492200+0 1.359400+8 7.689110+0 1.437500+8 7.228360+0 1.453100+8 7.146210+0 1.500000+8 6.915600+0 1.625000+8 6.406280+0 1.718800+8 6.094020+0 2.000000+8 5.346300+0 2.250000+8 4.801930+0 2.375000+8 4.564840+0 2.500000+8 4.349500+0 2.671900+8 4.077590+0 2.789100+8 3.889190+0 2.875000+8 3.743070+0 2.894500+8 3.708690+0 2.973600+8 3.564460+0 3.000000+8 3.514500+0 3.062500+8 3.393190+0 3.335900+8 2.897560+0 3.445300+8 2.743890+0 3.500000+8 2.679600+0 4.000000+8 2.282700+0 4.062500+8 2.229380+0 5.000000+8 1.489000+0 5.125000+8 1.432680+0 5.234400+8 1.391190+0 5.425800+8 1.331630+0 5.569300+8 1.294870+0 6.000000+8 1.206000+0 7.000000+8 1.045000+0 7.750000+8 9.559540-1 8.000000+8 9.271000-1 8.250000+8 8.972830-1 8.687500+8 8.439820-1 9.015600+8 8.042190-1 9.507800+8 7.461880-1 1.000000+9 6.914000-1 1.062500+9 6.272580-1 1.117200+9 5.759840-1 1.186000+9 5.173840-1 1.243500+9 4.729980-1 1.307700+9 4.279890-1 1.375000+9 3.854690-1 1.376400+9 3.846340-1 1.458800+9 3.385120-1 1.500000+9 3.176300-1 1.589800+9 2.765960-1 1.665000+9 2.466310-1 1.748800+9 2.174000-1 1.838500+9 1.903830-1 1.946200+9 1.629290-1 2.000000+9 1.509900-1 2.139200+9 1.246030-1 2.272600+9 1.043490-1 2.443000+9 8.395200-2 2.680200+9 6.302810-2 2.825100+9 5.336180-2 3.097000+9 3.968050-2 3.438900+9 2.809150-2 3.725100+9 2.147930-2 4.180400+9 1.450080-2 4.726800+9 9.487550-3 5.000000+9 7.804200-3 6.500000+9 3.115890-3 8.000000+9 1.501900-3 1.00000+10 6.872800-4 1.20500+10 3.603310-4 1.41820+10 2.063020-4 1.71170+10 1.091240-4 2.01490+10 6.319120-5 2.26440+10 4.286980-5 2.74790+10 2.265590-5 3.41360+10 1.116880-5 4.02450+10 6.561290-6 5.12000+10 3.035610-6 6.34000+10 1.540960-6 8.17000+10 6.939580-7 1.00000+11 3.690800-7 1.34280+11 1.479090-7 1.77440+11 6.269320-8 2.63330+11 1.877440-8 3.75720+11 6.398640-9 6.61190+11 1.174840-9 1.48990+12 1.05995-10 4.26460+12 4.91561-12 1.00000+14 5.57810-16 5.62340+14 3.77181-18 7.49890+15 1.96898-21 1.00000+17 9.87450-25 1 39000 7 0 8.890500+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 8.70000-12 1.000000+2 8.70000-10 1.000000+3 8.700000-8 1.000000+4 8.700000-6 1.000000+5 8.700000-4 5.000000+5 2.175000-2 1.000000+6 8.700000-2 1.375000+6 1.634010-1 1.500000+6 1.938000-1 1.875000+6 2.984840-1 2.000000+6 3.377000-1 2.375000+6 4.674050-1 2.500000+6 5.144000-1 2.875000+6 6.651870-1 3.000000+6 7.185000-1 3.437500+6 9.149920-1 3.812500+6 1.093590+0 4.000000+6 1.185700+0 4.437500+6 1.405390+0 4.812500+6 1.597260+0 5.000000+6 1.694000+0 5.500000+6 1.951500+0 5.875000+6 2.143400+0 6.437500+6 2.426180+0 6.500000+6 2.457140+0 7.000000+6 2.700700+0 7.500000+6 2.935690+0 8.250000+6 3.273260+0 8.500000+6 3.381960+0 9.000000+6 3.593900+0 1.000000+7 3.999000+0 1.187500+7 4.715300+0 1.250000+7 4.948500+0 1.500000+7 5.874000+0 1.750000+7 6.796500+0 2.000000+7 7.700000+0 2.250000+7 8.571640+0 2.375000+7 8.996000+0 2.500000+7 9.412700+0 2.875000+7 1.061870+1 3.000000+7 1.101000+1 3.500000+7 1.251240+1 4.000000+7 1.389900+1 4.500000+7 1.515290+1 4.750000+7 1.573010+1 5.000000+7 1.627900+1 5.500000+7 1.729040+1 5.750000+7 1.776190+1 6.000000+7 1.821500+1 6.500000+7 1.907520+1 7.000000+7 1.989100+1 7.500000+7 2.066950+1 8.000000+7 2.141600+1 8.500000+7 2.213250+1 9.000000+7 2.282000+1 9.750000+7 2.379660+1 1.000000+8 2.411000+1 1.187500+8 2.622500+1 1.250000+8 2.684900+1 1.359400+8 2.784620+1 1.437500+8 2.848910+1 1.453100+8 2.861210+1 1.500000+8 2.897000+1 1.625000+8 2.983420+1 1.718800+8 3.041300+1 2.000000+8 3.187000+1 2.250000+8 3.289790+1 2.375000+8 3.334100+1 2.500000+8 3.374500+1 2.671900+8 3.424360+1 2.789100+8 3.454930+1 2.875000+8 3.476020+1 2.894500+8 3.480500+1 2.973600+8 3.498410+1 3.000000+8 3.504300+1 3.062500+8 3.517100+1 3.335900+8 3.568010+1 3.445300+8 3.585720+1 3.500000+8 3.594000+1 4.000000+8 3.655700+1 4.062500+8 3.661700+1 5.000000+8 3.731600+1 5.125000+8 3.738250+1 5.234400+8 3.743950+1 5.425800+8 3.753650+1 5.569300+8 3.760050+1 6.000000+8 3.778200+1 7.000000+8 3.811600+1 7.750000+8 3.831020+1 8.000000+8 3.836600+1 8.250000+8 3.841470+1 8.687500+8 3.849660+1 9.015600+8 3.855150+1 9.507800+8 3.862270+1 1.000000+9 3.868400+1 1.062500+9 3.874680+1 1.117200+9 3.878840+1 1.186000+9 3.883530+1 1.243500+9 3.886330+1 1.307700+9 3.889320+1 1.375000+9 3.891330+1 1.376400+9 3.891370+1 1.458800+9 3.893550+1 1.500000+9 3.894600+1 1.589800+9 3.895750+1 1.665000+9 3.896660+1 1.748800+9 3.897640+1 1.838500+9 3.898110+1 1.946200+9 3.898640+1 2.000000+9 3.898900+1 2.139200+9 3.899170+1 2.272600+9 3.899410+1 2.443000+9 3.899710+1 2.680200+9 3.900080+1 2.825100+9 3.900170+1 3.097000+9 3.900150+1 3.438900+9 3.900110+1 3.725100+9 3.900090+1 4.180400+9 3.900050+1 4.726800+9 3.900020+1 5.000000+9 3.900000+1 6.500000+9 3.900000+1 8.000000+9 3.900000+1 1.00000+10 3.900000+1 1.20500+10 3.900000+1 1.41820+10 3.900000+1 1.71170+10 3.900000+1 2.01490+10 3.900000+1 2.26440+10 3.900000+1 2.74790+10 3.900000+1 3.41360+10 3.900000+1 4.02450+10 3.900000+1 5.12000+10 3.900000+1 6.34000+10 3.900000+1 8.17000+10 3.900000+1 1.00000+11 3.900000+1 1.34280+11 3.900000+1 1.77440+11 3.900000+1 2.63330+11 3.900000+1 3.75720+11 3.900000+1 6.61190+11 3.900000+1 1.48990+12 3.900000+1 4.26460+12 3.900000+1 1.00000+14 3.900000+1 5.62340+14 3.900000+1 7.49890+15 3.900000+1 1.00000+17 3.900000+1 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.945855-6 0.0 1.950645-6 4.19473-15 1.955434-6 8.30021-15 1.960224-6 1.51610-14 1.965013-6 2.55635-14 1.969803-6 3.97894-14 1.974592-6 5.71700-14 1.979382-6 7.58269-14 1.984171-6 9.28392-14 1.988961-6 1.04929-13 1.993750-6 1.09474-13 1.998539-6 1.05434-13 2.003329-6 9.37356-14 2.011053-6 6.56476-14 2.013988-6 5.43343-14 2.021424-6 2.075522-1 2.023903-6 2.758587-1 2.028860-6 5.038784-1 2.033817-6 8.496082-1 2.038774-6 1.322408+0 2.046830-6 2.287245+0 2.053646-6 3.085526+0 2.058603-6 3.487319+0 2.063560-6 3.650784+0 2.069137-6 3.554708+0 2.075256-6 3.132737+0 2.083389-6 2.433274+0 2.088346-6 2.113783+0 2.093927-6 1.951010+0 2.099568-6 1.961922+0 2.109087-6 2.097488+0 2.119242-6 1.950133+0 2.124463-6 1.708493+0 2.138916-6 7.880093-1 2.143993-6 5.368593-1 2.149071-6 3.681499-1 2.151870-6 3.158483-1 2.154148-6 2.792668-1 2.157115-6 2.626051-1 2.164302-6 2.372122-1 2.172850-6 3.437437-1 2.178095-6 3.885054-1 2.183340-6 4.053344-1 2.188585-6 3.903765-1 2.193830-6 3.470626-1 2.199075-6 2.848302-1 2.209565-6 1.509052-1 2.214810-6 9.741916-2 2.220054-6 5.805485-2 2.225299-6 3.193645-2 2.230544-6 1.621768-2 2.235789-6 0.0 2.501362-6 0.0 2.512137-6 3.549172+0 2.513676-6 4.051023+0 2.519833-6 7.399524+0 2.525989-6 1.247661+1 2.532916-6 2.047786+1 2.543594-6 3.572514+1 2.551386-6 4.604741+1 2.556773-6 5.121176+1 2.563528-6 5.323211+1 2.576956-6 4.833900+1 2.582144-6 4.467364+1 2.589049-6 4.236827+1 2.594991-6 4.421669+1 2.601698-6 5.234886+1 2.609321-6 6.795767+1 2.620289-6 9.385772+1 2.627734-6 1.049181+2 2.633033-6 1.082999+2 2.639645-6 1.034199+2 2.646525-6 8.990211+1 2.656482-6 6.230907+1 2.664362-6 4.038880+1 2.670687-6 2.607361+1 2.677011-6 1.553800+1 2.683336-6 8.547583+0 2.692823-6 2.172830+0 2.695985-6 0.0 3.059533-6 0.0 3.067064-6 1.178578-8 3.074595-6 2.332081-8 3.082125-6 4.259736-8 3.089656-6 7.182500-8 3.097187-6 1.117950-7 3.104717-6 1.606287-7 3.112248-6 2.130481-7 3.119779-6 2.608472-7 3.127309-6 2.948143-7 3.134840-6 3.075848-7 3.142371-6 2.962342-7 3.149901-6 2.633658-7 3.157432-6 2.161412-7 3.172493-6 1.145133-7 3.176436-6 9.328716-8 3.180024-6 7.733203-8 3.187555-6 5.455318-8 3.192073-6 4.688115-8 3.195085-6 4.361849-8 3.199891-6 4.349227-8 3.207710-6 4.928421-8 3.210147-6 5.313896-8 3.215528-6 7.050204-8 3.223346-6 1.012984-7 3.231165-6 1.343560-7 3.238983-6 1.644998-7 3.246802-6 1.859207-7 3.254620-6 1.939743-7 3.262438-6 1.868161-7 3.270257-6 1.660881-7 3.278075-6 1.363066-7 3.293712-6 7.221626-8 3.301530-6 4.662031-8 3.309349-6 2.778237-8 3.317167-6 1.528331-8 3.324986-6 7.761033-9 3.332804-6 0.0 3.615040-6 0.0 3.627660-6 4.65716-15 3.628177-6 5.17745-15 3.631339-6 4.353729-9 3.646652-6 1.073063-7 3.664604-6 2.723474-2 3.673580-6 4.974639-2 3.682555-6 8.387912-2 3.691531-6 1.305570-1 3.718458-6 3.046230-1 3.727434-6 3.442903-1 3.736410-6 3.592037-1 3.745386-6 3.466136-1 3.754362-6 3.154907-1 3.774348-6 2.113410-1 3.782072-6 1.800350-1 3.791170-6 1.611379-1 3.800388-6 1.618080-1 3.810101-6 1.790553-1 3.819126-6 2.002837-1 3.837653-6 2.295753-1 3.846917-6 2.255315-1 3.856180-6 2.053378-1 3.868177-6 1.621997-1 3.883970-6 9.868810-2 3.892568-6 6.848890-2 3.901786-6 4.324772-2 3.910464-6 2.616929-2 3.921024-6 1.264703-2 3.928898-6 3.697233-3 3.930288-6 3.292321-3 3.939551-6 1.671876-3 3.948815-6 0.0 4.165140-6 0.0 4.165150-6 1.249482-5 4.183167-6 2.406190-2 4.185654-6 4.026014-2 4.197151-6 1.263654-1 4.202149-6 1.684941-1 4.204279-6 2.172814-1 4.214577-6 4.919852-1 4.223809-6 7.947771-1 4.234723-6 1.317755+0 4.246317-6 2.065884+0 4.276684-6 4.410779+0 4.288524-6 5.026800+0 4.297601-6 5.253394+0 4.309106-6 5.104037+0 4.319006-6 4.661063+0 4.333988-6 3.605667+0 4.349686-6 2.387917+0 4.358772-6 1.772876+0 4.368501-6 1.242592+0 4.378797-6 8.486415-1 4.389093-6 5.636850-1 4.401476-6 3.774435-1 4.409011-6 2.560986-1 4.425853-6 2.084503-1 4.450688-6 1.306763-1 4.464055-6 9.409219-2 4.471768-6 8.157728-2 4.486884-6 6.363864-2 4.492847-6 5.993786-2 4.497560-6 6.268725-2 4.507964-6 7.788113-2 4.518952-6 1.056140-1 4.532686-6 1.557173-1 4.554053-6 2.414878-1 4.563471-6 2.722687-1 4.574460-6 2.913747-1 4.585449-6 2.922408-1 4.596438-6 2.764896-1 4.628049-6 1.890837-1 4.640394-6 1.742226-1 4.651383-6 1.756294-1 4.662372-6 1.923138-1 4.698766-6 2.935066-1 4.706585-6 3.115920-1 4.720657-6 3.247672-1 4.732792-6 3.207409-1 4.744134-6 3.023265-1 4.772597-6 2.329986-1 4.778981-6 2.259369-1 4.790776-6 2.544731-1 4.801754-6 2.978769-1 4.809081-6 3.489863-1 4.816518-6 4.187217-1 4.827969-6 5.613590-1 4.867323-6 1.209387+0 4.878735-6 1.345893+0 4.889062-6 1.410455+0 4.900133-6 1.405503+0 4.911968-6 1.317931+0 4.935346-6 9.906941-1 4.955532-6 6.799692-1 4.969285-6 5.243487-1 4.980521-6 4.329110-1 4.993093-6 3.692661-1 5.011212-6 3.070090-1 5.016063-6 2.980389-1 5.054126-6 3.027362-1 5.083653-6 3.447442-1 5.102862-6 4.081539-1 5.131992-6 5.668331-1 5.152249-6 6.853390-1 5.166243-6 7.355323-1 5.178375-6 7.463526-1 5.190849-6 7.232077-1 5.222990-6 5.810467-1 5.240529-6 5.056425-1 5.251088-6 4.791944-1 5.263227-6 4.698618-1 5.275399-6 4.797930-1 5.307385-6 5.448111-1 5.317468-6 5.691071-1 5.330924-6 5.859290-1 5.344208-6 5.884126-1 5.392852-6 5.569282-1 5.662605-6 5.620088-1 6.474272-6 6.201749-1 7.775805-6 7.706758-1 1.157000-5 1.281038+0 1.341831-5 1.468121+0 1.544694-5 1.574764+0 1.765000-5 1.568373+0 2.064405-5 1.418713+0 2.624804-5 1.008765+0 2.636486-5 2.650748+0 2.637725-5 4.398453+0 2.644186-5 1.410040+1 2.649465-5 2.254995+1 2.655954-5 3.905450+1 2.662918-5 6.567072+1 2.670836-5 1.066273+2 2.682949-5 1.788374+2 2.689814-5 2.129961+2 2.696916-5 2.329289+2 2.703309-5 2.340950+2 2.709752-5 2.181902+2 2.716439-5 1.869440+2 2.731000-5 1.014370+2 2.734634-5 8.118069+1 2.740316-5 5.487538+1 2.746806-5 3.290312+1 2.753295-5 1.803090+1 2.766274-5 9.124500-1 2.780414-5 9.030905-1 2.794260-5 1.017767+1 2.801262-5 1.805704+1 2.808002-5 2.942784+1 2.815001-5 4.560684+1 2.835480-5 1.033725+2 2.842969-5 1.167222+2 2.849478-5 1.205999+2 2.856121-5 1.157675+2 2.863641-5 1.006209+2 2.883068-5 4.556834+1 2.889912-5 2.971006+1 2.896755-5 1.803768+1 2.903599-5 1.029158+1 2.913865-5 3.225205+0 2.917286-5 8.166874-1 2.942445-5 8.014343-1 2.956930-5 9.665991-1 2.964173-5 1.105984+0 2.971415-5 1.319553+0 2.978658-5 1.613207+0 3.008882-5 3.171313+0 3.016092-5 3.404616+0 3.038146-5 3.904239+0 3.067633-5 5.238305+0 3.075548-5 5.378754+0 3.082889-5 5.307612+0 3.108711-5 4.517796+0 3.119791-5 4.424849+0 3.141725-5 4.800537+0 3.165625-5 5.432530+0 3.196061-5 5.780604+0 3.233437-5 6.449724+0 3.251802-5 6.282220+0 3.276621-5 5.903343+0 3.388997-5 5.597791+0 3.801894-5 4.078610+0 4.076224-5 3.282656+0 4.348553-5 2.653141+0 4.617160-5 2.167579+0 4.906827-5 1.766151+0 4.952622-5 1.775524+0 5.012979-5 1.934565+0 5.037121-5 1.921595+0 5.104559-5 1.621957+0 5.144844-5 1.558918+0 5.222421-5 1.562140+0 5.542068-5 1.326120+0 5.900000-5 1.149257+0 6.377272-5 9.989827-1 6.920000-5 9.057384-1 7.690000-5 8.568716-1 8.570000-5 8.621674-1 1.385248-4 1.079240+0 1.594591-4 1.127496+0 1.606500-4 1.199905+0 1.614788-4 1.327349+0 1.635613-4 1.864351+0 1.645554-4 2.022513+0 1.657983-4 2.098744+0 1.685460-4 2.048980+0 1.704500-4 2.128760+0 1.727628-4 2.367678+0 1.747489-4 2.724679+0 1.770000-4 3.310970+0 1.798996-4 4.291893+0 1.953995-4 1.027065+1 2.041450-4 1.290820+1 2.131745-4 1.475087+1 2.325000-4 1.735611+1 2.520599-4 1.888353+1 2.843409-4 1.968497+1 2.876967-4 1.969976+1 2.899174-4 2.047422+1 2.914156-4 2.176701+1 2.942259-4 2.474797+1 2.955769-4 2.483864+1 2.991736-4 2.204162+1 3.018152-4 2.165449+1 3.066428-4 2.363118+1 3.088624-4 2.342880+1 3.131355-4 2.232434+1 3.788501-4 2.112779+1 3.858890-4 2.161562+1 5.629439-4 1.588703+1 6.866535-4 1.285299+1 8.128844-4 1.055105+1 9.440607-4 8.769259+0 1.110572-3 7.106029+0 1.280394-3 5.868585+0 1.479162-3 4.806783+0 1.678915-3 4.015928+0 1.958281-3 3.208983+0 2.026442-3 3.057707+0 2.036429-3 3.395747+0 2.041429-3 3.705731+0 2.046429-3 4.203473+0 2.051439-3 4.930295+0 2.059292-3 6.533580+0 2.071449-3 9.482710+0 2.076623-3 1.052671+1 2.081584-3 1.124816+1 2.086608-3 1.166348+1 2.097945-3 1.171611+1 2.117018-3 1.133125+1 2.126400-3 1.158141+1 2.145513-3 1.348525+1 2.160242-3 1.477454+1 2.178361-3 1.489961+1 2.218699-3 1.422849+1 2.323509-3 1.352008+1 2.374047-3 1.459729+1 2.519748-3 1.357869+1 2.922036-3 1.086901+1 3.381895-3 8.690377+0 3.859507-3 7.061511+0 4.441196-3 5.630892+0 5.072644-3 4.523293+0 5.818742-3 3.593585+0 6.612462-3 2.891730+0 7.436091-3 2.362586+0 8.466216-3 1.884531+0 9.484555-3 1.543226+0 1.069911-2 1.245854+0 1.200122-2 1.014497+0 1.335028-2 8.370880-1 1.496236-2 6.806543-1 1.656159-2 5.681594-1 1.665199-2 5.839087-1 1.670825-2 6.241474-1 1.674864-2 6.840028-1 1.678348-2 7.668830-1 1.682357-2 9.083520-1 1.686300-2 1.102789+0 1.690660-2 1.383038+0 1.697896-2 1.961126+0 1.706938-2 2.701332+0 1.714354-2 3.157849+0 1.721369-2 3.411530+0 1.733221-2 3.552836+0 2.034357-2 2.773256+0 2.320696-2 2.232713+0 2.623298-2 1.815598+0 2.971523-2 1.462538+0 3.359309-2 1.179831+0 3.717667-2 9.834164-1 4.230529-2 7.789768-1 4.751262-2 6.286110-1 5.326634-2 5.083243-1 5.832534-2 4.283333-1 6.487074-2 3.501063-1 7.272384-2 2.810797-1 7.947773-2 2.369298-1 8.801934-2 1.942416-1 9.807761-2 1.572719-1 1.080897-1 1.300724-1 1.198220-1 1.062173-1 1.313987-1 8.861800-2 1.438144-1 7.422166-2 1.580646-1 6.163572-2 1.749092-1 5.052267-2 1.927525-1 4.179437-2 2.120148-1 3.477094-2 2.326584-1 2.908920-2 2.578037-1 2.395460-2 2.830728-1 2.011786-2 3.121742-1 1.680896-2 3.484877-1 1.380190-2 3.857003-1 1.156448-2 4.278091-1 9.717055-3 4.794703-1 8.075965-3 5.324146-1 6.864298-3 6.077850-1 5.649366-3 6.844040-1 4.797157-3 7.879414-1 4.013770-3 9.185969-1 3.361369-3 1.070165+0 2.855897-3 1.286622+0 2.345933-3 1.546860+0 1.927031-3 1.859734+0 1.582931-3 2.235892+0 1.300275-3 2.688134+0 1.068091-3 3.231848+0 8.773673-4 3.885536+0 7.207001-4 4.671441+0 5.920082-4 5.616308+0 4.862962-4 6.752287+0 3.994607-4 8.118035+0 3.281310-4 9.760024+0 2.695382-4 1.000000+1 5.439789-4 1 39000 7 0 8.890500+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.859646+1 1.800000-6-3.676085+1 1.998539-6-3.480057+1 2.046830-6-3.296044+1 2.080762-6-3.609844+1 2.115037-6-3.603833+1 2.142724-6-3.618144+1 2.188585-6-3.473331+1 2.333076-6-3.051416+1 2.400943-6-2.677578+1 2.433184-6-2.385605+1 2.461397-6-1.996730+1 2.477935-6-1.655390+1 2.487910-6-1.371731+1 2.495687-6-1.074129+1 2.500298-6-8.293899+0 2.502132-6-6.852517+0 2.503479-6-5.973746+0 2.510597-6-1.928995+0 2.512137-6-9.927703-1 2.513676-6 9.816209-2 2.519833-6 4.381645+0 2.520602-6 5.003633+0 2.526759-6 9.026539+0 2.528106-6 9.759817+0 2.532916-6 1.189402+1 2.536283-6 1.256132+1 2.539842-6 1.256958+1 2.542728-6 1.183192+1 2.544460-6 1.100562+1 2.547538-6 9.083476+0 2.549847-6 7.185451+0 2.551386-6 5.416369+0 2.554080-6 2.601921+0 2.555426-6 1.060800+0 2.556100-6 1.964374-1 2.556437-6-2.827558-1 2.556773-6-8.532862-1 2.562930-6-9.026053+0 2.563528-6-9.989857+0 2.565016-6-1.176198+1 2.568582-6-1.491019+1 2.576956-6-2.007606+1 2.580468-6-2.068833+1 2.582144-6-2.030872+1 2.586690-6-1.839353+1 2.588469-6-1.687826+1 2.589767-6-1.558955+1 2.593537-6-1.255322+1 2.594636-6-1.130805+1 2.595374-6-1.020918+1 2.597348-6-8.442051+0 2.600646-6-5.987926+0 2.601315-6-5.166612+0 2.601698-6-4.809860+0 2.602416-6-4.330938+0 2.603044-6-4.027285+0 2.604144-6-3.667227+0 2.605793-6-3.404378+0 2.607837-6-3.152610+0 2.608603-6-3.241774+0 2.609321-6-3.456166+0 2.609994-6-3.747003+0 2.611256-6-4.497850+0 2.612361-6-5.359082+0 2.614173-6-7.171623+0 2.615560-6-8.902207+0 2.617542-6-1.194569+1 2.619374-6-1.552717+1 2.625123-6-3.009239+1 2.627889-6-3.906532+1 2.631993-6-2.604799+1 2.633033-6-2.169034+1 2.639064-6-1.077223+0 2.639262-6-2.240204-1 2.639645-6 1.184789+0 2.640363-6 3.560583+0 2.640991-6 5.488645+0 2.646525-6 2.093163+1 2.648795-6 2.581516+1 2.652504-6 3.227260+1 2.656482-6 3.658841+1 2.660805-6 3.835673+1 2.664362-6 3.787203+1 2.669896-6 3.470474+1 2.677011-6 2.736027+1 2.685510-6 1.774373+1 2.692823-6 1.101850+1 2.695194-6 8.476797+0 2.695985-6 7.327682+0 2.696340-6 6.751915+0 2.697049-6 5.861843+0 2.698465-6 4.390735+0 2.699876-6 3.132068+0 2.701281-6 2.009220+0 2.704079-6 4.365315-2 2.706856-6-1.647150+0 2.709612-6-3.134594+0 2.712345-6-4.462201+0 2.717749-6-6.748224+0 2.723069-6-8.661102+0 2.733501-6-1.172151+1 2.748546-6-1.505723+1 2.767532-6-1.814208+1 2.794061-6-2.121000+1 2.833028-6-2.424649+1 2.905751-6-2.763638+1 3.034180-6-3.070006+1 3.293712-6-3.337818+1 3.745386-6-3.523947+1 4.143483-6-3.680772+1 4.258186-6-3.897967+1 4.288524-6-3.713384+1 4.331745-6-3.335860+1 4.366068-6-3.316622+1 4.464055-6-3.507860+1 4.867323-6-3.666682+1 4.955532-6-3.558438+1 5.178375-6-3.628731+1 1.565658-5-3.854021+1 1.974120-5-3.528628+1 2.203687-5-3.147031+1 2.328439-5-2.762759+1 2.410177-5-2.345018+1 2.459010-5-1.968493+1 2.496732-5-1.559518+1 2.519276-5-1.236332+1 2.537851-5-9.037063+0 2.548381-5-6.789846+0 2.557635-5-4.536381+0 2.561833-5-3.412073+0 2.569705-5-1.101220+0 2.576592-5 1.175153+0 2.582618-5 3.401576+0 2.587892-5 5.563247+0 2.592506-5 7.648278+0 2.600075-5 1.154735+1 2.605871-5 1.503698+1 2.614154-5 2.106774+1 2.621809-5 2.828253+1 2.629649-5 3.848034+1 2.634528-5 4.681249+1 2.639340-5 5.869546+1 2.649465-5 7.920638+1 2.656766-5 9.591711+1 2.663807-5 1.088607+2 2.670836-5 1.125981+2 2.675849-5 1.074181+2 2.679954-5 9.755887+1 2.682949-5 8.636721+1 2.686987-5 6.726587+1 2.689107-5 5.486683+1 2.689814-5 4.956935+1 2.694167-5 2.105651+1 2.695232-5 1.318170+1 2.695711-5 9.171457+0 2.695972-5 6.543471+0 2.696170-5 4.757859+0 2.696555-5 1.575976+0 2.696916-5-1.251510+0 2.697593-5-6.347722+0 2.701141-5-3.245484+1 2.701882-5-3.845141+1 2.702949-5-2.857187+1 2.704575-5-1.624675+1 2.706947-5 2.455551-1 2.707869-5 6.717643+0 2.708561-5 1.190579+1 2.708994-5 1.569507+1 2.709752-5 2.122189+1 2.711041-5 2.944352+1 2.716439-5 5.960987+1 2.719751-5 7.260660+1 2.723337-5 8.228023+1 2.726813-5 8.797954+1 2.731000-5 9.002897+1 2.734634-5 8.806030+1 2.739606-5 8.088467+1 2.746806-5 6.438872+1 2.755960-5 4.099208+1 2.762406-5 2.685421+1 2.765307-5 1.970208+1 2.766274-5 1.659548+1 2.766930-5 1.438554+1 2.768562-5 1.009868+1 2.770044-5 6.688681+0 2.780628-5-1.507535+1 2.782499-5-1.896463+1 2.787257-5-2.715144+1 2.794260-5-3.858414+1 2.802052-5-2.569295+1 2.809193-5-1.571014+1 2.811063-5-1.380127+1 2.814632-5-1.068872+1 2.815717-5-9.793828+0 2.817018-5-9.229259+0 2.818198-5-8.989381+0 2.820134-5-9.056690+0 2.821616-5-9.461808+0 2.823735-5-1.055494+1 2.825947-5-1.237240+1 2.828498-5-1.534917+1 2.831256-5-1.947407+1 2.833901-5-2.471784+1 2.839085-5-3.860661+1 2.841797-5-2.995837+1 2.842969-5-2.535233+1 2.847403-5-1.043358+1 2.848488-5-6.294484+0 2.848850-5-4.623079+0 2.849064-5-3.585473+0 2.849478-5-1.870252+0 2.850255-5 1.048858+0 2.851615-5 5.780149+0 2.854674-5 1.611357+1 2.855694-5 2.008157+1 2.856923-5 2.468963+1 2.863641-5 4.450890+1 2.866202-5 5.012193+1 2.869860-5 5.603856+1 2.874565-5 6.100474+1 2.879481-5 6.332258+1 2.883068-5 6.264366+1 2.889912-5 5.785560+1 2.896755-5 5.037822+1 2.907449-5 3.773588+1 2.915575-5 2.953431+1 2.919137-5 2.464886+1 2.922672-5 2.124323+1 2.928363-5 1.701152+1 2.935680-5 1.273605+1 2.942445-5 9.463419+0 2.949688-5 6.472048+0 2.956930-5 3.877548+0 2.964173-5 1.560534+0 2.969530-5 2.635188-2 2.971415-5-5.140668-1 2.978658-5-2.360935+0 2.982672-5-3.285526+0 2.986687-5-4.135189+0 2.994038-5-5.529228+0 3.005065-5-7.260272+0 3.038146-5-1.101481+1 3.051310-5-1.223799+1 3.067633-5-1.310976+1 3.090067-5-1.360183+1 3.108711-5-1.468149+1 3.141725-5-1.696452+1 3.171755-5-1.805553+1 3.221847-5-1.912494+1 3.267941-5-1.919027+1 3.388997-5-2.074101+1 3.713316-5-2.283850+1 4.617160-5-2.548065+1 5.037121-5-2.623767+1 6.710000-5-2.801145+1 1.420978-4-3.276547+1 1.626843-4-3.562495+1 1.839000-4-4.074708+1 1.976400-4-4.046540+1 2.623004-4-3.064708+1 2.905789-4-2.803785+1 3.006523-4-2.820109+1 3.119211-4-2.639916+1 3.268002-4-2.386925+1 3.622002-4-2.026174+1 3.788501-4-1.925282+1 3.884162-4-1.881252+1 3.993775-4-1.751369+1 4.339734-4-1.507278+1 4.793194-4-1.284887+1 5.416890-4-1.076103+1 6.085680-4-9.283056+0 6.866535-4-8.191828+0 7.819184-4-7.401694+0 8.926094-4-6.928088+0 1.049370-3-6.727594+0 1.280394-3-6.987156+0 1.479162-3-7.590584+0 1.678915-3-8.627683+0 1.820879-3-9.854679+0 1.913705-3-1.115173+1 1.976753-3-1.257170+1 2.019703-3-1.420436+1 2.045213-3-1.603120+1 2.071449-3-1.894854+1 2.085456-3-1.943008+1 2.106141-3-1.797587+1 2.126400-3-1.672921+1 2.160242-3-1.622377+1 2.178361-3-1.501331+1 2.207669-3-1.285028+1 2.239866-3-1.146249+1 2.286206-3-1.027719+1 2.323509-3-9.919335+0 2.349878-3-9.864885+0 2.374047-3-9.186759+0 2.406948-3-7.976614+0 2.451086-3-6.922447+0 2.519748-3-5.775007+0 2.607654-3-4.696642+0 2.707073-3-3.790710+0 2.841027-3-2.885719+0 2.922036-3-2.460797+0 3.037386-3-1.966355+0 3.138475-3-1.611750+0 3.273407-3-1.233969+0 3.421210-3-9.118332-1 3.510675-3-7.486646-1 3.641245-3-5.542724-1 3.752969-3-4.164606-1 3.859507-3-3.072709-1 3.943382-3-2.363774-1 4.063193-3-1.523080-1 4.152997-3-9.820370-2 4.216965-3-6.275941-2 4.247418-3-4.737394-2 4.332302-3-1.081192-2 4.377127-3 6.289297-3 4.379316-3 7.134056-3 4.428831-3 2.434027-2 4.441196-3 2.823584-2 4.534642-3 5.378829-2 4.632032-3 7.544256-2 4.758336-3 9.668068-2 4.850442-3 1.082322-1 5.019614-3 1.211436-1 5.186601-3 1.243126-1 5.340777-3 1.227570-1 5.512054-3 1.154139-1 5.686547-3 1.031691-1 5.955014-3 7.417072-2 6.220800-3 3.914664-2 6.410250-3 1.248372-2 6.484478-3 1.436702-3 6.495029-3-2.487710-4 6.612462-3-1.869989-2 6.790082-3-4.603443-2 7.436091-3-1.546829-1 1.200122-2-9.556741-1 1.335028-2-1.238497+0 1.444117-2-1.538607+0 1.521034-2-1.837805+0 1.578864-2-2.171706+0 1.615284-2-2.488472+0 1.643580-2-2.870188+0 1.662658-2-3.308345+0 1.677122-2-3.891867+0 1.692785-2-4.603269+0 1.700179-2-4.697786+0 1.709105-2-4.482804+0 1.733221-2-3.272638+0 1.745000-2-2.873522+0 1.761758-2-2.492583+0 1.782405-2-2.162914+0 1.816459-2-1.772815+0 1.851943-2-1.476484+0 1.895843-2-1.201174+0 1.949845-2-9.483758-1 2.000909-2-7.641704-1 2.073338-2-5.592204-1 2.139501-2-4.123366-1 2.194068-2-3.127897-1 2.254614-2-2.222364-1 2.288254-2-1.786380-1 2.320696-2-1.404314-1 2.388499-2-7.102024-2 2.436233-2-3.077765-2 2.490515-2 9.424638-3 2.550016-2 4.744377-2 2.623298-2 8.791011-2 2.698152-2 1.223364-1 2.768872-2 1.486365-1 2.915377-2 1.884862-1 3.047665-2 2.118432-1 3.215301-2 2.312176-1 3.451189-2 2.458123-1 3.852019-2 2.434113-1 4.458282-2 2.178735-1 6.061065-2 1.272841-1 6.922667-2 8.615888-2 7.487100-2 6.287954-2 7.947773-2 4.593998-2 8.572267-2 2.575502-2 9.011563-2 1.302666-2 9.180018-2 8.387034-3 9.484890-2 5.174874-4 9.559308-2-1.386857-3 9.807761-2-7.313121-3 1.027293-1-1.769915-2 1.080897-1-2.843021-2 1.166902-1-4.357018-2 1.275934-1-5.965718-2 1.438144-1-7.859286-2 1.635874-1-9.591055-2 1.927525-1-1.139712-1 2.326584-1-1.299591-1 3.025622-1-1.457770-1 4.278091-1-1.585914-1 7.163103-1-1.677355-1 2.039158+0-1.723185-1 6.158159+0-1.728888-1 1.000000+1-1.728780-1 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.187563-2 1.162256-6 1.238668-1 1.198576-6 1.434740-1 1.236032-6 1.665246-1 1.274658-6 1.937023-1 1.314491-6 2.258479-1 1.355569-6 2.640015-1 1.397930-6 3.094557-1 1.441380-6 3.634879-1 1.483472-6 4.241143-1 1.524249-6 4.918188-1 1.563751-6 5.668742-1 1.602019-6 6.499442-1 1.639092-6 7.417438-1 1.675005-6 8.429034-1 1.709797-6 9.540601-1 1.743501-6 1.075879+0 1.776152-6 1.209053+0 1.807782-6 1.354304+0 1.838424-6 1.512387+0 1.868109-6 1.684083+0 1.896866-6 1.870175+0 1.924724-6 2.071325+0 1.951712-6 2.288234+0 1.977856-6 2.522037+0 2.003183-6 2.773801+0 2.027719-6 3.044499+0 2.051488-6 3.335070+0 2.074514-6 3.646509+0 2.118431-6 4.336677+0 2.159645-6 5.124443+0 2.198324-6 6.019594+0 2.216761-6 6.510938+0 2.234623-6 7.034681+0 2.251926-6 7.593398+0 2.285451-6 8.831780+0 2.316881-6 1.021585+1 2.346347-6 1.176368+1 2.373971-6 1.348916+1 2.400000-6 1.541609+1 2.424147-6 1.752653+1 2.446908-6 1.986775+1 2.468247-6 2.244429+1 2.488252-6 2.527132+1 2.507007-6 2.836404+1 2.524590-6 3.173766+1 2.541073-6 3.540725+1 2.556527-6 3.938761+1 2.571014-6 4.369321+1 2.584596-6 4.833804+1 2.597330-6 5.333550+1 2.609267-6 5.869832+1 2.620459-6 6.443846+1 2.630950-6 7.056705+1 2.640787-6 7.709440+1 2.650008-6 8.403008+1 2.658653-6 9.138307+1 2.666758-6 9.916181+1 2.674356-6 1.073741+2 2.681479-6 1.160271+2 2.688157-6 1.251272+2 2.694418-6 1.346804+2 2.700287-6 1.446935+2 2.705790-6 1.551752+2 2.710949-6 1.661367+2 2.720621-6 1.904040+2 2.729085-6 2.169357+2 2.736490-6 2.458373+2 2.742970-6 2.770697+2 2.748640-6 3.103775+2 2.753601-6 3.452878+2 2.757942-6 3.811702+2 2.761740-6 4.173260+2 2.765064-6 4.530736+2 2.767972-6 4.878118+2 2.773061-6 5.571131+2 2.789187-6 8.570088+2 2.795192-6 9.998158+2 2.800339-6 1.132944+3 2.802055-6 1.178965+3 2.808918-6 1.367198+3 2.809776-6 1.390819+3 2.815781-6 1.552879+3 2.818140-6 1.613628+3 2.822644-6 1.722039+3 2.825004-6 1.773773+3 2.827256-6 1.819273+3 2.829508-6 1.860565+3 2.832510-6 1.908482+3 2.835406-6 1.946437+3 2.839802-6 1.987956+3 2.843234-6 2.006980+3 2.847094-6 2.015409+3 2.851330-6 2.011381+3 2.865232-6 1.962863+3 2.868925-6 1.962305+3 2.870686-6 1.967060+3 2.874118-6 1.988392+3 2.875834-6 2.006053+3 2.878783-6 2.049013+3 2.881180-6 2.096910+3 2.883731-6 2.161817+3 2.885478-6 2.215042+3 2.888906-6 2.341001+3 2.892056-6 2.482436+3 2.895665-6 2.674471+3 2.899923-6 2.939905+3 2.909749-6 3.680320+3 2.914595-6 4.083587+3 2.918596-6 4.418351+3 2.922757-6 4.755313+3 2.926312-6 5.024781+3 2.930070-6 5.282295+3 2.933547-6 5.488469+3 2.936947-6 5.654743+3 2.940316-6 5.780751+3 2.941240-6 5.808162+3 2.948145-6 5.909786+3 2.950077-6 5.905057+3 2.955431-6 5.817354+3 2.958794-6 5.708828+3 2.962054-6 5.567620+3 2.965642-6 5.375486+3 2.969119-6 5.157530+3 2.972209-6 4.942007+3 2.975190-6 4.718657+3 2.979716-6 4.358535+3 2.983248-6 4.066848+3 2.987222-6 3.735009+3 2.990313-6 3.478534+3 2.997377-6 2.913594+3 2.999806-6 2.729922+3 3.004442-6 2.398615+3 3.009740-6 2.054949+3 3.016399-6 1.679871+3 3.028690-6 1.150169+3 3.032555-6 1.022925+3 3.036299-6 9.151640+2 3.039926-6 8.238879+2 3.043440-6 7.464692+2 3.046844-6 6.806455+2 3.050141-6 6.244951+2 3.056531-6 5.337633+2 3.062520-6 4.662171+2 3.068136-6 4.147950+2 3.073400-6 3.747456+2 3.078336-6 3.428689+2 3.082963-6 3.169910+2 3.091639-6 2.765584+2 3.099230-6 2.477248+2 3.105872-6 2.262462+2 3.111684-6 2.097292+2 3.121855-6 1.848630+2 3.129484-6 1.688990+2 3.140926-6 1.482761+2 3.160128-6 1.202327+2 3.175646-6 1.017141+2 3.183405-6 9.341630+1 3.191164-6 8.559795+1 3.198923-6 7.816746+1 3.206683-6 7.106664+1 3.214442-6 6.428382+1 3.226080-6 5.483274+1 3.235665-6 4.800487+1 3.240571-6 4.499061+1 3.245478-6 4.239520+1 3.247831-6 4.132136+1 3.250184-6 4.036955+1 3.258145-6 3.815809+1 3.259140-6 3.800027+1 3.266106-6 3.769547+1 3.268842-6 3.797081+1 3.274066-6 3.912312+1 3.276459-6 3.992086+1 3.279878-6 4.134325+1 3.282076-6 4.242447+1 3.285983-6 4.464289+1 3.292059-6 4.873693+1 3.302426-6 5.688367+1 3.305909-6 5.974340+1 3.313870-6 6.607491+1 3.322001-6 7.175411+1 3.324804-6 7.344042+1 3.330157-6 7.620592+1 3.333981-6 7.780028+1 3.337103-6 7.886733+1 3.339445-6 7.953361+1 3.344714-6 8.064356+1 3.352588-6 8.146326+1 3.364823-6 8.153261+1 3.383239-6 8.124593+1 3.406176-6 8.151351+1 3.414534-6 8.115573+1 3.418191-6 8.082702+1 3.426419-6 7.963785+1 3.433340-6 7.814481+1 3.437519-6 7.704130+1 3.444350-6 7.496307+1 3.452506-6 7.215768+1 3.465807-6 6.727872+1 3.487668-6 5.981038+1 3.504384-6 5.501809+1 3.569295-6 4.043364+1 3.581903-6 3.823477+1 3.594116-6 3.633766+1 3.617780-6 3.323495+1 3.639965-6 3.085351+1 3.660763-6 2.895090+1 3.680261-6 2.738459+1 3.716821-6 2.486588+1 3.748810-6 2.300010+1 3.776801-6 2.157228+1 3.825785-6 1.942012+1 3.862523-6 1.803463+1 3.917629-6 1.624249+1 4.002071-6 1.396972+1 4.168304-6 1.059596+1 4.336776-6 7.820239+0 4.368799-6 7.292440+0 4.390148-6 6.931978+0 4.411497-6 6.559051+0 4.432846-6 6.167690+0 4.443520-6 5.962782+0 4.454194-6 5.750163+0 4.464869-6 5.528373+0 4.475543-6 5.295673+0 4.486218-6 5.050048+0 4.498241-6 4.755195+0 4.507567-6 4.511562+0 4.520385-6 4.154136+0 4.531457-6 3.826411+0 4.542529-6 3.488468+0 4.558295-6 3.022818+0 4.565336-6 2.840207+0 4.570617-6 2.722957+0 4.572377-6 2.688758+0 4.583206-6 2.550519+0 4.586816-6 2.539140+0 4.590469-6 2.549655+0 4.593264-6 2.574425+0 4.595156-6 2.600145+0 4.596567-6 2.624306+0 4.599035-6 2.677392+0 4.606439-6 2.927373+0 4.609178-6 3.057726+0 4.613286-6 3.295327+0 4.616881-6 3.547086+0 4.618097-6 3.641996+0 4.629012-6 4.725054+0 4.645265-6 7.145693+0 4.650891-6 8.201824+0 4.656230-6 9.295905+0 4.661515-6 1.045546+1 4.666676-6 1.164786+1 4.671638-6 1.283539+1 4.676083-6 1.392068+1 4.682084-6 1.539546+1 4.687155-6 1.662915+1 4.692994-6 1.800846+1 4.697535-6 1.903284+1 4.708607-6 2.126698+1 4.710596-6 2.161931+1 4.720531-6 2.310845+1 4.724926-6 2.361081+1 4.729122-6 2.399506+1 4.733318-6 2.428438+1 4.738610-6 2.451349+1 4.742931-6 2.458981+1 4.746172-6 2.458349+1 4.751034-6 2.447613+1 4.755896-6 2.425812+1 4.762271-6 2.382011+1 4.764396-6 2.363940+1 4.772858-6 2.277298+1 4.775678-6 2.243945+1 4.786355-6 2.103021+1 4.799498-6 1.911577+1 4.812342-6 1.722912+1 4.839077-6 1.377171+1 4.851244-6 1.250869+1 4.861891-6 1.156523+1 4.880522-6 1.022570+1 4.894496-6 9.422897+0 4.936416-6 7.601889+0 4.958161-6 6.852662+0 4.974978-6 6.357267+0 4.982569-6 6.164783+0 4.994773-6 5.906341+0 5.006977-6 5.721835+0 5.013981-6 5.653223+0 5.020985-6 5.613075+0 5.027761-6 5.601306+0 5.032843-6 5.609412+0 5.040466-6 5.646931+0 5.048089-6 5.711335+0 5.057920-6 5.825328+0 5.085002-6 6.201272+0 5.094371-6 6.307773+0 5.100446-6 6.360433+0 5.110024-6 6.410988+0 5.116153-6 6.420419+0 5.125347-6 6.400113+0 5.134541-6 6.340660+0 5.142973-6 6.256569+0 5.153423-6 6.123231+0 5.179424-6 5.749796+0 5.186868-6 5.657750+0 5.194313-6 5.581877+0 5.199813-6 5.538669+0 5.209593-6 5.493441+0 5.213874-6 5.487635+0 5.230605-6 5.554028+0 5.240167-6 5.657763+0 5.248516-6 5.786866+0 5.261039-6 6.043215+0 5.273561-6 6.363895+0 5.298657-6 7.120523+0 5.311205-6 7.501721+0 5.323183-6 7.829241+0 5.336300-6 8.116001+0 5.340556-6 8.188237+0 5.346940-6 8.274812+0 5.353324-6 8.333653+0 5.358708-6 8.360865+0 5.366785-6 8.362657+0 5.374862-6 8.318306+0 5.384244-6 8.212016+0 5.390634-6 8.108782+0 5.397025-6 7.983319+0 5.409805-6 7.676745+0 5.422586-6 7.315437+0 5.438655-6 6.818249+0 5.458413-6 6.193699+0 5.494390-6 5.170113+0 5.507848-6 4.857171+0 5.514527-6 4.720081+0 5.525987-6 4.516197+0 5.539455-6 4.331622+0 5.548055-6 4.247009+0 5.556654-6 4.189166+0 5.561239-6 4.169316+0 5.569262-6 4.152707+0 5.575279-6 4.154953+0 5.584305-6 4.180567+0 5.593331-6 4.230398+0 5.602029-6 4.298001+0 5.610727-6 4.380958+0 5.639399-6 4.708537+0 5.655880-6 4.890238+0 5.661826-6 4.948082+0 5.679663-6 5.086115+0 5.689635-6 5.136780+0 5.704593-6 5.176074+0 5.719551-6 5.175485+0 5.738159-6 5.132743+0 5.792321-6 4.930924+0 5.821916-6 4.858614+0 5.939369-6 4.700157+0 5.953608-6 4.673466+0 5.973631-6 4.622688+0 5.997623-6 4.533995+0 6.028521-6 4.382231+0 6.045123-6 4.298891+0 6.061668-6 4.228490+0 6.072980-6 4.192456+0 6.083038-6 4.170376+0 6.097018-6 4.155658+0 6.110998-6 4.157436+0 6.166533-6 4.217071+0 6.179549-6 4.217597+0 6.192564-6 4.208137+0 6.214424-6 4.172581+0 6.253242-6 4.081886+0 6.284864-6 4.018843+0 6.305926-6 3.989222+0 6.370044-6 3.925712+0 6.400038-6 3.888165+0 6.439581-6 3.820332+0 6.547334-6 3.592154+0 6.582324-6 3.534172+0 6.641719-6 3.460138+0 6.784409-6 3.331879+0 6.886948-6 3.249880+0 7.295552-6 2.935531+0 7.562926-6 2.772628+0 7.814011-6 2.653067+0 8.077177-6 2.557319+0 8.382247-6 2.479170+0 8.609938-6 2.440393+0 9.144670-6 2.422450+0 9.772372-6 2.514048+0 1.023904-5 2.652030+0 1.068029-5 2.839493+0 1.107475-5 3.047131+0 1.143000-5 3.267891+0 1.188502-5 3.591202+0 1.253093-5 4.116757+0 1.396739-5 5.492197+0 1.432664-5 5.861005+0 1.482224-5 6.366031+0 1.531087-5 6.858184+0 1.570000-5 7.232890+0 1.605295-5 7.549016+0 1.640590-5 7.848615+0 1.666977-5 8.046469+0 1.725454-5 8.433375+0 1.754275-5 8.586652+0 1.791166-5 8.747583+0 1.812692-5 8.820683+0 1.846233-5 8.975561+0 1.877739-5 9.322288+0 1.905461-5 9.733191+0 1.949934-5 1.050250+1 1.980456-5 1.113999+1 2.024473-5 1.221051+1 2.052684-5 1.302039+1 2.080020-5 1.392358+1 2.116246-5 1.528907+1 2.153123-5 1.691119+1 2.190000-5 1.881921+1 2.222655-5 2.078806+1 2.250264-5 2.269960+1 2.278568-5 2.494598+1 2.312411-5 2.804162+1 2.339175-5 3.086801+1 2.371374-5 3.480685+1 2.403699-5 3.945659+1 2.436345-5 4.501982+1 2.466982-5 5.122524+1 2.495735-5 5.812663+1 2.522718-5 6.577675+1 2.548042-5 7.423535+1 2.571807-5 8.356491+1 2.594465-5 9.399986+1 2.615706-5 1.054546+2 2.635620-5 1.179969+2 2.654289-5 1.317003+2 2.671791-5 1.466382+2 2.688200-5 1.628817+2 2.703582-5 1.804996+2 2.718004-5 1.995612+2 2.731524-5 2.201368+2 2.744199-5 2.422917+2 2.756082-5 2.660828+2 2.770129-5 2.987951+2 2.777666-5 3.188014+2 2.787457-5 3.478529+2 2.796637-5 3.787807+2 2.805242-5 4.116392+2 2.813310-5 4.464779+2 2.820873-5 4.833423+2 2.827964-5 5.222739+2 2.834612-5 5.633109+2 2.840844-5 6.064891+2 2.846686-5 6.518443+2 2.852164-5 6.994155+2 2.857299-5 7.492487+2 2.862113-5 8.013985+2 2.871140-5 9.169300+2 2.879038-5 1.043235+3 2.885949-5 1.180693+3 2.891996-5 1.329132+3 2.897287-5 1.487573+3 2.901917-5 1.654191+3 2.905968-5 1.826479+3 2.909513-5 2.001537+3 2.912614-5 2.176390+3 2.918042-5 2.539810+3 2.922113-5 2.868729+3 2.927456-5 3.387600+3 2.934325-5 4.226535+3 2.947599-5 6.516613+3 2.952374-5 7.583385+3 2.955993-5 8.480379+3 2.962750-5 1.034960+4 2.965002-5 1.102414+4 2.972264-5 1.333874+4 2.973172-5 1.363973+4 2.979527-5 1.578314+4 2.982023-5 1.662882+4 2.986789-5 1.821540+4 2.989399-5 1.905402+4 2.993331-5 2.025402+4 2.996824-5 2.123436+4 3.000471-5 2.215029+4 3.003129-5 2.273581+4 3.006278-5 2.332892+4 3.009029-5 2.374968+4 3.013285-5 2.420673+4 3.016607-5 2.439106+4 3.020304-5 2.441239+4 3.023960-5 2.424212+4 3.026319-5 2.403270+4 3.029857-5 2.357739+4 3.032654-5 2.310333+4 3.035760-5 2.246709+4 3.038528-5 2.181138+4 3.041799-5 2.094076+4 3.044549-5 2.013875+4 3.047493-5 1.922176+4 3.050798-5 1.813446+4 3.053558-5 1.719180+4 3.057107-5 1.595079+4 3.059411-5 1.513665+4 3.063042-5 1.385453+4 3.066673-5 1.259039+4 3.070758-5 1.121064+4 3.073936-5 1.018104+4 3.081198-5 8.012730+3 3.083694-5 7.335539+3 3.086077-5 6.724298+3 3.090295-5 5.729165+3 3.094361-5 4.876540+3 3.099272-5 3.985357+3 3.102052-5 3.546926+3 3.122230-5 1.669369+3 3.123372-5 1.625455+3 3.124906-5 1.576032+3 3.126628-5 1.533384+3 3.127450-5 1.517747+3 3.128682-5 1.499926+3 3.129915-5 1.488781+3 3.133277-5 1.491575+3 3.134480-5 1.504108+3 3.136222-5 1.532766+3 3.137660-5 1.565611+3 3.145285-5 1.872011+3 3.147626-5 2.008081+3 3.151968-5 2.307827+3 3.157074-5 2.731131+3 3.162030-5 3.203174+3 3.165435-5 3.554964+3 3.169251-5 3.968260+3 3.171808-5 4.252515+3 3.174807-5 4.589550+3 3.176996-5 4.835519+3 3.179652-5 5.131151+3 3.183084-5 5.504010+3 3.186022-5 5.810344+3 3.189323-5 6.134967+3 3.192862-5 6.454262+3 3.194550-5 6.594309+3 3.198063-5 6.857101+3 3.200880-5 7.037283+3 3.208378-5 7.369834+3 3.210867-5 7.430189+3 3.215620-5 7.474561+3 3.219543-5 7.442204+3 3.223345-5 7.353977+3 3.226663-5 7.234217+3 3.229374-5 7.109216+3 3.232931-5 6.911723+3 3.236361-5 6.689773+3 3.241347-5 6.322249+3 3.245190-5 6.011436+3 3.247111-5 5.849519+3 3.251434-5 5.474821+3 3.252875-5 5.347952+3 3.260560-5 4.671109+3 3.263699-5 4.400819+3 3.269693-5 3.906233+3 3.278001-5 3.284698+3 3.290014-5 2.545030+3 3.298072-5 2.155780+3 3.302101-5 1.990725+3 3.306130-5 1.843518+3 3.310159-5 1.712585+3 3.314189-5 1.596305+3 3.322247-5 1.401367+3 3.330305-5 1.246864+3 3.338363-5 1.122812+3 3.346422-5 1.021346+3 3.354480-5 9.365847+2 3.362538-5 8.642930+2 3.370597-5 8.014982+2 3.384153-5 7.119383+2 3.394771-5 6.527629+2 3.400813-5 6.227083+2 3.409142-5 5.851817+2 3.417480-5 5.519009+2 3.427005-5 5.188332+2 3.436649-5 4.903834+2 3.446294-5 4.665194+2 3.452595-5 4.531094+2 3.459120-5 4.407838+2 3.467450-5 4.269872+2 3.475780-5 4.149161+2 3.492374-5 3.944175+2 3.514059-5 3.718981+2 3.560353-5 3.306106+2 3.595410-5 3.012091+2 3.608938-5 2.913005+2 3.618384-5 2.852302+2 3.628657-5 2.795217+2 3.640952-5 2.739131+2 3.655323-5 2.688554+2 3.674211-5 2.640494+2 3.699913-5 2.595112+2 3.748984-5 2.524622+2 3.808855-5 2.413166+2 3.862102-5 2.324290+2 3.951610-5 2.198121+2 4.035030-5 2.096495+2 4.175620-5 1.954996+2 4.356796-5 1.807846+2 4.565107-5 1.671030+2 4.896076-5 1.495478+2 5.246723-5 1.344226+2 5.439486-5 1.267593+2 5.577378-5 1.205114+2 5.604396-5 1.198424+2 5.623098-5 1.197181+2 5.658903-5 1.201811+2 5.699784-5 1.209724+2 5.716837-5 1.210548+2 5.742793-5 1.207174+2 5.778277-5 1.194930+2 5.848174-5 1.166670+2 5.899545-5 1.152945+2 6.444307-5 1.040573+2 6.950000-5 9.577233+1 7.460000-5 8.911913+1 7.852356-5 8.493798+1 8.912509-5 7.628814+1 9.900000-5 7.003920+1 1.071519-4 6.539629+1 1.161449-4 6.055664+1 1.244515-4 5.593747+1 1.318257-4 5.153838+1 1.380384-4 4.763742+1 1.431833-4 4.422447+1 1.484562-4 4.052404+1 1.540000-4 3.640784+1 1.590961-4 3.241960+1 1.637303-4 2.861592+1 1.664348-4 2.629651+1 1.690607-4 2.399908+1 1.725131-4 2.090302+1 1.751024-4 1.851510+1 1.773796-4 1.635160+1 1.794998-4 1.422066+1 1.803835-4 1.326946+1 1.817089-4 1.176889+1 1.823714-4 1.100259+1 1.841183-4 9.128998+0 1.845629-4 8.740389+0 1.850302-4 8.392057+0 1.853965-4 8.166294+0 1.857705-4 7.979905+0 1.863211-4 7.782821+0 1.868790-4 7.663677+0 1.874243-4 7.603551+0 1.885568-4 7.543377+0 1.893185-4 7.465981+0 1.900262-4 7.322379+0 1.907070-4 7.107596+0 1.911785-4 6.918134+0 1.916297-4 6.712289+0 1.922000-4 6.430148+0 1.933694-4 5.848432+0 1.944000-4 5.432085+0 1.946500-4 5.355539+0 1.953000-4 5.214090+0 1.958500-4 5.168826+0 1.962494-4 5.184228+0 1.968806-4 5.300000+0 1.972000-4 5.404500+0 1.976947-4 5.631637+0 1.980875-4 5.871482+0 1.985000-4 6.182948+0 1.986864-4 6.344389+0 1.990000-4 6.646020+0 1.992673-4 6.933435+0 1.995495-4 7.267718+0 1.998500-4 7.659266+0 2.004242-4 8.511431+0 2.010000-4 9.505349+0 2.023096-4 1.228637+1 2.032997-4 1.485443+1 2.042495-4 1.767082+1 2.050248-4 2.020697+1 2.059299-4 2.341536+1 2.065749-4 2.585002+1 2.070996-4 2.791391+1 2.085000-4 3.374340+1 2.090498-4 3.614535+1 2.105000-4 4.274282+1 2.110000-4 4.509682+1 2.129600-4 5.465832+1 2.155000-4 6.768073+1 2.178881-4 8.037443+1 2.198000-4 9.070974+1 2.220000-4 1.026170+2 2.240000-4 1.132926+2 2.246377-4 1.166451+2 2.264644-4 1.260625+2 2.280000-4 1.337190+2 2.300000-4 1.432708+2 2.313477-4 1.494306+2 2.323000-4 1.536516+2 2.350000-4 1.650449+2 2.380000-4 1.768174+2 2.416156-4 1.900892+2 2.454709-4 2.035119+2 2.520000-4 2.253065+2 2.590547-4 2.481492+2 2.650000-4 2.666745+2 2.723854-4 2.876820+2 2.766049-4 2.984157+2 2.818383-4 3.107193+2 2.879881-4 3.233934+2 2.923170-4 3.309712+2 2.958679-4 3.365043+2 3.000000-4 3.421093+2 3.038101-4 3.459143+2 3.069966-4 3.478559+2 3.095316-4 3.482926+2 3.138324-4 3.469302+2 3.148876-4 3.476810+2 3.159294-4 3.504028+2 3.166606-4 3.541922+2 3.172687-4 3.589228+2 3.180020-4 3.669108+2 3.189007-4 3.805034+2 3.198016-4 3.983720+2 3.211617-4 4.317036+2 3.222546-4 4.605780+2 3.231571-4 4.826469+2 3.238153-4 4.962421+2 3.245981-4 5.085019+2 3.254252-4 5.160559+2 3.257166-4 5.173449+2 3.261804-4 5.179714+2 3.269448-4 5.155375+2 3.277091-4 5.096499+2 3.289232-4 4.963251+2 3.298557-4 4.857059+2 3.305762-4 4.787845+2 3.320163-4 4.711841+2 3.329324-4 4.715910+2 3.337914-4 4.756092+2 3.346293-4 4.823762+2 3.358937-4 4.960558+2 3.376904-4 5.165777+2 3.385399-4 5.244116+2 3.394164-4 5.302923+2 3.402971-4 5.337046+2 3.415220-4 5.346197+2 3.433335-4 5.306226+2 3.456595-4 5.239979+2 3.467369-4 5.222818+2 3.481845-4 5.217402+2 3.540768-4 5.302039+2 3.683247-4 5.544600+2 3.807800-4 5.726166+2 3.927764-4 5.862654+2 4.107410-4 6.008151+2 4.137189-4 6.057252+2 4.312458-4 6.441406+2 4.372460-4 6.551211+2 4.470130-4 6.683979+2 4.608000-4 6.836116+2 4.731512-4 6.947275+2 4.897788-4 7.073173+2 5.263202-4 7.294201+2 5.623414-4 7.447429+2 6.006246-4 7.565481+2 6.300499-4 7.628187+2 6.870036-4 7.693654+2 7.504353-4 7.711595+2 8.222426-4 7.655364+2 9.061237-4 7.557295+2 1.002421-3 7.425322+2 1.054458-3 7.343039+2 1.168275-3 7.110614+2 1.289389-3 6.858746+2 1.353770-3 6.710302+2 1.425946-3 6.535208+2 1.496236-3 6.361276+2 1.578023-3 6.151222+2 1.652609-3 5.942110+2 1.726156-3 5.715923+2 1.789617-3 5.507141+2 1.848737-3 5.296076+2 1.901779-3 5.085908+2 1.944012-3 4.901067+2 1.980133-3 4.726906+2 2.014818-3 4.541502+2 2.044867-3 4.361435+2 2.073570-3 4.166340+2 2.095507-3 3.995973+2 2.115673-3 3.816515+2 2.132513-3 3.642911+2 2.147415-3 3.464359+2 2.159519-3 3.299474+2 2.175620-3 3.063307+2 2.186618-3 2.914117+2 2.192378-3 2.849933+2 2.198194-3 2.799862+2 2.204443-3 2.765867+2 2.208930-3 2.755182+2 2.213969-3 2.756953+2 2.219046-3 2.772762+2 2.224667-3 2.805026+2 2.230188-3 2.849581+2 2.238549-3 2.935974+2 2.250674-3 3.088139+2 2.296302-3 3.765516+2 2.318426-3 4.118835+2 2.332044-3 4.332893+2 2.344726-3 4.523663+2 2.353321-3 4.645278+2 2.361978-3 4.759308+2 2.371374-3 4.871765+2 2.382510-3 4.988603+2 2.395819-3 5.105315+2 2.406935-3 5.185498+2 2.422214-3 5.273693+2 2.440382-3 5.350231+2 2.467924-3 5.422366+2 2.490291-3 5.483967+2 2.500784-3 5.533291+2 2.516474-3 5.643574+2 2.555033-3 6.020136+2 2.567401-3 6.130802+2 2.581624-3 6.239233+2 2.596420-3 6.332579+2 2.616025-3 6.433906+2 2.638772-3 6.530583+2 2.663024-3 6.617220+2 2.696128-3 6.716352+2 2.757176-3 6.856585+2 2.833777-3 6.978667+2 2.926928-3 7.073018+2 3.005378-3 7.122087+2 3.098232-3 7.150674+2 3.239832-3 7.143911+2 3.423824-3 7.085573+2 3.641245-3 6.971211+2 3.841078-3 6.840860+2 4.137496-3 6.614667+2 4.470573-3 6.345392+2 4.812444-3 6.066870+2 5.230461-3 5.736452+2 5.884201-3 5.253498+2 6.546597-3 4.813447+2 7.171747-3 4.443593+2 7.887132-3 4.066473+2 8.748500-3 3.668213+2 9.473737-3 3.370772+2 1.021757-2 3.095552+2 1.105372-2 2.816833+2 1.189144-2 2.565510+2 1.286143-2 2.305246+2 1.381129-2 2.076112+2 1.466920-2 1.886762+2 1.537008-2 1.741008+2 1.591189-2 1.630941+2 1.635861-2 1.539167+2 1.669468-2 1.466856+2 1.697480-2 1.401629+2 1.718312-2 1.347107+2 1.728377-2 1.317346+2 1.737051-2 1.288761+2 1.744110-2 1.262753+2 1.753699-2 1.222621+2 1.766791-2 1.160534+2 1.778418-2 1.108473+2 1.784972-2 1.087185+2 1.790878-2 1.076221+2 1.795305-2 1.073951+2 1.799079-2 1.076125+2 1.804317-2 1.084968+2 1.811027-2 1.104325+2 1.830865-2 1.181025+2 1.838125-2 1.205677+2 1.847536-2 1.231087+2 1.857746-2 1.250981+2 1.865871-2 1.262430+2 1.883649-2 1.278706+2 1.905503-2 1.289014+2 1.931446-2 1.293557+2 1.971314-2 1.290573+2 2.017837-2 1.277910+2 2.084334-2 1.250745+2 2.168036-2 1.209788+2 2.290867-2 1.145488+2 2.432408-2 1.071095+2 2.639562-2 9.688170+1 2.833124-2 8.834233+1 3.111883-2 7.765531+1 3.446013-2 6.708616+1 3.712794-2 6.000632+1 4.057746-2 5.223009+1 4.746541-2 4.043836+1 5.308357-2 3.355174+1 5.928549-2 2.772891+1 8.457795-2 1.479299+1 1.078869-1 9.564684+0 1.295767-1 6.845699+0 1.581985-1 4.721186+0 1.993917-1 3.045715+0 2.639392-1 1.776747+0 3.686061-1 9.283498-1 5.372251-1 4.432363-1 8.709636-1 1.702648-1 1.859734+0 3.754349-2 5.616308+0 4.122400-3 1.696098+1 4.520835-4 5.122134+1 4.957083-5 1.546860+2 5.435343-6 4.671441+2 5.959737-7 1.584893+3 5.177605-8 5.011872+3 5.177605-9 1.584893+4 5.17760-10 5.011872+4 5.17760-11 1.000000+5 1.30056-11 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.807500-6 1.258900-6 2.864600-6 1.584900-6 4.540100-6 1.995300-6 7.195600-6 2.511900-6 1.140400-5 3.162300-6 1.807400-5 3.981100-6 2.864600-5 5.011900-6 4.540000-5 6.309600-6 7.195400-5 7.943300-6 1.140400-4 1.000000-5 1.807400-4 1.258900-5 2.864400-4 1.584900-5 4.537800-4 1.995300-5 7.187700-4 2.511900-5 1.138600-3 3.162300-5 1.803900-3 3.981100-5 2.858300-3 5.011900-5 4.529100-3 6.309600-5 7.176700-3 7.943300-5 1.135600-2 1.000000-4 1.796000-2 1.258900-4 2.840500-2 1.584900-4 4.481500-2 1.995300-4 7.058200-2 2.511900-4 1.107100-1 3.162300-4 1.726300-1 3.981100-4 2.664800-1 5.011900-4 4.056600-1 6.309600-4 6.047500-1 7.943300-4 8.769900-1 1.000000-3 1.228200+0 1.258900-3 1.655200+0 1.584900-3 2.156100+0 1.995300-3 2.746000+0 2.511900-3 3.450800+0 3.162300-3 4.290000+0 3.981100-3 5.274400+0 5.011900-3 6.407100+0 6.309600-3 7.683900+0 7.943300-3 9.036900+0 1.000000-2 1.042900+1 1.258900-2 1.186200+1 1.584900-2 1.328800+1 1.995300-2 1.471600+1 2.511900-2 1.598100+1 3.162300-2 1.703300+1 3.981100-2 1.783100+1 5.011900-2 1.833600+1 6.309600-2 1.851700+1 7.943300-2 1.839600+1 1.000000-1 1.801400+1 1.258900-1 1.740600+1 1.584900-1 1.661800+1 1.995300-1 1.568900+1 2.511900-1 1.466800+1 3.162300-1 1.360000+1 3.981100-1 1.251500+1 5.011900-1 1.143900+1 6.309600-1 1.039000+1 7.943300-1 9.377600+0 1.000000+0 8.415800+0 1.258900+0 7.503700+0 1.584900+0 6.648600+0 1.995300+0 5.853100+0 2.511900+0 5.120400+0 3.162300+0 4.451900+0 3.981100+0 3.847900+0 5.011900+0 3.307300+0 6.309600+0 2.828100+0 7.943300+0 2.406600+0 1.000000+1 2.038800+0 1.258900+1 1.720400+0 1.584900+1 1.446300+0 1.995300+1 1.211900+0 2.511900+1 1.012500+0 3.162300+1 8.435500-1 3.981100+1 7.011000-1 5.011900+1 5.814200-1 6.309600+1 4.812100-1 7.943300+1 3.975400-1 1.000000+2 3.278800-1 1.258900+2 2.700100-1 1.584900+2 2.220500-1 1.995300+2 1.823800-1 2.511900+2 1.496200-1 3.162300+2 1.226100-1 3.981100+2 1.003800-1 5.011900+2 8.209600-2 6.309600+2 6.708700-2 7.943300+2 5.477700-2 1.000000+3 4.469100-2 1.258900+3 3.643600-2 1.584900+3 2.968600-2 1.995300+3 2.417100-2 2.511900+3 1.966800-2 3.162300+3 1.599500-2 3.981100+3 1.300100-2 5.011900+3 1.056100-2 6.309600+3 8.575400-3 7.943300+3 6.959600-3 1.000000+4 5.645700-3 1.258900+4 4.577800-3 1.584900+4 3.710400-3 1.995300+4 3.006100-3 2.511900+4 2.434500-3 3.162300+4 1.970900-3 3.981100+4 1.595000-3 5.011900+4 1.290400-3 6.309600+4 1.043600-3 7.943300+4 8.437100-4 1.000000+5 6.819100-4 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510165-4 3.162278-4 3.159555-4 3.981072-4 3.976773-4 5.011872-4 5.005095-4 6.309573-4 6.298919-4 7.943282-4 7.926586-4 1.000000-3 9.973943-4 1.258925-3 1.254873-3 1.584893-3 1.578598-3 1.995262-3 1.985456-3 2.511886-3 2.496526-3 3.162278-3 3.138191-3 3.981072-3 3.943387-3 5.011872-3 4.952725-3 6.309573-3 6.217243-3 7.943282-3 7.799540-3 1.000000-2 9.776919-3 1.258925-2 1.224333-2 1.584893-2 1.531244-2 1.995262-2 1.912586-2 2.511886-2 2.384960-2 3.162278-2 2.968500-2 3.981072-2 3.687096-2 5.011872-2 4.568505-2 6.309573-2 5.646119-2 7.943282-2 6.957833-2 1.000000-1 8.546785-2 1.258925-1 1.046440-1 1.584893-1 1.276715-1 1.995262-1 1.552547-1 2.511886-1 1.881602-1 3.162278-1 2.272825-1 3.981072-1 2.736434-1 5.011872-1 3.284307-1 6.309573-1 3.930019-1 7.943282-1 4.691547-1 1.000000+0 5.584692-1 1.258925+0 6.639847-1 1.584893+0 7.882669-1 1.995262+0 9.353555-1 2.511886+0 1.109894+0 3.162278+0 1.317621+0 3.981072+0 1.565550+0 5.011872+0 1.862352+0 6.309573+0 2.218543+0 7.943282+0 2.647040+0 1.000000+1 3.163655+0 1.258925+1 3.787658+0 1.584893+1 4.542797+0 1.995262+1 5.457954+0 2.511886+1 6.568732+0 3.162278+1 7.918645+0 3.981072+1 9.561168+0 5.011872+1 1.156195+1 6.309573+1 1.400158+1 7.943282+1 1.697919+1 1.000000+2 2.061646+1 1.258925+2 2.506385+1 1.584893+2 3.050549+1 1.995262+2 3.716872+1 2.511886+2 4.533383+1 3.162278+2 5.534644+1 3.981072+2 6.763090+1 5.011872+2 8.271418+1 6.309573+2 1.012434+2 7.943282+2 1.240198+2 1.000000+3 1.520268+2 1.258925+3 1.864910+2 1.584893+3 2.289230+2 1.995262+3 2.811766+2 2.511886+3 3.455656+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88205-10 1.995262-5 1.090648-9 2.511886-5 1.728532-9 3.162278-5 2.739560-9 3.981072-5 4.341940-9 5.011872-5 6.881466-9 6.309573-5 1.090605-8 7.943282-5 1.727735-8 1.000000-4 2.737524-8 1.258925-4 4.337803-8 1.584893-4 6.869684-8 1.995262-4 1.087826-7 2.511886-4 1.721653-7 3.162278-4 2.722400-7 3.981072-4 4.298583-7 5.011872-4 6.776901-7 6.309573-4 1.065468-6 7.943282-4 1.669607-6 1.000000-3 2.605725-6 1.258925-3 4.052197-6 1.584893-3 6.295353-6 1.995262-3 9.806080-6 2.511886-3 1.536083-5 3.162278-3 2.408635-5 3.981072-3 3.768506-5 5.011872-3 5.914735-5 6.309573-3 9.233080-5 7.943282-3 1.437428-4 1.000000-2 2.230807-4 1.258925-2 3.459286-4 1.584893-2 5.364887-4 1.995262-2 8.267614-4 2.511886-2 1.269260-3 3.162278-2 1.937773-3 3.981072-2 2.939759-3 5.011872-2 4.433670-3 6.309573-2 6.634544-3 7.943282-2 9.854492-3 1.000000-1 1.453215-2 1.258925-1 2.124856-2 1.584893-1 3.081783-2 1.995262-1 4.427157-2 2.511886-1 6.302842-2 3.162278-1 8.894524-2 3.981072-1 1.244637-1 5.011872-1 1.727565-1 6.309573-1 2.379554-1 7.943282-1 3.251735-1 1.000000+0 4.415308-1 1.258925+0 5.949408-1 1.584893+0 7.966263-1 1.995262+0 1.059907+0 2.511886+0 1.401993+0 3.162278+0 1.844657+0 3.981072+0 2.415522+0 5.011872+0 3.149520+0 6.309573+0 4.091031+0 7.943282+0 5.296242+0 1.000000+1 6.836345+0 1.258925+1 8.801596+0 1.584893+1 1.130614+1 1.995262+1 1.449467+1 2.511886+1 1.855013+1 3.162278+1 2.370413+1 3.981072+1 3.024955+1 5.011872+1 3.855678+1 6.309573+1 4.909416+1 7.943282+1 6.245363+1 1.000000+2 7.938354+1 1.258925+2 1.008287+2 1.584893+2 1.279838+2 1.995262+2 1.623575+2 2.511886+2 2.058548+2 3.162278+2 2.608813+2 3.981072+2 3.304763+2 5.011872+2 4.184731+2 6.309573+2 5.297140+2 7.943282+2 6.703084+2 1.000000+3 8.479732+2 1.258925+3 1.072434+3 1.584893+3 1.355970+3 1.995262+3 1.714086+3 2.511886+3 2.166321+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.120000-6 2.051360+6 6.190000-6 1.932530+6 6.400000-6 1.593654+6 6.520000-6 1.427172+6 6.520000-6 4.715091+6 6.606934-6 4.700906+6 6.670000-6 4.695743+6 6.670000-6 6.773679+6 6.760830-6 6.837004+6 6.800000-6 6.864510+6 7.000000-6 7.030148+6 7.200000-6 7.207090+6 7.350000-6 7.361541+6 7.420000-6 7.429200+6 7.650000-6 7.671816+6 7.762471-6 7.801128+6 7.852356-6 7.896341+6 8.050000-6 8.117263+6 8.200000-6 8.294945+6 8.270000-6 8.372531+6 8.420000-6 8.543208+6 8.609938-6 8.768248+6 8.709636-6 8.885049+6 8.770000-6 8.952685+6 8.920000-6 9.123548+6 9.100000-6 9.333919+6 9.120108-6 9.357708+6 9.225714-6 9.479162+6 9.280000-6 9.538601+6 9.440609-6 9.716310+6 9.600000-6 9.895559+6 9.772372-6 1.009232+7 9.885531-6 1.021780+7 9.930000-6 1.026451+7 1.010000-5 1.044419+7 1.027000-5 1.062562+7 1.042000-5 1.078702+7 1.047129-5 1.084245+7 1.059254-5 1.096862+7 1.060000-5 1.097592+7 1.100000-5 1.136999+7 1.115000-5 1.151880+7 1.120000-5 1.156851+7 1.123000-5 1.159711+7 1.131000-5 1.167344+7 1.135011-5 1.171176+7 1.138000-5 1.173823+7 1.146000-5 1.180915+7 1.154000-5 1.188012+7 1.161449-5 1.194623+7 1.168000-5 1.200440+7 1.174898-5 1.206567+7 1.182000-5 1.212877+7 1.188502-5 1.218655+7 1.195000-5 1.224161+7 1.202264-5 1.230317+7 1.209000-5 1.236024+7 1.216186-5 1.242111+7 1.222000-5 1.246617+7 1.230269-5 1.253022+7 1.237000-5 1.258232+7 1.245000-5 1.264421+7 1.255000-5 1.272150+7 1.258925-5 1.275182+7 1.265000-5 1.279590+7 1.280000-5 1.290457+7 1.290000-5 1.297690+7 1.333521-5 1.325701+7 1.340000-5 1.329533+7 1.364583-5 1.344012+7 1.365000-5 1.344224+7 1.380384-5 1.352037+7 1.400000-5 1.361946+7 1.420000-5 1.371010+7 1.428894-5 1.375018+7 1.445440-5 1.381059+7 1.462177-5 1.387126+7 1.470000-5 1.389541+7 1.496236-5 1.397571+7 1.500000-5 1.398714+7 1.522000-5 1.403363+7 1.531087-5 1.405266+7 1.550000-5 1.408140+7 1.570000-5 1.411141+7 1.580000-5 1.411694+7 1.590000-5 1.412239+7 1.610000-5 1.412211+7 1.640590-5 1.412162+7 1.650000-5 1.411230+7 1.678804-5 1.406710+7 1.710000-5 1.401910+7 1.717908-5 1.399947+7 1.757924-5 1.387900+7 1.778279-5 1.381911+7 1.800000-5 1.372472+7 1.840772-5 1.355215+7 1.850000-5 1.350681+7 1.905461-5 1.321257+7 1.972423-5 1.278677+7 1.980000-5 1.274033+7 2.041738-5 1.230185+7 2.113489-5 1.175251+7 2.190000-5 1.113554+7 2.270000-5 1.047278+7 2.350000-5 9.807285+6 2.371374-5 9.625863+6 2.426610-5 9.179402+6 2.483133-5 8.722000+6 2.511886-5 8.501908+6 2.610000-5 7.759849+6 2.722701-5 6.964609+6 2.754229-5 6.750111+6 2.818383-5 6.340767+6 2.917427-5 5.745494+6 3.040000-5 5.077843+6 3.090295-5 4.821377+6 3.162278-5 4.483335+6 3.273407-5 3.998735+6 3.300000-5 3.890119+6 3.400000-5 3.507429+6 3.427678-5 3.407408+6 3.467369-5 3.267669+6 3.540000-5 3.030492+6 3.570000-5 2.936432+6 3.672823-5 2.635993+6 3.674000-5 2.632698+6 3.674000-5 7.763698+6 3.690000-5 7.676703+6 3.725000-5 7.490002+6 3.770000-5 7.238241+6 3.801894-5 7.051335+6 3.850000-5 6.776725+6 3.863000-5 6.699403+6 3.863000-5 9.215823+6 3.900000-5 8.967124+6 3.935501-5 8.727629+6 3.940000-5 8.697656+6 3.950000-5 8.628623+6 3.960000-5 8.559977+6 4.030000-5 8.080545+6 4.073803-5 7.779300+6 4.120975-5 7.467555+6 4.150000-5 7.279006+6 4.216965-5 6.854891+6 4.220000-5 6.836047+6 4.300000-5 6.357259+6 4.315191-5 6.269098+6 4.365158-5 5.985293+6 4.450000-5 5.535349+6 4.472100-5 5.423401+6 4.500000-5 5.283566+6 4.518559-5 5.192165+6 4.598600-5 4.819953+6 4.650000-5 4.595410+6 4.677351-5 4.480176+6 4.786301-5 4.050859+6 4.800000-5 4.000007+6 4.841724-5 3.848636+6 4.954502-5 3.473861+6 5.011872-5 3.299463+6 5.080000-5 3.105044+6 5.188000-5 2.823443+6 5.230000-5 2.722628+6 5.248075-5 2.680460+6 5.308844-5 2.544176+6 5.370318-5 2.416862+6 5.400000-5 2.358077+6 5.500000-5 2.172454+6 5.580000-5 2.036752+6 5.623413-5 1.968811+6 5.688529-5 1.872247+6 5.754399-5 1.780380+6 5.821032-5 1.693887+6 5.888437-5 1.613705+6 5.950000-5 1.544583+6 5.996000-5 1.495367+6 5.996000-5 1.677860+6 6.025596-5 1.647680+6 6.116000-5 1.563622+6 6.165950-5 1.519931+6 6.237348-5 1.460933+6 6.300000-5 1.413540+6 6.456542-5 1.307163+6 6.500000-5 1.280911+6 6.531306-5 1.262609+6 6.606934-5 1.220897+6 6.654400-5 1.195988+6 6.683439-5 1.181238+6 6.760830-5 1.144824+6 6.767700-5 1.141749+6 6.770000-5 1.140726+6 6.850000-5 1.106285+6 6.900000-5 1.085798+6 6.950000-5 1.066796+6 7.000000-5 1.048503+6 7.030000-5 1.038088+6 7.079458-5 1.021428+6 7.110000-5 1.011806+6 7.190000-5 9.876678+5 7.244360-5 9.720636+5 7.270000-5 9.650641+5 7.300000-5 9.570915+5 7.350000-5 9.447180+5 7.413102-5 9.297425+5 7.420000-5 9.281157+5 7.500000-5 9.098852+5 7.585776-5 8.929255+5 7.673615-5 8.765135+5 7.737400-5 8.651915+5 7.762471-5 8.612541+5 7.852356-5 8.477273+5 7.900000-5 8.408918+5 7.943282-5 8.346562+5 7.950000-5 8.337290+5 8.000000-5 8.270296+5 8.040000-5 8.221512+5 8.150000-5 8.093736+5 8.230000-5 8.009733+5 8.270000-5 7.972082+5 8.317638-5 7.929004+5 8.400000-5 7.853489+5 8.413951-5 7.841026+5 8.511380-5 7.761024+5 8.570000-5 7.719112+5 8.650000-5 7.664131+5 8.709636-5 7.626805+5 8.800000-5 7.568552+5 8.810489-5 7.561979+5 8.850000-5 7.540194+5 8.912509-5 7.506709+5 9.120108-5 7.408508+5 9.150000-5 7.393888+5 9.225714-5 7.362123+5 9.549926-5 7.246265+5 9.566300-5 7.241943+5 9.660509-5 7.214419+5 9.885531-5 7.151694+5 9.900000-5 7.147822+5 1.000000-4 7.122952+5 1.023293-4 7.068909+5 1.030000-4 7.054889+5 1.047129-4 7.019696+5 1.050000-4 7.013247+5 1.060000-4 6.990447+5 1.071519-4 6.967575+5 1.083927-4 6.945881+5 1.090000-4 6.935014+5 1.109175-4 6.900902+5 1.120000-4 6.880102+5 1.122018-4 6.876116+5 1.135011-4 6.850162+5 1.150000-4 6.822960+5 1.161449-4 6.801914+5 1.190000-4 6.750094+5 1.202264-4 6.725883+5 1.230269-4 6.671118+5 1.244515-4 6.643701+5 1.273503-4 6.588400+5 1.288250-4 6.560129+5 1.318257-4 6.499694+5 1.338300-4 6.459470+5 1.364583-4 6.407183+5 1.380384-4 6.373812+5 1.412538-4 6.306628+5 1.430000-4 6.268416+5 1.462177-4 6.198916+5 1.480000-4 6.160604+5 1.500000-4 6.117711+5 1.513561-4 6.086860+5 1.531087-4 6.046576+5 1.540000-4 6.025529+5 1.580000-4 5.932117+5 1.603245-4 5.878451+5 1.621810-4 5.835977+5 1.650000-4 5.770022+5 1.659587-4 5.747066+5 1.717908-4 5.605993+5 1.737801-4 5.559000+5 1.757924-4 5.511875+5 1.770000-4 5.482899+5 1.800000-4 5.412319+5 1.820000-4 5.363675+5 1.890000-4 5.199049+5 1.904900-4 5.164948+5 1.904900-4 7.092088+5 1.905461-4 7.089583+5 1.911000-4 7.064484+5 1.917000-4 7.049771+5 1.922000-4 7.048616+5 1.927525-4 7.059428+5 1.930900-4 7.075222+5 1.930900-4 8.385526+5 1.933000-4 8.390879+5 1.935000-4 8.401001+5 1.937000-4 8.413873+5 1.942000-4 8.459273+5 1.946500-4 8.522049+5 1.948000-4 8.547743+5 1.950000-4 8.585595+5 1.951500-4 8.614343+5 1.953000-4 8.648270+5 1.957000-4 8.747199+5 1.962000-4 8.901586+5 1.963000-4 8.935145+5 1.966500-4 9.067654+5 1.969000-4 9.169500+5 1.970000-4 9.214129+5 1.974000-4 9.404412+5 1.975000-4 9.455395+5 1.979500-4 9.706676+5 1.983000-4 9.920719+5 1.985000-4 1.005289+6 1.990000-4 1.041084+6 1.996000-4 1.088840+6 2.000000-4 1.123889+6 2.002000-4 1.142182+6 2.010000-4 1.222623+6 2.019200-4 1.325782+6 2.027000-4 1.420776+6 2.035000-4 1.524813+6 2.041738-4 1.615528+6 2.043000-4 1.633378+6 2.045000-4 1.660972+6 2.050000-4 1.731460+6 2.052000-4 1.759502+6 2.058000-4 1.845477+6 2.060000-4 1.873897+6 2.067000-4 1.975412+6 2.075000-4 2.090706+6 2.083000-4 2.204742+6 2.085000-4 2.233502+6 2.089296-4 2.293443+6 2.092000-4 2.332183+6 2.095000-4 2.374648+6 2.100000-4 2.443840+6 2.105000-4 2.513031+6 2.110000-4 2.581165+6 2.113489-4 2.628205+6 2.115000-4 2.648884+6 2.120000-4 2.714900+6 2.129600-4 2.842163+6 2.131000-4 2.860228+6 2.137962-4 2.948401+6 2.142000-4 3.000938+6 2.143500-4 3.019733+6 2.155000-4 3.162585+6 2.162719-4 3.253431+6 2.170000-4 3.341727+6 2.185000-4 3.511769+6 2.187762-4 3.542827+6 2.198000-4 3.652056+6 2.205000-4 3.725760+6 2.213095-4 3.806966+6 2.220000-4 3.874292+6 2.230000-4 3.966295+6 2.238721-4 4.044153+6 2.240000-4 4.055694+6 2.245000-4 4.097011+6 2.260000-4 4.216100+6 2.264644-4 4.250133+6 2.280000-4 4.356979+6 2.290868-4 4.421953+6 2.300000-4 4.477140+6 2.317395-4 4.564159+6 2.323000-4 4.592483+6 2.350000-4 4.701312+6 2.371374-4 4.768080+6 2.380000-4 4.795183+6 2.415000-4 4.878147+6 2.426610-4 4.898715+6 2.454709-4 4.948577+6 2.511886-4 5.020453+6 2.520000-4 5.029011+6 2.540973-4 5.045551+6 2.570396-4 5.068733+6 2.580000-4 5.076285+6 2.650000-4 5.098996+6 2.660725-4 5.096942+6 2.722701-4 5.085312+6 2.754229-4 5.063900+6 2.800000-4 5.033217+6 2.818383-4 5.013508+6 2.851018-4 4.978992+6 2.884032-4 4.944693+6 2.917427-4 4.900026+6 3.000000-4 4.793398+6 3.054921-4 4.712058+6 3.090295-4 4.661014+6 3.126079-4 4.610497+6 3.162278-4 4.553052+6 3.240000-4 4.434206+6 3.308800-4 4.320675+6 3.308800-4 4.725372+6 3.311311-4 4.721835+6 3.350000-4 4.668167+6 3.388442-4 4.606135+6 3.427678-4 4.544553+6 3.449300-4 4.511386+6 3.449300-4 4.699317+6 3.470000-4 4.668669+6 3.480000-4 4.653358+6 3.500000-4 4.622229+6 3.510000-4 4.605979+6 3.548134-4 4.544748+6 3.630781-4 4.417823+6 3.672823-4 4.353489+6 3.715352-4 4.284720+6 3.758374-4 4.215853+6 3.801894-4 4.147947+6 3.845918-4 4.079865+6 3.850000-4 4.073654+6 3.890451-4 4.008967+6 3.935501-4 3.938603+6 4.100000-4 3.695235+6 4.120975-4 3.664336+6 4.168694-4 3.595328+6 4.200000-4 3.551244+6 4.220600-4 3.522710+6 4.220600-4 3.682286+6 4.265795-4 3.619278+6 4.315191-4 3.552509+6 4.350000-4 3.505662+6 4.430000-4 3.398370+6 4.518559-4 3.284942+6 4.570882-4 3.220897+6 4.623810-4 3.156672+6 4.731513-4 3.028028+6 4.750000-4 3.006802+6 4.786301-4 2.965802+6 4.897788-4 2.845015+6 4.954502-4 2.785346+6 5.069907-4 2.667893+6 5.128614-4 2.610947+6 5.248075-4 2.501018+6 5.308844-4 2.446760+6 5.370318-4 2.392710+6 5.432503-4 2.339893+6 5.559043-4 2.237570+6 5.623413-4 2.188251+6 5.688529-4 2.139164+6 5.754399-4 2.090346+6 5.888437-4 1.996302+6 5.900000-4 1.988506+6 5.956621-4 1.950867+6 6.000000-4 1.922523+6 6.025596-4 1.906088+6 6.095369-4 1.862211+6 6.237348-4 1.776879+6 6.382635-4 1.694227+6 6.456542-4 1.654164+6 6.500000-4 1.631289+6 6.606934-4 1.577039+6 6.683439-4 1.539930+6 6.760830-4 1.503220+6 7.000000-4 1.396526+6 7.079458-4 1.363446+6 7.300000-4 1.277735+6 7.328245-4 1.267210+6 7.413102-4 1.236379+6 7.500000-4 1.205606+6 7.673615-4 1.147096+6 7.762471-4 1.118799+6 7.852356-4 1.091251+6 8.035261-4 1.037940+6 8.128305-4 1.012141+6 8.200000-4 9.927588+5 8.222426-4 9.867453+5 8.317638-4 9.618170+5 8.511380-4 9.139507+5 8.609938-4 8.908971+5 8.709636-4 8.684642+5 8.810489-4 8.466187+5 8.912509-4 8.252085+5 9.000000-4 8.073837+5 9.015711-4 8.042446+5 9.225714-4 7.636140+5 9.332543-4 7.440911+5 9.440609-4 7.250196+5 9.660509-4 6.884254+5 9.772372-4 6.707156+5 9.885531-4 6.534756+5 1.000000-3 6.365895+5 1.011579-3 6.200174+5 1.023293-3 6.038360+5 1.040000-3 5.817745+5 1.047129-3 5.727243+5 1.059254-3 5.578093+5 1.083927-3 5.290114+5 1.096478-3 5.152093+5 1.102110-3 5.091582+5 1.110000-3 5.008509+5 1.161449-3 4.507822+5 1.202264-3 4.159207+5 1.216186-3 4.049209+5 1.230269-3 3.941211+5 1.244515-3 3.835521+5 1.273503-3 3.632860+5 1.288250-3 3.535095+5 1.303167-3 3.440119+5 1.333521-3 3.258121+5 1.350000-3 3.164876+5 1.364583-3 3.085445+5 1.396368-3 2.920374+5 1.412538-3 2.841306+5 1.428894-3 2.763881+5 1.462177-3 2.615652+5 1.479108-3 2.544685+5 1.500000-3 2.460597+5 1.513561-3 2.408177+5 1.531087-3 2.342574+5 1.548817-3 2.278458+5 1.566751-3 2.215725+5 1.584893-3 2.154757+5 1.621810-3 2.037750+5 1.640590-3 1.981559+5 1.698244-3 1.822507+5 1.717908-3 1.772338+5 1.730000-3 1.742339+5 1.757924-3 1.675250+5 1.778279-3 1.628655+5 1.800000-3 1.580980+5 1.819701-3 1.539296+5 1.840772-3 1.496468+5 1.862087-3 1.454872+5 1.905461-3 1.375075+5 1.927525-3 1.336744+5 1.949845-3 1.299110+5 1.972423-3 1.262592+5 1.995262-3 1.227117+5 2.018366-3 1.192549+5 2.065380-3 1.126449+5 2.113489-3 1.064161+5 2.137962-3 1.034375+5 2.150000-3 1.020043+5 2.162719-3 1.005146+5 2.187762-3 9.766497+4 2.213095-3 9.489194+4 2.220000-3 9.415516+4 2.224800-3 9.364545+4 2.224800-3 3.519042+5 2.264644-3 3.368940+5 2.312200-3 3.201428+5 2.312200-3 4.432213+5 2.317395-3 4.407826+5 2.371374-3 4.165294+5 2.400000-3 4.044292+5 2.403000-3 4.031880+5 2.426610-3 3.940576+5 2.440000-3 3.890074+5 2.454709-3 3.833184+5 2.483133-3 3.724055+5 2.500000-3 3.661345+5 2.514600-3 3.608182+5 2.514600-3 4.132606+5 2.532000-3 4.065042+5 2.540973-3 4.030819+5 2.570396-3 3.921478+5 2.600160-3 3.812654+5 2.660725-3 3.601463+5 2.722701-3 3.402051+5 2.754229-3 3.306470+5 2.770000-3 3.260052+5 2.786121-3 3.213146+5 2.818383-3 3.121222+5 2.917427-3 2.861376+5 2.951209-3 2.779754+5 3.019952-3 2.623414+5 3.090295-3 2.474985+5 3.126079-3 2.404006+5 3.198895-3 2.268058+5 3.273407-3 2.139992+5 3.300000-3 2.096702+5 3.349654-3 2.018873+5 3.400000-3 1.943976+5 3.427678-3 1.904145+5 3.467369-3 1.848986+5 3.507519-3 1.795454+5 3.548134-3 1.743467+5 3.589219-3 1.693005+5 3.672823-3 1.596528+5 3.715352-3 1.550424+5 3.801894-3 1.461840+5 3.845918-3 1.418922+5 3.890451-3 1.377302+5 3.935501-3 1.336929+5 4.000000-3 1.281946+5 4.027170-3 1.259735+5 4.073803-3 1.222690+5 4.168694-3 1.151444+5 4.265795-3 1.084452+5 4.315191-3 1.052469+5 4.415704-3 9.913016+4 4.466836-3 9.619570+4 4.518559-3 9.334914+4 4.677351-3 8.522062+4 4.731513-3 8.265852+4 4.841724-3 7.776582+4 4.954502-3 7.316561+4 5.011872-3 7.097019+4 5.069907-3 6.884207+4 5.128614-3 6.677869+4 5.248075-3 6.282185+4 5.308844-3 6.093495+4 5.370318-3 5.909322+4 5.432503-3 5.730370+4 5.500000-3 5.544416+4 5.559043-3 5.388508+4 5.623413-3 5.225351+4 5.754399-3 4.914039+4 5.792850-3 4.827589+4 5.821032-3 4.765569+4 5.956621-3 4.479661+4 6.000000-3 4.392929+4 6.025596-3 4.342845+4 6.095369-3 4.209656+4 6.165950-3 4.080520+4 6.237348-3 3.955460+4 6.309573-3 3.834341+4 6.382635-3 3.716967+4 6.531306-3 3.492982+4 6.839116-3 3.085663+4 6.918310-3 2.991032+4 6.998420-3 2.898634+4 7.079458-3 2.809169+4 7.161434-3 2.722531+4 7.244360-3 2.638590+4 7.413102-3 2.477914+4 7.500000-3 2.400454+4 7.585776-3 2.327206+4 7.852356-3 2.118511+4 7.943282-3 2.052610+4 8.000000-3 2.012897+4 8.128305-3 1.926926+4 8.317638-3 1.809086+4 8.413951-3 1.752802+4 8.511380-3 1.698313+4 8.609938-3 1.645566+4 8.709636-3 1.594502+4 8.810489-3 1.545069+4 9.015711-3 1.450160+4 9.120108-3 1.404693+4 9.225714-3 1.360647+4 9.440609-3 1.276724+4 9.500000-3 1.254800+4 9.660509-3 1.197926+4 9.772372-3 1.160385+4 1.000000-2 1.088882+4 1.023293-2 1.021905+4 1.035142-2 9.900231+3 1.059254-2 9.287000+3 1.083927-2 8.709222+3 1.122018-2 7.910918+3 1.148154-2 7.419271+3 1.188502-2 6.739898+3 1.202264-2 6.527761+3 1.216186-2 6.321046+3 1.244515-2 5.926918+3 1.273503-2 5.556152+3 1.288250-2 5.379766+3 1.333521-2 4.884386+3 1.348963-2 4.729441+3 1.364583-2 4.579528+3 1.380384-2 4.433397+3 1.396368-2 4.292048+3 1.412538-2 4.155236+3 1.428894-2 4.022905+3 1.445440-2 3.894735+3 1.462177-2 3.770750+3 1.500000-2 3.508816+3 1.548817-2 3.206557+3 1.566751-2 3.104555+3 1.584893-2 3.005030+3 1.621810-2 2.815165+3 1.659587-2 2.637515+3 1.678804-2 2.553044+3 1.737801-2 2.315589+3 1.757924-2 2.241275+3 1.796200-2 2.108749+3 1.796200-2 1.429929+4 1.819701-2 1.386275+4 1.828000-2 1.371290+4 1.840772-2 1.345624+4 1.862087-2 1.304238+4 1.870000-2 1.289318+4 1.883649-2 1.265977+4 1.905461-2 1.229891+4 1.930000-2 1.190984+4 1.949845-2 1.159042+4 1.972423-2 1.124123+4 2.000000-2 1.083404+4 2.041738-2 1.025557+4 2.065380-2 9.953582+3 2.113489-2 9.375875+3 2.137962-2 9.099764+3 2.187762-2 8.571115+3 2.213095-2 8.318480+3 2.238721-2 8.073318+3 2.264644-2 7.835418+3 2.290868-2 7.597531+3 2.317395-2 7.366901+3 2.426610-2 6.512405+3 2.483133-2 6.123074+3 2.500000-2 6.013111+3 2.570396-2 5.581877+3 2.600160-2 5.412321+3 2.691535-2 4.934032+3 2.722701-2 4.781307+3 2.818383-2 4.350828+3 2.884032-2 4.085667+3 2.917427-2 3.959191+3 2.951209-2 3.836486+3 3.019952-2 3.602400+3 3.054921-2 3.490785+3 3.090295-2 3.382639+3 3.162278-2 3.176315+3 3.198895-2 3.077939+3 3.311311-2 2.800717+3 3.349654-2 2.713992+3 3.427678-2 2.545660+3 3.467369-2 2.465362+3 3.548134-2 2.312258+3 3.630781-2 2.168681+3 3.758374-2 1.969902+3 3.890451-2 1.789347+3 4.027170-2 1.623947+3 4.073803-2 1.572292+3 4.168694-2 1.473751+3 4.216965-2 1.426824+3 4.365158-2 1.294793+3 4.415704-2 1.253563+3 4.466836-2 1.213647+3 4.500000-2 1.188672+3 4.677351-2 1.064724+3 4.841724-2 9.649685+2 5.011872-2 8.744743+2 5.128614-2 8.189167+2 5.248075-2 7.668937+2 5.308844-2 7.421375+2 5.370318-2 7.181769+2 5.500000-2 6.709493+2 5.623413-2 6.293280+2 5.821032-2 5.696291+2 6.025596-2 5.155412+2 6.165950-2 4.823704+2 6.309573-2 4.513368+2 6.382635-2 4.365779+2 6.456542-2 4.222998+2 6.606934-2 3.951313+2 6.760830-2 3.697126+2 6.998420-2 3.342647+2 7.079458-2 3.232218+2 7.161434-2 3.125328+2 7.328245-2 2.922049+2 7.413102-2 2.825426+2 7.762471-2 2.469880+2 8.128305-2 2.159070+2 8.511380-2 1.887413+2 8.609938-2 1.824467+2 8.709636-2 1.763623+2 8.912509-2 1.647851+2 9.120108-2 1.539685+2 9.660509-2 1.299343+2 9.772372-2 1.255976+2 9.885531-2 1.214057+2 1.035142-1 1.059935+2 1.047129-1 1.024565+2 1.071519-1 9.573357+1 1.083927-1 9.253935+1 1.109175-1 8.646739+1 1.135011-1 8.079089+1 1.148154-1 7.809402+1 1.188502-1 7.050859+1 1.216186-1 6.586578+1 1.244515-1 6.152889+1 1.273503-1 5.747815+1 1.288250-1 5.555376+1 1.333521-1 5.015914+1 1.348963-1 4.847997+1 1.380384-1 4.528897+1 1.412538-1 4.230804+1 1.445440-1 3.952350+1 1.462177-1 3.820082+1 1.479108-1 3.692241+1 1.500000-1 3.542264+1 1.531088-1 3.333840+1 1.566751-1 3.114473+1 1.603245-1 2.909545+1 1.621810-1 2.812197+1 1.640590-1 2.718107+1 1.659587-1 2.627179+1 1.678804-1 2.539295+1 1.698244-1 2.454350+1 1.737801-1 2.292900+1 1.757924-1 2.216203+1 1.840772-1 1.934258+1 1.862087-1 1.869567+1 1.883649-1 1.807600+1 1.949845-1 1.633776+1 2.000000-1 1.516725+1 2.041738-1 1.427747+1 2.065380-1 1.380473+1 2.089296-1 1.334765+1 2.137962-1 1.247842+1 2.162719-1 1.206531+1 2.187762-1 1.166590+1 2.213095-1 1.127973+1 2.238721-1 1.090635+1 2.264644-1 1.054533+1 2.290868-1 1.019626+1 2.299100-1 1.009128+1 2.317395-1 9.863160+0 2.371374-1 9.229286+0 2.426610-1 8.636163+0 2.454709-1 8.354091+0 2.483133-1 8.081238+0 2.511886-1 7.817700+0 2.540973-1 7.562789+0 2.570396-1 7.316210+0 2.600160-1 7.077669+0 2.691535-1 6.407724+0 2.722701-1 6.201690+0 2.786121-1 5.809333+0 2.851018-1 5.441814+0 2.884032-1 5.266868+0 2.917427-1 5.097572+0 2.985383-1 4.775686+0 3.000000-1 4.710066+0 3.000060-1 4.709799+0 3.019952-1 4.622442+0 3.054921-1 4.474132+0 3.090295-1 4.330581+0 3.126079-1 4.191639+0 3.162278-1 4.059398+0 3.198895-1 3.931335+0 3.235937-1 3.807311+0 3.349654-1 3.458237+0 3.388442-1 3.349347+0 3.427678-1 3.243922+0 3.467369-1 3.141817+0 3.507519-1 3.042933+0 3.548134-1 2.947161+0 3.589219-1 2.856118+0 3.630781-1 2.767886+0 3.672823-1 2.682384+0 3.715352-1 2.599534+0 3.758374-1 2.519242+0 3.801894-1 2.441441+0 3.845918-1 2.366181+0 3.935501-1 2.222600+0 3.981072-1 2.154115+0 4.000000-1 2.126517+0 4.027170-1 2.088553+0 4.073803-1 2.025547+0 4.120975-1 1.964443+0 4.168694-1 1.905183+0 4.216965-1 1.847717+0 4.265795-1 1.791985+0 4.315191-1 1.738045+0 4.365158-1 1.685750+0 4.415705-1 1.635027+0 4.466836-1 1.585841+0 4.518559-1 1.539138+0 4.570882-1 1.493811+0 4.623810-1 1.449819+0 4.677351-1 1.407128+0 4.786301-1 1.325479+0 4.841724-1 1.286537+0 4.897788-1 1.248761+0 4.954502-1 1.212095+0 5.011872-1 1.177311+0 5.069907-1 1.143526+0 5.128614-1 1.110711+0 5.248075-1 1.047885+0 5.308844-1 1.017822+0 5.370318-1 9.886913-1 5.432503-1 9.604070-1 5.495409-1 9.329323-1 5.559043-1 9.069073-1 5.623413-1 8.816087-1 5.754399-1 8.331140-1 5.821032-1 8.098799-1 5.888437-1 7.872937-1 5.956621-1 7.653958-1 6.025596-1 7.441172-1 6.095369-1 7.234309-1 6.165950-1 7.038438-1 6.309573-1 6.662509-1 6.456542-1 6.306711-1 6.531306-1 6.136001-1 6.606935-1 5.970435-1 6.683439-1 5.809422-1 6.760830-1 5.656891-1 6.918310-1 5.363795-1 6.998420-1 5.223014-1 7.079458-1 5.085927-1 7.161434-1 4.952444-1 7.244360-1 4.822826-1 7.328245-1 4.700484-1 7.413102-1 4.581308-1 7.498942-1 4.465164-1 7.585776-1 4.351991-1 7.673615-1 4.241688-1 7.762471-1 4.134183-1 7.852356-1 4.029403-1 7.943282-1 3.927279-1 8.035261-1 3.828029-1 8.128305-1 3.734083-1 8.317638-1 3.553165-1 8.413951-1 3.466029-1 8.511380-1 3.381031-1 8.609938-1 3.298119-1 8.709636-1 3.217254-1 8.810489-1 3.138370-1 8.912509-1 3.061423-1 9.015711-1 2.986595-1 9.120108-1 2.913599-1 9.225714-1 2.844385-1 9.440609-1 2.710874-1 9.549926-1 2.646488-1 9.660509-1 2.583646-1 9.772372-1 2.522531-1 9.885531-1 2.462912-1 1.000000+0 2.406756-1 1.011579+0 2.351883-1 1.023293+0 2.298259-1 1.035142+0 2.245868-1 1.059254+0 2.144654-1 1.071519+0 2.095775-1 1.083927+0 2.048118-1 1.109175+0 1.956034-1 1.122018+0 1.911567-1 1.135011+0 1.869347-1 1.148154+0 1.828065-1 1.161449+0 1.787696-1 1.174898+0 1.748220-1 1.188600+0 1.709345-1 1.202264+0 1.671997-1 1.216186+0 1.635202-1 1.244515+0 1.564039-1 1.258925+0 1.530737-1 1.273503+0 1.498144-1 1.288250+0 1.466245-1 1.318257+0 1.404474-1 1.348963+0 1.345494-1 1.380384+0 1.289000-1 1.396368+0 1.262513-1 1.412538+0 1.236572-1 1.428894+0 1.211166-1 1.462177+0 1.161909-1 1.479108+0 1.138111-1 1.513561+0 1.091970-1 1.531087+0 1.069609-1 1.548817+0 1.047717-1 1.566751+0 1.026938-1 1.584893+0 1.006573-1 1.640590+0 9.478681-2 1.659587+0 9.291321-2 1.717908+0 8.751183-2 1.737801+0 8.578343-2 1.757924+0 8.414216-2 1.778279+0 8.253251-2 1.798871+0 8.095357-2 1.819701+0 7.940486-2 1.840772+0 7.788580-2 1.883649+0 7.494412-2 1.927525+0 7.211359-2 1.949845+0 7.073903-2 1.972423+0 6.943456-2 2.000000+0 6.789347-2 2.018366+0 6.689760-2 2.065380+0 6.445329-2 2.089296+0 6.326488-2 2.113489+0 6.210228-2 2.162719+0 5.984082-2 2.187762+0 5.874129-2 2.213095+0 5.766213-2 2.238721+0 5.663657-2 2.264644+0 5.562934-2 2.290868+0 5.463999-2 2.344229+0 5.271383-2 2.371374+0 5.177638-2 2.398833+0 5.085856-2 2.454709+0 4.907147-2 2.483133+0 4.820171-2 2.511886+0 4.734751-2 2.540973+0 4.653524-2 2.570396+0 4.573700-2 2.600160+0 4.495245-2 2.660725+0 4.342352-2 2.691535+0 4.267868-2 2.754229+0 4.123171-2 2.818383+0 3.983383-2 2.851018+0 3.915285-2 2.884032+0 3.848358-2 2.917427+0 3.784677-2 2.951209+0 3.722055-2 2.985383+0 3.660468-2 3.054921+0 3.540338-2 3.090295+0 3.481761-2 3.162278+0 3.367867-2 3.235937+0 3.257702-2 3.273407+0 3.203985-2 3.311311+0 3.151161-2 3.349654+0 3.100793-2 3.388442+0 3.051261-2 3.467369+0 2.954561-2 3.548134+0 2.860927-2 3.589219+0 2.815230-2 3.672823+0 2.726298-2 3.758374+0 2.640178-2 3.801894+0 2.598148-2 3.845918+0 2.556793-2 3.890451+0 2.517316-2 3.935501+0 2.478471-2 4.027170+0 2.402573-2 4.168694+0 2.293059-2 4.216965+0 2.257677-2 4.315191+0 2.188756-2 4.415704+0 2.121942-2 4.466836+0 2.089306-2 4.518559+0 2.057177-2 4.570882+0 2.026490-2 4.623810+0 1.996281-2 4.731513+0 1.937206-2 4.897788+0 1.851856-2 5.000000+0 1.802625-2 5.069907+0 1.770369-2 5.188000+0 1.718145-2 5.248075+0 1.692616-2 5.308844+0 1.667470-2 5.370318+0 1.642697-2 5.432503+0 1.618997-2 5.495409+0 1.595653-2 5.623413+0 1.549972-2 5.888437+0 1.462494-2 6.025596+0 1.420625-2 6.095369+0 1.400197-2 6.309573+0 1.340658-2 6.382635+0 1.321381-2 6.531306+0 1.283660-2 6.606934+0 1.265206-2 6.683439+0 1.247531-2 6.760830+0 1.230113-2 6.839116+0 1.212939-2 7.079458+0 1.162841-2 7.161434+0 1.146606-2 7.244360+0 1.130598-2 7.328245+0 1.114861-2 7.585776+0 1.068952-2 7.673615+0 1.054074-2 7.852356+0 1.024942-2 7.943282+0 1.010679-2 8.035261+0 9.970197-3 8.128305+0 9.835533-3 8.222427+0 9.702687-3 8.609938+0 9.189009-3 8.810489+0 8.942466-3 8.912509+0 8.821989-3 9.440609+0 8.243520-3 9.549926+0 8.132469-3 9.885531+0 7.808251-3 1.011579+1 7.599323-3 1.023293+1 7.499547-3 1.035142+1 7.401140-3 1.047129+1 7.304018-3 1.083927+1 7.020250-3 1.109175+1 6.837225-3 1.122018+1 6.747734-3 1.202264+1 6.234838-3 1.216186+1 6.153233-3 1.258925+1 5.914807-3 1.288250+1 5.761005-3 1.300000+1 5.701466-3 1.318257+1 5.613352-3 1.333521+1 5.541678-3 1.380384+1 5.332091-3 1.396368+1 5.264006-3 1.412538+1 5.196788-3 1.445440+1 5.065220-3 1.566751+1 4.630419-3 1.584893+1 4.571434-3 1.659587+1 4.342933-3 1.698244+1 4.233003-3 1.717908+1 4.179088-3 1.737801+1 4.127031-3 1.757924+1 4.075645-3 1.819701+1 3.925305-3 1.840772+1 3.876434-3 1.862087+1 3.828173-3 1.905461+1 3.733648-3 2.089296+1 3.378325-3 2.113489+1 3.336359-3 2.264644+1 3.095308-3 2.344229+1 2.981393-3 2.398833+1 2.907790-3 2.426610+1 2.872390-3 2.454709+1 2.837434-3 2.540973+1 2.735103-3 2.570396+1 2.701820-3 2.600160+1 2.669002-3 2.851018+1 2.420410-3 2.917427+1 2.361971-3 3.235937+1 2.115992-3 3.349654+1 2.039830-3 3.427678+1 1.990584-3 3.467369+1 1.966785-3 3.507519+1 1.943278-3 3.589219+1 1.897105-3 3.630781+1 1.874432-3 3.672823+1 1.852030-3 3.715352+1 1.829931-3 4.315191+1 1.565527-3 4.466836+1 1.510154-3 5.069907+1 1.323370-3 5.188000+1 1.291980-3 5.248075+1 1.276566-3 5.308844+1 1.261546-3 5.370318+1 1.246707-3 5.432503+1 1.232043-3 5.495409+1 1.217552-3 5.559043+1 1.203231-3 6.998420+1 9.499792-4 7.762471+1 8.541422-4 9.225714+1 7.154204-4 9.440609+1 6.987129-4 9.549926+1 6.905921-4 9.660509+1 6.825659-4 9.772372+1 6.746346-4 9.885531+1 6.668034-4 1.258925+2 5.218108-4 1.531087+2 4.278716-4 1.840772+2 3.549661-4 1.883649+2 3.467737-4 1.905461+2 3.427719-4 1.927525+2 3.388164-4 1.949845+2 3.349069-4 1.972423+2 3.310448-4 2.511886+2 2.594796-4 3.054921+2 2.130444-4 3.672823+2 1.769605-4 3.758374+2 1.729028-4 3.801894+2 1.709184-4 3.845918+2 1.689569-4 3.890451+2 1.670180-4 3.935501+2 1.651023-4 5.011872+2 1.295804-4 1.216186+3 5.330414-5 2.917427+3 2.218182-5 2.985383+3 2.167590-5 3.019952+3 2.142769-5 3.054921+3 2.118233-5 3.090295+3 2.093979-5 3.126079+3 2.070006-5 7.943282+3 8.145482-6 1.000000+5 6.468024-7 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.120000-6 6.120000-6 6.520000-6 6.120000-6 6.520000-6 6.398927-6 6.670000-6 6.413936-6 6.670000-6 6.492488-6 7.650000-6 6.546588-6 9.600000-6 6.574555-6 3.674000-5 6.566613-6 3.674000-5 1.085212-5 3.863000-5 1.096622-5 3.863000-5 1.155159-5 4.150000-5 1.165694-5 5.996000-5 1.207095-5 5.996000-5 1.287625-5 6.900000-5 1.353663-5 7.420000-5 1.383420-5 7.950000-5 1.403921-5 8.511380-5 1.414987-5 9.225714-5 1.417270-5 1.030000-4 1.406577-5 1.288250-4 1.369874-5 1.500000-4 1.349291-5 1.770000-4 1.333859-5 1.904900-4 1.328920-5 1.904900-4 1.728006-5 1.917000-4 1.727219-5 1.930900-4 1.737473-5 1.930900-4 1.899954-5 1.942000-4 1.912095-5 1.953000-4 1.935529-5 1.963000-4 1.966729-5 1.975000-4 2.016282-5 1.990000-4 2.092088-5 2.019200-4 2.249261-5 2.035000-4 2.323178-5 2.052000-4 2.388466-5 2.067000-4 2.434668-5 2.092000-4 2.492198-5 2.120000-4 2.537249-5 2.155000-4 2.576306-5 2.205000-4 2.612494-5 2.280000-4 2.642974-5 2.380000-4 2.662182-5 2.660725-4 2.683863-5 3.162278-4 2.694357-5 3.308800-4 2.695129-5 3.308800-4 2.819215-5 3.449300-4 2.831841-5 3.449300-4 2.884492-5 3.935501-4 2.925721-5 4.220600-4 2.943014-5 4.220600-4 3.048029-5 6.095369-4 3.181133-5 8.035261-4 3.289987-5 1.047129-3 3.396831-5 1.350000-3 3.500211-5 1.730000-3 3.600038-5 2.224800-3 3.698182-5 2.224800-3 5.681752-5 2.312200-3 5.687080-5 2.312200-3 5.935758-5 2.514600-3 5.944595-5 2.514600-3 6.293999-5 3.589219-3 6.423963-5 5.308844-3 6.583968-5 7.852356-3 6.756834-5 1.122018-2 6.922743-5 1.566751-2 7.079643-5 1.796200-2 7.142180-5 1.796200-2 7.861048-5 3.467369-2 7.911368-5 8.709636-2 7.948426-5 4.073803-1 7.970370-5 1.000000+5 7.974058-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.120000-6 0.0 3.674000-5 0.0 3.674000-5 5.15532-10 3.770000-5 5.23830-10 3.863000-5 5.29370-10 3.863000-5 6.14702-10 4.030000-5 6.23883-10 4.315191-5 6.33792-10 5.400000-5 6.63613-10 5.996000-5 6.81475-10 5.996000-5 6.99864-10 6.531306-5 7.18422-10 7.000000-5 7.29857-10 7.420000-5 7.35313-10 7.900000-5 7.36340-10 8.511380-5 7.31643-10 9.660509-5 7.14856-10 1.122018-4 6.91614-10 1.244515-4 6.77651-10 1.380384-4 6.66754-10 1.540000-4 6.58763-10 1.757924-4 6.53116-10 1.904900-4 6.51448-10 1.904900-4 8.33957-10 1.922000-4 8.34656-10 1.930900-4 8.38412-10 1.930900-4 1.028398-8 1.937000-4 1.017807-8 1.942000-4 1.009975-8 1.950000-4 1.003890-8 1.953000-4 1.002515-8 1.962000-4 1.006515-8 1.966500-4 1.012069-8 1.974000-4 1.027729-8 1.979500-4 1.044018-8 1.985000-4 1.064774-8 1.990000-4 1.087066-8 1.996000-4 1.118537-8 2.002000-4 1.154382-8 2.010000-4 1.207205-8 2.027000-4 1.334467-8 2.045000-4 1.476302-8 2.052000-4 1.529209-8 2.060000-4 1.586790-8 2.075000-4 1.683995-8 2.085000-4 1.740433-8 2.092000-4 1.778052-8 2.100000-4 1.816002-8 2.113489-4 1.871034-8 2.120000-4 1.896635-8 2.137962-4 1.953183-8 2.155000-4 1.999676-8 2.185000-4 2.066068-8 2.213095-4 2.115807-8 2.245000-4 2.161830-8 2.280000-4 2.201273-8 2.323000-4 2.238142-8 2.380000-4 2.270316-8 2.454709-4 2.295087-8 2.650000-4 2.331591-8 2.851018-4 2.354693-8 3.240000-4 2.373586-8 3.308800-4 2.375461-8 3.308800-4 2.492616-8 3.449300-4 2.507817-8 3.449300-4 2.673703-8 3.890451-4 2.736432-8 4.220600-4 2.772595-8 4.220600-4 2.918149-8 5.432503-4 3.061628-8 6.382635-4 3.159291-8 7.852356-4 3.288278-8 9.885531-4 3.430711-8 1.216186-3 3.559525-8 1.500000-3 3.687334-8 1.819701-3 3.802071-8 2.224800-3 3.916373-8 2.224800-3 4.482244-5 2.312200-3 4.485502-5 2.312200-3 5.168455-5 2.514600-3 5.175461-5 2.514600-3 5.303278-5 4.168694-3 5.316450-5 1.678804-2 5.249932-5 1.796200-2 5.246597-5 1.796200-2 1.003176-2 2.317395-2 1.013685-2 3.311311-2 1.023126-2 5.308844-2 1.030451-2 1.047129-1 1.035098-2 5.432503-1 1.037278-2 1.202264+1 1.038233-2 1.000000+5 1.038225-2 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.120000-6 0.0 6.520000-6 4.000000-7 6.520000-6 1.210727-7 6.670000-6 2.560639-7 6.670000-6 1.775122-7 6.800000-6 2.971919-7 7.000000-6 4.833984-7 7.200000-6 6.720753-7 7.420000-6 8.818909-7 7.852356-6 1.299757-6 8.609938-6 2.043152-6 1.060000-5 4.022588-6 3.674000-5 3.017339-5 3.674000-5 2.588736-5 3.863000-5 2.766325-5 3.863000-5 2.707780-5 4.677351-5 3.500045-5 5.996000-5 4.788837-5 5.996000-5 4.708305-5 7.420000-5 6.036506-5 8.650000-5 7.233566-5 1.161449-4 1.022755-4 1.904900-4 1.772001-4 1.904900-4 1.732091-4 1.930900-4 1.757144-4 1.930900-4 1.740802-4 1.969000-4 1.769902-4 2.050000-4 1.811688-4 2.115000-4 1.861773-4 2.264644-4 2.000597-4 3.240000-4 2.970270-4 3.308800-4 3.039050-4 3.308800-4 3.026629-4 3.449300-4 3.165865-4 3.449300-4 3.160584-4 4.220600-4 3.926021-4 4.220600-4 3.915505-4 1.621810-3 1.586028-3 2.224800-3 2.187779-3 2.224800-3 2.123160-3 2.312200-3 2.210474-3 2.312200-3 2.201158-3 2.514600-3 2.403399-3 2.514600-3 2.398627-3 1.796200-2 1.783811-2 1.796200-2 7.851632-3 2.264644-2 1.243764-2 3.758374-2 2.724941-2 2.454709-1 2.350234-1 1.000000+5 9.999999+4 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.796200-2 1.219054+4 1.828000-2 1.170640+4 1.870000-2 1.101240+4 1.930000-2 1.019078+4 2.041738-2 8.790802+3 2.264644-2 6.745671+3 2.691535-2 4.269893+3 3.349654-2 2.360639+3 3.890451-2 1.560607+3 4.500000-2 1.039078+3 5.500000-2 5.879020+2 6.760830-2 3.245413+2 8.511380-2 1.659145+2 1.148154-1 6.873344+1 1.862087-1 1.646726+1 2.290868-1 8.982904+0 2.691535-1 5.646349+0 3.126079-1 3.693697+0 3.548134-1 2.597216+0 4.000000-1 1.874170+0 4.466836-1 1.397802+0 4.954502-1 1.068510+0 5.495409-1 8.224973-1 6.095369-1 6.378564-1 6.683439-1 5.122777-1 7.244360-1 4.253193-1 8.035261-1 3.376756-1 9.120108-1 2.570798-1 9.885531-1 2.173271-1 1.122018+0 1.686871-1 1.244515+0 1.380165-1 1.380384+0 1.137442-1 1.548817+0 9.244987-2 1.737801+0 7.569460-2 1.949845+0 6.241955-2 2.213095+0 5.088171-2 2.511886+0 4.178031-2 2.884032+0 3.395815-2 3.311311+0 2.780567-2 3.845918+0 2.256099-2 4.518559+0 1.815247-2 5.370318+0 1.449517-2 6.606934+0 1.116418-2 7.943282+0 8.918154-3 1.011579+1 6.705628-3 1.300000+1 5.031000-3 1.717908+1 3.687657-3 2.398833+1 2.565840-3 3.427678+1 1.756547-3 5.248075+1 1.126486-3 9.440609+1 6.165825-4 1.883649+2 3.060157-4 3.758374+2 1.525820-4 2.985383+3 1.912825-5 1.000000+5 5.707900-7 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.796200-2 7.985400-5 1.000000+5 7.985400-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.796200-2 1.175800-2 1.000000+5 1.175800-2 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.796200-2 6.124146-3 1.000000+5 9.999999+4 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.514600-3 5.244240+4 2.722701-3 4.632224+4 3.019952-3 3.927142+4 3.273407-3 3.417771+4 4.073803-3 2.331174+4 4.415704-3 2.009057+4 5.308844-3 1.416487+4 5.956621-3 1.127722+4 6.839116-3 8.527267+3 7.852356-3 6.386040+3 8.810489-3 4.991738+3 1.035142-2 3.502841+3 1.202264-2 2.497865+3 1.364583-2 1.864213+3 1.566751-2 1.346049+3 1.819701-2 9.386744+2 2.137962-2 6.312746+2 2.500000-2 4.260760+2 2.917427-2 2.868924+2 3.427678-2 1.884360+2 4.073803-2 1.191239+2 4.841724-2 7.470221+1 5.821032-2 4.504422+1 7.079458-2 2.609434+1 8.709636-2 1.452036+1 1.109175-1 7.265792+0 2.041738-1 1.247250+0 2.483133-1 7.117987-1 2.917427-1 4.515737-1 3.349654-1 3.078013-1 3.801894-1 2.180695-1 4.265795-1 1.604666-1 4.786301-1 1.189293-1 5.308844-1 9.145519-2 5.888437-1 7.082932-2 6.531306-1 5.527129-2 7.161434-1 4.467734-2 7.943282-1 3.543163-2 8.912509-1 2.761201-2 9.660509-1 2.329621-2 1.071519+0 1.889766-2 1.188600+0 1.541008-2 1.318257+0 1.266302-2 1.462177+0 1.047471-2 1.640590+0 8.545470-3 1.840772+0 7.022135-3 2.089296+0 5.703182-3 2.371374+0 4.667613-3 2.691535+0 3.847179-3 3.090295+0 3.138908-3 3.589219+0 2.538010-3 4.216965+0 2.035363-3 5.000000+0 1.625000-3 6.025596+0 1.280618-3 7.244360+0 1.019234-3 8.810489+0 8.061255-4 1.109175+1 6.163739-4 1.412538+1 4.685380-4 1.862087+1 3.451551-4 2.570396+1 2.436864-4 3.672823+1 1.670225-4 5.559043+1 1.085309-4 9.772372+1 6.086035-5 1.949845+2 3.021510-5 3.890451+2 1.506772-5 3.090295+3 1.889378-6 1.000000+5 5.835900-8 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.514600-3 8.698000-5 1.000000+5 8.698000-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.514600-3 6.182700-5 1.000000+5 6.182700-5 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.514600-3 2.365793-3 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.312200-3 1.230785+5 2.403000-3 1.119000+5 2.440000-3 1.084500+5 2.600160-3 9.289200+4 2.770000-3 7.893900+4 3.300000-3 4.950600+4 3.715352-3 3.593400+4 4.027170-3 2.877000+4 4.677351-3 1.890200+4 5.370318-3 1.268100+4 6.025596-3 9.057100+3 7.244360-3 5.222800+3 8.317638-3 3.427800+3 9.500000-3 2.273500+3 1.122018-2 1.348200+3 1.333521-2 7.767600+2 1.584893-2 4.436600+2 1.905461-2 2.419800+2 2.264644-2 1.360400+2 2.722701-2 7.307700+1 3.349654-2 3.603300+1 4.216965-2 1.628900+1 5.623413-2 5.985000+0 9.885531-2 8.339300-1 1.244515-1 3.753600-1 1.500000-1 1.978200-1 1.757924-1 1.155400-1 2.299100-1 4.697300-2 2.511886-1 3.513400-2 2.691535-1 2.818100-2 2.884032-1 2.275800-2 3.000060-1 2.019840-2 3.349654-1 1.433249-2 3.758374-1 1.009141-2 4.168694-1 7.410400-3 4.623810-1 5.479642-3 5.128614-1 4.082043-3 5.623413-1 3.163143-3 6.165950-1 2.468201-3 6.760830-1 1.940405-3 7.413102-1 1.535640-3 8.609938-1 1.060160-3 9.225714-1 8.992520-4 9.772372-1 7.888171-4 1.035142+0 6.965006-4 1.109175+0 6.037474-4 1.188600+0 5.269874-4 1.318257+0 4.350967-4 1.479108+0 3.543190-4 1.717908+0 2.728808-4 1.927525+0 2.247438-4 2.162719+0 1.864649-4 2.454709+0 1.529222-4 2.818383+0 1.241281-4 3.235937+0 1.015176-4 3.758374+0 8.227629-5 4.415704+0 6.612597-5 5.188000+0 5.353419-5 6.309573+0 4.176931-5 7.585776+0 3.330502-5 9.440609+0 2.568087-5 1.202264+1 1.942225-5 1.566751+1 1.442414-5 2.089296+1 1.052357-5 2.851018+1 7.539259-6 4.315191+1 4.876431-6 6.998420+1 2.959150-6 1.258925+2 1.625657-6 2.511886+2 8.087084-7 5.011872+2 4.037278-7 7.943282+3 2.539088-8 1.000000+5 2.016600-9 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.312200-3 6.582600-5 1.000000+5 6.582600-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.312200-3 6.944900-5 1.000000+5 6.944900-5 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.312200-3 2.176925-3 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.224800-3 2.582588+5 2.454709-3 2.032426+5 2.570396-3 1.807796+5 2.786121-3 1.458014+5 3.400000-3 8.484400+4 3.801894-3 6.227592+4 4.518559-3 3.810038+4 5.128614-3 2.630167+4 5.821032-3 1.807919+4 6.918310-3 1.071733+4 7.852356-3 7.254599+3 9.015711-3 4.710186+3 1.059254-2 2.821744+3 1.244515-2 1.676060+3 1.462177-2 9.874715+2 1.737801-2 5.554285+2 2.065380-2 3.098293+2 2.426610-2 1.784432+2 2.884032-2 9.812812+1 3.467369-2 5.148135+1 4.216965-2 2.575722+1 5.370318-2 1.085921+1 1.109175-1 7.956878-1 1.348963-1 3.952722-1 1.640590-1 1.979115-1 1.883649-1 1.222555-1 2.137962-1 7.913470-2 2.426610-1 5.160061-2 2.722701-1 3.524367-2 3.019952-1 2.518196-2 3.349654-1 1.812542-2 3.672823-1 1.362255-2 4.027170-1 1.030829-2 4.415705-1 7.858699-3 4.841724-1 6.035976-3 5.248075-1 4.822460-3 5.754399-1 3.759149-3 6.309573-1 2.953264-3 6.918310-1 2.337761-3 7.498942-1 1.917779-3 8.128305-1 1.583169-3 8.912509-1 1.280364-3 9.549926-1 1.098871-3 1.023293+0 9.501386-4 1.122018+0 7.884960-4 1.216186+0 6.741361-4 1.348963+0 5.557986-4 1.513561+0 4.520623-4 1.717908+0 3.624762-4 1.927525+0 2.986150-4 2.187762+0 2.432062-4 2.483133+0 1.995713-4 2.851018+0 1.621122-4 3.273407+0 1.326673-4 3.801894+0 1.075827-4 4.466836+0 8.651109-5 5.248075+0 7.007300-5 6.382635+0 5.469849-5 7.673615+0 4.363434-5 9.549926+0 3.365992-5 1.216186+1 2.546662-5 1.584893+1 1.891994-5 2.113489+1 1.380727-5 2.917427+1 9.774026-6 4.466836+1 6.249273-6 7.762471+1 3.534588-6 1.531087+2 1.771230-6 3.054921+2 8.821405-7 1.216186+3 2.206103-7 1.000000+5 2.679100-9 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.224800-3 6.401000-5 1.000000+5 6.401000-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.224800-3 6.106100-5 1.000000+5 6.106100-5 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.224800-3 2.099729-3 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.220600-4 1.595758+5 4.750000-4 1.410682+5 5.370318-4 1.236272+5 6.025596-4 1.086154+5 7.300000-4 8.498120+4 7.852356-4 7.692954+4 9.225714-4 6.097892+4 1.023293-3 5.219831+4 1.202264-3 4.053906+4 1.350000-3 3.358540+4 1.584893-3 2.567517+4 1.862087-3 1.941707+4 2.162719-3 1.486556+4 2.500000-3 1.140320+4 2.917427-3 8.536416+3 3.427678-3 6.262317+3 4.027170-3 4.558709+3 4.731513-3 3.292832+3 5.500000-3 2.413340+3 6.382635-3 1.763221+3 7.500000-3 1.245644+3 8.810489-3 8.738169+2 1.035142-2 6.081817+2 1.216186-2 4.200430+2 1.428894-2 2.878214+2 1.678804-2 1.956696+2 1.972423-2 1.319814+2 2.317395-2 8.832060+1 2.722701-2 5.865426+1 3.198895-2 3.866677+1 3.758374-2 2.530937+1 4.466836-2 1.594931+1 5.308844-2 9.975796+0 6.382635-2 6.001153+0 7.762471-2 3.470141+0 9.660509-2 1.865823+0 1.273503-1 8.443236-1 2.041738-1 2.165863-1 2.483133-1 1.237720-1 2.917427-1 7.858943-2 3.388442-1 5.191638-2 3.845918-1 3.681305-2 4.315191-1 2.711522-2 4.841724-1 2.011916-2 5.370318-1 1.548891-2 5.956621-1 1.200926-2 6.606935-1 9.382788-3 7.328245-1 7.387738-3 8.128305-1 5.862208-3 8.912509-1 4.803128-3 9.772372-1 3.964834-3 1.122018+0 3.008472-3 1.244515+0 2.461619-3 1.380384+0 2.028095-3 1.531087+0 1.681802-3 1.717908+0 1.376188-3 1.949845+0 1.112718-3 2.213095+0 9.067226-4 2.511886+0 7.445101-4 2.884032+0 6.052356-4 3.349654+0 4.875883-4 3.890451+0 3.958496-4 4.570882+0 3.186552-4 5.432503+0 2.545821-4 6.683439+0 1.961749-4 8.035261+0 1.567827-4 1.023293+1 1.179337-4 1.318257+1 8.827382-5 1.737801+1 6.490326-5 2.426610+1 4.517385-5 3.467369+1 3.093172-5 5.308844+1 1.984122-5 9.660509+1 1.073511-5 1.927525+2 5.329094-6 3.845918+2 2.657367-6 3.054921+3 3.331936-7 1.000000+5 1.017400-8 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.220600-4 5.366300-5 1.000000+5 5.366300-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.220600-4 6.131300-8 1.000000+5 6.131300-8 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.220600-4 3.683357-4 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.449300-4 1.879308+5 3.510000-4 1.897031+5 3.630781-4 1.919726+5 3.758374-4 1.927188+5 3.890451-4 1.925040+5 4.120975-4 1.898514+5 4.570882-4 1.824239+5 4.786301-4 1.779482+5 5.069907-4 1.712523+5 5.432503-4 1.621294+5 5.900000-4 1.502498+5 6.237348-4 1.418517+5 6.683439-4 1.309732+5 7.300000-4 1.173260+5 7.852356-4 1.063957+5 8.511380-4 9.468234+4 9.332543-4 8.224869+4 1.011579-3 7.223858+4 1.110000-3 6.171160+4 1.216186-3 5.252857+4 1.333521-3 4.431959+4 1.479108-3 3.634279+4 1.621810-3 3.025640+4 1.800000-3 2.441860+4 1.995262-3 1.960872+4 2.220000-3 1.551346+4 2.500000-3 1.185000+4 2.786121-3 9.200257+3 3.126079-3 6.979420+3 3.507519-3 5.254951+3 3.935501-3 3.927516+3 4.415704-3 2.915024+3 4.954502-3 2.148916+3 5.559043-3 1.573841+3 6.309573-3 1.109178+3 7.161434-3 7.760510+2 8.128305-3 5.391902+2 9.225714-3 3.721051+2 1.059254-2 2.464333+2 1.216186-2 1.619576+2 1.396368-2 1.056739+2 1.621810-2 6.602375+1 1.883649-2 4.093860+1 2.213095-2 2.427579+1 2.600160-2 1.428823+1 3.090295-2 8.038099+0 3.758374-2 4.154833+0 4.677351-2 1.970690+0 6.165950-2 7.612086-1 1.071519-1 1.123898-1 1.333521-1 5.306597-2 1.603245-1 2.841358-2 1.883649-1 1.656867-2 2.187762-1 1.011217-2 2.511886-1 6.457123-3 2.851018-1 4.311662-3 3.198895-1 3.007678-3 3.589219-1 2.113440-3 4.000000-1 1.527097-3 4.466836-1 1.105270-3 4.954502-1 8.220455-4 5.495409-1 6.159908-4 6.025596-1 4.798372-4 6.606935-1 3.764369-4 7.244360-1 2.972966-4 8.413951-1 2.048302-4 9.015711-1 1.733302-4 9.549926-1 1.516772-4 1.011579+0 1.335847-4 1.083927+0 1.155450-4 1.161449+0 1.006219-4 1.244515+0 8.829828-5 1.380384+0 7.312079-5 1.659587+0 5.288458-5 1.883649+0 4.263868-5 2.113489+0 3.532160-5 2.398833+0 2.892820-5 2.754229+0 2.345063-5 3.162278+0 1.915589-5 3.672823+0 1.550695-5 4.315191+0 1.244975-5 5.069907+0 1.006913-5 6.095369+0 7.963304-6 7.328245+0 6.340580-6 8.912509+0 5.017121-6 1.122018+1 3.837583-6 1.445440+1 2.880808-6 1.905461+1 2.123486-6 2.600160+1 1.518600-6 3.715352+1 1.041107-6 5.559043+1 6.847230-7 9.885531+1 3.794825-7 1.972423+2 1.884230-7 3.935501+2 9.396480-8 3.126079+3 1.178317-8 1.000000+5 3.68180-10 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.449300-4 4.148400-5 1.000000+5 4.148400-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.449300-4 6.655900-8 1.000000+5 6.655900-8 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.449300-4 3.033794-4 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.308800-4 4.046964+5 3.350000-4 4.130496+5 3.480000-4 4.290288+5 3.630781-4 4.410165+5 3.715352-4 4.433891+5 3.801894-4 4.431503+5 3.935501-4 4.384358+5 4.430000-4 4.110720+5 4.623810-4 3.993254+5 4.897788-4 3.816270+5 5.248075-4 3.585638+5 5.623413-4 3.344944+5 5.956621-4 3.140854+5 6.382635-4 2.888259+5 7.000000-4 2.559388+5 7.500000-4 2.325156+5 8.035261-4 2.099222+5 8.810489-4 1.817231+5 9.660509-4 1.562297+5 1.059254-3 1.331949+5 1.161449-3 1.128510+5 1.273503-3 9.494667+4 1.412538-3 7.761729+4 1.548817-3 6.445191+4 1.730000-3 5.117520+4 1.927525-3 4.051034+4 2.137962-3 3.216448+4 2.400000-3 2.466552+4 2.660725-3 1.933155+4 2.951209-3 1.504397+4 3.349654-3 1.098016+4 3.801894-3 7.942710+3 4.315191-3 5.696281+3 4.841724-3 4.180024+3 5.432503-3 3.047249+3 6.095369-3 2.207207+3 6.918310-3 1.537122+3 7.943282-3 1.027340+3 9.120108-3 6.809076+2 1.035142-2 4.636688+2 1.188502-2 3.026237+2 1.364583-2 1.960856+2 1.566751-2 1.261246+2 1.819701-2 7.756151+1 2.113489-2 4.733244+1 2.483133-2 2.758696+1 2.917427-2 1.595752+1 3.467369-2 8.809357+0 4.168694-2 4.638870+0 5.128614-2 2.236703+0 6.606934-2 9.091207-1 1.188502-1 1.114566-1 1.445440-1 5.567586-2 1.698244-1 3.164133-2 1.949845-1 1.962253-2 2.213095-1 1.274576-2 2.483133-1 8.666430-3 2.786121-1 5.935418-3 3.090295-1 4.251311-3 3.427678-1 3.067393-3 3.758374-1 2.310397-3 4.120975-1 1.752300-3 4.518559-1 1.338887-3 4.954502-1 1.030772-3 5.432503-1 7.999715-4 5.956621-1 6.257684-4 6.531306-1 4.933123-4 7.079458-1 4.032408-4 7.673615-1 3.316511-4 8.511380-1 2.599693-4 9.120108-1 2.223693-4 9.772372-1 1.914418-4 1.059254+0 1.621099-4 1.161449+0 1.349647-4 1.273503+0 1.131526-4 1.412538+0 9.357051-5 1.640590+0 7.183458-5 1.840772+0 5.901766-5 2.065380+0 4.882756-5 2.344229+0 3.993679-5 2.660725+0 3.289608-5 3.054921+0 2.682206-5 3.548134+0 2.167414-5 4.168694+0 1.737183-5 4.897788+0 1.402816-5 5.888437+0 1.107876-5 7.079458+0 8.809355-6 8.609938+0 6.961312-6 1.083927+1 5.318890-6 1.396368+1 3.988494-6 1.840772+1 2.937305-6 2.540973+1 2.073126-6 3.589219+1 1.437956-6 5.432503+1 9.339628-7 9.660509+1 5.174849-7 1.927525+2 2.568899-7 3.845918+2 1.280987-7 3.054921+3 1.606114-8 1.000000+5 4.90430-10 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.308800-4 4.144000-5 1.000000+5 4.144000-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.308800-4 3.743400-8 1.000000+5 3.743400-8 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.308800-4 2.894026-4 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.930900-4 1.310304+5 1.935000-4 1.301320+5 1.942000-4 1.295052+5 1.948000-4 1.299940+5 1.953000-4 1.311676+5 1.957000-4 1.327140+5 1.962000-4 1.354148+5 1.966500-4 1.386644+5 1.970000-4 1.417856+5 1.974000-4 1.460424+5 1.979500-4 1.531792+5 1.985000-4 1.619092+5 1.990000-4 1.713336+5 1.996000-4 1.846372+5 2.002000-4 2.002232+5 2.010000-4 2.246844+5 2.035000-4 3.272824+5 2.045000-4 3.777132+5 2.052000-4 4.153040+5 2.060000-4 4.599280+5 2.067000-4 4.999920+5 2.075000-4 5.463720+5 2.083000-4 5.930480+5 2.092000-4 6.454000+5 2.100000-4 6.914920+5 2.110000-4 7.483240+5 2.120000-4 8.040600+5 2.131000-4 8.640720+5 2.143500-4 9.305260+5 2.155000-4 9.900440+5 2.170000-4 1.065260+6 2.185000-4 1.137596+6 2.198000-4 1.197692+6 2.213095-4 1.264306+6 2.230000-4 1.334180+6 2.245000-4 1.391620+6 2.264644-4 1.460207+6 2.280000-4 1.508188+6 2.300000-4 1.563632+6 2.323000-4 1.617584+6 2.350000-4 1.669244+6 2.380000-4 1.714372+6 2.415000-4 1.754716+6 2.454709-4 1.789347+6 2.511886-4 1.826003+6 2.580000-4 1.856412+6 2.650000-4 1.874248+6 2.722701-4 1.877733+6 2.800000-4 1.865712+6 2.884032-4 1.838509+6 3.000000-4 1.787596+6 3.126079-4 1.723432+6 3.240000-4 1.660520+6 3.350000-4 1.595576+6 3.470000-4 1.521676+6 3.672823-4 1.397163+6 3.850000-4 1.292776+6 4.100000-4 1.156196+6 4.315191-4 1.049371+6 4.570882-4 9.339957+5 4.897788-4 8.057563+5 5.248075-4 6.908334+5 5.623413-4 5.881477+5 6.095369-4 4.837751+5 6.683439-4 3.842226+5 7.300000-4 3.055828+5 8.128305-4 2.293819+5 8.912509-4 1.780281+5 9.885531-4 1.329502+5 1.096478-3 9.847806+4 1.216186-3 7.244533+4 1.364583-3 5.106116+4 1.513561-3 3.700450+4 1.698244-3 2.568449+4 1.927525-3 1.703746+4 2.187762-3 1.120141+4 2.454709-3 7.593987+3 2.754229-3 5.112711+3 3.090295-3 3.418481+3 3.467369-3 2.270021+3 3.890451-3 1.497314+3 4.415704-3 9.404121+2 5.069907-3 5.613180+2 5.792850-3 3.383808+2 6.531306-3 2.132660+2 7.585776-3 1.189079+2 8.609938-3 7.202827+1 1.000000-2 3.951940+1 1.148154-2 2.253250+1 1.333521-2 1.216385+1 1.548817-2 6.518492+0 1.840772-2 3.148295+0 2.238721-2 1.368496+0 2.818383-2 5.090970-1 3.758374-2 1.466421-1 6.456542-2 1.394359-2 8.128305-2 5.157189-3 9.772372-2 2.343552-3 1.148154-1 1.183235-3 1.333521-1 6.317368-4 1.531088-1 3.565166-4 1.737801-1 2.124773-4 1.949845-1 1.336230-4 2.187762-1 8.467057-5 2.454709-1 5.407074-5 2.722701-1 3.636073-5 3.054921-1 2.357887-5 3.388442-1 1.607817-5 3.715352-1 1.151582-5 4.073803-1 8.303471-6 4.466836-1 6.030135-6 4.897788-1 4.413182-6 5.308844-1 3.382549-6 5.821032-1 2.515078-6 6.456542-1 1.815998-6 6.998420-1 1.418472-6 7.585776-1 1.115226-6 8.511380-1 7.967518-7 9.015711-1 6.778078-7 9.440609-1 5.992750-7 9.885531-1 5.333634-7 1.035142+0 4.783408-7 1.083927+0 4.323039-7 1.135011+0 3.932329-7 1.202264+0 3.518137-7 1.288250+0 3.101494-7 1.412538+0 2.644320-7 1.531087+0 2.306972-7 1.798871+0 1.746274-7 2.000000+0 1.462800-7 2.264644+0 1.198571-7 2.570396+0 9.854239-8 2.951209+0 8.019983-8 3.388442+0 6.574848-8 3.935501+0 5.340821-8 4.623810+0 4.301570-8 5.495409+0 3.438449-8 6.760830+0 2.650677-8 8.128305+0 2.119495-8 1.035142+1 1.595012-8 1.318257+1 1.209912-8 1.737801+1 8.895691-9 2.426610+1 6.191588-9 3.467369+1 4.239566-9 5.308844+1 2.719470-9 9.549926+1 1.488719-9 1.905461+2 7.38960-10 3.801894+2 3.68459-10 3.019952+3 4.61960-11 1.000000+5 1.39440-12 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.930900-4 2.777300-5 1.000000+5 2.777300-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.930900-4 6.128700-8 1.000000+5 6.128700-8 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.930900-4 1.652557-4 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.904900-4 1.927140+5 1.911000-4 1.913814+5 1.917000-4 1.913106+5 1.922000-4 1.923558+5 1.927525-4 1.947128+5 1.933000-4 1.985598+5 1.937000-4 2.024004+5 1.942000-4 2.085378+5 1.946500-4 2.154792+5 1.951500-4 2.249106+5 1.957000-4 2.375640+5 1.963000-4 2.543160+5 1.969000-4 2.743614+5 1.975000-4 2.978802+5 1.983000-4 3.348462+5 2.010000-4 5.054364+5 2.019200-4 5.771663+5 2.027000-4 6.417600+5 2.035000-4 7.105980+5 2.043000-4 7.811400+5 2.050000-4 8.436120+5 2.058000-4 9.152280+5 2.067000-4 9.954780+5 2.075000-4 1.066110+6 2.085000-4 1.153086+6 2.095000-4 1.238370+6 2.105000-4 1.321866+6 2.115000-4 1.403520+6 2.129600-4 1.519444+6 2.142000-4 1.614756+6 2.155000-4 1.711428+6 2.170000-4 1.818510+6 2.187762-4 1.938432+6 2.205000-4 2.046840+6 2.220000-4 2.134134+6 2.240000-4 2.239722+6 2.260000-4 2.332584+6 2.280000-4 2.412954+6 2.300000-4 2.481618+6 2.323000-4 2.547576+6 2.350000-4 2.610042+6 2.380000-4 2.664540+6 2.415000-4 2.713734+6 2.454709-4 2.756788+6 2.520000-4 2.808444+6 2.580000-4 2.839584+6 2.650000-4 2.856264+6 2.722701-4 2.850740+6 2.800000-4 2.822652+6 2.884032-4 2.773854+6 3.000000-4 2.689626+6 3.126079-4 2.587255+6 3.240000-4 2.487714+6 3.350000-4 2.385972+6 3.500000-4 2.242566+6 3.672823-4 2.081167+6 3.850000-4 1.921944+6 4.100000-4 1.715064+6 4.350000-4 1.529790+6 4.623810-4 1.348664+6 4.954502-4 1.160154+6 5.308844-4 9.920535+5 5.688529-4 8.428616+5 6.237348-4 6.720992+5 6.760830-4 5.477710+5 7.413102-4 4.303927+5 8.200000-4 3.279156+5 9.015711-4 2.521418+5 1.000000-3 1.878060+5 1.110000-3 1.385328+5 1.230269-3 1.018691+5 1.364583-3 7.422994+4 1.531087-3 5.180031+4 1.717908-3 3.585788+4 1.905461-3 2.558824+4 2.150000-3 1.714146+4 2.426610-3 1.138117+4 2.754229-3 7.352180+3 3.126079-3 4.709673+3 3.548134-3 2.991595+3 4.000000-3 1.932192+3 4.466836-3 1.283759+3 5.011872-3 8.329486+2 5.623413-3 5.372639+2 6.382635-3 3.294815+2 7.244360-3 2.007271+2 8.317638-3 1.160053+2 9.440609-3 6.971232+1 1.083927-2 3.969368+1 1.244515-2 2.244066+1 1.445440-2 1.200595+1 1.678804-2 6.373820+0 2.000000-2 3.014376+0 2.426610-2 1.308078+0 3.054921-2 4.798789-1 4.027170-2 1.428442-1 7.413102-2 9.718986-3 9.885531-2 2.760862-3 1.135011-1 1.520495-3 1.288250-1 8.860848-4 1.462177-1 5.200777-4 1.659587-1 3.075057-4 1.840772-1 2.013724-4 2.041738-1 1.327699-4 2.264644-1 8.819902-5 2.483133-1 6.173072-5 2.722701-1 4.350059-5 2.985383-1 3.087744-5 3.235937-1 2.303520-5 3.507519-1 1.730412-5 3.801894-1 1.309511-5 4.027170-1 1.078507-5 4.365158-1 8.292407-6 4.786301-1 6.187922-6 5.432503-1 4.167838-6 5.888437-1 3.264116-6 6.165950-1 2.852515-6 6.606935-1 2.346102-6 7.161434-1 1.882590-6 8.128305-1 1.342989-6 8.709636-1 1.125004-6 9.225714-1 9.768455-7 9.772372-1 8.540940-7 1.035142+0 7.525828-7 1.109175+0 6.515338-7 1.188600+0 5.683900-7 1.288250+0 4.893380-7 1.428894+0 4.068344-7 1.737801+0 2.894702-7 1.949845+0 2.385153-7 2.213095+0 1.944296-7 2.511886+0 1.596523-7 2.884032+0 1.297555-7 3.311311+0 1.062464-7 3.845918+0 8.620712-8 4.518559+0 6.935894-8 5.308844+0 5.620755-8 6.531306+0 4.327038-8 7.852356+0 3.455062-8 9.885531+0 2.631772-8 1.258925+1 1.993438-8 1.659587+1 1.463729-8 2.264644+1 1.043122-8 3.235937+1 7.131141-9 5.069907+1 4.460581-9 9.225714+1 2.411904-9 1.840772+2 1.196811-9 3.672823+2 5.96646-10 2.917427+3 7.47918-11 1.000000+5 2.18100-12 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.904900-4 2.797600-5 1.000000+5 2.797600-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.904900-4 1.323100-9 1.000000+5 1.323100-9 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.904900-4 1.625127-4 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.996000-5 1.824930+5 6.165950-5 1.847048+5 7.413102-5 2.041295+5 7.900000-5 2.101300+5 8.317638-5 2.137432+5 8.709636-5 2.156717+5 9.120108-5 2.161464+5 9.566300-5 2.150190+5 1.000000-4 2.125340+5 1.047129-4 2.086647+5 1.109175-4 2.023882+5 1.190000-4 1.933208+5 1.288250-4 1.821760+5 1.412538-4 1.687629+5 1.531087-4 1.567477+5 1.659587-4 1.444653+5 1.800000-4 1.320632+5 2.000000-4 1.165818+5 2.264644-4 9.986450+4 2.511886-4 8.717151+4 2.818383-4 7.435363+4 3.311311-4 5.901181+4 3.758374-4 4.888075+4 4.570882-4 3.618401+4 5.432503-4 2.752660+4 6.606934-4 2.005009+4 8.222426-4 1.395185+4 1.023293-3 9.629577+3 1.244515-3 6.860598+3 1.500000-3 4.928660+3 1.778279-3 3.621050+3 2.113489-3 2.629799+3 2.532000-3 1.867394+3 3.019952-3 1.327304+3 3.589219-3 9.434282+2 4.265795-3 6.658022+2 5.069907-3 4.664137+2 6.000000-3 3.271520+2 7.079458-3 2.291611+2 8.317638-3 1.608450+2 9.772372-3 1.120789+2 1.148154-2 7.753194+1 1.348963-2 5.323762+1 1.584893-2 3.627625+1 1.862087-2 2.452676+1 2.187762-2 1.645700+1 2.570396-2 1.096242+1 3.019952-2 7.248902+0 3.548134-2 4.757118+0 4.216965-2 3.006195+0 5.011872-2 1.885552+0 6.025596-2 1.136667+0 7.328245-2 6.587859-1 9.120108-2 3.552903-1 1.083927-1 2.169738-1 2.089296-1 3.277991-2 2.540973-1 1.875176-2 3.000000-1 1.175900-2 3.467369-1 7.884724-3 3.935501-1 5.598664-3 4.415705-1 4.129872-3 4.954502-1 3.069255-3 5.495409-1 2.366542-3 6.095369-1 1.837875-3 6.760830-1 1.438427-3 7.498942-1 1.134596-3 8.317638-1 9.017775-4 9.120108-1 7.402059-4 9.885531-1 6.266526-4 1.135011+0 4.758690-4 1.258925+0 3.896656-4 1.396368+0 3.212723-4 1.566751+0 2.612299-4 1.757924+0 2.140321-4 1.972423+0 1.766330-4 2.238721+0 1.440971-4 2.540973+0 1.183961-4 2.917427+0 9.628513-5 3.349654+0 7.888686-5 3.890451+0 6.404444-5 4.570882+0 5.155555-5 5.432503+0 4.118958-5 6.683439+0 3.173866-5 8.035261+0 2.536618-5 1.023293+1 1.908057-5 1.318257+1 1.428151-5 1.757924+1 1.036860-5 2.454709+1 7.219337-6 3.507519+1 4.944346-6 5.370318+1 3.172261-6 9.549926+1 1.757319-6 1.905461+2 8.722839-7 3.801894+2 4.349382-7 3.019952+3 5.453056-8 1.000000+5 1.646000-9 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.996000-5 1.947500-5 1.000000+5 1.947500-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.996000-5 8.50550-10 1.000000+5 8.50550-10 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.996000-5 4.048415-5 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.863000-5 2.516420+6 3.900000-5 2.481460+6 3.960000-5 2.409660+6 4.030000-5 2.310060+6 4.120975-5 2.169438+6 4.216965-5 2.017986+6 4.315191-5 1.865685+6 4.450000-5 1.668428+6 4.598600-5 1.469572+6 4.786301-5 1.248901+6 5.011872-5 1.027546+6 5.754399-5 5.639273+5 6.025596-5 4.644184+5 6.300000-5 3.876680+5 6.531306-5 3.370829+5 6.760830-5 2.966873+5 7.000000-5 2.627220+5 7.244360-5 2.347424+5 7.500000-5 2.111960+5 7.737400-5 1.934899+5 7.943282-5 1.807563+5 8.150000-5 1.699916+5 8.413951-5 1.586665+5 8.650000-5 1.504162+5 8.912509-5 1.429171+5 9.225714-5 1.358054+5 9.549926-5 1.300737+5 9.900000-5 1.252876+5 1.023293-4 1.217428+5 1.071519-4 1.178381+5 1.135011-4 1.141162+5 1.230269-4 1.101205+5 1.500000-4 1.018210+5 1.650000-4 9.735360+4 1.800000-4 9.275180+4 1.950000-4 8.813400+4 2.137962-4 8.248925+4 2.317395-4 7.733850+4 2.511886-4 7.202628+4 2.754229-4 6.590495+4 3.054921-4 5.914417+4 3.350000-4 5.336240+4 3.715352-4 4.715663+4 4.120975-4 4.134560+4 4.570882-4 3.601920+4 5.069907-4 3.115995+4 5.754399-4 2.588075+4 6.500000-4 2.146520+4 7.413102-4 1.738242+4 8.317638-4 1.434065+4 9.332543-4 1.174910+4 1.040000-3 9.676600+3 1.161449-3 7.887663+3 1.303167-3 6.326726+3 1.462177-3 5.037777+3 1.640590-3 3.980377+3 1.840772-3 3.120996+3 2.065380-3 2.428792+3 2.317395-3 1.875965+3 2.600160-3 1.438543+3 2.917427-3 1.095388+3 3.273407-3 8.284690+2 3.672823-3 6.224046+2 4.168694-3 4.509577+2 4.731513-3 3.241772+2 5.370318-3 2.312147+2 6.095369-3 1.636566+2 6.918310-3 1.149925+2 7.852356-3 8.020515+1 9.015711-3 5.372604+1 1.035142-2 3.570488+1 1.188502-2 2.354692+1 1.364583-2 1.541489+1 1.566751-2 1.002033+1 1.840772-2 6.016948+0 2.113489-2 3.859480+0 2.483133-2 2.280654+0 2.951209-2 1.287479+0 3.548134-2 6.941059-1 4.365158-2 3.436630-1 5.623413-2 1.443343-1 1.109175-1 1.382041-2 1.380384-1 6.537567-3 1.678804-1 3.370912-3 1.949845-1 2.045130-3 2.238721-1 1.298018-3 2.540973-1 8.613064-4 2.884032-1 5.756489-4 3.235937-1 4.018740-4 3.630781-1 2.826077-4 4.027170-1 2.072523-4 4.466836-1 1.530446-4 4.954502-1 1.138342-4 5.495409-1 8.531795-5 6.025596-1 6.646637-5 6.606935-1 5.212205-5 7.244360-1 4.114303-5 8.317638-1 2.915360-5 8.912509-1 2.464889-5 9.440609-1 2.154948-5 1.000000+0 1.895600-5 1.071519+0 1.638128-5 1.148154+0 1.424957-5 1.216186+0 1.275974-5 1.348963+0 1.055003-5 1.566751+0 8.093052-6 1.778279+0 6.503041-6 2.000000+0 5.346300-6 2.264644+0 4.380679-6 2.570396+0 3.601626-6 2.951209+0 2.931169-6 3.388442+0 2.402985-6 3.935501+0 1.951969-6 4.623810+0 1.572151-6 5.495409+0 1.256686-6 6.760830+0 9.688014-7 8.128305+0 7.746561-7 1.035142+1 5.829459-7 1.318257+1 4.421954-7 1.737801+1 3.251296-7 2.426610+1 2.262944-7 3.467369+1 1.549505-7 5.308844+1 9.939087-8 9.549926+1 5.441113-8 1.905461+2 2.700803-8 3.801894+2 1.346628-8 3.019952+3 1.688379-9 1.000000+5 5.09650-11 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.863000-5 1.311000-5 1.000000+5 1.311000-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.863000-5 8.41880-10 1.000000+5 8.41880-10 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.863000-5 2.551916-5 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.674000-5 5.131000+6 3.725000-5 4.996680+6 3.770000-5 4.860720+6 3.850000-5 4.593600+6 3.940000-5 4.279983+6 4.030000-5 3.969648+6 4.150000-5 3.574756+6 4.300000-5 3.123808+6 4.472100-5 2.670304+6 4.677351-5 2.216021+6 5.308844-5 1.291851+6 5.580000-5 1.051184+6 5.821032-5 8.888426+5 6.025596-5 7.799923+5 6.237348-5 6.890250+5 6.456542-5 6.131190+5 6.683439-5 5.498655+5 6.900000-5 5.009320+5 7.079458-5 4.671884+5 7.300000-5 4.325840+5 7.500000-5 4.065800+5 7.737400-5 3.810991+5 8.000000-5 3.583888+5 8.230000-5 3.422732+5 8.511380-5 3.263499+5 8.810489-5 3.130128+5 9.150000-5 3.012720+5 9.549926-5 2.908094+5 1.000000-4 2.820112+5 1.060000-4 2.732984+5 1.364583-4 2.450629+5 1.500000-4 2.339028+5 1.621810-4 2.237006+5 1.757924-4 2.122522+5 1.905461-4 2.000871+5 2.089296-4 1.856641+5 2.290868-4 1.710050+5 2.511886-4 1.562367+5 2.754229-4 1.416687+5 3.054921-4 1.259454+5 3.388442-4 1.111362+5 3.715352-4 9.878701+4 4.200000-4 8.372040+4 4.731513-4 7.068938+4 5.308844-4 5.953298+4 6.000000-4 4.923160+4 6.760830-4 4.057294+4 7.673615-4 3.279263+4 8.709636-4 2.627747+4 9.772372-4 2.133602+4 1.102110-3 1.703388+4 1.244515-3 1.345935+4 1.396368-3 1.068767+4 1.566751-3 8.422942+3 1.757924-3 6.587201+3 1.972423-3 5.113275+3 2.213095-3 3.939321+3 2.483133-3 3.012867+3 2.786121-3 2.288032+3 3.126079-3 1.725951+3 3.507519-3 1.293112+3 3.935501-3 9.623178+2 4.466836-3 6.899759+2 5.069907-3 4.908147+2 5.754399-3 3.464425+2 6.531306-3 2.426662+2 7.413102-3 1.687178+2 8.413951-3 1.164566+2 9.660509-3 7.711454+1 1.122018-2 4.897574+1 1.273503-2 3.313229+1 1.396368-2 2.481181+1 1.584893-2 1.653991+1 1.819701-2 1.054715+1 2.213095-2 5.521888+0 2.600160-2 3.216964+0 3.054921-2 1.860808+0 3.630781-2 1.026682+0 4.415704-2 5.190864-1 5.370318-2 2.605112-1 7.161434-2 9.358080-2 1.216186-1 1.413668-2 1.479108-1 7.076514-3 1.737801-1 4.027593-3 2.000000-1 2.481000-3 2.264644-1 1.627156-3 2.540973-1 1.108195-3 2.851018-1 7.603685-4 3.162278-1 5.456207-4 3.507519-1 3.944589-4 3.845918-1 2.976632-4 4.216965-1 2.262004-4 4.623810-1 1.731616-4 5.069907-1 1.335712-4 5.559043-1 1.038569-4 6.025596-1 8.388000-5 6.531306-1 6.817839-5 7.079458-1 5.575935-5 7.762471-1 4.464422-5 8.609938-1 3.502826-5 9.225714-1 2.998632-5 9.885531-1 2.584020-5 1.083927+0 2.139086-5 1.174898+0 1.823646-5 1.288250+0 1.531699-5 1.428894+0 1.267772-5 1.640590+0 9.933924-6 1.840772+0 8.161676-6 2.065380+0 6.752158-6 2.344229+0 5.522493-6 2.660725+0 4.548966-6 3.054921+0 3.709157-6 3.548134+0 2.997258-6 4.168694+0 2.402273-6 4.897788+0 1.939863-6 5.888437+0 1.532078-6 7.161434+0 1.201203-6 8.609938+0 9.626437-7 1.083927+1 7.355407-7 1.380384+1 5.587311-7 1.819701+1 4.113378-7 2.540973+1 2.866839-7 3.630781+1 1.964608-7 5.495409+1 1.276339-7 9.772372+1 7.072792-8 1.949845+2 3.511312-8 3.890451+2 1.750995-8 3.090295+3 2.195653-9 1.000000+5 6.78200-11 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.674000-5 1.305100-5 1.000000+5 1.305100-5 1 40000 7 7 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.674000-5 7.80050-10 1.000000+5 7.80050-10 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.674000-5 2.368822-5 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 6.670000-6 2.077936+6 7.000000-6 2.304544+6 7.350000-6 2.537528+6 7.762471-6 2.798306+6 8.200000-6 3.059264+6 8.609938-6 3.292169+6 9.120108-6 3.564050+6 9.772372-6 3.889539+6 1.047129-5 4.211636+6 1.120000-5 4.517344+6 1.188502-5 4.776235+6 1.258925-5 5.011655+6 1.333521-5 5.223570+6 1.400000-5 5.376904+6 1.462177-5 5.487319+6 1.531087-5 5.570871+6 1.590000-5 5.607296+6 1.650000-5 5.610088+6 1.717908-5 5.573224+6 1.778279-5 5.507740+6 1.850000-5 5.393688+6 1.905461-5 5.280598+6 1.980000-5 5.098920+6 2.041738-5 4.928576+6 2.113489-5 4.713078+6 2.190000-5 4.469256+6 2.270000-5 4.206232+6 2.350000-5 3.941448+6 2.426610-5 3.690923+6 2.511886-5 3.419625+6 2.610000-5 3.121336+6 2.722701-5 2.800900+6 2.818383-5 2.549290+6 2.917427-5 2.308969+6 3.040000-5 2.039048+6 3.162278-5 1.798160+6 3.300000-5 1.558024+6 3.427678-5 1.362221+6 3.570000-5 1.171016+6 3.690000-5 1.029408+6 3.801894-5 9.117235+5 3.950000-5 7.750120+5 4.073803-5 6.756109+5 4.220000-5 5.735504+5 4.365158-5 4.865531+5 4.500000-5 4.168928+5 4.650000-5 3.504368+5 4.800000-5 2.941000+5 4.954502-5 2.451399+5 5.080000-5 2.111872+5 5.248075-5 1.726932+5 5.400000-5 1.437912+5 5.580000-5 1.156192+5 5.754399-5 9.353941+4 5.950000-5 7.374024+4 6.165950-5 5.680487+4 6.606934-5 3.402923+4 6.767700-5 2.862249+4 6.900000-5 2.504856+4 7.000000-5 2.280032+4 7.110000-5 2.072400+4 7.190000-5 1.944800+4 7.270000-5 1.834984+4 7.350000-5 1.741400+4 7.420000-5 1.671712+4 7.500000-5 1.604808+4 7.585776-5 1.546863+4 7.673615-5 1.500922+4 7.762471-5 1.466883+4 7.852356-5 1.443894+4 7.950000-5 1.430576+4 8.040000-5 1.427896+4 8.150000-5 1.435648+4 8.270000-5 1.456176+4 8.400000-5 1.490512+4 8.511380-5 1.528381+4 8.650000-5 1.584520+4 8.850000-5 1.679360+4 9.660509-5 2.149162+4 1.000000-4 2.355112+4 1.030000-4 2.531184+4 1.060000-4 2.699000+4 1.090000-4 2.856304+4 1.122018-4 3.010541+4 1.161449-4 3.180899+4 1.202264-4 3.335375+4 1.244515-4 3.470903+4 1.288250-4 3.586372+4 1.338300-4 3.691510+4 1.380384-4 3.757820+4 1.430000-4 3.812576+4 1.480000-4 3.846584+4 1.540000-4 3.860392+4 1.603245-4 3.849335+4 1.659587-4 3.822082+4 1.737801-4 3.760672+4 1.820000-4 3.677192+4 1.927525-4 3.545281+4 2.041738-4 3.390798+4 2.162719-4 3.217880+4 2.290868-4 3.031686+4 2.426610-4 2.836779+4 2.570396-4 2.637389+4 2.722701-4 2.437310+4 2.917427-4 2.200901+4 3.162278-4 1.937433+4 3.388442-4 1.724605+4 3.630781-4 1.525349+4 3.935501-4 1.311914+4 4.265795-4 1.120301+4 4.623810-4 9.501659+3 5.069907-4 7.810660+3 5.559043-4 6.373225+3 6.095369-4 5.161318+3 6.683439-4 4.149421+3 7.328245-4 3.312674+3 8.128305-4 2.551208+3 9.000000-4 1.958544+3 9.885531-4 1.524109+3 1.083927-3 1.183789+3 1.202264-3 8.841419+2 1.333521-3 6.551944+2 1.479108-3 4.818472+2 1.640590-3 3.517210+2 1.819701-3 2.549079+2 2.018366-3 1.834793+2 2.264644-3 1.263543+2 2.540973-3 8.633648+1 2.818383-3 6.087859+1 3.198895-3 3.939860+1 3.589219-3 2.633640+1 4.027170-3 1.748066+1 4.518559-3 1.151967+1 5.069907-3 7.539403+0 5.754399-3 4.693161+0 6.531306-3 2.899556+0 7.413102-3 1.778671+0 8.511380-3 1.035584+0 9.772372-3 5.982533-1 1.122018-2 3.429367-1 1.288250-2 1.951619-1 1.500000-2 1.040790-1 1.757924-2 5.360086-2 2.113489-2 2.460263-2 2.600160-2 1.016085-2 3.311311-2 3.590639-3 4.466836-2 9.822547-4 6.760830-2 1.627773-4 8.609938-2 5.743521-5 1.035142-1 2.615531-5 1.216186-1 1.323908-5 1.412538-1 7.089136-6 1.621810-1 4.013157-6 1.840772-1 2.399807-6 2.065380-1 1.514311-6 2.317395-1 9.627117-7 2.570396-1 6.446844-7 2.851018-1 4.346188-7 3.162278-1 2.950101-7 3.507519-1 2.017395-7 3.845918-1 1.449143-7 4.168694-1 1.091491-7 4.570882-1 7.949950-8 5.011872-1 5.830587-8 5.495409-1 4.303895-8 6.025596-1 3.201066-8 6.531306-1 2.488518-8 7.079458-1 1.946874-8 7.673615-1 1.532719-8 8.035261-1 1.339828-8 8.511380-1 1.128488-8 9.015711-1 9.570131-9 9.440609-1 8.443729-9 9.885531-1 7.504484-9 1.035142+0 6.725839-9 1.083927+0 6.071899-9 1.135011+0 5.517077-9 1.188600+0 5.041300-9 1.273503+0 4.444742-9 1.380384+0 3.865056-9 1.513561+0 3.311112-9 1.819701+0 2.409170-9 2.018366+0 2.027257-9 2.290868+0 1.655793-9 2.600160+0 1.362218-9 2.985383+0 1.109374-9 3.467369+0 8.95356-10 4.027170+0 7.28094-10 4.731513+0 5.87027-10 5.623413+0 4.69712-10 6.839116+0 3.67624-10 8.222427+0 2.94088-10 1.035142+1 2.24371-10 1.318257+1 1.70200-10 1.737801+1 1.25137-10 2.426610+1 8.70970-11 3.467369+1 5.96384-11 5.308844+1 3.82549-11 9.549926+1 2.09426-11 1.905461+2 1.03950-11 3.801894+2 5.18318-12 3.019952+3 6.49841-13 1.000000+5 1.96160-14 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 6.670000-6 6.670000-6 1.000000+5 6.670000-6 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.670000-6 0.0 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.520000-6 3.287919+6 6.760830-6 3.551165+6 7.000000-6 3.801672+6 7.350000-6 4.151568+6 7.762471-6 4.540917+6 8.200000-6 4.927596+6 8.709636-6 5.350571+6 9.225714-6 5.749553+6 9.885531-6 6.220504+6 1.059254-5 6.681736+6 1.135011-5 7.127231+6 1.216186-5 7.544590+6 1.290000-5 7.865976+6 1.364583-5 8.128154+6 1.428894-5 8.299292+6 1.500000-5 8.424336+6 1.570000-5 8.480328+6 1.640590-5 8.469461+6 1.710000-5 8.393316+6 1.778279-5 8.257738+6 1.840772-5 8.086131+6 1.905461-5 7.869787+6 1.980000-5 7.575036+6 2.041738-5 7.303779+6 2.113489-5 6.966750+6 2.190000-5 6.590652+6 2.270000-5 6.188280+6 2.350000-5 5.785392+6 2.426610-5 5.406264+6 2.511886-5 4.998397+6 2.610000-5 4.553064+6 2.722701-5 4.077032+6 2.818383-5 3.704068+6 2.917427-5 3.348520+6 3.040000-5 2.950560+6 3.162278-5 2.596964+6 3.273407-5 2.309703+6 3.400000-5 2.018088+6 3.540000-5 1.735452+6 3.672823-5 1.501849+6 3.801894-5 1.303157+6 3.935501-5 1.123228+6 4.073803-5 9.613135+5 4.220000-5 8.139456+5 4.365158-5 6.887877+5 4.500000-5 5.888844+5 4.650000-5 4.937388+5 4.800000-5 4.131996+5 4.954502-5 3.434080+5 5.080000-5 2.951856+5 5.230000-5 2.460552+5 5.370318-5 2.072880+5 5.500000-5 1.767696+5 5.688529-5 1.401506+5 5.888437-5 1.096042+5 6.116000-5 8.303042+4 6.500000-5 5.285460+4 6.654400-5 4.461853+4 6.770000-5 3.958608+4 6.850000-5 3.659976+4 6.950000-5 3.337668+4 7.030000-5 3.116748+4 7.110000-5 2.925576+4 7.190000-5 2.761536+4 7.270000-5 2.622264+4 7.350000-5 2.505588+4 7.420000-5 2.420460+4 7.500000-5 2.340888+4 7.585776-5 2.274710+4 7.673615-5 2.225477+4 7.762471-5 2.192825+4 7.852356-5 2.175513+4 7.950000-5 2.172600+4 8.040000-5 2.182920+4 8.150000-5 2.210364+4 8.270000-5 2.256408+4 8.413951-5 2.330355+4 8.570000-5 2.429352+4 8.800000-5 2.602308+4 9.549926-5 3.273875+4 9.900000-5 3.599088+4 1.023293-4 3.896469+4 1.050000-4 4.121964+4 1.083927-4 4.389773+4 1.120000-4 4.648572+4 1.150000-4 4.841280+4 1.190000-4 5.068212+4 1.230269-4 5.264299+4 1.273503-4 5.437388+4 1.318257-4 5.579658+4 1.364583-4 5.692716+4 1.412538-4 5.772854+4 1.462177-4 5.822187+4 1.513561-4 5.843417+4 1.580000-4 5.827572+4 1.650000-4 5.773236+4 1.717908-4 5.688711+4 1.800000-4 5.558412+4 1.890000-4 5.389608+4 2.000000-4 5.162796+4 2.113489-4 4.915907+4 2.238721-4 4.637216+4 2.371374-4 4.343865+4 2.511886-4 4.042458+4 2.660725-4 3.738951+4 2.851018-4 3.379227+4 3.090295-4 2.976402+4 3.311311-4 2.651624+4 3.548134-4 2.347011+4 3.845918-4 2.020130+4 4.168694-4 1.725985+4 4.518559-4 1.464631+4 4.897788-4 1.234825+4 5.370318-4 1.008924+4 5.888437-4 8.182011+3 6.456542-4 6.585654+3 7.079458-4 5.263417+3 7.762471-4 4.178877+3 8.609938-4 3.199802+3 9.440609-4 2.506408+3 1.047129-3 1.889181+3 1.161449-3 1.412633+3 1.288250-3 1.048027+3 1.428894-3 7.715583+2 1.584893-3 5.636788+2 1.757924-3 4.087729+2 1.949845-3 2.943724+2 2.187762-3 2.028496+2 2.371374-3 1.554303+2 2.660725-3 1.053599+2 3.019952-3 6.813551+1 3.427678-3 4.378565+1 3.845918-3 2.908643+1 4.315191-3 1.917995+1 4.841724-3 1.255686+1 5.432503-3 8.164296+0 6.165950-3 5.046316+0 6.998420-3 3.095947+0 8.000000-3 1.833634+0 9.120108-3 1.089421+0 1.059254-2 5.964119-1 1.216186-2 3.396629-1 1.380384-2 2.013433-1 1.584893-2 1.127629-1 1.840772-2 5.970663-2 2.290868-2 2.335113-2 2.818383-2 9.521049-3 3.630781-2 3.153398-3 6.998420-2 1.762469-4 8.912509-2 6.128346-5 1.047129-1 3.050359-5 1.216186-1 1.607401-5 1.380384-1 9.410162-6 1.566751-1 5.547663-6 1.757924-1 3.455548-6 1.949845-1 2.272338-6 2.162719-1 1.505690-6 2.371374-1 1.051435-6 2.600160-1 7.391171-7 2.851018-1 5.232082-7 3.126079-1 3.731274-7 3.388442-1 2.793862-7 3.672823-1 2.105794-7 3.981072-1 1.598461-7 4.315191-1 1.223428-7 4.677351-1 9.433941-8 5.069907-1 7.327927-8 5.495409-1 5.733035-8 5.956621-1 4.519474-8 6.456542-1 3.591692-8 6.998420-1 2.876720-8 7.852356-1 2.117240-8 8.413951-1 1.772376-8 8.912509-1 1.537092-8 9.440609-1 1.341224-8 1.000000+0 1.178500-8 1.071519+0 1.017724-8 1.148154+0 8.849932-9 1.216186+0 7.925114-9 1.348963+0 6.555740-9 1.584893+0 4.931294-9 1.798871+0 3.964913-9 2.018366+0 3.274649-9 2.290868+0 2.674751-9 2.600160+0 2.200455-9 2.985383+0 1.791921-9 3.467369+0 1.446270-9 4.027170+0 1.176118-9 4.731513+0 9.48230-10 5.623413+0 7.58723-10 6.839116+0 5.93812-10 8.222427+0 4.75035-10 1.047129+1 3.57624-10 1.333521+1 2.71375-10 1.757924+1 1.99591-10 2.454709+1 1.38969-10 3.467369+1 9.63350-11 5.308844+1 6.17930-11 9.549926+1 3.38279-11 1.905461+2 1.67914-11 3.801894+2 8.37226-12 3.019952+3 1.04972-12 1.000000+5 3.16850-14 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.520000-6 6.520000-6 1.000000+5 6.520000-6 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.520000-6 0.0 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.120000-6 2.051360+6 6.190000-6 1.932530+6 6.400000-6 1.593654+6 6.606934-6 1.319198+6 6.800000-6 1.107178+6 7.000000-6 9.239320+5 7.200000-6 7.708360+5 7.420000-6 6.315300+5 7.650000-6 5.123340+5 7.852356-6 4.256522+5 8.050000-6 3.546120+5 8.270000-6 2.887660+5 8.420000-6 2.506220+5 8.609938-6 2.089835+5 8.770000-6 1.789130+5 8.920000-6 1.543332+5 9.100000-6 1.288592+5 9.280000-6 1.071896+5 9.440609-6 9.063418+4 9.600000-6 7.646700+4 9.772372-6 6.336434+4 9.930000-6 5.314780+4 1.010000-5 4.378200+4 1.027000-5 3.591440+4 1.042000-5 3.006280+4 1.060000-5 2.422100+4 1.100000-5 1.503990+4 1.115000-5 1.270722+4 1.123000-5 1.167114+4 1.131000-5 1.076800+4 1.138000-5 1.008016+4 1.146000-5 9.403920+3 1.154000-5 8.837660+3 1.161449-5 8.403091+3 1.168000-5 8.090340+3 1.174898-5 7.827310+3 1.182000-5 7.623500+3 1.188502-5 7.493190+3 1.195000-5 7.413740+3 1.202264-5 7.381558+3 1.209000-5 7.402120+3 1.216186-5 7.474342+3 1.222000-5 7.568600+3 1.230269-5 7.754545+3 1.237000-5 7.948180+3 1.245000-5 8.224360+3 1.255000-5 8.634820+3 1.265000-5 9.111760+3 1.280000-5 9.938860+3 1.340000-5 1.426976+4 1.365000-5 1.641310+4 1.380384-5 1.779711+4 1.400000-5 1.961598+4 1.420000-5 2.151700+4 1.445440-5 2.397906+4 1.470000-5 2.638020+4 1.496236-5 2.894968+4 1.522000-5 3.145960+4 1.550000-5 3.415540+4 1.580000-5 3.699120+4 1.610000-5 3.975940+4 1.640590-5 4.250124+4 1.678804-5 4.580019+4 1.717908-5 4.901938+4 1.757924-5 5.214352+4 1.800000-5 5.524400+4 1.850000-5 5.868020+4 1.905461-5 6.218274+4 1.972423-5 6.599700+4 2.041738-5 6.949770+4 2.113489-5 7.268106+4 2.190000-5 7.562740+4 2.270000-5 7.826320+4 2.371374-5 8.102505+4 2.483133-5 8.342155+4 2.610000-5 8.544940+4 2.754229-5 8.701460+4 2.917427-5 8.800507+4 3.090295-5 8.832658+4 3.273407-5 8.803739+4 3.467369-5 8.719361+4 3.672823-5 8.583934+4 3.935501-5 8.361366+4 4.216965-5 8.080473+4 4.518559-5 7.748546+4 4.841724-5 7.377999+4 5.188000-5 6.978062+4 5.623413-5 6.488879+4 6.116000-5 5.966449+4 6.683439-5 5.421219+4 7.413102-5 4.811435+4 8.511380-5 4.066462+4 9.885531-5 3.363267+4 1.230269-4 2.525739+4 1.770000-4 1.561400+4 2.000000-4 1.319086+4 2.238721-4 1.119034+4 2.540973-4 9.227222+3 3.427678-4 5.758042+3 4.315191-4 3.977807+3 5.128614-4 2.995709+3 7.673615-4 1.522716+3 9.440609-4 1.065554+3 1.202264-3 6.981286+2 1.479108-3 4.824299+2 1.778279-3 3.446919+2 2.137962-3 2.445075+2 2.570396-3 1.721302+2 3.126079-3 1.175361+2 3.715352-3 8.338014+1 4.415704-3 5.870737+1 5.248075-3 4.102702+1 6.237348-3 2.845701+1 7.413102-3 1.958268+1 8.709636-3 1.371436+1 1.023293-2 9.535423+0 1.202264-2 6.581745+0 1.412538-2 4.509236+0 1.659587-2 3.065669+0 1.949845-2 2.068307+0 2.290868-2 1.384711+0 2.691535-2 9.201306-1 3.162278-2 6.069469-1 3.758374-2 3.855564-1 4.466836-2 2.430439-1 5.248075-2 1.569189-1 6.309573-2 9.442091-2 7.762471-2 5.289168-2 9.772372-2 2.755373-2 1.288250-1 1.245800-2 2.041738-1 3.306198-3 2.483133-1 1.889887-3 2.917427-1 1.200272-3 3.388442-1 7.930994-4 3.845918-1 5.625242-4 4.315191-1 4.144721-4 4.841724-1 3.076550-4 5.370318-1 2.369365-4 5.956621-1 1.837895-4 6.606935-1 1.436913-4 7.328245-1 1.132421-4 8.035261-1 9.226687-5 8.810489-1 7.566035-5 9.660509-1 6.247745-5 1.122018+0 4.631422-5 1.216186+0 3.962077-5 1.396368+0 3.060021-5 1.548817+0 2.536804-5 1.737801+0 2.077100-5 1.949845+0 1.712953-5 2.213095+0 1.396094-5 2.511886+0 1.146351-5 2.884032+0 9.318163-6 3.311311+0 7.630274-6 3.845918+0 6.191135-6 4.518559+0 4.981219-6 5.370318+0 3.977610-6 6.606934+0 3.063525-6 7.943282+0 2.447283-6 1.011579+1 1.840100-6 1.288250+1 1.394834-6 1.698244+1 1.024876-6 2.344229+1 7.217555-7 3.349654+1 4.938372-7 5.188000+1 3.128222-7 9.440609+1 1.691970-7 1.883649+2 8.397589-8 3.758374+2 4.186887-8 2.985383+3 5.249090-9 1.000000+5 1.56630-10 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.120000-6 6.120000-6 1.000000+5 6.120000-6 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.120000-6 0.0 1.000000+5 1.000000+5 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.732000-8 1.028750+0 8.732000-7 1.029500+0 1.195000-6 1.030100+0 1.502850-6 1.031000+0 2.056420-6 1.032000+0 2.813690-6 1.033200+0 3.941510-6 1.034000+0 4.838570-6 1.035300+0 6.567670-6 1.036640+0 8.732000-6 1.038200+0 1.178410-5 1.039700+0 1.530990-5 1.041500+0 2.036970-5 1.043800+0 2.827380-5 1.046400+0 3.933760-5 1.048300+0 4.897640-5 1.051200+0 6.643550-5 1.054080+0 8.732000-5 1.057700+0 1.190230-4 1.061100+0 1.548190-4 1.065100+0 2.049640-4 1.070400+0 2.859470-4 1.076200+0 3.951790-4 1.080600+0 4.935140-4 1.087100+0 6.649240-4 1.093710+0 8.732000-4 1.102600+0 1.210650-3 1.110700+0 1.578870-3 1.120600+0 2.111950-3 1.133300+0 2.936360-3 1.147500+0 4.054080-3 1.158200+0 5.038190-3 1.174100+0 6.734050-3 1.190110+0 8.732000-3 1.205100+0 1.087150-2 1.227500+0 1.455280-2 1.250000+0 1.880000-2 1.265600+0 2.203570-2 1.294900+0 2.869100-2 1.331800+0 3.800490-2 1.362600+0 4.645860-2 1.397000+0 5.651860-2 1.455800+0 7.507880-2 1.500000+0 9.018000-2 1.589800+0 1.242050-1 1.665000+0 1.560070-1 1.784700+0 2.119600-1 1.892300+0 2.663540-1 2.000000+0 3.227000-1 2.044000+0 3.458000-1 2.163500+0 4.092610-1 2.372600+0 5.221070-1 2.647100+0 6.705570-1 3.000000+0 8.574000-1 3.437500+0 1.078060+0 4.000000+0 1.343000+0 4.750000+0 1.666390+0 5.000000+0 1.767000+0 6.000000+0 2.137000+0 7.000000+0 2.468000+0 8.000000+0 2.765000+0 9.000000+0 3.035000+0 1.000000+1 3.282000+0 1.100000+1 3.508000+0 1.200000+1 3.716000+0 1.300000+1 3.907000+0 1.400000+1 4.083000+0 1.500000+1 4.247000+0 1.600000+1 4.401000+0 1.800000+1 4.681000+0 2.000000+1 4.932000+0 2.200000+1 5.161000+0 2.400000+1 5.368000+0 2.600000+1 5.558000+0 2.800000+1 5.731000+0 3.000000+1 5.891000+0 4.000000+1 6.542000+0 5.000000+1 7.024000+0 6.000000+1 7.399000+0 8.000000+1 7.954000+0 1.000000+2 8.349000+0 1.500000+2 8.976000+0 2.000000+2 9.352000+0 3.000000+2 9.789000+0 4.000000+2 1.004000+1 5.000000+2 1.021000+1 6.000000+2 1.033000+1 8.000000+2 1.048000+1 1.000000+3 1.059000+1 1.500000+3 1.073000+1 2.000000+3 1.082000+1 3.000000+3 1.090000+1 4.000000+3 1.095000+1 5.000000+3 1.098000+1 6.000000+3 1.100000+1 8.000000+3 1.103000+1 1.000000+4 1.104000+1 1.500000+4 1.107000+1 2.000000+4 1.108000+1 3.000000+4 1.109000+1 4.000000+4 1.110000+1 5.000000+4 1.111000+1 6.000000+4 1.111000+1 8.000000+4 1.111000+1 1.000000+5 1.111000+1 1 40000 7 8 9.122000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.014440-7 2.106600+0 1.307950-6 2.114000+0 1.809710-6 2.119500+0 2.253080-6 2.127900+0 3.055600-6 2.136250+0 4.014440-6 2.147000+0 5.504080-6 2.156900+0 7.149140-6 2.169000+0 9.540970-6 2.184500+0 1.326230-5 2.201800+0 1.834870-5 2.214800+0 2.286110-5 2.234200+0 3.075220-5 2.253680+0 4.014440-5 2.281500+0 5.622930-5 2.307000+0 7.385700-5 2.338200+0 9.930720-5 2.377400+0 1.375290-4 2.410200+0 1.749130-4 2.446800+0 2.225000-4 2.485900+0 2.801390-4 2.532900+0 3.585180-4 2.556430+0 4.014440-4 2.611900+0 5.118860-4 2.660400+0 6.188420-4 2.745300+0 8.282790-4 2.809000+0 1.003090-3 2.904500+0 1.292240-3 3.000000+0 1.613000-3 3.125000+0 2.079900-3 3.234400+0 2.530780-3 3.425800+0 3.408070-3 3.569300+0 4.132700-3 3.784700+0 5.312890-3 4.000000+0 6.582000-3 4.250000+0 8.134200-3 4.625000+0 1.057420-2 5.000000+0 1.311000-2 5.500000+0 1.658700-2 6.000000+0 2.011000-2 6.750000+0 2.536030-2 7.000000+0 2.709000-2 8.000000+0 3.386000-2 9.000000+0 4.033000-2 1.000000+1 4.648000-2 1.100000+1 5.231000-2 1.200000+1 5.780000-2 1.300000+1 6.298000-2 1.400000+1 6.791000-2 1.500000+1 7.258000-2 1.600000+1 7.702000-2 1.800000+1 8.524000-2 2.000000+1 9.273000-2 2.200000+1 9.959000-2 2.400000+1 1.059000-1 2.600000+1 1.117000-1 2.800000+1 1.171000-1 3.000000+1 1.222000-1 4.000000+1 1.430000-1 5.000000+1 1.589000-1 6.000000+1 1.715000-1 8.000000+1 1.905000-1 1.000000+2 2.044000-1 1.500000+2 2.275000-1 2.000000+2 2.421000-1 3.000000+2 2.600000-1 4.000000+2 2.709000-1 5.000000+2 2.784000-1 6.000000+2 2.839000-1 8.000000+2 2.915000-1 1.000000+3 2.966000-1 1.500000+3 3.043000-1 2.000000+3 3.087000-1 3.000000+3 3.136000-1 4.000000+3 3.164000-1 5.000000+3 3.182000-1 6.000000+3 3.194000-1 8.000000+3 3.210000-1 1.000000+4 3.221000-1 1.500000+4 3.235000-1 2.000000+4 3.243000-1 3.000000+4 3.251000-1 4.000000+4 3.257000-1 5.000000+4 3.260000-1 6.000000+4 3.262000-1 8.000000+4 3.264000-1 1.000000+5 3.265000-1 1 40000 7 8 9.122000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 40000 7 9 9.122000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.000000+1 1.000000+5 4.000000+1 5.000000+5 3.998200+1 1.000000+6 3.994400+1 1.375000+6 3.990170+1 1.500000+6 3.988400+1 1.875000+6 3.982060+1 2.000000+6 3.979600+1 2.375000+6 3.971330+1 2.500000+6 3.968300+1 2.875000+6 3.958460+1 3.000000+6 3.954900+1 3.437500+6 3.941110+1 3.812500+6 3.928480+1 4.000000+6 3.922100+1 4.500000+6 3.903260+1 5.000000+6 3.883100+1 5.500000+6 3.860840+1 5.875000+6 3.843680+1 6.437500+6 3.816670+1 6.500000+6 3.813750+1 7.000000+6 3.788900+1 7.500000+6 3.763510+1 8.250000+6 3.724310+1 8.500000+6 3.711330+1 9.000000+6 3.684900+1 1.000000+7 3.631300+1 1.125000+7 3.564710+1 1.187500+7 3.531980+1 1.250000+7 3.499500+1 1.500000+7 3.371900+1 1.750000+7 3.249600+1 2.000000+7 3.132300+1 2.250000+7 3.018200+1 2.375000+7 2.962260+1 2.500000+7 2.907800+1 2.875000+7 2.750400+1 3.000000+7 2.700800+1 3.500000+7 2.515150+1 4.000000+7 2.351800+1 4.500000+7 2.207980+1 4.750000+7 2.142430+1 5.000000+7 2.080800+1 5.500000+7 1.966440+1 5.750000+7 1.912900+1 6.000000+7 1.861400+1 6.500000+7 1.762790+1 7.000000+7 1.668800+1 7.500000+7 1.578360+1 8.000000+7 1.491100+1 8.500000+7 1.406990+1 9.000000+7 1.326500+1 9.750000+7 1.213300+1 1.000000+8 1.177700+1 1.062500+8 1.093510+1 1.187500+8 9.492440+0 1.250000+8 8.889900+0 1.375000+8 7.899060+0 1.437500+8 7.497100+0 1.468800+8 7.316460+0 1.500000+8 7.149100+0 1.617200+8 6.616760+0 1.718800+8 6.244570+0 1.753900+8 6.130160+0 2.000000+8 5.459900+0 2.375000+8 4.688360+0 2.500000+8 4.476600+0 2.671900+8 4.205590+0 2.789100+8 4.017360+0 2.875000+8 3.871830+0 2.894500+8 3.837670+0 2.973600+8 3.694500+0 3.000000+8 3.645300+0 3.062500+8 3.525520+0 3.335900+8 3.034340+0 3.445300+8 2.879290+0 3.500000+8 2.813900+0 3.562500+8 2.749110+0 3.890600+8 2.482890+0 4.000000+8 2.391300+0 4.062500+8 2.334050+0 4.179700+8 2.220210+0 4.282200+8 2.118280+0 4.461700+8 1.945070+0 4.730800+8 1.718530+0 4.750000+8 1.704260+0 4.865400+8 1.625030+0 5.000000+8 1.546100+0 5.125000+8 1.485510+0 5.234400+8 1.440600+0 5.425800+8 1.375730+0 5.677000+8 1.308710+0 6.000000+8 1.238600+0 6.750000+8 1.105690+0 7.000000+8 1.070100+0 7.750000+8 9.811840-1 8.000000+8 9.526000-1 8.250000+8 9.230030-1 8.687500+8 8.699410-1 9.015600+8 8.302710-1 9.507800+8 7.722940-1 1.000000+9 7.175000-1 1.062500+9 6.532900-1 1.141100+9 5.806330-1 1.206900+9 5.260540-1 1.280200+9 4.711960-1 1.335100+9 4.338550-1 1.375000+9 4.085990-1 1.417600+9 3.832250-1 1.500000+9 3.385500-1 1.589800+9 2.957900-1 1.665000+9 2.643820-1 1.748800+9 2.336020-1 1.838500+9 2.050360-1 1.946200+9 1.759020-1 2.000000+9 1.631900-1 2.139200+9 1.350340-1 2.272600+9 1.133480-1 2.443000+9 9.143620-2 2.602800+9 7.539960-2 2.825100+9 5.841040-2 3.097000+9 4.355980-2 3.438900+9 3.093570-2 3.725100+9 2.370490-2 4.180400+9 1.605010-2 4.726800+9 1.053120-2 5.000000+9 8.673000-3 5.750000+9 5.337330-3 8.000000+9 1.682600-3 1.00000+10 7.724900-4 1.20500+10 4.060640-4 1.41820+10 2.329970-4 1.71170+10 1.235560-4 2.01490+10 7.168570-5 2.26440+10 4.870300-5 2.74790+10 2.579740-5 3.41360+10 1.274810-5 4.02450+10 7.502480-6 5.12000+10 3.479410-6 6.34000+10 1.770050-6 8.17000+10 7.989640-7 1.00000+11 4.257100-7 1.34280+11 1.710280-7 1.77440+11 7.265560-8 2.63330+11 2.182130-8 3.75720+11 7.455290-9 6.61190+11 1.373700-9 1.48990+12 1.24489-10 4.26460+12 5.80110-12 1.00000+14 6.66060-16 5.62340+14 4.53447-18 7.49890+15 2.39423-21 1.00000+17 1.21540-24 1 40000 7 0 9.122000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 8.30000-12 1.000000+2 8.30000-10 1.000000+3 8.300000-8 1.000000+4 8.300000-6 1.000000+5 8.300000-4 5.000000+5 2.075000-2 1.000000+6 8.300000-2 1.375000+6 1.554370-1 1.500000+6 1.843000-1 1.875000+6 2.842230-1 2.000000+6 3.218000-1 2.375000+6 4.463470-1 2.500000+6 4.916000-1 2.875000+6 6.373780-1 3.000000+6 6.891000-1 3.437500+6 8.806010-1 3.812500+6 1.055870+0 4.000000+6 1.146700+0 4.500000+6 1.396420+0 5.000000+6 1.654000+0 5.500000+6 1.914900+0 5.875000+6 2.110860+0 6.437500+6 2.402270+0 6.500000+6 2.434470+0 7.000000+6 2.688100+0 7.500000+6 2.934950+0 8.250000+6 3.292210+0 8.500000+6 3.407560+0 9.000000+6 3.633200+0 1.000000+7 4.064000+0 1.125000+7 4.574090+0 1.187500+7 4.821120+0 1.250000+7 5.064700+0 1.500000+7 6.019000+0 1.750000+7 6.958600+0 2.000000+7 7.879000+0 2.250000+7 8.766980+0 2.375000+7 9.197650+0 2.500000+7 9.620600+0 2.875000+7 1.084070+1 3.000000+7 1.123600+1 3.500000+7 1.275740+1 4.000000+7 1.417600+1 4.500000+7 1.547880+1 4.750000+7 1.608280+1 5.000000+7 1.665800+1 5.500000+7 1.771500+1 5.750000+7 1.820340+1 6.000000+7 1.867200+1 6.500000+7 1.955020+1 7.000000+7 2.037300+1 7.500000+7 2.115150+1 8.000000+7 2.189500+1 8.500000+7 2.260650+1 9.000000+7 2.329400+1 9.750000+7 2.426950+1 1.000000+8 2.458300+1 1.062500+8 2.533420+1 1.187500+8 2.671350+1 1.250000+8 2.734700+1 1.375000+8 2.850020+1 1.437500+8 2.902370+1 1.468800+8 2.927490+1 1.500000+8 2.951700+1 1.617200+8 3.035470+1 1.718800+8 3.100860+1 1.753900+8 3.121860+1 2.000000+8 3.252200+1 2.375000+8 3.405000+1 2.500000+8 3.447000+1 2.671900+8 3.498920+1 2.789100+8 3.530830+1 2.875000+8 3.552870+1 2.894500+8 3.557560+1 2.973600+8 3.576330+1 3.000000+8 3.582500+1 3.062500+8 3.595960+1 3.335900+8 3.649620+1 3.445300+8 3.668170+1 3.500000+8 3.677100+1 3.562500+8 3.686510+1 3.890600+8 3.729970+1 4.000000+8 3.742600+1 4.062500+8 3.748980+1 4.179700+8 3.760710+1 4.282200+8 3.770430+1 4.461700+8 3.785690+1 4.730800+8 3.805730+1 4.750000+8 3.806990+1 4.865400+8 3.814470+1 5.000000+8 3.823000+1 5.125000+8 3.829950+1 5.234400+8 3.835910+1 5.425800+8 3.846060+1 5.677000+8 3.857520+1 6.000000+8 3.871500+1 6.750000+8 3.898220+1 7.000000+8 3.905900+1 7.750000+8 3.926000+1 8.000000+8 3.931800+1 8.250000+8 3.936900+1 8.687500+8 3.945480+1 9.015600+8 3.951260+1 9.507800+8 3.958790+1 1.000000+9 3.965300+1 1.062500+9 3.972010+1 1.141100+9 3.978410+1 1.206900+9 3.982710+1 1.280200+9 3.986550+1 1.335100+9 3.988930+1 1.375000+9 3.990160+1 1.417600+9 3.991440+1 1.500000+9 3.993800+1 1.589800+9 3.995100+1 1.665000+9 3.996140+1 1.748800+9 3.997240+1 1.838500+9 3.997790+1 1.946200+9 3.998400+1 2.000000+9 3.998700+1 2.139200+9 3.999020+1 2.272600+9 3.999300+1 2.443000+9 3.999640+1 2.602800+9 3.999940+1 2.825100+9 4.000190+1 3.097000+9 4.000160+1 3.438900+9 4.000120+1 3.725100+9 4.000100+1 4.180400+9 4.000060+1 4.726800+9 4.000020+1 5.000000+9 4.000000+1 5.750000+9 4.000000+1 8.000000+9 4.000000+1 1.00000+10 4.000000+1 1.20500+10 4.000000+1 1.41820+10 4.000000+1 1.71170+10 4.000000+1 2.01490+10 4.000000+1 2.26440+10 4.000000+1 2.74790+10 4.000000+1 3.41360+10 4.000000+1 4.02450+10 4.000000+1 5.12000+10 4.000000+1 6.34000+10 4.000000+1 8.17000+10 4.000000+1 1.00000+11 4.000000+1 1.34280+11 4.000000+1 1.77440+11 4.000000+1 2.63330+11 4.000000+1 3.75720+11 4.000000+1 6.61190+11 4.000000+1 1.48990+12 4.000000+1 4.26460+12 4.000000+1 1.00000+14 4.000000+1 5.62340+14 4.000000+1 7.49890+15 4.000000+1 1.00000+17 4.000000+1 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.788329-6 0.0 2.800339-6 3.507928+0 2.802055-6 4.003947+0 2.808918-6 7.313536+0 2.815781-6 1.233163+1 2.823502-6 2.023990+1 2.835406-6 3.530999+1 2.844092-6 4.551230+1 2.850526-6 5.075339+1 2.857590-6 5.263073+1 2.864453-6 5.036869+1 2.874118-6 4.343556+1 2.884631-6 3.625385+1 2.891628-6 3.448217+1 2.898693-6 3.777046+1 2.905978-6 4.714574+1 2.914595-6 6.452340+1 2.927172-6 9.172176+1 2.934685-6 1.033904+2 2.941240-6 1.070723+2 2.948573-6 1.022758+2 2.956259-6 8.890748+1 2.967380-6 6.161972+1 2.976183-6 3.994197+1 2.983248-6 2.578514+1 2.990313-6 1.536610+1 2.997377-6 8.453018+0 3.007974-6 2.148791+0 3.011507-6 0.0 3.152368-6 0.0 3.160128-6 3.88759-14 3.167887-6 7.69247-14 3.175646-6 1.40509-13 3.183405-6 2.36918-13 3.191164-6 3.68761-13 3.198923-6 5.29841-13 3.206683-6 7.02749-13 3.214442-6 8.60416-13 3.222201-6 9.72458-13 3.229960-6 1.01458-12 3.234263-6 9.93843-13 3.250184-6 5.551880-1 3.258145-6 1.014096+0 3.266106-6 1.709906+0 3.274066-6 2.661454+0 3.298944-6 6.310745+0 3.305909-6 7.018514+0 3.313870-6 7.323047+0 3.323020-6 7.113809+0 3.332196-6 6.315493+0 3.346470-6 4.765049+0 3.354627-6 4.133114+0 3.362784-6 3.844900+0 3.372979-6 3.916989+0 3.387253-6 4.243940+0 3.394603-6 4.165018+0 3.404087-6 4.036545+0 3.412445-6 3.590908+0 3.429161-6 2.326031+0 3.437519-6 1.762997+0 3.444350-6 1.404602+0 3.452506-6 1.130275+0 3.460663-6 9.852375-1 3.470952-6 8.971814-1 3.476976-6 7.974564-1 3.479310-6 8.068258-1 3.487668-6 7.770519-1 3.496026-6 6.908348-1 3.504384-6 5.669599-1 3.521101-6 3.003797-1 3.529459-6 1.939147-1 3.537817-6 1.155593-1 3.546175-6 6.357011-2 3.554533-6 3.228160-2 3.562892-6 0.0 3.972736-6 0.0 3.982515-6 6.76337-15 3.992293-6 1.33828-14 4.002071-6 2.44449-14 4.011850-6 4.12174-14 4.021628-6 6.41545-14 4.031406-6 9.21781-14 4.041185-6 1.22259-13 4.050963-6 1.49689-13 4.060742-6 1.69182-13 4.070520-6 1.76510-13 4.080298-6 1.69996-13 4.090077-6 1.51135-13 4.099855-6 1.24034-13 4.119412-6 6.57144-14 4.129190-6 4.24229-14 4.138969-6 2.52810-14 4.148747-6 1.39073-14 4.158525-6 7.06228-15 4.168304-6 0.0 4.336776-6 0.0 4.347450-6 1.496508-8 4.358125-6 2.961178-8 4.368799-6 5.408833-8 4.379473-6 9.120035-8 4.390148-6 1.419526-7 4.400822-6 2.039596-7 4.411497-6 2.705195-7 4.422171-6 3.312128-7 4.432846-6 3.743428-7 4.443520-6 3.905583-7 4.454194-6 3.761457-7 4.464869-6 3.344108-7 4.475543-6 2.744470-7 4.486218-6 2.079173-7 4.498241-6 1.389028-7 4.507567-6 1.014278-7 4.518241-6 7.200140-8 4.520385-6 6.866107-8 4.528915-6 5.984960-8 4.531457-6 5.962765-8 4.542529-6 6.605523-8 4.550264-6 7.598474-8 4.553601-6 8.517746-8 4.572377-6 1.501546-7 4.594122-6 1.044924-1 4.595156-6 1.237186-1 4.606439-6 3.611322-1 4.617394-6 6.382365-1 4.629012-6 1.089165+0 4.640937-6 1.735180+0 4.670387-6 3.789587+0 4.676083-6 4.185599+0 4.688452-6 4.803273+0 4.697535-6 5.060297+0 4.709299-6 4.998232+0 4.720531-6 4.585693+0 4.736140-6 3.593492+0 4.755896-6 2.157348+0 4.764396-6 1.599417+0 4.775678-6 1.011313+0 4.786355-6 6.065282-1 4.797663-6 3.026737-1 4.812342-6 1.079434-1 4.820278-6 0.0 4.936416-6 0.0 4.947913-6 3.12108-15 4.950607-6 5.150284-9 4.958161-6 7.588161-8 4.982569-6 7.001653-2 4.994773-6 1.278909-1 5.006977-6 2.156415-1 5.020985-6 3.572817-1 5.053005-6 7.466373-1 5.057920-6 8.008914-1 5.069700-6 8.904683-1 5.081879-6 9.187893-1 5.094371-6 8.735138-1 5.110024-6 7.463355-1 5.134541-6 4.967859-1 5.142973-6 4.318310-1 5.153423-6 3.798536-1 5.163165-6 3.686869-1 5.167273-6 3.719715-1 5.179424-6 4.085163-1 5.194313-6 4.946850-1 5.213874-6 6.555581-1 5.298657-6 1.256067+0 5.311205-6 1.282921+0 5.323183-6 1.248162+0 5.336300-6 1.135365+0 5.358708-6 8.075107-1 5.374862-6 5.528508-1 5.384244-6 4.178616-1 5.397025-6 2.670478-1 5.409805-6 1.576418-1 5.413138-6 1.374654-1 5.422586-6 8.595354-2 5.438655-6 2.670774-2 5.448148-6 0.0 5.449341-6 0.0 5.449351-6 2.57389-15 5.467475-6 1.11161-11 5.472111-6 1.508722-3 5.494390-6 3.102613-2 5.499049-6 3.812694-2 5.507848-6 5.737123-2 5.512518-6 6.888159-2 5.514527-6 7.553661-2 5.525987-6 1.251433-1 5.539455-6 1.991647-1 5.556654-6 3.213041-1 5.593331-6 6.452952-1 5.610727-6 7.598880-1 5.625369-6 8.211436-1 5.639399-6 8.510066-1 5.655880-6 8.392674-1 5.689635-6 7.310272-1 5.719551-6 6.117607-1 5.744362-6 5.487980-1 5.765208-6 5.470842-1 5.821916-6 6.107892-1 5.851171-6 6.113296-1 5.902395-6 5.574442-1 5.953608-6 5.974332-1 5.973631-6 5.829586-1 6.028521-6 4.531246-1 6.045123-6 4.433942-1 6.061668-6 4.661451-1 6.110998-6 6.483236-1 6.127755-6 6.816948-1 6.145806-6 6.826607-1 6.179549-6 6.155017-1 6.192564-6 5.814610-1 6.214424-6 5.494049-1 6.233231-6 5.496399-1 6.305926-6 6.114849-1 6.423745-6 5.980419-1 6.471784-6 5.801485-1 6.500161-6 5.761297-1 6.547334-6 5.874292-1 6.641719-6 6.268451-1 7.124438-6 7.271599-1 8.077177-6 9.421033-1 9.772372-6 1.410656+0 1.432664-5 2.818445+0 1.640590-5 3.311112+0 1.846233-5 3.569355+0 2.080020-5 3.571698+0 2.403699-5 3.220691+0 2.934325-5 2.371880+0 2.948770-5 4.013819+0 2.950478-5 4.335902+0 2.955993-5 1.112611+1 2.965002-5 2.314047+1 2.972264-5 3.854404+1 2.979527-5 6.088414+1 2.987697-5 9.460049+1 3.004491-5 1.740598+2 3.009029-5 1.928741+2 3.016607-5 2.127381+2 3.024160-5 2.161158+2 3.031132-5 2.042600+2 3.038528-5 1.777697+2 3.059411-5 7.845202+1 3.066673-5 5.112207+1 3.073936-5 3.105277+1 3.081198-5 1.771801+1 3.092999-5 5.098544+0 3.095722-5 2.124856+0 3.122230-5 2.086135+0 3.137660-5 1.048216+1 3.145525-5 1.765772+1 3.153238-5 2.831294+1 3.162030-5 4.528851+1 3.181810-5 9.090034+1 3.186022-5 9.903585+1 3.193319-5 1.087310+2 3.200880-5 1.112396+2 3.208378-5 1.056950+2 3.216586-5 9.167898+1 3.237505-5 4.299450+1 3.245190-5 2.842641+1 3.252875-5 1.770212+1 3.260560-5 1.058301+1 3.275150-5 2.319795+0 3.275930-5 1.870018+0 3.384153-5 1.727397+0 3.400813-5 1.864794+0 3.409142-5 1.985339+0 3.417480-5 2.173865+0 3.427005-5 2.481360+0 3.459120-5 3.774164+0 3.467450-5 3.965293+0 3.475780-5 4.055232+0 3.503458-5 4.134399+0 3.532258-5 4.444678+0 3.542148-5 4.449014+0 3.574258-5 4.195493+0 3.595410-5 4.256191+0 3.628657-5 4.652068+0 3.647558-5 4.969691+0 3.674211-5 5.207668+0 3.725000-5 5.445976+0 3.820968-5 5.180931+0 4.035030-5 4.644392+0 4.565107-5 3.251060+0 4.896076-5 2.568162+0 5.246723-5 2.017330+0 5.544450-5 1.669472+0 5.590769-5 1.701555+0 5.658903-5 1.930504+0 5.686157-5 1.924490+0 5.716837-5 1.788824+0 5.756160-5 1.588843+0 5.791481-5 1.513194+0 5.880025-5 1.526558+0 6.222017-5 1.312846+0 6.683176-5 1.130489+0 7.079458-5 1.035109+0 7.680000-5 9.622878-1 8.270000-5 9.435165-1 9.306767-5 9.761751-1 1.380384-4 1.255856+0 1.690607-4 1.368210+0 1.827342-4 1.394985+0 1.841183-4 1.467062+0 1.850302-4 1.586189+0 1.874243-4 2.119747+0 1.885568-4 2.285414+0 1.900262-4 2.374336+0 1.933694-4 2.342165+0 1.953000-4 2.452310+0 1.972000-4 2.678235+0 1.992673-4 3.086758+0 2.014595-4 3.719032+0 2.050248-4 5.101975+0 2.178881-4 1.070454+1 2.264644-4 1.372661+1 2.350000-4 1.576921+1 2.520000-4 1.810790+1 2.723854-4 1.978751+1 3.038101-4 2.057351+1 3.172687-4 2.080146+1 3.190864-4 2.157373+1 3.215124-4 2.413920+1 3.238153-4 2.649983+1 3.254252-4 2.630743+1 3.292838-4 2.275686+1 3.320163-4 2.232782+1 3.376904-4 2.483655+1 3.402971-4 2.451502+1 3.442264-4 2.318507+1 4.137189-4 2.175009+1 4.219319-4 2.227553+1 6.006246-4 1.649068+1 7.161909-4 1.363691+1 8.640000-4 1.093116+1 1.002421-3 9.082312+0 1.168275-3 7.434974+0 1.353770-3 6.092016+0 1.578023-3 4.918682+0 1.789617-3 4.107044+0 2.073570-3 3.310926+0 2.164962-3 3.111817+0 2.175620-3 3.461868+0 2.181376-3 3.818138+0 2.186618-3 4.330704+0 2.192378-3 5.154705+0 2.200593-3 6.773588+0 2.213969-3 9.779376+0 2.219046-3 1.070905+1 2.224667-3 1.141150+1 2.230188-3 1.177283+1 2.242344-3 1.173129+1 2.256190-3 1.129932+1 2.271891-3 1.138002+1 2.286237-3 1.247222+1 2.306626-3 1.443628+1 2.318426-3 1.490809+1 2.382510-3 1.404661+1 2.479954-3 1.343308+1 2.540945-3 1.454301+1 3.062405-3 1.110122+1 3.507519-3 9.015477+0 4.027170-3 7.261203+0 4.628149-3 5.805555+0 5.286330-3 4.662601+0 5.961915-3 3.813625+0 6.782640-3 3.063324+0 7.772465-3 2.423401+0 8.748500-3 1.972737+0 9.841076-3 1.603386+0 1.105372-2 1.305044+0 1.235592-2 1.069612+0 1.381129-2 8.753082-1 1.537008-2 7.208242-1 1.737051-2 5.765580-1 1.753699-2 5.734991-1 1.761796-2 5.987408-1 1.766791-2 6.436590-1 1.770863-2 7.107480-1 1.774720-2 8.099985-1 1.778418-2 9.458175-1 1.782616-2 1.152652+0 1.788625-2 1.543513+0 1.804317-2 2.745686+0 1.812994-2 3.214505+0 1.823203-2 3.476976+0 1.838125-2 3.537382+0 2.132975-2 2.795044+0 2.432408-2 2.252774+0 2.766724-2 1.812292+0 3.111883-2 1.478257+0 3.533275-2 1.183330+0 3.926004-2 9.802220-1 4.308985-2 8.283007-1 4.746541-2 6.938121-1 5.308357-2 5.640494-1 5.928549-2 4.586754-1 6.512821-2 3.839584-1 7.209452-2 3.162800-1 7.909351-2 2.648194-1 8.846691-2 2.133212-1 9.828789-2 1.737175-1 1.103825-1 1.386077-1 1.218485-1 1.142522-1 1.339609-1 9.488693-2 1.485863-1 7.749507-2 1.638208-1 6.403037-2 1.808108-1 5.279328-2 1.993917-1 4.367520-2 2.216974-1 3.562534-2 2.451635-1 2.942305-2 2.714089-1 2.432268-2 3.021582-1 1.996044-2 3.362748-1 1.646569-2 3.686061-1 1.401751-2 4.109131-1 1.164378-2 4.648831-1 9.513235-3 5.173090-1 8.046028-3 5.756470-1 6.857645-3 6.428727-1 5.862170-3 7.249574-1 4.996218-3 8.244365-1 4.273955-3 9.549926-1 3.617639-3 1.120601+0 3.054984-3 1.347258+0 2.508594-3 1.622287+0 2.056651-3 1.859734+0 1.776920-3 2.235892+0 1.459114-3 2.688134+0 1.198149-3 3.231848+0 9.838576-4 3.885536+0 8.078927-4 4.671441+0 6.633995-4 5.616308+0 5.447492-4 6.752287+0 4.473197-4 8.118035+0 3.673157-4 9.760024+0 3.016205-4 1.000000+1 6.092598-4 1 40000 7 0 9.122000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-3.969673+1 2.027719-6-3.787393+1 2.400000-6-3.522942+1 2.571014-6-3.200591+1 2.658653-6-2.853738+1 2.710949-6-2.479849+1 2.742970-6-2.103422+1 2.761740-6-1.771778+1 2.773061-6-1.495104+1 2.781888-6-1.203501+1 2.787121-6-9.623196+0 2.789187-6-8.203380+0 2.790688-6-7.347988+0 2.798624-6-3.428451+0 2.800339-6-2.522179+0 2.802055-6-1.463875+0 2.808918-6 2.680044+0 2.809776-6 3.282314+0 2.816639-6 7.146246+0 2.818140-6 7.843131+0 2.823502-6 9.841069+0 2.825004-6 1.017420+1 2.829508-6 1.044512+1 2.832510-6 1.005549+1 2.835406-6 9.082592+0 2.839802-6 6.550755+0 2.841518-6 5.292960+0 2.842376-6 4.556022+0 2.844092-6 2.719528+0 2.847094-6-2.366966-1 2.848596-6-1.858861+0 2.849346-6-2.766087+0 2.849722-6-3.267099+0 2.850526-6-4.529566+0 2.851330-6-5.578355+0 2.856256-6-1.150610+1 2.857590-6-1.359110+1 2.865232-6-2.200218+1 2.868925-6-2.431111+1 2.877549-6-2.591222+1 2.881988-6-2.526207+1 2.884631-6-2.358781+1 2.889531-6-1.989546+1 2.891407-6-1.776742+1 2.892858-6-1.597608+1 2.897770-6-1.107111+1 2.899121-6-9.078730+0 2.899923-6-8.199690+0 2.905537-6-3.445161+0 2.905978-6-2.949010+0 2.906806-6-2.345876+0 2.907531-6-1.961059+0 2.908798-6-1.491725+0 2.909749-6-1.267428+0 2.913043-6-8.490734-1 2.913871-6-9.366507-1 2.914595-6-1.128245+0 2.915863-6-1.667741+0 2.916814-6-2.228288+0 2.917527-6-2.734608+0 2.918596-6-3.638647+0 2.919666-6-4.770815+0 2.921432-6-6.883498+0 2.923750-6-1.004296+1 2.925892-6-1.362099+1 2.931001-6-2.456856+1 2.933547-6-3.138697+1 2.936090-6-3.923642+1 2.936388-6-4.007069+1 2.940316-6-2.852546+1 2.941240-6-2.492940+1 2.947925-6-4.432113+0 2.948145-6-3.580720+0 2.948573-6-2.173020+0 2.949375-6 2.026001-1 2.950077-6 2.131138+0 2.955431-6 1.565344+1 2.957708-6 2.048164+1 2.962054-6 2.762876+1 2.965642-6 3.186242+1 2.969119-6 3.413905+1 2.974196-6 3.515293+1 2.981482-6 3.212826+1 2.989540-6 2.522352+1 2.999806-6 1.482576+1 3.007974-6 8.197759+0 3.009740-6 6.595445+0 3.011065-6 5.180746+0 3.012057-6 3.801349+0 3.013153-6 2.657862+0 3.014241-6 1.686134+0 3.016399-6 1.462327-2 3.018523-6-1.414587+0 3.020615-6-2.673884+0 3.022673-6-3.802356+0 3.024700-6-4.825046+0 3.028690-6-6.632207+0 3.036299-6-9.511787+0 3.046844-6-1.266207+1 3.062520-6-1.620629+1 3.082963-6-1.959004+1 3.111684-6-2.299054+1 3.167887-6-2.741267+1 3.240571-6-3.231143+1 3.279878-6-3.522989+1 3.298944-6-3.431607+1 3.332196-6-2.982116+1 3.346470-6-2.938395+1 3.379224-6-3.037210+1 3.426419-6-2.883700+1 3.496026-6-3.086879+1 3.660763-6-3.346435+1 4.168304-6-3.603219+1 4.565336-6-3.795524+1 4.656230-6-3.973798+1 4.692994-6-3.765918+1 4.736140-6-3.421611+1 4.772858-6-3.405391+1 4.861891-6-3.603971+1 5.057920-6-3.728549+1 5.153423-6-3.696094+1 5.295520-6-3.707884+1 5.390634-6-3.640301+1 5.610727-6-3.762577+1 6.028521-6-3.746682+1 1.297349-5-3.902941+1 1.877739-5-3.894095+1 2.312411-5-3.447811+1 2.522718-5-3.061644+1 2.635620-5-2.713465+1 2.718004-5-2.314191+1 2.770129-5-1.936246+1 2.805242-5-1.585864+1 2.827964-5-1.292878+1 2.846686-5-9.949399+0 2.862113-5-6.963551+0 2.871140-5-4.924799+0 2.879038-5-2.919648+0 2.885949-5-9.609059-1 2.891996-5 9.389843-1 2.897287-5 2.769058+0 2.901917-5 4.520040+0 2.909513-5 7.756269+0 2.912614-5 9.232322+0 2.918042-5 1.207965+1 2.925166-5 1.645967+1 2.932608-5 2.217691+1 2.941548-5 3.124247+1 2.947599-5 3.930633+1 2.950478-5 4.500437+1 2.952374-5 4.905400+1 2.965002-5 6.989002+1 2.973172-5 8.480337+1 2.982023-5 9.670492+1 2.989399-5 9.922635+1 2.995327-5 9.280272+1 3.000471-5 8.096477+1 3.006278-5 6.001474+1 3.008576-5 4.888633+1 3.013923-5 2.081336+1 3.015120-5 1.371977+1 3.015658-5 1.010096+1 3.015951-5 7.729105+0 3.016175-5 6.115880+0 3.016607-5 3.237781+0 3.017419-5-1.810368+0 3.021527-5-2.632441+1 3.023011-5-3.645178+1 3.023128-5-3.711576+1 3.024354-5-2.852070+1 3.026319-5-1.670240+1 3.028341-5-5.119081+0 3.029351-5 7.997101-1 3.029857-5 3.913817+0 3.030236-5 6.440388+0 3.030476-5 8.307653+0 3.031132-5 1.250567+1 3.032654-5 2.085866+1 3.038528-5 4.911079+1 3.041799-5 6.091080+1 3.046119-5 7.196880+1 3.050798-5 7.955664+1 3.056220-5 8.280893+1 3.059411-5 8.097297+1 3.065766-5 7.415629+1 3.073936-5 5.914732+1 3.083694-5 3.919206+1 3.092999-5 2.317744+1 3.095382-5 1.814875+1 3.096136-5 1.597699+1 3.097742-5 1.253588+1 3.099272-5 9.751510+0 3.102052-5 5.272304+0 3.122470-5-2.240079+1 3.126628-5-2.820891+1 3.134480-5-3.737625+1 3.147626-5-2.083640+1 3.152970-5-1.512752+1 3.154731-5-1.325469+1 3.157074-5-1.154309+1 3.162030-5-8.673402+0 3.163842-5-8.107995+0 3.165435-5-8.009172+0 3.166880-5-8.167300+0 3.169251-5-8.888813+0 3.171808-5-1.029005+1 3.174078-5-1.209680+1 3.176449-5-1.464874+1 3.180840-5-2.101985+1 3.184030-5-2.699355+1 3.188471-5-3.744190+1 3.191939-5-2.849685+1 3.193747-5-2.267305+1 3.198590-5-9.218265+0 3.199775-5-5.510788+0 3.199973-5-4.813693+0 3.200412-5-3.067175+0 3.200880-5-1.492214+0 3.207895-5 1.842917+1 3.209283-5 2.254418+1 3.210867-5 2.646037+1 3.216586-5 3.922969+1 3.221444-5 4.704449+1 3.226663-5 5.274838+1 3.232931-5 5.596223+1 3.237505-5 5.545530+1 3.245190-5 5.108377+1 3.252875-5 4.431875+1 3.263699-5 3.385834+1 3.274371-5 2.513288+1 3.278001-5 2.106627+1 3.283970-5 1.670626+1 3.290014-5 1.338326+1 3.298072-5 9.846939+0 3.306130-5 6.964876+0 3.314189-5 4.533618+0 3.322247-5 2.433245+0 3.330305-5 5.877325-1 3.338363-5-1.056834+0 3.346422-5-2.541182+0 3.354480-5-3.894879+0 3.370597-5-6.304234+0 3.394771-5-9.478481+0 3.427005-5-1.302686+1 3.452595-5-1.482131+1 3.532258-5-1.747698+1 3.595410-5-1.936723+1 3.647558-5-2.064957+1 4.035030-5-2.295087+1 5.016957-5-2.553616+1 5.672530-5-2.673064+1 8.570000-5-2.919386+1 1.540000-4-3.271802+1 1.803835-4-3.571889+1 1.893185-4-3.749393+1 1.990000-4-4.009120+1 2.090498-4-4.256328+1 2.220000-4-4.205694+1 2.650000-4-3.453881+1 2.958679-4-3.062259+1 3.126160-4-2.990754+1 3.172687-4-3.089144+1 3.211617-4-3.206512+1 3.231571-4-3.047662+1 3.261804-4-2.612427+1 3.280415-4-2.533111+1 3.337914-4-2.744675+1 3.366234-4-2.696739+1 3.408131-4-2.441982+1 3.456595-4-2.424960+1 3.927764-4-2.012817+1 4.170127-4-1.893126+1 4.244270-4-1.857470+1 4.372460-4-1.715237+1 4.731512-4-1.476844+1 5.263202-4-1.238228+1 5.814382-4-1.065306+1 6.561000-4-9.091325+0 7.504353-4-7.886249+0 8.640000-4-7.092103+0 1.002421-3-6.657421+0 1.168275-3-6.565873+0 1.425946-3-6.948265+0 1.652609-3-7.709879+0 1.848737-3-8.822926+0 1.980133-3-1.004166+1 2.073570-3-1.145610+1 2.132513-3-1.293833+1 2.164962-3-1.428717+1 2.189499-3-1.611474+1 2.213969-3-1.866654+1 2.228569-3-1.913257+1 2.249335-3-1.777026+1 2.271891-3-1.630936+1 2.312398-3-1.582650+1 2.332044-3-1.464598+1 2.361978-3-1.261610+1 2.395819-3-1.125802+1 2.440382-3-1.020500+1 2.479954-3-9.827751+0 2.509238-3-9.764824+0 2.530821-3-9.244338+0 2.567401-3-7.967077+0 2.616025-3-6.856939+0 2.696128-3-5.617654+0 2.786121-3-4.604059+0 2.898595-3-3.661856+0 3.005378-3-2.976321+0 3.149286-3-2.274425+0 3.294276-3-1.743397+0 3.423824-3-1.365160+0 3.565647-3-1.042640+0 3.752969-3-7.129984-1 3.876305-3-5.433385-1 4.027170-3-3.742722-1 4.160172-3-2.584541-1 4.298942-3-1.607856-1 4.453997-3-7.493715-2 4.470573-3-6.664346-2 4.590658-3-1.458166-2 4.610520-3-7.089022-3 4.628149-3-9.268440-4 4.686718-3 1.896538-2 4.711447-3 2.754146-2 4.758828-3 4.153340-2 4.812444-3 5.456442-2 4.954502-3 8.311620-2 5.103729-3 1.032307-1 5.230461-3 1.147081-1 5.464849-3 1.256652-1 5.596166-3 1.244658-1 5.766834-3 1.185741-1 5.961915-3 1.069663-1 6.165950-3 9.068539-2 6.389527-3 6.500477-2 6.583207-3 4.035834-2 6.852042-3 3.172674-3 6.874405-3 1.761543-4 6.958249-3-1.103769-2 7.028700-3-2.125558-2 7.486422-3-9.200480-2 1.189144-2-8.150898-1 1.333521-2-1.074816+0 1.466920-2-1.368607+0 1.566751-2-1.670014+0 1.635861-2-1.970363+0 1.685237-2-2.287807+0 1.718312-2-2.605225+0 1.744110-2-2.992351+0 1.759858-2-3.389252+0 1.776031-2-4.062536+0 1.788625-2-4.581205+0 1.797192-2-4.669955+0 1.806697-2-4.426774+0 1.830865-2-3.277900+0 1.843000-2-2.883524+0 1.857746-2-2.552237+0 1.883649-2-2.149574+0 1.917762-2-1.782332+0 1.958186-2-1.463621+0 2.000631-2-1.214141+0 2.046616-2-1.003829+0 2.099868-2-8.115098-1 2.168036-2-6.182838-1 2.248383-2-4.397793-1 2.316626-2-3.210738-1 2.377754-2-2.335636-1 2.432408-2-1.687692-1 2.494751-2-1.054240-1 2.542556-2-6.452541-2 2.615985-2-9.023109-3 2.629378-2-5.885428-4 2.691535-2 3.903801-2 2.766724-2 7.861701-2 2.833124-2 1.068141-1 2.893598-2 1.281039-1 2.970251-2 1.515729-1 3.111883-2 1.832453-1 3.279674-2 2.085990-1 3.446013-2 2.250595-1 3.712794-2 2.346432-1 4.057746-2 2.324384-1 4.746541-2 2.040115-1 6.292974-2 1.205851-1 6.964581-2 8.909988-2 7.672203-2 5.973499-2 8.273566-2 3.815485-2 8.612542-2 2.714890-2 9.145866-2 1.143980-2 9.369978-2 5.137415-3 9.558498-2 2.141741-4 9.612966-2-1.196652-3 9.828789-2-6.616769-3 1.002064-1-1.128589-2 1.045949-1-2.121106-2 1.103825-1-3.303012-2 1.185219-1-4.760708-2 1.295767-1-6.429703-2 1.438387-1-8.174132-2 1.638208-1-1.004211-1 1.934048-1-1.199616-1 2.371374-1-1.383436-1 3.021582-1-1.538784-1 4.278091-1-1.678422-1 6.998420-1-1.775191-1 1.859734+0-1.826562-1 5.616308+0-1.834075-1 1.000000+1-1.834121-1 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.691701-2 1.119209-6 4.590105-2 1.154185-6 5.334607-2 1.190253-6 6.217554-2 1.227448-6 7.268316-2 1.265806-6 8.523487-2 1.305363-6 1.002842-1 1.344729-6 1.177209-1 1.382865-6 1.373367-1 1.419809-6 1.593115-1 1.455599-6 1.838297-1 1.490271-6 2.110839-1 1.556397-6 2.741537-1 1.587918-6 3.101948-1 1.618455-6 3.497334-1 1.648037-6 3.930446-1 1.676695-6 4.403770-1 1.704457-6 4.919895-1 1.731351-6 5.481515-1 1.757405-6 6.091433-1 1.782645-6 6.752560-1 1.807097-6 7.467921-1 1.830784-6 8.240656-1 1.853731-6 9.074023-1 1.875960-6 9.971542-1 1.920000-6 1.205632+0 1.958146-6 1.425325+0 1.995487-6 1.686263+0 2.030531-6 1.983531+0 2.048000-6 2.155206+0 2.063418-6 2.322330+0 2.094772-6 2.711234+0 2.124167-6 3.147283+0 2.151724-6 3.636376+0 2.177559-6 4.183049+0 2.201779-6 4.791867+0 2.224486-6 5.467518+0 2.245773-6 6.214791+0 2.265730-6 7.038542+0 2.284440-6 7.943670+0 2.301980-6 8.935073+0 2.318424-6 1.001762+1 2.333840-6 1.119614+1 2.348293-6 1.247549+1 2.361842-6 1.386049+1 2.374545-6 1.535539+1 2.386454-6 1.696335+1 2.400000-6 1.908605+1 2.408085-6 2.053080+1 2.417897-6 2.249775+1 2.427096-6 2.459162+1 2.435720-6 2.681527+1 2.443806-6 2.917104+1 2.451386-6 3.166098+1 2.458492-6 3.428679+1 2.465154-6 3.704975+1 2.471399-6 3.995071+1 2.477255-6 4.299020+1 2.482744-6 4.616879+1 2.487890-6 4.948746+1 2.497539-6 5.680667+1 2.505982-6 6.475791+1 2.513370-6 7.336702+1 2.519834-6 8.263538+1 2.525490-6 9.251368+1 2.530440-6 1.028909+2 2.534770-6 1.136030+2 2.538559-6 1.244545+2 2.541875-6 1.352443+2 2.544776-6 1.457871+2 2.549853-6 1.669789+2 2.558658-6 2.129850+2 2.567254-6 2.698989+2 2.571397-6 3.012988+2 2.576133-6 3.397517+2 2.577711-6 3.530458+2 2.584025-6 4.075629+2 2.585603-6 4.212993+2 2.591127-6 4.685941+2 2.592509-6 4.800492+2 2.596652-6 5.129911+2 2.600197-6 5.390178+2 2.601889-6 5.506072+2 2.604427-6 5.668911+2 2.606965-6 5.818033+2 2.610740-6 6.014494+2 2.615593-6 6.226977+2 2.622301-6 6.472778+2 2.629651-6 6.752402+2 2.633727-6 6.954934+2 2.636963-6 7.159667+2 2.641378-6 7.523951+2 2.644568-6 7.861536+2 2.649061-6 8.459363+2 2.651841-6 8.906223+2 2.655564-6 9.599079+2 2.658203-6 1.015389+3 2.666762-6 1.226676+3 2.672060-6 1.373604+3 2.676307-6 1.493753+3 2.679922-6 1.593690+3 2.683422-6 1.685192+3 2.685437-6 1.734364+3 2.689137-6 1.815908+3 2.691522-6 1.861328+3 2.695154-6 1.917874+3 2.698229-6 1.952529+3 2.701930-6 1.976833+3 2.704549-6 1.982077+3 2.710021-6 1.960771+3 2.712607-6 1.935919+3 2.716094-6 1.888331+3 2.719086-6 1.835637+3 2.721422-6 1.787675+3 2.724759-6 1.710039+3 2.728246-6 1.619418+3 2.732289-6 1.505145+3 2.735528-6 1.408827+3 2.738767-6 1.310203+3 2.742006-6 1.210946+3 2.745650-6 1.100410+3 2.749524-6 9.862307+2 2.752641-6 8.980460+2 2.755901-6 8.103105+2 2.760300-6 7.002212+2 2.764288-6 6.095060+2 2.769248-6 5.092772+2 2.771615-6 4.664128+2 2.787141-6 2.591731+2 2.791401-6 2.220195+2 2.796513-6 1.865782+2 2.798217-6 1.767518+2 2.800773-6 1.636979+2 2.803329-6 1.525167+2 2.805033-6 1.460218+2 2.807589-6 1.376004+2 2.810145-6 1.306275+2 2.811849-6 1.267101+2 2.814405-6 1.218247+2 2.816962-6 1.180053+2 2.818666-6 1.159857+2 2.821222-6 1.136514+2 2.823778-6 1.120427+2 2.827186-6 1.108252+2 2.830594-6 1.104310+2 2.836664-6 1.110372+2 2.848060-6 1.133528+2 2.852746-6 1.137544+2 2.857965-6 1.134245+2 2.861320-6 1.127194+2 2.864675-6 1.116189+2 2.869787-6 1.092163+2 2.871491-6 1.082369+2 2.876603-6 1.048420+2 2.878307-6 1.035804+2 2.885123-6 9.807410+1 2.891939-6 9.216578+1 2.907595-6 7.895666+1 2.919811-6 7.006159+1 2.961695-6 4.745516+1 2.980667-6 3.982594+1 2.990610-6 3.648201+1 3.000398-6 3.361800+1 3.010033-6 3.117224+1 3.019518-6 2.907505+1 3.028854-6 2.726081+1 3.047236-6 2.425075+1 3.065042-6 2.186134+1 3.082293-6 1.990951+1 3.099004-6 1.828431+1 3.115193-6 1.691185+1 3.130876-6 1.573936+1 3.146069-6 1.472700+1 3.175505-6 1.304192+1 3.203102-6 1.172222+1 3.228974-6 1.066613+1 3.253228-6 9.806237+0 3.275967-6 9.095832+0 3.297285-6 8.501150+0 3.337256-6 7.533007+0 3.372230-6 6.811131+0 3.402833-6 6.260814+0 3.456387-6 5.436612+0 3.496553-6 4.911911+0 3.679371-6 3.172647+0 3.750595-6 2.677892+0 3.803441-6 2.351257+0 3.840027-6 2.140231+0 3.877648-6 1.932707+0 3.905865-6 1.781756+0 3.934081-6 1.633765+0 3.962297-6 1.487802+0 3.981108-6 1.391125+0 3.999919-6 1.294555+0 4.009324-6 1.246190+0 4.033229-6 1.122576+0 4.054145-6 1.012991+0 4.072447-6 9.154426-1 4.088461-6 8.284394-1 4.102473-6 7.508359-1 4.114734-6 6.817179-1 4.125462-6 6.203302-1 4.134849-6 5.660273-1 4.151276-6 4.704566-1 4.163597-6 3.998520-1 4.172837-6 3.491514-1 4.184965-6 2.890647-1 4.192762-6 2.572451-1 4.200559-6 2.340028-1 4.203838-6 2.276922-1 4.208188-6 2.233317-1 4.211450-6 2.235932-1 4.216343-6 2.307899-1 4.218790-6 2.379390-1 4.221237-6 2.477895-1 4.222785-6 2.555420-1 4.224333-6 2.645597-1 4.232706-6 3.386852-1 4.234799-6 3.649386-1 4.236369-6 3.869479-1 4.239901-6 4.443259-1 4.244141-6 5.290370-1 4.255574-6 8.604874-1 4.261001-6 1.080044+0 4.266406-6 1.344577+0 4.269650-6 1.526788+0 4.274654-6 1.844165+0 4.279129-6 2.166259+0 4.284134-6 2.569416+0 4.287660-6 2.880322+0 4.291621-6 3.254998+0 4.295627-6 3.659651+0 4.299537-6 4.077119+0 4.302944-6 4.456946+0 4.306689-6 4.888817+0 4.310548-6 5.346200+0 4.314289-6 5.797490+0 4.318246-6 6.278743+0 4.322411-6 6.783849+0 4.326758-6 7.302756+0 4.328680-6 7.527526+0 4.334355-6 8.166916+0 4.338870-6 8.641457+0 4.340972-6 8.849556+0 4.346055-6 9.313834+0 4.349430-6 9.587916+0 4.359503-6 1.021912+1 4.361371-6 1.030286+1 4.369901-6 1.054435+1 4.373475-6 1.057599+1 4.376887-6 1.056816+1 4.381771-6 1.049388+1 4.386947-6 1.033777+1 4.389061-6 1.025241+1 4.392760-6 1.007483+1 4.395534-6 9.919541+0 4.399696-6 9.654205+0 4.403857-6 9.354222+0 4.409674-6 8.886405+0 4.411613-6 8.720055+0 4.418852-6 8.065118+0 4.422060-6 7.762804+0 4.428726-6 7.124006+0 4.432508-6 6.761186+0 4.439398-6 6.111939+0 4.449702-6 5.201813+0 4.461199-6 4.319984+0 4.470677-6 3.725987+0 4.475813-6 3.458612+0 4.479882-6 3.274386+0 4.483951-6 3.114278+0 4.486663-6 3.020680+0 4.490732-6 2.899418+0 4.494801-6 2.800233+0 4.497513-6 2.745788+0 4.502260-6 2.671601+0 4.506405-6 2.627138+0 4.508490-6 2.611355+0 4.512495-6 2.592281+0 4.516500-6 2.586519+0 4.521925-6 2.596685+0 4.527350-6 2.623306+0 4.538199-6 2.707597+0 4.551762-6 2.827480+0 4.559899-6 2.885629+0 4.562611-6 2.900619+0 4.570749-6 2.929006+0 4.576174-6 2.932500+0 4.580242-6 2.926483+0 4.586345-6 2.903400+0 4.592448-6 2.863834+0 4.597873-6 2.815646+0 4.603298-6 2.756309+0 4.614148-6 2.609619+0 4.624997-6 2.435788+0 4.635602-6 2.251521+0 4.646502-6 2.058159+0 4.656667-6 1.881804+0 4.674714-6 1.592075+0 4.688021-6 1.402704+0 4.711308-6 1.118610+0 4.746238-6 7.731459-1 4.763703-6 6.266146-1 4.781168-6 5.016968-1 4.787052-6 4.665204-1 4.792936-6 4.359029-1 4.798820-6 4.106255-1 4.804704-6 3.915335-1 4.812399-6 3.773743-1 4.816472-6 3.754558-1 4.821056-6 3.783745-1 4.828241-6 3.946480-1 4.837521-6 4.385993-1 4.839338-6 4.503915-1 4.844789-6 4.922084-1 4.849824-6 5.394847-1 4.860827-6 6.712126-1 4.871199-6 8.284075-1 4.877745-6 9.415689-1 4.881672-6 1.013641+0 4.885967-6 1.095283+0 4.891603-6 1.205682+0 4.897491-6 1.323046+0 4.900726-6 1.387590+0 4.907292-6 1.516761+0 4.913037-6 1.625570+0 4.915607-6 1.672343+0 4.921730-6 1.777547+0 4.926323-6 1.849499+0 4.928781-6 1.885178+0 4.942695-6 2.042928+0 4.947471-6 2.077644+0 4.956590-6 2.113866+0 4.961669-6 2.116667+0 4.964567-6 2.112753+0 4.969638-6 2.096519+0 4.973442-6 2.076795+0 4.979148-6 2.035840+0 4.984854-6 1.982441+0 4.988403-6 1.943630+0 4.993728-6 1.878461+0 4.999052-6 1.806317+0 5.004985-6 1.719679+0 5.010919-6 1.628653+0 5.018838-6 1.504195+0 5.025663-6 1.397769+0 5.044346-6 1.133168+0 5.053607-6 1.026245+0 5.056143-6 1.000425+0 5.063752-6 9.324650-1 5.067390-6 9.051150-1 5.072846-6 8.703441-1 5.078302-6 8.429792-1 5.082070-6 8.282941-1 5.087721-6 8.124752-1 5.090547-6 8.072504-1 5.093373-6 8.037408-1 5.099641-6 8.017729-1 5.105910-6 8.072552-1 5.127861-6 8.748341-1 5.144570-6 9.628981-1 5.161279-6 1.067714+0 5.169376-6 1.120058+0 5.180003-6 1.185950+0 5.187328-6 1.227195+0 5.193667-6 1.258676+0 5.208891-6 1.312044+0 5.223124-6 1.325410+0 5.226245-6 1.322986+0 5.235610-6 1.303851+0 5.238438-6 1.294637+0 5.243386-6 1.274861+0 5.250809-6 1.237124+0 5.258659-6 1.188201+0 5.266548-6 1.131997+0 5.269320-6 1.111087+0 5.282226-6 1.010714+0 5.294127-6 9.224376-1 5.306067-6 8.483793-1 5.310201-6 8.276474-1 5.314335-6 8.098704-1 5.323651-6 7.815202-1 5.326394-6 7.763864-1 5.333851-6 7.698801-1 5.337563-6 7.706119-1 5.340811-6 7.733239-1 5.346495-6 7.824460-1 5.350758-6 7.926412-1 5.353955-6 8.019761-1 5.361149-6 8.274772-1 5.375773-6 8.920418-1 5.387561-6 9.476486-1 5.401852-6 1.007552+0 5.405729-6 1.021071+0 5.417360-6 1.052392+0 5.423070-6 1.062234+0 5.428067-6 1.067762+0 5.436811-6 1.070708+0 5.443370-6 1.067702+0 5.453398-6 1.055763+0 5.463044-6 1.037883+0 5.504022-6 9.462601-1 5.514484-6 9.301480-1 5.524362-6 9.198919-1 5.533838-6 9.145733-1 5.541441-6 9.132166-1 5.553891-6 9.155210-1 5.594745-6 9.382633-1 5.605606-6 9.425314-1 5.622235-6 9.449448-1 5.639081-6 9.421878-1 5.655671-6 9.352361-1 5.688718-6 9.143500-1 5.722405-6 8.926708-1 5.748745-6 8.815262-1 5.767570-6 8.784598-1 5.789928-6 8.803565-1 5.816118-6 8.886954-1 5.914815-6 9.348825-1 5.983274-6 9.620393-1 6.203082-6 1.040393+0 6.422716-6 1.131563+0 6.624994-6 1.231145+0 6.728510-6 1.287258+0 7.000000-6 1.452694+0 7.379225-6 1.720993+0 8.659644-6 2.921468+0 9.332543-6 3.722734+0 1.023293-5 4.985107+0 1.150000-5 7.113931+0 1.288250-5 9.925854+0 1.428894-5 1.326668+1 1.536000-5 1.606595+1 1.622488-5 1.842416+1 1.698244-5 2.050899+1 1.745632-5 2.180255+1 1.835127-5 2.419028+1 1.893712-5 2.605099+1 1.972423-5 2.883376+1 2.052894-5 3.201123+1 2.106473-5 3.435265+1 2.161320-5 3.698465+1 2.215584-5 3.984343+1 2.273965-5 4.330204+1 2.330000-5 4.703841+1 2.388305-5 5.148667+1 2.441567-5 5.618965+1 2.495302-5 6.167054+1 2.540973-5 6.711919+1 2.593531-5 7.451289+1 2.628660-5 8.031616+1 2.663448-5 8.698538+1 2.692566-5 9.341300+1 2.735443-5 1.045318+2 2.762259-5 1.127706+2 2.790837-5 1.229999+2 2.818383-5 1.345137+2 2.835775-5 1.428064+2 2.853781-5 1.524154+2 2.878256-5 1.674703+2 2.891408-5 1.766912+2 2.909476-5 1.909251+2 2.926709-5 2.065151+2 2.939481-5 2.195947+2 2.953545-5 2.357949+2 2.966730-5 2.530109+2 2.979092-5 2.712690+2 2.990680-5 2.905892+2 3.005434-5 3.189143+2 3.011730-5 3.325071+2 3.021279-5 3.551601+2 3.030231-5 3.789799+2 3.038623-5 4.039900+2 3.046491-5 4.302091+2 3.053867-5 4.576519+2 3.060782-5 4.863294+2 3.067265-5 5.162520+2 3.073343-5 5.474307+2 3.079041-5 5.798800+2 3.085175-5 6.189323+2 3.094399-5 6.876346+2 3.103162-5 7.675412+2 3.110831-5 8.535329+2 3.117559-5 9.458287+2 3.123412-5 1.043099+3 3.128549-5 1.145226+3 3.133044-5 1.250556+3 3.136977-5 1.357452+3 3.140419-5 1.464198+3 3.146442-5 1.686239+3 3.150959-5 1.887584+3 3.154346-5 2.061434+3 3.156887-5 2.206113+3 3.162604-5 2.581565+3 3.172299-5 3.400350+3 3.183278-5 4.647620+3 3.187877-5 5.277867+3 3.195666-5 6.485444+3 3.198948-5 7.042255+3 3.206783-5 8.461475+3 3.207763-5 8.645629+3 3.214619-5 9.954699+3 3.217312-5 1.047020+4 3.219883-5 1.095738+4 3.223700-5 1.166395+4 3.227117-5 1.227012+4 3.230656-5 1.286167+4 3.233408-5 1.328994+4 3.237342-5 1.384374+4 3.240977-5 1.428481+4 3.245264-5 1.470533+4 3.248402-5 1.493824+4 3.252278-5 1.513229+4 3.256267-5 1.521927+4 3.260357-5 1.518718+4 3.262229-5 1.513157+4 3.269907-5 1.464304+4 3.272877-5 1.434809+4 3.274405-5 1.417520+4 3.279549-5 1.349663+4 3.282607-5 1.303037+4 3.285963-5 1.247357+4 3.288532-5 1.202030+4 3.292203-5 1.134023+4 3.295153-5 1.077307+4 3.298865-5 1.004294+4 3.300806-5 9.657074+3 3.304724-5 8.877728+3 3.308641-5 8.106913+3 3.313049-5 7.262643+3 3.317430-5 6.459069+3 3.320290-5 5.958398+3 3.324312-5 5.291169+3 3.327128-5 4.851615+3 3.330341-5 4.379307+3 3.335162-5 3.731392+3 3.339982-5 3.156888+3 3.345574-5 2.580917+3 3.350264-5 2.169548+3 3.384310-5 8.038403+2 3.385425-5 7.993922+2 3.387091-5 7.969341+2 3.388392-5 7.984677+2 3.389794-5 8.034807+2 3.391589-5 8.149413+2 3.394722-5 8.483313+2 3.397455-5 8.911464+2 3.398993-5 9.207422+2 3.400970-5 9.645362+2 3.409560-5 1.227094+3 3.419981-5 1.688168+3 3.425399-5 1.978641+3 3.429704-5 2.227961+3 3.433342-5 2.448046+3 3.437328-5 2.695362+3 3.441225-5 2.939452+3 3.445249-5 3.189530+3 3.448846-5 3.407516+3 3.451336-5 3.553606+3 3.456239-5 3.824783+3 3.460196-5 4.023325+3 3.465167-5 4.240600+3 3.467996-5 4.346017+3 3.476200-5 4.566531+3 3.479305-5 4.614654+3 3.483029-5 4.645871+3 3.486541-5 4.648855+3 3.490106-5 4.626138+3 3.494359-5 4.566508+3 3.498454-5 4.477856+3 3.501156-5 4.403997+3 3.504701-5 4.290339+3 3.509260-5 4.119873+3 3.513465-5 3.942683+3 3.517669-5 3.750806+3 3.519787-5 3.649978+3 3.524552-5 3.416293+3 3.526140-5 3.337071+3 3.534250-5 2.931567+3 3.535868-5 2.851804+3 3.547192-5 2.322161+3 3.557700-5 1.896346+3 3.568208-5 1.546893+3 3.572813-5 1.417926+3 3.577178-5 1.308547+3 3.581543-5 1.210934+3 3.585907-5 1.124229+3 3.590437-5 1.044790+3 3.594032-5 9.887062+2 3.599671-5 9.117624+2 3.605310-5 8.466106+2 3.611782-5 7.840617+2 3.618254-5 7.322922+2 3.627138-5 6.750896+2 3.636022-5 6.301136+2 3.644906-5 5.941469+2 3.653790-5 5.648221+2 3.662674-5 5.404179+2 3.676184-5 5.100166+2 3.689733-5 4.850213+2 3.714525-5 4.470649+2 3.777931-5 3.665882+2 3.796188-5 3.481458+2 3.805578-5 3.399712+2 3.814373-5 3.332085+2 3.823337-5 3.272349+2 3.838392-5 3.192514+2 3.850936-5 3.143868+2 3.866920-5 3.100879+2 3.891044-5 3.062207+2 3.934664-5 3.012349+2 3.969904-5 2.952405+2 4.040777-5 2.813774+2 4.209631-5 2.557019+2 4.332684-5 2.406102+2 4.445291-5 2.290981+2 4.572839-5 2.176614+2 4.779418-5 2.020335+2 5.152187-5 1.795239+2 5.663761-5 1.555090+2 5.774740-5 1.507455+2 5.944421-5 1.429431+2 5.973866-5 1.421337+2 6.025596-5 1.417773+2 6.074913-5 1.417169+2 6.122354-5 1.407058+2 6.237064-5 1.365229+2 6.703814-5 1.250099+2 8.150000-5 1.051432+2 9.660509-5 9.215277+1 1.011579-4 8.882244+1 1.083927-4 8.380267+1 1.218274-4 7.498979+1 1.290801-4 7.023837+1 1.340763-4 6.702738+1 1.413201-4 6.349476+1 1.496236-4 5.920538+1 1.584277-4 5.419977+1 1.641588-4 5.062012+1 1.701200-4 4.657189+1 1.750000-4 4.304484+1 1.803029-4 3.896884+1 1.839245-4 3.599434+1 1.882211-4 3.228234+1 1.920002-4 2.884980+1 1.949845-4 2.601689+1 1.973922-4 2.364145+1 2.001490-4 2.082354+1 2.034934-4 1.732683+1 2.057687-4 1.507908+1 2.067717-4 1.416471+1 2.084423-4 1.271155+1 2.096061-4 1.171730+1 2.104137-4 1.103562+1 2.131985-4 8.893581+0 2.139750-4 8.395264+0 2.154205-4 7.614742+0 2.168152-4 7.055690+0 2.173523-4 6.895944+0 2.178975-4 6.769412+0 2.184123-4 6.686637+0 2.188016-4 6.650475+0 2.196958-4 6.667176+0 2.199539-4 6.701207+0 2.204000-4 6.794855+0 2.210048-4 6.999018+0 2.214696-4 7.222546+0 2.219957-4 7.552026+0 2.225000-4 7.950138+0 2.228424-4 8.269367+0 2.233589-4 8.829858+0 2.238721-4 9.485712+0 2.244988-4 1.042706+1 2.251844-4 1.164193+1 2.257564-4 1.280828+1 2.274995-4 1.723886+1 2.283995-4 2.003938+1 2.292495-4 2.299126+1 2.299995-4 2.583077+1 2.310997-4 3.036390+1 2.315998-4 3.255652+1 2.321000-4 3.482491+1 2.336000-4 4.202615+1 2.340111-4 4.409085+1 2.355055-4 5.186455+1 2.371500-4 6.080039+1 2.392000-4 7.231859+1 2.412500-4 8.410352+1 2.435000-4 9.722568+1 2.457500-4 1.104605+2 2.481500-4 1.246189+2 2.502500-4 1.369617+2 2.510144-4 1.414283+2 2.530000-4 1.529221+2 2.552987-4 1.659312+2 2.577500-4 1.793073+2 2.601095-4 1.915927+2 2.632500-4 2.070080+2 2.660725-4 2.199561+2 2.691535-4 2.331204+2 2.730000-4 2.482460+2 2.786121-4 2.682985+2 2.827677-4 2.820592+2 2.892957-4 3.024536+2 2.949120-4 3.191078+2 3.002618-4 3.342718+2 3.084063-4 3.558493+2 3.144127-4 3.701780+2 3.226999-4 3.873927+2 3.289499-4 3.980796+2 3.350128-4 4.065699+2 3.401876-4 4.124193+2 3.450485-4 4.300941+2 3.468685-4 4.496989+2 3.477120-4 4.621654+2 3.495022-4 4.935625+2 3.512401-4 5.234908+2 3.520464-4 5.342567+2 3.528737-4 5.419187+2 3.536022-4 5.453716+2 3.545812-4 5.450439+2 3.554957-4 5.401618+2 3.573080-4 5.224713+2 3.587076-4 5.079014+2 3.595947-4 5.008033+2 3.604872-4 4.963286+2 3.620019-4 4.957223+2 3.635337-4 5.033330+2 3.645355-4 5.115311+2 3.675762-4 5.398279+2 3.685295-4 5.465099+2 3.696338-4 5.516383+2 3.705203-4 5.536153+2 3.716242-4 5.537134+2 3.752200-4 5.459226+2 3.767469-4 5.439428+2 3.785611-4 5.446426+2 3.829073-4 5.555052+2 3.877511-4 5.701523+2 3.949375-4 5.880606+2 4.034197-4 6.048470+2 4.131971-4 6.201339+2 4.236587-4 6.332367+2 4.355535-4 6.452814+2 4.429871-4 6.512109+2 4.467544-4 6.557158+2 4.499866-4 6.614135+2 4.656701-4 6.985825+2 4.717911-4 7.100876+2 4.803329-4 7.220592+2 4.954168-4 7.391998+2 5.103954-4 7.525481+2 5.370318-4 7.716061+2 5.760000-4 7.922369+2 6.139297-4 8.063307+2 6.484478-4 8.155159+2 6.968882-4 8.215355+2 7.498942-4 8.242561+2 8.222426-4 8.238399+2 8.922168-4 8.197715+2 9.765781-4 8.109814+2 1.136339-3 7.832903+2 1.260815-3 7.603009+2 1.323171-3 7.475648+2 1.462787-3 7.146225+2 1.539926-3 6.962672+2 1.614454-3 6.779549+2 1.701914-3 6.545113+2 1.782122-3 6.309816+2 1.858814-3 6.072666+2 1.920998-3 5.867529+2 1.981051-3 5.652827+2 2.035503-3 5.435457+2 2.081559-3 5.230146+2 2.121751-3 5.031842+2 2.156636-3 4.840518+2 2.188670-3 4.643877+2 2.216947-3 4.446983+2 2.240254-3 4.261753+2 2.253151-3 4.146829+2 2.271376-3 3.963188+2 2.286696-3 3.782641+2 2.299585-3 3.607514+2 2.306557-3 3.504116+2 2.332383-3 3.117464+2 2.340768-3 3.022850+2 2.346729-3 2.976031+2 2.351997-3 2.951610+2 2.357688-3 2.944380+2 2.363379-3 2.957003+2 2.369181-3 2.988916+2 2.374908-3 3.036776+2 2.383447-3 3.131305+2 2.410036-3 3.493880+2 2.426610-3 3.709765+2 2.455218-3 4.082967+2 2.486391-3 4.560164+2 2.502516-3 4.807709+2 2.513121-3 4.956927+2 2.521593-3 5.065120+2 2.532348-3 5.186869+2 2.543397-3 5.293900+2 2.557207-3 5.404306+2 2.573351-3 5.505595+2 2.590549-3 5.586063+2 2.607281-3 5.640827+2 2.644295-3 5.722285+2 2.654733-3 5.757811+2 2.664942-3 5.808133+2 2.681427-3 5.926035+2 2.714174-3 6.235773+2 2.728421-3 6.363035+2 2.741605-3 6.465073+2 2.757241-3 6.566379+2 2.776177-3 6.666267+2 2.794987-3 6.748484+2 2.823576-3 6.852897+2 2.848594-3 6.929649+2 2.910544-3 7.079077+2 2.981340-3 7.200282+2 3.067035-3 7.296706+2 3.180375-3 7.361098+2 3.291541-3 7.383256+2 3.454891-3 7.356664+2 3.643288-3 7.281118+2 3.836847-3 7.166914+2 4.150735-3 6.937745+2 4.474816-3 6.675750+2 4.915200-3 6.309110+2 5.319476-3 5.981197+2 5.885359-3 5.547113+2 6.518266-3 5.106130+2 7.397117-3 4.569441+2 8.172703-3 4.160957+2 9.092746-3 3.738189+2 9.881640-3 3.418199+2 1.068124-2 3.128145+2 1.159379-2 2.832443+2 1.253264-2 2.560899+2 1.351538-2 2.306894+2 1.401148-2 2.189068+2 1.455935-2 2.065960+2 1.546250-2 1.876237+2 1.618356-2 1.734037+2 1.675698-2 1.623808+2 1.723607-2 1.530908+2 1.761328-2 1.454555+2 1.789617-2 1.392691+2 1.802593-2 1.361869+2 1.814470-2 1.331452+2 1.824088-2 1.304503+2 1.832891-2 1.277163+2 1.840491-2 1.250779+2 1.850316-2 1.212110+2 1.865434-2 1.144973+2 1.876042-2 1.101160+2 1.882955-2 1.080174+2 1.888643-2 1.069932+2 1.894860-2 1.067228+2 1.898382-2 1.069696+2 1.902902-2 1.076789+2 1.909170-2 1.092724+2 1.922172-2 1.138347+2 1.934385-2 1.181359+2 1.942885-2 1.205801+2 1.952734-2 1.227464+2 1.963553-2 1.244359+2 1.972583-2 1.254433+2 1.990447-2 1.267430+2 2.015746-2 1.276509+2 2.044247-2 1.279132+2 2.094778-2 1.271938+2 2.153401-2 1.253084+2 2.218382-2 1.225534+2 2.325433-2 1.174041+2 2.455754-2 1.108598+2 2.589580-2 1.042406+2 2.803275-2 9.438000+1 3.085851-2 8.303661+1 3.387678-2 7.281490+1 3.734446-2 6.308624+1 4.064932-2 5.531714+1 4.782859-2 4.251223+1 5.287497-2 3.598822+1 5.945434-2 2.941600+1 8.362646-2 1.609075+1 1.086904-1 1.005972+1 1.325978-1 6.994765+0 1.657201-1 4.614480+0 2.091678-1 2.965750+0 2.798498-1 1.693134+0 4.046050-1 8.258354-1 6.060382-1 3.730198-1 9.925014-1 1.402273-1 2.451607+0 2.308916-2 7.403736+0 2.533833-3 2.235892+1 2.778555-4 6.752287+1 3.046656-5 2.039158+2 3.340596-6 6.158159+2 3.662891-7 1.995262+3 3.489200-8 6.309573+3 3.489200-9 1.995262+4 3.48920-10 6.309573+4 3.48920-11 1.000000+5 1.38908-11 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.474900-6 1.258900-6 2.337600-6 1.584900-6 3.704900-6 1.995300-6 5.871800-6 2.511900-6 9.306200-6 3.162300-6 1.474900-5 3.981100-6 2.337600-5 5.011900-6 3.704800-5 6.309600-6 5.871700-5 7.943300-6 9.305900-5 1.000000-5 1.474900-4 1.258900-5 2.337500-4 1.584900-5 3.703300-4 1.995300-5 5.866400-4 2.511900-5 9.293900-4 3.162300-5 1.472500-3 3.981100-5 2.333200-3 5.011900-5 3.697200-3 6.309600-5 5.858700-3 7.943300-5 9.272300-3 1.000000-4 1.467000-2 1.258900-4 2.320600-2 1.584900-4 3.663400-2 1.995300-4 5.775200-2 2.511900-4 9.074800-2 3.162300-4 1.418600-1 3.981100-4 2.200400-1 5.011900-4 3.366600-1 6.309600-4 5.058400-1 7.943300-4 7.417000-1 1.000000-3 1.055800+0 1.258900-3 1.454600+0 1.584900-3 1.945400+0 1.995300-3 2.543900+0 2.511900-3 3.270300+0 3.162300-3 4.140900+0 3.981100-3 5.166900+0 5.011900-3 6.359300+0 6.309600-3 7.699000+0 7.943300-3 9.133100+0 1.000000-2 1.059100+1 1.258900-2 1.206900+1 1.584900-2 1.355400+1 1.995300-2 1.498800+1 2.511900-2 1.628400+1 3.162300-2 1.736600+1 3.981100-2 1.819500+1 5.011900-2 1.872400+1 6.309600-2 1.892500+1 7.943300-2 1.881200+1 1.000000-1 1.842900+1 1.258900-1 1.781500+1 1.584900-1 1.701300+1 1.995300-1 1.606800+1 2.511900-1 1.502400+1 3.162300-1 1.393000+1 3.981100-1 1.282000+1 5.011900-1 1.172100+1 6.309600-1 1.064700+1 7.943300-1 9.611400+0 1.000000+0 8.626200+0 1.258900+0 7.692000+0 1.584900+0 6.815500+0 1.995300+0 6.000500+0 2.511900+0 5.249500+0 3.162300+0 4.564300+0 3.981100+0 3.945200+0 5.011900+0 3.390900+0 6.309600+0 2.899600+0 7.943300+0 2.467400+0 1.000000+1 2.090400+0 1.258900+1 1.763900+0 1.584900+1 1.482900+0 1.995300+1 1.242600+0 2.511900+1 1.038100+0 3.162300+1 8.649200-1 3.981100+1 7.188600-1 5.011900+1 5.961500-1 6.309600+1 4.933900-1 7.943300+1 4.076100-1 1.000000+2 3.361800-1 1.258900+2 2.768500-1 1.584900+2 2.276800-1 1.995300+2 1.870000-1 2.511900+2 1.534100-1 3.162300+2 1.257200-1 3.981100+2 1.029200-1 5.011900+2 8.417500-2 6.309600+2 6.878600-2 7.943300+2 5.616400-2 1.000000+3 4.582300-2 1.258900+3 3.735900-2 1.584900+3 3.043800-2 1.995300+3 2.478300-2 2.511900+3 2.016600-2 3.162300+3 1.640000-2 3.981100+3 1.333000-2 5.011900+3 1.082900-2 6.309600+3 8.792600-3 7.943300+3 7.135900-3 1.000000+4 5.788600-3 1.258900+4 4.693700-3 1.584900+4 3.804300-3 1.995300+4 3.082200-3 2.511900+4 2.496200-3 3.162300+4 2.020900-3 3.981100+4 1.635400-3 5.011900+4 1.323100-3 6.309600+4 1.070000-3 7.943300+4 8.650800-4 1.000000+5 6.991800-4 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159553-4 3.981072-4 3.976756-4 5.011872-4 5.005082-4 6.309573-4 6.298888-4 7.943282-4 7.926481-4 1.000000-3 9.973724-4 1.258925-3 1.254827-3 1.584893-3 1.578505-3 1.995262-3 1.985306-3 2.511886-3 2.496319-3 3.162278-3 3.137915-3 3.981072-3 3.942944-3 5.011872-3 4.952223-3 6.309573-3 6.216311-3 7.943282-3 7.798500-3 1.000000-2 9.775738-3 1.258925-2 1.224225-2 1.584893-2 1.531244-2 1.995262-2 1.912520-2 2.511886-2 2.384875-2 3.162278-2 2.968450-2 3.981072-2 3.686902-2 5.011872-2 4.568403-2 6.309573-2 5.645444-2 7.943282-2 6.956897-2 1.000000-1 8.545681-2 1.258925-1 1.046241-1 1.584893-1 1.276546-1 1.995262-1 1.552304-1 2.511886-1 1.881351-1 3.162278-1 2.272626-1 3.981072-1 2.736131-1 5.011872-1 3.283859-1 6.309573-1 3.929870-1 7.943282-1 4.690815-1 1.000000+0 5.584322-1 1.258925+0 6.637656-1 1.584893+0 7.881325-1 1.995262+0 9.352281-1 2.511886+0 1.109751+0 3.162278+0 1.317472+0 3.981072+0 1.565443+0 5.011872+0 1.862184+0 6.309573+0 2.218384+0 7.943282+0 2.646884+0 1.000000+1 3.163497+0 1.258925+1 3.787530+0 1.584893+1 4.542658+0 1.995262+1 5.457847+0 2.511886+1 6.568670+0 3.162278+1 7.918585+0 3.981072+1 9.561122+0 5.011872+1 1.156180+1 6.309573+1 1.400142+1 7.943282+1 1.697904+1 1.000000+2 2.061639+1 1.258925+2 2.506360+1 1.584893+2 3.050525+1 1.995262+2 3.716858+1 2.511886+2 4.533375+1 3.162278+2 5.534632+1 3.981072+2 6.763071+1 5.011872+2 8.271381+1 6.309573+2 1.012430+2 7.943282+2 1.240196+2 1.000000+3 1.520276+2 1.258925+3 1.864904+2 1.584893+3 2.289195+2 1.995262+3 2.811774+2 2.511886+3 3.455626+2 3.162278+3 4.249395+2 3.981072+3 5.228238+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88219-10 1.995262-5 1.090681-9 2.511886-5 1.728583-9 3.162278-5 2.739626-9 3.981072-5 4.342017-9 5.011872-5 6.881550-9 6.309573-5 1.090615-8 7.943282-5 1.727850-8 1.000000-4 2.737789-8 1.258925-4 4.338111-8 1.584893-4 6.871044-8 1.995262-4 1.088090-7 2.511886-4 1.722593-7 3.162278-4 2.724914-7 3.981072-4 4.316151-7 5.011872-4 6.790307-7 6.309573-4 1.068502-6 7.943282-4 1.680140-6 1.000000-3 2.627586-6 1.258925-3 4.098875-6 1.584893-3 6.387911-6 1.995262-3 9.955954-6 2.511886-3 1.556702-5 3.162278-3 2.436220-5 3.981072-3 3.812765-5 5.011872-3 5.964913-5 6.309573-3 9.326238-5 7.943282-3 1.447824-4 1.000000-2 2.242621-4 1.258925-2 3.470045-4 1.584893-2 5.364907-4 1.995262-2 8.274190-4 2.511886-2 1.270111-3 3.162278-2 1.938273-3 3.981072-2 2.941694-3 5.011872-2 4.434693-3 6.309573-2 6.641294-3 7.943282-2 9.863850-3 1.000000-1 1.454319-2 1.258925-1 2.126848-2 1.584893-1 3.083469-2 1.995262-1 4.429582-2 2.511886-1 6.305352-2 3.162278-1 8.896516-2 3.981072-1 1.244941-1 5.011872-1 1.728013-1 6.309573-1 2.379703-1 7.943282-1 3.252467-1 1.000000+0 4.415678-1 1.258925+0 5.951598-1 1.584893+0 7.967607-1 1.995262+0 1.060034+0 2.511886+0 1.402135+0 3.162278+0 1.844806+0 3.981072+0 2.415629+0 5.011872+0 3.149688+0 6.309573+0 4.091189+0 7.943282+0 5.296399+0 1.000000+1 6.836503+0 1.258925+1 8.801724+0 1.584893+1 1.130627+1 1.995262+1 1.449478+1 2.511886+1 1.855019+1 3.162278+1 2.370419+1 3.981072+1 3.024959+1 5.011872+1 3.855693+1 6.309573+1 4.909432+1 7.943282+1 6.245379+1 1.000000+2 7.938361+1 1.258925+2 1.008289+2 1.584893+2 1.279841+2 1.995262+2 1.623576+2 2.511886+2 2.058549+2 3.162278+2 2.608814+2 3.981072+2 3.304765+2 5.011872+2 4.184734+2 6.309573+2 5.297143+2 7.943282+2 6.703086+2 1.000000+3 8.479724+2 1.258925+3 1.072435+3 1.584893+3 1.355974+3 1.995262+3 1.714085+3 2.511886+3 2.166324+3 3.162278+3 2.737338+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.730000-6 1.173949+6 5.760000-6 1.141014+6 5.760000-6 7.815582+6 5.940000-6 7.969958+6 5.940000-6 1.214674+7 6.025596-6 1.233174+7 6.237348-6 1.277675+7 6.309573-6 1.292990+7 6.531306-6 1.338077+7 6.606934-6 1.353360+7 6.839116-6 1.397709+7 6.850000-6 1.399749+7 7.000000-6 1.428205+7 7.100000-6 1.445942+7 7.161434-6 1.456938+7 7.350000-6 1.489550+7 7.413102-6 1.500612+7 7.600000-6 1.531246+7 7.770000-6 1.558111+7 7.943282-6 1.585842+7 8.000000-6 1.594268+7 8.035261-6 1.599506+7 8.222426-6 1.625975+7 8.420000-6 1.654127+7 8.511380-6 1.667200+7 8.609938-6 1.680282+7 8.810489-6 1.705624+7 9.015711-6 1.731609+7 9.200000-6 1.754964+7 9.225714-6 1.758221+7 9.332543-6 1.770767+7 9.350000-6 1.772706+7 9.500000-6 1.789347+7 9.660509-6 1.807122+7 9.850000-6 1.828051+7 1.000000-5 1.844571+7 1.015000-5 1.861044+7 1.023293-5 1.870128+7 1.035142-5 1.881475+7 1.055000-5 1.900406+7 1.109175-5 1.951487+7 1.123000-5 1.964384+7 1.135011-5 1.975543+7 1.146000-5 1.985213+7 1.150000-5 1.988724+7 1.154000-5 1.991951+7 1.161449-5 1.997948+7 1.168000-5 2.003208+7 1.176000-5 2.009614+7 1.182000-5 2.014405+7 1.190000-5 2.020777+7 1.197000-5 2.026336+7 1.203000-5 2.031089+7 1.211000-5 2.037410+7 1.218000-5 2.042924+7 1.226000-5 2.049209+7 1.232000-5 2.053909+7 1.240000-5 2.060160+7 1.247000-5 2.065613+7 1.255000-5 2.071828+7 1.265000-5 2.079569+7 1.273503-5 2.086129+7 1.275000-5 2.087220+7 1.288250-5 2.096853+7 1.305000-5 2.107749+7 1.330000-5 2.123867+7 1.380384-5 2.155838+7 1.396368-5 2.165839+7 1.410000-5 2.173624+7 1.428894-5 2.184336+7 1.430000-5 2.184872+7 1.450000-5 2.194524+7 1.470000-5 2.204087+7 1.500000-5 2.218270+7 1.513561-5 2.224617+7 1.530000-5 2.231374+7 1.548817-5 2.239043+7 1.560000-5 2.242511+7 1.590000-5 2.251719+7 1.621810-5 2.261335+7 1.659587-5 2.270382+7 1.660000-5 2.270437+7 1.698244-5 2.275477+7 1.717908-5 2.278027+7 1.737801-5 2.279359+7 1.757924-5 2.280688+7 1.785000-5 2.279674+7 1.800000-5 2.279117+7 1.830000-5 2.276079+7 1.850000-5 2.274079+7 1.883649-5 2.267393+7 1.927525-5 2.255748+7 1.972423-5 2.239806+7 1.995262-5 2.230354+7 2.000000-5 2.228410+7 2.041738-5 2.207582+7 2.070000-5 2.192105+7 2.113489-5 2.164604+7 2.150000-5 2.139830+7 2.190000-5 2.109198+7 2.238721-5 2.069897+7 2.270000-5 2.042263+7 2.317395-5 1.998646+7 2.330000-5 1.986123+7 2.350000-5 1.966549+7 2.400000-5 1.916160+7 2.426610-5 1.887832+7 2.483133-5 1.826819+7 2.511886-5 1.794630+7 2.540973-5 1.761364+7 2.570396-5 1.728713+7 2.600160-5 1.694387+7 2.660725-5 1.624664+7 2.691535-5 1.588744+7 2.754229-5 1.516374+7 2.786121-5 1.479429+7 2.818383-5 1.442047+7 2.851018-5 1.405609+7 2.884032-5 1.368259+7 2.951209-5 1.294204+7 2.985383-5 1.257091+7 3.000000-5 1.241211+7 3.054921-5 1.183963+7 3.090295-5 1.147626+7 3.162278-5 1.076414+7 3.198895-5 1.041257+7 3.273407-5 9.727178+6 3.311311-5 9.390008+6 3.400000-5 8.642226+6 3.427678-5 8.417283+6 3.450000-5 8.241414+6 3.540000-5 7.563994+6 3.589219-5 7.213388+6 3.672823-5 6.652892+6 3.684300-5 6.578355+6 3.730000-5 6.291922+6 3.801894-5 5.864964+6 3.836000-5 5.669988+6 3.836000-5 1.134695+7 3.850000-5 1.121207+7 3.890451-5 1.083018+7 3.950000-5 1.026601+7 3.960000-5 1.017371+7 3.981072-5 9.975622+6 4.000000-5 9.801861+6 4.030000-5 9.531614+6 4.058000-5 9.280000+6 4.058000-5 1.201294+7 4.073803-5 1.184924+7 4.105000-5 1.153127+7 4.150000-5 1.107998+7 4.168694-5 1.089780+7 4.220000-5 1.039718+7 4.240000-5 1.020803+7 4.300000-5 9.656773+6 4.315191-5 9.522203+6 4.350000-5 9.222644+6 4.365158-5 9.094116+6 4.450000-5 8.398016+6 4.518559-5 7.880374+6 4.570882-5 7.504379+6 4.677351-5 6.794299+6 4.720000-5 6.530601+6 4.731513-5 6.460970+6 4.841724-5 5.834499+6 4.897788-5 5.539352+6 4.954502-5 5.257642+6 5.011872-5 4.988441+6 5.069907-5 4.729439+6 5.150000-5 4.398688+6 5.248075-5 4.026152+6 5.308844-5 3.813558+6 5.432503-5 3.416379+6 5.450000-5 3.364405+6 5.477200-5 3.284838+6 5.623413-5 2.892852+6 5.688529-5 2.734649+6 5.754399-5 2.587086+6 5.800000-5 2.490272+6 5.900000-5 2.291883+6 5.956621-5 2.187812+6 6.070000-5 1.998089+6 6.095369-5 1.958348+6 6.165950-5 1.852397+6 6.237348-5 1.754964+6 6.345000-5 1.619078+6 6.345000-5 1.782309+6 6.382635-5 1.739720+6 6.400000-5 1.720602+6 6.500000-5 1.617981+6 6.606934-5 1.519128+6 6.650000-5 1.482830+6 6.657300-5 1.476808+6 6.760830-5 1.395006+6 6.800000-5 1.366409+6 6.850000-5 1.332265+6 6.918310-5 1.287582+6 7.000000-5 1.237499+6 7.070000-5 1.199150+6 7.079458-5 1.194172+6 7.161434-5 1.152188+6 7.230000-5 1.119259+6 7.244360-5 1.112828+6 7.328245-5 1.077612+6 7.350000-5 1.068789+6 7.450000-5 1.030281+6 7.470000-5 1.023239+6 7.498942-5 1.013333+6 7.500000-5 1.012983+6 7.580000-5 9.871664+5 7.585776-5 9.853690+5 7.673615-5 9.591630+5 7.690000-5 9.545818+5 7.737400-5 9.418339+5 7.762471-5 9.353858+5 7.852356-5 9.134433+5 7.900000-5 9.025134+5 7.943282-5 8.933115+5 7.950000-5 8.919617+5 8.035261-5 8.753973+5 8.040000-5 8.744818+5 8.128305-5 8.582816+5 8.150000-5 8.545158+5 8.222426-5 8.433125+5 8.317638-5 8.295893+5 8.400000-5 8.185505+5 8.413951-5 8.167837+5 8.511380-5 8.060786+5 8.610000-5 7.958003+5 8.650000-5 7.919068+5 8.709636-5 7.864630+5 8.730000-5 7.848296+5 8.810489-5 7.786825+5 8.850000-5 7.757842+5 8.912509-5 7.714249+5 9.000000-5 7.659533+5 9.015711-5 7.650209+5 9.150000-5 7.580164+5 9.225714-5 7.544551+5 9.332543-5 7.500143+5 9.350000-5 7.494253+5 9.500000-5 7.447908+5 9.549926-5 7.434830+5 9.660509-5 7.405294+5 9.800000-5 7.378330+5 1.000000-4 7.349723+5 1.011579-4 7.335486+5 1.020000-4 7.329599+5 1.040000-4 7.316855+5 1.047129-4 7.312813+5 1.050000-4 7.311904+5 1.060000-4 7.308043+5 1.071519-4 7.308379+5 1.083927-4 7.305891+5 1.106700-4 7.305193+5 1.110000-4 7.305090+5 1.122018-4 7.303472+5 1.135011-4 7.303022+5 1.148154-4 7.304246+5 1.170000-4 7.304602+5 1.180000-4 7.304395+5 1.188502-4 7.303140+5 1.202264-4 7.298805+5 1.205000-4 7.298355+5 1.216186-4 7.295586+5 1.244515-4 7.285671+5 1.258925-4 7.280041+5 1.260000-4 7.279464+5 1.288250-4 7.260782+5 1.303167-4 7.250142+5 1.318257-4 7.237951+5 1.333521-4 7.226164+5 1.350000-4 7.210164+5 1.380384-4 7.177846+5 1.400000-4 7.156274+5 1.428894-4 7.122024+5 1.430000-4 7.120491+5 1.450000-4 7.091409+5 1.480000-4 7.045134+5 1.513561-4 6.993010+5 1.540000-4 6.950558+5 1.548817-4 6.935958+5 1.566751-4 6.905958+5 1.580000-4 6.881738+5 1.603245-4 6.837409+5 1.621810-4 6.801377+5 1.640590-4 6.763739+5 1.680000-4 6.687122+5 1.698244-4 6.651362+5 1.701200-4 6.645499+5 1.720000-4 6.606572+5 1.750000-4 6.540971+5 1.778279-4 6.479190+5 1.819701-4 6.387754+5 1.850000-4 6.321454+5 1.862087-4 6.294995+5 1.883649-4 6.244618+5 1.905461-4 6.193516+5 1.949845-4 6.090327+5 2.000000-4 5.974866+5 2.018366-4 5.932293+5 2.041738-4 5.877072+5 2.065380-4 5.821286+5 2.113489-4 5.708378+5 2.118100-4 5.697617+5 2.118100-4 7.329437+5 2.127000-4 7.314941+5 2.137000-4 7.309675+5 2.145000-4 7.316962+5 2.148200-4 7.324974+5 2.148200-4 8.451998+5 2.153000-4 8.463936+5 2.157000-4 8.481276+5 2.160000-4 8.496796+5 2.162719-4 8.515544+5 2.165000-4 8.531276+5 2.167000-4 8.548240+5 2.170000-4 8.577140+5 2.175000-4 8.634553+5 2.182000-4 8.739542+5 2.187762-4 8.849965+5 2.188000-4 8.854620+5 2.195000-4 9.021365+5 2.201000-4 9.196726+5 2.202000-4 9.228256+5 2.207000-4 9.404102+5 2.210000-4 9.518487+5 2.213095-4 9.647921+5 2.217000-4 9.823787+5 2.219500-4 9.945607+5 2.225000-4 1.023540+6 2.231000-4 1.059637+6 2.238721-4 1.111703+6 2.247000-4 1.175143+6 2.255000-4 1.244648+6 2.257000-4 1.263476+6 2.264644-4 1.338563+6 2.265000-4 1.342245+6 2.270000-4 1.394240+6 2.275000-4 1.449822+6 2.285000-4 1.567005+6 2.290868-4 1.638941+6 2.292000-4 1.653379+6 2.295000-4 1.691105+6 2.300000-4 1.755780+6 2.305000-4 1.821187+6 2.308000-4 1.861313+6 2.313000-4 1.927684+6 2.317395-4 1.987496+6 2.321000-4 2.035809+6 2.327000-4 2.117903+6 2.328000-4 2.131340+6 2.335000-4 2.226186+6 2.336000-4 2.239512+6 2.344229-4 2.349961+6 2.345000-4 2.360381+6 2.350000-4 2.425687+6 2.351000-4 2.439020+6 2.355000-4 2.491801+6 2.359000-4 2.543227+6 2.365000-4 2.619963+6 2.370000-4 2.682361+6 2.378000-4 2.781690+6 2.381000-4 2.817703+6 2.392000-4 2.948680+6 2.400000-4 3.038515+6 2.405000-4 3.096240+6 2.420000-4 3.258044+6 2.426610-4 3.324677+6 2.435000-4 3.411405+6 2.450000-4 3.555122+6 2.454709-4 3.599677+6 2.465000-4 3.692240+6 2.473000-4 3.762395+6 2.483133-4 3.847460+6 2.485000-4 3.863346+6 2.490000-4 3.903872+6 2.507000-4 4.034037+6 2.511886-4 4.069998+6 2.515000-4 4.093076+6 2.530000-4 4.195192+6 2.540973-4 4.266990+6 2.550000-4 4.321048+6 2.565000-4 4.406301+6 2.570396-4 4.434195+6 2.573000-4 4.447705+6 2.580000-4 4.481288+6 2.590000-4 4.529627+6 2.600160-4 4.573746+6 2.615000-4 4.632370+6 2.630268-4 4.684822+6 2.650000-4 4.745169+6 2.660725-4 4.772073+6 2.691535-4 4.839315+6 2.722701-4 4.884058+6 2.730000-4 4.894539+6 2.754229-4 4.915272+6 2.786121-4 4.936686+6 2.800000-4 4.941932+6 2.818383-4 4.945744+6 2.851018-4 4.952479+6 2.884032-4 4.947186+6 2.900000-4 4.944638+6 2.930000-4 4.939825+6 2.951209-4 4.929271+6 3.019952-4 4.895788+6 3.090295-4 4.839671+6 3.100000-4 4.832074+6 3.126079-4 4.803494+6 3.162278-4 4.764436+6 3.180000-4 4.745520+6 3.198895-4 4.723219+6 3.200000-4 4.721706+6 3.280000-4 4.614699+6 3.311311-4 4.570840+6 3.349654-4 4.512857+6 3.388442-4 4.455550+6 3.390000-4 4.453273+6 3.430000-4 4.392207+6 3.507519-4 4.270462+6 3.548134-4 4.208974+6 3.550000-4 4.206188+6 3.589219-4 4.146036+6 3.592800-4 4.140615+6 3.592800-4 4.540304+6 3.600000-4 4.530781+6 3.630781-4 4.488011+6 3.643000-4 4.471294+6 3.715352-4 4.371858+6 3.740000-4 4.337820+6 3.752200-4 4.320810+6 3.752200-4 4.477776+6 3.758374-4 4.472836+6 3.761000-4 4.470767+6 3.770000-4 4.462289+6 3.780000-4 4.451957+6 3.790000-4 4.440217+6 3.797000-4 4.431819+6 3.820000-4 4.403228+6 3.845918-4 4.370626+6 3.865000-4 4.346345+6 3.890451-4 4.313600+6 3.895000-4 4.307382+6 3.925000-4 4.265704+6 3.935501-4 4.250985+6 3.950000-4 4.229753+6 3.955000-4 4.222353+6 4.000000-4 4.155582+6 4.073803-4 4.045865+6 4.100000-4 4.006896+6 4.120975-4 3.975976+6 4.168694-4 3.904256+6 4.216965-4 3.833891+6 4.315191-4 3.697282+6 4.365158-4 3.629415+6 4.518559-4 3.425608+6 4.559800-4 3.374089+6 4.559800-4 3.527105+6 4.570882-4 3.513069+6 4.600000-4 3.476268+6 4.650000-4 3.413369+6 4.651000-4 3.412123+6 4.841724-4 3.181491+6 4.850000-4 3.172068+6 4.897788-4 3.117532+6 4.954502-4 3.054784+6 5.011872-4 2.991688+6 5.069907-4 2.929858+6 5.080000-4 2.919317+6 5.150000-4 2.847207+6 5.248075-4 2.749405+6 5.308844-4 2.690218+6 5.370318-4 2.632149+6 5.432503-4 2.574987+6 5.559043-4 2.464597+6 5.623413-4 2.410641+6 5.688529-4 2.357792+6 5.754399-4 2.305231+6 5.888437-4 2.203077+6 5.956621-4 2.153835+6 6.000000-4 2.123299+6 6.095369-4 2.057661+6 6.165950-4 2.011088+6 6.309573-4 1.919632+6 6.350000-4 1.894859+6 6.382635-4 1.875169+6 6.456542-4 1.831737+6 6.500000-4 1.806824+6 6.606934-4 1.747102+6 6.683439-4 1.706174+6 6.700000-4 1.697386+6 6.850000-4 1.620243+6 6.918310-4 1.586752+6 7.000000-4 1.548063+6 7.079458-4 1.511820+6 7.161434-4 1.475776+6 7.244360-4 1.440336+6 7.328245-4 1.405567+6 7.500000-4 1.337211+6 7.762471-4 1.242226+6 7.800000-4 1.229496+6 7.852356-4 1.211907+6 7.943282-4 1.182249+6 8.035261-4 1.153073+6 8.200000-4 1.102723+6 8.511380-4 1.016282+6 8.609938-4 9.908567+5 8.700000-4 9.683109+5 8.709636-4 9.659279+5 8.810489-4 9.415118+5 8.912509-4 9.177370+5 9.120108-4 8.716158+5 9.225714-4 8.494892+5 9.332543-4 8.278050+5 9.440609-4 8.066281+5 9.549926-4 7.860198+5 9.885531-4 7.270831+5 1.023293-3 6.722825+5 1.035142-3 6.548363+5 1.047129-3 6.377956+5 1.071519-3 6.051060+5 1.096478-3 5.740116+5 1.109175-3 5.589804+5 1.110000-3 5.580235+5 1.122018-3 5.442512+5 1.135011-3 5.298632+5 1.161449-3 5.022313+5 1.174898-3 4.889834+5 1.216186-3 4.512197+5 1.230269-3 4.392338+5 1.244515-3 4.274595+5 1.288250-3 3.940763+5 1.303167-3 3.835710+5 1.318257-3 3.733576+5 1.333521-3 3.633798+5 1.355400-3 3.497227+5 1.364583-3 3.441070+5 1.396368-3 3.256604+5 1.428894-3 3.082426+5 1.462177-3 2.918057+5 1.479108-3 2.839016+5 1.500000-3 2.745425+5 1.513561-3 2.686717+5 1.566751-3 2.471495+5 1.584893-3 2.403801+5 1.621810-3 2.274220+5 1.640590-3 2.211965+5 1.650000-3 2.181686+5 1.659587-3 2.151324+5 1.678804-3 2.091819+5 1.737801-3 1.922600+5 1.757924-3 1.869314+5 1.778279-3 1.817531+5 1.819701-3 1.718454+5 1.840772-3 1.670707+5 1.862087-3 1.624335+5 1.927525-3 1.491496+5 1.949845-3 1.449802+5 1.972423-3 1.409319+5 2.018366-3 1.331809+5 2.041738-3 1.294583+5 2.065380-3 1.258243+5 2.089296-3 1.222669+5 2.137962-3 1.154340+5 2.162719-3 1.121690+5 2.187762-3 1.090010+5 2.213095-3 1.059272+5 2.238721-3 1.029414+5 2.264644-3 1.000321+5 2.317395-3 9.445513+4 2.369100-3 8.936776+4 2.369100-3 3.292097+5 2.371374-3 3.284366+5 2.386000-3 3.235199+5 2.400000-3 3.189109+5 2.426610-3 3.103978+5 2.466600-3 2.982000+5 2.466600-3 4.130512+5 2.483133-3 4.062862+5 2.500000-3 3.995435+5 2.540973-3 3.837954+5 2.570396-3 3.730174+5 2.600160-3 3.628102+5 2.630268-3 3.526029+5 2.640000-3 3.493903+5 2.660725-3 3.425427+5 2.676300-3 3.375200+5 2.676300-3 3.867422+5 2.691535-3 3.814955+5 2.695000-3 3.803165+5 2.754229-3 3.609385+5 2.786121-3 3.508345+5 2.800000-3 3.465632+5 2.818383-3 3.410169+5 2.863480-3 3.277806+5 2.884032-3 3.219915+5 2.900000-3 3.175827+5 2.917427-3 3.128623+5 2.951209-3 3.039925+5 2.985383-3 2.953810+5 3.019952-3 2.870205+5 3.054921-3 2.788434+5 3.090295-3 2.708457+5 3.126079-3 2.630676+5 3.150000-3 2.580436+5 3.273407-3 2.341650+5 3.311311-3 2.273988+5 3.349654-3 2.208323+5 3.427678-3 2.082762+5 3.467369-3 2.022750+5 3.507519-3 1.964484+5 3.548134-3 1.907886+5 3.672823-3 1.747927+5 3.715352-3 1.697718+5 3.758374-3 1.648427+5 3.801894-3 1.600367+5 3.890451-3 1.508469+5 3.935501-3 1.464572+5 3.981072-3 1.421973+5 4.000000-3 1.404777+5 4.073803-3 1.340474+5 4.168694-3 1.263121+5 4.216965-3 1.226181+5 4.365158-3 1.121106+5 4.415704-3 1.087933+5 4.466836-3 1.055757+5 4.518559-3 1.024540+5 4.731513-3 9.087549+4 4.786301-3 8.815262+4 4.897788-3 8.294914+4 4.954502-3 8.046686+4 5.011872-3 7.806031+4 5.128614-3 7.343508+4 5.188000-3 7.122736+4 5.308844-3 6.701162+4 5.370318-3 6.500060+4 5.495409-3 6.114073+4 5.559043-3 5.930020+4 5.623413-3 5.751638+4 5.688529-3 5.577626+4 5.821032-3 5.245648+4 6.025596-3 4.783608+4 6.095369-3 4.638893+4 6.237348-3 4.359966+4 6.309573-3 4.226476+4 6.531306-3 3.850598+4 6.606934-3 3.732541+4 6.683439-3 3.618101+4 6.800000-3 3.452981+4 6.839116-3 3.399878+4 6.918310-3 3.295811+4 7.079458-3 3.097369+4 7.161434-3 3.002807+4 7.244360-3 2.911122+4 7.300000-3 2.851375+4 7.498942-3 2.649731+4 7.585776-3 2.567918+4 7.673615-3 2.488652+4 7.762471-3 2.411824+4 7.852356-3 2.337423+4 7.943282-3 2.265058+4 8.035261-3 2.194989+4 8.222426-3 2.061473+4 8.413951-3 1.935689+4 8.511380-3 1.875391+4 8.709636-3 1.760508+4 8.912509-3 1.652691+4 9.015711-3 1.601355+4 9.120108-3 1.551656+4 9.225714-3 1.503532+4 9.332543-3 1.456801+4 9.440609-3 1.411249+4 9.660509-3 1.324474+4 9.772372-3 1.282928+4 9.885531-3 1.242716+4 1.000000-2 1.203724+4 1.023293-2 1.129432+4 1.035142-2 1.094073+4 1.047129-2 1.059847+4 1.071519-2 9.944877+3 1.083927-2 9.633724+3 1.096478-2 9.330526+3 1.122018-2 8.753176+3 1.135011-2 8.476848+3 1.148154-2 8.209241+3 1.161449-2 7.950189+3 1.174898-2 7.699269+3 1.188502-2 7.456502+3 1.216186-2 6.994251+3 1.230269-2 6.773613+3 1.244515-2 6.558779+3 1.258925-2 6.350936+3 1.288250-2 5.955200+3 1.303167-2 5.766905+3 1.318257-2 5.584556+3 1.348963-2 5.235573+3 1.364583-2 5.069578+3 1.368040-2 5.033826+3 1.412538-2 4.602792+3 1.445440-2 4.314195+3 1.479108-2 4.043393+3 1.500000-2 3.887000+3 1.513561-2 3.789854+3 1.548817-2 3.552392+3 1.566751-2 3.438964+3 1.603245-2 3.223131+3 1.640590-2 3.020944+3 1.678804-2 2.830272+3 1.698244-2 2.739601+3 1.730000-2 2.599884+3 1.737801-2 2.566992+3 1.757924-2 2.484676+3 1.778279-2 2.405037+3 1.819701-2 2.253512+3 1.840772-2 2.181184+3 1.883649-2 2.043586+3 1.894800-2 2.009726+3 1.894800-2 1.355122+4 1.905461-2 1.335627+4 1.927525-2 1.296453+4 1.943000-2 1.269926+4 1.949845-2 1.257581+4 1.972423-2 1.218003+4 2.018366-2 1.150374+4 2.020000-2 1.148067+4 2.041738-2 1.116084+4 2.065380-2 1.082679+4 2.089296-2 1.050269+4 2.113489-2 1.018834+4 2.162719-2 9.587720+3 2.187762-2 9.300742+3 2.213095-2 9.026207+3 2.264644-2 8.500546+3 2.344229-2 7.769163+3 2.371374-2 7.539685+3 2.398833-2 7.317022+3 2.400000-2 7.307762+3 2.426610-2 7.095028+3 2.454709-2 6.879534+3 2.570396-2 6.081114+3 2.600160-2 5.896414+3 2.660725-2 5.543220+3 2.722701-2 5.211263+3 2.754229-2 5.052842+3 2.851018-2 4.605983+3 2.884032-2 4.466012+3 2.951209-2 4.193106+3 3.000000-2 4.009021+3 3.054921-2 3.814748+3 3.090295-2 3.696220+3 3.126079-2 3.581346+3 3.235937-2 3.257769+3 3.349654-2 2.963504+3 3.388442-2 2.871459+3 3.427678-2 2.782285+3 3.467369-2 2.695885+3 3.548134-2 2.531076+3 3.589219-2 2.452410+3 3.672823-2 2.302326+3 3.715352-2 2.229351+3 3.758374-2 2.158682+3 3.845918-2 2.023976+3 3.890451-2 1.959818+3 3.981072-2 1.837546+3 4.027170-2 1.779309+3 4.168694-2 1.615462+3 4.216965-2 1.564217+3 4.265795-2 1.514601+3 4.518559-2 1.289159+3 4.623810-2 1.208696+3 4.731513-2 1.132063+3 4.786301-2 1.095585+3 4.954502-2 9.930683+2 5.069907-2 9.300497+2 5.248075-2 8.429367+2 5.308844-2 8.157550+2 5.432503-2 7.639970+2 5.559043-2 7.155286+2 5.688529-2 6.701397+2 5.754399-2 6.485386+2 5.888437-2 6.068779+2 5.956621-2 5.870428+2 6.000000-2 5.748760+2 6.095369-2 5.492951+2 6.531306-2 4.500006+2 6.760830-2 4.073121+2 6.918310-2 3.811299+2 7.079458-2 3.566331+2 7.161434-2 3.449698+2 7.244360-2 3.335714+2 7.328245-2 3.225502+2 7.498942-2 3.015857+2 8.222426-2 2.305100+2 8.317638-2 2.228960+2 8.511380-2 2.084148+2 8.709636-2 1.948755+2 8.912509-2 1.822045+2 9.015711-2 1.761818+2 9.885531-2 1.343332+2 1.011580-1 1.255288+2 1.023293-1 1.213462+2 1.035142-1 1.173028+2 1.059254-1 1.096158+2 1.071519-1 1.059637+2 1.096478-1 9.902051+1 1.109175-1 9.571907+1 1.135011-1 8.944328+1 1.148154-1 8.646149+1 1.161449-1 8.357919+1 1.202264-1 7.549667+1 1.230269-1 7.054756+1 1.244515-1 6.819616+1 1.273503-1 6.371804+1 1.303167-1 5.953439+1 1.348963-1 5.376868+1 1.380384-1 5.023878+1 1.396368-1 4.856178+1 1.412538-1 4.694089+1 1.428894-1 4.537426+1 1.479108-1 4.098126+1 1.500000-1 3.932124+1 1.531088-1 3.701379+1 1.548817-1 3.577876+1 1.603245-1 3.231560+1 1.640590-1 3.019516+1 1.659587-1 2.918789+1 1.717908-1 2.636332+1 1.737801-1 2.548390+1 1.757924-1 2.463386+1 1.798871-1 2.301797+1 1.840772-1 2.150823+1 1.862087-1 2.079093+1 1.883649-1 2.009755+1 1.905461-1 1.943325+1 1.927525-1 1.879102+1 1.972423-1 1.756955+1 2.000000-1 1.687174+1 2.018366-1 1.642758+1 2.041738-1 1.588477+1 2.089296-1 1.485241+1 2.137962-1 1.388786+1 2.162719-1 1.342940+1 2.187762-1 1.298616+1 2.213095-1 1.255756+1 2.238721-1 1.214312+1 2.264644-1 1.174236+1 2.290868-1 1.135483+1 2.300000-1 1.122392+1 2.344229-1 1.062560+1 2.426610-1 9.620971+0 2.454709-1 9.307667+0 2.483133-1 9.004614+0 2.540973-1 8.427790+0 2.570396-1 8.153764+0 2.600160-1 7.888653+0 2.630268-1 7.632231+0 2.660725-1 7.384153+0 2.691535-1 7.144162+0 2.722701-1 6.911979+0 2.754229-1 6.690476+0 2.851018-1 6.067764+0 2.884032-1 5.873352+0 2.917427-1 5.685179+0 2.951209-1 5.503037+0 2.985383-1 5.326729+0 3.019952-1 5.156338+0 3.054921-1 4.991417+0 3.090295-1 4.831837+0 3.162278-1 4.527830+0 3.198895-1 4.385547+0 3.273407-1 4.114254+0 3.311311-1 3.984972+0 3.388442-1 3.738467+0 3.427678-1 3.621024+0 3.467369-1 3.507464+0 3.507519-1 3.397468+0 3.548134-1 3.290957+0 3.589219-1 3.187793+0 3.630781-1 3.089691+0 3.672823-1 2.994611+0 3.715352-1 2.902460+0 3.758374-1 2.813156+0 3.801894-1 2.726600+0 3.845918-1 2.642717+0 3.890451-1 2.561419+0 3.981072-1 2.406535+0 4.027170-1 2.332670+0 4.073803-1 2.262573+0 4.120975-1 2.194595+0 4.216965-1 2.064706+0 4.265795-1 2.002682+0 4.365158-1 1.884169+0 4.415705-1 1.827688+0 4.466836-1 1.772909+0 4.518559-1 1.719793+0 4.570882-1 1.669381+0 4.623810-1 1.620448+0 4.677351-1 1.572950+0 4.786301-1 1.482102+0 4.841724-1 1.438664+0 4.897788-1 1.396507+0 4.954502-1 1.355681+0 5.011872-1 1.316049+0 5.069907-1 1.278468+0 5.128614-1 1.241963+0 5.188000-1 1.206500+0 5.308844-1 1.138591+0 5.370318-1 1.106088+0 5.432503-1 1.074514+0 5.559043-1 1.014188+0 5.623413-1 9.860559-1 5.688529-1 9.587037-1 5.754399-1 9.321135-1 5.821032-1 9.062607-1 5.888437-1 8.811289-1 6.025596-1 8.329375-1 6.095369-1 8.098985-1 6.165950-1 7.874979-1 6.237348-1 7.663108-1 6.309573-1 7.456960-1 6.382635-1 7.256357-1 6.456542-1 7.061186-1 6.606935-1 6.686448-1 6.623700-1 6.646440-1 6.683439-1 6.507059-1 6.760830-1 6.332606-1 6.839117-1 6.162831-1 6.998420-1 5.845680-1 7.079458-1 5.693305-1 7.161434-1 5.544903-1 7.244360-1 5.400372-1 7.328245-1 5.259611-1 7.413102-1 5.122908-1 7.498942-1 4.989759-1 7.585776-1 4.863614-1 7.673615-1 4.740733-1 7.762471-1 4.620977-1 7.852356-1 4.504265-1 7.943282-1 4.390502-1 8.035261-1 4.279611-1 8.128305-1 4.171522-1 8.222427-1 4.066458-1 8.317638-1 3.967079-1 8.413951-1 3.870145-1 8.511380-1 3.775654-1 8.609938-1 3.683472-1 8.709636-1 3.593546-1 9.015711-1 3.336727-1 9.120108-1 3.257892-1 9.225714-1 3.180923-1 9.332543-1 3.106081-1 9.440609-1 3.033001-1 9.549926-1 2.961641-1 9.660509-1 2.891971-1 9.772372-1 2.823955-1 9.885531-1 2.757543-1 1.000000+0 2.694603-1 1.011579+0 2.633361-1 1.023293+0 2.573515-1 1.035142+0 2.515043-1 1.059254+0 2.402055-1 1.071519+0 2.347484-1 1.083927+0 2.294148-1 1.096478+0 2.242028-1 1.109175+0 2.191096-1 1.122018+0 2.141328-1 1.135011+0 2.092693-1 1.148154+0 2.046635-1 1.161449+0 2.001772-1 1.174898+0 1.957893-1 1.188600+0 1.914683-1 1.202264+0 1.873020-1 1.216186+0 1.831972-1 1.230269+0 1.791831-1 1.244515+0 1.753690-1 1.250000+0 1.739336-1 1.273503+0 1.679860-1 1.288250+0 1.644243-1 1.318257+0 1.575263-1 1.348963+0 1.509178-1 1.380384+0 1.445876-1 1.396368+0 1.415228-1 1.412538+0 1.385227-1 1.428894+0 1.356756-1 1.462177+0 1.301590-1 1.479108+0 1.274854-1 1.513561+0 1.223019-1 1.531087+0 1.197897-1 1.548817+0 1.173293-1 1.566751+0 1.149960-1 1.584893+0 1.127106-1 1.621810+0 1.082890-1 1.640590+0 1.061437-1 1.659587+0 1.040410-1 1.678804+0 1.019799-1 1.717908+0 9.797996-2 1.737801+0 9.603916-2 1.757924+0 9.419781-2 1.778279+0 9.239309-2 1.798871+0 9.062869-2 1.819701+0 8.889802-2 1.862087+0 8.553524-2 1.883649+0 8.390190-2 1.905461+0 8.229972-2 1.927525+0 8.072838-2 1.949845+0 7.918704-2 1.972423+0 7.767540-2 1.995262+0 7.624080-2 2.000000+0 7.594876-2 2.018366+0 7.483367-2 2.065380+0 7.210625-2 2.089296+0 7.078005-2 2.113489+0 6.947830-2 2.137962+0 6.820048-2 2.162719+0 6.694630-2 2.187762+0 6.571524-2 2.238721+0 6.332101-2 2.264644+0 6.219504-2 2.290868+0 6.108985-2 2.344229+0 5.894541-2 2.371374+0 5.790158-2 2.398833+0 5.687628-2 2.426610+0 5.586914-2 2.454709+0 5.487994-2 2.483133+0 5.390829-2 2.540973+0 5.201657-2 2.570396+0 5.112532-2 2.600160+0 5.024994-2 2.660725+0 4.854955-2 2.691535+0 4.772105-2 2.722701+0 4.690674-2 2.754229+0 4.610629-2 2.786121+0 4.531962-2 2.818383+0 4.454636-2 2.851018+0 4.378632-2 2.917427+0 4.230514-2 2.951209+0 4.160588-2 2.985383+0 4.091862-2 3.054921+0 3.958229-2 3.090295+0 3.893058-2 3.126079+0 3.828962-2 3.198895+0 3.703918-2 3.235937+0 3.642942-2 3.273407+0 3.582972-2 3.311311+0 3.523990-2 3.388442+0 3.408939-2 3.427678+0 3.354560-2 3.467369+0 3.301085-2 3.548134+0 3.197012-2 3.589219+0 3.146213-2 3.630781+0 3.096222-2 3.715352+0 2.998612-2 3.758374+0 2.950972-2 3.801894+0 2.904090-2 3.845918+0 2.857953-2 3.935501+0 2.767879-2 4.000000+0 2.707814-2 4.027170+0 2.683203-2 4.168694+0 2.561439-2 4.216965+0 2.522092-2 4.265795+0 2.483350-2 4.365158+0 2.407643-2 4.415704+0 2.370664-2 4.466836+0 2.334253-2 4.518559+0 2.298402-2 4.623810+0 2.228352-2 4.677351+0 2.195134-2 4.731513+0 2.162432-2 4.897788+0 2.067519-2 4.954502+0 2.036816-2 5.011872+0 2.006571-2 5.128614+0 1.947420-2 5.188000+0 1.918505-2 5.248075+0 1.890019-2 5.308844+0 1.861957-2 5.432503+0 1.807085-2 5.559043+0 1.755272-2 5.623413+0 1.729941-2 5.821032+0 1.656326-2 5.956621+0 1.608998-2 6.025596+0 1.585844-2 6.237348+0 1.518363-2 6.309573+0 1.496515-2 6.382635+0 1.474982-2 6.456542+0 1.453760-2 6.606934+0 1.412232-2 6.760830+0 1.373084-2 6.839116+0 1.353932-2 7.000000+0 1.316188-2 7.079458+0 1.298247-2 7.161434+0 1.280200-2 7.328245+0 1.244855-2 7.413102+0 1.227552-2 7.498942+0 1.210489-2 7.585776+0 1.193664-2 7.943282+0 1.128677-2 8.317638+0 1.068473-2 8.609938+0 1.025457-2 9.015711+0 9.709250-3 9.120108+0 9.577513-3 9.332543+0 9.319382-3 9.440609+0 9.192951-3 9.660509+0 8.945249-3 1.011579+1 8.481711-3 1.059254+1 8.042410-3 1.135011+1 7.427240-3 1.148154+1 7.329386-3 1.174898+1 7.137536-3 1.188502+1 7.043516-3 1.202264+1 6.950741-3 1.230269+1 6.768839-3 1.288250+1 6.427343-3 1.348963+1 6.103245-3 1.364583+1 6.024995-3 1.462177+1 5.576115-3 1.479108+1 5.504624-3 1.513561+1 5.364380-3 1.531087+1 5.295611-3 1.548817+1 5.227726-3 1.603245+1 5.029263-3 1.698244+1 4.721611-3 1.717908+1 4.662383-3 1.800000+1 4.429844-3 1.819701+1 4.377426-3 1.927525+1 4.110370-3 1.949845+1 4.058946-3 1.972423+1 4.008167-3 2.000000+1 3.947777-3 2.018366+1 3.908516-3 2.041738+1 3.859627-3 2.137962+1 3.670116-3 2.264644+1 3.450393-3 2.290868+1 3.408052-3 2.317395+1 3.366233-3 2.483133+1 3.125957-3 2.511886+1 3.087683-3 2.691535+1 2.867681-3 2.722701+1 2.832569-3 2.754229+1 2.797888-3 2.786121+1 2.763633-3 2.800000+1 2.748979-3 2.818383+1 2.729799-3 3.019952+1 2.535328-3 3.198895+1 2.386395-3 3.273407+1 2.329301-3 3.311311+1 2.301270-3 3.589219+1 2.114333-3 3.630781+1 2.088941-3 3.801894+1 1.990388-3 3.845918+1 1.966487-3 3.890451+1 1.942875-3 4.415704+1 1.701125-3 4.897788+1 1.528536-3 5.069907+1 1.474990-3 5.370318+1 1.389908-3 5.432503+1 1.373511-3 5.623413+1 1.325474-3 5.688529+1 1.309840-3 7.673615+1 9.621420-4 9.332543+1 7.881917-4 9.440609+1 7.789997-4 9.549926+1 7.699167-4 9.885531+1 7.432992-4 1.000000+2 7.346420-4 1.011579+2 7.260865-4 1.479108+2 4.932951-4 1.862087+2 3.909511-4 1.883649+2 3.864321-4 1.905461+2 3.819659-4 1.972423+2 3.688751-4 1.995262+2 3.646153-4 2.018366+2 3.604047-4 2.951209+2 2.456584-4 5.888437+2 1.227084-4 7.413102+2 9.743735-5 7.498942+2 9.632034-5 7.585776+2 9.521622-5 7.852356+2 9.197929-5 7.943282+2 9.092539-5 8.035261+2 8.988359-5 9.332543+3 7.721277-6 2.344229+4 3.073538-6 4.731513+4 1.522650-6 4.786301+4 1.505218-6 4.954502+4 1.454111-6 5.011872+4 1.437465-6 5.069907+4 1.421009-6 1.000000+5 7.203978-7 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.730000-6 5.730000-6 5.760000-6 5.730000-6 5.760000-6 5.755620-6 5.940000-6 5.756368-6 5.940000-6 5.819512-6 1.430000-5 5.831063-6 3.836000-5 5.833572-6 3.836000-5 8.739070-6 4.058000-5 8.794849-6 4.058000-5 9.458045-6 5.011872-5 9.674367-6 5.623413-5 9.889967-6 6.345000-5 1.023328-5 6.345000-5 1.088927-5 7.079458-5 1.165972-5 7.500000-5 1.202075-5 7.852356-5 1.225010-5 8.222426-5 1.241026-5 8.650000-5 1.250287-5 9.150000-5 1.251313-5 9.800000-5 1.242497-5 1.260000-4 1.178359-5 1.400000-4 1.153795-5 1.566751-4 1.133334-5 1.778279-4 1.116942-5 2.065380-4 1.105622-5 2.118100-4 1.104260-5 2.118100-4 1.359525-5 2.145000-4 1.367254-5 2.148200-4 1.369305-5 2.148200-4 1.484994-5 2.167000-4 1.499083-5 2.182000-4 1.519878-5 2.195000-4 1.546331-5 2.210000-4 1.587017-5 2.225000-4 1.637065-5 2.270000-4 1.807372-5 2.292000-4 1.879435-5 2.313000-4 1.934294-5 2.336000-4 1.980147-5 2.365000-4 2.021366-5 2.400000-4 2.054979-5 2.450000-4 2.086029-5 2.515000-4 2.110720-5 2.615000-4 2.131295-5 2.800000-4 2.146595-5 3.200000-4 2.158197-5 3.592800-4 2.160872-5 3.592800-4 2.274779-5 3.752200-4 2.288083-5 3.752200-4 2.329427-5 3.895000-4 2.349061-5 4.559800-4 2.386824-5 4.559800-4 2.479675-5 6.700000-4 2.604707-5 8.709636-4 2.698626-5 1.122018-3 2.791965-5 1.428894-3 2.881788-5 1.778279-3 2.963068-5 2.238721-3 3.046390-5 2.369100-3 3.066454-5 2.369100-3 4.625560-5 2.466600-3 4.630845-5 2.466600-3 4.837344-5 2.676300-3 4.844593-5 2.676300-3 5.128898-5 3.801894-3 5.236221-5 5.559043-3 5.365090-5 8.222426-3 5.508152-5 1.174898-2 5.644883-5 1.603245-2 5.764983-5 1.894800-2 5.828194-5 1.894800-2 6.323970-5 3.758374-2 6.364534-5 9.015711-2 6.392520-5 4.073803-1 6.410580-5 1.000000+5 6.413655-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.730000-6 0.0 3.836000-5 0.0 3.836000-5 1.77674-10 3.890451-5 1.78995-10 4.030000-5 1.80881-10 4.058000-5 1.81086-10 4.058000-5 2.40369-10 4.220000-5 2.43489-10 4.731513-5 2.50905-10 5.069907-5 2.56986-10 5.450000-5 2.65610-10 5.800000-5 2.75211-10 6.237348-5 2.88947-10 6.345000-5 2.92560-10 6.345000-5 3.04273-10 6.850000-5 3.24150-10 7.161434-5 3.34612-10 7.470000-5 3.42772-10 7.762471-5 3.48191-10 8.040000-5 3.51198-10 8.317638-5 3.52272-10 8.650000-5 3.51409-10 9.015711-5 3.48530-10 9.660509-5 3.40324-10 1.110000-4 3.19409-10 1.205000-4 3.07905-10 1.303167-4 2.98519-10 1.400000-4 2.91455-10 1.513561-4 2.85283-10 1.640590-4 2.80472-10 1.778279-4 2.76962-10 1.949845-4 2.74525-10 2.118100-4 2.73376-10 2.118100-4 3.31700-10 2.145000-4 3.33501-10 2.148200-4 3.33974-10 2.148200-4 8.909870-9 2.160000-4 8.877312-9 2.167000-4 8.863448-9 2.175000-4 8.881943-9 2.182000-4 8.919451-9 2.188000-4 8.974903-9 2.195000-4 9.070390-9 2.202000-4 9.204994-9 2.207000-4 9.316636-9 2.213095-4 9.489055-9 2.219500-4 9.704995-9 2.225000-4 9.921306-9 2.231000-4 1.018261-8 2.238721-4 1.057018-8 2.247000-4 1.104090-8 2.257000-4 1.167120-8 2.275000-4 1.291073-8 2.295000-4 1.437531-8 2.313000-4 1.564792-8 2.328000-4 1.661773-8 2.344229-4 1.755563-8 2.359000-4 1.830232-8 2.370000-4 1.879022-8 2.381000-4 1.922149-8 2.400000-4 1.984722-8 2.420000-4 2.040152-8 2.450000-4 2.105899-8 2.465000-4 2.132799-8 2.507000-4 2.194298-8 2.550000-4 2.242369-8 2.600160-4 2.285093-8 2.630268-4 2.305773-8 2.691535-4 2.335459-8 2.754229-4 2.357337-8 2.930000-4 2.387111-8 3.200000-4 2.413512-8 3.390000-4 2.425445-8 3.592800-4 2.429717-8 3.592800-4 2.610347-8 3.752200-4 2.634170-8 3.752200-4 2.812722-8 3.797000-4 2.839045-8 3.895000-4 2.874536-8 4.073803-4 2.905693-8 4.559800-4 2.971281-8 4.559800-4 3.156067-8 6.000000-4 3.362868-8 7.079458-4 3.497687-8 8.609938-4 3.661557-8 1.047129-3 3.824907-8 1.244515-3 3.968839-8 1.479108-3 4.113235-8 1.778279-3 4.263715-8 2.089296-3 4.390374-8 2.369100-3 4.485863-8 2.369100-3 5.246476-5 2.466600-3 5.251373-5 2.466600-3 6.087216-5 2.676300-3 6.093530-5 2.676300-3 6.242106-5 4.216965-3 6.257454-5 1.737801-2 6.174179-5 1.894800-2 6.167831-5 1.894800-2 1.082736-2 2.570396-2 1.095100-2 3.672823-2 1.104964-2 5.888437-2 1.112288-2 1.230269-1 1.117240-2 1.479108+0 1.120249-2 1.000000+5 1.120220-2 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.730000-6 0.0 5.760000-6 3.000000-8 5.760000-6 4.379766-9 5.940000-6 1.836319-7 5.940000-6 1.204881-7 6.606934-6 7.828051-7 1.023293-5 4.402931-6 3.836000-5 3.252643-5 3.836000-5 2.962075-5 4.058000-5 3.178497-5 4.058000-5 3.112171-5 5.477200-5 4.493980-5 6.345000-5 5.321643-5 6.345000-5 5.256043-5 7.500000-5 6.297890-5 8.413951-5 7.167536-5 9.800000-5 8.557469-5 1.548817-4 1.435301-4 2.118100-4 2.007671-4 2.118100-4 1.982144-4 2.148200-4 2.011266-4 2.148200-4 1.999612-4 2.207000-4 2.049090-4 2.313000-4 2.119414-4 2.405000-4 2.198909-4 2.691535-4 2.477331-4 3.592800-4 3.376470-4 3.592800-4 3.365061-4 3.752200-4 3.523129-4 3.752200-4 3.518976-4 4.559800-4 4.320821-4 4.559800-4 4.311517-4 2.137962-3 2.107618-3 2.369100-3 2.338391-3 2.369100-3 2.270380-3 2.466600-3 2.367778-3 2.466600-3 2.357354-3 2.676300-3 2.566919-3 2.676300-3 2.562590-3 1.894800-2 1.882804-2 1.894800-2 8.057396-3 2.600160-2 1.498354-2 4.623810-2 3.508232-2 1.000000+5 9.999999+4 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.894800-2 1.154149+4 1.943000-2 1.082818+4 1.972423-2 1.038733+4 2.020000-2 9.805440+3 2.187762-2 7.965384+3 2.400000-2 6.283140+3 2.884032-2 3.861103+3 3.672823-2 2.001374+3 4.623810-2 1.054756+3 5.754399-2 5.674412+2 7.161434-2 3.024039+2 9.015711-2 1.546652+2 1.244515-1 5.994733+1 1.883649-1 1.767703+1 2.300000-1 9.873996+0 2.722701-1 6.082032+0 3.162278-1 3.984509+0 3.589219-1 2.805480+0 4.027170-1 2.053122+0 4.518559-1 1.513878+0 5.011872-1 1.158645+0 5.559043-1 8.929890-1 6.165950-1 6.934838-1 6.839117-1 5.427447-1 7.498942-1 4.394432-1 8.222427-1 3.581668-1 9.015711-1 2.939603-1 9.885531-1 2.430202-1 1.135011+0 1.844442-1 1.230269+0 1.579327-1 1.412538+0 1.221007-1 1.548817+0 1.034026-1 1.737801+0 8.463928-2 1.972423+0 6.845565-2 2.238721+0 5.580491-2 2.540973+0 4.584256-2 2.917427+0 3.728384-2 3.388442+0 3.004322-2 3.935501+0 2.439359-2 4.623810+0 1.963879-2 5.432503+0 1.592582-2 6.606934+0 1.244604-2 7.943282+0 9.946906-3 9.660509+0 7.883218-3 1.230269+1 5.965225-3 1.603245+1 4.432131-3 2.137962+1 3.234346-3 3.019952+1 2.234296-3 4.415704+1 1.499135-3 7.673615+1 8.478943-4 1.479108+2 4.347298-4 2.951209+2 2.164816-4 5.888437+2 1.081381-4 9.332543+3 6.804538-6 1.000000+5 6.349300-7 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.894800-2 6.410300-5 1.000000+5 6.410300-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.894800-2 1.270200-2 1.000000+5 1.270200-2 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.894800-2 6.181897-3 1.000000+5 9.999999+4 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.676300-3 4.922220+4 2.884032-3 4.381308+4 3.090295-3 3.923585+4 3.273407-3 3.571124+4 4.365158-3 2.154913+4 4.731513-3 1.855217+4 5.623413-3 1.335395+4 6.237348-3 1.087755+4 7.244360-3 8.032579+3 8.222426-3 6.160933+3 9.332543-3 4.698753+3 1.083927-2 3.380886+3 1.230269-2 2.541536+3 1.412538-2 1.849438+3 1.640590-2 1.300238+3 1.905461-2 9.069202+2 2.213095-2 6.277756+2 2.600160-2 4.190090+2 3.054921-2 2.774207+2 3.548134-2 1.878506+2 4.168694-2 1.225757+2 4.954502-2 7.697805+1 5.888437-2 4.798367+1 7.079458-2 2.877002+1 8.709636-2 1.604960+1 1.096478-1 8.323589+0 2.089296-1 1.301874+0 2.540973-1 7.448820-1 2.985383-1 4.736689-1 3.427678-1 3.235595-1 3.890451-1 2.297105-1 4.365158-1 1.693730-1 4.897788-1 1.257961-1 5.432503-1 9.693243-2 6.025596-1 7.522529-2 6.623700-1 6.007257-2 7.328245-1 4.764721-2 8.128305-1 3.785557-2 9.225714-1 2.883051-2 1.000000+0 2.439685-2 1.148154+0 1.853026-2 1.273503+0 1.518643-2 1.412538+0 1.253452-2 1.584893+0 1.020231-2 1.778279+0 8.363157-3 2.018366+0 6.773533-3 2.290868+0 5.529828-3 2.600160+0 4.548616-3 2.985383+0 3.704100-3 3.467369+0 2.988354-3 4.027170+0 2.429078-3 4.731513+0 1.957599-3 5.623413+0 1.565940-3 6.839116+0 1.225426-3 8.609938+0 9.279880-4 1.059254+1 7.277354-4 1.348963+1 5.522799-4 1.800000+1 4.008300-4 2.483133+1 2.828686-4 3.589219+1 1.913169-4 5.370318+1 1.257667-4 9.885531+1 6.725813-5 1.972423+2 3.339375-5 7.852356+2 8.328153-6 4.954502+4 1.316977-7 1.000000+5 6.524200-8 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.676300-3 7.078400-5 1.000000+5 7.078400-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.676300-3 7.260900-5 1.000000+5 7.260900-5 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.676300-3 2.532907-3 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.466600-3 1.148512+5 2.570396-3 1.035000+5 2.640000-3 9.734200+4 2.818383-3 8.273300+4 3.019952-3 6.910900+4 3.758374-3 3.842900+4 4.216965-3 2.803700+4 5.011872-3 1.725600+4 5.821032-3 1.118700+4 6.531306-3 7.980400+3 7.852356-3 4.595500+3 9.225714-3 2.806900+3 1.047129-2 1.894400+3 1.216186-2 1.182700+3 1.445440-2 6.808200+2 1.730000-2 3.798000+2 2.065380-2 2.118600+2 2.454709-2 1.190900+2 3.000000-2 6.051500+1 3.715352-2 2.916400+1 4.731513-2 1.267500+1 1.011580-1 9.029400-1 1.273503-1 4.078900-1 1.531088-1 2.174800-1 1.798871-1 1.263000-1 2.000000-1 8.874500-2 2.344229-1 5.273198-2 2.660725-1 3.505901-2 3.019952-1 2.348714-2 3.388442-1 1.643811-2 3.801894-1 1.159221-2 4.216965-1 8.524858-3 4.677351-1 6.313715-3 5.188000-1 4.711355-3 5.688529-1 3.656640-3 6.237348-1 2.856987-3 6.839117-1 2.246884-3 7.762471-1 1.624925-3 8.413951-1 1.331287-3 9.015711-1 1.129728-3 9.549926-1 9.908204-4 1.011579+0 8.741062-4 1.096478+0 7.394543-4 1.174898+0 6.448768-4 1.273503+0 5.540994-4 1.412538+0 4.592188-4 1.678804+0 3.391014-4 1.905461+0 2.735057-4 2.137962+0 2.266108-4 2.426610+0 1.856598-4 2.754229+0 1.531997-4 3.198895+0 1.230709-4 3.715352+0 9.964611-5 4.365158+0 8.000760-5 5.128614+0 6.471630-5 6.237348+0 5.045931-5 7.328245+0 4.136375-5 9.332543+0 3.097747-5 1.174898+1 2.372370-5 1.513561+1 1.783018-5 1.972423+1 1.332064-5 2.754229+1 9.300776-6 3.801894+1 6.614672-6 5.623413+1 4.404817-6 1.000000+2 2.441200-6 1.995262+2 1.212198-6 7.943282+2 3.023358-7 5.011872+4 4.781258-9 1.000000+5 2.396000-9 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.466600-3 5.373500-5 1.000000+5 5.373500-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.466600-3 8.257400-5 1.000000+5 8.257400-5 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.466600-3 2.330291-3 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.369100-3 2.398419+5 2.600160-3 1.913011+5 2.754229-3 1.651463+5 3.054921-3 1.249455+5 3.715352-3 7.319471+4 4.073803-3 5.660658+4 4.731513-3 3.698365+4 5.370318-3 2.553212+4 6.095369-3 1.755511+4 7.300000-3 1.016968+4 8.413951-3 6.560919+3 9.660509-3 4.256042+3 1.122018-2 2.643413+3 1.318257-2 1.569814+3 1.548817-2 9.247323+2 1.819701-2 5.405888+2 2.162719-2 3.017248+2 2.570396-2 1.671327+2 3.090295-2 8.832405+1 3.758374-2 4.450352+1 4.623810-2 2.137206+1 6.000000-2 8.427960+0 1.148154-1 8.190727-1 1.396368-1 4.079295-1 1.640590-1 2.312851-1 1.905461-1 1.374871-1 2.162719-1 8.912999-2 2.454709-1 5.821658-2 2.754229-1 3.982245-2 3.054921-1 2.849230-2 3.388442-1 2.053624-2 3.715352-1 1.545443-2 4.073803-1 1.170896-2 4.415705-1 9.240301-3 4.841724-1 7.100235-3 5.308844-1 5.497160-3 5.821032-1 4.288654-3 6.382635-1 3.371946-3 6.998420-1 2.672283-3 7.673615-1 2.134823-3 8.317638-1 1.765817-3 9.015711-1 1.470131-3 9.660509-1 1.262407-3 1.023293+0 1.118374-3 1.122018+0 9.280039-4 1.216186+0 7.934813-4 1.348963+0 6.542911-4 1.531087+0 5.214640-4 1.737801+0 4.183053-4 1.949845+0 3.446856-4 2.187762+0 2.859678-4 2.483133+0 2.346031-4 2.851018+0 1.905542-4 3.311311+0 1.533634-4 3.845918+0 1.243833-4 4.518559+0 1.000310-4 5.308844+0 8.103794-5 6.456542+0 6.327326-5 7.585776+0 5.193955-5 9.440609+0 4.001138-5 1.188502+1 3.065383-5 1.531087+1 2.304527-5 2.018366+1 1.700820-5 2.800000+1 1.196500-5 3.845918+1 8.556298-6 5.623413+1 5.766743-6 1.011579+2 3.158738-6 2.018366+2 1.568651-6 8.035261+2 3.912923-7 5.069907+4 6.188066-9 1.000000+5 3.136800-9 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.369100-3 5.206500-5 1.000000+5 5.206500-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.369100-3 7.199700-5 1.000000+5 7.199700-5 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.369100-3 2.245038-3 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.559800-4 1.530164+5 6.350000-4 1.054304+5 6.606934-4 1.004022+5 7.943282-4 7.895257+4 8.609938-4 7.055272+4 1.023293-3 5.477984+4 1.135011-3 4.672316+4 1.333521-3 3.615371+4 1.513561-3 2.932780+4 1.737801-3 2.320519+4 2.041738-3 1.750284+4 2.400000-3 1.308010+4 2.800000-3 9.834300+3 3.273407-3 7.313180+3 3.801894-3 5.469710+3 4.466836-3 3.971070+3 5.188000-3 2.929551+3 6.095369-3 2.095489+3 7.161434-3 1.487371+3 8.413951-3 1.047679+3 9.885531-3 7.324959+2 1.161449-2 5.081615+2 1.368040-2 3.477860+2 1.603245-2 2.389597+2 1.883649-2 1.619286+2 2.213095-2 1.088726+2 2.600160-2 7.263994+1 3.054921-2 4.810301+1 3.589219-2 3.162086+1 4.265795-2 2.001714+1 5.069907-2 1.257519+1 6.095369-2 7.598203+0 7.328245-2 4.556587+0 9.015711-2 2.543471+0 1.148154-1 1.277551+0 2.137962-1 2.144045-1 2.600160-1 1.229482-1 3.054921-1 7.832844-2 3.507519-1 5.358164-2 3.981072-1 3.810111-2 4.466836-1 2.814295-2 5.011872-1 2.094342-2 5.559043-1 1.616788-2 6.165950-1 1.257126-2 6.839117-1 9.850273-3 7.585776-1 7.778157-3 8.413951-1 6.187944-3 9.225714-1 5.084222-3 1.000000+0 4.308185-3 1.148154+0 3.271648-3 1.250000+0 2.780988-3 1.428894+0 2.169360-3 1.566751+0 1.838455-3 1.757924+0 1.505992-3 1.995262+0 1.218915-3 2.264644+0 9.943490-4 2.570396+0 8.173822-4 2.951209+0 6.652241-4 3.427678+0 5.363594-4 4.000000+0 4.329300-4 4.677351+0 3.509892-4 5.559043+0 2.806179-4 6.760830+0 2.195010-4 8.317638+0 1.707859-4 1.011579+1 1.355695-4 1.288250+1 1.027301-4 1.717908+1 7.451326-5 2.317395+1 5.380598-5 3.311311+1 3.677696-5 5.069907+1 2.356940-5 9.440609+1 1.244810-5 1.883649+2 6.177858-6 7.498942+2 1.540061-6 4.731513+4 2.435289-8 1.000000+5 1.152100-8 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.559800-4 4.527100-5 1.000000+5 4.527100-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.559800-4 7.230700-8 1.000000+5 7.230700-8 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.559800-4 4.106367-4 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.752200-4 1.569662+5 3.761000-4 1.621404+5 3.770000-4 1.660500+5 3.780000-4 1.693918+5 3.797000-4 1.739108+5 3.820000-4 1.787200+5 3.845918-4 1.831270+5 3.865000-4 1.856964+5 3.895000-4 1.886788+5 3.925000-4 1.904936+5 3.955000-4 1.913456+5 4.000000-4 1.913258+5 4.650000-4 1.811716+5 5.011872-4 1.738410+5 5.308844-4 1.676411+5 5.623413-4 1.602768+5 5.956621-4 1.523482+5 6.456542-4 1.406730+5 6.850000-4 1.318480+5 7.328245-4 1.214558+5 8.035261-4 1.076827+5 8.609938-4 9.781199+4 9.332543-4 8.672352+4 1.035142-3 7.364027+4 1.122018-3 6.441584+4 1.230269-3 5.486071+4 1.355400-3 4.604237+4 1.479108-3 3.904013+4 1.650000-3 3.152220+4 1.819701-3 2.583111+4 2.018366-3 2.078286+4 2.238721-3 1.659578+4 2.500000-3 1.296714+4 2.818383-3 9.834393+3 3.150000-3 7.551060+3 3.507519-3 5.811729+3 3.981072-3 4.234470+3 4.518559-3 3.058628+3 5.128614-3 2.191083+3 5.821032-3 1.557220+3 6.606934-3 1.098298+3 7.585776-3 7.442295+2 8.709636-3 5.001106+2 1.000000-2 3.333980+2 1.148154-2 2.205803+2 1.318257-2 1.448417+2 1.513561-2 9.441915+1 1.757924-2 5.894745+1 2.041738-2 3.653024+1 2.398833-2 2.165170+1 2.851018-2 1.226504+1 3.427678-2 6.636838+0 4.168694-2 3.429734+0 5.248075-2 1.564724+0 7.244360-2 5.166317-1 1.109175-1 1.191662-1 1.380384-1 5.646215-2 1.640590-1 3.153622-2 1.927525-1 1.844293-2 2.238721-1 1.128697-2 2.570396-1 7.226793-3 2.917427-1 4.837883-3 3.273407-1 3.382554-3 3.672823-1 2.382347-3 4.073803-1 1.749580-3 4.518559-1 1.293821-3 5.011872-1 9.637875-4 5.559043-1 7.235248-4 6.095369-1 5.645101-4 6.683439-1 4.433719-4 7.328245-1 3.505085-4 8.609938-1 2.351218-4 9.225714-1 1.995000-4 9.772372-1 1.750405-4 1.035142+0 1.545804-4 1.109175+0 1.340167-4 1.188600+0 1.169901-4 1.318257+0 9.658783-5 1.479108+0 7.863753-5 1.717908+0 6.054873-5 1.927525+0 4.984520-5 2.162719+0 4.132462-5 2.454709+0 3.387875-5 2.818383+0 2.749878-5 3.273407+0 2.211837-5 3.801894+0 1.792900-5 4.466836+0 1.441092-5 5.248075+0 1.166867-5 6.382635+0 9.106628-6 7.498942+0 7.472060-6 9.440609+0 5.676575-6 1.202264+1 4.292260-6 1.548817+1 3.227997-6 2.041738+1 2.383016-6 2.818383+1 1.685808-6 3.890451+1 1.199408-6 5.688529+1 8.085319-7 1.011579+2 4.481534-7 2.018366+2 2.225558-7 8.035261+2 5.551390-8 5.069907+4 8.77937-10 1.000000+5 4.45040-10 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.752200-4 3.467500-5 1.000000+5 3.467500-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.752200-4 7.727700-8 1.000000+5 7.727700-8 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.752200-4 3.404677-4 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.592800-4 3.996895+5 3.643000-4 4.090648+5 3.740000-4 4.225542+5 3.790000-4 4.279406+5 3.890451-4 4.349708+5 3.950000-4 4.367965+5 4.000000-4 4.370323+5 4.100000-4 4.331498+5 4.365158-4 4.211043+5 4.570882-4 4.095509+5 5.080000-4 3.788588+5 5.370318-4 3.608866+5 5.754399-4 3.372560+5 6.309573-4 3.049772+5 6.700000-4 2.836584+5 7.244360-4 2.558851+5 7.943282-4 2.249368+5 8.511380-4 2.029917+5 9.225714-4 1.787491+5 1.023293-3 1.506121+5 1.110000-3 1.308080+5 1.230269-3 1.085618+5 1.355400-3 9.045362+4 1.513561-3 7.283763+4 1.659587-3 6.040718+4 1.862087-3 4.741477+4 2.065380-3 3.784471+4 2.317395-3 2.923028+4 2.600160-3 2.238855+4 2.900000-3 1.726520+4 3.273407-3 1.283834+4 3.715352-3 9.335862+3 4.216965-3 6.729498+3 4.786301-3 4.809970+3 5.370318-3 3.519201+3 6.025596-3 2.558098+3 6.800000-3 1.817644+3 7.673615-3 1.283026+3 8.709636-3 8.845885+2 9.885531-3 6.056878+2 1.135011-2 3.977105+2 1.303167-2 2.590770+2 1.500000-2 1.661380+2 1.737801-2 1.035673+2 2.018366-2 6.354313+1 2.344229-2 3.869734+1 2.754229-2 2.251118+1 3.235937-2 1.299993+1 3.890451-2 6.885886+0 4.731513-2 3.477591+0 5.956621-2 1.543837+0 1.202264-1 1.267526-1 1.479108-1 6.099214-2 1.737801-1 3.475734-2 2.000000-1 2.141416-2 2.264644-1 1.405171-2 2.540973-1 9.575701-3 2.851018-1 6.574280-3 3.162278-1 4.719815-3 3.507519-1 3.413615-3 3.845918-1 2.576891-3 4.216965-1 1.959094-3 4.623810-1 1.500380-3 5.069907-1 1.157645-3 5.559043-1 9.000855-4 6.095369-1 7.053137-4 6.606935-1 5.735561-4 7.161434-1 4.692889-4 7.762471-1 3.863643-4 8.511380-1 3.113089-4 9.120108-1 2.663004-4 9.772372-1 2.292757-4 1.059254+0 1.941560-4 1.161449+0 1.616534-4 1.273503+0 1.355474-4 1.412538+0 1.120885-4 1.640590+0 8.603169-5 1.862087+0 6.930513-5 2.089296+0 5.734333-5 2.371374+0 4.691407-5 2.691535+0 3.866360-5 3.090295+0 3.154173-5 3.589219+0 2.549257-5 4.216965+0 2.043444-5 4.954502+0 1.650331-5 5.956621+0 1.303653-5 7.079458+0 1.051811-5 9.120108+0 7.760740-6 1.148154+1 5.938990-6 1.479108+1 4.460405-6 1.949845+1 3.288850-6 2.722701+1 2.295678-6 3.801894+1 1.612787-6 5.623413+1 1.074056-6 1.000000+2 5.952300-7 1.995262+2 2.955667-7 7.943282+2 7.371917-8 5.011872+4 1.165834-9 1.000000+5 5.84200-10 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.592800-4 3.454800-5 1.000000+5 3.454800-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.592800-4 4.481600-8 1.000000+5 4.481600-8 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.592800-4 3.246872-4 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.148200-4 1.127024+5 2.157000-4 1.126408+5 2.167000-4 1.133236+5 2.175000-4 1.146864+5 2.182000-4 1.165580+5 2.188000-4 1.188232+5 2.195000-4 1.223552+5 2.201000-4 1.262520+5 2.207000-4 1.310512+5 2.213095-4 1.369797+5 2.219500-4 1.444808+5 2.225000-4 1.520736+5 2.231000-4 1.616712+5 2.238721-4 1.762190+5 2.247000-4 1.947688+5 2.255000-4 2.157928+5 2.270000-4 2.636904+5 2.285000-4 3.225024+5 2.295000-4 3.672228+5 2.305000-4 4.156520+5 2.313000-4 4.565400+5 2.321000-4 4.988880+5 2.328000-4 5.367720+5 2.336000-4 5.806040+5 2.344229-4 6.259747+5 2.351000-4 6.632240+5 2.359000-4 7.068880+5 2.370000-4 7.658480+5 2.381000-4 8.233280+5 2.392000-4 8.788680+5 2.405000-4 9.421400+5 2.420000-4 1.011600+6 2.435000-4 1.077624+6 2.450000-4 1.140084+6 2.465000-4 1.199456+6 2.485000-4 1.273636+6 2.507000-4 1.348964+6 2.530000-4 1.420640+6 2.550000-4 1.477160+6 2.573000-4 1.535000+6 2.600160-4 1.593868+6 2.630268-4 1.647616+6 2.660725-4 1.690698+6 2.691535-4 1.724244+6 2.730000-4 1.754360+6 2.754229-4 1.768001+6 2.800000-4 1.785244+6 2.851018-4 1.795601+6 2.930000-4 1.799628+6 3.019952-4 1.791762+6 3.100000-4 1.774440+6 3.180000-4 1.748332+6 3.280000-4 1.705116+6 3.390000-4 1.648856+6 3.550000-4 1.560544+6 3.715352-4 1.468726+6 3.890451-4 1.372587+6 4.073803-4 1.273500+6 4.315191-4 1.149239+6 4.600000-4 1.017516+6 4.850000-4 9.144840+5 5.150000-4 8.045400+5 5.559043-4 6.778057+5 6.000000-4 5.670960+5 6.500000-4 4.665320+5 7.161434-4 3.652189+5 7.800000-4 2.923504+5 8.700000-4 2.179312+5 9.549926-4 1.684808+5 1.071519-3 1.215013+5 1.174898-3 9.294085+4 1.318257-3 6.595303+4 1.462177-3 4.806854+4 1.621810-3 3.481099+4 1.819701-3 2.413476+4 2.041738-3 1.660681+4 2.264644-3 1.179084+4 2.540973-3 8.005318+3 2.884032-3 5.186807+3 3.273407-3 3.332625+3 3.715352-3 2.123717+3 4.216965-3 1.342301+3 4.731513-3 8.786215+2 5.308844-3 5.715552+2 6.025596-3 3.537649+2 6.918310-3 2.079877+2 7.943282-3 1.213682+2 9.120108-3 7.028387+1 1.047129-2 4.039972+1 1.216186-2 2.199946+1 1.412538-2 1.188715+1 1.640590-2 6.375360+0 1.949845-2 3.082107+0 2.371374-2 1.341541+0 3.000000-2 4.896240-1 4.027170-2 1.374465-1 6.531306-2 1.691417-2 8.222426-2 6.277175-3 9.885531-2 2.859203-3 1.161449-1 1.446442-3 1.348963-1 7.737289-4 1.548817-1 4.374748-4 1.757924-1 2.612421-4 1.972423-1 1.645774-4 2.213095-1 1.044250-4 2.483133-1 6.675988-5 2.754229-1 4.493890-5 3.090295-1 2.917303-5 3.388442-1 2.077095-5 3.715352-1 1.488894-5 4.027170-1 1.119506-5 4.415705-1 8.149256-6 4.841724-1 5.977192-6 5.308844-1 4.417963-6 5.888437-1 3.169614-6 6.606935-1 2.201266-6 7.079458-1 1.778906-6 7.498942-1 1.497298-6 8.035261-1 1.226545-6 8.609938-1 1.009912-6 9.120108-1 8.650489-7 9.549926-1 7.691747-7 1.000000+0 6.887494-7 1.059254+0 6.059143-7 1.122018+0 5.371619-7 1.188600+0 4.795000-7 1.273503+0 4.219485-7 1.396368+0 3.587178-7 1.531087+0 3.063382-7 1.798871+0 2.317571-7 2.000000+0 1.941000-7 2.264644+0 1.589803-7 2.570396+0 1.306858-7 2.951209+0 1.063483-7 3.427678+0 8.574534-8 4.000000+0 6.921000-8 4.677351+0 5.611019-8 5.559043+0 4.486011-8 6.760830+0 3.509024-8 8.317638+0 2.730234-8 1.011579+1 2.167255-8 1.288250+1 1.642282-8 1.717908+1 1.191197-8 2.290868+1 8.708664-9 3.273407+1 5.950961-9 5.069907+1 3.767840-9 9.549926+1 1.966769-9 1.905461+2 9.76182-10 7.585776+2 2.43385-10 4.786301+4 3.84858-12 1.000000+5 1.84180-12 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.148200-4 2.236900-5 1.000000+5 2.236900-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.148200-4 6.464800-8 1.000000+5 6.464800-8 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.148200-4 1.923864-4 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.118100-4 1.631820+5 2.127000-4 1.637970+5 2.137000-4 1.655706+5 2.145000-4 1.681248+5 2.153000-4 1.719660+5 2.160000-4 1.766508+5 2.165000-4 1.808982+5 2.170000-4 1.859994+5 2.175000-4 1.920438+5 2.182000-4 2.022810+5 2.188000-4 2.128974+5 2.195000-4 2.276838+5 2.202000-4 2.453214+5 2.210000-4 2.693010+5 2.217000-4 2.938884+5 2.225000-4 3.263436+5 2.257000-4 5.040750+5 2.265000-4 5.596404+5 2.275000-4 6.341280+5 2.285000-4 7.130880+5 2.292000-4 7.703160+5 2.300000-4 8.370300+5 2.308000-4 9.045240+5 2.317395-4 9.840022+5 2.327000-4 1.064700+6 2.335000-4 1.130994+6 2.345000-4 1.212204+6 2.355000-4 1.291224+6 2.365000-4 1.367826+6 2.378000-4 1.463628+6 2.392000-4 1.562040+6 2.405000-4 1.649136+6 2.420000-4 1.744734+6 2.435000-4 1.835322+6 2.454709-4 1.947028+6 2.473000-4 2.043396+6 2.490000-4 2.126676+6 2.515000-4 2.237976+6 2.540973-4 2.339353+6 2.565000-4 2.420250+6 2.590000-4 2.491638+6 2.615000-4 2.550810+6 2.650000-4 2.615310+6 2.691535-4 2.668780+6 2.730000-4 2.701182+6 2.786121-4 2.728040+6 2.851018-4 2.739882+6 2.930000-4 2.737002+6 3.019952-4 2.715940+6 3.100000-4 2.682198+6 3.198895-4 2.622883+6 3.311311-4 2.538124+6 3.430000-4 2.438406+6 3.600000-4 2.291592+6 3.780000-4 2.138136+6 3.935501-4 2.007473+6 4.120975-4 1.855651+6 4.365158-4 1.668478+6 4.651000-4 1.473602+6 4.954502-4 1.292577+6 5.248075-4 1.139336+6 5.688529-4 9.469193+5 6.165950-4 7.813153+5 6.683439-4 6.394253+5 7.328245-4 5.047806+5 8.035261-4 3.956433+5 8.912509-4 2.983170+5 9.885531-4 2.232163+5 1.096478-3 1.657251+5 1.216186-3 1.221597+5 1.355400-3 8.809620+4 1.500000-3 6.445440+4 1.678804-3 4.520710+4 1.862087-3 3.240158+4 2.089296-3 2.222473+4 2.371374-3 1.455818+4 2.695000-3 9.413132+3 3.054921-3 6.088510+3 3.467369-3 3.888227+3 3.935501-3 2.462414+3 4.415704-3 1.614047+3 4.954502-3 1.051182+3 5.559043-3 6.803881+2 6.309573-3 4.187720+2 7.161434-3 2.560274+2 8.222426-3 1.485320+2 9.440609-3 8.553130+1 1.083927-2 4.887720+1 1.244515-2 2.772017+1 1.445440-2 1.487801+1 1.678804-2 7.924858+0 1.972423-2 3.992047+0 2.371374-2 1.808992+0 2.951209-2 7.006842-1 3.845918-2 2.204576-1 7.498942-2 1.176309-2 9.885531-2 3.527540-3 1.135011-1 1.946490-3 1.303167-1 1.082302-3 1.479108-1 6.365822-4 1.659587-1 3.952418-4 1.840772-1 2.590030-4 2.041738-1 1.709021-4 2.238721-1 1.188654-4 2.454709-1 8.322638-5 2.691535-1 5.869641-5 2.951209-1 4.172245-5 3.198895-1 3.115788-5 3.467369-1 2.341452-5 3.801894-1 1.701872-5 4.216965-1 1.199158-5 4.570882-1 9.195175-6 4.954502-1 7.099161-6 5.370318-1 5.517828-6 5.754399-1 4.475648-6 6.025596-1 3.908898-6 6.456542-1 3.225843-6 6.998420-1 2.600206-6 8.035261-1 1.818292-6 8.709636-1 1.461794-6 9.225714-1 1.258386-6 9.660509-1 1.122318-6 1.011579+0 1.007184-6 1.071519+0 8.871093-7 1.135011+0 7.874520-7 1.202264+0 7.039973-7 1.288250+0 6.201722-7 1.412538+0 5.279077-7 1.531087+0 4.599556-7 1.798871+0 3.479949-7 2.000000+0 2.914300-7 2.264644+0 2.386831-7 2.570396+0 1.962033-7 2.951209+0 1.596702-7 3.427678+0 1.287362-7 4.000000+0 1.039100-7 4.677351+0 8.424467-8 5.559043+0 6.735440-8 6.760830+0 5.268400-8 8.317638+0 4.099285-8 1.011579+1 3.253890-8 1.288250+1 2.465803-8 1.698244+1 1.811327-8 2.264644+1 1.323831-8 3.198895+1 9.154932-9 4.897788+1 5.862915-9 9.332543+1 3.023119-9 1.862087+2 1.500105-9 7.413102+2 3.73941-10 2.344229+4 1.17957-11 1.000000+5 2.76540-12 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.118100-4 2.250800-5 1.000000+5 2.250800-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.118100-4 5.35340-10 1.000000+5 5.35340-10 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.118100-4 1.893015-4 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.345000-5 1.632306+5 6.500000-5 1.700336+5 6.657300-5 1.757481+5 6.850000-5 1.814652+5 7.079458-5 1.868254+5 7.328245-5 1.913598+5 7.673615-5 1.961077+5 8.035261-5 1.996905+5 8.511380-5 2.028879+5 9.015711-5 2.048371+5 9.549926-5 2.055135+5 1.011579-4 2.047922+5 1.071519-4 2.025421+5 1.122018-4 1.995982+5 1.188502-4 1.945666+5 1.260000-4 1.881348+5 1.333521-4 1.809100+5 1.428894-4 1.712832+5 1.566751-4 1.578935+5 1.720000-4 1.443424+5 1.883649-4 1.313734+5 2.041738-4 1.200947+5 2.238721-4 1.075803+5 2.511886-4 9.293405+4 2.851018-4 7.854612+4 3.200000-4 6.691720+4 3.630781-4 5.572020+4 4.315191-4 4.300889+4 5.011872-4 3.409321+4 6.095369-4 2.494808+4 7.500000-4 1.775494+4 9.120108-4 1.279332+4 1.122018-3 8.975417+3 1.364583-3 6.376766+3 1.640590-3 4.590184+3 1.949845-3 3.349609+3 2.317395-3 2.427388+3 2.754229-3 1.746194+3 3.311311-3 1.219552+3 3.981072-3 8.451043+2 4.731513-3 5.948887+2 5.623413-3 4.156778+2 6.606934-3 2.953444+2 7.762471-3 2.083595+2 9.120108-3 1.459461+2 1.071519-2 1.014982+2 1.258925-2 7.007133+1 1.479108-2 4.801491+1 1.737801-2 3.264945+1 2.041738-2 2.203215+1 2.426610-2 1.433582+1 2.851018-2 9.527007+0 3.349654-2 6.283621+0 3.981072-2 3.991102+0 4.731513-2 2.515587+0 5.559043-2 1.623617+0 6.760830-2 9.463886-1 8.317638-2 5.301727-1 1.023293-1 2.949465-1 2.187762-1 3.336279-2 2.630268-1 1.978321-2 3.090295-1 1.261156-2 3.548134-1 8.633223-3 4.027170-1 6.143601-3 4.518559-1 4.541323-3 5.011872-1 3.482234-3 5.559043-1 2.688299-3 6.165950-1 2.090339-3 6.839117-1 1.637941-3 7.585776-1 1.293408-3 8.413951-1 1.028968-3 9.225714-1 8.454192-4 1.000000+0 7.163800-4 1.148154+0 5.440235-4 1.250000+0 4.624200-4 1.428894+0 3.607115-4 1.566751+0 3.056904-4 1.757924+0 2.504105-4 1.995262+0 2.026763-4 2.264644+0 1.653342-4 2.570396+0 1.359082-4 2.951209+0 1.106078-4 3.427678+0 8.918247-5 4.000000+0 7.198600-5 4.677351+0 5.836146-5 5.559043+0 4.666010-5 6.760830+0 3.649724-5 8.317638+0 2.839784-5 1.011579+1 2.254183-5 1.288250+1 1.708249-5 1.698244+1 1.254818-5 2.290868+1 9.057988-6 3.273407+1 6.189754-6 5.069907+1 3.918959-6 9.549926+1 2.045673-6 1.905461+2 1.015353-6 7.585776+2 2.531408-7 4.786301+4 4.002965-9 1.000000+5 1.915700-9 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.345000-5 1.739600-5 1.000000+5 1.739600-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.345000-5 4.20450-10 1.000000+5 4.20450-10 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.345000-5 4.605358-5 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.058000-5 2.732940+6 4.105000-5 2.658400+6 4.168694-5 2.544951+6 4.240000-5 2.411920+6 4.365158-5 2.181038+6 4.518559-5 1.918358+6 4.720000-5 1.619174+6 4.954502-5 1.330423+6 5.248075-5 1.045167+6 5.623413-5 7.761905+5 6.165950-5 5.205516+5 6.500000-5 4.166480+5 6.760830-5 3.552221+5 7.000000-5 3.104840+5 7.244360-5 2.737671+5 7.498942-5 2.431136+5 7.737400-5 2.199564+5 7.943282-5 2.034243+5 8.150000-5 1.894590+5 8.400000-5 1.754518+5 8.650000-5 1.639974+5 8.912509-5 1.541669+5 9.225714-5 1.447661+5 9.500000-5 1.381760+5 9.800000-5 1.323486+5 1.011579-4 1.274456+5 1.047129-4 1.230995+5 1.083927-4 1.195983+5 1.135011-4 1.159477+5 1.202264-4 1.125331+5 1.303167-4 1.089842+5 1.548817-4 1.025635+5 1.698244-4 9.869601+4 1.850000-4 9.461220+4 2.000000-4 9.042780+4 2.162719-4 8.582924+4 2.350000-4 8.061140+4 2.580000-4 7.451600+4 2.818383-4 6.868880+4 3.090295-4 6.262346+4 3.388442-4 5.664680+4 3.758374-4 5.019515+4 4.168694-4 4.415301+4 4.570882-4 3.914316+4 5.069907-4 3.394039+4 5.688529-4 2.875291+4 6.382635-4 2.416589+4 7.244360-4 1.979184+4 8.200000-4 1.614744+4 9.225714-4 1.320363+4 1.035142-3 1.077344+4 1.161449-3 8.728253+3 1.303167-3 7.023673+3 1.462177-3 5.608165+3 1.640590-3 4.444889+3 1.840772-3 3.496953+3 2.065380-3 2.730607+3 2.317395-3 2.116053+3 2.600160-3 1.627977+3 2.917427-3 1.243676+3 3.273407-3 9.436565+2 3.672823-3 7.112173+2 4.168694-3 5.171272+2 4.731513-3 3.730640+2 5.370318-3 2.670406+2 6.095369-3 1.896941+2 6.918310-3 1.337528+2 7.852356-3 9.360698+1 9.015711-3 6.292834+1 1.035142-2 4.196700+1 1.188502-2 2.777258+1 1.364583-2 1.824318+1 1.566751-2 1.189865+1 1.840772-2 7.172142+0 2.113489-2 4.615314+0 2.454709-2 2.841774+0 2.884032-2 1.673461+0 3.467369-2 9.065685-1 4.265795-2 4.511238-1 5.308844-2 2.142916-1 1.148154-1 1.514558-2 1.428894-1 7.190771-3 1.717908-1 3.868251-3 2.000000-1 2.335101-3 2.290868-1 1.497691-3 2.600160-1 9.963087-4 2.951209-1 6.675926-4 3.311311-1 4.671605-4 3.715352-1 3.293128-4 4.120975-1 2.420545-4 4.570882-1 1.791639-4 5.069907-1 1.335810-4 5.623413-1 1.003592-4 6.165950-1 7.835507-5 6.760830-1 6.157748-5 7.413102-1 4.871014-5 8.609938-1 3.363209-5 9.225714-1 2.853969-5 9.772372-1 2.504326-5 1.035142+0 2.211833-5 1.109175+0 1.917666-5 1.188600+0 1.674000-5 1.318257+0 1.382036-5 1.479108+0 1.125154-5 1.717908+0 8.663434-6 1.927525+0 7.131860-6 2.162719+0 5.912435-6 2.454709+0 4.847085-6 2.786121+0 4.002199-6 3.235937+0 3.217198-6 3.758374+0 2.606345-6 4.415704+0 2.093825-6 5.188000+0 1.694514-6 6.309573+0 1.321805-6 7.413102+0 1.084064-6 9.332543+0 8.232449-7 1.174898+1 6.304838-7 1.513561+1 4.738441-7 2.000000+1 3.486900-7 2.786121+1 2.441747-7 3.845918+1 1.736872-7 5.688529+1 1.156803-7 1.011579+2 6.412061-8 2.018366+2 3.184268-8 8.035261+2 7.942832-9 5.069907+4 1.25615-10 1.000000+5 6.36750-11 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.058000-5 1.171000-5 1.000000+5 1.171000-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.058000-5 4.41670-10 1.000000+5 4.41670-10 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.058000-5 2.886956-5 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.836000-5 5.676960+6 3.890451-5 5.458717+6 3.960000-5 5.158160+6 4.030000-5 4.854800+6 4.168694-5 4.283476+6 4.350000-5 3.627656+6 4.570882-5 2.968549+6 4.841724-5 2.335723+6 5.688529-5 1.176313+6 5.956621-5 9.725082+5 6.165950-5 8.475174+5 6.400000-5 7.355280+5 6.606934-5 6.559790+5 6.800000-5 5.949560+5 7.000000-5 5.426280+5 7.230000-5 4.934880+5 7.450000-5 4.553240+5 7.673615-5 4.235781+5 7.900000-5 3.972296+5 8.150000-5 3.735172+5 8.413951-5 3.533217+5 8.709636-5 3.352825+5 9.015711-5 3.205331+5 9.332543-5 3.084741+5 9.660509-5 2.986086+5 1.011579-4 2.881516+5 1.060000-4 2.799048+5 1.122018-4 2.720578+5 1.428894-4 2.470289+5 1.580000-4 2.356356+5 1.720000-4 2.249004+5 1.862087-4 2.139210+5 2.018366-4 2.019540+5 2.187762-4 1.892911+5 2.400000-4 1.743124+5 2.630268-4 1.594807+5 2.900000-4 1.439848+5 3.162278-4 1.305963+5 3.507519-4 1.152696+5 3.935501-4 9.946965+4 4.365158-4 8.647761+4 4.841724-4 7.464212+4 5.432503-4 6.290608+4 6.095369-4 5.263285+4 6.918310-4 4.288329+4 7.852356-4 3.466660+4 8.810489-4 2.836114+4 9.885531-4 2.305325+4 1.109175-3 1.860982+4 1.244515-3 1.492757+4 1.396368-3 1.188289+4 1.566751-3 9.388908+3 1.757924-3 7.364325+3 1.972423-3 5.733942+3 2.213095-3 4.431223+3 2.483133-3 3.399667+3 2.786121-3 2.589761+3 3.126079-3 1.959086+3 3.507519-3 1.471898+3 3.981072-3 1.066410+3 4.518559-3 7.665664+2 5.128614-3 5.466980+2 5.821032-3 3.868451+2 6.606934-3 2.715867+2 7.498942-3 1.892706+2 8.511380-3 1.309500+2 9.772372-3 8.691439+1 1.122018-2 5.722633+1 1.288250-2 3.738483+1 1.479108-2 2.423820+1 1.698244-2 1.559978+1 1.927525-2 1.034615+1 2.264644-2 6.086249+0 2.660725-2 3.553068+0 3.126079-2 2.058847+0 3.715352-2 1.138334+0 4.518559-2 5.769088-1 5.432503-2 3.022163-1 7.244360-2 1.089943-1 1.230269-1 1.658118-2 1.500000-1 8.248891-3 1.757924-1 4.746497-3 2.018366-1 2.953168-3 2.290868-1 1.924436-3 2.570396-1 1.312684-3 2.884032-1 9.020649-4 3.198895-1 6.481841-4 3.548134-1 4.692495-4 3.890451-1 3.545441-4 4.265795-1 2.697972-4 4.677351-1 2.068152-4 5.128614-1 1.597271-4 5.623413-1 1.243180-4 6.095369-1 1.004939-4 6.606935-1 8.176064-5 7.161434-1 6.693163-5 7.852356-1 5.364656-5 8.609938-1 4.325101-5 9.225714-1 3.702336-5 9.885531-1 3.190351-5 1.083927+0 2.641095-5 1.174898+0 2.251721-5 1.288250+0 1.891394-5 1.428894+0 1.565552-5 1.640590+0 1.226491-5 1.862087+0 9.880097-6 2.089296+0 8.174985-6 2.371374+0 6.688303-6 2.691535+0 5.512071-6 3.090295+0 4.496690-6 3.589219+0 3.634267-6 4.216965+0 2.913160-6 4.954502+0 2.352743-6 5.956621+0 1.858498-6 7.079458+0 1.499505-6 9.120108+0 1.106346-6 1.148154+1 8.466710-7 1.479108+1 6.358865-7 1.949845+1 4.688624-7 2.722701+1 3.272725-7 3.801894+1 2.299303-7 5.623413+1 1.531142-7 1.000000+2 8.485700-8 1.995262+2 4.213575-8 7.943282+2 1.050958-8 5.011872+4 1.66196-10 1.000000+5 8.32850-11 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.836000-5 1.164100-5 1.000000+5 1.164100-5 1 41000 7 7 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.836000-5 3.55130-10 1.000000+5 3.55130-10 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.836000-5 2.671864-5 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.940000-6 4.176784+6 6.237348-6 4.521515+6 6.531306-6 4.836312+6 6.839116-6 5.136487+6 7.161434-6 5.423693+6 7.600000-6 5.774368+6 8.035261-6 6.085562+6 8.609938-6 6.446922+6 9.332543-6 6.846598+6 1.023293-5 7.275496+6 1.135011-5 7.728705+6 1.273503-5 8.202023+6 1.396368-5 8.551447+6 1.513561-5 8.810077+6 1.621810-5 8.980090+6 1.717908-5 9.069245+6 1.800000-5 9.092336+6 1.883649-5 9.061458+6 1.972423-5 8.967813+6 2.041738-5 8.852707+6 2.113489-5 8.696096+6 2.190000-5 8.488752+6 2.270000-5 8.230992+6 2.350000-5 7.937440+6 2.426610-5 7.629727+6 2.511886-5 7.264434+6 2.600160-5 6.868925+6 2.691535-5 6.449115+6 2.786121-5 6.012315+6 2.884032-5 5.566829+6 2.985383-5 5.120480+6 3.090295-5 4.679745+6 3.198895-5 4.249883+6 3.311311-5 3.835771+6 3.450000-5 3.370064+6 3.589219-5 2.952176+6 3.730000-5 2.576896+6 3.850000-5 2.291568+6 4.000000-5 1.975840+6 4.150000-5 1.701152+6 4.300000-5 1.462501+6 4.450000-5 1.255318+6 4.570882-5 1.108600+6 4.731513-5 9.383467+5 4.897788-5 7.880785+5 5.011872-5 6.982806+5 5.150000-5 6.022752+5 5.308844-5 5.070630+5 5.477200-5 4.216469+5 5.623413-5 3.586259+5 5.754399-5 3.097850+5 5.900000-5 2.628672+5 6.070000-5 2.166288+5 6.237348-5 1.788366+5 6.400000-5 1.483386+5 6.606934-5 1.169461+5 7.161434-5 6.311086+4 7.328245-5 5.320816+4 7.450000-5 4.733264+4 7.580000-5 4.214544+4 7.690000-5 3.852752+4 7.762471-5 3.648963+4 7.852356-5 3.430806+4 7.950000-5 3.233328+4 8.040000-5 3.084224+4 8.128305-5 2.965638+4 8.222426-5 2.866547+4 8.317638-5 2.792110+4 8.413951-5 2.740490+4 8.511380-5 2.709959+4 8.610000-5 2.698832+4 8.709636-5 2.705575+4 8.810489-5 2.728693+4 8.912509-5 2.766799+4 9.015711-5 2.818579+4 9.150000-5 2.903136+4 9.332543-5 3.043668+4 9.549926-5 3.240374+4 1.040000-4 4.160240+4 1.071519-4 4.514594+4 1.106700-4 4.896968+4 1.135011-4 5.190045+4 1.170000-4 5.528688+4 1.205000-4 5.836832+4 1.244515-4 6.148369+4 1.288250-4 6.448866+4 1.333521-4 6.709085+4 1.380384-4 6.930679+4 1.430000-4 7.117008+4 1.480000-4 7.256320+4 1.540000-4 7.372928+4 1.603245-4 7.439259+4 1.680000-4 7.457248+4 1.750000-4 7.422304+4 1.819701-4 7.347206+4 1.905461-4 7.213558+4 2.000000-4 7.026144+4 2.113489-4 6.766907+4 2.213095-4 6.518044+4 2.344229-4 6.174272+4 2.483133-4 5.804099+4 2.630268-4 5.417586+4 2.786121-4 5.023892+4 2.951209-4 4.631053+4 3.162278-4 4.175717+4 3.388442-4 3.738875+4 3.630781-4 3.324557+4 3.890451-4 2.937165+4 4.216965-4 2.523575+4 4.570882-4 2.152302+4 4.954502-4 1.822911+4 5.370318-4 1.534198+4 5.888437-4 1.250635+4 6.456542-4 1.012314+4 7.079458-4 8.138056+3 7.762471-4 6.498730+3 8.511380-4 5.154348+3 9.440609-4 3.940299+3 1.047129-3 2.988143+3 1.161449-3 2.248146+3 1.288250-3 1.678235+3 1.428894-3 1.243197+3 1.584893-3 9.138837+2 1.757924-3 6.668209+2 1.949845-3 4.831140+2 2.162719-3 3.476319+2 2.426610-3 2.393071+2 2.660725-3 1.764326+2 2.985383-3 1.197772+2 3.349654-3 8.074775+1 3.758374-3 5.404919+1 4.216965-3 3.591749+1 4.731513-3 2.369857+1 5.308844-3 1.552848+1 6.025596-3 9.678818+0 6.839116-3 5.986512+0 7.762471-3 3.675984+0 8.912509-3 2.142784+0 1.023293-2 1.239334+0 1.174898-2 7.113303-1 1.348963-2 4.053778-1 1.566751-2 2.187762-1 1.840772-2 1.116938-1 2.213095-2 5.137494-2 2.722701-2 2.126440-2 3.467369-2 7.534542-3 7.079458-2 3.455527-4 8.912509-2 1.287016-4 1.059254-1 6.176794-5 1.244515-1 3.136218-5 1.428894-1 1.766277-5 1.640590-1 1.001853-5 1.862087-1 6.001461-6 2.089296-1 3.793558-6 2.344229-1 2.416241-6 2.600160-1 1.620810-6 2.884032-1 1.094528-6 3.198895-1 7.440729-7 3.548134-1 5.096087-7 3.890451-1 3.665759-7 4.265795-1 2.656861-7 4.677351-1 1.939614-7 5.188000-1 1.372292-7 5.688529-1 1.016248-7 6.165950-1 7.865953-8 6.683439-1 6.130579-8 7.244360-1 4.808395-8 7.943282-1 3.670394-8 8.609938-1 2.890593-8 9.015711-1 2.535377-8 9.440609-1 2.237092-8 9.885531-1 1.988271-8 1.035142+0 1.781935-8 1.083927+0 1.608712-8 1.135011+0 1.461787-8 1.188600+0 1.335800-8 1.273503+0 1.177791-8 1.380384+0 1.024196-8 1.513561+0 8.773504-9 1.819701+0 6.380589-9 2.018366+0 5.366771-9 2.290868+0 4.381493-9 2.600160+0 3.603983-9 2.985383+0 2.934741-9 3.467369+0 2.367649-9 4.027170+0 1.924559-9 4.731513+0 1.551060-9 5.623413+0 1.240752-9 6.839116+0 9.70928-10 8.609938+0 7.35258-10 1.059254+1 5.76591-10 1.364583+1 4.31944-10 1.819701+1 3.13822-10 2.511886+1 2.21361-10 3.630781+1 1.49765-10 5.432503+1 9.84702-11 9.885531+1 5.32893-11 1.972423+2 2.64582-11 7.852356+2 6.59850-12 4.954502+4 1.04349-13 1.000000+5 5.16920-14 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.940000-6 5.940000-6 1.000000+5 5.940000-6 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.940000-6 0.0 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 5.760000-6 6.674568+6 6.025596-6 7.164295+6 6.309573-6 7.642026+6 6.606934-6 8.095765+6 7.000000-6 8.630496+6 7.413102-6 9.123278+6 7.943282-6 9.677614+6 8.511380-6 1.019071+7 9.225714-6 1.074537+7 1.023293-5 1.140849+7 1.150000-5 1.210140+7 1.288250-5 1.271965+7 1.428894-5 1.321099+7 1.548817-5 1.351220+7 1.659587-5 1.367275+7 1.757924-5 1.370801+7 1.850000-5 1.364652+7 1.927525-5 1.352066+7 2.000000-5 1.333903+7 2.070000-5 1.310609+7 2.150000-5 1.277657+7 2.238721-5 1.234198+7 2.317395-5 1.190378+7 2.400000-5 1.139861+7 2.483133-5 1.085448+7 2.570396-5 1.025875+7 2.660725-5 9.629958+6 2.754229-5 8.978305+6 2.851018-5 8.313336+6 2.951209-5 7.645462+6 3.054921-5 6.985763+6 3.162278-5 6.343857+6 3.273407-5 5.726352+6 3.400000-5 5.081640+6 3.540000-5 4.440648+6 3.672823-5 3.900003+6 3.801894-5 3.432902+6 3.950000-5 2.960448+6 4.073803-5 2.612333+6 4.220000-5 2.250607+6 4.365158-5 1.938487+6 4.518559-5 1.652922+6 4.677351-5 1.398811+6 4.841724-5 1.174411+6 5.011872-5 9.778847+5 5.150000-5 8.414328+5 5.308844-5 7.064047+5 5.450000-5 6.035832+5 5.623413-5 4.964832+5 5.800000-5 4.060776+5 5.956621-5 3.391793+5 6.095369-5 2.888243+5 6.237348-5 2.448245+5 6.400000-5 2.025384+5 6.650000-5 1.515881+5 7.070000-5 9.484152+4 7.244360-5 7.921003+4 7.350000-5 7.149960+4 7.470000-5 6.413544+4 7.585776-5 5.827142+4 7.690000-5 5.391264+4 7.762471-5 5.134326+4 7.852356-5 4.863273+4 7.943282-5 4.637992+4 8.040000-5 4.447032+4 8.128305-5 4.312243+4 8.222426-5 4.205958+4 8.317638-5 4.133725+4 8.413951-5 4.092985+4 8.511380-5 4.081196+4 8.610000-5 4.095984+4 8.730000-5 4.145688+4 8.850000-5 4.225440+4 9.000000-5 4.360656+4 9.150000-5 4.528584+4 9.350000-5 4.792680+4 9.660509-5 5.266299+4 1.020000-4 6.176616+4 1.050000-4 6.693624+4 1.083927-4 7.263315+4 1.110000-4 7.680840+4 1.148154-4 8.254103+4 1.180000-4 8.693664+4 1.216186-4 9.143168+4 1.258925-4 9.608149+4 1.303167-4 1.001923+5 1.350000-4 1.037410+5 1.400000-4 1.067580+5 1.450000-4 1.090534+5 1.513561-4 1.109993+5 1.566751-4 1.119845+5 1.621810-4 1.123871+5 1.701200-4 1.121450+5 1.778279-4 1.111002+5 1.862087-4 1.092367+5 1.949845-4 1.066698+5 2.065380-4 1.026956+5 2.162719-4 9.903042+4 2.290868-4 9.393203+4 2.426610-4 8.840884+4 2.570396-4 8.261361+4 2.722701-4 7.668645+4 2.884032-4 7.075120+4 3.126079-4 6.269100+4 3.349654-4 5.611438+4 3.589219-4 4.987985+4 3.845918-4 4.405242+4 4.168694-4 3.782996+4 4.518559-4 3.224856+4 4.897788-4 2.729912+4 5.370318-4 2.239066+4 5.888437-4 1.822369+4 6.456542-4 1.473070+4 7.079458-4 1.182562+4 7.762471-4 9.428288+3 8.511380-4 7.466340+3 9.440609-4 5.698477+3 1.047129-3 4.314754+3 1.161449-3 3.241244+3 1.288250-3 2.415852+3 1.428894-3 1.786790+3 1.566751-3 1.357689+3 1.737801-3 9.897196+2 1.927525-3 7.163296+2 2.137962-3 5.148881+2 2.386000-3 3.602903+2 2.630268-3 2.608265+2 2.951209-3 1.759210+2 3.427678-3 1.048377+2 3.890451-3 6.714013+1 4.365158-3 4.442037+1 4.897788-3 2.917520+1 5.495409-3 1.902773+1 6.237348-3 1.179864+1 7.079458-3 7.259835+0 8.035261-3 4.434517+0 9.120108-3 2.690250+0 1.035142-2 1.621018+0 1.188502-2 9.257487-1 1.364583-2 5.247875-1 1.566751-2 2.953973-1 1.819701-2 1.573361-1 2.162719-2 7.546125-2 2.600160-2 3.419688-2 3.235937-2 1.325046-2 4.216965-2 4.169845-3 7.079458-2 4.305927-4 9.015711-2 1.502752-4 1.071519-1 7.136828-5 1.244515-1 3.771036-5 1.412538-1 2.212942-5 1.603245-1 1.307841-5 1.798871-1 8.167053-6 2.000000-1 5.332900-6 2.213095-1 3.576173-6 2.426610-1 2.502849-6 2.660725-1 1.763550-6 2.917427-1 1.251553-6 3.198895-1 8.949465-7 3.467369-1 6.717878-7 3.758374-1 5.076478-7 4.073803-1 3.864041-7 4.415705-1 2.964372-7 4.786301-1 2.290976-7 5.188000-1 1.783601-7 5.623413-1 1.398934-7 6.095369-1 1.105632-7 6.606935-1 8.806846-8 7.161434-1 7.069188-8 7.943282-1 5.373098-8 8.511380-1 4.504645-8 9.015711-1 3.912181-8 9.549926-1 3.418877-8 1.011579+0 3.009033-8 1.083927+0 2.601760-8 1.161449+0 2.265591-8 1.244515+0 1.988341-8 1.380384+0 1.647078-8 1.659587+0 1.191412-8 1.883649+0 9.601348-9 2.113489+0 7.948404-9 2.398833+0 6.507301-9 2.722701+0 5.366346-9 3.126079+0 4.380494-9 3.630781+0 3.542504-9 4.265795+0 2.841207-9 5.011872+0 2.295812-9 6.025596+0 1.814439-9 7.161434+0 1.464612-9 9.120108+0 1.095907-9 1.148154+1 8.38650-10 1.479108+1 6.29862-10 1.949845+1 4.64421-10 2.722701+1 3.24170-10 3.801894+1 2.27747-10 5.623413+1 1.51661-10 1.000000+2 8.40530-11 1.995262+2 4.17368-11 7.943282+2 1.04099-11 5.011872+4 1.64629-13 1.000000+5 8.24960-14 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 5.760000-6 5.760000-6 1.000000+5 5.760000-6 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.760000-6 0.0 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.730000-6 1.173949+6 6.025596-6 8.924981+5 6.309573-6 6.896304+5 6.606934-6 5.281661+5 6.850000-6 4.252970+5 7.100000-6 3.407830+5 7.350000-6 2.731100+5 7.600000-6 2.187620+5 7.770000-6 1.880290+5 8.000000-6 1.530440+5 8.222426-6 1.251973+5 8.420000-6 1.045510+5 8.609938-6 8.774276+4 8.810489-6 7.273519+4 9.015711-6 5.984603+4 9.200000-6 5.007980+4 9.350000-6 4.322170+4 9.500000-6 3.721940+4 9.660509-6 3.163347+4 9.850000-6 2.601300+4 1.000000-5 2.221850+4 1.015000-5 1.893170+4 1.035142-5 1.521775+4 1.055000-5 1.223550+4 1.109175-5 6.787329+3 1.123000-5 5.895720+3 1.135011-5 5.253293+3 1.146000-5 4.763020+3 1.154000-5 4.460010+3 1.161449-5 4.215873+3 1.168000-5 4.029680+3 1.176000-5 3.836400+3 1.182000-5 3.714710+3 1.190000-5 3.581630+3 1.197000-5 3.490990+3 1.203000-5 3.431400+3 1.211000-5 3.376420+3 1.218000-5 3.349950+3 1.226000-5 3.342870+3 1.232000-5 3.352830+3 1.240000-5 3.385210+3 1.247000-5 3.430400+3 1.255000-5 3.500030+3 1.265000-5 3.612140+3 1.275000-5 3.749840+3 1.288250-5 3.967896+3 1.305000-5 4.294820+3 1.330000-5 4.871950+3 1.380384-5 6.272816+3 1.410000-5 7.195480+3 1.430000-5 7.844740+3 1.450000-5 8.508270+3 1.470000-5 9.181130+3 1.500000-5 1.019880+4 1.530000-5 1.121630+4 1.560000-5 1.222420+4 1.590000-5 1.321530+4 1.621810-5 1.424084+4 1.660000-5 1.543330+4 1.698244-5 1.657838+4 1.737801-5 1.770709+4 1.785000-5 1.897680+4 1.830000-5 2.010840+4 1.883649-5 2.135804+4 1.927525-5 2.230220+4 1.995262-5 2.362910+4 2.070000-5 2.492140+4 2.150000-5 2.612300+4 2.238721-5 2.725960+4 2.330000-5 2.824050+4 2.426610-5 2.909869+4 2.540973-5 2.990996+4 2.660725-5 3.055711+4 2.818383-5 3.114948+4 3.000000-5 3.154730+4 3.198895-5 3.172307+4 3.427678-5 3.167754+4 3.684300-5 3.140192+4 3.981072-5 3.086834+4 4.315191-5 3.008213+4 4.677351-5 2.909617+4 5.069907-5 2.793113+4 5.432503-5 2.680054+4 5.900000-5 2.531810+4 6.382635-5 2.380209+4 6.918310-5 2.217378+4 7.500000-5 2.049590+4 8.128305-5 1.882536+4 8.912509-5 1.695272+4 1.000000-4 1.473600+4 1.135011-4 1.252064+4 1.318257-4 1.024446+4 1.640590-4 7.565395+3 2.264644-4 4.817548+3 2.660725-4 3.819230+3 3.019952-4 3.161076+3 3.548134-4 2.449009+3 5.011872-4 1.400354+3 7.000000-4 8.003677+2 8.709636-4 5.510414+2 1.071519-3 3.839570+2 1.318257-3 2.655724+2 1.500000-3 2.102461+2 1.778279-3 1.496103+2 1.927525-3 1.280065+2 2.065380-3 1.126432+2 2.187762-3 1.018224+2 2.317395-3 9.261518+1 2.540973-3 8.053485+1 2.691535-3 7.320674+1 2.863480-3 6.551541+1 3.054921-3 5.788088+1 3.273407-3 5.034433+1 3.548134-3 4.247974+1 4.000000-3 3.272445+1 4.786301-3 2.269743+1 5.688529-3 1.584276+1 6.683439-3 1.124683+1 7.943282-3 7.731062+0 9.332543-3 5.409127+0 1.096478-2 3.757407+0 1.288250-2 2.590984+0 1.513561-2 1.773369+0 1.778279-2 1.204532+0 2.089296-2 8.119450-1 2.454709-2 5.431238-1 2.884032-2 3.606216-1 3.388442-2 2.376823-1 4.027170-2 1.508813-1 4.786301-2 9.505707-2 5.688529-2 5.941869-2 6.918310-2 3.460353-2 8.511380-2 1.937025-2 1.035142-1 1.112656-2 2.238721-1 1.218266-3 2.691535-1 7.231783-4 3.162278-1 4.616088-4 3.630781-1 3.164572-4 4.120975-1 2.255773-4 4.623810-1 1.670451-4 5.128614-1 1.283305-4 5.688529-1 9.927957-5 6.309573-1 7.738026-5 6.998420-1 6.078789-5 7.673615-1 4.938200-5 8.511380-1 3.938707-5 9.332543-1 3.244578-5 1.023293+0 2.691990-5 1.161449+0 2.094606-5 1.288250+0 1.720205-5 1.462177+0 1.361057-5 1.621810+0 1.131951-5 1.819701+0 9.292660-6 2.065380+0 7.537894-6 2.344229+0 6.162583-6 2.660725+0 5.075626-6 3.054921+0 4.138284-6 3.548134+0 3.342630-6 4.168694+0 2.677903-6 4.897788+0 2.161634-6 5.821032+0 1.731690-6 7.000000+0 1.375900-6 9.015711+0 1.015006-6 1.135011+1 7.764673-7 1.462177+1 5.829575-7 1.927525+1 4.296968-7 2.691535+1 2.998394-7 3.801894+1 2.081017-7 5.623413+1 1.385768-7 1.000000+2 7.680000-8 1.995262+2 3.813519-8 7.943282+2 9.511607-9 5.011872+4 1.50423-10 1.000000+5 7.53770-11 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.730000-6 5.730000-6 1.000000+5 5.730000-6 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.730000-6 0.0 1.000000+5 1.000000+5 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.312590-8 1.028750+0 9.312590-7 1.029500+0 1.274450-6 1.030100+0 1.602780-6 1.031000+0 2.193150-6 1.032000+0 3.000780-6 1.033200+0 4.203580-6 1.034000+0 5.160280-6 1.035300+0 7.004350-6 1.036640+0 9.312590-6 1.038200+0 1.256760-5 1.039700+0 1.632790-5 1.041500+0 2.172410-5 1.043800+0 3.015370-5 1.046400+0 4.195320-5 1.048300+0 5.223290-5 1.051200+0 7.085280-5 1.054080+0 9.312590-5 1.057700+0 1.269370-4 1.061100+0 1.651130-4 1.065100+0 2.185920-4 1.070400+0 3.049600-4 1.076200+0 4.214550-4 1.080600+0 5.263290-4 1.087100+0 7.091360-4 1.093710+0 9.312590-4 1.102600+0 1.291140-3 1.110700+0 1.683830-3 1.120600+0 2.252340-3 1.133300+0 3.131540-3 1.147500+0 4.323530-3 1.158200+0 5.373040-3 1.174100+0 7.181660-3 1.190110+0 9.312590-3 1.205100+0 1.159470-2 1.227500+0 1.552120-2 1.250000+0 2.005000-2 1.265600+0 2.349740-2 1.294900+0 3.058370-2 1.331800+0 4.049180-2 1.362600+0 4.946730-2 1.397000+0 6.013820-2 1.455800+0 7.978330-2 1.500000+0 9.575000-2 1.589800+0 1.317090-1 1.665000+0 1.653130-1 1.784700+0 2.244180-1 1.892300+0 2.818300-1 2.000000+0 3.412000-1 2.044000+0 3.655000-1 2.163500+0 4.322350-1 2.372600+0 5.508890-1 2.647100+0 7.069510-1 3.000000+0 9.032000-1 3.437500+0 1.134480+0 4.000000+0 1.412000+0 4.750000+0 1.751440+0 5.000000+0 1.857000+0 6.000000+0 2.244000+0 7.000000+0 2.590000+0 8.000000+0 2.902000+0 9.000000+0 3.184000+0 1.000000+1 3.443000+0 1.100000+1 3.679000+0 1.200000+1 3.897000+0 1.300000+1 4.097000+0 1.400000+1 4.281000+0 1.500000+1 4.453000+0 1.600000+1 4.614000+0 1.800000+1 4.908000+0 2.000000+1 5.172000+0 2.200000+1 5.411000+0 2.400000+1 5.629000+0 2.600000+1 5.827000+0 2.800000+1 6.009000+0 3.000000+1 6.177000+0 4.000000+1 6.857000+0 5.000000+1 7.361000+0 6.000000+1 7.754000+0 8.000000+1 8.335000+0 1.000000+2 8.747000+0 1.500000+2 9.404000+0 2.000000+2 9.797000+0 3.000000+2 1.025000+1 4.000000+2 1.052000+1 5.000000+2 1.069000+1 6.000000+2 1.082000+1 8.000000+2 1.098000+1 1.000000+3 1.109000+1 1.500000+3 1.124000+1 2.000000+3 1.133000+1 3.000000+3 1.142000+1 4.000000+3 1.147000+1 5.000000+3 1.150000+1 6.000000+3 1.152000+1 8.000000+3 1.155000+1 1.000000+4 1.157000+1 1.500000+4 1.159000+1 2.000000+4 1.161000+1 3.000000+4 1.162000+1 4.000000+4 1.163000+1 5.000000+4 1.163000+1 6.000000+4 1.163000+1 8.000000+4 1.164000+1 1.000000+5 1.164000+1 1 41000 7 8 9.290600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.113990-7 2.106600+0 1.340380-6 2.114000+0 1.854590-6 2.119500+0 2.308950-6 2.127900+0 3.131370-6 2.136250+0 4.113990-6 2.147000+0 5.640570-6 2.156900+0 7.326420-6 2.169000+0 9.777570-6 2.184500+0 1.359110-5 2.201800+0 1.880370-5 2.214800+0 2.342800-5 2.234200+0 3.151480-5 2.253680+0 4.113990-5 2.281500+0 5.762370-5 2.307000+0 7.568860-5 2.338200+0 1.017700-4 2.377400+0 1.409390-4 2.410200+0 1.792510-4 2.446800+0 2.280180-4 2.485900+0 2.870870-4 2.532900+0 3.674090-4 2.556430+0 4.113990-4 2.611900+0 5.245780-4 2.660400+0 6.341840-4 2.745300+0 8.488080-4 2.809000+0 1.027950-3 2.904500+0 1.324230-3 3.000000+0 1.653000-3 3.125000+0 2.131550-3 3.234400+0 2.593720-3 3.425800+0 3.493040-3 3.569300+0 4.235880-3 3.784700+0 5.445580-3 4.000000+0 6.746000-3 4.250000+0 8.335650-3 4.625000+0 1.083350-2 5.000000+0 1.343000-2 5.500000+0 1.699470-2 6.000000+0 2.061000-2 6.750000+0 2.599730-2 7.000000+0 2.777000-2 8.000000+0 3.470000-2 9.000000+0 4.133000-2 1.000000+1 4.763000-2 1.100000+1 5.360000-2 1.200000+1 5.923000-2 1.300000+1 6.453000-2 1.400000+1 6.958000-2 1.500000+1 7.436000-2 1.600000+1 7.891000-2 1.800000+1 8.733000-2 2.000000+1 9.500000-2 2.200000+1 1.020000-1 2.400000+1 1.085000-1 2.600000+1 1.144000-1 2.800000+1 1.200000-1 3.000000+1 1.251000-1 4.000000+1 1.465000-1 5.000000+1 1.627000-1 6.000000+1 1.756000-1 8.000000+1 1.950000-1 1.000000+2 2.092000-1 1.500000+2 2.328000-1 2.000000+2 2.477000-1 3.000000+2 2.659000-1 4.000000+2 2.769000-1 5.000000+2 2.845000-1 6.000000+2 2.900000-1 8.000000+2 2.977000-1 1.000000+3 3.028000-1 1.500000+3 3.105000-1 2.000000+3 3.148000-1 3.000000+3 3.196000-1 4.000000+3 3.224000-1 5.000000+3 3.241000-1 6.000000+3 3.253000-1 8.000000+3 3.270000-1 1.000000+4 3.280000-1 1.500000+4 3.294000-1 2.000000+4 3.302000-1 3.000000+4 3.310000-1 4.000000+4 3.315000-1 5.000000+4 3.318000-1 6.000000+4 3.319000-1 8.000000+4 3.322000-1 1.000000+5 3.323000-1 1 41000 7 8 9.290600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 41000 7 9 9.290600+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.100000+1 1.000000+5 4.100000+1 5.000000+5 4.098500+1 8.750000+5 4.096060+1 1.000000+6 4.095100+1 1.375000+6 4.091450+1 1.500000+6 4.089900+1 1.875000+6 4.084270+1 2.000000+6 4.082100+1 2.375000+6 4.074850+1 2.500000+6 4.072200+1 2.875000+6 4.063540+1 3.000000+6 4.060400+1 3.500000+6 4.046480+1 4.000000+6 4.031200+1 4.500000+6 4.014230+1 5.000000+6 3.996000+1 5.500000+6 3.976020+1 5.875000+6 3.960240+1 6.437500+6 3.935150+1 6.500000+6 3.932290+1 7.000000+6 3.909500+1 7.500000+6 3.885670+1 8.250000+6 3.848380+1 8.500000+6 3.835940+1 9.000000+6 3.810400+1 1.000000+7 3.757800+1 1.125000+7 3.690860+1 1.187500+7 3.657380+1 1.250000+7 3.623800+1 1.437500+7 3.522280+1 1.500000+7 3.488700+1 1.750000+7 3.355700+1 2.000000+7 3.226500+1 2.250000+7 3.101370+1 2.375000+7 3.040490+1 2.500000+7 2.981500+1 2.875000+7 2.812970+1 3.000000+7 2.760400+1 3.500000+7 2.566120+1 4.000000+7 2.397900+1 4.500000+7 2.251820+1 4.750000+7 2.185970+1 5.000000+7 2.124200+1 5.500000+7 2.010700+1 5.750000+7 1.957810+1 6.000000+7 1.907200+1 6.500000+7 1.810430+1 6.750000+7 1.763990+1 7.000000+7 1.718600+1 7.500000+7 1.629980+1 8.000000+7 1.544200+1 8.500000+7 1.461130+1 9.000000+7 1.381100+1 9.750000+7 1.267290+1 1.000000+8 1.231300+1 1.062500+8 1.145360+1 1.156300+8 1.029760+1 1.187500+8 9.951100+0 1.250000+8 9.309800+0 1.406300+8 8.005410+0 1.437500+8 7.792030+0 1.500000+8 7.407700+0 1.562500+8 7.075480+0 1.671900+8 6.590870+0 1.750000+8 6.301070+0 1.835900+8 6.022960+0 2.000000+8 5.576300+0 2.375000+8 4.802670+0 2.500000+8 4.593700+0 2.671900+8 4.324090+0 2.789100+8 4.136910+0 2.894500+8 3.959370+0 3.000000+8 3.770000+0 3.125000+8 3.534120+0 3.359400+8 3.132210+0 3.453100+8 3.002900+0 3.500000+8 2.946300+0 3.625000+8 2.820580+0 3.859400+8 2.624240+0 3.953100+8 2.543130+0 4.000000+8 2.500100+0 4.062500+8 2.439330+0 4.179700+8 2.319060+0 4.282200+8 2.211690+0 4.461700+8 2.029490+0 4.750000+8 1.775880+0 4.798100+8 1.739600+0 4.932700+8 1.648050+0 5.000000+8 1.607800+0 5.125000+8 1.542720+0 5.234400+8 1.494110+0 5.425800+8 1.423420+0 5.677000+8 1.349630+0 6.000000+8 1.272800+0 6.625000+8 1.152110+0 7.000000+8 1.095300+0 7.750000+8 1.006290+0 8.000000+8 9.779000-1 8.250000+8 9.484640-1 8.687500+8 8.955640-1 9.015600+8 8.558870-1 9.507800+8 7.979290-1 1.000000+9 7.431000-1 1.062500+9 6.788910-1 1.141100+9 6.060930-1 1.206900+9 5.511850-1 1.280200+9 4.957050-1 1.335100+9 4.577310-1 1.375000+9 4.319140-1 1.417600+9 4.059160-1 1.500000+9 3.598600-1 1.589800+9 3.154370-1 1.665000+9 2.826000-1 1.748800+9 2.503030-1 1.838500+9 2.201890-1 1.946200+9 1.893460-1 2.000000+9 1.758600-1 2.139200+9 1.459080-1 2.272600+9 1.227610-1 2.443000+9 9.929420-2 2.602800+9 8.206400-2 2.825100+9 6.375070-2 3.097000+9 4.768300-2 3.438900+9 3.397080-2 3.725100+9 2.608960-2 4.180400+9 1.771700-2 4.726800+9 1.165860-2 5.000000+9 9.613100-3 5.750000+9 5.931610-3 8.000000+9 1.880200-3 1.00000+10 8.661000-4 1.20500+10 4.564870-4 1.41820+10 2.625150-4 1.71170+10 1.395520-4 2.01490+10 8.113320-5 2.26440+10 5.519980-5 2.74790+10 2.930490-5 3.41360+10 1.451570-5 4.02450+10 8.558520-6 5.12000+10 3.978930-6 6.34000+10 2.028230-6 8.17000+10 9.176390-7 1.00000+11 4.898100-7 1.34280+11 1.972650-7 1.77440+11 8.398600-8 2.63330+11 2.529790-8 3.75720+11 8.664260-9 6.61190+11 1.602160-9 1.48990+12 1.45846-10 4.26460+12 6.82998-12 1.00000+14 7.93860-16 5.62340+14 5.44278-18 7.49890+15 2.90768-21 1.00000+17 1.49450-24 1 41000 7 0 9.290600+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.80000-12 1.000000+2 6.80000-10 1.000000+3 6.800000-8 1.000000+4 6.800000-6 1.000000+5 6.800000-4 5.000000+5 1.700000-2 8.750000+5 5.206250-2 1.000000+6 6.800000-2 1.375000+6 1.277720-1 1.500000+6 1.516000-1 1.875000+6 2.341230-1 2.000000+6 2.652000-1 2.375000+6 3.684740-1 2.500000+6 4.061000-1 2.875000+6 5.277110-1 3.000000+6 5.710000-1 3.500000+6 7.560670-1 4.000000+6 9.576000-1 4.500000+6 1.171640+0 5.000000+6 1.395000+0 5.500000+6 1.624220+0 5.875000+6 1.798590+0 6.437500+6 2.062010+0 6.500000+6 2.091270+0 7.000000+6 2.325100+0 7.500000+6 2.556820+0 8.250000+6 2.899710+0 8.500000+6 3.012440+0 9.000000+6 3.235600+0 1.000000+7 3.672000+0 1.125000+7 4.202730+0 1.187500+7 4.463380+0 1.250000+7 4.721700+0 1.437500+7 5.484030+0 1.500000+7 5.735000+0 1.750000+7 6.723500+0 2.000000+7 7.684000+0 2.250000+7 8.611720+0 2.375000+7 9.063480+0 2.500000+7 9.507500+0 2.875000+7 1.079600+1 3.000000+7 1.121300+1 3.500000+7 1.281880+1 4.000000+7 1.431700+1 4.500000+7 1.569700+1 4.750000+7 1.633790+1 5.000000+7 1.694900+1 5.500000+7 1.807120+1 5.750000+7 1.858750+1 6.000000+7 1.908100+1 6.500000+7 1.999700+1 6.750000+7 2.042820+1 7.000000+7 2.084400+1 7.500000+7 2.163550+1 8.000000+7 2.238600+1 8.500000+7 2.310150+1 9.000000+7 2.378700+1 9.750000+7 2.476430+1 1.000000+8 2.507700+1 1.062500+8 2.583080+1 1.156300+8 2.688750+1 1.187500+8 2.721990+1 1.250000+8 2.786000+1 1.406300+8 2.929900+1 1.437500+8 2.956310+1 1.500000+8 3.006700+1 1.562500+8 3.053920+1 1.671900+8 3.129740+1 1.750000+8 3.179350+1 1.835900+8 3.229990+1 2.000000+8 3.316700+1 2.375000+8 3.475170+1 2.500000+8 3.518800+1 2.671900+8 3.572830+1 2.789100+8 3.606110+1 2.894500+8 3.634020+1 3.000000+8 3.660100+1 3.125000+8 3.688090+1 3.359400+8 3.735110+1 3.453100+8 3.751520+1 3.500000+8 3.759600+1 3.625000+8 3.779380+1 3.859400+8 3.811790+1 3.953100+8 3.823390+1 4.000000+8 3.829100+1 4.062500+8 3.835900+1 4.179700+8 3.848400+1 4.282200+8 3.858540+1 4.461700+8 3.874730+1 4.750000+8 3.897430+1 4.798100+8 3.900740+1 4.932700+8 3.909770+1 5.000000+8 3.914200+1 5.125000+8 3.921470+1 5.234400+8 3.927700+1 5.425800+8 3.938310+1 5.677000+8 3.950200+1 6.000000+8 3.964700+1 6.625000+8 3.987890+1 7.000000+8 4.000200+1 7.750000+8 4.020980+1 8.000000+8 4.027000+1 8.250000+8 4.032320+1 8.687500+8 4.041270+1 9.015600+8 4.047310+1 9.507800+8 4.055220+1 1.000000+9 4.062100+1 1.062500+9 4.069250+1 1.141100+9 4.076130+1 1.206900+9 4.080790+1 1.280200+9 4.084970+1 1.335100+9 4.087590+1 1.375000+9 4.088960+1 1.417600+9 4.090380+1 1.500000+9 4.093000+1 1.589800+9 4.094460+1 1.665000+9 4.095620+1 1.748800+9 4.096850+1 1.838500+9 4.097470+1 1.946200+9 4.098170+1 2.000000+9 4.098500+1 2.139200+9 4.098860+1 2.272600+9 4.099180+1 2.443000+9 4.099570+1 2.602800+9 4.099910+1 2.825100+9 4.100190+1 3.097000+9 4.100160+1 3.438900+9 4.100130+1 3.725100+9 4.100100+1 4.180400+9 4.100060+1 4.726800+9 4.100020+1 5.000000+9 4.100000+1 5.750000+9 4.100000+1 8.000000+9 4.100000+1 1.00000+10 4.100000+1 1.20500+10 4.100000+1 1.41820+10 4.100000+1 1.71170+10 4.100000+1 2.01490+10 4.100000+1 2.26440+10 4.100000+1 2.74790+10 4.100000+1 3.41360+10 4.100000+1 4.02450+10 4.100000+1 5.12000+10 4.100000+1 6.34000+10 4.100000+1 8.17000+10 4.100000+1 1.00000+11 4.100000+1 1.34280+11 4.100000+1 1.77440+11 4.100000+1 2.63330+11 4.100000+1 3.75720+11 4.100000+1 6.61190+11 4.100000+1 1.48990+12 4.100000+1 4.26460+12 4.100000+1 1.00000+14 4.100000+1 5.62340+14 4.100000+1 7.49890+15 4.100000+1 1.00000+17 4.100000+1 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.565084-6 0.0 2.576133-6 1.719870+0 2.577711-6 1.963058+0 2.584025-6 3.585686+0 2.590338-6 6.045960+0 2.596652-6 9.410487+0 2.616382-6 2.231381+1 2.622301-6 2.488341+1 2.628740-6 2.583220+1 2.632920-6 2.550260+1 2.635668-6 2.561026+1 2.642306-6 2.447761+1 2.645090-6 2.360543+1 2.651841-6 2.285709+1 2.658203-6 2.410216+1 2.664675-6 2.793923+1 2.672060-6 3.563420+1 2.685437-6 5.271690+1 2.694091-6 6.000835+1 2.697902-6 6.160134+1 2.703825-6 6.088917+1 2.710780-6 5.535052+1 2.717663-6 4.648116+1 2.729050-6 2.923316+1 2.735528-6 2.037934+1 2.742006-6 1.327218+1 2.748484-6 8.081036+0 2.752641-6 5.752260+0 2.759160-6 2.482269+0 2.761440-6 1.468581+0 2.765679-6 9.585038-1 2.769248-6 7.004130-1 2.778716-6 3.673640-1 2.782881-6 5.267142-1 2.789697-6 9.620865-1 2.796513-6 1.622210+0 2.803329-6 2.524956+0 2.815684-6 4.589399+0 2.823778-6 5.891388+0 2.831446-6 6.695790+0 2.837410-6 6.957021+0 2.845078-6 6.664824+0 2.851042-6 6.062446+0 2.868083-6 3.560405+0 2.871491-6 3.090488+0 2.878307-6 2.382624+0 2.885123-6 1.930597+0 2.891939-6 1.686098+0 2.898869-6 1.559135+0 2.905850-6 1.341520+0 2.912831-6 1.292015+0 2.919811-6 1.148661+0 2.926792-6 9.426921-1 2.940753-6 4.994455-1 2.947733-6 3.224246-1 2.954714-6 1.921420-1 2.961695-6 1.056989-1 2.968675-6 5.367507-2 2.975656-6 0.0 3.617051-6 0.0 3.633516-6 2.71268-15 3.651403-6 5.452999-8 3.660346-6 9.960347-8 3.669289-6 1.679451-7 3.679371-6 2.759098-7 3.697177-6 5.113473-7 3.706080-6 6.189388-7 3.714983-6 6.926042-7 3.723886-6 7.164408-7 3.732789-6 6.849942-7 3.741692-6 6.052856-7 3.767667-6 2.677611-7 3.776611-6 1.728573-7 3.785554-6 1.030106-7 3.794497-6 5.666695-8 3.803441-6 2.877611-8 3.812384-6 0.0 3.821216-6 0.0 3.830621-6 1.631053-8 3.840027-6 3.227404-8 3.849432-6 5.895117-8 3.858837-6 9.939978-8 3.868243-6 1.547149-7 3.877648-6 2.222967-7 3.887054-6 2.948408-7 3.896459-6 3.609907-7 3.905865-6 4.079983-7 3.915270-6 4.256716-7 3.924675-6 4.099633-7 3.934081-6 3.644762-7 3.943486-6 2.991213-7 3.962297-6 1.584767-7 3.971703-6 1.023071-7 3.981108-6 6.096769-8 3.990513-6 3.353883-8 3.999919-6 1.703139-8 4.009324-6 0.0 4.200559-6 0.0 4.203838-6 5.760565-7 4.221237-6 8.115754-6 4.224333-6 9.853378-6 4.244458-6 5.860334-2 4.245873-6 7.481629-2 4.255574-6 1.950343-1 4.261001-6 2.753072-1 4.266406-6 3.937605-1 4.276960-6 7.013839-1 4.286719-6 1.082533+0 4.298553-6 1.702089+0 4.328680-6 3.545240+0 4.339810-6 4.012778+0 4.349430-6 4.206890+0 4.361371-6 4.082053+0 4.371200-6 3.735470+0 4.384532-6 2.991408+0 4.403857-6 1.774081+0 4.411613-6 1.333555+0 4.422060-6 8.577305-1 4.428726-6 6.158365-1 4.432508-6 5.116138-1 4.439398-6 3.775300-1 4.449702-6 2.265294-1 4.453402-6 1.955118-1 4.461199-6 1.943828-1 4.470677-6 2.171344-1 4.473101-6 2.420552-1 4.483951-6 3.760013-1 4.508490-6 7.604407-1 4.516500-6 8.895143-1 4.527350-6 1.017175+0 4.538199-6 1.077888+0 4.549049-6 1.058754+0 4.559899-6 9.642308-1 4.570749-6 8.144505-1 4.592448-6 4.641962-1 4.603298-6 3.134374-1 4.614148-6 1.965529-1 4.624997-6 1.145034-1 4.635602-6 6.269300-2 4.645718-6 1.745863-2 4.646502-6 1.429305-2 4.656667-6 7.522726-3 4.667617-6 0.0 4.781168-6 0.0 4.798820-6 4.082536-2 4.804704-6 5.426120-2 4.812399-6 8.356381-2 4.816472-6 1.014071-1 4.821056-6 1.304401-1 4.828241-6 1.874277-1 4.837521-6 2.809974-1 4.846620-6 4.077681-1 4.860827-6 6.401991-1 4.900726-6 1.400358+0 4.915607-6 1.588500+0 4.928781-6 1.662357+0 4.944432-6 1.600421+0 4.958356-6 1.426522+0 4.999052-6 6.726466-1 5.010919-6 4.968550-1 5.016564-6 4.286442-1 5.025663-6 3.773350-1 5.032184-6 3.606727-1 5.041259-6 3.581930-1 5.053607-6 3.928776-1 5.072846-6 5.085732-1 5.093373-6 6.583374-1 5.105910-6 7.326117-1 5.193667-6 1.117737+0 5.208891-6 1.121829+0 5.223124-6 1.066282+0 5.238438-6 9.318638-1 5.269320-6 5.708688-1 5.282226-6 4.621363-1 5.294127-6 4.023566-1 5.306067-6 4.025021-1 5.314335-6 4.360665-1 5.323651-6 4.920884-1 5.333851-6 5.826772-1 5.363546-6 9.258073-1 5.375773-6 1.037785+0 5.387561-6 1.103563+0 5.401852-6 1.121502+0 5.423070-6 1.053620+0 5.463044-6 8.527355-1 5.482476-6 8.011402-1 5.504022-6 7.882961-1 5.565767-6 9.429245-1 5.605606-6 9.418886-1 5.672205-6 9.139358-1 5.748745-6 9.079341-1 5.860763-6 9.904454-1 9.729322-6 2.524688+0 1.640905-5 5.314779+0 1.923341-5 6.204824+0 2.161320-5 6.583638+0 2.441567-5 6.533320+0 2.790837-5 5.886784+0 3.164510-5 4.864795+0 3.180088-5 6.044808+0 3.183278-5 6.449507+0 3.187877-5 1.040653+1 3.198948-5 2.094957+1 3.206783-5 3.277552+1 3.214619-5 4.988697+1 3.223700-5 7.650235+1 3.242400-5 1.393837+2 3.251098-5 1.603521+2 3.255501-5 1.666764+2 3.262229-5 1.694645+2 3.270475-5 1.593481+2 3.280635-5 1.318707+2 3.300806-5 6.347649+1 3.308641-5 4.239178+1 3.316477-5 2.682035+1 3.324312-5 1.657248+1 3.339982-5 4.438641+0 3.344324-5 4.356970+0 3.384310-5 4.246918+0 3.400970-5 1.035133+1 3.409560-5 1.572631+1 3.418150-5 2.396171+1 3.427088-5 3.579863+1 3.451336-5 7.480144+1 3.460660-5 8.449631+1 3.467996-5 8.762800+1 3.476705-5 8.440716+1 3.485060-5 7.552154+1 3.509260-5 3.676685+1 3.517669-5 2.541785+1 3.526140-5 1.688892+1 3.534250-5 1.129691+1 3.550910-5 4.233646+0 3.568208-5 4.055095+0 3.572813-5 4.048240+0 3.590437-5 4.497904+0 3.611782-5 5.366250+0 3.627138-5 5.987566+0 3.653790-5 6.506354+0 3.689733-5 6.938736+0 3.704130-5 6.965477+0 3.747342-5 6.498289+0 3.796188-5 6.492242+0 3.838392-5 7.038862+0 3.874617-5 7.471746+0 3.923322-5 7.647876+0 4.017828-5 7.149179+0 4.445291-5 5.369093+0 4.846717-5 4.030269+0 5.152187-5 3.239415+0 5.492845-5 2.549375+0 5.774740-5 2.107957+0 5.900848-5 1.938514+0 5.958945-5 1.943686+0 6.025596-5 2.067135+0 6.053758-5 2.045314+0 6.136714-5 1.761868+0 6.190849-5 1.720755+0 6.262985-5 1.691682+0 6.588481-5 1.449220+0 6.949455-5 1.261901+0 7.372800-5 1.118683+0 7.818649-5 1.031607+0 8.365795-5 9.856155-1 9.015711-5 9.869648-1 1.011579-4 1.061873+0 1.340763-4 1.383594+0 1.641588-4 1.584862+0 2.001490-4 1.703110+0 2.037730-4 1.712029+0 2.057687-4 1.800363+0 2.067717-4 1.917042+0 2.096061-4 2.353941+0 2.120893-4 2.567225+0 2.168152-4 2.670299+0 2.199539-4 2.923213+0 2.225000-4 3.318135+0 2.251844-4 3.981707+0 2.283995-4 5.121525+0 2.412500-4 1.093176+1 2.510144-4 1.452852+1 2.601095-4 1.699243+1 2.730000-4 1.908466+1 2.949120-4 2.077737+1 3.226999-4 2.161636+1 3.450485-4 2.150798+1 3.477120-4 2.231013+1 3.495022-4 2.367248+1 3.528737-4 2.681297+1 3.545812-4 2.683473+1 3.587076-4 2.393729+1 3.620019-4 2.332987+1 3.696338-4 2.564983+1 3.767469-4 2.411795+1 4.355535-4 2.270428+1 4.499866-4 2.258649+1 4.600910-4 2.288405+1 6.312890-4 1.732532+1 7.498942-4 1.435490+1 8.922168-4 1.168817+1 1.024491-3 9.831037+0 1.195364-3 8.036479+0 1.398364-3 6.495990+0 1.614454-3 5.313260+0 1.858814-3 4.340014+0 2.156636-3 3.487041+0 2.306557-3 3.160802+0 2.317931-3 3.440415+0 2.323723-3 3.709027+0 2.329313-3 4.126415+0 2.334963-3 4.745552+0 2.343323-3 6.045130+0 2.363379-3 9.797660+0 2.369181-3 1.056497+1 2.374908-3 1.105721+1 2.386636-3 1.136717+1 2.416695-3 1.107258+1 2.426610-3 1.131384+1 2.445847-3 1.262072+1 2.467667-3 1.428442+1 2.486391-3 1.456944+1 2.590549-3 1.357201+1 2.644295-3 1.338644+1 2.701459-3 1.444976+1 3.291541-3 1.088057+1 3.797133-3 8.726560+0 4.362877-3 7.011011+0 4.993649-3 5.633622+0 5.699280-3 4.527448+0 6.518266-3 3.611882+0 7.397117-3 2.912394+0 8.377327-3 2.349425+0 9.473737-3 1.895265+0 1.068124-2 1.534094+0 1.201858-2 1.243592+0 1.351538-2 1.007598+0 1.503201-2 8.313566-1 1.700501-2 6.643988-1 1.846694-2 5.746837-1 1.856464-2 5.912777-1 1.862282-2 6.286691-1 1.866990-2 6.906741-1 1.870667-2 7.682323-1 1.875135-2 9.070367-1 1.879530-2 1.098259+0 1.884390-2 1.374338+0 1.892665-2 1.960914+0 1.902902-2 2.703211+0 1.911717-2 3.169626+0 1.919231-2 3.399125+0 1.931143-2 3.522042+0 2.280050-2 2.725768+0 2.589580-2 2.209494+0 2.927943-2 1.795698+0 3.312137-2 1.449275+0 3.734446-2 1.174788+0 4.123539-2 9.831054-1 4.670625-2 7.855039-1 5.287497-2 6.247264-1 5.945434-2 5.024594-1 6.569806-2 4.162376-1 7.187246-2 3.512728-1 8.106589-2 2.787874-1 9.128811-2 2.219151-1 1.013654-1 1.810248-1 1.140845-1 1.438958-1 1.254444-1 1.196709-1 1.373283-1 1.002796-1 1.504702-1 8.391018-2 1.657201-1 6.955321-2 1.827471-1 5.749281-2 2.030685-1 4.691506-2 2.290868-1 3.724712-2 2.523046-1 3.107034-2 2.798498-1 2.561988-2 3.102376-1 2.122472-2 3.431351-1 1.773826-2 3.744708-1 1.523054-2 4.194048-1 1.258014-2 4.717914-1 1.038885-2 5.249963-1 8.798675-3 5.821032-1 7.549791-3 6.493816-1 6.474602-3 7.260015-1 5.583881-3 8.287766-1 4.743533-3 9.556800-1 4.044632-3 1.120601+0 3.419427-3 1.347258+0 2.807027-3 1.619761+0 2.304304-3 1.947381+0 1.891616-3 2.341267+0 1.552838-3 2.814822+0 1.274733-3 3.384160+0 1.046436-3 4.068655+0 8.590247-4 4.891600+0 7.051782-4 5.880996+0 5.788847-4 7.070513+0 4.752096-4 8.500626+0 3.901022-4 9.760024+0 3.364328-4 1.000000+1 6.800821-4 1 41000 7 0 9.290600+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.079989+1 2.030531-6-3.928537+1 2.333840-6-3.694799+1 2.458492-6-3.399637+1 2.513370-6-3.105087+1 2.544776-6-2.784558+1 2.560265-6-2.506679+1 2.577711-6-1.974399+1 2.592509-6-1.472426+1 2.597941-6-1.343187+1 2.601889-6-1.307124+1 2.606965-6-1.330661+1 2.611953-6-1.422845+1 2.615593-6-1.554680+1 2.621906-6-1.866955+1 2.630333-6-2.307735+1 2.634928-6-2.447861+1 2.643002-6-2.643076+1 2.650253-6-2.516409+1 2.657798-6-2.182922+1 2.665434-6-1.826901+1 2.672060-6-1.710034+1 2.675058-6-1.764004+1 2.679190-6-1.954950+1 2.683422-6-2.291442+1 2.690732-6-3.226812+1 2.696159-6-4.101134+1 2.700990-6-3.183474+1 2.704549-6-2.477398+1 2.710780-6-1.422842+1 2.712607-6-1.165976+1 2.716904-6-6.340048+0 2.717663-6-5.554476+0 2.719086-6-4.263770+0 2.720332-6-3.288881+0 2.721422-6-2.538967+0 2.723329-6-1.439936+0 2.724759-6-7.868218-1 2.725832-6-3.933109-1 2.727441-6 3.281131-2 2.728246-6 1.608500-1 2.729050-6 1.945444-1 2.732289-6 1.477703-1 2.733909-6-5.825632-2 2.734718-6-2.464395-1 2.735528-6-5.594128-1 2.738767-6-1.720844+0 2.740387-6-2.357395+0 2.741197-6-2.742805+0 2.742816-6-3.768537+0 2.747776-6-6.385482+0 2.749524-6-7.576497+0 2.759160-6-1.307459+1 2.764288-6-1.673863+1 2.771615-6-2.049832+1 2.784585-6-2.548248+1 2.800773-6-2.960866+1 2.815684-6-3.136718+1 2.830594-6-3.068197+1 2.855728-6-2.781648+1 2.871491-6-2.807215+1 2.910213-6-3.075289+1 3.019518-6-3.452129+1 3.228974-6-3.703159+1 4.033229-6-3.970609+1 4.245873-6-4.118420+1 4.279129-6-4.110160+1 4.323793-6-4.132791+1 4.340972-6-4.071307+1 4.389061-6-3.759214+1 4.432508-6-3.804601+1 4.508490-6-3.956871+1 4.614148-6-3.898885+1 4.897491-6-4.075248+1 4.996390-6-3.938539+1 5.144570-6-4.027437+1 5.291152-6-3.999690+1 5.387561-6-4.035269+1 1.518836-5-4.071570+1 1.923341-5-3.953503+1 2.495302-5-3.391290+1 2.762259-5-2.951539+1 2.891408-5-2.586203+1 2.966730-5-2.252379+1 3.021279-5-1.893473+1 3.060782-5-1.518671+1 3.085175-5-1.203694+1 3.103162-5-9.092171+0 3.117559-5-6.161730+0 3.123412-5-4.779391+0 3.128549-5-3.452522+0 3.133044-5-2.191163+0 3.136977-5-9.997016-1 3.140419-5 1.190430-1 3.146442-5 2.277224+0 3.150959-5 4.095943+0 3.156887-5 6.814779+0 3.162604-5 9.928874+0 3.172299-5 1.661013+1 3.178627-5 2.216593+1 3.182879-5 2.743539+1 3.184917-5 3.074733+1 3.198948-5 4.732324+1 3.207763-5 5.856897+1 3.217312-5 6.749404+1 3.225187-5 6.906755+1 3.230656-5 6.536707+1 3.235656-5 5.857337+1 3.239555-5 5.078028+1 3.242400-5 4.295339+1 3.246978-5 2.797591+1 3.251772-5 9.515558+0 3.253036-5 4.144256+0 3.253416-5 2.368755+0 3.253605-5 1.418085+0 3.253795-5 3.449252-1 3.253917-5-3.736917-1 3.254158-5-1.609673+0 3.254625-5-3.818659+0 3.256267-5-1.096809+1 3.260357-5-2.849642+1 3.261653-5-3.514196+1 3.262229-5-3.203168+1 3.269465-5-5.168446-1 3.269614-5 3.295088-1 3.269907-5 1.757763+0 3.270475-5 4.252871+0 3.271007-5 6.418724+0 3.272004-5 1.019971+1 3.274405-5 1.837044+1 3.280635-5 3.741725+1 3.284397-5 4.558772+1 3.288532-5 5.193380+1 3.293383-5 5.643349+1 3.298865-5 5.734292+1 3.307662-5 5.146252+1 3.316477-5 4.028631+1 3.327128-5 2.509703+1 3.337572-5 1.268679+1 3.339681-5 9.561001+0 3.340412-5 8.111968+0 3.341703-5 6.148848+0 3.343034-5 4.402920+0 3.344324-5 2.880647+0 3.345574-5 1.510356+0 3.347995-5-9.339119-1 3.350264-5-3.038285+0 3.384944-5-2.973996+1 3.391589-5-3.517303+1 3.400970-5-2.797316+1 3.412665-5-1.842192+1 3.417630-5-1.493522+1 3.419981-5-1.335116+1 3.427088-5-1.015297+1 3.429704-5-9.697286+0 3.431706-5-9.704356+0 3.434568-5-1.015191+1 3.438248-5-1.143872+1 3.442441-5-1.387292+1 3.445962-5-1.679446+1 3.448846-5-1.994659+1 3.451080-5-2.328291+1 3.458086-5-3.464652+1 3.458393-5-3.523761+1 3.461094-5-2.946388+1 3.466236-5-1.948982+1 3.467740-5-1.585503+1 3.475940-5 1.150289+0 3.476200-5 1.823028+0 3.476705-5 2.937670+0 3.477650-5 4.822509+0 3.479305-5 7.820247+0 3.484290-5 1.631308+1 3.486541-5 1.992430+1 3.490106-5 2.419447+1 3.496910-5 2.996978+1 3.503182-5 3.292349+1 3.508121-5 3.338618+1 3.516618-5 3.085806+1 3.526140-5 2.527196+1 3.535868-5 1.864090+1 3.547192-5 1.204300+1 3.549981-5 1.013255+1 3.551493-5 8.744476+0 3.554043-5 6.994268+0 3.557700-5 4.995331+0 3.560892-5 3.516813+0 3.564083-5 2.188792+0 3.568208-5 6.395253-1 3.572813-5-9.500964-1 3.577178-5-2.303327+0 3.581543-5-3.520265+0 3.585907-5-4.628207+0 3.594032-5-6.445065+0 3.605310-5-8.505921+0 3.618254-5-1.030599+1 3.636022-5-1.199718+1 3.662674-5-1.390134+1 3.689733-5-1.527248+1 3.823337-5-2.025587+1 3.891044-5-2.105076+1 4.445291-5-2.332210+1 6.053758-5-2.656452+1 8.150000-5-2.851894+1 1.803029-4-3.352112+1 2.062607-4-3.668453+1 2.257564-4-4.189401+1 2.355055-4-4.379471+1 2.510144-4-4.241051+1 2.892957-4-3.483216+1 3.289499-4-2.945827+1 3.512401-4-2.798649+1 3.604872-4-2.821286+1 3.716242-4-2.644509+1 4.034197-4-2.216879+1 4.355535-4-1.948426+1 4.567838-4-1.864990+1 4.717911-4-1.705879+1 5.103954-4-1.460332+1 5.557369-4-1.259711+1 6.139297-4-1.075791+1 6.706424-4-9.476390+0 7.498942-4-8.272837+0 8.547215-4-7.309930+0 9.765781-4-6.719294+0 1.136339-3-6.421971+0 1.323171-3-6.469277+0 1.539926-3-6.848976+0 1.782122-3-7.653607+0 1.981051-3-8.754138+0 2.121751-3-1.002467+1 2.216947-3-1.144149+1 2.271376-3-1.275436+1 2.306557-3-1.412774+1 2.332383-3-1.595221+1 2.357688-3-1.839518+1 2.373463-3-1.883000+1 2.392939-3-1.765562+1 2.416695-3-1.605834+1 2.438903-3-1.568707+1 2.467667-3-1.547536+1 2.486391-3-1.445627+1 2.521593-3-1.227828+1 2.557207-3-1.100571+1 2.607281-3-9.987965+0 2.644295-3-9.761203+0 2.673196-3-9.661192+0 2.701459-3-8.896227+0 2.741605-3-7.660196+0 2.794987-3-6.606961+0 2.882389-3-5.399117+0 2.981340-3-4.403608+0 3.103666-3-3.479308+0 3.221835-3-2.806620+0 3.341229-3-2.270178+0 3.454891-3-1.862619+0 3.584724-3-1.484434+0 3.758374-3-1.080857+0 3.907642-3-8.186769-1 4.059234-3-6.051361-1 4.150735-3-4.949753-1 4.262727-3-3.789094-1 4.362877-3-2.941860-1 4.474816-3-2.117402-1 4.590659-3-1.400999-1 4.689741-3-8.893188-2 4.769112-3-4.971956-2 4.802339-3-3.608633-2 4.874058-3-9.419027-3 4.905987-3 1.358737-3 4.926950-3 8.214631-3 4.993649-3 2.829152-2 5.059543-3 4.626783-2 5.120051-3 6.065213-2 5.210447-3 7.705816-2 5.319476-3 9.268802-2 5.456008-3 1.087693-1 5.599565-3 1.189860-1 5.761326-3 1.236355-1 5.885359-3 1.242845-1 6.058202-3 1.204940-1 6.234338-3 1.130814-1 6.518266-3 8.982542-2 6.768092-3 6.313485-2 7.050166-3 2.857053-2 7.161434-3 1.418442-2 7.229302-3 5.676724-3 7.286182-3-1.670871-3 7.368687-3-1.227688-2 7.566695-3-4.031065-2 7.717915-3-6.307460-2 8.035261-3-1.101772-1 1.299422-2-8.863506-1 1.455935-2-1.166631+0 1.584390-2-1.460384+0 1.675698-2-1.749422+0 1.743578-2-2.061154+0 1.789617-2-2.376147+0 1.824088-2-2.737965+0 1.846694-2-3.123114+0 1.862282-2-3.576768+0 1.886758-2-4.566039+0 1.896238-2-4.652114+0 1.905442-2-4.426678+0 1.931143-2-3.271830+0 1.947041-2-2.800817+0 1.963553-2-2.478374+0 1.990447-2-2.103935+0 2.030146-2-1.718353+0 2.078736-2-1.383344+0 2.110203-2-1.213767+0 2.168538-2-9.691219-1 2.218382-2-8.043397-1 2.280050-2-6.377255-1 2.345397-2-4.961674-1 2.400000-2-3.960675-1 2.455754-2-3.099452-1 2.527725-2-2.172455-1 2.589580-2-1.520943-1 2.660247-2-8.898161-2 2.735143-2-3.289027-2 2.787414-2-2.960363-4 2.851460-2 3.549461-2 2.927943-2 7.251764-2 3.010124-2 1.050811-1 3.085851-2 1.292283-1 3.242681-2 1.665407-1 3.387678-2 1.890842-1 3.562890-2 2.073048-1 3.835626-2 2.224816-1 4.123539-2 2.231103-1 4.782859-2 2.024079-1 6.569806-2 1.113723-1 7.187246-2 8.332298-2 7.839822-2 5.690985-2 8.362646-2 3.793341-2 8.925714-2 1.969875-2 9.286489-2 9.036264-3 9.542091-2 2.015491-3 9.620679-2-7.296314-5 9.777615-2-4.219123-3 1.013654-1-1.334054-2 1.068900-1-2.598715-2 1.140845-1-4.069307-2 1.219232-1-5.463125-2 1.325978-1-7.073821-2 1.504702-1-9.224541-2 1.707759-1-1.105457-1 2.030685-1-1.310617-1 2.523046-1-1.504349-1 3.314859-1-1.671847-1 4.717914-1-1.802754-1 7.940157-1-1.893615-1 2.451607+0-1.938720-1 7.403736+0-1.943448-1 1.000000+1-1.943080-1 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.695344-2 1.083754-6 2.452492-2 1.117622-6 2.828252-2 1.152547-6 3.269357-2 1.188564-6 3.788513-2 1.225707-6 4.401229-2 1.264010-6 5.126530-2 1.303511-6 5.987883-2 1.344245-6 7.014404-2 1.386253-6 8.242124-2 1.428427-6 9.674093-2 1.469283-6 1.128229-1 1.547205-6 1.506413-1 1.584349-6 1.723929-1 1.620333-6 1.963946-1 1.655192-6 2.228487-1 1.688961-6 2.519209-1 1.721676-6 2.837833-1 1.753368-6 3.186147-1 1.784069-6 3.566010-1 1.813812-6 3.979352-1 1.842625-6 4.428176-1 1.870537-6 4.914550-1 1.923772-6 6.006155-1 1.949149-6 6.612763-1 1.973732-6 7.264391-1 1.997548-6 7.964936-1 2.020619-6 8.718374-1 2.064620-6 1.038328+0 2.105915-6 1.228604+0 2.125599-6 1.333454+0 2.144669-6 1.445469+0 2.163142-6 1.565406+0 2.198935-6 1.831972+0 2.232490-6 2.131040+0 2.263948-6 2.466833+0 2.293440-6 2.842539+0 2.321089-6 3.261424+0 2.347010-6 3.726875+0 2.371311-6 4.242315+0 2.394093-6 4.811015+0 2.415451-6 5.436342+0 2.435474-6 6.122171+0 2.454246-6 6.872549+0 2.471844-6 7.691390+0 2.488343-6 8.582489+0 2.503810-6 9.549570+0 2.518311-6 1.059628+1 2.531905-6 1.172617+1 2.544650-6 1.294267+1 2.556598-6 1.424902+1 2.567800-6 1.564832+1 2.578301-6 1.714346+1 2.588146-6 1.873713+1 2.597376-6 2.043182+1 2.606028-6 2.222989+1 2.614141-6 2.413355+1 2.621746-6 2.614486+1 2.628875-6 2.826567+1 2.635559-6 3.049759+1 2.641826-6 3.284208+1 2.647700-6 3.530066+1 2.653208-6 3.787517+1 2.658371-6 4.056807+1 2.668053-6 4.652989+1 2.676524-6 5.304660+1 2.683936-6 6.014510+1 2.690422-6 6.782016+1 2.696097-6 7.601527+1 2.701062-6 8.461995+1 2.705407-6 9.348280+1 2.709209-6 1.024328+2 2.712535-6 1.113007+2 2.715446-6 1.199353+2 2.720540-6 1.372075+2 2.736663-6 2.124009+2 2.742555-6 2.477196+2 2.747606-6 2.807120+2 2.749289-6 2.921398+2 2.756023-6 3.390670+2 2.756865-6 3.449843+2 2.762757-6 3.858552+2 2.765072-6 4.013488+2 2.770332-6 4.344460+2 2.774015-6 4.552689+2 2.777908-6 4.746723+2 2.781064-6 4.882142+2 2.782958-6 4.953553+2 2.786325-6 5.062286+2 2.790534-6 5.167149+2 2.794953-6 5.245837+2 2.807848-6 5.407695+2 2.810866-6 5.463809+2 2.817049-6 5.649388+2 2.820643-6 5.818000+2 2.823362-6 5.982346+2 2.827261-6 6.280042+2 2.830741-6 6.611714+2 2.834273-6 7.013641+2 2.837655-6 7.458544+2 2.852120-6 9.868211+2 2.856228-6 1.062126+3 2.859726-6 1.124907+3 2.863113-6 1.182717+3 2.865315-6 1.217951+3 2.868946-6 1.270673+3 2.872466-6 1.313977+3 2.875922-6 1.347654+3 2.878831-6 1.368439+3 2.885641-6 1.387665+3 2.887532-6 1.385444+3 2.892772-6 1.362306+3 2.896064-6 1.335580+3 2.899255-6 1.301441+3 2.902766-6 1.255467+3 2.906170-6 1.203645+3 2.909195-6 1.152599+3 2.912112-6 1.099834+3 2.916542-6 1.014949+3 2.919999-6 9.463182+2 2.923889-6 8.683393+2 2.926914-6 8.081295+2 2.933829-6 6.756588+2 2.936206-6 6.326323+2 2.940744-6 5.550722+2 2.945930-6 4.746913+2 2.952471-6 3.867664+2 2.967192-6 2.418565+2 2.971330-6 2.126658+2 2.975435-6 1.878295+2 2.979509-6 1.667572+2 2.983551-6 1.489004+2 2.987561-6 1.337631+2 2.991540-6 1.209072+2 2.995488-6 1.099531+2 3.000000-6 9.926722+1 3.003291-6 9.250880+1 3.011003-6 7.938365+1 3.018595-6 6.928103+1 3.026067-6 6.128957+1 3.033424-6 5.481085+1 3.040665-6 4.944867+1 3.047793-6 4.493507+1 3.054809-6 4.108333+1 3.061716-6 3.775911+1 3.075208-6 3.231858+1 3.088385-6 2.803317+1 3.101150-6 2.460490+1 3.113516-6 2.180791+1 3.125495-6 1.948903+1 3.137100-6 1.754048+1 3.159234-6 1.446146+1 3.180006-6 1.215057+1 3.235780-6 7.720828+0 3.267395-6 5.959905+0 3.296078-6 4.683016+0 3.375000-6 2.039780+0 3.395979-6 1.490969+0 3.408589-6 1.199803+0 3.419622-6 9.695378-1 3.429277-6 7.873686-1 3.437725-6 6.435379-1 3.445117-6 5.304303-1 3.451584-6 4.419686-1 3.457244-6 3.732581-1 3.466529-6 2.800873-1 3.470320-6 2.499005-1 3.473637-6 2.277325-1 3.476540-6 2.119106-1 3.481620-6 1.933207-1 3.485430-6 1.881882-1 3.488287-6 1.901628-1 3.490430-6 1.953789-1 3.493645-6 2.100387-1 3.495252-6 2.208143-1 3.496859-6 2.341459-1 3.499011-6 2.563783-1 3.500625-6 2.766653-1 3.502743-6 3.084946-1 3.505323-6 3.561647-1 3.507234-6 3.985461-1 3.509585-6 4.599908-1 3.514073-6 6.104467-1 3.522680-6 1.057672+0 3.526446-6 1.339379+0 3.528867-6 1.555054+0 3.531288-6 1.801441+0 3.533439-6 2.048946+0 3.536667-6 2.476244+0 3.539895-6 2.978999+0 3.542046-6 3.360961+0 3.545274-6 4.011884+0 3.548502-6 4.766268+0 3.552267-6 5.792684+0 3.554688-6 6.544161+0 3.557109-6 7.373524+0 3.560874-6 8.830798+0 3.564505-6 1.044481+1 3.567765-6 1.208220+1 3.571549-6 1.422300+1 3.575462-6 1.672227+1 3.582930-6 2.234875+1 3.585453-6 2.451019+1 3.587975-6 2.680398+1 3.596763-6 3.579505+1 3.598343-6 3.756541+1 3.606101-6 4.684168+1 3.608933-6 5.042471+1 3.615066-6 5.840902+1 3.617621-6 6.177949+1 3.621271-6 6.658673+1 3.623618-6 6.964508+1 3.627808-6 7.497873+1 3.632064-6 8.014307+1 3.636452-6 8.508241+1 3.640405-6 8.910521+1 3.643905-6 9.226220+1 3.647724-6 9.521238+1 3.651145-6 9.737174+1 3.655125-6 9.926504+1 3.659013-6 1.004360+2 3.667343-6 1.006056+2 3.671273-6 9.958159+1 3.675856-6 9.753288+1 3.679238-6 9.546663+1 3.682617-6 9.296818+1 3.685743-6 9.030524+1 3.689107-6 8.710290+1 3.692351-6 8.372757+1 3.695629-6 8.007587+1 3.699749-6 7.521729+1 3.702220-6 7.219430+1 3.706614-6 6.669507+1 3.711009-6 6.113090+1 3.715952-6 5.492484+1 3.719797-6 5.022212+1 3.728585-6 4.020501+1 3.744248-6 2.622541+1 3.748143-6 2.370234+1 3.750062-6 2.261096+1 3.755817-6 1.994577+1 3.757470-6 1.934986+1 3.765016-6 1.758136+1 3.766905-6 1.737825+1 3.767818-6 1.731349+1 3.769417-6 1.725191+1 3.773016-6 1.734836+1 3.775190-6 1.755895+1 3.777061-6 1.782823+1 3.779690-6 1.833834+1 3.782825-6 1.913669+1 3.785845-6 2.008669+1 3.789667-6 2.151844+1 3.796028-6 2.437821+1 3.804723-6 2.896000+1 3.808528-6 3.109815+1 3.814295-6 3.436545+1 3.817755-6 3.628976+1 3.822274-6 3.870389+1 3.826001-6 4.057223+1 3.830021-6 4.242621+1 3.839109-6 4.584473+1 3.842718-6 4.686175+1 3.849330-6 4.818029+1 3.852488-6 4.855784+1 3.855352-6 4.876109+1 3.860052-6 4.881657+1 3.863891-6 4.861886+1 3.868929-6 4.805586+1 3.873787-6 4.722334+1 3.875406-6 4.689001+1 3.882305-6 4.520749+1 3.884605-6 4.456709+1 3.893804-6 4.172949+1 3.903003-6 3.864531+1 3.908577-6 3.674836+1 3.921402-6 3.251003+1 3.951671-6 2.404594+1 3.979812-6 1.821280+1 3.989192-6 1.664418+1 4.001876-6 1.479378+1 4.014884-6 1.319572+1 4.027588-6 1.189634+1 4.039895-6 1.084825+1 4.051817-6 9.995990+0 4.063367-6 9.293432+0 4.074556-6 8.704625+0 4.096234-6 7.755089+0 4.116558-6 7.028450+0 4.139534-6 6.338487+0 4.158984-6 5.834491+0 4.186966-6 5.204978+0 4.267557-6 3.788650+0 4.334869-6 2.820443+0 4.356505-6 2.515572+0 4.372732-6 2.280699+0 4.384902-6 2.098588+0 4.403157-6 1.814805+0 4.412285-6 1.670168+0 4.424311-6 1.483190+0 4.436894-6 1.305488+0 4.441088-6 1.254188+0 4.453008-6 1.144416+0 4.456981-6 1.123644+0 4.459995-6 1.114535+0 4.463009-6 1.111826+0 4.464382-6 1.112881+0 4.466785-6 1.118408+0 4.473994-6 1.165949+0 4.482233-6 1.285389+0 4.485666-6 1.358180+0 4.495964-6 1.666083+0 4.500191-6 1.833265+0 4.510451-6 2.339712+0 4.519357-6 2.889508+0 4.525430-6 3.315982+0 4.530610-6 3.706925+0 4.535949-6 4.130069+0 4.541123-6 4.553377+0 4.546564-6 5.004857+0 4.552005-6 5.454328+0 4.557787-6 5.919732+0 4.562888-6 6.311672+0 4.573771-6 7.056605+0 4.577002-6 7.247123+0 4.585522-6 7.668202+0 4.590000-6 7.837980+0 4.594275-6 7.964972+0 4.598549-6 8.057036+0 4.601272-6 8.097408+0 4.606036-6 8.134233+0 4.609609-6 8.134232+0 4.612289-6 8.119211+0 4.616309-6 8.073547+0 4.620329-6 8.001641+0 4.626221-6 7.852962+0 4.628185-6 7.792997+0 4.636347-6 7.496115+0 4.639067-6 7.382504+0 4.649756-6 6.885140+0 4.660741-6 6.324727+0 4.671726-6 5.756669+0 4.704384-6 4.288948+0 4.715631-6 3.900071+0 4.726878-6 3.570936+0 4.738125-6 3.294383+0 4.749372-6 3.061715+0 4.760619-6 2.864297+0 4.771866-6 2.694484+0 4.783113-6 2.546004+0 4.794360-6 2.413979+0 4.809978-6 2.251236+0 4.833657-6 2.037017+0 4.892853-6 1.600756+0 4.916531-6 1.448659+0 4.928370-6 1.375225+0 4.940209-6 1.302927+0 4.952048-6 1.231319+0 4.963887-6 1.159958+0 4.975727-6 1.088430+0 4.987566-6 1.016406+0 4.999405-6 9.437359-1 5.011244-6 8.705820-1 5.023083-6 7.975682-1 5.037137-6 7.127980-1 5.065906-6 5.602262-1 5.075331-6 5.216051-1 5.078314-6 5.109945-1 5.087762-6 4.831220-1 5.100193-6 4.608617-1 5.103301-6 4.579523-1 5.112625-6 4.554641-1 5.116091-6 4.568104-1 5.122157-6 4.618478-1 5.126706-6 4.676238-1 5.135236-6 4.821299-1 5.152762-6 5.194344-1 5.162068-6 5.382122-1 5.165170-6 5.436844-1 5.174780-6 5.570330-1 5.177888-6 5.600138-1 5.187211-6 5.648030-1 5.192430-6 5.649408-1 5.202394-6 5.615578-1 5.213622-6 5.565153-1 5.220423-6 5.562806-1 5.224504-6 5.583823-1 5.226394-6 5.601235-1 5.236312-6 5.799451-1 5.239618-6 5.915147-1 5.244691-6 6.152218-1 5.248495-6 6.383027-1 5.251371-6 6.590543-1 5.256996-6 7.085680-1 5.261215-6 7.539733-1 5.264932-6 8.001679-1 5.267569-6 8.365639-1 5.273502-6 9.296620-1 5.281837-6 1.086653+0 5.295246-6 1.399040+0 5.301941-6 1.578148+0 5.307268-6 1.728737+0 5.313752-6 1.918522+0 5.319356-6 2.085213+0 5.325319-6 2.261878+0 5.327728-6 2.332216+0 5.333838-6 2.505786+0 5.339375-6 2.654467+0 5.342304-6 2.728786+0 5.347682-6 2.855842+0 5.353059-6 2.968825+0 5.353879-6 2.984677+0 5.366171-6 3.173884+0 5.372026-6 3.229350+0 5.381387-6 3.268782+0 5.387773-6 3.260956+0 5.391416-6 3.244261+0 5.394604-6 3.222650+0 5.400184-6 3.169915+0 5.404368-6 3.118752+0 5.407507-6 3.074391+0 5.414568-6 2.957958+0 5.416922-6 2.914655+0 5.423351-6 2.787059+0 5.429780-6 2.648951+0 5.441081-6 2.392990+0 5.444370-6 2.317866+0 5.471061-6 1.773318+0 5.476137-6 1.693851+0 5.482218-6 1.612750+0 5.487397-6 1.556799+0 5.497284-6 1.485868+0 5.500562-6 1.473093+0 5.510395-6 1.467069+0 5.514902-6 1.480172+0 5.519205-6 1.501579+0 5.523507-6 1.531259+0 5.526802-6 1.559271+0 5.529685-6 1.587310+0 5.534730-6 1.643676+0 5.541353-6 1.729985+0 5.563263-6 2.076632+0 5.571636-6 2.214897+0 5.576660-6 2.294501+0 5.590057-6 2.482032+0 5.591731-6 2.502095+0 5.603453-6 2.615803+0 5.608058-6 2.646322+0 5.616850-6 2.680457+0 5.620444-6 2.685065+0 5.626734-6 2.680064+0 5.631451-6 2.665600+0 5.638527-6 2.627426+0 5.645604-6 2.570845+0 5.651926-6 2.506298+0 5.658249-6 2.430222+0 5.667389-6 2.303452+0 5.670436-6 2.257608+0 5.683832-6 2.041446+0 5.691829-6 1.905775+0 5.699826-6 1.768931+0 5.705225-6 1.677200+0 5.713677-6 1.536544+0 5.719017-6 1.450335+0 5.735039-6 1.208611+0 5.754067-6 9.617500-1 5.763733-6 8.550000-1 5.792106-6 6.196584-1 5.800883-6 5.718811-1 5.807740-6 5.433329-1 5.812457-6 5.282986-1 5.818431-6 5.147784-1 5.823141-6 5.085433-1 5.840204-6 5.191823-1 5.844439-6 5.298739-1 5.850790-6 5.517547-1 5.857432-6 5.818580-1 5.861437-6 6.033899-1 5.867880-6 6.429785-1 5.874322-6 6.880803-1 5.893626-6 8.475316-1 5.898787-6 8.937772-1 5.906295-6 9.615254-1 5.913803-6 1.028009+0 5.925105-6 1.121216+0 5.928872-6 1.149454+0 5.943438-6 1.239780+0 5.947016-6 1.256534+0 5.957750-6 1.291881+0 5.961330-6 1.298411+0 5.972070-6 1.301602+0 5.976269-6 1.296161+0 5.982567-6 1.281143+0 5.988866-6 1.258272+0 5.994021-6 1.234122+0 6.001754-6 1.189706+0 6.005620-6 1.164266+0 6.009487-6 1.136987+0 6.017578-6 1.075087+0 6.025669-6 1.008776+0 6.037010-6 9.135048-1 6.055734-6 7.683654-1 6.064208-6 7.146403-1 6.070644-6 6.810083-1 6.076623-6 6.561737-1 6.082601-6 6.380921-1 6.089091-6 6.266097-1 6.098439-6 6.256462-1 6.103252-6 6.324306-1 6.112441-6 6.589195-1 6.116312-6 6.752149-1 6.122119-6 7.050316-1 6.127926-6 7.408480-1 6.136099-6 8.002278-1 6.157870-6 9.937404-1 6.162797-6 1.041056+0 6.172451-6 1.133122+0 6.179691-6 1.199310+0 6.183970-6 1.236396+0 6.190499-6 1.289077+0 6.197027-6 1.335978+0 6.211992-6 1.416279+0 6.213815-6 1.423140+0 6.226873-6 1.452018+0 6.233734-6 1.452654+0 6.240284-6 1.444034+0 6.246834-6 1.426776+0 6.250550-6 1.413357+0 6.257053-6 1.384033+0 6.261930-6 1.357590+0 6.269246-6 1.311745+0 6.276562-6 1.259831+0 6.283794-6 1.204130+0 6.290418-6 1.150672+0 6.301630-6 1.058445+0 6.323583-6 8.901220-1 6.335108-6 8.173318-1 6.344020-6 7.712099-1 6.348309-6 7.524684-1 6.361176-6 7.102053-1 6.366099-6 6.995561-1 6.373482-6 6.890985-1 6.380866-6 6.848914-1 6.389710-6 6.873035-1 6.396307-6 6.937461-1 6.406233-6 7.096053-1 6.416159-6 7.311043-1 6.448101-6 8.150837-1 6.473955-6 8.708223-1 6.480484-6 8.805348-1 6.500256-6 8.974345-1 6.506508-6 8.989836-1 6.517104-6 8.979537-1 6.524892-6 8.946928-1 6.542441-6 8.818812-1 6.581383-6 8.466487-1 6.593951-6 8.378984-1 6.613070-6 8.285294-1 6.647377-6 8.196294-1 6.687834-6 8.089035-1 6.745572-6 7.881323-1 6.770166-6 7.847018-1 6.794403-6 7.873624-1 6.823148-6 7.976861-1 6.917677-6 8.502019-1 6.988655-6 8.836138-1 7.131468-6 9.432980-1 7.350000-6 1.040670+0 7.490574-6 1.112903+0 7.687636-6 1.227114+0 7.857685-6 1.337535+0 8.192000-6 1.588141+0 9.106385-6 2.479011+0 9.683995-6 3.190356+0 1.028025-5 4.051893+0 1.093487-5 5.138523+0 1.176238-5 6.742392+0 1.246578-5 8.311324+0 1.320442-5 1.018505+1 1.398683-5 1.240961+1 1.479108-5 1.498076+1 1.586135-5 1.880937+1 1.679806-5 2.254727+1 1.769701-5 2.640832+1 1.852731-5 3.018122+1 1.925000-5 3.355539+1 2.000000-5 3.709319+1 2.066972-5 4.021222+1 2.153548-5 4.419342+1 2.221371-5 4.761072+1 2.317395-5 5.288500+1 2.454709-5 6.129657+1 2.502759-5 6.458194+1 2.570396-5 6.958646+1 2.639094-5 7.518477+1 2.713780-5 8.215850+1 2.781681-5 8.953318+1 2.843413-5 9.745464+1 2.899536-5 1.059357+2 2.951209-5 1.152763+2 2.996950-5 1.251486+2 3.039564-5 1.362066+2 3.071892-5 1.461422+2 3.093344-5 1.536475+2 3.113777-5 1.616247+2 3.135489-5 1.711697+2 3.155844-5 1.813157+2 3.175554-5 1.924645+2 3.192817-5 2.034944+2 3.216196-5 2.206798+2 3.240053-5 2.415150+2 3.259088-5 2.612226+2 3.278975-5 2.856283+2 3.290362-5 3.017987+2 3.302287-5 3.208294+2 3.320428-5 3.548622+2 3.329224-5 3.740871+2 3.337471-5 3.940875+2 3.345202-5 4.148642+2 3.353875-5 4.409189+2 3.365615-5 4.818374+2 3.371587-5 5.057076+2 3.382784-5 5.575706+2 3.392582-5 6.128214+2 3.401156-5 6.714954+2 3.408657-5 7.335064+2 3.415221-5 7.985514+2 3.420964-5 8.660675+2 3.425990-5 9.352545+2 3.430387-5 1.005152+3 3.434235-5 1.074741+3 3.440968-5 1.219138+3 3.446018-5 1.349943+3 3.449805-5 1.462930+3 3.452646-5 1.557040+3 3.459037-5 1.801751+3 3.465427-5 2.097983+3 3.486725-5 3.533863+3 3.495245-5 4.315269+3 3.501490-5 4.955886+3 3.510961-5 6.009299+3 3.512033-5 6.132733+3 3.519539-5 7.004357+3 3.524507-5 7.574839+3 3.530386-5 8.222795+3 3.534130-5 8.610171+3 3.538464-5 9.024987+3 3.542974-5 9.409336+3 3.546360-5 9.660693+3 3.551685-5 9.982375+3 3.555412-5 1.014883+4 3.560403-5 1.029024+4 3.564777-5 1.033427+4 3.569868-5 1.029008+4 3.574113-5 1.017564+4 3.578016-5 1.001046+4 3.581703-5 9.804521+3 3.584791-5 9.597165+3 3.588956-5 9.271695+3 3.593301-5 8.882736+3 3.597491-5 8.467465+3 3.601211-5 8.072158+3 3.605995-5 7.536705+3 3.609722-5 7.105397+3 3.614514-5 6.542328+3 3.619306-5 5.979732+3 3.624098-5 5.427372+3 3.629689-5 4.806949+3 3.632563-5 4.501374+3 3.640807-5 3.687000+3 3.645921-5 3.233422+3 3.650941-5 2.829080+3 3.657402-5 2.368377+3 3.664277-5 1.949467+3 3.684053-5 1.103052+3 3.688436-5 9.767790+2 3.692819-5 8.696758+2 3.699736-5 7.373221+2 3.701585-5 7.092550+2 3.708159-5 6.337385+2 3.710350-5 6.169123+2 3.714185-5 5.974804+2 3.716343-5 5.921651+2 3.718076-5 5.908361+2 3.720033-5 5.924987+2 3.721611-5 5.962948+2 3.722947-5 6.012252+2 3.724960-5 6.116399+2 3.728056-5 6.346876+2 3.733051-5 6.899033+2 3.735305-5 7.220850+2 3.738345-5 7.726237+2 3.747644-5 9.766341+2 3.758394-5 1.297348+3 3.760213-5 1.359382+3 3.766143-5 1.574237+3 3.770940-5 1.759348+3 3.775142-5 1.927029+3 3.779215-5 2.092084+3 3.783698-5 2.273762+3 3.787605-5 2.429532+3 3.791825-5 2.592472+3 3.793563-5 2.657312+3 3.798952-5 2.847345+3 3.803221-5 2.983326+3 3.807834-5 3.112617+3 3.812420-5 3.220396+3 3.815234-5 3.275294+3 3.819263-5 3.338101+3 3.822486-5 3.374458+3 3.827034-5 3.404272+3 3.831190-5 3.409466+3 3.834500-5 3.398785+3 3.839232-5 3.361581+3 3.842274-5 3.324753+3 3.845315-5 3.278516+3 3.848400-5 3.222718+3 3.852449-5 3.137215+3 3.857655-5 3.009775+3 3.862356-5 2.881176+3 3.867057-5 2.743218+3 3.872360-5 2.580465+3 3.876687-5 2.445045+3 3.886019-5 2.155395+3 3.895265-5 1.885391+3 3.914070-5 1.428244+3 3.923473-5 1.251745+3 3.932875-5 1.107043+3 3.955755-5 8.570417+2 3.961961-5 8.072850+2 3.971278-5 7.427001+2 3.979888-5 6.918528+2 3.989290-5 6.443109+2 3.996526-5 6.126334+2 4.003762-5 5.847607+2 4.013945-5 5.513094+2 4.020213-5 5.337133+2 4.025603-5 5.202057+2 4.031413-5 5.071543+2 4.040596-5 4.892802+2 4.050541-5 4.730210+2 4.096570-5 4.203422+2 4.116191-5 4.028321+2 4.184679-5 3.500859+2 4.216965-5 3.294099+2 4.232203-5 3.211901+2 4.248474-5 3.138882+2 4.265557-5 3.080622+2 4.276664-5 3.052798+2 4.294215-5 3.022781+2 4.317922-5 3.000759+2 4.379327-5 2.959858+2 4.444902-5 2.886411+2 4.733852-5 2.591795+2 5.055524-5 2.336882+2 5.760000-5 1.928461+2 6.192388-5 1.730455+2 6.370300-5 1.654149+2 6.546188-5 1.570929+2 6.570728-5 1.563399+2 6.618657-5 1.557671+2 6.684480-5 1.558196+2 6.732586-5 1.550224+2 6.875788-5 1.500343+2 7.640759-5 1.318165+2 8.341716-5 1.193197+2 8.912509-5 1.113611+2 9.588669-5 1.038128+2 1.025156-4 9.793166+1 1.072198-4 9.440161+1 1.141009-4 8.996340+1 1.281086-4 8.248548+1 1.366003-4 7.846656+1 1.477666-4 7.337141+1 1.540000-4 7.035946+1 1.621810-4 6.630881+1 1.678804-4 6.336573+1 1.762324-4 5.868619+1 1.820000-4 5.520240+1 1.883649-4 5.105350+1 1.942190-4 4.695030+1 2.000622-4 4.256496+1 2.040273-4 3.939645+1 2.097018-4 3.460017+1 2.143853-4 3.037508+1 2.184447-4 2.649292+1 2.203156-4 2.462768+1 2.238935-4 2.090252+1 2.260616-4 1.850833+1 2.276396-4 1.669670+1 2.283182-4 1.591661+1 2.305752-4 1.352646+1 2.311813-4 1.299225+1 2.317584-4 1.254191+1 2.322840-4 1.218321+1 2.328802-4 1.183388+1 2.335177-4 1.152049+1 2.342128-4 1.123444+1 2.365208-4 1.042950+1 2.374375-4 1.006772+1 2.385161-4 9.582924+0 2.413375-4 8.287761+0 2.421500-4 8.002353+0 2.428124-4 7.822728+0 2.435500-4 7.690160+0 2.440000-4 7.649402+0 2.446898-4 7.654599+0 2.453937-4 7.756210+0 2.456835-4 7.829763+0 2.463500-4 8.077211+0 2.469500-4 8.402701+0 2.474500-4 8.756237+0 2.478533-4 9.100452+0 2.483133-4 9.561810+0 2.488000-4 1.013482+1 2.493542-4 1.090029+1 2.498190-4 1.164030+1 2.506750-4 1.325131+1 2.513968-4 1.487278+1 2.535481-4 2.121517+1 2.546539-4 2.536539+1 2.553997-4 2.849497+1 2.566246-4 3.418040+1 2.574995-4 3.862659+1 2.584496-4 4.378196+1 2.587538-4 4.549867+1 2.598267-4 5.177898+1 2.608950-4 5.833697+1 2.624400-4 6.823546+1 2.642498-4 8.026126+1 2.654998-4 8.874038+1 2.660725-4 9.265665+1 2.676927-4 1.038025+2 2.692500-4 1.145625+2 2.702500-4 1.214751+2 2.712727-4 1.285358+2 2.730000-4 1.404176+2 2.750000-4 1.540485+2 2.770350-4 1.677033+2 2.790000-4 1.806313+2 2.810000-4 1.934794+2 2.831500-4 2.068428+2 2.856500-4 2.216448+2 2.889258-4 2.397741+2 2.915000-4 2.530186+2 2.940000-4 2.649713+2 2.985383-4 2.846168+2 3.023231-4 2.992409+2 3.047500-4 3.078923+2 3.090296-4 3.221719+2 3.124724-4 3.329996+2 3.198895-4 3.549478+2 3.231621-4 3.640032+2 3.323791-4 3.885344+2 3.388442-4 4.043036+2 3.450116-4 4.177882+2 3.513395-4 4.302944+2 3.580716-4 4.415000+2 3.648280-4 4.504058+2 3.703184-4 4.563258+2 3.756590-4 4.746337+2 3.776164-4 4.945216+2 3.785176-4 5.070361+2 3.803280-4 5.367427+2 3.831384-4 5.794972+2 3.841068-4 5.880158+2 3.850716-4 5.917379+2 3.859537-4 5.908761+2 3.869013-4 5.859037+2 3.889399-4 5.662694+2 3.905380-4 5.497565+2 3.915848-4 5.415962+2 3.923904-4 5.375547+2 3.937898-4 5.357817+2 3.942778-4 5.367202+2 3.961374-4 5.466213+2 3.974427-4 5.578964+2 3.988564-4 5.717560+2 4.011799-4 5.921129+2 4.020585-4 5.975354+2 4.029526-4 6.013421+2 4.040125-4 6.035858+2 4.050537-4 6.036561+2 4.093236-4 5.946074+2 4.109138-4 5.928986+2 4.125289-4 5.936359+2 4.181411-4 6.086395+2 4.234375-4 6.248982+2 4.306875-4 6.425863+2 4.394721-4 6.595767+2 4.526262-4 6.798633+2 4.636423-4 6.924685+2 4.818370-4 7.076888+2 4.854764-4 7.124942+2 4.930364-4 7.279674+2 5.046782-4 7.549143+2 5.110195-4 7.663889+2 5.211662-4 7.802495+2 5.327857-4 7.927573+2 5.511248-4 8.092056+2 5.691387-4 8.226190+2 5.871512-4 8.337927+2 6.086881-4 8.447898+2 6.503169-4 8.608441+2 7.000000-4 8.738516+2 7.210492-4 8.774066+2 7.695733-4 8.803302+2 8.619236-4 8.795293+2 9.372922-4 8.752372+2 1.030943-3 8.655314+2 1.076639-3 8.593113+2 1.230269-3 8.299372+2 1.368224-3 8.025616+2 1.437438-3 7.869734+2 1.578175-3 7.535864+2 1.651675-3 7.357339+2 1.738003-3 7.130281+2 1.820078-3 6.905795+2 1.904818-3 6.665681+2 1.985238-3 6.422974+2 2.055447-3 6.187216+2 2.116533-3 5.962624+2 2.175539-3 5.726254+2 2.224289-3 5.512214+2 2.264644-3 5.316850+2 2.302320-3 5.113630+2 2.333547-3 4.923651+2 2.363549-3 4.715623+2 2.387503-3 4.525430+2 2.404704-3 4.370442+2 2.424874-3 4.160594+2 2.440225-3 3.972732+2 2.453918-3 3.781085+2 2.471759-3 3.510571+2 2.484812-3 3.329406+2 2.493570-3 3.236786+2 2.497933-3 3.203585+2 2.502937-3 3.177941+2 2.508978-3 3.165972+2 2.515020-3 3.175164+2 2.521062-3 3.204554+2 2.527458-3 3.255184+2 2.536405-3 3.352418+2 2.564291-3 3.729839+2 2.575035-3 3.865049+2 2.592408-3 4.059522+2 2.617447-3 4.341034+2 2.636356-3 4.592730+2 2.650618-3 4.800345+2 2.666748-3 5.033893+2 2.678391-3 5.190153+2 2.687713-3 5.303516+2 2.697763-3 5.412399+2 2.710914-3 5.533818+2 2.726492-3 5.649420+2 2.743140-3 5.744039+2 2.760491-3 5.815678+2 2.777640-3 5.863744+2 2.816958-3 5.946077+2 2.828706-3 5.990104+2 2.846251-3 6.093250+2 2.874353-3 6.334781+2 2.888631-3 6.466240+2 2.903638-3 6.592524+2 2.918557-3 6.700011+2 2.937032-3 6.808935+2 2.958998-3 6.912197+2 2.985382-3 7.012477+2 3.041544-3 7.175880+2 3.110669-3 7.318460+2 3.180865-3 7.420522+2 3.252083-3 7.490890+2 3.341255-3 7.543085+2 3.467731-3 7.565622+2 3.630781-3 7.541365+2 3.845918-3 7.446453+2 4.120975-3 7.270321+2 4.415704-3 7.044814+2 4.768897-3 6.752200+2 5.198390-3 6.392508+2 5.745761-3 5.948912+2 6.270712-3 5.556821+2 6.918522-3 5.116431+2 7.829325-3 4.575814+2 8.748000-3 4.110368+2 9.496884-3 3.777389+2 1.026467-2 3.472210+2 1.108300-2 3.179923+2 1.202264-2 2.879765+2 1.293414-2 2.619782+2 1.390089-2 2.372733+2 1.450649-2 2.231189+2 1.556252-2 2.004490+2 1.647728-2 1.825306+2 1.719124-2 1.693038+2 1.777491-2 1.587031+2 1.822167-2 1.504960+2 1.857827-2 1.436717+2 1.886071-2 1.378556+2 1.899984-2 1.347498+2 1.912444-2 1.317504+2 1.922573-2 1.290832+2 1.931776-2 1.263977+2 1.939611-2 1.238472+2 1.949845-2 1.200818+2 1.965558-2 1.135815+2 1.976736-2 1.092764+2 1.984020-2 1.072039+2 1.990523-2 1.061262+2 1.995530-2 1.058755+2 1.999756-2 1.060646+2 2.005341-2 1.068388+2 2.012213-2 1.084673+2 2.033125-2 1.153213+2 2.043318-2 1.183119+2 2.050681-2 1.200605+2 2.063154-2 1.222658+2 2.078492-2 1.239982+2 2.100602-2 1.253862+2 2.125691-2 1.260996+2 2.167392-2 1.261735+2 2.225871-2 1.249861+2 2.284335-2 1.229862+2 2.371374-2 1.192633+2 2.482014-2 1.140662+2 2.632162-2 1.069273+2 2.799157-2 9.926010+1 3.087726-2 8.738275+1 3.396537-2 7.658970+1 3.734460-2 6.671490+1 4.010551-2 5.985651+1 4.466836-2 5.044115+1 5.024744-2 4.165050+1 5.613487-2 3.455694+1 6.416780-2 2.737444+1 8.854230-2 1.546237+1 1.137745-1 9.852222+0 1.361247-1 7.091017+0 1.665592-1 4.866219+0 2.137962-1 3.029108+0 2.902770-1 1.680110+0 4.162699-1 8.321758-1 6.240715-1 3.751046-1 1.070165+0 1.286489-1 2.814822+0 1.867479-2 8.500626+0 2.049024-3 2.567148+1 2.246877-4 7.752663+1 2.463671-5 2.341267+2 2.701364-6 7.070513+2 2.961987-7 2.511886+3 2.346848-8 7.943282+3 2.346848-9 2.511886+4 2.34685-10 7.943282+4 2.34685-11 1.000000+5 1.48076-11 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.398000-6 1.258900-6 2.215600-6 1.584900-6 3.511500-6 1.995300-6 5.565400-6 2.511900-6 8.820500-6 3.162300-6 1.398000-5 3.981100-6 2.215600-5 5.011900-6 3.511500-5 6.309600-6 5.565300-5 7.943300-6 8.820300-5 1.000000-5 1.397900-4 1.258900-5 2.215500-4 1.584900-5 3.510100-4 1.995300-5 5.560700-4 2.511900-5 8.809800-4 3.162300-5 1.395900-3 3.981100-5 2.211800-3 5.011900-5 3.504800-3 6.309600-5 5.553900-3 7.943300-5 8.793300-3 1.000000-4 1.391900-2 1.258900-4 2.200900-2 1.584900-4 3.477000-2 1.995300-4 5.482700-2 2.511900-4 8.617100-2 3.162300-4 1.348800-1 3.981100-4 2.096100-1 5.011900-4 3.216400-1 6.309600-4 4.852500-1 7.943300-4 7.154100-1 1.000000-3 1.025100+0 1.258900-3 1.423500+0 1.584900-3 1.917700+0 1.995300-3 2.521600+0 2.511900-3 3.255100+0 3.162300-3 4.133700+0 3.981100-3 5.173100+0 5.011900-3 6.385300+0 6.309600-3 7.764300+0 7.943300-3 9.251800+0 1.000000-2 1.076900+1 1.258900-2 1.228800+1 1.584900-2 1.378200+1 1.995300-2 1.526200+1 2.511900-2 1.658900+1 3.162300-2 1.770300+1 3.981100-2 1.855800+1 5.011900-2 1.911000+1 6.309600-2 1.932700+1 7.943300-2 1.922400+1 1.000000-1 1.884300+1 1.258900-1 1.822100+1 1.584900-1 1.740700+1 1.995300-1 1.644200+1 2.511900-1 1.538000+1 3.162300-1 1.426200+1 3.981100-1 1.312700+1 5.011900-1 1.200100+1 6.309600-1 1.090400+1 7.943300-1 9.842700+0 1.000000+0 8.834600+0 1.258900+0 7.878300+0 1.584900+0 6.980800+0 1.995300+0 6.146200+0 2.511900+0 5.377100+0 3.162300+0 4.675300+0 3.981100+0 4.041200+0 5.011900+0 3.473400+0 6.309600+0 2.970200+0 7.943300+0 2.527500+0 1.000000+1 2.141400+0 1.258900+1 1.806900+0 1.584900+1 1.519100+0 1.995300+1 1.272900+0 2.511900+1 1.063400+0 3.162300+1 8.860000-1 3.981100+1 7.363800-1 5.011900+1 6.106800-1 6.309600+1 5.054200-1 7.943300+1 4.175400-1 1.000000+2 3.443800-1 1.258900+2 2.836000-1 1.584900+2 2.332300-1 1.995300+2 1.915600-1 2.511900+2 1.571500-1 3.162300+2 1.287800-1 3.981100+2 1.054300-1 5.011900+2 8.622700-2 6.309600+2 7.046300-2 7.943300+2 5.753300-2 1.000000+3 4.694000-2 1.258900+3 3.827000-2 1.584900+3 3.118000-2 1.995300+3 2.538700-2 2.511900+3 2.065800-2 3.162300+3 1.680000-2 3.981100+3 1.365500-2 5.011900+3 1.109300-2 6.309600+3 9.006900-3 7.943300+3 7.309800-3 1.000000+4 5.929800-3 1.258900+4 4.808200-3 1.584900+4 3.897100-3 1.995300+4 3.157400-3 2.511900+4 2.557100-3 3.162300+4 2.070100-3 3.981100+4 1.675300-3 5.011900+4 1.355300-3 6.309600+4 1.096100-3 7.943300+4 8.861700-4 1.000000+5 7.162200-4 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159552-4 3.981072-4 3.976763-4 5.011872-4 5.005059-4 6.309573-4 6.298872-4 7.943282-4 7.926444-4 1.000000-3 9.973651-4 1.258925-3 1.254818-3 1.584893-3 1.578489-3 1.995262-3 1.985271-3 2.511886-3 2.496251-3 3.162278-3 3.137818-3 3.981072-3 3.942869-3 5.011872-3 4.952104-3 6.309573-3 6.216213-3 7.943282-3 7.798032-3 1.000000-2 9.775031-3 1.258925-2 1.224152-2 1.584893-2 1.531130-2 1.995262-2 1.912493-2 2.511886-2 2.384862-2 3.162278-2 2.968310-2 3.981072-2 3.686730-2 5.011872-2 4.568057-2 6.309573-2 5.645488-2 7.943282-2 6.957365-2 1.000000-1 8.544821-2 1.258925-1 1.046156-1 1.584893-1 1.276356-1 1.995262-1 1.552103-1 2.511886-1 1.881057-1 3.162278-1 2.272295-1 3.981072-1 2.735883-1 5.011872-1 3.283576-1 6.309573-1 3.929019-1 7.943282-1 4.690266-1 1.000000+0 5.583718-1 1.258925+0 6.637047-1 1.584893+0 7.880760-1 1.995262+0 9.351536-1 2.511886+0 1.109678+0 3.162278+0 1.317400+0 3.981072+0 1.565362+0 5.011872+0 1.862085+0 6.309573+0 2.218284+0 7.943282+0 2.646772+0 1.000000+1 3.163396+0 1.258925+1 3.787425+0 1.584893+1 4.542544+0 1.995262+1 5.457798+0 2.511886+1 6.568497+0 3.162278+1 7.918494+0 3.981072+1 9.561075+0 5.011872+1 1.156171+1 6.309573+1 1.400135+1 7.943282+1 1.697886+1 1.000000+2 2.061638+1 1.258925+2 2.506357+1 1.584893+2 3.050512+1 1.995262+2 3.716878+1 2.511886+2 4.533368+1 3.162278+2 5.534621+1 3.981072+2 6.763066+1 5.011872+2 8.271377+1 6.309573+2 1.012435+2 7.943282+2 1.240190+2 1.000000+3 1.520275+2 1.258925+3 1.864926+2 1.584893+3 2.289200+2 1.995262+3 2.811770+2 2.511886+3 3.455630+2 3.162278+3 4.249389+2 3.981072+3 5.228233+2 5.011872+3 6.435834+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88225-10 1.995262-5 1.090695-9 2.511886-5 1.728605-9 3.162278-5 2.739654-9 3.981072-5 4.342049-9 5.011872-5 6.881586-9 6.309573-5 1.090621-8 7.943282-5 1.728030-8 1.000000-4 2.738218-8 1.258925-4 4.337968-8 1.584893-4 6.872009-8 1.995262-4 1.088305-7 2.511886-4 1.722872-7 3.162278-4 2.725826-7 3.981072-4 4.308462-7 5.011872-4 6.813068-7 6.309573-4 1.070121-6 7.943282-4 1.683808-6 1.000000-3 2.634920-6 1.258925-3 4.107427-6 1.584893-3 6.404031-6 1.995262-3 9.991815-6 2.511886-3 1.563543-5 3.162278-3 2.445922-5 3.981072-3 3.820303-5 5.011872-3 5.976811-5 6.309573-3 9.336066-5 7.943282-3 1.452500-4 1.000000-2 2.249694-4 1.258925-2 3.477309-4 1.584893-2 5.376287-4 1.995262-2 8.276946-4 2.511886-2 1.270241-3 3.162278-2 1.939677-3 3.981072-2 2.943419-3 5.011872-2 4.438151-3 6.309573-2 6.640853-3 7.943282-2 9.859177-3 1.000000-1 1.455179-2 1.258925-1 2.127696-2 1.584893-1 3.085374-2 1.995262-1 4.431595-2 2.511886-1 6.308295-2 3.162278-1 8.899822-2 3.981072-1 1.245189-1 5.011872-1 1.728296-1 6.309573-1 2.380555-1 7.943282-1 3.253016-1 1.000000+0 4.416282-1 1.258925+0 5.952207-1 1.584893+0 7.968172-1 1.995262+0 1.060109+0 2.511886+0 1.402208+0 3.162278+0 1.844878+0 3.981072+0 2.415710+0 5.011872+0 3.149787+0 6.309573+0 4.091290+0 7.943282+0 5.296510+0 1.000000+1 6.836604+0 1.258925+1 8.801829+0 1.584893+1 1.130639+1 1.995262+1 1.449483+1 2.511886+1 1.855037+1 3.162278+1 2.370428+1 3.981072+1 3.024964+1 5.011872+1 3.855701+1 6.309573+1 4.909438+1 7.943282+1 6.245396+1 1.000000+2 7.938362+1 1.258925+2 1.008290+2 1.584893+2 1.279842+2 1.995262+2 1.623575+2 2.511886+2 2.058550+2 3.162278+2 2.608816+2 3.981072+2 3.304765+2 5.011872+2 4.184735+2 6.309573+2 5.297139+2 7.943282+2 6.703093+2 1.000000+3 8.479725+2 1.258925+3 1.072433+3 1.584893+3 1.355973+3 1.995262+3 1.714085+3 2.511886+3 2.166323+3 3.162278+3 2.737339+3 3.981072+3 3.458248+3 5.011872+3 4.368289+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.970000-6 1.269840+6 6.095369-6 1.138337+6 6.382635-6 8.866401+5 6.606934-6 7.315788+5 6.770000-6 6.365201+5 6.770000-6 6.766301+6 6.850000-6 6.841824+6 7.000000-6 6.991923+6 7.000000-6 1.085228+7 7.100000-6 1.104920+7 7.161434-6 1.117249+7 7.350000-6 1.153825+7 7.413102-6 1.166393+7 7.585776-6 1.200517+7 7.600000-6 1.203202+7 7.850000-6 1.251340+7 7.852356-6 1.251787+7 8.035261-6 1.286857+7 8.100000-6 1.298723+7 8.317638-6 1.339190+7 8.350000-6 1.345062+7 8.511380-6 1.374552+7 8.600000-6 1.390016+7 8.810489-6 1.427116+7 8.912509-6 1.445279+7 9.015711-6 1.463027+7 9.120108-6 1.481065+7 9.225714-6 1.498273+7 9.440609-6 1.533504+7 9.549926-6 1.551527+7 9.660509-6 1.569181+7 9.850000-6 1.599545+7 1.000000-5 1.622305+7 1.020000-5 1.652743+7 1.035142-5 1.675844+7 1.042000-5 1.685955+7 1.060000-5 1.712513+7 1.071519-5 1.729525+7 1.077000-5 1.737218+7 1.100000-5 1.769504+7 1.122018-5 1.800412+7 1.165000-5 1.858540+7 1.174898-5 1.871907+7 1.180000-5 1.878449+7 1.195000-5 1.897665+7 1.207000-5 1.913017+7 1.218000-5 1.927073+7 1.226000-5 1.937285+7 1.235000-5 1.948764+7 1.244515-5 1.960887+7 1.252000-5 1.970097+7 1.260000-5 1.979930+7 1.267000-5 1.988525+7 1.275000-5 1.998338+7 1.282000-5 2.006916+7 1.290000-5 2.016709+7 1.297000-5 2.025269+7 1.305000-5 2.035041+7 1.313000-5 2.044802+7 1.318257-5 2.051211+7 1.320000-5 2.053224+7 1.330000-5 2.064761+7 1.340000-5 2.076279+7 1.353000-5 2.091223+7 1.365000-5 2.104989+7 1.380384-5 2.122595+7 1.396368-5 2.140840+7 1.400000-5 2.144830+7 1.470000-5 2.221191+7 1.479108-5 2.231053+7 1.500000-5 2.252189+7 1.531087-5 2.283466+7 1.548817-5 2.301213+7 1.560000-5 2.311901+7 1.590000-5 2.340439+7 1.621810-5 2.370490+7 1.650000-5 2.394980+7 1.678804-5 2.419830+7 1.680000-5 2.420791+7 1.717908-5 2.451103+7 1.737801-5 2.466889+7 1.757924-5 2.481079+7 1.800000-5 2.510488+7 1.840772-5 2.536291+7 1.850000-5 2.542086+7 1.883649-5 2.559842+7 1.905461-5 2.571247+7 1.935000-5 2.584733+7 1.950000-5 2.591527+7 1.995262-5 2.607136+7 2.000000-5 2.608754+7 2.041738-5 2.620071+7 2.056900-5 2.622405+7 2.089296-5 2.627339+7 2.130000-5 2.630748+7 2.137962-5 2.631406+7 2.162719-5 2.630442+7 2.190000-5 2.627586+7 2.230000-5 2.623461+7 2.238721-5 2.621496+7 2.270000-5 2.612092+7 2.317395-5 2.598145+7 2.330000-5 2.592948+7 2.350000-5 2.583063+7 2.400000-5 2.558867+7 2.420000-5 2.546981+7 2.454709-5 2.523745+7 2.483133-5 2.505111+7 2.511886-5 2.483183+7 2.570396-5 2.435101+7 2.600160-5 2.407923+7 2.660725-5 2.349719+7 2.691535-5 2.317669+7 2.704500-5 2.303404+7 2.754229-5 2.250105+7 2.786121-5 2.213618+7 2.851018-5 2.138118+7 2.870000-5 2.114912+7 2.950000-5 2.017077+7 2.951209-5 2.015549+7 3.019952-5 1.927746+7 3.040000-5 1.903230+7 3.054921-5 1.884258+7 3.126079-5 1.793726+7 3.162278-5 1.747764+7 3.210300-5 1.687056+7 3.235937-5 1.655871+7 3.273407-5 1.609416+7 3.350000-5 1.516881+7 3.388442-5 1.471137+7 3.427678-5 1.424984+7 3.467369-5 1.380278+7 3.507519-5 1.335122+7 3.590900-5 1.245141+7 3.630781-5 1.203366+7 3.672823-5 1.160222+7 3.730000-5 1.104755+7 3.770000-5 1.066765+7 3.850000-5 9.940819+6 3.900000-5 9.505583+6 3.935501-5 9.205256+6 4.000000-5 8.690090+6 4.027170-5 8.477273+6 4.150000-5 7.577401+6 4.168694-5 7.447377+6 4.216965-5 7.118239+6 4.246000-5 6.929039+6 4.246000-5 1.118092+7 4.300000-5 1.073828+7 4.315191-5 1.060846+7 4.365158-5 1.019044+7 4.450000-5 9.498760+6 4.466836-5 9.364094+6 4.507000-5 9.042683+6 4.507000-5 1.107484+7 4.540000-5 1.080068+7 4.550000-5 1.071701+7 4.570882-5 1.054092+7 4.610000-5 1.022132+7 4.623810-5 1.010854+7 4.677351-5 9.675178+6 4.680000-5 9.653977+6 4.786301-5 8.833991+6 4.850000-5 8.365814+6 4.900000-5 8.015083+6 4.954502-5 7.649611+6 5.011872-5 7.278413+6 5.069907-5 6.922275+6 5.128614-5 6.579999+6 5.188000-5 6.247339+6 5.300000-5 5.669554+6 5.370318-5 5.333501+6 5.400000-5 5.198218+6 5.450000-5 4.978086+6 5.623413-5 4.285384+6 5.650000-5 4.187918+6 5.800000-5 3.683642+6 5.821032-5 3.617827+6 5.956621-5 3.226871+6 6.000000-5 3.111121+6 6.095369-5 2.873692+6 6.237348-5 2.559200+6 6.309573-5 2.413660+6 6.400000-5 2.245912+6 6.580000-5 1.953602+6 6.650000-5 1.851830+6 6.683439-5 1.806367+6 6.760830-5 1.707305+6 6.839116-5 1.613125+6 6.850000-5 1.600581+6 6.918310-5 1.526127+6 6.963000-5 1.479714+6 6.963000-5 1.649392+6 7.000000-5 1.613616+6 7.079458-5 1.541215+6 7.150000-5 1.482759+6 7.161434-5 1.473562+6 7.244360-5 1.409496+6 7.300000-5 1.369603+6 7.328245-5 1.350592+6 7.500000-5 1.243508+6 7.585776-5 1.197958+6 7.673615-5 1.154191+6 7.730000-5 1.127880+6 7.762471-5 1.113708+6 7.765400-5 1.112469+6 7.800000-5 1.098136+6 7.900000-5 1.059068+6 7.943282-5 1.043128+6 8.000000-5 1.023598+6 8.040000-5 1.010702+6 8.110000-5 9.891250+5 8.150000-5 9.774121+5 8.222426-5 9.579327+5 8.230000-5 9.559805+5 8.317638-5 9.346563+5 8.330500-5 9.316301+5 8.413951-5 9.126963+5 8.511380-5 8.937423+5 8.609938-5 8.761391+5 8.610000-5 8.761283+5 8.650000-5 8.694915+5 8.709636-5 8.606193+5 8.810489-5 8.468018+5 8.912509-5 8.337911+5 9.015711-5 8.230815+5 9.120108-5 8.132397+5 9.150000-5 8.106589+5 9.225714-5 8.045390+5 9.230000-5 8.042292+5 9.240200-5 8.035180+5 9.332543-5 7.974688+5 9.350000-5 7.963431+5 9.440609-5 7.910518+5 9.450000-5 7.905292+5 9.500000-5 7.878647+5 9.549926-5 7.853931+5 9.580000-5 7.841156+5 9.660509-5 7.809141+5 9.720000-5 7.787618+5 9.740000-5 7.780845+5 9.850000-5 7.748249+5 9.900000-5 7.735072+5 1.000000-4 7.716259+5 1.011579-4 7.699704+5 1.023293-4 7.684591+5 1.035142-4 7.676618+5 1.040000-4 7.675231+5 1.071519-4 7.673408+5 1.080000-4 7.680126+5 1.083927-4 7.682672+5 1.109175-4 7.699311+5 1.122018-4 7.711178+5 1.135011-4 7.725998+5 1.148154-4 7.739631+5 1.150000-4 7.741430+5 1.160000-4 7.753292+5 1.174898-4 7.769228+5 1.180000-4 7.775008+5 1.190000-4 7.785571+5 1.202264-4 7.797146+5 1.205000-4 7.799700+5 1.216186-4 7.812143+5 1.220000-4 7.816031+5 1.250000-4 7.842987+5 1.260000-4 7.851466+5 1.273503-4 7.860377+5 1.288250-4 7.869409+5 1.300000-4 7.875453+5 1.330000-4 7.886235+5 1.340000-4 7.889170+5 1.350000-4 7.890464+5 1.364583-4 7.890470+5 1.365000-4 7.890478+5 1.380384-4 7.889067+5 1.412538-4 7.882312+5 1.430000-4 7.877119+5 1.462177-4 7.858164+5 1.479108-4 7.846877+5 1.480000-4 7.846187+5 1.520000-4 7.809615+5 1.540000-4 7.789868+5 1.580000-4 7.740932+5 1.603245-4 7.711039+5 1.621810-4 7.684585+5 1.650000-4 7.640926+5 1.659587-4 7.625394+5 1.678804-4 7.594742+5 1.720000-4 7.522573+5 1.737801-4 7.490498+5 1.778279-4 7.414112+5 1.800000-4 7.371030+5 1.820000-4 7.330382+5 1.850000-4 7.267018+5 1.883649-4 7.196190+5 1.905461-4 7.149507+5 1.927525-4 7.100271+5 1.972423-4 6.996812+5 2.007000-4 6.917454+5 2.018366-4 6.890663+5 2.065380-4 6.780439+5 2.089296-4 6.724424+5 2.113489-4 6.665800+5 2.162719-4 6.545756+5 2.187762-4 6.485288+5 2.213095-4 6.424305+5 2.264644-4 6.300339+5 2.317395-4 6.170469+5 2.370000-4 6.042741+5 2.370000-4 7.486605+5 2.377000-4 7.471867+5 2.388000-4 7.458017+5 2.397000-4 7.456997+5 2.398833-4 7.459209+5 2.400000-4 7.460576+5 2.404500-4 7.465810+5 2.404500-4 8.468810+5 2.405500-4 8.469646+5 2.412000-4 8.484250+5 2.418000-4 8.510386+5 2.423000-4 8.540697+5 2.425000-4 8.554736+5 2.431000-4 8.608259+5 2.432000-4 8.619063+5 2.437000-4 8.678610+5 2.440000-4 8.721210+5 2.444000-4 8.783555+5 2.447000-4 8.838172+5 2.451000-4 8.917054+5 2.452600-4 8.952637+5 2.454709-4 9.002570+5 2.457000-4 9.057612+5 2.460000-4 9.137185+5 2.463000-4 9.223123+5 2.467000-4 9.349781+5 2.470000-4 9.452007+5 2.472000-4 9.525878+5 2.477000-4 9.723470+5 2.483133-4 1.000252+6 2.488000-4 1.024649+6 2.490000-4 1.035495+6 2.497000-4 1.076815+6 2.505000-4 1.130201+6 2.512000-4 1.182790+6 2.519000-4 1.241390+6 2.520000-4 1.250009+6 2.530000-4 1.343917+6 2.531000-4 1.353658+6 2.540973-4 1.458445+6 2.550000-4 1.560998+6 2.555000-4 1.620436+6 2.558000-4 1.657360+6 2.565000-4 1.745222+6 2.573000-4 1.848357+6 2.575000-4 1.874313+6 2.582000-4 1.967310+6 2.585000-4 2.007245+6 2.590000-4 2.074758+6 2.593000-4 2.114701+6 2.600160-4 2.212100+6 2.610000-4 2.343443+6 2.612000-4 2.370452+6 2.620000-4 2.475615+6 2.623000-4 2.515139+6 2.630268-4 2.608276+6 2.635000-4 2.668752+6 2.641000-4 2.743556+6 2.645000-4 2.792788+6 2.652000-4 2.876255+6 2.660000-4 2.971549+6 2.660725-4 2.979874+6 2.670000-4 3.085064+6 2.680000-4 3.192920+6 2.685000-4 3.246042+6 2.691535-4 3.312578+6 2.695000-4 3.348467+6 2.700000-4 3.398437+6 2.710000-4 3.493874+6 2.720000-4 3.587420+6 2.725000-4 3.631672+6 2.740000-4 3.761770+6 2.754229-4 3.874067+6 2.760000-4 3.920598+6 2.780000-4 4.065036+6 2.780700-4 4.069899+6 2.800000-4 4.195523+6 2.820000-4 4.310339+6 2.827000-4 4.348545+6 2.843000-4 4.427382+6 2.851018-4 4.464163+6 2.870000-4 4.541571+6 2.880000-4 4.578719+6 2.900000-4 4.642753+6 2.910000-4 4.671035+6 2.917427-4 4.688636+6 2.930000-4 4.718480+6 2.940000-4 4.738840+6 2.951209-4 4.756524+6 2.962700-4 4.774654+6 2.985383-4 4.803450+6 3.000000-4 4.816136+6 3.019952-4 4.828856+6 3.030000-4 4.835252+6 3.054921-4 4.837912+6 3.080000-4 4.840576+6 3.100000-4 4.839018+6 3.126079-4 4.830467+6 3.150000-4 4.822663+6 3.198895-4 4.799980+6 3.235937-4 4.776225+6 3.240000-4 4.773633+6 3.273407-4 4.748874+6 3.311311-4 4.721205+6 3.349654-4 4.687787+6 3.350000-4 4.687487+6 3.388442-4 4.649751+6 3.390000-4 4.648235+6 3.467369-4 4.562539+6 3.500000-4 4.524002+6 3.507519-4 4.514065+6 3.548134-4 4.461020+6 3.550000-4 4.458608+6 3.589219-4 4.404965+6 3.600000-4 4.390413+6 3.630781-4 4.345945+6 3.672823-4 4.286534+6 3.715352-4 4.224756+6 3.758374-4 4.160162+6 3.801894-4 4.096507+6 3.845918-4 4.031404+6 3.850000-4 4.025451+6 3.890451-4 3.967232+6 3.916300-4 3.929016+6 3.916300-4 4.316193+6 3.935501-4 4.291857+6 4.000000-4 4.212525+6 4.027170-4 4.178166+6 4.073803-4 4.118540+6 4.096400-4 4.090299+6 4.096400-4 4.229399+6 4.100000-4 4.227909+6 4.102000-4 4.226858+6 4.108000-4 4.222915+6 4.117000-4 4.215876+6 4.128000-4 4.206052+6 4.139000-4 4.195516+6 4.150000-4 4.184417+6 4.168694-4 4.164871+6 4.190000-4 4.141855+6 4.215000-4 4.114064+6 4.216965-4 4.111811+6 4.240000-4 4.083797+6 4.265795-4 4.051879+6 4.270000-4 4.046725+6 4.280000-4 4.034149+6 4.300000-4 4.007944+6 4.340000-4 3.955288+6 4.350000-4 3.942055+6 4.365158-4 3.921390+6 4.415704-4 3.853848+6 4.450000-4 3.807827+6 4.500000-4 3.742343+6 4.518559-4 3.717597+6 4.623810-4 3.579470+6 4.731513-4 3.443812+6 4.786301-4 3.376179+6 4.850000-4 3.300271+6 4.897788-4 3.244582+6 4.940900-4 3.195590+6 4.940900-4 3.338294+6 4.954502-4 3.322674+6 5.039700-4 3.225930+6 5.069907-4 3.192581+6 5.188000-4 3.064326+6 5.248075-4 3.002251+6 5.308844-4 2.940228+6 5.400000-4 2.851019+6 5.432503-4 2.819446+6 5.559043-4 2.701482+6 5.623413-4 2.643029+6 5.650000-4 2.619473+6 5.754399-4 2.530012+6 5.821032-4 2.473985+6 5.956621-4 2.365912+6 6.000000-4 2.332695+6 6.095369-4 2.261367+6 6.100000-4 2.257989+6 6.165950-4 2.210565+6 6.237348-4 2.160972+6 6.309573-4 2.111785+6 6.350000-4 2.085008+6 6.500000-4 1.989638+6 6.531306-4 1.970597+6 6.760830-4 1.837367+6 6.839116-4 1.794399+6 6.850000-4 1.788546+6 6.918310-4 1.752182+6 7.000000-4 1.710005+6 7.079458-4 1.670082+6 7.300000-4 1.566159+6 7.328245-4 1.553469+6 7.413102-4 1.515781+6 7.498942-4 1.479053+6 7.500000-4 1.478608+6 7.585776-4 1.443113+6 7.673615-4 1.408097+6 7.800000-4 1.359584+6 7.943282-4 1.307601+6 8.035261-4 1.275630+6 8.222426-4 1.213247+6 8.317638-4 1.183286+6 8.413951-4 1.154096+6 8.609938-4 1.097522+6 8.709636-4 1.070287+6 8.810489-4 1.043546+6 9.015711-4 9.914154+5 9.120108-4 9.663984+5 9.225714-4 9.420521+5 9.332543-4 9.182067+5 9.500000-4 8.822647+5 9.772372-4 8.279518+5 1.000000-3 7.858958+5 1.023293-3 7.461090+5 1.035142-3 7.267597+5 1.050000-3 7.034697+5 1.083927-3 6.543039+5 1.100000-3 6.326039+5 1.109175-3 6.206896+5 1.110000-3 6.196347+5 1.122018-3 6.045309+5 1.135011-3 5.886964+5 1.174898-3 5.433536+5 1.202264-3 5.151905+5 1.216186-3 5.015825+5 1.230269-3 4.882601+5 1.244515-3 4.752331+5 1.258925-3 4.625637+5 1.288250-3 4.381338+5 1.318257-3 4.150724+5 1.333521-3 4.040243+5 1.355400-3 3.888247+5 1.364583-3 3.826499+5 1.396368-3 3.622881+5 1.400000-3 3.600615+5 1.412538-3 3.525266+5 1.450000-3 3.312543+5 1.479108-3 3.159739+5 1.496236-3 3.074028+5 1.500000-3 3.055508+5 1.513561-3 2.989840+5 1.548817-3 2.828509+5 1.566751-3 2.751310+5 1.659587-3 2.395623+5 1.678804-3 2.329302+5 1.698244-3 2.264781+5 1.717908-3 2.202128+5 1.757924-3 2.082224+5 1.840772-3 1.861561+5 1.862087-3 1.809719+5 1.905461-3 1.709963+5 1.972423-3 1.570711+5 2.041738-3 1.442831+5 2.070000-3 1.394448+5 2.089296-3 1.362617+5 2.113489-3 1.324156+5 2.187762-3 1.215468+5 2.213095-3 1.181263+5 2.238721-3 1.148038+5 2.264644-3 1.115702+5 2.317395-3 1.053125+5 2.344229-3 1.023094+5 2.426610-3 9.382244+4 2.454709-3 9.115950+4 2.483133-3 8.856827+4 2.511886-3 8.605181+4 2.521000-3 8.526956+4 2.521000-3 3.095495+5 2.540973-3 3.033800+5 2.570396-3 2.945919+5 2.629500-3 2.779881+5 2.629500-3 3.841190+5 2.630268-3 3.838322+5 2.660725-3 3.726846+5 2.665000-3 3.712306+5 2.700000-3 3.599949+5 2.710000-3 3.569553+5 2.720000-3 3.537992+5 2.760000-3 3.407929+5 2.786121-3 3.329737+5 2.800000-3 3.289213+5 2.818383-3 3.236579+5 2.846500-3 3.156109+5 2.846500-3 3.618237+5 2.867000-3 3.556174+5 2.884032-3 3.505770+5 2.900000-3 3.459445+5 2.917427-3 3.408766+5 2.951209-3 3.313508+5 3.000000-3 3.182527+5 3.019952-3 3.131068+5 3.070000-3 3.005755+5 3.126079-3 2.873317+5 3.162278-3 2.791132+5 3.198895-3 2.711195+5 3.235937-3 2.633579+5 3.311311-3 2.484122+5 3.349654-3 2.412693+5 3.427678-3 2.276117+5 3.450000-3 2.239054+5 3.507519-3 2.146659+5 3.548134-3 2.084626+5 3.589219-3 2.024305+5 3.630781-3 1.965770+5 3.650000-3 1.939512+5 3.672823-3 1.908961+5 3.715352-3 1.853793+5 3.900000-3 1.638735+5 3.935501-3 1.601469+5 3.981072-3 1.554961+5 4.000000-3 1.536190+5 4.027170-3 1.509764+5 4.073803-3 1.465692+5 4.168694-3 1.381475+5 4.216965-3 1.341238+5 4.315191-3 1.264328+5 4.415704-3 1.191242+5 4.466836-3 1.156141+5 4.518559-3 1.122083+5 4.570882-3 1.089008+5 4.623810-3 1.056938+5 4.677351-3 1.025579+5 4.786301-3 9.656802+4 4.954502-3 8.824827+4 5.011872-3 8.564099+4 5.069907-3 8.311074+4 5.128614-3 8.061779+4 5.248075-3 7.585296+4 5.300000-3 7.389066+4 5.370318-3 7.134467+4 5.432503-3 6.919471+4 5.559043-3 6.509221+4 5.688529-3 6.123894+4 5.754399-3 5.939992+4 5.821032-3 5.761775+4 5.956621-3 5.419728+4 6.000000-3 5.315571+4 6.025596-3 5.255366+4 6.165950-3 4.941643+4 6.237348-3 4.791600+4 6.500000-3 4.291324+4 6.531306-3 4.236613+4 6.606934-3 4.107218+4 6.683439-3 3.981722+4 6.839116-3 3.741555+4 7.000000-3 3.513078+4 7.079458-3 3.407387+4 7.110160-3 3.367700+4 7.413102-3 3.008548+4 7.498942-3 2.916511+4 7.500000-3 2.915401+4 7.673615-3 2.740818+4 7.762471-3 2.656478+4 7.852356-3 2.574800+4 7.943282-3 2.495089+4 8.000000-3 2.447095+4 8.035261-3 2.417902+4 8.222426-3 2.270781+4 8.317638-3 2.200391+4 8.413951-3 2.132176+4 8.511380-3 2.066098+4 8.810489-3 1.880020+4 9.000000-3 1.774045+4 9.120108-3 1.710777+4 9.225714-3 1.657417+4 9.549926-3 1.507361+4 9.660509-3 1.460484+4 9.772372-3 1.415064+4 9.800000-3 1.404110+4 1.011579-2 1.286776+4 1.023293-2 1.246478+4 1.035142-2 1.207477+4 1.047129-2 1.169529+4 1.059254-2 1.132806+4 1.083927-2 1.062868+4 1.096478-2 1.029564+4 1.122018-2 9.660762+3 1.150000-2 9.024423+3 1.161449-2 8.780580+3 1.174898-2 8.505695+3 1.202264-2 7.978157+3 1.216186-2 7.725699+3 1.244515-2 7.244967+3 1.258925-2 7.016139+3 1.288250-2 6.580100+3 1.348963-2 5.787669+3 1.364583-2 5.605125+3 1.380384-2 5.428480+3 1.396368-2 5.256194+3 1.412538-2 5.089483+3 1.428894-2 4.927396+3 1.445440-2 4.770495+3 1.479108-2 4.471672+3 1.500000-2 4.299106+3 1.513561-2 4.191981+3 1.584893-2 3.683970+3 1.603245-2 3.567012+3 1.621810-2 3.452991+3 1.640590-2 3.342699+3 1.659587-2 3.236006+3 1.678804-2 3.132676+3 1.717908-2 2.935148+3 1.737801-2 2.841223+3 1.778279-2 2.662493+3 1.800000-2 2.572936+3 1.840772-2 2.415379+3 1.862087-2 2.337726+3 1.883649-2 2.262506+3 1.927525-2 2.119408+3 1.949845-2 2.051293+3 1.996500-2 1.918334+3 1.996500-2 1.271023+4 2.000000-2 1.266984+4 2.015000-2 1.249887+4 2.018366-2 1.244736+4 2.045000-2 1.205019+4 2.080000-2 1.149364+4 2.089296-2 1.136555+4 2.113489-2 1.104146+4 2.114100-2 1.103345+4 2.150000-2 1.057592+4 2.162719-2 1.041225+4 2.187762-2 1.010001+4 2.222500-2 9.687848+3 2.238721-2 9.503335+3 2.264644-2 9.218359+3 2.317395-2 8.673879+3 2.344229-2 8.417482+3 2.373000-2 8.154130+3 2.426610-2 7.692896+3 2.454709-2 7.465257+3 2.456200-2 7.453441+3 2.511886-2 7.030072+3 2.540973-2 6.822130+3 2.570396-2 6.614775+3 2.600160-2 6.413704+3 2.630268-2 6.218725+3 2.660725-2 6.029672+3 2.691535-2 5.846388+3 2.722701-2 5.668702+3 2.754229-2 5.496432+3 2.818383-2 5.167504+3 2.884032-2 4.857854+3 2.917427-2 4.710091+3 2.951209-2 4.566838+3 2.985383-2 4.427951+3 3.019952-2 4.293307+3 3.090295-2 4.030926+3 3.126079-2 3.905822+3 3.162278-2 3.784606+3 3.273407-2 3.443078+3 3.311311-2 3.336127+3 3.349654-2 3.232509+3 3.427678-2 3.034793+3 3.481550-2 2.907826+3 3.507519-2 2.849208+3 3.548134-2 2.760728+3 3.589219-2 2.674987+3 3.672823-2 2.511432+3 3.758374-2 2.357901+3 3.801894-2 2.284700+3 3.845918-2 2.213693+3 3.935501-2 2.075675+3 4.073803-2 1.884625+3 4.216965-2 1.711160+3 4.315191-2 1.604481+3 4.415704-2 1.504470+3 4.466836-2 1.456828+3 4.500000-2 1.427020+3 4.623810-2 1.322663+3 4.800000-2 1.191285+3 4.954502-2 1.088699+3 5.011872-2 1.053653+3 5.069907-2 1.019731+3 5.128614-2 9.869010+2 5.188000-2 9.551232+2 5.300000-2 8.988600+2 5.308844-2 8.946053+2 5.432503-2 8.378679+2 6.000000-2 6.315739+2 6.025596-2 6.239741+2 6.165950-2 5.839076+2 6.237348-2 5.648513+2 6.309573-2 5.464181+2 6.456542-2 5.113381+2 6.918310-2 4.189726+2 7.000000-2 4.050282+2 7.079458-2 3.920586+2 7.244360-2 3.668755+2 7.328245-2 3.548983+2 7.413102-2 3.433103+2 7.498942-2 3.321013+2 7.500000-2 3.319662+2 7.673615-2 3.105581+2 7.943282-2 2.808358+2 8.511380-2 2.295939+2 8.609938-2 2.220140+2 8.912509-2 2.007447+2 9.120108-2 1.877109+2 9.332543-2 1.755222+2 9.549926-2 1.641258+2 9.660509-2 1.586641+2 9.772372-2 1.533844+2 9.885531-2 1.482807+2 1.035142-1 1.294952+2 1.096478-1 1.093264+2 1.122019-1 1.021674+2 1.148154-1 9.547779+1 1.188502-1 8.625633+1 1.202264-1 8.338507+1 1.216186-1 8.060930+1 1.230269-1 7.792635+1 1.244515-1 7.533283+1 1.273503-1 7.040258+1 1.288250-1 6.805979+1 1.333521-1 6.148954+1 1.380384-1 5.555385+1 1.412538-1 5.191873+1 1.445440-1 4.852172+1 1.462177-1 4.690761+1 1.500000-1 4.351663+1 1.513561-1 4.238111+1 1.531088-1 4.097162+1 1.548817-1 3.960912+1 1.566751-1 3.829197+1 1.621810-1 3.459760+1 1.640590-1 3.344715+1 1.717908-1 2.921567+1 1.737801-1 2.824439+1 1.757924-1 2.730544+1 1.778279-1 2.639776+1 1.819701-1 2.467207+1 1.840772-1 2.385204+1 1.927525-1 2.083565+1 1.949845-1 2.014951+1 1.972423-1 1.948599+1 2.018366-1 1.822398+1 2.041738-1 1.762397+1 2.065380-1 1.704375+1 2.089296-1 1.648269+1 2.137962-1 1.541539+1 2.162719-1 1.490796+1 2.187762-1 1.441725+1 2.213095-1 1.394277+1 2.238721-1 1.348392+1 2.317395-1 1.219737+1 2.371374-1 1.140867+1 2.454709-1 1.033371+1 2.483133-1 9.998391+0 2.511886-1 9.673961+0 2.570396-1 9.056423+0 2.600160-1 8.762602+0 2.630268-1 8.478342+0 2.660725-1 8.203374+0 2.691535-1 7.937325+0 2.710800-1 7.777103+0 2.754229-1 7.431595+0 2.800000-1 7.089510+0 2.818383-1 6.960466+0 2.851018-1 6.739144+0 2.884032-1 6.524855+0 2.951209-1 6.116530+0 2.985383-1 5.922050+0 3.054921-1 5.551465+0 3.090295-1 5.374992+0 3.126079-1 5.204176+0 3.198895-1 4.879221+0 3.273407-1 4.574570+0 3.349654-1 4.293690+0 3.388442-1 4.159786+0 3.427678-1 4.030062+0 3.467369-1 3.904396+0 3.507519-1 3.782669+0 3.548134-1 3.664745+0 3.589219-1 3.550538+0 3.630781-1 3.440087+0 3.672823-1 3.333077+0 3.715352-1 3.229396+0 3.758374-1 3.130836+0 3.801894-1 3.035286+0 3.845918-1 2.942678+0 3.890451-1 2.852896+0 4.000000-1 2.647457+0 4.027170-1 2.599665+0 4.073803-1 2.520384+0 4.120975-1 2.443677+0 4.168694-1 2.369304+0 4.216965-1 2.298661+0 4.265795-1 2.230133+0 4.315191-1 2.163649+0 4.365158-1 2.099148+0 4.466836-1 1.975857+0 4.518559-1 1.916956+0 4.570882-1 1.859836+0 4.623810-1 1.804544+0 4.677351-1 1.752063+0 4.786301-1 1.651650+0 4.897788-1 1.556994+0 5.011872-1 1.467763+0 5.069907-1 1.425091+0 5.128614-1 1.383775+0 5.188000-1 1.344585+0 5.248075-1 1.306509+0 5.370318-1 1.233562+0 5.495409-1 1.164689+0 5.559043-1 1.131714+0 5.623413-1 1.099672+0 5.688529-1 1.068633+0 5.754399-1 1.039206+0 5.888437-1 9.827671-1 5.956621-1 9.557085-1 6.025596-1 9.293945-1 6.095369-1 9.038097-1 6.165950-1 8.789300-1 6.237348-1 8.547353-1 6.309573-1 8.319025-1 6.382635-1 8.096828-1 6.456542-1 7.880569-1 6.531306-1 7.670084-1 6.606935-1 7.465223-1 6.839117-1 6.883003-1 6.918310-1 6.699781-1 6.998420-1 6.526613-1 7.079458-1 6.357921-1 7.161434-1 6.193589-1 7.498942-1 5.577769-1 7.585776-1 5.433648-1 7.673615-1 5.293648-1 7.762471-1 5.161213-1 7.852356-1 5.032114-1 8.035261-1 4.783527-1 8.128305-1 4.663877-1 8.317638-1 4.433482-1 8.413951-1 4.322600-1 8.511380-1 4.214786-1 8.609938-1 4.112953-1 9.015711-1 3.729672-1 9.120108-1 3.639568-1 9.197300-1 3.574990-1 9.225714-1 3.551646-1 9.332543-1 3.465863-1 9.440609-1 3.385056-1 9.549926-1 3.306449-1 9.660509-1 3.229667-1 9.772372-1 3.154669-1 9.885531-1 3.081435-1 1.000000+0 3.009903-1 1.011579+0 2.940051-1 1.022000+0 2.879231-1 1.023293+0 2.871818-1 1.035142+0 2.806833-1 1.047129+0 2.743314-1 1.059254+0 2.681239-1 1.071519+0 2.620581-1 1.083927+0 2.561302-1 1.096478+0 2.503370-1 1.122018+0 2.391404-1 1.135011+0 2.337313-1 1.148154+0 2.284447-1 1.161449+0 2.232786-1 1.174898+0 2.184434-1 1.188600+0 2.136799-1 1.202264+0 2.090857-1 1.216186+0 2.045581-1 1.244515+0 1.957966-1 1.273503+0 1.874106-1 1.288250+0 1.833538-1 1.333521+0 1.720206-1 1.348963+0 1.684011-1 1.380384+0 1.613894-1 1.412538+0 1.546694-1 1.428894+0 1.514158-1 1.462177+0 1.451320-1 1.496236+0 1.393103-1 1.513561+0 1.364879-1 1.603245+0 1.232106-1 1.621810+0 1.207222-1 1.640590+0 1.183626-1 1.678804+0 1.137819-1 1.737801+0 1.072410-1 1.798871+0 1.010770-1 1.819701+0 9.910845-2 1.840772+0 9.723836-2 1.862087+0 9.540356-2 1.905461+0 9.183782-2 1.949845+0 8.840538-2 2.018366+0 8.349658-2 2.044000+0 8.177171-2 2.065380+0 8.038107-2 2.089296+0 7.891996-2 2.137962+0 7.607752-2 2.187762+0 7.333744-2 2.290868+0 6.815062-2 2.317395+0 6.691228-2 2.344229+0 6.570047-2 2.371374+0 6.454965-2 2.426610+0 6.230861-2 2.483133+0 6.014536-2 2.600160+0 5.604219-2 2.630268+0 5.506092-2 2.660725+0 5.409995-2 2.691535+0 5.318581-2 2.754229+0 5.140396-2 2.786121+0 5.053556-2 2.851018+0 4.884251-2 2.985383+0 4.562513-2 3.019952+0 4.485447-2 3.054921+0 4.409924-2 3.090295+0 4.337980-2 3.162278+0 4.197620-2 3.198895+0 4.129153-2 3.273407+0 3.995551-2 3.311311+0 3.930388-2 3.467369+0 3.680196-2 3.507519+0 3.620178-2 3.548134+0 3.561329-2 3.589219+0 3.505264-2 3.672823+0 3.395787-2 3.715352+0 3.342338-2 3.801894+0 3.237950-2 3.845918+0 3.186991-2 4.073803+0 2.943983-2 4.120975+0 2.897653-2 4.168694+0 2.852189-2 4.216965+0 2.808778-2 4.315191+0 2.723943-2 4.365158+0 2.682491-2 4.466836+0 2.601471-2 4.518559+0 2.561888-2 4.786301+0 2.372830-2 4.841724+0 2.336726-2 4.897788+0 2.301284-2 4.954502+0 2.267462-2 5.069907+0 2.201316-2 5.128614+0 2.168970-2 5.248075+0 2.105697-2 5.308844+0 2.074761-2 5.688529+0 1.898457-2 5.754399+0 1.870565-2 5.821032+0 1.843158-2 5.888437+0 1.816870-2 5.956621+0 1.790959-2 6.095369+0 1.740245-2 6.237348+0 1.690968-2 6.382635+0 1.643086-2 6.456542+0 1.619658-2 6.918310+0 1.485945-2 7.000000+0 1.464347-2 7.079458+0 1.443938-2 7.161434+0 1.424039-2 7.328245+0 1.385065-2 7.498942+0 1.347158-2 7.585776+0 1.328595-2 7.762471+0 1.292238-2 8.511380+0 1.156492-2 8.609938+0 1.140558-2 8.709636+0 1.124884-2 8.810489+0 1.109808-2 9.120108+0 1.065786-2 9.332543+0 1.037413-2 9.549926+0 1.009795-2 9.772372+0 9.829147-3 1.059254+1 8.943474-3 1.071519+1 8.823645-3 1.083927+1 8.705714-3 1.100000+1 8.560960-3 1.135011+1 8.260837-3 1.161449+1 8.047005-3 1.202264+1 7.736599-3 1.230269+1 7.536352-3 1.244515+1 7.438184-3 1.364583+1 6.697513-3 1.380384+1 6.610273-3 1.396368+1 6.524379-3 1.400000+1 6.505162-3 1.412538+1 6.441199-3 1.445440+1 6.278928-3 1.500000+1 6.026349-3 1.531087+1 5.890909-3 1.584893+1 5.669721-3 1.603245+1 5.597855-3 1.800000+1 4.924008-3 1.819701+1 4.864975-3 1.862087+1 4.742686-3 1.883649+1 4.683965-3 1.905461+1 4.625977-3 1.972423+1 4.456289-3 2.041738+1 4.292825-3 2.113489+1 4.135369-3 2.137962+1 4.084179-3 2.454709+1 3.517145-3 2.483133+1 3.473608-3 2.540973+1 3.388290-3 2.570396+1 3.347126-3 2.600160+1 3.306466-3 2.754229+1 3.110460-3 2.917427+1 2.926074-3 3.054921+1 2.786476-3 3.090295+1 2.752631-3 3.388442+1 2.496254-3 3.427678+1 2.465934-3 3.507519+1 2.406494-3 3.548134+1 2.377794-3 3.589219+1 2.349439-3 3.935501+1 2.134439-3 4.265795+1 1.962518-3 4.677351+1 1.782935-3 4.786301+1 1.740669-3 5.495409+1 1.507300-3 5.559043+1 1.489327-3 5.623413+1 1.471568-3 5.754399+1 1.436733-3 5.821032+1 1.419869-3 5.888437+1 1.403205-3 5.956621+1 1.386737-3 6.456542+1 1.276746-3 6.918310+1 1.189439-3 7.413102+1 1.108107-3 7.498942+1 1.095103-3 8.810489+1 9.282840-4 9.015711+1 9.066245-4 9.332543+1 8.751105-4 9.549926+1 8.549033-4 9.660509+1 8.449758-4 9.772372+1 8.351640-4 1.122018+2 7.259409-4 1.364583+2 5.952066-4 1.479108+2 5.484803-4 1.496236+2 5.421113-4 1.757924+2 4.603364-4 1.798871+2 4.497081-4 1.862087+2 4.342333-4 1.905461+2 4.242734-4 1.927525+2 4.193797-4 1.949845+2 4.145424-4 2.238721+2 3.606689-4 2.722701+2 2.961123-4 2.951209+2 2.730163-4 2.985383+2 2.698673-4 3.507519+2 2.294114-4 3.589219+2 2.241499-4 3.715352+2 2.164865-4 3.801894+2 2.115452-4 3.845918+2 2.091171-4 3.890451+2 2.067170-4 4.466836+2 1.799757-4 1.083927+3 7.398983-5 1.174898+3 6.824607-5 1.188502+3 6.746281-5 1.396368+3 5.739527-5 1.428894+3 5.608530-5 1.479108+3 5.417667-5 2.951209+3 2.714681-5 3.019952+3 2.652870-5 3.054921+3 2.622495-5 3.090295+3 2.592467-5 3.548134+3 2.257861-5 1.000000+5 8.004022-7 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.970000-6 5.970000-6 6.770000-6 5.970000-6 6.770000-6 6.694742-6 7.000000-6 6.710037-6 7.000000-6 6.813182-6 8.600000-6 6.848415-6 1.935000-5 6.860509-6 4.246000-5 6.861042-6 4.246000-5 9.449972-6 4.365158-5 9.527314-6 4.507000-5 9.584756-6 4.507000-5 1.035272-5 4.786301-5 1.048731-5 5.450000-5 1.074568-5 6.000000-5 1.101918-5 6.580000-5 1.138528-5 6.963000-5 1.166069-5 6.963000-5 1.255963-5 7.500000-5 1.327520-5 7.900000-5 1.372995-5 8.230000-5 1.402013-5 8.511380-5 1.420076-5 8.810489-5 1.432722-5 9.240200-5 1.440007-5 9.740000-5 1.436654-5 1.040000-4 1.420738-5 1.260000-4 1.349554-5 1.380384-4 1.318554-5 1.520000-4 1.291669-5 1.678804-4 1.270235-5 1.883649-4 1.252677-5 2.162719-4 1.240338-5 2.370000-4 1.236038-5 2.370000-4 1.472303-5 2.397000-4 1.478524-5 2.404500-4 1.482533-5 2.404500-4 1.596961-5 2.425000-4 1.612419-5 2.440000-4 1.633384-5 2.454709-4 1.663683-5 2.470000-4 1.706232-5 2.488000-4 1.769630-5 2.531000-4 1.945830-5 2.555000-4 2.034129-5 2.575000-4 2.094319-5 2.593000-4 2.137797-5 2.620000-4 2.187202-5 2.652000-4 2.227644-5 2.695000-4 2.263245-5 2.760000-4 2.295762-5 2.851018-4 2.320485-5 3.000000-4 2.337921-5 3.390000-4 2.351874-5 3.916300-4 2.356284-5 3.916300-4 2.491738-5 4.096400-4 2.509622-5 4.096400-4 2.555001-5 4.190000-4 2.574581-5 4.415704-4 2.595226-5 4.940900-4 2.625081-5 4.940900-4 2.730805-5 7.079458-4 2.868049-5 9.332543-4 2.984096-5 1.202264-3 3.093146-5 1.513561-3 3.193916-5 1.905461-3 3.294336-5 2.344229-3 3.382515-5 2.521000-3 3.413089-5 2.521000-3 5.088226-5 2.629500-3 5.092240-5 2.629500-3 5.322660-5 2.846500-3 5.331426-5 2.846500-3 5.644661-5 3.981072-3 5.759318-5 5.559043-3 5.883953-5 8.035261-3 6.031624-5 1.122018-2 6.171775-5 1.513561-2 6.298159-5 1.996500-2 6.414690-5 1.996500-2 6.875065-5 3.935501-2 6.918770-5 9.885531-2 6.950148-5 4.623810-1 6.969361-5 1.000000+5 6.972156-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.970000-6 0.0 4.246000-5 0.0 4.246000-5 1.14902-10 4.315191-5 1.17007-10 4.365158-5 1.18342-10 4.507000-5 1.20903-10 4.507000-5 1.65992-10 4.610000-5 1.69032-10 4.680000-5 1.70800-10 5.069907-5 1.78365-10 5.450000-5 1.85714-10 5.821032-5 1.94242-10 6.095369-5 2.01459-10 6.400000-5 2.10538-10 6.963000-5 2.29332-10 6.963000-5 2.42381-10 7.328245-5 2.56922-10 7.673615-5 2.68939-10 7.943282-5 2.76454-10 8.230000-5 2.82406-10 8.511380-5 2.86070-10 8.810489-5 2.87749-10 9.150000-5 2.87224-10 9.500000-5 2.84766-10 1.000000-4 2.78926-10 1.160000-4 2.56184-10 1.220000-4 2.48719-10 1.300000-4 2.40306-10 1.380384-4 2.33454-10 1.480000-4 2.26850-10 1.580000-4 2.21812-10 1.720000-4 2.16757-10 1.850000-4 2.13715-10 2.018366-4 2.11251-10 2.213095-4 2.09860-10 2.370000-4 2.09542-10 2.370000-4 2.45276-10 2.398833-4 2.46400-10 2.404500-4 2.46870-10 2.404500-4 8.883017-9 2.412000-4 8.845388-9 2.425000-4 8.823952-9 2.432000-4 8.827875-9 2.440000-4 8.862340-9 2.447000-4 8.923040-9 2.454709-4 9.033965-9 2.460000-4 9.123620-9 2.467000-4 9.284169-9 2.472000-4 9.424673-9 2.477000-4 9.588102-9 2.483133-4 9.815200-9 2.490000-4 1.011566-8 2.497000-4 1.046364-8 2.505000-4 1.091880-8 2.512000-4 1.135995-8 2.520000-4 1.190463-8 2.531000-4 1.272002-8 2.540973-4 1.349926-8 2.575000-4 1.629751-8 2.593000-4 1.769184-8 2.610000-4 1.887982-8 2.620000-4 1.951018-8 2.630268-4 2.010524-8 2.641000-4 2.066173-8 2.652000-4 2.118428-8 2.670000-4 2.190177-8 2.680000-4 2.226037-8 2.695000-4 2.272257-8 2.710000-4 2.313136-8 2.740000-4 2.378089-8 2.780700-4 2.446954-8 2.820000-4 2.499686-8 2.870000-4 2.550291-8 2.930000-4 2.593953-8 2.962700-4 2.612198-8 3.054921-4 2.643264-8 3.150000-4 2.662963-8 3.467369-4 2.696885-8 3.801894-4 2.713566-8 3.916300-4 2.713835-8 3.916300-4 2.952236-8 4.073803-4 2.982851-8 4.096400-4 2.986083-8 4.096400-4 3.188807-8 4.128000-4 3.222415-8 4.190000-4 3.260925-8 4.280000-4 3.292439-8 4.415704-4 3.321538-8 4.940900-4 3.401893-8 4.940900-4 3.629019-8 6.350000-4 3.863614-8 7.300000-4 4.005020-8 8.810489-4 4.199620-8 1.023293-3 4.357164-8 1.174898-3 4.501419-8 1.400000-3 4.685240-8 1.659587-3 4.861328-8 1.972423-3 5.037456-8 2.344229-3 5.206313-8 2.521000-3 5.276420-8 2.521000-3 6.055536-5 2.629500-3 6.052750-5 2.629500-3 7.045167-5 2.846500-3 7.054538-5 2.846500-3 7.248785-5 4.315191-3 7.275426-5 1.122018-2 7.246706-5 1.996500-2 7.210722-5 1.996500-2 1.161599-2 2.045000-2 1.164615-2 2.754229-2 1.177235-2 4.073803-2 1.188240-2 6.456542-2 1.195597-2 1.333521-1 1.200696-2 1.513561+0 1.203752-2 1.000000+5 1.203783-2 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.970000-6 0.0 6.770000-6 8.000000-7 6.770000-6 7.525767-8 6.850000-6 1.495992-7 7.000000-6 2.899632-7 7.000000-6 1.868179-7 7.161434-6 3.417454-7 7.413102-6 5.850043-7 7.852356-6 1.013936-6 8.810489-6 1.960241-6 1.305000-5 6.190749-6 4.246000-5 3.559896-5 4.246000-5 3.300991-5 4.507000-5 3.548512-5 4.507000-5 3.471711-5 6.095369-5 4.988117-5 6.963000-5 5.796908-5 6.963000-5 5.707013-5 8.000000-5 6.617416-5 8.810489-5 7.377738-5 9.900000-5 8.466221-5 1.480000-4 1.350153-4 2.317395-4 2.193721-4 2.370000-4 2.246394-4 2.370000-4 2.222767-4 2.404500-4 2.256244-4 2.404500-4 2.244715-4 2.467000-4 2.297200-4 2.585000-4 2.372863-4 2.695000-4 2.468448-4 3.080000-4 2.845500-4 3.916300-4 3.680400-4 3.916300-4 3.666831-4 4.096400-4 3.845139-4 4.096400-4 3.840581-4 4.940900-4 4.678052-4 4.940900-4 4.667456-4 2.113489-3 2.080052-3 2.521000-3 2.486816-3 2.521000-3 2.409562-3 2.629500-3 2.518050-3 2.629500-3 2.505822-3 2.846500-3 2.722640-3 2.846500-3 2.717566-3 1.996500-2 1.982875-2 1.996500-2 8.280254-3 2.045000-2 8.735077-3 2.818383-2 1.633476-2 5.069907-2 3.870645-2 1.000000+5 9.999999+4 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.996500-2 1.079190+4 2.015000-2 1.063013+4 2.045000-2 1.025820+4 2.080000-2 9.785800+3 2.150000-2 9.021300+3 2.317395-2 7.418305+3 2.540973-2 5.856898+3 3.019952-2 3.705216+3 3.845918-2 1.921104+3 4.800000-2 1.037792+3 6.025596-2 5.451295+2 7.500000-2 2.905580+2 9.549926-2 1.438760+2 1.927525-1 1.829759+1 2.371374-1 1.002122+1 2.800000-1 6.228140+0 3.273407-1 4.019416+0 3.715352-1 2.837747+0 4.168694-1 2.082202+0 4.623810-1 1.586090+0 5.128614-1 1.216442+0 5.688529-1 9.395400-1 6.237348-1 7.516253-1 6.918310-1 5.892170-1 7.673615-1 4.655863-1 8.511380-1 3.707360-1 9.332543-1 3.049442-1 1.023293+0 2.527509-1 1.161449+0 1.965170-1 1.288250+0 1.613971-1 1.462177+0 1.277270-1 1.621810+0 1.062407-1 1.819701+0 8.722065-2 2.065380+0 7.074051-2 2.344229+0 5.782066-2 2.660725+0 4.761175-2 3.054921+0 3.881079-2 3.548134+0 3.134259-2 4.168694+0 2.510160-2 4.897788+0 2.025307-2 5.821032+0 1.622132-2 7.079458+0 1.270787-2 8.709636+0 9.899949-3 1.083927+1 7.661789-3 1.400000+1 5.725100-3 1.862087+1 4.173947-3 2.540973+1 2.981989-3 3.507519+1 2.117916-3 5.754399+1 1.264446-3 9.332543+1 7.701771-4 1.862087+2 3.821667-4 3.715352+2 1.905286-4 1.479108+3 4.767982-5 1.000000+5 7.044400-7 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.996500-2 6.956900-5 1.000000+5 6.956900-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.996500-2 1.366800-2 1.000000+5 1.366800-2 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.996500-2 6.227431-3 1.000000+5 9.999999+4 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.846500-3 4.621278+4 3.070000-3 4.106420+4 3.450000-3 3.400140+4 4.623810-3 2.031494+4 5.069907-3 1.709456+4 5.956621-3 1.257436+4 6.683439-3 1.000084+4 7.673615-3 7.555264+3 9.000000-3 5.403040+3 1.011579-2 4.198665+3 1.174898-2 3.016466+3 1.380384-2 2.091886+3 1.603245-2 1.476238+3 1.840772-2 1.062560+3 2.114100-2 7.593068+2 2.426610-2 5.399215+2 2.818383-2 3.702918+2 3.273407-2 2.522141+2 3.801894-2 1.706628+2 4.500000-2 1.091020+2 5.300000-2 7.013840+1 6.456542-2 4.081546+1 7.943282-2 2.293837+1 9.885531-2 1.234332+1 2.238721-1 1.188344+0 2.691535-1 7.054483-1 3.126079-1 4.650028-1 3.589219-1 3.187404-1 4.073803-1 2.270790-1 4.570882-1 1.680116-1 5.069907-1 1.289376-1 5.623413-1 9.962723-2 6.237348-1 7.753480-2 6.839117-1 6.247134-2 7.585776-1 4.939636-2 8.413951-1 3.934639-2 9.440609-1 3.077957-2 1.023293+0 2.609963-2 1.161449+0 2.029757-2 1.288250+0 1.664569-2 1.428894+0 1.374633-2 1.603245+0 1.119576-2 1.798871+0 9.184176-3 2.044000+0 7.429709-3 2.317395+0 6.079369-3 2.630268+0 5.002533-3 3.019952+0 4.075065-3 3.507519+0 3.288875-3 4.120975+0 2.632557-3 4.841724+0 2.123044-3 5.754399+0 1.699526-3 7.000000+0 1.330400-3 8.609938+0 1.036291-3 1.071519+1 8.016905-4 1.380384+1 6.005783-4 1.819701+1 4.419739-4 2.483133+1 3.155822-4 3.427678+1 2.240434-4 5.623413+1 1.337063-4 9.015711+1 8.236944-5 1.798871+2 4.086099-5 3.589219+2 2.036768-5 1.428894+3 5.096264-6 1.000000+5 7.273400-8 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.846500-3 7.783900-5 1.000000+5 7.783900-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.846500-3 8.575400-5 1.000000+5 8.575400-5 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.846500-3 2.682907-3 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.629500-3 1.061309+5 2.665000-3 1.025268+5 2.700000-3 9.950800+4 2.720000-3 9.800000+4 2.760000-3 9.431000+4 2.818383-3 8.994200+4 3.019952-3 7.567300+4 3.235937-3 6.316100+4 4.027170-3 3.506200+4 4.415704-3 2.723800+4 5.248075-3 1.678100+4 6.165950-3 1.052600+4 6.839116-3 7.768200+3 8.222426-3 4.476600+3 9.772372-3 2.641100+3 1.122018-2 1.719300+3 1.288250-2 1.112900+3 1.513561-2 6.651100+2 1.800000-2 3.792300+2 2.162719-2 2.074000+2 2.600160-2 1.123100+2 3.162278-2 5.807900+1 3.935501-2 2.757300+1 5.069907-2 1.154100+1 9.772372-2 1.189944+0 1.244515-1 5.175772-1 1.500000-1 2.739471-1 1.778279-1 1.545281-1 2.065380-1 9.405971-2 2.371374-1 5.991647-2 2.691535-1 3.990881-2 3.054921-1 2.678469-2 3.427678-1 1.877689-2 3.801894-1 1.372884-2 4.216965-1 1.010484-2 4.677351-1 7.489639-3 5.188000-1 5.592267-3 5.754399-1 4.208099-3 6.309573-1 3.290926-3 6.839117-1 2.670372-3 7.498942-1 2.118485-3 8.317638-1 1.644694-3 9.440609-1 1.214822-3 1.000000+0 1.065800-3 1.071519+0 9.193847-4 1.148154+0 7.990932-4 1.216186+0 7.152299-4 1.333521+0 6.039735-4 1.496236+0 4.931684-4 1.737801+0 3.800036-4 1.949845+0 3.129657-4 2.187762+0 2.596164-4 2.483133+0 2.129334-4 2.851018+0 1.728929-4 3.273407+0 1.414207-4 3.801894+0 1.146091-4 4.466836+0 9.208349-5 5.248075+0 7.453408-5 6.382635+0 5.815430-5 7.585776+0 4.702670-5 9.549926+0 3.574253-5 1.202264+1 2.738298-5 1.531087+1 2.085281-5 2.041738+1 1.519663-5 2.917427+1 1.035672-5 4.265795+1 6.946353-6 6.918310+1 4.210017-6 1.364583+2 2.107185-6 2.722701+2 1.048798-6 1.083927+3 2.620418-7 1.000000+5 2.835600-9 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.629500-3 5.926200-5 1.000000+5 5.926200-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.629500-3 9.644600-5 1.000000+5 9.644600-5 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.629500-3 2.473792-3 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.521000-3 2.242799+5 2.660725-3 1.953194+5 2.710000-3 1.871712+5 2.900000-3 1.575008+5 3.126079-3 1.289151+5 3.935501-3 6.860442+4 4.315191-3 5.304092+4 5.069907-3 3.349665+4 5.821032-3 2.232630+4 6.531306-3 1.586567+4 7.852356-3 9.070766+3 9.120108-3 5.707210+3 1.035142-2 3.834013+3 1.202264-2 2.379323+3 1.412538-2 1.411838+3 1.678804-2 7.999486+2 2.000000-2 4.458040+2 2.373000-2 2.498287+2 2.818383-2 1.385290+2 3.349654-2 7.613162+1 4.073803-2 3.834639+1 5.128614-2 1.697267+1 1.216186-1 7.735921-1 1.462177-1 4.028971-1 1.717908-1 2.292382-1 1.972423-1 1.422550-1 2.238721-1 9.248756-2 2.511886-1 6.294947-2 2.818383-1 4.315806-2 3.126079-1 3.094536-2 3.467369-1 2.235502-2 3.801894-1 1.685788-2 4.168694-1 1.279927-2 4.570882-1 9.791171-3 5.011872-1 7.546268-3 5.495409-1 5.860120-3 6.025596-1 4.585651-3 6.606935-1 3.616510-3 7.161434-1 2.957341-3 7.762471-1 2.433247-3 8.413951-1 2.014691-3 9.197300-1 1.647874-3 9.772372-1 1.442936-3 1.059254+0 1.220634-3 1.161449+0 1.015493-3 1.273503+0 8.520811-4 1.412538+0 7.047384-4 1.640590+0 5.408426-4 1.862087+0 4.356868-4 2.089296+0 3.604445-4 2.371374+0 2.948220-4 2.691535+0 2.429081-4 3.090295+0 1.981088-4 3.589219+0 1.600787-4 4.216965+0 1.282752-4 4.954502+0 1.035575-4 5.956621+0 8.178440-5 7.161434+0 6.503715-5 8.810489+0 5.068933-5 1.100000+1 3.910000-5 1.412538+1 2.942034-5 1.883649+1 2.139428-5 2.570396+1 1.528921-5 3.548134+1 1.086146-5 5.821032+1 6.485671-6 9.549926+1 3.905034-6 1.905461+2 1.938090-6 3.801894+2 9.663127-7 3.019952+3 1.211637-7 1.000000+5 3.656400-9 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.521000-3 5.725100-5 1.000000+5 5.725100-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.521000-3 8.355800-5 1.000000+5 8.355800-5 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.521000-3 2.380191-3 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.940900-4 1.427038+5 5.650000-4 1.236956+5 6.918310-4 9.808422+4 7.413102-4 8.965511+4 8.609938-4 7.353174+4 9.332543-4 6.559244+4 1.110000-3 5.072520+4 1.230269-3 4.323364+4 1.450000-3 3.320300+4 1.678804-3 2.599274+4 1.905461-3 2.091813+4 2.238721-3 1.573771+4 2.660725-3 1.149599+4 3.126079-3 8.504609+3 3.672823-3 6.245011+3 4.315191-3 4.551048+3 5.069907-3 3.291709+3 6.000000-3 2.327180+3 7.079458-3 1.641810+3 8.317638-3 1.159698+3 9.800000-3 8.079300+2 1.150000-2 5.635520+2 1.348963-2 3.905266+2 1.584893-2 2.675342+2 1.862087-2 1.818313+2 2.187762-2 1.226124+2 2.570396-2 8.204257+1 3.019952-2 5.448467+1 3.548134-2 3.591773+1 4.216965-2 2.280464+1 5.011872-2 1.436803+1 6.025596-2 8.713366+0 7.328245-2 5.074017+0 9.120108-2 2.749522+0 1.096478-1 1.631134+0 2.187762-1 2.261443-1 2.630268-1 1.342424-1 3.090295-1 8.565932-2 3.548134-1 5.869010-2 4.027170-1 4.179713-2 4.518559-1 3.091490-2 5.069907-1 2.303791-2 5.623413-1 1.780667-2 6.237348-1 1.386257-2 6.918310-1 1.087465-2 7.673615-1 8.596457-3 8.511380-1 6.845567-3 9.332543-1 5.630113-3 1.022000+0 4.678016-3 1.161449+0 3.627778-3 1.288250+0 2.979465-3 1.462177+0 2.358007-3 1.621810+0 1.961353-3 1.819701+0 1.610195-3 2.065380+0 1.305956-3 2.344229+0 1.067441-3 2.660725+0 8.789402-4 3.054921+0 7.164272-4 3.548134+0 5.785625-4 4.168694+0 4.633617-4 4.897788+0 3.738706-4 5.821032+0 2.994405-4 7.079458+0 2.345815-4 8.709636+0 1.827466-4 1.083927+1 1.414318-4 1.396368+1 1.059887-4 1.862087+1 7.704849-5 2.540973+1 5.504634-5 3.507519+1 3.909550-5 5.754399+1 2.334159-5 9.332543+1 1.421694-5 1.862087+2 7.054640-6 3.715352+2 3.517056-6 2.951209+3 4.409469-7 1.000000+5 1.300300-8 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.940900-4 5.098300-5 1.000000+5 5.098300-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.940900-4 8.715100-8 1.000000+5 8.715100-8 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.940900-4 4.430198-4 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.096400-4 1.390998+5 4.102000-4 1.437450+5 4.108000-4 1.479604+5 4.117000-4 1.530998+5 4.128000-4 1.580638+5 4.139000-4 1.622106+5 4.150000-4 1.656894+5 4.168694-4 1.706829+5 4.190000-4 1.753032+5 4.215000-4 1.794616+5 4.240000-4 1.824898+5 4.270000-4 1.848756+5 4.300000-4 1.861338+5 4.340000-4 1.865390+5 4.450000-4 1.846184+5 5.039700-4 1.742898+5 5.432503-4 1.662276+5 5.754399-4 1.596833+5 6.100000-4 1.520655+5 6.531306-4 1.424695+5 7.079458-4 1.309011+5 7.500000-4 1.223946+5 8.035261-4 1.120940+5 8.810489-4 9.894706+4 9.500000-4 8.872200+4 1.035142-3 7.767445+4 1.135011-3 6.690103+4 1.230269-3 5.832558+4 1.364583-3 4.849190+4 1.500000-3 4.069960+4 1.659587-3 3.347266+4 1.840772-3 2.720927+4 2.041738-3 2.194099+4 2.264644-3 1.757577+4 2.540973-3 1.362133+4 2.818383-3 1.075440+4 3.162278-3 8.211522+3 3.548134-3 6.221339+3 3.981072-3 4.679148+3 4.466836-3 3.494675+3 5.011872-3 2.592023+3 5.688529-3 1.851360+3 6.500000-3 1.288062+3 7.413102-3 8.934970+2 8.413951-3 6.235659+2 9.549926-3 4.322390+2 1.083927-2 2.976634+2 1.244515-2 1.967111+2 1.428894-2 1.290345+2 1.659587-2 8.107646+1 1.927525-2 5.055635+1 2.238721-2 3.129542+1 2.630268-2 1.853294+1 3.126079-2 1.049264+1 3.758374-2 5.676997+0 4.623810-2 2.822254+0 6.000000-2 1.162066+0 1.188502-1 1.117843-1 1.445440-1 5.754005-2 1.717908-1 3.226098-2 2.018366-1 1.894201-2 2.317395-1 1.207807-2 2.630268-1 8.047887-3 2.985383-1 5.401195-3 3.349654-1 3.785329-3 3.758374-1 2.672600-3 4.168694-1 1.967446-3 4.623810-1 1.458605-3 5.128614-1 1.089337-3 5.688529-1 8.198315-4 6.309573-1 6.218184-4 6.918310-1 4.896115-4 7.585776-1 3.880432-4 8.609938-1 2.840507-4 9.225714-1 2.411823-4 9.772372-1 2.117143-4 1.047129+0 1.825550-4 1.122018+0 1.584654-4 1.202264+0 1.385189-4 1.333521+0 1.143917-4 1.513561+0 9.128596-5 1.737801+0 7.176596-5 1.949845+0 5.911925-5 2.187762+0 4.903839-5 2.483133+0 4.021987-5 2.851018+0 3.265838-5 3.311311+0 2.627833-5 3.845918+0 2.130818-5 4.518559+0 1.712967-5 5.308844+0 1.387243-5 6.456542+0 1.082852-5 7.762471+0 8.639665-6 9.772372+0 6.571841-6 1.230269+1 5.038672-6 1.584893+1 3.790686-6 2.113489+1 2.765026-6 3.054921+1 1.863137-6 4.677351+1 1.192144-6 7.413102+1 7.408686-7 1.479108+2 3.668254-7 2.951209+2 1.826803-7 1.174898+3 4.565959-8 1.000000+5 5.35650-10 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.096400-4 3.889400-5 1.000000+5 3.889400-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.096400-4 9.150000-8 1.000000+5 9.150000-8 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.096400-4 3.706545-4 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.916300-4 3.871766+5 4.000000-4 4.032113+5 4.100000-4 4.149808+5 4.216965-4 4.215672+5 4.350000-4 4.241089+5 4.518559-4 4.188942+5 4.850000-4 4.005680+5 5.248075-4 3.764612+5 5.559043-4 3.587090+5 5.956621-4 3.354179+5 6.350000-4 3.132208+5 6.850000-4 2.869844+5 7.300000-4 2.648088+5 7.943282-4 2.358055+5 8.709636-4 2.063326+5 9.332543-4 1.855069+5 1.023293-3 1.596454+5 1.122018-3 1.365324+5 1.216186-3 1.183196+5 1.355400-3 9.682242+4 1.496236-3 8.004340+4 1.659587-3 6.507375+4 1.840772-3 5.251830+4 2.041738-3 4.208540+4 2.264644-3 3.348993+4 2.511886-3 2.647422+4 2.818383-3 2.023467+4 3.162278-3 1.534617+4 3.548134-3 1.155287+4 4.000000-3 8.530520+3 4.518559-3 6.216978+3 5.128614-3 4.438441+3 5.821032-3 3.143254+3 6.606934-3 2.208460+3 7.500000-3 1.539392+3 8.511380-3 1.066049+3 9.660509-3 7.328631+2 1.096478-2 5.004714+2 1.258925-2 3.275494+2 1.445440-2 2.128115+2 1.659587-2 1.372545+2 1.927525-2 8.467383+1 2.238721-2 5.182883+1 2.630268-2 3.030389+1 3.090295-2 1.758521+1 3.672823-2 9.742266+0 4.415704-2 5.149491+0 5.432503-2 2.493774+0 7.079458-2 9.786802-1 1.230269-1 1.378259-1 1.513561-1 6.652200-2 1.778279-1 3.796853-2 2.041738-1 2.364090-2 2.317395-1 1.542482-2 2.600160-1 1.053568-2 2.884032-1 7.524110-3 3.198895-1 5.409846-3 3.548134-1 3.918628-3 3.890451-1 2.961935-3 4.265795-1 2.254516-3 4.677351-1 1.728397-3 5.128614-1 1.334776-3 5.623413-1 1.038618-3 6.095369-1 8.394141-4 6.606935-1 6.829412-4 7.161434-1 5.590946-4 7.852356-1 4.481196-4 8.609938-1 3.611923-4 9.225714-1 3.090999-4 9.885531-1 2.662743-4 1.083927+0 2.203508-4 1.174898+0 1.878286-4 1.288250+0 1.577536-4 1.428894+0 1.305660-4 1.640590+0 1.022920-4 1.862087+0 8.240395-5 2.089296+0 6.816953-5 2.371374+0 5.575682-5 2.691535+0 4.593939-5 3.090295+0 3.746791-5 3.589219+0 3.027575-5 4.216965+0 2.426053-5 4.954502+0 1.958516-5 5.888437+0 1.569411-5 7.079458+0 1.247519-5 8.709636+0 9.718813-6 1.083927+1 7.521428-6 1.400000+1 5.620200-6 1.862087+1 4.097469-6 2.540973+1 2.927381-6 3.507519+1 2.079157-6 5.754399+1 1.241269-6 9.332543+1 7.560693-7 1.862087+2 3.751694-7 3.715352+2 1.870386-7 2.951209+3 2.344965-8 1.000000+5 6.91530-10 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.916300-4 3.866300-5 1.000000+5 3.866300-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.916300-4 5.371500-8 1.000000+5 5.371500-8 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.916300-4 3.529133-4 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.404500-4 1.003000+5 2.412000-4 1.000368+5 2.423000-4 1.003712+5 2.432000-4 1.013828+5 2.440000-4 1.029748+5 2.447000-4 1.050688+5 2.452600-4 1.072958+5 2.460000-4 1.110836+5 2.467000-4 1.156920+5 2.472000-4 1.196792+5 2.477000-4 1.243116+5 2.483133-4 1.309546+5 2.490000-4 1.397880+5 2.497000-4 1.504524+5 2.505000-4 1.649032+5 2.512000-4 1.796744+5 2.520000-4 1.991544+5 2.531000-4 2.307088+5 2.555000-4 3.190216+5 2.565000-4 3.631916+5 2.575000-4 4.110080+5 2.585000-4 4.617840+5 2.593000-4 5.040480+5 2.600160-4 5.427191+5 2.610000-4 5.966640+5 2.620000-4 6.516760+5 2.630268-4 7.078449+5 2.641000-4 7.654600+5 2.652000-4 8.230640+5 2.660725-4 8.673803+5 2.670000-4 9.131240+5 2.680000-4 9.607280+5 2.695000-4 1.028724+6 2.710000-4 1.092956+6 2.725000-4 1.153272+6 2.740000-4 1.210216+6 2.760000-4 1.280744+6 2.780000-4 1.345696+6 2.800000-4 1.404776+6 2.820000-4 1.458484+6 2.843000-4 1.513168+6 2.870000-4 1.568212+6 2.900000-4 1.618460+6 2.930000-4 1.657528+6 2.962700-4 1.689200+6 3.000000-4 1.713848+6 3.030000-4 1.726732+6 3.080000-4 1.737612+6 3.150000-4 1.739720+6 3.240000-4 1.729456+6 3.350000-4 1.705604+6 3.467369-4 1.667066+6 3.550000-4 1.632612+6 3.672823-4 1.573389+6 3.801894-4 1.506145+6 4.027170-4 1.389143+6 4.216965-4 1.294137+6 4.415704-4 1.197654+6 4.623810-4 1.101224+6 4.954502-4 9.624229+5 5.248075-4 8.551312+5 5.559043-4 7.548117+5 6.000000-4 6.341000+5 6.531306-4 5.184479+5 7.000000-4 4.368840+5 7.673615-4 3.455087+5 8.413951-4 2.712993+5 9.225714-4 2.113839+5 1.023293-3 1.586058+5 1.135011-3 1.180241+5 1.258925-3 8.724747+4 1.412538-3 6.181433+4 1.566751-3 4.501120+4 1.757924-3 3.139795+4 1.972423-3 2.172625+4 2.187762-3 1.550079+4 2.454709-3 1.058115+4 2.800000-3 6.780120+3 3.198895-3 4.282134+3 3.650000-3 2.692172+3 4.168694-3 1.671848+3 4.677351-3 1.098537+3 5.300000-3 6.914200+2 6.000000-3 4.335720+2 6.839116-3 2.631200+2 7.943282-3 1.473163+2 9.120108-3 8.560725+1 1.047129-2 4.937105+1 1.202264-2 2.827031+1 1.396368-2 1.533631+1 1.621810-2 8.257569+0 1.927525-2 4.009108+0 2.317395-2 1.840128+0 2.884032-2 7.238386-1 3.845918-2 2.102230-1 7.000000-2 1.585021-2 8.609938-2 6.530235-3 1.035142-1 2.988004-3 1.216186-1 1.518159-3 1.412538-1 8.156067-4 1.621810-1 4.629261-4 1.840772-1 2.774142-4 2.065380-1 1.753794-4 2.317395-1 1.117025-4 2.570396-1 7.493660-5 2.851018-1 5.062131-5 3.126079-1 3.594396-5 3.467369-1 2.463487-5 3.801894-1 1.772689-5 4.120975-1 1.336709-5 4.570882-1 9.371272-6 5.188000-1 6.128132-6 5.623413-1 4.700865-6 6.025596-1 3.766751-6 6.456542-1 3.049762-6 6.998420-1 2.401343-6 8.035261-1 1.612464-6 8.609938-1 1.309677-6 9.120108-1 1.109032-6 9.549926-1 9.775377-7 9.885531-1 8.937307-7 1.023293+0 8.212342-7 1.071519+0 7.389079-7 1.122018+0 6.697333-7 1.174898+0 6.110442-7 1.244515+0 5.493230-7 1.348963+0 4.772988-7 1.513561+0 3.938592-7 1.840772+0 2.809170-7 2.044000+0 2.359900-7 2.317395+0 1.931071-7 2.630268+0 1.588978-7 3.019952+0 1.294313-7 3.507519+0 1.044628-7 4.120975+0 8.361711-8 4.841724+0 6.743167-8 5.754399+0 5.397972-8 7.000000+0 4.225600-8 8.609938+0 3.291474-8 1.071519+1 2.546334-8 1.380384+1 1.907606-8 1.819701+1 1.403839-8 2.454709+1 1.014855-8 3.388442+1 7.202654-9 5.495409+1 4.349322-9 8.810489+1 2.678381-9 1.757924+2 1.328439-9 3.507519+2 6.62103-10 1.396368+3 1.65648-10 1.000000+5 2.31020-12 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.404500-4 2.448700-5 1.000000+5 2.448700-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.404500-4 7.316600-8 1.000000+5 7.316600-8 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.404500-4 2.158898-4 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.370000-4 1.443864+5 2.377000-4 1.445706+5 2.388000-4 1.457718+5 2.397000-4 1.477686+5 2.405500-4 1.507873+5 2.412000-4 1.540242+5 2.418000-4 1.578774+5 2.425000-4 1.635864+5 2.431000-4 1.696710+5 2.437000-4 1.770006+5 2.444000-4 1.873284+5 2.451000-4 1.998054+5 2.457000-4 2.123964+5 2.463000-4 2.269086+5 2.470000-4 2.464650+5 2.477000-4 2.690586+5 2.488000-4 3.111504+5 2.519000-4 4.757388+5 2.530000-4 5.497734+5 2.540973-4 6.304031+5 2.550000-4 7.008480+5 2.558000-4 7.656240+5 2.565000-4 8.235900+5 2.573000-4 8.907540+5 2.582000-4 9.667740+5 2.590000-4 1.034184+6 2.600160-4 1.118848+6 2.612000-4 1.215300+6 2.623000-4 1.302120+6 2.635000-4 1.393308+6 2.645000-4 1.466316+6 2.660000-4 1.570686+6 2.670000-4 1.636890+6 2.685000-4 1.731342+6 2.700000-4 1.820214+6 2.720000-4 1.930506+6 2.740000-4 2.031822+6 2.760000-4 2.124420+6 2.780700-4 2.211180+6 2.800000-4 2.283834+6 2.827000-4 2.372274+6 2.851018-4 2.438378+6 2.880000-4 2.503314+6 2.910000-4 2.554980+6 2.940000-4 2.592942+6 2.985383-4 2.629450+6 3.030000-4 2.647212+6 3.100000-4 2.652462+6 3.198895-4 2.635066+6 3.311311-4 2.595586+6 3.390000-4 2.557014+6 3.500000-4 2.488674+6 3.600000-4 2.415120+6 3.715352-4 2.322990+6 3.890451-4 2.180558+6 4.100000-4 2.015808+6 4.280000-4 1.879362+6 4.500000-4 1.718916+6 4.731513-4 1.561603+6 5.069907-4 1.358176+6 5.400000-4 1.187544+6 5.754399-4 1.029435+6 6.237348-4 8.516777+5 6.760830-4 6.998631+5 7.328245-4 5.706880+5 8.035261-4 4.487837+5 8.810489-4 3.504806+5 9.772372-4 2.633271+5 1.083927-3 1.963485+5 1.202264-3 1.453334+5 1.333521-3 1.068002+5 1.479108-3 7.793139+4 1.659587-3 5.447966+4 1.862087-3 3.777457+4 2.070000-3 2.679498+4 2.317395-3 1.845375+4 2.630268-3 1.204620+4 3.000000-3 7.666200+3 3.427678-3 4.805168+3 3.900000-3 3.029688+3 4.415704-3 1.928350+3 4.954502-3 1.259777+3 5.559043-3 8.178559+2 6.237348-3 5.276681+2 7.110160-3 3.183732+2 8.035261-3 1.973184+2 9.225714-3 1.140880+2 1.059254-2 6.549039+1 1.216186-2 3.731214+1 1.396368-2 2.110792+1 1.603245-2 1.185967+1 1.883649-2 6.006004+0 2.238721-2 2.874552+0 2.722701-2 1.237126+0 3.507519-2 4.118168-1 7.244360-2 1.725959-2 8.912509-2 7.015625-3 1.122019-1 2.602313-3 1.288250-1 1.445323-3 1.462177-1 8.491916-4 1.640590-1 5.275242-4 1.819701-1 3.459544-4 2.018366-1 2.284337-4 2.238721-1 1.519768-4 2.454709-1 1.064933-4 2.710800-1 7.312960-5 2.985383-1 5.113572-5 3.273407-1 3.659881-5 3.548134-1 2.748462-5 3.845918-1 2.077370-5 4.168694-1 1.580720-5 4.466836-1 1.258159-5 4.786301-1 1.007808-5 5.069907-1 8.425977-6 5.495409-1 6.624331-6 6.531306-1 4.016451-6 7.079458-1 3.200588-6 7.585776-1 2.652863-6 8.128305-1 2.215406-6 8.609938-1 1.917341-6 9.120108-1 1.669099-6 9.660509-1 1.462391-6 1.023293+0 1.290324-6 1.096478+0 1.117794-6 1.174898+0 9.747327-7 1.273503+0 8.379704-7 1.428894+0 6.803759-7 1.678804+0 5.127216-7 1.905461+0 4.135256-7 2.137962+0 3.425272-7 2.426610+0 2.805479-7 2.754229+0 2.314436-7 3.162278+0 1.889902-7 3.672823+0 1.528930-7 4.315191+0 1.226474-7 5.069907+0 9.911540-8 6.095369+0 7.835297-8 7.328245+0 6.236587-8 9.120108+0 4.799038-8 1.135011+1 3.719663-8 1.445440+1 2.827785-8 1.905461+1 2.083629-8 2.600160+1 1.489402-8 3.589219+1 1.058286-8 5.956621+1 6.246034-9 9.772372+1 3.762180-9 1.949845+2 1.867479-9 3.890451+2 9.31219-10 3.090295+3 1.16773-10 1.000000+5 3.60610-12 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.370000-4 2.461100-5 1.000000+5 2.461100-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.370000-4 3.94830-10 1.000000+5 3.94830-10 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.370000-4 2.123886-4 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.963000-5 1.696778+5 7.150000-5 1.758304+5 7.328245-5 1.804736+5 7.585776-5 1.856067+5 7.900000-5 1.900544+5 8.317638-5 1.941373+5 8.810489-5 1.972545+5 9.440609-5 1.995445+5 1.011579-4 2.004047+5 1.080000-4 1.996922+5 1.135011-4 1.980094+5 1.202264-4 1.946962+5 1.273503-4 1.899339+5 1.350000-4 1.837992+5 1.430000-4 1.767262+5 1.540000-4 1.666642+5 1.678804-4 1.544013+5 1.850000-4 1.406356+5 2.018366-4 1.285308+5 2.187762-4 1.175561+5 2.400000-4 1.052974+5 2.660725-4 9.240920+4 3.019952-4 7.815759+4 3.388442-4 6.667724+4 3.801894-4 5.647573+4 4.500000-4 4.389000+4 5.188000-4 3.522631+4 6.309573-4 2.577868+4 7.500000-4 1.942162+4 9.120108-4 1.400187+4 1.135011-3 9.632837+3 1.400000-3 6.677240+3 1.698244-3 4.729991+3 2.041738-3 3.379284+3 2.426610-3 2.447711+3 2.917427-3 1.721797+3 3.507519-3 1.201557+3 4.216965-3 8.319532+2 5.011872-3 5.852106+2 5.956621-3 4.086134+2 7.079458-3 2.831260+2 8.317638-3 1.995467+2 9.772372-3 1.396297+2 1.216186-2 8.523676+1 1.428894-2 5.881867+1 1.678804-2 4.027800+1 1.949845-2 2.812675+1 2.264644-2 1.949186+1 2.540973-2 1.461715+1 2.951209-2 9.970731+0 3.481550-2 6.481824+0 4.415704-2 3.452722+0 5.308844-2 2.104865+0 6.309573-2 1.314277+0 7.673615-2 7.641220-1 9.549926-2 4.134985-1 1.202264-1 2.148067-1 2.137962-1 4.139436-2 2.600160-1 2.378119-2 3.054921-1 1.517138-2 3.507519-1 1.038928-2 4.000000-1 7.301600-3 4.518559-1 5.304757-3 5.069907-1 3.953274-3 5.623413-1 3.055670-3 6.237348-1 2.378906-3 6.918310-1 1.866210-3 7.673615-1 1.475275-3 8.511380-1 1.174814-3 9.332543-1 9.662106-4 1.023293+0 8.007348-4 1.161449+0 6.225328-4 1.288250+0 5.112855-4 1.462177+0 4.046411-4 1.621810+0 3.365598-4 1.819701+0 2.762879-4 2.065380+0 2.240866-4 2.344229+0 1.831610-4 2.660725+0 1.508131-4 3.054921+0 1.229252-4 3.548134+0 9.927076-5 4.168694+0 7.950462-5 4.897788+0 6.414939-5 5.821032+0 5.137802-5 7.079458+0 4.024914-5 8.709636+0 3.135616-5 1.083927+1 2.426747-5 1.400000+1 1.813300-5 1.862087+1 1.321985-5 2.570396+1 9.329332-6 3.548134+1 6.627404-6 5.888437+1 3.910797-6 9.660509+1 2.355113-6 1.927525+2 1.168965-6 3.845918+2 5.828640-7 3.054921+3 7.308911-8 1.000000+5 2.231200-9 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.963000-5 2.039900-5 1.000000+5 2.039900-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.963000-5 3.56180-10 1.000000+5 3.56180-10 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.963000-5 4.923064-5 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.507000-5 2.032160+6 4.540000-5 2.011600+6 4.610000-5 1.952406+6 4.680000-5 1.880842+6 4.786301-5 1.762156+6 4.900000-5 1.632474+6 5.011872-5 1.508849+6 5.188000-5 1.328259+6 5.400000-5 1.136026+6 5.650000-5 9.446940+5 6.000000-5 7.330280+5 6.683439-5 4.617646+5 7.000000-5 3.810020+5 7.244360-5 3.322422+5 7.500000-5 2.911780+5 7.762471-5 2.574334+5 8.000000-5 2.327380+5 8.230000-5 2.130520+5 8.413951-5 1.997682+5 8.650000-5 1.853616+5 8.912509-5 1.722004+5 9.150000-5 1.623938+5 9.440609-5 1.525682+5 9.740000-5 1.444406+5 1.000000-4 1.386886+5 1.035142-4 1.324337+5 1.071519-4 1.273917+5 1.109175-4 1.233374+5 1.150000-4 1.199464+5 1.205000-4 1.165610+5 1.273503-4 1.135770+5 1.380384-4 1.103219+5 1.621810-4 1.046363+5 1.778279-4 1.008845+5 1.927525-4 9.709569+4 2.089296-4 9.282667+4 2.264644-4 8.807460+4 2.454709-4 8.295460+4 2.660725-4 7.759957+4 2.917427-4 7.137986+4 3.198895-4 6.516882+4 3.507519-4 5.903118+4 3.850000-4 5.300040+4 4.265795-4 4.673863+4 4.731513-4 4.086262+4 5.188000-4 3.601955+4 5.821032-4 3.053575+4 6.500000-4 2.588280+4 7.328245-4 2.144496+4 8.317638-4 1.744241+4 9.332543-4 1.434682+4 1.050000-3 1.166606+4 1.174898-3 9.513391+3 1.318257-3 7.668154+3 1.479108-3 6.137007+3 1.659587-3 4.875161+3 1.862087-3 3.844571+3 2.089296-3 3.009439+3 2.344229-3 2.338215+3 2.630268-3 1.803656+3 2.951209-3 1.381502+3 3.311311-3 1.050818+3 3.715352-3 7.938827+2 4.216965-3 5.787511+2 4.786301-3 4.186285+2 5.432503-3 3.004914+2 6.165950-3 2.140640+2 7.000000-3 1.512584+2 8.000000-3 1.041000+2 9.120108-3 7.160778+1 1.216186-2 3.113328+1 1.364583-2 2.216815+1 1.500000-2 1.665670+1 1.640590-2 1.261533+1 1.778279-2 9.754327+0 1.862087-2 8.388656+0 1.949845-2 7.175928+0 2.018366-2 6.410858+0 2.113489-2 5.562322+0 2.238721-2 4.694339+0 2.454709-2 3.524797+0 2.691535-2 2.627154+0 2.985383-2 1.872940+0 3.349654-2 1.275574+0 3.801894-2 8.294365-1 4.466836-2 4.755839-1 5.069907-2 3.064112-1 1.188502-1 1.666711-2 1.462177-1 8.260506-3 1.737801-1 4.632440-3 2.018366-1 2.824780-3 2.317395-1 1.801379-3 2.630268-1 1.200601-3 2.985383-1 8.059987-4 3.349654-1 5.649656-4 3.758374-1 3.989400-4 4.168694-1 2.937078-4 4.623810-1 2.177533-4 5.128614-1 1.625983-4 5.688529-1 1.223199-4 6.237348-1 9.561691-5 6.839117-1 7.524108-5 7.498942-1 5.959779-5 8.609938-1 4.238795-5 9.225714-1 3.598303-5 9.772372-1 3.158199-5 1.047129+0 2.722933-5 1.122018+0 2.363322-5 1.202264+0 2.065772-5 1.333521+0 1.706158-5 1.513561+0 1.361630-5 1.737801+0 1.070450-5 1.949845+0 8.818073-6 2.187762+0 7.314679-6 2.483133+0 5.999304-6 2.851018+0 4.871280-6 3.311311+0 3.919577-6 3.845918+0 3.178235-6 4.518559+0 2.554988-6 5.308844+0 2.069164-6 6.456542+0 1.615171-6 7.762471+0 1.288705-6 9.772372+0 9.802447-7 1.244515+1 7.417622-7 1.603245+1 5.582444-7 2.137962+1 4.073068-7 3.090295+1 2.745277-7 4.786301+1 1.736018-7 7.498942+1 1.092135-7 1.496236+2 5.408048-8 2.985383+2 2.693410-8 1.188502+3 6.732410-9 1.000000+5 7.98970-11 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.507000-5 1.377000-5 1.000000+5 1.377000-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.507000-5 3.66630-10 1.000000+5 3.66630-10 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.507000-5 3.129963-5 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.246000-5 4.251880+6 4.300000-5 4.144600+6 4.365158-5 3.991252+6 4.450000-5 3.772144+6 4.550000-5 3.507732+6 4.677351-5 3.181753+6 4.850000-5 2.776944+6 5.069907-5 2.331675+6 5.370318-5 1.842134+6 6.095369-5 1.084681+6 6.400000-5 8.903400+5 6.650000-5 7.677200+5 6.850000-5 6.884760+5 7.079458-5 6.141451+5 7.300000-5 5.562160+5 7.500000-5 5.129240+5 7.730000-5 4.719080+5 7.943282-5 4.406615+5 8.150000-5 4.154200+5 8.413951-5 3.890046+5 8.650000-5 3.698028+5 8.912509-5 3.523257+5 9.225714-5 3.356602+5 9.549926-5 3.220913+5 9.900000-5 3.106056+5 1.023293-4 3.019808+5 1.071519-4 2.923806+5 1.122018-4 2.848863+5 1.202264-4 2.762133+5 1.479108-4 2.555716+5 1.621810-4 2.452801+5 1.778279-4 2.336582+5 1.927525-4 2.224441+5 2.089296-4 2.103060+5 2.264644-4 1.974282+5 2.454709-4 1.840228+5 2.691535-4 1.685521+5 2.951209-4 1.532991+5 3.235937-4 1.384713+5 3.548134-4 1.241451+5 3.935501-4 1.089423+5 4.415704-4 9.346009+4 4.897788-4 8.080234+4 5.432503-4 6.936660+4 6.095369-4 5.814677+4 6.839116-4 4.837750+4 7.800000-4 3.887364+4 8.709636-4 3.214651+4 9.772372-4 2.618528+4 1.100000-3 2.106656+4 1.244515-3 1.666549+4 1.396368-3 1.330028+4 1.566751-3 1.053670+4 1.757924-3 8.289017+3 1.972423-3 6.473927+3 2.213095-3 5.017886+3 2.483133-3 3.861126+3 2.786121-3 2.950425+3 3.126079-3 2.238496+3 3.507519-3 1.686614+3 3.981072-3 1.225742+3 4.518559-3 8.839123+2 5.128614-3 6.324344+2 5.821032-3 4.489998+2 6.606934-3 3.162955+2 7.498942-3 2.211400+2 8.511380-3 1.534708+2 1.202264-2 5.545673+1 1.348963-2 3.921928+1 1.479108-2 2.953670+1 1.603245-2 2.290980+1 1.737801-2 1.765178+1 1.862087-2 1.402836+1 2.018366-2 1.065394+1 2.162719-2 8.491298+0 2.344229-2 6.565973+0 2.456200-2 5.672245+0 2.754229-2 3.880815+0 3.126079-2 2.529690+0 3.589219-2 1.573010+0 4.216965-2 8.960261-1 7.413102-2 1.224331-1 1.273503-1 1.802921-2 1.548817-1 9.078174-3 1.819701-1 5.194248-3 2.089296-1 3.241365-3 2.371374-1 2.118580-3 2.660725-1 1.449395-3 2.951209-1 1.036673-3 3.273407-1 7.466480-4 3.630781-1 5.418370-4 4.000000-1 4.045100-4 4.365158-1 3.128523-4 4.786301-1 2.402979-4 5.248075-1 1.859793-4 5.754399-1 1.450686-4 6.237348-1 1.174969-4 6.839117-1 9.304953-5 7.498942-1 7.427759-5 8.413951-1 5.659027-5 9.120108-1 4.711978-5 9.772372-1 4.055350-5 1.071519+0 3.353037-5 1.174898+0 2.792464-5 1.288250+0 2.345267-5 1.428894+0 1.940878-5 1.640590+0 1.520413-5 1.862087+0 1.224799-5 2.089296+0 1.013311-5 2.371374+0 8.288428-6 2.691535+0 6.828946-6 3.090295+0 5.569490-6 3.589219+0 4.500453-6 4.216965+0 3.606319-6 4.954502+0 2.911312-6 5.888437+0 2.332874-6 7.079458+0 1.854356-6 8.709636+0 1.444656-6 1.083927+1 1.118018-6 1.400000+1 8.354200-7 1.862087+1 6.090727-7 2.540973+1 4.351448-7 3.507519+1 3.090522-7 5.754399+1 1.845198-7 9.332543+1 1.123877-7 1.862087+2 5.576733-8 3.715352+2 2.780269-8 2.951209+3 3.485733-9 1.000000+5 1.02790-10 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.246000-5 1.366900-5 1.000000+5 1.366900-5 1 42000 7 7 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.246000-5 3.02150-10 1.000000+5 3.02150-10 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.246000-5 2.879070-5 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 7.000000-6 3.860360+6 7.413102-6 4.236091+6 7.850000-6 4.616440+6 8.317638-6 5.000925+6 8.912509-6 5.456909+6 9.549926-6 5.905823+6 1.035142-5 6.426912+6 1.122018-5 6.945332+6 1.244515-5 7.609987+6 1.396368-5 8.356466+6 1.548817-5 9.026395+6 1.678804-5 9.528558+6 1.800000-5 9.917080+6 1.905461-5 1.018492+7 2.000000-5 1.035986+7 2.089296-5 1.046017+7 2.162719-5 1.049167+7 2.238721-5 1.047336+7 2.330000-5 1.038242+7 2.420000-5 1.022134+7 2.511886-5 9.988452+6 2.600160-5 9.705705+6 2.691535-5 9.360162+6 2.786121-5 8.956214+6 2.870000-5 8.568280+6 2.951209-5 8.174461+6 3.054921-5 7.656707+6 3.162278-5 7.115579+6 3.273407-5 6.561729+6 3.388442-5 6.005608+6 3.507519-5 5.457159+6 3.630781-5 4.924924+6 3.770000-5 4.370940+6 3.900000-5 3.899300+6 4.027170-5 3.479746+6 4.168694-5 3.059512+6 4.315191-5 2.672986+6 4.466836-5 2.320083+6 4.623810-5 1.999856+6 4.786301-5 1.711369+6 4.954502-5 1.453608+6 5.128614-5 1.225044+6 5.300000-5 1.032820+6 5.450000-5 8.877460+5 5.623413-5 7.435948+5 5.800000-5 6.194380+5 5.956621-5 5.257981+5 6.095369-5 4.540270+5 6.237348-5 3.901464+5 6.400000-5 3.274220+5 6.580000-5 2.692960+5 6.760830-5 2.210565+5 6.918310-5 1.860688+5 7.161434-5 1.427340+5 7.585776-5 9.116744+4 7.765400-5 7.632723+4 7.900000-5 6.732180+4 8.040000-5 5.960600+4 8.150000-5 5.458140+4 8.230000-5 5.144020+4 8.330500-5 4.804856+4 8.413951-5 4.566066+4 8.511380-5 4.331858+4 8.610000-5 4.139160+4 8.709636-5 3.985242+4 8.810489-5 3.866962+4 8.912509-5 3.781705+4 9.015711-5 3.726947+4 9.120108-5 3.700247+4 9.230000-5 3.699780+4 9.350000-5 3.727780+4 9.450000-5 3.771080+4 9.580000-5 3.850940+4 9.720000-5 3.962520+4 9.900000-5 4.137960+4 1.011579-4 4.385005+4 1.109175-4 5.741561+4 1.148154-4 6.302862+4 1.180000-4 6.743600+4 1.216186-4 7.217536+4 1.250000-4 7.629000+4 1.288250-4 8.051626+4 1.330000-4 8.460620+4 1.365000-4 8.763920+4 1.412538-4 9.117262+4 1.462177-4 9.416967+4 1.520000-4 9.691140+4 1.580000-4 9.895280+4 1.650000-4 1.004540+5 1.720000-4 1.011794+5 1.800000-4 1.011592+5 1.883649-4 1.004147+5 1.972423-4 9.890474+4 2.065380-4 9.678346+4 2.162719-4 9.406673+4 2.264644-4 9.091870+4 2.398833-4 8.649064+4 2.540973-4 8.164503+4 2.691535-4 7.651671+4 2.851018-4 7.123117+4 3.054921-4 6.485607+4 3.273407-4 5.861383+4 3.507519-4 5.256976+4 3.758374-4 4.681810+4 4.073803-4 4.057418+4 4.415704-4 3.490004+4 4.786301-4 2.979296+4 5.188000-4 2.525432+4 5.623413-4 2.126660+4 6.165950-4 1.734354+4 6.760830-4 1.404058+4 7.498942-4 1.098569+4 8.222426-4 8.771011+3 9.015711-4 6.954475+3 1.000000-3 5.315800+3 1.109175-3 4.031577+3 1.230269-3 3.033934+3 1.364583-3 2.266004+3 1.513561-3 1.680530+3 1.678804-3 1.236209+3 1.862087-3 9.023969+2 2.089296-3 6.308432+2 2.317395-3 4.539221+2 2.570396-3 3.244332+2 2.867000-3 2.261002+2 3.198895-3 1.561984+2 3.589219-3 1.051208+2 4.073803-3 6.746050+1 4.570882-3 4.477948+1 5.128614-3 2.951995+1 5.754399-3 1.932496+1 6.531306-3 1.203332+1 7.413102-3 7.435836+0 8.413951-3 4.561751+0 1.023293-2 2.120085+0 1.216186-2 1.081826+0 1.348963-2 7.182608-1 1.479108-2 4.957704-1 1.603245-2 3.559850-1 1.717908-2 2.663438-1 1.840772-2 1.979558-1 1.949845-2 1.530713-1 2.018366-2 1.318423-1 2.089296-2 1.143619-1 2.162719-2 9.970721-2 2.222500-2 8.976014-2 2.426610-2 6.265954-2 2.660725-2 4.268323-2 2.951209-2 2.750650-2 3.311311-2 1.675370-2 3.801894-2 9.168598-3 4.954502-2 2.852950-3 6.237348-2 1.055851-3 7.943282-2 3.742880-4 9.660509-2 1.627880-4 1.148154-1 7.859226-5 1.333521-1 4.210142-5 1.531088-1 2.382803-5 1.737801-1 1.423611-5 1.972423-1 8.569524-6 2.213095-1 5.443431-6 2.483133-1 3.484034-6 2.754229-1 2.347648-6 3.090295-1 1.525896-6 3.427678-1 1.043024-6 3.758374-1 7.488043-7 4.073803-1 5.635744-7 4.466836-1 4.102461-7 4.897788-1 3.006872-7 5.370318-1 2.217628-7 5.888437-1 1.647332-7 6.382635-1 1.279478-7 6.918310-1 1.000406-7 7.585776-1 7.609145-8 8.035261-1 6.434027-8 8.511380-1 5.418968-8 9.015711-1 4.594768-8 9.440609-1 4.053163-8 9.885531-1 3.601501-8 1.035142+0 3.227118-8 1.083927+0 2.912878-8 1.135011+0 2.646409-8 1.188600+0 2.418000-8 1.273503+0 2.131716-8 1.380384+0 1.853657-8 1.513561+0 1.587961-8 1.819701+0 1.154953-8 2.018366+0 9.713323-9 2.290868+0 7.927980-9 2.600160+0 6.519466-9 2.985383+0 5.307437-9 3.467369+0 4.280949-9 4.073803+0 3.424717-9 4.786301+0 2.760328-9 5.688529+0 2.208587-9 6.918310+0 1.728587-9 8.511380+0 1.345471-9 1.059254+1 1.040506-9 1.364583+1 7.79193-10 1.800000+1 5.72830-10 2.454709+1 4.09196-10 3.427678+1 2.86925-10 5.623413+1 1.71241-10 9.015711+1 1.05489-10 1.798871+2 5.23312-11 3.589219+2 2.60858-11 1.428894+3 6.52686-12 1.000000+5 9.31520-14 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 7.000000-6 7.000000-6 1.000000+5 7.000000-6 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.000000-6 0.0 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.770000-6 6.129781+6 7.161434-6 6.709208+6 7.585776-6 7.298856+6 8.035261-6 7.880245+6 8.511380-6 8.449210+6 9.120108-6 9.120355+6 9.850000-6 9.849120+6 1.071519-5 1.063116+7 1.174898-5 1.147875+7 1.318257-5 1.253401+7 1.479108-5 1.358145+7 1.621810-5 1.438369+7 1.737801-5 1.493507+7 1.850000-5 1.535805+7 1.950000-5 1.562715+7 2.041738-5 1.577156+7 2.137962-5 1.580922+7 2.230000-5 1.573413+7 2.317395-5 1.556055+7 2.400000-5 1.530519+7 2.483133-5 1.496342+7 2.570396-5 1.452337+7 2.660725-5 1.399408+7 2.754229-5 1.338250+7 2.851018-5 1.269749+7 2.950000-5 1.196025+7 3.040000-5 1.127358+7 3.126079-5 1.061489+7 3.235937-5 9.786371+6 3.350000-5 8.953890+6 3.467369-5 8.137572+6 3.590900-5 7.331199+6 3.730000-5 6.495330+6 3.850000-5 5.837580+6 4.000000-5 5.095230+6 4.150000-5 4.435950+6 4.300000-5 3.853620+6 4.466836-5 3.288570+6 4.623810-5 2.827615+6 4.786301-5 2.413401+6 4.954502-5 2.043760+6 5.128614-5 1.716812+6 5.300000-5 1.443021+6 5.450000-5 1.237092+6 5.623413-5 1.032837+6 5.800000-5 8.572860+5 5.956621-5 7.253816+5 6.095369-5 6.247131+5 6.237348-5 5.354047+5 6.400000-5 4.479360+5 6.580000-5 3.671220+5 6.760830-5 3.003790+5 7.000000-5 2.304942+5 7.500000-5 1.347363+5 7.673615-5 1.132949+5 7.800000-5 1.005987+5 7.900000-5 9.206760+4 8.000000-5 8.473080+4 8.110000-5 7.789890+4 8.222426-5 7.211408+4 8.317638-5 6.806250+4 8.413951-5 6.467376+4 8.511380-5 6.190210+4 8.610000-5 5.970210+4 8.709636-5 5.803559+4 8.810489-5 5.685957+4 8.912509-5 5.613720+4 9.015711-5 5.583234+4 9.120108-5 5.590991+4 9.240200-5 5.642003+4 9.350000-5 5.722980+4 9.500000-5 5.878740+4 9.660509-5 6.093611+4 9.850000-5 6.398760+4 1.011579-4 6.896525+4 1.083927-4 8.454499+4 1.122018-4 9.299491+4 1.160000-4 1.011411+5 1.190000-4 1.072173+5 1.220000-4 1.129263+5 1.260000-4 1.199319+5 1.300000-4 1.261572+5 1.340000-4 1.315863+5 1.380384-4 1.363434+5 1.430000-4 1.412109+5 1.480000-4 1.450632+5 1.540000-4 1.485573+5 1.603245-4 1.509876+5 1.678804-4 1.525038+5 1.737801-4 1.528187+5 1.820000-4 1.521267+5 1.905461-4 1.503822+5 2.007000-4 1.471290+5 2.113489-4 1.428681+5 2.213095-4 1.383046+5 2.317395-4 1.331389+5 2.454709-4 1.260144+5 2.600160-4 1.183585+5 2.754229-4 1.103826+5 2.917427-4 1.022782+5 3.126079-4 9.270667+4 3.349654-4 8.342557+4 3.589219-4 7.452329+4 3.845918-4 6.612170+4 4.168694-4 5.708456+4 4.518559-4 4.891573+4 4.897788-4 4.160772+4 5.308844-4 3.514740+4 5.754399-4 2.949991+4 6.309573-4 2.397467+4 6.918310-4 1.934682+4 7.585776-4 1.551353+4 8.317638-4 1.235560+4 9.225714-4 9.487596+3 1.023293-3 7.227597+3 1.135011-3 5.462493+3 1.258925-3 4.096294+3 1.396368-3 3.048158+3 1.548817-3 2.250892+3 1.717908-3 1.649619+3 1.905461-3 1.200180+3 2.113489-3 8.668904+2 2.344229-3 6.217774+2 2.630268-3 4.264926+2 2.951209-3 2.902900+2 3.235937-3 2.121891+2 3.630781-3 1.420516+2 4.216965-3 8.356447+1 4.786301-3 5.295609+1 5.370318-3 3.472161+1 6.025596-3 2.260654+1 6.839116-3 1.399143+1 7.762471-3 8.593498+0 8.810489-3 5.239818+0 1.023293-2 2.900389+0 1.216186-2 1.470882+0 1.348963-2 9.727404-1 1.479108-2 6.690459-1 1.603245-2 4.789205-1 1.717908-2 3.573874-1 1.862087-2 2.517617-1 1.949845-2 2.044671-1 2.018366-2 1.758805-1 2.089296-2 1.523391-1 2.162719-2 1.326089-1 2.222500-2 1.192220-1 2.426610-2 8.288190-2 2.660725-2 5.620327-2 2.951209-2 3.602719-2 3.311311-2 2.180857-2 3.801894-2 1.184317-2 5.069907-2 3.276627-3 6.918310-2 8.410698-4 8.511380-2 3.418925-4 1.035142-1 1.472090-4 1.202264-1 7.775471-5 1.380384-1 4.345320-5 1.566751-1 2.567717-5 1.757924-1 1.602858-5 1.949845-1 1.055921-5 2.162719-1 7.006466-6 2.371374-1 4.897853-6 2.600160-1 3.446577-6 2.851018-1 2.442537-6 3.126079-1 1.744090-6 3.388442-1 1.307467-6 3.672823-1 9.865471-7 4.000000-1 7.376600-7 4.315191-1 5.737193-7 4.677351-1 4.423865-7 5.069907-1 3.436823-7 5.495409-1 2.690598-7 5.956621-1 2.122380-7 6.456542-1 1.686965-7 6.998420-1 1.351023-7 7.585776-1 1.090106-7 8.511380-1 8.100444-8 9.015711-1 7.023577-8 9.549926-1 6.128731-8 1.011579+0 5.387935-8 1.083927+0 4.654670-8 1.161449+0 4.051429-8 1.244515+0 3.555832-8 1.380384+0 2.946605-8 1.678804+0 2.090134-8 1.905461+0 1.685477-8 2.137962+0 1.396306-8 2.426610+0 1.143715-8 2.786121+0 9.273885-9 3.198895+0 7.576628-9 3.715352+0 6.133083-9 4.365158+0 4.922565-9 5.128614+0 3.980293-9 6.237348+0 3.102703-9 7.498942+0 2.471993-9 9.332543+0 1.903729-9 1.161449+1 1.476618-9 1.500000+1 1.105900-9 1.972423+1 8.17928-10 2.754229+1 5.70821-10 3.935501+1 3.91709-10 6.456542+1 2.34301-10 1.122018+2 1.33246-10 2.238721+2 6.62164-11 4.466836+2 3.30449-11 3.548134+3 4.14536-12 1.000000+5 1.46990-13 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.770000-6 6.770000-6 1.000000+5 6.770000-6 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.770000-6 0.0 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.970000-6 1.269840+6 6.095369-6 1.138337+6 6.382635-6 8.866401+5 6.606934-6 7.315788+5 6.850000-6 5.952320+5 7.100000-6 4.821510+5 7.350000-6 3.911260+5 7.600000-6 3.174750+5 7.852356-6 2.571903+5 8.100000-6 2.090970+5 8.350000-6 1.695150+5 8.600000-6 1.372230+5 8.810489-6 1.146669+5 9.015711-6 9.607765+4 9.225714-6 7.999800+4 9.440609-6 6.614920+4 9.660509-6 5.428547+4 9.850000-6 4.565530+4 1.000000-5 3.972680+4 1.020000-5 3.290380+4 1.042000-5 2.663480+4 1.060000-5 2.233380+4 1.077000-5 1.886460+4 1.100000-5 1.496470+4 1.122018-5 1.196407+4 1.165000-5 7.769880+3 1.180000-5 6.729680+3 1.195000-5 5.871340+3 1.207000-5 5.302390+3 1.218000-5 4.864320+3 1.226000-5 4.592060+3 1.235000-5 4.329180+3 1.244515-5 4.097951+3 1.252000-5 3.947570+3 1.260000-5 3.815620+3 1.267000-5 3.723160+3 1.275000-5 3.642230+3 1.282000-5 3.591850+3 1.290000-5 3.556220+3 1.297000-5 3.543170+3 1.305000-5 3.547710+3 1.313000-5 3.571760+3 1.320000-5 3.607820+3 1.330000-5 3.682020+3 1.340000-5 3.780980+3 1.353000-5 3.943320+3 1.365000-5 4.123730+3 1.380384-5 4.393118+3 1.400000-5 4.790430+3 1.470000-5 6.562640+3 1.500000-5 7.432580+3 1.531087-5 8.372761+3 1.560000-5 9.267990+3 1.590000-5 1.020620+4 1.621810-5 1.120082+4 1.650000-5 1.207480+4 1.680000-5 1.299110+4 1.717908-5 1.412086+4 1.757924-5 1.527418+4 1.800000-5 1.643610+4 1.840772-5 1.750830+4 1.883649-5 1.857664+4 1.935000-5 1.977550+4 1.995262-5 2.107173+4 2.056900-5 2.227825+4 2.130000-5 2.356120+4 2.190000-5 2.450210+4 2.270000-5 2.561240+4 2.350000-5 2.657350+4 2.454709-5 2.763414+4 2.570396-5 2.858240+4 2.704500-5 2.943280+4 2.851018-5 3.010749+4 3.019952-5 3.062209+4 3.210300-5 3.094249+4 3.427678-5 3.105553+4 3.672823-5 3.095231+4 3.935501-5 3.064728+4 4.216965-5 3.015366+4 4.570882-5 2.937114+4 4.954502-5 2.839524+4 5.370318-5 2.725380+4 5.821032-5 2.595366+4 6.309573-5 2.452739+4 6.839116-5 2.300390+4 7.328245-5 2.164157+4 7.943282-5 2.001209+4 8.609938-5 1.838011+4 9.332543-5 1.677983+4 1.040000-4 1.472230+4 1.174898-4 1.259979+4 1.364583-4 1.031723+4 1.659587-4 7.870695+3 2.540973-4 4.331751+3 2.917427-4 3.547890+3 3.126079-4 3.196405+3 3.630781-4 2.528779+3 4.365158-4 1.880016+3 5.432503-4 1.313821+3 7.000000-4 8.598624+2 8.609938-4 6.038576+2 1.035142-3 4.381010+2 1.288250-3 2.966325+2 1.678804-3 1.834642+2 2.483133-3 8.948849+1 2.884032-3 6.760150+1 3.349654-3 5.056401+1 3.935501-3 3.670033+1 4.677351-3 2.582712+1 5.754399-3 1.680338+1 6.839116-3 1.165565+1 8.035261-3 8.225893+0 9.549926-3 5.617246+0 1.161449-2 3.617244+0 1.380384-2 2.434923+0 1.621810-2 1.670328+0 1.883649-2 1.168530+0 2.187762-2 8.110554-1 2.511886-2 5.748617-1 2.917427-2 3.922755-1 3.427678-2 2.578426-1 4.315191-2 1.401500-1 5.188000-2 8.551588-2 6.165950-2 5.345350-2 7.498942-2 3.110771-2 9.332543-2 1.684863-2 1.148154-1 9.355156-3 2.137962-1 1.580882-3 2.600160-1 9.083272-4 3.054921-1 5.795679-4 3.507519-1 3.969654-4 4.000000-1 2.790600-4 4.518559-1 2.027971-4 5.011872-1 1.556363-4 5.559043-1 1.202680-4 6.165950-1 9.361168-5 6.839117-1 7.342739-5 7.585776-1 5.805032-5 8.413951-1 4.626333-5 9.225714-1 3.807787-5 1.011579+0 3.156218-5 1.161449+0 2.399432-5 1.288250+0 1.970210-5 1.462177+0 1.558544-5 1.603245+0 1.322502-5 1.798871+0 1.084936-5 2.044000+0 8.777700-6 2.317395+0 7.182399-6 2.630268+0 5.910213-6 3.019952+0 4.814472-6 3.507519+0 3.885597-6 4.120975+0 3.110168-6 4.841724+0 2.508206-6 5.754399+0 2.007881-6 7.000000+0 1.571800-6 8.511380+0 1.241148-6 1.059254+1 9.598207-7 1.364583+1 7.187963-7 1.800000+1 5.284300-7 2.454709+1 3.774714-7 3.427678+1 2.646849-7 5.559043+1 1.598604-7 9.015711+1 9.731540-8 1.798871+2 4.827443-8 3.589219+2 2.406314-8 1.428894+3 6.020955-9 1.000000+5 8.59310-11 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.970000-6 5.970000-6 1.000000+5 5.970000-6 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.970000-6 0.0 1.000000+5 1.000000+5 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.916400-8 1.028750+0 9.916400-7 1.029500+0 1.357090-6 1.030100+0 1.706700-6 1.031000+0 2.335350-6 1.032000+0 3.195340-6 1.033200+0 4.476130-6 1.034000+0 5.494860-6 1.035300+0 7.458500-6 1.036640+0 9.916400-6 1.038200+0 1.338250-5 1.039700+0 1.738650-5 1.041500+0 2.313260-5 1.043800+0 3.210880-5 1.046400+0 4.467340-5 1.048300+0 5.561950-5 1.051200+0 7.544670-5 1.054080+0 9.916400-5 1.057700+0 1.351670-4 1.061100+0 1.758190-4 1.065100+0 2.327660-4 1.070400+0 3.247340-4 1.076200+0 4.487820-4 1.080600+0 5.604560-4 1.087100+0 7.551160-4 1.093710+0 9.916400-4 1.102600+0 1.374850-3 1.110700+0 1.793000-3 1.120600+0 2.398350-3 1.133300+0 3.334520-3 1.147500+0 4.603750-3 1.158200+0 5.721280-3 1.174100+0 7.647170-3 1.190110+0 9.916400-3 1.205100+0 1.234680-2 1.227500+0 1.652830-2 1.250000+0 2.135000-2 1.265600+0 2.501840-2 1.294900+0 3.255310-2 1.331800+0 4.307400-2 1.362600+0 5.259030-2 1.397000+0 6.388810-2 1.455800+0 8.464960-2 1.500000+0 1.015000-1 1.589800+0 1.394210-1 1.665000+0 1.748540-1 1.784700+0 2.371360-1 1.892300+0 2.976390-1 2.000000+0 3.602000-1 2.044000+0 3.858000-1 2.163500+0 4.560590-1 2.372600+0 5.808130-1 2.647100+0 7.446540-1 3.000000+0 9.505000-1 3.437500+0 1.193130+0 4.000000+0 1.484000+0 4.750000+0 1.838730+0 5.000000+0 1.949000+0 6.000000+0 2.354000+0 7.000000+0 2.716000+0 8.000000+0 3.041000+0 9.000000+0 3.336000+0 1.000000+1 3.607000+0 1.100000+1 3.854000+0 1.200000+1 4.082000+0 1.300000+1 4.292000+0 1.400000+1 4.485000+0 1.500000+1 4.664000+0 1.600000+1 4.833000+0 1.800000+1 5.139000+0 2.000000+1 5.415000+0 2.200000+1 5.666000+0 2.400000+1 5.893000+0 2.600000+1 6.101000+0 2.800000+1 6.291000+0 3.000000+1 6.466000+0 4.000000+1 7.178000+0 5.000000+1 7.705000+0 6.000000+1 8.116000+0 8.000000+1 8.723000+0 1.000000+2 9.154000+0 1.500000+2 9.840000+0 2.000000+2 1.025000+1 3.000000+2 1.073000+1 4.000000+2 1.101000+1 5.000000+2 1.119000+1 6.000000+2 1.132000+1 8.000000+2 1.149000+1 1.000000+3 1.160000+1 1.500000+3 1.176000+1 2.000000+3 1.185000+1 3.000000+3 1.195000+1 4.000000+3 1.200000+1 5.000000+3 1.203000+1 6.000000+3 1.205000+1 8.000000+3 1.208000+1 1.000000+4 1.210000+1 1.500000+4 1.213000+1 2.000000+4 1.214000+1 3.000000+4 1.216000+1 4.000000+4 1.216000+1 5.000000+4 1.217000+1 6.000000+4 1.217000+1 8.000000+4 1.218000+1 1.000000+5 1.218000+1 1 42000 7 8 9.594000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.216030-7 2.106600+0 1.373630-6 2.114000+0 1.900590-6 2.119500+0 2.366220-6 2.127900+0 3.209040-6 2.136250+0 4.216030-6 2.147000+0 5.780470-6 2.156900+0 7.508140-6 2.169000+0 1.002010-5 2.184500+0 1.392830-5 2.201800+0 1.927010-5 2.214800+0 2.400910-5 2.234200+0 3.229650-5 2.253680+0 4.216030-5 2.281500+0 5.905290-5 2.307000+0 7.756580-5 2.338200+0 1.042940-4 2.377400+0 1.444350-4 2.410200+0 1.836960-4 2.446800+0 2.336720-4 2.485900+0 2.942060-4 2.532900+0 3.765210-4 2.556430+0 4.216030-4 2.611900+0 5.375920-4 2.660400+0 6.499210-4 2.745300+0 8.698810-4 2.809000+0 1.053480-3 2.904500+0 1.357150-3 3.000000+0 1.694000-3 3.125000+0 2.184300-3 3.234400+0 2.657720-3 3.425800+0 3.578770-3 3.569300+0 4.339440-3 3.784700+0 5.578150-3 4.000000+0 6.910000-3 4.250000+0 8.538740-3 4.625000+0 1.109900-2 5.000000+0 1.376000-2 5.500000+0 1.741010-2 6.000000+0 2.111000-2 6.750000+0 2.662450-2 7.000000+0 2.844000-2 8.000000+0 3.554000-2 9.000000+0 4.233000-2 1.000000+1 4.878000-2 1.100000+1 5.489000-2 1.200000+1 6.065000-2 1.300000+1 6.608000-2 1.400000+1 7.125000-2 1.500000+1 7.615000-2 1.600000+1 8.080000-2 1.800000+1 8.942000-2 2.000000+1 9.726000-2 2.200000+1 1.044000-1 2.400000+1 1.110000-1 2.600000+1 1.171000-1 2.800000+1 1.228000-1 3.000000+1 1.281000-1 4.000000+1 1.499000-1 5.000000+1 1.665000-1 6.000000+1 1.796000-1 8.000000+1 1.995000-1 1.000000+2 2.140000-1 1.500000+2 2.381000-1 2.000000+2 2.533000-1 3.000000+2 2.718000-1 4.000000+2 2.830000-1 5.000000+2 2.907000-1 6.000000+2 2.963000-1 8.000000+2 3.041000-1 1.000000+3 3.093000-1 1.500000+3 3.171000-1 2.000000+3 3.215000-1 3.000000+3 3.263000-1 4.000000+3 3.291000-1 5.000000+3 3.308000-1 6.000000+3 3.321000-1 8.000000+3 3.337000-1 1.000000+4 3.347000-1 1.500000+4 3.361000-1 2.000000+4 3.370000-1 3.000000+4 3.377000-1 4.000000+4 3.382000-1 5.000000+4 3.385000-1 6.000000+4 3.387000-1 8.000000+4 3.389000-1 1.000000+5 3.391000-1 1 42000 7 8 9.594000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 42000 7 9 9.594000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.200000+1 1.000000+5 4.200000+1 5.000000+5 4.198600+1 7.187500+5 4.197150+1 9.062500+5 4.196110+1 1.000000+6 4.195400+1 1.250000+6 4.192830+1 1.500000+6 4.190200+1 2.000000+6 4.182700+1 2.375000+6 4.175750+1 2.500000+6 4.173200+1 3.000000+6 4.161800+1 3.500000+6 4.148340+1 4.000000+6 4.133500+1 4.500000+6 4.116930+1 5.000000+6 4.099100+1 5.500000+6 4.079550+1 6.156200+6 4.051900+1 6.500000+6 4.036580+1 6.718700+6 4.026950+1 7.000000+6 4.014100+1 7.500000+6 3.990510+1 8.250000+6 3.953430+1 8.500000+6 3.941020+1 9.000000+6 3.915500+1 1.000000+7 3.862700+1 1.125000+7 3.795230+1 1.187500+7 3.760930+1 1.250000+7 3.726700+1 1.437500+7 3.622510+1 1.500000+7 3.587900+1 1.750000+7 3.450200+1 2.000000+7 3.315600+1 2.250000+7 3.184990+1 2.375000+7 3.121410+1 2.500000+7 3.059800+1 2.875000+7 2.883730+1 3.000000+7 2.828800+1 3.500000+7 2.625840+1 4.000000+7 2.450600+1 4.500000+7 2.299270+1 5.000000+7 2.168200+1 5.500000+7 2.052940+1 5.750000+7 1.999840+1 6.000000+7 1.949400+1 6.750000+7 1.808180+1 7.000000+7 1.763700+1 7.500000+7 1.677070+1 8.000000+7 1.593200+1 8.500000+7 1.511760+1 9.000000+7 1.432900+1 9.750000+7 1.319820+1 1.000000+8 1.283700+1 1.062500+8 1.196920+1 1.156300+8 1.078420+1 1.187500+8 1.042360+1 1.250000+8 9.749700+0 1.437500+8 8.114840+0 1.500000+8 7.694000+0 1.617200+8 7.047420+0 1.750000+8 6.477310+0 1.753900+8 6.462690+0 1.877000+8 6.044100+0 2.000000+8 5.698200+0 2.250000+8 5.143010+0 2.375000+8 4.913000+0 2.500000+8 4.704300+0 2.671900+8 4.436430+0 2.789100+8 4.251320+0 2.894500+8 4.076570+0 3.000000+8 3.891100+0 3.125000+8 3.660720+0 3.359400+8 3.264650+0 3.500000+8 3.078000+0 3.625000+8 2.949260+0 3.859400+8 2.741410+0 3.953100+8 2.655600+0 4.000000+8 2.610000+0 4.121100+8 2.483460+0 4.231000+8 2.353620+0 4.371900+8 2.201450+0 4.750000+8 1.858690+0 4.798100+8 1.820870+0 4.932700+8 1.720930+0 5.000000+8 1.674000+0 5.179700+8 1.577270+0 5.330100+8 1.511360+0 5.569300+8 1.426300+0 5.892300+8 1.335830+0 6.000000+8 1.309300+0 6.500000+8 1.202410+0 6.875000+8 1.138760+0 7.000000+8 1.120600+0 8.000000+8 1.002900+0 8.250000+8 9.735060-1 8.687500+8 9.204730-1 9.015600+8 8.806270-1 9.507800+8 8.224350-1 1.000000+9 7.675000-1 1.062500+9 7.033670-1 1.141100+9 6.307080-1 1.206900+9 5.757280-1 1.280200+9 5.199310-1 1.335100+9 4.815560-1 1.375000+9 4.553130-1 1.417600+9 4.287950-1 1.500000+9 3.815200-1 1.589800+9 3.355340-1 1.665000+9 3.013190-1 1.748800+9 2.675020-1 1.838500+9 2.358330-1 1.946200+9 2.032740-1 2.000000+9 1.890000-1 2.139200+9 1.572200-1 2.272600+9 1.325810-1 2.443000+9 1.075250-1 2.602800+9 8.906490-2 2.825100+9 6.938190-2 3.097000+9 5.204770-2 3.438900+9 3.719730-2 3.725100+9 2.863540-2 4.180400+9 1.950520-2 4.726800+9 1.287330-2 5.000000+9 1.062800-2 5.750000+9 6.576680-3 8.000000+9 2.096100-3 1.00000+10 9.687500-4 1.20500+10 5.119340-4 1.41820+10 2.950510-4 1.71170+10 1.572320-4 2.01490+10 9.159850-5 2.26440+10 6.240800-5 2.74790+10 3.320670-5 3.20120+10 2.027120-5 4.05100+10 9.536880-6 4.79460+10 5.585230-6 6.09600+10 2.621680-6 8.04800+10 1.101690-6 1.00000+11 5.622100-7 1.34280+11 2.269870-7 1.77440+11 9.685600-8 2.63330+11 2.925950-8 3.75720+11 1.004700-8 6.61190+11 1.864500-9 1.48990+12 1.70511-10 4.26460+12 8.02561-12 1.00000+14 9.44590-16 5.62340+14 6.52381-18 7.49890+15 3.52724-21 1.00000+17 1.83620-24 1 42000 7 0 9.594000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.50000-12 1.000000+2 6.50000-10 1.000000+3 6.500000-8 1.000000+4 6.500000-6 1.000000+5 6.500000-4 5.000000+5 1.625000-2 7.187500+5 3.357910-2 9.062500+5 5.338379-2 1.000000+6 6.500000-2 1.250000+6 1.007930-1 1.500000+6 1.439000-1 2.000000+6 2.521000-1 2.375000+6 3.508120-1 2.500000+6 3.868000-1 3.000000+6 5.448000-1 3.500000+6 7.228540-1 4.000000+6 9.177000-1 4.500000+6 1.125830+0 5.000000+6 1.344000+0 5.500000+6 1.569090+0 6.156200+6 1.871220+0 6.500000+6 2.031100+0 6.718700+6 2.132920+0 7.000000+6 2.264100+0 7.500000+6 2.496120+0 8.250000+6 2.841290+0 8.500000+6 2.955220+0 9.000000+6 3.181300+0 1.000000+7 3.625000+0 1.125000+7 4.164990+0 1.187500+7 4.430070+0 1.250000+7 4.692500+0 1.437500+7 5.465790+0 1.500000+7 5.720000+0 1.750000+7 6.719700+0 2.000000+7 7.690000+0 2.250000+7 8.627090+0 2.375000+7 9.083570+0 2.500000+7 9.532400+0 2.875000+7 1.083650+1 3.000000+7 1.126000+1 3.500000+7 1.289730+1 4.000000+7 1.444000+1 4.500000+7 1.587810+1 5.000000+7 1.719600+1 5.500000+7 1.838510+1 5.750000+7 1.893320+1 6.000000+7 1.945500+1 6.750000+7 2.086780+1 7.000000+7 2.130000+1 7.500000+7 2.211250+1 8.000000+7 2.287700+1 8.500000+7 2.359930+1 9.000000+7 2.428800+1 9.750000+7 2.526770+1 1.000000+8 2.558100+1 1.062500+8 2.633660+1 1.156300+8 2.739660+1 1.187500+8 2.773280+1 1.250000+8 2.837800+1 1.437500+8 3.010630+1 1.500000+8 3.062000+1 1.617200+8 3.150010+1 1.750000+8 3.239080+1 1.753900+8 3.241550+1 1.877000+8 3.314840+1 2.000000+8 3.380800+1 2.250000+8 3.495370+1 2.375000+8 3.544860+1 2.500000+8 3.590100+1 2.671900+8 3.646160+1 2.789100+8 3.680750+1 2.894500+8 3.709800+1 3.000000+8 3.737000+1 3.125000+8 3.766310+1 3.359400+8 3.815690+1 3.500000+8 3.841500+1 3.625000+8 3.862380+1 3.859400+8 3.896670+1 3.953100+8 3.908950+1 4.000000+8 3.915000+1 4.121100+8 3.928890+1 4.231000+8 3.941190+1 4.371900+8 3.954920+1 4.750000+8 3.987500+1 4.798100+8 3.990990+1 4.932700+8 4.000520+1 5.000000+8 4.005200+1 5.179700+8 4.016390+1 5.330100+8 4.025050+1 5.569300+8 4.037770+1 5.892300+8 4.052980+1 6.000000+8 4.057800+1 6.500000+8 4.077160+1 6.875000+8 4.090450+1 7.000000+8 4.094500+1 8.000000+8 4.122100+1 8.250000+8 4.127620+1 8.687500+8 4.136900+1 9.015600+8 4.143190+1 9.507800+8 4.151470+1 1.000000+9 4.158700+1 1.062500+9 4.166260+1 1.141100+9 4.173620+1 1.206900+9 4.178630+1 1.280200+9 4.183170+1 1.335100+9 4.186020+1 1.375000+9 4.187530+1 1.417600+9 4.189100+1 1.500000+9 4.192000+1 1.589800+9 4.193650+1 1.665000+9 4.194970+1 1.748800+9 4.196370+1 1.838500+9 4.197090+1 1.946200+9 4.197910+1 2.000000+9 4.198300+1 2.139200+9 4.198720+1 2.272600+9 4.199100+1 2.443000+9 4.199560+1 2.602800+9 4.199950+1 2.825100+9 4.200290+1 3.097000+9 4.200240+1 3.438900+9 4.200190+1 3.725100+9 4.200150+1 4.180400+9 4.200090+1 4.726800+9 4.200030+1 5.000000+9 4.200000+1 5.750000+9 4.200000+1 8.000000+9 4.200000+1 1.00000+10 4.200000+1 1.20500+10 4.200000+1 1.41820+10 4.200000+1 1.71170+10 4.200000+1 2.01490+10 4.200000+1 2.26440+10 4.200000+1 2.74790+10 4.200000+1 3.20120+10 4.200000+1 4.05100+10 4.200000+1 4.79460+10 4.200000+1 6.09600+10 4.200000+1 8.04800+10 4.200000+1 1.00000+11 4.200000+1 1.34280+11 4.200000+1 1.77440+11 4.200000+1 2.63330+11 4.200000+1 3.75720+11 4.200000+1 6.61190+11 4.200000+1 1.48990+12 4.200000+1 4.26460+12 4.200000+1 1.00000+14 4.200000+1 5.62340+14 4.200000+1 7.49890+15 4.200000+1 1.00000+17 4.200000+1 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.004072-6 1.946761-9 1.006537-6 3.852102-9 1.009003-6 7.036180-9 1.011468-6 1.186397-8 1.013933-6 1.846617-8 1.016399-6 2.653245-8 1.018864-6 3.519103-8 1.021329-6 4.308643-8 1.023795-6 4.869707-8 1.026260-6 5.080649-8 1.028725-6 4.893160-8 1.031191-6 4.350244-8 1.033656-6 3.570194-8 1.038587-6 1.891516-8 1.041052-6 1.221097-8 1.043517-6 7.276864-9 1.045983-6 4.003063-9 1.048448-6 2.032799-9 1.050913-6 0.0 2.735821-6 0.0 2.747606-6 1.699127+0 2.749289-6 1.939383+0 2.756023-6 3.542441+0 2.762757-6 5.973043+0 2.770332-6 9.803553+0 2.781064-6 1.648915+1 2.790534-6 2.204469+1 2.796426-6 2.451707+1 2.803581-6 2.552951+1 2.817838-6 2.362565+1 2.823362-6 2.198142+1 2.830741-6 2.085150+1 2.837655-6 2.182537+1 2.844570-6 2.536147+1 2.852905-6 3.268206+1 2.865315-6 4.525101+1 2.873192-6 5.013898+1 2.878831-6 5.170512+1 2.886060-6 4.937532+1 2.893582-6 4.292156+1 2.904468-6 2.974795+1 2.913084-6 1.928265+1 2.919999-6 1.244821+1 2.926914-6 7.418240+0 2.933829-6 4.080835+0 2.944201-6 1.037365+0 2.947659-6 0.0 3.496859-6 0.0 3.512390-6 1.91043-13 3.514073-6 2.11547-13 3.522680-6 3.86408-13 3.531288-6 6.51536-13 3.539895-6 1.01411-12 3.554688-6 1.79863-12 3.566887-6 2.40802-12 3.570399-6 2.53366-12 3.587975-6 1.086404+0 3.596763-6 1.984405+0 3.606101-6 3.462091+0 3.615066-6 5.398803+0 3.642043-6 1.239219+1 3.650669-6 1.381349+1 3.659013-6 1.428489+1 3.667875-6 1.365987+1 3.677435-6 1.187442+1 3.691270-6 8.229885+0 3.702220-6 5.334620+0 3.711009-6 3.443845+0 3.719797-6 2.052285+0 3.728585-6 1.128979+0 3.737418-6 5.703506-1 3.746161-6 3.006128-1 3.755817-6 6.259677-1 3.765303-6 1.167840+0 3.774642-6 1.977549+0 3.784406-6 3.141784+0 3.808528-6 6.650926+0 3.821209-6 8.013750+0 3.830589-6 8.341971+0 3.840794-6 7.980793+0 3.850960-6 7.047847+0 3.875406-6 4.123611+0 3.884605-6 3.275926+0 3.893804-6 2.654307+0 3.903003-6 2.204359+0 3.914150-6 1.768859+0 3.921402-6 1.379028+0 3.932911-6 1.100525+0 3.951671-6 5.830668-1 3.961051-6 3.764076-1 3.970431-6 2.243120-1 3.979812-6 1.233959-1 3.989192-6 6.266179-2 3.998572-6 0.0 4.421413-6 0.0 4.424311-6 4.918046-7 4.441088-6 7.502730-6 4.463009-6 6.348997-2 4.473994-6 1.993659-1 4.484979-6 3.607387-1 4.496651-6 6.271467-1 4.507725-6 9.755622-1 4.529108-6 1.838665+0 4.541123-6 2.343586+0 4.552686-6 2.703954+0 4.562888-6 2.877026+0 4.574451-6 2.844414+0 4.585522-6 2.606981+0 4.601272-6 2.019292+0 4.620329-6 1.211414+0 4.628185-6 9.101912-1 4.639067-6 5.776259-1 4.649756-6 3.409919-1 4.659712-6 1.839940-1 4.660741-6 1.708722-1 4.671726-6 8.677110-2 4.682711-6 5.404001-7 4.693137-6 5.218609-7 4.704384-6 4.639583-7 4.715631-6 3.807651-7 4.738125-6 2.017323-7 4.749372-6 1.302313-7 4.760619-6 7.760855-8 4.771866-6 4.269310-8 4.783113-6 2.168003-8 4.794360-6 0.0 4.809978-6 0.0 4.821818-6 1.133682-8 4.833657-6 2.243245-8 4.845496-6 4.097470-8 4.857335-6 6.908898-8 4.869174-6 1.075364-7 4.881013-6 1.545099-7 4.892853-6 2.049325-7 4.904692-6 2.509108-7 4.916531-6 2.835840-7 4.928370-6 2.958680-7 4.940209-6 2.849498-7 4.952048-6 2.533334-7 4.963887-6 2.079077-7 4.987566-6 1.101511-7 4.999405-6 7.110973-8 5.011244-6 4.237631-8 5.023083-6 2.331155-8 5.035771-6 1.099128-8 5.037137-6 8.172840-8 5.041090-6 5.971798-7 5.050469-6 5.353412-3 5.065906-6 3.892376-2 5.075331-6 6.267923-2 5.078314-6 7.336115-2 5.087762-6 1.117905-1 5.100193-6 1.842778-1 5.112625-6 2.807442-1 5.140354-6 5.397698-1 5.152762-6 6.363365-1 5.165170-6 6.937547-1 5.174780-6 7.053544-1 5.187211-6 6.690783-1 5.205158-6 5.368395-1 5.224504-6 3.582245-1 5.239618-6 3.286293-1 5.249763-6 3.241371-1 5.262622-6 3.992399-1 5.275480-6 5.700439-1 5.290656-6 8.928464-1 5.327728-6 1.914727+0 5.340767-6 2.163923+0 5.353879-6 2.253215+0 5.367122-6 2.166855+0 5.383608-6 1.855227+0 5.416922-6 1.026876+0 5.429780-6 7.743966-1 5.442695-6 5.875848-1 5.456091-6 5.013597-1 5.478675-6 4.297658-1 5.481213-6 4.231880-1 5.497284-6 5.340756-1 5.512034-6 6.972877-1 5.526802-6 9.186473-1 5.549867-6 1.312674+0 5.563263-6 1.498859+0 5.576660-6 1.600216+0 5.591731-6 1.575326+0 5.605128-6 1.450755+0 5.620444-6 1.211158+0 5.645604-6 7.544233-1 5.658249-6 5.549102-1 5.670436-6 4.025687-1 5.683832-6 2.864327-1 5.699826-6 1.999872-1 5.710625-6 1.482555-1 5.735039-6 1.310064-1 5.763733-6 1.278609-1 5.792106-6 1.624999-1 5.807740-6 1.960876-1 5.812457-6 2.134087-1 5.823141-6 2.732885-1 5.840204-6 3.885736-1 5.857432-6 5.506056-1 5.898787-6 1.027198+0 5.913803-6 1.167898+0 5.928872-6 1.251963+0 5.943438-6 1.261674+0 5.957750-6 1.199721+0 5.976269-6 1.027280+0 6.009487-6 6.239046-1 6.025669-6 4.561491-1 6.040790-6 3.358174-1 6.048628-6 2.993105-1 6.055734-6 2.837012-1 6.064208-6 2.815694-1 6.070644-6 2.910861-1 6.082601-6 3.319342-1 6.089091-6 3.604720-1 6.098439-6 4.231226-1 6.116312-6 6.128784-1 6.152942-6 1.078651+0 6.162797-6 1.207611+0 6.183970-6 1.403830+0 6.197027-6 1.464636+0 6.213815-6 1.443281+0 6.229368-6 1.340424+0 6.250550-6 1.117046+0 6.276562-6 8.002714-1 6.290418-6 6.598393-1 6.301630-6 5.719859-1 6.312643-6 5.273204-1 6.323583-6 5.101256-1 6.335108-6 5.199449-1 6.348309-6 5.630609-1 6.366099-6 6.448073-1 6.416159-6 9.158251-1 6.448101-6 1.039027+0 6.473955-6 1.071435+0 6.506508-6 1.016113+0 6.547951-6 8.974803-1 6.581383-6 8.978478-1 6.632085-6 9.623813-1 6.665209-6 9.741308-1 6.730732-6 9.294151-1 6.803827-6 9.704810-1 6.879039-6 1.031929+0 8.830434-6 1.808118+0 1.176238-5 3.150887+0 1.690412-5 5.869720+0 2.066972-5 7.752036+0 2.317395-5 8.605395+0 2.570396-5 8.946311+0 2.843413-5 8.727871+0 3.259088-5 7.586392+0 3.461168-5 6.872767+0 3.478206-5 7.838891+0 3.485226-5 8.512716+0 3.498814-5 1.799006+1 3.502382-5 2.062409+1 3.510961-5 3.035192+1 3.519539-5 4.422940+1 3.530386-5 6.783808+1 3.546360-5 1.071193+2 3.555412-5 1.254714+2 3.564777-5 1.361748+2 3.573242-5 1.368747+2 3.581703-5 1.284148+2 3.591487-5 1.094423+2 3.609722-5 6.641318+1 3.615579-5 5.389922+1 3.623033-5 4.074265+1 3.631552-5 2.976543+1 3.639638-5 2.309322+1 3.650941-5 1.707572+1 3.656794-5 1.352965+1 3.666522-5 1.264963+1 3.692819-5 8.868087+0 3.701585-5 7.831504+0 3.710350-5 7.061002+0 3.720033-5 6.546509+0 3.738345-5 1.113079+1 3.747644-5 1.552584+1 3.757354-5 2.261138+1 3.767092-5 3.239281+1 3.793563-5 6.410332+1 3.803221-5 7.156967+1 3.812420-5 7.382700+1 3.821447-5 7.088254+1 3.831190-5 6.262643+1 3.857655-5 3.128331+1 3.867057-5 2.256497+1 3.875542-5 1.683338+1 3.884698-5 1.292078+1 3.902042-5 8.583057+0 3.903010-5 8.326184+0 3.914070-5 8.485936+0 3.923473-5 8.335277+0 3.932875-5 7.958871+0 3.961961-5 6.419646+0 3.971278-5 6.099131+0 3.979888-5 5.955892+0 3.989290-5 5.965918+0 4.008096-5 6.316478+0 4.031413-5 7.056016+0 4.050541-5 7.322632+0 4.116191-5 7.264195+0 4.207149-5 6.910975+0 4.263338-5 7.197037+0 4.305953-5 7.657063+0 4.379327-5 7.643952+0 5.055524-5 5.074528+0 5.374608-5 4.089901+0 5.760000-5 3.143806+0 6.095470-5 2.509305+0 6.491124-5 1.945214+0 6.562183-5 1.949066+0 6.634634-5 2.088720+0 6.666586-5 2.067814+0 6.747404-5 1.796366+0 6.787083-5 1.745835+0 6.875788-5 1.716113+0 7.245246-5 1.462187+0 7.640759-5 1.280327+0 8.020590-5 1.167867+0 8.474844-5 1.092670+0 9.120108-5 1.061652+0 9.900000-5 1.095860+0 1.141009-4 1.262004+0 1.477666-4 1.657196+0 1.762324-4 1.868827+0 2.203156-4 2.028603+0 2.283182-4 2.041861+0 2.305752-4 2.124980+0 2.328802-4 2.393226+0 2.356325-4 2.726998+0 2.385161-4 2.901573+0 2.428124-4 3.003885+0 2.456835-4 3.232741+0 2.483133-4 3.627211+0 2.506750-4 4.185212+0 2.535481-4 5.153291+0 2.574995-4 6.932124+0 2.680000-4 1.219001+1 2.770350-4 1.579168+1 2.856500-4 1.828645+1 2.940000-4 1.988510+1 3.090296-4 2.136502+1 3.450116-4 2.259278+1 3.756590-4 2.238295+1 3.785176-4 2.314338+1 3.803280-4 2.435141+1 3.841068-4 2.759271+1 3.859537-4 2.763248+1 3.905380-4 2.461122+1 3.942778-4 2.407332+1 4.029526-4 2.645008+1 4.109138-4 2.485072+1 4.636423-4 2.363656+1 4.854764-4 2.307788+1 4.958068-4 2.353365+1 6.721425-4 1.788467+1 8.000645-4 1.474216+1 9.372922-4 1.219512+1 1.076639-3 1.023808+1 1.230269-3 8.596787+0 1.437438-3 6.958430+0 1.651675-3 5.728012+0 1.904818-3 4.666057+0 2.175539-3 3.838017+0 2.453918-3 3.212058+0 2.466271-3 3.480719+0 2.472334-3 3.731211+0 2.478408-3 4.136590+0 2.484812-3 4.771844+0 2.493570-3 5.995422+0 2.515020-3 9.574730+0 2.525647-3 1.068563+1 2.536405-3 1.114584+1 2.575035-3 1.094839+1 2.592408-3 1.150980+1 2.630268-3 1.404026+1 2.650618-3 1.436026+1 2.805391-3 1.327179+1 2.874353-3 1.437698+1 3.467731-3 1.096882+1 3.989995-3 8.831166+0 4.586737-3 7.085015+0 5.297992-3 5.609410+0 6.042963-3 4.511410+0 6.918522-3 3.591290+0 7.829325-3 2.909020+0 8.748000-3 2.400562+0 9.875672-3 1.943447+0 1.108300-2 1.585769+0 1.246083-2 1.288124+0 1.390089-2 1.059242+0 1.556252-2 8.637377-1 1.749249-2 6.983457-1 1.939611-2 5.789700-1 1.953453-2 5.863735-1 1.960585-2 6.178389-1 1.965558-2 6.680686-1 1.969632-2 7.369527-1 1.974082-2 8.504251-1 1.979356-2 1.047112+0 1.985531-2 1.368220+0 1.995530-2 2.040391+0 2.005341-2 2.704873+0 2.015000-2 3.178716+0 2.025845-2 3.441516+0 2.043318-2 3.514420+0 2.371374-2 2.772093+0 2.729207-2 2.200177+0 3.087726-2 1.785363+0 3.460161-2 1.464807+0 3.900681-2 1.188017+0 4.349673-2 9.773163-1 4.909890-2 7.853289-1 5.409031-2 6.568921-1 5.957363-2 5.498197-1 6.693936-2 4.415147-1 7.465962-2 3.595038-1 8.331929-2 2.914604-1 9.246290-2 2.386578-1 1.026302-1 1.950945-1 1.137745-1 1.597605-1 1.272975-1 1.285037-1 1.408541-1 1.055537-1 1.548381-1 8.785575-2 1.729838-1 7.090178-2 1.899429-1 5.917743-2 2.137962-1 4.718609-2 2.372654-1 3.869157-2 2.625289-1 3.204523-2 2.902770-1 2.663017-2 3.237476-1 2.186274-2 3.589219-1 1.824490-2 4.007297-1 1.511320-2 4.474677-1 1.260137-2 5.020670-1 1.050439-2 5.721370-1 8.633132-3 6.526607-1 7.177430-3 7.498942-1 5.987338-3 8.511380-1 5.135998-3 9.800540-1 4.399508-3 1.173413+0 3.631932-3 1.410753+0 2.980593-3 1.696098+0 2.446063-3 2.039158+0 2.007394-3 2.451607+0 1.647394-3 2.947480+0 1.351956-3 3.543651+0 1.109500-3 4.260405+0 9.105260-4 5.122134+0 7.472352-4 6.158159+0 6.132284-4 7.403736+0 5.032539-4 8.901248+0 4.130020-4 9.760024+0 3.741404-4 1.000000+1 7.568636-4 1 42000 7 0 9.594000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.184121+1 2.198935-6-4.035395+1 2.518311-6-3.806331+1 2.641826-6-3.518755+1 2.696097-6-3.215868+1 2.724360-6-2.896875+1 2.735821-6-2.646433+1 2.756023-6-2.076252+1 2.765072-6-1.817170+1 2.771805-6-1.695643+1 2.779171-6-1.689226+1 2.782958-6-1.752476+1 2.788851-6-1.932627+1 2.796426-6-2.312086+1 2.806594-6-2.866430+1 2.819737-6-3.237716+1 2.827972-6-3.166962+1 2.837237-6-2.817080+1 2.846042-6-2.507686+1 2.852905-6-2.478977+1 2.858209-6-2.656395+1 2.863113-6-2.984363+1 2.871477-6-3.927094+1 2.873358-6-4.194842+1 2.877555-6-3.665564+1 2.887532-6-2.143557+1 2.893582-6-1.408432+1 2.896064-6-1.176038+1 2.900119-6-8.688664+0 2.902766-6-7.284647+0 2.904468-6-6.638980+0 2.906170-6-6.215231+0 2.909195-6-5.805361+0 2.911140-6-5.762924+0 2.912112-6-5.839406+0 2.918271-6-7.266566+0 2.919999-6-7.987132+0 2.926158-6-1.063790+1 2.936206-6-1.569493+1 2.947227-6-2.038203+1 2.950336-6-2.207688+1 2.960928-6-2.532473+1 2.979509-6-2.868078+1 3.011003-6-3.192672+1 3.075208-6-3.526362+1 3.218375-6-3.840895+1 3.516225-6-4.201548+1 3.569082-6-3.954872+1 3.615066-6-3.527167+1 3.632064-6-3.622326+1 3.647135-6-3.965717+1 3.655594-6-4.215325+1 3.676405-6-3.544685+1 3.691270-6-3.314117+1 3.706614-6-3.330872+1 3.774642-6-4.165478+1 3.800434-6-4.227223+1 3.822274-6-3.982464+1 3.852488-6-3.522131+1 3.875406-6-3.427704+1 4.039895-6-3.809910+1 4.473994-6-4.119881+1 4.537242-6-4.147074+1 4.612289-6-3.846985+1 4.821818-6-4.023304+1 5.177888-6-4.119521+1 5.326913-6-4.187144+1 5.407507-6-4.000243+1 5.549867-6-4.124222+1 5.655088-6-4.005052+1 5.906295-6-4.153625+1 6.025669-6-4.083267+1 6.162797-6-4.174919+1 6.290418-6-4.087150+1 6.473955-6-4.139331+1 1.510705-5-4.248863+1 2.201331-5-4.071509+1 2.781681-5-3.451869+1 3.071892-5-2.973519+1 3.216196-5-2.568967+1 3.290362-5-2.237105+1 3.345202-5-1.867520+1 3.382784-5-1.495976+1 3.408657-5-1.138479+1 3.425990-5-8.213609+0 3.434235-5-6.380920+0 3.440968-5-4.675239+0 3.446018-5-3.242936+0 3.449805-5-2.063642+0 3.452646-5-1.108992+0 3.456907-5 4.614675-1 3.459037-5 1.326861+0 3.461168-5 2.288488+0 3.465427-5 4.288740+0 3.469687-5 6.391631+0 3.473947-5 8.742409+0 3.478206-5 1.150995+1 3.481716-5 1.421261+1 3.484787-5 1.719087+1 3.486725-5 1.962106+1 3.488855-5 2.166335+1 3.501490-5 3.216193+1 3.512033-5 4.204866+1 3.520762-5 4.827069+1 3.524507-5 4.952533+1 3.532383-5 4.937728+1 3.538464-5 4.541398+1 3.542974-5 4.030064+1 3.546360-5 3.476000+1 3.551685-5 2.414201+1 3.554164-5 1.819878+1 3.555412-5 1.443339+1 3.559405-5 3.737651+0 3.560403-5 9.911793-1 3.561152-5-1.141266+0 3.561714-5-2.798095+0 3.562556-5-5.421827+0 3.563188-5-7.594733+0 3.563794-5-9.978832+0 3.565670-5-1.600745+1 3.570998-5-3.235771+1 3.571507-5-3.413417+1 3.573242-5-2.772178+1 3.575595-5-2.058171+1 3.579832-5-8.308238+0 3.580437-5-6.248448+0 3.580703-5-5.285496+0 3.581219-5-3.675721+0 3.581703-5-2.277786+0 3.582609-5 1.785379-1 3.583403-5 2.206555+0 3.584791-5 5.567660+0 3.588956-5 1.518978+1 3.590520-5 1.866588+1 3.593301-5 2.350923+1 3.597491-5 2.907516+1 3.602407-5 3.348040+1 3.605995-5 3.517349+1 3.612118-5 3.583646+1 3.621169-5 3.185243+1 3.630620-5 2.443777+1 3.632563-5 2.233622+1 3.642852-5 1.374966+1 3.648990-5 9.808962+0 3.650941-5 8.620298+0 3.653868-5 6.580208+0 3.656063-5 4.734556+0 3.656794-5 3.900922+0 3.657402-5 3.191141+0 3.658542-5 2.167281+0 3.660537-5 6.704521-1 3.662033-5-3.170143-1 3.664277-5-1.651531+0 3.666522-5-2.826384+0 3.670904-5-4.934934+0 3.699736-5-1.766804+1 3.714185-5-2.501878+1 3.720033-5-2.894982+1 3.728056-5-3.398993+1 3.738345-5-2.793731+1 3.751057-5-2.009162+1 3.758394-5-1.622509+1 3.767092-5-1.331622+1 3.770940-5-1.300452+1 3.775142-5-1.347907+1 3.780012-5-1.497010+1 3.785911-5-1.812762+1 3.790025-5-2.126467+1 3.793281-5-2.479669+1 3.800796-5-3.399407+1 3.804217-5-2.854851+1 3.810687-5-1.900120+1 3.812420-5-1.576025+1 3.815234-5-1.146861+1 3.819263-5-5.652288+0 3.820270-5-4.055978+0 3.820892-5-2.888685+0 3.821447-5-1.993390+0 3.822486-5-4.802099-1 3.824305-5 1.922038+0 3.829080-5 7.715156+0 3.830248-5 9.333000+0 3.832955-5 1.219923+1 3.837204-5 1.558105+1 3.842274-5 1.846670+1 3.848400-5 2.055618+1 3.852449-5 2.116895+1 3.856353-5 2.104531+1 3.865882-5 1.842768+1 3.873951-5 1.482704+1 3.876687-5 1.325775+1 3.886019-5 8.796369+0 3.891798-5 6.487875+0 3.899138-5 3.850947+0 3.901074-5 3.045299+0 3.902042-5 2.589004+0 3.903938-5 1.468679+0 3.905561-5 7.501152-1 3.907997-5-1.318513-1 3.910432-5-8.711504-1 3.914070-5-1.779428+0 3.918771-5-2.768128+0 3.923473-5-3.611319+0 3.932875-5-5.052774+0 3.989290-5-1.274693+1 4.013945-5-1.517262+1 4.040596-5-1.645440+1 4.159078-5-1.969387+1 4.276664-5-2.217524+1 5.760000-5-2.534395+1 6.666586-5-2.685724+1 9.290000-5-2.941771+1 1.942190-4-3.382446+1 2.238935-4-3.673815+1 2.469500-4-4.160690+1 2.598267-4-4.537142+1 2.725000-4-4.475152+1 3.124724-4-3.590059+1 3.513395-4-3.025151+1 3.794326-4-2.792097+1 3.923904-4-2.819487+1 4.050537-4-2.623709+1 4.394721-4-2.189738+1 4.748597-4-1.909447+1 4.958068-4-1.831271+1 5.110195-4-1.679167+1 5.511248-4-1.437501+1 6.086881-4-1.201218+1 6.721425-4-1.023368+1 7.477864-4-8.783082+0 8.326854-4-7.740654+0 9.372922-4-6.948678+0 1.076639-3-6.417425+0 1.230269-3-6.212117+0 1.437438-3-6.307853+0 1.738003-3-6.924146+0 1.985238-3-7.867493+0 2.175539-3-9.061859+0 2.302320-3-1.036028+1 2.387503-3-1.179267+1 2.440225-3-1.328105+1 2.472334-3-1.492787+1 2.512808-3-1.832924+1 2.527458-3-1.848101+1 2.570369-3-1.573411+1 2.592408-3-1.524286+1 2.624177-3-1.524678+1 2.643816-3-1.451707+1 2.687713-3-1.203111+1 2.726492-3-1.076446+1 2.777640-3-9.835804+0 2.846251-3-9.513782+0 2.888631-3-8.302016+0 2.937032-3-7.123454+0 3.015762-3-5.905423+0 3.110669-3-4.851255+0 3.208116-3-4.024675+0 3.341255-3-3.172377+0 3.467731-3-2.551005+0 3.630781-3-1.943222+0 3.726774-3-1.654239+0 3.889811-3-1.258204+0 4.032925-3-9.790417-1 4.192760-3-7.315533-1 4.314027-3-5.766919-1 4.481323-3-4.000782-1 4.586737-3-3.106453-1 4.735770-3-2.055445-1 4.864378-3-1.324690-1 4.993001-3-7.038206-2 5.069907-3-3.819054-2 5.158222-3-4.707068-3 5.169369-3-1.157737-3 5.198390-3 7.966217-3 5.271492-3 3.032269-2 5.369382-3 5.375397-2 5.477997-3 7.435968-2 5.612549-3 9.369446-2 5.745761-3 1.080208-1 5.905409-3 1.193314-1 6.086603-3 1.265642-1 6.270712-3 1.263754-1 6.513921-3 1.177040-1 6.759177-3 1.024810-1 6.918522-3 8.922325-2 7.169168-3 6.350732-2 7.570008-3 1.496046-2 7.665941-3 2.367053-3 7.697411-3-1.713854-3 7.829325-3-1.803813-2 8.132693-3-5.898174-2 8.748000-3-1.480591-1 1.390089-2-9.176546-1 1.556252-2-1.207087+0 1.686674-2-1.501990+0 1.777491-2-1.788859+0 1.841783-2-2.080670+0 1.886071-2-2.371621+0 1.922573-2-2.735511+0 1.946207-2-3.119101+0 1.962236-2-3.560870+0 1.988027-2-4.543981+0 1.997643-2-4.634097+0 2.007605-2-4.415338+0 2.033125-2-3.326747+0 2.045926-2-2.930210+0 2.063154-2-2.568086+0 2.089296-2-2.193746+0 2.125691-2-1.825478+0 2.167392-2-1.519881+0 2.225871-2-1.204618+0 2.284335-2-9.717949-1 2.349830-2-7.712700-1 2.417623-2-6.092172-1 2.482014-2-4.821122-1 2.568697-2-3.424511-1 2.632162-2-2.602301-1 2.669355-2-2.182186-1 2.729207-2-1.592749-1 2.799157-2-1.002020-1 2.852795-2-6.205986-2 2.935184-2-1.011564-2 2.959150-2 2.513644-3 3.019952-2 3.495380-2 3.087726-2 6.474386-2 3.151249-2 8.796889-2 3.230705-2 1.129207-1 3.301872-2 1.311265-1 3.396537-2 1.517854-1 3.548575-2 1.752409-1 3.734460-2 1.941793-1 4.010551-2 2.095963-1 4.349673-2 2.105762-1 4.909890-2 1.951004-1 7.024370-2 9.397157-2 7.737923-2 6.403165-2 8.331929-2 4.160499-2 8.854230-2 2.383832-2 9.246290-2 1.167212-2 9.447622-2 5.796515-3 9.654503-2 2.079365-5 9.657034-2-4.914918-5 9.869753-2-5.775916-3 1.026302-1-1.592650-2 1.102830-1-3.355247-2 1.189144-1-5.074238-2 1.314825-1-7.160052-2 1.454655-1-9.025516-2 1.665592-1-1.118933-1 1.949825-1-1.326875-1 2.372654-1-1.529459-1 2.996605-1-1.704312-1 4.162699-1-1.862476-1 6.526607-1-1.975381-1 1.490307+0-2.040923-1 4.671441+0-2.055051-1 1.000000+1-2.055605-1 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.279460-3 1.103182-6 1.420558-2 1.173209-6 1.864245-2 1.247680-6 2.464529-2 1.326878-6 3.282449-2 1.411104-6 4.405824-2 1.500676-6 5.961505-2 1.595934-6 8.073266-2 1.645807-6 9.414164-2 1.697238-6 1.101654-1 1.750277-6 1.293882-1 1.803557-6 1.518971-1 1.855173-6 1.772651-1 1.905176-6 2.057353-1 1.953616-6 2.375559-1 2.000543-6 2.730120-1 2.048000-6 3.141756-1 2.090042-6 3.556818-1 2.132705-6 4.035327-1 2.174035-6 4.561374-1 2.214074-6 5.138337-1 2.252861-6 5.772878-1 2.326837-6 7.198795-1 2.362100-6 7.999198-1 2.396261-6 8.867456-1 2.429355-6 9.807758-1 2.461415-6 1.082440+0 2.492473-6 1.192178+0 2.522560-6 1.310447+0 2.551707-6 1.437720+0 2.579943-6 1.574486+0 2.607297-6 1.721252+0 2.659466-6 2.046890+0 2.708427-6 2.419025+0 2.731765-6 2.624083+0 2.754375-6 2.843221+0 2.776277-6 3.077658+0 2.818714-6 3.598969+0 2.858498-6 4.183660+0 2.895796-6 4.838922+0 2.930763-6 5.570839+0 2.963544-6 6.386432+0 2.994276-6 7.292542+0 3.023088-6 8.295843+0 3.050099-6 9.403061+0 3.075422-6 1.062097+1 3.099162-6 1.195644+1 3.121418-6 1.341640+1 3.142284-6 1.500772+1 3.161845-6 1.673714+1 3.180183-6 1.861124+1 3.197376-6 2.063634+1 3.213494-6 2.281848+1 3.228604-6 2.516339+1 3.242771-6 2.767650+1 3.256051-6 3.036296+1 3.268502-6 3.322761+1 3.280175-6 3.627499+1 3.291118-6 3.950941+1 3.301377-6 4.293492+1 3.310995-6 4.655534+1 3.320011-6 5.037420+1 3.328465-6 5.439465+1 3.336390-6 5.861972+1 3.343819-6 6.305267+1 3.350784-6 6.769754+1 3.357314-6 7.255969+1 3.369558-6 8.334075+1 3.380271-6 9.515831+1 3.389645-6 1.080776+2 3.397847-6 1.221038+2 3.405024-6 1.371439+2 3.411304-6 1.529987+2 3.416799-6 1.693876+2 3.421607-6 1.859885+2 3.425814-6 2.024799+2 3.432716-6 2.340277+2 3.442580-6 2.901194+2 3.456326-6 3.921003+2 3.463768-6 4.585224+2 3.470146-6 5.205086+2 3.472272-6 5.419434+2 3.480777-6 6.295804+2 3.481840-6 6.405657+2 3.489282-6 7.157488+2 3.492205-6 7.437866+2 3.497787-6 7.934249+2 3.500710-6 8.168095+2 3.503501-6 8.371002+2 3.506291-6 8.551666+2 3.510012-6 8.754300+2 3.513600-6 8.904696+2 3.516922-6 9.002069+2 3.520909-6 9.063908+2 3.524364-6 9.068707+2 3.528085-6 9.024553+2 3.532337-6 8.915611+2 3.536822-6 8.741556+2 3.542056-6 8.479019+2 3.557430-6 7.615999+2 3.561738-6 7.439763+2 3.565270-6 7.346714+2 3.568653-6 7.313197+2 3.571719-6 7.338572+2 3.572402-6 7.352226+2 3.577618-6 7.562778+2 3.579900-6 7.718783+2 3.582833-6 7.981104+2 3.585934-6 8.337273+2 3.589035-6 8.777305+2 3.591744-6 9.231607+2 3.595545-6 9.978911+2 3.599843-6 1.097512+3 3.610674-6 1.412274+3 3.617195-6 1.635735+3 3.621340-6 1.785736+3 3.626728-6 1.984318+3 3.630347-6 2.116760+3 3.632988-6 2.211458+3 3.636834-6 2.344484+3 3.640736-6 2.471163+3 3.642053-6 2.511613+3 3.646311-6 2.632744+3 3.650475-6 2.734957+3 3.654669-6 2.819368+3 3.658595-6 2.879848+3 3.659833-6 2.895008+3 3.668425-6 2.946488+3 3.670829-6 2.943904+3 3.677491-6 2.898941+3 3.681676-6 2.843804+3 3.685732-6 2.772359+3 3.690196-6 2.675472+3 3.694523-6 2.565876+3 3.698369-6 2.457747+3 3.702077-6 2.345895+3 3.707709-6 2.165898+3 3.712104-6 2.020370+3 3.717049-6 1.855045+3 3.720895-6 1.727417+3 3.729685-6 1.446682+3 3.732707-6 1.355514+3 3.738476-6 1.191178+3 3.745069-6 1.020857+3 3.754124-6 8.194969+2 3.771558-6 5.340812+2 3.779209-6 4.455627+2 3.783012-6 4.084256+2 3.786801-6 3.754245+2 3.794348-6 3.200211+2 3.801836-6 2.763498+2 3.809266-6 2.417597+2 3.816638-6 2.141149+2 3.823952-6 1.917498+2 3.831209-6 1.733980+2 3.838409-6 1.581142+2 3.845553-6 1.452001+2 3.852641-6 1.341418+2 3.859674-6 1.245600+2 3.866652-6 1.161718+2 3.880499-6 1.021220+2 3.894129-6 9.086829+1 3.907547-6 8.165763+1 3.920754-6 7.399118+1 3.933756-6 6.752284+1 3.946554-6 6.200339+1 3.959152-6 5.724789+1 3.971554-6 5.311562+1 3.983762-6 4.949727+1 3.995778-6 4.630646+1 4.019437-6 4.090686+1 4.042356-6 3.656418+1 4.064559-6 3.300716+1 4.086067-6 3.005091+1 4.106904-6 2.756346+1 4.127090-6 2.544805+1 4.146645-6 2.363201+1 4.165589-6 2.205881+1 4.202292-6 1.943426+1 4.236702-6 1.737728+1 4.268961-6 1.573147+1 4.299203-6 1.439267+1 4.327556-6 1.328807+1 4.354136-6 1.236461+1 4.403975-6 1.086603+1 4.447584-6 9.753687+0 4.485741-6 8.906855+0 4.577558-6 7.234480+0 4.823036-6 4.297448+0 4.893227-6 3.703454+0 4.951720-6 3.257457+0 4.986815-6 3.008568+0 5.098143-6 2.277301+0 5.139891-6 2.018309+0 5.176420-6 1.796732+0 5.212386-6 1.580029+0 5.236351-6 1.434875+0 5.260823-6 1.284889+0 5.282235-6 1.151394+0 5.300972-6 1.032326+0 5.317366-6 9.261924-1 5.331711-6 8.319507-1 5.344263-6 7.488976-1 5.355245-6 6.765247-1 5.364855-6 6.143706-1 5.373264-6 5.619041-1 5.387979-6 4.784777-1 5.399016-6 4.282445-1 5.407293-6 4.017235-1 5.413501-6 3.904763-1 5.418157-6 3.881156-1 5.421649-6 3.903460-1 5.426887-6 4.010929-1 5.429506-6 4.101975-1 5.432125-6 4.220520-1 5.445496-6 5.333940-1 5.448838-6 5.768277-1 5.451345-6 6.141352-1 5.453225-6 6.449271-1 5.457456-6 7.235462-1 5.463466-6 8.592238-1 5.481494-6 1.462759+0 5.488189-6 1.771753+0 5.494151-6 2.088788+0 5.499970-6 2.436968+0 5.505133-6 2.777750+0 5.509320-6 3.075675+0 5.515385-6 3.539771+0 5.520979-6 3.999676+0 5.526759-6 4.503308+0 5.531134-6 4.900843+0 5.536161-6 5.371586+0 5.541438-6 5.877482+0 5.546475-6 6.366773+0 5.552628-6 6.965673+0 5.555294-6 7.223344+0 5.562015-6 7.861040+0 5.567673-6 8.377193+0 5.571496-6 8.711164+0 5.578172-6 9.258054+0 5.582178-6 9.560091+0 5.595620-6 1.039930+1 5.598035-6 1.051815+1 5.609902-6 1.094556+1 5.614234-6 1.103452+1 5.622504-6 1.110365+1 5.628202-6 1.107577+1 5.634300-6 1.098066+1 5.639279-6 1.085572+1 5.643013-6 1.073591+1 5.648615-6 1.051748+1 5.654217-6 1.025705+1 5.660677-6 9.911635+0 5.662830-6 9.787174+0 5.672912-6 9.155073+0 5.676272-6 8.930113+0 5.689714-6 7.990601+0 5.699535-6 7.292688+0 5.705734-6 6.859114+0 5.714754-6 6.249010+0 5.730040-6 5.298202+0 5.750756-6 4.219081+0 5.761297-6 3.767141+0 5.771509-6 3.388100+0 5.781401-6 3.071062+0 5.790984-6 2.805610+0 5.809551-6 2.387856+0 5.826958-6 2.085063+0 5.843277-6 1.856770+0 5.873875-6 1.523211+0 5.944807-6 9.882565-1 5.965233-6 8.660114-1 5.982140-6 7.712465-1 5.997400-6 6.898164-1 6.010489-6 6.226826-1 6.022689-6 5.622594-1 6.034071-6 5.078579-1 6.045811-6 4.540379-1 6.058739-6 3.981720-1 6.087049-6 2.947561-1 6.094066-6 2.748884-1 6.099869-6 2.607231-1 6.104714-6 2.506452-1 6.108639-6 2.437389-1 6.113606-6 2.367309-1 6.118305-6 2.319921-1 6.124101-6 2.288353-1 6.129898-6 2.288126-1 6.137626-6 2.339032-1 6.144912-6 2.442501-1 6.148665-6 2.517140-1 6.159926-6 2.827337-1 6.166128-6 3.051540-1 6.172049-6 3.298374-1 6.190922-6 4.262281-1 6.198748-6 4.717703-1 6.206611-6 5.190159-1 6.212791-6 5.562895-1 6.217998-6 5.872134-1 6.223204-6 6.172466-1 6.226951-6 6.380688-1 6.232570-6 6.676941-1 6.238190-6 6.949542-1 6.252895-6 7.519331-1 6.254803-6 7.575608-1 6.268161-6 7.840615-1 6.273313-6 7.879697-1 6.283147-6 7.854661-1 6.287640-6 7.800344-1 6.291572-6 7.731486-1 6.298452-6 7.565229-1 6.303612-6 7.404683-1 6.311352-6 7.111916-1 6.315222-6 6.944628-1 6.319092-6 6.765054-1 6.323598-6 6.542232-1 6.328104-6 6.306645-1 6.335084-6 5.921539-1 6.340094-6 5.633919-1 6.355108-6 4.746979-1 6.370122-6 3.877437-1 6.388047-6 2.942592-1 6.400151-6 2.407427-1 6.412240-6 1.964469-1 6.419493-6 1.744714-1 6.425495-6 1.588999-1 6.435216-6 1.385779-1 6.441234-6 1.289044-1 6.449853-6 1.186538-1 6.456972-6 1.131344-1 6.460906-6 1.111256-1 6.472710-6 1.090041-1 6.477850-6 1.096676-1 6.486846-6 1.127033-1 6.493593-6 1.162585-1 6.498653-6 1.194930-1 6.510038-6 1.280876-1 6.535662-6 1.511413-1 6.557839-6 1.738711-1 6.569938-6 1.882761-1 6.580020-6 2.021740-1 6.590102-6 2.184226-1 6.597159-6 2.314913-1 6.606422-6 2.510450-1 6.618513-6 2.809413-1 6.647108-6 3.693441-1 6.663231-6 4.248790-1 6.668025-6 4.411560-1 6.701582-6 5.356160-1 6.715868-6 5.604697-1 6.738918-6 5.896376-1 6.745866-6 6.013731-1 6.756002-6 6.284262-1 6.763225-6 6.597051-1 6.769139-6 6.962793-1 6.774506-6 7.406050-1 6.779201-6 7.900901-1 6.783309-6 8.430949-1 6.786904-6 8.980119-1 6.790050-6 9.533988-1 6.795554-6 1.068973+0 6.799683-6 1.173258+0 6.802779-6 1.262584+0 6.807423-6 1.416368+0 6.812068-6 1.596463+0 6.818332-6 1.886405+0 6.828608-6 2.498738+0 6.842499-6 3.656025+0 6.852492-6 4.772619+0 6.860815-6 5.914226+0 6.862704-6 6.202380+0 6.895908-6 1.325441+1 6.913659-6 1.865675+1 6.916750-6 1.970798+1 6.930862-6 2.486211+1 6.937900-6 2.761025+1 6.943528-6 2.986569+1 6.950658-6 3.276741+1 6.956300-6 3.507311+1 6.961258-6 3.708743+1 6.965757-6 3.889112+1 6.969694-6 4.044075+1 6.976152-6 4.290242+1 6.983116-6 4.540705+1 6.989299-6 4.746487+1 6.996132-6 4.951866+1 6.999052-6 5.031694+1 7.007966-6 5.242426+1 7.014765-6 5.366759+1 7.020942-6 5.450323+1 7.028835-6 5.514633+1 7.035889-6 5.531050+1 7.051209-6 5.436022+1 7.056966-6 5.356937+1 7.062147-6 5.267485+1 7.070146-6 5.098940+1 7.077449-6 4.917553+1 7.085462-6 4.694921+1 7.094101-6 4.435695+1 7.104238-6 4.119153+1 7.118408-6 3.682402+1 7.134346-6 3.241858+1 7.145006-6 2.997416+1 7.149964-6 2.900500+1 7.162417-6 2.708284+1 7.170785-6 2.621412+1 7.174573-6 2.593140+1 7.181016-6 2.560317+1 7.185949-6 2.547598+1 7.189978-6 2.544713+1 7.203060-6 2.576490+1 7.212365-6 2.630375+1 7.217992-6 2.672263+1 7.249727-6 2.958285+1 7.266921-6 3.087253+1 7.268961-6 3.099170+1 7.284877-6 3.160505+1 7.293970-6 3.167912+1 7.303700-6 3.152497+1 7.311645-6 3.122281+1 7.317706-6 3.089044+1 7.322074-6 3.059917+1 7.332130-6 2.977673+1 7.335482-6 2.945952+1 7.348542-6 2.804945+1 7.352895-6 2.752691+1 7.365954-6 2.584204+1 7.370307-6 2.525069+1 7.387720-6 2.280568+1 7.396426-6 2.156729+1 7.405132-6 2.033904+1 7.420368-6 1.825024+1 7.432466-6 1.667393+1 7.455962-6 1.388018+1 7.473661-6 1.203342+1 7.552829-6 6.285032+0 7.596886-6 4.419666+0 7.679436-6 2.327946+0 7.709553-6 1.853351+0 7.726558-6 1.637431+0 7.742468-6 1.466602+0 7.755911-6 1.344218+0 7.764984-6 1.272259+0 7.780101-6 1.169984+0 7.798745-6 1.070979+0 7.810164-6 1.023129+0 7.820128-6 9.881520-1 7.830179-6 9.583902-1 7.841172-6 9.312189-1 7.851233-6 9.104291-1 7.861270-6 8.928339-1 7.881466-6 8.644603-1 7.907521-6 8.366792-1 7.928345-6 8.189072-1 7.944067-6 8.077881-1 7.962350-6 7.978986-1 7.980887-6 7.922612-1 7.992663-6 7.915463-1 8.009027-6 7.948807-1 8.025705-6 8.039502-1 8.043803-6 8.204798-1 8.052808-6 8.312149-1 8.070000-6 8.558947-1 8.098681-6 9.066323-1 8.142519-6 9.937847-1 8.159960-6 1.027102+0 8.173026-6 1.050423+0 8.192000-6 1.081055+0 8.217178-6 1.115005+0 8.241510-6 1.140481+0 8.276599-6 1.166149+0 8.320702-6 1.185102+0 8.389752-6 1.200238+0 8.508161-6 1.221020+0 8.557334-6 1.235158+0 8.577940-6 1.243859+0 8.598765-6 1.255847+0 8.619153-6 1.272649+0 8.639759-6 1.297830+0 8.660365-6 1.335887+0 8.667759-6 1.353865+0 8.680972-6 1.393300+0 8.701578-6 1.478454+0 8.722809-6 1.605763+0 8.732800-6 1.682875+0 8.742790-6 1.772657+0 8.755890-6 1.911399+0 8.762918-6 1.996337+0 8.784003-6 2.297707+0 8.794957-6 2.482315+0 8.819191-6 2.955247+0 8.840733-6 3.436891+0 8.859582-6 3.885561+0 8.870735-6 4.153240+0 8.880485-6 4.383194+0 8.888629-6 4.569318+0 8.899099-6 4.796629+0 8.910084-6 5.015561+0 8.921559-6 5.217092+0 8.934978-6 5.410276+0 8.945748-6 5.527612+0 8.957866-6 5.615955+0 8.967290-6 5.651490+0 8.969983-6 5.656271+0 8.988832-6 5.624382+0 8.996237-6 5.582081+0 9.010373-6 5.459946+0 9.022228-6 5.321805+0 9.036373-6 5.124935+0 9.053457-6 4.859378+0 9.091154-6 4.284430+0 9.101925-6 4.148604+0 9.114042-6 4.020648+0 9.118081-6 3.984526+0 9.140270-6 3.849246+0 9.148811-6 3.826184+0 9.165116-6 3.824744+0 9.185624-6 3.891365+0 9.204256-6 3.999013+0 9.242037-6 4.258393+0 9.254690-6 4.331306+0 9.268686-6 4.391592+0 9.277083-6 4.415051+0 9.299477-6 4.423882+0 9.313249-6 4.388787+0 9.323960-6 4.340951+0 9.339254-6 4.244852+0 9.348430-6 4.173929+0 9.364574-6 4.031400+0 9.385331-6 3.830486+0 9.407610-6 3.618630+0 9.418749-6 3.522775+0 9.429888-6 3.437638+0 9.437829-6 3.384812+0 9.452166-6 3.308324+0 9.460179-6 3.276936+0 9.483008-6 3.233616+0 9.496723-6 3.239099+0 9.511900-6 3.269236+0 9.529235-6 3.328224+0 9.583295-6 3.576394+0 9.598576-6 3.635759+0 9.621690-6 3.697554+0 9.644804-6 3.719998+0 9.667917-6 3.705998+0 9.698976-6 3.651928+0 9.725701-6 3.605069+0 9.746732-6 3.589762+0 9.756996-6 3.593614+0 9.768355-6 3.608368+0 9.780044-6 3.636042+0 9.797203-6 3.700460+0 9.812378-6 3.780268+0 9.829713-6 3.894430+0 9.887314-6 4.363180+0 9.911151-6 4.545041+0 9.923070-6 4.623179+0 9.946908-6 4.745358+0 9.970745-6 4.817021+0 9.984788-6 4.835946+0 9.998192-6 4.839610+0 1.002380-5 4.815615+0 1.008993-5 4.687487+0 1.012080-5 4.657064+0 1.013221-5 4.655793+0 1.016644-5 4.684925+0 1.019702-5 4.744399+0 1.023770-5 4.843847+0 1.027949-5 4.930304+0 1.030021-5 4.956714+0 1.032093-5 4.969065+0 1.034151-5 4.966724+0 1.040328-5 4.880614+0 1.042683-5 4.824038+0 1.055324-5 4.471607+0 1.060458-5 4.358191+0 1.075667-5 4.095229+0 1.084264-5 3.944162+0 1.087315-5 3.899219+0 1.092335-5 3.846852+0 1.095456-5 3.830500+0 1.100418-5 3.830298+0 1.105299-5 3.856471+0 1.113934-5 3.944588+0 1.122637-5 4.060129+0 1.157993-5 4.606753+0 1.350000-5 8.724200+0 1.485815-5 1.282651+1 1.531087-5 1.446081+1 1.671203-5 2.023446+1 1.717908-5 2.246549+1 1.862087-5 3.014814+1 2.000000-5 3.866469+1 2.113489-5 4.640464+1 2.230000-5 5.485801+1 2.330000-5 6.236762+1 2.414534-5 6.866706+1 2.502878-5 7.509170+1 2.548725-5 7.834115+1 2.626783-5 8.354564+1 2.689292-5 8.734554+1 2.715418-5 8.878354+1 2.822192-5 9.430376+1 2.885108-5 9.859872+1 3.047270-5 1.111805+2 3.126079-5 1.182970+2 3.202393-5 1.260781+2 3.265141-5 1.336736+2 3.310503-5 1.399943+2 3.370728-5 1.498718+2 3.413170-5 1.582312+2 3.451038-5 1.671403+2 3.489820-5 1.780267+2 3.516987-5 1.870167+2 3.536282-5 1.943045+2 3.554370-5 2.019676+2 3.583751-5 2.164773+2 3.602130-5 2.271365+2 3.629202-5 2.457133+2 3.652997-5 2.657665+2 3.673909-5 2.873400+2 3.692290-5 3.104379+2 3.708444-5 3.350181+2 3.724955-5 3.657437+2 3.741160-5 4.036298+2 3.751727-5 4.341659+2 3.760973-5 4.661239+2 3.769063-5 4.994066+2 3.776142-5 5.338227+2 3.782336-5 5.690754+2 3.787894-5 6.057491+2 3.792499-5 6.404817+2 3.796648-5 6.757300+2 3.803910-5 7.481415+2 3.809356-5 8.131281+2 3.813441-5 8.689465+2 3.816505-5 9.152830+2 3.823398-5 1.035373+3 3.825695-5 1.080776+3 3.835112-5 1.298906+3 3.844528-5 1.575342+3 3.860195-5 2.182232+3 3.866904-5 2.499872+3 3.874875-5 2.918665+3 3.878719-5 3.134607+3 3.884951-5 3.499904+3 3.890294-5 3.823441+3 3.897713-5 4.278468+3 3.902907-5 4.593140+3 3.907477-5 4.861846+3 3.912586-5 5.147702+3 3.918095-5 5.431936+3 3.922987-5 5.657644+3 3.927508-5 5.839549+3 3.933206-5 6.026954+3 3.935109-5 6.078213+3 3.940674-5 6.193150+3 3.945550-5 6.249072+3 3.951469-5 6.258736+3 3.954472-5 6.239034+3 3.963304-5 6.087157+3 3.967552-5 5.966579+3 3.972505-5 5.790304+3 3.977082-5 5.596430+3 3.981327-5 5.393291+3 3.984576-5 5.224559+3 3.989221-5 4.966764+3 3.992953-5 4.748143+3 3.998094-5 4.434898+3 4.000996-5 4.253974+3 4.005745-5 3.954962+3 4.010494-5 3.656055+3 4.016106-5 3.308415+3 4.021178-5 3.004056+3 4.027411-5 2.648211+3 4.032772-5 2.361732+3 4.038986-5 2.055474+3 4.046109-5 1.740830+3 4.054220-5 1.430788+3 4.075581-5 8.424068+2 4.082424-5 7.141991+2 4.088633-5 6.190535+2 4.098760-5 5.023963+2 4.113377-5 4.092350+2 4.119555-5 3.949893+2 4.123694-5 3.937216+2 4.126466-5 3.966120+2 4.128401-5 4.004177+2 4.130016-5 4.047296+2 4.132370-5 4.128646+2 4.134656-5 4.228867+2 4.136608-5 4.331013+2 4.139016-5 4.478196+2 4.146714-5 5.105796+2 4.150021-5 5.448792+2 4.152435-5 5.726600+2 4.164694-5 7.482750+2 4.174604-5 9.284516+2 4.177472-5 9.859893+2 4.183743-5 1.118634+3 4.189682-5 1.250971+3 4.193431-5 1.336691+3 4.197902-5 1.440016+3 4.203037-5 1.558537+3 4.207350-5 1.656554+3 4.212734-5 1.774963+3 4.218408-5 1.892479+3 4.223748-5 1.993792+3 4.225766-5 2.029259+3 4.231540-5 2.120896+3 4.236015-5 2.180722+3 4.241310-5 2.237554+3 4.246059-5 2.274738+3 4.248079-5 2.286458+3 4.254972-5 2.307630+3 4.260281-5 2.304136+3 4.264755-5 2.288171+3 4.269592-5 2.258185+3 4.274769-5 2.212502+3 4.279093-5 2.164627+3 4.284653-5 2.091776+3 4.289738-5 2.015850+3 4.296095-5 1.911392+3 4.302770-5 1.794053+3 4.304994-5 1.753895+3 4.316888-5 1.537673+3 4.328949-5 1.328764+3 4.349451-5 1.030140+3 4.359703-5 9.131043+2 4.364829-5 8.625003+2 4.369954-5 8.168239+2 4.375053-5 7.759389+2 4.384933-5 7.082569+2 4.394195-5 6.565498+2 4.402878-5 6.163991+2 4.414623-5 5.720394+2 4.418650-5 5.589370+2 4.434724-5 5.146214+2 4.448484-5 4.841835+2 4.456435-5 4.688430+2 4.480600-5 4.292827+2 4.501712-5 4.007097+2 4.529179-5 3.687336+2 4.579970-5 3.191274+2 4.604351-5 2.994121+2 4.615335-5 2.916799+2 4.627112-5 2.843301+2 4.640524-5 2.772601+2 4.661660-5 2.690988+2 4.679570-5 2.650342+2 4.702686-5 2.633664+2 4.720274-5 2.644308+2 4.738811-5 2.672087+2 4.778482-5 2.752754+2 4.790155-5 2.772287+2 4.805671-5 2.790304+2 4.827740-5 2.798600+2 4.853579-5 2.788036+2 4.906032-5 2.753360+2 4.947605-5 2.747431+2 5.035132-5 2.751902+2 5.155267-5 2.760094+2 5.261918-5 2.757195+2 5.281532-5 2.751717+2 5.316287-5 2.731353+2 5.358490-5 2.689688+2 5.419000-5 2.620819+2 5.510952-5 2.538365+2 5.667049-5 2.432215+2 6.511914-5 1.996011+2 7.007091-5 1.789186+2 7.208117-5 1.708552+2 7.341733-5 1.649428+2 7.472077-5 1.582492+2 7.504394-5 1.571162+2 7.525714-5 1.566927+2 7.564625-5 1.566417+2 7.657386-5 1.581592+2 7.708254-5 1.580704+2 7.909386-5 1.546725+2 8.025281-5 1.520619+2 8.212500-5 1.469630+2 8.586152-5 1.389589+2 9.120108-5 1.298660+2 9.568093-5 1.234721+2 1.005000-4 1.177127+2 1.060000-4 1.121856+2 1.109175-4 1.080645+2 1.244515-4 9.935997+1 1.500000-4 8.787500+1 1.596482-4 8.400262+1 1.679162-4 8.050474+1 1.778280-4 7.609813+1 1.889484-4 7.066395+1 1.989603-4 6.510321+1 2.073600-4 5.988853+1 2.152667-4 5.449404+1 2.213095-4 4.998582+1 2.275722-4 4.496225+1 2.338160-4 3.952587+1 2.384988-4 3.520195+1 2.420109-4 3.178972+1 2.454709-4 2.826188+1 2.485961-4 2.494166+1 2.526800-4 2.039716+1 2.546328-4 1.811916+1 2.562657-4 1.616923+1 2.573900-4 1.484421+1 2.585763-4 1.353332+1 2.593335-4 1.278572+1 2.599762-4 1.222861+1 2.606425-4 1.174056+1 2.612811-4 1.136655+1 2.618009-4 1.113103+1 2.624400-4 1.092214+1 2.630700-4 1.079314+1 2.639159-4 1.071218+1 2.664025-4 1.067264+1 2.671753-4 1.061269+1 2.681291-4 1.047544+1 2.704750-4 9.996070+0 2.712834-4 9.896920+0 2.715000-4 9.886520+0 2.720914-4 9.904278+0 2.724500-4 9.953593+0 2.728000-4 1.003419+1 2.730500-4 1.011324+1 2.735152-4 1.031227+1 2.740000-4 1.059780+1 2.744750-4 1.096153+1 2.750000-4 1.146754+1 2.752000-4 1.169051+1 2.756499-4 1.225572+1 2.760750-4 1.287364+1 2.770401-4 1.459584+1 2.778114-4 1.630874+1 2.785375-4 1.820854+1 2.796494-4 2.167886+1 2.813995-4 2.855091+1 2.824747-4 3.362113+1 2.838997-4 4.128646+1 2.852132-4 4.923135+1 2.864021-4 5.706783+1 2.870999-4 6.191913+1 2.884748-4 7.193987+1 2.890000-4 7.590436+1 2.906000-4 8.833939+1 2.923000-4 1.019596+2 2.926000-4 1.043909+2 2.945000-4 1.198867+2 2.966247-4 1.372458+2 2.980000-4 1.484113+2 2.989093-4 1.557439+2 3.007000-4 1.700376+2 3.023671-4 1.831397+2 3.040000-4 1.957466+2 3.057000-4 2.086005+2 3.080000-4 2.254866+2 3.101836-4 2.409005+2 3.126079-4 2.571952+2 3.150000-4 2.723139+2 3.165000-4 2.812804+2 3.200000-4 3.006857+2 3.240000-4 3.204028+2 3.280000-4 3.377005+2 3.308220-4 3.486594+2 3.335000-4 3.583318+2 3.370000-4 3.700072+2 3.430000-4 3.879745+2 3.478275-4 4.013042+2 3.528027-4 4.144290+2 3.584558-4 4.285060+2 3.663043-4 4.469264+2 3.767206-4 4.687498+2 3.855076-4 4.840021+2 3.916451-4 4.923189+2 4.048709-4 5.061022+2 4.085555-4 5.196587+2 4.106662-4 5.371871+2 4.116370-4 5.480871+2 4.136975-4 5.751532+2 4.163942-4 6.076479+2 4.176068-4 6.162935+2 4.186788-4 6.194623+2 4.197925-4 6.182921+2 4.208776-4 6.134759+2 4.247616-4 5.867378+2 4.257170-4 5.825513+2 4.269174-4 5.802488+2 4.286889-4 5.830826+2 4.324035-4 6.069704+2 4.341116-4 6.212926+2 4.370260-4 6.417793+2 4.380353-4 6.463349+2 4.389346-4 6.490489+2 4.398941-4 6.505959+2 4.412568-4 6.507862+2 4.456997-4 6.460786+2 4.477500-4 6.467112+2 4.498813-4 6.504060+2 4.602223-4 6.805721+2 4.696628-4 7.027123+2 4.793137-4 7.205690+2 4.895167-4 7.349443+2 5.028259-4 7.493600+2 5.141264-4 7.577660+2 5.215647-4 7.618107+2 5.257164-4 7.662512+2 5.285392-4 7.716697+2 5.376350-4 7.979254+2 5.412994-4 8.065550+2 5.469731-4 8.161236+2 5.553090-4 8.275942+2 5.662804-4 8.403570+2 5.812849-4 8.543874+2 5.986591-4 8.684756+2 6.166054-4 8.804896+2 6.550131-4 8.995150+2 6.960128-4 9.135642+2 7.372800-4 9.234090+2 7.818528-4 9.288922+2 8.659643-4 9.293425+2 9.524410-4 9.249464+2 1.047129-3 9.157588+2 1.103799-3 9.073993+2 1.269703-3 8.764035+2 1.333521-3 8.641270+2 1.405567-3 8.488588+2 1.557758-3 8.139824+2 1.626485-3 7.980886+2 1.710508-3 7.774095+2 1.795196-3 7.556385+2 1.882053-3 7.329566+2 1.970481-3 7.091569+2 2.058167-3 6.834248+2 2.139501-3 6.576127+2 2.203241-3 6.361814+2 2.263183-3 6.146209+2 2.322403-3 5.914376+2 2.363443-3 5.736541+2 2.409323-3 5.517643+2 2.451370-3 5.294148+2 2.484837-3 5.094655+2 2.511758-3 4.914335+2 2.537119-3 4.721792+2 2.560877-3 4.512934+2 2.579992-3 4.314925+2 2.595259-3 4.129762+2 2.607012-3 3.968584+2 2.620150-3 3.773802+2 2.637067-3 3.529200+2 2.646572-3 3.417920+2 2.653100-3 3.361609+2 2.659189-3 3.327645+2 2.665343-3 3.313535+2 2.671890-3 3.321572+2 2.678210-3 3.351056+2 2.684921-3 3.403201+2 2.694703-3 3.509202+2 2.717707-3 3.817053+2 2.724606-3 3.905863+2 2.735773-3 4.034987+2 2.745144-3 4.128966+2 2.774256-3 4.388228+2 2.792087-3 4.577711+2 2.813102-3 4.854050+2 2.831314-3 5.113320+2 2.843629-3 5.280345+2 2.853644-3 5.404437+2 2.870530-3 5.583760+2 2.885469-3 5.710805+2 2.903472-3 5.829401+2 2.921699-3 5.917436+2 2.938276-3 5.973906+2 2.983906-3 6.065180+2 2.995120-3 6.095492+2 3.007805-3 6.146526+2 3.027135-3 6.265496+2 3.074002-3 6.659101+2 3.088477-3 6.766758+2 3.103348-3 6.861101+2 3.122547-3 6.961490+2 3.145728-3 7.059637+2 3.177696-3 7.169241+2 3.241510-3 7.334356+2 3.314053-3 7.464817+2 3.388017-3 7.552509+2 3.479091-3 7.619988+2 3.601966-3 7.666114+2 3.730882-3 7.671436+2 3.877395-3 7.631846+2 4.045140-3 7.554498+2 4.348523-3 7.362421+2 4.677351-3 7.110678+2 5.038964-3 6.817284+2 5.491456-3 6.440996+2 6.049753-3 5.997323+2 6.690657-3 5.529755+2 7.497263-3 5.006056+2 8.479677-3 4.459222+2 9.362811-3 4.039732+2 1.004429-2 3.751729+2 1.088119-2 3.433144+2 1.173483-2 3.142082+2 1.269843-2 2.849689+2 1.368385-2 2.582967+2 1.424788-2 2.443342+2 1.540192-2 2.182810+2 1.600292-2 2.058981+2 1.703178-2 1.862199+2 1.789350-2 1.708777+2 1.854999-2 1.595973+2 1.907866-2 1.505070+2 1.947317-2 1.434850+2 1.981333-2 1.370136+2 2.006048-2 1.318058+2 2.017969-2 1.290097+2 2.028684-2 1.262350+2 2.037711-2 1.236242+2 2.051124-2 1.191473+2 2.067333-2 1.129219+2 2.080399-2 1.081902+2 2.088590-2 1.060460+2 2.094372-2 1.051473+2 2.099250-2 1.048490+2 2.104757-2 1.050306+2 2.109664-2 1.056285+2 2.116660-2 1.070754+2 2.130023-2 1.109881+2 2.142529-2 1.148094+2 2.152993-2 1.174876+2 2.160772-2 1.190727+2 2.167686-2 1.202091+2 2.176521-2 1.213480+2 2.186213-2 1.222830+2 2.206861-2 1.235424+2 2.232977-2 1.242856+2 2.265773-2 1.244778+2 2.297351-2 1.241503+2 2.358181-2 1.226493+2 2.425094-2 1.202611+2 2.527020-2 1.159482+2 2.639878-2 1.108725+2 2.788370-2 1.042105+2 3.015131-2 9.457665+1 3.320992-2 8.315718+1 3.653056-2 7.267617+1 4.034002-2 6.265693+1 4.445956-2 5.379010+1 5.016684-2 4.426929+1 5.525478-2 3.767077+1 6.140268-2 3.139626+1 8.276956-2 1.851738+1 1.111273-1 1.091810+1 1.352593-1 7.621036+0 1.692717-1 5.015827+0 2.121588-1 3.267638+0 2.895185-1 1.795391+0 4.241310-1 8.530878-1 6.388306-1 3.809630-1 1.120601+0 1.248791-1 3.086391+0 1.652989-2 9.320751+0 1.813517-3 2.814822+1 1.988609-4 8.500626+1 2.180482-5 2.567148+2 2.390853-6 7.752663+2 2.621518-7 2.511886+3 2.497208-8 7.943282+3 2.497208-9 2.511886+4 2.49721-10 7.943282+4 2.49721-11 1.000000+5 1.57563-11 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.561600-6 1.258900-6 2.475000-6 1.584900-6 3.922700-6 1.995300-6 6.217000-6 2.511900-6 9.853200-6 3.162300-6 1.561600-5 3.981100-6 2.475000-5 5.011900-6 3.922600-5 6.309600-6 6.216800-5 7.943300-6 9.852900-5 1.000000-5 1.561600-4 1.258900-5 2.474900-4 1.584900-5 3.921000-4 1.995300-5 6.211600-4 2.511900-5 9.841100-4 3.162300-5 1.559200-3 3.981100-5 2.470700-3 5.011900-5 3.915100-3 6.309600-5 6.204000-3 7.943300-5 9.820900-3 1.000000-4 1.554200-2 1.258900-4 2.459100-2 1.584900-4 3.882200-2 1.995300-4 6.121800-2 2.511900-4 9.624700-2 3.162300-4 1.505900-1 3.981100-4 2.337900-1 5.011900-4 3.588800-1 6.309600-4 5.418800-1 7.943300-4 7.992000-1 1.000000-3 1.143600+0 1.258900-3 1.578700+0 1.584900-3 2.102000+0 1.995300-3 2.718800+0 2.511900-3 3.453000+0 3.162300-3 4.328000+0 3.981100-3 5.357500+0 5.011900-3 6.556700+0 6.309600-3 7.931300+0 7.943300-3 9.439400+0 1.000000-2 1.098500+1 1.258900-2 1.253100+1 1.584900-2 1.407600+1 1.995300-2 1.555300+1 2.511900-2 1.690400+1 3.162300-2 1.798100+1 3.981100-2 1.892400+1 5.011900-2 1.949700+1 6.309600-2 1.973300+1 7.943300-2 1.964100+1 1.000000-1 1.924600+1 1.258900-1 1.860500+1 1.584900-1 1.780000+1 1.995300-1 1.682000+1 2.511900-1 1.573500+1 3.162300-1 1.459600+1 3.981100-1 1.343700+1 5.011900-1 1.228600+1 6.309600-1 1.116200+1 7.943300-1 1.007700+1 1.000000+0 9.044200+0 1.258900+0 8.065100+0 1.584900+0 7.146200+0 1.995300+0 6.291700+0 2.511900+0 5.504300+0 3.162300+0 4.785900+0 3.981100+0 4.136700+0 5.011900+0 3.555400+0 6.309600+0 3.040300+0 7.943300+0 2.587200+0 1.000000+1 2.191900+0 1.258900+1 1.849500+0 1.584900+1 1.554900+0 1.995300+1 1.302900+0 2.511900+1 1.088500+0 3.162300+1 9.068900-1 3.981100+1 7.537500-1 5.011900+1 6.250800-1 6.309600+1 5.173400-1 7.943300+1 4.273900-1 1.000000+2 3.525000-1 1.258900+2 2.902900-1 1.584900+2 2.387300-1 1.995300+2 1.960800-1 2.511900+2 1.608500-1 3.162300+2 1.318200-1 3.981100+2 1.079100-1 5.011900+2 8.826100-2 6.309600+2 7.212400-2 7.943300+2 5.889000-2 1.000000+3 4.804700-2 1.258900+3 3.917200-2 1.584900+3 3.191500-2 1.995300+3 2.598600-2 2.511900+3 2.114500-2 3.162300+3 1.719600-2 3.981100+3 1.397700-2 5.011900+3 1.135400-2 6.309600+3 9.219300-3 7.943300+3 7.482200-3 1.000000+4 6.069600-3 1.258900+4 4.921500-3 1.584900+4 3.989000-3 1.995300+4 3.231800-3 2.511900+4 2.617400-3 3.162300+4 2.118900-3 3.981100+4 1.714800-3 5.011900+4 1.387300-3 6.309600+4 1.122000-3 7.943300+4 9.070700-4 1.000000+5 7.331100-4 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159552-4 3.981072-4 3.976754-4 5.011872-4 5.005059-4 6.309573-4 6.298870-4 7.943282-4 7.926442-4 1.000000-3 9.973661-4 1.258925-3 1.254827-3 1.584893-3 1.578520-3 1.995262-3 1.985338-3 2.511886-3 2.496421-3 3.162278-3 3.138081-3 3.981072-3 3.943176-3 5.011872-3 4.952510-3 6.309573-3 6.216669-3 7.943282-3 7.798392-3 1.000000-2 9.774888-3 1.258925-2 1.224130-2 1.584893-2 1.531216-2 1.995262-2 1.912535-2 2.511886-2 2.384899-2 3.162278-2 2.968188-2 3.981072-2 3.686645-2 5.011872-2 4.567798-2 6.309573-2 5.644954-2 7.943282-2 6.955226-2 1.000000-1 8.546519-2 1.258925-1 1.046530-1 1.584893-1 1.276179-1 1.995262-1 1.551879-1 2.511886-1 1.880819-1 3.162278-1 2.271881-1 3.981072-1 2.735311-1 5.011872-1 3.283037-1 6.309573-1 3.928578-1 7.943282-1 4.690162-1 1.000000+0 5.583243-1 1.258925+0 6.637205-1 1.584893+0 7.880994-1 1.995262+0 9.352099-1 2.511886+0 1.109742+0 3.162278+0 1.317472+0 3.981072+0 1.565434+0 5.011872+0 1.862161+0 6.309573+0 2.218376+0 7.943282+0 2.646896+0 1.000000+1 3.163539+0 1.258925+1 3.787537+0 1.584893+1 4.542686+0 1.995262+1 5.457869+0 2.511886+1 6.568640+0 3.162278+1 7.918532+0 3.981072+1 9.561167+0 5.011872+1 1.156184+1 6.309573+1 1.400147+1 7.943282+1 1.697908+1 1.000000+2 2.061634+1 1.258925+2 2.506371+1 1.584893+2 3.050541+1 1.995262+2 3.716861+1 2.511886+2 4.533376+1 3.162278+2 5.534636+1 3.981072+2 6.763076+1 5.011872+2 8.271394+1 6.309573+2 1.012436+2 7.943282+2 1.240196+2 1.000000+3 1.520291+2 1.258925+3 1.864905+2 1.584893+3 2.289193+2 1.995262+3 2.811759+2 2.511886+3 3.455635+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88224-10 1.995262-5 1.090693-9 2.511886-5 1.728602-9 3.162278-5 2.739651-9 3.981072-5 4.342046-9 5.011872-5 6.881582-9 6.309573-5 1.090620-8 7.943282-5 1.727953-8 1.000000-4 2.738032-8 1.258925-4 4.338522-8 1.584893-4 6.871225-8 1.995262-4 1.088273-7 2.511886-4 1.722921-7 3.162278-4 2.725543-7 3.981072-4 4.317948-7 5.011872-4 6.813179-7 6.309573-4 1.070362-6 7.943282-4 1.684043-6 1.000000-3 2.633894-6 1.258925-3 4.098768-6 1.584893-3 6.372854-6 1.995262-3 9.923942-6 2.511886-3 1.546559-5 3.162278-3 2.419706-5 3.981072-3 3.789610-5 5.011872-3 5.936195-5 6.309573-3 9.290401-5 7.943282-3 1.448903-4 1.000000-2 2.251122-4 1.258925-2 3.479578-4 1.584893-2 5.367734-4 1.995262-2 8.272762-4 2.511886-2 1.269871-3 3.162278-2 1.940895-3 3.981072-2 2.944263-3 5.011872-2 4.440741-3 6.309573-2 6.646197-3 7.943282-2 9.880562-3 1.000000-1 1.453481-2 1.258925-1 2.123955-2 1.584893-1 3.087140-2 1.995262-1 4.433834-2 2.511886-1 6.310673-2 3.162278-1 8.903968-2 3.981072-1 1.245761-1 5.011872-1 1.728835-1 6.309573-1 2.380995-1 7.943282-1 3.253120-1 1.000000+0 4.416757-1 1.258925+0 5.952049-1 1.584893+0 7.967938-1 1.995262+0 1.060052+0 2.511886+0 1.402145+0 3.162278+0 1.844806+0 3.981072+0 2.415638+0 5.011872+0 3.149711+0 6.309573+0 4.091197+0 7.943282+0 5.296386+0 1.000000+1 6.836461+0 1.258925+1 8.801718+0 1.584893+1 1.130625+1 1.995262+1 1.449475+1 2.511886+1 1.855022+1 3.162278+1 2.370424+1 3.981072+1 3.024955+1 5.011872+1 3.855688+1 6.309573+1 4.909426+1 7.943282+1 6.245374+1 1.000000+2 7.938366+1 1.258925+2 1.008288+2 1.584893+2 1.279839+2 1.995262+2 1.623576+2 2.511886+2 2.058549+2 3.162278+2 2.608814+2 3.981072+2 3.304764+2 5.011872+2 4.184733+2 6.309573+2 5.297137+2 7.943282+2 6.703087+2 1.000000+3 8.479709+2 1.258925+3 1.072435+3 1.584893+3 1.355974+3 1.995262+3 1.714086+3 2.511886+3 2.166323+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.190000-6 1.365908+6 6.606934-6 9.632778+5 6.900000-6 7.583500+5 7.161434-6 6.144819+5 7.413102-6 5.025440+5 7.700000-6 4.003210+5 7.780000-6 3.755477+5 7.780000-6 6.246356+6 7.943282-6 6.378202+6 8.070000-6 6.485006+6 8.070000-6 1.021163+7 8.222426-6 1.044595+7 8.500000-6 1.088709+7 8.700000-6 1.121551+7 8.770000-6 1.132805+7 9.015711-6 1.172942+7 9.280000-6 1.217193+7 9.332543-6 1.226107+7 9.500000-6 1.253073+7 9.700000-6 1.285686+7 9.930000-6 1.323704+7 1.011579-5 1.354781+7 1.015000-5 1.360137+7 1.035142-5 1.391820+7 1.055000-5 1.423314+7 1.077000-5 1.458480+7 1.100000-5 1.495531+7 1.109175-5 1.509738+7 1.122018-5 1.529174+7 1.142000-5 1.559524+7 1.168800-5 1.600431+7 1.216186-5 1.673266+7 1.230269-5 1.693588+7 1.250000-5 1.722111+7 1.265000-5 1.743829+7 1.275000-5 1.758324+7 1.287500-5 1.776460+7 1.295000-5 1.787350+7 1.305000-5 1.801881+7 1.315000-5 1.816422+7 1.325000-5 1.830974+7 1.333521-5 1.843381+7 1.342000-5 1.855735+7 1.350000-5 1.867397+7 1.357000-5 1.876981+7 1.365000-5 1.887937+7 1.372000-5 1.897524+7 1.380384-5 1.909007+7 1.391300-5 1.923961+7 1.400000-5 1.935880+7 1.412538-5 1.953060+7 1.425000-5 1.970138+7 1.440000-5 1.990696+7 1.455000-5 2.011256+7 1.479108-5 2.044303+7 1.531087-5 2.115562+7 1.560000-5 2.152726+7 1.590000-5 2.191241+7 1.621810-5 2.232030+7 1.650000-5 2.268132+7 1.680000-5 2.306507+7 1.698244-5 2.329820+7 1.710000-5 2.344379+7 1.717908-5 2.354165+7 1.740000-5 2.380127+7 1.778279-5 2.424999+7 1.819701-5 2.473399+7 1.862087-5 2.522762+7 1.905461-5 2.567961+7 1.950000-5 2.614126+7 2.000000-5 2.665661+7 2.055000-5 2.714042+7 2.113489-5 2.765010+7 2.170000-5 2.804156+7 2.230000-5 2.845195+7 2.238721-5 2.849506+7 2.317395-5 2.887932+7 2.330000-5 2.894013+7 2.400000-5 2.913504+7 2.426610-5 2.920795+7 2.500000-5 2.924902+7 2.528300-5 2.926453+7 2.610000-5 2.913815+7 2.691535-5 2.885892+7 2.730000-5 2.864832+7 2.786121-5 2.834897+7 2.851018-5 2.787626+7 2.870000-5 2.774149+7 2.951209-5 2.703010+7 3.000000-5 2.653067+7 3.040000-5 2.613398+7 3.126079-5 2.516825+7 3.162278-5 2.471587+7 3.230000-5 2.390441+7 3.330000-5 2.261774+7 3.350000-5 2.234342+7 3.427678-5 2.132370+7 3.540000-5 1.982437+7 3.570000-5 1.941353+7 3.650000-5 1.837468+7 3.770000-5 1.684067+7 3.801894-5 1.643223+7 3.900000-5 1.525638+7 4.030000-5 1.376840+7 4.073803-5 1.328058+7 4.168694-5 1.229845+7 4.315191-5 1.088298+7 4.400000-5 1.011739+7 4.475300-5 9.494043+6 4.623810-5 8.344525+6 4.655000-5 8.114426+6 4.655000-5 1.145158+7 4.710000-5 1.100904+7 4.770000-5 1.053185+7 4.786301-5 1.040186+7 4.850000-5 9.894281+6 4.950000-5 9.136481+6 4.954502-5 9.103259+6 4.960000-5 9.061388+6 4.960000-5 1.064102+7 5.011872-5 1.024482+7 5.069907-5 9.813886+6 5.128614-5 9.387065+6 5.188000-5 8.960214+6 5.190000-5 8.946077+6 5.279400-5 8.334878+6 5.300000-5 8.199667+6 5.370318-5 7.746477+6 5.400000-5 7.562505+6 5.450000-5 7.261949+6 5.500000-5 6.968600+6 5.580000-5 6.525856+6 5.623413-5 6.298164+6 5.650000-5 6.159884+6 5.800000-5 5.440573+6 5.850000-5 5.218939+6 5.900000-5 5.006766+6 5.956621-5 4.778384+6 6.095369-5 4.260933+6 6.237348-5 3.790093+6 6.400000-5 3.318582+6 6.531306-5 2.982248+6 6.580000-5 2.869462+6 6.606934-5 2.808076+6 6.760830-5 2.487460+6 6.839116-5 2.339332+6 6.950000-5 2.150528+6 7.079458-5 1.950662+6 7.161434-5 1.838160+6 7.328245-5 1.632181+6 7.350000-5 1.608019+6 7.400000-5 1.553977+6 7.500000-5 1.452394+6 7.585000-5 1.375115+6 7.585000-5 1.547524+6 7.585776-5 1.546865+6 7.736000-5 1.427399+6 7.762471-5 1.408427+6 7.950000-5 1.286215+6 8.000000-5 1.257243+6 8.035261-5 1.237686+6 8.080000-5 1.214011+6 8.150000-5 1.178805+6 8.222426-5 1.145683+6 8.230000-5 1.142290+6 8.300000-5 1.112051+6 8.400000-5 1.072586+6 8.413951-5 1.067535+6 8.511380-5 1.034054+6 8.530000-5 1.027943+6 8.650000-5 9.913708+5 8.738900-5 9.677407+5 8.770000-5 9.600792+5 8.830000-5 9.458766+5 8.868500-5 9.371821+5 8.912509-5 9.276030+5 8.970000-5 9.161504+5 9.000000-5 9.104026+5 9.015711-5 9.075002+5 9.070000-5 8.979357+5 9.120108-5 8.894569+5 9.150000-5 8.846459+5 9.225714-5 8.729292+5 9.230000-5 8.723406+5 9.240200-5 8.709892+5 9.332543-5 8.592548+5 9.440609-5 8.468831+5 9.500000-5 8.407549+5 9.549926-5 8.357969+5 9.660509-5 8.267824+5 9.772372-5 8.187301+5 9.900000-5 8.111325+5 1.000000-4 8.066299+5 1.005000-4 8.046999+5 1.015000-4 8.012843+5 1.020000-4 7.997488+5 1.023293-4 7.988545+5 1.030000-4 7.973036+5 1.040000-4 7.956116+5 1.050000-4 7.942906+5 1.060000-4 7.932879+5 1.071519-4 7.933252+5 1.096478-4 7.943566+5 1.100000-4 7.946576+5 1.109175-4 7.953416+5 1.135011-4 7.988502+5 1.150000-4 8.015543+5 1.170000-4 8.051902+5 1.174898-4 8.062360+5 1.190000-4 8.095637+5 1.205000-4 8.127540+5 1.220000-4 8.159141+5 1.244515-4 8.212312+5 1.258925-4 8.242761+5 1.280000-4 8.284660+5 1.288250-4 8.301406+5 1.318257-4 8.357762+5 1.330000-4 8.376856+5 1.350000-4 8.405341+5 1.365000-4 8.426652+5 1.390000-4 8.458080+5 1.396368-4 8.465342+5 1.400000-4 8.468925+5 1.430000-4 8.492639+5 1.445440-4 8.503220+5 1.450000-4 8.506433+5 1.480000-4 8.520580+5 1.500000-4 8.524716+5 1.531087-4 8.524989+5 1.548817-4 8.520943+5 1.580000-4 8.508192+5 1.584893-4 8.505789+5 1.611900-4 8.489279+5 1.650000-4 8.459491+5 1.670000-4 8.441685+5 1.678804-4 8.432264+5 1.698244-4 8.409432+5 1.717908-4 8.384607+5 1.737801-4 8.357682+5 1.757924-4 8.327859+5 1.778279-4 8.298332+5 1.800000-4 8.265301+5 1.840772-4 8.198144+5 1.850000-4 8.182282+5 1.862087-4 8.160331+5 1.880000-4 8.126419+5 1.930000-4 8.026741+5 1.972423-4 7.941432+5 2.000000-4 7.883156+5 2.018366-4 7.843316+5 2.065380-4 7.737532+5 2.113489-4 7.625053+5 2.162719-4 7.510378+5 2.187762-4 7.448404+5 2.213095-4 7.385980+5 2.264644-4 7.258874+5 2.270000-4 7.245740+5 2.317395-4 7.127019+5 2.350000-4 7.045660+5 2.371374-4 6.991773+5 2.398833-4 6.922875+5 2.454709-4 6.781758+5 2.540973-4 6.567593+5 2.570396-4 6.493423+5 2.600160-4 6.419247+5 2.630700-4 6.343283+5 2.630700-4 7.626401+5 2.641000-4 7.603974+5 2.652000-4 7.588093+5 2.662000-4 7.584021+5 2.670100-4 7.589922+5 2.670100-4 8.486802+5 2.677000-4 8.497205+5 2.685000-4 8.525068+5 2.690000-4 8.550772+5 2.691535-4 8.559988+5 2.692000-4 8.562753+5 2.697000-4 8.599642+5 2.700000-4 8.626282+5 2.703000-4 8.655686+5 2.708000-4 8.714319+5 2.710000-4 8.739901+5 2.714000-4 8.798617+5 2.715000-4 8.814372+5 2.721000-4 8.921519+5 2.722000-4 8.940858+5 2.722701-4 8.955626+5 2.727000-4 9.048501+5 2.728000-4 9.072333+5 2.734000-4 9.226434+5 2.735000-4 9.254004+5 2.740000-4 9.406503+5 2.743000-4 9.505214+5 2.746000-4 9.612431+5 2.750000-4 9.765749+5 2.752000-4 9.848303+5 2.754229-4 9.945319+5 2.759000-4 1.016213+6 2.760000-4 1.021049+6 2.766000-4 1.052340+6 2.774000-4 1.099187+6 2.781000-4 1.145349+6 2.786121-4 1.182510+6 2.788000-4 1.196784+6 2.790000-4 1.212577+6 2.796000-4 1.261479+6 2.800000-4 1.296679+6 2.803000-4 1.324318+6 2.807000-4 1.361499+6 2.815000-4 1.442261+6 2.823000-4 1.528245+6 2.830000-4 1.607431+6 2.833000-4 1.643121+6 2.840000-4 1.727825+6 2.850000-4 1.853380+6 2.851018-4 1.866302+6 2.858000-4 1.956761+6 2.861000-4 1.995555+6 2.869000-4 2.102307+6 2.877000-4 2.208011+6 2.880000-4 2.248625+6 2.885000-4 2.314441+6 2.891000-4 2.394569+6 2.895000-4 2.447106+6 2.900000-4 2.512734+6 2.904000-4 2.563956+6 2.912000-4 2.666579+6 2.915000-4 2.704125+6 2.917427-4 2.733738+6 2.923000-4 2.803288+6 2.926000-4 2.839525+6 2.935000-4 2.947347+6 2.945000-4 3.060722+6 2.950000-4 3.116866+6 2.958000-4 3.203047+6 2.965000-4 3.277139+6 2.969000-4 3.317645+6 2.980000-4 3.427478+6 2.995000-4 3.566079+6 3.000000-4 3.611497+6 3.007000-4 3.670889+6 3.022000-4 3.795910+6 3.040000-4 3.932145+6 3.054921-4 4.033622+6 3.057000-4 4.047958+6 3.065000-4 4.100216+6 3.080000-4 4.190076+6 3.090295-4 4.248770+6 3.100000-4 4.299035+6 3.115000-4 4.371780+6 3.126079-4 4.420293+6 3.140000-4 4.476373+6 3.150000-4 4.512170+6 3.165000-4 4.561488+6 3.172000-4 4.581108+6 3.200000-4 4.651180+6 3.235937-4 4.709734+6 3.240000-4 4.714984+6 3.273407-4 4.743939+6 3.280000-4 4.747733+6 3.311311-4 4.754708+6 3.320000-4 4.756635+6 3.335000-4 4.756207+6 3.350000-4 4.751969+6 3.370000-4 4.746280+6 3.390000-4 4.737408+6 3.430000-4 4.712169+6 3.467369-4 4.684714+6 3.507519-4 4.655575+6 3.548134-4 4.617564+6 3.630781-4 4.542388+6 3.672823-4 4.495613+6 3.722400-4 4.441637+6 3.758374-4 4.403238+6 3.801894-4 4.348482+6 3.850000-4 4.289391+6 3.890451-4 4.233046+6 3.981072-4 4.111447+6 4.000000-4 4.085465+6 4.027170-4 4.045926+6 4.073803-4 3.979381+6 4.120975-4 3.913934+6 4.150000-4 3.874531+6 4.216965-4 3.782954+6 4.249500-4 3.737816+6 4.249500-4 4.119951+6 4.315191-4 4.038961+6 4.415704-4 3.921446+6 4.452400-4 3.877665+6 4.452400-4 4.001439+6 4.459000-4 3.999668+6 4.463000-4 3.998198+6 4.466836-4 3.996464+6 4.468000-4 3.995885+6 4.475000-4 3.991744+6 4.485000-4 3.984844+6 4.494000-4 3.978056+6 4.500000-4 3.973149+6 4.505000-4 3.968850+6 4.518559-4 3.956465+6 4.520000-4 3.955162+6 4.535000-4 3.940874+6 4.550000-4 3.926114+6 4.573000-4 3.902741+6 4.595000-4 3.879728+6 4.623810-4 3.848860+6 4.650000-4 3.819339+6 4.655000-4 3.813579+6 4.677351-4 3.787314+6 4.685000-4 3.778396+6 4.700000-4 3.760606+6 4.731513-4 3.721975+6 4.750000-4 3.699275+6 4.786301-4 3.654148+6 4.850000-4 3.577159+6 4.897788-4 3.518934+6 4.954502-4 3.451834+6 5.011872-4 3.383937+6 5.069907-4 3.317420+6 5.150000-4 3.229060+6 5.188000-4 3.187563+6 5.248075-4 3.123684+6 5.334200-4 3.032213+6 5.334200-4 3.165561+6 5.400000-4 3.096966+6 5.440900-4 3.055398+6 5.495409-4 3.001382+6 5.559043-4 2.940240+6 5.623413-4 2.879444+6 5.650000-4 2.854922+6 5.688529-4 2.819173+6 5.754399-4 2.759589+6 5.900000-4 2.634388+6 5.930000-4 2.609344+6 6.000000-4 2.552271+6 6.025596-4 2.531893+6 6.095369-4 2.476316+6 6.100000-4 2.472696+6 6.165950-4 2.421584+6 6.200000-4 2.395785+6 6.237348-4 2.367853+6 6.456542-4 2.211737+6 6.531306-4 2.161238+6 6.606934-4 2.111969+6 6.760830-4 2.015985+6 6.839116-4 1.969277+6 7.000000-4 1.878446+6 7.079458-4 1.835814+6 7.161434-4 1.792751+6 7.328245-4 1.709369+6 7.413102-4 1.668793+6 7.500000-4 1.628771+6 7.585776-4 1.590455+6 7.673615-4 1.552298+6 7.852356-4 1.477796+6 7.943282-4 1.441982+6 8.000000-4 1.420119+6 8.128305-4 1.372255+6 8.317638-4 1.305526+6 8.511380-4 1.241630+6 8.609938-4 1.210822+6 8.810489-4 1.151613+6 8.912509-4 1.122950+6 9.015711-4 1.095045+6 9.120108-4 1.067695+6 9.225714-4 1.040747+6 9.332543-4 1.014456+6 9.440609-4 9.887945+5 9.500000-4 9.751039+5 9.660509-4 9.394997+5 9.772372-4 9.156518+5 1.000000-3 8.694792+5 1.011579-3 8.470811+5 1.023293-3 8.252078+5 1.047129-3 7.832193+5 1.059254-3 7.630788+5 1.071519-3 7.433577+5 1.083927-3 7.241686+5 1.110000-3 6.858040+5 1.122018-3 6.689780+5 1.150000-3 6.321252+5 1.161449-3 6.179099+5 1.174898-3 6.018111+5 1.190000-3 5.843524+5 1.202264-3 5.706095+5 1.230269-3 5.408655+5 1.273503-3 4.989919+5 1.288250-3 4.857104+5 1.303167-3 4.727890+5 1.318257-3 4.601799+5 1.333521-3 4.479030+5 1.348963-3 4.359005+5 1.364583-3 4.242339+5 1.412538-3 3.909149+5 1.428894-3 3.803668+5 1.445440-3 3.700800+5 1.479108-3 3.503635+5 1.513561-3 3.316592+5 1.531087-3 3.227033+5 1.548817-3 3.139425+5 1.584893-3 2.970010+5 1.621810-3 2.809557+5 1.640590-3 2.732693+5 1.659587-3 2.658036+5 1.698244-3 2.514472+5 1.717908-3 2.445335+5 1.737801-3 2.377712+5 1.757924-3 2.311795+5 1.778279-3 2.247793+5 1.819701-3 2.125099+5 1.850000-3 2.041375+5 1.905461-3 1.899656+5 1.949845-3 1.794927+5 1.950000-3 1.794576+5 1.972423-3 1.744646+5 2.018366-3 1.648458+5 2.041738-3 1.602470+5 2.070000-3 1.549132+5 2.113489-3 1.471707+5 2.137962-3 1.430290+5 2.150000-3 1.410527+5 2.162719-3 1.389895+5 2.238721-3 1.275275+5 2.290868-3 1.204415+5 2.344229-3 1.137624+5 2.371374-3 1.105330+5 2.398833-3 1.073878+5 2.400000-3 1.072569+5 2.483133-3 9.843751+4 2.570396-3 9.026579+4 2.630268-3 8.521096+4 2.660725-3 8.276929+4 2.677600-3 8.144853+4 2.677600-3 2.901591+5 2.691535-3 2.863331+5 2.733000-3 2.753573+5 2.786121-3 2.627625+5 2.797900-3 2.599672+5 2.797900-3 3.596258+5 2.818383-3 3.529584+5 2.851018-3 3.426870+5 2.884032-3 3.327111+5 2.917427-3 3.230265+5 2.951209-3 3.138268+5 2.985383-3 3.050223+5 3.000000-3 3.013595+5 3.019952-3 2.963385+5 3.020000-3 2.963263+5 3.022400-3 2.957192+5 3.022400-3 3.391859+5 3.044000-3 3.333181+5 3.162278-3 3.036161+5 3.198895-3 2.951920+5 3.230000-3 2.881796+5 3.235937-3 2.868642+5 3.300000-3 2.730424+5 3.311311-3 2.706978+5 3.349654-3 2.629570+5 3.388442-3 2.554333+5 3.467369-3 2.410425+5 3.507519-3 2.341588+5 3.548134-3 2.274349+5 3.630781-3 2.145029+5 3.715352-3 2.022503+5 3.758374-3 1.963875+5 3.845918-3 1.851680+5 3.900000-3 1.786862+5 3.935501-3 1.745907+5 4.027170-3 1.646008+5 4.120975-3 1.551957+5 4.216965-3 1.463396+5 4.265795-3 1.420984+5 4.300000-3 1.392297+5 4.365158-3 1.339307+5 4.415704-3 1.299960+5 4.466836-3 1.261852+5 4.500000-3 1.237976+5 4.623810-3 1.154249+5 4.677351-3 1.120496+5 4.731513-3 1.087566+5 4.800000-3 1.047828+5 4.841724-3 1.024475+5 4.900000-3 9.930625+4 4.954502-3 9.646791+4 5.011872-3 9.360186+4 5.128614-3 8.812916+4 5.308844-3 8.052703+4 5.432503-3 7.581842+4 5.623413-3 6.918158+4 5.754399-3 6.506246+4 6.000000-3 5.821645+4 6.025596-3 5.756168+4 6.095369-3 5.582827+4 6.165950-3 5.414833+4 6.309573-3 5.093906+4 6.382635-3 4.939804+4 6.456542-3 4.790357+4 6.500000-3 4.704907+4 6.760830-3 4.234249+4 6.800000-3 4.169071+4 6.839116-3 4.105337+4 6.918310-3 3.980380+4 7.000000-3 3.856984+4 7.161434-3 3.627280+4 7.244360-3 3.515806+4 7.328245-3 3.407848+4 7.500000-3 3.200788+4 7.673615-3 3.008111+4 7.762471-3 2.915680+4 8.000000-3 2.687266+4 8.035261-3 2.655509+4 8.128305-3 2.574084+4 8.222426-3 2.494658+4 8.413951-3 2.343258+4 8.609938-3 2.201261+4 8.709636-3 2.133085+4 8.810489-3 2.067041+4 8.912509-3 2.003035+4 9.015711-3 1.940789+4 9.225714-3 1.822204+4 9.332543-3 1.765672+4 9.440609-3 1.710675+4 9.660509-3 1.605888+4 9.885531-3 1.507678+4 1.000000-2 1.460886+4 1.011579-2 1.415583+4 1.023293-2 1.371463+4 1.047129-2 1.287347+4 1.059254-2 1.246989+4 1.071519-2 1.207928+4 1.109175-2 1.097720+4 1.122018-2 1.063319+4 1.135011-2 1.030004+4 1.161449-2 9.665510+3 1.202264-2 8.783904+3 1.210000-2 8.629367+3 1.216186-2 8.508377+3 1.230269-2 8.241593+3 1.244515-2 7.981384+3 1.273503-2 7.484724+3 1.288250-2 7.248380+3 1.303167-2 7.019583+3 1.350000-2 6.362894+3 1.396368-2 5.791105+3 1.400000-2 5.749336+3 1.412538-2 5.608162+3 1.428894-2 5.431117+3 1.462177-2 5.090935+3 1.479108-2 4.929127+3 1.500000-2 4.739098+3 1.531087-2 4.474466+3 1.580000-2 4.097820+3 1.603245-2 3.933418+3 1.621810-2 3.808510+3 1.640590-2 3.686869+3 1.659587-2 3.569072+3 1.678804-2 3.455129+3 1.717908-2 3.237778+3 1.737801-2 3.134394+3 1.798871-2 2.843990+3 1.840772-2 2.665829+3 1.862087-2 2.580702+3 1.883649-2 2.497734+3 1.905461-2 2.417493+3 1.949845-2 2.264653+3 1.972423-2 2.191981+3 2.000000-2 2.107501+3 2.018366-2 2.053591+3 2.041738-2 1.987668+3 2.101200-2 1.832582+3 2.101200-2 1.207744+4 2.116000-2 1.188735+4 2.120000-2 1.183672+4 2.150000-2 1.143932+4 2.162719-2 1.125383+4 2.190000-2 1.086891+4 2.213095-2 1.058570+4 2.238721-2 1.028345+4 2.264644-2 9.989814+3 2.344229-2 9.114718+3 2.371374-2 8.840480+3 2.398833-2 8.574520+3 2.400000-2 8.563463+3 2.426610-2 8.316524+3 2.454709-2 8.070371+3 2.483133-2 7.831524+3 2.540973-2 7.374916+3 2.570396-2 7.156448+3 2.600160-2 6.944384+3 2.630268-2 6.738638+3 2.700000-2 6.293429+3 2.722701-2 6.153403+3 2.786121-2 5.784234+3 2.884032-2 5.271725+3 2.917427-2 5.111218+3 2.951209-2 4.955574+3 2.985383-2 4.804684+3 3.054921-2 4.516254+3 3.090295-2 4.378569+3 3.230000-2 3.887736+3 3.273407-2 3.748113+3 3.311311-2 3.631746+3 3.427678-2 3.303928+3 3.467369-2 3.201379+3 3.589219-2 2.912177+3 3.630781-2 2.821703+3 3.715352-2 2.649092+3 3.801894-2 2.487022+3 3.890451-2 2.334901+3 4.027170-2 2.124036+3 4.073803-2 2.056785+3 4.120975-2 1.991669+3 4.315191-2 1.751209+3 4.415704-2 1.642101+3 4.518559-2 1.539806+3 4.570882-2 1.491072+3 4.623810-2 1.443875+3 4.731513-2 1.353925+3 4.841724-2 1.269494+3 5.011872-2 1.152635+3 5.128614-2 1.079668+3 5.308844-2 9.787839+2 5.432503-2 9.168312+2 5.495409-2 8.873441+2 5.623413-2 8.311906+2 5.754399-2 7.785392+2 5.821032-2 7.534791+2 6.025596-2 6.830445+2 6.095369-2 6.610602+2 6.237348-2 6.191859+2 6.309573-2 5.990070+2 6.531306-2 5.423356+2 6.606934-2 5.246650+2 6.683439-2 5.075707+2 6.839116-2 4.750032+2 6.998420-2 4.445283+2 7.161434-2 4.160107+2 7.328245-2 3.893254+2 7.585776-2 3.524699+2 7.762471-2 3.298619+2 8.000000-2 3.021772+2 8.128305-2 2.885139+2 8.317638-2 2.698095+2 9.000000-2 2.144836+2 9.015711-2 2.133975+2 9.225714-2 1.995651+2 9.332543-2 1.929892+2 9.885531-2 1.632241+2 1.000000-1 1.578042+2 1.011580-1 1.525643+2 1.035142-1 1.425929+2 1.047129-1 1.378546+2 1.071519-1 1.288460+2 1.083927-1 1.245653+2 1.096478-1 1.204271+2 1.109175-1 1.164264+2 1.122019-1 1.125582+2 1.188502-1 9.506415+1 1.258925-1 8.029095+1 1.273503-1 7.762427+1 1.288250-1 7.504625+1 1.303167-1 7.255405+1 1.318257-1 7.014484+1 1.348963-1 6.556398+1 1.380384-1 6.128110+1 1.412538-1 5.727851+1 1.462177-1 5.176002+1 1.479108-1 5.004139+1 1.496236-1 4.837977+1 1.531088-1 4.522045+1 1.548817-1 4.371912+1 1.566751-1 4.226770+1 1.640590-1 3.694178+1 1.678804-1 3.453653+1 1.757924-1 3.018590+1 1.819701-1 2.728673+1 1.840772-1 2.638363+1 1.862087-1 2.551052+1 1.905461-1 2.385004+1 1.927525-1 2.306093+1 1.972423-1 2.156094+1 2.041738-1 1.949201+1 2.065380-1 1.884749+1 2.089296-1 1.823065+1 2.113489-1 1.763401+1 2.137962-1 1.705692+1 2.187762-1 1.595879+1 2.213095-1 1.543662+1 2.238721-1 1.493163+1 2.264644-1 1.444315+1 2.290868-1 1.397066+1 2.299100-1 1.382663+1 2.344229-1 1.307168+1 2.371374-1 1.264415+1 2.398833-1 1.223061+1 2.454709-1 1.144371+1 2.483133-1 1.106998+1 2.511886-1 1.071335+1 2.630268-1 9.398260+0 2.660725-1 9.095546+0 2.667320-1 9.031739+0 2.691535-1 8.802640+0 2.722701-1 8.519201+0 2.754229-1 8.244923+0 2.786121-1 7.979527+0 2.884032-1 7.233531+0 2.900000-1 7.121090+0 2.917427-1 7.002944+0 2.951209-1 6.781408+0 2.985383-1 6.566879+0 3.000000-1 6.477934+0 3.019952-1 6.359150+0 3.054921-1 6.157981+0 3.126079-1 5.774593+0 3.162278-1 5.591995+0 3.235937-1 5.243949+0 3.273407-1 5.078139+0 3.311311-1 4.917582+0 3.349654-1 4.762106+0 3.388442-1 4.614497+0 3.507519-1 4.198685+0 3.548134-1 4.068582+0 3.589219-1 3.942513+0 3.630781-1 3.820387+0 3.672823-1 3.702050+0 3.715352-1 3.587382+0 3.758374-1 3.476282+0 3.801894-1 3.368632+0 3.845918-1 3.266541+0 3.935501-1 3.071549+0 4.000000-1 2.940939+0 4.027170-1 2.888201+0 4.073803-1 2.800675+0 4.120975-1 2.715849+0 4.168694-1 2.633591+0 4.216965-1 2.553827+0 4.265795-1 2.476494+0 4.315191-1 2.403061+0 4.365158-1 2.331963+0 4.415705-1 2.262967+0 4.466836-1 2.196017+0 4.570882-1 2.068020+0 4.623810-1 2.006872+0 4.677351-1 1.947533+0 4.731513-1 1.889955+0 4.786301-1 1.835301+0 4.841724-1 1.782228+0 4.897788-1 1.730812+0 5.069907-1 1.585316+0 5.128614-1 1.539607+0 5.188000-1 1.495217+0 5.248075-1 1.452113+0 5.308844-1 1.411232+0 5.370318-1 1.371502+0 5.623413-1 1.223829+0 5.688529-1 1.189481+0 5.754399-1 1.156098+0 5.821032-1 1.123657+0 5.888437-1 1.092914+0 5.956621-1 1.063019+0 6.095369-1 1.005811+0 6.237348-1 9.516821-1 6.309573-1 9.257331-1 6.382635-1 9.004963-1 6.456542-1 8.765865-1 6.606935-1 8.306664-1 6.623700-1 8.257617-1 6.760830-1 7.872806-1 6.839117-1 7.664527-1 6.918310-1 7.461761-1 6.998420-1 7.264498-1 7.079458-1 7.072450-1 7.161434-1 6.890837-1 7.328245-1 6.541515-1 7.413102-1 6.374028-1 7.498942-1 6.210828-1 7.585776-1 6.051808-1 7.673615-1 5.896885-1 7.762471-1 5.746030-1 7.852356-1 5.599035-1 7.943282-1 5.459816-1 8.035261-1 5.324071-1 8.128305-1 5.191701-1 8.222427-1 5.062983-1 8.317638-1 4.937457-1 8.413951-1 4.815063-1 8.511380-1 4.695703-1 8.609938-1 4.579370-1 8.709636-1 4.465944-1 9.015711-1 4.152457-1 9.120108-1 4.052952-1 9.225714-1 3.955836-1 9.332543-1 3.861383-1 9.440609-1 3.769244-1 9.549926-1 3.679305-1 9.660509-1 3.594560-1 9.772372-1 3.511789-1 9.885531-1 3.430950-1 1.000000+0 3.351971-1 1.011579+0 3.275091-1 1.022000+0 3.208133-1 1.035142+0 3.126608-1 1.047129+0 3.054934-1 1.059254+0 2.984923-1 1.071519+0 2.916522-1 1.083927+0 2.851144-1 1.109175+0 2.724754-1 1.122018+0 2.663680-1 1.135011+0 2.603982-1 1.148154+0 2.545636-1 1.161449+0 2.488781-1 1.174898+0 2.433238-1 1.188600+0 2.378554-1 1.202264+0 2.327908-1 1.216186+0 2.277997-1 1.244515+0 2.181363-1 1.250000+0 2.163379-1 1.273503+0 2.088846-1 1.288250+0 2.044220-1 1.318257+0 1.957849-1 1.333521+0 1.916044-1 1.348963+0 1.875133-1 1.364583+0 1.835099-1 1.380384+0 1.796952-1 1.396368+0 1.759605-1 1.412538+0 1.723032-1 1.428894+0 1.687223-1 1.462177+0 1.618041-1 1.513561+0 1.519607-1 1.531087+0 1.488145-1 1.548817+0 1.458393-1 1.584893+0 1.400666-1 1.603245+0 1.372666-1 1.621810+0 1.345315-1 1.640590+0 1.318526-1 1.698244+0 1.241319-1 1.717908+0 1.216603-1 1.737801+0 1.193138-1 1.757924+0 1.170130-1 1.798871+0 1.125436-1 1.819701+0 1.103805-1 1.840772+0 1.082607-1 1.905461+0 1.021425-1 1.927525+0 1.001809-1 1.949845+0 9.831895-2 1.972423+0 9.649190-2 2.000000+0 9.433359-2 2.018366+0 9.293905-2 2.044000+0 9.105388-2 2.065380+0 8.952952-2 2.137962+0 8.465053-2 2.162719+0 8.308398-2 2.187762+0 8.154648-2 2.213095+0 8.008498-2 2.238721+0 7.864989-2 2.264644+0 7.724052-2 2.290868+0 7.585635-2 2.317395+0 7.450148-2 2.344229+0 7.317181-2 2.426610+0 6.932362-2 2.454709+0 6.808639-2 2.483133+0 6.687127-2 2.511886+0 6.571540-2 2.540973+0 6.457963-2 2.570396+0 6.346352-2 2.600160+0 6.236669-2 2.630268+0 6.129238-2 2.660725+0 6.023736-2 2.691535+0 5.920052-2 2.786121+0 5.619591-2 2.818383+0 5.522864-2 2.851018+0 5.427804-2 2.884032+0 5.337268-2 2.917427+0 5.248258-2 2.951209+0 5.160732-2 2.985383+0 5.074664-2 3.019952+0 4.990318-2 3.054921+0 4.907441-2 3.090295+0 4.825942-2 3.198895+0 4.589476-2 3.235937+0 4.513256-2 3.273407+0 4.438305-2 3.311311+0 4.366828-2 3.349654+0 4.296512-2 3.388442+0 4.227327-2 3.467369+0 4.092284-2 3.507519+0 4.026603-2 3.548134+0 3.962026-2 3.589219+0 3.898487-2 3.715352+0 3.713917-2 3.758374+0 3.654356-2 3.801894+0 3.595750-2 3.845918+0 3.539814-2 3.890451+0 3.484757-2 3.935501+0 3.430554-2 4.027170+0 3.324668-2 4.073803+0 3.273114-2 4.120975+0 3.222388-2 4.168694+0 3.172456-2 4.216965+0 3.123299-2 4.365158+0 2.980353-2 4.415704+0 2.934174-2 4.466836+0 2.888709-2 4.518559+0 2.845288-2 4.570882+0 2.802525-2 4.623810+0 2.760405-2 4.731513+0 2.678055-2 4.786301+0 2.637931-2 4.841724+0 2.598430-2 4.897788+0 2.559527-2 5.000000+0 2.491191-2 5.188000+0 2.373582-2 5.248075+0 2.338046-2 5.308844+0 2.303043-2 5.370318+0 2.269568-2 5.432503+0 2.236584-2 5.495409+0 2.204079-2 5.623413+0 2.140480-2 5.688529+0 2.109464-2 5.754399+0 2.078914-2 5.821032+0 2.048812-2 6.000000+0 1.971702-2 6.237348+0 1.877138-2 6.309573+0 1.849958-2 6.382635+0 1.823172-2 6.456542+0 1.797491-2 6.531306+0 1.772175-2 6.606934+0 1.747215-2 6.760830+0 1.698346-2 6.839116+0 1.674493-2 7.000000+0 1.627359-2 7.079458+0 1.604962-2 7.328245+0 1.538327-2 7.673615+0 1.453765-2 7.762471+0 1.433360-2 7.852356+0 1.413806-2 7.943282+0 1.394520-2 8.000000+0 1.382734-2 8.035261+0 1.375499-2 8.222427+0 1.338233-2 8.317638+0 1.320034-2 8.413951+0 1.302091-2 8.511380+0 1.284396-2 8.912509+0 1.215986-2 9.440609+0 1.135576-2 9.660509+0 1.104921-2 9.772372+0 1.090251-2 1.000000+1 1.061496-2 1.011579+1 1.047406-2 1.023293+1 1.033502-2 1.047129+1 1.006246-2 1.059254+1 9.929247-3 1.071519+1 9.797871-3 1.083927+1 9.668242-3 1.122018+1 9.289583-3 1.174898+1 8.807659-3 1.200000+1 8.594887-3 1.202264+1 8.576600-3 1.230269+1 8.356340-3 1.244515+1 8.248352-3 1.258925+1 8.141767-3 1.273503+1 8.036551-3 1.333521+1 7.629122-3 1.364583+1 7.433701-3 1.380384+1 7.337922-3 1.400000+1 7.222227-3 1.445440+1 6.967034-3 1.500000+1 6.682292-3 1.531087+1 6.529685-3 1.566751+1 6.366087-3 1.600000+1 6.220476-3 1.621810+1 6.128367-3 1.659587+1 5.974839-3 1.757924+1 5.607636-3 1.800000+1 5.463692-3 1.819701+1 5.398718-3 1.862087+1 5.263832-3 1.905461+1 5.132316-3 2.000000+1 4.866365-3 2.041738+1 4.757163-3 2.113489+1 4.583521-3 2.187762+1 4.416231-3 2.213095+1 4.361836-3 2.264644+1 4.255050-3 2.371374+1 4.049252-3 2.400000+1 3.997382-3 2.426610+1 3.950319-3 2.483133+1 3.853827-3 2.570396+1 3.713492-3 2.754229+1 3.447970-3 2.851018+1 3.322416-3 2.884032+1 3.281590-3 2.985383+1 3.164305-3 3.054921+1 3.088460-3 3.090295+1 3.051221-3 3.162278+1 2.978085-3 3.235937+1 2.906703-3 3.273407+1 2.871656-3 3.311311+1 2.837087-3 3.388442+1 2.769211-3 3.507519+1 2.670439-3 3.801894+1 2.453458-3 4.216965+1 2.200185-3 4.315191+1 2.147553-3 4.365158+1 2.121712-3 4.415704+1 2.096183-3 4.518559+1 2.046852-3 4.570882+1 2.022626-3 4.623810+1 1.998686-3 4.731513+1 1.951654-3 4.841724+1 1.905728-3 4.897788+1 1.883172-3 4.954502+1 1.860919-3 5.069907+1 1.817210-3 5.248075+1 1.753568-3 5.688529+1 1.613607-3 6.839116+1 1.334218-3 7.413102+1 1.227728-3 7.585776+1 1.198895-3 7.762471+1 1.170739-3 8.222427+1 1.104055-3 8.317638+1 1.091181-3 8.511380+1 1.065884-3 8.609938+1 1.053455-3 8.810489+1 1.029032-3 8.912509+1 1.017049-3 9.015711+1 1.005207-3 9.120108+1 9.935044-4 9.549926+1 9.480402-4 1.174898+2 7.678624-4 1.428894+2 6.292541-4 1.513561+2 5.934691-4 1.548817+2 5.797312-4 1.640590+2 5.469981-4 1.659587+2 5.406769-4 1.698244+2 5.282526-4 1.717908+2 5.221483-4 1.757924+2 5.101496-4 1.778279+2 5.042584-4 1.798871+2 4.984357-4 1.819701+2 4.926805-4 1.905461+2 4.703167-4 2.344229+2 3.815957-4 2.851018+2 3.132278-4 3.019952+2 2.955575-4 3.090295+2 2.887719-4 3.273407+2 2.725577-4 3.311311+2 2.694259-4 3.388442+2 2.632698-4 3.427678+2 2.602447-4 3.507519+2 2.542984-4 3.548134+2 2.513776-4 3.589219+2 2.484906-4 3.630781+2 2.456368-4 3.801894+2 2.345457-4 4.677351+2 1.905157-4 1.135011+3 7.828190-5 1.202264+3 7.388894-5 1.230269+3 7.220152-5 1.303167+3 6.815994-5 1.318257+3 6.737920-5 1.348963+3 6.584444-5 1.364583+3 6.509024-5 1.396368+3 6.360762-5 1.412538+3 6.287917-5 1.428894+3 6.215914-5 1.445440+3 6.144733-5 1.513561+3 5.868077-5 3.715352+3 2.389743-5 4.120975+4 2.152604-6 4.168694+4 2.127954-6 4.265795+4 2.079499-6 4.315191+4 2.055686-6 4.415704+4 2.008876-6 4.466836+4 1.985872-6 4.518559+4 1.963132-6 4.570882+4 1.940652-6 1.000000+5 8.867964-7 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.190000-6 6.190000-6 7.780000-6 6.190000-6 7.780000-6 7.684405-6 8.070000-6 7.706792-6 8.070000-6 7.839341-6 9.700000-6 7.878764-6 2.000000-5 7.892880-6 4.655000-5 7.893958-6 4.655000-5 1.017400-5 4.850000-5 1.032284-5 4.960000-5 1.037811-5 4.960000-5 1.119069-5 5.190000-5 1.135802-5 6.095369-5 1.185812-5 6.606934-5 1.220869-5 7.161434-5 1.267234-5 7.585000-5 1.306831-5 7.585000-5 1.422248-5 8.080000-5 1.500586-5 8.413951-5 1.545492-5 8.770000-5 1.582635-5 9.120108-5 1.607176-5 9.500000-5 1.621032-5 9.900000-5 1.623450-5 1.040000-4 1.614120-5 1.135011-4 1.577934-5 1.288250-4 1.513737-5 1.400000-4 1.476241-5 1.531087-4 1.442518-5 1.678804-4 1.415366-5 1.850000-4 1.393903-5 2.065380-4 1.377440-5 2.350000-4 1.366861-5 2.630700-4 1.362897-5 2.630700-4 1.581618-5 2.662000-4 1.588489-5 2.670100-4 1.592613-5 2.670100-4 1.704938-5 2.692000-4 1.721237-5 2.710000-4 1.746775-5 2.727000-4 1.783800-5 2.743000-4 1.831123-5 2.760000-4 1.893544-5 2.800000-4 2.066104-5 2.823000-4 2.160777-5 2.840000-4 2.221443-5 2.861000-4 2.283479-5 2.885000-4 2.338490-5 2.915000-4 2.388079-5 2.950000-4 2.427364-5 3.000000-4 2.463141-5 3.065000-4 2.490947-5 3.172000-4 2.515046-5 3.370000-4 2.530706-5 4.000000-4 2.542817-5 4.249500-4 2.543556-5 4.249500-4 2.703539-5 4.452400-4 2.723486-5 4.452400-4 2.772422-5 4.535000-4 2.795834-5 4.700000-4 2.816579-5 5.334200-4 2.855547-5 5.334200-4 2.973422-5 7.500000-4 3.122886-5 9.772372-4 3.249611-5 1.230269-3 3.363047-5 1.548817-3 3.478749-5 1.950000-3 3.594077-5 2.400000-3 3.696704-5 2.677600-3 3.749222-5 2.677600-3 5.526157-5 2.797900-3 5.533234-5 2.797900-3 5.790195-5 3.022400-3 5.797657-5 3.022400-3 6.139722-5 4.216965-3 6.266162-5 6.025596-3 6.413354-5 8.709636-3 6.576047-5 1.230269-2 6.736408-5 1.717908-2 6.891035-5 2.101200-2 6.982531-5 2.101200-2 7.394167-5 4.120975-2 7.439558-5 1.083927-1 7.474332-5 5.248075-1 7.494418-5 1.000000+5 7.496804-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.190000-6 0.0 4.655000-5 0.0 4.655000-5 7.56599-11 4.710000-5 7.73880-11 4.786301-5 7.92170-11 4.850000-5 8.06173-11 4.960000-5 8.24631-11 4.960000-5 1.20709-10 5.069907-5 1.24335-10 5.190000-5 1.27452-10 5.500000-5 1.34087-10 5.956621-5 1.43506-10 6.237348-5 1.49988-10 6.580000-5 1.58910-10 6.950000-5 1.69923-10 7.350000-5 1.83068-10 7.585000-5 1.91077-10 7.585000-5 2.05111-10 7.950000-5 2.19071-10 8.230000-5 2.28403-10 8.511380-5 2.35986-10 8.770000-5 2.41177-10 9.015711-5 2.44444-10 9.240200-5 2.46072-10 9.549926-5 2.46470-10 9.900000-5 2.44746-10 1.030000-4 2.40824-10 1.100000-4 2.31466-10 1.205000-4 2.16692-10 1.288250-4 2.06627-10 1.365000-4 1.99010-10 1.450000-4 1.92247-10 1.531087-4 1.87110-10 1.611900-4 1.82988-10 1.717908-4 1.78841-10 1.800000-4 1.76324-10 1.930000-4 1.73452-10 2.113489-4 1.70961-10 2.317395-4 1.69699-10 2.600160-4 1.69398-10 2.630700-4 1.69448-10 2.630700-4 1.92835-10 2.662000-4 1.93623-10 2.670100-4 1.94078-10 2.670100-4 8.662582-9 2.677000-4 8.625283-9 2.691535-4 8.590720-9 2.700000-4 8.594666-9 2.710000-4 8.644877-9 2.715000-4 8.686839-9 2.722701-4 8.783127-9 2.728000-4 8.865385-9 2.735000-4 9.015601-9 2.740000-4 9.138908-9 2.746000-4 9.320090-9 2.752000-4 9.532534-9 2.760000-4 9.870531-9 2.766000-4 1.015290-8 2.774000-4 1.058883-8 2.781000-4 1.101680-8 2.790000-4 1.162618-8 2.800000-4 1.237301-8 2.807000-4 1.292441-8 2.823000-4 1.426902-8 2.851018-4 1.676460-8 2.869000-4 1.831291-8 2.885000-4 1.960282-8 2.895000-4 2.034039-8 2.904000-4 2.096507-8 2.917427-4 2.179853-8 2.926000-4 2.229837-8 2.945000-4 2.325737-8 2.958000-4 2.381657-8 2.980000-4 2.460204-8 2.995000-4 2.506858-8 3.007000-4 2.539368-8 3.040000-4 2.612026-8 3.057000-4 2.644867-8 3.080000-4 2.682311-8 3.100000-4 2.710790-8 3.150000-4 2.768671-8 3.200000-4 2.811374-8 3.240000-4 2.836340-8 3.320000-4 2.872274-8 3.430000-4 2.896408-8 3.890451-4 2.936721-8 4.150000-4 2.947591-8 4.249500-4 2.946956-8 4.249500-4 3.262392-8 4.452400-4 3.304180-8 4.452400-4 3.536199-8 4.485000-4 3.585158-8 4.535000-4 3.629875-8 4.623810-4 3.678655-8 4.786301-4 3.719108-8 5.334200-4 3.813440-8 5.334200-4 4.090643-8 6.237348-4 4.272873-8 7.585776-4 4.515182-8 9.015711-4 4.736232-8 1.023293-3 4.902524-8 1.202264-3 5.114418-8 1.412538-3 5.325291-8 1.659587-3 5.535708-8 1.972423-3 5.758299-8 2.344229-3 5.974096-8 2.677600-3 6.134351-8 2.677600-3 6.956533-5 2.797900-3 6.961001-5 2.797900-3 8.144292-5 3.022400-3 8.144913-5 3.022400-3 8.373518-5 4.415704-3 8.403769-5 8.709636-3 8.393609-5 2.101200-2 8.333387-5 2.101200-2 1.245074-2 2.483133-2 1.254170-2 3.273407-2 1.265599-2 4.841724-2 1.275560-2 8.128305-2 1.282683-2 1.927525-1 1.286885-2 1.640590+0 1.289663-2 1.000000+5 1.289667-2 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.190000-6 0.0 7.780000-6 1.590000-6 7.780000-6 9.559507-8 7.943282-6 2.456226-7 8.070000-6 3.632084-7 8.070000-6 2.306594-7 8.222426-6 3.765260-7 8.500000-6 6.442469-7 9.015711-6 1.147071-6 9.930000-6 2.048985-6 1.342000-5 5.528804-6 4.655000-5 3.865604-5 4.655000-5 3.637593-5 4.960000-5 3.922181-5 4.960000-5 3.840919-5 6.606934-5 5.386049-5 7.585000-5 6.278150-5 7.585000-5 6.162732-5 8.511380-5 6.954469-5 9.240200-5 7.627261-5 1.020000-4 8.580743-5 1.500000-4 1.355039-4 2.162719-4 2.025459-4 2.630700-4 2.494409-4 2.630700-4 2.472536-4 2.670100-4 2.510837-4 2.670100-4 2.499520-4 2.740000-4 2.557765-4 2.861000-4 2.632476-4 2.969000-4 2.724450-4 3.350000-4 3.096731-4 4.249500-4 3.994850-4 4.249500-4 3.978820-4 4.452400-4 4.179721-4 4.452400-4 4.174804-4 5.334200-4 5.048264-4 5.334200-4 5.036449-4 2.162719-3 2.126206-3 2.677600-3 2.640046-3 2.677600-3 2.552773-3 2.797900-3 2.672958-3 2.797900-3 2.658555-3 3.022400-3 2.882974-3 3.022400-3 2.877268-3 2.101200-2 2.085884-2 2.101200-2 8.487317-3 2.264644-2 1.007095-2 3.090295-2 1.819376-2 5.623413-2 4.337882-2 1.000000+5 9.999999+4 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.101200-2 1.024486+4 2.120000-2 1.004970+4 2.150000-2 9.721880+3 2.190000-2 9.239240+3 2.264644-2 8.508772+3 2.426610-2 7.099931+3 2.700000-2 5.396700+3 3.230000-2 3.351580+3 4.027170-2 1.840348+3 5.011872-2 1.002501+3 6.237348-2 5.400081+2 7.762471-2 2.882594+2 9.885531-2 1.428576+2 1.566751-1 3.705160+1 2.065380-1 1.652725+1 2.483133-1 9.710204+0 2.900000-1 6.247172+0 3.349654-1 4.178093+0 3.801894-1 2.955788+0 4.265795-1 2.173138+0 4.731513-1 1.658637+0 5.248075-1 1.274590+0 5.821032-1 9.864414-1 6.382635-1 7.906456-1 7.079458-1 6.210483-1 7.852356-1 4.917101-1 8.709636-1 3.922541-1 9.549926-1 3.232705-1 1.071519+0 2.562975-1 1.188600+0 2.090285-1 1.364583+0 1.612811-1 1.531087+0 1.307699-1 1.717908+0 1.069072-1 1.927525+0 8.803390-2 2.187762+0 7.165913-2 2.483133+0 5.876409-2 2.851018+0 4.769794-2 3.273407+0 3.900223-2 3.801894+0 3.159852-2 4.466836+0 2.538526-2 5.308844+0 2.023862-2 6.382635+0 1.602166-2 7.762471+0 1.259605-2 9.660509+0 9.709777-3 1.200000+1 7.552900-3 1.531087+1 5.738051-3 2.041738+1 4.180445-3 2.884032+1 2.883758-3 4.415704+1 1.842098-3 7.762471+1 1.028820-3 1.548817+2 5.094726-4 3.090295+2 2.537796-4 1.230269+3 6.345356-5 1.000000+5 7.793700-7 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.101200-2 7.467800-5 1.000000+5 7.467800-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.101200-2 1.466300-2 1.000000+5 1.466300-2 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.101200-2 6.274322-3 1.000000+5 9.999999+4 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.022400-3 4.346679+4 3.230000-3 3.918098+4 3.630781-3 3.241348+4 3.900000-3 2.864780+4 4.415704-3 2.295616+4 4.900000-3 1.910728+4 5.308844-3 1.644472+4 6.309573-3 1.182193+4 7.000000-3 9.614240+3 8.128305-3 7.095611+3 9.332543-3 5.305394+3 1.047129-2 4.142482+3 1.230269-2 2.902240+3 1.428894-2 2.066610+3 1.621810-2 1.540655+3 1.862087-2 1.111146+3 2.162719-2 7.739330+2 2.540973-2 5.198619+2 2.985383-2 3.462881+2 3.467369-2 2.357787+2 4.027170-2 1.594910+2 4.731513-2 1.039727+2 5.623413-2 6.523943+1 6.683439-2 4.064482+1 8.128305-2 2.359114+1 1.011580-1 1.273835+1 1.348963-1 5.608997+0 1.927525-1 2.019944+0 2.454709-1 1.015590+0 2.884032-1 6.464473-1 3.349654-1 4.280664-1 3.801894-1 3.040351-1 4.315191-1 2.175344-1 4.841724-1 1.616378-1 5.370318-1 1.245686-1 5.956621-1 9.666904-2 6.623700-1 7.512910-2 7.328245-1 5.961965-2 8.128305-1 4.738547-2 9.225714-1 3.609658-2 1.000000+0 3.054703-2 1.148154+0 2.320182-2 1.273503+0 1.901498-2 1.428894+0 1.536532-2 1.603245+0 1.250912-2 1.798871+0 1.025611-2 2.018366+0 8.468444-3 2.290868+0 6.912094-3 2.600160+0 5.682339-3 2.985383+0 4.623657-3 3.467369+0 3.728216-3 4.027170+0 3.028951-3 4.731513+0 2.439753-3 5.623413+0 1.950124-3 6.760830+0 1.547437-3 8.222427+0 1.219222-3 1.047129+1 9.167248-4 1.333521+1 6.950280-4 1.757924+1 5.108426-4 2.371374+1 3.688717-4 3.273407+1 2.616370-4 4.897788+1 1.715758-4 8.810489+1 9.376334-5 1.757924+2 4.650007-5 3.507519+2 2.318155-5 1.396368+3 5.798744-6 1.000000+5 8.085400-8 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.022400-3 8.466900-5 1.000000+5 8.466900-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.022400-3 9.928800-5 1.000000+5 9.928800-5 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.022400-3 2.838443-3 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.797900-3 9.965856+4 2.917427-3 8.921400+4 2.951209-3 8.673700+4 3.000000-3 8.353800+4 3.235937-3 6.905900+4 3.507519-3 5.584700+4 4.365158-3 3.091700+4 4.800000-3 2.379700+4 5.623413-3 1.524400+4 6.760830-3 8.933700+3 7.500000-3 6.576300+3 8.912509-3 3.918300+3 1.071519-2 2.228000+3 1.244515-2 1.396800+3 1.428894-2 9.024700+2 1.678804-2 5.383300+2 2.000000-2 3.046900+2 2.400000-2 1.670900+2 2.917427-2 8.710400+1 3.589219-2 4.327900+1 4.518559-2 1.973800+1 6.095369-2 7.049300+0 1.035142-1 1.133400+0 1.303167-1 5.153300-1 1.566751-1 2.761900-1 1.840772-1 1.611300-1 2.299100-1 7.720000-2 2.511886-1 5.794000-2 2.722701-1 4.489300-2 2.917427-1 3.628700-2 3.019952-1 3.267464-2 3.388442-1 2.291173-2 3.801894-1 1.618693-2 4.216965-1 1.192180-2 4.677351-1 8.841691-3 5.188000-1 6.605818-3 5.754399-1 4.973898-3 6.309573-1 3.892886-3 6.918310-1 3.067685-3 7.585776-1 2.433271-3 8.609938-1 1.781844-3 9.225714-1 1.512779-3 9.772372-1 1.327791-3 1.047129+0 1.144792-3 1.122018+0 9.937901-4 1.202264+0 8.688347-4 1.333521+0 7.176272-4 1.531087+0 5.610745-4 1.737801+0 4.498776-4 1.949845+0 3.704819-4 2.213095+0 3.017588-4 2.511886+0 2.476036-4 2.884032+0 2.010900-4 3.311311+0 1.645228-4 3.845918+0 1.333698-4 4.518559+0 1.072025-4 5.370318+0 8.551048-5 6.456542+0 6.772687-5 7.943282+0 5.253447-5 1.000000+1 3.998800-5 1.230269+1 3.148158-5 1.566751+1 2.398409-5 2.113489+1 1.726513-5 2.985383+1 1.192240-5 4.518559+1 7.712097-6 8.222427+1 4.159273-6 1.640590+2 2.061186-6 3.273407+2 1.027091-6 1.303167+3 2.568693-7 4.120975+4 8.110519-9 1.000000+5 3.342200-9 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.797900-3 6.460500-5 1.000000+5 6.460500-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.797900-3 1.123100-4 1.000000+5 1.123100-4 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.797900-3 2.620985-3 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.677600-3 2.087106+5 2.733000-3 1.980388+5 2.786121-3 1.891265+5 3.019952-3 1.541612+5 3.198895-3 1.325262+5 3.548134-3 9.996324+4 4.300000-3 5.885880+4 4.677351-3 4.641604+4 5.432503-3 3.025484+4 6.456542-3 1.818479+4 7.161434-3 1.333833+4 8.609938-3 7.604874+3 1.011579-2 4.605060+3 1.161449-2 2.974958+3 1.350000-2 1.835804+3 1.580000-2 1.099668+3 1.840772-2 6.638649+2 2.162719-2 3.870211+2 2.570396-2 2.154779+2 3.054921-2 1.191152+2 3.715352-2 6.037355+1 4.570882-2 2.917466+1 6.025596-2 1.096122+1 1.071519-1 1.401951+0 1.380384-1 5.712993-1 1.640590-1 3.117836-1 1.905461-1 1.858293-1 2.187762-1 1.161061-1 2.454709-1 7.897743-2 2.754229-1 5.410466-2 3.054921-1 3.875844-2 3.388442-1 2.796525-2 3.715352-1 2.106074-2 4.073803-1 1.596802-2 4.466836-1 1.219512-2 4.897788-1 9.381819-3 5.370318-1 7.273463-3 5.888437-1 5.682628-3 6.456542-1 4.474135-3 7.079458-1 3.549242-3 7.673615-1 2.917355-3 8.317638-1 2.413170-3 9.015711-1 2.006771-3 9.660509-1 1.724537-3 1.035142+0 1.492922-3 1.135011+0 1.240703-3 1.250000+0 1.029896-3 1.380384+0 8.571930-4 1.603245+0 6.567060-4 1.819701+0 5.279797-4 2.044000+0 4.353692-4 2.317395+0 3.562231-4 2.630268+0 2.930329-4 3.019952+0 2.385962-4 3.507519+0 1.925095-4 4.120975+0 1.540540-4 4.841724+0 1.242129-4 5.754399+0 9.938284-5 7.000000+0 7.780200-5 8.413951+0 6.224991-5 1.071519+1 4.683871-5 1.380384+1 3.507974-5 1.819701+1 2.580992-5 2.426610+1 1.888575-5 3.388442+1 1.323884-5 5.069907+1 8.687922-6 9.015711+1 4.806522-6 1.798871+2 2.384212-6 3.589219+2 1.188752-6 1.428894+3 2.973762-7 4.518559+4 9.392036-9 1.000000+5 4.243200-9 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.677600-3 6.219600-5 1.000000+5 6.219600-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.677600-3 9.668900-5 1.000000+5 9.668900-5 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.677600-3 2.518715-3 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.334200-4 1.333477+5 5.930000-4 1.200346+5 6.165950-4 1.150884+5 7.500000-4 9.149500+4 9.225714-4 6.941713+4 1.000000-3 6.187160+4 1.190000-3 4.770720+4 1.318257-3 4.065125+4 1.548817-3 3.132609+4 1.778279-3 2.484240+4 2.041738-3 1.958257+4 2.400000-3 1.469910+4 2.851018-3 1.073072+4 3.349654-3 7.928374+3 3.935501-3 5.814520+3 4.623810-3 4.232512+3 5.432503-3 3.057951+3 6.382635-3 2.192409+3 7.500000-3 1.559332+3 8.810489-3 1.101185+3 1.023293-2 7.916039+2 1.202264-2 5.507668+2 1.400000-2 3.882200+2 1.640590-2 2.677486+2 1.905461-2 1.872262+2 2.238721-2 1.264001+2 2.630268-2 8.468407+1 3.090295-2 5.630904+1 3.630781-2 3.716591+1 4.315191-2 2.362819+1 5.128614-2 1.490578+1 6.095369-2 9.334426+0 7.328245-2 5.624054+0 9.000000-2 3.170580+0 1.109175-1 1.757036+0 2.213095-1 2.456199-1 2.667320-1 1.450910-1 3.126079-1 9.339852-2 3.589219-1 6.409485-2 4.073803-1 4.571421-2 4.570882-1 3.385793-2 5.069907-1 2.600653-2 5.623413-1 2.011014-2 6.237348-1 1.566157-2 6.918310-1 1.228935-2 7.673615-1 9.716794-3 8.511380-1 7.738579-3 9.332543-1 6.364945-3 1.022000+0 5.288994-3 1.161449+0 4.102649-3 1.288250+0 3.369830-3 1.462177+0 2.666691-3 1.621810+0 2.216973-3 1.819701+0 1.818956-3 2.044000+0 1.500499-3 2.317395+0 1.227899-3 2.630268+0 1.010030-3 3.019952+0 8.222809-4 3.507519+0 6.634464-4 4.073803+0 5.393065-4 4.786301+0 4.346352-4 5.688529+0 3.475652-4 6.839116+0 2.759300-4 8.317638+0 2.175074-4 1.059254+1 1.635937-4 1.364583+1 1.224735-4 1.800000+1 9.002100-5 2.400000+1 6.586300-5 3.311311+1 4.674840-5 4.954502+1 3.066423-5 8.912509+1 1.676125-5 1.778279+2 8.312993-6 3.548134+2 4.144480-6 1.412538+3 1.036778-6 4.466836+4 3.274285-8 1.000000+5 1.462400-8 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.334200-4 5.653800-5 1.000000+5 5.653800-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.334200-4 1.039400-7 1.000000+5 1.039400-7 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.334200-4 4.767781-4 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.452400-4 1.237746+5 4.459000-4 1.297708+5 4.463000-4 1.329936+5 4.468000-4 1.365956+5 4.475000-4 1.410114+5 4.485000-4 1.462688+5 4.494000-4 1.503562+5 4.505000-4 1.546142+5 4.520000-4 1.595596+5 4.535000-4 1.637560+5 4.550000-4 1.673144+5 4.573000-4 1.717098+5 4.595000-4 1.749020+5 4.623810-4 1.778354+5 4.655000-4 1.797204+5 4.685000-4 1.805466+5 4.731513-4 1.805292+5 5.400000-4 1.680776+5 5.688529-4 1.623539+5 6.200000-4 1.523256+5 6.606934-4 1.439356+5 7.000000-4 1.358974+5 7.500000-4 1.260342+5 8.000000-4 1.169220+5 8.511380-4 1.079842+5 9.332543-4 9.510274+4 1.011579-3 8.458222+4 1.083927-3 7.599734+4 1.202264-3 6.415948+4 1.303167-3 5.592532+4 1.428894-3 4.743661+4 1.584893-3 3.913744+4 1.737801-3 3.276060+4 1.950000-3 2.600320+4 2.150000-3 2.122900+4 2.400000-3 1.676622+4 2.660725-3 1.334280+4 2.985383-3 1.026265+4 3.349654-3 7.831645+3 3.758374-3 5.932355+3 4.216965-3 4.461068+3 4.731513-3 3.330956+3 5.308844-3 2.470040+3 6.000000-3 1.784406+3 6.800000-3 1.270010+3 7.673615-3 9.081647+2 8.709636-3 6.346589+2 9.885531-3 4.404357+2 1.122018-2 3.036890+2 1.288250-2 2.009679+2 1.500000-2 1.264512+2 1.737801-2 8.014961+1 2.018366-2 5.002415+1 2.371374-2 2.986892+1 2.786121-2 1.770155+1 3.311311-2 1.003166+1 4.027170-2 5.228676+0 5.011872-2 2.503473+0 6.606934-2 9.789155-1 1.122019-1 1.606075-1 1.412538-1 7.367127-2 1.678804-1 4.134862-2 1.972423-1 2.429107-2 2.290868-1 1.492858-2 2.630268-1 9.596911-3 2.985383-1 6.448702-3 3.349654-1 4.524379-3 3.758374-1 3.197731-3 4.168694-1 2.356185-3 4.623810-1 1.748308-3 5.128614-1 1.306523-3 5.688529-1 9.836080-4 6.309573-1 7.462080-4 6.918310-1 5.876774-4 7.585776-1 4.659071-4 8.609938-1 3.413717-4 9.225714-1 2.900457-4 9.772372-1 2.547357-4 1.047129+0 2.197558-4 1.122018+0 1.908166-4 1.202264+0 1.668248-4 1.348963+0 1.349160-4 1.584893+0 1.013084-4 1.798871+0 8.138630-5 2.018366+0 6.717315-5 2.290868+0 5.482863-5 2.600160+0 4.507387-5 2.985383+0 3.667642-5 3.467369+0 2.957349-5 4.027170+0 2.402672-5 4.731513+0 1.935309-5 5.623413+0 1.546899-5 6.760830+0 1.227503-5 8.222427+0 9.671608-6 1.047129+1 7.271745-6 1.333521+1 5.513234-6 1.757924+1 4.052132-6 2.371374+1 2.926056-6 3.273407+1 2.075352-6 4.897788+1 1.361037-6 8.912509+1 7.350931-7 1.778279+2 3.645862-7 3.548134+2 1.817683-7 1.412538+3 4.546990-8 4.466836+4 1.436025-9 1.000000+5 6.41360-10 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.452400-4 4.305500-5 1.000000+5 4.305500-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.452400-4 1.080500-7 1.000000+5 1.080500-7 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.452400-4 4.020770-4 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.249500-4 3.821345+5 4.415704-4 4.011608+5 4.500000-4 4.078106+5 4.623810-4 4.112545+5 4.750000-4 4.105249+5 4.850000-4 4.065071+5 5.248075-4 3.850537+5 5.754399-4 3.556240+5 6.100000-4 3.368792+5 6.606934-4 3.095428+5 7.161434-4 2.817239+5 7.585776-4 2.623108+5 8.128305-4 2.388725+5 9.015711-4 2.056071+5 9.772372-4 1.817613+5 1.059254-3 1.594220+5 1.174898-3 1.336520+5 1.273503-3 1.158370+5 1.412538-3 9.558888+4 1.548817-3 8.009532+4 1.717908-3 6.514890+4 1.905461-3 5.261918+4 2.113489-3 4.219143+4 2.344229-3 3.360072+4 2.630268-3 2.588708+4 2.951209-3 1.978518+4 3.300000-3 1.513232+4 3.715352-3 1.129912+4 4.216965-3 8.200555+3 4.800000-3 5.857000+3 5.432503-3 4.211051+3 6.165950-3 2.980748+3 7.000000-3 2.092200+3 8.035261-3 1.411658+3 9.225714-3 9.436914+2 1.047129-2 6.477624+2 1.210000-2 4.181200+2 1.396368-2 2.686630+2 1.603245-2 1.740762+2 1.840772-2 1.119902+2 2.116000-2 7.127953+1 2.454709-2 4.372408+1 2.884032-2 2.552609+1 3.427678-2 1.422607+1 4.120975-2 7.563363+0 5.011872-2 3.834690+0 6.309573-2 1.710820+0 1.273503-1 1.429841-1 1.531088-1 7.505367-2 1.840772-1 3.968710-2 2.113489-1 2.478967-2 2.398833-1 1.622477-2 2.691535-1 1.111540-2 3.000000-1 7.837645-3 3.311311-1 5.740638-3 3.672823-1 4.170969-3 4.027170-1 3.161525-3 4.415705-1 2.413199-3 4.841724-1 1.855262-3 5.308844-1 1.437107-3 5.821032-1 1.121892-3 6.309573-1 9.095616-4 6.918310-1 7.212396-4 7.585776-1 5.764210-4 8.511380-1 4.393249-4 9.120108-1 3.754301-4 9.772372-1 3.229408-4 1.059254+0 2.732540-4 1.161449+0 2.273526-4 1.273503+0 1.907940-4 1.412538+0 1.578061-4 1.640590+0 1.210489-4 1.840772+0 9.936814-5 2.065380+0 8.214940-5 2.344229+0 6.714243-5 2.660725+0 5.526526-5 3.054921+0 4.502431-5 3.548134+0 3.634878-5 4.168694+0 2.910479-5 4.897788+0 2.348069-5 5.821032+0 1.879527-5 7.079458+0 1.472425-5 8.511380+0 1.178321-5 1.083927+1 8.869301-6 1.400000+1 6.625900-6 1.862087+1 4.829709-6 2.483133+1 3.535568-6 3.507519+1 2.449827-6 5.248075+1 1.608747-6 9.120108+1 9.116317-7 1.819701+2 4.522426-7 3.630781+2 2.254939-7 1.445440+3 5.641378-8 4.570882+4 1.781728-9 1.000000+5 8.14290-10 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.249500-4 4.268400-5 1.000000+5 4.268400-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.249500-4 6.347800-8 1.000000+5 6.347800-8 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.249500-4 3.822025-4 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.670100-4 8.968800+4 2.677000-4 8.939760+4 2.690000-4 8.954320+4 2.700000-4 9.039920+4 2.708000-4 9.165880+4 2.714000-4 9.304760+4 2.721000-4 9.522280+4 2.728000-4 9.807520+4 2.734000-4 1.011412+5 2.740000-4 1.048588+5 2.746000-4 1.093052+5 2.752000-4 1.145736+5 2.759000-4 1.218568+5 2.766000-4 1.305080+5 2.774000-4 1.422560+5 2.781000-4 1.543092+5 2.788000-4 1.681600+5 2.796000-4 1.863392+5 2.807000-4 2.156808+5 2.830000-4 2.940372+5 2.840000-4 3.351124+5 2.851018-4 3.848151+5 2.861000-4 4.332600+5 2.869000-4 4.740200+5 2.877000-4 5.160440+5 2.885000-4 5.590520+5 2.895000-4 6.135920+5 2.904000-4 6.628560+5 2.915000-4 7.225680+5 2.926000-4 7.812960+5 2.935000-4 8.281640+5 2.945000-4 8.787560+5 2.958000-4 9.419520+5 2.969000-4 9.928040+5 2.980000-4 1.041520+6 2.995000-4 1.104384+6 3.007000-4 1.151724+6 3.022000-4 1.207456+6 3.040000-4 1.269316+6 3.057000-4 1.323280+6 3.080000-4 1.389304+6 3.100000-4 1.440700+6 3.126079-4 1.499176+6 3.150000-4 1.544700+6 3.172000-4 1.580236+6 3.200000-4 1.617064+6 3.235937-4 1.651414+6 3.273407-4 1.674649+6 3.320000-4 1.689864+6 3.370000-4 1.693564+6 3.430000-4 1.688248+6 3.507519-4 1.672658+6 3.630781-4 1.638963+6 3.758374-4 1.594784+6 3.850000-4 1.557088+6 3.981072-4 1.496312+6 4.150000-4 1.412856+6 4.415704-4 1.285238+6 4.650000-4 1.179852+6 4.850000-4 1.093964+6 5.150000-4 9.743040+5 5.559043-4 8.321809+5 5.900000-4 7.315640+5 6.237348-4 6.447206+5 6.760830-4 5.325242+5 7.328245-4 4.370258+5 7.943282-4 3.559037+5 8.810489-4 2.710667+5 9.660509-4 2.113478+5 1.083927-3 1.534023+5 1.190000-3 1.175556+5 1.333521-3 8.427421+4 1.479108-3 6.180690+4 1.659587-3 4.344275+4 1.850000-3 3.091648+4 2.070000-3 2.159024+4 2.344229-3 1.438698+4 2.630268-3 9.809051+3 2.951209-3 6.642576+3 3.311311-3 4.468276+3 3.758374-3 2.866187+3 4.265795-3 1.823638+3 4.841724-3 1.151159+3 5.432503-3 7.525638+2 6.095369-3 4.889965+2 6.918310-3 3.022494+2 8.000000-3 1.726784+2 9.225714-3 9.885801+1 1.059254-2 5.715975+1 1.230269-2 3.132535+1 1.428894-2 1.703353+1 1.659587-2 9.192025+0 1.949845-2 4.695501+0 2.344229-2 2.161700+0 2.917427-2 8.531516-1 3.890451-2 2.487966-1 5.821032-2 4.395361-2 7.585776-2 1.410481-2 9.225714-2 6.128927-3 1.096478-1 2.958149-3 1.273503-1 1.584019-3 1.462177-1 8.958429-4 1.678804-1 5.102096-4 1.905461-1 3.068170-4 2.113489-1 2.036742-4 2.371374-1 1.301378-4 2.660725-1 8.380117-5 2.951209-1 5.678421-5 3.273407-1 3.872657-5 3.630781-1 2.660694-5 4.000000-1 1.887019-5 4.365158-1 1.392974-5 4.786301-1 1.018530-5 5.248075-1 7.504202-6 5.754399-1 5.572713-6 6.237348-1 4.325276-6 6.760830-1 3.379500-6 7.413102-1 2.567864-6 8.035261-1 2.030165-6 8.511380-1 1.709490-6 9.015711-1 1.449055-6 9.440609-1 1.277957-6 9.772372-1 1.168548-6 1.011579+0 1.073616-6 1.059254+0 9.656150-7 1.109175+0 8.745057-7 1.161449+0 7.969327-7 1.216186+0 7.303483-7 1.318257+0 6.325775-7 1.531087+0 4.907709-7 1.819701+0 3.638349-7 2.018366+0 3.059750-7 2.290868+0 2.497681-7 2.600160+0 2.053282-7 2.985383+0 1.670612-7 3.467369+0 1.347082-7 4.027170+0 1.094429-7 4.731513+0 8.815335-8 5.623413+0 7.045908-8 6.760830+0 5.591070-8 8.222427+0 4.405338-8 1.047129+1 3.312198-8 1.333521+1 2.511212-8 1.757924+1 1.845665-8 2.371374+1 1.332765-8 3.235937+1 9.568980-9 4.841724+1 6.273963-9 8.810489+1 3.387870-9 1.757924+2 1.680069-9 3.507519+2 8.37566-10 1.396368+3 2.09515-10 4.415704+4 6.61666-12 1.000000+5 2.92140-12 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.670100-4 2.655500-5 1.000000+5 2.655500-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.670100-4 8.032800-8 1.000000+5 8.032800-8 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.670100-4 2.403747-4 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.630700-4 1.283118+5 2.641000-4 1.285908+5 2.652000-4 1.296738+5 2.662000-4 1.316754+5 2.670100-4 1.342031+5 2.677000-4 1.371750+5 2.685000-4 1.417638+5 2.692000-4 1.469562+5 2.697000-4 1.514358+5 2.703000-4 1.577682+5 2.710000-4 1.666302+5 2.715000-4 1.740432+5 2.722000-4 1.860966+5 2.727000-4 1.960146+5 2.735000-4 2.143722+5 2.743000-4 2.360700+5 2.750000-4 2.580324+5 2.760000-4 2.945928+5 2.790000-4 4.436706+5 2.803000-4 5.264820+5 2.815000-4 6.114720+5 2.823000-4 6.719760+5 2.833000-4 7.509960+5 2.840000-4 8.080140+5 2.850000-4 8.910300+5 2.858000-4 9.580980+5 2.869000-4 1.050282+6 2.880000-4 1.141362+6 2.891000-4 1.230408+6 2.900000-4 1.301286+6 2.912000-4 1.392540+6 2.923000-4 1.472664+6 2.935000-4 1.556094+6 2.950000-4 1.654530+6 2.965000-4 1.746648+6 2.980000-4 1.832748+6 3.000000-4 1.938684+6 3.022000-4 2.044176+6 3.040000-4 2.122296+6 3.065000-4 2.218986+6 3.090295-4 2.303287+6 3.115000-4 2.372916+6 3.140000-4 2.431242+6 3.165000-4 2.478144+6 3.200000-4 2.526642+6 3.240000-4 2.561388+6 3.280000-4 2.578992+6 3.335000-4 2.583636+6 3.390000-4 2.574264+6 3.507519-4 2.532491+6 3.630781-4 2.473775+6 3.758374-4 2.399154+6 3.850000-4 2.336934+6 4.000000-4 2.224896+6 4.216965-4 2.058752+6 4.466836-4 1.878297+6 4.700000-4 1.720062+6 4.954502-4 1.557338+6 5.248075-4 1.387277+6 5.650000-4 1.186320+6 6.025596-4 1.028157+6 6.456542-4 8.747529+5 7.079458-4 6.987909+5 7.673615-4 5.702613+5 8.317638-4 4.620362+5 9.120108-4 3.611464+5 1.000000-3 2.803278+5 1.110000-3 2.089434+5 1.230269-3 1.551971+5 1.364583-3 1.142663+5 1.531087-3 8.062300+4 1.698244-3 5.849017+4 1.905461-3 4.063957+4 2.150000-3 2.750118+4 2.371374-3 1.991338+4 2.660725-3 1.354195+4 3.044000-3 8.551263+3 3.467369-3 5.432272+3 3.935501-3 3.465061+3 4.500000-3 2.133786+3 5.128614-3 1.318122+3 5.754399-3 8.565949+2 6.500000-3 5.392548+2 7.328245-3 3.398276+2 8.413951-3 1.981186+2 9.660509-3 1.146553+2 1.109175-2 6.584823+1 1.273503-2 3.754080+1 1.479108-2 2.026329+1 1.717908-2 1.085077+1 2.018366-2 5.495615+0 2.398833-2 2.630842+0 2.951209-2 1.077966+0 3.801894-2 3.592371-1 7.585776-2 1.766280-2 9.332543-2 7.198564-3 1.109175-1 3.432229-3 1.318257-1 1.649681-3 1.496236-1 9.706981-4 1.678804-1 6.042939-4 1.862087-1 3.970682-4 2.065380-1 2.626856-4 2.290868-1 1.750636-4 2.511886-1 1.228584-4 2.754229-1 8.679010-5 3.019952-1 6.174563-5 3.273407-1 4.613556-5 3.548134-1 3.470307-5 3.845918-1 2.629443-5 4.073803-1 2.168074-5 4.415705-1 1.668169-5 4.786301-1 1.292542-5 5.248075-1 9.729478-6 5.754399-1 7.377822-6 6.456542-1 5.256252-6 6.918310-1 4.313123-6 7.328245-1 3.678010-6 7.762471-1 3.156621-6 8.222427-1 2.725848-6 8.709636-1 2.368444-6 9.225714-1 2.071058-6 9.772372-1 1.822962-6 1.047129+0 1.577115-6 1.135011+0 1.340080-6 1.216186+0 1.172197-6 1.348963+0 9.670995-7 1.548817+0 7.556077-7 1.757924+0 6.061826-7 1.972423+0 4.996366-7 2.238721+0 4.072590-7 2.540973+0 3.343764-7 2.917427+0 2.717263-7 3.349654+0 2.224450-7 3.890451+0 1.804284-7 4.570882+0 1.451021-7 5.432503+0 1.158033-7 6.531306+0 9.176312-8 8.000000+0 7.158800-8 1.011579+1 5.422468-8 1.258925+1 4.215116-8 1.621810+1 3.172404-8 2.213095+1 2.257489-8 3.090295+1 1.579790-8 4.623810+1 1.034871-8 8.511380+1 5.518382-9 1.698244+2 2.735716-9 3.388442+2 1.363548-9 1.348963+3 3.41047-10 4.265795+4 1.07694-11 1.000000+5 4.59370-12 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.630700-4 2.662900-5 1.000000+5 2.662900-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.630700-4 3.08450-10 1.000000+5 3.08450-10 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.630700-4 2.364407-4 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.585000-5 1.724090+5 7.762471-5 1.770373+5 7.950000-5 1.808204+5 8.222426-5 1.848630+5 8.511380-5 1.878068+5 8.912509-5 1.905938+5 9.500000-5 1.930324+5 1.023293-4 1.945195+5 1.100000-4 1.946904+5 1.174898-4 1.934560+5 1.244515-4 1.910758+5 1.318257-4 1.873318+5 1.396368-4 1.822449+5 1.480000-4 1.759278+5 1.580000-4 1.677750+5 1.698244-4 1.580227+5 1.862087-4 1.452527+5 2.065380-4 1.310958+5 2.264644-4 1.188114+5 2.454709-4 1.083108+5 2.691535-4 9.674962+4 3.054921-4 8.210060+4 3.467369-4 6.916952+4 3.890451-4 5.875332+4 4.500000-4 4.736740+4 5.188000-4 3.813023+4 6.025596-4 3.011384+4 7.161434-4 2.277574+4 8.810489-4 1.614101+4 1.083927-3 1.134775+4 1.333521-3 7.918891+3 1.621810-3 5.599112+3 1.972423-3 3.928897+3 2.344229-3 2.854336+3 2.818383-3 2.014278+3 3.349654-3 1.442146+3 4.027170-3 1.002019+3 4.841724-3 6.908595+2 5.754399-3 4.840241+2 6.839116-3 3.365563+2 8.035261-3 2.380415+2 9.440609-3 1.671755+2 1.109175-2 1.165645+2 1.303167-2 8.068662+1 1.531087-2 5.543955+1 1.798871-2 3.780601+1 2.116000-2 2.551252+1 2.483133-2 1.718787+1 2.917427-2 1.146157+1 3.427678-2 7.586121+0 4.073803-2 4.836884+0 4.841724-2 3.060149+0 5.754399-2 1.921015+0 6.998420-2 1.124220+0 8.317638-2 6.961569-1 1.047129-1 3.639198-1 2.344229-1 3.675253-2 2.786121-1 2.263823-2 3.273407-1 1.450828-2 3.758374-1 9.982562-3 4.216965-1 7.358670-3 4.731513-1 5.462195-3 5.248075-1 4.204867-3 5.821032-1 3.259041-3 6.456542-1 2.544511-3 7.161434-1 2.001684-3 7.943282-1 1.586764-3 8.709636-1 1.298383-3 9.549926-1 1.069925-3 1.071519+0 8.482114-4 1.188600+0 6.917100-4 1.364583+0 5.337133-4 1.531087+0 4.327253-4 1.717908+0 3.537386-4 1.927525+0 2.912866-4 2.187762+0 2.371203-4 2.483133+0 1.944408-4 2.851018+0 1.578026-4 3.273407+0 1.290265-4 3.801894+0 1.045341-4 4.466836+0 8.397920-5 5.308844+0 6.695172-5 6.382635+0 5.300222-5 7.852356+0 4.109305-5 9.772372+0 3.169103-5 1.202264+1 2.493228-5 1.531087+1 1.898259-5 2.041738+1 1.382983-5 2.851018+1 9.657268-6 4.315191+1 6.241910-6 7.413102+1 3.568293-6 1.428894+2 1.828792-6 2.851018+2 9.104652-7 1.135011+3 2.275537-7 1.000000+5 2.578300-9 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.585000-5 2.342800-5 1.000000+5 2.342800-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.585000-5 3.17040-10 1.000000+5 3.17040-10 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.585000-5 5.242168-5 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.960000-5 1.579636+6 5.011872-5 1.566697+6 5.069907-5 1.540548+6 5.128614-5 1.506597+6 5.190000-5 1.465348+6 5.279400-5 1.400309+6 5.400000-5 1.307482+6 5.500000-5 1.230868+6 5.650000-5 1.119918+6 5.850000-5 9.829860+5 6.095369-5 8.354881+5 6.400000-5 6.832620+5 7.161434-5 4.250129+5 7.500000-5 3.517520+5 7.762471-5 3.073787+5 8.035261-5 2.703444+5 8.300000-5 2.414820+5 8.511380-5 2.224829+5 8.738900-5 2.053127+5 9.000000-5 1.890384+5 9.230000-5 1.771788+5 9.500000-5 1.656504+5 9.772372-5 1.561417+5 1.000000-4 1.495232+5 1.030000-4 1.422976+5 1.060000-4 1.364494+5 1.096478-4 1.307935+5 1.135011-4 1.261565+5 1.174898-4 1.224472+5 1.220000-4 1.192422+5 1.280000-4 1.161232+5 1.350000-4 1.135516+5 1.698244-4 1.056912+5 1.862087-4 1.020889+5 2.018366-4 9.839114+4 2.187762-4 9.417983+4 2.371374-4 8.947906+4 2.570396-4 8.434955+4 2.800000-4 7.862240+4 3.054921-4 7.265554+4 3.350000-4 6.635740+4 3.630781-4 6.091137+4 3.981072-4 5.482712+4 4.415704-4 4.831025+4 4.897788-4 4.226684+4 5.440900-4 3.661451+4 6.095369-4 3.108677+4 6.839116-4 2.614070+4 7.585776-4 2.221142+4 8.511380-4 1.841253+4 9.500000-4 1.529594+4 1.071519-3 1.239478+4 1.202264-3 1.006735+4 1.348963-3 8.122357+3 1.513561-3 6.508648+3 1.698244-3 5.178872+3 1.905461-3 4.090362+3 2.137962-3 3.206831+3 2.398833-3 2.495826+3 2.691535-3 1.928570+3 3.020000-3 1.479677+3 3.388442-3 1.127383+3 3.845918-3 8.294108+2 4.365158-3 6.054218+2 4.954502-3 4.385057+2 5.623413-3 3.151714+2 6.382635-3 2.248052+2 7.244360-3 1.591498+2 8.222426-3 1.118491+2 9.332543-3 7.805151+1 1.071519-2 5.230273+1 1.230269-2 3.477909+1 1.412538-2 2.295529+1 1.621810-2 1.504267+1 1.883649-2 9.443454+0 2.213095-2 5.673343+0 2.600160-2 3.382895+0 3.054921-2 2.002524+0 3.630781-2 1.132926+0 4.415704-2 5.895072-1 5.495409-2 2.818743-1 1.188502-1 2.041393-2 1.479108-1 9.761163-3 1.757924-1 5.488046-3 2.041738-1 3.353976-3 2.344229-1 2.143306-3 2.660725-1 1.431219-3 3.019952-1 9.626581-4 3.388442-1 6.759749-4 3.801894-1 4.781581-4 4.216965-1 3.525477-4 4.677351-1 2.617355-4 5.188000-1 1.957319-4 5.754399-1 1.474903-4 6.382635-1 1.120126-4 6.998420-1 8.830635-5 7.673615-1 7.007468-5 8.609938-1 5.280307-5 9.225714-1 4.484240-5 9.772372-1 3.936969-5 1.047129+0 3.395407-5 1.122018+0 2.947826-5 1.202264+0 2.577099-5 1.333521+0 2.128360-5 1.531087+0 1.663726-5 1.737801+0 1.333771-5 1.949845+0 1.098438-5 2.213095+0 8.949043-6 2.511886+0 7.343046-6 2.884032+0 5.962667-6 3.311311+0 4.878063-6 3.845918+0 3.954343-6 4.518559+0 3.178543-6 5.370318+0 2.535405-6 6.456542+0 2.008102-6 7.943282+0 1.557597-6 1.011579+1 1.169731-6 1.244515+1 9.212889-7 1.600000+1 6.947300-7 2.187762+1 4.930898-7 3.054921+1 3.449658-7 4.570882+1 2.259445-7 8.317638+1 1.218792-7 1.659587+2 6.040678-8 3.311311+2 3.010313-8 1.318257+3 7.528814-9 4.168694+4 2.37728-10 1.000000+5 9.90960-11 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.960000-5 1.585200-5 1.000000+5 1.585200-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.960000-5 3.40100-10 1.000000+5 3.40100-10 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.960000-5 3.374766-5 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.655000-5 3.337156+6 4.710000-5 3.281468+6 4.770000-5 3.200496+6 4.850000-5 3.072256+6 4.950000-5 2.896836+6 5.069907-5 2.681788+6 5.188000-5 2.475631+6 5.370318-5 2.179380+6 5.580000-5 1.878312+6 5.900000-5 1.499900+6 6.531306-5 9.888360+5 6.839116-5 8.241515+5 7.079458-5 7.234397+5 7.328245-5 6.396467+5 7.500000-5 5.917680+5 7.736000-5 5.368453+5 7.950000-5 4.960200+5 8.150000-5 4.641600+5 8.400000-5 4.312920+5 8.650000-5 4.046400+5 8.912509-5 3.819460+5 9.225714-5 3.604023+5 9.549926-5 3.429630+5 9.900000-5 3.283044+5 1.023293-4 3.173825+5 1.060000-4 3.078876+5 1.109175-4 2.982071+5 1.170000-4 2.895052+5 1.244515-4 2.818416+5 1.531087-4 2.617692+5 1.678804-4 2.517003+5 1.840772-4 2.401609+5 2.000000-4 2.286060+5 2.162719-4 2.167777+5 2.350000-4 2.034080+5 2.540973-4 1.902144+5 2.786121-4 1.743844+5 3.054921-4 1.586923+5 3.350000-4 1.434376+5 3.672823-4 1.287278+5 4.027170-4 1.147084+5 4.518559-4 9.848324+4 5.011872-4 8.524578+4 5.559043-4 7.325412+4 6.237348-4 6.142484+4 7.000000-4 5.112160+4 8.000000-4 4.094480+4 9.120108-4 3.265434+4 1.023293-3 2.657293+4 1.150000-3 2.142328+4 1.288250-3 1.726213+4 1.445440-3 1.377624+4 1.621810-3 1.091982+4 1.819701-3 8.593922+3 2.041738-3 6.714962+3 2.290868-3 5.208343+3 2.570396-3 4.011364+3 2.884032-3 3.067618+3 3.235937-3 2.329105+3 3.630781-3 1.756083+3 4.120975-3 1.277312+3 4.677351-3 9.219294+2 5.308844-3 6.602584+2 6.025596-3 4.692140+2 6.839116-3 3.308793+2 7.762471-3 2.315834+2 8.810489-3 1.608882+2 1.000000-2 1.109784+2 1.135011-2 7.603089+1 1.303167-2 4.994860+1 1.500000-2 3.230954+1 1.717908-2 2.107734+1 1.972423-2 1.354371+1 2.238721-2 8.970543+0 2.600160-2 5.470565+0 3.054921-2 3.187103+0 3.630781-2 1.774057+0 4.415704-2 9.059504-1 5.308844-2 4.778764-1 6.839116-2 1.964577-1 1.258925-1 2.280616-2 1.548817-1 1.105182-2 1.819701-1 6.333574-3 2.089296-1 3.957276-3 2.371374-1 2.589231-3 2.660725-1 1.772888-3 2.951209-1 1.268888-3 3.273407-1 9.143444-4 3.630781-1 6.638045-4 4.000000-1 4.957400-4 4.365158-1 3.835497-4 4.786301-1 2.947026-4 5.248075-1 2.281521-4 5.754399-1 1.780023-4 6.237348-1 1.441849-4 6.839117-1 1.141844-4 7.498942-1 9.114190-5 8.413951-1 6.942446-5 9.120108-1 5.779694-5 9.772372-1 4.974037-5 1.059254+0 4.210315-5 1.161449+0 3.503593-5 1.273503+0 2.939955-5 1.412538+0 2.431213-5 1.640590+0 1.864550-5 1.840772+0 1.530545-5 2.065380+0 1.265441-5 2.344229+0 1.034339-5 2.691535+0 8.366891-6 3.090295+0 6.820328-6 3.589219+0 5.509492-6 4.216965+0 4.414007-6 5.000000+0 3.520600-6 6.000000+0 2.786500-6 7.328245+0 2.174227-6 8.912509+0 1.718550-6 1.122018+1 1.312875-6 1.445440+1 9.847874-7 1.905461+1 7.254661-7 2.570396+1 5.247940-7 3.801894+1 3.467043-7 5.688529+1 2.280274-7 9.549926+1 1.339877-7 1.905461+2 6.649773-8 3.801894+2 3.316470-8 1.513561+3 8.298351-9 1.000000+5 1.25430-10 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.655000-5 1.571800-5 1.000000+5 1.571800-5 1 43000 7 7 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.655000-5 2.59630-10 1.000000+5 2.59630-10 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.655000-5 3.083174-5 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.070000-6 3.726624+6 9.332543-6 4.578128+6 1.011579-5 5.103763+6 1.109175-5 5.734193+6 1.216186-5 6.397043+6 1.350000-5 7.184016+6 1.531087-5 8.194770+6 1.698244-5 9.076702+6 1.862087-5 9.873934+6 2.000000-5 1.047694+7 2.113489-5 1.090024+7 2.230000-5 1.125158+7 2.330000-5 1.147723+7 2.426610-5 1.161540+7 2.528300-5 1.167129+7 2.610000-5 1.164617+7 2.691535-5 1.155851+7 2.786121-5 1.138114+7 2.870000-5 1.116055+7 2.951209-5 1.089590+7 3.040000-5 1.055628+7 3.126079-5 1.018479+7 3.230000-5 9.692904+6 3.330000-5 9.187776+6 3.427678-5 8.676675+6 3.540000-5 8.081160+6 3.650000-5 7.502160+6 3.770000-5 6.886440+6 3.900000-5 6.247944+6 4.030000-5 5.646408+6 4.168694-5 5.050607+6 4.315191-5 4.475283+6 4.475300-5 3.909259+6 4.623810-5 3.439835+6 4.786301-5 2.983133+6 4.954502-5 2.567924+6 5.128614-5 2.193845+6 5.300000-5 1.874688+6 5.450000-5 1.630606+6 5.623413-5 1.384648+6 5.800000-5 1.169508+6 5.956621-5 1.004940+6 6.095369-5 8.773166+5 6.237348-5 7.623644+5 6.400000-5 6.478752+5 6.580000-5 5.399376+5 6.760830-5 4.487126+5 6.950000-5 3.690912+5 7.161434-5 2.962348+5 7.350000-5 2.432808+5 7.585776-5 1.902887+5 8.080000-5 1.155614+5 8.230000-5 1.002655+5 8.400000-5 8.611752+4 8.530000-5 7.727808+4 8.650000-5 7.044960+4 8.770000-5 6.475464+4 8.868500-5 6.083813+4 8.970000-5 5.744496+4 9.070000-5 5.467944+4 9.150000-5 5.284200+4 9.240200-5 5.113516+4 9.332543-5 4.975387+4 9.440609-5 4.856287+4 9.549926-5 4.777703+4 9.660509-5 4.736374+4 9.772372-5 4.729175+4 9.900000-5 4.758408+4 1.000000-4 4.805856+4 1.015000-4 4.912032+4 1.030000-4 5.054064+4 1.050000-4 5.288736+4 1.071519-4 5.585979+4 1.170000-4 7.235496+4 1.205000-4 7.848936+4 1.244515-4 8.517505+4 1.280000-4 9.084720+4 1.318257-4 9.654671+4 1.350000-4 1.008998+5 1.390000-4 1.058544+5 1.430000-4 1.102339+5 1.480000-4 1.149583+5 1.531087-4 1.189283+5 1.584893-4 1.222371+5 1.650000-4 1.252517+5 1.717908-4 1.273213+5 1.778279-4 1.283817+5 1.850000-4 1.288790+5 1.930000-4 1.285135+5 2.018366-4 1.272861+5 2.113489-4 1.251171+5 2.213095-4 1.221840+5 2.317395-4 1.185456+5 2.454709-4 1.132545+5 2.600160-4 1.073500+5 2.754229-4 1.009947+5 2.917427-4 9.435700+4 3.126079-4 8.626863+4 3.311311-4 7.956207+4 3.548134-4 7.167944+4 3.801894-4 6.410806+4 4.120975-4 5.582424+4 4.415704-4 4.926987+4 4.786301-4 4.227257+4 5.188000-4 3.599191+4 5.623413-4 3.042710+4 6.165950-4 2.492014+4 6.760830-4 2.025939+4 7.413102-4 1.635482+4 8.128305-4 1.311464+4 8.912509-4 1.044819+4 9.772372-4 8.267891+3 1.083927-3 6.307043+3 1.202264-3 4.774754+3 1.333521-3 3.587209+3 1.479108-3 2.674549+3 1.640590-3 1.978594+3 1.819701-3 1.452878+3 2.018366-3 1.059128+3 2.238721-3 7.665179+2 2.483133-3 5.509619+2 2.786121-3 3.788229+2 3.162278-3 2.487723+2 3.507519-3 1.751581+2 3.935501-3 1.176740+2 4.466836-3 7.542401+1 5.011872-3 4.998067+1 5.623413-3 3.288822+1 6.309573-3 2.149412+1 7.161434-3 1.336013+1 8.128305-3 8.242147+0 9.225714-3 5.048991+0 1.059254-2 2.935715+0 1.216186-2 1.694256+0 1.396368-2 9.708490-1 1.603245-2 5.524856-1 1.883649-2 2.839426-1 2.238721-2 1.380396-1 2.722701-2 6.044813-2 3.427678-2 2.268809-2 7.161434-2 9.647729-4 9.015711-2 3.618590-4 1.083927-1 1.662991-4 1.273503-1 8.484539-5 1.462177-1 4.797934-5 1.678804-1 2.732863-5 1.905461-1 1.643569-5 2.137962-1 1.042726-5 2.398833-1 6.665002-6 2.660725-1 4.484948-6 2.951209-1 3.038102-6 3.273407-1 2.071493-6 3.589219-1 1.483266-6 3.935501-1 1.069105-6 4.315191-1 7.764066-7 4.731513-1 5.678780-7 5.188000-1 4.182323-7 5.688529-1 3.101742-7 6.237348-1 2.316990-7 6.839117-1 1.743708-7 7.413102-1 1.368731-7 8.035261-1 1.080787-7 8.511380-1 9.113070-8 9.015711-1 7.737375-8 9.440609-1 6.832856-8 9.885531-1 6.077678-8 1.035142+0 5.450544-8 1.083927+0 4.922699-8 1.135011+0 4.473914-8 1.188600+0 4.088300-8 1.273503+0 3.603737-8 1.396368+0 3.071337-8 1.513561+0 2.681046-8 1.798871+0 1.986692-8 2.000000+0 1.663000-8 2.264644+0 1.361848-8 2.570396+0 1.118846-8 2.951209+0 9.097658-9 3.388442+0 7.451864-9 3.935501+0 6.047598-9 4.623810+0 4.866157-9 5.495409+0 3.885485-9 6.606934+0 3.080301-9 8.035261+0 2.424947-9 1.023293+1 1.821781-9 1.273503+1 1.416701-9 1.659587+1 1.053069-9 2.264644+1 7.49873-10 3.162278+1 5.24997-10 4.731513+1 3.44073-10 8.609938+1 1.85721-10 1.717908+2 9.20780-11 3.427678+2 4.58975-11 1.364583+3 1.14809-11 4.315191+4 3.62532-13 1.000000+5 1.56430-13 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.070000-6 8.070000-6 1.000000+5 8.070000-6 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.070000-6 0.0 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.780000-6 5.870808+6 8.700000-6 6.888888+6 9.332543-6 7.573553+6 1.011579-5 8.386851+6 1.100000-5 9.254700+6 1.216186-5 1.032668+7 1.350000-5 1.148616+7 1.531087-5 1.295477+7 1.717908-5 1.435769+7 1.862087-5 1.533852+7 2.000000-5 1.616123+7 2.113489-5 1.672915+7 2.230000-5 1.717769+7 2.330000-5 1.743880+7 2.426610-5 1.756730+7 2.528300-5 1.756695+7 2.610000-5 1.746497+7 2.691535-5 1.727282+7 2.786121-5 1.693966+7 2.870000-5 1.655233+7 2.951209-5 1.610525+7 3.040000-5 1.554844+7 3.126079-5 1.495396+7 3.230000-5 1.418180+7 3.330000-5 1.340010+7 3.427678-5 1.261708+7 3.540000-5 1.171321+7 3.650000-5 1.084252+7 3.770000-5 9.924264+6 3.900000-5 8.978580+6 4.030000-5 8.092260+6 4.168694-5 7.218308+6 4.315191-5 6.378385+6 4.475300-5 5.555760+6 4.623810-5 4.875969+6 4.786301-5 4.216565+6 4.954502-5 3.618973+6 5.128614-5 3.082372+6 5.300000-5 2.625955+6 5.450000-5 2.277842+6 5.623413-5 1.928032+6 5.800000-5 1.623035+6 5.956621-5 1.390445+6 6.095369-5 1.210552+6 6.237348-5 1.048942+6 6.400000-5 8.884692+5 6.580000-5 7.377372+5 6.760830-5 6.108508+5 6.950000-5 5.005980+5 7.161434-5 4.002265+5 7.400000-5 3.108121+5 8.000000-5 1.678734+5 8.150000-5 1.455671+5 8.300000-5 1.272348+5 8.413951-5 1.156281+5 8.530000-5 1.056262+5 8.650000-5 9.700416+4 8.738900-5 9.162934+4 8.830000-5 8.693028+4 8.912509-5 8.332120+4 9.015711-5 7.959428+4 9.120108-5 7.663068+4 9.225714-5 7.437244+4 9.332543-5 7.276497+4 9.440609-5 7.175584+4 9.549926-5 7.129571+4 9.660509-5 7.133784+4 9.772372-5 7.183900+4 9.900000-5 7.290288+4 1.005000-4 7.472952+4 1.020000-4 7.708104+4 1.040000-4 8.087580+4 1.060000-4 8.525268+4 1.150000-4 1.084892+5 1.190000-4 1.192478+5 1.220000-4 1.270649+5 1.258925-4 1.366842+5 1.288250-4 1.434807+5 1.330000-4 1.523952+5 1.365000-4 1.590998+5 1.400000-4 1.651064+5 1.450000-4 1.725743+5 1.500000-4 1.787436+5 1.548817-4 1.835653+5 1.611900-4 1.883565+5 1.670000-4 1.914260+5 1.737801-4 1.935854+5 1.800000-4 1.945242+5 1.880000-4 1.943158+5 1.972423-4 1.926413+5 2.065380-4 1.895854+5 2.162719-4 1.853823+5 2.270000-4 1.797498+5 2.398833-4 1.722585+5 2.540973-4 1.634666+5 2.691535-4 1.539329+5 2.851018-4 1.439240+5 3.054921-4 1.316597+5 3.235937-4 1.215098+5 3.467369-4 1.095524+5 3.722400-4 9.773425+4 4.027170-4 8.540418+4 4.315191-4 7.541239+4 4.677351-4 6.473769+4 5.069907-4 5.515363+4 5.495409-4 4.665487+4 6.000000-4 3.858480+4 6.531306-4 3.189916+4 7.161434-4 2.576888+4 7.852356-4 2.068149+4 8.609938-4 1.649055+4 9.440609-4 1.306277+4 1.047129-3 9.973810+3 1.161449-3 7.556639+3 1.288250-3 5.681235+3 1.428894-3 4.238645+3 1.584893-3 3.138132+3 1.757924-3 2.305868+3 1.949845-3 1.681951+3 2.162719-3 1.217859+3 2.398833-3 8.756264+2 2.660725-3 6.253385+2 2.985383-3 4.269481+2 3.235937-3 3.250851+2 3.630781-3 2.184923+2 4.216965-3 1.291751+2 4.731513-3 8.567135+1 5.308844-3 5.642101+1 6.000000-3 3.591159+1 6.760830-3 2.293893+1 7.673615-3 1.414999+1 8.709636-3 8.663792+0 9.885531-3 5.267236+0 1.135011-2 3.037430+0 1.303167-2 1.738292+0 1.500000-2 9.774410-1 1.737801-2 5.309533-1 2.041738-2 2.699735-1 2.426610-2 1.297408-1 2.951209-2 5.607955-2 3.715352-2 2.073126-2 7.585776-2 9.293492-4 9.332543-2 3.796527-4 1.109175-1 1.812970-4 1.288250-1 9.624055-5 1.462177-1 5.670572-5 1.640590-1 3.528438-5 1.840772-1 2.211400-5 2.041738-1 1.462438-5 2.264644-1 9.742662-6 2.483133-1 6.836179-6 2.722701-1 4.829941-6 2.985383-1 3.437808-6 3.235937-1 2.569577-6 3.507519-1 1.932720-6 3.801894-1 1.463277-6 4.120975-1 1.115501-6 4.466836-1 8.564845-7 4.841724-1 6.624514-7 5.188000-1 5.348186-7 5.623413-1 4.196477-7 6.095369-1 3.317140-7 6.606935-1 2.640641-7 7.161434-1 2.117675-7 7.762471-1 1.711057-7 8.511380-1 1.349501-7 9.015711-1 1.170056-7 9.549926-1 1.021023-7 1.011579+0 8.976993-8 1.083927+0 7.756688-8 1.161449+0 6.752644-8 1.244515+0 5.927114-8 1.380384+0 4.911466-8 1.698244+0 3.412737-8 1.905461+0 2.806118-8 2.137962+0 2.324848-8 2.426610+0 1.903982-8 2.786121+0 1.543159-8 3.198895+0 1.260215-8 3.715352+0 1.019823-8 4.365158+0 8.184066-9 5.188000+0 6.517852-9 6.237348+0 5.154806-9 7.673615+0 3.992929-9 9.440609+0 3.118652-9 1.174898+1 2.418815-9 1.500000+1 1.835300-9 2.000000+1 1.336600-9 2.754229+1 9.46751-10 4.216965+1 6.04189-10 6.839116+1 3.66332-10 1.174898+2 2.10784-10 2.344229+2 1.04788-10 4.677351+2 5.22947-11 3.715352+3 6.56098-12 1.000000+5 2.43640-13 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.780000-6 7.780000-6 1.000000+5 7.780000-6 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.780000-6 0.0 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.190000-6 1.365908+6 6.606934-6 9.632778+5 6.900000-6 7.583500+5 7.161434-6 6.144819+5 7.413102-6 5.025440+5 7.700000-6 4.003210+5 7.943282-6 3.303049+5 8.222426-6 2.649975+5 8.500000-6 2.128370+5 8.770000-6 1.718380+5 9.015711-6 1.412595+5 9.280000-6 1.142040+5 9.500000-6 9.550360+4 9.700000-6 8.103300+4 9.930000-6 6.692240+4 1.015000-5 5.558190+4 1.035142-5 4.677337+4 1.055000-5 3.935380+4 1.077000-5 3.239580+4 1.100000-5 2.633570+4 1.122018-5 2.152542+4 1.142000-5 1.787910+4 1.168800-5 1.390185+4 1.230269-5 7.858288+3 1.250000-5 6.621640+3 1.265000-5 5.862250+3 1.275000-5 5.433880+3 1.287500-5 4.978467+3 1.295000-5 4.744920+3 1.305000-5 4.476600+3 1.315000-5 4.254320+3 1.325000-5 4.074820+3 1.333521-5 3.953335+3 1.342000-5 3.859330+3 1.350000-5 3.793740+3 1.357000-5 3.753680+3 1.365000-5 3.726600+3 1.372000-5 3.718380+3 1.380384-5 3.726440+3 1.391300-5 3.764260+3 1.400000-5 3.814970+3 1.412538-5 3.917540+3 1.425000-5 4.051010+3 1.440000-5 4.249040+3 1.455000-5 4.483330+3 1.479108-5 4.924989+3 1.560000-5 6.818720+3 1.590000-5 7.622410+3 1.621810-5 8.506384+3 1.650000-5 9.305800+3 1.680000-5 1.016360+4 1.710000-5 1.102090+4 1.740000-5 1.187120+4 1.778279-5 1.293710+4 1.819701-5 1.406028+4 1.862087-5 1.516852+4 1.905461-5 1.625414+4 1.950000-5 1.731430+4 2.000000-5 1.843610+4 2.055000-5 1.958610+4 2.113489-5 2.071421+4 2.170000-5 2.171450+4 2.238721-5 2.281842+4 2.317395-5 2.394094+4 2.400000-5 2.497090+4 2.500000-5 2.603560+4 2.610000-5 2.700540+4 2.730000-5 2.785750+4 2.851018-5 2.853178+4 3.000000-5 2.914730+4 3.162278-5 2.959772+4 3.350000-5 2.989740+4 3.570000-5 3.002130+4 3.801894-5 2.995419+4 4.073803-5 2.969076+4 4.400000-5 2.918300+4 4.786301-5 2.840313+4 5.188000-5 2.747204+4 5.650000-5 2.631270+4 6.095369-5 2.514184+4 6.606934-5 2.378378+4 7.161434-5 2.233057+4 7.762471-5 2.080816+4 8.413951-5 1.924480+4 9.120108-5 1.767990+4 1.000000-4 1.592540+4 1.109175-4 1.404583+4 1.244515-4 1.212254+4 1.445440-4 9.926036+3 1.757924-4 7.570422+3 2.722701-4 4.102037+3 3.054921-4 3.472200+3 3.548134-4 2.764320+3 4.073803-4 2.224055+3 6.025596-4 1.176344+3 7.079458-4 9.001703+2 8.609938-4 6.431656+2 1.122018-3 4.060718+2 1.412538-3 2.700964+2 1.757924-3 1.820270+2 2.113489-3 1.296736+2 2.570396-3 8.970947+1 3.162278-3 6.025923+1 3.758374-3 4.290910+1 4.466836-3 3.033440+1 5.432503-3 2.030790+1 6.456542-3 1.414918+1 7.673615-3 9.783376+0 9.015711-3 6.882856+0 1.059254-2 4.808044+0 1.244515-2 3.334647+0 1.462177-2 2.295953+0 1.717908-2 1.569089+0 2.018366-2 1.064330+0 2.371374-2 7.164142-1 2.786121-2 4.786092-1 3.273407-2 3.173863-1 3.890451-2 2.027679-1 4.623810-2 1.285360-1 5.432503-2 8.340989-2 6.531306-2 5.050071-2 8.000000-2 2.883600-2 1.000000-1 1.540181-2 1.380384-1 6.162957-3 2.238721-1 1.555907-3 2.691535-1 9.264805-4 3.162278-1 5.928634-4 3.630781-1 4.072208-4 4.120975-1 2.907252-4 4.623810-1 2.155480-4 5.128614-1 1.657462-4 5.688529-1 1.283258-4 6.309573-1 1.000811-4 6.998420-1 7.865602-5 7.762471-1 6.230485-5 8.609938-1 4.974514-5 9.440609-1 4.101370-5 1.047129+0 3.327550-5 1.174898+0 2.651160-5 1.348963+0 2.042847-5 1.513561+0 1.654492-5 1.698244+0 1.351554-5 1.905461+0 1.112156-5 2.162719+0 9.045021-6 2.454709+0 7.411855-6 2.818383+0 6.011945-6 3.235937+0 4.913034-6 3.758374+0 3.978160-6 4.415704+0 3.194177-6 5.248075+0 2.545169-6 6.309573+0 2.013870-6 7.762471+0 1.560671-6 9.660509+0 1.203102-6 1.202264+1 9.338374-7 1.531087+1 7.109708-7 2.041738+1 5.179785-7 2.884032+1 3.573120-7 4.365158+1 2.309977-7 7.585776+1 1.305276-7 1.513561+2 6.461551-8 3.019952+2 3.218179-8 1.202264+3 8.045603-9 1.000000+5 9.65690-11 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.190000-6 6.190000-6 1.000000+5 6.190000-6 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.190000-6 0.0 1.000000+5 1.000000+5 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.054340-7 1.028750+0 1.054340-6 1.029500+0 1.442890-6 1.030100+0 1.814610-6 1.031000+0 2.483010-6 1.032000+0 3.397380-6 1.033200+0 4.759150-6 1.034000+0 5.842300-6 1.035300+0 7.930090-6 1.036640+0 1.054340-5 1.038200+0 1.422870-5 1.039700+0 1.848590-5 1.041500+0 2.459520-5 1.043800+0 3.413900-5 1.046400+0 4.749800-5 1.048300+0 5.913630-5 1.051200+0 8.021710-5 1.054080+0 1.054340-4 1.057700+0 1.437140-4 1.061100+0 1.869360-4 1.065100+0 2.474830-4 1.070400+0 3.452670-4 1.076200+0 4.771590-4 1.080600+0 5.958940-4 1.087100+0 8.028610-4 1.093710+0 1.054340-3 1.102600+0 1.461780-3 1.110700+0 1.906360-3 1.120600+0 2.549980-3 1.133300+0 3.545320-3 1.147500+0 4.894770-3 1.158200+0 6.082940-3 1.174100+0 8.130610-3 1.190110+0 1.054340-2 1.205100+0 1.312760-2 1.227500+0 1.757390-2 1.250000+0 2.270000-2 1.265600+0 2.659900-2 1.294900+0 3.460380-2 1.331800+0 4.577230-2 1.362600+0 5.586500-2 1.397000+0 6.783510-2 1.455800+0 8.980010-2 1.500000+0 1.076000-1 1.589800+0 1.475900-1 1.665000+0 1.848940-1 1.784700+0 2.503950-1 1.892300+0 3.140200-1 2.000000+0 3.799000-1 2.044000+0 4.069000-1 2.163500+0 4.809380-1 2.372600+0 6.120920-1 2.647100+0 7.838070-1 3.000000+0 9.990000-1 3.437500+0 1.252510+0 4.000000+0 1.557000+0 4.750000+0 1.928700+0 5.000000+0 2.044000+0 6.000000+0 2.466000+0 7.000000+0 2.844000+0 8.000000+0 3.183000+0 9.000000+0 3.492000+0 1.000000+1 3.774000+0 1.100000+1 4.033000+0 1.200000+1 4.271000+0 1.300000+1 4.491000+0 1.400000+1 4.693000+0 1.500000+1 4.880000+0 1.600000+1 5.056000+0 1.800000+1 5.377000+0 2.000000+1 5.665000+0 2.200000+1 5.927000+0 2.400000+1 6.164000+0 2.600000+1 6.381000+0 2.800000+1 6.580000+0 3.000000+1 6.763000+0 4.000000+1 7.506000+0 5.000000+1 8.057000+0 6.000000+1 8.485000+0 8.000000+1 9.119000+0 1.000000+2 9.569000+0 1.500000+2 1.029000+1 2.000000+2 1.071000+1 3.000000+2 1.121000+1 4.000000+2 1.150000+1 5.000000+2 1.169000+1 6.000000+2 1.183000+1 8.000000+2 1.201000+1 1.000000+3 1.212000+1 1.500000+3 1.229000+1 2.000000+3 1.239000+1 3.000000+3 1.249000+1 4.000000+3 1.254000+1 5.000000+3 1.257000+1 6.000000+3 1.260000+1 8.000000+3 1.263000+1 1.000000+4 1.265000+1 1.500000+4 1.267000+1 2.000000+4 1.269000+1 3.000000+4 1.270000+1 4.000000+4 1.271000+1 5.000000+4 1.272000+1 6.000000+4 1.272000+1 8.000000+4 1.272000+1 1.000000+5 1.273000+1 1 43000 7 8 9.900000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.315580-7 2.099900+0 1.010770-6 2.106600+0 1.406060-6 2.114000+0 1.945470-6 2.119500+0 2.422090-6 2.127900+0 3.284820-6 2.136250+0 4.315580-6 2.147000+0 5.916960-6 2.156900+0 7.685420-6 2.169000+0 1.025670-5 2.184500+0 1.425710-5 2.201800+0 1.972510-5 2.214800+0 2.457600-5 2.234200+0 3.305910-5 2.253680+0 4.315580-5 2.281500+0 6.044730-5 2.307000+0 7.939740-5 2.338200+0 1.067570-4 2.377400+0 1.478450-4 2.410200+0 1.880340-4 2.446800+0 2.391900-4 2.485900+0 3.011540-4 2.532900+0 3.854120-4 2.556430+0 4.315580-4 2.611900+0 5.502840-4 2.660400+0 6.652630-4 2.745300+0 8.904090-4 2.809000+0 1.078340-3 2.904500+0 1.389180-3 3.000000+0 1.734000-3 3.125000+0 2.235950-3 3.234400+0 2.720670-3 3.425800+0 3.663760-3 3.569300+0 4.442650-3 3.784700+0 5.710880-3 4.000000+0 7.074000-3 4.250000+0 8.740080-3 4.625000+0 1.135800-2 5.000000+0 1.408000-2 5.500000+0 1.781890-2 6.000000+0 2.161000-2 6.750000+0 2.725260-2 7.000000+0 2.911000-2 8.000000+0 3.638000-2 9.000000+0 4.333000-2 1.000000+1 4.993000-2 1.100000+1 5.618000-2 1.200000+1 6.208000-2 1.300000+1 6.763000-2 1.400000+1 7.292000-2 1.500000+1 7.793000-2 1.600000+1 8.268000-2 1.800000+1 9.150000-2 2.000000+1 9.952000-2 2.200000+1 1.069000-1 2.400000+1 1.136000-1 2.600000+1 1.199000-1 2.800000+1 1.256000-1 3.000000+1 1.310000-1 4.000000+1 1.533000-1 5.000000+1 1.703000-1 6.000000+1 1.837000-1 8.000000+1 2.040000-1 1.000000+2 2.188000-1 1.500000+2 2.434000-1 2.000000+2 2.589000-1 3.000000+2 2.779000-1 4.000000+2 2.893000-1 5.000000+2 2.972000-1 6.000000+2 3.030000-1 8.000000+2 3.110000-1 1.000000+3 3.163000-1 1.500000+3 3.243000-1 2.000000+3 3.289000-1 3.000000+3 3.339000-1 4.000000+3 3.368000-1 5.000000+3 3.386000-1 6.000000+3 3.399000-1 8.000000+3 3.416000-1 1.000000+4 3.427000-1 1.500000+4 3.441000-1 2.000000+4 3.450000-1 3.000000+4 3.458000-1 4.000000+4 3.463000-1 5.000000+4 3.466000-1 6.000000+4 3.468000-1 8.000000+4 3.470000-1 1.000000+5 3.472000-1 1 43000 7 8 9.900000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 43000 7 9 9.900000+1 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.300000+1 1.000000+5 4.300000+1 5.000000+5 4.298500+1 7.500000+5 4.296770+1 1.000000+6 4.295100+1 1.375000+6 4.291220+1 1.500000+6 4.289600+1 2.000000+6 4.281600+1 2.500000+6 4.271400+1 3.000000+6 4.259200+1 3.500000+6 4.244890+1 4.000000+6 4.229100+1 4.500000+6 4.211420+1 5.000000+6 4.192400+1 5.500000+6 4.171600+1 5.875000+6 4.155180+1 6.437500+6 4.129010+1 6.500000+6 4.126020+1 7.000000+6 4.102200+1 7.500000+6 4.077220+1 8.250000+6 4.038080+1 8.500000+6 4.025010+1 9.000000+6 3.998200+1 9.750000+6 3.956680+1 1.000000+7 3.943000+1 1.109400+7 3.881710+1 1.187500+7 3.837520+1 1.250000+7 3.802300+1 1.437500+7 3.696250+1 1.500000+7 3.661300+1 1.750000+7 3.523400+1 2.000000+7 3.389700+1 2.250000+7 3.260090+1 2.375000+7 3.196790+1 2.500000+7 3.135300+1 2.875000+7 2.958140+1 3.000000+7 2.902400+1 3.500000+7 2.694160+1 3.750000+7 2.599910+1 4.000000+7 2.512000+1 4.750000+7 2.282290+1 5.000000+7 2.216100+1 5.500000+7 2.096340+1 6.000000+7 1.990400+1 6.750000+7 1.848680+1 7.000000+7 1.804700+1 7.750000+7 1.678240+1 8.000000+7 1.637700+1 8.500000+7 1.558050+1 9.000000+7 1.481000+1 9.750000+7 1.369680+1 1.000000+8 1.333900+1 1.062500+8 1.247330+1 1.144500+8 1.141850+1 1.187500+8 1.090300+1 1.250000+8 1.020400+1 1.437500+8 8.464360+0 1.500000+8 8.008200+0 1.625000+8 7.258780+0 1.718800+8 6.806880+0 1.750000+8 6.673390+0 1.859400+8 6.259710+0 2.000000+8 5.828300+0 2.125000+8 5.516420+0 2.375000+8 5.018590+0 2.406300+8 4.964320+0 2.500000+8 4.809600+0 2.671900+8 4.543410+0 2.789100+8 4.361130+0 2.894500+8 4.190090+0 3.000000+8 4.009100+0 3.125000+8 3.784680+0 3.406300+8 3.328690+0 3.500000+8 3.208700+0 3.625000+8 3.076300+0 3.859400+8 2.858630+0 3.953100+8 2.768330+0 4.000000+8 2.720600+0 4.125000+8 2.584430+0 4.750000+8 1.937930+0 5.000000+8 1.744500+0 5.179700+8 1.640940+0 5.330100+8 1.569450+0 5.569300+8 1.476380+0 5.892300+8 1.376500+0 6.000000+8 1.347500+0 6.437500+8 1.244670+0 6.812500+8 1.174920+0 7.000000+8 1.146000+0 8.000000+8 1.027900+0 8.250000+8 9.985390-1 8.687500+8 9.453280-1 9.015600+8 9.052680-1 9.507800+8 8.467810-1 1.000000+9 7.917000-1 1.089800+9 7.015400-1 1.165000+9 6.346480-1 1.243500+9 5.716140-1 1.307700+9 5.244590-1 1.375000+9 4.788700-1 1.376400+9 4.779630-1 1.438200+9 4.393090-1 1.500000+9 4.034800-1 1.589800+9 3.560030-1 1.665000+9 3.204510-1 1.748800+9 2.851290-1 1.838500+9 2.519350-1 1.946200+9 2.176620-1 2.000000+9 2.026000-1 2.139200+9 1.689780-1 2.272600+9 1.428240-1 2.443000+9 1.161400-1 2.602800+9 9.641900-2 2.825100+9 7.532190-2 3.097000+9 5.667680-2 3.438900+9 4.063340-2 3.725100+9 3.135280-2 4.180400+9 2.142210-2 4.795100+9 1.350880-2 5.000000+9 1.172200-2 5.750000+9 7.274090-3 7.437500+9 2.998780-3 8.000000+9 2.331300-3 1.00000+10 1.081100-3 1.20500+10 5.728410-4 1.41820+10 3.308960-4 1.71170+10 1.767710-4 2.01490+10 1.031930-4 2.26440+10 7.040760-5 2.74790+10 3.754810-5 3.20120+10 2.296080-5 4.05100+10 1.082990-5 4.79460+10 6.353150-6 6.09600+10 2.989270-6 8.04800+10 1.259320-6 1.00000+11 6.438800-7 1.34280+11 2.606030-7 1.77440+11 1.114470-7 2.63330+11 3.376670-8 3.75720+11 1.162350-8 6.61190+11 2.164920-9 1.48990+12 1.98905-10 4.26460+12 9.41075-12 1.00000+14 1.12220-15 5.62340+14 7.80889-18 7.49890+15 4.27450-21 1.00000+17 2.25440-24 1 43000 7 0 9.900000+1 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.20000-12 1.000000+2 7.20000-10 1.000000+3 7.200000-8 1.000000+4 7.200000-6 1.000000+5 7.200000-4 5.000000+5 1.800000-2 7.500000+5 4.050000-2 1.000000+6 7.200000-2 1.375000+6 1.348850-1 1.500000+6 1.600000-1 2.000000+6 2.805000-1 2.500000+6 4.307000-1 3.000000+6 6.072000-1 3.500000+6 8.063590-1 4.000000+6 1.024500+0 4.500000+6 1.257630+0 5.000000+6 1.502000+0 5.500000+6 1.753890+0 5.875000+6 1.946060+0 6.437500+6 2.236500+0 6.500000+6 2.268850+0 7.000000+6 2.526700+0 7.500000+6 2.781790+0 8.250000+6 3.157350+0 8.500000+6 3.280020+0 9.000000+6 3.521600+0 9.750000+6 3.872640+0 1.000000+7 3.987000+0 1.109400+7 4.471810+0 1.187500+7 4.804980+0 1.250000+7 5.065600+0 1.437500+7 5.820990+0 1.500000+7 6.067000+0 1.750000+7 7.035300+0 2.000000+7 7.984000+0 2.250000+7 8.908890+0 2.375000+7 9.361450+0 2.500000+7 9.806500+0 2.875000+7 1.109490+1 3.000000+7 1.151200+1 3.500000+7 1.312290+1 3.750000+7 1.389750+1 4.000000+7 1.465300+1 4.750000+7 1.679260+1 5.000000+7 1.745600+1 5.500000+7 1.869360+1 6.000000+7 1.981600+1 6.750000+7 2.129900+1 7.000000+7 2.174800+1 7.750000+7 2.298530+1 8.000000+7 2.337000+1 8.500000+7 2.410180+1 9.000000+7 2.479700+1 9.750000+7 2.577810+1 1.000000+8 2.609300+1 1.062500+8 2.684990+1 1.144500+8 2.778380+1 1.187500+8 2.825150+1 1.250000+8 2.890100+1 1.437500+8 3.065020+1 1.500000+8 3.117300+1 1.625000+8 3.212970+1 1.718800+8 3.278230+1 1.750000+8 3.298650+1 1.859400+8 3.366540+1 2.000000+8 3.444700+1 2.125000+8 3.506510+1 2.375000+8 3.614190+1 2.406300+8 3.626110+1 2.500000+8 3.661000+1 2.671900+8 3.719080+1 2.789100+8 3.754950+1 2.894500+8 3.785120+1 3.000000+8 3.813400+1 3.125000+8 3.843930+1 3.406300+8 3.904650+1 3.500000+8 3.922600+1 3.625000+8 3.944600+1 3.859400+8 3.980870+1 3.953100+8 3.993880+1 4.000000+8 4.000300+1 4.125000+8 4.015500+1 4.750000+8 4.076890+1 5.000000+8 4.095800+1 5.179700+8 4.107570+1 5.330100+8 4.116650+1 5.569300+8 4.129960+1 5.892300+8 4.145790+1 6.000000+8 4.150800+1 6.437500+8 4.168690+1 6.812500+8 4.182200+1 7.000000+8 4.188600+1 8.000000+8 4.217100+1 8.250000+8 4.222840+1 8.687500+8 4.232480+1 9.015600+8 4.239040+1 9.507800+8 4.247700+1 1.000000+9 4.255300+1 1.089800+9 4.266100+1 1.165000+9 4.273450+1 1.243500+9 4.279030+1 1.307700+9 4.283230+1 1.375000+9 4.286210+1 1.376400+9 4.286270+1 1.438200+9 4.288730+1 1.500000+9 4.291100+1 1.589800+9 4.292910+1 1.665000+9 4.294350+1 1.748800+9 4.295890+1 1.838500+9 4.296680+1 1.946200+9 4.297570+1 2.000000+9 4.298000+1 2.139200+9 4.298470+1 2.272600+9 4.298890+1 2.443000+9 4.299400+1 2.602800+9 4.299840+1 2.825100+9 4.300210+1 3.097000+9 4.300180+1 3.438900+9 4.300140+1 3.725100+9 4.300110+1 4.180400+9 4.300070+1 4.795100+9 4.300020+1 5.000000+9 4.300000+1 5.750000+9 4.300000+1 7.437500+9 4.300000+1 8.000000+9 4.300000+1 1.00000+10 4.300000+1 1.20500+10 4.300000+1 1.41820+10 4.300000+1 1.71170+10 4.300000+1 2.01490+10 4.300000+1 2.26440+10 4.300000+1 2.74790+10 4.300000+1 3.20120+10 4.300000+1 4.05100+10 4.300000+1 4.79460+10 4.300000+1 6.09600+10 4.300000+1 8.04800+10 4.300000+1 1.00000+11 4.300000+1 1.34280+11 4.300000+1 1.77440+11 4.300000+1 2.63330+11 4.300000+1 3.75720+11 4.300000+1 6.61190+11 4.300000+1 1.48990+12 4.300000+1 4.26460+12 4.300000+1 1.00000+14 4.300000+1 5.62340+14 4.300000+1 7.49890+15 4.300000+1 1.00000+17 4.300000+1 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.023088-6 0.0 3.455263-6 0.0 3.470146-6 2.487359+0 3.472272-6 2.839071+0 3.480777-6 5.185795+0 3.489282-6 8.743962+0 3.498850-6 1.435146+1 3.513600-6 2.503719+1 3.524364-6 3.227132+1 3.532337-6 3.598761+1 3.541091-6 3.731877+1 3.550078-6 3.547029+1 3.558903-6 3.094923+1 3.572066-6 2.185823+1 3.582833-6 1.769259+1 3.589035-6 1.610495+1 3.591744-6 1.605722+1 3.598330-6 1.695452+1 3.599843-6 1.754770+1 3.607165-6 2.170691+1 3.616029-6 3.012967+1 3.626728-6 4.342913+1 3.641518-6 6.412639+1 3.651806-6 7.331711+1 3.659833-6 7.587985+1 3.668958-6 7.248066+1 3.678521-6 6.300685+1 3.692359-6 4.366859+1 3.703313-6 2.830603+1 3.712104-6 1.827339+1 3.720895-6 1.088963+1 3.729685-6 5.990475+0 3.742871-6 1.522803+0 3.747267-6 0.0 4.752845-6 0.0 4.764543-6 4.72140-15 4.776242-6 9.34235-15 4.787940-6 1.70646-14 4.799639-6 2.87732-14 4.811337-6 4.47852-14 4.823036-6 6.43481-14 4.834734-6 8.53474-14 4.846433-6 1.04496-13 4.858131-6 1.18103-13 4.869830-6 1.23219-13 4.881529-6 1.18672-13 4.893227-6 1.05505-13 4.904926-6 8.65865-14 4.928323-6 4.58742-14 4.940021-6 2.96148-14 4.951720-6 1.76483-14 4.963418-6 9.70846-15 4.975117-6 4.93007-15 4.986815-6 0.0 5.432125-6 0.0 5.456046-6 7.746526-2 5.458866-6 8.650850-2 5.461200-6 9.896260-2 5.473072-6 2.723421-1 5.485607-6 4.858047-1 5.489205-6 5.647891-1 5.501839-6 9.014591-1 5.516459-6 1.446529+0 5.552628-6 3.177955+0 5.569970-6 3.858886+0 5.582178-6 4.123751+0 5.596460-6 4.102685+0 5.611477-6 3.727645+0 5.624486-6 3.192665+0 5.658524-6 1.524773+0 5.662830-6 1.330235+0 5.676272-6 8.437445-1 5.689714-6 4.896439-1 5.699535-6 3.062804-1 5.703156-6 2.509041-1 5.726908-6 2.975471-2 5.730040-6 1.026948-5 5.748616-6 6.691519-7 5.750756-6 0.0 5.942400-6 0.0 5.942642-6 5.416774-8 5.944807-6 6.817093-8 5.946954-6 8.538697-8 5.949082-6 1.064689-7 5.951890-6 1.419367-7 5.954665-6 1.878459-7 5.957182-6 2.414088-7 5.959897-6 3.153693-7 5.962581-6 4.093260-7 5.965233-6 5.279530-7 5.967854-6 6.768323-7 5.970444-6 8.625890-7 5.973005-6 1.093040-6 5.975535-6 1.377353-6 5.978036-6 1.726222-6 5.980508-6 2.152048-6 5.983759-6 2.864549-6 5.986960-6 3.779365-6 5.990111-6 4.943891-6 5.992828-6 6.211401-6 5.996267-6 8.255079-6 5.999646-6 1.086440-5 6.002966-6 1.416446-5 6.006228-6 1.830012-5 6.009433-6 2.343754-5 6.012582-6 2.976548-5 6.015677-6 3.749643-5 6.019719-6 5.040017-5 6.022689-6 6.237300-5 6.026573-6 8.197396-5 6.030366-6 1.064318-4 6.034071-6 1.365954-4 6.037690-6 1.733843-4 6.041225-6 2.177812-4 6.045811-6 2.906092-4 6.049158-6 3.568592-4 6.054033-6 4.775924-4 6.058739-6 6.273230-4 6.063282-6 8.097730-4 6.067668-6 1.028484-3 6.073284-6 1.382324-3 6.078649-6 1.813674-3 6.083768-6 2.327178-3 6.088060-6 2.848870-3 6.096297-6 9.426510-3 6.099869-6 1.241450-2 6.113606-6 5.181959-2 6.118305-6 6.567299-2 6.129898-6 1.051617-1 6.144912-6 1.843983-1 6.159926-6 2.997007-1 6.180146-6 5.130073-1 6.212791-6 9.020348-1 6.226951-6 1.028647+0 6.238190-6 1.098725+0 6.254803-6 1.108418+0 6.270035-6 1.036996+0 6.287640-6 8.770092-1 6.323598-6 4.837211-1 6.335084-6 3.789188-1 6.340094-6 3.361840-1 6.355108-6 2.419987-1 6.370122-6 1.798929-1 6.388047-6 1.306541-1 6.394019-6 1.192842-1 6.400151-6 1.122688-1 6.425495-6 1.364353-1 6.441234-6 1.622998-1 6.456972-6 2.015908-1 6.472710-6 2.550484-1 6.513833-6 4.266823-1 6.535662-6 4.911325-1 6.553806-6 5.021960-1 6.569938-6 4.858747-1 6.597159-6 4.060697-1 6.618513-6 3.361843-1 6.630985-6 3.058992-1 6.649124-6 2.839097-1 6.668025-6 2.872356-1 6.732314-6 3.304981-1 6.823812-6 2.999236-1 6.862177-6 2.945979-1 6.895908-6 1.122208+0 6.913659-6 1.864040+0 6.932150-6 3.066625+0 6.950658-6 4.707036+0 6.999052-6 9.722768+0 7.019215-6 1.092723+1 7.035889-6 1.111470+1 7.053341-6 1.042665+1 7.077449-6 8.414571+0 7.111672-6 5.187044+0 7.122472-6 4.427894+0 7.134346-6 3.814264+0 7.148335-6 3.484840+0 7.162417-6 3.552830+0 7.172740-6 3.842732+0 7.204927-6 5.123204+0 7.217992-6 5.855625+0 7.234945-6 6.508393+0 7.251257-6 6.767971+0 7.268961-6 6.573412+0 7.284877-6 6.051400+0 7.335482-6 3.527877+0 7.352895-6 2.780603+0 7.370307-6 2.179365+0 7.387720-6 1.702321+0 7.405132-6 1.315490+0 7.422545-6 8.706080-1 7.455962-6 4.970869-1 7.473661-6 3.386845-1 7.491359-6 2.219453-1 7.509126-6 1.441074-1 7.544455-6 4.900463-2 7.596886-6 4.871008-2 7.619638-6 5.077727-2 7.636855-6 5.481747-2 7.653737-6 6.233480-2 7.666867-6 7.175430-2 7.679436-6 8.465399-2 7.694089-6 1.055918-1 7.709553-6 1.357404-1 7.726558-6 1.790659-1 7.748459-6 2.500127-1 7.820128-6 5.243716-1 7.851233-6 6.144515-1 7.893602-6 6.875740-1 7.992663-6 7.881114-1 8.043803-6 8.949503-1 8.129860-6 1.115018+0 8.192000-6 1.201077+0 8.598765-6 1.358830+0 8.755890-6 1.428803+0 8.794957-6 1.568702+0 8.819191-6 1.713801+0 8.845445-6 1.956879+0 8.874280-6 2.327272+0 8.924207-6 3.026948+0 8.948441-6 3.247095+0 8.969983-6 3.313091+0 8.996237-6 3.196950+0 9.022228-6 2.918396+0 9.074998-6 2.256777+0 9.101925-6 2.042634+0 9.118081-6 1.967631+0 9.143376-6 1.976005+0 9.182706-6 2.155503+0 9.229862-6 2.589851+0 9.260288-6 2.767227+0 9.277083-6 2.815315+0 9.302537-6 2.771254+0 9.339254-6 2.541846+0 9.385331-6 2.156618+0 9.418749-6 1.976197+0 9.452166-6 1.894589+0 9.496723-6 1.958893+0 9.590936-6 2.451895+0 9.621690-6 2.518212+0 9.650582-6 2.477052+0 9.737258-6 2.139518+0 9.780044-6 2.102380+0 9.812378-6 2.195622+0 9.866932-6 2.499281+0 9.917111-6 2.770924+0 9.946908-6 2.836426+0 9.984788-6 2.783097+0 1.007516-5 2.538530+0 1.013221-5 2.523362+0 1.027949-5 2.736162+0 1.046216-5 2.579237+0 1.060458-5 2.467815+0 1.079961-5 2.394678+0 1.095456-5 2.342996+0 1.283093-5 3.247455+0 1.614666-5 5.131819+0 2.330000-5 9.637367+0 2.626783-5 1.091758+1 2.885108-5 1.138390+1 3.202393-5 1.108794+1 3.629202-5 9.677924+0 3.825695-5 8.838083+0 3.844528-5 9.523178+0 3.857963-5 1.050752+1 3.858537-5 1.056355+1 3.866904-5 1.461082+1 3.877532-5 2.002427+1 3.887029-5 2.738818+1 3.897713-5 3.933276+1 3.907477-5 5.316254+1 3.933861-5 9.410662+1 3.945550-5 1.040484+2 3.954472-5 1.052893+2 3.963879-5 9.968158+1 3.974587-5 8.601102+1 4.000996-5 4.265679+1 4.010494-5 3.014817+1 4.019991-5 2.107553+1 4.029488-5 1.514202+1 4.048483-5 7.853502+0 4.132370-5 7.547108+0 4.152435-5 1.131041+1 4.163539-5 1.493581+1 4.173412-5 1.975134+1 4.183743-5 2.662063+1 4.214537-5 5.136909+1 4.224659-5 5.662072+1 4.234878-5 5.829526+1 4.244904-5 5.605107+1 4.256531-5 4.911147+1 4.284653-5 2.599740+1 4.294824-5 1.916708+1 4.304994-5 1.412905+1 4.315165-5 1.077213+1 4.335506-5 6.634734+0 4.579970-5 5.741580+0 4.615335-5 5.894488+0 4.661660-5 6.630754+0 4.762952-5 8.419361+0 4.790155-5 8.476348+0 4.853579-5 7.930717+0 4.992176-5 7.880355+0 5.045006-5 7.657557+0 5.109351-5 7.577941+0 5.281532-5 6.745080+0 5.383724-5 5.941637+0 5.764875-5 4.622697+0 6.160974-5 3.561150+0 6.511914-5 2.826105+0 6.878449-5 2.240264+0 7.208117-5 1.835240+0 7.434068-5 1.629292+0 7.486957-5 1.663057+0 7.525714-5 1.768421+0 7.583093-5 1.972305+0 7.616984-5 2.002045+0 7.657386-5 1.910837+0 7.720326-5 1.725775+0 7.785976-5 1.687665+0 7.877828-5 1.653438+0 8.025281-5 1.452850+0 8.106377-5 1.395490+0 8.586152-5 1.242296+0 9.120108-5 1.161266+0 9.830400-5 1.147092+0 1.060000-4 1.203284+0 1.244515-4 1.461781+0 1.500000-4 1.827516+0 1.778280-4 2.103661+0 2.152667-4 2.305798+0 2.573900-4 2.386017+0 2.599762-4 2.498051+0 2.618009-4 2.753492+0 2.645669-4 3.263720+0 2.671753-4 3.535441+0 2.724500-4 3.642221+0 2.750000-4 3.936830+0 2.778114-4 4.578736+0 2.804369-4 5.465914+0 2.838997-4 7.030562+0 2.966247-4 1.389292+1 3.057000-4 1.763681+1 3.165000-4 2.059072+1 3.280000-4 2.223148+1 3.528027-4 2.338156+1 3.916451-4 2.350880+1 4.085555-4 2.318920+1 4.126143-4 2.429496+1 4.176068-4 2.765513+1 4.197925-4 2.759245+1 4.247616-4 2.511428+1 4.286889-4 2.494079+1 4.389346-4 2.688609+1 4.456997-4 2.564078+1 5.028259-4 2.421799+1 5.285392-4 2.365525+1 5.376350-4 2.423172+1 6.747487-4 1.954732+1 8.380549-4 1.540539+1 1.000000-3 1.244343+1 1.156445-3 1.033037+1 1.333521-3 8.549312+0 1.557758-3 6.903345+0 1.795196-3 5.644214+0 2.058167-3 4.628637+0 2.363443-3 3.770517+0 2.607012-3 3.257156+0 2.620150-3 3.489788+0 2.626597-3 3.712695+0 2.633067-3 4.075906+0 2.639829-3 4.645978+0 2.649811-3 5.850191+0 2.671890-3 9.169066+0 2.682990-3 1.031366+1 2.694703-3 1.088757+1 2.717707-3 1.091038+1 2.735773-3 1.080945+1 2.759350-3 1.135856+1 2.798810-3 1.376157+1 2.820306-3 1.420445+1 2.969729-3 1.319020+1 3.007805-3 1.354510+1 3.047615-3 1.429127+1 3.177696-3 1.365104+1 3.643376-3 1.108932+1 4.130641-3 9.120883+0 4.736327-3 7.354784+0 5.437827-3 5.884716+0 6.215036-3 4.716460+0 7.006844-3 3.858322+0 7.978460-3 3.092025+0 9.084517-3 2.471637+0 1.004429-2 2.075318+0 1.132989-2 1.678768+0 1.269843-2 1.371633+0 1.424788-2 1.116656+0 1.600292-2 9.056413-1 1.789350-2 7.393729-1 2.028684-2 5.879372-1 2.051124-2 5.821989-1 2.061019-2 6.065014-1 2.067333-2 6.548605-1 2.072249-2 7.259792-1 2.076851-2 8.303147-1 2.081974-2 9.996563-1 2.087044-2 1.227385+0 2.094372-2 1.651024+0 2.109664-2 2.648337+0 2.119689-2 3.132805+0 2.130023-2 3.399681+0 2.142529-2 3.498753+0 2.527020-2 2.708139+0 2.864552-2 2.201255+0 3.230000-2 1.797067+0 3.653056-2 1.450914+0 4.145514-2 1.162478+0 4.670625-2 9.385019-1 5.316279-2 7.420169-1 5.922654-2 6.080964-1 6.578263-2 5.003960-1 7.275646-2 4.141422-1 8.016315-2 3.447192-1 8.970018-2 2.780862-1 1.010909-1 2.212195-1 1.111273-1 1.841787-1 1.231440-1 1.510492-1 1.352593-1 1.259649-1 1.488773-1 1.046243-1 1.632407-1 8.761462-2 1.808348-1 7.196253-2 1.991408-1 5.976634-2 2.213095-1 4.891195-2 2.453881-1 4.024396-2 2.710728-1 3.348678-2 2.999648-1 2.782315-2 3.336454-1 2.300450-2 3.697350-1 1.924108-2 4.092901-1 1.620433-2 4.598682-1 1.339974-2 5.162924-1 1.119122-2 5.871512-1 9.252843-3 6.664231-1 7.765486-3 7.696530-1 6.453451-3 8.709636-1 5.568732-3 1.007222+0 4.762308-3 1.178584+0 4.029123-3 1.347258+0 3.489017-3 1.619761+0 2.862463-3 1.947381+0 2.348424-3 2.341267+0 1.926696-3 2.814822+0 1.580702-3 3.384160+0 1.296841-3 4.068655+0 1.063955-3 4.891600+0 8.728910-4 5.880996+0 7.161379-4 7.070513+0 5.875345-4 8.500626+0 4.820256-4 9.760024+0 4.155254-4 1.000000+1 8.412035-4 1 43000 7 0 9.900000+1 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.288259+1 2.607297-6-4.140258+1 3.075422-6-3.904844+1 3.268502-6-3.607130+1 3.357314-6-3.295366+1 3.411304-6-2.923862+1 3.438353-6-2.588205+1 3.453480-6-2.264983+1 3.463768-6-1.945520+1 3.472272-6-1.696677+1 3.481840-6-1.372955+1 3.492205-6-1.066550+1 3.498850-6-9.379927+0 3.503501-6-9.081703+0 3.508417-6-9.279542+0 3.513600-6-1.029813+1 3.518517-6-1.205881+1 3.522703-6-1.408889+1 3.531340-6-1.979632+1 3.540576-6-2.732125+1 3.552468-6-3.604778+1 3.561091-6-4.003455+1 3.569003-6-4.042398+1 3.582833-6-3.541641+1 3.589035-6-3.170397+1 3.598330-6-2.457773+1 3.608196-6-1.717100+1 3.616029-6-1.342219+1 3.618215-6-1.277682+1 3.621340-6-1.236882+1 3.626728-6-1.224064+1 3.629467-6-1.296319+1 3.632328-6-1.439137+1 3.636834-6-1.781941+1 3.640736-6-2.177481+1 3.649222-6-3.364445+1 3.654669-6-4.326621+1 3.659264-6-3.498998+1 3.669956-6-1.552925+1 3.677491-6-4.412745+0 3.678521-6-3.040450+0 3.680324-6-9.378491-1 3.681676-6 4.758563-1 3.683704-6 2.406085+0 3.686831-6 5.135628+0 3.688754-6 6.456597+0 3.690196-6 7.283459+0 3.693441-6 8.670339+0 3.698369-6 9.635876+0 3.702077-6 9.656575+0 3.707709-6 8.341869+0 3.711005-6 7.265725+0 3.713203-6 6.043296+0 3.718972-6 3.406042+0 3.719933-6 2.882405+0 3.720895-6 2.232603+0 3.729685-6-2.693018+0 3.730784-6-3.393720+0 3.732707-6-4.398165+0 3.742871-6-9.035637+0 3.746717-6-1.115304+1 3.748249-6-1.231483+1 3.752169-6-1.428712+1 3.759968-6-1.709002+1 3.771558-6-2.008511+1 3.786801-6-2.292762+1 3.816638-6-2.665172+1 3.866652-6-3.034943+1 3.959152-6-3.392657+1 4.127090-6-3.689224+1 4.521647-6-3.951705+1 5.432125-6-4.258339+1 5.509320-6-4.346037+1 5.555294-6-4.347703+1 5.634300-6-3.938328+1 5.699535-6-3.989902+1 5.873875-6-4.153517+1 6.226951-6-4.275207+1 6.340094-6-4.215580+1 6.763225-6-4.386688+1 6.862704-6-4.194367+1 6.953570-6-3.882965+1 6.992778-6-4.038090+1 7.026581-6-4.430408+1 7.068808-6-3.946634+1 7.104238-6-3.830739+1 7.189978-6-4.187381+1 7.230883-6-4.121842+1 7.303700-6-3.735604+1 7.370307-6-3.732504+1 7.630546-6-4.087742+1 8.009027-6-4.235328+1 8.794957-6-4.354182+1 8.934978-6-4.345928+1 9.069613-6-4.208042+1 9.251526-6-4.278411+1 9.418749-6-4.224186+1 9.621690-6-4.264145+1 9.970745-6-4.258584+1 1.862087-5-4.345459+1 2.548725-5-4.090897+1 2.885108-5-3.870928+1 3.370728-5-3.248055+1 3.554370-5-2.885776+1 3.652997-5-2.571824+1 3.724955-5-2.201440+1 3.769063-5-1.837903+1 3.796648-5-1.497127+1 3.813441-5-1.209087+1 3.823398-5-9.864360+0 3.835112-5-6.542589+0 3.842174-5-4.224333+0 3.844528-5-3.326444+0 3.849237-5-1.365971+0 3.851591-5-2.775344-1 3.853945-5 9.503291-1 3.856241-5 2.304777+0 3.857389-5 3.067259+0 3.857963-5 3.495675+0 3.859140-5 4.564650+0 3.860195-5 5.328550+0 3.863361-5 7.294215+0 3.866904-5 9.231694+0 3.876203-5 1.404560+1 3.878719-5 1.576733+1 3.887029-5 2.033833+1 3.890294-5 2.208411+1 3.897713-5 2.506967+1 3.906024-5 2.608973+1 3.910202-5 2.559728+1 3.916498-5 2.294973+1 3.920891-5 1.994256+1 3.925739-5 1.538585+1 3.928392-5 1.217602+1 3.931896-5 6.960998+0 3.933206-5 4.856662+0 3.933861-5 3.718862+0 3.935109-5 1.241743+0 3.940674-5-8.674787+0 3.943074-5-1.345168+1 3.945550-5-1.929446+1 3.952231-5-3.309718+1 3.954472-5-2.746724+1 3.963007-5-9.841377+0 3.963879-5-7.843855+0 3.964957-5-5.725581+0 3.965901-5-4.002641+0 3.967552-5-1.168509+0 3.971885-5 5.819184+0 3.973214-5 8.177653+0 3.974587-5 1.018177+1 3.977082-5 1.326617+1 3.981327-5 1.743934+1 3.984576-5 1.990781+1 3.989221-5 2.246478+1 3.992953-5 2.369615+1 3.998094-5 2.403469+1 4.005745-5 2.203237+1 4.009307-5 2.056798+1 4.011681-5 1.894421+1 4.018952-5 1.477399+1 4.021178-5 1.297724+1 4.028450-5 8.371162+0 4.030676-5 6.686471+0 4.032772-5 5.385585+0 4.035869-5 3.647327+0 4.038986-5 1.985776+0 4.043734-5-6.156021-1 4.046109-5-2.063621+0 4.047296-5-2.877522+0 4.047889-5-3.332557+0 4.049136-5-4.488666+0 4.050432-5-5.415070+0 4.054220-5-7.585793+0 4.059011-5-9.820638+0 4.067794-5-1.317306+1 4.082424-5-1.765212+1 4.123694-5-2.856929+1 4.134656-5-3.283803+1 4.152435-5-2.663644+1 4.166714-5-2.123070+1 4.175647-5-1.837645+1 4.185235-5-1.661571+1 4.191182-5-1.670927+1 4.197902-5-1.790046+1 4.204340-5-2.006964+1 4.210022-5-2.299075+1 4.214537-5-2.652767+1 4.221930-5-3.278925+1 4.233588-5-2.046858+1 4.236015-5-1.753393+1 4.243598-5-9.794410+0 4.244904-5-8.207546+0 4.248079-5-5.195319+0 4.254141-5-3.822990-2 4.254972-5 7.209411-1 4.256531-5 1.898981+0 4.257895-5 2.812059+0 4.260281-5 4.228495+0 4.262071-5 5.168662+0 4.264755-5 6.415527+0 4.269592-5 8.260432+0 4.274769-5 9.544005+0 4.279093-5 1.009457+1 4.283263-5 1.009910+1 4.292281-5 8.668837+0 4.303882-5 5.346751+0 4.304994-5 4.900724+0 4.315165-5 1.511105+0 4.316888-5 8.816869-1 4.319903-5-2.065394-2 4.328949-5-2.472053+0 4.332227-5-3.426584+0 4.334687-5-4.271308+0 4.336430-5-5.062603+0 4.339200-5-5.967059+0 4.345607-5-7.547232+0 4.354673-5-9.248123+0 4.369954-5-1.140124+1 4.394195-5-1.383391+1 4.434724-5-1.656503+1 4.501712-5-1.948303+1 4.640524-5-2.395347+1 4.720274-5-2.492282+1 4.836996-5-2.412239+1 4.992176-5-2.427898+1 5.358490-5-2.391399+1 7.598730-5-2.784369+1 1.153301-4-3.055570+1 2.073600-4-3.378223+1 2.454709-4-3.689326+1 2.612811-4-3.996812+1 2.735152-4-4.256796+1 2.870999-4-4.695949+1 2.980000-4-4.659036+1 3.430000-4-3.575736+1 3.767206-4-3.076717+1 4.085555-4-2.789399+1 4.208776-4-2.804145+1 4.269174-4-2.792708+1 4.389346-4-2.603188+1 4.498813-4-2.491956+1 4.696628-4-2.232429+1 5.028259-4-1.948632+1 5.285392-4-1.835288+1 5.376350-4-1.784883+1 5.553090-4-1.629619+1 5.986591-4-1.394778+1 6.550131-4-1.181754+1 7.189378-4-1.013526+1 8.082490-4-8.555067+0 8.963962-4-7.577227+0 1.000000-3-6.850652+0 1.156445-3-6.304932+0 1.333521-3-6.114300+0 1.557758-3-6.250054+0 1.795196-3-6.693990+0 2.058167-3-7.540448+0 2.263183-3-8.605631+0 2.409323-3-9.813203+0 2.511758-3-1.118241+1 2.579992-3-1.271885+1 2.620150-3-1.436742+1 2.653100-3-1.695804+1 2.671890-3-1.819147+1 2.689641-3-1.802661+1 2.732726-3-1.534740+1 2.759350-3-1.489893+1 2.792087-3-1.497995+1 2.813102-3-1.426851+1 2.853644-3-1.206410+1 2.885469-3-1.096633+1 2.938276-3-9.911472+0 2.983906-3-9.599314+0 3.017354-3-9.517071+0 3.047615-3-8.841146+0 3.088477-3-7.676835+0 3.145728-3-6.622874+0 3.241510-3-5.403688+0 3.349654-3-4.405217+0 3.479091-3-3.522719+0 3.601966-3-2.871372+0 3.730882-3-2.331235+0 3.877395-3-1.848551+0 4.045140-3-1.419485+0 4.212915-3-1.082394+0 4.348523-3-8.596857-1 4.461193-3-7.051528-1 4.630417-3-5.172967-1 4.804848-3-3.563299-1 4.915200-3-2.740018-1 5.038964-3-1.956618-1 5.195413-3-1.153182-1 5.268885-3-8.406699-2 5.337383-3-5.650790-2 5.375357-3-4.219194-2 5.424690-3-2.471816-2 5.491456-3-3.423102-3 5.560858-3 1.620103-2 5.603721-3 2.779417-2 5.633538-3 3.515409-2 5.688529-3 4.741076-2 5.751165-3 6.027549-2 5.857336-3 7.672670-2 5.998162-3 9.418199-2 6.144000-3 1.068302-1 6.387975-3 1.161439-1 6.543649-3 1.183448-1 6.690657-3 1.169433-1 7.006844-3 1.028290-1 7.178787-3 9.196300-2 7.377184-3 7.542261-2 7.669302-3 4.625521-2 7.909454-3 1.897787-2 8.035261-3 3.611208-3 8.271802-3-2.488154-2 8.778848-3-9.121514-2 9.660509-3-2.139508-1 1.483958-2-9.498877-1 1.653297-2-1.235813+0 1.789350-2-1.537946+0 1.884588-2-1.838236+0 1.947317-2-2.124736+0 1.993646-2-2.435236+0 2.028684-2-2.795490+0 2.051124-2-3.170862+0 2.067333-2-3.625275+0 2.092282-2-4.528709+0 2.101640-2-4.620770+0 2.112537-2-4.409915+0 2.142529-2-3.223535+0 2.160772-2-2.754901+0 2.186213-2-2.343827+0 2.217874-2-1.992528+0 2.265773-2-1.615514+0 2.319209-2-1.313405+0 2.358181-2-1.140393+0 2.425094-2-9.089182-1 2.498202-2-7.157196-1 2.561793-2-5.796033-1 2.639878-2-4.430501-1 2.730415-2-3.147439-1 2.788370-2-2.487388-1 2.864552-2-1.746312-1 2.946966-2-1.082830-1 3.015131-2-6.279244-2 3.089964-2-1.974722-2 3.137125-2 3.365958-3 3.159206-2 1.424336-2 3.230000-2 4.465321-2 3.320992-2 7.820387-2 3.401591-2 1.017845-1 3.475894-2 1.195673-1 3.569260-2 1.387670-1 3.738995-2 1.639464-1 4.034002-2 1.893994-1 4.242073-2 1.976042-1 4.584921-2 1.974531-1 5.173897-2 1.818467-1 7.275646-2 8.566164-2 8.016315-2 5.546664-2 8.704840-2 3.053828-2 9.226786-2 1.345474-2 9.432243-2 7.189223-3 9.681143-2-8.872128-6 9.688657-2-2.247257-4 9.818924-2-3.812282-3 1.031106-1-1.697321-2 1.084508-1-2.988075-2 1.161513-1-4.669219-2 1.266088-1-6.612024-2 1.400387-1-8.667014-2 1.584448-1-1.087214-1 1.863925-1-1.330452-1 2.286106-1-1.568943-1 2.895185-1-1.769232-1 3.949685-1-1.941503-1 6.116812-1-2.072808-1 1.228714+0-2.147806-1 3.710658+0-2.170098-1 1.000000+1-2.171718-1 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.806292-3 1.092877-6 1.307640-2 1.127029-6 1.501754-2 1.162249-6 1.728263-2 1.233966-6 2.284978-2 1.301476-6 2.949609-2 1.364832-6 3.726218-2 1.395034-6 4.157851-2 1.480977-6 5.656885-2 1.583942-6 8.037182-2 1.630650-6 9.380667-2 1.674439-6 1.083823-1 1.715491-6 1.240625-1 1.753977-6 1.407979-1 1.790057-6 1.585288-1 1.823883-6 1.771865-1 1.885324-6 2.169807-1 1.913196-6 2.381501-1 1.965455-6 2.835048-1 2.011182-6 3.302928-1 2.051193-6 3.779077-1 2.086202-6 4.255534-1 2.116835-6 4.726114-1 2.143640-6 5.188606-1 2.190547-6 6.115610-1 2.225727-6 6.925705-1 2.252113-6 7.617910-1 2.291691-6 8.806273-1 2.342745-6 1.063195+0 2.382912-6 1.238697+0 2.423079-6 1.450550+0 2.446031-6 1.591847+0 2.477503-6 1.812891+0 2.505041-6 2.036304+0 2.529137-6 2.259980+0 2.550221-6 2.481337+0 2.568669-6 2.698154+0 2.584811-6 2.908075+0 2.613060-6 3.326407+0 2.634247-6 3.690685+0 2.650137-6 3.998594+0 2.673972-6 4.525156+0 2.704447-6 5.334262+0 2.724368-6 5.968749+0 2.744289-6 6.709029+0 2.764210-6 7.578096+0 2.784131-6 8.606177+0 2.804052-6 9.834068+0 2.823973-6 1.131664+1 2.830613-6 1.187946+1 2.843503-6 1.308820+1 2.855587-6 1.438253+1 2.866916-6 1.576461+1 2.880000-6 1.760599+1 2.887494-6 1.880175+1 2.896829-6 2.046199+1 2.905581-6 2.221999+1 2.913785-6 2.407785+1 2.921477-6 2.603730+1 2.928688-6 2.809981+1 2.935448-6 3.026674+1 2.941786-6 3.253965+1 2.947727-6 3.492060+1 2.958868-6 4.020231+1 2.968616-6 4.599089+1 2.977145-6 5.231758+1 2.984609-6 5.919015+1 2.991139-6 6.657195+1 2.996853-6 7.437477+1 3.001853-6 8.246737+1 3.006228-6 9.069404+1 3.010056-6 9.889521+1 3.016336-6 1.146583+2 3.025312-6 1.428887+2 3.037786-6 1.945227+2 3.044327-6 2.272134+2 3.049933-6 2.577369+2 3.051801-6 2.683019+2 3.059276-6 3.116092+2 3.060211-6 3.170573+2 3.066751-6 3.545582+2 3.069321-6 3.686905+2 3.074226-6 3.940761+2 3.076795-6 4.063024+2 3.079248-6 4.171487+2 3.081701-6 4.271025+2 3.084971-6 4.388637+2 3.089176-6 4.512782+2 3.092913-6 4.596854+2 3.097585-6 4.668296+2 3.102490-6 4.707868+2 3.105468-6 4.717967+2 3.118518-6 4.727301+2 3.123118-6 4.760743+2 3.126899-6 4.819688+2 3.130444-6 4.909653+2 3.133550-6 5.021742+2 3.136854-6 5.180001+2 3.137738-6 5.229639+2 3.141580-6 5.483743+2 3.145153-6 5.777802+2 3.147001-6 5.952222+2 3.151581-6 6.449180+2 3.156449-6 7.072402+2 3.165376-6 8.418632+2 3.170762-6 9.306804+2 3.174456-6 9.922326+2 3.178343-6 1.055693+3 3.182107-6 1.114193+3 3.183849-6 1.139835+3 3.188653-6 1.204279+3 3.192502-6 1.247803+3 3.196436-6 1.283356+3 3.199576-6 1.304543+3 3.207145-6 1.327076+3 3.209247-6 1.325948+3 3.215071-6 1.306245+3 3.218730-6 1.281963+3 3.222276-6 1.250383+3 3.226179-6 1.207411+3 3.229961-6 1.158646+3 3.233324-6 1.110408+3 3.236566-6 1.060399+3 3.241489-6 9.797277+2 3.245332-6 9.143564+2 3.249655-6 8.399563+2 3.253017-6 7.824332+2 3.260702-6 6.556711+2 3.263344-6 6.144436+2 3.268388-6 5.400606+2 3.274152-6 4.628819+2 3.281916-6 3.731181+2 3.296774-6 2.454821+2 3.303294-6 2.054280+2 3.306535-6 1.885306+2 3.309764-6 1.734614+2 3.316195-6 1.480353+2 3.322577-6 1.278677+2 3.328908-6 1.118098+2 3.335191-6 9.892443+1 3.341424-6 8.847145+1 3.347608-6 7.988098+1 3.353744-6 7.272241+1 3.359832-6 6.667427+1 3.365873-6 6.149779+1 3.371866-6 5.701543+1 3.377813-6 5.309424+1 3.389613-6 4.653286+1 3.401228-6 4.128323+1 3.412663-6 3.699065+1 3.423918-6 3.342069+1 3.434998-6 3.041094+1 3.445905-6 2.784458+1 3.456641-6 2.563500+1 3.467209-6 2.371633+1 3.477613-6 2.203744+1 3.487853-6 2.055798+1 3.508015-6 1.805716+1 3.527546-6 1.604906+1 3.546467-6 1.440690+1 3.564797-6 1.304410+1 3.582554-6 1.189876+1 3.600000-6 1.091240+1 3.616421-6 1.008998+1 3.632564-6 9.366927+0 3.648204-6 8.735999+0 3.678505-6 7.674233+0 3.706912-6 6.834159+0 3.733544-6 6.156561+0 3.758511-6 5.601603+0 3.803862-6 4.753985+0 3.845007-6 4.122321+0 3.912510-6 3.290116+0 4.024488-6 2.295960+0 4.078755-6 1.928325+0 4.143194-6 1.556735+0 4.183885-6 1.353213+0 4.224577-6 1.170530+0 4.255096-6 1.045137+0 4.285615-6 9.287774-1 4.316133-6 8.213337-1 4.336479-6 7.545713-1 4.453156-6 4.177748-1 4.496909-6 3.109943-1 4.535194-6 2.287519-1 4.568693-6 1.649931-1 4.598005-6 1.160317-1 4.623652-6 7.934721-2 4.646094-6 5.298024-2 4.665730-6 3.530702-2 4.682912-6 2.485650-2 4.697946-6 2.014819-2 4.711101-6 1.966047-2 4.722612-6 2.196018-2 4.727648-6 2.371133-2 4.732369-6 2.573463-2 4.736795-6 2.795015-2 4.744834-6 3.273465-2 4.755106-6 4.035033-2 4.760928-6 4.559535-2 4.766045-6 5.096579-2 4.770543-6 5.646469-2 4.776289-6 6.491475-2 4.781023-6 7.347330-2 4.786066-6 8.468925-2 4.788594-6 9.131896-2 4.793467-6 1.064184-1 4.797605-6 1.221046-1 4.801093-6 1.377670-1 4.805587-6 1.618122-1 4.812106-6 2.059477-1 4.826325-6 3.520429-1 4.832110-6 4.361355-1 4.837943-6 5.381960-1 4.841276-6 6.049605-1 4.847639-6 7.506223-1 4.849323-6 7.933062-1 4.855216-6 9.567504-1 4.860372-6 1.117854+0 4.861853-6 1.167223+0 4.873015-6 1.581966+0 4.877989-6 1.788892+0 4.885943-6 2.142341+0 4.889970-6 2.329277+0 4.894452-6 2.541121+0 4.897332-6 2.678380+0 4.900213-6 2.815671+0 4.905181-6 3.050395+0 4.908985-6 3.226331+0 4.913256-6 3.417573+0 4.917970-6 3.617957+0 4.921410-6 3.755251+0 4.927321-6 3.969628+0 4.932297-6 4.125338+0 4.935807-6 4.219757+0 4.939853-6 4.311451+0 4.945027-6 4.400197+0 4.957426-6 4.474630+0 4.962631-6 4.446830+0 4.967941-6 4.383617+0 4.973060-6 4.291142+0 4.977414-6 4.189884+0 4.983012-6 4.032149+0 4.987263-6 3.894084+0 4.991811-6 3.731419+0 4.995525-6 3.588902+0 5.000400-6 3.391261+0 5.005101-6 3.192130+0 5.011329-6 2.920387+0 5.015989-6 2.714562+0 5.021901-6 2.454717+0 5.026334-6 2.263212+0 5.029298-6 2.137719+0 5.037103-6 1.820591+0 5.039705-6 1.719984+0 5.048994-6 1.385367+0 5.053099-6 1.250781+0 5.055704-6 1.169853+0 5.059611-6 1.055052+0 5.063518-6 9.482077-1 5.069471-6 8.006142-1 5.075424-6 6.709762-1 5.081666-6 5.534811-1 5.088344-6 4.472841-1 5.097019-6 3.366201-1 5.105425-6 2.550301-1 5.109529-6 2.231215-1 5.113570-6 1.961775-1 5.117547-6 1.735539-1 5.125378-6 1.387594-1 5.132963-6 1.151162-1 5.140312-6 9.939461-2 5.147431-6 8.911530-2 5.161009-6 7.802934-2 5.170616-6 7.382315-2 5.182960-6 7.026326-2 5.194532-6 6.816341-2 5.205382-6 6.803973-2 5.215553-6 7.105409-2 5.225088-6 7.836994-2 5.234028-6 9.087711-2 5.242409-6 1.091270-1 5.250266-6 1.333669-1 5.257632-6 1.636084-1 5.264537-6 1.996961-1 5.283150-6 3.438111-1 5.293771-6 4.653058-1 5.303065-6 6.022833-1 5.311197-6 7.512060-1 5.324538-6 1.071318+0 5.358927-6 2.635869+0 5.374727-6 4.003134+0 5.407759-6 9.639514+0 5.420972-6 1.359542+1 5.430554-6 1.732976+1 5.438591-6 2.112190+1 5.446676-6 2.561480+1 5.454465-6 3.064083+1 5.480473-6 5.273182+1 5.494792-6 6.821815+1 5.496473-6 7.016323+1 5.509119-6 8.541981+1 5.513675-6 9.109317+1 5.522373-6 1.019677+2 5.526094-6 1.065724+2 5.532424-6 1.142338+2 5.537270-6 1.198781+2 5.541228-6 1.242950+2 5.547129-6 1.304777+2 5.553102-6 1.361419+2 5.560051-6 1.418326+2 5.564945-6 1.451796+2 5.571743-6 1.488226+2 5.577985-6 1.510609+2 5.585902-6 1.522925+2 5.590247-6 1.521875+2 5.603249-6 1.486009+2 5.607972-6 1.461355+2 5.610400-6 1.446418+2 5.618285-6 1.388104+2 5.623888-6 1.338409+2 5.627776-6 1.300397+2 5.631303-6 1.263709+2 5.637091-6 1.199627+2 5.643590-6 1.123085+2 5.649018-6 1.056513+2 5.654252-6 9.909254+1 5.655997-6 9.688940+1 5.662678-6 8.844044+1 5.667689-6 8.215403+1 5.670982-6 7.807657+1 5.676663-6 7.119295+1 5.682344-6 6.455640+1 5.695247-6 5.069437+1 5.700071-6 4.602382+1 5.711083-6 3.654716+1 5.725154-6 2.699886+1 5.735541-6 2.185241+1 5.740355-6 2.001383+1 5.743172-6 1.909673+1 5.745636-6 1.838948+1 5.747793-6 1.784294+1 5.751567-6 1.704716+1 5.757228-6 1.623069+1 5.760058-6 1.598886+1 5.763109-6 1.584984+1 5.765913-6 1.583143+1 5.768513-6 1.590618+1 5.773129-6 1.625147+1 5.776234-6 1.663242+1 5.779369-6 1.713453+1 5.782685-6 1.779008+1 5.784794-6 1.827134+1 5.789538-6 1.952980+1 5.794883-6 2.122275+1 5.803536-6 2.451938+1 5.815065-6 2.979249+1 5.822415-6 3.354329+1 5.827541-6 3.627837+1 5.833286-6 3.941210+1 5.838965-6 4.253517+1 5.845370-6 4.602723+1 5.855329-6 5.124104+1 5.861756-6 5.436918+1 5.867052-6 5.675731+1 5.873567-6 5.941443+1 5.878791-6 6.129250+1 5.883264-6 6.270556+1 5.889667-6 6.439618+1 5.895028-6 6.549767+1 5.898150-6 6.600437+1 5.908818-6 6.698402+1 5.913709-6 6.705032+1 5.918147-6 6.690986+1 5.925427-6 6.628638+1 5.931373-6 6.543976+1 5.939177-6 6.391565+1 5.946702-6 6.205985+1 5.955672-6 5.944228+1 5.962134-6 5.734157+1 5.971495-6 5.406940+1 5.974616-6 5.293575+1 5.988731-6 4.767636+1 6.008801-6 4.026968+1 6.023182-6 3.532024+1 6.035058-6 3.157068+1 6.063709-6 2.396751+1 6.085442-6 1.953702+1 6.106749-6 1.616319+1 6.113298-6 1.529155+1 6.127281-6 1.365340+1 6.138152-6 1.256477+1 6.150138-6 1.152428+1 6.162755-6 1.058304+1 6.183803-6 9.295529+0 6.201377-6 8.430141+0 6.225453-6 7.469180+0 6.246289-6 6.790514+0 6.265232-6 6.264025+0 6.290003-6 5.674058+0 6.319755-6 5.077667+0 6.348703-6 4.587239+0 6.389107-6 4.014994+0 6.433436-6 3.498722+0 6.507484-6 2.811200+0 6.623400-6 2.011722+0 6.702955-6 1.583790+0 6.782510-6 1.217780+0 6.871195-6 8.614884-1 6.914894-6 7.006862-1 6.952052-6 5.706299-1 6.982147-6 4.698816-1 6.998960-6 4.156959-1 7.015773-6 3.634946-1 7.032586-6 3.140561-1 7.066213-6 2.297970-1 7.083026-6 2.007804-1 7.099839-6 1.869855-1 7.108246-6 1.880318-1 7.116653-6 1.958618-1 7.125059-6 2.117804-1 7.133466-6 2.372364-1 7.136855-6 2.505519-1 7.142878-6 2.790047-1 7.147396-6 3.046856-1 7.154172-6 3.508288-1 7.160948-6 4.069324-1 7.179694-6 6.214165-1 7.196113-6 8.909356-1 7.204429-6 1.059307+0 7.207633-6 1.130042+0 7.216773-6 1.349835+0 7.223072-6 1.516534+0 7.228549-6 1.671234+0 7.238035-6 1.959213+0 7.242973-6 2.118331+0 7.246251-6 2.227047+0 7.251209-6 2.395728+0 7.257638-6 2.620952+0 7.262346-6 2.789576+0 7.269438-6 3.047495+0 7.275241-6 3.260206+0 7.282765-6 3.535146+0 7.287154-6 3.693644+0 7.294508-6 3.953359+0 7.302048-6 4.208371+0 7.309783-6 4.453729+0 7.312183-6 4.525808+0 7.321135-6 4.774779+0 7.328828-6 4.960183+0 7.333693-6 5.062115+0 7.340673-6 5.185804+0 7.348751-6 5.293626+0 7.354412-6 5.345505+0 7.363868-6 5.387273+0 7.371978-6 5.377965+0 7.384306-6 5.285608+0 7.392142-6 5.180288+0 7.395882-6 5.118085+0 7.401492-6 5.011240+0 7.407102-6 4.889243+0 7.413635-6 4.729895+0 7.422209-6 4.496248+0 7.430477-6 4.249430+0 7.433233-6 4.163377+0 7.442055-6 3.878359+0 7.448672-6 3.657943+0 7.450877-6 3.583731+0 7.464110-6 3.137353+0 7.468522-6 2.990318+0 7.486166-6 2.428646+0 7.492103-6 2.253613+0 7.521455-6 1.540066+0 7.526147-6 1.453505+0 7.530625-6 1.378655+0 7.535103-6 1.311547+0 7.546882-6 1.172669+0 7.551504-6 1.133192+0 7.565367-6 1.065001+0 7.567678-6 1.060817+0 7.583852-6 1.085855+0 7.586162-6 1.096794+0 7.590206-6 1.120056+0 7.602337-6 1.218919+0 7.610212-6 1.303663+0 7.620383-6 1.432425+0 7.636698-6 1.670354+0 7.647409-6 1.836568+0 7.655844-6 1.966988+0 7.667033-6 2.132396+0 7.675120-6 2.242286+0 7.681763-6 2.324187+0 7.688261-6 2.395548+0 7.695915-6 2.466931+0 7.713245-6 2.570910+0 7.719599-6 2.587477+0 7.731729-6 2.586267+0 7.737040-6 2.572467+0 7.743102-6 2.547309+0 7.747648-6 2.522186+0 7.754467-6 2.475159+0 7.761286-6 2.417973+0 7.765450-6 2.378621+0 7.774820-6 2.279802+0 7.784802-6 2.162677+0 7.791660-6 2.077747+0 7.805668-6 1.900903+0 7.824153-6 1.680038+0 7.833332-6 1.583194+0 7.842638-6 1.497237+0 7.852068-6 1.424545+0 7.856829-6 1.393741+0 7.871113-6 1.325736+0 7.879607-6 1.302302+0 7.885807-6 1.292687+0 7.889346-6 1.289839+0 7.895537-6 1.289100+0 7.900181-6 1.291775+0 7.910630-6 1.306255+0 7.924716-6 1.338772+0 7.947296-6 1.399301+0 7.966341-6 1.434088+0 7.968722-6 1.436346+0 7.985387-6 1.435210+0 7.990148-6 1.428938+0 7.997290-6 1.414291+0 8.004432-6 1.393340+0 8.009858-6 1.373291+0 8.014605-6 1.352926+0 8.022913-6 1.311336+0 8.029144-6 1.275611+0 8.039032-6 1.212153+0 8.047837-6 1.150149+0 8.053666-6 1.107105+0 8.059495-6 1.063073+0 8.073844-6 9.538556-1 8.097758-6 7.870258-1 8.115842-6 6.904632-1 8.124290-6 6.576761-1 8.128370-6 6.450088-1 8.136020-6 6.271193-1 8.155405-6 6.173763-1 8.157877-6 6.198387-1 8.162204-6 6.261328-1 8.168695-6 6.402174-1 8.175186-6 6.596784-1 8.178798-6 6.727345-1 8.185119-6 6.992048-1 8.189859-6 7.219040-1 8.196970-6 7.601293-1 8.208493-6 8.312397-1 8.226346-6 9.575459-1 8.239373-6 1.056040+0 8.249464-6 1.132512+0 8.259554-6 1.206741+0 8.271713-6 1.290306+0 8.280832-6 1.346937+0 8.283872-6 1.364423+0 8.313655-6 1.490709+0 8.316654-6 1.498391+0 8.337648-6 1.524640+0 8.341880-6 1.524146+0 8.349286-6 1.518790+0 8.360877-6 1.499531+0 8.371505-6 1.471285+0 8.378420-6 1.448131+0 8.390521-6 1.400041+0 8.399596-6 1.358943+0 8.413210-6 1.291921+0 8.426823-6 1.221888+0 8.452335-6 1.095217+0 8.477058-6 9.939080-1 8.503642-6 9.216955-1 8.511374-6 9.085715-1 8.534839-6 8.892716-1 8.542213-6 8.888913-1 8.555416-6 8.936951-1 8.564938-6 9.006775-1 8.590607-6 9.281526-1 8.619150-6 9.608366-1 8.632719-6 9.732342-1 8.641347-6 9.794485-1 8.656022-6 9.866976-1 8.675226-6 9.899245-1 8.690219-6 9.881826-1 8.719233-6 9.781177-1 8.761466-6 9.619656-1 8.790232-6 9.583190-1 8.817751-6 9.626758-1 8.851181-6 9.767002-1 8.949148-6 1.035487+0 9.015107-6 1.068062+0 9.191744-6 1.148711+0 9.407989-6 1.260323+0 9.630216-6 1.394014+0 9.848740-6 1.542918+0 1.008872-5 1.729326+0 1.024636-5 1.865964+0 1.042081-5 2.032094+0 1.073166-5 2.378833+0 1.113831-5 2.887703+0 1.141321-5 3.268967+0 1.181124-5 3.870433+0 1.217415-5 4.477671+0 1.292490-5 5.869464+0 1.333521-5 6.722604+0 1.385000-5 7.973630+0 1.435083-5 9.311577+0 1.520882-5 1.195018+1 1.604792-5 1.496559+1 1.757924-5 2.166365+1 1.865174-5 2.734043+1 1.975000-5 3.409973+1 2.162719-5 4.775191+1 2.300000-5 5.941398+1 2.426610-5 7.115810+1 2.540973-5 8.236650+1 2.643008-5 9.257859+1 2.729651-5 1.012222+2 2.790640-5 1.071566+2 2.862500-5 1.139044+2 2.989063-5 1.253923+2 3.273407-5 1.544707+2 3.403924-5 1.697514+2 3.467599-5 1.784150+2 3.549131-5 1.908443+2 3.599067-5 1.999358+2 3.657974-5 2.124368+2 3.698359-5 2.225778+2 3.731004-5 2.321885+2 3.769790-5 2.458048+2 3.803879-5 2.603985+2 3.833841-5 2.759693+2 3.863461-5 2.948135+2 3.883318-5 3.100538+2 3.903660-5 3.285984+2 3.921539-5 3.481152+2 3.937252-5 3.685426+2 3.957746-5 4.015354+2 3.971406-5 4.291823+2 3.979673-5 4.489844+2 3.988627-5 4.738830+2 3.997735-5 5.039838+2 4.003316-5 5.254521+2 4.014563-5 5.778973+2 4.019155-5 6.037309+2 4.027192-5 6.568097+2 4.033220-5 7.045299+2 4.037740-5 7.456150+2 4.042493-5 7.944124+2 4.048759-5 8.687290+2 4.051302-5 9.024757+2 4.061274-5 1.057532+3 4.068753-5 1.200454+3 4.081218-5 1.495991+3 4.093682-5 1.867055+3 4.101247-5 2.127390+3 4.108074-5 2.381899+3 4.119394-5 2.832894+3 4.121595-5 2.923013+3 4.129456-5 3.245255+3 4.134959-5 3.466537+3 4.139681-5 3.649872+3 4.144676-5 3.833912+3 4.148500-5 3.965948+3 4.153965-5 4.138206+3 4.159015-5 4.277153+3 4.160992-5 4.325594+3 4.167224-5 4.454327+3 4.171435-5 4.519163+3 4.176519-5 4.572064+3 4.181191-5 4.595284+3 4.186678-5 4.590874+3 4.189388-5 4.576055+3 4.199199-5 4.454330+3 4.203010-5 4.379628+3 4.204970-5 4.335626+3 4.211727-5 4.157053+3 4.216506-5 4.008042+3 4.220526-5 3.870215+3 4.224828-5 3.712019+3 4.229658-5 3.523645+3 4.233693-5 3.359666+3 4.238880-5 3.142883+3 4.243911-5 2.929343+3 4.250200-5 2.662593+3 4.256803-5 2.388251+3 4.259004-5 2.299052+3 4.269066-5 1.911692+3 4.275826-5 1.674511+3 4.284159-5 1.411772+3 4.294352-5 1.137176+3 4.311639-5 7.853683+2 4.321082-5 6.471698+2 4.323741-5 6.142984+2 4.327729-5 5.695848+2 4.337397-5 4.822892+2 4.342354-5 4.480968+2 4.352989-5 3.963591+2 4.363625-5 3.714969+2 4.367718-5 3.686069+2 4.374754-5 3.719567+2 4.377297-5 3.757052+2 4.388743-5 4.089024+2 4.395414-5 4.403706+2 4.400823-5 4.723261+2 4.406168-5 5.095061+2 4.411486-5 5.519366+2 4.422631-5 6.579969+2 4.434721-5 7.978212+2 4.445552-5 9.424088+2 4.455944-5 1.094626+3 4.463741-5 1.214473+3 4.471256-5 1.331620+3 4.477742-5 1.431665+3 4.484278-5 1.529127+3 4.488452-5 1.588482+3 4.494862-5 1.673501+3 4.500184-5 1.736975+3 4.505438-5 1.791980+3 4.510814-5 1.839216+3 4.516193-5 1.876308+3 4.521367-5 1.901638+3 4.523588-5 1.909270+3 4.531267-5 1.920271+3 4.536808-5 1.913361+3 4.542886-5 1.891874+3 4.547540-5 1.866112+3 4.551341-5 1.839506+3 4.556330-5 1.797648+3 4.562744-5 1.733695+3 4.568159-5 1.672351+3 4.573574-5 1.605797+3 4.580344-5 1.517474+3 4.584405-5 1.462795+3 4.597291-5 1.287888+3 4.611676-5 1.103309+3 4.629042-5 9.124963+2 4.640425-5 8.102646+2 4.647534-5 7.555039+2 4.656125-5 6.979548+2 4.670072-5 6.222603+2 4.675878-5 5.963239+2 4.693067-5 5.350607+2 4.704556-5 5.047422+2 4.716051-5 4.813066+2 4.727546-5 4.637768+2 4.735956-5 4.542304+2 4.744919-5 4.467407+2 4.755614-5 4.409352+2 4.762030-5 4.388301+2 4.773525-5 4.370730+2 4.785020-5 4.371152+2 4.817839-5 4.394900+2 4.830999-5 4.388904+2 4.846804-5 4.359424+2 4.868829-5 4.278198+2 4.879876-5 4.223554+2 4.915200-5 4.022089+2 4.957305-5 3.801727+2 4.994538-5 3.652667+2 5.038167-5 3.511694+2 5.083338-5 3.381439+2 5.111460-5 3.311366+2 5.137176-5 3.262955+2 5.150680-5 3.245620+2 5.171962-5 3.230223+2 5.195978-5 3.227299+2 5.259058-5 3.237549+2 5.293755-5 3.229560+2 5.443292-5 3.153216+2 5.537038-5 3.098499+2 5.753880-5 2.966147+2 6.055072-5 2.783674+2 6.334275-5 2.621762+2 6.746815-5 2.396937+2 7.236807-5 2.155679+2 7.500000-5 2.034936+2 7.617925-5 1.977750+2 7.759939-5 1.903795+2 7.797859-5 1.889994+2 7.854740-5 1.880871+2 7.932729-5 1.878969+2 8.003408-5 1.864966+2 8.152000-5 1.812597+2 8.972462-5 1.601405+2 9.527500-5 1.490852+2 9.680000-5 1.469347+2 9.875000-5 1.452865+2 1.071519-4 1.408263+2 1.433742-4 1.271058+2 1.513561-4 1.244270+2 1.597200-4 1.214055+2 1.705967-4 1.170711+2 1.760000-4 1.147010+2 1.862087-4 1.098156+2 1.960611-4 1.044777+2 2.030000-4 1.004305+2 2.124746-4 9.435535+1 2.213346-4 8.806969+1 2.304000-4 8.098846+1 2.385650-4 7.402686+1 2.467693-4 6.641745+1 2.517295-4 6.146713+1 2.592000-4 5.347303+1 2.646387-4 4.730298+1 2.691662-4 4.190552+1 2.729266-4 3.719228+1 2.744400-4 3.521292+1 2.778175-4 3.057551+1 2.793414-4 2.839570+1 2.802021-4 2.716012+1 2.834954-4 2.276222+1 2.843653-4 2.178300+1 2.857858-4 2.039830+1 2.871359-4 1.930535+1 2.900715-4 1.735465+1 2.913253-4 1.655725+1 2.925049-4 1.577791+1 2.933760-4 1.518234+1 2.962330-4 1.327382+1 2.970000-4 1.284555+1 2.978000-4 1.247724+1 2.983125-4 1.229431+1 2.990000-4 1.212683+1 2.998800-4 1.206494+1 3.007000-4 1.218701+1 3.013872-4 1.244208+1 3.020000-4 1.280044+1 3.026000-4 1.328219+1 3.032000-4 1.390438+1 3.037000-4 1.453814+1 3.042000-4 1.528359+1 3.047000-4 1.614717+1 3.053214-4 1.739456+1 3.058400-4 1.859132+1 3.065932-4 2.059521+1 3.073999-4 2.310861+1 3.091554-4 2.996467+1 3.106497-4 3.734763+1 3.117151-4 4.347515+1 3.131651-4 5.291514+1 3.142738-4 6.092937+1 3.149497-4 6.612367+1 3.159495-4 7.419590+1 3.170745-4 8.376763+1 3.176000-4 8.839263+1 3.182246-4 9.400122+1 3.193748-4 1.045946+2 3.206874-4 1.170085+2 3.220000-4 1.296490+2 3.232500-4 1.417978+2 3.240336-4 1.494324+2 3.257554-4 1.661663+2 3.273407-4 1.814241+2 3.295000-4 2.018230+2 3.311312-4 2.168631+2 3.329531-4 2.332395+2 3.350233-4 2.512684+2 3.370000-4 2.678537+2 3.388442-4 2.827033+2 3.410500-4 2.995898+2 3.420000-4 3.065578+2 3.450000-4 3.273578+2 3.470000-4 3.402058+2 3.507519-4 3.620868+2 3.545581-4 3.814406+2 3.575000-4 3.946878+2 3.605391-4 4.070667+2 3.632082-4 4.169605+2 3.680000-4 4.326678+2 3.758374-4 4.547498+2 3.858626-4 4.792675+2 3.919590-4 4.929997+2 3.994016-4 5.083224+2 4.087043-4 5.258099+2 4.154137-4 5.365524+2 4.232139-4 5.464821+2 4.309557-4 5.536505+2 4.379155-4 5.633855+2 4.397083-4 5.709149+2 4.420658-4 5.878004+2 4.431735-4 5.986735+2 4.453170-4 6.233225+2 4.485599-4 6.568700+2 4.497112-4 6.633595+2 4.507059-4 6.656527+2 4.517183-4 6.647781+2 4.530664-4 6.591956+2 4.573426-4 6.283645+2 4.584263-4 6.226831+2 4.597365-4 6.188717+2 4.613901-4 6.192693+2 4.639995-4 6.304569+2 4.663710-4 6.480680+2 4.686162-4 6.667024+2 4.713390-4 6.856501+2 4.724582-4 6.909802+2 4.734559-4 6.942734+2 4.746471-4 6.964475+2 4.761570-4 6.968771+2 4.813932-4 6.920613+2 4.844544-4 6.945397+2 4.901978-4 7.112572+2 4.974111-4 7.347068+2 5.053750-4 7.548566+2 5.160577-4 7.755151+2 5.281480-4 7.929229+2 5.396995-4 8.053436+2 5.608664-4 8.211989+2 5.649217-4 8.259630+2 5.712581-4 8.371094+2 5.854319-4 8.682917+2 5.923323-4 8.803641+2 6.037140-4 8.949146+2 6.188301-4 9.095881+2 6.503169-4 9.335656+2 6.870791-4 9.539894+2 7.344889-4 9.714586+2 7.807214-4 9.812999+2 8.486917-4 9.880957+2 9.416739-4 9.884539+2 1.026433-3 9.837746+2 1.105987-3 9.759843+2 1.250518-3 9.509231+2 1.384363-3 9.263319+2 1.450000-3 9.130395+2 1.582096-3 8.830956+2 1.662692-3 8.648099+2 1.746078-3 8.451976+2 1.830691-3 8.238551+2 1.923708-3 8.001795+2 2.014144-3 7.760330+2 2.111591-3 7.486973+2 2.199164-3 7.230635+2 2.279752-3 6.981578+2 2.353475-3 6.732586+2 2.414610-3 6.506431+2 2.472500-3 6.274832+2 2.519920-3 6.068951+2 2.563931-3 5.859661+2 2.604040-3 5.648278+2 2.641302-3 5.427417+2 2.669280-3 5.237549+2 2.694442-3 5.041896+2 2.716830-3 4.842903+2 2.735623-3 4.649655+2 2.751915-3 4.454433+2 2.761972-3 4.318842+2 2.775610-3 4.119011+2 2.796927-3 3.805201+2 2.806953-3 3.684709+2 2.814324-3 3.619228+2 2.821192-3 3.580841+2 2.827067-3 3.567472+2 2.830743-3 3.568631+2 2.837830-3 3.591373+2 2.845712-3 3.646207+2 2.851117-3 3.699267+2 2.860025-3 3.807353+2 2.880411-3 4.095031+2 2.888597-3 4.205173+2 2.897095-3 4.307886+2 2.904772-3 4.388797+2 2.913325-3 4.466167+2 2.929321-3 4.585369+2 2.946281-3 4.704712+2 2.963873-3 4.857200+2 2.977031-3 5.001365+2 3.018932-3 5.551464+2 3.036964-3 5.762656+2 3.047636-3 5.868650+2 3.058863-3 5.964460+2 3.076990-3 6.088272+2 3.095892-3 6.182840+2 3.115290-3 6.249407+2 3.148046-3 6.312931+2 3.174585-3 6.366300+2 3.188429-3 6.416994+2 3.208954-3 6.534643+2 3.259525-3 6.938103+2 3.273813-3 7.040073+2 3.290698-3 7.142916+2 3.309544-3 7.237273+2 3.333474-3 7.333908+2 3.360258-3 7.421695+2 3.423364-3 7.578947+2 3.500742-3 7.712897+2 3.589219-3 7.813742+2 3.686847-3 7.878270+2 3.787066-3 7.904361+2 3.909425-3 7.902509+2 4.077469-3 7.853895+2 4.292991-3 7.742248+2 4.572265-3 7.552458+2 4.903684-3 7.289716+2 5.307412-3 6.950360+2 5.816860-3 6.521685+2 6.427147-3 6.036767+2 7.174969-3 5.499938+2 8.018227-3 4.971078+2 9.143607-3 4.376879+2 1.006410-2 3.963229+2 1.084332-2 3.652607+2 1.174369-2 3.332518+2 1.271596-2 3.025421+2 1.376417-2 2.731803+2 1.478526-2 2.477462+2 1.594330-2 2.221215+2 1.712971-2 1.987829+2 1.818678-2 1.799601+2 1.901885-2 1.660781+2 1.967738-2 1.553929+2 2.020680-2 1.467259+2 2.062410-2 1.395745+2 2.092708-2 1.339643+2 2.116156-2 1.291126+2 2.126916-2 1.266186+2 2.137097-2 1.240127+2 2.145765-2 1.215431+2 2.157251-2 1.178489+2 2.176973-2 1.107358+2 2.188491-2 1.070137+2 2.196565-2 1.051666+2 2.201523-2 1.044805+2 2.207566-2 1.041679+2 2.212348-2 1.043348+2 2.218465-2 1.050453+2 2.226536-2 1.066813+2 2.251187-2 1.135499+2 2.262919-2 1.163486+2 2.273495-2 1.182808+2 2.281026-2 1.193429+2 2.290648-2 1.203938+2 2.301204-2 1.212456+2 2.324317-2 1.223883+2 2.351654-2 1.229680+2 2.382811-2 1.230378+2 2.437906-2 1.222032+2 2.491467-2 1.207073+2 2.556043-2 1.184040+2 2.661328-2 1.141137+2 2.819086-2 1.073249+2 2.985383-2 1.003208+2 3.200489-2 9.182243+1 3.522809-2 8.064991+1 3.826653-2 7.162200+1 4.219592-2 6.177076+1 4.796081-2 5.046382+1 5.355118-2 4.213295+1 6.007855-2 3.461478+1 7.310603-2 2.451769+1 9.904671-2 1.426307+1 1.193226-1 1.018750+1 1.447143-1 7.142935+0 1.779166-1 4.852395+0 2.212348-1 3.205841+0 3.000000-1 1.781613+0 4.269633-1 8.953688-1 6.456542-1 3.967565-1 1.126077+0 1.315640-1 3.086391+0 1.758699-2 9.320751+0 1.929532-3 2.814822+1 2.115830-4 8.500626+1 2.319979-5 2.567148+2 2.543808-6 7.752663+2 2.789230-7 2.511886+3 2.656967-8 7.943282+3 2.656967-9 2.511886+4 2.65697-10 7.943282+4 2.65697-11 1.000000+5 1.67643-11 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.269500-6 1.258900-6 2.012100-6 1.584900-6 3.188900-6 1.995300-6 5.054100-6 2.511900-6 8.010200-6 3.162300-6 1.269500-5 3.981100-6 2.012000-5 5.011900-6 3.188900-5 6.309600-6 5.054000-5 7.943300-6 8.009900-5 1.000000-5 1.269500-4 1.258900-5 2.012000-4 1.584900-5 3.188700-4 1.995300-5 5.053600-4 2.511900-5 8.009200-4 3.162300-5 1.269200-3 3.981100-5 2.011100-3 5.011900-5 3.186600-3 6.309600-5 5.049300-3 7.943300-5 7.992600-3 1.000000-4 1.264800-2 1.258900-4 2.002000-2 1.584900-4 3.163100-2 1.995300-4 4.993300-2 2.511900-4 7.861200-2 3.162300-4 1.233100-1 3.981100-4 1.922700-1 5.011900-4 2.964700-1 6.309600-4 4.502700-1 7.943300-4 6.703500-1 1.000000-3 9.731900-1 1.258900-3 1.372400+0 1.584900-3 1.879900+0 1.995300-3 2.509700+0 2.511900-3 3.279000+0 3.162300-3 4.195800+0 3.981100-3 5.270900+0 5.011900-3 6.518900+0 6.309600-3 7.948200+0 7.943300-3 9.519500+0 1.000000-2 1.114100+1 1.258900-2 1.274500+1 1.584900-2 1.431900+1 1.995300-2 1.579100+1 2.511900-2 1.720700+1 3.162300-2 1.830800+1 3.981100-2 1.928100+1 5.011900-2 1.987800+1 6.309600-2 2.013400+1 7.943300-2 2.005300+1 1.000000-1 1.965800+1 1.258900-1 1.903200+1 1.584900-1 1.819200+1 1.995300-1 1.719500+1 2.511900-1 1.609000+1 3.162300-1 1.492800+1 3.981100-1 1.374400+1 5.011900-1 1.256800+1 6.309600-1 1.141900+1 7.943300-1 1.030900+1 1.000000+0 9.253100+0 1.258900+0 8.251600+0 1.584900+0 7.311500+0 1.995300+0 6.437400+0 2.511900+0 5.631800+0 3.162300+0 4.896700+0 3.981100+0 4.232500+0 5.011900+0 3.638000+0 6.309600+0 3.110800+0 7.943300+0 2.647200+0 1.000000+1 2.242700+0 1.258900+1 1.892400+0 1.584900+1 1.591000+0 1.995300+1 1.333100+0 2.511900+1 1.113700+0 3.162300+1 9.279200-1 3.981100+1 7.712300-1 5.011900+1 6.395800-1 6.309600+1 5.293400-1 7.943300+1 4.373000-1 1.000000+2 3.606700-1 1.258900+2 2.970200-1 1.584900+2 2.442600-1 1.995300+2 2.006200-1 2.511900+2 1.645800-1 3.162300+2 1.348700-1 3.981100+2 1.104100-1 5.011900+2 9.030700-2 6.309600+2 7.379700-2 7.943300+2 6.025600-2 1.000000+3 4.916100-2 1.258900+3 4.008100-2 1.584900+3 3.265500-2 1.995300+3 2.658800-2 2.511900+3 2.163500-2 3.162300+3 1.759500-2 3.981100+3 1.430100-2 5.011900+3 1.161800-2 6.309600+3 9.433100-3 7.943300+3 7.655700-3 1.000000+4 6.210300-3 1.258900+4 5.035700-3 1.584900+4 4.081500-3 1.995300+4 3.306800-3 2.511900+4 2.678100-3 3.162300+4 2.168100-3 3.981100+4 1.754600-3 5.011900+4 1.419500-3 6.309600+4 1.148000-3 7.943300+4 9.281000-4 1.000000+5 7.501100-4 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159550-4 3.981072-4 3.976748-4 5.011872-4 5.005064-4 6.309573-4 6.298846-4 7.943282-4 7.926382-4 1.000000-3 9.973555-4 1.258925-3 1.254783-3 1.584893-3 1.578427-3 1.995262-3 1.985171-3 2.511886-3 2.496151-3 3.162278-3 3.137675-3 3.981072-3 3.942717-3 5.011872-3 4.951966-3 6.309573-3 6.216020-3 7.943282-3 7.797587-3 1.000000-2 9.774159-3 1.258925-2 1.224050-2 1.584893-2 1.531116-2 1.995262-2 1.912369-2 2.511886-2 2.384843-2 3.162278-2 2.968097-2 3.981072-2 3.686522-2 5.011872-2 4.567511-2 6.309573-2 5.644407-2 7.943282-2 6.954373-2 1.000000-1 8.545363-2 1.258925-1 1.045897-1 1.584893-1 1.276011-1 1.995262-1 1.551663-1 2.511886-1 1.880559-1 3.162278-1 2.271566-1 3.981072-1 2.734955-1 5.011872-1 3.282650-1 6.309573-1 3.928190-1 7.943282-1 4.689775-1 1.000000+0 5.582842-1 1.258925+0 6.636823-1 1.584893+0 7.880621-1 1.995262+0 9.351732-1 2.511886+0 1.109708+0 3.162278+0 1.317440+0 3.981072+0 1.565402+0 5.011872+0 1.862144+0 6.309573+0 2.218345+0 7.943282+0 2.646876+0 1.000000+1 3.163506+0 1.258925+1 3.787517+0 1.584893+1 4.542667+0 1.995262+1 5.457839+0 2.511886+1 6.568603+0 3.162278+1 7.918502+0 3.981072+1 9.561046+0 5.011872+1 1.156183+1 6.309573+1 1.400145+1 7.943282+1 1.697906+1 1.000000+2 2.061631+1 1.258925+2 2.506374+1 1.584893+2 3.050539+1 1.995262+2 3.716860+1 2.511886+2 4.533371+1 3.162278+2 5.534634+1 3.981072+2 6.763078+1 5.011872+2 8.271395+1 6.309573+2 1.012436+2 7.943282+2 1.240197+2 1.000000+3 1.520285+2 1.258925+3 1.864904+2 1.584893+3 2.289192+2 1.995262+3 2.811753+2 2.511886+3 3.455637+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739894-9 3.981072-5 4.342142-9 5.011872-5 6.881505-9 6.309573-5 1.090596-8 7.943282-5 1.727918-8 1.000000-4 2.737991-8 1.258925-4 4.339050-8 1.584893-4 6.872799-8 1.995262-4 1.088699-7 2.511886-4 1.723802-7 3.162278-4 2.727824-7 3.981072-4 4.324053-7 5.011872-4 6.808803-7 6.309573-4 1.072763-6 7.943282-4 1.690022-6 1.000000-3 2.644540-6 1.258925-3 4.142134-6 1.584893-3 6.466594-6 1.995262-3 1.009180-5 2.511886-3 1.573522-5 3.162278-3 2.460255-5 3.981072-3 3.835507-5 5.011872-3 5.990624-5 6.309573-3 9.355318-5 7.943282-3 1.456953-4 1.000000-2 2.258408-4 1.258925-2 3.487501-4 1.584893-2 5.377717-4 1.995262-2 8.289336-4 2.511886-2 1.270438-3 3.162278-2 1.941802-3 3.981072-2 2.945498-3 5.011872-2 4.443611-3 6.309573-2 6.651660-3 7.943282-2 9.889094-3 1.000000-1 1.454637-2 1.258925-1 2.130286-2 1.584893-1 3.088820-2 1.995262-1 4.435990-2 2.511886-1 6.313271-2 3.162278-1 8.907113-2 3.981072-1 1.246117-1 5.011872-1 1.729222-1 6.309573-1 2.381383-1 7.943282-1 3.253507-1 1.000000+0 4.417158-1 1.258925+0 5.952431-1 1.584893+0 7.968311-1 1.995262+0 1.060089+0 2.511886+0 1.402178+0 3.162278+0 1.844838+0 3.981072+0 2.415670+0 5.011872+0 3.149728+0 6.309573+0 4.091229+0 7.943282+0 5.296406+0 1.000000+1 6.836494+0 1.258925+1 8.801737+0 1.584893+1 1.130626+1 1.995262+1 1.449478+1 2.511886+1 1.855026+1 3.162278+1 2.370427+1 3.981072+1 3.024967+1 5.011872+1 3.855690+1 6.309573+1 4.909428+1 7.943282+1 6.245376+1 1.000000+2 7.938369+1 1.258925+2 1.008288+2 1.584893+2 1.279839+2 1.995262+2 1.623576+2 2.511886+2 2.058549+2 3.162278+2 2.608814+2 3.981072+2 3.304764+2 5.011872+2 4.184733+2 6.309573+2 5.297137+2 7.943282+2 6.703085+2 1.000000+3 8.479715+2 1.258925+3 1.072435+3 1.584893+3 1.355974+3 1.995262+3 1.714087+3 2.511886+3 2.166323+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.380000-6 1.463880+6 6.531306-6 1.299632+6 6.839116-6 1.018567+6 7.100000-6 8.312630+5 7.413102-6 6.535414+5 7.700000-6 5.254210+5 8.000000-6 4.190640+5 8.317638-6 3.301801+5 8.609938-6 2.653101+5 8.790000-6 2.317647+5 8.790000-6 6.007185+6 8.850000-6 6.042691+6 9.120108-6 6.207805+6 9.150000-6 6.228670+6 9.150000-6 9.925258+6 9.350000-6 1.015714+7 9.549926-6 1.039332+7 9.600000-6 1.045573+7 9.850000-6 1.077081+7 1.000000-5 1.096259+7 1.011579-5 1.111369+7 1.023293-5 1.126754+7 1.035142-5 1.142823+7 1.060000-5 1.176883+7 1.085000-5 1.211594+7 1.109175-5 1.245558+7 1.127000-5 1.270835+7 1.150000-5 1.303726+7 1.174898-5 1.339660+7 1.200000-5 1.375147+7 1.230269-5 1.418302+7 1.290000-5 1.504533+7 1.310000-5 1.533701+7 1.325000-5 1.555669+7 1.333521-5 1.568183+7 1.340000-5 1.577275+7 1.353000-5 1.595552+7 1.365000-5 1.612462+7 1.376000-5 1.627994+7 1.385000-5 1.640723+7 1.395000-5 1.654890+7 1.405000-5 1.669081+7 1.415000-5 1.683295+7 1.425000-5 1.697531+7 1.435000-5 1.711791+7 1.445440-5 1.726702+7 1.455000-5 1.740376+7 1.465000-5 1.754702+7 1.475000-5 1.769049+7 1.485000-5 1.783417+7 1.500000-5 1.805009+7 1.515000-5 1.826647+7 1.531087-5 1.849904+7 1.554900-5 1.882945+7 1.590000-5 1.931794+7 1.650000-5 2.015684+7 1.690000-5 2.071871+7 1.720000-5 2.114143+7 1.757924-5 2.167738+7 1.778279-5 2.195723+7 1.785000-5 2.204792+7 1.819701-5 2.251668+7 1.862087-5 2.309035+7 1.905461-5 2.367863+7 1.950000-5 2.428396+7 1.972423-5 2.458917+7 2.000000-5 2.493811+7 2.055000-5 2.563419+7 2.113489-5 2.637466+7 2.137962-5 2.668454+7 2.162719-5 2.697901+7 2.170000-5 2.706204+7 2.238721-5 2.784445+7 2.290868-5 2.843672+7 2.300000-5 2.853235+7 2.317395-5 2.870370+7 2.400000-5 2.951374+7 2.426610-5 2.974728+7 2.483133-5 3.020324+7 2.511886-5 3.043379+7 2.540973-5 3.063519+7 2.580000-5 3.087541+7 2.610000-5 3.105882+7 2.650000-5 3.125511+7 2.691535-5 3.142331+7 2.710800-5 3.150072+7 2.754229-5 3.162080+7 2.800000-5 3.170672+7 2.818383-5 3.171737+7 2.851018-5 3.173611+7 2.900000-5 3.171949+7 2.951209-5 3.163160+7 3.000000-5 3.150580+7 3.040000-5 3.135080+7 3.090295-5 3.111832+7 3.126079-5 3.090785+7 3.190000-5 3.048525+7 3.230000-5 3.017736+7 3.273407-5 2.981123+7 3.330000-5 2.928825+7 3.350000-5 2.909055+7 3.427678-5 2.826296+7 3.450000-5 2.801673+7 3.467369-5 2.780812+7 3.507519-5 2.733573+7 3.548134-5 2.684360+7 3.610000-5 2.605945+7 3.650000-5 2.554373+7 3.672823-5 2.523453+7 3.715352-5 2.467325+7 3.758374-5 2.410023+7 3.801894-5 2.350569+7 3.850000-5 2.285017+7 3.900000-5 2.216277+7 3.935501-5 2.167416+7 3.950000-5 2.147895+7 4.027170-5 2.042936+7 4.073803-5 1.980684+7 4.150000-5 1.880128+7 4.180000-5 1.841257+7 4.216965-5 1.792930+7 4.265795-5 1.731647+7 4.315191-5 1.670720+7 4.410200-5 1.556941+7 4.450000-5 1.511183+7 4.518559-5 1.433846+7 4.570882-5 1.376949+7 4.677351-5 1.266416+7 4.720000-5 1.224275+7 4.841724-5 1.110133+7 4.850000-5 1.102691+7 4.900000-5 1.057785+7 5.011872-5 9.652942+6 5.066000-5 9.219333+6 5.066000-5 1.193474+7 5.120000-5 1.149697+7 5.188000-5 1.095720+7 5.270000-5 1.030086+7 5.308844-5 9.999650+6 5.370318-5 9.545777+6 5.419000-5 9.184291+6 5.419000-5 1.045459+7 5.450000-5 1.023280+7 5.505000-5 9.841884+6 5.527000-5 9.688486+6 5.560000-5 9.456792+6 5.580000-5 9.317760+6 5.630000-5 8.976715+6 5.688529-5 8.593227+6 5.700000-5 8.518262+6 5.754399-5 8.170064+6 5.780000-5 8.010571+6 5.850000-5 7.589954+6 5.888437-5 7.364203+6 5.956621-5 6.980659+6 6.025596-5 6.614558+6 6.165950-5 5.916681+6 6.220000-5 5.666917+6 6.237348-5 5.588576+6 6.350000-5 5.108757+6 6.400000-5 4.907546+6 6.531306-5 4.418816+6 6.580000-5 4.250629+6 6.683439-5 3.913497+6 6.760830-5 3.679837+6 6.800000-5 3.566987+6 6.850000-5 3.429121+6 6.900000-5 3.296250+6 6.918310-5 3.249033+6 6.950000-5 3.169813+6 7.000000-5 3.048405+6 7.150000-5 2.714109+6 7.161434-5 2.690329+6 7.244360-5 2.523592+6 7.328245-5 2.369676+6 7.350000-5 2.331736+6 7.500000-5 2.086044+6 7.673615-5 1.840843+6 7.730000-5 1.769804+6 7.737400-5 1.760683+6 7.943282-5 1.531336+6 8.000000-5 1.475841+6 8.035261-5 1.443000+6 8.150000-5 1.342649+6 8.214000-5 1.291881+6 8.214000-5 1.464310+6 8.300000-5 1.402131+6 8.400000-5 1.336142+6 8.413951-5 1.327606+6 8.450000-5 1.305824+6 8.570000-5 1.238440+6 8.609938-5 1.217682+6 8.650000-5 1.197319+6 8.810489-5 1.125447+6 8.850000-5 1.109545+6 8.912509-5 1.085559+6 8.950000-5 1.071929+6 9.000000-5 1.054631+6 9.070000-5 1.031633+6 9.120108-5 1.016420+6 9.150000-5 1.007689+6 9.190000-5 9.966478+5 9.240200-5 9.835032+5 9.300000-5 9.685716+5 9.332543-5 9.608613+5 9.350000-5 9.568161+5 9.400000-5 9.456294+5 9.440609-5 9.369989+5 9.450000-5 9.351037+5 9.500000-5 9.253513+5 9.549926-5 9.161557+5 9.580000-5 9.108390+5 9.610000-5 9.057213+5 9.660509-5 8.975201+5 9.680000-5 8.946281+5 9.760000-5 8.833528+5 9.772372-5 8.816836+5 9.800000-5 8.781179+5 9.850000-5 8.719449+5 9.900000-5 8.662949+5 9.950000-5 8.606307+5 1.000000-4 8.554906+5 1.005000-4 8.507920+5 1.010000-4 8.465699+5 1.011579-4 8.453113+5 1.015000-4 8.425967+5 1.025000-4 8.355680+5 1.025700-4 8.351064+5 1.035142-4 8.294228+5 1.037900-4 8.279563+5 1.040000-4 8.269165+5 1.050000-4 8.228863+5 1.055000-4 8.210744+5 1.065000-4 8.179805+5 1.071519-4 8.162242+5 1.080000-4 8.149821+5 1.090000-4 8.137264+5 1.096478-4 8.131676+5 1.100000-4 8.129521+5 1.109175-4 8.127011+5 1.110000-4 8.127192+5 1.122018-4 8.135718+5 1.135011-4 8.146990+5 1.150000-4 8.168631+5 1.161449-4 8.187944+5 1.174898-4 8.217968+5 1.205000-4 8.294732+5 1.220000-4 8.334346+5 1.230269-4 8.364863+5 1.240000-4 8.397569+5 1.244515-4 8.412398+5 1.260000-4 8.460897+5 1.273503-4 8.502629+5 1.280000-4 8.524296+5 1.318257-4 8.641613+5 1.333521-4 8.686652+5 1.350000-4 8.736007+5 1.390000-4 8.843301+5 1.412538-4 8.895503+5 1.430000-4 8.935958+5 1.445440-4 8.965019+5 1.465000-4 9.002751+5 1.479108-4 9.027920+5 1.496236-4 9.053567+5 1.513561-4 9.077574+5 1.531087-4 9.098913+5 1.566751-4 9.132475+5 1.584893-4 9.146822+5 1.621810-4 9.158109+5 1.640590-4 9.161096+5 1.678804-4 9.158613+5 1.690000-4 9.156373+5 1.705000-4 9.152088+5 1.717908-4 9.145423+5 1.737801-4 9.135521+5 1.740000-4 9.134177+5 1.757924-4 9.120903+5 1.760000-4 9.119315+5 1.800000-4 9.080887+5 1.819701-4 9.060001+5 1.840772-4 9.036666+5 1.862087-4 9.009321+5 1.900000-4 8.957111+5 1.905461-4 8.949128+5 1.927525-4 8.912852+5 1.950000-4 8.875702+5 1.995262-4 8.797249+5 2.000000-4 8.788353+5 2.030000-4 8.731279+5 2.080000-4 8.633547+5 2.089296-4 8.614863+5 2.113489-4 8.561436+5 2.190000-4 8.391517+5 2.213095-4 8.338758+5 2.220000-4 8.322421+5 2.264644-4 8.216934+5 2.300000-4 8.131450+5 2.317395-4 8.087506+5 2.426610-4 7.815721+5 2.454709-4 7.742699+5 2.540973-4 7.518667+5 2.550000-4 7.495019+5 2.650000-4 7.236920+5 2.660725-4 7.210011+5 2.691535-4 7.130925+5 2.818383-4 6.804983+5 2.851018-4 6.725868+5 2.900000-4 6.604625+5 2.900500-4 6.603373+5 2.900500-4 7.748431+5 2.912000-4 7.722454+5 2.917427-4 7.713368+5 2.923000-4 7.703979+5 2.933000-4 7.694885+5 2.942000-4 7.694894+5 2.945300-4 7.698324+5 2.945300-4 8.503976+5 2.950000-4 8.507700+5 2.958000-4 8.523645+5 2.965000-4 8.550587+5 2.970000-4 8.576443+5 2.971000-4 8.582256+5 2.976000-4 8.617186+5 2.978000-4 8.633921+5 2.983000-4 8.679669+5 2.986200-4 8.714649+5 2.990000-4 8.759833+5 2.993000-4 8.801148+5 2.997000-4 8.860656+5 3.000000-4 8.911491+5 3.004200-4 8.988282+5 3.007000-4 9.045610+5 3.011000-4 9.133488+5 3.013000-4 9.182130+5 3.019952-4 9.365714+5 3.020000-4 9.367113+5 3.026000-4 9.553736+5 3.030000-4 9.689160+5 3.032000-4 9.762572+5 3.037000-4 9.958488+5 3.040000-4 1.008428+6 3.042000-4 1.017369+6 3.047000-4 1.041141+6 3.054921-4 1.082910+6 3.061000-4 1.118668+6 3.069000-4 1.171098+6 3.073000-4 1.199869+6 3.077000-4 1.229632+6 3.085000-4 1.294728+6 3.097000-4 1.403550+6 3.107000-4 1.503698+6 3.115000-4 1.589773+6 3.123000-4 1.680256+6 3.126079-4 1.716902+6 3.135000-4 1.824911+6 3.145000-4 1.950367+6 3.154000-4 2.066173+6 3.162278-4 2.173109+6 3.165000-4 2.209989+6 3.172000-4 2.300966+6 3.176000-4 2.353911+6 3.183000-4 2.445459+6 3.185000-4 2.471762+6 3.190000-4 2.535505+6 3.197000-4 2.625845+6 3.198895-4 2.649454+6 3.200000-4 2.663343+6 3.210000-4 2.788678+6 3.220000-4 2.907827+6 3.225000-4 2.967501+6 3.230000-4 3.024379+6 3.240000-4 3.137616+6 3.250000-4 3.243619+6 3.255000-4 3.295690+6 3.265000-4 3.395021+6 3.273407-4 3.476289+6 3.280000-4 3.536436+6 3.293400-4 3.655421+6 3.295000-4 3.668850+6 3.311311-4 3.800767+6 3.328000-4 3.921980+6 3.335000-4 3.970867+6 3.349654-4 4.065125+6 3.360000-4 4.128227+6 3.370000-4 4.183453+6 3.388442-4 4.280202+6 3.390000-4 4.287583+6 3.410000-4 4.376112+6 3.410500-4 4.378195+6 3.430000-4 4.449947+6 3.440000-4 4.484221+6 3.450000-4 4.513440+6 3.467369-4 4.559153+6 3.470000-4 4.566110+6 3.477000-4 4.581122+6 3.507519-4 4.636069+6 3.540000-4 4.669076+6 3.550000-4 4.676199+6 3.580000-4 4.685462+6 3.600000-4 4.685954+6 3.630781-4 4.677885+6 3.650100-4 4.668587+6 3.680000-4 4.647908+6 3.740000-4 4.598055+6 3.758374-4 4.580458+6 3.801894-4 4.534824+6 3.850000-4 4.485462+6 3.890451-4 4.444750+6 4.050000-4 4.265363+6 4.073803-4 4.235385+6 4.168694-4 4.119637+6 4.191700-4 4.090030+6 4.216965-4 4.056209+6 4.315191-4 3.928939+6 4.466836-4 3.725636+6 4.518559-4 3.660068+6 4.592900-4 3.562844+6 4.592900-4 3.902126+6 4.600000-4 3.895068+6 4.631000-4 3.864765+6 4.677351-4 3.816107+6 4.722000-4 3.770698+6 4.786301-4 3.704367+6 4.820600-4 3.669280+6 4.820600-4 3.779703+6 4.826000-4 3.779342+6 4.830000-4 3.778761+6 4.831000-4 3.778561+6 4.836500-4 3.776894+6 4.841724-4 3.774808+6 4.844000-4 3.773825+6 4.852000-4 3.769555+6 4.860000-4 3.764820+6 4.870000-4 3.758311+6 4.885000-4 3.747633+6 4.900000-4 3.736237+6 4.918000-4 3.721801+6 4.940000-4 3.703271+6 4.954502-4 3.690535+6 4.960000-4 3.685524+6 4.980000-4 3.666667+6 5.000000-4 3.647424+6 5.011872-4 3.635708+6 5.030000-4 3.617486+6 5.060000-4 3.586795+6 5.080000-4 3.566088+6 5.100000-4 3.544230+6 5.128614-4 3.512758+6 5.150000-4 3.489069+6 5.248075-4 3.383160+6 5.308844-4 3.316806+6 5.432503-4 3.184612+6 5.580000-4 3.036930+6 5.623413-4 2.994800+6 5.688529-4 2.931600+6 5.720000-4 2.901768+6 5.740300-4 2.882612+6 5.740300-4 3.008856+6 5.821032-4 2.932846+6 5.900000-4 2.861411+6 6.100000-4 2.689589+6 6.165950-4 2.635378+6 6.309573-4 2.523106+6 6.350000-4 2.492883+6 6.456542-4 2.414813+6 6.531306-4 2.361878+6 6.550000-4 2.348614+6 6.606934-4 2.308800+6 6.760830-4 2.205970+6 6.850000-4 2.148761+6 6.918310-4 2.106253+6 7.000000-4 2.056986+6 7.079458-4 2.009952+6 7.300000-4 1.887857+6 7.328245-4 1.873055+6 7.413102-4 1.828768+6 7.673615-4 1.702410+6 7.852356-4 1.622317+6 7.943282-4 1.583637+6 8.035261-4 1.545935+6 8.128305-4 1.508523+6 8.222426-4 1.471917+6 8.317638-4 1.436250+6 8.511380-4 1.366650+6 8.709636-4 1.299838+6 9.000000-4 1.209885+6 9.015711-4 1.205289+6 9.120108-4 1.175274+6 9.225714-4 1.145763+6 9.660509-4 1.034680+6 9.700000-4 1.025409+6 9.885531-4 9.832124+5 1.000000-3 9.583367+5 1.011579-3 9.338586+5 1.023293-3 9.100381+5 1.030000-3 8.967080+5 1.059254-3 8.418396+5 1.071519-3 8.201721+5 1.096478-3 7.783582+5 1.109175-3 7.582992+5 1.110000-3 7.570119+5 1.150000-3 6.977971+5 1.161449-3 6.820546+5 1.188502-3 6.468775+5 1.190000-3 6.450092+5 1.216186-3 6.134431+5 1.230269-3 5.973076+5 1.273503-3 5.511610+5 1.288250-3 5.365516+5 1.300000-3 5.253157+5 1.303167-3 5.223448+5 1.348963-3 4.818147+5 1.350000-3 4.809516+5 1.364583-3 4.689548+5 1.380384-3 4.563499+5 1.400000-3 4.413905+5 1.412538-3 4.321684+5 1.450000-3 4.062050+5 1.462177-3 3.982591+5 1.479108-3 3.875344+5 1.496236-3 3.770319+5 1.513561-3 3.668269+5 1.531087-3 3.568419+5 1.603245-3 3.195718+5 1.621810-3 3.108742+5 1.650000-3 2.983166+5 1.659587-3 2.941847+5 1.678804-3 2.861296+5 1.698244-3 2.782440+5 1.778279-3 2.488208+5 1.800000-3 2.416233+5 1.819701-3 2.353291+5 1.840772-3 2.288109+5 1.862087-3 2.224810+5 1.883649-3 2.163092+5 1.905461-3 2.102829+5 2.000000-3 1.867467+5 2.018366-3 1.826102+5 2.041738-3 1.774992+5 2.065380-3 1.725363+5 2.089296-3 1.677195+5 2.113489-3 1.630012+5 2.137962-3 1.584215+5 2.187762-3 1.496503+5 2.238721-3 1.413694+5 2.290868-3 1.334831+5 2.300000-3 1.321674+5 2.344229-3 1.260302+5 2.371374-3 1.224477+5 2.398833-3 1.189717+5 2.500000-3 1.073196+5 2.511886-3 1.060505+5 2.540973-3 1.030350+5 2.570396-3 1.000990+5 2.600160-3 9.722842+4 2.660725-3 9.174195+4 2.691535-3 8.911007+4 2.800000-3 8.065733+4 2.818383-3 7.933029+4 2.838700-3 7.789961+4 2.838700-3 2.739296+5 2.842900-3 2.728180+5 2.843300-3 2.734944+5 2.851018-3 2.715063+5 2.884032-3 2.632156+5 2.971800-3 2.427929+5 2.971800-3 3.336589+5 2.990000-3 3.287395+5 3.000000-3 3.262978+5 3.015000-3 3.226823+5 3.019952-3 3.214533+5 3.054921-3 3.129569+5 3.070000-3 3.092301+5 3.090295-3 3.039718+5 3.120000-3 2.964976+5 3.126079-3 2.950643+5 3.180000-3 2.827488+5 3.198895-3 2.784940+5 3.203900-3 2.773810+5 3.203900-3 3.183028+5 3.235937-3 3.106860+5 3.273407-3 3.021013+5 3.311311-3 2.937601+5 3.349654-3 2.854713+5 3.388442-3 2.774189+5 3.450000-3 2.652906+5 3.467369-3 2.619963+5 3.507519-3 2.545186+5 3.548134-3 2.472500+5 3.589219-3 2.401907+5 3.630781-3 2.332678+5 3.672823-3 2.265472+5 3.715352-3 2.200253+5 3.758374-3 2.136934+5 3.845918-3 2.015179+5 3.935501-3 1.900547+5 4.000000-3 1.822995+5 4.027170-3 1.791664+5 4.073803-3 1.739605+5 4.120975-3 1.689082+5 4.168694-3 1.640057+5 4.216965-3 1.592442+5 4.315191-3 1.501291+5 4.365158-3 1.457733+5 4.415704-3 1.415472+5 4.466836-3 1.374409+5 4.518559-3 1.334251+5 4.623810-3 1.257456+5 4.677351-3 1.220633+5 4.731513-3 1.184914+5 4.897788-3 1.084035+5 4.900000-3 1.082776+5 4.954502-3 1.052092+5 5.011872-3 1.021068+5 5.069907-3 9.908186+4 5.128614-3 9.614720+4 5.188000-3 9.330210+4 5.248075-3 9.054301+4 5.308844-3 8.784758+4 5.370318-3 8.523386+4 5.559043-3 7.785945+4 5.688529-3 7.330377+4 5.754399-3 7.112212+4 5.800000-3 6.966392+4 5.821032-3 6.899683+4 5.888437-3 6.691831+4 6.000000-3 6.366619+4 6.025596-3 6.294614+4 6.309573-3 5.566954+4 6.382635-3 5.398695+4 6.531306-3 5.077506+4 6.606934-3 4.924363+4 6.683439-3 4.775949+4 6.760830-3 4.632142+4 6.800000-3 4.561601+4 6.839116-3 4.492131+4 6.918310-3 4.355939+4 7.161434-3 3.969994+4 7.244360-3 3.849138+4 7.413102-3 3.617590+4 7.498942-3 3.507238+4 7.500000-3 3.505907+4 7.585776-3 3.400316+4 7.673615-3 3.296727+4 7.762471-3 3.195303+4 7.943282-3 3.001959+4 8.035261-3 2.909765+4 8.128305-3 2.820172+4 8.222426-3 2.733306+4 8.413951-3 2.567642+4 8.609938-3 2.412302+4 8.709636-3 2.338274+4 8.810489-3 2.266076+4 9.120108-3 2.062869+4 9.225714-3 1.998893+4 9.332543-3 1.936881+4 9.549926-3 1.818555+4 9.772372-3 1.707171+4 1.000000-2 1.602801+4 1.035142-2 1.457706+4 1.047129-2 1.412391+4 1.059254-2 1.368476+4 1.083927-2 1.284764+4 1.096478-2 1.244652+4 1.122018-2 1.168176+4 1.148154-2 1.096039+4 1.150000-2 1.091179+4 1.188502-2 9.959433+3 1.200000-2 9.697433+3 1.216186-2 9.344215+3 1.258925-2 8.492794+3 1.288250-2 7.967386+3 1.318257-2 7.474894+3 1.333521-2 7.238690+3 1.364583-2 6.788941+3 1.380384-2 6.574269+3 1.396368-2 6.366377+3 1.428894-2 5.970418+3 1.445440-2 5.781980+3 1.496236-2 5.250252+3 1.513561-2 5.084418+3 1.531087-2 4.923748+3 1.548817-2 4.767228+3 1.566751-2 4.615813+3 1.584893-2 4.469306+3 1.603245-2 4.327118+3 1.659587-2 3.927595+3 1.678804-2 3.803009+3 1.737801-2 3.451535+3 1.757924-2 3.341209+3 1.778279-2 3.234489+3 1.798871-2 3.131129+3 1.819701-2 3.031143+3 1.840772-2 2.934350+3 1.927525-2 2.576938+3 1.972423-2 2.415307+3 2.000000-2 2.322528+3 2.041738-2 2.190244+3 2.065380-2 2.119880+3 2.089296-2 2.051821+3 2.113489-2 1.985909+3 2.137962-2 1.922120+3 2.162719-2 1.860403+3 2.208700-2 1.752608+3 2.208700-2 1.144220+4 2.235000-2 1.113595+4 2.264644-2 1.078275+4 2.265000-2 1.077861+4 2.300000-2 1.032780+4 2.317395-2 1.013441+4 2.344229-2 9.845541+3 2.371374-2 9.564798+3 2.398833-2 9.276835+3 2.426610-2 8.997582+3 2.454709-2 8.726773+3 2.511886-2 8.209318+3 2.550000-2 7.887658+3 2.570396-2 7.725192+3 2.630268-2 7.274167+3 2.691535-2 6.849610+3 2.722701-2 6.646502+3 2.754229-2 6.449434+3 2.786121-2 6.258242+3 2.818383-2 6.072662+3 2.851018-2 5.892617+3 2.884032-2 5.713260+3 2.985383-2 5.207278+3 3.019952-2 5.048813+3 3.090295-2 4.746262+3 3.150000-2 4.508667+3 3.198895-2 4.325897+3 3.273407-2 4.066442+3 3.311311-2 3.942632+3 3.349654-2 3.822562+3 3.388442-2 3.703833+3 3.589219-2 3.163302+3 3.672823-2 2.969927+3 3.758374-2 2.788193+3 3.801894-2 2.701549+3 3.845918-2 2.617591+3 3.890451-2 2.536252+3 3.935501-2 2.457446+3 3.981072-2 2.381097+3 4.000000-2 2.350338+3 4.027170-2 2.307119+3 4.073803-2 2.235417+3 4.265795-2 1.970266+3 4.315191-2 1.907913+3 4.365158-2 1.847467+3 4.466836-2 1.732268+3 4.731513-2 1.474787+3 4.786301-2 1.428081+3 4.841724-2 1.382857+3 4.897788-2 1.339064+3 4.954502-2 1.296660+3 5.011872-2 1.255601+3 5.128614-2 1.177334+3 5.248075-2 1.103871+3 5.308844-2 1.068880+3 5.495409-2 9.689778+2 5.623413-2 9.076290+2 5.821032-2 8.228083+2 6.095369-2 7.219366+2 6.237348-2 6.761959+2 6.309573-2 6.544253+2 6.382635-2 6.333560+2 6.531306-2 5.932343+2 6.606934-2 5.741371+2 6.760830-2 5.373317+2 7.079458-2 4.706447+2 7.244360-2 4.404772+2 7.328245-2 4.261278+2 7.585776-2 3.857846+2 7.673615-2 3.732055+2 7.852356-2 3.492653+2 8.222426-2 3.058994+2 8.810489-2 2.502424+2 9.015711-2 2.340419+2 9.120108-2 2.263320+2 9.225714-2 2.188764+2 9.332543-2 2.116664+2 1.000000-1 1.731342+2 1.047129-1 1.514272+2 1.059254-1 1.464408+2 1.096478-1 1.323668+2 1.135011-1 1.196465+2 1.148154-1 1.156814+2 1.188502-1 1.045597+2 1.202264-1 1.010955+2 1.244515-1 9.137679+1 1.258925-1 8.834986+1 1.273503-1 8.542310+1 1.288250-1 8.259336+1 1.318257-1 7.721243+1 1.364583-1 6.979231+1 1.412538-1 6.308541+1 1.428894-1 6.099663+1 1.445440-1 5.897701+1 1.479108-1 5.513642+1 1.496236-1 5.331092+1 1.500000-1 5.292066+1 1.531088-1 4.983948+1 1.566751-1 4.659438+1 1.584893-1 4.505199+1 1.640590-1 4.072499+1 1.659587-1 3.937714+1 1.678804-1 3.807393+1 1.698244-1 3.681384+1 1.717908-1 3.559572+1 1.757924-1 3.327904+1 1.798871-1 3.111328+1 1.840772-1 2.908858+1 1.862087-1 2.812622+1 1.883649-1 2.719580+1 1.927525-1 2.542632+1 1.949845-1 2.459276+1 1.972423-1 2.378667+1 2.041738-1 2.152361+1 2.065380-1 2.081818+1 2.113489-1 1.947598+1 2.162719-1 1.822035+1 2.187762-1 1.762324+1 2.213095-1 1.704622+1 2.264644-1 1.594853+1 2.290868-1 1.542650+1 2.317395-1 1.492158+1 2.344229-1 1.443330+1 2.371374-1 1.396100+1 2.398833-1 1.351014+1 2.426610-1 1.307384+1 2.483133-1 1.224306+1 2.511886-1 1.184775+1 2.600160-1 1.073692+1 2.630268-1 1.039032+1 2.660725-1 1.005536+1 2.691535-1 9.731207+0 2.722701-1 9.417514+0 2.754229-1 9.113940+0 2.786121-1 8.820205+0 2.800000-1 8.696401+0 2.818383-1 8.538465+0 2.951209-1 7.505419+0 2.985383-1 7.267323+0 3.000000-1 7.168611+0 3.054921-1 6.813569+0 3.090295-1 6.597434+0 3.126079-1 6.388489+0 3.198895-1 5.990310+0 3.235937-1 5.800637+0 3.273407-1 5.620085+0 3.311311-1 5.445215+0 3.349654-1 5.275787+0 3.427678-1 4.952591+0 3.467369-1 4.798498+0 3.548134-1 4.504598+0 3.589219-1 4.364719+0 3.630781-1 4.229180+0 3.672823-1 4.097874+0 3.758374-1 3.851904+0 3.801894-1 3.734559+0 3.845918-1 3.620807+0 3.935501-1 3.403595+0 4.000000-1 3.258140+0 4.027170-1 3.199419+0 4.120975-1 3.007888+0 4.168694-1 2.918248+0 4.265795-1 2.746952+0 4.315191-1 2.665145+0 4.365158-1 2.585775+0 4.415705-1 2.508770+0 4.466836-1 2.434061+0 4.518559-1 2.361587+0 4.570882-1 2.291421+0 4.623810-1 2.224807+0 4.677351-1 2.160131+0 4.731513-1 2.097339+0 4.786301-1 2.036375+0 4.841724-1 1.977208+0 4.897788-1 1.919761+0 4.954502-1 1.863983+0 5.011872-1 1.809834+0 5.069907-1 1.757267+0 5.128614-1 1.707494+0 5.188000-1 1.659132+0 5.248075-1 1.612145+0 5.308844-1 1.566491+0 5.370318-1 1.522147+0 5.432503-1 1.479060+0 5.495409-1 1.437192+0 5.623413-1 1.357004+0 5.688529-1 1.319603+0 5.754399-1 1.283234+0 5.821032-1 1.247871+0 5.888437-1 1.213483+0 5.956621-1 1.180060+0 6.095369-1 1.115960+0 6.165950-1 1.085232+0 6.237348-1 1.056124+0 6.309573-1 1.027876+0 6.382635-1 1.000384+0 6.456542-1 9.736301-1 6.531306-1 9.475913-1 6.683439-1 8.976194-1 6.760830-1 8.736337-1 6.839117-1 8.502898-1 6.918310-1 8.282683-1 6.998420-1 8.068175-1 7.079458-1 7.859222-1 7.161434-1 7.655703-1 7.244360-1 7.457490-1 7.328245-1 7.264514-1 7.413102-1 7.076557-1 7.498942-1 6.893470-1 7.585776-1 6.715124-1 7.673615-1 6.546699-1 7.852356-1 6.222419-1 7.943282-1 6.066368-1 8.035261-1 5.914231-1 8.128305-1 5.765981-1 8.222427-1 5.621474-1 8.317638-1 5.480591-1 8.413951-1 5.343263-1 8.511380-1 5.213646-1 8.609938-1 5.087173-1 8.709636-1 4.963776-1 8.810489-1 4.843385-1 8.912509-1 4.726014-1 9.015711-1 4.611508-1 9.120108-1 4.499782-1 9.225714-1 4.390764-1 9.440609-1 4.187152-1 9.549926-1 4.089317-1 9.660509-1 3.993801-1 9.772372-1 3.900585-1 9.885531-1 3.809550-1 1.000000+0 3.720639-1 1.011579+0 3.636098-1 1.023293+0 3.553507-1 1.035142+0 3.472986-1 1.047129+0 3.394288-1 1.059254+0 3.317382-1 1.071519+0 3.242221-1 1.083927+0 3.168762-1 1.096478+0 3.096972-1 1.109175+0 3.026817-1 1.122018+0 2.958304-1 1.135011+0 2.891338-1 1.148154+0 2.825893-1 1.161449+0 2.764281-1 1.174898+0 2.704012-1 1.188600+0 2.644656-1 1.202264+0 2.587425-1 1.230269+0 2.475966-1 1.244515+0 2.422053-1 1.250000+0 2.401823-1 1.258925+0 2.370194-1 1.273503+0 2.319892-1 1.288250+0 2.270657-1 1.303167+0 2.222476-1 1.318257+0 2.175317-1 1.333521+0 2.129161-1 1.348963+0 2.083990-1 1.364583+0 2.039780-1 1.380384+0 1.996508-1 1.396368+0 1.954159-1 1.412538+0 1.912727-1 1.428894+0 1.872177-1 1.445440+0 1.833665-1 1.500000+0 1.715032-1 1.513561+0 1.687397-1 1.531087+0 1.652694-1 1.548817+0 1.618702-1 1.566751+0 1.585416-1 1.584893+0 1.552834-1 1.603245+0 1.521896-1 1.659587+0 1.433023-1 1.698244+0 1.376677-1 1.717908+0 1.349351-1 1.737801+0 1.322568-1 1.757924+0 1.296335-1 1.778279+0 1.271511-1 1.798871+0 1.247254-1 1.840772+0 1.200121-1 1.883649+0 1.154769-1 1.905461+0 1.132748-1 1.927525+0 1.111150-1 1.949845+0 1.089980-1 1.972423+0 1.070013-1 1.995262+0 1.050491-1 2.018366+0 1.031324-1 2.089296+0 9.758986-2 2.113489+0 9.580984-2 2.137962+0 9.406229-2 2.187762+0 9.066251-2 2.213095+0 8.900901-2 2.238721+0 8.738649-2 2.264644+0 8.579357-2 2.290868+0 8.427131-2 2.317395+0 8.278036-2 2.371374+0 7.987712-2 2.426610+0 7.707574-2 2.454709+0 7.571249-2 2.483133+0 7.437337-2 2.511886+0 7.305806-2 2.540973+0 7.176597-2 2.570396+0 7.049677-2 2.600160+0 6.925067-2 2.630268+0 6.802665-2 2.660725+0 6.685910-2 2.691535+0 6.571527-2 2.754229+0 6.348600-2 2.818383+0 6.133238-2 2.851018+0 6.028346-2 2.884032+0 5.925255-2 2.917427+0 5.823932-2 2.951209+0 5.724341-2 3.000000+0 5.585522-2 3.019952+0 5.530366-2 3.054921+0 5.439281-2 3.126079+0 5.262279-2 3.162278+0 5.175948-2 3.198895+0 5.091065-2 3.273407+0 4.925465-2 3.311311+0 4.844698-2 3.388442+0 4.687112-2 3.467369+0 4.534741-2 3.507519+0 4.460426-2 3.548134+0 4.389612-2 3.630781+0 4.251800-2 3.672823+0 4.184527-2 3.715352+0 4.118339-2 3.801894+0 3.989099-2 3.845918+0 3.926008-2 3.935501+0 3.802804-2 4.027170+0 3.683534-2 4.120975+0 3.568006-2 4.168694+0 3.513276-2 4.265795+0 3.406663-2 4.315191+0 3.354575-2 4.365158+0 3.303301-2 4.466836+0 3.203100-2 4.518559+0 3.154146-2 4.623810+0 3.058470-2 4.731513+0 2.965748-2 4.841724+0 2.875840-2 4.897788+0 2.833233-2 5.011872+0 2.750170-2 5.069907+0 2.709557-2 5.128614+0 2.669555-2 5.248075+0 2.591323-2 5.308844+0 2.553072-2 5.432503+0 2.478254-2 5.623413+0 2.370175-2 5.754399+0 2.300756-2 5.821032+0 2.267714-2 6.025596+0 2.171678-2 6.095369+0 2.140579-2 6.165950+0 2.109934-2 6.382635+0 2.020613-2 6.456542+0 1.991688-2 6.606934+0 1.935075-2 6.839116+0 1.853200-2 7.000000+0 1.800044-2 7.079458+0 1.775530-2 7.244360+0 1.726707-2 7.328245+0 1.702801-2 7.413102+0 1.679234-2 7.673615+0 1.610476-2 7.762471+0 1.588189-2 8.000000+0 1.531290-2 8.317638+0 1.460826-2 8.413951+0 1.440620-2 8.609938+0 1.401042-2 8.709636+0 1.382142-2 8.810489+0 1.363498-2 9.015711+0 1.327064-2 9.120108+0 1.309213-2 9.225714+0 1.291608-2 9.440609+0 1.257107-2 9.660509+0 1.223529-2 9.885531+0 1.190847-2 1.035142+1 1.128109-2 1.047129+1 1.112947-2 1.059254+1 1.097990-2 1.083927+1 1.069364-2 1.100000+1 1.051456-2 1.122018+1 1.027876-2 1.148154+1 1.001143-2 1.161449+1 9.880423-3 1.202264+1 9.497630-3 1.230269+1 9.250700-3 1.258925+1 9.010201-3 1.318257+1 8.547985-3 1.333521+1 8.436193-3 1.348963+1 8.325854-3 1.380384+1 8.114447-3 1.400000+1 7.987557-3 1.428894+1 7.807788-3 1.479108+1 7.513007-3 1.500000+1 7.396526-3 1.548817+1 7.137302-3 1.603245+1 6.867919-3 1.640590+1 6.693997-3 1.717908+1 6.359401-3 1.737801+1 6.278395-3 1.757924+1 6.198425-3 1.778279+1 6.119477-3 1.819701+1 5.967807-3 1.840772+1 5.893391-3 1.883649+1 5.747646-3 1.949845+1 5.535759-3 2.000000+1 5.384985-3 2.065380+1 5.199914-3 2.162719+1 4.945974-3 2.213095+1 4.823695-3 2.317395+1 4.588218-3 2.344229+1 4.531167-3 2.400000+1 4.416852-3 2.426610+1 4.364240-3 2.483133+1 4.258531-3 2.511886+1 4.206643-3 2.570396+1 4.104959-3 2.660725+1 3.957026-3 2.691535+1 3.908917-3 2.818383+1 3.722274-3 3.019952+1 3.458885-3 3.126079+1 3.334265-3 3.349654+1 3.098405-3 3.388442+1 3.060750-3 3.507519+1 2.950510-3 3.548134+1 2.914653-3 3.630781+1 2.845402-3 3.672823+1 2.811397-3 3.758374+1 2.744716-3 3.845918+1 2.679618-3 3.890451+1 2.647654-3 3.935501+1 2.616074-3 4.120975+1 2.493477-3 4.466836+1 2.292594-3 4.623810+1 2.211535-3 5.188000+1 1.961529-3 5.308844+1 1.915027-3 5.688529+1 1.782033-3 5.821032+1 1.739787-3 6.095369+1 1.659488-3 6.165950+1 1.640000-3 6.309573+1 1.601769-3 6.456542+1 1.564429-3 6.531306+1 1.546089-3 6.683439+1 1.510055-3 6.918310+1 1.457572-3 7.079458+1 1.423601-3 7.852356+1 1.280298-3 8.222427+1 1.221327-3 1.000000+2 9.995351-4 1.071519+2 9.312799-4 1.188502+2 8.384028-4 1.202264+2 8.286730-4 1.230269+2 8.095684-4 1.258925+2 7.909052-4 1.273503+2 7.817354-4 1.288250+2 7.726722-4 1.303167+2 7.637150-4 1.348963+2 7.374613-4 1.380384+2 7.204623-4 1.513561+2 6.563045-4 1.584893+2 6.264010-4 1.995262+2 4.961219-4 2.137962+2 4.626038-4 2.371374+2 4.167642-4 2.398833+2 4.119600-4 2.454709+2 4.025230-4 2.511886+2 3.933023-4 2.540973+2 3.887714-4 2.570396+2 3.842929-4 2.600160+2 3.798661-4 2.691535+2 3.668895-4 2.754229+2 3.584856-4 3.019952+2 3.267546-4 3.162278+2 3.119584-4 3.981072+2 2.474412-4 4.265795+2 2.308259-4 9.440609+2 1.040757-4 9.549926+2 1.028812-4 9.772372+2 1.005339-4 1.000000+3 9.824011-5 1.011579+3 9.711299-5 1.023293+3 9.599873-5 1.035142+3 9.489734-5 1.071519+3 9.166837-5 1.096478+3 8.957698-5 1.202264+3 8.167827-5 1.258925+3 7.799407-5 1.584893+3 6.192085-5 1.698244+3 5.777892-5 5.956621+4 1.645556-6 6.025596+4 1.626714-6 6.165950+4 1.589679-6 6.309573+4 1.553487-6 6.382635+4 1.535700-6 6.456542+4 1.518118-6 6.531306+4 1.500737-6 1.000000+5 9.801040-7 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.380000-6 6.380000-6 8.790000-6 6.380000-6 8.790000-6 8.697019-6 9.150000-6 8.721531-6 9.150000-6 8.881111-6 1.127000-5 8.919168-6 5.066000-5 8.931865-6 5.066000-5 1.094432-5 5.270000-5 1.111444-5 5.419000-5 1.120019-5 5.419000-5 1.202034-5 5.700000-5 1.225609-5 6.580000-5 1.285407-5 7.000000-5 1.319222-5 7.500000-5 1.367128-5 8.214000-5 1.446687-5 8.214000-5 1.588075-5 8.650000-5 1.667153-5 9.000000-5 1.720241-5 9.350000-5 1.760632-5 9.680000-5 1.785727-5 1.000000-4 1.798700-5 1.040000-4 1.801608-5 1.090000-4 1.790205-5 1.174898-4 1.751252-5 1.318257-4 1.677158-5 1.430000-4 1.630102-5 1.566751-4 1.586938-5 1.705000-4 1.555278-5 1.862087-4 1.529928-5 2.089296-4 1.506934-5 2.317395-4 1.494426-5 2.691535-4 1.486623-5 2.900500-4 1.486248-5 2.900500-4 1.690014-5 2.933000-4 1.696351-5 2.945300-4 1.702279-5 2.945300-4 1.812386-5 2.965000-4 1.825832-5 2.983000-4 1.848131-5 3.000000-4 1.880802-5 3.013000-4 1.914377-5 3.030000-4 1.969937-5 3.047000-4 2.037512-5 3.097000-4 2.262843-5 3.123000-4 2.366932-5 3.145000-4 2.439436-5 3.172000-4 2.507890-5 3.200000-4 2.559670-5 3.230000-4 2.599273-5 3.273407-4 2.637688-5 3.335000-4 2.670641-5 3.430000-4 2.697775-5 3.580000-4 2.715111-5 4.168694-4 2.728691-5 4.592900-4 2.730230-5 4.592900-4 2.898680-5 4.820600-4 2.931462-5 4.820600-4 2.983728-5 4.885000-4 3.008521-5 5.030000-4 3.035644-5 5.432503-4 3.066204-5 5.740300-4 3.085062-5 5.740300-4 3.215863-5 8.035261-4 3.381249-5 1.030000-3 3.514802-5 1.303167-3 3.645107-5 1.650000-3 3.778707-5 2.065380-3 3.905434-5 2.570396-3 4.027393-5 2.838700-3 4.081543-5 2.838700-3 5.956298-5 2.971800-3 5.960177-5 2.971800-3 6.237226-5 3.203900-3 6.250514-5 3.203900-3 6.620605-5 4.466836-3 6.759523-5 6.309573-3 6.914260-5 8.810489-3 7.074965-5 1.258925-2 7.252697-5 1.737801-2 7.415637-5 2.208700-2 7.532986-5 2.208700-2 7.889344-5 4.466836-2 7.938440-5 1.202264-1 7.975068-5 6.095369-1 7.995658-5 1.000000+5 7.997516-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.380000-6 0.0 5.066000-5 0.0 5.066000-5 5.58474-11 5.120000-5 5.73562-11 5.188000-5 5.89203-11 5.270000-5 6.05886-11 5.419000-5 6.29855-11 5.419000-5 9.53396-11 5.505000-5 9.81425-11 5.630000-5 1.01616-10 5.780000-5 1.05217-10 6.400000-5 1.18522-10 6.760830-5 1.27032-10 7.000000-5 1.33316-10 7.244360-5 1.40333-10 7.500000-5 1.48242-10 7.943282-5 1.63234-10 8.214000-5 1.72658-10 8.214000-5 1.87976-10 8.450000-5 1.97171-10 8.650000-5 2.04307-10 8.912509-5 2.12417-10 9.150000-5 2.18306-10 9.400000-5 2.22919-10 9.660509-5 2.25904-10 9.900000-5 2.27149-10 1.015000-4 2.27102-10 1.050000-4 2.25135-10 1.090000-4 2.21017-10 1.161449-4 2.11174-10 1.260000-4 1.97142-10 1.318257-4 1.89715-10 1.390000-4 1.81943-10 1.445440-4 1.76919-10 1.513561-4 1.71661-10 1.584893-4 1.67129-10 1.640590-4 1.64100-10 1.740000-4 1.59803-10 1.862087-4 1.55825-10 2.000000-4 1.52711-10 2.113489-4 1.50925-10 2.264644-4 1.49448-10 2.426610-4 1.48521-10 2.550000-4 1.48211-10 2.851018-4 1.48450-10 2.900500-4 1.48655-10 2.900500-4 1.65459-10 2.933000-4 1.66047-10 2.945300-4 1.66559-10 2.945300-4 8.359377-9 2.958000-4 8.303913-9 2.971000-4 8.284598-9 2.978000-4 8.289472-9 2.986200-4 8.320275-9 2.993000-4 8.369578-9 3.000000-4 8.445718-9 3.007000-4 8.550012-9 3.013000-4 8.664122-9 3.020000-4 8.830916-9 3.026000-4 9.001239-9 3.032000-4 9.203001-9 3.040000-4 9.522852-9 3.047000-4 9.837290-9 3.054921-4 1.025197-8 3.061000-4 1.060766-8 3.069000-4 1.112093-8 3.077000-4 1.168378-8 3.085000-4 1.228797-8 3.097000-4 1.328288-8 3.107000-4 1.414369-8 3.115000-4 1.486031-8 3.154000-4 1.849166-8 3.172000-4 2.008620-8 3.190000-4 2.153774-8 3.200000-4 2.227326-8 3.220000-4 2.359518-8 3.230000-4 2.417388-8 3.250000-4 2.518606-8 3.265000-4 2.583695-8 3.280000-4 2.639517-8 3.295000-4 2.687658-8 3.328000-4 2.776485-8 3.349654-4 2.823434-8 3.370000-4 2.861121-8 3.430000-4 2.947786-8 3.477000-4 2.997034-8 3.540000-4 3.043527-8 3.580000-4 3.064293-8 3.680000-4 3.094511-8 3.890451-4 3.116406-8 4.315191-4 3.142888-8 4.592900-4 3.148483-8 4.592900-4 3.548209-8 4.722000-4 3.597870-8 4.820600-4 3.627383-8 4.820600-4 3.895971-8 4.844000-4 3.947447-8 4.885000-4 4.006176-8 4.954502-4 4.071060-8 5.030000-4 4.113176-8 5.150000-4 4.150947-8 5.740300-4 4.275445-8 5.740300-4 4.620402-8 7.079458-4 4.932658-8 8.222426-4 5.174860-8 9.225714-4 5.363645-8 1.071519-3 5.617156-8 1.288250-3 5.926195-8 1.496236-3 6.177538-8 1.698244-3 6.391643-8 1.905461-3 6.583209-8 2.238721-3 6.848337-8 2.600160-3 7.085769-8 2.838700-3 7.221940-8 2.838700-3 7.966924-5 2.842900-3 7.965905-5 2.843300-3 7.974854-5 2.971800-3 7.953481-5 2.971800-3 9.331622-5 3.090295-3 9.352765-5 3.203900-3 9.356054-5 3.203900-3 9.623843-5 4.623810-3 9.660817-5 8.413951-3 9.656174-5 2.208700-2 9.582762-5 2.208700-2 1.329635-2 2.550000-2 1.338226-2 3.311311-2 1.350419-2 4.897788-2 1.361545-2 7.852356-2 1.369275-2 1.717908-1 1.374135-2 1.531087+0 1.377564-2 1.000000+5 1.377631-2 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.380000-6 0.0 8.790000-6 2.410000-6 8.790000-6 9.298081-8 8.850000-6 1.484176-7 9.150000-6 4.284690-7 9.150000-6 2.688889-7 9.350000-6 4.619431-7 9.850000-6 9.487479-7 1.060000-5 1.686758-6 1.230269-5 3.378887-6 5.066000-5 4.172814-5 5.066000-5 3.971562-5 5.419000-5 4.298974-5 5.419000-5 4.216956-5 7.161434-5 5.827675-5 8.214000-5 6.767296-5 8.214000-5 6.625906-5 9.000000-5 7.279737-5 9.680000-5 7.894251-5 1.050000-4 8.699573-5 1.280000-4 1.110420-4 1.621810-4 1.464508-4 2.317395-4 2.167951-4 2.900500-4 2.751874-4 2.900500-4 2.731497-4 2.945300-4 2.775070-4 2.945300-4 2.763978-4 3.020000-4 2.826357-4 3.154000-4 2.907352-4 3.273407-4 3.009377-4 3.680000-4 3.407730-4 4.592900-4 4.319562-4 4.592900-4 4.302677-4 4.820600-4 4.527091-4 4.820600-4 4.521838-4 5.740300-4 5.431366-4 5.740300-4 5.418252-4 2.238721-3 2.199145-3 2.838700-3 2.797812-3 2.838700-3 2.699468-3 2.971800-3 2.832663-3 2.971800-3 2.816112-3 3.203900-3 3.047834-3 3.203900-3 3.041456-3 2.208700-2 2.191584-2 2.208700-2 8.711757-3 2.265000-2 9.247315-3 3.150000-2 1.793765-2 5.623413-2 4.251030-2 1.000000+5 9.999998+4 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.208700-2 9.689589+3 2.235000-2 9.441158+3 2.265000-2 9.146600+3 2.300000-2 8.765060+3 2.371374-2 8.132198+3 2.550000-2 6.722980+3 2.851018-2 5.045781+3 3.349654-2 3.289231+3 4.265795-2 1.704851+3 5.308844-2 9.283759+2 6.606934-2 5.000366+2 8.222426-2 2.669429+2 1.059254-1 1.279955+2 1.927525-1 2.225883+1 2.371374-1 1.222536+1 2.800000-1 7.616725+0 3.235937-1 5.081128+0 3.672823-1 3.589960+0 4.120975-1 2.635391+0 4.570882-1 2.007938+0 5.069907-1 1.540174+0 5.623413-1 1.189551+0 6.165950-1 9.514357-1 6.839117-1 7.456112-1 7.585776-1 5.888971-1 8.413951-1 4.686537-1 9.225714-1 3.851935-1 1.000000+0 3.264879-1 1.148154+0 2.480293-1 1.250000+0 2.108054-1 1.428894+0 1.643057-1 1.584893+0 1.362694-1 1.757924+0 1.137607-1 1.949845+0 9.565257-2 2.264644+0 7.529063-2 2.630268+0 5.969907-2 3.019952+0 4.853349-2 3.507519+0 3.914426-2 4.120975+0 3.131248-2 4.841724+0 2.523813-2 5.754399+0 2.019129-2 7.000000+0 1.579700-2 8.609938+0 1.229532-2 1.059254+1 9.635590-3 1.348963+1 7.306532-3 1.778279+1 5.370323-3 2.426610+1 3.829946-3 3.548134+1 2.557863-3 5.821032+1 1.526786-3 1.071519+2 8.172541-4 2.137962+2 4.059774-4 4.265795+2 2.025567-4 1.698244+3 5.070539-5 1.000000+5 8.601700-7 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.208700-2 7.953800-5 1.000000+5 7.953800-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.208700-2 1.568400-2 1.000000+5 1.568400-2 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.208700-2 6.323462-3 1.000000+5 9.999998+4 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.203900-3 4.092180+4 3.450000-3 3.640880+4 3.935501-3 2.936360+4 4.216965-3 2.600247+4 5.248075-3 1.760414+4 5.688529-3 1.512101+4 6.800000-3 1.073018+4 7.673615-3 8.417647+3 8.709636-3 6.497271+3 1.000000-2 4.851420+3 1.122018-2 3.784512+3 1.318257-2 2.647648+3 1.531087-2 1.883099+3 1.737801-2 1.402469+3 2.000000-2 1.004654+3 2.317395-2 7.029872+2 2.691535-2 4.854684+2 3.150000-2 3.264580+2 3.672823-2 2.200156+2 4.315191-2 1.443295+2 5.128614-2 9.115150+1 6.095369-2 5.712869+1 7.328245-2 3.444598+1 9.015711-2 1.933607+1 1.135011-1 1.009559+1 2.187762-1 1.557368+0 2.630268-1 9.264788-1 3.090295-1 5.923075-1 3.548134-1 4.064951-1 4.027170-1 2.898584-1 4.518559-1 2.145858-1 5.069907-1 1.600272-1 5.623413-1 1.237602-1 6.237348-1 9.638925-2 6.839117-1 7.770514-2 7.585776-1 6.147015-2 8.413951-1 4.897926-2 9.440609-1 3.831987-2 1.023293+0 3.249903-2 1.148154+0 2.583753-2 1.244515+0 2.214398-2 1.428894+0 1.712538-2 1.603245+0 1.391931-2 1.778279+0 1.162842-2 1.972423+0 9.784970-3 2.290868+0 7.706771-3 2.660725+0 6.113903-3 3.054921+0 4.973570-3 3.548134+0 4.013835-3 4.168694+0 3.212581-3 4.897788+0 2.590726-3 5.821032+0 2.073675-3 7.079458+0 1.623622-3 8.810489+0 1.246619-3 1.100000+1 9.612800-4 1.400000+1 7.302400-4 1.840772+1 5.388246-4 2.511886+1 3.846276-4 3.672823+1 2.570581-4 6.165950+1 1.499325-4 1.202264+2 7.575874-5 2.398833+2 3.767110-5 9.549926+2 9.404955-6 6.025596+4 1.487254-7 1.000000+5 8.964300-8 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.203900-3 9.129200-5 1.000000+5 9.129200-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.203900-3 1.143900-4 1.000000+5 1.143900-4 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.203900-3 2.998218-3 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.971800-3 9.086600+4 3.015000-3 8.861070+4 3.070000-3 8.534800+4 3.120000-3 8.171500+4 3.180000-3 7.823500+4 3.467369-3 6.286700+4 3.758374-3 5.079300+4 4.623810-3 2.897200+4 5.011872-3 2.321200+4 6.000000-3 1.398600+4 7.244360-3 8.087900+3 8.035261-3 5.952700+3 9.549926-3 3.542600+3 1.150000-2 2.003000+3 1.364583-2 1.173400+3 1.584893-2 7.296900+2 1.840772-2 4.510000+2 2.162719-2 2.668700+2 2.570396-2 1.510600+2 3.090295-2 8.175200+1 3.801894-2 4.066900+1 4.841724-2 1.786300+1 6.760830-2 5.681600+0 1.047129-1 1.263100+0 1.318257-1 5.761200-1 1.584893-1 3.095400-1 1.862087-1 1.809900-1 2.213095-1 1.026400-1 2.483133-1 7.076600-2 2.754229-1 5.096700-2 3.235937-1 3.094300-2 3.630781-1 2.181331-2 4.027170-1 1.603019-2 4.466836-1 1.185993-2 4.954502-1 8.838731-3 5.495409-1 6.636162-3 6.095369-1 5.020825-3 6.683439-1 3.944092-3 7.328245-1 3.118982-3 8.317638-1 2.280658-3 8.912509-1 1.932059-3 9.549926-1 1.648439-3 1.011579+0 1.453812-3 1.096478+0 1.229760-3 1.174898+0 1.072453-3 1.288250+0 9.020698-4 1.445440+0 7.326643-4 1.698244+0 5.513545-4 1.883649+0 4.622018-4 2.089296+0 3.904680-4 2.426610+0 3.083934-4 2.818383+0 2.454083-4 3.162278+0 2.071228-4 3.672823+0 1.674487-4 4.315191+0 1.342486-4 5.069907+0 1.084397-4 6.095369+0 8.566560-5 7.328245+0 6.815251-5 9.120108+0 5.239664-5 1.148154+1 4.006275-5 1.479108+1 3.006472-5 1.949845+1 2.215268-5 2.660725+1 1.583691-5 3.845918+1 1.072514-5 6.456542+1 6.261128-6 1.273503+2 3.128969-6 2.540973+2 1.556538-6 1.011579+3 3.887400-7 6.382635+4 6.148091-9 1.000000+5 3.925300-9 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.971800-3 6.977500-5 1.000000+5 6.977500-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.971800-3 1.301400-4 1.000000+5 1.301400-4 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.971800-3 2.771885-3 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.838700-3 1.960300+5 2.842900-3 1.952095+5 2.843300-3 1.959135+5 2.990000-3 1.705612+5 3.054921-3 1.620915+5 3.311311-3 1.316874+5 3.589219-3 1.059127+5 4.466836-3 5.793187+4 4.900000-3 4.467560+4 5.800000-3 2.754516+4 6.918310-3 1.635662+4 7.673615-3 1.198610+4 9.120108-3 7.071343+3 1.083927-2 4.127880+3 1.258925-2 2.567881+3 1.445440-2 1.646545+3 1.678804-2 1.010658+3 1.972423-2 5.930676+2 2.344229-2 3.323691+2 2.786121-2 1.848615+2 3.311311-2 1.021266+2 4.027170-2 5.173962+1 5.011872-2 2.400566+1 6.531306-2 9.395479+0 1.148154-1 1.261152+0 1.412538-1 6.071681-1 1.698244-1 3.192593-1 1.949845-1 1.984449-1 2.213095-1 1.291893-1 2.511886-1 8.472575-2 2.818383-1 5.817181-2 3.126079-1 4.175958-2 3.467369-1 3.019933-2 3.801894-1 2.279227-2 4.168694-1 1.731652-2 4.570882-1 1.325067-2 5.011872-1 1.021620-2 5.495409-1 7.936682-3 5.956621-1 6.404989-3 6.531306-1 5.052574-3 7.161434-1 4.016831-3 8.128305-1 2.960957-3 8.810489-1 2.455499-3 9.440609-1 2.105349-3 1.011579+0 1.818047-3 1.109175+0 1.507418-3 1.202264+0 1.287609-3 1.333521+0 1.060534-3 1.500000+0 8.575499-4 1.698244+0 6.887479-4 1.883649+0 5.774840-4 2.089296+0 4.878655-4 2.426610+0 3.852844-4 2.818383+0 3.065794-4 3.162278+0 2.587489-4 3.672823+0 2.091915-4 4.315191+0 1.677131-4 5.069907+0 1.354662-4 6.095369+0 1.070171-4 7.328245+0 8.513921-5 9.120108+0 6.545699-5 1.148154+1 5.004851-5 1.479108+1 3.755828-5 1.949845+1 2.767359-5 2.660725+1 1.978419-5 3.890451+1 1.323730-5 6.531306+1 7.729576-6 1.288250+2 3.863416-6 2.570396+2 1.922138-6 1.023293+3 4.800662-7 6.456542+4 7.592605-9 1.000000+5 4.903600-9 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.838700-3 6.701300-5 1.000000+5 6.701300-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.838700-3 1.113000-4 1.000000+5 1.113000-4 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.838700-3 2.660387-3 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.740300-4 1.262445+5 6.550000-4 1.101994+5 7.852356-4 8.896010+4 8.128305-4 8.524979+4 9.885531-4 6.540319+4 1.071519-3 5.824423+4 1.273503-3 4.490103+4 1.412538-3 3.814689+4 1.659587-3 2.934533+4 1.905461-3 2.324015+4 2.187762-3 1.829576+4 2.570396-3 1.372463+4 3.019952-3 1.021221+4 3.548134-3 7.539848+3 4.168694-3 5.525647+3 4.897788-3 4.019581+3 5.754399-3 2.902363+3 6.760830-3 2.079616+3 7.943282-3 1.478725+3 9.332543-3 1.043404+3 1.096478-2 7.306918+2 1.288250-2 5.077949+2 1.513561-2 3.502420+2 1.778279-2 2.396695+2 2.089296-2 1.627534+2 2.454709-2 1.096519+2 2.884032-2 7.331091+1 3.388442-2 4.864785+1 4.000000-2 3.165420+1 4.731513-2 2.033456+1 5.623413-2 1.280515+1 6.760830-2 7.759006+0 8.222426-2 4.520053+0 1.000000-1 2.614580+0 1.364583-1 1.084374+0 2.317395-1 2.411889-1 2.786121-1 1.439641-1 3.273407-1 9.235346-2 3.758374-1 6.359783-2 4.265795-1 4.552160-2 4.786301-1 3.383366-2 5.308844-1 2.607706-2 5.888437-1 2.023557-2 6.531306-1 1.581769-2 7.244360-1 1.245694-2 8.035261-1 9.884587-3 8.810489-1 8.094769-3 9.660509-1 6.677025-3 1.109175+0 5.060916-3 1.202264+0 4.325677-3 1.396368+0 3.267685-3 1.566751+0 2.651381-3 1.737801+0 2.211722-3 1.927525+0 1.858054-3 2.213095+0 1.488218-3 2.570396+0 1.178604-3 2.951209+0 9.569012-4 3.388442+0 7.834042-4 3.935501+0 6.355418-4 4.623810+0 5.111728-4 5.432503+0 4.141746-4 6.606934+0 3.233945-4 8.000000+0 2.559100-4 9.885531+0 1.990219-4 1.258925+1 1.505897-4 1.640590+1 1.118677-4 2.213095+1 8.061719-5 3.126079+1 5.571978-5 4.623810+1 3.695547-5 7.079458+1 2.378902-5 1.380384+2 1.204145-5 2.754229+2 5.993723-6 1.096478+3 1.497546-6 1.000000+5 1.639300-8 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.740300-4 6.202500-5 1.000000+5 6.202500-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.740300-4 1.249700-7 1.000000+5 1.249700-7 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.740300-4 5.118800-4 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.820600-4 1.104224+5 4.826000-4 1.155140+5 4.831000-4 1.198356+5 4.836500-4 1.240808+5 4.844000-4 1.291520+5 4.852000-4 1.337898+5 4.860000-4 1.379194+5 4.870000-4 1.424316+5 4.885000-4 1.481618+5 4.900000-4 1.530272+5 4.918000-4 1.579140+5 4.940000-4 1.627200+5 4.960000-4 1.661504+5 4.980000-4 1.688180+5 5.000000-4 1.708570+5 5.030000-4 1.728936+5 5.060000-4 1.739590+5 5.100000-4 1.742914+5 5.150000-4 1.736078+5 5.900000-4 1.596604+5 6.606934-4 1.462453+5 6.918310-4 1.403144+5 7.328245-4 1.325321+5 7.852356-4 1.228789+5 8.511380-4 1.117899+5 9.015711-4 1.037847+5 9.885531-4 9.127143+4 1.071519-3 8.110087+4 1.150000-3 7.265780+4 1.273503-3 6.142172+4 1.400000-3 5.219240+4 1.531087-3 4.440194+4 1.698244-3 3.656934+4 1.862087-3 3.056896+4 2.089296-3 2.422662+4 2.300000-3 1.981890+4 2.570396-3 1.559294+4 2.851018-3 1.238109+4 3.198895-3 9.510819+3 3.589219-3 7.249328+3 4.027170-3 5.485301+3 4.518559-3 4.120668+3 5.069907-3 3.073901+3 5.688529-3 2.277542+3 6.382635-3 1.676410+3 7.244360-3 1.187861+3 8.222426-3 8.354104+2 9.332543-3 5.833717+2 1.059254-2 4.046175+2 1.216186-2 2.694635+2 1.396368-2 1.781108+2 1.603245-2 1.169042+2 1.840772-2 7.619160+1 2.137962-2 4.756494+1 2.511886-2 2.841727+1 2.985383-2 1.623266+1 3.589219-2 8.860096+0 4.365158-2 4.620277+0 5.495409-2 2.130291+0 7.585776-2 7.138883-1 1.148154-1 1.746159-1 1.428894-1 8.356341-2 1.717908-1 4.520228-2 1.972423-1 2.870218-2 2.290868-1 1.768048-2 2.600160-1 1.181119-2 2.951209-1 7.945960-3 3.349654-1 5.385615-3 3.758374-1 3.809990-3 4.168694-1 2.809344-3 4.623810-1 2.085856-3 5.128614-1 1.559536-3 5.688529-1 1.174511-3 6.237348-1 9.188825-4 6.839117-1 7.235942-4 7.498942-1 5.735810-4 8.609938-1 4.086356-4 9.225714-1 3.472268-4 9.772372-1 3.049690-4 1.047129+0 2.631063-4 1.122018+0 2.284709-4 1.202264+0 1.996962-4 1.333521+0 1.648083-4 1.566751+0 1.236198-4 1.757924+0 1.011133-4 1.949845+0 8.496533-5 2.238721+0 6.809168-5 2.600160+0 5.395573-5 3.000000+0 4.351800-5 3.467369+0 3.532963-5 4.027170+0 2.869281-5 4.731513+0 2.310219-5 5.623413+0 1.846332-5 6.839116+0 1.443648-5 8.413951+0 1.122246-5 1.035142+1 8.788481-6 1.318257+1 6.659345-6 1.737801+1 4.891381-6 2.344229+1 3.529861-6 3.388442+1 2.384275-6 5.308844+1 1.491651-6 8.222427+1 9.509947-7 1.584893+2 4.878144-7 3.162278+2 2.430156-7 1.258925+3 6.076071-8 1.000000+5 7.63830-10 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.820600-4 4.720500-5 1.000000+5 4.720500-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.820600-4 1.282100-7 1.000000+5 1.282100-7 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.820600-4 4.347268-4 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.592900-4 3.392813+5 4.631000-4 3.501714+5 4.722000-4 3.672636+5 4.830000-4 3.822541+5 4.954502-4 3.906985+5 5.080000-4 3.940318+5 5.128614-4 3.939615+5 5.248075-4 3.910728+5 5.432503-4 3.816953+5 5.720000-4 3.661580+5 6.456542-4 3.266967+5 6.850000-4 3.066312+5 7.328245-4 2.835952+5 8.035261-4 2.527866+5 8.511380-4 2.339421+5 9.225714-4 2.081151+5 1.023293-3 1.776549+5 1.109175-3 1.559309+5 1.216186-3 1.332106+5 1.350000-3 1.106576+5 1.479108-3 9.335092+4 1.650000-3 7.558400+4 1.819701-3 6.211368+4 2.018366-3 5.011301+4 2.238721-3 4.014488+4 2.500000-3 3.146428+4 2.800000-3 2.430776+4 3.126079-3 1.877715+4 3.507519-3 1.423272+4 3.935501-3 1.070810+4 4.415704-3 7.998477+3 4.954502-3 5.933088+3 5.559043-3 4.371285+3 6.309573-3 3.099446+3 7.161434-3 2.180313+3 8.128305-3 1.522123+3 9.225714-3 1.054930+3 1.047129-2 7.260021+2 1.200000-2 4.820840+2 1.380384-2 3.139377+2 1.584893-2 2.041031+2 1.819701-2 1.317316+2 2.113489-2 8.134085+1 2.454709-2 4.984621+1 2.884032-2 2.918703+1 3.388442-2 1.696171+1 4.073803-2 9.048325+0 4.954502-2 4.603972+0 6.237348-2 2.061581+0 1.258925-1 1.738065-1 1.531088-1 8.775903-2 1.798871-1 5.032081-2 2.065380-1 3.143404-2 2.344229-1 2.056572-2 2.630268-1 1.408031-2 2.951209-1 9.711833-3 3.273407-1 7.001043-3 3.630781-1 5.084238-3 4.000000-1 3.797715-3 4.365158-1 2.938266-3 4.786301-1 2.257611-3 5.188000-1 1.803972-3 5.688529-1 1.406324-3 6.165950-1 1.138317-3 6.760830-1 9.007093-4 7.413102-1 7.182461-4 8.317638-1 5.463201-4 9.015711-1 4.539650-4 9.660509-1 3.900290-4 1.035142+0 3.375558-4 1.135011+0 2.803542-4 1.230269+0 2.399457-4 1.364583+0 1.979423-4 1.584893+0 1.513471-4 1.778279+0 1.238809-4 1.972423+0 1.042134-4 2.290868+0 8.207850-5 2.660725+0 6.511379-5 3.054921+0 5.296869-5 3.548134+0 4.274704-5 4.168694+0 3.421404-5 4.897788+0 2.759213-5 5.821032+0 2.208546-5 7.079458+0 1.729242-5 8.709636+0 1.346061-5 1.083927+1 1.041366-5 1.380384+1 7.901722-6 1.819701+1 5.811634-6 2.483133+1 4.147188-6 3.630781+1 2.770987-6 6.095369+1 1.615805-6 1.188502+2 8.163436-7 2.371374+2 4.058832-7 9.440609+2 1.013254-7 5.956621+4 1.602294-9 1.000000+5 9.54710-10 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.592900-4 4.667600-5 1.000000+5 4.667600-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.592900-4 7.745800-8 1.000000+5 7.745800-8 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.592900-4 4.125365-4 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.945300-4 8.056520+4 2.958000-4 8.019800+4 2.970000-4 8.047240+4 2.978000-4 8.107360+4 2.986200-4 8.213182+4 2.993000-4 8.343880+4 3.000000-4 8.525760+4 3.007000-4 8.761800+4 3.013000-4 9.013880+4 3.020000-4 9.374440+4 3.026000-4 9.747720+4 3.032000-4 1.018680+5 3.037000-4 1.060904+5 3.042000-4 1.108616+5 3.047000-4 1.162232+5 3.054921-4 1.260487+5 3.061000-4 1.347880+5 3.069000-4 1.480228+5 3.077000-4 1.633900+5 3.085000-4 1.810500+5 3.123000-4 2.994028+5 3.135000-4 3.487048+5 3.145000-4 3.937152+5 3.154000-4 4.368080+5 3.165000-4 4.923040+5 3.172000-4 5.288240+5 3.183000-4 5.874520+5 3.190000-4 6.252480+5 3.200000-4 6.794080+5 3.210000-4 7.332200+5 3.220000-4 7.861960+5 3.230000-4 8.379360+5 3.240000-4 8.881480+5 3.250000-4 9.366240+5 3.265000-4 1.005884+6 3.280000-4 1.070600+6 3.295000-4 1.131100+6 3.311311-4 1.192065+6 3.328000-4 1.249408+6 3.349654-4 1.317070+6 3.370000-4 1.373632+6 3.390000-4 1.423388+6 3.410000-4 1.467180+6 3.430000-4 1.505716+6 3.450000-4 1.539004+6 3.477000-4 1.576184+6 3.507519-4 1.607826+6 3.540000-4 1.631544+6 3.580000-4 1.648520+6 3.630781-4 1.655484+6 3.680000-4 1.651544+6 3.758374-4 1.633369+6 3.890451-4 1.590595+6 4.050000-4 1.532224+6 4.191700-4 1.473791+6 4.315191-4 1.418024+6 4.518559-4 1.322934+6 4.786301-4 1.204397+6 5.011872-4 1.112249+6 5.248075-4 1.021279+6 5.580000-4 9.039280+5 5.900000-4 8.037920+5 6.350000-4 6.839960+5 6.760830-4 5.920606+5 7.328245-4 4.873509+5 8.035261-4 3.872225+5 8.709636-4 3.142885+5 9.700000-4 2.357388+5 1.059254-3 1.852402+5 1.190000-3 1.334444+5 1.303167-3 1.027168+5 1.462177-3 7.311661+4 1.603245-3 5.538307+4 1.800000-3 3.876572+4 2.000000-3 2.781564+4 2.238721-3 1.936736+4 2.540973-3 1.278675+4 2.884032-3 8.370961+3 3.235937-3 5.654728+3 3.630781-3 3.794782+3 4.073803-3 2.529872+3 4.623810-3 1.607113+3 5.188000-3 1.056654+3 5.888437-3 6.613368+2 6.606934-3 4.291689+2 7.500000-3 2.647884+2 8.609938-3 1.553795+2 1.000000-2 8.642560+1 1.148154-2 4.992048+1 1.333521-2 2.733254+1 1.548817-2 1.485011+1 1.819701-2 7.636078+0 2.162719-2 3.714434+0 2.630268-2 1.627589+0 3.349654-2 5.821962-1 5.011872-2 1.037828-1 7.079458-2 2.361707-2 8.810489-2 9.310383-3 1.059254-1 4.281464-3 1.244515-1 2.184974-3 1.445440-1 1.178777-3 1.659587-1 6.718424-4 1.883649-1 4.042325-4 2.113489-1 2.565117-4 2.371374-1 1.639749-4 2.660725-1 1.056266-4 2.951209-1 7.159370-5 3.273407-1 4.883304-5 3.589219-1 3.497769-5 3.935501-1 2.522204-5 4.315191-1 1.832955-5 4.731513-1 1.341818-5 5.248075-1 9.523819-6 5.754399-1 7.072042-6 6.309573-1 5.290169-6 6.918310-1 3.987868-6 7.585776-1 3.029914-6 8.222427-1 2.399702-6 8.709636-1 2.041879-6 9.225714-1 1.749327-6 9.660509-1 1.555586-6 1.011579+0 1.392799-6 1.059254+0 1.256147-6 1.109175+0 1.140215-6 1.174898+0 1.017543-6 1.258925+0 8.943960-7 1.364583+0 7.749034-7 1.531087+0 6.355288-7 1.778279+0 4.893992-7 1.949845+0 4.191673-7 2.238721+0 3.359077-7 2.600160+0 2.661743-7 3.000000+0 2.146800-7 3.467369+0 1.742818-7 4.027170+0 1.415424-7 4.731513+0 1.139717-7 5.623413+0 9.108502-8 6.839116+0 7.121718-8 8.317638+0 5.613138-8 1.035142+1 4.335417-8 1.318257+1 3.285179-8 1.717908+1 2.443820-8 2.317395+1 1.763089-8 3.349654+1 1.190541-8 5.188000+1 7.536616-9 7.852356+1 4.917688-9 1.513561+2 2.521220-9 3.019952+2 1.255693-9 1.202264+3 3.13889-10 1.000000+5 3.76810-12 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.945300-4 2.864500-5 1.000000+5 2.864500-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.945300-4 8.664500-8 1.000000+5 8.664500-8 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.945300-4 2.657984-4 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.900500-4 1.145058+5 2.912000-4 1.147758+5 2.923000-4 1.156614+5 2.933000-4 1.172286+5 2.942000-4 1.194432+5 2.950000-4 1.222506+5 2.958000-4 1.260204+5 2.965000-4 1.302468+5 2.971000-4 1.346682+5 2.976000-4 1.389840+5 2.983000-4 1.461084+5 2.990000-4 1.546446+5 2.997000-4 1.647672+5 3.004200-4 1.770297+5 3.011000-4 1.905168+5 3.019952-4 2.113941+5 3.030000-4 2.395026+5 3.040000-4 2.728692+5 3.073000-4 4.255146+5 3.085000-4 4.976358+5 3.097000-4 5.779140+5 3.107000-4 6.502740+5 3.115000-4 7.111500+5 3.126079-4 7.988738+5 3.135000-4 8.715420+5 3.145000-4 9.542160+5 3.154000-4 1.028922+6 3.165000-4 1.119666+6 3.176000-4 1.208856+6 3.185000-4 1.280112+6 3.197000-4 1.372116+6 3.210000-4 1.467366+6 3.225000-4 1.571118+6 3.240000-4 1.668108+6 3.255000-4 1.758444+6 3.273407-4 1.860567+6 3.293400-4 1.961202+6 3.311311-4 2.042793+6 3.335000-4 2.139018+6 3.360000-4 2.226930+6 3.388442-4 2.310822+6 3.410500-4 2.364734+6 3.440000-4 2.422638+6 3.470000-4 2.466354+6 3.507519-4 2.502390+6 3.550000-4 2.522862+6 3.600000-4 2.526618+6 3.650100-4 2.515919+6 3.740000-4 2.478090+6 3.890451-4 2.397489+6 4.050000-4 2.302374+6 4.168694-4 2.223569+6 4.315191-4 2.118953+6 4.518559-4 1.971952+6 4.841724-4 1.756103+6 5.080000-4 1.610514+6 5.308844-4 1.478993+6 5.623413-4 1.314673+6 6.100000-4 1.102410+6 6.531306-4 9.441909+5 7.000000-4 8.004720+5 7.673615-4 6.375237+5 8.317638-4 5.187852+5 9.120108-4 4.064865+5 1.000000-3 3.165936+5 1.110000-3 2.366436+5 1.230269-3 1.763449+5 1.364583-3 1.302089+5 1.513561-3 9.547543+4 1.678804-3 6.953788+4 1.883649-3 4.850727+4 2.089296-3 3.484318+4 2.344229-3 2.395306+4 2.660725-3 1.572715+4 3.000000-3 1.047366+4 3.349654-3 7.162901+3 3.715352-3 4.984518+3 4.168694-3 3.310204+3 4.731513-3 2.093484+3 5.370318-3 1.313581+3 6.025596-3 8.540425+2 6.760830-3 5.518409+2 7.585776-3 3.544921+2 8.609938-3 2.165133+2 1.000000-2 1.198506+2 1.148154-2 6.890709+1 1.318257-2 3.933387+1 1.513561-2 2.229783+1 1.757924-2 1.196443+1 2.065380-2 6.072786+0 2.454709-2 2.913673+0 3.019952-2 1.196930+0 3.890451-2 4.000133-1 7.585776-2 2.193455-2 9.332543-2 8.961359-3 1.096478-1 4.498312-3 1.318257-1 2.062005-3 1.500000-1 1.202167-3 1.678804-1 7.566723-4 1.862087-1 4.974269-4 2.065380-1 3.292364-4 2.290868-1 2.195388-4 2.511886-1 1.541974-4 2.754229-1 1.090710-4 3.000000-1 7.963690-5 3.273407-1 5.821596-5 3.548134-1 4.388294-5 3.845918-1 3.330025-5 4.120975-1 2.643774-5 4.518559-1 1.959064-5 4.954502-1 1.462459-5 5.432503-1 1.096664-5 5.888437-1 8.587803-6 6.095369-1 7.761493-6 6.531306-1 6.389944-6 6.998420-1 5.296321-6 7.585776-1 4.284732-6 8.035261-1 3.694497-6 8.609938-1 3.082023-6 9.120108-1 2.665052-6 9.660509-1 2.320338-6 1.011579+0 2.089552-6 1.071519+0 1.845751-6 1.135011+0 1.640704-6 1.202264+0 1.467278-6 1.318257+0 1.238823-6 1.737801+0 7.625732-7 1.927525+0 6.400272-7 2.187762+0 5.219438-7 2.540973+0 4.131218-7 2.917427+0 3.352260-7 3.311311+0 2.788046-7 3.845918+0 2.259283-7 4.518559+0 1.815239-7 5.308844+0 1.469297-7 6.456542+0 1.146180-7 7.762471+0 9.139577-8 9.660509+0 7.041572-8 1.230269+1 5.323719-8 1.603245+1 3.952295-8 2.162719+1 2.846411-8 3.019952+1 1.990444-8 4.466836+1 1.319294-8 6.918310+1 8.388327-9 1.348963+2 4.244952-9 2.691535+2 2.112537-9 1.071519+3 5.27772-10 1.000000+5 5.64550-12 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.900500-4 2.865100-5 1.000000+5 2.865100-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.900500-4 2.62370-10 1.000000+5 2.62370-10 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.900500-4 2.613987-4 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.214000-5 1.724284+5 8.413951-5 1.765791+5 8.609938-5 1.796157+5 8.912509-5 1.828533+5 9.332543-5 1.855211+5 9.900000-5 1.874830+5 1.080000-4 1.887546+5 1.174898-4 1.886320+5 1.260000-4 1.871662+5 1.333521-4 1.848003+5 1.412538-4 1.811468+5 1.496236-4 1.762216+5 1.584893-4 1.701818+5 1.690000-4 1.624520+5 1.819701-4 1.527844+5 2.000000-4 1.400962+5 2.220000-4 1.263098+5 2.426610-4 1.148467+5 2.650000-4 1.037798+5 2.917427-4 9.218787+4 3.311311-4 7.817288+4 3.758374-4 6.581337+4 4.216965-4 5.585393+4 4.841724-4 4.549586+4 5.623413-4 3.618024+4 6.606934-4 2.801450+4 7.852356-4 2.114450+4 9.660509-4 1.494644+4 1.188502-3 1.047989+4 1.462177-3 7.293999+3 1.778279-3 5.143668+3 2.137962-3 3.677613+3 2.540973-3 2.666762+3 3.054921-3 1.878577+3 3.672823-3 1.312697+3 4.415704-3 9.100568+2 5.308844-3 6.259675+2 6.309573-3 4.375518+2 7.498942-3 3.035799+2 8.810489-3 2.142734+2 1.035142-2 1.501763+2 1.216186-2 1.044918+2 1.428894-2 7.217303+1 1.678804-2 4.948227+1 1.972423-2 3.367287+1 2.317395-2 2.274032+1 2.722701-2 1.524392+1 3.198895-2 1.014586+1 3.758374-2 6.702733+0 4.466836-2 4.265708+0 5.248075-2 2.778138+0 6.309573-2 1.688322+0 7.673615-2 9.868778-1 9.225714-2 5.906689-1 1.202264-1 2.798694-1 2.264644-1 4.642015-2 2.722701-1 2.769311-2 3.198895-1 1.774947-2 3.672823-1 1.220849-2 4.168694-1 8.726801-3 4.677351-1 6.477129-3 5.188000-1 4.985038-3 5.754399-1 3.862454-3 6.382635-1 3.014208-3 7.079458-1 2.369882-3 7.852356-1 1.877430-3 8.709636-1 1.497693-3 9.549926-1 1.234246-3 1.071519+0 9.787363-4 1.188600+0 7.981800-4 1.380384+0 6.026471-4 1.548817+0 4.886246-4 1.717908+0 4.073053-4 1.905461+0 3.418939-4 2.137962+0 2.838322-4 2.483133+0 2.244051-4 2.851018+0 1.818774-4 3.198895+0 1.535916-4 3.715352+0 1.242462-4 4.365158+0 9.966468-5 5.128614+0 8.054444-5 6.165950+0 6.365927-5 7.413102+0 5.066891-5 9.225714+0 3.897162-5 1.161449+1 2.980958-5 1.500000+1 2.231500-5 2.000000+1 1.624600-5 2.691535+1 1.179529-5 3.845918+1 8.086276-6 6.456542+1 4.720784-6 1.258925+2 2.386874-6 2.511886+2 1.187288-6 1.000000+3 2.965000-7 6.309573+4 4.689197-9 1.000000+5 2.959600-9 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.214000-5 2.647400-5 1.000000+5 2.647400-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.214000-5 3.02740-10 1.000000+5 3.02740-10 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.214000-5 5.566570-5 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.419000-5 1.270300+6 5.450000-5 1.269670+6 5.505000-5 1.260816+6 5.560000-5 1.245130+6 5.630000-5 1.217944+6 5.700000-5 1.185932+6 5.780000-5 1.144964+6 5.888437-5 1.085881+6 6.025596-5 1.009887+6 6.165950-5 9.334122+5 6.350000-5 8.383160+5 6.580000-5 7.306080+5 6.900000-5 6.028480+5 7.673615-5 3.874823+5 8.000000-5 3.275700+5 8.300000-5 2.842880+5 8.570000-5 2.530640+5 8.810489-5 2.302550+5 9.070000-5 2.099520+5 9.332543-5 1.931180+5 9.580000-5 1.800248+5 9.800000-5 1.702370+5 1.010000-4 1.591806+5 1.040000-4 1.502570+5 1.071519-4 1.426970+5 1.100000-4 1.371412+5 1.135011-4 1.316267+5 1.174898-4 1.267247+5 1.220000-4 1.225166+5 1.273503-4 1.188508+5 1.333521-4 1.159119+5 1.412538-4 1.132278+5 1.757924-4 1.063071+5 1.927525-4 1.029372+5 2.089296-4 9.944501+4 2.264644-4 9.540127+4 2.454709-4 9.084411+4 2.660725-4 8.582957+4 2.900000-4 8.009880+4 3.162278-4 7.416876+4 3.467369-4 6.782847+4 3.801894-4 6.156709+4 4.168694-4 5.543476+4 4.600000-4 4.917040+4 5.150000-4 4.249880+4 5.688529-4 3.709730+4 6.309573-4 3.195876+4 7.079458-4 2.688226+4 7.943282-4 2.243497+4 9.015711-4 1.823125+4 1.011579-3 1.499127+4 1.150000-3 1.195682+4 1.288250-3 9.721710+3 1.450000-3 7.782040+3 1.621810-3 6.262776+3 1.819701-3 4.974800+3 2.041738-3 3.924593+3 2.290868-3 3.073040+3 2.570396-3 2.389009+3 2.884032-3 1.844048+3 3.235937-3 1.413239+3 3.630781-3 1.075589+3 4.120975-3 7.904500+2 4.677351-3 5.763669+2 5.308844-3 4.170533+2 6.025596-3 2.994914+2 6.839116-3 2.134294+2 7.762471-3 1.509989+2 8.810489-3 1.060551+2 1.000000-2 7.395700+1 1.148154-2 4.953117+1 1.318257-2 3.291974+1 1.513561-2 2.171924+1 1.757924-2 1.373188+1 2.041738-2 8.614212+0 2.398833-2 5.171943+0 2.818383-2 3.083529+0 3.311311-2 1.824796+0 3.981072-2 9.938621-1 4.897788-2 4.976876-1 6.382635-2 2.037746-1 1.188502-1 2.476690-2 1.479108-1 1.187739-2 1.757924-1 6.692228-3 2.065380-1 3.946359-3 2.371374-1 2.527025-3 2.691535-1 1.690583-3 3.054921-1 1.139186-3 3.427678-1 8.012241-4 3.845918-1 5.676932-4 4.265795-1 4.192428-4 4.731513-1 3.117634-4 5.248075-1 2.334948-4 5.821032-1 1.761831-4 6.382635-1 1.380805-4 6.998420-1 1.089176-4 7.673615-1 8.647598-5 8.609938-1 6.519462-5 9.225714-1 5.537817-5 9.772372-1 4.862716-5 1.047129+0 4.194454-5 1.122018+0 3.641992-5 1.202264+0 3.184115-5 1.348963+0 2.574616-5 1.603245+0 1.892399-5 1.798871+0 1.550153-5 1.995262+0 1.304810-5 2.317395+0 1.028082-5 2.691535+0 8.161259-6 3.054921+0 6.757008-6 3.548134+0 5.453073-6 4.168694+0 4.364540-6 4.897788+0 3.519806-6 5.821032+0 2.817341-6 7.079458+0 2.205882-6 8.709636+0 1.717051-6 1.083927+1 1.328405-6 1.380384+1 1.007984-6 1.819701+1 7.413647-7 2.483133+1 5.290411-7 3.630781+1 3.534890-7 6.095369+1 2.061201-7 1.188502+2 1.041374-7 2.371374+2 5.177688-8 9.440609+2 1.292542-8 5.956621+4 2.04399-10 1.000000+5 1.21790-10 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.419000-5 1.795000-5 1.000000+5 1.795000-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.419000-5 3.29260-10 1.000000+5 3.29260-10 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.419000-5 3.623967-5 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.066000-5 2.715408+6 5.120000-5 2.686476+6 5.188000-5 2.630169+6 5.270000-5 2.542636+6 5.370318-5 2.420182+6 5.450000-5 2.317444+6 5.580000-5 2.148312+6 5.754399-5 1.929498+6 5.956621-5 1.696773+6 6.237348-5 1.417758+6 6.918310-5 9.357138+5 7.244360-5 7.823938+5 7.500000-5 6.881640+5 7.737400-5 6.171477+5 7.943282-5 5.661643+5 8.150000-5 5.232160+5 8.400000-5 4.803840+5 8.650000-5 4.456560+5 8.912509-5 4.161399+5 9.150000-5 3.943392+5 9.440609-5 3.726760+5 9.660509-5 3.592266+5 1.000000-4 3.423644+5 1.035142-4 3.287775+5 1.071519-4 3.178131+5 1.109175-4 3.089360+5 1.161449-4 2.995990+5 1.230269-4 2.908130+5 1.318257-4 2.829323+5 1.584893-4 2.659714+5 1.737801-4 2.562299+5 1.900000-4 2.452400+5 2.080000-4 2.327080+5 2.264644-4 2.198130+5 2.454709-4 2.067263+5 2.660725-4 1.930238+5 2.900000-4 1.779960+5 3.200000-4 1.609576+5 3.507519-4 1.455061+5 3.850000-4 1.304228+5 4.216965-4 1.163343+5 4.677351-4 1.013998+5 5.248075-4 8.637353+4 5.821032-4 7.418138+4 6.531306-4 6.214121+4 7.300000-4 5.201920+4 8.128305-4 4.351648+4 9.225714-4 3.500210+4 1.030000-3 2.877388+4 1.161449-3 2.308229+4 1.300000-3 1.865196+4 1.479108-3 1.450411+4 1.678804-3 1.123432+4 1.905461-3 8.633365+3 2.137962-3 6.744768+3 2.398833-3 5.230934+3 2.691535-3 4.028255+3 3.019952-3 3.080238+3 3.388442-3 2.338470+3 3.845918-3 1.713692+3 4.315191-3 1.282981+3 4.897788-3 9.260985+2 5.559043-3 6.633347+2 6.309573-3 4.714866+2 7.161434-3 3.325825+2 8.128305-3 2.328442+2 9.225714-3 1.618063+2 1.047129-2 1.116466+2 1.188502-2 7.651208+1 1.364583-2 5.028087+1 1.566751-2 3.279163+1 1.798871-2 2.122889+1 2.065380-2 1.364432+1 2.371374-2 8.705962+0 2.754229-2 5.310274+0 3.273407-2 2.977943+0 3.935501-2 1.593972+0 4.786301-2 8.139500-1 5.821032-2 4.123331-1 7.852356-2 1.443443-1 1.273503-1 2.635094-2 1.566751-1 1.280264-2 1.840772-1 7.352355-3 2.113489-1 4.602019-3 2.398833-1 3.015977-3 2.691535-1 2.068173-3 3.000000-1 1.459400-3 3.311311-1 1.069620-3 3.672823-1 7.776569-4 4.027170-1 5.898003-4 4.415705-1 4.505125-4 4.841724-1 3.465792-4 5.308844-1 2.686076-4 5.821032-1 2.097694-4 6.309573-1 1.700706-4 6.918310-1 1.348245-4 7.585776-1 1.077284-4 8.511380-1 8.213755-5 9.120108-1 7.022881-5 9.772372-1 6.044106-5 1.059254+0 5.117250-5 1.161449+0 4.260443-5 1.273503+0 3.572187-5 1.412538+0 2.952599-5 1.659587+0 2.217015-5 1.840772+0 1.856029-5 2.018366+0 1.594815-5 2.371374+0 1.235118-5 2.754229+0 9.815792-6 3.126079+0 8.136726-6 3.630781+0 6.574415-6 4.265795+0 5.267951-6 5.011872+0 4.252817-6 6.025596+0 3.358081-6 7.244360+0 2.670387-6 9.015711+0 2.052151-6 1.122018+1 1.589403-6 1.428894+1 1.207384-6 1.883649+1 8.888203-7 2.570396+1 6.348534-7 3.758374+1 4.244869-7 6.309573+1 2.476989-7 1.230269+2 1.251992-7 2.454709+2 6.226756-8 9.772372+2 1.554757-8 6.165950+4 2.45880-10 1.000000+5 1.51650-10 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.066000-5 1.777700-5 1.000000+5 1.777700-5 1 44000 7 7 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.066000-5 2.45460-10 1.000000+5 2.45460-10 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.066000-5 3.288275-5 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 9.150000-6 3.696588+6 9.549926-6 3.875122+6 1.023293-5 4.217829+6 1.333521-5 5.958343+6 1.531087-5 7.082494+6 1.778279-5 8.480190+6 1.972423-5 9.550990+6 2.162719-5 1.054238+7 2.300000-5 1.119255+7 2.426610-5 1.171223+7 2.540973-5 1.210102+7 2.650000-5 1.238695+7 2.754229-5 1.257048+7 2.851018-5 1.265455+7 2.951209-5 1.264887+7 3.040000-5 1.256503+7 3.126079-5 1.241599+7 3.230000-5 1.215354+7 3.330000-5 1.182404+7 3.427678-5 1.143870+7 3.507519-5 1.108446+7 3.610000-5 1.058901+7 3.715352-5 1.004557+7 3.801894-5 9.583258+6 3.900000-5 9.051168+6 4.027170-5 8.361458+6 4.150000-5 7.707336+6 4.265795-5 7.110559+6 4.410200-5 6.402919+6 4.518559-5 5.903120+6 4.677351-5 5.222807+6 4.841724-5 4.584431+6 5.011872-5 3.992103+6 5.188000-5 3.448523+6 5.370318-5 2.955015+6 5.527000-5 2.582123+6 5.688529-5 2.242302+6 5.850000-5 1.943242+6 6.025596-5 1.659260+6 6.220000-5 1.389282+6 6.400000-5 1.175829+6 6.580000-5 9.929192+5 6.760830-5 8.359052+5 6.950000-5 6.965252+5 7.150000-5 5.730172+5 7.350000-5 4.704616+5 7.500000-5 4.053560+5 7.730000-5 3.222324+5 7.943282-5 2.604137+5 8.400000-5 1.662917+5 8.650000-5 1.316554+5 8.850000-5 1.104508+5 9.000000-5 9.769956+4 9.120108-5 8.917371+4 9.240200-5 8.197618+4 9.350000-5 7.643692+4 9.450000-5 7.217168+4 9.549926-5 6.858260+4 9.660509-5 6.532070+4 9.760000-5 6.296220+4 9.850000-5 6.125504+4 9.950000-5 5.978952+4 1.005000-4 5.873644+4 1.015000-4 5.805604+4 1.025000-4 5.771164+4 1.037900-4 5.771039+4 1.050000-4 5.810952+4 1.065000-4 5.907020+4 1.080000-4 6.047132+4 1.096478-4 6.243567+4 1.110000-4 6.432440+4 1.135011-4 6.833642+4 1.240000-4 8.878912+4 1.280000-4 9.688868+4 1.318257-4 1.043578+5 1.350000-4 1.102335+5 1.390000-4 1.171531+5 1.430000-4 1.234915+5 1.465000-4 1.285192+5 1.513561-4 1.346657+5 1.566751-4 1.403731+5 1.621810-4 1.452389+5 1.678804-4 1.491885+5 1.740000-4 1.523791+5 1.800000-4 1.546084+5 1.862087-4 1.560197+5 1.950000-4 1.567969+5 2.030000-4 1.564511+5 2.113489-4 1.551671+5 2.213095-4 1.527481+5 2.317395-4 1.492890+5 2.426610-4 1.450447+5 2.550000-4 1.396172+5 2.691535-4 1.330443+5 2.851018-4 1.254126+5 3.019952-4 1.174624+5 3.198895-4 1.093204+5 3.388442-4 1.011379+5 3.630781-4 9.144380+4 3.890451-4 8.205833+4 4.168694-4 7.314368+4 4.466836-4 6.478250+4 4.841724-4 5.579086+4 5.248075-4 4.768166+4 5.688529-4 4.045925+4 6.165950-4 3.410163+4 6.760830-4 2.783838+4 7.413102-4 2.255290+4 8.222426-4 1.764973+4 9.015711-4 1.409917+4 1.000000-3 1.086726+4 1.109175-3 8.312401+3 1.230269-3 6.308956+3 1.364583-3 4.751297+3 1.513561-3 3.548626+3 1.678804-3 2.630968+3 1.862087-3 1.937122+3 2.137962-3 1.276485+3 2.371374-3 9.267532+2 2.600160-3 6.923762+2 2.884032-3 4.935885+2 3.273407-3 3.235085+2 3.715352-3 2.107818+2 4.120975-3 1.475491+2 4.623810-3 9.853359+1 5.188000-3 6.533749+1 5.888437-3 4.125679+1 6.683439-3 2.585080+1 7.585776-3 1.607433+1 8.609938-3 9.920128+0 9.772372-3 6.078450+0 1.122018-2 3.535781+0 1.288250-2 2.041505+0 1.496236-2 1.117065+0 1.737801-2 6.062088-1 2.041738-2 3.114683-1 2.426610-2 1.514480-1 2.985383-2 6.322139-2 3.845918-2 2.154477-2 7.244360-2 1.441355-3 9.120108-2 5.424693-4 1.096478-1 2.500026-4 1.288250-1 1.278702-4 1.496236-1 6.913431-5 1.698244-1 4.135519-5 1.927525-1 2.491655-5 2.162719-1 1.583589-5 2.426610-1 1.014037-5 2.691535-1 6.834649-6 3.000000-1 4.554000-6 3.311311-1 3.166503-6 3.630781-1 2.270540-6 4.000000-1 1.612000-6 4.415705-1 1.146442-6 4.841724-1 8.405368-7 5.370318-1 5.973514-7 5.888437-1 4.441838-7 6.456542-1 3.328096-7 6.998420-1 2.602159-7 7.585776-1 2.047506-7 8.035261-1 1.731262-7 8.511380-1 1.460293-7 9.015711-1 1.240247-7 9.440609-1 1.095508-7 9.885531-1 9.746203-8 1.035142+0 8.741911-8 1.083927+0 7.896326-8 1.135011+0 7.177070-8 1.202264+0 6.419352-8 1.303167+0 5.549650-8 1.513561+0 4.296417-8 1.778279+0 3.242645-8 1.949845+0 2.776596-8 2.238721+0 2.224910-8 2.600160+0 1.763033-8 3.000000+0 1.422000-8 3.467369+0 1.154442-8 4.027170+0 9.375796-9 4.731513+0 7.549017-9 5.623413+0 6.033138-9 6.839116+0 4.717373-9 8.413951+0 3.667131-9 1.047129+1 2.833597-9 1.333521+1 2.147883-9 1.757924+1 1.578142-9 2.400000+1 1.124600-9 3.507519+1 7.51236-10 5.688529+1 4.53707-10 1.000000+2 2.54430-10 1.995262+2 1.26302-10 3.981072+2 6.29965-11 1.584893+3 1.57666-11 1.000000+5 2.49590-13 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 9.150000-6 9.150000-6 1.000000+5 9.150000-6 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.150000-6 0.0 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 8.790000-6 5.775420+6 9.120108-6 6.026771+6 1.000000-5 6.769644+6 1.174898-5 8.323390+6 1.333521-5 9.717582+6 1.531087-5 1.141196+7 1.757924-5 1.330412+7 1.972423-5 1.502311+7 2.137962-5 1.625298+7 2.290868-5 1.726627+7 2.400000-5 1.788772+7 2.511886-5 1.840721+7 2.610000-5 1.875124+7 2.710800-5 1.898042+7 2.800000-5 1.906981+7 2.900000-5 1.904078+7 3.000000-5 1.887593+7 3.090295-5 1.861328+7 3.190000-5 1.820427+7 3.273407-5 1.777473+7 3.350000-5 1.731891+7 3.450000-5 1.665040+7 3.548134-5 1.593122+7 3.650000-5 1.513751+7 3.758374-5 1.425976+7 3.850000-5 1.350455+7 3.950000-5 1.267942+7 4.073803-5 1.167372+7 4.180000-5 1.083755+7 4.315191-5 9.821405+6 4.450000-5 8.870442+6 4.570882-5 8.074434+6 4.720000-5 7.168098+6 4.850000-5 6.446202+6 5.011872-5 5.633630+6 5.188000-5 4.851665+6 5.370318-5 4.144116+6 5.527000-5 3.610513+6 5.688529-5 3.125466+6 5.850000-5 2.700256+6 6.025596-5 2.298207+6 6.165950-5 2.016978+6 6.350000-5 1.695691+6 6.531306-5 1.425593+6 6.683439-5 1.230188+6 6.850000-5 1.045019+6 7.000000-5 9.009588+5 7.161434-5 7.669353+5 7.350000-5 6.343512+5 7.500000-5 5.449080+5 7.737400-5 4.280585+5 8.035261-5 3.167793+5 8.450000-5 2.112646+5 8.650000-5 1.759300+5 8.810489-5 1.533272+5 8.950000-5 1.372417+5 9.070000-5 1.257278+5 9.190000-5 1.161170+5 9.300000-5 1.088002+5 9.400000-5 1.032620+5 9.500000-5 9.868152+4 9.610000-5 9.464112+4 9.680000-5 9.256590+4 9.772372-5 9.036532+4 9.850000-5 8.895306+4 9.950000-5 8.766912+4 1.005000-4 8.693328+4 1.015000-4 8.669136+4 1.025700-4 8.692385+4 1.040000-4 8.793414+4 1.055000-4 8.973636+4 1.071519-4 9.245787+4 1.090000-4 9.624678+4 1.110000-4 1.010402+5 1.150000-4 1.121106+5 1.205000-4 1.290223+5 1.244515-4 1.414173+5 1.280000-4 1.522597+5 1.318257-4 1.634221+5 1.350000-4 1.721609+5 1.390000-4 1.823459+5 1.430000-4 1.915213+5 1.479108-4 2.014586+5 1.531087-4 2.104284+5 1.584893-4 2.180159+5 1.640590-4 2.242754+5 1.705000-4 2.297707+5 1.760000-4 2.330349+5 1.840772-4 2.359324+5 1.905461-4 2.368815+5 1.995262-4 2.363713+5 2.089296-4 2.342097+5 2.190000-4 2.302163+5 2.300000-4 2.245723+5 2.426610-4 2.166772+5 2.540973-4 2.088854+5 2.691535-4 1.979506+5 2.851018-4 1.862909+5 3.019952-4 1.741706+5 3.198895-4 1.618097+5 3.388442-4 1.494362+5 3.630781-4 1.348369+5 3.890451-4 1.207621+5 4.168694-4 1.074519+5 4.466836-4 9.501539+4 4.841724-4 8.168576+4 5.248075-4 6.969175+4 5.688529-4 5.903630+4 6.165950-4 4.967898+4 6.760830-4 4.048556+4 7.413102-4 3.275322+4 8.128305-4 2.631255+4 9.000000-4 2.049666+4 9.885531-4 1.616981+4 1.096478-3 1.235563+4 1.216186-3 9.368532+3 1.348963-3 7.048891+3 1.496236-3 5.259562+3 1.659587-3 3.895273+3 1.840772-3 2.864631+3 2.113489-3 1.883924+3 2.344229-3 1.365967+3 2.570396-3 1.019426+3 2.818383-3 7.546057+2 3.126079-3 5.338517+2 3.548134-3 3.469083+2 4.000000-3 2.289297+2 4.518559-3 1.489016+2 5.128614-3 9.454371+1 5.821032-3 5.959998+1 6.531306-3 3.889579+1 7.413102-3 2.413311+1 8.413951-3 1.485750+1 9.549926-3 9.079634+0 1.096478-2 5.264419+0 1.258925-2 3.028740+0 1.445440-2 1.729538+0 1.659587-2 9.802621-1 1.927525-2 5.259715-1 2.264644-2 2.670128-1 2.722701-2 1.220393-1 3.349654-2 5.016908-2 4.315191-2 1.678834-2 7.328245-2 1.687521-3 9.225714-2 6.253969-4 1.096478-1 2.990950-4 1.273503-1 1.589354-4 1.445440-1 9.370551-5 1.640590-1 5.564617-5 1.840772-1 3.490647-5 2.041738-1 2.310255-5 2.264644-1 1.540411-5 2.483133-1 1.081614-5 2.722701-1 7.646157-6 2.985383-1 5.444352-6 3.273407-1 3.906361-6 3.548134-1 2.941209-6 3.845918-1 2.229223-6 4.168694-1 1.701720-6 4.518559-1 1.308605-6 4.897788-1 1.013649-6 5.308844-1 7.910706-7 5.754399-1 6.219762-7 6.237348-1 4.926475-7 6.760830-1 3.931001-7 7.328245-1 3.160084-7 7.943282-1 2.559393-7 8.609938-1 2.080777-7 9.120108-1 1.805992-7 9.660509-1 1.578004-7 1.023293+0 1.389516-7 1.096478+0 1.202063-7 1.174898+0 1.047860-7 1.273503+0 9.015181-8 1.428894+0 7.327128-8 1.717908+0 5.298565-8 1.905461+0 4.444512-8 2.113489+0 3.757242-8 2.454709+0 2.968902-8 2.851018+0 2.363790-8 3.198895+0 1.996198-8 3.715352+0 1.614830-8 4.365158+0 1.295331-8 5.128614+0 1.046814-8 6.165950+0 8.273812-9 7.413102+0 6.585411-9 9.225714+0 5.065184-9 1.161449+1 3.874291-9 1.500000+1 2.900300-9 2.000000+1 2.111500-9 2.691535+1 1.533011-9 3.935501+1 1.025912-9 6.531306+1 6.06327-10 1.288250+2 3.03055-10 2.570396+2 1.50772-10 1.023293+3 3.76571-11 6.456542+4 5.95584-13 1.000000+5 3.84650-13 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 8.790000-6 8.790000-6 1.000000+5 8.790000-6 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.790000-6 0.0 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.380000-6 1.463880+6 6.531306-6 1.299632+6 6.839116-6 1.018567+6 7.100000-6 8.312630+5 7.413102-6 6.535414+5 7.700000-6 5.254210+5 8.000000-6 4.190640+5 8.317638-6 3.301801+5 8.609938-6 2.653101+5 8.850000-6 2.216930+5 9.120108-6 1.810342+5 9.350000-6 1.522410+5 9.600000-6 1.259550+5 9.850000-6 1.040390+5 1.011579-5 8.472255+4 1.035142-5 7.046223+4 1.060000-5 5.786180+4 1.085000-5 4.731600+4 1.109175-5 3.882574+4 1.127000-5 3.348670+4 1.150000-5 2.759350+4 1.174898-5 2.230446+4 1.200000-5 1.794540+4 1.230269-5 1.377487+4 1.290000-5 8.246790+3 1.310000-5 7.020650+3 1.325000-5 6.266220+3 1.340000-5 5.638150+3 1.353000-5 5.186460+3 1.365000-5 4.839170+3 1.376000-5 4.574900+3 1.385000-5 4.394390+3 1.395000-5 4.228980+3 1.405000-5 4.098150+3 1.415000-5 3.999540+3 1.425000-5 3.930930+3 1.435000-5 3.890260+3 1.445440-5 3.875480+3 1.455000-5 3.885010+3 1.465000-5 3.916890+3 1.475000-5 3.969590+3 1.485000-5 4.041590+3 1.500000-5 4.182720+3 1.515000-5 4.359670+3 1.531087-5 4.584709+3 1.554900-5 4.975501+3 1.590000-5 5.653250+3 1.650000-5 7.007910+3 1.690000-5 7.996230+3 1.720000-5 8.762000+3 1.757924-5 9.744453+3 1.785000-5 1.044820+4 1.819701-5 1.134502+4 1.862087-5 1.242314+4 1.905461-5 1.349818+4 1.950000-5 1.456400+4 2.000000-5 1.570770+4 2.055000-5 1.689590+4 2.113489-5 1.807607+4 2.170000-5 1.913440+4 2.238721-5 2.031524+4 2.317395-5 2.153037+4 2.400000-5 2.265940+4 2.483133-5 2.365618+4 2.580000-5 2.465840+4 2.691535-5 2.562496+4 2.818383-5 2.651446+4 2.951209-5 2.724229+4 3.090295-5 2.781611+4 3.273407-5 2.833275+4 3.467369-5 2.865013+4 3.672823-5 2.879227+4 3.935501-5 2.875753+4 4.216965-5 2.852786+4 4.518559-5 2.812171+4 4.900000-5 2.744830+4 5.308844-5 2.660907+4 5.754399-5 2.561072+4 6.237348-5 2.447068+4 6.800000-5 2.311850+4 7.328245-5 2.185872+4 7.943282-5 2.043233+4 8.609938-5 1.895460+4 9.332543-5 1.746432+4 1.011579-4 1.598746+4 1.122018-4 1.415124+4 1.260000-4 1.223800+4 1.445440-4 1.021475+4 1.717908-4 8.065434+3 2.818383-4 4.035083+3 3.126079-4 3.475410+3 3.630781-4 2.779233+3 4.073803-4 2.325834+3 4.841724-4 1.761169+3 6.918310-4 9.822067+2 8.035261-4 7.627337+2 1.071519-3 4.626194+2 1.380384-3 2.960537+2 1.698244-3 2.041099+2 2.065380-3 1.426628+2 2.511886-3 9.893702+1 3.090295-3 6.658239+1 3.672823-3 4.752400+1 4.365158-3 3.367977+1 5.308844-3 2.261099+1 6.309573-3 1.579667+1 7.498942-3 1.095436+1 8.810489-3 7.729278+0 1.035142-2 5.415647+0 1.216186-2 3.767510+0 1.428894-2 2.601990+0 1.678804-2 1.783693+0 1.972423-2 1.213666+0 2.317395-2 8.196898-1 2.722701-2 5.495052-1 3.198895-2 3.656505-1 3.758374-2 2.415139-1 4.466836-2 1.536780-1 5.248075-2 1.000789-1 6.309573-2 6.082120-2 7.673615-2 3.555501-2 9.225714-2 2.128162-2 1.202264-1 1.008420-2 2.264644-1 1.673012-3 2.722701-1 9.982087-4 3.198895-1 6.398884-4 3.672823-1 4.402124-4 4.168694-1 3.147464-4 4.677351-1 2.336776-4 5.188000-1 1.799077-4 5.754399-1 1.394535-4 6.382635-1 1.088876-4 7.079458-1 8.567339-5 7.852356-1 6.793594-5 8.709636-1 5.429050-5 9.549926-1 4.480058-5 1.083927+0 3.474575-5 1.188600+0 2.900200-5 1.380384+0 2.188868-5 1.548817+0 1.774175-5 1.717908+0 1.478720-5 1.905461+0 1.241306-5 2.137962+0 1.030770-5 2.511886+0 8.006499-6 2.884032+0 6.491935-6 3.273407+0 5.395408-6 3.801894+0 4.369621-6 4.466836+0 3.508930-6 5.248075+0 2.838711-6 6.382635+0 2.213475-6 7.673615+0 1.764219-6 9.440609+0 1.377207-6 1.202264+1 1.040454-6 1.548817+1 7.818461-7 2.065380+1 5.696140-7 2.818383+1 4.077783-7 4.120975+1 2.731615-7 6.683439+1 1.654410-7 1.303167+2 8.368677-8 2.600160+2 4.163778-8 1.035142+3 1.039981-8 6.531306+4 1.64497-10 1.000000+5 1.07470-10 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.380000-6 6.380000-6 1.000000+5 6.380000-6 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.380000-6 0.0 1.000000+5 1.000000+5 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.120300-7 1.028750+0 1.120300-6 1.029500+0 1.533160-6 1.030100+0 1.928140-6 1.031000+0 2.638350-6 1.032000+0 3.609920-6 1.033200+0 5.056880-6 1.034000+0 6.207790-6 1.035300+0 8.426200-6 1.036640+0 1.120300-5 1.038200+0 1.511880-5 1.039700+0 1.964240-5 1.041500+0 2.613390-5 1.043800+0 3.627470-5 1.046400+0 5.046950-5 1.048300+0 6.283590-5 1.051200+0 8.523550-5 1.054080+0 1.120300-4 1.057700+0 1.527040-4 1.061100+0 1.986310-4 1.065100+0 2.629660-4 1.070400+0 3.668670-4 1.076200+0 5.070110-4 1.080600+0 6.331740-4 1.087100+0 8.530900-4 1.093710+0 1.120300-3 1.102600+0 1.553220-3 1.110700+0 2.025600-3 1.120600+0 2.709470-3 1.133300+0 3.767040-3 1.147500+0 5.200860-3 1.158200+0 6.463330-3 1.174100+0 8.639100-3 1.190110+0 1.120300-2 1.205100+0 1.394930-2 1.227500+0 1.867420-2 1.250000+0 2.412000-2 1.265600+0 2.825990-2 1.294900+0 3.675190-2 1.331800+0 4.858310-2 1.362600+0 5.925800-2 1.397000+0 7.190010-2 1.455800+0 9.505690-2 1.500000+0 1.138000-1 1.589800+0 1.558970-1 1.665000+0 1.951580-1 1.784700+0 2.641060-1 1.892300+0 3.310270-1 2.000000+0 4.002000-1 2.044000+0 4.285000-1 2.163500+0 5.060770-1 2.372600+0 6.434930-1 2.647100+0 8.234410-1 3.000000+0 1.049000+0 3.437500+0 1.314540+0 4.000000+0 1.633000+0 4.750000+0 2.020790+0 5.000000+0 2.141000+0 6.000000+0 2.581000+0 7.000000+0 2.975000+0 8.000000+0 3.329000+0 9.000000+0 3.650000+0 1.000000+1 3.945000+0 1.100000+1 4.215000+0 1.200000+1 4.464000+0 1.300000+1 4.693000+0 1.400000+1 4.904000+0 1.500000+1 5.100000+0 1.600000+1 5.283000+0 1.800000+1 5.619000+0 2.000000+1 5.919000+0 2.200000+1 6.192000+0 2.400000+1 6.440000+0 2.600000+1 6.667000+0 2.800000+1 6.874000+0 3.000000+1 7.065000+0 4.000000+1 7.840000+0 5.000000+1 8.414000+0 6.000000+1 8.862000+0 8.000000+1 9.522000+0 1.000000+2 9.992000+0 1.500000+2 1.074000+1 2.000000+2 1.119000+1 3.000000+2 1.171000+1 4.000000+2 1.201000+1 5.000000+2 1.220000+1 6.000000+2 1.235000+1 8.000000+2 1.253000+1 1.000000+3 1.266000+1 1.500000+3 1.283000+1 2.000000+3 1.293000+1 3.000000+3 1.303000+1 4.000000+3 1.309000+1 5.000000+3 1.312000+1 6.000000+3 1.315000+1 8.000000+3 1.318000+1 1.000000+4 1.320000+1 1.500000+4 1.323000+1 2.000000+4 1.324000+1 3.000000+4 1.326000+1 4.000000+4 1.327000+1 5.000000+4 1.327000+1 6.000000+4 1.328000+1 8.000000+4 1.328000+1 1.000000+5 1.328000+1 1 44000 7 8 1.017000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.415130-7 2.099900+0 1.034080-6 2.106600+0 1.438500-6 2.114000+0 1.990340-6 2.119500+0 2.477960-6 2.127900+0 3.360590-6 2.136250+0 4.415130-6 2.147000+0 6.053450-6 2.156900+0 7.862710-6 2.169000+0 1.049330-5 2.184500+0 1.458600-5 2.201800+0 2.018020-5 2.214800+0 2.514290-5 2.234200+0 3.382170-5 2.253680+0 4.415130-5 2.281500+0 6.184170-5 2.307000+0 8.122890-5 2.338200+0 1.092190-4 2.377400+0 1.512560-4 2.410200+0 1.923720-4 2.446800+0 2.447080-4 2.485900+0 3.081010-4 2.532900+0 3.943030-4 2.556430+0 4.415130-4 2.611900+0 5.629780-4 2.660400+0 6.806090-4 2.745300+0 9.109500-4 2.809000+0 1.103210-3 2.904500+0 1.421220-3 3.000000+0 1.774000-3 3.125000+0 2.287520-3 3.234400+0 2.783420-3 3.425800+0 3.748300-3 3.569300+0 4.545210-3 3.784700+0 5.842930-3 4.000000+0 7.238000-3 4.250000+0 8.943550-3 4.625000+0 1.162380-2 5.000000+0 1.441000-2 5.500000+0 1.823400-2 6.000000+0 2.211000-2 6.750000+0 2.788070-2 7.000000+0 2.978000-2 8.000000+0 3.721000-2 9.000000+0 4.432000-2 1.000000+1 5.108000-2 1.100000+1 5.747000-2 1.200000+1 6.350000-2 1.300000+1 6.918000-2 1.400000+1 7.459000-2 1.500000+1 7.971000-2 1.600000+1 8.457000-2 1.800000+1 9.358000-2 2.000000+1 1.018000-1 2.200000+1 1.093000-1 2.400000+1 1.162000-1 2.600000+1 1.226000-1 2.800000+1 1.285000-1 3.000000+1 1.340000-1 4.000000+1 1.568000-1 5.000000+1 1.741000-1 6.000000+1 1.878000-1 8.000000+1 2.085000-1 1.000000+2 2.236000-1 1.500000+2 2.487000-1 2.000000+2 2.644000-1 3.000000+2 2.837000-1 4.000000+2 2.953000-1 5.000000+2 3.033000-1 6.000000+2 3.091000-1 8.000000+2 3.171000-1 1.000000+3 3.225000-1 1.500000+3 3.304000-1 2.000000+3 3.350000-1 3.000000+3 3.399000-1 4.000000+3 3.428000-1 5.000000+3 3.446000-1 6.000000+3 3.458000-1 8.000000+3 3.475000-1 1.000000+4 3.486000-1 1.500000+4 3.500000-1 2.000000+4 3.508000-1 3.000000+4 3.516000-1 4.000000+4 3.521000-1 5.000000+4 3.524000-1 6.000000+4 3.526000-1 8.000000+4 3.528000-1 1.000000+5 3.530000-1 1 44000 7 8 1.017000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 44000 7 9 1.017000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.400000+1 1.000000+5 4.400000+1 5.000000+5 4.398700+1 1.000000+6 4.395700+1 1.500000+6 4.390900+1 2.000000+6 4.383800+1 2.500000+6 4.374900+1 3.000000+6 4.364200+1 3.500000+6 4.351520+1 4.000000+6 4.337500+1 4.500000+6 4.321900+1 5.000000+6 4.304800+1 5.687500+6 4.278530+1 6.156200+6 4.259520+1 6.500000+6 4.245050+1 6.718700+6 4.235520+1 7.000000+6 4.223200+1 7.500000+6 4.200270+1 8.250000+6 4.163990+1 8.500000+6 4.151820+1 9.000000+6 4.126700+1 1.000000+7 4.074400+1 1.125000+7 4.006700+1 1.187500+7 3.971940+1 1.250000+7 3.937100+1 1.437500+7 3.830000+1 1.500000+7 3.794100+1 1.687500+7 3.685510+1 1.750000+7 3.649700+1 2.000000+7 3.506600+1 2.250000+7 3.366330+1 2.500000+7 3.230800+1 2.875000+7 3.038990+1 3.000000+7 2.978600+1 3.500000+7 2.755710+1 4.000000+7 2.563300+1 4.750000+7 2.324580+1 5.000000+7 2.256700+1 5.500000+7 2.134900+1 6.000000+7 2.028400+1 6.750000+7 1.887840+1 7.000000+7 1.844700+1 7.750000+7 1.721140+1 8.000000+7 1.681600+1 8.750000+7 1.565980+1 9.000000+7 1.528500+1 9.750000+7 1.418840+1 1.000000+8 1.383400+1 1.062500+8 1.297170+1 1.144500+8 1.190940+1 1.187500+8 1.138480+1 1.214800+8 1.106380+1 1.250000+8 1.066500+1 1.500000+8 8.346300+0 1.625000+8 7.532160+0 1.718800+8 7.037980+0 1.750000+8 6.891660+0 1.859400+8 6.438860+0 2.000000+8 5.970700+0 2.125000+8 5.638050+0 2.312500+8 5.236190+0 2.375000+8 5.120710+0 2.500000+8 4.908700+0 2.718800+8 4.572440+0 2.859400+8 4.353680+0 2.964800+8 4.180840+0 3.000000+8 4.120900+0 3.500000+8 3.333200+0 3.812500+8 3.016910+0 3.937500+8 2.893790+0 4.000000+8 2.828100+0 4.125000+8 2.687390+0 4.234400+8 2.554380+0 4.425800+8 2.333450+0 4.750000+8 2.019190+0 4.784700+8 1.989340+0 4.928200+8 1.872610+0 5.000000+8 1.818000+0 5.179700+8 1.707860+0 5.330100+8 1.630940+0 5.569300+8 1.529670+0 5.856400+8 1.431160+0 6.000000+8 1.388200+0 6.437500+8 1.276280+0 6.718800+8 1.218530+0 7.000000+8 1.171500+0 8.000000+8 1.053100+0 8.250000+8 1.023880+0 8.687500+8 9.706180-1 9.261700+8 9.006390-1 1.000000+9 8.164000-1 1.089800+9 7.262950-1 1.165000+9 6.594540-1 1.248800+9 5.922040-1 1.311600+9 5.460190-1 1.358700+9 5.135310-1 1.375000+9 5.026530-1 1.429300+9 4.679110-1 1.500000+9 4.257000-1 1.589800+9 3.767980-1 1.665000+9 3.399480-1 1.748800+9 3.031640-1 1.838500+9 2.684450-1 1.946200+9 2.324870-1 2.000000+9 2.166400-1 2.139200+9 1.811730-1 2.272600+9 1.534910-1 2.443000+9 1.251520-1 2.602800+9 1.041380-1 2.825100+9 8.158380-2 3.097000+9 6.157470-2 3.334900+9 4.882600-2 3.543000+9 4.026150-2 3.907300+9 2.931720-2 4.385300+9 2.003000-2 5.000000+9 1.290000-2 5.750000+9 8.027630-3 7.437500+9 3.324100-3 8.000000+9 2.587200-3 1.00000+10 1.203900-3 1.20500+10 6.397030-4 1.41820+10 3.703480-4 1.71170+10 1.983180-4 2.01490+10 1.160220-4 2.26440+10 7.927120-5 2.74790+10 4.237020-5 3.20120+10 2.595600-5 4.05100+10 1.227180-5 4.79460+10 7.211930-6 6.09600+10 3.401130-6 8.04800+10 1.436470-6 1.00000+11 7.358500-7 1.34280+11 2.985580-7 1.77440+11 1.279600-7 2.63330+11 3.888440-8 3.75720+11 1.341850-8 6.61190+11 2.508380-9 1.48990+12 2.31548-10 4.26460+12 1.10139-11 1.00000+14 1.33140-15 5.62340+14 9.33688-18 7.49890+15 5.17601-21 1.00000+17 2.76640-24 1 44000 7 0 1.017000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.90000-12 1.000000+2 5.90000-10 1.000000+3 5.900000-8 1.000000+4 5.900000-6 1.000000+5 5.900000-4 5.000000+5 1.475000-2 1.000000+6 5.900000-2 1.500000+6 1.313000-1 2.000000+6 2.305000-1 2.500000+6 3.545000-1 3.000000+6 5.009000-1 3.500000+6 6.670920-1 4.000000+6 8.502000-1 4.500000+6 1.047370+0 5.000000+6 1.256000+0 5.687500+6 1.557120+0 6.156200+6 1.769450+0 6.500000+6 1.927550+0 6.718700+6 2.028860+0 7.000000+6 2.160000+0 7.500000+6 2.393830+0 8.250000+6 2.745550+0 8.500000+6 2.862460+0 9.000000+6 3.096100+0 1.000000+7 3.559000+0 1.125000+7 4.128920+0 1.187500+7 4.410410+0 1.250000+7 4.689700+0 1.437500+7 5.513050+0 1.500000+7 5.783000+0 1.687500+7 6.578950+0 1.750000+7 6.839800+0 2.000000+7 7.857000+0 2.250000+7 8.831010+0 2.500000+7 9.764600+0 2.875000+7 1.109970+1 3.000000+7 1.153100+1 3.500000+7 1.319860+1 4.000000+7 1.478200+1 4.750000+7 1.699610+1 5.000000+7 1.768500+1 5.500000+7 1.897530+1 6.000000+7 2.015000+1 6.750000+7 2.170380+1 7.000000+7 2.217300+1 7.750000+7 2.345900+1 8.000000+7 2.385500+1 8.750000+7 2.496270+1 9.000000+7 2.531200+1 9.750000+7 2.630360+1 1.000000+8 2.662100+1 1.062500+8 2.738240+1 1.144500+8 2.832080+1 1.187500+8 2.879070+1 1.214800+8 2.907840+1 1.250000+8 2.944400+1 1.500000+8 3.174000+1 1.625000+8 3.271220+1 1.718800+8 3.337710+1 1.750000+8 3.358560+1 1.859400+8 3.427960+1 2.000000+8 3.508100+1 2.125000+8 3.571670+1 2.312500+8 3.656600+1 2.375000+8 3.682720+1 2.500000+8 3.731100+1 2.718800+8 3.806620+1 2.859400+8 3.849730+1 2.964800+8 3.879380+1 3.000000+8 3.889100+1 3.500000+8 4.003300+1 3.812500+8 4.057620+1 3.937500+8 4.076070+1 4.000000+8 4.085100+1 4.125000+8 4.101160+1 4.234400+8 4.114860+1 4.425800+8 4.135960+1 4.750000+8 4.166110+1 4.784700+8 4.169040+1 4.928200+8 4.180670+1 5.000000+8 4.186100+1 5.179700+8 4.198510+1 5.330100+8 4.208070+1 5.569300+8 4.222050+1 5.856400+8 4.236820+1 6.000000+8 4.243800+1 6.437500+8 4.262310+1 6.718800+8 4.272870+1 7.000000+8 4.282800+1 8.000000+8 4.312100+1 8.250000+8 4.317980+1 8.687500+8 4.327880+1 9.261700+8 4.339310+1 1.000000+9 4.351800+1 1.089800+9 4.363170+1 1.165000+9 4.370960+1 1.248800+9 4.377320+1 1.311600+9 4.381700+1 1.358700+9 4.383940+1 1.375000+9 4.384670+1 1.429300+9 4.387040+1 1.500000+9 4.390000+1 1.589800+9 4.392100+1 1.665000+9 4.393770+1 1.748800+9 4.395250+1 1.838500+9 4.396200+1 1.946200+9 4.397280+1 2.000000+9 4.397800+1 2.139200+9 4.398340+1 2.272600+9 4.398830+1 2.443000+9 4.399410+1 2.602800+9 4.399920+1 2.825100+9 4.400350+1 3.097000+9 4.400290+1 3.334900+9 4.400250+1 3.543000+9 4.400210+1 3.907300+9 4.400150+1 4.385300+9 4.400080+1 5.000000+9 4.400000+1 5.750000+9 4.400000+1 7.437500+9 4.400000+1 8.000000+9 4.400000+1 1.00000+10 4.400000+1 1.20500+10 4.400000+1 1.41820+10 4.400000+1 1.71170+10 4.400000+1 2.01490+10 4.400000+1 2.26440+10 4.400000+1 2.74790+10 4.400000+1 3.20120+10 4.400000+1 4.05100+10 4.400000+1 4.79460+10 4.400000+1 6.09600+10 4.400000+1 8.04800+10 4.400000+1 1.00000+11 4.400000+1 1.34280+11 4.400000+1 1.77440+11 4.400000+1 2.63330+11 4.400000+1 3.75720+11 4.400000+1 6.61190+11 4.400000+1 1.48990+12 4.400000+1 4.26460+12 4.400000+1 1.00000+14 4.400000+1 5.62340+14 4.400000+1 7.49890+15 4.400000+1 1.00000+17 4.400000+1 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.331269-6 0.0 2.337007-6 2.928662-8 2.342745-6 5.795015-8 2.348483-6 1.058507-7 2.354221-6 1.784788-7 2.359959-6 2.778008-7 2.365698-6 3.991482-7 2.371436-6 5.294059-7 2.377174-6 6.481824-7 2.382912-6 7.325877-7 2.388650-6 7.643213-7 2.394388-6 7.361159-7 2.400126-6 6.544409-7 2.405864-6 5.370919-7 2.417341-6 2.845554-7 2.423079-6 1.836990-7 2.428817-6 1.094715-7 2.434555-6 6.022116-8 2.440293-6 3.058097-8 2.446031-6 0.0 2.697807-6 0.0 2.704447-6 2.795094-8 2.711088-6 5.530719-8 2.717728-6 1.010231-7 2.724368-6 1.703388-7 2.731008-6 2.651310-7 2.737649-6 3.809441-7 2.744289-6 5.052610-7 2.750929-6 6.186205-7 2.757570-6 6.991763-7 2.764210-6 7.294625-7 2.770850-6 7.025435-7 2.777491-6 6.245935-7 2.784131-6 5.125965-7 2.797412-6 2.715775-7 2.804052-6 1.753210-7 2.810692-6 1.044788-7 2.817332-6 5.747463-8 2.823973-6 2.918625-8 2.830613-6 0.0 3.036852-6 0.0 3.049933-6 1.666814+0 3.051801-6 1.902500+0 3.059276-6 3.475072+0 3.066751-6 5.859449+0 3.075160-6 9.617111+0 3.088124-6 1.677776+1 3.097585-6 2.162545+1 3.104592-6 2.411579+1 3.112286-6 2.500782+1 3.119666-6 2.395492+1 3.123118-6 2.290741+1 3.128212-6 2.207064+1 3.137738-6 1.935864+1 3.146128-6 1.837776+1 3.153526-6 1.953220+1 3.156449-6 2.074001+1 3.161274-6 2.343311+1 3.170762-6 3.121390+1 3.183849-6 4.336164+1 3.192916-6 4.900601+1 3.199576-6 5.064799+1 3.207611-6 4.836582+1 3.215972-6 4.204401+1 3.228070-6 2.913974+1 3.237647-6 1.888841+1 3.245332-6 1.219370+1 3.253017-6 7.266571+0 3.260702-6 3.997400+0 3.272230-6 1.016155+0 3.276073-6 0.0 4.133021-6 0.0 4.143194-6 2.74975-15 4.153367-6 5.44100-15 4.163540-6 9.93843-15 4.173713-6 1.67576-14 4.183885-6 2.60830-14 4.194058-6 3.74764-14 4.204231-6 4.97065-14 4.214404-6 6.08585-14 4.224577-6 6.87834-14 4.234750-6 7.17629-14 4.244923-6 6.91147-14 4.255096-6 6.14461-14 4.265269-6 5.04281-14 4.285615-6 2.67172-14 4.295787-6 1.72477-14 4.305960-6 1.02784-14 4.316133-6 5.65423-15 4.326306-6 2.87128-15 4.336479-6 0.0 4.803186-6 0.0 4.805587-6 3.766092-7 4.812106-6 2.920549-6 4.835795-6 6.878458-2 4.837296-6 7.597492-2 4.847639-6 2.046189-1 4.861109-6 4.079402-1 4.873015-6 6.789063-1 4.886835-6 1.125961+0 4.921410-6 2.545852+0 4.934485-6 2.949095+0 4.945078-6 3.131823+0 4.958130-6 3.090566+0 4.970014-6 2.833028+0 4.987263-6 2.185878+0 5.006668-6 1.358602+0 5.015989-6 9.985565-1 5.027812-6 6.342310-1 5.039705-6 3.684255-1 5.048994-6 2.206897-1 5.051611-6 1.870085-1 5.069471-6 4.753832-2 5.075424-6 0.0 5.368121-6 0.0 5.387940-6 6.82113-13 5.394546-6 9.06600-13 5.407759-6 1.65598-12 5.420972-6 2.79221-12 5.428836-6 3.71608-12 5.430017-6 5.934862-8 5.430554-6 1.265058-7 5.441270-6 6.359924-3 5.453626-6 3.450279-2 5.480473-6 1.416132+0 5.493896-6 2.565585+0 5.509119-6 4.610308+0 5.524293-6 7.396950+0 5.553102-6 1.363094+1 5.564945-6 1.579356+1 5.577985-6 1.730473+1 5.590247-6 1.768264+1 5.604152-6 1.666377+1 5.619464-6 1.416143+1 5.655997-6 6.354654+0 5.669359-6 4.084640+0 5.682344-6 2.457627+0 5.695247-6 1.370570+0 5.722094-6 8.389692-4 5.723796-6 1.212918-3 5.734659-6 1.071454-2 5.763109-6 8.113173-1 5.777333-6 1.480574+0 5.791774-6 2.511197+0 5.806811-6 3.985061+0 5.845370-6 8.650173+0 5.864769-6 1.026330+1 5.878791-6 1.067679+1 5.893244-6 1.034885+1 5.911343-6 9.043204+0 5.949210-6 5.359316+0 5.962134-6 4.254547+0 5.974616-6 3.354841+0 5.988731-6 2.559974+0 6.012881-6 1.439988+0 6.016961-6 1.238379+0 6.035058-6 8.705970-1 6.049384-6 6.269483-1 6.063709-6 4.416747-1 6.078340-6 3.137189-1 6.106749-6 1.610969-1 6.246289-6 1.490549-1 6.290003-6 1.414108-1 6.348703-6 1.362793-1 6.413136-6 1.341566-1 6.523495-6 1.216513-1 6.998960-6 9.014006-2 7.168565-6 8.096178-2 7.204429-6 3.260094-1 7.223072-6 5.440654-1 7.240495-6 8.489826-1 7.259435-6 1.305096+0 7.312183-6 2.806680+0 7.331699-6 3.139456+0 7.348751-6 3.214681+0 7.366317-6 3.052244+0 7.384306-6 2.672306+0 7.433233-6 1.248385+0 7.450877-6 8.294573-1 7.468522-6 5.209434-1 7.486166-6 3.159947-1 7.509913-6 1.483155-1 7.521455-6 1.079995-1 7.535103-6 1.580016-1 7.546882-6 2.092724-1 7.565367-6 3.349763-1 7.583852-6 5.245596-1 7.604081-6 8.191963-1 7.657791-6 1.811309+0 7.677431-6 2.073895+0 7.695915-6 2.182826+0 7.715555-6 2.117771+0 7.733577-6 1.915077+0 7.777944-6 1.146769+0 7.791660-6 9.436765-1 7.805668-6 7.680771-1 7.824153-6 6.333248-1 7.833332-6 6.116040-1 7.842638-6 6.096877-1 7.852068-6 6.391060-1 7.871113-6 7.441349-1 7.881764-6 8.290121-1 7.924716-6 1.289736+0 7.947296-6 1.433244+0 7.968722-6 1.431218+0 7.985387-6 1.349847+0 8.009858-6 1.110062+0 8.047837-6 6.611375-1 8.059495-6 5.394656-1 8.078627-6 3.942854-1 8.097758-6 3.035720-1 8.115842-6 2.756393-1 8.128370-6 2.960087-1 8.136020-6 3.219816-1 8.155405-6 4.145674-1 8.178798-6 6.225408-1 8.226346-6 1.123241+0 8.249464-6 1.355629+0 8.259554-6 1.445355+0 8.283872-6 1.593510+0 8.316654-6 1.646717+0 8.341880-6 1.583215+0 8.378420-6 1.384669+0 8.426823-6 1.067591+0 8.452335-6 9.479850-1 8.477058-6 8.990007-1 8.503642-6 9.064079-1 8.542213-6 1.004764+0 8.594274-6 1.206709+0 8.632719-6 1.256340+0 8.675226-6 1.204396+0 8.726295-6 1.131536+0 8.795168-6 1.141832+0 8.941897-6 1.238420+0 1.008872-5 1.599433+0 1.181124-5 2.305085+0 1.385000-5 3.255422+0 1.653890-5 4.783150+0 2.055193-5 7.533386+0 2.643008-5 1.179319+1 2.956994-5 1.336069+1 3.179436-5 1.388434+1 3.467599-5 1.378577+1 3.883318-5 1.243132+1 4.051302-5 1.165278+1 4.078725-5 1.251864+1 4.087950-5 1.312334+1 4.108074-5 2.081325+1 4.119394-5 2.778021+1 4.129456-5 3.632441+1 4.142345-5 5.043910+1 4.160992-5 7.291736+1 4.174972-5 8.522675+1 4.181191-5 8.806393+1 4.189388-5 8.893379+1 4.199927-5 8.392313+1 4.213424-5 7.025463+1 4.238880-5 3.851057+1 4.248942-5 2.841528+1 4.259004-5 2.115350+1 4.269066-5 1.635686+1 4.289190-5 1.045134+1 4.323741-5 1.033834+1 4.342354-5 1.070972+1 4.352989-5 1.109852+1 4.367718-5 1.204936+1 4.400283-5 1.526880+1 4.418571-5 1.927436+1 4.425637-5 2.080276+1 4.434721-5 2.300280+1 4.445552-5 2.654991+1 4.458788-5 3.235310+1 4.488452-5 4.722043+1 4.500184-5 5.067331+1 4.510814-5 5.114237+1 4.521367-5 4.874993+1 4.533234-5 4.297765+1 4.562744-5 2.449456+1 4.573574-5 1.896479+1 4.584405-5 1.488052+1 4.595236-5 1.215209+1 4.616897-5 8.775191+0 4.675878-5 8.540783+0 4.704556-5 8.749538+0 4.727546-5 9.295543+0 4.773525-5 1.112859+1 4.796515-5 1.147965+1 4.830999-5 1.099431+1 4.901766-5 9.336536+0 5.111460-5 8.522374+0 5.171962-5 8.755878+0 5.214382-5 8.937049+0 6.055072-5 5.601378+0 6.489291-5 4.247317+0 6.878449-5 3.303938+0 7.236807-5 2.633557+0 7.617925-5 2.091186+0 7.737400-5 1.974174+0 7.797859-5 2.008403+0 7.873700-5 2.146350+0 7.913397-5 2.124058+0 8.003408-5 1.864843+0 8.089901-5 1.794567+0 8.650000-5 1.483952+0 9.146396-5 1.321470+0 9.680000-5 1.240033+0 1.028750-4 1.226932+0 1.109175-4 1.290027+0 1.230933-4 1.474001+0 1.513561-4 1.964441+0 1.760000-4 2.293809+0 2.124746-4 2.592281+0 2.517295-4 2.722815+0 2.816303-4 2.760142+0 2.843653-4 2.915306+0 2.900715-4 3.427040+0 2.950000-4 3.609262+0 2.990000-4 3.797306+0 3.020000-4 4.135588+0 3.047000-4 4.658358+0 3.073999-4 5.446399+0 3.106497-4 6.778730+0 3.149497-4 9.086524+0 3.257554-4 1.538875+1 3.337625-4 1.895415+1 3.420000-4 2.151490+1 3.507519-4 2.319344+1 3.680000-4 2.443773+1 4.154137-4 2.456338+1 4.397083-4 2.402194+1 4.442099-4 2.500735+1 4.497112-4 2.805181+1 4.517183-4 2.807521+1 4.573426-4 2.559524+1 4.613901-4 2.528332+1 4.734559-4 2.734401+1 4.813932-4 2.613606+1 5.160577-4 2.567786+1 5.649217-4 2.421973+1 5.780570-4 2.457834+1 7.585775-4 1.893111+1 9.051639-4 1.547708+1 1.064986-3 1.267468+1 1.250518-3 1.029283+1 1.450000-3 8.430637+0 1.662692-3 6.969037+0 1.923708-3 5.655929+0 2.199164-3 4.650711+0 2.519920-3 3.794431+0 2.761972-3 3.306390+0 2.775610-3 3.487810+0 2.782294-3 3.660457+0 2.789510-3 3.975502+0 2.796927-3 4.472846+0 2.806953-3 5.451198+0 2.821192-3 7.250250+0 2.835310-3 9.008821+0 2.845712-3 9.950474+0 2.860025-3 1.062732+1 2.888597-3 1.080290+1 2.921596-3 1.100062+1 2.946281-3 1.198676+1 2.977031-3 1.353895+1 3.002438-3 1.391383+1 3.161788-3 1.314671+1 3.230816-3 1.420203+1 3.333474-3 1.378441+1 3.859259-3 1.103434+1 4.388132-3 9.034788+0 5.004378-3 7.341448+0 5.739850-3 5.881658+0 6.486670-3 4.802308+0 7.292146-3 3.946970+0 8.258002-3 3.193481+0 9.383519-3 2.563258+0 1.039726-2 2.143548+0 1.174369-2 1.730812+0 1.322768-2 1.401921+0 1.478526-2 1.148819+0 1.653273-2 9.394819-1 1.863672-2 7.561271-1 2.116156-2 5.995103-1 2.157251-2 5.865399-1 2.167054-2 6.123872-1 2.173654-2 6.634610-1 2.178976-2 7.408248-1 2.183899-2 8.528888-1 2.189734-2 1.047261+0 2.196565-2 1.364697+0 2.207566-2 2.025511+0 2.218465-2 2.685637+0 2.228903-2 3.146155+0 2.241184-2 3.414915+0 2.262919-2 3.484442+0 2.626632-2 2.745086+0 3.047665-2 2.148903+0 3.449172-2 1.741622+0 3.826653-2 1.453646+0 4.327012-2 1.172589+0 4.796081-2 9.747865-1 5.355118-2 7.993215-1 6.007855-2 6.470709-1 6.825184-2 5.109895-1 7.544015-2 4.234304-1 8.459668-2 3.411007-1 9.510468-2 2.728014-1 1.071557-1 2.171909-1 1.193226-1 1.765757-1 1.307920-1 1.479798-1 1.447143-1 1.217457-1 1.602345-1 1.001072-1 1.779166-1 8.182171-2 1.991126-1 6.598502-2 2.212348-1 5.403412-2 2.450671-1 4.460686-2 2.702056-1 3.723931-2 3.000000-1 3.078405-2 3.285057-1 2.616802-2 3.659880-1 2.168113-2 4.093776-1 1.794232-2 4.571184-1 1.499141-2 5.100743-1 1.264051-2 5.672180-1 1.079335-2 6.456542-1 8.998091-3 7.476838-1 7.428592-3 8.460380-1 6.395271-3 9.689356-1 5.505606-3 1.173413+0 4.492106-3 1.410753+0 3.684329-3 1.696098+0 3.021808-3 2.039158+0 2.478422-3 2.451607+0 2.032749-3 2.947480+0 1.667217-3 3.543651+0 1.367416-3 4.260405+0 1.121525-3 5.122134+0 9.198511-4 6.158159+0 7.544423-4 7.403736+0 6.187774-4 8.901248+0 5.075080-4 9.760024+0 4.596181-4 1.000000+1 9.311516-4 1 44000 7 0 1.017000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.388564+1 2.446031-6-4.246515+1 2.804052-6-4.020989+1 2.941786-6-3.724814+1 3.001853-6-3.397124+1 3.030360-6-3.062555+1 3.059276-6-2.366629+1 3.069321-6-2.117931+1 3.076795-6-2.003878+1 3.084971-6-2.004815+1 3.092913-6-2.165144+1 3.102490-6-2.553710+1 3.114620-6-3.205669+1 3.122177-6-3.482451+1 3.133550-6-3.631145+1 3.143261-6-3.457070+1 3.162174-6-2.717155+1 3.169890-6-2.665066+1 3.175630-6-2.806093+1 3.182107-6-3.163234+1 3.191022-6-4.037748+1 3.193679-6-4.388303+1 3.197393-6-3.994413+1 3.209247-6-2.385096+1 3.215972-6-1.659321+1 3.220503-6-1.304011+1 3.223237-6-1.126196+1 3.226179-6-9.871166+0 3.228070-6-9.229490+0 3.231883-6-8.532033+0 3.235485-6-8.339777+0 3.237647-6-8.607846+0 3.243411-6-9.785027+0 3.252177-6-1.306200+1 3.263344-6-1.798867+1 3.275593-6-2.255513+1 3.280251-6-2.462989+1 3.293494-6-2.790357+1 3.316195-6-3.117406+1 3.359832-6-3.457459+1 3.445905-6-3.769342+1 3.648204-6-4.042074+1 4.336479-6-4.294645+1 4.821461-6-4.408739+1 4.913256-6-4.324619+1 4.945078-6-4.437167+1 5.000400-6-4.237350+1 5.182960-6-4.443183+1 5.394546-6-4.180808+1 5.452974-6-3.925302+1 5.513675-6-3.457112+1 5.535009-6-3.454781+1 5.553102-6-3.641110+1 5.576031-6-4.151137+1 5.588166-6-4.438663+1 5.610400-6-3.843871+1 5.627776-6-3.545793+1 5.649018-6-3.419587+1 5.679504-6-3.599162+1 5.763544-6-4.397483+1 5.777333-6-4.434491+1 5.818281-6-4.261022+1 5.845370-6-4.383960+1 5.856705-6-4.442019+1 5.911343-6-3.724679+1 5.946702-6-3.559548+1 6.019223-6-3.718293+1 6.150138-6-4.009091+1 6.569012-6-4.214555+1 7.179694-6-4.427742+1 7.296391-6-4.489947+1 7.413635-6-4.173928+1 7.643949-6-4.417334+1 7.777944-6-4.243128+1 7.928250-6-4.346325+1 8.059495-6-4.285756+1 8.249464-6-4.411136+1 8.452335-6-4.332841+1 1.653890-5-4.558506+1 2.400000-5-4.481414+1 2.989063-5-4.136318+1 3.599067-5-3.317837+1 3.803879-5-2.903818+1 3.903660-5-2.581544+1 3.971406-5-2.229050+1 4.014563-5-1.868887+1 4.037740-5-1.578584+1 4.051302-5-1.340518+1 4.066260-5-1.008313+1 4.076232-5-7.216145+0 4.081218-5-5.455340+0 4.084584-5-4.052772+0 4.086267-5-3.253804+0 4.087109-5-2.800579+0 4.088760-5-1.698216+0 4.091189-5-4.382910-1 4.093682-5 6.814261-1 4.106346-5 5.737671+0 4.108074-5 6.596180+0 4.119394-5 1.148101+1 4.129456-5 1.462319+1 4.134959-5 1.530263+1 4.139681-5 1.544580+1 4.144676-5 1.456454+1 4.148500-5 1.324605+1 4.151623-5 1.177857+1 4.155722-5 9.280134+0 4.159015-5 6.703850+0 4.160030-5 5.763987+0 4.165978-5-5.331174-1 4.167224-5-1.918496+0 4.169094-5-4.139032+0 4.170496-5-5.986163+0 4.171435-5-7.417679+0 4.176519-5-1.463865+1 4.178665-5-1.835174+1 4.187566-5-3.253341+1 4.189388-5-2.898164+1 4.198823-5-1.399202+1 4.200610-5-1.116185+1 4.203010-5-7.966937+0 4.204970-5-5.611209+0 4.210851-5 9.388453-1 4.211727-5 1.943928+0 4.213424-5 3.571827+0 4.215015-5 4.912389+0 4.217905-5 7.014029+0 4.220526-5 8.608471+0 4.224828-5 1.065711+1 4.229658-5 1.216519+1 4.233693-5 1.276271+1 4.237583-5 1.263992+1 4.246426-5 1.032811+1 4.248942-5 9.200199+0 4.250200-5 8.520607+0 4.256803-5 5.686908+0 4.257903-5 5.136761+0 4.259004-5 4.462391+0 4.269066-5-6.611808-1 4.270324-5-1.381003+0 4.272525-5-2.425688+0 4.284159-5-7.309195+0 4.288561-5-9.519076+0 4.290669-5-1.090553+1 4.296023-5-1.327684+1 4.304294-5-1.606978+1 4.327729-5-2.213083+1 4.377297-5-3.194904+1 4.400823-5-2.749257+1 4.427440-5-2.381266+1 4.447773-5-2.135504+1 4.458788-5-2.105181+1 4.469017-5-2.242735+1 4.479917-5-2.558560+1 4.487181-5-2.916177+1 4.491469-5-3.170650+1 4.498342-5-2.691351+1 4.508294-5-1.944494+1 4.513093-5-1.553002+1 4.519017-5-1.115015+1 4.521367-5-9.210098+0 4.523588-5-7.723065+0 4.531267-5-2.996180+0 4.533234-5-1.964380+0 4.535079-5-1.125704+0 4.536808-5-4.223581-1 4.540050-5 7.183341-1 4.542886-5 1.550451+0 4.545369-5 2.163275+0 4.547540-5 2.615647+0 4.551341-5 3.223697+0 4.554192-5 3.525156+0 4.556330-5 3.659896+0 4.559537-5 3.696505+0 4.561140-5 3.622250+0 4.568159-5 2.752215+0 4.570867-5 2.350797+0 4.572221-5 2.095196+0 4.576282-5 1.086410+0 4.580344-5 2.245813-1 4.582374-5-2.502049-1 4.584405-5-8.429720-1 4.597291-5-4.268732+0 4.614287-5-8.075886+0 4.620103-5-9.805729+0 4.629042-5-1.155393+1 4.647534-5-1.405894+1 4.675878-5-1.683659+1 4.727546-5-2.045181+1 4.755614-5-2.142579+1 4.796515-5-2.098518+1 4.846804-5-2.044548+1 4.915200-5-2.145475+1 5.137176-5-2.381467+1 6.204215-5-2.461913+1 7.913397-5-2.735534+1 1.005000-4-2.939115+1 2.124746-4-3.238752+1 2.592000-4-3.543045+1 2.825479-4-3.868376+1 2.998800-4-4.254613+1 3.159495-4-4.803921+1 3.257554-4-4.779570+1 3.680000-4-3.648737+1 3.994016-4-3.144050+1 4.309557-4-2.818106+1 4.507059-4-2.740058+1 4.597365-4-2.775206+1 4.761570-4-2.559372+1 4.901978-4-2.413181+1 5.160577-4-2.123180+1 5.522701-4-1.868496+1 5.780570-4-1.769371+1 5.923323-4-1.640773+1 6.365352-4-1.403194+1 6.870791-4-1.210030+1 7.585775-4-1.019760+1 8.486917-4-8.594736+0 9.416739-4-7.546880+0 1.064986-3-6.714336+0 1.195764-3-6.245340+0 1.384363-3-5.994850+0 1.662692-3-6.137368+0 1.923708-3-6.614119+0 2.199164-3-7.478012+0 2.414610-3-8.563721+0 2.563931-3-9.761382+0 2.669280-3-1.112299+1 2.735623-3-1.254761+1 2.775610-3-1.405214+1 2.806953-3-1.625507+1 2.830743-3-1.788899+1 2.845712-3-1.797230+1 2.869684-3-1.662342+1 2.897095-3-1.502170+1 2.921596-3-1.448887+1 2.971067-3-1.452604+1 3.002438-3-1.322882+1 3.036964-3-1.163137+1 3.076990-3-1.050289+1 3.132693-3-9.649284+0 3.199036-3-9.435949+0 3.230816-3-8.759332+0 3.273813-3-7.610815+0 3.333474-3-6.567582+0 3.423364-3-5.478352+0 3.549000-3-4.369866+0 3.686847-3-3.475281+0 3.859259-3-2.653400+0 4.037328-3-2.024626+0 4.222990-3-1.534476+0 4.388132-3-1.194666+0 4.572265-3-8.920613-1 4.777269-3-6.338387-1 4.903684-3-5.037189-1 5.004378-3-4.140554-1 5.138828-3-3.113076-1 5.318584-3-2.001020-1 5.436414-3-1.408775-1 5.543616-3-9.413586-2 5.621414-3-6.516389-2 5.696443-3-3.917556-2 5.739850-3-2.501234-2 5.816860-3-1.608131-3 5.864267-3 1.126598-2 5.933619-3 2.783324-2 5.986694-3 3.995089-2 6.073479-3 5.672092-2 6.147560-3 6.926440-2 6.222197-3 7.847206-2 6.427147-3 9.822624-2 6.578915-3 1.075659-1 6.903515-3 1.139484-1 7.098142-3 1.107968-1 7.464960-3 9.354696-2 7.673615-3 7.942908-2 7.841064-3 6.539046-2 8.182690-3 3.166478-2 8.398080-3 7.799210-3 8.476165-3-1.114591-3 8.506597-3-4.552179-3 8.555899-3-1.041220-2 8.630508-3-1.966526-2 8.949319-3-5.820749-2 9.448508-3-1.206945-1 1.537021-2-9.177303-1 1.712971-2-1.192168+0 1.863672-2-1.494836+0 1.967738-2-1.789672+0 2.041738-2-2.095046+0 2.092708-2-2.407709+0 2.126916-2-2.722646+0 2.153305-2-3.107102+0 2.171667-2-3.567413+0 2.199326-2-4.512310+0 2.209865-2-4.601284+0 2.221859-2-4.354951+0 2.251187-2-3.245569+0 2.267209-2-2.833117+0 2.290648-2-2.439882+0 2.324317-2-2.054980+0 2.368096-2-1.704610+0 2.414822-2-1.426654+0 2.470724-2-1.174096+0 2.536445-2-9.492321-1 2.626632-2-7.191765-1 2.703728-2-5.658381-1 2.785180-2-4.364146-1 2.863352-2-3.328565-1 2.946373-2-2.424685-1 2.985383-2-2.062857-1 3.047665-2-1.553626-1 3.121496-2-1.032121-1 3.200489-2-5.545918-2 3.274251-2-1.789065-2 3.312137-2-1.052025-3 3.375058-2 2.718892-2 3.449172-2 5.369128-2 3.542015-2 8.160398-2 3.627562-2 1.021086-1 3.732846-2 1.236667-1 3.826653-2 1.382749-1 4.042992-2 1.630755-1 4.327012-2 1.804117-1 4.674723-2 1.859877-1 5.129892-2 1.774471-1 5.757210-2 1.551501-1 7.544015-2 7.617721-2 8.154089-2 5.183930-2 8.717543-2 3.144176-2 9.121863-2 1.778694-2 9.601117-2 2.871887-3 9.668207-2 8.401674-4 9.759042-2-1.880953-3 9.961057-2-7.707806-3 1.019633-1-1.420840-2 1.071557-1-2.752941-2 1.164224-1-4.857104-2 1.263912-1-6.805165-2 1.398521-1-8.970905-2 1.602345-1-1.151810-1 1.841225-1-1.372143-1 2.212348-1-1.608098-1 2.783973-1-1.828039-1 3.788240-1-2.023769-1 5.672180-1-2.167504-1 1.070165+0-2.257674-1 3.231848+0-2.288960-1 9.760024+0-2.292495-1 1.000000+1-2.291689-1 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.770731-3 1.093565-6 9.957805-3 1.127739-6 1.137871-2 1.162981-6 1.303314-2 1.199324-6 1.496333-2 1.236803-6 1.722003-2 1.275453-6 1.986433-2 1.315311-6 2.297019-2 1.356415-6 2.662736-2 1.398803-6 3.094536-2 1.442515-6 3.605843-2 1.487594-6 4.213200-2 1.534081-6 4.937107-2 1.582021-6 5.803038-2 1.630920-6 6.830291-2 1.678291-6 7.986255-2 1.724181-6 9.281402-2 1.768638-6 1.072624-1 1.811705-6 1.233168-1 1.853426-6 1.410907-1 1.893844-6 1.607021-1 1.932998-6 1.822734-1 1.970929-6 2.059346-1 2.077757-6 2.902224-1 2.111164-6 3.224304-1 2.143527-6 3.575814-1 2.174879-6 3.956234-1 2.205251-6 4.367107-1 2.234674-6 4.810101-1 2.263177-6 5.286942-1 2.290790-6 5.799404-1 2.317540-6 6.349318-1 2.368558-6 7.569083-1 2.416437-6 8.962107-1 2.439261-6 9.730841-1 2.461371-6 1.055487+0 2.504209-6 1.238666+0 2.544370-6 1.444084+0 2.582021-6 1.674281+0 2.617319-6 1.931353+0 2.650411-6 2.217579+0 2.681434-6 2.535131+0 2.710519-6 2.886135+0 2.737785-6 3.272711+0 2.763348-6 3.696963+0 2.787313-6 4.160953+0 2.809780-6 4.666685+0 2.830843-6 5.216079+0 2.850589-6 5.810943+0 2.869101-6 6.452956+0 2.886457-6 7.143638+0 2.902727-6 7.884328+0 2.917981-6 8.676162+0 2.932281-6 9.520054+0 2.945688-6 1.041668+1 2.958256-6 1.136650+1 2.970040-6 1.236978+1 2.981086-6 1.342661+1 2.991442-6 1.453684+1 3.001151-6 1.569989+1 3.010254-6 1.691467+1 3.018787-6 1.817953+1 3.026787-6 1.949247+1 3.041787-6 2.235188+1 3.054912-6 2.538678+1 3.066396-6 2.857557+1 3.076445-6 3.189540+1 3.085237-6 3.532250+1 3.092931-6 3.883261+1 3.099663-6 4.240039+1 3.105553-6 4.599831+1 3.110707-6 4.959570+1 3.119727-6 5.718515+1 3.126492-6 6.428076+1 3.131565-6 7.061736+1 3.139176-6 8.216330+1 3.142981-6 8.902971+1 3.146786-6 9.673888+1 3.150659-6 1.055389+2 3.158404-6 1.263637+2 3.174899-6 1.868646+2 3.180869-6 2.141969+2 3.185513-6 2.371399+2 3.189817-6 2.594329+2 3.197630-6 3.012961+2 3.198607-6 3.065586+2 3.205443-6 3.427461+2 3.208128-6 3.563603+2 3.213256-6 3.807626+2 3.217032-6 3.969893+2 3.218834-6 4.041082+2 3.221537-6 4.139444+2 3.224240-6 4.226976+2 3.227354-6 4.313577+2 3.231440-6 4.403334+2 3.235709-6 4.468265+2 3.237671-6 4.488679+2 3.242798-6 4.517142+2 3.245911-6 4.519840+2 3.261009-6 4.488650+2 3.265363-6 4.509169+2 3.269709-6 4.565453+2 3.272841-6 4.635035+2 3.275560-6 4.718882+2 3.278751-6 4.848457+2 3.281581-6 4.994119+2 3.284877-6 5.202578+2 3.288221-6 5.458494+2 3.290765-6 5.683614+2 3.295555-6 6.177726+2 3.300398-6 6.764930+2 3.311054-6 8.298278+2 3.316227-6 9.110085+2 3.320270-6 9.746913+2 3.324589-6 1.040840+3 3.327977-6 1.090030+3 3.330449-6 1.123801+3 3.334369-6 1.172693+3 3.338346-6 1.215265+3 3.342553-6 1.251269+3 3.345743-6 1.271698+3 3.353658-6 1.294599+3 3.355855-6 1.293713+3 3.361945-6 1.274996+3 3.365771-6 1.251562+3 3.369479-6 1.220958+3 3.373560-6 1.179215+3 3.377516-6 1.131776+3 3.381032-6 1.084805+3 3.384422-6 1.036079+3 3.389570-6 9.574339+2 3.393588-6 8.936754+2 3.398109-6 8.210876+2 3.401625-6 7.649521+2 3.409661-6 6.412143+2 3.412424-6 6.009618+2 3.417698-6 5.283282+2 3.423725-6 4.529522+2 3.431353-6 3.701147+2 3.445470-6 2.530840+2 3.449910-6 2.250533+2 3.454210-6 2.013507+2 3.458376-6 1.813050+2 3.462412-6 1.643287+2 3.466322-6 1.499165+2 3.470110-6 1.376400+2 3.477448-6 1.178419+2 3.484328-6 1.031391+2 3.490778-6 9.196961+1 3.496825-6 8.328643+1 3.502494-6 7.638667+1 3.507809-6 7.079420+1 3.517773-6 6.207648+1 3.526493-6 5.588060+1 3.534122-6 5.128178+1 3.540798-6 4.775865+1 3.552480-6 4.248538+1 3.561242-6 3.912733+1 3.574385-6 3.483657+1 3.587528-6 3.125234+1 3.596358-6 2.916180+1 3.605188-6 2.728413+1 3.614018-6 2.559027+1 3.631679-6 2.266164+1 3.649339-6 2.022575+1 3.667000-6 1.817440+1 3.684660-6 1.642807+1 3.702321-6 1.492734+1 3.728811-6 1.304108+1 3.755302-6 1.149700+1 3.780128-6 1.028932+1 3.811119-6 9.029494+0 3.840173-6 8.041456+0 3.867411-6 7.250437+0 3.892946-6 6.606894+0 3.916886-6 6.076010+0 3.939330-6 5.632216+0 3.981411-6 4.912592+0 4.018233-6 4.378833+0 4.078643-6 3.657027+0 4.164979-6 2.864177+0 4.286507-6 2.054558+0 4.370705-6 1.630763+0 4.423329-6 1.406682+0 4.486478-6 1.172899+0 4.653890-6 6.562921-1 4.693840-6 5.477099-1 4.728797-6 4.588575-1 4.759384-6 3.844977-1 4.786148-6 3.215469-1 4.809566-6 2.680616-1 4.830057-6 2.226676-1 4.847987-6 1.843552-1 4.863675-6 1.523633-1 4.877402-6 1.260784-1 4.889414-6 1.049506-1 4.899924-6 8.844363-2 4.909120-6 7.602112-2 4.917167-6 6.715515-2 4.924208-6 6.133877-2 4.930368-6 5.809458-2 4.935759-6 5.697861-2 4.940476-6 5.758237-2 4.944603-6 5.953480-2 4.948214-6 6.250456-2 4.951374-6 6.620199-2 4.956904-6 7.553401-2 4.961052-6 8.532057-2 4.964162-6 9.448341-2 4.966495-6 1.025022-1 4.969994-6 1.165734-1 4.973494-6 1.333696-1 4.978896-6 1.654339-1 4.994462-6 3.116118-1 5.001194-6 4.066532-1 5.006383-6 4.961058-1 5.014209-6 6.612428-1 5.020669-6 8.277542-1 5.025693-6 9.775651-1 5.028827-6 1.080351+0 5.040758-6 1.538106+0 5.045348-6 1.741671+0 5.053458-6 2.135278+0 5.058374-6 2.392416+0 5.062517-6 2.618082+0 5.066543-6 2.843551+0 5.070608-6 3.075751+0 5.075067-6 3.333545+0 5.079875-6 3.612123+0 5.084030-6 3.850738+0 5.089191-6 4.140658+0 5.094609-6 4.432777+0 5.099733-6 4.692823+0 5.103888-6 4.889289+0 5.110373-6 5.164906+0 5.114265-6 5.309660+0 5.126965-6 5.658391+0 5.129109-6 5.697161+0 5.139665-6 5.799403+0 5.143634-6 5.799750+0 5.147422-6 5.781117+0 5.152750-6 5.724662+0 5.158162-6 5.633078+0 5.164239-6 5.492516+0 5.167140-6 5.412624+0 5.173666-6 5.206186+0 5.175841-6 5.130036+0 5.181999-6 4.897725+0 5.188157-6 4.645231+0 5.197393-6 4.241220+0 5.203551-6 3.962980+0 5.210478-6 3.648610+0 5.212787-6 3.544540+0 5.221685-6 3.151817+0 5.228181-6 2.877438+0 5.237418-6 2.511552+0 5.248194-6 2.127082+0 5.264666-6 1.635119+0 5.285371-6 1.173738+0 5.295281-6 1.006159+0 5.304882-6 8.708256-1 5.314183-6 7.610702-1 5.323193-6 6.713999-1 5.340649-6 5.338732-1 5.357015-6 4.364843-1 5.372358-6 3.642449-1 5.413712-6 2.260094-1 5.437311-6 1.703763-1 5.520000-6 4.902652-2 5.540555-6 3.474006-2 5.556042-6 2.964687-2 5.567657-6 2.971216-2 5.576368-6 3.227936-2 5.582901-6 3.576661-2 5.592701-6 4.371596-2 5.597601-6 4.898496-2 5.602502-6 5.515292-2 5.614875-6 7.483992-2 5.618748-6 8.222108-2 5.630366-6 1.077564-1 5.638700-6 1.289922-1 5.642430-6 1.391962-1 5.645287-6 1.472699-1 5.653419-6 1.712956-1 5.659505-6 1.900353-1 5.669113-6 2.202221-1 5.673033-6 2.325132-1 5.676519-6 2.433252-1 5.681567-6 2.586418-1 5.685696-6 2.707438-1 5.688672-6 2.791623-1 5.692741-6 2.901731-1 5.696997-6 3.009707-1 5.701276-6 3.109663-1 5.705130-6 3.191393-1 5.708472-6 3.255294-1 5.713985-6 3.345302-1 5.720494-6 3.424829-1 5.725956-6 3.467707-1 5.729207-6 3.482493-1 5.734949-6 3.488677-1 5.740690-6 3.469399-1 5.743522-6 3.450650-1 5.749001-6 3.397563-1 5.754911-6 3.316686-1 5.757312-6 3.277286-1 5.768271-6 3.055265-1 5.774023-6 2.915660-1 5.778621-6 2.795462-1 5.784944-6 2.621250-1 5.791006-6 2.448515-1 5.797812-6 2.253156-1 5.805934-6 2.025818-1 5.823433-6 1.595548-1 5.829180-6 1.480692-1 5.834927-6 1.381597-1 5.836654-6 1.355028-1 5.842699-6 1.273998-1 5.847233-6 1.225455-1 5.848744-6 1.211577-1 5.862562-6 1.135113-1 5.878595-6 1.141599-1 5.884397-6 1.161669-1 5.892943-6 1.201269-1 5.902943-6 1.254234-1 5.911037-6 1.295681-1 5.921952-6 1.341427-1 5.927817-6 1.358891-1 5.936457-6 1.373916-1 5.942336-6 1.376621-1 5.950962-6 1.370068-1 5.958670-6 1.354810-1 5.961846-6 1.346325-1 5.973725-6 1.305867-1 5.985362-6 1.257521-1 6.003999-6 1.173729-1 6.023485-6 1.085325-1 6.029451-6 1.058043-1 6.045785-6 9.816430-2 6.074823-6 8.481230-2 6.081204-6 8.241847-2 6.086414-6 8.079486-2 6.090322-6 7.982806-2 6.093253-6 7.927029-2 6.097650-6 7.874406-2 6.102046-6 7.864462-2 6.109306-6 7.958401-2 6.112936-6 8.064698-2 6.116565-6 8.215584-2 6.123825-6 8.666511-2 6.127455-6 8.974333-2 6.131085-6 9.342297-2 6.145604-6 1.149563-1 6.150276-6 1.244972-1 6.164292-6 1.620746-1 6.177279-6 2.108080-1 6.203680-6 3.635684-1 6.222669-6 5.347092-1 6.259193-6 1.109490+0 6.277731-6 1.613679+0 6.283910-6 1.831930+0 6.293740-6 2.247496+0 6.302426-6 2.700410+0 6.313266-6 3.409144+0 6.324575-6 4.366288+0 6.339716-6 6.111977+0 6.364097-6 1.053542+1 6.376337-6 1.379187+1 6.386876-6 1.730812+1 6.398586-6 2.211703+1 6.408836-6 2.720274+1 6.417587-6 3.224993+1 6.440128-6 4.841592+1 6.445638-6 5.305915+1 6.457411-6 6.381350+1 6.463005-6 6.927921+1 6.477096-6 8.381932+1 6.482544-6 8.963892+1 6.494343-6 1.023347+2 6.500929-6 1.093237+2 6.506445-6 1.150336+2 6.513775-6 1.223077+2 6.521678-6 1.296008+2 6.528695-6 1.354595+2 6.535179-6 1.402518+2 6.539418-6 1.430192+2 6.547831-6 1.475646+2 6.554913-6 1.503303+2 6.560393-6 1.517621+2 6.568462-6 1.527019+2 6.573456-6 1.525761+2 6.588331-6 1.490349+2 6.593539-6 1.467215+2 6.605127-6 1.397702+2 6.611374-6 1.351004+2 6.616249-6 1.310683+2 6.623217-6 1.247982+2 6.629936-6 1.182850+2 6.636812-6 1.112577+2 6.642898-6 1.048253+2 6.648767-6 9.850924+1 6.650723-6 9.639099+1 6.659060-6 8.736466+1 6.664993-6 8.100823+1 6.673850-6 7.175817+1 6.680739-6 6.485125+1 6.695864-6 5.088185+1 6.697480-6 4.950192+1 6.721714-6 3.178014+1 6.739711-6 2.243090+1 6.745211-6 2.022680+1 6.753460-6 1.748258+1 6.757584-6 1.635934+1 6.761709-6 1.539932+1 6.765126-6 1.472604+1 6.766780-6 1.443962+1 6.769673-6 1.399952+1 6.771843-6 1.372010+1 6.775097-6 1.338161+1 6.778352-6 1.313888+1 6.786674-6 1.294566+1 6.788754-6 1.299166+1 6.791485-6 1.310827+1 6.795060-6 1.335629+1 6.811898-6 1.592222+1 6.814332-6 1.647547+1 6.828802-6 2.063560+1 6.847171-6 2.778701+1 6.855439-6 3.153921+1 6.862529-6 3.494558+1 6.869400-6 3.836390+1 6.876584-6 4.200695+1 6.884144-6 4.585436+1 6.891395-6 4.949326+1 6.896618-6 5.204884+1 6.904021-6 5.552786+1 6.911562-6 5.884212+1 6.914785-6 6.017317+1 6.923132-6 6.334404+1 6.929424-6 6.544011+1 6.934704-6 6.698460+1 6.942263-6 6.883286+1 6.948200-6 6.997130+1 6.961426-6 7.148677+1 6.968776-6 7.172048+1 6.976953-6 7.148608+1 6.982210-6 7.107261+1 6.990453-6 7.003702+1 6.999598-6 6.838336+1 7.008416-6 6.634944+1 7.011355-6 6.558750+1 7.019677-6 6.323498+1 7.027999-6 6.064025+1 7.040481-6 5.642152+1 7.044642-6 5.495596+1 7.057124-6 5.047050+1 7.061285-6 4.896492+1 7.077928-6 4.302253+1 7.092490-6 3.807306+1 7.105533-6 3.394412+1 7.122400-6 2.911799+1 7.164566-6 1.975574+1 7.173000-6 1.831954+1 7.189866-6 1.582327+1 7.197145-6 1.488650+1 7.211246-6 1.328292+1 7.224466-6 1.200206+1 7.236860-6 1.096785+1 7.248479-6 1.012314+1 7.272948-6 8.663333+0 7.289328-6 7.876178+0 7.306008-6 7.194010+0 7.338215-6 6.130288+0 7.357091-6 5.621861+0 7.389929-6 4.880830+0 7.422768-6 4.274288+0 7.459308-6 3.713407+0 7.495849-6 3.241968+0 7.623740-6 2.042303+0 7.678551-6 1.666772+0 7.756453-6 1.223145+0 7.863510-6 7.315392-1 7.902220-6 5.797537-1 7.921575-6 5.089606-1 7.951689-6 4.061657-1 7.960285-6 3.786537-1 7.979640-6 3.202504-1 7.998995-6 2.678590-1 8.018350-6 2.235959-1 8.037705-6 1.908009-1 8.057060-6 1.744728-1 8.076415-6 1.817028-1 8.086093-6 1.970265-1 8.095770-6 2.220078-1 8.108025-6 2.699890-1 8.114152-6 3.018352-1 8.122495-6 3.547071-1 8.134622-6 4.534443-1 8.153174-6 6.626142-1 8.163246-6 8.096104-1 8.182473-6 1.163328+0 8.192176-6 1.380343+0 8.194453-6 1.435098+0 8.205911-6 1.732479+0 8.211984-6 1.904596+0 8.220618-6 2.165716+0 8.231274-6 2.512441+0 8.239930-6 2.811239+0 8.250994-6 3.210586+0 8.258659-6 3.495049+0 8.266615-6 3.793564+0 8.271256-6 3.967780+0 8.279515-6 4.275279+0 8.285738-6 4.502489+0 8.293938-6 4.792369+0 8.300786-6 5.023189+0 8.310173-6 5.317913+0 8.321194-6 5.624050+0 8.330255-6 5.837212+0 8.334878-6 5.930976+0 8.342849-6 6.066948+0 8.351447-6 6.175092+0 8.358127-6 6.230308+0 8.367692-6 6.264386+0 8.374485-6 6.256236+0 8.378599-6 6.238340+0 8.390941-6 6.127557+0 8.400103-6 5.992620+0 8.405929-6 5.885165+0 8.410298-6 5.794274+0 8.416851-6 5.642556+0 8.423405-6 5.473974+0 8.430334-6 5.279487+0 8.439430-6 5.002836+0 8.448200-6 4.717859+0 8.451124-6 4.619779+0 8.461154-6 4.275027+0 8.468677-6 4.011353+0 8.476199-6 3.746606+0 8.483722-6 3.483594+0 8.491245-6 3.224936+0 8.511306-6 2.574068+0 8.516321-6 2.423408+0 8.531366-6 2.008118+0 8.553826-6 1.506904+0 8.564223-6 1.328161+0 8.567564-6 1.278187+0 8.573412-6 1.199581+0 8.582183-6 1.102877+0 8.590955-6 1.031573+0 8.606382-6 9.667562-1 8.627462-6 9.968980-1 8.630097-6 1.009668+0 8.648542-6 1.149218+0 8.656652-6 1.235597+0 8.674484-6 1.468688+0 8.691219-6 1.726762+0 8.698943-6 1.853553+0 8.710139-6 2.040832+0 8.719813-6 2.202109+0 8.729191-6 2.354395+0 8.734178-6 2.432685+0 8.744059-6 2.580236+0 8.753940-6 2.715250+0 8.765139-6 2.849956+0 8.775020-6 2.950536+0 8.796100-6 3.102758+0 8.806664-6 3.146603+0 8.815110-6 3.166695+0 8.823556-6 3.174308+0 8.834076-6 3.167857+0 8.842668-6 3.150948+0 8.849112-6 3.132277+0 8.863611-6 3.074792+0 8.884617-6 2.964445+0 8.913424-6 2.786634+0 8.935637-6 2.640888+0 8.954697-6 2.510588+0 8.976260-6 2.352917+0 8.992720-6 2.221540+0 9.003214-6 2.131707+0 9.019386-6 1.983534+0 9.025442-6 1.925140+0 9.036039-6 1.819591+0 9.043986-6 1.738083+0 9.055908-6 1.613240+0 9.067829-6 1.487137+0 9.080014-6 1.359407+0 9.084076-6 1.317553+0 9.100248-6 1.157205+0 9.127202-6 9.256572-1 9.141001-6 8.311290-1 9.148765-6 7.863945-1 9.155996-6 7.505607-1 9.163226-6 7.205166-1 9.192166-6 6.593974-1 9.198947-6 6.585559-1 9.206687-6 6.635528-1 9.212491-6 6.713161-1 9.221198-6 6.891004-1 9.225551-6 7.006208-1 9.229904-6 7.138041-1 9.243666-6 7.655941-1 9.249643-6 7.924316-1 9.259513-6 8.417431-1 9.297693-6 1.073727+0 9.308309-6 1.144344+0 9.326888-6 1.267531+0 9.340822-6 1.355981+0 9.351272-6 1.418135+0 9.359110-6 1.461610+0 9.370867-6 1.520678+0 9.382624-6 1.571142+0 9.391025-6 1.601272+0 9.403628-6 1.636360+0 9.413079-6 1.654290+0 9.419992-6 1.662726+0 9.439581-6 1.665185+0 9.450050-6 1.653963+0 9.456567-6 1.642872+0 9.466342-6 1.620804+0 9.476694-6 1.591080+0 9.483302-6 1.569153+0 9.495874-6 1.522301+0 9.505304-6 1.483840+0 9.526521-6 1.392218+0 9.560708-6 1.251540+0 9.581040-6 1.183860+0 9.592338-6 1.153523+0 9.606405-6 1.123599+0 9.614569-6 1.110226+0 9.624531-6 1.097732+0 9.639474-6 1.086272+0 9.654646-6 1.082349+0 9.671889-6 1.085192+0 9.691828-6 1.094846+0 9.748796-6 1.131016+0 9.787465-6 1.147702+0 9.858768-6 1.169475+0 9.904114-6 1.190856+0 1.002996-5 1.271944+0 1.011579-5 1.318707+0 1.031661-5 1.420798+0 1.047964-5 1.503483+0 1.061468-5 1.584440+0 1.089858-5 1.781278+0 1.112073-5 1.956832+0 1.135312-5 2.162616+0 1.238972-5 3.362895+0 1.277690-5 3.956686+0 1.318257-5 4.644114+0 1.376485-5 5.727839+0 1.445000-5 7.211665+0 1.535000-5 9.561896+0 1.617149-5 1.211735+1 1.698086-5 1.505981+1 1.825905-5 2.062908+1 1.985791-5 2.933739+1 2.107789-5 3.747844+1 2.264644-5 5.004219+1 2.426610-5 6.538458+1 2.580000-5 8.218752+1 2.713512-5 9.833419+1 2.851700-5 1.161849+2 2.953351-5 1.296993+2 3.028993-5 1.397859+2 3.112813-5 1.507989+2 3.157985-5 1.566398+2 3.225638-5 1.650971+2 3.330000-5 1.774936+2 3.367583-5 1.815893+2 3.488577-5 1.938328+2 3.727287-5 2.217825+2 3.801251-5 2.311826+2 3.866393-5 2.403583+2 3.937007-5 2.514098+2 3.989799-5 2.612415+2 4.049902-5 2.745371+2 4.089925-5 2.853356+2 4.131970-5 2.993434+2 4.169903-5 3.153592+2 4.201158-5 3.321707+2 4.226911-5 3.497525+2 4.241509-5 3.618733+2 4.254753-5 3.747168+2 4.266342-5 3.878386+2 4.285355-5 4.147554+2 4.299911-5 4.421102+2 4.311056-5 4.690341+2 4.320158-5 4.963718+2 4.332104-5 5.421101+2 4.341703-5 5.894558+2 4.347463-5 6.234772+2 4.358163-5 7.000805+2 4.363514-5 7.458124+2 4.368864-5 7.970435+2 4.376890-5 8.849387+2 4.390897-5 1.071941+3 4.407742-5 1.351721+3 4.414498-5 1.477902+3 4.425307-5 1.690252+3 4.427671-5 1.737620+3 4.436116-5 1.906500+3 4.442027-5 2.022090+3 4.446925-5 2.114461+3 4.453615-5 2.233264+3 4.460510-5 2.343860+3 4.467192-5 2.436645+3 4.473441-5 2.508306+3 4.478677-5 2.555800+3 4.483744-5 2.590038+3 4.489956-5 2.615461+3 4.496152-5 2.622066+3 4.500714-5 2.614824+3 4.511421-5 2.558152+3 4.515601-5 2.521537+3 4.521745-5 2.454026+3 4.528186-5 2.367262+3 4.532764-5 2.296773+3 4.537663-5 2.214350+3 4.541414-5 2.147048+3 4.546774-5 2.045713+3 4.553666-5 1.908896+3 4.559071-5 1.798530+3 4.565826-5 1.659434+3 4.572920-5 1.515006+3 4.575284-5 1.467750+3 4.587445-5 1.236266+3 4.596903-5 1.073946+3 4.620452-5 7.524508+2 4.630758-5 6.487085+2 4.637311-5 5.932112+2 4.647926-5 5.185374+2 4.655212-5 4.768894+2 4.667165-5 4.231150+2 4.695230-5 3.576038+2 4.703124-5 3.539668+2 4.706575-5 3.545253+2 4.720712-5 3.712384+2 4.727294-5 3.873049+2 4.729380-5 3.935302+2 4.737706-5 4.238696+2 4.740964-5 4.381308+2 4.748055-5 4.737524+2 4.756529-5 5.242709+2 4.773879-5 6.518475+2 4.785567-5 7.524595+2 4.796111-5 8.500030+2 4.802223-5 9.082686+2 4.810466-5 9.874916+2 4.816986-5 1.049677+3 4.822619-5 1.102343+3 4.830217-5 1.170687+3 4.838734-5 1.241889+3 4.846110-5 1.297265+3 4.853308-5 1.344224+3 4.855484-5 1.356848+3 4.864744-5 1.401334+3 4.870002-5 1.419360+3 4.877423-5 1.435152+3 4.883946-5 1.439319+3 4.887749-5 1.437499+3 4.893000-5 1.429884+3 4.900170-5 1.410228+3 4.906535-5 1.384364+3 4.912674-5 1.352653+3 4.921468-5 1.297331+3 4.929562-5 1.238327+3 4.936867-5 1.180450+3 4.945815-5 1.106219+3 4.960242-5 9.858692+2 4.989450-5 7.723993+2 4.998911-5 7.169447+2 5.005369-5 6.832060+2 5.016572-5 6.321938+2 5.023630-5 6.045401+2 5.032716-5 5.734205+2 5.048360-5 5.296244+2 5.069878-5 4.840232+2 5.107154-5 4.287556+2 5.133808-5 4.023561+2 5.144866-5 3.948731+2 5.157436-5 3.892203+2 5.171716-5 3.867546+2 5.184375-5 3.881100+2 5.192229-5 3.905097+2 5.201469-5 3.946570+2 5.220682-5 4.065257+2 5.247534-5 4.246132+2 5.260374-5 4.313209+2 5.267895-5 4.341946+2 5.279863-5 4.369019+2 5.291879-5 4.372460+2 5.306551-5 4.346990+2 5.320990-5 4.296653+2 5.337829-5 4.218159+2 5.377900-5 4.017042+2 5.416489-5 3.867234+2 5.440334-5 3.797828+2 5.538633-5 3.577407+2 5.570391-5 3.521595+2 5.590000-5 3.496422+2 5.607387-5 3.481893+2 5.636882-5 3.474239+2 5.693248-5 3.492519+2 5.733440-5 3.499153+2 5.763546-5 3.493924+2 5.931564-5 3.427559+2 6.021057-5 3.381255+2 6.224731-5 3.267036+2 6.545382-5 3.078177+2 6.953449-5 2.837100+2 7.429125-5 2.572423+2 7.807284-5 2.378593+2 8.100536-5 2.235541+2 8.222426-5 2.173590+2 8.394448-5 2.081225+2 8.424906-5 2.069922+2 8.486361-5 2.058179+2 8.571683-5 2.053545+2 8.642139-5 2.039065+2 8.826397-5 1.974168+2 9.645506-5 1.753400+2 1.020000-4 1.635199+2 1.085000-4 1.523868+2 1.135011-4 1.453654+2 1.180000-4 1.400829+2 1.230269-4 1.351895+2 1.280000-4 1.310129+2 1.364583-4 1.253442+2 1.462177-4 1.203705+2 1.548817-4 1.168462+2 1.833217-4 1.080363+2 1.950217-4 1.044526+2 2.026256-4 1.019245+2 2.125690-4 9.826945+1 2.264644-4 9.235555+1 2.344229-4 8.851062+1 2.417048-4 8.458020+1 2.511886-4 7.882407+1 2.592000-4 7.341008+1 2.650000-4 6.911048+1 2.707338-4 6.453031+1 2.771364-4 5.902998+1 2.838554-4 5.276119+1 2.894043-4 4.722573+1 2.945804-4 4.169564+1 2.980181-4 3.782177+1 3.007304-4 3.465133+1 3.053283-4 2.898025+1 3.071040-4 2.671885+1 3.113003-4 2.181947+1 3.122009-4 2.095844+1 3.134439-4 1.990878+1 3.150816-4 1.874338+1 3.184733-4 1.675480+1 3.197111-4 1.605509+1 3.226500-4 1.440879+1 3.237991-4 1.384706+1 3.245129-4 1.355104+1 3.253375-4 1.327805+1 3.259398-4 1.313572+1 3.265285-4 1.305143+1 3.272000-4 1.303109+1 3.277275-4 1.307901+1 3.283166-4 1.320687+1 3.288537-4 1.339889+1 3.295000-4 1.373535+1 3.298000-4 1.393395+1 3.304039-4 1.442214+1 3.308000-4 1.481081+1 3.313998-4 1.551093+1 3.318000-4 1.605772+1 3.325000-4 1.717937+1 3.331277-4 1.837709+1 3.340000-4 2.036872+1 3.349175-4 2.290850+1 3.355703-4 2.501345+1 3.368277-4 2.981299+1 3.395000-4 4.349045+1 3.405845-4 5.042759+1 3.420171-4 6.079035+1 3.431770-4 7.012790+1 3.441494-4 7.855947+1 3.456436-4 9.247692+1 3.467955-4 1.038915+2 3.472000-4 1.080222+2 3.483500-4 1.200584+2 3.495000-4 1.324510+2 3.508311-4 1.471140+2 3.516248-4 1.559637+2 3.525000-4 1.657750+2 3.537500-4 1.798174+2 3.544032-4 1.871424+2 3.561032-4 2.060706+2 3.581500-4 2.284214+2 3.595000-4 2.428100+2 3.614997-4 2.635172+2 3.635000-4 2.834370+2 3.658227-4 3.054909+2 3.680000-4 3.250592+2 3.700000-4 3.420592+2 3.723000-4 3.604157+2 3.744187-4 3.761649+2 3.776987-4 3.983696+2 3.815000-4 4.209559+2 3.850000-4 4.389234+2 3.875541-4 4.504905+2 3.900886-4 4.608560+2 3.929263-4 4.712676+2 3.979680-4 4.871478+2 4.015354-4 4.969896+2 4.062500-4 5.088533+2 4.118281-4 5.215625+2 4.221173-4 5.424537+2 4.297304-4 5.566138+2 4.380326-4 5.708612+2 4.470322-4 5.844221+2 4.549982-4 5.938701+2 4.710279-4 6.090873+2 4.731998-4 6.153560+2 4.759834-4 6.295808+2 4.782270-4 6.461644+2 4.793438-4 6.553439+2 4.829212-4 6.804590+2 4.839737-4 6.844466+2 4.851576-4 6.863140+2 4.863762-4 6.853412+2 4.877976-4 6.810574+2 4.916410-4 6.628473+2 4.931546-4 6.576907+2 4.946600-4 6.555218+2 4.965561-4 6.574939+2 4.985000-4 6.645023+2 5.026149-4 6.901090+2 5.061456-4 7.146332+2 5.084987-4 7.275579+2 5.101481-4 7.337904+2 5.119610-4 7.378066+2 5.194062-4 7.408983+2 5.226500-4 7.464617+2 5.360000-4 7.897596+2 5.465000-4 8.163455+2 5.559043-4 8.339519+2 5.675144-4 8.504492+2 5.800935-4 8.638665+2 6.011458-4 8.780473+2 6.058651-4 8.827673+2 6.108694-4 8.906753+2 6.262645-4 9.251687+2 6.322253-4 9.365255+2 6.413479-4 9.493995+2 6.553877-4 9.643365+2 6.720025-4 9.784008+2 7.110872-4 1.004047+3 7.454470-4 1.020139+3 7.692814-4 1.029096+3 7.915665-4 1.035255+3 8.655621-4 1.045777+3 9.344901-4 1.049622+3 1.013036-3 1.047910+3 1.136645-3 1.038231+3 1.178284-3 1.033109+3 1.366179-3 9.984262+2 1.498862-3 9.727837+2 1.657536-3 9.363322+2 1.737117-3 9.175985+2 1.913705-3 8.741713+2 2.007856-3 8.502882+2 2.100203-3 8.257094+2 2.205184-3 7.971666+2 2.299823-3 7.703862+2 2.391508-3 7.420071+2 2.470359-3 7.158949+2 2.536303-3 6.926495+2 2.601568-3 6.679209+2 2.654500-3 6.462135+2 2.700941-3 6.250833+2 2.741957-3 6.038665+2 2.775804-3 5.849289+2 2.807124-3 5.657681+2 2.830055-3 5.502503+2 2.854232-3 5.320368+2 2.872982-3 5.161345+2 2.893683-3 4.959981+2 2.910466-3 4.769040+2 2.922813-3 4.608933+2 2.937725-3 4.394241+2 2.964066-3 4.007518+2 2.974757-3 3.884285+2 2.978700-3 3.849039+2 2.986034-3 3.801738+2 2.991749-3 3.783155+2 2.995776-3 3.780259+2 3.002990-3 3.796328+2 3.011050-3 3.844946+2 3.018802-3 3.918106+2 3.030272-3 4.060518+2 3.049332-3 4.330066+2 3.059114-3 4.458647+2 3.067641-3 4.556785+2 3.076345-3 4.641377+2 3.086222-3 4.719008+2 3.096559-3 4.783613+2 3.122664-3 4.923082+2 3.134593-3 5.003231+2 3.150330-3 5.144604+2 3.165149-3 5.315265+2 3.198066-3 5.749441+2 3.211333-3 5.910484+2 3.223229-3 6.037251+2 3.236682-3 6.158521+2 3.253464-3 6.278904+2 3.272319-3 6.379567+2 3.293430-3 6.457406+2 3.311585-3 6.500887+2 3.357728-3 6.578379+2 3.370001-3 6.614993+2 3.390130-3 6.709781+2 3.420403-3 6.923910+2 3.450142-3 7.152130+2 3.464671-3 7.249627+2 3.482368-3 7.351166+2 3.506336-3 7.462334+2 3.533117-3 7.561012+2 3.562914-3 7.650470+2 3.603044-3 7.749343+2 3.676322-3 7.882265+2 3.754319-3 7.974791+2 3.845918-3 8.042922+2 3.989904-3 8.085751+2 4.181076-3 8.066956+2 4.394278-3 7.975338+2 4.647778-3 7.815206+2 4.899270-3 7.626849+2 5.289779-3 7.305054+2 5.698538-3 6.955125+2 6.241046-3 6.504275+2 6.926255-3 5.972415+2 7.690197-3 5.444543+2 8.664829-3 4.864677+2 9.618457-3 4.382805+2 1.057730-2 3.963573+2 1.160927-2 3.572590+2 1.255308-2 3.257035+2 1.349691-2 2.975784+2 1.455602-2 2.693612+2 1.566221-2 2.432537+2 1.686619-2 2.180545+2 1.812778-2 1.946462+2 1.919221-2 1.767818+2 2.004954-2 1.632861+2 2.070335-2 1.532497+2 2.120582-2 1.454722+2 2.159608-2 1.391960+2 2.192065-2 1.336129+2 2.219107-2 1.284510+2 2.232034-2 1.256815+2 2.243030-2 1.230710+2 2.252239-2 1.206380+2 2.264655-2 1.169264+2 2.283994-2 1.104060+2 2.296142-2 1.066082+2 2.304603-2 1.046324+2 2.311564-2 1.036427+2 2.316175-2 1.033549+2 2.320315-2 1.033550+2 2.326243-2 1.037670+2 2.335250-2 1.051957+2 2.346803-2 1.079646+2 2.365061-2 1.127501+2 2.374974-2 1.149350+2 2.388499-2 1.172102+2 2.403627-2 1.189188+2 2.425247-2 1.203492+2 2.453330-2 1.212354+2 2.483917-2 1.215163+2 2.537460-2 1.210355+2 2.592512-2 1.197528+2 2.648161-2 1.179922+2 2.746313-2 1.143169+2 2.870579-2 1.092915+2 3.032431-2 1.027189+2 3.265917-2 9.366906+1 3.541812-2 8.407687+1 3.868816-2 7.419643+1 4.267921-2 6.403845+1 4.850815-2 5.239214+1 5.279349-2 4.566121+1 5.816546-2 3.877989+1 6.936598-2 2.852475+1 8.959417-2 1.810117+1 1.138956-1 1.175682+1 1.409254-1 7.957478+0 1.725342-1 5.455306+0 2.203561-1 3.428457+0 2.962912-1 1.937423+0 4.327629-1 9.258194-1 6.512534-1 4.141946-1 1.120601+0 1.411050-1 2.947480+0 2.048403-2 8.901248+0 2.247557-3 2.688134+1 2.464583-4 8.118035+1 2.702383-5 2.451607+2 2.963107-6 7.403736+2 3.248983-7 2.511886+3 2.822599-8 7.943282+3 2.822599-9 2.511886+4 2.82260-10 7.943282+4 2.82260-11 1.000000+5 1.78094-11 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.218100-6 1.258900-6 1.930500-6 1.584900-6 3.059600-6 1.995300-6 4.849200-6 2.511900-6 7.685400-6 3.162300-6 1.218000-5 3.981100-6 1.930500-5 5.011900-6 3.059600-5 6.309600-6 4.849000-5 7.943300-6 7.685200-5 1.000000-5 1.218000-4 1.258900-5 1.930400-4 1.584900-5 3.058600-4 1.995300-5 4.845900-4 2.511900-5 7.677900-4 3.162300-5 1.216600-3 3.981100-5 1.927800-3 5.011900-5 3.054900-3 6.309600-5 4.841100-3 7.943300-5 7.663800-3 1.000000-4 1.212900-2 1.258900-4 1.920000-2 1.584900-4 3.034000-2 1.995300-4 4.790600-2 2.511900-4 7.544800-2 3.162300-4 1.184200-1 3.981100-4 1.848000-1 5.011900-4 2.853500-1 6.309600-4 4.344400-1 7.943300-4 6.487800-1 1.000000-3 9.458800-1 1.258900-3 1.341200+0 1.584900-3 1.848000+0 1.995300-3 2.482100+0 2.511900-3 3.259900+0 3.162300-3 4.190100+0 3.981100-3 5.279100+0 5.011900-3 6.543500+0 6.309600-3 7.996700+0 7.943300-3 9.609900+0 1.000000-2 1.129000+1 1.258900-2 1.294900+1 1.584900-2 1.456200+1 1.995300-2 1.610200+1 2.511900-2 1.745300+1 3.162300-2 1.863400+1 3.981100-2 1.963900+1 5.011900-2 2.026100+1 6.309600-2 2.053400+1 7.943300-2 2.046100+1 1.000000-1 2.006500+1 1.258900-1 1.943500+1 1.584900-1 1.858100+1 1.995300-1 1.756900+1 2.511900-1 1.644400+1 3.162300-1 1.525900+1 3.981100-1 1.405000+1 5.011900-1 1.284800+1 6.309600-1 1.167400+1 7.943300-1 1.054100+1 1.000000+0 9.460600+0 1.258900+0 8.436300+0 1.584900+0 7.475800+0 1.995300+0 6.582000+0 2.511900+0 5.758300+0 3.162300+0 5.006800+0 3.981100+0 4.327600+0 5.011900+0 3.719700+0 6.309600+0 3.180700+0 7.943300+0 2.706700+0 1.000000+1 2.293100+0 1.258900+1 1.934900+0 1.584900+1 1.626700+0 1.995300+1 1.363100+0 2.511900+1 1.138800+0 3.162300+1 9.487800-1 3.981100+1 7.885600-1 5.011900+1 6.539500-1 6.309600+1 5.412300-1 7.943300+1 4.471300-1 1.000000+2 3.687800-1 1.258900+2 3.037000-1 1.584900+2 2.497500-1 1.995300+2 2.051300-1 2.511900+2 1.682800-1 3.162300+2 1.379000-1 3.981100+2 1.129000-1 5.011900+2 9.233700-2 6.309600+2 7.545500-2 7.943300+2 6.161000-2 1.000000+3 5.026600-2 1.258900+3 4.098200-2 1.584900+3 3.338900-2 1.995300+3 2.718600-2 2.511900+3 2.212100-2 3.162300+3 1.799000-2 3.981100+3 1.462200-2 5.011900+3 1.187900-2 6.309600+3 9.645100-3 7.943300+3 7.827800-3 1.000000+4 6.349900-3 1.258900+4 5.148800-3 1.584900+4 4.173200-3 1.995300+4 3.381100-3 2.511900+4 2.738200-3 3.162300+4 2.216800-3 3.981100+4 1.794000-3 5.011900+4 1.451400-3 6.309600+4 1.173800-3 7.943300+4 9.489600-4 1.000000+5 7.669700-4 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976757-4 5.011872-4 5.005060-4 6.309573-4 6.298837-4 7.943282-4 7.926397-4 1.000000-3 9.973510-4 1.258925-3 1.254780-3 1.584893-3 1.578408-3 1.995262-3 1.985139-3 2.511886-3 2.496080-3 3.162278-3 3.137640-3 3.981072-3 3.942628-3 5.011872-3 4.951855-3 6.309573-3 6.215857-3 7.943282-3 7.797267-3 1.000000-2 9.773550-3 1.258925-2 1.223965-2 1.584893-2 1.531024-2 1.995262-2 1.912398-2 2.511886-2 2.384584-2 3.162278-2 2.967993-2 3.981072-2 3.686275-2 5.011872-2 4.566999-2 6.309573-2 5.643888-2 7.943282-2 6.953629-2 1.000000-1 8.544309-2 1.258925-1 1.045691-1 1.584893-1 1.276019-1 1.995262-1 1.551466-1 2.511886-1 1.880367-1 3.162278-1 2.271233-1 3.981072-1 2.734662-1 5.011872-1 3.282407-1 6.309573-1 3.928436-1 7.943282-1 4.689527-1 1.000000+0 5.583021-1 1.258925+0 6.637576-1 1.584893+0 7.880520-1 1.995262+0 9.351553-1 2.511886+0 1.109696+0 3.162278+0 1.317430+0 3.981072+0 1.565373+0 5.011872+0 1.862241+0 6.309573+0 2.218406+0 7.943282+0 2.646875+0 1.000000+1 3.163491+0 1.258925+1 3.787507+0 1.584893+1 4.542644+0 1.995262+1 5.457808+0 2.511886+1 6.568561+0 3.162278+1 7.918498+0 3.981072+1 9.561038+0 5.011872+1 1.156182+1 6.309573+1 1.400146+1 7.943282+1 1.697907+1 1.000000+2 2.061632+1 1.258925+2 2.506373+1 1.584893+2 3.050538+1 1.995262+2 3.716861+1 2.511886+2 4.533374+1 3.162278+2 5.534632+1 3.981072+2 6.763080+1 5.011872+2 8.271413+1 6.309573+2 1.012435+2 7.943282+2 1.240197+2 1.000000+3 1.520291+2 1.258925+3 1.864940+2 1.584893+3 2.289198+2 1.995262+3 2.811751+2 2.511886+3 3.455654+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88239-10 1.995262-5 1.090729-9 2.511886-5 1.728658-9 3.162278-5 2.739722-9 3.981072-5 4.342129-9 5.011872-5 6.881674-9 6.309573-5 1.090630-8 7.943282-5 1.727983-8 1.000000-4 2.738092-8 1.258925-4 4.339184-8 1.584893-4 6.873182-8 1.995262-4 1.088781-7 2.511886-4 1.724007-7 3.162278-4 2.728339-7 3.981072-4 4.314812-7 5.011872-4 6.812136-7 6.309573-4 1.073671-6 7.943282-4 1.688570-6 1.000000-3 2.649026-6 1.258925-3 4.145255-6 1.584893-3 6.485096-6 1.995262-3 1.012359-5 2.511886-3 1.580604-5 3.162278-3 2.463767-5 3.981072-3 3.844408-5 5.011872-3 6.001684-5 6.309573-3 9.371687-5 7.943282-3 1.460158-4 1.000000-2 2.264504-4 1.258925-2 3.496066-4 1.584893-2 5.386917-4 1.995262-2 8.286461-4 2.511886-2 1.273022-3 3.162278-2 1.942846-3 3.981072-2 2.947965-3 5.011872-2 4.448733-3 6.309573-2 6.656859-3 7.943282-2 9.896532-3 1.000000-1 1.455691-2 1.258925-1 2.132343-2 1.584893-1 3.088747-2 1.995262-1 4.437963-2 2.511886-1 6.315190-2 3.162278-1 8.910443-2 3.981072-1 1.246410-1 5.011872-1 1.729465-1 6.309573-1 2.381138-1 7.943282-1 3.253755-1 1.000000+0 4.416979-1 1.258925+0 5.951678-1 1.584893+0 7.968412-1 1.995262+0 1.060107+0 2.511886+0 1.402191+0 3.162278+0 1.844848+0 3.981072+0 2.415699+0 5.011872+0 3.149631+0 6.309573+0 4.091168+0 7.943282+0 5.296407+0 1.000000+1 6.836509+0 1.258925+1 8.801747+0 1.584893+1 1.130629+1 1.995262+1 1.449481+1 2.511886+1 1.855030+1 3.162278+1 2.370428+1 3.981072+1 3.024968+1 5.011872+1 3.855691+1 6.309573+1 4.909428+1 7.943282+1 6.245375+1 1.000000+2 7.938368+1 1.258925+2 1.008288+2 1.584893+2 1.279839+2 1.995262+2 1.623576+2 2.511886+2 2.058549+2 3.162278+2 2.608815+2 3.981072+2 3.304764+2 5.011872+2 4.184731+2 6.309573+2 5.297139+2 7.943282+2 6.703085+2 1.000000+3 8.479709+2 1.258925+3 1.072431+3 1.584893+3 1.355973+3 1.995262+3 1.714087+3 2.511886+3 2.166321+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.560000-6 1.564650+6 6.683439-6 1.427083+6 7.000000-6 1.122060+6 7.328245-6 8.779325+5 7.600000-6 7.188720+5 7.943282-6 5.601033+5 8.222426-6 4.581629+5 8.511380-6 3.725618+5 8.810489-6 3.010694+5 9.120108-6 2.416044+5 9.440609-6 1.923411+5 9.700000-6 1.598270+5 9.810000-6 1.476311+5 9.810000-6 5.915551+6 9.930000-6 5.962583+6 1.011579-5 6.036843+6 1.020000-5 6.079776+6 1.024000-5 6.100223+6 1.024000-5 9.821823+6 1.047129-5 1.000385+7 1.060000-5 1.010602+7 1.070000-5 1.019270+7 1.071519-5 1.020703+7 1.096478-5 1.044368+7 1.109175-5 1.056497+7 1.122018-5 1.069506+7 1.135011-5 1.082722+7 1.148154-5 1.096876+7 1.161449-5 1.111257+7 1.172000-5 1.123189+7 1.190000-5 1.143645+7 1.216186-5 1.173627+7 1.244515-5 1.206340+7 1.273503-5 1.241841+7 1.350000-5 1.336991+7 1.364583-5 1.355353+7 1.372000-5 1.364856+7 1.390000-5 1.387993+7 1.405000-5 1.407356+7 1.415000-5 1.420303+7 1.428894-5 1.438345+7 1.440000-5 1.452810+7 1.450000-5 1.465866+7 1.462177-5 1.481804+7 1.470000-5 1.492067+7 1.480000-5 1.505213+7 1.490000-5 1.518387+7 1.500000-5 1.531590+7 1.511000-5 1.546146+7 1.522000-5 1.560736+7 1.535000-5 1.578023+7 1.548817-5 1.596447+7 1.560000-5 1.611396+7 1.575000-5 1.631502+7 1.590000-5 1.651667+7 1.610000-5 1.678645+7 1.630000-5 1.705728+7 1.660000-5 1.746542+7 1.717908-5 1.825958+7 1.737801-5 1.852980+7 1.778279-5 1.908229+7 1.819701-5 1.965130+7 1.860000-5 2.020834+7 1.900000-5 2.076455+7 1.935000-5 2.125388+7 1.980000-5 2.188660+7 2.020000-5 2.245234+7 2.041738-5 2.276107+7 2.070000-5 2.314724+7 2.113489-5 2.374375+7 2.170000-5 2.452292+7 2.230000-5 2.535512+7 2.264644-5 2.583789+7 2.300000-5 2.629969+7 2.371374-5 2.723496+7 2.426610-5 2.796149+7 2.454709-5 2.831126+7 2.540973-5 2.934514+7 2.580000-5 2.981330+7 2.610000-5 3.014839+7 2.630268-5 3.036248+7 2.691535-5 3.100872+7 2.730000-5 3.137588+7 2.818383-5 3.215748+7 2.851018-5 3.240810+7 2.851700-5 3.241333+7 2.917427-5 3.287004+7 2.951209-5 3.306573+7 2.985383-5 3.323795+7 3.019952-5 3.341104+7 3.054921-5 3.353982+7 3.126079-5 3.373830+7 3.162278-5 3.378717+7 3.235937-5 3.381657+7 3.273407-5 3.378037+7 3.300000-5 3.373251+7 3.330000-5 3.367904+7 3.350000-5 3.361753+7 3.427678-5 3.332063+7 3.450000-5 3.320989+7 3.500000-5 3.292053+7 3.507519-5 3.287759+7 3.548134-5 3.259826+7 3.610000-5 3.212865+7 3.650000-5 3.177932+7 3.715352-5 3.116705+7 3.730000-5 3.101588+7 3.758374-5 3.072683+7 3.801894-5 3.025841+7 3.850000-5 2.970638+7 3.900000-5 2.911527+7 3.950000-5 2.849402+7 4.000000-5 2.786337+7 4.030000-5 2.746534+7 4.120975-5 2.625522+7 4.150000-5 2.585916+7 4.229500-5 2.476832+7 4.265795-5 2.426312+7 4.315191-5 2.356991+7 4.350000-5 2.309791+7 4.400000-5 2.240753+7 4.466836-5 2.149562+7 4.518559-5 2.079092+7 4.610000-5 1.958268+7 4.650000-5 1.906182+7 4.731513-5 1.802478+7 4.800000-5 1.718202+7 4.850000-5 1.658156+7 4.954502-5 1.536990+7 5.011872-5 1.473529+7 5.128614-5 1.350262+7 5.150000-5 1.328542+7 5.300000-5 1.183686+7 5.308844-5 1.175597+7 5.432503-5 1.066433+7 5.450000-5 1.052018+7 5.478000-5 1.028333+7 5.478000-5 1.255729+7 5.530000-5 1.212006+7 5.590000-5 1.162830+7 5.623413-5 1.135974+7 5.650000-5 1.114215+7 5.740000-5 1.043030+7 5.800000-5 9.979045+6 5.850000-5 9.607386+6 5.884000-5 9.360736+6 5.884000-5 1.041021+7 5.888437-5 1.037872+7 5.940000-5 1.002246+7 5.956621-5 9.909205+6 5.960000-5 9.885557+6 6.000000-5 9.608022+6 6.070000-5 9.139973+6 6.095369-5 8.975362+6 6.150000-5 8.624525+6 6.165950-5 8.523990+6 6.237348-5 8.086613+6 6.260000-5 7.950393+6 6.309573-5 7.659303+6 6.382635-5 7.249029+6 6.400000-5 7.154841+6 6.456542-5 6.853312+6 6.500000-5 6.630691+6 6.580000-5 6.235956+6 6.650000-5 5.908582+6 6.683439-5 5.758669+6 6.760830-5 5.425479+6 6.850000-5 5.063414+6 6.918310-5 4.801839+6 6.950000-5 4.686172+6 7.000000-5 4.507464+6 7.079458-5 4.237895+6 7.150000-5 4.013980+6 7.161434-5 3.978468+6 7.350000-5 3.440159+6 7.400000-5 3.309887+6 7.413102-5 3.276661+6 7.500000-5 3.067777+6 7.673615-5 2.691049+6 7.852356-5 2.358094+6 7.900000-5 2.277634+6 7.943282-5 2.206646+6 8.080000-5 2.002445+6 8.128305-5 1.935631+6 8.150000-5 1.906233+6 8.222426-5 1.813356+6 8.317638-5 1.700762+6 8.400000-5 1.610154+6 8.413951-5 1.595684+6 8.511380-5 1.498921+6 8.650000-5 1.375632+6 8.810489-5 1.252016+6 8.834000-5 1.235266+6 8.852000-5 1.222782+6 8.852000-5 1.393254+6 8.900000-5 1.361684+6 8.950000-5 1.330784+6 9.070000-5 1.262376+6 9.120108-5 1.235660+6 9.150000-5 1.220400+6 9.300000-5 1.151550+6 9.332543-5 1.138014+6 9.400000-5 1.110621+6 9.450000-5 1.091913+6 9.549926-5 1.057596+6 9.580000-5 1.047687+6 9.660509-5 1.023031+6 9.680000-5 1.017451+6 9.720000-5 1.006494+6 9.800000-5 9.857271+5 9.850000-5 9.735671+5 9.900000-5 9.619559+5 9.950000-5 9.512029+5 1.000000-4 9.413171+5 1.005000-4 9.319945+5 1.010000-4 9.230878+5 1.011579-4 9.204214+5 1.015000-4 9.146272+5 1.020000-4 9.065137+5 1.023293-4 9.016184+5 1.025000-4 8.992284+5 1.030000-4 8.925257+5 1.035142-4 8.860708+5 1.040000-4 8.802710+5 1.045000-4 8.746825+5 1.050000-4 8.693750+5 1.055000-4 8.646150+5 1.059254-4 8.607784+5 1.060000-4 8.601611+5 1.065000-4 8.563346+5 1.071519-4 8.516522+5 1.075000-4 8.493871+5 1.080000-4 8.463380+5 1.083927-4 8.440985+5 1.085000-4 8.434752+5 1.096478-4 8.379644+5 1.100000-4 8.364304+5 1.110000-4 8.331985+5 1.115000-4 8.319512+5 1.124000-4 8.301371+5 1.128000-4 8.294644+5 1.135011-4 8.286070+5 1.148154-4 8.279696+5 1.150000-4 8.279449+5 1.170000-4 8.291716+5 1.174898-4 8.296617+5 1.180000-4 8.305366+5 1.198000-4 8.342900+5 1.202264-4 8.353132+5 1.220000-4 8.396000+5 1.230269-4 8.424747+5 1.260000-4 8.524711+5 1.273503-4 8.575821+5 1.280000-4 8.601135+5 1.303167-4 8.690072+5 1.318257-4 8.752388+5 1.348963-4 8.878292+5 1.350000-4 8.882482+5 1.364583-4 8.938050+5 1.380384-4 9.002058+5 1.390000-4 9.040578+5 1.412538-4 9.120608+5 1.430000-4 9.185881+5 1.450000-4 9.254264+5 1.462177-4 9.296744+5 1.465000-4 9.306261+5 1.500000-4 9.410840+5 1.531087-4 9.490537+5 1.548817-4 9.538110+5 1.600000-4 9.640518+5 1.640590-4 9.701770+5 1.650000-4 9.715145+5 1.659587-4 9.727007+5 1.678804-4 9.742293+5 1.705000-4 9.763828+5 1.720000-4 9.773618+5 1.737801-4 9.779950+5 1.760000-4 9.785991+5 1.780000-4 9.788197+5 1.819701-4 9.782888+5 1.820000-4 9.782818+5 1.850000-4 9.771455+5 1.862087-4 9.763418+5 1.883649-4 9.747716+5 1.927525-4 9.710835+5 1.950000-4 9.687159+5 1.972423-4 9.660842+5 2.000000-4 9.626282+5 2.018366-4 9.600097+5 2.065380-4 9.524070+5 2.089296-4 9.486517+5 2.113489-4 9.444596+5 2.150000-4 9.378149+5 2.162719-4 9.354216+5 2.187762-4 9.303423+5 2.190000-4 9.298843+5 2.238721-4 9.195015+5 2.264644-4 9.140205+5 2.300000-4 9.061128+5 2.344229-4 8.960216+5 2.371374-4 8.897517+5 2.400000-4 8.826674+5 2.454709-4 8.689540+5 2.500000-4 8.578325+5 2.511886-4 8.548194+5 2.540973-4 8.472894+5 2.570396-4 8.396092+5 2.600160-4 8.318991+5 2.650000-4 8.187057+5 2.691535-4 8.076774+5 2.754229-4 7.914204+5 2.760000-4 7.899225+5 2.786121-4 7.829122+5 2.800000-4 7.791987+5 2.917427-4 7.484162+5 2.951209-4 7.397173+5 3.000000-4 7.270972+5 3.019952-4 7.219533+5 3.090295-4 7.042115+5 3.126079-4 6.952273+5 3.179600-4 6.819394+5 3.179600-4 7.845280+5 3.190000-4 7.822398+5 3.204000-4 7.797692+5 3.215000-4 7.786057+5 3.223000-4 7.783282+5 3.230000-4 7.785905+5 3.230300-4 7.786263+5 3.230300-4 8.513051+5 3.238000-4 8.520416+5 3.241000-4 8.526200+5 3.245000-4 8.535326+5 3.252000-4 8.558734+5 3.258000-4 8.588349+5 3.263000-4 8.618906+5 3.264000-4 8.625639+5 3.271000-4 8.682091+5 3.272000-4 8.691563+5 3.273407-4 8.705790+5 3.277000-4 8.742805+5 3.280000-4 8.777903+5 3.283000-4 8.815607+5 3.287000-4 8.872380+5 3.290000-4 8.918265+5 3.294900-4 9.003082+5 3.295000-4 9.004848+5 3.298000-4 9.060718+5 3.302000-4 9.144509+5 3.308000-4 9.282006+5 3.310000-4 9.332934+5 3.311311-4 9.368110+5 3.316000-4 9.498213+5 3.318000-4 9.558764+5 3.325000-4 9.789026+5 3.328000-4 9.896652+5 3.333000-4 1.009239+6 3.340000-4 1.039496+6 3.343000-4 1.053576+6 3.347000-4 1.073434+6 3.355000-4 1.117133+6 3.363000-4 1.166397+6 3.365000-4 1.179699+6 3.370000-4 1.213755+6 3.380000-4 1.289612+6 3.390000-4 1.374034+6 3.395000-4 1.418878+6 3.400000-4 1.466689+6 3.411700-4 1.585300+6 3.422100-4 1.699187+6 3.423000-4 1.709558+6 3.427678-4 1.762428+6 3.433000-4 1.825804+6 3.435000-4 1.849546+6 3.440000-4 1.910029+6 3.448000-4 2.008826+6 3.450000-4 2.034233+6 3.458000-4 2.134948+6 3.461000-4 2.173764+6 3.468000-4 2.262950+6 3.472000-4 2.315136+6 3.476000-4 2.365977+6 3.483000-4 2.456626+6 3.485000-4 2.481854+6 3.495000-4 2.609652+6 3.504000-4 2.720998+6 3.507519-4 2.764754+6 3.508000-4 2.770802+6 3.515000-4 2.855414+6 3.519000-4 2.903253+6 3.527000-4 2.996743+6 3.530000-4 3.031446+6 3.535000-4 3.086832+6 3.545000-4 3.196791+6 3.548134-4 3.230030+6 3.558000-4 3.332670+6 3.569000-4 3.439696+6 3.573000-4 3.477947+6 3.580000-4 3.541423+6 3.590000-4 3.629814+6 3.595000-4 3.671556+6 3.600000-4 3.711318+6 3.610000-4 3.792353+6 3.620000-4 3.865046+6 3.630781-4 3.941307+6 3.635000-4 3.969131+6 3.650000-4 4.062776+6 3.657000-4 4.103448+6 3.673000-4 4.190081+6 3.680000-4 4.224501+6 3.700000-4 4.316234+6 3.715352-4 4.373247+6 3.723000-4 4.401915+6 3.730000-4 4.425585+6 3.750000-4 4.483278+6 3.758374-4 4.504437+6 3.780000-4 4.548467+6 3.795600-4 4.574682+6 3.815000-4 4.598662+6 3.830000-4 4.611987+6 3.850000-4 4.622861+6 3.865000-4 4.626577+6 3.890451-4 4.626136+6 3.900000-4 4.623541+6 3.935501-4 4.605882+6 3.950000-4 4.595604+6 3.981072-4 4.566999+6 4.000000-4 4.549732+6 4.027170-4 4.520512+6 4.050000-4 4.496178+6 4.100000-4 4.437457+6 4.168694-4 4.353755+6 4.265795-4 4.240309+6 4.280000-4 4.224133+6 4.315191-4 4.182061+6 4.365158-4 4.121299+6 4.430000-4 4.044643+6 4.466836-4 3.998911+6 4.570882-4 3.868708+6 4.600000-4 3.833505+6 4.623810-4 3.803243+6 4.631200-4 3.793914+6 4.700000-4 3.704987+6 4.786301-4 3.598023+6 4.850000-4 3.519236+6 4.946600-4 3.401737+6 4.946600-4 3.706418+6 4.954502-4 3.700469+6 4.981000-4 3.681017+6 4.985000-4 3.681303+6 5.000000-4 3.671335+6 5.011872-4 3.661920+6 5.045500-4 3.635897+6 5.143000-4 3.546812+6 5.150000-4 3.540116+6 5.188000-4 3.503027+6 5.201500-4 3.489755+6 5.201500-4 3.588460+6 5.207000-4 3.588293+6 5.211000-4 3.587918+6 5.216000-4 3.587077+6 5.223000-4 3.585303+6 5.230000-4 3.582974+6 5.237000-4 3.580235+6 5.245000-4 3.576585+6 5.248075-4 3.574973+6 5.258000-4 3.569065+6 5.272000-4 3.560055+6 5.285000-4 3.551136+6 5.300000-4 3.540298+6 5.315000-4 3.528967+6 5.335000-4 3.513211+6 5.360000-4 3.492693+6 5.370318-4 3.483881+6 5.385000-4 3.471289+6 5.410000-4 3.449236+6 5.432503-4 3.429013+6 5.435000-4 3.426693+6 5.450000-4 3.412451+6 5.465000-4 3.397709+6 5.500000-4 3.363007+6 5.559043-4 3.303181+6 5.580000-4 3.282238+6 5.688529-4 3.175196+6 5.754399-4 3.111114+6 5.800000-4 3.067131+6 5.821032-4 3.046764+6 5.888437-4 2.982890+6 5.956621-4 2.920381+6 6.100000-4 2.795505+6 6.159500-4 2.744673+6 6.159500-4 2.865737+6 6.165950-4 2.860170+6 6.237348-4 2.799318+6 6.309573-4 2.738792+6 6.350000-4 2.705779+6 6.382635-4 2.679470+6 6.606934-4 2.509058+6 6.700000-4 2.442190+6 6.760830-4 2.399973+6 6.839116-4 2.346664+6 6.918310-4 2.294607+6 7.000000-4 2.242372+6 7.079458-4 2.193289+6 7.161434-4 2.143395+6 7.413102-4 1.998266+6 7.498942-4 1.951942+6 7.500000-4 1.951382+6 7.585776-4 1.906735+6 7.673615-4 1.861632+6 7.852356-4 1.773867+6 8.000000-4 1.706107+6 8.200000-4 1.620101+6 8.222426-4 1.610845+6 8.317638-4 1.572425+6 8.413951-4 1.534490+6 8.511380-4 1.497170+6 8.709636-4 1.425174+6 8.810489-4 1.390317+6 8.850000-4 1.377008+6 9.015711-4 1.323182+6 9.120108-4 1.290786+6 9.225714-4 1.258440+6 9.332543-4 1.226725+6 9.549926-4 1.165795+6 9.772372-4 1.107856+6 1.000000-3 1.052936+6 1.011579-3 1.026165+6 1.023293-3 9.999250+5 1.035142-3 9.743875+5 1.071519-3 9.016691+5 1.096478-3 8.562974+5 1.109175-3 8.343045+5 1.110000-3 8.328939+5 1.122018-3 8.127282+5 1.135011-3 7.915745+5 1.161449-3 7.508268+5 1.202264-3 6.937436+5 1.216186-3 6.756131+5 1.244515-3 6.404070+5 1.258925-3 6.234436+5 1.273503-3 6.069327+5 1.288250-3 5.908863+5 1.333521-3 5.453811+5 1.355400-3 5.250512+5 1.380384-3 5.029748+5 1.396368-3 4.894579+5 1.412538-3 4.763192+5 1.450000-3 4.478019+5 1.462177-3 4.390745+5 1.479108-3 4.272631+5 1.500000-3 4.132665+5 1.513561-3 4.045397+5 1.531087-3 3.935811+5 1.548817-3 3.828672+5 1.584893-3 3.623488+5 1.603245-3 3.525220+5 1.621810-3 3.429163+5 1.630000-3 3.387854+5 1.659587-3 3.244502+5 1.678804-3 3.156104+5 1.698244-3 3.069619+5 1.717908-3 2.985231+5 1.778279-3 2.746413+5 1.798871-3 2.670721+5 1.800000-3 2.666661+5 1.819701-3 2.597058+5 1.883649-3 2.387715+5 1.900000-3 2.338176+5 1.905461-3 2.321855+5 1.972423-3 2.133825+5 2.000000-3 2.062359+5 2.041738-3 1.960297+5 2.089296-3 1.852668+5 2.113489-3 1.801100+5 2.162719-3 1.701570+5 2.187762-3 1.653981+5 2.238721-3 1.562277+5 2.290868-3 1.475499+5 2.344229-3 1.393692+5 2.371374-3 1.354376+5 2.398833-3 1.316099+5 2.400000-3 1.314507+5 2.426610-3 1.278856+5 2.454709-3 1.242464+5 2.483133-3 1.207020+5 2.511886-3 1.172623+5 2.576800-3 1.099887+5 2.600160-3 1.075294+5 2.660725-3 1.015065+5 2.691535-3 9.860665+4 2.710800-3 9.685282+4 2.722701-3 9.578300+4 2.754229-3 9.302776+4 2.818383-3 8.774322+4 2.884032-3 8.275112+4 2.951209-3 7.805258+4 3.000000-3 7.487712+4 3.004500-3 7.459278+4 3.004500-3 2.560043+5 3.025000-3 2.518905+5 3.054921-3 2.460504+5 3.120000-3 2.339598+5 3.151500-3 2.280230+5 3.151500-3 3.144624+5 3.162278-3 3.117428+5 3.198895-3 3.027446+5 3.235937-3 2.940079+5 3.273407-3 2.855251+5 3.311311-3 2.771140+5 3.349654-3 2.691418+5 3.388442-3 2.613966+5 3.391200-3 2.608469+5 3.391200-3 2.993889+5 3.400000-3 2.974897+5 3.427678-3 2.916168+5 3.507519-3 2.755671+5 3.548134-3 2.678867+5 3.589219-3 2.604250+5 3.630781-3 2.530405+5 3.700000-3 2.413438+5 3.758374-3 2.319592+5 3.801894-3 2.252940+5 3.845918-3 2.188164+5 3.890451-3 2.125259+5 3.900000-3 2.112106+5 3.935501-3 2.064193+5 4.000000-3 1.980528+5 4.027170-3 1.946715+5 4.073803-3 1.890298+5 4.168694-3 1.782458+5 4.216965-3 1.730526+5 4.315191-3 1.631221+5 4.415704-3 1.537552+5 4.466836-3 1.492791+5 4.518559-3 1.449368+5 4.570882-3 1.407165+5 4.623810-3 1.366224+5 4.677351-3 1.326500+5 4.800000-3 1.241407+5 4.841724-3 1.213937+5 4.954502-3 1.143726+5 5.011872-3 1.110096+5 5.069907-3 1.077535+5 5.128614-3 1.045957+5 5.188000-3 1.015325+5 5.248075-3 9.854492+4 5.308844-3 9.564769+4 5.370318-3 9.282252+4 5.432503-3 9.008019+4 5.559043-3 8.479877+4 5.623413-3 8.227676+4 5.688529-3 7.983172+4 5.754399-3 7.746072+4 5.821032-3 7.516201+4 5.956621-3 7.075531+4 6.025596-3 6.865204+4 6.095369-3 6.658395+4 6.165950-3 6.457855+4 6.237348-3 6.263466+4 6.300000-3 6.099577+4 6.382635-3 5.890964+4 6.500000-3 5.611514+4 6.531306-3 5.540112+4 6.606934-3 5.372680+4 6.760830-3 5.053202+4 6.839116-3 4.900855+4 6.918310-3 4.752937+4 7.000000-3 4.606818+4 7.079458-3 4.470067+4 7.244360-3 4.201966+4 7.328245-3 4.074169+4 7.413102-3 3.950342+4 7.498942-3 3.830364+4 7.673615-3 3.601473+4 7.762471-3 3.492248+4 7.800000-3 3.447479+4 7.852356-3 3.386009+4 7.943282-3 3.281804+4 8.222426-3 2.987593+4 8.413951-3 2.806657+4 8.511380-3 2.720444+4 8.609938-3 2.636940+4 8.709636-3 2.556075+4 8.810489-3 2.477753+4 8.912509-3 2.401843+4 9.015711-3 2.328231+4 9.120108-3 2.256681+4 9.332543-3 2.119284+4 9.500000-3 2.019063+4 9.549926-3 1.990245+4 9.660509-3 1.928421+4 9.772372-3 1.868562+4 9.885531-3 1.810605+4 1.000000-2 1.754491+4 1.011579-2 1.700136+4 1.023293-2 1.647454+4 1.035142-2 1.596254+4 1.047129-2 1.546680+4 1.059254-2 1.498686+4 1.071519-2 1.452183+4 1.083927-2 1.406895+4 1.096478-2 1.363058+4 1.109175-2 1.320615+4 1.135011-2 1.239321+4 1.150000-2 1.195290+4 1.202264-2 1.057602+4 1.216186-2 1.024468+4 1.230269-2 9.923937+3 1.244515-2 9.612320+3 1.273503-2 9.018208+3 1.303167-2 8.459043+3 1.318257-2 8.192785+3 1.380384-2 7.210143+3 1.400000-2 6.933972+3 1.412538-2 6.763799+3 1.428894-2 6.550382+3 1.462177-2 6.143887+3 1.479108-2 5.950232+3 1.500000-2 5.720923+3 1.513561-2 5.578574+3 1.531087-2 5.401523+3 1.603245-2 4.749113+3 1.621810-2 4.599042+3 1.640590-2 4.453845+3 1.659587-2 4.312256+3 1.678804-2 4.175279+3 1.700000-2 4.031045+3 1.737801-2 3.790153+3 1.757924-2 3.669285+3 1.798871-2 3.438698+3 1.862087-2 3.120364+3 1.883649-2 3.021110+3 1.905461-2 2.925085+3 1.949845-2 2.741004+3 1.972423-2 2.653460+3 2.000000-2 2.551660+3 2.018366-2 2.486747+3 2.041738-2 2.407287+3 2.089296-2 2.255523+3 2.113489-2 2.183195+3 2.187762-2 1.980162+3 2.238721-2 1.854764+3 2.290868-2 1.737484+3 2.317395-2 1.681721+3 2.319100-2 1.678221+3 2.319100-2 1.085200+4 2.344229-2 1.059674+4 2.345000-2 1.058905+4 2.382000-2 1.018611+4 2.400000-2 9.977314+3 2.426610-2 9.679076+3 2.500000-2 8.982466+3 2.511886-2 8.869736+3 2.540973-2 8.601563+3 2.630268-2 7.844958+3 2.660725-2 7.607914+3 2.691535-2 7.382803+3 2.722701-2 7.164395+3 2.754229-2 6.952445+3 2.818383-2 6.547165+3 2.851018-2 6.353519+3 2.917427-2 5.983156+3 2.951209-2 5.805962+3 3.054921-2 5.292706+3 3.162278-2 4.824893+3 3.198895-2 4.678372+3 3.235937-2 4.536299+3 3.273407-2 4.398531+3 3.349654-2 4.135454+3 3.427678-2 3.888172+3 3.715352-2 3.119683+3 3.758374-2 3.023113+3 3.801894-2 2.929540+3 3.890451-2 2.750935+3 3.935501-2 2.665770+3 4.027170-2 2.503293+3 4.073803-2 2.425720+3 4.168694-2 2.277735+3 4.216965-2 2.207174+3 4.265795-2 2.138786+3 4.315191-2 2.071415+3 4.415704-2 1.942993+3 4.466836-2 1.881807+3 4.518559-2 1.822539+3 4.570882-2 1.765142+3 4.731513-2 1.603592+3 4.841724-2 1.504083+3 4.954502-2 1.410763+3 5.248075-2 1.200469+3 5.308844-2 1.162341+3 5.623413-2 9.890794+2 5.688529-2 9.576270+2 6.025596-2 8.130653+2 6.237348-2 7.370459+2 6.309573-2 7.133223+2 6.382635-2 6.903628+2 6.683439-2 6.056772+2 6.760830-2 5.861840+2 7.000000-2 5.309924+2 7.161434-2 4.972768+2 7.244360-2 4.810755+2 7.413102-2 4.502391+2 7.585776-2 4.213822+2 7.673615-2 4.076561+2 8.222426-2 3.341917+2 8.317638-2 3.232954+2 8.709636-2 2.831538+2 8.912509-2 2.648305+2 9.015711-2 2.561190+2 9.120108-2 2.476945+2 9.225714-2 2.395473+2 9.440609-2 2.240486+2 1.023293-1 1.772842+2 1.071519-1 1.550707+2 1.083927-1 1.499674+2 1.096478-1 1.450325+2 1.122019-1 1.356444+2 1.135011-1 1.311813+2 1.148154-1 1.268453+2 1.174898-1 1.186000+2 1.202264-1 1.108914+2 1.216186-1 1.072270+2 1.273503-1 9.374137+1 1.288250-1 9.064398+1 1.303167-1 8.764917+1 1.333521-1 8.195341+1 1.412538-1 6.927905+1 1.462177-1 6.263756+1 1.479108-1 6.056850+1 1.496236-1 5.856772+1 1.500000-1 5.813998+1 1.513561-1 5.663324+1 1.566751-1 5.120486+1 1.621810-1 4.629728+1 1.678804-1 4.186078+1 1.698244-1 4.047873+1 1.717908-1 3.914241+1 1.737801-1 3.785015+1 1.778279-1 3.539243+1 1.798871-1 3.422408+1 1.840772-1 3.200193+1 1.862087-1 3.094562+1 1.883649-1 2.992419+1 1.905461-1 2.893648+1 1.927525-1 2.798152+1 1.949845-1 2.706626+1 2.018366-1 2.449674+1 2.065380-1 2.292079+1 2.089296-1 2.217128+1 2.137962-1 2.074502+1 2.162719-1 2.006722+1 2.187762-1 1.941160+1 2.213095-1 1.877741+1 2.290868-1 1.699697+1 2.317395-1 1.644184+1 2.344229-1 1.590489+1 2.371374-1 1.538558+1 2.398833-1 1.488944+1 2.426610-1 1.440930+1 2.454709-1 1.394466+1 2.483133-1 1.349502+1 2.511886-1 1.305995+1 2.540973-1 1.263889+1 2.600160-1 1.183720+1 2.630268-1 1.145615+1 2.660725-1 1.108736+1 2.691535-1 1.073046+1 2.722701-1 1.038506+1 2.754229-1 1.005078+1 2.786121-1 9.727272+0 2.800000-1 9.590943+0 2.884032-1 8.831556+0 2.951209-1 8.282198+0 3.000000-1 7.911948+0 3.019952-1 7.767016+0 3.054921-1 7.521591+0 3.090295-1 7.284294+0 3.235937-1 6.407792+0 3.273407-1 6.205701+0 3.311311-1 6.013355+0 3.349654-1 5.826972+0 3.388442-1 5.646369+0 3.427678-1 5.471375+0 3.467369-1 5.301831+0 3.507519-1 5.137545+0 3.630781-1 4.675383+0 3.715352-1 4.390655+0 3.758374-1 4.257351+0 3.801894-1 4.128174+0 3.890451-1 3.881468+0 3.935501-1 3.763699+0 3.981072-1 3.649506+0 4.000000-1 3.603562+0 4.027170-1 3.538991+0 4.073803-1 3.431835+0 4.120975-1 3.327929+0 4.168694-1 3.227186+0 4.216965-1 3.131469+0 4.265795-1 3.038594+0 4.315191-1 2.948516+0 4.365158-1 2.861110+0 4.415705-1 2.776293+0 4.466836-1 2.693994+0 4.518559-1 2.614318+0 4.623810-1 2.461991+0 4.677351-1 2.389190+0 4.786301-1 2.253013+0 4.841724-1 2.187897+0 4.897788-1 2.124664+0 4.954502-1 2.063272+0 5.011872-1 2.003662+0 5.069907-1 1.945916+0 5.188000-1 1.835369+0 5.248075-1 1.783714+0 5.308844-1 1.733514+0 5.370318-1 1.684753+0 5.432503-1 1.637374+0 5.495409-1 1.591328+0 5.559043-1 1.546583+0 5.754399-1 1.420052+0 5.821032-1 1.381223+0 5.888437-1 1.343455+0 5.956621-1 1.306751+0 6.095369-1 1.236323+0 6.165950-1 1.202551+0 6.309573-1 1.137914+0 6.382635-1 1.106912+0 6.456542-1 1.077563+0 6.531306-1 1.048994+0 6.606935-1 1.021199+0 6.683439-1 9.941414-1 6.839117-1 9.421644-1 6.918310-1 9.172733-1 6.998420-1 8.936960-1 7.079458-1 8.707292-1 7.161434-1 8.483537-1 7.244360-1 8.265532-1 7.328245-1 8.053268-1 7.498942-1 7.645012-1 7.585776-1 7.448712-1 7.673615-1 7.258009-1 7.762471-1 7.077300-1 7.852356-1 6.901096-1 7.943282-1 6.729280-1 8.035261-1 6.561742-1 8.317638-1 6.084016-1 8.413951-1 5.933107-1 8.511380-1 5.785939-1 8.609938-1 5.645777-1 8.709636-1 5.509053-1 8.810489-1 5.375642-1 8.912509-1 5.245555-1 9.015711-1 5.118640-1 9.120108-1 4.994797-1 9.225714-1 4.874341-1 9.332543-1 4.756829-1 9.440609-1 4.642151-1 9.549926-1 4.533949-1 9.660509-1 4.428295-1 9.772372-1 4.325186-1 9.885531-1 4.224482-1 1.000000+0 4.126157-1 1.011579+0 4.030409-1 1.023293+0 3.936895-1 1.035142+0 3.847838-1 1.047129+0 3.760789-1 1.059254+0 3.675719-1 1.071519+0 3.592576-1 1.083927+0 3.511308-1 1.096478+0 3.431901-1 1.122018+0 3.278544-1 1.135011+0 3.204454-1 1.148154+0 3.132041-1 1.161449+0 3.061474-1 1.174898+0 2.994619-1 1.188600+0 2.928798-1 1.202264+0 2.865328-1 1.216186+0 2.802790-1 1.230269+0 2.741660-1 1.273503+0 2.566160-1 1.288250+0 2.510375-1 1.333521+0 2.354993-1 1.348963+0 2.305365-1 1.412538+0 2.117231-1 1.428894+0 2.072793-1 1.513561+0 1.870158-1 1.531087+0 1.832104-1 1.548817+0 1.794821-1 1.566751+0 1.758301-1 1.584893+0 1.722639-1 1.603245+0 1.688737-1 1.640590+0 1.622922-1 1.678804+0 1.559685-1 1.698244+0 1.529000-1 1.737801+0 1.469470-1 1.778279+0 1.412260-1 1.798871+0 1.384577-1 1.819701+0 1.358164-1 1.840772+0 1.332256-1 1.883649+0 1.281912-1 1.927525+0 1.233480-1 1.949845+0 1.209958-1 2.000000+0 1.159674-1 2.044000+0 1.118255-1 2.065380+0 1.099040-1 2.089296+0 1.078855-1 2.137962+0 1.039591-1 2.162719+0 1.020502-1 2.187762+0 1.001768-1 2.238721+0 9.653539-2 2.290868+0 9.302645-2 2.317395+0 9.132638-2 2.344229+0 8.971677-2 2.398833+0 8.658214-2 2.426610+0 8.505653-2 2.454709+0 8.355803-2 2.511886+0 8.064208-2 2.600160+0 7.645790-2 2.630268+0 7.511679-2 2.660725+0 7.384337-2 2.722701+0 7.136092-2 2.754229+0 7.015144-2 2.786121+0 6.896269-2 2.851018+0 6.664691-2 2.985383+0 6.224615-2 3.019952+0 6.119518-2 3.090295+0 5.920040-2 3.198895+0 5.632944-2 3.235937+0 5.540394-2 3.273407+0 5.449379-2 3.349654+0 5.271934-2 3.467369+0 5.016546-2 3.507519+0 4.934458-2 3.589219+0 4.779080-2 3.715352+0 4.555137-2 3.758374+0 4.482862-2 3.801894+0 4.411744-2 3.890451+0 4.272970-2 4.027170+0 4.072956-2 4.073803+0 4.008580-2 4.120975+0 3.947032-2 4.216965+0 3.826754-2 4.365158+0 3.653175-2 4.415704+0 3.597096-2 4.466836+0 3.541884-2 4.570882+0 3.434062-2 4.731513+0 3.278458-2 4.786301+0 3.228328-2 4.841724+0 3.180409-2 4.954502+0 3.086695-2 5.128614+0 2.951276-2 5.188000+0 2.907479-2 5.248075+0 2.864338-2 5.370318+0 2.780023-2 5.432503+0 2.738802-2 5.623413+0 2.618770-2 5.688529+0 2.580054-2 5.754399+0 2.542983-2 5.888437+0 2.470430-2 6.095369+0 2.365464-2 6.165950+0 2.331477-2 6.237348+0 2.297984-2 6.309573+0 2.264977-2 6.456542+0 2.200419-2 6.531306+0 2.168834-2 6.760830+0 2.076774-2 6.839116+0 2.047047-2 6.918310+0 2.018521-2 7.161434+0 1.935305-2 7.413102+0 1.855519-2 7.498942+0 1.829663-2 7.585776+0 1.804171-2 7.673615+0 1.779038-2 7.852356+0 1.729848-2 8.000000+0 1.691051-2 8.222427+0 1.635513-2 8.317638+0 1.612806-2 8.413951+0 1.590975-2 8.709636+0 1.527237-2 9.120108+0 1.446208-2 9.332543+0 1.407321-2 9.549926+0 1.369485-2 9.660509+0 1.350952-2 1.000000+1 1.296877-2 1.023293+1 1.262035-2 1.035142+1 1.244968-2 1.047129+1 1.228130-2 1.059254+1 1.212069-2 1.071519+1 1.196219-2 1.109175+1 1.149899-2 1.122018+1 1.134862-2 1.148154+1 1.105379-2 1.161449+1 1.090927-2 1.174898+1 1.076670-2 1.230269+1 1.021487-2 1.318257+1 9.439703-3 1.364583+1 9.074470-3 1.380384+1 8.955894-3 1.396368+1 8.839152-3 1.400000+1 8.813642-3 1.412538+1 8.726645-3 1.445440+1 8.505923-3 1.462177+1 8.397666-3 1.479108+1 8.290804-3 1.500000+1 8.162464-3 1.513561+1 8.081197-3 1.584893+1 7.677888-3 1.717908+1 7.019938-3 1.800000+1 6.664950-3 1.819701+1 6.584783-3 1.840772+1 6.501233-3 1.862087+1 6.420498-3 1.905461+1 6.262021-3 1.927525+1 6.184257-3 1.949845+1 6.107469-3 1.995262+1 5.956760-3 2.018366+1 5.882835-3 2.113489+1 5.596213-3 2.317395+1 5.064195-3 2.454709+1 4.757685-3 2.483133+1 4.698647-3 2.511886+1 4.640452-3 2.540973+1 4.584015-3 2.630268+1 4.418796-3 2.660725+1 4.365057-3 2.691535+1 4.311979-3 2.786121+1 4.156600-3 2.818383+1 4.106079-3 2.985383+1 3.862557-3 3.235937+1 3.545702-3 3.427678+1 3.335420-3 3.467369+1 3.294884-3 3.507519+1 3.254903-3 3.548134+1 3.215407-3 3.589219+1 3.176974-3 3.801894+1 2.991586-3 3.890451+1 2.920497-3 3.935501+1 2.885591-3 4.216965+1 2.684763-3 4.265795+1 2.652687-3 4.623810+1 2.438642-3 5.069907+1 2.215088-3 5.308844+1 2.111118-3 5.370318+1 2.085936-3 5.432503+1 2.061054-3 5.495409+1 2.036822-3 5.754399+1 1.942711-3 5.888437+1 1.897298-3 5.956621+1 1.874994-3 6.456542+1 1.726043-3 6.606934+1 1.685712-3 7.498942+1 1.480164-3 8.609938+1 1.284409-3 9.120108+1 1.210693-3 9.225714+1 1.196480-3 9.332543+1 1.182434-3 9.440609+1 1.168691-3 9.549926+1 1.155108-3 1.000000+2 1.102335-3 1.023293+2 1.076860-3 1.035142+2 1.064344-3 1.059254+2 1.039748-3 1.202264+2 9.142931-4 1.244515+2 8.827909-4 1.496236+2 7.322312-4 1.717908+2 6.364168-4 1.819701+2 6.002936-4 1.840772+2 5.933240-4 1.862087+2 5.864352-4 1.883649+2 5.796721-4 1.905461+2 5.729869-4 1.995262+2 5.470089-4 2.041738+2 5.344647-4 2.065380+2 5.283011-4 2.113489+2 5.161866-4 2.398833+2 4.543567-4 2.483133+2 4.388207-4 2.985383+2 3.645044-4 3.427678+2 3.171502-4 3.630781+2 2.992833-4 3.672823+2 2.958340-4 3.715352+2 2.924245-4 3.758374+2 2.890670-4 3.801894+2 2.857480-4 3.981072+2 2.728490-4 4.073803+2 2.666195-4 4.120975+2 2.635583-4 4.216965+2 2.575411-4 9.549926+2 1.134440-4 9.885531+2 1.095816-4 1.188502+3 9.109694-5 1.364583+3 7.931009-5 1.445440+3 7.486094-5 1.462177+3 7.400177-5 1.479108+3 7.315244-5 1.496236+3 7.231483-5 1.513561+3 7.148688-5 1.584893+3 6.826866-5 1.621810+3 6.671430-5 1.640590+3 6.595043-5 3.349654+3 3.229585-5 6.025596+4 1.794195-6 6.237348+4 1.733272-6 1.000000+5 1.081003-6 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.560000-6 6.560000-6 9.810000-6 6.560000-6 9.810000-6 9.728892-6 1.024000-5 9.752310-6 1.024000-5 9.937102-6 1.350000-5 9.970096-6 5.478000-5 9.980450-6 5.478000-5 1.176950-5 5.650000-5 1.192011-5 5.884000-5 1.206502-5 5.884000-5 1.287212-5 6.165950-5 1.313493-5 7.079458-5 1.384831-5 7.500000-5 1.423367-5 7.943282-5 1.471655-5 8.650000-5 1.561171-5 8.852000-5 1.587605-5 8.852000-5 1.754778-5 9.150000-5 1.815701-5 9.450000-5 1.869605-5 9.800000-5 1.919339-5 1.011579-4 1.950782-5 1.045000-4 1.969805-5 1.085000-4 1.976491-5 1.128000-4 1.967836-5 1.198000-4 1.934212-5 1.364583-4 1.833711-5 1.465000-4 1.783180-5 1.548817-4 1.749129-5 1.659587-4 1.713672-5 1.780000-4 1.684289-5 1.950000-4 1.654830-5 2.162719-4 1.631252-5 2.400000-4 1.616578-5 2.760000-4 1.607626-5 3.179600-4 1.607318-5 3.179600-4 1.798637-5 3.215000-4 1.805271-5 3.230300-4 1.812233-5 3.230300-4 1.920184-5 3.252000-4 1.935150-5 3.273407-4 1.962778-5 3.290000-4 1.995535-5 3.308000-4 2.044497-5 3.328000-4 2.115527-5 3.347000-4 2.196430-5 3.400000-4 2.443717-5 3.423000-4 2.537565-5 3.448000-4 2.621406-5 3.472000-4 2.684518-5 3.504000-4 2.746244-5 3.535000-4 2.788321-5 3.580000-4 2.829038-5 3.635000-4 2.859751-5 3.730000-4 2.888370-5 3.890451-4 2.906677-5 4.700000-4 2.918200-5 4.946600-4 2.918296-5 4.946600-4 3.094886-5 5.045500-4 3.124093-5 5.201500-4 3.147586-5 5.201500-4 3.202304-5 5.258000-4 3.229257-5 5.385000-4 3.258168-5 5.580000-4 3.278545-5 6.159500-4 3.315619-5 6.159500-4 3.461091-5 8.850000-4 3.658336-5 1.135011-3 3.807404-5 1.462177-3 3.964737-5 1.819701-3 4.102604-5 2.238721-3 4.230948-5 2.884032-3 4.388239-5 3.004500-3 4.413756-5 3.004500-3 6.373211-5 3.151500-3 6.386803-5 3.151500-3 6.691480-5 3.391200-3 6.701222-5 3.391200-3 7.098472-5 4.677351-3 7.245242-5 6.606934-3 7.413032-5 9.500000-3 7.601402-5 1.318257-2 7.777769-5 1.798871-2 7.946305-5 2.319100-2 8.080246-5 2.319100-2 8.375827-5 4.731513-2 8.427558-5 1.288250-1 8.466196-5 6.606935-1 8.487760-5 1.000000+5 8.489341-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.560000-6 0.0 5.478000-5 0.0 5.478000-5 4.29863-11 5.530000-5 4.42531-11 5.590000-5 4.55089-11 5.650000-5 4.66201-11 5.740000-5 4.81058-11 5.884000-5 5.01278-11 5.884000-5 7.79218-11 6.000000-5 8.14396-11 6.095369-5 8.39392-11 6.260000-5 8.78454-11 6.950000-5 1.02777-10 7.161434-5 1.07749-10 7.413102-5 1.14158-10 7.673615-5 1.21365-10 7.943282-5 1.29644-10 8.222426-5 1.38844-10 8.852000-5 1.60739-10 8.852000-5 1.77290-10 9.150000-5 1.88619-10 9.332543-5 1.94791-10 9.580000-5 2.01925-10 9.800000-5 2.06910-10 1.005000-4 2.11006-10 1.030000-4 2.13416-10 1.055000-4 2.14281-10 1.085000-4 2.13640-10 1.115000-4 2.11451-10 1.150000-4 2.07612-10 1.202264-4 2.00407-10 1.318257-4 1.83591-10 1.380384-4 1.75699-10 1.430000-4 1.70086-10 1.500000-4 1.63411-10 1.548817-4 1.59459-10 1.600000-4 1.55840-10 1.678804-4 1.51243-10 1.760000-4 1.47337-10 1.862087-4 1.43560-10 1.950000-4 1.40941-10 2.089296-4 1.37889-10 2.238721-4 1.35768-10 2.400000-4 1.34306-10 2.600160-4 1.33449-10 2.917427-4 1.33402-10 3.179600-4 1.34087-10 3.179600-4 1.46768-10 3.223000-4 1.47539-10 3.230300-4 1.47809-10 3.230300-4 8.048278-9 3.245000-4 7.995453-9 3.252000-4 7.974697-9 3.264000-4 7.976620-9 3.273407-4 8.005013-9 3.280000-4 8.042975-9 3.287000-4 8.107205-9 3.295000-4 8.210622-9 3.302000-4 8.330754-9 3.311311-4 8.544949-9 3.318000-4 8.728115-9 3.325000-4 8.959346-9 3.333000-4 9.270602-9 3.340000-4 9.585866-9 3.347000-4 9.941632-9 3.355000-4 1.039594-8 3.365000-4 1.103539-8 3.370000-4 1.138171-8 3.380000-4 1.212414-8 3.395000-4 1.336194-8 3.400000-4 1.379327-8 3.411700-4 1.484935-8 3.440000-4 1.755810-8 3.458000-4 1.930962-8 3.476000-4 2.096775-8 3.495000-4 2.257935-8 3.504000-4 2.329753-8 3.515000-4 2.410625-8 3.535000-4 2.542433-8 3.548134-4 2.617206-8 3.569000-4 2.720907-8 3.580000-4 2.768485-8 3.600000-4 2.842426-8 3.620000-4 2.907015-8 3.635000-4 2.947559-8 3.657000-4 3.000140-8 3.680000-4 3.046660-8 3.723000-4 3.117055-8 3.780000-4 3.185704-8 3.815000-4 3.216719-8 3.865000-4 3.247002-8 3.900000-4 3.264333-8 3.950000-4 3.280771-8 4.000000-4 3.294928-8 4.168694-4 3.308570-8 4.631200-4 3.332190-8 4.946600-4 3.336603-8 4.946600-4 3.845385-8 4.981000-4 3.874055-8 5.000000-4 3.896204-8 5.045500-4 3.929526-8 5.201500-4 3.998394-8 5.201500-4 4.309973-8 5.223000-4 4.374157-8 5.258000-4 4.444932-8 5.315000-4 4.519724-8 5.385000-4 4.579967-8 5.500000-4 4.638071-8 5.956621-4 4.754068-8 6.159500-4 4.803539-8 6.159500-4 5.246376-8 7.673615-4 5.665835-8 9.015711-4 6.005320-8 1.071519-3 6.374695-8 1.216186-3 6.650789-8 1.412538-3 6.978710-8 1.630000-3 7.292951-8 1.819701-3 7.534880-8 2.089296-3 7.829180-8 2.454709-3 8.167926-8 2.884032-3 8.500575-8 3.004500-3 8.583900-8 3.004500-3 9.054500-5 3.151500-3 9.077931-5 3.151500-3 1.071514-4 3.391200-3 1.071820-4 3.391200-3 1.102920-4 4.315191-3 1.106261-4 7.079458-3 1.108089-4 2.319100-2 1.098458-4 2.319100-2 1.416229-2 2.540973-2 1.423087-2 3.427678-2 1.438070-2 4.954502-2 1.449814-2 8.317638-2 1.458833-2 1.737801-1 1.463814-2 1.230269+0 1.467877-2 1.000000+5 1.467830-2 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.560000-6 0.0 9.810000-6 3.250000-6 9.810000-6 8.110843-8 9.930000-6 1.938684-7 1.020000-5 4.496140-7 1.024000-5 4.876895-7 1.024000-5 3.028984-7 1.071519-5 7.670993-7 1.161449-5 1.653973-6 1.415000-5 4.178765-6 5.478000-5 4.479955-5 5.478000-5 4.301045-5 5.884000-5 4.677493-5 5.884000-5 4.596780-5 7.673615-5 6.232368-5 8.852000-5 7.264379-5 8.852000-5 7.097204-5 9.580000-5 7.690074-5 1.025000-4 8.289942-5 1.100000-4 9.025062-5 1.260000-4 1.070366-4 1.548817-4 1.373902-4 2.018366-4 1.853754-4 3.179600-4 3.018867-4 3.179600-4 2.999735-4 3.230300-4 3.049075-4 3.230300-4 3.038201-4 3.311311-4 3.105707-4 3.458000-4 3.192846-4 3.580000-4 3.296820-4 4.050000-4 3.758510-4 4.946600-4 4.654437-4 4.946600-4 4.636727-4 5.201500-4 4.886342-4 5.201500-4 4.880839-4 6.159500-4 5.827458-4 6.159500-4 5.812866-4 2.371374-3 2.328631-3 3.004500-3 2.960277-3 3.004500-3 2.850223-3 3.151500-3 2.996853-3 3.151500-3 2.977434-3 3.391200-3 3.217006-3 3.391200-3 3.209923-3 2.319100-2 2.300035-2 2.319100-2 8.944950-3 2.400000-2 9.720322-3 3.273407-2 1.828926-2 5.688529-2 4.227074-2 1.000000+5 9.999998+4 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.319100-2 9.173778+3 2.345000-2 8.962789+3 2.382000-2 8.630480+3 2.426610-2 8.203263+3 2.500000-2 7.626300+3 2.660725-2 6.472718+3 2.951209-2 4.961200+3 3.427678-2 3.337979+3 4.265795-2 1.846077+3 4.954502-2 1.221104+3 5.688529-2 8.307324+2 7.000000-2 4.618080+2 8.709636-2 2.467432+2 1.135011-1 1.145035+2 1.927525-1 2.445719+1 2.371374-1 1.345171+1 2.800000-1 8.386920+0 3.273407-1 5.427966+0 3.715352-1 3.840928+0 4.168694-1 2.823510+0 4.677351-1 2.090618+0 5.188000-1 1.606256+0 5.754399-1 1.242968+0 6.382635-1 9.690553-1 6.918310-1 8.032535-1 7.673615-1 6.358370-1 8.511380-1 5.070399-1 9.440609-1 4.068071-1 1.023293+0 3.450105-1 1.161449+0 2.682991-1 1.288250+0 2.200017-1 1.428894+0 1.816511-1 1.584893+0 1.509645-1 1.798871+0 1.213397-1 2.065380+0 9.631449-2 2.317395+0 8.003302-2 2.630268+0 6.582843-2 3.019952+0 5.362925-2 3.507519+0 4.324370-2 4.073803+0 3.512966-2 4.786301+0 2.829192-2 5.688529+0 2.261063-2 6.839116+0 1.793970-2 8.317638+0 1.413414-2 1.047129+1 1.076308-2 1.396368+1 7.746423-3 1.840772+1 5.697529-3 2.511886+1 4.066796-3 3.548134+1 2.817878-3 5.432503+1 1.806250-3 9.332543+1 1.036257-3 1.862087+2 5.139441-4 3.715352+2 2.562770-4 1.479108+3 6.410986-5 1.000000+5 9.474000-7 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.319100-2 8.429900-5 1.000000+5 8.429900-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.319100-2 1.673300-2 1.000000+5 1.673300-2 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.319100-2 6.373701-3 1.000000+5 9.999998+4 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.391200-3 3.854206+4 3.630781-3 3.463874+4 4.168694-3 2.762198+4 4.518559-3 2.394852+4 5.011872-3 1.988485+4 5.432503-3 1.724641+4 5.821032-3 1.515676+4 7.079458-3 1.041021+4 7.943282-3 8.264186+3 9.120108-3 6.232390+3 1.071519-2 4.430767+3 1.202264-2 3.451155+3 1.400000-2 2.460520+3 1.640590-2 1.713173+3 1.905461-2 1.207072+3 2.187762-2 8.676218+2 2.511886-2 6.195882+2 2.917427-2 4.271917+2 3.427678-2 2.839979+2 4.027170-2 1.873319+2 4.731513-2 1.226503+2 5.623413-2 7.731695+1 6.760830-2 4.688382+1 8.222426-2 2.732850+1 1.023293-1 1.482583+1 1.333521-1 7.010030+0 2.137962-1 1.834056+0 2.600160-1 1.057242+0 3.054921-1 6.763558-1 3.507519-1 4.643431-1 3.981072-1 3.311592-1 4.466836-1 2.451510-1 5.011872-1 1.827764-1 5.559043-1 1.413379-1 6.165950-1 1.100371-1 6.839117-1 8.628282-2 7.585776-1 6.815824-2 8.317638-1 5.563699-2 9.120108-1 4.571870-2 1.000000+0 3.783188-2 1.148154+0 2.874269-2 1.273503+0 2.354630-2 1.412538+0 1.942241-2 1.566751+0 1.612610-2 1.778279+0 1.295140-2 2.044000+0 1.025698-2 2.290868+0 8.533075-3 2.600160+0 7.013149-3 2.985383+0 5.709289-3 3.467369+0 4.601063-3 4.027170+0 3.735772-3 4.731513+0 3.007010-3 5.623413+0 2.401976-3 6.760830+0 1.904816-3 8.222427+0 1.500110-3 1.047129+1 1.126718-3 1.380384+1 8.214766-4 1.819701+1 6.039989-4 2.483133+1 4.310029-4 3.467369+1 3.022225-4 5.308844+1 1.936372-4 9.120108+1 1.110553-4 1.819701+2 5.506516-5 3.630781+2 2.745477-5 1.445440+3 6.867655-6 1.000000+5 9.917300-8 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.391200-3 9.787000-5 1.000000+5 9.787000-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.391200-3 1.313400-4 1.000000+5 1.313400-4 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.391200-3 3.161990-3 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.151500-3 8.643949+4 3.273407-3 7.859200+4 3.311311-3 7.618000+4 3.388442-3 7.216400+4 3.700000-3 5.774400+4 4.027170-3 4.608000+4 4.954502-3 2.625000+4 5.308844-3 2.170700+4 6.300000-3 1.340500+4 7.800000-3 7.205100+3 9.015711-3 4.681000+3 1.023293-2 3.195200+3 1.230269-2 1.814600+3 1.479108-2 1.019500+3 1.757924-2 5.885200+2 2.089296-2 3.370000+2 2.511886-2 1.844500+2 3.054921-2 9.642900+1 3.801894-2 4.633489+1 4.731513-2 2.208764+1 6.683439-2 6.790325+0 1.071519-1 1.349688+0 1.333521-1 6.424218-1 1.621810-1 3.330449-1 1.905461-1 1.952529-1 2.213095-1 1.198177-1 2.540973-1 7.692341-2 2.884032-1 5.161952-2 3.235937-1 3.616249-2 3.630781-1 2.551289-2 4.027170-1 1.876126-2 4.466836-1 1.388950-2 4.954502-1 1.035870-2 5.495409-1 7.782796-3 6.095369-1 5.892218-3 6.683439-1 4.631023-3 7.328245-1 3.663926-3 8.317638-1 2.680894-3 8.912509-1 2.271952-3 9.549926-1 1.938758-3 1.011579+0 1.709713-3 1.096478+0 1.445758-3 1.174898+0 1.260481-3 1.273503+0 1.082845-3 1.412538+0 8.973431-4 1.678804+0 6.627018-4 1.927525+0 5.238623-4 2.162719+0 4.333967-4 2.426610+0 3.612552-4 2.754229+0 2.979776-4 3.235937+0 2.353107-4 3.758374+0 1.904208-4 4.415704+0 1.527875-4 5.188000+0 1.234922-4 6.237348+0 9.760801-5 7.585776+0 7.662848-5 9.549926+0 5.816753-5 1.148154+1 4.694821-5 1.479108+1 3.522180-5 1.949845+1 2.594931-5 2.691535+1 1.831931-5 3.935501+1 1.225903-5 5.956621+1 7.966681-6 1.059254+2 4.417890-6 2.113489+2 2.193840-6 4.216965+2 1.094560-6 3.349654+3 1.372191-7 1.000000+5 4.595600-9 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.151500-3 7.495200-5 1.000000+5 7.495200-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.151500-3 1.503400-4 1.000000+5 1.503400-4 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.151500-3 2.926208-3 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.004500-3 1.814115+5 3.120000-3 1.662178+5 3.311311-3 1.427475+5 3.589219-3 1.154848+5 3.935501-3 8.976956+4 4.800000-3 5.181960+4 5.188000-3 4.158981+4 6.025596-3 2.708851+4 7.000000-3 1.740288+4 7.852356-3 1.235074+4 9.500000-3 6.907040+3 1.109175-2 4.264676+3 1.273503-2 2.755886+3 1.479108-2 1.705496+3 1.737801-2 1.009290+3 2.041738-2 5.927578+2 2.400000-2 3.450884+2 2.851018-2 1.925426+2 3.427678-2 1.023797+2 4.216965-2 4.989095+1 5.308844-2 2.225675+1 7.244360-2 7.411990+0 1.148154-1 1.444317+0 1.412538-1 6.965343-1 1.678804-1 3.820666-1 1.949845-1 2.284861-1 2.213095-1 1.488708-1 2.483133-1 1.015031-1 2.786121-1 6.969174-2 3.090295-1 5.002070-2 3.427678-1 3.615795-2 3.758374-1 2.727588-2 4.120975-1 2.071192-2 4.518559-1 1.583722-2 4.897788-1 1.259937-2 5.370318-1 9.772835-3 5.888437-1 7.638894-3 6.382635-1 6.198774-3 6.998420-1 4.918500-3 7.673615-1 3.932611-3 8.609938-1 2.997682-3 9.225714-1 2.563272-3 9.885531-1 2.206802-3 1.083927+0 1.825345-3 1.174898+0 1.555451-3 1.288250+0 1.306391-3 1.428894+0 1.081435-3 1.640590+0 8.474005-4 1.883649+0 6.691287-4 2.137962+0 5.426285-4 2.398833+0 4.519552-4 2.722701+0 3.725049-4 3.198895+0 2.939583-4 3.715352+0 2.377382-4 4.365158+0 1.906501-4 5.128614+0 1.540196-4 6.165950+0 1.216775-4 7.498942+0 9.547978-5 9.332543+0 7.344385-5 1.122018+1 5.922654-5 1.462177+1 4.383871-5 1.927525+1 3.228622-5 2.660725+1 2.278799-5 3.890451+1 1.524541-5 5.888437+1 9.905419-6 1.035142+2 5.557094-6 2.065380+2 2.758864-6 4.120975+2 1.376297-6 1.640590+3 3.444325-7 1.000000+5 5.646500-9 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.004500-3 7.178900-5 1.000000+5 7.178900-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.004500-3 1.277400-4 1.000000+5 1.277400-4 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.004500-3 2.804971-3 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.159500-4 1.210644+5 7.161434-4 1.017712+5 8.511380-4 8.278431+4 8.850000-4 7.866920+4 1.071519-3 6.051547+4 1.161449-3 5.378891+4 1.380384-3 4.135473+4 1.531087-3 3.506818+4 1.800000-3 2.688720+4 2.089296-3 2.085662+4 2.400000-3 1.636382+4 2.818383-3 1.225494+4 3.349654-3 8.901858+3 3.935501-3 6.553143+3 4.677351-3 4.681404+3 5.559043-3 3.316078+3 6.531306-3 2.385045+3 7.673615-3 1.702320+3 9.015711-3 1.205724+3 1.059254-2 8.475357+2 1.244515-2 5.912265+2 1.462177-2 4.092981+2 1.700000-2 2.881980+2 2.000000-2 1.959352+2 2.344229-2 1.333580+2 2.754229-2 8.955651+1 3.235937-2 5.968748+1 3.801894-2 3.948827+1 4.466836-2 2.593881+1 5.308844-2 1.641112+1 6.382635-2 9.991260+0 7.673615-2 6.036408+0 9.440609-2 3.397231+0 1.216186-1 1.666419+0 2.344229-1 2.604281-1 2.786121-1 1.608093-1 3.273407-1 1.032859-1 3.758374-1 7.119324-2 4.265795-1 5.099668-2 4.786301-1 3.792566-2 5.308844-1 2.924499-2 5.888437-1 2.270347-2 6.531306-1 1.775324-2 7.244360-1 1.398537-2 8.035261-1 1.109988-2 8.810489-1 9.092058-3 9.660509-1 7.499710-3 1.096478+0 5.815947-3 1.216186+0 4.750088-3 1.348963+0 3.906509-3 1.513561+0 3.168114-3 1.698244+0 2.589909-3 1.949845+0 2.049721-3 2.187762+0 1.696641-3 2.454709+0 1.415107-3 2.786121+0 1.168028-3 3.273407+0 9.229505-4 3.801894+0 7.473037-4 4.466836+0 5.999365-4 5.248075+0 4.851513-4 6.309573+0 3.836489-4 7.673615+0 3.013225-4 9.660509+0 2.288266-4 1.161449+1 1.847711-4 1.500000+1 1.382700-4 1.995262+1 1.009107-4 2.786121+1 7.040543-5 4.216965+1 4.547515-5 6.456542+1 2.923711-5 1.202264+2 1.548726-5 2.398833+2 7.699724-6 9.549926+2 1.922580-6 6.025596+4 3.040239-8 1.000000+5 1.832600-8 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.159500-4 6.759100-5 1.000000+5 6.759100-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.159500-4 1.528600-7 1.000000+5 1.528600-7 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.159500-4 5.482061-4 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.201500-4 9.870500+4 5.207000-4 1.039148+5 5.211000-4 1.074376+5 5.216000-4 1.114560+5 5.223000-4 1.164606+5 5.230000-4 1.208808+5 5.237000-4 1.248622+5 5.248075-4 1.304250+5 5.258000-4 1.347412+5 5.272000-4 1.400600+5 5.285000-4 1.443478+5 5.300000-4 1.486336+5 5.315000-4 1.523018+5 5.335000-4 1.563570+5 5.360000-4 1.603038+5 5.385000-4 1.631962+5 5.410000-4 1.652294+5 5.435000-4 1.665480+5 5.465000-4 1.673928+5 5.500000-4 1.676160+5 5.559043-4 1.668374+5 6.350000-4 1.525844+5 7.161434-4 1.380663+5 7.585776-4 1.305751+5 8.200000-4 1.200318+5 9.015711-4 1.072530+5 9.549926-4 9.955673+4 1.035142-3 8.891082+4 1.135011-3 7.761074+4 1.216186-3 6.968371+4 1.333521-3 5.984442+4 1.479108-3 5.005483+4 1.621810-3 4.236082+4 1.819701-3 3.409053+4 2.000000-3 2.832240+4 2.238721-3 2.251420+4 2.454709-3 1.855153+4 2.754229-3 1.445124+4 3.054921-3 1.146050+4 3.427678-3 8.792118+3 3.845918-3 6.693316+3 4.315191-3 5.058867+3 4.841724-3 3.796330+3 5.432503-3 2.829193+3 6.095369-3 2.094366+3 6.839116-3 1.540303+3 7.762471-3 1.090493+3 8.810489-3 7.663145+2 1.000000-2 5.347400+2 1.135011-2 3.706395+2 1.303167-2 2.466870+2 1.513561-2 1.573693+2 1.737801-2 1.031818+2 2.018366-2 6.480907+1 2.344229-2 4.041293+1 2.754229-2 2.412027+1 3.273407-2 1.376770+1 3.935501-2 7.512108+0 4.841724-2 3.770214+0 6.237348-2 1.609746+0 1.174898-1 1.891264-1 1.462177-1 9.082502-2 1.737801-1 5.122121-2 2.018366-1 3.138693-2 2.317395-1 2.011117-2 2.660725-1 1.298382-2 3.019952-1 8.756780-3 3.388442-1 6.161066-3 3.801894-1 4.365621-3 4.216965-1 3.223063-3 4.677351-1 2.395647-3 5.188000-1 1.793579-3 5.754399-1 1.353129-3 6.309573-1 1.060359-3 6.918310-1 8.363086-4 7.585776-1 6.638795-4 8.609938-1 4.868467-4 9.225714-1 4.136697-4 9.772372-1 3.632809-4 1.047129+0 3.133295-4 1.122018+0 2.719869-4 1.202264+0 2.377180-4 1.333521+0 1.962611-4 1.513561+0 1.565780-4 1.737801+0 1.230900-4 2.000000+0 9.709942-5 2.238721+0 8.082047-5 2.511886+0 6.750643-5 2.851018+0 5.578785-5 3.349654+0 4.413171-5 3.890451+0 3.577314-5 4.570882+0 2.874862-5 5.370318+0 2.327134-5 6.456542+0 1.842039-5 7.852356+0 1.448133-5 1.000000+1 1.085800-5 1.230269+1 8.549488-6 1.584893+1 6.426096-6 2.113489+1 4.683985-6 2.985383+1 3.232895-6 4.623810+1 2.041235-6 7.498942+1 1.238943-6 1.496236+2 6.129688-7 2.985383+2 3.052768-7 1.188502+3 7.631169-8 1.000000+5 9.05640-10 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.201500-4 5.136900-5 1.000000+5 5.136900-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.201500-4 1.532600-7 1.000000+5 1.532600-7 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.201500-4 4.686277-4 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.946600-4 3.046811+5 4.981000-4 3.196616+5 4.985000-4 3.245953+5 5.000000-4 3.319656+5 5.045500-4 3.483209+5 5.143000-4 3.660764+5 5.245000-4 3.772419+5 5.370318-4 3.807998+5 5.450000-4 3.823365+5 5.580000-4 3.795015+5 5.754399-4 3.724471+5 6.165950-4 3.500417+5 6.918310-4 3.121770+5 7.413102-4 2.889815+5 8.000000-4 2.633016+5 8.709636-4 2.358494+5 9.225714-4 2.176316+5 1.000000-3 1.929380+5 1.109175-3 1.640718+5 1.202264-3 1.435633+5 1.333521-3 1.197968+5 1.462177-3 1.013850+5 1.603245-3 8.517027+4 1.778279-3 6.954558+4 1.972423-3 5.634743+4 2.187762-3 4.534962+4 2.426610-3 3.623272+4 2.710800-3 2.830716+4 3.054921-3 2.149943+4 3.400000-3 1.668784+4 3.801894-3 1.272468+4 4.315191-3 9.278123+3 4.841724-3 6.910772+3 5.370318-3 5.271051+3 6.025596-3 3.876171+3 6.839116-3 2.742790+3 7.852356-3 1.864022+3 8.912509-3 1.297963+3 1.011579-2 8.974030+2 1.150000-2 6.131880+2 1.318257-2 4.058116+2 1.513561-2 2.652108+2 1.737801-2 1.720281+2 2.018366-2 1.067936+2 2.344229-2 6.577060+1 2.722701-2 4.021225+1 3.198895-2 2.349533+1 3.801894-2 1.310810+1 4.570882-2 6.979533+0 5.623413-2 3.407433+0 7.244360-2 1.406551+0 1.273503-1 1.941513-1 1.566751-1 9.445908-2 1.840772-1 5.430330-2 2.137962-1 3.271801-2 2.426610-1 2.145878-2 2.722701-1 1.472571-2 3.019952-1 1.056185-2 3.349654-1 7.629712-3 3.715352-1 5.553328-3 4.073803-1 4.216043-3 4.466836-1 3.223058-3 4.897788-1 2.481921-3 5.370318-1 1.926315-3 5.888437-1 1.506682-3 6.456542-1 1.187316-3 7.079458-1 9.427726-4 7.762471-1 7.543903-4 8.609938-1 5.914798-4 9.225714-1 5.061175-4 9.885531-1 4.359694-4 1.083927+0 3.607522-4 1.174898+0 3.074607-4 1.288250+0 2.581929-4 1.428894+0 2.136835-4 1.640590+0 1.674164-4 1.883649+0 1.321999-4 2.137962+0 1.072093-4 2.398833+0 8.929540-5 2.722701+0 7.359829-5 3.198895+0 5.807953-5 3.715352+0 4.697181-5 4.365158+0 3.766814-5 5.128614+0 3.043031-5 6.095369+0 2.439139-5 7.413102+0 1.913192-5 9.120108+0 1.491297-5 1.109175+1 1.185716-5 1.462177+1 8.661442-6 1.927525+1 6.379057-6 2.660725+1 4.502388-6 3.890451+1 3.012204-6 5.888437+1 1.957113-6 1.023293+2 1.110920-6 2.041738+2 5.514531-7 4.073803+2 2.750916-7 1.621810+3 6.884093-8 1.000000+5 1.115600-9 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.946600-4 5.066500-5 1.000000+5 5.066500-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.946600-4 9.525900-8 1.000000+5 9.525900-8 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.946600-4 4.438997-4 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.230300-4 7.267880+4 3.241000-4 7.237400+4 3.252000-4 7.237800+4 3.263000-4 7.286200+4 3.272000-4 7.368480+4 3.280000-4 7.485440+4 3.287000-4 7.626720+4 3.295000-4 7.840080+4 3.302000-4 8.079240+4 3.310000-4 8.422880+4 3.318000-4 8.852520+4 3.325000-4 9.308760+4 3.333000-4 9.934680+4 3.340000-4 1.058476+5 3.347000-4 1.134100+5 3.355000-4 1.234868+5 3.363000-4 1.352484+5 3.370000-4 1.470464+5 3.380000-4 1.665480+5 3.395000-4 2.021676+5 3.422100-4 2.876101+5 3.435000-4 3.378936+5 3.448000-4 3.943212+5 3.458000-4 4.411880+5 3.468000-4 4.904480+5 3.476000-4 5.312880+5 3.485000-4 5.783280+5 3.495000-4 6.314240+5 3.504000-4 6.794720+5 3.515000-4 7.379800+5 3.527000-4 8.008080+5 3.535000-4 8.417400+5 3.548134-4 9.068786+5 3.558000-4 9.539960+5 3.569000-4 1.004280+6 3.580000-4 1.052184+6 3.595000-4 1.113656+6 3.610000-4 1.170472+6 3.620000-4 1.206180+6 3.635000-4 1.256048+6 3.657000-4 1.321864+6 3.680000-4 1.382092+6 3.700000-4 1.427972+6 3.723000-4 1.473616+6 3.750000-4 1.517864+6 3.780000-4 1.556416+6 3.815000-4 1.589004+6 3.850000-4 1.609472+6 3.890451-4 1.621100+6 3.935501-4 1.622456+6 4.000000-4 1.610548+6 4.100000-4 1.575912+6 4.315191-4 1.490321+6 4.466836-4 1.428795+6 4.631200-4 1.358254+6 4.850000-4 1.261660+6 5.188000-4 1.123263+6 5.500000-4 1.009648+6 5.800000-4 9.093040+5 6.237348-4 7.805963+5 6.760830-4 6.526597+5 7.161434-4 5.712963+5 7.673615-4 4.834156+5 8.413951-4 3.838537+5 9.120108-4 3.116871+5 1.011579-3 2.362483+5 1.122018-3 1.777924+5 1.244515-3 1.326870+5 1.380384-3 9.839648+4 1.531087-3 7.242975+4 1.698244-3 5.297935+4 1.905461-3 3.712610+4 2.113489-3 2.678084+4 2.371374-3 1.849307+4 2.660725-3 1.267680+4 3.000000-3 8.489680+3 3.400000-3 5.545000+3 3.900000-3 3.445036+3 4.415704-3 2.221125+3 5.011872-3 1.408723+3 5.688529-3 8.864388+2 6.500000-3 5.398400+2 7.328245-3 3.432078+2 8.413951-3 2.021802+2 9.772372-3 1.129772+2 1.135011-2 6.257647+1 1.318257-2 3.439983+1 1.531087-2 1.876750+1 1.798871-2 9.689410+0 2.113489-2 4.965108+0 2.540973-2 2.294085+0 3.162278-2 9.095433-1 4.315191-2 2.419507-1 7.161434-2 2.781414-2 8.912509-2 1.100025-2 1.083927-1 4.832707-3 1.273503-1 2.472645-3 1.479108-1 1.337259-3 1.698244-1 7.639679-4 1.927525-1 4.607167-4 2.162719-1 2.929770-4 2.426610-1 1.876815-4 2.691535-1 1.265502-4 3.000000-1 8.437143-5 3.311311-1 5.871982-5 3.630781-1 4.214786-5 4.000000-1 2.995980-5 4.365158-1 2.218336-5 4.786301-1 1.627348-5 5.188000-1 1.248715-5 5.754399-1 8.953848-6 6.606935-1 5.784574-6 7.079458-1 4.676206-6 7.498942-1 3.937495-6 8.035261-1 3.227869-6 8.609938-1 2.661457-6 9.120108-1 2.282693-6 9.549926-1 2.031673-6 1.000000+0 1.820624-6 1.059254+0 1.602278-6 1.122018+0 1.420253-6 1.188600+0 1.267712-6 1.288250+0 1.093222-6 1.428894+0 9.111758-7 1.819701+0 5.998907-7 2.065380+0 4.852137-7 2.317395+0 4.032263-7 2.630268+0 3.316493-7 3.019952+0 2.701614-7 3.507519+0 2.178404-7 4.073803+0 1.769655-7 4.786301+0 1.425238-7 5.688529+0 1.138999-7 6.839116+0 9.036918-8 8.317638+0 7.120113-8 1.047129+1 5.422068-8 1.380384+1 3.953245-8 1.800000+1 2.941700-8 2.454709+1 2.099898-8 3.427678+1 1.472115-8 5.308844+1 9.318518-9 9.120108+1 5.344300-9 1.819701+2 2.649951-9 3.630781+2 1.321148-9 1.445440+3 3.30498-10 1.000000+5 4.77250-12 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.230300-4 3.076700-5 1.000000+5 3.076700-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.230300-4 9.268800-8 1.000000+5 9.268800-8 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.230300-4 2.921703-4 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.179600-4 1.025886+5 3.190000-4 1.028268+5 3.204000-4 1.037292+5 3.215000-4 1.051938+5 3.223000-4 1.068156+5 3.230000-4 1.087314+5 3.238000-4 1.116036+5 3.245000-4 1.148154+5 3.252000-4 1.187832+5 3.258000-4 1.228716+5 3.264000-4 1.276746+5 3.271000-4 1.342890+5 3.277000-4 1.409250+5 3.283000-4 1.485504+5 3.290000-4 1.588248+5 3.298000-4 1.725804+5 3.308000-4 1.931544+5 3.316000-4 2.126160+5 3.328000-4 2.473782+5 3.343000-4 3.012126+5 3.365000-4 4.030002+5 3.380000-4 4.883610+5 3.390000-4 5.520900+5 3.400000-4 6.207660+5 3.411700-4 7.065246+5 3.423000-4 7.937580+5 3.433000-4 8.735340+5 3.440000-4 9.302880+5 3.450000-4 1.012008+6 3.461000-4 1.101804+6 3.472000-4 1.190538+6 3.483000-4 1.277340+6 3.495000-4 1.369056+6 3.508000-4 1.464192+6 3.519000-4 1.540902+6 3.530000-4 1.613952+6 3.545000-4 1.707570+6 3.558000-4 1.783164+6 3.573000-4 1.864176+6 3.590000-4 1.948284+6 3.610000-4 2.037342+6 3.630781-4 2.119239+6 3.650000-4 2.185944+6 3.673000-4 2.255052+6 3.700000-4 2.322204+6 3.730000-4 2.380548+6 3.758374-4 2.421479+6 3.795600-4 2.456817+6 3.830000-4 2.473962+6 3.865000-4 2.479212+6 3.900000-4 2.475114+6 3.950000-4 2.457930+6 4.050000-4 2.403132+6 4.280000-4 2.258904+6 4.430000-4 2.163192+6 4.600000-4 2.048706+6 4.786301-4 1.920857+6 5.150000-4 1.690488+6 5.432503-4 1.531919+6 5.688529-4 1.398984+6 6.100000-4 1.208718+6 6.606934-4 1.011912+6 7.079458-4 8.624124+5 7.585776-4 7.296503+5 8.317638-4 5.785236+5 9.120108-4 4.554449+5 1.000000-3 3.555234+5 1.096478-3 2.759397+5 1.216186-3 2.059119+5 1.355400-3 1.505178+5 1.513561-3 1.085103+5 1.678804-3 7.927217+4 1.900000-3 5.400468+4 2.113489-3 3.851984+4 2.344229-3 2.756295+4 2.660725-3 1.815716+4 3.025000-3 1.179073+4 3.388442-3 7.992158+3 3.758374-3 5.572619+3 4.216965-3 3.709447+3 4.800000-3 2.327946+3 5.432503-3 1.479637+3 6.165950-3 9.234716+2 6.918310-3 5.976552+2 7.800000-3 3.773862+2 8.912509-3 2.248292+2 1.047129-2 1.190610+2 1.202264-2 6.849305+1 1.380384-2 3.911144+1 1.603245-2 2.114952+1 1.862087-2 1.135195+1 2.187762-2 5.764213+0 2.630268-2 2.634800+0 3.235937-2 1.083224+0 4.265795-2 3.281849-1 7.413102-2 2.987833-2 9.225714-2 1.164000-2 1.135011-1 4.806570-3 1.303167-1 2.683356-3 1.496236-1 1.510559-3 1.678804-1 9.420467-4 1.862087-1 6.199370-4 2.065380-1 4.107987-4 2.290868-1 2.742978-4 2.511886-1 1.928830-4 2.754229-1 1.365808-4 3.019952-1 9.742741-5 3.311311-1 7.003130-5 3.630781-1 5.072678-5 3.981072-1 3.702890-5 4.315191-1 2.826933-5 4.677351-1 2.172859-5 5.069907-1 1.682890-5 5.432503-1 1.360955-5 5.821032-1 1.107609-5 6.095369-1 9.697930-6 6.531306-1 8.009150-6 7.079458-1 6.453766-6 7.943282-1 4.784196-6 8.709636-1 3.734429-6 9.225714-1 3.217160-6 9.660509-1 2.870940-6 1.011579+0 2.577677-6 1.071519+0 2.271146-6 1.135011+0 2.016050-6 1.202264+0 1.802003-6 1.288250+0 1.586767-6 1.412538+0 1.349879-6 1.819701+0 8.720078-7 2.065380+0 7.052644-7 2.317395+0 5.860915-7 2.630268+0 4.820547-7 3.019952+0 3.926851-7 3.507519+0 3.166427-7 4.120975+0 2.532210-7 4.841724+0 2.040394-7 5.754399+0 1.631486-7 6.918310+0 1.295018-7 8.413951+0 1.020755-7 1.059254+1 7.776349-8 1.400000+1 5.655500-8 1.840772+1 4.171850-8 2.511886+1 2.977804-8 3.507519+1 2.088538-8 5.370318+1 1.338423-8 9.225714+1 7.677439-9 1.840772+2 3.807186-9 3.672823+2 1.898342-9 1.462177+3 4.74871-10 1.000000+5 6.93700-12 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.179600-4 3.070400-5 1.000000+5 3.070400-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.179600-4 2.31060-10 1.000000+5 2.31060-10 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.179600-4 2.872558-4 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.852000-5 1.704714+5 9.070000-5 1.742298+5 9.332543-5 1.773308+5 9.660509-5 1.796793+5 1.011579-4 1.814235+5 1.083927-4 1.825692+5 1.202264-4 1.827285+5 1.303167-4 1.816247+5 1.380384-4 1.798090+5 1.462177-4 1.769179+5 1.548817-4 1.728206+5 1.640590-4 1.675620+5 1.737801-4 1.613354+5 1.862087-4 1.529715+5 2.018366-4 1.426100+5 2.238721-4 1.292272+5 2.454709-4 1.176130+5 2.691535-4 1.062849+5 2.951209-4 9.528949+4 3.273407-4 8.359804+4 3.715352-4 7.069502+4 4.168694-4 6.030453+4 4.700000-4 5.069520+4 5.500000-4 4.002520+4 6.309573-4 3.233492+4 7.500000-4 2.449600+4 8.810489-4 1.878290+4 1.071519-3 1.349609+4 1.333521-3 9.246606+3 1.659587-3 6.283098+3 2.041738-3 4.322470+3 2.483133-3 3.012191+3 3.000000-3 2.107580+3 3.589219-3 1.490462+3 4.315191-3 1.035974+3 5.188000-3 7.144386+2 6.237348-3 4.888166+2 7.413102-3 3.399413+2 8.810489-3 2.345897+2 1.035142-2 1.647398+2 1.216186-2 1.148498+2 1.428894-2 7.948593+1 1.678804-2 5.461117+1 1.972423-2 3.724433+1 2.317395-2 2.520749+1 2.722701-2 1.693341+1 3.198895-2 1.129455+1 3.758374-2 7.478113+0 4.466836-2 4.770032+0 5.248075-2 3.113021+0 6.309573-2 1.896221+0 7.673615-2 1.111036+0 9.225714-2 6.664195-1 1.202264-1 3.166973-1 2.317395-1 4.954133-2 2.786121-1 2.962831-2 3.273407-1 1.903384-2 3.758374-1 1.312084-2 4.265795-1 9.399292-3 4.786301-1 6.990593-3 5.308844-1 5.390790-3 5.888437-1 4.185110-3 6.531306-1 3.272590-3 7.244360-1 2.577988-3 8.035261-1 2.046085-3 8.810489-1 1.676100-3 9.660509-1 1.382598-3 1.096478+0 1.072163-3 1.216186+0 8.757075-4 1.348963+0 7.201914-4 1.513561+0 5.840313-4 1.698244+0 4.773875-4 1.949845+0 3.778374-4 2.187762+0 3.128250-4 2.454709+0 2.609274-4 2.786121+0 2.153477-4 3.273407+0 1.701481-4 3.801894+0 1.377662-4 4.466836+0 1.105983-4 5.248075+0 8.943734-5 6.309573+0 7.072585-5 7.673615+0 5.555057-5 9.660509+0 4.218431-5 1.174898+1 3.361772-5 1.513561+1 2.523488-5 2.018366+1 1.837107-5 2.818383+1 1.282128-5 4.265795+1 8.282988-6 6.606934+1 5.263769-6 1.244515+2 2.756627-6 2.483133+2 1.370888-6 9.885531+2 3.423921-7 6.237348+4 5.414630-9 1.000000+5 3.378500-9 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.852000-5 2.953900-5 1.000000+5 2.953900-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.852000-5 2.96010-10 1.000000+5 2.96010-10 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.852000-5 5.898070-5 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.884000-5 1.049472+6 5.940000-5 1.050900+6 6.000000-5 1.044900+6 6.070000-5 1.030712+6 6.165950-5 1.002656+6 6.260000-5 9.690380+5 6.382635-5 9.203028+5 6.500000-5 8.717080+5 6.650000-5 8.091740+5 6.850000-5 7.286300+5 7.079458-5 6.434435+5 7.400000-5 5.397120+5 8.222426-5 3.506871+5 8.511380-5 3.058174+5 8.834000-5 2.656423+5 9.120108-5 2.371510+5 9.400000-5 2.145280+5 9.660509-5 1.972664+5 9.900000-5 1.840478+5 1.020000-4 1.704092+5 1.050000-4 1.593908+5 1.080000-4 1.504550+5 1.110000-4 1.431804+5 1.148154-4 1.358157+5 1.180000-4 1.309414+5 1.220000-4 1.260876+5 1.260000-4 1.223280+5 1.303167-4 1.191988+5 1.364583-4 1.159434+5 1.430000-4 1.135164+5 1.531087-4 1.109828+5 1.850000-4 1.056634+5 2.018366-4 1.026391+5 2.187762-4 9.927185+4 2.371374-4 9.535613+4 2.570396-4 9.089984+4 2.786121-4 8.597046+4 3.019952-4 8.067866+4 3.273407-4 7.518365+4 3.600000-4 6.865460+4 3.935501-4 6.258629+4 4.265795-4 5.720296+4 4.700000-4 5.093140+4 5.188000-4 4.492710+4 5.754399-4 3.910814+4 6.309573-4 3.433793+4 7.000000-4 2.945660+4 7.852356-4 2.468425+4 8.810489-4 2.051014+4 1.000000-3 1.659778+4 1.135011-3 1.331765+4 1.288250-3 1.060162+4 1.450000-3 8.505260+3 1.630000-3 6.794240+3 1.819701-3 5.464251+3 2.041738-3 4.322590+3 2.290868-3 3.394690+3 2.576800-3 2.632629+3 2.884032-3 2.049454+3 3.235937-3 1.575497+3 3.630781-3 1.202750+3 4.073803-3 9.119990+2 4.623810-3 6.675346+2 5.248075-3 4.848638+2 5.956621-3 3.495488+2 6.760830-3 2.501024+2 7.673615-3 1.776419+2 8.709636-3 1.252509+2 9.885531-3 8.767393+1 1.135011-2 5.895141+1 1.303167-2 3.933188+1 1.500000-2 2.585100+1 1.737801-2 1.653370+1 2.018366-2 1.041232+1 2.344229-2 6.508608+0 2.818383-2 3.619943+0 3.273407-2 2.231998+0 3.890451-2 1.267800+0 4.731513-2 6.626416-1 6.025596-2 2.948288-1 1.202264-1 2.866875-2 1.500000-1 1.367824-2 1.798871-1 7.502218-3 2.089296-1 4.605425-3 2.398833-1 2.955056-3 2.722701-1 1.980640-3 3.090295-1 1.337183-3 3.467369-1 9.421731-4 3.890451-1 6.687082-4 4.315191-1 4.944955-4 4.786301-1 3.681844-4 5.308844-1 2.761670-4 5.888437-1 2.087363-4 6.531306-1 1.590000-4 7.161434-1 1.256748-4 7.852356-1 9.998319-5 8.709636-1 7.764675-5 9.332543-1 6.605836-5 9.885531-1 5.808463-5 1.059254+0 5.016197-5 1.135011+0 4.359118-5 1.216186+0 3.814713-5 1.348963+0 3.151990-5 1.548817+0 2.465383-5 1.778279+0 1.940346-5 2.044000+0 1.535900-5 2.290868+0 1.277772-5 2.600160+0 1.050186-5 2.985383+0 8.549478-6 3.467369+0 6.889924-6 4.027170+0 5.594146-6 4.731513+0 4.502832-6 5.623413+0 3.596813-6 6.760830+0 2.852455-6 8.222427+0 2.246362-6 1.035142+1 1.709947-6 1.364583+1 1.246183-6 1.800000+1 9.153600-7 2.454709+1 6.534305-7 3.427678+1 4.580821-7 5.308844+1 2.899643-7 9.120108+1 1.662976-7 1.819701+2 8.245822-8 3.630781+2 4.111260-8 1.445440+3 1.028409-8 1.000000+5 1.48510-10 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.884000-5 2.007100-5 1.000000+5 2.007100-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.884000-5 3.25830-10 1.000000+5 3.25830-10 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.884000-5 3.876867-5 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.478000-5 2.273956+6 5.530000-5 2.259460+6 5.590000-5 2.229300+6 5.650000-5 2.188256+6 5.740000-5 2.113732+6 5.850000-5 2.011012+6 5.960000-5 1.902832+6 6.095369-5 1.769331+6 6.237348-5 1.633609+6 6.456542-5 1.439216+6 6.760830-5 1.205663+6 7.413102-5 8.402992+5 7.673615-5 7.372940+5 7.943282-5 6.507398+5 8.150000-5 5.959640+5 8.400000-5 5.408840+5 8.650000-5 4.959360+5 8.900000-5 4.592520+5 9.150000-5 4.292680+5 9.400000-5 4.047080+5 9.660509-5 3.837511+5 9.950000-5 3.648872+5 1.023293-4 3.500045+5 1.059254-4 3.350011+5 1.100000-4 3.219844+5 1.135011-4 3.133080+5 1.174898-4 3.055083+5 1.230269-4 2.973157+5 1.303167-4 2.895740+5 1.412538-4 2.814632+5 1.659587-4 2.673876+5 1.819701-4 2.578215+5 1.972423-4 2.480375+5 2.150000-4 2.362180+5 2.344229-4 2.232333+5 2.540973-4 2.102331+5 2.754229-4 1.965373+5 3.000000-4 1.815868+5 3.294900-4 1.651304+5 3.630781-4 1.485668+5 4.000000-4 1.326648+5 4.365158-4 1.189812+5 4.850000-4 1.035036+5 5.370318-4 8.983777+4 5.956621-4 7.727293+4 6.700000-4 6.454800+4 7.585776-4 5.293556+4 8.511380-4 4.370164+4 9.772372-4 3.441047+4 1.110000-3 2.737256+4 1.258925-3 2.166267+4 1.412538-3 1.737465+4 1.584893-3 1.384770+4 1.778279-3 1.096788+4 2.000000-3 8.581360+3 2.238721-3 6.735058+3 2.511886-3 5.222759+3 2.818383-3 4.021670+3 3.162278-3 3.074751+3 3.548134-3 2.334240+3 4.000000-3 1.739480+3 4.518559-3 1.280591+3 5.128614-3 9.243771+2 5.821032-3 6.620822+2 6.606934-3 4.706414+2 7.498942-3 3.320472+2 8.511380-3 2.325132+2 9.660509-3 1.616229+2 1.096478-2 1.115516+2 1.244515-2 7.646465+1 1.428894-2 5.026189+1 1.640590-2 3.278491+1 1.883649-2 2.122813+1 2.187762-2 1.315206+1 2.511886-2 8.393590+0 2.917427-2 5.122672+0 3.427678-2 2.987864+0 4.073803-2 1.664367+0 4.954502-2 8.503860-1 6.237348-2 3.827656-1 8.317638-2 1.399549-1 1.216186-1 3.691039-2 1.513561-1 1.724828-2 1.778279-1 9.904216-3 2.065380-1 5.960401-3 2.344229-1 3.905027-3 2.630268-1 2.676389-3 2.951209-1 1.847739-3 3.273407-1 1.333234-3 3.630781-1 9.690503-4 4.000000-1 7.243400-4 4.415705-1 5.423027-4 4.841724-1 4.172130-4 5.248075-1 3.337701-4 5.754399-1 2.605303-4 6.309573-1 2.049355-4 6.918310-1 1.624582-4 7.585776-1 1.297902-4 8.511380-1 9.895402-5 9.120108-1 8.460728-5 9.772372-1 7.280806-5 1.071519+0 6.019061-5 1.174898+0 5.011925-5 1.288250+0 4.208655-5 1.428894+0 3.482916-5 1.640590+0 2.728808-5 1.883649+0 2.154829-5 2.137962+0 1.747262-5 2.398833+0 1.455231-5 2.722701+0 1.199455-5 3.198895+0 9.465949-6 3.715352+0 7.655699-6 4.365158+0 6.139328-6 5.128614+0 4.959636-6 6.095369+0 3.975440-6 7.413102+0 3.118209-6 9.120108+0 2.430564-6 1.109175+1 1.932638-6 1.445440+1 1.430080-6 1.905461+1 1.052847-6 2.630268+1 7.429322-7 3.801894+1 5.029464-7 5.754399+1 3.266462-7 1.000000+2 1.853600-7 1.995262+2 9.199194-8 3.981072+2 4.588520-8 1.584893+3 1.148135-8 1.000000+5 1.81830-10 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.478000-5 1.986000-5 1.000000+5 1.986000-5 1 45000 7 7 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.478000-5 2.37380-10 1.000000+5 2.37380-10 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.478000-5 3.491976-5 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-5 3.721600+6 1.060000-5 3.817664+6 1.109175-5 3.981248+6 1.161449-5 4.182266+6 1.244515-5 4.540989+6 1.364583-5 5.112898+6 2.041738-5 8.764349+6 2.264644-5 1.001263+7 2.454709-5 1.103570+7 2.610000-5 1.180704+7 2.730000-5 1.233229+7 2.851700-5 1.278275+7 2.951209-5 1.307980+7 3.054921-5 1.331076+7 3.162278-5 1.345410+7 3.273407-5 1.349546+7 3.350000-5 1.345894+7 3.450000-5 1.333226+7 3.548134-5 1.312474+7 3.650000-5 1.282947+7 3.758374-5 1.243687+7 3.850000-5 1.205162+7 3.950000-5 1.158595+7 4.030000-5 1.118666+7 4.150000-5 1.055603+7 4.265795-5 9.925844+6 4.400000-5 9.187264+6 4.518559-5 8.541182+6 4.650000-5 7.844000+6 4.800000-5 7.084064+6 4.954502-5 6.349686+6 5.128614-5 5.586981+6 5.300000-5 4.905952+6 5.450000-5 4.366208+6 5.623413-5 3.805096+6 5.800000-5 3.298400+6 5.956621-5 2.899133+6 6.150000-5 2.465232+6 6.309573-5 2.151772+6 6.500000-5 1.824979+6 6.683439-5 1.553465+6 6.850000-5 1.339376+6 7.000000-5 1.170016+6 7.161434-5 1.009882+6 7.350000-5 8.486048+5 7.500000-5 7.378560+5 7.673615-5 6.267175+5 7.852356-5 5.290434+5 8.080000-5 4.257088+5 8.317638-5 3.389979+5 8.650000-5 2.469462+5 9.070000-5 1.677331+5 9.300000-5 1.375597+5 9.450000-5 1.218486+5 9.580000-5 1.104115+5 9.720000-5 1.000934+5 9.850000-5 9.215936+4 9.950000-5 8.702112+4 1.005000-4 8.264128+4 1.015000-4 7.895264+4 1.025000-4 7.589440+4 1.035142-4 7.337848+4 1.045000-4 7.144704+4 1.055000-4 6.995872+4 1.065000-4 6.890080+4 1.075000-4 6.823328+4 1.085000-4 6.791936+4 1.096478-4 6.795149+4 1.110000-4 6.846656+4 1.124000-4 6.947520+4 1.135011-4 7.056439+4 1.150000-4 7.240896+4 1.170000-4 7.541568+4 1.198000-4 8.043648+4 1.303167-4 1.034097+5 1.348963-4 1.138408+5 1.390000-4 1.228509+5 1.430000-4 1.311229+5 1.465000-4 1.378781+5 1.500000-4 1.441581+5 1.548817-4 1.520698+5 1.600000-4 1.592474+5 1.650000-4 1.652138+5 1.705000-4 1.707075+5 1.760000-4 1.751203+5 1.820000-4 1.787904+5 1.883649-4 1.816166+5 1.950000-4 1.835251+5 2.018366-4 1.844604+5 2.113489-4 1.844401+5 2.190000-4 1.834576+5 2.300000-4 1.807862+5 2.400000-4 1.774387+5 2.511886-4 1.727854+5 2.650000-4 1.662874+5 2.800000-4 1.585501+5 2.951209-4 1.505367+5 3.126079-4 1.412601+5 3.311311-4 1.317396+5 3.507519-4 1.221155+5 3.715352-4 1.125443+5 3.981072-4 1.013167+5 4.265795-4 9.055600+4 4.570882-4 8.039202+4 4.954502-4 6.941646+4 5.370318-4 5.949540+4 5.821032-4 5.062002+4 6.309573-4 4.276661+4 6.839116-4 3.589607+4 7.498942-4 2.917231+4 8.222426-4 2.353815+4 9.120108-4 1.834443+4 1.011579-3 1.418847+4 1.122018-3 1.089963+4 1.244515-3 8.311476+3 1.355400-3 6.608905+3 1.500000-3 4.945421+3 1.883649-3 2.555183+3 2.000000-3 2.154702+3 2.162719-3 1.762426+3 2.290868-3 1.510755+3 2.398833-3 1.327314+3 2.511886-3 1.158669+3 2.600160-3 1.040187+3 2.691535-3 9.273426+2 2.722701-3 8.903102+2 2.818383-3 7.810293+2 2.951209-3 6.502986+2 3.025000-3 5.881905+2 3.162278-3 5.009945+2 3.311311-3 4.269416+2 3.507519-3 3.521718+2 3.801894-3 2.714642+2 4.000000-3 2.310202+2 4.466836-3 1.577315+2 5.011872-3 1.051957+2 5.623413-3 6.967312+1 6.382635-3 4.394986+1 7.244360-3 2.751038+1 8.222426-3 1.708679+1 9.332543-3 1.053212+1 1.071519-2 6.163845+0 1.230269-2 3.579853+0 1.412538-2 2.063969+0 1.621810-2 1.181457+0 1.883649-2 6.408257-1 2.238721-2 3.138317-1 2.691535-2 1.453719-1 3.349654-2 5.780745-2 4.518559-2 1.621420-2 7.244360-2 2.172650-3 9.015711-2 8.613617-4 1.096478-1 3.791598-4 1.288250-1 1.942903-4 1.496236-1 1.052107-4 1.717908-1 6.016583-5 1.949845-1 3.631745-5 2.187762-1 2.312050-5 2.454709-1 1.482883-5 2.722701-1 1.000943-5 3.019952-1 6.801665-6 3.349654-1 4.654009-6 3.715352-1 3.208580-6 4.120975-1 2.229620-6 4.518559-1 1.624618-6 4.954502-1 1.192461-6 5.432503-1 8.825161-7 5.956621-1 6.581072-7 6.531306-1 4.938877-7 7.161434-1 3.734055-7 7.762471-1 2.943116-7 8.511380-1 2.245484-7 9.015711-1 1.907451-7 9.440609-1 1.685014-7 9.885531-1 1.499144-7 1.035142+0 1.344632-7 1.083927+0 1.214420-7 1.135011+0 1.103597-7 1.202264+0 9.868246-8 1.288250+0 8.705021-8 1.412538+0 7.424694-8 1.531087+0 6.477818-8 1.840772+0 4.711435-8 2.065380+0 3.885241-8 2.317395+0 3.228781-8 2.630268+0 2.655586-8 3.019952+0 2.163174-8 3.507519+0 1.744268-8 4.120975+0 1.394901-8 4.841724+0 1.123987-8 5.754399+0 8.987489-9 6.918310+0 7.133960-9 8.413951+0 5.623220-9 1.059254+1 4.283834-9 1.400000+1 3.115500-9 1.840772+1 2.298228-9 2.511886+1 1.640416-9 3.548134+1 1.136593-9 5.495409+1 7.19959-10 9.440609+1 4.13115-10 1.883649+2 2.04913-10 3.758374+2 1.02181-10 1.496236+3 2.55633-11 1.000000+5 3.82150-13 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-5 1.024000-5 1.000000+5 1.024000-5 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-5 0.0 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 9.810000-6 5.767920+6 1.011579-5 5.918399+6 1.070000-5 6.264384+6 1.135011-5 6.699280+6 1.244515-5 7.502394+6 1.717908-5 1.129611+7 2.041738-5 1.398272+7 2.264644-5 1.580704+7 2.426610-5 1.705748+7 2.580000-5 1.813320+7 2.691535-5 1.882120+7 2.818383-5 1.947319+7 2.917427-5 1.986555+7 3.019952-5 2.015199+7 3.126079-5 2.030594+7 3.235937-5 2.030834+7 3.330000-5 2.018381+7 3.427678-5 1.993346+7 3.507519-5 1.964085+7 3.610000-5 1.915771+7 3.715352-5 1.854972+7 3.801894-5 1.797974+7 3.900000-5 1.727280+7 4.000000-5 1.650206+7 4.120975-5 1.552424+7 4.229500-5 1.462359+7 4.350000-5 1.361750+7 4.466836-5 1.265333+7 4.610000-5 1.150786+7 4.731513-5 1.057951+7 4.850000-5 9.720000+6 5.011872-5 8.624389+6 5.150000-5 7.763520+6 5.308844-5 6.858244+6 5.450000-5 6.128400+6 5.623413-5 5.323136+6 5.800000-5 4.598957+6 5.956621-5 4.030267+6 6.095369-5 3.579197+6 6.237348-5 3.164686+6 6.400000-5 2.743282+6 6.580000-5 2.336794+6 6.760830-5 1.984423+6 6.950000-5 1.668312+6 7.150000-5 1.384891+6 7.350000-5 1.146653+6 7.500000-5 9.937968+5 7.673615-5 8.409862+5 7.900000-5 6.752544+5 8.128305-5 5.404793+5 8.413951-5 4.091989+5 8.950000-5 2.467973+5 9.150000-5 2.070624+5 9.300000-5 1.829347+5 9.450000-5 1.629902+5 9.580000-5 1.486766+5 9.680000-5 1.393387+5 9.800000-5 1.298582+5 9.900000-5 1.232597+5 1.000000-4 1.177320+5 1.010000-4 1.131792+5 1.020000-4 1.095130+5 1.030000-4 1.066517+5 1.040000-4 1.045205+5 1.050000-4 1.030512+5 1.060000-4 1.021800+5 1.071519-4 1.018428+5 1.085000-4 1.022506+5 1.100000-4 1.035869+5 1.115000-4 1.057176+5 1.128000-4 1.081123+5 1.150000-4 1.131221+5 1.174898-4 1.199334+5 1.280000-4 1.552171+5 1.318257-4 1.686907+5 1.350000-4 1.796102+5 1.390000-4 1.927478+5 1.430000-4 2.049922+5 1.465000-4 2.149099+5 1.500000-4 2.240573+5 1.548817-4 2.354458+5 1.600000-4 2.456501+5 1.659587-4 2.555116+5 1.720000-4 2.634710+5 1.780000-4 2.694350+5 1.850000-4 2.743877+5 1.927525-4 2.777108+5 2.000000-4 2.789462+5 2.089296-4 2.786613+5 2.162719-4 2.770370+5 2.264644-4 2.731634+5 2.371374-4 2.675903+5 2.500000-4 2.592062+5 2.600160-4 2.519076+5 2.760000-4 2.392762+5 2.917427-4 2.263806+5 3.090295-4 2.123342+5 3.294900-4 1.962540+5 3.507519-4 1.804369+5 3.758374-4 1.631674+5 4.027170-4 1.464319+5 4.315191-4 1.305040+5 4.623810-4 1.155390+5 5.011872-4 9.946058+4 5.432503-4 8.498584+4 5.888437-4 7.209327+4 6.382635-4 6.074286+4 7.000000-4 4.953216+4 7.673615-4 4.012573+4 8.413951-4 3.226243+4 9.332543-4 2.505121+4 1.023293-3 1.987752+4 1.135011-3 1.520520+4 1.258925-3 1.153921+4 1.396368-3 8.689267+3 1.548817-3 6.493760+3 1.717908-3 4.817107+3 1.905461-3 3.547054+3 2.113489-3 2.592677+3 2.344229-3 1.881428+3 2.600160-3 1.355808+3 2.884032-3 9.704300+2 3.198895-3 6.900044+2 3.589219-3 4.688514+2 4.027170-3 3.161891+2 4.518559-3 2.117017+2 5.069907-3 1.404239+2 5.754399-3 8.869000+1 6.606934-3 5.331099+1 7.498942-3 3.318134+1 8.413951-3 2.141448+1 9.549926-3 1.313038+1 1.083927-2 7.994329+0 1.244515-2 4.617273+0 1.428894-2 2.646561+0 1.640590-2 1.505596+0 1.905461-2 8.109433-1 2.238721-2 4.132905-1 2.660725-2 1.991773-1 3.273407-2 8.225278-2 4.168694-2 2.906802-2 7.585776-2 2.184903-3 9.440609-2 8.538016-4 1.122019-1 4.095253-4 1.303167-1 2.182404-4 1.479108-1 1.289950-4 1.678804-1 7.678287-5 1.883649-1 4.827631-5 2.089296-1 3.202642-5 2.317395-1 2.140961-5 2.540973-1 1.506885-5 2.786121-1 1.067760-5 3.054921-1 7.619821-6 3.349654-1 5.479926-6 3.630781-1 4.134579-6 3.935501-1 3.141138-6 4.265795-1 2.403149-6 4.623810-1 1.851582-6 5.011872-1 1.437002-6 5.432503-1 1.123731-6 5.888437-1 8.852801-7 6.382635-1 7.026430-7 6.918310-1 5.618654-7 7.498942-1 4.526680-7 8.413951-1 3.359068-7 8.912509-1 2.909012-7 9.440609-1 2.534785-7 1.000000+0 2.224600-7 1.071519+0 1.919270-7 1.148154+0 1.668189-7 1.216186+0 1.493761-7 1.348963+0 1.235916-7 1.603245+0 9.114033-8 1.840772+0 7.185717-8 2.089296+0 5.818132-8 2.344229+0 4.838784-8 2.660725+0 3.982624-8 3.090295+0 3.191886-8 3.589219+0 2.576894-8 4.216965+0 2.063091-8 4.954502+0 1.664112-8 5.888437+0 1.331890-8 7.161434+0 1.043308-8 8.709636+0 8.234319-9 1.071519+1 6.450438-9 1.412538+1 4.706790-9 1.862087+1 3.463014-9 2.540973+1 2.472588-9 3.589219+1 1.713665-9 5.495409+1 1.098647-9 9.549926+1 6.23052-10 1.905461+2 3.09078-10 3.801894+2 1.54132-10 1.513561+3 3.85619-11 1.000000+5 5.83150-13 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 9.810000-6 9.810000-6 1.000000+5 9.810000-6 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.810000-6 0.0 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.560000-6 1.564650+6 6.683439-6 1.427083+6 7.000000-6 1.122060+6 7.328245-6 8.779325+5 7.600000-6 7.188720+5 7.943282-6 5.601033+5 8.222426-6 4.581629+5 8.511380-6 3.725618+5 8.810489-6 3.010694+5 9.120108-6 2.416044+5 9.440609-6 1.923411+5 9.700000-6 1.598270+5 9.930000-6 1.355220+5 1.020000-5 1.115200+5 1.047129-5 9.152715+4 1.071519-5 7.649191+4 1.096478-5 6.352950+4 1.122018-5 5.240637+4 1.148154-5 4.291470+4 1.172000-5 3.566690+4 1.190000-5 3.096520+4 1.216186-5 2.514509+4 1.244515-5 2.001410+4 1.273503-5 1.581172+4 1.350000-5 8.571620+3 1.372000-5 7.275510+3 1.390000-5 6.416790+3 1.405000-5 5.824310+3 1.415000-5 5.485930+3 1.428894-5 5.084869+3 1.440000-5 4.817810+3 1.450000-5 4.615000+3 1.462177-5 4.412812+3 1.470000-5 4.307180+3 1.480000-5 4.198000+3 1.490000-5 4.116070+3 1.500000-5 4.059580+3 1.511000-5 4.024830+3 1.522000-5 4.016740+3 1.535000-5 4.038840+3 1.548817-5 4.096757+3 1.560000-5 4.167340+3 1.575000-5 4.292260+3 1.590000-5 4.448470+3 1.610000-5 4.699700+3 1.630000-5 4.993510+3 1.660000-5 5.500420+3 1.737801-5 7.073396+3 1.778279-5 7.981794+3 1.819701-5 8.942212+3 1.860000-5 9.888700+3 1.900000-5 1.082580+4 1.935000-5 1.163710+4 1.980000-5 1.265900+4 2.020000-5 1.354130+4 2.070000-5 1.460310+4 2.113489-5 1.548587+4 2.170000-5 1.657270+4 2.230000-5 1.765030+4 2.300000-5 1.880840+4 2.371374-5 1.988248+4 2.454709-5 2.100708+4 2.540973-5 2.203435+4 2.630268-5 2.296339+4 2.730000-5 2.385600+4 2.851018-5 2.475834+4 2.985383-5 2.556006+4 3.126079-5 2.620771+4 3.300000-5 2.678340+4 3.500000-5 2.720290+4 3.730000-5 2.744490+4 4.000000-5 2.748830+4 4.315191-5 2.730861+4 4.650000-5 2.692790+4 5.011872-5 2.636806+4 5.432503-5 2.560418+4 5.888437-5 2.469110+4 6.382635-5 2.364429+4 6.918310-5 2.248126+4 7.500000-5 2.122350+4 8.128305-5 1.989612+4 8.810489-5 1.850942+4 9.549926-5 1.710202+4 1.040000-4 1.561550+4 1.150000-4 1.390700+4 1.273503-4 1.227052+4 1.450000-4 1.037400+4 1.678804-4 8.514043+3 2.065380-4 6.382137+3 2.917427-4 3.936425+3 3.427678-4 3.122001+3 3.935501-4 2.541036+3 4.466836-4 2.083640+3 5.688529-4 1.411299+3 6.760830-4 1.060259+3 8.317638-4 7.456730+2 1.023293-3 5.208065+2 1.273503-3 3.536988+2 1.513561-3 2.591283+2 1.798871-3 1.883923+2 2.000000-3 1.557583+2 2.511886-3 1.061330+2 2.754229-3 8.970606+1 3.054921-3 7.369264+1 3.427678-3 5.876683+1 3.890451-3 4.546802+1 4.570882-3 3.253565+1 5.069907-3 2.618749+1 6.165950-3 1.749295+1 7.328245-3 1.216763+1 8.609938-3 8.611060+0 1.023293-2 5.899088+0 1.202264-2 4.113955+0 1.412538-2 2.848384+0 1.659587-2 1.957493+0 1.949845-2 1.335286+0 2.290868-2 9.042171-1 2.691535-2 6.078961-1 3.162278-2 4.056639-1 3.715352-2 2.686676-1 4.415704-2 1.714286-1 5.248075-2 1.085348-1 6.309573-2 6.611274-2 7.673615-2 3.874044-2 9.120108-2 2.399765-2 1.174898-1 1.178566-2 2.317395-1 1.728107-3 2.786121-1 1.033624-3 3.273407-1 6.641202-4 3.758374-1 4.578915-4 4.265795-1 3.281003-4 4.786301-1 2.440966-4 5.308844-1 1.882994-4 5.888437-1 1.462483-4 6.531306-1 1.144253-4 7.244360-1 9.020604-5 8.035261-1 7.166560-5 8.810489-1 5.879314-5 9.660509-1 4.855569-5 1.135011+0 3.517682-5 1.230269+0 3.011142-5 1.412538+0 2.326211-5 1.548817+0 1.969373-5 1.737801+0 1.611936-5 2.000000+0 1.272500-5 2.238721+0 1.059212-5 2.511886+0 8.847224-6 2.851018+0 7.311186-6 3.349654+0 5.783455-6 3.890451+0 4.688025-6 4.570882+0 3.767533-6 5.432503+0 3.004761-6 6.531306+0 2.379540-6 8.000000+0 1.855500-6 1.023293+1 1.385076-6 1.318257+1 1.035592-6 1.717908+1 7.701662-7 2.317395+1 5.555908-7 3.235937+1 3.890238-7 5.069907+1 2.430625-7 8.609938+1 1.409510-7 1.717908+2 6.984711-8 3.427678+2 3.481379-8 1.364583+3 8.706945-9 1.000000+5 1.18680-10 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.560000-6 6.560000-6 1.000000+5 6.560000-6 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.560000-6 0.0 1.000000+5 1.000000+5 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.188570-7 1.028750+0 1.188570-6 1.029500+0 1.626590-6 1.030100+0 2.045630-6 1.031000+0 2.799120-6 1.032000+0 3.829900-6 1.033200+0 5.365050-6 1.034000+0 6.586090-6 1.035300+0 8.939680-6 1.036640+0 1.188570-5 1.038200+0 1.604010-5 1.039700+0 2.083930-5 1.041500+0 2.772650-5 1.043800+0 3.848530-5 1.046400+0 5.354500-5 1.048300+0 6.666500-5 1.051200+0 9.042970-5 1.054080+0 1.188570-4 1.057700+0 1.620100-4 1.061100+0 2.107350-4 1.065100+0 2.789910-4 1.070400+0 3.892240-4 1.076200+0 5.379080-4 1.080600+0 6.717600-4 1.087100+0 9.050770-4 1.093710+0 1.188570-3 1.102600+0 1.647870-3 1.110700+0 2.149030-3 1.120600+0 2.874560-3 1.133300+0 3.996560-3 1.147500+0 5.517730-3 1.158200+0 6.857110-3 1.174100+0 9.165470-3 1.190110+0 1.188570-2 1.205100+0 1.479950-2 1.227500+0 1.981280-2 1.250000+0 2.559000-2 1.265600+0 2.998070-2 1.294900+0 3.898370-2 1.331800+0 5.151770-2 1.362600+0 6.281660-2 1.397000+0 7.618510-2 1.455800+0 1.006380-1 1.500000+0 1.204000-1 1.589800+0 1.647090-1 1.665000+0 2.059660-1 1.784700+0 2.783380-1 1.892300+0 3.485840-1 2.000000+0 4.213000-1 2.044000+0 4.511000-1 2.163500+0 5.326970-1 2.372600+0 6.768080-1 2.647100+0 8.648410-1 3.000000+0 1.100000+0 3.437500+0 1.377180+0 4.000000+0 1.710000+0 4.750000+0 2.114720+0 5.000000+0 2.240000+0 6.000000+0 2.698000+0 7.000000+0 3.108000+0 8.000000+0 3.477000+0 9.000000+0 3.812000+0 1.000000+1 4.119000+0 1.100000+1 4.401000+0 1.200000+1 4.660000+0 1.300000+1 4.900000+0 1.400000+1 5.121000+0 1.500000+1 5.325000+0 1.600000+1 5.516000+0 1.800000+1 5.866000+0 2.000000+1 6.179000+0 2.200000+1 6.464000+0 2.400000+1 6.722000+0 2.600000+1 6.958000+0 2.800000+1 7.174000+0 3.000000+1 7.373000+0 4.000000+1 8.180000+0 5.000000+1 8.778000+0 6.000000+1 9.245000+0 8.000000+1 9.934000+0 1.000000+2 1.042000+1 1.500000+2 1.120000+1 2.000000+2 1.167000+1 3.000000+2 1.221000+1 4.000000+2 1.252000+1 5.000000+2 1.273000+1 6.000000+2 1.287000+1 8.000000+2 1.307000+1 1.000000+3 1.319000+1 1.500000+3 1.338000+1 2.000000+3 1.348000+1 3.000000+3 1.358000+1 4.000000+3 1.364000+1 5.000000+3 1.368000+1 6.000000+3 1.371000+1 8.000000+3 1.374000+1 1.000000+4 1.376000+1 1.500000+4 1.379000+1 2.000000+4 1.380000+1 3.000000+4 1.382000+1 4.000000+4 1.383000+1 5.000000+4 1.383000+1 6.000000+4 1.384000+1 8.000000+4 1.384000+1 1.000000+5 1.385000+1 1 45000 7 8 1.029050+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.514680-7 2.099900+0 1.057400-6 2.106600+0 1.470930-6 2.114000+0 2.035220-6 2.119500+0 2.533840-6 2.127900+0 3.436360-6 2.136250+0 4.514680-6 2.147000+0 6.189940-6 2.156900+0 8.039990-6 2.169000+0 1.072990-5 2.184500+0 1.491490-5 2.201800+0 2.063520-5 2.214800+0 2.570980-5 2.234200+0 3.458420-5 2.253680+0 4.514680-5 2.281500+0 6.323610-5 2.307000+0 8.306040-5 2.338200+0 1.116820-4 2.377400+0 1.546660-4 2.410200+0 1.967090-4 2.446800+0 2.502250-4 2.485900+0 3.150470-4 2.532900+0 4.031930-4 2.556430+0 4.514680-4 2.611900+0 5.756710-4 2.660400+0 6.959550-4 2.745300+0 9.314900-4 2.809000+0 1.128090-3 2.904500+0 1.453270-3 3.000000+0 1.814000-3 3.125000+0 2.339100-3 3.234400+0 2.846180-3 3.425800+0 3.832830-3 3.569300+0 4.647780-3 3.784700+0 5.974980-3 4.000000+0 7.402000-3 4.250000+0 9.147000-3 4.625000+0 1.188970-2 5.000000+0 1.474000-2 5.500000+0 1.864940-2 6.000000+0 2.261000-2 6.750000+0 2.850800-2 7.000000+0 3.045000-2 8.000000+0 3.805000-2 9.000000+0 4.532000-2 1.000000+1 5.223000-2 1.100000+1 5.876000-2 1.200000+1 6.492000-2 1.300000+1 7.073000-2 1.400000+1 7.626000-2 1.500000+1 8.149000-2 1.600000+1 8.646000-2 1.800000+1 9.566000-2 2.000000+1 1.040000-1 2.200000+1 1.117000-1 2.400000+1 1.188000-1 2.600000+1 1.253000-1 2.800000+1 1.313000-1 3.000000+1 1.369000-1 4.000000+1 1.602000-1 5.000000+1 1.778000-1 6.000000+1 1.919000-1 8.000000+1 2.130000-1 1.000000+2 2.284000-1 1.500000+2 2.540000-1 2.000000+2 2.700000-1 3.000000+2 2.896000-1 4.000000+2 3.014000-1 5.000000+2 3.094000-1 6.000000+2 3.153000-1 8.000000+2 3.235000-1 1.000000+3 3.289000-1 1.500000+3 3.370000-1 2.000000+3 3.415000-1 3.000000+3 3.465000-1 4.000000+3 3.494000-1 5.000000+3 3.512000-1 6.000000+3 3.525000-1 8.000000+3 3.541000-1 1.000000+4 3.552000-1 1.500000+4 3.566000-1 2.000000+4 3.575000-1 3.000000+4 3.583000-1 4.000000+4 3.588000-1 5.000000+4 3.591000-1 6.000000+4 3.593000-1 8.000000+4 3.595000-1 1.000000+5 3.597000-1 1 45000 7 8 1.029050+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 45000 7 9 1.029050+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.500000+1 1.000000+5 4.500000+1 5.000000+5 4.498700+1 1.000000+6 4.495800+1 1.375000+6 4.492560+1 1.500000+6 4.491200+1 1.875000+6 4.486290+1 2.000000+6 4.484400+1 2.500000+6 4.475700+1 3.000000+6 4.465200+1 3.500000+6 4.453020+1 4.000000+6 4.439300+1 4.500000+6 4.424160+1 5.000000+6 4.407500+1 5.687500+6 4.381810+1 6.437500+6 4.351490+1 6.500000+6 4.348970+1 7.000000+6 4.327500+1 7.500000+6 4.304950+1 8.250000+6 4.269220+1 8.500000+6 4.257210+1 9.000000+6 4.232400+1 1.000000+7 4.180600+1 1.125000+7 4.113230+1 1.187500+7 4.078500+1 1.250000+7 4.043600+1 1.437500+7 3.935770+1 1.500000+7 3.899500+1 1.687500+7 3.789560+1 1.750000+7 3.753000+1 2.000000+7 3.606800+1 2.250000+7 3.462550+1 2.500000+7 3.322400+1 2.875000+7 3.122940+1 3.000000+7 3.059900+1 3.500000+7 2.826450+1 4.000000+7 2.624400+1 4.750000+7 2.373900+1 5.000000+7 2.302900+1 5.500000+7 2.176180+1 6.000000+7 2.066600+1 6.750000+7 1.924600+1 7.000000+7 1.881500+1 7.750000+7 1.759810+1 8.000000+7 1.721200+1 8.750000+7 1.608490+1 9.000000+7 1.572000+1 9.750000+7 1.464760+1 1.000000+8 1.430000+1 1.062500+8 1.344940+1 1.144500+8 1.238930+1 1.187500+8 1.186150+1 1.214800+8 1.153580+1 1.250000+8 1.112900+1 1.375000+8 9.804960+0 1.500000+8 8.706900+0 1.625000+8 7.830110+0 1.718800+8 7.290910+0 1.750000+8 7.131080+0 1.859400+8 6.636190+0 2.000000+8 6.126200+0 2.125000+8 5.767900+0 2.312500+8 5.342950+0 2.375000+8 5.222920+0 2.500000+8 5.006100+0 2.750000+8 4.624390+0 2.875000+8 4.432930+0 3.000000+8 4.230600+0 3.500000+8 3.455200+0 3.812500+8 3.130390+0 3.937500+8 3.002850+0 4.000000+8 2.935200+0 4.125000+8 2.790740+0 4.234400+8 2.660170+0 4.750000+8 2.099630+0 5.000000+8 1.895300+0 5.125000+8 1.811930+0 5.343800+8 1.689800+0 5.507800+8 1.613190+0 5.753900+8 1.515660+0 6.000000+8 1.432400+0 6.343800+8 1.333420+0 6.578100+8 1.277010+0 6.859400+8 1.220930+0 7.000000+8 1.197500+0 7.250000+8 1.163500+0 8.000000+8 1.078400+0 8.250000+8 1.049210+0 8.687500+8 9.955880-1 9.261700+8 9.249020-1 1.000000+9 8.401000-1 1.089800+9 7.500600-1 1.165000+9 6.834840-1 1.248800+9 6.163730-1 1.311600+9 5.700760-1 1.358700+9 5.373650-1 1.375000+9 5.263790-1 1.429300+9 4.911800-1 1.500000+9 4.481500-1 1.562500+9 4.126420-1 1.617200+9 3.836140-1 1.712900+9 3.374420-1 1.784700+9 3.065660-1 1.892300+9 2.658350-1 2.000000+9 2.311000-1 2.139200+9 1.937720-1 2.272600+9 1.645420-1 2.443000+9 1.345200-1 2.602800+9 1.121870-1 2.825100+9 8.813770-2 3.097000+9 6.672280-2 3.334900+9 5.303130-2 3.543000+9 4.380890-2 3.907300+9 3.199150-2 4.385300+9 2.192110-2 5.000000+9 1.416300-2 5.750000+9 8.839330-3 7.437500+9 3.676660-3 8.000000+9 2.865200-3 1.00000+10 1.337800-3 1.20500+10 7.127620-4 1.41820+10 4.135720-4 1.71170+10 2.220150-4 2.01490+10 1.301530-4 2.50620+10 6.415570-5 2.97450+10 3.701010-5 3.62610+10 1.969990-5 4.42280+10 1.052440-5 5.44530+10 5.487670-6 7.07200+10 2.436970-6 9.02400+10 1.150020-6 1.00000+11 8.392700-7 1.34280+11 3.413720-7 1.77440+11 1.466390-7 2.63330+11 4.469510-8 3.75720+11 1.546280-8 6.61190+11 2.901350-9 1.48990+12 2.69112-10 4.26460+12 1.28700-11 1.00000+14 1.57750-15 5.62340+14 1.11510-17 7.49890+15 6.26263-21 1.00000+17 3.39330-24 1 45000 7 0 1.029050+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.60000-12 1.000000+2 5.60000-10 1.000000+3 5.600000-8 1.000000+4 5.600000-6 1.000000+5 5.600000-4 5.000000+5 1.400000-2 1.000000+6 5.600000-2 1.375000+6 1.059290-1 1.500000+6 1.259000-1 1.875000+6 1.950640-1 2.000000+6 2.212000-1 2.500000+6 3.405000-1 3.000000+6 4.817000-1 3.500000+6 6.422230-1 4.000000+6 8.196000-1 4.500000+6 1.011400+0 5.000000+6 1.215000+0 5.687500+6 1.509580+0 6.437500+6 1.844930+0 6.500000+6 1.873390+0 7.000000+6 2.102700+0 7.500000+6 2.334300+0 8.250000+6 2.684210+0 8.500000+6 2.800880+0 9.000000+6 3.034500+0 1.000000+7 3.499000+0 1.125000+7 4.073860+0 1.187500+7 4.358760+0 1.250000+7 4.641900+0 1.437500+7 5.478400+0 1.500000+7 5.753000+0 1.687500+7 6.562880+0 1.750000+7 6.828300+0 2.000000+7 7.863000+0 2.250000+7 8.853680+0 2.500000+7 9.802100+0 2.875000+7 1.115470+1 3.000000+7 1.159100+1 3.500000+7 1.327730+1 4.000000+7 1.488300+1 4.750000+7 1.714760+1 5.000000+7 1.785800+1 5.500000+7 1.919670+1 6.000000+7 2.042800+1 6.750000+7 2.206150+1 7.000000+7 2.255700+1 7.750000+7 2.390550+1 8.000000+7 2.431800+1 8.750000+7 2.546120+1 9.000000+7 2.581900+1 9.750000+7 2.682660+1 1.000000+8 2.714800+1 1.062500+8 2.791630+1 1.144500+8 2.886100+1 1.187500+8 2.933370+1 1.214800+8 2.962320+1 1.250000+8 2.999100+1 1.375000+8 3.120820+1 1.500000+8 3.230900+1 1.625000+8 3.329590+1 1.718800+8 3.397290+1 1.750000+8 3.418560+1 1.859400+8 3.489440+1 2.000000+8 3.571500+1 2.125000+8 3.636750+1 2.312500+8 3.724120+1 2.375000+8 3.751010+1 2.500000+8 3.800900+1 2.750000+8 3.888930+1 2.875000+8 3.928090+1 3.000000+8 3.964300+1 3.500000+8 4.083300+1 3.812500+8 4.140340+1 3.937500+8 4.159780+1 4.000000+8 4.169300+1 4.125000+8 4.186260+1 4.234400+8 4.200740+1 4.750000+8 4.254970+1 5.000000+8 4.276100+1 5.125000+8 4.285240+1 5.343800+8 4.300080+1 5.507800+8 4.310180+1 5.753900+8 4.324020+1 6.000000+8 4.336600+1 6.343800+8 4.351780+1 6.578100+8 4.361390+1 6.859400+8 4.371830+1 7.000000+8 4.376900+1 7.250000+8 4.384920+1 8.000000+8 4.407000+1 8.250000+8 4.413070+1 8.687500+8 4.423270+1 9.261700+8 4.435110+1 1.000000+9 4.448100+1 1.089800+9 4.460030+1 1.165000+9 4.468010+1 1.248800+9 4.475520+1 1.311600+9 4.479650+1 1.358700+9 4.482550+1 1.375000+9 4.483530+1 1.429300+9 4.485930+1 1.500000+9 4.488900+1 1.562500+9 4.490510+1 1.617200+9 4.491860+1 1.712900+9 4.494130+1 1.784700+9 4.495040+1 1.892300+9 4.496250+1 2.000000+9 4.497400+1 2.139200+9 4.498000+1 2.272600+9 4.498540+1 2.443000+9 4.499190+1 2.602800+9 4.499760+1 2.825100+9 4.500240+1 3.097000+9 4.500200+1 3.334900+9 4.500170+1 3.543000+9 4.500150+1 3.907300+9 4.500100+1 4.385300+9 4.500060+1 5.000000+9 4.500000+1 5.750000+9 4.500000+1 7.437500+9 4.500000+1 8.000000+9 4.500000+1 1.00000+10 4.500000+1 1.20500+10 4.500000+1 1.41820+10 4.500000+1 1.71170+10 4.500000+1 2.01490+10 4.500000+1 2.50620+10 4.500000+1 2.97450+10 4.500000+1 3.62610+10 4.500000+1 4.42280+10 4.500000+1 5.44530+10 4.500000+1 7.07200+10 4.500000+1 9.02400+10 4.500000+1 1.00000+11 4.500000+1 1.34280+11 4.500000+1 1.77440+11 4.500000+1 2.63330+11 4.500000+1 3.75720+11 4.500000+1 6.61190+11 4.500000+1 1.48990+12 4.500000+1 4.26460+12 4.500000+1 1.00000+14 4.500000+1 5.62340+14 4.500000+1 7.49890+15 4.500000+1 1.00000+17 4.500000+1 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.001151-6 0.0 3.146786-6 0.0 3.158404-6 9.342609-8 3.162277-6 1.241731-7 3.170022-6 2.268123-7 3.174191-6 3.104880-7 3.189817-6 1.882780+0 3.197630-6 3.439052+0 3.205443-6 5.798713+0 3.213256-6 9.025649+0 3.237671-6 2.140129+1 3.244995-6 2.386581+1 3.253037-6 2.474860+1 3.261009-6 2.361938+1 3.266700-6 2.197072+1 3.274772-6 2.014367+1 3.281581-6 1.831089+1 3.289366-6 1.738564+1 3.297403-6 1.866015+1 3.305489-6 2.258587+1 3.317028-6 3.188408+1 3.327977-6 4.134766+1 3.338346-6 4.834151+1 3.345743-6 5.007679+1 3.354144-6 4.782036+1 3.362887-6 4.156985+1 3.375538-6 2.881110+1 3.385552-6 1.867539+1 3.393588-6 1.205618+1 3.401625-6 7.184620+0 3.409661-6 3.952318+0 3.421716-6 1.004695+0 3.425734-6 0.0 3.587528-6 0.0 3.596358-6 5.691810-8 3.605188-6 1.126252-7 3.614018-6 2.057192-7 3.622849-6 3.468708-7 3.631679-6 5.399016-7 3.640509-6 7.757384-7 3.649339-6 1.028892-6 3.658170-6 1.259733-6 3.667000-6 1.423773-6 3.675830-6 1.485447-6 3.684660-6 1.430630-6 3.693490-6 1.271896-6 3.702321-6 1.043830-6 3.719981-6 5.530290-7 3.728811-6 3.570163-7 3.737642-6 2.127562-7 3.746472-6 1.170389-7 3.755302-6 5.943365-8 3.764132-6 0.0 4.275982-6 0.0 4.286507-6 2.22039-15 4.297032-6 4.39354-15 4.307556-6 8.02516-15 4.318081-6 1.35315-14 4.328606-6 2.10617-14 4.339131-6 3.02618-14 4.349656-6 4.01374-14 4.360180-6 4.91425-14 4.370705-6 5.55418-14 4.381230-6 5.79477-14 4.391755-6 5.58093-14 4.402280-6 4.96170-14 4.412804-6 4.07201-14 4.433854-6 2.15738-14 4.444379-6 1.39273-14 4.454904-6 8.29967-15 4.465428-6 4.56572-15 4.475953-6 2.31852-15 4.486478-6 0.0 4.973494-6 0.0 4.975709-6 3.329550-7 4.976695-6 7.011996-7 4.999111-6 6.550209-2 5.001194-6 7.153095-2 5.003427-6 8.228770-2 5.014209-6 2.189964-1 5.025693-6 3.898373-1 5.028827-6 4.489646-1 5.040758-6 7.268791-1 5.053458-6 1.132355+0 5.072986-6 1.918927+0 5.090765-6 2.661764+0 5.103888-6 3.066260+0 5.114265-6 3.253969+0 5.127711-6 3.222798+0 5.141108-6 2.928299+0 5.152750-6 2.514863+0 5.175841-6 1.518741+0 5.188157-6 1.039181+0 5.200472-6 6.584622-1 5.212787-6 3.813738-1 5.221685-6 2.389655-1 5.225102-6 1.947041-1 5.243575-6 4.949457-2 5.249733-6 0.0 5.602502-6 0.0 5.613842-6 6.877033-3 5.630366-6 4.535944-2 5.641478-6 7.523714-2 5.653419-6 1.258037-1 5.655296-6 1.339608-1 5.669113-6 2.204602-1 5.688672-6 3.916752-1 5.714893-6 6.515489-1 5.729207-6 7.642265-1 5.741956-6 8.225953-1 5.755746-6 8.256264-1 5.769205-6 7.690882-1 5.784944-6 6.428142-1 5.810807-6 3.855200-1 5.823433-6 2.708316-1 5.834927-6 1.845485-1 5.848744-6 1.087248-1 5.862562-6 5.917004-2 5.878595-6 2.100190-2 5.890198-6 0.0 5.892943-6 0.0 5.898779-6 1.319004-3 5.921952-6 2.202391-2 5.927817-6 2.807627-2 5.936457-6 4.081644-2 5.942336-6 5.061882-2 5.950962-6 6.990371-2 5.956855-6 8.431149-2 5.971375-6 1.297315-1 6.008981-6 2.734566-1 6.029451-6 3.289854-1 6.045785-6 3.387900-1 6.060304-6 3.234668-1 6.074823-6 2.900420-1 6.102046-6 2.043472-1 6.116565-6 1.681148-1 6.131085-6 1.473278-1 6.145604-6 1.426760-1 6.203680-6 1.948114-1 6.222669-6 1.999458-1 6.283910-6 1.778510-1 6.411792-6 1.653010-1 6.443356-6 1.512090+0 6.459137-6 2.626911+0 6.477096-6 4.643134+0 6.494343-6 7.290586+0 6.539418-6 1.541073+1 6.557893-6 1.741063+1 6.573456-6 1.780081+1 6.590259-6 1.671068+1 6.606818-6 1.441122+1 6.650723-6 6.450654+0 6.664993-6 4.348132+0 6.680739-6 2.642860+0 6.695864-6 1.540142+0 6.726714-6 1.649391-1 6.727428-6 1.325277-1 6.761709-6 1.300568-1 6.795190-6 9.345797-1 6.812410-6 1.632674+0 6.828802-6 2.629595+0 6.845689-6 4.036348+0 6.896618-6 9.405899+0 6.913894-6 1.067238+1 6.929424-6 1.121819+1 6.946311-6 1.103334+1 6.963054-6 1.015590+1 6.995678-6 7.367579+0 7.011355-6 5.903836+0 7.027999-6 4.529454+0 7.044642-6 3.382664+0 7.061285-6 2.466879+0 7.094571-6 1.017729+0 7.105533-6 8.178013-1 7.122400-6 5.642244-1 7.139266-6 3.773290-1 7.156133-6 2.530110-1 7.189866-6 1.002000-1 7.623740-6 7.716227-2 8.076415-6 5.885478-2 8.150213-6 5.633289-2 8.190961-6 3.275561-1 8.210395-6 5.397273-1 8.232234-6 9.123504-1 8.252491-6 1.382884+0 8.311629-6 3.041216+0 8.332601-6 3.423035+0 8.351447-6 3.550620+0 8.372135-6 3.401349+0 8.392970-6 2.993102+0 8.451124-6 1.351878+0 8.471184-6 8.888572-1 8.491245-6 5.479380-1 8.511306-6 3.215481-1 8.546412-6 7.959940-2 8.551427-6 4.434843-2 8.564223-6 4.400876-2 8.590955-6 1.405554-1 8.606382-6 2.061536-1 8.627462-6 3.461356-1 8.649859-6 5.764206-1 8.671313-6 8.815762-1 8.734178-6 2.011603+0 8.755258-6 2.294096+0 8.776337-6 2.455399+0 8.797816-6 2.452005+0 8.834076-6 2.161541+0 8.868444-6 1.822491+0 8.890007-6 1.693297+0 8.913424-6 1.645142+0 8.954697-6 1.656529+0 8.980375-6 1.568963+0 9.003214-6 1.423891+0 9.025442-6 1.222170+0 9.067829-6 7.730427-1 9.084076-6 6.203423-1 9.105639-6 4.752403-1 9.118775-6 4.277373-1 9.127202-6 4.048522-1 9.148765-6 4.055898-1 9.163226-6 4.418235-1 9.192166-6 5.476806-1 9.229904-6 8.325806-1 9.269383-6 1.077043+0 9.382624-6 1.679721+0 9.419992-6 1.761749+0 9.450050-6 1.691743+0 9.533730-6 1.202857+0 9.560708-6 1.108252+0 9.584928-6 1.080958+0 9.624531-6 1.132409+0 9.691828-6 1.314263+0 9.723894-6 1.345759+0 9.833297-6 1.277953+0 1.001726-5 1.383590+0 1.135312-5 1.759157+0 1.277690-5 2.287879+0 1.500000-5 3.290095+0 1.698086-5 4.370133+0 1.985791-5 6.237173+0 2.426610-5 9.700788+0 2.994321-5 1.424230+1 3.330000-5 1.602724+1 3.632132-5 1.657698+1 3.989799-5 1.596292+1 4.347463-5 1.438433+1 4.379565-5 1.496088+1 4.392204-5 1.565116+1 4.414498-5 2.117382+1 4.425307-5 2.527869+1 4.436116-5 3.085257+1 4.451675-5 4.129038+1 4.474582-5 5.739877+1 4.488980-5 6.408545+1 4.500714-5 6.484801+1 4.512649-5 6.119650+1 4.524675-5 5.384021+1 4.553666-5 3.160118+1 4.565826-5 2.433117+1 4.575284-5 2.012059+1 4.587445-5 1.666320+1 4.608097-5 1.292771+1 4.706575-5 1.236082+1 4.740964-5 1.309277+1 4.749998-5 1.368763+1 4.771779-5 1.724832+1 4.785567-5 2.070804+1 4.799476-5 2.538251+1 4.830217-5 3.737692+1 4.845041-5 4.154720+1 4.855484-5 4.301544+1 4.867680-5 4.251402+1 4.879962-5 3.968297+1 4.900170-5 3.173576+1 4.923718-5 2.169191+1 4.936867-5 1.735654+1 4.948554-5 1.466784+1 4.960242-5 1.290853+1 4.982156-5 1.073875+1 5.107154-5 1.003061+1 5.144866-5 1.026455+1 5.171716-5 1.098409+1 5.222261-5 1.331488+1 5.247534-5 1.367295+1 5.267895-5 1.313967+1 5.320990-5 1.098569+1 5.360465-5 1.034725+1 5.570391-5 9.472271+0 5.676924-5 9.733146+0 6.382635-5 6.626012+0 6.807975-5 5.099647+0 7.208117-5 3.961401+0 7.543032-5 3.207880+0 7.955396-5 2.495222+0 8.332613-5 2.014804+0 8.413951-5 2.021886+0 8.508484-5 2.174063+0 8.548882-5 2.154246+0 8.661701-5 1.878887+0 9.170018-5 1.590619+0 9.645506-5 1.419537+0 1.020000-4 1.324064+0 1.085000-4 1.310107+0 1.180000-4 1.402474+0 1.364583-4 1.744579+0 1.650000-4 2.291350+0 1.950217-4 2.700539+0 2.344229-4 2.993878+0 2.771364-4 3.113366+0 3.090492-4 3.136891+0 3.122009-4 3.294538+0 3.197111-4 3.851385+0 3.272000-4 4.121714+0 3.308000-4 4.492389+0 3.340000-4 5.109981+0 3.368277-4 5.956250+0 3.395000-4 7.050222+0 3.431770-4 8.991862+0 3.561032-4 1.700683+1 3.640391-4 2.073578+1 3.744187-4 2.383441+1 3.875541-4 2.558096+1 4.165916-4 2.596173+1 4.731998-4 2.482294+1 4.782270-4 2.554774+1 4.839737-4 2.771563+1 4.877976-4 2.728529+1 4.931546-4 2.587850+1 5.026149-4 2.651062+1 5.101481-4 2.757921+1 5.226500-4 2.671441+1 5.559043-4 2.626787+1 6.058651-4 2.472067+1 6.182720-4 2.514046+1 8.179609-4 1.906710+1 9.731900-4 1.557286+1 1.136645-3 1.283411+1 1.295686-3 1.081305+1 1.498862-3 8.881603+0 1.737117-3 7.225851+0 2.007856-3 5.870458+0 2.299823-3 4.810779+0 2.654500-3 3.879674+0 2.922813-3 3.351776+0 2.937725-3 3.487812+0 2.949598-3 3.767614+0 2.960076-3 4.255596+0 2.971067-3 5.089809+0 2.986034-3 6.650926+0 3.002990-3 8.542226+0 3.018802-3 9.791216+0 3.035261-3 1.045472+1 3.067641-3 1.064634+1 3.105986-3 1.100554+1 3.134593-3 1.218053+1 3.165149-3 1.346303+1 3.198066-3 1.379639+1 3.344476-3 1.307841+1 3.420403-3 1.413927+1 3.562914-3 1.352356+1 4.148432-3 1.072094+1 4.763110-3 8.632929+0 5.432503-3 7.003978+0 6.241046-3 5.585987+0 7.109374-3 4.497720+0 8.125767-3 3.588360+0 9.225622-3 2.887902+0 1.035529-2 2.363943+0 1.160927-2 1.935286+0 1.302581-2 1.579477+0 1.455602-2 1.296389+0 1.626823-2 1.061926+0 1.812778-2 8.733961-1 2.040099-2 7.046279-1 2.260222-2 5.871821-1 2.272179-2 6.028097-1 2.279919-2 6.436020-1 2.285831-2 7.094357-1 2.291403-2 8.131630-1 2.296142-2 9.421257-1 2.301783-2 1.150336+0 2.309257-2 1.514147+0 2.329545-2 2.686493+0 2.338468-2 3.073874+0 2.349413-2 3.351323+0 2.365061-2 3.474874+0 2.776922-2 2.705662+0 3.179372-2 2.164188+0 3.607993-2 1.745344+0 4.068587-2 1.417553+0 4.598097-2 1.142774+0 5.151857-2 9.326822-1 5.816546-2 7.486211-1 6.549714-2 6.016604-1 7.429875-2 4.757998-1 8.139405-2 4.010665-1 9.179155-2 3.194725-1 1.031796-1 2.556281-1 1.138956-1 2.117381-1 1.282513-1 1.686079-1 1.409254-1 1.407157-1 1.550702-1 1.171345-1 1.725342-1 9.546191-2 1.922427-1 7.763067-2 2.126624-1 6.412598-2 2.341293-1 5.349846-2 2.595818-1 4.420275-2 2.854689-1 3.714849-2 3.166793-1 3.084104-2 3.516878-1 2.568186-2 3.889096-1 2.162691-2 4.327629-1 1.813345-2 4.849103-1 1.512378-2 5.432503-1 1.273044-2 6.053845-1 1.089090-2 6.820032-1 9.260156-3 7.717915-1 7.918493-3 9.015712-1 6.605248-3 1.070165+0 5.494247-3 1.228714+0 4.734164-3 1.477239+0 3.881714-3 1.776032+0 3.182759-3 2.135261+0 2.609660-3 2.567148+0 2.139755-3 3.086391+0 1.754463-3 3.710658+0 1.438549-3 4.461192+0 1.179518-3 5.363532+0 9.671302-4 6.448384+0 7.929853-4 7.752663+0 6.501976-4 9.320751+0 5.331207-4 9.760024+0 5.073067-4 1.000000+1 1.028521-3 1 45000 7 0 1.029050+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.489972+1 2.544370-6-4.353920+1 2.932281-6-4.127296+1 3.076445-6-3.832125+1 3.139176-6-3.503112+1 3.168086-6-3.174866+1 3.205443-6-2.314322+1 3.217032-6-2.137173+1 3.224240-6-2.157250+1 3.232754-6-2.302891+1 3.242798-6-2.697336+1 3.253924-6-3.285633+1 3.263038-6-3.654759+1 3.276940-6-3.785446+1 3.288221-6-3.532806+1 3.300398-6-3.022520+1 3.308123-6-2.786358+1 3.317028-6-2.792739+1 3.322636-6-2.995803+1 3.330449-6-3.504233+1 3.337202-6-4.170113+1 3.339763-6-4.492823+1 3.344590-6-3.964546+1 3.355855-6-2.513695+1 3.362887-6-1.794226+1 3.367625-6-1.441959+1 3.370484-6-1.265650+1 3.373560-6-1.127658+1 3.375538-6-1.063931+1 3.379525-6-9.944545+0 3.383292-6-9.750127+0 3.385552-6-1.001280+1 3.391579-6-1.117105+1 3.400746-6-1.440399+1 3.412424-6-1.926799+1 3.425232-6-2.377686+1 3.431353-6-2.620681+1 3.445470-6-2.932614+1 3.470110-6-3.253172+1 3.517773-6-3.586677+1 3.614018-6-3.894286+1 3.840173-6-4.156419+1 4.728797-6-4.417629+1 5.015645-6-4.509597+1 5.087270-6-4.493325+1 5.103888-6-4.524398+1 5.167140-6-4.255049+1 5.413712-6-4.445592+1 5.743522-6-4.526975+1 5.890884-6-4.539194+1 6.222669-6-4.433998+1 6.376337-6-4.199966+1 6.443356-6-3.831328+1 6.482544-6-3.580035+1 6.506445-6-3.572352+1 6.532642-6-3.803300+1 6.568462-6-4.557807+1 6.572271-6-4.516654+1 6.605127-6-3.818122+1 6.629936-6-3.573756+1 6.650723-6-3.554996+1 6.724571-6-4.078649+1 6.795190-6-4.573624+1 6.860238-6-4.322102+1 6.896618-6-4.485264+1 6.910027-6-4.554486+1 6.973448-6-3.809890+1 7.011355-6-3.644885+1 7.086249-6-3.779350+1 7.197145-6-4.071835+1 7.532389-6-4.297716+1 8.163246-6-4.548194+1 8.293938-6-4.621705+1 8.423405-6-4.273412+1 8.715464-6-4.568039+1 8.884617-6-4.395923+1 9.105639-6-4.402779+1 9.308309-6-4.513406+1 9.581040-6-4.460436+1 1.985791-5-4.725705+1 2.691535-5-4.618166+1 3.488577-5-4.049267+1 4.049902-5-3.226933+1 4.201158-5-2.876303+1 4.285355-5-2.545196+1 4.332104-5-2.226818+1 4.363514-5-1.854510+1 4.379565-5-1.573738+1 4.388928-5-1.347420+1 4.395687-5-1.116233+1 4.411795-5-7.240345+0 4.414498-5-6.402569+0 4.423956-5-4.077233+0 4.425307-5-3.692293+0 4.427671-5-3.198082+0 4.436116-5-1.709689+0 4.438481-5-1.460288+0 4.442027-5-1.289471+0 4.445574-5-1.205548+0 4.446925-5-1.190270+0 4.449459-5-1.368501+0 4.451675-5-1.657205+0 4.453615-5-1.997831+0 4.455312-5-2.360349+0 4.458282-5-3.138795+0 4.460510-5-3.846564+0 4.462180-5-4.451798+0 4.465939-5-6.089039+0 4.473441-5-1.040520+1 4.477574-5-1.337674+1 4.487742-5-2.203623+1 4.492256-5-2.667713+1 4.497851-5-3.195443+1 4.500714-5-2.868755+1 4.513722-5-1.631743+1 4.522743-5-9.393087+0 4.526487-5-7.168449+0 4.529778-5-5.589855+0 4.532764-5-4.391958+0 4.535377-5-3.506324+0 4.537663-5-2.848340+0 4.539663-5-2.359766+0 4.541414-5-1.998201+0 4.544477-5-1.515194+0 4.546774-5-1.283092+0 4.548497-5-1.188081+0 4.551082-5-1.192694+0 4.552374-5-1.280094+0 4.559071-5-2.281677+0 4.561773-5-2.754323+0 4.563124-5-3.059269+0 4.565826-5-3.922926+0 4.574102-5-6.101922+0 4.575284-5-6.536681+0 4.589809-5-1.098406+1 4.606361-5-1.530210+1 4.611882-5-1.718245+1 4.625728-5-2.000728+1 4.655212-5-2.391404+1 4.720712-5-3.101664+1 4.745614-5-2.711868+1 4.764131-5-2.362208+1 4.787964-5-2.014851+1 4.799476-5-1.936206+1 4.810466-5-1.990166+1 4.822619-5-2.183425+1 4.830217-5-2.398187+1 4.841775-5-2.853509+1 4.846110-5-3.064065+1 4.864744-5-2.071955+1 4.870002-5-1.775327+1 4.879962-5-1.274728+1 4.887749-5-9.843704+0 4.893000-5-8.104907+0 4.898091-5-6.836636+0 4.903807-5-5.823483+0 4.906535-5-5.470085+0 4.912674-5-4.985094+0 4.919219-5-4.977341+0 4.923718-5-5.239312+0 4.932484-5-6.107677+0 4.947093-5-8.572525+0 4.965355-5-1.169218+1 4.982156-5-1.422461+1 4.993013-5-1.581268+1 5.016572-5-1.785253+1 5.069878-5-2.060025+1 5.179628-5-2.484315+1 5.209625-5-2.485661+1 5.279863-5-2.192086+1 5.320990-5-2.202374+1 5.416489-5-2.333762+1 5.636882-5-2.452066+1 5.931564-5-2.407480+1 7.074334-5-2.516429+1 8.548882-5-2.759525+1 1.160000-4-3.050394+1 1.742798-4-3.236950+1 2.511886-4-3.454209+1 2.945804-4-3.766738+1 3.215000-4-4.223208+1 3.355703-4-4.683652+1 3.467955-4-5.032347+1 3.561032-4-4.976814+1 3.954871-4-3.774663+1 4.221173-4-3.281695+1 4.549982-4-2.896950+1 4.829212-4-2.730574+1 4.965561-4-2.757066+1 5.119610-4-2.551793+1 5.285000-4-2.394772+1 5.559043-4-2.097297+1 5.923948-4-1.850014+1 6.182720-4-1.765845+1 6.413479-4-1.579309+1 6.911242-4-1.341506+1 7.454470-4-1.156238+1 8.179609-4-9.805677+0 8.963962-4-8.492512+0 9.731900-4-7.593339+0 1.096478-3-6.688410+0 1.243172-3-6.105163+0 1.426082-3-5.825309+0 1.657536-3-5.852847+0 1.913705-3-6.193212+0 2.205184-3-6.895559+0 2.470359-3-7.925089+0 2.654500-3-9.067011+0 2.775804-3-1.024288+1 2.872982-3-1.179378+1 2.922813-3-1.317423+1 2.956827-3-1.491753+1 2.991749-3-1.739814+1 3.011050-3-1.768474+1 3.035261-3-1.648106+1 3.067641-3-1.471854+1 3.096559-3-1.416235+1 3.150330-3-1.427532+1 3.173216-3-1.349497+1 3.223229-3-1.128727+1 3.272319-3-1.011382+1 3.328252-3-9.464197+0 3.390130-3-9.283613+0 3.434886-3-8.237541+0 3.482368-3-7.185656+0 3.562914-3-6.044950+0 3.676322-3-4.908627+0 3.801894-3-3.988292+0 3.947199-3-3.183372+0 4.112089-3-2.491906+0 4.237184-3-2.074798+0 4.394278-3-1.657530+0 4.574995-3-1.274684+0 4.763110-3-9.660448-1 4.899270-3-7.790126-1 5.040806-3-6.187522-1 5.238171-3-4.373420-1 5.308844-3-3.798064-1 5.432503-3-2.922860-1 5.571612-3-2.110878-1 5.641877-3-1.746529-1 5.776031-3-1.144768-1 5.843294-3-8.764837-2 5.996426-3-3.369625-2 6.029391-3-2.290740-2 6.082311-3-7.001700-3 6.103128-3-1.638151-3 6.209500-3 2.517633-2 6.241046-3 3.248399-2 6.420637-3 6.364842-2 6.550743-3 8.151232-2 6.662442-3 9.367440-2 6.926255-3 1.095229-1 7.182076-3 1.167784-1 7.477389-3 1.135084-1 7.946396-3 9.090396-2 8.222426-3 6.975315-2 8.521625-3 4.137284-2 8.709636-3 2.063701-2 8.839344-3 6.729852-3 9.002746-3-1.044088-2 9.087355-3-1.966641-2 9.362811-3-5.121368-2 9.618457-3-8.177628-2 1.566221-2-8.535562-1 1.748541-2-1.111968+0 1.919221-2-1.412713+0 2.040099-2-1.707446+0 2.120582-2-1.987679+0 2.175179-2-2.258790+0 2.219107-2-2.577814+0 2.252239-2-2.956188+0 2.272179-2-3.337177+0 2.293059-2-3.993054+0 2.309257-2-4.497670+0 2.320315-2-4.585773+0 2.332265-2-4.361981+0 2.365061-2-3.197100+0 2.382000-2-2.798248+0 2.403627-2-2.452920+0 2.439394-2-2.064649+0 2.483917-2-1.721379+0 2.549316-2-1.361803+0 2.613132-2-1.109502+0 2.681671-2-9.046113-1 2.746313-2-7.500946-1 2.825281-2-5.967702-1 2.910498-2-4.630649-1 2.991432-2-3.574003-1 3.032431-2-3.116732-1 3.100667-2-2.455521-1 3.179372-2-1.807007-1 3.265917-2-1.204885-1 3.346041-2-7.379914-2 3.427678-2-3.246942-2 3.502475-2-3.793978-4 3.522695-2 8.369694-3 3.607993-2 3.791143-2 3.684321-2 5.975270-2 3.782931-2 8.415706-2 3.868816-2 1.011230-1 3.962993-2 1.169874-1 4.068587-2 1.317527-1 4.267921-2 1.518765-1 4.485431-2 1.650707-1 4.850815-2 1.719046-1 5.279349-2 1.668052-1 5.934381-2 1.458310-1 7.928517-2 6.180867-2 8.633033-2 3.524286-2 9.265284-2 1.380480-2 9.518106-2 5.799227-3 9.704785-2 2.163788-5 9.750240-2-1.364894-3 9.900319-2-5.893277-3 1.042075-1-2.051482-2 1.113415-1-3.860623-2 1.203782-1-5.857783-2 1.315193-1-7.965488-2 1.457057-1-1.017172-1 1.654817-1-1.257169-1 1.980244-1-1.539523-1 2.417895-1-1.783378-1 3.058854-1-1.992803-1 4.170194-1-2.174013-1 6.512534-1-2.313898-1 1.410753+0-2.393961-1 4.260405+0-2.414180-1 1.000000+1-2.415326-1 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.595998-6 1.024000-6 4.785418-6 1.048891-6 4.721219-6 1.088011-6 4.486794-6 1.124685-6 4.572310-6 1.159068-6 4.953245-6 1.223535-6 6.538844-6 1.279944-6 9.190650-6 1.329302-6 1.292235-5 1.372490-6 1.767453-5 1.410280-6 2.343528-5 1.476412-6 3.790473-5 1.526010-6 5.294632-5 1.536000-6 5.542368-5 1.600409-6 6.072411-5 1.674807-6 7.073026-5 1.691296-6 7.386208-5 1.711908-6 7.858265-5 1.732519-6 8.410110-5 1.753131-6 9.058421-5 1.807523-6 1.121692-4 1.851508-6 1.356607-4 1.928484-6 1.927972-4 1.986215-6 2.529233-4 2.029513-6 3.115481-4 2.185984-6 6.493411-4 2.249766-6 8.711173-4 2.265711-6 9.375064-4 2.304000-6 1.100767-3 2.332419-6 1.206944-3 2.397042-6 1.469776-3 2.459646-6 1.798307-3 2.520293-6 2.205608-3 2.579045-6 2.704261-3 2.635961-6 3.308006-3 2.691099-6 4.031695-3 2.744513-6 4.891247-3 2.796259-6 5.903550-3 2.846387-6 7.078876-3 2.880000-6 7.949959-3 2.894948-6 8.344823-3 2.941993-6 9.660548-3 2.987567-6 1.114808-2 3.031716-6 1.284891-2 3.074486-6 1.478415-2 3.115920-6 1.697555-2 3.156059-6 1.944584-2 3.194943-6 2.221868-2 3.232613-6 2.531864-2 3.269105-6 2.877167-2 3.304456-6 3.261553-2 3.338703-6 3.691769-2 3.405057-6 4.698931-2 3.467263-6 5.903321-2 3.525582-6 7.336367-2 3.600000-6 9.703085-2 3.631512-6 1.091929-1 3.679565-6 1.309586-1 3.724615-6 1.559127-1 3.766849-6 1.844184-1 3.806444-6 2.167745-1 3.843563-6 2.532751-1 3.878363-6 2.942123-1 3.910988-6 3.398742-1 3.941574-6 3.905446-1 3.970248-6 4.465073-1 3.997130-6 5.080149-1 4.022332-6 5.751913-1 4.050000-6 6.616307-1 4.068109-6 7.268148-1 4.088875-6 8.116959-1 4.108343-6 9.029847-1 4.126594-6 1.000871+0 4.143704-6 1.105484+0 4.159745-6 1.216921+0 4.174784-6 1.335248+0 4.188882-6 1.460479+0 4.202100-6 1.592559+0 4.214491-6 1.731359+0 4.226108-6 1.876688+0 4.247889-6 2.197131+0 4.266948-6 2.542348+0 4.283625-6 2.909801+0 4.298217-6 3.296478+0 4.310985-6 3.698914+0 4.322157-6 4.113344+0 4.331932-6 4.535897+0 4.340486-6 4.962719+0 4.347970-6 5.390014+0 4.361068-6 6.294751+0 4.370891-6 7.149206+0 4.378258-6 7.924213+0 4.389310-6 9.377772+0 4.394835-6 1.027333+1 4.400361-6 1.131039+1 4.405776-6 1.248930+1 4.411192-6 1.385741+1 4.416607-6 1.544637+1 4.422023-6 1.729115+1 4.427438-6 1.942973+1 4.432853-6 2.190253+1 4.443684-6 2.801957+1 4.464150-6 4.483782+1 4.470625-6 5.181270+1 4.477389-6 5.999373+1 4.482886-6 6.730495+1 4.488382-6 7.517891+1 4.499376-6 9.238961+1 4.500750-6 9.465364+1 4.510369-6 1.109488+2 4.514148-6 1.174631+2 4.521363-6 1.298225+2 4.526951-6 1.391195+2 4.531836-6 1.468826+2 4.535917-6 1.530048+2 4.541163-6 1.602613+2 4.544458-6 1.644005+2 4.548783-6 1.692703+2 4.554343-6 1.744796+2 4.560183-6 1.785367+2 4.565680-6 1.809215+2 4.567594-6 1.814115+2 4.573054-6 1.818219+2 4.578189-6 1.808663+2 4.581205-6 1.797051+2 4.586463-6 1.766503+2 4.591262-6 1.727710+2 4.596994-6 1.668811+2 4.601089-6 1.619171+2 4.606334-6 1.547579+2 4.610991-6 1.477606+2 4.613985-6 1.429992+2 4.618769-6 1.350521+2 4.624250-6 1.255750+2 4.629976-6 1.154416+2 4.636794-6 1.033319+2 4.642291-6 9.372572+1 4.648475-6 8.326556+1 4.653284-6 7.548054+1 4.664278-6 5.915241+1 4.668057-6 5.407182+1 4.671664-6 4.949269+1 4.675271-6 4.518198+1 4.678020-6 4.207851+1 4.684203-6 3.566302+1 4.690502-6 2.991498+1 4.695036-6 2.624602+1 4.700925-6 2.203051+1 4.706631-6 1.849532+1 4.712160-6 1.553954+1 4.717560-6 1.305519+1 4.722792-6 1.098759+1 4.727859-6 9.267485+0 4.732769-6 7.836091+0 4.737525-6 6.643959+0 4.742132-6 5.649816+0 4.750920-6 4.124475+0 4.755109-6 3.541699+0 4.763225-6 2.627196+0 4.777966-6 1.519903+0 4.784654-6 1.192797+0 4.797192-6 7.968325-1 4.808164-6 6.435450-1 4.812964-6 6.289191-1 4.817463-6 6.448432-1 4.823660-6 7.167336-1 4.828312-6 8.123485-1 4.828755-6 8.234547-1 4.833037-6 9.503298-1 4.836232-6 1.069463+0 4.839278-6 1.204355+0 4.842133-6 1.351281+0 4.849672-6 1.846563+0 4.857823-6 2.588264+0 4.864184-6 3.345865+0 4.869054-6 4.048809+0 4.872783-6 4.667072+0 4.878111-6 5.682579+0 4.883518-6 6.885361+0 4.887432-6 7.873059+0 4.889820-6 8.526708+0 4.893403-6 9.582252+0 4.896987-6 1.073074+1 4.902998-6 1.287358+1 4.908259-6 1.497581+1 4.912580-6 1.686258+1 4.916807-6 1.884649+1 4.921785-6 2.135335+1 4.933058-6 2.765135+1 4.937684-6 3.044959+1 4.945081-6 3.511385+1 4.950190-6 3.842592+1 4.953439-6 4.055005+1 4.957702-6 4.333842+1 4.963184-6 4.688572+1 4.967395-6 4.954940+1 4.972124-6 5.244072+1 4.977344-6 5.546624+1 4.981904-6 5.793058+1 4.988949-6 6.133618+1 4.994451-6 6.360044+1 5.001599-6 6.595474+1 5.005640-6 6.696890+1 5.017599-6 6.855422+1 5.019692-6 6.861114+1 5.029849-6 6.797755+1 5.035109-6 6.708492+1 5.041903-6 6.541477+1 5.045195-6 6.441428+1 5.050591-6 6.253456+1 5.057035-6 5.995126+1 5.063765-6 5.693489+1 5.071330-6 5.326120+1 5.077342-6 5.020216+1 5.087863-6 4.472331+1 5.098384-6 3.929540+1 5.101390-6 3.778266+1 5.113413-6 3.200324+1 5.122431-6 2.802476+1 5.128309-6 2.562042+1 5.136838-6 2.241102+1 5.145978-6 1.934339+1 5.164257-6 1.431449+1 5.182536-6 1.058874+1 5.198013-6 8.258258+0 5.204567-6 7.456189+0 5.211070-6 6.752508+0 5.217523-6 6.134789+0 5.223925-6 5.591922+0 5.236629-6 4.689418+0 5.249134-6 3.984338+0 5.261444-6 3.426826+0 5.273562-6 2.979768+0 5.285490-6 2.615848+0 5.297232-6 2.315098+0 5.308791-6 2.062956+0 5.320169-6 1.848778+0 5.331369-6 1.664726+0 5.353419-6 1.362987+0 5.395474-6 9.428120-1 5.434941-6 6.686808-1 5.453755-6 5.661861-1 5.471981-6 4.803810-1 5.507293-6 3.446829-1 5.540398-6 2.465005-1 5.571434-6 1.746575-1 5.600531-6 1.220865-1 5.627809-6 8.401302-2 5.678955-6 3.743952-2 5.768461-6 1.632784-2 5.802025-6 2.710315-2 5.831394-6 4.656137-2 5.857092-6 7.228344-2 5.879578-6 1.024065-1 5.899253-6 1.354699-1 5.916468-6 1.701341-1 5.931532-6 2.050422-1 5.944713-6 2.388671-1 5.956246-6 2.704609-1 5.966337-6 2.989935-1 5.982894-6 3.454082-1 5.995569-6 3.781416-1 6.009237-6 4.078399-1 6.023324-6 4.299730-1 6.035057-6 4.412423-1 6.040110-6 4.443413-1 6.054977-6 4.502474-1 6.064173-6 4.550198-1 6.069844-6 4.603144-1 6.077394-6 4.724046-1 6.081967-6 4.836912-1 6.084711-6 4.922847-1 6.089822-6 5.126262-1 6.094090-6 5.346503-1 6.097520-6 5.561796-1 6.100593-6 5.786971-1 6.104680-6 6.138677-1 6.108535-6 6.530177-1 6.110735-6 6.781678-1 6.114584-6 7.274367-1 6.126133-6 9.197167-1 6.134622-6 1.108403+0 6.149646-6 1.549588+0 6.151406-6 1.610376+0 6.164669-6 2.125985+0 6.169510-6 2.337187+0 6.178753-6 2.767258+0 6.183226-6 2.984917+0 6.188012-6 3.222038+0 6.193387-6 3.490598+0 6.197876-6 3.714216+0 6.203647-6 3.996959+0 6.208376-6 4.221452+0 6.211996-6 4.387119+0 6.217171-6 4.611917+0 6.222888-6 4.840208+0 6.228613-6 5.043508+0 6.234530-6 5.222803+0 6.240315-6 5.364424+0 6.246254-6 5.472277+0 6.252256-6 5.540545+0 6.257876-6 5.566331+0 6.260630-6 5.565414+0 6.266828-6 5.531074+0 6.271978-6 5.469360+0 6.273470-6 5.446038+0 6.284660-6 5.198568+0 6.291167-6 5.001597+0 6.296856-6 4.802425+0 6.299571-6 4.699664+0 6.303643-6 4.537430+0 6.307716-6 4.366811+0 6.310375-6 4.251607+0 6.315028-6 4.044182+0 6.321135-6 3.763885+0 6.327024-6 3.489032+0 6.328987-6 3.397129+0 6.336498-6 3.047470+0 6.342132-6 2.790430+0 6.345888-6 2.623031+0 6.352461-6 2.340015+0 6.359033-6 2.072218+0 6.374057-6 1.528872+0 6.379221-6 1.366387+0 6.389080-6 1.092114+0 6.396592-6 9.145611-1 6.413901-6 6.031084-1 6.417266-6 5.572135-1 6.423786-6 4.806055-1 6.429898-6 4.225719-1 6.435628-6 3.792880-1 6.441000-6 3.476637-1 6.451072-6 3.091356-1 6.459886-6 2.945891-1 6.467598-6 2.941062-1 6.521580-6 4.705794-1 6.524712-6 4.850212-1 6.536757-6 5.411094-1 6.546421-6 5.865925-1 6.573175-6 7.248600-1 6.588951-6 8.336283-1 6.596750-6 9.021444-1 6.602253-6 9.583384-1 6.612198-6 1.079526+0 6.616523-6 1.141123+0 6.632687-6 1.425208+0 6.653902-6 1.932492+0 6.660647-6 2.122640+0 6.669319-6 2.382656+0 6.675147-6 2.564528+0 6.681383-6 2.762740+0 6.686157-6 2.915292+0 6.692979-6 3.131576+0 6.699284-6 3.326442+0 6.701752-6 3.400657+0 6.707978-6 3.581127+0 6.714706-6 3.762435+0 6.717500-6 3.832751+0 6.724875-6 4.002103+0 6.730926-6 4.121520+0 6.749549-6 4.362578+0 6.754934-6 4.394398+0 6.757855-6 4.404438+0 6.766616-6 4.404577+0 6.772454-6 4.380476+0 6.778417-6 4.336952+0 6.783827-6 4.281933+0 6.788561-6 4.222502+0 6.792703-6 4.162473+0 6.799952-6 4.041043+0 6.810825-6 3.825427+0 6.821698-6 3.578401+0 6.825785-6 3.479373+0 6.832937-6 3.300017+0 6.854394-6 2.736444+0 6.861180-6 2.556475+0 6.874135-6 2.218890+0 6.881770-6 2.026540+0 6.890879-6 1.806202+0 6.896345-6 1.679764+0 6.908208-6 1.422914+0 6.917106-6 1.248207+0 6.944770-6 8.197710-1 6.948887-6 7.720569-1 6.953003-6 7.286367-1 6.965737-6 6.214400-1 6.969468-6 5.976951-1 6.971527-6 5.860523-1 6.985934-6 5.324337-1 6.991954-6 5.236777-1 7.000028-6 5.234032-1 7.009038-6 5.370849-1 7.013951-6 5.500556-1 7.019831-6 5.700576-1 7.024811-6 5.903788-1 7.029565-6 6.122878-1 7.040212-6 6.685152-1 7.057625-6 7.738161-1 7.066910-6 8.326111-1 7.077804-6 9.009998-1 7.085754-6 9.494441-1 7.094357-6 9.998842-1 7.105145-6 1.059960+0 7.120443-6 1.140007+0 7.158467-6 1.340162+0 7.173854-6 1.437108+0 7.190371-6 1.559224+0 7.224899-6 1.871014+0 7.238484-6 2.003023+0 7.246601-6 2.079782+0 7.252597-6 2.134126+0 7.260307-6 2.199684+0 7.270759-6 2.278144+0 7.277088-6 2.318407+0 7.283913-6 2.354647+0 7.289973-6 2.379957+0 7.298644-6 2.404004+0 7.313120-6 2.410149+0 7.322300-6 2.391516+0 7.329408-6 2.365372+0 7.333421-6 2.346293+0 7.342449-6 2.292716+0 7.349216-6 2.243747+0 7.366371-6 2.092584+0 7.376094-6 1.994856+0 7.386914-6 1.881204+0 7.420662-6 1.544459+0 7.431518-6 1.456269+0 7.435283-6 1.429083+0 7.449948-6 1.341798+0 7.454218-6 1.322242+0 7.473332-6 1.267829+0 7.477864-6 1.262670+0 7.491459-6 1.263537+0 7.495149-6 1.267670+0 7.513750-6 1.309441+0 7.524876-6 1.347346+0 7.561329-6 1.498368+0 7.575106-6 1.552618+0 7.586916-6 1.593408+0 7.599889-6 1.630527+0 7.614727-6 1.662367+0 7.627901-6 1.681610+0 7.641022-6 1.693700+0 7.662105-6 1.703247+0 7.699452-6 1.714637+0 7.724197-6 1.733005+0 7.749615-6 1.764770+0 7.823187-6 1.886647+0 7.836224-6 1.905955+0 7.866659-6 1.945185+0 8.025400-6 2.114251+0 8.114208-6 2.214055+0 8.186194-6 2.279053+0 8.250019-6 2.330684+0 8.321800-6 2.400224+0 8.643423-6 2.794463+0 9.055492-6 3.332509+0 9.340686-6 3.737070+0 9.634863-6 4.176813+0 1.024888-5 5.162774+0 1.056915-5 5.716209+0 1.124005-5 6.973460+0 1.195353-5 8.451737+0 1.271230-5 1.020798+1 1.435099-5 1.468559+1 1.710827-5 2.455444+1 2.009292-5 3.958074+1 2.246591-5 5.533131+1 2.513915-5 7.807459+1 2.691535-5 9.661246+1 2.961798-5 1.292728+2 3.090295-5 1.468067+2 3.217732-5 1.650128+2 3.350316-5 1.847031+2 3.460033-5 2.012408+2 3.577974-5 2.189192+2 3.715352-5 2.390560+2 3.862693-5 2.592683+2 3.974369-5 2.732249+2 4.106420-5 2.877078+2 4.210681-5 2.978363+2 4.520127-5 3.301896+2 4.600064-5 3.399918+2 4.652525-5 3.482760+2 4.699581-5 3.589433+2 4.731829-5 3.710081+2 4.754029-5 3.847046+2 4.772675-5 4.021564+2 4.783920-5 4.161838+2 4.792688-5 4.291924+2 4.799825-5 4.411562+2 4.807265-5 4.549062+2 4.822711-5 4.870715+2 4.846336-5 5.413709+2 4.858148-5 5.677873+2 4.869961-5 5.916187+2 4.880320-5 6.092875+2 4.886941-5 6.186329+2 4.894324-5 6.270487+2 4.905106-5 6.352669+2 4.918101-5 6.384418+2 4.930934-5 6.342699+2 4.940835-5 6.262227+2 4.950262-5 6.148957+2 4.958645-5 6.021063+2 4.969627-5 5.820730+2 4.976272-5 5.685133+2 4.988084-5 5.426253+2 4.999896-5 5.157128+2 5.019645-5 4.721861+2 5.035333-5 4.416770+2 5.046677-5 4.227004+2 5.060888-5 4.027448+2 5.080467-5 3.815286+2 5.109088-5 3.603028+2 5.165579-5 3.408333+2 5.175989-5 3.406475+2 5.185182-5 3.415600+2 5.200894-5 3.455491+2 5.215119-5 3.517348+2 5.227123-5 3.586460+2 5.237801-5 3.658585+2 5.282849-5 4.015730+2 5.300984-5 4.158424+2 5.325460-5 4.336689+2 5.352943-5 4.517652+2 5.373475-5 4.634660+2 5.389404-5 4.704761+2 5.405125-5 4.746198+2 5.415125-5 4.754708+2 5.423793-5 4.749907+2 5.434925-5 4.727304+2 5.452657-5 4.657473+2 5.467336-5 4.576470+2 5.521676-5 4.243739+2 5.551664-5 4.107136+2 5.630016-5 3.902780+2 5.668205-5 3.850856+2 5.689129-5 3.837462+2 5.717135-5 3.838698+2 5.744408-5 3.858603+2 5.816482-5 3.939229+2 5.875506-5 3.976105+2 5.922865-5 3.988428+2 5.979016-5 3.993794+2 6.053228-5 3.983831+2 6.194356-5 3.931081+2 6.363236-5 3.851100+2 6.538633-5 3.753968+2 6.807634-5 3.588431+2 7.060892-5 3.426827+2 7.344082-5 3.246120+2 7.718609-5 3.014533+2 8.119968-5 2.779456+2 8.372473-5 2.638327+2 8.695981-5 2.455372+2 8.902066-5 2.354487+2 9.071456-5 2.271858+2 9.225714-5 2.216877+2 9.603909-5 2.102458+2 1.040932-4 1.882598+2 1.110000-4 1.735744+2 1.170000-4 1.634353+2 1.216186-4 1.570329+2 1.250000-4 1.529190+2 1.292370-4 1.484654+2 1.346327-4 1.436989+2 1.431269-4 1.376865+2 1.543376-4 1.320381+2 1.638400-4 1.285322+2 1.740000-4 1.255738+2 2.020000-4 1.190664+2 2.101622-4 1.170807+2 2.187000-4 1.147451+2 2.300159-4 1.111942+2 2.423651-4 1.066054+2 2.531707-4 1.018735+2 2.665238-4 9.491969+1 2.777533-4 8.801939+1 2.844714-4 8.337668+1 2.917427-4 7.783238+1 2.991609-4 7.162337+1 3.065323-4 6.485014+1 3.121016-4 5.937439+1 3.170103-4 5.423600+1 3.213353-4 4.945020+1 3.245791-4 4.570064+1 3.296653-4 3.954648+1 3.319048-4 3.677300+1 3.337201-4 3.453663+1 3.351970-4 3.274415+1 3.367163-4 3.093835+1 3.387997-4 2.854733+1 3.483000-4 1.967302+1 3.502658-4 1.830658+1 3.510968-4 1.779635+1 3.521250-4 1.723664+1 3.527768-4 1.693074+1 3.535702-4 1.661922+1 3.541171-4 1.644899+1 3.551494-4 1.624322+1 3.561625-4 1.621388+1 3.567500-4 1.628809+1 3.575000-4 1.649345+1 3.582500-4 1.683700+1 3.590000-4 1.733481+1 3.595000-4 1.776070+1 3.601494-4 1.843599+1 3.608000-4 1.926181+1 3.615492-4 2.041389+1 3.624000-4 2.200621+1 3.635500-4 2.468686+1 3.643535-4 2.695324+1 3.655154-4 3.085348+1 3.666995-4 3.564224+1 3.702497-4 5.540111+1 3.714997-4 6.437511+1 3.727497-4 7.439715+1 3.737494-4 8.314112+1 3.748274-4 9.326011+1 3.759611-4 1.046200+2 3.768747-4 1.142651+2 3.777779-4 1.241834+2 3.795947-4 1.451049+2 3.807054-4 1.583961+2 3.815000-4 1.680740+2 3.830531-4 1.872629+2 3.835500-4 1.934471+2 3.849500-4 2.109011+2 3.855000-4 2.177461+2 3.870000-4 2.362936+2 3.877500-4 2.454676+2 3.892500-4 2.635390+2 3.902263-4 2.750651+2 3.915000-4 2.897784+2 3.937500-4 3.147794+2 3.960000-4 3.384167+2 3.981072-4 3.592839+2 4.000000-4 3.769991+2 4.023000-4 3.972616+2 4.050655-4 4.198556+2 4.080000-4 4.418055+2 4.120975-4 4.692345+2 4.156407-4 4.902002+2 4.190983-4 5.083745+2 4.232724-4 5.276031+2 4.284487-4 5.477625+2 4.307500-4 5.554860+2 4.354342-4 5.691567+2 4.410000-4 5.823498+2 4.495731-4 5.986898+2 4.602535-4 6.149218+2 4.756544-4 6.331688+2 4.840417-4 6.411694+2 4.919770-4 6.470740+2 5.012864-4 6.517452+2 5.083867-4 6.538707+2 5.133597-4 6.571974+2 5.170501-4 6.620947+2 5.205194-4 6.690679+2 5.242880-4 6.800355+2 5.280000-4 6.949492+2 5.340161-4 7.239101+2 5.380745-4 7.420091+2 5.420087-4 7.569727+2 5.577500-4 8.104188+2 5.639172-4 8.331661+2 5.705100-4 8.538767+2 5.800000-4 8.762324+2 5.914155-4 8.963600+2 6.027020-4 9.118616+2 6.163793-4 9.260747+2 6.304026-4 9.361091+2 6.398029-4 9.409909+2 6.450256-4 9.451679+2 6.499868-4 9.520137+2 6.575325-4 9.681125+2 6.638932-4 9.833613+2 6.705258-4 9.969483+2 6.794595-4 1.010530+3 6.927256-4 1.025028+3 7.092948-4 1.039411+3 7.300000-4 1.053934+3 7.557500-4 1.068201+3 8.095144-4 1.090353+3 8.640000-4 1.104367+3 9.441118-4 1.115077+3 1.010209-3 1.118059+3 1.086926-3 1.116444+3 1.206598-3 1.106644+3 1.262554-3 1.099771+3 1.322057-3 1.089950+3 1.589462-3 1.032873+3 1.749958-3 9.990075+2 1.915194-3 9.571027+2 2.009743-3 9.337721+2 2.097152-3 9.116721+2 2.202771-3 8.825906+2 2.305395-3 8.535786+2 2.411408-3 8.223397+2 2.507202-3 7.930538+2 2.581936-3 7.690358+2 2.662438-3 7.411356+2 2.734482-3 7.137974+2 2.793962-3 6.893697+2 2.843779-3 6.671618+2 2.889970-3 6.446235+2 2.930101-3 6.229145+2 2.966111-3 6.010513+2 2.998477-3 5.787546+2 3.022126-3 5.602242+2 3.045743-3 5.389370+2 3.065373-3 5.181053+2 3.081309-3 4.982498+2 3.094396-3 4.796403+2 3.109871-3 4.554219+2 3.131470-3 4.222114+2 3.141249-3 4.102955+2 3.146621-3 4.052825+2 3.153180-3 4.009864+2 3.160297-3 3.988640+2 3.166571-3 3.993094+2 3.170668-3 4.007702+2 3.178803-3 4.062512+2 3.186505-3 4.142076+2 3.197186-3 4.284920+2 3.216229-3 4.575879+2 3.221997-3 4.660389+2 3.230050-3 4.768655+2 3.240652-3 4.888700+2 3.251430-3 4.981779+2 3.261096-3 5.041841+2 3.271703-3 5.087445+2 3.301131-3 5.176766+2 3.309686-3 5.214646+2 3.318998-3 5.271102+2 3.328619-3 5.348828+2 3.343916-3 5.511995+2 3.378073-3 5.967892+2 3.390779-3 6.129948+2 3.404915-3 6.288062+2 3.420268-3 6.429431+2 3.437776-3 6.554412+2 3.456930-3 6.654542+2 3.477390-3 6.728152+2 3.497437-3 6.774148+2 3.546195-3 6.849714+2 3.560331-3 6.890932+2 3.581854-3 6.992026+2 3.605272-3 7.149219+2 3.634638-3 7.369316+2 3.652290-3 7.489483+2 3.667188-3 7.577640+2 3.690104-3 7.689987+2 3.716919-3 7.793677+2 3.748164-3 7.889469+2 3.782709-3 7.974596+2 3.864549-3 8.122362+2 3.947153-3 8.217715+2 4.070964-3 8.297671+2 4.229316-3 8.324657+2 4.394309-3 8.292251+2 4.579395-3 8.209185+2 4.811492-3 8.061233+2 5.158222-3 7.792159+2 5.551048-3 7.457444+2 5.984492-3 7.080078+2 6.557205-3 6.598515+2 7.161434-3 6.127178+2 7.962354-3 5.568738+2 9.013279-3 4.942707+2 1.013147-2 4.387017+2 1.116246-2 3.951014+2 1.208468-2 3.609235+2 1.302581-2 3.299695+2 1.397944-2 3.018995+2 1.506755-2 2.734529+2 1.622618-2 2.465036+2 1.752871-2 2.198546+2 1.890096-2 1.951771+2 2.000000-2 1.774312+2 2.090842-2 1.637353+2 2.162719-2 1.532328+2 2.221859-2 1.445647+2 2.265672-2 1.378995+2 2.304507-2 1.315373+2 2.330877-2 1.266981+2 2.343094-2 1.241839+2 2.354174-2 1.216640+2 2.363607-2 1.192798+2 2.376762-2 1.155262+2 2.406859-2 1.062110+2 2.415377-2 1.042349+2 2.421778-2 1.032267+2 2.429083-2 1.026773+2 2.435592-2 1.027559+2 2.443239-2 1.034906+2 2.451815-2 1.049851+2 2.478962-2 1.114653+2 2.490427-2 1.138367+2 2.502561-2 1.157812+2 2.518456-2 1.175416+2 2.540114-2 1.189545+2 2.571256-2 1.199031+2 2.603736-2 1.201583+2 2.647180-2 1.198266+2 2.688512-2 1.190528+2 2.762597-2 1.169833+2 2.877182-2 1.129075+2 3.001537-2 1.081087+2 3.164971-2 1.017811+2 3.400000-2 9.309303+1 3.694640-2 8.328119+1 3.945425-2 7.587436+1 4.269516-2 6.747641+1 4.820312-2 5.591284+1 5.308844-2 4.784923+1 5.855297-2 4.058987+1 6.872969-2 3.071926+1 8.612542-2 2.058402+1 1.103999-1 1.318511+1 1.333733-1 9.336750+0 1.644510-1 6.328457+0 2.027509-1 4.262678+0 2.663576-1 2.525685+0 3.788070-1 1.274434+0 5.709301-1 5.699081-1 9.316258-1 2.162208-1 1.947381+0 4.976500-2 5.880996+0 5.465298-3 1.776032+1 5.993645-4 5.363532+1 6.572030-5 1.619761+2 7.206103-6 4.891600+2 7.901336-7 1.584893+3 7.526661-8 5.011872+3 7.526661-9 1.584893+4 7.52666-10 5.011872+4 7.52666-11 1.000000+5 1.89061-11 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.487200-7 1.258900-6 1.345100-6 1.584900-6 2.131900-6 1.995300-6 3.378800-6 2.511900-6 5.355000-6 3.162300-6 8.487100-6 3.981100-6 1.345100-5 5.011900-6 2.131800-5 6.309600-6 3.378700-5 7.943300-6 5.354800-5 1.000000-5 8.486800-5 1.258900-5 1.345000-4 1.584900-5 2.131700-4 1.995300-5 3.378500-4 2.511900-5 5.354300-4 3.162300-5 8.485700-4 3.981100-5 1.344800-3 5.011900-5 2.131300-3 6.309600-5 3.377700-3 7.943300-5 5.352600-3 1.000000-4 8.478500-3 1.258900-4 1.342900-2 1.584900-4 2.125300-2 1.995300-4 3.362500-2 2.511900-4 5.314000-2 3.162300-4 8.385000-2 3.981100-4 1.319700-1 5.011900-4 2.069400-1 6.309600-4 3.223500-1 7.943300-4 4.969400-1 1.000000-3 7.555800-1 1.258900-3 1.126300+0 1.584900-3 1.634000+0 1.995300-3 2.292500+0 2.511900-3 3.100500+0 3.162300-3 4.049800+0 3.981100-3 5.150100+0 5.011900-3 6.439800+0 6.309600-3 7.938500+0 7.943300-3 9.611500+0 1.000000-2 1.137600+1 1.258900-2 1.310000+1 1.584900-2 1.477700+1 1.995300-2 1.635700+1 2.511900-2 1.779900+1 3.162300-2 1.902700+1 3.981100-2 1.998800+1 5.011900-2 2.050600+1 6.309600-2 2.092700+1 7.943300-2 2.086200+1 1.000000-1 2.047300+1 1.258900-1 1.983700+1 1.584900-1 1.897100+1 1.995300-1 1.794000+1 2.511900-1 1.679900+1 3.162300-1 1.559000+1 3.981100-1 1.435600+1 5.011900-1 1.312900+1 6.309600-1 1.193000+1 7.943300-1 1.077200+1 1.000000+0 9.669100+0 1.258900+0 8.622300+0 1.584900+0 7.640700+0 1.995300+0 6.727300+0 2.511900+0 5.885500+0 3.162300+0 5.117300+0 3.981100+0 4.423300+0 5.011900+0 3.801900+0 6.309600+0 3.251000+0 7.943300+0 2.766500+0 1.000000+1 2.343800+0 1.258900+1 1.977700+0 1.584900+1 1.662700+0 1.995300+1 1.393200+0 2.511900+1 1.163900+0 3.162300+1 9.697400-1 3.981100+1 8.059900-1 5.011900+1 6.684000-1 6.309600+1 5.532000-1 7.943300+1 4.570100-1 1.000000+2 3.769300-1 1.258900+2 3.104100-1 1.584900+2 2.552700-1 1.995300+2 2.096600-1 2.511900+2 1.720000-1 3.162300+2 1.409500-1 3.981100+2 1.153900-1 5.011900+2 9.437800-2 6.309600+2 7.712300-2 7.943300+2 6.297200-2 1.000000+3 5.137700-2 1.258900+3 4.188700-2 1.584900+3 3.412700-2 1.995300+3 2.778700-2 2.511900+3 2.261000-2 3.162300+3 1.838800-2 3.981100+3 1.494500-2 5.011900+3 1.214100-2 6.309600+3 9.858300-3 7.943300+3 8.000700-3 1.000000+4 6.490300-3 1.258900+4 5.262600-3 1.584900+4 4.265400-3 1.995300+4 3.455800-3 2.511900+4 2.798800-3 3.162300+4 2.265800-3 3.981100+4 1.833700-3 5.011900+4 1.483400-3 6.309600+4 1.199700-3 7.943300+4 9.699300-4 1.000000+5 7.839200-4 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159544-4 3.981072-4 3.976745-4 5.011872-4 5.005025-4 6.309573-4 6.298724-4 7.943282-4 7.926199-4 1.000000-3 9.973079-4 1.258925-3 1.254694-3 1.584893-3 1.578263-3 1.995262-3 1.984916-3 2.511886-3 2.495798-3 3.162278-3 3.137307-3 3.981072-3 3.942235-3 5.011872-3 4.951445-3 6.309573-3 6.215277-3 7.943282-3 7.796147-3 1.000000-2 9.772284-3 1.258925-2 1.223769-2 1.584893-2 1.530848-2 1.995262-2 1.912240-2 2.511886-2 2.384645-2 3.162278-2 2.968026-2 3.981072-2 3.686075-2 5.011872-2 4.566577-2 6.309573-2 5.643337-2 7.943282-2 6.954047-2 1.000000-1 8.543082-2 1.258925-1 1.045552-1 1.584893-1 1.275838-1 1.995262-1 1.551569-1 2.511886-1 1.880074-1 3.162278-1 2.270918-1 3.981072-1 2.734336-1 5.011872-1 3.282080-1 6.309573-1 3.928089-1 7.943282-1 4.689203-1 1.000000+0 5.582782-1 1.258925+0 6.637293-1 1.584893+0 7.880213-1 1.995262+0 9.351288-1 2.511886+0 1.109670+0 3.162278+0 1.317401+0 3.981072+0 1.565370+0 5.011872+0 1.862196+0 6.309573+0 2.218375+0 7.943282+0 2.646847+0 1.000000+1 3.163478+0 1.258925+1 3.787487+0 1.584893+1 4.542625+0 1.995262+1 5.457779+0 2.511886+1 6.568529+0 3.162278+1 7.918494+0 3.981072+1 9.561021+0 5.011872+1 1.156180+1 6.309573+1 1.400144+1 7.943282+1 1.697905+1 1.000000+2 2.061633+1 1.258925+2 2.506372+1 1.584893+2 3.050537+1 1.995262+2 3.716859+1 2.511886+2 4.533374+1 3.162278+2 5.534633+1 3.981072+2 6.763079+1 5.011872+2 8.271413+1 6.309573+2 1.012435+2 7.943282+2 1.240197+2 1.000000+3 1.520291+2 1.258925+3 1.864945+2 1.584893+3 2.289201+2 1.995262+3 2.811751+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090665-8 7.943282-5 1.728466-8 1.000000-4 2.738917-8 1.258925-4 4.340252-8 1.584893-4 6.876572-8 1.995262-4 1.089536-7 2.511886-4 1.725928-7 3.162278-4 2.733394-7 3.981072-4 4.327193-7 5.011872-4 6.847302-7 6.309573-4 1.084958-6 7.943282-4 1.708335-6 1.000000-3 2.692130-6 1.258925-3 4.231563-6 1.584893-3 6.629985-6 1.995262-3 1.034638-5 2.511886-3 1.608854-5 3.162278-3 2.497033-5 3.981072-3 3.883655-5 5.011872-3 6.042726-5 6.309573-3 9.429691-5 7.943282-3 1.471353-4 1.000000-2 2.277155-4 1.258925-2 3.515684-4 1.584893-2 5.404495-4 1.995262-2 8.302266-4 2.511886-2 1.272416-3 3.162278-2 1.942517-3 3.981072-2 2.949966-3 5.011872-2 4.452957-3 6.309573-2 6.662362-3 7.943282-2 9.892350-3 1.000000-1 1.456918-2 1.258925-1 2.133731-2 1.584893-1 3.090552-2 1.995262-1 4.436934-2 2.511886-1 6.318123-2 3.162278-1 8.913594-2 3.981072-1 1.246736-1 5.011872-1 1.729792-1 6.309573-1 2.381484-1 7.943282-1 3.254079-1 1.000000+0 4.417218-1 1.258925+0 5.951961-1 1.584893+0 7.968719-1 1.995262+0 1.060134+0 2.511886+0 1.402217+0 3.162278+0 1.844877+0 3.981072+0 2.415702+0 5.011872+0 3.149677+0 6.309573+0 4.091199+0 7.943282+0 5.296435+0 1.000000+1 6.836522+0 1.258925+1 8.801768+0 1.584893+1 1.130631+1 1.995262+1 1.449484+1 2.511886+1 1.855034+1 3.162278+1 2.370428+1 3.981072+1 3.024970+1 5.011872+1 3.855692+1 6.309573+1 4.909430+1 7.943282+1 6.245377+1 1.000000+2 7.938367+1 1.258925+2 1.008288+2 1.584893+2 1.279840+2 1.995262+2 1.623576+2 2.511886+2 2.058549+2 3.162278+2 2.608814+2 3.981072+2 3.304764+2 5.011872+2 4.184731+2 6.309573+2 5.297139+2 7.943282+2 6.703085+2 1.000000+3 8.479709+2 1.258925+3 1.072431+3 1.584893+3 1.355973+3 1.995262+3 1.714087+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.670000-6 7.450802+6 8.140000-6 7.963792+6 8.140000-6 1.268935+7 8.511380-6 1.331823+7 9.225714-6 1.447369+7 9.850000-6 1.542988+7 1.000000-5 1.565275+7 1.083927-5 1.682147+7 1.188502-5 1.813309+7 1.200000-5 1.826800+7 1.318257-5 1.958592+7 1.333521-5 1.974491+7 1.513561-5 2.151668+7 1.548817-5 2.184570+7 2.691535-5 3.122322+7 2.917427-5 3.268530+7 3.090295-5 3.357696+7 3.235937-5 3.411715+7 3.350000-5 3.436388+7 3.388442-5 3.441237+7 3.467369-5 3.446027+7 3.507519-5 3.444569+7 3.589219-5 3.436440+7 3.630781-5 3.427939+7 3.715352-5 3.404823+7 3.758374-5 3.388193+7 3.845918-5 3.348092+7 3.890451-5 3.323173+7 3.950000-5 3.285963+7 4.000000-5 3.249956+7 4.073803-5 3.192930+7 4.120975-5 3.152481+7 4.180000-5 3.099022+7 4.229500-5 3.050481+7 4.300000-5 2.978764+7 4.350000-5 2.924650+7 4.415704-5 2.851482+7 4.466836-5 2.791673+7 4.540000-5 2.705104+7 4.570882-5 2.667119+7 4.650000-5 2.569224+7 4.680000-5 2.531032+7 4.786301-5 2.396794+7 4.800000-5 2.379239+7 4.900000-5 2.252126+7 5.011872-5 2.110164+7 5.040000-5 2.074816+7 5.150000-5 1.939250+7 5.188000-5 1.893057+7 5.300000-5 1.761232+7 5.308844-5 1.750901+7 5.450000-5 1.592180+7 5.509000-5 1.527107+7 5.509000-5 1.817090+7 5.560000-5 1.759728+7 5.623413-5 1.689848+7 5.690000-5 1.614574+7 5.760000-5 1.538827+7 5.800000-5 1.497037+7 5.850000-5 1.444355+7 5.956621-5 1.338283+7 5.968000-5 1.327114+7 5.968000-5 1.457933+7 6.000000-5 1.426749+7 6.015000-5 1.412304+7 6.070000-5 1.360173+7 6.095369-5 1.336608+7 6.150000-5 1.285975+7 6.165950-5 1.271473+7 6.237348-5 1.208601+7 6.330000-5 1.129543+7 6.400000-5 1.073610+7 6.456542-5 1.029454+7 6.580000-5 9.395875+6 6.643000-5 8.960377+6 6.760830-5 8.206080+6 6.850000-5 7.669293+6 6.950000-5 7.114957+6 7.150000-5 6.114193+6 7.161434-5 6.060549+6 7.350000-5 5.250504+6 7.500000-5 4.683945+6 7.585776-5 4.387461+6 7.673615-5 4.106736+6 7.852356-5 3.587684+6 8.035261-5 3.128756+6 8.150000-5 2.871237+6 8.230000-5 2.708341+6 8.413951-5 2.367679+6 8.450000-5 2.307069+6 8.511380-5 2.207348+6 8.650000-5 2.002326+6 8.912509-5 1.673644+6 9.101000-5 1.480334+6 9.101000-5 1.608494+6 9.150000-5 1.565601+6 9.225714-5 1.503950+6 9.250000-5 1.485129+6 9.400000-5 1.376534+6 9.500000-5 1.312268+6 9.550000-5 1.282445+6 9.580000-5 1.264993+6 9.660509-5 1.220883+6 9.700000-5 1.200711+6 9.720000-5 1.190629+6 9.800000-5 1.152240+6 9.900000-5 1.108803+6 9.950000-5 1.088759+6 1.000000-4 1.069873+6 1.005000-4 1.051874+6 1.010000-4 1.034764+6 1.011579-4 1.029629+6 1.020000-4 1.002760+6 1.023293-4 9.931559+5 1.030000-4 9.747796+5 1.035142-4 9.614389+5 1.047129-4 9.330863+5 1.050000-4 9.269914+5 1.059254-4 9.086829+5 1.060000-4 9.073414+5 1.070000-4 8.900262+5 1.071519-4 8.875794+5 1.080000-4 8.746751+5 1.083927-4 8.691272+5 1.090000-4 8.614816+5 1.095000-4 8.557105+5 1.100000-4 8.502761+5 1.105000-4 8.452559+5 1.110000-4 8.405332+5 1.115000-4 8.362199+5 1.120000-4 8.321690+5 1.122018-4 8.307429+5 1.124000-4 8.294192+5 1.131000-4 8.250796+5 1.135011-4 8.228473+5 1.143000-4 8.188301+5 1.148154-4 8.165740+5 1.150000-4 8.158586+5 1.155000-4 8.140839+5 1.161449-4 8.121915+5 1.161500-4 8.121793+5 1.170000-4 8.105191+5 1.175000-4 8.097155+5 1.180000-4 8.091247+5 1.185000-4 8.086909+5 1.190000-4 8.085236+5 1.205000-4 8.086642+5 1.216186-4 8.100989+5 1.220000-4 8.106998+5 1.230269-4 8.129963+5 1.240000-4 8.151041+5 1.244515-4 8.162317+5 1.250000-4 8.177435+5 1.260000-4 8.208395+5 1.270000-4 8.243817+5 1.288250-4 8.314932+5 1.303167-4 8.378973+5 1.333521-4 8.513287+5 1.348963-4 8.591839+5 1.364583-4 8.669705+5 1.380384-4 8.748880+5 1.396368-4 8.833669+5 1.400000-4 8.852006+5 1.412538-4 8.914747+5 1.440000-4 9.051604+5 1.450000-4 9.099304+5 1.480000-4 9.245165+5 1.496236-4 9.320951+5 1.513561-4 9.399125+5 1.520000-4 9.427886+5 1.540000-4 9.511148+5 1.566751-4 9.620828+5 1.584893-4 9.689556+5 1.611900-4 9.786750+5 1.621810-4 9.819315+5 1.635000-4 9.861648+5 1.659587-4 9.934984+5 1.678804-4 9.986900+5 1.690000-4 1.001758+6 1.705000-4 1.005546+6 1.720000-4 1.008846+6 1.737801-4 1.012596+6 1.740000-4 1.013040+6 1.760000-4 1.016632+6 1.800000-4 1.022491+6 1.820000-4 1.024986+6 1.850000-4 1.027833+6 1.862087-4 1.028880+6 1.883649-4 1.030321+6 1.927525-4 1.031387+6 1.930000-4 1.031441+6 1.950000-4 1.031472+6 1.980000-4 1.030717+6 2.000000-4 1.030078+6 2.020000-4 1.029064+6 2.041738-4 1.027484+6 2.089296-4 1.023620+6 2.120000-4 1.019791+6 2.162719-4 1.014332+6 2.180000-4 1.011814+6 2.213095-4 1.006493+6 2.264644-4 9.979587+5 2.290868-4 9.930493+5 2.371374-4 9.769437+5 2.398833-4 9.711506+5 2.400000-4 9.708916+5 2.454709-4 9.585460+5 2.483133-4 9.522107+5 2.511886-4 9.454537+5 2.600160-4 9.243207+5 2.630268-4 9.167570+5 2.660725-4 9.089785+5 2.722701-4 8.934479+5 2.754229-4 8.853350+5 2.818383-4 8.687527+5 2.851018-4 8.605051+5 2.884032-4 8.521475+5 2.900000-4 8.479537+5 2.917427-4 8.433823+5 3.054921-4 8.079975+5 3.100000-4 7.962378+5 3.126079-4 7.894649+5 3.235937-4 7.617009+5 3.350000-4 7.331094+5 3.388442-4 7.237781+5 3.425100-4 7.150134+5 3.425100-4 7.934778+5 3.427678-4 7.933503+5 3.468000-4 7.912356+5 3.482400-4 7.912333+5 3.482400-4 8.474645+5 3.483000-4 8.475326+5 3.495000-4 8.495583+5 3.505000-4 8.519358+5 3.515000-4 8.551027+5 3.525000-4 8.592275+5 3.534000-4 8.641488+5 3.540000-4 8.680486+5 3.541000-4 8.687482+5 3.549000-4 8.751285+5 3.552000-4 8.778541+5 3.556000-4 8.817521+5 3.563000-4 8.894906+5 3.565000-4 8.918773+5 3.573000-4 9.026934+5 3.575000-4 9.056068+5 3.580000-4 9.136773+5 3.585000-4 9.223792+5 3.590000-4 9.320456+5 3.595000-4 9.424818+5 3.598000-4 9.493365+5 3.608000-4 9.744144+5 3.616000-4 9.979581+5 3.623000-4 1.020725+6 3.624000-4 1.024221+6 3.630781-4 1.049406+6 3.632000-4 1.054122+6 3.639000-4 1.082890+6 3.650000-4 1.133703+6 3.661000-4 1.192129+6 3.672823-4 1.264502+6 3.673000-4 1.265633+6 3.685000-4 1.348709+6 3.690000-4 1.385634+6 3.700000-4 1.466220+6 3.710000-4 1.552949+6 3.720000-4 1.646158+6 3.730000-4 1.745672+6 3.740000-4 1.850191+6 3.745000-4 1.904015+6 3.750000-4 1.959501+6 3.758374-4 2.053935+6 3.760000-4 2.073060+6 3.770000-4 2.189293+6 3.780000-4 2.307562+6 3.790000-4 2.426875+6 3.801894-4 2.568847+6 3.815000-4 2.723614+6 3.828000-4 2.873639+6 3.839000-4 2.995504+6 3.843000-4 3.039885+6 3.845918-4 3.070696+6 3.850000-4 3.114456+6 3.855000-4 3.167175+6 3.860000-4 3.217668+6 3.870000-4 3.317937+6 3.885000-4 3.457802+6 3.900000-4 3.586825+6 3.915000-4 3.703704+6 3.920000-4 3.741270+6 3.930000-4 3.810842+6 3.942000-4 3.890976+6 3.945000-4 3.909629+6 3.960000-4 3.998316+6 3.981072-4 4.106486+6 3.985000-4 4.125358+6 4.000000-4 4.189827+6 4.015000-4 4.249671+6 4.023000-4 4.277582+6 4.027170-4 4.290660+6 4.050000-4 4.362996+6 4.080000-4 4.435060+6 4.115000-4 4.493639+6 4.120975-4 4.501890+6 4.150000-4 4.529815+6 4.165000-4 4.540301+6 4.190000-4 4.548382+6 4.216965-4 4.549834+6 4.240000-4 4.543229+6 4.280000-4 4.523221+6 4.335000-4 4.472077+6 4.350000-4 4.456109+6 4.365158-4 4.437040+6 4.390000-4 4.406061+6 4.415704-4 4.371525+6 4.466836-4 4.303852+6 4.470000-4 4.299444+6 4.731513-4 3.939281+6 4.850000-4 3.791662+6 4.897788-4 3.734612+6 4.954502-4 3.668643+6 5.011872-4 3.602618+6 5.069907-4 3.534734+6 5.188000-4 3.402350+6 5.230000-4 3.355555+6 5.268000-4 3.312052+6 5.268000-4 3.594265+6 5.274000-4 3.598241+6 5.280000-4 3.600461+6 5.287000-4 3.601023+6 5.295000-4 3.599848+6 5.304000-4 3.596825+6 5.308844-4 3.594496+6 5.315000-4 3.591586+6 5.330000-4 3.582639+6 5.350000-4 3.568862+6 5.370318-4 3.553475+6 5.378000-4 3.547740+6 5.410000-4 3.522195+6 5.432503-4 3.503364+6 5.450000-4 3.488424+6 5.495409-4 3.447888+6 5.500000-4 3.443584+6 5.541400-4 3.403890+6 5.552500-4 3.392788+6 5.552500-4 3.503151+6 5.559043-4 3.501631+6 5.563000-4 3.500366+6 5.568000-4 3.498356+6 5.575000-4 3.494941+6 5.585000-4 3.489115+6 5.597000-4 3.481260+6 5.600000-4 3.479089+6 5.613000-4 3.469103+6 5.628000-4 3.457035+6 5.650000-4 3.438791+6 5.663600-4 3.427184+6 5.680000-4 3.412716+6 5.710000-4 3.385826+6 5.730000-4 3.367667+6 5.755000-4 3.344794+6 5.800000-4 3.303216+6 5.821032-4 3.283598+6 5.850000-4 3.256537+6 5.888437-4 3.220381+6 5.900000-4 3.209622+6 5.956621-4 3.156785+6 6.000000-4 3.116507+6 6.050000-4 3.070045+6 6.237348-4 2.904489+6 6.309573-4 2.843416+6 6.382635-4 2.783686+6 6.456542-4 2.723581+6 6.549400-4 2.650801+6 6.549400-4 2.759729+6 6.606934-4 2.715502+6 6.700000-4 2.645050+6 6.760830-4 2.600547+6 6.850000-4 2.535906+6 7.000000-4 2.431818+6 7.080000-4 2.378296+6 7.161434-4 2.325479+6 7.300000-4 2.239645+6 7.328245-4 2.222477+6 7.500000-4 2.122399+6 7.585776-4 2.074755+6 7.673615-4 2.027058+6 7.730000-4 1.997293+6 7.800000-4 1.961134+6 7.943282-4 1.889666+6 8.035261-4 1.845113+6 8.128305-4 1.801672+6 8.413951-4 1.675891+6 8.511380-4 1.635773+6 8.709636-4 1.557363+6 8.810489-4 1.519546+6 9.015711-4 1.446160+6 9.200000-4 1.384638+6 9.225714-4 1.376303+6 9.332543-4 1.342437+6 9.440609-4 1.309103+6 9.549926-4 1.276603+6 9.660509-4 1.244940+6 9.700000-4 1.233875+6 9.850000-4 1.192839+6 1.011579-3 1.124546+6 1.023293-3 1.096305+6 1.030000-3 1.080395+6 1.047129-3 1.041152+6 1.059254-3 1.014657+6 1.071519-3 9.886829+5 1.083927-3 9.633958+5 1.122018-3 8.912015+5 1.135011-3 8.681393+5 1.150000-3 8.425924+5 1.174898-3 8.024917+5 1.188502-3 7.816577+5 1.230269-3 7.220744+5 1.244515-3 7.032132+5 1.258925-3 6.848424+5 1.270000-3 6.711906+5 1.288250-3 6.493548+5 1.303167-3 6.321569+5 1.330000-3 6.026899+5 1.396368-3 5.377929+5 1.400000-3 5.345397+5 1.428894-3 5.094834+5 1.445440-3 4.958280+5 1.462177-3 4.825550+5 1.479108-3 4.695518+5 1.548817-3 4.210283+5 1.570000-3 4.077395+5 1.580000-3 4.015848+5 1.584893-3 3.986208+5 1.610000-3 3.839046+5 1.621810-3 3.772313+5 1.640590-3 3.669118+5 1.650000-3 3.618946+5 1.717908-3 3.284543+5 1.737801-3 3.195120+5 1.757924-3 3.107147+5 1.778279-3 3.021443+5 1.819701-3 2.857272+5 1.840772-3 2.778401+5 1.905461-3 2.555212+5 1.927525-3 2.485039+5 1.949845-3 2.416196+5 1.950000-3 2.415728+5 1.972423-3 2.348881+5 2.000000-3 2.270002+5 2.018366-3 2.219549+5 2.065380-3 2.097139+5 2.113489-3 1.981782+5 2.137962-3 1.926608+5 2.150000-3 1.900282+5 2.162719-3 1.872834+5 2.187762-3 1.820258+5 2.238721-3 1.719201+5 2.264644-3 1.670810+5 2.317395-3 1.577832+5 2.344229-3 1.533383+5 2.371374-3 1.490232+5 2.398833-3 1.448332+5 2.426610-3 1.407353+5 2.540973-3 1.253899+5 2.570396-3 1.218208+5 2.600160-3 1.183503+5 2.630268-3 1.149804+5 2.691535-3 1.085378+5 2.754229-3 1.024042+5 2.818383-3 9.660607+4 2.851018-3 9.383634+4 2.884032-3 9.113876+4 2.917427-3 8.852103+4 3.000000-3 8.249448+4 3.019952-3 8.111748+4 3.126079-3 7.427406+4 3.162278-3 7.212103+4 3.170600-3 7.163853+4 3.170600-3 2.419615+5 3.198895-3 2.369167+5 3.235937-3 2.305357+5 3.273407-3 2.243243+5 3.275000-3 2.240655+5 3.290000-3 2.213757+5 3.320000-3 2.166394+5 3.332600-3 2.144641+5 3.332600-3 2.954091+5 3.349654-3 2.915012+5 3.388442-3 2.828633+5 3.450000-3 2.705466+5 3.470000-3 2.668170+5 3.480000-3 2.649097+5 3.507519-3 2.595110+5 3.548134-3 2.518142+5 3.550000-3 2.514683+5 3.580000-3 2.461519+5 3.580000-3 2.823799+5 3.589219-3 2.806494+5 3.605000-3 2.777205+5 3.630781-3 2.730303+5 3.672823-3 2.654970+5 3.700000-3 2.607861+5 3.715352-3 2.581296+5 3.758374-3 2.508841+5 3.770000-3 2.489334+5 3.845918-3 2.369085+5 3.900000-3 2.287487+5 3.920000-3 2.258310+5 4.027170-3 2.109033+5 4.073803-3 2.048426+5 4.120975-3 1.989609+5 4.216965-3 1.876216+5 4.265795-3 1.821935+5 4.315191-3 1.769208+5 4.365158-3 1.717834+5 4.415704-3 1.667623+5 4.570882-3 1.525772+5 4.623810-3 1.481283+5 4.650000-3 1.459946+5 4.677351-3 1.438071+5 4.731513-3 1.396096+5 4.800000-3 1.345394+5 4.841724-3 1.315753+5 5.011872-3 1.203940+5 5.069907-3 1.168837+5 5.128614-3 1.134578+5 5.188000-3 1.101350+5 5.248075-3 1.069113+5 5.308844-3 1.037732+5 5.370318-3 1.007308+5 5.432503-3 9.777818+4 5.500000-3 9.468174+4 5.688529-3 8.673234+4 5.754399-3 8.416375+4 5.800000-3 8.244819+4 5.821032-3 8.166731+4 5.888437-3 7.923336+4 5.956621-3 7.687348+4 6.025596-3 7.458411+4 6.237348-3 6.811367+4 6.309573-3 6.608089+4 6.382635-3 6.410979+4 6.456542-3 6.219845+4 6.531306-3 6.032143+4 6.683439-3 5.674021+4 6.839116-3 5.335353+4 6.918310-3 5.173541+4 7.000000-3 5.013737+4 7.161434-3 4.717494+4 7.244360-3 4.574781+4 7.328245-3 4.436487+4 7.500000-3 4.171101+4 7.585776-3 4.046002+4 7.762471-3 3.804323+4 7.800000-3 3.755603+4 7.852356-3 3.689036+4 8.035261-3 3.467170+4 8.128305-3 3.361038+4 8.222426-3 3.258226+4 8.317638-3 3.158551+4 8.609938-3 2.876899+4 8.709636-3 2.788846+4 8.810489-3 2.703061+4 8.912509-3 2.619983+4 9.225714-3 2.384951+4 9.332543-3 2.311513+4 9.440609-3 2.240403+4 9.549926-3 2.171545+4 9.660509-3 2.104803+4 9.772372-3 2.039691+4 1.000000-2 1.915578+4 1.011579-2 1.856454+4 1.023293-2 1.799136+4 1.059254-2 1.636626+4 1.083927-2 1.536322+4 1.109175-2 1.442323+4 1.135011-2 1.353727+4 1.150000-2 1.305755+4 1.174898-2 1.231088+4 1.202264-2 1.155660+4 1.216186-2 1.119742+4 1.244515-2 1.050894+4 1.258925-2 1.017894+4 1.273503-2 9.859508+3 1.303167-2 9.249090+3 1.333521-2 8.676313+3 1.350000-2 8.385781+3 1.380384-2 7.884206+3 1.428894-2 7.166112+3 1.445440-2 6.940836+3 1.462177-2 6.722821+3 1.479108-2 6.510252+3 1.500000-2 6.259928+3 1.513561-2 6.104366+3 1.566751-2 5.542760+3 1.584893-2 5.367462+3 1.640590-2 4.874952+3 1.650000-2 4.797991+3 1.659587-2 4.720986+3 1.698244-2 4.427223+3 1.717908-2 4.286185+3 1.737801-2 4.149741+3 1.757924-2 4.017626+3 1.798871-2 3.765922+3 1.840772-2 3.530263+3 1.905461-2 3.204730+3 1.927525-2 3.102788+3 2.000000-2 2.795893+3 2.018366-2 2.724589+3 2.041738-2 2.637420+3 2.089296-2 2.471365+3 2.162719-2 2.242037+3 2.187762-2 2.170528+3 2.213095-2 2.101348+3 2.238721-2 2.033923+3 2.264644-2 1.968478+3 2.317395-2 1.843975+3 2.344229-2 1.784738+3 2.398833-2 1.672037+3 2.400000-2 1.669734+3 2.432100-2 1.607923+3 2.432100-2 1.028271+4 2.447000-2 1.017976+4 2.449000-2 1.015945+4 2.500000-2 9.660342+3 2.540973-2 9.235112+3 2.570396-2 8.971819+3 2.625000-2 8.509809+3 2.630268-2 8.464390+3 2.660725-2 8.208113+3 2.691535-2 7.959631+3 2.754229-2 7.485061+3 2.786121-2 7.258546+3 2.818383-2 7.043701+3 2.884032-2 6.632906+3 2.951209-2 6.246070+3 2.985383-2 6.061237+3 3.000000-2 5.984495+3 3.054921-2 5.707530+3 3.090295-2 5.538485+3 3.162278-2 5.208120+3 3.273407-2 4.749062+3 3.311311-2 4.605257+3 3.400000-2 4.291368+3 3.427678-2 4.198419+3 3.507519-2 3.945305+3 3.548134-2 3.824378+3 3.758374-2 3.273278+3 3.801894-2 3.171673+3 3.845918-2 3.073232+3 3.890451-2 2.977858+3 3.935501-2 2.885399+3 4.073803-2 2.624952+3 4.120975-2 2.543389+3 4.168694-2 2.464365+3 4.265795-2 2.313625+3 4.315191-2 2.241758+3 4.365158-2 2.172131+3 4.415704-2 2.104674+3 4.518559-2 1.975975+3 4.623810-2 1.855164+3 4.677351-2 1.796515+3 4.786301-2 1.684707+3 4.800000-2 1.671325+3 4.954502-2 1.529773+3 5.128614-2 1.389103+3 5.495409-2 1.145456+3 5.559043-2 1.109226+3 5.688529-2 1.040173+3 5.800000-2 9.852668+2 5.888437-2 9.438511+2 6.095369-2 8.557315+2 6.165950-2 8.282297+2 6.456542-2 7.267825+2 6.606934-2 6.808274+2 6.760830-2 6.377745+2 6.839116-2 6.172821+2 7.079458-2 5.596147+2 7.244360-2 5.241988+2 7.328245-2 5.071443+2 7.498942-2 4.746842+2 8.000000-2 3.942108+2 8.222426-2 3.643534+2 8.709636-2 3.087888+2 9.015711-2 2.796094+2 9.225714-2 2.615485+2 9.885531-2 2.140766+2 1.011580-1 2.002506+2 1.059254-1 1.752007+2 1.083927-1 1.638775+2 1.096478-1 1.584937+2 1.109175-1 1.532872+2 1.122019-1 1.482520+2 1.161449-1 1.341185+2 1.188502-1 1.254548+2 1.230269-1 1.134543+2 1.244515-1 1.097151+2 1.258925-1 1.060996+2 1.273503-1 1.026031+2 1.288250-1 9.922154+1 1.303167-1 9.595168+1 1.318257-1 9.278963+1 1.364583-1 8.391174+1 1.428894-1 7.338352+1 1.445440-1 7.096522+1 1.479108-1 6.636538+1 1.531088-1 6.001886+1 1.548817-1 5.804137+1 1.603245-1 5.249172+1 1.659587-1 4.747296+1 1.678804-1 4.590931+1 1.698244-1 4.439715+1 1.737801-1 4.152116+1 1.778279-1 3.883161+1 1.819701-1 3.631635+1 1.862087-1 3.396423+1 1.883649-1 3.284595+1 1.905461-1 3.176450+1 1.949845-1 2.970733+1 1.972423-1 2.873837+1 2.041738-1 2.601755+1 2.065380-1 2.516932+1 2.089296-1 2.434877+1 2.113489-1 2.355498+1 2.137962-1 2.278786+1 2.162719-1 2.204573+1 2.213095-1 2.063325+1 2.238721-1 1.996135+1 2.264644-1 1.931151+1 2.290868-1 1.868282+1 2.317395-1 1.807464+1 2.371374-1 1.691706+1 2.398833-1 1.636640+1 2.400000-1 1.634354+1 2.426610-1 1.584026+1 2.454709-1 1.533131+1 2.483133-1 1.483874+1 2.528300-1 1.409910+1 2.540973-1 1.390059+1 2.570396-1 1.345407+1 2.660725-1 1.219893+1 2.691535-1 1.180764+1 2.722701-1 1.142893+1 2.754229-1 1.106237+1 2.786121-1 1.070759+1 2.818383-1 1.036419+1 2.917427-1 9.412794+0 2.951209-1 9.115526+0 2.985383-1 8.827642+0 3.000000-1 8.708324+0 3.054921-1 8.279112+0 3.126079-1 7.764692+0 3.235937-1 7.053612+0 3.273407-1 6.835043+0 3.311311-1 6.623276+0 3.349654-1 6.418078+0 3.388442-1 6.219234+0 3.427678-1 6.026559+0 3.467369-1 5.839856+0 3.507519-1 5.659033+0 3.589219-1 5.314015+0 3.630781-1 5.149773+0 3.672823-1 4.990613+0 3.715352-1 4.839162+0 3.758374-1 4.692316+0 3.801894-1 4.549929+0 3.845918-1 4.411888+0 3.890451-1 4.278041+0 3.935501-1 4.148252+0 4.027170-1 3.900461+0 4.073803-1 3.782176+0 4.120975-1 3.667728+0 4.168694-1 3.558944+0 4.216965-1 3.453408+0 4.265795-1 3.351010+0 4.365158-1 3.155238+0 4.415705-1 3.061683+0 4.518559-1 2.882894+0 4.570882-1 2.797466+0 4.623810-1 2.714763+0 4.731513-1 2.559988+0 4.841724-1 2.414054+0 4.954502-1 2.276447+0 5.011872-1 2.210655+0 5.069907-1 2.146774+0 5.128614-1 2.084739+0 5.248075-1 1.968976+0 5.308844-1 1.913535+0 5.370318-1 1.859657+0 5.432503-1 1.807296+0 5.495409-1 1.756420+0 5.559043-1 1.706999+0 5.688529-1 1.612304+0 5.821032-1 1.525263+0 5.888437-1 1.483528+0 5.956621-1 1.442935+0 6.025596-1 1.403462+0 6.095369-1 1.365069+0 6.165950-1 1.327744+0 6.237348-1 1.291446+0 6.309573-1 1.256140+0 6.382635-1 1.222768+0 6.456542-1 1.190286+0 6.531306-1 1.158669+0 6.606935-1 1.127898+0 6.760830-1 1.068788+0 6.839117-1 1.040424+0 6.918310-1 1.013571+0 6.998420-1 9.874105-1 7.079458-1 9.619992-1 7.161434-1 9.372428-1 7.244360-1 9.131310-1 7.328245-1 8.896399-1 7.413102-1 8.667531-1 7.498942-1 8.444586-1 7.585776-1 8.227495-1 7.673615-1 8.021729-1 7.762471-1 7.821118-1 7.852356-1 7.626066-1 7.943282-1 7.435905-1 8.035261-1 7.250503-1 8.222427-1 6.893452-1 8.413951-1 6.553991-1 8.511380-1 6.394704-1 8.609938-1 6.239811-1 8.709636-1 6.088707-1 8.912509-1 5.797433-1 9.015711-1 5.657064-1 9.120108-1 5.520095-1 9.225714-1 5.386476-1 9.332543-1 5.256210-1 9.440609-1 5.129530-1 9.549926-1 5.010194-1 9.660509-1 4.893651-1 9.772372-1 4.779846-1 9.885531-1 4.668693-1 1.000000+0 4.560162-1 1.011579+0 4.454159-1 1.023293+0 4.350662-1 1.035142+0 4.252081-1 1.059254+0 4.061566-1 1.071519+0 3.969547-1 1.083927+0 3.879612-1 1.096478+0 3.791739-1 1.109175+0 3.705852-1 1.135011+0 3.539910-1 1.148154+0 3.459749-1 1.161449+0 3.381456-1 1.174898+0 3.308248-1 1.188600+0 3.236141-1 1.202264+0 3.166621-1 1.216186+0 3.098107-1 1.250000+0 2.940829-1 1.273503+0 2.838624-1 1.288250+0 2.777241-1 1.303167+0 2.718791-1 1.318257+0 2.661579-1 1.348963+0 2.550744-1 1.364583+0 2.497069-1 1.396368+0 2.393098-1 1.412538+0 2.342744-1 1.428894+0 2.293455-1 1.462177+0 2.198032-1 1.513561+0 2.066785-1 1.531087+0 2.024801-1 1.566751+0 1.943383-1 1.621810+0 1.827423-1 1.640590+0 1.791531-1 1.659587+0 1.756347-1 1.698244+0 1.688048-1 1.717908+0 1.654903-1 1.757924+0 1.590566-1 1.819701+0 1.498777-1 1.840772+0 1.470327-1 1.862087+0 1.442419-1 1.883649+0 1.415041-1 1.927525+0 1.361845-1 1.949845+0 1.336002-1 1.972423+0 1.310656-1 1.995262+0 1.285792-1 2.018366+0 1.261414-1 2.065380+0 1.214035-1 2.089296+0 1.191820-1 2.113489+0 1.170014-1 2.162719+0 1.127599-1 2.187762+0 1.106972-1 2.213095+0 1.086728-1 2.238721+0 1.066854-1 2.264644+0 1.047356-1 2.317395+0 1.009422-1 2.344229+0 9.915554-2 2.371374+0 9.740665-2 2.398833+0 9.568871-2 2.454709+0 9.234386-2 2.483133+0 9.071556-2 2.511886+0 8.911643-2 2.540973+0 8.754543-2 2.570396+0 8.600314-2 2.630268+0 8.299961-2 2.660725+0 8.158338-2 2.691535+0 8.019594-2 2.722701+0 7.883219-2 2.786121+0 7.617436-2 2.818383+0 7.487924-2 2.884032+0 7.235535-2 2.917427+0 7.112551-2 2.951209+0 6.991729-2 3.019952+0 6.756206-2 3.054921+0 6.644738-2 3.126079+0 6.427964-2 3.162278+0 6.322245-2 3.235937+0 6.116040-2 3.273407+0 6.015475-2 3.349654+0 5.819330-2 3.388442+0 5.723667-2 3.427678+0 5.629635-2 3.507519+0 5.446179-2 3.548134+0 5.359398-2 3.630781+0 5.190521-2 3.672823+0 5.108093-2 3.758374+0 4.947174-2 3.801894+0 4.868625-2 3.890451+0 4.715292-2 3.935501+0 4.640444-2 4.000000+0 4.536839-2 4.073803+0 4.423081-2 4.168694+0 4.287821-2 4.265795+0 4.157112-2 4.315191+0 4.093260-2 4.415704+0 3.968511-2 4.466836+0 3.907569-2 4.570882+0 3.788510-2 4.623810+0 3.730348-2 4.677351+0 3.673112-2 4.786301+0 3.561259-2 4.897788+0 3.455885-2 5.011872+0 3.353937-2 5.128614+0 3.254999-2 5.248075+0 3.158998-2 5.308844+0 3.112066-2 5.432503+0 3.020305-2 5.495409+0 2.975444-2 5.559043+0 2.931274-2 5.688529+0 2.844892-2 5.821032+0 2.763371-2 6.000000+0 2.660012-2 6.165950+0 2.570207-2 6.309573+0 2.496791-2 6.382635+0 2.460873-2 6.531306+0 2.390597-2 6.606934+0 2.356216-2 6.683439+0 2.322349-2 6.839116+0 2.256067-2 7.000000+0 2.192976-2 7.161434+0 2.133013-2 7.328245+0 2.074123-2 7.498942+0 2.016867-2 7.585776+0 1.988835-2 7.852356+0 1.907072-2 8.035261+0 1.854439-2 8.128305+0 1.828681-2 8.222427+0 1.803281-2 8.609938+0 1.705159-2 8.912509+0 1.636866-2 9.120108+0 1.592995-2 9.225714+0 1.571503-2 9.332543+0 1.550304-2 9.440609+0 1.529392-2 9.549926+0 1.508767-2 9.772372+0 1.468348-2 9.885531+0 1.448556-2 1.000000+1 1.429031-2 1.059254+1 1.335283-2 1.109175+1 1.266409-2 1.148154+1 1.217222-2 1.174898+1 1.185497-2 1.188502+1 1.169950-2 1.202264+1 1.154606-2 1.216186+1 1.139467-2 1.230269+1 1.124533-2 1.273503+1 1.080897-2 1.396368+1 9.743595-3 1.531087+1 8.785242-3 1.548817+1 8.672270-3 1.566751+1 8.560762-3 1.584893+1 8.450700-3 1.600000+1 8.361073-3 1.603245+1 8.342059-3 1.621810+1 8.234873-3 1.840772+1 7.164706-3 2.018366+1 6.476363-3 2.041738+1 6.395106-3 2.065380+1 6.314871-3 2.089296+1 6.235653-3 2.113489+1 6.157429-3 2.137962+1 6.080229-3 2.540973+1 5.050161-3 2.818383+1 4.518903-3 2.851018+1 4.463438-3 2.884032+1 4.408653-3 2.917427+1 4.354549-3 2.951209+1 4.301109-3 2.985383+1 4.248349-3 3.672823+1 3.415282-3 4.168694+1 2.989468-3 4.216965+1 2.953497-3 4.265795+1 2.917958-3 4.315191+1 2.882850-3 4.365158+1 2.848166-3 4.415704+1 2.813898-3 4.466836+1 2.780057-3 4.518559+1 2.747131-3 5.623413+1 2.190616-3 6.456542+1 1.899175-3 6.606934+1 1.854519-3 6.683439+1 1.832587-3 6.839116+1 1.789501-3 6.918310+1 1.768340-3 6.998420+1 1.747428-3 7.079458+1 1.726770-3 7.161434+1 1.706356-3 7.244360+1 1.686401-3 1.059254+2 1.143859-3 1.161449+2 1.041241-3 1.174898+2 1.029079-3 1.188502+2 1.017059-3 1.202264+2 1.005180-3 1.216186+2 9.934397-4 1.230269+2 9.818368-4 1.244515+2 9.703720-4 2.113489+2 5.679796-4 2.317395+2 5.174905-4 2.344229+2 5.115036-4 2.371374+2 5.055858-4 2.398833+2 4.997368-4 2.426610+2 4.939554-4 2.454709+2 4.882410-4 2.483133+2 4.825936-4 4.216965+2 2.834795-4 4.623810+2 2.584370-4 4.677351+2 2.554664-4 4.731513+2 2.525299-4 4.786301+2 2.496273-4 9.660509+2 1.233183-4 9.772372+2 1.219009-4 9.885531+2 1.204999-4 3.349654+3 3.553295-5 3.672823+3 3.240491-5 3.715352+3 3.203379-5 3.758374+3 3.166692-5 3.801894+3 3.130425-5 3.054921+4 3.891810-6 3.090295+4 3.847239-6 3.126079+4 3.803179-6 1.000000+5 1.188966-6 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.670000-6 7.670000-6 8.140000-6 7.670000-6 8.140000-6 7.845030-6 5.509000-5 7.865647-6 5.509000-5 9.106648-6 5.760000-5 9.189593-6 5.968000-5 9.227615-6 5.968000-5 9.823989-6 6.330000-5 9.969351-6 6.950000-5 1.019373-5 7.500000-5 1.046233-5 7.852356-5 1.068236-5 8.230000-5 1.096892-5 8.650000-5 1.134887-5 9.101000-5 1.182398-5 9.101000-5 1.273891-5 9.720000-5 1.389068-5 1.005000-4 1.443285-5 1.035142-4 1.484335-5 1.060000-4 1.510386-5 1.090000-4 1.532091-5 1.124000-4 1.544483-5 1.161500-4 1.545286-5 1.205000-4 1.534230-5 1.270000-4 1.503903-5 1.412538-4 1.426856-5 1.496236-4 1.388195-5 1.584893-4 1.354786-5 1.705000-4 1.320243-5 1.820000-4 1.295900-5 1.980000-4 1.271984-5 2.180000-4 1.251935-5 2.454709-4 1.235866-5 2.754229-4 1.226996-5 3.235937-4 1.224258-5 3.425100-4 1.225544-5 3.425100-4 1.334246-5 3.482400-4 1.351521-5 3.482400-4 1.417335-5 3.515000-4 1.435823-5 3.541000-4 1.457800-5 3.565000-4 1.487414-5 3.585000-4 1.520819-5 3.608000-4 1.569963-5 3.632000-4 1.633081-5 3.661000-4 1.720133-5 3.700000-4 1.841030-5 3.730000-4 1.923760-5 3.760000-4 1.991711-5 3.790000-4 2.044329-5 3.828000-4 2.092321-5 3.870000-4 2.127656-5 3.920000-4 2.154209-5 4.000000-4 2.177925-5 4.120975-4 2.194746-5 4.350000-4 2.204325-5 5.268000-4 2.206772-5 5.268000-4 2.338817-5 5.295000-4 2.355381-5 5.378000-4 2.375833-5 5.552500-4 2.397723-5 5.552500-4 2.446941-5 5.613000-4 2.463300-5 5.821032-4 2.484905-5 6.549400-4 2.518454-5 6.549400-4 2.624371-5 8.128305-4 2.718158-5 1.011579-3 2.817957-5 1.258925-3 2.922631-5 1.584893-3 3.035431-5 1.972423-3 3.144256-5 2.426610-3 3.247542-5 3.019952-3 3.355537-5 3.170600-3 3.378456-5 3.170600-3 4.825759-5 3.332600-3 4.836914-5 3.332600-3 5.070641-5 3.580000-3 5.078939-5 3.580000-3 5.375399-5 4.800000-3 5.479723-5 6.683439-3 5.601077-5 9.660509-3 5.745736-5 1.380384-2 5.890235-5 1.927525-2 6.026869-5 2.432100-2 6.118696-5 2.432100-2 6.287341-5 4.954502-2 6.325276-5 1.364583-1 6.354242-5 7.079458-1 6.370141-5 1.000000+5 6.371157-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.670000-6 0.0 5.509000-5 0.0 5.509000-5 3.56149-11 5.560000-5 3.62953-11 5.623413-5 3.69350-11 5.690000-5 3.75143-11 5.760000-5 3.79810-11 5.850000-5 3.84979-11 5.968000-5 3.90612-11 5.968000-5 6.34889-11 6.015000-5 6.43971-11 6.165950-5 6.66840-11 6.456542-5 7.02168-11 6.580000-5 7.15808-11 6.760830-5 7.37719-11 6.950000-5 7.62559-11 7.161434-5 7.93796-11 7.350000-5 8.23973-11 7.500000-5 8.50476-11 7.673615-5 8.84270-11 7.852356-5 9.21820-11 8.035261-5 9.64540-11 8.230000-5 1.01406-10 8.450000-5 1.07528-10 8.650000-5 1.13555-10 8.912509-5 1.22064-10 9.101000-5 1.28621-10 9.101000-5 1.40879-10 9.580000-5 1.61439-10 9.800000-5 1.70136-10 1.005000-4 1.78957-10 1.023293-4 1.84476-10 1.035142-4 1.87608-10 1.050000-4 1.90884-10 1.071519-4 1.94611-10 1.095000-4 1.97122-10 1.115000-4 1.98110-10 1.135011-4 1.98174-10 1.161500-4 1.97006-10 1.190000-4 1.94554-10 1.230269-4 1.89632-10 1.380384-4 1.67542-10 1.450000-4 1.58436-10 1.513561-4 1.51446-10 1.566751-4 1.46349-10 1.635000-4 1.40902-10 1.705000-4 1.36256-10 1.760000-4 1.33200-10 1.820000-4 1.30361-10 1.883649-4 1.27838-10 1.980000-4 1.24750-10 2.089296-4 1.21998-10 2.180000-4 1.20268-10 2.290868-4 1.18640-10 2.400000-4 1.17407-10 2.511886-4 1.16477-10 2.722701-4 1.15411-10 2.917427-4 1.15133-10 3.126079-4 1.15357-10 3.235937-4 1.15490-10 3.425100-4 1.16095-10 3.425100-4 1.24062-10 3.482400-4 1.25492-10 3.482400-4 6.367550-9 3.515000-4 6.710348-9 3.525000-4 6.804792-9 3.541000-4 6.985295-9 3.552000-4 7.128225-9 3.565000-4 7.339383-9 3.575000-4 7.531678-9 3.580000-4 7.637909-9 3.590000-4 7.886318-9 3.598000-4 8.114830-9 3.608000-4 8.442815-9 3.616000-4 8.736747-9 3.624000-4 9.066034-9 3.632000-4 9.425496-9 3.639000-4 9.768927-9 3.650000-4 1.036131-8 3.661000-4 1.101256-8 3.673000-4 1.178048-8 3.690000-4 1.297920-8 3.710000-4 1.449606-8 3.720000-4 1.529358-8 3.780000-4 2.029469-8 3.801894-4 2.203688-8 3.815000-4 2.302210-8 3.839000-4 2.469002-8 3.860000-4 2.596606-8 3.885000-4 2.725546-8 3.900000-4 2.792396-8 3.915000-4 2.852581-8 3.930000-4 2.905151-8 3.960000-4 2.990269-8 3.985000-4 3.046728-8 4.000000-4 3.078391-8 4.027170-4 3.122474-8 4.080000-4 3.188862-8 4.150000-4 3.250911-8 4.190000-4 3.276773-8 4.240000-4 3.301194-8 4.350000-4 3.330517-8 4.415704-4 3.341145-8 5.268000-4 3.357108-8 5.268000-4 4.019159-8 5.280000-4 4.064485-8 5.304000-4 4.120039-8 5.350000-4 4.180270-8 5.432503-4 4.250709-8 5.552500-4 4.317259-8 5.552500-4 4.759818-8 5.575000-4 4.826095-8 5.613000-4 4.891013-8 5.680000-4 4.963006-8 5.800000-4 5.047786-8 5.956621-4 5.112371-8 6.549400-4 5.280390-8 6.549400-4 5.798031-8 7.673615-4 6.211518-8 9.225714-4 6.705740-8 1.030000-3 7.009047-8 1.188502-3 7.418262-8 1.330000-3 7.736922-8 1.479108-3 8.042001-8 1.650000-3 8.354360-8 1.927525-3 8.797506-8 2.238721-3 9.219749-8 2.600160-3 9.634673-8 3.019952-3 1.003860-7 3.170600-3 1.016215-7 3.170600-3 1.029722-4 3.332600-3 1.032576-4 3.332600-3 1.224335-4 3.580000-3 1.225185-4 3.580000-3 1.263714-4 4.365158-3 1.268564-4 7.161434-3 1.272673-4 2.432100-2 1.266798-4 2.432100-2 1.504483-2 2.540973-2 1.509054-2 3.400000-2 1.526212-2 4.954502-2 1.539753-2 8.000000-2 1.549614-2 1.603245-1 1.555757-2 1.202264+0 1.560465-2 1.000000+5 1.560468-2 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.670000-6 0.0 8.140000-6 4.700000-7 8.140000-6 2.949703-7 1.200000-5 4.153089-6 5.509000-5 4.722435-5 5.509000-5 4.598332-5 5.968000-5 5.045235-5 5.968000-5 4.985595-5 7.673615-5 6.616957-5 8.912509-5 7.750804-5 9.101000-5 7.918589-5 9.101000-5 7.827095-5 1.020000-4 8.735193-5 1.095000-4 9.415344-5 1.190000-4 1.036084-4 1.621810-4 1.487492-4 2.213095-4 2.088133-4 3.425100-4 3.302544-4 3.425100-4 3.291674-4 3.482400-4 3.347247-4 3.482400-4 3.340603-4 3.608000-4 3.450919-4 3.780000-4 3.576957-4 3.985000-4 3.767231-4 5.268000-4 5.046987-4 5.268000-4 5.033716-4 6.000000-4 5.750031-4 6.549400-4 6.297027-4 6.549400-4 6.286383-4 3.170600-3 3.136714-3 3.170600-3 3.019370-3 3.332600-3 3.180973-3 3.332600-3 3.159460-3 3.580000-3 3.406692-3 3.580000-3 3.399875-3 2.432100-2 2.413313-2 2.432100-2 9.213294-3 2.449000-2 9.361391-3 2.818383-2 1.296506-2 3.758374-2 2.221523-2 7.328245-2 5.773394-2 1.000000+5 9.999998+4 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.432100-2 8.674789+3 2.447000-2 8.599462+3 2.500000-2 8.173200+3 2.540973-2 7.814877+3 2.625000-2 7.215040+3 2.786121-2 6.166095+3 3.090295-2 4.725620+3 3.400000-2 3.673060+3 3.758374-2 2.809668+3 4.623810-2 1.600177+3 5.800000-2 8.532260+2 7.244360-2 4.552370+2 9.015711-2 2.433065+2 1.188502-1 1.093555+2 1.949845-1 2.593107+1 2.400000-1 1.426828+1 2.818383-1 9.050358+0 3.235937-1 6.160832+0 3.672823-1 4.359749+0 4.120975-1 3.204617+0 4.623810-1 2.372282+0 5.128614-1 1.822054+0 5.688529-1 1.409389+0 6.309573-1 1.098245+0 6.839117-1 9.097945-1 7.585776-1 7.197333-1 8.413951-1 5.735878-1 9.440609-1 4.489551-1 1.023293+0 3.808037-1 1.161449+0 2.959684-1 1.288250+0 2.430870-1 1.462177+0 1.923883-1 1.621810+0 1.599487-1 1.819701+0 1.311837-1 2.065380+0 1.062609-1 2.317395+0 8.834864-2 2.630268+0 7.264541-2 3.019952+0 5.913469-2 3.507519+0 4.766832-2 4.073803+0 3.871281-2 4.786301+0 3.116995-2 5.688529+0 2.490000-2 6.839116+0 1.974626-2 8.609938+0 1.492431-2 1.059254+1 1.168679-2 1.273503+1 9.460676-3 1.621810+1 7.207351-3 2.137962+1 5.321558-3 2.985383+1 3.718248-3 4.466836+1 2.433165-3 7.161434+1 1.493442-3 1.244515+2 8.493337-4 2.483133+2 4.224040-4 9.885531+2 1.054614-4 3.126079+4 3.328827-6 1.000000+5 1.040700-6 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.432100-2 6.318600-5 1.000000+5 6.318600-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.432100-2 1.781000-2 1.000000+5 1.781000-2 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.432100-2 6.447814-3 1.000000+5 9.999998+4 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.580000-3 3.622799+4 3.700000-3 3.461481+4 3.770000-3 3.351420+4 3.845918-3 3.258084+4 4.365158-3 2.648043+4 4.650000-3 2.368900+4 5.308844-3 1.865880+4 5.800000-3 1.594676+4 6.237348-3 1.390477+4 7.500000-3 9.747480+3 8.317638-3 7.919044+3 9.660509-3 5.829324+3 1.109175-2 4.349778+3 1.244515-2 3.391266+3 1.462177-2 2.370802+3 1.698244-2 1.685100+3 1.927525-2 1.254373+3 2.213095-2 9.032407+2 2.570396-2 6.281089+2 3.000000-2 4.282940+2 3.507519-2 2.885489+2 4.073803-2 1.963349+2 4.800000-2 1.278008+2 5.688529-2 8.131233+1 6.839116-2 4.939362+1 8.222426-2 2.977964+1 1.011580-1 1.672736+1 1.318257-1 7.933816+0 2.113489-1 2.083299+0 2.660725-1 1.093245+0 3.126079-1 7.008047-1 3.589219-1 4.820629-1 4.073803-1 3.445148-1 4.570882-1 2.556121-1 5.128614-1 1.910129-1 5.688529-1 1.479714-1 6.309573-1 1.154443-1 6.998420-1 9.071444-2 7.762471-1 7.181139-2 8.511380-1 5.870149-2 9.332543-1 4.831130-2 1.023293+0 4.005111-2 1.161449+0 3.114433-2 1.288250+0 2.557477-2 1.462177+0 2.023218-2 1.621810+0 1.681774-2 1.819701+0 1.379295-2 2.065380+0 1.117319-2 2.344229+0 9.123239-3 2.660725+0 7.506160-3 3.054921+0 6.113132-3 3.548134+0 4.930756-3 4.168694+0 3.944148-3 4.897788+0 3.178892-3 5.821032+0 2.541941-3 7.000000+0 2.017200-3 8.912509+0 1.505440-3 1.109175+1 1.164818-3 1.396368+1 8.959126-4 1.840772+1 6.587497-4 2.540973+1 4.643240-4 3.672823+1 3.140160-4 5.623413+1 2.014102-4 1.059254+2 1.051773-4 2.113489+2 5.224765-5 4.216965+2 2.606629-5 3.349654+3 3.268509-6 1.000000+5 1.094200-7 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.580000-3 7.389700-5 1.000000+5 7.389700-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.580000-3 1.525500-4 1.000000+5 1.525500-4 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.580000-3 3.353553-3 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.332600-3 8.094500+4 3.450000-3 7.432700+4 3.480000-3 7.292000+4 3.550000-3 6.917300+4 3.630781-3 6.557300+4 3.920000-3 5.392800+4 4.315191-3 4.172100+4 5.248075-3 2.450100+4 5.688529-3 1.961300+4 6.683439-3 1.245000+4 8.035261-3 7.288900+3 8.912509-3 5.366400+3 1.059254-2 3.194800+3 1.273503-2 1.816400+3 1.479108-2 1.139100+3 1.698244-2 7.362500+2 2.000000-2 4.362100+2 2.400000-2 2.414100+2 2.884032-2 1.319800+2 3.507519-2 6.884500+1 4.415704-2 3.175700+1 5.888437-2 1.196137+1 1.096478-1 1.437002+0 1.364583-1 6.863103-1 1.659587-1 3.569141-1 1.949845-1 2.098318-1 2.238721-1 1.339886-1 2.570396-1 8.618825-2 2.917427-1 5.793990-2 3.273407-1 4.065610-2 3.672823-1 2.872977-2 4.073803-1 2.115787-2 4.518559-1 1.568685-2 5.011872-1 1.171662-2 5.559043-1 8.816066-3 6.165950-1 6.683994-3 6.760830-1 5.259952-3 7.413102-1 4.166787-3 8.511380-1 2.969283-3 9.120108-1 2.522481-3 9.660509-1 2.214333-3 1.023293+0 1.955598-3 1.109175+0 1.656002-3 1.188600+0 1.445309-3 1.303167+0 1.216966-3 1.462177+0 9.893831-4 1.717908+0 7.457840-4 1.949845+0 6.016920-4 2.187762+0 4.985709-4 2.483133+0 4.085819-4 2.818383+0 3.372666-4 3.273407+0 2.709428-4 3.801894+0 2.193112-4 4.466836+0 1.760143-4 5.308844+0 1.401772-4 6.382635+0 1.108449-4 7.585776+0 8.957766-5 9.440609+0 6.888736-5 1.202264+1 5.200552-5 1.600000+1 3.768600-5 2.113489+1 2.775341-5 2.951209+1 1.938696-5 4.415704+1 1.268423-5 7.079458+1 7.783758-6 1.230269+2 4.425952-6 2.454709+2 2.201033-6 9.772372+2 5.495027-7 3.090295+4 1.734466-8 1.000000+5 5.360500-9 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.332600-3 5.689900-5 1.000000+5 5.689900-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.332600-3 1.732400-4 1.000000+5 1.732400-4 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.332600-3 3.102461-3 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.170600-3 1.703230+5 3.275000-3 1.581155+5 3.290000-3 1.561912+5 3.320000-3 1.529480+5 3.388442-3 1.447150+5 3.470000-3 1.365684+5 3.758374-3 1.108328+5 4.120975-3 8.620375+4 5.069907-3 4.848065+4 5.432503-3 3.991222+4 6.456542-3 2.429144+4 7.852356-3 1.359807+4 8.709636-3 9.945553+3 1.023293-2 6.069314+3 1.216186-2 3.538673+3 1.428894-2 2.119781+3 1.650000-2 1.332424+3 1.905461-2 8.322520+2 2.238721-2 4.879128+2 2.630268-2 2.840744+2 3.162278-2 1.519410+2 3.890451-2 7.448162+1 4.677351-2 3.924608+1 6.165950-2 1.487308+1 1.161449-1 1.583737+0 1.428894-1 7.655945-1 1.698244-1 4.207913-1 1.972423-1 2.520754-1 2.238721-1 1.644954-1 2.528300-1 1.099397-1 2.818383-1 7.722438-2 3.126079-1 5.549867-2 3.467369-1 4.017033-2 3.801894-1 3.033975-2 4.168694-1 2.306650-2 4.570882-1 1.765889-2 4.954502-1 1.406359-2 5.432503-1 1.092059-2 5.956621-1 8.545068-3 6.531306-1 6.740894-3 7.161434-1 5.358987-3 7.852356-1 4.292651-3 8.609938-1 3.455495-3 9.225714-1 2.954247-3 9.885531-1 2.543157-3 1.083927+0 2.103693-3 1.174898+0 1.792899-3 1.288250+0 1.505805-3 1.428894+0 1.246363-3 1.659587+0 9.565631-4 1.883649+0 7.702709-4 2.113489+0 6.369186-4 2.398833+0 5.208027-4 2.722701+0 4.290483-4 3.162278+0 3.440304-4 3.672823+0 2.779843-4 4.315191+0 2.227414-4 5.128614+0 1.771179-4 6.165950+0 1.398497-4 7.328245+0 1.128591-4 9.225714+0 8.551148-5 1.174898+1 6.450083-5 1.566751+1 4.660062-5 2.065380+1 3.437558-5 2.884032+1 2.400061-5 4.265795+1 1.588549-5 6.683439+1 9.975684-6 1.188502+2 5.537257-6 2.371374+2 2.753013-6 4.731513+2 1.374085-6 3.758374+3 1.723885-7 1.000000+5 6.475400-9 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.170600-3 5.434500-5 1.000000+5 5.434500-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.170600-3 1.462400-4 1.000000+5 1.462400-4 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.170600-3 2.970015-3 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.549400-4 1.089282+5 7.161434-4 1.021942+5 7.500000-4 9.850040+4 7.730000-4 9.547200+4 9.015711-4 7.915933+4 9.440609-4 7.449017+4 1.150000-3 5.667080+4 1.244515-3 5.043808+4 1.479108-3 3.869855+4 1.650000-3 3.247440+4 1.927525-3 2.511526+4 2.238721-3 1.943300+4 2.570396-3 1.524036+4 3.019952-3 1.138704+4 3.589219-3 8.259088+3 4.216965-3 6.071997+3 5.011872-3 4.331780+3 5.956621-3 3.064351+3 7.000000-3 2.200300+3 8.222426-3 1.569353+3 9.549926-3 1.138310+3 1.109175-2 8.202909+2 1.303167-2 5.721886+2 1.513561-2 4.067160+2 1.757924-2 2.872189+2 2.041738-2 2.014627+2 2.398833-2 1.364791+2 2.818383-2 9.176226+1 3.311311-2 6.122874+1 3.890451-2 4.055353+1 4.623810-2 2.587463+1 5.495409-2 1.638233+1 6.606934-2 9.981500+0 8.000000-2 5.918940+0 9.885531-2 3.293398+0 1.273503-1 1.618583+0 2.041738-1 4.267060-1 2.985383-1 1.480705-1 3.467369-1 9.856633-2 3.935501-1 7.033032-2 4.415705-1 5.208518-2 4.954502-1 3.884497-2 5.495409-1 3.003453-2 6.095369-1 2.338021-2 6.760830-1 1.833335-2 7.498942-1 1.448186-2 8.413951-1 1.123743-2 9.225714-1 9.236925-3 1.011579+0 7.649195-3 1.148154+0 5.944290-3 1.250000+0 5.051410-3 1.428894+0 3.938088-3 1.566751+0 3.335521-3 1.757924+0 2.729826-3 1.995262+0 2.206913-3 2.238721+0 1.831388-3 2.540973+0 1.502748-3 2.917427+0 1.220729-3 3.388442+0 9.823148-4 3.935501+0 7.964763-4 4.623810+0 6.402745-4 5.495409+0 5.107080-4 6.606934+0 4.044263-4 8.035261+0 3.182602-4 9.772372+0 2.519624-4 1.216186+1 1.955441-4 1.603245+1 1.432367-4 2.113489+1 1.057294-4 2.951209+1 7.385570-5 4.415704+1 4.832035-5 6.998420+1 3.000457-5 1.230269+2 1.686071-5 2.454709+2 8.384845-6 9.772372+2 2.093317-6 3.090295+4 6.607328-8 1.000000+5 2.042100-8 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.549400-4 5.201900-5 1.000000+5 5.201900-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.549400-4 1.839500-7 1.000000+5 1.839500-7 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.549400-4 6.027371-4 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.552500-4 1.103632+5 5.559043-4 1.153557+5 5.563000-4 1.180174+5 5.568000-4 1.209578+5 5.575000-4 1.244508+5 5.585000-4 1.284468+5 5.597000-4 1.323086+5 5.613000-4 1.363344+5 5.628000-4 1.394626+5 5.650000-4 1.432930+5 5.680000-4 1.475450+5 5.710000-4 1.510378+5 5.755000-4 1.552042+5 5.800000-4 1.581972+5 5.850000-4 1.602828+5 5.900000-4 1.612388+5 5.956621-4 1.612788+5 6.050000-4 1.598858+5 7.080000-4 1.414414+5 7.585776-4 1.326238+5 8.128305-4 1.238781+5 8.709636-4 1.147561+5 9.660509-4 1.012485+5 1.030000-3 9.299620+4 1.122018-3 8.222808+4 1.230269-3 7.155593+4 1.330000-3 6.315780+4 1.462177-3 5.380652+4 1.610000-3 4.542520+4 1.757924-3 3.863446+4 1.972423-3 3.100693+4 2.162719-3 2.582123+4 2.426610-3 2.037962+4 2.691535-3 1.634527+4 3.019952-3 1.269532+4 3.388442-3 9.776812+3 3.758374-3 7.680199+3 4.265795-3 5.670904+3 4.800000-3 4.241100+3 5.370318-3 3.195348+3 6.025596-3 2.374453+3 6.839116-3 1.699626+3 7.800000-3 1.191362+3 8.912509-3 8.240651+2 1.023293-2 5.578142+2 1.174898-2 3.745364+2 1.350000-2 2.489940+2 1.566751-2 1.594213+2 1.798871-2 1.046660+2 2.089296-2 6.583863+1 2.449000-2 3.993583+1 2.884032-2 2.368624+1 3.427678-2 1.353726+1 4.120975-2 7.397536+0 5.128614-2 3.579578+0 6.760830-2 1.418047+0 1.188502-1 2.121458-1 1.479108-1 1.021996-1 1.778279-1 5.566574-2 2.065380-1 3.419562-2 2.371374-1 2.196436-2 2.691535-1 1.473555-2 3.054921-1 9.955185-3 3.427678-1 7.015391-3 3.845918-1 4.978894-3 4.265795-1 3.680987-3 4.731513-1 2.739904-3 5.248075-1 2.054527-3 5.821032-1 1.552558-3 6.382635-1 1.218401-3 7.079458-1 9.346981-4 7.762471-1 7.435052-4 8.709636-1 5.614727-4 9.332543-1 4.776740-4 9.885531-1 4.200156-4 1.059254+0 3.627478-4 1.135011+0 3.152716-4 1.216186+0 2.759313-4 1.364583+0 2.233022-4 1.621810+0 1.644089-4 1.840772+0 1.321985-4 2.065380+0 1.091422-4 2.317395+0 9.073814-5 2.630268+0 7.461153-5 3.019952+0 6.073704-5 3.507519+0 4.896035-5 4.073803+0 3.976212-5 4.786301+0 3.201427-5 5.688529+0 2.557421-5 6.839116+0 2.028135-5 8.609938+0 1.532832-5 1.059254+1 1.200428-5 1.273503+1 9.716993-6 1.621810+1 7.402593-6 2.137962+1 5.465669-6 2.985383+1 3.819057-6 4.518559+1 2.469349-6 7.244360+1 1.515886-6 1.244515+2 8.723219-7 2.483133+2 4.338449-7 9.885531+2 1.083142-7 3.126079+4 3.419036-9 1.000000+5 1.068900-9 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.552500-4 3.960000-5 1.000000+5 3.960000-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.552500-4 1.836500-7 1.000000+5 1.836500-7 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.552500-4 5.154664-4 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.268000-4 2.822124+5 5.274000-4 2.929772+5 5.280000-4 3.019636+5 5.287000-4 3.103924+5 5.295000-4 3.181728+5 5.304000-4 3.251792+5 5.315000-4 3.321416+5 5.330000-4 3.397280+5 5.350000-4 3.477928+5 5.378000-4 3.568712+5 5.410000-4 3.653196+5 5.450000-4 3.737672+5 5.495409-4 3.808450+5 5.541400-4 3.854722+5 5.600000-4 3.880792+5 5.663600-4 3.875785+5 5.730000-4 3.845496+5 6.850000-4 3.240752+5 7.800000-4 2.805004+5 8.413951-4 2.555285+5 9.200000-4 2.273400+5 9.850000-4 2.062860+5 1.083927-3 1.783029+5 1.188502-3 1.539702+5 1.288250-3 1.343811+5 1.428894-3 1.119013+5 1.570000-3 9.412680+4 1.737801-3 7.746629+4 1.927525-3 6.307451+4 2.150000-3 5.037200+4 2.398833-3 3.990294+4 2.691535-3 3.097828+4 3.000000-3 2.422200+4 3.349654-3 1.873115+4 3.758374-3 1.421486+4 4.216965-3 1.070826+4 4.731513-3 8.009770+3 5.308844-3 5.950563+3 6.025596-3 4.257371+3 6.839116-3 3.021494+3 7.852356-3 2.059973+3 8.912509-3 1.438445+3 1.011579-2 9.971990+2 1.150000-2 6.831520+2 1.303167-2 4.694111+2 1.500000-2 3.054508+2 1.737801-2 1.932453+2 2.000000-2 1.238460+2 2.317395-2 7.710990+1 2.691535-2 4.729654+1 3.162278-2 2.772567+1 3.758374-2 1.551956+1 4.518559-2 8.290719+0 5.559043-2 4.061445+0 7.244360-2 1.617138+0 1.244515-1 2.433551-1 1.548817-1 1.139648-1 1.819701-1 6.557711-2 2.113489-1 3.953589-2 2.398833-1 2.593750-2 2.691535-1 1.780037-2 3.000000-1 1.256944-2 3.311311-1 9.220002-3 3.672823-1 6.708756-3 4.027170-1 5.091307-3 4.415705-1 3.890522-3 4.841724-1 2.994209-3 5.308844-1 2.322060-3 5.821032-1 1.814597-3 6.382635-1 1.428521-3 6.998420-1 1.133042-3 7.673615-1 9.056609-4 8.511380-1 7.095590-4 9.120108-1 6.066722-4 9.772372-1 5.220992-4 1.059254+0 4.419768-4 1.161449+0 3.678923-4 1.273503+0 3.084115-4 1.412538+0 2.549702-4 1.640590+0 1.955540-4 1.862087+0 1.573646-4 2.089296+0 1.300409-4 2.371374+0 1.062598-4 2.691535+0 8.748297-5 3.126079+0 7.010373-5 3.630781+0 5.661210-5 4.265795+0 4.533590-5 5.011872+0 3.657711-5 6.000000+0 2.900800-5 7.161434+0 2.326163-5 9.120108+0 1.737116-5 1.148154+1 1.327236-5 1.548817+1 9.458991-6 2.041738+1 6.975382-6 2.851018+1 4.868777-6 4.216965+1 3.221798-6 6.606934+1 2.022881-6 1.174898+2 1.122647-6 2.344229+2 5.581223-7 4.677351+2 2.785507-7 3.715352+3 3.494507-8 1.000000+5 1.297600-9 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.268000-4 3.888500-5 1.000000+5 3.888500-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.268000-4 1.178900-7 1.000000+5 1.178900-7 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.268000-4 4.877971-4 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.482400-4 5.623120+4 3.525000-4 6.099000+4 3.540000-4 6.314560+4 3.552000-4 6.531362+4 3.563000-4 6.779880+4 3.573000-4 7.058720+4 3.580000-4 7.290280+4 3.590000-4 7.681760+4 3.598000-4 8.053800+4 3.608000-4 8.604800+4 3.616000-4 9.123200+4 3.624000-4 9.720400+4 3.632000-4 1.040544+5 3.639000-4 1.108332+5 3.650000-4 1.231492+5 3.661000-4 1.377232+5 3.673000-4 1.565168+5 3.690000-4 1.889700+5 3.730000-4 2.963156+5 3.745000-4 3.486008+5 3.760000-4 4.071600+5 3.770000-4 4.494040+5 3.780000-4 4.938920+5 3.790000-4 5.402680+5 3.801894-4 5.973595+5 3.815000-4 6.618600+5 3.828000-4 7.265160+5 3.839000-4 7.810240+5 3.850000-4 8.347800+5 3.860000-4 8.825840+5 3.870000-4 9.290720+5 3.885000-4 9.958360+5 3.900000-4 1.058480+6 3.915000-4 1.116664+6 3.930000-4 1.170260+6 3.945000-4 1.219320+6 3.960000-4 1.264004+6 3.981072-4 1.319918+6 4.000000-4 1.363792+6 4.023000-4 1.409796+6 4.050000-4 1.455088+6 4.080000-4 1.495692+6 4.115000-4 1.531756+6 4.150000-4 1.557524+6 4.190000-4 1.576412+6 4.240000-4 1.586420+6 4.280000-4 1.585608+6 4.335000-4 1.574992+6 4.390000-4 1.556444+6 4.470000-4 1.521404+6 4.954502-4 1.301113+6 5.188000-4 1.208515+6 5.432503-4 1.113803+6 5.821032-4 9.756670+5 6.237348-4 8.498823+5 6.606934-4 7.527451+5 7.000000-4 6.615880+5 7.585776-4 5.487979+5 8.128305-4 4.644340+5 8.810489-4 3.792294+5 9.700000-4 2.953792+5 1.059254-3 2.333545+5 1.174898-3 1.754250+5 1.303167-3 1.309861+5 1.462177-3 9.383812+4 1.621810-3 6.904972+4 1.819701-3 4.870486+4 2.018366-3 3.533754+4 2.264644-3 2.455521+4 2.540973-3 1.693151+4 2.851018-3 1.159348+4 3.235937-3 7.582195+3 3.715352-3 4.727213+3 4.265795-3 2.919539+3 4.841724-3 1.861578+3 5.500000-3 1.174240+3 6.309573-3 7.085971+2 7.244360-3 4.224740+2 8.317638-3 2.498239+2 9.549926-3 1.465707+2 1.109175-2 8.158487+1 1.273503-2 4.716148+1 1.479108-2 2.584726+1 1.717908-2 1.405937+1 2.018366-2 7.242925+0 2.398833-2 3.530877+0 2.951209-2 1.478469+0 3.801894-2 5.057439-1 7.244360-2 3.254502-2 9.015711-2 1.291122-2 1.109175-1 5.419136-3 1.288250-1 2.914290-3 1.479108-1 1.654885-3 1.678804-1 9.917413-4 1.905461-1 5.986069-4 2.137962-1 3.808658-4 2.398833-1 2.440624-4 2.660725-1 1.646140-4 2.951209-1 1.117924-4 3.273407-1 7.651234-5 3.630781-1 5.276297-5 4.027170-1 3.666329-5 4.415705-1 2.669728-5 4.841724-1 1.956805-5 5.308844-1 1.443858-5 5.821032-1 1.073330-5 6.237348-1 8.645340-6 6.760830-1 6.762916-6 7.328245-1 5.324333-6 8.035261-1 4.077996-6 8.609938-1 3.327555-6 9.015711-1 2.921279-6 9.440609-1 2.579513-6 9.885531-1 2.293925-6 1.035142+0 2.056672-6 1.083927+0 1.857054-6 1.135011+0 1.687436-6 1.188600+0 1.541809-6 1.273503+0 1.359022-6 1.396368+0 1.158275-6 1.513561+0 1.011095-6 1.819701+0 7.343478-7 2.018366+0 6.169969-7 2.264644+0 5.122902-7 2.570396+0 4.206525-7 2.951209+0 3.419676-7 3.427678+0 2.753409-7 4.000000+0 2.219200-7 4.677351+0 1.796589-7 5.559043+0 1.433770-7 6.683439+0 1.135872-7 8.222427+0 8.819000-8 1.000000+1 6.987800-8 1.230269+1 5.499337-8 1.603245+1 4.081188-8 2.113489+1 3.012411-8 2.951209+1 2.104331-8 4.415704+1 1.376794-8 7.079458+1 8.448570-9 1.230269+2 4.803902-9 2.454709+2 2.389002-9 9.772372+2 5.96435-10 3.090295+4 1.88260-11 1.000000+5 5.81830-12 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.482400-4 2.343400-5 1.000000+5 2.343400-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.482400-4 9.420000-8 1.000000+5 9.420000-8 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.482400-4 3.247118-4 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.425100-4 7.846440+4 3.468000-4 8.681880+4 3.483000-4 9.046980+4 3.495000-4 9.408180+4 3.505000-4 9.774480+4 3.515000-4 1.021638+5 3.525000-4 1.075074+5 3.534000-4 1.132596+5 3.541000-4 1.184484+5 3.549000-4 1.252500+5 3.556000-4 1.320540+5 3.565000-4 1.421142+5 3.575000-4 1.552428+5 3.585000-4 1.706994+5 3.595000-4 1.887792+5 3.608000-4 2.167098+5 3.623000-4 2.559744+5 3.672823-4 4.514447+5 3.685000-4 5.158746+5 3.700000-4 6.040440+5 3.710000-4 6.678180+5 3.720000-4 7.351320+5 3.730000-4 8.054820+5 3.740000-4 8.782920+5 3.750000-4 9.529080+5 3.760000-4 1.028646+6 3.770000-4 1.104828+6 3.780000-4 1.180788+6 3.790000-4 1.255890+6 3.801894-4 1.343329+6 3.815000-4 1.436394+6 3.828000-4 1.524516+6 3.843000-4 1.620252+6 3.855000-4 1.691934+6 3.870000-4 1.775220+6 3.885000-4 1.851522+6 3.900000-4 1.921074+6 3.920000-4 2.003910+6 3.942000-4 2.083073+6 3.960000-4 2.139444+6 3.985000-4 2.206614+6 4.015000-4 2.272218+6 4.050000-4 2.331024+6 4.080000-4 2.368314+6 4.120975-4 2.402494+6 4.165000-4 2.420940+6 4.216965-4 2.423009+6 4.280000-4 2.404092+6 4.350000-4 2.364978+6 4.466836-4 2.279847+6 5.011872-4 1.905652+6 5.230000-4 1.772598+6 5.500000-4 1.614192+6 6.000000-4 1.359294+6 6.382635-4 1.195922+6 6.760830-4 1.053763+6 7.300000-4 8.822580+5 7.943282-4 7.203124+5 8.511380-4 6.060604+5 9.332543-4 4.772645+5 1.023293-3 3.735198+5 1.122018-3 2.900732+5 1.270000-3 2.046180+5 1.400000-3 1.543506+5 1.570000-3 1.099896+5 1.737801-3 8.087775+4 1.950000-3 5.665422+4 2.187762-3 3.936958+4 2.426610-3 2.818827+4 2.754229-3 1.858534+4 3.126079-3 1.214806+4 3.507519-3 8.193879+3 3.900000-3 5.668350+3 4.415704-3 3.655745+3 5.011872-3 2.318832+3 5.688529-3 1.459087+3 6.382635-3 9.511829+2 7.161434-3 6.161573+2 8.128305-3 3.795471+2 9.225714-3 2.321935+2 1.083927-2 1.231296+2 1.244515-2 7.090727+1 1.428894-2 4.052704+1 1.659587-2 2.194340+1 1.927525-2 1.179578+1 2.264644-2 5.999774+0 2.691535-2 2.886120+0 3.311311-2 1.189550+0 4.365158-2 3.616085-1 7.328245-2 3.845240-2 9.015711-2 1.578818-2 1.083927-1 7.207589-3 1.258925-1 3.837203-3 1.445440-1 2.158919-3 1.659587-1 1.222846-3 1.862087-1 7.670836-4 2.041738-1 5.315652-4 2.264644-1 3.547064-4 2.483133-1 2.492871-4 2.722701-1 1.763933-4 3.000000-1 1.234864-4 3.273407-1 9.017413-5 3.589219-1 6.516710-5 3.890451-1 4.937366-5 4.216965-1 3.764287-5 4.518559-1 3.000792-5 4.841724-1 2.407185-5 5.069907-1 2.087007-5 5.432503-1 1.696670-5 5.888437-1 1.342192-5 6.531306-1 9.991017-6 7.161434-1 7.742129-6 7.762471-1 6.236435-6 8.511380-1 4.896531-6 9.015711-1 4.233469-6 9.549926-1 3.685387-6 1.000000+0 3.317745-6 1.071519+0 2.859864-6 1.135011+0 2.542417-6 1.202264+0 2.273037-6 1.318257+0 1.918140-6 1.462177+0 1.597164-6 1.757924+0 1.158343-6 1.972423+0 9.535067-7 2.213095+0 7.905877-7 2.511886+0 6.482838-7 2.884032+0 5.263354-7 3.349654+0 4.232988-7 3.890451+0 3.430182-7 4.570882+0 2.755960-7 5.432503+0 2.197133-7 6.531306+0 1.739081-7 7.852356+0 1.387186-7 9.549926+0 1.097383-7 1.202264+1 8.397697-8 1.600000+1 6.085400-8 2.113489+1 4.481562-8 2.951209+1 3.130601-8 4.415704+1 2.048206-8 7.079458+1 1.256856-8 1.230269+2 7.146934-9 2.454709+2 3.554172-9 9.772372+2 8.87317-10 3.090295+4 2.80075-11 1.000000+5 8.65600-12 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.425100-4 2.324800-5 1.000000+5 2.324800-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.425100-4 1.96660-10 1.000000+5 1.96660-10 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.425100-4 3.192618-4 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 9.101000-5 1.281600+5 9.250000-5 1.353636+5 9.400000-5 1.416840+5 9.550000-5 1.471044+5 9.700000-5 1.517826+5 9.900000-5 1.569484+5 1.011579-4 1.614300+5 1.035142-4 1.652793+5 1.060000-4 1.683692+5 1.090000-4 1.710574+5 1.122018-4 1.729681+5 1.170000-4 1.745264+5 1.230269-4 1.750162+5 1.303167-4 1.743103+5 1.400000-4 1.720944+5 1.513561-4 1.684333+5 1.621810-4 1.641417+5 1.737801-4 1.588217+5 1.850000-4 1.531026+5 1.980000-4 1.459868+5 2.120000-4 1.380714+5 2.290868-4 1.285555+5 2.511886-4 1.170938+5 2.818383-4 1.033046+5 3.126079-4 9.167655+4 3.427678-4 8.191624+4 3.758374-4 7.269860+4 4.216965-4 6.212984+4 4.897788-4 5.022920+4 5.500000-4 4.231800+4 6.309573-4 3.425949+4 7.500000-4 2.605080+4 8.709636-4 2.039474+4 1.047129-3 1.497575+4 1.288250-3 1.048743+4 1.584893-3 7.288483+3 1.949845-3 5.027273+3 2.371374-3 3.514237+3 2.818383-3 2.545126+3 3.349654-3 1.830882+3 4.027170-3 1.278519+3 4.841724-3 8.856767+2 5.821032-3 6.088354+2 6.918310-3 4.253621+2 8.222426-3 2.950061+2 9.660509-3 2.081655+2 1.135011-2 1.458506+2 1.333521-2 1.014622+2 1.566751-2 7.007170+1 1.840772-2 4.803706+1 2.162719-2 3.268649+1 2.540973-2 2.207508+1 3.000000-2 1.461842+1 3.548134-2 9.565894+0 4.168694-2 6.318836+0 4.954502-2 4.019924+0 5.888437-2 2.538516+0 7.079458-2 1.542185+0 8.709636-2 8.731448-1 1.059254-1 5.066823-1 2.290868-1 5.765424-2 2.754229-1 3.451523-2 3.235937-1 2.218739-2 3.715352-1 1.529963-2 4.216965-1 1.096102-2 4.731513-1 8.151372-3 5.248075-1 6.284420-3 5.821032-1 4.877206-3 6.456542-1 3.812037-3 7.161434-1 3.001374-3 7.943282-1 2.380724-3 8.709636-1 1.948685-3 9.549926-1 1.606092-3 1.071519+0 1.273334-3 1.188600+0 1.038200-3 1.364583+0 8.007903-4 1.531087+0 6.491389-4 1.717908+0 5.305532-4 1.949845+0 4.282920-4 2.187762+0 3.548825-4 2.483133+0 2.908035-4 2.818383+0 2.400232-4 3.273407+0 1.928067-4 3.801894+0 1.560589-4 4.466836+0 1.252514-4 5.308844+0 9.975376-5 6.382635+0 7.888034-5 7.585776+0 6.374472-5 9.440609+0 4.902119-5 1.202264+1 3.700767-5 1.600000+1 2.681800-5 2.113489+1 1.974970-5 2.951209+1 1.379631-5 4.415704+1 9.026396-6 6.998420+1 5.604918-6 1.216186+2 3.186555-6 2.426610+2 1.584594-6 9.660509+2 3.955777-7 3.054921+4 1.248532-8 1.000000+5 3.814600-9 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 9.101000-5 2.330700-5 1.000000+5 2.330700-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.101000-5 2.82460-10 1.000000+5 2.82460-10 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.101000-5 6.770272-5 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.968000-5 1.308190+6 6.015000-5 1.302532+6 6.070000-5 1.288012+6 6.150000-5 1.256212+6 6.237348-5 1.213188+6 6.330000-5 1.162766+6 6.456542-5 1.090899+6 6.643000-5 9.870158+5 6.850000-5 8.793420+5 7.161434-5 7.376031+5 7.585776-5 5.823785+5 8.511380-5 3.598037+5 8.912509-5 2.984435+5 9.225714-5 2.609272+5 9.500000-5 2.341080+5 9.800000-5 2.100820+5 1.000000-4 1.966542+5 1.030000-4 1.797396+5 1.059254-4 1.663555+5 1.090000-4 1.549662+5 1.120000-4 1.459920+5 1.150000-4 1.387198+5 1.180000-4 1.328202+5 1.216186-4 1.271548+5 1.244515-4 1.236017+5 1.288250-4 1.192892+5 1.333521-4 1.159581+5 1.380384-4 1.133832+5 1.450000-4 1.106696+5 1.540000-4 1.083716+5 1.678804-4 1.061325+5 1.927525-4 1.029406+5 2.089296-4 1.005326+5 2.264644-4 9.749538+4 2.454709-4 9.382876+4 2.660725-4 8.963709+4 2.900000-4 8.472180+4 3.126079-4 8.012628+4 3.388442-4 7.493490+4 3.672823-4 6.955509+4 4.027170-4 6.333686+4 4.415704-4 5.725049+4 4.897788-4 5.069463+4 5.370318-4 4.515846+4 5.888437-4 3.994833+4 6.606934-4 3.398451+4 7.328245-4 2.918072+4 8.035261-4 2.533446+4 9.015711-4 2.107395+4 1.011579-3 1.741073+4 1.135011-3 1.427736+4 1.288250-3 1.139286+4 1.445440-3 9.215448+3 1.640590-3 7.243809+3 1.840772-3 5.778854+3 2.065380-3 4.580361+3 2.317395-3 3.604795+3 2.600160-3 2.817182+3 2.917427-3 2.186236+3 3.273407-3 1.684475+3 3.672823-3 1.288877+3 4.120975-3 9.795030+2 4.677351-3 7.186841+2 5.308844-3 5.232670+2 6.025596-3 3.781320+2 6.839116-3 2.712266+2 7.762471-3 1.931249+2 8.810489-3 1.365067+2 1.000000-2 9.579200+1 1.135011-2 6.675694+1 1.303167-2 4.468112+1 1.500000-2 2.945940+1 1.737801-2 1.890388+1 2.018366-2 1.194411+1 2.344229-2 7.489937+0 2.754229-2 4.497128+0 3.273407-2 2.582992+0 3.935501-2 1.418382+0 4.786301-2 7.438300-1 6.095369-2 3.323190-1 1.230269-1 3.141460-2 1.531088-1 1.517155-2 1.819701-1 8.595830-3 2.113489-1 5.288449-3 2.426610-1 3.400237-3 2.754229-1 2.283285-3 3.126079-1 1.544392-3 3.507519-1 1.090015-3 3.935501-1 7.749367-4 4.365158-1 5.738986-4 4.841724-1 4.279336-4 5.370318-1 3.214591-4 5.956621-1 2.433204-4 6.606935-1 1.856064-4 7.244360-1 1.468886-4 8.222427-1 1.074777-4 8.912509-1 8.853244-5 9.549926-1 7.552798-5 1.011579+0 6.659360-5 1.096478+0 5.630953-5 1.174898+0 4.909675-5 1.273503+0 4.218101-5 1.412538+0 3.495301-5 1.698244+0 2.528021-5 1.927525+0 2.037982-5 2.162719+0 1.687372-5 2.454709+0 1.381722-5 2.786121+0 1.139739-5 3.235937+0 9.149964-6 3.758374+0 7.401838-6 4.415704+0 5.937379-6 5.248075+0 4.726197-6 6.309573+0 3.735415-6 7.498942+0 3.017321-6 9.332543+0 2.319427-6 1.188502+1 1.750283-6 1.584893+1 1.264991-6 2.089296+1 9.334508-7 2.917427+1 6.518874-7 4.365158+1 4.264040-7 6.918310+1 2.647238-7 1.216186+2 1.487328-7 2.426610+2 7.396109-8 9.660509+2 1.846400-8 3.054921+4 5.82775-10 1.000000+5 1.78050-10 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.968000-5 1.587400-5 1.000000+5 1.587400-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.968000-5 3.11300-10 1.000000+5 3.11300-10 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.968000-5 4.380569-5 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.509000-5 2.899832+6 5.560000-5 2.861940+6 5.623413-5 2.796724+6 5.690000-5 2.714060+6 5.760000-5 2.618908+6 5.850000-5 2.491580+6 6.000000-5 2.279616+6 6.165950-5 2.058095+6 6.456542-5 1.717314+6 7.500000-5 9.338200+5 7.852356-5 7.788357+5 8.150000-5 6.763640+5 8.413951-5 6.029808+5 8.650000-5 5.488120+5 8.912509-5 4.991099+5 9.150000-5 4.620880+5 9.400000-5 4.298520+5 9.660509-5 4.023308+5 9.900000-5 3.815200+5 1.020000-4 3.603720+5 1.050000-4 3.436088+5 1.083927-4 3.287631+5 1.120000-4 3.166380+5 1.161449-4 3.061454+5 1.205000-4 2.979588+5 1.260000-4 2.904320+5 1.333521-4 2.834087+5 1.450000-4 2.759004+5 1.720000-4 2.628916+5 1.883649-4 2.545278+5 2.041738-4 2.455377+5 2.213095-4 2.350463+5 2.400000-4 2.232720+5 2.600160-4 2.107587+5 2.851018-4 1.957556+5 3.100000-4 1.817472+5 3.350000-4 1.685748+5 3.630781-4 1.548969+5 3.981072-4 1.395057+5 4.365158-4 1.248192+5 4.850000-4 1.090952+5 5.308844-4 9.653985+4 5.888437-4 8.328319+4 6.700000-4 6.861800+4 7.500000-4 5.749120+4 8.413951-4 4.760450+4 9.549926-4 3.836245+4 1.071519-3 3.130458+4 1.230269-3 2.431274+4 1.396368-3 1.913374+4 1.580000-3 1.503220+4 1.778279-3 1.185799+4 2.000000-3 9.298320+3 2.264644-3 7.135611+3 2.540973-3 5.543923+3 2.851018-3 4.277490+3 3.198895-3 3.276820+3 3.589219-3 2.492605+3 4.027170-3 1.883186+3 4.570882-3 1.372794+3 5.188000-3 9.929947+2 5.888437-3 7.127699+2 6.683439-3 5.077683+2 7.585776-3 3.590162+2 8.609938-3 2.519448+2 9.772372-3 1.755122+2 1.109175-2 1.213900+2 1.258925-2 8.337643+1 1.445440-2 5.492502+1 1.659587-2 3.591164+1 1.905461-2 2.330682+1 2.187762-2 1.501114+1 2.540973-2 9.245829+0 2.985383-2 5.441871+0 3.548134-2 3.059675+0 4.265795-2 1.642052+0 5.128614-2 8.747665-1 6.456542-2 3.943946-1 1.303167-1 3.400308-2 1.603245-1 1.660509-2 1.883649-1 9.574644-3 2.162719-1 6.014086-3 2.454709-1 3.954495-3 2.754229-1 2.720065-3 3.054921-1 1.954921-3 3.388442-1 1.414706-3 3.758374-1 1.031403-3 4.120975-1 7.841070-4 4.518559-1 6.001846-4 4.954502-1 4.627191-4 5.432503-1 3.595284-4 5.956621-1 2.814945-4 6.531306-1 2.220941-4 7.161434-1 1.765814-4 7.852356-1 1.414836-4 8.609938-1 1.140238-4 9.225714-1 9.757811-5 9.885531-1 8.406322-5 1.083927+0 6.957318-5 1.174898+0 5.930523-5 1.288250+0 4.980484-5 1.428894+0 4.121023-5 1.659587+0 3.161970-5 1.883649+0 2.546212-5 2.113489+0 2.105509-5 2.398833+0 1.721695-5 2.722701+0 1.418361-5 3.162278+0 1.137292-5 3.672823+0 9.189558-6 4.315191+0 7.363303-6 5.128614+0 5.855027-6 6.165950+0 4.622991-6 7.328245+0 3.730874-6 9.225714+0 2.826845-6 1.174898+1 2.132225-6 1.566751+1 1.540517-6 2.065380+1 1.136378-6 2.884032+1 7.934031-7 4.315191+1 5.188501-7 6.839116+1 3.220579-7 1.202264+2 1.809210-7 2.398833+2 8.996110-8 4.786301+2 4.490112-8 3.801894+3 5.633353-9 1.000000+5 2.14060-10 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.509000-5 1.564200-5 1.000000+5 1.564200-5 1 46000 7 7 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.509000-5 2.23170-10 1.000000+5 2.23170-10 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.509000-5 3.944778-5 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.140000-6 4.725560+6 9.850000-6 5.745080+6 1.083927-5 6.291139+6 1.200000-5 6.876200+6 1.333521-5 7.479718+6 1.548817-5 8.348745+6 2.691535-5 1.228918+7 2.917427-5 1.292713+7 3.090295-5 1.333077+7 3.235937-5 1.358804+7 3.388442-5 1.375732+7 3.507519-5 1.380997+7 3.630781-5 1.378428+7 3.758374-5 1.366578+7 3.890451-5 1.344206+7 4.000000-5 1.318088+7 4.120975-5 1.281895+7 4.229500-5 1.243528+7 4.350000-5 1.195236+7 4.466836-5 1.143633+7 4.570882-5 1.094578+7 4.680000-5 1.040912+7 4.800000-5 9.803360+6 4.900000-5 9.293840+6 5.040000-5 8.583960+6 5.188000-5 7.849737+6 5.308844-5 7.270195+6 5.450000-5 6.622760+6 5.623413-5 5.878575+6 5.800000-5 5.183880+6 5.956621-5 4.621989+6 6.095369-5 4.166028+6 6.237348-5 3.738660+6 6.400000-5 3.295552+6 6.580000-5 2.859356+6 6.760830-5 2.473607+6 6.950000-5 2.120664+6 7.150000-5 1.797348+6 7.350000-5 1.519356+6 7.500000-5 1.337344+6 7.673615-5 1.151865+6 7.852356-5 9.859522+5 8.035261-5 8.392510+5 8.230000-5 7.055160+5 8.450000-5 5.786200+5 8.650000-5 4.824560+5 8.912509-5 3.796030+5 9.225714-5 2.853176+5 9.720000-5 1.844340+5 9.900000-5 1.589060+5 1.005000-4 1.412648+5 1.020000-4 1.265108+5 1.035142-4 1.141970+5 1.047129-4 1.060811+5 1.060000-4 9.879760+4 1.071519-4 9.341167+4 1.083927-4 8.868426+4 1.095000-4 8.531280+4 1.105000-4 8.288880+4 1.115000-4 8.100080+4 1.124000-4 7.972080+4 1.135011-4 7.864559+4 1.148154-4 7.799944+4 1.161500-4 7.797146+4 1.175000-4 7.850680+4 1.190000-4 7.967840+4 1.205000-4 8.137080+4 1.220000-4 8.350680+4 1.240000-4 8.692720+4 1.270000-4 9.300640+4 1.364583-4 1.160101+5 1.412538-4 1.282782+5 1.450000-4 1.376460+5 1.496236-4 1.486538+5 1.540000-4 1.583848+5 1.584893-4 1.675948+5 1.635000-4 1.768240+5 1.690000-4 1.856608+5 1.740000-4 1.926100+5 1.800000-4 1.995704+5 1.862087-4 2.052639+5 1.930000-4 2.100200+5 2.000000-4 2.133776+5 2.089296-4 2.157733+5 2.180000-4 2.164524+5 2.290868-4 2.153074+5 2.398833-4 2.126808+5 2.511886-4 2.086701+5 2.630268-4 2.035653+5 2.754229-4 1.974884+5 2.917427-4 1.887255+5 3.054921-4 1.809227+5 3.235937-4 1.703945+5 3.427678-4 1.593266+5 3.630781-4 1.479840+5 3.845918-4 1.366027+5 4.120975-4 1.232227+5 4.415704-4 1.103708+5 4.731513-4 9.817181+4 5.069907-4 8.676213+4 5.495409-4 7.456005+4 5.956621-4 6.359367+4 6.456542-4 5.385259+4 7.000000-4 4.528266+4 7.673615-4 3.690540+4 8.413951-4 2.983497+4 9.225714-4 2.394962+4 1.023293-3 1.855943+4 1.135011-3 1.427431+4 1.258925-3 1.089568+4 1.396368-3 8.253686+3 1.548817-3 6.204617+3 1.717908-3 4.630026+3 1.905461-3 3.430194+3 2.137962-3 2.438715+3 2.371374-3 1.780869+3 2.630268-3 1.290809+3 2.884032-3 9.627069+2 3.198895-3 6.871666+2 3.605000-3 4.620611+2 4.073803-3 3.059343+2 4.570882-3 2.060317+2 5.128614-3 1.377880+2 5.754399-3 9.150180+1 6.456542-3 6.035169+1 7.328245-3 3.789029+1 8.317638-3 2.360084+1 9.440609-3 1.458812+1 1.083927-2 8.562314+0 1.244515-2 4.986262+0 1.428894-2 2.882361+0 1.640590-2 1.654333+0 1.905461-2 9.000191-1 2.238721-2 4.638365-1 2.660725-2 2.262982-1 3.273407-2 9.485937-2 4.315191-2 2.948917-2 7.328245-2 3.117427-3 9.225714-2 1.181546-3 1.122019-1 5.218113-4 1.318257-1 2.681477-4 1.531088-1 1.456015-4 1.737801-1 8.742329-5 1.972423-1 5.287035-5 2.213095-1 3.371558-5 2.483133-1 2.165909-5 2.754229-1 1.464060-5 3.054921-1 9.962349-6 3.388442-1 6.826090-6 3.758374-1 4.712637-6 4.168694-1 3.279228-6 4.570882-1 2.392523-6 5.011872-1 1.758823-6 5.495409-1 1.304284-6 6.025596-1 9.744796-7 6.606935-1 7.324447-7 7.244360-1 5.546141-7 8.609938-1 3.340764-7 9.015711-1 2.933979-7 9.440609-1 2.591991-7 9.885531-1 2.306252-7 1.035142+0 2.068760-7 1.083927+0 1.868607-7 1.135011+0 1.698233-7 1.202264+0 1.518676-7 1.288250+0 1.339707-7 1.412538+0 1.142476-7 1.513561+0 1.016689-7 1.819701+0 7.383692-8 2.018366+0 6.203959-8 2.264644+0 5.151162-8 2.570396+0 4.229734-8 2.951209+0 3.438527-8 3.427678+0 2.768573-8 4.000000+0 2.231400-8 4.677351+0 1.806419-8 5.559043+0 1.441674-8 6.683439+0 1.142131-8 8.128305+0 8.991875-9 9.885531+0 7.121829-9 1.230269+1 5.529635-9 1.603245+1 4.103738-9 2.113489+1 3.029043-9 2.951209+1 2.115941-9 4.466836+1 1.367798-9 7.161434+1 8.39526-10 1.230269+2 4.83041-10 2.454709+2 2.40221-10 9.772372+2 5.99720-11 3.090295+4 1.89298-12 1.000000+5 5.85040-13 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.140000-6 8.140000-6 1.000000+5 8.140000-6 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.140000-6 0.0 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.670000-6 7.450802+6 8.511380-6 8.371665+6 9.225714-6 9.101364+6 1.000000-5 9.824700+6 1.083927-5 1.053033+7 1.188502-5 1.131452+7 1.318257-5 1.217455+7 1.513561-5 1.330793+7 2.691535-5 1.893404+7 2.917427-5 1.975817+7 3.090295-5 2.024619+7 3.235937-5 2.052911+7 3.350000-5 2.064870+7 3.467369-5 2.066787+7 3.589219-5 2.057156+7 3.715352-5 2.034306+7 3.845918-5 1.996470+7 3.950000-5 1.956108+7 4.073803-5 1.897170+7 4.180000-5 1.838262+7 4.300000-5 1.763886+7 4.415704-5 1.685713+7 4.540000-5 1.596306+7 4.650000-5 1.513950+7 4.786301-5 1.409800+7 4.900000-5 1.322742+7 5.011872-5 1.238110+7 5.150000-5 1.136244+7 5.300000-5 1.030164+7 5.450000-5 9.299040+6 5.623413-5 8.223180+6 5.800000-5 7.225200+6 5.956621-5 6.422392+6 6.095369-5 5.773433+6 6.237348-5 5.167126+6 6.400000-5 4.540554+6 6.580000-5 3.925884+6 6.760830-5 3.384653+6 6.950000-5 2.891070+6 7.150000-5 2.440422+6 7.350000-5 2.054400+6 7.500000-5 1.802574+6 7.673615-5 1.546821+6 7.852356-5 1.318858+6 8.035261-5 1.118026+6 8.230000-5 9.357240+5 8.413951-5 7.896284+5 8.650000-5 6.340980+5 8.912509-5 4.964879+5 9.580000-5 2.708100+5 9.800000-5 2.252274+5 9.950000-5 2.002422+5 1.010000-4 1.795146+5 1.023293-4 1.642874+5 1.035142-4 1.529286+5 1.047129-4 1.433433+5 1.059254-4 1.354006+5 1.070000-4 1.296894+5 1.080000-4 1.253904+5 1.090000-4 1.219818+5 1.100000-4 1.193862+5 1.110000-4 1.175292+5 1.122018-4 1.161800+5 1.131000-4 1.157406+5 1.143000-4 1.158312+5 1.155000-4 1.166160+5 1.170000-4 1.184460+5 1.185000-4 1.210872+5 1.205000-4 1.256592+5 1.220000-4 1.297398+5 1.250000-4 1.391928+5 1.348963-4 1.765144+5 1.396368-4 1.951447+5 1.440000-4 2.117322+5 1.480000-4 2.261178+5 1.520000-4 2.396142+5 1.566751-4 2.541231+5 1.611900-4 2.666690+5 1.659587-4 2.784000+5 1.705000-4 2.882208+5 1.760000-4 2.982780+5 1.820000-4 3.070872+5 1.883649-4 3.143662+5 1.950000-4 3.197118+5 2.020000-4 3.232728+5 2.089296-4 3.250956+5 2.162719-4 3.252330+5 2.264644-4 3.233237+5 2.371374-4 3.191182+5 2.483133-4 3.129940+5 2.600160-4 3.051430+5 2.722701-4 2.957817+5 2.884032-4 2.823061+5 3.054921-4 2.673006+5 3.235937-4 2.512245+5 3.427678-4 2.344593+5 3.630781-4 2.173834+5 3.845918-4 2.003313+5 4.120975-4 1.803577+5 4.415704-4 1.612408+5 4.731513-4 1.431458+5 5.069907-4 1.262550+5 5.495409-4 1.082234+5 5.956621-4 9.208649+4 6.456542-4 7.787555+4 7.000000-4 6.539940+4 7.673615-4 5.319039+4 8.413951-4 4.291669+4 9.225714-4 3.439139+4 1.023293-3 2.660079+4 1.135011-3 2.041553+4 1.258925-3 1.554828+4 1.396368-3 1.175185+4 1.548817-3 8.816473+3 1.717908-3 6.565944+3 1.905461-3 4.853886+3 2.113489-3 3.561405+3 2.344229-3 2.593777+3 2.600160-3 1.875685+3 2.884032-3 1.347059+3 3.162278-3 9.974923+2 3.548134-3 6.772866+2 4.073803-3 4.234219+2 4.623810-3 2.731514+2 5.188000-3 1.820338+2 5.821032-3 1.204288+2 6.531306-3 7.912337+1 7.328245-3 5.163279+1 8.222426-3 3.346861+1 9.332543-3 2.061751+1 1.059254-2 1.260819+1 1.202264-2 7.657294+0 1.380384-2 4.411169+0 1.584893-2 2.522082+0 1.840772-2 1.365414+0 2.162719-2 6.994675-1 2.540973-2 3.556572-1 3.054921-2 1.628599-1 3.845918-2 6.082091-2 7.498942-2 3.422195-3 9.225714-2 1.408995-3 1.122019-1 6.139372-4 1.303167-1 3.276592-4 1.479108-1 1.939064-4 1.678804-1 1.155615-4 1.883649-1 7.273188-5 2.089296-1 4.828526-5 2.317395-1 3.229580-5 2.540973-1 2.274159-5 2.786121-1 1.612410-5 3.054921-1 1.151597-5 3.349654-1 8.288254-6 3.630781-1 6.257053-6 3.935501-1 4.754532-6 4.265795-1 3.637310-6 4.623810-1 2.802569-6 5.011872-1 2.175708-6 5.432503-1 1.703094-6 5.888437-1 1.343203-6 6.382635-1 1.066726-6 6.918310-1 8.531797-7 7.498942-1 6.873839-7 8.413951-1 5.100569-7 8.912509-1 4.417219-7 9.440609-1 3.849119-7 1.000000+0 3.378400-7 1.071519+0 2.915244-7 1.148154+0 2.534310-7 1.216186+0 2.269410-7 1.348963+0 1.877459-7 1.640590+0 1.328929-7 1.862087+0 1.069046-7 2.089296+0 8.832024-8 2.371374+0 7.216604-8 2.691535+0 5.941393-8 3.126079+0 4.761179-8 3.630781+0 3.844886-8 4.265795+0 3.079099-8 5.011872+0 2.484263-8 6.000000+0 1.970100-8 7.161434+0 1.579857-8 9.120108+0 1.179765-8 1.148154+1 9.014377-9 1.531087+1 6.507352-9 2.018366+1 4.797266-9 2.818383+1 3.347555-9 4.168694+1 2.214691-9 6.456542+1 1.406869-9 1.161449+2 7.71440-10 2.317395+2 3.83489-10 4.623810+2 1.91391-10 3.672823+3 2.40087-11 1.000000+5 8.81300-13 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.670000-6 7.670000-6 1.000000+5 7.670000-6 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.670000-6 0.0 1.000000+5 1.000000+5 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.260100-7 1.028750+0 1.260100-6 1.029500+0 1.724480-6 1.030100+0 2.168740-6 1.031000+0 2.967580-6 1.032000+0 4.060390-6 1.033200+0 5.687920-6 1.034000+0 6.982450-6 1.035300+0 9.477690-6 1.036640+0 1.260100-5 1.038200+0 1.700550-5 1.039700+0 2.209350-5 1.041500+0 2.939510-5 1.043800+0 4.080140-5 1.046400+0 5.676740-5 1.048300+0 7.067700-5 1.051200+0 9.587190-5 1.054080+0 1.260100-4 1.057700+0 1.717600-4 1.061100+0 2.234180-4 1.065100+0 2.957820-4 1.070400+0 4.126480-4 1.076200+0 5.702810-4 1.080600+0 7.121880-4 1.087100+0 9.595470-4 1.093710+0 1.260100-3 1.102600+0 1.747040-3 1.110700+0 2.278350-3 1.120600+0 3.047530-3 1.133300+0 4.237010-3 1.147500+0 5.849680-3 1.158200+0 7.269640-3 1.174100+0 9.716930-3 1.190110+0 1.260100-2 1.205100+0 1.569050-2 1.227500+0 2.100590-2 1.250000+0 2.713000-2 1.265600+0 3.178250-2 1.294900+0 4.131630-2 1.331800+0 5.457540-2 1.362600+0 6.651350-2 1.397000+0 8.062260-2 1.455800+0 1.063940-1 1.500000+0 1.272000-1 1.589800+0 1.738230-1 1.665000+0 2.172150-1 1.784700+0 2.933040-1 1.892300+0 3.670550-1 2.000000+0 4.433000-1 2.044000+0 4.745000-1 2.163500+0 5.598940-1 2.372600+0 7.106500-1 2.647100+0 9.072760-1 3.000000+0 1.153000+0 3.437500+0 1.442200+0 4.000000+0 1.789000+0 4.750000+0 2.210520+0 5.000000+0 2.341000+0 6.000000+0 2.818000+0 7.000000+0 3.245000+0 8.000000+0 3.629000+0 9.000000+0 3.977000+0 1.000000+1 4.296000+0 1.100000+1 4.590000+0 1.200000+1 4.860000+0 1.300000+1 5.111000+0 1.400000+1 5.341000+0 1.500000+1 5.554000+0 1.600000+1 5.753000+0 1.800000+1 6.117000+0 2.000000+1 6.443000+0 2.200000+1 6.739000+0 2.400000+1 7.008000+0 2.600000+1 7.253000+0 2.800000+1 7.477000+0 3.000000+1 7.684000+0 4.000000+1 8.525000+0 5.000000+1 9.148000+0 6.000000+1 9.634000+0 8.000000+1 1.035000+1 1.000000+2 1.086000+1 1.500000+2 1.167000+1 2.000000+2 1.215000+1 3.000000+2 1.272000+1 4.000000+2 1.304000+1 5.000000+2 1.325000+1 6.000000+2 1.341000+1 8.000000+2 1.361000+1 1.000000+3 1.374000+1 1.500000+3 1.393000+1 2.000000+3 1.404000+1 3.000000+3 1.415000+1 4.000000+3 1.421000+1 5.000000+3 1.425000+1 6.000000+3 1.427000+1 8.000000+3 1.431000+1 1.000000+4 1.433000+1 1.500000+4 1.436000+1 2.000000+4 1.437000+1 3.000000+4 1.439000+1 4.000000+4 1.440000+1 5.000000+4 1.441000+1 6.000000+4 1.441000+1 8.000000+4 1.441000+1 1.000000+5 1.442000+1 1 46000 7 8 1.064000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.614240-7 2.099900+0 1.080720-6 2.106600+0 1.503370-6 2.114000+0 2.080100-6 2.119500+0 2.589710-6 2.127900+0 3.512140-6 2.136250+0 4.614240-6 2.147000+0 6.326450-6 2.156900+0 8.217290-6 2.169000+0 1.096650-5 2.184500+0 1.524380-5 2.201800+0 2.109020-5 2.214800+0 2.627680-5 2.234200+0 3.534690-5 2.253680+0 4.614240-5 2.281500+0 6.463060-5 2.307000+0 8.489210-5 2.338200+0 1.141450-4 2.377400+0 1.580770-4 2.410200+0 2.010480-4 2.446800+0 2.557440-4 2.485900+0 3.219950-4 2.532900+0 4.120850-4 2.556430+0 4.614240-4 2.611900+0 5.883660-4 2.660400+0 7.113010-4 2.745300+0 9.520260-4 2.809000+0 1.152950-3 2.904500+0 1.485260-3 3.000000+0 1.854000-3 3.125000+0 2.390710-3 3.234400+0 2.909010-3 3.425800+0 3.917510-3 3.569300+0 4.750470-3 3.784700+0 6.106890-3 4.000000+0 7.565000-3 4.250000+0 9.347450-3 4.625000+0 1.214840-2 5.000000+0 1.506000-2 5.500000+0 1.905720-2 6.000000+0 2.311000-2 6.750000+0 2.914510-2 7.000000+0 3.113000-2 8.000000+0 3.889000-2 9.000000+0 4.632000-2 1.000000+1 5.337000-2 1.100000+1 6.005000-2 1.200000+1 6.634000-2 1.300000+1 7.228000-2 1.400000+1 7.792000-2 1.500000+1 8.326000-2 1.600000+1 8.834000-2 1.800000+1 9.774000-2 2.000000+1 1.063000-1 2.200000+1 1.141000-1 2.400000+1 1.213000-1 2.600000+1 1.280000-1 2.800000+1 1.341000-1 3.000000+1 1.399000-1 4.000000+1 1.636000-1 5.000000+1 1.816000-1 6.000000+1 1.959000-1 8.000000+1 2.175000-1 1.000000+2 2.332000-1 1.500000+2 2.592000-1 2.000000+2 2.754000-1 3.000000+2 2.953000-1 4.000000+2 3.072000-1 5.000000+2 3.153000-1 6.000000+2 3.213000-1 8.000000+2 3.294000-1 1.000000+3 3.348000-1 1.500000+3 3.428000-1 2.000000+3 3.473000-1 3.000000+3 3.522000-1 4.000000+3 3.551000-1 5.000000+3 3.569000-1 6.000000+3 3.581000-1 8.000000+3 3.597000-1 1.000000+4 3.608000-1 1.500000+4 3.622000-1 2.000000+4 3.630000-1 3.000000+4 3.638000-1 4.000000+4 3.643000-1 5.000000+4 3.646000-1 6.000000+4 3.647000-1 8.000000+4 3.649000-1 1.000000+5 3.651000-1 1 46000 7 8 1.064000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 46000 7 9 1.064000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.600000+1 1.000000+5 4.600000+1 5.000000+5 4.599200+1 7.500000+5 4.597850+1 9.375000+5 4.597110+1 1.000000+6 4.596900+1 1.500000+6 4.592900+1 2.000000+6 4.587500+1 2.500000+6 4.580500+1 3.000000+6 4.572000+1 3.750000+6 4.556200+1 4.000000+6 4.550700+1 4.750000+6 4.530670+1 5.000000+6 4.523800+1 5.875000+6 4.495940+1 6.500000+6 4.473480+1 6.625000+6 4.468600+1 7.000000+6 4.454500+1 8.000000+6 4.412730+1 8.500000+6 4.390570+1 9.000000+6 4.367500+1 1.000000+7 4.318500+1 1.109400+7 4.261170+1 1.187500+7 4.218670+1 1.203100+7 4.209960+1 1.250000+7 4.183800+1 1.375000+7 4.111080+1 1.437500+7 4.074070+1 1.500000+7 4.036600+1 1.625000+7 3.960000+1 1.687500+7 3.921530+1 1.750000+7 3.882900+1 1.937500+7 3.766010+1 2.000000+7 3.727400+1 2.250000+7 3.573460+1 2.500000+7 3.423900+1 2.875000+7 3.211430+1 3.000000+7 3.144400+1 3.500000+7 2.896820+1 3.750000+7 2.786050+1 4.000000+7 2.683600+1 4.750000+7 2.421160+1 5.000000+7 2.347200+1 5.500000+7 2.216370+1 6.000000+7 2.103600+1 6.750000+7 1.959860+1 7.000000+7 1.916900+1 7.750000+7 1.796750+1 8.000000+7 1.758900+1 8.750000+7 1.648930+1 9.000000+7 1.613400+1 9.750000+7 1.508730+1 1.000000+8 1.474700+1 1.062500+8 1.391080+1 1.144500+8 1.285920+1 1.187500+8 1.233070+1 1.214800+8 1.200290+1 1.250000+8 1.159100+1 1.359400+8 1.039200+1 1.500000+8 9.084300+0 1.671900+8 7.844670+0 1.750000+8 7.391950+0 1.789100+8 7.187400+0 1.929700+8 6.557620+0 2.000000+8 6.297400+0 2.125000+8 5.908470+0 2.289100+8 5.503600+0 2.375000+8 5.327300+0 2.500000+8 5.102900+0 2.750000+8 4.721400+0 2.875000+8 4.534310+0 3.000000+8 4.337300+0 3.500000+8 3.571600+0 3.812500+8 3.239700+0 3.937500+8 3.108690+0 4.000000+8 3.039400+0 4.125000+8 2.892200+0 4.234400+8 2.759530+0 4.750000+8 2.190210+0 5.000000+8 1.975100+0 5.125000+8 1.887510+0 5.343800+8 1.757770+0 5.630900+8 1.620210+0 6.000000+8 1.478800+0 6.343800+8 1.370810+0 6.578100+8 1.309660+0 6.859400+8 1.249490+0 7.000000+8 1.224800+0 7.250000+8 1.188770+0 8.000000+8 1.103800+0 8.250000+8 1.074210+0 8.687500+8 1.019720+0 9.261700+8 9.476660-1 1.000000+9 8.618000-1 1.117200+9 7.471130-1 1.206900+9 6.719910-1 1.280200+9 6.162270-1 1.358700+9 5.608850-1 1.375000+9 5.498970-1 1.429300+9 5.144190-1 1.500000+9 4.708000-1 1.562500+9 4.345070-1 1.617200+9 4.046660-1 1.712900+9 3.569300-1 1.784700+9 3.248300-1 1.892300+9 2.823400-1 2.000000+9 2.459700-1 2.139200+9 2.067590-1 2.272600+9 1.759620-1 2.443000+9 1.442340-1 2.602800+9 1.205590-1 2.825100+9 9.498400-2 3.097000+9 7.212670-2 3.334900+9 5.746270-2 3.543000+9 4.755880-2 3.907300+9 3.483020-2 4.385300+9 2.394180-2 5.000000+9 1.551800-2 5.750000+9 9.713840-3 6.875000+9 5.304150-3 8.000000+9 3.166800-3 1.00000+10 1.483800-3 1.20500+10 7.927360-4 1.41820+10 4.610330-4 1.71110+10 2.484030-4 2.01380+10 1.460170-4 2.41190+10 8.148680-5 2.88610+10 4.584240-5 3.54590+10 2.383730-5 4.35270+10 1.250110-5 5.67620+10 5.460530-6 7.22040+10 2.594170-6 9.07350+10 1.286250-6 1.00000+11 9.554000-7 1.34280+11 3.895640-7 1.77440+11 1.677120-7 2.63330+11 5.127020-8 3.75720+11 1.778260-8 6.61190+11 3.349130-9 1.48990+12 3.12159-10 4.26460+12 1.50134-11 1.00000+14 1.86700-15 5.62340+14 1.33068-17 7.49890+15 7.57353-21 1.00000+17 4.16110-24 1 46000 7 0 1.064000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 3.90000-12 1.000000+2 3.90000-10 1.000000+3 3.900000-8 1.000000+4 3.900000-6 1.000000+5 3.900000-4 5.000000+5 9.750000-3 7.500000+5 2.193750-2 9.375000+5 3.427734-2 1.000000+6 3.900000-2 1.500000+6 8.810000-2 2.000000+6 1.559000-1 2.500000+6 2.421000-1 3.000000+6 3.462000-1 3.750000+6 5.337770-1 4.000000+6 6.043000-1 4.750000+6 8.380940-1 5.000000+6 9.230000-1 5.875000+6 1.244230+0 6.500000+6 1.494330+0 6.625000+6 1.546070+0 7.000000+6 1.705000+0 8.000000+6 2.149780+0 8.500000+6 2.381770+0 9.000000+6 2.618800+0 1.000000+7 3.103000+0 1.109400+7 3.641030+0 1.187500+7 4.026730+0 1.203100+7 4.103380+0 1.250000+7 4.334200+0 1.375000+7 4.941780+0 1.437500+7 5.240900+0 1.500000+7 5.536000+0 1.625000+7 6.111850+0 1.687500+7 6.392060+0 1.750000+7 6.668500+0 1.937500+7 7.467040+0 2.000000+7 7.725000+0 2.250000+7 8.714340+0 2.500000+7 9.654500+0 2.875000+7 1.100140+1 3.000000+7 1.144100+1 3.500000+7 1.315950+1 3.750000+7 1.399870+1 4.000000+7 1.482400+1 4.750000+7 1.719570+1 5.000000+7 1.794300+1 5.500000+7 1.935510+1 6.000000+7 2.065300+1 6.750000+7 2.238150+1 7.000000+7 2.290400+1 7.750000+7 2.432370+1 8.000000+7 2.475600+1 8.750000+7 2.594730+1 9.000000+7 2.631600+1 9.750000+7 2.734840+1 1.000000+8 2.767700+1 1.062500+8 2.845700+1 1.144500+8 2.941130+1 1.187500+8 2.988800+1 1.214800+8 3.017960+1 1.250000+8 3.055000+1 1.359400+8 3.162990+1 1.500000+8 3.288800+1 1.671900+8 3.423770+1 1.750000+8 3.479210+1 1.789100+8 3.505530+1 1.929700+8 3.593980+1 2.000000+8 3.634900+1 2.125000+8 3.701690+1 2.289100+8 3.780850+1 2.375000+8 3.818970+1 2.500000+8 3.870300+1 2.750000+8 3.961010+1 2.875000+8 4.001440+1 3.000000+8 4.038900+1 3.500000+8 4.162700+1 3.812500+8 4.222440+1 3.937500+8 4.242890+1 4.000000+8 4.252900+1 4.125000+8 4.270790+1 4.234400+8 4.286070+1 4.750000+8 4.343440+1 5.000000+8 4.365800+1 5.125000+8 4.375440+1 5.343800+8 4.391070+1 5.630900+8 4.409390+1 6.000000+8 4.429300+1 6.343800+8 4.445050+1 6.578100+8 4.455010+1 6.859400+8 4.465770+1 7.000000+8 4.471000+1 7.250000+8 4.479230+1 8.000000+8 4.501900+1 8.250000+8 4.508170+1 8.687500+8 4.518710+1 9.261700+8 4.530980+1 1.000000+9 4.544500+1 1.117200+9 4.560600+1 1.206900+9 4.569400+1 1.280200+9 4.575580+1 1.358700+9 4.580770+1 1.375000+9 4.581820+1 1.429300+9 4.584410+1 1.500000+9 4.587600+1 1.562500+9 4.589370+1 1.617200+9 4.590870+1 1.712900+9 4.593360+1 1.784700+9 4.594400+1 1.892300+9 4.595790+1 2.000000+9 4.597100+1 2.139200+9 4.598000+1 2.272600+9 4.598800+1 2.443000+9 4.599540+1 2.602800+9 4.599870+1 2.825100+9 4.600300+1 3.097000+9 4.600640+1 3.334900+9 4.600540+1 3.543000+9 4.600460+1 3.907300+9 4.600330+1 4.385300+9 4.600180+1 5.000000+9 4.600000+1 5.750000+9 4.600000+1 6.875000+9 4.600000+1 8.000000+9 4.600000+1 1.00000+10 4.600000+1 1.20500+10 4.600000+1 1.41820+10 4.600000+1 1.71110+10 4.600000+1 2.01380+10 4.600000+1 2.41190+10 4.600000+1 2.88610+10 4.600000+1 3.54590+10 4.600000+1 4.35270+10 4.600000+1 5.67620+10 4.600000+1 7.22040+10 4.600000+1 9.07350+10 4.600000+1 1.00000+11 4.600000+1 1.34280+11 4.600000+1 1.77440+11 4.600000+1 2.63330+11 4.600000+1 3.75720+11 4.600000+1 6.61190+11 4.600000+1 1.48990+12 4.600000+1 4.26460+12 4.600000+1 1.00000+14 4.600000+1 5.62340+14 4.600000+1 7.49890+15 4.600000+1 1.00000+17 4.600000+1 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.674807-6 0.0 1.678929-6 3.092455-8 1.683051-6 6.119115-8 1.687174-6 1.117706-7 1.691296-6 1.884607-7 1.695418-6 2.933375-7 1.699541-6 4.214715-7 1.703663-6 5.590141-7 1.707785-6 6.844335-7 1.711908-6 7.735594-7 1.716030-6 8.070677-7 1.720152-6 7.772849-7 1.724275-6 6.910420-7 1.728397-6 5.671300-7 1.736642-6 3.004698-7 1.740764-6 1.939728-7 1.744886-6 1.155939-7 1.749009-6 6.358917-8 1.753131-6 3.229129-8 1.757253-6 0.0 2.159409-6 0.0 2.164724-6 3.910832-8 2.170039-6 7.738459-8 2.175354-6 1.413493-7 2.180669-6 2.383343-7 2.185984-6 3.709654-7 2.191300-6 5.330084-7 2.196615-6 7.069499-7 2.201930-6 8.655599-7 2.207245-6 9.782718-7 2.212560-6 1.020648-6 2.217875-6 9.829832-7 2.223190-6 8.739172-7 2.228505-6 7.172135-7 2.239136-6 3.799852-7 2.244451-6 2.453052-7 2.249766-6 1.461844-7 2.255081-6 8.041722-8 2.260396-6 4.083675-8 2.265711-6 0.0 4.400361-6 0.0 4.416607-6 4.17603-13 4.422023-6 5.55038-13 4.432853-6 1.01382-12 4.443684-6 1.70944-12 4.454515-6 2.66074-12 4.466395-6 3.94356-12 4.485634-6 1.273490+0 4.488382-6 1.453561+0 4.499376-6 2.655048+0 4.510369-6 4.476776+0 4.522600-6 7.320366+0 4.555030-6 1.639036+1 4.566346-6 1.844838+1 4.577897-6 1.907084+1 4.589103-6 1.813304+1 4.600030-6 1.593792+1 4.631297-6 7.137490+0 4.642291-6 4.607715+0 4.653284-6 2.745868+0 4.664278-6 1.510525+0 4.678020-6 5.756341-1 4.686265-6 0.0 4.884963-6 0.0 4.906004-6 7.338103-1 4.909010-6 8.375707-1 4.921034-6 1.529891+0 4.933809-6 2.669124+0 4.946213-6 4.188482+0 4.981904-6 9.670351+0 4.994451-6 1.103377+1 5.005640-6 1.163986+1 5.018327-6 1.144693+1 5.031014-6 1.046438+1 5.057035-6 7.223871+0 5.071330-6 5.392543+0 5.077342-6 4.675289+0 5.089366-6 3.477179+0 5.101390-6 2.516862+0 5.125437-6 9.873505-1 5.133791-6 7.624612-1 5.145978-6 4.922184-1 5.158164-6 2.933270-1 5.170350-6 1.613616-1 5.188629-6 4.101876-2 5.194723-6 0.0 6.036977-6 0.0 6.040110-6 1.363348-8 6.066696-6 5.668357-7 6.069844-6 6.406750-7 6.084711-6 1.163374-6 6.100593-6 2.023050-6 6.103637-6 2.239731-6 6.133683-6 2.779380-1 6.148707-6 5.076739-1 6.164669-6 8.857096-1 6.180309-6 1.394135+0 6.225202-6 3.145818+0 6.240315-6 3.528393+0 6.255462-6 3.651441+0 6.270272-6 3.494590+0 6.286101-6 3.053929+0 6.328987-6 1.364749+0 6.344010-6 8.810343-1 6.359033-6 5.250334-1 6.374057-6 2.888252-1 6.396592-6 7.342053-2 6.404103-6 0.0 6.521580-6 0.0 6.524712-6 2.753466-8 6.553684-6 3.846632-7 6.556832-6 4.412147-7 6.567021-6 6.488906-7 6.588951-6 1.106934-1 6.599349-6 1.721193-1 6.615513-6 3.209061-1 6.632687-6 5.651695-1 6.649183-6 8.957597-1 6.681383-6 1.731002+0 6.707978-6 2.429508+0 6.717500-6 2.623544+0 6.730926-6 2.819640+0 6.753265-6 2.902343+0 6.772454-6 2.806263+0 6.832937-6 2.204672+0 6.856862-6 1.911542+0 6.876911-6 1.582758+0 6.896345-6 1.208725+0 6.920072-6 7.989516-1 6.936537-6 5.503001-1 6.953003-6 3.588616-1 6.965737-6 2.501082-1 6.969468-6 2.244837-1 6.985934-6 1.751337-1 6.991954-6 1.709340-1 7.000028-6 1.696884-1 7.009038-6 1.767612-1 7.018865-6 1.922107-1 7.034318-6 2.897031-1 7.053607-6 4.470336-1 7.085754-6 7.412852-1 7.105145-6 8.818316-1 7.120443-6 9.577663-1 7.141067-6 9.842073-1 7.167833-6 9.200585-1 7.190371-6 8.662612-1 7.201890-6 8.513606-1 7.218938-6 8.916095-1 7.238484-6 1.025079+0 7.277088-6 1.455708+0 7.300347-6 1.719358+0 7.327116-6 1.897613+0 7.349216-6 1.884051+0 7.368524-6 1.775626+0 7.435283-6 1.141723+0 7.454218-6 1.018656+0 7.473332-6 9.503369-1 7.495149-6 9.423545-1 7.524876-6 9.935281-1 7.579797-6 1.253407+0 7.614727-6 1.369685+0 7.641022-6 1.369245+0 7.705492-6 1.252355+0 7.733386-6 1.252666+0 7.823187-6 1.369759+0 8.205784-6 1.519603+0 8.643423-6 1.672215+0 1.124005-5 2.788753+0 1.524793-5 4.716588+0 1.938289-5 6.997818+0 2.513915-5 1.073573+1 3.321484-5 1.628475+1 3.715352-5 1.807834+1 4.106420-5 1.857490+1 4.520127-5 1.762605+1 4.799825-5 1.635271+1 4.822711-5 1.703310+1 4.846336-5 1.862703+1 4.869961-5 2.164575+1 4.894324-5 2.513864+1 4.906650-5 2.624619+1 4.918101-5 2.655588+1 4.933255-5 2.568031+1 4.954124-5 2.290594+1 4.985131-5 1.827280+1 4.999896-5 1.676385+1 5.019645-5 1.565797+1 5.039181-5 1.496274+1 5.200894-5 1.412766+1 5.237801-5 1.440615+1 5.282849-5 1.569863+1 5.363964-5 1.921509+1 5.389404-5 1.933594+1 5.423793-5 1.775828+1 5.467336-5 1.543229+1 5.511166-5 1.435883+1 5.668205-5 1.339232+1 5.791855-5 1.353305+1 6.538633-5 9.069946+0 6.954064-5 7.063356+0 7.344082-5 5.548624+0 7.718609-5 4.388125+0 8.119968-5 3.417236+0 8.495557-5 2.719182+0 8.637830-5 2.523579+0 8.800805-5 2.511947+0 8.946182-5 2.241923+0 9.339258-5 1.898835+0 9.758369-5 1.638495+0 1.026208-4 1.448087+0 1.071519-4 1.361879+0 1.124000-4 1.334754+0 1.190000-4 1.377099+0 1.292370-4 1.540919+0 1.740000-4 2.519562+0 2.020000-4 2.970883+0 2.423651-4 3.337473+0 2.917427-4 3.513029+0 3.337201-4 3.534354+0 3.387997-4 3.761914+0 3.483000-4 4.226981+0 3.551494-4 4.505925+0 3.598000-4 4.980976+0 3.635500-4 5.690551+0 3.666995-4 6.603377+0 3.702497-4 8.041279+0 3.748274-4 1.050491+1 3.877500-4 1.864678+1 3.960000-4 2.250893+1 4.050655-4 2.518524+1 4.190983-4 2.719593+1 4.376308-4 2.765428+1 5.133597-4 2.557378+1 5.340161-4 2.724593+1 5.705100-4 2.766933+1 6.450256-4 2.534297+1 6.638932-4 2.555999+1 8.640000-4 1.959153+1 1.048576-3 1.557748+1 1.206598-3 1.303631+1 1.384989-3 1.086638+1 1.589462-3 9.006802+0 1.829558-3 7.384987+0 2.097152-3 6.063637+0 2.411408-3 4.934586+0 2.793962-3 3.949197+0 3.094396-3 3.392158+0 3.115326-3 3.504429+0 3.127525-3 3.772140+0 3.137694-3 4.214737+0 3.146621-3 4.813520+0 3.160297-3 6.094209+0 3.186505-3 8.855184+0 3.201876-3 9.925064+0 3.221997-3 1.052388+1 3.292868-3 1.073109+1 3.318998-3 1.154933+1 3.360374-3 1.329857+1 3.390779-3 1.363121+1 3.531821-3 1.302063+1 3.617811-3 1.410063+1 4.394309-3 1.062343+1 5.021087-3 8.613474+0 5.704568-3 7.029351+0 6.557205-3 5.602385+0 7.473808-3 4.503326+0 8.475775-3 3.641716+0 9.644377-3 2.919281+0 1.091548-2 2.354995+0 1.208468-2 1.971268+0 1.354937-2 1.610192+0 1.506755-2 1.333492+0 1.684432-2 1.092235+0 1.890096-2 8.870415-1 2.130045-2 7.135928-1 2.363607-2 5.909137-1 2.381128-2 6.004152-1 2.389701-2 6.352981-1 2.397203-2 7.086157-1 2.403046-2 8.101604-1 2.408023-2 9.370474-1 2.414418-2 1.161845+0 2.421778-2 1.501751+0 2.443239-2 2.676912+0 2.454780-2 3.131208+0 2.465462-2 3.357838+0 2.484846-2 3.465780+0 2.903819-2 2.708735+0 3.311311-2 2.182746+0 3.758374-2 1.760754+0 4.269516-2 1.410552+0 4.820312-2 1.139655+0 5.436387-2 9.188358-1 6.130540-2 7.388402-1 6.872969-2 5.987933-1 7.804407-2 4.730604-1 8.734798-2 3.828758-1 9.877324-2 3.034462-1 1.103999-1 2.456000-1 1.223751-1 2.018842-1 1.333733-1 1.712885-1 1.488364-1 1.389013-1 1.644510-1 1.147897-1 1.831302-1 9.346178-2 2.027509-1 7.706312-2 2.246594-1 6.355811-2 2.483133-1 5.275704-2 2.762540-1 4.337625-2 3.054921-1 3.621296-2 3.407141-1 2.988787-2 3.788070-1 2.491083-2 4.224368-1 2.079079-2 4.794919-1 1.698083-2 5.370673-1 1.429174-2 5.952336-1 1.231228-2 6.685071-1 1.050188-2 7.539521-1 9.003767-3 8.499854-1 7.802366-3 9.549926-1 6.850205-3 1.127267+0 5.742669-3 1.347258+0 4.736224-3 1.619761+0 3.882256-3 1.947381+0 3.182264-3 2.341267+0 2.608484-3 2.814822+0 2.138159-3 3.384160+0 1.752637-3 4.068655+0 1.436627-3 4.891600+0 1.177595-3 5.880996+0 9.652679-4 7.070513+0 7.912247-4 8.500626+0 6.485624-4 9.760024+0 5.587155-4 1.000000+1 1.133579-3 1 46000 7 0 1.064000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.599770+1 3.031716-6-4.586220+1 4.188882-6-4.455196+1 4.400361-6-4.240461+1 4.461383-6-3.982624+1 4.514148-6-3.452229+1 4.531836-6-3.429203+1 4.550173-6-3.683537+1 4.567594-6-4.230296+1 4.579111-6-4.634087+1 4.601089-6-3.898696+1 4.618769-6-3.626342+1 4.631297-6-3.593403+1 4.664278-6-3.889605+1 4.709417-6-4.294432+1 4.828755-6-4.657300+1 4.896987-6-4.375310+1 4.950190-6-4.089547+1 4.977344-6-4.222818+1 5.005456-6-4.635101+1 5.039708-6-4.061953+1 5.065319-6-3.895230+1 5.119425-6-4.013404+1 5.211070-6-4.324840+1 5.507293-6-4.531461+1 6.094090-6-4.667372+1 6.206169-6-4.570488+1 6.250044-6-4.682314+1 6.310375-6-4.457585+1 6.588951-6-4.708563+1 6.700518-6-4.656866+1 6.730926-6-4.731948+1 6.896345-6-4.523777+1 7.116618-6-4.704109+1 7.329408-6-4.695533+1 7.473332-6-4.661168+1 1.710827-5-4.808832+1 2.691535-5-4.692667+1 3.408685-5-4.293052+1 4.363229-5-3.413890+1 4.731829-5-2.961482+1 4.792688-5-2.782739+1 4.858148-5-2.415278+1 4.875959-5-2.436394+1 4.894324-5-2.619004+1 4.918101-5-3.017382+1 4.944168-5-2.541340+1 4.958645-5-2.396651+1 4.976272-5-2.354173+1 5.035333-5-2.627884+1 5.080467-5-2.767116+1 5.185182-5-2.926913+1 5.282849-5-2.703062+1 5.325460-5-2.727382+1 5.363964-5-2.914201+1 5.415125-5-2.543538+1 5.452657-5-2.471099+1 5.551664-5-2.581800+1 5.744408-5-2.628880+1 6.053228-5-2.473160+1 6.670796-5-2.416025+1 7.999794-5-2.574605+1 9.603909-5-2.839687+1 1.250000-4-3.098273+1 1.836405-4-3.270625+1 2.665238-4-3.456305+1 3.170103-4-3.764439+1 3.409772-4-4.105234+1 3.598000-4-4.568271+1 3.768747-4-5.149406+1 3.870000-4-5.107889+1 4.284487-4-3.798343+1 4.495731-4-3.357517+1 4.756544-4-3.020631+1 5.083867-4-2.777459+1 5.280000-4-2.801570+1 5.464050-4-2.554098+1 5.577500-4-2.467558+1 5.800000-4-2.197154+1 6.163793-4-1.917983+1 6.450256-4-1.791601+1 6.575325-4-1.754568+1 6.794595-4-1.584119+1 7.300000-4-1.347612+1 8.095144-4-1.096241+1 8.893291-4-9.281540+0 9.720000-4-8.083097+0 1.086926-3-7.006683+0 1.206598-3-6.334730+0 1.384989-3-5.833228+0 1.589462-3-5.675269+0 1.829558-3-5.806194+0 2.097152-3-6.220291+0 2.411408-3-7.040403+0 2.662438-3-8.083248+0 2.843779-3-9.275178+0 2.966111-3-1.056492+1 3.045743-3-1.193703+1 3.094396-3-1.338037+1 3.127525-3-1.521546+1 3.160297-3-1.730683+1 3.178803-3-1.743329+1 3.211115-3-1.575367+1 3.240652-3-1.435582+1 3.271703-3-1.382998+1 3.328619-3-1.405818+1 3.360374-3-1.304824+1 3.404915-3-1.122615+1 3.456930-3-1.003788+1 3.514582-3-9.403600+0 3.572366-3-9.288396+0 3.605272-3-8.721537+0 3.667188-3-7.289732+0 3.748164-3-6.137148+0 3.864549-3-4.995961+0 3.981072-3-4.147764+0 4.122515-3-3.352708+0 4.278476-3-2.679400+0 4.450794-3-2.104265+0 4.630417-3-1.645719+0 4.811492-3-1.280790+0 5.021087-3-9.568513-1 5.158222-3-7.801221-1 5.329896-3-5.972614-1 5.436414-3-4.994310-1 5.551048-3-4.082563-1 5.704568-3-3.022888-1 5.837810-3-2.271919-1 5.984492-3-1.553021-1 6.125013-3-9.765785-2 6.256234-3-5.454903-2 6.386892-3-1.479417-2 6.453168-3 1.032796-3 6.512749-3 1.549370-2 6.536007-3 2.085742-2 6.687648-3 5.036825-2 6.823218-3 7.058850-2 7.001233-3 9.101082-2 7.282861-3 1.062943-1 7.473808-3 1.114241-1 7.696547-3 1.111803-1 7.962354-3 1.058627-1 8.197483-3 9.511002-2 8.475775-3 7.756290-2 8.756766-3 5.497266-2 9.057469-3 2.763215-2 9.310377-3 1.818851-3 9.331200-3-2.777144-4 9.418928-3-9.507789-3 9.644377-3-3.446158-2 9.828789-3-5.427429-2 1.091548-2-1.822739-1 1.684432-2-9.096342-1 1.890096-2-1.199935+0 2.046616-2-1.483060+0 2.162719-2-1.775200+0 2.247397-2-2.086758+0 2.304507-2-2.402058+0 2.343094-2-2.723254+0 2.371786-2-3.104975+0 2.391939-2-3.566505+0 2.421778-2-4.484456+0 2.432338-2-4.576885+0 2.445869-2-4.350958+0 2.478962-2-3.229781+0 2.496410-2-2.826846+0 2.518456-2-2.480960+0 2.555253-2-2.090685+0 2.603736-2-1.730981+0 2.668923-2-1.386115+0 2.739758-2-1.116697+0 2.817230-2-8.989655-1 2.903819-2-7.114104-1 3.001537-2-5.446472-1 3.090295-2-4.223044-1 3.164971-2-3.376566-1 3.266022-2-2.446395-1 3.311311-2-2.086544-1 3.400000-2-1.465964-1 3.486257-2-9.603242-2 3.552380-2-6.373166-2 3.653926-2-2.010052-2 3.738314-2 1.005868-2 3.758374-2 1.734428-2 3.857003-2 4.626619-2 3.945425-2 6.703337-2 4.059537-2 8.980203-2 4.160181-2 1.053962-1 4.269516-2 1.193979-1 4.388132-2 1.315931-1 4.697067-2 1.511487-1 4.933948-2 1.574981-1 5.308844-2 1.561055-1 5.855297-2 1.440983-1 6.872969-2 1.050827-1 8.254831-2 4.952421-2 8.916247-2 2.542613-2 9.485589-2 6.685867-3 9.600698-2 2.986519-3 9.680195-2 5.219957-4 9.773003-2-2.330468-3 1.016666-1-1.406298-2 1.074399-1-3.012429-2 1.166221-1-5.257324-2 1.293369-1-7.874176-2 1.429948-1-1.017704-1 1.644510-1-1.298417-1 1.964862-1-1.596244-1 2.403637-1-1.860004-1 3.054921-1-2.088924-1 4.224368-1-2.289835-1 6.685071-1-2.439304-1 1.477239+0-2.521749-1 4.461192+0-2.541801-1 1.000000+1-2.542778-1 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.352374-3 1.081209-6 6.063112-3 1.114997-6 6.905239-3 1.149840-6 7.881806-3 1.185773-6 9.016213-3 1.222828-6 1.033632-2 1.261042-6 1.187539-2 1.300449-6 1.367325-2 1.341088-6 1.577779-2 1.382997-6 1.824671-2 1.426216-6 2.114990-2 1.470785-6 2.457228-2 1.516747-6 2.861758-2 1.564146-6 3.341305-2 1.613025-6 3.911571-2 1.663432-6 4.592038-2 1.715414-6 5.407036-2 1.769015-6 6.386422-2 1.820942-6 7.491565-2 1.871245-6 8.733208-2 1.919976-6 1.012213-1 1.967185-6 1.166958-1 2.100142-6 1.728326-1 2.141720-6 1.949810-1 2.181999-6 2.192802-1 2.221019-6 2.458756-1 2.258820-6 2.749185-1 2.295440-6 3.065664-1 2.330915-6 3.409835-1 2.365282-6 3.783407-1 2.398575-6 4.188158-1 2.430827-6 4.625935-1 2.462071-6 5.098660-1 2.492339-6 5.608325-1 2.521662-6 6.156997-1 2.550067-6 6.746820-1 2.577586-6 7.380013-1 2.604244-6 8.058873-1 2.655087-6 9.563170-1 2.702802-6 1.128013+0 2.725548-6 1.222795+0 2.747582-6 1.324266+0 2.790274-6 1.550065+0 2.830297-6 1.803738+0 2.867819-6 2.088895+0 2.902996-6 2.408332+0 2.935974-6 2.764895+0 2.966891-6 3.161532+0 2.995876-6 3.601278+0 3.023050-6 4.087215+0 3.048525-6 4.622325+0 3.072407-6 5.209409+0 3.094797-6 5.851499+0 3.115788-6 6.552052+0 3.135467-6 7.314540+0 3.153916-6 8.142225+0 3.171212-6 9.038198+0 3.187426-6 1.000542+1 3.202628-6 1.104673+1 3.216879-6 1.216482+1 3.230240-6 1.336222+1 3.242765-6 1.464129+1 3.254508-6 1.600426+1 3.265517-6 1.745322+1 3.275838-6 1.899015+1 3.285513-6 2.061692+1 3.294584-6 2.233523+1 3.303088-6 2.414659+1 3.311061-6 2.605234+1 3.318535-6 2.805387+1 3.325542-6 3.015284+1 3.332111-6 3.235139+1 3.344429-6 3.722917+1 3.355206-6 4.257711+1 3.364637-6 4.842307+1 3.372888-6 5.476986+1 3.380108-6 6.157736+1 3.386426-6 6.875810+1 3.391954-6 7.618708+1 3.396791-6 8.371957+1 3.401023-6 9.120983+1 3.407966-6 1.055585+2 3.417890-6 1.311259+2 3.431704-6 1.776857+2 3.439093-6 2.076775+2 3.443315-6 2.261455+2 3.447537-6 2.453577+2 3.455981-6 2.850165+2 3.457037-6 2.899984+2 3.464425-6 3.242152+2 3.467328-6 3.370601+2 3.472869-6 3.600148+2 3.475772-6 3.709871+2 3.478543-6 3.806500+2 3.481314-6 3.894327+2 3.485008-6 3.996465+2 3.488570-6 4.077633+2 3.493980-6 4.166962+2 3.498202-6 4.208438+2 3.502952-6 4.227619+2 3.508163-6 4.220390+2 3.516824-6 4.168045+2 3.525268-6 4.118474+2 3.529811-6 4.116081+2 3.531978-6 4.125305+2 3.535673-6 4.160900+2 3.538641-6 4.210942+2 3.541940-6 4.292549+2 3.545386-6 4.410547+2 3.548866-6 4.566818+2 3.550155-6 4.634681+2 3.554302-6 4.890990+2 3.558126-6 5.179695+2 3.562566-6 5.577585+2 3.567804-6 6.128994+2 3.579894-6 7.672997+2 3.585856-6 8.516710+2 3.590779-6 9.218426+2 3.595897-6 9.926019+2 3.600271-6 1.049293+3 3.604799-6 1.102528+3 3.608854-6 1.144154+3 3.612106-6 1.172694+3 3.616170-6 1.201567+3 3.618638-6 1.215138+3 3.627133-6 1.237441+3 3.629510-6 1.236737+3 3.636097-6 1.219141+3 3.640235-6 1.196868+3 3.644245-6 1.167706+3 3.648659-6 1.127880+3 3.652937-6 1.082588+3 3.656740-6 1.037727+3 3.660406-6 9.911821+2 3.665975-6 9.160450+2 3.670320-6 8.551242+2 3.675209-6 7.857623+2 3.679012-6 7.321187+2 3.687704-6 6.138643+2 3.690692-6 5.753925+2 3.696396-6 5.059675+2 3.702914-6 4.339140+2 3.710746-6 3.584132+2 3.726717-6 2.411127+2 3.733019-6 2.069257+2 3.739284-6 1.786165+2 3.745500-6 1.553416+2 3.751667-6 1.362479+2 3.757786-6 1.205748+2 3.763857-6 1.076672+2 3.769881-6 9.697689+1 3.775858-6 8.805493+1 3.781788-6 8.054097+1 3.787672-6 7.414978+1 3.793509-6 6.865800+1 3.805094-6 5.968562+1 3.816497-6 5.269338+1 3.827722-6 4.708186+1 3.840000-6 4.200913+1 3.849649-6 3.862495+1 3.860356-6 3.536304+1 3.870896-6 3.256762+1 3.881272-6 3.014883+1 3.891485-6 2.803827+1 3.901538-6 2.618278+1 3.921331-6 2.305558+1 3.940505-6 2.055293+1 3.959080-6 1.851131+1 3.977075-6 1.681997+1 3.994507-6 1.540081+1 4.011395-6 1.419683+1 4.027755-6 1.316521+1 4.043603-6 1.227300+1 4.074310-6 1.078875+1 4.103097-6 9.630017+0 4.130086-6 8.705340+0 4.155387-6 7.954867+0 4.179107-6 7.336869+0 4.201345-6 6.820938+0 4.243040-6 5.986584+0 4.279524-6 5.370311+0 4.311447-6 4.902795+0 4.339380-6 4.540149+0 4.388262-6 3.988974+0 4.424924-6 3.632773+0 4.546071-6 2.705970+0 4.702341-6 1.880182+0 4.758151-6 1.648965+0 4.822461-6 1.408250+0 4.858071-6 1.283986+0 4.893680-6 1.165590+0 4.929290-6 1.052124+0 4.953030-6 9.786596-1 4.976770-6 9.065560-1 5.000509-6 8.354867-1 5.024249-6 7.651141-1 5.036119-6 7.300802-1 5.047989-6 6.950886-1 5.059859-6 6.600948-1 5.086974-6 5.799125-1 5.110699-6 5.091594-1 5.131459-6 4.465747-1 5.149624-6 3.912618-1 5.165519-6 3.426001-1 5.179426-6 3.001657-1 5.191595-6 2.636481-1 5.202243-6 2.327714-1 5.211560-6 2.072333-1 5.226846-6 1.706511-1 5.233087-6 1.586826-1 5.238549-6 1.502361-1 5.243328-6 1.447715-1 5.247509-6 1.417622-1 5.254826-6 1.413744-1 5.260315-6 1.460817-1 5.264431-6 1.530254-1 5.267518-6 1.604432-1 5.269833-6 1.673841-1 5.273306-6 1.802265-1 5.275911-6 1.919452-1 5.278072-6 2.031429-1 5.287769-6 2.723220-1 5.292012-6 3.138523-1 5.298789-6 3.970730-1 5.309929-6 5.870289-1 5.315743-6 7.166739-1 5.328731-6 1.093798+0 5.333731-6 1.273924+0 5.346001-6 1.802661+0 5.349572-6 1.979548+0 5.359180-6 2.504000+0 5.364521-6 2.823336+0 5.370101-6 3.174931+0 5.375509-6 3.529966+0 5.380589-6 3.872865+0 5.386282-6 4.263492+0 5.391910-6 4.651129+0 5.397702-6 5.045655+0 5.405228-6 5.541417+0 5.411102-6 5.906936+0 5.416296-6 6.208995+0 5.422343-6 6.529990+0 5.423959-6 6.609516+0 5.437356-6 7.150910+0 5.439761-6 7.223886+0 5.450740-6 7.455774+0 5.456826-6 7.511257+0 5.459259-6 7.518885+0 5.466558-6 7.493055+0 5.471233-6 7.439504+0 5.473900-6 7.396628+0 5.478568-6 7.301181+0 5.484695-6 7.139268+0 5.490603-6 6.947893+0 5.497449-6 6.689140+0 5.502325-6 6.484641+0 5.513754-6 5.957201+0 5.518652-6 5.717248+0 5.528447-6 5.226373+0 5.536541-6 4.820699+0 5.545583-6 4.379217+0 5.557807-6 3.818500+0 5.591265-6 2.590490+0 5.604648-6 2.233121+0 5.611340-6 2.080286+0 5.624723-6 1.819865+0 5.638107-6 1.610521+0 5.651490-6 1.441593+0 5.664874-6 1.303753+0 5.678257-6 1.189405+0 5.691640-6 1.092681+0 5.705024-6 1.009213+0 5.736563-6 8.482661-1 5.754138-6 7.732714-1 5.834359-6 4.943669-1 5.854414-6 4.322597-1 5.869456-6 3.869028-1 5.892018-6 3.222426-1 5.914580-6 2.662392-1 5.923979-6 2.474901-1 5.931258-6 2.356061-1 5.943696-6 2.219701-1 5.953141-6 2.183985-1 5.956289-6 2.186931-1 5.970878-6 2.308782-1 5.972702-6 2.337286-1 5.985467-6 2.623857-1 5.991125-6 2.800011-1 5.996527-6 2.995795-1 6.004020-6 3.310178-1 6.021606-6 4.216748-1 6.031523-6 4.804551-1 6.035403-6 5.043347-1 6.043052-6 5.520321-1 6.047422-6 5.792646-1 6.053791-6 6.183457-1 6.060160-6 6.560396-1 6.074718-6 7.332055-1 6.076538-6 7.416867-1 6.089276-6 7.918887-1 6.094280-6 8.067408-1 6.103834-6 8.267112-1 6.110050-6 8.335846-1 6.113596-6 8.353226-1 6.120616-6 8.341326-1 6.124459-6 8.309328-1 6.131442-6 8.206994-1 6.138425-6 8.051119-1 6.142966-6 7.923339-1 6.147508-6 7.776570-1 6.157277-6 7.404530-1 6.160533-6 7.265814-1 6.175122-6 6.577927-1 6.189711-6 5.826522-1 6.205740-6 4.993921-1 6.215933-6 4.487970-1 6.226162-6 4.013594-1 6.246532-6 3.203737-1 6.255333-6 2.918369-1 6.261832-6 2.734348-1 6.270617-6 2.522034-1 6.277132-6 2.391397-1 6.284781-6 2.266343-1 6.292431-6 2.170561-1 6.297346-6 2.123597-1 6.305948-6 2.066725-1 6.312399-6 2.043253-1 6.317237-6 2.035214-1 6.324495-6 2.036518-1 6.331752-6 2.051185-1 6.343215-6 2.093949-1 6.369825-6 2.223652-1 6.385503-6 2.277888-1 6.389423-6 2.285696-1 6.401182-6 2.292347-1 6.409021-6 2.281973-1 6.414901-6 2.266370-1 6.423720-6 2.230973-1 6.432539-6 2.182537-1 6.440378-6 2.130211-1 6.448217-6 2.070975-1 6.460728-6 1.966818-1 6.479574-6 1.802302-1 6.506002-6 1.590305-1 6.516752-6 1.516592-1 6.531479-6 1.428453-1 6.546206-6 1.353417-1 6.572672-6 1.241062-1 6.597504-6 1.147762-1 6.622622-6 1.055384-1 6.652214-6 9.460970-2 6.679358-6 8.476161-2 6.697098-6 7.854865-2 6.726973-6 6.861737-2 6.755423-6 5.984555-2 6.773595-6 5.462051-2 6.799438-6 4.775200-2 6.860294-6 3.459394-2 6.887234-6 3.020318-2 6.908210-6 2.737205-2 6.924248-6 2.554484-2 6.938374-6 2.417887-2 6.951430-6 2.312500-2 6.964071-6 2.230457-2 6.973719-6 2.181748-2 6.980183-6 2.156156-2 6.991186-6 2.126159-2 6.996187-6 2.118371-2 7.005798-6 2.114051-2 7.013659-6 2.121252-2 7.020536-6 2.135715-2 7.030351-6 2.169912-2 7.042690-6 2.236151-2 7.054450-6 2.324035-2 7.063492-6 2.408405-2 7.100667-6 2.913217-2 7.159996-6 4.273040-2 7.219830-6 6.414219-2 7.244723-6 7.563024-2 7.307747-6 1.125284-1 7.337290-6 1.342110-1 7.365909-6 1.582527-1 7.393634-6 1.845629-1 7.445176-6 2.407121-1 7.483927-6 2.851474-1 7.530886-6 3.278162-1 7.566820-6 3.399780-1 7.568161-6 3.399826-1 7.607365-6 3.255934-1 7.646788-6 2.877391-1 7.684091-6 2.402383-1 7.701873-6 2.162377-1 7.719099-6 1.930608-1 7.735787-6 1.711089-1 7.753941-6 1.481632-1 7.767614-6 1.317252-1 7.782786-6 1.145114-1 7.797484-6 9.902718-2 7.811722-6 8.530714-2 7.827913-6 7.145308-2 7.838878-6 6.326009-2 7.864767-6 4.835761-2 7.889039-6 4.116487-2 7.911793-6 4.180506-2 7.933125-6 5.037841-2 7.953277-6 6.711792-2 7.971874-6 9.157337-2 7.989451-6 1.242275-1 8.005930-6 1.648744-1 8.021378-6 2.134305-1 8.035862-6 2.697755-1 8.049440-6 3.337557-1 8.062169-6 4.051894-1 8.074103-6 4.838702-1 8.096479-6 6.686723-1 8.116058-6 8.812489-1 8.148179-6 1.378883+0 8.161296-6 1.657323+0 8.172773-6 1.950172+0 8.182815-6 2.252823+0 8.200514-6 2.920886+0 8.213569-6 3.555662+0 8.223454-6 4.139119+0 8.238282-6 5.223194+0 8.253110-6 6.623628+0 8.273424-6 9.220531+0 8.303895-6 1.516720+1 8.319131-6 1.936703+1 8.334366-6 2.458164+1 8.345546-6 2.913449+1 8.357530-6 3.475705+1 8.368445-6 4.058137+1 8.374994-6 4.440563+1 8.385151-6 5.082679+1 8.395308-6 5.783173+1 8.415622-6 7.344759+1 8.418163-6 7.553365+1 8.435951-6 9.075746+1 8.443019-6 9.702093+1 8.456512-6 1.090855+2 8.466954-6 1.183213+2 8.477074-6 1.269935+2 8.487515-6 1.354583+2 8.495105-6 1.411896+2 8.502776-6 1.465332+2 8.511691-6 1.520790+2 8.519482-6 1.562587+2 8.531530-6 1.613448+2 8.540938-6 1.640465+2 8.553288-6 1.657884+2 8.560832-6 1.658155+2 8.580835-6 1.621027+2 8.587249-6 1.597950+2 8.601728-6 1.527726+2 8.609936-6 1.477886+2 8.616854-6 1.430986+2 8.623404-6 1.382970+2 8.631838-6 1.316747+2 8.641309-6 1.237696+2 8.649219-6 1.168906+2 8.656847-6 1.101041+2 8.659390-6 1.078216+2 8.671040-6 9.732881+1 8.681233-6 8.823374+1 8.685260-6 8.469667+1 8.694255-6 7.696141+1 8.703251-6 6.951767+1 8.723813-6 5.391074+1 8.730881-6 4.906596+1 8.737627-6 4.470906+1 8.744374-6 4.061943+1 8.749515-6 3.768463+1 8.761081-6 3.165342+1 8.773532-6 2.603044+1 8.782205-6 2.262885+1 8.868005-6 8.056015+0 8.871076-6 8.085444+0 8.874378-6 8.156066+0 8.877155-6 8.246715+0 8.880126-6 8.375319+0 8.884665-6 8.634895+0 8.889833-6 9.023425+0 8.895290-6 9.541504+0 8.899692-6 1.004044+1 8.904754-6 1.070362+1 8.911660-6 1.176338+1 8.920478-6 1.337633+1 8.935491-6 1.678695+1 8.956679-6 2.296493+1 8.961475-6 2.456855+1 8.978255-6 3.069308+1 8.986222-6 3.383843+1 8.994978-6 3.742913+1 9.002753-6 4.070275+1 9.007751-6 4.283434+1 9.016484-6 4.657893+1 9.025113-6 5.026268+1 9.034006-6 5.399008+1 9.043307-6 5.775478+1 9.055201-6 6.227330+1 9.064580-6 6.552920+1 9.068192-6 6.669780+1 9.079497-6 7.000941+1 9.086621-6 7.180182+1 9.108790-6 7.575346+1 9.112589-6 7.617022+1 9.131299-6 7.708489+1 9.138333-6 7.694679+1 9.145048-6 7.657851+1 9.154491-6 7.568717+1 9.164083-6 7.436364+1 9.174854-6 7.242240+1 9.179995-6 7.134305+1 9.191562-6 6.859951+1 9.195417-6 6.759911+1 9.206331-6 6.457339+1 9.217245-6 6.131678+1 9.233615-6 5.614899+1 9.239072-6 5.438321+1 9.255443-6 4.905815+1 9.265753-6 4.574070+1 9.282739-6 4.044686+1 9.299725-6 3.547309+1 9.310483-6 3.252895+1 9.327319-6 2.827985+1 9.354913-6 2.230984+1 9.388026-6 1.672286+1 9.418279-6 1.292458+1 9.437972-6 1.099940+1 9.449488-6 1.003959+1 9.472520-6 8.425878+0 9.495552-6 7.143500+0 9.518584-6 6.115326+0 9.541616-6 5.280561+0 9.564648-6 4.592769+0 9.587680-6 4.017255+0 9.610712-6 3.528452+0 9.702840-6 2.132242+0 9.737002-6 1.762519+0 9.771936-6 1.439378+0 9.830126-6 9.972295-1 9.895123-6 6.168686-1 9.933684-6 4.439471-1 9.972246-6 3.175267-1 9.996791-6 2.688649-1 1.002134-5 2.537391-1 1.004588-5 2.829831-1 1.005815-5 3.185174-1 1.007043-5 3.706578-1 1.008270-5 4.416038-1 1.009497-5 5.336654-1 1.012889-5 9.172278-1 1.013705-5 1.041451+0 1.014494-5 1.174551+0 1.016861-5 1.653409+0 1.017875-5 1.895930+0 1.018387-5 2.026802+0 1.019625-5 2.366327+0 1.020633-5 2.665384+0 1.022878-5 3.396816+0 1.023647-5 3.664568+0 1.024308-5 3.899653+0 1.025813-5 4.446421+0 1.026757-5 4.793221+0 1.027860-5 5.195710+0 1.028511-5 5.429218+0 1.029492-5 5.771959+0 1.030110-5 5.980374+0 1.031116-5 6.303331+0 1.032294-5 6.650153+0 1.033834-5 7.039655+0 1.034855-5 7.250994+0 1.035853-5 7.417361+0 1.036955-5 7.551404+0 1.038058-5 7.630626+0 1.038213-5 7.637288+0 1.040545-5 7.602421+0 1.041580-5 7.507447+0 1.043235-5 7.260569+0 1.044356-5 7.032379+0 1.045069-5 6.864458+0 1.045604-5 6.727948+0 1.046407-5 6.507811+0 1.047209-5 6.271351+0 1.048031-5 6.014818+0 1.048647-5 5.814513+0 1.049572-5 5.504109+0 1.050496-5 5.185199+0 1.051637-5 4.785400+0 1.052779-5 4.385135+0 1.053402-5 4.168608+0 1.054337-5 3.849154+0 1.055272-5 3.538728+0 1.057765-5 2.774406+0 1.058487-5 2.574558+0 1.062226-5 1.729496+0 1.063022-5 1.594990+0 1.063546-5 1.515557+0 1.071409-5 1.252414+0 1.071760-5 1.282667+0 1.072814-5 1.395422+0 1.073595-5 1.500208+0 1.074376-5 1.623020+0 1.075014-5 1.736811+0 1.077106-5 2.191563+0 1.079275-5 2.789127+0 1.080736-5 3.256655+0 1.082380-5 3.835321+0 1.083376-5 4.208110+0 1.083821-5 4.378818+0 1.085188-5 4.914903+0 1.085752-5 5.139405+0 1.086421-5 5.407050+0 1.087203-5 5.719303+0 1.088305-5 6.154786+0 1.088859-5 6.369458+0 1.089565-5 6.637267+0 1.090212-5 6.875398+0 1.091391-5 7.287729+0 1.092378-5 7.606117+0 1.093333-5 7.886478+0 1.094632-5 8.216860+0 1.095862-5 8.469021+0 1.096273-5 8.538913+0 1.097224-5 8.672088+0 1.098176-5 8.763618+0 1.100921-5 8.786368+0 1.102131-5 8.683188+0 1.103099-5 8.553138+0 1.104258-5 8.344860+0 1.105249-5 8.124973+0 1.106196-5 7.882592+0 1.107142-5 7.612047+0 1.108225-5 7.272531+0 1.109110-5 6.975760+0 1.109774-5 6.743874+0 1.110770-5 6.384531+0 1.111765-5 6.015641+0 1.112904-5 5.588079+0 1.114042-5 5.160771+0 1.115712-5 4.546947+0 1.116269-5 4.348327+0 1.117704-5 3.855663+0 1.119331-5 3.338081+0 1.121005-5 2.859095+0 1.124427-5 2.066738+0 1.125290-5 1.907255+0 1.126585-5 1.697398+0 1.127879-5 1.521241+0 1.128781-5 1.417294+0 1.130134-5 1.288368+0 1.130810-5 1.235285+0 1.131486-5 1.189308+0 1.134325-5 1.065962+0 1.138450-5 1.049709+0 1.139705-5 1.075035+0 1.140525-5 1.097928+0 1.141562-5 1.133443+0 1.142599-5 1.175627+0 1.143618-5 1.222911+0 1.146676-5 1.392817+0 1.149616-5 1.581918+0 1.151052-5 1.677601+0 1.151874-5 1.732054+0 1.153313-5 1.825093+0 1.154392-5 1.891720+0 1.155201-5 1.939224+0 1.156415-5 2.005529+0 1.157662-5 2.066255+0 1.159481-5 2.139039+0 1.160871-5 2.180371+0 1.162238-5 2.208120+0 1.163681-5 2.223206+0 1.164707-5 2.225157+0 1.165686-5 2.220472+0 1.167494-5 2.196244+0 1.169236-5 2.156275+0 1.170924-5 2.105431+0 1.172564-5 2.048183+0 1.178601-5 1.828275+0 1.180976-5 1.760463+0 1.182154-5 1.733867+0 1.183476-5 1.710094+0 1.185346-5 1.687679+0 1.186649-5 1.679595+0 1.188092-5 1.677321+0 1.190047-5 1.684031+0 1.192748-5 1.707612+0 1.197469-5 1.769752+0 1.202596-5 1.838108+0 1.206415-5 1.878181+0 1.210310-5 1.908229+0 1.216673-5 1.941165+0 1.237132-5 2.020857+0 1.249528-5 2.085403+0 1.281975-5 2.297016+0 1.315527-5 2.544916+0 1.343173-5 2.778239+0 1.359261-5 2.928257+0 1.407123-5 3.437703+0 1.446842-5 3.929801+0 1.473769-5 4.306944+0 1.513561-5 4.903655+0 1.569375-5 5.892567+0 1.621810-5 6.936714+0 1.685000-5 8.406044+0 1.730000-5 9.570415+0 1.778279-5 1.092352+1 1.838859-5 1.290827+1 1.950000-5 1.703176+1 2.018366-5 1.998007+1 2.176660-5 2.823563+1 2.307170-5 3.669113+1 2.505487-5 5.270140+1 2.700829-5 7.289707+1 2.951209-5 1.059966+2 3.154159-5 1.387900+2 3.276800-5 1.611129+2 3.400000-5 1.851907+2 3.528294-5 2.114881+2 3.652286-5 2.378501+2 3.705195-5 2.492297+2 3.835000-5 2.771208+2 3.950000-5 3.014251+2 4.063438-5 3.242880+2 4.180000-5 3.465653+2 4.309085-5 3.689163+2 4.415704-5 3.853879+2 4.528130-5 4.004134+2 4.633492-5 4.120309+2 4.710000-5 4.192126+2 4.834191-5 4.278372+2 4.954502-5 4.331871+2 5.046664-5 4.350352+2 5.147490-5 4.345907+2 5.241901-5 4.313937+2 5.310274-5 4.266736+2 5.367916-5 4.206083+2 5.412222-5 4.172315+2 5.444942-5 4.205490+2 5.471337-5 4.305972+2 5.490432-5 4.430720+2 5.503318-5 4.539562+2 5.516830-5 4.672278+2 5.564645-5 5.221231+2 5.582210-5 5.418635+2 5.597905-5 5.577239+2 5.612338-5 5.700301+2 5.625557-5 5.787112+2 5.638865-5 5.843189+2 5.652799-5 5.862611+2 5.667156-5 5.837284+2 5.675655-5 5.800836+2 5.684892-5 5.744510+2 5.692492-5 5.686577+2 5.707694-5 5.545986+2 5.733030-5 5.272673+2 5.763432-5 4.955000+2 5.775655-5 4.844653+2 5.794541-5 4.698418+2 5.842934-5 4.434157+2 5.925083-5 4.133275+2 5.945642-5 4.069630+2 5.974379-5 4.001173+2 5.989808-5 3.980786+2 6.006629-5 3.976348+2 6.019235-5 3.986966+2 6.041962-5 4.038527+2 6.059694-5 4.107460+2 6.076582-5 4.194250+2 6.104044-5 4.368264+2 6.130050-5 4.547303+2 6.147299-5 4.657392+2 6.163428-5 4.743888+2 6.178528-5 4.804617+2 6.196923-5 4.847677+2 6.213814-5 4.856808+2 6.231009-5 4.839464+2 6.243102-5 4.814324+2 6.266248-5 4.746498+2 6.308968-5 4.600610+2 6.344239-5 4.496447+2 6.466374-5 4.269431+2 6.511207-5 4.218668+2 6.535070-5 4.203092+2 6.573179-5 4.197672+2 6.647210-5 4.225971+2 6.695650-5 4.234432+2 6.737644-5 4.227624+2 6.857192-5 4.184561+2 6.988465-5 4.121435+2 7.190000-5 4.007544+2 7.350000-5 3.908392+2 7.673877-5 3.695151+2 8.036324-5 3.451624+2 8.505835-5 3.148743+2 9.055437-5 2.824008+2 9.411025-5 2.628821+2 9.675664-5 2.474418+2 9.722946-5 2.454412+2 9.808952-5 2.435155+2 9.883300-5 2.425382+2 9.978573-5 2.400338+2 1.027500-4 2.293872+2 1.101202-4 2.075153+2 1.157500-4 1.941060+2 1.230269-4 1.802719+2 1.288750-4 1.714409+2 1.324500-4 1.669384+2 1.366875-4 1.623321+2 1.430000-4 1.565205+2 1.520000-4 1.503011+2 1.636206-4 1.447544+2 1.728000-4 1.416988+2 1.820000-4 1.393546+2 2.120000-4 1.337837+2 2.260000-4 1.310955+2 2.371374-4 1.285062+2 2.521470-4 1.242587+2 2.673757-4 1.186994+2 2.806038-4 1.127151+2 2.907143-4 1.072644+2 2.995610-4 1.018663+2 3.090295-4 9.534362+1 3.150970-4 9.071514+1 3.235937-4 8.360518+1 3.297251-4 7.802282+1 3.376658-4 7.016925+1 3.445882-4 6.270169+1 3.503355-4 5.601722+1 3.556408-4 4.941761+1 3.581615-4 4.612650+1 3.622621-4 4.053888+1 3.643784-4 3.757521+1 3.697723-4 3.055152+1 3.719482-4 2.825349+1 3.745774-4 2.591357+1 3.805959-4 2.151213+1 3.821733-4 2.047927+1 3.839000-4 1.946708+1 3.847396-4 1.905174+1 3.854000-4 1.877567+1 3.861500-4 1.852943+1 3.870000-4 1.835564+1 3.876250-4 1.831254+1 3.880000-4 1.832583+1 3.885226-4 1.839834+1 3.895000-4 1.872280+1 3.901271-4 1.907662+1 3.906594-4 1.947663+1 3.910000-4 1.978409+1 3.915154-4 2.033104+1 3.921596-4 2.116222+1 3.926995-4 2.199456+1 3.930000-4 2.251466+1 3.935000-4 2.347515+1 3.941500-4 2.491092+1 3.952528-4 2.786998+1 3.963712-4 3.160605+1 3.972814-4 3.524182+1 3.983749-4 4.036724+1 4.015596-4 6.040985+1 4.022996-4 6.620686+1 4.035747-4 7.721475+1 4.050997-4 9.203607+1 4.066746-4 1.091348+2 4.080246-4 1.251152+2 4.096905-4 1.463044+2 4.115000-4 1.708223+2 4.124954-4 1.848255+2 4.135998-4 2.006778+2 4.154499-4 2.277146+2 4.173000-4 2.549756+2 4.181804-4 2.679117+2 4.195000-4 2.871447+2 4.204845-4 3.013144+2 4.221682-4 3.250646+2 4.235000-4 3.433301+2 4.258098-4 3.737344+2 4.280000-4 4.009262+2 4.297738-4 4.217067+2 4.315191-4 4.410306+2 4.342450-4 4.689238+2 4.360000-4 4.853981+2 4.383256-4 5.054801+2 4.405000-4 5.225322+2 4.436099-4 5.442139+2 4.470000-4 5.644837+2 4.507500-4 5.832073+2 4.553575-4 6.017823+2 4.600000-4 6.165716+2 4.657412-4 6.305738+2 4.772545-4 6.514753+2 4.888658-4 6.688097+2 5.023726-4 6.853041+2 5.138106-4 6.971941+2 5.243849-4 7.057197+2 5.328372-4 7.097768+2 5.406440-4 7.104700+2 5.526592-4 7.066621+2 5.573927-4 7.079719+2 5.629068-4 7.167798+2 5.669057-4 7.294975+2 5.701000-4 7.430718+2 5.790517-4 7.846245+2 5.891468-4 8.206047+2 6.007824-4 8.573082+2 6.136557-4 9.031827+2 6.235000-4 9.303112+2 6.347500-4 9.518752+2 6.472769-4 9.691336+2 6.591032-4 9.808352+2 6.723801-4 9.900359+2 6.911395-4 9.999461+2 6.961423-4 1.005738+3 7.051025-4 1.022562+3 7.178407-4 1.049990+3 7.256302-4 1.062887+3 7.375087-4 1.077089+3 7.524978-4 1.090141+3 7.931859-4 1.115759+3 8.375944-4 1.134034+3 8.874114-4 1.147798+3 9.634455-4 1.158449+3 1.060361-3 1.163157+3 1.168638-3 1.158590+3 1.264373-3 1.147046+3 1.436109-3 1.116255+3 1.573935-3 1.090231+3 1.642368-3 1.076750+3 1.806148-3 1.038091+3 1.982498-3 9.962852+2 2.178272-3 9.467388+2 2.280566-3 9.206699+2 2.377053-3 8.947400+2 2.478684-3 8.663864+2 2.586404-3 8.353880+2 2.686335-3 8.054247+2 2.772123-3 7.773629+2 2.849730-3 7.500029+2 2.916607-3 7.247516+2 2.977488-3 6.999373+2 3.023788-3 6.793492+2 3.074769-3 6.542105+2 3.114852-3 6.321112+2 3.146571-3 6.125928+2 3.178246-3 5.907478+2 3.208537-3 5.666214+2 3.231641-3 5.447969+2 3.249958-3 5.242626+2 3.264949-3 5.047441+2 3.275546-3 4.894785+2 3.308656-3 4.401131+2 3.318911-3 4.280233+2 3.324664-3 4.227995+2 3.331595-3 4.183546+2 3.339823-3 4.160312+2 3.346020-3 4.165232+2 3.353140-3 4.194472+2 3.358261-3 4.230185+2 3.367132-3 4.317329+2 3.378698-3 4.466901+2 3.400490-3 4.788404+2 3.408371-3 4.897328+2 3.418966-3 5.026203+2 3.429322-3 5.128447+2 3.442637-3 5.224108+2 3.455039-3 5.281248+2 3.479490-3 5.340223+2 3.495818-3 5.378687+2 3.504601-3 5.411326+2 3.513126-3 5.455292+2 3.522694-3 5.521225+2 3.539119-3 5.674964+2 3.579877-3 6.171301+2 3.594575-3 6.338634+2 3.606116-3 6.453659+2 3.621299-3 6.580896+2 3.640542-3 6.705549+2 3.661702-3 6.803511+2 3.682726-3 6.868700+2 3.720475-3 6.931686+2 3.750912-3 6.981349+2 3.766713-3 7.029310+2 3.790114-3 7.141811+2 3.853204-3 7.567207+2 3.871368-3 7.672818+2 3.891592-3 7.771293+2 3.922127-3 7.888509+2 3.955393-3 7.987115+2 4.029337-3 8.145585+2 4.110610-3 8.262150+2 4.229120-3 8.363718+2 4.329273-3 8.406286+2 4.445193-3 8.416351+2 4.614305-3 8.385579+2 4.784633-3 8.311483+2 4.987554-3 8.189577+2 5.337842-3 7.927656+2 5.697794-3 7.628515+2 6.157083-3 7.237066+2 6.790082-3 6.710709+2 7.489677-3 6.171165+2 8.342832-3 5.587758+2 9.403483-3 4.970378+2 1.050834-2 4.431868+2 1.152322-2 4.008823+2 1.279621-2 3.552708+2 1.379841-2 3.239838+2 1.495647-2 2.920804+2 1.610508-2 2.641488+2 1.738163-2 2.367156+2 1.870755-2 2.116947+2 2.010688-2 1.884313+2 2.123063-2 1.715434+2 2.214937-2 1.585668+2 2.286786-2 1.486646+2 2.343172-2 1.408014+2 2.384701-2 1.347529+2 2.405246-2 1.315906+2 2.438148-2 1.260787+2 2.452655-2 1.233456+2 2.464965-2 1.207785+2 2.475414-2 1.183523+2 2.489060-2 1.147676+2 2.510315-2 1.084800+2 2.523667-2 1.048144+2 2.532966-2 1.028998+2 2.540973-2 1.019017+2 2.549211-2 1.016100+2 2.556187-2 1.019506+2 2.565816-2 1.031914+2 2.580592-2 1.062202+2 2.600972-2 1.107603+2 2.610305-2 1.124945+2 2.623857-2 1.144655+2 2.641020-2 1.161493+2 2.653078-2 1.169349+2 2.666880-2 1.175603+2 2.700507-2 1.183271+2 2.732926-2 1.184513+2 2.775317-2 1.180663+2 2.845938-2 1.165934+2 2.940597-2 1.137254+2 3.043877-2 1.100869+2 3.199692-2 1.043273+2 3.374251-2 9.798384+1 3.635013-2 8.905636+1 3.961215-2 7.910178+1 4.324184-2 6.955866+1 4.844740-2 5.841236+1 5.209686-2 5.203846+1 5.753268-2 4.414769+1 6.536007-2 3.545974+1 8.004815-2 2.480575+1 1.125939-1 1.345625+1 1.393881-1 9.103200+0 1.746924-1 5.977987+0 2.199835-1 3.861708+0 2.974326-1 2.159793+0 4.273284-1 1.066132+0 6.606935-1 4.524371-1 1.120601+0 1.586465-1 2.814822+0 2.525758-2 8.500626+0 2.771644-3 2.567148+1 3.039316-4 7.752663+1 3.332576-5 2.341267+2 3.654100-6 7.070513+2 4.006642-7 2.511886+3 3.174551-8 7.943282+3 3.174551-9 2.511886+4 3.17455-10 7.943282+4 3.17455-11 1.000000+5 2.00301-11 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.119500-6 1.258900-6 1.774400-6 1.584900-6 2.812200-6 1.995300-6 4.457000-6 2.511900-6 7.063800-6 3.162300-6 1.119500-5 3.981100-6 1.774300-5 5.011900-6 2.812100-5 6.309600-6 4.456900-5 7.943300-6 7.063600-5 1.000000-5 1.119500-4 1.258900-5 1.774200-4 1.584900-5 2.811900-4 1.995300-5 4.456500-4 2.511900-5 7.062900-4 3.162300-5 1.119300-3 3.981100-5 1.773600-3 5.011900-5 2.810400-3 6.309600-5 4.453300-3 7.943300-5 7.050700-3 1.000000-4 1.116100-2 1.258900-4 1.767000-2 1.584900-4 2.793300-2 1.995300-4 4.412700-2 2.511900-4 6.955600-2 3.162300-4 1.093100-1 3.981100-4 1.709900-1 5.011900-4 2.652400-1 6.309600-4 4.055300-1 7.943300-4 6.086700-1 1.000000-3 8.931500-1 1.258900-3 1.276600+0 1.584900-3 1.775500+0 1.995300-3 2.407300+0 2.511900-3 3.191300+0 3.162300-3 4.134700+0 3.981100-3 5.243500+0 5.011900-3 6.532800+0 6.309600-3 8.028800+0 7.943300-3 9.714300+0 1.000000-2 1.152200+1 1.258900-2 1.330300+1 1.584900-2 1.501800+1 1.995300-2 1.662900+1 2.511900-2 1.809900+1 3.162300-2 1.935500+1 3.981100-2 2.034200+1 5.011900-2 2.087400+1 6.309600-2 2.132300+1 7.943300-2 2.126700+1 1.000000-1 2.089300+1 1.258900-1 2.024000+1 1.584900-1 1.936200+1 1.995300-1 1.831300+1 2.511900-1 1.715200+1 3.162300-1 1.592000+1 3.981100-1 1.466200+1 5.011900-1 1.341000+1 6.309600-1 1.218700+1 7.943300-1 1.100600+1 1.000000+0 9.877600+0 1.258900+0 8.808500+0 1.584900+0 7.805900+0 1.995300+0 6.872800+0 2.511900+0 6.012800+0 3.162300+0 5.228100+0 3.981100+0 4.519000+0 5.011900+0 3.884300+0 6.309600+0 3.321400+0 7.943300+0 2.826400+0 1.000000+1 2.394600+0 1.258900+1 2.020500+0 1.584900+1 1.698700+0 1.995300+1 1.423400+0 2.511900+1 1.189100+0 3.162300+1 9.907500-1 3.981100+1 8.234500-1 5.011900+1 6.828900-1 6.309600+1 5.651800-1 7.943300+1 4.669200-1 1.000000+2 3.851000-1 1.258900+2 3.171300-1 1.584900+2 2.608000-1 1.995300+2 2.142100-1 2.511900+2 1.757300-1 3.162300+2 1.440100-1 3.981100+2 1.178900-1 5.011900+2 9.642200-2 6.309600+2 7.879400-2 7.943300+2 6.433600-2 1.000000+3 5.249000-2 1.258900+3 4.279500-2 1.584900+3 3.486600-2 1.995300+3 2.838900-2 2.511900+3 2.310000-2 3.162300+3 1.878600-2 3.981100+3 1.526900-2 5.011900+3 1.240400-2 6.309600+3 1.007200-2 7.943300+3 8.174100-3 1.000000+4 6.630900-3 1.258900+4 5.376700-3 1.584900+4 4.357800-3 1.995300+4 3.530700-3 2.511900+4 2.859400-3 3.162300+4 2.314900-3 3.981100+4 1.873400-3 5.011900+4 1.515600-3 6.309600+4 1.225700-3 7.943300+4 9.909500-4 1.000000+5 8.009000-4 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976753-4 5.011872-4 5.005050-4 6.309573-4 6.298793-4 7.943282-4 7.926328-4 1.000000-3 9.973439-4 1.258925-3 1.254766-3 1.584893-3 1.578380-3 1.995262-3 1.985088-3 2.511886-3 2.496019-3 3.162278-3 3.137515-3 3.981072-3 3.942451-3 5.011872-3 4.951617-3 6.309573-3 6.215484-3 7.943282-3 7.796301-3 1.000000-2 9.772156-3 1.258925-2 1.223719-2 1.584893-2 1.530781-2 1.995262-2 1.912170-2 2.511886-2 2.384584-2 3.162278-2 2.968006-2 3.981072-2 3.685939-2 5.011872-2 4.566278-2 6.309573-2 5.642857-2 7.943282-2 6.953190-2 1.000000-1 8.539416-2 1.258925-1 1.045485-1 1.584893-1 1.275680-1 1.995262-1 1.551359-1 2.511886-1 1.879819-1 3.162278-1 2.270644-1 3.981072-1 2.733997-1 5.011872-1 3.281702-1 6.309573-1 3.927718-1 7.943282-1 4.687356-1 1.000000+0 5.582400-1 1.258925+0 6.636924-1 1.584893+0 7.879830-1 1.995262+0 9.350923-1 2.511886+0 1.109633+0 3.162278+0 1.317367+0 3.981072+0 1.565334+0 5.011872+0 1.862197+0 6.309573+0 2.218342+0 7.943282+0 2.646810+0 1.000000+1 3.163440+0 1.258925+1 3.787457+0 1.584893+1 4.542597+0 1.995262+1 5.457747+0 2.511886+1 6.568486+0 3.162278+1 7.918459+0 3.981072+1 9.560995+0 5.011872+1 1.156178+1 6.309573+1 1.400141+1 7.943282+1 1.697903+1 1.000000+2 2.061630+1 1.258925+2 2.506370+1 1.584893+2 3.050535+1 1.995262+2 3.716857+1 2.511886+2 4.533372+1 3.162278+2 5.534631+1 3.981072+2 6.763077+1 5.011872+2 8.271411+1 6.309573+2 1.012434+2 7.943282+2 1.240197+2 1.000000+3 1.520291+2 1.258925+3 1.864945+2 1.584893+3 2.289199+2 1.995262+3 2.811746+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739905-9 3.981072-5 4.342191-9 5.011872-5 6.881594-9 6.309573-5 1.090609-8 7.943282-5 1.728027-8 1.000000-4 2.738234-8 1.258925-4 4.339426-8 1.584893-4 6.874028-8 1.995262-4 1.088970-7 2.511886-4 1.724487-7 3.162278-4 2.729543-7 3.981072-4 4.318227-7 5.011872-4 6.822130-7 6.309573-4 1.078037-6 7.943282-4 1.695399-6 1.000000-3 2.656054-6 1.258925-3 4.159637-6 1.584893-3 6.512840-6 1.995262-3 1.017400-5 2.511886-3 1.586718-5 3.162278-3 2.476299-5 3.981072-3 3.862052-5 5.011872-3 6.025576-5 6.309573-3 9.408914-5 7.943282-3 1.469817-4 1.000000-2 2.278443-4 1.258925-2 3.520643-4 1.584893-2 5.411202-4 1.995262-2 8.309274-4 2.511886-2 1.273019-3 3.162278-2 1.942716-3 3.981072-2 2.951331-3 5.011872-2 4.455947-3 6.309573-2 6.667162-3 7.943282-2 9.900924-3 1.000000-1 1.460584-2 1.258925-1 2.134404-2 1.584893-1 3.092132-2 1.995262-1 4.439030-2 2.511886-1 6.320673-2 3.162278-1 8.916336-2 3.981072-1 1.247074-1 5.011872-1 1.730171-1 6.309573-1 2.381855-1 7.943282-1 3.255927-1 1.000000+0 4.417600-1 1.258925+0 5.952330-1 1.584893+0 7.969102-1 1.995262+0 1.060170+0 2.511886+0 1.402253+0 3.162278+0 1.844911+0 3.981072+0 2.415737+0 5.011872+0 3.149675+0 6.309573+0 4.091231+0 7.943282+0 5.296472+0 1.000000+1 6.836560+0 1.258925+1 8.801797+0 1.584893+1 1.130634+1 1.995262+1 1.449488+1 2.511886+1 1.855038+1 3.162278+1 2.370432+1 3.981072+1 3.024972+1 5.011872+1 3.855695+1 6.309573+1 4.909432+1 7.943282+1 6.245380+1 1.000000+2 7.938370+1 1.258925+2 1.008288+2 1.584893+2 1.279840+2 1.995262+2 1.623577+2 2.511886+2 2.058549+2 3.162278+2 2.608815+2 3.981072+2 3.304764+2 5.011872+2 4.184731+2 6.309573+2 5.297139+2 7.943282+2 6.703085+2 1.000000+3 8.479709+2 1.258925+3 1.072431+3 1.584893+3 1.355973+3 1.995262+3 1.714088+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 1.776810+6 6.950000-6 1.706820+6 7.328245-6 1.306071+6 7.673615-6 1.028421+6 8.000000-6 8.240250+5 8.350000-6 6.520910+5 8.709636-6 5.143078+5 9.015711-6 4.210420+5 9.350000-6 3.389540+5 9.700000-6 2.704040+5 1.000000-5 2.228850+5 1.035142-5 1.777160+5 1.060000-5 1.513600+5 1.088100-5 1.261585+5 1.122018-5 1.011296+5 1.150000-5 8.414750+4 1.180000-5 6.897100+4 1.186000-5 6.623844+4 1.186000-5 5.920750+6 1.202264-5 5.936735+6 1.220000-5 5.954610+6 1.230269-5 5.974756+6 1.247000-5 6.007732+6 1.247000-5 9.841124+6 1.260000-5 9.872295+6 1.288250-5 9.962259+6 1.290000-5 9.969088+6 1.303167-5 1.002040+7 1.320000-5 1.009927+7 1.333521-5 1.016263+7 1.350000-5 1.024951+7 1.364583-5 1.032637+7 1.380384-5 1.042123+7 1.385000-5 1.044894+7 1.428894-5 1.073746+7 1.445440-5 1.085657+7 1.470000-5 1.104611+7 1.496236-5 1.124910+7 1.513561-5 1.138339+7 1.515000-5 1.139596+7 1.531087-5 1.153659+7 1.545000-5 1.165850+7 1.560000-5 1.179022+7 1.575000-5 1.192222+7 1.584893-5 1.200943+7 1.590000-5 1.205635+7 1.605000-5 1.219437+7 1.615000-5 1.228658+7 1.621810-5 1.234945+7 1.626900-5 1.239885+7 1.640590-5 1.253195+7 1.655000-5 1.267242+7 1.670000-5 1.281904+7 1.678804-5 1.290529+7 1.685000-5 1.296809+7 1.700000-5 1.312047+7 1.715000-5 1.327330+7 1.730000-5 1.342659+7 1.750000-5 1.363167+7 1.770000-5 1.383753+7 1.778279-5 1.392297+7 1.793000-5 1.408055+7 1.800000-5 1.415566+7 1.830000-5 1.448701+7 1.935000-5 1.566400+7 1.950000-5 1.583428+7 1.980000-5 1.618323+7 2.018366-5 1.663278+7 2.020000-5 1.665242+7 2.070000-5 1.725678+7 2.113489-5 1.778788+7 2.162719-5 1.839513+7 2.213400-5 1.903437+7 2.270000-5 1.975648+7 2.330000-5 2.053130+7 2.398833-5 2.143187+7 2.470000-5 2.237588+7 2.540973-5 2.333020+7 2.610000-5 2.427052+7 2.691535-5 2.539646+7 2.730000-5 2.593327+7 2.786121-5 2.669739+7 2.900000-5 2.823349+7 2.951209-5 2.893211+7 3.019952-5 2.983139+7 3.126079-5 3.118679+7 3.150000-5 3.147519+7 3.198895-5 3.206613+7 3.273407-5 3.292693+7 3.300000-5 3.321061+7 3.350000-5 3.374437+7 3.400000-5 3.424745+7 3.467369-5 3.486023+7 3.507519-5 3.519899+7 3.589219-5 3.579984+7 3.630781-5 3.607284+7 3.650000-5 3.617637+7 3.715352-5 3.652660+7 3.730000-5 3.659411+7 3.801894-5 3.683519+7 3.850000-5 3.696141+7 3.900000-5 3.702727+7 3.950000-5 3.705404+7 4.000000-5 3.701456+7 4.070000-5 3.689811+7 4.073803-5 3.688648+7 4.120975-5 3.674349+7 4.180000-5 3.651239+7 4.229500-5 3.625297+7 4.300000-5 3.582665+7 4.350000-5 3.546201+7 4.365158-5 3.533876+7 4.415704-5 3.493387+7 4.466836-5 3.447141+7 4.518559-5 3.397275+7 4.570882-5 3.342505+7 4.623810-5 3.284707+7 4.677351-5 3.222514+7 4.680000-5 3.219486+7 4.731513-5 3.157725+7 4.800000-5 3.071841+7 4.850000-5 3.008172+7 4.900000-5 2.942138+7 4.954502-5 2.869510+7 5.011872-5 2.791233+7 5.069907-5 2.711691+7 5.080000-5 2.698182+7 5.150000-5 2.602006+7 5.190000-5 2.547037+7 5.270000-5 2.436881+7 5.308844-5 2.383870+7 5.415200-5 2.240151+7 5.450000-5 2.194099+7 5.500000-5 2.127414+7 5.559043-5 2.052014+7 5.580000-5 2.025350+7 5.688529-5 1.889330+7 5.730000-5 1.839149+7 5.850000-5 1.698045+7 5.900000-5 1.641789+7 6.000000-5 1.532256+7 6.025596-5 1.505694+7 6.070000-5 1.459915+7 6.165950-5 1.363662+7 6.237348-5 1.295631+7 6.314000-5 1.225133+7 6.314000-5 1.395513+7 6.350000-5 1.363598+7 6.382635-5 1.334884+7 6.400000-5 1.319619+7 6.460000-5 1.267218+7 6.531306-5 1.207443+7 6.550000-5 1.192061+7 6.580000-5 1.167554+7 6.650000-5 1.111397+7 6.730000-5 1.050587+7 6.760830-5 1.027837+7 6.770000-5 1.021021+7 6.841000-5 9.695769+6 6.841000-5 1.045793+7 6.900000-5 1.005925+7 6.918310-5 9.938222+6 6.920000-5 9.926967+6 6.950000-5 9.728214+6 6.960000-5 9.661506+6 7.030000-5 9.206709+6 7.079458-5 8.899127+6 7.110000-5 8.711845+6 7.150000-5 8.472237+6 7.190000-5 8.235505+6 7.244360-5 7.924681+6 7.300000-5 7.617201+6 7.350000-5 7.350296+6 7.413102-5 7.023854+6 7.450000-5 6.840423+6 7.500000-5 6.597593+6 7.585776-5 6.196996+6 7.650000-5 5.915795+6 7.673615-5 5.814941+6 7.852356-5 5.101666+6 8.035261-5 4.460111+6 8.080000-5 4.314569+6 8.230000-5 3.865668+6 8.317638-5 3.623192+6 8.400000-5 3.413342+6 8.450000-5 3.292926+6 8.650000-5 2.850075+6 8.900000-5 2.388903+6 8.912509-5 2.367899+6 9.015711-5 2.204661+6 9.150000-5 2.013509+6 9.332543-5 1.784726+6 9.400000-5 1.709302+6 9.440609-5 1.666471+6 9.500000-5 1.606050+6 9.660509-5 1.456743+6 9.800000-5 1.344484+6 9.900000-5 1.271510+6 9.980000-5 1.218070+6 1.000000-4 1.205403+6 1.011579-4 1.136386+6 1.016100-4 1.111275+6 1.016100-4 1.273940+6 1.020000-4 1.253483+6 1.030000-4 1.205603+6 1.035142-4 1.182576+6 1.036400-4 1.177143+6 1.040000-4 1.162175+6 1.050000-4 1.122052+6 1.059254-4 1.089404+6 1.060000-4 1.086855+6 1.065000-4 1.070132+6 1.075000-4 1.039639+6 1.080000-4 1.025409+6 1.085000-4 1.012275+6 1.090000-4 9.998954+5 1.095000-4 9.878937+5 1.096478-4 9.845066+5 1.109175-4 9.575018+5 1.110000-4 9.559301+5 1.120000-4 9.379867+5 1.122018-4 9.346199+5 1.131000-4 9.207426+5 1.135011-4 9.152308+5 1.143000-4 9.043007+5 1.150000-4 8.959241+5 1.155000-4 8.905108+5 1.161449-4 8.844256+5 1.165000-4 8.811112+5 1.175000-4 8.729782+5 1.180000-4 8.695612+5 1.188502-4 8.640967+5 1.190000-4 8.633291+5 1.202264-4 8.577704+5 1.216186-4 8.531789+5 1.230269-4 8.503356+5 1.240000-4 8.493114+5 1.245000-4 8.490429+5 1.250400-4 8.491816+5 1.260000-4 8.497176+5 1.273503-4 8.515600+5 1.280000-4 8.525048+5 1.288250-4 8.543393+5 1.300000-4 8.573484+5 1.303167-4 8.582936+5 1.315000-4 8.622388+5 1.333521-4 8.691503+5 1.337300-4 8.706854+5 1.364583-4 8.827235+5 1.380384-4 8.905206+5 1.412538-4 9.075412+5 1.430000-4 9.168243+5 1.450000-4 9.278285+5 1.462177-4 9.343238+5 1.480000-4 9.443517+5 1.496236-4 9.533856+5 1.500000-4 9.554064+5 1.520000-4 9.660950+5 1.540000-4 9.765855+5 1.566751-4 9.899512+5 1.580000-4 9.963717+5 1.584893-4 9.988091+5 1.603245-4 1.007374+6 1.611900-4 1.011361+6 1.621810-4 1.015708+6 1.659587-4 1.031169+6 1.670000-4 1.035249+6 1.698244-4 1.045286+6 1.705000-4 1.047658+6 1.720000-4 1.052561+6 1.760000-4 1.064200+6 1.780000-4 1.069561+6 1.800000-4 1.074153+6 1.820000-4 1.078352+6 1.840772-4 1.082232+6 1.883649-4 1.088669+6 1.905461-4 1.091457+6 1.950000-4 1.095227+6 1.980000-4 1.096814+6 2.018366-4 1.097780+6 2.041738-4 1.097701+6 2.089296-4 1.096283+6 2.113489-4 1.095205+6 2.120000-4 1.094853+6 2.162719-4 1.091374+6 2.187762-4 1.088784+6 2.220000-4 1.085411+6 2.260000-4 1.080285+6 2.300000-4 1.074610+6 2.317395-4 1.072029+6 2.371374-4 1.062869+6 2.426610-4 1.052496+6 2.483133-4 1.041119+6 2.511886-4 1.035081+6 2.540973-4 1.028853+6 2.570396-4 1.022051+6 2.580000-4 1.019858+6 2.600160-4 1.015230+6 2.630268-4 1.008048+6 2.660725-4 1.000821+6 2.730000-4 9.837522+5 2.786121-4 9.693647+5 2.800000-4 9.658427+5 2.884032-4 9.436860+5 2.900000-4 9.394484+5 2.951209-4 9.259954+5 3.000000-4 9.127014+5 3.019952-4 9.073298+5 3.090295-4 8.882982+5 3.162278-4 8.687381+5 3.200000-4 8.587451+5 3.235937-4 8.489852+5 3.300000-4 8.319782+5 3.388442-4 8.086820+5 3.467369-4 7.884705+5 3.490000-4 7.827278+5 3.507519-4 7.781941+5 3.600000-4 7.548835+5 3.630781-4 7.472361+5 3.715352-4 7.269408+5 3.765500-4 7.150256+5 3.765500-4 7.982618+5 3.784000-4 7.946142+5 3.797000-4 7.924597+5 3.801894-4 7.918678+5 3.809000-4 7.909976+5 3.820000-4 7.902933+5 3.828000-4 7.902853+5 3.829900-4 7.903915+5 3.829900-4 8.502359+5 3.835000-4 8.504702+5 3.843000-4 8.513865+5 3.845918-4 8.519416+5 3.849000-4 8.525335+5 3.850000-4 8.527547+5 3.858000-4 8.551980+5 3.860000-4 8.559982+5 3.865000-4 8.581907+5 3.870000-4 8.609181+5 3.873000-4 8.627161+5 3.880000-4 8.677563+5 3.888000-4 8.750532+5 3.890451-4 8.776396+5 3.895000-4 8.828265+5 3.900000-4 8.892959+5 3.903000-4 8.934804+5 3.907000-4 8.996544+5 3.910000-4 9.046033+5 3.915000-4 9.137674+5 3.921000-4 9.257958+5 3.923000-4 9.302419+5 3.930000-4 9.470516+5 3.933000-4 9.548616+5 3.938000-4 9.691203+5 3.945000-4 9.910332+5 3.948000-4 1.001185+6 3.952000-4 1.015654+6 3.960000-4 1.047364+6 3.967000-4 1.078273+6 3.975000-4 1.117566+6 3.981072-4 1.150562+6 3.985000-4 1.173242+6 3.995000-4 1.235504+6 4.000000-4 1.269970+6 4.007000-4 1.320352+6 4.011000-4 1.351376+6 4.023000-4 1.450286+6 4.027170-4 1.486454+6 4.035000-4 1.559203+6 4.045000-4 1.657377+6 4.050000-4 1.708447+6 4.054000-4 1.750878+6 4.065000-4 1.871225+6 4.073803-4 1.970412+6 4.077000-4 2.008453+6 4.085000-4 2.102391+6 4.090000-4 2.161830+6 4.095000-4 2.222560+6 4.101300-4 2.298968+6 4.104000-4 2.332191+6 4.111000-4 2.417187+6 4.115000-4 2.466620+6 4.122000-4 2.551733+6 4.126000-4 2.600900+6 4.132000-4 2.672513+6 4.140000-4 2.769757+6 4.150000-4 2.887191+6 4.151500-4 2.904337+6 4.161000-4 3.012189+6 4.165000-4 3.057463+6 4.168694-4 3.097093+6 4.173000-4 3.144159+6 4.180000-4 3.219344+6 4.185000-4 3.270740+6 4.195000-4 3.372381+6 4.205000-4 3.466645+6 4.211400-4 3.525711+6 4.216965-4 3.574091+6 4.220000-4 3.600821+6 4.230000-4 3.685112+6 4.235000-4 3.724636+6 4.250000-4 3.838279+6 4.250400-4 3.841088+6 4.265795-4 3.943781+6 4.273700-4 3.994424+6 4.280000-4 4.030924+6 4.295000-4 4.113639+6 4.300000-4 4.139632+6 4.315191-4 4.209734+6 4.328000-4 4.264319+6 4.335000-4 4.290371+6 4.356900-4 4.364083+6 4.360000-4 4.372954+6 4.365158-4 4.385856+6 4.380000-4 4.423186+6 4.390000-4 4.444954+6 4.410000-4 4.479464+6 4.415704-4 4.487271+6 4.420000-4 4.493156+6 4.440000-4 4.513329+6 4.450000-4 4.520436+6 4.470000-4 4.528225+6 4.485000-4 4.530044+6 4.502400-4 4.526859+6 4.518559-4 4.519481+6 4.530000-4 4.514241+6 4.550000-4 4.499360+6 4.600000-4 4.450536+6 4.623810-4 4.418777+6 4.650000-4 4.384272+6 4.677351-4 4.345415+6 4.700000-4 4.313613+6 4.740000-4 4.256436+6 4.841724-4 4.111753+6 4.954502-4 3.960086+6 5.011872-4 3.886332+6 5.248075-4 3.603946+6 5.326300-4 3.512884+6 5.370318-4 3.461549+6 5.500000-4 3.316738+6 5.559043-4 3.251927+6 5.623413-4 3.181971+6 5.685300-4 3.116842+6 5.685300-4 3.317254+6 5.688529-4 3.320650+6 5.691000-4 3.323397+6 5.695000-4 3.327281+6 5.700000-4 3.331334+6 5.707000-4 3.335776+6 5.715000-4 3.339496+6 5.723000-4 3.341940+6 5.730000-4 3.343274+6 5.740000-4 3.344070+6 5.750000-4 3.343749+6 5.765000-4 3.341573+6 5.780000-4 3.337751+6 5.795000-4 3.332567+6 5.810000-4 3.326224+6 5.821032-4 3.320653+6 5.830000-4 3.316206+6 5.850000-4 3.304643+6 5.870000-4 3.291772+6 5.900000-4 3.270411+6 5.930000-4 3.247072+6 5.960000-4 3.222237+6 6.000000-4 3.187516+6 6.001900-4 3.185791+6 6.001900-4 3.265064+6 6.009000-4 3.264661+6 6.013000-4 3.264265+6 6.018000-4 3.263521+6 6.025596-4 3.261872+6 6.032000-4 3.260065+6 6.040000-4 3.257417+6 6.050000-4 3.253578+6 6.060000-4 3.248865+6 6.070000-4 3.243744+6 6.085000-4 3.235469+6 6.100000-4 3.226591+6 6.115000-4 3.216851+6 6.135000-4 3.203189+6 6.150000-4 3.192524+6 6.165950-4 3.180783+6 6.170000-4 3.177817+6 6.190000-4 3.162628+6 6.200000-4 3.154757+6 6.220000-4 3.138762+6 6.237348-4 3.124452+6 6.250000-4 3.114087+6 6.285000-4 3.084779+6 6.309573-4 3.063892+6 6.330000-4 3.046693+6 6.400000-4 2.987456+6 6.456542-4 2.940394+6 6.531306-4 2.878076+6 6.606934-4 2.815875+6 6.683439-4 2.755104+6 6.839116-4 2.637553+6 6.850000-4 2.629615+6 7.000000-4 2.522151+6 7.038000-4 2.495456+6 7.038000-4 2.603526+6 7.244360-4 2.462574+6 7.300000-4 2.426479+6 7.328245-4 2.408035+6 7.413102-4 2.353865+6 7.500000-4 2.299580+6 7.585776-4 2.247893+6 7.673615-4 2.196795+6 7.943282-4 2.050813+6 8.000000-4 2.021826+6 8.035261-4 2.003831+6 8.128305-4 1.957382+6 8.317638-4 1.866436+6 8.511380-4 1.780020+6 8.609938-4 1.738018+6 8.709636-4 1.696290+6 8.810489-4 1.655125+6 8.912509-4 1.614993+6 9.015711-4 1.575867+6 9.120108-4 1.537739+6 9.200000-4 1.509419+6 9.225714-4 1.500431+6 9.440609-4 1.427486+6 9.500000-4 1.408285+6 9.549926-4 1.392321+6 9.700000-4 1.345954+6 9.772372-4 1.324419+6 9.850000-4 1.301880+6 9.885531-4 1.291727+6 1.000000-3 1.259727+6 1.023293-3 1.197768+6 1.047129-3 1.138401+6 1.059254-3 1.109612+6 1.071519-3 1.081481+6 1.083927-3 1.053883+6 1.110000-3 9.991681+5 1.130000-3 9.595559+5 1.148154-3 9.254921+5 1.174898-3 8.782213+5 1.190000-3 8.529916+5 1.202264-3 8.332884+5 1.216186-3 8.117094+5 1.230269-3 7.907258+5 1.244515-3 7.702693+5 1.273503-3 7.305145+5 1.288250-3 7.114572+5 1.333521-3 6.566550+5 1.350000-3 6.382004+5 1.380384-3 6.060169+5 1.400000-3 5.863379+5 1.412538-3 5.741628+5 1.462177-3 5.291908+5 1.479108-3 5.149932+5 1.500000-3 4.982196+5 1.513561-3 4.877574+5 1.548817-3 4.620366+5 1.566751-3 4.496206+5 1.570000-3 4.474239+5 1.584893-3 4.374929+5 1.621810-3 4.140470+5 1.640590-3 4.027888+5 1.698244-3 3.708822+5 1.717908-3 3.608468+5 1.757924-3 3.413504+5 1.778279-3 3.319620+5 1.798871-3 3.228083+5 1.819701-3 3.139124+5 1.883649-3 2.887192+5 1.905461-3 2.808040+5 1.927525-3 2.730657+5 1.972423-3 2.581472+5 2.018366-3 2.439795+5 2.041738-3 2.371992+5 2.070000-3 2.293556+5 2.113489-3 2.179814+5 2.137962-3 2.118930+5 2.162719-3 2.059800+5 2.187762-3 2.002087+5 2.238721-3 1.890841+5 2.290868-3 1.786002+5 2.371374-3 1.639955+5 2.398833-3 1.593779+5 2.400000-3 1.591859+5 2.426610-3 1.548650+5 2.454709-3 1.504674+5 2.483133-3 1.461853+5 2.570396-3 1.340825+5 2.630268-3 1.265968+5 2.691535-3 1.194970+5 2.722701-3 1.160912+5 2.754229-3 1.127679+5 2.851018-3 1.033280+5 2.884032-3 1.003680+5 2.917427-3 9.749412+4 2.951209-3 9.470658+4 3.000000-3 9.085234+4 3.054921-3 8.676398+4 3.090295-3 8.426650+4 3.235937-3 7.494673+4 3.273407-3 7.278227+4 3.349654-3 6.861875+4 3.350000-3 6.860057+4 3.350000-3 2.285953+5 3.388442-3 2.224774+5 3.427678-3 2.164725+5 3.470000-3 2.102444+5 3.507519-3 2.041507+5 3.528100-3 2.009087+5 3.528100-3 2.757434+5 3.550000-3 2.714356+5 3.620000-3 2.591684+5 3.630781-3 2.572713+5 3.650000-3 2.539373+5 3.672823-3 2.497661+5 3.690000-3 2.466842+5 3.758374-3 2.354266+5 3.783400-3 2.314828+5 3.783400-3 2.658505+5 3.801894-3 2.627339+5 3.845918-3 2.554269+5 3.935501-3 2.414140+5 4.000000-3 2.318070+5 4.073803-3 2.214676+5 4.080000-3 2.206294+5 4.120975-3 2.151772+5 4.168694-3 2.090593+5 4.216965-3 2.030535+5 4.265795-3 1.972207+5 4.315191-3 1.915012+5 4.400000-3 1.822165+5 4.500000-3 1.720653+5 4.518559-3 1.702617+5 4.570882-3 1.653165+5 4.623810-3 1.605111+5 4.731513-3 1.512603+5 4.786301-3 1.468388+5 4.841724-3 1.425498+5 4.897788-3 1.383893+5 4.900000-3 1.382286+5 5.011872-3 1.304135+5 5.128614-3 1.229046+5 5.188000-3 1.193180+5 5.248075-3 1.158326+5 5.308844-3 1.124510+5 5.370318-3 1.091482+5 5.432503-3 1.059427+5 5.500000-3 1.026119+5 5.559043-3 9.980719+4 5.688529-3 9.403910+4 5.888437-3 8.595596+4 5.956621-3 8.341928+4 6.000000-3 8.185993+4 6.025596-3 8.095847+4 6.095369-3 7.855306+4 6.165950-3 7.620963+4 6.237348-3 7.393798+4 6.309573-3 7.173588+4 6.382635-3 6.960092+4 6.456542-3 6.752978+4 6.500000-3 6.634773+4 6.683439-3 6.166455+4 6.760830-3 5.980275+4 6.800000-3 5.889001+4 6.998420-3 5.455125+4 7.000000-3 5.451853+4 7.161434-3 5.131513+4 7.328245-3 4.825406+4 7.413102-3 4.679430+4 7.500000-3 4.536293+4 7.585776-3 4.400864+4 7.673615-3 4.267361+4 7.762471-3 4.138005+4 7.852356-3 4.012574+4 7.943282-3 3.890194+4 8.128305-3 3.656801+4 8.317638-3 3.437754+4 8.511380-3 3.232098+4 8.609938-3 3.133949+4 8.709636-3 3.037972+4 8.810489-3 2.944676+4 8.912509-3 2.854178+4 9.015711-3 2.766067+4 9.225714-3 2.598142+4 9.440609-3 2.440676+4 9.549926-3 2.365648+4 9.885531-3 2.154281+4 1.000000-2 2.088207+4 1.011579-2 2.024171+4 1.023293-2 1.961679+4 1.047129-2 1.842467+4 1.071519-2 1.729525+4 1.080000-2 1.692505+4 1.122018-2 1.524307+4 1.148154-2 1.431232+4 1.161449-2 1.386883+4 1.174898-2 1.343935+4 1.188502-2 1.302215+4 1.190000-2 1.297731+4 1.202264-2 1.261611+4 1.230269-2 1.184132+4 1.244515-2 1.146998+4 1.273503-2 1.076284+4 1.288250-2 1.042617+4 1.303167-2 1.010034+4 1.333521-2 9.479429+3 1.364583-2 8.894279+3 1.400000-2 8.286381+3 1.412538-2 8.084269+3 1.428894-2 7.829021+3 1.462177-2 7.343037+3 1.479108-2 7.111756+3 1.496236-2 6.887950+3 1.531087-2 6.461613+3 1.548817-2 6.258709+3 1.566751-2 6.060848+3 1.603245-2 5.684114+3 1.621810-2 5.504804+3 1.640590-2 5.331140+3 1.659587-2 5.162303+3 1.678804-2 4.998753+3 1.698244-2 4.840495+3 1.717908-2 4.686906+3 1.730000-2 4.595794+3 1.778279-2 4.255318+3 1.798871-2 4.120698+3 1.819701-2 3.990439+3 1.862087-2 3.740579+3 1.883649-2 3.621616+3 1.927525-2 3.395143+3 1.949845-2 3.286924+3 1.972423-2 3.182120+3 2.018366-2 2.982679+3 2.041738-2 2.887766+3 2.065380-2 2.795715+3 2.089296-2 2.706674+3 2.113489-2 2.620538+3 2.162719-2 2.455420+3 2.213095-2 2.300831+3 2.238721-2 2.227297+3 2.264644-2 2.156160+3 2.290868-2 2.087002+3 2.344229-2 1.955432+3 2.371374-2 1.892841+3 2.426610-2 1.773750+3 2.454709-2 1.716712+3 2.511886-2 1.607974+3 2.540973-2 1.556239+3 2.548900-2 1.542537+3 2.548900-2 9.806796+3 2.600160-2 9.359981+3 2.610000-2 9.277569+3 2.660725-2 8.803702+3 2.670000-2 8.720647+3 2.691535-2 8.546543+3 2.722701-2 8.302973+3 2.754229-2 8.066391+3 2.786121-2 7.822724+3 2.851018-2 7.356810+3 2.917427-2 6.918765+3 2.951209-2 6.709649+3 3.019952-2 6.317370+3 3.054921-2 6.129963+3 3.126079-2 5.771731+3 3.198895-2 5.434460+3 3.235937-2 5.273126+3 3.273407-2 5.116536+3 3.311311-2 4.964610+3 3.388442-2 4.666761+3 3.427678-2 4.524636+3 3.548134-2 4.123772+3 3.589219-2 3.998237+3 3.672823-2 3.758493+3 3.715352-2 3.644065+3 3.845918-2 3.320963+3 3.935501-2 3.117936+3 4.073803-2 2.836399+3 4.120975-2 2.748334+3 4.168694-2 2.663011+3 4.216965-2 2.580347+3 4.265795-2 2.500256+3 4.315191-2 2.422656+3 4.518559-2 2.135294+3 4.570882-2 2.068951+3 4.841724-2 1.766991+3 4.897788-2 1.712108+3 5.011872-2 1.605533+3 5.069907-2 1.554767+3 5.128614-2 1.505548+3 5.370318-2 1.323767+3 6.025596-2 9.598100+2 6.095369-2 9.294162+2 6.165950-2 8.995392+2 6.456542-2 7.893314+2 7.161434-2 5.883062+2 7.328245-2 5.510793+2 7.413102-2 5.333568+2 7.498942-2 5.162045+2 7.673615-2 4.835400+2 7.852356-2 4.525930+2 8.035261-2 4.236296+2 8.609938-2 3.474075+2 8.709636-2 3.361116+2 8.912509-2 3.145852+2 9.225714-2 2.848507+2 9.332543-2 2.755782+2 9.549926-2 2.579303+2 9.660509-2 2.495353+2 1.035142-1 2.042129+2 1.083927-1 1.786766+2 1.096478-1 1.728086+2 1.109175-1 1.671287+2 1.122019-1 1.616348+2 1.148154-1 1.511838+2 1.230269-1 1.237168+2 1.244515-1 1.196520+2 1.288250-1 1.082422+2 1.303167-1 1.046865+2 1.318257-1 1.012476+2 1.348963-1 9.470532+1 1.496236-1 7.012349+1 1.500000-1 6.961444+1 1.548817-1 6.344156+1 1.621810-1 5.551309+1 1.698244-1 4.857703+1 1.757924-1 4.395027+1 1.778279-1 4.250822+1 1.798871-1 4.111364+1 1.840772-1 3.846047+1 1.862087-1 3.719884+1 1.905461-1 3.479851+1 1.927525-1 3.365726+1 1.972423-1 3.148587+1 2.000000-1 3.025553+1 2.041738-1 2.851375+1 2.089296-1 2.669027+1 2.113489-1 2.582275+1 2.137962-1 2.498349+1 2.162719-1 2.417150+1 2.187762-1 2.338593+1 2.213095-1 2.262644+1 2.238721-1 2.189173+1 2.317395-1 1.982769+1 2.344229-1 1.918400+1 2.371374-1 1.856121+1 2.398833-1 1.795881+1 2.426610-1 1.737599+1 2.454709-1 1.681914+1 2.483133-1 1.628016+1 2.511886-1 1.575846+1 2.540973-1 1.525347+1 2.570396-1 1.476475+1 2.600160-1 1.429169+1 2.660725-1 1.339073+1 2.691535-1 1.296238+1 2.722701-1 1.254776+1 2.754229-1 1.214639+1 2.786121-1 1.175788+1 2.818383-1 1.138181+1 2.851018-1 1.101777+1 2.884032-1 1.067185+1 2.917427-1 1.033685+1 3.000000-1 9.567869+0 3.019952-1 9.393817+0 3.054921-1 9.099012+0 3.090295-1 8.813461+0 3.126079-1 8.536873+0 3.162278-1 8.269397+0 3.235937-1 7.759343+0 3.311311-1 7.280914+0 3.349654-1 7.052960+0 3.388442-1 6.836003+0 3.427678-1 6.625728+0 3.507519-1 6.224388+0 3.548134-1 6.032937+0 3.589219-1 5.847378+0 3.630781-1 5.667872+0 3.672823-1 5.493908+0 3.715352-1 5.325289+0 3.801894-1 5.003420+0 3.845918-1 4.852772+0 3.935501-1 4.564973+0 3.981072-1 4.427569+0 4.000000-1 4.372171+0 4.027170-1 4.294305+0 4.073803-1 4.165072+0 4.168694-1 3.918634+0 4.216965-1 3.800941+0 4.265795-1 3.686783+0 4.315191-1 3.578320+0 4.365158-1 3.473115+0 4.415705-1 3.371011+0 4.466836-1 3.271916+0 4.570882-1 3.082407+0 4.623810-1 2.992009+0 4.677351-1 2.904262+0 4.731513-1 2.819088+0 4.786301-1 2.736430+0 4.841724-1 2.657995+0 4.897788-1 2.581847+0 4.954502-1 2.507887+0 5.000000-1 2.450683+0 5.011872-1 2.436057+0 5.128614-1 2.298511+0 5.188000-1 2.232840+0 5.308844-1 2.107096+0 5.370318-1 2.048316+0 5.432503-1 1.991206+0 5.495409-1 1.935692+0 5.623413-1 1.829284+0 5.688529-1 1.778304+0 5.821032-1 1.680799+0 5.888437-1 1.634071+0 5.956621-1 1.589795+0 6.000000-1 1.562509+0 6.025596-1 1.546728+0 6.095369-1 1.504846+0 6.165950-1 1.464106+0 6.309573-1 1.385920+0 6.382635-1 1.348505+0 6.531306-1 1.276681+0 6.606935-1 1.243235+0 6.683439-1 1.210667+0 6.760830-1 1.178978+0 6.839117-1 1.148124+0 6.918310-1 1.118078+0 6.998420-1 1.088818+0 7.161434-1 1.032733+0 7.244360-1 1.006502+0 7.328245-1 9.809419-1 7.413102-1 9.560319-1 7.498942-1 9.317751-1 7.673615-1 8.850927-1 7.762471-1 8.626371-1 7.943282-1 8.195455-1 8.000000-1 8.070254-1 8.035261-1 7.993822-1 8.128305-1 7.797151-1 8.222427-1 7.605360-1 8.317638-1 7.418389-1 8.413951-1 7.236035-1 8.511380-1 7.058163-1 8.609938-1 6.885201-1 8.912509-1 6.391347-1 9.015711-1 6.238613-1 9.120108-1 6.089644-1 9.225714-1 5.944266-1 9.332543-1 5.802360-1 9.440609-1 5.664293-1 9.549926-1 5.529513-1 9.660509-1 5.397941-1 9.772372-1 5.269581-1 9.885531-1 5.148871-1 1.000000+0 5.031001-1 1.011579+0 4.915845-1 1.023293+0 4.803317-1 1.035142+0 4.693663-1 1.047129+0 4.586504-1 1.071519+0 4.379488-1 1.083927+0 4.279509-1 1.096478+0 4.181819-1 1.109175+0 4.086380-1 1.122018+0 3.995496-1 1.135011+0 3.906647-1 1.148154+0 3.819777-1 1.161449+0 3.734911-1 1.174898+0 3.652262-1 1.188600+0 3.570906-1 1.202264+0 3.492479-1 1.216186+0 3.415224-1 1.230269+0 3.339698-1 1.250000+0 3.241160-1 1.258925+0 3.198069-1 1.273503+0 3.129549-1 1.288250+0 3.062510-1 1.303167+0 2.997081-1 1.318257+0 2.933050-1 1.333521+0 2.870390-1 1.348963+0 2.809063-1 1.364583+0 2.749063-1 1.380384+0 2.692145-1 1.412538+0 2.581819-1 1.428894+0 2.528367-1 1.462177+0 2.424848-1 1.479108+0 2.374868-1 1.513561+0 2.277977-1 1.531087+0 2.231024-1 1.548817+0 2.186530-1 1.566751+0 2.142926-1 1.621810+0 2.017357-1 1.640590+0 1.977287-1 1.678804+0 1.899524-1 1.698244+0 1.861798-1 1.717908+0 1.824827-1 1.737801+0 1.788589-1 1.757924+0 1.754104-1 1.778279+0 1.720291-1 1.840772+0 1.622777-1 1.862087+0 1.591604-1 1.883649+0 1.561030-1 1.927525+0 1.501635-1 1.949845+0 1.472791-1 1.972423+0 1.444506-1 2.000000+0 1.411116-1 2.018366+0 1.390183-1 2.041738+0 1.364263-1 2.044000+0 1.361796-1 2.065380+0 1.338831-1 2.089296+0 1.313890-1 2.113489+0 1.289414-1 2.137962+0 1.265484-1 2.162719+0 1.241999-1 2.187762+0 1.218951-1 2.213095+0 1.196335-1 2.238721+0 1.174139-1 2.264644+0 1.153091-1 2.290868+0 1.132425-1 2.317395+0 1.112133-1 2.344229+0 1.092219-1 2.371374+0 1.072661-1 2.398833+0 1.053525-1 2.426610+0 1.034731-1 2.454709+0 1.016272-1 2.483133+0 9.981469-2 2.511886+0 9.803449-2 2.540973+0 9.634186-2 2.570396+0 9.467886-2 2.600160+0 9.304454-2 2.630268+0 9.143869-2 2.660725+0 8.986159-2 2.691535+0 8.831169-2 2.722701+0 8.679381-2 2.754229+0 8.530204-2 2.786121+0 8.383602-2 2.818383+0 8.239540-2 2.851018+0 8.097958-2 2.884032+0 7.962886-2 2.951209+0 7.699522-2 2.985383+0 7.571121-2 3.019952+0 7.444878-2 3.090295+0 7.198803-2 3.126079+0 7.078832-2 3.198895+0 6.845547-2 3.235937+0 6.731808-2 3.273407+0 6.619965-2 3.311311+0 6.509998-2 3.349654+0 6.401858-2 3.427678+0 6.197368-2 3.467369+0 6.097585-2 3.507519+0 5.999423-2 3.589219+0 5.807929-2 3.630781+0 5.714484-2 3.715352+0 5.532679-2 3.758374+0 5.443960-2 3.801894+0 5.356667-2 3.845918+0 5.270788-2 3.890451+0 5.186288-2 4.000000+0 4.993842-2 4.027170+0 4.948020-2 4.073803+0 4.871064-2 4.216965+0 4.647434-2 4.265795+0 4.575196-2 4.365158+0 4.434510-2 4.415704+0 4.365801-2 4.466836+0 4.298158-2 4.518559+0 4.231576-2 4.570882+0 4.166023-2 4.677351+0 4.041701-2 4.731513+0 3.980937-2 4.786301+0 3.921095-2 4.954502+0 3.747011-2 5.011872+0 3.690719-2 5.188000+0 3.527355-2 5.248075+0 3.474525-2 5.308844+0 3.422489-2 5.370318+0 3.371240-2 5.432503+0 3.320759-2 5.559043+0 3.224874-2 5.623413+0 3.177976-2 5.688529+0 3.131765-2 5.888437+0 2.997198-2 6.000000+0 2.926513-2 6.237348+0 2.786058-2 6.309573+0 2.745691-2 6.382635+0 2.705909-2 6.456542+0 2.666710-2 6.531306+0 2.628079-2 6.683439+0 2.554570-2 6.760830+0 2.518590-2 6.839116+0 2.483121-2 7.079458+0 2.379739-2 7.244360+0 2.313221-2 7.585776+0 2.186066-2 7.673615+0 2.155386-2 7.762471+0 2.125137-2 7.852356+0 2.095318-2 7.943282+0 2.065916-2 8.128305+0 2.009806-2 8.222427+0 1.982325-2 8.317638+0 1.955220-2 8.413951+0 1.928489-2 8.709636+0 1.850508-2 8.912509+0 1.800281-2 9.332543+0 1.704139-2 9.440609+0 1.680918-2 9.549926+0 1.658014-2 9.660509+0 1.635425-2 9.772372+0 1.613144-2 1.011579+1 1.549762-2 1.023293+1 1.529192-2 1.047129+1 1.488871-2 1.083927+1 1.430407-2 1.109175+1 1.392712-2 1.174898+1 1.302983-2 1.188502+1 1.285745-2 1.202264+1 1.268735-2 1.216186+1 1.251950-2 1.230269+1 1.235389-2 1.288250+1 1.172484-2 1.318257+1 1.142244-2 1.380384+1 1.084089-2 1.428894+1 1.042445-2 1.445440+1 1.028922-2 1.462177+1 1.015611-2 1.479108+1 1.002472-2 1.531087+1 9.648496-3 1.640590+1 8.937866-3 1.819701+1 7.968921-3 1.905461+1 7.572856-3 1.927525+1 7.476955-3 1.949845+1 7.382471-3 1.972423+1 7.291103-3 2.041738+1 7.023725-3 2.200000+1 6.478814-3 2.454709+1 5.754854-3 2.630268+1 5.340688-3 2.660725+1 5.274619-3 2.691535+1 5.209490-3 2.722701+1 5.146334-3 2.754229+1 5.083943-3 2.851018+1 4.901277-3 3.090295+1 4.500173-3 3.507519+1 3.935178-3 3.801894+1 3.613261-3 3.845918+1 3.569475-3 3.890451+1 3.526298-3 3.935501+1 3.484341-3 4.000000+1 3.425949-3 4.168694+1 3.281934-3 4.570882+1 2.982253-3 5.370318+1 2.522170-3 6.025596+1 2.237743-3 6.095369+1 2.211129-3 6.165950+1 2.184870-3 6.237348+1 2.158926-3 6.309573+1 2.133645-3 6.382635+1 2.108659-3 6.683439+1 2.011611-3 7.328245+1 1.830708-3 9.120108+1 1.463616-3 1.122018+2 1.184048-3 1.148154+2 1.156487-3 1.161449+2 1.142963-3 1.174898+2 1.129597-3 1.188502+2 1.116388-3 1.216186+2 1.090668-3 1.288250+2 1.028932-3 1.428894+2 9.264798-4 1.819701+2 7.253611-4 2.238721+2 5.881228-4 2.290868+2 5.745761-4 2.317395+2 5.679240-4 2.344229+2 5.613491-4 2.371374+2 5.548505-4 2.426610+2 5.421593-4 2.570396+2 5.116866-4 2.851018+2 4.610872-4 3.630781+2 3.616341-4 4.466836+2 2.936548-4 4.570882+2 2.869388-4 9.225714+2 1.417231-4 9.332543+2 1.400937-4 9.440609+2 1.384831-4 9.660509+2 1.353287-4 1.023293+3 1.277537-4 1.135011+3 1.151711-4 1.445440+3 9.042222-5 1.778279+3 7.348877-5 1.819701+3 7.181495-5 2.917427+4 4.474432-6 2.951209+4 4.423194-6 2.985383+4 4.372542-6 5.956621+4 2.190873-6 6.095369+4 2.140998-6 1.000000+5 1.304961-6 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 6.890000-6 1.186000-5 6.890000-6 1.186000-5 1.180440-5 1.247000-5 1.182374-5 1.247000-5 1.207547-5 6.314000-5 1.210597-5 6.314000-5 1.356692-5 6.650000-5 1.380749-5 6.841000-5 1.391245-5 6.841000-5 1.467531-5 7.300000-5 1.511491-5 8.080000-5 1.582873-5 8.450000-5 1.622671-5 8.912509-5 1.681176-5 9.500000-5 1.769198-5 1.016100-4 1.874836-5 1.016100-4 2.091656-5 1.050000-4 2.168945-5 1.080000-4 2.224897-5 1.110000-4 2.267266-5 1.143000-4 2.297616-5 1.175000-4 2.311361-5 1.216186-4 2.310773-5 1.260000-4 2.292889-5 1.337300-4 2.239442-5 1.480000-4 2.130422-5 1.584893-4 2.064763-5 1.698244-4 2.010454-5 1.820000-4 1.966622-5 1.980000-4 1.925355-5 2.162719-4 1.893565-5 2.371374-4 1.869741-5 2.660725-4 1.851328-5 3.090295-4 1.842099-5 3.765500-4 1.846537-5 3.765500-4 2.017810-5 3.809000-4 2.025927-5 3.829900-4 2.035075-5 3.829900-4 2.139135-5 3.858000-4 2.159685-5 3.880000-4 2.188786-5 3.900000-4 2.228966-5 3.921000-4 2.287373-5 3.938000-4 2.347838-5 3.960000-4 2.441202-5 3.995000-4 2.612035-5 4.027170-4 2.769163-5 4.054000-4 2.884536-5 4.077000-4 2.967215-5 4.104000-4 3.045091-5 4.132000-4 3.106631-5 4.168694-4 3.164687-5 4.216965-4 3.214190-5 4.280000-4 3.252163-5 4.380000-4 3.281866-5 4.550000-4 3.297746-5 5.685300-4 3.298910-5 5.685300-4 3.453444-5 5.723000-4 3.500752-5 5.780000-4 3.541492-5 5.870000-4 3.576679-5 6.001900-4 3.597762-5 6.001900-4 3.655452-5 6.070000-4 3.689254-5 6.220000-4 3.721509-5 7.038000-4 3.778721-5 7.038000-4 3.946869-5 9.885531-4 4.166680-5 1.288250-3 4.355318-5 1.621810-3 4.525166-5 2.041738-3 4.697995-5 2.483133-3 4.845511-5 3.054921-3 5.000137-5 3.350000-3 5.068268-5 3.350000-3 7.202017-5 3.528100-3 7.216624-5 3.528100-3 7.567908-5 3.783400-3 7.583357-5 3.783400-3 8.016251-5 5.188000-3 8.178817-5 7.328245-3 8.365273-5 1.047129-2 8.568610-5 1.479108-2 8.771727-5 2.041738-2 8.960944-5 2.548900-2 9.087096-5 2.548900-2 9.295922-5 5.370318-2 9.351786-5 1.500000-1 9.392489-5 8.222427-1 9.414415-5 1.000000+5 9.415369-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 0.0 6.314000-5 0.0 6.314000-5 2.84765-11 6.382635-5 2.96290-11 6.460000-5 3.07866-11 6.550000-5 3.19711-11 6.650000-5 3.31894-11 6.841000-5 3.52529-11 6.841000-5 5.68889-11 6.960000-5 5.99395-11 7.110000-5 6.34054-11 7.350000-5 6.84436-11 7.673615-5 7.51082-11 7.852356-5 7.88919-11 8.080000-5 8.40089-11 8.230000-5 8.74815-11 8.450000-5 9.30491-11 8.650000-5 9.84427-11 8.912509-5 1.06203-10 9.150000-5 1.13762-10 9.500000-5 1.25738-10 1.011579-4 1.47372-10 1.016100-4 1.48879-10 1.016100-4 1.67786-10 1.040000-4 1.76567-10 1.065000-4 1.84454-10 1.085000-4 1.89603-10 1.096478-4 1.92110-10 1.110000-4 1.94562-10 1.131000-4 1.97430-10 1.155000-4 1.99240-10 1.180000-4 1.99645-10 1.202264-4 1.99060-10 1.230269-4 1.97061-10 1.260000-4 1.93872-10 1.315000-4 1.86277-10 1.430000-4 1.69077-10 1.500000-4 1.59848-10 1.566751-4 1.52319-10 1.621810-4 1.47019-10 1.670000-4 1.42983-10 1.720000-4 1.39344-10 1.780000-4 1.35599-10 1.840772-4 1.32333-10 1.905461-4 1.29419-10 1.980000-4 1.26588-10 2.089296-4 1.23275-10 2.220000-4 1.20291-10 2.371374-4 1.17891-10 2.511886-4 1.16351-10 2.660725-4 1.15295-10 2.884032-4 1.14564-10 3.090295-4 1.14435-10 3.388442-4 1.14924-10 3.765500-4 1.16183-10 3.765500-4 1.24181-10 3.820000-4 1.24927-10 3.829900-4 1.25190-10 3.829900-4 7.502648-9 3.850000-4 7.451953-9 3.865000-4 7.443640-9 3.873000-4 7.454274-9 3.880000-4 7.472506-9 3.890451-4 7.533398-9 3.900000-4 7.622813-9 3.907000-4 7.712577-9 3.915000-4 7.842289-9 3.923000-4 8.006464-9 3.930000-4 8.179337-9 3.938000-4 8.412763-9 3.945000-4 8.651518-9 3.952000-4 8.922705-9 3.960000-4 9.273252-9 3.967000-4 9.617743-9 3.975000-4 1.005305-8 3.985000-4 1.065609-8 3.995000-4 1.133130-8 4.007000-4 1.222172-8 4.023000-4 1.354266-8 4.035000-4 1.460205-8 4.045000-4 1.553765-8 4.054000-4 1.640701-8 4.085000-4 1.951771-8 4.090000-4 2.004689-8 4.111000-4 2.214752-8 4.132000-4 2.414817-8 4.151500-4 2.584809-8 4.161000-4 2.662447-8 4.173000-4 2.753521-8 4.185000-4 2.837531-8 4.205000-4 2.963117-8 4.220000-4 3.045573-8 4.235000-4 3.118329-8 4.265795-4 3.243556-8 4.295000-4 3.336755-8 4.315191-4 3.391333-8 4.335000-4 3.436174-8 4.380000-4 3.519568-8 4.420000-4 3.571461-8 4.470000-4 3.625018-8 4.518559-4 3.656729-8 4.550000-4 3.675539-8 4.650000-4 3.701837-8 5.011872-4 3.705491-8 5.248075-4 3.706041-8 5.370318-4 3.710798-8 5.685300-4 3.709839-8 5.685300-4 4.366680-8 5.700000-4 4.459283-8 5.723000-4 4.567812-8 5.750000-4 4.661743-8 5.780000-4 4.741037-8 5.830000-4 4.836847-8 5.870000-4 4.890597-8 5.930000-4 4.944246-8 6.001900-4 4.980086-8 6.001900-4 5.401956-8 6.025596-4 5.505896-8 6.060000-4 5.612554-8 6.115000-4 5.726897-8 6.170000-4 5.806202-8 6.250000-4 5.879695-8 6.330000-4 5.923515-8 7.038000-4 6.174183-8 7.038000-4 6.844215-8 8.511380-4 7.436003-8 1.000000-3 7.987470-8 1.148154-3 8.468804-8 1.333521-3 9.005054-8 1.513561-3 9.455906-8 1.717908-3 9.912822-8 1.972423-3 1.040770-7 2.238721-3 1.085785-7 2.570396-3 1.134245-7 3.000000-3 1.187005-7 3.350000-3 1.223455-7 3.350000-3 1.167737-4 3.470000-3 1.171028-4 3.528100-3 1.169643-4 3.528100-3 1.391821-4 3.758374-3 1.394506-4 3.783400-3 1.394671-4 3.783400-3 1.441240-4 4.731513-3 1.447330-4 7.500000-3 1.452796-4 2.548900-2 1.448900-4 2.548900-2 1.596091-2 2.786121-2 1.603785-2 3.715352-2 1.620158-2 5.370318-2 1.633695-2 8.912509-2 1.644006-2 1.840772-1 1.649830-2 1.188600+0 1.654947-2 1.000000+5 1.654754-2 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.890000-6 0.0 1.186000-5 4.970000-6 1.186000-5 5.560191-8 1.202264-5 2.123876-7 1.230269-5 4.835985-7 1.247000-5 6.462642-7 1.247000-5 3.945263-7 1.350000-5 1.416664-6 1.830000-5 6.212628-6 6.314000-5 5.103403-5 6.314000-5 4.957306-5 6.841000-5 5.449751-5 6.841000-5 5.373463-5 8.450000-5 6.827320-5 9.660509-5 7.865849-5 1.016100-4 8.286149-5 1.016100-4 8.069327-5 1.085000-4 8.616982-5 1.150000-4 9.198444-5 1.230269-4 9.996113-5 1.621810-4 1.417284-4 2.018366-4 1.826598-4 3.019952-4 2.835680-4 3.765500-4 3.580845-4 3.765500-4 3.563718-4 3.829900-4 3.626391-4 3.829900-4 3.615912-4 3.923000-4 3.693526-4 4.090000-4 3.789095-4 4.230000-4 3.907283-4 4.740000-4 4.409670-4 5.685300-4 5.355038-4 5.685300-4 5.339519-4 6.001900-4 5.641626-4 6.001900-4 5.635815-4 7.038000-4 6.659511-4 7.038000-4 6.642629-4 2.630268-3 2.581261-3 3.350000-3 3.299195-3 3.350000-3 3.161206-3 3.528100-3 3.338969-3 3.528100-3 3.313239-3 3.783400-3 3.568099-3 3.783400-3 3.559114-3 2.548900-2 2.525324-2 2.548900-2 9.435126-3 2.610000-2 1.001171-2 3.589219-2 1.961389-2 6.165950-2 4.519163-2 1.000000+5 9.999998+4 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.548900-2 8.264259+3 2.610000-2 7.835280+3 2.670000-2 7.368320+3 2.754229-2 6.828197+3 2.951209-2 5.692761+3 3.311311-2 4.232585+3 3.845918-2 2.844378+3 4.897788-2 1.474773+3 6.095369-2 8.035782+2 7.673615-2 4.193112+2 9.660509-2 2.168405+2 1.972423-1 2.743593+1 2.426610-1 1.514562+1 2.851018-1 9.605503+0 3.349654-1 6.150578+0 3.801894-1 4.364002+0 4.265795-1 3.216144+0 4.786301-1 2.387487+0 5.308844-1 1.838737+0 5.888437-1 1.426199+0 6.531306-1 1.114510+0 7.161434-1 9.018780-1 7.943282-1 7.160025-1 8.912509-1 5.585444-1 9.772372-1 4.604992-1 1.109175+0 3.571418-1 1.230269+0 2.918602-1 1.364583+0 2.402149-1 1.531087+0 1.949645-1 1.737801+0 1.563015-1 2.000000+0 1.233157-1 2.238721+0 1.026075-1 2.511886+0 8.567170-2 2.851018+0 7.076737-2 3.349654+0 5.594480-2 3.890451+0 4.532217-2 4.570882+0 3.640661-2 5.432503+0 2.901962-2 6.531306+0 2.296650-2 7.943282+0 1.805385-2 9.772372+0 1.409702-2 1.230269+1 1.079601-2 1.479108+1 8.761162-3 1.949845+1 6.451944-3 2.691535+1 4.552862-3 3.890451+1 3.081835-3 6.237348+1 1.886784-3 1.188502+2 9.756714-4 2.371374+2 4.849190-4 9.440609+2 1.210214-4 5.956621+4 1.914747-6 1.000000+5 1.140500-6 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.548900-2 9.334900-5 1.000000+5 9.334900-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.548900-2 1.891300-2 1.000000+5 1.891300-2 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.548900-2 6.482651-3 1.000000+5 9.999998+4 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.783400-3 3.436768+4 4.080000-3 3.053500+4 4.623810-3 2.486193+4 4.900000-3 2.244560+4 5.559043-3 1.786217+4 6.025596-3 1.548714+4 6.456542-3 1.360503+4 7.852356-3 9.331450+3 8.709636-3 7.577610+3 1.011579-2 5.577822+3 1.190000-2 3.951120+3 1.333521-2 3.083928+3 1.548817-2 2.210005+3 1.819701-2 1.528570+3 2.113489-2 1.076257+3 2.426610-2 7.731039+2 2.786121-2 5.518168+2 3.198895-2 3.914357+2 3.715352-2 2.679953+2 4.315191-2 1.822632+2 5.069907-2 1.194931+2 6.025596-2 7.543320+1 7.161434-2 4.727300+1 8.709636-2 2.762170+1 1.096478-1 1.453198+1 2.187762-1 2.076276+0 2.660725-1 1.201749+0 3.126079-1 7.715582-1 3.589219-1 5.313669-1 4.073803-1 3.800553-1 4.570882-1 2.820944-1 5.128614-1 2.109000-1 5.688529-1 1.634679-1 6.309573-1 1.275580-1 6.998420-1 1.002453-1 7.762471-1 7.935832-2 8.511380-1 6.490419-2 9.332543-1 5.343447-2 1.023293+0 4.429749-2 1.161449+0 3.443351-2 1.288250+0 2.827060-2 1.462177+0 2.236459-2 1.621810+0 1.859855-2 1.840772+0 1.496281-2 2.113489+0 1.188695-2 2.371374+0 9.888737-3 2.691535+0 8.141732-3 3.126079+0 6.526111-3 3.630781+0 5.268596-3 4.265795+0 4.218120-3 5.011872+0 3.402598-3 6.000000+0 2.698100-3 7.244360+0 2.132637-3 8.912509+0 1.659794-3 1.109175+1 1.284000-3 1.445440+1 9.490506-4 1.927525+1 6.898255-4 2.660725+1 4.866415-4 3.845918+1 3.293231-4 6.095369+1 2.039941-4 1.148154+2 1.066862-4 2.290868+2 5.301213-5 4.570882+2 2.645365-5 1.819701+3 6.623233-6 1.000000+5 1.204200-7 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.783400-3 1.093200-4 1.000000+5 1.093200-4 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.783400-3 1.754900-4 1.000000+5 1.754900-4 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.783400-3 3.498590-3 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.528100-3 7.483469+4 3.620000-3 7.102300+4 3.650000-3 6.977100+4 3.690000-3 6.764800+4 3.801894-3 6.294500+4 4.168694-3 4.977300+4 4.500000-3 4.058200+4 5.500000-3 2.350400+4 6.095369-3 1.768400+4 7.161434-3 1.121400+4 8.912509-3 5.925100+3 1.047129-2 3.660500+3 1.174898-2 2.583200+3 1.400000-2 1.506200+3 1.698244-2 8.223000+2 2.041738-2 4.571800+2 2.454709-2 2.519800+2 2.951209-2 1.378100+2 3.589219-2 7.204600+1 4.518559-2 3.332471+1 6.025596-2 1.260525+1 1.035142-1 2.004634+0 1.348963-1 8.210980-1 1.621810-1 4.443046-1 1.905461-1 2.614289-1 2.213095-1 1.609116-1 2.540973-1 1.035675-1 2.884032-1 6.965020-2 3.235937-1 4.888544-2 3.630781-1 3.455184-2 4.027170-1 2.544820-2 4.466836-1 1.887106-2 4.954502-1 1.409076-2 5.495409-1 1.059719-2 6.095369-1 8.026812-3 6.683439-1 6.313859-3 7.244360-1 5.148404-3 7.943282-1 4.107536-3 9.015711-1 3.039446-3 9.660509-1 2.590384-3 1.023293+0 2.283332-3 1.096478+0 1.976323-3 1.174898+0 1.722654-3 1.273503+0 1.481160-3 1.428894+0 1.203166-3 1.698244+0 8.887922-4 1.949845+0 7.026410-4 2.187762+0 5.815116-4 2.454709+0 4.848786-4 2.786121+0 4.000291-4 3.273407+0 3.158804-4 3.801894+0 2.556096-4 4.466836+0 2.051021-4 5.308844+0 1.633188-4 6.382635+0 1.291288-4 7.762471+0 1.014169-4 9.549926+0 7.912693-5 1.202264+1 6.055014-5 1.479108+1 4.785930-5 1.949845+1 3.524439-5 2.691535+1 2.487118-5 3.845918+1 1.703956-5 6.025596+1 1.068098-5 1.122018+2 5.651077-6 2.238721+2 2.807301-6 4.466836+2 1.400798-6 1.778279+3 3.506854-7 1.000000+5 6.230400-9 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.528100-3 8.511000-5 1.000000+5 8.511000-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.528100-3 1.988300-4 1.000000+5 1.988300-4 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.528100-3 3.244160-3 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.350000-3 1.599947+5 3.470000-3 1.475656+5 3.550000-3 1.384208+5 3.620000-3 1.319168+5 3.935501-3 1.061361+5 4.265795-3 8.525251+4 5.308844-3 4.640509+4 5.688529-3 3.819362+4 6.683439-3 2.403825+4 7.585776-3 1.653080+4 8.609938-3 1.133146+4 1.047129-2 6.234408+3 1.230269-2 3.773309+3 1.412538-2 2.437345+3 1.640590-2 1.507911+3 1.927525-2 8.921935+2 2.264644-2 5.239683+2 2.691535-2 2.939872+2 3.235937-2 1.574688+2 3.935501-2 8.045734+1 4.841724-2 3.921641+1 6.165950-2 1.682218+1 1.230269-1 1.473948+0 1.500000-1 7.377473-1 1.778279-1 4.102763-1 2.041738-1 2.564269-1 2.317395-1 1.678079-1 2.600160-1 1.148894-1 2.917427-1 7.922699-2 3.235937-1 5.709954-2 3.589219-1 4.145673-2 3.935501-1 3.139717-2 4.315191-1 2.393749-2 4.731513-1 1.838163-2 5.188000-1 1.421991-2 5.623413-1 1.143192-2 6.165950-1 8.976492-3 6.760830-1 7.102395-3 7.413102-1 5.660256-3 8.128305-1 4.543565-3 8.912509-1 3.675134-3 9.660509-1 3.069831-3 1.023293+0 2.716766-3 1.122018+0 2.251658-3 1.216186+0 1.924327-3 1.348963+0 1.586886-3 1.531087+0 1.265014-3 1.757924+0 9.944936-4 2.018366+0 7.878816-4 2.264644+0 6.535115-4 2.540973+0 5.460184-4 2.884032+0 4.513031-4 3.349654+0 3.629016-4 3.890451+0 2.939918-4 4.570882+0 2.361595-4 5.432503+0 1.882436-4 6.531306+0 1.489788-4 7.943282+0 1.171144-4 9.772372+0 9.144706-5 1.230269+1 7.003230-5 1.479108+1 5.683123-5 1.949845+1 4.185149-5 2.691535+1 2.953298-5 3.890451+1 1.999064-5 6.165950+1 1.238553-5 1.161449+2 6.478743-6 2.317395+2 3.219463-6 9.225714+2 8.033684-7 2.917427+4 2.535380-8 1.000000+5 7.398400-9 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.350000-3 8.116900-5 1.000000+5 8.116900-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.350000-3 1.667900-4 1.000000+5 1.667900-4 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.350000-3 3.102041-3 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 7.038000-4 1.080700+5 8.035261-4 9.310851+4 9.015711-4 8.094148+4 9.850000-4 7.253140+4 1.047129-3 6.670434+4 1.230269-3 5.321484+4 1.333521-3 4.720734+4 1.584893-3 3.614689+4 1.757924-3 3.058504+4 2.070000-3 2.330660+4 2.400000-3 1.805948+4 2.754229-3 1.415751+4 3.235937-3 1.056237+4 3.845918-3 7.649907+3 4.518559-3 5.616429+3 5.370318-3 4.001124+3 6.382635-3 2.826545+3 7.500000-3 2.027440+3 8.810489-3 1.444028+3 1.023293-2 1.046269+3 1.202264-2 7.341214+2 1.412538-2 5.111696+2 1.659587-2 3.532316+2 1.949845-2 2.422266+2 2.264644-2 1.694413+2 2.660725-2 1.144715+2 3.126079-2 7.675703+1 3.672823-2 5.107951+1 4.315191-2 3.374570+1 5.128614-2 2.147758+1 6.095369-2 1.356788+1 7.328245-2 8.248792+0 8.912509-2 4.824162+0 1.109175-1 2.627808+0 2.371374-1 3.109857-1 2.851018-1 1.866555-1 3.311311-1 1.241095-1 3.801894-1 8.575979-2 4.315191-1 6.156867-2 4.841724-1 4.587842-2 5.370318-1 3.543827-2 6.000000-1 2.708129-2 6.683439-1 2.101048-2 7.413102-1 1.658684-2 8.222427-1 1.318937-2 9.015711-1 1.082465-2 9.885531-1 8.946623-3 1.148154+0 6.635189-3 1.250000+0 5.637444-3 1.428894+0 4.394578-3 1.566751+0 3.723133-3 1.778279+0 2.989162-3 2.065380+0 2.325753-3 2.317395+0 1.931891-3 2.630268+0 1.588279-3 3.019952+0 1.293236-3 3.507519+0 1.042176-3 4.073803+0 8.461671-4 4.786301+0 6.811485-4 5.688529+0 5.440440-4 6.839116+0 4.313763-4 8.413951+0 3.350151-4 1.047129+1 2.586351-4 1.380384+1 1.883091-4 1.819701+1 1.384499-4 2.454709+1 9.997238-5 3.507519+1 6.835962-5 5.370318+1 4.381045-5 9.120108+1 2.542022-5 1.819701+2 1.260209-5 3.630781+2 6.281337-6 1.445440+3 1.571391-6 1.000000+5 2.268700-8 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 7.038000-4 7.829600-5 1.000000+5 7.829600-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.038000-4 2.231600-7 1.000000+5 2.231600-7 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.038000-4 6.252808-4 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.001900-4 7.927240+4 6.009000-4 8.530100+4 6.013000-4 8.851840+4 6.018000-4 9.228120+4 6.025596-4 9.745947+4 6.032000-4 1.013880+5 6.040000-4 1.058816+5 6.050000-4 1.109314+5 6.060000-4 1.154216+5 6.070000-4 1.194606+5 6.085000-4 1.248462+5 6.100000-4 1.295326+5 6.115000-4 1.336120+5 6.135000-4 1.382236+5 6.150000-4 1.411500+5 6.170000-4 1.444258+5 6.190000-4 1.470840+5 6.220000-4 1.500674+5 6.250000-4 1.520712+5 6.285000-4 1.534358+5 6.330000-4 1.540768+5 6.400000-4 1.535362+5 7.244360-4 1.399185+5 8.128305-4 1.260750+5 8.511380-4 1.203304+5 9.120108-4 1.114505+5 9.885531-4 1.010929+5 1.059254-3 9.252618+4 1.130000-3 8.455420+4 1.244515-3 7.322777+4 1.350000-3 6.451200+4 1.462177-3 5.654017+4 1.621810-3 4.724909+4 1.778279-3 4.001341+4 1.972423-3 3.290130+4 2.187762-3 2.687351+4 2.426610-3 2.177021+4 2.691535-3 1.752272+4 3.000000-3 1.385106+4 3.349654-3 1.083133+4 3.758374-3 8.310959+3 4.216965-3 6.330054+3 4.731513-3 4.786565+3 5.308844-3 3.593799+3 6.000000-3 2.630400+3 6.800000-3 1.896974+3 7.762471-3 1.331313+3 8.810489-3 9.414347+2 1.000000-2 6.609580+2 1.148154-2 4.457630+2 1.303167-2 3.085382+2 1.496236-2 2.050858+2 1.730000-2 1.324798+2 2.018366-2 8.261765+1 2.344229-2 5.183792+1 2.754229-2 3.113729+1 3.273407-2 1.789010+1 3.935501-2 9.827386+0 4.841724-2 4.968142+0 6.165950-2 2.222822+0 1.230269-1 2.195245-1 1.548817-1 1.021874-1 1.798871-1 6.248954-2 2.113489-1 3.712145-2 2.426610-1 2.390485-2 2.754229-1 1.607528-2 3.126079-1 1.088578-2 3.507519-1 7.688420-3 3.935501-1 5.469411-3 4.365158-1 4.052706-3 4.841724-1 3.023753-3 5.370318-1 2.273180-3 5.956621-1 1.722105-3 6.606935-1 1.314636-3 7.328245-1 1.011509-3 8.511380-1 7.006733-4 9.120108-1 5.949471-4 9.660509-1 5.220164-4 1.023293+0 4.608054-4 1.096478+0 3.992202-4 1.174898+0 3.480196-4 1.273503+0 2.989459-4 1.412538+0 2.477195-4 1.678804+0 1.828642-4 1.927525+0 1.444872-4 2.162719+0 1.195140-4 2.426610+0 9.958727-5 2.754229+0 8.210155-5 3.235937+0 6.478941-5 3.758374+0 5.239783-5 4.415704+0 4.202055-5 5.248075+0 3.344198-5 6.309573+0 2.642768-5 7.673615+0 2.074658-5 9.440609+0 1.618075-5 1.188502+1 1.237696-5 1.479108+1 9.654678-6 1.949845+1 7.109861-6 2.722701+1 4.955699-6 3.935501+1 3.355291-6 6.309573+1 2.054705-6 1.188502+2 1.075146-6 2.371374+2 5.343729-7 9.440609+2 1.333630-7 2.985383+4 4.209008-9 1.000000+5 1.256900-9 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.001900-4 5.973900-5 1.000000+5 5.973900-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.001900-4 2.235600-7 1.000000+5 2.235600-7 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.001900-4 5.402274-4 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.685300-4 2.004116+5 5.691000-4 2.124552+5 5.695000-4 2.204748+5 5.700000-4 2.296852+5 5.707000-4 2.413252+5 5.715000-4 2.532412+5 5.723000-4 2.638476+5 5.730000-4 2.722964+5 5.740000-4 2.832124+5 5.750000-4 2.929608+5 5.765000-4 3.057940+5 5.780000-4 3.168684+5 5.795000-4 3.264688+5 5.810000-4 3.348008+5 5.830000-4 3.441892+5 5.850000-4 3.518568+5 5.870000-4 3.580248+5 5.900000-4 3.648732+5 5.930000-4 3.693300+5 5.960000-4 3.718852+5 6.000000-4 3.730680+5 6.050000-4 3.721132+5 6.200000-4 3.640912+5 7.000000-4 3.243604+5 7.943282-4 2.828801+5 8.511380-4 2.603563+5 9.200000-4 2.353528+5 1.000000-3 2.100332+5 1.071519-3 1.897784+5 1.174898-3 1.642452+5 1.288250-3 1.413297+5 1.400000-3 1.224748+5 1.570000-3 9.956280+4 1.717908-3 8.409599+4 1.905461-3 6.867314+4 2.113489-3 5.571474+4 2.371374-3 4.377482+4 2.630268-3 3.499300+4 2.951209-3 2.706808+4 3.273407-3 2.133766+4 3.672823-3 1.626421+4 4.120975-3 1.230178+4 4.570882-3 9.511507+3 5.188000-3 6.891892+3 5.888437-3 4.952636+3 6.683439-3 3.530021+3 7.585776-3 2.496205+3 8.511380-3 1.809411+3 9.549926-3 1.303548+3 1.080000-2 9.122400+2 1.230269-2 6.206871+2 1.412538-2 4.094034+2 1.621810-2 2.679579+2 1.862087-2 1.741398+2 2.162719-2 1.082863+2 2.511886-2 6.681971+1 2.917427-2 4.093595+1 3.427678-2 2.397007+1 4.073803-2 1.340636+1 4.897788-2 7.158952+0 6.025596-2 3.507306+0 8.035261-2 1.289675+0 1.288250-1 2.485420-1 1.621810-1 1.121442-1 1.862087-1 6.999386-2 2.113489-1 4.576791-2 2.398833-1 3.005450-2 2.691535-1 2.064219-2 3.000000-1 1.458643-2 3.311311-1 1.070673-2 3.672823-1 7.795487-3 4.027170-1 5.918850-3 4.415705-1 4.524625-3 4.841724-1 3.483030-3 5.308844-1 2.701049-3 5.821032-1 2.110378-3 6.382635-1 1.661338-3 6.998420-1 1.317894-3 7.673615-1 1.053632-3 8.511380-1 8.257325-4 9.120108-1 7.061103-4 9.772372-1 6.076992-4 1.071519+0 5.024065-4 1.174898+0 4.183375-4 1.288250+0 3.512390-4 1.428894+0 2.905936-4 1.640590+0 2.275751-4 1.883649+0 1.796277-4 2.137962+0 1.456029-4 2.398833+0 1.212254-4 2.722701+0 9.987523-5 3.198895+0 7.877006-5 3.715352+0 6.366679-5 4.365158+0 5.102997-5 5.188000+0 4.059127-5 6.237348+0 3.206160-5 7.585776+0 2.515814-5 9.332543+0 1.961227-5 1.174898+1 1.499649-5 1.462177+1 1.169319-5 1.949845+1 8.501387-6 2.691535+1 5.999058-6 3.890451+1 4.060724-6 6.165950+1 2.515804-6 1.174898+2 1.300704-6 2.344229+2 6.464212-7 9.332543+2 1.613122-7 2.951209+4 5.091095-9 1.000000+5 1.502800-9 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.685300-4 5.856800-5 1.000000+5 5.856800-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.685300-4 1.458200-7 1.000000+5 1.458200-7 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.685300-4 5.098162-4 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.829900-4 5.984440+4 3.849000-4 5.959160+4 3.860000-4 5.972320+4 3.870000-4 6.009560+4 3.880000-4 6.080760+4 3.890451-4 6.200264+4 3.900000-4 6.357680+4 3.907000-4 6.508120+4 3.915000-4 6.722440+4 3.923000-4 6.988400+4 3.930000-4 7.269960+4 3.938000-4 7.654040+4 3.945000-4 8.051760+4 3.952000-4 8.513400+4 3.960000-4 9.128040+4 3.967000-4 9.750480+4 3.975000-4 1.056832+5 3.985000-4 1.176768+5 3.995000-4 1.318584+5 4.007000-4 1.521024+5 4.027170-4 1.950716+5 4.050000-4 2.587572+5 4.065000-4 3.097636+5 4.077000-4 3.556680+5 4.090000-4 4.102200+5 4.101300-4 4.611772+5 4.111000-4 5.070920+5 4.122000-4 5.611840+5 4.132000-4 6.116480+5 4.140000-4 6.525520+5 4.151500-4 7.117957+5 4.161000-4 7.605360+5 4.173000-4 8.211720+5 4.185000-4 8.804440+5 4.195000-4 9.284560+5 4.205000-4 9.747120+5 4.220000-4 1.040764+6 4.235000-4 1.102404+6 4.250400-4 1.160735+6 4.265795-4 1.214383+6 4.280000-4 1.259672+6 4.295000-4 1.303264+6 4.315191-4 1.355630+6 4.335000-4 1.399952+6 4.360000-4 1.447240+6 4.380000-4 1.478484+6 4.410000-4 1.515368+6 4.440000-4 1.541712+6 4.470000-4 1.559156+6 4.502400-4 1.569259+6 4.550000-4 1.570908+6 4.600000-4 1.560356+6 4.650000-4 1.541728+6 4.740000-4 1.498576+6 5.326300-4 1.238438+6 5.559043-4 1.146546+6 6.200000-4 9.308160+5 6.531306-4 8.380369+5 7.000000-4 7.219600+5 7.413102-4 6.348617+5 8.128305-4 5.115531+5 8.709636-4 4.320755+5 9.500000-4 3.462456+5 1.047129-3 2.682647+5 1.148154-3 2.089764+5 1.288250-3 1.517071+5 1.412538-3 1.166561+5 1.584893-3 8.336142+4 1.757924-3 6.117881+4 1.972423-3 4.305606+4 2.187762-3 3.116646+4 2.454709-3 2.160963+4 2.754229-3 1.486952+4 3.090295-3 1.016005+4 3.507519-3 6.630618+3 4.000000-3 4.222800+3 4.570882-3 2.647566+3 5.188000-3 1.686374+3 5.888437-3 1.065833+3 6.760830-3 6.405873+2 7.762471-3 3.815812+2 8.810489-3 2.356095+2 1.000000-2 1.445248+2 1.161449-2 8.049623+1 1.333521-2 4.655998+1 1.548817-2 2.553634+1 1.798871-2 1.390312+1 2.113489-2 7.170099+0 2.540973-2 3.336083+0 3.126079-2 1.398922+0 4.120975-2 4.349736-1 7.413102-2 3.606834-2 9.225714-2 1.435624-2 1.122019-1 6.339712-3 1.303167-1 3.415678-3 1.500000-1 1.923669-3 1.698244-1 1.167374-3 1.927525-1 7.063595-4 2.162719-1 4.504357-4 2.426610-1 2.892642-4 2.722701-1 1.871783-4 3.019952-1 1.273924-4 3.349654-1 8.732894-5 3.715352-1 6.029382-5 4.168694-1 4.027984-5 4.570882-1 2.936504-5 5.000000-1 2.173872-5 5.432503-1 1.658398-5 5.888437-1 1.283631-5 6.309573-1 1.037403-5 6.839117-1 8.147223-6 7.498942-1 6.226646-6 8.035261-1 5.107798-6 8.609938-1 4.164700-6 9.120108-1 3.538661-6 9.549926-1 3.127079-6 9.885531-1 2.863838-6 1.035142+0 2.565680-6 1.083927+0 2.315445-6 1.135011+0 2.103295-6 1.188600+0 1.921487-6 1.273503+0 1.693697-6 1.380384+0 1.472629-6 1.513561+0 1.261399-6 1.862087+0 8.812760-7 2.089296+0 7.269285-7 2.344229+0 6.043226-7 2.660725+0 4.971821-7 3.090295+0 3.982548-7 3.589219+0 3.213253-7 4.216965+0 2.571108-7 4.954502+0 2.072934-7 5.888437+0 1.658161-7 7.079458+0 1.316537-7 8.709636+0 1.023785-7 1.083927+1 7.913664-8 1.428894+1 5.768985-8 1.905461+1 4.192156-8 2.630268+1 2.956500-8 3.801894+1 2.000307-8 6.025596+1 1.238747-8 1.122018+2 6.554174-9 2.238721+2 3.255984-9 4.466836+2 1.624581-9 1.778279+3 4.06725-10 1.000000+5 7.22610-12 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.829900-4 3.513500-5 1.000000+5 3.513500-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.829900-4 1.049400-7 1.000000+5 1.049400-7 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.829900-4 3.477501-4 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.765500-4 8.323620+4 3.784000-4 8.389440+4 3.797000-4 8.473740+4 3.809000-4 8.604300+4 3.820000-4 8.787180+4 3.828000-4 8.969580+4 3.835000-4 9.169980+4 3.843000-4 9.453780+4 3.850000-4 9.757200+4 3.858000-4 1.017642+5 3.865000-4 1.061538+5 3.873000-4 1.121082+5 3.880000-4 1.182420+5 3.888000-4 1.264380+5 3.895000-4 1.347672+5 3.903000-4 1.457562+5 3.910000-4 1.567914+5 3.921000-4 1.771086+5 3.933000-4 2.039292+5 3.948000-4 2.452068+5 3.985000-4 3.901008+5 4.000000-4 4.678530+5 4.011000-4 5.317992+5 4.023000-4 6.078120+5 4.035000-4 6.896640+5 4.045000-4 7.616700+5 4.054000-4 8.288580+5 4.065000-4 9.132600+5 4.077000-4 1.007118+6 4.085000-4 1.070094+6 4.095000-4 1.148664+6 4.104000-4 1.218708+6 4.115000-4 1.302828+6 4.126000-4 1.384680+6 4.140000-4 1.484742+6 4.150000-4 1.552998+6 4.165000-4 1.649856+6 4.180000-4 1.739784+6 4.195000-4 1.822674+6 4.211400-4 1.905363+6 4.230000-4 1.989456+6 4.250000-4 2.068986+6 4.273700-4 2.149669+6 4.300000-4 2.223414+6 4.328000-4 2.285466+6 4.356900-4 2.333612+6 4.390000-4 2.371398+6 4.420000-4 2.391840+6 4.450000-4 2.401302+6 4.485000-4 2.400990+6 4.530000-4 2.386896+6 4.600000-4 2.345460+6 4.700000-4 2.268660+6 5.248075-4 1.891010+6 5.500000-4 1.736454+6 6.100000-4 1.422204+6 6.456542-4 1.267423+6 6.850000-4 1.115286+6 7.300000-4 9.670200+5 8.000000-4 7.790100+5 8.609938-4 6.507257+5 9.225714-4 5.456805+5 1.023293-3 4.155863+5 1.110000-3 3.336330+5 1.244515-3 2.426810+5 1.380384-3 1.805606+5 1.548817-3 1.289582+5 1.717908-3 9.457388+4 1.927525-3 6.651820+4 2.162719-3 4.639415+4 2.400000-3 3.327876+4 2.722701-3 2.206369+4 3.090295-3 1.447560+4 3.427678-3 1.018998+4 3.845918-3 6.856874+3 4.400000-3 4.278588+3 5.011872-3 2.688131+3 5.688529-3 1.696705+3 6.500000-3 1.036404+3 7.328245-3 6.604317+2 8.317638-3 4.074184+2 9.440609-3 2.496188+2 1.071519-2 1.519416+2 1.230269-2 8.776827+1 1.428894-2 4.805708+1 1.659587-2 2.610471+1 1.927525-2 1.407477+1 2.264644-2 7.179099+0 2.691535-2 3.462888+0 3.273407-2 1.503956+0 4.265795-2 4.822692-1 7.498942-2 4.236114-2 9.332543-2 1.659411-2 1.122019-1 7.595249-3 1.303167-1 4.052733-3 1.496236-1 2.286155-3 1.698244-1 1.362804-3 1.905461-1 8.575937-4 2.089296-1 5.954055-4 2.317395-1 3.980445-4 2.540973-1 2.802144-4 2.786121-1 1.986043-4 3.054921-1 1.417541-4 3.349654-1 1.019603-4 3.630781-1 7.693564-5 3.935501-1 5.843522-5 4.216965-1 4.645700-5 4.570882-1 3.581918-5 4.954502-1 2.782418-5 5.432503-1 2.097189-5 5.888437-1 1.648535-5 6.382635-1 1.304668-5 6.918310-1 1.039892-5 7.498942-1 8.349540-6 8.000000-1 7.041634-6 8.511380-1 6.029189-6 9.015711-1 5.256145-6 9.549926-1 4.613473-6 1.011579+0 4.077413-6 1.109175+0 3.376134-6 1.202264+0 2.882212-6 1.318257+0 2.425485-6 1.479108+0 1.970855-6 1.698244+0 1.546964-6 1.949845+0 1.223259-6 2.187762+0 1.012164-6 2.454709+0 8.438968-7 2.786121+0 6.962385-7 3.273407+0 5.497972-7 3.801894+0 4.448934-7 4.466836+0 3.569806-7 5.308844+0 2.842539-7 6.382635+0 2.247417-7 7.762471+0 1.765131-7 9.549926+0 1.377223-7 1.202264+1 1.053823-7 1.479108+1 8.329874-8 1.949845+1 6.134335-8 2.691535+1 4.328768-8 3.890451+1 2.930076-8 6.165950+1 1.815394-8 1.161449+2 9.495976-9 2.317395+2 4.718820-9 9.225714+2 1.177534-9 2.917427+4 3.71608-11 1.000000+5 1.08440-11 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.765500-4 3.489100-5 1.000000+5 3.489100-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.765500-4 1.92890-10 1.000000+5 1.92890-10 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.765500-4 3.416588-4 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.016100-4 1.626652+5 1.040000-4 1.659356+5 1.060000-4 1.677656+5 1.090000-4 1.694432+5 1.135011-4 1.705386+5 1.216186-4 1.708625+5 1.380384-4 1.698442+5 1.500000-4 1.681836+5 1.603245-4 1.657335+5 1.698244-4 1.625599+5 1.800000-4 1.582504+5 1.905461-4 1.530405+5 2.018366-4 1.469819+5 2.162719-4 1.390314+5 2.371374-4 1.279875+5 2.630268-4 1.156951+5 2.900000-4 1.044276+5 3.162278-4 9.468502+4 3.467369-4 8.467721+4 3.890451-4 7.303171+4 4.415704-4 6.162258+4 4.954502-4 5.241220+4 5.623413-4 4.350317+4 6.531306-4 3.464779+4 7.500000-4 2.785960+4 8.912509-4 2.104875+4 1.059254-3 1.576789+4 1.273503-3 1.150407+4 1.566751-3 8.005018+3 1.927525-3 5.528678+3 2.371374-3 3.788939+3 2.851018-3 2.688851+3 3.427678-3 1.894106+3 4.073803-3 1.353658+3 4.897788-3 9.387697+2 5.888437-3 6.460277+2 7.000000-3 4.516100+2 8.317638-3 3.137349+2 9.885531-3 2.161860+2 1.161449-2 1.516096+2 1.364583-2 1.055633+2 1.603245-2 7.297043+1 1.883649-2 5.007188+1 2.213095-2 3.410437+1 2.600160-2 2.305632+1 3.054921-2 1.547250+1 3.589219-2 1.030820+1 4.265795-2 6.619263+0 5.069907-2 4.217146+0 6.095369-2 2.584320+0 7.413102-2 1.523414+0 8.609938-2 1.011048+0 1.083927-1 5.334941-1 2.371374-1 5.931975-2 2.851018-1 3.561770-2 3.349654-1 2.296215-2 3.845918-1 1.587861-2 4.365158-1 1.140855-2 4.897788-1 8.507852-3 5.432503-1 6.576745-3 6.025596-1 5.117832-3 6.683439-1 4.011296-3 7.413102-1 3.166868-3 8.317638-1 2.455880-3 9.120108-1 2.017185-3 1.000000+0 1.668800-3 1.148154+0 1.266825-3 1.250000+0 1.076300-3 1.428894+0 8.390177-4 1.566751+0 7.108192-4 1.778279+0 5.706674-4 2.044000+0 4.517300-4 2.290868+0 3.756494-4 2.600160+0 3.086077-4 2.985383+0 2.511193-4 3.467369+0 2.022554-4 4.027170+0 1.641263-4 4.731513+0 1.320436-4 5.623413+0 1.054151-4 6.760830+0 8.354573-5 8.317638+0 6.485475-5 1.023293+1 5.072525-5 1.318257+1 3.789224-5 1.640590+1 2.963882-5 2.200000+1 2.148500-5 3.090295+1 1.492324-5 4.570882+1 9.889231-6 7.328245+1 6.071463-6 1.428894+2 3.073122-6 2.851018+2 1.529573-6 1.135011+3 3.821334-7 1.000000+5 4.331500-9 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.016100-4 3.572900-5 1.000000+5 3.572900-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.016100-4 2.96950-10 1.000000+5 2.96950-10 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.016100-4 6.588070-5 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 6.841000-5 7.621580+5 6.900000-5 7.668200+5 6.960000-5 7.665120+5 7.030000-5 7.617220+5 7.110000-5 7.514940+5 7.190000-5 7.377260+5 7.300000-5 7.146220+5 7.413102-5 6.880391+5 7.500000-5 6.664120+5 7.673615-5 6.217542+5 7.852356-5 5.758489+5 8.080000-5 5.199120+5 8.400000-5 4.485960+5 9.332543-5 2.957866+5 9.660509-5 2.592710+5 1.000000-4 2.288080+5 1.030000-4 2.070280+5 1.060000-4 1.892056+5 1.090000-4 1.746300+5 1.122018-4 1.619846+5 1.150000-4 1.529360+5 1.180000-4 1.449178+5 1.216186-4 1.371114+5 1.250400-4 1.312196+5 1.288250-4 1.260217+5 1.333521-4 1.212088+5 1.380384-4 1.174445+5 1.430000-4 1.144596+5 1.496236-4 1.116177+5 1.580000-4 1.092460+5 1.698244-4 1.071473+5 2.018366-4 1.032593+5 2.187762-4 1.008695+5 2.371374-4 9.788154+4 2.580000-4 9.413680+4 2.786121-4 9.020010+4 3.000000-4 8.596760+4 3.235937-4 8.126590+4 3.507519-4 7.597499+4 3.850000-4 6.970640+4 4.216965-4 6.360732+4 4.623810-4 5.752952+4 5.011872-4 5.235020+4 5.559043-4 4.599031+4 6.165950-4 4.010225+4 6.839116-4 3.470513+4 7.673615-4 2.928301+4 8.609938-4 2.451407+4 9.549926-4 2.074764+4 1.071519-3 1.711518+4 1.190000-3 1.428114+4 1.333521-3 1.165363+4 1.500000-3 9.385320+3 1.698244-3 7.413043+3 1.905461-3 5.916977+3 2.137962-3 4.690673+3 2.426610-3 3.605084+3 2.722701-3 2.817897+3 3.054921-3 2.187312+3 3.427678-3 1.685516+3 3.845918-3 1.289939+3 4.315191-3 9.804720+2 4.897788-3 7.195728+2 5.559043-3 5.240975+2 6.309573-3 3.788233+2 7.161434-3 2.717756+2 8.128305-3 1.935810+2 9.225714-3 1.368930+2 1.047129-2 9.612296+1 1.188502-2 6.702509+1 1.364583-2 4.488732+1 1.566751-2 2.983789+1 1.798871-2 1.969461+1 2.089296-2 1.246103+1 2.426610-2 7.824499+0 2.851018-2 4.705143+0 3.388442-2 2.706844+0 4.073803-2 1.489128+0 5.011872-2 7.541629-1 6.456542-2 3.250710-1 1.244515-1 3.621401-2 1.548817-1 1.754363-2 1.840772-1 9.965787-3 2.137962-1 6.145015-3 2.454709-1 3.959094-3 2.786121-1 2.663490-3 3.162278-1 1.804781-3 3.548134-1 1.275794-3 3.981072-1 9.084623-4 4.415705-1 6.738005-4 4.897788-1 5.032071-4 5.432503-1 3.786121-4 6.025596-1 2.870285-4 6.683439-1 2.192631-4 7.413102-1 1.688315-4 8.511380-1 1.203595-4 9.120108-1 1.022161-4 9.660509-1 8.969762-5 1.023293+0 7.918658-5 1.109175+0 6.702566-5 1.188600+0 5.848400-5 1.303167+0 4.924000-5 1.462177+0 4.003678-5 1.717908+0 3.019487-5 1.972423+0 2.388695-5 2.213095+0 1.978275-5 2.483133+0 1.650582-5 2.818383+0 1.362512-5 3.311311+0 1.076492-5 3.845918+0 8.716095-6 4.518559+0 6.997641-6 5.370318+0 5.574956-6 6.456542+0 4.409961-6 7.852356+0 3.465123-6 9.660509+0 2.704672-6 1.216186+1 2.070512-6 1.479108+1 1.658222-6 1.972423+1 1.205865-6 2.754229+1 8.407781-7 4.000000+1 5.665600-7 6.382635+1 3.487511-7 1.216186+2 1.803860-7 2.426610+2 8.967814-8 9.660509+2 2.238219-8 6.095369+4 3.54158-10 1.000000+5 2.15870-10 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 6.841000-5 2.438000-5 1.000000+5 2.438000-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.841000-5 3.32130-10 1.000000+5 3.32130-10 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.841000-5 4.402967-5 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 6.314000-5 1.703796+6 6.382635-5 1.695732+6 6.460000-5 1.672668+6 6.550000-5 1.634004+6 6.650000-5 1.581484+6 6.770000-5 1.510644+6 6.920000-5 1.417296+6 7.079458-5 1.317567+6 7.300000-5 1.185408+6 7.585776-5 1.030662+6 8.317638-5 7.299769+5 8.650000-5 6.341040+5 8.912509-5 5.728327+5 9.150000-5 5.266520+5 9.400000-5 4.860760+5 9.660509-5 4.511386+5 9.900000-5 4.245200+5 1.020000-4 3.972624+5 1.050000-4 3.754548+5 1.080000-4 3.579548+5 1.110000-4 3.438512+5 1.150000-4 3.291100+5 1.190000-4 3.178572+5 1.240000-4 3.073100+5 1.300000-4 2.982128+5 1.364583-4 2.912512+5 1.462177-4 2.839583+5 1.800000-4 2.673772+5 1.950000-4 2.597320+5 2.113489-4 2.505597+5 2.300000-4 2.394440+5 2.511886-4 2.265715+5 2.730000-4 2.134564+5 2.951209-4 2.004448+5 3.200000-4 1.864356+5 3.467369-4 1.723065+5 3.801894-4 1.562902+5 4.168694-4 1.408148+5 4.600000-4 1.250140+5 5.011872-4 1.119307+5 5.559043-4 9.722294+4 6.237348-4 8.247492+4 6.839116-4 7.184490+4 7.585776-4 6.110204+4 8.609938-4 4.972546+4 9.700000-4 4.061760+4 1.110000-3 3.202516+4 1.244515-3 2.599222+4 1.412538-3 2.047648+4 1.584893-3 1.637686+4 1.798871-3 1.271893+4 2.041738-3 9.800816+3 2.290868-3 7.679541+3 2.570396-3 5.976613+3 2.884032-3 4.619469+3 3.235937-3 3.545452+3 3.630781-3 2.702404+3 4.073803-3 2.045864+3 4.623810-3 1.494608+3 5.248075-3 1.083259+3 5.956621-3 7.790619+2 6.760830-3 5.561171+2 7.673615-3 3.940038+2 8.709636-3 2.770734+2 9.885531-3 1.934242+2 1.122018-2 1.340523+2 1.273503-2 9.225855+1 1.462177-2 6.090626+1 1.678804-2 3.990099+1 1.927525-2 2.594866+1 2.238721-2 1.615238+1 2.600160-2 9.976154+0 3.019952-2 6.115987+0 3.548134-2 3.580519+0 4.216965-2 2.001804+0 5.128614-2 1.027302+0 6.456542-2 4.646067-1 1.318257-1 3.883148-2 1.621810-1 1.901210-2 1.905461-1 1.098583-2 2.187762-1 6.912743-3 2.483133-1 4.552702-3 2.786121-1 3.136085-3 3.090295-1 2.256841-3 3.427678-1 1.635252-3 3.801894-1 1.193754-3 4.168694-1 9.087086-4 4.570882-1 6.965180-4 5.011872-1 5.376861-4 5.495409-1 4.182033-4 6.025596-1 3.277354-4 6.606935-1 2.588683-4 7.244360-1 2.060519-4 7.943282-1 1.652704-4 8.609938-1 1.368405-4 9.225714-1 1.170801-4 9.885531-1 1.008387-4 1.083927+0 8.342720-5 1.174898+0 7.109696-5 1.288250+0 5.969809-5 1.428894+0 4.939893-5 1.640590+0 3.868994-5 1.883649+0 3.053748-5 2.137962+0 2.475338-5 2.398833+0 2.060892-5 2.722701+0 1.697874-5 3.198895+0 1.339069-5 3.715352+0 1.082338-5 4.365158+0 8.675125-6 5.188000+0 6.900436-6 6.237348+0 5.450377-6 7.585776+0 4.276825-6 9.332543+0 3.334121-6 1.174898+1 2.549322-6 1.462177+1 1.987869-6 1.949845+1 1.445193-6 2.722701+1 1.007343-6 3.935501+1 6.820436-7 6.237348+1 4.226485-7 1.174898+2 2.211167-7 2.344229+2 1.098889-7 9.332543+2 2.742319-8 2.951209+4 8.65485-10 1.000000+5 2.55480-10 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 6.314000-5 2.407200-5 1.000000+5 2.407200-5 1 47000 7 7 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.314000-5 2.33240-10 1.000000+5 2.33240-10 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.314000-5 3.906777-5 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.247000-5 3.833392+6 1.288250-5 3.850010+6 1.333521-5 3.899442+6 1.385000-5 3.984372+6 1.445440-5 4.116493+6 1.513561-5 4.298804+6 1.584893-5 4.520173+6 1.678804-5 4.848230+6 1.800000-5 5.319280+6 1.950000-5 5.960480+6 2.162719-5 6.958279+6 2.786121-5 1.027750+7 3.019952-5 1.156121+7 3.198895-5 1.249531+7 3.350000-5 1.320864+7 3.467369-5 1.369298+7 3.589219-5 1.411706+7 3.715352-5 1.445847+7 3.801894-5 1.462775+7 3.900000-5 1.474900+7 4.000000-5 1.479376+7 4.120975-5 1.473957+7 4.229500-5 1.459142+7 4.350000-5 1.432248+7 4.466836-5 1.396639+7 4.570882-5 1.358032+7 4.680000-5 1.311672+7 4.800000-5 1.255136+7 4.900000-5 1.204648+7 5.011872-5 1.145638+7 5.150000-5 1.070636+7 5.270000-5 1.004868+7 5.415200-5 9.260187+6 5.559043-5 8.499878+6 5.688529-5 7.841589+6 5.850000-5 7.063200+6 6.025596-5 6.276317+6 6.165950-5 5.694156+6 6.350000-5 4.994240+6 6.531306-5 4.373712+6 6.730000-5 3.768688+6 6.918310-5 3.262817+6 7.079458-5 2.877916+6 7.244360-5 2.525976+6 7.450000-5 2.140932+6 7.650000-5 1.817824+6 7.852356-5 1.536568+6 8.035261-5 1.317282+6 8.230000-5 1.115888+6 8.450000-5 9.230480+5 8.650000-5 7.753480+5 8.900000-5 6.222120+5 9.150000-5 4.986000+5 9.440609-5 3.854085+5 1.011579-4 2.156131+5 1.035142-4 1.786535+5 1.050000-4 1.597676+5 1.065000-4 1.436956+5 1.080000-4 1.302836+5 1.095000-4 1.192180+5 1.109175-4 1.106656+5 1.122018-4 1.043351+5 1.131000-4 1.006304+5 1.143000-4 9.652200+4 1.155000-4 9.328920+4 1.165000-4 9.119960+4 1.175000-4 8.961080+4 1.188502-4 8.818319+4 1.202264-4 8.748673+4 1.216186-4 8.746831+4 1.230269-4 8.806550+4 1.245000-4 8.926840+4 1.260000-4 9.101880+4 1.280000-4 9.405000+4 1.303167-4 9.836990+4 1.337300-4 1.059062+5 1.430000-4 1.299696+5 1.480000-4 1.435064+5 1.520000-4 1.540528+5 1.566751-4 1.657588+5 1.611900-4 1.762771+5 1.659587-4 1.864675+5 1.705000-4 1.952264+5 1.760000-4 2.045356+5 1.820000-4 2.131424+5 1.883649-4 2.206879+5 1.950000-4 2.269040+5 2.018366-4 2.316821+5 2.089296-4 2.352119+5 2.162719-4 2.375352+5 2.260000-4 2.387132+5 2.371374-4 2.380793+5 2.483133-4 2.356420+5 2.600160-4 2.316128+5 2.730000-4 2.258440+5 2.884032-4 2.176600+5 3.019952-4 2.097412+5 3.200000-4 1.986772+5 3.388442-4 1.869660+5 3.600000-4 1.741440+5 3.845918-4 1.598866+5 4.073803-4 1.475670+5 4.365158-4 1.330004+5 4.677351-4 1.189728+5 5.011872-4 1.057039+5 5.370318-4 9.338947+4 5.821032-4 8.021730+4 6.309573-4 6.836552+4 6.839116-4 5.784428+4 7.413102-4 4.862666+4 8.128305-4 3.957753+4 8.912509-4 3.196852+4 9.885531-4 2.494792+4 1.083927-3 1.987588+4 1.202264-3 1.527518+4 1.333521-3 1.164811+4 1.479108-3 8.819406+3 1.640590-3 6.628242+3 1.819701-3 4.944557+3 2.018366-3 3.661530+3 2.238721-3 2.691534+3 2.483133-3 1.964458+3 2.754229-3 1.423824+3 3.054921-3 1.024926+3 3.427678-3 7.057074+2 3.845918-3 4.821237+2 4.315191-3 3.269927+2 4.841724-3 2.201397+2 5.432503-3 1.470285+2 6.165950-3 9.355515+1 6.998420-3 5.911597+1 7.943282-3 3.707166+1 9.015711-3 2.305911+1 1.023293-2 1.423709+1 1.161449-2 8.728782+0 1.333521-2 5.080768+0 1.531087-2 2.936065+0 1.778279-2 1.608807+0 2.065380-2 8.751683-1 2.454709-2 4.299385-1 2.951209-2 1.998655-1 3.715352-2 7.605721-2 7.673615-2 3.549547-3 9.549926-2 1.417846-3 1.148154-1 6.590120-4 1.348963-1 3.395696-4 1.548817-1 1.937030-4 1.757924-1 1.165650-4 2.000000-1 7.000000-5 2.238721-1 4.513975-5 2.511886-1 2.904821-5 2.786121-1 1.966515-5 3.090295-1 1.340158-5 3.427678-1 9.197259-6 3.801894-1 6.359881-6 4.216965-1 4.432634-6 4.623810-1 3.238966-6 5.011872-1 2.476517-6 5.495409-1 1.836816-6 6.025596-1 1.372559-6 6.606935-1 1.032135-6 7.244360-1 7.819891-7 8.609938-1 4.719174-7 9.120108-1 4.017741-7 9.549926-1 3.555165-7 1.000000+0 3.167600-7 1.047129+0 2.844406-7 1.096478+0 2.573039-7 1.148154+0 2.342521-7 1.216186+0 2.099123-7 1.318257+0 1.816985-7 1.548817+0 1.378714-7 1.862087+0 1.002619-7 2.089296+0 8.270964-8 2.344229+0 6.876070-8 2.660725+0 5.657012-8 3.090295+0 4.531360-8 3.589219+0 3.656031-8 4.216965+0 2.925374-8 4.954502+0 2.358542-8 5.888437+0 1.886639-8 7.079458+0 1.497994-8 8.709636+0 1.164892-8 1.083927+1 9.004016-9 1.428894+1 6.563846-9 1.905461+1 4.769758-9 2.630268+1 3.363904-9 3.801894+1 2.275907-9 6.095369+1 1.392756-9 1.148154+2 7.28454-10 2.290868+2 3.61952-10 4.570882+2 1.80619-10 1.819701+3 4.52217-11 1.000000+5 8.22170-13 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.247000-5 1.247000-5 1.000000+5 1.247000-5 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.247000-5 0.0 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.186000-5 5.854512+6 1.220000-5 5.901924+6 1.260000-5 5.993484+6 1.303167-5 6.124265+6 1.364583-5 6.356254+6 1.428894-5 6.644769+6 1.513561-5 7.077568+6 1.621810-5 7.696328+6 1.778279-5 8.683963+6 2.018366-5 1.034825+7 2.730000-5 1.595322+7 2.951209-5 1.773178+7 3.126079-5 1.905133+7 3.273407-5 2.005749+7 3.400000-5 2.080890+7 3.507519-5 2.134209+7 3.630781-5 2.181860+7 3.730000-5 2.208240+7 3.850000-5 2.224932+7 3.950000-5 2.225784+7 4.070000-5 2.211114+7 4.180000-5 2.182926+7 4.300000-5 2.136930+7 4.415704-5 2.078912+7 4.518559-5 2.017602+7 4.623810-5 1.947033+7 4.731513-5 1.868345+7 4.850000-5 1.776222+7 4.954502-5 1.691711+7 5.080000-5 1.588002+7 5.190000-5 1.496550+7 5.308844-5 1.398552+7 5.450000-5 1.284888+7 5.580000-5 1.184130+7 5.730000-5 1.073646+7 5.900000-5 9.567660+6 6.070000-5 8.491860+6 6.237348-5 7.524589+6 6.400000-5 6.670440+6 6.580000-5 5.820360+6 6.760830-5 5.061067+6 6.950000-5 4.360038+6 7.150000-5 3.712698+6 7.350000-5 3.151842+6 7.500000-5 2.782320+6 7.673615-5 2.403895+6 7.852356-5 2.063955+6 8.035261-5 1.762345+6 8.230000-5 1.486404+6 8.450000-5 1.223328+6 8.650000-5 1.022868+6 8.900000-5 8.163600+5 9.150000-5 6.509640+5 9.500000-5 4.749258+5 9.980000-5 3.129144+5 1.020000-4 2.617548+5 1.036400-4 2.310387+5 1.050000-4 2.097174+5 1.065000-4 1.900584+5 1.075000-4 1.789638+5 1.085000-4 1.693230+5 1.096478-4 1.598948+5 1.109175-4 1.513116+5 1.120000-4 1.453752+5 1.131000-4 1.405188+5 1.143000-4 1.364436+5 1.155000-4 1.335150+5 1.165000-4 1.318644+5 1.175000-4 1.308636+5 1.188502-4 1.304427+5 1.202264-4 1.309908+5 1.216186-4 1.324240+5 1.230269-4 1.346582+5 1.245000-4 1.377240+5 1.260000-4 1.414998+5 1.280000-4 1.473864+5 1.315000-4 1.594518+5 1.412538-4 1.989806+5 1.450000-4 2.147154+5 1.496236-4 2.335871+5 1.540000-4 2.505174+5 1.584893-4 2.667258+5 1.621810-4 2.790545+5 1.670000-4 2.936514+5 1.720000-4 3.069846+5 1.780000-4 3.207156+5 1.840772-4 3.322115+5 1.905461-4 3.418731+5 1.980000-4 3.502092+5 2.041738-4 3.551747+5 2.120000-4 3.590994+5 2.220000-4 3.610722+5 2.317395-4 3.603417+5 2.426610-4 3.568619+5 2.540973-4 3.511373+5 2.660725-4 3.430672+5 2.800000-4 3.321180+5 2.951209-4 3.186236+5 3.090295-4 3.056563+5 3.300000-4 2.855274+5 3.490000-4 2.675820+5 3.715352-4 2.471942+5 3.981072-4 2.247842+5 4.216965-4 2.063259+5 4.518559-4 1.848591+5 4.841724-4 1.644701+5 5.248075-4 1.424278+5 5.688529-4 1.223798+5 6.165950-4 1.043314+5 6.683439-4 8.828493+4 7.328245-4 7.236038+4 8.035261-4 5.883592+4 8.810489-4 4.747104+4 9.772372-4 3.699193+4 1.083927-3 2.859483+4 1.202264-3 2.193004+4 1.333521-3 1.668904+4 1.479108-3 1.260477+4 1.640590-3 9.451374+3 1.819701-3 7.034862+3 2.018366-3 5.197694+3 2.238721-3 3.811452+3 2.483133-3 2.774909+3 2.754229-3 2.006136+3 3.054921-3 1.440441+3 3.388442-3 1.027352+3 3.801894-3 7.004134+2 4.265795-3 4.738674+2 4.786301-3 3.182321+2 5.370318-3 2.121923+2 5.956621-3 1.463886+2 6.683439-3 9.615137+1 7.585776-3 6.009938+1 8.709636-3 3.571438+1 9.885531-3 2.200372+1 1.122018-2 1.345559+1 1.288250-2 7.806363+0 1.479108-2 4.494126+0 1.698244-2 2.568881+0 1.972423-2 1.391013+0 2.290868-2 7.475562-1 2.722701-2 3.622862-1 3.273407-2 1.660201-1 4.168694-2 5.909387-2 7.852356-2 3.891657-3 9.660509-2 1.608225-3 1.148154-1 7.748526-4 1.318257-1 4.348346-4 1.500000-1 2.551100-4 1.698244-1 1.539305-4 1.905461-1 9.707050-5 2.113489-1 6.454660-5 2.344229-1 4.323343-5 2.570396-1 3.048121-5 2.818383-1 2.163918-5 3.090295-1 1.547542-5 3.388442-1 1.115363-5 3.672823-1 8.430613-6 4.000000-1 6.312700-6 4.315191-1 4.911428-6 4.677351-1 3.787936-6 5.011872-1 3.050183-6 5.432503-1 2.387681-6 5.888437-1 1.883122-6 6.382635-1 1.495274-6 6.918310-1 1.195591-6 7.498942-1 9.628870-7 8.413951-1 7.139674-7 8.912509-1 6.180570-7 9.440609-1 5.383615-7 1.000000+0 4.723700-7 1.071519+0 4.075109-7 1.148154+0 3.541642-7 1.216186+0 3.169410-7 1.333521+0 2.675454-7 1.531087+0 2.096763-7 1.778279+0 1.616634-7 2.041738+0 1.281044-7 2.290868+0 1.063314-7 2.570396+0 8.890071-8 2.951209+0 7.229316-8 3.427678+0 5.819474-8 4.000000+0 4.689100-8 4.677351+0 3.795370-8 5.559043+0 3.028339-8 6.683439+0 2.398969-8 8.128305+0 1.887448-8 1.011579+1 1.455242-8 1.288250+1 1.101138-8 1.531087+1 9.061713-9 2.041738+1 6.595423-9 2.851018+1 4.602377-9 4.168694+1 3.081641-9 6.683439+1 1.889106-9 1.288250+2 9.66328-10 2.570396+2 4.80607-10 1.023293+3 1.19989-10 1.000000+5 1.22610-12 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.186000-5 1.186000-5 1.000000+5 1.186000-5 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.186000-5 0.0 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.890000-6 1.776810+6 6.950000-6 1.706820+6 7.328245-6 1.306071+6 7.673615-6 1.028421+6 8.000000-6 8.240250+5 8.350000-6 6.520910+5 8.709636-6 5.143078+5 9.015711-6 4.210420+5 9.350000-6 3.389540+5 9.700000-6 2.704040+5 1.000000-5 2.228850+5 1.035142-5 1.777160+5 1.060000-5 1.513600+5 1.088100-5 1.261585+5 1.122018-5 1.011296+5 1.150000-5 8.414750+4 1.180000-5 6.897100+4 1.202264-5 5.942423+4 1.230269-5 4.917879+4 1.260000-5 4.013140+4 1.290000-5 3.260570+4 1.320000-5 2.642790+4 1.350000-5 2.137890+4 1.380384-5 1.722878+4 1.470000-5 9.235880+3 1.496236-5 7.798614+3 1.515000-5 6.961790+3 1.531087-5 6.356881+3 1.545000-5 5.909860+3 1.560000-5 5.500250+3 1.575000-5 5.159460+3 1.590000-5 4.881590+3 1.605000-5 4.661180+3 1.615000-5 4.543700+3 1.626900-5 4.432353+3 1.640590-5 4.339840+3 1.655000-5 4.280330+3 1.670000-5 4.256100+3 1.685000-5 4.266880+3 1.700000-5 4.309480+3 1.715000-5 4.380940+3 1.730000-5 4.478540+3 1.750000-5 4.645040+3 1.770000-5 4.848200+3 1.793000-5 5.120910+3 1.830000-5 5.631810+3 1.935000-5 7.397950+3 1.980000-5 8.232370+3 2.020000-5 8.989600+3 2.070000-5 9.940170+3 2.113489-5 1.075969+4 2.162719-5 1.166924+4 2.213400-5 1.257795+4 2.270000-5 1.355230+4 2.330000-5 1.453330+4 2.398833-5 1.558847+4 2.470000-5 1.659870+4 2.540973-5 1.752475+4 2.610000-5 1.834950+4 2.691535-5 1.923203+4 2.786121-5 2.013995+4 2.900000-5 2.108280+4 3.019952-5 2.191705+4 3.150000-5 2.265900+4 3.300000-5 2.333410+4 3.467369-5 2.389766+4 3.650000-5 2.432840+4 3.850000-5 2.462440+4 4.073803-5 2.478796+4 4.365158-5 2.480563+4 4.677351-5 2.464261+4 5.069907-5 2.425752+4 5.500000-5 2.369120+4 6.000000-5 2.292380+4 6.531306-5 2.203022+4 7.079458-5 2.107004+4 7.673615-5 2.001800+4 8.317638-5 1.888980+4 9.015711-5 1.769752+4 9.800000-5 1.642150+4 1.059254-4 1.521475+4 1.161449-4 1.378873+4 1.273503-4 1.240340+4 1.412538-4 1.092543+4 1.603245-4 9.280332+3 1.883649-4 7.470746+3 2.570396-4 4.848759+3 3.630781-4 2.986501+3 4.073803-4 2.526170+3 4.623810-4 2.082703+3 5.248075-4 1.705652+3 6.606934-4 1.173284+3 8.317638-4 8.034933+2 9.440609-4 6.483352+2 1.216186-3 4.173448+2 1.513561-3 2.831511+2 1.883649-3 1.905582+2 2.398833-3 1.220623+2 2.917427-3 8.450298+1 3.630781-3 5.556403+1 4.315191-3 3.959250+1 5.128614-3 2.799648+1 6.237348-3 1.874419+1 7.413102-3 1.307123+1 8.810489-3 9.048726+0 1.047129-2 6.216138+0 1.244515-2 4.236131+0 1.462177-2 2.939979+0 1.717908-2 2.025650+0 2.018366-2 1.385495+0 2.371374-2 9.405864-1 2.786121-2 6.338614-1 3.273407-2 4.239813-1 3.845918-2 2.815313-1 4.570882-2 1.801664-1 5.370318-2 1.179374-1 6.456542-2 7.209712-2 7.852356-2 4.240707-2 9.549926-2 2.471857-2 1.244515-1 1.180418-2 2.344229-1 1.995572-3 2.818383-1 1.197787-3 3.311311-1 7.718818-4 3.801894-1 5.335249-4 4.315191-1 3.831503-4 4.841724-1 2.856080-4 5.370318-1 2.206940-4 6.000000-1 1.687300-4 6.683439-1 1.309829-4 7.413102-1 1.034818-4 8.222427-1 8.237676-5 9.015711-1 6.769985-5 9.885531-1 5.600994-5 1.148154+0 4.156619-5 1.258925+0 3.484123-5 1.428894+0 2.751797-5 1.566751+0 2.330898-5 1.778279+0 1.871242-5 2.044000+0 1.481400-5 2.290868+0 1.231986-5 2.600160+0 1.012101-5 2.985383+0 8.235099-6 3.467369+0 6.632496-6 4.027170+0 5.382119-6 4.731513+0 4.330281-6 5.623413+0 3.456923-6 6.760830+0 2.739685-6 8.222427+0 2.156475-6 1.011579+1 1.686010-6 1.288250+1 1.275732-6 1.531087+1 1.049822-6 2.041738+1 7.640896-7 2.851018+1 5.331964-7 4.168694+1 3.570160-7 6.683439+1 2.188524-7 1.288250+2 1.119501-7 2.570396+2 5.567900-8 1.023293+3 1.390154-8 1.000000+5 1.42040-10 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.890000-6 6.890000-6 1.000000+5 6.890000-6 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.890000-6 0.0 1.000000+5 1.000000+5 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.333950-7 1.028100+0 9.864980-7 1.028750+0 1.333950-6 1.029500+0 1.825550-6 1.030100+0 2.295850-6 1.031000+0 3.141500-6 1.032000+0 4.298360-6 1.033200+0 6.021270-6 1.034000+0 7.391670-6 1.035300+0 1.003310-5 1.036640+0 1.333950-5 1.038200+0 1.800210-5 1.039700+0 2.338830-5 1.041500+0 3.111790-5 1.043800+0 4.319260-5 1.046400+0 6.009440-5 1.048300+0 7.481910-5 1.051200+0 1.014910-4 1.054080+0 1.333950-4 1.057700+0 1.818260-4 1.061100+0 2.365110-4 1.065100+0 3.131160-4 1.070400+0 4.368320-4 1.076200+0 6.037040-4 1.080600+0 7.539270-4 1.087100+0 1.015780-3 1.093710+0 1.333950-3 1.102600+0 1.849420-3 1.110700+0 2.411880-3 1.120600+0 3.226120-3 1.133300+0 4.485300-3 1.147500+0 6.192470-3 1.158200+0 7.695630-3 1.174100+0 1.028640-2 1.190110+0 1.333950-2 1.205100+0 1.661020-2 1.227500+0 2.223730-2 1.250000+0 2.872000-2 1.265600+0 3.364420-2 1.294900+0 4.373220-2 1.331800+0 5.775530-2 1.362600+0 7.037410-2 1.397000+0 8.527780-2 1.455800+0 1.124720-1 1.500000+0 1.344000-1 1.589800+0 1.834600-1 1.665000+0 2.290420-1 1.784700+0 3.088340-1 1.892300+0 3.861240-1 2.000000+0 4.660000-1 2.044000+0 4.987000-1 2.163500+0 5.881380-1 2.372600+0 7.457860-1 2.647100+0 9.509930-1 3.000000+0 1.207000+0 3.437500+0 1.508040+0 4.000000+0 1.869000+0 4.750000+0 2.308010+0 5.000000+0 2.444000+0 6.000000+0 2.941000+0 7.000000+0 3.384000+0 8.000000+0 3.783000+0 9.000000+0 4.146000+0 1.000000+1 4.478000+0 1.100000+1 4.783000+0 1.200000+1 5.064000+0 1.300000+1 5.324000+0 1.400000+1 5.564000+0 1.500000+1 5.785000+0 1.600000+1 5.993000+0 1.800000+1 6.373000+0 2.000000+1 6.712000+0 2.200000+1 7.020000+0 2.400000+1 7.300000+0 2.600000+1 7.555000+0 2.800000+1 7.788000+0 3.000000+1 8.004000+0 4.000000+1 8.878000+0 5.000000+1 9.526000+0 6.000000+1 1.003000+1 8.000000+1 1.078000+1 1.000000+2 1.131000+1 1.500000+2 1.215000+1 2.000000+2 1.265000+1 3.000000+2 1.324000+1 4.000000+2 1.357000+1 5.000000+2 1.379000+1 6.000000+2 1.395000+1 8.000000+2 1.416000+1 1.000000+3 1.430000+1 1.500000+3 1.450000+1 2.000000+3 1.460000+1 3.000000+3 1.472000+1 4.000000+3 1.478000+1 5.000000+3 1.482000+1 6.000000+3 1.485000+1 8.000000+3 1.488000+1 1.000000+4 1.491000+1 1.500000+4 1.494000+1 2.000000+4 1.496000+1 3.000000+4 1.497000+1 4.000000+4 1.498000+1 5.000000+4 1.499000+1 6.000000+4 1.499000+1 8.000000+4 1.500000+1 1.000000+5 1.500000+1 1 47000 7 8 1.078700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.716280-7 2.099900+0 1.104620-6 2.106600+0 1.536620-6 2.114000+0 2.126100-6 2.119500+0 2.646980-6 2.127900+0 3.589810-6 2.136250+0 4.716280-6 2.147000+0 6.466350-6 2.156900+0 8.399010-6 2.169000+0 1.120900-5 2.184500+0 1.558090-5 2.201800+0 2.155660-5 2.214800+0 2.685790-5 2.234200+0 3.612860-5 2.253680+0 4.716280-5 2.281500+0 6.605980-5 2.307000+0 8.676930-5 2.338200+0 1.166690-4 2.377400+0 1.615720-4 2.410200+0 2.054930-4 2.446800+0 2.613980-4 2.485900+0 3.291150-4 2.532900+0 4.211970-4 2.556430+0 4.716280-4 2.611900+0 6.013800-4 2.660400+0 7.270390-4 2.745300+0 9.730990-4 2.809000+0 1.178480-3 2.904500+0 1.518190-3 3.000000+0 1.895000-3 3.125000+0 2.443450-3 3.234400+0 2.973010-3 3.425800+0 4.003240-3 3.569300+0 4.854040-3 3.784700+0 6.239470-3 4.000000+0 7.729000-3 4.250000+0 9.550530-3 4.625000+0 1.241380-2 5.000000+0 1.539000-2 5.500000+0 1.947270-2 6.000000+0 2.361000-2 6.750000+0 2.977190-2 7.000000+0 3.180000-2 8.000000+0 3.973000-2 9.000000+0 4.731000-2 1.000000+1 5.452000-2 1.100000+1 6.134000-2 1.200000+1 6.776000-2 1.300000+1 7.382000-2 1.400000+1 7.959000-2 1.500000+1 8.504000-2 1.600000+1 9.022000-2 1.800000+1 9.982000-2 2.000000+1 1.086000-1 2.200000+1 1.165000-1 2.400000+1 1.239000-1 2.600000+1 1.307000-1 2.800000+1 1.369000-1 3.000000+1 1.428000-1 4.000000+1 1.670000-1 5.000000+1 1.854000-1 6.000000+1 2.000000-1 8.000000+1 2.219000-1 1.000000+2 2.379000-1 1.500000+2 2.644000-1 2.000000+2 2.809000-1 3.000000+2 3.012000-1 4.000000+2 3.133000-1 5.000000+2 3.215000-1 6.000000+2 3.276000-1 8.000000+2 3.359000-1 1.000000+3 3.415000-1 1.500000+3 3.497000-1 2.000000+3 3.543000-1 3.000000+3 3.594000-1 4.000000+3 3.623000-1 5.000000+3 3.641000-1 6.000000+3 3.654000-1 8.000000+3 3.671000-1 1.000000+4 3.682000-1 1.500000+4 3.696000-1 2.000000+4 3.705000-1 3.000000+4 3.713000-1 4.000000+4 3.718000-1 5.000000+4 3.721000-1 6.000000+4 3.723000-1 8.000000+4 3.725000-1 1.000000+5 3.727000-1 1 47000 7 8 1.078700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 47000 7 9 1.078700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.700000+1 1.000000+5 4.700000+1 5.000000+5 4.698700+1 1.000000+6 4.695900+1 1.375000+6 4.692980+1 1.500000+6 4.691700+1 2.000000+6 4.685200+1 2.500000+6 4.677000+1 3.000000+6 4.667100+1 3.500000+6 4.655540+1 4.000000+6 4.642500+1 4.500000+6 4.628140+1 5.000000+6 4.612300+1 5.687500+6 4.587910+1 6.437500+6 4.559000+1 6.500000+6 4.556290+1 7.000000+6 4.535600+1 7.875000+6 4.496970+1 8.500000+6 4.467620+1 8.625000+6 4.461450+1 9.000000+6 4.443500+1 1.000000+7 4.392900+1 1.125000+7 4.326640+1 1.187500+7 4.292270+1 1.250000+7 4.257600+1 1.437500+7 4.149650+1 1.500000+7 4.113100+1 1.687500+7 4.001630+1 1.750000+7 3.964300+1 2.000000+7 3.813700+1 2.250000+7 3.663210+1 2.500000+7 3.515300+1 2.750000+7 3.371760+1 2.875000+7 3.301900+1 3.000000+7 3.234100+1 3.437500+7 3.009920+1 3.500000+7 2.979950+1 4.000000+7 2.757500+1 4.750000+7 2.480250+1 5.000000+7 2.401900+1 5.750000+7 2.201310+1 6.000000+7 2.144000+1 6.750000+7 1.994830+1 7.000000+7 1.950900+1 7.750000+7 1.830100+1 8.000000+7 1.792700+1 8.750000+7 1.684990+1 9.000000+7 1.650400+1 9.750000+7 1.548670+1 1.000000+8 1.515600+1 1.062500+8 1.434060+1 1.144500+8 1.330800+1 1.187500+8 1.278290+1 1.214800+8 1.245750+1 1.250000+8 1.204500+1 1.312500+8 1.133610+1 1.406300+8 1.035150+1 1.500000+8 9.479000+0 1.750000+8 7.674810+0 1.875000+8 7.015700+0 2.000000+8 6.485200+0 2.125000+8 6.060780+0 2.218800+8 5.796780+0 2.359400+8 5.468020+0 2.375000+8 5.435720+0 2.500000+8 5.201300+0 2.812500+8 4.727970+0 2.937500+8 4.540860+0 3.000000+8 4.443300+0 3.125000+8 4.235460+0 3.500000+8 3.685200+0 3.812500+8 3.346960+0 3.937500+8 3.213360+0 4.000000+8 3.143000+0 4.125000+8 2.994040+0 4.234400+8 2.859620+0 4.425800+8 2.628020+0 4.750000+8 2.277700+0 4.928200+8 2.116600+0 5.000000+8 2.058500+0 5.234400+8 1.894680+0 5.507800+8 1.740890+0 5.835900+8 1.592070+0 6.000000+8 1.527800+0 6.343800+8 1.410650+0 6.578100+8 1.344690+0 6.859400+8 1.280420+0 7.000000+8 1.254300+0 7.250000+8 1.217440+0 8.000000+8 1.130300+0 8.250000+8 1.099980+0 8.687500+8 1.043810+0 9.261700+8 9.696170-1 1.000000+9 8.822000-1 1.125000+9 7.611130-1 1.218800+9 6.847560-1 1.289100+9 6.325710-1 1.361600+9 5.821380-1 1.375000+9 5.731560-1 1.440700+9 5.303990-1 1.500000+9 4.936000-1 1.562500+9 4.566330-1 1.641100+9 4.132300-1 1.706900+9 3.797290-1 1.811600+9 3.318220-1 1.905800+9 2.941550-1 2.000000+9 2.612300-1 2.139200+9 2.201240-1 2.272600+9 1.877440-1 2.443000+9 1.542910-1 2.602800+9 1.292540-1 2.825100+9 1.021240-1 3.088500+9 7.843130-2 3.327400+9 6.255320-2 3.634100+9 4.758310-2 3.975600+9 3.580090-2 4.423800+9 2.536360-2 5.000000+9 1.696800-2 5.750000+9 1.065340-2 6.875000+9 5.836370-3 8.000000+9 3.493300-3 1.00000+10 1.642500-3 1.20500+10 8.799470-4 1.41820+10 5.129300-4 1.71110+10 2.770620-4 2.01380+10 1.632090-4 2.41190+10 9.128650-5 2.88610+10 5.146100-5 3.54590+10 2.681960-5 4.35270+10 1.409520-5 5.38800+10 7.254800-6 7.03510+10 3.183930-6 9.01170+10 1.491210-6 1.00000+11 1.085700-6 1.34280+11 4.438020-7 1.77440+11 1.914980-7 2.63330+11 5.872150-8 3.75720+11 2.041740-8 6.61190+11 3.860290-9 1.48990+12 3.61595-10 4.26460+12 1.74887-11 1.00000+14 2.20740-15 5.62340+14 1.58662-17 7.49890+15 9.15431-21 1.00000+17 5.10190-24 1 47000 7 0 1.078700+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.20000-12 1.000000+2 5.20000-10 1.000000+3 5.200000-8 1.000000+4 5.200000-6 1.000000+5 5.200000-4 5.000000+5 1.300000-2 1.000000+6 5.200000-2 1.375000+6 9.813160-2 1.500000+6 1.166000-1 2.000000+6 2.051000-1 2.500000+6 3.161000-1 3.000000+6 4.478000-1 3.500000+6 5.981150-1 4.000000+6 7.649000-1 4.500000+6 9.459800-1 5.000000+6 1.139000+0 5.687500+6 1.419720+0 6.437500+6 1.741390+0 6.500000+6 1.768810+0 7.000000+6 1.990200+0 7.875000+6 2.385180+0 8.500000+6 2.671310+0 8.625000+6 2.728590+0 9.000000+6 2.901300+0 1.000000+7 3.362000+0 1.125000+7 3.935620+0 1.187500+7 4.221190+0 1.250000+7 4.505900+0 1.437500+7 5.352040+0 1.500000+7 5.631000+0 1.687500+7 6.455870+0 1.750000+7 6.726800+0 2.000000+7 7.785000+0 2.250000+7 8.799470+0 2.500000+7 9.770300+0 2.750000+7 1.070010+1 2.875000+7 1.115220+1 3.000000+7 1.159800+1 3.437500+7 1.310790+1 3.500000+7 1.331890+1 4.000000+7 1.496900+1 4.750000+7 1.732980+1 5.000000+7 1.808200+1 5.750000+7 2.020060+1 6.000000+7 2.085800+1 6.750000+7 2.266170+1 7.000000+7 2.321200+1 7.750000+7 2.470700+1 8.000000+7 2.516200+1 8.750000+7 2.640770+1 9.000000+7 2.679200+1 9.750000+7 2.785960+1 1.000000+8 2.819500+1 1.062500+8 2.898820+1 1.144500+8 2.995820+1 1.187500+8 3.043940+1 1.214800+8 3.073310+1 1.250000+8 3.110600+1 1.312500+8 3.173780+1 1.406300+8 3.263420+1 1.500000+8 3.346500+1 1.750000+8 3.539600+1 1.875000+8 3.622590+1 2.000000+8 3.698300+1 2.125000+8 3.766600+1 2.218800+8 3.814240+1 2.359400+8 3.879770+1 2.375000+8 3.886800+1 2.500000+8 3.939500+1 2.812500+8 4.054010+1 2.937500+8 4.094160+1 3.000000+8 4.113100+1 3.125000+8 4.148890+1 3.500000+8 4.241500+1 3.812500+8 4.303940+1 3.937500+8 4.325390+1 4.000000+8 4.335900+1 4.125000+8 4.355170+1 4.234400+8 4.370460+1 4.425800+8 4.395540+1 4.750000+8 4.431680+1 4.928200+8 4.448420+1 5.000000+8 4.455000+1 5.234400+8 4.473870+1 5.507800+8 4.492750+1 5.835900+8 4.512590+1 6.000000+8 4.521700+1 6.343800+8 4.538090+1 6.578100+8 4.548440+1 6.859400+8 4.559590+1 7.000000+8 4.565000+1 7.250000+8 4.573470+1 8.000000+8 4.596800+1 8.250000+8 4.603230+1 8.687500+8 4.614050+1 9.261700+8 4.626660+1 1.000000+9 4.640600+1 1.125000+9 4.658280+1 1.218800+9 4.667990+1 1.289100+9 4.674050+1 1.361600+9 4.679200+1 1.375000+9 4.680120+1 1.440700+9 4.683500+1 1.500000+9 4.686400+1 1.562500+9 4.688320+1 1.641100+9 4.690640+1 1.706900+9 4.692490+1 1.811600+9 4.694160+1 1.905800+9 4.695460+1 2.000000+9 4.696700+1 2.139200+9 4.697680+1 2.272600+9 4.698550+1 2.443000+9 4.699360+1 2.602800+9 4.699730+1 2.825100+9 4.700210+1 3.088500+9 4.700600+1 3.327400+9 4.700510+1 3.634100+9 4.700400+1 3.975600+9 4.700290+1 4.423800+9 4.700150+1 5.000000+9 4.700000+1 5.750000+9 4.700000+1 6.875000+9 4.700000+1 8.000000+9 4.700000+1 1.00000+10 4.700000+1 1.20500+10 4.700000+1 1.41820+10 4.700000+1 1.71110+10 4.700000+1 2.01380+10 4.700000+1 2.41190+10 4.700000+1 2.88610+10 4.700000+1 3.54590+10 4.700000+1 4.35270+10 4.700000+1 5.38800+10 4.700000+1 7.03510+10 4.700000+1 9.01170+10 4.700000+1 1.00000+11 4.700000+1 1.34280+11 4.700000+1 1.77440+11 4.700000+1 2.63330+11 4.700000+1 3.75720+11 4.700000+1 6.61190+11 4.700000+1 1.48990+12 4.700000+1 4.26460+12 4.700000+1 1.00000+14 4.700000+1 5.62340+14 4.700000+1 7.49890+15 4.700000+1 1.00000+17 4.700000+1 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.023050-6 0.0 3.430649-6 0.0 3.443315-6 1.388732+0 3.447537-6 1.845771+0 3.455981-6 3.371452+0 3.464425-6 5.684731+0 3.473925-6 9.330347+0 3.488570-6 1.627748+1 3.499257-6 2.098062+1 3.507174-6 2.339670+1 3.515865-6 2.426213+1 3.524309-6 2.322211+1 3.536860-6 1.989626+1 3.549131-6 1.673313+1 3.557600-6 1.589522+1 3.566291-6 1.735926+1 3.575255-6 2.161441+1 3.585856-6 2.953871+1 3.601330-6 4.194944+1 3.610810-6 4.734170+1 3.618638-6 4.897008+1 3.627660-6 4.677637+1 3.637115-6 4.066232+1 3.650798-6 2.818211+1 3.661629-6 1.826767+1 3.670320-6 1.179297+1 3.679012-6 7.027769+0 3.687704-6 3.866033+0 3.700741-6 9.827614-1 3.705087-6 0.0 4.534909-6 0.0 4.546071-6 4.25055-15 4.557233-6 8.41066-15 4.568395-6 1.53628-14 4.579557-6 2.59037-14 4.590719-6 4.03189-14 4.601882-6 5.79308-14 4.613044-6 7.68359-14 4.624206-6 9.40746-14 4.635368-6 1.06325-13 4.646530-6 1.10931-13 4.657692-6 1.06837-13 4.668854-6 9.49830-14 4.680016-6 7.79514-14 4.702341-6 4.12992-14 4.713503-6 2.66614-14 4.724665-6 1.58883-14 4.735827-6 8.74026-15 4.746989-6 4.43840-15 4.758151-6 0.0 4.822461-6 0.0 4.834331-6 1.749684-7 4.846201-6 3.462142-7 4.858071-6 6.323885-7 4.869941-6 1.066294-6 4.881811-6 1.659678-6 4.893680-6 2.384649-6 4.905550-6 3.162853-6 4.917420-6 3.872465-6 4.929290-6 4.376731-6 4.941160-6 4.566319-6 4.953030-6 4.397810-6 4.964900-6 3.909855-6 4.976770-6 3.208772-6 5.000509-6 1.700032-6 5.012379-6 1.097481-6 5.024249-6 6.540204-7 5.036119-6 3.597820-7 5.047989-6 1.827013-7 5.059859-6 0.0 5.276779-6 0.0 5.302755-6 7.717497-2 5.306409-6 9.509225-2 5.315743-6 2.138954-1 5.329681-6 4.275658-1 5.332940-6 4.880283-1 5.346001-6 8.002570-1 5.360201-6 1.269256+0 5.397939-6 2.838604+0 5.412282-6 3.290568+0 5.423959-6 3.498887+0 5.438193-6 3.460253+0 5.451728-6 3.163378+0 5.471233-6 2.416640+0 5.492572-6 1.494957+0 5.502325-6 1.114116+0 5.515386-6 7.061440-1 5.528447-6 4.071409-1 5.536541-6 2.754095-1 5.541508-6 2.099987-1 5.562719-6 4.016639-2 5.567631-6 3.911697-6 5.571190-6 3.955448-6 5.584573-6 3.809482-6 5.597957-6 3.386804-6 5.611340-6 2.779510-6 5.638107-6 1.472606-6 5.651490-6 9.506630-7 5.664874-6 5.665271-7 5.678257-6 3.116512-7 5.691640-6 1.582599-7 5.705024-6 0.0 5.914580-6 0.0 5.927112-6 7.971412-3 5.943696-6 4.835673-2 5.956289-6 8.384462-2 5.970878-6 1.491315-1 5.985467-6 2.451782-1 6.004020-6 4.130523-1 6.040502-6 7.821852-1 6.047422-6 8.373014-1 6.060160-6 9.077747-1 6.076538-6 9.140296-1 6.091096-6 8.499710-1 6.105996-6 7.275530-1 6.142966-6 3.491302-1 6.147508-6 3.057113-1 6.160533-6 2.032485-1 6.175122-6 1.196693-1 6.189711-6 6.508878-2 6.205740-6 2.493357-2 6.210225-6 1.661826-2 6.215933-6 7.164092-3 6.218888-6 4.376955-3 6.240049-6 2.443163-2 6.246532-6 3.153638-2 6.255333-6 4.531610-2 6.261832-6 5.682246-2 6.270617-6 7.767796-2 6.277132-6 9.458954-2 6.292431-6 1.454665-1 6.331752-6 3.050805-1 6.347036-6 3.528139-1 6.353630-6 3.681783-1 6.369825-6 3.799815-1 6.385503-6 3.665681-1 6.401182-6 3.282252-1 6.432539-6 2.297551-1 6.448217-6 1.944687-1 6.460728-6 1.785281-1 6.469307-6 1.754257-1 6.479574-6 1.795709-1 6.546206-6 2.311193-1 6.597504-6 2.163292-1 6.622622-6 2.072472-1 6.755423-6 1.929641-1 6.810159-6 1.833409-1 6.924248-6 1.776250-1 7.054450-6 1.593967-1 7.568161-6 1.198294-1 8.049440-6 9.190746-2 8.353704-6 7.785294-2 8.395308-6 1.512798+0 8.415622-6 2.669834+0 8.435951-6 4.415531+0 8.459082-6 7.198583+0 8.495105-6 1.255812+1 8.519482-6 1.596485+1 8.540938-6 1.797061+1 8.560832-6 1.860974+1 8.583210-6 1.765231+1 8.604138-6 1.547400+1 8.659390-6 7.384200+0 8.682689-6 4.533203+0 8.703251-6 2.727061+0 8.723813-6 1.528440+0 8.749515-6 6.209907-1 8.764936-6 6.226691-2 8.868005-6 5.889536-2 8.912342-6 9.265460-1 8.934170-6 1.637456+0 8.956679-6 2.757856+0 8.978255-6 4.242504+0 9.043307-6 9.914444+0 9.068192-6 1.143765+1 9.086621-6 1.204610+1 9.110111-6 1.187205+1 9.133857-6 1.082257+1 9.159607-6 9.018932+0 9.206331-6 5.372651+0 9.217245-6 4.579972+0 9.239072-6 3.262429+0 9.260900-6 2.234187+0 9.302140-6 8.026146-1 9.304555-6 7.245450-1 9.321800-6 5.205173-1 9.343875-6 3.282618-1 9.365951-6 2.005351-1 9.410101-6 4.395891-2 9.933684-6 3.309666-2 1.012889-5 2.976441-2 1.017875-5 3.302798-1 1.020484-5 5.964045-1 1.022878-5 9.596090-1 1.025813-5 1.588714+0 1.032342-5 3.272082+0 1.035538-5 3.847124+0 1.038213-5 3.975429+0 1.040713-5 3.783079+0 1.043483-5 3.259659+0 1.050496-5 1.459600+0 1.052779-5 9.790909-1 1.055272-5 5.928100-1 1.057765-5 3.364098-1 1.061701-5 8.981816-2 1.062751-5 2.264887-2 1.071409-5 2.159026-2 1.072814-5 6.860287-2 1.074376-5 1.231754-1 1.075014-5 1.502548-1 1.076775-5 2.627943-1 1.079419-5 4.900195-1 1.080736-5 6.508970-1 1.082380-5 8.861343-1 1.083821-5 1.148610+0 1.085188-5 1.426616+0 1.089565-5 2.513451+0 1.093333-5 3.503064+0 1.096273-5 4.056513+0 1.098176-5 4.267565+0 1.101118-5 4.223060+0 1.104258-5 3.797678+0 1.108225-5 2.889147+0 1.111765-5 2.004309+0 1.114042-5 1.534678+0 1.116269-5 1.190605+0 1.117704-5 1.038617+0 1.119331-5 9.156756-1 1.121005-5 8.607104-1 1.122985-5 8.188349-1 1.124427-5 8.128145-1 1.127879-5 8.797388-1 1.131486-5 9.961469-1 1.142599-5 1.118023+0 1.147223-5 1.276768+0 1.154392-5 1.704202+0 1.157662-5 1.913558+0 1.161334-5 2.057175+0 1.164707-5 2.062778+0 1.168127-5 1.966730+0 1.177933-5 1.476964+0 1.181156-5 1.412340+0 1.185784-5 1.447239+0 1.197469-5 1.669950+0 1.209321-5 1.695687+0 1.256196-5 1.766241+0 1.415220-5 2.156423+0 1.569375-5 2.668820+0 1.778279-5 3.543541+0 2.018366-5 4.810678+0 2.307170-5 6.682317+0 2.618463-5 9.137468+0 3.154159-5 1.421631+1 3.705195-5 1.931178+1 4.063438-5 2.142972+1 4.415704-5 2.204391+1 4.834191-5 2.091838+1 5.412222-5 1.737523+1 5.490432-5 1.682875+1 5.531187-5 1.743677+1 5.564645-5 1.912163+1 5.609259-5 2.191092+1 5.625557-5 2.215494+1 5.643901-5 2.152347+1 5.707694-5 1.668402+1 5.733030-5 1.555729+1 5.763432-5 1.483777+1 5.974379-5 1.347452+1 6.019235-5 1.372226+1 6.125444-5 1.606879+1 6.163428-5 1.602141+1 6.266248-5 1.322094+1 6.308968-5 1.264950+1 6.511207-5 1.150023+1 6.647210-5 1.137004+1 6.988465-5 9.478050+0 7.513300-5 7.030787+0 7.943414-5 5.427866+0 8.284457-5 4.408171+0 8.650000-5 3.532762+0 9.055437-5 2.785526+0 9.411025-5 2.290306+0 9.600000-5 2.081181+0 9.695850-5 2.073013+0 9.808952-5 2.221814+0 9.855775-5 2.202344+0 9.978573-5 1.961316+0 1.053438-4 1.675045+0 1.101202-4 1.536482+0 1.157500-4 1.471964+0 1.230269-4 1.497554+0 1.324500-4 1.641074+0 1.520000-4 2.100014+0 1.820000-4 2.805280+0 2.120000-4 3.317513+0 2.521470-4 3.717596+0 2.995610-4 3.904787+0 3.666569-4 3.895838+0 3.719482-4 4.130059+0 3.821733-4 4.651890+0 3.885226-4 4.925524+0 3.926995-4 5.419157+0 3.963712-4 6.228692+0 3.995000-4 7.290569+0 4.035747-4 9.248737+0 4.080246-4 1.204124+1 4.204845-4 2.065488+1 4.280000-4 2.449123+1 4.373450-4 2.743536+1 4.470000-4 2.886041+1 4.676382-4 2.904952+1 5.573927-4 2.607985+1 5.790517-4 2.756362+1 6.136557-4 2.808895+1 6.911395-4 2.567972+1 7.096206-4 2.601774+1 9.132186-4 2.004078+1 1.098057-3 1.608776+1 1.264373-3 1.344091+1 1.500616-3 1.068996+1 1.720974-3 8.848381+0 1.982498-3 7.234695+0 2.280566-3 5.896006+0 2.586404-3 4.887365+0 2.977488-3 3.946281+0 3.275546-3 3.438509+0 3.293403-3 3.556117+0 3.304917-3 3.799928+0 3.315232-3 4.213240+0 3.324664-3 4.794655+0 3.339823-3 6.120214+0 3.367132-3 8.818815+0 3.382657-3 9.863258+0 3.400490-3 1.043750+1 3.442637-3 1.055033+1 3.479490-3 1.058115+1 3.504601-3 1.109684+1 3.558681-3 1.317821+1 3.594575-3 1.350836+1 3.736939-3 1.296199+1 3.817575-3 1.401097+1 4.029337-3 1.313145+1 4.676089-3 1.043828+1 5.365206-3 8.402499+0 6.157083-3 6.741737+0 7.080340-3 5.360662+0 8.098750-3 4.281040+0 9.282730-3 3.395369+0 1.050834-2 2.744516+0 1.152322-2 2.337822+0 1.279621-2 1.945479+0 1.439213-2 1.581005+0 1.610508-2 1.294006+0 1.796171-2 1.063994+0 2.010688-2 8.678250-1 2.252085-2 7.061521-1 2.484187-2 5.933194-1 2.497931-2 6.100709-1 2.506470-2 6.530246-1 2.512329-2 7.129603-1 2.518540-2 8.168880-1 2.523667-2 9.423383-1 2.530024-2 1.153994+0 2.538082-2 1.506962+0 2.559498-2 2.625513+0 2.570825-2 3.070608+0 2.584174-2 3.353052+0 2.605987-2 3.454463+0 3.043877-2 2.696672+0 3.479362-2 2.166380+0 3.961215-2 1.737206+0 4.397674-2 1.447782+0 4.965208-2 1.171150+0 5.499156-2 9.751622-1 6.205296-2 7.848397-1 6.862034-2 6.523728-1 7.746636-2 5.217925-1 8.725768-2 4.176230-1 9.835427-2 3.335204-1 1.090705-1 2.740351-1 1.226251-1 2.193406-1 1.342138-1 1.847966-1 1.488865-1 1.517529-1 1.637314-1 1.266590-1 1.806698-1 1.050387-1 1.991934-1 8.731072-2 2.199835-1 7.249561-2 2.442157-1 5.966463-2 2.708778-1 4.937405-2 2.974326-1 4.172870-2 3.340027-1 3.399895-2 3.726062-1 2.818317-2 4.134959-1 2.370517-2 4.615085-1 1.985841-2 5.200699-1 1.652439-2 5.963591-1 1.353492-2 6.606935-1 1.176085-2 7.498942-1 9.998845-3 8.635648-1 8.455101-3 9.885531-1 7.286514-3 1.181405+0 6.025202-3 1.410753+0 4.972259-3 1.696098+0 4.074530-3 2.039158+0 3.338883-3 2.451607+0 2.736055-3 2.947480+0 2.242067-3 3.543651+0 1.837267-3 4.260405+0 1.505553-3 5.122134+0 1.233729-3 6.158159+0 1.010982-3 7.403736+0 8.284515-4 8.901248+0 6.788766-4 9.760024+0 6.145435-4 1.000000+1 1.247764-3 1 47000 7 0 1.078700+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.691958+1 2.790274-6-4.548754+1 3.187426-6-4.318461+1 3.332111-6-4.029574+1 3.396791-6-3.703248+1 3.427060-6-3.363703+1 3.467328-6-2.519906+1 3.478543-6-2.402418+1 3.487383-6-2.446230+1 3.497146-6-2.673765+1 3.508163-6-3.141918+1 3.525268-6-3.899610+1 3.535673-6-4.062483+1 3.546909-6-4.040137+1 3.557600-6-3.703423+1 3.567804-6-3.283063+1 3.577164-6-2.997154+1 3.585856-6-2.957912+1 3.592095-6-3.124441+1 3.600271-6-3.565895+1 3.609166-6-4.338899+1 3.612106-6-4.678091+1 3.615504-6-4.398474+1 3.629510-6-2.764031+1 3.637115-6-2.058320+1 3.642240-6-1.712685+1 3.647233-6-1.456211+1 3.650798-6-1.341474+1 3.656740-6-1.258778+1 3.660406-6-1.259972+1 3.669234-6-1.419549+1 3.679012-6-1.749156+1 3.690692-6-2.181712+1 3.705087-6-2.650592+1 3.713965-6-2.928758+1 3.733019-6-3.258522+1 3.769881-6-3.608872+1 3.840000-6-3.934802+1 3.994507-6-4.226888+1 4.424924-6-4.468496+1 5.292012-6-4.706842+1 5.396760-6-4.718803+1 5.488633-6-4.393385+1 5.705024-6-4.580804+1 6.060160-6-4.644804+1 6.189711-6-4.609694+1 7.735787-6-4.748172+1 8.200514-6-4.536505+1 8.339201-6-4.267270+1 8.456512-6-3.688439+1 8.487515-6-3.739090+1 8.519482-6-4.064229+1 8.560832-6-4.794967+1 8.604138-6-4.042925+1 8.635282-6-3.771281+1 8.659390-6-3.730028+1 8.703251-6-3.919088+1 8.782205-6-4.393288+1 8.889833-6-4.791956+1 8.989538-6-4.439957+1 9.041413-6-4.596972+1 9.068192-6-4.805083+1 9.145048-6-4.046030+1 9.191562-6-3.853932+1 9.265753-6-3.954271+1 9.418279-6-4.319563+1 9.830126-6-4.584305+1 1.019625-5-4.824661+1 1.032342-5-4.830949+1 1.046407-5-4.473979+1 1.063022-5-4.623807+1 1.089565-5-4.905294+1 1.109774-5-4.484992+1 1.143618-5-4.715319+1 1.186649-5-4.706679+1 2.505487-5-5.043884+1 3.199743-5-4.932521+1 3.780259-5-4.489644+1 4.834191-5-3.271799+1 5.241901-5-2.963423+1 5.444942-5-2.925855+1 5.531187-5-2.692804+1 5.564645-5-2.620148+1 5.592205-5-2.693348+1 5.612338-5-2.847775+1 5.652799-5-2.448106+1 5.675655-5-2.330909+1 5.707694-5-2.336485+1 5.794541-5-2.528881+1 5.989808-5-2.704850+1 6.019235-5-2.752402+1 6.076582-5-2.731005+1 6.104044-5-2.722564+1 6.196923-5-2.408449+1 6.243102-5-2.377849+1 6.511207-5-2.480436+1 6.988465-5-2.410191+1 8.036324-5-2.492383+1 9.855775-5-2.807602+1 1.288750-4-3.109996+1 1.820000-4-3.284950+1 2.907143-4-3.489182+1 3.376658-4-3.744402+1 3.666569-4-4.089205+1 3.885226-4-4.569656+1 4.080246-4-5.323497+1 4.173000-4-5.328440+1 4.342450-4-4.736249+1 4.575000-4-3.881334+1 4.772545-4-3.435239+1 5.023726-4-3.078819+1 5.406440-4-2.754910+1 5.701000-4-2.709800+1 5.953564-4-2.466232+1 6.347500-4-2.072780+1 6.723801-4-1.834494+1 7.051025-4-1.737113+1 7.256302-4-1.579608+1 7.729030-4-1.360786+1 8.375944-4-1.153416+1 9.132186-4-9.809583+0 9.864021-4-8.636847+0 1.098057-3-7.407821+0 1.202697-3-6.679910+0 1.316428-3-6.174827+0 1.500616-3-5.764968+0 1.720974-3-5.653131+0 1.982498-3-5.825867+0 2.280566-3-6.304855+0 2.586404-3-7.107323+0 2.849730-3-8.197212+0 3.023788-3-9.340709+0 3.146571-3-1.062196+1 3.231641-3-1.211370+1 3.275546-3-1.347964+1 3.312384-3-1.558301+1 3.339823-3-1.713562+1 3.358261-3-1.724018+1 3.387114-3-1.588214+1 3.418966-3-1.430167+1 3.455039-3-1.354999+1 3.522694-3-1.380297+1 3.549345-3-1.315787+1 3.606116-3-1.102381+1 3.661702-3-9.885201+0 3.720475-3-9.338367+0 3.779028-3-9.220081+0 3.817575-3-8.498499+0 3.871368-3-7.320287+0 3.955393-3-6.169262+0 4.069398-3-5.089109+0 4.196504-3-4.191454+0 4.329273-3-3.465294+0 4.445193-3-2.957213+0 4.614305-3-2.359105+0 4.784633-3-1.888946+0 4.987554-3-1.456051+0 5.201857-3-1.100999+0 5.365206-3-8.822000-1 5.571118-3-6.613203-1 5.752394-3-5.039075-1 5.907534-3-3.891057-1 6.047120-3-3.030995-1 6.157083-3-2.429222-1 6.353575-3-1.557539-1 6.572095-3-7.848013-2 6.604632-3-6.821195-2 6.790082-3-1.651295-2 6.856494-3-3.152677-3 6.968741-3 1.932684-2 7.002174-3 2.492117-2 7.118127-3 4.227067-2 7.260015-3 6.071548-2 7.448525-3 7.794314-2 7.617483-3 8.742551-2 7.762471-3 9.258127-2 7.962622-3 9.606574-2 8.264853-3 9.175268-2 8.609938-3 7.848188-2 8.829426-3 6.796786-2 9.020577-3 5.497227-2 9.331200-3 2.986175-2 9.572067-3 7.374046-3 9.691673-3-4.540143-3 1.035701-2-7.114983-2 1.080000-2-1.187347-1 1.796171-2-9.530148-1 2.010688-2-1.249225+0 2.171110-2-1.540289+0 2.286786-2-1.837197+0 2.367964-2-2.143186+0 2.423489-2-2.455703+0 2.464965-2-2.818463+0 2.493959-2-3.252170+0 2.516436-2-3.848536+0 2.538082-2-4.472257+0 2.549211-2-4.563751+0 2.562605-2-4.358972+0 2.593984-2-3.335048+0 2.610305-2-2.937138+0 2.632149-2-2.573357+0 2.666880-2-2.186653+0 2.718376-2-1.796564+0 2.775317-2-1.488203+0 2.845938-2-1.205901+0 2.940597-2-9.323138-1 3.043877-2-7.167495-1 3.137125-2-5.648351-1 3.232102-2-4.414997-1 3.325720-2-3.406091-1 3.374251-2-2.950782-1 3.479362-2-2.133286-1 3.530767-2-1.788654-1 3.635013-2-1.180212-1 3.710009-2-8.223180-2 3.799757-2-4.417297-2 3.904474-2-6.260085-3 3.926154-2 9.076780-5 4.013125-2 2.580376-2 4.114313-2 4.969084-2 4.204944-2 6.706938-2 4.324184-2 8.683377-2 4.515448-2 1.090762-1 4.641976-2 1.203979-1 4.965208-2 1.377519-1 5.209686-2 1.427664-1 5.499156-2 1.423888-1 6.205296-2 1.268575-1 7.083798-2 9.436267-2 8.584510-2 3.695429-2 8.944783-2 2.408210-2 9.435043-2 7.534176-3 9.596046-2 2.388049-3 9.661520-2 3.410264-4 9.917537-2-7.578913-3 1.015357-1-1.474984-2 1.090705-1-3.578809-2 1.184715-1-5.893728-2 1.300234-1-8.319520-2 1.443733-1-1.080903-1 1.637314-1-1.345115-1 1.933282-1-1.640709-1 2.356579-1-1.921113-1 2.974326-1-2.166016-1 3.979685-1-2.371519-1 5.963591-1-2.534294-1 1.120601+0-2.635134-1 3.384160+0-2.670958-1 1.000000+1-2.673984-1 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.485672-3 1.110907-6 1.003960-2 1.181423-6 1.299615-2 1.256416-6 1.690339-2 1.336169-6 2.208962-2 1.420984-6 2.900663-2 1.511184-6 3.828163-2 1.607108-6 5.079417-2 1.709122-6 6.779207-2 1.817611-6 9.106971-2 1.932987-6 1.232483-1 2.119927-6 1.962378-1 2.186174-6 2.298172-1 2.253313-6 2.693204-1 2.318353-6 3.136860-1 2.381361-6 3.633128-1 2.442400-6 4.186049-1 2.501532-6 4.799843-1 2.558816-6 5.478915-1 2.614309-6 6.227864-1 2.668069-6 7.051484-1 2.720148-6 7.954777-1 2.770600-6 8.942951-1 2.819475-6 1.002143+0 2.866823-6 1.119586+0 2.912691-6 1.247210+0 2.957126-6 1.385626+0 3.000173-6 1.535461+0 3.082272-6 1.871181+0 3.121407-6 2.057697+0 3.159320-6 2.257989+0 3.196048-6 2.473088+0 3.231628-6 2.703798+0 3.299487-6 3.215310+0 3.363171-6 3.799282+0 3.422937-6 4.463068+0 3.451427-6 4.828383+0 3.479027-6 5.218599+0 3.532500-6 6.084410+0 3.582632-6 7.053351+0 3.629631-6 8.138267+0 3.673692-6 9.348875+0 3.714999-6 1.069496+1 3.753725-6 1.218656+1 3.790030-6 1.383394+1 3.824066-6 1.564752+1 3.855975-6 1.763780+1 3.885890-6 1.981533+1 3.913935-6 2.219060+1 3.940227-6 2.477401+1 3.964876-6 2.757575+1 3.987984-6 3.060576+1 4.009648-6 3.387365+1 4.029958-6 3.738860+1 4.048999-6 4.115934+1 4.066850-6 4.519405+1 4.083585-6 4.950039+1 4.099274-6 5.408551+1 4.113982-6 5.895615+1 4.127771-6 6.411873+1 4.140699-6 6.957947+1 4.152818-6 7.534428+1 4.164180-6 8.141867+1 4.174832-6 8.780772+1 4.184818-6 9.451635+1 4.194180-6 1.015499+2 4.202957-6 1.089153+2 4.211185-6 1.166214+2 4.226613-6 1.337003+2 4.240112-6 1.524198+2 4.251925-6 1.728971+2 4.262260-6 1.951564+2 4.271304-6 2.190635+2 4.279217-6 2.443109+2 4.286141-6 2.704552+2 4.292199-6 2.969819+2 4.297501-6 3.233729+2 4.306198-6 3.739527+2 4.318628-6 4.641280+2 4.335943-6 6.285842+2 4.345278-6 7.355169+2 4.353280-6 8.354432+2 4.355947-6 8.700289+2 4.366616-6 1.011609+3 4.367950-6 1.029377+3 4.377285-6 1.151108+3 4.380953-6 1.196561+3 4.387955-6 1.277081+3 4.391622-6 1.315016+3 4.395123-6 1.347906+3 4.398624-6 1.377135+3 4.403291-6 1.409760+3 4.407792-6 1.433678+3 4.411960-6 1.448716+3 4.416961-6 1.457278+3 4.421295-6 1.456118+3 4.425963-6 1.445966+3 4.430631-6 1.426852+3 4.432548-6 1.416523+3 4.436924-6 1.387911+3 4.442279-6 1.344351+3 4.452464-6 1.242316+3 4.456220-6 1.201015+3 4.470602-6 1.048320+3 4.475855-6 1.003348+3 4.480299-6 9.736341+2 4.483679-6 9.573989+2 4.486953-6 9.477633+2 4.490342-6 9.448482+2 4.493529-6 9.492969+2 4.496717-6 9.612862+2 4.498545-6 9.717581+2 4.505648-6 1.039032+3 4.507505-6 1.063925+3 4.511744-6 1.132561+3 4.515454-6 1.206330+3 4.520071-6 1.316199+3 4.526653-6 1.506930+3 4.542936-6 2.134805+3 4.549314-6 2.429021+3 4.555274-6 2.719675+3 4.559247-6 2.918595+3 4.564356-6 3.176453+3 4.569978-6 3.457685+3 4.575427-6 3.721757+3 4.580270-6 3.944630+3 4.585184-6 4.155047+3 4.586844-6 4.221847+3 4.592206-6 4.420649+3 4.597410-6 4.585557+3 4.601324-6 4.689341+3 4.606073-6 4.790080+3 4.610792-6 4.861427+3 4.613858-6 4.891939+3 4.618979-6 4.914721+3 4.623084-6 4.907606+3 4.631474-6 4.824971+3 4.636745-6 4.729086+3 4.641853-6 4.606831+3 4.647475-6 4.442643+3 4.652924-6 4.258116+3 4.657768-6 4.076824+3 4.662439-6 3.889832+3 4.669531-6 3.589724+3 4.675066-6 3.347604+3 4.681294-6 3.072958+3 4.686138-6 2.861166+3 4.697209-6 2.395830+3 4.701014-6 2.244834+3 4.708280-6 1.972774+3 4.716583-6 1.690940+3 4.727753-6 1.364062+3 4.746174-6 9.524826+2 4.753456-6 8.289161+2 4.760682-6 7.249906+2 4.767851-6 6.379724+2 4.774964-6 5.652844+2 4.782021-6 5.045855+2 4.789023-6 4.538107+2 4.795970-6 4.111837+2 4.802864-6 3.752069+2 4.809703-6 3.446402+2 4.816489-6 3.184705+2 4.829954-6 2.760695+2 4.843210-6 2.434524+2 4.856258-6 2.175792+2 4.869102-6 1.965220+2 4.881746-6 1.790302+2 4.894192-6 1.642636+2 4.906444-6 1.516354+2 4.918504-6 1.407201+2 4.930376-6 1.311992+2 4.942062-6 1.228286+2 4.965069-6 1.087141+2 4.987358-6 9.740709+1 5.008949-6 8.817057+1 5.029866-6 8.050593+1 5.050130-6 7.406258+1 5.069760-6 6.858523+1 5.088777-6 6.388246+1 5.107199-6 5.980734+1 5.142893-6 5.301228+1 5.176356-6 4.769353+1 5.207727-6 4.343775+1 5.237137-6 3.997436+1 5.264710-6 3.711465+1 5.290559-6 3.472113+1 5.339026-6 3.084013+1 5.381435-6 2.796557+1 5.418542-6 2.577773+1 5.451012-6 2.407514+1 5.507833-6 2.147971+1 5.550449-6 1.979628+1 5.614372-6 1.760789+1 5.720225-6 1.464258+1 5.943848-6 1.011437+1 5.957824-6 9.882740+0 6.086178-6 7.886044+0 6.182443-6 6.471746+0 6.218542-6 5.939837+0 6.250129-6 5.464227+0 6.290100-6 4.838335+0 6.323113-6 4.289979+0 6.341629-6 3.965207+0 6.357830-6 3.668862+0 6.372006-6 3.399744+0 6.384410-6 3.157280+0 6.395264-6 2.941079+0 6.404760-6 2.750567+0 6.421380-6 2.422193+0 6.443193-6 2.036589+0 6.450205-6 1.936162+0 6.455463-6 1.872556+0 6.463351-6 1.801053+0 6.467295-6 1.778250+0 6.471239-6 1.765566+0 6.475221-6 1.764256+0 6.487167-6 1.843220+0 6.491149-6 1.902060+0 6.494135-6 1.958477+0 6.498615-6 2.064498+0 6.500855-6 2.127779+0 6.503095-6 2.198307+0 6.507404-6 2.355473+0 6.511712-6 2.542739+0 6.514525-6 2.682258+0 6.520019-6 2.996595+0 6.521885-6 3.116614+0 6.536535-6 4.312669+0 6.551698-6 6.072132+0 6.560539-6 7.360436+0 6.566483-6 8.336312+0 6.574072-6 9.707934+0 6.580912-6 1.105911+1 6.587582-6 1.247359+1 6.593019-6 1.369041+1 6.599590-6 1.522676+1 6.606297-6 1.685520+1 6.613048-6 1.853866+1 6.619941-6 2.028247+1 6.625605-6 2.171893+1 6.632882-6 2.354567+1 6.639563-6 2.518183+1 6.643225-6 2.605389+1 6.651186-6 2.786739+1 6.655962-6 2.888998+1 6.671990-6 3.185989+1 6.674870-6 3.230622+1 6.688018-6 3.395726+1 6.693527-6 3.444993+1 6.698786-6 3.480647+1 6.706453-6 3.512581+1 6.714915-6 3.520556+1 6.718370-6 3.515801+1 6.724417-6 3.496747+1 6.732354-6 3.452104+1 6.740007-6 3.389714+1 6.749736-6 3.286415+1 6.752129-6 3.257399+1 6.764150-6 3.093916+1 6.768157-6 3.033979+1 6.780177-6 2.842879+1 6.791034-6 2.661629+1 6.803302-6 2.454852+1 6.814118-6 2.276488+1 6.857258-6 1.666471+1 6.873420-6 1.491726+1 6.889582-6 1.345807+1 6.906968-6 1.217119+1 6.923267-6 1.118587+1 6.938548-6 1.041737+1 6.967198-6 9.272259+0 6.992268-6 8.483767+0 7.036140-6 7.370254+0 7.101947-6 5.958463+0 7.134851-6 5.277214+0 7.183995-6 4.333928+0 7.193517-6 4.184074+0 7.203040-6 4.053749+0 7.211200-6 3.961003+0 7.219360-6 3.888787+0 7.237043-6 3.816121+0 7.241774-6 3.818678+0 7.255967-6 3.888280+0 7.262835-6 3.956842+0 7.269390-6 4.044016+0 7.275945-6 4.152345+0 7.284453-6 4.323754+0 7.291401-6 4.488355+0 7.300520-6 4.735201+0 7.320696-6 5.381246+0 7.329147-6 5.679436+0 7.344180-6 6.223213+0 7.361823-6 6.838101+0 7.364028-6 6.910306+0 7.379465-6 7.370081+0 7.386842-6 7.555247+0 7.400926-6 7.833152+0 7.405360-6 7.898274+0 7.413120-6 7.985089+0 7.418940-6 8.027170+0 7.427669-6 8.053278+0 7.436399-6 8.035950+0 7.443217-6 7.993553+0 7.450035-6 7.927405+0 7.463267-6 7.738196+0 7.467678-6 7.659428+0 7.485320-6 7.283330+0 7.490540-6 7.157742+0 7.502963-6 6.843154+0 7.527414-6 6.208887+0 7.545851-6 5.767469+0 7.555069-6 5.570777+0 7.564288-6 5.394198+0 7.573506-6 5.239822+0 7.582725-6 5.108944+0 7.588601-6 5.038046+0 7.598885-6 4.937344+0 7.606598-6 4.880802+0 7.618167-6 4.824577+0 7.629736-6 4.799151+0 7.644853-6 4.804009+0 7.663307-6 4.850819+0 7.703397-6 4.997287+0 7.721821-6 5.042614+0 7.742698-6 5.058983+0 7.755225-6 5.050149+0 7.772668-6 5.017528+0 7.804551-6 4.917566+0 7.844350-6 4.775927+0 7.866795-6 4.706929+0 7.888844-6 4.650118+0 8.041550-6 4.358790+0 8.136022-6 4.155666+0 8.287277-6 3.845010+0 8.463039-6 3.522510+0 8.597022-6 3.288964+0 8.698576-6 3.116533+0 8.821438-6 2.914404+0 8.946983-6 2.718472+0 9.112500-6 2.470627+0 9.225714-6 2.302685+0 9.373009-6 2.090976+0 9.474834-6 1.948161+0 9.598351-6 1.779196+0 9.744286-6 1.587714+0 9.871315-6 1.428470+0 1.004538-5 1.218631+0 1.021821-5 1.016492+0 1.039457-5 8.230182-1 1.057730-5 6.356476-1 1.071519-5 5.044077-1 1.082483-5 4.071472-1 1.096151-5 2.951920-1 1.106872-5 2.162571-1 1.117936-5 1.452052-1 1.128308-5 9.002008-2 1.138032-5 5.024127-2 1.147148-5 2.554457-2 1.148203-5 2.358710-2 1.155694-5 1.581472-2 1.163706-5 2.094016-2 1.171218-5 4.078928-2 1.178259-5 7.525305-2 1.184861-5 1.242226-1 1.191051-5 1.876207-1 1.195363-5 2.435205-1 1.199485-5 3.071405-1 1.202123-5 3.534465-1 1.207153-5 4.537568-1 1.211874-5 5.592615-1 1.216305-5 6.604249-1 1.220463-5 7.454853-1 1.225280-5 8.136211-1 1.229444-5 8.322182-1 1.234152-5 8.007428-1 1.237941-5 7.380272-1 1.240768-5 6.745426-1 1.243421-5 6.063685-1 1.245910-5 5.384269-1 1.247524-5 4.939482-1 1.249397-5 4.432218-1 1.251552-5 3.877820-1 1.255468-5 3.020059-1 1.257244-5 2.726282-1 1.258910-5 2.524709-1 1.260471-5 2.415050-1 1.261935-5 2.396078-1 1.263307-5 2.465876-1 1.264593-5 2.621978-1 1.267005-5 3.205744-1 1.269115-5 4.113721-1 1.270962-5 5.306339-1 1.272578-5 6.737757-1 1.273992-5 8.357925-1 1.279018-5 1.813630+0 1.280235-5 2.182240+0 1.282062-5 2.869395+0 1.283889-5 3.753363+0 1.285469-5 4.712996+0 1.287049-5 5.890782+0 1.288629-5 7.327015+0 1.290209-5 9.066562+0 1.291789-5 1.115847+1 1.293369-5 1.365528+1 1.294159-5 1.507263+1 1.295344-5 1.742950+1 1.296529-5 2.008431+1 1.297912-5 2.358888+1 1.299245-5 2.741455+1 1.300792-5 3.244001+1 1.302433-5 3.849712+1 1.303417-5 4.250310+1 1.305017-5 4.961940+1 1.306617-5 5.748157+1 1.309818-5 7.531749+1 1.310218-5 7.772653+1 1.313018-5 9.547840+1 1.314118-5 1.027769+2 1.316218-5 1.169485+2 1.317797-5 1.275808+2 1.319176-5 1.366812+2 1.320329-5 1.440286+2 1.321810-5 1.529828+2 1.322813-5 1.586371+2 1.324128-5 1.654538+2 1.325582-5 1.720503+2 1.326019-5 1.738226+2 1.327520-5 1.790661+2 1.328941-5 1.827610+2 1.329717-5 1.842229+2 1.331281-5 1.859264+2 1.332459-5 1.860876+2 1.335569-5 1.818964+2 1.336567-5 1.791844+2 1.338787-5 1.709911+2 1.339975-5 1.655011+2 1.340902-5 1.607499+2 1.342227-5 1.533427+2 1.343079-5 1.482525+2 1.344467-5 1.395178+2 1.345406-5 1.333739+2 1.346638-5 1.251140+2 1.347826-5 1.170345+2 1.348222-5 1.143335+2 1.349822-5 1.034717+2 1.351222-5 9.416315+1 1.351822-5 9.026484+1 1.353222-5 8.145154+1 1.355022-5 7.084443+1 1.357823-5 5.638019+1 1.360186-5 4.643700+1 1.360691-5 4.460626+1 1.362457-5 3.903837+1 1.363340-5 3.675142+1 1.364298-5 3.464866+1 1.365188-5 3.304589+1 1.366716-5 3.107984+1 1.367299-5 3.058820+1 1.369959-5 3.009376+1 1.370776-5 3.049567+1 1.371401-5 3.097022+1 1.371909-5 3.145982+1 1.372782-5 3.251162+1 1.373777-5 3.401924+1 1.374442-5 3.519954+1 1.376753-5 4.028580+1 1.381036-5 5.281917+1 1.382811-5 5.874682+1 1.384541-5 6.468258+1 1.386152-5 7.019448+1 1.387643-5 7.516396+1 1.389122-5 7.986021+1 1.390398-5 8.365324+1 1.392081-5 8.819260+1 1.393495-5 9.152369+1 1.396737-5 9.722063+1 1.398025-5 9.866356+1 1.400085-5 9.995967+1 1.401372-5 1.001393+2 1.402402-5 9.994134+1 1.403850-5 9.916812+1 1.405321-5 9.782224+1 1.406522-5 9.633440+1 1.407423-5 9.500694+1 1.408775-5 9.270604+1 1.410126-5 9.007376+1 1.411817-5 8.638623+1 1.413507-5 8.234714+1 1.416048-5 7.581700+1 1.416895-5 7.356130+1 1.419435-5 6.669757+1 1.421105-5 6.219494+1 1.423984-5 5.463477+1 1.426503-5 4.838404+1 1.428094-5 4.466417+1 1.430445-5 3.953745+1 1.433832-5 3.297656+1 1.443995-5 1.893753+1 1.447924-5 1.538927+1 1.449669-5 1.406855+1 1.453160-5 1.181559+1 1.456651-5 9.987702+0 1.460142-5 8.490243+0 1.463633-5 7.247530+0 1.470618-5 5.304762+0 1.477596-5 3.848063+0 1.484578-5 2.715255+0 1.488068-5 2.253052+0 1.491179-5 1.902951+0 1.494290-5 1.619292+0 1.496236-5 1.480863+0 1.497968-5 1.386432+0 1.499784-5 1.319763+0 1.500692-5 1.299910+0 1.501600-5 1.289635+0 1.502282-5 1.288482+0 1.503475-5 1.300613+0 1.507056-5 1.453344+0 1.508029-5 1.526981+0 1.509002-5 1.614976+0 1.512688-5 2.081068+0 1.517806-5 3.065101+0 1.520297-5 3.665008+0 1.521854-5 4.069809+0 1.523565-5 4.533441+0 1.525085-5 4.954923+0 1.526305-5 5.295709+0 1.527038-5 5.499459+0 1.528070-5 5.783903+0 1.529426-5 6.148900+0 1.530841-5 6.514965+0 1.531630-5 6.710056+0 1.533247-5 7.085343+0 1.534662-5 7.381387+0 1.535961-5 7.622286+0 1.537261-5 7.830064+0 1.538791-5 8.028424+0 1.542256-5 8.275267+0 1.543526-5 8.292112+0 1.545952-5 8.213972+0 1.546961-5 8.139906+0 1.548113-5 8.026899+0 1.548977-5 7.923092+0 1.550273-5 7.738595+0 1.551569-5 7.522221+0 1.552937-5 7.262997+0 1.553962-5 7.050373+0 1.555501-5 6.706937+0 1.557040-5 6.340394+0 1.558888-5 5.879990+0 1.560736-5 5.409726+0 1.563508-5 4.713710+0 1.564432-5 4.490345+0 1.568825-5 3.543380+0 1.570014-5 3.331219+0 1.571796-5 3.056852+0 1.572687-5 2.941118+0 1.573578-5 2.840595+0 1.575035-5 2.710555+0 1.576034-5 2.646773+0 1.576548-5 2.622248+0 1.577647-5 2.589011+0 1.578745-5 2.582164+0 1.580410-5 2.622405+0 1.581512-5 2.682472+0 1.584271-5 2.946666+0 1.585730-5 3.148976+0 1.586565-5 3.283077+0 1.589345-5 3.816197+0 1.593460-5 4.800844+0 1.595065-5 5.227267+0 1.596825-5 5.708886+0 1.598724-5 6.232356+0 1.600450-5 6.700700+0 1.602171-5 7.150103+0 1.604195-5 7.643020+0 1.605813-5 7.999864+0 1.607561-5 8.339851+0 1.608920-5 8.567131+0 1.612785-5 9.011706+0 1.613268-5 9.044893+0 1.616650-5 9.133110+0 1.618242-5 9.088367+0 1.619761-5 8.996400+0 1.621281-5 8.859013+0 1.622391-5 8.731755+0 1.623363-5 8.603161+0 1.625064-5 8.342932+0 1.626340-5 8.121692+0 1.628253-5 7.754955+0 1.630173-5 7.354134+0 1.633173-5 6.686548+0 1.634169-5 6.459186+0 1.637510-5 5.700090+0 1.640909-5 4.966183+0 1.644572-5 4.258695+0 1.651094-5 3.293420+0 1.651902-5 3.202646+0 1.653317-5 3.059186+0 1.657560-5 2.741959+0 1.659585-5 2.646065+0 1.662666-5 2.560040+0 1.664496-5 2.538588+0 1.665660-5 2.534791+0 1.668081-5 2.547551+0 1.669897-5 2.572000+0 1.672621-5 2.625583+0 1.679927-5 2.805848+0 1.681473-5 2.841126+0 1.684166-5 2.894374+0 1.687229-5 2.939050+0 1.689798-5 2.962090+0 1.693381-5 2.972889+0 1.696690-5 2.964053+0 1.701869-5 2.926574+0 1.710592-5 2.850991+0 1.715368-5 2.824362+0 1.720536-5 2.812630+0 1.728108-5 2.819364+0 1.742455-5 2.848399+0 1.758823-5 2.855512+0 1.790000-5 2.864930+0 1.809218-5 2.884647+0 1.830000-5 2.928026+0 1.849823-5 2.987932+0 1.870000-5 3.066911+0 1.893404-5 3.183936+0 1.917500-5 3.332382+0 1.945000-5 3.541776+0 1.953035-5 3.611618+0 1.983552-5 3.907134+0 2.000000-5 4.087275+0 2.014545-5 4.261791+0 2.045000-5 4.666689+0 2.077499-5 5.171489+0 2.113489-5 5.810937+0 2.190000-5 7.478104+0 2.330000-5 1.176315+1 2.423040-5 1.560979+1 2.511886-5 2.012377+1 2.607260-5 2.599815+1 2.735385-5 3.583756+1 2.818383-5 4.344066+1 2.884032-5 5.026180+1 2.959548-5 5.898666+1 3.047319-5 7.051841+1 3.135090-5 8.339179+1 3.223294-5 9.782189+1 3.339062-5 1.191902+2 3.450695-5 1.424482+2 3.549192-5 1.650085+2 3.665945-5 1.938819+2 3.758374-5 2.182783+2 3.861444-5 2.468233+2 3.972613-5 2.784996+2 4.074402-5 3.080196+2 4.168694-5 3.353551+2 4.298640-5 3.723936+2 4.399635-5 4.001188+2 4.507309-5 4.280925+2 4.619699-5 4.550522+2 4.738401-5 4.806215+2 4.860021-5 5.033600+2 4.970224-5 5.209021+2 5.099768-5 5.376198+2 5.233838-5 5.507575+2 5.302078-5 5.557656+2 5.415651-5 5.617967+2 5.509439-5 5.647958+2 5.630336-5 5.666526+2 5.763746-5 5.658387+2 5.868406-5 5.628818+2 6.001135-5 5.571489+2 6.130964-5 5.492179+2 6.273357-5 5.381582+2 6.428484-5 5.234165+2 6.538274-5 5.113377+2 6.636265-5 4.988451+2 6.750062-5 4.805097+2 6.836583-5 4.646168+2 6.868230-5 4.610722+2 6.899235-5 4.603626+2 6.924655-5 4.619727+2 7.001099-5 4.719190+2 7.032829-5 4.741337+2 7.063354-5 4.740947+2 7.091980-5 4.725529+2 7.312083-5 4.532375+2 7.450000-5 4.386444+2 7.479833-5 4.363103+2 7.512500-5 4.347031+2 7.600204-5 4.342509+2 7.684698-5 4.327951+2 7.860115-5 4.228387+2 8.077043-5 4.085108+2 8.366819-5 3.882733+2 8.672114-5 3.668790+2 9.156752-5 3.343890+2 9.948120-5 2.876994+2 1.042081-4 2.632333+2 1.052677-4 2.576589+2 1.070466-4 2.472058+2 1.080000-4 2.419712+2 1.083804-4 2.406072+2 1.088256-4 2.397925+2 1.096850-4 2.401636+2 1.102048-4 2.406528+2 1.110120-4 2.401065+2 1.120871-4 2.368581+2 1.144068-4 2.294417+2 1.201000-4 2.143806+2 1.245000-4 2.046166+2 1.299439-4 1.944518+2 1.350000-4 1.866179+2 1.400000-4 1.801707+2 1.449138-4 1.748602+2 1.511492-4 1.694181+2 1.621810-4 1.623893+2 1.729951-4 1.579977+2 1.833832-4 1.551048+2 1.998962-4 1.522222+2 2.293376-4 1.486927+2 2.407722-4 1.471185+2 2.504678-4 1.454793+2 2.621440-4 1.430270+2 2.733750-4 1.400478+2 2.894281-4 1.345535+2 3.039069-4 1.281804+2 3.154618-4 1.219871+2 3.279032-4 1.141560+2 3.344791-4 1.095623+2 3.435570-4 1.024056+2 3.520160-4 9.496465+1 3.600453-4 8.728619+1 3.663195-4 8.079060+1 3.707728-4 7.586260+1 3.759266-4 6.985556+1 3.807124-4 6.400398+1 3.846822-4 5.891407+1 3.904831-4 5.109095+1 3.934909-4 4.683773+1 3.973419-4 4.118287+1 3.993573-4 3.818937+1 4.049702-4 3.061166+1 4.065878-4 2.884499+1 4.082187-4 2.727558+1 4.104171-4 2.543674+1 4.138063-4 2.302762+1 4.157027-4 2.186406+1 4.169700-4 2.118472+1 4.179234-4 2.074845+1 4.187816-4 2.042987+1 4.193500-4 2.026736+1 4.200600-4 2.013026+1 4.208000-4 2.008001+1 4.215000-4 2.013587+1 4.222886-4 2.034085+1 4.226688-4 2.050082+1 4.232256-4 2.081545+1 4.238925-4 2.133077+1 4.243000-4 2.172732+1 4.249000-4 2.243472+1 4.254999-4 2.330175+1 4.261122-4 2.436667+1 4.269398-4 2.612283+1 4.276500-4 2.794767+1 4.285114-4 3.059238+1 4.292415-4 3.323495+1 4.301242-4 3.695982+1 4.308444-4 4.045659+1 4.317143-4 4.526216+1 4.342499-4 6.318164+1 4.354495-4 7.380817+1 4.362215-4 8.139676+1 4.372193-4 9.207757+1 4.382372-4 1.039717+2 4.394747-4 1.197518+2 4.406997-4 1.367236+2 4.419247-4 1.549362+2 4.436624-4 1.826440+2 4.454000-4 2.121559+2 4.467910-4 2.367570+2 4.477000-4 2.531662+2 4.492624-4 2.817481+2 4.505812-4 3.060224+2 4.516274-4 3.252334+2 4.524968-4 3.410948+2 4.540000-4 3.681453+2 4.557719-4 3.991645+2 4.567352-4 4.155298+2 4.577941-4 4.330490+2 4.592500-4 4.562502+2 4.608411-4 4.803285+2 4.623811-4 5.022732+2 4.650000-4 5.363602+2 4.665000-4 5.539983+2 4.685000-4 5.753737+2 4.700000-4 5.898325+2 4.731513-4 6.160760+2 4.750000-4 6.290804+2 4.782500-4 6.481972+2 4.815000-4 6.632407+2 4.845621-4 6.743951+2 4.900000-4 6.890082+2 4.982586-4 7.042812+2 5.088177-4 7.191498+2 5.360457-4 7.511244+2 5.456761-4 7.603667+2 5.557753-4 7.679202+2 5.638353-4 7.716219+2 5.742006-4 7.737736+2 5.826616-4 7.729551+2 5.912166-4 7.684940+2 6.017274-4 7.595404+2 6.056063-4 7.606011+2 6.090733-4 7.667758+2 6.128446-4 7.796959+2 6.186131-4 8.082114+2 6.232820-4 8.329757+2 6.294395-4 8.606574+2 6.355032-4 8.807507+2 6.488175-4 9.190164+2 6.620254-4 9.654095+2 6.710000-4 9.906733+2 6.804063-4 1.009235+3 6.936274-4 1.027426+3 7.061670-4 1.040174+3 7.226243-4 1.052366+3 7.410018-4 1.063061+3 7.460476-4 1.069020+3 7.566292-4 1.087424+3 7.704691-4 1.113737+3 7.777147-4 1.124918+3 7.909062-4 1.140090+3 8.077870-4 1.154699+3 8.266920-4 1.168444+3 8.674763-4 1.190055+3 9.216000-4 1.210629+3 9.772372-4 1.223977+3 1.041938-3 1.231578+3 1.106028-3 1.234405+3 1.220921-3 1.224308+3 1.372461-3 1.202979+3 1.486577-3 1.181977+3 1.683643-3 1.139151+3 1.850000-3 1.100018+3 2.018366-3 1.060309+3 2.216257-3 1.009299+3 2.319897-3 9.828858+2 2.436426-3 9.522105+2 2.554134-3 9.192614+2 2.676076-3 8.846273+2 2.772123-3 8.559086+2 2.866446-3 8.263487+2 2.957801-3 7.963852+2 3.030897-3 7.709813+2 3.096329-3 7.465317+2 3.157598-3 7.213271+2 3.211580-3 6.970096+2 3.254179-3 6.760227+2 3.293823-3 6.545059+2 3.324489-3 6.359887+2 3.355632-3 6.148986+2 3.386421-3 5.910089+2 3.410491-3 5.690496+2 3.430439-3 5.474686+2 3.446342-3 5.274540+2 3.465530-3 5.002193+2 3.493121-3 4.610435+2 3.503651-3 4.493654+2 3.513300-3 4.418467+2 3.518351-3 4.393934+2 3.523912-3 4.379885+2 3.531213-3 4.382843+2 3.538755-3 4.411220+2 3.543937-3 4.444797+2 3.552315-3 4.520510+2 3.565208-3 4.676511+2 3.589103-3 5.014361+2 3.603642-3 5.201207+2 3.612753-3 5.299551+2 3.625212-3 5.406423+2 3.637799-3 5.482254+2 3.650492-3 5.530175+2 3.663786-3 5.557722+2 3.697325-3 5.604846+2 3.705247-3 5.628379+2 3.715352-3 5.672764+2 3.725560-3 5.736260+2 3.741884-3 5.876425+2 3.793231-3 6.457748+2 3.806871-3 6.594555+2 3.821831-3 6.721862+2 3.841357-3 6.852203+2 3.860502-3 6.945708+2 3.882276-3 7.019069+2 3.903222-3 7.064191+2 3.956385-3 7.140630+2 3.973121-3 7.184247+2 3.997314-3 7.285575+2 4.075069-3 7.762814+2 4.094374-3 7.860542+2 4.115264-3 7.948748+2 4.141537-3 8.038866+2 4.179026-3 8.140437+2 4.249714-3 8.280669+2 4.351328-3 8.411741+2 4.452828-3 8.488493+2 4.561025-3 8.529915+2 4.687730-3 8.538114+2 4.885468-3 8.489916+2 5.073062-3 8.399393+2 5.320623-3 8.237774+2 5.643300-3 7.989625+2 6.034273-3 7.664059+2 6.518292-3 7.253567+2 7.082985-3 6.789145+2 7.740161-3 6.285113+2 8.745608-3 5.606018+2 9.929642-3 4.937361+2 1.105987-2 4.406429+2 1.228500-2 3.919994+2 1.325867-2 3.584099+2 1.433325-2 3.256961+2 1.550703-2 2.941275+2 1.675184-2 2.645798+2 1.805764-2 2.373673+2 1.948968-2 2.112589+2 2.084184-2 1.895493+2 2.200386-2 1.726970+2 2.300831-2 1.591056+2 2.380393-2 1.486993+2 2.446424-2 1.400301+2 2.496444-2 1.331812+2 2.534696-2 1.275142+2 2.563704-2 1.226742+2 2.577272-2 1.201016+2 2.588632-2 1.177068+2 2.605156-2 1.137201+2 2.626046-2 1.079577+2 2.642380-2 1.037087+2 2.652117-2 1.018296+2 2.660725-2 1.008278+2 2.667515-2 1.005466+2 2.675236-2 1.007811+2 2.685142-2 1.018535+2 2.697158-2 1.039849+2 2.720211-2 1.087831+2 2.730648-2 1.106622+2 2.747266-2 1.129597+2 2.764514-2 1.145342+2 2.789971-2 1.158548+2 2.821881-2 1.165823+2 2.859938-2 1.167368+2 2.906735-2 1.163071+2 2.965401-2 1.151720+2 3.058665-2 1.125720+2 3.176311-2 1.086697+2 3.342792-2 1.028373+2 3.533367-2 9.627867+1 3.811241-2 8.727211+1 4.167131-2 7.702721+1 4.533548-2 6.798146+1 5.014632-2 5.819202+1 5.396465-2 5.173368+1 5.952767-2 4.392558+1 6.796774-2 3.494964+1 8.237657-2 2.489320+1 1.122019-1 1.430173+1 1.387784-1 9.693239+0 1.744214-1 6.335159+0 2.149226-1 4.267758+0 2.818734-1 2.534011+0 4.025767-1 1.266999+0 6.042964-1 5.706983-1 1.011580+0 2.057183-1 2.235892+0 4.233368-2 6.752287+0 4.647801-3 2.039158+1 5.096949-4 6.158159+1 5.588781-5 1.859734+2 6.127988-6 5.616308+2 6.719206-7 1.995262+3 5.323776-8 6.309573+3 5.323776-9 1.995262+4 5.32378-10 6.309573+4 5.32378-11 1.000000+5 2.11943-11 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.281300-6 1.258900-6 2.030800-6 1.584900-6 3.218600-6 1.995300-6 5.101100-6 2.511900-6 8.084600-6 3.162300-6 1.281300-5 3.981100-6 2.030700-5 5.011900-6 3.218500-5 6.309600-6 5.100900-5 7.943300-6 8.084400-5 1.000000-5 1.281300-4 1.258900-5 2.030600-4 1.584900-5 3.217500-4 1.995300-5 5.097700-4 2.511900-5 8.077000-4 3.162300-5 1.279800-3 3.981100-5 2.028000-3 5.011900-5 3.213800-3 6.309600-5 5.092800-3 7.943300-5 8.062500-3 1.000000-4 1.276100-2 1.258900-4 2.020000-2 1.584900-4 3.192400-2 1.995300-4 5.041200-2 2.511900-4 7.941000-2 3.162300-4 1.246700-1 3.981100-4 1.946600-1 5.011900-4 3.011100-1 6.309600-4 4.594900-1 7.943300-4 6.881800-1 1.000000-3 1.004800+0 1.258900-3 1.422400+0 1.584900-3 1.946600+0 1.995300-3 2.583600+0 2.511900-3 3.353700+0 3.162300-3 4.284700+0 3.981100-3 5.391600+0 5.011900-3 6.680500+0 6.309600-3 8.167500+0 7.943300-3 9.857500+0 1.000000-2 1.168600+1 1.258900-2 1.351700+1 1.584900-2 1.526700+1 1.995300-2 1.690900+1 2.511900-2 1.840600+1 3.162300-2 1.968500+1 3.981100-2 2.069700+1 5.011900-2 2.124600+1 6.309600-2 2.171700+1 7.943300-2 2.167100+1 1.000000-1 2.129900+1 1.258900-1 2.064000+1 1.584900-1 1.975000+1 1.995300-1 1.868500+1 2.511900-1 1.750400+1 3.162300-1 1.625000+1 3.981100-1 1.496700+1 5.011900-1 1.369100+1 6.309600-1 1.244300+1 7.943300-1 1.123800+1 1.000000+0 1.008600+1 1.258900+0 8.994600+0 1.584900+0 7.971000+0 1.995300+0 7.018300+0 2.511900+0 6.140200+0 3.162300+0 5.338900+0 3.981100+0 4.614700+0 5.011900+0 3.966600+0 6.309600+0 3.391800+0 7.943300+0 2.886300+0 1.000000+1 2.445300+0 1.258900+1 2.063400+0 1.584900+1 1.734700+0 1.995300+1 1.453600+0 2.511900+1 1.214300+0 3.162300+1 1.011800+0 3.981100+1 8.409100-1 5.011900+1 6.973700-1 6.309600+1 5.771700-1 7.943300+1 4.768200-1 1.000000+2 3.932600-1 1.258900+2 3.238600-1 1.584900+2 2.663300-1 1.995300+2 2.187500-1 2.511900+2 1.794600-1 3.162300+2 1.470600-1 3.981100+2 1.203900-1 5.011900+2 9.846700-2 6.309600+2 8.046500-2 7.943300+2 6.570000-2 1.000000+3 5.360300-2 1.258900+3 4.370200-2 1.584900+3 3.560600-2 1.995300+3 2.899100-2 2.511900+3 2.359000-2 3.162300+3 1.918400-2 3.981100+3 1.559300-2 5.011900+3 1.266700-2 6.309600+3 1.028500-2 7.943300+3 8.347400-3 1.000000+4 6.771500-3 1.258900+4 5.490700-3 1.584900+4 4.450300-3 1.995300+4 3.605500-3 2.511900+4 2.920000-3 3.162300+4 2.364000-3 3.981100+4 1.913100-3 5.011900+4 1.547700-3 6.309600+4 1.251700-3 7.943300+4 1.012000-3 1.000000+5 8.178900-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976756-4 5.011872-4 5.005057-4 6.309573-4 6.298828-4 7.943282-4 7.926378-4 1.000000-3 9.973488-4 1.258925-3 1.254775-3 1.584893-3 1.578434-3 1.995262-3 1.985192-3 2.511886-3 2.496179-3 3.162278-3 3.137759-3 3.981072-3 3.942722-3 5.011872-3 4.951920-3 6.309573-3 6.215871-3 7.943282-3 7.796973-3 1.000000-2 9.772402-3 1.258925-2 1.223740-2 1.584893-2 1.530744-2 1.995262-2 1.912120-2 2.511886-2 2.384519-2 3.162278-2 2.967957-2 3.981072-2 3.685854-2 5.011872-2 4.566058-2 6.309573-2 5.642456-2 7.943282-2 6.952494-2 1.000000-1 8.538453-2 1.258925-1 1.045365-1 1.584893-1 1.275518-1 1.995262-1 1.551148-1 2.511886-1 1.879561-1 3.162278-1 2.270335-1 3.981072-1 2.733646-1 5.011872-1 3.281314-1 6.309573-1 3.926794-1 7.943282-1 4.686930-1 1.000000+0 5.581988-1 1.258925+0 6.636469-1 1.584893+0 7.879400-1 1.995262+0 9.350523-1 2.511886+0 1.109594+0 3.162278+0 1.317325+0 3.981072+0 1.565277+0 5.011872+0 1.862158+0 6.309573+0 2.218306+0 7.943282+0 2.646777+0 1.000000+1 3.163411+0 1.258925+1 3.787429+0 1.584893+1 4.542566+0 1.995262+1 5.457712+0 2.511886+1 6.568448+0 3.162278+1 7.918433+0 3.981072+1 9.560976+0 5.011872+1 1.156175+1 6.309573+1 1.400139+1 7.943282+1 1.697900+1 1.000000+2 2.061627+1 1.258925+2 2.506367+1 1.584893+2 3.050532+1 1.995262+2 3.716855+1 2.511886+2 4.533370+1 3.162278+2 5.534629+1 3.981072+2 6.763075+1 5.011872+2 8.271409+1 6.309573+2 1.012434+2 7.943282+2 1.240193+2 1.000000+3 1.520291+2 1.258925+3 1.864945+2 1.584893+3 2.289198+2 1.995262+3 2.811742+2 2.511886+3 3.455664+2 3.162278+3 4.249433+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88240-10 1.995262-5 1.090732-9 2.511886-5 1.728663-9 3.162278-5 2.739730-9 3.981072-5 4.342138-9 5.011872-5 6.881684-9 6.309573-5 1.090631-8 7.943282-5 1.727999-8 1.000000-4 2.738129-8 1.258925-4 4.339243-8 1.584893-4 6.873374-8 1.995262-4 1.088823-7 2.511886-4 1.724113-7 3.162278-4 2.728599-7 3.981072-4 4.315620-7 5.011872-4 6.815771-7 6.309573-4 1.074544-6 7.943282-4 1.690432-6 1.000000-3 2.651200-6 1.258925-3 4.150679-6 1.584893-3 6.459471-6 1.995262-3 1.006995-5 2.511886-3 1.570736-5 3.162278-3 2.451892-5 3.981072-3 3.835005-5 5.011872-3 5.995280-5 6.309573-3 9.370215-5 7.943282-3 1.463098-4 1.000000-2 2.275976-4 1.258925-2 3.518582-4 1.584893-2 5.414901-4 1.995262-2 8.314240-4 2.511886-2 1.273674-3 3.162278-2 1.943206-3 3.981072-2 2.952181-3 5.011872-2 4.458144-3 6.309573-2 6.671173-3 7.943282-2 9.907884-3 1.000000-1 1.461547-2 1.258925-1 2.135608-2 1.584893-1 3.093755-2 1.995262-1 4.441145-2 2.511886-1 6.323252-2 3.162278-1 8.919425-2 3.981072-1 1.247425-1 5.011872-1 1.730559-1 6.309573-1 2.382779-1 7.943282-1 3.256352-1 1.000000+0 4.418012-1 1.258925+0 5.952785-1 1.584893+0 7.969532-1 1.995262+0 1.060210+0 2.511886+0 1.402292+0 3.162278+0 1.844952+0 3.981072+0 2.415795+0 5.011872+0 3.149714+0 6.309573+0 4.091267+0 7.943282+0 5.296505+0 1.000000+1 6.836589+0 1.258925+1 8.801825+0 1.584893+1 1.130637+1 1.995262+1 1.449491+1 2.511886+1 1.855042+1 3.162278+1 2.370434+1 3.981072+1 3.024974+1 5.011872+1 3.855698+1 6.309573+1 4.909435+1 7.943282+1 6.245382+1 1.000000+2 7.938373+1 1.258925+2 1.008289+2 1.584893+2 1.279840+2 1.995262+2 1.623577+2 2.511886+2 2.058549+2 3.162278+2 2.608815+2 3.981072+2 3.304764+2 5.011872+2 4.184731+2 6.309573+2 5.297139+2 7.943282+2 6.703090+2 1.000000+3 8.479709+2 1.258925+3 1.072431+3 1.584893+3 1.355973+3 1.995262+3 1.714088+3 2.511886+3 2.166320+3 3.162278+3 2.737334+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.220000-6 3.459355+6 8.810489-6 2.386936+6 9.225714-6 1.853191+6 9.660509-6 1.427414+6 1.000000-5 1.167162+6 1.035142-5 9.490021+5 1.071519-5 7.670901+5 1.110000-5 6.130120+5 1.150000-5 4.856580+5 1.188502-5 3.879614+5 1.216186-5 3.299142+5 1.250000-5 2.703860+5 1.280000-5 2.263520+5 1.310000-5 1.892220+5 1.340000-5 1.579196+5 1.372000-5 1.299482+5 1.400000-5 1.093612+5 1.430000-5 9.072160+4 1.462177-5 7.407104+4 1.496236-5 5.962123+4 1.531087-5 4.766168+4 1.570000-5 3.710440+4 1.640590-5 2.382225+4 1.670000-5 2.003800+4 1.693000-5 1.765385+4 1.697000-5 1.729697+4 1.697000-5 4.927841+6 1.715000-5 4.897599+6 1.730000-5 4.872950+6 1.731000-5 4.872117+6 1.745000-5 4.860611+6 1.760000-5 4.848541+6 1.770000-5 4.840643+6 1.771000-5 4.840601+6 1.771000-5 8.040845+6 1.774000-5 8.036711+6 1.785000-5 8.021720+6 1.800000-5 8.001626+6 1.810000-5 7.993484+6 1.815000-5 7.992859+6 1.830000-5 7.991127+6 1.845000-5 7.989562+6 1.850000-5 7.991801+6 1.860000-5 8.002647+6 1.870000-5 8.013514+6 1.885000-5 8.029832+6 1.890000-5 8.035283+6 1.900000-5 8.057802+6 1.915000-5 8.091574+6 1.927525-5 8.119765+6 1.935000-5 8.139667+6 1.945000-5 8.166296+6 1.957000-5 8.206915+6 1.972423-5 8.259154+6 1.980000-5 8.288231+6 2.000000-5 8.365016+6 2.020000-5 8.454566+6 2.041738-5 8.561645+6 2.055000-5 8.627115+6 2.070000-5 8.709975+6 2.113489-5 8.970507+6 2.130000-5 9.079744+6 2.150000-5 9.221096+6 2.187762-5 9.490318+6 2.190000-5 9.507645+6 2.210000-5 9.670475+6 2.250000-5 9.999926+6 2.264644-5 1.012714+7 2.270000-5 1.017385+7 2.317395-5 1.061752+7 2.330000-5 1.073713+7 2.371374-5 1.115013+7 2.420000-5 1.166959+7 2.426610-5 1.174327+7 2.483133-5 1.238388+7 2.485000-5 1.240614+7 2.511886-5 1.272917+7 2.540973-5 1.309211+7 2.610000-5 1.397737+7 2.630268-5 1.424374+7 2.650000-5 1.451088+7 2.670000-5 1.479013+7 2.730000-5 1.564711+7 2.800000-5 1.668389+7 2.818383-5 1.696280+7 2.884032-5 1.798884+7 2.985383-5 1.964515+7 3.090295-5 2.145373+7 3.162278-5 2.271691+7 3.198895-5 2.336541+7 3.273407-5 2.471836+7 3.311311-5 2.539667+7 3.350000-5 2.609991+7 3.427678-5 2.750851+7 3.450000-5 2.790202+7 3.500000-5 2.879446+7 3.548134-5 2.964077+7 3.590900-5 3.036135+7 3.630781-5 3.104114+7 3.672823-5 3.173758+7 3.758374-5 3.308470+7 3.770000-5 3.326121+7 3.858700-5 3.451141+7 3.890451-5 3.493757+7 3.950000-5 3.565474+7 3.970000-5 3.589643+7 4.000000-5 3.623269+7 4.073803-5 3.695020+7 4.110000-5 3.726841+7 4.168694-5 3.768990+7 4.180000-5 3.777096+7 4.220000-5 3.802136+7 4.265795-5 3.823177+7 4.330000-5 3.846760+7 4.365158-5 3.854427+7 4.415704-5 3.860278+7 4.470000-5 3.858916+7 4.518559-5 3.852759+7 4.570882-5 3.838361+7 4.623810-5 3.818580+7 4.677351-5 3.791016+7 4.680000-5 3.789666+7 4.731513-5 3.758420+7 4.786301-5 3.718053+7 4.841724-5 3.672742+7 4.900000-5 3.618404+7 4.954502-5 3.563916+7 5.011872-5 3.500692+7 5.080000-5 3.422328+7 5.128614-5 3.362564+7 5.190000-5 3.284653+7 5.248075-5 3.207637+7 5.300000-5 3.137327+7 5.308844-5 3.125574+7 5.370318-5 3.039907+7 5.432503-5 2.952532+7 5.500000-5 2.856027+7 5.559043-5 2.771799+7 5.623413-5 2.679068+7 5.650000-5 2.640626+7 5.688529-5 2.586203+7 5.754399-5 2.492324+7 5.821032-5 2.398738+7 5.900000-5 2.289217+7 5.956621-5 2.212405+7 6.025596-5 2.119772+7 6.095369-5 2.028715+7 6.165950-5 1.938440+7 6.237348-5 1.850055+7 6.309573-5 1.762721+7 6.400000-5 1.657949+7 6.456542-5 1.594108+7 6.480700-5 1.567751+7 6.580000-5 1.462391+7 6.650000-5 1.390928+7 6.760830-5 1.283830+7 6.839116-5 1.211960+7 6.918310-5 1.142690+7 6.950000-5 1.116306+7 7.000000-5 1.074907+7 7.150000-5 9.592740+6 7.161434-5 9.508374+6 7.219000-5 9.088963+6 7.219000-5 1.022964+7 7.290000-5 9.739727+6 7.350000-5 9.344561+6 7.360000-5 9.279199+6 7.363000-5 9.259499+6 7.413102-5 8.933131+6 7.450000-5 8.702117+6 7.500000-5 8.397921+6 7.550000-5 8.097185+6 7.673615-5 7.402785+6 7.800000-5 6.740863+6 7.822000-5 6.632381+6 7.822000-5 7.136187+6 7.852356-5 6.992283+6 7.890000-5 6.813167+6 7.950000-5 6.537341+6 7.985000-5 6.382182+6 8.000000-5 6.316482+6 8.035261-5 6.165491+6 8.080000-5 5.977308+6 8.150000-5 5.691400+6 8.230000-5 5.381756+6 8.270000-5 5.232399+6 8.300000-5 5.122991+6 8.400000-5 4.774272+6 8.413951-5 4.727760+6 8.450000-5 4.609888+6 8.511380-5 4.414468+6 8.609938-5 4.116889+6 8.650000-5 4.003244+6 8.738900-5 3.759737+6 8.810489-5 3.574938+6 8.900000-5 3.358709+6 9.000000-5 3.132985+6 9.015711-5 3.098922+6 9.150000-5 2.826360+6 9.230000-5 2.676485+6 9.300000-5 2.552517+6 9.332543-5 2.497260+6 9.440609-5 2.325748+6 9.500000-5 2.236981+6 9.549926-5 2.165167+6 9.800000-5 1.850771+6 1.010000-4 1.551083+6 1.011579-4 1.537443+6 1.023293-4 1.441986+6 1.035142-4 1.353981+6 1.040000-4 1.320619+6 1.047129-4 1.274561+6 1.050000-4 1.256835+6 1.060000-4 1.198404+6 1.071519-4 1.137138+6 1.075000-4 1.120072+6 1.080000-4 1.096691+6 1.090000-4 1.052624+6 1.100000-4 1.012840+6 1.105000-4 9.942322+5 1.110000-4 9.770354+5 1.120000-4 9.444774+5 1.122018-4 9.383261+5 1.131300-4 9.114615+5 1.133600-4 9.052068+5 1.133600-4 1.082141+6 1.135011-4 1.078299+6 1.143000-4 1.058050+6 1.148154-4 1.046054+6 1.155000-4 1.030966+6 1.161449-4 1.017688+6 1.165000-4 1.010757+6 1.170000-4 1.001535+6 1.174898-4 9.929392+5 1.175000-4 9.927651+5 1.185000-4 9.773852+5 1.188502-4 9.724056+5 1.198000-4 9.597431+5 1.201000-4 9.560614+5 1.205000-4 9.514276+5 1.209000-4 9.471559+5 1.213000-4 9.432114+5 1.220000-4 9.367701+5 1.225000-4 9.325509+5 1.230269-4 9.283992+5 1.235000-4 9.250388+5 1.240000-4 9.217239+5 1.244515-4 9.188811+5 1.245000-4 9.186002+5 1.260000-4 9.118440+5 1.273503-4 9.075015+5 1.275000-4 9.070681+5 1.288250-4 9.046407+5 1.290000-4 9.043280+5 1.295700-4 9.038411+5 1.307000-4 9.034296+5 1.315000-4 9.038631+5 1.322000-4 9.044494+5 1.330000-4 9.054092+5 1.340000-4 9.070731+5 1.350000-4 9.091364+5 1.365000-4 9.137210+5 1.396368-4 9.249951+5 1.400000-4 9.264482+5 1.412538-4 9.318411+5 1.445440-4 9.478233+5 1.462177-4 9.567344+5 1.500000-4 9.771679+5 1.548817-4 1.004757+6 1.566751-4 1.014394+6 1.584893-4 1.024614+6 1.621810-4 1.044138+6 1.650000-4 1.057779+6 1.659587-4 1.062591+6 1.670000-4 1.067739+6 1.720000-4 1.089429+6 1.737801-4 1.096038+6 1.757924-4 1.103371+6 1.760000-4 1.104132+6 1.778279-4 1.110949+6 1.820000-4 1.123648+6 1.840772-4 1.129848+6 1.883649-4 1.139748+6 1.905461-4 1.144615+6 1.927525-4 1.148103+6 1.972423-4 1.154891+6 2.041738-4 1.161551+6 2.065380-4 1.162332+6 2.089296-4 1.162992+6 2.120000-4 1.163784+6 2.190000-4 1.162209+6 2.220000-4 1.160288+6 2.264644-4 1.157116+6 2.290868-4 1.154051+6 2.350000-4 1.147132+6 2.371374-4 1.144318+6 2.400000-4 1.139797+6 2.454709-4 1.130899+6 2.480000-4 1.126443+6 2.483133-4 1.125811+6 2.500000-4 1.122373+6 2.570396-4 1.108117+6 2.600160-4 1.101832+6 2.660725-4 1.087604+6 2.691535-4 1.080470+6 2.730000-4 1.071217+6 2.786121-4 1.056798+6 2.818383-4 1.048727+6 2.851018-4 1.040104+6 2.951209-4 1.012833+6 2.985383-4 1.003797+6 3.019952-4 9.944649+5 3.054921-4 9.847219+5 3.090295-4 9.748791+5 3.126079-4 9.650415+5 3.150000-4 9.585793+5 3.162278-4 9.551893+5 3.235937-4 9.345355+5 3.311311-4 9.141746+5 3.350000-4 9.039085+5 3.550000-4 8.503646+5 3.589219-4 8.399595+5 3.630781-4 8.291897+5 3.780000-4 7.916637+5 3.935501-4 7.535564+5 4.027170-4 7.322013+5 4.073803-4 7.212525+5 4.128600-4 7.086803+5 4.128600-4 7.859273+5 4.160000-4 7.825455+5 4.169700-4 7.808141+5 4.175000-4 7.801886+5 4.183000-4 7.797569+5 4.190000-4 7.799483+5 4.197000-4 7.807403+5 4.200600-4 7.814387+5 4.200600-4 8.360881+5 4.202000-4 8.364278+5 4.208000-4 8.383599+5 4.215000-4 8.413782+5 4.222000-4 8.453137+5 4.229500-4 8.506777+5 4.237000-4 8.573739+5 4.243000-4 8.637983+5 4.245000-4 8.662276+5 4.249000-4 8.713582+5 4.250000-4 8.727828+5 4.257000-4 8.835929+5 4.258000-4 8.853331+5 4.265795-4 9.001749+5 4.273000-4 9.165953+5 4.275000-4 9.215605+5 4.280000-4 9.350913+5 4.284700-4 9.489826+5 4.285000-4 9.498966+5 4.287000-4 9.562701+5 4.292000-4 9.732985+5 4.297000-4 9.918025+5 4.303000-4 1.016108+6 4.309000-4 1.042898+6 4.315191-4 1.073374+6 4.323000-4 1.116293+6 4.327000-4 1.140445+6 4.330000-4 1.158851+6 4.337000-4 1.205298+6 4.340000-4 1.226820+6 4.348000-4 1.286610+6 4.350000-4 1.302737+6 4.360000-4 1.386941+6 4.361000-4 1.395617+6 4.370000-4 1.479342+6 4.381000-4 1.589696+6 4.392000-4 1.708734+6 4.395000-4 1.741977+6 4.403000-4 1.835409+6 4.407000-4 1.882817+6 4.411000-4 1.931696+6 4.418000-4 2.017665+6 4.422000-4 2.068738+6 4.430000-4 2.170659+6 4.433000-4 2.210143+6 4.440000-4 2.300658+6 4.445000-4 2.367286+6 4.451300-4 2.450430+6 4.454000-4 2.486487+6 4.461000-4 2.578496+6 4.465000-4 2.632015+6 4.469000-4 2.683884+6 4.477000-4 2.789027+6 4.480000-4 2.827403+6 4.490000-4 2.956301+6 4.500000-4 3.080280+6 4.502400-4 3.110136+6 4.508000-4 3.176399+6 4.518559-4 3.301799+6 4.519000-4 3.306772+6 4.530000-4 3.428348+6 4.535000-4 3.483132+6 4.540000-4 3.534897+6 4.550000-4 3.636881+6 4.560000-4 3.730753+6 4.565000-4 3.776639+6 4.570882-4 3.826978+6 4.585000-4 3.944120+6 4.600000-4 4.052104+6 4.607000-4 4.100024+6 4.615000-4 4.149290+6 4.623810-4 4.200046+6 4.630000-4 4.236128+6 4.645000-4 4.308078+6 4.650000-4 4.329959+6 4.665000-4 4.386890+6 4.677351-4 4.428403+6 4.685000-4 4.450012+6 4.700000-4 4.485656+6 4.708000-4 4.500811+6 4.731513-4 4.534972+6 4.750000-4 4.547017+6 4.765000-4 4.551795+6 4.780000-4 4.551203+6 4.800000-4 4.542992+6 4.815000-4 4.532582+6 4.850000-4 4.498234+6 4.900000-4 4.426751+6 4.980000-4 4.301585+6 5.011872-4 4.251536+6 5.128614-4 4.075020+6 5.150000-4 4.043904+6 5.198800-4 3.975779+6 5.300000-4 3.843253+6 5.370318-4 3.755106+6 5.432503-4 3.679481+6 5.500000-4 3.596788+6 5.688529-4 3.375046+6 5.754399-4 3.302449+6 5.821032-4 3.231277+6 5.888437-4 3.161461+6 5.956621-4 3.093132+6 6.126300-4 2.932581+6 6.126300-4 3.094016+6 6.128000-4 3.095825+6 6.133000-4 3.102391+6 6.138000-4 3.108324+6 6.143000-4 3.113752+6 6.147000-4 3.117678+6 6.152000-4 3.122200+6 6.158000-4 3.127050+6 6.165950-4 3.132509+6 6.175000-4 3.137581+6 6.183000-4 3.141127+6 6.190000-4 3.143552+6 6.200000-4 3.145987+6 6.210000-4 3.147313+6 6.220000-4 3.147615+6 6.234000-4 3.146493+6 6.237348-4 3.145851+6 6.245000-4 3.144442+6 6.260000-4 3.140189+6 6.275000-4 3.134465+6 6.290000-4 3.127468+6 6.309573-4 3.116733+6 6.330000-4 3.103936+6 6.350000-4 3.089857+6 6.362600-4 3.080712+6 6.382635-4 3.064748+6 6.400000-4 3.050757+6 6.456542-4 3.002780+6 6.477900-4 2.984350+6 6.477900-4 3.048504+6 6.479600-4 3.048358+6 6.484000-4 3.048593+6 6.489000-4 3.048642+6 6.493500-4 3.048518+6 6.500000-4 3.048029+6 6.506000-4 3.047335+6 6.511000-4 3.046548+6 6.519000-4 3.044981+6 6.527000-4 3.043065+6 6.534000-4 3.041092+6 6.542000-4 3.038517+6 6.553000-4 3.034494+6 6.563000-4 3.030395+6 6.575000-4 3.024966+6 6.590000-4 3.017463+6 6.605000-4 3.009259+6 6.620000-4 3.000440+6 6.640000-4 2.987871+6 6.663000-4 2.972511+6 6.685000-4 2.957129+6 6.700000-4 2.946281+6 6.710000-4 2.938755+6 6.740000-4 2.915606+6 6.760830-4 2.899277+6 6.780000-4 2.884362+6 6.839116-4 2.838211+6 6.850000-4 2.829836+6 6.918310-4 2.777844+6 7.000000-4 2.717644+6 7.079458-4 2.660170+6 7.244360-4 2.547249+6 7.300000-4 2.509995+6 7.328245-4 2.491103+6 7.413102-4 2.435172+6 7.500000-4 2.379862+6 7.553700-4 2.346517+6 7.553700-4 2.447544+6 7.673615-4 2.373966+6 7.762471-4 2.320606+6 7.800000-4 2.298627+6 7.852356-4 2.268126+6 8.035261-4 2.166406+6 8.100000-4 2.132078+6 8.128305-4 2.117206+6 8.222426-4 2.069069+6 8.280000-4 2.040013+6 8.317638-4 2.021240+6 8.413951-4 1.973882+6 8.500000-4 1.933020+6 8.609938-4 1.882512+6 8.709636-4 1.838447+6 8.810489-4 1.795230+6 8.912509-4 1.753048+6 9.000000-4 1.718058+6 9.015711-4 1.711775+6 9.120108-4 1.670766+6 9.332543-4 1.590922+6 9.549926-4 1.514623+6 9.660509-4 1.478185+6 9.700000-4 1.465481+6 9.772372-4 1.441682+6 1.011579-3 1.336779+6 1.035142-3 1.271057+6 1.050000-3 1.232027+6 1.071519-3 1.178529+6 1.083927-3 1.148925+6 1.090000-3 1.134727+6 1.096478-3 1.119851+6 1.135011-3 1.036519+6 1.174898-3 9.593972+5 1.188502-3 9.345964+5 1.190000-3 9.319219+5 1.202264-3 9.102712+5 1.216186-3 8.864962+5 1.230269-3 8.633715+5 1.288250-3 7.771039+5 1.300000-3 7.611923+5 1.318257-3 7.372418+5 1.333521-3 7.177291+5 1.364583-3 6.803084+5 1.428894-3 6.115240+5 1.445440-3 5.952109+5 1.462177-3 5.792934+5 1.479108-3 5.638001+5 1.531087-3 5.195829+5 1.548817-3 5.056742+5 1.566751-3 4.920717+5 1.603245-3 4.659179+5 1.621810-3 4.533023+5 1.640590-3 4.410351+5 1.659587-3 4.291028+5 1.717908-3 3.951630+5 1.737801-3 3.844655+5 1.757924-3 3.739960+5 1.778279-3 3.637934+5 1.798871-3 3.538110+5 1.819701-3 3.441111+5 1.850000-3 3.306801+5 1.905461-3 3.078824+5 1.927525-3 2.993575+5 1.949845-3 2.910675+5 2.000000-3 2.736153+5 2.018366-3 2.675629+5 2.080000-3 2.486123+5 2.089296-3 2.459235+5 2.113489-3 2.390934+5 2.150000-3 2.292698+5 2.200000-3 2.166625+5 2.213095-3 2.135266+5 2.220000-3 2.118986+5 2.238721-3 2.075502+5 2.317395-3 1.905834+5 2.344229-3 1.852370+5 2.350000-3 1.841146+5 2.371374-3 1.800258+5 2.454709-3 1.651836+5 2.483133-3 1.605202+5 2.500000-3 1.578419+5 2.600160-3 1.431199+5 2.630268-3 1.390716+5 2.660725-3 1.351154+5 2.722701-3 1.275007+5 2.754229-3 1.238618+5 2.786121-3 1.203308+5 2.818383-3 1.169034+5 2.900000-3 1.088053+5 2.951209-3 1.041140+5 2.985383-3 1.011203+5 3.000000-3 9.987343+4 3.019952-3 9.820300+4 3.054921-3 9.536965+4 3.126079-3 8.995539+4 3.162278-3 8.735878+4 3.235937-3 8.239972+4 3.311311-3 7.771942+4 3.349654-3 7.545947+4 3.388442-3 7.326732+4 3.467369-3 6.907988+4 3.507519-3 6.708134+4 3.535400-3 6.573221+4 3.535400-3 2.154049+5 3.548134-3 2.136879+5 3.589219-3 2.082833+5 3.600000-3 2.068966+5 3.650000-3 1.999323+5 3.715352-3 1.909242+5 3.730900-3 1.888596+5 3.730900-3 2.592421+5 3.758374-3 2.546287+5 3.801894-3 2.475531+5 3.823000-3 2.442223+5 3.900000-3 2.319113+5 3.935501-3 2.264948+5 3.994100-3 2.179317+5 3.994100-3 2.504593+5 4.027170-3 2.453481+5 4.073803-3 2.383841+5 4.080000-3 2.374819+5 4.168694-3 2.252595+5 4.216965-3 2.189708+5 4.246900-3 2.151964+5 4.265795-3 2.128197+5 4.300000-3 2.086118+5 4.315191-3 2.067803+5 4.365158-3 2.008725+5 4.415704-3 1.950782+5 4.570882-3 1.787040+5 4.623810-3 1.735622+5 4.677351-3 1.685696+5 4.731513-3 1.636457+5 4.786301-3 1.588687+5 4.897788-3 1.497412+5 4.954502-3 1.453806+5 5.011872-3 1.411163+5 5.069907-3 1.369799+5 5.128614-3 1.329674+5 5.308844-3 1.216307+5 5.370318-3 1.180599+5 5.432503-3 1.145865+5 5.559043-3 1.079507+5 5.688529-3 1.017071+5 5.821032-3 9.583310+4 5.888437-3 9.299437+4 5.900000-3 9.251903+4 5.956621-3 9.024631+4 6.025596-3 8.758286+4 6.095369-3 8.499683+4 6.309573-3 7.769550+4 6.456542-3 7.316198+4 6.606934-3 6.886427+4 6.760830-3 6.482240+4 6.800000-3 6.384711+4 6.918310-3 6.102038+4 6.998420-3 5.920451+4 7.000000-3 5.916936+4 7.079458-3 5.743786+4 7.161434-3 5.570342+4 7.244360-3 5.402237+4 7.328245-3 5.239345+4 7.413102-3 5.081461+4 7.585776-3 4.777919+4 7.852356-3 4.356708+4 8.222426-3 3.851786+4 8.317638-3 3.735140+4 8.413951-3 3.622047+4 8.511380-3 3.511635+4 8.609938-3 3.404549+4 8.709636-3 3.300815+4 8.912509-3 3.102942+4 9.120108-3 2.916501+4 9.332543-3 2.739974+4 9.440609-3 2.655863+4 9.500000-3 2.611135+4 9.549926-3 2.574228+4 9.660509-3 2.494968+4 9.885531-3 2.343726+4 1.000000-2 2.271415+4 1.011579-2 2.201389+4 1.023293-2 2.133566+4 1.035142-2 2.067895+4 1.059254-2 1.942700+4 1.071519-2 1.883054+4 1.083927-2 1.825245+4 1.096478-2 1.768787+4 1.122018-2 1.660478+4 1.135011-2 1.608852+4 1.148154-2 1.558868+4 1.174898-2 1.463619+4 1.216186-2 1.331275+4 1.230269-2 1.289909+4 1.258925-2 1.211023+4 1.273503-2 1.173273+4 1.288250-2 1.136521+4 1.303167-2 1.100948+4 1.318257-2 1.066512+4 1.380384-2 9.393542+3 1.396368-2 9.100554+3 1.400000-2 9.035750+3 1.412538-2 8.816699+3 1.428894-2 8.541878+3 1.445440-2 8.273189+3 1.450000-2 8.201203+3 1.462177-2 8.012195+3 1.496236-2 7.514575+3 1.500000-2 7.462227+3 1.548817-2 6.826798+3 1.600000-2 6.237862+3 1.603245-2 6.202916+3 1.640590-2 5.819214+3 1.659587-2 5.636595+3 1.678804-2 5.458510+3 1.698244-2 5.286144+3 1.717908-2 5.118534+3 1.737801-2 4.955858+3 1.819701-2 4.356455+3 1.840772-2 4.218433+3 1.862087-2 4.084774+3 1.927525-2 3.709115+3 1.949845-2 3.591932+3 1.950000-2 3.591137+3 1.972423-2 3.477684+3 2.018366-2 3.260133+3 2.041738-2 3.156165+3 2.113489-2 2.863491+3 2.137962-2 2.772176+3 2.264644-2 2.357760+3 2.290868-2 2.282269+3 2.317395-2 2.209244+3 2.371374-2 2.070251+3 2.400000-2 2.001398+3 2.454709-2 1.877882+3 2.483133-2 1.817649+3 2.511886-2 1.759394+3 2.600160-2 1.595571+3 2.660725-2 1.494411+3 2.668800-2 1.481594+3 2.668800-2 9.323114+3 2.691535-2 9.140685+3 2.722701-2 8.898870+3 2.740000-2 8.768610+3 2.800000-2 8.263968+3 2.851018-2 7.898546+3 2.884032-2 7.673940+3 2.917427-2 7.442283+3 2.951209-2 7.217648+3 3.000000-2 6.909330+3 3.090295-2 6.384177+3 3.198895-2 5.831402+3 3.235937-2 5.658037+3 3.273407-2 5.489858+3 3.349654-2 5.168420+3 3.427678-2 4.865863+3 3.467369-2 4.721262+3 3.500000-2 4.606638+3 3.507519-2 4.580098+3 3.630781-2 4.173446+3 3.672823-2 4.046115+3 3.758374-2 3.802977+3 3.981072-2 3.257351+3 4.027170-2 3.158035+3 4.073803-2 3.061640+3 4.168694-2 2.874451+3 4.216965-2 2.785177+3 4.315191-2 2.614879+3 4.466836-2 2.378816+3 4.570882-2 2.233434+3 4.623810-2 2.164121+3 4.731513-2 2.031877+3 4.786301-2 1.968747+3 4.841724-2 1.907581+3 5.069907-2 1.681342+3 5.188000-2 1.576745+3 5.248075-2 1.526905+3 5.623413-2 1.259321+3 5.754399-2 1.180919+3 5.888437-2 1.107392+3 6.165950-2 9.738136+2 6.309573-2 9.132037+2 6.382635-2 8.839208+2 6.531306-2 8.281479+2 6.606934-2 8.015985+2 6.683439-2 7.759014+2 6.839116-2 7.268979+2 6.918310-2 7.035710+2 7.413102-2 5.785185+2 7.498942-2 5.599578+2 7.585776-2 5.419937+2 7.673615-2 5.246068+2 7.852356-2 4.914899+2 8.035261-2 4.601144+2 8.413951-2 4.031953+2 9.120108-2 3.200082+2 9.225714-2 3.096186+2 9.440609-2 2.898420+2 9.885531-2 2.540027+2 1.011580-1 2.376214+2 1.035142-1 2.222959+2 1.083927-1 1.945489+2 1.122019-1 1.760401+2 1.135011-1 1.702711+2 1.148154-1 1.646912+2 1.161449-1 1.592944+2 1.216186-1 1.394201+2 1.244515-1 1.304341+2 1.258925-1 1.261618+2 1.303167-1 1.141591+2 1.318257-1 1.104179+2 1.333521-1 1.067996+2 1.348963-1 1.032998+2 1.364583-1 9.991465+1 1.396368-1 9.347454+1 1.500000-1 7.598684+1 1.513561-1 7.403393+1 1.531088-1 7.160910+1 1.548817-1 6.926392+1 1.566751-1 6.699564+1 1.584893-1 6.480167+1 1.603245-1 6.267961+1 1.640590-1 5.864185+1 1.717908-1 5.133148+1 1.737801-1 4.965102+1 1.757924-1 4.802564+1 1.778279-1 4.645358+1 1.798871-1 4.493292+1 1.862087-1 4.066422+1 1.883649-1 3.933348+1 1.927525-1 3.680136+1 1.949845-1 3.559729+1 1.995262-1 3.330619+1 2.000000-1 3.307873+1 2.065380-1 3.016864+1 2.089296-1 2.919072+1 2.113489-1 2.824451+1 2.162719-1 2.644319+1 2.187762-1 2.558691+1 2.213095-1 2.475841+1 2.238721-1 2.395687+1 2.290868-1 2.243079+1 2.317395-1 2.170462+1 2.344229-1 2.100201+1 2.371374-1 2.032226+1 2.426610-1 1.902837+1 2.454709-1 1.841267+1 2.483133-1 1.782464+1 2.511886-1 1.725542+1 2.540973-1 1.670437+1 2.630268-1 1.515485+1 2.691535-1 1.420273+1 2.754229-1 1.331168+1 2.786121-1 1.288735+1 2.818383-1 1.247660+1 2.851018-1 1.207895+1 2.884032-1 1.169987+1 2.951209-1 1.097716+1 3.019952-1 1.029923+1 3.054921-1 9.976137+0 3.090295-1 9.663184+0 3.126079-1 9.360060+0 3.162278-1 9.066444+0 3.235937-1 8.507471+0 3.273407-1 8.241053+0 3.311311-1 7.983085+0 3.349654-1 7.737445+0 3.388442-1 7.499438+0 3.427678-1 7.268761+0 3.467369-1 7.045187+0 3.507519-1 6.828496+0 3.548134-1 6.618471+0 3.630781-1 6.217615+0 3.672823-1 6.026767+0 3.758374-1 5.662518+0 3.801894-1 5.491951+0 3.845918-1 5.326529+0 3.981072-1 4.859747+0 4.073803-1 4.571580+0 4.120975-1 4.433993+0 4.168694-1 4.300806+0 4.216965-1 4.171627+0 4.265795-1 4.048805+0 4.365158-1 3.813924+0 4.415705-1 3.701712+0 4.466836-1 3.592808+0 4.518559-1 3.487109+0 4.570882-1 3.384534+0 4.623810-1 3.284983+0 4.677351-1 3.188561+0 4.786301-1 3.007939+0 4.841724-1 2.921529+0 4.897788-1 2.837602+0 5.011872-1 2.676990+0 5.069907-1 2.600142+0 5.128614-1 2.525501+0 5.188000-1 2.453169+0 5.248075-1 2.384475+0 5.308844-1 2.317721+0 5.370318-1 2.252835+0 5.432503-1 2.189772+0 5.495409-1 2.128476+0 5.559043-1 2.068927+0 5.688529-1 1.954803+0 5.754399-1 1.900264+0 5.888437-1 1.798299+0 5.956621-1 1.749389+0 6.000000-1 1.719248+0 6.025596-1 1.701809+0 6.095369-1 1.655531+0 6.165950-1 1.610535+0 6.237348-1 1.566770+0 6.309573-1 1.524203+0 6.382635-1 1.482899+0 6.531306-1 1.405696+0 6.606935-1 1.368615+0 6.683439-1 1.332515+0 6.760830-1 1.297372+0 6.839117-1 1.263180+0 6.998420-1 1.197490+0 7.079458-1 1.166023+0 7.244360-1 1.107182+0 7.328245-1 1.078887+0 7.413102-1 1.051320+0 7.498942-1 1.024462+0 7.762471-1 9.479909-1 7.852356-1 9.238614-1 7.943282-1 9.009787-1 8.035261-1 8.786635-1 8.128305-1 8.569051-1 8.222427-1 8.356855-1 8.317638-1 8.149964-1 8.413951-1 7.948219-1 8.511380-1 7.751582-1 8.609938-1 7.560395-1 8.709636-1 7.373937-1 8.810489-1 7.197704-1 9.015711-1 6.857782-1 9.120108-1 6.693928-1 9.225714-1 6.534018-1 9.332543-1 6.378072-1 9.440609-1 6.226351-1 9.549926-1 6.078242-1 9.660509-1 5.938548-1 9.772372-1 5.802074-1 9.885531-1 5.668776-1 1.000000+0 5.538599-1 1.011579+0 5.411430-1 1.022000+0 5.300733-1 1.023293+0 5.287235-1 1.035142+0 5.166163-1 1.047129+0 5.047884-1 1.071519+0 4.819408-1 1.083927+0 4.709096-1 1.096478+0 4.603570-1 1.109175+0 4.500403-1 1.122018+0 4.399588-1 1.135011+0 4.301023-1 1.148154+0 4.204669-1 1.161449+0 4.110488-1 1.188600+0 3.928670-1 1.202264+0 3.844952-1 1.216186+0 3.762430-1 1.244515+0 3.602666-1 1.258925+0 3.525352-1 1.303167+0 3.303276-1 1.318257+0 3.232623-1 1.333521+0 3.163496-1 1.380384+0 2.964853-1 1.396368+0 2.903163-1 1.428894+0 2.783628-1 1.445440+0 2.725725-1 1.462177+0 2.669031-1 1.479108+0 2.613517-1 1.496236+0 2.559371-1 1.531087+0 2.454435-1 1.548817+0 2.403589-1 1.584893+0 2.308295-1 1.640590+0 2.172407-1 1.659587+0 2.129087-1 1.678804+0 2.086640-1 1.698244+0 2.045041-1 1.717908+0 2.004274-1 1.737801+0 1.964325-1 1.778279+0 1.889278-1 1.798871+0 1.852840-1 1.819701+0 1.817105-1 1.840772+0 1.782060-1 1.862087+0 1.747843-1 1.883649+0 1.714289-1 1.905461+0 1.681381-1 1.927525+0 1.649108-1 1.972423+0 1.588490-1 1.995262+0 1.559027-1 2.000000+0 1.553025-1 2.065380+0 1.473874-1 2.113489+0 1.419918-1 2.137962+0 1.393687-1 2.187762+0 1.342670-1 2.264644+0 1.271590-1 2.290868+0 1.248745-1 2.317395+0 1.226311-1 2.371374+0 1.182644-1 2.426610+0 1.140692-1 2.454709+0 1.120278-1 2.511886+0 1.080542-1 2.600160+0 1.025173-1 2.630268+0 1.007357-1 2.660725+0 9.898499-2 2.722701+0 9.557441-2 2.786121+0 9.229404-2 2.818383+0 9.069639-2 2.884032+0 8.758370-2 3.000000+0 8.266004-2 3.019952+0 8.185990-2 3.054921+0 8.048855-2 3.090295+0 7.914018-2 3.162278+0 7.652185-2 3.198895+0 7.524543-2 3.311311+0 7.154264-2 3.467369+0 6.702719-2 3.507519+0 6.594372-2 3.548134+0 6.487777-2 3.589219+0 6.382905-2 3.672823+0 6.179052-2 3.715352+0 6.079585-2 3.845918+0 5.790699-2 4.027170+0 5.437245-2 4.073803+0 5.352314-2 4.168694+0 5.186413-2 4.216965+0 5.105401-2 4.315191+0 4.947771-2 4.365158+0 4.870794-2 4.518559+0 4.646984-2 4.731513+0 4.372486-2 4.786301+0 4.306442-2 4.897788+0 4.177331-2 4.954502+0 4.114234-2 5.069907+0 3.991358-2 5.128614+0 3.931305-2 5.308844+0 3.756522-2 5.370318+0 3.701611-2 5.623413+0 3.489880-2 5.688529+0 3.438873-2 5.821032+0 3.339084-2 5.888437+0 3.290281-2 6.025596+0 3.195147-2 6.165950+0 3.102767-2 6.382635+0 2.969187-2 6.456542+0 2.927145-2 6.760830+0 2.764849-2 6.839116+0 2.725706-2 7.000000+0 2.648333-2 7.079458+0 2.611569-2 7.244360+0 2.538408-2 7.328245+0 2.502602-2 7.498942+0 2.432497-2 7.762471+0 2.331008-2 7.852356+0 2.299031-2 8.222427+0 2.175451-2 8.317638+0 2.145611-2 8.511380+0 2.087155-2 8.609938+0 2.058526-2 8.810489+0 2.002643-2 8.912509+0 1.975274-2 9.120108+0 1.921652-2 9.440609+0 1.843940-2 9.549926+0 1.819297-2 1.035142+1 1.655780-2 1.059254+1 1.611824-2 1.100000+1 1.542279-2 1.109175+1 1.527382-2 1.135011+1 1.486976-2 1.148154+1 1.467176-2 1.161449+1 1.447641-2 1.174898+1 1.428366-2 1.188502+1 1.409794-2 1.300000+1 1.273163-2 1.333521+1 1.236847-2 1.380384+1 1.189229-2 1.445440+1 1.128710-2 1.462177+1 1.114069-2 1.479108+1 1.099617-2 1.500000+1 1.082265-2 1.513561+1 1.071275-2 1.531087+1 1.057720-2 1.548817+1 1.044339-2 1.640590+1 9.799307-3 1.678804+1 9.552960-3 1.883649+1 8.413846-3 1.949845+1 8.099382-3 1.995262+1 7.896306-3 2.018366+1 7.796684-3 2.041738+1 7.698317-3 2.065380+1 7.603094-3 2.089296+1 7.509059-3 2.200000+1 7.101456-3 2.238721+1 6.968789-3 2.264644+1 6.882618-3 2.570396+1 6.004357-3 2.660725+1 5.784925-3 2.691535+1 5.713579-3 2.722701+1 5.643115-3 2.754229+1 5.573517-3 2.786121+1 5.504780-3 2.818383+1 5.438093-3 2.851018+1 5.372221-3 3.090295+1 4.932928-3 3.162278+1 4.814153-3 3.198895+1 4.755851-3 3.235937+1 4.698359-3 3.672823+1 4.110216-3 3.845918+1 3.915115-3 3.890451+1 3.867806-3 3.981072+1 3.774894-3 4.027170+1 3.729280-3 4.073803+1 3.684215-3 4.120975+1 3.640374-3 4.168694+1 3.597057-3 4.623810+1 3.229686-3 4.731513+1 3.153288-3 4.841724+1 3.078706-3 4.897788+1 3.042136-3 5.688529+1 2.604548-3 6.025596+1 2.453533-3 6.095369+1 2.424398-3 6.309573+1 2.339053-3 6.382635+1 2.311277-3 6.456542+1 2.283832-3 6.531306+1 2.257043-3 6.683439+1 2.204408-3 7.585776+1 1.936107-3 7.852356+1 1.868782-3 8.128305+1 1.803802-3 8.222427+1 1.782673-3 1.011579+2 1.442060-3 1.083927+2 1.343654-3 1.096478+2 1.327920-3 1.122018+2 1.297001-3 1.135011+2 1.281811-3 1.148154+2 1.266800-3 1.161449+2 1.252111-3 1.188502+2 1.223244-3 1.318257+2 1.101358-3 1.333521+2 1.088589-3 1.364583+2 1.063492-3 1.412538+2 1.026929-3 1.462177+2 9.916514-4 2.018366+2 7.156201-4 2.162719+2 6.673035-4 2.187762+2 6.595741-4 2.238721+2 6.443831-4 2.264644+2 6.369192-4 2.290868+2 6.295416-4 2.317395+2 6.222949-4 2.371374+2 6.080513-4 2.630268+2 5.478834-4 2.660725+2 5.415771-4 2.722701+2 5.291814-4 2.818383+2 5.111182-4 2.917427+2 4.936816-4 4.027170+2 3.570815-4 8.609938+2 1.664053-4 8.709636+2 1.644913-4 8.912509+2 1.607291-4 9.015711+2 1.588804-4 9.120108+2 1.570530-4 9.225714+2 1.552536-4 9.440609+2 1.517166-4 1.047129+3 1.367713-4 1.059254+3 1.352044-4 1.083927+3 1.321242-4 1.122018+3 1.276352-4 1.161449+3 1.233000-4 1.603245+3 8.931126-5 5.432503+4 2.632005-6 5.495409+4 2.601864-6 5.623413+4 2.542615-6 5.688529+4 2.513499-6 5.754399+4 2.484715-6 5.821032+4 2.456280-6 5.956621+4 2.400382-6 1.000000+5 1.430005-6 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.220000-6 8.220000-6 1.697000-5 8.220000-6 1.697000-5 1.693929-5 1.771000-5 1.694727-5 1.771000-5 1.725083-5 2.985383-5 1.722423-5 6.400000-5 1.724637-5 7.219000-5 1.722715-5 7.219000-5 1.912910-5 7.673615-5 1.963701-5 7.822000-5 1.978649-5 7.822000-5 2.083690-5 8.650000-5 2.222250-5 9.332543-5 2.341892-5 1.011579-4 2.499635-5 1.075000-4 2.628453-5 1.120000-4 2.702796-5 1.133600-4 2.720181-5 1.133600-4 3.102816-5 1.165000-4 3.153498-5 1.201000-4 3.188603-5 1.235000-4 3.200844-5 1.275000-4 3.194125-5 1.330000-4 3.158364-5 1.548817-4 2.943130-5 1.659587-4 2.857858-5 1.778279-4 2.786819-5 1.905461-4 2.729682-5 2.065380-4 2.677875-5 2.220000-4 2.642103-5 2.454709-4 2.607758-5 2.786121-4 2.583863-5 3.235937-4 2.572932-5 3.780000-4 2.576037-5 4.128600-4 2.585151-5 4.128600-4 2.809507-5 4.183000-4 2.830005-5 4.200600-4 2.846025-5 4.200600-4 2.980109-5 4.222000-4 3.013677-5 4.245000-4 3.071873-5 4.258000-4 3.118004-5 4.275000-4 3.196062-5 4.292000-4 3.293952-5 4.315191-4 3.452275-5 4.361000-4 3.797223-5 4.381000-4 3.935110-5 4.407000-4 4.088457-5 4.433000-4 4.211065-5 4.461000-4 4.311713-5 4.490000-4 4.389019-5 4.530000-4 4.462264-5 4.585000-4 4.523568-5 4.665000-4 4.568222-5 4.780000-4 4.591062-5 6.126300-4 4.585885-5 6.126300-4 4.773360-5 6.165950-4 4.855991-5 6.220000-4 4.926060-5 6.290000-4 4.973862-5 6.400000-4 5.001691-5 6.477900-4 5.008630-5 6.477900-4 5.079006-5 6.553000-4 5.138640-5 6.663000-4 5.178748-5 7.079458-4 5.225831-5 7.553700-4 5.267203-5 7.553700-4 5.499913-5 1.011579-3 5.762201-5 1.230269-3 5.953348-5 1.531087-3 6.176284-5 1.905461-3 6.404147-5 2.371374-3 6.633246-5 2.951209-3 6.862015-5 3.535400-3 7.047558-5 3.535400-3 9.967598-5 3.730900-3 9.992393-5 3.730900-3 1.048640-4 3.994100-3 1.050519-4 3.994100-3 1.107115-4 5.559043-3 1.129547-4 7.852356-3 1.153985-4 1.135011-2 1.181320-4 1.603245-2 1.207550-4 2.137962-2 1.229216-4 2.668800-2 1.245455-4 2.668800-2 1.273837-4 5.754399-2 1.281261-4 1.717908-1 1.286654-4 1.188600+0 1.289291-4 1.000000+5 1.289258-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.220000-6 0.0 7.219000-5 0.0 7.219000-5 2.91066-11 7.290000-5 3.05072-11 7.450000-5 3.33982-11 7.550000-5 3.51101-11 7.822000-5 3.95142-11 7.822000-5 6.31609-11 8.000000-5 6.92126-11 8.150000-5 7.40702-11 8.900000-5 9.72562-11 9.230000-5 1.08067-10 9.549926-5 1.19219-10 1.011579-4 1.40152-10 1.050000-4 1.54447-10 1.075000-4 1.63115-10 1.090000-4 1.67918-10 1.110000-4 1.73549-10 1.122018-4 1.76646-10 1.133600-4 1.79188-10 1.133600-4 2.03889-10 1.155000-4 2.08258-10 1.175000-4 2.11204-10 1.198000-4 2.13293-10 1.225000-4 2.14109-10 1.245000-4 2.13686-10 1.275000-4 2.11737-10 1.307000-4 2.08310-10 1.350000-4 2.02254-10 1.462177-4 1.84442-10 1.500000-4 1.78689-10 1.566751-4 1.69735-10 1.621810-4 1.63311-10 1.670000-4 1.58417-10 1.720000-4 1.53946-10 1.778279-4 1.49398-10 1.840772-4 1.45238-10 1.905461-4 1.41553-10 1.972423-4 1.38289-10 2.065380-4 1.34665-10 2.120000-4 1.32741-10 2.220000-4 1.30047-10 2.350000-4 1.27328-10 2.500000-4 1.25241-10 2.660725-4 1.23780-10 2.851018-4 1.22762-10 3.126079-4 1.22209-10 3.350000-4 1.22289-10 3.589219-4 1.22861-10 3.780000-4 1.23449-10 4.128600-4 1.25127-10 4.128600-4 1.32828-10 4.190000-4 1.33937-10 4.200600-4 1.34348-10 4.200600-4 7.825351-9 4.215000-4 7.866123-9 4.229500-4 7.871400-9 4.250000-4 7.815858-9 4.258000-4 7.826608-9 4.265795-4 7.876505-9 4.273000-4 7.958335-9 4.280000-4 8.074165-9 4.287000-4 8.228681-9 4.292000-4 8.363038-9 4.297000-4 8.519807-9 4.303000-4 8.738098-9 4.309000-4 8.989687-9 4.315191-4 9.284091-9 4.323000-4 9.704723-9 4.330000-4 1.013109-8 4.337000-4 1.060570-8 4.348000-4 1.144257-8 4.361000-4 1.257228-8 4.370000-4 1.344290-8 4.381000-4 1.457413-8 4.392000-4 1.579100-8 4.403000-4 1.707289-8 4.411000-4 1.803791-8 4.422000-4 1.939256-8 4.440000-4 2.167319-8 4.445000-4 2.226866-8 4.461000-4 2.426156-8 4.469000-4 2.521521-8 4.480000-4 2.647878-8 4.500000-4 2.862057-8 4.508000-4 2.942537-8 4.530000-4 3.141003-8 4.540000-4 3.221545-8 4.560000-4 3.366388-8 4.570882-4 3.437079-8 4.600000-4 3.599039-8 4.623810-4 3.705235-8 4.645000-4 3.787564-8 4.665000-4 3.853967-8 4.685000-4 3.909329-8 4.708000-4 3.964354-8 4.750000-4 4.040238-8 4.780000-4 4.078937-8 4.815000-4 4.111222-8 4.900000-4 4.149516-8 5.011872-4 4.151233-8 5.370318-4 4.138257-8 6.126300-4 4.131618-8 6.126300-4 4.910474-8 6.147000-4 5.107222-8 6.165950-4 5.253944-8 6.190000-4 5.403428-8 6.220000-4 5.545283-8 6.245000-4 5.634054-8 6.275000-4 5.713311-8 6.309573-4 5.776670-8 6.362600-4 5.835777-8 6.400000-4 5.861158-8 6.477900-4 5.890900-8 6.477900-4 6.338116-8 6.506000-4 6.505294-8 6.542000-4 6.667170-8 6.575000-4 6.776436-8 6.620000-4 6.881412-8 6.685000-4 6.972745-8 6.780000-4 7.045378-8 7.328245-4 7.306911-8 7.553700-4 7.402204-8 7.553700-4 8.232479-8 8.810489-4 8.855698-8 1.035142-3 9.557447-8 1.135011-3 9.971976-8 1.333521-3 1.070654-7 1.479108-3 1.118519-7 1.717908-3 1.187791-7 1.949845-3 1.246127-7 2.238721-3 1.309333-7 2.500000-3 1.358997-7 2.786121-3 1.407456-7 3.162278-3 1.462538-7 3.535400-3 1.509642-7 3.535400-3 1.329488-4 3.650000-3 1.333750-4 3.730900-3 1.333351-4 3.730900-3 1.589491-4 3.935501-3 1.591750-4 3.994100-3 1.591594-4 3.994100-3 1.649505-4 5.069907-3 1.657557-4 7.852356-3 1.665353-4 2.018366-2 1.667564-4 2.668800-2 1.666754-4 2.668800-2 1.689442-2 2.884032-2 1.697367-2 3.758374-2 1.713638-2 5.248075-2 1.727661-2 8.035261-2 1.738291-2 1.640590-1 1.746089-2 1.303167+0 1.752390-2 1.000000+5 1.752081-2 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.220000-6 0.0 1.697000-5 8.750000-6 1.697000-5 3.071294-8 1.731000-5 3.663257-7 1.771000-5 7.627314-7 1.771000-5 4.591655-7 2.000000-5 2.761847-6 2.540973-5 8.189996-6 7.219000-5 5.496285-5 7.219000-5 5.306087-5 7.822000-5 5.843347-5 7.822000-5 5.738304-5 9.500000-5 7.126090-5 1.100000-4 8.327912-5 1.133600-4 8.615801-5 1.133600-4 8.233164-5 1.188502-4 8.705880-5 1.245000-4 9.248754-5 1.330000-4 1.014162-4 1.621810-4 1.333401-4 1.927525-4 1.655338-4 2.483133-4 2.222644-4 4.128600-4 3.870084-4 4.128600-4 3.847648-4 4.200600-4 3.915996-4 4.200600-4 3.902511-4 4.275000-4 3.955314-4 4.418000-4 4.003427-4 4.519000-4 4.074166-4 4.750000-4 4.290811-4 6.126300-4 5.667298-4 6.126300-4 5.648473-4 6.330000-4 5.830595-4 6.477900-4 5.976448-4 6.477900-4 5.969366-4 7.244360-4 6.719573-4 7.553700-4 7.026240-4 7.553700-4 7.002885-4 2.317395-3 2.251175-3 3.535400-3 3.464773-3 3.535400-3 3.302775-3 3.730900-3 3.497641-3 3.730900-3 3.467087-3 3.994100-3 3.729889-3 3.994100-3 3.718438-3 2.668800-2 2.639678-2 2.668800-2 9.666194-3 2.740000-2 1.033592-2 3.758374-2 2.031960-2 6.382635-2 4.636343-2 1.333521+1 1.331756+1 1.000000+5 9.999998+4 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.668800-2 7.841520+3 2.740000-2 7.393760+3 2.800000-2 6.971040+3 2.884032-2 6.485006+3 3.090295-2 5.407587+3 3.500000-2 3.921960+3 4.073803-2 2.618621+3 5.069907-2 1.445626+3 6.309573-2 7.881962+2 7.852356-2 4.253888+2 9.885531-2 2.202904+2 2.000000-1 2.877460+1 2.454709-1 1.602158+1 2.851018-1 1.051302+1 3.311311-1 6.949622+0 3.758374-1 4.930222+0 4.216965-1 3.632746+0 4.677351-1 2.777230+0 5.188000-1 2.137149+0 5.754399-1 1.655797+0 6.382635-1 1.292440+0 7.079458-1 1.016547+0 7.852356-1 8.056681-1 8.709636-1 6.431801-1 9.549926-1 5.302652-1 1.083927+0 4.108909-1 1.188600+0 3.428037-1 1.380384+0 2.586890-1 1.548817+0 2.097051-1 1.737801+0 1.713768-1 1.927525+0 1.438784-1 2.187762+0 1.171464-1 2.511886+0 9.427668-2 2.884032+0 7.641653-2 3.311311+0 6.241957-2 3.845918+0 5.052273-2 4.518559+0 4.054435-2 5.308844+0 3.277519-2 6.382635+0 2.590586-2 7.762471+0 2.033766-2 9.440609+0 1.608819-2 1.174898+1 1.246281-2 1.513561+1 9.346671-3 2.041738+1 6.716723-3 2.786121+1 4.802828-3 4.073803+1 3.214420-3 6.456542+1 1.992604-3 1.148154+2 1.105272-3 2.290868+2 5.492969-4 9.120108+2 1.370331-4 5.754399+4 2.168036-6 1.000000+5 1.247800-6 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.668800-2 1.279200-4 1.000000+5 1.279200-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.668800-2 2.005500-2 1.000000+5 2.005500-2 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.668800-2 6.505080-3 1.000000+5 9.999998+4 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 3.994100-3 3.252762+4 4.080000-3 3.131132+4 4.315191-3 2.874801+4 4.954502-3 2.285946+4 5.308844-3 2.021085+4 5.900000-3 1.667130+4 6.456542-3 1.419397+4 6.998420-3 1.217809+4 8.413951-3 8.523525+3 9.500000-3 6.665860+3 1.083927-2 5.080410+3 1.273503-2 3.602397+3 1.428894-2 2.800952+3 1.659587-2 2.004274+3 1.950000-2 1.383982+3 2.264644-2 9.733788+2 2.600160-2 6.984156+2 3.000000-2 4.919560+2 3.467369-2 3.427514+2 4.027170-2 2.342992+2 4.731513-2 1.544228+2 5.623413-2 9.799773+1 6.683439-2 6.171779+1 8.035261-2 3.740685+1 9.885531-2 2.112765+1 1.258925-1 1.075838+1 2.162719-1 2.347680+0 2.691535-1 1.277303+0 3.162278-1 8.215101-1 3.630781-1 5.666305-1 4.120975-1 4.058537-1 4.623810-1 3.016367-1 5.128614-1 2.323629-1 5.688529-1 1.801836-1 6.309573-1 1.406558-1 6.998420-1 1.105747-1 7.762471-1 8.755334-2 8.511380-1 7.161775-2 9.332543-1 5.897185-2 1.023293+0 4.889886-2 1.161449+0 3.802313-2 1.303167+0 3.054568-2 1.479108+0 2.416498-2 1.640590+0 2.008715-2 1.840772+0 1.648045-2 2.065380+0 1.362797-2 2.371374+0 1.093372-2 2.722701+0 8.835904-3 3.090295+0 7.316144-3 3.589219+0 5.901066-3 4.216965+0 4.719998-3 4.954502+0 3.803867-3 5.888437+0 3.041849-3 7.079458+0 2.414266-3 8.609938+0 1.903119-3 1.109175+1 1.412145-3 1.380384+1 1.099854-3 1.678804+1 8.832955-4 2.264644+1 6.363367-4 3.198895+1 4.396822-4 4.841724+1 2.846208-4 8.128305+1 1.667659-4 1.412538+2 9.497583-5 2.818383+2 4.726450-5 1.122018+3 1.180720-5 1.000000+5 1.323100-7 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 3.994100-3 1.486300-4 1.000000+5 1.486300-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.994100-3 2.037500-4 1.000000+5 2.037500-4 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 3.994100-3 3.641720-3 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.730900-3 7.038245+4 3.823000-3 6.698242+4 4.073803-3 5.689000+4 4.365158-3 4.774500+4 4.677351-3 3.976000+4 5.370318-3 2.731200+4 6.309573-3 1.753700+4 7.413102-3 1.113200+4 8.912509-3 6.517200+3 9.885531-3 4.799100+3 1.174898-2 2.857900+3 1.428894-2 1.569100+3 1.717908-2 8.828400+2 2.041738-2 5.105400+2 2.454709-2 2.822700+2 3.000000-2 1.467100+2 3.672823-2 7.521500+1 4.623810-2 3.488000+1 6.165950-2 1.322900+1 1.083927-1 1.961500+0 1.364583-1 9.055000-1 1.640590-1 4.911600-1 1.927525-1 2.896000-1 2.213095-1 1.854500-1 2.540973-1 1.195800-1 2.884032-1 8.050794-2 3.273407-1 5.461773-2 3.672823-1 3.866581-2 4.073803-1 2.852061-2 4.518559-1 2.118033-2 5.011872-1 1.583792-2 5.559043-1 1.192746-2 6.165950-1 9.047190-3 6.760830-1 7.125619-3 7.328245-1 5.817786-3 8.035261-1 4.647339-3 9.225714-1 3.351272-3 9.772372-1 2.938806-3 1.035142+0 2.594446-3 1.109175+0 2.248658-3 1.188600+0 1.962366-3 1.318257+0 1.619297-3 1.496236+0 1.290897-3 1.717908+0 1.012321-3 1.927525+0 8.326580-4 2.187762+0 6.778743-4 2.511886+0 5.455449-4 2.884032+0 4.422060-4 3.311311+0 3.612103-4 3.845918+0 2.923649-4 4.518559+0 2.346238-4 5.308844+0 1.896662-4 6.382635+0 1.499124-4 7.762471+0 1.176879-4 9.440609+0 9.309937-5 1.174898+1 7.211865-5 1.531087+1 5.339725-5 2.065380+1 3.838361-5 2.818383+1 2.745357-5 4.120975+1 1.837824-5 6.531306+1 1.139477-5 1.161449+2 6.321762-6 2.317395+2 3.141946-6 9.225714+2 7.839091-7 5.821032+4 1.240244-8 1.000000+5 7.220800-9 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.730900-3 1.181200-4 1.000000+5 1.181200-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.730900-3 2.276800-4 1.000000+5 2.276800-4 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.730900-3 3.385100-3 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.535400-3 1.496727+5 3.600000-3 1.441470+5 3.650000-3 1.393671+5 3.900000-3 1.172165+5 4.246900-3 9.358036+4 4.677351-3 7.178783+4 5.821032-3 3.892670+4 7.079458-3 2.219653+4 7.852356-3 1.633627+4 9.120108-3 1.044906+4 1.096478-2 5.950599+3 1.258925-2 3.871279+3 1.450000-2 2.478856+3 1.698244-2 1.494141+3 2.018366-2 8.518733+2 2.400000-2 4.808320+2 2.851018-2 2.701750+2 3.427678-2 1.447054+2 4.168694-2 7.395692+1 5.188000-2 3.464873+1 6.683439-2 1.428542+1 1.244515-1 1.606840+0 1.513561-1 8.130931-1 1.798871-1 4.491183-1 2.065380-1 2.811638-1 2.344229-1 1.842776-1 2.630268-1 1.263419-1 2.951209-1 8.724855-2 3.273407-1 6.296237-2 3.630781-1 4.577424-2 3.981072-1 3.470779-2 4.365158-1 2.649255-2 4.786301-1 2.036744-2 5.248075-1 1.577384-2 5.688529-1 1.269421-2 6.237348-1 9.978096-3 6.839117-1 7.902647-3 7.498942-1 6.302588-3 8.222427-1 5.062647-3 9.015711-1 4.098171-3 9.885531-1 3.343272-3 1.071519+0 2.827442-3 1.161449+0 2.406491-3 1.258925+0 2.063266-3 1.396368+0 1.705353-3 1.659587+0 1.254772-3 1.862087+0 1.029880-3 2.065380+0 8.681467-4 2.371374+0 6.965538-4 2.722701+0 5.628883-4 3.090295+0 4.660514-4 3.589219+0 3.759085-4 4.216965+0 3.006741-4 4.954502+0 2.423164-4 5.888437+0 1.937705-4 7.079458+0 1.537986-4 8.609938+0 1.212302-4 1.109175+1 8.995706-5 1.380384+1 7.006541-5 1.678804+1 5.626724-5 2.238721+1 4.104512-5 3.162278+1 2.835198-5 4.731513+1 1.857099-5 7.852356+1 1.100625-5 1.364583+2 6.265604-6 2.722701+2 3.117496-6 1.083927+3 7.785797-7 1.000000+5 8.428400-9 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.535400-3 1.125000-4 1.000000+5 1.125000-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.535400-3 1.912700-4 1.000000+5 1.912700-4 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.535400-3 3.231630-3 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 7.553700-4 1.010269+5 8.100000-4 9.366985+4 8.128305-4 9.318349+4 8.280000-4 9.163360+4 9.332543-4 7.932800+4 1.050000-3 6.848860+4 1.090000-3 6.512000+4 1.318257-3 4.977491+4 1.428894-3 4.411133+4 1.717908-3 3.309744+4 1.927525-3 2.742402+4 2.238721-3 2.133418+4 2.630268-3 1.611957+4 3.000000-3 1.274666+4 3.507519-3 9.575450+3 4.168694-3 6.920431+3 4.954502-3 4.958640+3 5.888437-3 3.523566+3 7.000000-3 2.481760+3 8.222426-3 1.777255+3 9.549926-3 1.294057+3 1.122018-2 9.128342+2 1.318257-2 6.389865+2 1.548817-2 4.438759+2 1.819701-2 3.060309+2 2.137962-2 2.093601+2 2.511886-2 1.421320+2 2.951209-2 9.575259+1 3.467369-2 6.402291+1 4.073803-2 4.249425+1 4.841724-2 2.717503+1 5.754399-2 1.724600+1 6.918310-2 1.053281+1 8.413951-2 6.187895+0 1.011580-1 3.724594+0 1.348963-1 1.669108+0 2.371374-1 3.439480-1 2.851018-1 2.067435-1 3.349654-1 1.334184-1 3.845918-1 9.233856-2 4.365158-1 6.638959-2 4.897788-1 4.953687-2 5.495409-1 3.724630-2 6.095369-1 2.901749-2 6.760830-1 2.276853-2 7.498942-1 1.799439-2 8.413951-1 1.396873-2 9.225714-1 1.148440-2 1.011579+0 9.511231-3 1.161449+0 7.226818-3 1.303167+0 5.805829-3 1.479108+0 4.593175-3 1.640590+0 3.818030-3 1.840772+0 3.132472-3 2.065380+0 2.590419-3 2.371374+0 2.078359-3 2.722701+0 1.679544-3 3.090295+0 1.390619-3 3.589219+0 1.121646-3 4.216965+0 8.971548-4 4.954502+0 7.230222-4 5.888437+0 5.781775-4 7.079458+0 4.589012-4 8.609938+0 3.617373-4 1.109175+1 2.684146-4 1.380384+1 2.090670-4 1.678804+1 1.678917-4 2.264644+1 1.209485-4 3.235937+1 8.255864-5 4.897788+1 5.345643-5 8.222427+1 3.132558-5 1.462177+2 1.743200-5 2.917427+2 8.676833-6 1.161449+3 2.167909-6 1.000000+5 2.514900-8 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 7.553700-4 1.090500-4 1.000000+5 1.090500-4 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.553700-4 2.751700-7 1.000000+5 2.751700-7 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.553700-4 6.460448-4 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.477900-4 6.415380+4 6.479600-4 6.546700+4 6.484000-4 6.947280+4 6.489000-4 7.379860+4 6.493500-4 7.751480+4 6.500000-4 8.255940+4 6.506000-4 8.695880+4 6.511000-4 9.040620+4 6.519000-4 9.559340+4 6.527000-4 1.004068+5 6.534000-4 1.043026+5 6.542000-4 1.084116+5 6.553000-4 1.135396+5 6.563000-4 1.177208+5 6.575000-4 1.221786+5 6.590000-4 1.269590+5 6.605000-4 1.309564+5 6.620000-4 1.342564+5 6.640000-4 1.377218+5 6.663000-4 1.406242+5 6.685000-4 1.425376+5 6.710000-4 1.439530+5 6.740000-4 1.448636+5 6.780000-4 1.452210+5 6.850000-4 1.447036+5 7.079458-4 1.419326+5 7.328245-4 1.395904+5 7.500000-4 1.371838+5 8.500000-4 1.225360+5 9.015711-4 1.153230+5 9.549926-4 1.081030+5 9.700000-4 1.065410+5 9.772372-4 1.052171+5 1.035142-3 9.800956+4 1.135011-3 8.693052+4 1.202264-3 8.013760+4 1.318257-3 6.974401+4 1.445440-3 6.032710+4 1.566751-3 5.272017+4 1.757924-3 4.306807+4 1.905461-3 3.716989+4 2.113489-3 3.050656+4 2.350000-3 2.475360+4 2.600160-3 2.011855+4 2.900000-3 1.597924+4 3.235937-3 1.257549+4 3.589219-3 9.965302+3 4.073803-3 7.432212+3 4.570882-3 5.648293+3 5.128614-3 4.263003+3 5.821032-3 3.102982+3 6.606934-3 2.240208+3 7.413102-3 1.654533+3 8.317638-3 1.214264+3 9.440609-3 8.578895+2 1.071519-2 6.017555+2 1.216186-2 4.192111+2 1.380384-2 2.901451+2 1.600000-2 1.874570+2 1.862087-2 1.186567+2 2.137962-2 7.767384+1 2.511886-2 4.701863+1 2.951209-2 2.824947+1 3.507519-2 1.623522+1 4.216965-2 8.922906+0 5.248075-2 4.346530+0 6.839116-2 1.804077+0 1.216186-1 2.640307-1 1.531088-1 1.232292-1 1.798871-1 7.269270-2 2.113489-1 4.323944-2 2.426610-1 2.788105-2 2.786121-1 1.811323-2 3.162278-1 1.228712-2 3.548134-1 8.692518-3 3.981072-1 6.194303-3 4.415705-1 4.597366-3 4.897788-1 3.435786-3 5.432503-1 2.587111-3 6.025596-1 1.962759-3 6.683439-1 1.499965-3 7.413102-1 1.155310-3 8.511380-1 8.240773-4 9.120108-1 7.001228-4 9.660509-1 6.145752-4 1.023293+0 5.427252-4 1.109175+0 4.595387-4 1.188600+0 4.010389-4 1.303167+0 3.376087-4 1.462177+0 2.743299-4 1.698244+0 2.107217-4 1.905461+0 1.732008-4 2.137962+0 1.435052-4 2.454709+0 1.153526-4 2.818383+0 9.340191-5 3.198895+0 7.748330-5 3.715352+0 6.260788-5 4.365158+0 5.016050-5 5.128614+0 4.048678-5 6.165950+0 3.195403-5 7.498942+0 2.505072-5 9.120108+0 1.979049-5 1.148154+1 1.511245-5 1.462177+1 1.147629-5 1.949845+1 8.341326-6 2.660725+1 5.958233-6 3.845918+1 4.032185-6 6.025596+1 2.526867-6 1.083927+2 1.383972-6 2.162719+2 6.874837-7 8.609938+2 1.714463-7 5.432503+4 2.711799-9 1.000000+5 1.473600-9 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.477900-4 8.352800-5 1.000000+5 8.352800-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.477900-4 2.714200-7 1.000000+5 2.714200-7 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.477900-4 5.639906-4 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 6.126300-4 1.614344+5 6.128000-4 1.647872+5 6.133000-4 1.758860+5 6.138000-4 1.863404+5 6.143000-4 1.962788+5 6.147000-4 2.038060+5 6.152000-4 2.128204+5 6.158000-4 2.230460+5 6.165950-4 2.356057+5 6.175000-4 2.487276+5 6.183000-4 2.593612+5 6.190000-4 2.679664+5 6.200000-4 2.791952+5 6.210000-4 2.892732+5 6.220000-4 2.982868+5 6.234000-4 3.092920+5 6.245000-4 3.167324+5 6.260000-4 3.253528+5 6.275000-4 3.324128+5 6.290000-4 3.381116+5 6.309573-4 3.438104+5 6.330000-4 3.480308+5 6.362600-4 3.519950+5 6.400000-4 3.536572+5 6.456542-4 3.529196+5 7.000000-4 3.318226+5 7.244360-4 3.204960+5 8.128305-4 2.833324+5 8.709636-4 2.610446+5 9.332543-4 2.390730+5 1.011579-3 2.142362+5 1.096478-3 1.909887+5 1.174898-3 1.717758+5 1.318257-3 1.425230+5 1.428894-3 1.243435+5 1.548817-3 1.077150+5 1.737801-3 8.705070+4 1.905461-3 7.290313+4 2.150000-3 5.724560+4 2.371374-3 4.672481+4 2.660725-3 3.651626+4 2.951209-3 2.904634+4 3.311311-3 2.235624+4 3.715352-3 1.707198+4 4.168694-3 1.293934+4 4.677351-3 9.737359+3 5.308844-3 7.064628+3 6.025596-3 5.083146+3 6.800000-3 3.684428+3 7.585776-3 2.737034+3 8.511380-3 1.989190+3 9.660509-3 1.390127+3 1.083927-2 9.973174+2 1.230269-2 6.874591+2 1.400000-2 4.670520+2 1.603245-2 3.091613+2 1.840772-2 2.014933+2 2.113489-2 1.304173+2 2.454709-2 8.078709+1 2.851018-2 4.967393+1 3.349654-2 2.919614+1 3.981072-2 1.638991+1 4.786301-2 8.782711+0 5.888437-2 4.318860+0 7.585776-2 1.798755+0 1.303167-1 2.743827-1 1.603245-1 1.344325-1 1.883649-1 7.770130-2 2.187762-1 4.704398-2 2.483133-1 3.098413-2 2.786121-1 2.134363-2 3.090295-1 1.536255-2 3.427678-1 1.113644-2 3.801894-1 8.133146-3 4.168694-1 6.192499-3 4.570882-1 4.746777-3 5.011872-1 3.664210-3 5.495409-1 2.849620-3 6.025596-1 2.232833-3 6.606935-1 1.763398-3 7.244360-1 1.403468-3 7.943282-1 1.125650-3 8.609938-1 9.320790-4 9.225714-1 7.975748-4 9.885531-1 6.870471-4 1.083927+0 5.687198-4 1.188600+0 4.740799-4 1.303167+0 3.981400-4 1.445440+0 3.295657-4 1.678804+0 2.528069-4 1.883649+0 2.076716-4 2.113489+0 1.719832-4 2.426610+0 1.381615-4 2.786121+0 1.117803-4 3.162278+0 9.266104-5 3.672823+0 7.482693-5 4.315191+0 5.991725-5 5.069907+0 4.833735-5 6.025596+0 3.869131-5 7.244360+0 3.073662-5 8.810489+0 2.425060-5 1.135011+1 1.801016-5 1.445440+1 1.367369-5 1.883649+1 1.018873-5 2.570396+1 7.271395-6 3.672823+1 4.977202-6 5.688529+1 3.153900-6 1.011579+2 1.746277-6 2.018366+2 8.669278-7 4.027170+2 4.323500-7 1.603245+3 1.081943-7 1.000000+5 1.733000-9 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 6.126300-4 8.179000-5 1.000000+5 8.179000-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.126300-4 1.905900-7 1.000000+5 1.905900-7 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.126300-4 5.306494-4 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.200600-4 5.464939+4 4.245000-4 5.661480+4 4.250000-4 5.694880+4 4.258000-4 5.784080+4 4.265795-4 5.918356+4 4.273000-4 6.089160+4 4.280000-4 6.303120+4 4.287000-4 6.570400+4 4.292000-4 6.797720+4 4.297000-4 7.058240+4 4.303000-4 7.418640+4 4.309000-4 7.836080+4 4.315191-4 8.332391+4 4.323000-4 9.062960+4 4.330000-4 9.826840+4 4.337000-4 1.070528+5 4.348000-4 1.233996+5 4.361000-4 1.472228+5 4.395000-4 2.365852+5 4.407000-4 2.784080+5 4.418000-4 3.215084+5 4.430000-4 3.734892+5 4.440000-4 4.204520+5 4.451300-4 4.769750+5 4.461000-4 5.279280+5 4.469000-4 5.712520+5 4.480000-4 6.321560+5 4.490000-4 6.883640+5 4.500000-4 7.447560+5 4.508000-4 7.897200+5 4.519000-4 8.506600+5 4.530000-4 9.101840+5 4.540000-4 9.626680+5 4.550000-4 1.013324+6 4.560000-4 1.061932+6 4.570882-4 1.112315+6 4.585000-4 1.173640+6 4.600000-4 1.233528+6 4.615000-4 1.287928+6 4.630000-4 1.336876+6 4.645000-4 1.380484+6 4.665000-4 1.430500+6 4.685000-4 1.472024+6 4.708000-4 1.509880+6 4.731513-4 1.538425+6 4.750000-4 1.554712+6 4.780000-4 1.571116+6 4.815000-4 1.577128+6 4.850000-4 1.572700+6 4.900000-4 1.554716+6 4.980000-4 1.512020+6 5.198800-4 1.393379+6 5.500000-4 1.260588+6 6.382635-4 9.480892+5 6.700000-4 8.593920+5 7.300000-4 7.154000+5 7.800000-4 6.165240+5 8.317638-4 5.304743+5 9.120108-4 4.241218+5 9.772372-4 3.561054+5 1.083927-3 2.713258+5 1.190000-3 2.109680+5 1.318257-3 1.586991+5 1.479108-3 1.143843+5 1.659587-3 8.167411+4 1.850000-3 5.905360+4 2.089296-3 4.069960+4 2.317395-3 2.944352+4 2.630268-3 1.965632+4 2.985383-3 1.300252+4 3.311311-3 9.214661+3 3.758374-3 6.005100+3 4.300000-3 3.776376+3 4.897788-3 2.391378+3 5.559043-3 1.521332+3 6.309573-3 9.605092+2 7.161434-3 6.018749+2 8.222426-3 3.584541+2 9.332543-3 2.212762+2 1.059254-2 1.357180+2 1.216186-2 7.907626+1 1.412538-2 4.370937+1 1.640590-2 2.397803+1 1.927525-2 1.246066+1 2.264644-2 6.426414+0 2.722701-2 2.991638+0 3.349654-2 1.255724+0 4.570882-2 3.381724-1 7.413102-2 4.380331-2 9.225714-2 1.748235-2 1.122019-1 7.738022-3 1.303167-1 4.175981-3 1.500000-1 2.355271-3 1.717908-1 1.366820-3 1.949845-1 8.284923-4 2.187762-1 5.291030-4 2.454709-1 3.402537-4 2.754229-1 2.204508-4 3.054921-1 1.501830-4 3.388442-1 1.030080-4 3.758374-1 7.117536-5 4.216965-1 4.761415-5 4.623810-1 3.478018-5 5.011872-1 2.660605-5 5.432503-1 2.052428-5 5.956621-1 1.536957-5 6.606935-1 1.116320-5 7.244360-1 8.460193-6 8.609938-1 5.104616-6 9.120108-1 4.345768-6 9.549926-1 3.845468-6 1.000000+0 3.426476-6 1.047129+0 3.077215-6 1.096478+0 2.783917-6 1.148154+0 2.534723-6 1.216186+0 2.271554-6 1.318257+0 1.966006-6 1.479108+0 1.613871-6 1.819701+0 1.125592-6 2.000000+0 9.608494-7 2.317395+0 7.586474-7 2.660725+0 6.123270-7 3.054921+0 4.978622-7 3.548134+0 4.013272-7 4.168694+0 3.208223-7 4.897788+0 2.584148-7 5.821032+0 2.065413-7 7.000000+0 1.638100-7 8.511380+0 1.291093-7 1.100000+1 9.540400-8 1.380384+1 7.359608-8 1.678804+1 5.910264-8 2.264644+1 4.257878-8 3.198895+1 2.941965-8 4.841724+1 1.904430-8 8.222427+1 1.102745-8 1.462177+2 6.136547-9 2.917427+2 3.054534-9 1.161449+3 7.63175-10 1.000000+5 8.85320-12 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.200600-4 4.897400-5 1.000000+5 4.897400-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.200600-4 1.178000-7 1.000000+5 1.178000-7 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.200600-4 3.709682-4 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.128600-4 7.724702+4 4.160000-4 8.089530+4 4.169700-4 8.131066+4 4.175000-4 8.185320+4 4.183000-4 8.317800+4 4.190000-4 8.490000+4 4.197000-4 8.721660+4 4.202000-4 8.927880+4 4.208000-4 9.224640+4 4.215000-4 9.646620+4 4.222000-4 1.015962+5 4.229500-4 1.082322+5 4.237000-4 1.161924+5 4.243000-4 1.236222+5 4.249000-4 1.320948+5 4.257000-4 1.451688+5 4.265795-4 1.621409+5 4.275000-4 1.831482+5 4.285000-4 2.101434+5 4.327000-4 3.797832+5 4.340000-4 4.525836+5 4.350000-4 5.151216+5 4.360000-4 5.830092+5 4.370000-4 6.557820+5 4.381000-4 7.407300+5 4.392000-4 8.298360+5 4.403000-4 9.219960+5 4.411000-4 9.902700+5 4.422000-4 1.084956+6 4.433000-4 1.179588+6 4.445000-4 1.281570+6 4.454000-4 1.356534+6 4.465000-4 1.445748+6 4.477000-4 1.539378+6 4.490000-4 1.635804+6 4.502400-4 1.722462+6 4.518559-4 1.827122+6 4.535000-4 1.923708+6 4.550000-4 2.003094+6 4.565000-4 2.074236+6 4.585000-4 2.156670+6 4.607000-4 2.231688+6 4.630000-4 2.293866+6 4.650000-4 2.335554+6 4.677351-4 2.375976+6 4.700000-4 2.396868+6 4.731513-4 2.410199+6 4.765000-4 2.408682+6 4.800000-4 2.394534+6 4.850000-4 2.360436+6 5.150000-4 2.109432+6 5.432503-4 1.916730+6 6.350000-4 1.417014+6 6.700000-4 1.268484+6 7.244360-4 1.071141+6 7.673615-4 9.406607+5 8.222426-4 7.992386+5 9.000000-4 6.409920+5 9.700000-4 5.297604+5 1.071519-3 4.073650+5 1.174898-3 3.174669+5 1.300000-3 2.393094+5 1.428894-3 1.827833+5 1.603245-3 1.305622+5 1.778279-3 9.581144+4 2.000000-3 6.691740+4 2.220000-3 4.831224+4 2.500000-3 3.309510+4 2.818383-3 2.240101+4 3.126079-3 1.588685+4 3.507519-3 1.077594+4 4.027170-3 6.702317+3 4.623810-3 4.129163+3 5.308844-3 2.520722+3 6.095369-3 1.524347+3 6.918310-3 9.535472+2 7.852356-3 5.919597+2 8.912509-3 3.647814+2 1.000000-2 2.335170+2 1.135011-2 1.420937+2 1.288250-2 8.592356+1 1.500000-2 4.659270+1 1.737801-2 2.558011+1 2.018366-2 1.380017+1 2.371374-2 7.044314+0 2.851018-2 3.239835+0 3.507519-2 1.340956+0 4.623810-2 4.098983-1 7.673615-2 4.643409-2 9.440609-2 1.916868-2 1.135011-1 8.794684-3 1.318257-1 4.701949-3 1.584893-1 2.197608-3 1.737801-1 1.510431-3 1.883649-1 1.095162-3 2.089296-1 7.269432-4 2.290868-1 5.082800-4 2.511886-1 3.577696-4 2.754229-1 2.536131-4 3.019952-1 1.811231-4 3.273407-1 1.357696-4 3.548134-1 1.024132-4 3.845918-1 7.776391-5 4.120975-1 6.178137-5 4.466836-1 4.756661-5 4.841724-1 3.685702-5 5.308844-1 2.772799-5 5.754399-1 2.175272-5 6.382635-1 1.605002-5 6.839117-1 1.318829-5 7.328245-1 1.091319-5 7.762471-1 9.381054-6 8.317638-1 7.876297-6 8.810489-1 6.845427-6 9.332543-1 5.984767-6 9.885531-1 5.267404-6 1.071519+0 4.450485-6 1.161449+0 3.786222-6 1.258925+0 3.246749-6 1.396368+0 2.685270-6 1.678804+0 1.937854-6 1.883649+0 1.591579-6 2.113489+0 1.317631-6 2.426610+0 1.058383-6 2.786121+0 8.563776-7 3.162278+0 7.099626-7 3.672823+0 5.733236-7 4.315191+0 4.590870-7 5.069907+0 3.703612-7 6.025596+0 2.964534-7 7.328245+0 2.321928-7 8.912509+0 1.832767-7 1.148154+1 1.361785-7 1.479108+1 1.020734-7 1.995262+1 7.329371-8 2.691535+1 5.303196-8 3.890451+1 3.589732-8 6.095369+1 2.250062-8 1.096478+2 1.232559-8 2.187762+2 6.123339-9 8.709636+2 1.527140-9 5.495409+4 2.41563-11 1.000000+5 1.32780-11 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.128600-4 4.867800-5 1.000000+5 4.867800-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.128600-4 2.03480-10 1.000000+5 2.03480-10 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.128600-4 3.641818-4 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.133600-4 1.769340+5 1.659587-4 1.651593+5 1.737801-4 1.628409+5 1.820000-4 1.596128+5 1.927525-4 1.545423+5 2.065380-4 1.473963+5 2.264644-4 1.371215+5 2.500000-4 1.258966+5 2.730000-4 1.158112+5 2.951209-4 1.067933+5 3.235937-4 9.623551+4 3.630781-4 8.377953+4 4.073803-4 7.242959+4 4.518559-4 6.306373+4 5.128614-4 5.278948+4 5.888437-4 4.315905+4 6.700000-4 3.547300+4 7.852356-4 2.764688+4 9.120108-4 2.168773+4 1.083927-3 1.626561+4 1.318257-3 1.163742+4 1.621810-3 8.095991+3 2.018366-3 5.473626+3 2.454709-3 3.828959+3 2.985383-3 2.658589+3 3.548134-3 1.913619+3 4.216965-3 1.368061+3 5.069907-3 9.489587+2 6.095369-3 6.530841+2 7.328245-3 4.459316+2 8.709636-3 3.095282+2 1.035142-2 2.132579+2 1.216186-2 1.495232+2 1.428894-2 1.040854+2 1.678804-2 7.193477+1 1.972423-2 4.935419+1 2.317395-2 3.361206+1 2.722701-2 2.272253+1 3.198895-2 1.524886+1 3.758374-2 1.015954+1 4.466836-2 6.524392+0 5.248075-2 4.284392+0 6.309573-2 2.627418+0 7.673615-2 1.550194+0 9.120108-2 9.659321-1 1.161449-1 4.939375-1 2.317395-1 7.151512-2 2.786121-1 4.296437-2 3.273407-1 2.770106-2 3.758374-1 1.914919-2 4.265795-1 1.374980-2 4.786301-1 1.024562-2 5.370318-1 7.691788-3 6.000000-1 5.880700-3 6.683439-1 4.564133-3 7.413102-1 3.604188-3 8.317638-1 2.795503-3 9.120108-1 2.296348-3 1.000000+0 1.900000-3 1.148154+0 1.442843-3 1.258925+0 1.209421-3 1.428894+0 9.550302-4 1.584893+0 7.920454-4 1.778279+0 6.482828-4 1.972423+0 5.450447-4 2.264644+0 4.362881-4 2.600160+0 3.517203-4 3.000000+0 2.835300-4 3.467369+0 2.299205-4 4.027170+0 1.865142-4 4.731513+0 1.500010-4 5.623413+0 1.197108-4 6.760830+0 9.484056-5 8.222427+0 7.462499-5 1.035142+1 5.679632-5 1.300000+1 4.366700-5 1.640590+1 3.362081-5 2.200000+1 2.436400-5 3.090295+1 1.692145-5 4.623810+1 1.107906-5 7.585776+1 6.641768-6 1.318257+2 3.779435-6 2.630268+2 1.880067-6 1.047129+3 4.694413-7 1.000000+5 4.909100-9 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.133600-4 5.060400-5 1.000000+5 5.060400-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.133600-4 3.30260-10 1.000000+5 3.30260-10 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.133600-4 6.275567-5 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 7.822000-5 5.038060+5 7.890000-5 5.089140+5 7.985000-5 5.111040+5 8.080000-5 5.087740+5 8.150000-5 5.049720+5 8.270000-5 4.947880+5 8.400000-5 4.803420+5 8.511380-5 4.659966+5 8.650000-5 4.464620+5 8.810489-5 4.226802+5 9.015711-5 3.920183+5 9.300000-5 3.513980+5 1.011579-4 2.580982+5 1.047129-4 2.287902+5 1.080000-4 2.067900+5 1.110000-4 1.902644+5 1.143000-4 1.752938+5 1.174898-4 1.634291+5 1.205000-4 1.541454+5 1.240000-4 1.452510+5 1.273503-4 1.382949+5 1.315000-4 1.313686+5 1.350000-4 1.266956+5 1.396368-4 1.218049+5 1.445440-4 1.178879+5 1.500000-4 1.146748+5 1.566751-4 1.119203+5 1.650000-4 1.096874+5 1.760000-4 1.078778+5 2.089296-4 1.041982+5 2.290868-4 1.015877+5 2.483133-4 9.863129+4 2.660725-4 9.557101+4 2.851018-4 9.203237+4 3.090295-4 8.739064+4 3.350000-4 8.234240+4 3.630781-4 7.708340+4 3.935501-4 7.169573+4 4.265795-4 6.622708+4 4.677351-4 6.000581+4 5.150000-4 5.370300+4 5.688529-4 4.753835+4 6.237348-4 4.215032+4 6.918310-4 3.653793+4 7.762471-4 3.092274+4 8.609938-4 2.640421+4 9.660509-4 2.198898+4 1.071519-3 1.853398+4 1.216186-3 1.491660+4 1.364583-3 1.215924+4 1.548817-3 9.636333+3 1.737801-3 7.747725+3 1.949845-3 6.190064+3 2.200000-3 4.857440+3 2.454709-3 3.873712+3 2.786121-3 2.959403+3 3.126079-3 2.300234+3 3.507519-3 1.775157+3 3.935501-3 1.360562+3 4.415704-3 1.035709+3 5.011872-3 7.613857+2 5.688529-3 5.554279+2 6.456542-3 4.021129+2 7.328245-3 2.889698+2 8.317638-3 2.061737+2 9.440609-3 1.460493+2 1.071519-2 1.027194+2 1.216186-2 7.174942+1 1.396368-2 4.814431+1 1.603245-2 3.206214+1 1.840772-2 2.119928+1 2.137962-2 1.343853+1 2.483133-2 8.456671+0 2.917427-2 5.096635+0 3.467369-2 2.938833+0 4.168694-2 1.620749+0 5.069907-2 8.548119-1 6.531306-2 3.698981-1 1.258925-1 4.161154-2 1.566751-1 2.022214-2 1.862087-1 1.151617-2 2.187762-1 6.859638-3 2.511886-1 4.430866-3 2.851018-1 2.988205-3 3.235937-1 2.030115-3 3.630781-1 1.438648-3 4.073803-1 1.026979-3 4.518559-1 7.633684-4 5.011872-1 5.713572-4 5.559043-1 4.308570-4 6.165950-1 3.273609-4 6.839117-1 2.506494-4 7.498942-1 1.990225-4 8.609938-1 1.421117-4 9.225714-1 1.208658-4 9.772372-1 1.062120-4 1.047129+0 9.165874-5 1.122018+0 7.959039-5 1.202264+0 6.954807-5 1.333521+0 5.736710-5 1.531087+0 4.480573-5 1.737801+0 3.588404-5 1.927525+0 3.010857-5 2.187762+0 2.450861-5 2.511886+0 1.972249-5 2.884032+0 1.598590-5 3.311311+0 1.305814-5 3.845918+0 1.056968-5 4.518559+0 8.482049-6 5.308844+0 6.856538-6 6.382635+0 5.419396-6 7.762471+0 4.254542-6 9.440609+0 3.365582-6 1.174898+1 2.607104-6 1.513561+1 1.955304-6 2.041738+1 1.405152-6 2.754229+1 1.017174-6 4.027170+1 6.806036-7 6.382635+1 4.218156-7 1.135011+2 2.339497-7 2.264644+2 1.162581-7 9.015711+2 2.900010-8 5.688529+4 4.58790-10 1.000000+5 2.61040-10 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 7.822000-5 3.466500-5 1.000000+5 3.466500-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.822000-5 3.74460-10 1.000000+5 3.74460-10 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.822000-5 4.355463-5 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 7.219000-5 1.140672+6 7.290000-5 1.138304+6 7.360000-5 1.129996+6 7.450000-5 1.113416+6 7.550000-5 1.089120+6 7.673615-5 1.052898+6 7.800000-5 1.011792+6 7.950000-5 9.602240+5 8.150000-5 8.905920+5 8.413951-5 8.027670+5 9.015711-5 6.365488+5 9.332543-5 5.698241+5 9.549926-5 5.315347+5 9.800000-5 4.940320+5 1.010000-4 4.568880+5 1.040000-4 4.267520+5 1.071519-4 4.011220+5 1.100000-4 3.822044+5 1.135011-4 3.633160+5 1.170000-4 3.482308+5 1.205000-4 3.360972+5 1.244515-4 3.251646+5 1.295700-4 3.143082+5 1.350000-4 3.057716+5 1.412538-4 2.985938+5 1.500000-4 2.916028+5 1.883649-4 2.727880+5 2.041738-4 2.647096+5 2.220000-4 2.548464+5 2.400000-4 2.443612+5 2.600160-4 2.323525+5 2.818383-4 2.191292+5 3.054921-4 2.051263+5 3.311311-4 1.907169+5 3.630781-4 1.742663+5 3.935501-4 1.600626+5 4.315191-4 1.441551+5 4.731513-4 1.288744+5 5.300000-4 1.113168+5 5.821032-4 9.795443+4 6.456542-4 8.440655+4 7.300000-4 7.013080+4 8.128305-4 5.918277+4 9.015711-4 4.991778+4 1.011579-3 4.104651+4 1.135011-3 3.350458+4 1.288250-3 2.659903+4 1.462177-3 2.094954+4 1.640590-3 1.675421+4 1.850000-3 1.318076+4 2.080000-3 1.036336+4 2.344229-3 8.053714+3 2.630268-3 6.273969+3 2.951209-3 4.854053+3 3.311311-3 3.729516+3 3.715352-3 2.845894+3 4.168694-3 2.156782+3 4.731513-3 1.577601+3 5.370318-3 1.144943+3 6.095369-3 8.245291+2 6.918310-3 5.893092+2 7.852356-3 4.180467+2 8.912509-3 2.943757+2 1.011579-2 2.057860+2 1.148154-2 1.428122+2 1.303167-2 9.842050+1 1.496236-2 6.506940+1 1.717908-2 4.268937+1 1.972423-2 2.780126+1 2.290868-2 1.733173+1 2.660725-2 1.072059+1 3.090295-2 6.581456+0 3.630781-2 3.859384+0 4.315191-2 2.161686+0 5.248075-2 1.111706+0 6.606934-2 5.040841-1 1.333521-1 4.421994-2 1.640590-1 2.170398-2 1.927525-1 1.256617-2 2.213095-1 7.920849-3 2.511886-1 5.225182-3 2.818383-1 3.604762-3 3.126079-1 2.597747-3 3.467369-1 1.884919-3 3.845918-1 1.377889-3 4.216965-1 1.050022-3 4.623810-1 8.056331-4 5.069907-1 6.226076-4 5.559043-1 4.848852-4 6.095369-1 3.804696-4 6.683439-1 3.007891-4 7.328245-1 2.396070-4 8.128305-1 1.871303-4 8.810489-1 1.552163-4 9.440609-1 1.330950-4 1.011579+0 1.149433-4 1.109175+0 9.533234-5 1.216186+0 7.961865-5 1.333521+0 6.696650-5 1.479108+0 5.551792-5 1.698244+0 4.349807-5 1.905461+0 3.575921-5 2.137962+0 2.963056-5 2.454709+0 2.381605-5 2.818383+0 1.928104-5 3.198895+0 1.599333-5 3.715352+0 1.292250-5 4.365158+0 1.035344-5 5.128614+0 8.356959-6 6.165950+0 6.595606-6 7.498942+0 5.170784-6 9.120108+0 4.084977-6 1.161449+1 3.078297-6 1.500000+1 2.301400-6 2.018366+1 1.657962-6 2.722701+1 1.199899-6 3.981072+1 8.026614-7 6.309573+1 4.973729-7 1.122018+2 2.757996-7 2.238721+2 1.370441-7 8.912509+2 3.418304-8 5.623413+4 5.40761-10 1.000000+5 3.04160-10 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 7.219000-5 3.428400-5 1.000000+5 3.428400-5 1 48000 7 7 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.219000-5 2.61030-10 1.000000+5 2.61030-10 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.219000-5 3.790574-5 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.771000-5 3.200244+6 1.800000-5 3.161988+6 1.845000-5 3.126856+6 1.890000-5 3.116988+6 1.927525-5 3.126516+6 1.972423-5 3.156270+6 2.020000-5 3.208872+6 2.070000-5 3.285868+6 2.130000-5 3.404508+6 2.190000-5 3.549384+6 2.250000-5 3.718728+6 2.330000-5 3.979716+6 2.420000-5 4.318360+6 2.511886-5 4.709743+6 2.630268-5 5.277591+6 2.818383-5 6.313798+6 3.162278-5 8.556984+6 3.350000-5 9.903640+6 3.500000-5 1.099196+7 3.630781-5 1.191732+7 3.758374-5 1.276997+7 3.858700-5 1.338541+7 3.970000-5 1.399112+7 4.073803-5 1.446918+7 4.180000-5 1.486064+7 4.265795-5 1.509939+7 4.365158-5 1.528522+7 4.470000-5 1.537324+7 4.570882-5 1.535355+7 4.680000-5 1.522112+7 4.786301-5 1.498913+7 4.900000-5 1.464140+7 5.011872-5 1.421423+7 5.128614-5 1.369596+7 5.248075-5 1.310675+7 5.370318-5 1.245892+7 5.500000-5 1.173932+7 5.623413-5 1.104015+7 5.754399-5 1.029585+7 5.900000-5 9.479720+6 6.025596-5 8.794797+6 6.165950-5 8.058291+6 6.309573-5 7.342531+6 6.480700-5 6.545153+6 6.650000-5 5.818560+6 6.839116-5 5.080688+6 7.000000-5 4.512920+6 7.161434-5 3.996487+6 7.363000-5 3.422578+6 7.500000-5 3.074608+6 7.673615-5 2.678879+6 7.852356-5 2.319947+6 8.080000-5 1.926472+6 8.300000-5 1.605692+6 8.511380-5 1.345145+6 8.738900-5 1.109638+6 9.000000-5 8.880520+5 9.230000-5 7.290040+5 9.500000-5 5.779280+5 9.800000-5 4.468000+5 1.050000-4 2.496384+5 1.071519-4 2.112214+5 1.090000-4 1.843856+5 1.105000-4 1.662104+5 1.122018-4 1.490056+5 1.135011-4 1.380352+5 1.148154-4 1.286336+5 1.161449-4 1.206819+5 1.175000-4 1.140240+5 1.188502-4 1.086906+5 1.201000-4 1.047904+5 1.213000-4 1.018888+5 1.225000-4 9.973240+4 1.235000-4 9.845160+4 1.245000-4 9.759920+4 1.260000-4 9.704480+4 1.275000-4 9.726280+4 1.290000-4 9.815400+4 1.307000-4 9.986760+4 1.322000-4 1.019120+5 1.340000-4 1.049232+5 1.365000-4 1.099260+5 1.400000-4 1.181192+5 1.500000-4 1.452116+5 1.548817-4 1.587906+5 1.584893-4 1.685335+5 1.621810-4 1.780937+5 1.670000-4 1.897840+5 1.720000-4 2.008784+5 1.778279-4 2.124393+5 1.840772-4 2.231794+5 1.905461-4 2.325174+5 1.972423-4 2.404275+5 2.041738-4 2.469505+5 2.120000-4 2.524460+5 2.190000-4 2.558128+5 2.264644-4 2.580289+5 2.350000-4 2.590956+5 2.454709-4 2.584807+5 2.570396-4 2.558202+5 2.691535-4 2.514349+5 2.818383-4 2.454245+5 2.985383-4 2.362289+5 3.150000-4 2.262448+5 3.350000-4 2.136700+5 3.550000-4 2.009276+5 3.780000-4 1.866244+5 4.027170-4 1.718228+5 4.284700-4 1.574287+5 4.623810-4 1.402469+5 5.011872-4 1.229969+5 5.370318-4 1.091002+5 5.821032-4 9.411831+4 6.309573-4 8.055786+4 6.839116-4 6.844544+4 7.413102-4 5.775538+4 8.128305-4 4.720404+4 8.912509-4 3.829594+4 9.772372-4 3.084127+4 1.083927-3 2.398323+4 1.202264-3 1.849944+4 1.333521-3 1.415700+4 1.479108-3 1.075420+4 1.640590-3 8.108862+3 1.819701-3 6.069286+3 2.018366-3 4.509772+3 2.238721-3 3.327059+3 2.483133-3 2.437170+3 2.754229-3 1.772838+3 3.054921-3 1.280630+3 3.388442-3 9.186171+2 3.801894-3 6.302693+2 4.265795-3 4.291744+2 4.786301-3 2.901190+2 5.370318-3 1.947302+2 6.025596-3 1.298069+2 6.760830-3 8.597016+1 7.585776-3 5.655245+1 8.413951-3 3.855280+1 9.549926-3 2.395403+1 1.096478-2 1.414162+1 1.258925-2 8.285546+0 1.445440-2 4.818792+0 1.659587-2 2.782723+0 1.927525-2 1.523833+0 2.264644-2 7.903471-1 2.691535-2 3.880944-1 3.273407-2 1.719651-1 4.216965-2 5.944297-2 7.498942-2 5.259835-3 9.440609-2 2.006957-3 1.148154-1 8.911437-4 1.348963-1 4.600146-4 1.548817-1 2.627911-4 1.757924-1 1.583380-4 2.000000-1 9.519800-5 2.238721-1 6.144351-5 2.511886-1 3.957377-5 2.786121-1 2.681091-5 3.090295-1 1.828600-5 3.427678-1 1.256057-5 3.801894-1 8.692790-6 4.216965-1 6.062456-6 4.623810-1 4.431868-6 5.011872-1 3.390023-6 5.495409-1 2.516012-6 6.025596-1 1.881265-6 6.606935-1 1.415219-6 7.244360-1 1.072503-6 8.609938-1 6.468992-7 9.015711-1 5.682853-7 9.440609-1 5.021508-7 9.885531-1 4.468546-7 1.035142+0 4.008624-7 1.083927+0 3.620936-7 1.135011+0 3.290837-7 1.202264+0 2.942758-7 1.303167+0 2.543062-7 1.531087+0 1.928259-7 1.798871+0 1.455971-7 1.995262+0 1.223345-7 2.290868+0 9.797942-8 2.630268+0 7.903391-8 3.019952+0 6.421618-8 3.507519+0 5.173312-8 4.073803+0 4.198932-8 4.786301+0 3.378610-8 5.688529+0 2.697663-8 6.839116+0 2.138252-8 8.317638+0 1.683227-8 1.059254+1 1.264380-8 1.333521+1 9.703965-9 1.640590+1 7.689460-9 2.200000+1 5.572200-9 3.090295+1 3.870234-9 4.623810+1 2.533852-9 7.585776+1 1.519025-9 1.333521+2 8.54382-10 2.660725+2 4.25029-10 1.059254+3 1.06132-10 1.000000+5 1.12280-12 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.771000-5 1.771000-5 1.000000+5 1.771000-5 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.771000-5 0.0 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.697000-5 4.910544+6 1.730000-5 4.858224+6 1.770000-5 4.828026+6 1.810000-5 4.828020+6 1.850000-5 4.855176+6 1.890000-5 4.907358+6 1.945000-5 5.016408+6 2.000000-5 5.165052+6 2.055000-5 5.349318+6 2.113489-5 5.581420+6 2.187762-5 5.925861+6 2.270000-5 6.366420+6 2.371374-5 6.987703+6 2.483133-5 7.764949+6 2.650000-5 9.089580+6 3.090295-5 1.334816+7 3.273407-5 1.532155+7 3.427678-5 1.698999+7 3.548134-5 1.825189+7 3.672823-5 1.948013+7 3.770000-5 2.035722+7 3.890451-5 2.131612+7 4.000000-5 2.203890+7 4.110000-5 2.260044+7 4.220000-5 2.298348+7 4.330000-5 2.318184+7 4.415704-5 2.320866+7 4.518559-5 2.309757+7 4.623810-5 2.283066+7 4.731513-5 2.241028+7 4.841724-5 2.184363+7 4.954502-5 2.114258+7 5.080000-5 2.024952+7 5.190000-5 1.939278+7 5.308844-5 1.841181+7 5.432503-5 1.735421+7 5.559043-5 1.625617+7 5.688529-5 1.513671+7 5.821032-5 1.401272+7 5.956621-5 1.289863+7 6.095369-5 1.180667+7 6.237348-5 1.074719+7 6.400000-5 9.611880+6 6.580000-5 8.457960+6 6.760830-5 7.408147+6 6.950000-5 6.424620+6 7.150000-5 5.505600+6 7.350000-5 4.701462+6 7.500000-5 4.167582+6 7.673615-5 3.617412+6 7.852356-5 3.120245+6 8.035261-5 2.676968+6 8.230000-5 2.269728+6 8.450000-5 1.879848+6 8.650000-5 1.581264+6 8.900000-5 1.271514+6 9.150000-5 1.020948+6 9.440609-5 7.905154+5 9.800000-5 5.772384+5 1.035142-4 3.625136+5 1.060000-4 2.982060+5 1.075000-4 2.668920+5 1.090000-4 2.404272+5 1.105000-4 2.182512+5 1.120000-4 1.998648+5 1.131300-4 1.882466+5 1.143000-4 1.780356+5 1.155000-4 1.693062+5 1.165000-4 1.632576+5 1.175000-4 1.582278+5 1.185000-4 1.541334+5 1.198000-4 1.500816+5 1.209000-4 1.476708+5 1.220000-4 1.461012+5 1.230269-4 1.453257+5 1.245000-4 1.452558+5 1.260000-4 1.462998+5 1.275000-4 1.483206+5 1.290000-4 1.511838+5 1.307000-4 1.552968+5 1.330000-4 1.620720+5 1.350000-4 1.688682+5 1.400000-4 1.883754+5 1.462177-4 2.151484+5 1.500000-4 2.316726+5 1.548817-4 2.524641+5 1.584893-4 2.671683+5 1.621810-4 2.814567+5 1.670000-4 2.987580+5 1.720000-4 3.149448+5 1.778279-4 3.315505+5 1.840772-4 3.468133+5 1.905461-4 3.599456+5 1.972423-4 3.708040+5 2.041738-4 3.794793+5 2.120000-4 3.866004+5 2.190000-4 3.907194+5 2.264644-4 3.929936+5 2.371374-4 3.932790+5 2.480000-4 3.905124+5 2.600160-4 3.844822+5 2.730000-4 3.757116+5 2.851018-4 3.657829+5 3.019952-4 3.504753+5 3.162278-4 3.367471+5 3.350000-4 3.182844+5 3.550000-4 2.986368+5 3.780000-4 2.767200+5 4.027170-4 2.541874+5 4.284700-4 2.324431+5 4.623810-4 2.065847+5 5.011872-4 1.807440+5 5.370318-4 1.600649+5 5.754399-4 1.408243+5 6.237348-4 1.203971+5 6.760830-4 1.021952+5 7.328245-4 8.615084+4 8.035261-4 7.033037+4 8.810489-4 5.699374+4 9.660509-4 4.584542+4 1.071519-3 3.559843+4 1.188502-3 2.742263+4 1.318257-3 2.095754+4 1.462177-3 1.589793+4 1.621810-3 1.197077+4 1.798871-3 8.947150+3 2.000000-3 6.592693+3 2.213095-3 4.889974+3 2.454709-3 3.576358+3 2.722701-3 2.597211+3 3.019952-3 1.872982+3 3.349654-3 1.341113+3 3.758374-3 9.182152+2 4.216965-3 6.238586+2 4.731513-3 4.207418+2 5.308844-3 2.817432+2 5.956621-3 1.872863+2 6.606934-3 1.286740+2 7.413102-3 8.419385+1 8.709636-3 4.606972+1 9.885531-3 2.848371+1 1.122018-2 1.747358+1 1.273503-2 1.064284+1 1.462177-2 6.149975+0 1.678804-2 3.528053+0 1.949845-2 1.917569+0 2.264644-2 1.034296+0 2.691535-2 5.032177-1 3.235937-2 2.314755-1 4.073803-2 8.690694-2 6.382635-2 1.269861-2 8.413951-2 3.896538-3 1.035142-1 1.618066-3 1.216186-1 8.220395-4 1.396368-1 4.632848-4 1.584893-1 2.758112-4 1.778279-1 1.733148-4 1.995262-1 1.097291-4 2.213095-1 7.323248-5 2.454709-1 4.924836-5 2.691535-1 3.485658-5 2.951209-1 2.484965-5 3.235937-1 1.785114-5 3.507519-1 1.345207-5 3.801894-1 1.020048-5 4.168694-1 7.491720-6 4.518559-1 5.759058-6 4.897788-1 4.460059-6 5.248075-1 3.607003-6 5.688529-1 2.836633-6 6.237348-1 2.174020-6 6.760830-1 1.734636-6 7.328245-1 1.393801-6 7.943282-1 1.127990-6 8.609938-1 9.161066-7 9.120108-1 7.945245-7 9.660509-1 6.937389-7 1.022000+0 6.121900-7 1.096478+0 5.278885-7 1.161449+0 4.704256-7 1.244515+0 4.128466-7 1.396368+0 3.350447-7 1.698244+0 2.373245-7 1.905461+0 1.950161-7 2.137962+0 1.615559-7 2.454709+0 1.298482-7 2.818383+0 1.051283-7 3.198895+0 8.720645-8 3.715352+0 7.046395-8 4.365158+0 5.645504-8 5.128614+0 4.556778-8 6.165950+0 3.596404-8 7.498942+0 2.819477-8 9.120108+0 2.227410-8 1.161449+1 1.678474-8 1.500000+1 1.254900-8 2.018366+1 9.040195-9 2.754229+1 6.462631-9 4.027170+1 4.324208-9 6.382635+1 2.679967-9 1.135011+2 1.486397-9 2.264644+2 7.38626-10 9.015711+2 1.84254-10 5.688529+4 2.91486-12 1.000000+5 1.65850-12 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.697000-5 1.697000-5 1.000000+5 1.697000-5 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.697000-5 0.0 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 8.220000-6 3.459355+6 8.810489-6 2.386936+6 9.225714-6 1.853191+6 9.660509-6 1.427414+6 1.000000-5 1.167162+6 1.035142-5 9.490021+5 1.071519-5 7.670901+5 1.110000-5 6.130120+5 1.150000-5 4.856580+5 1.188502-5 3.879614+5 1.216186-5 3.299142+5 1.250000-5 2.703860+5 1.280000-5 2.263520+5 1.310000-5 1.892220+5 1.340000-5 1.579196+5 1.372000-5 1.299482+5 1.400000-5 1.093612+5 1.430000-5 9.072160+4 1.462177-5 7.407104+4 1.496236-5 5.962123+4 1.531087-5 4.766168+4 1.570000-5 3.710440+4 1.640590-5 2.382225+4 1.670000-5 2.003800+4 1.693000-5 1.765385+4 1.715000-5 1.578754+4 1.731000-5 1.465849+4 1.745000-5 1.381434+4 1.760000-5 1.304726+4 1.774000-5 1.245006+4 1.785000-5 1.205564+4 1.800000-5 1.161652+4 1.815000-5 1.128314+4 1.830000-5 1.104714+4 1.845000-5 1.090072+4 1.860000-5 1.083674+4 1.870000-5 1.083652+4 1.885000-5 1.089524+4 1.900000-5 1.101956+4 1.915000-5 1.120400+4 1.935000-5 1.153468+4 1.957000-5 1.199820+4 1.980000-5 1.258058+4 2.000000-5 1.315776+4 2.041738-5 1.453851+4 2.150000-5 1.887138+4 2.210000-5 2.153200+4 2.264644-5 2.401809+4 2.317395-5 2.642857+4 2.371374-5 2.887188+4 2.426610-5 3.131951+4 2.485000-5 3.383020+4 2.540973-5 3.614664+4 2.610000-5 3.886700+4 2.670000-5 4.110160+4 2.730000-5 4.321220+4 2.800000-5 4.551760+4 2.884032-5 4.806626+4 2.985383-5 5.083470+4 3.090295-5 5.336903+4 3.198895-5 5.566327+4 3.311311-5 5.771721+4 3.450000-5 5.985000+4 3.590900-5 6.161955+4 3.758374-5 6.327329+4 3.950000-5 6.465300+4 4.168694-5 6.567430+4 4.415704-5 6.626549+4 4.677351-5 6.638449+4 4.954502-5 6.607272+4 5.300000-5 6.522400+4 5.650000-5 6.398320+4 6.025596-5 6.234562+4 6.456542-5 6.021978+4 6.918310-5 5.777259+4 7.413102-5 5.507331+4 8.000000-5 5.186600+4 8.609938-5 4.862101+4 9.332543-5 4.498592+4 1.023293-4 4.085437+4 1.135011-4 3.635164+4 1.288250-4 3.124333+4 1.500000-4 2.580220+4 1.757924-4 2.097835+4 2.786121-4 1.131083+4 3.126079-4 9.656793+3 3.589219-4 7.926825+3 4.073803-4 6.569184+3 5.011872-4 4.769663+3 5.956621-4 3.630845+3 7.079458-4 2.742459+3 8.413951-4 2.056000+3 1.011579-3 1.500208+3 1.230269-3 1.064972+3 1.531087-3 7.201567+2 1.905461-3 4.840329+2 2.344229-3 3.297769+2 3.000000-3 2.068840+2 3.162278-3 1.854550+2 3.311311-3 1.694150+2 3.467369-3 1.556764+2 3.589219-3 1.468192+2 3.801894-3 1.340337+2 4.027170-3 1.214005+2 4.265795-3 1.092652+2 4.570882-3 9.559749+1 4.954502-3 8.112071+1 5.432503-3 6.668138+1 6.025596-3 5.315797+1 7.244360-3 3.629069+1 8.609938-3 2.518731+1 1.023293-2 1.735111+1 1.216186-2 1.185996+1 1.428894-2 8.255116+0 1.678804-2 5.704566+0 1.972423-2 3.913437+0 2.317395-2 2.664932+0 2.722701-2 1.801477+0 3.198895-2 1.208778+0 3.758374-2 8.051016-1 4.466836-2 5.168784-1 5.248075-2 3.393653-1 6.309573-2 2.081210-1 7.673615-2 1.228066-1 9.120108-2 7.652670-2 1.161449-1 3.913541-2 2.317395-1 5.667496-3 2.786121-1 3.405171-3 3.273407-1 2.195754-3 3.758374-1 1.518119-3 4.265795-1 1.090247-3 4.786301-1 8.125479-4 5.308844-1 6.276693-4 5.888437-1 4.880524-4 6.531306-1 3.821859-4 7.244360-1 3.014693-4 8.035261-1 2.395740-4 8.810489-1 1.965062-4 9.660509-1 1.622584-4 1.122018+0 1.202509-4 1.216186+0 1.028462-4 1.396368+0 7.935426-5 1.548817+0 6.570560-5 1.737801+0 5.369637-5 1.927525+0 4.508018-5 2.187762+0 3.670157-5 2.511886+0 2.953477-5 2.884032+0 2.393874-5 3.311311+0 1.955409-5 3.845918+0 1.582759-5 4.518559+0 1.270186-5 5.370318+0 1.011553-5 6.456542+0 7.998918-6 7.852356+0 6.282522-6 9.549926+0 4.971951-6 1.188502+1 3.852815-6 1.548817+1 2.853832-6 2.089296+1 2.051983-6 2.851018+1 1.468028-6 4.168694+1 9.829478-7 6.683439+1 6.023902-7 1.188502+2 3.343124-7 2.371374+2 1.661872-7 9.440609+2 4.146835-8 5.956621+4 6.56139-10 1.000000+5 3.90900-10 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 8.220000-6 8.220000-6 1.000000+5 8.220000-6 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 8.220000-6 0.0 1.000000+5 1.000000+5 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.411050-7 1.028100+0 1.043520-6 1.028750+0 1.411050-6 1.029500+0 1.931060-6 1.030100+0 2.428540-6 1.031000+0 3.323070-6 1.032000+0 4.546800-6 1.033200+0 6.369290-6 1.034000+0 7.818890-6 1.035300+0 1.061300-5 1.036640+0 1.411050-5 1.038200+0 1.904260-5 1.039700+0 2.474010-5 1.041500+0 3.291640-5 1.043800+0 4.568910-5 1.046400+0 6.356770-5 1.048300+0 7.914350-5 1.051200+0 1.073570-4 1.054080+0 1.411050-4 1.057700+0 1.923360-4 1.061100+0 2.501810-4 1.065100+0 3.312140-4 1.070400+0 4.620810-4 1.076200+0 6.385970-4 1.080600+0 7.975040-4 1.087100+0 1.074490-3 1.093710+0 1.411050-3 1.102600+0 1.956310-3 1.110700+0 2.551270-3 1.120600+0 3.412560-3 1.133300+0 4.744500-3 1.147500+0 6.550300-3 1.158200+0 8.140320-3 1.174100+0 1.088080-2 1.190110+0 1.411050-2 1.205100+0 1.757050-2 1.227500+0 2.352320-2 1.250000+0 3.038000-2 1.265600+0 3.558700-2 1.294900+0 4.624990-2 1.331800+0 6.106140-2 1.362600+0 7.437830-2 1.397000+0 9.009300-2 1.455800+0 1.187320-1 1.500000+0 1.418000-1 1.589800+0 1.933530-1 1.665000+0 2.412000-1 1.784700+0 3.248760-1 1.892300+0 4.058160-1 2.000000+0 4.894000-1 2.044000+0 5.236000-1 2.163500+0 6.171020-1 2.372600+0 7.818050-1 2.647100+0 9.960160-1 3.000000+0 1.263000+0 3.437500+0 1.576480+0 4.000000+0 1.952000+0 4.750000+0 2.408630+0 5.000000+0 2.550000+0 6.000000+0 3.066000+0 7.000000+0 3.526000+0 8.000000+0 3.941000+0 9.000000+0 4.317000+0 1.000000+1 4.662000+0 1.100000+1 4.979000+0 1.200000+1 5.272000+0 1.300000+1 5.543000+0 1.400000+1 5.792000+0 1.500000+1 6.023000+0 1.600000+1 6.238000+0 1.800000+1 6.632000+0 2.000000+1 6.985000+0 2.200000+1 7.305000+0 2.400000+1 7.596000+0 2.600000+1 7.861000+0 2.800000+1 8.103000+0 3.000000+1 8.327000+0 4.000000+1 9.236000+0 5.000000+1 9.909000+0 6.000000+1 1.043000+1 8.000000+1 1.121000+1 1.000000+2 1.176000+1 1.500000+2 1.263000+1 2.000000+2 1.316000+1 3.000000+2 1.376000+1 4.000000+2 1.411000+1 5.000000+2 1.434000+1 6.000000+2 1.451000+1 8.000000+2 1.473000+1 1.000000+3 1.487000+1 1.500000+3 1.507000+1 2.000000+3 1.519000+1 3.000000+3 1.531000+1 4.000000+3 1.537000+1 5.000000+3 1.541000+1 6.000000+3 1.544000+1 8.000000+3 1.548000+1 1.000000+4 1.550000+1 1.500000+4 1.553000+1 2.000000+4 1.555000+1 3.000000+4 1.557000+1 4.000000+4 1.558000+1 5.000000+4 1.558000+1 6.000000+4 1.559000+1 8.000000+4 1.559000+1 1.000000+5 1.560000+1 1 48000 7 8 1.124000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.815830-7 2.099900+0 1.127930-6 2.106600+0 1.569050-6 2.114000+0 2.170980-6 2.119500+0 2.702850-6 2.127900+0 3.665580-6 2.136250+0 4.815830-6 2.147000+0 6.602840-6 2.156900+0 8.576300-6 2.169000+0 1.144560-5 2.184500+0 1.590980-5 2.201800+0 2.201160-5 2.214800+0 2.742480-5 2.234200+0 3.689120-5 2.253680+0 4.815830-5 2.281500+0 6.745420-5 2.307000+0 8.860090-5 2.338200+0 1.191320-4 2.377400+0 1.649830-4 2.410200+0 2.098310-4 2.446800+0 2.669170-4 2.485900+0 3.360620-4 2.532900+0 4.300880-4 2.556430+0 4.815830-4 2.611900+0 6.140720-4 2.660400+0 7.423800-4 2.745300+0 9.936270-4 2.809000+0 1.203340-3 2.904500+0 1.550210-3 3.000000+0 1.935000-3 3.125000+0 2.495100-3 3.234400+0 3.035960-3 3.425800+0 4.088230-3 3.569300+0 4.957240-3 3.784700+0 6.372180-3 4.000000+0 7.893000-3 4.250000+0 9.751900-3 4.625000+0 1.267290-2 5.000000+0 1.571000-2 5.500000+0 1.988120-2 6.000000+0 2.411000-2 6.750000+0 3.040130-2 7.000000+0 3.247000-2 8.000000+0 4.056000-2 9.000000+0 4.831000-2 1.000000+1 5.566000-2 1.100000+1 6.262000-2 1.200000+1 6.918000-2 1.300000+1 7.537000-2 1.400000+1 8.125000-2 1.500000+1 8.681000-2 1.600000+1 9.210000-2 1.800000+1 1.019000-1 2.000000+1 1.108000-1 2.200000+1 1.190000-1 2.400000+1 1.264000-1 2.600000+1 1.334000-1 2.800000+1 1.398000-1 3.000000+1 1.457000-1 4.000000+1 1.704000-1 5.000000+1 1.892000-1 6.000000+1 2.040000-1 8.000000+1 2.264000-1 1.000000+2 2.427000-1 1.500000+2 2.696000-1 2.000000+2 2.865000-1 3.000000+2 3.071000-1 4.000000+2 3.194000-1 5.000000+2 3.279000-1 6.000000+2 3.341000-1 8.000000+2 3.426000-1 1.000000+3 3.482000-1 1.500000+3 3.567000-1 2.000000+3 3.615000-1 3.000000+3 3.667000-1 4.000000+3 3.697000-1 5.000000+3 3.716000-1 6.000000+3 3.729000-1 8.000000+3 3.747000-1 1.000000+4 3.758000-1 1.500000+4 3.773000-1 2.000000+4 3.782000-1 3.000000+4 3.790000-1 4.000000+4 3.796000-1 5.000000+4 3.799000-1 6.000000+4 3.801000-1 8.000000+4 3.803000-1 1.000000+5 3.805000-1 1 48000 7 8 1.124000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 48000 7 9 1.124000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.800000+1 1.000000+5 4.800000+1 5.000000+5 4.798600+1 8.750000+5 4.796180+1 1.000000+6 4.795600+1 1.500000+6 4.791000+1 2.000000+6 4.784100+1 2.500000+6 4.775300+1 3.000000+6 4.764700+1 3.500000+6 4.752300+1 4.000000+6 4.738300+1 4.500000+6 4.722880+1 5.000000+6 4.705900+1 5.687500+6 4.679620+1 6.156200+6 4.660520+1 6.500000+6 4.645950+1 6.718700+6 4.636330+1 7.000000+6 4.623900+1 7.500000+6 4.600730+1 8.250000+6 4.564040+1 8.500000+6 4.551720+1 9.000000+6 4.526300+1 9.750000+6 4.486500+1 1.000000+7 4.473300+1 1.109400+7 4.412760+1 1.187500+7 4.368660+1 1.250000+7 4.332900+1 1.437500+7 4.222770+1 1.500000+7 4.185900+1 1.750000+7 4.037600+1 2.000000+7 3.889000+1 2.250000+7 3.741420+1 2.375000+7 3.668290+1 2.500000+7 3.596400+1 2.750000+7 3.455050+1 2.875000+7 3.385840+1 3.000000+7 3.318400+1 3.250000+7 3.187090+1 3.500000+7 3.062440+1 3.625000+7 3.002730+1 4.000000+7 2.834300+1 4.750000+7 2.544640+1 5.000000+7 2.461900+1 5.750000+7 2.248860+1 6.000000+7 2.188300+1 6.750000+7 2.031480+1 7.000000+7 1.985700+1 7.750000+7 1.862400+1 8.000000+7 1.824900+1 8.750000+7 1.718310+1 9.000000+7 1.684500+1 9.750000+7 1.585440+1 1.000000+8 1.553300+1 1.062500+8 1.474000+1 1.144500+8 1.373080+1 1.187500+8 1.321530+1 1.214800+8 1.289240+1 1.250000+8 1.248400+1 1.312500+8 1.177590+1 1.406300+8 1.078070+1 1.500000+8 9.883000+0 1.750000+8 7.976710+0 1.812500+8 7.603660+0 1.937500+8 6.963780+0 2.000000+8 6.690700+0 2.125000+8 6.227250+0 2.218800+8 5.939460+0 2.359400+8 5.584020+0 2.375000+8 5.549900+0 2.500000+8 5.303100+0 2.812500+8 4.827790+0 2.937500+8 4.644620+0 3.000000+8 4.548600+0 3.125000+8 4.345210+0 3.500000+8 3.794100+0 3.812500+8 3.451040+0 3.937500+8 3.315310+0 4.000000+8 3.244200+0 4.125000+8 3.094180+0 4.234400+8 2.958990+0 4.425800+8 2.723820+0 4.750000+8 2.371340+0 5.000000+8 2.144500+0 5.250000+8 1.962850+0 5.578100+8 1.772700+0 6.000000+8 1.580300+0 6.343800+8 1.453540+0 6.578100+8 1.382290+0 6.789100+8 1.329060+0 7.000000+8 1.285900+0 7.250000+8 1.246680+0 8.000000+8 1.158000+0 8.359400+8 1.112410+0 8.660200+8 1.072110+0 9.138700+8 1.007710+0 1.000000+9 9.021000-1 1.171900+9 7.426960-1 1.253900+9 6.803060-1 1.315400+9 6.366720-1 1.375000+9 5.962300-1 1.381300+9 5.920860-1 1.440700+9 5.535300-1 1.500000+9 5.165200-1 1.562500+9 4.789660-1 1.641100+9 4.345280-1 1.706900+9 4.000190-1 1.811600+9 3.503850-1 1.905800+9 3.112230-1 2.000000+9 2.768700-1 2.139200+9 2.338680-1 2.272600+9 1.999000-1 2.443000+9 1.647050-1 2.602800+9 1.382870-1 2.825100+9 1.095730-1 3.088500+9 8.440670-2 3.327400+9 6.748390-2 3.634100+9 5.147710-2 3.975600+9 3.883540-2 4.423800+9 2.759380-2 5.000000+9 1.851800-2 5.750000+9 1.166180-2 6.875000+9 6.409940-3 8.000000+9 3.846400-3 1.00000+10 1.815000-3 1.20500+10 9.751100-4 1.41820+10 5.697320-4 1.71110+10 3.085520-4 2.01380+10 1.821180-4 2.41190+10 1.020940-4 2.88610+10 5.767380-5 3.54590+10 3.012620-5 4.35270+10 1.586690-5 5.38800+10 8.183390-6 7.03510+10 3.600670-6 9.01170+10 1.690110-6 1.00000+11 1.231600-6 1.34280+11 5.046840-7 1.77440+11 2.182550-7 2.63330+11 6.712830-8 3.75720+11 2.340050-8 6.61190+11 4.441200-9 1.48990+12 4.18100-10 4.26460+12 2.03419-11 1.00000+14 2.60740-15 5.62340+14 1.89059-17 7.49890+15 1.10616-20 1.00000+17 6.25520-24 1 48000 7 0 1.124000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.90000-12 1.000000+2 5.90000-10 1.000000+3 5.900000-8 1.000000+4 5.900000-6 1.000000+5 5.900000-4 5.000000+5 1.475000-2 8.750000+5 4.517188-2 1.000000+6 5.900000-2 1.500000+6 1.321000-1 2.000000+6 2.324000-1 2.500000+6 3.582000-1 3.000000+6 5.075000-1 3.500000+6 6.778380-1 4.000000+6 8.665000-1 4.500000+6 1.070760+0 5.000000+6 1.288000+0 5.687500+6 1.603160+0 6.156200+6 1.826190+0 6.500000+6 1.992400+0 6.718700+6 2.099090+0 7.000000+6 2.237300+0 7.500000+6 2.483520+0 8.250000+6 2.853260+0 8.500000+6 2.975940+0 9.000000+6 3.220100+0 9.750000+6 3.581090+0 1.000000+7 3.700000+0 1.109400+7 4.209760+0 1.187500+7 4.564620+0 1.250000+7 4.843300+0 1.437500+7 5.656120+0 1.500000+7 5.921000+0 1.750000+7 6.960700+0 2.000000+7 7.980000+0 2.250000+7 8.980370+0 2.375000+7 9.471110+0 2.500000+7 9.955600+0 2.750000+7 1.089920+1 2.875000+7 1.135960+1 3.000000+7 1.181200+1 3.250000+7 1.269170+1 3.500000+7 1.354390+1 3.625000+7 1.396270+1 4.000000+7 1.518500+1 4.750000+7 1.751690+1 5.000000+7 1.826300+1 5.750000+7 2.039360+1 6.000000+7 2.106400+1 6.750000+7 2.292750+1 7.000000+7 2.350100+1 7.750000+7 2.506820+1 8.000000+7 2.554600+1 8.750000+7 2.685190+1 9.000000+7 2.725200+1 9.750000+7 2.835900+1 1.000000+8 2.870500+1 1.062500+8 2.951900+1 1.144500+8 3.050660+1 1.187500+8 3.099160+1 1.214800+8 3.128980+1 1.250000+8 3.166600+1 1.312500+8 3.230340+1 1.406300+8 3.320750+1 1.500000+8 3.404600+1 1.750000+8 3.600250+1 1.812500+8 3.643350+1 1.937500+8 3.724100+1 2.000000+8 3.761800+1 2.125000+8 3.831530+1 2.218800+8 3.880220+1 2.359400+8 3.947280+1 2.375000+8 3.954470+1 2.500000+8 4.008500+1 2.812500+8 4.126150+1 2.937500+8 4.167480+1 3.000000+8 4.187000+1 3.125000+8 4.223920+1 3.500000+8 4.319800+1 3.812500+8 4.384920+1 3.937500+8 4.407390+1 4.000000+8 4.418400+1 4.125000+8 4.438620+1 4.234400+8 4.454680+1 4.425800+8 4.481050+1 4.750000+8 4.519120+1 5.000000+8 4.543700+1 5.250000+8 4.564890+1 5.578100+8 4.588410+1 6.000000+8 4.613900+1 6.343800+8 4.631000+1 6.578100+8 4.641770+1 6.789100+8 4.650460+1 7.000000+8 4.658900+1 7.250000+8 4.667590+1 8.000000+8 4.691500+1 8.359400+8 4.700970+1 8.660200+8 4.708600+1 9.138700+8 4.719800+1 1.000000+9 4.736800+1 1.171900+9 4.760480+1 1.253900+9 4.769100+1 1.315400+9 4.773870+1 1.375000+9 4.778290+1 1.381300+9 4.778680+1 1.440700+9 4.781900+1 1.500000+9 4.785000+1 1.562500+9 4.787090+1 1.641100+9 4.789600+1 1.706900+9 4.791610+1 1.811600+9 4.793470+1 1.905800+9 4.794920+1 2.000000+9 4.796300+1 2.139200+9 4.797400+1 2.272600+9 4.798390+1 2.443000+9 4.799300+1 2.602800+9 4.799710+1 2.825100+9 4.800250+1 3.088500+9 4.800690+1 3.327400+9 4.800580+1 3.634100+9 4.800460+1 3.975600+9 4.800330+1 4.423800+9 4.800180+1 5.000000+9 4.800000+1 5.750000+9 4.800000+1 6.875000+9 4.800000+1 8.000000+9 4.800000+1 1.00000+10 4.800000+1 1.20500+10 4.800000+1 1.41820+10 4.800000+1 1.71110+10 4.800000+1 2.01380+10 4.800000+1 2.41190+10 4.800000+1 2.88610+10 4.800000+1 3.54590+10 4.800000+1 4.35270+10 4.800000+1 5.38800+10 4.800000+1 7.03510+10 4.800000+1 9.01170+10 4.800000+1 1.00000+11 4.800000+1 1.34280+11 4.800000+1 1.77440+11 4.800000+1 2.63330+11 4.800000+1 3.75720+11 4.800000+1 6.61190+11 4.800000+1 1.48990+12 4.800000+1 4.26460+12 4.800000+1 1.00000+14 4.800000+1 5.62340+14 4.800000+1 7.49890+15 4.800000+1 1.00000+17 4.800000+1 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.000173-6 0.0 4.334609-6 0.0 4.353280-6 3.230414+0 4.355947-6 3.687192+0 4.366616-6 6.734958+0 4.377285-6 1.135607+1 4.389288-6 1.863871+1 4.407792-6 3.251660+1 4.421295-6 4.191180+1 4.431298-6 4.673826+1 4.442279-6 4.846709+1 4.453696-6 4.599738+1 4.464961-6 4.001732+1 4.482789-6 2.681364+1 4.494697-6 1.807461+1 4.498327-6 1.602940+1 4.506294-6 1.409046+1 4.515984-6 1.304746+1 4.520483-6 1.331741+1 4.526653-6 1.492930+1 4.531142-6 1.663554+1 4.542936-6 2.467878+1 4.549314-6 3.110091+1 4.555274-6 3.847840+1 4.574405-6 6.645409+1 4.586844-6 8.359625+1 4.599127-6 9.467234+1 4.610198-6 9.766751+1 4.620727-6 9.359226+1 4.632771-6 8.135899+1 4.650200-6 5.638804+1 4.663995-6 3.655078+1 4.675066-6 2.359591+1 4.686138-6 1.406148+1 4.697209-6 7.735333+0 4.713815-6 1.966353+0 4.719351-6 0.0 5.678296-6 0.0 5.692272-6 1.61508-14 5.706249-6 3.19579-14 5.720225-6 5.83738-14 5.734202-6 9.84262-14 5.748178-6 1.53200-13 5.762154-6 2.20119-13 5.776131-6 2.91953-13 5.790107-6 3.57455-13 5.804084-6 4.04002-13 5.818060-6 4.21502-13 5.832036-6 4.05948-13 5.846013-6 3.60906-13 5.859989-6 2.96191-13 5.887942-6 1.56925-13 5.901918-6 1.01305-13 5.915895-6 6.03705-14 5.929871-6 3.32103-14 5.943848-6 1.68646-14 5.957824-6 0.0 6.471239-6 0.0 6.500855-6 1.322965-1 6.503095-6 1.422088-1 6.511712-6 2.057337-1 6.520019-6 3.767768-1 6.536535-6 7.769902-1 6.545197-6 1.029872+0 6.559796-6 1.588787+0 6.577447-6 2.513479+0 6.625605-6 5.634098+0 6.643225-6 6.460325+0 6.655962-6 6.812214+0 6.672992-6 6.748221+0 6.690375-6 6.144195+0 6.706453-6 5.229295+0 6.742558-6 2.767101+0 6.752129-6 2.182972+0 6.768157-6 1.386546+0 6.784184-6 7.925181-1 6.791034-6 6.189460-1 6.800212-6 4.214146-1 6.828600-6 4.908688-2 6.832268-6 4.177836-5 6.841095-6 3.053362-5 6.855668-6 1.792420-5 6.857258-6 1.676753-5 6.873420-6 8.339875-6 6.887985-6 5.143434-7 6.889582-6 0.0 7.167755-6 0.0 7.183995-6 1.558549-2 7.203040-6 9.094913-2 7.219360-6 1.648347-1 7.237043-6 2.932302-1 7.255967-6 4.989069-1 7.275945-6 7.916947-1 7.312245-6 1.404485+0 7.329147-6 1.640809+0 7.344180-6 1.781740+0 7.364028-6 1.804058+0 7.382148-6 1.677961+0 7.405360-6 1.356374+0 7.443217-6 7.248507-1 7.450035-6 6.169943-1 7.467678-6 3.925933-1 7.485320-6 2.319295-1 7.490540-6 2.022831-1 7.502963-6 1.478634-1 7.520605-6 1.037051-1 7.527414-6 9.432944-2 7.537651-6 8.824111-2 7.545851-6 1.117872-1 7.564288-6 1.861524-1 7.582725-6 2.863812-1 7.629736-6 5.986910-1 7.644853-6 6.786859-1 7.663307-6 7.440054-1 7.678403-6 7.640817-1 7.697256-6 7.359173-1 7.755225-6 5.070036-1 7.772668-6 4.676312-1 7.791521-6 4.504326-1 7.817580-6 4.622009-1 7.844350-6 4.897119-1 7.888844-6 5.002329-1 8.067420-6 4.393698-1 8.126179-6 4.225802-1 8.156846-6 4.110108-1 8.306711-6 3.886247-1 8.821438-6 2.995687-1 9.225714-6 2.447872-1 9.744286-6 1.894774-1 1.021821-5 1.501667-1 1.071519-5 1.177296-1 1.128308-5 8.903499-2 1.184861-5 6.728861-2 1.243421-5 5.009114-2 1.299689-5 3.749139-2 1.300217-5 3.739155-2 1.306217-5 1.466249+0 1.306617-5 1.560628+0 1.309818-5 2.820104+0 1.313018-5 4.730068+0 1.316568-5 7.700252+0 1.326019-5 1.722235+1 1.329359-5 1.939198+1 1.332459-5 2.008275+1 1.335938-5 1.904835+1 1.339108-5 1.675759+1 1.348222-5 7.514614+0 1.351422-5 4.860971+0 1.354622-5 2.907835+0 1.357823-5 1.611777+0 1.359917-5 1.101509+0 1.364223-5 6.421456-1 1.366716-5 1.002463+0 1.370037-5 1.791823+0 1.373487-5 3.044409+0 1.376949-5 4.784797+0 1.387023-5 1.113553+1 1.390398-5 1.265612+1 1.393495-5 1.336602+1 1.397339-5 1.306583+1 1.400688-5 1.197026+1 1.405321-5 9.578971+0 1.410126-5 6.826220+0 1.413507-5 5.078743+0 1.416895-5 3.625983+0 1.420282-5 2.490671+0 1.426863-5 8.326080-1 1.430445-5 5.311505-1 1.433832-5 3.236750-1 1.437220-5 1.859129-1 1.442687-5 5.030682-2 1.443995-5 1.720409-2 1.494290-5 1.294512-2 1.501600-5 1.241363-2 1.509002-5 3.141762-1 1.512688-5 5.625597-1 1.516615-5 9.725279-1 1.520297-5 1.495244+0 1.531168-5 3.383982+0 1.535095-5 3.833348+0 1.538791-5 3.978839+0 1.542718-5 3.787945+0 1.546303-5 3.355731+0 1.557040-5 1.490010+0 1.560736-5 9.649048-1 1.564432-5 5.783915-1 1.568128-5 3.218851-1 1.568825-5 2.927999-1 1.573578-5 1.634311-1 1.575520-5 1.527815-1 1.576548-5 1.915423-1 1.580410-5 3.854804-1 1.581512-5 4.586661-1 1.584271-5 6.769428-1 1.585730-5 8.231315-1 1.589345-5 1.260273+0 1.594564-5 2.086390+0 1.602577-5 3.479300+0 1.606202-5 3.943641+0 1.608920-5 4.182350+0 1.613268-5 4.235643+0 1.617229-5 4.000899+0 1.623363-5 3.283748+0 1.630173-5 2.377804+0 1.634169-5 1.961636+0 1.637510-5 1.706836+0 1.640909-5 1.521795+0 1.644572-5 1.384895+0 1.651094-5 1.290737+0 1.657560-5 1.390264+0 1.669897-5 1.784735+0 1.675386-5 1.998251+0 1.681473-5 2.145620+0 1.687229-5 2.149442+0 1.702875-5 1.907855+0 1.709880-5 1.891981+0 1.728108-5 1.999079+0 1.888131-5 2.172748+0 2.045000-5 2.510192+0 2.209372-5 3.058430+0 2.371374-5 3.786533+0 2.511886-5 4.581691+0 2.735385-5 6.159337+0 2.959548-5 8.141503+0 3.280993-5 1.166064+1 4.055000-5 2.129892+1 4.399635-5 2.425509+1 4.738401-5 2.541696+1 5.099768-5 2.476803+1 5.630336-5 2.149792+1 6.750062-5 1.250264+1 6.868230-5 1.190727+1 6.967904-5 1.239526+1 7.032829-5 1.188075+1 7.091980-5 1.128919+1 7.450000-5 9.339350+0 7.600204-5 9.119302+0 7.730010-5 8.391716+0 8.225000-5 6.362768+0 8.672114-5 4.896264+0 9.015711-5 4.004883+0 9.398262-5 3.221730+0 9.800000-5 2.600493+0 1.017500-4 2.170472+0 1.052677-4 1.872463+0 1.072004-4 1.752279+0 1.080912-4 1.812987+0 1.094630-4 2.174199+0 1.099355-4 2.183159+0 1.112962-4 1.855178+0 1.125806-4 1.794773+0 1.159624-4 1.695611+0 1.220954-4 1.636216+0 1.299439-4 1.680864+0 1.400000-4 1.856120+0 1.833832-4 2.956462+0 2.089296-4 3.472265+0 2.407722-4 3.913537+0 2.733750-4 4.181934+0 3.344791-4 4.325942+0 4.018857-4 4.247842+0 4.065878-4 4.454229+0 4.169700-4 5.018693+0 4.237000-4 5.326000+0 4.276500-4 5.875746+0 4.308444-4 6.701725+0 4.342499-4 8.059910+0 4.382372-4 1.033852+1 4.436624-4 1.440313+1 4.540000-4 2.269456+1 4.608411-4 2.679475+1 4.685000-4 2.958465+1 4.782500-4 3.099400+1 5.016975-4 3.046822+1 6.017274-4 2.620892+1 6.128446-4 2.699606+1 6.294395-4 2.808094+1 6.710000-4 2.820870+1 7.410018-4 2.596792+1 7.613663-4 2.630928+1 9.450801-4 2.094955+1 1.106028-3 1.738500+1 1.318257-3 1.390669+1 1.545477-3 1.124113+1 1.761010-3 9.386359+0 2.018366-3 7.729898+0 2.319897-3 6.311563+0 2.676076-3 5.101366+0 3.096329-3 4.084559+0 3.446342-3 3.470021+0 3.471802-3 3.543621+0 3.485529-3 3.758237+0 3.496933-3 4.136728+0 3.506909-3 4.668476+0 3.518351-3 5.521448+0 3.556036-3 8.962987+0 3.573436-3 9.963783+0 3.595426-3 1.047816+1 3.677046-3 1.048041+1 3.705247-3 1.098387+1 3.760603-3 1.302799+1 3.793231-3 1.341708+1 3.940349-3 1.289360+1 4.037927-3 1.396856+1 4.808520-3 1.080704+1 5.528128-3 8.666266+0 6.364291-3 6.919918+0 7.293473-3 5.539908+0 8.302817-3 4.460460+0 9.500000-3 3.550787+0 1.074842-2 2.872960+0 1.180980-2 2.439436+0 1.325867-2 1.992334+0 1.491765-2 1.618198+0 1.675184-2 1.316796+0 1.877548-2 1.072795+0 2.084184-2 8.886609-1 2.343172-2 7.182105-1 2.598339-2 5.966701-1 2.614166-2 6.105999-1 2.623711-2 6.527681-1 2.630530-2 7.184076-1 2.636942-2 8.214545-1 2.642380-2 9.488573-1 2.649143-2 1.165181+0 2.657473-2 1.514119+0 2.681823-2 2.708389+0 2.694350-2 3.135397+0 2.709020-2 3.374817+0 2.730648-2 3.438021+0 3.176311-2 2.700871+0 3.626777-2 2.173010+0 4.129881-2 1.743221+0 4.660744-2 1.412734+0 5.274073-2 1.136873+0 5.952767-2 9.155287-1 6.572694-2 7.653618-1 7.456180-2 6.073650-1 8.237657-2 5.053222-1 9.242290-2 4.076832-1 1.037900-1 3.277542-1 1.143208-1 2.729600-1 1.256527-1 2.282295-1 1.387784-1 1.891144-1 1.530924-1 1.570859-1 1.686864-1 1.307157-1 1.875077-1 1.070033-1 2.075840-1 8.838373-2 2.294515-1 7.336864-2 2.526387-1 6.141577-2 2.818734-1 5.033372-2 3.112332-1 4.222592-2 3.479710-1 3.476387-2 3.873343-1 2.897774-2 4.372821-1 2.376382-2 4.897788-1 1.989104-2 5.448162-1 1.695553-2 6.042964-1 1.461830-2 6.842060-1 1.235883-2 7.796057-1 1.047845-2 8.810489-1 9.078184-3 1.011580+0 7.834698-3 1.173413+0 6.680667-3 1.410753+0 5.472872-3 1.696098+0 4.483434-3 2.039158+0 3.672876-3 2.451607+0 3.008858-3 2.947480+0 2.464888-3 3.543651+0 2.019262-3 4.260405+0 1.654200-3 5.122134+0 1.355138-3 6.158159+0 1.110143-3 7.403736+0 9.094407-4 8.901248+0 7.450233-4 9.760024+0 6.743224-4 1.000000+1 1.370147-3 1 48000 7 0 1.124000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.790182+1 3.000173-6-4.649185+1 3.714999-6-4.403113+1 4.009648-6-4.097246+1 4.164180-6-3.723587+1 4.240112-6-3.364513+1 4.286141-6-2.992245+1 4.313301-6-2.639585+1 4.327867-6-2.352497+1 4.345278-6-1.823608+1 4.355947-6-1.509259+1 4.367950-6-1.100458+1 4.378619-6-7.745769+0 4.380953-6-7.176783+0 4.389288-6-5.622010+0 4.391622-6-5.402934+0 4.395123-6-5.325140+0 4.398624-6-5.440689+0 4.401291-6-5.688264+0 4.403291-6-6.013882+0 4.407792-6-7.136798+0 4.413960-6-9.558057+0 4.418461-6-1.185148+1 4.428297-6-1.859935+1 4.441300-6-2.987035+1 4.456220-6-4.220096+1 4.466774-6-4.810179+1 4.477703-6-4.537011+1 4.487885-6-4.643001+1 4.493369-6-4.792984+1 4.517006-6-3.155979+1 4.533132-6-1.823911+1 4.541362-6-1.267150+1 4.544199-6-1.049299+1 4.549314-6-7.401864+0 4.553977-6-5.139799+0 4.555274-6-4.696719+0 4.557544-6-4.226421+0 4.559247-6-4.057872+0 4.561801-6-4.042249+0 4.564356-6-4.220537+0 4.565740-6-4.412959+0 4.568161-6-5.073251+0 4.569978-6-5.779079+0 4.571340-6-6.424446+0 4.574405-6-8.275396+0 4.580270-6-1.320413+1 4.583871-6-1.694323+1 4.586169-6-1.991578+1 4.595872-6-3.425696+1 4.603153-6-4.758137+1 4.603657-6-4.792433+1 4.608538-6-3.864483+1 4.611907-6-3.179685+1 4.619345-6-1.850699+1 4.620727-6-1.555904+1 4.623084-6-1.152563+1 4.630782-6 2.099162-2 4.631474-6 1.143968+0 4.632771-6 2.930985+0 4.635042-6 5.671340+0 4.636745-6 7.515064+0 4.641853-6 1.239795+1 4.645659-6 1.532406+1 4.650200-6 1.772109+1 4.655692-6 1.920412+1 4.660882-6 1.968997+1 4.663995-6 1.923449+1 4.672299-6 1.710927+1 4.684927-6 1.096354+1 4.686138-6 1.013012+1 4.697209-6 3.817333+0 4.698593-6 2.917991+0 4.701014-6 1.630291+0 4.713815-6-4.313258+0 4.716583-6-5.755354+0 4.718659-6-7.032253+0 4.720287-6-8.331380+0 4.724026-6-1.037639+1 4.731467-6-1.337293+1 4.742519-6-1.669485+1 4.760682-6-2.066242+1 4.789023-6-2.491255+1 4.829954-6-2.893468+1 4.894192-6-3.284376+1 5.008949-6-3.672274+1 5.237137-6-4.034270+1 5.762154-6-4.350580+1 6.455463-6-4.643576+1 6.557139-6-4.813558+1 6.614343-6-4.838483+1 6.674870-6-4.389123+1 6.724417-6-4.107396+1 6.784184-6-4.171429+1 6.906968-6-4.396467+1 7.312245-6-4.600855+1 7.443217-6-4.433217+1 7.654080-6-4.549028+1 1.178259-5-4.827949+1 1.243421-5-4.895816+1 1.287049-5-4.642917+1 1.300217-5-4.363489+1 1.316218-5-3.806917+1 1.321069-5-3.869288+1 1.325819-5-4.182936+1 1.332364-5-4.939059+1 1.339108-5-4.130345+1 1.343931-5-3.860563+1 1.348222-5-3.832990+1 1.355022-5-4.098992+1 1.371401-5-4.979341+1 1.380059-5-4.775142+1 1.387023-5-4.953607+1 1.389352-5-4.890859+1 1.402402-5-3.987534+1 1.409451-5-3.790972+1 1.420282-5-3.899334+1 1.442687-5-4.316997+1 1.526305-5-4.881518+1 1.551569-5-4.513458+1 1.572687-5-4.691770+1 1.596825-5-4.921422+1 1.626340-5-4.562868+1 1.678536-5-4.748519+1 3.135090-5-5.303138+1 3.694578-5-5.191361+1 4.198899-5-4.710202+1 5.233838-5-3.240206+1 5.630336-5-2.835287+1 6.001135-5-2.584454+1 6.428484-5-2.439284+1 6.806978-5-2.447490+1 6.924655-5-2.501149+1 7.063354-5-2.394281+1 7.600204-5-2.421178+1 8.366819-5-2.468819+1 1.096850-4-2.921839+1 1.449138-4-3.197930+1 2.089296-4-3.337244+1 3.154618-4-3.512855+1 3.707728-4-3.813906+1 3.993573-4-4.160395+1 4.226688-4-4.711001+1 4.419247-4-5.559371+1 4.505812-4-5.571843+1 4.623811-4-5.105310+1 4.815000-4-4.181374+1 4.982586-4-3.667788+1 5.211754-4-3.249728+1 5.557753-4-2.853789+1 5.912166-4-2.642993+1 6.155392-4-2.672438+1 6.417084-4-2.396805+1 6.620254-4-2.215180+1 6.936274-4-1.945939+1 7.339721-4-1.737976+1 7.566292-4-1.688123+1 7.777147-4-1.533647+1 8.266920-4-1.315691+1 8.930162-4-1.111300+1 9.772372-4-9.282417+0 1.074608-3-7.871378+0 1.189947-3-6.774363+0 1.318257-3-6.039508+0 1.486577-3-5.512260+0 1.683643-3-5.286611+0 1.932038-3-5.326729+0 2.319897-3-5.818033+0 2.676076-3-6.646503+0 2.957801-3-7.672795+0 3.157598-3-8.802162+0 3.293823-3-1.000708+1 3.386421-3-1.131704+1 3.446342-3-1.277039+1 3.481118-3-1.433048+1 3.523912-3-1.674343+1 3.543937-3-1.687101+1 3.577794-3-1.533796+1 3.612753-3-1.378683+1 3.650492-3-1.310552+1 3.725560-3-1.342833+1 3.751558-3-1.286384+1 3.806871-3-1.087837+1 3.860502-3-9.762397+0 3.922251-3-9.151646+0 3.985583-3-9.041917+0 4.021601-3-8.484889+0 4.075069-3-7.337637+0 4.141537-3-6.377326+0 4.249714-3-5.300528+0 4.403013-3-4.203805+0 4.561025-3-3.373487+0 4.751984-3-2.614899+0 4.923913-3-2.093864+0 5.142312-3-1.586869+0 5.320623-3-1.262688+0 5.528128-3-9.610102-1 5.705760-3-7.562672-1 5.901501-3-5.679945-1 6.034273-3-4.629708-1 6.238125-3-3.291684-1 6.364291-3-2.583555-1 6.518292-3-1.835260-1 6.603964-3-1.466787-1 6.738170-3-9.629256-2 6.905982-3-4.534245-2 7.004899-3-1.921768-2 7.082985-3 3.028479-4 7.171748-3 2.121206-2 7.246164-3 3.650073-2 7.336159-3 5.231105-2 7.438301-3 6.767367-2 7.516499-3 7.784969-2 7.684666-3 9.403969-2 7.852356-3 1.060340-1 8.066398-3 1.150398-1 8.302817-3 1.177413-1 8.673230-3 1.143668-1 9.181108-3 9.057213-2 9.437955-3 7.390420-2 9.843607-3 4.083608-2 1.015803-2 1.212268-2 1.026594-2 1.256614-3 1.030752-2-2.865553-3 1.049760-2-2.180053-2 1.074842-2-4.833600-2 1.105987-2-7.961950-2 1.180980-2-1.615232-1 1.877548-2-9.462914-1 2.084184-2-1.216077+0 2.253777-2-1.498968+0 2.380393-2-1.793422+0 2.470880-2-2.102200+0 2.534696-2-2.431886+0 2.577272-2-2.772590+0 2.605156-2-3.131866+0 2.626046-2-3.582130+0 2.657473-2-4.454903+0 2.671035-2-4.536942+0 2.685142-2-4.290929+0 2.720211-2-3.216043+0 2.740000-2-2.806144+0 2.764514-2-2.464250+0 2.804259-2-2.086434+0 2.859938-2-1.717732+0 2.929623-2-1.389145+0 3.003157-2-1.135951+0 3.090295-2-9.109765-1 3.176311-2-7.408923-1 3.283557-2-5.745630-1 3.382351-2-4.520827-1 3.476930-2-3.551812-1 3.583490-2-2.650179-1 3.626777-2-2.337084-1 3.726936-2-1.707085-1 3.811241-2-1.268577-1 3.902708-2-8.600646-2 4.015954-2-4.242805-2 4.129881-2-6.016435-3 4.197288-2 1.128723-2 4.237116-2 2.165321-2 4.333228-2 4.154003-2 4.459773-2 6.400026-2 4.660744-2 8.907569-2 4.797528-2 1.022778-1 5.014632-2 1.160962-1 5.274073-2 1.261641-1 5.550252-2 1.292053-1 5.952767-2 1.246797-1 6.572694-2 1.097417-1 8.910870-2 2.426669-2 9.566134-2 2.214768-3 9.645829-2-3.279946-4 9.777898-2-4.503372-3 1.010489-1-1.444142-2 1.062368-1-2.967847-2 1.143208-1-5.121169-2 1.256527-1-7.744905-2 1.387784-1-1.028629-1 1.576080-1-1.320247-1 1.808542-1-1.593154-1 2.149226-1-1.878825-1 2.718155-1-2.176101-1 3.609027-1-2.422577-1 5.248075-1-2.616610-1 9.293673-1-2.748512-1 2.814822+0-2.803411-1 8.500626+0-2.809865-1 1.000000+1-2.808932-1 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.257282-2 1.066947-6 1.695170-2 1.119635-6 2.129651-2 1.144751-6 2.371259-2 1.216223-6 3.209211-2 1.260417-6 3.852746-2 1.301850-6 4.570665-2 1.340693-6 5.365113-2 1.377109-6 6.234312-2 1.411248-6 7.182952-2 1.443254-6 8.215408-2 1.473259-6 9.334643-2 1.501389-6 1.054293-1 1.527761-6 1.184059-1 1.552485-6 1.322990-1 1.575663-6 1.471774-1 1.597393-6 1.630942-1 1.617764-6 1.800950-1 1.636863-6 1.982295-1 1.654768-6 2.175514-1 1.671553-6 2.381184-1 1.687290-6 2.599892-1 1.702043-6 2.832163-1 1.715874-6 3.078566-1 1.728841-6 3.339898-1 1.740997-6 3.617108-1 1.752393-6 3.911142-1 1.763077-6 4.222923-1 1.773094-6 4.553387-1 1.782484-6 4.903504-1 1.791288-6 5.274276-1 1.799541-6 5.666744-1 1.807278-6 6.081980-1 1.814532-6 6.521099-1 1.821333-6 6.985265-1 1.827708-6 7.475714-1 1.833685-6 7.993757-1 1.839288-6 8.540764-1 1.844542-6 9.118135-1 1.849466-6 9.727287-1 1.854083-6 1.036969+0 1.858412-6 1.104695+0 1.862470-6 1.176096+0 1.870079-6 1.336534+0 1.876736-6 1.516448+0 1.882562-6 1.719225+0 1.887659-6 1.948021+0 1.892119-6 2.204461+0 1.896021-6 2.487662+0 1.899436-6 2.794032+0 1.902424-6 3.117805+0 1.905039-6 3.451980+0 1.907326-6 3.789288+0 1.909328-6 4.122965+0 1.912612-6 4.757577+0 1.917305-6 5.877556+0 1.925161-6 8.392290+0 1.928073-6 9.537956+0 1.930441-6 1.055016+1 1.932808-6 1.162887+1 1.937542-6 1.394802+1 1.938133-6 1.424926+1 1.942276-6 1.639090+1 1.943903-6 1.723364+1 1.947010-6 1.880960+1 1.948637-6 1.960356+1 1.950190-6 2.033182+1 1.952336-6 2.127708+1 1.954148-6 2.200915+1 1.956478-6 2.284335+1 1.958549-6 2.346870+1 1.960962-6 2.404212+1 1.963727-6 2.447401+1 1.966094-6 2.464042+1 1.966918-6 2.465301+1 1.969269-6 2.455903+1 1.971596-6 2.427803+1 1.972732-6 2.407452+1 1.974848-6 2.358394+1 1.977205-6 2.287672+1 1.980583-6 2.160038+1 1.982413-6 2.079767+1 1.983956-6 2.007056+1 1.985474-6 1.931727+1 1.987286-6 1.837727+1 1.989616-6 1.712110+1 1.991687-6 1.597694+1 1.993851-6 1.477169+1 1.996717-6 1.318700+1 1.999084-6 1.191082+1 2.001747-6 1.053189+1 2.003818-6 9.512517+0 2.008848-6 7.271328+0 2.009958-6 6.825889+0 2.011622-6 6.192364+0 2.013287-6 5.600659+0 2.015358-6 4.922421+0 2.018021-6 4.142964+0 2.020078-6 3.609304+0 2.022794-6 2.990579+0 2.024588-6 2.632188+0 2.026370-6 2.312458+0 2.028139-6 2.028709+0 2.029894-6 1.777623+0 2.033363-6 1.360911+0 2.036779-6 1.039149+0 2.040141-6 7.924329-1 2.043450-6 6.042057-1 2.048318-6 4.029453-1 2.053073-6 2.697057-1 2.057718-6 1.812789-1 2.062254-6 1.222737-1 2.066685-6 8.265903-2 2.069582-6 6.371177-2 2.073842-6 4.315480-2 2.080724-6 2.278768-2 2.083402-6 1.786188-2 2.084725-6 1.589747-2 2.086038-6 1.421885-2 2.087341-6 1.279657-2 2.089275-6 1.108954-2 2.090867-6 1.001190-2 2.091183-6 9.830401-3 2.092756-6 9.077938-3 2.094007-6 8.649116-3 2.095247-6 8.362220-3 2.096478-6 8.206738-3 2.097699-6 8.173624-3 2.100122-6 8.446405-3 2.102508-6 9.131737-3 2.104856-6 1.019206-2 2.107167-6 1.159883-2 2.109443-6 1.332939-2 2.113922-6 1.772623-2 2.118262-6 2.321915-2 2.122466-6 2.966215-2 2.187628-6 2.231662-1 2.195774-6 2.686784-1 2.202901-6 3.193755-1 2.209137-6 3.755470-1 2.214594-6 4.372701-1 2.219368-6 5.042612-1 2.223546-6 5.757677-1 2.227201-6 6.506082-1 2.230400-6 7.273296-1 2.233199-6 8.044002-1 2.237791-6 9.540228-1 2.244353-6 1.226339+0 2.252790-6 1.693545+0 2.256386-6 1.934727+0 2.258335-6 2.075591+0 2.261108-6 2.287251+0 2.263880-6 2.510735+0 2.269425-6 2.983830+0 2.270118-6 3.044508+0 2.274970-6 3.470214+0 2.276876-6 3.634685+0 2.280515-6 3.936638+0 2.282421-6 4.085426+0 2.284241-6 4.219456+0 2.286060-6 4.344230+0 2.288486-6 4.493806+0 2.290825-6 4.617216+0 2.292991-6 4.711022+0 2.294811-6 4.773285+0 2.297150-6 4.829675+0 2.300269-6 4.861228+0 2.302868-6 4.848141+0 2.303834-6 4.834079+0 2.306588-6 4.766797+0 2.309138-6 4.669555+0 2.311283-6 4.562996+0 2.313850-6 4.407967+0 2.316332-6 4.232246+0 2.319189-6 4.002855+0 2.321501-6 3.799702+0 2.322977-6 3.663354+0 2.325568-6 3.414439+0 2.328032-6 3.169971+0 2.330420-6 2.929518+0 2.332846-6 2.685185+0 2.335380-6 2.433367+0 2.338737-6 2.110652+0 2.341163-6 1.888509+0 2.343156-6 1.714558+0 2.345105-6 1.552719+0 2.347055-6 1.399743+0 2.352600-6 1.016353+0 2.354733-6 8.897440-1 2.356439-6 7.968037-1 2.358145-6 7.110660-1 2.360571-6 6.011249-1 2.363032-6 5.032888-1 2.365452-6 4.196453-1 2.367556-6 3.563042-1 2.369648-6 3.012838-1 2.371728-6 2.537781-1 2.374482-6 2.007858-1 2.377214-6 1.580366-1 2.380937-6 1.131007-1 2.385615-6 7.401659-2 2.386941-6 6.578718-2 2.388263-6 5.863401-2 2.389579-6 5.245883-2 2.390890-6 4.716391-2 2.392196-6 4.266014-2 2.393498-6 3.886658-2 2.394794-6 3.570984-2 2.396084-6 3.312363-2 2.398656-6 2.942416-2 2.401208-6 2.737060-2 2.403740-6 2.663328-2 2.406252-6 2.694987-2 2.408744-6 2.811276-2 2.411217-6 2.995831-2 2.413670-6 3.235778-2 2.418539-6 3.846134-2 2.423332-6 4.582284-2 2.428050-6 5.406791-2 2.432694-6 6.294973-2 2.437265-6 7.229868-2 2.446265-6 9.210720-2 2.454984-6 1.127062-1 2.463431-6 1.337325-1 2.471613-6 1.549801-1 2.487467-6 1.984284-1 2.502330-6 2.419188-1 2.530197-6 3.315050-1 2.578966-6 5.157747-1 2.615542-6 6.855999-1 2.663548-6 9.728568-1 2.702125-6 1.282812+0 2.731979-6 1.592470+0 2.752103-6 1.849998+0 2.765518-6 2.050312+0 2.778934-6 2.278718+0 2.792350-6 2.540902+0 2.799058-6 2.686843+0 2.812474-6 3.013923+0 2.825890-6 3.397493+0 2.836779-6 3.760715+0 2.843610-6 4.017409+0 2.850441-6 4.300270+0 2.859429-6 4.719206+0 2.868597-6 5.212477+0 2.877765-6 5.788520+0 2.884596-6 6.284478+0 2.891427-6 6.850958+0 2.898258-6 7.504474+0 2.905089-6 8.267667+0 2.911920-6 9.172383+0 2.920905-6 1.065703+1 2.928767-6 1.234675+1 2.935646-6 1.425549+1 2.941665-6 1.637884+1 2.946931-6 1.869175+1 2.951539-6 2.115193+1 2.955572-6 2.370657+1 2.959100-6 2.629968+1 2.964888-6 3.139582+1 2.971389-6 3.857831+1 2.985418-6 6.049647+1 2.990506-6 7.086439+1 2.992766-6 7.589212+1 2.996440-6 8.459893+1 3.000114-6 9.392905+1 3.007462-6 1.141693+2 3.008381-6 1.168171+2 3.014811-6 1.357781+2 3.017337-6 1.433111+2 3.022796-6 1.593716+2 3.025188-6 1.661824+2 3.027359-6 1.721722+2 3.030920-6 1.814894+2 3.033646-6 1.880911+2 3.035872-6 1.930748+2 3.038794-6 1.989810+2 3.042552-6 2.053793+2 3.046806-6 2.108028+2 3.050050-6 2.135231+2 3.053061-6 2.148916+2 3.056710-6 2.150195+2 3.059429-6 2.140182+2 3.066589-6 2.070298+2 3.070060-6 2.015187+2 3.073596-6 1.946333+2 3.076224-6 1.887768+2 3.079654-6 1.803053+2 3.082700-6 1.721244+2 3.084659-6 1.665972+2 3.086617-6 1.608991+2 3.088873-6 1.541653+2 3.091834-6 1.451315+2 3.095641-6 1.333503+2 3.099315-6 1.219889+2 3.102989-6 1.108115+2 3.107123-6 9.864373+1 3.110338-6 8.958720+1 3.117686-6 7.058016+1 3.121530-6 6.170286+1 3.127676-6 4.913309+1 3.132382-6 4.086075+1 3.135318-6 3.627411+1 3.138662-6 3.156373+1 3.142960-6 2.626163+1 3.147119-6 2.187418+1 3.152466-6 1.718776+1 3.158338-6 1.310540+1 3.165886-6 9.180698+0 3.173528-6 6.368950+0 3.184991-6 3.660066+0 3.193196-6 2.453852+0 3.201339-6 1.643032+0 3.208669-6 1.139739+0 3.214024-6 8.711271-1 3.219380-6 6.678670-1 3.227022-6 4.692395-1 3.234664-6 3.599423-1 3.238485-6 3.352912-1 3.240395-6 3.302182-1 3.242306-6 3.299800-1 3.244565-6 3.359992-1 3.245005-6 3.379752-1 3.246552-6 3.470331-1 3.247816-6 3.569031-1 3.248763-6 3.657914-1 3.249474-6 3.733067-1 3.251073-6 3.929296-1 3.252106-6 4.076514-1 3.253044-6 4.224384-1 3.254685-6 4.516639-1 3.259609-6 5.665581-1 3.263611-6 6.930631-1 3.275616-6 1.294141+0 3.281619-6 1.752830+0 3.283620-6 1.934638+0 3.291623-6 2.832656+0 3.300032-6 4.128590+0 3.303029-6 4.693800+0 3.307496-6 5.649568+0 3.312162-6 6.804763+0 3.316377-6 7.995731+0 3.318885-6 8.774111+0 3.323433-6 1.032079+1 3.326491-6 1.146006+1 3.329549-6 1.267817+1 3.337704-6 1.629011+1 3.338724-6 1.677556+1 3.345859-6 2.034306+1 3.348663-6 2.180724+1 3.354779-6 2.505928+1 3.358951-6 2.727247+1 3.362460-6 2.909395+1 3.366215-6 3.096915+1 3.370263-6 3.286668+1 3.374436-6 3.464290+1 3.378195-6 3.605058+1 3.379323-6 3.643228+1 3.383493-6 3.766510+1 3.387416-6 3.854588+1 3.389981-6 3.896492+1 3.393764-6 3.934639+1 3.397223-6 3.944259+1 3.399440-6 3.937660+1 3.403142-6 3.904644+1 3.406841-6 3.844947+1 3.408325-6 3.813791+1 3.413288-6 3.681614+1 3.417173-6 3.550725+1 3.420937-6 3.404010+1 3.424366-6 3.256032+1 3.428216-6 3.076701+1 3.431431-6 2.918734+1 3.435566-6 2.708219+1 3.440490-6 2.452015+1 3.443721-6 2.283766+1 3.448308-6 2.048373+1 3.451876-6 1.870547+1 3.460031-6 1.490332+1 3.463421-6 1.345547+1 3.469892-6 1.093827+1 3.474729-6 9.277861+0 3.478051-6 8.247459+0 3.482805-6 6.925562+0 3.487362-6 5.819205+0 3.490290-6 5.186908+0 3.493127-6 4.629429+0 3.498536-6 3.705207+0 3.503613-6 2.987173+0 3.508454-6 2.420004+0 3.512991-6 1.978432+0 3.517245-6 1.632873+0 3.524973-6 1.145319+0 3.535050-6 7.170192-1 3.581057-6 2.453815-1 3.581332-6 2.473914-1 3.589871-6 3.437223-1 3.592075-6 3.806023-1 3.595380-6 4.466762-1 3.598685-6 5.269740-1 3.607500-6 8.233436-1 3.611907-6 1.024599+0 3.616314-6 1.267508+0 3.620721-6 1.556946+0 3.625128-6 1.897740+0 3.628482-6 2.194301+0 3.632793-6 2.626152+0 3.636282-6 3.019381+0 3.638771-6 3.324596+0 3.642503-6 3.821959+0 3.646236-6 4.367254+0 3.650258-6 5.008256+0 3.651599-6 5.233998+0 3.660543-6 6.884090+0 3.661661-6 7.106476+0 3.669486-6 8.742022+0 3.672561-6 9.412995+0 3.678430-6 1.071382+1 3.681037-6 1.129139+1 3.683401-6 1.181083+1 3.687280-6 1.264546+1 3.690250-6 1.326232+1 3.692675-6 1.374698+1 3.695859-6 1.435087+1 3.699952-6 1.506224+1 3.703769-6 1.564715+1 3.705821-6 1.592623+1 3.711062-6 1.651338+1 3.715154-6 1.683564+1 3.719460-6 1.703650+1 3.723529-6 1.709145+1 3.732373-6 1.675811+1 3.734819-6 1.656029+1 3.741567-6 1.579800+1 3.745357-6 1.524472+1 3.748315-6 1.475901+1 3.752542-6 1.399483+1 3.755939-6 1.333152+1 3.757977-6 1.291666+1 3.760450-6 1.239968+1 3.763696-6 1.170422+1 3.767870-6 1.079341+1 3.772342-6 9.813104+0 3.776255-6 8.965077+0 3.777931-6 8.607202+0 3.781844-6 7.790541+0 3.785757-6 7.006123+0 3.794701-6 5.367653+0 3.797743-6 4.866449+0 3.801214-6 4.331611+0 3.806420-6 3.605015+0 3.810325-6 3.119435+0 3.814756-6 2.628458+0 3.817666-6 2.339375+0 3.821826-6 1.969857+0 3.825837-6 1.659201+0 3.829483-6 1.412749+0 3.834680-6 1.115226+0 3.836412-6 1.028868+0 3.841031-6 8.267330-1 3.845650-6 6.613081-1 3.854888-6 4.207987-1 3.864126-6 2.725719-1 3.866436-6 2.466867-1 3.869900-6 2.148727-1 3.873365-6 1.906945-1 3.875674-6 1.784629-1 3.879138-6 1.655438-1 3.880871-6 1.614201-1 3.882603-6 1.588086-1 3.886644-6 1.585086-1 3.890379-6 1.654659-1 3.891841-6 1.701254-1 3.892689-6 1.733421-1 3.893738-6 1.778514-1 3.897943-6 2.020822-1 3.900289-6 2.201353-1 3.901079-6 2.269984-1 3.905707-6 2.756808-1 3.909163-6 3.223710-1 3.914936-6 4.231503-1 3.923062-6 6.224822-1 3.927663-6 7.708269-1 3.932471-6 9.574823-1 3.936310-6 1.132212+0 3.938032-6 1.218448+0 3.945748-6 1.669618+0 3.949606-6 1.937197+0 3.953464-6 2.234162+0 3.957849-6 2.608136+0 3.962235-6 3.020959+0 3.966505-6 3.459614+0 3.972907-6 4.181128+0 3.974126-6 4.326639+0 3.982662-6 5.406445+0 3.986015-6 5.854259+0 3.992416-6 6.730719+0 3.995090-6 7.100313+0 3.999286-6 7.677629+0 4.001289-6 7.949882+0 4.004293-6 8.351493+0 4.007297-6 8.741976+0 4.011043-6 9.208179+0 4.014103-6 9.567470+0 4.018119-6 1.000340+1 4.022798-6 1.045083+1 4.028429-6 1.088789+1 4.032544-6 1.112827+1 4.034447-6 1.121513+1 4.038662-6 1.135031+1 4.041190-6 1.139258+1 4.044705-6 1.140207+1 4.051650-6 1.125250+1 4.054985-6 1.110319+1 4.059628-6 1.081620+1 4.063639-6 1.049944+1 4.066418-6 1.024586+1 4.072568-6 9.598223+0 4.077180-6 9.048158+0 4.081060-6 8.553289+0 4.085211-6 8.000738+0 4.088389-6 7.567485+0 4.092931-6 6.942103+0 4.097675-6 6.292494+0 4.099439-6 6.054433+0 4.104457-6 5.394392+0 4.109474-6 4.768811+0 4.114617-6 4.173466+0 4.119794-6 3.629081+0 4.130030-6 2.732450+0 4.138799-6 2.159216+0 4.143092-6 1.941022+0 4.144539-6 1.876099+0 4.149435-6 1.686612+0 4.152294-6 1.596007+0 4.155022-6 1.522026+0 4.157889-6 1.456333+0 4.160217-6 1.411238+0 4.162853-6 1.368223+0 4.165976-6 1.327106+0 4.169454-6 1.292080+0 4.173262-6 1.264415+0 4.176061-6 1.249779+0 4.180100-6 1.235077+0 4.186875-6 1.221264+0 4.199788-6 1.203897+0 4.210910-6 1.175629+0 4.215813-6 1.157261+0 4.223713-6 1.121708+0 4.239705-6 1.046016+0 4.245322-6 1.025794+0 4.250828-6 1.012760+0 4.256394-6 1.008416+0 4.261067-6 1.012904+0 4.265919-6 1.026410+0 4.268707-6 1.038550+0 4.272413-6 1.059870+0 4.282445-6 1.148459+0 4.287765-6 1.213890+0 4.291148-6 1.261949+0 4.298760-6 1.387188+0 4.315110-6 1.718758+0 4.321169-6 1.853655+0 4.327817-6 2.001629+0 4.332906-6 2.111189+0 4.338394-6 2.222104+0 4.344113-6 2.326068+0 4.349146-6 2.404901+0 4.355684-6 2.485991+0 4.360666-6 2.529621+0 4.362438-6 2.541112+0 4.368481-6 2.563975+0 4.373207-6 2.564254+0 4.375535-6 2.558844+0 4.381629-6 2.528269+0 4.387242-6 2.481027+0 4.394116-6 2.402634+0 4.400696-6 2.312099+0 4.408433-6 2.195029+0 4.425047-6 1.951424+0 4.429181-6 1.900433+0 4.436656-6 1.823993+0 4.441796-6 1.784838+0 4.454080-6 1.739007+0 4.459098-6 1.739281+0 4.468184-6 1.764614+0 4.475170-6 1.802158+0 4.484165-6 1.866758+0 4.502746-6 2.022036+0 4.512281-6 2.095078+0 4.515699-6 2.118250+0 4.525654-6 2.174378+0 4.530583-6 2.195488+0 4.541396-6 2.226764+0 4.546353-6 2.234979+0 4.558041-6 2.242994+0 4.590040-6 2.232572+0 4.610912-6 2.218598+0 4.622966-6 2.199668+0 4.634765-6 2.166839+0 4.644157-6 2.128630+0 4.654899-6 2.071915+0 4.663231-6 2.019707+0 4.669123-6 1.979469+0 4.679127-6 1.907098+0 4.711391-6 1.675725+0 4.725325-6 1.590835+0 4.735845-6 1.535206+0 4.745766-6 1.489339+0 4.762509-6 1.425100+0 4.771724-6 1.395876+0 4.789185-6 1.350222+0 4.807097-6 1.313985+0 4.830860-6 1.278484+0 4.849445-6 1.258731+0 4.870432-6 1.244183+0 4.889161-6 1.239477+0 4.904075-6 1.243788+0 4.915990-6 1.254584+0 4.925101-6 1.268576+0 4.934213-6 1.288585+0 4.945006-6 1.321338+0 4.952747-6 1.351596+0 4.957354-6 1.372485+0 4.980604-6 1.512996+0 4.991070-6 1.595900+0 5.002250-6 1.697756+0 5.013324-6 1.811682+0 5.029159-6 1.995812+0 5.080088-6 2.739058+0 5.120000-6 3.473672+0 5.172009-6 4.653706+0 5.205288-6 5.568879+0 5.278372-6 8.153391+0 5.336675-6 1.098766+1 5.393554-6 1.471409+1 5.421907-6 1.705573+1 5.445929-6 1.936640+1 5.466254-6 2.160414+1 5.488001-6 2.434263+1 5.519082-6 2.902378+1 5.539062-6 3.263323+1 5.559043-6 3.684091+1 5.577297-6 4.133561+1 5.590157-6 4.496065+1 5.607882-6 5.072960+1 5.624112-6 5.700377+1 5.634046-6 6.143744+1 5.652673-6 7.135275+1 5.668971-6 8.236060+1 5.683232-6 9.453408+1 5.695710-6 1.078574+2 5.708563-6 1.250549+2 5.716182-6 1.373344+2 5.724541-6 1.529561+2 5.733795-6 1.732925+2 5.743856-6 1.996048+2 5.757332-6 2.427832+2 5.783947-6 3.590461+2 5.792287-6 4.043916+2 5.797292-6 4.335452+2 5.804409-6 4.773211+2 5.811526-6 5.234859+2 5.825760-6 6.209300+2 5.827539-6 6.333921+2 5.839994-6 7.205138+2 5.844887-6 7.539939+2 5.854229-6 8.151024+2 5.859122-6 8.449920+2 5.863792-6 8.717484+2 5.868463-6 8.964704+2 5.874690-6 9.257752+2 5.880696-6 9.495323+2 5.888925-6 9.739822+2 5.895430-6 9.860424+2 5.898711-6 9.895467+2 5.906495-6 9.907060+2 5.912472-6 9.846613+2 5.919744-6 9.692296+2 5.926060-6 9.488461+2 5.930500-6 9.308229+2 5.937467-6 8.968298+2 5.943886-6 8.599182+2 5.948495-6 8.305275+2 5.955175-6 7.843064+2 5.959984-6 7.488734+2 5.963536-6 7.217899+2 5.968992-6 6.790820+2 5.974674-6 6.337441+2 5.981259-6 5.809388+2 5.988565-6 5.231808+2 5.995445-6 4.706839+2 6.005468-6 3.996199+2 6.019202-6 3.171428+2 6.025485-6 2.866315+2 6.027962-6 2.760124+2 6.033618-6 2.549707+2 6.036446-6 2.461930+2 6.039719-6 2.375498+2 6.042197-6 2.321197+2 6.043865-6 2.290182+2 6.046085-6 2.255946+2 6.053508-6 2.201997+2 6.056366-6 2.206966+2 6.058661-6 2.221688+2 6.061659-6 2.255624+2 6.064748-6 2.308427+2 6.067917-6 2.381861+2 6.070977-6 2.471706+2 6.072274-6 2.515550+2 6.074788-6 2.610389+2 6.079502-6 2.824159+2 6.087751-6 3.315510+2 6.093938-6 3.786588+2 6.102058-6 4.545291+2 6.115588-6 6.183303+2 6.123060-6 7.297322+2 6.127544-6 8.038932+2 6.135066-6 9.406975+2 6.142589-6 1.092824+3 6.158574-6 1.463950+3 6.160337-6 1.508518+3 6.173619-6 1.863233+3 6.178468-6 1.999463+3 6.187724-6 2.265617+3 6.195364-6 2.487654+3 6.199067-6 2.594788+3 6.204650-6 2.754420+3 6.210410-6 2.915114+3 6.217815-6 3.112828+3 6.224397-6 3.277244+3 6.231670-6 3.443163+3 6.233800-6 3.488160+3 6.242616-6 3.654598+3 6.249920-6 3.765835+3 6.257886-6 3.856723+3 6.265067-6 3.909730+3 6.270041-6 3.929859+3 6.277498-6 3.934351+3 6.282579-6 3.919902+3 6.293981-6 3.837707+3 6.301143-6 3.753103+3 6.308085-6 3.649241+3 6.315726-6 3.512952+3 6.323131-6 3.362148+3 6.329713-6 3.215486+3 6.336060-6 3.065277+3 6.345698-6 2.825793+3 6.353221-6 2.633630+3 6.361684-6 2.416500+3 6.368266-6 2.249560+3 6.383311-6 1.883985+3 6.388483-6 1.765665+3 6.398356-6 1.552806+3 6.411521-6 1.298552+3 6.430759-6 9.911120+2 6.449495-6 7.616598+2 6.461864-6 6.434676+2 6.468012-6 5.932779+2 6.475823-6 5.367941+2 6.486338-6 4.721111+2 6.498443-6 4.112882+2 6.510454-6 3.626568+2 6.522371-6 3.235416+2 6.534195-6 2.917878+2 6.545927-6 2.657063+2 6.557566-6 2.439998+2 6.569115-6 2.256870+2 6.580574-6 2.100321+2 6.591943-6 1.964851+2 6.616450-6 1.723853+2 6.636713-6 1.563609+2 6.658574-6 1.419486+2 6.680094-6 1.299946+2 6.701277-6 1.199243+2 6.722130-6 1.113329+2 6.742656-6 1.039243+2 6.768131-6 9.591418+1 6.782753-6 9.181474+1 6.821912-6 8.228347+1 6.859847-6 7.465488+1 6.896597-6 6.842589+1 6.934508-6 6.294833+1 6.966687-6 5.891241+1 7.011507-6 5.404718+1 7.063820-6 4.925159+1 7.124571-6 4.460297+1 7.181525-6 4.094418+1 7.234920-6 3.800412+1 7.284977-6 3.560138+1 7.349368-6 3.291242+1 7.419897-6 3.037218+1 7.496890-6 2.799515+1 7.584954-6 2.568165+1 7.623206-6 2.478766+1 7.742946-6 2.232084+1 7.803733-6 2.122837+1 7.933286-6 1.919451+1 8.114955-6 1.679070+1 8.431422-6 1.324415+1 8.533009-6 1.211408+1 8.609199-6 1.120406+1 8.666342-6 1.043629+1 8.709199-6 9.775313+0 8.741341-6 9.210940+0 8.765448-6 8.743486+0 8.797089-6 8.081203+0 8.837770-6 7.226714+0 8.859523-6 6.843760+0 8.870399-6 6.695682+0 8.881276-6 6.588801+0 8.891606-6 6.534761+0 8.903029-6 6.540203+0 8.924782-6 6.784575+0 8.931551-6 6.933786+0 8.934285-6 7.004945+0 8.953427-6 7.690954+0 8.960947-6 8.055342+0 8.976670-6 8.997877+0 8.987085-6 9.756923+0 9.007284-6 1.151969+1 9.031422-6 1.405150+1 9.040931-6 1.514128+1 9.051870-6 1.643298+1 9.062808-6 1.774274+1 9.075113-6 1.920622+1 9.084684-6 2.031444+1 9.106560-6 2.265197+1 9.109295-6 2.291812+1 9.128436-6 2.457159+1 9.135956-6 2.510857+1 9.150312-6 2.593731+1 9.160567-6 2.636419+1 9.169460-6 2.662099+1 9.175222-6 2.673147+1 9.184643-6 2.681935+1 9.194065-6 2.679629+1 9.205003-6 2.663898+1 9.215941-6 2.635370+1 9.232348-6 2.571913+1 9.237817-6 2.546084+1 9.259693-6 2.425175+1 9.272830-6 2.343101+1 9.292508-6 2.213996+1 9.355440-6 1.824037+1 9.366637-6 1.765193+1 9.389030-6 1.659371+1 9.410583-6 1.571956+1 9.440609-6 1.470838+1 9.478604-6 1.369372+1 9.545784-6 1.232032+1 9.650642-6 1.058213+1 9.669176-6 1.031624+1 9.698149-6 9.953918+0 9.723994-6 9.711220+0 9.740574-6 9.608684+0 9.764373-6 9.549102+0 9.776273-6 9.561833+0 9.795373-6 9.644080+0 9.807973-6 9.739472+0 9.817423-6 9.831350+0 9.838685-6 1.009469+1 9.866155-6 1.052139+1 9.907170-6 1.121148+1 9.930969-6 1.156054+1 9.938087-6 1.164938+1 9.959441-6 1.186043+1 9.972103-6 1.194155+1 9.981600-6 1.197945+1 9.995844-6 1.199911+1 1.001009-5 1.197542+1 1.003070-5 1.187133+1 1.004997-5 1.171215+1 1.007449-5 1.144978+1 1.013003-5 1.079195+1 1.015339-5 1.055542+1 1.016779-5 1.043287+1 1.018938-5 1.028595+1 1.021097-5 1.018242+1 1.023610-5 1.010900+1 1.028440-5 1.005769+1 1.034607-5 1.002404+1 1.041095-5 9.919700+0 1.127351-5 8.039584+0 1.154936-5 7.509605+0 1.182764-5 6.998850+0 1.207476-5 6.599611+0 1.235176-5 6.159678+0 1.262476-5 5.724078+0 1.291962-5 5.250034+0 1.314944-5 4.879101+0 1.342429-5 4.445602+0 1.366686-5 4.077068+0 1.400393-5 3.587084+0 1.438307-5 3.057815+0 1.471777-5 2.613575+0 1.511506-5 2.128153+0 1.549294-5 1.698867+0 1.578305-5 1.365768+0 1.594043-5 1.190845+0 1.616095-5 9.573888-1 1.634698-5 7.715112-1 1.650384-5 6.235939-1 1.666974-5 4.778477-1 1.682647-5 3.528714-1 1.697109-5 2.513564-1 1.710778-5 1.701392-1 1.723594-5 1.095475-1 1.729586-5 8.727476-2 1.735608-5 6.930442-2 1.746872-5 4.907877-2 1.757431-5 4.851900-2 1.764385-5 5.960557-2 1.767331-5 6.739257-2 1.776612-5 1.053910-1 1.785312-5 1.621196-1 1.794351-5 2.467122-1 1.797293-5 2.806471-1 1.800997-5 3.282261-1 1.806644-5 4.115007-1 1.811429-5 4.920004-1 1.817852-5 6.117145-1 1.823880-5 7.293961-1 1.829536-5 8.337748-1 1.834845-5 9.145266-1 1.840996-5 9.723911-1 1.844723-5 9.834849-1 1.850360-5 9.625802-1 1.855347-5 9.081263-1 1.860842-5 8.165679-1 1.865837-5 7.144636-1 1.869289-5 6.390785-1 1.871890-5 5.821633-1 1.874636-5 5.238853-1 1.879624-5 4.287130-1 1.881886-5 3.926859-1 1.884007-5 3.644835-1 1.885996-5 3.439764-1 1.889725-5 3.248602-1 1.892987-5 3.345741-1 1.895842-5 3.694100-1 1.898340-5 4.253433-1 1.900525-5 4.982684-1 1.902438-5 5.841732-1 1.905784-5 7.960482-1 1.908294-5 1.019439+0 1.910177-5 1.232382+0 1.915824-5 2.186798+0 1.918182-5 2.771940+0 1.920540-5 3.503663+0 1.922898-5 4.413393+0 1.925256-5 5.537928+0 1.927613-5 6.919782+0 1.929971-5 8.607349+0 1.932329-5 1.065485+1 1.934687-5 1.312197+1 1.937044-5 1.607313+1 1.939402-5 1.957626+1 1.940581-5 2.155662+1 1.942349-5 2.483773+1 1.944118-5 2.851723+1 1.946150-5 3.327454+1 1.948764-5 4.027954+1 1.950609-5 4.586284+1 1.952085-5 5.071959+1 1.953560-5 5.593189+1 1.955959-5 6.516725+1 1.958357-5 7.533519+1 1.963154-5 9.826155+1 1.963753-5 1.013427+2 1.967950-5 1.239251+2 1.969599-5 1.331425+2 1.972747-5 1.509128+2 1.974381-5 1.600699+2 1.976130-5 1.696827+2 1.977558-5 1.773118+2 1.979432-5 1.869069+2 1.981240-5 1.955830+2 1.983166-5 2.040585+2 1.984903-5 2.109002+2 1.987137-5 2.184112+2 1.989685-5 2.249966+2 1.991775-5 2.286767+2 1.992918-5 2.300000+2 1.995301-5 2.311544+2 1.997282-5 2.304591+2 1.998962-5 2.287148+2 2.001166-5 2.248877+2 2.003245-5 2.197905+2 2.004015-5 2.175681+2 2.006888-5 2.078615+2 2.008934-5 1.998173+2 2.011145-5 1.903382+2 2.013576-5 1.793180+2 2.016687-5 1.648958+2 2.023452-5 1.358426+2 2.025871-5 1.272086+2 2.028396-5 1.195678+2 2.030496-5 1.143959+2 2.031474-5 1.123699+2 2.033369-5 1.091432+2 2.035548-5 1.065666+2 2.037394-5 1.053004+2 2.039080-5 1.048361+2 2.040397-5 1.049012+2 2.045015-5 1.076470+2 2.048068-5 1.110809+2 2.055815-5 1.220073+2 2.058214-5 1.251756+2 2.063313-5 1.302875+2 2.063892-5 1.306864+2 2.068411-5 1.322782+2 2.070151-5 1.321339+2 2.071730-5 1.316320+2 2.074320-5 1.300586+2 2.076435-5 1.281132+2 2.079211-5 1.247336+2 2.081888-5 1.206911+2 2.085252-5 1.147149+2 2.087724-5 1.098308+2 2.091432-5 1.019754+2 2.092668-5 9.926578+1 2.097612-5 8.826979+1 2.100084-5 8.281097+1 2.103792-5 7.484609+1 2.108089-5 6.612591+1 2.111130-5 6.036977+1 2.116935-5 5.044763+1 2.121960-5 4.301877+1 2.137035-5 2.656989+1 2.144215-5 2.122752+1 2.151640-5 1.694375+1 2.156910-5 1.450670+1 2.162180-5 1.246715+1 2.172720-5 9.287097+0 2.184898-5 6.625739+0 2.193800-5 5.120728+0 2.204340-5 3.674395+0 2.209610-5 3.071696+0 2.214880-5 2.554040+0 2.220268-5 2.125689+0 2.222785-5 1.965892+0 2.225420-5 1.829511+0 2.227243-5 1.755131+0 2.230569-5 1.664856+0 2.233895-5 1.637756+0 2.235574-5 1.649502+0 2.237252-5 1.678899+0 2.242732-5 1.900617+0 2.244102-5 1.986116+0 2.248212-5 2.311757+0 2.250236-5 2.507825+0 2.255957-5 3.167488+0 2.259115-5 3.580581+0 2.261533-5 3.909464+0 2.263507-5 4.180766+0 2.264988-5 4.383215+0 2.266932-5 4.644361+0 2.268806-5 4.887835+0 2.271761-5 5.246337+0 2.272701-5 5.352099+0 2.275153-5 5.604918+0 2.276653-5 5.741054+0 2.279045-5 5.925002+0 2.280839-5 6.034021+0 2.282121-5 6.095770+0 2.286905-5 6.201683+0 2.288784-5 6.188674+0 2.292372-5 6.080892+0 2.293310-5 6.035668+0 2.294952-5 5.940760+0 2.297414-5 5.763888+0 2.299877-5 5.551306+0 2.301252-5 5.419808+0 2.303313-5 5.209080+0 2.305375-5 4.986646+0 2.308775-5 4.608305+0 2.314242-5 4.022653+0 2.319709-5 3.545717+0 2.323522-5 3.318330+0 2.325483-5 3.242321+0 2.326416-5 3.216672+0 2.329213-5 3.181669+0 2.331179-5 3.195321+0 2.333533-5 3.253045+0 2.335299-5 3.325180+0 2.336536-5 3.389877+0 2.338481-5 3.514006+0 2.340460-5 3.666333+0 2.342348-5 3.833780+0 2.345761-5 4.181850+0 2.351835-5 4.893597+0 2.355568-5 5.347230+0 2.356429-5 5.449885+0 2.359330-5 5.782823+0 2.361505-5 6.014449+0 2.364276-5 6.279241+0 2.366317-5 6.448097+0 2.367261-5 6.517753+0 2.372504-5 6.797417+0 2.373253-5 6.821591+0 2.378496-5 6.876079+0 2.380920-5 6.834380+0 2.383293-5 6.754787+0 2.385546-5 6.646186+0 2.387214-5 6.546764+0 2.390133-5 6.338253+0 2.392322-5 6.157108+0 2.395606-5 5.854300+0 2.398923-5 5.522069+0 2.403371-5 5.057510+0 2.406770-5 4.704190+0 2.413085-5 4.092631+0 2.418511-5 3.646560+0 2.421231-5 3.457684+0 2.424921-5 3.241069+0 2.429390-5 3.039681+0 2.432679-5 2.931752+0 2.436893-5 2.838103+0 2.440081-5 2.795922+0 2.442548-5 2.777425+0 2.446131-5 2.768330+0 2.451235-5 2.781645+0 2.457600-5 2.821693+0 2.469222-5 2.900493+0 2.477215-5 2.933733+0 2.485870-5 2.948067+0 2.516535-5 2.946950+0 2.534995-5 2.969529+0 2.552858-5 3.011229+0 2.571025-5 3.074041+0 2.587500-5 3.152385+0 2.602618-5 3.244515+0 2.610492-5 3.300397+0 2.630873-5 3.469429+0 2.651427-5 3.674969+0 2.672141-5 3.920168+0 2.703851-5 4.375903+0 2.713894-5 4.542243+0 2.734526-5 4.919139+0 2.770000-5 5.680311+0 2.792904-5 6.251926+0 2.870000-5 8.645383+0 2.903224-5 9.877670+0 3.069901-5 1.841605+1 3.162278-5 2.541383+1 3.223445-5 3.108454+1 3.300000-5 3.948462+1 3.360357-5 4.725018+1 3.406349-5 5.390986+1 3.476519-5 6.534480+1 3.548369-5 7.866627+1 3.609940-5 9.150822+1 3.677704-5 1.072092+2 3.745467-5 1.244410+2 3.816600-5 1.442605+2 3.869950-5 1.602324+2 3.951010-5 1.863054+2 4.030000-5 2.137208+2 4.120287-5 2.470095+2 4.163949-5 2.638295+2 4.236942-5 2.927970+2 4.307898-5 3.216155+2 4.385000-5 3.532457+2 4.460000-5 3.840245+2 4.536450-5 4.152116+2 4.610441-5 4.447693+2 4.690757-5 4.759211+2 4.754507-5 4.996776+2 4.846439-5 5.322830+2 4.954502-5 5.677957+2 5.013750-5 5.858956+2 5.110000-5 6.130741+2 5.207073-5 6.372439+2 5.322050-5 6.619711+2 5.425000-5 6.806962+2 5.530853-5 6.962493+2 5.650000-5 7.096988+2 5.705002-5 7.143440+2 5.833611-5 7.222185+2 5.942772-5 7.261735+2 6.058222-5 7.273946+2 6.165950-5 7.259907+2 6.237348-5 7.238282+2 6.356663-5 7.181590+2 6.456543-5 7.114282+2 6.569447-5 7.020905+2 6.692340-5 6.901268+2 6.839888-5 6.735006+2 6.962195-5 6.583074+2 7.098163-5 6.401972+2 7.244768-5 6.197265+2 7.372800-5 6.013015+2 7.520557-5 5.796513+2 7.649322-5 5.604015+2 7.932258-5 5.183697+2 8.114038-5 4.974449+2 8.153559-5 4.912416+2 8.230000-5 4.762404+2 8.268923-5 4.680524+2 8.351474-5 4.527172+2 8.403860-5 4.458864+2 8.482064-5 4.399075+2 8.674512-5 4.301909+2 8.790959-5 4.221866+2 8.858195-5 4.161469+2 8.985805-5 4.025501+2 9.085747-5 3.934608+2 9.376272-5 3.778893+2 9.517409-5 3.698284+2 9.837633-5 3.504939+2 1.174900-4 2.572607+2 1.210113-4 2.450347+2 1.231269-4 2.388724+2 1.246528-4 2.328814+2 1.268693-4 2.239035+2 1.276273-4 2.215482+2 1.293666-4 2.181742+2 1.340000-4 2.118800+2 1.400480-4 2.027929+2 1.447500-4 1.966435+2 1.488377-4 1.919923+2 1.555798-4 1.857016+2 1.656902-4 1.787454+2 1.761768-4 1.740414+2 1.883649-4 1.707687+2 2.000000-4 1.689358+2 2.440619-4 1.662307+2 2.555642-4 1.652501+2 2.707073-4 1.634112+2 2.823600-4 1.613338+2 2.968247-4 1.578593+2 3.149338-4 1.517971+2 3.294586-4 1.453765+2 3.425181-4 1.382669+2 3.533555-4 1.313821+2 3.651741-4 1.227079+2 3.742718-4 1.151588+2 3.841879-4 1.059929+2 3.912911-4 9.878429+1 3.968249-4 9.275530+1 4.036018-4 8.484266+1 4.109131-4 7.567986+1 4.125939-4 7.349197+1 4.181654-4 6.599290+1 4.224747-4 5.995484+1 4.254781-4 5.562672+1 4.301790-4 4.868080+1 4.355745-4 4.060456+1 4.377883-4 3.738169+1 4.466808-4 2.650531+1 4.481195-4 2.514951+1 4.496624-4 2.385063+1 4.511963-4 2.275744+1 4.526564-4 2.195396+1 4.537603-4 2.154160+1 4.548657-4 2.133745+1 4.559500-4 2.138437+1 4.568000-4 2.162673+1 4.574172-4 2.193484+1 4.579500-4 2.230179+1 4.585000-4 2.278924+1 4.591000-4 2.346014+1 4.596000-4 2.414124+1 4.600111-4 2.479168+1 4.605000-4 2.567993+1 4.610400-4 2.681725+1 4.617338-4 2.854088+1 4.621207-4 2.964082+1 4.629496-4 3.236076+1 4.639498-4 3.636654+1 4.649078-4 4.102662+1 4.655000-4 4.434563+1 4.663909-4 5.001473+1 4.697097-4 7.909354+1 4.705750-4 8.890522+1 4.715749-4 1.014421+2 4.726248-4 1.159954+2 4.738499-4 1.347554+2 4.755000-4 1.629417+2 4.768124-4 1.875907+2 4.778343-4 2.080269+2 4.793671-4 2.404705+2 4.809000-4 2.746903+2 4.819749-4 2.994984+2 4.830498-4 3.247824+2 4.839291-4 3.456982+2 4.851968-4 3.760135+2 4.863500-4 4.035410+2 4.870984-4 4.212803+2 4.880492-4 4.435738+2 4.890000-4 4.654985+2 4.900500-4 4.891653+2 4.911243-4 5.126655+2 4.929000-4 5.496330+2 4.945000-4 5.806419+2 4.958000-4 6.040628+2 4.973000-4 6.289880+2 4.990914-4 6.557027+2 5.000000-4 6.679673+2 5.020000-4 6.919456+2 5.035000-4 7.072943+2 5.050000-4 7.205245+2 5.066260-4 7.326728+2 5.093750-4 7.487256+2 5.114375-4 7.577279+2 5.135000-4 7.646829+2 5.174170-4 7.737564+2 5.242880-4 7.823064+2 5.623413-4 8.158609+2 5.848221-4 8.289316+2 5.985155-4 8.351699+2 6.108137-4 8.385464+2 6.237392-4 8.388696+2 6.332076-4 8.356349+2 6.477656-4 8.232548+2 6.520532-4 8.219398+2 6.555507-4 8.251622+2 6.592795-4 8.346531+2 6.620151-4 8.456888+2 6.720693-4 8.997041+2 6.774867-4 9.237507+2 6.826559-4 9.393859+2 6.940623-4 9.625313+2 7.000000-4 9.785536+2 7.108538-4 1.016849+3 7.191126-4 1.042058+3 7.271300-4 1.059364+3 7.381786-4 1.075962+3 7.522634-4 1.091561+3 7.691076-4 1.105416+3 7.912788-4 1.116830+3 7.967979-4 1.122253+3 8.164496-4 1.153054+3 8.271383-4 1.170782+3 8.355894-4 1.182706+3 8.490585-4 1.196935+3 8.656528-4 1.210432+3 8.975434-4 1.229792+3 9.508784-4 1.251871+3 1.000916-3 1.265912+3 1.062734-3 1.275833+3 1.143207-3 1.276254+3 1.262554-3 1.267330+3 1.386357-3 1.251882+3 1.487062-3 1.233338+3 1.676390-3 1.193793+3 1.837861-3 1.155685+3 2.007856-3 1.114998+3 2.207528-3 1.065252+3 2.316336-3 1.038543+3 2.427802-3 1.009309+3 2.550800-3 9.770642+2 2.668394-3 9.462197+2 2.785338-3 9.139559+2 2.900925-3 8.807597+2 3.003325-3 8.505136+2 3.096973-3 8.214377+2 3.180706-3 7.926655+2 3.257569-3 7.648056+2 3.322051-3 7.397918+2 3.371417-3 7.191214+2 3.426137-3 6.941127+2 3.471973-3 6.708770+2 3.511929-3 6.481111+2 3.541393-3 6.290373+2 3.568618-3 6.089576+2 3.593017-3 5.881737+2 3.613839-3 5.673871+2 3.630781-3 5.477353+2 3.643567-3 5.311882+2 3.670616-3 4.935627+2 3.686535-3 4.733813+2 3.698354-3 4.618388+2 3.705093-3 4.571933+2 3.710396-3 4.547048+2 3.716285-3 4.532407+2 3.723793-3 4.534337+2 3.733605-3 4.571332+2 3.739045-3 4.607591+2 3.750484-3 4.714871+2 3.765227-3 4.896666+2 3.786333-3 5.182700+2 3.802662-3 5.380636+2 3.813685-3 5.490401+2 3.826137-3 5.587636+2 3.839222-3 5.659729+2 3.853843-3 5.708260+2 3.868162-3 5.730998+2 3.904157-3 5.757499+2 3.913615-3 5.776737+2 3.924220-3 5.812438+2 3.934093-3 5.861411+2 3.943481-3 5.922658+2 3.953735-3 6.004827+2 3.975335-3 6.216174+2 3.995646-3 6.431999+2 4.010637-3 6.582335+2 4.025042-3 6.710597+2 4.038488-3 6.813053+2 4.057159-3 6.927686+2 4.079576-3 7.027973+2 4.102548-3 7.096838+2 4.141483-3 7.162108+2 4.175244-3 7.213210+2 4.205843-3 7.305322+2 4.229120-3 7.416571+2 4.285510-3 7.750025+2 4.306046-3 7.858205+2 4.326704-3 7.951140+2 4.351886-3 8.044526+2 4.378134-3 8.123889+2 4.416544-3 8.217857+2 4.501542-3 8.368372+2 4.594100-3 8.472868+2 4.705416-3 8.543492+2 4.885469-3 8.581444+2 5.063860-3 8.551341+2 5.249128-3 8.478103+2 5.479615-3 8.344662+2 5.787620-3 8.125552+2 6.095369-3 7.881447+2 6.588457-3 7.475012+2 7.226138-3 6.955594+2 7.977650-3 6.384375+2 8.941260-3 5.734870+2 1.017053-2 5.038168+2 1.172444-2 4.329252+2 1.269843-2 3.955818+2 1.372461-2 3.609321+2 1.481772-2 3.283064+2 1.599788-2 2.971531+2 1.724566-2 2.681132+2 1.865440-2 2.393528+2 2.007143-2 2.140818+2 2.158865-2 1.903759+2 2.291128-2 1.719444+2 2.397523-2 1.582296+2 2.483133-2 1.476167+2 2.550819-2 1.392440+2 2.605842-2 1.321924+2 2.648760-2 1.262666+2 2.671195-2 1.228578+2 2.687084-2 1.202085+2 2.700515-2 1.177331+2 2.711602-2 1.154656+2 2.726035-2 1.121453+2 2.749834-2 1.059853+2 2.764459-2 1.024686+2 2.774646-2 1.006270+2 2.783027-2 9.968840+1 2.790713-2 9.936204+1 2.800794-2 9.971876+1 2.812432-2 1.010826+2 2.829913-2 1.042586+2 2.845677-2 1.072916+2 2.858028-2 1.093299+2 2.874656-2 1.114122+2 2.892759-2 1.129129+2 2.919475-2 1.141584+2 2.950776-2 1.147992+2 2.990008-2 1.149366+2 3.057851-2 1.142032+2 3.122136-2 1.128405+2 3.226708-2 1.099032+2 3.354310-2 1.058023+2 3.532419-2 9.987767+1 3.729750-2 9.349281+1 4.017956-2 8.471779+1 4.375378-2 7.506212+1 4.845209-2 6.441314+1 5.250690-2 5.681309+1 5.656924-2 5.033967+1 6.222730-2 4.287794+1 7.078559-2 3.431385+1 8.685679-2 2.388046+1 1.118302-1 1.517728+1 1.364935-1 1.054372+1 1.722132-1 6.847563+0 2.084965-1 4.774101+0 2.732936-1 2.840964+0 3.904474-1 1.420664+0 5.835280-1 6.459392-1 9.633741-1 2.395241-1 2.039158+0 5.377540-2 6.158159+0 5.905792-3 1.859734+1 6.476733-4 5.616308+1 7.101737-5 1.696098+2 7.786916-6 5.122134+2 8.538186-7 1.584893+3 8.917999-8 5.011872+3 8.917999-9 1.584893+4 8.91800-10 5.011872+4 8.91800-11 1.000000+5 2.24010-11 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.328500-6 1.258900-6 2.105500-6 1.584900-6 3.337100-6 1.995300-6 5.288900-6 2.511900-6 8.382300-6 3.162300-6 1.328500-5 3.981100-6 2.105500-5 5.011900-6 3.337000-5 6.309600-6 5.288700-5 7.943300-6 8.382000-5 1.000000-5 1.328400-4 1.258900-5 2.105400-4 1.584900-5 3.336800-4 1.995300-5 5.288300-4 2.511900-5 8.381200-4 3.162300-5 1.328100-3 3.981100-5 2.103900-3 5.011900-5 3.332800-3 6.309600-5 5.280200-3 7.943300-5 8.365900-3 1.000000-4 1.324700-2 1.258900-4 2.096500-2 1.584900-4 3.313800-2 1.995300-4 5.232700-2 2.511900-4 8.241700-2 3.162300-4 1.294000-1 3.981100-4 2.020700-1 5.011900-4 3.123500-1 6.309600-4 4.762600-1 7.943300-4 7.125700-1 1.000000-3 1.040800+0 1.258900-3 1.476500+0 1.584900-3 2.028000+0 1.995300-3 2.699900+0 2.511900-3 3.499500+0 3.162300-3 4.444400+0 3.981100-3 5.556200+0 5.011900-3 6.847600+0 6.309600-3 8.329400+0 7.943300-3 1.001200+1 1.000000-2 1.185700+1 1.258900-2 1.372900+1 1.584900-2 1.551900+1 1.995300-2 1.719300+1 2.511900-2 1.871400+1 3.162300-2 2.001700+1 3.981100-2 2.105100+1 5.011900-2 2.162100+1 6.309600-2 2.211200+1 7.943300-2 2.208300+1 1.000000-1 2.170500+1 1.258900-1 2.104200+1 1.584900-1 2.014000+1 1.995300-1 1.906000+1 2.511900-1 1.785700+1 3.162300-1 1.657800+1 3.981100-1 1.527200+1 5.011900-1 1.397300+1 6.309600-1 1.270200+1 7.943300-1 1.147400+1 1.000000+0 1.029900+1 1.258900+0 9.186000+0 1.584900+0 8.141300+0 1.995300+0 7.168700+0 2.511900+0 6.272200+0 3.162300+0 5.453900+0 3.981100+0 4.714400+0 5.011900+0 4.052200+0 6.309600+0 3.465200+0 7.943300+0 2.948800+0 1.000000+1 2.498300+0 1.258900+1 2.108100+0 1.584900+1 1.772300+0 1.995300+1 1.485100+0 2.511900+1 1.240700+0 3.162300+1 1.033700+0 3.981100+1 8.591500-1 5.011900+1 7.125000-1 6.309600+1 5.896900-1 7.943300+1 4.871600-1 1.000000+2 4.018000-1 1.258900+2 3.308900-1 1.584900+2 2.721100-1 1.995300+2 2.235000-1 2.511900+2 1.833500-1 3.162300+2 1.502500-1 3.981100+2 1.230000-1 5.011900+2 1.006000-1 6.309600+2 8.221100-2 7.943300+2 6.712600-2 1.000000+3 5.476700-2 1.258900+3 4.465100-2 1.584900+3 3.637800-2 1.995300+3 2.962000-2 2.511900+3 2.410200-2 3.162300+3 1.960100-2 3.981100+3 1.593100-2 5.011900+3 1.294200-2 6.309600+3 1.050900-2 7.943300+3 8.528600-3 1.000000+4 6.918400-3 1.258900+4 5.609800-3 1.584900+4 4.546800-3 1.995300+4 3.683800-3 2.511900+4 2.983400-3 3.162300+4 2.415300-3 3.981100+4 1.954600-3 5.011900+4 1.581300-3 6.309600+4 1.278900-3 7.943300+4 1.033900-3 1.000000+5 8.356400-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510162-4 3.162278-4 3.159549-4 3.981072-4 3.976756-4 5.011872-4 5.005058-4 6.309573-4 6.298831-4 7.943282-4 7.926385-4 1.000000-3 9.973489-4 1.258925-3 1.254778-3 1.584893-3 1.578414-3 1.995262-3 1.985188-3 2.511886-3 2.496199-3 3.162278-3 3.137814-3 3.981072-3 3.942860-3 5.011872-3 4.952148-3 6.309573-3 6.216224-3 7.943282-3 7.797456-3 1.000000-2 9.772829-3 1.258925-2 1.223749-2 1.584893-2 1.530720-2 1.995262-2 1.912085-2 2.511886-2 2.384511-2 3.162278-2 2.967926-2 3.981072-2 3.685792-2 5.011872-2 4.565885-2 6.309573-2 5.642126-2 7.943282-2 6.950655-2 1.000000-1 8.537459-2 1.258925-1 1.045212-1 1.584893-1 1.275212-1 1.995262-1 1.550608-1 2.511886-1 1.879308-1 3.162278-1 2.270110-1 3.981072-1 2.733347-1 5.011872-1 3.280718-1 6.309573-1 3.926452-1 7.943282-1 4.685833-1 1.000000+0 5.580420-1 1.258925+0 6.634881-1 1.584893+0 7.877597-1 1.995262+0 9.348398-1 2.511886+0 1.109366+0 3.162278+0 1.317085+0 3.981072+0 1.565061+0 5.011872+0 1.861847+0 6.309573+0 2.218021+0 7.943282+0 2.646509+0 1.000000+1 3.163141+0 1.258925+1 3.787181+0 1.584893+1 4.542330+0 1.995262+1 5.457539+0 2.511886+1 6.568191+0 3.162278+1 7.918260+0 3.981072+1 9.560864+0 5.011872+1 1.156153+1 6.309573+1 1.400113+1 7.943282+1 1.697878+1 1.000000+2 2.061616+1 1.258925+2 2.506336+1 1.584893+2 3.050495+1 1.995262+2 3.716863+1 2.511886+2 4.533345+1 3.162278+2 5.534609+1 3.981072+2 6.763045+1 5.011872+2 8.271386+1 6.309573+2 1.012430+2 7.943282+2 1.240187+2 1.000000+3 1.520273+2 1.258925+3 1.864923+2 1.584893+3 2.289188+2 1.995262+3 2.811704+2 2.511886+3 3.455624+2 3.162278+3 4.249383+2 3.981072+3 5.228232+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739828-9 3.981072-5 4.341846-9 5.011872-5 6.880966-9 6.309573-5 1.090525-8 7.943282-5 1.728311-8 1.000000-4 2.738561-8 1.258925-4 4.339204-8 1.584893-4 6.873688-8 1.995262-4 1.088762-7 2.511886-4 1.724069-7 3.162278-4 2.728724-7 3.981072-4 4.315655-7 5.011872-4 6.814607-7 6.309573-4 1.074244-6 7.943282-4 1.689778-6 1.000000-3 2.651077-6 1.258925-3 4.147042-6 1.584893-3 6.479132-6 1.995262-3 1.007397-5 2.511886-3 1.568746-5 3.162278-3 2.446375-5 3.981072-3 3.821144-5 5.011872-3 5.972479-5 6.309573-3 9.334951-5 7.943282-3 1.458264-4 1.000000-2 2.271710-4 1.258925-2 3.517659-4 1.584893-2 5.417362-4 1.995262-2 8.317704-4 2.511886-2 1.273759-3 3.162278-2 1.943512-3 3.981072-2 2.952792-3 5.011872-2 4.459878-3 6.309573-2 6.674470-3 7.943282-2 9.926278-3 1.000000-1 1.462541-2 1.258925-1 2.137137-2 1.584893-1 3.096810-2 1.995262-1 4.446541-2 2.511886-1 6.325784-2 3.162278-1 8.921674-2 3.981072-1 1.247725-1 5.011872-1 1.731154-1 6.309573-1 2.383122-1 7.943282-1 3.257450-1 1.000000+0 4.419580-1 1.258925+0 5.954373-1 1.584893+0 7.971335-1 1.995262+0 1.060423+0 2.511886+0 1.402520+0 3.162278+0 1.845193+0 3.981072+0 2.416010+0 5.011872+0 3.150025+0 6.309573+0 4.091553+0 7.943282+0 5.296774+0 1.000000+1 6.836859+0 1.258925+1 8.802074+0 1.584893+1 1.130660+1 1.995262+1 1.449508+1 2.511886+1 1.855067+1 3.162278+1 2.370452+1 3.981072+1 3.024985+1 5.011872+1 3.855719+1 6.309573+1 4.909460+1 7.943282+1 6.245405+1 1.000000+2 7.938384+1 1.258925+2 1.008292+2 1.584893+2 1.279844+2 1.995262+2 1.623576+2 2.511886+2 2.058552+2 3.162278+2 2.608817+2 3.981072+2 3.304767+2 5.011872+2 4.184734+2 6.309573+2 5.297144+2 7.943282+2 6.703095+2 1.000000+3 8.479727+2 1.258925+3 1.072433+3 1.584893+3 1.355974+3 1.995262+3 1.714092+3 2.511886+3 2.166324+3 3.162278+3 2.737339+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.580000-6 1.404274+7 4.910000-6 1.204291+7 4.910000-6 1.912184+7 5.128614-6 1.742098+7 5.248075-6 1.656984+7 5.754399-6 1.353213+7 6.309573-6 1.098167+7 6.531306-6 1.014614+7 6.918310-6 8.871610+6 7.244360-6 7.958281+6 7.700000-6 6.875406+6 8.128305-6 6.029491+6 8.511380-6 5.381978+6 9.015711-6 4.661333+6 9.440609-6 4.147348+6 1.000000-5 3.577885+6 1.035142-5 3.269598+6 1.083000-5 2.901978+6 1.083000-5 4.605254+6 1.109175-5 4.197370+6 1.110000-5 4.185289+6 1.150000-5 3.648980+6 1.190000-5 3.198262+6 1.230269-5 2.817000+6 1.258925-5 2.580213+6 1.270000-5 2.496040+6 1.310000-5 2.219883+6 1.350000-5 1.984033+6 1.364583-5 1.906348+6 1.388400-5 1.788061+6 1.396368-5 1.750511+6 1.420000-5 1.645287+6 1.450000-5 1.523887+6 1.485000-5 1.397667+6 1.513561-5 1.305431+6 1.515000-5 1.300996+6 1.548817-5 1.202307+6 1.550000-5 1.199044+6 1.584893-5 1.107920+6 1.621810-5 1.022141+6 1.659587-5 9.441860+5 1.698244-5 8.733024+5 1.710000-5 8.531739+5 1.717908-5 8.400149+5 1.770000-5 7.600134+5 1.800000-5 7.191947+5 1.822000-5 6.914195+5 1.840772-5 6.690507+5 1.860000-5 6.473262+5 1.877000-5 6.290600+5 1.892000-5 6.136358+5 1.905461-5 6.003201+5 1.920000-5 5.864716+5 1.927525-5 5.795275+5 1.935000-5 5.726145+5 1.950000-5 5.591795+5 1.965000-5 5.462687+5 1.980000-5 5.338577+5 1.995262-5 5.217189+5 2.010000-5 5.104436+5 2.025000-5 4.993979+5 2.041738-5 4.875607+5 2.055000-5 4.785310+5 2.070000-5 4.686735+5 2.090000-5 4.560892+5 2.113489-5 4.420794+5 2.140000-5 4.271994+5 2.162719-5 4.151887+5 2.170000-5 4.114336+5 2.238721-5 3.790590+5 2.317395-5 3.475304+5 2.371374-5 3.288698+5 2.426610-5 3.118858+5 2.458000-5 3.030400+5 2.458000-5 3.725746+6 2.483133-5 3.691306+6 2.511886-5 3.668263+6 2.520000-5 3.661877+6 2.540973-5 3.655979+6 2.549000-5 3.653747+6 2.549000-5 5.816975+6 2.550000-5 5.816105+6 2.580000-5 5.804600+6 2.600160-5 5.811932+6 2.610000-5 5.815536+6 2.640000-5 5.848652+6 2.660725-5 5.887847+6 2.670000-5 5.905416+6 2.685000-5 5.940110+6 2.700000-5 5.980979+6 2.722701-5 6.053811+6 2.730000-5 6.079956+6 2.740000-5 6.115846+6 2.770000-5 6.240925+6 2.786121-5 6.315412+6 2.800000-5 6.387380+6 2.815000-5 6.465776+6 2.830000-5 6.550048+6 2.851018-5 6.680687+6 2.870000-5 6.806437+6 2.884032-5 6.900473+6 2.900000-5 7.017647+6 2.945000-5 7.372861+6 2.951209-5 7.426006+6 3.000000-5 7.870440+6 3.040000-5 8.283220+6 3.060000-5 8.495912+6 3.080000-5 8.719513+6 3.126079-5 9.274933+6 3.162278-5 9.741916+6 3.198895-5 1.024868+7 3.230000-5 1.070489+7 3.300000-5 1.179162+7 3.350000-5 1.264179+7 3.467369-5 1.483293+7 3.507519-5 1.564895+7 3.548134-5 1.651083+7 3.590900-5 1.743576+7 3.672823-5 1.932251+7 3.730000-5 2.066887+7 3.770000-5 2.165361+7 3.845918-5 2.352992+7 3.850000-5 2.363425+7 3.900000-5 2.486442+7 3.950000-5 2.614241+7 4.027170-5 2.806266+7 4.030000-5 2.813501+7 4.073803-5 2.918128+7 4.120975-5 3.033880+7 4.168694-5 3.144494+7 4.180000-5 3.171107+7 4.265795-5 3.359195+7 4.350000-5 3.527670+7 4.420000-5 3.653278+7 4.466836-5 3.726484+7 4.500000-5 3.778746+7 4.518559-5 3.803298+7 4.570882-5 3.872863+7 4.650000-5 3.958039+7 4.677351-5 3.979993+7 4.731513-5 4.023460+7 4.800000-5 4.058769+7 4.820000-5 4.069054+7 4.900000-5 4.087163+7 4.920000-5 4.088394+7 4.954502-5 4.086316+7 5.000000-5 4.083612+7 5.011872-5 4.080805+7 5.069907-5 4.060656+7 5.110000-5 4.046942+7 5.188000-5 4.001771+7 5.190000-5 4.000628+7 5.300000-5 3.914073+7 5.308844-5 3.905159+7 5.370318-5 3.844168+7 5.400000-5 3.815314+7 5.500000-5 3.700700+7 5.623413-5 3.541840+7 5.650000-5 3.503524+7 5.688529-5 3.449051+7 5.730000-5 3.391772+7 5.754399-5 3.356963+7 5.821032-5 3.257015+7 5.850000-5 3.214845+7 5.888437-5 3.157615+7 5.956621-5 3.052654+7 6.025596-5 2.947025+7 6.095369-5 2.838856+7 6.165950-5 2.730369+7 6.237348-5 2.620422+7 6.309573-5 2.510972+7 6.382635-5 2.401069+7 6.456542-5 2.292417+7 6.531306-5 2.184214+7 6.606934-5 2.077954+7 6.683439-5 1.972912+7 6.760830-5 1.870328+7 6.839116-5 1.769648+7 6.850000-5 1.756176+7 6.918310-5 1.672350+7 7.000000-5 1.575338+7 7.079458-5 1.485490+7 7.161434-5 1.396638+7 7.244360-5 1.311338+7 7.328245-5 1.229189+7 7.350000-5 1.208888+7 7.413102-5 1.151159+7 7.500000-5 1.075199+7 7.585776-5 1.004841+7 7.673615-5 9.367034+6 7.800000-5 8.463468+6 7.900000-5 7.805854+6 8.000000-5 7.196813+6 8.035261-5 6.991122+6 8.128305-5 6.480317+6 8.230000-5 5.963565+6 8.317638-5 5.548879+6 8.387000-5 5.240004+6 8.387000-5 6.004968+6 8.413951-5 5.891656+6 8.460000-5 5.701383+6 8.540000-5 5.385828+6 8.555000-5 5.328481+6 8.570000-5 5.271933+6 8.642100-5 5.007224+6 8.650000-5 4.978922+6 8.740000-5 4.665039+6 8.810489-5 4.434129+6 8.850000-5 4.309516+6 8.912509-5 4.119301+6 9.000000-5 3.866523+6 9.070000-5 3.676532+6 9.077000-5 3.657964+6 9.077000-5 3.996554+6 9.130000-5 3.864512+6 9.150000-5 3.815911+6 9.190000-5 3.719077+6 9.225714-5 3.634713+6 9.250000-5 3.578916+6 9.332543-5 3.396067+6 9.420000-5 3.212583+6 9.440609-5 3.170905+6 9.500000-5 3.052919+6 9.549926-5 2.957424+6 9.610000-5 2.846818+6 9.720000-5 2.656778+6 9.772372-5 2.571642+6 9.850000-5 2.450743+6 9.885531-5 2.397582+6 9.900000-5 2.376181+6 9.950000-5 2.304215+6 1.000000-4 2.235706+6 1.011579-4 2.086554+6 1.023293-4 1.948790+6 1.030000-4 1.874955+6 1.059254-4 1.597821+6 1.060000-4 1.591549+6 1.071519-4 1.500109+6 1.090000-4 1.370482+6 1.096478-4 1.329347+6 1.100000-4 1.308374+6 1.110000-4 1.251891+6 1.112700-4 1.237543+6 1.128000-4 1.161832+6 1.135011-4 1.130286+6 1.143000-4 1.097384+6 1.150000-4 1.070478+6 1.155000-4 1.052237+6 1.166400-4 1.013612+6 1.170000-4 1.002135+6 1.174898-4 9.874278+5 1.180000-4 9.730236+5 1.185000-4 9.595751+5 1.194000-4 9.371149+5 1.198000-4 9.276565+5 1.205000-4 9.121383+5 1.209000-4 9.036920+5 1.216186-4 8.895115+5 1.217000-4 8.880052+5 1.220000-4 8.826826+5 1.222200-4 8.788088+5 1.230269-4 8.656339+5 1.235000-4 8.583850+5 1.244515-4 8.448890+5 1.245000-4 8.442521+5 1.250000-4 8.381492+5 1.255000-4 8.321212+5 1.258925-4 8.276281+5 1.260000-4 8.265047+5 1.265000-4 8.216076+5 1.273503-4 8.138072+5 1.276400-4 8.114323+5 1.279000-4 8.094517+5 1.279000-4 9.847281+5 1.280000-4 9.839422+5 1.288250-4 9.777365+5 1.290000-4 9.765757+5 1.304600-4 9.678452+5 1.318257-4 9.623119+5 1.322000-4 9.610964+5 1.335000-4 9.578449+5 1.340000-4 9.568593+5 1.350000-4 9.555156+5 1.350900-4 9.554579+5 1.358000-4 9.552792+5 1.365000-4 9.554840+5 1.380384-4 9.566119+5 1.385000-4 9.572029+5 1.390000-4 9.580101+5 1.400000-4 9.599304+5 1.412538-4 9.632789+5 1.428894-4 9.684651+5 1.430000-4 9.688258+5 1.445440-4 9.746679+5 1.462177-4 9.813208+5 1.465000-4 9.825604+5 1.513561-4 1.006611+6 1.531087-4 1.016239+6 1.548817-4 1.025751+6 1.560000-4 1.032122+6 1.566751-4 1.035904+6 1.584893-4 1.046516+6 1.611900-4 1.061766+6 1.621810-4 1.067286+6 1.635000-4 1.074891+6 1.659587-4 1.088415+6 1.678804-4 1.098797+6 1.698244-4 1.108803+6 1.701200-4 1.110299+6 1.705000-4 1.112261+6 1.720000-4 1.119674+6 1.760000-4 1.138223+6 1.778279-4 1.146444+6 1.800000-4 1.155151+6 1.819701-4 1.162652+6 1.820000-4 1.162768+6 1.862087-4 1.177602+6 1.880000-4 1.183568+6 1.883649-4 1.184646+6 1.905461-4 1.190932+6 1.930000-4 1.197240+6 1.972423-4 1.206668+6 2.000000-4 1.212126+6 2.041738-4 1.218809+6 2.065380-4 1.222018+6 2.089296-4 1.224275+6 2.113489-4 1.226312+6 2.137962-4 1.227800+6 2.162719-4 1.228441+6 2.190000-4 1.229094+6 2.220000-4 1.229211+6 2.264644-4 1.227919+6 2.317395-4 1.224653+6 2.350000-4 1.221766+6 2.371374-4 1.219404+6 2.400000-4 1.216298+6 2.426610-4 1.212728+6 2.454709-4 1.208856+6 2.483133-4 1.204187+6 2.511886-4 1.199550+6 2.540973-4 1.194203+6 2.570396-4 1.188787+6 2.600160-4 1.182933+6 2.630268-4 1.176971+6 2.660725-4 1.170379+6 2.691535-4 1.163589+6 2.722701-4 1.156392+6 2.730000-4 1.154723+6 2.754229-4 1.149160+6 2.786121-4 1.141252+6 2.818383-4 1.133403+6 2.900000-4 1.112876+6 2.951209-4 1.099199+6 3.019952-4 1.080539+6 3.054921-4 1.071331+6 3.100000-4 1.059006+6 3.126079-4 1.051727+6 3.162278-4 1.041722+6 3.198895-4 1.031607+6 3.200000-4 1.031305+6 3.273407-4 1.010436+6 3.349654-4 9.889686+5 3.388442-4 9.784076+5 3.430000-4 9.668418+5 3.467369-4 9.564970+5 3.589219-4 9.228233+5 3.600000-4 9.199560+5 3.630781-4 9.115167+5 3.672823-4 9.002243+5 3.715352-4 8.887776+5 3.758374-4 8.773090+5 3.801894-4 8.659091+5 3.850000-4 8.535505+5 3.935501-4 8.316632+5 4.100000-4 7.914904+5 4.120975-4 7.863757+5 4.168694-4 7.749575+5 4.265795-4 7.521638+5 4.315191-4 7.409775+5 4.365158-4 7.299594+5 4.466836-4 7.078281+5 4.500000-4 7.007289+5 4.518559-4 6.967878+5 4.530000-4 6.943470+5 4.530000-4 7.673784+5 4.537000-4 7.646035+5 4.542000-4 7.628902+5 4.548000-4 7.612216+5 4.552000-4 7.603504+5 4.557000-4 7.595485+5 4.562000-4 7.590775+5 4.568000-4 7.590044+5 4.574000-4 7.595274+5 4.579500-4 7.605869+5 4.585000-4 7.622624+5 4.591000-4 7.648797+5 4.596000-4 7.677644+5 4.600000-4 7.705796+5 4.605000-4 7.747922+5 4.610000-4 7.798493+5 4.610400-4 7.803110+5 4.610400-4 8.275796+5 4.615000-4 8.333146+5 4.620600-4 8.414775+5 4.623810-4 8.468690+5 4.627000-4 8.524985+5 4.635000-4 8.690997+5 4.640000-4 8.813661+5 4.644000-4 8.922030+5 4.645000-4 8.951377+5 4.650000-4 9.108801+5 4.655000-4 9.283379+5 4.660000-4 9.478297+5 4.666000-4 9.739730+5 4.671000-4 9.982758+5 4.677000-4 1.030779+6 4.677351-4 1.032750+6 4.683000-4 1.066105+6 4.688000-4 1.098738+6 4.689000-4 1.105657+6 4.692000-4 1.126361+6 4.697000-4 1.163478+6 4.702000-4 1.202713+6 4.704000-4 1.219425+6 4.708000-4 1.253255+6 4.711000-4 1.280229+6 4.714000-4 1.307430+6 4.718000-4 1.345903+6 4.721000-4 1.375021+6 4.726000-4 1.426809+6 4.731513-4 1.485293+6 4.733000-4 1.501834+6 4.735000-4 1.524727+6 4.742000-4 1.605837+6 4.750000-4 1.703403+6 4.755000-4 1.766558+6 4.757000-4 1.792791+6 4.765000-4 1.899140+6 4.774000-4 2.023171+6 4.775000-4 2.036942+6 4.783800-4 2.162967+6 4.785000-4 2.180144+6 4.786301-4 2.198716+6 4.792000-4 2.283025+6 4.800000-4 2.400925+6 4.803000-4 2.446685+6 4.807000-4 2.505679+6 4.815000-4 2.627659+6 4.823000-4 2.747234+6 4.826000-4 2.792906+6 4.832000-4 2.882386+6 4.835000-4 2.927205+6 4.841724-4 3.025938+6 4.845000-4 3.074158+6 4.850000-4 3.145199+6 4.858000-4 3.260029+6 4.865000-4 3.355578+6 4.869000-4 3.410208+6 4.873000-4 3.462756+6 4.880000-4 3.553780+6 4.883000-4 3.590973+6 4.890000-4 3.676449+6 4.895000-4 3.736805+6 4.897788-4 3.768444+6 4.900000-4 3.793818+6 4.907000-4 3.871538+6 4.911000-4 3.913298+6 4.923000-4 4.034707+6 4.935000-4 4.141314+6 4.940000-4 4.184076+6 4.945000-4 4.222679+6 4.954502-4 4.291981+6 4.958000-4 4.317906+6 4.973000-4 4.406810+6 4.980000-4 4.444940+6 4.985000-4 4.468272+6 5.000000-4 4.530761+6 5.016700-4 4.580102+6 5.020000-4 4.587882+6 5.035000-4 4.614270+6 5.050000-4 4.633009+6 5.069907-4 4.638020+6 5.070000-4 4.638044+6 5.080000-4 4.635977+6 5.090000-4 4.629974+6 5.120000-4 4.598551+6 5.135000-4 4.577187+6 5.150000-4 4.553563+6 5.190000-4 4.480794+6 5.300000-4 4.271066+6 5.370318-4 4.151793+6 5.432503-4 4.054780+6 5.495409-4 3.959760+6 5.500000-4 3.952955+6 5.821032-4 3.516684+6 5.900000-4 3.423787+6 5.956621-4 3.361167+6 6.000000-4 3.314340+6 6.095369-4 3.214818+6 6.200000-4 3.110654+6 6.237348-4 3.074700+6 6.309573-4 3.006799+6 6.350000-4 2.969782+6 6.456542-4 2.875341+6 6.531306-4 2.809928+6 6.606700-4 2.745027+6 6.606700-4 2.899837+6 6.608500-4 2.902455+6 6.611500-4 2.908331+6 6.614500-4 2.914020+6 6.619000-4 2.922018+6 6.623500-4 2.929425+6 6.628000-4 2.936322+6 6.633000-4 2.943244+6 6.637000-4 2.948308+6 6.642000-4 2.954011+6 6.648000-4 2.959914+6 6.655000-4 2.965579+6 6.661000-4 2.969453+6 6.669000-4 2.973311+6 6.677000-4 2.975782+6 6.683439-4 2.976745+6 6.685000-4 2.977000+6 6.695000-4 2.976947+6 6.700000-4 2.976073+6 6.707000-4 2.974910+6 6.719000-4 2.971109+6 6.735000-4 2.963894+6 6.750000-4 2.955459+6 6.760830-4 2.948368+6 6.772000-4 2.941086+6 6.800000-4 2.920738+6 6.850000-4 2.882266+6 6.918310-4 2.830340+6 6.996200-4 2.772915+6 6.996200-4 2.835031+6 6.998420-4 2.835599+6 7.000000-4 2.836247+6 7.001500-4 2.836909+6 7.005000-4 2.838270+6 7.008500-4 2.839498+6 7.013500-4 2.841009+6 7.018000-4 2.842113+6 7.023000-4 2.843074+6 7.027000-4 2.843656+6 7.032000-4 2.844101+6 7.038000-4 2.844256+6 7.045000-4 2.843964+6 7.052000-4 2.843182+6 7.060000-4 2.841724+6 7.067000-4 2.839978+6 7.075000-4 2.837499+6 7.085000-4 2.833789+6 7.095000-4 2.829477+6 7.110000-4 2.822123+6 7.127000-4 2.812805+6 7.142000-4 2.803947+6 7.161434-4 2.791894+6 7.190800-4 2.771653+6 7.244360-4 2.734062+6 7.300000-4 2.695891+6 7.413102-4 2.618971+6 7.500000-4 2.562176+6 7.540000-4 2.536681+6 7.585776-4 2.507633+6 7.673615-4 2.453301+6 7.762471-4 2.397681+6 7.852356-4 2.343403+6 8.035261-4 2.238515+6 8.112400-4 2.196387+6 8.112400-4 2.293999+6 8.222426-4 2.234022+6 8.413951-4 2.131644+6 8.550000-4 2.063223+6 8.609938-4 2.034321+6 8.709636-4 1.987476+6 8.810489-4 1.941017+6 8.912509-4 1.895130+6 9.000000-4 1.857047+6 9.015711-4 1.850331+6 9.225714-4 1.764001+6 9.350000-4 1.715665+6 9.440609-4 1.681556+6 9.549926-4 1.641751+6 9.660509-4 1.602112+6 9.700000-4 1.588296+6 9.885531-4 1.525123+6 1.000000-3 1.487899+6 1.011579-3 1.451645+6 1.023293-3 1.416315+6 1.035142-3 1.381350+6 1.047129-3 1.346714+6 1.059254-3 1.312981+6 1.070000-3 1.284120+6 1.083927-3 1.248008+6 1.109175-3 1.186326+6 1.110000-3 1.184390+6 1.122018-3 1.156682+6 1.135011-3 1.127508+6 1.150000-3 1.095003+6 1.161449-3 1.070907+6 1.170000-3 1.053411+6 1.174898-3 1.043557+6 1.188502-3 1.016883+6 1.230269-3 9.410763+5 1.244515-3 9.168777+5 1.258925-3 8.930543+5 1.273503-3 8.696814+5 1.288250-3 8.469586+5 1.318257-3 8.033474+5 1.333521-3 7.823590+5 1.348963-3 7.619327+5 1.364583-3 7.420678+5 1.380384-3 7.224999+5 1.412538-3 6.847880+5 1.428894-3 6.666725+5 1.445440-3 6.490492+5 1.462177-3 6.319216+5 1.479108-3 6.152637+5 1.500000-3 5.955330+5 1.513561-3 5.831324+5 1.531087-3 5.675189+5 1.548817-3 5.523201+5 1.584893-3 5.230346+5 1.603245-3 5.089959+5 1.621810-3 4.952979+5 1.640590-3 4.818919+5 1.659587-3 4.688691+5 1.678804-3 4.562138+5 1.698244-3 4.438356+5 1.757924-3 4.085980+5 1.798871-3 3.866812+5 1.800000-3 3.861014+5 1.819701-3 3.761826+5 1.840772-3 3.659208+5 1.862087-3 3.559292+5 1.883649-3 3.461534+5 1.905461-3 3.366612+5 1.927525-3 3.274359+5 1.949845-3 3.184286+5 1.950000-3 3.183673+5 2.000000-3 2.993874+5 2.018366-3 2.927780+5 2.041738-3 2.846680+5 2.065380-3 2.767926+5 2.089296-3 2.691339+5 2.113489-3 2.616530+5 2.137962-3 2.543916+5 2.150000-3 2.509150+5 2.162719-3 2.472993+5 2.213095-3 2.336931+5 2.238721-3 2.271857+5 2.264644-3 2.208289+5 2.317395-3 2.086647+5 2.398833-3 1.916255+5 2.400000-3 1.913962+5 2.426610-3 1.862199+5 2.454709-3 1.809674+5 2.483133-3 1.758689+5 2.500000-3 1.729198+5 2.540973-3 1.660463+5 2.630268-3 1.523724+5 2.660725-3 1.480401+5 2.722701-3 1.397552+5 2.754229-3 1.357772+5 2.786121-3 1.319187+5 2.818383-3 1.281498+5 2.851018-3 1.244867+5 2.951209-3 1.141375+5 3.019952-3 1.076887+5 3.054921-3 1.045989+5 3.090295-3 1.015979+5 3.126079-3 9.866659+4 3.198895-3 9.306743+4 3.273407-3 8.778604+4 3.300000-3 8.599766+4 3.349654-3 8.278259+4 3.400000-3 7.969572+4 3.427678-3 7.806401+4 3.467369-3 7.580455+4 3.548134-3 7.145766+4 3.589219-3 6.938308+4 3.630781-3 6.737030+4 3.672823-3 6.541773+4 3.715352-3 6.351614+4 3.728400-3 6.294846+4 3.728400-3 2.031777+5 3.758374-3 1.995549+5 3.813000-3 1.931777+5 3.845918-3 1.888951+5 3.890451-3 1.833080+5 3.942500-3 1.770477+5 3.942500-3 2.418548+5 4.027170-3 2.299874+5 4.050000-3 2.269330+5 4.073803-3 2.236159+5 4.100000-3 2.200403+5 4.168694-3 2.107715+5 4.213800-3 2.049792+5 4.213800-3 2.355941+5 4.244000-3 2.314696+5 4.280000-3 2.266864+5 4.315191-3 2.221944+5 4.365158-3 2.160278+5 4.415704-3 2.100285+5 4.466836-3 2.040918+5 4.518559-3 1.982881+5 4.570882-3 1.926038+5 4.677351-3 1.817235+5 4.786301-3 1.714740+5 4.800000-3 1.702440+5 4.897788-3 1.616470+5 4.954502-3 1.569337+5 5.000000-3 1.532902+5 5.069907-3 1.479204+5 5.128614-3 1.436150+5 5.233200-3 1.363687+5 5.248075-3 1.353731+5 5.308844-3 1.313937+5 5.432503-3 1.237865+5 5.500000-3 1.198949+5 5.559043-3 1.166268+5 5.623413-3 1.131974+5 5.688529-3 1.098703+5 5.754399-3 1.066418+5 5.821032-3 1.035081+5 5.888437-3 1.004685+5 6.025596-3 9.466118+4 6.165950-3 8.914513+4 6.237348-3 8.650893+4 6.309573-3 8.395996+4 6.382635-3 8.148507+4 6.531306-3 7.673569+4 6.606934-3 7.446617+4 6.683439-3 7.226556+4 6.918310-3 6.601122+4 6.998420-3 6.404981+4 7.000000-3 6.401196+4 7.161434-3 6.029852+4 7.244360-3 5.850057+4 7.328245-3 5.673935+4 7.413102-3 5.503249+4 7.498942-3 5.337592+4 7.500000-3 5.335594+4 7.585776-3 5.176980+4 7.852356-3 4.724237+4 7.943282-3 4.580431+4 8.128305-3 4.306192+4 8.317638-3 4.048736+4 8.413951-3 3.926009+4 8.511380-3 3.807027+4 8.609938-3 3.691714+4 8.709636-3 3.579999+4 8.912509-3 3.365223+4 9.015711-3 3.262522+4 9.225714-3 3.066643+4 9.332543-3 2.973242+4 9.500000-3 2.834669+4 9.549926-3 2.794727+4 9.660509-3 2.708961+4 9.772372-3 2.625596+4 1.011579-2 2.390978+4 1.023293-2 2.317194+4 1.035142-2 2.245693+4 1.047129-2 2.176454+4 1.050000-2 2.160311+4 1.071519-2 2.044461+4 1.080000-2 2.001177+4 1.096478-2 1.920621+4 1.100000-2 1.903991+4 1.109175-2 1.861596+4 1.122018-2 1.804439+4 1.150000-2 1.687269+4 1.161449-2 1.642059+4 1.174898-2 1.591021+4 1.188502-2 1.541614+4 1.202264-2 1.493773+4 1.216186-2 1.447406+4 1.230269-2 1.402493+4 1.244515-2 1.358828+4 1.258925-2 1.316563+4 1.273503-2 1.275636+4 1.303167-2 1.197652+4 1.318257-2 1.160329+4 1.333521-2 1.124165+4 1.348963-2 1.088981+4 1.380384-2 1.021964+4 1.396368-2 9.900419+3 1.412538-2 9.591408+3 1.445440-2 9.002230+3 1.462177-2 8.720906+3 1.500000-2 8.124884+3 1.513561-2 7.924715+3 1.531087-2 7.676019+3 1.548817-2 7.434103+3 1.566751-2 7.199992+3 1.584893-2 6.973449+3 1.621810-2 6.541832+3 1.640590-2 6.336403+3 1.659587-2 6.137088+3 1.678804-2 5.943989+3 1.698244-2 5.757110+3 1.717908-2 5.576277+3 1.737801-2 5.399738+3 1.757924-2 5.228931+3 1.778279-2 5.063634+3 1.800000-2 4.895091+3 1.819701-2 4.748170+3 1.840772-2 4.597703+3 1.862087-2 4.452050+3 1.905461-2 4.174792+3 1.927525-2 4.042860+3 1.949845-2 3.914846+3 1.982070-2 3.739512+3 2.000000-2 3.646562+3 2.018366-2 3.554637+3 2.041738-2 3.441381+3 2.065380-2 3.331808+3 2.089296-2 3.225783+3 2.113489-2 3.123212+3 2.137962-2 3.023565+3 2.213095-2 2.743618+3 2.238721-2 2.656327+3 2.290868-2 2.490185+3 2.317395-2 2.410980+3 2.344229-2 2.334168+3 2.371374-2 2.259330+3 2.426610-2 2.116922+3 2.454709-2 2.049182+3 2.483133-2 1.983662+3 2.511886-2 1.920255+3 2.570396-2 1.799158+3 2.660725-2 1.632002+3 2.691535-2 1.579855+3 2.722701-2 1.528994+3 2.754229-2 1.479803+3 2.786121-2 1.432224+3 2.792100-2 1.423539+3 2.792100-2 8.876918+3 2.800000-2 8.820838+3 2.827000-2 8.632963+3 2.851018-2 8.459534+3 2.865000-2 8.360852+3 2.884032-2 8.210966+3 2.917427-2 7.956735+3 2.930000-2 7.863806+3 2.985383-2 7.504584+3 3.019952-2 7.291868+3 3.090295-2 6.858299+3 3.126079-2 6.651073+3 3.162278-2 6.450114+3 3.198895-2 6.255215+3 3.235937-2 6.066225+3 3.273407-2 5.882976+3 3.349654-2 5.538957+3 3.427678-2 5.215138+3 3.467369-2 5.060391+3 3.548134-2 4.764593+3 3.589219-2 4.623277+3 3.630781-2 4.485927+3 3.672823-2 4.349187+3 3.715352-2 4.216621+3 3.758374-2 4.088081+3 3.801894-2 3.963475+3 3.890451-2 3.725588+3 3.935501-2 3.612073+3 3.981072-2 3.502028+3 4.168694-2 3.094491+3 4.216965-2 3.000269+3 4.265795-2 2.907152+3 4.315191-2 2.816914+3 4.365158-2 2.729489+3 4.415704-2 2.644759+3 4.518559-2 2.483078+3 4.570882-2 2.405995+3 4.677351-2 2.258958+3 4.731513-2 2.188851+3 4.786301-2 2.120929+3 4.954502-2 1.929586+3 5.128614-2 1.755344+3 5.188000-2 1.700842+3 5.248075-2 1.648024+3 5.308844-2 1.596852+3 5.495409-2 1.450237+3 5.559043-2 1.404426+3 5.623413-2 1.360055+3 5.821032-2 1.235183+3 5.888437-2 1.196167+3 6.165950-2 1.051908+3 6.382635-2 9.552552+2 6.606934-2 8.675032+2 6.683439-2 8.396839+2 6.760830-2 8.127579+2 7.079458-2 7.134326+2 7.413102-2 6.261690+2 7.498942-2 6.060724+2 7.673615-2 5.677973+2 7.762471-2 5.495778+2 7.943282-2 5.148768+2 8.035261-2 4.983583+2 8.317638-2 4.519181+2 8.609938-2 4.093580+2 9.015711-2 3.587375+2 9.332543-2 3.249234+2 9.440609-2 3.143767+2 9.660509-2 2.943009+2 9.772372-2 2.847497+2 9.885531-2 2.755088+2 1.059254-1 2.260376+2 1.083927-1 2.114900+2 1.122019-1 1.914086+2 1.135011-1 1.851475+2 1.161449-1 1.732334+2 1.202264-1 1.567861+2 1.244515-1 1.419015+2 1.288250-1 1.284337+2 1.303167-1 1.242351+2 1.318257-1 1.201738+2 1.333521-1 1.162456+2 1.348963-1 1.124457+2 1.364583-1 1.087703+2 1.380384-1 1.052152+2 1.396368-1 1.017750+2 1.513561-1 8.065021+1 1.531088-1 7.801451+1 1.566751-1 7.299900+1 1.584893-1 7.061361+1 1.640590-1 6.391532+1 1.659587-1 6.182706+1 1.678804-1 5.980709+1 1.717908-1 5.596364+1 1.737801-1 5.413556+1 1.778279-1 5.065685+1 1.798871-1 4.900224+1 1.840772-1 4.585408+1 1.883649-1 4.290838+1 1.927525-1 4.015203+1 1.949845-1 3.884105+1 1.972423-1 3.757294+1 2.018366-1 3.515997+1 2.065380-1 3.292256+1 2.113489-1 3.082830+1 2.137962-1 2.983233+1 2.187762-1 2.793591+1 2.213095-1 2.703346+1 2.238721-1 2.616020+1 2.264644-1 2.531519+1 2.265100-1 2.530065+1 2.290868-1 2.449746+1 2.344229-1 2.294070+1 2.371374-1 2.219996+1 2.398833-1 2.148319+1 2.454709-1 2.011836+1 2.483133-1 1.947673+1 2.511886-1 1.885558+1 2.540973-1 1.825424+1 2.600160-1 1.710859+1 2.630268-1 1.656376+1 2.660725-1 1.603646+1 2.722701-1 1.503195+1 2.786121-1 1.409038+1 2.818383-1 1.364195+1 2.851018-1 1.320781+1 2.884032-1 1.279399+1 2.951209-1 1.200490+1 2.985383-1 1.162886+1 3.000060-1 1.147229+1 3.054921-1 1.091188+1 3.126079-1 1.024017+1 3.162278-1 9.919989+0 3.235937-1 9.309565+0 3.273407-1 9.018603+0 3.311311-1 8.736796+0 3.349654-1 8.468406+0 3.388442-1 8.208273+0 3.427678-1 7.956183+0 3.467369-1 7.711833+0 3.507519-1 7.474994+0 3.548134-1 7.245440+0 3.589219-1 7.023332+0 3.630781-1 6.808029+0 3.672823-1 6.599454+0 3.715352-1 6.397271+0 3.758374-1 6.201281+0 3.801894-1 6.014773+0 3.845918-1 5.833904+0 3.890451-1 5.658492+0 3.935501-1 5.488360+0 3.981072-1 5.323347+0 4.027170-1 5.163331+0 4.073803-1 5.008429+0 4.120975-1 4.858183+0 4.216965-1 4.571188+0 4.265795-1 4.436825+0 4.315191-1 4.306416+0 4.365158-1 4.179844+0 4.415705-1 4.057026+0 4.518559-1 3.822119+0 4.570882-1 3.709819+0 4.623810-1 3.601066+0 4.677351-1 3.495546+0 4.786301-1 3.297877+0 4.897788-1 3.111430+0 4.954502-1 3.022205+0 5.011872-1 2.935542+0 5.069907-1 2.851365+0 5.128614-1 2.769604+0 5.188000-1 2.690391+0 5.248075-1 2.615194+0 5.370318-1 2.471082+0 5.495409-1 2.334911+0 5.559043-1 2.269672+0 5.623413-1 2.206261+0 5.688529-1 2.144624+0 5.754399-1 2.084722+0 5.888437-1 1.973068+0 6.000000-1 1.886497+0 6.025596-1 1.867396+0 6.095369-1 1.816702+0 6.165950-1 1.767391+0 6.237348-1 1.719422+0 6.382635-1 1.627375+0 6.456542-1 1.584523+0 6.531306-1 1.542799+0 6.683439-1 1.462619+0 6.760830-1 1.424107+0 6.839117-1 1.386614+0 6.918310-1 1.350117+0 6.998420-1 1.314582+0 7.079458-1 1.279989+0 7.085700-1 1.277451+0 7.328245-1 1.184481+0 7.413102-1 1.154260+0 7.498942-1 1.124811+0 7.585776-1 1.096123+0 7.673615-1 1.068167+0 7.852356-1 1.014386+0 7.943282-1 9.893006-1 8.035261-1 9.648353-1 8.128305-1 9.409751-1 8.222427-1 9.177049-1 8.317638-1 8.950167-1 8.413951-1 8.728899-1 8.511380-1 8.513127-1 8.609938-1 8.302713-1 8.709636-1 8.098127-1 8.810489-1 7.904776-1 8.912509-1 7.716044-1 9.015711-1 7.531828-1 9.120108-1 7.352057-1 9.225714-1 7.176577-1 9.440609-1 6.838153-1 9.549926-1 6.675566-1 9.660509-1 6.522192-1 9.772372-1 6.372345-1 9.885531-1 6.225951-1 1.000000+0 6.082977-1 1.011579+0 5.943337-1 1.023293+0 5.806906-1 1.035142+0 5.673622-1 1.047129+0 5.543389-1 1.059254+0 5.416161-1 1.071519+0 5.292108-1 1.083927+0 5.170948-1 1.096478+0 5.055055-1 1.122018+0 4.831002-1 1.135011+0 4.722727-1 1.148154+0 4.616890-1 1.161449+0 4.513454-1 1.174898+0 4.412380-1 1.188600+0 4.313270-1 1.202264+0 4.221289-1 1.216186+0 4.130623-1 1.230269+0 4.041936-1 1.258925+0 3.870242-1 1.288250+0 3.705871-1 1.303167+0 3.626333-1 1.318257+0 3.548502-1 1.333521+0 3.472345-1 1.348963+0 3.398008-1 1.364583+0 3.325286-1 1.396368+0 3.188196-1 1.412538+0 3.121795-1 1.462177+0 2.930789-1 1.479108+0 2.869761-1 1.500000+0 2.797127-1 1.513561+0 2.751662-1 1.531087+0 2.694580-1 1.548817+0 2.640669-1 1.566751+0 2.587842-1 1.603245+0 2.485335-1 1.621810+0 2.435620-1 1.640590+0 2.386906-1 1.678804+0 2.292402-1 1.717908+0 2.201931-1 1.737801+0 2.159401-1 1.757924+0 2.117695-1 1.778279+0 2.076798-1 1.819701+0 1.997354-1 1.840772+0 1.958792-1 1.862087+0 1.920975-1 1.905461+0 1.847530-1 1.949845+0 1.777117-1 1.972423+0 1.743974-1 1.995262+0 1.711451-1 2.000000+0 1.704826-1 2.018366+0 1.679535-1 2.044000+0 1.645233-1 2.065380+0 1.617484-1 2.089296+0 1.587331-1 2.162719+0 1.500222-1 2.213095+0 1.445011-1 2.238721+0 1.419056-1 2.264644+0 1.393566-1 2.290868+0 1.368535-1 2.317395+0 1.343954-1 2.344229+0 1.319820-1 2.371374+0 1.296122-1 2.454709+0 1.227566-1 2.511886+0 1.184031-1 2.540973+0 1.163532-1 2.570396+0 1.143389-1 2.600160+0 1.123594-1 2.630268+0 1.104143-1 2.660725+0 1.085032-1 2.691535+0 1.066254-1 2.786121+0 1.011860-1 2.884032+0 9.604047-2 2.917427+0 9.443574-2 2.951209+0 9.285781-2 2.985383+0 9.130626-2 3.019952+0 8.978068-2 3.054921+0 8.828088-2 3.090295+0 8.680632-2 3.235937+0 8.115143-2 3.349654+0 7.716620-2 3.388442+0 7.592152-2 3.427678+0 7.469696-2 3.467369+0 7.349218-2 3.507519+0 7.230685-2 3.548134+0 7.114086-2 3.589219+0 6.999382-2 3.758374+0 6.558856-2 3.890451+0 6.247742-2 3.935501+0 6.150372-2 4.000000+0 6.015467-2 4.027170+0 5.960168-2 4.073803+0 5.867284-2 4.120975+0 5.775867-2 4.168694+0 5.685883-2 4.216965+0 5.597320-2 4.415704+0 5.256654-2 4.570882+0 5.015586-2 4.623810+0 4.940042-2 4.677351+0 4.865636-2 4.731513+0 4.792351-2 4.786301+0 4.720173-2 4.841724+0 4.649093-2 4.897788+0 4.579093-2 4.954502+0 4.510160-2 5.248075+0 4.180757-2 5.432503+0 3.995338-2 5.495409+0 3.937110-2 5.559043+0 3.879732-2 5.623413+0 3.823192-2 5.688529+0 3.767477-2 5.754399+0 3.712583-2 5.821032+0 3.658495-2 5.888437+0 3.605206-2 6.237348+0 3.350184-2 6.456542+0 3.206335-2 6.606934+0 3.116389-2 6.683439+0 3.072367-2 6.760830+0 3.028967-2 6.839116+0 2.986182-2 6.918310+0 2.944007-2 7.000000+0 2.901623-2 7.161434+0 2.821051-2 7.673615+0 2.590345-2 7.943282+0 2.482473-2 8.128305+0 2.414970-2 8.222427+0 2.381911-2 8.317638+0 2.349305-2 8.413951+0 2.317152-2 8.511380+0 2.285441-2 8.709636+0 2.223328-2 9.332543+0 2.046938-2 9.660509+0 1.964275-2 9.885531+0 1.912299-2 1.000000+1 1.886829-2 1.011579+1 1.861700-2 1.035142+1 1.812439-2 1.047129+1 1.788302-2 1.071519+1 1.740997-2 1.109175+1 1.672385-2 1.161449+1 1.585091-2 1.188502+1 1.543265-2 1.200000+1 1.526112-2 1.202264+1 1.522776-2 1.230269+1 1.483428-2 1.258925+1 1.445099-2 1.273503+1 1.426307-2 1.288250+1 1.407760-2 1.318257+1 1.371387-2 1.333521+1 1.353555-2 1.348963+1 1.335956-2 1.364583+1 1.318588-2 1.400000+1 1.280746-2 1.479108+1 1.203192-2 1.500000+1 1.184217-2 1.513561+1 1.172205-2 1.566751+1 1.128312-2 1.584893+1 1.114050-2 1.603245+1 1.099968-2 1.621810+1 1.086064-2 1.659587+1 1.058781-2 1.678804+1 1.045400-2 1.698244+1 1.032188-2 1.800000+1 9.679303-3 2.000000+1 8.615947-3 2.018366+1 8.529574-3 2.041738+1 8.422062-3 2.089296+1 8.215129-3 2.113489+1 8.113577-3 2.137962+1 8.013283-3 2.213095+1 7.719778-3 2.264644+1 7.530131-3 2.290868+1 7.437066-3 2.454709+1 6.902425-3 2.722701+1 6.171663-3 2.754229+1 6.095567-3 2.786121+1 6.021686-3 2.851018+1 5.876600-3 2.884032+1 5.805372-3 2.917427+1 5.735011-3 2.951209+1 5.665503-3 3.090295+1 5.395791-3 3.198895+1 5.201987-3 3.235937+1 5.138948-3 3.548134+1 4.661440-3 3.890451+1 4.228304-3 3.935501+1 4.177088-3 3.981072+1 4.126580-3 4.027170+1 4.077485-3 4.120975+1 3.981041-3 4.168694+1 3.933678-3 4.265795+1 3.840639-3 4.315191+1 3.794947-3 4.518559+1 3.617553-3 4.731513+1 3.448465-3 4.841724+1 3.366914-3 5.432503+1 2.987225-3 6.165950+1 2.618833-3 6.309573+1 2.556924-3 6.382635+1 2.526563-3 6.456542+1 2.496956-3 6.606934+1 2.438779-3 6.683439+1 2.410200-3 6.760830+1 2.381957-3 6.918310+1 2.326461-3 6.998420+1 2.299199-3 7.079458+1 2.272257-3 7.498942+1 2.142209-3 7.762471+1 2.067787-3 7.852356+1 2.043560-3 8.035261+1 1.995954-3 8.912509+1 1.795099-3 1.011579+2 1.576852-3 1.047129+2 1.522086-3 1.083927+2 1.469272-3 1.122018+2 1.418717-3 1.174898+2 1.354005-3 1.216186+2 1.307416-3 1.244515+2 1.277251-3 1.333521+2 1.190869-3 1.364583+2 1.163393-3 1.412538+2 1.123363-3 1.496236+2 1.059684-3 1.548817+2 1.023224-3 1.566751+2 1.011353-3 1.603245+2 9.880209-4 1.778279+2 8.895157-4 2.018366+2 7.823573-4 2.089296+2 7.554450-4 2.162719+2 7.294749-4 2.238721+2 7.045402-4 2.344229+2 6.726146-4 2.426610+2 6.496236-4 2.483133+2 6.347345-4 2.660725+2 5.920838-4 2.722701+2 5.785137-4 2.818383+2 5.587392-4 2.985383+2 5.272724-4 3.090295+2 5.092501-4 3.126079+2 5.033807-4 3.198895+2 4.918440-4 3.548134+2 4.431164-4 4.027170+2 3.900674-4 4.168694+2 3.767365-4 4.315191+2 3.638662-4 4.466836+2 3.514808-4 4.677351+2 3.356203-4 4.841724+2 3.241963-4 4.954502+2 3.167972-4 1.059254+3 1.478773-4 1.083927+3 1.445023-4 1.122018+3 1.395838-4 1.188502+3 1.317554-4 1.230269+3 1.272707-4 1.244515+3 1.258100-4 1.273503+3 1.229388-4 1.412538+3 1.108080-4 1.603245+3 9.759502-5 1.659587+3 9.427336-5 1.717908+3 9.106556-5 1.778279+3 8.797326-5 3.715352+3 4.209954-5 3.845918+3 4.066997-5 3.935501+3 3.974400-5 1.000000+5 1.562977-6 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.580000-6 4.580000-6 4.910000-6 4.580000-6 4.910000-6 4.702166-6 1.083000-5 4.711726-6 1.083000-5 6.974600-6 1.190000-5 6.518121-6 1.270000-5 6.206055-6 1.364583-5 5.873424-6 1.450000-5 5.613355-6 1.515000-5 5.439346-6 1.584893-5 5.278717-6 1.659587-5 5.136897-6 1.717908-5 5.048361-6 1.800000-5 4.957187-6 1.877000-5 4.906467-6 1.950000-5 4.888934-6 2.025000-5 4.900754-6 2.113489-5 4.950816-6 2.170000-5 5.001605-6 2.238721-5 5.081364-6 2.317395-5 5.194183-6 2.426610-5 5.382562-6 2.458000-5 5.441717-6 2.458000-5 1.433372-5 2.549000-5 1.439237-5 2.549000-5 1.568155-5 3.350000-5 1.597913-5 4.180000-5 1.612152-5 5.623413-5 1.621952-5 7.800000-5 1.622600-5 8.387000-5 1.620374-5 8.387000-5 1.819868-5 8.850000-5 1.885344-5 9.077000-5 1.914311-5 9.077000-5 2.033749-5 9.610000-5 2.145595-5 1.096478-4 2.400278-5 1.143000-4 2.474462-5 1.185000-4 2.523637-5 1.222200-4 2.549296-5 1.260000-4 2.558041-5 1.279000-4 2.556435-5 1.279000-4 2.945419-5 1.322000-4 2.939720-5 1.380384-4 2.906346-5 1.584893-4 2.729407-5 1.701200-4 2.646984-5 1.820000-4 2.580018-5 1.930000-4 2.532083-5 2.065380-4 2.488277-5 2.220000-4 2.453334-5 2.454709-4 2.419888-5 2.786121-4 2.392927-5 3.200000-4 2.379866-5 3.850000-4 2.382144-5 4.530000-4 2.397091-5 4.530000-4 2.590630-5 4.557000-4 2.587574-5 4.579500-4 2.603158-5 4.596000-4 2.629637-5 4.610400-4 2.666597-5 4.610400-4 2.778454-5 4.627000-4 2.835357-5 4.644000-4 2.914976-5 4.660000-4 3.011968-5 4.677351-4 3.137300-5 4.721000-4 3.479655-5 4.742000-4 3.627571-5 4.765000-4 3.764405-5 4.786301-4 3.867436-5 4.807000-4 3.948376-5 4.835000-4 4.033002-5 4.873000-4 4.112739-5 4.911000-4 4.164751-5 4.958000-4 4.204636-5 5.035000-4 4.235264-5 5.150000-4 4.244162-5 6.309573-4 4.225793-5 6.606700-4 4.224246-5 6.606700-4 4.400983-5 6.637000-4 4.480877-5 6.669000-4 4.535849-5 6.707000-4 4.571688-5 6.772000-4 4.595571-5 6.996200-4 4.616957-5 6.996200-4 4.686715-5 7.052000-4 4.745025-5 7.127000-4 4.777249-5 7.585776-4 4.825184-5 8.112400-4 4.865494-5 8.112400-4 5.083071-5 1.174898-3 5.390634-5 1.513561-3 5.623607-5 1.927525-3 5.852801-5 2.426610-3 6.074601-5 3.019952-3 6.284219-5 3.728400-3 6.483243-5 3.728400-3 9.116803-5 3.942500-3 9.139841-5 3.942500-3 9.612563-5 4.213800-3 9.635489-5 4.213800-3 1.007036-4 5.821032-3 1.024732-4 8.511380-3 1.045794-4 1.273503-2 1.068690-4 1.862087-2 1.090449-4 2.691535-2 1.110966-4 2.792100-2 1.112887-4 2.792100-2 1.151773-4 6.165950-2 1.157915-4 2.065380-1 1.162296-4 2.691535+0 1.163952-4 1.000000+5 1.163954-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.580000-6 0.0 2.549000-5 0.0 2.549000-5 2.73010-11 2.685000-5 2.65922-11 2.770000-5 2.62520-11 2.870000-5 2.59909-11 2.951209-5 2.58463-11 3.060000-5 2.57615-11 3.230000-5 2.58347-11 3.548134-5 2.62722-11 4.650000-5 2.86129-11 5.011872-5 2.92281-11 5.500000-5 2.98149-11 5.956621-5 3.02211-11 6.025596-5 3.02390-11 6.095369-5 3.03230-11 6.165950-5 3.03390-11 6.237348-5 3.04199-11 6.309573-5 3.04332-11 6.382635-5 3.05102-11 6.456542-5 3.05201-11 6.531306-5 3.05925-11 7.161434-5 3.08546-11 7.673615-5 3.10004-11 8.387000-5 3.10579-11 8.387000-5 6.77957-11 8.570000-5 7.29837-11 8.740000-5 7.75146-11 9.077000-5 8.58776-11 9.077000-5 1.20431-10 9.250000-5 1.29610-10 9.500000-5 1.41778-10 9.772372-5 1.54015-10 1.023293-4 1.73745-10 1.071519-4 1.93791-10 1.110000-4 2.08569-10 1.135011-4 2.16930-10 1.155000-4 2.22872-10 1.180000-4 2.28725-10 1.198000-4 2.32034-10 1.222200-4 2.34881-10 1.245000-4 2.36163-10 1.265000-4 2.36138-10 1.279000-4 2.35558-10 1.279000-4 2.70924-10 1.304600-4 2.69767-10 1.340000-4 2.66247-10 1.385000-4 2.59735-10 1.531087-4 2.34497-10 1.584893-4 2.26056-10 1.659587-4 2.15904-10 1.720000-4 2.08842-10 1.800000-4 2.00929-10 1.883649-4 1.94157-10 1.972423-4 1.88332-10 2.065380-4 1.83538-10 2.162719-4 1.79681-10 2.264644-4 1.76577-10 2.400000-4 1.73372-10 2.570396-4 1.70666-10 2.786121-4 1.68438-10 3.054921-4 1.67110-10 3.388442-4 1.67089-10 3.758374-4 1.68126-10 4.168694-4 1.69812-10 4.530000-4 1.71898-10 4.530000-4 1.80665-10 4.562000-4 1.80737-10 4.585000-4 1.81777-10 4.605000-4 1.83693-10 4.610400-4 1.84417-10 4.610400-4 7.750404-9 4.623810-4 7.679039-9 4.635000-4 7.570776-9 4.640000-4 7.505176-9 4.645000-4 7.468027-9 4.650000-4 7.453876-9 4.655000-4 7.465677-9 4.660000-4 7.502961-9 4.666000-4 7.585156-9 4.671000-4 7.685638-9 4.677351-4 7.859081-9 4.683000-4 8.060247-9 4.689000-4 8.322418-9 4.692000-4 8.472635-9 4.697000-4 8.752935-9 4.702000-4 9.075072-9 4.708000-4 9.511719-9 4.714000-4 1.000499-8 4.721000-4 1.065293-8 4.726000-4 1.116892-8 4.735000-4 1.217118-8 4.742000-4 1.303588-8 4.750000-4 1.410095-8 4.757000-4 1.509864-8 4.765000-4 1.630460-8 4.775000-4 1.787781-8 4.792000-4 2.065527-8 4.807000-4 2.314682-8 4.823000-4 2.571905-8 4.832000-4 2.711101-8 4.841724-4 2.855885-8 4.850000-4 2.974451-8 4.865000-4 3.174972-8 4.873000-4 3.275287-8 4.890000-4 3.474001-8 4.900000-4 3.580669-8 4.911000-4 3.691469-8 4.935000-4 3.907420-8 4.954502-4 4.056901-8 4.973000-4 4.184968-8 4.985000-4 4.256345-8 5.000000-4 4.335704-8 5.020000-4 4.425495-8 5.035000-4 4.486681-8 5.070000-4 4.585862-8 5.090000-4 4.625624-8 5.120000-4 4.665356-8 5.150000-4 4.685489-8 5.190000-4 4.694942-8 5.300000-4 4.683649-8 5.370318-4 4.668193-8 6.000000-4 4.632258-8 6.606700-4 4.623367-8 6.606700-4 5.622091-8 6.623500-4 5.890998-8 6.637000-4 6.074094-8 6.648000-4 6.199380-8 6.661000-4 6.321921-8 6.677000-4 6.440457-8 6.700000-4 6.559443-8 6.719000-4 6.627725-8 6.750000-4 6.695451-8 6.800000-4 6.748468-8 6.996200-4 6.847168-8 6.996200-4 7.417133-8 7.023000-4 7.678686-8 7.045000-4 7.840505-8 7.067000-4 7.958082-8 7.095000-4 8.058644-8 7.142000-4 8.154484-8 7.190800-4 8.207461-8 7.540000-4 8.440128-8 8.112400-4 8.737598-8 8.112400-4 9.779731-8 9.015711-4 1.027803-7 1.059254-3 1.112475-7 1.188502-3 1.176362-7 1.380384-3 1.259770-7 1.548817-3 1.325578-7 1.757924-3 1.397518-7 2.018366-3 1.476305-7 2.317395-3 1.553746-7 2.540973-3 1.605546-7 2.851018-3 1.668941-7 3.273407-3 1.743046-7 3.728400-3 1.810511-7 3.728400-3 1.495974-4 3.845918-3 1.500540-4 3.942500-3 1.500041-4 3.942500-3 1.793418-4 4.100000-3 1.799149-4 4.213800-3 1.799292-4 4.213800-3 1.874467-4 5.248075-3 1.885923-4 8.413951-3 1.899868-4 1.659587-2 1.910454-4 2.792100-2 1.915572-4 2.792100-2 1.785199-2 3.019952-2 1.793834-2 3.981072-2 1.811668-2 5.888437-2 1.827872-2 9.660509-2 1.839380-2 2.065380-1 1.845906-2 1.348963+0 1.851858-2 1.000000+5 1.851781-2 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.580000-6 0.0 4.910000-6 3.300000-7 4.910000-6 2.078336-7 1.083000-5 6.118274-6 1.083000-5 3.855400-6 1.150000-5 4.816302-6 1.258925-5 6.342805-6 1.364583-5 7.772406-6 1.485000-5 9.333079-6 1.584893-5 1.057021-5 1.710000-5 1.204086-5 1.840772-5 1.348156-5 1.980000-5 1.490985-5 2.140000-5 1.642709-5 2.317395-5 1.797977-5 2.458000-5 1.913828-5 2.458000-5 1.024628-5 2.549000-5 1.109763-5 2.549000-5 9.808426-6 2.870000-5 1.289990-5 3.350000-5 1.752085-5 4.420000-5 2.805284-5 7.500000-5 5.876624-5 8.387000-5 6.766623-5 8.387000-5 6.567125-5 9.077000-5 7.162681-5 9.077000-5 7.043239-5 1.071519-4 8.359632-5 1.166400-4 9.159755-5 1.244515-4 9.888444-5 1.279000-4 1.023354-4 1.279000-4 9.844554-5 1.365000-4 1.073287-4 1.720000-4 1.456488-4 2.065380-4 1.816550-4 2.818383-4 2.579248-4 4.530000-4 4.290289-4 4.530000-4 4.270935-4 4.610400-4 4.343738-4 4.610400-4 4.332477-4 4.677000-4 4.363458-4 4.775000-4 4.393278-4 4.880000-4 4.467257-4 5.120000-4 4.695138-4 6.606700-4 6.183813-4 6.606700-4 6.166040-4 6.772000-4 6.311770-4 6.996200-4 6.533820-4 6.996200-4 6.526787-4 7.762471-4 7.277691-4 8.112400-4 7.624977-4 8.112400-4 7.603115-4 2.786121-3 2.723879-3 3.728400-3 3.663387-3 3.728400-3 3.487635-3 3.942500-3 3.701097-3 3.942500-3 3.667033-3 4.213800-3 3.937516-3 4.213800-3 3.925650-3 2.792100-2 2.761815-2 2.792100-2 9.953831-3 2.884032-2 1.082617-2 3.935501-2 2.112917-2 6.760830-2 4.916998-2 1.000000+5 9.999998+4 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.792100-2 7.453379+3 2.827000-2 7.258780+3 2.865000-2 7.037800+3 2.930000-2 6.622340+3 3.019952-2 6.152446+3 3.273407-2 4.977363+3 3.630781-2 3.811886+3 4.216965-2 2.561250+3 5.308844-2 1.370808+3 6.606934-2 7.475935+2 8.317638-2 3.905705+2 1.059254-1 1.957623+2 2.018366-1 3.053288+1 2.454709-1 1.747633+1 2.851018-1 1.147588+1 3.311311-1 7.592844+0 3.758374-1 5.390306+0 4.216965-1 3.974073+0 4.677351-1 3.039629+0 5.188000-1 2.340080+0 5.754399-1 1.813718+0 6.382635-1 1.416192+0 7.079458-1 1.114211+0 7.852356-1 8.832798-1 8.709636-1 7.052936-1 9.549926-1 5.815216-1 1.083927+0 4.505404-1 1.188600+0 3.758211-1 1.364583+0 2.897218-1 1.531087+0 2.347523-1 1.717908+0 1.918309-1 1.949845+0 1.548244-1 2.213095+0 1.258918-1 2.511886+0 1.031562-1 2.884032+0 8.367225-2 3.349654+0 6.722889-2 3.890451+0 5.443190-2 4.570882+0 4.369711-2 5.432503+0 3.480860-2 6.456542+0 2.793461-2 7.943282+0 2.162812-2 9.660509+0 1.711354-2 1.202264+1 1.326713-2 1.513561+1 1.021279-2 2.041738+1 7.337777-3 2.754229+1 5.310868-3 3.981072+1 3.595338-3 6.382635+1 2.201311-3 1.083927+2 1.280113-3 2.162719+2 6.355713-4 4.315191+2 3.170254-4 1.717908+3 7.934378-5 1.000000+5 1.361800-6 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.792100-2 1.159200-4 1.000000+5 1.159200-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.792100-2 2.122500-2 1.000000+5 2.122500-2 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.792100-2 6.580080-3 1.000000+5 9.999998+4 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.213800-3 3.061486+4 4.280000-3 2.981298+4 4.518559-3 2.747994+4 5.233200-3 2.152046+4 5.559043-3 1.931866+4 6.237348-3 1.566467+4 6.683439-3 1.385131+4 7.161434-3 1.216070+4 8.709636-3 8.327612+3 9.660509-3 6.756899+3 1.122018-2 4.968547+3 1.303167-2 3.613081+3 1.462177-2 2.812670+3 1.717908-2 1.963050+3 2.018366-2 1.356459+3 2.344229-2 9.543060+2 2.691535-2 6.850429+2 3.090295-2 4.886297+2 3.589219-2 3.365179+2 4.216965-2 2.234652+2 4.954502-2 1.472756+2 5.888437-2 9.346709+1 7.079458-2 5.708043+1 8.609938-2 3.351841+1 1.059254-1 1.892613+1 1.380384-1 9.039802+0 2.113489-1 2.738371+0 2.600160-1 1.538278+0 3.054921-1 9.889588-1 3.548134-1 6.609962-1 4.027170-1 4.732237-1 4.570882-1 3.412970-1 5.128614-1 2.554498-1 5.754399-1 1.927332-1 6.382635-1 1.506188-1 7.085700-1 1.182980-1 7.852356-1 9.396420-2 8.609938-1 7.693871-2 9.440609-1 6.341148-2 1.059254+0 5.023897-2 1.174898+0 4.092865-2 1.333521+0 3.220396-2 1.500000+0 2.593472-2 1.678804+0 2.125764-2 1.905461+0 1.713172-2 2.162719+0 1.390941-2 2.454709+0 1.138128-2 2.786121+0 9.379589-3 3.235937+0 7.522566-3 3.758374+0 6.080157-3 4.415704+0 4.873029-3 5.248075+0 3.875730-3 6.237348+0 3.105876-3 7.673615+0 2.401495-3 9.332543+0 1.897802-3 1.161449+1 1.469637-3 1.479108+1 1.115674-3 2.000000+1 7.990000-4 2.722701+1 5.723825-4 3.935501+1 3.874103-4 6.309573+1 2.371438-4 1.047129+2 1.411650-4 2.089296+2 7.006260-5 4.168694+2 3.494253-5 1.659587+3 8.743772-6 1.000000+5 1.449800-7 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.213800-3 1.298200-4 1.000000+5 1.298200-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.213800-3 2.377800-4 1.000000+5 2.377800-4 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.213800-3 3.846200-3 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 3.942500-3 6.480715+4 4.050000-3 6.190243+4 4.100000-3 6.021700+4 4.466836-3 4.848600+4 4.800000-3 4.022300+4 5.248075-3 3.162300+4 6.382635-3 1.848800+4 7.000000-3 1.427700+4 7.852356-3 1.032600+4 8.912509-3 7.147100+3 1.011579-2 4.931500+3 1.230269-2 2.742900+3 1.445440-2 1.675700+3 1.640590-2 1.131900+3 1.927525-2 6.824200+2 2.317395-2 3.794100+2 2.800000-2 2.058500+2 3.427678-2 1.061700+2 4.265795-2 5.145704+1 5.623413-2 2.042971+1 1.083927-1 2.238663+0 1.396368-1 9.601775-1 1.678804-1 5.224218-1 1.972423-1 3.089151-1 2.290868-1 1.910266-1 2.630268-1 1.234984-1 3.000060-1 8.215547-2 3.388442-1 5.676376-2 3.801894-1 4.030884-2 4.216965-1 2.981994-2 4.677351-1 2.220990-2 5.188000-1 1.665768-2 5.754399-1 1.258333-2 6.382635-1 9.577981-3 6.998420-1 7.566928-3 7.673615-1 6.024162-3 8.511380-1 4.696679-3 9.440609-1 3.679141-3 1.000000+0 3.232283-3 1.071519+0 2.790611-3 1.148154+0 2.426192-3 1.216186+0 2.172081-3 1.348963+0 1.795571-3 1.603245+0 1.321861-3 1.819701+0 1.061892-3 2.044000+0 8.743210-4 2.317395+0 7.142965-4 2.630268+0 5.868479-4 3.019952+0 4.772133-4 3.507519+0 3.843334-4 4.073803+0 3.118667-4 4.786301+0 2.509002-4 5.688529+0 2.002729-4 6.839116+0 1.587227-4 8.317638+0 1.248883-4 1.035142+1 9.634039-5 1.333521+1 7.193909-5 1.659587+1 5.628662-5 2.213095+1 4.103568-5 3.090295+1 2.867887-5 4.518559+1 1.922828-5 7.498942+1 1.138573-5 1.496236+2 5.631732-6 2.985383+2 2.803855-6 1.188502+3 7.006199-7 1.000000+5 8.314500-9 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 3.942500-3 1.090400-4 1.000000+5 1.090400-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.942500-3 2.594900-4 1.000000+5 2.594900-4 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 3.942500-3 3.573970-3 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.728400-3 1.402292+5 3.813000-3 1.337540+5 4.415704-3 9.099223+4 4.800000-3 7.245440+4 6.025596-3 3.833479+4 7.244360-3 2.262079+4 7.852356-3 1.785431+4 9.500000-3 1.011504+4 1.150000-2 5.641480+3 1.333521-2 3.557129+3 1.531087-2 2.299214+3 1.800000-2 1.368572+3 2.113489-2 8.115783+2 2.511886-2 4.589342+2 2.985383-2 2.575307+2 3.589219-2 1.379987+2 4.415704-2 6.783650+1 5.559043-2 3.055662+1 7.413102-2 1.117502+1 1.244515-1 1.818334+0 1.513561-1 9.217099-1 1.798871-1 5.098181-1 2.065380-1 3.194810-1 2.344229-1 2.095671-1 2.630268-1 1.437835-1 2.951209-1 9.935996-2 3.273407-1 7.174133-2 3.630781-1 5.218090-2 3.981072-1 3.957941-2 4.365158-1 3.021979-2 4.786301-1 2.323785-2 5.248075-1 1.799975-2 5.688529-1 1.448728-2 6.237348-1 1.138887-2 6.839117-1 9.020573-3 7.498942-1 7.193893-3 8.222427-1 5.777858-3 9.015711-1 4.676296-3 9.885531-1 3.814114-3 1.071519+0 3.224956-3 1.161449+0 2.744236-3 1.258925+0 2.352685-3 1.396368+0 1.944844-3 1.640590+0 1.461080-3 1.862087+0 1.175314-3 2.089296+0 9.709713-4 2.371374+0 7.929200-4 2.691535+0 6.521863-4 3.090295+0 5.308840-4 3.589219+0 4.280777-4 4.168694+0 3.477390-4 4.897788+0 2.800523-4 5.821032+0 2.237619-4 7.000000+0 1.774600-4 8.511380+0 1.397839-4 1.071519+1 1.064729-4 1.364583+1 8.065550-5 1.698244+1 6.313515-5 2.290868+1 4.548584-5 3.235937+1 3.142835-5 4.841724+1 2.059029-5 8.035261+1 1.220593-5 1.603245+2 6.042828-6 3.198895+2 3.009814-6 1.273503+3 7.522945-7 1.000000+5 9.567800-9 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.728400-3 1.029900-4 1.000000+5 1.029900-4 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.728400-3 2.166700-4 1.000000+5 2.166700-4 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.728400-3 3.408740-3 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 8.112400-4 9.761186+4 8.550000-4 9.001540+4 8.912509-4 8.534017+4 9.350000-4 8.108220+4 1.110000-3 6.520460+4 1.170000-3 6.082480+4 1.412538-3 4.648677+4 1.531087-3 4.115439+4 1.840772-3 3.081314+4 2.065380-3 2.550022+4 2.400000-3 1.979026+4 2.818383-3 1.494161+4 3.198895-3 1.190634+4 3.758374-3 8.852335+3 4.466836-3 6.388412+3 5.308844-3 4.570617+3 6.309573-3 3.243039+3 7.413102-3 2.336819+3 8.709636-3 1.671421+3 1.023293-2 1.186492+3 1.202264-2 8.358633+2 1.412538-2 5.843695+2 1.659587-2 4.054046+2 1.949845-2 2.791503+2 2.290868-2 1.907451+2 2.691535-2 1.293283+2 3.162278-2 8.702700+1 3.715352-2 5.812253+1 4.365158-2 3.853598+1 5.188000-2 2.461976+1 6.165950-2 1.561049+1 7.413102-2 9.526993+0 9.015711-2 5.594111+0 1.122019-1 3.060522+0 1.531088-1 1.286371+0 2.065380-1 5.570134-1 2.660725-1 2.761781-1 3.162278-1 1.724084-1 3.630781-1 1.190363-1 4.120975-1 8.534657-2 4.623810-1 6.350018-2 5.188000-1 4.758583-2 5.754399-1 3.695094-2 6.382635-1 2.888881-2 7.079458-1 2.274648-2 7.852356-1 1.803970-2 8.709636-1 1.440489-2 9.549926-1 1.187541-2 1.083927+0 9.199085-3 1.188600+0 7.673207-3 1.364583+0 5.915519-3 1.531087+0 4.793156-3 1.717908+0 3.916515-3 1.949845+0 3.160862-3 2.213095+0 2.570253-3 2.511886+0 2.105949-3 2.884032+0 1.707966-3 3.349654+0 1.372249-3 3.890451+0 1.111040-3 4.570882+0 8.919437-4 5.432503+0 7.105274-4 6.456542+0 5.702090-4 7.943282+0 4.414889-4 9.660509+0 3.493384-4 1.188502+1 2.744181-4 1.500000+1 2.105800-4 2.018366+1 1.516761-4 2.722701+1 1.097517-4 3.890451+1 7.518357-5 6.165950+1 4.656394-5 1.011579+2 2.803596-5 2.018366+2 1.391098-5 4.027170+2 6.936794-6 1.603245+3 1.735494-6 1.000000+5 2.779800-8 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 8.112400-4 9.978800-5 1.000000+5 9.978800-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 8.112400-4 3.322900-7 1.000000+5 3.322900-7 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 8.112400-4 7.111197-4 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.996200-4 6.211580+4 6.998420-4 6.429245+4 7.001500-4 6.783160+4 7.005000-4 7.172280+4 7.008500-4 7.547740+4 7.013500-4 8.059060+4 7.018000-4 8.493040+4 7.023000-4 8.947980+4 7.027000-4 9.292640+4 7.032000-4 9.694500+4 7.038000-4 1.013786+5 7.045000-4 1.060646+5 7.052000-4 1.102456+5 7.060000-4 1.144410+5 7.067000-4 1.176256+5 7.075000-4 1.207642+5 7.085000-4 1.240494+5 7.095000-4 1.267024+5 7.110000-4 1.297404+5 7.127000-4 1.321194+5 7.142000-4 1.335130+5 7.161434-4 1.346457+5 7.190800-4 1.354410+5 7.540000-4 1.361050+5 7.673615-4 1.352581+5 7.852356-4 1.328006+5 8.609938-4 1.225442+5 9.225714-4 1.144835+5 9.885531-4 1.061597+5 1.070000-3 9.655700+4 1.150000-3 8.791840+4 1.230269-3 8.022010+4 1.318257-3 7.248361+4 1.479108-3 6.058372+4 1.603245-3 5.309424+4 1.757924-3 4.525091+4 1.950000-3 3.754020+4 2.137962-3 3.156730+4 2.400000-3 2.517860+4 2.630268-3 2.091748+4 2.951209-3 1.643300+4 3.273407-3 1.313499+4 3.672823-3 1.016089+4 4.073803-3 8.010251+3 4.570882-3 6.107059+3 5.128614-3 4.621960+3 5.754399-3 3.474056+3 6.531306-3 2.517935+3 7.413102-3 1.810507+3 8.413951-3 1.291778+3 9.549926-3 9.147589+2 1.080000-2 6.497160+2 1.216186-2 4.640728+2 1.380384-2 3.220896+2 1.584893-2 2.147051+2 1.840772-2 1.372403+2 2.137962-2 8.704395+1 2.483133-2 5.480413+1 2.917427-2 3.303322+1 3.467369-2 1.905262+1 4.168694-2 1.051075+1 5.128614-2 5.340025+0 6.683439-2 2.227241+0 1.244515-1 2.821308-1 1.566751-1 1.321568-1 1.840772-1 7.819780-2 2.187762-1 4.495653-2 2.511886-1 2.907755-2 2.851018-1 1.963382-2 3.235937-1 1.335148-2 3.630781-1 9.468418-3 4.073803-1 6.764191-3 4.518559-1 5.031962-3 5.011872-1 3.769229-3 5.559043-1 2.844409-3 6.165950-1 2.162310-3 6.839117-1 1.655958-3 7.498942-1 1.315092-3 8.609938-1 9.393055-4 9.225714-1 7.992306-4 9.772372-1 7.028550-4 1.047129+0 6.073001-4 1.135011+0 5.154851-4 1.216186+0 4.507285-4 1.348963+0 3.719029-4 1.548817+0 2.906811-4 1.757924+0 2.331031-4 1.995262+0 1.882903-4 2.264644+0 1.533269-4 2.570396+0 1.258125-4 2.951209+0 1.021908-4 3.427678+0 8.220568-5 4.000000+0 6.619800-5 4.677351+0 5.354874-5 5.559043+0 4.270067-5 6.683439+0 3.381035-5 8.128305+0 2.658044-5 1.000000+1 2.076700-5 1.258925+1 1.590101-5 1.584893+1 1.226222-5 2.113489+1 8.930333-6 2.884032+1 6.389535-6 4.168694+1 4.329641-6 6.760830+1 2.621676-6 1.244515+2 1.405590-6 2.483133+2 6.987239-7 4.954502+2 3.487153-7 3.935501+3 4.374778-8 1.000000+5 1.721000-9 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.996200-4 7.800800-5 1.000000+5 7.800800-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.996200-4 3.286100-7 1.000000+5 3.286100-7 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.996200-4 6.212834-4 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 6.606700-4 1.548104+5 6.608500-4 1.589508+5 6.611500-4 1.673604+5 6.614500-4 1.755792+5 6.619000-4 1.873668+5 6.623500-4 1.985544+5 6.628000-4 2.092248+5 6.633000-4 2.203300+5 6.637000-4 2.287344+5 6.642000-4 2.386032+5 6.648000-4 2.494932+5 6.655000-4 2.609580+5 6.661000-4 2.697900+5 6.669000-4 2.802356+5 6.677000-4 2.892716+5 6.685000-4 2.970300+5 6.695000-4 3.051188+5 6.707000-4 3.128096+5 6.719000-4 3.186880+5 6.735000-4 3.242972+5 6.750000-4 3.278000+5 6.772000-4 3.308088+5 6.800000-4 3.323568+5 6.850000-4 3.323064+5 7.161434-4 3.287533+5 7.300000-4 3.248148+5 8.222426-4 2.869498+5 8.912509-4 2.613618+5 9.549926-4 2.396684+5 1.035142-3 2.150985+5 1.150000-3 1.849160+5 1.230269-3 1.667646+5 1.364583-3 1.408241+5 1.500000-3 1.199688+5 1.621810-3 1.043744+5 1.819701-3 8.425425+4 2.000000-3 7.022280+4 2.238721-3 5.598965+4 2.483133-3 4.516573+4 2.786121-3 3.527659+4 3.090295-3 2.805170+4 3.467369-3 2.158123+4 3.890451-3 1.647461+4 4.365158-3 1.248338+4 4.897788-3 9.391365+3 5.500000-3 7.000440+3 6.165950-3 5.205303+3 6.918310-3 3.836974+3 7.852356-3 2.722715+3 8.912509-3 1.917049+3 1.011579-2 1.339732+3 1.161449-2 8.986781+2 1.318257-2 6.186744+2 1.500000-2 4.199040+2 1.717908-2 2.775447+2 1.982070-2 1.779536+2 2.290868-2 1.126426+2 2.660725-2 6.967039+1 3.126079-2 4.119440+1 3.672823-2 2.417276+1 4.365158-2 1.355098+1 5.308844-2 6.975788+0 6.606934-2 3.294834+0 1.333521-1 2.899149-1 1.640590-1 1.424534-1 1.927525-1 8.254497-2 2.238721-1 5.010034-2 2.540973-1 3.307408-2 2.851018-1 2.283419-2 3.162278-1 1.647040-2 3.507519-1 1.196409-2 3.890451-1 8.755873-3 4.265795-1 6.679221-3 4.677351-1 5.129589-3 5.128614-1 3.967690-3 5.623413-1 3.092033-3 6.095369-1 2.501548-3 6.683439-1 1.978335-3 7.328245-1 1.576557-3 8.222427-1 1.198411-3 8.912509-1 9.946360-4 9.549926-1 8.534043-4 1.023293+0 7.375317-4 1.122018+0 6.116554-4 1.216186+0 5.227338-4 1.348963+0 4.307898-4 1.531087+0 3.430459-4 1.737801+0 2.748798-4 1.972423+0 2.219031-4 2.213095+0 1.839083-4 2.511886+0 1.506926-4 2.884032+0 1.222283-4 3.349654+0 9.820591-5 3.890451+0 7.951066-5 4.570882+0 6.382890-5 5.432503+0 5.084622-5 6.456542+0 4.080489-5 7.943282+0 3.159384-5 9.660509+0 2.499908-5 1.200000+1 1.942200-5 1.513561+1 1.491815-5 2.041738+1 1.071834-5 2.786121+1 7.662847-6 4.027170+1 5.188841-6 6.456542+1 3.177534-6 1.122018+2 1.805280-6 2.238721+2 8.966037-7 4.466836+2 4.472825-7 1.778279+3 1.119633-7 1.000000+5 1.989300-9 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 6.606700-4 7.534800-5 1.000000+5 7.534800-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.606700-4 2.333100-7 1.000000+5 2.333100-7 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 6.606700-4 5.850887-4 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.610400-4 4.726855+4 4.640000-4 4.867240+4 4.645000-4 4.917360+4 4.650000-4 4.993200+4 4.655000-4 5.096200+4 4.660000-4 5.228840+4 4.666000-4 5.432160+4 4.671000-4 5.642240+4 4.677000-4 5.949400+4 4.683000-4 6.323960+4 4.688000-4 6.693160+4 4.692000-4 7.029520+4 4.697000-4 7.505920+4 4.702000-4 8.050080+4 4.708000-4 8.799720+4 4.714000-4 9.665200+4 4.721000-4 1.083540+5 4.733000-4 1.328852+5 4.755000-4 1.946236+5 4.765000-4 2.305524+5 4.775000-4 2.714536+5 4.785000-4 3.172776+5 4.792000-4 3.520896+5 4.800000-4 3.944696+5 4.807000-4 4.335400+5 4.815000-4 4.802000+5 4.823000-4 5.286680+5 4.832000-4 5.849600+5 4.841724-4 6.471632+5 4.850000-4 7.008200+5 4.858000-4 7.529360+5 4.865000-4 7.984920+5 4.873000-4 8.502200+5 4.883000-4 9.139960+5 4.890000-4 9.578440+5 4.900000-4 1.018976+6 4.911000-4 1.083804+6 4.923000-4 1.151140+6 4.935000-4 1.214480+6 4.945000-4 1.263940+6 4.958000-4 1.323348+6 4.973000-4 1.384696+6 4.985000-4 1.428092+6 5.000000-4 1.475216+6 5.016700-4 1.518370+6 5.035000-4 1.555016+6 5.050000-4 1.577436+6 5.070000-4 1.597768+6 5.090000-4 1.608892+6 5.120000-4 1.611772+6 5.150000-4 1.602928+6 5.190000-4 1.580512+6 5.370318-4 1.456078+6 5.900000-4 1.192088+6 6.531306-4 9.763163+5 7.161434-4 8.069281+5 7.673615-4 6.950346+5 8.222426-4 5.945993+5 8.810489-4 5.052928+5 9.700000-4 3.992160+5 1.035142-3 3.384422+5 1.135011-3 2.654633+5 1.258925-3 2.006283+5 1.380384-3 1.551762+5 1.548817-3 1.117725+5 1.698244-3 8.541348+4 1.927525-3 5.855024+4 2.150000-3 4.192920+4 2.400000-3 2.976652+4 2.722701-3 1.991188+4 3.019952-3 1.421806+4 3.400000-3 9.606080+3 3.890451-3 6.096368+3 4.415704-3 3.944016+3 5.000000-3 2.553324+3 5.623413-3 1.681438+3 6.309573-3 1.109625+3 7.161434-3 6.973974+2 8.128305-3 4.351240+2 9.225714-3 2.695493+2 1.050000-2 1.641216+2 1.202264-2 9.697846+1 1.396368-2 5.378444+1 1.621810-2 2.960937+1 1.905461-2 1.544561+1 2.238721-2 7.994934+0 2.691535-2 3.736163+0 3.273407-2 1.652076+0 4.315191-2 5.173171-1 7.413102-2 5.290716-2 9.332543-2 2.018007-2 1.135011-1 8.957426-3 1.333521-1 4.622523-3 1.531088-1 2.640520-3 1.737801-1 1.591362-3 1.972423-1 9.659039-4 2.213095-1 6.176102-4 2.483133-1 3.976757-4 2.786121-1 2.580060-4 3.126079-1 1.687356-4 3.467369-1 1.159891-4 3.801894-1 8.366790-5 4.216965-1 5.837786-5 4.570882-1 4.439939-5 4.954502-1 3.398657-5 5.370318-1 2.623852-5 5.888437-1 1.966437-5 6.683439-1 1.328160-5 7.328245-1 1.005115-5 7.943282-1 7.931498-6 8.511380-1 6.488709-6 9.015711-1 5.526674-6 9.440609-1 4.890770-6 9.885531-1 4.356337-6 1.035142+0 3.909359-6 1.083927+0 3.534160-6 1.135011+0 3.214794-6 1.202264+0 2.875365-6 1.288250+0 2.533196-6 1.412538+0 2.157146-6 1.531087+0 1.879760-6 1.819701+0 1.392406-6 2.018366+0 1.169827-6 2.290868+0 9.532872-7 2.600160+0 7.826157-7 2.985383+0 6.359241-7 3.467369+0 5.118467-7 4.027170+0 4.151110-7 4.731513+0 3.337817-7 5.623413+0 2.662923-7 6.760830+0 2.109497-7 8.222427+0 1.659177-7 1.011579+1 1.296721-7 1.273503+1 9.932547-8 1.603245+1 7.663010-8 2.113489+1 5.652485-8 2.884032+1 4.044277-8 4.168694+1 2.740483-8 6.683439+1 1.679220-8 1.216186+2 9.107009-9 2.426610+2 4.526490-9 4.841724+2 2.258789-9 3.845918+3 2.83361-10 1.000000+5 1.08930-11 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.610400-4 4.625000-5 1.000000+5 4.625000-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.610400-4 1.326500-7 1.000000+5 1.326500-7 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.610400-4 4.146574-4 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.530000-4 7.303140+4 4.537000-4 7.174260+4 4.542000-4 7.108740+4 4.548000-4 7.068480+4 4.552000-4 7.065540+4 4.557000-4 7.090320+4 4.562000-4 7.147920+4 4.568000-4 7.265880+4 4.574000-4 7.443060+4 4.579500-4 7.663140+4 4.585000-4 7.944480+4 4.591000-4 8.329980+4 4.596000-4 8.721300+4 4.600000-4 9.084900+4 4.605000-4 9.608520+4 4.610000-4 1.021632+5 4.615000-4 1.091622+5 4.620600-4 1.181983+5 4.627000-4 1.302282+5 4.635000-4 1.481028+5 4.644000-4 1.724190+5 4.655000-4 2.089176+5 4.677000-4 3.072936+5 4.689000-4 3.763230+5 4.697000-4 4.284438+5 4.704000-4 4.779192+5 4.711000-4 5.308158+5 4.718000-4 5.869242+5 4.726000-4 6.546060+5 4.735000-4 7.346940+5 4.742000-4 7.994100+5 4.750000-4 8.754420+5 4.757000-4 9.433560+5 4.765000-4 1.022058+6 4.774000-4 1.111338+6 4.783800-4 1.208700+6 4.792000-4 1.289658+6 4.803000-4 1.396764+6 4.815000-4 1.510614+6 4.826000-4 1.611348+6 4.835000-4 1.690674+6 4.845000-4 1.775112+6 4.858000-4 1.878396+6 4.869000-4 1.959606+6 4.880000-4 2.034792+6 4.895000-4 2.127024+6 4.907000-4 2.192136+6 4.923000-4 2.266878+6 4.940000-4 2.331498+6 4.958000-4 2.384202+6 4.980000-4 2.428686+6 5.000000-4 2.452716+6 5.020000-4 2.463750+6 5.050000-4 2.461728+6 5.080000-4 2.444118+6 5.135000-4 2.390952+6 5.300000-4 2.216652+6 5.821032-4 1.814879+6 6.456542-4 1.477768+6 7.161434-4 1.189563+6 7.673615-4 1.022100+6 8.222426-4 8.723716+5 8.709636-4 7.608551+5 9.549926-4 6.062860+5 1.023293-3 5.082655+5 1.122018-3 3.981695+5 1.244515-3 3.004660+5 1.364583-3 2.321231+5 1.513561-3 1.725648+5 1.678804-3 1.273651+5 1.862087-3 9.343691+4 2.089296-3 6.570449+4 2.317395-3 4.755447+4 2.630268-3 3.175712+4 2.951209-3 2.182141+4 3.300000-3 1.506294+4 3.758374-3 9.702488+3 4.315191-3 6.024144+3 4.954502-3 3.705580+3 5.688529-3 2.258381+3 6.531306-3 1.363831+3 7.500000-3 8.156220+2 8.511380-3 5.056595+2 9.660509-3 3.110795+2 1.100000-2 1.877292+2 1.258925-2 1.102819+2 1.445440-2 6.352974+1 1.678804-2 3.468378+1 1.949845-2 1.879310+1 2.290868-2 9.637211+0 2.722701-2 4.674884+0 3.273407-2 2.144763+0 4.168694-2 7.646431-1 7.673615-2 5.589562-2 9.440609-2 2.312235-2 1.135011-1 1.062911-2 1.318257-1 5.691342-3 1.513561-1 3.221051-3 1.678804-1 2.111292-3 1.840772-1 1.459175-3 2.065380-1 9.252675-4 2.265100-1 6.465253-4 2.483133-1 4.554539-4 2.722701-1 3.228696-4 2.985383-1 2.305982-4 3.273407-1 1.659624-4 3.589219-1 1.203736-4 3.935501-1 8.799491-5 4.315191-1 6.483124-5 4.677351-1 4.995558-5 5.128614-1 3.736567-5 5.559043-1 2.917793-5 6.000000-1 2.325706-5 6.456542-1 1.891423-5 6.998420-1 1.519905-5 7.585776-1 1.230338-5 8.035261-1 1.061203-5 8.609938-1 8.858364-6 9.120108-1 7.662944-6 9.660509-1 6.673376-6 1.011579+0 6.009950-6 1.071519+0 5.308180-6 1.135011+0 4.717353-6 1.202264+0 4.217385-6 1.318257+0 3.559236-6 1.462177+0 2.964128-6 1.757924+0 2.149026-6 1.972423+0 1.768582-6 2.238721+0 1.439273-6 2.540973+0 1.180065-6 2.917427+0 9.576144-7 3.388442+0 7.698475-7 3.935501+0 6.236611-7 4.623810+0 5.009313-7 5.495409+0 3.992439-7 6.606934+0 3.159625-7 8.128305+0 2.448611-7 9.885531+0 1.939051-7 1.230269+1 1.504095-7 1.566751+1 1.144139-7 2.089296+1 8.330494-8 2.851018+1 5.958775-8 4.120975+1 4.036785-8 6.606934+1 2.473036-8 1.174898+2 1.372880-8 2.344229+2 6.821318-9 4.677351+2 3.403537-9 3.715352+3 4.26895-10 1.000000+5 1.58540-11 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.530000-4 4.430700-5 1.000000+5 4.430700-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.530000-4 2.64020-10 1.000000+5 2.64020-10 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.530000-4 4.086927-4 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.279000-4 1.752764+5 1.698244-4 1.657818+5 1.778279-4 1.631683+5 1.883649-4 1.585641+5 2.065380-4 1.499290+5 2.264644-4 1.408207+5 2.426610-4 1.335101+5 2.600160-4 1.256784+5 2.818383-4 1.161655+5 3.126079-4 1.041366+5 3.467369-4 9.271835+4 3.801894-4 8.298925+4 4.265795-4 7.161814+4 4.786301-4 6.141247+4 5.370318-4 5.226423+4 6.200000-4 4.235640+4 7.000000-4 3.524060+4 8.222426-4 2.737051+4 9.549926-4 2.147099+4 1.122018-3 1.641778+4 1.348963-3 1.198498+4 1.659587-3 8.339845+3 2.041738-3 5.757583+3 2.500000-3 3.979640+3 3.054921-3 2.740169+3 3.672823-3 1.930153+3 4.365158-3 1.380028+3 5.248075-3 9.572870+2 6.309573-3 6.588689+2 7.585776-3 4.499155+2 9.015711-3 3.123830+2 1.071519-2 2.152338+2 1.273503-2 1.471390+2 1.500000-2 1.018370+2 1.757924-2 7.076925+1 2.065380-2 4.854464+1 2.426610-2 3.305621+1 2.851018-2 2.234436+1 3.349654-2 1.499372+1 3.935501-2 9.988858+0 4.677351-2 6.414669+0 5.495409-2 4.211791+0 6.606934-2 2.583589+0 8.035261-2 1.525030+0 9.885531-2 8.640474-1 1.303167-1 4.014497-1 2.371374-1 7.561520-2 2.851018-1 4.553797-2 3.349654-1 2.942766-2 3.845918-1 2.038740-2 4.365158-1 1.467080-2 4.897788-1 1.095433-2 5.495409-1 8.241032-3 6.095369-1 6.422961-3 6.760830-1 5.041564-3 7.498942-1 3.985568-3 8.413951-1 3.094760-3 9.225714-1 2.544680-3 1.011579+0 2.107255-3 1.161449+0 1.600694-3 1.288250+0 1.313932-3 1.462177+0 1.039000-3 1.621810+0 8.634639-4 1.819701+0 7.080195-4 2.065380+0 5.733355-4 2.344229+0 4.678379-4 2.660725+0 3.845782-4 3.054921+0 3.128907-4 3.548134+0 2.521473-4 4.120975+0 2.047149-4 4.841724+0 1.647793-4 5.754399+0 1.315934-4 6.918310+0 1.043467-4 8.413951+0 8.213780-5 1.047129+1 6.338494-5 1.348963+1 4.735359-5 1.678804+1 3.705861-5 2.264644+1 2.669001-5 3.198895+1 1.843636-5 4.731513+1 1.222190-5 7.762471+1 7.328515-6 1.548817+2 3.626509-6 3.090295+2 1.805886-6 1.230269+3 4.513240-7 1.000000+5 5.544700-9 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.279000-4 4.741800-5 1.000000+5 4.741800-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.279000-4 4.34250-10 1.000000+5 4.34250-10 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.279000-4 8.048157-5 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 9.077000-5 3.385900+5 9.130000-5 3.433560+5 9.190000-5 3.473740+5 9.250000-5 3.498440+5 9.332543-5 3.509868+5 9.420000-5 3.499960+5 9.500000-5 3.472380+5 9.610000-5 3.413360+5 9.720000-5 3.336620+5 9.850000-5 3.230500+5 1.000000-4 3.096380+5 1.023293-4 2.882282+5 1.100000-4 2.273740+5 1.135011-4 2.062601+5 1.174898-4 1.865413+5 1.216186-4 1.700886+5 1.244515-4 1.607082+5 1.280000-4 1.507832+5 1.318257-4 1.420077+5 1.350000-4 1.360076+5 1.390000-4 1.298382+5 1.430000-4 1.249636+5 1.465000-4 1.215704+5 1.513561-4 1.179382+5 1.566751-4 1.150581+5 1.621810-4 1.129421+5 1.701200-4 1.108864+5 1.819701-4 1.089774+5 2.162719-4 1.053286+5 2.350000-4 1.030024+5 2.540973-4 1.001715+5 2.730000-4 9.700300+4 2.951209-4 9.303116+4 3.200000-4 8.843700+4 3.467369-4 8.346878+4 3.758374-4 7.813974+4 4.100000-4 7.219940+4 4.500000-4 6.584880+4 4.897788-4 6.012784+4 5.370318-4 5.405654+4 5.956621-4 4.757090+4 6.531306-4 4.218165+4 7.244360-4 3.655163+4 8.035261-4 3.145714+4 9.000000-4 2.647380+4 1.011579-3 2.198211+4 1.122018-3 1.851683+4 1.258925-3 1.520252+4 1.412538-3 1.239408+4 1.584893-3 1.003938+4 1.800000-3 7.892480+3 2.018366-3 6.314528+3 2.264644-3 5.013786+3 2.540973-3 3.955182+3 2.851018-3 3.099145+3 3.198895-3 2.411962+3 3.589219-3 1.864172+3 4.027170-3 1.430942+3 4.518559-3 1.090886+3 5.128614-3 8.032380+2 5.821032-3 5.868653+2 6.606934-3 4.255411+2 7.498942-3 3.062960+2 8.511380-3 2.188735+2 9.660509-3 1.552839+2 1.096478-2 1.093959+2 1.258925-2 7.407420+1 1.445440-2 4.976580+1 1.659587-2 3.318223+1 1.905461-2 2.196924+1 2.213095-2 1.394655+1 2.570396-2 8.788286+0 3.019952-2 5.304513+0 3.589219-2 3.063969+0 4.315191-2 1.693134+0 5.248075-2 8.948246-1 6.760830-2 3.883801-1 1.288250-1 4.582670-2 1.584893-1 2.320793-2 1.883649-1 1.325399-2 2.213095-1 7.914120-3 2.540973-1 5.122247-3 2.884032-1 3.460740-3 3.273407-1 2.355172-3 3.672823-1 1.671565-3 4.120975-1 1.195182-3 4.570882-1 8.898024-4 5.069907-1 6.670643-4 5.623413-1 5.038016-4 6.237348-1 3.833445-4 6.918310-1 2.939257-4 7.673615-1 2.271611-4 8.609938-1 1.717432-4 9.225714-1 1.460992-4 9.772372-1 1.283951-4 1.047129+0 1.107951-4 1.122018+0 9.619787-5 1.202264+0 8.405050-5 1.333521+0 6.932431-5 1.513561+0 5.527899-5 1.737801+0 4.340368-5 1.972423+0 3.502999-5 2.213095+0 2.903109-5 2.511886+0 2.378679-5 2.884032+0 1.929279-5 3.349654+0 1.550119-5 3.890451+0 1.255065-5 4.570882+0 1.007539-5 5.432503+0 8.025945-6 6.456542+0 6.440961-6 7.943282+0 4.986914-6 9.660509+0 3.945997-6 1.188502+1 3.099794-6 1.500000+1 2.378600-6 2.041738+1 1.691889-6 2.754229+1 1.224559-6 3.981072+1 8.289933-7 6.309573+1 5.136206-7 1.047129+2 3.057356-7 2.089296+2 1.517468-7 4.168694+2 7.568086-8 1.659587+3 1.893734-8 1.000000+5 3.14000-10 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 9.077000-5 3.324100-5 1.000000+5 3.324100-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.077000-5 4.93730-10 1.000000+5 4.93730-10 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.077000-5 5.752851-5 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 8.387000-5 7.649640+5 8.460000-5 7.685040+5 8.540000-5 7.678920+5 8.642100-5 7.617224+5 8.740000-5 7.514000+5 8.850000-5 7.357280+5 9.000000-5 7.102240+5 9.150000-5 6.821400+5 9.440609-5 6.268155+5 9.950000-5 5.421000+5 1.030000-4 4.958440+5 1.060000-4 4.630440+5 1.096478-4 4.301396+5 1.135011-4 4.020689+5 1.174898-4 3.787440+5 1.216186-4 3.595161+5 1.260000-4 3.435140+5 1.304600-4 3.309604+5 1.350000-4 3.212364+5 1.400000-4 3.132476+5 1.462177-4 3.061429+5 1.548817-4 2.994405+5 1.905461-4 2.820685+5 2.089296-4 2.729651+5 2.264644-4 2.633954+5 2.454709-4 2.521829+5 2.660725-4 2.395891+5 2.900000-4 2.251148+5 3.162278-4 2.098457+5 3.430000-4 1.950760+5 3.715352-4 1.803206+5 4.100000-4 1.623340+5 4.518559-4 1.452840+5 4.954502-4 1.298114+5 5.432503-4 1.152023+5 6.095369-4 9.843113+4 6.700000-4 8.590080+4 7.500000-4 7.246400+4 8.413951-4 6.045513+4 9.440609-4 5.001688+4 1.047129-3 4.192329+4 1.174898-3 3.422057+4 1.333521-3 2.716291+4 1.513561-3 2.139314+4 1.698244-3 1.710417+4 1.905461-3 1.359236+4 2.150000-3 1.060952+4 2.426610-3 8.219545+3 2.722701-3 6.405588+3 3.054921-3 4.957378+3 3.427678-3 3.810311+3 3.845918-3 2.908713+3 4.315191-3 2.205339+3 4.897788-3 1.613882+3 5.559043-3 1.171781+3 6.309573-3 8.441965+2 7.161434-3 6.035786+2 8.128305-3 4.283755+2 9.225714-3 3.018198+2 1.047129-2 2.110754+2 1.188502-2 1.465643+2 1.348963-2 1.010669+2 1.548817-2 6.686295+1 1.778279-2 4.389367+1 2.041738-2 2.860349+1 2.371374-2 1.784335+1 2.754229-2 1.104510+1 3.198895-2 6.787372+0 3.758374-2 3.987629+0 4.415704-2 2.326099+0 5.308844-2 1.246683+0 6.683439-2 5.669017-1 1.348963-1 5.014947-2 1.659587-1 2.467621-2 1.949845-1 1.431565-2 2.238721-1 9.038951-3 2.540973-1 5.972201-3 2.851018-1 4.126118-3 3.162278-1 2.977405-3 3.507519-1 2.163273-3 3.890451-1 1.583535-3 4.265795-1 1.208348-3 4.677351-1 9.283347-4 5.128614-1 7.182883-4 5.623413-1 5.598968-4 6.165950-1 4.397323-4 6.760830-1 3.480471-4 7.413102-1 2.775754-4 8.317638-1 2.111554-4 9.015711-1 1.754776-4 9.660509-1 1.507608-4 1.035142+0 1.304576-4 1.135011+0 1.082956-4 1.230269+0 9.264097-5 1.364583+0 7.640310-5 1.566751+0 5.964550-5 1.778279+0 4.785467-5 2.018366+0 3.868695-5 2.290868+0 3.152422-5 2.600160+0 2.588078-5 2.985383+0 2.103090-5 3.467369+0 1.692766-5 4.027170+0 1.372836-5 4.731513+0 1.103825-5 5.623413+0 8.806661-6 6.760830+0 6.976591-6 8.222427+0 5.486992-6 1.011579+1 4.288536-6 1.273503+1 3.284883-6 1.603245+1 2.534282-6 2.113489+1 1.869323-6 2.884032+1 1.337481-6 4.168694+1 9.063038-7 6.760830+1 5.487779-7 1.244515+2 2.942183-7 2.483133+2 1.462605-7 4.954502+2 7.299378-8 3.935501+3 9.157524-9 1.000000+5 3.60250-10 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 8.387000-5 3.186400-5 1.000000+5 3.186400-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.387000-5 3.19450-10 1.000000+5 3.19450-10 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.387000-5 5.200568-5 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.549000-5 2.163228+6 2.580000-5 2.145008+6 2.610000-5 2.136328+6 2.640000-5 2.136068+6 2.685000-5 2.151672+6 2.722701-5 2.179698+6 2.770000-5 2.231716+6 2.815000-5 2.299824+6 2.851018-5 2.367542+6 2.900000-5 2.477344+6 2.951209-5 2.614455+6 3.000000-5 2.766200+6 3.060000-5 2.981320+6 3.126079-5 3.255058+6 3.198895-5 3.601583+6 3.300000-5 4.161600+6 3.672823-5 6.982560+6 3.770000-5 7.883440+6 3.850000-5 8.658880+6 3.950000-5 9.655320+6 4.030000-5 1.045924+7 4.120975-5 1.136237+7 4.180000-5 1.193348+7 4.265795-5 1.272816+7 4.350000-5 1.345532+7 4.420000-5 1.400912+7 4.500000-5 1.457528+7 4.570882-5 1.501363+7 4.650000-5 1.542656+7 4.731513-5 1.576408+7 4.820000-5 1.602856+7 4.920000-5 1.620152+7 5.011872-5 1.624700+7 5.110000-5 1.618380+7 5.190000-5 1.605560+7 5.300000-5 1.578100+7 5.400000-5 1.544144+7 5.500000-5 1.502948+7 5.623413-5 1.444028+7 5.730000-5 1.387600+7 5.850000-5 1.319660+7 5.956621-5 1.256651+7 6.095369-5 1.172579+7 6.237348-5 1.085817+7 6.382635-5 9.978773+6 6.531306-5 9.101993+6 6.683439-5 8.241417+6 6.850000-5 7.353200+6 7.000000-5 6.608600+6 7.161434-5 5.869895+6 7.350000-5 5.090600+6 7.500000-5 4.533720+6 7.673615-5 3.955449+6 7.900000-5 3.300040+6 8.128305-5 2.742370+6 8.317638-5 2.348706+6 8.570000-5 1.907636+6 8.810489-5 1.562958+6 9.070000-5 1.259592+6 9.332543-5 1.012122+6 9.549926-5 8.443913+5 9.885531-5 6.386861+5 1.023293-4 4.794125+5 1.090000-4 2.816296+5 1.112700-4 2.377231+5 1.135011-4 2.031687+5 1.150000-4 1.840504+5 1.166400-4 1.664142+5 1.180000-4 1.541028+5 1.194000-4 1.433832+5 1.205000-4 1.362164+5 1.217000-4 1.295424+5 1.230269-4 1.234244+5 1.244515-4 1.181830+5 1.255000-4 1.151176+5 1.265000-4 1.127624+5 1.276400-4 1.106982+5 1.290000-4 1.090196+5 1.304600-4 1.080651+5 1.318257-4 1.078764+5 1.335000-4 1.084580+5 1.350900-4 1.097297+5 1.365000-4 1.113644+5 1.385000-4 1.143776+5 1.400000-4 1.170904+5 1.430000-4 1.234408+5 1.465000-4 1.319928+5 1.560000-4 1.581492+5 1.611900-4 1.727440+5 1.659587-4 1.857302+5 1.705000-4 1.974856+5 1.760000-4 2.107180+5 1.800000-4 2.195632+5 1.862087-4 2.319182+5 1.905461-4 2.395541+5 1.972423-4 2.497808+5 2.041738-4 2.584519+5 2.113489-4 2.654824+5 2.190000-4 2.709968+5 2.264644-4 2.746830+5 2.350000-4 2.771760+5 2.454709-4 2.780511+5 2.570396-4 2.767695+5 2.691535-4 2.736019+5 2.818383-4 2.686611+5 2.951209-4 2.620989+5 3.100000-4 2.536964+5 3.273407-4 2.428503+5 3.467369-4 2.301336+5 3.672823-4 2.165963+5 3.935501-4 1.997325+5 4.168694-4 1.854857+5 4.466836-4 1.684339+5 4.731513-4 1.544494+5 5.069907-4 1.383321+5 5.500000-4 1.204544+5 5.900000-4 1.061660+5 6.350000-4 9.241520+4 6.918310-4 7.799020+4 7.585776-4 6.444447+4 8.222426-4 5.413477+4 9.015711-4 4.404530+4 9.885531-4 3.557075+4 1.083927-3 2.852981+4 1.188502-3 2.273173+4 1.318257-3 1.747091+4 1.462177-3 1.332811+4 1.621810-3 1.009256+4 1.798871-3 7.585998+3 2.000000-3 5.622195+3 2.213095-3 4.193681+3 2.454709-3 3.085029+3 2.722701-3 2.253643+3 3.019952-3 1.634964+3 3.349654-3 1.177895+3 3.715352-3 8.430212+2 4.168694-3 5.769853+2 4.677351-3 3.918568+2 5.248075-3 2.641720+2 5.888437-3 1.768428+2 6.683439-3 1.128717+2 7.585776-3 7.146945+1 8.609938-3 4.489675+1 9.772372-3 2.798636+1 1.109175-2 1.730785+1 1.258925-2 1.062651+1 1.445440-2 6.195215+0 1.678804-2 3.427036+0 1.949845-2 1.881720+0 2.290868-2 9.787736-1 2.722701-2 4.820984-1 3.273407-2 2.248342-1 4.168694-2 8.190885-2 7.673615-2 6.324142-3 9.660509-2 2.422093-3 1.161449-1 1.131397-3 1.364583-1 5.854594-4 1.566751-1 3.351418-4 1.778279-1 2.023064-4 2.018366-1 1.229948-4 2.264644-1 7.878029-5 2.540973-1 5.082336-5 2.818383-1 3.448417-5 3.126079-1 2.355620-5 3.467369-1 1.620696-5 3.845918-1 1.123465-5 4.265795-1 7.847717-6 4.677351-1 5.745430-6 5.069907-1 4.400690-6 5.559043-1 3.270060-6 6.165950-1 2.361293-6 6.760830-1 1.779891-6 7.413102-1 1.351844-6 8.609938-1 8.741570-7 9.120108-1 7.445189-7 9.549926-1 6.589861-7 1.000000+0 5.872900-7 1.047129+0 5.274619-7 1.096478+0 4.771771-7 1.148154+0 4.344294-7 1.216186+0 3.892730-7 1.318257+0 3.368775-7 1.479108+0 2.765619-7 1.840772+0 1.892777-7 2.044000+0 1.588200-7 2.317395+0 1.297353-7 2.630268+0 1.065797-7 3.019952+0 8.666389-8 3.507519+0 6.979670-8 4.073803+0 5.663641-8 4.786301+0 4.556427-8 5.688529+0 3.636995-8 6.839116+0 2.882538-8 8.317638+0 2.268076-8 1.035142+1 1.749545-8 1.318257+1 1.323669-8 1.621810+1 1.048691-8 2.137962+1 7.737380-9 2.951209+1 5.469866-9 4.315191+1 3.663876-9 7.079458+1 2.193663-9 1.412538+2 1.084320-9 2.818383+2 5.39576-10 1.122018+3 1.34793-10 1.000000+5 1.50990-12 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.549000-5 1.785900-5 1.000000+5 1.785900-5 1 49000 7 7 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.549000-5 7.34130-11 1.000000+5 7.34130-11 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.549000-5 7.630927-6 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.458000-5 3.422706+6 2.483133-5 3.394888+6 2.520000-5 3.374682+6 2.550000-5 3.373302+6 2.580000-5 3.386076+6 2.610000-5 3.411942+6 2.640000-5 3.451248+6 2.670000-5 3.503172+6 2.700000-5 3.567714+6 2.740000-5 3.673320+6 2.786121-5 3.822647+6 2.830000-5 3.991638+6 2.884032-5 4.235796+6 2.945000-5 4.559064+6 3.000000-5 4.894020+6 3.080000-5 5.454864+6 3.162278-5 6.122715+6 3.300000-5 7.444980+6 3.548134-5 1.043165+7 3.672823-5 1.217540+7 3.770000-5 1.360980+7 3.850000-5 1.481820+7 3.950000-5 1.633356+7 4.030000-5 1.752498+7 4.120975-5 1.882859+7 4.180000-5 1.963158+7 4.265795-5 2.072020+7 4.350000-5 2.168022+7 4.420000-5 2.238438+7 4.500000-5 2.307498+7 4.570882-5 2.357958+7 4.650000-5 2.402028+7 4.731513-5 2.433890+7 4.820000-5 2.453238+7 4.900000-5 2.457666+7 5.000000-5 2.446926+7 5.110000-5 2.416218+7 5.190000-5 2.382876+7 5.300000-5 2.324004+7 5.400000-5 2.259390+7 5.500000-5 2.186148+7 5.623413-5 2.086437+7 5.754399-5 1.972421+7 5.888437-5 1.850234+7 6.025596-5 1.722441+7 6.165950-5 1.591524+7 6.309573-5 1.459800+7 6.456542-5 1.329352+7 6.606934-5 1.202028+7 6.760830-5 1.079388+7 6.918310-5 9.627373+6 7.079458-5 8.531087+6 7.244360-5 7.512707+6 7.413102-5 6.576880+6 7.585776-5 5.726258+6 7.800000-5 4.807590+6 8.000000-5 4.074732+6 8.230000-5 3.362652+6 8.413951-5 2.880622+6 8.650000-5 2.359266+6 8.912509-5 1.887380+6 9.150000-5 1.541286+6 9.440609-5 1.202504+6 9.772372-5 9.063016+5 1.011579-4 6.780203+5 1.071519-4 4.158841+5 1.096478-4 3.438590+5 1.110000-4 3.118188+5 1.128000-4 2.757234+5 1.143000-4 2.507034+5 1.155000-4 2.336256+5 1.170000-4 2.155626+5 1.185000-4 2.007624+5 1.198000-4 1.902846+5 1.209000-4 1.829508+5 1.222200-4 1.758242+5 1.235000-4 1.704882+5 1.245000-4 1.672932+5 1.258925-4 1.641270+5 1.273503-4 1.622441+5 1.288250-4 1.616505+5 1.304600-4 1.623356+5 1.322000-4 1.644000+5 1.340000-4 1.677630+5 1.358000-4 1.721718+5 1.380384-4 1.788450+5 1.412538-4 1.901989+5 1.531087-4 2.407569+5 1.584893-4 2.645044+5 1.635000-4 2.857704+5 1.678804-4 3.033487+5 1.720000-4 3.188460+5 1.778279-4 3.388599+5 1.820000-4 3.517380+5 1.880000-4 3.681282+5 1.930000-4 3.799254+5 2.000000-4 3.937416+5 2.065380-4 4.039474+5 2.137962-4 4.124613+5 2.220000-4 4.189662+5 2.317395-4 4.231266+5 2.400000-4 4.241178+5 2.511886-4 4.223412+5 2.630268-4 4.175928+5 2.754229-4 4.102362+5 2.900000-4 3.990414+5 3.054921-4 3.852890+5 3.200000-4 3.711786+5 3.388442-4 3.519149+5 3.600000-4 3.302058+5 3.850000-4 3.051264+5 4.100000-4 2.813874+5 4.365158-4 2.577929+5 4.623810-4 2.364654+5 5.000000-4 2.086416+5 5.432503-4 1.810234+5 5.821032-4 1.597326+5 6.237348-4 1.401418+5 6.760830-4 1.194385+5 7.413102-4 9.868861+4 8.035261-4 8.290409+4 8.810489-4 6.741459+4 9.660509-4 5.441410+4 1.059254-3 4.361982+4 1.161449-3 3.473920+4 1.288250-3 2.668650+4 1.428894-3 2.034127+4 1.584893-3 1.539131+4 1.757924-3 1.156175+4 1.949845-3 8.621418+3 2.162719-3 6.382518+3 2.398833-3 4.691278+3 2.660725-3 3.423853+3 2.951209-3 2.481444+3 3.273407-3 1.785814+3 3.630781-3 1.276558+3 4.073803-3 8.724138+2 4.570882-3 5.915474+2 5.128614-3 3.980828+2 5.754399-3 2.659605+2 6.531306-3 1.693351+2 7.328245-3 1.115432+2 8.317638-3 6.993129+1 9.332543-3 4.542863+1 1.035142-2 3.062530+1 1.174898-2 1.875837+1 1.333521-2 1.140535+1 1.566751-2 6.003113+0 1.819701-2 3.284924+0 2.089296-2 1.870113+0 2.454709-2 9.614543-1 2.917427-2 4.676573-1 3.548134-2 2.048755-1 4.570882-2 6.977424-2 7.943282-2 6.589133-3 9.772372-2 2.737222-3 1.161449-1 1.324299-3 1.348963-1 7.109900-4 1.531088-1 4.229295-4 1.717908-1 2.654472-4 1.927525-1 1.678029-4 2.137962-1 1.118093-4 2.371374-1 7.504202-5 2.600160-1 5.300653-5 2.851018-1 3.770641-5 3.126079-1 2.702350-5 3.427678-1 1.951898-5 3.715352-1 1.477995-5 4.073803-1 1.083646-5 4.415705-1 8.313092-6 4.786301-1 6.423674-6 5.128614-1 5.183837-6 5.559043-1 4.068729-6 6.025596-1 3.216981-6 6.531306-1 2.559123-6 7.079458-1 2.049670-6 7.673615-1 1.653029-6 8.511380-1 1.262259-6 9.015711-1 1.092631-6 9.549926-1 9.520340-7 1.000000+0 8.574400-7 1.071519+0 7.392698-7 1.148154+0 6.423198-7 1.216186+0 5.748014-7 1.333521+0 4.852742-7 1.603245+0 3.506843-7 1.840772+0 2.762046-7 2.065380+0 2.279598-7 2.344229+0 1.860224-7 2.660725+0 1.529127-7 3.054921+0 1.244027-7 3.548134+0 1.002521-7 4.120975+0 8.139347-8 4.841724+0 6.551517-8 5.754399+0 5.232190-8 6.918310+0 4.148715-8 8.413951+0 3.265727-8 1.047129+1 2.520125-8 1.348963+1 1.882722-8 1.678804+1 1.473408-8 2.264644+1 1.061211-8 3.198895+1 7.330095-9 4.731513+1 4.859205-9 7.852356+1 2.879545-9 1.566751+2 1.425138-9 3.126079+2 7.09743-10 1.244515+3 1.77383-10 1.000000+5 2.20450-12 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.458000-5 1.512100-5 1.000000+5 1.512100-5 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.458000-5 9.459000-6 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.083000-5 1.703276+6 1.110000-5 1.465982+6 1.150000-5 1.175846+6 1.190000-5 9.439600+5 1.230269-5 7.570786+5 1.270000-5 6.091960+5 1.310000-5 4.891000+5 1.350000-5 3.922720+5 1.388400-5 3.169203+5 1.420000-5 2.654900+5 1.450000-5 2.240680+5 1.485000-5 1.834430+5 1.515000-5 1.542296+5 1.550000-5 1.256614+5 1.584893-5 1.021810+5 1.621810-5 8.188419+4 1.659587-5 6.514837+4 1.710000-5 4.799440+4 1.770000-5 3.364460+4 1.800000-5 2.843380+4 1.822000-5 2.530400+4 1.840772-5 2.304491+4 1.860000-5 2.108740+4 1.877000-5 1.963106+4 1.892000-5 1.854250+4 1.905461-5 1.771111+4 1.920000-5 1.695702+4 1.935000-5 1.632484+4 1.950000-5 1.583012+4 1.965000-5 1.546280+4 1.980000-5 1.521352+4 1.995262-5 1.507204+4 2.010000-5 1.503474+4 2.025000-5 1.508946+4 2.041738-5 1.525221+4 2.055000-5 1.545148+4 2.070000-5 1.574596+4 2.090000-5 1.624308+4 2.113489-5 1.696372+4 2.140000-5 1.793254+4 2.170000-5 1.919886+4 2.317395-5 2.715909+4 2.371374-5 3.048500+4 2.426610-5 3.397845+4 2.483133-5 3.758306+4 2.540973-5 4.125046+4 2.600160-5 4.493813+4 2.660725-5 4.860939+4 2.730000-5 5.265000+4 2.800000-5 5.653680+4 2.870000-5 6.021160+4 2.951209-5 6.419939+4 3.040000-5 6.821860+4 3.126079-5 7.177895+4 3.230000-5 7.564560+4 3.350000-5 7.955880+4 3.467369-5 8.284839+4 3.590900-5 8.578080+4 3.730000-5 8.849400+4 3.900000-5 9.106160+4 4.073803-5 9.294972+4 4.265795-5 9.429755+4 4.466836-5 9.501212+4 4.677351-5 9.513712+4 4.900000-5 9.471620+4 5.188000-5 9.351600+4 5.500000-5 9.159260+4 5.821032-5 8.915332+4 6.165950-5 8.621409+4 6.606934-5 8.220886+4 7.079458-5 7.785090+4 7.673615-5 7.252422+4 8.413951-5 6.634226+4 9.332543-5 5.954881+4 1.059254-4 5.175662+4 1.220000-4 4.387920+4 1.428894-4 3.617165+4 2.089296-4 2.236908+4 2.426610-4 1.841277+4 2.722701-4 1.574694+4 3.126079-4 1.294708+4 3.630781-4 1.040014+4 4.518559-4 7.481683+3 5.495409-4 5.531232+3 6.309573-4 4.440900+3 7.762471-4 3.163363+3 9.225714-4 2.367085+3 1.109175-3 1.724384+3 1.348963-3 1.222362+3 1.678804-3 8.254528+2 2.089296-3 5.531753+2 2.630268-3 3.602069+2 3.630781-3 1.958444+2 4.365158-3 1.373044+2 5.069907-3 1.022724+2 6.025596-3 7.212600+1 7.161434-3 5.048863+1 8.709636-3 3.342412+1 1.035142-2 2.305486+1 1.230269-2 1.578000+1 1.445440-2 1.099797+1 1.698244-2 7.610172+0 2.000000-2 5.198874+0 2.344229-2 3.565081+0 2.754229-2 2.413433+0 3.235937-2 1.621741+0 3.801894-2 1.081783+0 4.518559-2 6.956410-1 5.308844-2 4.574062-1 6.382635-2 2.809929-1 7.762471-2 1.661090-1 9.332543-2 1.004337-1 1.202264-1 4.983988-2 2.398833-1 7.267076-3 2.884032-1 4.378788-3 3.388442-1 2.831471-3 3.890451-1 1.963053-3 4.415705-1 1.413697-3 4.954502-1 1.056429-3 5.559043-1 7.955501-4 6.165950-1 6.206689-4 6.839117-1 4.876903-4 7.585776-1 3.859792-4 8.413951-1 3.076702-4 9.225714-1 2.531304-4 1.011579+0 2.097079-4 1.161449+0 1.593367-4 1.303167+0 1.279846-4 1.479108+0 1.012509-4 1.640590+0 8.421003-5 1.840772+0 6.909802-5 2.089296+0 5.599088-5 2.371374+0 4.571974-5 2.691535+0 3.760741-5 3.090295+0 3.061593-5 3.589219+0 2.468758-5 4.216965+0 1.974145-5 4.954502+0 1.590633-5 5.888437+0 1.271621-5 7.161434+0 9.949355-6 8.709636+0 7.841717-6 1.109175+1 5.898394-6 1.400000+1 4.518700-6 1.800000+1 3.413700-6 2.454709+1 2.434516-6 3.548134+1 1.644248-6 5.432503+1 1.053643-6 8.912509+1 6.331925-7 1.778279+2 3.137992-7 3.548134+2 1.563900-7 1.412538+3 3.910448-8 1.000000+5 5.51770-10 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.083000-5 1.083000-5 1.000000+5 1.083000-5 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.083000-5 0.0 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 4.910000-6 7.078926+6 5.248075-6 6.187806+6 5.754399-6 5.106862+6 6.309573-6 4.188765+6 6.918310-6 3.415743+6 7.700000-6 2.674131+6 8.511380-6 2.111487+6 9.440609-6 1.640483+6 1.035142-5 1.301973+6 1.150000-5 9.918557+5 1.258925-5 7.797488+5 1.396368-5 5.872106+5 1.548817-5 4.387767+5 1.717908-5 3.254170+5 1.927525-5 2.316252+5 2.162719-5 1.637090+5 2.511886-5 1.034121+5 4.027170-5 2.371281+4 4.518559-5 1.663971+4 4.954502-5 1.261551+4 5.308844-5 1.030895+4 5.688529-5 8.484158+3 6.025596-5 7.261331+3 6.382635-5 6.261305+3 6.683439-5 5.593839+3 7.000000-5 5.024895+3 7.328245-5 4.545822+3 7.673615-5 4.135526+3 8.035261-5 3.785856+3 8.413951-5 3.485936+3 8.810489-5 3.228605+3 9.332543-5 2.954901+3 9.900000-5 2.718541+3 1.059254-4 2.491035+3 1.135011-4 2.296222+3 1.216186-4 2.129855+3 1.318257-4 1.964771+3 1.445440-4 1.804888+3 1.621810-4 1.637488+3 2.137962-4 1.315920+3 2.483133-4 1.161463+3 2.786121-4 1.047810+3 3.019952-4 9.697771+2 3.349654-4 8.684802+2 3.758374-4 7.626571+2 4.315191-4 6.473897+2 4.897788-4 5.529995+2 5.495409-4 4.761598+2 6.095369-4 4.132700+2 6.760830-4 3.557759+2 7.585776-4 2.990641+2 8.810489-4 2.367011+2 1.000000-3 1.927008+2 1.122018-3 1.586270+2 1.258925-3 1.296769+2 1.428894-3 1.031158+2 1.640590-3 7.966019+1 1.862087-3 6.241193+1 2.113489-3 4.854321+1 2.818383-3 2.699423+1 3.019952-3 2.335380+1 3.349654-3 1.859545+1 3.758374-3 1.432246+1 4.244000-3 1.078421+1 4.786301-3 8.092287+0 5.432503-3 5.934702+0 6.165950-3 4.319282+0 6.998420-3 3.120386+0 7.943282-3 2.237778+0 9.015711-3 1.593311+0 1.023293-2 1.126358+0 1.161449-2 7.905738-1 1.318257-2 5.510927-1 1.513561-2 3.689487-1 1.737801-2 2.451152-1 2.000000-2 1.605072-1 2.317395-2 1.021884-1 2.786121-2 5.763640-2 3.273407-2 3.466104-2 3.890451-2 1.994839-2 4.731513-2 1.058192-2 5.821032-2 5.365421-3 8.035261-2 1.847378-3 1.288250-1 3.864064-4 1.584893-1 1.956842-4 1.883649-1 1.117482-4 2.213095-1 6.671603-5 2.540973-1 4.317401-5 2.884032-1 2.916668-5 3.273407-1 1.984855-5 3.672823-1 1.408789-5 4.120975-1 1.007406-5 4.570882-1 7.501284-6 5.069907-1 5.624262-6 5.623413-1 4.247819-6 6.237348-1 3.232809-6 6.839117-1 2.553126-6 7.498942-1 2.029454-6 8.609938-1 1.451772-6 9.225714-1 1.236114-6 9.772372-1 1.087507-6 1.047129+0 9.399077-7 1.135011+0 7.979171-7 1.216186+0 6.976595-7 1.348963+0 5.755288-7 1.548817+0 4.497020-7 1.757924+0 3.605928-7 1.995262+0 2.912505-7 2.264644+0 2.371428-7 2.570396+0 1.945628-7 2.951209+0 1.580085-7 3.427678+0 1.271092-7 4.000000+0 1.023600-7 4.677351+0 8.279804-8 5.559043+0 6.602271-8 6.683439+0 5.227705-8 8.222427+0 4.053035-8 1.011579+1 3.167718-8 1.273503+1 2.426376-8 1.603245+1 1.871976-8 2.113489+1 1.380756-8 2.917427+1 9.758651-9 4.265795+1 6.535155-9 6.918310+1 3.958638-9 1.333521+2 2.025822-9 2.660725+2 1.007715-9 1.059254+3 2.51664-10 1.000000+5 2.66100-12 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 4.910000-6 4.910000-6 1.000000+5 4.910000-6 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 4.910000-6 0.0 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 4.580000-6 1.404274+7 5.128614-6 1.093849+7 5.754399-6 8.425269+6 6.531306-6 6.265887+6 7.244360-6 4.883922+6 8.128305-6 3.675807+6 9.015711-6 2.826104+6 1.000000-5 2.158041+6 1.109175-5 1.635713+6 1.230269-5 1.230946+6 1.364583-5 9.194481+5 1.513561-5 6.817957+5 1.698244-5 4.854001+5 1.927525-5 3.312660+5 2.238721-5 2.091832+5 3.126079-5 7.428933+4 3.507519-5 5.228347+4 3.845918-5 3.969998+4 4.168694-5 3.139811+4 4.500000-5 2.531581+4 4.800000-5 2.125948+4 5.069907-5 1.844253+4 5.370318-5 1.599028+4 5.650000-5 1.419494+4 5.956621-5 1.262777+4 6.237348-5 1.147594+4 6.531306-5 1.048952+4 6.839116-5 9.643974+3 7.161434-5 8.919203+3 7.585776-5 8.149177+3 8.035261-5 7.502351+3 8.555000-5 6.905630+3 9.225714-5 6.302852+3 1.000000-4 5.759816+3 1.100000-4 5.215083+3 1.250000-4 4.602869+3 1.462177-4 3.985000+3 2.065380-4 2.940854+3 2.371374-4 2.586439+3 2.660725-4 2.308610+3 2.951209-4 2.070093+3 3.198895-4 1.887180+3 3.589219-4 1.640847+3 4.120975-4 1.375642+3 4.677351-4 1.163001+3 5.370318-4 9.608509+2 6.000000-4 8.184204+2 6.683439-4 6.939086+2 7.585776-4 5.671797+2 8.810489-4 4.433599+2 1.000000-3 3.572662+2 1.122018-3 2.914370+2 1.273503-3 2.311459+2 1.445440-3 1.819309+2 1.659587-3 1.390190+2 1.883649-3 1.078506+2 2.137962-3 8.308688+1 2.426610-3 6.355233+1 2.754229-3 4.823484+1 3.126079-3 3.632263+1 3.548134-3 2.713621+1 4.027170-3 2.011175+1 4.518559-3 1.520797+1 5.128614-3 1.109638+1 5.821032-3 8.033621+0 6.606934-3 5.772705+0 7.498942-3 4.117303+0 8.511380-3 2.915047+0 9.660509-3 2.048870+0 1.096478-2 1.429571+0 1.244515-2 9.903683-1 1.412538-2 6.813857-1 1.621810-2 4.496796-1 1.862087-2 2.945013-1 2.137962-2 1.914642-1 2.483133-2 1.191740-1 2.884032-2 7.363042-2 3.349654-2 4.516077-2 3.981072-2 2.548706-2 4.786301-2 1.373377-2 5.821032-2 7.060536-3 7.498942-2 2.958575-3 1.348963-1 3.892340-4 1.659587-1 1.915738-4 1.949845-1 1.111682-4 2.238721-1 7.021076-5 2.540973-1 4.640363-5 2.851018-1 3.207058-5 3.162278-1 2.315054-5 3.507519-1 1.682760-5 3.890451-1 1.232438-5 4.265795-1 9.409177-6 4.677351-1 7.233382-6 5.128614-1 5.601557-6 5.623413-1 4.371309-6 6.165950-1 3.437654-6 6.760830-1 2.724784-6 7.413102-1 2.176901-6 8.128305-1 1.752731-6 8.810489-1 1.458640-6 9.549926-1 1.222777-6 1.035142+0 1.033230-6 1.135011+0 8.585534-7 1.230269+0 7.346577-7 1.364583+0 6.055113-7 1.548817+0 4.819738-7 1.757924+0 3.864266-7 2.000000+0 3.109900-7 2.264644+0 2.542277-7 2.570396+0 2.085785-7 2.951209+0 1.693818-7 3.427678+0 1.362519-7 4.000000+0 1.097200-7 4.677351+0 8.875624-8 5.559043+0 7.077541-8 6.683439+0 5.603939-8 8.222427+0 4.344759-8 1.011579+1 3.395813-8 1.288250+1 2.566989-8 1.621810+1 1.981138-8 2.137962+1 1.461761-8 2.951209+1 1.033381-8 4.315191+1 6.921740-9 6.998420+1 4.193627-9 1.364583+2 2.121536-9 2.722701+2 1.055459-9 1.083927+3 2.63621-10 1.000000+5 2.85260-12 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 4.580000-6 4.580000-6 1.000000+5 4.580000-6 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 4.580000-6 0.0 1.000000+5 1.000000+5 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.492340-7 1.028100+0 1.103630-6 1.028750+0 1.492340-6 1.029500+0 2.042310-6 1.030100+0 2.568450-6 1.031000+0 3.514510-6 1.032000+0 4.808740-6 1.033200+0 6.736220-6 1.034000+0 8.269340-6 1.035300+0 1.122450-5 1.036640+0 1.492340-5 1.038200+0 2.013960-5 1.039700+0 2.616540-5 1.041500+0 3.481270-5 1.043800+0 4.832120-5 1.046400+0 6.722980-5 1.048300+0 8.370300-5 1.051200+0 1.135410-4 1.054080+0 1.492340-4 1.057700+0 2.034160-4 1.061100+0 2.645940-4 1.065100+0 3.502950-4 1.070400+0 4.887010-4 1.076200+0 6.753870-4 1.080600+0 8.434480-4 1.087100+0 1.136400-3 1.093710+0 1.492340-3 1.102600+0 2.069010-3 1.110700+0 2.698240-3 1.120600+0 3.609140-3 1.133300+0 5.017780-3 1.147500+0 6.927590-3 1.158200+0 8.609190-3 1.174100+0 1.150750-2 1.190110+0 1.492340-2 1.205100+0 1.858290-2 1.227500+0 2.487880-2 1.250000+0 3.213000-2 1.265600+0 3.763520-2 1.294900+0 4.890420-2 1.331800+0 6.454700-2 1.362600+0 7.860020-2 1.397000+0 9.517010-2 1.455800+0 1.253330-1 1.500000+0 1.496000-1 1.589800+0 2.037710-1 1.665000+0 2.539820-1 1.784700+0 3.416700-1 1.892300+0 4.263630-1 2.000000+0 5.137000-1 2.044000+0 5.494000-1 2.163500+0 6.468850-1 2.372600+0 8.182500-1 2.647100+0 1.040640+0 3.000000+0 1.318000+0 3.437500+0 1.644500+0 4.000000+0 2.036000+0 4.750000+0 2.510340+0 5.000000+0 2.657000+0 6.000000+0 3.193000+0 7.000000+0 3.671000+0 8.000000+0 4.101000+0 9.000000+0 4.492000+0 1.000000+1 4.849000+0 1.100000+1 5.179000+0 1.200000+1 5.483000+0 1.300000+1 5.765000+0 1.400000+1 6.024000+0 1.500000+1 6.264000+0 1.600000+1 6.488000+0 1.800000+1 6.897000+0 2.000000+1 7.263000+0 2.200000+1 7.595000+0 2.400000+1 7.896000+0 2.600000+1 8.171000+0 2.800000+1 8.423000+0 3.000000+1 8.656000+0 4.000000+1 9.599000+0 5.000000+1 1.030000+1 6.000000+1 1.084000+1 8.000000+1 1.165000+1 1.000000+2 1.222000+1 1.500000+2 1.313000+1 2.000000+2 1.367000+1 3.000000+2 1.430000+1 4.000000+2 1.466000+1 5.000000+2 1.490000+1 6.000000+2 1.507000+1 8.000000+2 1.530000+1 1.000000+3 1.545000+1 1.500000+3 1.566000+1 2.000000+3 1.578000+1 3.000000+3 1.590000+1 4.000000+3 1.597000+1 5.000000+3 1.601000+1 6.000000+3 1.604000+1 8.000000+3 1.608000+1 1.000000+4 1.611000+1 1.500000+4 1.614000+1 2.000000+4 1.616000+1 3.000000+4 1.618000+1 4.000000+4 1.619000+1 5.000000+4 1.619000+1 6.000000+4 1.620000+1 8.000000+4 1.620000+1 1.000000+5 1.621000+1 1 49000 7 8 1.148200+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 4.915380-7 2.099900+0 1.151250-6 2.106600+0 1.601480-6 2.114000+0 2.215860-6 2.119500+0 2.758730-6 2.127900+0 3.741350-6 2.136250+0 4.915380-6 2.147000+0 6.739330-6 2.156900+0 8.753580-6 2.169000+0 1.168220-5 2.184500+0 1.623870-5 2.201800+0 2.246660-5 2.214800+0 2.799170-5 2.234200+0 3.765380-5 2.253680+0 4.915380-5 2.281500+0 6.884860-5 2.307000+0 9.043240-5 2.338200+0 1.215940-4 2.377400+0 1.683930-4 2.410200+0 2.141680-4 2.446800+0 2.724340-4 2.485900+0 3.430090-4 2.532900+0 4.389780-4 2.556430+0 4.915380-4 2.611900+0 6.267660-4 2.660400+0 7.577260-4 2.745300+0 1.014170-3 2.809000+0 1.228220-3 2.904500+0 1.582260-3 3.000000+0 1.975000-3 3.125000+0 2.546680-3 3.234400+0 3.098720-3 3.425800+0 4.172770-3 3.569300+0 5.059810-3 3.784700+0 6.504240-3 4.000000+0 8.057000-3 4.250000+0 9.955340-3 4.625000+0 1.293870-2 5.000000+0 1.604000-2 5.500000+0 2.029660-2 6.000000+0 2.461000-2 6.750000+0 3.102830-2 7.000000+0 3.314000-2 8.000000+0 4.140000-2 9.000000+0 4.930000-2 1.000000+1 5.681000-2 1.100000+1 6.391000-2 1.200000+1 7.060000-2 1.300000+1 7.691000-2 1.400000+1 8.291000-2 1.500000+1 8.858000-2 1.600000+1 9.398000-2 1.800000+1 1.040000-1 2.000000+1 1.131000-1 2.200000+1 1.214000-1 2.400000+1 1.290000-1 2.600000+1 1.360000-1 2.800000+1 1.426000-1 3.000000+1 1.487000-1 4.000000+1 1.738000-1 5.000000+1 1.929000-1 6.000000+1 2.081000-1 8.000000+1 2.309000-1 1.000000+2 2.474000-1 1.500000+2 2.749000-1 2.000000+2 2.920000-1 3.000000+2 3.130000-1 4.000000+2 3.256000-1 5.000000+2 3.342000-1 6.000000+2 3.405000-1 8.000000+2 3.492000-1 1.000000+3 3.550000-1 1.500000+3 3.637000-1 2.000000+3 3.686000-1 3.000000+3 3.739000-1 4.000000+3 3.770000-1 5.000000+3 3.789000-1 6.000000+3 3.803000-1 8.000000+3 3.821000-1 1.000000+4 3.832000-1 1.500000+4 3.848000-1 2.000000+4 3.857000-1 3.000000+4 3.865000-1 4.000000+4 3.871000-1 5.000000+4 3.874000-1 6.000000+4 3.876000-1 8.000000+4 3.878000-1 1.000000+5 3.880000-1 1 49000 7 8 1.148200+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 49000 7 9 1.148200+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 4.900000+1 1.000000+5 4.900000+1 5.000000+5 4.898000+1 6.718700+5 4.896590+1 7.890600+5 4.895830+1 9.296900+5 4.895050+1 1.000000+6 4.894700+1 1.250000+6 4.892380+1 1.500000+6 4.889900+1 2.000000+6 4.882100+1 2.500000+6 4.872200+1 3.000000+6 4.860300+1 3.500000+6 4.846220+1 4.000000+6 4.830800+1 4.500000+6 4.813850+1 5.000000+6 4.795200+1 5.687500+6 4.766280+1 6.437500+6 4.732210+1 6.500000+6 4.729380+1 7.000000+6 4.705400+1 7.500000+6 4.680360+1 8.250000+6 4.641070+1 8.500000+6 4.627940+1 9.000000+6 4.601000+1 1.000000+7 4.545300+1 1.109400+7 4.482580+1 1.187500+7 4.436770+1 1.203100+7 4.427390+1 1.250000+7 4.400000+1 1.375000+7 4.325280+1 1.500000+7 4.251000+1 1.687500+7 4.140120+1 1.750000+7 4.103700+1 2.000000+7 3.957900+1 2.250000+7 3.813640+1 2.375000+7 3.742180+1 2.500000+7 3.671900+1 2.750000+7 3.533170+1 3.000000+7 3.398900+1 3.250000+7 3.268630+1 3.500000+7 3.143710+1 3.625000+7 3.083680+1 4.000000+7 2.912600+1 4.500000+7 2.706390+1 5.000000+7 2.526000+1 6.000000+7 2.236000+1 6.750000+7 2.069980+1 7.000000+7 2.022000+1 7.750000+7 1.894580+1 8.000000+7 1.856500+1 8.750000+7 1.749910+1 9.000000+7 1.716500+1 9.750000+7 1.619540+1 1.000000+8 1.588200+1 1.085900+8 1.482790+1 1.125000+8 1.435910+1 1.144500+8 1.412830+1 1.214800+8 1.330730+1 1.250000+8 1.290500+1 1.312500+8 1.220350+1 1.406300+8 1.120660+1 1.500000+8 1.029200+1 1.718800+8 8.511120+0 1.750000+8 8.297940+0 1.906300+8 7.369560+0 2.000000+8 6.914400+0 2.125000+8 6.408650+0 2.218800+8 6.094180+0 2.359400+8 5.708600+0 2.375000+8 5.671830+0 2.464800+8 5.477660+0 2.500000+8 5.410200+0 2.875000+8 4.840670+0 3.000000+8 4.654100+0 3.125000+8 4.453740+0 3.500000+8 3.897900+0 3.812500+8 3.550590+0 3.937500+8 3.414120+0 4.000000+8 3.342900+0 4.125000+8 3.192750+0 4.234400+8 3.057690+0 4.425800+8 2.823930+0 4.750000+8 2.464450+0 5.000000+8 2.233000+0 5.250000+8 2.043440+0 5.625000+8 1.816200+0 6.000000+8 1.635200+0 6.343800+8 1.498730+0 6.578100+8 1.422250+0 6.789100+8 1.365370+0 7.000000+8 1.319600+0 7.250000+8 1.278520+0 8.000000+8 1.187000+0 8.359400+8 1.139560+0 8.660200+8 1.097480+0 8.851600+8 1.070400+0 1.000000+9 9.218000-1 1.218800+9 7.276140-1 1.289100+9 6.773050-1 1.361600+9 6.281260-1 1.375000+9 6.192840-1 1.411000+9 5.958160-1 1.470300+9 5.580600-1 1.500000+9 5.395400-1 1.562500+9 5.014730-1 1.641100+9 4.560710-1 1.706900+9 4.205940-1 1.780200+9 3.840070-1 1.858700+9 3.483500-1 1.952900+9 3.101590-1 2.000000+9 2.928700-1 2.139200+9 2.479770-1 2.272600+9 2.124180-1 2.443000+9 1.754690-1 2.602800+9 1.476530-1 2.825100+9 1.173270-1 3.088500+9 9.065410-2 3.327400+9 7.265680-2 3.634100+9 5.557850-2 3.975600+9 4.204340-2 4.423800+9 2.996330-2 5.000000+9 2.017100-2 5.750000+9 1.274200-2 6.875000+9 7.027330-3 8.000000+9 4.227700-3 1.00000+10 2.002000-3 1.20500+10 1.078580-3 1.41820+10 6.316500-4 1.71110+10 3.429550-4 2.01380+10 2.028540-4 2.41190+10 1.139650-4 2.88610+10 6.451480-5 3.54590+10 3.377690-5 4.35270+10 1.782850-5 5.38800+10 9.215150-6 7.03510+10 4.064790-6 9.01170+10 1.912290-6 1.00000+11 1.394800-6 1.34280+11 5.730010-7 1.77440+11 2.483570-7 2.63330+11 7.662460-8 4.88110+11 1.240540-8 1.16740+12 9.77302-10 3.55150+12 3.98564-11 1.00000+14 3.07730-15 5.62340+14 2.25121-17 7.49890+15 1.33629-20 1.00000+17 7.66970-24 1 49000 7 0 1.148200+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.20000-12 1.000000+2 6.20000-10 1.000000+3 6.200000-8 1.000000+4 6.200000-6 1.000000+5 6.200000-4 5.000000+5 1.550000-2 6.718700+5 2.798738-2 7.890600+5 3.860217-2 9.296900+5 5.358806-2 1.000000+6 6.200000-2 1.250000+6 9.624980-2 1.500000+6 1.375000-1 2.000000+6 2.417000-1 2.500000+6 3.722000-1 3.000000+6 5.269000-1 3.500000+6 7.031420-1 4.000000+6 8.982000-1 4.500000+6 1.109430+0 5.000000+6 1.334000+0 5.687500+6 1.659540+0 6.437500+6 2.030640+0 6.500000+6 2.062140+0 7.000000+6 2.316000+0 7.500000+6 2.572280+0 8.250000+6 2.958840+0 8.500000+6 3.087430+0 9.000000+6 3.344400+0 1.000000+7 3.852000+0 1.109400+7 4.394580+0 1.187500+7 4.773080+0 1.203100+7 4.847300+0 1.250000+7 5.070000+0 1.375000+7 5.648190+0 1.500000+7 6.207000+0 1.687500+7 7.013530+0 1.750000+7 7.275700+0 2.000000+7 8.297000+0 2.250000+7 9.284100+0 2.375000+7 9.767380+0 2.500000+7 1.024400+1 2.750000+7 1.117680+1 3.000000+7 1.208300+1 3.250000+7 1.295950+1 3.500000+7 1.381120+1 3.625000+7 1.422690+1 4.000000+7 1.544400+1 4.500000+7 1.699790+1 5.000000+7 1.848900+1 6.000000+7 2.128800+1 6.750000+7 2.318820+1 7.000000+7 2.377900+1 7.750000+7 2.540700+1 8.000000+7 2.590600+1 8.750000+7 2.727260+1 9.000000+7 2.769100+1 9.750000+7 2.884410+1 1.000000+8 2.920300+1 1.085900+8 3.034060+1 1.125000+8 3.082060+1 1.144500+8 3.105040+1 1.214800+8 3.184820+1 1.250000+8 3.222900+1 1.312500+8 3.287370+1 1.406300+8 3.378720+1 1.500000+8 3.463400+1 1.718800+8 3.638470+1 1.750000+8 3.661390+1 1.906300+8 3.767430+1 2.000000+8 3.825500+1 2.125000+8 3.896790+1 2.218800+8 3.946340+1 2.359400+8 4.014650+1 2.375000+8 4.021840+1 2.464800+8 4.062220+1 2.500000+8 4.077400+1 2.875000+8 4.219410+1 3.000000+8 4.260500+1 3.125000+8 4.298540+1 3.500000+8 4.397700+1 3.812500+8 4.465360+1 3.937500+8 4.488810+1 4.000000+8 4.500300+1 4.125000+8 4.521460+1 4.234400+8 4.538320+1 4.425800+8 4.566040+1 4.750000+8 4.606160+1 5.000000+8 4.632100+1 5.250000+8 4.654450+1 5.625000+8 4.682440+1 6.000000+8 4.705900+1 6.343800+8 4.723690+1 6.578100+8 4.734870+1 6.789100+8 4.743870+1 7.000000+8 4.752600+1 7.250000+8 4.761590+1 8.000000+8 4.786300+1 8.359400+8 4.796020+1 8.660200+8 4.803850+1 8.851600+8 4.808700+1 1.000000+9 4.832800+1 1.218800+9 4.863030+1 1.289100+9 4.869280+1 1.361600+9 4.875350+1 1.375000+9 4.876170+1 1.411000+9 4.878350+1 1.470300+9 4.881810+1 1.500000+9 4.883500+1 1.562500+9 4.885770+1 1.641100+9 4.888510+1 1.706900+9 4.890700+1 1.780200+9 4.892200+1 1.858700+9 4.893570+1 1.952900+9 4.895140+1 2.000000+9 4.895900+1 2.139200+9 4.897130+1 2.272600+9 4.898230+1 2.443000+9 4.899240+1 2.602800+9 4.899710+1 2.825100+9 4.900310+1 3.088500+9 4.900790+1 3.327400+9 4.900670+1 3.634100+9 4.900530+1 3.975600+9 4.900380+1 4.423800+9 4.900200+1 5.000000+9 4.900000+1 5.750000+9 4.900000+1 6.875000+9 4.900000+1 8.000000+9 4.900000+1 1.00000+10 4.900000+1 1.20500+10 4.900000+1 1.41820+10 4.900000+1 1.71110+10 4.900000+1 2.01380+10 4.900000+1 2.41190+10 4.900000+1 2.88610+10 4.900000+1 3.54590+10 4.900000+1 4.35270+10 4.900000+1 5.38800+10 4.900000+1 7.03510+10 4.900000+1 9.01170+10 4.900000+1 1.00000+11 4.900000+1 1.34280+11 4.900000+1 1.77440+11 4.900000+1 2.63330+11 4.900000+1 4.88110+11 4.900000+1 1.16740+12 4.900000+1 3.55150+12 4.900000+1 1.00000+14 4.900000+1 5.62340+14 4.900000+1 7.49890+15 4.900000+1 1.00000+17 4.900000+1 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.923339-6 0.0 1.930441-6 3.957833-1 1.932808-6 5.260376-1 1.937542-6 9.608506-1 1.942276-6 1.620126+0 1.947601-6 2.659112+0 1.955895-6 4.659839+0 1.961508-6 5.931601+0 1.966381-6 6.676391+0 1.971342-6 6.902347+0 1.976048-6 6.582947+0 1.981120-6 5.722337+0 1.989034-6 3.839272+0 1.994350-6 2.583027+0 1.999084-6 1.667512+0 2.003818-6 9.937181-1 2.008552-6 5.466525-1 2.015358-6 1.563085-1 2.018021-6 0.0 2.252790-6 0.0 2.261108-6 1.742313-1 2.263880-6 2.315717-1 2.269425-6 4.229846-1 2.274970-6 7.132101-1 2.281208-6 1.170592+0 2.290825-6 2.042183+0 2.297843-6 2.632243+0 2.303204-6 2.939073+0 2.308828-6 3.042347+0 2.314578-6 2.895001+0 2.320468-6 2.519081+0 2.329823-6 1.682103+0 2.335965-6 1.137097+0 2.341856-6 7.155732-1 2.347055-6 4.374535-1 2.352600-6 2.406467-1 2.360571-6 6.880995-2 2.363690-6 0.0 2.725271-6 0.0 2.731979-6 1.752491-7 2.738687-6 3.467697-7 2.745395-6 6.334033-7 2.752103-6 1.068005-6 2.758810-6 1.662341-6 2.775300-6 3.493140-6 2.778934-6 3.961680-6 2.785642-6 4.618407-6 2.792350-6 5.009214-6 2.799058-6 5.154214-6 2.825890-6 4.782570-6 2.836779-6 4.729175-6 2.843610-6 4.541896-6 2.850441-6 4.168760-6 2.857272-6 3.548782-6 2.859429-6 3.292577-6 2.877765-6 1.517409-6 2.884596-6 9.795861-7 2.891427-6 5.837632-7 2.898258-6 3.211329-7 2.905089-6 1.630749-7 2.911920-6 0.0 2.983798-6 0.0 2.985418-6 1.754413-2 3.000114-6 1.596449+0 3.007462-6 2.907203+0 3.014811-6 4.888126+0 3.022796-6 7.876979+0 3.043114-6 1.706721+1 3.052226-6 1.991198+1 3.059429-6 2.060119+1 3.067438-6 1.950200+1 3.074792-6 1.709142+1 3.095641-6 7.634869+0 3.102989-6 4.923032+0 3.110338-6 2.930578+0 3.117686-6 1.610502+0 3.129179-6 3.417990-1 3.130682-6 1.724325-1 3.132382-6 7.145213-7 3.135318-6 8.471672-7 3.142960-6 1.318609-6 3.165886-6 3.076661-6 3.173528-6 3.477300-6 3.181170-6 3.627926-6 3.188812-6 3.494046-6 3.197579-6 3.024509-6 3.219380-6 1.350670-6 3.227022-6 8.719456-7 3.234664-6 5.196172-7 3.242306-6 2.858457-7 3.251606-6 1.137147-7 3.265612-6 4.819024-2 3.267613-6 5.500432-2 3.275616-6 1.004699-1 3.283620-6 1.694060-1 3.291623-6 2.636791-1 3.313239-6 5.814489-1 3.321394-6 1.016757+0 3.329549-6 1.398063+0 3.337704-6 1.948143+0 3.345859-6 2.734301+0 3.354779-6 3.918952+0 3.379323-6 7.887082+0 3.388736-6 8.785753+0 3.396793-6 8.939213+0 3.404507-6 8.479097+0 3.414244-6 7.148951+0 3.435566-6 3.341380+0 3.443721-6 2.157079+0 3.451876-6 1.285465+0 3.460031-6 7.071447-1 3.473117-6 1.421871-1 3.476341-6 1.31976-13 3.478051-6 0.0 3.581057-6 0.0 3.597033-6 2.574666-2 3.598685-6 2.838431-2 3.607500-6 5.184626-2 3.616314-6 8.741991-2 3.625128-6 1.360684-1 3.633252-6 1.920127-1 3.633711-6 1.962879-1 3.651599-6 7.737449-1 3.660543-6 1.191083+0 3.669486-6 1.774904+0 3.679776-6 2.674172+0 3.705821-6 5.296562+0 3.715654-6 5.885593+0 3.723796-6 6.029680+0 3.732915-6 5.727863+0 3.742593-6 4.956295+0 3.767870-6 2.227222+0 3.776814-6 1.454644+0 3.785757-6 8.964860-1 3.794701-6 5.405972-1 3.812108-6 1.558121-1 3.812589-6 1.464210-1 3.827174-6 2.090710-1 3.836412-6 2.362959-1 3.845650-6 2.465316-1 3.854888-6 2.374339-1 3.864126-6 2.110897-1 3.879138-6 1.470153-1 3.892689-6 8.880345-2 3.901079-6 5.925207-2 3.910317-6 3.530999-2 3.919556-6 1.942432-2 3.933580-6 4.759322-3 3.934097-6 4.738073-3 3.938032-6 4.082553-2 3.953464-6 1.973689-1 3.962235-6 3.444568-1 3.963152-6 3.704231-1 3.972907-6 7.266268-1 3.982662-6 1.178924+0 3.993346-6 1.848221+0 4.023887-6 4.137283+0 4.034447-6 4.688666+0 4.041190-6 4.912128+0 4.052738-6 4.877945+0 4.062484-6 4.538122+0 4.074206-6 3.820834+0 4.099439-6 1.951285+0 4.109474-6 1.384132+0 4.118618-6 9.941326-1 4.128028-6 7.139974-1 4.138127-6 6.636354-1 4.150475-6 7.641881-1 4.158432-6 8.657568-1 4.176061-6 1.275366+0 4.189018-6 1.478858+0 4.199788-6 1.534272+0 4.210910-6 1.477400+0 4.225786-6 1.262737+0 4.240885-6 1.016108+0 4.250828-6 9.043324-1 4.259995-6 8.520624-1 4.266898-6 8.804175-1 4.283623-6 1.026813+0 4.303534-6 1.278400+0 4.350566-6 2.086641+0 4.362438-6 2.195028+0 4.373207-6 2.204948+0 4.385452-6 2.102459+0 4.403347-6 1.809940+0 4.426804-6 1.393005+0 4.441796-6 1.231204+0 4.455478-6 1.167673+0 4.473314-6 1.155108+0 4.515699-6 1.487987+0 4.530583-6 1.565572+0 4.543232-6 1.563271+0 4.561750-6 1.493351+0 4.590040-6 1.357324+0 4.614849-6 1.366467+0 4.654899-6 1.428505+0 4.894045-6 1.345503+0 5.783057-6 1.107675+0 5.811526-6 4.275786+0 5.825760-6 6.896591+0 5.839994-6 1.087200+1 5.856008-6 1.713846+1 5.896931-6 3.658961+1 5.912472-6 4.136893+1 5.926909-6 4.278116+1 5.941767-6 4.072698+1 5.955983-6 3.596543+1 5.980182-6 2.443435+1 5.996571-6 1.664686+1 6.011695-6 1.086497+1 6.025485-6 6.965166+0 6.039719-6 4.297586+0 6.067743-6 1.042884+0 6.112499-6 1.032742+0 6.142589-6 7.591023+0 6.157634-6 1.301445+1 6.173619-6 2.194074+1 6.189605-6 3.420260+1 6.216426-6 5.962143+1 6.233800-6 7.503495+1 6.249920-6 8.447799+1 6.265067-6 8.714084+1 6.279376-6 8.354363+1 6.295744-6 7.275095+1 6.321279-6 4.890446+1 6.338176-6 3.322282+1 6.353221-6 2.179393+1 6.368266-6 1.338177+1 6.383311-6 7.799241+0 6.405879-6 2.706766+0 6.413401-6 9.710318-1 7.623206-6 7.684561-1 8.837770-6 6.198004-1 8.887798-6 6.966591-1 8.903029-6 8.188946-1 8.931551-6 1.091463+0 8.956161-6 1.467492+0 8.979234-6 1.957447+0 9.011490-6 2.825437+0 9.040931-6 3.669790+0 9.065542-6 4.217504+0 9.084684-6 4.479669+0 9.109295-6 4.470985+0 9.131171-6 4.182147+0 9.155781-6 3.592973+0 9.205003-6 2.177352+0 9.215941-6 1.881672+0 9.237817-6 1.407692+0 9.259693-6 1.059059+0 9.281569-6 8.288329-1 9.325322-6 5.713549-1 9.669176-6 5.454899-1 9.716774-6 6.194151-1 9.740574-6 6.837627-1 9.764373-6 7.802908-1 9.795373-6 9.575421-1 9.855964-6 1.346073+0 9.877167-6 1.439373+0 9.888180-6 1.477188+0 9.907170-6 1.496401+0 9.930969-6 1.447644+0 9.959441-6 1.303672+0 1.001009-5 9.609713-1 1.003070-5 8.445738-1 1.004997-5 7.550027-1 1.007449-5 6.823897-1 1.009911-5 6.541921-1 1.013003-5 6.638400-1 1.014516-5 6.798995-1 1.021097-5 8.480760-1 1.023610-5 8.912243-1 1.025933-5 9.097610-1 1.030257-5 8.875582-1 1.037141-5 8.125146-1 1.041095-5 7.933939-1 1.067723-5 7.457781-1 1.127351-5 6.360328-1 1.207476-5 5.229113-1 1.291962-5 4.327219-1 1.400393-5 3.472732-1 1.511506-5 2.838635-1 1.634698-5 2.327576-1 1.785312-5 1.888639-1 1.948764-5 1.563533-1 1.958357-5 1.857238+0 1.963154-5 3.263699+0 1.967950-5 5.396637+0 1.973315-5 8.748945+0 1.987137-5 1.919275+1 1.992374-5 2.175705+1 1.997282-5 2.250804+1 2.002303-5 2.138621+1 2.007615-5 1.851559+1 2.019611-5 1.060310+1 2.022939-5 8.999202+0 2.025871-5 7.994357+0 2.028874-5 7.494284+0 2.030852-5 7.412383+0 2.033369-5 7.592876+0 2.035834-5 8.067692+0 2.045213-5 1.089093+1 2.048172-5 1.226135+1 2.053570-5 1.399847+1 2.058214-5 1.467627+1 2.063892-5 1.419370+1 2.068411-5 1.303853+1 2.082780-5 7.480326+0 2.087724-5 5.840889+0 2.092668-5 4.531604+0 2.097612-5 3.506955+0 2.103792-5 2.459157+0 2.107500-5 1.759976+0 2.116935-5 1.020877+0 2.121960-5 7.057735-1 2.126985-5 4.737246-1 2.132010-5 3.195737-1 2.142060-5 1.306659-1 2.226293-5 1.225847-1 2.237252-5 3.794161-1 2.242732-5 5.920381-1 2.248212-5 9.146692-1 2.254100-5 1.396217+0 2.269431-5 2.934910+0 2.276653-5 3.402104+0 2.282121-5 3.492760+0 2.287588-5 3.323668+0 2.293310-5 2.905639+0 2.307075-5 1.546346+0 2.308775-5 1.393338+0 2.314242-5 9.966086-1 2.319709-5 8.066414-1 2.323522-5 7.748127-1 2.325483-5 7.734663-1 2.331179-5 9.117998-1 2.335887-5 1.108570+0 2.339201-5 1.376444+0 2.356429-5 3.005673+0 2.363487-5 3.481589+0 2.367261-5 3.641991+0 2.373253-5 3.673686+0 2.379378-5 3.483771+0 2.390133-5 2.833394+0 2.398923-5 2.247460+0 2.406770-5 1.877086+0 2.413085-5 1.699420+0 2.418511-5 1.613803+0 2.429390-5 1.648351+0 2.446131-5 1.964924+0 2.453874-5 2.062381+0 2.466364-5 2.123705+0 2.495696-5 2.079076+0 2.655000-5 2.233852+0 2.792904-5 2.540963+0 2.903224-5 2.928329+0 3.015000-5 3.463613+0 3.162278-5 4.414022+0 3.300000-5 5.573120+0 3.476519-5 7.478826+0 3.677704-5 1.023683+1 3.989988-5 1.547257+1 4.460000-5 2.368290+1 4.754507-5 2.740540+1 5.013750-5 2.921089+1 5.322050-5 2.959441+1 5.705002-5 2.793550+1 6.237348-5 2.337899+1 7.098163-5 1.489062+1 7.520557-5 1.139911+1 7.932258-5 8.645247+0 8.010499-5 8.447699+0 8.114038-5 8.731854+0 8.153559-5 8.572058+0 8.268923-5 7.696401+0 8.614618-5 6.303272+0 8.709636-5 6.087396+0 8.832853-5 6.007077+0 8.985805-5 5.443563+0 9.517409-5 4.116793+0 9.968952-5 3.255469+0 1.033744-4 2.720934+0 1.077863-4 2.246031+0 1.126795-4 1.885929+0 1.174900-4 1.663023+0 1.201243-4 1.584227+0 1.207156-4 1.625032+0 1.213070-4 1.738133+0 1.219356-4 1.992060+0 1.225400-4 2.299546+0 1.228337-4 2.414088+0 1.231269-4 2.472508+0 1.234387-4 2.461740+0 1.237536-4 2.375977+0 1.246528-4 1.969768+0 1.252033-4 1.809497+0 1.259178-4 1.772502+0 1.276273-4 1.837050+0 1.306632-4 1.808025+0 1.400480-4 1.924427+0 1.555798-4 2.292100+0 1.883649-4 3.188699+0 2.187000-4 3.842621+0 2.555642-4 4.349796+0 2.968247-4 4.640937+0 3.651741-4 4.727725+0 4.402426-4 4.582623+0 4.450507-4 4.811564+0 4.537603-4 5.289419+0 4.610400-4 5.721324+0 4.639498-4 6.183528+0 4.663909-4 6.866396+0 4.689873-4 7.944644+0 4.715749-4 9.419044+0 4.755000-4 1.238090+1 4.830498-4 1.965861+1 4.900500-4 2.618645+1 4.958000-4 3.011979+1 5.020000-4 3.254430+1 5.114375-4 3.353010+1 5.985155-4 2.854402+1 6.520532-4 2.653881+1 6.720693-4 2.840315+1 7.000000-4 2.836800+1 7.191126-4 2.849203+1 7.967979-4 2.620364+1 8.119486-4 2.670715+1 9.779131-4 2.184672+1 1.173208-3 1.758080+1 1.386357-3 1.419326+1 1.598637-3 1.172443+1 1.837861-3 9.662776+0 2.107088-3 7.949479+0 2.427802-3 6.463459+0 2.785338-3 5.262746+0 3.180706-3 4.298928+0 3.630781-3 3.507131+0 3.659193-3 3.559604+0 3.674555-3 3.760202+0 3.686535-3 4.109520+0 3.698354-3 4.685657+0 3.710396-3 5.525702+0 3.745075-3 8.547151+0 3.765227-3 9.786410+0 3.786333-3 1.036293+1 3.839222-3 1.042086+1 3.893844-3 1.045807+1 3.924220-3 1.114404+1 3.975335-3 1.289597+1 4.010637-3 1.325160+1 4.159166-3 1.281761+1 4.245405-3 1.384748+1 4.416544-3 1.327577+1 5.128614-3 1.054384+1 5.846218-3 8.565736+0 6.732582-3 6.831670+0 7.725694-3 5.454621+0 8.828793-3 4.362213+0 9.969998-3 3.549316+0 1.126999-2 2.876091+0 1.269843-2 2.337364+0 1.420958-2 1.919577+0 1.599788-2 1.556216+0 1.795666-2 1.266782+0 2.007143-2 1.037378+0 2.224156-2 8.613917-1 2.520033-2 6.864801-1 2.721213-2 5.996802-1 2.735609-2 6.161738-1 2.744928-2 6.577813-1 2.752024-2 7.242147-1 2.758731-2 8.285085-1 2.764459-2 9.582332-1 2.770984-2 1.156088+0 2.780250-2 1.526021+0 2.804744-2 2.674432+0 2.818260-2 3.118889+0 2.834162-2 3.366592+0 2.858028-2 3.423288+0 3.330428-2 2.681046+0 3.814654-2 2.144568+0 4.375378-2 1.698866+0 4.887608-2 1.401214+0 5.524426-2 1.130029+0 6.222730-2 9.133711-1 7.078559-2 7.231616-1 7.914919-2 5.893796-1 8.924727-2 4.718536-1 9.955337-2 3.847491-1 1.118302-1 3.094303-1 1.225205-1 2.604310-1 1.364935-1 2.124332-1 1.502447-1 1.771972-1 1.664738-1 1.460390-1 1.858742-1 1.186123-1 2.084965-1 9.566208-2 2.306166-1 7.937406-2 2.561165-1 6.546742-2 2.831596-1 5.458475-2 3.163985-1 4.486869-2 3.499956-1 3.768212-2 3.904474-1 3.132571-2 4.372821-1 2.604404-2 4.902195-1 2.178101-2 5.468290-1 1.850105-2 6.077402-1 1.591688-2 6.898426-1 1.342034-2 7.807284-1 1.148474-2 8.759917-1 1.003386-2 1.011580+0 8.604698-3 1.228714+0 6.978426-3 1.477239+0 5.715111-3 1.776032+0 4.680496-3 2.135261+0 3.833179-3 2.567148+0 3.139253-3 3.086391+0 2.570949-3 3.710658+0 2.105527-3 4.461192+0 1.724360-3 5.363532+0 1.412197-3 6.448384+0 1.156545-3 7.752663+0 9.471736-4 9.320751+0 7.757053-4 9.760024+0 7.379273-4 1.000000+1 1.500484-3 1 49000 7 0 1.148200+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.886344+1 1.862470-6-4.771275+1 1.923635-6-4.610849+1 1.951744-6-4.435672+1 1.965634-6-4.682399+1 1.972732-6-4.904714+1 1.987286-6-4.573831+1 2.003818-6-4.611806+1 2.042303-6-4.841065+1 2.122466-6-4.885431+1 2.263880-6-4.728409+1 2.294811-6-4.716986+1 2.315414-6-4.882809+1 2.341510-6-4.796929+1 2.398656-6-4.894010+1 2.868597-6-4.628873+1 2.959100-6-4.378447+1 2.985418-6-4.120361+1 3.017337-6-3.611459+1 3.029258-6-3.593652+1 3.039734-6-3.807935+1 3.051781-6-4.375230+1 3.059429-6-4.846807+1 3.070060-6-4.378634+1 3.079654-6-3.982239+1 3.091834-6-3.791937+1 3.107123-6-3.927702+1 3.145337-6-4.518793+1 3.214024-6-4.838678+1 3.254685-6-4.894887+1 3.360171-6-4.476124+1 3.379323-6-4.658319+1 3.394002-6-4.901114+1 3.417173-6-4.454298+1 3.435566-6-4.373493+1 3.508454-6-4.783037+1 3.592075-6-4.901884+1 3.687280-6-4.629669+1 3.716591-6-4.877158+1 3.723796-6-4.900253+1 3.753901-6-4.603291+1 3.794701-6-4.704828+1 3.875674-6-4.914974+1 3.934589-6-4.852427+1 4.007297-6-4.669760+1 4.054168-6-4.905257+1 4.090984-6-4.721725+1 4.184375-6-4.960475+1 4.359722-6-4.957186+1 4.679127-6-4.987811+1 5.013324-6-4.807323+1 5.488001-6-4.322322+1 5.652673-6-3.930261+1 5.733795-6-3.521333+1 5.772204-6-3.144289+1 5.811526-6-2.435137+1 5.841774-6-1.850537+1 5.856008-6-1.695740+1 5.868463-6-1.708366+1 5.878694-6-1.842895+1 5.890926-6-2.184351+1 5.898711-6-2.518297+1 5.910582-6-3.110006+1 5.940354-6-4.880846+1 5.958824-6-4.002892+1 5.974674-6-3.588640+1 5.988565-6-3.498241+1 6.005468-6-3.663416+1 6.038064-6-4.434689+1 6.056721-6-4.876803+1 6.108094-6-3.337789+1 6.118577-6-2.869722+1 6.141649-6-2.068042+1 6.160337-6-1.311797+1 6.175383-6-8.021327+0 6.178468-6-7.277469+0 6.189605-6-5.296613+0 6.192896-6-5.110872+0 6.195364-6-5.145193+0 6.199067-6-5.410859+0 6.204650-6-6.148376+0 6.207941-6-6.943802+0 6.212261-6-8.391573+0 6.216426-6-1.024918+1 6.224397-6-1.497759+1 6.230480-6-1.945768+1 6.244930-6-3.357827+1 6.257640-6-4.884212+1 6.263301-6-4.147203+1 6.274018-6-2.849739+1 6.281084-6-1.959018+1 6.293981-6-6.587059+0 6.295744-6-4.981575+0 6.298829-6-2.514604+0 6.301143-6-8.520524-1 6.304614-6 1.422329+0 6.308085-6 3.558519+0 6.309966-6 4.642334+0 6.313257-6 6.211929+0 6.315726-6 7.200938+0 6.319428-6 8.407835+0 6.323131-6 9.237723+0 6.329713-6 1.012530+1 6.333944-6 1.031798+1 6.336060-6 1.024873+1 6.345698-6 8.891393+0 6.351340-6 7.741808+0 6.355101-6 6.398070+0 6.361684-6 4.525126+0 6.364975-6 3.514002+0 6.366620-6 2.936529+0 6.368266-6 2.215097+0 6.383311-6-3.236281+0 6.385192-6-4.015909+0 6.388483-6-5.128363+0 6.405879-6-1.025679+1 6.412461-6-1.261560+1 6.414986-6-1.387917+1 6.421311-6-1.597933+1 6.437029-6-1.958022+1 6.461864-6-2.342651+1 6.498443-6-2.720206+1 6.557566-6-3.106397+1 6.658574-6-3.486630+1 6.821912-6-3.810650+1 7.181525-6-4.127889+1 8.114955-6-4.406440+1 8.875837-6-4.607362+1 9.024026-6-4.698921+1 9.184643-6-4.264086+1 9.545784-6-4.477540+1 9.888180-6-4.525173+1 1.008575-5-4.496877+1 1.757431-5-4.903713+1 1.860842-5-5.013275+1 1.925256-5-4.749544+1 1.946804-5-4.457121+1 1.969599-5-3.800710+1 1.976130-5-3.739285+1 1.983166-5-3.919551+1 1.990247-5-4.376246+1 1.997830-5-5.096688+1 2.006514-5-4.400503+1 2.013576-5-4.148188+1 2.020438-5-4.181722+1 2.038278-5-4.805412+1 2.048172-5-4.825704+1 2.058214-5-4.427954+1 2.070151-5-3.895864+1 2.080995-5-3.727706+1 2.106573-5-3.963904+1 2.146658-5-4.407879+1 2.263507-5-4.940756+1 2.301252-5-4.666173+1 2.350304-5-4.967385+1 2.395606-5-4.720039+1 2.462424-5-4.864235+1 3.745467-5-5.665725+1 4.163949-5-5.596805+1 4.610441-5-5.084213+1 5.650000-5-3.273879+1 6.058222-5-2.755839+1 6.456543-5-2.421005+1 6.839888-5-2.244902+1 7.372800-5-2.182684+1 8.035261-5-2.289992+1 8.403860-5-2.435729+1 8.938647-5-2.501390+1 1.293666-4-3.107056+1 1.761768-4-3.314001+1 3.294586-4-3.494523+1 3.912911-4-3.764489+1 4.301790-4-4.160004+1 4.496624-4-4.579174+1 4.639498-4-5.168927+1 4.778343-4-5.873619+1 4.851968-4-5.882970+1 4.945000-4-5.443777+1 5.114375-4-4.373551+1 5.242880-4-3.865602+1 5.439058-4-3.412124+1 5.765034-4-2.957218+1 6.108137-4-2.677023+1 6.421729-4-2.549993+1 6.644201-4-2.599804+1 6.826559-4-2.372094+1 7.041500-4-2.250294+1 7.271300-4-2.023174+1 7.691076-4-1.770970+1 7.967979-4-1.676672+1 8.119486-4-1.653336+1 8.355894-4-1.491510+1 8.833290-4-1.294179+1 9.508784-4-1.100671+1 1.036800-3-9.242056+0 1.143207-3-7.798599+0 1.262554-3-6.747106+0 1.386357-3-6.065699+0 1.549600-3-5.552491+0 1.749600-3-5.289534+0 2.007856-3-5.288658+0 2.316336-3-5.585285+0 2.668394-3-6.216758+0 3.003325-3-7.157609+0 3.257569-3-8.277265+0 3.426137-3-9.446825+0 3.541393-3-1.072234+1 3.613839-3-1.205081+1 3.659193-3-1.355798+1 3.716285-3-1.653233+1 3.739045-3-1.661623+1 3.802662-3-1.380434+1 3.839222-3-1.295559+1 3.882819-3-1.281723+1 3.934093-3-1.318786+1 3.965225-3-1.261349+1 4.025042-3-1.067364+1 4.079576-3-9.660910+0 4.141483-3-9.117918+0 4.205843-3-9.006680+0 4.245405-3-8.410804+0 4.306046-3-7.205278+0 4.378134-3-6.262133+0 4.501542-3-5.133711+0 4.641496-3-4.212428+0 4.827439-3-3.293247+0 5.010126-3-2.622382+0 5.249128-3-1.961124+0 5.367300-3-1.701077+0 5.555169-3-1.361470+0 5.709878-3-1.127016+0 5.919732-3-8.720736-1 6.095369-3-6.949084-1 6.237348-3-5.738918-1 6.456725-3-4.168991-1 6.635521-3-3.151068-1 6.805979-3-2.327267-1 6.968741-3-1.672708-1 7.148745-3-1.044403-1 7.317707-3-5.481589-2 7.338799-3-4.933621-2 7.473776-3-1.806781-2 7.504340-3-1.154428-2 7.559532-3-1.953091-3 7.606491-3 6.386017-3 7.676376-3 1.858857-2 7.783795-3 3.552707-2 7.852356-3 4.476447-2 8.041562-3 6.685701-2 8.210854-3 7.955414-2 8.428861-3 8.936204-2 8.603938-3 9.313328-2 8.984908-3 9.424179-2 9.247315-3 8.693542-2 9.619541-3 7.031262-2 9.842943-3 5.730151-2 1.024274-2 2.900300-2 1.036800-2 1.855694-2 1.042653-2 1.338523-2 1.051978-2 5.574074-3 1.059553-2-1.392276-3 1.096478-2-3.498496-2 1.138673-2-7.596535-2 1.181255-2-1.170021-1 1.926767-2-9.109865-1 2.158865-2-1.192034+0 2.348270-2-1.485413+0 2.483133-2-1.777068+0 2.578836-2-2.078899+0 2.648760-2-2.412863+0 2.700515-2-2.811738+0 2.731486-2-3.229159+0 2.754525-2-3.769001+0 2.780250-2-4.443407+0 2.793649-2-4.530307+0 2.808451-2-4.299723+0 2.845677-2-3.216299+0 2.867788-2-2.783882+0 2.892759-2-2.458547+0 2.934708-2-2.082173+0 2.990008-2-1.732842+0 3.057851-2-1.422674+0 3.150824-2-1.117283+0 3.226708-2-9.329249-1 3.330428-2-7.383693-1 3.437054-2-5.826931-1 3.580694-2-4.200449-1 3.684212-2-3.264009-1 3.729750-2-2.908497-1 3.814654-2-2.335220-1 3.911482-2-1.779819-1 4.017956-2-1.264386-1 4.116258-2-8.674677-2 4.247418-2-4.082951-2 4.336201-2-1.614322-2 4.418883-2 3.460494-3 4.447292-2 1.024831-2 4.546830-2 2.931623-2 4.677841-2 5.068761-2 4.887608-2 7.483054-2 5.030355-2 8.752339-2 5.250690-2 1.004823-1 5.381923-2 1.062730-1 5.656924-2 1.120042-1 5.950269-2 1.125443-1 6.532119-2 1.026065-1 7.078559-2 8.728466-2 9.128063-2 1.488206-2 9.593769-2-5.927341-4 9.812985-2-7.751697-3 1.017483-1-1.902724-2 1.118302-1-4.744476-2 1.225205-1-7.375518-2 1.364935-1-1.029108-1 1.561265-1-1.353902-1 1.795132-1-1.645738-1 2.159741-1-1.967836-1 2.732936-1-2.280376-1 3.628883-1-2.539778-1 5.256073-1-2.742798-1 9.185969-1-2.881428-1 2.814822+0-2.941619-1 8.500626+0-2.948618-1 1.000000+1-2.947595-1 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.185907-3 1.154397-6 9.588545-3 1.266039-6 1.440290-2 1.350000-6 1.925126-2 1.388478-6 2.187940-2 1.476613-6 2.911863-2 1.566081-6 3.853840-2 1.650044-6 4.971897-2 1.728841-6 6.286740-2 1.815381-6 8.093613-2 1.906339-6 1.051865-1 1.970369-6 1.262343-1 2.030396-6 1.497212-1 2.086672-6 1.754801-1 2.139431-6 2.038085-1 2.196088-6 2.397649-1 2.235262-6 2.684535-1 2.278734-6 3.052122-1 2.319489-6 3.450372-1 2.357697-6 3.879542-1 2.393516-6 4.341988-1 2.427097-6 4.839453-1 2.458579-6 5.372764-1 2.488094-6 5.942674-1 2.515764-6 6.551669-1 2.541704-6 7.202239-1 2.566024-6 7.896541-1 2.588823-6 8.636564-1 2.611809-6 9.486724-1 2.630236-6 1.025871+0 2.649022-6 1.114628+0 2.666633-6 1.208896+0 2.683145-6 1.308933+0 2.698624-6 1.415016+0 2.713136-6 1.527459+0 2.726740-6 1.646630+0 2.739495-6 1.772927+0 2.751452-6 1.906705+0 2.762662-6 2.048241+0 2.777597-6 2.266346+0 2.792261-6 2.521924+0 2.806484-6 2.821809+0 2.816649-6 3.077535+0 2.823784-6 3.283276+0 2.830474-6 3.500165+0 2.836745-6 3.728793+0 2.848503-6 4.242279+0 2.858792-6 4.817468+0 2.867794-6 5.464984+0 2.875671-6 6.195130+0 2.882564-6 7.013744+0 2.888595-6 7.918854+0 2.894871-6 9.109073+0 2.898490-6 9.938452+0 2.902530-6 1.101274+1 2.906065-6 1.209919+1 2.909158-6 1.317583+1 2.914233-6 1.522789+1 2.921486-6 1.886061+1 2.933587-6 2.701816+1 2.938026-6 3.069821+1 2.941633-6 3.394794+1 2.945239-6 3.740935+1 2.952453-6 4.484367+1 2.953355-6 4.580844+1 2.959667-6 5.266007+1 2.962147-6 5.535186+1 2.966881-6 6.037669+1 2.969361-6 6.290248+1 2.971728-6 6.521483+1 2.974996-6 6.820779+1 2.977758-6 7.051673+1 2.981309-6 7.313316+1 2.984465-6 7.507750+1 2.988142-6 7.683455+1 2.992355-6 7.811210+1 2.995962-6 7.854293+1 2.997217-6 7.854542+1 3.000800-6 7.813078+1 3.004159-6 7.718051+1 3.006087-6 7.639573+1 3.009519-6 7.458604+1 3.013072-6 7.219187+1 3.016974-6 6.901642+1 3.019575-6 6.662271+1 3.023181-6 6.299939+1 3.026282-6 5.965289+1 3.028699-6 5.693391+1 3.031805-6 5.333721+1 3.034961-6 4.961584+1 3.038258-6 4.571052+1 3.042626-6 4.059845+1 3.046233-6 3.650076+1 3.050291-6 3.209348+1 3.053447-6 2.884996+1 3.061111-6 2.176890+1 3.063436-6 1.986260+1 3.065655-6 1.815127+1 3.067874-6 1.654583+1 3.071030-6 1.444304+1 3.075088-6 1.204261+1 3.078295-6 1.037612+1 3.082530-6 8.466944+0 3.086715-6 6.879298+0 3.090856-6 5.570783+0 3.096307-6 4.195652+0 3.104324-6 2.759340+0 3.106955-6 2.411639+0 3.109565-6 2.116678+0 3.112155-6 1.867865+0 3.407305-6 4.322030+0 3.441063-6 6.677404+0 3.449532-6 7.723586+0 3.458002-6 8.945268+0 3.467531-6 1.045992+1 3.474942-6 1.166229+1 3.477853-6 1.212187+1 3.484470-6 1.310174+1 3.489102-6 1.370722+1 3.491881-6 1.402826+1 3.495879-6 1.442398+1 3.499160-6 1.468301+1 3.502468-6 1.487788+1 3.506438-6 1.501692+1 3.509879-6 1.504910+1 3.513585-6 1.498890+1 3.517290-6 1.482924+1 3.518812-6 1.473502+1 3.522286-6 1.445875+1 3.526025-6 1.406976+1 3.528708-6 1.373529+1 3.533065-6 1.310262+1 3.536884-6 1.246731+1 3.543092-6 1.130586+1 3.546850-6 1.054610+1 3.548740-6 1.015313+1 3.551699-6 9.528260+0 3.554320-6 8.969527+0 3.556647-6 8.472922+0 3.559639-6 7.838566+0 3.563344-6 7.067362+0 3.566769-6 6.376753+0 3.568109-6 6.113832+0 3.572344-6 5.315117+0 3.576181-6 4.639434+0 3.578100-6 4.320532+0 3.581574-6 3.777301+0 3.585048-6 3.279535+0 3.588470-6 2.834533+0 3.592256-6 2.394373+0 3.596098-6 2.002458+0 3.600331-6 1.631758+0 3.604783-6 1.306348+0 3.614658-6 7.902487-1 3.617730-6 6.789071-1 3.620731-6 5.891128-1 3.622700-6 5.394318-1 3.624638-6 4.970906-1 3.626547-6 4.613072-1 3.628425-6 4.313733-1 3.630274-6 4.066494-1 3.633915-6 3.703618-1 3.637441-6 3.489419-1 3.640858-6 3.391670-1 3.644168-6 3.384734-1 3.647374-6 3.448307-1 3.653586-6 3.732047-1 3.659410-6 4.148523-1 3.664870-6 4.638583-1 3.669988-6 5.165690-1 3.680111-6 6.351412-1 3.687984-6 7.371383-1 3.702680-6 9.441604-1 3.713702-6 1.111013+0 3.737531-6 1.502951+0 3.746768-6 1.667028+0 3.755990-6 1.838379+0 3.765212-6 2.017938+0 3.774435-6 2.206456+0 3.783657-6 2.404757+0 3.797207-6 2.715785+0 3.820546-6 3.315702+0 3.857434-6 4.481207+0 3.890670-6 5.858131+0 3.912429-6 7.002333+0 3.931212-6 8.203947+0 3.946748-6 9.394757+0 3.956094-6 1.021907+1 3.965441-6 1.114167+1 3.974787-6 1.218071+1 3.984133-6 1.335925+1 3.992627-6 1.457629+1 4.000590-6 1.587046+1 4.011744-6 1.799668+1 4.021614-6 2.027549+1 4.033916-6 2.384602+1 4.044681-6 2.792134+1 4.054099-6 3.253437+1 4.062341-6 3.767237+1 4.069552-6 4.327229+1 4.075862-6 4.922968+1 4.081383-6 5.541529+1 4.086214-6 6.169275+1 4.090441-6 6.793326+1 4.097376-6 7.987881+1 4.121051-6 1.403852+2 4.129095-6 1.689689+2 4.132216-6 1.812006+2 4.137289-6 2.024012+2 4.142362-6 2.251431+2 4.152508-6 2.745498+2 4.153777-6 2.810196+2 4.162654-6 3.273858+2 4.166142-6 3.458219+2 4.173686-6 3.851813+2 4.177013-6 4.019812+2 4.180031-6 4.167526+2 4.184983-6 4.397146+2 4.188774-6 4.559629+2 4.191870-6 4.682090+2 4.195934-6 4.826862+2 4.201158-6 4.982925+2 4.206937-6 5.111356+2 4.211344-6 5.175360+2 4.215467-6 5.207225+2 4.220506-6 5.208448+2 4.225515-6 5.168391+2 4.228329-6 5.128123+2 4.233300-6 5.026822+2 4.237311-6 4.918420+2 4.242601-6 4.742074+2 4.247491-6 4.549019+2 4.252281-6 4.336023+2 4.256535-6 4.130614+2 4.259269-6 3.992011+2 4.262004-6 3.849281+2 4.265068-6 3.685492+2 4.269089-6 3.466218+2 4.274260-6 3.180900+2 4.279333-6 2.901750+2 4.284406-6 2.627686+2 4.290113-6 2.330019+2 4.294552-6 2.108963+2 4.304698-6 1.646610+2 4.307429-6 1.533522+2 4.319897-6 1.082689+2 4.325449-6 9.163799+1 4.329987-6 7.954801+1 4.334046-6 6.982965+1 4.339264-6 5.876050+1 4.341915-6 5.371529+1 4.345891-6 4.682746+1 4.349866-6 4.070143+1 4.352723-6 3.673615+1 4.357008-6 3.141718+1 4.364041-6 2.414662+1 4.368165-6 2.062352+1 4.372288-6 1.757518+1 4.377527-6 1.430355+1 4.385544-6 1.039186+1 4.396180-6 6.791458+0 4.400206-6 5.794444+0 4.405573-6 4.711194+0 4.407921-6 4.313907+0 4.411444-6 3.793947+0 4.414966-6 3.354861+0 4.417411-6 3.092046+0 4.419629-6 2.880243+0 4.421570-6 2.713892+0 4.424755-6 2.475558+0 4.426055-6 2.389491+0 4.428330-6 2.253062+0 4.431317-6 2.098773+0 4.434197-6 1.973374+0 4.436659-6 1.882006+0 4.439122-6 1.803277+0 4.441134-6 1.747272+0 4.444624-6 1.665254+0 4.447841-6 1.603768+0 4.450357-6 1.563313+0 4.454721-6 1.505390+0 4.460109-6 1.448731+0 4.476176-6 1.313040+0 4.481579-6 1.265067+0 4.488510-6 1.197741+0 4.494901-6 1.130862+0 4.510577-6 9.704763-1 4.513328-6 9.473832-1 4.517259-6 9.196786-1 4.520892-6 9.011423-1 4.522649-6 8.951192-1 4.528270-6 8.915699-1 4.530124-6 8.965010-1 4.532123-6 9.057267-1 4.533410-6 9.139710-1 4.534835-6 9.253533-1 4.540203-6 9.918247-1 4.542441-6 1.031892+0 4.544119-6 1.067267+0 4.545419-6 1.098001+0 4.549968-6 1.230550+0 4.552243-6 1.312763+0 4.554518-6 1.406684+0 4.555860-6 1.467923+0 4.565253-6 2.035318+0 4.567937-6 2.248300+0 4.575988-6 3.050938+0 4.591453-6 5.461876+0 4.595765-6 6.387818+0 4.600079-6 7.445802+0 4.603855-6 8.488324+0 4.610048-6 1.045566+1 4.615107-6 1.231871+1 4.618900-6 1.387804+1 4.623880-6 1.614676+1 4.629681-6 1.912204+1 4.635457-6 2.244994+1 4.639595-6 2.506091+1 4.643733-6 2.785940+1 4.648404-6 3.123749+1 4.653075-6 3.483569+1 4.664472-6 4.440894+1 4.665897-6 4.566984+1 4.675869-6 5.473263+1 4.679787-6 5.834122+1 4.687266-6 6.514331+1 4.691898-6 6.920984+1 4.694109-6 7.108855+1 4.697426-6 7.381151+1 4.700742-6 7.639960+1 4.703593-6 7.849871+1 4.706219-6 8.031743+1 4.710541-6 8.303988+1 4.712144-6 8.395706+1 4.717133-6 8.645846+1 4.722344-6 8.845647+1 4.728200-6 8.989140+1 4.733209-6 9.040579+1 4.735193-6 9.042463+1 4.740854-6 8.990429+1 4.745776-6 8.877736+1 4.750665-6 8.707175+1 4.755935-6 8.463592+1 4.761406-6 8.153590+1 4.763222-6 8.039615+1 4.770200-6 7.561037+1 4.775678-6 7.153346+1 4.780556-6 6.778824+1 4.789360-6 6.108218+1 4.801170-6 5.302093+1 4.808251-6 4.912183+1 4.813169-6 4.694637+1 4.816374-6 4.578652+1 4.821158-6 4.445117+1 4.825049-6 4.372066+1 4.828199-6 4.336251+1 4.837361-6 4.346053+1 4.841530-6 4.402395+1 4.845327-6 4.478522+1 4.849582-6 4.588464+1 4.859850-6 4.934453+1 4.873410-6 5.468086+1 4.881497-6 5.766363+1 4.887715-6 5.960701+1 4.893606-6 6.104845+1 4.897686-6 6.177576+1 4.909272-6 6.246300+1 4.913657-6 6.216133+1 4.920668-6 6.103897+1 4.925911-6 5.970798+1 4.929550-6 5.855449+1 4.932851-6 5.735755+1 4.938268-6 5.511413+1 4.940479-6 5.410860+1 4.944350-6 5.224038+1 4.949429-6 4.961049+1 4.954328-6 4.692621+1 4.957431-6 4.517068+1 4.962578-6 4.219913+1 4.967725-6 3.919336+1 4.969195-6 3.833444+1 4.976916-6 3.387327+1 4.980984-6 3.158184+1 4.991450-6 2.599356+1 4.998195-6 2.268779+1 5.003441-6 2.030057+1 5.010529-6 1.734531+1 5.017053-6 1.490443+1 5.023534-6 1.274203+1 5.027422-6 1.156670+1 5.046193-6 7.083539+0 5.058191-6 5.134078+0 5.063394-6 4.481842+0 5.070227-6 3.787296+0 5.075385-6 3.377861+0 5.078823-6 3.157209+0 5.080543-6 3.062122+0 5.082262-6 2.977013+0 5.085107-6 2.857782+0 5.087375-6 2.781645+0 5.089106-6 2.734725+0 5.091702-6 2.682189+0 5.094298-6 2.650778+0 5.096192-6 2.641012+0 5.104480-6 2.725843+0 5.106656-6 2.781755+0 5.109453-6 2.873677+0 5.112414-6 2.995162+0 5.114534-6 3.097078+0 5.119991-6 3.415207+0 5.123982-6 3.696849+0 5.128747-6 4.083977+0 5.141161-6 5.320684+0 5.147688-6 6.075689+0 5.153197-6 6.749939+0 5.158509-6 7.418348+0 5.163226-6 8.015431+0 5.167016-6 8.490362+0 5.171284-6 9.012484+0 5.174554-6 9.398822+0 5.179228-6 9.922623+0 5.183547-6 1.036937+1 5.185628-6 1.056961+1 5.191691-6 1.108871+1 5.195835-6 1.138238+1 5.199780-6 1.161128+1 5.205752-6 1.185824+1 5.210440-6 1.196523+1 5.215638-6 1.199425+1 5.220106-6 1.194596+1 5.224812-6 1.182599+1 5.227271-6 1.173708+1 5.235837-6 1.130561+1 5.241732-6 1.092146+1 5.249478-6 1.035202+1 5.265162-6 9.201813+0 5.269493-6 8.937785+0 5.274976-6 8.666246+0 5.276804-6 8.594450+0 5.281334-6 8.463284+0 5.285547-6 8.407970+0 5.290035-6 8.427867+0 5.292077-6 8.465850+0 5.297441-6 8.657512+0 5.299430-6 8.763738+0 5.308789-6 9.531803+0 5.310047-6 9.669445+0 5.315431-6 1.035130+1 5.318463-6 1.080099+1 5.328810-6 1.267570+1 5.342268-6 1.579732+1 5.350071-6 1.786413+1 5.356572-6 1.966738+1 5.362030-6 2.120113+1 5.366879-6 2.255332+1 5.373108-6 2.424060+1 5.379409-6 2.584792+1 5.385267-6 2.721373+1 5.391604-6 2.851325+1 5.397381-6 2.950774+1 5.402230-6 3.018555+1 5.407082-6 3.071010+1 5.420200-6 3.131701+1 5.424221-6 3.126377+1 5.435970-6 3.049842+1 5.440036-6 3.003831+1 5.445497-6 2.928092+1 5.451629-6 2.826260+1 5.454556-6 2.772239+1 5.461142-6 2.640130+1 5.463337-6 2.593369+1 5.469554-6 2.455362+1 5.474216-6 2.347943+1 5.480336-6 2.204280+1 5.488204-6 2.019152+1 5.498801-6 1.777269+1 5.507043-6 1.600733+1 5.515088-6 1.441770+1 5.540100-6 1.049738+1 5.551191-6 9.280938+0 5.555620-6 8.882248+0 5.561097-6 8.455293+0 5.571644-6 7.829607+0 5.578503-6 7.553601+0 5.585125-6 7.378700+0 5.588349-6 7.324551+0 5.592561-6 7.283149+0 5.599699-6 7.285454+0 5.607505-6 7.385837+0 5.616464-6 7.616243+0 5.623720-6 7.883846+0 5.626909-6 8.022115+0 5.636643-6 8.511986+0 5.666205-6 1.038757+1 5.675528-6 1.100060+1 5.682655-6 1.144280+1 5.690500-6 1.188582+1 5.697994-6 1.225161+1 5.706278-6 1.257600+1 5.710382-6 1.270170+1 5.717205-6 1.285534+1 5.723795-6 1.293572+1 5.730327-6 1.294877+1 5.738439-6 1.287515+1 5.745512-6 1.273533+1 5.752251-6 1.254397+1 5.761938-6 1.218751+1 5.771475-6 1.176992+1 5.793116-6 1.074839+1 5.806625-6 1.018141+1 5.816068-6 9.860590+0 5.822116-6 9.695142+0 5.832345-6 9.491307+0 5.836454-6 9.436332+0 5.845663-6 9.366087+0 5.852485-6 9.357035+0 5.858996-6 9.377531+0 5.867271-6 9.436629+0 5.886884-6 9.663380+0 5.910336-6 9.945028+0 5.923403-6 1.005512+1 5.941646-6 1.013403+1 5.957535-6 1.014272+1 6.012851-6 1.004034+1 6.046552-6 1.003315+1 6.138778-6 1.014769+1 6.187145-6 1.024719+1 6.253717-6 1.044609+1 6.273492-6 1.048426+1 6.291243-6 1.048308+1 6.308027-6 1.043401+1 6.325490-6 1.031880+1 6.340139-6 1.016598+1 6.353237-6 9.987217+0 6.376380-6 9.595073+0 6.417078-6 8.846792+0 6.436907-6 8.553149+0 6.452751-6 8.384303+0 6.462266-6 8.315684+0 6.472839-6 8.270125+0 6.493326-6 8.276686+0 6.516148-6 8.433318+0 6.537052-6 8.716430+0 6.541715-6 8.798158+0 6.567099-6 9.366577+0 6.590897-6 1.010209+1 6.613207-6 1.099156+1 6.634345-6 1.203899+1 6.653731-6 1.320282+1 6.672114-6 1.451672+1 6.690193-6 1.604442+1 6.705505-6 1.755408+1 6.720652-6 1.927875+1 6.734852-6 2.114378+1 6.752209-6 2.382173+1 6.760646-6 2.531381+1 6.773110-6 2.779560+1 6.789056-6 3.156418+1 6.803241-6 3.564209+1 6.812279-6 3.869707+1 6.829226-6 4.567926+1 6.844055-6 5.356077+1 6.858142-6 6.312201+1 6.868384-6 7.169883+1 6.878868-6 8.222192+1 6.887011-6 9.182394+1 6.894616-6 1.020846+2 6.907095-6 1.220037+2 6.943625-6 2.075810+2 6.954437-6 2.419241+2 6.965267-6 2.806662+2 6.973509-6 3.129701+2 6.982060-6 3.488781+2 6.999161-6 4.267999+2 7.001299-6 4.369856+2 7.016262-6 5.097748+2 7.022141-6 5.385843+2 7.033364-6 5.926907+2 7.039242-6 6.200584+2 7.044854-6 6.452239+2 7.052603-6 6.779763+2 7.059149-6 7.034115+2 7.067566-6 7.324748+2 7.075048-6 7.543248+2 7.083766-6 7.744239+2 7.093753-6 7.896387+2 7.101769-6 7.954045+2 7.105280-6 7.960633+2 7.113774-6 7.929035+2 7.121735-6 7.838749+2 7.126306-6 7.760999+2 7.134442-6 7.577769+2 7.142525-6 7.342397+2 7.154642-6 6.901335+2 7.161255-6 6.622572+2 7.166829-6 6.370365+2 7.174182-6 6.017926+2 7.179910-6 5.731126+2 7.187275-6 5.351416+2 7.194757-6 4.958455+2 7.202573-6 4.546323+2 7.212927-6 4.007893+2 7.220409-6 3.630623+2 7.230563-6 3.142464+2 7.238579-6 2.781349+2 7.256749-6 2.058345+2 7.262260-6 1.867775+2 7.272781-6 1.542920+2 7.292174-6 1.078826+2 7.298565-6 9.634412+1 7.303512-6 8.865767+1 7.308305-6 8.222870+1 7.312950-6 7.694282+1 7.315218-6 7.469577+1 7.317451-6 7.269645+1 7.319648-6 7.093350+1 7.322877-6 6.871148+1 7.326277-6 6.684213+1 7.329351-6 6.556787+1 7.331363-6 6.494736+1 7.335324-6 6.422048+1 7.339161-6 6.414507+1 7.368898-6 8.565514+1 7.379700-6 1.042605+2 7.389501-6 1.270204+2 7.398077-6 1.520968+2 7.417892-6 2.317024+2 7.427318-6 2.819657+2 7.433278-6 3.184647+2 7.440428-6 3.674545+2 7.450649-6 4.481060+2 7.459793-6 5.316154+2 7.465524-6 5.897302+2 7.470995-6 6.494982+2 7.476465-6 7.135449+2 7.485644-6 8.307419+2 7.494823-6 9.601276+2 7.514327-6 1.273617+3 7.516478-6 1.311141+3 7.532684-6 1.609292+3 7.538600-6 1.723631+3 7.549894-6 1.946851+3 7.559216-6 2.132947+3 7.568251-6 2.311673+3 7.577573-6 2.491000+3 7.586608-6 2.656534+3 7.594640-6 2.794151+3 7.603514-6 2.932984+3 7.606113-6 2.970626+3 7.616869-6 3.109808+3 7.625781-6 3.202753+3 7.635696-6 3.279820+3 7.644263-6 3.322673+3 7.650332-6 3.339287+3 7.659431-6 3.342628+3 7.665630-6 3.330198+3 7.679542-6 3.260489+3 7.688281-6 3.188986+3 7.696752-6 3.101298+3 7.706074-6 2.986298+3 7.715109-6 2.859090+3 7.723140-6 2.735396+3 7.730884-6 2.608722+3 7.742645-6 2.406769+3 7.751823-6 2.244726+3 7.762149-6 2.061636+3 7.770180-6 1.920874+3 7.788537-6 1.612660+3 7.794848-6 1.512922+3 7.807284-6 1.327984+3 7.824105-6 1.105162+3 7.860104-6 7.384776+2 7.869982-6 6.624845+2 7.879822-6 5.960594+2 7.889623-6 5.382664+2 7.899386-6 4.881620+2 7.909110-6 4.448280+2 7.918797-6 4.073964+2 7.928446-6 3.750649+2 7.938057-6 3.471073+2 7.957204-6 3.017322+2 7.976201-6 2.671524+2 7.995051-6 2.402498+2 8.013752-6 2.188236+2 8.032308-6 2.013569+2 8.050719-6 1.868150+2 8.071745-6 1.727786+2 8.088973-6 1.628719+2 8.105093-6 1.546486+2 8.140777-6 1.392646+2 8.175904-6 1.270039+2 8.210482-6 1.170000+2 8.244520-6 1.086894+2 8.278025-6 1.016852+2 8.311008-6 9.570850+1 8.355571-6 8.878765+1 8.406894-6 8.210255+1 8.468832-6 7.542419+1 8.537187-6 6.937913+1 8.586960-6 6.565542+1 8.660540-6 6.096313+1 8.750667-6 5.621953+1 8.801862-6 5.391962+1 8.920525-6 4.941141+1 8.994041-6 4.706430+1 9.106993-6 4.399564+1 9.239570-6 4.100145+1 9.386420-6 3.827375+1 9.556577-6 3.565838+1 9.650341-6 3.439790+1 9.811424-6 3.247132+1 9.971631-6 3.082303+1 1.026242-5 2.824855+1 1.082360-5 2.385808+1 1.097646-5 2.248208+1 1.107640-5 2.133076+1 1.114065-5 2.039148+1 1.120491-5 1.934396+1 1.124388-5 1.878161+1 1.126006-5 1.860259+1 1.128764-5 1.842029+1 1.131067-5 1.842811+1 1.133838-5 1.868690+1 1.135011-5 1.889106+1 1.136608-5 1.926673+1 1.138601-5 1.989803+1 1.140486-5 2.065911+1 1.141692-5 2.122491+1 1.144294-5 2.262511+1 1.148070-5 2.495152+1 1.150828-5 2.670403+1 1.153586-5 2.834200+1 1.154275-5 2.871754+1 1.156344-5 2.973296+1 1.157033-5 3.002921+1 1.159102-5 3.077438+1 1.160998-5 3.125490+1 1.161903-5 3.141366+1 1.163260-5 3.156672+1 1.164618-5 3.162051+1 1.165997-5 3.157899+1 1.167376-5 3.144820+1 1.169852-5 3.101965+1 1.172622-5 3.031230+1 1.175393-5 2.945245+1 1.183670-5 2.672430+1 1.186520-5 2.589541+1 1.192221-5 2.451016+1 1.203622-5 2.256363+1 1.212398-5 2.146192+1 1.218367-5 2.090398+1 1.221351-5 2.071478+1 1.224335-5 2.060210+1 1.227319-5 2.057389+1 1.229821-5 2.061601+1 1.234411-5 2.082965+1 1.242240-5 2.139125+1 1.247106-5 2.166376+1 1.250611-5 2.174977+1 1.253045-5 2.174530+1 1.257335-5 2.161793+1 1.263129-5 2.127938+1 1.272082-5 2.070529+1 1.277333-5 2.046548+1 1.283091-5 2.029332+1 1.296598-5 2.001484+1 1.327320-5 1.923489+1 1.360608-5 1.837254+1 1.469127-5 1.574619+1 1.515196-5 1.475258+1 1.562530-5 1.375631+1 1.606376-5 1.285965+1 1.660000-5 1.180426+1 1.698296-5 1.105989+1 1.747833-5 1.011819+1 1.792733-5 9.286532+0 1.832965-5 8.555864+0 1.874784-5 7.800598+0 1.919208-5 7.022594+0 1.967765-5 6.172103+0 2.013693-5 5.381716+0 2.068873-5 4.450670+0 2.106656-5 3.824361+0 2.121691-5 3.577542+0 2.158492-5 2.977270+0 2.180000-5 2.635133+0 2.200000-5 2.325461+0 2.220147-5 2.020984+0 2.244472-5 1.662530+0 2.259572-5 1.446722+0 2.274685-5 1.238221+0 2.291461-5 1.017931+0 2.307188-5 8.242575-1 2.321932-5 6.561322-1 2.335755-5 5.124286-1 2.348714-5 3.921870-1 2.360862-5 2.947723-1 2.372252-5 2.197483-1 2.382930-5 1.666437-1 2.392940-5 1.348407-1 2.402325-5 1.235849-1 2.411123-5 1.319668-1 2.419371-5 1.587260-1 2.427104-5 2.018370-1 2.437751-5 2.890932-1 2.442293-5 3.343181-1 2.447322-5 3.875558-1 2.453325-5 4.514657-1 2.458744-5 5.046778-1 2.463934-5 5.469641-1 2.471107-5 5.841506-1 2.475360-5 5.918806-1 2.481720-5 5.821846-1 2.487296-5 5.542976-1 2.490729-5 5.298585-1 2.494002-5 5.028968-1 2.497070-5 4.756851-1 2.505172-5 4.055756-1 2.507542-5 3.886917-1 2.509764-5 3.757168-1 2.513930-5 3.616343-1 2.517576-5 3.641387-1 2.520766-5 3.814347-1 2.523557-5 4.111214-1 2.525999-5 4.506100-1 2.529979-5 5.482548-1 2.530273-5 5.573679-1 2.533479-5 6.767148-1 2.535883-5 7.937061-1 2.539489-5 1.023492+0 2.543095-5 1.334205+0 2.555614-5 3.407385+0 2.558744-5 4.290118+0 2.561873-5 5.383821+0 2.565003-5 6.730834+0 2.568133-5 8.379554+0 2.571263-5 1.038444+1 2.574392-5 1.280573+1 2.577522-5 1.570882+1 2.580652-5 1.916318+1 2.582217-5 2.111954+1 2.584564-5 2.436609+1 2.586911-5 2.801407+1 2.590065-5 3.359790+1 2.592979-5 3.950647+1 2.595266-5 4.467920+1 2.598540-5 5.293645+1 2.600504-5 5.838681+1 2.603697-5 6.804930+1 2.606889-5 7.869752+1 2.613274-5 1.027627+2 2.614072-5 1.060047+2 2.619659-5 1.298461+2 2.621854-5 1.396293+2 2.626045-5 1.586110+2 2.629133-5 1.725863+2 2.631852-5 1.846594+2 2.633122-5 1.901728+2 2.636021-5 2.023376+2 2.639041-5 2.141929+2 2.641735-5 2.238864+2 2.644875-5 2.339195+2 2.648592-5 2.437783+2 2.651784-5 2.503158+2 2.652896-5 2.521515+2 2.656067-5 2.561110+2 2.659211-5 2.581707+2 2.662181-5 2.584610+2 2.665596-5 2.569400+2 2.667971-5 2.548239+2 2.671912-5 2.496803+2 2.676194-5 2.422978+2 2.681147-5 2.323151+2 2.689895-5 2.139609+2 2.697428-5 2.002540+2 2.703331-5 1.918550+2 2.708299-5 1.863766+2 2.715256-5 1.805078+2 2.726792-5 1.720567+2 2.733530-5 1.658589+2 2.736942-5 1.620366+2 2.740593-5 1.573758+2 2.743574-5 1.531322+2 2.747487-5 1.470044+2 2.751261-5 1.405707+2 2.752519-5 1.383294+2 2.757419-5 1.292460+2 2.759052-5 1.261261+2 2.765586-5 1.134584+2 2.772130-5 1.009174+2 2.778789-5 8.880471+1 2.786053-5 7.672321+1 2.792108-5 6.769284+1 2.812086-5 4.446280+1 2.832064-5 2.925767+1 2.841753-5 2.397779+1 2.852403-5 1.937616+1 2.861101-5 1.637458+1 2.867625-5 1.448490+1 2.877410-5 1.211514+1 2.901408-5 7.928654+0 2.915621-5 6.134931+0 2.944047-5 3.416421+0 2.951154-5 2.882825+0 2.965366-5 2.020573+0 2.969600-5 1.828580+0 2.971716-5 1.745824+0 2.973833-5 1.672514+0 2.976228-5 1.601538+0 2.983411-5 1.470858+0 2.985942-5 1.456134+0 2.988472-5 1.458482+0 2.995792-5 1.563031+0 2.997622-5 1.611672+0 3.003112-5 1.808665+0 3.004942-5 1.890225+0 3.011905-5 2.261430+0 3.016417-5 2.540842+0 3.019318-5 2.729836+0 3.022218-5 2.921835+0 3.024761-5 3.089589+0 3.026671-5 3.213544+0 3.029530-5 3.393085+0 3.032391-5 3.562372+0 3.036050-5 3.758165+0 3.038795-5 3.886048+0 3.040625-5 3.960918+0 3.043828-5 4.069923+0 3.047030-5 4.148849+0 3.047945-5 4.165638+0 3.054350-5 4.210078+0 3.057595-5 4.184824+0 3.060694-5 4.133010+0 3.063792-5 4.056945+0 3.065858-5 3.994477+0 3.067666-5 3.933226+0 3.070829-5 3.814056+0 3.073202-5 3.717323+0 3.080320-5 3.414264+0 3.083629-5 3.279934+0 3.087288-5 3.146389+0 3.090948-5 3.035867+0 3.097294-5 2.916702+0 3.100009-5 2.898493+0 3.104918-5 2.919668+0 3.106552-5 2.942335+0 3.109567-5 3.004181+0 3.111453-5 3.055608+0 3.113673-5 3.127920+0 3.120227-5 3.406034+0 3.131252-5 4.008465+0 3.136040-5 4.279564+0 3.140593-5 4.519915+0 3.144008-5 4.680740+0 3.147082-5 4.806689+0 3.150937-5 4.934827+0 3.152888-5 4.985658+0 3.156606-5 5.054671+0 3.160386-5 5.086023+0 3.162460-5 5.086465+0 3.168784-5 5.016990+0 3.170734-5 4.975353+0 3.174147-5 4.881974+0 3.179267-5 4.699641+0 3.184387-5 4.478570+0 3.187706-5 4.321383+0 3.192445-5 4.087401+0 3.207298-5 3.389717+0 3.212949-5 3.175456+0 3.214707-5 3.116909+0 3.219493-5 2.978445+0 3.223529-5 2.885729+0 3.225280-5 2.852260+0 3.228496-5 2.801060+0 3.232107-5 2.758575+0 3.233871-5 2.743196+0 3.238582-5 2.717719+0 3.241808-5 2.711809+0 3.245057-5 2.713826+0 3.250047-5 2.729478+0 3.257947-5 2.775566+0 3.283459-5 2.969991+0 3.320897-5 3.228258+0 3.334814-5 3.347855+0 3.348908-5 3.495352+0 3.361663-5 3.654773+0 3.366377-5 3.720296+0 3.383197-5 3.984288+0 3.398452-5 4.264966+0 3.411098-5 4.526813+0 3.428560-5 4.930280+0 3.459380-5 5.757888+0 3.530000-5 8.246657+0 3.550000-5 9.101561+0 3.564383-5 9.749383+0 3.599610-5 1.144748+1 3.731227-5 2.018657+1 3.772455-5 2.394077+1 3.812737-5 2.814914+1 3.850000-5 3.256134+1 3.912260-5 4.116270+1 3.950000-5 4.720009+1 3.983938-5 5.320584+1 4.033704-5 6.301874+1 4.079349-5 7.314118+1 4.120975-5 8.341813+1 4.168694-5 9.647887+1 4.222680-5 1.129382+2 4.286692-5 1.348302+2 4.328794-5 1.507488+2 4.402395-5 1.813036+2 4.441130-5 1.987309+2 4.479865-5 2.171668+2 4.526149-5 2.404556+2 4.595574-5 2.775821+2 4.642456-5 3.040009+2 4.680719-5 3.263005+2 4.737859-5 3.607630+2 4.805912-5 4.032083+2 4.845018-5 4.280175+2 4.900000-5 4.631585+2 4.970000-5 5.079490+2 5.040000-5 5.522740+2 5.110000-5 5.956025+2 5.170000-5 6.313857+2 5.232991-5 6.674857+2 5.308844-5 7.089122+2 5.370318-5 7.403882+2 5.450000-5 7.781277+2 5.507284-5 8.029722+2 5.588750-5 8.349552+2 5.668759-5 8.624950+2 5.764532-5 8.909522+2 5.863328-5 9.153848+2 5.920532-5 9.270761+2 6.000000-5 9.405785+2 6.097500-5 9.530266+2 6.180000-5 9.599029+2 6.275000-5 9.640483+2 6.400000-5 9.644868+2 6.508798-5 9.606403+2 6.634539-5 9.516146+2 6.698581-5 9.451175+2 6.806777-5 9.316180+2 6.903600-5 9.175128+2 7.003800-5 9.008836+2 7.192067-5 8.662626+2 7.328245-5 8.400496+2 7.446013-5 8.165803+2 7.680000-5 7.682782+2 7.951116-5 7.127507+2 8.258579-5 6.524511+2 8.652613-5 5.815364+2 9.125343-5 5.068844+2 9.283664-5 4.863166+2 9.366666-5 4.728643+2 9.507689-5 4.473813+2 9.549926-5 4.410699+2 9.600477-5 4.350833+2 9.692183-5 4.280051+2 9.902270-5 4.162287+2 1.005419-4 4.055677+2 1.013208-4 3.990145+2 1.032006-4 3.819456+2 1.042697-4 3.747496+2 1.062375-4 3.657120+2 1.081779-4 3.564077+2 1.137817-4 3.281321+2 1.250000-4 2.805569+2 1.333521-4 2.534176+2 1.366300-4 2.461623+2 1.376244-4 2.430917+2 1.412064-4 2.302459+2 1.422750-4 2.273156+2 1.432910-4 2.253543+2 1.445175-4 2.239952+2 1.461679-4 2.227864+2 1.513561-4 2.176179+2 1.580000-4 2.108842+2 1.665295-4 2.039644+2 1.778279-4 1.979238+2 1.891799-4 1.943902+2 1.975000-4 1.929098+2 2.083150-4 1.919799+2 2.190000-4 1.917025+2 2.621440-4 1.925061+2 2.733750-4 1.922935+2 2.851018-4 1.916830+2 2.985383-4 1.903200+2 3.162278-4 1.871432+2 3.350000-4 1.820031+2 3.527674-4 1.750528+2 3.685895-4 1.670690+2 3.858933-4 1.560825+2 3.954400-4 1.490453+2 4.071034-4 1.390730+2 4.174698-4 1.291302+2 4.242786-4 1.219818+2 4.324549-4 1.126260+2 4.403804-4 1.027486+2 4.437918-4 9.823203+1 4.487462-4 9.135302+1 4.544645-4 8.299786+1 4.603891-4 7.387500+1 4.635127-4 6.887962+1 4.677351-4 6.192228+1 4.705193-4 5.722626+1 4.750276-4 4.955649+1 4.773989-4 4.559442+1 4.801208-4 4.122812+1 4.835079-4 3.618163+1 4.884581-4 2.969072+1 4.898117-4 2.817610+1 4.910450-4 2.696530+1 4.922019-4 2.603216+1 4.931495-4 2.545948+1 4.940838-4 2.510768+1 4.947649-4 2.501094+1 4.954502-4 2.507223+1 4.960240-4 2.526216+1 4.965009-4 2.552692+1 4.970293-4 2.594468+1 4.973354-4 2.625118+1 4.977160-4 2.670286+1 4.980006-4 2.709437+1 4.986472-4 2.816730+1 4.990910-4 2.906171+1 4.994248-4 2.982483+1 4.998000-4 3.078065+1 5.002498-4 3.206992+1 5.007872-4 3.382716+1 5.012742-4 3.563555+1 5.021087-4 3.924368+1 5.028205-4 4.286213+1 5.037000-4 4.806585+1 5.048066-4 5.582683+1 5.069473-4 7.486076+1 5.081604-4 8.801081+1 5.087999-4 9.560631+1 5.098207-4 1.086298+2 5.108499-4 1.227978+2 5.116874-4 1.350195+2 5.129437-4 1.543593+2 5.142000-4 1.746931+2 5.157277-4 2.004131+2 5.169200-4 2.210075+2 5.182000-4 2.434235+2 5.197000-4 2.698923+2 5.210268-4 2.933425+2 5.224000-4 3.175437+2 5.239139-4 3.440524+2 5.255098-4 3.716997+2 5.265107-4 3.888328+2 5.280625-4 4.149890+2 5.295135-4 4.388920+2 5.314533-4 4.697974+2 5.331600-4 4.958015+2 5.343838-4 5.136774+2 5.361500-4 5.382546+2 5.375381-4 5.565338+2 5.397500-4 5.837948+2 5.414124-4 6.028478+2 5.431250-4 6.212846+2 5.463866-4 6.533704+2 5.482317-4 6.698925+2 5.530000-4 7.073326+2 5.573614-4 7.351860+2 5.623760-4 7.612649+2 5.656931-4 7.762624+2 5.706100-4 7.961604+2 5.754400-4 8.127271+2 5.782092-4 8.207067+2 5.830194-4 8.320364+2 5.916441-4 8.461097+2 5.978000-4 8.529973+2 6.128631-4 8.637029+2 6.478641-4 8.814857+2 6.578068-4 8.839560+2 6.708677-4 8.842503+2 6.809061-4 8.799241+2 6.952279-4 8.649221+2 6.995883-4 8.627272+2 7.026064-4 8.650453+2 7.058884-4 8.727120+2 7.088083-4 8.843182+2 7.139686-4 9.128403+2 7.173102-4 9.329712+2 7.209162-4 9.527412+2 7.257739-4 9.734333+2 7.314053-4 9.889873+2 7.438296-4 1.008614+3 7.489691-4 1.018988+3 7.538792-4 1.032964+3 7.640000-4 1.068633+3 7.718681-4 1.092530+3 7.807344-4 1.111661+3 7.932879-4 1.130292+3 8.107486-4 1.148716+3 8.235014-4 1.157520+3 8.471582-4 1.169456+3 8.677790-4 1.195207+3 8.982541-4 1.235687+3 9.125032-4 1.249350+3 9.280418-4 1.260672+3 9.733591-4 1.284379+3 1.037731-3 1.305691+3 1.098149-3 1.317639+3 1.156445-3 1.323225+3 1.228800-3 1.320651+3 1.364583-3 1.306542+3 1.500548-3 1.286600+3 1.621810-3 1.261275+3 1.764550-3 1.229925+3 1.912543-3 1.193867+3 2.097152-3 1.148315+3 2.295818-3 1.099816+3 2.411087-3 1.070379+3 2.640550-3 1.011766+3 2.759482-3 9.807191+2 2.874339-3 9.495677+2 3.002303-3 9.144736+2 3.113362-3 8.825073+2 3.218179-3 8.511290+2 3.310130-3 8.222751+2 3.400220-3 7.918939+2 3.471542-3 7.660570+2 3.539771-3 7.393379+2 3.597168-3 7.147713+2 3.644973-3 6.922148+2 3.685727-3 6.708494+2 3.723381-3 6.485673+2 3.755950-3 6.263938+2 3.782530-3 6.052492+2 3.804618-3 5.845228+2 3.823238-3 5.641033+2 3.836751-3 5.474977+2 3.866056-3 5.086937+2 3.884074-3 4.871584+2 3.895155-3 4.770306+2 3.902253-3 4.723633+2 3.907838-3 4.698566+2 3.914040-3 4.683713+2 3.922164-3 4.685735+2 3.930575-3 4.713351+2 3.936766-3 4.749355+2 3.945536-3 4.820492+2 3.959457-3 4.970901+2 3.986204-3 5.312796+2 3.996469-3 5.437445+2 4.007334-3 5.555425+2 4.019984-3 5.670136+2 4.035814-3 5.776887+2 4.050084-3 5.839772+2 4.066129-3 5.878417+2 4.081502-3 5.891807+2 4.117617-3 5.897330+2 4.137940-3 5.934471+2 4.155979-3 6.012902+2 4.175519-3 6.149401+2 4.224136-3 6.606078+2 4.241438-3 6.757252+2 4.258315-3 6.882872+2 4.278435-3 7.001987+2 4.298029-3 7.088442+2 4.322147-3 7.161779+2 4.364096-3 7.231877+2 4.399672-3 7.283870+2 4.431048-3 7.372685+2 4.456368-3 7.486213+2 4.515445-3 7.814826+2 4.535311-3 7.913883+2 4.560004-3 8.018577+2 4.586408-3 8.109539+2 4.621937-3 8.206217+2 4.660344-3 8.288667+2 4.713041-3 8.377864+2 4.805280-3 8.486854+2 4.912347-3 8.564343+2 5.034328-3 8.608304+2 5.201857-3 8.609815+2 5.378779-3 8.564707+2 5.600066-3 8.462121+2 5.830776-3 8.323422+2 6.126148-3 8.113885+2 6.507849-3 7.813082+2 6.972972-3 7.435319+2 7.588484-3 6.947567+2 8.327369-3 6.401670+2 9.316097-3 5.750128+2 1.040557-2 5.141191+2 1.157381-2 4.589964+2 1.269683-2 4.140270+2 1.390353-2 3.723416+2 1.550476-2 3.252905+2 1.678049-2 2.931510+2 1.798853-2 2.662532+2 1.949077-2 2.368678+2 2.091933-2 2.124724+2 2.248527-2 1.890621+2 2.382977-2 1.711510+2 2.501632-2 1.565900+2 2.593984-2 1.457430+2 2.663753-2 1.375877+2 2.721731-2 1.305919+2 2.762868-2 1.252820+2 2.782754-2 1.225126+2 2.798742-2 1.201264+2 2.813254-2 1.177751+2 2.826523-2 1.154032+2 2.837645-2 1.132004+2 2.852772-2 1.098458+2 2.888111-2 1.014511+2 2.900157-2 9.936393+1 2.908917-2 9.844034+1 2.918791-2 9.811148+1 2.927460-2 9.844848+1 2.937000-2 9.940951+1 2.951131-2 1.016145+2 2.976881-2 1.061878+2 2.991466-2 1.083035+2 3.008477-2 1.101157+2 3.028600-2 1.115022+2 3.057851-2 1.125821+2 3.091836-2 1.130702+2 3.133261-2 1.130666+2 3.198895-2 1.122863+2 3.295793-2 1.101633+2 3.393691-2 1.074275+2 3.543363-2 1.028119+2 3.759323-2 9.603996+1 3.983973-2 8.921660+1 4.333861-2 7.947910+1 4.759684-2 6.927685+1 5.195350-2 6.055878+1 5.647744-2 5.298663+1 6.354182-2 4.349905+1 7.318850-2 3.406267+1 9.154716-2 2.289261+1 1.149890-1 1.520122+1 1.449645-1 9.939732+0 1.825563-1 6.469024+0 2.243688-1 4.376872+0 3.019952-1 2.469861+0 4.328077-1 1.225318+0 6.645077-1 5.274126-1 1.120601+0 1.871745-1 2.688134+0 3.268628-2 8.118035+0 3.587420-3 2.451607+1 3.933947-4 7.403736+1 4.313538-5 2.235892+2 4.729706-6 6.752287+2 5.186020-7 2.511886+3 3.747451-8 7.943282+3 3.747451-9 2.511886+4 3.74745-10 7.943282+4 3.74745-11 1.000000+5 2.36448-11 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.297300-6 1.258900-6 2.056100-6 1.584900-6 3.258700-6 1.995300-6 5.164700-6 2.511900-6 8.185400-6 3.162300-6 1.297300-5 3.981100-6 2.056100-5 5.011900-6 3.258600-5 6.309600-6 5.164500-5 7.943300-6 8.185200-5 1.000000-5 1.297200-4 1.258900-5 2.056000-4 1.584900-5 3.258400-4 1.995300-5 5.164100-4 2.511900-5 8.184400-4 3.162300-5 1.297000-3 3.981100-5 2.055200-3 5.011900-5 3.256600-3 6.309600-5 5.160400-3 7.943300-5 8.170500-3 1.000000-4 1.293400-2 1.258900-4 2.047700-2 1.584900-4 3.237300-2 1.995300-4 5.114500-2 2.511900-4 8.062800-2 3.162300-4 1.267400-1 3.981100-4 1.982500-1 5.011900-4 3.072700-1 6.309600-4 4.703700-1 7.943300-4 7.075300-1 1.000000-3 1.040500+0 1.258900-3 1.487900+0 1.584900-3 2.061600+0 1.995300-3 2.767300+0 2.511900-3 3.609200+0 3.162300-3 4.590100+0 3.981100-3 5.720900+0 5.011900-3 7.024500+0 6.309600-3 8.507200+0 7.943300-3 1.018600+1 1.000000-2 1.202900+1 1.258900-2 1.394500+1 1.584900-2 1.577400+1 1.995300-2 1.747800+1 2.511900-2 1.902200+1 3.162300-2 2.035300+1 3.981100-2 2.129200+1 5.011900-2 2.198400+1 6.309600-2 2.250200+1 7.943300-2 2.248600+1 1.000000-1 2.211100+1 1.258900-1 2.144100+1 1.584900-1 2.052800+1 1.995300-1 1.943300+1 2.511900-1 1.820800+1 3.162300-1 1.690800+1 3.981100-1 1.557800+1 5.011900-1 1.425500+1 6.309600-1 1.295900+1 7.943300-1 1.170700+1 1.000000+0 1.050800+1 1.258900+0 9.373000+0 1.584900+0 8.307300+0 1.995300+0 7.315000+0 2.511900+0 6.400200+0 3.162300+0 5.565300+0 3.981100+0 4.810700+0 5.011900+0 4.135000+0 6.309600+0 3.536000+0 7.943300+0 3.009100+0 1.000000+1 2.549300+0 1.258900+1 2.151200+0 1.584900+1 1.808500+0 1.995300+1 1.515400+0 2.511900+1 1.266000+0 3.162300+1 1.054800+0 3.981100+1 8.767100-1 5.011900+1 7.270600-1 6.309600+1 6.017400-1 7.943300+1 4.971200-1 1.000000+2 4.100100-1 1.258900+2 3.376500-1 1.584900+2 2.776700-1 1.995300+2 2.280600-1 2.511900+2 1.871000-1 3.162300+2 1.533200-1 3.981100+2 1.255200-1 5.011900+2 1.026600-1 6.309600+2 8.389100-2 7.943300+2 6.849800-2 1.000000+3 5.588600-2 1.258900+3 4.556300-2 1.584900+3 3.712200-2 1.995300+3 3.022500-2 2.511900+3 2.459500-2 3.162300+3 2.000100-2 3.981100+3 1.625700-2 5.011900+3 1.320700-2 6.309600+3 1.072300-2 7.943300+3 8.702900-3 1.000000+4 7.059800-3 1.258900+4 5.724500-3 1.584900+4 4.639800-3 1.995300+4 3.759100-3 2.511900+4 3.044400-3 3.162300+4 2.464600-3 3.981100+4 1.994600-3 5.011900+4 1.613600-3 6.309600+4 1.305000-3 7.943300+4 1.055100-3 1.000000+5 8.527200-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976753-4 5.011872-4 5.005051-4 6.309573-4 6.298816-4 7.943282-4 7.926350-4 1.000000-3 9.973417-4 1.258925-3 1.254764-3 1.584893-3 1.578387-3 1.995262-3 1.985131-3 2.511886-3 2.496137-3 3.162278-3 3.137763-3 3.981072-3 3.942815-3 5.011872-3 4.952263-3 6.309573-3 6.216486-3 7.943282-3 7.797891-3 1.000000-2 9.772925-3 1.258925-2 1.223777-2 1.584893-2 1.530715-2 1.995262-2 1.912076-2 2.511886-2 2.384491-2 3.162278-2 2.967836-2 3.981072-2 3.685450-2 5.011872-2 4.565624-2 6.309573-2 5.641771-2 7.943282-2 6.949914-2 1.000000-1 8.536280-2 1.258925-1 1.045089-1 1.584893-1 1.275066-1 1.995262-1 1.550458-1 2.511886-1 1.879064-1 3.162278-1 2.269800-1 3.981072-1 2.732971-1 5.011872-1 3.280256-1 6.309573-1 3.925952-1 7.943282-1 4.685325-1 1.000000+0 5.579947-1 1.258925+0 6.634358-1 1.584893+0 7.877128-1 1.995262+0 9.348022-1 2.511886+0 1.109329+0 3.162278+0 1.317059+0 3.981072+0 1.565029+0 5.011872+0 1.861815+0 6.309573+0 2.218010+0 7.943282+0 2.646500+0 1.000000+1 3.163117+0 1.258925+1 3.787162+0 1.584893+1 4.542317+0 1.995262+1 5.457446+0 2.511886+1 6.568179+0 3.162278+1 7.918236+0 3.981072+1 9.560823+0 5.011872+1 1.156150+1 6.309573+1 1.400117+1 7.943282+1 1.697877+1 1.000000+2 2.061611+1 1.258925+2 2.506333+1 1.584893+2 3.050494+1 1.995262+2 3.716873+1 2.511886+2 4.533348+1 3.162278+2 5.534605+1 3.981072+2 6.763043+1 5.011872+2 8.271388+1 6.309573+2 1.012429+2 7.943282+2 1.240186+2 1.000000+3 1.520271+2 1.258925+3 1.864921+2 1.584893+3 2.289184+2 1.995262+3 2.811697+2 2.511886+3 3.455620+2 3.162278+3 4.249383+2 3.981072+3 5.228243+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739906-9 3.981072-5 4.342196-9 5.011872-5 6.881604-9 6.309573-5 1.090610-8 7.943282-5 1.728038-8 1.000000-4 2.738258-8 1.258925-4 4.339464-8 1.584893-4 6.874151-8 1.995262-4 1.088997-7 2.511886-4 1.724554-7 3.162278-4 2.729707-7 3.981072-4 4.318253-7 5.011872-4 6.821031-7 6.309573-4 1.075764-6 7.943282-4 1.693192-6 1.000000-3 2.658325-6 1.258925-3 4.161355-6 1.584893-3 6.505974-6 1.995262-3 1.013149-5 2.511886-3 1.574990-5 3.162278-3 2.451451-5 3.981072-3 3.825719-5 5.011872-3 5.960931-5 6.309573-3 9.308745-5 7.943282-3 1.453912-4 1.000000-2 2.270746-4 1.258925-2 3.514801-4 1.584893-2 5.417820-4 1.995262-2 8.318676-4 2.511886-2 1.273956-3 3.162278-2 1.944417-3 3.981072-2 2.956213-3 5.011872-2 4.462484-3 6.309573-2 6.678028-3 7.943282-2 9.933685-3 1.000000-1 1.463720-2 1.258925-1 2.138366-2 1.584893-1 3.098276-2 1.995262-1 4.448040-2 2.511886-1 6.328220-2 3.162278-1 8.924775-2 3.981072-1 1.248101-1 5.011872-1 1.731616-1 6.309573-1 2.383622-1 7.943282-1 3.257958-1 1.000000+0 4.420053-1 1.258925+0 5.954896-1 1.584893+0 7.971804-1 1.995262+0 1.060460+0 2.511886+0 1.402557+0 3.162278+0 1.845218+0 3.981072+0 2.416042+0 5.011872+0 3.150057+0 6.309573+0 4.091564+0 7.943282+0 5.296782+0 1.000000+1 6.836883+0 1.258925+1 8.802092+0 1.584893+1 1.130662+1 1.995262+1 1.449518+1 2.511886+1 1.855069+1 3.162278+1 2.370454+1 3.981072+1 3.024989+1 5.011872+1 3.855722+1 6.309573+1 4.909456+1 7.943282+1 6.245405+1 1.000000+2 7.938389+1 1.258925+2 1.008292+2 1.584893+2 1.279844+2 1.995262+2 1.623575+2 2.511886+2 2.058552+2 3.162278+2 2.608817+2 3.981072+2 3.304767+2 5.011872+2 4.184733+2 6.309573+2 5.297144+2 7.943282+2 6.703096+2 1.000000+3 8.479729+2 1.258925+3 1.072433+3 1.584893+3 1.355975+3 1.995262+3 1.714093+3 2.511886+3 2.166324+3 3.162278+3 2.737339+3 3.981072+3 3.458247+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.770000-6 2.927977+7 6.200000-6 2.555700+7 6.280000-6 2.491296+7 6.280000-6 3.911937+7 6.606934-6 3.558197+7 7.000000-6 3.173856+7 7.413102-6 2.815225+7 7.500000-6 2.745885+7 7.943282-6 2.418861+7 8.035261-6 2.356847+7 8.413951-6 2.117477+7 8.609938-6 2.005139+7 8.912509-6 1.843572+7 9.225714-6 1.692661+7 9.500000-6 1.571497+7 9.885531-6 1.418238+7 1.011579-5 1.334617+7 1.059254-5 1.179684+7 1.071519-5 1.143103+7 1.135011-5 9.743403+6 1.150000-5 9.388272+6 1.230269-5 7.735301+6 1.243400-5 7.499007+6 1.333521-5 6.095801+6 1.339000-5 6.020110+6 1.339000-5 6.791356+6 1.364583-5 6.362416+6 1.400000-5 5.824749+6 1.440000-5 5.288308+6 1.460000-5 5.044475+6 1.462177-5 5.018683+6 1.479108-5 4.822101+6 1.515000-5 4.437698+6 1.554900-5 4.057203+6 1.590000-5 3.758051+6 1.603245-5 3.652824+6 1.621810-5 3.511073+6 1.660000-5 3.239261+6 1.698244-5 2.994927+6 1.737801-5 2.767925+6 1.778279-5 2.559391+6 1.800000-5 2.456275+6 1.840772-5 2.276675+6 1.900000-5 2.045175+6 1.930400-5 1.938984+6 1.957000-5 1.852322+6 1.980000-5 1.781739+6 2.000000-5 1.723427+6 2.020000-5 1.667798+6 2.035000-5 1.627747+6 2.047000-5 1.596693+6 2.062000-5 1.559059+6 2.075000-5 1.527471+6 2.089296-5 1.493793+6 2.090000-5 1.492152+6 2.105000-5 1.457850+6 2.120000-5 1.424681+6 2.135000-5 1.392601+6 2.150000-5 1.361565+6 2.165000-5 1.331534+6 2.180000-5 1.302467+6 2.200000-5 1.265147+6 2.220000-5 1.229391+6 2.240000-5 1.195120+6 2.264644-5 1.154823+6 2.290868-5 1.114148+6 2.330000-5 1.057372+6 2.485000-5 8.711816+5 2.540973-5 8.163955+5 2.600160-5 7.642718+5 2.660725-5 7.163536+5 2.722701-5 6.722862+5 2.786121-5 6.320910+5 2.851018-5 5.950748+5 2.920000-5 5.597179+5 3.000000-5 5.231800+5 3.080000-5 4.907759+5 3.126079-5 4.736956+5 3.162278-5 4.613087+5 3.239000-5 4.368408+5 3.239000-5 2.821235+6 3.260000-5 2.818692+6 3.273407-5 2.817084+6 3.311311-5 2.827768+6 3.349000-5 2.855671+6 3.349000-5 4.355775+6 3.349654-5 4.356412+6 3.350000-5 4.356899+6 3.388442-5 4.411470+6 3.390000-5 4.414115+6 3.430000-5 4.502028+6 3.450000-5 4.561688+6 3.470000-5 4.622064+6 3.507519-5 4.764803+6 3.510000-5 4.775113+6 3.548134-5 4.953657+6 3.550000-5 4.962560+6 3.570000-5 5.072985+6 3.589219-5 5.181201+6 3.630781-5 5.452809+6 3.672823-5 5.771234+6 3.690000-5 5.917996+6 3.720000-5 6.182581+6 3.760000-5 6.581440+6 3.780000-5 6.794905+6 3.801894-5 7.045615+6 3.810000-5 7.140555+6 3.845918-5 7.586373+6 3.850000-5 7.638640+6 3.870000-5 7.908142+6 3.935501-5 8.873731+6 3.950000-5 9.105139+6 4.000000-5 9.960335+6 4.120975-5 1.237210+7 4.168694-5 1.346304+7 4.180000-5 1.373387+7 4.265795-5 1.591215+7 4.300000-5 1.684006+7 4.315191-5 1.726723+7 4.350000-5 1.826809+7 4.420000-5 2.037185+7 4.466836-5 2.181502+7 4.500000-5 2.288984+7 4.570882-5 2.518992+7 4.623810-5 2.691255+7 4.630000-5 2.712037+7 4.650000-5 2.776990+7 4.700000-5 2.940070+7 4.720000-5 3.003709+7 4.731513-5 3.039601+7 4.770100-5 3.162457+7 4.795100-5 3.238975+7 4.841724-5 3.379496+7 4.870000-5 3.461285+7 4.900000-5 3.546185+7 4.920000-5 3.599547+7 4.954502-5 3.689564+7 4.970000-5 3.730535+7 5.011872-5 3.827933+7 5.040000-5 3.894372+7 5.110000-5 4.036116+7 5.170000-5 4.137218+7 5.188000-5 4.165511+7 5.230000-5 4.221473+7 5.270000-5 4.269229+7 5.300000-5 4.298035+7 5.308844-5 4.306543+7 5.350000-5 4.340259+7 5.370318-5 4.352392+7 5.432503-5 4.380989+7 5.450000-5 4.385682+7 5.500000-5 4.393044+7 5.559043-5 4.384925+7 5.580000-5 4.382083+7 5.650000-5 4.352965+7 5.688529-5 4.326307+7 5.730000-5 4.298017+7 5.754399-5 4.278577+7 5.821032-5 4.214713+7 5.830000-5 4.206249+7 5.850000-5 4.185371+7 5.900000-5 4.126016+7 5.956621-5 4.055132+7 6.000000-5 3.995469+7 6.025596-5 3.958182+7 6.070000-5 3.894693+7 6.095369-5 3.855565+7 6.110000-5 3.833255+7 6.165950-5 3.744192+7 6.180000-5 3.722277+7 6.220000-5 3.655834+7 6.300000-5 3.520949+7 6.330000-5 3.468898+7 6.382635-5 3.375711+7 6.400000-5 3.345686+7 6.456542-5 3.244795+7 6.531306-5 3.111756+7 6.580000-5 3.024372+7 6.606934-5 2.975704+7 6.650000-5 2.899904+7 6.683439-5 2.840163+7 6.690000-5 2.828623+7 6.760830-5 2.704143+7 6.770000-5 2.688528+7 6.800000-5 2.636013+7 6.918310-5 2.435043+7 6.950000-5 2.382286+7 7.000000-5 2.299493+7 7.070000-5 2.189339+7 7.079458-5 2.174406+7 7.230000-5 1.947045+7 7.328245-5 1.806282+7 7.400000-5 1.711060+7 7.500000-5 1.581636+7 7.585776-5 1.479722+7 7.673615-5 1.378719+7 7.762471-5 1.284646+7 7.800000-5 1.246553+7 7.943282-5 1.109709+7 7.950000-5 1.103735+7 8.000000-5 1.059773+7 8.035261-5 1.029382+7 8.150000-5 9.372593+6 8.230000-5 8.778051+6 8.400000-5 7.632454+6 8.413951-5 7.545128+6 8.500000-5 7.031270+6 8.511380-5 6.965230+6 8.650000-5 6.215665+6 8.730000-5 5.820726+6 8.912509-5 5.011019+6 9.015711-5 4.606076+6 9.120108-5 4.228246+6 9.225714-5 3.881940+6 9.300000-5 3.655087+6 9.332543-5 3.559155+6 9.440609-5 3.260742+6 9.549926-5 2.987873+6 9.580000-5 2.915512+6 9.580000-5 3.506372+6 9.670000-5 3.304649+6 9.780000-5 3.075340+6 9.900000-5 2.845099+6 1.000000-4 2.663824+6 1.020000-4 2.341556+6 1.023293-4 2.293108+6 1.036400-4 2.109689+6 1.036400-4 2.369277+6 1.043000-4 2.288723+6 1.047129-4 2.239694+6 1.050000-4 2.206538+6 1.057000-4 2.127627+6 1.060000-4 2.094571+6 1.065000-4 2.041003+6 1.074000-4 1.948355+6 1.083927-4 1.851933+6 1.085000-4 1.841955+6 1.100000-4 1.708776+6 1.109175-4 1.633503+6 1.110000-4 1.627040+6 1.120000-4 1.552653+6 1.122018-4 1.538155+6 1.135011-4 1.450246+6 1.150000-4 1.359526+6 1.161449-4 1.297950+6 1.170000-4 1.255318+6 1.185000-4 1.188425+6 1.188502-4 1.173996+6 1.190000-4 1.167906+6 1.198000-4 1.136790+6 1.202264-4 1.121209+6 1.205000-4 1.111397+6 1.213000-4 1.084458+6 1.216186-4 1.074390+6 1.220000-4 1.062638+6 1.226600-4 1.043263+6 1.235000-4 1.020326+6 1.240000-4 1.007431+6 1.244515-4 9.965285+5 1.250000-4 9.838569+5 1.255000-4 9.729131+5 1.258925-4 9.648480+5 1.265000-4 9.527281+5 1.275000-4 9.346865+5 1.288250-4 9.136362+5 1.290000-4 9.110206+5 1.303167-4 8.938956+5 1.315000-4 8.808874+5 1.330000-4 8.669542+5 1.333521-4 8.642554+5 1.340000-4 8.597066+5 1.345000-4 8.563543+5 1.350000-4 8.536592+5 1.358000-4 8.494051+5 1.359200-4 8.488308+5 1.373000-4 8.431652+5 1.380384-4 8.409984+5 1.390000-4 8.389440+5 1.400000-4 8.379479+5 1.407000-4 8.373025+5 1.412538-4 8.370615+5 1.415000-4 8.371058+5 1.428100-4 8.377113+5 1.428100-4 1.005264+6 1.428894-4 1.005300+6 1.430000-4 1.005395+6 1.440000-4 1.006701+6 1.450000-4 1.008521+6 1.465000-4 1.012260+6 1.480000-4 1.016755+6 1.490000-4 1.020508+6 1.520000-4 1.033014+6 1.531087-4 1.038043+6 1.548817-4 1.046688+6 1.550000-4 1.047307+6 1.580000-4 1.063485+6 1.584893-4 1.066292+6 1.603245-4 1.076601+6 1.635000-4 1.095193+6 1.640590-4 1.098524+6 1.659587-4 1.109332+6 1.690000-4 1.127458+6 1.698244-4 1.131962+6 1.737801-4 1.154553+6 1.740000-4 1.155792+6 1.778279-4 1.174929+6 1.798871-4 1.185673+6 1.800000-4 1.186183+6 1.850000-4 1.208427+6 1.883649-4 1.221484+6 1.905461-4 1.229876+6 1.927525-4 1.236884+6 1.950000-4 1.244173+6 1.972423-4 1.251032+6 2.000000-4 1.257965+6 2.018366-4 1.262174+6 2.041738-4 1.267579+6 2.065380-4 1.272055+6 2.089296-4 1.275982+6 2.113489-4 1.279911+6 2.137962-4 1.282940+6 2.162719-4 1.285379+6 2.187762-4 1.287588+6 2.190000-4 1.287786+6 2.220000-4 1.289416+6 2.264644-4 1.290839+6 2.290868-4 1.290875+6 2.300000-4 1.290863+6 2.350000-4 1.289423+6 2.371374-4 1.287912+6 2.398833-4 1.286018+6 2.454709-4 1.281144+6 2.483133-4 1.277665+6 2.500000-4 1.275568+6 2.540973-4 1.269772+6 2.570396-4 1.265439+6 2.600160-4 1.260313+6 2.620000-4 1.256851+6 2.660725-4 1.249151+6 2.691535-4 1.243447+6 2.730000-4 1.235367+6 2.754229-4 1.229997+6 2.818383-4 1.215672+6 2.851018-4 1.207743+6 2.917427-4 1.191070+6 2.951209-4 1.182735+6 2.985383-4 1.173805+6 3.000000-4 1.170038+6 3.090295-4 1.145615+6 3.100000-4 1.143062+6 3.126079-4 1.135808+6 3.162278-4 1.125820+6 3.235937-4 1.105046+6 3.273407-4 1.094586+6 3.349654-4 1.072780+6 3.350000-4 1.072683+6 3.467369-4 1.039502+6 3.507519-4 1.028065+6 3.550000-4 1.016033+6 3.630781-4 9.932548+5 3.672823-4 9.817181+5 3.758374-4 9.580819+5 3.801894-4 9.461750+5 3.850000-4 9.332610+5 3.890451-4 9.225213+5 3.935501-4 9.104368+5 4.000000-4 8.935475+5 4.073803-4 8.744878+5 4.120975-4 8.626908+5 4.216965-4 8.388062+5 4.265795-4 8.267054+5 4.315191-4 8.147134+5 4.365158-4 8.028464+5 4.415704-4 7.908120+5 4.518559-4 7.672860+5 4.623810-4 7.440181+5 4.700000-4 7.276608+5 4.786301-4 7.093957+5 4.841724-4 6.980280+5 4.946200-4 6.770995+5 4.946200-4 7.082175+5 4.954502-4 7.111666+5 4.964000-4 7.153632+5 4.977000-4 7.231227+5 4.988000-4 7.320314+5 4.998000-4 7.426228+5 5.007000-4 7.548106+5 5.011872-4 7.627993+5 5.015700-4 7.696695+5 5.025000-4 7.905165+5 5.035700-4 8.217190+5 5.035700-4 8.631756+5 5.037000-4 8.690603+5 5.037500-4 8.714139+5 5.065000-4 1.029432+6 5.069907-4 1.067902+6 5.074000-4 1.103133+6 5.075000-4 1.112139+6 5.082000-4 1.178516+6 5.090000-4 1.263630+6 5.098000-4 1.358510+6 5.105000-4 1.449071+6 5.112000-4 1.545656+6 5.118000-4 1.632123+6 5.123000-4 1.703325+6 5.129000-4 1.789436+6 5.135000-4 1.875009+6 5.136400-4 1.894079+6 5.139000-4 1.930289+6 5.145000-4 2.010320+6 5.150000-4 2.074722+6 5.157000-4 2.161222+6 5.159000-4 2.184113+6 5.165000-4 2.254436+6 5.173400-4 2.347188+6 5.182000-4 2.440460+6 5.188000-4 2.503207+6 5.190000-4 2.524715+6 5.197000-4 2.595966+6 5.200000-4 2.625431+6 5.210000-4 2.718871+6 5.220000-4 2.809750+6 5.222000-4 2.826907+6 5.224000-4 2.818999+6 5.234000-4 2.903268+6 5.249000-4 3.027176+6 5.265000-4 3.160462+6 5.270000-4 3.203049+6 5.290000-4 3.362287+6 5.305000-4 3.486348+6 5.308844-4 3.511031+6 5.315000-4 3.544425+6 5.343000-4 3.690360+6 5.361000-4 3.784712+6 5.370318-4 3.811396+6 5.380000-4 3.839429+6 5.400000-4 3.891437+6 5.415000-4 3.931239+6 5.445000-4 4.006954+6 5.480000-4 4.058452+6 5.495409-4 4.077930+6 5.520000-4 4.109405+6 5.540000-4 4.120400+6 5.559043-4 4.111161+6 5.600000-4 4.091451+6 5.623413-4 4.076446+6 5.690000-4 4.034444+6 5.754399-4 3.987811+6 5.754400-4 3.987810+6 5.760000-4 3.980366+6 5.821032-4 3.891819+6 5.956621-4 3.705002+6 6.000000-4 3.643079+6 6.050000-4 3.573451+6 6.095369-4 3.514881+6 6.165950-4 3.426478+6 6.200000-4 3.384976+6 6.237348-4 3.344021+6 6.382635-4 3.191285+6 6.456542-4 3.118782+6 6.531306-4 3.047934+6 6.700000-4 2.896490+6 6.760830-4 2.844625+6 6.839116-4 2.777796+6 6.918310-4 2.712544+6 7.000000-4 2.647537+6 7.079458-4 2.586489+6 7.103200-4 2.568631+6 7.103200-4 2.881058+6 7.250000-4 2.777398+6 7.413102-4 2.667061+6 7.498942-4 2.611782+6 7.500000-4 2.611105+6 7.533600-4 2.589262+6 7.533600-4 2.657399+6 7.535000-4 2.657985+6 7.538000-4 2.660242+6 7.541000-4 2.662313+6 7.544000-4 2.664211+6 7.547000-4 2.665936+6 7.551500-4 2.668121+6 7.555000-4 2.669548+6 7.560000-4 2.671081+6 7.565000-4 2.672131+6 7.570000-4 2.672701+6 7.576000-4 2.672764+6 7.583000-4 2.672091+6 7.585776-4 2.671564+6 7.589000-4 2.670935+6 7.597000-4 2.668688+6 7.600000-4 2.667443+6 7.620000-4 2.657352+6 7.630000-4 2.651849+6 7.640000-4 2.646173+6 7.673615-4 2.625935+6 7.685000-4 2.619141+6 7.700000-4 2.610054+6 7.762471-4 2.571844+6 7.820000-4 2.536779+6 7.852356-4 2.517054+6 7.943282-4 2.462960+6 8.035261-4 2.409382+6 8.050000-4 2.400969+6 8.128305-4 2.356468+6 8.200000-4 2.315507+6 8.222426-4 2.302901+6 8.317638-4 2.249779+6 8.430000-4 2.190764+6 8.493900-4 2.157916+6 8.511380-4 2.149085+6 8.609938-4 2.099092+6 8.690500-4 2.059520+6 8.690500-4 2.148538+6 8.810489-4 2.090405+6 9.015711-4 1.994854+6 9.120108-4 1.948714+6 9.332543-4 1.858328+6 9.440609-4 1.814547+6 9.500000-4 1.791157+6 9.700000-4 1.714885+6 9.772372-4 1.688498+6 9.850000-4 1.660795+6 9.885531-4 1.648188+6 1.000000-3 1.608406+6 1.011579-3 1.569561+6 1.047129-3 1.458193+6 1.071519-3 1.387640+6 1.083927-3 1.353228+6 1.096478-3 1.319705+6 1.109175-3 1.286804+6 1.122018-3 1.254742+6 1.148154-3 1.192326+6 1.150000-3 1.188095+6 1.202264-3 1.075755+6 1.216186-3 1.048404+6 1.230269-3 1.021611+6 1.244515-3 9.954599+5 1.258925-3 9.698651+5 1.288250-3 9.207510+5 1.300000-3 9.019373+5 1.318257-3 8.736041+5 1.330000-3 8.560569+5 1.364583-3 8.071283+5 1.380384-3 7.859515+5 1.412538-3 7.453482+5 1.428894-3 7.256723+5 1.450000-3 7.013350+5 1.462177-3 6.878387+5 1.496236-3 6.518726+5 1.513561-3 6.346447+5 1.548817-3 6.013411+5 1.566751-3 5.853769+5 1.584893-3 5.698622+5 1.610000-3 5.490836+5 1.621810-3 5.396636+5 1.640590-3 5.251565+5 1.650000-3 5.181006+5 1.678804-3 4.973203+5 1.698244-3 4.839777+5 1.717908-3 4.709353+5 1.737801-3 4.581857+5 1.757924-3 4.456545+5 1.778279-3 4.334750+5 1.798871-3 4.216463+5 1.840772-3 3.989826+5 1.862087-3 3.881328+5 1.883649-3 3.775881+5 1.905461-3 3.673013+5 1.927525-3 3.572830+5 1.950000-3 3.474204+5 1.972423-3 3.379116+5 2.000000-3 3.266967+5 2.018366-3 3.195226+5 2.065380-3 3.021796+5 2.070000-3 3.005496+5 2.089296-3 2.938760+5 2.113489-3 2.858126+5 2.162719-3 2.701282+5 2.187762-3 2.625822+5 2.213095-3 2.552465+5 2.290868-3 2.344751+5 2.317395-3 2.279506+5 2.344229-3 2.215958+5 2.371374-3 2.154240+5 2.426610-3 2.034951+5 2.454709-3 1.977599+5 2.483133-3 1.921912+5 2.540973-3 1.815345+5 2.570396-3 1.764394+5 2.600160-3 1.714824+5 2.650000-3 1.635426+5 2.660725-3 1.618972+5 2.691535-3 1.572991+5 2.722701-3 1.528165+5 2.786121-3 1.442449+5 2.818383-3 1.401462+5 2.851018-3 1.361681+5 2.917427-3 1.285357+5 2.951209-3 1.248633+5 3.000000-3 1.198217+5 3.019952-3 1.178380+5 3.126079-3 1.079658+5 3.140690-3 1.066993+5 3.235937-3 9.894684+4 3.311311-3 9.331574+4 3.349654-3 9.062716+4 3.427678-3 8.547307+4 3.467369-3 8.299449+4 3.507519-3 8.059037+4 3.548134-3 7.825831+4 3.589219-3 7.599442+4 3.650000-3 7.280348+4 3.715352-3 6.955936+4 3.758374-3 6.753490+4 3.801894-3 6.557203+4 3.845918-3 6.366350+4 3.926800-3 6.034553+4 3.926800-3 1.923884+5 3.935501-3 1.913486+5 4.000000-3 1.838845+5 4.027170-3 1.808630+5 4.070000-3 1.762314+5 4.073803-3 1.758015+5 4.160800-3 1.663363+5 4.160800-3 2.265010+5 4.168694-3 2.255280+5 4.216965-3 2.197134+5 4.265795-3 2.140593+5 4.280000-3 2.124560+5 4.295000-3 2.106280+5 4.315191-3 2.080494+5 4.355000-3 2.030851+5 4.415704-3 1.959694+5 4.440300-3 1.931855+5 4.440300-3 2.222575+5 4.472000-3 2.183999+5 4.518559-3 2.128515+5 4.570882-3 2.068475+5 4.623810-3 2.010082+5 4.650000-3 1.982368+5 4.677351-3 1.953538+5 4.786301-3 1.844470+5 4.800000-3 1.831241+5 4.841724-3 1.791748+5 4.897788-3 1.740556+5 4.954502-3 1.690814+5 5.011872-3 1.642115+5 5.069907-3 1.594261+5 5.128614-3 1.547837+5 5.188000-3 1.502794+5 5.248075-3 1.459123+5 5.308844-3 1.416757+5 5.432503-3 1.335277+5 5.495409-3 1.296366+5 5.500000-3 1.293589+5 5.623413-3 1.221445+5 5.688529-3 1.185639+5 5.821032-3 1.117130+5 5.888437-3 1.084406+5 5.956621-3 1.052502+5 6.025596-3 1.021389+5 6.095369-3 9.911453+4 6.165950-3 9.618162+4 6.237348-3 9.333690+4 6.456542-3 8.530932+4 6.606934-3 8.034907+4 6.683439-3 7.798400+4 6.760830-3 7.567747+4 6.839116-3 7.343965+4 6.918310-3 7.126988+4 6.998420-3 6.916613+4 7.000000-3 6.912553+4 7.079458-3 6.711607+4 7.161434-3 6.512821+4 7.244360-3 6.318479+4 7.328245-3 6.129963+4 7.413102-3 5.947123+4 7.498942-3 5.769644+4 7.673615-3 5.430752+4 7.762471-3 5.267093+4 7.943282-3 4.953981+4 8.000000-3 4.861150+4 8.035261-3 4.804652+4 8.128305-3 4.659793+4 8.222426-3 4.519322+4 8.317638-3 4.382215+4 8.413951-3 4.249339+4 8.511380-3 4.120440+4 8.709636-3 3.873647+4 8.810489-3 3.755996+4 9.015711-3 3.531608+4 9.120108-3 3.424641+4 9.225714-3 3.320978+4 9.332543-3 3.220476+4 9.440609-3 3.122355+4 9.549926-3 3.027195+4 9.660509-3 2.934897+4 9.800000-3 2.823969+4 9.885531-3 2.758636+4 1.000000-2 2.673680+4 1.023293-2 2.511749+4 1.035142-2 2.434605+4 1.047129-2 2.359861+4 1.059254-2 2.287432+4 1.071519-2 2.217064+4 1.083927-2 2.148897+4 1.096478-2 2.082547+4 1.109175-2 2.018287+4 1.122018-2 1.956015+4 1.135011-2 1.895712+4 1.161449-2 1.780780+4 1.174898-2 1.726028+4 1.202264-2 1.621643+4 1.216186-2 1.571144+4 1.230269-2 1.522251+4 1.244515-2 1.474913+4 1.288250-2 1.341605+4 1.303167-2 1.299976+4 1.318257-2 1.259463+4 1.333521-2 1.220249+4 1.348963-2 1.182286+4 1.350000-2 1.179796+4 1.364583-2 1.145531+4 1.380384-2 1.109929+4 1.396368-2 1.075464+4 1.412538-2 1.042092+4 1.445440-2 9.777380+3 1.479108-2 9.174519+3 1.500000-2 8.826144+3 1.531087-2 8.340962+3 1.548817-2 8.080462+3 1.566751-2 7.828282+3 1.584893-2 7.583196+3 1.603245-2 7.344576+3 1.621810-2 7.113389+3 1.640590-2 6.888655+3 1.698244-2 6.257168+3 1.717908-2 6.060119+3 1.778279-2 5.506352+3 1.800000-2 5.324270+3 1.819701-2 5.166008+3 1.840772-2 5.003868+3 1.850000-2 4.934825+3 1.883649-2 4.692155+3 1.905461-2 4.542925+3 1.972423-2 4.123774+3 2.000000-2 3.966663+3 2.065380-2 3.625777+3 2.089296-2 3.511199+3 2.113489-2 3.400279+3 2.137962-2 3.292710+3 2.162719-2 3.188390+3 2.213095-2 2.988348+3 2.238721-2 2.892802+3 2.264644-2 2.800379+3 2.317395-2 2.624510+3 2.344229-2 2.540867+3 2.398833-2 2.381649+3 2.426610-2 2.305909+3 2.454709-2 2.232601+3 2.483133-2 2.161531+3 2.511886-2 2.092780+3 2.540973-2 2.025634+3 2.630268-2 1.837130+3 2.660725-2 1.778157+3 2.754229-2 1.612603+3 2.818383-2 1.511062+3 2.851018-2 1.462770+3 2.884032-2 1.415997+3 2.900000-2 1.394082+3 2.917427-2 1.370525+3 2.918400-2 1.369226+3 2.918400-2 8.446668+3 2.937000-2 8.343231+3 3.000000-2 7.932631+3 3.019952-2 7.790363+3 3.054921-2 7.549332+3 3.070000-2 7.448546+3 3.090295-2 7.326438+3 3.126079-2 7.117899+3 3.162278-2 6.915227+3 3.198895-2 6.706618+3 3.235937-2 6.504328+3 3.273407-2 6.308166+3 3.311311-2 6.117948+3 3.349654-2 5.933468+3 3.388442-2 5.754352+3 3.427678-2 5.580620+3 3.548134-2 5.098411+3 3.630781-2 4.800431+3 3.672823-2 4.658073+3 3.758374-2 4.385882+3 3.801894-2 4.252757+3 3.845918-2 4.123684+3 3.890451-2 3.998549+3 3.935501-2 3.877056+3 4.000000-2 3.711797+3 4.027170-2 3.645066+3 4.073803-2 3.534331+3 4.120975-2 3.426970+3 4.168694-2 3.322882+3 4.216965-2 3.221971+3 4.265795-2 3.124136+3 4.315191-2 3.027406+3 4.518559-2 2.669624+3 4.570882-2 2.587008+3 4.623810-2 2.506856+3 4.731513-2 2.353855+3 4.786301-2 2.280889+3 5.011872-2 2.011019+3 5.188000-2 1.829843+3 5.308844-2 1.718249+3 5.432503-2 1.613477+3 5.495409-2 1.563455+3 5.623413-2 1.466289+3 5.821032-2 1.331734+3 5.888437-2 1.289681+3 5.956621-2 1.248960+3 6.165950-2 1.134367+3 6.382635-2 1.030305+3 6.456542-2 9.977879+2 6.683439-2 9.061729+2 6.839116-2 8.498177+2 6.998420-2 7.962390+2 7.079458-2 7.707326+2 7.161434-2 7.460441+2 7.413102-2 6.766321+2 7.762471-2 5.940417+2 7.943282-2 5.565714+2 8.035261-2 5.387337+2 8.128305-2 5.214652+2 8.413951-2 4.729163+2 8.609938-2 4.430923+2 8.810489-2 4.148451+2 9.332543-2 3.518674+2 9.440609-2 3.404704+2 9.549926-2 3.294322+2 9.660509-2 3.187524+2 9.772372-2 3.084172+2 1.047129-1 2.530832+2 1.096478-1 2.218338+2 1.109175-1 2.146447+2 1.122019-1 2.076423+2 1.135011-1 2.008697+2 1.148154-1 1.943180+2 1.161449-1 1.879804+2 1.174898-1 1.818497+2 1.202264-1 1.701727+2 1.258925-1 1.490211+2 1.273503-1 1.441574+2 1.288250-1 1.394533+2 1.333521-1 1.262438+2 1.348963-1 1.221249+2 1.364583-1 1.181407+2 1.380384-1 1.142866+2 1.412538-1 1.069516+2 1.428894-1 1.034634+2 1.500000-1 8.995937+1 1.548817-1 8.203421+1 1.584893-1 7.677272+1 1.603245-1 7.427002+1 1.659587-1 6.724131+1 1.698244-1 6.292938+1 1.717908-1 6.087870+1 1.737801-1 5.889483+1 1.757924-1 5.697569+1 1.819701-1 5.158574+1 1.840772-1 4.990497+1 1.883649-1 4.670658+1 1.949845-1 4.228941+1 1.972423-1 4.091197+1 2.000000-1 3.931037+1 2.018366-1 3.829055+1 2.065380-1 3.586047+1 2.113489-1 3.358470+1 2.162719-1 3.145382+1 2.187762-1 3.043967+1 2.213095-1 2.945824+1 2.238721-1 2.850932+1 2.264644-1 2.759098+1 2.290868-1 2.670226+1 2.317395-1 2.584220+1 2.398833-1 2.342510+1 2.426610-1 2.267113+1 2.483133-1 2.123530+1 2.517970-1 2.042176+1 2.540973-1 1.990761+1 2.570396-1 1.927526+1 2.600160-1 1.866303+1 2.630268-1 1.807027+1 2.660725-1 1.749634+1 2.691535-1 1.694072+1 2.722701-1 1.640290+1 2.818383-1 1.489186+1 2.851018-1 1.441979+1 2.884032-1 1.396268+1 2.917427-1 1.352025+1 2.951209-1 1.309863+1 3.000000-1 1.252066+1 3.019952-1 1.229432+1 3.162278-1 1.083145+1 3.198895-1 1.049380+1 3.273407-1 9.850773+0 3.349654-1 9.247167+0 3.388442-1 8.964351+0 3.467369-1 8.424728+0 3.507519-1 8.167228+0 3.548134-1 7.917602+0 3.672823-1 7.213587+0 3.715352-1 6.993510+0 3.758374-1 6.780201+0 3.801894-1 6.573408+0 3.845918-1 6.376614+0 3.890451-1 6.185718+0 3.935501-1 6.000623+0 4.073803-1 5.477928+0 4.120975-1 5.314055+0 4.168694-1 5.155091+0 4.216965-1 5.001186+0 4.265795-1 4.851908+0 4.365158-1 4.572230+0 4.415705-1 4.438495+0 4.466836-1 4.308743+0 4.518559-1 4.182812+0 4.570882-1 4.060566+0 4.623810-1 3.941896+0 4.677351-1 3.826695+0 4.731513-1 3.715117+0 4.786301-1 3.606796+0 4.897788-1 3.404027+0 4.954502-1 3.306980+0 5.069907-1 3.121223+0 5.128614-1 3.032296+0 5.188000-1 2.945904+0 5.248075-1 2.862191+0 5.308844-1 2.780860+0 5.370318-1 2.703650+0 5.432503-1 2.628603+0 5.559043-1 2.484707+0 5.623413-1 2.415782+0 5.688529-1 2.348771+0 5.754399-1 2.283618+0 5.821032-1 2.220287+0 5.888437-1 2.158881+0 5.956621-1 2.100655+0 6.025596-1 2.044001+0 6.095369-1 1.988875+0 6.165950-1 1.935237+0 6.237348-1 1.883078+0 6.309573-1 1.832326+0 6.382635-1 1.782941+0 6.456542-1 1.734911+0 6.531306-1 1.688294+0 6.606935-1 1.644243+0 6.760830-1 1.559559+0 6.839117-1 1.518868+0 6.918310-1 1.479264+0 6.998420-1 1.440694+0 7.079458-1 1.403145+0 7.161434-1 1.366576+0 7.413102-1 1.265406+0 7.498942-1 1.233376+0 7.585776-1 1.202156+0 7.673615-1 1.171748+0 7.762471-1 1.142122+0 7.852356-1 1.113246+0 7.943282-1 1.085101+0 8.035261-1 1.058474+0 8.128305-1 1.032501+0 8.317638-1 9.824525-1 8.413951-1 9.583458-1 8.511380-1 9.348365-1 8.609938-1 9.119236-1 8.709636-1 8.895751-1 8.810489-1 8.678407-1 8.912509-1 8.466375-1 9.015711-1 8.264479-1 9.120108-1 8.067400-1 9.225714-1 7.875022-1 9.332543-1 7.687303-1 9.440609-1 7.504207-1 9.549926-1 7.325524-1 9.660509-1 7.151690-1 9.772372-1 6.981986-1 9.885531-1 6.822346-1 1.000000+0 6.666369-1 1.011579+0 6.514078-1 1.022000+0 6.381431-1 1.023293+0 6.365255-1 1.035142+0 6.219920-1 1.047129+0 6.077895-1 1.059254+0 5.939130-1 1.071519+0 5.803538-1 1.083927+0 5.671067-1 1.096478+0 5.541634-1 1.122018+0 5.292251-1 1.135011+0 5.171793-1 1.148154+0 5.057870-1 1.161449+0 4.946490-1 1.174898+0 4.837666-1 1.188600+0 4.730494-1 1.202264+0 4.627199-1 1.216186+0 4.525806-1 1.230269+0 4.426667-1 1.250000+0 4.296784-1 1.258925+0 4.239945-1 1.288250+0 4.061093-1 1.303167+0 3.974524-1 1.318257+0 3.889849-1 1.348963+0 3.725912-1 1.364583+0 3.646559-1 1.380384+0 3.568909-1 1.396368+0 3.492913-1 1.412538+0 3.418738-1 1.428894+0 3.348027-1 1.445440+0 3.278776-1 1.479108+0 3.144550-1 1.548817+0 2.892577-1 1.566751+0 2.833007-1 1.584893+0 2.776470-1 1.603245+0 2.721063-1 1.621810+0 2.666760-1 1.640590+0 2.613542-1 1.678804+0 2.510355-1 1.698244+0 2.460310-1 1.737801+0 2.363217-1 1.757924+0 2.316280-1 1.778279+0 2.271746-1 1.798871+0 2.228065-1 1.819701+0 2.185228-1 1.840772+0 2.143215-1 1.883649+0 2.061666-1 1.905461+0 2.022074-1 1.927525+0 1.983252-1 1.949845+0 1.945313-1 1.972423+0 1.909350-1 2.000000+0 1.866861-1 2.018366+0 1.839406-1 2.044000+0 1.802165-1 2.089296+0 1.739315-1 2.113489+0 1.707192-1 2.137962+0 1.675663-1 2.187762+0 1.614352-1 2.238721+0 1.555453-1 2.264644+0 1.527623-1 2.290868+0 1.500291-1 2.317395+0 1.473449-1 2.344229+0 1.447088-1 2.371374+0 1.421214-1 2.398833+0 1.395805-1 2.426610+0 1.370856-1 2.454709+0 1.346353-1 2.511886+0 1.298664-1 2.570396+0 1.252800-1 2.600160+0 1.231122-1 2.630268+0 1.209820-1 2.660725+0 1.188887-1 2.691535+0 1.168316-1 2.722701+0 1.148115-1 2.754229+0 1.128265-1 2.786121+0 1.108762-1 2.818383+0 1.089597-1 2.884032+0 1.052263-1 2.951209+0 1.016329-1 3.000000+0 9.922667-2 3.019952+0 9.827019-2 3.054921+0 9.663090-2 3.090295+0 9.501897-2 3.126079+0 9.343525-2 3.162278+0 9.187820-2 3.198895+0 9.034723-2 3.311311+0 8.590661-2 3.388442+0 8.307733-2 3.467369+0 8.042179-2 3.507519+0 7.912603-2 3.548134+0 7.785120-2 3.589219+0 7.659694-2 3.630781+0 7.536380-2 3.672823+0 7.415078-2 3.715352+0 7.295734-2 3.845918+0 6.949175-2 3.935501+0 6.728041-2 4.027170+0 6.520262-2 4.073803+0 6.418790-2 4.120975+0 6.318903-2 4.168694+0 6.220570-2 4.216965+0 6.123841-2 4.265795+0 6.028634-2 4.315191+0 5.934911-2 4.365158+0 5.842666-2 4.518559+0 5.574442-2 4.623810+0 5.403040-2 4.731513+0 5.241689-2 4.786301+0 5.162830-2 4.841724+0 5.085160-2 4.897788+0 5.008661-2 5.000000+0 4.874389-2 5.011872+0 4.859206-2 5.128614+0 4.714241-2 5.188000+0 4.643403-2 5.370318+0 4.437212-2 5.495409+0 4.305265-2 5.623413+0 4.180838-2 5.688529+0 4.119979-2 5.754399+0 4.060008-2 5.821032+0 4.000911-2 5.956621+0 3.885368-2 6.000000+0 3.849659-2 6.095369+0 3.773184-2 6.165950+0 3.718326-2 6.456542+0 3.506751-2 6.606934+0 3.405818-2 6.760830+0 3.310432-2 6.839116+0 3.263746-2 6.918310+0 3.217720-2 7.000000+0 3.171461-2 7.244360+0 3.040106-2 7.413102+0 2.955043-2 7.498942+0 2.913416-2 7.852356+0 2.752692-2 8.035261+0 2.675915-2 8.222427+0 2.603344-2 8.317638+0 2.567800-2 8.413951+0 2.532743-2 8.511380+0 2.498183-2 8.810489+0 2.397321-2 9.015711+0 2.332365-2 9.120108+0 2.300556-2 9.772372+0 2.118606-2 1.011579+1 2.033304-2 1.047129+1 1.953362-2 1.059254+1 1.927421-2 1.071519+1 1.901825-2 1.083927+1 1.876583-2 1.122018+1 1.802862-2 1.135011+1 1.778941-2 1.148154+1 1.755343-2 1.188502+1 1.686412-2 1.230269+1 1.620340-2 1.244515+1 1.598896-2 1.333521+1 1.478551-2 1.364583+1 1.440482-2 1.396368+1 1.403396-2 1.400000+1 1.399273-2 1.412538+1 1.385220-2 1.445440+1 1.349581-2 1.462177+1 1.332113-2 1.479108+1 1.314872-2 1.513561+1 1.281126-2 1.819701+1 1.044295-2 1.840772+1 1.031039-2 1.883649+1 1.005030-2 1.927525+1 9.796780-3 1.949845+1 9.672499-3 1.972423+1 9.550119-3 2.483133+1 7.443758-3 2.511886+1 7.351593-3 2.570396+1 7.170669-3 2.630268+1 6.994205-3 2.660725+1 6.907608-3 2.691535+1 6.822122-3 2.722701+1 6.737879-3 2.754229+1 6.654676-3 3.467369+1 5.214390-3 3.507519+1 5.151188-3 3.589219+1 5.027072-3 3.672823+1 4.905948-3 3.715352+1 4.846486-3 3.758374+1 4.787744-3 3.801894+1 4.729737-3 3.890451+1 4.616031-3 3.935501+1 4.560208-3 5.308844+1 3.339426-3 5.370318+1 3.299647-3 5.495409+1 3.221505-3 5.623413+1 3.145215-3 5.688529+1 3.107750-3 5.754399+1 3.070732-3 5.821032+1 3.034166-3 5.956621+1 2.962441-3 6.025596+1 2.927217-3 6.095369+1 2.892820-3 9.120108+1 1.912691-3 9.225714+1 1.890215-3 9.332543+1 1.868003-3 9.549926+1 1.824360-3 9.660509+1 1.802922-3 9.772372+1 1.781737-3 9.885531+1 1.760806-3 1.000000+2 1.740146-3 1.011579+2 1.719730-3 1.023293+2 1.699756-3 1.737801+2 9.931256-4 1.757924+2 9.815911-4 1.778279+2 9.701911-4 1.819701+2 9.477858-4 1.840772+2 9.367782-4 1.862087+2 9.259059-4 1.883649+2 9.151620-4 1.905461+2 9.045427-4 1.927525+2 8.941092-4 3.467369+2 4.947938-4 3.507519+2 4.890865-4 3.548134+2 4.834451-4 3.630781+2 4.723567-4 3.672823+2 4.669083-4 3.715352+2 4.615251-4 3.758374+2 4.562047-4 3.801894+2 4.509457-4 3.845918+2 4.457675-4 1.380384+3 1.236950-4 1.396368+3 1.222746-4 1.412538+3 1.208705-4 1.445440+3 1.181105-4 1.462177+3 1.167543-4 1.479108+3 1.154141-4 1.496236+3 1.140892-4 1.513561+3 1.127797-4 1.531087+3 1.114883-4 1.000000+5 1.704969-6 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.770000-6 5.770000-6 6.280000-6 5.770000-6 6.280000-6 5.955209-6 1.339000-5 5.974438-6 1.339000-5 6.816571-6 1.479108-5 6.561178-6 1.603245-5 6.381528-6 1.737801-5 6.235099-6 1.840772-5 6.154726-6 1.980000-5 6.090472-6 2.105000-5 6.074932-6 2.240000-5 6.101738-6 2.330000-5 6.143864-6 2.485000-5 6.258880-6 2.660725-5 6.447337-6 2.851018-5 6.707454-6 3.080000-5 7.076180-6 3.239000-5 7.352610-6 3.239000-5 1.959254-5 3.349000-5 1.980424-5 3.349000-5 2.040031-5 3.810000-5 2.114340-5 4.000000-5 2.135440-5 4.315191-5 2.154488-5 4.870000-5 2.164995-5 7.000000-5 2.164543-5 8.730000-5 2.151590-5 9.580000-5 2.136419-5 9.580000-5 2.504611-5 1.000000-4 2.601961-5 1.036400-4 2.678178-5 1.036400-4 2.856671-5 1.074000-4 2.970924-5 1.122018-4 3.092902-5 1.170000-4 3.196565-5 1.213000-4 3.268250-5 1.255000-4 3.314024-5 1.290000-4 3.332397-5 1.333521-4 3.331979-5 1.380384-4 3.309863-5 1.428100-4 3.273119-5 1.428100-4 3.778375-5 1.550000-4 3.660350-5 1.690000-4 3.526461-5 1.850000-4 3.406601-5 1.972423-4 3.336568-5 2.113489-4 3.278123-5 2.300000-4 3.226802-5 2.570396-4 3.180021-5 2.851018-4 3.151646-5 3.273407-4 3.134932-5 4.000000-4 3.136127-5 4.946200-4 3.164392-5 4.946200-4 3.287161-5 4.964000-4 3.327958-5 4.977000-4 3.366307-5 4.988000-4 3.406263-5 4.998000-4 3.450160-5 5.011872-4 3.526570-5 5.025000-4 3.621259-5 5.035700-4 3.717351-5 5.035700-4 3.822381-5 5.065000-4 4.181863-5 5.098000-4 4.623843-5 5.112000-4 4.789456-5 5.123000-4 4.900449-5 5.139000-4 5.028349-5 5.157000-4 5.130992-5 5.182000-4 5.229250-5 5.210000-4 5.307095-5 5.265000-4 5.402806-5 5.315000-4 5.465735-5 5.380000-4 5.508735-5 5.520000-4 5.551819-5 5.821032-4 5.565044-5 7.103200-4 5.543195-5 7.103200-4 6.023809-5 7.533600-4 6.080366-5 7.533600-4 6.184918-5 7.570000-4 6.247396-5 7.620000-4 6.279358-5 8.035261-4 6.339095-5 8.690500-4 6.400996-5 8.690500-4 6.678757-5 1.122018-3 6.954836-5 1.380384-3 7.197463-5 1.717908-3 7.465645-5 2.113489-3 7.724198-5 2.660725-3 8.012882-5 3.311311-3 8.287209-5 3.926800-3 8.496842-5 3.926800-3 1.194510-4 4.160800-3 1.197281-4 4.160800-3 1.255856-4 4.440300-3 1.259197-4 4.440300-3 1.316790-4 6.237348-3 1.341085-4 9.225714-3 1.369679-4 1.364583-2 1.398843-4 1.972423-2 1.426506-4 2.851018-2 1.453207-4 2.918400-2 1.454881-4 2.918400-2 1.495535-4 6.683439-2 1.503642-4 2.290868-1 1.509212-4 3.507519+0 1.511178-4 1.000000+5 1.511172-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.770000-6 0.0 3.349000-5 0.0 3.349000-5 6.33031-11 3.507519-5 6.17154-11 3.630781-5 6.09213-11 3.760000-5 6.05781-11 3.845918-5 6.06740-11 3.935501-5 6.08518-11 4.000000-5 6.11179-11 4.180000-5 6.21206-11 4.300000-5 6.30224-11 4.466836-5 6.43895-11 4.700000-5 6.64697-11 4.795100-5 6.74190-11 4.841724-5 6.77727-11 5.011872-5 6.93274-11 5.230000-5 7.10971-11 5.300000-5 7.15621-11 5.580000-5 7.31740-11 5.830000-5 7.42846-11 6.025596-5 7.49504-11 6.330000-5 7.58142-11 6.800000-5 7.67926-11 7.500000-5 7.76090-11 8.150000-5 7.79789-11 8.912509-5 7.79227-11 9.580000-5 7.74732-11 9.580000-5 1.31822-10 9.780000-5 1.39459-10 1.000000-4 1.47094-10 1.036400-4 1.59155-10 1.036400-4 2.14671-10 1.050000-4 2.24452-10 1.065000-4 2.34134-10 1.085000-4 2.45562-10 1.110000-4 2.58201-10 1.135011-4 2.69575-10 1.161449-4 2.80149-10 1.188502-4 2.89513-10 1.216186-4 2.96924-10 1.240000-4 3.01654-10 1.265000-4 3.04724-10 1.290000-4 3.05929-10 1.315000-4 3.05473-10 1.350000-4 3.02381-10 1.390000-4 2.96423-10 1.428100-4 2.89151-10 1.428100-4 3.36375-10 1.584893-4 3.07007-10 1.659587-4 2.94603-10 1.698244-4 2.88847-10 1.778279-4 2.78508-10 1.850000-4 2.70463-10 1.927525-4 2.63265-10 2.000000-4 2.57656-10 2.089296-4 2.52110-10 2.190000-4 2.47184-10 2.300000-4 2.43253-10 2.454709-4 2.39013-10 2.660725-4 2.35267-10 2.851018-4 2.33137-10 3.100000-4 2.31849-10 3.467369-4 2.31752-10 3.890451-4 2.32919-10 4.415704-4 2.35810-10 4.946200-4 2.39485-10 4.946200-4 2.44420-10 4.977000-4 2.47763-10 4.998000-4 2.51235-10 5.015700-4 2.55370-10 5.025000-4 2.58229-10 5.035700-4 2.62131-10 5.035700-4 7.474400-9 5.037500-4 7.779847-9 5.074000-4 1.095117-8 5.105000-4 1.327729-8 5.112000-4 1.382273-8 5.118000-4 1.431869-8 5.123000-4 1.457504-8 5.129000-4 1.491549-8 5.136400-4 1.540454-8 5.139000-4 1.559540-8 5.145000-4 1.609238-8 5.150000-4 1.655525-8 5.157000-4 1.728008-8 5.165000-4 1.818523-8 5.173400-4 1.924563-8 5.182000-4 2.043933-8 5.190000-4 2.166304-8 5.197000-4 2.283389-8 5.200000-4 2.324516-8 5.210000-4 2.473255-8 5.222000-4 2.671759-8 5.224000-4 2.596638-8 5.234000-4 2.759013-8 5.249000-4 3.028210-8 5.265000-4 3.348206-8 5.270000-4 3.455012-8 5.290000-4 3.815607-8 5.305000-4 4.109889-8 5.308844-4 4.159747-8 5.343000-4 4.511495-8 5.361000-4 4.711883-8 5.400000-4 4.889164-8 5.445000-4 5.113505-8 5.495409-4 5.235595-8 5.520000-4 5.300104-8 5.540000-4 5.317397-8 5.623413-4 5.259739-8 5.690000-4 5.224666-8 5.760000-4 5.216731-8 5.956621-4 5.266685-8 6.165950-4 5.243766-8 6.456542-4 5.222891-8 7.103200-4 5.206629-8 7.103200-4 7.713082-8 7.250000-4 7.826547-8 7.533600-4 8.016326-8 7.533600-4 8.829039-8 7.551500-4 9.101510-8 7.565000-4 9.258444-8 7.583000-4 9.405017-8 7.600000-4 9.491803-8 7.640000-4 9.577656-8 7.762471-4 9.721842-8 8.050000-4 9.950038-8 8.690500-4 1.033228-7 8.690500-4 1.155948-7 1.011579-3 1.250373-7 1.216186-3 1.371482-7 1.380384-3 1.456531-7 1.566751-3 1.544619-7 1.757924-3 1.624200-7 2.000000-3 1.713857-7 2.213095-3 1.783731-7 2.540973-3 1.878659-7 2.951209-3 1.979169-7 3.349654-3 2.062385-7 3.801894-3 2.142776-7 3.926800-3 2.163185-7 3.926800-3 1.679591-4 4.160800-3 1.682439-4 4.160800-3 2.019138-4 4.315191-3 2.028115-4 4.440300-3 2.028393-4 4.440300-3 2.115182-4 5.623413-3 2.128679-4 8.810489-3 2.144209-4 1.698244-2 2.156357-4 2.918400-2 2.162616-4 2.918400-2 1.882072-2 3.054921-2 1.888360-2 4.168694-2 1.911077-2 6.165950-2 1.928127-2 9.772372-2 1.939468-2 1.883649-1 1.946387-2 1.122018+0 1.953241-2 1.000000+5 1.953335-2 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.770000-6 0.0 6.280000-6 5.100000-7 6.280000-6 3.247908-7 8.912509-6 2.945704-6 1.339000-5 7.415562-6 1.339000-5 6.573429-6 1.479108-5 8.229902-6 1.621810-5 9.859578-6 1.800000-5 1.181690-5 2.000000-5 1.391468-5 2.200000-5 1.591084-5 2.330000-5 1.715614-5 2.600160-5 1.962557-5 2.920000-5 2.238684-5 3.239000-5 2.503739-5 3.239000-5 1.279746-5 3.349000-5 1.368576-5 3.349000-5 1.308963-5 3.810000-5 1.695654-5 4.000000-5 1.864554-5 4.315191-5 2.160697-5 4.920000-5 2.754659-5 8.035261-5 5.876442-5 9.580000-5 7.443573-5 9.580000-5 7.075376-5 1.036400-4 7.685807-5 1.036400-4 7.507307-5 1.100000-4 7.960829-5 1.185000-4 8.625711-5 1.255000-4 9.235946-5 1.330000-4 9.966774-5 1.428100-4 1.100785-4 1.428100-4 1.050259-4 1.740000-4 1.391365-4 2.041738-4 1.711221-4 2.600160-4 2.282519-4 4.315191-4 4.000795-4 4.946200-4 4.629758-4 4.946200-4 4.617481-4 5.015700-4 4.660587-4 5.035700-4 4.663962-4 5.035700-4 4.653387-4 5.123000-4 4.632809-4 5.182000-4 4.658870-4 5.343000-4 4.793813-4 6.050000-4 5.493695-4 7.103200-4 6.548360-4 7.103200-4 6.500048-4 7.533600-4 6.924762-4 7.533600-4 6.914225-4 8.050000-4 7.414934-4 8.690500-4 8.049367-4 8.690500-4 8.021468-4 2.540973-3 2.461229-3 3.926800-3 3.841615-3 3.926800-3 3.639390-3 4.160800-3 3.872828-3 4.160800-3 3.833301-3 4.440300-3 4.111541-3 4.440300-3 4.097103-3 2.918400-2 2.882225-2 2.918400-2 1.021373-2 3.019952-2 1.117090-2 4.168694-2 2.242621-2 7.161434-2 5.213502-2 1.000000+5 9.999998+4 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 2.918400-2 7.077442+3 2.937000-2 6.998518+3 3.000000-2 6.666600+3 3.070000-2 6.262860+3 3.162278-2 5.825226+3 3.427678-2 4.713936+3 3.758374-2 3.719418+3 4.265795-2 2.660526+3 5.495409-2 1.339688+3 6.839116-2 7.310819+2 8.609938-2 3.823156+2 1.109175-1 1.856193+2 2.018366-1 3.319479+1 2.483133-1 1.841646+1 2.917427-1 1.172806+1 3.349654-1 8.023356+0 3.801894-1 5.704669+0 4.265795-1 4.211558+0 4.786301-1 3.131432+0 5.308844-1 2.414815+0 5.888437-1 1.875174+0 6.531306-1 1.466800+0 7.161434-1 1.187789+0 7.943282-1 9.435730-1 8.912509-1 7.364329-1 9.772372-1 6.073164-1 1.135011+0 4.498917-1 1.230269+0 3.850839-1 1.412538+0 2.974017-1 1.566751+0 2.464411-1 1.757924+0 2.014944-1 1.949845+0 1.692249-1 2.238721+0 1.353066-1 2.570396+0 1.089803-1 2.951209+0 8.841133-2 3.388442+0 7.227040-2 3.935501+0 5.852863-2 4.623810+0 4.700219-2 5.495409+0 3.745254-2 6.606934+0 2.962814-2 8.035261+0 2.327857-2 1.011579+1 1.768822-2 1.244515+1 1.390908-2 1.513561+1 1.114529-2 1.972423+1 8.308308-3 2.754229+1 5.789268-3 3.935501+1 3.967161-3 6.025596+1 2.546570-3 1.011579+2 1.496116-3 1.905461+2 7.869357-4 3.801894+2 3.923138-4 1.513561+3 9.811642-5 1.000000+5 1.483300-6 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 2.918400-2 1.503400-4 1.000000+5 1.503400-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.918400-2 2.242000-2 1.000000+5 2.242000-2 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 2.918400-2 6.613660-3 1.000000+5 9.999998+4 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.440300-3 2.907197+4 4.623810-3 2.713184+4 4.786301-3 2.576262+4 5.188000-3 2.248688+4 5.500000-3 2.041820+4 5.888437-3 1.808737+4 6.606934-3 1.464151+4 7.161434-3 1.266822+4 7.762471-3 1.086075+4 9.332543-3 7.589786+3 1.059254-2 5.866631+3 1.202264-2 4.514759+3 1.412538-2 3.197536+3 1.584893-2 2.484140+3 1.850000-2 1.755712+3 2.162719-2 1.225153+3 2.511886-2 8.607357+2 2.900000-2 6.088900+2 3.349654-2 4.273078+2 3.890451-2 2.937772+2 4.570882-2 1.947491+2 5.432503-2 1.243440+2 6.456542-2 7.875931+1 7.762471-2 4.801189+1 9.440609-2 2.815408+1 1.174898-1 1.538636+1 2.213095-1 2.625347+0 2.722701-1 1.480600+0 3.198895-1 9.550416-1 3.672823-1 6.603425-1 4.168694-1 4.740177-1 4.677351-1 3.529819-1 5.188000-1 2.723885-1 5.821032-1 2.057847-1 6.456542-1 1.610052-1 7.161434-1 1.268480-1 7.943282-1 1.006511-1 8.709636-1 8.248664-2 9.549926-1 6.804781-2 1.096478+0 5.153792-2 1.202264+0 4.304054-2 1.396368+0 3.248665-2 1.548817+0 2.689453-2 1.737801+0 2.196898-2 1.927525+0 1.843756-2 2.187762+0 1.500777-2 2.511886+0 1.207265-2 2.884032+0 9.780151-3 3.311311+0 7.984060-3 3.845918+0 6.458534-3 4.518559+0 5.180961-3 5.370318+0 4.124125-3 6.456542+0 3.259352-3 7.852356+0 2.558486-3 9.772372+0 1.969058-3 1.188502+1 1.567226-3 1.479108+1 1.222202-3 1.949845+1 8.992254-4 2.691535+1 6.341991-4 3.801894+1 4.396639-4 5.821032+1 2.820574-4 9.885531+1 1.637015-4 1.840772+2 8.708810-5 3.672823+2 4.341012-5 1.462177+3 1.085527-5 1.000000+5 1.585300-7 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.440300-3 1.699500-4 1.000000+5 1.699500-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.440300-3 2.691900-4 1.000000+5 2.691900-4 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.440300-3 4.001160-3 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.160800-3 6.016474+4 4.280000-3 5.797354+4 4.295000-3 5.755300+4 4.355000-3 5.547200+4 4.472000-3 5.196600+4 4.954502-3 3.995100+4 5.308844-3 3.324500+4 6.025596-3 2.352300+4 7.000000-3 1.555400+4 8.222426-3 9.884200+3 9.800000-3 5.934900+3 1.083927-2 4.410200+3 1.303167-2 2.538200+3 1.566751-2 1.444600+3 1.840772-2 8.747900+2 2.137962-2 5.456500+2 2.511886-2 3.261300+2 3.000000-2 1.836800+2 3.672823-2 9.474700+1 4.623810-2 4.423500+1 6.165950-2 1.691400+1 1.122019-1 2.267200+0 1.412538-1 1.053400+0 1.698244-1 5.744600-1 2.000000-1 3.377700-1 2.317395-1 2.111100-1 2.660725-1 1.367794-1 3.019952-1 9.253193-2 3.388442-1 6.530178-2 3.801894-1 4.641185-2 4.216965-1 3.435988-2 4.677351-1 2.560869-2 5.188000-1 1.921896-2 5.754399-1 1.452647-2 6.382635-1 1.106280-2 6.998420-1 8.743772-3 7.673615-1 6.964011-3 8.511380-1 5.431852-3 9.440609-1 4.256798-3 1.000000+0 3.740540-3 1.071519+0 3.230099-3 1.148154+0 2.808722-3 1.216186+0 2.514687-3 1.364583+0 2.035571-3 1.678804+0 1.409539-3 1.883649+0 1.157148-3 2.089296+0 9.758685-4 2.398833+0 7.832288-4 2.754229+0 6.330625-4 3.126079+0 5.242387-4 3.630781+0 4.228296-4 4.216965+0 3.435740-4 5.000000+0 2.734800-4 5.956621+0 2.179756-4 7.244360+0 1.705633-4 8.810489+0 1.344931-4 1.122018+1 1.011405-4 1.445440+1 7.573859-5 1.949845+1 5.430836-5 2.691535+1 3.830285-5 3.801894+1 2.655333-5 5.821032+1 1.703466-5 9.885531+1 9.886557-6 1.862087+2 5.198890-6 3.715352+2 2.591628-6 1.479108+3 6.480953-7 1.000000+5 9.574500-9 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.160800-3 1.417800-4 1.000000+5 1.417800-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.160800-3 2.950000-4 1.000000+5 2.950000-4 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.160800-3 3.724020-3 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 3.926800-3 1.320429+5 4.070000-3 1.211916+5 4.650000-3 8.535360+4 5.011872-3 6.957612+4 5.956621-3 4.290587+4 6.683439-3 3.095800+4 7.673615-3 2.081598+4 8.511380-3 1.532231+4 9.885531-3 9.803342+3 1.202264-2 5.390779+3 1.412538-2 3.262093+3 1.621810-2 2.106900+3 1.883649-2 1.303651+3 2.213095-2 7.716226+2 2.630268-2 4.364230+2 3.126079-2 2.449908+2 3.758374-2 1.313347+2 4.623810-2 6.460893+1 5.821032-2 2.913357+1 1.273503-1 1.893564+0 1.548817-1 9.623497-1 1.840772-1 5.335820-1 2.113489-1 3.351103-1 2.398833-1 2.202938-1 2.691535-1 1.514541-1 3.019952-1 1.048884-1 3.349654-1 7.588907-2 3.715352-1 5.531529-2 4.073803-1 4.203820-2 4.466836-1 3.216181-2 4.897788-1 2.478201-2 5.370318-1 1.923534-2 5.821032-1 1.551157-2 6.382635-1 1.221803-2 6.998420-1 9.695305-3 7.673615-1 7.744121-3 8.413951-1 6.230909-3 9.225714-1 5.052309-3 1.000000+0 4.233314-3 1.096478+0 3.501029-3 1.188600+0 2.984909-3 1.318257+0 2.457066-3 1.479108+0 1.995322-3 1.698244+0 1.562860-3 1.905461+0 1.284167-3 2.137962+0 1.063785-3 2.454709+0 8.547194-4 2.818383+0 6.916418-4 3.198895+0 5.734254-4 3.715352+0 4.630534-4 4.315191+0 3.766591-4 5.128614+0 2.991952-4 6.095369+0 2.394523-4 7.413102+0 1.875375-4 9.015711+0 1.480121-4 1.135011+1 1.128985-4 1.445440+1 8.567374-5 1.949845+1 6.143176-5 2.691535+1 4.332633-5 3.801894+1 3.003632-5 5.821032+1 1.926846-5 9.885531+1 1.118358-5 1.862087+2 5.880842-6 3.715352+2 2.931526-6 1.479108+3 7.331115-7 1.000000+5 1.083000-8 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 3.926800-3 1.352100-4 1.000000+5 1.352100-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.926800-3 2.446200-4 1.000000+5 2.446200-4 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 3.926800-3 3.546970-3 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 8.690500-4 8.901819+4 9.885531-4 7.744161+4 1.047129-3 7.203056+4 1.230269-3 5.831318+4 1.300000-3 5.394740+4 1.513561-3 4.335262+4 1.650000-3 3.799600+4 1.972423-3 2.864294+4 2.187762-3 2.413604+4 2.570396-3 1.836016+4 3.019952-3 1.382858+4 3.427678-3 1.100655+4 4.027170-3 8.171473+3 4.800000-3 5.855760+3 5.688529-3 4.206304+3 6.760830-3 2.980205+3 8.035261-3 2.094183+3 9.440609-3 1.495050+3 1.109175-2 1.059351+3 1.303167-2 7.448953+2 1.531087-2 5.198149+2 1.800000-2 3.594400+2 2.113489-2 2.473978+2 2.454709-2 1.734566+2 2.884032-2 1.174728+2 3.388442-2 7.895132+1 4.000000-2 5.203760+1 4.731513-2 3.386155+1 5.623413-2 2.160152+1 6.683439-2 1.367771+1 8.035261-2 8.338149+0 9.660509-2 5.047771+0 1.258925-1 2.429080+0 2.398833-1 4.046235-1 2.884032-1 2.440972-1 3.388442-1 1.579473-1 3.890451-1 1.095548-1 4.415705-1 7.893745-2 4.954502-1 5.901506-2 5.559043-1 4.445505-2 6.165950-1 3.468835-2 6.839117-1 2.725805-2 7.585776-1 2.157141-2 8.511380-1 1.676726-2 9.332543-1 1.379986-2 1.023293+0 1.143873-2 1.161449+0 8.894152-3 1.303167+0 7.144081-3 1.479108+0 5.650184-3 1.640590+0 4.695012-3 1.840772+0 3.850459-3 2.044000+0 3.237472-3 2.344229+0 2.599747-3 2.691535+0 2.098731-3 3.090295+0 1.706733-3 3.589219+0 1.375769-3 4.168694+0 1.117274-3 4.897788+0 8.996266-4 5.821032+0 7.186174-4 7.000000+0 5.696700-4 8.413951+0 4.549832-4 1.071519+1 3.415988-4 1.400000+1 2.513100-4 1.927525+1 1.760538-4 2.660725+1 1.241335-4 3.758374+1 8.603579-5 5.754399+1 5.518256-5 9.772372+1 3.202250-5 1.862087+2 1.664285-5 3.715352+2 8.296075-6 1.479108+3 2.074653-6 1.000000+5 3.064900-8 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 8.690500-4 1.310500-4 1.000000+5 1.310500-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 8.690500-4 3.995200-7 1.000000+5 3.995200-7 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 8.690500-4 7.376005-4 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 7.533600-4 6.813660+4 7.535000-4 6.962620+4 7.538000-4 7.381780+4 7.541000-4 7.782060+4 7.544000-4 8.164780+4 7.547000-4 8.530020+4 7.551500-4 9.037140+4 7.555000-4 9.403900+4 7.560000-4 9.876840+4 7.565000-4 1.030078+5 7.570000-4 1.067608+5 7.576000-4 1.106346+5 7.583000-4 1.143948+5 7.589000-4 1.170646+5 7.597000-4 1.199446+5 7.600000-4 1.206171+5 7.620000-4 1.232532+5 7.640000-4 1.248975+5 7.685000-4 1.267988+5 7.762471-4 1.291215+5 7.820000-4 1.300951+5 7.943282-4 1.308007+5 8.050000-4 1.304905+5 8.128305-4 1.296756+5 8.493900-4 1.248769+5 8.810489-4 1.213700+5 9.772372-4 1.094458+5 1.047129-3 1.013784+5 1.122018-3 9.326332+4 1.202264-3 8.528313+4 1.330000-3 7.411340+4 1.428894-3 6.650588+4 1.610000-3 5.500680+4 1.737801-3 4.840242+4 1.905461-3 4.113427+4 2.113489-3 3.403544+4 2.317395-3 2.854205+4 2.600160-3 2.272641+4 2.851018-3 1.881693+4 3.235937-3 1.438616+4 3.589219-3 1.146152+4 4.027170-3 8.840678+3 4.518559-3 6.763476+3 5.011872-3 5.283369+3 5.688529-3 3.875910+3 6.456542-3 2.819725+3 7.244360-3 2.096941+3 8.128305-3 1.549663+3 9.225714-3 1.102968+3 1.047129-2 7.792749+2 1.202264-2 5.291301+2 1.364583-2 3.684598+2 1.566751-2 2.464587+2 1.800000-2 1.633760+2 2.089296-2 1.042400+2 2.426610-2 6.589216+1 2.851018-2 3.988782+1 3.388442-2 2.310679+1 4.073803-2 1.280240+1 5.011872-2 6.532387+0 6.382635-2 2.954332+0 1.273503-1 3.006398-1 1.603245-1 1.413438-1 2.018366-1 6.714964-2 2.264644-1 4.595499-2 2.426610-1 3.680550-2 2.570396-1 3.074996-2 2.722701-1 2.585093-2 2.884032-1 2.189747-2 2.951209-1 2.054056-2 3.349654-1 1.401198-2 3.758374-1 9.967147-3 4.216965-1 7.143079-3 4.677351-1 5.329194-3 5.188000-1 4.003779-3 5.754399-1 3.030150-3 6.382635-1 2.310175-3 7.079458-1 1.774778-3 7.762471-1 1.413578-3 8.609938-1 1.099493-3 9.225714-1 9.358030-4 9.772372-1 8.231206-4 1.047129+0 7.113386-4 1.135011+0 6.038803-4 1.216186+0 5.280269-4 1.348963+0 4.355387-4 1.584893+0 3.264395-4 1.798871+0 2.618423-4 2.000000+0 2.192583-4 2.290868+0 1.762045-4 2.630268+0 1.420631-4 3.019952+0 1.153652-4 3.507519+0 9.287847-5 4.073803+0 7.534320-5 4.786301+0 6.060353-5 5.688529+0 4.836205-5 6.839116+0 3.831283-5 8.317638+0 3.014339-5 1.059254+1 2.262289-5 1.364583+1 1.690472-5 1.883649+1 1.179833-5 2.570396+1 8.417744-6 3.589219+1 5.900681-6 5.495409+1 3.781636-6 9.332543+1 2.193098-6 1.778279+2 1.139204-6 3.548134+2 5.677636-7 1.412538+3 1.419664-7 1.000000+5 2.002600-9 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 7.533600-4 1.015800-4 1.000000+5 1.015800-4 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 7.533600-4 3.971300-7 1.000000+5 3.971300-7 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 7.533600-4 6.513829-4 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 7.103200-4 3.124268+5 7.250000-4 3.152155+5 7.498942-4 3.158284+5 7.630000-4 3.151860+5 7.700000-4 3.134404+5 8.430000-4 2.862816+5 9.332543-4 2.541348+5 1.011579-3 2.293774+5 1.096478-3 2.055137+5 1.216186-3 1.766574+5 1.300000-3 1.592972+5 1.462177-3 1.312108+5 1.584893-3 1.142941+5 1.717908-3 9.885124+4 1.927525-3 7.968589+4 2.113489-3 6.662791+4 2.371374-3 5.280412+4 2.600160-3 4.358600+4 2.917427-3 3.402587+4 3.235937-3 2.704390+4 3.650000-3 2.054640+4 4.073803-3 1.586917+4 4.570882-3 1.202179+4 5.188000-3 8.783672+3 5.888437-3 6.363321+3 6.606934-3 4.713810+3 7.413102-3 3.469467+3 8.413951-3 2.458078+3 9.549926-3 1.728163+3 1.083927-2 1.205939+3 1.244515-2 8.077371+2 1.412538-2 5.553675+2 1.603245-2 3.793737+2 1.840772-2 2.485336+2 2.113489-2 1.616440+2 2.454709-2 1.006273+2 2.851018-2 6.219181+1 3.311311-2 3.816580+1 3.890451-2 2.239536+1 4.623810-2 1.255652+1 5.623413-2 6.467779+0 7.079458-2 2.939182+0 1.096478-1 6.488245-1 1.428894-1 2.606424-1 1.717908-1 1.391137-1 2.000000-1 8.338040-2 2.398833-1 4.574839-2 2.691535-1 3.149895-2 3.019952-1 2.184389-2 3.349654-1 1.582568-2 3.715352-1 1.154766-2 4.120975-1 8.491486-3 4.518559-1 6.506297-3 4.954502-1 5.020040-3 5.432503-1 3.902483-3 5.956621-1 3.056533-3 6.531306-1 2.412916-3 7.161434-1 1.919327-3 7.852356-1 1.538029-3 8.609938-1 1.238354-3 9.225714-1 1.058785-3 9.885531-1 9.114330-4 1.083927+0 7.538553-4 1.174898+0 6.424059-4 1.288250+0 5.393793-4 1.445440+0 4.369841-4 1.678804+0 3.350410-4 1.883649+0 2.751069-4 2.113489+0 2.277314-4 2.426610+0 1.828655-4 2.786121+0 1.478873-4 3.162278+0 1.225363-4 3.672823+0 9.889114-5 4.265795+0 8.039725-5 5.011872+0 6.480328-5 6.000000+0 5.133800-5 7.244360+0 4.054272-5 8.810489+0 3.196975-5 1.122018+1 2.404241-5 1.445440+1 1.800355-5 1.949845+1 1.290889-5 2.722701+1 8.992782-6 3.890451+1 6.160978-6 5.956621+1 3.953922-6 1.000000+2 2.322600-6 1.883649+2 1.221494-6 3.758374+2 6.089422-7 1.496236+3 1.522829-7 1.000000+5 2.275900-9 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 7.103200-4 9.975200-5 1.000000+5 9.975200-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.103200-4 2.832000-7 1.000000+5 2.832000-7 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.103200-4 6.102848-4 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 5.035700-4 4.145664+4 5.037500-4 4.362085+4 5.074000-4 7.839370+4 5.118000-4 1.523687+5 5.159000-4 2.502068+5 5.197000-4 3.893457+5 5.222000-4 4.970915+5 5.224000-4 4.815914+5 5.270000-4 7.303303+5 5.305000-4 9.470096+5 5.308844-4 9.653746+5 5.361000-4 1.179821+6 5.445000-4 1.356292+6 5.520000-4 1.442042+6 5.540000-4 1.450644+6 5.690000-4 1.395441+6 5.760000-4 1.374628+6 5.956621-4 1.291863+6 6.200000-4 1.173964+6 6.382635-4 1.103797+6 6.760830-4 9.823312+5 7.585776-4 7.709846+5 8.222426-4 6.454613+5 8.810489-4 5.505768+5 9.500000-4 4.597160+5 1.047129-3 3.608290+5 1.122018-3 3.019553+5 1.244515-3 2.288390+5 1.364583-3 1.778522+5 1.513561-3 1.327604+5 1.698244-3 9.527088+4 1.883649-3 7.013094+4 2.113489-3 4.956604+4 2.371374-3 3.474136+4 2.650000-3 2.448952+4 3.000000-3 1.643152+4 3.349654-3 1.144509+4 3.801894-3 7.496187+3 4.315191-3 4.870037+3 4.897788-3 3.139706+3 5.500000-3 2.086572+3 6.165950-3 1.386437+3 7.000000-3 8.744320+2 8.000000-3 5.339720+2 9.120108-3 3.265599+2 1.035142-2 2.016100+2 1.174898-2 1.236788+2 1.350000-2 7.187280+1 1.548817-2 4.172787+1 1.819701-2 2.187968+1 2.113489-2 1.193415+1 2.511886-2 5.882794+0 3.054921-2 2.617302+0 3.845918-2 1.000651+0 7.413102-2 6.358294-2 9.332543-2 2.431842-2 1.135011-1 1.082057-2 1.333521-1 5.594112-3 1.548817-1 3.054307-3 1.757924-1 1.842452-3 2.000000-1 1.109106-3 2.238721-1 7.168554-4 2.517970-1 4.582217-4 2.818383-1 3.006370-4 3.162278-1 1.970439-4 3.507519-1 1.357370-4 3.845918-1 9.811769-5 4.216965-1 7.143124-5 4.623810-1 5.237674-5 5.069907-1 3.867462-5 5.623413-1 2.772862-5 6.531306-1 1.732361-5 7.079458-1 1.354364-5 7.498942-1 1.142252-5 8.128305-1 9.077313-6 8.709636-1 7.497181-6 9.225714-1 6.439862-6 9.660509-1 5.739843-6 1.000000+0 5.289619-6 1.059254+0 4.654839-6 1.122018+0 4.125671-6 1.188600+0 3.682312-6 1.288250+0 3.175059-6 1.428894+0 2.644320-6 1.778279+0 1.804876-6 1.972423+0 1.515315-6 2.264644+0 1.212403-6 2.600160+0 9.769921-7 3.000000+0 7.872100-7 3.467369+0 6.379877-7 4.027170+0 5.172597-7 4.731513+0 4.158442-7 5.623413+0 3.316806-7 6.760830+0 2.626406-7 8.222427+0 2.065421-7 1.047129+1 1.549500-7 1.333521+1 1.172615-7 1.840772+1 8.177060-8 2.511886+1 5.830885-8 3.507519+1 4.085295-8 5.370318+1 2.617093-8 9.225714+1 1.499537-8 1.757924+2 7.788131-9 3.507519+2 3.881306-9 1.396368+3 9.70451-10 1.000000+5 1.35330-11 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 5.035700-4 5.904200-5 1.000000+5 5.904200-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.035700-4 1.504300-7 1.000000+5 1.504300-7 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.035700-4 4.443776-4 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.946200-4 3.111800+4 4.964000-4 4.172316+4 4.977000-4 5.199078+4 4.988000-4 6.300928+4 4.998000-4 7.550872+4 5.007000-4 8.940583+4 5.015700-4 1.059300+5 5.025000-4 1.285762+5 5.037000-4 1.664207+5 5.065000-4 3.072664+5 5.075000-4 3.801495+5 5.082000-4 4.389470+5 5.090000-4 5.141846+5 5.098000-4 5.977377+5 5.105000-4 6.770568+5 5.112000-4 7.610164+5 5.118000-4 8.354484+5 5.123000-4 8.980451+5 5.129000-4 9.730497+5 5.135000-4 1.046607+6 5.139000-4 1.093339+6 5.145000-4 1.159690+6 5.150000-4 1.211857+6 5.157000-4 1.279863+6 5.165000-4 1.350426+6 5.173400-4 1.417100+6 5.182000-4 1.480776+6 5.190000-4 1.534616+6 5.200000-4 1.595179+6 5.210000-4 1.649236+6 5.220000-4 1.696582+6 5.234000-4 1.752722+6 5.249000-4 1.802520+6 5.265000-4 1.844672+6 5.290000-4 1.901615+6 5.315000-4 1.946876+6 5.343000-4 1.985059+6 5.380000-4 2.023668+6 5.415000-4 2.048455+6 5.480000-4 2.081430+6 5.540000-4 2.098231+6 5.600000-4 2.101353+6 5.690000-4 2.091054+6 5.754400-4 2.073296+6 6.050000-4 1.832316+6 6.200000-4 1.734216+6 6.760830-4 1.450824+6 7.500000-4 1.163496+6 8.128305-4 9.729383+5 8.317638-4 9.215487+5 8.511380-4 8.749649+5 9.120108-4 7.423931+5 9.850000-4 6.138660+5 1.071519-3 4.955468+5 1.150000-3 4.113432+5 1.288250-3 3.019958+5 1.412538-3 2.336205+5 1.584893-3 1.678694+5 1.737801-3 1.282063+5 1.950000-3 9.080460+4 2.162719-3 6.616973+4 2.426610-3 4.620048+4 2.691535-3 3.321134+4 3.019952-3 2.285885+4 3.427678-3 1.502540+4 3.845918-3 1.018443+4 4.315191-3 6.859149+3 4.897788-3 4.407182+3 5.623413-3 2.696113+3 6.456542-3 1.634380+3 7.328245-3 1.024738+3 8.317638-3 6.376487+2 9.440609-3 3.938531+2 1.071519-2 2.415955+2 1.216186-2 1.472158+2 1.396368-2 8.517403+1 1.640590-2 4.460157+1 1.905461-2 2.425930+1 2.238721-2 1.248953+1 2.660725-2 6.082812+0 3.198895-2 2.801329+0 4.027170-2 1.053375+0 7.762471-2 6.373602-2 9.549926-2 2.644004-2 1.148154-1 1.218128-2 1.333521-1 6.534023-3 1.500000-1 4.028508-3 1.737801-1 2.227813-3 1.949845-1 1.409727-3 2.187762-1 8.986726-4 2.426610-1 6.037935-4 2.660725-1 4.269195-4 2.917427-1 3.040363-4 3.162278-1 2.273350-4 3.467369-1 1.642845-4 3.801894-1 1.196546-4 4.216965-1 8.449132-5 4.570882-1 6.490532-5 4.954502-1 5.022579-5 5.308844-1 4.058227-5 5.688529-1 3.299231-5 6.025596-1 2.790270-5 6.456542-1 2.301986-5 6.998420-1 1.852822-5 8.035261-1 1.292593-5 8.709636-1 1.041609-5 9.225714-1 8.983595-6 9.660509-1 8.023795-6 1.011579+0 7.209736-6 1.071519+0 6.355365-6 1.135011+0 5.641787-6 1.202264+0 5.044303-6 1.318257+0 4.263992-6 1.778279+0 2.525464-6 1.972423+0 2.120465-6 2.264644+0 1.696801-6 2.600160+0 1.367434-6 3.000000+0 1.101800-6 3.467369+0 8.929386-7 4.027170+0 7.239615-7 4.731513+0 5.820234-7 5.623413+0 4.642297-7 6.760830+0 3.675918-7 8.222427+0 2.890773-7 1.047129+1 2.168781-7 1.333521+1 1.641263-7 1.819701+1 1.159088-7 2.483133+1 8.262774-8 3.467369+1 5.787775-8 5.308844+1 3.706888-8 9.120108+1 2.123580-8 1.737801+2 1.102760-8 3.467369+2 5.495585-9 1.380384+3 1.374013-9 1.000000+5 1.89410-11 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.946200-4 5.958500-5 1.000000+5 5.958500-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.946200-4 3.51800-10 1.000000+5 3.51800-10 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.946200-4 4.350346-4 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.428100-4 1.675526+5 1.737801-4 1.657421+5 1.800000-4 1.641702+5 1.883649-4 1.608468+5 2.089296-4 1.515175+5 2.300000-4 1.426518+5 2.454709-4 1.360454+5 2.600160-4 1.296176+5 2.818383-4 1.201585+5 3.162278-4 1.069271+5 3.467369-4 9.672952+4 3.801894-4 8.678070+4 4.315191-4 7.405626+4 4.786301-4 6.464011+4 5.370318-4 5.512761+4 6.165950-4 4.520006+4 7.000000-4 3.736300+4 8.035261-4 3.018391+4 9.440609-4 2.331514+4 1.109175-3 1.786922+4 1.318257-3 1.333542+4 1.584893-3 9.686342+3 1.927525-3 6.845340+3 2.371374-3 4.704870+3 2.917427-3 3.208635+3 3.507519-3 2.267192+3 4.216965-3 1.590260+3 5.069907-3 1.106706+3 6.095369-3 7.640253+2 7.328245-3 5.233347+2 8.709636-3 3.643852+2 1.035142-2 2.519189+2 1.230269-2 1.728167+2 1.445440-2 1.206893+2 1.698244-2 8.367675+1 2.000000-2 5.727680+1 2.344229-2 3.935612+1 2.754229-2 2.669652+1 3.235937-2 1.797665+1 3.801894-2 1.201767+1 4.518559-2 7.745890+0 5.308844-2 5.103690+0 6.382635-2 3.142199+0 7.762471-2 1.861644+0 9.332543-2 1.127864+0 1.202264-1 5.611718-1 2.398833-1 8.233947-2 2.884032-1 4.968431-2 3.388442-1 3.216360-2 3.890451-1 2.231769-2 4.415705-1 1.608255-2 4.954502-1 1.202385-2 5.559043-1 9.057741-3 6.165950-1 7.067952-3 6.839117-1 5.553976-3 7.585776-1 4.395241-3 8.511380-1 3.416142-3 9.332543-1 2.811507-3 1.023293+0 2.330783-3 1.161449+0 1.812255-3 1.303167+0 1.455619-3 1.479108+0 1.151208-3 1.640590+0 9.565516-4 1.840772+0 7.844741-4 2.044000+0 6.596400-4 2.371374+0 5.202328-4 2.722701+0 4.202071-4 3.090295+0 3.477409-4 3.589219+0 2.803075-4 4.168694+0 2.276415-4 4.897788+0 1.832981-4 5.821032+0 1.464119-4 7.000000+0 1.160700-4 8.511380+0 9.142760-5 1.083927+1 6.867036-5 1.412538+1 5.069179-5 1.927525+1 3.587136-5 2.660725+1 2.529259-5 3.758374+1 1.752994-5 5.754399+1 1.124325-5 9.772372+1 6.524494-6 1.840772+2 3.430535-6 3.672823+2 1.709956-6 1.462177+3 4.276146-7 1.000000+5 6.244800-9 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.428100-4 6.304500-5 1.000000+5 6.304500-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.428100-4 5.72480-10 1.000000+5 5.72480-10 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.428100-4 7.976443-5 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.036400-4 2.595880+5 1.043000-4 2.638820+5 1.050000-4 2.667460+5 1.057000-4 2.681660+5 1.065000-4 2.680740+5 1.074000-4 2.663600+5 1.085000-4 2.624140+5 1.100000-4 2.551320+5 1.120000-4 2.437800+5 1.216186-4 1.931274+5 1.258925-4 1.761783+5 1.303167-4 1.617061+5 1.340000-4 1.517252+5 1.380384-4 1.426759+5 1.415000-4 1.363076+5 1.450000-4 1.310032+5 1.490000-4 1.261364+5 1.531087-4 1.222373+5 1.580000-4 1.187410+5 1.635000-4 1.159146+5 1.698244-4 1.136568+5 1.778279-4 1.117421+5 1.927525-4 1.095319+5 2.290868-4 1.056925+5 2.483133-4 1.032861+5 2.691535-4 1.001738+5 2.917427-4 9.646174+4 3.126079-4 9.283495+4 3.350000-4 8.878540+4 3.630781-4 8.365171+4 3.935501-4 7.826538+4 4.265795-4 7.276432+4 4.623810-4 6.720550+4 5.011872-4 6.166921+4 5.559043-4 5.477043+4 6.095369-4 4.894578+4 6.700000-4 4.328020+4 7.413102-4 3.769402+4 8.222426-4 3.247307+4 9.120108-4 2.777887+4 1.011579-3 2.361004+4 1.148154-3 1.918807+4 1.288250-3 1.576687+4 1.450000-3 1.279530+4 1.640590-3 1.021065+4 1.840772-3 8.218600+3 2.070000-3 6.544640+3 2.344229-3 5.104295+3 2.660725-3 3.932683+3 3.019952-3 3.005660+3 3.427678-3 2.278048+3 3.845918-3 1.758479+3 4.315191-3 1.348154+3 4.841724-3 1.026580+3 5.495409-3 7.548306+2 6.237348-3 5.507263+2 7.079458-3 3.988395+2 8.035261-3 2.867620+2 9.120108-3 2.047280+2 1.035142-2 1.451034+2 1.174898-2 1.021328+2 1.348963-2 6.909859+1 1.548817-2 4.638990+1 1.778279-2 3.091233+1 2.065380-2 1.975690+1 2.398833-2 1.252946+1 2.818383-2 7.611869+0 3.311311-2 4.589458+0 3.935501-2 2.649173+0 4.786301-2 1.410030+0 5.888437-2 7.172175-1 8.128305-2 2.481023-1 1.288250-1 5.425118-2 1.584893-1 2.754456-2 1.883649-1 1.576181-2 2.213095-1 9.427723-3 2.540973-1 6.110370-3 2.884032-1 4.133407-3 3.273407-1 2.816453-3 3.672823-1 2.001097-3 4.120975-1 1.432107-3 4.570882-1 1.066878-3 5.069907-1 8.002743-4 5.623413-1 6.047427-4 6.237348-1 4.604117-4 6.918310-1 3.532313-4 7.673615-1 2.731565-4 8.609938-1 2.066206-4 9.225714-1 1.758174-4 9.772372-1 1.545536-4 1.047129+0 1.334146-4 1.135011+0 1.132256-4 1.216186+0 9.904146-5 1.348963+0 8.174418-5 1.603245+0 6.005010-5 1.798871+0 4.915912-5 2.000000+0 4.116800-5 2.317395+0 3.249323-5 2.660725+0 2.621482-5 3.054921+0 2.130354-5 3.548134+0 1.716247-5 4.120975+0 1.393025-5 4.841724+0 1.121042-5 5.754399+0 8.950537-6 6.918310+0 7.094107-6 8.413951+0 5.583944-6 1.071519+1 4.192395-6 1.400000+1 3.084300-6 1.927525+1 2.160776-6 2.630268+1 1.542486-6 3.715352+1 1.068790-6 5.688529+1 6.853675-7 9.660509+1 3.976510-7 1.840772+2 2.066396-7 3.672823+2 1.030019-7 1.462177+3 2.575783-8 1.000000+5 3.76160-10 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.036400-4 4.307300-5 1.000000+5 4.307300-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.036400-4 6.65850-10 1.000000+5 6.65850-10 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.036400-4 6.056633-5 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 9.580000-5 5.908600+5 9.670000-5 5.939000+5 9.780000-5 5.926920+5 9.900000-5 5.863640+5 1.000000-4 5.783720+5 1.020000-4 5.584280+5 1.047129-4 5.288567+5 1.109175-4 4.678326+5 1.161449-4 4.272899+5 1.205000-4 3.998892+5 1.244515-4 3.793887+5 1.288250-4 3.609985+5 1.333521-4 3.460941+5 1.380384-4 3.343517+5 1.430000-4 3.251428+5 1.480000-4 3.183516+5 1.548817-4 3.117277+5 1.659587-4 3.045552+5 1.972423-4 2.894745+5 2.162719-4 2.799211+5 2.350000-4 2.695316+5 2.540973-4 2.581631+5 2.754229-4 2.451875+5 3.000000-4 2.304924+5 3.235937-4 2.167590+5 3.507519-4 2.015821+5 3.850000-4 1.838880+5 4.216965-4 1.669691+5 4.623810-4 1.502845+5 5.069907-4 1.343022+5 5.623413-4 1.174811+5 6.200000-4 1.028524+5 6.918310-4 8.785528+4 7.673615-4 7.520126+4 8.609938-4 6.275189+4 9.700000-4 5.161880+4 1.083927-3 4.271488+4 1.202264-3 3.559777+4 1.364583-3 2.827206+4 1.548817-3 2.227722+4 1.757924-3 1.742232+4 1.972423-3 1.384260+4 2.213095-3 1.093080+4 2.483133-3 8.577690+3 2.786121-3 6.688902+3 3.126079-3 5.180687+3 3.548134-3 3.881621+3 4.000000-3 2.931900+3 4.518559-3 2.186780+3 5.128614-3 1.599861+3 5.821032-3 1.161315+3 6.606934-3 8.364552+2 7.498942-3 5.979419+2 8.511380-3 4.242755+2 9.660509-3 2.988580+2 1.096478-2 2.090064+2 1.244515-2 1.451366+2 1.412538-2 1.000906+2 1.603245-2 6.855684+1 1.840772-2 4.503321+1 2.113489-2 2.936540+1 2.454709-2 1.833440+1 2.851018-2 1.135961+1 3.311311-2 6.987127+0 3.890451-2 4.109467+0 4.570882-2 2.399660+0 5.495409-2 1.287813+0 6.998420-2 5.639785-1 1.380384-1 5.440028-2 1.659587-1 2.903289-2 1.949845-1 1.687827-2 2.238721-1 1.066975-2 2.540973-1 7.056487-3 2.851018-1 4.879173-3 3.162278-1 3.523016-3 3.507519-1 2.561012-3 3.890451-1 1.875440-3 4.265795-1 1.431359-3 4.677351-1 1.099815-3 5.128614-1 8.511755-4 5.623413-1 6.637562-4 6.165950-1 5.214353-4 6.760830-1 4.126650-4 7.413102-1 3.290387-4 8.317638-1 2.502765-4 9.015711-1 2.080170-4 9.660509-1 1.787431-4 1.035142+0 1.547008-4 1.135011+0 1.285111-4 1.250000+0 1.066200-4 1.380384+0 8.868305-5 1.621810+0 6.647481-5 1.819701+0 5.446281-5 2.018366+0 4.582973-5 2.317395+0 3.671484-5 2.660725+0 2.962119-5 3.054921+0 2.407242-5 3.548134+0 1.939279-5 4.120975+0 1.574068-5 4.841724+0 1.266801-5 5.754399+0 1.011394-5 6.918310+0 8.016136-6 8.413951+0 6.309757-6 1.071519+1 4.737322-6 1.400000+1 3.485200-6 1.927525+1 2.441601-6 2.630268+1 1.742980-6 3.672823+1 1.222374-6 5.623413+1 7.837206-7 9.549926+1 4.546520-7 1.819701+2 2.362265-7 3.630781+2 1.177416-7 1.445440+3 2.944327-8 1.000000+5 4.25050-10 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 9.580000-5 4.321400-5 1.000000+5 4.321400-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.580000-5 4.00000-10 1.000000+5 4.00000-10 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.580000-5 5.258560-5 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 3.349000-5 1.500104+6 3.388442-5 1.508907+6 3.430000-5 1.529096+6 3.470000-5 1.560312+6 3.507519-5 1.599814+6 3.550000-5 1.657656+6 3.589219-5 1.723283+6 3.630781-5 1.807259+6 3.672823-5 1.907892+6 3.720000-5 2.040056+6 3.760000-5 2.169040+6 3.810000-5 2.353208+6 3.870000-5 2.609960+6 3.935501-5 2.937722+6 4.000000-5 3.311868+6 4.120975-5 4.159316+6 4.315191-5 5.933104+6 4.420000-5 7.091240+6 4.500000-5 8.053680+6 4.570882-5 8.950066+6 4.650000-5 9.980920+6 4.720000-5 1.090204+7 4.795100-5 1.188012+7 4.870000-5 1.282344+7 4.920000-5 1.342504+7 4.970000-5 1.399728+7 5.040000-5 1.473928+7 5.110000-5 1.540172+7 5.170000-5 1.589948+7 5.230000-5 1.632852+7 5.308844-5 1.678487+7 5.370318-5 1.705537+7 5.450000-5 1.729764+7 5.500000-5 1.738900+7 5.580000-5 1.744488+7 5.650000-5 1.740824+7 5.730000-5 1.727820+7 5.830000-5 1.699904+7 5.900000-5 1.673616+7 6.000000-5 1.628040+7 6.110000-5 1.568916+7 6.220000-5 1.502504+7 6.330000-5 1.430780+7 6.456542-5 1.343949+7 6.580000-5 1.256808+7 6.690000-5 1.178716+7 6.800000-5 1.101280+7 6.950000-5 9.984000+6 7.079458-5 9.131813+6 7.230000-5 8.194760+6 7.400000-5 7.216960+6 7.585776-5 6.253101+6 7.762471-5 5.438422+6 7.950000-5 4.678040+6 8.150000-5 3.976196+6 8.400000-5 3.239552+6 8.650000-5 2.637020+6 8.912509-5 2.124325+6 9.225714-5 1.642371+6 9.549926-5 1.259801+6 9.900000-5 9.475200+5 1.023293-4 7.238699+5 1.060000-4 5.395920+5 1.122018-4 3.338347+5 1.150000-4 2.722528+5 1.170000-4 2.371716+5 1.190000-4 2.083568+5 1.205000-4 1.903208+5 1.220000-4 1.749828+5 1.235000-4 1.620504+5 1.250000-4 1.512616+5 1.265000-4 1.423816+5 1.275000-4 1.374168+5 1.290000-4 1.312604+5 1.303167-4 1.270104+5 1.315000-4 1.240180+5 1.330000-4 1.212340+5 1.345000-4 1.194572+5 1.358000-4 1.186400+5 1.373000-4 1.184344+5 1.390000-4 1.190412+5 1.407000-4 1.204200+5 1.428894-4 1.231553+5 1.450000-4 1.266396+5 1.480000-4 1.327172+5 1.520000-4 1.423056+5 1.635000-4 1.741940+5 1.690000-4 1.897368+5 1.740000-4 2.033344+5 1.798871-4 2.183441+5 1.850000-4 2.303064+5 1.905461-4 2.420277+5 1.950000-4 2.504580+5 2.000000-4 2.588840+5 2.065380-4 2.683106+5 2.137962-4 2.768110+5 2.220000-4 2.841620+5 2.300000-4 2.892776+5 2.398833-4 2.932067+5 2.500000-4 2.949776+5 2.620000-4 2.946680+5 2.730000-4 2.924572+5 2.851018-4 2.883243+5 3.000000-4 2.814324+5 3.162278-4 2.723084+5 3.350000-4 2.604844+5 3.550000-4 2.473196+5 3.758374-4 2.333672+5 4.000000-4 2.174596+5 4.216965-4 2.035994+5 4.518559-4 1.853853+5 4.841724-4 1.675331+5 5.188000-4 1.503909+5 5.559043-4 1.340458+5 6.000000-4 1.171768+5 6.531306-4 1.000605+5 7.079458-4 8.547112+4 7.585776-4 7.424127+4 8.222426-4 6.261129+4 9.015711-4 5.114660+4 1.000000-3 4.035320+4 1.109175-3 3.154096+4 1.230269-3 2.446000+4 1.364583-3 1.882204+4 1.513561-3 1.437300+4 1.678804-3 1.089250+4 1.862087-3 8.194787+3 2.065380-3 6.120700+3 2.290868-3 4.539377+3 2.540973-3 3.342880+3 2.818383-3 2.444587+3 3.126079-3 1.775172+3 3.467369-3 1.280160+3 3.845918-3 9.171109+2 4.315191-3 6.283698+2 4.841724-3 4.272325+2 5.432503-3 2.883507+2 6.095369-3 1.932539+2 6.839116-3 1.286635+2 7.762471-3 8.161730+1 8.810489-3 5.136894+1 1.000000-2 3.208471+1 1.135011-2 1.988629+1 1.288250-2 1.223824+1 1.479108-2 7.151904+0 1.698244-2 4.148493+0 1.972423-2 2.282498+0 2.317395-2 1.190353+0 2.754229-2 5.881080-1 3.273407-2 2.885649-1 4.168694-2 1.055604-1 7.762471-2 7.837202-3 9.772372-2 3.011493-3 1.174898-1 1.410532-3 1.380384-1 7.316762-4 1.584893-1 4.196970-4 1.819701-1 2.425316-4 2.065380-1 1.478174-4 2.317395-1 9.491180-5 2.600160-1 6.138641-5 2.884032-1 4.174942-5 3.198895-1 2.858915-5 3.548134-1 1.971748-5 3.935501-1 1.369975-5 4.365158-1 9.585721-6 4.786301-1 7.030897-6 5.128614-1 5.604133-6 5.623413-1 4.174591-6 6.309573-1 2.916046-6 6.918310-1 2.203119-6 7.585776-1 1.676867-6 8.609938-1 1.159857-6 9.120108-1 9.877217-7 9.549926-1 8.741750-7 1.000000+0 7.790300-7 1.047129+0 6.996758-7 1.096478+0 6.330106-7 1.148154+0 5.763450-7 1.216186+0 5.164655-7 1.318257+0 4.469123-7 1.479108+0 3.667474-7 1.819701+0 2.556007-7 2.000000+0 2.181300-7 2.317395+0 1.721619-7 2.660725+0 1.388997-7 3.054921+0 1.128796-7 3.548134+0 9.093355-8 4.120975+0 7.380694-8 4.841724+0 5.939903-8 5.754399+0 4.742439-8 6.918310+0 3.758765-8 8.413951+0 2.958644-8 1.071519+1 2.221366-8 1.396368+1 1.639008-8 1.927525+1 1.144838-8 2.660725+1 8.072268-9 3.758374+1 5.594621-9 5.754399+1 3.588368-9 9.772372+1 2.082347-9 1.862087+2 1.082189-9 3.715352+2 5.39467-10 1.479108+3 1.34913-10 1.000000+5 1.99310-12 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 3.349000-5 2.153500-5 1.000000+5 2.153500-5 1 50000 7 7 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.349000-5 1.83810-10 1.000000+5 1.83810-10 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.349000-5 1.195482-5 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 3.239000-5 2.384394+6 3.273407-5 2.390377+6 3.311311-5 2.411757+6 3.349654-5 2.450362+6 3.390000-5 2.508996+6 3.430000-5 2.587146+6 3.470000-5 2.685198+6 3.510000-5 2.804226+6 3.550000-5 2.945382+6 3.589219-5 3.106076+6 3.630781-5 3.301527+6 3.672823-5 3.526798+6 3.720000-5 3.814032+6 3.780000-5 4.234866+6 3.850000-5 4.808526+6 3.950000-5 5.791920+6 4.180000-5 8.824620+6 4.265795-5 1.022393+7 4.350000-5 1.171860+7 4.420000-5 1.303536+7 4.500000-5 1.459740+7 4.570882-5 1.600666+7 4.630000-5 1.718022+7 4.700000-5 1.854480+7 4.770100-5 1.985842+7 4.841724-5 2.111969+7 4.900000-5 2.206884+7 4.970000-5 2.310096+7 5.040000-5 2.400132+7 5.110000-5 2.476002+7 5.188000-5 2.543210+7 5.270000-5 2.594148+7 5.350000-5 2.624904+7 5.432503-5 2.638134+7 5.500000-5 2.636016+7 5.580000-5 2.619804+7 5.650000-5 2.594628+7 5.754399-5 2.540534+7 5.850000-5 2.476272+7 5.956621-5 2.391161+7 6.070000-5 2.288616+7 6.180000-5 2.180388+7 6.300000-5 2.055738+7 6.400000-5 1.948770+7 6.531306-5 1.806765+7 6.650000-5 1.679118+7 6.770000-5 1.552674+7 6.918310-5 1.402171+7 7.070000-5 1.256820+7 7.230000-5 1.114494+7 7.400000-5 9.766320+6 7.585776-5 8.420289+6 7.800000-5 7.070100+6 8.000000-5 5.991090+6 8.230000-5 4.943694+6 8.500000-5 3.940848+6 8.730000-5 3.247734+6 9.015711-5 2.554269+6 9.300000-5 2.012106+6 9.549926-5 1.632273+6 9.900000-5 1.219206+6 1.023293-4 9.258009+5 1.110000-4 4.639056+5 1.135011-4 3.858662+5 1.150000-4 3.474696+5 1.170000-4 3.046014+5 1.185000-4 2.779656+5 1.198000-4 2.582556+5 1.213000-4 2.389944+5 1.226600-4 2.244221+5 1.240000-4 2.124702+5 1.255000-4 2.016258+5 1.265000-4 1.957368+5 1.275000-4 1.908234+5 1.290000-4 1.851156+5 1.303167-4 1.815845+5 1.315000-4 1.794654+5 1.330000-4 1.780590+5 1.345000-4 1.779204+5 1.359200-4 1.788137+5 1.373000-4 1.805190+5 1.390000-4 1.836066+5 1.412538-4 1.891140+5 1.440000-4 1.975638+5 1.465000-4 2.065212+5 1.584893-4 2.578754+5 1.640590-4 2.828948+5 1.690000-4 3.043776+5 1.740000-4 3.249330+5 1.798871-4 3.472184+5 1.850000-4 3.647136+5 1.905461-4 3.816530+5 1.972423-4 3.992527+5 2.041738-4 4.142599+5 2.113489-4 4.265946+5 2.190000-4 4.365750+5 2.264644-4 4.435757+5 2.350000-4 4.486962+5 2.454709-4 4.513737+5 2.570396-4 4.506157+5 2.691535-4 4.465584+5 2.818383-4 4.393828+5 2.951209-4 4.293911+5 3.100000-4 4.162182+5 3.273407-4 3.991849+5 3.467369-4 3.790371+5 3.672823-4 3.576186+5 3.890451-4 3.350822+5 4.120975-4 3.120779+5 4.365158-4 2.888113+5 4.700000-4 2.594532+5 5.011872-4 2.347837+5 5.400000-4 2.076558+5 5.821032-4 1.819973+5 6.237348-4 1.602075+5 6.760830-4 1.371553+5 7.413102-4 1.137988+5 8.200000-4 9.181020+4 9.015711-4 7.438103+4 1.000000-3 5.853870+4 1.096478-3 4.697676+4 1.202264-3 3.744107+4 1.318257-3 2.964574+4 1.462177-3 2.262813+4 1.621810-3 1.714756+4 1.798871-3 1.289951+4 2.000000-3 9.568020+3 2.213095-3 7.143472+3 2.454709-3 5.259792+3 2.722701-3 3.845553+3 3.019952-3 2.791894+3 3.349654-3 2.012500+3 3.715352-3 1.440951+3 4.168694-3 9.865234+2 4.677351-3 6.700888+2 5.248075-3 4.517262+2 5.888437-3 3.023189+2 6.606934-3 2.009534+2 7.413102-3 1.326688+2 8.317638-3 8.700049+1 9.440609-3 5.428132+1 1.071519-2 3.361054+1 1.216186-2 2.065725+1 1.380384-2 1.260151+1 1.548817-2 7.986225+0 1.778279-2 4.581302+0 2.113489-2 2.267168+0 2.511886-2 1.113991+0 3.019952-2 5.179569-1 3.672823-2 2.273326-1 4.731513-2 7.763275-2 7.943282-2 8.548844-3 9.772372-2 3.559579-3 1.161449-1 1.726100-3 1.348963-1 9.284914-4 1.548817-1 5.278148-4 1.737801-1 3.318168-4 1.949845-1 2.101129-4 2.162719-1 1.402730-4 2.398833-1 9.433789-5 2.630268-1 6.674150-5 2.884032-1 4.752035-5 3.162278-1 3.407222-5 3.467369-1 2.461775-5 3.758374-1 1.865029-5 4.073803-1 1.422883-5 4.415705-1 1.092996-5 4.786301-1 8.455054-6 5.188000-1 6.588654-6 5.623413-1 5.172262-6 6.095369-1 4.089744-6 6.606935-1 3.257243-6 7.161434-1 2.612822-6 7.762471-1 2.110839-6 8.609938-1 1.614388-6 9.120108-1 1.399601-6 9.660509-1 1.221617-6 1.022000+0 1.077700-6 1.096478+0 9.290596-7 1.161449+0 8.278324-7 1.230269+0 7.421131-7 1.380384+0 6.018110-7 1.698244+0 4.174080-7 1.905461+0 3.428618-7 2.137962+0 2.839786-7 2.454709+0 2.281606-7 2.818383+0 1.846301-7 3.198895+0 1.530768-7 3.715352+0 1.236165-7 4.365158+0 9.899537-8 5.188000+0 7.867631-8 6.165950+0 6.299739-8 7.498942+0 4.936137-8 9.120108+0 3.897473-8 1.148154+1 2.974143-8 1.462177+1 2.257806-8 1.949845+1 1.639951-8 2.691535+1 1.156630-8 3.801894+1 8.018227-9 5.821032+1 5.143941-9 9.885531+1 2.985460-9 1.883649+2 1.551782-9 3.758374+2 7.73577-10 1.496236+3 1.93456-10 1.000000+5 2.89120-12 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 3.239000-5 2.183500-5 1.000000+5 2.183500-5 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.239000-5 1.055500-5 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.339000-5 7.712460+5 1.364583-5 6.796762+5 1.400000-5 5.688360+5 1.440000-5 4.647440+5 1.479108-5 3.807869+5 1.515000-5 3.167120+5 1.554900-5 2.574703+5 1.590000-5 2.141160+5 1.621810-5 1.808449+5 1.660000-5 1.473060+5 1.698244-5 1.196347+5 1.737801-5 9.622917+4 1.778279-5 7.687189+4 1.900000-5 3.953300+4 1.930400-5 3.387135+4 1.957000-5 2.982820+4 1.980000-5 2.694020+4 2.000000-5 2.484200+4 2.020000-5 2.309280+4 2.035000-5 2.199200+4 2.047000-5 2.123260+4 2.062000-5 2.042480+4 2.075000-5 1.984526+4 2.090000-5 1.930590+4 2.105000-5 1.889692+4 2.120000-5 1.860904+4 2.135000-5 1.843420+4 2.150000-5 1.836466+4 2.165000-5 1.839316+4 2.180000-5 1.851288+4 2.200000-5 1.880338+4 2.220000-5 1.923062+4 2.240000-5 1.978160+4 2.264644-5 2.061309+4 2.290868-5 2.166156+4 2.330000-5 2.349380+4 2.485000-5 3.285360+4 2.540973-5 3.670502+4 2.600160-5 4.088910+4 2.660725-5 4.521173+4 2.722701-5 4.961255+4 2.786121-5 5.403934+4 2.851018-5 5.844724+4 2.920000-5 6.296240+4 3.000000-5 6.794560+4 3.080000-5 7.263260+4 3.162278-5 7.712795+4 3.260000-5 8.203040+4 3.350000-5 8.612720+4 3.450000-5 9.021980+4 3.570000-5 9.452160+4 3.690000-5 9.820120+4 3.801894-5 1.011146+5 3.950000-5 1.042696+5 4.120975-5 1.070160+5 4.300000-5 1.090074+5 4.500000-5 1.103186+5 4.720000-5 1.108400+5 4.954502-5 1.105497+5 5.230000-5 1.093620+5 5.500000-5 1.075490+5 5.821032-5 1.048213+5 6.165950-5 1.014653+5 6.606934-5 9.687085+4 7.079458-5 9.186056+4 7.673615-5 8.573784+4 8.413951-5 7.867263+4 9.332543-5 7.089910+4 1.047129-4 6.268204+4 1.188502-4 5.428933+4 1.380384-4 4.540767+4 1.905461-4 3.050537+4 2.187762-4 2.558780+4 2.454709-4 2.195610+4 2.851018-4 1.784784+4 3.349654-4 1.417222+4 4.073803-4 1.061139+4 4.954502-4 7.896140+3 5.754399-4 6.247104+3 6.839116-4 4.730347+3 8.511380-4 3.299193+3 1.000000-3 2.512980+3 1.216186-3 1.792606+3 1.496236-3 1.241721+3 1.862087-3 8.371112+2 2.290868-3 5.719200+2 2.818383-3 3.878922+2 3.467369-3 2.610610+2 4.315191-3 1.705280+2 5.821032-3 9.425490+1 6.918310-3 6.649106+1 8.035261-3 4.881261+1 9.440609-3 3.468696+1 1.122018-2 2.387778+1 1.333521-2 1.631348+1 1.566751-2 1.134963+1 1.840772-2 7.839253+0 2.162719-2 5.375581+0 2.540973-2 3.659414+0 3.000000-2 2.443652+0 3.548134-2 1.611753+0 4.216965-2 1.041896+0 5.011872-2 6.682577-1 5.956621-2 4.251670-1 7.161434-2 2.605272-1 8.413951-2 1.686764-1 1.047129-1 9.265377-2 1.428894-1 3.916521-2 2.398833-1 9.282987-3 2.884032-1 5.601739-3 3.388442-1 3.626542-3 3.890451-1 2.516545-3 4.415705-1 1.813600-3 4.954502-1 1.356033-3 5.559043-1 1.021658-3 6.165950-1 7.973433-4 6.839117-1 6.266582-4 7.585776-1 4.960313-4 8.511380-1 3.857065-4 9.332543-1 3.175697-4 1.023293+0 2.633421-4 1.161449+0 2.047788-4 1.303167+0 1.644725-4 1.479108+0 1.300683-4 1.640590+0 1.080746-4 1.840772+0 8.863248-5 2.044000+0 7.452500-5 2.344229+0 5.984689-5 2.691535+0 4.831255-5 3.090295+0 3.928764-5 3.589219+0 3.166892-5 4.168694+0 2.571860-5 4.897788+0 2.070873-5 5.821032+0 1.654224-5 7.000000+0 1.311300-5 8.413951+0 1.047321-5 1.071519+1 7.863367-6 1.400000+1 5.784900-6 1.927525+1 4.052686-6 2.660725+1 2.857522-6 3.758374+1 1.980484-6 5.754399+1 1.270285-6 9.772372+1 7.371249-7 1.862087+2 3.831023-7 3.715352+2 1.909662-7 1.479108+3 4.775649-8 1.000000+5 7.05530-10 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.339000-5 1.339000-5 1.000000+5 1.339000-5 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.339000-5 0.0 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 6.280000-6 1.420641+7 6.606934-6 1.306301+7 7.000000-6 1.178501+7 7.413102-6 1.056711+7 7.943282-6 9.181941+6 8.413951-6 8.107924+6 8.912509-6 7.114216+6 9.500000-6 6.112650+6 1.011579-5 5.227119+6 1.071519-5 4.501753+6 1.150000-5 3.721135+6 1.243400-5 2.991164+6 1.333521-5 2.442924+6 1.460000-5 1.864074+6 1.603245-5 1.399303+6 1.800000-5 9.728738+5 2.089296-5 6.037852+5 3.548134-5 1.085843+5 4.168694-5 6.481923+4 4.623810-5 4.682772+4 5.011872-5 3.659645+4 5.370318-5 2.982822+4 5.688529-5 2.530746+4 6.025596-5 2.162003+4 6.382635-5 1.861649+4 6.683439-5 1.661770+4 7.000000-5 1.491481+4 7.328245-5 1.348137+4 7.673615-5 1.225126+4 8.035261-5 1.120016+4 8.500000-5 1.011427+4 8.912509-5 9.337894+3 9.440609-5 8.535467+3 1.000000-4 7.855071+3 1.060000-4 7.269204+3 1.122018-4 6.777273+3 1.202264-4 6.268205+3 1.288250-4 5.834507+3 1.400000-4 5.391349+3 1.550000-4 4.935829+3 2.113489-4 3.856090+3 2.371374-4 3.496070+3 2.660725-4 3.147851+3 2.985383-4 2.813397+3 3.349654-4 2.491004+3 3.801894-4 2.161991+3 4.415704-4 1.814620+3 4.954502-4 1.574309+3 5.495409-4 1.374738+3 6.095369-4 1.192325+3 6.839116-4 1.010166+3 7.852356-4 8.218272+2 8.810489-4 6.876696+2 9.772372-4 5.817727+2 1.109175-3 4.707294+2 1.258925-3 3.780824+2 1.428894-3 3.014284+2 1.621810-3 2.385652+2 1.840772-3 1.874394+2 2.089296-3 1.462101+2 2.371374-3 1.132352+2 2.691535-3 8.704603+1 3.140690-3 6.263348+1 3.507519-3 4.911080+1 3.935501-3 3.783046+1 4.415704-3 2.893592+1 5.011872-3 2.139691+1 5.688529-3 1.570110+1 6.456542-3 1.143533+1 7.328245-3 8.267597+0 8.317638-3 5.934466+0 9.440609-3 4.229760+0 1.071519-2 2.993561+0 1.216186-2 2.104041+0 1.396368-2 1.421339+0 1.603245-2 9.527726-1 1.840772-2 6.339871-1 2.137962-2 4.046030-1 2.483133-2 2.562455-1 2.917427-2 1.554571-1 3.427678-2 9.358414-2 4.120975-2 5.197475-2 5.011872-2 2.760713-2 6.382635-2 1.251690-2 1.364583-1 1.021693-3 1.659587-1 5.396121-4 1.972423-1 3.093798-4 2.290868-1 1.923001-4 2.630268-1 1.248476-4 3.000000-1 8.335800-5 3.388442-1 5.776693-5 3.801894-1 4.112733-5 4.265795-1 2.949795-5 4.731513-1 2.202379-5 5.248075-1 1.656387-5 5.821032-1 1.255265-5 6.456542-1 9.583415-6 7.161434-1 7.372971-6 7.852356-1 5.879842-6 8.709636-1 4.577857-6 9.332543-1 3.901638-6 9.885531-1 3.436370-6 1.071519+0 2.903658-6 1.161449+0 2.470183-6 1.258925+0 2.117972-6 1.396368+0 1.751282-6 1.678804+0 1.262955-6 1.883649+0 1.036878-6 2.089296+0 8.744362-7 2.398833+0 7.017718-7 2.754229+0 5.671853-7 3.126079+0 4.696657-7 3.630781+0 3.788165-7 4.216965+0 3.078100-7 5.000000+0 2.450100-7 5.956621+0 1.952868-7 7.244360+0 1.528027-7 8.810489+0 1.204914-7 1.122018+1 9.061442-8 1.445440+1 6.785405-8 1.949845+1 4.865457-8 2.691535+1 3.431461-8 3.801894+1 2.378896-8 5.821032+1 1.526106-8 9.885531+1 8.857241-9 1.862087+2 4.657741-9 3.715352+2 2.321825-9 1.479108+3 5.80624-10 1.000000+5 8.57780-12 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 6.280000-6 6.280000-6 1.000000+5 6.280000-6 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 6.280000-6 0.0 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 5.770000-6 2.927977+7 6.200000-6 2.555700+7 6.606934-6 2.251896+7 7.000000-6 1.995355+7 7.500000-6 1.713929+7 8.035261-6 1.461215+7 8.609938-6 1.235660+7 9.225714-6 1.037312+7 9.885531-6 8.646583+6 1.059254-5 7.158558+6 1.135011-5 5.888386+6 1.230269-5 4.654001+6 1.333521-5 3.652877+6 1.462177-5 2.748280+6 1.621810-5 1.980608+6 1.840772-5 1.316768+6 2.722701-5 3.666236+5 3.126079-5 2.349024+5 3.507519-5 1.632706+5 3.845918-5 1.228936+5 4.168694-5 9.654348+4 4.466836-5 7.906215+4 4.731513-5 6.736019+4 5.011872-5 5.776941+4 5.300000-5 5.013147+4 5.559043-5 4.470248+4 5.821032-5 4.025520+4 6.095369-5 3.646865+4 6.400000-5 3.306565+4 6.760830-5 2.984489+4 7.079458-5 2.755545+4 7.500000-5 2.511660+4 7.943282-5 2.306664+4 8.511380-5 2.098983+4 9.120108-5 1.923792+4 9.900000-5 1.747942+4 1.083927-4 1.584275+4 1.202264-4 1.427046+4 1.350000-4 1.279266+4 1.603245-4 1.098098+4 2.018366-4 8.982247+3 2.264644-4 8.059372+3 2.540973-4 7.181216+3 2.851018-4 6.351851+3 3.090295-4 5.799268+3 3.507519-4 4.984004+3 4.073803-4 4.129412+3 4.623810-4 3.502124+3 5.136400-4 3.033940+3 5.754399-4 2.577401+3 6.456542-4 2.168056+3 7.413102-4 1.747113+3 8.511380-4 1.397431+3 9.440609-4 1.174565+3 1.071519-3 9.423646+2 1.216186-3 7.506613+2 1.380384-3 5.936498+2 1.566751-3 4.661539+2 1.778279-3 3.634692+2 2.018366-3 2.813904+2 2.290868-3 2.162971+2 2.600160-3 1.650775+2 2.951209-3 1.250909+2 3.311311-3 9.654059+1 3.758374-3 7.204554+1 4.265795-3 5.333669+1 4.786301-3 4.029264+1 5.432503-3 2.937114+1 6.165950-3 2.124543+1 6.998420-3 1.525257+1 7.943282-3 1.086926+1 9.015711-3 7.689702+0 1.023293-2 5.400940+0 1.161449-2 3.765883+0 1.318257-2 2.607426+0 1.500000-2 1.779629+0 1.717908-2 1.182633+0 1.972423-2 7.741645-1 2.264644-2 5.031055-1 2.630268-2 3.129970-1 3.090295-2 1.862004-1 3.630781-2 1.098847-1 4.315191-2 6.196311-2 5.188000-2 3.336809-2 6.456542-2 1.585396-2 8.810489-2 5.452338-3 1.348963-1 1.257440-3 1.659587-1 6.201359-4 1.949845-1 3.603554-4 2.238721-1 2.278312-4 2.540973-1 1.507066-4 2.851018-1 1.042266-4 3.162278-1 7.527599-5 3.507519-1 5.473948-5 3.890451-1 4.010340-5 4.265795-1 3.062318-5 4.677351-1 2.354401-5 5.128614-1 1.823230-5 5.623413-1 1.422616-5 6.165950-1 1.118474-5 6.760830-1 8.861810-6 7.413102-1 7.076023-6 8.128305-1 5.692830-6 8.810489-1 4.732927-6 9.549926-1 3.964173-6 1.023293+0 3.428046-6 1.122018+0 2.845486-6 1.216186+0 2.433078-6 1.364583+0 1.961984-6 1.566751+0 1.529259-6 1.757924+0 1.250352-6 1.949845+0 1.049802-6 2.238721+0 8.392728-7 2.570396+0 6.759137-7 2.951209+0 5.482926-7 3.388442+0 4.481855-7 3.935501+0 3.629657-7 4.623810+0 2.914887-7 5.495409+0 2.322619-7 6.606934+0 1.837422-7 8.035261+0 1.443585-7 1.011579+1 1.096999-7 1.230269+1 8.740380-8 1.513561+1 6.911581-8 1.972423+1 5.152450-8 2.754229+1 3.590208-8 3.935501+1 2.460289-8 6.095369+1 1.560555-8 1.023293+2 9.169774-9 1.927525+2 4.823856-9 3.845918+2 2.404986-9 1.531087+3 6.01507-10 1.000000+5 9.19890-12 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 5.770000-6 5.770000-6 1.000000+5 5.770000-6 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 5.770000-6 0.0 1.000000+5 1.000000+5 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.575480-7 1.028100+0 1.165120-6 1.028750+0 1.575480-6 1.029500+0 2.156090-6 1.030100+0 2.711540-6 1.031000+0 3.710310-6 1.032000+0 5.076640-6 1.033200+0 7.111510-6 1.034000+0 8.730030-6 1.035300+0 1.184980-5 1.036640+0 1.575480-5 1.038200+0 2.126160-5 1.039700+0 2.762310-5 1.041500+0 3.675220-5 1.043800+0 5.101320-5 1.046400+0 7.097530-5 1.048300+0 8.836620-5 1.051200+0 1.198670-4 1.054080+0 1.575480-4 1.057700+0 2.147490-4 1.061100+0 2.793350-4 1.065100+0 3.698110-4 1.070400+0 5.159280-4 1.076200+0 7.130140-4 1.080600+0 8.904380-4 1.087100+0 1.199710-3 1.093710+0 1.575480-3 1.102600+0 2.184270-3 1.110700+0 2.848550-3 1.120600+0 3.810190-3 1.133300+0 5.297290-3 1.147500+0 7.313450-3 1.158200+0 9.088720-3 1.174100+0 1.214850-2 1.190110+0 1.575480-2 1.205100+0 1.961840-2 1.227500+0 2.626540-2 1.250000+0 3.392000-2 1.265600+0 3.973020-2 1.294900+0 5.161920-2 1.331800+0 6.811420-2 1.362600+0 8.291950-2 1.397000+0 1.003610-1 1.433800+0 1.199510-1 1.500000+0 1.576000-1 1.589800+0 2.144960-1 1.665000+0 2.671900-1 1.784700+0 3.591060-1 1.892300+0 4.477250-1 2.000000+0 5.389000-1 2.044000+0 5.761000-1 2.163500+0 6.776540-1 2.372600+0 8.561980-1 2.647100+0 1.088070+0 3.000000+0 1.377000+0 3.437500+0 1.716590+0 4.000000+0 2.123000+0 4.750000+0 2.614930+0 5.000000+0 2.767000+0 6.000000+0 3.323000+0 7.000000+0 3.819000+0 8.000000+0 4.264000+0 9.000000+0 4.669000+0 1.000000+1 5.040000+0 1.100000+1 5.382000+0 1.200000+1 5.697000+0 1.300000+1 5.990000+0 1.400000+1 6.260000+0 1.500000+1 6.509000+0 1.600000+1 6.741000+0 1.800000+1 7.165000+0 2.000000+1 7.545000+0 2.200000+1 7.889000+0 2.400000+1 8.202000+0 2.600000+1 8.488000+0 2.800000+1 8.749000+0 3.000000+1 8.990000+0 4.000000+1 9.969000+0 5.000000+1 1.069000+1 6.000000+1 1.126000+1 8.000000+1 1.209000+1 1.000000+2 1.269000+1 1.500000+2 1.363000+1 2.000000+2 1.419000+1 3.000000+2 1.485000+1 4.000000+2 1.522000+1 5.000000+2 1.547000+1 6.000000+2 1.565000+1 8.000000+2 1.589000+1 1.000000+3 1.604000+1 1.500000+3 1.626000+1 2.000000+3 1.638000+1 3.000000+3 1.651000+1 4.000000+3 1.658000+1 5.000000+3 1.662000+1 6.000000+3 1.666000+1 8.000000+3 1.670000+1 1.000000+4 1.672000+1 1.500000+4 1.676000+1 2.000000+4 1.678000+1 3.000000+4 1.680000+1 4.000000+4 1.681000+1 5.000000+4 1.681000+1 6.000000+4 1.682000+1 8.000000+4 1.682000+1 1.000000+5 1.683000+1 1 50000 7 8 1.186900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.014930-7 2.099900+0 1.174570-6 2.106600+0 1.633920-6 2.114000+0 2.260730-6 2.119500+0 2.814600-6 2.127900+0 3.817130-6 2.136250+0 5.014930-6 2.147000+0 6.875820-6 2.156900+0 8.930860-6 2.169000+0 1.191880-5 2.184500+0 1.656750-5 2.201800+0 2.292170-5 2.214800+0 2.855860-5 2.234200+0 3.841640-5 2.253680+0 5.014930-5 2.281500+0 7.024300-5 2.307000+0 9.226390-5 2.338200+0 1.240570-4 2.377400+0 1.718040-4 2.410200+0 2.185060-4 2.446800+0 2.779520-4 2.485900+0 3.499560-4 2.532900+0 4.478690-4 2.556430+0 5.014930-4 2.611900+0 6.394590-4 2.660400+0 7.730710-4 2.745300+0 1.034710-3 2.809000+0 1.253090-3 2.904500+0 1.614300-3 3.000000+0 2.015000-3 3.125000+0 2.598270-3 3.234400+0 3.161510-3 3.425800+0 4.257360-3 3.569300+0 5.162400-3 3.784700+0 6.636040-3 4.000000+0 8.220000-3 4.250000+0 1.015610-2 4.625000+0 1.319820-2 5.000000+0 1.636000-2 5.500000+0 2.069990-2 6.000000+0 2.510000-2 6.750000+0 3.165360-2 7.000000+0 3.381000-2 8.000000+0 4.224000-2 9.000000+0 5.030000-2 1.000000+1 5.795000-2 1.100000+1 6.519000-2 1.200000+1 7.202000-2 1.300000+1 7.845000-2 1.400000+1 8.457000-2 1.500000+1 9.036000-2 1.600000+1 9.586000-2 1.800000+1 1.060000-1 2.000000+1 1.153000-1 2.200000+1 1.238000-1 2.400000+1 1.316000-1 2.600000+1 1.387000-1 2.800000+1 1.454000-1 3.000000+1 1.516000-1 4.000000+1 1.772000-1 5.000000+1 1.967000-1 6.000000+1 2.121000-1 8.000000+1 2.353000-1 1.000000+2 2.522000-1 1.500000+2 2.801000-1 2.000000+2 2.976000-1 3.000000+2 3.190000-1 4.000000+2 3.318000-1 5.000000+2 3.406000-1 6.000000+2 3.470000-1 8.000000+2 3.559000-1 1.000000+3 3.618000-1 1.500000+3 3.706000-1 2.000000+3 3.756000-1 3.000000+3 3.810000-1 4.000000+3 3.842000-1 5.000000+3 3.862000-1 6.000000+3 3.875000-1 8.000000+3 3.894000-1 1.000000+4 3.905000-1 1.500000+4 3.921000-1 2.000000+4 3.930000-1 3.000000+4 3.939000-1 4.000000+4 3.944000-1 5.000000+4 3.948000-1 6.000000+4 3.950000-1 8.000000+4 3.952000-1 1.000000+5 3.954000-1 1 50000 7 8 1.186900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 50000 7 9 1.186900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.000000+1 1.000000+5 5.000000+1 5.000000+5 4.998100+1 1.000000+6 4.994600+1 1.375000+6 4.991070+1 1.500000+6 4.989500+1 2.000000+6 4.981400+1 2.500000+6 4.971100+1 3.000000+6 4.958800+1 3.500000+6 4.944140+1 4.000000+6 4.928000+1 4.500000+6 4.910180+1 5.000000+6 4.890600+1 5.687500+6 4.860310+1 6.437500+6 4.824590+1 6.500000+6 4.821620+1 7.000000+6 4.796400+1 7.500000+6 4.770000+1 8.250000+6 4.728510+1 8.500000+6 4.714650+1 9.000000+6 4.686200+1 1.000000+7 4.627400+1 1.109400+7 4.561180+1 1.187500+7 4.512930+1 1.203100+7 4.503070+1 1.250000+7 4.474300+1 1.375000+7 4.396130+1 1.500000+7 4.319200+1 1.687500+7 4.205550+1 1.750000+7 4.168300+1 2.000000+7 4.021200+1 2.250000+7 3.878010+1 2.500000+7 3.738800+1 2.875000+7 3.537140+1 3.000000+7 3.471900+1 3.250000+7 3.343970+1 3.500000+7 3.220500+1 3.625000+7 3.160760+1 4.000000+7 2.989400+1 4.500000+7 2.779520+1 5.000000+7 2.593200+1 6.000000+7 2.288000+1 6.750000+7 2.111840+1 7.000000+7 2.061100+1 7.750000+7 1.927990+1 8.000000+7 1.888500+1 8.750000+7 1.780290+1 9.000000+7 1.746900+1 1.000000+8 1.620500+1 1.085900+8 1.517880+1 1.125000+8 1.472300+1 1.144500+8 1.449820+1 1.214800+8 1.369820+1 1.250000+8 1.330400+1 1.312500+8 1.261360+1 1.406300+8 1.162210+1 1.500000+8 1.069900+1 1.750000+8 8.630010+0 2.000000+8 7.156000+0 2.125000+8 6.605580+0 2.253900+8 6.147100+0 2.341800+8 5.889630+0 2.375000+8 5.802990+0 2.447300+8 5.632990+0 2.500000+8 5.524300+0 2.625000+8 5.308380+0 2.859400+8 4.969020+0 3.000000+8 4.760600+0 3.125000+8 4.559240+0 3.500000+8 3.996900+0 3.812500+8 3.646670+0 3.937500+8 3.510190+0 4.000000+8 3.439200+0 4.125000+8 3.289870+0 4.234400+8 3.155560+0 4.425800+8 2.922290+0 4.750000+8 2.560430+0 5.000000+8 2.323800+0 5.250000+8 2.126470+0 5.625000+8 1.886030+0 6.000000+8 1.692400+0 6.343800+8 1.546100+0 6.578100+8 1.464300+0 6.789100+8 1.403710+0 7.000000+8 1.355200+0 7.250000+8 1.312070+0 8.000000+8 1.217000+0 8.359400+8 1.167290+0 8.660200+8 1.123090+0 8.851600+8 1.094680+0 1.000000+9 9.407000-1 1.250000+9 7.259850-1 1.335900+9 6.676600-1 1.375000+9 6.420280-1 1.394500+9 6.294410-1 1.464800+9 5.846760-1 1.500000+9 5.626200-1 1.562500+9 5.241370-1 1.641100+9 4.778500-1 1.706900+9 4.414480-1 1.780200+9 4.037300-1 1.858700+9 3.668210-1 1.952900+9 3.271940-1 2.000000+9 3.092100-1 2.139200+9 2.624310-1 2.272600+9 2.252790-1 2.443000+9 1.865670-1 2.602800+9 1.573420-1 2.825100+9 1.253830-1 3.088500+9 9.717340-2 3.327400+9 7.807490-2 3.634100+9 5.989220-2 3.975600+9 4.543280-2 4.423800+9 3.247750-2 5.000000+9 2.193200-2 5.750000+9 1.389770-2 6.875000+9 7.691130-3 8.000000+9 4.638800-3 1.00000+10 2.204700-3 1.20500+10 1.191200-3 1.41820+10 6.992640-4 1.71110+10 3.806510-4 2.01380+10 2.256300-4 2.41190+10 1.270400-4 2.88610+10 7.207070-5 3.54590+10 3.781930-5 4.35270+10 2.000640-5 5.38800+10 1.036270-5 7.03510+10 4.582630-6 9.01170+10 2.160570-6 1.00000+11 1.577300-6 1.34280+11 6.496340-7 1.77440+11 2.821920-7 2.63330+11 8.732630-8 4.88110+11 1.420220-8 1.16740+12 1.125330-9 3.55150+12 4.61967-11 1.00000+14 3.62930-15 5.62340+14 2.67960-17 2.73840+16 3.90428-22 1.00000+17 9.40570-24 1 50000 7 0 1.186900+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.00000-12 1.000000+2 6.00000-10 1.000000+3 6.000000-8 1.000000+4 6.000000-6 1.000000+5 6.000000-4 5.000000+5 1.500000-2 1.000000+6 6.000000-2 1.375000+6 1.131200-1 1.500000+6 1.344000-1 2.000000+6 2.365000-1 2.500000+6 3.648000-1 3.000000+6 5.175000-1 3.500000+6 6.920550-1 4.000000+6 8.861000-1 4.500000+6 1.097310+0 5.000000+6 1.323000+0 5.687500+6 1.651980+0 6.437500+6 2.029380+0 6.500000+6 2.061550+0 7.000000+6 2.321500+0 7.500000+6 2.585040+0 8.250000+6 2.984680+0 8.500000+6 3.118180+0 9.000000+6 3.385700+0 1.000000+7 3.917000+0 1.109400+7 4.488530+0 1.187500+7 4.889150+0 1.203100+7 4.967880+0 1.250000+7 5.204400+0 1.375000+7 5.820180+0 1.500000+7 6.416000+0 1.687500+7 7.272400+0 1.750000+7 7.549500+0 2.000000+7 8.615000+0 2.250000+7 9.624390+0 2.500000+7 1.058900+1 2.875000+7 1.196930+1 3.000000+7 1.241500+1 3.250000+7 1.328350+1 3.500000+7 1.412760+1 3.625000+7 1.453980+1 4.000000+7 1.574600+1 4.500000+7 1.728400+1 5.000000+7 1.876000+1 6.000000+7 2.154100+1 6.750000+7 2.345620+1 7.000000+7 2.405900+1 7.750000+7 2.573470+1 8.000000+7 2.625200+1 8.750000+7 2.767620+1 9.000000+7 2.811300+1 1.000000+8 2.968700+1 1.085900+8 3.086030+1 1.125000+8 3.135460+1 1.144500+8 3.159280+1 1.214800+8 3.240570+1 1.250000+8 3.279400+1 1.312500+8 3.345070+1 1.406300+8 3.437120+1 1.500000+8 3.522600+1 1.750000+8 3.722850+1 2.000000+8 3.889400+1 2.125000+8 3.961940+1 2.253900+8 4.030310+1 2.341800+8 4.073770+1 2.375000+8 4.089440+1 2.447300+8 4.122910+1 2.500000+8 4.146200+1 2.625000+8 4.198430+1 2.859400+8 4.286180+1 3.000000+8 4.333800+1 3.125000+8 4.372890+1 3.500000+8 4.475100+1 3.812500+8 4.545290+1 3.937500+8 4.569730+1 4.000000+8 4.581700+1 4.125000+8 4.603340+1 4.234400+8 4.621840+1 4.425800+8 4.650700+1 4.750000+8 4.692330+1 5.000000+8 4.720000+1 5.250000+8 4.743560+1 5.625000+8 4.773040+1 6.000000+8 4.797700+1 6.343800+8 4.816270+1 6.578100+8 4.827920+1 6.789100+8 4.837250+1 7.000000+8 4.846300+1 7.250000+8 4.855560+1 8.000000+8 4.881000+1 8.359400+8 4.890980+1 8.660200+8 4.899020+1 8.851600+8 4.904000+1 1.000000+9 4.928800+1 1.250000+9 4.963280+1 1.335900+9 4.971110+1 1.375000+9 4.974190+1 1.394500+9 4.975450+1 1.464800+9 4.979870+1 1.500000+9 4.982000+1 1.562500+9 4.984700+1 1.641100+9 4.987720+1 1.706900+9 4.989380+1 1.780200+9 4.991150+1 1.858700+9 4.992980+1 1.952900+9 4.994730+1 2.000000+9 4.995400+1 2.139200+9 4.996750+1 2.272600+9 4.997960+1 2.443000+9 4.999070+1 2.602800+9 4.999590+1 2.825100+9 5.000260+1 3.088500+9 5.000800+1 3.327400+9 5.000680+1 3.634100+9 5.000530+1 3.975600+9 5.000380+1 4.423800+9 5.000200+1 5.000000+9 5.000000+1 5.750000+9 5.000000+1 6.875000+9 5.000000+1 8.000000+9 5.000000+1 1.00000+10 5.000000+1 1.20500+10 5.000000+1 1.41820+10 5.000000+1 1.71110+10 5.000000+1 2.01380+10 5.000000+1 2.41190+10 5.000000+1 2.88610+10 5.000000+1 3.54590+10 5.000000+1 4.35270+10 5.000000+1 5.38800+10 5.000000+1 7.03510+10 5.000000+1 9.01170+10 5.000000+1 1.00000+11 5.000000+1 1.34280+11 5.000000+1 1.77440+11 5.000000+1 2.63330+11 5.000000+1 4.88110+11 5.000000+1 1.16740+12 5.000000+1 3.55150+12 5.000000+1 1.00000+14 5.000000+1 5.62340+14 5.000000+1 2.73840+16 5.000000+1 1.00000+17 5.000000+1 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.930812-6 0.0 2.941633-6 7.084131-1 2.945239-6 9.415554-1 2.952453-6 1.719828+0 2.959667-6 2.899866+0 2.967783-6 4.759549+0 2.980421-6 8.340653+0 2.988973-6 1.061698+1 2.996398-6 1.195008+1 3.003758-6 1.236721+1 3.010979-6 1.181058+1 3.018859-6 1.024242+1 3.031029-6 6.839321+0 3.039019-6 4.623364+0 3.046233-6 2.984683+0 3.053447-6 1.778657+0 3.060661-6 9.784541-1 3.071030-6 2.797768-1 3.075088-6 0.0 3.441063-6 0.0 3.453767-6 2.976919-1 3.458002-6 3.956638-1 3.466472-6 7.227123-1 3.474942-6 1.218592+0 3.484470-6 2.000075+0 3.499160-6 3.489279+0 3.509879-6 4.497455+0 3.517820-6 5.015371+0 3.526537-6 5.200887+0 3.535414-6 4.948154+0 3.544292-6 4.317921+0 3.558143-6 2.935464+0 3.568109-6 1.942847+0 3.577108-6 1.222630+0 3.585313-6 7.369497-1 3.593783-6 4.048598-1 3.606113-6 1.072162-1 3.610457-6 0.0 3.746768-6 0.0 3.755990-6 4.188321-7 3.765212-6 8.287533-7 3.774435-6 1.513786-6 3.783657-6 2.552451-6 3.792879-6 3.972868-6 3.797207-6 4.786172-6 3.820546-6 1.028731-5 3.829768-6 1.223160-5 3.838990-6 1.373381-5 3.848212-6 1.467578-5 3.857434-6 1.504761-5 3.871977-6 1.467756-5 3.881324-6 1.390763-5 3.890670-6 1.271491-5 3.900016-6 1.113685-5 3.931212-6 4.552147-6 3.937402-6 3.542647-6 3.946748-6 2.287010-6 3.956094-6 1.362894-6 3.965441-6 7.497392-7 3.974787-6 3.807259-7 3.984133-6 0.0 4.120031-6 0.0 4.122070-6 2.511889-2 4.142362-6 2.493923+0 4.152508-6 4.542694+0 4.162654-6 7.639824+0 4.173686-6 1.231737+1 4.201922-6 2.678714+1 4.214315-6 3.115150+1 4.224980-6 3.214675+1 4.235318-6 3.051934+1 4.245491-6 2.674029+1 4.274260-6 1.195359+1 4.284406-6 7.708555+0 4.294552-6 4.589171+0 4.304698-6 2.522201+0 4.321373-6 4.344136-1 4.322849-6 2.459141-1 4.324990-6 5.244942-7 4.328662-6 6.331418-7 4.339264-6 1.156485-6 4.349866-6 1.949993-6 4.361292-6 3.137912-6 4.382766-6 1.347051-1 4.393497-6 2.459630-1 4.404231-6 4.147234-1 4.416228-6 6.796451-1 4.447170-6 1.506129+0 4.458891-6 1.709008+0 4.469625-6 1.769986+0 4.480360-6 1.693066+0 4.491834-6 1.474983+0 4.522649-6 6.538895-1 4.533410-6 4.210523-1 4.544119-6 2.508012-1 4.554518-6 1.399306-1 4.567937-6 5.332505-2 4.575988-6 0.0 4.630282-6 0.0 4.653075-6 1.051708+0 4.664472-6 1.921030+0 4.675869-6 3.239120+0 4.687266-6 5.041664+0 4.717133-6 1.089383+1 4.723546-6 1.204389+1 4.733899-6 1.334812+1 4.745776-6 1.380287+1 4.757321-6 1.312753+1 4.772061-6 1.094141+1 4.785542-6 8.546180+0 4.802198-6 5.860944+0 4.814076-6 4.725464+0 4.825049-6 4.452420+0 4.828199-6 4.563301+0 4.838007-6 5.132696+0 4.859850-6 7.595523+0 4.873796-6 9.743489+0 4.887086-6 1.108508+1 4.897686-6 1.150864+1 4.909984-6 1.107037+1 4.921771-6 9.904102+0 4.957431-6 4.953803+0 4.967725-6 3.836578+0 4.979489-6 2.921506+0 4.992949-6 2.245738+0 5.003441-6 1.866164+0 5.014781-6 1.350171+0 5.027422-6 1.172142+0 5.063394-6 4.963740-1 5.070227-6 3.921217-1 5.075385-6 3.210978-1 5.082262-6 2.420999-1 5.085107-6 2.158105-1 5.089106-6 2.455256-1 5.096192-6 3.087027-1 5.109453-6 4.434428-1 5.112414-6 5.044485-1 5.122851-6 7.652372-1 5.135563-6 1.270577+0 5.148363-6 1.993480+0 5.185628-6 4.594137+0 5.199780-6 5.235183+0 5.212164-6 5.431020+0 5.224812-6 5.219728+0 5.237908-6 4.623766+0 5.273148-6 2.479285+0 5.281334-6 2.090344+0 5.286351-6 1.885612+0 5.290587-6 1.798143+0 5.299430-6 1.759586+0 5.310047-6 1.893419+0 5.316985-6 2.080446+0 5.328810-6 2.583473+0 5.336150-6 3.020861+0 5.351510-6 4.310412+0 5.373108-6 6.273696+0 5.393622-6 7.716752+0 5.407082-6 8.161518+0 5.422543-6 8.077967+0 5.438482-6 7.481410+0 5.490559-6 4.501875+0 5.507043-6 3.824830+0 5.515088-6 3.598574+0 5.552699-6 2.994188+0 5.599699-6 2.835260+0 5.623720-6 2.920205+0 5.650485-6 3.266348+0 5.705210-6 4.600457+0 5.723795-6 4.885360+0 5.738439-6 4.887773+0 5.752251-6 4.715411+0 5.804374-6 3.521829+0 5.817417-6 3.334734+0 5.832345-6 3.284160+0 5.852485-6 3.409951+0 5.904727-6 3.936780+0 5.936981-6 3.898972+0 5.983236-6 3.741474+0 6.291243-6 3.586747+0 6.472839-6 3.425338+0 6.947857-6 3.203693+0 6.982060-6 5.966692+0 6.999161-6 8.255298+0 7.016262-6 1.172936+1 7.035501-6 1.720782+1 7.084667-6 3.421565+1 7.103339-6 3.839248+1 7.120786-6 3.961480+1 7.138377-6 3.785541+1 7.156584-6 3.332758+1 7.204376-6 1.672338+1 7.222546-6 1.165778+1 7.238579-6 8.314015+0 7.256749-6 5.856209+0 7.290211-6 3.042816+0 7.458108-6 2.965743+0 7.494823-6 8.836951+0 7.513180-6 1.369539+1 7.532684-6 2.169474+1 7.552189-6 3.268573+1 7.604966-6 6.875546+1 7.625781-6 7.775257+1 7.644263-6 8.013536+1 7.661722-6 7.690426+1 7.681693-6 6.721906+1 7.712850-6 4.582326+1 7.733466-6 3.175313+1 7.751823-6 2.149753+1 7.770180-6 1.394743+1 7.788537-6 8.935048+0 7.825252-6 2.799901+0 9.650341-6 2.084377+0 1.120491-5 1.619794+0 1.126006-5 1.644742+0 1.131067-5 1.806357+0 1.133838-5 1.955984+0 1.137405-5 2.258320+0 1.147725-5 3.416479+0 1.150828-5 3.610668+0 1.154275-5 3.585712+0 1.157033-5 3.411560+0 1.160998-5 2.972358+0 1.167376-5 2.194650+0 1.169852-5 1.957265+0 1.172622-5 1.762305+0 1.175393-5 1.626268+0 1.180933-5 1.471063+0 1.212398-5 1.401830+0 1.221351-5 1.454903+0 1.227319-5 1.558491+0 1.236272-5 1.781799+0 1.242240-5 1.839315+0 1.247106-5 1.769577+0 1.257335-5 1.508350+0 1.263129-5 1.427114+0 1.272082-5 1.438242+0 1.279971-5 1.484841+0 1.360608-5 1.252138+0 1.469127-5 1.038383+0 1.606376-5 8.343716-1 1.747833-5 6.792347-1 1.919208-5 5.434736-1 2.106656-5 4.387076-1 2.307188-5 3.600338-1 2.549354-5 2.951755-1 2.594119-5 2.858658-1 2.606889-5 1.986959+0 2.613274-5 3.393938+0 2.619659-5 5.527951+0 2.626728-5 8.838827+0 2.645599-5 1.948690+1 2.652896-5 2.206203+1 2.658868-5 2.298682+1 2.665596-5 2.238972+1 2.673954-5 1.983511+1 2.683909-5 1.622678+1 2.689895-5 1.469173+1 2.697428-5 1.399523+1 2.704750-5 1.426609+1 2.713725-5 1.506951+1 2.720343-5 1.475660+1 2.724887-5 1.429385+1 2.728323-5 1.383229+1 2.734717-5 1.240862+1 2.752519-5 7.180284+0 2.759052-5 5.676395+0 2.765586-5 4.560108+0 2.772130-5 3.746116+0 2.778789-5 3.099151+0 2.785187-5 2.300870+0 2.792108-5 1.924283+0 2.805427-5 1.135720+0 2.812086-5 8.205963-1 2.818745-5 5.884217-1 2.825405-5 4.340513-1 2.838723-5 2.445515-1 2.973833-5 2.276275-1 2.988472-5 4.350524-1 2.995792-5 6.070961-1 3.003112-5 8.683720-1 3.010431-5 1.225994+0 3.032391-5 2.560215+0 3.040625-5 2.878234+0 3.047945-5 2.965025+0 3.055530-5 2.824997+0 3.065858-5 2.357401+0 3.080320-5 1.551896+0 3.083629-5 1.404082+0 3.090948-5 1.190607+0 3.098372-5 1.124040+0 3.104918-5 1.217317+0 3.111453-5 1.417139+0 3.121215-5 1.827379+0 3.136040-5 2.673015+0 3.145146-5 3.040883+0 3.152888-5 3.200614+0 3.162460-5 3.156959+0 3.170734-5 2.961743+0 3.197279-5 2.048671+0 3.207298-5 1.835466+0 3.214707-5 1.774620+0 3.233871-5 1.851180+0 3.257947-5 2.061304+0 3.280307-5 2.100389+0 3.366377-5 2.110823+0 3.490000-5 2.349014+0 3.599610-5 2.708423+0 3.713264-5 3.261400+0 3.812737-5 3.922192+0 3.912260-5 4.778755+0 4.033704-5 6.122371+0 4.168694-5 8.046009+0 4.328794-5 1.094455+1 4.526149-5 1.536672+1 5.040000-5 2.802549+1 5.308844-5 3.264051+1 5.588750-5 3.494619+1 5.920532-5 3.468341+1 6.337405-5 3.129309+1 7.446013-5 1.759551+1 7.886673-5 1.313356+1 8.258579-5 1.014820+1 8.652613-5 7.692114+0 9.016082-5 5.953582+0 9.125343-5 5.590234+0 9.192396-5 5.629836+0 9.283664-5 5.964436+0 9.332457-5 5.869305+0 9.458224-5 5.180090+0 9.853762-5 4.139413+0 9.958256-5 4.019058+0 1.010420-4 4.061453+0 1.032006-4 3.608393+0 1.081779-4 2.903208+0 1.122554-4 2.468461+0 1.170000-4 2.105805+0 1.214879-4 1.877913+0 1.268929-4 1.718805+0 1.333521-4 1.651135+0 1.340043-4 1.711317+0 1.346607-4 1.869027+0 1.351761-4 2.095936+0 1.363018-4 2.749533+0 1.366300-4 2.859229+0 1.369582-4 2.884018+0 1.372864-4 2.818817+0 1.376244-4 2.673151+0 1.386927-4 2.092467+0 1.391558-4 1.938346+0 1.398519-4 1.868058+0 1.418324-4 2.065356+0 1.461679-4 2.114580+0 1.665295-4 2.649963+0 1.975000-4 3.533202+0 2.304000-4 4.250432+0 2.733750-4 4.818165+0 3.162278-4 5.084814+0 3.954400-4 5.119631+0 4.801208-4 4.898237+0 4.922019-4 5.468752+0 4.980006-4 5.802752+0 5.012742-4 6.282856+0 5.037000-4 6.967948+0 5.064472-4 8.235770+0 5.098207-4 1.052466+1 5.197000-4 1.890733+1 5.280625-4 2.462454+1 5.361500-4 2.862081+1 5.463866-4 3.137501+1 5.601680-4 3.271394+1 5.863069-4 3.215707+1 6.578068-4 2.829156+1 6.995883-4 2.673554+1 7.173102-4 2.875692+1 7.489691-4 2.840533+1 7.718681-4 2.868860+1 8.526636-4 2.639807+1 8.677790-4 2.689496+1 1.037731-3 2.207650+1 1.228800-3 1.801729+1 1.450179-3 1.455344+1 1.698244-3 1.176363+1 1.912543-3 9.964805+0 2.195351-3 8.180858+0 2.528889-3 6.649225+0 2.874339-3 5.489572+0 3.310130-3 4.425401+0 3.804618-3 3.564908+0 3.846413-3 3.558716+0 3.866056-3 3.724117+0 3.879840-3 4.044096+0 3.890870-3 4.489503+0 3.902253-3 5.151995+0 3.922164-3 6.715023+0 3.945536-3 8.622876+0 3.964026-3 9.686616+0 3.986204-3 1.029353+1 4.035814-3 1.038261+1 4.096315-3 1.027472+1 4.127269-3 1.065714+1 4.188867-3 1.261687+1 4.224136-3 1.309639+1 4.381944-3 1.274579+1 4.472773-3 1.378381+1 4.756838-3 1.275755+1 5.451698-3 1.032690+1 6.262082-3 8.279930+0 7.156927-3 6.684683+0 8.198794-3 5.344607+0 9.316097-3 4.314741+0 1.054871-2 3.493397+0 1.181382-2 2.875663+0 1.341804-2 2.304609+0 1.491124-2 1.915127+0 1.678049-2 1.554067+0 1.878235-2 1.271805+0 2.091933-2 1.047901+0 2.316353-2 8.714280-1 2.630268-2 6.917280-1 2.847150-2 6.031834-1 2.862063-2 6.274699-1 2.870617-2 6.726462-1 2.879125-2 7.627543-1 2.885630-2 8.751949-1 2.893340-2 1.068689+0 2.902366-2 1.382153+0 2.918791-2 2.115053+0 2.934401-2 2.776745+0 2.947927-2 3.160653+0 2.963353-2 3.363664+0 2.991466-2 3.407743+0 3.459454-2 2.697815+0 3.983973-2 2.141275+0 4.566399-2 1.695874+0 5.098682-2 1.400207+0 5.784497-2 1.122057+0 6.354182-2 9.487209-1 7.141417-2 7.687613-1 8.023706-2 6.212433-1 9.002494-2 5.025990-1 1.012385-1 4.039554-1 1.115417-1 3.372992-1 1.219459-1 2.852209-1 1.351407-1 2.350775-1 1.501520-1 1.927905-1 1.649410-1 1.616198-1 1.825563-1 1.335798-1 2.022080-1 1.102715-1 2.243688-1 9.100842-2 2.479562-1 7.571193-2 2.722701-1 6.395574-2 3.019952-1 5.314903-2 3.352631-1 4.428309-2 3.762401-1 3.641928-2 4.201348-1 3.037707-2 4.705800-1 2.538134-2 5.385798-1 2.070051-2 6.008278-1 1.769869-2 6.920799-1 1.464018-2 7.864324-1 1.249137-2 9.015711-1 1.066484-2 1.070165+0 8.881964-3 1.286622+0 7.271901-3 1.546860+0 5.953700-3 1.859734+0 4.874453-3 2.235892+0 3.990845-3 2.688134+0 3.267411-3 3.231848+0 2.675117-3 3.885536+0 2.190190-3 4.671441+0 1.793167-3 5.616308+0 1.468114-3 6.752287+0 1.201984-3 8.118035+0 9.840963-4 9.760024+0 8.057059-4 1.000000+1 1.639504-3 1 50000 7 0 1.186900+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-4.991232+1 2.713136-6-4.850373+1 2.898490-6-4.661814+1 2.935807-6-4.435536+1 2.969361-6-4.153079+1 2.984465-6-4.303098+1 3.003006-6-4.898462+1 3.006087-6-5.016261+1 3.024591-6-4.498408+1 3.039019-6-4.404694+1 3.096307-6-4.874617+1 3.112155-6-4.928051+1 3.456943-6-4.679299+1 3.497969-6-4.605221+1 3.537247-6-5.030677+1 3.568109-6-4.893659+1 3.616714-6-5.009684+1 4.000590-6-4.535640+1 4.086214-6-4.209654+1 4.118239-6-3.888137+1 4.166142-6-3.006887+1 4.177013-6-2.936837+1 4.188774-6-3.077341+1 4.199199-6-3.393946+1 4.213129-6-4.147040+1 4.226090-6-5.063588+1 4.238939-6-4.229439+1 4.249305-6-3.708518+1 4.262004-6-3.386538+1 4.272967-6-3.314173+1 4.285674-6-3.461676+1 4.336655-6-4.403000+1 4.393497-6-4.849713+1 4.455517-6-5.022141+1 4.530124-6-5.068343+1 4.627881-6-4.649364+1 4.688950-6-4.160060+1 4.712144-6-4.246748+1 4.733899-6-4.628606+1 4.755003-6-5.069167+1 4.777812-6-4.732111+1 4.802910-6-4.777958+1 4.828199-6-5.092895+1 4.861516-6-4.899710+1 4.886427-6-5.070117+1 4.927789-6-4.439978+1 4.957431-6-4.370200+1 5.114534-6-5.117548+1 5.169290-6-4.948544+1 5.213450-6-5.106009+1 5.257760-6-4.944909+1 5.299430-6-5.152544+1 5.356572-6-4.896885+1 5.397381-6-5.111833+1 5.407082-6-5.150970+1 5.454556-6-4.819220+1 5.507043-6-4.825542+1 5.690500-6-5.147491+1 5.795370-6-4.984580+1 5.910336-6-5.092603+1 6.376380-6-5.157856+1 6.773110-6-4.492131+1 6.887011-6-4.094882+1 6.939393-6-3.711017+1 7.022141-6-2.609380+1 7.039242-6-2.507432+1 7.056343-6-2.577203+1 7.071842-6-2.833129+1 7.085736-6-3.224565+1 7.102303-6-3.855885+1 7.126306-6-4.935431+1 7.133253-6-4.791825+1 7.142525-6-4.383302+1 7.161255-6-3.760767+1 7.179910-6-3.405486+1 7.200769-6-3.322612+1 7.222546-6-3.516350+1 7.317451-6-4.909749+1 7.327307-6-4.961094+1 7.417892-6-3.980714+1 7.450649-6-3.417902+1 7.470995-6-2.853863+1 7.494823-6-2.284863+1 7.516478-6-1.679195+1 7.534835-6-1.243783+1 7.538600-6-1.181005+1 7.552189-6-1.016333+1 7.559216-6-1.008791+1 7.568251-6-1.079073+1 7.574562-6-1.181913+1 7.579832-6-1.315443+1 7.586608-6-1.555853+1 7.597221-6-2.045560+1 7.604240-6-2.468100+1 7.620600-6-3.672643+1 7.635091-6-4.958059+1 7.650332-6-3.513726+1 7.660037-6-2.648958+1 7.665630-6-2.152365+1 7.679542-6-1.125867+1 7.681693-6-9.810042+0 7.685458-6-7.582497+0 7.688281-6-6.080364+0 7.692516-6-4.024299+0 7.696752-6-2.092565+0 7.699046-6-1.112108+0 7.703062-6 3.100967-1 7.706074-6 1.207771+0 7.710591-6 2.305881+0 7.712850-6 2.739093+0 7.715109-6 3.065502+0 7.719698-6 3.592374+0 7.723140-6 3.887968+0 7.728303-6 4.077226+0 7.730884-6 4.023168+0 7.742645-6 2.840956+0 7.747234-6 2.236637+0 7.749528-6 1.829596+0 7.751823-6 1.246972+0 7.754118-6 6.371704-1 7.762149-6-1.021038+0 7.766165-6-1.917390+0 7.768172-6-2.430130+0 7.770180-6-3.072028+0 7.794848-6-9.598913+0 7.820663-6-1.526319+1 7.830257-6-1.820423+1 7.845219-6-2.112096+1 7.869982-6-2.439211+1 7.918797-6-2.851504+1 7.995051-6-3.230530+1 8.140777-6-3.613538+1 8.406894-6-3.933064+1 8.994041-6-4.198441+1 1.131067-5-4.533573+1 1.148070-5-4.509554+1 1.165997-5-4.322789+1 1.236272-5-4.477202+1 2.220147-5-4.831205+1 2.494002-5-5.085280+1 2.568133-5-4.812867+1 2.593834-5-4.496755+1 2.626045-5-3.819474+1 2.636021-5-3.867350+1 2.645200-5-4.170183+1 2.662181-5-5.169347+1 2.673317-5-4.599280+1 2.683909-5-4.412053+1 2.706627-5-4.463901+1 2.738889-5-3.764303+1 2.752519-5-3.720653+1 2.838723-5-4.428612+1 3.024761-5-5.028451+1 3.076761-5-4.847917+1 3.134843-5-5.056544+1 3.192445-5-4.906903+1 3.341872-5-5.080300+1 4.441130-5-6.085971+1 4.770100-5-6.031009+1 5.110000-5-5.538892+1 6.000000-5-3.453149+1 6.337405-5-2.839651+1 6.698581-5-2.379842+1 7.003800-5-2.142612+1 7.328245-5-2.011568+1 7.758190-5-1.975269+1 8.385116-5-2.086264+1 9.420979-5-2.430898+1 9.692183-5-2.519712+1 1.170000-4-2.852477+1 1.461679-4-3.189015+1 1.975000-4-3.339673+1 3.527674-4-3.455676+1 4.174698-4-3.689874+1 4.603891-4-4.048933+1 4.854093-4-4.491325+1 4.990910-4-5.021495+1 5.116874-4-5.703536+1 5.197000-4-5.735817+1 5.331600-4-5.306481+1 5.601680-4-4.155206+1 5.830194-4-3.514859+1 6.051999-4-3.127116+1 6.326766-4-2.836379+1 6.708677-4-2.584624+1 6.952279-4-2.537160+1 7.113286-4-2.605401+1 7.314053-4-2.348051+1 7.581041-4-2.209576+1 7.807344-4-1.996103+1 8.235014-4-1.751322+1 8.526636-4-1.655998+1 8.723026-4-1.617353+1 8.982541-4-1.457288+1 9.522477-4-1.256167+1 1.037731-3-1.040395+1 1.127887-3-8.829498+0 1.228800-3-7.621938+0 1.364583-3-6.567093+0 1.500548-3-5.923468+0 1.698244-3-5.428861+0 1.912543-3-5.239343+0 2.195351-3-5.297787+0 2.528889-3-5.660738+0 2.874339-3-6.296587+0 3.218179-3-7.271982+0 3.471542-3-8.407063+0 3.644973-3-9.656909+0 3.755950-3-1.097021+1 3.823238-3-1.233014+1 3.866056-3-1.395488+1 3.914040-3-1.631830+1 3.936766-3-1.641953+1 3.974256-3-1.488638+1 4.007334-3-1.351412+1 4.050084-3-1.265004+1 4.096315-3-1.254570+1 4.155979-3-1.293724+1 4.188867-3-1.228915+1 4.258315-3-1.030028+1 4.322147-3-9.358428+0 4.381944-3-9.044347+0 4.431048-3-8.968523+0 4.472773-3-8.377037+0 4.535311-3-7.185815+0 4.621937-3-6.125857+0 4.756838-3-5.008942+0 4.912347-3-4.069148+0 5.091843-3-3.253514+0 5.246071-3-2.711690+0 5.451698-3-2.138390+0 5.707591-3-1.598769+0 5.955584-3-1.207732+0 6.126148-3-9.884720-1 6.305176-3-8.026868-1 6.559564-3-5.905653-1 6.741398-3-4.651941-1 6.972972-3-3.361597-1 7.088378-3-2.784113-1 7.307183-3-1.875382-1 7.588484-3-1.001230-1 7.797429-3-4.717262-2 7.852356-3-3.558390-2 7.951860-3-1.687206-2 8.025197-3-5.093379-3 8.104944-3 7.993315-3 8.147336-3 1.416039-2 8.327369-3 3.572534-2 8.395808-3 4.246876-2 8.511380-3 5.217887-2 8.712856-3 6.621418-2 8.961695-3 7.270459-2 9.194752-3 7.578430-2 9.409526-3 7.523319-2 9.747793-3 6.727289-2 1.004146-2 5.585884-2 1.023937-2 4.516630-2 1.040557-2 3.510696-2 1.071950-2 1.374767-2 1.076156-2 1.058706-2 1.087433-2 1.294659-3 1.088616-2 3.624777-4 1.096182-2-5.452068-3 1.109175-2-1.551175-2 1.144305-2-4.561357-2 1.248551-2-1.419304-1 2.018346-2-9.221030-1 2.248527-2-1.187244+0 2.444434-2-1.472636+0 2.593984-2-1.776316+0 2.695131-2-2.078872+0 2.762868-2-2.381196+0 2.813254-2-2.723391+0 2.847150-2-3.099101+0 2.870617-2-3.544185+0 2.906014-2-4.432454+0 2.918791-2-4.522890+0 2.934401-2-4.313897+0 2.969804-2-3.322450+0 2.991466-2-2.878760+0 3.018255-2-2.516562+0 3.057851-2-2.151945+0 3.112995-2-1.801068+0 3.176515-2-1.505371+0 3.264159-2-1.206556+0 3.373070-2-9.405008-1 3.459454-2-7.825252-1 3.570062-2-6.212718-1 3.662267-2-5.125888-1 3.791153-2-3.872194-1 3.871973-2-3.230859-1 3.983973-2-2.487751-1 4.042209-2-2.151703-1 4.118821-2-1.766163-1 4.216230-2-1.331782-1 4.333861-2-8.794396-2 4.398659-2-6.784733-2 4.522778-2-3.305168-2 4.634252-2-7.891976-3 4.675697-2-3.076183-4 4.677352-2-9.363249-7 4.734043-2 1.053760-2 4.862618-2 3.085771-2 4.972967-2 4.466523-2 5.098682-2 5.788264-2 5.343863-2 7.629932-2 5.495409-2 8.492283-2 5.647744-2 9.121384-2 5.784497-2 9.436085-2 6.065290-2 9.646650-2 6.354182-2 9.449043-2 6.847215-2 8.602853-2 7.318850-2 7.307015-2 9.353733-2 4.560592-3 9.453790-2 1.264872-3 9.492149-2-1.991202-5 9.569326-2-2.589352-3 9.728385-2-7.739569-3 1.035142-1-2.709553-2 1.115417-1-4.987291-2 1.219459-1-7.600234-2 1.351407-1-1.047530-1 1.555538-1-1.401609-1 1.825563-1-1.748887-1 2.161590-1-2.053497-1 2.722701-1-2.376602-1 3.628250-1-2.655947-1 5.232991-1-2.869845-1 9.015711-1-3.016542-1 2.814822+0-3.083610-1 8.500626+0-3.091205-1 1.000000+1-3.090115-1 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.646979-3 1.060920-6 2.104296-3 1.199882-6 3.511538-3 1.357045-6 5.945475-3 1.582757-6 1.175952-2 1.683225-6 1.555817-2 1.790070-6 2.068730-2 1.908574-6 2.802513-2 2.160227-6 5.107651-2 2.280758-6 6.707025-2 2.317801-6 7.282516-2 2.426681-6 9.266805-2 2.542219-6 1.193368-1 2.658920-6 1.540809-1 2.744141-6 1.855211-1 2.824036-6 2.210258-1 2.908281-6 2.661762-1 2.969156-6 3.045736-1 3.034987-6 3.532532-1 3.096704-6 4.067723-1 3.154563-6 4.655647-1 3.217421-6 5.405572-1 3.259659-6 5.986458-1 3.307334-6 6.740348-1 3.358148-6 7.673548-1 3.393930-6 8.427071-1 3.436802-6 9.460262-1 3.470040-6 1.037597+0 3.504566-6 1.145784+0 3.539196-6 1.270124+0 3.567279-6 1.384890+0 3.595727-6 1.516637+0 3.622398-6 1.657227+0 3.647401-6 1.806975+0 3.677735-6 2.016646+0 3.692817-6 2.134605+0 3.713420-6 2.313597+0 3.734557-6 2.522716+0 3.750841-6 2.704911+0 3.767817-6 2.918258+0 3.783732-6 3.144124+0 3.798652-6 3.383072+0 3.812639-6 3.635711+0 3.827719-6 3.945601+0 3.838046-6 4.184750+0 3.849572-6 4.482497+0 3.860377-6 4.796577+0 3.870507-6 5.127625+0 3.889500-6 5.869663+0 3.906119-6 6.696201+0 3.920661-6 7.620251+0 3.933385-6 8.658986+0 3.944518-6 9.830087+0 3.954260-6 1.114528+1 3.962784-6 1.260433+1 3.970243-6 1.419261+1 3.976769-6 1.588280+1 3.982479-6 1.763945+1 3.987476-6 1.942410+1 3.991848-6 2.119986+1 3.999021-6 2.460176+1 4.009272-6 3.066825+1 4.026262-6 4.431433+1 4.032353-6 5.035152+1 4.037304-6 5.568067+1 4.042254-6 6.135448+1 4.052155-6 7.352963+1 4.053392-6 7.510829+1 4.062055-6 8.630762+1 4.065459-6 9.070020+1 4.071956-6 9.888426+1 4.075360-6 1.029878+2 4.078608-6 1.067363+2 4.081857-6 1.102824+2 4.086189-6 1.146322+2 4.090365-6 1.183453+2 4.094233-6 1.212999+2 4.097482-6 1.233844+2 4.102277-6 1.257408+2 4.108079-6 1.273584+2 4.112468-6 1.276401+2 4.118510-6 1.266722+2 4.122853-6 1.250148+2 4.126643-6 1.229329+2 4.131438-6 1.194968+2 4.135155-6 1.162606+2 4.142170-6 1.089559+2 4.145999-6 1.044098+2 4.149226-6 1.003287+2 4.153483-6 9.466526+1 4.156799-6 9.008424+1 4.161063-6 8.405034+1 4.165395-6 7.783697+1 4.169920-6 7.134828+1 4.175914-6 6.290450+1 4.180246-6 5.700400+1 4.182102-6 5.454365+1 4.186434-6 4.899091+1 4.190765-6 4.373399+1 4.201285-6 3.237034+1 4.204476-6 2.934198+1 4.207521-6 2.663641+1 4.210567-6 2.411060+1 4.213042-6 2.218853+1 4.216291-6 1.983990+1 4.220957-6 1.680042+1 4.225834-6 1.402376+1 4.229703-6 1.209180+1 4.233542-6 1.039492+1 4.239244-6 8.243719+0 4.244887-6 6.502069+0 4.248615-6 5.537574+0 4.252313-6 4.710348+0 4.259624-6 3.404246+0 4.266821-6 2.470666+0 4.421956-6 1.846218+0 4.694404-6 9.691412+0 4.722043-6 1.279741+1 4.745288-6 1.671552+1 4.758364-6 1.923842+1 4.768534-6 2.118147+1 4.772529-6 2.190695+1 4.781609-6 2.341119+1 4.787965-6 2.429944+1 4.791779-6 2.475031+1 4.796864-6 2.524144+1 4.801767-6 2.558365+1 4.808487-6 2.582371+1 4.813390-6 2.582168+1 4.815025-6 2.578678+1 4.820836-6 2.552268+1 4.825921-6 2.511326+1 4.828736-6 2.481656+1 4.833503-6 2.420451+1 4.838633-6 2.340039+1 4.842965-6 2.261369+1 4.848161-6 2.155494+1 4.852856-6 2.050518+1 4.856543-6 1.962970+1 4.861674-6 1.835277+1 4.865935-6 1.725493+1 4.871140-6 1.588785+1 4.875664-6 1.469302+1 4.880653-6 1.338615+1 4.885831-6 1.206095+1 4.890971-6 1.079379+1 4.896196-6 9.570867+0 4.902785-6 8.142425+0 4.908474-6 7.025121+0 4.914232-6 6.012592+0 4.931661-6 3.701281+0 4.935245-6 3.363017+0 4.937523-6 3.170806+0 4.944358-6 2.695489+0 4.946893-6 2.555785+0 4.948794-6 2.463246+0 4.950220-6 2.400498+0 4.953428-6 2.279366+0 4.955574-6 2.213187+0 4.956957-6 2.176560+0 4.959550-6 2.120094+0 4.961819-6 2.083177+0 4.965790-6 2.044829+0 4.968769-6 2.036479+0 4.973236-6 2.053840+0 4.977704-6 2.103616+0 4.983697-6 2.215027+0 4.989690-6 2.370469+0 4.997300-6 2.620748+0 5.017019-6 3.475018+0 5.029130-6 4.107949+0 5.041240-6 4.806124+0 5.053350-6 5.565735+0 5.077571-6 7.283130+0 5.085582-6 7.918229+0 5.101791-6 9.327716+0 5.150233-6 1.496106+1 5.162343-6 1.686178+1 5.172563-6 1.869097+1 5.182145-6 2.063573+1 5.191128-6 2.270596+1 5.199549-6 2.491245+1 5.215339-6 2.995816+1 5.229156-6 3.572246+1 5.241245-6 4.225234+1 5.251823-6 4.952888+1 5.261079-6 5.746148+1 5.269178-6 6.590107+1 5.276265-6 7.466380+1 5.282465-6 8.355623+1 5.292638-6 1.010245+2 5.323570-6 1.822949+2 5.333513-6 2.191612+2 5.341582-6 2.532054+2 5.348140-6 2.835274+2 5.354697-6 3.160809+2 5.367813-6 3.868764+2 5.369452-6 3.961525+2 5.380928-6 4.626480+2 5.385923-6 4.919414+2 5.395190-6 5.455190+2 5.399495-6 5.696061+2 5.403401-6 5.907644+2 5.409809-6 6.235982+2 5.414715-6 6.467686+2 5.418722-6 6.641789+2 5.423981-6 6.846716+2 5.430108-6 7.047499+2 5.438192-6 7.242209+2 5.443875-6 7.327059+2 5.449198-6 7.365474+2 5.455712-6 7.357103+2 5.461977-6 7.291434+2 5.465130-6 7.237362+2 5.471131-6 7.096868+2 5.477435-6 6.899017+2 5.484273-6 6.631320+2 5.489662-6 6.385926+2 5.495231-6 6.104988+2 5.500100-6 5.840271+2 5.505910-6 5.505859+2 5.509396-6 5.297727+2 5.513346-6 5.056940+2 5.518531-6 4.735757+2 5.523530-6 4.423744+2 5.525197-6 4.319802+2 5.531754-6 3.913943+2 5.537492-6 3.566520+2 5.539951-6 3.420808+2 5.545689-6 3.090114+2 5.551427-6 2.774652+2 5.564543-6 2.121774+2 5.568248-6 1.956173+2 5.585165-6 1.310847+2 5.592218-6 1.094439+2 5.598812-6 9.183982+1 5.605741-6 7.589215+1 5.612458-6 6.272798+1 5.620875-6 4.908258+1 5.630751-6 3.656345+1 5.646884-6 2.251844+1 5.653397-6 1.858165+1 5.660220-6 1.527306+1 5.665338-6 1.324711+1 5.668749-6 1.208072+1 5.674720-6 1.034156+1 5.679197-6 9.252034+0 5.680690-6 8.924239+0 5.694336-6 6.571437+0 5.696042-6 6.342786+0 5.707983-6 5.021715+0 5.716606-6 4.291974+0 5.735027-6 3.110902+0 5.755745-6 2.164289+0 5.770245-6 1.679333+0 5.777921-6 1.475868+0 5.780906-6 1.406301+0 5.788742-6 1.248492+0 5.792313-6 1.188285+0 5.795112-6 1.146176+0 5.803508-6 1.046518+0 5.810003-6 9.972545-1 5.814989-6 9.765722-1 5.818078-6 9.715940-1 5.820414-6 9.719942-1 5.824596-6 9.821187-1 5.827221-6 9.949749-1 5.830679-6 1.020078+0 5.835867-6 1.076566+0 5.841054-6 1.158121+0 5.854886-6 1.524965+0 5.868718-6 2.179505+0 5.882550-6 3.243031+0 5.908366-6 6.956219+0 5.918851-6 9.427109+0 5.928026-6 1.223419+1 5.936054-6 1.529805+1 5.943078-6 1.853267+1 5.949224-6 2.185337+1 5.959308-6 2.845566+1 5.963426-6 3.161858+1 5.970631-6 3.788962+1 5.980089-6 4.770509+1 5.989968-6 6.013173+1 5.995644-6 6.837982+1 6.002099-6 7.881646+1 6.008553-6 9.043373+1 6.012241-6 9.762008+1 6.020540-6 1.152803+2 6.027036-6 1.305551+2 6.038059-6 1.593354+2 6.052812-6 2.029839+2 6.057732-6 2.186352+2 6.071044-6 2.628714+2 6.076669-6 2.820264+2 6.082038-6 3.003330+2 6.089261-6 3.246896+2 6.095781-6 3.460650+2 6.103103-6 3.689335+2 6.109218-6 3.867673+2 6.115405-6 4.033246+2 6.123179-6 4.215792+2 6.130204-6 4.352353+2 6.138894-6 4.478980+2 6.145470-6 4.540980+2 6.154519-6 4.575915+2 6.159678-6 4.569137+2 6.174582-6 4.442133+2 6.180039-6 4.357636+2 6.182846-6 4.306823+2 6.191267-6 4.126711+2 6.198117-6 3.952782+2 6.203109-6 3.812774+2 6.207791-6 3.672819+2 6.213722-6 3.485613+2 6.220381-6 3.265240+2 6.225943-6 3.075560+2 6.233094-6 2.827800+2 6.240509-6 2.570487+2 6.246071-6 2.379849+2 6.249778-6 2.254809+2 6.256267-6 2.041454+2 6.262755-6 1.836836+2 6.264609-6 1.780233+2 6.274342-6 1.498475+2 6.280405-6 1.337236+2 6.287803-6 1.156485+2 6.296471-6 9.679340+1 6.306444-6 7.823246+1 6.324585-6 5.274589+1 6.331736-6 4.541560+1 6.337961-6 4.016238+1 6.341345-6 3.771708+1 6.351499-6 3.196317+1 6.355807-6 3.017296+1 6.358546-6 2.921647+1 6.367244-6 2.702087+1 6.370682-6 2.646848+1 6.374461-6 2.604175+1 6.376379-6 2.589161+1 6.382372-6 2.567854+1 6.386842-6 2.573975+1 6.392028-6 2.600378+1 6.398171-6 2.652756+1 6.407052-6 2.755801+1 6.423275-6 2.972672+1 6.430054-6 3.056168+1 6.437116-6 3.130180+1 6.444682-6 3.189772+1 6.447347-6 3.205146+1 6.453431-6 3.228288+1 6.460001-6 3.233763+1 6.462709-6 3.230003+1 6.476042-6 3.161293+1 6.481055-6 3.115182+1 6.491597-6 2.987340+1 6.500102-6 2.859634+1 6.507538-6 2.735504+1 6.517742-6 2.555029+1 6.546096-6 2.080766+1 6.554602-6 1.967567+1 6.563373-6 1.871539+1 6.570615-6 1.809347+1 6.577007-6 1.767633+1 6.586628-6 1.727829+1 6.593019-6 1.716029+1 6.600023-6 1.715647+1 6.607653-6 1.729009+1 6.615546-6 1.756535+1 6.621888-6 1.787783+1 6.631423-6 1.848565+1 6.636542-6 1.887539+1 6.646394-6 1.974338+1 6.656031-6 2.074178+1 6.666453-6 2.199698+1 6.678631-6 2.372378+1 6.690519-6 2.572583+1 6.698734-6 2.732011+1 6.703903-6 2.842057+1 6.717337-6 3.166091+1 6.735770-6 3.704311+1 6.749170-6 4.160197+1 6.765663-6 4.778076+1 6.776778-6 5.212603+1 6.786105-6 5.575543+1 6.790633-6 5.747849+1 6.800289-6 6.099333+1 6.809127-6 6.393209+1 6.815164-6 6.573629+1 6.822744-6 6.771864+1 6.829138-6 6.911160+1 6.837538-6 7.050834+1 6.845255-6 7.132328+1 6.849007-6 7.155011+1 6.855422-6 7.167555+1 6.862906-6 7.140200+1 6.869380-6 7.080584+1 6.872876-6 7.034923+1 6.880205-6 6.909883+1 6.886779-6 6.766054+1 6.893054-6 6.603357+1 6.901399-6 6.353277+1 6.908612-6 6.111118+1 6.914921-6 5.883587+1 6.920975-6 5.654799+1 6.929959-6 5.302889+1 6.937589-6 4.998782+1 6.947603-6 4.602270+1 6.960479-6 4.113973+1 6.981431-6 3.419389+1 6.991179-6 3.153420+1 6.997315-6 3.007368+1 7.005030-6 2.848187+1 7.012904-6 2.714431+1 7.019994-6 2.618801+1 7.024837-6 2.566835+1 7.027967-6 2.538906+1 7.033260-6 2.501559+1 7.042916-6 2.464116+1 7.052348-6 2.463100+1 7.056882-6 2.474019+1 7.061560-6 2.492380+1 7.072785-6 2.562479+1 7.079347-6 2.617896+1 7.093023-6 2.758584+1 7.117112-6 3.045673+1 7.129530-6 3.189657+1 7.141567-6 3.313662+1 7.146277-6 3.356343+1 7.157500-6 3.442043+1 7.163756-6 3.479111+1 7.177141-6 3.531076+1 7.187477-6 3.545824+1 7.198101-6 3.539541+1 7.210217-6 3.509511+1 7.225414-6 3.445952+1 7.272227-6 3.200246+1 7.280845-6 3.164089+1 7.298089-6 3.109559+1 7.314552-6 3.080277+1 7.330508-6 3.070357+1 7.351545-6 3.076544+1 7.409869-6 3.119418+1 7.454747-6 3.126766+1 7.535278-6 3.123207+1 7.590947-6 3.139018+1 7.643202-6 3.171793+1 7.713516-6 3.234342+1 7.740831-6 3.245867+1 7.760892-6 3.240099+1 7.786069-6 3.210953+1 7.822353-6 3.138327+1 7.839742-6 3.110303+1 7.860376-6 3.114575+1 7.881388-6 3.207069+1 7.886226-6 3.247847+1 7.891679-6 3.305101+1 7.895950-6 3.359311+1 7.903180-6 3.472319+1 7.909498-6 3.595906+1 7.912642-6 3.667049+1 7.917332-6 3.786248+1 7.921561-6 3.908199+1 7.931176-6 4.242510+1 7.939772-6 4.617684+1 7.946950-6 4.994046+1 7.953391-6 5.386320+1 7.959026-6 5.775797+1 7.968273-6 6.517178+1 7.978656-6 7.516925+1 7.994296-6 9.398338+1 8.012109-6 1.215468+2 8.028008-6 1.520930+2 8.037852-6 1.738505+2 8.057539-6 2.235024+2 8.060000-6 2.302297+2 8.077227-6 2.799002+2 8.083994-6 3.003603+2 8.096914-6 3.401412+2 8.106911-6 3.709199+2 8.111756-6 3.856253+2 8.119062-6 4.073220+2 8.126598-6 4.288501+2 8.133866-6 4.485157+2 8.141210-6 4.670309+2 8.150482-6 4.880576+2 8.157206-6 5.014178+2 8.168741-6 5.201234+2 8.177749-6 5.306634+2 8.189575-6 5.386686+2 8.198540-6 5.401659+2 8.205522-6 5.385807+2 8.214740-6 5.328577+2 8.221249-6 5.264081+2 8.235955-6 5.050156+2 8.243813-6 4.900822+2 8.250437-6 4.758435+2 8.256873-6 4.607351+2 8.264409-6 4.416677+2 8.271676-6 4.221226+2 8.279021-6 4.014729+2 8.288249-6 3.746377+2 8.293786-6 3.582508+2 8.303630-6 3.289581+2 8.313473-6 2.999050+2 8.324547-6 2.680825+2 8.333161-6 2.443055+2 8.352848-6 1.942963+2 8.359615-6 1.787286+2 8.366709-6 1.633777+2 8.377457-6 1.420578+2 8.395797-6 1.110686+2 8.420868-6 7.906304+1 8.433727-6 6.676909+1 8.441987-6 6.016072+1 8.449990-6 5.463170+1 8.457742-6 5.002789+1 8.465252-6 4.621694+1 8.475359-6 4.200831+1 8.479576-6 4.054140+1 8.493232-6 3.685922+1 8.508105-6 3.455802+1 8.518036-6 3.395419+1 8.523662-6 3.393987+1 8.528394-6 3.411415+1 8.531045-6 3.428767+1 8.536265-6 3.479271+1 8.541321-6 3.549575+1 8.546219-6 3.638709+1 8.550965-6 3.745861+1 8.555562-6 3.870339+1 8.564468-6 4.174336+1 8.572818-6 4.543019+1 8.580646-6 4.972301+1 8.587985-6 5.458074+1 8.594865-6 5.995987+1 8.601316-6 6.581370+1 8.607363-6 7.209236+1 8.613032-6 7.874345+1 8.621546-6 9.027719+1 8.628000-6 1.003892+2 8.644422-6 1.323125+2 8.668764-6 1.997561+2 8.684525-6 2.592616+2 8.698737-6 3.254804+2 8.706717-6 3.683685+2 8.713097-6 4.057619+2 8.719477-6 4.459886+2 8.730182-6 5.199684+2 8.740886-6 6.021239+2 8.763634-6 8.028759+2 8.766143-6 8.270441+2 8.785043-6 1.019972+3 8.791942-6 1.094350+3 8.805114-6 1.240139+3 8.815986-6 1.362255+3 8.826523-6 1.480032+3 8.837395-6 1.598724+3 8.847932-6 1.708802+3 8.857299-6 1.800762+3 8.867648-6 1.894051+3 8.880381-6 1.994140+3 8.890918-6 2.062638+3 8.898012-6 2.100626+3 8.908372-6 2.143513+3 8.918478-6 2.170267+3 8.927910-6 2.181433+3 8.937965-6 2.178601+3 8.940092-6 2.176074+3 8.956316-6 2.135368+3 8.966509-6 2.091474+3 8.976388-6 2.036733+3 8.987552-6 1.962067+3 8.997797-6 1.883343+3 9.007163-6 1.804363+3 9.016195-6 1.723212+3 9.029911-6 1.593438+3 9.040615-6 1.489055+3 9.053316-6 1.364494+3 9.062024-6 1.279997+3 9.086110-6 1.056978+3 9.104843-6 9.001411+2 9.129762-6 7.201602+2 9.161212-6 5.422806+2 9.182040-6 4.526603+2 9.195862-6 4.039862+2 9.209630-6 3.629504+2 9.223344-6 3.284972+2 9.238654-6 2.964704+2 9.255480-6 2.677394+2 9.277668-6 2.379665+2 9.291950-6 2.225829+2 9.317909-6 2.001932+2 9.344491-6 1.826313+2 9.370867-6 1.688736+2 9.397036-6 1.577564+2 9.423000-6 1.485443+2 9.450798-6 1.401918+2 9.485121-6 1.315124+2 9.524846-6 1.231632+2 9.584689-6 1.130577+2 9.624856-6 1.075012+2 9.672314-6 1.018937+2 9.719942-6 9.709936+1 9.766825-6 9.303440+1 9.812977-6 8.954576+1 9.903127-6 8.384651+1 1.000000-5 7.890673+1 1.007646-5 7.564862+1 1.015909-5 7.263849+1 1.023913-5 7.013078+1 1.039179-5 6.613855+1 1.055621-5 6.265868+1 1.067379-5 6.056309+1 1.092163-5 5.688811+1 1.109174-5 5.481232+1 1.136241-5 5.201279+1 1.165229-5 4.947450+1 1.290836-5 4.104355+1 1.328408-5 3.857803+1 1.345732-5 3.705954+1 1.361821-5 3.531963+1 1.368524-5 3.496204+1 1.371876-5 3.502131+1 1.375228-5 3.529219+1 1.378580-5 3.579554+1 1.382780-5 3.674530+1 1.388636-5 3.851260+1 1.395340-5 4.067265+1 1.399683-5 4.181480+1 1.402914-5 4.241511+1 1.405258-5 4.269240+1 1.407743-5 4.283574+1 1.410227-5 4.282903+1 1.412100-5 4.273253+1 1.415452-5 4.239153+1 1.418804-5 4.188332+1 1.422156-5 4.126801+1 1.430275-5 3.965029+1 1.437180-5 3.840592+1 1.455300-5 3.610711+1 1.462464-5 3.551499+1 1.469628-5 3.512889+1 1.473210-5 3.502475+1 1.480358-5 3.498658+1 1.498284-5 3.522906+1 1.505453-5 3.512181+1 1.516542-5 3.467034+1 1.533738-5 3.391078+1 1.563808-5 3.295927+1 1.652407-5 3.016735+1 1.702428-5 2.871043+1 1.800046-5 2.599401+1 1.890561-5 2.367489+1 1.934159-5 2.261616+1 1.984398-5 2.142165+1 2.031099-5 2.034144+1 2.080331-5 1.921474+1 2.140000-5 1.788243+1 2.200000-5 1.656836+1 2.260000-5 1.528877+1 2.308000-5 1.427808+1 2.368207-5 1.303867+1 2.440373-5 1.154730+1 2.500000-5 1.034691+1 2.565517-5 9.051738+0 2.639129-5 7.601769+0 2.709101-5 6.252136+0 2.754148-5 5.385395+0 2.795898-5 4.595411+0 2.820543-5 4.138587+0 2.851018-5 3.582237+0 2.871759-5 3.207286+0 2.887144-5 2.931473+0 2.910612-5 2.517764+0 2.934308-5 2.113611+0 2.958076-5 1.726093+0 2.973128-5 1.491370+0 2.987239-5 1.279837+0 3.000468-5 1.090142+0 3.012870-5 9.213534-1 3.024497-5 7.727882-1 3.035398-5 6.437776-1 3.045617-5 5.335456-1 3.055197-5 4.412030-1 3.064179-5 3.657871-1 3.072599-5 3.062904-1 3.080493-5 2.616524-1 3.087894-5 2.307183-1 3.094832-5 2.121818-1 3.101336-5 2.045388-1 3.107434-5 2.060800-1 3.111290-5 2.112983-1 3.113151-5 2.149371-1 3.118510-5 2.291742-1 3.123535-5 2.469073-1 3.132662-5 2.862541-1 3.136802-5 3.052660-1 3.140683-5 3.226370-1 3.144322-5 3.378562-1 3.147733-5 3.506784-1 3.153883-5 3.690424-1 3.159871-5 3.800221-1 3.161303-5 3.816164-1 3.166038-5 3.843665-1 3.170920-5 3.841829-1 3.177383-5 3.831645-1 3.180073-5 3.841939-1 3.182427-5 3.866916-1 3.184486-5 3.906203-1 3.188090-5 4.029500-1 3.190794-5 4.183103-1 3.192821-5 4.342729-1 3.195862-5 4.671047-1 3.198903-5 5.131253-1 3.202840-5 5.977110-1 3.206777-5 7.184946-1 3.209099-5 8.108426-1 3.210714-5 8.859045-1 3.214650-5 1.112619+0 3.218587-5 1.413960+0 3.222524-5 1.808305+0 3.230398-5 2.967188+0 3.234335-5 3.787214+0 3.238272-5 4.811741+0 3.242208-5 6.079361+0 3.246145-5 7.632963+0 3.248114-5 8.531499+0 3.251066-5 1.004877+1 3.254019-5 1.178865+1 3.255987-5 1.308319+1 3.258940-5 1.524361+1 3.261893-5 1.768635+1 3.265921-5 2.151454+1 3.269135-5 2.501078+1 3.272059-5 2.855390+1 3.274849-5 3.227383+1 3.277640-5 3.633518+1 3.281296-5 4.218669+1 3.284953-5 4.864665+1 3.285959-5 5.053000+1 3.291239-5 6.115466+1 3.294032-5 6.725513+1 3.301261-5 8.441162+1 3.303968-5 9.126027+1 3.309135-5 1.047890+2 3.313198-5 1.156765+2 3.315167-5 1.209753+2 3.317136-5 1.262605+2 3.320908-5 1.362666+2 3.323796-5 1.437439+2 3.326154-5 1.496785+2 3.329249-5 1.571670+2 3.333228-5 1.661751+2 3.338257-5 1.763410+2 3.342013-5 1.829057+2 3.346922-5 1.900184+2 3.351044-5 1.946367+2 3.355563-5 1.982611+2 3.359939-5 2.003701+2 3.364963-5 2.011974+2 3.370264-5 2.004158+2 3.375050-5 1.984645+2 3.380596-5 1.950068+2 3.387538-5 1.893233+2 3.393887-5 1.832156+2 3.398837-5 1.780457+2 3.406262-5 1.698173+2 3.413687-5 1.611224+2 3.422527-5 1.501642+2 3.428579-5 1.422571+2 3.434444-5 1.342816+2 3.438629-5 1.284232+2 3.444123-5 1.205717+2 3.449420-5 1.128979+2 3.453984-5 1.062748+2 3.462183-5 9.455987+1 3.472432-5 8.070759+1 3.481625-5 6.944473+1 3.518154-5 3.763535+1 3.551638-5 2.172787+1 3.584240-5 1.268170+1 3.604142-5 9.195317+0 3.633441-5 5.808832+0 3.652276-5 4.309140+0 3.671110-5 3.141302+0 3.698218-5 1.875766+0 3.717597-5 1.221151+0 3.725326-5 1.019105+0 3.734362-5 8.305658-1 3.743398-5 6.994876-1 3.748634-5 6.527608-1 3.752434-5 6.333605-1 3.756657-5 6.268506-1 3.760881-5 6.368035-1 3.764244-5 6.568391-1 3.774334-5 7.825500-1 3.779542-5 8.854088-1 3.788651-5 1.122166+0 3.797908-5 1.422912+0 3.800223-5 1.504857+0 3.807165-5 1.759466+0 3.809360-5 1.841068+0 3.813200-5 1.982941+0 3.816081-5 2.087262+0 3.820401-5 2.237814+0 3.822562-5 2.309470+0 3.824722-5 2.378154+0 3.829829-5 2.526523+0 3.833659-5 2.622797+0 3.834936-5 2.651726+0 3.839565-5 2.742453+0 3.843036-5 2.795397+0 3.844193-5 2.810119+0 3.854360-5 2.878280+0 3.856732-5 2.879533+0 3.863847-5 2.856557+0 3.869776-5 2.815240+0 3.882040-5 2.714337+0 3.888368-5 2.680519+0 3.890478-5 2.675178+0 3.895808-5 2.678804+0 3.898254-5 2.689775+0 3.900890-5 2.708802+0 3.906994-5 2.783212+0 3.909043-5 2.817951+0 3.918596-5 3.042620+0 3.920953-5 3.112664+0 3.930493-5 3.441714+0 3.938260-5 3.742811+0 3.942996-5 3.929337+0 3.947755-5 4.111680+0 3.951121-5 4.234367+0 3.954326-5 4.344372+0 3.958371-5 4.471358+0 3.962722-5 4.590418+0 3.970411-5 4.749455+0 3.974905-5 4.809545+0 3.983678-5 4.856583+0 3.989544-5 4.840238+0 3.997373-5 4.770125+0 4.002521-5 4.702086+0 4.022118-5 4.402312+0 4.028360-5 4.329011+0 4.034816-5 4.279551+0 4.042969-5 4.263721+0 4.048447-5 4.284811+0 4.056595-5 4.363275+0 4.064743-5 4.493765+0 4.071707-5 4.640533+0 4.081217-5 4.881795+0 4.107508-5 5.682489+0 4.117361-5 6.003288+0 4.139286-5 6.738095+0 4.188197-5 8.628323+0 4.225000-5 1.043454+1 4.286742-5 1.432375+1 4.313125-5 1.632394+1 4.340000-5 1.859076+1 4.370000-5 2.142061+1 4.400000-5 2.459537+1 4.432852-5 2.850675+1 4.459362-5 3.202337+1 4.493724-5 3.709621+1 4.528324-5 4.283566+1 4.580743-5 5.288424+1 4.611501-5 5.962198+1 4.650000-5 6.900465+1 4.680000-5 7.710225+1 4.746158-5 9.765790+1 4.786301-5 1.121255+2 4.857208-5 1.417908+2 4.897980-5 1.614518+2 4.936199-5 1.817291+2 4.975740-5 2.046684+2 5.022445-5 2.343982+2 5.063143-5 2.627147+2 5.097502-5 2.884188+2 5.139912-5 3.223848+2 5.177424-5 3.544071+2 5.214935-5 3.882271+2 5.243381-5 4.150203+2 5.293160-5 4.640768+2 5.330495-5 5.025484+2 5.386498-5 5.626618+2 5.442500-5 6.249219+2 5.481250-5 6.687266+2 5.520000-5 7.127665+2 5.550000-5 7.468045+2 5.590000-5 7.918308+2 5.630000-5 8.361360+2 5.690000-5 9.005471+2 5.745900-5 9.576966+2 5.801400-5 1.010898+3 5.850000-5 1.053969+3 5.900000-5 1.094545+3 5.970000-5 1.145055+3 6.030000-5 1.182469+3 6.104192-5 1.221016+3 6.174875-5 1.250458+3 6.256043-5 1.276309+3 6.356934-5 1.298037+3 6.430555-5 1.307158+3 6.519215-5 1.311534+3 6.637304-5 1.308129+3 6.773233-5 1.294071+3 6.849330-5 1.282652+3 7.000000-5 1.253735+3 7.140624-5 1.220096+3 7.267695-5 1.185575+3 7.424621-5 1.139545+3 7.547258-5 1.101966+3 7.762471-5 1.034261+3 7.999535-5 9.604022+2 8.321831-5 8.649565+2 8.865480-5 7.244229+2 9.701534-5 5.591946+2 9.918419-5 5.237067+2 1.011272-4 4.922355+2 1.027174-4 4.639909+2 1.034585-4 4.514494+2 1.039974-4 4.446402+2 1.043886-4 4.414314+2 1.058496-4 4.352016+2 1.064476-4 4.300055+2 1.077694-4 4.140901+2 1.085174-4 4.070136+2 1.094643-4 4.011875+2 1.114644-4 3.915245+2 1.129298-4 3.829702+2 1.145795-4 3.717957+2 1.160161-4 3.609435+2 1.169258-4 3.549551+2 1.177338-4 3.508274+2 1.199220-4 3.426826+2 1.221081-4 3.341719+2 1.365500-4 2.810588+2 1.443562-4 2.593246+2 1.477479-4 2.515445+2 1.506430-4 2.470401+2 1.517460-4 2.443316+2 1.550236-4 2.343317+2 1.575072-4 2.283262+2 1.592681-4 2.259661+2 1.629831-4 2.243467+2 1.709645-4 2.190822+2 1.826612-4 2.130941+2 1.930000-4 2.098725+2 2.032690-4 2.082350+2 2.137962-4 2.076865+2 2.238721-4 2.078862+2 2.834654-4 2.123625+2 2.968247-4 2.126222+2 3.105620-4 2.121693+2 3.280500-4 2.102866+2 3.502475-4 2.057910+2 3.735712-4 1.979670+2 3.925443-4 1.889515+2 4.089727-4 1.789968+2 4.235210-4 1.683198+2 4.365158-4 1.571807+2 4.498898-4 1.439204+2 4.593884-4 1.333422+2 4.676996-4 1.231887+2 4.762806-4 1.118419+2 4.820865-4 1.036234+2 4.883711-4 9.418694+1 4.917751-4 8.885430+1 4.962105-4 8.167941+1 5.012419-4 7.323036+1 5.062956-4 6.445217+1 5.078455-4 6.171109+1 5.120908-4 5.412352+1 5.164199-4 4.640696+1 5.184909-4 4.282040+1 5.214228-4 3.799486+1 5.265943-4 3.063939+1 5.280346-4 2.896252+1 5.293051-4 2.767612+1 5.303580-4 2.678365+1 5.313510-4 2.612355+1 5.321963-4 2.573259+1 5.329981-4 2.553751+1 5.337318-4 2.553673+1 5.343768-4 2.569931+1 5.348917-4 2.595368+1 5.353887-4 2.631626+1 5.358177-4 2.673048+1 5.363206-4 2.734645+1 5.367276-4 2.795665+1 5.372669-4 2.893242+1 5.377501-4 2.998208+1 5.383607-4 3.156643+1 5.387397-4 3.270575+1 5.392077-4 3.428936+1 5.397297-4 3.630026+1 5.402790-4 3.871405+1 5.409541-4 4.212723+1 5.417633-4 4.691542+1 5.426517-4 5.311333+1 5.440382-4 6.490840+1 5.460516-4 8.697779+1 5.467486-4 9.602791+1 5.474999-4 1.065940+2 5.481499-4 1.164055+2 5.489499-4 1.293125+2 5.498832-4 1.454794+2 5.511248-4 1.687081+2 5.525134-4 1.967589+2 5.539050-4 2.267162+2 5.554000-4 2.605181+2 5.565866-4 2.882407+2 5.576000-4 3.123633+2 5.588398-4 3.422508+2 5.602683-4 3.769695+2 5.609500-4 3.935759+2 5.619522-4 4.179690+2 5.630141-4 4.437294+2 5.646071-4 4.820503+2 5.662000-4 5.197884+2 5.672180-4 5.434941+2 5.680734-4 5.631097+2 5.696000-4 5.972891+2 5.708003-4 6.232837+2 5.722500-4 6.534617+2 5.738266-4 6.845359+2 5.755545-4 7.162364+2 5.780000-4 7.564580+2 5.798164-4 7.826520+2 5.818602-4 8.084188+2 5.835101-4 8.265142+2 5.851750-4 8.425328+2 5.876789-4 8.628779+2 5.900069-4 8.783392+2 5.932371-4 8.952838+2 5.978293-4 9.124139+2 6.030947-4 9.251404+2 6.094692-4 9.342750+2 6.169947-4 9.389823+2 6.286914-4 9.386967+2 6.500000-4 9.365597+2 6.726691-4 9.418529+2 6.888505-4 9.475221+2 7.053404-4 9.503335+2 7.185711-4 9.484094+2 7.301188-4 9.418806+2 7.386751-4 9.324331+2 7.450970-4 9.237781+2 7.498392-4 9.201447+2 7.534024-4 9.219661+2 7.564528-4 9.281343+2 7.596657-4 9.396538+2 7.624007-4 9.529822+2 7.722248-4 1.008957+3 7.772123-4 1.031046+3 7.831831-4 1.048530+3 7.900514-4 1.060310+3 8.018856-4 1.076746+3 8.075000-4 1.089787+3 8.245830-4 1.144476+3 8.324575-4 1.163414+3 8.439584-4 1.182443+3 8.575671-4 1.198057+3 8.738051-4 1.211660+3 9.029710-4 1.227447+3 9.225925-4 1.246873+3 9.326240-4 1.258417+3 9.577174-4 1.293084+3 9.717198-4 1.306653+3 1.012581-3 1.333153+3 1.056589-3 1.351402+3 1.088421-3 1.360921+3 1.121988-3 1.367939+3 1.191411-3 1.373798+3 1.294333-3 1.372615+3 1.411014-3 1.362306+3 1.513561-3 1.345382+3 1.688501-3 1.310947+3 1.838786-3 1.275907+3 2.014014-3 1.233205+3 2.217038-3 1.181861+3 2.300780-3 1.160925+3 2.526388-3 1.102506+3 2.638086-3 1.074114+3 2.880997-3 1.010293+3 3.018174-3 9.745239+2 3.156452-3 9.364311+2 3.280278-3 9.015015+2 3.383630-3 8.711214+2 3.482772-3 8.405511+2 3.575671-3 8.103943+2 3.651389-3 7.841941+2 3.718076-3 7.592999+2 3.777713-3 7.347877+2 3.830414-3 7.109438+2 3.876196-3 6.879437+2 3.916685-3 6.650617+2 3.948359-3 6.447047+2 3.977555-3 6.229843+2 4.001980-3 6.014912+2 4.020590-3 5.823623+2 4.035035-3 5.657293+2 4.060716-3 5.335682+2 4.081104-3 5.091889+2 4.094124-3 4.966429+2 4.106503-3 4.884292+2 4.117078-3 4.850075+2 4.125424-3 4.848735+2 4.133822-3 4.870390+2 4.142458-3 4.915378+2 4.153481-3 5.001863+2 4.166205-3 5.132195+2 4.199327-3 5.523440+2 4.206919-3 5.606805+2 4.218761-3 5.723882+2 4.232245-3 5.834562+2 4.248728-3 5.935372+2 4.267450-3 6.006679+2 4.285420-3 6.038725+2 4.318025-3 6.040018+2 4.340480-3 6.036905+2 4.361903-3 6.066990+2 4.380585-3 6.137395+2 4.390411-3 6.192626+2 4.414290-3 6.370635+2 4.453496-3 6.716972+2 4.469904-3 6.849419+2 4.487481-3 6.971437+2 4.506625-3 7.078556+2 4.529129-3 7.172160+2 4.551268-3 7.235414+2 4.592223-3 7.301689+2 4.631434-3 7.355453+2 4.664984-3 7.445604+2 4.691255-3 7.557362+2 4.753264-3 7.882931+2 4.776239-3 7.989783+2 4.799085-3 8.079830+2 4.852055-3 8.235458+2 4.891861-3 8.320757+2 4.983143-3 8.461168+2 5.085390-3 8.559753+2 5.240527-3 8.635349+2 5.382233-3 8.651349+2 5.610341-3 8.607037+2 5.855770-3 8.503597+2 6.143904-3 8.329336+2 6.507849-3 8.070779+2 6.948243-3 7.726152+2 7.496329-3 7.293340+2 8.274847-3 6.706935+2 9.137345-3 6.114809+2 1.022890-2 5.463783+2 1.160927-2 4.779146+2 1.318727-2 4.144187+2 1.466920-2 3.652939+2 1.611134-2 3.247526+2 1.747833-2 2.914735+2 1.883993-2 2.624598+2 2.040820-2 2.332876+2 2.205926-2 2.067363+2 2.367567-2 1.840884+2 2.511886-2 1.660737+2 2.623510-2 1.532000+2 2.716235-2 1.429020+2 2.789881-2 1.347433+2 2.847807-2 1.281033+2 2.873611-2 1.249862+2 2.897457-2 1.219500+2 2.916318-2 1.193843+2 2.933710-2 1.168165+2 2.948315-2 1.144350+2 2.960541-2 1.122233+2 2.975924-2 1.091008+2 3.004127-2 1.026867+2 3.020012-2 9.943598+1 3.031154-2 9.779965+1 3.041401-2 9.698071+1 3.050145-2 9.686583+1 3.061359-2 9.747706+1 3.074918-2 9.911970+1 3.107699-2 1.044889+2 3.124323-2 1.067470+2 3.133548-2 1.077380+2 3.144692-2 1.087012+2 3.168600-2 1.100854+2 3.198895-2 1.109750+2 3.230383-2 1.113255+2 3.274769-2 1.112672+2 3.330576-2 1.106321+2 3.427678-2 1.087026+2 3.553631-2 1.053893+2 3.706716-2 1.008882+2 3.888265-2 9.543446+1 4.156195-2 8.766417+1 4.423495-2 8.046740+1 4.842372-2 7.055731+1 5.301977-2 6.141607+1 5.758604-2 5.381164+1 6.374600-2 4.543529+1 7.360168-2 3.546527+1 9.011460-2 2.477734+1 1.139680-1 1.626074+1 1.404429-1 1.109260+1 1.827623-1 6.798087+0 2.242189-1 4.616999+0 2.951209-1 2.721408+0 4.365158-1 1.270053+0 6.611690-1 5.615317-1 1.120601+0 1.973548-1 2.567148+0 3.779107-2 7.752663+0 4.148201-3 2.341267+1 4.548960-4 7.070513+1 4.987902-5 2.135261+2 5.469134-6 6.448384+2 5.996787-7 1.995262+3 6.263548-8 6.309573+3 6.263548-9 1.995262+4 6.26355-10 6.309573+4 6.26355-11 1.000000+5 2.49356-11 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.248100-6 1.258900-6 1.978000-6 1.584900-6 3.135000-6 1.995300-6 4.968600-6 2.511900-6 7.874600-6 3.162300-6 1.248000-5 3.981100-6 1.978000-5 5.011900-6 3.134900-5 6.309600-6 4.968500-5 7.943300-6 7.874400-5 1.000000-5 1.248000-4 1.258900-5 1.977900-4 1.584900-5 3.134700-4 1.995300-5 4.968100-4 2.511900-5 7.873700-4 3.162300-5 1.247700-3 3.981100-5 1.976800-3 5.011900-5 3.131900-3 6.309600-5 4.962300-3 7.943300-5 7.862400-3 1.000000-4 1.244800-2 1.258900-4 1.970700-2 1.584900-4 3.115900-2 1.995300-4 4.923900-2 2.511900-4 7.765300-2 3.162300-4 1.221400-1 3.981100-4 1.912800-1 5.011900-4 2.973700-1 6.309600-4 4.564200-1 7.943300-4 6.888700-1 1.000000-3 1.017200+0 1.258900-3 1.462000+0 1.584900-3 2.039200+0 1.995300-3 2.760700+0 2.511900-3 3.640100+0 3.162300-3 4.675000+0 3.981100-3 5.855100+0 5.011900-3 7.184900+0 6.309600-3 8.680600+0 7.943300-3 1.036300+1 1.000000-2 1.221200+1 1.258900-2 1.416000+1 1.584900-2 1.602900+1 1.995300-2 1.776600+1 2.511900-2 1.933600+1 3.162300-2 2.068900+1 3.981100-2 2.176000+1 5.011900-2 2.250700+1 6.309600-2 2.289400+1 7.943300-2 2.288100+1 1.000000-1 2.251400+1 1.258900-1 2.183700+1 1.584900-1 2.091400+1 1.995300-1 1.980300+1 2.511900-1 1.856000+1 3.162300-1 1.723700+1 3.981100-1 1.588400+1 5.011900-1 1.453600+1 6.309600-1 1.321500+1 7.943300-1 1.193600+1 1.000000+0 1.071700+1 1.258900+0 9.559100+0 1.584900+0 8.472500+0 1.995300+0 7.460600+0 2.511900+0 6.527700+0 3.162300+0 5.676200+0 3.981100+0 4.906600+0 5.011900+0 4.217500+0 6.309600+0 3.606600+0 7.943300+0 3.069100+0 1.000000+1 2.600200+0 1.258900+1 2.194100+0 1.584900+1 1.844600+0 1.995300+1 1.545700+0 2.511900+1 1.291300+0 3.162300+1 1.075900+0 3.981100+1 8.942200-1 5.011900+1 7.415800-1 6.309600+1 6.137600-1 7.943300+1 5.070500-1 1.000000+2 4.182000-1 1.258900+2 3.443900-1 1.584900+2 2.832200-1 1.995300+2 2.326200-1 2.511900+2 1.908300-1 3.162300+2 1.563800-1 3.981100+2 1.280300-1 5.011900+2 1.047100-1 6.309600+2 8.556700-2 7.943300+2 6.986600-2 1.000000+3 5.700200-2 1.258900+3 4.647300-2 1.584900+3 3.786300-2 1.995300+3 3.082900-2 2.511900+3 2.508600-2 3.162300+3 2.040100-2 3.981100+3 1.658200-2 5.011900+3 1.347100-2 6.309600+3 1.093800-2 7.943300+3 8.876700-3 1.000000+4 7.200800-3 1.258900+4 5.838800-3 1.584900+4 4.732400-3 1.995300+4 3.834200-3 2.511900+4 3.105200-3 3.162300+4 2.513900-3 3.981100+4 2.034400-3 5.011900+4 1.645900-3 6.309600+4 1.331100-3 7.943300+4 1.076100-3 1.000000+5 8.697500-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159547-4 3.981072-4 3.976752-4 5.011872-4 5.005045-4 6.309573-4 6.298779-4 7.943282-4 7.926328-4 1.000000-3 9.973373-4 1.258925-3 1.254748-3 1.584893-3 1.578378-3 1.995262-3 1.985087-3 2.511886-3 2.496050-3 3.162278-3 3.137618-3 3.981072-3 3.942708-3 5.011872-3 4.952165-3 6.309573-3 6.216536-3 7.943282-3 7.798134-3 1.000000-2 9.773316-3 1.258925-2 1.223804-2 1.584893-2 1.530716-2 1.995262-2 1.912048-2 2.511886-2 2.384468-2 3.162278-2 2.967809-2 3.981072-2 3.685723-2 5.011872-2 4.566133-2 6.309573-2 5.641507-2 7.943282-2 6.950683-2 1.000000-1 8.535640-2 1.258925-1 1.044986-1 1.584893-1 1.274910-1 1.995262-1 1.550249-1 2.511886-1 1.878721-1 3.162278-1 2.269516-1 3.981072-1 2.732725-1 5.011872-1 3.279972-1 6.309573-1 3.925111-1 7.943282-1 4.686283-1 1.000000+0 5.579508-1 1.258925+0 6.633790-1 1.584893+0 7.876214-1 1.995262+0 9.347474-1 2.511886+0 1.109268+0 3.162278+0 1.316999+0 3.981072+0 1.564931+0 5.011872+0 1.861755+0 6.309573+0 2.217948+0 7.943282+0 2.646428+0 1.000000+1 3.163054+0 1.258925+1 3.787112+0 1.584893+1 4.542260+0 1.995262+1 5.457380+0 2.511886+1 6.568104+0 3.162278+1 7.918167+0 3.981072+1 9.560805+0 5.011872+1 1.156147+1 6.309573+1 1.400109+1 7.943282+1 1.697869+1 1.000000+2 2.061606+1 1.258925+2 2.506331+1 1.584893+2 3.050489+1 1.995262+2 3.716855+1 2.511886+2 4.533345+1 3.162278+2 5.534604+1 3.981072+2 6.763042+1 5.011872+2 8.271376+1 6.309573+2 1.012429+2 7.943282+2 1.240187+2 1.000000+3 1.520269+2 1.258925+3 1.864922+2 1.584893+3 2.289178+2 1.995262+3 2.811691+2 2.511886+3 3.455622+2 3.162278+3 4.249381+2 3.981072+3 5.228230+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739864-9 3.981072-5 4.342005-9 5.011872-5 6.881256-9 6.309573-5 1.090565-8 7.943282-5 1.728332-8 1.000000-4 2.738538-8 1.258925-4 4.339561-8 1.584893-4 6.874404-8 1.995262-4 1.089069-7 2.511886-4 1.724765-7 3.162278-4 2.730263-7 3.981072-4 4.320007-7 5.011872-4 6.827238-7 6.309573-4 1.079436-6 7.943282-4 1.695404-6 1.000000-3 2.662749-6 1.258925-3 4.177042-6 1.584893-3 6.515272-6 1.995262-3 1.017532-5 2.511886-3 1.583635-5 3.162278-3 2.465975-5 3.981072-3 3.836409-5 5.011872-3 5.970756-5 6.309573-3 9.303790-5 7.943282-3 1.451480-4 1.000000-2 2.266842-4 1.258925-2 3.512157-4 1.584893-2 5.417747-4 1.995262-2 8.321415-4 2.511886-2 1.274181-3 3.162278-2 1.944689-3 3.981072-2 2.953486-3 5.011872-2 4.457396-3 6.309573-2 6.680660-3 7.943282-2 9.925996-3 1.000000-1 1.464360-2 1.258925-1 2.139396-2 1.584893-1 3.099830-2 1.995262-1 4.450134-2 2.511886-1 6.331651-2 3.162278-1 8.927614-2 3.981072-1 1.248347-1 5.011872-1 1.731901-1 6.309573-1 2.384463-1 7.943282-1 3.256999-1 1.000000+0 4.420492-1 1.258925+0 5.955464-1 1.584893+0 7.972718-1 1.995262+0 1.060515+0 2.511886+0 1.402618+0 3.162278+0 1.845279+0 3.981072+0 2.416141+0 5.011872+0 3.150117+0 6.309573+0 4.091626+0 7.943282+0 5.296854+0 1.000000+1 6.836946+0 1.258925+1 8.802142+0 1.584893+1 1.130667+1 1.995262+1 1.449524+1 2.511886+1 1.855076+1 3.162278+1 2.370461+1 3.981072+1 3.024991+1 5.011872+1 3.855725+1 6.309573+1 4.909464+1 7.943282+1 6.245413+1 1.000000+2 7.938394+1 1.258925+2 1.008292+2 1.584893+2 1.279844+2 1.995262+2 1.623577+2 2.511886+2 2.058552+2 3.162278+2 2.608817+2 3.981072+2 3.304768+2 5.011872+2 4.184735+2 6.309573+2 5.297144+2 7.943282+2 6.703096+2 1.000000+3 8.479731+2 1.258925+3 1.072433+3 1.584893+3 1.355975+3 1.995262+3 1.714093+3 2.511886+3 2.166324+3 3.162278+3 2.737340+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.020000-6 4.350820+7 7.300000-6 4.088240+7 7.600000-6 3.810560+7 7.730000-6 3.691510+7 7.730000-6 5.765200+7 7.852356-6 5.613315+7 8.035261-6 5.387221+7 8.222426-6 5.163960+7 8.317638-6 5.050031+7 8.609938-6 4.713324+7 8.912509-6 4.378730+7 9.015711-6 4.269416+7 9.350000-6 3.928300+7 9.500000-6 3.783991+7 9.772372-6 3.531742+7 1.000000-5 3.333897+7 1.023293-5 3.141115+7 1.059254-5 2.867231+7 1.071519-5 2.778805+7 1.122018-5 2.445725+7 1.180000-5 2.113768+7 1.188502-5 2.069527+7 1.250000-5 1.777659+7 1.273503-5 1.679100+7 1.333521-5 1.454189+7 1.364583-5 1.351960+7 1.428894-5 1.165744+7 1.479108-5 1.041776+7 1.548817-5 8.949015+6 1.592000-5 8.165442+6 1.592000-5 8.556886+6 1.635000-5 7.792320+6 1.650000-5 7.546553+6 1.670000-5 7.231827+6 1.698244-5 6.815502+6 1.710000-5 6.650555+6 1.750000-5 6.126375+6 1.790000-5 5.655066+6 1.830000-5 5.230236+6 1.870000-5 4.846489+6 1.920000-5 4.417476+6 2.018366-5 3.710343+6 2.040000-5 3.575186+6 2.075800-5 3.365754+6 2.100000-5 3.233459+6 2.120000-5 3.129376+6 2.140000-5 3.029780+6 2.162719-5 2.921793+6 2.180000-5 2.843134+6 2.200000-5 2.755661+6 2.215000-5 2.692454+6 2.230000-5 2.631216+6 2.245000-5 2.571873+6 2.260000-5 2.514355+6 2.277000-5 2.451288+6 2.293000-5 2.393907+6 2.308000-5 2.341786+6 2.322000-5 2.294549+6 2.340000-5 2.235737+6 2.360000-5 2.172823+6 2.377000-5 2.121272+6 2.400000-5 2.054210+6 2.426610-5 1.980278+6 2.460000-5 1.892706+6 2.483133-5 1.835240+6 2.500000-5 1.795238+6 2.560000-5 1.662703+6 2.660725-5 1.470037+6 2.670000-5 1.454040+6 2.730000-5 1.356435+6 2.800000-5 1.254376+6 2.851018-5 1.187074+6 2.920000-5 1.105307+6 2.985383-5 1.035524+6 3.060000-5 9.639178+5 3.126079-5 9.067877+5 3.198895-5 8.498301+5 3.235937-5 8.233303+5 3.273407-5 7.981027+5 3.370000-5 7.384911+5 3.470000-5 6.841808+5 3.548134-5 6.462001+5 3.570000-5 6.364247+5 3.689100-5 5.871359+5 3.801894-5 5.462558+5 3.845918-5 5.315455+5 3.935501-5 5.046070+5 4.056000-5 4.718829+5 4.056000-5 2.253913+6 4.073803-5 2.262210+6 4.090000-5 2.269783+6 4.120975-5 2.292244+6 4.150000-5 2.321622+6 4.180000-5 2.361548+6 4.187000-5 2.373079+6 4.187000-5 3.499043+6 4.216965-5 3.565459+6 4.220000-5 3.573414+6 4.225000-5 3.586547+6 4.255000-5 3.672835+6 4.265795-5 3.708052+6 4.285000-5 3.775797+6 4.305000-5 3.855322+6 4.330000-5 3.962190+6 4.335000-5 3.986065+6 4.365158-5 4.139465+6 4.370000-5 4.165560+6 4.400000-5 4.344136+6 4.415704-5 4.444370+6 4.440000-5 4.613872+6 4.450000-5 4.687834+6 4.470000-5 4.847228+6 4.500000-5 5.103564+6 4.510000-5 5.196510+6 4.518559-5 5.279519+6 4.550000-5 5.595900+6 4.555000-5 5.649229+6 4.600000-5 6.173304+6 4.610000-5 6.298988+6 4.650000-5 6.844871+6 4.677351-5 7.252097+6 4.680000-5 7.292779+6 4.700000-5 7.615743+6 4.720000-5 7.957505+6 4.750000-5 8.497998+6 4.786301-5 9.208897+6 4.820000-5 9.925769+6 4.900000-5 1.186903+7 4.954502-5 1.340101+7 5.040000-5 1.612850+7 5.080000-5 1.753866+7 5.110000-5 1.866207+7 5.150000-5 2.021720+7 5.170000-5 2.102868+7 5.230000-5 2.355749+7 5.285000-5 2.597453+7 5.300000-5 2.664591+7 5.330000-5 2.800914+7 5.350000-5 2.891874+7 5.370318-5 2.984872+7 5.400000-5 3.119581+7 5.415200-5 3.190661+7 5.420000-5 3.212787+7 5.465000-5 3.416213+7 5.500000-5 3.567897+7 5.520000-5 3.657226+7 5.580000-5 3.905948+7 5.630000-5 4.097774+7 5.688529-5 4.300169+7 5.690000-5 4.305362+7 5.745000-5 4.470842+7 5.745900-5 4.473295+7 5.754399-5 4.494650+7 5.800000-5 4.610600+7 5.801400-5 4.613904+7 5.821032-5 4.654456+7 5.850000-5 4.714775+7 5.900000-5 4.796392+7 5.956621-5 4.860447+7 5.970000-5 4.872783+7 6.015000-5 4.900528+7 6.025596-5 4.904965+7 6.030000-5 4.906808+7 6.070000-5 4.912921+7 6.095369-5 4.912072+7 6.130000-5 4.902076+7 6.165950-5 4.884929+7 6.200000-5 4.860896+7 6.237348-5 4.827542+7 6.280000-5 4.780145+7 6.309573-5 4.742730+7 6.330000-5 4.717169+7 6.350000-5 4.688430+7 6.400000-5 4.610934+7 6.420000-5 4.576995+7 6.500000-5 4.434822+7 6.606934-5 4.222106+7 6.610000-5 4.215860+7 6.650000-5 4.129130+7 6.690000-5 4.044711+7 6.730000-5 3.958668+7 6.800000-5 3.804354+7 6.839116-5 3.717791+7 6.850000-5 3.694144+7 6.918310-5 3.543026+7 6.950000-5 3.473020+7 7.000000-5 3.361496+7 7.030000-5 3.296690+7 7.079458-5 3.189770+7 7.161434-5 3.014420+7 7.230000-5 2.872446+7 7.300000-5 2.730839+7 7.350000-5 2.632082+7 7.413102-5 2.509842+7 7.450000-5 2.441482+7 7.500000-5 2.350213+7 7.585776-5 2.198349+7 7.673615-5 2.051526+7 7.762471-5 1.910769+7 7.852356-5 1.776954+7 7.900000-5 1.708898+7 7.950000-5 1.640714+7 8.035261-5 1.529595+7 8.150000-5 1.390867+7 8.230000-5 1.301231+7 8.317638-5 1.208841+7 8.400000-5 1.128850+7 8.413951-5 1.115714+7 8.500000-5 1.038481+7 8.650000-5 9.161121+6 8.738900-5 8.506707+6 8.800000-5 8.082165+6 8.810489-5 8.011762+6 8.912509-5 7.362487+6 9.015711-5 6.760282+6 9.225714-5 5.687829+6 9.332543-5 5.213723+6 9.549926-5 4.372293+6 9.660509-5 4.001574+6 9.800000-5 3.579321+6 9.900000-5 3.308186+6 1.000000-4 3.058257+6 1.023293-4 2.550328+6 1.040000-4 2.243430+6 1.047129-4 2.124361+6 1.060000-4 1.927622+6 1.071519-4 1.768123+6 1.081200-4 1.646012+6 1.081200-4 2.132580+6 1.083927-4 2.100409+6 1.092000-4 2.009226+6 1.103000-4 1.891964+6 1.109175-4 1.829441+6 1.118000-4 1.745262+6 1.140000-4 1.556196+6 1.143000-4 1.532588+6 1.161449-4 1.400456+6 1.170000-4 1.345675+6 1.170200-4 1.344459+6 1.170200-4 1.553753+6 1.174898-4 1.527378+6 1.178000-4 1.510357+6 1.185000-4 1.472150+6 1.188502-4 1.453256+6 1.190000-4 1.445317+6 1.192000-4 1.434850+6 1.193600-4 1.426350+6 1.202264-4 1.383610+6 1.213000-4 1.332524+6 1.214000-4 1.328066+6 1.216186-4 1.318199+6 1.230269-4 1.258555+6 1.233000-4 1.247862+6 1.235000-4 1.240007+6 1.245000-4 1.202660+6 1.250000-4 1.185293+6 1.260000-4 1.152489+6 1.265000-4 1.137259+6 1.270000-4 1.122727+6 1.273503-4 1.112706+6 1.275000-4 1.108472+6 1.280000-4 1.095128+6 1.290000-4 1.069964+6 1.295000-4 1.058304+6 1.303167-4 1.040253+6 1.307000-4 1.032376+6 1.318000-4 1.011042+6 1.318257-4 1.010578+6 1.322000-4 1.004022+6 1.330000-4 9.908364+5 1.333521-4 9.854657+5 1.337300-4 9.797598+5 1.345000-4 9.688137+5 1.350000-4 9.622842+5 1.358000-4 9.524977+5 1.364583-4 9.451430+5 1.365000-4 9.447066+5 1.373000-4 9.369312+5 1.380384-4 9.305260+5 1.390000-4 9.229299+5 1.396368-4 9.185146+5 1.400000-4 9.162366+5 1.407000-4 9.118784+5 1.412538-4 9.088702+5 1.423000-4 9.045970+5 1.430000-4 9.022237+5 1.440000-4 8.993949+5 1.445700-4 8.981654+5 1.462177-4 8.955103+5 1.465000-4 8.954481+5 1.485000-4 8.960433+5 1.490000-4 8.964378+5 1.500000-4 8.977763+5 1.510000-4 8.994128+5 1.513561-4 9.001423+5 1.520000-4 9.014962+5 1.540000-4 9.076101+5 1.566751-4 9.177812+5 1.582700-4 9.242011+5 1.582700-4 1.077922+6 1.584893-4 1.078920+6 1.635000-4 1.106289+6 1.640590-4 1.109595+6 1.659587-4 1.121317+6 1.678804-4 1.132944+6 1.690000-4 1.140028+6 1.705000-4 1.149911+6 1.720000-4 1.159674+6 1.737801-4 1.170724+6 1.757924-4 1.183070+6 1.760000-4 1.184384+6 1.778279-4 1.195614+6 1.780000-4 1.196602+6 1.820000-4 1.219158+6 1.835000-4 1.227077+6 1.840772-4 1.229902+6 1.862087-4 1.240619+6 1.865000-4 1.242096+6 1.880000-4 1.249438+6 1.883649-4 1.251137+6 1.927525-4 1.269888+6 1.930000-4 1.270921+6 1.950000-4 1.278760+6 1.972423-4 1.286672+6 1.995262-4 1.294924+6 2.000000-4 1.296498+6 2.018366-4 1.301875+6 2.041738-4 1.308627+6 2.050000-4 1.310954+6 2.065380-4 1.315308+6 2.137962-4 1.330689+6 2.162719-4 1.334207+6 2.187762-4 1.337791+6 2.220000-4 1.342466+6 2.238721-4 1.343951+6 2.290868-4 1.347601+6 2.300000-4 1.348253+6 2.371374-4 1.349257+6 2.388200-4 1.349477+6 2.426610-4 1.347892+6 2.454709-4 1.346316+6 2.483133-4 1.344758+6 2.570396-4 1.335965+6 2.580000-4 1.335029+6 2.630268-4 1.327438+6 2.691535-4 1.317982+6 2.730000-4 1.310498+6 2.754229-4 1.305752+6 2.800000-4 1.296964+6 2.818383-4 1.293439+6 2.851018-4 1.285878+6 2.884032-4 1.278128+6 2.951209-4 1.262762+6 2.985383-4 1.253835+6 3.019952-4 1.244893+6 3.090295-4 1.227020+6 3.100000-4 1.224607+6 3.235937-4 1.186704+6 3.273407-4 1.176739+6 3.280000-4 1.174906+6 3.350000-4 1.154651+6 3.388442-4 1.143535+6 3.467369-4 1.121418+6 3.507519-4 1.109544+6 3.630781-4 1.074384+6 3.672823-4 1.062623+6 3.801894-4 1.025626+6 3.890451-4 1.001521+6 4.000000-4 9.712547+5 4.027170-4 9.638877+5 4.120975-4 9.392452+5 4.168694-4 9.264047+5 4.365158-4 8.764974+5 4.415704-4 8.640436+5 4.518559-4 8.389085+5 4.623810-4 8.142613+5 4.700000-4 7.968859+5 4.731513-4 7.896925+5 4.897788-4 7.531362+5 4.954502-4 7.412682+5 5.000000-4 7.319753+5 5.011872-4 7.295412+5 5.069907-4 7.177859+5 5.248075-4 6.827971+5 5.308844-4 6.714171+5 5.370318-4 6.600588+5 5.378500-4 6.585651+5 5.378500-4 6.783991+5 5.406000-4 6.997619+5 5.419000-4 7.196211+5 5.430000-4 7.439565+5 5.432503-4 7.506186+5 5.440000-4 7.738715+5 5.449500-4 8.108790+5 5.455500-4 8.393489+5 5.463000-4 8.811724+5 5.470000-4 9.272852+5 5.477900-4 9.884542+5 5.477900-4 1.075640+6 5.478000-4 1.076637+6 5.486000-4 1.161620+6 5.493000-4 1.246934+6 5.500000-4 1.343147+6 5.507000-4 1.449252+6 5.509600-4 1.491531+6 5.511000-4 1.523848+6 5.528000-4 1.765487+6 5.545000-4 2.009856+6 5.552000-4 2.126517+6 5.554000-4 2.159947+6 5.574000-4 2.424885+6 5.576000-4 2.452186+6 5.587400-4 2.589411+6 5.590000-4 2.622865+6 5.594000-4 2.672007+6 5.608000-4 2.854156+6 5.611000-4 2.890372+6 5.631000-4 3.099990+6 5.633000-4 3.117249+6 5.660000-4 3.324677+6 5.662000-4 3.337060+6 5.665000-4 3.362225+6 5.670000-4 3.442049+6 5.688529-4 3.615752+6 5.692000-4 3.650159+6 5.696000-4 3.684547+6 5.720000-4 3.878402+6 5.725000-4 3.915166+6 5.754399-4 4.082815+6 5.770000-4 4.175296+6 5.775000-4 4.195527+6 5.780000-4 4.206184+6 5.821032-4 4.274131+6 5.827000-4 4.284184+6 5.843000-4 4.299159+6 5.860500-4 4.309542+6 5.888437-4 4.297769+6 5.930000-4 4.280588+6 5.956621-4 4.242613+6 6.025596-4 4.133614+6 6.095369-4 4.015641+6 6.130000-4 3.958964+6 6.150000-4 3.912995+6 6.237348-4 3.755619+6 6.309573-4 3.632017+6 6.320000-4 3.615357+6 6.382635-4 3.524451+6 6.456542-4 3.421125+6 6.500000-4 3.365892+6 6.606934-4 3.241076+6 6.650000-4 3.195273+6 6.839116-4 3.014405+6 6.850000-4 3.004442+6 6.918310-4 2.943550+6 7.079458-4 2.806986+6 7.161434-4 2.741114+6 7.300000-4 2.633414+6 7.413102-4 2.549568+6 7.500000-4 2.487667+6 7.616900-4 2.407818+6 7.616900-4 2.711682+6 7.673615-4 2.674383+6 7.820000-4 2.581879+6 7.852356-4 2.561878+6 7.943282-4 2.507017+6 8.000000-4 2.473752+6 8.035261-4 2.452928+6 8.091600-4 2.419525+6 8.091600-4 2.496479+6 8.093500-4 2.497911+6 8.096000-4 2.500425+6 8.099000-4 2.503173+6 8.102000-4 2.505596+6 8.105000-4 2.507703+6 8.107500-4 2.509199+6 8.111000-4 2.510919+6 8.115000-4 2.512407+6 8.118500-4 2.513231+6 8.128305-4 2.509690+6 8.137000-4 2.506590+6 8.147000-4 2.502737+6 8.150000-4 2.501338+6 8.169000-4 2.492215+6 8.230000-4 2.460463+6 8.253400-4 2.447997+6 8.280000-4 2.433745+6 8.317638-4 2.413074+6 8.330000-4 2.406342+6 8.413951-4 2.360325+6 8.511380-4 2.307938+6 8.550000-4 2.287862+6 8.609938-4 2.256908+6 8.650000-4 2.236331+6 8.709636-4 2.206088+6 8.810489-4 2.155485+6 8.850000-4 2.136119+6 9.015711-4 2.056592+6 9.120108-4 2.008891+6 9.225714-4 1.962161+6 9.289800-4 1.934283+6 9.289800-4 2.017060+6 9.332543-4 1.998461+6 9.549926-4 1.905639+6 9.885531-4 1.774805+6 1.000000-3 1.733347+6 1.011579-3 1.692441+6 1.015000-3 1.680362+6 1.023293-3 1.651522+6 1.035142-3 1.611622+6 1.047129-3 1.572607+6 1.050000-3 1.563465+6 1.083927-3 1.461047+6 1.110000-3 1.388153+6 1.122018-3 1.355965+6 1.135011-3 1.322291+6 1.148154-3 1.289476+6 1.161449-3 1.257485+6 1.174898-3 1.226339+6 1.188502-3 1.195832+6 1.190000-3 1.192508+6 1.202264-3 1.165409+6 1.230269-3 1.106724+6 1.244515-3 1.078560+6 1.258925-3 1.051139+6 1.273503-3 1.024360+6 1.288250-3 9.980753+5 1.300000-3 9.778365+5 1.303167-3 9.724368+5 1.318257-3 9.472305+5 1.333521-3 9.227217+5 1.350000-3 8.972460+5 1.364583-3 8.753983+5 1.380384-3 8.525955+5 1.412538-3 8.088390+5 1.428894-3 7.878384+5 1.450000-3 7.618106+5 1.462177-3 7.472697+5 1.479108-3 7.274012+5 1.500000-3 7.039507+5 1.513561-3 6.893269+5 1.531087-3 6.710759+5 1.566751-3 6.359908+5 1.570000-3 6.329280+5 1.584893-3 6.191590+5 1.603245-3 6.026964+5 1.621810-3 5.865762+5 1.650000-3 5.632410+5 1.678804-3 5.406385+5 1.698244-3 5.261112+5 1.730000-3 5.035965+5 1.737801-3 4.982662+5 1.757924-3 4.848793+5 1.778279-3 4.718515+5 1.800000-3 4.584074+5 1.862087-3 4.225013+5 1.905461-3 3.997234+5 1.927525-3 3.888245+5 1.972423-3 3.679178+5 2.000000-3 3.558261+5 2.018366-3 3.480047+5 2.041738-3 3.384069+5 2.065380-3 3.290637+5 2.113489-3 3.111760+5 2.137962-3 3.026001+5 2.150000-3 2.985051+5 2.162719-3 2.942651+5 2.187762-3 2.861713+5 2.238721-3 2.705507+5 2.264644-3 2.630281+5 2.290868-3 2.556611+5 2.300000-3 2.531650+5 2.344229-3 2.415594+5 2.371374-3 2.348072+5 2.398833-3 2.282487+5 2.426610-3 2.218830+5 2.454709-3 2.156692+5 2.483133-3 2.096324+5 2.511886-3 2.037527+5 2.540973-3 1.979937+5 2.600160-3 1.869793+5 2.630268-3 1.817121+5 2.691535-3 1.716342+5 2.754229-3 1.620767+5 2.786121-3 1.574934+5 2.800000-3 1.555574+5 2.818383-3 1.530230+5 2.917427-3 1.402919+5 2.985383-3 1.324185+5 3.000000-3 1.308090+5 3.054921-3 1.249718+5 3.090295-3 1.213965+5 3.126079-3 1.179248+5 3.162278-3 1.145556+5 3.198895-3 1.112599+5 3.235937-3 1.080637+5 3.273407-3 1.049560+5 3.349654-3 9.901581+4 3.467369-3 9.070105+4 3.507519-3 8.808053+4 3.548134-3 8.553159+4 3.589219-3 8.305092+4 3.630781-3 8.064427+4 3.672823-3 7.831085+4 3.758374-3 7.384088+4 3.801894-3 7.169287+4 3.845918-3 6.960930+4 3.890451-3 6.758090+4 3.935501-3 6.561189+4 4.000000-3 6.292335+4 4.120975-3 5.827574+4 4.130500-3 5.793077+4 4.130500-3 1.788678+5 4.168694-3 1.760316+5 4.230000-3 1.716239+5 4.265795-3 1.679592+5 4.315191-3 1.630802+5 4.365158-3 1.583383+5 4.386000-3 1.564158+5 4.386000-3 2.125090+5 4.415704-3 2.095117+5 4.417000-3 2.093797+5 4.466836-3 2.044034+5 4.490000-3 2.021549+5 4.500000-3 2.010542+5 4.520000-3 1.988764+5 4.570882-3 1.930880+5 4.580000-3 1.920748+5 4.623810-3 1.874101+5 4.673700-3 1.822880+5 4.673700-3 2.098370+5 4.677351-3 2.094326+5 4.700000-3 2.069445+5 4.731513-3 2.035154+5 4.841724-3 1.921391+5 4.850000-3 1.913210+5 4.954502-3 1.815094+5 5.000000-3 1.773990+5 5.011872-3 1.763481+5 5.069907-3 1.713369+5 5.188000-3 1.616646+5 5.248075-3 1.570323+5 5.300000-3 1.531474+5 5.308844-3 1.524984+5 5.370318-3 1.480401+5 5.432503-3 1.437159+5 5.623413-3 1.315236+5 5.650000-3 1.299433+5 5.688529-3 1.276848+5 5.821032-3 1.203277+5 5.888437-3 1.167869+5 5.956621-3 1.133527+5 6.025596-3 1.100159+5 6.095369-3 1.067801+5 6.165950-3 1.036420+5 6.237348-3 1.005943+5 6.309573-3 9.762843+4 6.456542-3 9.196256+4 6.606934-3 8.659641+4 6.683439-3 8.403424+4 6.760830-3 8.154629+4 6.839116-3 7.913400+4 6.918310-3 7.679375+4 7.079458-3 7.231254+4 7.244360-3 6.810009+4 7.328245-3 6.608056+4 7.500000-3 6.219811+4 7.585776-3 6.036388+4 7.673615-3 5.856074+4 7.762471-3 5.681285+4 7.852356-3 5.511817+4 7.943282-3 5.347350+4 8.035261-3 5.187917+4 8.128305-3 5.033356+4 8.222426-3 4.882599+4 8.317638-3 4.734617+4 8.511380-3 4.452278+4 8.609938-3 4.317632+4 8.709636-3 4.186989+4 8.810489-3 4.060310+4 8.912509-3 3.936873+4 9.120108-3 3.701219+4 9.332543-3 3.480062+4 9.440609-3 3.374621+4 9.660509-3 3.173454+4 9.772372-3 3.076827+4 9.800000-3 3.053594+4 9.885531-3 2.982757+4 1.000000-2 2.891500+4 1.011579-2 2.803110+4 1.023293-2 2.717407+4 1.035142-2 2.634330+4 1.071519-2 2.400411+4 1.080000-2 2.350068+4 1.083927-2 2.327183+4 1.109175-2 2.185500+4 1.122018-2 2.117990+4 1.135011-2 2.052537+4 1.150000-2 1.980483+4 1.161449-2 1.927796+4 1.174898-2 1.868330+4 1.202264-2 1.755000+4 1.216186-2 1.700961+4 1.244515-2 1.597946+4 1.273503-2 1.500629+4 1.288250-2 1.454214+4 1.303167-2 1.409267+4 1.318257-2 1.365428+4 1.333521-2 1.322819+4 1.380384-2 1.202927+4 1.412538-2 1.129249+4 1.445440-2 1.060142+4 1.450000-2 1.051033+4 1.462177-2 1.027211+4 1.479108-2 9.951373+3 1.496236-2 9.640885+3 1.500000-2 9.574455+3 1.513561-2 9.339762+3 1.531087-2 9.048126+3 1.548817-2 8.765651+3 1.566751-2 8.490681+3 1.640590-2 7.476363+3 1.650000-2 7.358712+3 1.659587-2 7.241361+3 1.678804-2 7.013583+3 1.698244-2 6.793124+3 1.717908-2 6.579781+3 1.737801-2 6.372625+3 1.757924-2 6.172162+3 1.798871-2 5.790188+3 1.800000-2 5.780124+3 1.819701-2 5.607592+3 1.840772-2 5.430834+3 1.883649-2 5.094298+3 1.900000-2 4.973581+3 1.905461-2 4.934109+3 1.927525-2 4.777821+3 1.949845-2 4.626587+3 1.972423-2 4.480093+3 2.018366-2 4.201206+3 2.041738-2 4.068490+3 2.065380-2 3.939990+3 2.089296-2 3.815262+3 2.137962-2 3.576849+3 2.162719-2 3.463410+3 2.187762-2 3.353664+3 2.238721-2 3.144590+3 2.290868-2 2.947415+3 2.300000-2 2.914653+3 2.371374-2 2.674824+3 2.398833-2 2.589750+3 2.426610-2 2.507438+3 2.454709-2 2.427804+3 2.483133-2 2.350465+3 2.511886-2 2.275469+3 2.540973-2 2.202906+3 2.600160-2 2.064713+3 2.660725-2 1.934469+3 2.691535-2 1.872533+3 2.722701-2 1.812551+3 2.754229-2 1.754533+3 2.851018-2 1.591536+3 2.884032-2 1.540715+3 2.917427-2 1.491555+3 2.951209-2 1.443836+3 2.985383-2 1.397634+3 3.000000-2 1.378456+3 3.047900-2 1.317663+3 3.047900-2 8.081235+3 3.054921-2 8.036733+3 3.126079-2 7.604806+3 3.140000-2 7.524200+3 3.162278-2 7.380085+3 3.198895-2 7.151258+3 3.210000-2 7.083782+3 3.235937-2 6.940954+3 3.273407-2 6.741641+3 3.330000-2 6.455520+3 3.388442-2 6.163212+3 3.427678-2 5.977130+3 3.467369-2 5.796688+3 3.507519-2 5.621475+3 3.548134-2 5.451498+3 3.589219-2 5.286685+3 3.630781-2 5.129331+3 3.715352-2 4.828614+3 3.758374-2 4.684932+3 3.845918-2 4.410327+3 4.027170-2 3.908664+3 4.120975-2 3.673634+3 4.168694-2 3.561478+3 4.265795-2 3.347375+3 4.315191-2 3.245179+3 4.365158-2 3.146118+3 4.415704-2 3.050068+3 4.466836-2 2.956961+3 4.518559-2 2.866690+3 4.623810-2 2.694360+3 4.677351-2 2.610816+3 4.786301-2 2.451247+3 4.841724-2 2.375171+3 4.897788-2 2.301464+3 4.954502-2 2.230047+3 5.188000-2 1.965910+3 5.248075-2 1.904918+3 5.308844-2 1.845808+3 5.432503-2 1.733050+3 5.500000-2 1.675456+3 5.754399-2 1.480229+3 5.821032-2 1.434275+3 5.888437-2 1.388970+3 6.095369-2 1.261469+3 6.165950-2 1.221629+3 6.456542-2 1.074459+3 6.531306-2 1.040532+3 6.606934-2 1.007641+3 6.839116-2 9.150767+2 7.000000-2 8.576115+2 7.079458-2 8.310331+2 7.244360-2 7.793456+2 7.413102-2 7.302288+2 7.498942-2 7.068409+2 7.762471-2 6.410853+2 7.852356-2 6.205358+2 7.943282-2 6.006460+2 8.035261-2 5.813949+2 8.317638-2 5.272706+2 8.413951-2 5.103743+2 8.810489-2 4.480412+2 9.015711-2 4.197955+2 9.120108-2 4.063457+2 9.440609-2 3.681326+2 9.549926-2 3.561992+2 9.885531-2 3.226734+2 1.023293-1 2.923076+2 1.035142-1 2.828355+2 1.096478-1 2.398888+2 1.122019-1 2.245987+2 1.135011-1 2.173229+2 1.188502-1 1.905036+2 1.202264-1 1.843335+2 1.273503-1 1.562138+2 1.288250-1 1.511284+2 1.318257-1 1.414499+2 1.333521-1 1.368461+2 1.348963-1 1.323921+2 1.380384-1 1.239151+2 1.396368-1 1.198825+2 1.412538-1 1.159811+2 1.513561-1 9.510468+1 1.548817-1 8.901773+1 1.584893-1 8.332189+1 1.603245-1 8.061231+1 1.621810-1 7.799026+1 1.640590-1 7.545358+1 1.698244-1 6.832872+1 1.717908-1 6.610707+1 1.778279-1 5.986630+1 1.840772-1 5.421507+1 1.883649-1 5.074802+1 1.927525-1 4.750289+1 1.949845-1 4.595910+1 1.995262-1 4.302060+1 2.000000-1 4.272881+1 2.018366-1 4.162277+1 2.089296-1 3.773223+1 2.113489-1 3.651800+1 2.162719-1 3.420599+1 2.213095-1 3.204046+1 2.238721-1 3.101078+1 2.264644-1 3.001424+1 2.290868-1 2.904972+1 2.317395-1 2.811624+1 2.344229-1 2.721292+1 2.398833-1 2.549246+1 2.426610-1 2.467368+1 2.454709-1 2.388137+1 2.483133-1 2.311453+1 2.540973-1 2.167219+1 2.600160-1 2.032002+1 2.630268-1 1.967593+1 2.660725-1 1.905226+1 2.691535-1 1.844846+1 2.710800-1 1.808462+1 2.818383-1 1.622197+1 2.851018-1 1.570869+1 2.884032-1 1.521167+1 2.917427-1 1.473045+1 2.951209-1 1.426457+1 2.985383-1 1.382163+1 3.000000-1 1.363790+1 3.019952-1 1.339245+1 3.126079-1 1.218372+1 3.162278-1 1.180555+1 3.198895-1 1.143916+1 3.235937-1 1.108469+1 3.273407-1 1.074122+1 3.349654-1 1.008589+1 3.388442-1 9.773444+0 3.427678-1 9.470762+0 3.467369-1 9.182654+0 3.507519-1 8.903318+0 3.548134-1 8.632494+0 3.589219-1 8.369915+0 3.630781-1 8.115317+0 3.672823-1 7.868482+0 3.715352-1 7.629588+0 3.758374-1 7.397997+0 3.801894-1 7.173438+0 3.845918-1 6.955737+0 3.890451-1 6.744648+0 3.935501-1 6.543852+0 3.981072-1 6.349117+0 4.073803-1 5.976867+0 4.120975-1 5.799056+0 4.168694-1 5.626533+0 4.216965-1 5.459484+0 4.265795-1 5.297425+0 4.315191-1 5.140184+0 4.365158-1 4.987615+0 4.415705-1 4.842761+0 4.466836-1 4.702133+0 4.518559-1 4.565679+0 4.570882-1 4.433183+0 4.677351-1 4.179631+0 4.731513-1 4.058643+0 4.786301-1 3.941163+0 4.897788-1 3.716308+0 4.954502-1 3.611135+0 5.011872-1 3.508952+0 5.069907-1 3.409707+0 5.128614-1 3.313273+0 5.188000-1 3.219572+0 5.248075-1 3.128538+0 5.308844-1 3.040298+0 5.370318-1 2.954544+0 5.432503-1 2.871231+0 5.495409-1 2.792108+0 5.559043-1 2.715167+0 5.623413-1 2.640356+0 5.688529-1 2.567649+0 5.754399-1 2.496944+0 5.821032-1 2.428201+0 5.888437-1 2.361350+0 5.956621-1 2.296530+0 6.025596-1 2.233489+0 6.165950-1 2.115641+0 6.237348-1 2.059080+0 6.309573-1 2.004062+0 6.382635-1 1.950514+0 6.456542-1 1.898409+0 6.531306-1 1.847708+0 6.683439-1 1.750586+0 6.760830-1 1.705168+0 6.839117-1 1.660931+0 6.918310-1 1.617847+0 6.998420-1 1.575906+0 7.079458-1 1.535061+0 7.161434-1 1.495285+0 7.244360-1 1.456540+0 7.413102-1 1.382239+0 7.498942-1 1.347476+0 7.585776-1 1.313588+0 7.673615-1 1.280557+0 7.762471-1 1.248383+0 7.852356-1 1.217024+0 8.035261-1 1.156651+0 8.222427-1 1.099428+0 8.413951-1 1.046446+0 8.511380-1 1.020922+0 8.609938-1 9.960271-1 8.709636-1 9.717615-1 8.912509-1 9.249899-1 9.015711-1 9.025298-1 9.120108-1 8.812687-1 9.225714-1 8.605104-1 9.332543-1 8.402487-1 9.440609-1 8.204675-1 9.549926-1 8.011709-1 9.660509-1 7.823282-1 9.772372-1 7.639288-1 9.885531-1 7.460241-1 1.000000+0 7.290487-1 1.011579+0 7.124660-1 1.022000+0 6.980208-1 1.023293+0 6.962592-1 1.035142+0 6.804236-1 1.047129+0 6.649471-1 1.059254+0 6.498306-1 1.071519+0 6.350591-1 1.083927+0 6.206266-1 1.096478+0 6.065263-1 1.135011+0 5.661172-1 1.148154+0 5.532967-1 1.161449+0 5.411926-1 1.174898+0 5.293565-1 1.188600+0 5.177108-1 1.202264+0 5.064811-1 1.216186+0 4.954161-1 1.230269+0 4.845965-1 1.244515+0 4.740438-1 1.258925+0 4.637215-1 1.273503+0 4.538591-1 1.288250+0 4.442064-1 1.303167+0 4.347627-1 1.333521+0 4.164737-1 1.348963+0 4.076237-1 1.364583+0 3.989626-1 1.396368+0 3.821919-1 1.412538+0 3.740728-1 1.428894+0 3.661489-1 1.445440+0 3.586001-1 1.462177+0 3.512072-1 1.479108+0 3.439677-1 1.500000+0 3.353493-1 1.513561+0 3.299371-1 1.531087+0 3.231411-1 1.548817+0 3.164846-1 1.566751+0 3.099875-1 1.621810+0 2.918384-1 1.640590+0 2.860289-1 1.659587+0 2.803354-1 1.678804+0 2.747574-1 1.737801+0 2.586907-1 1.757924+0 2.535633-1 1.778279+0 2.486909-1 1.819701+0 2.392249-1 1.840772+0 2.346286-1 1.862087+0 2.301208-1 1.883649+0 2.256997-1 1.905461+0 2.213654-1 1.972423+0 2.088638-1 1.995262+0 2.048687-1 2.000000+0 2.040552-1 2.018366+0 2.010467-1 2.065380+0 1.936634-1 2.089296+0 1.900746-1 2.113489+0 1.865526-1 2.137962+0 1.830975-1 2.162719+0 1.797062-1 2.213095+0 1.731156-1 2.238721+0 1.699116-1 2.264644+0 1.667778-1 2.290868+0 1.637980-1 2.344229+0 1.579975-1 2.371374+0 1.551751-1 2.398833+0 1.524033-1 2.426610+0 1.496823-1 2.454709+0 1.470099-1 2.511886+0 1.418109-1 2.540973+0 1.392806-1 2.570396+0 1.368040-1 2.600160+0 1.344464-1 2.660725+0 1.298525-1 2.691535+0 1.276150-1 2.722701+0 1.254163-1 2.754229+0 1.232558-1 2.786121+0 1.211332-1 2.818383+0 1.190470-1 2.884032+0 1.149845-1 2.917427+0 1.130056-1 2.951209+0 1.110670-1 2.985383+0 1.092170-1 3.054921+0 1.056091-1 3.126079+0 1.021207-1 3.162278+0 1.004201-1 3.198895+0 9.874817-2 3.235937+0 9.710445-2 3.273407+0 9.548812-2 3.349654+0 9.233771-2 3.388442+0 9.080165-2 3.427678+0 8.929611-2 3.467369+0 8.786049-2 3.548134+0 8.505815-2 3.630781+0 8.234553-2 3.672823+0 8.102194-2 3.715352+0 7.971991-2 3.758374+0 7.843909-2 3.801894+0 7.717886-2 3.890451+0 7.472035-2 3.935501+0 7.352060-2 4.000000+0 7.186459-2 4.027170+0 7.120580-2 4.120975+0 6.900989-2 4.265795+0 6.584273-2 4.315191+0 6.481971-2 4.365158+0 6.381282-2 4.415704+0 6.282179-2 4.466836+0 6.184613-2 4.570882+0 5.994125-2 4.623810+0 5.901093-2 4.677351+0 5.809797-2 4.731513+0 5.722496-2 4.841724+0 5.551813-2 5.011872+0 5.305318-2 5.069907+0 5.225614-2 5.128614+0 5.147124-2 5.188000+0 5.069831-2 5.308844+0 4.918707-2 5.432503+0 4.772176-2 5.495409+0 4.700555-2 5.559043+0 4.630228-2 5.623413+0 4.562902-2 5.754399+0 4.431172-2 6.000000+0 4.201732-2 6.025596+0 4.179041-2 6.095369+0 4.118299-2 6.237348+0 3.999474-2 6.382635+0 3.884076-2 6.531306+0 3.772074-2 6.606934+0 3.717290-2 6.683439+0 3.663463-2 6.760830+0 3.611868-2 6.918310+0 3.510849-2 7.244360+0 3.317231-2 7.328245+0 3.270531-2 7.585776+0 3.134365-2 7.762471+0 3.046752-2 7.943282+0 2.961637-2 8.035261+0 2.919975-2 8.128305+0 2.879017-2 8.222427+0 2.839724-2 8.413951+0 2.762740-2 8.810489+0 2.614993-2 8.912509+0 2.579316-2 9.332543+0 2.441437-2 9.549926+0 2.375287-2 9.772372+0 2.310962-2 9.885531+0 2.279456-2 1.000000+1 2.248462-2 1.011579+1 2.217890-2 1.023293+1 2.188474-2 1.047129+1 2.130808-2 1.083927+1 2.047158-2 1.096478+1 2.020015-2 1.109175+1 1.993232-2 1.188502+1 1.839861-2 1.216186+1 1.791406-2 1.244515+1 1.744252-2 1.258925+1 1.721204-2 1.273503+1 1.698460-2 1.288250+1 1.676548-2 1.303167+1 1.654920-2 1.333521+1 1.612501-2 1.348963+1 1.591701-2 1.364583+1 1.571172-2 1.400000+1 1.526430-2 1.566751+1 1.344570-2 1.621810+1 1.293224-2 1.678804+1 1.243862-2 1.698244+1 1.227871-2 1.717908+1 1.212087-2 1.737801+1 1.196876-2 1.757924+1 1.181857-2 1.778279+1 1.167031-2 1.800000+1 1.151597-2 2.018366+1 1.015737-2 2.089296+1 9.779929-3 2.162719+1 9.416659-3 2.187762+1 9.298818-3 2.200000+1 9.242255-3 2.238721+1 9.070419-3 2.264644+1 8.958793-3 2.317395+1 8.739674-3 2.371374+1 8.525919-3 2.851018+1 6.993917-3 2.951209+1 6.738939-3 3.000000+1 6.621208-3 3.019952+1 6.574201-3 3.054921+1 6.493509-3 3.090295+1 6.415234-3 3.126079+1 6.337902-3 3.162278+1 6.261510-3 3.235937+1 6.111498-3 3.273407+1 6.037846-3 3.349654+1 5.893195-3 4.120975+1 4.737856-3 4.365158+1 4.459202-3 4.466836+1 4.352417-3 4.518559+1 4.299988-3 4.570882+1 4.248275-3 4.623810+1 4.197951-3 4.677351+1 4.148224-3 4.731513+1 4.099084-3 4.786301+1 4.050533-3 4.954502+1 3.908315-3 5.011872+1 3.862028-3 5.128614+1 3.771092-3 6.382635+1 3.007249-3 6.918310+1 2.766652-3 7.161434+1 2.669549-3 7.328245+1 2.606714-3 7.413102+1 2.575894-3 7.585776+1 2.516059-3 7.762471+1 2.457615-3 7.852356+1 2.428905-3 7.943282+1 2.400530-3 8.317638+1 2.290321-3 8.511380+1 2.237130-3 8.810489+1 2.159650-3 1.096478+2 1.727597-3 1.202264+2 1.572626-3 1.244515+2 1.518173-3 1.273503+2 1.482924-3 1.288250+2 1.465620-3 1.303167+2 1.448520-3 1.333521+2 1.415160-3 1.396368+2 1.350728-3 1.428894+2 1.319620-3 1.445440+2 1.304336-3 1.462177+2 1.289230-3 1.621810+2 1.160912-3 1.698244+2 1.108060-3 1.757924+2 1.070007-3 2.187762+2 8.575724-4 2.398833+2 7.812698-4 2.483133+2 7.544435-4 2.540973+2 7.370728-4 2.570396+2 7.285431-4 2.600160+2 7.201121-4 2.660725+2 7.036291-4 2.786121+2 6.717863-4 2.851018+2 6.564095-4 2.884032+2 6.488535-4 2.917427+2 6.413849-4 3.235937+2 5.779213-4 3.388442+2 5.517695-4 3.507519+2 5.329352-4 4.365158+2 4.277111-4 4.786301+2 3.898790-4 4.954502+2 3.765722-4 5.069907+2 3.679543-4 5.128614+2 3.637211-4 5.188000+2 3.595367-4 1.059254+3 1.758781-4 1.109175+3 1.679490-4 1.135011+3 1.641196-4 1.148154+3 1.622377-4 1.161449+3 1.603775-4 1.288250+3 1.445666-4 1.348963+3 1.380494-4 1.396368+3 1.333551-4 3.467369+3 5.362360-5 3.801894+3 4.889786-5 3.935501+3 4.723517-5 4.027170+3 4.615825-5 4.073803+3 4.562910-5 4.120975+3 4.510602-5 1.000000+5 1.858026-6 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.020000-6 7.020000-6 7.730000-6 7.020000-6 7.730000-6 7.275381-6 1.333521-5 7.304550-6 1.592000-5 7.307878-6 1.592000-5 7.701849-6 1.790000-5 7.542763-6 1.920000-5 7.466887-6 2.120000-5 7.398036-6 2.308000-5 7.389249-6 2.500000-5 7.437664-6 2.670000-5 7.527334-6 2.851018-5 7.669060-6 3.060000-5 7.883453-6 3.273407-5 8.149063-6 3.570000-5 8.571020-6 4.056000-5 9.312620-6 4.056000-5 2.146029-5 4.187000-5 2.186118-5 4.187000-5 2.271902-5 4.610000-5 2.379071-5 4.820000-5 2.414847-5 5.080000-5 2.438516-5 5.500000-5 2.452204-5 6.850000-5 2.454674-5 8.650000-5 2.441369-5 9.800000-5 2.417390-5 1.060000-4 2.386798-5 1.081200-4 2.375970-5 1.081200-4 2.949113-5 1.118000-4 3.054003-5 1.170200-4 3.185997-5 1.170200-4 3.414022-5 1.193600-4 3.486146-5 1.230269-4 3.572054-5 1.270000-4 3.638260-5 1.307000-4 3.676840-5 1.350000-4 3.694932-5 1.400000-4 3.685596-5 1.465000-4 3.641815-5 1.582700-4 3.530901-5 1.582700-4 4.035535-5 1.720000-4 3.921369-5 1.950000-4 3.761095-5 2.065380-4 3.697475-5 2.220000-4 3.635666-5 2.426610-4 3.583578-5 2.691535-4 3.540174-5 3.019952-4 3.511153-5 3.507519-4 3.496997-5 4.168694-4 3.501187-5 5.378500-4 3.541297-5 5.378500-4 3.632086-5 5.406000-4 3.747188-5 5.419000-4 3.837707-5 5.432503-4 3.964098-5 5.440000-4 4.050456-5 5.449500-4 4.175872-5 5.463000-4 4.381983-5 5.477900-4 4.636582-5 5.477900-4 4.796440-5 5.500000-4 5.173407-5 5.509600-4 5.323193-5 5.511000-4 5.351713-5 5.528000-4 5.533562-5 5.554000-4 5.742114-5 5.576000-4 5.853274-5 5.611000-4 5.977227-5 5.633000-4 6.027551-5 5.696000-4 6.127957-5 5.754399-4 6.183771-5 5.827000-4 6.212928-5 5.956621-4 6.224363-5 6.650000-4 6.185812-5 7.616900-4 6.172219-5 7.616900-4 6.726206-5 8.091600-4 6.784258-5 8.091600-4 6.924504-5 8.118500-4 6.985150-5 8.253400-4 7.025816-5 9.289800-4 7.139228-5 9.289800-4 7.445530-5 1.135011-3 7.688320-5 1.428894-3 7.983383-5 1.778279-3 8.278507-5 2.238721-3 8.594575-5 2.800000-3 8.905449-5 3.467369-3 9.201592-5 4.130500-3 9.440194-5 4.130500-3 1.318715-4 4.265795-3 1.323688-4 4.386000-3 1.324955-4 4.386000-3 1.390533-4 4.673700-3 1.394624-4 4.673700-3 1.459267-4 6.606934-3 1.486989-4 9.772372-3 1.519012-4 1.445440-2 1.551671-4 2.089296-2 1.582410-4 3.000000-2 1.611670-4 3.047900-2 1.612873-4 3.047900-2 1.646959-4 7.079458-2 1.655843-4 2.454709-1 1.661957-4 4.120975+0 1.664008-4 1.000000+5 1.664003-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.020000-6 0.0 4.187000-5 0.0 4.187000-5 1.09036-10 4.305000-5 1.06845-10 4.400000-5 1.05452-10 4.470000-5 1.04712-10 4.600000-5 1.04210-10 4.650000-5 1.04235-10 4.750000-5 1.04721-10 4.900000-5 1.06393-10 5.040000-5 1.08510-10 5.170000-5 1.11136-10 5.330000-5 1.15057-10 5.754399-5 1.27056-10 5.956621-5 1.31909-10 6.070000-5 1.34066-10 6.200000-5 1.36065-10 6.350000-5 1.37825-10 6.650000-5 1.40222-10 6.918310-5 1.41635-10 7.161434-5 1.42608-10 7.585776-5 1.43724-10 8.150000-5 1.44413-10 8.650000-5 1.44452-10 9.549926-5 1.43512-10 1.023293-4 1.41840-10 1.071519-4 1.39693-10 1.081200-4 1.39115-10 1.081200-4 2.23335-10 1.109175-4 2.35654-10 1.143000-4 2.49171-10 1.170200-4 2.59246-10 1.170200-4 3.46030-10 1.185000-4 3.57016-10 1.193600-4 3.62561-10 1.214000-4 3.73352-10 1.235000-4 3.81954-10 1.260000-4 3.89858-10 1.280000-4 3.94482-10 1.307000-4 3.98510-10 1.337300-4 4.00064-10 1.365000-4 3.98980-10 1.400000-4 3.95042-10 1.440000-4 3.87955-10 1.520000-4 3.69587-10 1.582700-4 3.54941-10 1.582700-4 4.11320-10 1.659587-4 3.96936-10 1.737801-4 3.84679-10 1.840772-4 3.70627-10 1.950000-4 3.58152-10 2.050000-4 3.49073-10 2.162719-4 3.41184-10 2.290868-4 3.34692-10 2.454709-4 3.29090-10 2.691535-4 3.23769-10 2.951209-4 3.20584-10 3.280000-4 3.19388-10 3.801894-4 3.20337-10 4.168694-4 3.22139-10 5.069907-4 3.28884-10 5.378500-4 3.31600-10 5.378500-4 3.35657-10 5.406000-4 3.40953-10 5.419000-4 3.45063-10 5.432503-4 3.50771-10 5.449500-4 3.60320-10 5.470000-4 3.74826-10 5.477900-4 3.80986-10 5.477900-4 1.422181-8 5.486000-4 1.499300-8 5.500000-4 1.622383-8 5.509600-4 1.679462-8 5.511000-4 1.677846-8 5.528000-4 1.850347-8 5.545000-4 2.074504-8 5.554000-4 2.206803-8 5.574000-4 2.642892-8 5.576000-4 2.691889-8 5.587400-4 3.016371-8 5.590000-4 3.094346-8 5.608000-4 3.555202-8 5.611000-4 3.642521-8 5.631000-4 4.340496-8 5.633000-4 4.389759-8 5.660000-4 4.907270-8 5.662000-4 4.931814-8 5.665000-4 4.992013-8 5.670000-4 5.038956-8 5.692000-4 5.485948-8 5.696000-4 5.550286-8 5.720000-4 5.871837-8 5.725000-4 5.923489-8 5.770000-4 6.151008-8 5.775000-4 6.190720-8 5.827000-4 6.376774-8 5.843000-4 6.404954-8 5.860500-4 6.420624-8 5.930000-4 6.307783-8 6.025596-4 6.213004-8 6.130000-4 6.071340-8 6.150000-4 6.075329-8 6.320000-4 5.996795-8 6.650000-4 5.925792-8 7.300000-4 5.897458-8 7.616900-4 5.887395-8 7.616900-4 9.054090-8 8.035261-4 9.359744-8 8.091600-4 9.397646-8 8.091600-4 1.057277-7 8.105000-4 1.086597-7 8.115000-4 1.102937-7 8.118500-4 1.107440-7 8.150000-4 1.119857-7 8.230000-4 1.135456-7 8.330000-4 1.148247-7 8.709636-4 1.178680-7 9.289800-4 1.218813-7 9.289800-4 1.364861-7 1.050000-3 1.459066-7 1.244515-3 1.591426-7 1.380384-3 1.676481-7 1.621810-3 1.809573-7 1.800000-3 1.896752-7 2.065380-3 2.012005-7 2.344229-3 2.117532-7 2.691535-3 2.231451-7 3.090295-3 2.343070-7 3.507519-3 2.443246-7 3.935501-3 2.531361-7 4.130500-3 2.568247-7 4.130500-3 1.874848-4 4.230000-3 1.892640-4 4.386000-3 1.893277-4 4.386000-3 2.275994-4 4.520000-3 2.288614-4 4.673700-3 2.288736-4 4.673700-3 2.388090-4 5.956621-3 2.403741-4 9.120108-3 2.420758-4 1.757924-2 2.434540-4 3.047900-2 2.441556-4 3.047900-2 1.982107-2 3.388442-2 1.993311-2 4.518559-2 2.013657-2 6.531306-2 2.030002-2 1.035142-1 2.041860-2 2.162719-1 2.049345-2 1.333521+0 2.056375-2 1.000000+5 2.056307-2 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.020000-6 0.0 7.730000-6 7.100000-7 7.730000-6 4.546195-7 9.015711-6 1.728074-6 1.333521-5 6.030660-6 1.592000-5 8.612122-6 1.592000-5 8.218151-6 1.790000-5 1.035724-5 2.040000-5 1.298159-5 2.308000-5 1.569075-5 2.560000-5 1.813568-5 2.851018-5 2.084112-5 3.235937-5 2.426003-5 4.056000-5 3.124738-5 4.056000-5 1.909971-5 4.187000-5 2.000882-5 4.187000-5 1.915087-5 4.610000-5 2.230918-5 4.820000-5 2.405143-5 5.080000-5 2.641473-5 5.520000-5 3.067493-5 7.673615-5 5.222645-5 9.800000-5 7.382596-5 1.081200-4 8.436016-5 1.081200-4 7.862864-5 1.170200-4 8.515977-5 1.170200-4 8.287944-5 1.216186-4 8.619713-5 1.280000-4 9.148944-5 1.350000-4 9.805028-5 1.440000-4 1.073787-4 1.582700-4 1.229606-4 1.582700-4 1.179142-4 1.972423-4 1.597652-4 2.300000-4 1.938808-4 3.100000-4 2.749349-4 5.378500-4 5.024367-4 5.378500-4 5.015288-4 5.430000-4 5.036183-4 5.477900-4 5.014238-4 5.477900-4 4.998114-4 5.511000-4 4.975661-4 5.554000-4 4.979568-4 5.633000-4 5.029806-4 5.827000-4 5.205070-4 7.616900-4 6.999089-4 7.616900-4 6.943374-4 8.091600-4 7.412234-4 8.091600-4 7.398092-4 9.289800-4 8.574658-4 9.289800-4 8.543882-4 2.600160-3 2.511918-3 4.130500-3 4.035841-3 4.130500-3 3.811144-3 4.386000-3 4.064177-3 4.386000-3 4.019347-3 4.673700-3 4.305364-3 4.673700-3 4.288964-3 3.047900-2 3.007356-2 3.047900-2 1.049323-2 3.162278-2 1.158407-2 4.168694-2 2.143391-2 6.839116-2 4.790800-2 4.315191-1 4.108375-1 1.000000+5 9.999998+4 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.047900-2 6.763572+3 3.140000-2 6.313480+3 3.210000-2 5.946580+3 3.330000-2 5.430820+3 3.589219-2 4.458616+3 4.027170-2 3.312418+3 4.623810-2 2.292959+3 5.821032-2 1.227419+3 7.244360-2 6.695135+2 9.120108-2 3.500774+2 1.202264-1 1.591794+2 2.018366-1 3.602044+1 2.483133-1 2.001212+1 2.951209-1 1.235235+1 3.427678-1 8.203746+0 3.890451-1 5.843655+0 4.365158-1 4.322251+0 4.897788-1 3.221343+0 5.432503-1 2.489395+0 6.025596-1 1.936987+0 6.683439-1 1.518630+0 7.413102-1 1.199439+0 8.222427-1 9.543054-1 9.015711-1 7.836576-1 9.885531-1 6.479391-1 1.148154+0 4.806279-1 1.258925+0 4.028103-1 1.428894+0 3.180366-1 1.566751+0 2.692403-1 1.757924+0 2.202327-1 2.000000+0 1.772354-1 2.264644+0 1.448610-1 2.570396+0 1.188276-1 2.951209+0 9.647382-2 3.427678+0 7.756362-2 4.000000+0 6.242200-2 4.677351+0 5.046485-2 5.559043+0 4.021899-2 6.683439+0 3.182148-2 8.128305+0 2.500771-2 1.011579+1 1.926477-2 1.273503+1 1.475312-2 1.717908+1 1.052842-2 2.200000+1 8.028200-3 3.054921+1 5.640505-3 4.570882+1 3.690212-3 7.413102+1 2.237523-3 1.303167+2 1.258243-3 2.600160+2 6.255239-4 5.188000+2 3.123091-4 4.120975+3 3.918132-5 1.000000+5 1.614000-6 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.047900-2 1.653600-4 1.000000+5 1.653600-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.047900-2 2.363500-2 1.000000+5 2.363500-2 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.047900-2 6.678640-3 1.000000+5 9.999998+4 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.673700-3 2.754900+4 4.850000-3 2.583380+4 5.069907-3 2.412978+4 5.432503-3 2.145423+4 5.821032-3 1.912803+4 6.237348-3 1.690883+4 6.918310-3 1.397519+4 7.500000-3 1.207910+4 8.128305-3 1.035324+4 9.660509-3 7.401587+3 1.080000-2 5.903780+3 1.244515-2 4.406462+3 1.462177-2 3.122249+3 1.640590-2 2.426568+3 1.905461-2 1.735358+3 2.238721-2 1.197777+3 2.600160-2 8.418674+2 3.000000-2 5.966960+2 3.467369-2 4.182742+2 4.027170-2 2.876812+2 4.677351-2 1.965341+2 5.500000-2 1.291766+2 6.531306-2 8.212718+1 7.762471-2 5.172940+1 9.440609-2 3.040281+1 1.202264-1 1.562283+1 1.603245-1 7.018527+0 2.213095-1 2.857499+0 2.691535-1 1.666555+0 3.198895-1 1.043021+0 3.672823-1 7.216275-1 4.168694-1 5.183382-1 4.677351-1 3.862788-1 5.248075-1 2.899517-1 5.888437-1 2.193177-1 6.531306-1 1.718414-1 7.244360-1 1.355889-1 8.035261-1 1.077464-1 8.912509-1 8.620698-2 9.772372-1 7.120664-2 1.135011+0 5.277383-2 1.230269+0 4.516313-2 1.412538+0 3.486872-2 1.548817+0 2.949786-2 1.737801+0 2.411159-2 1.972423+0 1.946498-2 2.238721+0 1.583325-2 2.540973+0 1.297817-2 2.917427+0 1.052941-2 3.388442+0 8.460410-3 3.935501+0 6.849659-3 4.623810+0 5.498353-3 5.495409+0 4.379773-3 6.606934+0 3.463717-3 8.035261+0 2.720828-3 9.885531+0 2.123691-3 1.244515+1 1.625043-3 1.678804+1 1.158881-3 2.162719+1 8.774316-4 3.019952+1 6.126302-4 4.518559+1 4.007101-4 7.328245+1 2.429168-4 1.273503+2 1.381912-4 2.540973+2 6.868702-5 5.069907+2 3.429062-5 4.027170+3 4.301668-6 1.000000+5 1.731600-7 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.673700-3 1.887000-4 1.000000+5 1.887000-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.673700-3 3.045500-4 1.000000+5 3.045500-4 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.673700-3 4.180450-3 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.386000-3 5.609319+4 4.490000-3 5.501197+4 4.520000-3 5.428500+4 4.580000-3 5.240700+4 4.700000-3 4.917500+4 5.248075-3 3.701300+4 5.650000-3 3.040400+4 6.918310-3 1.744200+4 8.128305-3 1.111800+4 8.810489-3 8.841300+3 1.083927-2 4.833600+3 1.318257-2 2.694800+3 1.500000-2 1.819600+3 1.717908-2 1.199200+3 2.065380-2 6.745800+2 2.483133-2 3.760700+2 2.985383-2 2.079600+2 3.589219-2 1.142000+2 4.466836-2 5.561746+1 5.888437-2 2.222796+1 1.096478-1 2.779762+0 1.412538-1 1.199724+0 1.698244-1 6.556840-1 2.000000-1 3.862449-1 2.317395-1 2.414992-1 2.660725-1 1.566161-1 3.019952-1 1.060633-1 3.388442-1 7.491968-2 3.801894-1 5.329339-2 4.216965-1 3.948288-2 4.677351-1 2.944657-2 5.188000-1 2.211305-2 5.754399-1 1.672380-2 6.382635-1 1.274325-2 6.998420-1 1.007654-2 7.673615-1 8.028776-3 8.511380-1 6.264982-3 9.440609-1 4.911816-3 1.000000+0 4.316804-3 1.071519+0 3.727820-3 1.148154+0 3.241142-3 1.216186+0 2.901430-3 1.364583+0 2.348438-3 1.659587+0 1.660403-3 1.883649+0 1.335780-3 2.113489+0 1.103869-3 2.398833+0 9.018526-4 2.722701+0 7.421006-4 3.162278+0 5.941585-4 3.672823+0 4.793943-4 4.315191+0 3.835473-4 5.069907+0 3.091843-4 6.025596+0 2.472747-4 7.244360+0 1.962735-4 8.810489+0 1.547269-4 1.083927+1 1.211573-4 1.348963+1 9.420157-5 1.757924+1 6.997170-5 2.264644+1 5.304078-5 3.162278+1 3.707007-5 4.786301+1 2.398000-5 7.943282+1 1.421031-5 1.462177+2 7.633534-6 2.917427+2 3.797810-6 1.161449+3 9.490666-7 1.000000+5 1.100400-8 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.386000-3 1.573400-4 1.000000+5 1.573400-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.386000-3 3.343200-4 1.000000+5 3.343200-4 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.386000-3 3.894340-3 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.130500-3 1.209370+5 4.230000-3 1.171416+5 4.415704-3 1.049724+5 4.954502-3 7.743554+4 5.308844-3 6.410493+4 6.456542-3 3.698835+4 7.244360-3 2.662975+4 8.222426-3 1.848116+4 9.800000-3 1.096460+4 1.083927-2 8.092882+3 1.303167-2 4.597508+3 1.548817-2 2.677690+3 1.800000-2 1.660064+3 2.089296-2 1.026531+3 2.454709-2 6.060458+2 2.917427-2 3.419701+2 3.507519-2 1.842741+2 4.265795-2 9.477594+1 5.248075-2 4.652462+1 6.606934-2 2.095302+1 1.273503-1 2.130534+0 1.548817-1 1.084633+0 1.840772-1 6.022034-1 2.113489-1 3.785801-1 2.398833-1 2.490779-1 2.691535-1 1.713656-1 3.019952-1 1.187549-1 3.349654-1 8.596422-2 3.715352-1 6.268362-2 4.073803-1 4.765681-2 4.466836-1 3.647064-2 4.897788-1 2.810722-2 5.370318-1 2.182657-2 5.888437-1 1.707421-2 6.456542-1 1.345627-2 7.079458-1 1.068569-2 7.762471-1 8.550094-3 8.609938-1 6.710545-3 9.225714-1 5.735585-3 9.885531-1 4.935953-3 1.083927+0 4.082054-3 1.174898+0 3.477946-3 1.288250+0 2.919865-3 1.428894+0 2.415376-3 1.659587+0 1.852017-3 1.883649+0 1.490293-3 2.113489+0 1.231725-3 2.398833+0 1.006280-3 2.754229+0 8.136651-4 3.198895+0 6.517957-4 3.715352+0 5.262013-4 4.365158+0 4.212323-4 5.128614+0 3.397370-4 6.095369+0 2.718371-4 7.328245+0 2.158720-4 8.912509+0 1.702548-4 1.109175+1 1.315805-4 1.400000+1 1.007500-4 1.800000+1 7.604400-5 2.371374+1 5.628911-5 3.349654+1 3.890665-5 5.128614+1 2.489627-5 8.810489+1 1.425588-5 1.757924+2 7.064901-6 3.507519+2 3.519672-6 1.396368+3 8.801952-7 1.000000+5 1.227500-8 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.130500-3 1.498200-4 1.000000+5 1.498200-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.130500-3 2.771700-4 1.000000+5 2.771700-4 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.130500-3 3.703510-3 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 9.289800-4 8.277727+4 1.015000-3 7.635640+4 1.035142-3 7.474798+4 1.110000-3 6.847520+4 1.333521-3 5.361353+4 1.621810-3 4.037143+4 1.757924-3 3.566096+4 2.113489-3 2.658652+4 2.344229-3 2.237759+4 2.754229-3 1.699451+4 3.235937-3 1.277974+4 3.672823-3 1.015957+4 4.365158-3 7.369835+3 5.188000-3 5.299282+3 6.165950-3 3.777984+3 7.328245-3 2.671358+3 8.709636-3 1.873308+3 1.023293-2 1.334910+3 1.202264-2 9.440790+2 1.412538-2 6.626014+2 1.659587-2 4.615204+2 1.949845-2 3.190116+2 2.300000-2 2.167940+2 2.691535-2 1.489791+2 3.162278-2 1.006621+2 3.715352-2 6.749585+1 4.365158-2 4.492727+1 5.188000-2 2.882387+1 6.165950-2 1.835135+1 7.413102-2 1.124742+1 9.015711-2 6.633095+0 1.122019-1 3.643299+0 2.426610-1 4.304230-1 2.917427-1 2.601576-1 3.427678-1 1.686364-1 3.935501-1 1.171560-1 4.466836-1 8.453769-2 5.011872-1 6.328450-2 5.623413-1 4.773383-2 6.237348-1 3.729028-2 6.918310-1 2.933461-2 7.673615-1 2.323879-2 8.609938-1 1.808212-2 9.440609-1 1.489615-2 1.047129+0 1.207483-2 1.174898+0 9.612128-3 1.333521+0 7.561643-3 1.500000+0 6.088018-3 1.678804+0 4.987956-3 1.905461+0 4.018197-3 2.162719+0 3.261837-3 2.454709+0 2.668300-3 2.818383+0 2.160526-3 3.273407+0 1.732880-3 3.801894+0 1.400575-3 4.466836+0 1.122451-3 5.308844+0 8.927080-4 6.382635+0 7.049651-4 7.762471+0 5.529901-4 9.549926+0 4.310959-4 1.216186+1 3.251482-4 1.621810+1 2.347058-4 2.089296+1 1.775217-4 2.951209+1 1.223500-4 4.365158+1 8.096128-5 6.918310+1 5.022705-5 1.202264+2 2.855111-5 2.398833+2 1.418551-5 4.786301+2 7.080125-6 3.801894+3 8.879805-7 1.000000+5 3.374600-8 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 9.289800-4 1.460300-4 1.000000+5 1.460300-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.289800-4 4.777600-7 1.000000+5 4.777600-7 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.289800-4 7.824722-4 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 8.091600-4 7.695400+4 8.093500-4 7.950000+4 8.096000-4 8.347820+4 8.099000-4 8.798120+4 8.102000-4 9.215740+4 8.105000-4 9.601540+4 8.107500-4 9.896900+4 8.111000-4 1.027264+5 8.115000-4 1.065412+5 8.118500-4 1.093972+5 8.137000-4 1.134617+5 8.147000-4 1.153689+5 8.169000-4 1.177680+5 8.230000-4 1.214185+5 8.280000-4 1.233431+5 8.330000-4 1.242563+5 8.413951-4 1.246461+5 8.550000-4 1.242045+5 8.650000-4 1.233031+5 9.015711-4 1.192066+5 9.332543-4 1.162210+5 1.050000-3 1.028490+5 1.122018-3 9.536094+4 1.202264-3 8.754629+4 1.303167-3 7.863686+4 1.428894-3 6.894147+4 1.531087-3 6.198778+4 1.730000-3 5.088660+4 1.862087-3 4.491281+4 2.041738-3 3.809483+4 2.264644-3 3.145862+4 2.483133-3 2.633738+4 2.800000-3 2.071840+4 3.054921-3 1.730423+4 3.467369-3 1.320263+4 3.845918-3 1.050396+4 4.315191-3 8.088413+3 4.841724-3 6.179298+3 5.432503-3 4.687770+3 6.165950-3 3.431219+3 6.918310-3 2.565520+3 7.852356-3 1.849382+3 8.912509-3 1.322963+3 1.011579-2 9.392968+2 1.161449-2 6.411606+2 1.333521-2 4.340427+2 1.531087-2 2.915381+2 1.757924-2 1.943823+2 2.041738-2 1.243267+2 2.371374-2 7.890519+1 2.754229-2 4.972376+1 3.235937-2 3.001445+1 3.845918-2 1.734649+1 4.677351-2 9.245263+0 5.754399-2 4.710590+0 7.852356-2 1.696472+0 1.288250-1 3.319751-1 1.584893-1 1.687616-1 1.883649-1 9.666622-2 2.213095-1 5.785671-2 2.540973-1 3.751964-2 2.884032-1 2.539968-2 3.235937-1 1.793754-2 3.630781-1 1.275420-2 4.073803-1 9.132102-3 4.570882-1 6.586472-3 5.069907-1 4.943086-3 5.623413-1 3.736937-3 6.237348-1 2.846150-3 6.918310-1 2.184434-3 7.585776-1 1.738207-3 8.609938-1 1.278954-3 9.225714-1 1.088814-3 9.772372-1 9.578039-4 1.047129+0 8.277219-4 1.135011+0 7.026280-4 1.216186+0 6.143200-4 1.348963+0 5.067455-4 1.548817+0 3.958829-4 1.757924+0 3.173343-4 1.995262+0 2.562255-4 2.238721+0 2.124427-4 2.540973+0 1.741532-4 2.917427+0 1.413177-4 3.388442+0 1.135547-4 3.935501+0 9.193625-5 4.623810+0 7.379885-5 5.495409+0 5.878589-5 6.606934+0 4.648999-5 8.035261+0 3.651845-5 9.885531+0 2.850377-5 1.258925+1 2.152571-5 1.698244+1 1.535641-5 2.187762+1 1.163109-5 3.019952+1 8.222755-6 4.518559+1 5.378314-6 7.328245+1 3.260353-6 1.288250+2 1.833224-6 2.570396+2 9.112720-7 5.128614+2 4.549613-7 4.073803+3 5.707540-8 1.000000+5 2.324200-9 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 8.091600-4 1.133400-4 1.000000+5 1.133400-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.091600-4 4.752000-7 1.000000+5 4.752000-7 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.091600-4 6.953448-4 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 7.616900-4 3.038637+5 7.820000-4 3.041460+5 8.000000-4 3.028566+5 8.150000-4 3.008428+5 8.253400-4 2.977257+5 8.511380-4 2.880953+5 8.850000-4 2.778108+5 9.120108-4 2.681944+5 1.011579-3 2.363452+5 1.083927-3 2.158380+5 1.174898-3 1.928058+5 1.258925-3 1.740096+5 1.350000-3 1.563092+5 1.462177-3 1.370995+5 1.650000-3 1.115608+5 1.778279-3 9.755898+4 2.000000-3 7.825080+4 2.187762-3 6.576559+4 2.426610-3 5.336208+4 2.691535-3 4.303524+4 3.000000-3 3.408916+4 3.349654-3 2.671585+4 3.758374-3 2.054858+4 4.168694-3 1.612147+4 4.677351-3 1.222438+4 5.300000-3 8.978720+3 5.956621-3 6.679704+3 6.683439-3 4.957024+3 7.585776-3 3.543635+3 8.609938-3 2.513433+3 9.800000-3 1.755284+3 1.122018-2 1.195988+3 1.273503-2 8.289581+2 1.450000-2 5.653160+2 1.650000-2 3.835140+2 1.900000-2 2.492532+2 2.187762-2 1.607839+2 2.540973-2 1.001908+2 2.951209-2 6.196298+1 3.467369-2 3.664144+1 4.120975-2 2.070472+1 4.954502-2 1.117489+1 6.095369-2 5.533012+0 8.035261-2 2.147347+0 1.333521-1 3.757328-1 1.640590-1 1.853547-1 1.927525-1 1.076993-1 2.238721-1 6.551966-2 2.540973-1 4.333001-2 2.851018-1 2.995777-2 3.162278-1 2.163249-2 3.507519-1 1.572859-2 3.890451-1 1.152050-2 4.265795-1 8.793922-3 4.677351-1 6.757844-3 5.128614-1 5.230599-3 5.623413-1 4.079195-3 6.165950-1 3.205000-3 6.760830-1 2.537175-3 7.413102-1 2.023350-3 8.413951-1 1.497360-3 9.120108-1 1.244888-3 9.772372-1 1.070188-3 1.059254+0 9.049825-4 1.161449+0 7.524818-4 1.258925+0 6.449152-4 1.396368+0 5.327150-4 1.621810+0 4.080165-4 1.840772+0 3.278949-4 2.089296+0 2.655279-4 2.371374+0 2.167528-4 2.691535+0 1.782477-4 3.126079+0 1.426327-4 3.630781+0 1.150158-4 4.265795+0 9.196795-5 5.011872+0 7.409792-5 6.000000+0 5.868700-5 7.244360+0 4.633126-5 8.810489+0 3.652338-5 1.096478+1 2.821807-5 1.364583+1 2.194721-5 1.757924+1 1.651713-5 2.264644+1 1.252020-5 3.126079+1 8.857978-6 4.731513+1 5.728651-6 7.852356+1 3.394242-6 1.396368+2 1.888032-6 2.786121+2 9.390019-7 1.109175+3 2.346208-7 1.000000+5 2.597400-9 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 7.616900-4 1.111600-4 1.000000+5 1.111600-4 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.616900-4 3.414700-7 1.000000+5 3.414700-7 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 7.616900-4 6.501885-4 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 5.477900-4 8.718568+4 5.500000-4 1.244913+5 5.545000-4 2.392662+5 5.590000-4 4.688109+5 5.594000-4 4.935544+5 5.631000-4 7.803414+5 5.633000-4 7.936806+5 5.660000-4 9.472689+5 5.662000-4 9.555938+5 5.692000-4 1.163716+6 5.696000-4 1.188564+6 5.720000-4 1.324140+6 5.725000-4 1.348535+6 5.775000-4 1.510753+6 5.827000-4 1.589363+6 5.843000-4 1.602013+6 5.860500-4 1.609835+6 5.930000-4 1.570710+6 6.025596-4 1.493825+6 6.130000-4 1.397851+6 6.320000-4 1.260748+6 6.500000-4 1.165236+6 6.650000-4 1.100968+6 6.850000-4 1.032652+6 7.300000-4 9.029960+5 8.000000-4 7.417560+5 8.609938-4 6.297729+5 9.225714-4 5.367264+5 1.000000-3 4.420880+5 1.083927-3 3.614652+5 1.188502-3 2.851896+5 1.273503-3 2.371176+5 1.450000-3 1.659964+5 1.584893-3 1.291083+5 1.800000-3 8.930640+4 1.972423-3 6.813056+4 2.264644-3 4.484155+4 2.511886-3 3.252429+4 2.818383-3 2.261454+4 3.162278-3 1.559805+4 3.507519-3 1.110208+4 4.000000-3 7.155000+3 4.570882-3 4.539240+3 5.188000-3 2.924172+3 5.821032-3 1.947938+3 6.606934-3 1.237212+3 7.500000-3 7.796120+2 8.511380-3 4.881858+2 9.660509-3 3.033677+2 1.109175-2 1.791648+2 1.288250-2 1.004114+2 1.496236-2 5.580828+1 1.717908-2 3.223930+1 2.018366-2 1.687353+1 2.398833-2 8.361505+0 2.884032-2 3.922285+0 3.548134-2 1.660093+0 4.786301-2 4.748925-1 7.498942-2 7.245770-2 9.440609-2 2.779331-2 1.135011-1 1.300050-2 1.333521-1 6.733979-3 1.548817-1 3.682664-3 1.778279-1 2.125271-3 2.018366-1 1.293702-3 2.264644-1 8.299483-4 2.540973-1 5.363710-4 2.818383-1 3.645553-4 3.126079-1 2.494838-4 3.467369-1 1.719705-4 3.845918-1 1.194155-4 4.265795-1 8.354373-5 4.677351-1 6.122422-5 5.128614-1 4.517463-5 5.623413-1 3.357370-5 6.165950-1 2.514152-5 6.683439-1 1.964678-5 7.244360-1 1.545400-5 7.852356-1 1.224108-5 8.609938-1 9.409659-6 9.120108-1 8.040830-6 9.549926-1 7.133834-6 1.000000+0 6.369845-6 1.047129+0 5.729184-6 1.096478+0 5.188828-6 1.161449+0 4.621036-6 1.244515+0 4.055645-6 1.348963+0 3.511135-6 1.531087+0 2.824466-6 1.819701+0 2.091055-6 2.018366+0 1.756160-6 2.290868+0 1.430515-6 2.600160+0 1.174089-6 2.985383+0 9.537653-7 3.467369+0 7.672499-7 4.027170+0 6.218773-7 4.731513+0 4.997355-7 5.623413+0 3.984824-7 6.760830+0 3.154330-7 8.222427+0 2.479991-7 1.023293+1 1.911343-7 1.288250+1 1.464267-7 1.737801+1 1.045288-7 2.238721+1 7.921696-8 3.090295+1 5.603168-8 4.623810+1 3.666625-8 7.585776+1 2.197381-8 1.333521+2 1.236157-8 2.660725+2 6.146072-9 1.059254+3 1.535315-9 1.000000+5 1.62300-11 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 5.477900-4 6.608800-5 1.000000+5 6.608800-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.477900-4 1.711400-7 1.000000+5 1.711400-7 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.477900-4 4.815309-4 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 5.378500-4 1.983400+4 5.406000-4 4.617555+4 5.419000-4 6.836636+4 5.430000-4 9.466375+4 5.440000-4 1.263877+5 5.449500-4 1.651167+5 5.455500-4 1.946700+5 5.463000-4 2.378433+5 5.470000-4 2.852118+5 5.478000-4 3.486667+5 5.486000-4 4.230400+5 5.493000-4 4.977307+5 5.500000-4 5.819173+5 5.507000-4 6.758914+5 5.509600-4 7.133100+5 5.511000-4 7.429266+5 5.528000-4 9.466096+5 5.552000-4 1.233100+6 5.554000-4 1.258789+6 5.574000-4 1.431673+6 5.576000-4 1.448123+6 5.608000-4 1.648849+6 5.611000-4 1.663337+6 5.665000-4 1.778896+6 5.670000-4 1.826943+6 5.770000-4 2.089874+6 5.780000-4 2.097937+6 5.930000-4 2.143154+6 5.956621-4 2.131182+6 6.130000-4 2.023953+6 6.150000-4 1.996146+6 6.309573-4 1.851760+6 6.456542-4 1.740336+6 6.606934-4 1.647501+6 7.161434-4 1.387644+6 8.035261-4 1.080178+6 8.709636-4 8.994655+5 9.332543-4 7.640769+5 1.011579-3 6.271199+5 1.110000-3 4.952976+5 1.190000-3 4.128960+5 1.300000-3 3.248466+5 1.462177-3 2.343502+5 1.603245-3 1.800889+5 1.800000-3 1.284312+5 2.000000-3 9.371400+4 2.238721-3 6.644545+4 2.511886-3 4.639702+4 2.800000-3 3.284562+4 3.162278-3 2.212808+4 3.548134-3 1.510940+4 3.935501-3 1.065811+4 4.500000-3 6.730860+3 5.188000-3 4.092464+3 5.956621-3 2.501340+3 6.839116-3 1.515029+3 7.852356-3 9.093052+2 8.912509-3 5.651160+2 1.011579-2 3.486714+2 1.150000-2 2.122872+2 1.303167-2 1.300449+2 1.500000-2 7.441980+1 1.757924-2 3.931430+1 2.041738-2 2.136952+1 2.398833-2 1.099791+1 2.851018-2 5.355911+0 3.427678-2 2.467239+0 4.415704-2 8.421676-1 7.762471-2 7.605555-2 9.549926-2 3.161655-2 1.135011-1 1.531459-2 1.318257-1 8.228341-3 1.513561-1 4.672218-3 1.717908-1 2.802433-3 1.927525-1 1.773409-3 2.162719-1 1.130344-3 2.398833-1 7.590493-4 2.630268-1 5.362582-4 2.884032-1 3.814396-4 3.162278-1 2.732941-4 3.467369-1 1.973284-4 3.758374-1 1.493943-4 4.120975-1 1.095468-4 4.466836-1 8.410535-5 4.786301-1 6.748012-5 5.069907-1 5.645255-5 5.495409-1 4.435303-5 5.956621-1 3.511075-5 6.531306-1 2.706944-5 7.161434-1 2.102912-5 8.709636-1 1.250343-5 9.225714-1 1.080423-5 9.660509-1 9.664948-6 1.011579+0 8.696452-6 1.071519+0 7.676409-6 1.135011+0 6.819887-6 1.202264+0 6.096734-6 1.303167+0 5.254392-6 1.445440+0 4.374029-6 1.778279+0 3.047000-6 2.000000+0 2.498201-6 2.264644+0 2.041463-6 2.570396+0 1.674554-6 2.951209+0 1.359566-6 3.427678+0 1.093086-6 4.000000+0 8.797100-7 4.677351+0 7.111973-7 5.559043+0 5.668081-7 6.683439+0 4.484653-7 8.128305+0 3.524310-7 1.000000+1 2.752000-7 1.258925+1 2.106708-7 1.678804+1 1.522270-7 2.162719+1 1.152551-7 3.000000+1 8.104200-8 4.466836+1 5.327219-8 7.161434+1 3.267287-8 1.244515+2 1.858118-8 2.483133+2 9.234269-9 4.954502+2 4.609603-9 3.935501+3 5.78215-10 1.000000+5 2.27460-11 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 5.378500-4 6.646600-5 1.000000+5 6.646600-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 5.378500-4 4.70380-10 1.000000+5 4.70380-10 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 5.378500-4 4.713835-4 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.582700-4 1.537206+5 1.640590-4 1.562069+5 1.737801-4 1.616637+5 1.780000-4 1.631448+5 1.820000-4 1.636728+5 1.865000-4 1.633088+5 1.927525-4 1.615267+5 2.018366-4 1.575753+5 2.426610-4 1.403012+5 2.580000-4 1.341384+5 2.730000-4 1.278384+5 2.985383-4 1.173709+5 3.350000-4 1.043688+5 3.630781-4 9.554803+4 4.000000-4 8.517460+4 4.518559-4 7.312673+4 5.011872-4 6.380055+4 5.754399-4 5.265830+4 6.500000-4 4.415760+4 7.500000-4 3.559040+4 8.609938-4 2.870401+4 1.011579-3 2.214740+4 1.202264-3 1.662786+4 1.428894-3 1.238772+4 1.737801-3 8.801899+3 2.150000-3 6.017300+3 2.600160-3 4.254793+3 3.162278-3 2.957947+3 3.801894-3 2.086287+3 4.570882-3 1.460534+3 5.432503-3 1.038077+3 6.456542-3 7.326586+2 7.762471-3 5.013994+2 9.332543-3 3.403842+2 1.109175-2 2.350036+2 1.318257-2 1.609870+2 1.548817-2 1.122822+2 1.819701-2 7.775043+1 2.137962-2 5.344990+1 2.511886-2 3.647621+1 2.951209-2 2.471151+1 3.467369-2 1.661833+1 4.120975-2 1.077931+1 4.897788-2 6.937314+0 5.821032-2 4.427800+0 7.000000-2 2.719817+0 8.317638-2 1.712620+0 1.035142-1 9.433386-1 1.380384-1 4.264724-1 2.398833-1 9.228000-2 2.884032-1 5.576347-2 3.388442-1 3.614159-2 3.890451-1 2.510120-2 4.415705-1 1.810245-2 4.954502-1 1.354243-2 5.559043-1 1.020704-2 6.165950-1 7.967890-3 6.839117-1 6.263168-3 7.585776-1 4.957727-3 8.511380-1 3.854348-3 9.332543-1 3.172536-3 1.023293+0 2.629816-3 1.161449+0 2.044190-3 1.288250+0 1.677756-3 1.462177+0 1.326263-3 1.621810+0 1.101857-3 1.819701+0 9.031810-4 2.065380+0 7.310887-4 2.344229+0 5.963740-4 2.660725+0 4.901075-4 3.054921+0 3.986145-4 3.548134+0 3.210496-4 4.120975+0 2.605010-4 4.841724+0 2.095530-4 5.754399+0 1.672670-4 6.918310+0 1.325296-4 8.413951+0 1.042880-4 1.047129+1 8.044502-5 1.303167+1 6.248638-5 1.737801+1 4.519705-5 2.238721+1 3.425204-5 3.126079+1 2.393276-5 4.731513+1 1.547747-5 7.943282+1 9.062698-6 1.445440+2 4.925415-6 2.884032+2 2.450335-6 1.148154+3 6.123189-7 1.000000+5 7.017700-9 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.582700-4 7.069500-5 1.000000+5 7.069500-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.582700-4 7.50280-10 1.000000+5 7.50280-10 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.582700-4 8.757425-5 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.170200-4 2.092940+5 1.178000-4 2.121080+5 1.185000-4 2.134080+5 1.192000-4 2.137120+5 1.202264-4 2.126825+5 1.214000-4 2.100660+5 1.233000-4 2.041360+5 1.270000-4 1.911486+5 1.364583-4 1.622960+5 1.412538-4 1.505959+5 1.462177-4 1.405691+5 1.500000-4 1.343348+5 1.540000-4 1.289604+5 1.584893-4 1.242343+5 1.635000-4 1.202970+5 1.690000-4 1.172084+5 1.757924-4 1.146197+5 1.840772-4 1.125746+5 1.972423-4 1.105403+5 2.371374-4 1.064177+5 2.580000-4 1.039168+5 2.800000-4 1.007774+5 3.019952-4 9.728592+4 3.273407-4 9.302251+4 3.507519-4 8.891235+4 3.801894-4 8.369179+4 4.168694-4 7.746545+4 4.518559-4 7.191968+4 4.897788-4 6.630451+4 5.370318-4 5.996487+4 5.888437-4 5.388085+4 6.456542-4 4.806167+4 7.161434-4 4.193806+4 7.943282-4 3.632314+4 8.810489-4 3.122536+4 9.885531-4 2.619352+4 1.110000-3 2.176140+4 1.230269-3 1.834693+4 1.380384-3 1.505102+4 1.570000-3 1.196354+4 1.778279-3 9.504879+3 2.018366-3 7.465038+3 2.300000-3 5.771800+3 2.600160-3 4.499579+3 2.917427-3 3.538346+3 3.273407-3 2.764317+3 3.672823-3 2.145157+3 4.120975-3 1.653488+3 4.623810-3 1.265901+3 5.188000-3 9.626766+2 5.888437-3 7.068896+2 6.683439-3 5.151253+2 7.585776-3 3.726217+2 8.609938-3 2.676119+2 9.772372-3 1.908439+2 1.109175-2 1.351407+2 1.273503-2 9.201848+1 1.462177-2 6.216447+1 1.678804-2 4.167452+1 1.927525-2 2.773619+1 2.238721-2 1.770427+1 2.600160-2 1.121576+1 3.054921-2 6.807546+0 3.630781-2 3.954771+0 4.365158-2 2.198433+0 5.308844-2 1.169130+0 6.839116-2 5.116494-1 1.333521-1 5.709043-2 1.640590-1 2.909860-2 1.949845-1 1.670903-2 2.290868-1 1.002873-2 2.630268-1 6.520655-3 3.000000-1 4.359313-3 3.388442-1 3.024077-3 3.801894-1 2.154932-3 4.265795-1 1.546995-3 4.731513-1 1.155911-3 5.248075-1 8.698648-4 5.821032-1 6.594747-4 6.456542-1 5.036284-4 7.161434-1 3.875365-4 7.852356-1 3.090711-4 8.709636-1 2.406009-4 9.332543-1 2.050304-4 9.885531-1 1.805559-4 1.071519+0 1.525304-4 1.161449+0 1.297274-4 1.258925+0 1.112277-4 1.396368+0 9.198457-5 1.659587+0 6.773933-5 1.883649+0 5.450185-5 2.113489+0 4.503538-5 2.398833+0 3.678953-5 2.722701+0 3.027149-5 3.162278+0 2.423633-5 3.672823+0 1.955508-5 4.315191+0 1.564561-5 5.069907+0 1.261217-5 6.025596+0 1.008614-5 7.244360+0 8.006364-6 8.810489+0 6.311528-6 1.096478+1 4.876357-6 1.364583+1 3.792666-6 1.778279+1 2.818139-6 2.317395+1 2.110235-6 3.273407+1 1.457671-6 5.011872+1 9.323684-7 8.511380+1 5.400403-7 1.698244+2 2.675322-7 3.388442+2 1.332462-7 1.348963+3 3.331891-8 1.000000+5 4.48850-10 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.170200-4 4.878800-5 1.000000+5 4.878800-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.170200-4 9.03510-10 1.000000+5 9.03510-10 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.170200-4 6.823110-5 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.081200-4 4.865680+5 1.092000-4 4.881840+5 1.103000-4 4.869080+5 1.118000-4 4.820080+5 1.140000-4 4.712720+5 1.174898-4 4.519641+5 1.318257-4 3.808241+5 1.364583-4 3.635718+5 1.412538-4 3.493281+5 1.462177-4 3.381223+5 1.520000-4 3.287256+5 1.584893-4 3.214833+5 1.678804-4 3.145056+5 2.041738-4 2.964076+5 2.238721-4 2.864625+5 2.426610-4 2.760271+5 2.630268-4 2.639031+5 2.851018-4 2.505391+5 3.100000-4 2.357024+5 3.350000-4 2.212168+5 3.630781-4 2.056097+5 4.000000-4 1.867564+5 4.365158-4 1.701319+5 4.731513-4 1.551599+5 5.248075-4 1.366822+5 5.821032-4 1.195525+5 6.456542-4 1.037131+5 7.161434-4 8.933392+4 8.000000-4 7.561080+4 9.015711-4 6.260249+4 1.000000-3 5.281440+4 1.135011-3 4.255241+4 1.288250-3 3.399246+4 1.462177-3 2.693734+4 1.678804-3 2.071272+4 1.927525-3 1.578446+4 2.187762-3 1.220809+4 2.454709-3 9.603746+3 2.754229-3 7.507636+3 3.090295-3 5.831735+3 3.467369-3 4.501175+3 3.890451-3 3.449818+3 4.417000-3 2.553224+3 5.000000-3 1.888120+3 5.688529-3 1.367829+3 6.456542-3 9.891046+2 7.328245-3 7.098069+2 8.317638-3 5.056136+2 9.440609-3 3.575595+2 1.071519-2 2.510324+2 1.216186-2 1.749884+2 1.380384-2 1.211349+2 1.566751-2 8.328439+1 1.798871-2 5.492640+1 2.065380-2 3.595303+1 2.371374-2 2.336390+1 2.754229-2 1.453694+1 3.198895-2 8.978706+0 3.758374-2 5.303504+0 4.466836-2 2.993892+0 5.248075-2 1.744010+0 6.456542-2 8.630594-1 8.810489-2 2.975230-1 1.348963-1 6.882234-2 1.640590-1 3.536208-2 1.927525-1 2.057737-2 2.238721-1 1.253181-2 2.540973-1 8.295202-3 2.851018-1 5.739799-3 3.198895-1 4.001304-3 3.548134-1 2.912495-3 3.935501-1 2.135741-3 4.315191-1 1.632265-3 4.731513-1 1.255878-3 5.188000-1 9.731051-4 5.688529-1 7.595101-4 6.237348-1 5.972202-4 6.839117-1 4.731819-4 7.498942-1 3.777106-4 8.511380-1 2.799049-4 9.120108-1 2.391417-4 9.772372-1 2.056550-4 1.059254+0 1.739540-4 1.161449+0 1.446522-4 1.273503+0 1.213183-4 1.412538+0 1.002752-4 1.640590+0 7.684363-5 1.862087+0 6.179508-5 2.113489+0 5.007748-5 2.398833+0 4.090695-5 2.722701+0 3.366054-5 3.162278+0 2.695080-5 3.672823+0 2.174505-5 4.315191+0 1.739735-5 5.069907+0 1.402417-5 6.025596+0 1.121599-5 7.244360+0 8.903077-6 8.810489+0 7.018495-6 1.096478+1 5.422489-6 1.364583+1 4.217445-6 1.778279+1 3.133751-6 2.317395+1 2.346525-6 3.235937+1 1.640947-6 4.954502+1 1.049331-6 8.317638+1 6.148556-7 1.621810+2 3.117178-7 3.235937+2 1.552050-7 1.288250+3 3.880166-8 1.000000+5 4.99130-10 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.081200-4 4.888000-5 1.000000+5 4.888000-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.081200-4 5.08240-10 1.000000+5 5.08240-10 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.081200-4 5.923949-5 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 4.187000-5 1.125964+6 4.225000-5 1.146488+6 4.265795-5 1.177200+6 4.305000-5 1.215688+6 4.335000-5 1.251528+6 4.365158-5 1.294370+6 4.400000-5 1.351964+6 4.440000-5 1.429988+6 4.470000-5 1.497944+6 4.510000-5 1.602024+6 4.550000-5 1.722628+6 4.600000-5 1.898596+6 4.650000-5 2.105636+6 4.700000-5 2.347108+6 4.750000-5 2.626368+6 4.820000-5 3.087708+6 4.900000-5 3.726768+6 5.080000-5 5.660320+6 5.150000-5 6.610480+6 5.230000-5 7.826320+6 5.300000-5 8.992160+6 5.350000-5 9.871360+6 5.415200-5 1.105928+7 5.465000-5 1.198172+7 5.520000-5 1.299824+7 5.580000-5 1.408360+7 5.630000-5 1.494944+7 5.690000-5 1.592168+7 5.745900-5 1.674434+7 5.800000-5 1.745024+7 5.850000-5 1.801540+7 5.900000-5 1.849184+7 5.956621-5 1.892156+7 6.015000-5 1.924356+7 6.070000-5 1.943852+7 6.130000-5 1.953840+7 6.200000-5 1.951948+7 6.280000-5 1.934160+7 6.350000-5 1.907048+7 6.420000-5 1.871060+7 6.500000-5 1.821188+7 6.606934-5 1.743576+7 6.690000-5 1.677244+7 6.800000-5 1.584256+7 6.918310-5 1.480988+7 7.030000-5 1.382732+7 7.161434-5 1.268685+7 7.300000-5 1.152516+7 7.450000-5 1.033316+7 7.585776-5 9.324610+6 7.762471-5 8.121802+6 7.950000-5 6.985040+6 8.150000-5 5.927840+6 8.400000-5 4.814760+6 8.650000-5 3.905516+6 8.912509-5 3.135397+6 9.225714-5 2.416981+6 9.549926-5 1.851836+6 9.900000-5 1.394060+6 1.023293-4 1.067582+6 1.060000-4 7.983720+5 1.109175-4 5.450422+5 1.161449-4 3.691419+5 1.193600-4 2.945972+5 1.216186-4 2.538504+5 1.235000-4 2.259900+5 1.250000-4 2.072180+5 1.265000-4 1.911492+5 1.280000-4 1.774972+5 1.295000-4 1.660064+5 1.307000-4 1.582128+5 1.322000-4 1.500472+5 1.337300-4 1.433352+5 1.350000-4 1.388740+5 1.365000-4 1.347656+5 1.380384-4 1.317175+5 1.396368-4 1.296562+5 1.412538-4 1.285785+5 1.430000-4 1.284084+5 1.445700-4 1.290218+5 1.465000-4 1.306324+5 1.485000-4 1.331484+5 1.510000-4 1.372904+5 1.540000-4 1.434116+5 1.584893-4 1.542309+5 1.705000-4 1.875392+5 1.760000-4 2.030028+5 1.820000-4 2.191560+5 1.880000-4 2.341800+5 1.930000-4 2.456528+5 1.995262-4 2.590536+5 2.065380-4 2.714164+5 2.137962-4 2.820674+5 2.220000-4 2.916852+5 2.300000-4 2.988380+5 2.388200-4 3.044723+5 2.483133-4 3.082628+5 2.580000-4 3.101020+5 2.691535-4 3.101186+5 2.818383-4 3.078381+5 2.951209-4 3.033037+5 3.100000-4 2.963092+5 3.273407-4 2.864616+5 3.467369-4 2.741317+5 3.672823-4 2.604323+5 3.890451-4 2.457576+5 4.120975-4 2.302983+5 4.365158-4 2.144678+5 4.623810-4 1.985215+5 5.000000-4 1.773052+5 5.308844-4 1.616119+5 5.688529-4 1.443085+5 6.095369-4 1.279819+5 6.606934-4 1.104855+5 7.161434-4 9.465339+4 7.673615-4 8.240440+4 8.317638-4 6.968535+4 9.120108-4 5.709333+4 1.011579-3 4.518683+4 1.122018-3 3.544642+4 1.244515-3 2.755757+4 1.364583-3 2.188769+4 1.513561-3 1.676454+4 1.678804-3 1.274582+4 1.862087-3 9.619188+3 2.065380-3 7.207495+3 2.290868-3 5.362752+3 2.540973-3 3.962091+3 2.818383-3 2.906790+3 3.126079-3 2.117564+3 3.467369-3 1.531902+3 3.845918-3 1.100868+3 4.315191-3 7.568303+2 4.841724-3 5.162842+2 5.432503-3 3.495342+2 6.095369-3 2.349435+2 6.839116-3 1.568479+2 7.762471-3 9.980655+1 8.810489-3 6.301445+1 1.000000-2 3.948604+1 1.135011-2 2.455537+1 1.288250-2 1.516108+1 1.479108-2 8.891071+0 1.698244-2 5.175276+0 1.972423-2 2.857985+0 2.290868-2 1.566692+0 2.722701-2 7.768716-1 3.273407-2 3.648286-1 4.120975-2 1.405667-1 7.943282-2 9.124213-3 9.885531-2 3.687855-3 1.188502-1 1.732272-3 1.396368-1 9.009240-4 1.621810-1 4.946405-4 1.840772-1 2.998338-4 2.089296-1 1.830781-4 2.344229-1 1.177456-4 2.630268-1 7.628020-5 2.917427-1 5.195621-5 3.235937-1 3.563373-5 3.589219-1 2.461353-5 3.981072-1 1.712693-5 4.365158-1 1.247830-5 4.786301-1 9.156252-6 5.128614-1 7.300389-6 5.623413-1 5.440361-6 6.309573-1 3.801706-6 6.918310-1 2.872855-6 7.585776-1 2.187179-6 8.609938-1 1.514101-6 9.120108-1 1.290001-6 9.549926-1 1.142066-6 1.000000+0 1.018000-6 1.035142+0 9.386571-7 1.083927+0 8.480797-7 1.135011+0 7.712318-7 1.202264+0 6.897720-7 1.288250+0 6.078154-7 1.412538+0 5.178500-7 1.513561+0 4.606226-7 1.819701+0 3.342009-7 2.018366+0 2.806566-7 2.290868+0 2.286210-7 2.600160+0 1.876396-7 2.985383+0 1.524257-7 3.467369+0 1.226186-7 4.027170+0 9.938624-8 4.731513+0 7.986569-8 5.623413+0 6.368378-8 6.760830+0 5.041062-8 8.222427+0 3.963441-8 1.011579+1 3.096153-8 1.273503+1 2.370991-8 1.717908+1 1.692003-8 2.200000+1 1.290200-8 3.090295+1 8.954722-9 4.677351+1 5.789902-9 7.762471+1 3.429830-9 1.396368+2 1.885349-9 2.786121+2 9.37737-10 1.109175+3 2.34296-10 1.000000+5 2.59380-12 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 4.187000-5 2.452700-5 1.000000+5 2.452700-5 1 51000 7 7 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.187000-5 3.38840-10 1.000000+5 3.38840-10 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.187000-5 1.734266-5 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.056000-5 1.782030+6 4.090000-5 1.806438+6 4.120975-5 1.836485+6 4.150000-5 1.872744+6 4.180000-5 1.919418+6 4.216965-5 1.989219+6 4.255000-5 2.077800+6 4.285000-5 2.160018+6 4.330000-5 2.305770+6 4.370000-5 2.459988+6 4.415704-5 2.667300+6 4.450000-5 2.846520+6 4.500000-5 3.147474+6 4.555000-5 3.537882+6 4.610000-5 3.997206+6 4.680000-5 4.692018+6 4.786301-5 6.012935+6 4.954502-5 8.846191+6 5.040000-5 1.065426+7 5.110000-5 1.230882+7 5.170000-5 1.383528+7 5.230000-5 1.544064+7 5.285000-5 1.695900+7 5.330000-5 1.821654+7 5.370318-5 1.934161+7 5.420000-5 2.070816+7 5.465000-5 2.190972+7 5.520000-5 2.330760+7 5.580000-5 2.471382+7 5.630000-5 2.576976+7 5.690000-5 2.687748+7 5.745000-5 2.772690+7 5.801400-5 2.842611+7 5.850000-5 2.888832+7 5.900000-5 2.923104+7 5.970000-5 2.949570+7 6.030000-5 2.953776+7 6.095369-5 2.940989+7 6.165950-5 2.909436+7 6.237348-5 2.861679+7 6.330000-5 2.780622+7 6.400000-5 2.708196+7 6.500000-5 2.592582+7 6.610000-5 2.454210+7 6.730000-5 2.295924+7 6.850000-5 2.134944+7 6.950000-5 2.001474+7 7.079458-5 1.832521+7 7.230000-5 1.644564+7 7.350000-5 1.503042+7 7.500000-5 1.337916+7 7.673615-5 1.164213+7 7.852356-5 1.005138+7 8.035261-5 8.624463+6 8.230000-5 7.312800+6 8.500000-5 5.808636+6 8.738900-5 4.737137+6 9.015711-5 3.743888+6 9.332543-5 2.865969+6 9.660509-5 2.179511+6 1.000000-4 1.646742+6 1.040000-4 1.188660+6 1.083927-4 8.365444+5 1.143000-4 5.316666+5 1.170000-4 4.377588+5 1.193600-4 3.731483+5 1.213000-4 3.302340+5 1.230269-4 2.986691+5 1.245000-4 2.760726+5 1.260000-4 2.567130+5 1.275000-4 2.405970+5 1.290000-4 2.273892+5 1.303167-4 2.179361+5 1.318000-4 2.094276+5 1.330000-4 2.040366+5 1.345000-4 1.989762+5 1.358000-4 1.959426+5 1.373000-4 1.938282+5 1.390000-4 1.930140+5 1.407000-4 1.936614+5 1.423000-4 1.954224+5 1.440000-4 1.983474+5 1.462177-4 2.035361+5 1.490000-4 2.118174+5 1.520000-4 2.224248+5 1.659587-4 2.825855+5 1.720000-4 3.096060+5 1.778279-4 3.344937+5 1.835000-4 3.570216+5 1.883649-4 3.747695+5 1.950000-4 3.964488+5 2.000000-4 4.108092+5 2.065380-4 4.270331+5 2.137962-4 4.417826+5 2.220000-4 4.546818+5 2.300000-4 4.639092+5 2.388200-4 4.708187+5 2.483133-4 4.749621+5 2.580000-4 4.761714+5 2.691535-4 4.744580+5 2.818383-4 4.692991+5 2.951209-4 4.609401+5 3.100000-4 4.488240+5 3.280000-4 4.317876+5 3.467369-4 4.126003+5 3.672823-4 3.908055+5 3.890451-4 3.677921+5 4.120975-4 3.438258+5 4.415704-4 3.144648+5 4.700000-4 2.881506+5 5.069907-4 2.571161+5 5.432503-4 2.301114+5 5.888437-4 2.004502+5 6.382635-4 1.731238+5 6.839116-4 1.518411+5 7.413102-4 1.293783+5 8.128305-4 1.068039+5 8.810489-4 8.971197+4 9.549926-4 7.489675+4 1.047129-3 6.051087+4 1.148154-3 4.854318+4 1.273503-3 3.758031+4 1.412538-3 2.886258+4 1.566751-3 2.199714+4 1.737801-3 1.664028+4 1.927525-3 1.249559+4 2.137962-3 9.316945+3 2.371374-3 6.898145+3 2.630268-3 5.071280+3 2.917427-3 3.702088+3 3.235937-3 2.683565+3 3.589219-3 1.931924+3 4.000000-3 1.360294+3 4.466836-3 9.445627+2 5.011872-3 6.406537+2 5.623413-3 4.312766+2 6.309573-3 2.882684+2 7.079458-3 1.913661+2 8.035261-3 1.209918+2 9.120108-3 7.589521+1 1.035142-2 4.723932+1 1.174898-2 2.918206+1 1.333521-2 1.789094+1 1.513561-2 1.088498+1 1.737801-2 6.270828+0 2.041738-2 3.266677+0 2.426610-2 1.612408+0 2.917427-2 7.531870-1 3.427678-2 3.841811-1 4.315191-2 1.455521-1 8.413951-2 8.567327-3 1.023293-1 3.757261-3 1.202264-1 1.918683-3 1.380384-1 1.085677-3 1.584893-1 6.188738-4 1.778279-1 3.900226-4 1.995262-1 2.475964-4 2.213095-1 1.656759-4 2.454709-1 1.116720-4 2.710800-1 7.710400-5 2.985383-1 5.416815-5 3.273407-1 3.895910-5 3.548134-1 2.938774-5 3.845918-1 2.231722-5 4.168694-1 1.706866-5 4.518559-1 1.314361-5 4.897788-1 1.019139-5 5.308844-1 7.958062-6 5.754399-1 6.258601-6 6.165950-1 5.123908-6 6.683439-1 4.085861-6 7.244360-1 3.281574-6 7.852356-1 2.654159-6 8.609938-1 2.090863-6 9.120108-1 1.812088-6 9.660509-1 1.581073-6 1.022000+0 1.394300-6 1.083927+0 1.230653-6 1.161449+0 1.070571-6 1.244515+0 9.386894-7 1.364583+0 7.938163-7 1.737801+0 5.193343-7 1.972423+0 4.188398-7 2.213095+0 3.470139-7 2.511886+0 2.842492-7 2.884032+0 2.304700-7 3.349654+0 1.850762-7 3.890451+0 1.497561-7 4.570882+0 1.201460-7 5.432503+0 9.565575-8 6.531306+0 7.561385-8 7.943282+0 5.936825-8 9.772372+0 4.632002-8 1.244515+1 3.496616-8 1.678804+1 2.493517-8 2.162719+1 1.887949-8 3.019952+1 1.318161-8 4.518559+1 8.622177-9 7.328245+1 5.226784-9 1.288250+2 2.938890-9 2.570396+2 1.460865-9 5.128614+2 7.29355-10 4.073803+3 9.14990-11 1.000000+5 3.72590-12 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.056000-5 2.467700-5 1.000000+5 2.467700-5 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.056000-5 1.588300-5 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.592000-5 3.914439+5 1.635000-5 3.207560+5 1.670000-5 2.723820+5 1.710000-5 2.254440+5 1.750000-5 1.860898+5 1.790000-5 1.532730+5 1.830000-5 1.259212+5 1.870000-5 1.032502+5 1.920000-5 8.044840+4 2.040000-5 4.474200+4 2.075800-5 3.803407+4 2.100000-5 3.430100+4 2.120000-5 3.165340+4 2.140000-5 2.936900+4 2.162719-5 2.717880+4 2.180000-5 2.577880+4 2.200000-5 2.442240+4 2.215000-5 2.357740+4 2.230000-5 2.287160+4 2.245000-5 2.229600+4 2.260000-5 2.184260+4 2.277000-5 2.146680+4 2.293000-5 2.123760+4 2.308000-5 2.112660+4 2.322000-5 2.110760+4 2.340000-5 2.119420+4 2.360000-5 2.142780+4 2.377000-5 2.173100+4 2.400000-5 2.228040+4 2.426610-5 2.309735+4 2.460000-5 2.436400+4 2.500000-5 2.618360+4 2.560000-5 2.940800+4 2.670000-5 3.637300+4 2.730000-5 4.052220+4 2.800000-5 4.551740+4 2.851018-5 4.920243+4 2.920000-5 5.417680+4 2.985383-5 5.882845+4 3.060000-5 6.400520+4 3.126079-5 6.843513+4 3.198895-5 7.311782+4 3.273407-5 7.767090+4 3.370000-5 8.319020+4 3.470000-5 8.843360+4 3.570000-5 9.319620+4 3.689100-5 9.825308+4 3.801894-5 1.024474+5 3.935501-5 1.067065+5 4.073803-5 1.103612+5 4.220000-5 1.134642+5 4.365158-5 1.158531+5 4.518559-5 1.177174+5 4.720000-5 1.192770+5 4.900000-5 1.199410+5 5.150000-5 1.199484+5 5.400000-5 1.191140+5 5.688529-5 1.173739+5 6.025596-5 1.146168+5 6.400000-5 1.109978+5 6.839116-5 1.063801+5 7.413102-5 1.001986+5 8.035261-5 9.370445+4 8.810489-5 8.617378+4 9.800000-5 7.759520+4 1.083927-4 6.976155+4 1.216186-4 6.130349+4 1.400000-4 5.187420+4 1.862087-4 3.655537+4 2.162719-4 3.024573+4 2.454709-4 2.556705+4 2.884032-4 2.046359+4 3.388442-4 1.626657+4 4.168694-4 1.198771+4 4.954502-4 9.242457+3 5.754399-4 7.317571+3 6.918310-4 5.442711+3 8.511380-4 3.871014+3 1.011579-3 2.892942+3 1.244515-3 2.023690+3 1.531087-3 1.404769+3 1.905461-3 9.480302+2 2.398833-3 6.217317+2 2.985383-3 4.132074+2 3.672823-3 2.785577+2 4.466836-3 1.904856+2 5.370318-3 1.322011+2 6.456542-3 9.105117+1 7.943282-3 5.934034+1 9.440609-3 4.121762+1 1.122018-2 2.842092+1 1.333521-2 1.945151+1 1.566751-2 1.355659+1 1.840772-2 9.380776+0 2.162719-2 6.444193+0 2.540973-2 4.394451+0 2.985383-2 2.975102+0 3.507519-2 1.999565+0 4.168694-2 1.296124+0 4.954502-2 8.335777-1 5.888437-2 5.317129-1 7.079458-2 3.266479-1 8.317638-2 2.119653-1 1.035142-1 1.167583-1 1.396368-1 5.113303-2 2.398833-1 1.142466-2 2.884032-1 6.904107-3 3.388442-1 4.474863-3 3.890451-1 3.108007-3 4.415705-1 2.241514-3 4.954502-1 1.676987-3 5.559043-1 1.264124-3 6.165950-1 9.869498-4 6.839117-1 7.759026-4 7.585776-1 6.142868-4 8.511380-1 4.777360-4 9.332543-1 3.933439-4 1.023293+0 3.261015-4 1.161449+0 2.535109-4 1.303167+0 2.036071-4 1.479108+0 1.610454-4 1.640590+0 1.338995-4 1.840772+0 1.098276-4 2.089296+0 8.896381-5 2.371374+0 7.262347-5 2.691535+0 5.971996-5 3.126079+0 4.778457-5 3.630781+0 3.853158-5 4.265795+0 3.081038-5 5.011872+0 2.482424-5 6.000000+0 1.966100-5 7.244360+0 1.552228-5 8.810489+0 1.223635-5 1.083927+1 9.581188-6 1.333521+1 7.547772-6 1.757924+1 5.533486-6 2.264644+1 4.194521-6 3.126079+1 2.967682-6 4.731513+1 1.919196-6 7.852356+1 1.137121-6 1.428894+2 6.179162-7 2.851018+2 3.073848-7 1.135011+3 7.680875-8 1.000000+5 8.70190-10 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.592000-5 1.592000-5 1.000000+5 1.592000-5 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.592000-5 0.0 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 7.730000-6 2.073690+7 8.035261-6 1.964545+7 8.317638-6 1.862464+7 8.609938-6 1.755564+7 8.912509-6 1.647193+7 9.350000-6 1.495400+7 9.772372-6 1.357523+7 1.023293-5 1.217974+7 1.071519-5 1.085634+7 1.122018-5 9.617623+6 1.180000-5 8.367950+6 1.250000-5 7.083120+6 1.333521-5 5.828027+6 1.428894-5 4.697172+6 1.548817-5 3.624829+6 1.698244-5 2.675886+6 2.018366-5 1.498279+6 2.660725-5 5.898588+5 3.235937-5 3.069764+5 3.845918-5 1.737385+5 4.365158-5 1.152389+5 4.786301-5 8.606811+4 5.150000-5 6.868500+4 5.500000-5 5.647290+4 5.821032-5 4.801396+4 6.165950-5 4.101922+4 6.500000-5 3.576750+4 6.839116-5 3.157007+4 7.161434-5 2.837014+4 7.500000-5 2.564150+4 7.900000-5 2.305030+4 8.317638-5 2.088590+4 8.800000-5 1.889710+4 9.332543-5 1.716287+4 9.900000-5 1.569680+4 1.047129-4 1.451369+4 1.109175-4 1.347000+4 1.190000-4 1.239130+4 1.273503-4 1.150928+4 1.380384-4 1.062108+4 1.513561-4 9.766242+3 1.720000-4 8.767360+3 2.187762-4 7.205280+3 2.454709-4 6.512002+3 2.754229-4 5.840059+3 3.090295-4 5.199466+3 3.507519-4 4.539901+3 4.027170-4 3.883009+3 4.518559-4 3.391630+3 5.011872-4 2.984061+3 5.587400-4 2.588096+3 6.237348-4 2.224566+3 7.079458-4 1.853921+3 8.035261-4 1.534445+3 9.015711-4 1.283957+3 1.011579-3 1.065811+3 1.148154-3 8.623357+2 1.303167-3 6.925993+2 1.479108-3 5.522097+2 1.678804-3 4.370595+2 1.905461-3 3.434138+2 2.162719-3 2.679213+2 2.454709-3 2.075301+2 2.786121-3 1.595720+2 3.162278-3 1.217814+2 3.589219-3 9.223623+1 4.265795-3 6.267741+1 4.731513-3 4.925080+1 5.308844-3 3.739026+1 6.025596-3 2.739102+1 6.839116-3 1.993710+1 7.762471-3 1.440523+1 8.810489-3 1.033434+1 1.000000-2 7.361913+0 1.135011-2 5.207776+0 1.303167-2 3.542264+0 1.496236-2 2.390528+0 1.717908-2 1.600837+0 1.972423-2 1.064283+0 2.290868-2 6.785362-1 2.660725-2 4.293624-1 3.126079-2 2.602813-1 3.715352-2 1.510116-1 4.518559-2 8.083492-2 5.432503-2 4.457429-2 7.079458-2 1.877041-2 1.318257-1 2.434817-3 1.621810-1 1.240504-3 1.927525-1 7.119722-4 2.264644-1 4.270624-4 2.600160-1 2.774940-4 2.951209-1 1.881590-4 3.349654-1 1.285161-4 3.758374-1 9.151391-5 4.216965-1 6.564267-5 4.677351-1 4.900774-5 5.188000-1 3.684805-5 5.754399-1 2.791323-5 6.382635-1 2.130170-5 7.079458-1 1.638059-5 7.762471-1 1.305679-5 8.609938-1 1.016272-5 9.225714-1 8.652446-6 9.772372-1 7.611696-6 1.047129+0 6.578143-6 1.135011+0 5.583896-6 1.216186+0 4.881949-6 1.348963+0 4.026816-6 1.548817+0 3.145564-6 1.778279+0 2.472019-6 2.018366+0 1.997155-6 2.264644+0 1.656733-6 2.570396+0 1.358908-6 2.951209+0 1.103322-6 3.427678+0 8.870487-7 4.000000+0 7.138700-7 4.677351+0 5.771212-7 5.559043+0 4.599570-7 6.683439+0 3.639179-7 8.128305+0 2.859955-7 1.000000+1 2.233200-7 1.258925+1 1.709523-7 1.698244+1 1.219540-7 2.187762+1 9.236785-8 3.019952+1 6.530140-8 4.518559+1 4.271245-8 7.328245+1 2.589266-8 1.288250+2 1.455858-8 2.570396+2 7.237015-9 5.128614+2 3.613085-9 4.073803+3 4.53272-10 1.000000+5 1.84580-11 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 7.730000-6 7.730000-6 1.000000+5 7.730000-6 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 7.730000-6 0.0 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 7.020000-6 4.350820+7 7.300000-6 4.088240+7 7.600000-6 3.810560+7 7.852356-6 3.584594+7 8.222426-6 3.268072+7 8.609938-6 2.957760+7 9.015711-6 2.660042+7 9.500000-6 2.339800+7 1.000000-5 2.048040+7 1.059254-5 1.749926+7 1.122018-5 1.483963+7 1.188502-5 1.249930+7 1.273503-5 1.009478+7 1.364583-5 8.095936+6 1.479108-5 6.214353+6 1.650000-5 4.305140+6 2.483133-5 1.065174+6 2.851018-5 6.694473+5 3.198895-5 4.577127+5 3.548134-5 3.274549+5 3.845918-5 2.539591+5 4.150000-5 2.011400+5 4.415704-5 1.673295+5 4.677351-5 1.419174+5 4.954502-5 1.212013+5 5.230000-5 1.052508+5 5.500000-5 9.294000+4 5.754399-5 8.362232+4 6.025596-5 7.555503+4 6.309573-5 6.868043+4 6.650000-5 6.205360+4 7.000000-5 5.661780+4 7.413102-5 5.149414+4 7.852356-5 4.716362+4 8.413951-5 4.279065+4 9.015711-5 3.911317+4 9.800000-5 3.537340+4 1.071519-4 3.201468+4 1.188502-4 2.874547+4 1.333521-4 2.570573+4 1.566751-4 2.217873+4 2.050000-4 1.742448+4 2.290868-4 1.566568+4 2.570396-4 1.392022+4 2.884032-4 1.227620+4 3.235937-4 1.074717+4 3.672823-4 9.215032+3 4.365158-4 7.400954+3 4.897788-4 6.350782+3 5.432503-4 5.494327+3 6.095369-4 4.642706+3 6.918310-4 3.825560+3 7.852356-4 3.129910+3 9.015711-4 2.495182+3 1.023293-3 2.011919+3 1.161449-3 1.609433+3 1.318257-3 1.277855+3 1.500000-3 1.002468+3 1.698244-3 7.886773+2 1.927525-3 6.131883+2 2.187762-3 4.734693+2 2.483133-3 3.630205+2 2.818383-3 2.763272+2 3.198895-3 2.087993+2 3.630781-3 1.565897+2 4.120975-3 1.165207+2 4.623810-3 8.843187+1 5.248075-3 6.477142+1 5.956621-3 4.707140+1 6.760830-3 3.394834+1 7.673615-3 2.430102+1 8.709636-3 1.726826+1 9.885531-3 1.218236+1 1.122018-2 8.532730+0 1.273503-2 5.934493+0 1.445440-2 4.099012+0 1.640590-2 2.811872+0 1.883649-2 1.850074+0 2.162719-2 1.208182+0 2.511886-2 7.554057-1 2.917427-2 4.686809-1 3.388442-2 2.886749-1 4.027170-2 1.637517-1 4.841724-2 8.871500-2 5.821032-2 4.766716-2 7.498942-2 2.010746-2 1.412538-1 2.289852-3 1.698244-1 1.225637-3 1.995262-1 7.144580-4 2.290868-1 4.527002-4 2.600160-1 3.001200-4 2.917427-1 2.080058-4 3.235937-1 1.505321-4 3.589219-1 1.096896-4 3.981072-1 8.053010-5 4.365158-1 6.161005-5 4.786301-1 4.745688-5 5.248075-1 3.682196-5 5.754399-1 2.878476-5 6.309573-1 2.267211-5 6.918310-1 1.799427-5 7.585776-1 1.439116-5 8.511380-1 1.098634-5 9.225714-1 9.164069-6 9.885531-1 7.898511-6 1.083927+0 6.539487-6 1.188600+0 5.450500-6 1.303167+0 4.575819-6 1.445440+0 3.786573-6 1.678804+0 2.905221-6 1.905461+0 2.339558-6 2.137962+0 1.934686-6 2.426610+0 1.581557-6 2.786121+0 1.279751-6 3.235937+0 1.025849-6 3.758374+0 8.286699-7 4.415704+0 6.637346-7 5.188000+0 5.355919-7 6.237348+0 4.225431-7 7.585776+0 3.311404-7 9.332543+0 2.579295-7 1.188502+1 1.943765-7 1.566751+1 1.420494-7 2.018366+1 1.073056-7 2.851018+1 7.390846-8 4.120975+1 5.006316-8 6.382635+1 3.177364-8 1.096478+2 1.825327-8 2.187762+2 9.062702-9 4.365158+2 4.521255-9 3.467369+3 5.66854-10 1.000000+5 1.96460-11 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 7.020000-6 7.020000-6 1.000000+5 7.020000-6 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 7.020000-6 0.0 1.000000+5 1.000000+5 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.661870-7 1.028100+0 1.229010-6 1.028750+0 1.661870-6 1.029500+0 2.274310-6 1.030100+0 2.860230-6 1.031000+0 3.913760-6 1.032000+0 5.355010-6 1.033200+0 7.501460-6 1.034000+0 9.208740-6 1.035300+0 1.249960-5 1.036640+0 1.661870-5 1.038200+0 2.242750-5 1.039700+0 2.913780-5 1.041500+0 3.876740-5 1.043800+0 5.381050-5 1.046400+0 7.486710-5 1.048300+0 9.321160-5 1.051200+0 1.264400-4 1.054080+0 1.661870-4 1.057700+0 2.265240-4 1.061100+0 2.946520-4 1.065100+0 3.900890-4 1.070400+0 5.442180-4 1.076200+0 7.521120-4 1.080600+0 9.392650-4 1.087100+0 1.265490-3 1.093710+0 1.661870-3 1.102600+0 2.304050-3 1.110700+0 3.004740-3 1.120600+0 4.019110-3 1.133300+0 5.587740-3 1.147500+0 7.714450-3 1.158200+0 9.587050-3 1.174100+0 1.281460-2 1.190110+0 1.661870-2 1.205100+0 2.069430-2 1.227500+0 2.770590-2 1.250000+0 3.578000-2 1.265600+0 4.190800-2 1.294900+0 5.444540-2 1.331800+0 7.183430-2 1.362600+0 8.743520-2 1.397000+0 1.058040-1 1.433800+0 1.264220-1 1.500000+0 1.660000-1 1.589800+0 2.256950-1 1.665000+0 2.808770-1 1.784700+0 3.769590-1 1.892300+0 4.695330-1 2.000000+0 5.648000-1 2.044000+0 6.037000-1 2.163500+0 7.098050-1 2.372600+0 8.959650-1 2.647100+0 1.137100+0 3.000000+0 1.437000+0 3.500000+0 1.838020+0 4.000000+0 2.211000+0 4.750000+0 2.721320+0 5.000000+0 2.879000+0 6.000000+0 3.456000+0 7.000000+0 3.969000+0 8.000000+0 4.431000+0 9.000000+0 4.850000+0 1.000000+1 5.234000+0 1.100000+1 5.588000+0 1.200000+1 5.915000+0 1.300000+1 6.220000+0 1.400000+1 6.500000+0 1.500000+1 6.759000+0 1.600000+1 6.999000+0 1.800000+1 7.439000+0 2.000000+1 7.832000+0 2.200000+1 8.189000+0 2.400000+1 8.513000+0 2.600000+1 8.809000+0 2.800000+1 9.080000+0 3.000000+1 9.330000+0 4.000000+1 1.034000+1 5.000000+1 1.110000+1 6.000000+1 1.168000+1 8.000000+1 1.255000+1 1.000000+2 1.316000+1 1.500000+2 1.414000+1 2.000000+2 1.472000+1 3.000000+2 1.540000+1 4.000000+2 1.579000+1 5.000000+2 1.605000+1 6.000000+2 1.623000+1 8.000000+2 1.648000+1 1.000000+3 1.664000+1 1.500000+3 1.687000+1 2.000000+3 1.699000+1 3.000000+3 1.713000+1 4.000000+3 1.720000+1 5.000000+3 1.725000+1 6.000000+3 1.728000+1 8.000000+3 1.732000+1 1.000000+4 1.735000+1 1.500000+4 1.738000+1 2.000000+4 1.740000+1 3.000000+4 1.742000+1 4.000000+4 1.743000+1 5.000000+4 1.744000+1 6.000000+4 1.745000+1 8.000000+4 1.745000+1 1.000000+5 1.746000+1 1 51000 7 8 1.217500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.114480-7 2.099900+0 1.197880-6 2.106600+0 1.666350-6 2.114000+0 2.305610-6 2.119500+0 2.870470-6 2.127900+0 3.892900-6 2.136250+0 5.114480-6 2.147000+0 7.012310-6 2.156900+0 9.108150-6 2.169000+0 1.215540-5 2.184500+0 1.689640-5 2.201800+0 2.337670-5 2.214800+0 2.912550-5 2.234200+0 3.917900-5 2.253680+0 5.114480-5 2.281500+0 7.163730-5 2.307000+0 9.409540-5 2.338200+0 1.265190-4 2.377400+0 1.752140-4 2.410200+0 2.228430-4 2.446800+0 2.834690-4 2.485900+0 3.569030-4 2.532900+0 4.567590-4 2.556430+0 5.114480-4 2.611900+0 6.521530-4 2.660400+0 7.884180-4 2.745300+0 1.055250-3 2.809000+0 1.277960-3 2.904500+0 1.646350-3 3.000000+0 2.055000-3 3.125000+0 2.649850-3 3.234400+0 3.224270-3 3.425800+0 4.341890-3 3.569300+0 5.264960-3 3.784700+0 6.768080-3 4.000000+0 8.384000-3 4.250000+0 1.035960-2 4.625000+0 1.346400-2 5.000000+0 1.669000-2 5.500000+0 2.111500-2 6.000000+0 2.560000-2 6.750000+0 3.228190-2 7.000000+0 3.448000-2 8.000000+0 4.307000-2 9.000000+0 5.129000-2 1.000000+1 5.910000-2 1.100000+1 6.648000-2 1.200000+1 7.344000-2 1.300000+1 7.999000-2 1.400000+1 8.623000-2 1.500000+1 9.213000-2 1.600000+1 9.773000-2 1.800000+1 1.081000-1 2.000000+1 1.175000-1 2.200000+1 1.262000-1 2.400000+1 1.341000-1 2.600000+1 1.414000-1 2.800000+1 1.482000-1 3.000000+1 1.545000-1 4.000000+1 1.806000-1 5.000000+1 2.004000-1 6.000000+1 2.161000-1 8.000000+1 2.398000-1 1.000000+2 2.569000-1 1.500000+2 2.853000-1 2.000000+2 3.031000-1 3.000000+2 3.249000-1 4.000000+2 3.380000-1 5.000000+2 3.469000-1 6.000000+2 3.535000-1 8.000000+2 3.625000-1 1.000000+3 3.685000-1 1.500000+3 3.774000-1 2.000000+3 3.825000-1 3.000000+3 3.880000-1 4.000000+3 3.912000-1 5.000000+3 3.932000-1 6.000000+3 3.946000-1 8.000000+3 3.964000-1 1.000000+4 3.976000-1 1.500000+4 3.992000-1 2.000000+4 4.001000-1 3.000000+4 4.010000-1 4.000000+4 4.016000-1 5.000000+4 4.019000-1 6.000000+4 4.021000-1 8.000000+4 4.023000-1 1.000000+5 4.025000-1 1 51000 7 8 1.217500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 51000 7 9 1.217500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.100000+1 1.000000+5 5.100000+1 5.000000+5 5.098300+1 7.500000+5 5.096250+1 1.000000+6 5.094800+1 1.500000+6 5.089400+1 2.000000+6 5.081200+1 2.500000+6 5.070900+1 3.000000+6 5.058300+1 3.500000+6 5.043430+1 4.000000+6 5.027000+1 4.500000+6 5.008700+1 5.000000+6 4.988600+1 5.500000+6 4.966720+1 6.250000+6 4.930700+1 6.500000+6 4.917970+1 7.000000+6 4.892000+1 7.500000+6 4.864680+1 8.250000+6 4.821570+1 8.500000+6 4.807150+1 9.000000+6 4.777500+1 1.000000+7 4.716100+1 1.109400+7 4.646360+1 1.187500+7 4.596000+1 1.250000+7 4.555500+1 1.375000+7 4.473550+1 1.500000+7 4.393000+1 1.687500+7 4.274120+1 1.750000+7 4.235700+1 1.937500+7 4.121270+1 2.000000+7 4.084300+1 2.250000+7 3.939080+1 2.375000+7 3.869120+1 2.500000+7 3.800500+1 2.875000+7 3.601680+1 3.000000+7 3.537800+1 3.250000+7 3.412490+1 3.500000+7 3.291520+1 3.625000+7 3.232690+1 4.000000+7 3.062700+1 4.500000+7 2.851950+1 5.000000+7 2.661900+1 6.000000+7 2.343900+1 7.000000+7 2.103600+1 7.750000+7 1.963210+1 8.000000+7 1.921800+1 9.000000+7 1.776600+1 1.000000+8 1.650700+1 1.085900+8 1.550310+1 1.125000+8 1.505940+1 1.144500+8 1.484080+1 1.214800+8 1.406300+1 1.250000+8 1.367800+1 1.312500+8 1.300240+1 1.406300+8 1.202360+1 1.500000+8 1.110000+1 1.625000+8 9.969330+0 1.750000+8 8.978690+0 2.000000+8 7.414700+0 2.171900+8 6.623650+0 2.289100+8 6.200540+0 2.375000+8 5.945440+0 2.394500+8 5.892950+0 2.500000+8 5.647100+0 2.625000+8 5.422110+0 2.859400+8 5.079120+0 3.000000+8 4.869100+0 3.125000+8 4.664440+0 3.500000+8 4.091100+0 3.875000+8 3.671770+0 4.000000+8 3.532900+0 4.125000+8 3.385110+0 4.234400+8 3.252120+0 4.425800+8 3.020380+0 4.712900+8 2.695830+0 4.750000+8 2.657010+0 5.000000+8 2.416500+0 5.437500+8 2.079050+0 6.000000+8 1.753100+0 6.343800+8 1.596290+0 6.578100+8 1.508550+0 6.789100+8 1.443750+0 7.000000+8 1.392200+0 7.250000+8 1.346800+0 8.000000+8 1.247800+0 8.250000+8 1.212020+0 8.660200+8 1.149040+0 8.851600+8 1.119160+0 1.000000+9 9.591000-1 1.062500+9 8.932960-1 1.253900+9 7.439380-1 1.338500+9 6.880710-1 1.375000+9 6.646000-1 1.396200+9 6.511150-1 1.465400+9 6.074200-1 1.500000+9 5.857300-1 1.562500+9 5.469140-1 1.641100+9 4.998100-1 1.706900+9 4.625110-1 1.780200+9 4.237380-1 1.858700+9 3.856170-1 1.952900+9 3.445260-1 2.000000+9 3.258600-1 2.139200+9 2.772050-1 2.272600+9 2.384640-1 2.443000+9 1.979870-1 2.602800+9 1.673430-1 2.825100+9 1.337330-1 3.088500+9 1.039620-1 3.327400+9 8.373720-2 3.634100+9 6.441960-2 3.975600+9 4.900300-2 4.423800+9 3.513820-2 5.000000+9 2.380500-2 5.750000+9 1.513240-2 6.875000+9 8.403430-3 8.000000+9 5.081700-3 1.00000+10 2.424000-3 1.20500+10 1.313350-3 1.41820+10 7.728160-4 1.71110+10 4.217740-4 2.16710+10 1.984250-4 2.65670+10 1.042560-4 3.11560+10 6.327020-5 3.97620+10 2.964090-5 4.72910+10 1.736080-5 6.04690+10 8.177420-6 8.02340+10 3.462630-6 1.00000+11 1.781100-6 1.34280+11 7.354330-7 1.77440+11 3.202210-7 2.63330+11 9.939700-8 4.88110+11 1.623810-8 1.16740+12 1.294360-9 3.55150+12 5.34917-11 1.00000+14 4.27760-15 5.62340+14 3.18835-17 2.73840+16 4.75223-22 1.00000+17 1.15380-23 1 51000 7 0 1.217500+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.80000-12 1.000000+2 5.80000-10 1.000000+3 5.800000-8 1.000000+4 5.800000-6 1.000000+5 5.800000-4 5.000000+5 1.450000-2 7.500000+5 3.262500-2 1.000000+6 5.800000-2 1.500000+6 1.297000-1 2.000000+6 2.284000-1 2.500000+6 3.527000-1 3.000000+6 5.008000-1 3.500000+6 6.705970-1 4.000000+6 8.598000-1 4.500000+6 1.066060+0 5.000000+6 1.287000+0 5.500000+6 1.520220+0 6.250000+6 1.888610+0 6.500000+6 2.015210+0 7.000000+6 2.273100+0 7.500000+6 2.535220+0 8.250000+6 2.934010+0 8.500000+6 3.067590+0 9.000000+6 3.335800+0 1.000000+7 3.871000+0 1.109400+7 4.451570+0 1.187500+7 4.861350+0 1.250000+7 5.186600+0 1.375000+7 5.826610+0 1.500000+7 6.453000+0 1.687500+7 7.365230+0 1.750000+7 7.662700+0 1.937500+7 8.529850+0 2.000000+7 8.811000+0 2.250000+7 9.891120+0 2.375000+7 1.040700+1 2.500000+7 1.090800+1 2.875000+7 1.232700+1 3.000000+7 1.277700+1 3.250000+7 1.364820+1 3.500000+7 1.448710+1 3.625000+7 1.489580+1 4.000000+7 1.608800+1 4.500000+7 1.760740+1 5.000000+7 1.906700+1 6.000000+7 2.182300+1 7.000000+7 2.434900+1 7.750000+7 2.605800+1 8.000000+7 2.659000+1 9.000000+7 2.851800+1 1.000000+8 3.015700+1 1.085900+8 3.137460+1 1.125000+8 3.188280+1 1.144500+8 3.212790+1 1.214800+8 3.296200+1 1.250000+8 3.335800+1 1.312500+8 3.402590+1 1.406300+8 3.495740+1 1.500000+8 3.582200+1 1.625000+8 3.687930+1 1.750000+8 3.784720+1 2.000000+8 3.953600+1 2.171900+8 4.053270+1 2.289100+8 4.115020+1 2.375000+8 4.157210+1 2.394500+8 4.166520+1 2.500000+8 4.215100+1 2.625000+8 4.268420+1 2.859400+8 4.358130+1 3.000000+8 4.406900+1 3.125000+8 4.447000+1 3.500000+8 4.552200+1 3.875000+8 4.637670+1 4.000000+8 4.662600+1 4.125000+8 4.685170+1 4.234400+8 4.704460+1 4.425800+8 4.734670+1 4.712900+8 4.773800+1 4.750000+8 4.778400+1 5.000000+8 4.807500+1 5.437500+8 4.848290+1 6.000000+8 4.889200+1 6.343800+8 4.908790+1 6.578100+8 4.920640+1 6.789100+8 4.930410+1 7.000000+8 4.939900+1 7.250000+8 4.949430+1 8.000000+8 4.975600+1 8.250000+8 4.982780+1 8.660200+8 4.994110+1 8.851600+8 4.999230+1 1.000000+9 5.024800+1 1.062500+9 5.035480+1 1.253900+9 5.061050+1 1.338500+9 5.069130+1 1.375000+9 5.072130+1 1.396200+9 5.073580+1 1.465400+9 5.078180+1 1.500000+9 5.080400+1 1.562500+9 5.083290+1 1.641100+9 5.086560+1 1.706900+9 5.088530+1 1.780200+9 5.090640+1 1.858700+9 5.092400+1 1.952900+9 5.094090+1 2.000000+9 5.094900+1 2.139200+9 5.096390+1 2.272600+9 5.097730+1 2.443000+9 5.098960+1 2.602800+9 5.099530+1 2.825100+9 5.100270+1 3.088500+9 5.100870+1 3.327400+9 5.100740+1 3.634100+9 5.100580+1 3.975600+9 5.100410+1 4.423800+9 5.100220+1 5.000000+9 5.100000+1 5.750000+9 5.100000+1 6.875000+9 5.100000+1 8.000000+9 5.100000+1 1.00000+10 5.100000+1 1.20500+10 5.100000+1 1.41820+10 5.100000+1 1.71110+10 5.100000+1 2.16710+10 5.100000+1 2.65670+10 5.100000+1 3.11560+10 5.100000+1 3.97620+10 5.100000+1 4.72910+10 5.100000+1 6.04690+10 5.100000+1 8.02340+10 5.100000+1 1.00000+11 5.100000+1 1.34280+11 5.100000+1 1.77440+11 5.100000+1 2.63330+11 5.100000+1 4.88110+11 5.100000+1 1.16740+12 5.100000+1 3.55150+12 5.100000+1 1.00000+14 5.100000+1 5.62340+14 5.100000+1 2.73840+16 5.100000+1 1.00000+17 5.100000+1 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.034987-6 0.0 4.022452-6 0.0 4.037304-6 9.064981-1 4.042254-6 1.204831+0 4.052155-6 2.200723+0 4.062055-6 3.710721+0 4.073194-6 6.090405+0 4.101658-6 1.347624+1 4.112468-6 1.529154+1 4.122853-6 1.580854+1 4.132754-6 1.506605+1 4.143294-6 1.310638+1 4.159997-6 8.751718+0 4.170964-6 5.916140+0 4.180865-6 3.819254+0 4.190765-6 2.276002+0 4.200666-6 1.252047+0 4.213042-6 4.771329-1 4.220468-6 0.0 4.722043-6 0.0 4.742383-6 4.304153-1 4.745288-6 4.912758-1 4.756911-6 8.973554-1 4.768534-6 1.513065+0 4.781609-6 2.483392+0 4.801767-6 4.332461+0 4.815025-6 5.495004+0 4.827374-6 6.227333+0 4.839337-6 6.457679+0 4.851619-6 6.137816+0 4.863785-6 5.345519+0 4.897615-6 2.321909+0 4.908474-6 1.532405+0 4.920396-6 9.005547-1 4.931252-6 5.105359-1 4.948794-6 1.273837-1 4.954497-6 1.461749-5 4.977704-6 2.234907-5 4.989690-6 2.540538-5 5.004909-6 2.747517-5 5.017019-6 2.768942-5 5.029130-6 2.651000-5 5.041240-6 2.410747-5 5.053350-6 2.078636-5 5.085582-6 1.050089-5 5.101791-6 6.197092-6 5.109555-6 4.429524-6 5.113902-6 3.699333-6 5.126012-6 2.204538-6 5.138122-6 1.212734-6 5.150233-6 6.158399-7 5.162343-6 0.0 5.325870-6 0.0 5.328467-6 2.974811-2 5.354697-6 2.985838+0 5.367813-6 5.438884+0 5.380928-6 9.147278+0 5.395190-6 1.474881+1 5.431727-6 3.209320+1 5.447709-6 3.730248+1 5.461272-6 3.852021+1 5.474858-6 3.654681+1 5.488346-6 3.186149+1 5.525197-6 1.431517+1 5.538312-6 9.231585+0 5.551427-6 5.549949+0 5.564543-6 3.172002+0 5.585165-6 1.001283+0 5.588050-6 7.136878-1 5.590773-6 4.745710-1 5.598812-6 6.243792-1 5.612458-6 9.718411-1 5.653397-6 2.267563+0 5.668749-6 2.576691+0 5.680690-6 2.673858+0 5.696042-6 2.539549+0 5.709384-6 2.245697+0 5.748922-6 9.954839-1 5.762568-6 6.426546-1 5.776215-6 3.829807-1 5.789861-6 2.106848-1 5.810003-6 5.613505-2 5.817154-6 6.529973-6 5.827221-6 4.972910-6 5.841054-6 3.210338-6 5.854886-6 1.913131-6 5.868718-6 1.052429-6 5.889467-6 2.675318-7 5.896383-6 0.0 5.992248-6 0.0 5.993800-6 6.344866-3 6.023306-6 1.190147+0 6.025461-6 1.332286+0 6.038059-6 2.712898+0 6.052812-6 4.820997+0 6.057732-6 5.775099+0 6.071044-6 8.697574+0 6.089261-6 1.394690+1 6.123179-6 2.487357+1 6.130204-6 2.685867+1 6.145470-6 2.983526+1 6.159678-6 3.082042+1 6.175624-6 2.948009+1 6.193933-6 2.540308+1 6.233094-6 1.321300+1 6.247925-6 9.191831+0 6.262755-6 6.083413+0 6.277586-6 3.795314+0 6.288860-6 2.451723+0 6.292417-6 2.180314+0 6.304210-6 1.623570+0 6.322079-6 1.149609+0 6.336027-6 1.466970+0 6.352453-6 2.111196+0 6.368174-6 3.004813+0 6.386842-6 4.376982+0 6.420747-6 7.047130+0 6.430054-6 7.663853+0 6.445609-6 8.320180+0 6.460943-6 8.445334+0 6.477865-6 7.968240+0 6.493480-6 7.155020+0 6.521734-6 5.198096+0 6.538590-6 4.280627+0 6.554602-6 3.773893+0 6.570615-6 3.692666+0 6.590146-6 4.060302+0 6.636542-6 5.081410+0 6.653959-6 5.210196+0 6.695827-6 5.022381+0 6.730427-6 5.495808+0 6.749170-6 6.124142+0 6.765663-6 6.947881+0 6.829138-6 1.109275+1 6.849007-6 1.178874+1 6.862906-6 1.187639+1 6.882596-6 1.128448+1 6.914921-6 9.302205+0 6.960479-6 6.493733+0 6.981431-6 5.688816+0 7.005030-6 5.100097+0 7.024837-6 4.850051+0 7.056882-6 5.024208+0 7.079347-6 5.449403+0 7.097449-6 5.941633+0 7.146277-6 7.479930+0 7.163756-6 7.817717+0 7.192507-6 7.938846+0 7.240691-6 6.954468+0 7.265763-6 6.510147+0 7.280845-6 6.388418+0 7.314552-6 6.529500+0 7.386173-6 6.836663+0 7.998478-6 6.213772+0 8.037852-6 8.272999+0 8.060000-6 1.030677+1 8.080172-6 1.311217+1 8.099375-6 1.668118+1 8.157206-6 2.960215+1 8.177749-6 3.255402+1 8.198540-6 3.339633+1 8.219324-6 3.189456+1 8.240281-6 2.839435+1 8.293786-6 1.625088+1 8.315934-6 1.227744+1 8.333161-6 9.931064+0 8.355309-6 8.013674+0 8.392222-6 5.957856+0 8.698068-6 5.740713+0 8.740886-6 1.020722+1 8.763634-6 1.426005+1 8.785043-6 2.001061+1 8.807790-6 2.839673+1 8.870011-6 5.612607+1 8.893763-6 6.280063+1 8.915172-6 6.459419+1 8.935534-6 6.211630+1 8.958825-6 5.470694+1 9.019206-6 2.758849+1 9.040615-6 1.974535+1 9.062024-6 1.396883+1 9.083434-6 1.013075+1 9.126252-6 5.425072+0 1.136241-5 3.834715+0 1.290836-5 2.974814+0 1.361821-5 2.660349+0 1.371876-5 2.789188+0 1.378580-5 3.027270+0 1.388636-5 3.517704+0 1.391988-5 3.613570+0 1.395340-5 3.630775+0 1.399683-5 3.518169+0 1.415452-5 2.688127+0 1.422156-5 2.490327+0 1.430275-5 2.379419+0 1.462464-5 2.283698+0 1.480358-5 2.384827+0 1.491120-5 2.429063+0 1.516542-5 2.178863+0 1.543043-5 2.126161+0 1.652407-5 1.776191+0 1.800046-5 1.428872+0 1.934159-5 1.192383+0 2.080331-5 9.950772-1 2.260000-5 8.137049-1 2.440373-5 6.790580-1 2.639129-5 5.700350-1 2.887144-5 4.727226-1 3.198903-5 3.891491-1 3.268861-5 3.748975-1 3.284953-5 1.740105+0 3.292999-5 2.869571+0 3.301261-5 4.645775+0 3.310135-5 7.297434+0 3.333228-5 1.578520+1 3.342013-5 1.831408+1 3.350622-5 1.945136+1 3.359157-5 1.936710+1 3.371669-5 1.776045+1 3.389549-5 1.518211+1 3.413687-5 1.319646+1 3.422527-5 1.195608+1 3.441768-5 8.017901+0 3.453984-5 5.672456+0 3.462183-5 4.482649+0 3.470382-5 3.644135+0 3.478581-5 3.081913+0 3.484670-5 2.811854+0 3.494010-5 2.202716+0 3.494978-5 2.125263+0 3.501412-5 1.967621+0 3.526525-5 1.041157+0 3.534896-5 7.883452-1 3.543267-5 6.020039-1 3.551638-5 4.779702-1 3.568380-5 3.254406-1 3.760881-5 3.017463-1 3.779542-5 4.631554-1 3.788651-5 5.934308-1 3.797908-5 7.946645-1 3.807165-5 1.070249+0 3.834936-5 2.098731+0 3.844193-5 2.332812+0 3.854360-5 2.412470+0 3.863847-5 2.340692+0 3.875477-5 2.053666+0 3.890478-5 1.590830+0 3.900890-5 1.379553+0 3.909043-5 1.290895+0 3.918596-5 1.318604+0 3.928184-5 1.473202+0 3.951121-5 2.098697+0 3.962722-5 2.460082+0 3.974905-5 2.695348+0 3.989544-5 2.722022+0 3.999245-5 2.623815+0 4.034816-5 1.954516+0 4.045750-5 1.837118+0 4.058436-5 1.823222+0 4.107508-5 2.039574+0 4.225000-5 2.172796+0 4.313125-5 2.407771+0 4.400000-5 2.745497+0 4.493724-5 3.260889+0 4.580743-5 3.913092+0 4.680000-5 4.907989+0 4.786301-5 6.336776+0 4.897980-5 8.318164+0 5.022445-5 1.120036+1 5.139912-5 1.460911+1 5.330495-5 2.137071+1 5.660000-5 3.392417+1 5.850000-5 3.933387+1 6.030000-5 4.220560+1 6.256043-5 4.292378+1 6.573906-5 4.027270+1 7.196728-5 3.028763+1 7.762471-5 2.124774+1 8.132048-5 1.645347+1 8.510304-5 1.255655+1 8.865480-5 9.729237+0 9.242325-5 7.436394+0 9.593096-5 5.810627+0 9.918419-5 4.639246+0 1.027174-4 3.648732+0 1.034585-4 3.600310+0 1.039974-4 3.710779+0 1.050028-4 4.087952+0 1.055450-4 4.050665+0 1.067017-4 3.594838+0 1.094643-4 3.104220+0 1.120132-4 2.798619+0 1.129298-4 2.817780+0 1.140169-4 2.934238+0 1.149659-4 2.854044+0 1.160161-4 2.705613+0 1.199220-4 2.400737+0 1.260000-4 2.080952+0 1.322000-4 1.901710+0 1.390000-4 1.837359+0 1.470242-4 1.885200+0 1.477479-4 1.946701+0 1.484717-4 2.106632+0 1.491955-4 2.403914+0 1.502811-4 2.982286+0 1.506430-4 3.106633+0 1.510049-4 3.152207+0 1.513668-4 3.111149+0 1.517460-4 2.985051+0 1.528291-4 2.450357+0 1.535436-4 2.205162+0 1.542753-4 2.111405+0 1.550236-4 2.154593+0 1.569970-4 2.413693+0 2.032690-4 3.794644+0 2.343543-4 4.518852+0 2.731198-4 5.116159+0 3.105620-4 5.428051+0 3.735712-4 5.577361+0 4.883711-4 5.281963+0 5.214228-4 5.185420+0 5.375220-4 5.846679+0 5.409541-4 6.341135+0 5.432811-4 6.995187+0 5.453999-4 7.940929+0 5.481499-4 9.748793+0 5.511248-4 1.238402+1 5.619522-4 2.339636+1 5.708003-4 3.040074+1 5.787620-4 3.434825+1 5.876789-4 3.595585+1 6.061485-4 3.529764+1 6.500000-4 3.133103+1 7.450970-4 2.693339+1 7.564528-4 2.737694+1 7.682604-4 2.896413+1 8.075000-4 2.869206+1 8.245830-4 2.890676+1 9.092806-4 2.649597+1 9.326240-4 2.674667+1 1.152240-3 2.110163+1 1.366548-3 1.706846+1 1.573530-3 1.418109+1 1.838786-3 1.146110+1 2.111209-3 9.428019+0 2.402288-3 7.820809+0 2.756383-3 6.381839+0 3.156452-3 5.199922+0 3.651389-3 4.154620+0 4.035035-3 3.574017+0 4.060716-3 3.681076+0 4.076209-3 3.933476+0 4.089610-3 4.363150+0 4.102099-3 4.984693+0 4.117078-3 5.995553+0 4.153481-3 8.727469+0 4.172951-3 9.687085+0 4.199327-3 1.024623+1 4.267450-3 1.023712+1 4.330138-3 1.025679+1 4.361903-3 1.083649+1 4.414290-3 1.247025+1 4.453496-3 1.298078+1 4.612269-3 1.265726+1 4.707926-3 1.367851+1 4.891861-3 1.312326+1 5.698167-3 1.037327+1 6.507849-3 8.392218+0 7.460364-3 6.734426+0 8.548009-3 5.386499+0 9.718028-3 4.344241+0 1.110772-2 3.461302+0 1.245403-2 2.842883+0 1.412524-2 2.283828+0 1.611134-2 1.812820+0 1.814527-2 1.468274+0 2.040820-2 1.190109+0 2.289837-2 9.674888-1 2.568281-2 7.859361-1 2.897457-2 6.307368-1 2.975924-2 6.076592-1 2.989522-2 6.317948-1 2.999538-2 6.866308-1 3.006882-2 7.640668-1 3.013676-2 8.755223-1 3.021728-2 1.067556+0 3.031154-2 1.378951+0 3.050145-2 2.187415+0 3.065174-2 2.786413+0 3.079072-2 3.155127+0 3.095583-2 3.356162+0 3.133548-2 3.384546+0 3.591932-2 2.713299+0 4.100175-2 2.185559+0 4.657201-2 1.760852+0 5.210924-2 1.448587+0 5.905396-2 1.164639+0 6.654347-2 9.407053-1 7.557275-2 7.480916-1 8.480942-2 6.057692-1 9.574652-2 4.845042-1 1.080363-1 3.871113-1 1.218002-1 3.096789-1 1.359904-1 2.518781-1 1.494267-1 2.111570-1 1.646281-1 1.761056-1 1.827623-1 1.447961-1 2.019372-1 1.201631-1 2.242189-1 9.911615-2 2.483133-1 8.219248-2 2.750268-1 6.838236-2 3.066358-1 5.638945-2 3.417827-1 4.670106-2 3.787814-1 3.928823-2 4.204845-1 3.310400-2 4.722584-1 2.756316-2 5.339493-1 2.291397-2 6.102500-1 1.893770-2 6.858829-1 1.619458-2 7.823804-1 1.373831-2 9.015711-1 1.164588-2 1.070165+0 9.712210-3 1.286622+0 7.949515-3 1.477239+0 6.840811-3 1.776032+0 5.599254-3 2.135261+0 4.583030-3 2.567148+0 3.751244-3 3.086391+0 3.070420-3 3.710658+0 2.513162-3 4.461192+0 2.057041-3 5.363532+0 1.683703-3 6.448384+0 1.378123-3 7.752663+0 1.128004-3 9.320751+0 9.232796-4 9.760024+0 8.781908-4 1.000000+1 1.788187-3 1 51000 7 0 1.217500+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.095057+1 3.034987-6-5.027728+1 3.849572-6-4.846296+1 3.991848-6-4.624343+1 4.032353-6-4.352946+1 4.073194-6-4.016870+1 4.090365-6-4.110267+1 4.108949-6-4.532866+1 4.127823-6-5.133323+1 4.147290-6-4.580555+1 4.165395-6-4.390962+1 4.190765-6-4.535783+1 4.244887-6-4.981118+1 4.266821-6-5.057796+1 4.739477-6-4.667106+1 4.794685-6-4.532893+1 4.828736-6-4.776959+1 4.871140-6-5.184791+1 4.910818-6-5.183163+1 5.041240-6-4.841669+1 5.229156-6-4.440338+1 5.296792-6-4.092072+1 5.325870-6-3.762926+1 5.382567-6-2.773463+1 5.399495-6-2.652806+1 5.412426-6-2.777591+1 5.425671-6-3.103321+1 5.443875-6-3.947378+1 5.463803-6-5.224201+1 5.479539-6-4.285061+1 5.490895-6-3.739283+1 5.502424-6-3.409331+1 5.516309-6-3.220561+1 5.525197-6-3.225244+1 5.539951-6-3.402535+1 5.605741-6-4.595748+1 5.646884-6-4.897501+1 5.759162-6-5.061846+1 5.817154-6-5.236890+1 5.963426-6-4.666496+1 6.012241-6-4.233496+1 6.071044-6-3.489084+1 6.092738-6-3.428462+1 6.109218-6-3.583062+1 6.128515-6-4.031473+1 6.155624-6-5.051171+1 6.159678-6-5.241264+1 6.198117-6-4.030490+1 6.216143-6-3.729792+1 6.233094-6-3.661390+1 6.259511-6-3.864028+1 6.341345-6-4.994990+1 6.392028-6-5.335654+1 6.439247-6-5.231806+1 6.502806-6-4.881134+1 6.554602-6-5.048333+1 6.621888-6-5.287919+1 6.717337-6-5.420197+1 6.804851-6-5.469486+1 6.824904-6-5.468328+1 6.905062-6-4.866333+1 6.960479-6-4.850985+1 7.112946-6-5.314879+1 7.252835-6-5.117536+1 7.409869-6-5.211609+1 7.822353-6-5.408750+1 7.978656-6-4.740597+1 8.083994-6-3.793007+1 8.111756-6-3.714020+1 8.136634-6-3.880481+1 8.157206-6-4.231471+1 8.191481-6-5.121742+1 8.195561-6-5.189197+1 8.221249-6-4.435580+1 8.246463-6-3.888960+1 8.271676-6-3.610907+1 8.293786-6-3.589401+1 8.331007-6-3.838650+1 8.420868-6-4.635640+1 8.531045-6-5.119910+1 8.644422-6-4.467133+1 8.690450-6-3.979805+1 8.719477-6-3.479863+1 8.762296-6-2.759304+1 8.791942-6-2.303760+1 8.812473-6-2.168837+1 8.829758-6-2.255799+1 8.843981-6-2.490468+1 8.862568-6-3.045383+1 8.886376-6-4.142644+1 8.902357-6-5.042419+1 8.927910-6-3.500759+1 8.940092-6-2.773422+1 8.958825-6-1.875402+1 8.971448-6-1.431337+1 8.979064-6-1.207669+1 8.987552-6-1.024482+1 8.992528-6-9.444999+0 8.997797-6-8.856814+0 9.007163-6-8.214718+0 9.016195-6-8.098350+0 9.035263-6-9.435850+0 9.059683-6-1.296725+1 9.090793-6-1.840276+1 9.124914-6-2.344285+1 9.133268-6-2.511076+1 9.161212-6-2.824973+1 9.223344-6-3.216505+1 9.317909-6-3.535962+1 9.524846-6-3.863906+1 1.000000-5-4.130081+1 1.136241-5-4.308893+1 1.391150-5-4.425115+1 1.415452-5-4.343192+1 1.543043-5-4.425881+1 2.871759-5-4.886818+1 3.182427-5-5.161528+1 3.255987-5-4.888026+1 3.311885-5-4.181686+1 3.327922-5-4.299162+1 3.342926-5-4.766617+1 3.356233-5-5.249141+1 3.372898-5-4.742337+1 3.431511-5-3.991761+1 3.453984-5-3.995253+1 3.509783-5-4.366651+1 3.604142-5-4.754770+1 3.834936-5-5.205153+1 3.895808-5-5.129725+1 3.962722-5-5.265962+1 4.041791-5-5.220704+1 4.720000-5-6.111446+1 5.214935-5-6.788421+1 5.481250-5-6.702032+1 5.745900-5-6.088447+1 6.356934-5-3.875607+1 6.637304-5-3.076914+1 6.849330-5-2.626704+1 7.047116-5-2.308093+1 7.267695-5-2.057607+1 7.547258-5-1.868046+1 7.874990-5-1.782275+1 8.321831-5-1.813230+1 9.242325-5-2.099186+1 1.032057-4-2.527121+1 1.050028-4-2.583096+1 1.064476-4-2.590771+1 1.094643-4-2.678849+1 1.260000-4-2.933860+1 1.602780-4-3.284475+1 2.343543-4-3.392155+1 3.735712-4-3.460448+1 4.498898-4-3.716706+1 4.962105-4-4.099570+1 5.214228-4-4.529566+1 5.353887-4-5.008884+1 5.525134-4-6.077954+1 5.602683-4-6.097743+1 5.722500-4-5.579869+1 5.915034-4-4.388423+1 6.061485-4-3.795401+1 6.240851-4-3.346725+1 6.500000-4-2.988046+1 6.888505-4-2.667481+1 7.301188-4-2.472870+1 7.498392-4-2.492025+1 7.624007-4-2.550402+1 7.831831-4-2.294767+1 8.117028-4-2.161968+1 8.439584-4-1.894033+1 8.900759-4-1.673220+1 9.225925-4-1.605835+1 9.326240-4-1.575411+1 9.577174-4-1.429209+1 1.012581-3-1.235344+1 1.088421-3-1.049398+1 1.191411-3-8.735977+0 1.294333-3-7.543528+0 1.411014-3-6.637264+0 1.573530-3-5.845866+0 1.752871-3-5.382391+0 2.014014-3-5.130565+0 2.300780-3-5.188562+0 2.756383-3-5.696753+0 3.156452-3-6.493109+0 3.482772-3-7.507550+0 3.718076-3-8.656569+0 3.876196-3-9.897653+0 3.977555-3-1.121209+1 4.035035-3-1.250083+1 4.081104-3-1.442927+1 4.117078-3-1.602524+1 4.142458-3-1.611596+1 4.218761-3-1.322772+1 4.267450-3-1.236118+1 4.318025-3-1.228837+1 4.380585-3-1.271401+1 4.414290-3-1.212690+1 4.487481-3-1.017313+1 4.551268-3-9.274009+0 4.612269-3-8.977485+0 4.664984-3-8.887311+0 4.707926-3-8.304297+0 4.776239-3-7.081340+0 4.852055-3-6.194164+0 4.983143-3-5.115812+0 5.139088-3-4.186107+0 5.307355-3-3.416435+0 5.511248-3-2.710596+0 5.698167-3-2.207302+0 5.922431-3-1.729298+0 6.143904-3-1.365855+0 6.321260-3-1.124968+0 6.507849-3-9.156397-1 6.636416-3-7.928259-1 6.780950-3-6.723151-1 6.948243-3-5.526650-1 7.207091-3-4.000306-1 7.301928-3-3.500073-1 7.496329-3-2.643236-1 7.714041-3-1.839348-1 7.839246-3-1.454112-1 8.055964-3-8.863295-2 8.274847-3-4.114675-2 8.313121-3-3.316059-2 8.420008-3-1.625843-2 8.485879-3-6.562991-3 8.548009-3 1.752834-3 8.605437-3 9.637668-3 8.712856-3 2.186022-2 8.859111-3 3.412151-2 9.075919-3 4.904545-2 9.316097-3 5.888387-2 9.486113-3 6.209257-2 9.718028-3 6.356503-2 9.933583-3 6.311615-2 1.014550-2 5.733565-2 1.046657-2 4.486681-2 1.083927-2 2.669502-2 1.110772-2 1.100010-2 1.118968-2 5.350276-3 1.139921-2-1.026886-2 1.160927-2-2.568967-2 1.245403-2-9.741780-2 1.378080-2-2.205666-1 2.124914-2-9.452056-1 2.367567-2-1.216452+0 2.568281-2-1.502207+0 2.716235-2-1.796529+0 2.820771-2-2.102420+0 2.897457-2-2.446630+0 2.948315-2-2.811534+0 2.981732-2-3.221027+0 3.006882-2-3.755449+0 3.034964-2-4.422865+0 3.050145-2-4.506505+0 3.065174-2-4.292788+0 3.107699-2-3.178268+0 3.133548-2-2.740459+0 3.168600-2-2.354494+0 3.210198-2-2.039336+0 3.274769-2-1.689223+0 3.362195-2-1.353730+0 3.454661-2-1.096761+0 3.570564-2-8.599991-1 3.706716-2-6.591209-1 3.806326-2-5.420259-1 3.938157-2-4.193669-1 4.040491-2-3.396376-1 4.156195-2-2.646295-1 4.215069-2-2.319142-1 4.315191-2-1.840619-1 4.423495-2-1.397942-1 4.522845-2-1.055108-1 4.657201-2-6.493374-2 4.754549-2-4.131366-2 4.876469-2-1.619655-2 4.970937-2-5.525283-4 4.985500-2 1.882489-3 5.041121-2 9.652211-3 5.129151-2 2.224783-2 5.210924-2 3.075191-2 5.357178-2 4.493853-2 5.513638-2 5.680959-2 5.758604-2 6.903701-2 5.905396-2 7.437842-2 6.056012-2 7.788131-2 6.374600-2 7.997368-2 6.654347-2 7.746390-2 7.160077-2 6.841059-2 7.557275-2 5.879787-2 8.108980-2 4.167359-2 8.756959-2 2.001166-2 9.336595-2 1.652507-3 9.354393-2 1.103966-3 9.474058-2-2.756585-3 9.574652-2-5.947349-3 9.711869-2-1.059419-2 1.042078-1-3.243444-2 1.139680-1-6.013795-2 1.263007-1-9.032279-2 1.404429-1-1.198779-1 1.587747-1-1.509970-1 1.827623-1-1.823869-1 2.161744-1-2.140384-1 2.660725-1-2.450544-1 3.417827-1-2.723578-1 4.722584-1-2.951600-1 7.488158-1-3.121503-1 1.776032+0-3.215392-1 5.363532+0-3.236064-1 1.000000+1-3.236398-1 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.581024-4 1.141649-6 9.566313-4 1.252058-6 1.404995-3 1.331535-6 1.820519-3 1.416056-6 2.365749-3 1.562399-6 3.628025-3 1.661574-6 4.759617-3 1.767045-6 6.267800-3 1.879211-6 8.287730-3 1.999443-6 1.103907-2 2.186257-6 1.658943-2 2.255111-6 1.916429-2 2.326134-6 2.218417-2 2.399393-6 2.574351-2 2.540947-6 3.407315-2 2.620352-6 3.977340-2 2.699604-6 4.633132-2 2.776379-6 5.361633-2 2.850755-6 6.171845-2 2.992607-6 8.033555-2 3.060226-6 9.100726-2 3.125732-6 1.027057-1 3.250666-6 1.290616-1 3.315715-6 1.455462-1 3.425608-6 1.779041-1 3.533783-6 2.167819-1 3.636379-6 2.617591-1 3.730273-6 3.113821-1 3.819407-6 3.678752-1 3.902970-6 4.312574-1 3.988054-6 5.083413-1 4.054753-6 5.790911-1 4.123607-6 6.643437-1 4.188157-6 7.573621-1 4.248673-6 8.589872-1 4.305407-6 9.698679-1 4.364847-6 1.105492+0 4.408458-6 1.220379+0 4.463812-6 1.389121+0 4.501248-6 1.520282+0 4.540117-6 1.674646+0 4.578635-6 1.849439+0 4.614746-6 2.036821+0 4.648600-6 2.237354+0 4.680339-6 2.451685+0 4.710093-6 2.680514+0 4.737988-6 2.924420+0 4.769463-6 3.240865+0 4.788657-6 3.459618+0 4.811641-6 3.752670+0 4.833189-6 4.064060+0 4.853391-6 4.394590+0 4.872330-6 4.744897+0 4.897317-6 5.280246+0 4.922335-6 5.922042+0 4.936965-6 6.359669+0 4.950680-6 6.821575+0 4.976397-6 7.858827+0 4.998899-6 9.015666+0 5.018588-6 1.030860+1 5.035816-6 1.176073+1 5.050890-6 1.339874+1 5.064080-6 1.524475+1 5.075622-6 1.730652+1 5.085720-6 1.957129+1 5.094557-6 2.200590+1 5.102289-6 2.456206+1 5.109054-6 2.718392+1 5.114974-6 2.981537+1 5.124686-6 3.491152+1 5.138566-6 4.414307+1 5.160179-6 6.384256+1 5.169103-6 7.398014+1 5.175449-6 8.186852+1 5.181795-6 9.026877+1 5.194487-6 1.082968+2 5.196074-6 1.106343+2 5.207179-6 1.272123+2 5.211542-6 1.337107+2 5.219871-6 1.458071+2 5.224234-6 1.518641+2 5.228398-6 1.573899+2 5.232563-6 1.626085+2 5.238115-6 1.689928+2 5.243470-6 1.744193+2 5.248427-6 1.787109+2 5.252592-6 1.817139+2 5.258740-6 1.850550+2 5.266176-6 1.872303+2 5.271803-6 1.874512+2 5.279548-6 1.857084+2 5.285030-6 1.830575+2 5.289954-6 1.797103+2 5.295909-6 1.745102+2 5.300326-6 1.698966+2 5.309110-6 1.590435+2 5.314787-6 1.510302+2 5.318923-6 1.447959+2 5.324380-6 1.361757+2 5.328631-6 1.292276+2 5.334097-6 1.201082+2 5.339650-6 1.107553+2 5.345451-6 1.010298+2 5.353135-6 8.844116+1 5.358688-6 7.969294+1 5.360274-6 7.726135+1 5.366224-6 6.845278+1 5.372173-6 6.018742+1 5.384865-6 4.459257+1 5.389748-6 3.937023+1 5.393652-6 3.550858+1 5.397557-6 3.192206+1 5.403109-6 2.728365+1 5.409579-6 2.253559+1 5.414568-6 1.932906+1 5.419646-6 1.644467+1 5.424342-6 1.409327+1 5.429172-6 1.196729+1 5.433964-6 1.012623+1 5.438719-6 8.539554+0 5.443436-6 7.178526+0 5.445781-6 6.574198+0 5.450453-6 5.500281+0 5.455088-6 4.589870+0 5.459687-6 3.821566+0 5.464250-6 3.176136+0 5.468778-6 2.636426+0 5.479938-6 1.654743+0 5.499582-6 7.518540-1 5.654458-6 1.191841+0 5.885503-6 7.257412+0 6.043761-6 1.925160+1 6.063390-6 2.316205+1 6.075973-6 2.608229+1 6.090892-6 2.983758+1 6.105810-6 3.369894+1 6.109540-6 3.464706+1 6.120729-6 3.736580+1 6.124459-6 3.821141+1 6.135647-6 4.048625+1 6.142004-6 4.156095+1 6.147195-6 4.229858+1 6.151088-6 4.276078+1 6.156928-6 4.329626+1 6.162768-6 4.363007+1 6.167177-6 4.374169+1 6.170483-6 4.374377+1 6.177923-6 4.348766+1 6.180403-6 4.332155+1 6.187862-6 4.258052+1 6.194389-6 4.164251+1 6.197186-6 4.116122+1 6.203713-6 3.986405+1 6.210240-6 3.834216+1 6.211172-6 3.810798+1 6.225159-6 3.417768+1 6.232046-6 3.202139+1 6.240077-6 2.940230+1 6.246916-6 2.713571+1 6.253418-6 2.499269+1 6.261291-6 2.246815+1 6.270971-6 1.955206+1 6.285765-6 1.569812+1 6.294506-6 1.385306+1 6.300684-6 1.276754+1 6.304180-6 1.223672+1 6.309425-6 1.155613+1 6.313358-6 1.113754+1 6.314670-6 1.101554+1 6.329588-6 1.023867+1 6.332106-6 1.021626+1 6.336512-6 1.025012+1 6.349729-6 1.088757+1 6.354577-6 1.131289+1 6.359425-6 1.183556+1 6.364731-6 1.251536+1 6.372231-6 1.366169+1 6.379732-6 1.501789+1 6.394733-6 1.834610+1 6.416277-6 2.463482+1 6.435127-6 3.191994+1 6.451621-6 4.018598+1 6.466053-6 4.945244+1 6.478682-6 5.967624+1 6.489732-6 7.072578+1 6.499400-6 8.239544+1 6.507860-6 9.443739+1 6.521740-6 1.186284+2 6.552435-6 1.973883+2 6.567080-6 2.500833+2 6.576581-6 2.901510+2 6.586531-6 3.371630+2 6.594617-6 3.790933+2 6.602703-6 4.241625+2 6.618875-6 5.223317+2 6.620897-6 5.352073+2 6.635047-6 6.275666+2 6.640607-6 6.643113+2 6.652631-6 7.427180+2 6.657930-6 7.761214+2 6.662738-6 8.054495+2 6.670626-6 8.509180+2 6.676665-6 8.829530+2 6.681596-6 9.069792+2 6.688069-6 9.351806+2 6.695612-6 9.626687+2 6.697612-6 9.689050+2 6.706101-6 9.900918+2 6.713737-6 1.001434+3 6.719228-6 1.004867+3 6.727261-6 1.002620+3 6.734558-6 9.931008+2 6.739205-6 9.834005+2 6.746344-6 9.631932+2 6.752564-6 9.406193+2 6.754047-6 9.345947+2 6.765767-6 8.790522+2 6.773471-6 8.358706+2 6.778136-6 8.076186+2 6.784804-6 7.650146+2 6.791233-6 7.220070+2 6.798330-6 6.730585+2 6.804832-6 6.274953+2 6.811624-6 5.797957+2 6.815273-6 5.543386+2 6.822556-6 5.042741+2 6.829839-6 4.557174+2 6.831769-6 4.431655+2 6.840770-6 3.867774+2 6.846295-6 3.540967+2 6.862468-6 2.681335+2 6.894403-6 1.433348+2 6.903023-6 1.192793+2 6.913073-6 9.569024+1 6.925558-6 7.224919+1 6.948404-6 4.268161+1 6.976196-6 2.247085+1 6.990195-6 1.636637+1 7.004420-6 1.194393+1 7.012954-6 9.930219+0 7.025440-6 7.638709+0 7.029601-6 7.017046+0 7.046248-6 5.086551+0 7.048329-6 4.898259+0 7.062895-6 3.841449+0 7.065721-6 3.682940+0 7.070665-6 3.437012+0 7.085500-6 2.911665+0 7.091679-6 2.776584+0 7.096189-6 2.706915+0 7.098171-6 2.683911+0 7.103339-6 2.645918+0 7.110816-6 2.648754+0 7.119956-6 2.752684+0 7.137184-6 3.314987+0 7.154412-6 4.535685+0 7.163026-6 5.484881+0 7.171640-6 6.721429+0 7.180254-6 8.298096+0 7.197482-6 1.270287+1 7.206096-6 1.565257+1 7.214710-6 1.918219+1 7.223324-6 2.335031+1 7.230593-6 2.740369+1 7.237602-6 3.180489+1 7.245152-6 3.710972+1 7.248807-6 3.989367+1 7.254290-6 4.433651+1 7.259774-6 4.910045+1 7.268686-6 5.752161+1 7.275371-6 6.437161+1 7.277599-6 6.675240+1 7.295424-6 8.736572+1 7.297652-6 9.011237+1 7.313249-6 1.100548+2 7.319823-6 1.186801+2 7.332372-6 1.350878+2 7.338177-6 1.425012+2 7.341490-6 1.466425+2 7.347287-6 1.536856+2 7.354896-6 1.624311+2 7.362234-6 1.701914+2 7.370039-6 1.775683+2 7.377074-6 1.833207+2 7.384988-6 1.886564+2 7.388358-6 1.905378+2 7.396196-6 1.939648+2 7.404034-6 1.960252+2 7.410560-6 1.966863+2 7.419102-6 1.961285+2 7.426517-6 1.943960+2 7.435485-6 1.908880+2 7.444672-6 1.859137+2 7.453786-6 1.798993+2 7.465867-6 1.708812+2 7.490694-6 1.523727+2 7.500926-6 1.462973+2 7.509070-6 1.426574+2 7.511631-6 1.417736+2 7.519220-6 1.399753+2 7.525737-6 1.394897+2 7.530676-6 1.398180+2 7.532502-6 1.400964+2 7.540492-6 1.423342+2 7.547142-6 1.454747+2 7.553809-6 1.497781+2 7.561677-6 1.562904+2 7.569987-6 1.647369+2 7.578686-6 1.751032+2 7.606464-6 2.151099+2 7.616387-6 2.302993+2 7.626792-6 2.456784+2 7.636225-6 2.585599+2 7.642280-6 2.660637+2 7.652724-6 2.772198+2 7.661454-6 2.845079+2 7.670199-6 2.897097+2 7.678524-6 2.925729+2 7.685470-6 2.933517+2 7.693600-6 2.923945+2 7.701239-6 2.896938+2 7.706696-6 2.867350+2 7.711153-6 2.837114+2 7.724525-6 2.716357+2 7.733415-6 2.614226+2 7.742570-6 2.494257+2 7.747794-6 2.420323+2 7.756365-6 2.292406+2 7.765990-6 2.141951+2 7.774029-6 2.013388+2 7.784365-6 1.847705+2 7.796636-6 1.655376+2 7.809840-6 1.459576+2 7.832254-6 1.166736+2 7.851396-6 9.639438+1 7.864778-6 8.489084+1 7.875583-6 7.712162+1 7.885382-6 7.115647+1 7.893320-6 6.700899+1 7.899300-6 6.425289+1 7.903785-6 6.237708+1 7.913876-6 5.869819+1 7.919102-6 5.705823+1 7.925618-6 5.523650+1 7.932134-6 5.363636+1 7.941020-6 5.176445+1 7.954546-6 4.948050+1 7.967676-6 4.777383+1 7.980832-6 4.644844+1 7.991276-6 4.561536+1 8.007070-6 4.466400+1 8.019482-6 4.415397+1 8.034205-6 4.381848+1 8.048385-6 4.379332+1 8.058909-6 4.398664+1 8.070418-6 4.443267+1 8.087139-6 4.558512+1 8.099022-6 4.682471+1 8.111709-6 4.859249+1 8.123128-6 5.062235+1 8.129797-6 5.201677+1 8.138842-6 5.416979+1 8.149817-6 5.720768+1 8.160573-6 6.065511+1 8.178143-6 6.730330+1 8.219582-6 8.742448+1 8.237017-6 9.707839+1 8.249169-6 1.038577+2 8.259390-6 1.094216+2 8.270326-6 1.150774+2 8.282117-6 1.206466+2 8.292588-6 1.249735+2 8.302264-6 1.283376+2 8.307528-6 1.298783+2 8.322390-6 1.330041+2 8.329699-6 1.338328+2 8.334017-6 1.340937+2 8.344929-6 1.339851+2 8.355170-6 1.328889+2 8.364780-6 1.310151+2 8.372987-6 1.288069+2 8.378087-6 1.271730+2 8.385737-6 1.243786+2 8.393387-6 1.212161+2 8.403877-6 1.163812+2 8.412445-6 1.121024+2 8.423689-6 1.061940+2 8.438923-6 9.799609+1 8.465076-6 8.468081+1 8.474975-6 8.024756+1 8.486854-6 7.555445+1 8.497728-6 7.194262+1 8.507024-6 6.941327+1 8.510488-6 6.860611+1 8.518000-6 6.710988+1 8.523859-6 6.618259+1 8.529628-6 6.547093+1 8.536908-6 6.484932+1 8.546035-6 6.448275+1 8.555126-6 6.453761+1 8.560850-6 6.476630+1 8.571994-6 6.558491+1 8.584710-6 6.700718+1 8.604350-6 6.985699+1 8.628247-6 7.363708+1 8.646515-6 7.623371+1 8.662663-6 7.806369+1 8.671307-6 7.882209+1 8.692448-6 7.998849+1 8.708249-6 8.026047+1 8.725924-6 8.007369+1 8.755023-6 7.908491+1 8.779698-6 7.810017+1 8.805552-6 7.738019+1 8.819659-6 7.722235+1 8.840417-6 7.735297+1 8.862240-6 7.799111+1 8.871815-6 7.844347+1 8.885546-6 7.929352+1 8.898755-6 8.036424+1 8.911457-6 8.167348+1 8.923672-6 8.325057+1 8.935005-6 8.506037+1 8.944490-6 8.688932+1 8.954363-6 8.916079+1 8.962328-6 9.131585+1 8.971308-6 9.414821+1 8.980434-6 9.753151+1 8.987421-6 1.005133+2 8.994954-6 1.041543+2 9.005980-6 1.103745+2 9.011804-6 1.141313+2 9.034274-6 1.321058+2 9.057202-6 1.568667+2 9.103669-6 2.275566+2 9.116457-6 2.508522+2 9.131478-6 2.792474+2 9.143517-6 3.021493+2 9.154790-6 3.231328+2 9.164561-6 3.405435+2 9.174295-6 3.568139+2 9.184772-6 3.727457+2 9.199608-6 3.917865+2 9.209268-6 4.015739+2 9.218948-6 4.090734+2 9.231372-6 4.150844+2 9.239236-6 4.167175+2 9.250354-6 4.161297+2 9.261373-6 4.122606+2 9.266336-6 4.094875+2 9.273780-6 4.041846+2 9.283050-6 3.957756+2 9.293220-6 3.844554+2 9.304102-6 3.702287+2 9.316321-6 3.521134+2 9.327271-6 3.344067+2 9.339648-6 3.132548+2 9.353825-6 2.882613+2 9.368015-6 2.631895+2 9.387029-6 2.306988+2 9.411664-6 1.923536+2 9.448537-6 1.459205+2 9.467341-6 1.276778+2 9.481183-6 1.164585+2 9.494702-6 1.071513+2 9.507798-6 9.953096+1 9.522393-6 9.245778+1 9.536112-6 8.698001+1 9.544683-6 8.405286+1 9.567752-6 7.771877+1 9.589379-6 7.336559+1 9.610910-6 7.011471+1 9.658450-6 6.538866+1 9.685687-6 6.373262+1 9.699943-6 6.314306+1 9.713308-6 6.278949+1 9.725838-6 6.266959+1 9.737584-6 6.278905+1 9.748597-6 6.315757+1 9.758921-6 6.378564+1 9.768600-6 6.468226+1 9.777532-6 6.583214+1 9.785915-6 6.724901+1 9.793782-6 6.892981+1 9.802925-6 7.138563+1 9.810296-6 7.382264+1 9.819274-6 7.743249+1 9.827860-6 8.164432+1 9.833147-6 8.465543+1 9.838186-6 8.785347+1 9.842911-6 9.116464+1 9.851494-6 9.802614+1 9.859037-6 1.050505+2 9.865666-6 1.120722+2 9.871681-6 1.191888+2 9.881549-6 1.325425+2 9.893420-6 1.516584+2 9.909301-6 1.831014+2 9.950387-6 3.012123+2 9.966972-6 3.655396+2 9.981985-6 4.321697+2 9.991374-6 4.777176+2 1.001292-5 5.922527+2 1.002078-5 6.370019+2 1.003732-5 7.347478+2 1.004893-5 8.051801+2 1.006019-5 8.736863+2 1.007259-5 9.480574+2 1.008460-5 1.017737+3 1.009539-5 1.077192+3 1.010610-5 1.132153+3 1.010976-5 1.149842+3 1.012453-5 1.214725+3 1.013586-5 1.256405+3 1.015061-5 1.298728+3 1.016175-5 1.321035+3 1.016878-5 1.330641+3 1.017885-5 1.338260+3 1.018721-5 1.339087+3 1.019206-5 1.337299+3 1.020813-5 1.319817+3 1.021975-5 1.296685+3 1.023100-5 1.266593+3 1.024341-5 1.225649+3 1.025541-5 1.179367+3 1.026608-5 1.133622+3 1.027981-5 1.069933+3 1.029201-5 1.010084+3 1.030726-5 9.329525+2 1.032327-5 8.514715+2 1.032861-5 8.245929+2 1.035606-5 6.920018+2 1.037796-5 5.964436+2 1.042003-5 4.459710+2 1.043818-5 3.950844+2 1.045625-5 3.522450+2 1.047427-5 3.165925+2 1.049223-5 2.872323+2 1.051067-5 2.625247+2 1.052792-5 2.436023+2 1.054567-5 2.275982+2 1.056513-5 2.132882+2 1.058254-5 2.027630+2 1.060484-5 1.917093+2 1.063342-5 1.804888+2 1.067698-5 1.676215+2 1.070920-5 1.602634+2 1.075373-5 1.520573+2 1.080404-5 1.446803+2 1.087044-5 1.370286+2 1.094622-5 1.302564+2 1.100065-5 1.262945+2 1.107540-5 1.217297+2 1.118845-5 1.161676+2 1.130880-5 1.114868+2 1.143786-5 1.074820+2 1.165053-5 1.022203+2 1.188979-5 9.762169+1 1.228800-5 9.160446+1 1.266857-5 8.698931+1 1.350000-5 7.893838+1 1.463230-5 7.007299+1 1.500000-5 6.745514+1 1.544110-5 6.430782+1 1.582271-5 6.118909+1 1.600847-5 5.934863+1 1.608728-5 5.882567+1 1.612668-5 5.873839+1 1.616608-5 5.880840+1 1.620549-5 5.905324+1 1.625166-5 5.956024+1 1.632369-5 6.071749+1 1.640250-5 6.212436+1 1.644190-5 6.271284+1 1.648407-5 6.316596+1 1.651293-5 6.334713+1 1.656704-5 6.338421+1 1.659951-5 6.322626+1 1.663892-5 6.288110+1 1.671772-5 6.184581+1 1.688980-5 5.926371+1 1.699694-5 5.797451+1 1.708594-5 5.714728+1 1.716429-5 5.660485+1 1.726783-5 5.615403+1 1.754081-5 5.554995+1 1.774856-5 5.460075+1 1.922168-5 4.830735+1 2.087623-5 4.220752+1 2.192957-5 3.876471+1 2.297591-5 3.558850+1 2.365000-5 3.362803+1 2.418506-5 3.212800+1 2.489510-5 3.018988+1 2.550487-5 2.858432+1 2.598500-5 2.735103+1 2.666745-5 2.562011+1 2.735082-5 2.393851+1 2.806808-5 2.219846+1 2.868399-5 2.072999+1 2.945508-5 1.892043+1 3.025045-5 1.707339+1 3.090295-5 1.558184+1 3.165323-5 1.388711+1 3.256278-5 1.184306+1 3.350000-5 9.738596+0 3.419940-5 8.203632+0 3.467599-5 7.163780+0 3.524063-5 5.942119+0 3.566400-5 5.050001+0 3.610145-5 4.145588+0 3.642937-5 3.476043+0 3.674190-5 2.854396+0 3.701536-5 2.332032+0 3.725464-5 1.895813+0 3.749037-5 1.489338+0 3.764721-5 1.235257+0 3.780751-5 9.934775-1 3.794777-5 8.010801-1 3.807050-5 6.513110-1 3.817789-5 5.376498-1 3.827185-5 4.538874-1 3.835407-5 3.942287-1 3.842601-5 3.534224-1 3.848896-5 3.268921-1 3.854404-5 3.108220-1 3.859223-5 3.021674-1 3.863440-5 2.985960-1 3.870820-5 3.007269-1 3.876355-5 3.086167-1 3.880506-5 3.176287-1 3.883620-5 3.259527-1 3.888290-5 3.407655-1 3.892960-5 3.583073-1 3.895355-5 3.684264-1 3.900000-5 3.905881-1 3.904937-5 4.188999-1 3.910103-5 4.561822-1 3.915287-5 5.055506-1 3.917073-5 5.263722-1 3.921706-5 5.926075-1 3.925786-5 6.698321-1 3.929225-5 7.530153-1 3.931288-5 8.126609-1 3.933683-5 8.926618-1 3.935480-5 9.612312-1 3.938175-5 1.079769+0 3.940870-5 1.219751+0 3.943265-5 1.364788+0 3.945062-5 1.487838+0 3.947757-5 1.698033+0 3.952847-5 2.192304+0 3.964226-5 3.901986+0 3.969616-5 5.094587+0 3.973808-5 6.235360+0 3.977177-5 7.305193+0 3.981839-5 9.036130+0 3.986490-5 1.108305+1 3.989458-5 1.257052+1 3.998362-5 1.796286+1 4.002449-5 2.093702+1 4.004258-5 2.235854+1 4.010692-5 2.794204+1 4.013450-5 3.058717+1 4.022642-5 4.045299+1 4.026414-5 4.493325+1 4.032447-5 5.253734+1 4.036785-5 5.827764+1 4.039543-5 6.201525+1 4.041612-5 6.485111+1 4.044715-5 6.913917+1 4.048696-5 7.466122+1 4.053041-5 8.065102+1 4.056900-5 8.587371+1 4.061396-5 9.176781+1 4.067069-5 9.878525+1 4.071972-5 1.043563+2 4.073678-5 1.061706+2 4.078548-5 1.109500+2 4.083314-5 1.150097+2 4.088527-5 1.186970+2 4.092926-5 1.211697+2 4.101493-5 1.242844+2 4.106745-5 1.251053+2 4.111615-5 1.251641+2 4.115592-5 1.247397+2 4.118575-5 1.241591+2 4.127524-5 1.211925+2 4.130143-5 1.200099+2 4.134726-5 1.176380+2 4.138164-5 1.156278+2 4.148477-5 1.085878+2 4.151369-5 1.063834+2 4.158663-5 1.004685+2 4.165569-5 9.449808+1 4.172163-5 8.856593+1 4.179517-5 8.180569+1 4.189221-5 7.286695+1 4.197266-5 6.562990+1 4.207229-5 5.712033+1 4.219683-5 4.749489+1 4.240150-5 3.464349+1 4.255429-5 2.741877+1 4.270708-5 2.185023+1 4.301265-5 1.404754+1 4.311451-5 1.210130+1 4.321637-5 1.039259+1 4.331823-5 8.892697+0 4.346917-5 7.011436+0 4.356426-5 6.014012+0 4.365340-5 5.196486+0 4.382056-5 3.930012+0 4.396681-5 3.058271+0 4.422276-5 1.929519+0 4.441473-5 1.328406+0 4.470267-5 7.178418-1 4.475840-5 6.342154-1 4.499061-5 3.965150-1 4.521209-5 3.378194-1 4.532283-5 3.755572-1 4.537200-5 4.081966-1 4.541596-5 4.462154-1 4.543357-5 4.638708-1 4.554431-5 6.086831-1 4.576578-5 1.092974+0 4.583220-5 1.293455+0 4.587797-5 1.446908+0 4.592892-5 1.632166+0 4.597264-5 1.802960+0 4.610382-5 2.374651+0 4.615501-5 2.618128+0 4.626806-5 3.182084+0 4.638111-5 3.758061+0 4.640937-5 3.899998+0 4.649416-5 4.311996+0 4.655407-5 4.584656+0 4.661125-5 4.825793+0 4.666843-5 5.044857+0 4.670965-5 5.187655+0 4.674056-5 5.286024+0 4.681012-5 5.479441+0 4.683330-5 5.535395+0 4.693222-5 5.729534+0 4.708896-5 5.924058+0 4.722621-5 6.055110+0 4.732118-5 6.172764+0 4.740638-5 6.323054+0 4.748768-5 6.520233+0 4.751394-5 6.596604+0 4.762109-5 6.975230+0 4.764541-5 7.075929+0 4.775726-5 7.601557+0 4.794718-5 8.651312+0 4.804000-5 9.180273+0 4.807946-5 9.398483+0 4.816629-5 9.852192+0 4.822409-5 1.012737+1 4.831673-5 1.051374+1 4.837801-5 1.072948+1 4.848179-5 1.102404+1 4.851638-5 1.110427+1 4.866199-5 1.136994+1 4.886685-5 1.168288+1 4.899211-5 1.194176+1 4.905152-5 1.210131+1 4.913063-5 1.235911+1 4.921183-5 1.268225+1 4.932993-5 1.326055+1 4.944873-5 1.396427+1 4.962728-5 1.521199+1 4.995505-5 1.788576+1 5.022403-5 2.030652+1 5.161012-5 3.766547+1 5.215000-5 4.749181+1 5.273753-5 6.058017+1 5.359364-5 8.526265+1 5.437471-5 1.151794+2 5.507480-5 1.495420+2 5.590775-5 2.019276+2 5.660541-5 2.576213+2 5.745211-5 3.427979+2 5.810482-5 4.235681+2 5.870262-5 5.103556+2 5.934923-5 6.188478+2 5.979942-5 7.032263+2 6.034919-5 8.155505+2 6.066646-5 8.845904+2 6.104991-5 9.715968+2 6.137927-5 1.049001+3 6.182186-5 1.155917+3 6.206443-5 1.215354+3 6.237348-5 1.291279+3 6.260000-5 1.346691+3 6.297500-5 1.437139+3 6.332500-5 1.519122+3 6.367500-5 1.597712+3 6.402500-5 1.671982+3 6.442500-5 1.750553+3 6.465000-5 1.791446+3 6.500000-5 1.849951+3 6.540000-5 1.908818+3 6.580000-5 1.958891+3 6.617930-5 1.998183+3 6.662970-5 2.034541+3 6.713067-5 2.062249+3 6.785200-5 2.080909+3 6.835884-5 2.081163+3 6.887188-5 2.072444+3 6.949813-5 2.052001+3 7.030000-5 2.014480+3 7.142044-5 1.947676+3 7.272370-5 1.858193+3 7.465315-5 1.722721+3 7.855816-5 1.469363+3 8.461814-5 1.154620+3 9.366180-5 8.284545+2 9.865459-5 7.032204+2 1.047129-4 5.874108+2 1.109899-4 4.947337+2 1.122226-4 4.781678+2 1.133346-4 4.629464+2 1.145067-4 4.457434+2 1.159145-4 4.248740+2 1.165464-4 4.181192+2 1.169407-4 4.154694+2 1.176708-4 4.135209+2 1.186085-4 4.131960+2 1.194768-4 4.108610+2 1.204422-4 4.052153+2 1.224163-4 3.908445+2 1.262652-4 3.621477+2 1.275020-4 3.565524+2 1.300000-4 3.498147+2 1.342043-4 3.330786+2 1.439235-4 2.993417+2 1.554023-4 2.675482+2 1.586167-4 2.587278+2 1.612491-4 2.495168+2 1.624397-4 2.454544+2 1.632335-4 2.441881+2 1.637503-4 2.444376+2 1.645700-4 2.467510+2 1.664087-4 2.556037+2 1.669432-4 2.570905+2 1.675846-4 2.574404+2 1.683546-4 2.558876+2 1.694444-4 2.514413+2 1.708611-4 2.455979+2 1.721465-4 2.425392+2 1.734890-4 2.413725+2 1.767358-4 2.399866+2 1.802505-4 2.375465+2 1.916825-4 2.316832+2 2.003895-4 2.292372+2 2.113489-4 2.279996+2 2.205688-4 2.277972+2 2.371373-4 2.288506+2 2.740391-4 2.341134+2 3.019952-4 2.376728+2 3.156257-4 2.386199+2 3.306550-4 2.387919+2 3.485531-4 2.375415+2 3.734997-4 2.331564+2 3.948818-4 2.267127+2 4.182060-4 2.162562+2 4.365862-4 2.052566+2 4.531584-4 1.931594+2 4.665600-4 1.816186+2 4.751984-4 1.733328+2 4.855680-4 1.623666+2 4.961637-4 1.498724+2 5.052687-4 1.381101+2 5.143929-4 1.252949+2 5.217951-4 1.140518+2 5.266319-4 1.062557+2 5.320517-4 9.707526+1 5.367940-4 8.869345+1 5.409436-4 8.112422+1 5.448162-4 7.385516+1 5.484311-4 6.688950+1 5.511809-4 6.149277+1 5.533112-4 5.727398+1 5.553056-4 5.331569+1 5.582131-4 4.759265+1 5.599929-4 4.416772+1 5.622114-4 4.005812+1 5.669117-4 3.239937+1 5.695736-4 2.907403+1 5.704272-4 2.823074+1 5.718690-4 2.712477+1 5.727420-4 2.668996+1 5.737827-4 2.645843+1 5.744728-4 2.650979+1 5.751026-4 2.672429+1 5.756413-4 2.705200+1 5.760609-4 2.741017+1 5.764708-4 2.785550+1 5.767720-4 2.824759+1 5.772624-4 2.901330+1 5.778223-4 3.009824+1 5.782657-4 3.113283+1 5.787099-4 3.233936+1 5.792868-4 3.418296+1 5.796223-4 3.541044+1 5.799500-4 3.672759+1 5.803750-4 3.862071+1 5.808376-4 4.093251+1 5.813222-4 4.365468+1 5.818557-4 4.703280+1 5.824029-4 5.094116+1 5.831520-4 5.707259+1 5.838550-4 6.370767+1 5.867425-4 1.010135+2 5.879475-4 1.217478+2 5.890234-4 1.428946+2 5.895859-4 1.549163+2 5.903064-4 1.712459+2 5.909992-4 1.878851+2 5.915687-4 2.022052+2 5.925999-4 2.294754+2 5.939305-4 2.667948+2 5.952306-4 3.049541+2 5.965307-4 3.440698+2 5.978000-4 3.824970+2 5.986464-4 4.079400+2 5.994423-4 4.315540+2 6.000876-4 4.503934+2 6.009415-4 4.747995+2 6.020408-4 5.051711+2 6.035100-4 5.436551+2 6.050485-4 5.811313+2 6.061084-4 6.052184+2 6.079478-4 6.437480+2 6.092242-4 6.681723+2 6.115000-4 7.074922+2 6.135191-4 7.384250+2 6.143692-4 7.504850+2 6.163952-4 7.772318+2 6.190000-4 8.081098+2 6.211094-4 8.307502+2 6.248543-4 8.668005+2 6.287174-4 8.992812+2 6.320934-4 9.238142+2 6.358395-4 9.464147+2 6.403793-4 9.669088+2 6.434688-4 9.767930+2 6.476382-4 9.858888+2 6.545000-4 9.937590+2 6.631250-4 9.969029+2 7.027436-4 9.921532+2 7.477969-4 1.001059+3 7.656833-4 9.992879+2 7.786958-4 9.919898+2 7.881218-4 9.812998+2 8.001918-4 9.639755+2 8.041397-4 9.634721+2 8.077289-4 9.687422+2 8.112720-4 9.802948+2 8.139138-4 9.927211+2 8.231892-4 1.047804+3 8.276301-4 1.071067+3 8.329444-4 1.091533+3 8.400579-4 1.108154+3 8.551898-4 1.127200+3 8.611513-4 1.137357+3 8.661979-4 1.149816+3 8.766713-4 1.183301+3 8.856574-4 1.209898+3 8.951071-4 1.230436+3 9.088392-4 1.251153+3 9.256055-4 1.268963+3 9.398438-4 1.279491+3 9.668024-4 1.293853+3 9.896208-4 1.314471+3 1.011442-3 1.347218+3 1.022363-3 1.361450+3 1.039629-3 1.377538+3 1.079831-3 1.402997+3 1.106028-3 1.414895+3 1.167709-3 1.430235+3 1.253223-3 1.439498+3 1.347508-3 1.440646+3 1.443881-3 1.433195+3 1.595334-3 1.408028+3 1.713115-3 1.384731+3 1.871796-3 1.346772+3 1.970295-3 1.322889+3 2.241542-3 1.251781+3 2.469027-3 1.191040+3 2.585235-3 1.160540+3 2.697837-3 1.130300+3 2.837538-3 1.093016+3 2.969685-3 1.058280+3 3.118625-3 1.018248+3 3.248961-3 9.825505+2 3.377221-3 9.466956+2 3.501344-3 9.114615+2 3.607503-3 8.803684+2 3.710196-3 8.483497+2 3.797555-3 8.193428+2 3.872298-3 7.928631+2 3.941124-3 7.665325+2 4.004437-3 7.399317+2 4.048963-3 7.192755+2 4.091668-3 6.973716+2 4.125083-3 6.782855+2 4.157573-3 6.573196+2 4.186973-3 6.352310+2 4.210103-3 6.147578+2 4.229522-3 5.948741+2 4.253935-3 5.665656+2 4.287802-3 5.269500+2 4.299992-3 5.155725+2 4.309861-3 5.086072+2 4.321282-3 5.036938+2 4.325621-3 5.028089+2 4.334377-3 5.027464+2 4.343222-3 5.050106+2 4.352242-3 5.095910+2 4.363288-3 5.179172+2 4.377437-3 5.318554+2 4.408207-3 5.668912+2 4.428432-3 5.876346+2 4.443674-3 6.002743+2 4.461904-3 6.115805+2 4.479474-3 6.187236+2 4.498603-3 6.228390+2 4.516758-3 6.238937+2 4.574592-3 6.208825+2 4.586446-3 6.219613+2 4.598600-3 6.245970+2 4.618908-3 6.329518+2 4.642548-3 6.484420+2 4.692849-3 6.896561+2 4.712158-3 7.036283+2 4.732236-3 7.155699+2 4.751742-3 7.245536+2 4.776615-3 7.326760+2 4.800622-3 7.376978+2 4.863198-3 7.452878+2 4.883481-3 7.489745+2 4.911670-3 7.572534+2 4.942785-3 7.706729+2 5.004999-3 8.014973+2 5.048224-3 8.183648+2 5.078661-3 8.273137+2 5.149516-3 8.422149+2 5.202954-3 8.503359+2 5.302507-3 8.607703+2 5.422499-3 8.679068+2 5.551195-3 8.711050+2 5.769769-3 8.700209+2 5.980242-3 8.628086+2 6.239679-3 8.494622+2 6.584791-3 8.271642+2 7.003458-3 7.961426+2 7.508391-3 7.569534+2 8.150900-3 7.079687+2 8.921896-3 6.527660+2 9.768967-3 5.979961+2 1.110221-2 5.240785+2 1.268872-2 4.528148+2 1.420958-2 3.973234+2 1.551452-2 3.570714+2 1.673767-2 3.241722+2 1.814471-2 2.909558+2 1.949077-2 2.630851+2 2.115605-2 2.330564+2 2.274564-2 2.082074+2 2.458512-2 1.832527+2 2.606184-2 1.655576+2 2.731117-2 1.517773+2 2.826945-2 1.416763+2 2.904858-2 1.335193+2 2.969056-2 1.265941+2 3.018255-2 1.208926+2 3.050578-2 1.167213+2 3.066500-2 1.144306+2 3.080957-2 1.121365+2 3.093007-2 1.100201+2 3.109813-2 1.067179+2 3.147491-2 9.883647+1 3.160618-2 9.683290+1 3.171369-2 9.587080+1 3.182823-2 9.564063+1 3.194278-2 9.621394+1 3.205667-2 9.743361+1 3.246640-2 1.035918+2 3.268206-2 1.060652+2 3.290765-2 1.077240+2 3.319618-2 1.088944+2 3.354844-2 1.095176+2 3.401064-2 1.096295+2 3.481969-2 1.088169+2 3.565257-2 1.072459+2 3.678513-2 1.044677+2 3.824531-2 1.004258+2 4.041686-2 9.418624+1 4.279972-2 8.754693+1 4.564949-2 8.014162+1 4.937222-2 7.155347+1 5.403718-2 6.234701+1 5.956728-2 5.332929+1 6.578471-2 4.518593+1 7.513863-2 3.593183+1 9.168327-2 2.525335+1 1.112218-1 1.786957+1 1.353474-1 1.248717+1 1.795132-1 7.397211+0 2.228098-1 4.918743+0 2.936948-1 2.892365+0 4.199150-1 1.442834+0 6.327760-1 6.449547-1 9.821925-1 2.701725-1 2.039158+0 6.306686-2 6.158159+0 6.927261-3 1.859734+1 7.597088-4 5.616308+1 8.330222-5 1.696098+2 9.133928-6 5.122134+2 1.001516-6 1.584893+3 1.046067-7 5.011872+3 1.046067-8 1.584893+4 1.046067-9 5.011872+4 1.04607-10 1.000000+5 2.62760-11 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.203100-6 1.258900-6 1.906800-6 1.584900-6 3.022100-6 1.995300-6 4.789800-6 2.511900-6 7.591200-6 3.162300-6 1.203100-5 3.981100-6 1.906800-5 5.011900-6 3.022100-5 6.309600-6 4.789600-5 7.943300-6 7.591000-5 1.000000-5 1.203100-4 1.258900-5 1.906700-4 1.584900-5 3.021900-4 1.995300-5 4.789300-4 2.511900-5 7.590300-4 3.162300-5 1.202900-3 3.981100-5 1.906400-3 5.011900-5 3.021300-3 6.309600-5 4.788100-3 7.943300-5 7.582800-3 1.000000-4 1.200600-2 1.258900-4 1.901300-2 1.584900-4 3.007200-2 1.995300-4 4.754000-2 2.511900-4 7.502200-2 3.162300-4 1.181200-1 3.981100-4 1.852700-1 5.011900-4 2.887800-1 6.309600-4 4.450800-1 7.943300-4 6.759800-1 1.000000-3 1.006300+0 1.258900-3 1.459900+0 1.584900-3 2.056200+0 1.995300-3 2.806600+0 2.511900-3 3.721900+0 3.162300-3 4.800500+0 3.981100-3 6.021100+0 5.011900-3 7.375800+0 6.309600-3 8.882100+0 7.943300-3 1.056500+1 1.000000-2 1.242700+1 1.258900-2 1.438400+1 1.584900-2 1.628900+1 1.995300-2 1.805800+1 2.511900-2 1.965000+1 3.162300-2 2.102500+1 3.981100-2 2.211700+1 5.011900-2 2.288200+1 6.309600-2 2.328400+1 7.943300-2 2.328100+1 1.000000-1 2.291700+1 1.258900-1 2.221900+1 1.584900-1 2.130100+1 1.995300-1 2.017400+1 2.511900-1 1.890900+1 3.162300-1 1.756600+1 3.981100-1 1.618900+1 5.011900-1 1.481500+1 6.309600-1 1.347000+1 7.943300-1 1.217000+1 1.000000+0 1.092500+1 1.258900+0 9.744800+0 1.584900+0 8.637300+0 1.995300+0 7.605900+0 2.511900+0 6.654900+0 3.162300+0 5.786900+0 3.981100+0 5.002300+0 5.011900+0 4.299900+0 6.309600+0 3.676900+0 7.943300+0 3.129000+0 1.000000+1 2.651000+0 1.258900+1 2.236900+0 1.584900+1 1.880700+0 1.995300+1 1.575900+0 2.511900+1 1.316500+0 3.162300+1 1.096900+0 3.981100+1 9.116800-1 5.011900+1 7.560600-1 6.309600+1 6.257400-1 7.943300+1 5.169500-1 1.000000+2 4.263600-1 1.258900+2 3.511200-1 1.584900+2 2.887500-1 1.995300+2 2.371600-1 2.511900+2 1.945600-1 3.162300+2 1.594400-1 3.981100+2 1.305300-1 5.011900+2 1.067600-1 6.309600+2 8.723800-2 7.943300+2 7.123000-2 1.000000+3 5.811500-2 1.258900+3 4.738100-2 1.584900+3 3.860300-2 1.995300+3 3.143100-2 2.511900+3 2.557600-2 3.162300+3 2.079900-2 3.981100+3 1.690600-2 5.011900+3 1.373400-2 6.309600+3 1.115100-2 7.943300+3 9.050100-3 1.000000+4 7.341500-3 1.258900+4 5.952800-3 1.584900+4 4.824900-3 1.995300+4 3.909000-3 2.511900+4 3.165800-3 3.162300+4 2.563000-3 3.981100+4 2.074200-3 5.011900+4 1.678000-3 6.309600+4 1.357100-3 7.943300+4 1.097100-3 1.000000+5 8.867300-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159546-4 3.981072-4 3.976749-4 5.011872-4 5.005039-4 6.309573-4 6.298788-4 7.943282-4 7.926290-4 1.000000-3 9.973289-4 1.258925-3 1.254730-3 1.584893-3 1.578349-3 1.995262-3 1.985057-3 2.511886-3 2.495969-3 3.162278-3 3.137511-3 3.981072-3 3.942587-3 5.011872-3 4.952097-3 6.309573-3 6.216686-3 7.943282-3 7.798489-3 1.000000-2 9.774257-3 1.258925-2 1.223854-2 1.584893-2 1.530737-2 1.995262-2 1.912048-2 2.511886-2 2.384460-2 3.162278-2 2.967854-2 3.981072-2 3.685701-2 5.011872-2 4.566050-2 6.309573-2 5.641263-2 7.943282-2 6.950150-2 1.000000-1 8.534771-2 1.258925-1 1.045375-1 1.584893-1 1.274757-1 1.995262-1 1.550058-1 2.511886-1 1.878571-1 3.162278-1 2.269185-1 3.981072-1 2.732307-1 5.011872-1 3.279658-1 6.309573-1 3.925337-1 7.943282-1 4.684560-1 1.000000+0 5.579231-1 1.258925+0 6.633446-1 1.584893+0 7.876199-1 1.995262+0 9.347042-1 2.511886+0 1.109226+0 3.162278+0 1.316948+0 3.981072+0 1.564911+0 5.011872+0 1.861742+0 6.309573+0 2.217908+0 7.943282+0 2.646387+0 1.000000+1 3.163024+0 1.258925+1 3.787048+0 1.584893+1 4.542194+0 1.995262+1 5.457414+0 2.511886+1 6.568059+0 3.162278+1 7.918072+0 3.981072+1 9.560741+0 5.011872+1 1.156141+1 6.309573+1 1.400104+1 7.943282+1 1.697867+1 1.000000+2 2.061593+1 1.258925+2 2.506333+1 1.584893+2 3.050489+1 1.995262+2 3.716843+1 2.511886+2 4.533340+1 3.162278+2 5.534600+1 3.981072+2 6.763040+1 5.011872+2 8.271372+1 6.309573+2 1.012430+2 7.943282+2 1.240185+2 1.000000+3 1.520279+2 1.258925+3 1.864927+2 1.584893+3 2.289167+2 1.995262+3 2.811686+2 2.511886+3 3.455631+2 3.162278+3 4.249389+2 3.981072+3 5.228226+2 5.011872+3 6.435821+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090662-8 7.943282-5 1.728170-8 1.000000-4 2.738498-8 1.258925-4 4.339809-8 1.584893-4 6.875213-8 1.995262-4 1.089229-7 2.511886-4 1.725139-7 3.162278-4 2.731177-7 3.981072-4 4.322280-7 5.011872-4 6.833239-7 6.309573-4 1.078514-6 7.943282-4 1.699203-6 1.000000-3 2.671062-6 1.258925-3 4.195009-6 1.584893-3 6.544562-6 1.995262-3 1.020544-5 2.511886-3 1.591735-5 3.162278-3 2.476710-5 3.981072-3 3.848516-5 5.011872-3 5.977497-5 6.309573-3 9.288763-5 7.943282-3 1.447934-4 1.000000-2 2.257434-4 1.258925-2 3.507161-4 1.584893-2 5.415596-4 1.995262-2 8.321410-4 2.511886-2 1.274261-3 3.162278-2 1.944241-3 3.981072-2 2.953711-3 5.011872-2 4.458224-3 6.309573-2 6.683106-3 7.943282-2 9.931322-3 1.000000-1 1.465229-2 1.258925-1 2.135504-2 1.584893-1 3.101363-2 1.995262-1 4.452046-2 2.511886-1 6.333152-2 3.162278-1 8.930929-2 3.981072-1 1.248765-1 5.011872-1 1.732214-1 6.309573-1 2.384237-1 7.943282-1 3.258723-1 1.000000+0 4.420769-1 1.258925+0 5.955808-1 1.584893+0 7.972733-1 1.995262+0 1.060558+0 2.511886+0 1.402661+0 3.162278+0 1.845329+0 3.981072+0 2.416160+0 5.011872+0 3.150130+0 6.309573+0 4.091665+0 7.943282+0 5.296895+0 1.000000+1 6.836976+0 1.258925+1 8.802206+0 1.584893+1 1.130674+1 1.995262+1 1.449521+1 2.511886+1 1.855081+1 3.162278+1 2.370470+1 3.981072+1 3.024998+1 5.011872+1 3.855732+1 6.309573+1 4.909469+1 7.943282+1 6.245415+1 1.000000+2 7.938407+1 1.258925+2 1.008292+2 1.584893+2 1.279844+2 1.995262+2 1.623578+2 2.511886+2 2.058552+2 3.162278+2 2.608818+2 3.981072+2 3.304768+2 5.011872+2 4.184735+2 6.309573+2 5.297143+2 7.943282+2 6.703098+2 1.000000+3 8.479721+2 1.258925+3 1.072433+3 1.584893+3 1.355976+3 1.995262+3 1.714094+3 2.511886+3 2.166323+3 3.162278+3 2.737339+3 3.981072+3 3.458249+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.310000-6 5.679660+7 8.511380-6 5.497492+7 8.810489-6 5.209770+7 9.120108-6 4.901448+7 9.230000-6 4.786177+7 9.230000-6 7.471743+7 9.500000-6 7.114304+7 9.549926-6 7.046249+7 9.772372-6 6.743847+7 9.850000-6 6.639533+7 1.000000-5 6.433908+7 1.023293-5 6.122260+7 1.035142-5 5.964987+7 1.060000-5 5.640910+7 1.071519-5 5.493548+7 1.100000-5 5.141465+7 1.110000-5 5.021060+7 1.150000-5 4.563399+7 1.188502-5 4.153794+7 1.202264-5 4.016796+7 1.230269-5 3.748902+7 1.270000-5 3.401560+7 1.288400-5 3.251354+7 1.350000-5 2.799593+7 1.428894-5 2.317283+7 1.445440-5 2.228817+7 1.531087-5 1.828764+7 1.570000-5 1.675944+7 1.659587-5 1.378565+7 1.778279-5 1.078733+7 1.845000-5 9.461707+6 1.845000-5 9.681823+6 1.880000-5 9.039194+6 1.927525-5 8.251400+6 1.972423-5 7.585708+6 2.020000-5 6.954009+6 2.070000-5 6.361623+6 2.170000-5 5.360434+6 2.213095-5 4.992458+6 2.250000-5 4.705610+6 2.277000-5 4.509374+6 2.300000-5 4.350653+6 2.317395-5 4.235504+6 2.322000-5 4.205840+6 2.344229-5 4.066531+6 2.365000-5 3.941854+6 2.385000-5 3.826574+6 2.405000-5 3.715752+6 2.426610-5 3.600781+6 2.442000-5 3.521791+6 2.460000-5 3.432328+6 2.477000-5 3.350618+6 2.500000-5 3.244184+6 2.511886-5 3.190980+6 2.520000-5 3.155670+6 2.540973-5 3.066862+6 2.560000-5 2.989206+6 2.587000-5 2.883534+6 2.610000-5 2.797498+6 2.640000-5 2.690471+6 2.670000-5 2.588983+6 2.691535-5 2.519372+6 2.710000-5 2.462061+6 2.770000-5 2.287901+6 2.818383-5 2.159707+6 2.900000-5 1.967487+6 2.980000-5 1.801804+6 3.054921-5 1.664179+6 3.090295-5 1.604382+6 3.126079-5 1.547451+6 3.198895-5 1.441602+6 3.273407-5 1.344009+6 3.350000-5 1.253623+6 3.427678-5 1.170993+6 3.507519-5 1.095397+6 3.589219-5 1.025495+6 3.610000-5 1.008999+6 3.715352-5 9.311819+5 3.801894-5 8.750076+5 3.900000-5 8.176092+5 4.027170-5 7.517628+5 4.030000-5 7.504314+5 4.120975-5 7.092738+5 4.168694-5 6.894472+5 4.315191-5 6.337496+5 4.466836-5 5.845964+5 4.570882-5 5.543501+5 4.650000-5 5.339778+5 4.841724-5 4.893169+5 4.850000-5 4.876025+5 4.918000-5 4.736470+5 4.918000-5 1.878055+6 4.954502-5 1.906234+6 4.990000-5 1.943701+6 5.020000-5 1.983518+6 5.061000-5 2.052648+6 5.069907-5 2.071013+6 5.071000-5 2.073277+6 5.071000-5 2.965965+6 5.095000-5 3.032130+6 5.100000-5 3.047749+6 5.128614-5 3.142917+6 5.130000-5 3.147625+6 5.160000-5 3.265158+6 5.190000-5 3.401654+6 5.220000-5 3.559737+6 5.230000-5 3.616087+6 5.250000-5 3.739922+6 5.270000-5 3.872303+6 5.290000-5 4.018441+6 5.308844-5 4.165300+6 5.315000-5 4.214508+6 5.350000-5 4.527864+6 5.385000-5 4.889169+6 5.400000-5 5.056512+6 5.420000-5 5.298501+6 5.450000-5 5.691990+6 5.465000-5 5.906298+6 5.500000-5 6.448272+6 5.540000-5 7.157534+6 5.559043-5 7.527759+6 5.560000-5 7.546859+6 5.595000-5 8.296202+6 5.650000-5 9.644902+6 5.688529-5 1.073740+7 5.710000-5 1.139802+7 5.800000-5 1.465853+7 5.821032-5 1.554565+7 5.900000-5 1.927281+7 5.956621-5 2.235539+7 5.970000-5 2.314996+7 6.000000-5 2.494096+7 6.025596-5 2.657285+7 6.050000-5 2.815911+7 6.070000-5 2.950668+7 6.110000-5 3.226126+7 6.116700-5 3.273723+7 6.150000-5 3.506936+7 6.165950-5 3.624141+7 6.200000-5 3.866583+7 6.220000-5 4.007983+7 6.237348-5 4.131107+7 6.240000-5 4.150241+7 6.260000-5 4.287632+7 6.280000-5 4.425188+7 6.300000-5 4.557157+7 6.309573-5 4.619349+7 6.315000-5 4.654960+7 6.340000-5 4.810394+7 6.350000-5 4.871013+7 6.385000-5 5.071532+7 6.420000-5 5.251158+7 6.465000-5 5.449719+7 6.500000-5 5.577123+7 6.531306-5 5.666800+7 6.540000-5 5.691980+7 6.541300-5 5.695278+7 6.580000-5 5.775372+7 6.612800-5 5.817018+7 6.630000-5 5.833571+7 6.650000-5 5.842789+7 6.683439-5 5.847026+7 6.690000-5 5.845112+7 6.730000-5 5.821105+7 6.770000-5 5.771391+7 6.785000-5 5.748696+7 6.815000-5 5.693385+7 6.839116-5 5.642329+7 6.850000-5 5.619512+7 6.870000-5 5.571817+7 6.918310-5 5.446851+7 6.920000-5 5.442548+7 6.970000-5 5.294660+7 7.000000-5 5.202848+7 7.030000-5 5.106327+7 7.110000-5 4.845485+7 7.161434-5 4.669336+7 7.190000-5 4.574836+7 7.244360-5 4.394758+7 7.300000-5 4.211908+7 7.328245-5 4.119482+7 7.400000-5 3.895227+7 7.413102-5 3.854574+7 7.450000-5 3.742731+7 7.585776-5 3.353708+7 7.673615-5 3.117430+7 7.762471-5 2.897883+7 7.950000-5 2.475821+7 8.035261-5 2.301824+7 8.150000-5 2.089460+7 8.350000-5 1.760591+7 8.400000-5 1.686981+7 8.413951-5 1.666695+7 8.570000-5 1.457858+7 8.609938-5 1.408749+7 8.650000-5 1.361387+7 8.810489-5 1.186551+7 8.912509-5 1.087701+7 9.120108-5 9.120911+6 9.225714-5 8.345463+6 9.300000-5 7.839425+6 9.332543-5 7.628900+6 9.500000-5 6.643078+6 9.549926-5 6.375576+6 9.660509-5 5.820281+6 9.900000-5 4.797737+6 9.950000-5 4.611352+6 1.011579-4 4.040281+6 1.040000-4 3.241231+6 1.047129-4 3.067735+6 1.059254-4 2.796932+6 1.083927-4 2.327540+6 1.109175-4 1.935915+6 1.120000-4 1.792307+6 1.174898-4 1.233853+6 1.202264-4 1.037866+6 1.205000-4 1.020471+6 1.209200-4 9.953012+5 1.209200-4 1.413697+6 1.225000-4 1.327937+6 1.230269-4 1.300775+6 1.233400-4 1.285538+6 1.244515-4 1.234948+6 1.250000-4 1.210682+6 1.260000-4 1.169770+6 1.265000-4 1.150705+6 1.270000-4 1.132765+6 1.280000-4 1.097528+6 1.295000-4 1.051188+6 1.300000-4 1.037088+6 1.303167-4 1.028626+6 1.307000-4 1.018278+6 1.309700-4 1.011397+6 1.309700-4 1.184897+6 1.318257-4 1.165076+6 1.320000-4 1.161288+6 1.322000-4 1.156724+6 1.330000-4 1.139773+6 1.335900-4 1.126980+6 1.345000-4 1.109504+6 1.350000-4 1.099748+6 1.365000-4 1.073246+6 1.380384-4 1.049448+6 1.396368-4 1.028570+6 1.400000-4 1.024521+6 1.412538-4 1.010550+6 1.428894-4 9.955831+5 1.430000-4 9.946593+5 1.445440-4 9.832682+5 1.462177-4 9.736012+5 1.465000-4 9.721121+5 1.470000-4 9.698874+5 1.480000-4 9.659030+5 1.485000-4 9.642158+5 1.500000-4 9.601578+5 1.520000-4 9.570026+5 1.531087-4 9.569174+5 1.540000-4 9.569158+5 1.548817-4 9.573245+5 1.550000-4 9.573855+5 1.566751-4 9.592000+5 1.584893-4 9.631814+5 1.600000-4 9.672563+5 1.620000-4 9.736101+5 1.621810-4 9.742441+5 1.645700-4 9.837793+5 1.670000-4 9.944214+5 1.698244-4 1.008060+6 1.720000-4 1.019642+6 1.743300-4 1.032274+6 1.743300-4 1.174707+6 1.757924-4 1.185587+6 1.760000-4 1.187045+6 1.778279-4 1.199750+6 1.780000-4 1.200986+6 1.819701-4 1.227165+6 1.820000-4 1.227367+6 1.825000-4 1.230646+6 1.840772-4 1.240678+6 1.870000-4 1.258662+6 1.883649-4 1.266862+6 1.900000-4 1.276327+6 1.910000-4 1.281754+6 1.930000-4 1.292180+6 1.950000-4 1.302916+6 1.955000-4 1.305296+6 1.972423-4 1.313177+6 2.000000-4 1.325808+6 2.041738-4 1.341510+6 2.065380-4 1.350140+6 2.089296-4 1.357323+6 2.113489-4 1.364740+6 2.120000-4 1.366606+6 2.162719-4 1.376131+6 2.190000-4 1.382316+6 2.238721-4 1.390099+6 2.264644-4 1.394297+6 2.317395-4 1.399362+6 2.350000-4 1.402227+6 2.426610-4 1.404531+6 2.430000-4 1.404639+6 2.454709-4 1.404172+6 2.511886-4 1.403045+6 2.540973-4 1.400706+6 2.620000-4 1.394617+6 2.650000-4 1.390899+6 2.660725-4 1.389523+6 2.722701-4 1.381544+6 2.730000-4 1.380556+6 2.800000-4 1.368154+6 2.818383-4 1.364880+6 2.851018-4 1.359147+6 2.884032-4 1.352022+6 2.951209-4 1.337709+6 2.985383-4 1.330396+6 3.019952-4 1.321614+6 3.054921-4 1.312889+6 3.126079-4 1.295613+6 3.198895-4 1.275812+6 3.200000-4 1.275517+6 3.280000-4 1.254121+6 3.388442-4 1.223142+6 3.467369-4 1.201340+6 3.548134-4 1.177264+6 3.630781-4 1.153661+6 3.672823-4 1.141943+6 3.715352-4 1.129386+6 3.758374-4 1.116868+6 3.890451-4 1.079566+6 3.981072-4 1.053539+6 4.027170-4 1.040757+6 4.120975-4 1.015509+6 4.216965-4 9.889632+5 4.265795-4 9.759507+5 4.365158-4 9.502989+5 4.518559-4 9.108658+5 4.570882-4 8.979265+5 4.623810-4 8.851236+5 4.677351-4 8.721660+5 4.731513-4 8.590192+5 4.954502-4 8.083930+5 5.011872-4 7.958581+5 5.069907-4 7.831042+5 5.128614-4 7.704938+5 5.248075-4 7.458739+5 5.308844-4 7.338607+5 5.400000-4 7.161473+5 5.432503-4 7.098580+5 5.500000-4 6.969798+5 5.688529-4 6.628701+5 5.800000-4 6.436448+5 5.827400-4 6.389477+5 5.827400-4 6.644767+5 5.845000-4 6.846161+5 5.857000-4 7.089603+5 5.868000-4 7.428442+5 5.877000-4 7.818800+5 5.885000-4 8.276760+5 5.888437-4 8.510073+5 5.893000-4 8.864628+5 5.900000-4 9.508554+5 5.905000-4 1.005364+6 5.910000-4 1.067755+6 5.917000-4 1.169591+6 5.923000-4 1.271266+6 5.929000-4 1.387563+6 5.931000-4 1.374283+6 5.937400-4 1.457461+6 5.937400-4 1.874479+6 5.950000-4 2.125605+6 5.956621-4 2.243613+6 5.960000-4 2.307377+6 5.976500-4 2.635233+6 5.978000-4 2.659691+6 5.996000-4 2.925997+6 6.009000-4 3.114307+6 6.011000-4 3.208423+6 6.035100-4 3.381180+6 6.056200-4 3.499124+6 6.095369-4 3.734686+6 6.100000-4 3.764050+6 6.111000-4 3.822768+6 6.115000-4 3.833575+6 6.190000-4 3.989120+6 6.200000-4 4.005732+6 6.220000-4 4.029133+6 6.237348-4 4.041785+6 6.280000-4 4.073439+6 6.335000-4 4.081695+6 6.370000-4 4.057694+6 6.382635-4 4.043522+6 6.410000-4 4.013128+6 6.460000-4 3.925021+6 6.480000-4 3.886014+6 6.531306-4 3.800630+6 6.550000-4 3.770203+6 6.580000-4 3.722675+6 6.606934-4 3.675915+6 6.650000-4 3.602725+6 6.683439-4 3.549503+6 6.700000-4 3.519563+6 6.780000-4 3.401669+6 6.850000-4 3.307285+6 6.930000-4 3.207287+6 7.000000-4 3.128918+6 7.079458-4 3.046965+6 7.080000-4 3.046416+6 7.120000-4 3.008551+6 7.161434-4 2.971886+6 7.244360-4 2.900349+6 7.300000-4 2.853770+6 7.328245-4 2.830900+6 7.413102-4 2.763639+6 7.498942-4 2.697934+6 7.500000-4 2.697139+6 7.585776-4 2.633734+6 7.673615-4 2.570322+6 7.800000-4 2.482105+6 7.943282-4 2.387244+6 8.148500-4 2.260189+6 8.148500-4 2.551179+6 8.200000-4 2.520666+6 8.222426-4 2.507559+6 8.317638-4 2.453141+6 8.370000-4 2.424009+6 8.511380-4 2.346747+6 8.609938-4 2.294052+6 8.670900-4 2.261388+6 8.670900-4 2.348477+6 8.672700-4 2.350083+6 8.675000-4 2.352969+6 8.677000-4 2.355233+6 8.678000-4 2.353712+6 8.683000-4 2.355463+6 8.696000-4 2.353294+6 8.697000-4 2.353589+6 8.708000-4 2.350093+6 8.747000-4 2.333297+6 8.800000-4 2.309162+6 8.810489-4 2.304259+6 8.850000-4 2.285974+6 8.865000-4 2.279020+6 8.950000-4 2.238581+6 9.015711-4 2.207485+6 9.050000-4 2.191112+6 9.120108-4 2.157699+6 9.225714-4 2.108842+6 9.280000-4 2.083965+6 9.332543-4 2.060147+6 9.440609-4 2.011835+6 9.500000-4 1.985977+6 9.549926-4 1.964379+6 9.885531-4 1.828138+6 9.910800-4 1.818319+6 9.910800-4 1.895417+6 1.000000-3 1.860893+6 1.011579-3 1.817184+6 1.047129-3 1.691103+6 1.050000-3 1.681511+6 1.059254-3 1.651113+6 1.070000-3 1.616879+6 1.071519-3 1.612104+6 1.083927-3 1.573074+6 1.090000-3 1.554500+6 1.096478-3 1.534940+6 1.110000-3 1.494923+6 1.122018-3 1.460647+6 1.135011-3 1.424822+6 1.161449-3 1.355927+6 1.170000-3 1.334567+6 1.174898-3 1.322538+6 1.188502-3 1.289613+6 1.202264-3 1.257531+6 1.216186-3 1.225951+6 1.230269-3 1.195213+6 1.258925-3 1.136118+6 1.273503-3 1.107554+6 1.300000-3 1.057585+6 1.303167-3 1.051834+6 1.318257-3 1.024691+6 1.364583-3 9.475885+5 1.380384-3 9.232551+5 1.396368-3 8.992294+5 1.412538-3 8.758677+5 1.428894-3 8.530821+5 1.440000-3 8.379840+5 1.479108-3 7.878277+5 1.496236-3 7.671111+5 1.513561-3 7.469530+5 1.531087-3 7.273387+5 1.566751-3 6.895777+5 1.570000-3 6.862835+5 1.584893-3 6.713194+5 1.603245-3 6.535312+5 1.621810-3 6.360949+5 1.650000-3 6.109095+5 1.659587-3 6.026591+5 1.678804-3 5.865387+5 1.698244-3 5.708637+5 1.717908-3 5.556184+5 1.757924-3 5.261034+5 1.778279-3 5.119062+5 1.798871-3 4.980926+5 1.819701-3 4.846747+5 1.862087-3 4.587780+5 1.883649-3 4.463320+5 1.927525-3 4.224679+5 1.949845-3 4.110334+5 1.950000-3 4.109556+5 1.972423-3 3.998286+5 2.000000-3 3.866521+5 2.018366-3 3.781457+5 2.041738-3 3.677067+5 2.065380-3 3.575712+5 2.187762-3 3.111106+5 2.220000-3 3.002680+5 2.238721-3 2.941827+5 2.290868-3 2.780049+5 2.300000-3 2.753046+5 2.317395-3 2.702631+5 2.398833-3 2.483669+5 2.426610-3 2.414907+5 2.454709-3 2.347628+5 2.483133-3 2.281609+5 2.511886-3 2.217478+5 2.540973-3 2.154946+5 2.600160-3 2.035164+5 2.630268-3 1.977894+5 2.691535-3 1.868379+5 2.754229-3 1.764830+5 2.786121-3 1.715062+5 2.818383-3 1.666377+5 2.917427-3 1.528331+5 2.951209-3 1.484903+5 2.985383-3 1.442756+5 3.000000-3 1.425257+5 3.019952-3 1.401844+5 3.054921-3 1.361987+5 3.090295-3 1.323137+5 3.126079-3 1.285199+5 3.150000-3 1.260671+5 3.273407-3 1.143895+5 3.311311-3 1.111151+5 3.349654-3 1.079277+5 3.388442-3 1.048340+5 3.427678-3 1.018331+5 3.467369-3 9.890783+4 3.500000-3 9.659213+4 3.507519-3 9.606568+4 3.548134-3 9.328226+4 3.589219-3 9.057504+4 3.672823-3 8.540306+4 3.715352-3 8.293263+4 3.758374-3 8.053565+4 3.845918-3 7.593847+4 3.900000-3 7.328388+4 3.935501-3 7.159622+4 4.000000-3 6.866660+4 4.073803-3 6.551308+4 4.120975-3 6.360152+4 4.168694-3 6.174608+4 4.265795-3 5.819145+4 4.315191-3 5.649446+4 4.339700-3 5.567837+4 4.339700-3 1.714773+5 4.365158-3 1.693170+5 4.370000-3 1.689102+5 4.410000-3 1.655956+5 4.415704-3 1.650973+5 4.480000-3 1.596260+5 4.518559-3 1.558875+5 4.520000-3 1.557500+5 4.570882-3 1.513416+5 4.618200-3 1.473970+5 4.618200-3 2.017495+5 4.623810-3 2.011527+5 4.650000-3 1.983997+5 4.677351-3 1.955242+5 4.770000-3 1.861959+5 4.786301-3 1.845414+5 4.897788-3 1.737553+5 4.914200-3 1.722409+5 4.914200-3 1.984071+5 4.954502-3 1.943790+5 5.011872-3 1.888339+5 5.080000-3 1.825346+5 5.128614-3 1.782819+5 5.248075-3 1.684113+5 5.300000-3 1.642954+5 5.350000-3 1.604640+5 5.370318-3 1.589318+5 5.500000-3 1.495774+5 5.559043-3 1.455740+5 5.623413-3 1.413754+5 5.688529-3 1.372987+5 5.754399-3 1.332997+5 5.821032-3 1.293854+5 5.888437-3 1.255881+5 5.956621-3 1.219030+5 6.025596-3 1.183287+5 6.095369-3 1.148623+5 6.237348-3 1.082395+5 6.382635-3 1.019557+5 6.456542-3 9.895549+4 6.531306-3 9.604340+4 6.683439-3 9.045469+4 6.760830-3 8.778460+4 6.800000-3 8.647523+4 6.839116-3 8.518992+4 6.918310-3 8.266882+4 7.079458-3 7.781757+4 7.161434-3 7.549920+4 7.244360-3 7.326413+4 7.328245-3 7.109676+4 7.413102-3 6.899491+4 7.585776-3 6.497833+4 7.673615-3 6.305981+4 7.762471-3 6.119203+4 8.128305-3 5.421398+4 8.222426-3 5.259845+4 8.317638-3 5.103221+4 8.413951-3 4.950875+4 8.511380-3 4.801396+4 8.609938-3 4.656499+4 8.709636-3 4.515998+4 8.810489-3 4.379808+4 9.015711-3 4.119954+4 9.120108-3 3.995172+4 9.225714-3 3.874185+4 9.332543-3 3.756402+4 9.440609-3 3.642139+4 9.549926-3 3.531428+4 9.660509-3 3.424159+4 9.885531-3 3.219389+4 1.000000-2 3.121763+4 1.011579-2 3.026994+4 1.035142-2 2.844869+4 1.047129-2 2.758050+4 1.059254-2 2.673952+4 1.071519-2 2.592489+4 1.083927-2 2.513381+4 1.096478-2 2.436704+4 1.122018-2 2.289100+4 1.135011-2 2.218766+4 1.150000-2 2.141327+4 1.161449-2 2.084526+4 1.174898-2 2.020123+4 1.188502-2 1.957767+4 1.202264-2 1.897387+4 1.216186-2 1.838918+4 1.230269-2 1.782291+4 1.244515-2 1.727343+4 1.258925-2 1.674093+4 1.273503-2 1.622510+4 1.288250-2 1.572560+4 1.303167-2 1.524188+4 1.338300-2 1.417410+4 1.348963-2 1.386846+4 1.364583-2 1.343705+4 1.380384-2 1.301942+4 1.396368-2 1.261504+4 1.400000-2 1.252559+4 1.412538-2 1.222333+4 1.428894-2 1.184366+4 1.445440-2 1.147448+4 1.462177-2 1.111709+4 1.479108-2 1.077067+4 1.496236-2 1.043529+4 1.548817-2 9.492217+3 1.566751-2 9.195834+3 1.584893-2 8.908878+3 1.603245-2 8.629583+3 1.621810-2 8.359109+3 1.659587-2 7.843499+3 1.678804-2 7.598038+3 1.698244-2 7.360439+3 1.717908-2 7.130462+3 1.730000-2 6.993504+3 1.737801-2 6.906988+3 1.778279-2 6.478960+3 1.798871-2 6.275238+3 1.840772-2 5.887225+3 1.905461-2 5.347840+3 1.949845-2 5.016681+3 1.972423-2 4.859048+3 1.995262-2 4.706507+3 2.000000-2 4.675624+3 2.018366-2 4.557673+3 2.041738-2 4.413259+3 2.065380-2 4.273533+3 2.113489-2 4.007479+3 2.137962-2 3.880251+3 2.238721-2 3.411175+3 2.264644-2 3.303272+3 2.290868-2 3.198858+3 2.300000-2 3.163568+3 2.344229-2 2.999691+3 2.371374-2 2.904046+3 2.444600-2 2.666039+3 2.483133-2 2.551423+3 2.630268-2 2.169746+3 2.660725-2 2.100720+3 2.691535-2 2.033940+3 2.722701-2 1.969335+3 2.754229-2 1.906694+3 2.786121-2 1.845543+3 2.851018-2 1.729157+3 2.884032-2 1.673765+3 2.951209-2 1.568322+3 3.090295-2 1.376753+3 3.126079-2 1.332718+3 3.162278-2 1.290124+3 3.180500-2 1.269389+3 3.180500-2 7.732812+3 3.203000-2 7.598915+3 3.235937-2 7.408475+3 3.273407-2 7.199792+3 3.280000-2 7.163932+3 3.311311-2 6.979905+3 3.350000-2 6.761316+3 3.388442-2 6.569396+3 3.467369-2 6.198611+3 3.507519-2 6.011618+3 3.630781-2 5.483718+3 3.672823-2 5.318313+3 3.715352-2 5.157920+3 3.758374-2 5.002187+3 3.801894-2 4.853455+3 3.845918-2 4.709134+3 3.890451-2 4.569122+3 3.981072-2 4.301490+3 4.027170-2 4.173608+3 4.150000-2 3.857572+3 4.168694-2 3.811341+3 4.216965-2 3.695441+3 4.265795-2 3.583036+3 4.315191-2 3.474063+3 4.365158-2 3.368290+3 4.415704-2 3.265748+3 4.466836-2 3.166339+3 4.570882-2 2.976498+3 4.623810-2 2.885903+3 4.731513-2 2.712918+3 4.897788-2 2.468506+3 5.069907-2 2.246173+3 5.188000-2 2.109028+3 5.248075-2 2.043637+3 5.370318-2 1.918830+3 5.432503-2 1.859321+3 5.623413-2 1.691673+3 6.025596-2 1.400470+3 6.165950-2 1.313427+3 6.237348-2 1.271959+3 6.456542-2 1.155239+3 6.548850-2 1.110428+3 6.606934-2 1.083437+3 6.918310-2 9.529740+2 7.000000-2 9.223155+2 7.161434-2 8.655612+2 7.413102-2 7.860953+2 7.498942-2 7.612658+2 7.585776-2 7.372170+2 7.852356-2 6.686367+2 7.943282-2 6.472265+2 8.222426-2 5.870299+2 8.413951-2 5.500483+2 8.609938-2 5.154008+2 8.709636-2 4.988878+2 9.120108-2 4.379681+2 9.440609-2 3.972106+2 9.549926-2 3.844867+2 9.660509-2 3.720449+2 9.885531-2 3.483579+2 1.011580-1 3.261808+2 1.023293-1 3.156290+2 1.059254-1 2.859793+2 1.071519-1 2.767208+2 1.135011-1 2.347381+2 1.148154-1 2.271409+2 1.161449-1 2.197890+2 1.174898-1 2.126753+2 1.188502-1 2.057925+2 1.202264-1 1.991332+2 1.288250-1 1.634696+2 1.364583-1 1.386032+2 1.380384-1 1.341043+2 1.396368-1 1.297516+2 1.412538-1 1.255401+2 1.428894-1 1.214658+2 1.462177-1 1.137064+2 1.479108-1 1.100148+2 1.584893-1 9.025541+1 1.603245-1 8.732636+1 1.621810-1 8.449237+1 1.640590-1 8.175052+1 1.659587-1 7.909780+1 1.678804-1 7.653135+1 1.717908-1 7.164579+1 1.757924-1 6.707294+1 1.798871-1 6.279309+1 1.862087-1 5.688022+1 1.927525-1 5.152447+1 1.949845-1 4.985385+1 1.972423-1 4.823755+1 2.018366-1 4.516059+1 2.041738-1 4.371040+1 2.089296-1 4.094886+1 2.113489-1 3.963425+1 2.213095-1 3.478475+1 2.238721-1 3.366926+1 2.264644-1 3.258961+1 2.290868-1 3.154460+1 2.317395-1 3.053315+1 2.371374-1 2.860695+1 2.398833-1 2.769007+1 2.426610-1 2.680262+1 2.454709-1 2.594363+1 2.483133-1 2.511238+1 2.540973-1 2.354925+1 2.570396-1 2.280462+1 2.600160-1 2.208355+1 2.630268-1 2.138532+1 2.660725-1 2.070933+1 2.691535-1 2.005471+1 2.722701-1 1.942163+1 2.818383-1 1.764010+1 2.851018-1 1.708336+1 2.884032-1 1.654421+1 2.917427-1 1.602214+1 2.951209-1 1.551655+1 3.000000-1 1.483613+1 3.090295-1 1.368051+1 3.162278-1 1.284581+1 3.198895-1 1.244777+1 3.235937-1 1.206268+1 3.273407-1 1.168951+1 3.311311-1 1.132797+1 3.349654-1 1.097762+1 3.388442-1 1.063811+1 3.427678-1 1.030913+1 3.467369-1 9.996053+0 3.507519-1 9.692544+0 3.548134-1 9.398254+0 3.589219-1 9.112920+0 3.630781-1 8.836244+0 3.672823-1 8.568041+0 3.715352-1 8.308446+0 3.801894-1 7.812632+0 3.890451-1 7.346423+0 3.935501-1 7.128088+0 3.981072-1 6.916347+0 4.027170-1 6.710900+0 4.168694-1 6.130591+0 4.216965-1 5.948905+0 4.265795-1 5.772605+0 4.315191-1 5.601531+0 4.365158-1 5.435540+0 4.415705-1 5.277946+0 4.466836-1 5.124975+0 4.570882-1 4.832330+0 4.623810-1 4.692338+0 4.677351-1 4.556402+0 4.731513-1 4.424701+0 4.786301-1 4.296819+0 4.841724-1 4.172633+0 4.897788-1 4.052090+0 4.954502-1 3.937594+0 5.011872-1 3.826346+0 5.188000-1 3.511257+0 5.248075-1 3.412113+0 5.308844-1 3.316005+0 5.370318-1 3.222626+0 5.432503-1 3.131897+0 5.559043-1 2.961904+0 5.623413-1 2.880411+0 5.688529-1 2.801199+0 5.754399-1 2.724171+0 5.821032-1 2.649264+0 5.888437-1 2.576436+0 5.956621-1 2.505799+0 6.025596-1 2.437113+0 6.095369-1 2.372028+0 6.165950-1 2.308682+0 6.237348-1 2.247035+0 6.309573-1 2.187070+0 6.382635-1 2.128707+0 6.456542-1 2.071918+0 6.531306-1 2.016644+0 6.606935-1 1.962986+0 6.683439-1 1.910769+0 6.839117-1 1.813016+0 6.918310-1 1.766041+0 6.998420-1 1.720307+0 7.079458-1 1.675772+0 7.161434-1 1.632391+0 7.244360-1 1.590132+0 7.413102-1 1.509106+0 7.498942-1 1.471186+0 7.585776-1 1.434221+0 7.673615-1 1.398190+0 7.762471-1 1.363094+0 7.852356-1 1.328879+0 7.943282-1 1.295524+0 8.035261-1 1.263006+0 8.222427-1 1.200579+0 8.413951-1 1.142767+0 8.511380-1 1.114919+0 8.609938-1 1.087755+0 8.709636-1 1.061270+0 8.912509-1 1.010222+0 9.015711-1 9.857070-1 9.120108-1 9.624879-1 9.225714-1 9.398250-1 9.332543-1 9.176959-1 9.440609-1 8.960997-1 9.549926-1 8.750262-1 9.772372-1 8.343545-1 9.885531-1 8.148057-1 1.000000+0 7.962612-1 1.023293+0 7.604290-1 1.047129+0 7.262121-1 1.059254+0 7.096924-1 1.071519+0 6.935591-1 1.083927+0 6.777924-1 1.096478+0 6.623850-1 1.135011+0 6.182311-1 1.148154+0 6.042262-1 1.161449+0 5.909971-1 1.174898+0 5.780662-1 1.188600+0 5.653399-1 1.202264+0 5.530685-1 1.216186+0 5.409809-1 1.230269+0 5.291577-1 1.258925+0 5.063475-1 1.273503+0 4.955780-1 1.288250+0 4.850375-1 1.303167+0 4.747229-1 1.333521+0 4.547473-1 1.348963+0 4.450834-1 1.396368+0 4.173077-1 1.412538+0 4.084422-1 1.428894+0 3.997904-1 1.445440+0 3.915541-1 1.462177+0 3.834878-1 1.479108+0 3.755889-1 1.500000+0 3.661853-1 1.513561+0 3.602801-1 1.531087+0 3.528649-1 1.548817+0 3.456028-1 1.566751+0 3.385143-1 1.621810+0 3.187449-1 1.640590+0 3.124176-1 1.659587+0 3.062161-1 1.678804+0 3.001379-1 1.737801+0 2.826283-1 1.757924+0 2.770389-1 1.778279+0 2.715614-1 1.840772+0 2.562166-1 1.862087+0 2.512989-1 1.883649+0 2.464756-1 1.905461+0 2.417449-1 1.972423+0 2.280991-1 2.000000+0 2.228486-1 2.044000+0 2.148633-1 2.065380+0 2.112600-1 2.089296+0 2.073437-1 2.113489+0 2.035011-1 2.137962+0 1.997304-1 2.162719+0 1.960297-1 2.213095+0 1.888379-1 2.238721+0 1.853537-1 2.290868+0 1.785784-1 2.317395+0 1.753916-1 2.344229+0 1.722618-1 2.371374+0 1.691887-1 2.398833+0 1.661710-1 2.426610+0 1.632072-1 2.454709+0 1.602983-1 2.511886+0 1.546351-1 2.540973+0 1.518886-1 2.600160+0 1.465423-1 2.630268+0 1.440242-1 2.660725+0 1.415493-1 2.691535+0 1.391177-1 2.722701+0 1.367283-1 2.754229+0 1.343800-1 2.786121+0 1.320736-1 2.884032+0 1.253892-1 2.917427+0 1.232441-1 2.985383+0 1.190643-1 3.019952+0 1.170840-1 3.054921+0 1.151367-1 3.126079+0 1.113396-1 3.162278+0 1.094886-1 3.198895+0 1.076685-1 3.235937+0 1.058797-1 3.349654+0 1.006899-1 3.388442+0 9.902250-2 3.467369+0 9.577081-2 3.507519+0 9.423263-2 3.548134+0 9.271916-2 3.630781+0 8.976557-2 3.672823+0 8.832451-2 3.715352+0 8.690667-2 3.758374+0 8.551246-2 3.890451+0 8.146264-2 3.935501+0 8.015987-2 4.027170+0 7.761709-2 4.073803+0 7.641156-2 4.120975+0 7.522478-2 4.265795+0 7.177480-2 4.315191+0 7.066051-2 4.365158+0 6.956359-2 4.415704+0 6.848439-2 4.570882+0 6.534616-2 4.623810+0 6.433558-2 4.731513+0 6.236145-2 4.786301+0 6.142490-2 4.841724+0 6.050240-2 5.011872+0 5.781797-2 5.069907+0 5.695002-2 5.188000+0 5.525312-2 5.248075+0 5.442421-2 5.432503+0 5.201140-2 5.495409+0 5.123352-2 5.623413+0 4.971283-2 5.688529+0 4.899019-2 5.754399+0 4.827806-2 6.000000+0 4.577941-2 6.025596+0 4.553232-2 6.165950+0 4.421884-2 6.309573+0 4.294397-2 6.531306+0 4.110024-2 6.606934+0 4.050525-2 6.760830+0 3.934118-2 6.839116+0 3.878773-2 6.918310+0 3.824206-2 7.244360+0 3.613565-2 7.413102+0 3.512657-2 7.585776+0 3.414619-2 7.943282+0 3.226676-2 8.035261+0 3.181448-2 8.317638+0 3.049554-2 8.413951+0 3.007885-2 8.511380+0 2.966784-2 9.000000+0 2.775378-2 9.015711+0 2.769602-2 9.120108+0 2.731774-2 9.332543+0 2.657704-2 9.660509+0 2.550348-2 9.885531+0 2.481395-2 1.011579+1 2.414320-2 1.023293+1 2.382288-2 1.035142+1 2.350683-2 1.109175+1 2.169703-2 1.135011+1 2.112537-2 1.174898+1 2.029636-2 1.244515+1 1.898636-2 1.288250+1 1.824331-2 1.303167+1 1.800220-2 1.318257+1 1.777018-2 1.364583+1 1.709208-2 1.380384+1 1.687188-2 1.428894+1 1.622838-2 1.621810+1 1.407187-2 1.659587+1 1.371262-2 1.678804+1 1.353648-2 1.698244+1 1.336635-2 1.717908+1 1.319842-2 1.819701+1 1.239031-2 2.113489+1 1.051331-2 2.200000+1 1.006119-2 2.238721+1 9.870698-3 2.317395+1 9.510033-3 2.344229+1 9.392787-3 2.371374+1 9.276985-3 2.398833+1 9.162628-3 2.400000+1 9.157830-3 2.600160+1 8.400968-3 2.800000+1 7.757096-3 2.884032+1 7.514429-3 3.000000+1 7.202705-3 3.235937+1 6.649239-3 3.311311+1 6.489522-3 3.388442+1 6.333639-3 3.427678+1 6.257117-3 3.467369+1 6.181520-3 3.715352+1 5.746895-3 4.027170+1 5.278301-3 4.168694+1 5.089673-3 4.365158+1 4.848640-3 4.841724+1 4.354348-3 5.011872+1 4.201069-3 5.128614+1 4.101892-3 5.188000+1 4.053190-3 5.308844+1 3.957514-3 5.754399+1 3.640182-3 6.309573+1 3.308553-3 6.531306+1 3.192304-3 6.839116+1 3.043650-3 7.585776+1 2.737670-3 7.673615+1 2.705631-3 8.000000+1 2.592825-3 8.317638+1 2.491633-3 8.413951+1 2.462479-3 8.511380+1 2.433665-3 8.609938+1 2.405188-3 8.912509+1 2.321742-3 1.035142+2 1.992400-3 1.202264+2 1.709776-3 1.244515+2 1.650528-3 1.318257+2 1.556317-3 1.445440+2 1.417862-3 1.462177+2 1.401445-3 1.548817+2 1.322172-3 1.621810+2 1.261996-3 1.640590+2 1.247384-3 1.659587+2 1.232943-3 1.698244+2 1.204560-3 1.717908+2 1.190615-3 1.778279+2 1.149740-3 2.065380+2 9.882491-4 2.398833+2 8.494413-4 2.483133+2 8.203012-4 2.630268+2 7.739405-4 2.884032+2 7.055457-4 2.917427+2 6.974330-4 3.090295+2 6.582484-4 3.235937+2 6.284916-4 3.273407+2 6.212652-4 3.311311+2 6.141221-4 3.388442+2 6.000809-4 3.427678+2 5.931813-4 3.548134+2 5.729547-4 4.786301+2 4.241784-4 4.954502+2 4.097213-4 8.222427+2 2.463852-4 1.047129+3 1.932846-4 1.148154+3 1.762660-4 1.161449+3 1.742469-4 1.230269+3 1.644932-4 1.288250+3 1.570848-4 1.303167+3 1.552854-4 1.318257+3 1.535067-4 1.348963+3 1.500102-4 1.364583+3 1.482919-4 1.412538+3 1.432542-4 3.801894+3 5.319191-5 3.935501+3 5.138528-5 2.600160+4 7.770959-6 6.606934+4 3.056996-6 1.000000+5 2.020049-6 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.310000-6 8.310000-6 9.230000-6 8.310000-6 9.230000-6 8.640675-6 1.288400-5 8.678720-6 1.845000-5 8.687978-6 1.845000-5 8.909917-6 2.070000-5 8.815590-6 2.322000-5 8.760411-6 2.560000-5 8.769155-6 2.770000-5 8.829751-6 2.980000-5 8.940151-6 3.198895-5 9.105150-6 3.427678-5 9.325257-6 3.715352-5 9.655693-6 4.168694-5 1.024706-5 4.850000-5 1.114979-5 4.918000-5 1.123188-5 4.918000-5 2.355420-5 5.020000-5 2.396441-5 5.071000-5 2.421142-5 5.071000-5 2.526652-5 5.450000-5 2.663023-5 5.595000-5 2.701040-5 5.800000-5 2.734339-5 6.070000-5 2.754475-5 6.630000-5 2.764055-5 8.413951-5 2.753578-5 9.660509-5 2.728525-5 1.059254-4 2.691284-5 1.120000-4 2.654061-5 1.202264-4 2.583870-5 1.209200-4 2.577070-5 1.209200-4 3.440242-5 1.250000-4 3.561129-5 1.280000-4 3.634766-5 1.309700-4 3.693891-5 1.309700-4 3.956405-5 1.335900-4 4.006727-5 1.365000-4 4.040778-5 1.400000-4 4.059310-5 1.445440-4 4.056601-5 1.500000-4 4.024833-5 1.720000-4 3.821247-5 1.743300-4 3.802996-5 1.743300-4 4.268100-5 2.162719-4 4.048409-5 2.317395-4 3.990424-5 2.511886-4 3.941781-5 2.851018-4 3.893302-5 3.280000-4 3.864735-5 4.027170-4 3.860898-5 4.954502-4 3.885518-5 5.827400-4 3.920348-5 5.827400-4 4.051853-5 5.845000-4 4.164402-5 5.857000-4 4.283841-5 5.868000-4 4.432341-5 5.877000-4 4.584594-5 5.888437-4 4.816725-5 5.900000-4 5.089277-5 5.923000-4 5.668061-5 5.929000-4 5.811002-5 5.931000-4 5.797049-5 5.937400-4 5.887860-5 5.937400-4 6.206382-5 5.950000-4 6.343489-5 5.976500-4 6.541463-5 6.009000-4 6.669512-5 6.011000-4 6.689561-5 6.056200-4 6.749863-5 6.115000-4 6.808870-5 6.237348-4 6.851969-5 6.410000-4 6.870459-5 7.120000-4 6.820424-5 8.148500-4 6.804154-5 8.148500-4 7.424058-5 8.670900-4 7.485004-5 8.670900-4 7.670975-5 8.683000-4 7.700052-5 8.747000-4 7.732133-5 9.050000-4 7.789317-5 9.910800-4 7.877405-5 9.910800-4 8.209063-5 1.174898-3 8.438949-5 1.531087-3 8.805925-5 1.927525-3 9.143202-5 2.398833-3 9.470564-5 3.019952-3 9.818219-5 3.758374-3 1.014649-4 4.339700-3 1.035830-4 4.339700-3 1.445515-4 4.618200-3 1.450329-4 4.618200-3 1.524624-4 4.914200-3 1.527443-4 4.914200-3 1.598719-4 6.918310-3 1.628706-4 1.011579-2 1.662767-4 1.496236-2 1.698280-4 2.137962-2 1.730785-4 3.090295-2 1.763209-4 3.180500-2 1.765690-4 3.180500-2 1.794033-4 7.498942-2 1.803649-4 2.600160-1 1.810167-4 5.011872+0 1.812311-4 1.000000+5 1.812301-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.310000-6 0.0 5.071000-5 0.0 5.071000-5 1.99452-10 5.220000-5 1.93075-10 5.270000-5 1.91494-10 5.290000-5 1.90572-10 5.385000-5 1.88124-10 5.465000-5 1.87026-10 5.540000-5 1.86690-10 5.595000-5 1.86859-10 5.710000-5 1.88587-10 5.821032-5 1.91475-10 5.900000-5 1.94436-10 6.025596-5 2.01205-10 6.070000-5 2.04251-10 6.165950-5 2.12076-10 6.200000-5 2.15054-10 6.280000-5 2.23066-10 6.500000-5 2.46848-10 6.612800-5 2.57666-10 6.690000-5 2.63637-10 6.770000-5 2.68800-10 6.839116-5 2.72135-10 6.920000-5 2.75355-10 7.030000-5 2.78497-10 7.190000-5 2.81066-10 7.328245-5 2.82156-10 7.673615-5 2.83466-10 8.570000-5 2.84595-10 9.120108-5 2.83947-10 9.900000-5 2.81057-10 1.059254-4 2.76382-10 1.083927-4 2.74057-10 1.120000-4 2.69712-10 1.174898-4 2.61232-10 1.209200-4 2.53990-10 1.209200-4 3.92511-10 1.233400-4 4.03217-10 1.265000-4 4.15075-10 1.303167-4 4.25744-10 1.309700-4 4.27128-10 1.309700-4 5.61719-10 1.322000-4 5.68421-10 1.345000-4 5.76489-10 1.365000-4 5.80264-10 1.400000-4 5.82024-10 1.430000-4 5.80018-10 1.470000-4 5.73367-10 1.520000-4 5.60880-10 1.621810-4 5.31113-10 1.698244-4 5.11699-10 1.743300-4 5.01964-10 1.743300-4 5.93415-10 1.972423-4 5.64211-10 2.120000-4 5.47434-10 2.238721-4 5.36961-10 2.350000-4 5.29660-10 2.511886-4 5.22365-10 2.730000-4 5.16249-10 3.054921-4 5.11250-10 3.280000-4 5.09869-10 3.890451-4 5.11191-10 4.518559-4 5.15887-10 5.827400-4 5.29824-10 5.827400-4 5.37658-10 5.845000-4 5.44535-10 5.857000-4 5.51756-10 5.868000-4 5.60688-10 5.877000-4 5.69815-10 5.893000-4 5.89916-10 5.929000-4 6.42939-10 5.931000-4 6.42121-10 5.937400-4 6.47531-10 5.937400-4 4.393883-8 5.950000-4 4.424905-8 5.960000-4 4.526986-8 5.976500-4 4.551959-8 5.978000-4 4.566889-8 5.996000-4 4.821494-8 6.009000-4 4.884669-8 6.011000-4 4.798090-8 6.035100-4 5.228540-8 6.100000-4 5.858608-8 6.111000-4 5.987341-8 6.190000-4 6.236297-8 6.220000-4 6.300592-8 6.280000-4 6.486953-8 6.335000-4 6.551495-8 6.370000-4 6.639567-8 6.410000-4 6.683205-8 6.460000-4 6.794606-8 6.550000-4 6.895151-8 6.580000-4 6.903763-8 6.683439-4 6.865872-8 6.700000-4 6.844231-8 7.000000-4 6.755454-8 7.161434-4 6.725523-8 7.585776-4 6.701931-8 8.148500-4 6.681037-8 8.148500-4 1.058055-7 8.609938-4 1.094610-7 8.670900-4 1.098585-7 8.670900-4 1.267754-7 8.677000-4 1.286991-7 8.678000-4 1.285251-7 8.683000-4 1.293927-7 8.697000-4 1.305598-7 8.708000-4 1.310982-7 8.747000-4 1.321649-7 8.865000-4 1.344722-7 9.050000-4 1.367558-7 9.549926-4 1.408557-7 9.910800-4 1.435208-7 9.910800-4 1.608017-7 1.096478-3 1.703983-7 1.230269-3 1.809649-7 1.440000-3 1.962500-7 1.659587-3 2.101792-7 1.883649-3 2.229023-7 2.065380-3 2.320285-7 2.317395-3 2.435469-7 2.630268-3 2.560799-7 3.019952-3 2.695981-7 3.467369-3 2.827906-7 3.935501-3 2.945641-7 4.339700-3 3.033884-7 4.339700-3 2.099823-4 4.480000-3 2.110559-4 4.618200-3 2.109555-4 4.618200-3 2.556512-4 4.914200-3 2.561206-4 4.914200-3 2.674742-4 6.237348-3 2.692579-4 1.000000-2 2.713676-4 2.041738-2 2.729754-4 3.180500-2 2.736047-4 3.180500-2 2.083653-2 3.801894-2 2.100018-2 4.897788-2 2.118272-2 7.000000-2 2.134387-2 1.148154-1 2.146870-2 2.454709-1 2.153677-2 1.303167+0 2.161219-2 1.000000+5 2.161192-2 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.310000-6 0.0 9.230000-6 9.200000-7 9.230000-6 5.893247-7 1.035142-5 1.692244-6 1.288400-5 4.205280-6 1.845000-5 9.762022-6 1.845000-5 9.540083-6 2.170000-5 1.291336-5 2.477000-5 1.601089-5 2.818383-5 1.933285-5 3.198895-5 2.288380-5 3.715352-5 2.749783-5 4.918000-5 3.794812-5 4.918000-5 2.562580-5 5.020000-5 2.623559-5 5.071000-5 2.649858-5 5.071000-5 2.544328-5 5.450000-5 2.786958-5 5.595000-5 2.893941-5 5.800000-5 3.065642-5 6.116700-5 3.360332-5 6.920000-5 4.155889-5 9.120108-5 6.378027-5 1.059254-4 7.901228-5 1.202264-4 9.438745-5 1.209200-4 9.514905-5 1.209200-4 8.651718-5 1.270000-4 9.088024-5 1.309700-4 9.403066-5 1.309700-4 9.140539-5 1.350000-4 9.473926-5 1.412538-4 1.006382-4 1.500000-4 1.097511-4 1.743300-4 1.362995-4 1.743300-4 1.316484-4 2.264644-4 1.863938-4 2.951209-4 2.562761-4 5.500000-4 5.109322-4 5.827400-4 5.435360-4 5.827400-4 5.422209-4 5.868000-4 5.424760-4 5.905000-4 5.383551-4 5.929000-4 5.347894-4 5.937400-4 5.348608-4 5.937400-4 5.316323-4 5.978000-4 5.322634-4 6.035100-4 5.361962-4 6.410000-4 5.722286-4 8.148500-4 7.467417-4 8.148500-4 7.405036-4 8.670900-4 7.921301-4 8.670900-4 7.902535-4 9.910800-4 9.121625-4 9.910800-4 9.088286-4 2.691535-3 2.594836-3 4.339700-3 4.235814-3 4.339700-3 3.985166-3 4.618200-3 4.262212-3 4.618200-3 4.210086-3 4.914200-3 4.505335-3 4.914200-3 4.486854-3 3.180500-2 3.135483-2 3.180500-2 1.078907-2 3.311311-2 1.204897-2 4.216965-2 2.090154-2 6.237348-2 4.089188-2 1.798871-1 1.581841-1 1.000000+5 9.999997+4 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.180500-2 6.463423+3 3.280000-2 6.000780+3 3.350000-2 5.665980+3 3.467369-2 5.205372+3 3.758374-2 4.212214+3 4.150000-2 3.262220+3 4.731513-2 2.303934+3 6.025596-2 1.196296+3 7.585776-2 6.323342+2 9.549926-2 3.307357+2 1.288250-1 1.409687+2 2.018366-1 3.901455+1 2.483133-1 2.170435+1 2.951209-1 1.341421+1 3.427678-1 8.915028+0 3.890451-1 6.354535+0 4.365158-1 4.702736+0 4.897788-1 3.506702+0 5.432503-1 2.711038+0 6.025596-1 2.110223+0 6.683439-1 1.654978+0 7.413102-1 1.307477+0 8.222427-1 1.040495+0 9.015711-1 8.545731-1 9.885531-1 7.066065-1 1.148154+0 5.240773-1 1.258925+0 4.391749-1 1.428894+0 3.467297-1 1.566751+0 2.935754-1 1.778279+0 2.355119-1 2.044000+0 1.863352-1 2.290868+0 1.548654-1 2.600160+0 1.270855-1 2.985383+0 1.032611-1 3.467369+0 8.305911-2 4.027170+0 6.731513-2 4.731513+0 5.408439-2 5.623413+0 4.311485-2 6.760830+0 3.411970-2 8.317638+0 2.644802-2 1.011579+1 2.093869-2 1.303167+1 1.561282-2 1.678804+1 1.174031-2 2.238721+1 8.560901-3 3.000000+1 6.246700-3 4.365158+1 4.205092-3 6.839116+1 2.639709-3 1.318257+2 1.349782-3 2.630268+2 6.712623-4 1.047129+3 1.676293-4 6.606934+4 2.651410-6 1.000000+5 1.752100-6 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.180500-2 1.799600-4 1.000000+5 1.799600-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.180500-2 2.487500-2 1.000000+5 2.487500-2 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.180500-2 6.750040-3 1.000000+5 9.999997+4 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 4.914200-3 2.616621+4 5.080000-3 2.463040+4 5.350000-3 2.272220+4 6.237348-3 1.751588+4 6.800000-3 1.497582+4 7.161434-3 1.359062+4 7.762471-3 1.176216+4 8.317638-3 1.031281+4 1.011579-2 7.048491+3 1.150000-2 5.430520+3 1.303167-2 4.193800+3 1.548817-2 2.897762+3 1.737801-2 2.249691+3 2.000000-2 1.641436+3 2.344229-2 1.138827+3 2.754229-2 7.785841+2 3.203000-2 5.408932+2 3.715352-2 3.753737+2 4.315191-2 2.578586+2 5.069907-2 1.708263+2 6.025596-2 1.090013+2 7.161434-2 6.902020+1 8.609938-2 4.207566+1 1.059254-1 2.392033+1 1.428894-1 1.047243+1 2.213095-1 3.105072+0 2.691535-1 1.813786+0 3.198895-1 1.136610+0 3.672823-1 7.871147-1 4.168694-1 5.658187-1 4.677351-1 4.219333-1 5.248075-1 3.168960-1 5.888437-1 2.398157-1 6.531306-1 1.879695-1 7.244360-1 1.483567-1 8.035261-1 1.179179-1 8.912509-1 9.436216-2 9.772372-1 7.794684-2 1.135011+0 5.776142-2 1.230269+0 4.942771-2 1.412538+0 3.815930-2 1.548817+0 3.228253-2 1.737801+0 2.638975-2 1.972423+0 2.129722-2 2.213095+0 1.763486-2 2.511886+0 1.443984-2 2.884032+0 1.170605-2 3.349654+0 9.399415-3 3.890451+0 7.604955-3 4.570882+0 6.100404-3 5.432503+0 4.855605-3 6.531306+0 3.837084-3 7.943282+0 3.012278-3 9.660509+0 2.380821-3 1.244515+1 1.772487-3 1.621810+1 1.313910-3 2.113489+1 9.815836-4 2.800000+1 7.242000-4 4.027170+1 4.927656-4 6.309573+1 3.088781-4 1.202264+2 1.596373-4 2.398833+2 7.931561-5 4.786301+2 3.958553-5 3.801894+3 4.965021-6 1.000000+5 1.886800-7 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 4.914200-3 2.067900-4 1.000000+5 2.067900-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.914200-3 3.422100-4 1.000000+5 3.422100-4 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 4.914200-3 4.365200-3 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.618200-3 5.435250+4 4.770000-3 5.077495+4 5.370318-3 3.746200+4 5.754399-3 3.125600+4 6.531306-3 2.214200+4 7.673615-3 1.418000+4 9.015711-3 9.013400+3 1.000000-2 6.676600+3 1.161449-2 4.311100+3 1.428894-2 2.319100+3 1.717908-2 1.321200+3 1.995262-2 8.303000+2 2.300000-2 5.313100+2 2.722701-2 3.106900+2 3.235937-2 1.781900+2 3.981072-2 9.074900+1 5.069907-2 4.094400+1 6.918310-2 1.458100+1 1.135011-1 2.802200+0 1.428894-1 1.309400+0 1.717908-1 7.171900-1 2.018366-1 4.265800-1 2.371374-1 2.563007-1 2.722701-1 1.666439-1 3.090295-1 1.131285-1 3.467369-1 8.009032-2 3.890451-1 5.710359-2 4.365158-1 4.102918-2 4.841724-1 3.068260-2 5.370318-1 2.310425-2 5.956621-1 1.752634-2 6.606935-1 1.339983-2 7.244360-1 1.063925-2 8.035261-1 8.268482-3 9.332543-1 5.806235-3 9.885531-1 5.097549-3 1.059254+0 4.397064-3 1.135011+0 3.818460-3 1.202264+0 3.414042-3 1.333521+0 2.818466-3 1.531087+0 2.202556-3 1.757924+0 1.730081-3 2.000000+0 1.390522-3 2.238721+0 1.156536-3 2.540973+0 9.476383-4 2.917427+0 7.687960-4 3.388442+0 6.176816-4 3.935501+0 5.000446-4 4.623810+0 4.013339-4 5.495409+0 3.196075-4 6.606934+0 2.526832-4 8.035261+0 1.984543-4 9.885531+0 1.547964-4 1.288250+1 1.138248-4 1.659587+1 8.556233-5 2.200000+1 6.278300-5 2.884032+1 4.687893-5 4.168694+1 3.175204-5 6.531306+1 1.991538-5 1.244515+2 1.029776-5 2.483133+2 5.118102-6 4.954502+2 2.554649-6 3.935501+3 3.204602-7 1.000000+5 1.260700-8 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.618200-3 1.726100-4 1.000000+5 1.726100-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.618200-3 3.768600-4 1.000000+5 3.768600-4 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.618200-3 4.068730-3 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.339700-3 1.157989+5 4.410000-3 1.121804+5 4.480000-3 1.083472+5 4.520000-3 1.056376+5 4.650000-3 9.826240+4 5.248075-3 7.127543+4 5.688529-3 5.708789+4 6.918310-3 3.287220+4 8.413951-3 1.874072+4 9.225714-3 1.427491+4 1.096478-2 8.516588+3 1.338300-2 4.625677+3 1.584893-2 2.727146+3 1.840772-2 1.695724+3 2.113489-2 1.087351+3 2.483133-2 6.430182+2 2.951209-2 3.634339+2 3.507519-2 2.039314+2 4.216965-2 1.093477+2 5.248075-2 5.175280+1 6.456542-2 2.531114+1 1.188502-1 3.037884+0 1.479108-1 1.427509+0 1.757924-1 7.919254-1 2.041738-1 4.786571-1 2.317395-1 3.145566-1 2.630268-1 2.082322-1 2.951209-1 1.441701-1 3.273407-1 1.042611-1 3.630781-1 7.593275-2 4.027170-1 5.572689-2 4.415705-1 4.262688-2 4.841724-1 3.282918-2 5.308844-1 2.546763-2 5.821032-1 1.990359-2 6.382635-1 1.567139-2 6.998420-1 1.243466-2 7.673615-1 9.941579-3 8.413951-1 8.008556-3 9.120108-1 6.657338-3 9.772372-1 5.721230-3 1.059254+0 4.837448-3 1.161449+0 4.021776-3 1.258925+0 3.446626-3 1.396368+0 2.846900-3 1.621810+0 2.180858-3 1.840772+0 1.752607-3 2.089296+0 1.418040-3 2.344229+0 1.177995-3 2.660725+0 9.679188-4 3.054921+0 7.872832-4 3.548134+0 6.340114-4 4.120975+0 5.143866-4 4.841724+0 4.137177-4 5.754399+0 3.301373-4 6.918310+0 2.615103-4 8.511380+0 2.028822-4 1.035142+1 1.607615-4 1.318257+1 1.215531-4 1.698244+1 9.142615-5 2.317395+1 6.502981-5 3.235937+1 4.545980-5 4.841724+1 2.976932-5 7.673615+1 1.849937-5 1.462177+2 9.583708-6 2.917427+2 4.770572-6 1.161449+3 1.191746-6 1.000000+5 1.382000-8 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.339700-3 1.642500-4 1.000000+5 1.642500-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.339700-3 3.108000-4 1.000000+5 3.108000-4 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.339700-3 3.864650-3 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 9.910800-4 7.709842+4 1.070000-3 7.289440+4 1.090000-3 7.158300+4 1.170000-3 6.547340+4 1.428894-3 4.997451+4 1.717908-3 3.820965+4 1.883649-3 3.310445+4 2.238721-3 2.511641+4 2.540973-3 2.031081+4 2.917427-3 1.602716+4 3.507519-3 1.155331+4 4.073803-3 8.783778+3 4.677351-3 6.781435+3 5.500000-3 4.971080+3 6.531306-3 3.546381+3 7.762471-3 2.505202+3 9.120108-3 1.797778+3 1.071519-2 1.280640+3 1.244515-2 9.284026+2 1.462177-2 6.518089+2 1.730000-2 4.469480+2 2.018366-2 3.139668+2 2.344229-2 2.213880+2 2.754229-2 1.508440+2 3.235937-2 1.020151+2 3.801894-2 6.846720+1 4.466836-2 4.561596+1 5.248075-2 3.017800+1 6.237348-2 1.924068+1 7.498942-2 1.181285+1 9.120108-2 6.978367+0 1.148154-1 3.720361+0 2.454709-1 4.569347-1 2.951209-1 2.767148-1 3.427678-1 1.852598-1 3.935501-1 1.288251-1 4.466836-1 9.302723-2 5.011872-1 6.968049-2 5.623413-1 5.258386-2 6.237348-1 4.109518-2 6.918310-1 3.233924-2 7.673615-1 2.562640-2 8.609938-1 1.994315-2 9.440609-1 1.643039-2 1.047129+0 1.331940-2 1.174898+0 1.060044-2 1.333521+0 8.338879-3 1.500000+0 6.713561-3 1.678804+0 5.502084-3 1.905461+0 4.431640-3 2.162719+0 3.593693-3 2.426610+0 2.991585-3 2.754229+0 2.462941-3 3.198895+0 1.973160-3 3.715352+0 1.592782-3 4.365158+0 1.274882-3 5.188000+0 1.012609-3 6.165950+0 8.103742-4 7.413102+0 6.437189-4 9.120108+0 5.006618-4 1.135011+1 3.871718-4 1.380384+1 3.093876-4 1.717908+1 2.420207-4 2.398833+1 1.679286-4 3.467369+1 1.132870-4 5.308844+1 7.252574-5 8.912509+1 4.254833-5 1.778279+2 2.107148-5 3.548134+2 1.050430-5 1.412538+3 2.626095-6 1.000000+5 3.705300-8 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 9.910800-4 1.603100-4 1.000000+5 1.603100-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.910800-4 5.683600-7 1.000000+5 5.683600-7 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 9.910800-4 8.302016-4 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 8.670900-4 8.708840+4 8.672700-4 8.964740+4 8.675000-4 9.375120+4 8.677000-4 9.707320+4 8.678000-4 9.608057+4 8.683000-4 1.004710+5 8.696000-4 1.051426+5 8.697000-4 1.059627+5 8.708000-4 1.082271+5 8.747000-4 1.116704+5 8.800000-4 1.145846+5 8.865000-4 1.170052+5 8.950000-4 1.184044+5 9.015711-4 1.187995+5 9.050000-4 1.188047+5 9.280000-4 1.170887+5 1.000000-3 1.099010+5 1.122018-3 9.710222+4 1.202264-3 8.953962+4 1.303167-3 8.078226+4 1.412538-3 7.230802+4 1.531087-3 6.426296+4 1.650000-3 5.714200+4 1.862087-3 4.685285+4 2.000000-3 4.142700+4 2.220000-3 3.428040+4 2.454709-3 2.839423+4 2.691535-3 2.371088+4 3.019952-3 1.879179+4 3.311311-3 1.550013+4 3.758374-3 1.179509+4 4.168694-3 9.361407+3 4.677351-3 7.192642+3 5.300000-3 5.355020+3 5.888437-3 4.150104+3 6.683439-3 3.031354+3 7.585776-3 2.196173+3 8.609938-3 1.578725+3 9.660509-3 1.161882+3 1.083927-2 8.499490+2 1.230269-2 5.985140+2 1.400000-2 4.154860+2 1.603245-2 2.812596+2 1.840772-2 1.876201+2 2.137962-2 1.200640+2 2.483133-2 7.624637+1 2.884032-2 4.808441+1 3.388442-2 2.905204+1 4.027170-2 1.680711+1 4.897788-2 8.967928+0 6.165950-2 4.247419+0 1.288250-1 3.792191-1 1.621810-1 1.793879-1 1.927525-1 1.030287-1 2.264644-1 6.194887-2 2.600160-1 4.027605-2 2.951209-1 2.733055-2 3.311311-1 1.934643-2 3.715352-1 1.378683-2 4.168694-1 9.892948-3 4.677351-1 7.151414-3 5.188000-1 5.377978-3 5.754399-1 4.073574-3 6.309573-1 3.203171-3 6.998420-1 2.462924-3 7.762471-1 1.908908-3 8.709636-1 1.446221-3 9.332543-1 1.232674-3 9.885531-1 1.085538-3 1.071519+0 9.169182-4 1.161449+0 7.798285-4 1.258925+0 6.685418-4 1.396368+0 5.528616-4 1.659587+0 4.072527-4 1.905461+0 3.213310-4 2.137962+0 2.654692-4 2.398833+0 2.208468-4 2.722701+0 1.817025-4 3.162278+0 1.454834-4 3.672823+0 1.173713-4 4.315191+0 9.389200-5 5.069907+0 7.567177-5 6.025596+0 6.050249-5 7.244360+0 4.801512-5 9.015711+0 3.680212-5 1.109175+1 2.883212-5 1.364583+1 2.272438-5 1.717908+1 1.754743-5 2.371374+1 1.232860-5 3.388442+1 8.416191-6 5.128614+1 5.450499-6 8.317638+1 3.311046-6 1.621810+2 1.677160-6 3.235937+2 8.355462-7 1.288250+3 2.088133-7 1.000000+5 2.686500-9 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 8.670900-4 1.250000-4 1.000000+5 1.250000-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.670900-4 5.660500-7 1.000000+5 5.660500-7 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 8.670900-4 7.415240-4 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 8.148500-4 2.909900+5 8.370000-4 2.901686+5 8.609938-4 2.869531+5 8.850000-4 2.818559+5 9.015711-4 2.775063+5 9.500000-4 2.625304+5 1.071519-3 2.258504+5 1.161449-3 2.026285+5 1.258925-3 1.805361+5 1.380384-3 1.568694+5 1.479108-3 1.404262+5 1.659587-3 1.154356+5 1.819701-3 9.816568+4 1.972423-3 8.455284+4 2.238721-3 6.628737+4 2.454709-3 5.514965+4 2.786121-3 4.242608+4 3.090295-3 3.397572+4 3.500000-3 2.580272+4 3.900000-3 2.015492+4 4.370000-3 1.544040+4 4.954502-3 1.140732+4 5.559043-3 8.576699+3 6.237348-3 6.406090+3 7.079458-3 4.610844+3 8.128305-3 3.192048+3 9.332543-3 2.189578+3 1.071519-2 1.488574+3 1.230269-2 1.003203+3 1.412538-2 6.703733+2 1.621810-2 4.443740+2 1.840772-2 3.028154+2 2.113489-2 1.979005+2 2.444600-2 1.254604+2 2.851018-2 7.690368+1 3.311311-2 4.741763+1 3.890451-2 2.796033+1 4.623810-2 1.575655+1 5.623413-2 8.160588+0 7.000000-2 3.877132+0 1.364583-1 3.931454-1 1.659587-1 2.022413-1 1.949845-1 1.178171-1 2.238721-1 7.461951-2 2.540973-1 4.942415-2 2.851018-1 3.420950-2 3.198895-1 2.384188-2 3.548134-1 1.734475-2 3.935501-1 1.271289-2 4.315191-1 9.715274-3 4.731513-1 7.475667-3 5.188000-1 5.793303-3 5.688529-1 4.522371-3 6.237348-1 3.556292-3 6.839117-1 2.817465-3 7.498942-1 2.248616-3 8.511380-1 1.665635-3 9.120108-1 1.422660-3 9.772372-1 1.223152-3 1.059254+0 1.034401-3 1.161449+0 8.600003-4 1.258925+0 7.369774-4 1.396368+0 6.087088-4 1.621810+0 4.662708-4 1.840772+0 3.747055-4 2.089296+0 3.032027-4 2.344229+0 2.518883-4 2.660725+0 2.069629-4 3.054921+0 1.683289-4 3.548134+0 1.355547-4 4.120975+0 1.099781-4 4.841724+0 8.845748-5 5.754399+0 7.058728-5 6.918310+0 5.591342-5 8.511380+0 4.337919-5 1.035142+1 3.437231-5 1.318257+1 2.598885-5 1.698244+1 1.954855-5 2.317395+1 1.390468-5 3.235937+1 9.719913-6 4.841724+1 6.365000-6 7.585776+1 4.002433-6 1.462177+2 2.049111-6 2.917427+2 1.020006-6 1.161449+3 2.548112-7 1.000000+5 2.954800-9 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 8.148500-4 1.223900-4 1.000000+5 1.223900-4 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 8.148500-4 4.086900-7 1.000000+5 4.086900-7 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 8.148500-4 6.920513-4 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 5.937400-4 4.170184+5 5.960000-4 5.289615+5 5.996000-4 7.149031+5 6.035100-4 8.967689+5 6.111000-4 1.162924+6 6.190000-4 1.264547+6 6.280000-4 1.343740+6 6.370000-4 1.370369+6 6.460000-4 1.356851+6 6.550000-4 1.322827+6 6.580000-4 1.307801+6 6.683439-4 1.240058+6 6.700000-4 1.225684+6 6.850000-4 1.143868+6 7.000000-4 1.075372+6 7.120000-4 1.030032+6 7.300000-4 9.744160+5 7.673615-4 8.761945+5 8.609938-4 6.807860+5 9.332543-4 5.663547+5 1.011579-3 4.676065+5 1.096478-3 3.831726+5 1.202264-3 3.027951+5 1.303167-3 2.450115+5 1.428894-3 1.904932+5 1.603245-3 1.381555+5 1.757924-3 1.060297+5 2.000000-3 7.263640+4 2.220000-3 5.307360+4 2.511886-3 3.634362+4 2.818383-3 2.532247+4 3.150000-3 1.774452+4 3.548134-3 1.203376+4 4.000000-3 8.077680+3 4.518559-3 5.346438+3 5.128614-3 3.455567+3 5.821032-3 2.216739+3 6.531306-3 1.471274+3 7.413102-3 9.307447+2 8.413951-3 5.845253+2 9.549926-3 3.644904+2 1.096478-2 2.160291+2 1.258925-2 1.270507+2 1.462177-2 7.090970+1 1.678804-2 4.111443+1 1.949845-2 2.262536+1 2.290868-2 1.180337+1 2.722701-2 5.834982+0 3.273407-2 2.732146+0 4.168694-2 1.000651+0 7.585776-2 8.221262-2 9.660509-2 3.016681-2 1.161449-1 1.415305-2 1.364583-1 7.351673-3 1.584893-1 4.031231-3 1.798871-1 2.440576-3 2.018366-1 1.556362-3 2.264644-1 9.997145-4 2.540973-1 6.468496-4 2.851018-1 4.217654-4 3.162278-1 2.890178-4 3.507519-1 1.994154-4 3.890451-1 1.385740-4 4.315191-1 9.699240-5 4.731513-1 7.109891-5 5.248075-1 5.051625-5 5.688529-1 3.897039-5 6.095369-1 3.138686-5 6.606935-1 2.461339-5 7.161434-1 1.943729-5 8.035261-1 1.399899-5 8.609938-1 1.144016-5 9.120108-1 9.736796-6 9.549926-1 8.613751-6 1.000000+0 7.674757-6 1.047129+0 6.892554-6 1.096478+0 6.232376-6 1.148154+0 5.670237-6 1.202264+0 5.187598-6 1.288250+0 4.575532-6 1.412538+0 3.901618-6 1.513561+0 3.471857-6 1.840772+0 2.470276-6 2.065380+0 2.035667-6 2.317395+0 1.690062-6 2.630268+0 1.387647-6 3.019952+0 1.127889-6 3.507519+0 9.077667-7 4.073803+0 7.361040-7 4.786301+0 5.917332-7 5.688529+0 4.719499-7 6.839116+0 3.736615-7 8.413951+0 2.897785-7 1.023293+1 2.295091-7 1.318257+1 1.712100-7 1.698244+1 1.287767-7 2.317395+1 9.159674-8 3.235937+1 6.403254-8 4.841724+1 4.193072-8 7.673615+1 2.605734-8 1.462177+2 1.349923-8 2.917427+2 6.719517-9 1.161449+3 1.678623-9 1.000000+5 1.94660-11 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 5.937400-4 7.319600-5 1.000000+5 7.319600-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.937400-4 1.952400-7 1.000000+5 1.952400-7 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 5.937400-4 5.203488-4 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 5.827400-4 2.552900+4 5.845000-4 4.865552+4 5.857000-4 7.502312+4 5.868000-4 1.107524+5 5.877000-4 1.512914+5 5.885000-4 1.984186+5 5.893000-4 2.585322+5 5.900000-4 3.240820+5 5.905000-4 3.794150+5 5.910000-4 4.426285+5 5.917000-4 5.456129+5 5.923000-4 6.482706+5 5.929000-4 7.655467+5 5.931000-4 7.525921+5 5.950000-4 1.030808+6 5.976500-4 1.413469+6 5.978000-4 1.430494+6 6.009000-4 1.734125+6 6.011000-4 1.819557+6 6.100000-4 2.048817+6 6.115000-4 2.072938+6 6.200000-4 2.152770+6 6.220000-4 2.161777+6 6.335000-4 2.161779+6 6.410000-4 2.099507+6 6.480000-4 1.997160+6 6.550000-4 1.917054+6 6.650000-4 1.823970+6 6.780000-4 1.719864+6 6.930000-4 1.618296+6 7.080000-4 1.536474+6 7.585776-4 1.323394+6 8.511380-4 1.025639+6 9.225714-4 8.516199+5 9.885531-4 7.219967+5 1.071519-3 5.914415+5 1.174898-3 4.670782+5 1.273503-3 3.777627+5 1.380384-3 3.030594+5 1.570000-3 2.113752+5 1.717908-3 1.630765+5 1.950000-3 1.123026+5 2.187762-3 7.934806+4 2.426610-3 5.768929+4 2.754229-3 3.873360+4 3.054921-3 2.777287+4 3.427678-3 1.906143+4 3.900000-3 1.238832+4 4.365158-3 8.445826+3 4.897788-3 5.674473+3 5.623413-3 3.490941+3 6.456542-3 2.128434+3 7.413102-3 1.286090+3 8.511380-3 7.702088+2 9.660509-3 4.777010+2 1.096478-2 2.941760+2 1.258925-2 1.720318+2 1.445440-2 9.983953+1 1.659587-2 5.754848+1 1.905461-2 3.295967+1 2.238721-2 1.706539+1 2.660725-2 8.361403+0 3.162278-2 4.065922+0 3.890451-2 1.697728+0 7.943282-2 8.175146-2 9.885531-2 3.246381-2 1.174898-1 1.577016-2 1.364583-1 8.497504-3 1.659587-1 3.819445-3 1.798871-1 2.765089-3 1.927525-1 2.108661-3 2.089296-1 1.547565-3 2.317395-1 1.036827-3 2.570396-1 6.997980-4 2.818383-1 4.968737-4 3.090295-1 3.553790-4 3.349654-1 2.667948-4 3.630781-1 2.015846-4 3.935501-1 1.533468-4 4.265795-1 1.174910-4 4.623810-1 9.068515-5 5.011872-1 7.053251-5 5.432503-1 5.534010-5 5.888437-1 4.371348-5 6.531306-1 3.245674-5 7.079458-1 2.590623-5 7.673615-1 2.082335-5 8.413951-1 1.636191-5 8.912509-1 1.415851-5 9.440609-1 1.233218-5 1.000000+0 1.082267-5 1.071519+0 9.338367-6 1.148154+0 8.115310-6 1.216186+0 7.264493-6 1.348963+0 6.006086-6 1.621810+0 4.333878-6 1.862087+0 3.414512-6 2.113489+0 2.764459-6 2.371374+0 2.298275-6 2.691535+0 1.889700-6 3.126079+0 1.512099-6 3.630781+0 1.219168-6 4.265795+0 9.747362-7 5.011872+0 7.851977-7 6.000000+0 6.217000-7 7.244360+0 4.907115-7 9.015711+0 3.761242-7 1.109175+1 2.946678-7 1.364583+1 2.322491-7 1.717908+1 1.793329-7 2.400000+1 1.243700-7 3.427678+1 8.497088-8 5.188000+1 5.504131-8 8.511380+1 3.304999-8 1.698244+2 1.635899-8 3.388442+2 8.152527-9 1.348963+3 2.037760-9 1.000000+5 2.74560-11 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 5.827400-4 7.343200-5 1.000000+5 7.343200-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 5.827400-4 7.33750-10 1.000000+5 7.33750-10 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 5.827400-4 5.093073-4 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.743300-4 1.424334+5 1.757924-4 1.451615+5 1.780000-4 1.482134+5 1.825000-4 1.529670+5 1.870000-4 1.565652+5 1.910000-4 1.587416+5 1.955000-4 1.599522+5 2.000000-4 1.599508+5 2.041738-4 1.590828+5 2.113489-4 1.563609+5 2.650000-4 1.342684+5 2.800000-4 1.285248+5 2.985383-4 1.212058+5 3.388442-4 1.067033+5 3.715352-4 9.670222+4 4.027170-4 8.807575+4 4.570882-4 7.530727+4 5.069907-4 6.585385+4 5.688529-4 5.624883+4 6.531306-4 4.620271+4 7.413102-4 3.826075+4 8.511380-4 3.093733+4 1.000000-3 2.393300+4 1.161449-3 1.872003+4 1.364583-3 1.427080+4 1.621810-3 1.059323+4 1.949845-3 7.654500+3 2.426610-3 5.159942+3 2.951209-3 3.599181+3 3.589219-3 2.492940+3 4.315191-3 1.751840+3 5.128614-3 1.249816+3 6.095369-3 8.855264+2 7.244360-3 6.230160+2 8.709636-3 4.248918+2 1.035142-2 2.946168+2 1.230269-2 2.028020+2 1.462177-2 1.385316+2 1.717908-2 9.634375+1 2.018366-2 6.652380+1 2.371374-2 4.560024+1 2.786121-2 3.103147+1 3.273407-2 2.096622+1 3.845918-2 1.406184+1 4.570882-2 9.095492+0 5.370318-2 6.013252+0 6.456542-2 3.717266+0 7.852356-2 2.211780+0 9.440609-2 1.344758+0 1.202264-1 6.939509-1 2.398833-1 1.030961-1 2.884032-1 6.239174-2 3.388442-1 4.048468-2 3.890451-1 2.814293-2 4.415705-1 2.031130-2 4.954502-1 1.520411-2 5.559043-1 1.146549-2 6.165950-1 8.953959-3 6.839117-1 7.040793-3 7.585776-1 5.574879-3 8.511380-1 4.335103-3 9.332543-1 3.568586-3 1.023293+0 2.958181-3 1.161449+0 2.299150-3 1.288250+0 1.886766-3 1.462177+0 1.491461-3 1.621810+0 1.239291-3 1.840772+0 9.961877-4 2.113489+0 7.912661-4 2.371374+0 6.578199-4 2.691535+0 5.408479-4 3.126079+0 4.327536-4 3.630781+0 3.489180-4 4.265795+0 2.789667-4 5.011872+0 2.247253-4 6.000000+0 1.779300-4 7.244360+0 1.404429-4 9.000000+0 1.078700-4 1.109175+1 8.433312-5 1.364583+1 6.646799-5 1.717908+1 5.132517-5 2.371374+1 3.605993-5 3.388442+1 2.461743-5 5.128614+1 1.594227-5 8.317638+1 9.684594-6 1.640590+2 4.848622-6 3.273407+2 2.415769-6 1.303167+3 6.037499-7 1.000000+5 7.857800-9 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.743300-4 7.638900-5 1.000000+5 7.638900-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.743300-4 1.256200-9 1.000000+5 1.256200-9 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.743300-4 9.793974-5 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.309700-4 1.734996+5 1.320000-4 1.752072+5 1.330000-4 1.755858+5 1.345000-4 1.744878+5 1.365000-4 1.714952+5 1.400000-4 1.651338+5 1.462177-4 1.537787+5 1.566751-4 1.358368+5 1.620000-4 1.288276+5 1.670000-4 1.237600+5 1.720000-4 1.199748+5 1.778279-4 1.168419+5 1.840772-4 1.145748+5 1.930000-4 1.125238+5 2.089296-4 1.103658+5 2.454709-4 1.068793+5 2.660725-4 1.045431+5 2.884032-4 1.015246+5 3.126079-4 9.786454+4 3.388442-4 9.361451+4 3.630781-4 8.952915+4 3.890451-4 8.508276+4 4.265795-4 7.883922+4 4.623810-4 7.327644+4 5.011872-4 6.765156+4 5.500000-4 6.119420+4 6.095369-4 5.433506+4 6.683439-4 4.848477+4 7.413102-4 4.231017+4 8.200000-4 3.680400+4 9.120108-4 3.151950+4 1.011579-3 2.692767+4 1.135011-3 2.242698+4 1.273503-3 1.853973+4 1.428894-3 1.521260+4 1.584893-3 1.265767+4 1.778279-3 1.025425+4 2.018366-3 8.072358+3 2.300000-3 6.256620+3 2.600160-3 4.889045+3 2.917427-3 3.853549+3 3.273407-3 3.017793+3 3.672823-3 2.347978+3 4.120975-3 1.814376+3 4.677351-3 1.356002+3 5.248075-3 1.033401+3 5.956621-3 7.605449+2 6.760830-3 5.554341+2 7.673615-3 4.026024+2 8.709636-3 2.897433+2 9.885531-3 2.070586+2 1.122018-2 1.469381+2 1.288250-2 1.002907+2 1.479108-2 6.791445+1 1.698244-2 4.563375+1 1.949845-2 3.044077+1 2.264644-2 1.947946+1 2.630268-2 1.237168+1 3.090295-2 7.529485+0 3.630781-2 4.547387+0 4.365158-2 2.535366+0 5.370318-2 1.303466+0 6.548850-2 6.848336-1 1.288250-1 7.494903-2 1.640590-1 3.423351-2 1.949845-1 1.969137-2 2.290868-1 1.183826-2 2.630268-1 7.707487-3 3.000000-1 5.159000-3 3.388442-1 3.582893-3 3.801894-1 2.555741-3 4.265795-1 1.836569-3 4.731513-1 1.373358-3 5.248075-1 1.033920-3 5.821032-1 7.839459-4 6.382635-1 6.169620-4 7.079458-1 4.747590-4 7.852356-1 3.682346-4 8.709636-1 2.867841-4 9.332543-1 2.444149-4 9.885531-1 2.152418-4 1.071519+0 1.818221-4 1.161449+0 1.546294-4 1.258925+0 1.325497-4 1.396368+0 1.096142-4 1.659587+0 8.074722-5 1.883649+0 6.496072-5 2.137962+0 5.263658-5 2.398833+0 4.378911-5 2.722701+0 3.602636-5 3.162278+0 2.884402-5 3.672823+0 2.327039-5 4.315191+0 1.861519-5 5.069907+0 1.500282-5 6.025596+0 1.199567-5 7.244360+0 9.519645-6 9.015711+0 7.296555-6 1.109175+1 5.716394-6 1.364583+1 4.505403-6 1.717908+1 3.478977-6 2.400000+1 2.412700-6 3.427678+1 1.648391-6 5.188000+1 1.067811-6 8.413951+1 6.487558-7 1.659587+2 3.248458-7 3.311311+2 1.618589-7 1.318257+3 4.045477-8 1.000000+5 5.32630-10 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.309700-4 5.486700-5 1.000000+5 5.486700-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.309700-4 1.346300-9 1.000000+5 1.346300-9 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.309700-4 7.610165-5 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.209200-4 4.183960+5 1.225000-4 4.206080+5 1.244515-4 4.205166+5 1.270000-4 4.171880+5 1.303167-4 4.098967+5 1.350000-4 3.967884+5 1.396368-4 3.820044+5 1.470000-4 3.595732+5 1.520000-4 3.475868+5 1.566751-4 3.389315+5 1.621810-4 3.313996+5 1.698244-4 3.242788+5 1.819701-4 3.169012+5 2.113489-4 3.026590+5 2.317395-4 2.923897+5 2.511886-4 2.816949+5 2.722701-4 2.691909+5 2.951209-4 2.553732+5 3.200000-4 2.406596+5 3.467369-4 2.253051+5 3.758374-4 2.092954+5 4.120975-4 1.909041+5 4.518559-4 1.729480+5 4.954502-4 1.555212+5 5.432503-4 1.388202+5 6.056200-4 1.205236+5 6.683439-4 1.052334+5 7.500000-4 8.905760+4 8.317638-4 7.613242+4 9.332543-4 6.345532+4 1.047129-3 5.249799+4 1.188502-3 4.225193+4 1.318257-3 3.515678+4 1.496236-3 2.787741+4 1.698244-3 2.193004+4 1.927525-3 1.712067+4 2.187762-3 1.326720+4 2.483133-3 1.020483+4 2.786121-3 7.987329+3 3.126079-3 6.212966+3 3.507519-3 4.801687+3 3.935501-3 3.686680+3 4.415704-3 2.811303+3 5.011872-3 2.070453+3 5.688529-3 1.512718+3 6.456542-3 1.096556+3 7.328245-3 7.888192+2 8.317638-3 5.632420+2 9.440609-3 3.992669+2 1.071519-2 2.809924+2 1.216186-2 1.963523+2 1.380384-2 1.362552+2 1.566751-2 9.390368+1 1.798871-2 6.208645+1 2.065380-2 4.074183+1 2.371374-2 2.654282+1 2.754229-2 1.655911+1 3.203000-2 1.021202+1 3.758374-2 6.071954+0 4.466836-2 3.436182+0 5.248075-2 2.006165+0 6.456542-2 9.956830-1 8.709636-2 3.584678-1 1.364583-1 7.700606-2 1.659587-1 3.965834-2 1.949845-1 2.312183-2 2.264644-1 1.410651-2 2.570396-1 9.352578-3 2.884032-1 6.481072-3 3.198895-1 4.688917-3 3.548134-1 3.415105-3 3.935501-1 2.505485-3 4.315191-1 1.915214-3 4.731513-1 1.473689-3 5.188000-1 1.141894-3 5.688529-1 8.912585-4 6.237348-1 7.008680-4 6.839117-1 5.553958-4 7.498942-1 4.434166-4 8.511380-1 3.286480-4 9.120108-1 2.807916-4 9.772372-1 2.414687-4 1.059254+0 2.042340-4 1.161449+0 1.698138-4 1.273503+0 1.424049-4 1.412538+0 1.177034-4 1.640590+0 9.021407-5 1.862087+0 7.254167-5 2.113489+0 5.874336-5 2.371374+0 4.883675-5 2.691535+0 4.015236-5 3.126079+0 3.212729-5 3.630781+0 2.590379-5 4.265795+0 2.071020-5 5.011872+0 1.668268-5 6.000000+0 1.320900-5 7.244360+0 1.042645-5 9.015711+0 7.991503-6 1.109175+1 6.260811-6 1.364583+1 4.934536-6 1.717908+1 3.810284-6 2.400000+1 2.642400-6 3.427678+1 1.805419-6 5.188000+1 1.169456-6 8.609938+1 6.939792-7 1.717908+2 3.435528-7 3.427678+2 1.712237-7 1.364583+3 4.279995-8 1.000000+5 5.83360-10 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.209200-4 5.493600-5 1.000000+5 5.493600-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.209200-4 7.22030-10 1.000000+5 7.22030-10 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.209200-4 6.598328-5 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.071000-5 8.926880+5 5.100000-5 9.115560+5 5.130000-5 9.353640+5 5.160000-5 9.638640+5 5.190000-5 9.978440+5 5.220000-5 1.037148+6 5.250000-5 1.083364+6 5.290000-5 1.155612+6 5.315000-5 1.207772+6 5.350000-5 1.291196+6 5.385000-5 1.387956+6 5.420000-5 1.499432+6 5.465000-5 1.666916+6 5.500000-5 1.818216+6 5.540000-5 2.016416+6 5.595000-5 2.339316+6 5.650000-5 2.729228+6 5.710000-5 3.243668+6 5.800000-5 4.222360+6 5.970000-5 6.917480+6 6.050000-5 8.628040+6 6.110000-5 1.009928+7 6.165950-5 1.159828+7 6.220000-5 1.313892+7 6.260000-5 1.431416+7 6.300000-5 1.549892+7 6.340000-5 1.667144+7 6.385000-5 1.794656+7 6.420000-5 1.888600+7 6.465000-5 1.999880+7 6.500000-5 2.077472+7 6.540000-5 2.154644+7 6.580000-5 2.219080+7 6.612800-5 2.261797+7 6.650000-5 2.298912+7 6.690000-5 2.325384+7 6.730000-5 2.339212+7 6.770000-5 2.341028+7 6.815000-5 2.330132+7 6.870000-5 2.300512+7 6.920000-5 2.261472+7 6.970000-5 2.213144+7 7.030000-5 2.145976+7 7.110000-5 2.046196+7 7.190000-5 1.940352+7 7.300000-5 1.792772+7 7.450000-5 1.597748+7 7.585776-5 1.433419+7 7.762471-5 1.240554+7 7.950000-5 1.061108+7 8.150000-5 8.963600+6 8.350000-5 7.559800+6 8.570000-5 6.260920+6 8.810489-5 5.092907+6 9.120108-5 3.908151+6 9.500000-5 2.835036+6 9.950000-5 1.954040+6 1.040000-4 1.359484+6 1.083927-4 9.625726+5 1.205000-4 3.925804+5 1.233400-4 3.239682+5 1.260000-4 2.735372+5 1.280000-4 2.429404+5 1.300000-4 2.176844+5 1.318257-4 1.986769+5 1.335900-4 1.835111+5 1.350000-4 1.733936+5 1.365000-4 1.643720+5 1.380384-4 1.567901+5 1.396368-4 1.505094+5 1.412538-4 1.456260+5 1.428894-4 1.420151+5 1.445440-4 1.395619+5 1.462177-4 1.381578+5 1.480000-4 1.377028+5 1.500000-4 1.382936+5 1.520000-4 1.398756+5 1.540000-4 1.422916+5 1.566751-4 1.465912+5 1.600000-4 1.532692+5 1.645700-4 1.641332+5 1.760000-4 1.952776+5 1.820000-4 2.119868+5 1.883649-4 2.290233+5 1.950000-4 2.455280+5 2.000000-4 2.569196+5 2.065380-4 2.703250+5 2.120000-4 2.801972+5 2.190000-4 2.911096+5 2.264644-4 3.006878+5 2.350000-4 3.092328+5 2.430000-4 3.151552+5 2.511886-4 3.194092+5 2.620000-4 3.226768+5 2.730000-4 3.237128+5 2.851018-4 3.225970+5 2.985383-4 3.190507+5 3.126079-4 3.133231+5 3.280000-4 3.053516+5 3.467369-4 2.940262+5 3.672823-4 2.805244+5 3.890451-4 2.658323+5 4.120975-4 2.502048+5 4.365158-4 2.339253+5 4.623810-4 2.173648+5 4.954502-4 1.975340+5 5.308844-4 1.783224+5 5.688529-4 1.598315+5 6.100000-4 1.421284+5 6.606934-4 1.232815+5 7.161434-4 1.060453+5 7.800000-4 8.965080+4 8.511380-4 7.489017+4 9.225714-4 6.303552+4 1.000000-3 5.272920+4 1.110000-3 4.149080+4 1.230269-3 3.246839+4 1.364583-3 2.515276+4 1.513561-3 1.932874+4 1.678804-3 1.473568+4 1.862087-3 1.115783+4 2.065380-3 8.389176+3 2.290868-3 6.261423+3 2.540973-3 4.640456+3 2.818383-3 3.415147+3 3.126079-3 2.495911+3 3.467369-3 1.811570+3 3.845918-3 1.306079+3 4.265795-3 9.354300+2 4.786301-3 6.407257+2 5.370318-3 4.355058+2 6.025596-3 2.938328+2 6.760830-3 1.968401+2 7.673615-3 1.257523+2 8.709636-3 7.971285+1 9.885531-3 5.014119+1 1.122018-2 3.130120+1 1.273503-2 1.939867+1 1.462177-2 1.142098+1 1.678804-2 6.672192+0 1.949845-2 3.698161+0 2.290868-2 1.943095+0 2.691535-2 1.013347+0 3.235937-2 4.777421-1 4.027170-2 1.938644-1 8.222426-2 1.000410-2 1.011580-1 4.255426-3 1.202264-1 2.101057-3 1.412538-1 1.095213-3 1.640590-1 6.026185-4 1.862087-1 3.659733-4 2.113489-1 2.238683-4 2.371374-1 1.442036-4 2.660725-1 9.356545-5 2.951209-1 6.382031-5 3.273407-1 4.384067-5 3.630781-1 3.033168-5 4.027170-1 2.113996-5 4.466836-1 1.484346-5 4.897788-1 1.091623-5 5.370318-1 8.085112-6 5.888437-1 6.033105-6 6.382635-1 4.700435-6 6.918310-1 3.685170-6 7.498942-1 2.907658-6 8.609938-1 1.953383-6 9.120108-1 1.666301-6 9.549926-1 1.476365-6 1.000000+0 1.316700-6 1.047129+0 1.183210-6 1.096478+0 1.071056-6 1.161449+0 9.536230-7 1.230269+0 8.549463-7 1.333521+0 7.397042-7 1.479108+0 6.195180-7 1.840772+0 4.237818-7 2.065380+0 3.492426-7 2.317395+0 2.899452-7 2.630268+0 2.380699-7 3.019952+0 1.935137-7 3.507519+0 1.557457-7 4.073803+0 1.262914-7 4.786301+0 1.015200-7 5.688529+0 8.096919-8 6.839116+0 6.410711-8 8.413951+0 4.971509-8 1.023293+1 3.937582-8 1.318257+1 2.937293-8 1.698244+1 2.209366-8 2.317395+1 1.571462-8 3.235937+1 1.098572-8 4.841724+1 7.193794-9 7.585776+1 4.523584-9 1.445440+2 2.343146-9 2.884032+2 1.166242-9 1.148154+3 2.91337-10 1.000000+5 3.33960-12 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.071000-5 2.771700-5 1.000000+5 2.771700-5 1 52000 7 7 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.071000-5 6.62680-10 1.000000+5 6.62680-10 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.071000-5 2.299234-5 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.918000-5 1.404408+6 4.954502-5 1.439762+6 4.990000-5 1.483920+6 5.020000-5 1.529244+6 5.061000-5 1.605691+6 5.095000-5 1.682886+6 5.130000-5 1.777338+6 5.160000-5 1.871274+6 5.190000-5 1.978584+6 5.230000-5 2.144730+6 5.270000-5 2.340378+6 5.315000-5 2.600388+6 5.350000-5 2.835354+6 5.400000-5 3.227412+6 5.450000-5 3.694920+6 5.500000-5 4.248558+6 5.560000-5 5.043978+6 5.650000-5 6.552180+6 5.821032-5 1.070835+7 5.900000-5 1.328034+7 5.970000-5 1.590144+7 6.025596-5 1.817857+7 6.070000-5 2.008980+7 6.116700-5 2.215002+7 6.165950-5 2.432867+7 6.200000-5 2.580624+7 6.240000-5 2.747904+7 6.280000-5 2.905074+7 6.315000-5 3.031728+7 6.350000-5 3.146232+7 6.385000-5 3.247092+7 6.420000-5 3.333018+7 6.465000-5 3.420606+7 6.500000-5 3.470652+7 6.541300-5 3.509836+7 6.580000-5 3.527814+7 6.630000-5 3.526500+7 6.683439-5 3.498158+7 6.730000-5 3.454332+7 6.785000-5 3.384072+7 6.850000-5 3.281424+7 6.920000-5 3.154572+7 7.000000-5 2.997540+7 7.110000-5 2.773764+7 7.244360-5 2.504184+7 7.400000-5 2.211168+7 7.585776-5 1.896857+7 7.762471-5 1.634568+7 7.950000-5 1.392618+7 8.150000-5 1.171668+7 8.400000-5 9.423600+6 8.650000-5 7.572720+6 8.912509-5 6.021573+6 9.225714-5 4.590510+6 9.549926-5 3.479434+6 9.950000-5 2.487288+6 1.040000-4 1.719864+6 1.083927-4 1.210318+6 1.174898-4 6.058328+5 1.205000-4 4.901964+5 1.230269-4 4.147734+5 1.250000-4 3.672114+5 1.265000-4 3.367650+5 1.280000-4 3.106722+5 1.295000-4 2.884704+5 1.307000-4 2.732298+5 1.322000-4 2.570148+5 1.335900-4 2.445271+5 1.350000-4 2.340960+5 1.365000-4 2.252142+5 1.380384-4 2.182188+5 1.396368-4 2.129604+5 1.412538-4 2.094765+5 1.430000-4 2.075286+5 1.445440-4 2.071773+5 1.465000-4 2.083272+5 1.485000-4 2.110770+5 1.500000-4 2.140284+5 1.520000-4 2.189640+5 1.550000-4 2.281146+5 1.584893-4 2.407419+5 1.720000-4 2.989098+5 1.780000-4 3.255222+5 1.840772-4 3.513247+5 1.900000-4 3.747684+5 1.950000-4 3.929970+5 2.000000-4 4.096686+5 2.065380-4 4.290171+5 2.120000-4 4.430256+5 2.190000-4 4.581798+5 2.264644-4 4.711008+5 2.350000-4 4.822440+5 2.430000-4 4.896540+5 2.511886-4 4.946173+5 2.620000-4 4.976718+5 2.730000-4 4.973496+5 2.851018-4 4.937953+5 2.985383-4 4.867164+5 3.126079-4 4.764463+5 3.280000-4 4.627500+5 3.467369-4 4.440862+5 3.672823-4 4.224373+5 3.890451-4 3.990484+5 4.120975-4 3.745839+5 4.365158-4 3.493469+5 4.677351-4 3.186510+5 5.011872-4 2.885448+5 5.400000-4 2.571732+5 5.800000-4 2.287182+5 6.237348-4 2.014317+5 6.700000-4 1.767054+5 7.328245-4 1.487574+5 7.943282-4 1.263881+5 8.609938-4 1.067083+5 9.440609-4 8.728722+4 1.050000-3 6.852240+4 1.161449-3 5.399700+4 1.300000-3 4.096974+4 1.440000-3 3.162828+4 1.603245-3 2.390737+4 1.778279-3 1.811418+4 1.972423-3 1.362322+4 2.187762-3 1.017331+4 2.426610-3 7.543158+3 2.691535-3 5.553511+3 3.000000-3 3.999858+3 3.349654-3 2.843241+3 3.715352-3 2.048549+3 4.120975-3 1.466204+3 4.570882-3 1.042452+3 5.128614-3 7.082066+2 5.754399-3 4.775098+2 6.456542-3 3.196571+2 7.244360-3 2.125036+2 8.222426-3 1.345668+2 9.332543-3 8.454658+1 1.047129-2 5.503425+1 1.188502-2 3.406466+1 1.348963-2 2.093157+1 1.548817-2 1.220809+1 1.778279-2 7.065178+0 2.041738-2 4.058182+0 2.371374-2 2.206801+0 2.786121-2 1.135979+0 3.388442-2 5.027675-1 4.265795-2 1.910870-1 8.413951-2 1.081289-2 1.023293-1 4.753829-3 1.202264-1 2.431782-3 1.396368-1 1.314473-3 1.603245-1 7.505949-4 1.798871-1 4.737274-4 2.018366-1 3.011980-4 2.238721-1 2.018342-4 2.483133-1 1.362562-4 2.722701-1 9.673902-5 3.000000-1 6.794400-5 3.273407-1 4.978098-5 3.589219-1 3.610837-5 3.890451-1 2.744369-5 4.216965-1 2.099254-5 4.570882-1 1.616804-5 4.954502-1 1.254321-5 5.370318-1 9.810794-6 5.821032-1 7.731003-6 6.309573-1 6.134503-6 6.839117-1 4.900878-6 7.413102-1 3.942152-6 8.511380-1 2.746369-6 9.015711-1 2.375865-6 9.549926-1 2.068888-6 1.000000+0 1.862500-6 1.071519+0 1.605013-6 1.148154+0 1.394130-6 1.216186+0 1.247448-6 1.333521+0 1.053145-6 1.621810+0 7.459124-7 1.862087+0 5.875778-7 2.089296+0 4.847475-7 2.344229+0 4.027264-7 2.660725+0 3.308922-7 3.054921+0 2.691123-7 3.548134+0 2.167168-7 4.120975+0 1.758262-7 4.841724+0 1.414185-7 5.754399+0 1.128519-7 6.918310+0 8.938980-8 8.511380+0 6.935117-8 1.035142+1 5.495194-8 1.318257+1 4.154888-8 1.698244+1 3.125180-8 2.344229+1 2.195188-8 3.311311+1 1.516401-8 5.011872+1 9.816444-9 8.000000+1 6.059200-9 1.548817+2 3.090044-9 3.090295+2 1.538885-9 1.230269+3 3.84525-10 1.000000+5 4.72390-12 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.918000-5 2.771000-5 1.000000+5 2.771000-5 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.918000-5 2.147000-5 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.845000-5 2.201160+5 1.880000-5 1.897442+5 1.927525-5 1.544667+5 1.972423-5 1.268750+5 2.020000-5 1.027700+5 2.070000-5 8.229420+4 2.170000-5 5.317240+4 2.213095-5 4.450929+4 2.250000-5 3.858380+4 2.277000-5 3.501620+4 2.300000-5 3.243900+4 2.322000-5 3.033700+4 2.344229-5 2.854710+4 2.365000-5 2.715420+4 2.385000-5 2.604960+4 2.405000-5 2.516040+4 2.426610-5 2.442366+4 2.442000-5 2.403120+4 2.460000-5 2.370220+4 2.477000-5 2.351240+4 2.500000-5 2.342880+4 2.520000-5 2.350620+4 2.540973-5 2.372536+4 2.560000-5 2.403660+4 2.587000-5 2.464600+4 2.610000-5 2.530660+4 2.640000-5 2.634300+4 2.670000-5 2.755560+4 2.710000-5 2.940740+4 2.770000-5 3.259840+4 2.900000-5 4.067440+4 2.980000-5 4.610120+4 3.054921-5 5.131327+4 3.126079-5 5.628539+4 3.198895-5 6.132483+4 3.273407-5 6.637474+4 3.350000-5 7.140740+4 3.427678-5 7.631135+4 3.507519-5 8.111421+4 3.610000-5 8.689520+4 3.715352-5 9.236484+4 3.801894-5 9.649179+4 3.900000-5 1.007728+5 4.030000-5 1.058110+5 4.168694-5 1.104259+5 4.315191-5 1.145049+5 4.466836-5 1.179368+5 4.650000-5 1.211158+5 4.850000-5 1.235290+5 5.069907-5 1.251053+5 5.308844-5 1.257768+5 5.559043-5 1.255585+5 5.821032-5 1.245505+5 6.150000-5 1.224654+5 6.531306-5 1.192789+5 6.918310-5 1.155553+5 7.413102-5 1.104744+5 8.035261-5 1.040062+5 8.810489-5 9.628445+4 9.660509-5 8.848358+4 1.059254-4 8.076551+4 1.174898-4 7.232924+4 1.318257-4 6.344758+4 1.531087-4 5.300701+4 1.972423-4 3.875343+4 2.238721-4 3.295697+4 2.540973-4 2.783002+4 3.019952-4 2.189926+4 3.548134-4 1.739315+4 4.365158-4 1.280821+4 5.128614-4 1.004391+4 5.956621-4 7.949973+3 7.079458-4 6.024913+3 8.810489-4 4.202312+3 1.059254-3 3.077166+3 1.303167-3 2.150532+3 1.566751-3 1.553467+3 1.927525-3 1.069449+3 2.398833-3 7.155341+2 2.985383-3 4.749638+2 3.672823-3 3.199495+2 4.518559-3 2.139308+2 5.688529-3 1.356485+2 6.918310-3 9.139615+1 8.317638-3 6.254327+1 9.885531-3 4.349682+1 1.174898-2 2.999163+1 1.396368-2 2.051728+1 1.659587-2 1.392509+1 1.949845-2 9.628079+0 2.290868-2 6.609047+0 2.691535-2 4.504036+0 3.162278-2 3.047452+0 3.715352-2 2.046684+0 4.415704-2 1.325665+0 5.188000-2 8.775748-1 6.165950-2 5.597978-1 7.413102-2 3.439926-1 8.609938-2 2.302413-1 1.071519-1 1.269683-1 1.462177-1 5.398117-2 2.426610-1 1.333625-2 2.917427-1 8.075058-3 3.427678-1 5.242889-3 3.935501-1 3.647064-3 4.466836-1 2.634125-3 5.011872-1 1.973269-3 5.623413-1 1.489232-3 6.237348-1 1.163951-3 6.918310-1 9.160535-4 7.673615-1 7.260086-4 8.511380-1 5.793011-4 9.332543-1 4.769862-4 1.023293+0 3.954249-4 1.161449+0 3.073615-4 1.288250+0 2.522317-4 1.462177+0 1.993796-4 1.621810+0 1.656681-4 1.840772+0 1.331669-4 2.113489+0 1.057633-4 2.371374+0 8.792376-5 2.691535+0 7.229189-5 3.126079+0 5.784704-5 3.630781+0 4.664137-5 4.265795+0 3.729029-5 5.011872+0 3.003880-5 6.000000+0 2.378400-5 7.244360+0 1.877328-5 9.015711+0 1.438894-5 1.109175+1 1.127263-5 1.364583+1 8.884949-6 1.717908+1 6.860722-6 2.371374+1 4.820309-6 3.388442+1 3.290547-6 5.128614+1 2.131053-6 8.317638+1 1.294574-6 1.621810+2 6.557409-7 3.235937+2 3.266816-7 1.288250+3 8.164329-8 1.000000+5 1.050400-9 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.845000-5 1.845000-5 1.000000+5 1.845000-5 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.845000-5 0.0 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 9.230000-6 2.685566+7 9.549926-6 2.578418+7 9.772372-6 2.496851+7 1.000000-5 2.407767+7 1.035142-5 2.263945+7 1.071519-5 2.110376+7 1.110000-5 1.950395+7 1.150000-5 1.788596+7 1.188502-5 1.640793+7 1.230269-5 1.491298+7 1.288400-5 1.303087+7 1.350000-5 1.128420+7 1.428894-5 9.397106+6 1.531087-5 7.455611+6 1.659587-5 5.646119+6 1.927525-5 3.331770+6 2.317395-5 1.736709+6 2.691535-5 1.030098+6 3.090295-5 6.407942+5 3.589219-5 3.860069+5 4.120975-5 2.435504+5 4.570882-5 1.735307+5 4.954502-5 1.341398+5 5.308844-5 1.082513+5 5.650000-5 8.982458+4 6.000000-5 7.557541+4 6.309573-5 6.583212+4 6.650000-5 5.740292+4 7.000000-5 5.059041+4 7.328245-5 4.548088+4 7.673615-5 4.112004+4 8.035261-5 3.740335+4 8.413951-5 3.421786+4 8.810489-5 3.147804+4 9.332543-5 2.856525+4 9.900000-5 2.605127+4 1.047129-4 2.402663+4 1.120000-4 2.196955+4 1.202264-4 2.015584+4 1.300000-4 1.847889+4 1.412538-4 1.698909+4 1.548817-4 1.559022+4 1.757924-4 1.396641+4 2.238721-4 1.139275+4 2.511886-4 1.027563+4 2.818383-4 9.200218+3 3.198895-4 8.080215+3 3.630781-4 7.044067+3 4.216965-4 5.940108+3 4.731513-4 5.178160+3 5.248075-4 4.546538+3 5.888437-4 3.904225+3 6.606934-4 3.325981+3 7.498942-4 2.766541+3 8.609938-4 2.245409+3 9.549926-4 1.908087+3 1.083927-3 1.551948+3 1.230269-3 1.252941+3 1.396368-3 1.004084+3 1.584893-3 7.988386+2 1.798871-3 6.310042+2 2.041738-3 4.948826+2 2.317395-3 3.854235+2 2.630268-3 2.980185+2 3.000000-3 2.264008+2 3.388442-3 1.743075+2 3.845918-3 1.318093+2 4.370000-3 9.866972+1 4.623810-3 8.720640+1 4.954502-3 7.439289+1 5.370318-3 6.127236+1 6.839116-3 3.354741+1 7.762471-3 2.430893+1 8.810489-3 1.748969+1 1.000000-2 1.249547+1 1.135011-2 8.865515+0 1.303167-2 6.049978+0 1.496236-2 4.096307+0 1.717908-2 2.752052+0 1.972423-2 1.835611+0 2.290868-2 1.174475+0 2.660725-2 7.458395-1 3.126079-2 4.538769-1 3.672823-2 2.740914-1 4.415704-2 1.528198-1 5.432503-2 7.855880-2 6.606934-2 4.162755-2 1.288250-1 4.688578-3 1.640590-1 2.141568-3 1.949845-1 1.231887-3 2.290868-1 7.405901-4 2.630268-1 4.821540-4 3.000000-1 3.227100-4 3.388442-1 2.241046-4 3.801894-1 1.598439-4 4.265795-1 1.148485-4 4.731513-1 8.587089-5 5.248075-1 6.464530-5 5.821032-1 4.901973-5 6.456542-1 3.746045-5 7.161434-1 2.885490-5 7.943282-1 2.240438-5 8.709636-1 1.794625-5 9.332543-1 1.529851-5 9.885531-1 1.347401-5 1.071519+0 1.138241-5 1.161449+0 9.680734-6 1.258925+0 8.298846-6 1.396368+0 6.862467-6 1.659587+0 5.054748-6 1.883649+0 4.066571-6 2.137962+0 3.295072-6 2.398833+0 2.741188-6 2.722701+0 2.255209-6 3.162278+0 1.805582-6 3.672823+0 1.456686-6 4.315191+0 1.165304-6 5.069907+0 9.391861-7 6.025596+0 7.509104-7 7.244360+0 5.959259-7 9.015711+0 4.567657-7 1.109175+1 3.578454-7 1.364583+1 2.820389-7 1.717908+1 2.177830-7 2.400000+1 1.510300-7 3.427678+1 1.031944-7 5.188000+1 6.684246-8 8.511380+1 4.013625-8 1.698244+2 1.986624-8 3.388442+2 9.900460-9 1.348963+3 2.474657-9 1.000000+5 3.33430-11 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 9.230000-6 9.230000-6 1.000000+5 9.230000-6 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 9.230000-6 0.0 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 8.310000-6 5.679660+7 8.511380-6 5.497492+7 8.810489-6 5.209770+7 9.120108-6 4.901448+7 9.500000-6 4.519686+7 9.850000-6 4.173659+7 1.023293-5 3.811356+7 1.060000-5 3.483631+7 1.100000-5 3.151231+7 1.150000-5 2.774803+7 1.202264-5 2.427428+7 1.270000-5 2.042533+7 1.350000-5 1.671173+7 1.445440-5 1.324664+7 1.570000-5 9.922146+6 1.778279-5 6.361210+6 2.213095-5 2.904028+6 2.511886-5 1.856579+6 2.818383-5 1.244924+6 3.126079-5 8.748749+5 3.427678-5 6.435271+5 3.715352-5 4.947893+5 4.027170-5 3.830820+5 4.315191-5 3.097558+5 4.570882-5 2.610715+5 4.841724-5 2.215071+5 5.128614-5 1.893768+5 5.400000-5 1.657687+5 5.688529-5 1.460297+5 5.956621-5 1.314159+5 6.237348-5 1.190211+5 6.531306-5 1.084834+5 6.839116-5 9.949339+4 7.161434-5 9.177424+4 7.585776-5 8.356305+4 8.035261-5 7.664150+4 8.609938-5 6.963448+4 9.300000-5 6.309368+4 1.011579-4 5.709735+4 1.109175-4 5.156002+4 1.230269-4 4.630503+4 1.412538-4 4.046601+4 1.840772-4 3.165729+4 2.162719-4 2.721171+4 2.426610-4 2.426365+4 2.722701-4 2.145501+4 3.054921-4 1.883446+4 3.467369-4 1.620060+4 3.981072-4 1.363869+4 4.518559-4 1.158804+4 5.069907-4 9.925701+3 5.688529-4 8.436006+3 6.382635-4 7.116138+3 7.244360-4 5.855408+3 8.222426-4 4.784039+3 9.440609-4 3.806120+3 1.071519-3 3.063700+3 1.216186-3 2.448155+3 1.380384-3 1.942019+3 1.566751-3 1.529142+3 1.778279-3 1.195514+3 2.041738-3 9.068234+2 2.317395-3 6.990842+2 2.630268-3 5.351759+2 3.000000-3 4.024448+2 3.388442-3 3.070030+2 3.845918-3 2.299585+2 4.365158-3 1.709101+2 4.954502-3 1.259557+2 5.623413-3 9.209672+1 6.382635-3 6.681837+1 7.244360-3 4.811034+1 8.222426-3 3.438432+1 9.332543-3 2.439697+1 1.059254-2 1.718631+1 1.202264-2 1.202103+1 1.364583-2 8.349764+0 1.548817-2 5.759936+0 1.778279-2 3.812038+0 2.041738-2 2.503820+0 2.344229-2 1.632569+0 2.722701-2 1.019329+0 3.162278-2 6.316812-1 3.715352-2 3.742756-1 4.415704-2 2.119452-1 5.248075-2 1.191601-1 6.456542-2 5.919816-2 8.709636-2 2.134561-2 1.380384-1 4.414428-3 1.678804-1 2.274938-3 1.972423-1 1.327231-3 2.264644-1 8.414222-4 2.570396-1 5.579399-4 2.884032-1 3.866910-4 3.235937-1 2.700209-4 3.589219-1 1.968466-4 3.981072-1 1.445715-4 4.365158-1 1.106405-4 4.786301-1 8.524219-5 5.248075-1 6.614075-5 5.754399-1 5.169649-5 6.309573-1 4.071389-5 6.918310-1 3.231211-5 7.585776-1 2.583958-5 8.511380-1 1.971780-5 9.225714-1 1.644036-5 9.885531-1 1.416574-5 1.083927+0 1.172517-5 1.188600+0 9.770700-6 1.303167+0 8.202412-6 1.445440+0 6.788486-6 1.678804+0 5.210238-6 1.905461+0 4.195052-6 2.162719+0 3.401696-6 2.454709+0 2.781337-6 2.786121+0 2.291263-6 3.235937+0 1.836670-6 3.758374+0 1.483477-6 4.415704+0 1.188067-6 5.248075+0 9.441494-7 6.309573+0 7.449819-7 7.585776+0 5.923188-7 9.332543+0 4.610578-7 1.174898+1 3.521070-7 1.428894+1 2.816077-7 1.819701+1 2.149525-7 2.600160+1 1.457304-7 3.715352+1 9.969040-8 5.754399+1 6.314607-8 1.035142+2 3.456192-8 2.065380+2 1.714419-8 8.222427+2 4.275374-9 2.600160+4 1.34875-10 1.000000+5 3.50720-11 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 8.310000-6 8.310000-6 1.000000+5 8.310000-6 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 8.310000-6 0.0 1.000000+5 1.000000+5 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.751050-7 1.028100+0 1.294960-6 1.028750+0 1.751050-6 1.029500+0 2.396360-6 1.030100+0 3.013710-6 1.031000+0 4.123780-6 1.032000+0 5.642370-6 1.033200+0 7.904010-6 1.034000+0 9.702900-6 1.035300+0 1.317030-5 1.036640+0 1.751050-5 1.038200+0 2.363100-5 1.039700+0 3.070140-5 1.041500+0 4.084780-5 1.043800+0 5.669810-5 1.046400+0 7.888470-5 1.048300+0 9.821360-5 1.051200+0 1.332250-4 1.054080+0 1.751050-4 1.057700+0 2.386800-4 1.061100+0 3.104640-4 1.065100+0 4.110220-4 1.070400+0 5.734230-4 1.076200+0 7.924720-4 1.080600+0 9.896690-4 1.087100+0 1.333400-3 1.093710+0 1.751050-3 1.102600+0 2.427680-3 1.110700+0 3.165980-3 1.120600+0 4.234760-3 1.133300+0 5.887550-3 1.147500+0 8.128360-3 1.158200+0 1.010140-2 1.174100+0 1.350220-2 1.190110+0 1.751050-2 1.205100+0 2.180500-2 1.227500+0 2.919310-2 1.250000+0 3.770000-2 1.265600+0 4.415540-2 1.294900+0 5.736280-2 1.320600+0 6.993320-2 1.343000+0 8.152160-2 1.382200+0 1.029650-1 1.433800+0 1.330540-1 1.500000+0 1.746000-1 1.589800+0 2.372060-1 1.665000+0 2.950220-1 1.784700+0 3.955630-1 1.892300+0 4.922690-1 2.000000+0 5.916000-1 2.044000+0 6.321000-1 2.163500+0 7.425020-1 2.372600+0 9.360560-1 2.647100+0 1.186570+0 3.000000+0 1.498000+0 3.500000+0 1.914070+0 4.000000+0 2.301000+0 4.750000+0 2.830560+0 5.000000+0 2.994000+0 6.000000+0 3.591000+0 7.000000+0 4.122000+0 8.000000+0 4.600000+0 9.000000+0 5.034000+0 1.000000+1 5.432000+0 1.100000+1 5.798000+0 1.200000+1 6.137000+0 1.300000+1 6.452000+0 1.400000+1 6.742000+0 1.500000+1 7.011000+0 1.600000+1 7.260000+0 1.800000+1 7.716000+0 2.000000+1 8.124000+0 2.200000+1 8.494000+0 2.400000+1 8.830000+0 2.600000+1 9.137000+0 2.800000+1 9.417000+0 3.000000+1 9.676000+0 4.000000+1 1.073000+1 5.000000+1 1.151000+1 6.000000+1 1.211000+1 8.000000+1 1.301000+1 1.000000+2 1.364000+1 1.500000+2 1.465000+1 2.000000+2 1.526000+1 3.000000+2 1.596000+1 4.000000+2 1.637000+1 5.000000+2 1.664000+1 6.000000+2 1.683000+1 8.000000+2 1.708000+1 1.000000+3 1.725000+1 1.500000+3 1.748000+1 2.000000+3 1.761000+1 3.000000+3 1.775000+1 4.000000+3 1.783000+1 5.000000+3 1.788000+1 6.000000+3 1.791000+1 8.000000+3 1.795000+1 1.000000+4 1.798000+1 1.500000+4 1.802000+1 2.000000+4 1.804000+1 3.000000+4 1.806000+1 4.000000+4 1.807000+1 5.000000+4 1.808000+1 6.000000+4 1.808000+1 8.000000+4 1.809000+1 1.000000+5 1.809000+1 1 52000 7 8 1.276000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.216530-7 2.099900+0 1.221780-6 2.106600+0 1.699600-6 2.114000+0 2.351620-6 2.119500+0 2.927740-6 2.127900+0 3.970580-6 2.136250+0 5.216530-6 2.147000+0 7.152230-6 2.156900+0 9.289890-6 2.169000+0 1.239790-5 2.184500+0 1.723350-5 2.201800+0 2.384310-5 2.214800+0 2.970660-5 2.234200+0 3.996070-5 2.253680+0 5.216530-5 2.281500+0 7.306670-5 2.307000+0 9.597280-5 2.338200+0 1.290440-4 2.377400+0 1.787100-4 2.410200+0 2.272890-4 2.446800+0 2.891250-4 2.485900+0 3.640240-4 2.532900+0 4.658730-4 2.556430+0 5.216530-4 2.611900+0 6.651680-4 2.660400+0 8.041540-4 2.745300+0 1.076310-3 2.809000+0 1.303480-3 2.904500+0 1.679220-3 3.000000+0 2.096000-3 3.125000+0 2.702630-3 3.234400+0 3.288360-3 3.425800+0 4.427790-3 3.569300+0 5.368690-3 3.784700+0 6.900550-3 4.000000+0 8.547000-3 4.250000+0 1.055960-2 4.625000+0 1.372210-2 5.000000+0 1.701000-2 5.500000+0 2.152420-2 6.000000+0 2.610000-2 6.750000+0 3.290960-2 7.000000+0 3.515000-2 8.000000+0 4.391000-2 9.000000+0 5.228000-2 1.000000+1 6.024000-2 1.100000+1 6.776000-2 1.200000+1 7.485000-2 1.300000+1 8.153000-2 1.400000+1 8.789000-2 1.500000+1 9.389000-2 1.600000+1 9.960000-2 1.800000+1 1.102000-1 2.000000+1 1.198000-1 2.200000+1 1.286000-1 2.400000+1 1.367000-1 2.600000+1 1.441000-1 2.800000+1 1.510000-1 3.000000+1 1.574000-1 4.000000+1 1.840000-1 5.000000+1 2.042000-1 6.000000+1 2.202000-1 8.000000+1 2.442000-1 1.000000+2 2.617000-1 1.500000+2 2.906000-1 2.000000+2 3.087000-1 3.000000+2 3.309000-1 4.000000+2 3.442000-1 5.000000+2 3.533000-1 6.000000+2 3.600000-1 8.000000+2 3.692000-1 1.000000+3 3.753000-1 1.500000+3 3.844000-1 2.000000+3 3.895000-1 3.000000+3 3.951000-1 4.000000+3 3.984000-1 5.000000+3 4.004000-1 6.000000+3 4.018000-1 8.000000+3 4.037000-1 1.000000+4 4.049000-1 1.500000+4 4.065000-1 2.000000+4 4.074000-1 3.000000+4 4.083000-1 4.000000+4 4.089000-1 5.000000+4 4.092000-1 6.000000+4 4.095000-1 8.000000+4 4.097000-1 1.000000+5 4.099000-1 1 52000 7 8 1.276000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 52000 7 9 1.276000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.200000+1 1.000000+5 5.200000+1 5.000000+5 5.198500+1 8.750000+5 5.195670+1 1.000000+6 5.195000+1 1.500000+6 5.189400+1 2.000000+6 5.181300+1 2.500000+6 5.170900+1 3.000000+6 5.158300+1 3.500000+6 5.143420+1 4.000000+6 5.126900+1 4.750000+6 5.098240+1 5.000000+6 5.088100+1 5.500000+6 5.065960+1 6.250000+6 5.029440+1 6.500000+6 5.016520+1 7.000000+6 4.990100+1 7.875000+6 4.940660+1 8.500000+6 4.903310+1 8.625000+6 4.895500+1 9.000000+6 4.872800+1 1.000000+7 4.809300+1 1.109400+7 4.736900+1 1.187500+7 4.684500+1 1.203100+7 4.674060+1 1.250000+7 4.642300+1 1.375000+7 4.556830+1 1.500000+7 4.472400+1 1.687500+7 4.348000+1 1.750000+7 4.307500+1 1.937500+7 4.188320+1 2.000000+7 4.150000+1 2.250000+7 4.001010+1 2.375000+7 3.929590+1 2.500000+7 3.860100+1 2.750000+7 3.726250+1 2.875000+7 3.661440+1 3.000000+7 3.598300+1 3.437500+7 3.385610+1 3.500000+7 3.356460+1 3.812500+7 3.213750+1 4.000000+7 3.131400+1 4.500000+7 2.921940+1 5.000000+7 2.730400+1 5.750000+7 2.477260+1 6.000000+7 2.402800+1 7.000000+7 2.149600+1 8.000000+7 1.957400+1 9.000000+7 1.806500+1 1.000000+8 1.679500+1 1.109400+8 1.554460+1 1.125000+8 1.537360+1 1.179700+8 1.477950+1 1.250000+8 1.402900+1 1.312500+8 1.337000+1 1.406300+8 1.240860+1 1.437500+8 1.209740+1 1.500000+8 1.149100+1 1.617200+8 1.041800+1 1.750000+8 9.334070+0 1.753900+8 9.304570+0 2.000000+8 7.689300+0 2.171900+8 6.834920+0 2.289100+8 6.376150+0 2.375000+8 6.099450+0 2.394500+8 6.043250+0 2.500000+8 5.780100+0 2.625000+8 5.544770+0 2.859400+8 5.194580+0 3.000000+8 4.980400+0 3.125000+8 4.767310+0 3.500000+8 4.180700+0 3.875000+8 3.760890+0 4.000000+8 3.623900+0 4.125000+8 3.478260+0 4.234400+8 3.347030+0 4.425800+8 3.117660+0 4.712900+8 2.793850+0 4.750000+8 2.754500+0 5.000000+8 2.510400+0 6.000000+8 1.817200+0 6.343800+8 1.649290+0 6.578100+8 1.555170+0 6.789100+8 1.485820+0 7.000000+8 1.430900+0 7.234400+8 1.385630+0 8.000000+8 1.279900+0 8.250000+8 1.242400+0 8.468800+8 1.207370+0 8.851600+8 1.143960+0 1.000000+9 9.779000-1 1.062500+9 9.113490-1 1.281300+9 7.466480-1 1.356400+9 6.988130-1 1.375000+9 6.871090-1 1.407700+9 6.666080-1 1.469200+9 6.281220-1 1.500000+9 6.088400-1 1.562500+9 5.697590-1 1.641100+9 5.219070-1 1.706900+9 4.837740-1 1.780200+9 4.439390-1 1.858700+9 4.046490-1 1.952900+9 3.621710-1 2.000000+9 3.428300-1 2.139200+9 2.923260-1 2.272600+9 2.520060-1 2.443000+9 2.097630-1 2.602800+9 1.776910-1 2.825100+9 1.424080-1 3.088500+9 1.110430-1 3.327400+9 8.966840-2 3.634100+9 6.917340-2 3.975600+9 5.276640-2 4.423800+9 3.795310-2 5.000000+9 2.579500-2 5.703100+9 1.689240-2 6.523400+9 1.089360-2 8.000000+9 5.558100-3 1.00000+10 2.661100-3 1.20500+10 1.446020-3 1.41820+10 8.529300-4 1.71110+10 4.667170-4 2.16710+10 2.202460-4 2.65670+10 1.160120-4 3.11560+10 7.053170-5 3.97620+10 3.313050-5 4.72910+10 1.943940-5 6.04690+10 9.178220-6 8.02340+10 3.896650-6 1.00000+11 2.008300-6 1.34280+11 8.313370-7 1.77440+11 3.628120-7 2.63330+11 1.129690-7 4.88110+11 1.854140-8 1.16740+12 1.486650-9 3.55150+12 6.18606-11 1.00000+14 5.03890-15 5.62340+14 3.79248-17 2.73840+16 5.78558-22 1.00000+17 1.41590-23 1 52000 7 0 1.276000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.60000-12 1.000000+2 5.60000-10 1.000000+3 5.600000-8 1.000000+4 5.600000-6 1.000000+5 5.600000-4 5.000000+5 1.400000-2 8.750000+5 4.287500-2 1.000000+6 5.600000-2 1.500000+6 1.250000-1 2.000000+6 2.205000-1 2.500000+6 3.412000-1 3.000000+6 4.854000-1 3.500000+6 6.513750-1 4.000000+6 8.374000-1 4.750000+6 1.149290+0 5.000000+6 1.261000+0 5.500000+6 1.494190+0 6.250000+6 1.865040+0 6.500000+6 1.993250+0 7.000000+6 2.255400+0 7.875000+6 2.727260+0 8.500000+6 3.071420+0 8.625000+6 3.140690+0 9.000000+6 3.349400+0 1.000000+7 3.907000+0 1.109400+7 4.514030+0 1.187500+7 4.943600+0 1.203100+7 5.028430+0 1.250000+7 5.283900+0 1.375000+7 5.954180+0 1.500000+7 6.610000+0 1.687500+7 7.564710+0 1.750000+7 7.875900+0 1.937500+7 8.782220+0 2.000000+7 9.076000+0 2.250000+7 1.020380+1 2.375000+7 1.074090+1 2.500000+7 1.126000+1 2.750000+7 1.224550+1 2.875000+7 1.271420+1 3.000000+7 1.317100+1 3.437500+7 1.467680+1 3.500000+7 1.488210+1 3.812500+7 1.588240+1 4.000000+7 1.646600+1 4.500000+7 1.796620+1 5.000000+7 1.940700+1 5.750000+7 2.146870+1 6.000000+7 2.213400+1 7.000000+7 2.465500+1 8.000000+7 2.692700+1 9.000000+7 2.891200+1 1.000000+8 3.061300+1 1.109400+8 3.219570+1 1.125000+8 3.240140+1 1.179700+8 3.309460+1 1.250000+8 3.391900+1 1.312500+8 3.460080+1 1.406300+8 3.554660+1 1.437500+8 3.584620+1 1.500000+8 3.642200+1 1.617200+8 3.742760+1 1.750000+8 3.847050+1 1.753900+8 3.849920+1 2.000000+8 4.018100+1 2.171900+8 4.119300+1 2.289100+8 4.182100+1 2.375000+8 4.225040+1 2.394500+8 4.234520+1 2.500000+8 4.284000+1 2.625000+8 4.338350+1 2.859400+8 4.429930+1 3.000000+8 4.479800+1 3.125000+8 4.520890+1 3.500000+8 4.629000+1 3.875000+8 4.717260+1 4.000000+8 4.743100+1 4.125000+8 4.766570+1 4.234400+8 4.786630+1 4.425800+8 4.818160+1 4.712900+8 4.859130+1 4.750000+8 4.863950+1 5.000000+8 4.894500+1 6.000000+8 4.980400+1 6.343800+8 5.000900+1 6.578100+8 5.013260+1 6.789100+8 5.023430+1 7.000000+8 5.033300+1 7.234400+8 5.042560+1 8.000000+8 5.070200+1 8.250000+8 5.077570+1 8.468800+8 5.083840+1 8.851600+8 5.094460+1 1.000000+9 5.120700+1 1.062500+9 5.131730+1 1.281300+9 5.161120+1 1.356400+9 5.168520+1 1.375000+9 5.169950+1 1.407700+9 5.172310+1 1.469200+9 5.176610+1 1.500000+9 5.178700+1 1.562500+9 5.181780+1 1.641100+9 5.185280+1 1.706900+9 5.187400+1 1.780200+9 5.189670+1 1.858700+9 5.191580+1 1.952900+9 5.193420+1 2.000000+9 5.194300+1 2.139200+9 5.195920+1 2.272600+9 5.197380+1 2.443000+9 5.198720+1 2.602800+9 5.199350+1 2.825100+9 5.200150+1 3.088500+9 5.200810+1 3.327400+9 5.200670+1 3.634100+9 5.200500+1 3.975600+9 5.200330+1 4.423800+9 5.200130+1 5.000000+9 5.199900+1 5.703100+9 5.199930+1 6.523400+9 5.199960+1 8.000000+9 5.200000+1 1.00000+10 5.200000+1 1.20500+10 5.200000+1 1.41820+10 5.200000+1 1.71110+10 5.200000+1 2.16710+10 5.200000+1 2.65670+10 5.200000+1 3.11560+10 5.200000+1 3.97620+10 5.200000+1 4.72910+10 5.200000+1 6.04690+10 5.200000+1 8.02340+10 5.200000+1 1.00000+11 5.200000+1 1.34280+11 5.200000+1 1.77440+11 5.200000+1 2.63330+11 5.200000+1 4.88110+11 5.200000+1 1.16740+12 5.200000+1 3.55150+12 5.200000+1 1.00000+14 5.200000+1 5.62340+14 5.200000+1 2.73840+16 5.200000+1 1.00000+17 5.200000+1 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.060226-6 0.0 5.156411-6 0.0 5.175449-6 1.103892+0 5.181795-6 1.467188+0 5.194487-6 2.679939+0 5.207179-6 4.518746+0 5.221457-6 7.416616+0 5.243470-6 1.293883+1 5.258740-6 1.654402+1 5.271803-6 1.862134+1 5.285030-6 1.925574+1 5.297807-6 1.834674+1 5.311320-6 1.596035+1 5.332731-6 1.065744+1 5.346789-6 7.204404+0 5.360274-6 4.533718+0 5.372173-6 2.771611+0 5.384865-6 1.524686+0 5.403109-6 4.359650-1 5.410249-6 0.0 6.043761-6 0.0 6.061055-6 1.200748-6 6.087162-6 5.120071-1 6.090892-6 5.844045-1 6.105810-6 1.067463+0 6.120729-6 1.799888+0 6.135647-6 2.801510+0 6.180403-6 6.536655+0 6.197186-6 7.427771+0 6.211172-6 7.690134+0 6.226091-6 7.372069+0 6.242995-6 6.362920+0 6.285765-6 2.806205+0 6.300684-6 1.805856+0 6.314670-6 1.103981+0 6.329588-6 6.073098-1 6.354577-6 1.003769-1 6.359425-6 2.314264-6 6.364731-6 1.794438-6 6.379732-6 9.112356-7 6.394733-6 0.0 6.567080-6 0.0 6.570359-6 3.605192-2 6.602703-6 3.514980+0 6.618875-6 6.402228+0 6.635047-6 1.076664+1 6.652631-6 1.735735+1 6.697612-6 3.773352+1 6.717392-6 4.389254+1 6.734116-6 4.532312+1 6.750870-6 4.300076+1 6.767493-6 3.752372+1 6.813192-6 1.724174+1 6.829839-6 1.149572+1 6.845285-6 7.730284+0 6.861457-6 5.362158+0 6.893801-6 2.943038+0 6.913073-6 3.425463+0 6.929720-6 3.573844+0 6.948404-6 3.395329+0 6.965506-6 2.978066+0 7.012954-6 1.330536+0 7.029601-6 8.589486-1 7.046248-6 5.118735-1 7.062895-6 2.815885-1 7.085500-6 9.189980-2 7.096189-6 9.033839-6 7.137184-6 1.658704-5 7.154412-6 1.874698-5 7.171640-6 1.955905-5 7.188868-6 1.883727-5 7.206096-6 1.674720-5 7.235265-6 1.143656-5 7.239938-6 1.053146-5 7.241949-6 8.813637-3 7.277599-6 1.532176+0 7.295424-6 2.794204+0 7.313249-6 4.704475+0 7.334391-6 7.919744+0 7.381596-6 1.656048+1 7.396196-6 1.858805+1 7.406763-6 1.967296+1 7.424611-6 2.026561+1 7.442866-6 1.932508+1 7.464808-6 1.657551+1 7.508303-6 1.043006+1 7.528127-6 8.856969+0 7.546098-6 8.715937+0 7.563325-6 9.883651+0 7.598715-6 1.496506+1 7.630242-6 2.072740+1 7.642280-6 2.256160+1 7.663384-6 2.446482+1 7.681488-6 2.482844+1 7.701239-6 2.391696+1 7.730018-6 2.084067+1 7.787092-6 1.304326+1 7.809840-6 1.072708+1 7.835456-6 8.745088+0 7.844842-6 8.458468+0 7.880791-6 8.371735+0 7.919102-6 8.612889+0 8.034205-6 7.830625+0 8.149817-6 7.775834+0 8.209676-6 8.921284+0 8.243032-6 1.053137+1 8.307528-6 1.490767+1 8.334017-6 1.590575+1 8.355170-6 1.596532+1 8.378087-6 1.521346+1 8.412445-6 1.307841+1 8.450520-6 1.032803+1 8.465076-6 9.482592+0 8.486854-6 8.647690+0 8.510488-6 8.169778+0 8.546035-6 8.087830+0 8.580602-6 9.101112+0 8.647820-6 1.132449+1 8.671307-6 1.166111+1 8.700532-6 1.151313+1 8.779698-6 1.035996+1 8.840417-6 1.041273+1 9.011804-6 1.057882+1 9.057202-6 1.204958+1 9.083286-6 1.367128+1 9.106477-6 1.579715+1 9.148467-6 2.105897+1 9.186859-6 2.623606+1 9.217208-6 2.857031+1 9.239236-6 2.873037+1 9.261373-6 2.748896+1 9.293220-6 2.376471+1 9.339648-6 1.717090+1 9.368015-6 1.400101+1 9.387029-6 1.241545+1 9.411664-6 1.110857+1 9.453683-6 9.691920+0 9.914649-6 9.343442+0 9.964113-6 1.254979+1 9.988514-6 1.521350+1 1.001292-5 1.922775+1 1.004018-5 2.544548+1 1.010976-5 4.446714+1 1.013847-5 4.924075+1 1.016175-5 5.033565+1 1.018721-5 4.811373+1 1.021099-5 4.341526+1 1.027981-5 2.438016+1 1.030726-5 1.836488+1 1.032861-5 1.481012+1 1.035606-5 1.190167+1 1.040182-5 8.776854+0 1.304399-5 5.835529+0 1.463230-5 4.476339+0 1.600847-5 3.590628+0 1.616608-5 3.667539+0 1.636310-5 4.044018+0 1.644190-5 3.996475+0 1.667832-5 3.327230+0 1.679653-5 3.177593+0 1.716429-5 3.043920+0 1.745714-5 3.034156+0 1.774856-5 2.834809+0 1.922168-5 2.294759+0 2.087623-5 1.844572+0 2.240736-5 1.532483+0 2.418506-5 1.261629+0 2.598500-5 1.056906+0 2.806808-5 8.800538-1 3.025045-5 7.438735-1 3.256278-5 6.367758-1 3.566400-5 5.332351-1 3.966921-5 4.440085-1 3.983423-5 4.410616-1 4.003032-5 1.419104+0 4.012837-5 2.228731+0 4.023255-5 3.561982+0 4.033407-5 5.343611+0 4.051781-5 9.400239+0 4.062473-5 1.195852+1 4.073678-5 1.389040+1 4.083811-5 1.489006+1 4.092926-5 1.514349+1 4.103882-5 1.470627+1 4.134726-5 1.207984+1 4.151369-5 1.032447+1 4.169712-5 7.843489+0 4.179517-5 6.184314+0 4.197266-5 4.121145+0 4.207229-5 3.263554+0 4.217192-5 2.679211+0 4.227156-5 2.313237+0 4.240150-5 1.992784+0 4.247082-5 1.729637+0 4.250336-5 1.713106+0 4.260522-5 1.566061+0 4.291079-5 9.021894-1 4.301265-5 7.209275-1 4.311451-5 5.871895-1 4.321637-5 4.980804-1 4.342009-5 3.882033-1 4.592892-5 3.606077-1 4.615501-5 4.933855-1 4.626806-5 6.038635-1 4.638111-5 7.719064-1 4.649416-5 1.002093+0 4.683330-5 1.861213+0 4.694635-5 2.062554+0 4.708896-5 2.144791+0 4.719205-5 2.090920+0 4.751394-5 1.576166+0 4.764541-5 1.440227+0 4.775726-5 1.415878+0 4.788210-5 1.502620+0 4.816629-5 1.975858+0 4.837801-5 2.370564+0 4.851638-5 2.517221+0 4.866199-5 2.529066+0 4.879335-5 2.436268+0 4.921183-5 1.971659+0 4.932993-5 1.921839+0 4.956182-5 1.953111+0 5.022403-5 2.127425+0 5.104433-5 2.259532+0 5.192306-5 2.551147+0 5.291071-5 3.071539+0 5.359364-5 3.574051+0 5.437471-5 4.336886+0 5.507480-5 5.232690+0 5.590775-5 6.625354+0 5.660541-5 8.122953+0 5.745211-5 1.043678+1 5.840674-5 1.381807+1 5.934923-5 1.805808+1 6.066646-5 2.549421+1 6.367500-5 4.507709+1 6.500000-5 5.151544+1 6.656720-5 5.536838+1 6.835884-5 5.504999+1 7.110000-5 4.925450+1 7.680000-5 3.413113+1 8.036976-5 2.648161+1 8.413951-5 2.010538+1 8.760062-5 1.556613+1 9.092368-5 1.217429+1 9.457607-5 9.330994+0 9.751037-5 7.564459+0 1.006398-4 6.080059+0 1.035763-4 4.973876+0 1.075682-4 3.817590+0 1.109899-4 3.068116+0 1.150648-4 2.394187+0 1.159145-4 2.404506+0 1.165464-4 2.563671+0 1.173511-4 2.913163+0 1.179621-4 3.041528+0 1.186085-4 2.931008+0 1.197253-4 2.626881+0 1.224163-4 2.335522+0 1.249958-4 2.169769+0 1.262652-4 2.192317+0 1.278292-4 2.404799+0 1.288445-4 2.384718+0 1.300000-4 2.287207+0 1.342043-4 2.140961+0 1.413347-4 2.043903+0 1.495000-4 2.057521+0 1.612491-4 2.242316+0 1.624397-4 2.360532+0 1.633512-4 2.591694+0 1.649476-4 3.228673+0 1.656149-4 3.357696+0 1.664087-4 3.257980+0 1.680184-4 2.697850+0 1.689952-4 2.521154+0 1.701930-4 2.530046+0 1.730128-4 2.894884+0 2.113489-4 4.118336+0 2.454709-4 4.927678+0 2.884032-4 5.575450+0 3.306550-4 5.891650+0 3.948818-4 5.997654+0 5.143929-4 5.645557+0 5.636812-4 5.446001+0 5.790380-4 5.930406+0 5.824029-4 6.391503+0 5.846721-4 7.066405+0 5.867425-4 8.085417+0 5.890234-4 9.798461+0 5.915687-4 1.251733+1 6.000876-4 2.418244+1 6.035100-4 2.781692+1 6.092242-4 3.177203+1 6.163952-4 3.445343+1 6.287174-4 3.646810+1 6.434688-4 3.642222+1 6.915938-4 3.194311+1 7.786958-4 2.776325+1 8.041397-4 2.709618+1 8.231892-4 2.920723+1 8.611513-4 2.863530+1 8.856574-4 2.892179+1 9.668024-4 2.658519+1 9.947122-4 2.675219+1 1.219417-3 2.127035+1 1.443881-3 1.721101+1 1.713115-3 1.371292+1 1.970295-3 1.130261+1 2.241542-3 9.407217+0 2.585235-3 7.640092+0 2.969685-3 6.214266+0 3.377221-3 5.110623+0 3.872298-3 4.136385+0 4.243250-3 3.612223+0 4.267523-3 3.729404+0 4.282779-3 3.976290+0 4.296739-3 4.407375+0 4.309861-3 5.033376+0 4.325621-3 6.049950+0 4.363288-3 8.739686+0 4.384045-3 9.705874+0 4.408207-3 1.021524+1 4.461904-3 1.027389+1 4.549916-3 1.012667+1 4.586446-3 1.062153+1 4.655698-3 1.258084+1 4.692849-3 1.292337+1 4.843229-3 1.255106+1 4.960918-3 1.360930+1 5.980242-3 1.033047+1 6.845448-3 8.327462+0 7.835424-3 6.697274+0 9.015711-3 5.317225+0 1.017162-2 4.342535+0 1.158628-2 3.479951+0 1.304809-2 2.837448+0 1.442864-2 2.381764+0 1.610400-2 1.964977+0 1.814471-2 1.591526+0 2.037335-2 1.294954+0 2.274564-2 1.062546+0 2.532922-2 8.749062-1 2.866397-2 6.988951-1 3.103531-2 6.093920-1 3.119582-2 6.338195-1 3.130034-2 6.875935-1 3.137698-2 7.637889-1 3.144787-2 8.736846-1 3.153189-2 1.063451+0 3.163026-2 1.371836+0 3.182823-2 2.175459+0 3.198318-2 2.767268+0 3.213633-2 3.154227+0 3.226636-2 3.318331+0 3.250595-2 3.388342+0 3.824531-2 2.616314+0 4.341355-2 2.124168+0 4.937222-2 1.706666+0 5.552641-2 1.392003+0 6.280132-2 1.121809+0 7.063824-2 9.093129-1 8.008184-2 7.250768-1 8.930976-2 5.940702-1 9.979330-2 4.845386-1 1.112218-1 3.961750-1 1.225960-1 3.304957-1 1.353474-1 2.749902-1 1.502790-1 2.261217-1 1.667967-1 1.861820-1 1.868546-1 1.506647-1 2.071613-1 1.244268-1 2.314204-1 1.015771-1 2.549889-1 8.512483-2 2.843479-1 7.005215-2 3.179372-1 5.760382-2 3.525231-1 4.826638-2 3.897281-1 4.080661-2 4.368300-1 3.393482-2 4.905253-1 2.834850-2 5.495409-1 2.396254-2 6.102240-1 2.066613-2 6.840786-1 1.773912-2 7.807285-1 1.503849-2 8.951071-1 1.282697-2 1.070165+0 1.060657-2 1.286622+0 8.679232-3 1.546860+0 7.102111-3 1.859734+0 5.811572-3 2.235892+0 4.755540-3 2.688134+0 3.891401-3 3.231848+0 3.184287-3 3.885536+0 2.605664-3 4.671441+0 2.132183-3 5.616308+0 1.744740-3 6.752287+0 1.427700-3 8.118035+0 1.168270-3 9.760024+0 9.559809-4 1.000000+1 1.947878-3 1 52000 7 0 1.276000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.197124+1 3.060226-6-5.163297+1 4.769463-6-4.982234+1 5.064080-6-4.757079+1 5.146373-6-4.493078+1 5.219871-6-3.892532+1 5.241685-6-3.977242+1 5.258740-6-4.292036+1 5.286361-6-5.147263+1 5.291471-6-5.305975+1 5.316441-6-4.633938+1 5.337270-6-4.411605+1 5.366224-6-4.528016+1 5.436346-6-5.107795+1 5.479938-6-5.253352+1 6.061055-6-4.681620+1 6.147195-6-4.413092+1 6.187862-6-4.593737+1 6.251318-6-5.158641+1 6.298440-6-5.158251+1 6.515262-6-4.203258+1 6.556096-6-3.850649+1 6.618875-6-2.805155+1 6.640607-6-2.465412+1 6.655366-6-2.358021+1 6.666945-6-2.412484+1 6.681596-6-2.646828+1 6.693271-6-2.984247+1 6.713737-6-3.922933+1 6.738291-6-5.417032+1 6.754047-6-4.513286+1 6.770627-6-3.765145+1 6.784804-6-3.391681+1 6.802045-6-3.186505+1 6.813192-6-3.204730+1 6.831769-6-3.429390+1 6.862468-6-3.973741+1 6.909304-6-4.626281+1 7.048329-6-5.199273+1 7.103339-6-5.477439+1 7.235265-6-4.840800+1 7.332372-6-4.037695+1 7.362234-6-4.062741+1 7.388358-6-4.345967+1 7.453786-6-5.545465+1 7.485206-6-5.370689+1 7.511631-6-5.507297+1 7.521433-6-5.524314+1 7.576164-6-4.833277+1 7.608430-6-4.739486+1 7.639500-6-5.040306+1 7.670199-6-5.610641+1 7.711153-6-4.866061+1 7.747794-6-4.489995+1 7.784365-6-4.429150+1 7.835456-6-4.696623+1 7.893320-6-5.015942+1 8.160573-6-5.517224+1 8.270326-6-5.761752+1 8.324849-6-5.507647+1 8.398982-6-4.944809+1 8.450520-6-4.898151+1 8.590872-6-5.454652+1 8.671307-6-5.375779+1 8.758454-6-5.294371+1 8.994954-6-5.643799+1 9.011804-6-5.654368+1 9.116457-6-5.298811+1 9.164561-6-5.497810+1 9.186859-6-5.770186+1 9.221566-6-5.238011+1 9.273780-6-4.337979+1 9.309030-6-3.998641+1 9.339648-6-3.931257+1 9.387029-6-4.118070+1 9.494702-6-4.649459+1 9.814676-6-5.313087+1 9.903156-6-4.801940+1 1.002078-5-3.575483+1 1.004893-5-3.477150+1 1.007259-5-3.600248+1 1.009870-5-4.016678+1 1.013222-5-4.965219+1 1.013863-5-5.210413+1 1.019206-5-3.265267+1 1.021599-5-2.588367+1 1.023939-5-2.160699+1 1.025541-5-2.009685+1 1.027638-5-1.953901+1 1.030116-5-2.065994+1 1.035301-5-2.576879+1 1.040182-5-3.037341+1 1.043818-5-3.327511+1 1.052792-5-3.653242+1 1.070920-5-3.928890+1 1.118845-5-4.148923+1 1.350000-5-4.260948+1 1.640250-5-4.319380+1 3.467599-5-4.878435+1 3.870820-5-5.206443+1 3.935480-5-5.265078+1 3.986490-5-5.031926+1 4.039543-5-4.645258+1 4.060930-5-4.787399+1 4.087173-5-5.377965+1 4.115592-5-4.812338+1 4.161425-5-4.330200+1 4.179517-5-4.280261+1 4.270708-5-4.681650+1 4.441473-5-5.081726+1 4.691809-5-5.452525+1 4.764541-5-5.449143+1 4.851638-5-5.547743+1 4.981987-5-5.655318+1 5.437471-5-6.424971+1 6.004869-5-7.732794+1 6.206443-5-7.681454+1 6.367500-5-7.134472+1 6.580000-5-5.847597+1 6.835884-5-4.175131+1 6.987871-5-3.392257+1 7.142044-5-2.787868+1 7.272370-5-2.409486+1 7.465315-5-2.015206+1 7.680000-5-1.748222+1 7.855816-5-1.619040+1 8.127628-5-1.529527+1 8.461814-5-1.537447+1 9.004844-5-1.692313+1 1.099078-4-2.468650+1 1.173511-4-2.751574+1 1.203372-4-2.756168+1 1.284541-4-2.915707+1 1.649476-4-3.316547+1 1.680184-4-3.247002+1 1.741443-4-3.326391+1 2.454709-4-3.411156+1 3.734997-4-3.420669+1 4.531584-4-3.584267+1 5.143929-4-3.923875+1 5.484311-4-4.330315+1 5.669117-4-4.759849+1 5.796223-4-5.295990+1 5.925999-4-6.331692+1 5.978000-4-6.407949+1 6.079478-4-5.797706+1 6.259924-4-4.699311+1 6.434688-4-3.915204+1 6.587946-4-3.473058+1 6.819460-4-3.082852+1 7.147316-4-2.776246+1 7.656833-4-2.482471+1 7.948000-4-2.436426+1 8.139138-4-2.517727+1 8.400579-4-2.227992+1 8.706791-4-2.099261+1 8.951071-4-1.894258+1 9.398438-4-1.665031+1 9.740765-4-1.566274+1 9.947122-4-1.530234+1 1.022363-3-1.378967+1 1.079831-3-1.188301+1 1.167709-3-9.874296+0 1.253223-3-8.494881+0 1.347508-3-7.384220+0 1.494150-3-6.249689+0 1.645318-3-5.546951+0 1.811891-3-5.106033+0 2.056297-3-4.832376+0 2.348945-3-4.855826+0 2.697837-3-5.161141+0 3.118625-3-5.818327+0 3.501344-3-6.744989+0 3.797555-3-7.849452+0 4.004437-3-9.076875+0 4.125083-3-1.021719+1 4.210103-3-1.152984+1 4.261634-3-1.299257+1 4.325621-3-1.574470+1 4.352242-3-1.581864+1 4.428432-3-1.300740+1 4.479474-3-1.205836+1 4.534240-3-1.186380+1 4.608352-3-1.241979+1 4.642548-3-1.194871+1 4.712158-3-1.012470+1 4.776615-3-9.171883+0 4.843229-3-8.794021+0 4.911670-3-8.656781+0 4.960918-3-7.933392+0 5.025300-3-6.869129+0 5.110961-3-5.950888+0 5.259724-3-4.844033+0 5.422499-3-3.959949+0 5.629273-3-3.126505+0 5.837810-3-2.483760+0 6.087698-3-1.906460+0 6.317523-3-1.498156+0 6.584791-3-1.123405+0 6.845448-3-8.465122-1 7.076991-3-6.518585-1 7.323139-3-4.880687-1 7.508391-3-3.857757-1 7.835424-3-2.389265-1 8.035261-3-1.679281-1 8.317638-3-9.025526-2 8.511380-3-4.691519-2 8.615360-3-2.631059-2 8.684603-3-1.478471-2 8.773124-3-1.815242-3 8.812683-3 4.155119-3 8.874114-3 1.289931-2 9.106993-3 3.970150-2 9.252306-3 5.265482-2 9.406705-3 6.278943-2 9.543271-3 6.944686-2 9.768967-3 7.736099-2 1.017162-2 7.906701-2 1.044538-2 7.548615-2 1.084834-2 6.166063-2 1.110221-2 5.062938-2 1.136456-2 3.594357-2 1.158628-2 2.155532-2 1.176590-2 9.643780-3 1.186515-2 2.891613-3 1.189776-2 4.738320-4 1.190741-2-2.332501-4 1.197947-2-5.773509-3 1.205513-2-1.151649-2 1.259825-2-5.555860-2 1.346559-2-1.299481-1 2.274564-2-1.003243+0 2.532922-2-1.293684+0 2.731117-2-1.588628+0 2.866397-2-1.873508+0 2.969056-2-2.194210+0 3.034010-2-2.502770+0 3.080957-2-2.846953+0 3.115391-2-3.279324+0 3.144787-2-3.925018+0 3.167002-2-4.411243+0 3.182823-2-4.492336+0 3.198318-2-4.284308+0 3.238739-2-3.256579+0 3.261551-2-2.845928+0 3.290765-2-2.497576+0 3.337183-2-2.121496+0 3.401064-2-1.766182+0 3.481969-2-1.444850+0 3.565257-2-1.197772+0 3.678513-2-9.521686-1 3.787961-2-7.732695-1 3.941262-2-5.855626-1 4.092554-2-4.435228-1 4.218588-2-3.492606-1 4.341355-2-2.748629-1 4.473657-2-2.094650-1 4.564949-2-1.725592-1 4.676092-2-1.328558-1 4.803552-2-9.392355-2 4.937222-2-6.064543-2 5.061711-2-3.561986-2 5.173211-2-1.735667-2 5.291214-2-8.294056-4 5.319908-2 3.223495-3 5.370318-2 8.366273-3 5.403718-2 1.187900-2 5.552641-2 2.630926-2 5.711598-2 3.845813-2 5.956728-2 5.097303-2 6.114408-2 5.702389-2 6.280132-2 6.127787-2 6.432289-2 6.296452-2 6.737211-2 6.288633-2 7.247067-2 5.608411-2 7.640755-2 4.804655-2 8.008184-2 3.842647-2 8.779660-2 1.460871-2 9.128521-2 3.431725-3 9.168327-2 2.209266-3 9.252306-2-5.761181-4 9.293290-2-1.914514-3 1.053625-1-3.964985-2 1.148154-1-6.622562-2 1.261695-1-9.470339-2 1.451771-1-1.341399-1 1.667967-1-1.691857-1 2.008045-1-2.092025-1 2.475266-1-2.451131-1 3.179372-1-2.770070-1 4.368300-1-3.036598-1 6.840786-1-3.239761-1 1.410753+0-3.351673-1 4.260405+0-3.384627-1 1.000000+1-3.386618-1 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.448440-4 1.026314-6 1.626743-4 1.067537-6 1.900170-4 1.090458-6 2.080309-4 1.185685-6 2.904044-4 1.340989-6 4.845065-4 1.389712-6 5.654670-4 1.516635-6 8.213536-4 1.715287-6 1.413727-3 1.939960-6 2.469525-3 2.048000-6 3.175629-3 2.194060-6 4.304663-3 2.333331-6 5.695254-3 2.481443-6 7.599701-3 2.638957-6 1.023287-2 2.806469-6 1.392447-2 2.984614-6 1.914257-2 3.174067-6 2.667803-2 3.272415-6 3.158256-2 3.367689-6 3.710655-2 3.459987-6 4.336354-2 3.636018-6 5.804670-2 3.801220-6 7.620620-2 3.879969-6 8.669966-2 4.031593-6 1.111206-1 4.101757-6 1.245153-1 4.171115-6 1.394489-1 4.305495-6 1.733332-1 4.431477-6 2.129287-1 4.549585-6 2.587338-1 4.660311-6 3.112783-1 4.764117-6 3.713361-1 4.861434-6 4.394847-1 4.952670-6 5.162384-1 5.042515-6 6.069707-1 5.118391-6 6.980769-1 5.200093-6 8.143674-1 5.264043-6 9.212422-1 5.330116-6 1.050217+0 5.392059-6 1.191747+0 5.450130-6 1.346804+0 5.516269-6 1.554832+0 5.555611-6 1.697729+0 5.607399-6 1.913055+0 5.648320-6 2.109200+0 5.690375-6 2.339806+0 5.729801-6 2.588110+0 5.766764-6 2.854909+0 5.801416-6 3.141076+0 5.833903-6 3.447553+0 5.864359-6 3.775374+0 5.892912-6 4.125503+0 5.919680-6 4.498734+0 5.954436-6 5.063026+0 5.968302-6 5.318385+0 5.990358-6 5.767465+0 6.011036-6 6.244524+0 6.030421-6 6.750654+0 6.048595-6 7.286807+0 6.082671-6 8.496004+0 6.112487-6 9.850432+0 6.138576-6 1.136803+1 6.161405-6 1.307421+1 6.181379-6 1.500164+1 6.198857-6 1.718390+1 6.214150-6 1.964351+1 6.227531-6 2.238049+1 6.241426-6 2.599851+1 6.249485-6 2.855332+1 6.258450-6 3.187049+1 6.266294-6 3.524598+1 6.273157-6 3.860931+1 6.279163-6 4.189860+1 6.289673-6 4.851456+1 6.325821-6 8.111326+1 6.336760-6 9.425236+1 6.344540-6 1.044905+2 6.352319-6 1.154054+2 6.367878-6 1.388686+2 6.369823-6 1.419142+2 6.383437-6 1.635341+2 6.388785-6 1.720169+2 6.398996-6 1.878161+2 6.404344-6 1.957296+2 6.409449-6 2.029491+2 6.414555-6 2.097657+2 6.421362-6 2.180998+2 6.427926-6 2.251736+2 6.434003-6 2.307549+2 6.439108-6 2.346462+2 6.445672-6 2.384898+2 6.454424-6 2.414410+2 6.461717-6 2.419056+2 6.464426-6 2.416059+2 6.472153-6 2.393410+2 6.478874-6 2.356976+2 6.484415-6 2.315627+2 6.491553-6 2.248121+2 6.498611-6 2.166862+2 6.506165-6 2.065761+2 6.512648-6 1.969033+2 6.517381-6 1.893576+2 6.523467-6 1.791718+2 6.530091-6 1.676172+2 6.537350-6 1.546064+2 6.542915-6 1.445242+2 6.548020-6 1.352857+2 6.554584-6 1.235400+2 6.562364-6 1.099856+2 6.569171-6 9.859737+1 6.571115-6 9.544128+1 6.578409-6 8.404580+1 6.584790-6 7.469794+1 6.585702-6 7.341312+1 6.601261-6 5.354993+1 6.607247-6 4.697149+1 6.612033-6 4.213688+1 6.616820-6 3.767294+1 6.623627-6 3.194355+1 6.631558-6 2.614075+1 6.637809-6 2.218595+1 6.644980-6 1.826695+1 6.652068-6 1.498442+1 6.656747-6 1.310928+1 6.666014-6 1.000307+1 6.688555-6 5.112306+0 6.697327-6 3.959849+0 6.701662-6 3.503289+0 6.705962-6 3.112667+0 6.712347-6 2.631215+0 6.718648-6 2.252159+0 6.726935-6 1.868136+0 6.732554-6 1.665497+0 6.744114-6 1.353585+0 6.752021-6 1.197019+0 6.759805-6 1.072126+0 6.767468-6 9.682953-1 6.782496-6 7.976654-1 6.789834-6 7.241782-1 6.797058-6 6.563018-1 6.804169-6 5.934412-1 6.811169-6 5.354753-1 6.838300-6 3.549308-1 6.851233-6 2.990103-1 6.863762-6 2.661469-1 6.888037-6 2.643825-1 6.910794-6 3.349523-1 6.972133-6 8.276209-1 7.069767-6 2.339934+0 7.112145-6 3.290583+0 7.147148-6 4.257010+0 7.173400-6 5.112765+0 7.212779-6 6.656152+0 7.270008-6 9.676611+0 7.287858-6 1.089330+1 7.305708-6 1.229650+1 7.323558-6 1.393580+1 7.341409-6 1.587551+1 7.359259-6 1.819524+1 7.372647-6 2.023953+1 7.392728-6 2.389307+1 7.421735-6 3.063399+1 7.448691-6 3.857322+1 7.455852-6 4.093496+1 7.469607-6 4.571056+1 7.483362-6 5.070581+1 7.487947-6 5.239487+1 7.506288-6 5.909179+1 7.524628-6 6.531197+1 7.529213-6 6.672783+1 7.542968-6 7.050004+1 7.546846-6 7.141248+1 7.553633-6 7.282531+1 7.558723-6 7.371982+1 7.566358-6 7.477633+1 7.573993-6 7.547087+1 7.579992-6 7.575253+1 7.584491-6 7.580862+1 7.594615-6 7.544906+1 7.597989-6 7.518229+1 7.607159-6 7.410354+1 7.616330-6 7.254695+1 7.630658-6 6.932894+1 7.636963-6 6.768867+1 7.671351-6 5.844779+1 7.680664-6 5.653634+1 7.685178-6 5.581191+1 7.691984-6 5.503203+1 7.695996-6 5.477550+1 7.699004-6 5.469413+1 7.703518-6 5.476696+1 7.708031-6 5.509458+1 7.712616-6 5.571279+1 7.716055-6 5.638035+1 7.721214-6 5.773531+1 7.726372-6 5.954758+1 7.735542-6 6.401606+1 7.740127-6 6.690460+1 7.744712-6 7.026626+1 7.753882-6 7.852250+1 7.758467-6 8.347502+1 7.763052-6 8.901652+1 7.776808-6 1.094769+2 7.790563-6 1.363349+2 7.814635-6 2.011810+2 7.830184-6 2.566757+2 7.841777-6 3.055558+2 7.851668-6 3.524503+2 7.860390-6 3.977370+2 7.867249-6 4.358713+2 7.876896-6 4.930550+2 7.896189-6 6.182350+2 7.898601-6 6.347104+2 7.915482-6 7.532661+2 7.922114-6 8.006203+2 7.936453-6 9.020223+2 7.942754-6 9.452823+2 7.948470-6 9.833780+2 7.957849-6 1.042696+3 7.965029-6 1.084730+3 7.970893-6 1.116434+3 7.978589-6 1.153925+3 7.987556-6 1.190931+3 7.989951-6 1.199485+3 7.999574-6 1.227798+3 8.006727-6 1.242198+3 8.013718-6 1.250528+3 8.023574-6 1.252368+3 8.032279-6 1.244290+3 8.051572-6 1.195043+3 8.057542-6 1.171654+3 8.070730-6 1.108088+3 8.079144-6 1.060115+3 8.087692-6 1.006573+3 8.094882-6 9.585371+2 8.102575-6 9.048510+2 8.111213-6 8.426663+2 8.118428-6 7.899116+2 8.127705-6 7.219658+2 8.138557-6 6.436818+2 8.146998-6 5.846279+2 8.149410-6 5.681490+2 8.162071-6 4.851445+2 8.167497-6 4.516085+2 8.185584-6 3.498893+2 8.192358-6 3.160075+2 8.198824-6 2.858533+2 8.205290-6 2.578235+2 8.213550-6 2.250491+2 8.224170-6 1.877243+2 8.235234-6 1.542510+2 8.244712-6 1.296139+2 8.254568-6 1.075861+2 8.264423-6 8.884773+1 8.284134-6 5.977272+1 8.303846-6 3.964470+1 8.323557-6 2.613259+1 8.343268-6 1.737604+1 8.348196-6 1.575538+1 8.362979-6 1.196385+1 8.365443-6 1.146816+1 8.369755-6 1.068279+1 8.376222-6 9.686191+0 8.382690-6 8.887538+0 8.392546-6 8.010266+0 8.399937-6 7.596256+0 8.402401-6 7.501863+0 8.405533-6 7.412453+0 8.412962-6 7.335177+0 8.417510-6 7.380970+0 8.423486-6 7.550043+0 8.434378-6 8.190775+0 8.441971-6 8.911854+0 8.453360-6 1.047180+1 8.459055-6 1.149341+1 8.464749-6 1.269495+1 8.470324-6 1.406059+1 8.475899-6 1.562936+1 8.481089-6 1.728681+1 8.509791-6 3.050580+1 8.521227-6 3.801119+1 8.527739-6 4.292953+1 8.547276-6 6.065724+1 8.556411-6 7.050779+1 8.577369-6 9.671999+1 8.579988-6 1.003227+2 8.598326-6 1.271930+2 8.607135-6 1.408889+2 8.621220-6 1.632925+2 8.626470-6 1.716578+2 8.632461-6 1.811212+2 8.636955-6 1.881165+2 8.643695-6 1.983663+2 8.650435-6 2.082237+2 8.658185-6 2.189243+2 8.664514-6 2.270476+2 8.672820-6 2.367093+2 8.681498-6 2.454010+2 8.684798-6 2.482902+2 8.694529-6 2.553550+2 8.703348-6 2.597527+2 8.708523-6 2.613988+2 8.718834-6 2.625560+2 8.725984-6 2.616849+2 8.746111-6 2.520936+2 8.753593-6 2.460337+2 8.755643-6 2.441591+2 8.770777-6 2.278179+2 8.778653-6 2.178332+2 8.786882-6 2.065889+2 8.794858-6 1.951139+2 8.803173-6 1.827826+2 8.812311-6 1.690832+2 8.821730-6 1.551271+2 8.832044-6 1.404163+2 8.851124-6 1.160323+2 8.863404-6 1.030614+2 8.871343-6 9.605699+1 8.889058-6 8.483257+1 8.894859-6 8.257027+1 8.898855-6 8.143432+1 8.901099-6 8.094946+1 8.904501-6 8.042634+1 8.912265-6 8.019728+1 8.916147-6 8.059005+1 8.920880-6 8.152907+1 8.927262-6 8.359764+1 8.932846-6 8.616361+1 8.938156-6 8.925632+1 8.945371-6 9.447246+1 8.965294-6 1.148337+2 8.975057-6 1.279046+2 9.001896-6 1.735389+2 9.012981-6 1.961338+2 9.022723-6 2.175476+2 9.031562-6 2.380727+2 9.039296-6 2.567598+2 9.046100-6 2.736620+2 9.057166-6 3.018354+2 9.066234-6 3.252912+2 9.073034-6 3.429364+2 9.078134-6 3.561225+2 9.089610-6 3.853545+2 9.093435-6 3.948845+2 9.106411-6 4.259917+2 9.115534-6 4.463752+2 9.125372-6 4.665720+2 9.134107-6 4.826656+2 9.144746-6 4.995714+2 9.157477-6 5.154241+2 9.168638-6 5.250260+2 9.181098-6 5.307206+2 9.192168-6 5.312331+2 9.202887-6 5.276884+2 9.214088-6 5.198960+2 9.221030-6 5.130874+2 9.236368-6 4.931840+2 9.247744-6 4.746584+2 9.254400-6 4.625778+2 9.266378-6 4.389735+2 9.277583-6 4.152495+2 9.288430-6 3.913129+2 9.301528-6 3.618387+2 9.319025-6 3.227506+2 9.330365-6 2.982562+2 9.349365-6 2.597068+2 9.396727-6 1.819594+2 9.412758-6 1.619896+2 9.429383-6 1.444120+2 9.448421-6 1.277842+2 9.462588-6 1.175326+2 9.474783-6 1.099726+2 9.484223-6 1.048391+2 9.494607-6 9.984935+1 9.505280-6 9.537889+1 9.510847-6 9.329416+1 9.525220-6 8.864531+1 9.541886-6 8.450570+1 9.549817-6 8.299092+1 9.557565-6 8.179247+1 9.563786-6 8.103269+1 9.571124-6 8.037136+1 9.581293-6 7.988447+1 9.589129-6 7.985980+1 9.598708-6 8.025944+1 9.611800-6 8.160378+1 9.619635-6 8.286825+1 9.625511-6 8.405056+1 9.634325-6 8.620973+1 9.643140-6 8.884200+1 9.654376-6 9.289670+1 9.662141-6 9.616036+1 9.673117-6 1.014150+2 9.687587-6 1.094606+2 9.713237-6 1.265684+2 9.741796-6 1.488473+2 9.754459-6 1.593088+2 9.768473-6 1.709182+2 9.778874-6 1.793592+2 9.787641-6 1.862357+2 9.795551-6 1.921744+2 9.806768-6 2.000353+2 9.818573-6 2.074275+2 9.831768-6 2.144035+2 9.836727-6 2.166325+2 9.850148-6 2.214957+2 9.862467-6 2.243810+2 9.872203-6 2.255670+2 9.883424-6 2.257505+2 9.900000-6 2.238389+2 9.914813-6 2.202021+2 9.934818-6 2.131287+2 9.981645-6 1.938639+2 9.996889-6 1.891208+2 1.000553-5 1.871864+2 1.001414-5 1.859164+2 1.002701-5 1.854140+2 1.003623-5 1.861801+2 1.004546-5 1.879457+2 1.006060-5 1.930742+2 1.007331-5 1.995010+2 1.008792-5 2.091486+2 1.009483-5 2.144828+2 1.011238-5 2.298937+2 1.014758-5 2.658845+2 1.016332-5 2.824102+2 1.017640-5 2.955451+2 1.018709-5 3.055325+2 1.020234-5 3.181896+2 1.021433-5 3.265147+2 1.022830-5 3.341062+2 1.024141-5 3.389738+2 1.025923-5 3.419187+2 1.026228-5 3.419963+2 1.028363-5 3.391629+2 1.029550-5 3.351853+2 1.030870-5 3.289724+2 1.031719-5 3.241004+2 1.033106-5 3.148941+2 1.034836-5 3.017251+2 1.036964-5 2.839259+2 1.039831-5 2.591875+2 1.043489-5 2.297849+2 1.046131-5 2.117060+2 1.049870-5 1.916204+2 1.051938-5 1.832007+2 1.053892-5 1.767965+2 1.055210-5 1.732173+2 1.057320-5 1.685257+2 1.059366-5 1.649636+2 1.061808-5 1.616513+2 1.065822-5 1.575825+2 1.078338-5 1.475606+2 1.092047-5 1.360317+2 1.094714-5 1.342622+2 1.097621-5 1.329170+2 1.100000-5 1.325523+2 1.101754-5 1.329201+2 1.103364-5 1.339096+2 1.104934-5 1.356533+2 1.106012-5 1.373991+2 1.106956-5 1.393591+2 1.107837-5 1.416022+2 1.109136-5 1.457415+2 1.110242-5 1.501510+2 1.111072-5 1.540584+2 1.112161-5 1.600495+2 1.113487-5 1.688042+2 1.114543-5 1.770302+2 1.115807-5 1.884708+2 1.116987-5 2.008205+2 1.118637-5 2.209589+2 1.119995-5 2.401241+2 1.125925-5 3.502008+2 1.127828-5 3.927110+2 1.129537-5 4.323700+2 1.131026-5 4.671702+2 1.132509-5 5.012483+2 1.133914-5 5.322260+2 1.135405-5 5.628687+2 1.136851-5 5.896586+2 1.138272-5 6.124828+2 1.138826-5 6.203170+2 1.140166-5 6.365618+2 1.141222-5 6.464955+2 1.143882-5 6.596321+2 1.144765-5 6.601542+2 1.146452-5 6.559432+2 1.147394-5 6.507334+2 1.148293-5 6.439639+2 1.149878-5 6.281095+2 1.151163-5 6.119893+2 1.152619-5 5.907604+2 1.154161-5 5.655649+2 1.156045-5 5.321279+2 1.158101-5 4.939117+2 1.160156-5 4.555160+2 1.167008-5 3.419942+2 1.169506-5 3.096864+2 1.171754-5 2.852193+2 1.172875-5 2.745929+2 1.173994-5 2.649702+2 1.176227-5 2.484712+2 1.178452-5 2.352051+2 1.180667-5 2.246171+2 1.182875-5 2.161851+2 1.185073-5 2.094483+2 1.187263-5 2.040201+2 1.191626-5 1.958997+2 1.196735-5 1.892393+2 1.200597-5 1.853998+2 1.205730-5 1.812733+2 1.212933-5 1.766982+2 1.221365-5 1.725022+2 1.232212-5 1.682328+2 1.247065-5 1.635569+2 1.261787-5 1.598003+2 1.294479-5 1.530704+2 1.357330-5 1.425802+2 1.497414-5 1.236417+2 1.670219-5 1.047179+2 1.775760-5 9.486577+1 1.814431-5 9.124584+1 1.843992-5 8.813707+1 1.857609-5 8.711663+1 1.867823-5 8.700206+1 1.880302-5 8.769921+1 1.893919-5 8.871277+1 1.902593-5 8.890972+1 1.912074-5 8.848828+1 1.921151-5 8.756304+1 1.953430-5 8.346440+1 1.967122-5 8.222410+1 1.990792-5 8.088637+1 2.021123-5 7.940327+1 2.303957-5 6.454537+1 2.491722-5 5.670570+1 2.660725-5 5.057764+1 2.790000-5 4.629544+1 2.917688-5 4.234425+1 2.999073-5 3.994131+1 3.116972-5 3.659417+1 3.198895-5 3.431144+1 3.291287-5 3.182282+1 3.388442-5 2.924512+1 3.476274-5 2.695903+1 3.543303-5 2.525426+1 3.617208-5 2.339627+1 3.730000-5 2.062441+1 3.830414-5 1.816631+1 3.937750-5 1.557152+1 4.030000-5 1.337393+1 4.122749-5 1.120056+1 4.201378-5 9.392692+0 4.284841-5 7.502052+0 4.317685-5 6.777808+0 4.375326-5 5.532296+0 4.419794-5 4.584765+0 4.445698-5 4.045142+0 4.468365-5 3.584475+0 4.488198-5 3.191015+0 4.505552-5 2.854114+0 4.535922-5 2.281830+0 4.558700-5 1.870429+0 4.575783-5 1.576008+0 4.588595-5 1.365921+0 4.607813-5 1.073981+0 4.617422-5 9.415308-1 4.627031-5 8.206051-1 4.638420-5 6.955835-1 4.649809-5 5.951769-1 4.661198-5 5.254899-1 4.666892-5 5.044367-1 4.672587-5 4.940145-1 4.678281-5 4.955148-1 4.683976-5 5.104860-1 4.689670-5 5.408413-1 4.695365-5 5.890010-1 4.701059-5 6.580691-1 4.703906-5 7.016508-1 4.706753-5 7.520385-1 4.709601-5 8.099069-1 4.713871-5 9.124180-1 4.718142-5 1.036431+0 4.720990-5 1.132728+0 4.724726-5 1.277863+0 4.729531-5 1.500084+0 4.735907-5 1.868029+0 4.755156-5 3.670830+0 4.762346-5 4.695922+0 4.766036-5 5.312348+0 4.770561-5 6.158559+0 4.776152-5 7.348240+0 4.777240-5 7.598723+0 4.787427-5 1.025098+1 4.791187-5 1.136815+1 4.796571-5 1.309092+1 4.801658-5 1.484212+1 4.806892-5 1.675311+1 4.810761-5 1.822549+1 4.814740-5 1.978094+1 4.819106-5 2.152179+1 4.823813-5 2.342000+1 4.828664-5 2.537572+1 4.833366-5 2.724625+1 4.839200-5 2.949640+1 4.844341-5 3.138168+1 4.846921-5 3.228375+1 4.852048-5 3.397129+1 4.857328-5 3.554318+1 4.859878-5 3.623500+1 4.864122-5 3.728215+1 4.869438-5 3.839839+1 4.873080-5 3.903230+1 4.878296-5 3.974911+1 4.884474-5 4.030420+1 4.886621-5 4.042273+1 4.901656-5 4.021890+1 4.905908-5 3.985370+1 4.910761-5 3.928737+1 4.915200-5 3.863983+1 4.925320-5 3.675599+1 4.928016-5 3.617068+1 4.933070-5 3.499295+1 4.937492-5 3.388710+1 4.941362-5 3.287063+1 4.948538-5 3.088973+1 4.953213-5 2.954952+1 4.957022-5 2.843806+1 4.962736-5 2.675232+1 4.970910-5 2.433665+1 4.973370-5 2.361553+1 4.984479-5 2.043918+1 4.996311-5 1.728142+1 5.008143-5 1.443928+1 5.019975-5 1.195845+1 5.031806-5 9.847674+0 5.065330-5 5.625544+0 5.077440-5 4.591743+0 5.089550-5 3.739727+0 5.101660-5 3.031053+0 5.113770-5 2.437477+0 5.125880-5 1.939687+0 5.137990-5 1.524997+0 5.150100-5 1.184896+0 5.175331-5 6.891886-1 5.187632-5 5.403352-1 5.210697-5 4.015575-1 5.218532-5 3.914731-1 5.230879-5 4.096957-1 5.266197-5 6.687056-1 5.286695-5 9.486649-1 5.319174-5 1.582850+0 5.357616-5 2.659095+0 5.385374-5 3.703697+0 5.405982-5 4.666530+0 5.416452-5 5.229259+0 5.438266-5 6.584559+0 5.451489-5 7.535454+0 5.465718-5 8.668111+0 5.475885-5 9.541003+0 5.497391-5 1.151731+1 5.510856-5 1.279528+1 5.524321-5 1.405240+1 5.527687-5 1.435788+1 5.540489-5 1.546883+1 5.545220-5 1.585454+1 5.552317-5 1.640381+1 5.562545-5 1.712930+1 5.568185-5 1.749566+1 5.579463-5 1.816128+1 5.593188-5 1.887644+1 5.625523-5 2.049385+1 5.633211-5 2.094238+1 5.642414-5 2.154345+1 5.652865-5 2.232495+1 5.659830-5 2.290808+1 5.675311-5 2.437695+1 5.711423-5 2.841811+1 5.722926-5 2.974420+1 5.739456-5 3.156982+1 5.753029-5 3.296699+1 5.773721-5 3.493578+1 5.812565-5 3.863427+1 5.823470-5 3.983364+1 5.839120-5 4.177542+1 5.850253-5 4.333666+1 5.868056-5 4.615733+1 5.887301-5 4.963198+1 6.062909-5 9.772957+1 6.240000-5 1.919550+2 6.356558-5 2.980614+2 6.481395-5 4.770321+2 6.659948-5 9.260023+2 6.730000-5 1.190215+3 6.782856-5 1.428316+3 6.807463-5 1.550574+3 6.839978-5 1.722678+3 6.872481-5 1.905709+3 6.912477-5 2.143655+3 6.937477-5 2.297840+3 6.962478-5 2.454686+3 6.985000-5 2.596977+3 7.006250-5 2.730905+3 7.022488-5 2.832323+3 7.044983-5 2.970474+3 7.070000-5 3.119457+3 7.090967-5 3.239311+3 7.108584-5 3.335707+3 7.135009-5 3.471619+3 7.148221-5 3.535175+3 7.175000-5 3.653903+3 7.205000-5 3.769310+3 7.235000-5 3.864522+3 7.268063-5 3.944869+3 7.303750-5 4.002233+3 7.343467-5 4.031058+3 7.380126-5 4.027014+3 7.415233-5 3.998422+3 7.456563-5 3.938279+3 7.501845-5 3.846109+3 7.548548-5 3.730075+3 7.599301-5 3.588331+3 7.681720-5 3.342920+3 7.842721-5 2.880495+3 7.968386-5 2.570500+3 8.092427-5 2.314166+3 8.199546-5 2.128754+3 8.318666-5 1.954975+3 8.450000-5 1.793857+3 8.574534-5 1.664171+3 8.719952-5 1.534401+3 8.883750-5 1.409921+3 9.075633-5 1.285955+3 9.332543-5 1.148118+3 9.666455-5 1.003305+3 1.001174-4 8.832974+2 1.035142-4 7.872846+2 1.073150-4 6.994897+2 1.109175-4 6.309638+2 1.157258-4 5.562455+2 1.234280-4 4.623947+2 1.248113-4 4.472537+2 1.260965-4 4.328365+2 1.279136-4 4.104449+2 1.288625-4 3.990815+2 1.295418-4 3.930038+2 1.301785-4 3.897804+2 1.308026-4 3.887886+2 1.323168-4 3.886266+2 1.332872-4 3.857932+2 1.346465-4 3.788012+2 1.372630-4 3.633847+2 1.404878-4 3.440611+2 1.444315-4 3.281063+2 1.458700-4 3.227541+2 1.531087-4 3.060903+2 1.648496-4 2.814598+2 1.699411-4 2.726600+2 1.773458-4 2.619705+2 1.808123-4 2.585457+2 1.835389-4 2.539098+2 1.897277-4 2.439482+2 1.908365-4 2.428046+2 1.919689-4 2.422352+2 1.983193-4 2.432015+2 2.141360-4 2.429063+2 2.246548-4 2.434559+2 2.409514-4 2.456869+2 2.603937-4 2.496640+2 3.123326-4 2.607999+2 3.280500-4 2.629648+2 3.433281-4 2.641932+2 3.657508-4 2.642563+2 3.960304-4 2.603231+2 4.214595-4 2.530978+2 4.441354-4 2.431619+2 4.629221-4 2.324905+2 4.800097-4 2.204969+2 4.964821-4 2.067661+2 5.077441-4 1.959388+2 5.208292-4 1.817180+2 5.322124-4 1.678599+2 5.394810-4 1.582705+2 5.476329-4 1.466888+2 5.561540-4 1.336113+2 5.636100-4 1.213280+2 5.706666-4 1.089471+2 5.758424-4 9.938284+1 5.797352-4 9.193648+1 5.852078-4 8.115543+1 5.897228-4 7.201706+1 5.933265-4 6.460658+1 5.960293-4 5.902422+1 6.004300-4 5.002451+1 6.044553-4 4.214154+1 6.098055-4 3.304857+1 6.114481-4 3.085920+1 6.126620-4 2.952871+1 6.139387-4 2.846904+1 6.149627-4 2.793388+1 6.158267-4 2.775037+1 6.165522-4 2.782174+1 6.171440-4 2.805637+1 6.176960-4 2.843715+1 6.181677-4 2.890046+1 6.185635-4 2.939699+1 6.191483-4 3.032831+1 6.197259-4 3.150437+1 6.201710-4 3.260269+1 6.205831-4 3.378260+1 6.211173-4 3.556497+1 6.214939-4 3.700726+1 6.218532-4 3.853700+1 6.222664-4 4.049417+1 6.227403-4 4.301711+1 6.232808-4 4.628507+1 6.238829-4 5.045661+1 6.244578-4 5.500551+1 6.251104-4 6.089425+1 6.257867-4 6.787529+1 6.273287-4 8.750034+1 6.293740-4 1.225253+2 6.305371-4 1.474805+2 6.310393-4 1.594323+2 6.317625-4 1.779087+2 6.322682-4 1.917116+2 6.329152-4 2.104126+2 6.335428-4 2.296522+2 6.340261-4 2.451828+2 6.348021-4 2.713545+2 6.357000-4 3.034158+2 6.366071-4 3.375304+2 6.373194-4 3.653689+2 6.382644-4 4.034604+2 6.393415-4 4.480659+2 6.400555-4 4.780690+2 6.406700-4 5.040180+2 6.414627-4 5.374893+2 6.420980-4 5.641707+2 6.430551-4 6.038667+2 6.440545-4 6.443518+2 6.452487-4 6.909612+2 6.460232-4 7.199513+2 6.472018-4 7.619284+2 6.480569-4 7.906493+2 6.490512-4 8.221214+2 6.505000-4 8.642247+2 6.518416-4 8.993004+2 6.540349-4 9.490314+2 6.550659-4 9.694173+2 6.569011-4 1.001499+3 6.593483-4 1.036962+3 6.608141-4 1.054756+3 6.636088-4 1.082606+3 6.666670-4 1.105353+3 6.700474-4 1.122857+3 6.725237-4 1.131540+3 6.769092-4 1.140058+3 6.795902-4 1.141625+3 6.826563-4 1.140481+3 6.883472-4 1.131455+3 7.014031-4 1.096890+3 7.088750-4 1.081739+3 7.170432-4 1.071579+3 7.314372-4 1.062577+3 7.417104-4 1.059302+3 7.627285-4 1.062547+3 7.823352-4 1.067790+3 7.965323-4 1.068522+3 8.153880-4 1.063772+3 8.312578-4 1.053772+3 8.417218-4 1.041809+3 8.549116-4 1.023780+3 8.590962-4 1.023038+3 8.628142-4 1.027493+3 8.663716-4 1.037155+3 8.688086-4 1.046726+3 8.745000-4 1.075688+3 8.824313-4 1.118384+3 8.874445-4 1.139761+3 8.931015-4 1.156989+3 9.007808-4 1.171356+3 9.152151-4 1.187363+3 9.214096-4 1.197504+3 9.262124-4 1.208815+3 9.378826-4 1.243881+3 9.468801-4 1.268461+3 9.573175-4 1.289349+3 9.699921-4 1.307026+3 9.846087-4 1.321718+3 1.001728-3 1.333462+3 1.040158-3 1.349321+3 1.051146-3 1.357729+3 1.062344-3 1.373210+3 1.075346-3 1.395179+3 1.085622-3 1.409336+3 1.100983-3 1.424145+3 1.121208-3 1.437842+3 1.147809-3 1.451720+3 1.172934-3 1.461627+3 1.202502-3 1.468744+3 1.276185-3 1.477325+3 1.356954-3 1.480692+3 1.444400-3 1.477931+3 1.531087-3 1.468927+3 1.679771-3 1.441387+3 1.815252-3 1.413548+3 1.972423-3 1.374314+3 2.166515-3 1.324215+3 2.263696-3 1.299336+3 2.490291-3 1.238786+3 2.606890-3 1.208473+3 2.865785-3 1.139380+3 2.995885-3 1.105085+3 3.135090-3 1.068258+3 3.287570-3 1.028179+3 3.440620-3 9.872322+2 3.589800-3 9.470068+2 3.715352-3 9.119157+2 3.827972-3 8.789679+2 3.926191-3 8.488515+2 4.014696-3 8.200357+2 4.085379-3 7.953556+2 4.150665-3 7.708167+2 4.213222-3 7.452007+2 4.265737-3 7.214278+2 4.311118-3 6.984277+2 4.349619-3 6.762459+2 4.383196-3 6.537445+2 4.410272-3 6.322372+2 4.431396-3 6.126101+2 4.448408-3 5.948179+2 4.477553-3 5.615567+2 4.500109-3 5.370261+2 4.512827-3 5.257333+2 4.523184-3 5.187663+2 4.535170-3 5.138349+2 4.539701-3 5.129414+2 4.548896-3 5.128410+2 4.558621-3 5.152195+2 4.568463-3 5.200706+2 4.580003-3 5.284678+2 4.597751-3 5.454900+2 4.623810-3 5.739260+2 4.637138-3 5.877317+2 4.650097-3 5.997418+2 4.666214-3 6.122358+2 4.682313-3 6.218485+2 4.702772-3 6.301376+2 4.723089-3 6.345371+2 4.744072-3 6.357786+2 4.807087-3 6.307926+2 4.830812-3 6.325364+2 4.851623-3 6.387046+2 4.873219-3 6.499843+2 4.908301-3 6.754281+2 4.941931-3 7.006521+2 4.960996-3 7.127950+2 4.980237-3 7.228168+2 5.005974-3 7.327200+2 5.030847-3 7.389853+2 5.076048-3 7.448427+2 5.117575-3 7.492905+2 5.139992-3 7.537323+2 5.169166-3 7.629451+2 5.249500-3 7.999293+2 5.295676-3 8.178911+2 5.324925-3 8.264735+2 5.368447-3 8.363267+2 5.449340-3 8.492131+2 5.562555-3 8.606474+2 5.680839-3 8.674649+2 5.821032-3 8.709229+2 6.025596-3 8.691561+2 6.291456-3 8.605374+2 6.500000-3 8.503861+2 6.800438-3 8.319314+2 7.277864-3 7.984978+2 7.850238-3 7.554849+2 8.481385-3 7.088410+2 9.310848-3 6.513394+2 1.036983-2 5.855491+2 1.163958-2 5.187087+2 1.304735-2 4.571995+2 1.462166-2 4.007641+2 1.581475-2 3.643131+2 1.705682-2 3.309993+2 1.848986-2 2.972257+2 2.002264-2 2.657845+2 2.162697-2 2.372232+2 2.335786-2 2.105424+2 2.521511-2 1.858180+2 2.691535-2 1.659848+2 2.829467-2 1.513800+2 2.938138-2 1.404873+2 3.021582-2 1.322407+2 3.084789-2 1.258520+2 3.136218-2 1.203395+2 3.173466-2 1.159542+2 3.192151-2 1.135115+2 3.208042-2 1.112212+2 3.221345-2 1.090971+2 3.239148-2 1.058989+2 3.283569-2 9.723117+1 3.295669-2 9.552995+1 3.305624-2 9.465432+1 3.314913-2 9.433578+1 3.323302-2 9.447025+1 3.335513-2 9.531204+1 3.351476-2 9.724851+1 3.384645-2 1.019987+2 3.398508-2 1.036118+2 3.416745-2 1.052128+2 3.439707-2 1.065206+2 3.472941-2 1.075131+2 3.506356-2 1.079023+2 3.557681-2 1.078663+2 3.642240-2 1.068944+2 3.736508-2 1.050921+2 3.879460-2 1.015947+2 4.053863-2 9.686043+1 4.247388-2 9.155569+1 4.548601-2 8.367585+1 4.898806-2 7.538424+1 5.273152-2 6.760355+1 5.746477-2 5.914322+1 6.329183-2 5.055331+1 7.071516-2 4.191153+1 8.184059-2 3.247660+1 1.092648-1 1.940520+1 1.332770-1 1.351188+1 1.755503-1 8.115648+0 2.172192-1 5.435567+0 2.819436-1 3.296855+0 4.025066-1 1.651138+0 6.025596-1 7.484414-1 9.782927-1 2.870163-1 1.947381+0 7.288462-2 5.880996+0 8.007455-3 1.776032+1 8.781963-4 5.363532+1 9.629467-5 1.619761+2 1.055853-5 4.891600+2 1.157720-6 1.584893+3 1.102822-7 5.011872+3 1.102822-8 1.584893+4 1.102822-9 5.011872+4 1.10282-10 1.000000+5 2.77016-11 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.158200-6 1.258900-6 1.835700-6 1.584900-6 2.909400-6 1.995300-6 4.611000-6 2.511900-6 7.308000-6 3.162300-6 1.158200-5 3.981100-6 1.835700-5 5.011900-6 2.909300-5 6.309600-6 4.610900-5 7.943300-6 7.307800-5 1.000000-5 1.158200-4 1.258900-5 1.835600-4 1.584900-5 2.909100-4 1.995300-5 4.610600-4 2.511900-5 7.307100-4 3.162300-5 1.158100-3 3.981100-5 1.835300-3 5.011900-5 2.908600-3 6.309600-5 4.609500-3 7.943300-5 7.300600-3 1.000000-4 1.156100-2 1.258900-4 1.830900-2 1.584900-4 2.896600-2 1.995300-4 4.580400-2 2.511900-4 7.232100-2 3.162300-4 1.139600-1 3.981100-4 1.789500-1 5.011900-4 2.796100-1 6.309600-4 4.325900-1 7.943300-4 6.601100-1 1.000000-3 9.888800-1 1.258900-3 1.446000+0 1.584900-3 2.054100+0 1.995300-3 2.827000+0 2.511900-3 3.776300+0 3.162300-3 4.899100+0 3.981100-3 6.171700+0 5.011900-3 7.563600+0 6.309600-3 9.084800+0 7.943300-3 1.077200+1 1.000000-2 1.261800+1 1.258900-2 1.459300+1 1.584900-2 1.655100+1 1.995300-2 1.835000+1 2.511900-2 1.997000+1 3.162300-2 2.136200+1 3.981100-2 2.246900+1 5.011900-2 2.325800+1 6.309600-2 2.367400+1 7.943300-2 2.368600+1 1.000000-1 2.331900+1 1.258900-1 2.261400+1 1.584900-1 2.168600+1 1.995300-1 2.054300+1 2.511900-1 1.926100+1 3.162300-1 1.789400+1 3.981100-1 1.649300+1 5.011900-1 1.509600+1 6.309600-1 1.372700+1 7.943300-1 1.240000+1 1.000000+0 1.113400+1 1.258900+0 9.932000+0 1.584900+0 8.803500+0 1.995300+0 7.752400+0 2.511900+0 6.783200+0 3.162300+0 5.898500+0 3.981100+0 5.098900+0 5.011900+0 4.383000+0 6.309600+0 3.747900+0 7.943300+0 3.189400+0 1.000000+1 2.702200+0 1.258900+1 2.280100+0 1.584900+1 1.917000+0 1.995300+1 1.606300+0 2.511900+1 1.341900+0 3.162300+1 1.118100+0 3.981100+1 9.292900-1 5.011900+1 7.706600-1 6.309600+1 6.378300-1 7.943300+1 5.269300-1 1.000000+2 4.345900-1 1.258900+2 3.579000-1 1.584900+2 2.943300-1 1.995300+2 2.417400-1 2.511900+2 1.983200-1 3.162300+2 1.625200-1 3.981100+2 1.330500-1 5.011900+2 1.088200-1 6.309600+2 8.892200-2 7.943300+2 7.260600-2 1.000000+3 5.923700-2 1.258900+3 4.829600-2 1.584900+3 3.934800-2 1.995300+3 3.203800-2 2.511900+3 2.607000-2 3.162300+3 2.120100-2 3.981100+3 1.723200-2 5.011900+3 1.399900-2 6.309600+3 1.136700-2 7.943300+3 9.224800-3 1.000000+4 7.483200-3 1.258900+4 6.067800-3 1.584900+4 4.918000-3 1.995300+4 3.984500-3 2.511900+4 3.227000-3 3.162300+4 2.612500-3 3.981100+4 2.114200-3 5.011900+4 1.710400-3 6.309600+4 1.383300-3 7.943300+4 1.118300-3 1.000000+5 9.038500-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159546-4 3.981072-4 3.976748-4 5.011872-4 5.005033-4 6.309573-4 6.298748-4 7.943282-4 7.926259-4 1.000000-3 9.973172-4 1.258925-3 1.254717-3 1.584893-3 1.578323-3 1.995262-3 1.985014-3 2.511886-3 2.495923-3 3.162278-3 3.137413-3 3.981072-3 3.942519-3 5.011872-3 4.952082-3 6.309573-3 6.216732-3 7.943282-3 7.798745-3 1.000000-2 9.774323-3 1.258925-2 1.223848-2 1.584893-2 1.530768-2 1.995262-2 1.912057-2 2.511886-2 2.384436-2 3.162278-2 2.967861-2 3.981072-2 3.685822-2 5.011872-2 4.565668-2 6.309573-2 5.640458-2 7.943282-2 6.948427-2 1.000000-1 8.533953-2 1.258925-1 1.045264-1 1.584893-1 1.274620-1 1.995262-1 1.549838-1 2.511886-1 1.878258-1 3.162278-1 2.268934-1 3.981072-1 2.732030-1 5.011872-1 3.279186-1 6.309573-1 3.924358-1 7.943282-1 4.685280-1 1.000000+0 5.578567-1 1.258925+0 6.632745-1 1.584893+0 7.875221-1 1.995262+0 9.346520-1 2.511886+0 1.109173+0 3.162278+0 1.316898+0 3.981072+0 1.564885+0 5.011872+0 1.861647+0 6.309573+0 2.217864+0 7.943282+0 2.646366+0 1.000000+1 3.162973+0 1.258925+1 3.787032+0 1.584893+1 4.542176+0 1.995262+1 5.457392+0 2.511886+1 6.568010+0 3.162278+1 7.918077+0 3.981072+1 9.560734+0 5.011872+1 1.156140+1 6.309573+1 1.400101+1 7.943282+1 1.697866+1 1.000000+2 2.061599+1 1.258925+2 2.506324+1 1.584893+2 3.050482+1 1.995262+2 3.716848+1 2.511886+2 4.533340+1 3.162278+2 5.534598+1 3.981072+2 6.763047+1 5.011872+2 8.271357+1 6.309573+2 1.012428+2 7.943282+2 1.240185+2 1.000000+3 1.520276+2 1.258925+3 1.864921+2 1.584893+3 2.289166+2 1.995262+3 2.811780+2 2.511886+3 3.455620+2 3.162278+3 4.249378+2 3.981072+3 5.228228+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728211-8 1.000000-4 2.738596-8 1.258925-4 4.339964-8 1.584893-4 6.875730-8 1.995262-4 1.089344-7 2.511886-4 1.725430-7 3.162278-4 2.731910-7 3.981072-4 4.323923-7 5.011872-4 6.839058-7 6.309573-4 1.082563-6 7.943282-4 1.702292-6 1.000000-3 2.682804-6 1.258925-3 4.208491-6 1.584893-3 6.570073-6 1.995262-3 1.024821-5 2.511886-3 1.596302-5 3.162278-3 2.486473-5 3.981072-3 3.855243-5 5.011872-3 5.979056-5 6.309573-3 9.284186-5 7.943282-3 1.445375-4 1.000000-2 2.256768-4 1.258925-2 3.507764-4 1.584893-2 5.412503-4 1.995262-2 8.320568-4 2.511886-2 1.274505-3 3.162278-2 1.944163-3 3.981072-2 2.952497-3 5.011872-2 4.462042-3 6.309573-2 6.691153-3 7.943282-2 9.948554-3 1.000000-1 1.466047-2 1.258925-1 2.136614-2 1.584893-1 3.102731-2 1.995262-1 4.454246-2 2.511886-1 6.336282-2 3.162278-1 8.933435-2 3.981072-1 1.249041-1 5.011872-1 1.732686-1 6.309573-1 2.385215-1 7.943282-1 3.258002-1 1.000000+0 4.421433-1 1.258925+0 5.956509-1 1.584893+0 7.973711-1 1.995262+0 1.060610+0 2.511886+0 1.402714+0 3.162278+0 1.845379+0 3.981072+0 2.416187+0 5.011872+0 3.150226+0 6.309573+0 4.091710+0 7.943282+0 5.296916+0 1.000000+1 6.837027+0 1.258925+1 8.802222+0 1.584893+1 1.130676+1 1.995262+1 1.449523+1 2.511886+1 1.855085+1 3.162278+1 2.370470+1 3.981072+1 3.024998+1 5.011872+1 3.855733+1 6.309573+1 4.909472+1 7.943282+1 6.245416+1 1.000000+2 7.938401+1 1.258925+2 1.008293+2 1.584893+2 1.279845+2 1.995262+2 1.623577+2 2.511886+2 2.058552+2 3.162278+2 2.608818+2 3.981072+2 3.304767+2 5.011872+2 4.184737+2 6.309573+2 5.297145+2 7.943282+2 6.703097+2 1.000000+3 8.479724+2 1.258925+3 1.072433+3 1.584893+3 1.355977+3 1.995262+3 1.714084+3 2.511886+3 2.166324+3 3.162278+3 2.737340+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 9.630000-6 6.940658+7 9.900000-6 6.706460+7 1.011579-5 6.498645+7 1.042000-5 6.177394+7 1.071519-5 5.846101+7 1.077000-5 5.781173+7 1.077000-5 9.053746+7 1.100000-5 8.728684+7 1.122018-5 8.395460+7 1.135011-5 8.197947+7 1.152000-5 7.934257+7 1.174898-5 7.583467+7 1.175000-5 7.581869+7 1.202264-5 7.157245+7 1.216186-5 6.945046+7 1.240000-5 6.587568+7 1.258925-5 6.312298+7 1.273503-5 6.103781+7 1.310000-5 5.606918+7 1.350000-5 5.096383+7 1.365000-5 4.916812+7 1.400000-5 4.520124+7 1.428894-5 4.217630+7 1.450000-5 4.009065+7 1.513561-5 3.447293+7 1.603245-5 2.796103+7 1.640590-5 2.568616+7 1.737801-5 2.073253+7 2.101000-5 1.017949+7 2.101000-5 1.031448+7 2.120000-5 9.967348+6 2.143000-5 9.566367+6 2.180000-5 8.969256+6 2.213095-5 8.474709+6 2.344229-5 6.836900+6 2.380000-5 6.462258+6 2.400000-5 6.264336+6 2.410000-5 6.169324+6 2.435000-5 5.939898+6 2.460000-5 5.721443+6 2.485000-5 5.513331+6 2.500000-5 5.393215+6 2.511886-5 5.301085+6 2.535000-5 5.127798+6 2.557000-5 4.969695+6 2.581400-5 4.801743+6 2.607000-5 4.633461+6 2.630268-5 4.487185+6 2.650000-5 4.367875+6 2.660725-5 4.304797+6 2.670000-5 4.251820+6 2.692000-5 4.129615+6 2.720000-5 3.980742+6 2.742000-5 3.868748+6 2.754229-5 3.808323+6 2.765000-5 3.756505+6 2.790000-5 3.639856+6 2.818383-5 3.513239+6 2.851018-5 3.374868+6 2.885000-5 3.238482+6 2.917427-5 3.115220+6 2.937300-5 3.043642+6 3.090295-5 2.561280+6 3.150000-5 2.402736+6 3.198895-5 2.282831+6 3.235937-5 2.198670+6 3.311311-5 2.040354+6 3.388442-5 1.894566+6 3.470000-5 1.756063+6 3.507519-5 1.697147+6 3.548134-5 1.637994+6 3.630781-5 1.526480+6 3.730000-5 1.406763+6 3.801894-5 1.328445+6 3.830000-5 1.300121+6 3.935501-5 1.201337+6 4.000000-5 1.146388+6 4.030000-5 1.122384+6 4.073803-5 1.088548+6 4.150000-5 1.034495+6 4.265795-5 9.598791+5 4.365158-5 9.022362+5 4.415704-5 8.757065+5 4.466836-5 8.499224+5 4.570882-5 8.017732+5 4.650000-5 7.678510+5 4.731513-5 7.361941+5 4.900000-5 6.769269+5 5.080000-5 6.237905+5 5.188000-5 5.949916+5 5.300000-5 5.683804+5 5.432503-5 5.395775+5 5.500000-5 5.263343+5 5.650000-5 4.985083+5 5.688529-5 4.919159+5 5.754399-5 4.813782+5 5.826000-5 4.701742+5 5.826000-5 1.620722+6 5.870000-5 1.665883+6 5.900000-5 1.705099+6 5.930000-5 1.752363+6 5.956621-5 1.802905+6 5.960000-5 1.809484+6 5.992000-5 1.882122+6 6.000000-5 1.903419+6 6.004000-5 1.914198+6 6.004000-5 2.650070+6 6.025596-5 2.726436+6 6.040000-5 2.783648+6 6.060000-5 2.868207+6 6.070000-5 2.915218+6 6.095369-5 3.041957+6 6.130000-5 3.245314+6 6.157000-5 3.430341+6 6.165950-5 3.495970+6 6.190000-5 3.689487+6 6.200000-5 3.775315+6 6.220000-5 3.962542+6 6.237348-5 4.136641+6 6.240000-5 4.163997+6 6.250000-5 4.273699+6 6.280000-5 4.628574+6 6.309573-5 5.031605+6 6.315000-5 5.109538+6 6.318900-5 5.167299+6 6.350000-5 5.671254+6 6.370000-5 6.027651+6 6.385000-5 6.319617+6 6.420000-5 7.069260+6 6.421000-5 7.092607+6 6.465000-5 8.216997+6 6.480000-5 8.645262+6 6.500000-5 9.265612+6 6.531306-5 1.033780+7 6.540000-5 1.065709+7 6.595000-5 1.298576+7 6.650000-5 1.584746+7 6.683439-5 1.789894+7 6.710000-5 1.971250+7 6.730000-5 2.120646+7 6.785000-5 2.581386+7 6.830000-5 3.016942+7 6.839116-5 3.110194+7 6.870000-5 3.447469+7 6.900000-5 3.795052+7 6.935000-5 4.220749+7 6.950000-5 4.407589+7 6.960000-5 4.535155+7 6.985000-5 4.854012+7 7.000000-5 5.043794+7 7.015000-5 5.237816+7 7.030000-5 5.425585+7 7.040000-5 5.551870+7 7.070000-5 5.917876+7 7.079458-5 6.023815+7 7.100000-5 6.260987+7 7.130000-5 6.574461+7 7.160000-5 6.851599+7 7.161434-5 6.863425+7 7.190000-5 7.087867+7 7.220000-5 7.277649+7 7.250000-5 7.418558+7 7.277000-5 7.503658+7 7.300000-5 7.545019+7 7.328245-5 7.556988+7 7.330000-5 7.556605+7 7.350000-5 7.537723+7 7.365000-5 7.513310+7 7.380000-5 7.479557+7 7.400000-5 7.420246+7 7.410000-5 7.384909+7 7.435000-5 7.281820+7 7.450000-5 7.211194+7 7.470000-5 7.108204+7 7.500000-5 6.939843+7 7.502500-5 6.924656+7 7.540000-5 6.687209+7 7.580000-5 6.423976+7 7.585776-5 6.385439+7 7.635000-5 6.047371+7 7.673615-5 5.783477+7 7.703700-5 5.586798+7 7.800000-5 4.984673+7 7.900000-5 4.428053+7 7.943282-5 4.212743+7 8.035261-5 3.792916+7 8.128305-5 3.426384+7 8.150000-5 3.346735+7 8.300000-5 2.865268+7 8.350000-5 2.724834+7 8.413951-5 2.559149+7 8.450000-5 2.470794+7 8.650000-5 2.044415+7 8.810489-5 1.765609+7 9.015711-5 1.469876+7 9.225714-5 1.224207+7 9.332543-5 1.116274+7 9.440609-5 1.018003+7 9.650000-5 8.532785+6 9.660509-5 8.457685+6 9.800000-5 7.529122+6 9.900000-5 6.935239+6 1.011579-4 5.820422+6 1.040000-4 4.643451+6 1.047129-4 4.391425+6 1.059254-4 3.998366+6 1.060000-4 3.975545+6 1.080000-4 3.412643+6 1.109175-4 2.750382+6 1.161449-4 1.904460+6 1.190000-4 1.575252+6 1.202264-4 1.455434+6 1.220000-4 1.303138+6 1.230269-4 1.224696+6 1.258925-4 1.038151+6 1.273503-4 9.601285+5 1.280000-4 9.277951+5 1.288250-4 8.897835+5 1.300000-4 8.399819+5 1.307000-4 8.129591+5 1.318257-4 7.725766+5 1.322000-4 7.602262+5 1.335000-4 7.202060+5 1.340000-4 7.061771+5 1.342100-4 7.005649+5 1.342100-4 1.075044+6 1.350000-4 1.053591+6 1.358000-4 1.033629+6 1.364583-4 1.018258+6 1.365000-4 1.017301+6 1.373000-4 1.000216+6 1.380384-4 9.855159+5 1.390000-4 9.681834+5 1.396368-4 9.575677+5 1.407000-4 9.416354+5 1.412538-4 9.339925+5 1.423000-4 9.210830+5 1.428894-4 9.144325+5 1.440000-4 9.034015+5 1.445440-4 8.984656+5 1.452400-4 8.929631+5 1.455300-4 8.908516+5 1.455300-4 1.038593+6 1.462177-4 1.034266+6 1.465000-4 1.032790+6 1.468000-4 1.031402+6 1.480000-4 1.025057+6 1.485000-4 1.023192+6 1.496236-4 1.018556+6 1.500000-4 1.017532+6 1.513561-4 1.013437+6 1.531087-4 1.010467+6 1.550000-4 1.009147+6 1.570000-4 1.009951+6 1.584893-4 1.012094+6 1.590000-4 1.012633+6 1.600000-4 1.014081+6 1.610000-4 1.016112+6 1.640590-4 1.023123+6 1.650000-4 1.026099+6 1.678804-4 1.035669+6 1.698244-4 1.043053+6 1.737801-4 1.059766+6 1.757924-4 1.068905+6 1.778279-4 1.078864+6 1.810000-4 1.094288+6 1.840772-4 1.110494+6 1.865000-4 1.122333+6 1.905461-4 1.143522+6 1.906500-4 1.144054+6 1.910400-4 1.145885+6 1.910400-4 1.278983+6 1.921000-4 1.286950+6 1.930000-4 1.293291+6 1.933000-4 1.295453+6 1.950000-4 1.307058+6 1.972423-4 1.321648+6 1.980000-4 1.326068+6 2.000000-4 1.337159+6 2.010000-4 1.342846+6 2.040000-4 1.359262+6 2.041738-4 1.360144+6 2.080000-4 1.377657+6 2.089296-4 1.381703+6 2.100000-4 1.386378+6 2.113489-4 1.391389+6 2.120000-4 1.393859+6 2.137962-4 1.400307+6 2.162719-4 1.409265+6 2.213095-4 1.422916+6 2.238721-4 1.429510+6 2.240000-4 1.429783+6 2.280000-4 1.437203+6 2.317395-4 1.443862+6 2.350000-4 1.447476+6 2.371374-4 1.449685+6 2.400000-4 1.452678+6 2.426610-4 1.453822+6 2.454709-4 1.455056+6 2.483133-4 1.456347+6 2.540973-4 1.455708+6 2.575200-4 1.455077+6 2.580000-4 1.455006+6 2.691535-4 1.447024+6 2.730000-4 1.442399+6 2.754229-4 1.439306+6 2.800000-4 1.433583+6 2.818383-4 1.430935+6 2.917427-4 1.413865+6 2.951209-4 1.407675+6 2.985383-4 1.400336+6 3.000000-4 1.397163+6 3.019952-4 1.392862+6 3.054921-4 1.385332+6 3.090295-4 1.377282+6 3.100000-4 1.375098+6 3.162278-4 1.359858+6 3.200000-4 1.350735+6 3.235937-4 1.341676+6 3.280000-4 1.329628+6 3.350000-4 1.310867+6 3.388442-4 1.300354+6 3.427678-4 1.289157+6 3.507519-4 1.267033+6 3.548134-4 1.255389+6 3.550000-4 1.254852+6 3.715352-4 1.206772+6 3.758374-4 1.194494+6 3.801894-4 1.181691+6 3.890451-4 1.155868+6 3.935501-4 1.143080+6 4.000000-4 1.124729+6 4.027170-4 1.116850+6 4.100000-4 1.096249+6 4.120975-4 1.090414+6 4.168694-4 1.077189+6 4.216965-4 1.063774+6 4.265795-4 1.050444+6 4.430000-4 1.006252+6 4.466836-4 9.965868+5 4.518559-4 9.832350+5 4.570882-4 9.695916+5 4.700000-4 9.369763+5 4.731513-4 9.291439+5 4.786301-4 9.157549+5 4.850000-4 9.001720+5 5.011872-4 8.624426+5 5.128614-4 8.361423+5 5.150000-4 8.314713+5 5.248075-4 8.100455+5 5.308844-4 7.971825+5 5.400000-4 7.784567+5 5.500000-4 7.584303+5 5.688529-4 7.219000+5 5.754399-4 7.097815+5 5.800000-4 7.015827+5 5.888437-4 6.858737+5 5.900000-4 6.838573+5 6.095369-4 6.504549+5 6.237348-4 6.276569+5 6.293100-4 6.189338+5 6.293100-4 7.073238+5 6.294600-4 7.089372+5 6.297000-4 7.120257+5 6.300000-4 7.168064+5 6.303000-4 7.226824+5 6.306000-4 7.297493+5 6.309000-4 7.381212+5 6.309573-4 7.399209+5 6.311500-4 7.461820+5 6.315000-4 7.593034+5 6.318500-4 7.748060+5 6.322000-4 7.929719+5 6.326500-4 8.207241+5 6.333500-4 8.751415+5 6.341200-4 9.530091+5 6.350000-4 1.063931+6 6.365000-4 1.340150+6 6.370000-4 1.431506+6 6.382635-4 1.887681+6 6.385000-4 1.997778+6 6.386500-4 2.039877+6 6.414600-4 2.282111+6 6.414600-4 3.158050+6 6.436000-4 3.476702+6 6.442000-4 3.567169+6 6.447000-4 3.603590+6 6.502200-4 4.015949+6 6.505000-4 4.032777+6 6.531306-4 4.139408+6 6.535000-4 4.154629+6 6.545000-4 4.178373+6 6.611000-4 4.317743+6 6.615000-4 4.329140+6 6.622800-4 4.336951+6 6.635000-4 4.341330+6 6.678000-4 4.304320+6 6.700000-4 4.264517+6 6.750000-4 4.176036+6 6.752300-4 4.172531+6 6.760830-4 4.155772+6 6.780000-4 4.118416+6 6.839116-4 4.001398+6 6.850000-4 3.980339+6 6.865000-4 3.919533+6 6.900000-4 3.818368+6 6.918310-4 3.770866+6 6.950000-4 3.690442+6 7.000000-4 3.576734+6 7.040000-4 3.502770+6 7.100000-4 3.404118+6 7.120000-4 3.374418+6 7.161434-4 3.316885+6 7.190000-4 3.278002+6 7.244360-4 3.209071+6 7.328245-4 3.106576+6 7.400000-4 3.026678+6 7.413102-4 3.012824+6 7.450000-4 2.974220+6 7.500000-4 2.939098+6 7.650000-4 2.810054+6 7.673615-4 2.791534+6 7.900000-4 2.622640+6 7.943282-4 2.583777+6 8.000000-4 2.544685+6 8.200000-4 2.413268+6 8.222426-4 2.397902+6 8.317638-4 2.339414+6 8.413951-4 2.282359+6 8.511380-4 2.226140+6 8.609938-4 2.171284+6 8.698100-4 2.123810+6 8.698100-4 2.401475+6 8.745000-4 2.378015+6 8.810489-4 2.344798+6 8.912509-4 2.294493+6 8.940000-4 2.281247+6 9.015711-4 2.243875+6 9.200000-4 2.153070+6 9.225714-4 2.140677+6 9.272000-4 2.118644+6 9.272000-4 2.219212+6 9.280000-4 2.215952+6 9.332543-4 2.194496+6 9.392000-4 2.170841+6 9.440609-4 2.150124+6 9.450000-4 2.146162+6 9.500000-4 2.124778+6 9.550000-4 2.103739+6 9.600000-4 2.082451+6 9.700000-4 2.040171+6 9.750000-4 2.019511+6 9.772372-4 2.010149+6 1.000000-3 1.917100+6 1.015000-3 1.857923+6 1.030000-3 1.801372+6 1.035142-3 1.782501+6 1.047129-3 1.739911+6 1.055400-3 1.711315+6 1.055400-3 1.784358+6 1.059254-3 1.771076+6 1.060000-3 1.768521+6 1.063000-3 1.758221+6 1.071519-3 1.728997+6 1.096478-3 1.647581+6 1.122018-3 1.569311+6 1.135011-3 1.531686+6 1.150000-3 1.489552+6 1.161449-3 1.458482+6 1.174898-3 1.422496+6 1.188502-3 1.387332+6 1.190000-3 1.383541+6 1.216186-3 1.319135+6 1.230269-3 1.286358+6 1.244515-3 1.254653+6 1.258925-3 1.223304+6 1.270000-3 1.199962+6 1.300000-3 1.139933+6 1.318257-3 1.105159+6 1.333521-3 1.077281+6 1.348963-3 1.049891+6 1.350000-3 1.048089+6 1.364583-3 1.023010+6 1.380384-3 9.968196+5 1.400000-3 9.656847+5 1.412538-3 9.462737+5 1.428894-3 9.217897+5 1.450000-3 8.912974+5 1.462177-3 8.743390+5 1.479108-3 8.514425+5 1.500000-3 8.243836+5 1.531087-3 7.863969+5 1.548817-3 7.658480+5 1.566751-3 7.458272+5 1.570000-3 7.422794+5 1.621810-3 6.881543+5 1.659587-3 6.521221+5 1.678804-3 6.347600+5 1.698244-3 6.178780+5 1.737801-3 5.855145+5 1.757924-3 5.698242+5 1.778279-3 5.545190+5 1.800000-3 5.387403+5 1.819701-3 5.249670+5 1.840772-3 5.107692+5 1.883649-3 4.835602+5 1.905461-3 4.705228+5 1.927525-3 4.578513+5 1.950000-3 4.453498+5 1.972423-3 4.333039+5 2.018366-3 4.100437+5 2.041738-3 3.988213+5 2.065380-3 3.879161+5 2.089296-3 3.773227+5 2.113489-3 3.669691+5 2.137962-3 3.569144+5 2.150000-3 3.521118+5 2.162719-3 3.470970+5 2.238721-3 3.190878+5 2.264644-3 3.102411+5 2.290868-3 3.016477+5 2.371374-3 2.773449+5 2.426610-3 2.621536+5 2.454709-3 2.548252+5 2.511886-3 2.407877+5 2.540973-3 2.340706+5 2.570396-3 2.275509+5 2.600160-3 2.211964+5 2.630268-3 2.149840+5 2.650000-3 2.110460+5 2.660725-3 2.089464+5 2.691535-3 2.030573+5 2.754229-3 1.917322+5 2.786121-3 1.863159+5 2.818383-3 1.810543+5 2.884032-3 1.709585+5 2.917427-3 1.661348+5 2.951209-3 1.614508+5 3.054921-3 1.480919+5 3.090295-3 1.438759+5 3.150000-3 1.371178+5 3.198895-3 1.319178+5 3.235937-3 1.281522+5 3.273407-3 1.244723+5 3.311311-3 1.209032+5 3.349654-3 1.174268+5 3.427678-3 1.107845+5 3.467369-3 1.075977+5 3.548134-3 1.015036+5 3.589219-3 9.859192+4 3.672823-3 9.300931+4 3.715352-3 9.031032+4 3.801894-3 8.515325+4 3.890451-3 8.028109+4 4.000000-3 7.478565+4 4.027170-3 7.350502+4 4.073803-3 7.137311+4 4.120975-3 6.929328+4 4.168694-3 6.726834+4 4.216965-3 6.530111+4 4.315191-3 6.154328+4 4.365158-3 5.974263+4 4.466836-3 5.630083+4 4.500000-3 5.523915+4 4.518559-3 5.465725+4 4.554500-3 5.355441+4 4.554500-3 1.633344+5 4.570882-3 1.619561+5 4.623810-3 1.576048+5 4.635000-3 1.567046+5 4.695000-3 1.522663+5 4.731513-3 1.491799+5 4.786301-3 1.447094+5 4.841724-3 1.403747+5 4.857500-3 1.391739+5 4.857500-3 1.905418+5 4.897788-3 1.865220+5 4.920000-3 1.843532+5 4.954502-3 1.811940+5 5.000000-3 1.771438+5 5.011872-3 1.760483+5 5.069907-3 1.708264+5 5.128614-3 1.657603+5 5.161900-3 1.629738+5 5.161900-3 1.877323+5 5.188000-3 1.853859+5 5.280000-3 1.774406+5 5.300000-3 1.757465+5 5.308844-3 1.750042+5 5.325000-3 1.736524+5 5.400000-3 1.677070+5 5.495409-3 1.605561+5 5.500000-3 1.602231+5 5.623413-3 1.515141+5 5.650000-3 1.497262+5 5.688529-3 1.471659+5 5.754399-3 1.429249+5 5.821032-3 1.388087+5 5.888437-3 1.348082+5 5.956621-3 1.308799+5 6.025596-3 1.270336+5 6.165950-3 1.197062+5 6.237348-3 1.162057+5 6.309573-3 1.128107+5 6.382635-3 1.095177+5 6.456542-3 1.063231+5 6.500000-3 1.045060+5 6.531306-3 1.032068+5 6.683439-3 9.720221+4 6.800000-3 9.293016+4 6.839116-3 9.155555+4 6.918310-3 8.885917+4 7.000000-3 8.618255+4 7.019900-3 8.554700+4 7.079458-3 8.367286+4 7.244360-3 7.877563+4 7.328245-3 7.643786+4 7.413102-3 7.416950+4 7.585776-3 6.983133+4 7.673615-3 6.776080+4 7.762471-3 6.575966+4 7.852356-3 6.381906+4 7.943282-3 6.192938+4 8.000000-3 6.078630+4 8.035261-3 6.009059+4 8.222426-3 5.657841+4 8.317638-3 5.488918+4 8.413951-3 5.324923+4 8.609938-3 5.011421+4 8.709636-3 4.861839+4 8.810489-3 4.716804+4 8.912509-3 4.575745+4 9.015711-3 4.437266+4 9.120108-3 4.303085+4 9.225714-3 4.173069+4 9.332543-3 4.047047+4 9.440609-3 3.924889+4 9.500000-3 3.859386+4 9.549926-3 3.805459+4 9.772372-3 3.577568+4 9.885531-3 3.468934+4 1.000000-2 3.363588+4 1.023293-2 3.162661+4 1.035142-2 3.066871+4 1.047129-2 2.974057+4 1.059254-2 2.884115+4 1.071519-2 2.796852+4 1.083927-2 2.711523+4 1.109175-2 2.547583+4 1.122018-2 2.469458+4 1.135011-2 2.393773+4 1.161449-2 2.249481+4 1.174898-2 2.180660+4 1.188502-2 2.114005+4 1.202264-2 2.049427+4 1.216186-2 1.986230+4 1.230269-2 1.924727+4 1.258925-2 1.807440+4 1.288250-2 1.697487+4 1.303167-2 1.645110+4 1.318257-2 1.594395+4 1.333521-2 1.545279+4 1.350000-2 1.494594+4 1.364583-2 1.451613+4 1.380384-2 1.406908+4 1.400000-2 1.353654+4 1.412538-2 1.321054+4 1.428894-2 1.280142+4 1.462177-2 1.201650+4 1.479108-2 1.164275+4 1.496236-2 1.128089+4 1.500000-2 1.120313+4 1.513561-2 1.092907+4 1.531087-2 1.058852+4 1.548817-2 1.025882+4 1.566751-2 9.939298+3 1.584893-2 9.629944+3 1.603245-2 9.330188+3 1.621810-2 9.039826+3 1.640590-2 8.757210+3 1.698244-2 7.962561+3 1.717908-2 7.713075+3 1.737801-2 7.471596+3 1.757924-2 7.237855+3 1.778279-2 7.011391+3 1.800000-2 6.780411+3 1.840772-2 6.370846+3 1.862087-2 6.170256+3 1.905461-2 5.787613+3 1.972423-2 5.258748+3 2.000000-2 5.060366+3 2.018366-2 4.933372+3 2.041738-2 4.777908+3 2.065380-2 4.627449+3 2.113489-2 4.340951+3 2.137962-2 4.203540+3 2.162719-2 4.070140+3 2.187762-2 3.941051+3 2.238721-2 3.695042+3 2.290868-2 3.464749+3 2.344229-2 3.249148+3 2.371374-2 3.146031+3 2.398833-2 3.046265+3 2.426610-2 2.949744+3 2.483133-2 2.766001+3 2.500000-2 2.714243+3 2.511886-2 2.678272+3 2.540973-2 2.592777+3 2.570396-2 2.510058+3 2.600160-2 2.429941+3 2.660725-2 2.277473+3 2.691535-2 2.204947+3 2.722701-2 2.134786+3 2.754229-2 2.066844+3 2.818383-2 1.937064+3 2.884032-2 1.815618+3 2.917427-2 1.757848+3 2.951209-2 1.701545+3 3.000000-2 1.624485+3 3.019952-2 1.594292+3 3.090295-2 1.493645+3 3.126079-2 1.445783+3 3.162278-2 1.399488+3 3.198895-2 1.354671+3 3.311311-2 1.228831+3 3.316400-2 1.223504+3 3.316400-2 7.392304+3 3.340000-2 7.261099+3 3.388442-2 7.001840+3 3.440000-2 6.739599+3 3.467369-2 6.594612+3 3.500000-2 6.427259+3 3.548134-2 6.209199+3 3.589219-2 6.031143+3 3.630781-2 5.858224+3 3.672823-2 5.681281+3 3.715352-2 5.509704+3 3.801894-2 5.181972+3 3.935501-2 4.726726+3 4.000000-2 4.529079+3 4.027170-2 4.449206+3 4.120975-2 4.187974+3 4.168694-2 4.063188+3 4.216965-2 3.942111+3 4.265795-2 3.824654+3 4.365158-2 3.600184+3 4.400000-2 3.525795+3 4.415704-2 3.492151+3 4.518559-2 3.282332+3 4.570882-2 3.182192+3 4.677351-2 2.990791+3 4.731513-2 2.899467+3 4.897788-2 2.641952+3 4.954502-2 2.561291+3 5.011872-2 2.483084+3 5.069907-2 2.407266+3 5.248075-2 2.190181+3 5.308844-2 2.122275+3 5.370318-2 2.056476+3 5.432503-2 1.992643+3 5.559043-2 1.870877+3 5.888437-2 1.598119+3 6.000000-2 1.518080+3 6.095369-2 1.453943+3 6.237348-2 1.365144+3 6.309573-2 1.322795+3 6.382635-2 1.281085+3 6.531306-2 1.201486+3 6.606934-2 1.163564+3 7.000000-2 9.905865+2 7.244360-2 9.003164+2 7.585776-2 7.919810+2 7.852356-2 7.193116+2 7.943282-2 6.963050+2 8.035261-2 6.740356+2 8.128305-2 6.524799+2 8.222426-2 6.316149+2 8.317638-2 6.114183+2 8.413951-2 5.918690+2 8.609938-2 5.546210+2 8.810489-2 5.197211+2 9.225714-2 4.563803+2 9.660509-2 4.007132+2 9.772372-2 3.878935+2 9.885531-2 3.754845+2 1.000000-1 3.633573+2 1.011580-1 3.516219+2 1.035142-1 3.292792+2 1.059254-1 3.083533+2 1.150000-1 2.439354+2 1.161449-1 2.371369+2 1.174898-1 2.294747+2 1.202264-1 2.148865+2 1.230269-1 2.012262+2 1.273503-1 1.823491+2 1.288250-1 1.764599+2 1.303167-1 1.707614+2 1.318257-1 1.652305+2 1.333521-1 1.598794+2 1.364583-1 1.496903+2 1.396368-1 1.401515+2 1.412538-1 1.356124+2 1.462177-1 1.228600+2 1.548817-1 1.042194+2 1.584893-1 9.758291+1 1.603245-1 9.442500+1 1.640590-1 8.841256+1 1.678804-1 8.278363+1 1.698244-1 8.010520+1 1.757924-1 7.257931+1 1.798871-1 6.796018+1 1.862087-1 6.157720+1 1.883649-1 5.958613+1 1.949845-1 5.399120+1 1.972423-1 5.224568+1 2.000000-1 5.021564+1 2.018366-1 4.892241+1 2.041738-1 4.734092+1 2.065380-1 4.582561+1 2.137962-1 4.156519+1 2.213095-1 3.770185+1 2.238721-1 3.649566+1 2.264644-1 3.532807+1 2.290868-1 3.419792+1 2.344229-1 3.204506+1 2.371374-1 3.102002+1 2.398833-1 3.002796+1 2.426610-1 2.906768+1 2.454709-1 2.813939+1 2.483133-1 2.724077+1 2.511886-1 2.637087+1 2.540973-1 2.553952+1 2.570396-1 2.473441+1 2.600160-1 2.395473+1 2.630268-1 2.319968+1 2.660725-1 2.246844+1 2.691535-1 2.176043+1 2.710800-1 2.133307+1 2.722701-1 2.107476+1 2.851018-1 1.854243+1 2.884032-1 1.795840+1 2.917427-1 1.739287+1 2.951209-1 1.684594+1 3.000000-1 1.610870+1 3.000060-1 1.610782+1 3.054921-1 1.533063+1 3.090295-1 1.485658+1 3.162278-1 1.395217+1 3.198895-1 1.352097+1 3.235937-1 1.310310+1 3.273407-1 1.269817+1 3.311311-1 1.230577+1 3.388442-1 1.155696+1 3.427678-1 1.120653+1 3.467369-1 1.086673+1 3.548134-1 1.021786+1 3.589219-1 9.908115+0 3.630781-1 9.607768+0 3.672823-1 9.316538+0 3.758374-1 8.760495+0 3.801894-1 8.495114+0 3.845918-1 8.237786+0 3.890451-1 7.992773+0 3.935501-1 7.755569+0 3.981072-1 7.525414+0 4.027170-1 7.302108+0 4.073803-1 7.085426+0 4.168694-1 6.671170+0 4.265795-1 6.281391+0 4.315191-1 6.095136+0 4.365158-1 5.917986+0 4.415705-1 5.746028+0 4.466836-1 5.579452+0 4.570882-1 5.260652+0 4.677351-1 4.960145+0 4.731513-1 4.816391+0 4.786301-1 4.676876+0 4.841724-1 4.541411+0 4.954502-1 4.287890+0 5.000000-1 4.191213+0 5.011872-1 4.166554+0 5.069907-1 4.048926+0 5.188000-1 3.823542+0 5.248075-1 3.715599+0 5.308844-1 3.610719+0 5.370318-1 3.508847+0 5.432503-1 3.412099+0 5.495409-1 3.318019+0 5.623413-1 3.137617+0 5.688529-1 3.051356+0 5.754399-1 2.967467+0 5.821032-1 2.885889+0 5.956621-1 2.729411+0 6.025596-1 2.656214+0 6.095369-1 2.584999+0 6.237348-1 2.448248+0 6.309573-1 2.382790+0 6.382635-1 2.319086+0 6.456542-1 2.257090+0 6.606935-1 2.138025+0 6.839117-1 1.975410+0 6.918310-1 1.924151+0 6.998420-1 1.874232+0 7.079458-1 1.825608+0 7.161434-1 1.778249+0 7.244360-1 1.732118+0 7.328245-1 1.687206+0 7.413102-1 1.644682+0 7.585776-1 1.562823+0 7.673615-1 1.523546+0 7.852356-1 1.447941+0 7.943282-1 1.411558+0 8.035261-1 1.376099+0 8.128305-1 1.341538+0 8.222427-1 1.308835+0 8.413951-1 1.245839+0 8.511380-1 1.215488+0 8.609938-1 1.185953+0 8.709636-1 1.157141+0 8.912509-1 1.101604+0 9.015711-1 1.074851+0 9.120108-1 1.049526+0 9.225714-1 1.024816+0 9.332543-1 1.000687+0 9.440609-1 9.771367-1 9.549926-1 9.541444-1 9.660509-1 9.317851-1 9.772372-1 9.099500-1 9.885531-1 8.886284-1 1.000000+0 8.683628-1 1.011579+0 8.485712-1 1.022000+0 8.313316-1 1.023293+0 8.292299-1 1.047129+0 7.918702-1 1.059254+0 7.738286-1 1.071519+0 7.562440-1 1.083927+0 7.390588-1 1.096478+0 7.222651-1 1.109175+0 7.058522-1 1.122018+0 6.898135-1 1.135011+0 6.741423-1 1.148154+0 6.588324-1 1.161449+0 6.443788-1 1.174898+0 6.302446-1 1.188600+0 6.163861-1 1.202264+0 6.030226-1 1.216186+0 5.898591-1 1.258925+0 5.520804-1 1.273503+0 5.403200-1 1.288250+0 5.288108-1 1.303167+0 5.175473-1 1.318257+0 5.065236-1 1.333521+0 4.957352-1 1.348963+0 4.852073-1 1.396368+0 4.549551-1 1.412538+0 4.452962-1 1.428894+0 4.358436-1 1.445440+0 4.268474-1 1.500000+0 3.991374-1 1.513561+0 3.927077-1 1.531087+0 3.846336-1 1.548817+0 3.767276-1 1.566751+0 3.689847-1 1.621810+0 3.473770-1 1.640590+0 3.404593-1 1.659587+0 3.336798-1 1.678804+0 3.270358-1 1.698244+0 3.205454-1 1.737801+0 3.079487-1 1.757924+0 3.018386-1 1.840772+0 2.792605-1 1.862087+0 2.738850-1 1.883649+0 2.686133-1 1.905461+0 2.634432-1 1.927525+0 2.583892-1 1.972423+0 2.485701-1 2.000000+0 2.428319-1 2.018366+0 2.391274-1 2.044000+0 2.342587-1 2.065380+0 2.303190-1 2.089296+0 2.260373-1 2.113489+0 2.218352-1 2.137962+0 2.177117-1 2.162719+0 2.136648-1 2.213095+0 2.058251-1 2.238721+0 2.020149-1 2.264644+0 1.982760-1 2.290868+0 1.947259-1 2.317395+0 1.912395-1 2.344229+0 1.878155-1 2.398833+0 1.811503-1 2.426610+0 1.779074-1 2.454709+0 1.747225-1 2.511886+0 1.685448-1 2.540973+0 1.655391-1 2.570396+0 1.625877-1 2.600160+0 1.597821-1 2.630268+0 1.570250-1 2.660725+0 1.543155-1 2.722701+0 1.490359-1 2.754229+0 1.464644-1 2.786121+0 1.439374-1 2.884032+0 1.366394-1 2.917427+0 1.342905-1 2.951209+0 1.319825-1 3.000000+0 1.288518-1 3.019952+0 1.276075-1 3.090295+0 1.233776-1 3.162278+0 1.192878-1 3.235937+0 1.153341-1 3.273407+0 1.134067-1 3.349654+0 1.096607-1 3.388442+0 1.078348-1 3.427678+0 1.060398-1 3.467369+0 1.043287-1 3.507519+0 1.026453-1 3.589219+0 9.935946-2 3.672823+0 9.617880-2 3.758374+0 9.310033-2 3.801894+0 9.159825-2 3.890451+0 8.867615-2 3.935501+0 8.725056-2 4.000000+0 8.527707-2 4.027170+0 8.449320-2 4.073803+0 8.317658-2 4.168694+0 8.060459-2 4.265795+0 7.811215-2 4.365158+0 7.569703-2 4.415704+0 7.451763-2 4.466836+0 7.336044-2 4.570882+0 7.109970-2 4.623810+0 6.999587-2 4.677351+0 6.890942-2 4.731513+0 6.787090-2 4.786301+0 6.684805-2 4.897788+0 6.484836-2 5.011872+0 6.290849-2 5.128614+0 6.102684-2 5.188000+0 6.010724-2 5.248075+0 5.920148-2 5.308844+0 5.831229-2 5.432503+0 5.657373-2 5.495409+0 5.572418-2 5.559043+0 5.488757-2 5.623413+0 5.408761-2 5.688529+0 5.329929-2 5.821032+0 5.175696-2 5.956621+0 5.025927-2 6.095369+0 4.880506-2 6.165950+0 4.809382-2 6.237348+0 4.739295-2 6.309573+0 4.670446-2 6.456542+0 4.535735-2 6.531306+0 4.469858-2 6.606934+0 4.404952-2 6.683439+0 4.341023-2 6.760830+0 4.279716-2 6.839116+0 4.219277-2 7.000000+0 4.099800-2 7.161434+0 3.985931-2 7.413102+0 3.819447-2 7.498942+0 3.765512-2 7.585776+0 3.712339-2 7.673615+0 3.660073-2 7.852356+0 3.557740-2 8.000000+0 3.477067-2 8.035261+0 3.458292-2 8.128305+0 3.409650-2 8.222427+0 3.362904-2 8.317638+0 3.316800-2 8.511380+0 3.226479-2 8.810489+0 3.095587-2 9.120108+0 2.970017-2 9.225714+0 2.929303-2 9.332543+0 2.889148-2 9.440609+0 2.849660-2 9.660509+0 2.772296-2 9.885531+0 2.697049-2 1.000000+1 2.660222-2 1.011579+1 2.624851-2 1.023293+1 2.589948-2 1.047129+1 2.521530-2 1.083927+1 2.422279-2 1.122018+1 2.326944-2 1.135011+1 2.296005-2 1.161449+1 2.235359-2 1.174898+1 2.205716-2 1.202264+1 2.147605-2 1.244515+1 2.063308-2 1.273503+1 2.008991-2 1.288250+1 1.982951-2 1.318257+1 1.931881-2 1.348963+1 1.882126-2 1.412538+1 1.786426-2 1.445440+1 1.740422-2 1.462177+1 1.717867-2 1.479108+1 1.695604-2 1.500000+1 1.668941-2 1.513561+1 1.652054-2 1.548817+1 1.609631-2 1.566751+1 1.588842-2 1.603245+1 1.548807-2 1.659587+1 1.490638-2 1.757924+1 1.398505-2 1.905461+1 1.279005-2 1.927525+1 1.262789-2 1.949845+1 1.246779-2 1.972423+1 1.230973-2 2.000000+1 1.212220-2 2.018366+1 1.200032-2 2.041738+1 1.184865-2 2.065380+1 1.170210-2 2.187762+1 1.099609-2 2.317395+1 1.033267-2 2.454709+1 9.709282-3 2.511886+1 9.470596-3 2.540973+1 9.353462-3 2.570396+1 9.237781-3 2.600160+1 9.123530-3 2.630268+1 9.010704-3 2.691535+1 8.789630-3 2.754229+1 8.574009-3 2.851018+1 8.260617-3 2.917427+1 8.061643-3 3.090295+1 7.584926-3 3.273407+1 7.136397-3 3.467369+1 6.714392-3 3.589219+1 6.473273-3 3.630781+1 6.394840-3 3.672823+1 6.317360-3 3.715352+1 6.240819-3 3.758374+1 6.165204-3 3.801894+1 6.090513-3 3.890451+1 5.944094-3 4.027170+1 5.731066-3 4.168694+1 5.525768-3 4.265795+1 5.395117-3 4.570882+1 5.021408-3 4.786301+1 4.786763-3 5.128614+1 4.455194-3 5.370318+1 4.247013-3 5.432503+1 4.196506-3 5.559043+1 4.097289-3 5.623413+1 4.048565-3 5.688529+1 4.000419-3 5.754399+1 3.952846-3 5.821032+1 3.905842-3 6.000000+1 3.785030-3 6.237348+1 3.635712-3 6.309573+1 3.592556-3 6.606934+1 3.425011-3 6.839116+1 3.305978-3 7.498942+1 3.008392-3 7.943282+1 2.836162-3 8.609938+1 2.611477-3 9.120108+1 2.461973-3 9.225714+1 2.433116-3 9.440609+1 2.376412-3 9.549926+1 2.348558-3 9.772372+1 2.293826-3 1.000000+2 2.240372-3 1.023293+2 2.188219-3 1.083927+2 2.063097-3 1.122018+2 1.991500-3 1.188502+2 1.877657-3 1.273503+2 1.750783-3 1.479108+2 1.504530-3 1.566751+2 1.419321-3 1.678804+2 1.323418-3 1.757924+2 1.263110-3 1.798871+2 1.233995-3 1.819701+2 1.219691-3 1.840772+2 1.205552-3 1.862087+2 1.191578-3 1.905461+2 1.164112-3 1.927525+2 1.150628-3 2.089296+2 1.060512-3 2.213095+2 1.000505-3 2.371374+2 9.329639-4 2.540973+2 8.702981-4 2.951209+2 7.485861-4 3.126079+2 7.064440-4 3.349654+2 6.589933-4 3.507519+2 6.291437-4 3.589219+2 6.147302-4 3.630781+2 6.076475-4 3.672823+2 6.006467-4 3.715352+2 5.937266-4 3.801894+2 5.801247-4 3.845918+2 5.734440-4 4.168694+2 5.287861-4 4.415704+2 4.990356-4 4.731513+2 4.655367-4 1.011579+3 2.172968-4 1.174898+3 1.870146-4 1.244515+3 1.765255-4 1.333521+3 1.647122-4 1.396368+3 1.572792-4 1.428894+3 1.536894-4 1.445440+3 1.519253-4 1.462177+3 1.501816-4 1.479108+3 1.484579-4 1.513561+3 1.450695-4 1.531087+3 1.434049-4 1.659587+3 1.322752-4 1.757924+3 1.248586-4 1.883649+3 1.165058-4 3.198895+4 6.856894-6 7.852356+4 2.792915-6 1.000000+5 2.193001-6 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 9.630000-6 9.630000-6 1.077000-5 9.630000-6 1.077000-5 1.004207-5 1.365000-5 1.009206-5 2.101000-5 1.010555-5 2.101000-5 1.024826-5 2.485000-5 1.017188-5 2.790000-5 1.018587-5 3.090295-5 1.027871-5 3.388442-5 1.045001-5 3.730000-5 1.073215-5 4.150000-5 1.117301-5 5.300000-5 1.252980-5 5.826000-5 1.306558-5 5.826000-5 2.566586-5 5.930000-5 2.623374-5 6.004000-5 2.673019-5 6.004000-5 2.776644-5 6.318900-5 2.936230-5 6.465000-5 2.990758-5 6.595000-5 3.022844-5 6.785000-5 3.048716-5 7.079458-5 3.061142-5 8.810489-5 3.042670-5 9.900000-5 3.014614-5 1.080000-4 2.971587-5 1.161449-4 2.909910-5 1.230269-4 2.838121-5 1.342100-4 2.703141-5 1.342100-4 3.880267-5 1.390000-4 3.963316-5 1.440000-4 4.020002-5 1.455300-4 4.031118-5 1.455300-4 4.317695-5 1.496236-4 4.340534-5 1.550000-4 4.335652-5 1.610000-4 4.303515-5 1.840772-4 4.112828-5 1.910400-4 4.065843-5 1.910400-4 4.418653-5 2.010000-4 4.394642-5 2.371374-4 4.260572-5 2.580000-4 4.211129-5 2.951209-4 4.166297-5 3.427678-4 4.141569-5 4.265795-4 4.144225-5 5.800000-4 4.196523-5 6.293100-4 4.218141-5 6.293100-4 4.679540-5 6.300000-4 4.728037-5 6.309000-4 4.827200-5 6.315000-4 4.918022-5 6.322000-4 5.050447-5 6.326500-4 5.150483-5 6.333500-4 5.326942-5 6.350000-4 5.794709-5 6.365000-4 6.237475-5 6.370000-4 6.346320-5 6.385000-4 6.794117-5 6.386500-4 6.817590-5 6.414600-4 6.940836-5 6.414600-4 7.196947-5 6.447000-4 7.288382-5 6.505000-4 7.359412-5 6.635000-4 7.412876-5 6.865000-4 7.390947-5 7.161434-4 7.343407-5 7.673615-4 7.317449-5 8.698100-4 7.297356-5 8.698100-4 7.965961-5 9.015711-4 8.013602-5 9.272000-4 8.036131-5 9.272000-4 8.277800-5 9.600000-4 8.347478-5 1.055400-3 8.448062-5 1.055400-3 8.795642-5 1.258925-3 9.045097-5 1.621810-3 9.410651-5 2.041738-3 9.762458-5 2.570396-3 1.012057-4 3.198895-3 1.046265-4 3.890451-3 1.076612-4 4.554500-3 1.100702-4 4.554500-3 1.538048-4 4.857500-3 1.542652-4 4.857500-3 1.622813-4 5.161900-3 1.625489-4 5.161900-3 1.700307-4 7.328245-3 1.732462-4 1.071519-2 1.767821-4 1.584893-2 1.804522-4 2.290868-2 1.838987-4 3.316400-2 1.872226-4 3.316400-2 1.898407-4 7.943282-2 1.908395-4 2.917427-1 1.915156-4 4.265795+1 1.917093-4 1.000000+5 1.917085-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.630000-6 0.0 6.004000-5 0.0 6.004000-5 6.48494-10 6.025596-5 6.44683-10 6.157000-5 6.16139-10 6.220000-5 6.04285-10 6.315000-5 5.90064-10 6.350000-5 5.85674-10 6.421000-5 5.79543-10 6.465000-5 5.76455-10 6.540000-5 5.73969-10 6.595000-5 5.73368-10 6.650000-5 5.75186-10 6.730000-5 5.81386-10 6.785000-5 5.89036-10 6.839116-5 5.99913-10 6.870000-5 6.07835-10 6.900000-5 6.17758-10 6.935000-5 6.31179-10 6.960000-5 6.42553-10 6.985000-5 6.55307-10 7.015000-5 6.72897-10 7.040000-5 6.88910-10 7.079458-5 7.17835-10 7.130000-5 7.58502-10 7.277000-5 8.87290-10 7.330000-5 9.28441-10 7.350000-5 9.42948-10 7.380000-5 9.61946-10 7.435000-5 9.91142-10 7.470000-5 1.005549-9 7.540000-5 1.026521-9 7.585776-5 1.034781-9 7.635000-5 1.041114-9 7.703700-5 1.044783-9 7.900000-5 1.041900-9 8.300000-5 1.024177-9 8.650000-5 1.015684-9 9.440609-5 1.006559-9 9.900000-5 9.99899-10 1.047129-4 9.86999-10 1.109175-4 9.66724-10 1.161449-4 9.41073-10 1.202264-4 9.16075-10 1.230269-4 8.95110-10 1.280000-4 8.51413-10 1.342100-4 7.89239-10 1.342100-4 1.145715-9 1.396368-4 1.151782-9 1.455300-4 1.150344-9 1.455300-4 1.460873-9 1.485000-4 1.466505-9 1.531087-4 1.460500-9 1.590000-4 1.441139-9 1.737801-4 1.370164-9 1.810000-4 1.341549-9 1.910400-4 1.311951-9 1.910400-4 1.507808-9 1.950000-4 1.508366-9 2.089296-4 1.493851-9 2.371374-4 1.454611-9 2.540973-4 1.439629-9 2.754229-4 1.429450-9 3.100000-4 1.420813-9 3.550000-4 1.420030-9 4.518559-4 1.433110-9 6.293100-4 1.474260-9 6.293100-4 1.535922-9 6.306000-4 1.550770-9 6.318500-4 1.576509-9 6.326500-4 1.599308-9 6.341200-4 1.651881-9 6.365000-4 1.744754-9 6.370000-4 1.759302-9 6.385000-4 1.819059-9 6.386500-4 1.822194-9 6.414600-4 1.838755-9 6.414600-4 6.938354-8 6.436000-4 7.069578-8 6.442000-4 7.075946-8 6.447000-4 7.158999-8 6.502200-4 8.166222-8 6.505000-4 8.193961-8 6.535000-4 8.243402-8 6.611000-4 8.670994-8 6.615000-4 8.703790-8 6.635000-4 8.747492-8 6.678000-4 8.968713-8 6.752300-4 9.084930-8 6.850000-4 9.010938-8 6.865000-4 9.027262-8 6.918310-4 8.946129-8 7.000000-4 8.774317-8 7.040000-4 8.708596-8 7.120000-4 8.642147-8 7.190000-4 8.601053-8 7.450000-4 8.518579-8 7.500000-4 8.460240-8 7.673615-4 8.416899-8 7.900000-4 8.411189-8 7.943282-4 8.436449-8 8.698100-4 8.402365-8 8.698100-4 1.312320-7 8.940000-4 1.340895-7 9.272000-4 1.365051-7 9.272000-4 1.613653-7 9.392000-4 1.645681-7 9.600000-4 1.679328-7 9.772372-4 1.698652-7 1.030000-3 1.745672-7 1.055400-3 1.767062-7 1.055400-3 1.974655-7 1.161449-3 2.082472-7 1.270000-3 2.180581-7 1.500000-3 2.370005-7 1.698244-3 2.513760-7 1.927525-3 2.664670-7 2.162719-3 2.800318-7 2.454709-3 2.950311-7 2.754229-3 3.085078-7 3.090295-3 3.218782-7 3.467369-3 3.349804-7 3.801894-3 3.452932-7 4.216965-3 3.566963-7 4.554500-3 3.649140-7 4.554500-3 2.337412-4 4.731513-3 2.346720-4 4.857500-3 2.345229-4 4.857500-3 2.856523-4 5.161900-3 2.860352-4 5.161900-3 2.989484-4 6.531306-3 3.010053-4 1.035142-2 3.033607-4 1.972423-2 3.051584-4 3.316400-2 3.060857-4 3.316400-2 2.187757-2 4.000000-2 2.205514-2 5.069907-2 2.223835-2 7.244360-2 2.240792-2 1.202264-1 2.254155-2 2.630268-1 2.261364-2 1.333521+0 2.269721-2 1.000000+5 2.269303-2 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.630000-6 0.0 1.077000-5 1.140000-6 1.077000-5 7.279349-7 1.152000-5 1.456967-6 1.273503-5 2.651244-6 1.513561-5 5.035923-6 2.101000-5 1.090445-5 2.101000-5 1.076174-5 2.511886-5 1.494882-5 2.885000-5 1.864318-5 3.311311-5 2.271457-5 3.830000-5 2.747054-5 5.688529-5 4.394967-5 5.826000-5 4.519442-5 5.826000-5 3.259414-5 5.960000-5 3.317329-5 6.004000-5 3.330981-5 6.004000-5 3.227291-5 6.318900-5 3.382611-5 6.480000-5 3.484769-5 6.650000-5 3.617477-5 6.900000-5 3.843544-5 7.470000-5 4.410980-5 9.440609-5 6.411589-5 1.080000-4 7.828315-5 1.202264-4 9.153086-5 1.342100-4 1.071778-4 1.342100-4 9.540618-5 1.412538-4 1.013250-4 1.455300-4 1.052177-4 1.455300-4 1.023516-4 1.531087-4 1.097006-4 1.650000-4 1.222848-4 1.910400-4 1.503803-4 1.910400-4 1.468520-4 2.580000-4 2.158873-4 3.801894-4 3.387903-4 6.293100-4 5.871271-4 6.293100-4 5.825131-4 6.322000-4 5.816939-4 6.386500-4 5.704723-4 6.414600-4 5.720498-4 6.414600-4 5.694211-4 6.545000-4 5.805846-4 8.698100-4 7.967524-4 8.698100-4 7.900191-4 9.272000-4 8.467022-4 9.272000-4 8.442606-4 1.055400-3 9.707427-4 1.055400-3 9.672461-4 2.884032-3 2.780715-3 4.554500-3 4.444065-3 4.554500-3 4.166954-3 4.857500-3 4.468712-3 4.857500-3 4.409566-3 5.161900-3 4.713316-3 5.161900-3 4.692921-3 3.316400-2 3.267069-2 3.316400-2 1.109659-2 3.715352-2 1.496520-2 4.954502-2 2.713215-2 8.413951-2 6.148965-2 1.000000+5 9.999997+4 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.316400-2 6.168800+3 3.440000-2 5.636620+3 3.500000-2 5.377180+3 3.630781-2 4.912083+3 3.935501-2 3.974111+3 4.400000-2 2.978460+3 5.069907-2 2.042428+3 6.309573-2 1.128196+3 7.852356-2 6.159075+2 9.885531-2 3.224364+2 1.303167-1 1.469903+2 2.041738-1 4.082404+1 2.511886-1 2.275297+1 2.951209-1 1.453964+1 3.388442-1 9.978164+0 3.845918-1 7.114186+0 4.315191-1 5.264980+0 4.841724-1 3.923821+0 5.370318-1 3.032479+0 5.956621-1 2.359608+0 6.606935-1 1.848862+0 7.328245-1 1.459247+0 8.128305-1 1.160508+0 9.015711-1 9.302179-1 9.885531-1 7.694281-1 1.148154+0 5.706181-1 1.258925+0 4.781402-1 1.428894+0 3.774260-1 1.566751+0 3.195083-1 1.757924+0 2.613674-1 2.018366+0 2.070657-1 2.264644+0 1.716919-1 2.570396+0 1.407916-1 2.951209+0 1.142899-1 3.427678+0 9.182567-2 4.000000+0 7.384600-2 4.677351+0 5.967182-2 5.559043+0 4.753009-2 6.683439+0 3.759075-2 8.128305+0 2.952576-2 1.000000+1 2.303600-2 1.273503+1 1.739670-2 1.566751+1 1.375913-2 2.041738+1 1.026074-2 2.851018+1 7.153332-3 4.168694+1 4.785079-3 6.606934+1 2.965900-3 1.188502+2 1.625956-3 2.371374+2 8.079345-4 4.731513+2 4.031470-4 1.883649+3 1.008897-4 1.000000+5 1.899200-6 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.316400-2 1.903600-4 1.000000+5 1.903600-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.316400-2 2.615600-2 1.000000+5 2.615600-2 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.316400-2 6.817640-3 1.000000+5 9.999997+4 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.161900-3 2.475848+4 5.280000-3 2.384360+4 5.325000-3 2.343920+4 5.650000-3 2.135260+4 6.025596-3 1.910231+4 6.500000-3 1.682326+4 6.918310-3 1.504701+4 7.673615-3 1.241542+4 8.222426-3 1.095929+4 8.810489-3 9.604552+3 1.071519-2 6.553426+3 1.202264-2 5.182794+3 1.380384-2 3.892032+3 1.621810-2 2.753788+3 1.800000-2 2.190520+3 2.113489-2 1.527244+3 2.500000-2 1.036336+3 2.917427-2 7.191135+2 3.388442-2 5.007431+2 3.935501-2 3.461665+2 4.570882-2 2.376405+2 5.370318-2 1.573347+2 6.382635-2 1.003345+2 7.585776-2 6.350929+1 9.225714-2 3.752147+1 1.150000-1 2.057180+1 2.426610-1 2.615932+0 2.917427-1 1.583547+0 3.388442-1 1.060321+0 3.890451-1 7.373285-1 4.415705-1 5.322300-1 5.000000-1 3.894868-1 5.623413-1 2.922365-1 6.237348-1 2.283970-1 6.839117-1 1.845961-1 7.585776-1 1.463645-1 8.511380-1 1.139700-1 9.549926-1 8.934662-2 1.059254+0 7.239155-2 1.174898+0 5.894156-2 1.333521+0 4.637209-2 1.500000+0 3.734339-2 1.678804+0 3.059998-2 1.905461+0 2.464464-2 2.162719+0 1.999007-2 2.454709+0 1.634583-2 2.786121+0 1.346408-2 3.273407+0 1.060880-2 3.801894+0 8.568366-3 4.415704+0 6.970745-3 5.248075+0 5.537930-3 6.237348+0 4.433019-3 7.585776+0 3.472694-3 9.332543+0 2.702714-3 1.161449+1 2.090979-3 1.479108+1 1.586303-3 1.972423+1 1.152005-3 2.630268+1 8.430123-4 3.801894+1 5.697948-4 5.821032+1 3.654049-4 1.000000+2 2.096000-4 1.905461+2 1.089178-4 3.801894+2 5.429326-5 1.513561+3 1.358184-5 1.000000+5 2.053000-7 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.161900-3 2.192800-4 1.000000+5 2.192800-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.161900-3 3.839500-4 1.000000+5 3.839500-4 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.161900-3 4.558670-3 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 4.857500-3 5.136788+4 4.920000-3 4.980142+4 5.000000-3 4.821007+4 5.308844-3 4.140200+4 5.956621-3 3.070000+4 6.500000-3 2.425200+4 7.852356-3 1.440400+4 9.440609-3 8.589400+3 1.071519-2 5.950000+3 1.216186-2 4.109700+3 1.496236-2 2.211800+3 1.800000-2 1.258400+3 2.137962-2 7.378000+2 2.511886-2 4.443200+2 3.000000-2 2.523200+2 3.630781-2 1.363400+2 4.518559-2 6.679200+1 5.888437-2 2.791300+1 1.161449-1 2.931900+0 1.462177-1 1.374500+0 1.757924-1 7.550100-1 2.041738-1 4.671300-1 2.371374-1 2.913300-1 2.722701-1 1.896778-1 3.090295-1 1.289020-1 3.467369-1 9.134030-2 3.890451-1 6.518044-2 4.365158-1 4.686988-2 4.841724-1 3.507423-2 5.370318-1 2.642842-2 5.956621-1 2.006036-2 6.606935-1 1.534593-2 7.244360-1 1.218961-2 8.035261-1 9.477560-3 9.332543-1 6.659763-3 9.885531-1 5.848118-3 1.059254+0 5.045069-3 1.135011+0 4.381469-3 1.202264+0 3.917362-3 1.333521+0 3.233462-3 1.531087+0 2.526246-3 1.757924+0 1.984153-3 2.000000+0 1.594964-3 2.238721+0 1.326883-3 2.540973+0 1.087331-3 2.917427+0 8.820634-4 3.388442+0 7.083227-4 3.935501+0 5.730829-4 4.623810+0 4.597950-4 5.495409+0 3.660509-4 6.531306+0 2.935807-4 8.000000+0 2.284000-4 9.885531+0 1.771726-4 1.244515+1 1.355349-4 1.548817+1 1.057441-4 2.018366+1 7.884256-5 2.754229+1 5.631823-5 4.027170+1 3.764548-5 6.309573+1 2.359801-5 1.122018+2 1.308158-5 2.213095+2 6.572709-6 4.415704+2 3.278661-6 1.757924+3 8.203946-7 1.000000+5 1.441000-8 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 4.857500-3 1.840000-4 1.000000+5 1.840000-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.857500-3 4.241800-4 1.000000+5 4.241800-4 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 4.857500-3 4.249320-3 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.554500-3 1.097800+5 4.635000-3 1.055225+5 4.695000-3 1.027668+5 5.500000-3 6.739120+4 5.888437-3 5.587707+4 7.019900-3 3.404112+4 7.943282-3 2.390910+4 8.912509-3 1.715358+4 1.083927-2 9.581575+3 1.202264-2 7.001454+3 1.428894-2 4.118374+3 1.698244-2 2.397986+3 2.000000-2 1.424600+3 2.344229-2 8.528190+2 2.754229-2 5.030775+2 3.311311-2 2.730089+2 4.000000-2 1.446712+2 4.897788-2 7.269146+1 6.237348-2 3.169214+1 1.273503-1 2.675252+0 1.548817-1 1.366259+0 1.862087-1 7.319203-1 2.137962-1 4.613031-1 2.426610-1 3.042094-1 2.722701-1 2.097207-1 3.054921-1 1.456199-1 3.388442-1 1.055930-1 3.758374-1 7.712976-2 4.168694-1 5.678525-2 4.570882-1 4.355395-2 5.011872-1 3.364126-2 5.495409-1 2.617498-2 6.025596-1 2.051447-2 6.606935-1 1.619896-2 7.244360-1 1.289007-2 7.943282-1 1.033434-2 8.912509-1 7.911553-3 9.549926-1 6.782416-3 1.022000+0 5.873699-3 1.122018+0 4.856468-3 1.216186+0 4.149294-3 1.348963+0 3.418659-3 1.531087+0 2.721753-3 1.737801+0 2.179954-3 1.972423+0 1.758572-3 2.213095+0 1.456329-3 2.511886+0 1.192492-3 2.884032+0 9.665684-4 3.349654+0 7.757210-4 3.890451+0 6.272594-4 4.570882+0 5.029811-4 5.432503+0 4.002253-4 6.456542+0 3.208374-4 7.852356+0 2.516661-4 9.660509+0 1.961124-4 1.202264+1 1.519093-4 1.513561+1 1.168655-4 2.000000+1 8.577900-5 2.691535+1 6.217799-5 3.890451+1 4.204666-5 6.000000+1 2.677400-5 1.023293+2 1.547883-5 1.927525+2 8.139632-6 3.845918+2 4.057471-6 1.531087+3 1.015092-6 1.000000+5 1.552100-8 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.554500-3 1.751400-4 1.000000+5 1.751400-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.554500-3 3.475900-4 1.000000+5 3.475900-4 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.554500-3 4.031770-3 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.055400-3 7.304330+4 1.135011-3 6.907860+4 1.161449-3 6.751682+4 1.258925-3 6.088485+4 1.531087-3 4.651570+4 1.819701-3 3.611297+4 1.972423-3 3.185573+4 2.371374-3 2.369490+4 2.650000-3 1.966210+4 3.090295-3 1.509573+4 3.672823-3 1.109721+4 4.168694-3 8.803188+3 4.897788-3 6.510903+3 5.821032-3 4.672719+3 7.000000-3 3.247860+3 8.317638-3 2.291870+3 9.885531-3 1.603298+3 1.161449-2 1.139923+3 1.350000-2 8.234740+2 1.584893-2 5.779858+2 1.862087-2 4.019232+2 2.187762-2 2.773681+2 2.570396-2 1.899651+2 3.019952-2 1.291214+2 3.548134-2 8.711309+1 4.168694-2 5.833026+1 4.954502-2 3.765386+1 5.888437-2 2.411853+1 7.000000-2 1.532426+1 8.413951-2 9.388604+0 1.035142-1 5.363809+0 1.333521-1 2.681619+0 2.065380-1 8.025021-1 2.660725-1 4.011636-1 3.162278-1 2.517444-1 3.672823-1 1.692967-1 4.168694-1 1.218539-1 4.731513-1 8.837012-2 5.308844-1 6.647249-2 5.956621-1 5.038351-2 6.606935-1 3.954136-2 7.328245-1 3.124477-2 8.222427-1 2.424395-2 9.120108-1 1.943658-2 1.000000+0 1.608198-2 1.148154+0 1.220540-2 1.258925+0 1.022736-2 1.428894+0 8.073275-3 1.566751+0 6.834394-3 1.757924+0 5.590504-3 2.018366+0 4.428733-3 2.264644+0 3.671906-3 2.570396+0 3.010746-3 2.951209+0 2.443719-3 3.427678+0 1.963391-3 4.000000+0 1.579000-3 4.677351+0 1.275978-3 5.559043+0 1.016333-3 6.606934+0 8.154866-4 8.035261+0 6.402508-4 9.885531+0 4.993226-4 1.244515+1 3.819601-4 1.548817+1 2.980105-4 2.018366+1 2.221986-4 2.754229+1 1.587174-4 4.027170+1 1.060931-4 6.237348+1 6.730101-5 1.083927+2 3.818865-5 2.089296+2 1.963228-5 4.168694+2 9.790003-6 1.659587+3 2.449492-6 1.000000+5 4.061000-8 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.055400-3 1.693900-4 1.000000+5 1.693900-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.055400-3 6.838300-7 1.000000+5 6.838300-7 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.055400-3 8.853262-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 9.272000-4 1.005679+5 9.392000-4 1.084796+5 9.450000-4 1.102297+5 9.550000-4 1.122283+5 9.600000-4 1.126153+5 9.750000-4 1.126212+5 1.015000-3 1.087291+5 1.035142-3 1.066924+5 1.060000-3 1.047840+5 1.096478-3 1.011168+5 1.174898-3 9.361900+4 1.230269-3 8.856233+4 1.244515-3 8.754443+4 1.350000-3 7.899280+4 1.450000-3 7.168940+4 1.548817-3 6.517193+4 1.659587-3 5.873867+4 1.800000-3 5.151980+4 2.018366-3 4.254168+4 2.162719-3 3.767983+4 2.426610-3 3.047148+4 2.660725-3 2.556977+4 2.951209-3 2.080924+4 3.311311-3 1.643674+4 3.672823-3 1.318359+4 4.120975-3 1.024889+4 4.623810-3 7.899100+3 5.128614-3 6.211902+3 5.821032-3 4.592089+3 6.531306-3 3.463352+3 7.328245-3 2.595376+3 8.317638-3 1.875187+3 9.500000-3 1.322288+3 1.083927-2 9.274146+2 1.230269-2 6.548630+2 1.400000-2 4.558780+2 1.603245-2 3.094985+2 1.862087-2 2.001427+2 2.137962-2 1.328732+2 2.500000-2 8.291020+1 2.951209-2 4.984653+1 3.467369-2 3.017486+1 4.120975-2 1.749266+1 5.011872-2 9.356627+0 6.309573-2 4.444371+0 1.303167-1 4.162154-1 1.640590-1 1.975259-1 1.949845-1 1.137244-1 2.264644-1 7.096785-2 2.600160-1 4.625076-2 3.000060-1 2.990993-2 3.388442-1 2.080064-2 3.801894-1 1.485481-2 4.265795-1 1.068264-2 4.731513-1 7.991348-3 5.248075-1 6.018757-3 5.821032-1 4.566017-3 6.382635-1 3.595533-3 7.079458-1 2.768775-3 7.852356-1 2.148898-3 8.709636-1 1.674334-3 9.332543-1 1.427173-3 9.885531-1 1.256820-3 1.071519+0 1.061551-3 1.161449+0 9.027835-4 1.258925+0 7.738892-4 1.396368+0 6.398940-4 1.659587+0 4.712340-4 1.883649+0 3.790916-4 2.113489+0 3.130575-4 2.398833+0 2.556176-4 2.722701+0 2.102808-4 3.162278+0 1.682899-4 3.672823+0 1.356868-4 4.265795+0 1.102100-4 5.011872+0 8.875525-5 5.956621+0 7.090753-5 7.161434+0 5.623923-5 8.810489+0 4.367592-5 1.083927+1 3.417503-5 1.412538+1 2.520500-5 1.905461+1 1.804945-5 2.454709+1 1.369879-5 3.467369+1 9.472896-6 5.128614+1 6.285251-6 8.609938+1 3.684247-6 1.678804+2 1.867331-6 3.349654+2 9.301850-7 1.333521+3 2.325726-7 1.000000+5 3.096800-9 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 9.272000-4 1.336900-4 1.000000+5 1.336900-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.272000-4 6.850900-7 1.000000+5 6.850900-7 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.272000-4 7.928249-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 8.698100-4 2.776651+5 8.745000-4 2.788409+5 8.940000-4 2.802871+5 9.015711-4 2.792769+5 9.280000-4 2.730018+5 1.000000-3 2.530332+5 1.030000-3 2.441416+5 1.135011-3 2.154581+5 1.244515-3 1.898335+5 1.350000-3 1.684616+5 1.462177-3 1.487938+5 1.570000-3 1.325764+5 1.757924-3 1.090836+5 1.927525-3 9.262609+4 2.089296-3 7.969502+4 2.371374-3 6.234131+4 2.600160-3 5.181025+4 2.951209-3 3.978153+4 3.235937-3 3.263200+4 3.672823-3 2.464108+4 4.073803-3 1.944297+4 4.570882-3 1.484138+4 5.128614-3 1.124096+4 5.688529-3 8.702902+3 6.500000-3 6.209320+3 7.413102-3 4.411991+3 8.413951-3 3.149134+3 9.440609-3 2.302295+3 1.059254-2 1.672983+3 1.202264-2 1.169192+3 1.364583-2 8.112276+2 1.548817-2 5.589765+2 1.757924-2 3.826232+2 2.018366-2 2.512337+2 2.344229-2 1.580177+2 2.722701-2 9.858920+1 3.162278-2 6.106665+1 3.715352-2 3.617166+1 4.415704-2 2.047586+1 5.308844-2 1.107338+1 6.531306-2 5.501772+0 8.609938-2 2.145568+0 1.318257-1 4.998710-1 1.678804-1 2.203374-1 1.972423-1 1.285229-1 2.264644-1 8.152310-2 2.570396-1 5.407773-2 2.884032-1 3.748280-2 3.235937-1 2.615957-2 3.589219-1 1.905642-2 3.981072-1 1.398674-2 4.365158-1 1.070267-2 4.786301-1 8.245335-3 5.248075-1 6.396939-3 5.754399-1 4.998552-3 6.309573-1 3.934165-3 6.918310-1 3.119149-3 7.585776-1 2.491284-3 8.511380-1 1.897546-3 9.120108-1 1.621153-3 9.772372-1 1.394034-3 1.059254+0 1.178952-3 1.161449+0 9.802362-4 1.273503+0 8.219703-4 1.412538+0 6.792947-4 1.640590+0 5.205454-4 1.862087+0 4.185562-4 2.113489+0 3.389885-4 2.398833+0 2.767856-4 2.722701+0 2.276984-4 3.162278+0 1.822350-4 3.672823+0 1.469325-4 4.265795+0 1.193437-4 5.011872+0 9.610915-5 5.956621+0 7.678275-5 7.161434+0 6.089934-5 8.810489+0 4.729505-5 1.083927+1 3.700728-5 1.412538+1 2.729292-5 1.927525+1 1.929892-5 2.511886+1 1.447063-5 3.589219+1 9.889490-6 5.432503+1 6.411321-6 9.225714+1 3.717370-6 1.757924+2 1.930101-6 3.507519+2 9.616689-7 1.396368+3 2.404985-7 1.000000+5 3.353400-9 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 8.698100-4 1.308000-4 1.000000+5 1.308000-4 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 8.698100-4 4.923200-7 1.000000+5 4.923200-7 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 8.698100-4 7.385177-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 6.414600-4 8.759393+5 6.436000-4 9.829374+5 6.502200-4 1.316129+6 6.505000-4 1.326234+6 6.611000-4 1.504454+6 6.615000-4 1.514254+6 6.678000-4 1.552409+6 6.752300-4 1.524811+6 6.780000-4 1.502502+6 6.850000-4 1.442496+6 7.000000-4 1.261516+6 7.040000-4 1.225980+6 7.100000-4 1.183320+6 7.190000-4 1.132848+6 7.400000-4 1.037368+6 7.500000-4 9.987400+5 7.650000-4 9.499600+5 8.200000-4 8.170751+5 8.222426-4 8.109888+5 8.413951-4 7.715510+5 9.200000-4 6.326240+5 1.000000-3 5.211640+5 1.096478-3 4.167897+5 1.190000-3 3.391552+5 1.333521-3 2.521941+5 1.428894-3 2.094498+5 1.621810-3 1.472592+5 1.778279-3 1.133453+5 2.018366-3 7.826859+4 2.238721-3 5.747046+4 2.570396-3 3.767234+4 2.818383-3 2.826591+4 3.198895-3 1.889683+4 3.589219-3 1.299963+4 4.027170-3 8.884629+3 4.623810-3 5.575783+3 5.300000-3 3.487024+3 6.025596-3 2.225159+3 6.800000-3 1.447304+3 7.673615-3 9.353812+2 8.709636-3 5.878981+2 9.885531-3 3.668805+2 1.122018-2 2.273846+2 1.288250-2 1.339365+2 1.479108-2 7.833277+1 1.737801-2 4.154347+1 2.065380-2 2.087158+1 2.426610-2 1.089452+1 2.917427-2 5.139565+0 3.589219-2 2.189000+0 4.731513-2 6.950788-1 7.585776-2 9.745063-2 9.660509-2 3.585952-2 1.161449-1 1.685738-2 1.364583-1 8.770976-3 1.584893-1 4.816507-3 1.798871-1 2.919365-3 2.018366-1 1.863508-3 2.264644-1 1.198156-3 2.540973-1 7.758901-4 2.851018-1 5.062248-4 3.198895-1 3.328291-4 3.548134-1 2.298082-4 3.935501-1 1.598275-4 4.365158-1 1.119865-4 4.786301-1 8.220344-5 5.248075-1 6.076837-5 5.688529-1 4.695130-5 6.095369-1 3.785639-5 6.606935-1 2.969937-5 7.244360-1 2.268909-5 8.035261-1 1.689090-5 8.609938-1 1.380506-5 9.120108-1 1.175073-5 9.549926-1 1.039622-5 1.000000+0 9.263668-6 1.047129+0 8.320101-6 1.096478+0 7.523355-6 1.148154+0 6.844653-6 1.202264+0 6.261741-6 1.288250+0 5.522330-6 1.412538+0 4.708191-6 1.513561+0 4.189080-6 1.840772+0 2.979967-6 2.044000+0 2.498496-6 2.290868+0 2.076986-6 2.600160+0 1.704191-6 3.000000+0 1.374100-6 3.467369+0 1.112616-6 4.027170+0 9.011922-7 4.731513+0 7.238327-7 5.623413+0 5.768466-7 6.760830+0 4.564440-7 8.222427+0 3.586677-7 1.011579+1 2.799564-7 1.288250+1 2.114972-7 1.603245+1 1.651953-7 2.065380+1 1.248175-7 2.917427+1 8.597860-8 4.265795+1 5.754052-8 6.839116+1 3.525821-8 1.273503+2 1.866937-8 2.540973+2 9.282401-9 1.011579+3 2.316927-9 3.198895+4 7.31268-11 1.000000+5 2.33960-11 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 6.414600-4 7.864200-5 1.000000+5 7.864200-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.414600-4 2.453600-7 1.000000+5 2.453600-7 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.414600-4 5.625726-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 6.293100-4 8.839000+4 6.294600-4 9.023538+4 6.297000-4 9.369463+4 6.300000-4 9.893835+4 6.303000-4 1.052767+5 6.306000-4 1.128054+5 6.309000-4 1.216386+5 6.311500-4 1.300906+5 6.315000-4 1.437621+5 6.318500-4 1.598139+5 6.322000-4 1.785283+5 6.326500-4 2.069845+5 6.333500-4 2.624944+5 6.341200-4 3.415600+5 6.350000-4 4.538463+5 6.365000-4 7.323802+5 6.370000-4 8.245043+5 6.385000-4 1.393072+6 6.386500-4 1.435400+6 6.442000-4 1.961651+6 6.447000-4 1.976228+6 6.535000-4 2.197437+6 6.545000-4 2.206120+6 6.622800-4 2.247907+6 6.635000-4 2.246617+6 6.750000-4 2.097579+6 6.850000-4 1.998257+6 6.865000-4 1.958832+6 6.900000-4 1.906344+6 6.950000-4 1.845144+6 7.000000-4 1.795008+6 7.120000-4 1.697088+6 7.328245-4 1.556397+6 7.450000-4 1.488444+6 7.500000-4 1.477802+6 7.900000-4 1.314513+6 7.943282-4 1.290134+6 9.015711-4 9.712633+5 9.772372-4 8.043554+5 1.063000-3 6.558080+5 1.161449-3 5.246026+5 1.300000-3 3.909342+5 1.400000-3 3.201744+5 1.570000-3 2.325012+5 1.737801-3 1.741185+5 1.950000-3 1.241736+5 2.150000-3 9.278400+4 2.426610-3 6.410688+4 2.691535-3 4.641830+4 3.054921-3 3.102870+4 3.427678-3 2.134135+4 3.801894-3 1.515074+4 4.315191-3 9.888678+3 4.897788-3 6.401058+3 5.500000-3 4.269336+3 6.165950-3 2.847100+3 7.000000-3 1.802862+3 8.035261-3 1.087652+3 9.225714-3 6.498548+2 1.047129-2 4.022773+2 1.188502-2 2.472702+2 1.350000-2 1.505406+2 1.531087-2 9.163818+1 1.757924-2 5.280218+1 2.018366-2 3.022808+1 2.371374-2 1.564999+1 2.818383-2 7.670528+0 3.388442-2 3.557487+0 4.265795-2 1.348272+0 8.035261-2 9.207186-2 9.885531-2 3.848182-2 1.174898-1 1.873050-2 1.364583-1 1.010933-2 1.548817-1 6.040172-3 1.757924-1 3.635681-3 1.972423-1 2.307563-3 2.213095-1 1.473982-3 2.454709-1 9.917638-4 2.710800-1 6.837066-4 2.951209-1 5.005212-4 3.198895-1 3.747481-4 3.467369-1 2.824260-4 3.758374-1 2.142838-4 4.073803-1 1.637343-4 4.415705-1 1.260408-4 4.786301-1 9.768550-5 5.188000-1 7.622999-5 5.688529-1 5.786668-5 6.456542-1 3.995150-5 6.918310-1 3.281890-5 7.413102-1 2.713902-5 7.943282-1 2.262989-5 8.511380-1 1.901435-5 9.015711-1 1.655012-5 9.549926-1 1.449436-5 1.011579+0 1.277841-5 1.096478+0 1.080423-5 1.174898+0 9.417474-6 1.273503+0 8.086036-6 1.412538+0 6.694799-6 1.678804+0 4.934853-6 1.905461+0 3.972540-6 2.137962+0 3.282798-6 2.426610+0 2.682627-6 2.754229+0 2.208521-6 3.235937+0 1.739263-6 3.758374+0 1.403964-6 4.365158+0 1.141580-6 5.128614+0 9.202638-7 6.095369+0 7.359352-7 7.413102+0 5.759887-7 9.120108+0 4.478961-7 1.122018+1 3.508917-7 1.445440+1 2.624710-7 1.949845+1 1.880980-7 2.570396+1 1.393275-7 3.672823+1 9.527060-8 5.559043+1 6.179006-8 9.440609+1 3.583868-8 1.798871+2 1.861231-8 3.589219+2 9.274826-9 1.428894+3 2.319724-9 1.000000+5 3.30990-11 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 6.293100-4 7.910400-5 1.000000+5 7.910400-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.293100-4 1.967700-9 1.000000+5 1.967700-9 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.293100-4 5.502040-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.910400-4 1.330984+5 1.921000-4 1.360514+5 1.933000-4 1.387772+5 1.950000-4 1.419340+5 1.980000-4 1.462722+5 2.010000-4 1.496270+5 2.041738-4 1.522844+5 2.080000-4 1.544264+5 2.120000-4 1.555188+5 2.162719-4 1.555733+5 2.213095-4 1.545064+5 2.280000-4 1.519224+5 2.575200-4 1.389065+5 2.818383-4 1.305116+5 2.985383-4 1.246111+5 3.162278-4 1.181326+5 3.548134-4 1.050235+5 3.890451-4 9.516447+4 4.216965-4 8.670232+4 4.731513-4 7.516796+4 5.308844-4 6.477513+4 5.888437-4 5.621240+4 6.839116-4 4.541658+4 7.673615-4 3.826285+4 8.912509-4 3.039572+4 1.047129-3 2.350430+4 1.216186-3 1.838023+4 1.428894-3 1.400689+4 1.698244-3 1.039498+4 2.065380-3 7.354948+3 2.511886-3 5.164974+3 3.054921-3 3.602026+3 3.715352-3 2.494356+3 4.500000-3 1.727798+3 5.400000-3 1.209186+3 6.456542-3 8.458770+2 7.762471-3 5.805968+2 9.332543-3 3.953941+2 1.109175-2 2.738194+2 1.318257-2 1.882144+2 1.566751-2 1.283693+2 1.840772-2 8.916367+1 2.162719-2 6.148706+1 2.540973-2 4.209203+1 3.019952-2 2.782262+1 3.548134-2 1.876412+1 4.216965-2 1.220413+1 5.011872-2 7.875656+0 6.000000-2 4.949977+0 7.244360-2 3.015591+0 8.810489-2 1.788500+0 1.059254-1 1.086612+0 1.396368-1 5.094687-1 2.398833-1 1.148338-1 2.884032-1 6.959412-2 3.388442-1 4.521106-2 3.890451-1 3.145750-2 4.415705-1 2.272069-2 5.000000-1 1.663696-2 5.623413-1 1.248868-2 6.237348-1 9.764264-3 6.918310-1 7.686419-3 7.673615-1 6.092464-3 8.609938-1 4.742519-3 9.440609-1 3.907583-3 1.047129+0 3.167494-3 1.174898+0 2.520931-3 1.333521+0 1.982649-3 1.500000+0 1.596000-3 1.678804+0 1.307764-3 1.905461+0 1.053318-3 2.162719+0 8.543786-4 2.454709+0 6.986089-4 2.786121+0 5.754364-4 3.273407+0 4.534066-4 3.801894+0 3.662076-4 4.415704+0 2.979304-4 5.248075+0 2.366915-4 6.237348+0 1.894629-4 7.585776+0 1.484246-4 9.332543+0 1.155128-4 1.161449+1 8.936948-5 1.479108+1 6.779776-5 1.972423+1 4.923694-5 2.600160+1 3.647959-5 3.758374+1 2.465007-5 5.754399+1 1.580461-5 9.772372+1 9.171417-6 1.840772+2 4.820569-6 3.672823+2 2.402474-6 1.462177+3 6.009352-7 1.000000+5 8.774400-9 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.910400-4 7.456100-5 1.000000+5 7.456100-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.910400-4 3.194000-9 1.000000+5 3.194000-9 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.910400-4 1.164758-4 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.455300-4 1.477416+5 1.468000-4 1.489126+5 1.485000-4 1.492446+5 1.500000-4 1.488754+5 1.531087-4 1.471031+5 1.584893-4 1.431308+5 1.610000-4 1.402990+5 1.698244-4 1.292058+5 1.757924-4 1.233860+5 1.810000-4 1.195352+5 1.865000-4 1.165606+5 1.930000-4 1.141694+5 2.000000-4 1.125094+5 2.120000-4 1.107968+5 2.580000-4 1.066112+5 2.800000-4 1.042208+5 3.019952-4 1.013047+5 3.280000-4 9.748420+4 3.548134-4 9.331181+4 3.801894-4 8.919856+4 4.100000-4 8.429980+4 4.466836-4 7.843994+4 4.850000-4 7.273060+4 5.248075-4 6.722207+4 5.688529-4 6.161328+4 6.309573-4 5.465416+4 6.918310-4 4.878956+4 7.673615-4 4.257793+4 8.511380-4 3.690493+4 9.440609-4 3.173447+4 1.059254-3 2.663640+4 1.190000-3 2.212800+4 1.333521-3 1.832172+4 1.500000-3 1.496216+4 1.678804-3 1.224312+4 1.905461-3 9.696865+3 2.162719-3 7.619936+3 2.454709-3 5.941988+3 2.786121-3 4.598608+3 3.150000-3 3.561020+3 3.548134-3 2.759938+3 4.000000-3 2.120140+3 4.518559-3 1.609358+3 5.069907-3 1.232213+3 5.754399-3 9.114164+2 6.531306-3 6.689045+2 7.413102-3 4.872031+2 8.413951-3 3.522755+2 9.549926-3 2.529083+2 1.083927-2 1.803026+2 1.230269-2 1.276633+2 1.412538-2 8.693365+1 1.621810-2 5.873579+1 1.862087-2 3.938814+1 2.137962-2 2.622672+1 2.483133-2 1.675392+1 2.884032-2 1.062550+1 3.388442-2 6.458554+0 4.027170-2 3.757721+0 4.897788-2 2.017696+0 6.095369-2 9.989171-1 8.317638-2 3.637356-1 1.288250-1 8.749719-2 1.640590-1 4.008344-2 1.949845-1 2.310147-2 2.290868-1 1.391284-2 2.630268-1 9.071115-3 3.000000-1 6.079432-3 3.388442-1 4.226667-3 3.801894-1 3.017714-3 4.265795-1 2.170216-3 4.731513-1 1.623842-3 5.248075-1 1.223264-3 5.821032-1 9.281195-4 6.456542-1 7.096010-4 7.161434-1 5.468014-4 7.943282-1 4.246939-4 8.709636-1 3.402491-4 9.332543-1 2.900846-4 9.885531-1 2.555149-4 1.071519+0 2.158710-4 1.161449+0 1.835864-4 1.258925+0 1.573650-4 1.396368+0 1.301042-4 1.659587+0 9.580658-5 1.883649+0 7.707550-5 2.137962+0 6.246399-5 2.426610+0 5.103880-5 2.754229+0 4.201344-5 3.235937+0 3.308355-5 3.758374+0 2.670574-5 4.365158+0 2.171517-5 5.188000+0 1.724254-5 6.165950+0 1.379514-5 7.498942+0 1.080186-5 9.225714+0 8.403331-6 1.135011+1 6.586017-6 1.462177+1 4.928303-6 1.949845+1 3.577902-6 2.540973+1 2.683347-6 3.630781+1 1.834460-6 5.432503+1 1.203724-6 9.225714+1 6.979508-7 1.757924+2 3.623797-7 3.507519+2 1.805575-7 1.396368+3 4.515479-8 1.000000+5 6.29610-10 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.455300-4 6.045700-5 1.000000+5 6.045700-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.455300-4 3.333300-9 1.000000+5 3.333300-9 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.455300-4 8.506967-5 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.342100-4 3.744794+5 2.113489-4 3.118058+5 2.350000-4 3.000620+5 2.540973-4 2.899822+5 2.730000-4 2.792008+5 2.951209-4 2.659162+5 3.235937-4 2.489562+5 3.507519-4 2.334554+5 3.801894-4 2.172851+5 4.120975-4 2.007699+5 4.570882-4 1.799177+5 5.011872-4 1.620385+5 5.500000-4 1.446668+5 6.095369-4 1.266836+5 6.760830-4 1.100323+5 7.500000-4 9.479720+4 8.413951-4 7.978832+4 9.332543-4 6.780237+4 1.047129-3 5.621195+4 1.174898-3 4.624462+4 1.318257-3 3.778627+4 1.479108-3 3.066401+4 1.659587-3 2.472442+4 1.883649-3 1.936772+4 2.150000-3 1.488640+4 2.454709-3 1.134331+4 2.754229-3 8.899031+3 3.090295-3 6.939223+3 3.467369-3 5.376619+3 3.890451-3 4.139683+3 4.365158-3 3.166084+3 4.954502-3 2.339079+3 5.623413-3 1.714390+3 6.382635-3 1.246624+3 7.244360-3 8.995264+2 8.222426-3 6.442358+2 9.332543-3 4.580400+2 1.059254-2 3.233194+2 1.202264-2 2.266140+2 1.364583-2 1.577297+2 1.548817-2 1.090289+2 1.778279-2 7.231488+1 2.041738-2 4.760055+1 2.344229-2 3.110342+1 2.722701-2 1.946490+1 3.162278-2 1.209035+1 3.672823-2 7.454861+0 4.365158-2 4.233032+0 5.248075-2 2.296530+0 6.237348-2 1.286060+0 8.128305-2 5.228667-1 1.318257-1 1.004015-1 1.678804-1 4.431265-2 1.972423-1 2.586915-2 2.264644-1 1.641614-2 2.570396-1 1.089360-2 2.884032-1 7.554060-3 3.235937-1 5.277005-3 3.589219-1 3.847913-3 3.981072-1 2.826451-3 4.365158-1 2.163159-3 4.786301-1 1.666527-3 5.248075-1 1.292991-3 5.754399-1 1.010463-3 6.309573-1 7.954640-4 6.918310-1 6.308548-4 7.585776-1 5.040142-4 8.511380-1 3.840231-4 9.120108-1 3.281385-4 9.772372-1 2.821962-4 1.059254+0 2.386674-4 1.161449+0 1.984441-4 1.273503+0 1.664063-4 1.412538+0 1.375186-4 1.640590+0 1.053770-4 1.862087+0 8.473000-5 2.113489+0 6.862255-5 2.398833+0 5.603050-5 2.722701+0 4.609355-5 3.162278+0 3.689014-5 3.672823+0 2.974368-5 4.265795+0 2.415905-5 5.011872+0 1.945590-5 5.956621+0 1.554348-5 7.161434+0 1.232808-5 8.810489+0 9.574064-6 1.083927+1 7.491475-6 1.412538+1 5.525001-6 1.927525+1 3.906772-6 2.511886+1 2.929216-6 3.589219+1 2.002066-6 5.370318+1 1.313429-6 9.120108+1 7.614288-7 1.757924+2 3.907021-7 3.507519+2 1.946749-7 1.396368+3 4.868499-8 1.000000+5 6.78830-10 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.342100-4 6.082400-5 1.000000+5 6.082400-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.342100-4 1.812600-9 1.000000+5 1.812600-9 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.342100-4 7.338419-5 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 6.004000-5 7.358720+5 6.040000-5 7.639800+5 6.070000-5 7.919960+5 6.095369-5 8.195262+5 6.130000-5 8.642480+5 6.157000-5 9.050120+5 6.190000-5 9.634840+5 6.220000-5 1.025308+6 6.250000-5 1.096680+6 6.280000-5 1.179048+6 6.315000-5 1.290980+6 6.350000-5 1.422244+6 6.385000-5 1.575664+6 6.421000-5 1.760070+6 6.465000-5 2.028232+6 6.500000-5 2.280836+6 6.540000-5 2.619184+6 6.595000-5 3.188156+6 6.650000-5 3.903072+6 6.710000-5 4.889600+6 6.900000-5 1.003864+7 6.950000-5 1.204712+7 7.000000-5 1.435312+7 7.030000-5 1.586652+7 7.070000-5 1.800528+7 7.100000-5 1.967140+7 7.130000-5 2.135284+7 7.161434-5 2.309566+7 7.190000-5 2.462008+7 7.220000-5 2.611584+7 7.250000-5 2.745752+7 7.277000-5 2.850868+7 7.300000-5 2.926780+7 7.328245-5 3.000705+7 7.350000-5 3.043452+7 7.380000-5 3.080812+7 7.410000-5 3.095096+7 7.435000-5 3.090400+7 7.470000-5 3.060568+7 7.500000-5 3.017428+7 7.540000-5 2.939352+7 7.585776-5 2.829293+7 7.635000-5 2.695900+7 7.703700-5 2.499355+7 7.800000-5 2.229092+7 8.035261-5 1.681820+7 8.150000-5 1.476540+7 8.300000-5 1.256548+7 8.450000-5 1.078704+7 8.650000-5 8.891320+6 9.440609-5 4.387603+6 9.900000-5 2.969316+6 1.040000-4 1.966740+6 1.109175-4 1.138503+6 1.220000-4 5.036040+5 1.258925-4 3.869319+5 1.288250-4 3.210925+5 1.307000-4 2.869548+5 1.322000-4 2.634684+5 1.340000-4 2.392428+5 1.358000-4 2.188384+5 1.373000-4 2.044192+5 1.390000-4 1.906000+5 1.407000-4 1.791680+5 1.423000-4 1.703448+5 1.440000-4 1.627964+5 1.452400-4 1.583542+5 1.465000-4 1.546700+5 1.480000-4 1.512728+5 1.496236-4 1.486824+5 1.513561-4 1.470197+5 1.531087-4 1.463530+5 1.550000-4 1.466280+5 1.570000-4 1.478836+5 1.590000-4 1.499816+5 1.610000-4 1.527892+5 1.640590-4 1.581979+5 1.678804-4 1.663883+5 1.737801-4 1.810396+5 1.840772-4 2.089723+5 1.905461-4 2.264402+5 1.972423-4 2.436580+5 2.041738-4 2.601274+5 2.100000-4 2.727152+5 2.162719-4 2.848750+5 2.240000-4 2.978052+5 2.317395-4 3.084938+5 2.400000-4 3.175424+5 2.483133-4 3.244371+5 2.580000-4 3.300644+5 2.691535-4 3.338622+5 2.800000-4 3.352568+5 2.917427-4 3.346336+5 3.054921-4 3.316065+5 3.200000-4 3.262904+5 3.350000-4 3.190024+5 3.507519-4 3.098957+5 3.715352-4 2.965418+5 3.935501-4 2.817398+5 4.168694-4 2.659021+5 4.430000-4 2.483784+5 4.700000-4 2.308812+5 5.011872-4 2.117186+5 5.400000-4 1.899736+5 5.800000-4 1.700108+5 6.237348-4 1.507259+5 6.700000-4 1.329340+5 7.328245-4 1.126588+5 7.943282-4 9.631782+4 8.609938-4 8.176842+4 9.500000-4 6.639040+4 1.047129-3 5.352594+4 1.150000-3 4.316240+4 1.244515-3 3.580506+4 1.364583-3 2.861244+4 1.500000-3 2.257736+4 1.659587-3 1.739988+4 1.840772-3 1.322720+4 2.041738-3 9.979537+3 2.264644-3 7.476876+3 2.511886-3 5.562722+3 2.786121-3 4.109886+3 3.090295-3 3.015478+3 3.427678-3 2.197260+3 3.801894-3 1.590251+3 4.216965-3 1.143188+3 4.731513-3 7.861371+2 5.308844-3 5.364512+2 5.956621-3 3.633420+2 6.683439-3 2.442877+2 7.585776-3 1.566452+2 8.609938-3 9.966609+1 9.772372-3 6.292355+1 1.109175-2 3.942882+1 1.258925-2 2.452882+1 1.428894-2 1.515427+1 1.640590-2 8.892833+0 1.905461-2 4.950849+0 2.238721-2 2.614488+0 2.600160-2 1.434721+0 3.126079-2 6.792283-1 3.801894-2 3.046135-1 5.069907-2 9.276312-2 8.035261-2 1.377706-2 1.000000-1 5.599733-3 1.202264-1 2.642494-3 1.412538-1 1.379805-3 1.640590-1 7.604140-4 1.883649-1 4.420988-4 2.137962-1 2.709286-4 2.398833-1 1.747917-4 2.691535-1 1.135825-4 3.000000-1 7.620400-5 3.311311-1 5.333404-5 3.672823-1 3.693745-5 4.027170-1 2.682386-5 4.466836-1 1.887085-5 4.954502-1 1.338181-5 5.432503-1 9.917313-6 5.956621-1 7.402823-6 6.456542-1 5.778489-6 6.998420-1 4.541102-6 7.673615-1 3.474560-6 8.035261-1 3.046515-6 8.609938-1 2.493893-6 9.120108-1 2.125616-6 9.549926-1 1.882057-6 1.000000+0 1.677500-6 1.047129+0 1.506550-6 1.096478+0 1.362819-6 1.148154+0 1.240578-6 1.216186+0 1.111358-6 1.318257+0 9.614384-7 1.548817+0 7.285372-7 1.840772+0 5.396073-7 2.065380+0 4.447476-7 2.317395+0 3.692801-7 2.630268+0 3.031963-7 3.019952+0 2.463871-7 3.507519+0 1.981841-7 4.073803+0 1.606168-7 4.786301+0 1.290731-7 5.688529+0 1.029145-7 6.839116+0 8.147409-8 8.317638+0 6.404817-8 1.023293+1 5.001284-8 1.318257+1 3.730276-8 1.659587+1 2.878163-8 2.187762+1 2.122450-8 3.090295+1 1.464325-8 4.570882+1 9.693771-9 7.498942+1 5.807429-9 1.479108+2 2.904012-9 2.951209+2 1.445481-9 1.174898+3 3.61177-10 1.000000+5 4.23650-12 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 6.004000-5 3.046200-5 1.000000+5 3.046200-5 1 53000 7 7 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.004000-5 2.335400-9 1.000000+5 2.335400-9 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.004000-5 2.957566-5 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 5.826000-5 1.150548+6 5.870000-5 1.202352+6 5.900000-5 1.245996+6 5.930000-5 1.297608+6 5.960000-5 1.358982+6 5.992000-5 1.435938+6 6.025596-5 1.532008+6 6.060000-5 1.648326+6 6.095369-5 1.789626+6 6.130000-5 1.952598+6 6.165950-5 2.151375+6 6.200000-5 2.371662+6 6.240000-5 2.676360+6 6.280000-5 3.038736+6 6.318900-5 3.455737+6 6.370000-5 4.118490+6 6.420000-5 4.918722+6 6.480000-5 6.122460+6 6.540000-5 7.654020+6 6.730000-5 1.556028+7 6.785000-5 1.894080+7 6.830000-5 2.209134+7 6.870000-5 2.514660+7 6.900000-5 2.755884+7 6.935000-5 3.044988+7 6.960000-5 3.252522+7 6.985000-5 3.457326+7 7.015000-5 3.694206+7 7.040000-5 3.879882+7 7.070000-5 4.083294+7 7.100000-5 4.260006+7 7.130000-5 4.405548+7 7.160000-5 4.516848+7 7.190000-5 4.592640+7 7.220000-5 4.633044+7 7.250000-5 4.639980+7 7.277000-5 4.620138+7 7.300000-5 4.585734+7 7.330000-5 4.520154+7 7.365000-5 4.419114+7 7.400000-5 4.298022+7 7.450000-5 4.102038+7 7.502500-5 3.880893+7 7.580000-5 3.550200+7 7.900000-5 2.423352+7 8.035261-5 2.082531+7 8.150000-5 1.842132+7 8.350000-5 1.503762+7 8.650000-5 1.129218+7 9.225714-5 6.716403+6 9.650000-5 4.639602+6 1.011579-4 3.123527+6 1.060000-4 2.095968+6 1.202264-4 7.045920+5 1.230269-4 5.797186+5 1.258925-4 4.798979+5 1.280000-4 4.212450+5 1.300000-4 3.752748+5 1.318257-4 3.404213+5 1.335000-4 3.136680+5 1.350000-4 2.934456+5 1.365000-4 2.763822+5 1.380384-4 2.618183+5 1.396368-4 2.494991+5 1.412538-4 2.396305+5 1.428894-4 2.319997+5 1.445440-4 2.264087+5 1.462177-4 2.226706+5 1.480000-4 2.205468+5 1.496236-4 2.200690+5 1.513561-4 2.208904+5 1.531087-4 2.229348+5 1.550000-4 2.263128+5 1.570000-4 2.310042+5 1.600000-4 2.397810+5 1.640590-4 2.541163+5 1.778279-4 3.124153+5 1.840772-4 3.397023+5 1.906500-4 3.671713+5 1.972423-4 3.928276+5 2.040000-4 4.167006+5 2.100000-4 4.356078+5 2.162719-4 4.529682+5 2.238721-4 4.707378+5 2.317395-4 4.855545+5 2.400000-4 4.975416+5 2.483133-4 5.063182+5 2.580000-4 5.129322+5 2.691535-4 5.165165+5 2.818383-4 5.164224+5 2.951209-4 5.125963+5 3.100000-4 5.046510+5 3.235937-4 4.946403+5 3.388442-4 4.811258+5 3.550000-4 4.651446+5 3.758374-4 4.431777+5 4.000000-4 4.170456+5 4.265795-4 3.887584+5 4.518559-4 3.626480+5 4.786301-4 3.361179+5 5.150000-4 3.028656+5 5.500000-4 2.739426+5 5.900000-4 2.446392+5 6.309573-4 2.180387+5 6.850000-4 1.879680+5 7.413102-4 1.617610+5 8.000000-4 1.391016+5 8.810489-4 1.138304+5 9.700000-4 9.239940+4 1.047129-3 7.778381+4 1.150000-3 6.257760+4 1.270000-3 4.931046+4 1.412538-3 3.786779+4 1.566751-3 2.904356+4 1.737801-3 2.210679+4 1.927525-3 1.670207+4 2.137962-3 1.252971+4 2.371374-3 9.332235+3 2.630268-3 6.901693+3 2.917427-3 5.068516+3 3.235937-3 3.696422+3 3.589219-3 2.677331+3 4.000000-3 1.897002+3 4.466836-3 1.325445+3 5.011872-3 9.047736+2 5.623413-3 6.127255+2 6.309573-3 4.119423+2 7.079458-3 2.750153+2 8.000000-3 1.776900+2 9.015711-3 1.151114+2 1.023293-2 7.213033+1 1.161449-2 4.484288+1 1.318257-2 2.766983+1 1.500000-2 1.678668+1 1.717908-2 9.855502+0 1.972423-2 5.687788+0 2.290868-2 3.111633+0 2.691535-2 1.609680+0 3.198895-2 7.881042-1 3.935501-2 3.317481-1 5.248075-2 9.880181-2 8.222426-2 1.487054-2 1.011580-1 6.241163-3 1.202264-1 3.046949-3 1.396368-1 1.648645-3 1.603245-1 9.423601-4 1.798871-1 5.952922-4 2.018366-1 3.787758-4 2.238721-1 2.538894-4 2.483133-1 1.714561-4 2.722701-1 1.217929-4 3.000000-1 8.561800-5 3.273407-1 6.280810-5 3.589219-1 4.562070-5 3.935501-1 3.339517-5 4.315191-1 2.462639-5 4.677351-1 1.899721-5 5.069907-1 1.476212-5 5.495409-1 1.156355-5 5.956621-1 9.124410-6 6.456542-1 7.247955-6 6.998420-1 5.798477-6 7.585776-1 4.673141-6 8.413951-1 3.572039-6 8.912509-1 3.093022-6 9.440609-1 2.694886-6 1.000000+0 2.365000-6 1.071519+0 2.040242-6 1.148154+0 1.772911-6 1.216186+0 1.586987-6 1.348963+0 1.311972-6 1.621810+0 9.465163-7 1.862087+0 7.456686-7 2.089296+0 6.152628-7 2.344229+0 5.111880-7 2.660725+0 4.199953-7 3.090295+0 3.357541-7 3.589219+0 2.703875-7 4.168694+0 2.193760-7 4.897788+0 1.764831-7 5.821032+0 1.408578-7 7.000000+0 1.115900-7 8.511380+0 8.781741-8 1.047129+1 6.862999-8 1.348963+1 5.122554-8 1.757924+1 3.805517-8 2.317395+1 2.811417-8 3.273407+1 1.941985-8 4.786301+1 1.302598-8 7.943282+1 7.717520-9 1.566751+2 3.862204-9 3.126079+2 1.923242-9 1.244515+3 4.80686-10 7.852356+4 7.60568-12 1.000000+5 5.97280-12 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 5.826000-5 3.081500-5 1.000000+5 3.081500-5 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.826000-5 2.744500-5 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.101000-5 1.349858+5 2.120000-5 1.255914+5 2.180000-5 9.930520+4 2.344229-5 5.272641+4 2.380000-5 4.637340+4 2.410000-5 4.186900+4 2.435000-5 3.863660+4 2.460000-5 3.584000+4 2.485000-5 3.344340+4 2.511886-5 3.127825+4 2.535000-5 2.973200+4 2.557000-5 2.851100+4 2.581400-5 2.742040+4 2.607000-5 2.655320+4 2.630268-5 2.599209+4 2.650000-5 2.567200+4 2.670000-5 2.548460+4 2.692000-5 2.542600+4 2.720000-5 2.555760+4 2.742000-5 2.581120+4 2.765000-5 2.620340+4 2.790000-5 2.676640+4 2.818383-5 2.756250+4 2.851018-5 2.866326+4 2.885000-5 2.999360+4 2.937300-5 3.235667+4 3.150000-5 4.453920+4 3.235937-5 5.008228+4 3.311311-5 5.504702+4 3.388442-5 6.013237+4 3.470000-5 6.544260+4 3.548134-5 7.041137+4 3.630781-5 7.549690+4 3.730000-5 8.132540+4 3.830000-5 8.685720+4 3.935501-5 9.229318+4 4.030000-5 9.680100+4 4.150000-5 1.020264+5 4.265795-5 1.065442+5 4.415704-5 1.116501+5 4.570882-5 1.160998+5 4.731513-5 1.198794+5 4.900000-5 1.230252+5 5.080000-5 1.255612+5 5.300000-5 1.276524+5 5.500000-5 1.287318+5 5.754399-5 1.291762+5 6.025596-5 1.287446+5 6.309573-5 1.275383+5 6.683439-5 1.251070+5 7.079458-5 1.218599+5 7.585776-5 1.171526+5 8.128305-5 1.118377+5 8.810489-5 1.051881+5 9.660509-5 9.730185+4 1.059254-4 8.934734+4 1.161449-4 8.146562+4 1.273503-4 7.376392+4 1.412538-4 6.549402+4 1.650000-4 5.427740+4 2.089296-4 4.044169+4 2.371374-4 3.432866+4 2.691535-4 2.892973+4 3.200000-4 2.270780+4 3.758374-4 1.801889+4 4.731513-4 1.279875+4 5.500000-4 1.017978+4 6.531306-4 7.765648+3 7.673615-4 5.981106+3 9.332543-4 4.325723+3 1.122018-3 3.163994+3 1.364583-3 2.252557+3 1.698244-3 1.528795+3 2.113489-3 1.028111+3 2.630268-3 6.866988+2 3.235937-3 4.650550+2 4.000000-3 3.097458+2 4.897788-3 2.084602+2 6.025596-3 1.379614+2 7.328245-3 9.288933+1 8.810489-3 6.354562+1 1.035142-2 4.525961+1 1.230269-2 3.119039+1 1.462177-2 2.132570+1 1.737801-2 1.446873+1 2.041738-2 1.000120+1 2.398833-2 6.863102+0 2.818383-2 4.676046+0 3.340000-2 3.097141+0 3.935501-2 2.063593+0 4.677351-2 1.335562+0 5.559043-2 8.578387-1 6.531306-2 5.635513-1 7.943282-2 3.355918-1 9.772372-2 1.923160-1 1.230269-1 1.026035-1 2.426610-1 1.582514-2 2.917427-1 9.595485-3 3.427678-1 6.237256-3 3.935501-1 4.342686-3 4.466836-1 3.138843-3 5.011872-1 2.352761-3 5.623413-1 1.776590-3 6.237348-1 1.389101-3 6.918310-1 1.093585-3 7.673615-1 8.669016-4 8.609938-1 6.749834-4 9.440609-1 5.562537-4 1.059254+0 4.406358-4 1.174898+0 3.589057-4 1.333521+0 2.822678-4 1.500000+0 2.272100-4 1.678804+0 1.861787-4 1.905461+0 1.499555-4 2.162719+0 1.216284-4 2.454709+0 9.945145-5 2.786121+0 8.191753-5 3.273407+0 6.454649-5 3.801894+0 5.213327-5 4.415704+0 4.241327-5 5.248075+0 3.369535-5 6.237348+0 2.697227-5 7.585776+0 2.112952-5 9.332543+0 1.644430-5 1.161449+1 1.272286-5 1.479108+1 9.651739-6 1.972423+1 7.009303-6 2.600160+1 5.193157-6 3.758374+1 3.509188-6 5.688529+1 2.276932-6 9.772372+1 1.305630-6 1.840772+2 6.862544-7 3.672823+2 3.420127-7 1.462177+3 8.554842-8 1.000000+5 1.249100-9 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.101000-5 2.101000-5 1.000000+5 2.101000-5 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.101000-5 0.0 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.077000-5 3.272573+7 1.100000-5 3.208823+7 1.122018-5 3.133955+7 1.152000-5 3.013856+7 1.175000-5 2.911489+7 1.202264-5 2.782462+7 1.240000-5 2.596055+7 1.273503-5 2.429659+7 1.310000-5 2.250688+7 1.350000-5 2.062087+7 1.400000-5 1.842904+7 1.450000-5 1.643785+7 1.513561-5 1.420306+7 1.603245-5 1.157879+7 1.737801-5 8.617043+6 2.213095-5 3.498205+6 2.500000-5 2.236871+6 2.754229-5 1.578052+6 3.090295-5 1.050096+6 3.507519-5 6.762789+5 4.000000-5 4.318809+5 4.466836-5 2.982914+5 4.900000-5 2.202254+5 5.300000-5 1.714937+5 5.650000-5 1.408334+5 6.000000-5 1.178809+5 6.309573-5 1.022134+5 6.650000-5 8.868668+4 7.000000-5 7.780116+4 7.328245-5 6.967023+4 7.673615-5 6.275139+4 8.035261-5 5.688033+4 8.413951-5 5.187861+4 8.810489-5 4.758970+4 9.332543-5 4.304656+4 9.900000-5 3.915558+4 1.047129-4 3.602257+4 1.109175-4 3.327192+4 1.190000-4 3.042339+4 1.273503-4 2.810059+4 1.380384-4 2.576741+4 1.513561-4 2.352439+4 1.678804-4 2.138792+4 2.113489-4 1.752247+4 2.454709-4 1.534735+4 2.754229-4 1.376147+4 3.090295-4 1.225217+4 3.507519-4 1.070710+4 4.027170-4 9.166297+3 4.570882-4 7.902133+3 5.128614-4 6.860080+3 5.754399-4 5.913328+3 6.382635-4 5.137440+3 7.161434-4 4.361850+3 8.222426-4 3.554319+3 9.225714-4 2.978629+3 1.047129-3 2.432921+3 1.188502-3 1.971651+3 1.348963-3 1.585765+3 1.531087-3 1.266173+3 1.737801-3 1.004035+3 1.972423-3 7.905444+2 2.238721-3 6.181919+2 2.540973-3 4.800123+2 2.884032-3 3.700448+2 3.273407-3 2.831963+2 3.715352-3 2.151231+2 4.216965-3 1.621726+2 4.786301-3 1.213149+2 4.954502-3 1.119310+2 5.188000-3 1.009420+2 5.495409-3 8.813976+1 6.839116-3 5.144037+1 7.762471-3 3.737526+1 8.810489-3 2.696183+1 1.000000-2 1.931342+1 1.135011-2 1.373977+1 1.303167-2 9.403964+0 1.496236-2 6.385935+0 1.717908-2 4.302641+0 1.972423-2 2.877956+0 2.290868-2 1.846885+0 2.660725-2 1.176239+0 3.126079-2 7.179448-1 3.672823-2 4.348574-1 4.415704-2 2.431979-1 5.432503-2 1.254462-1 6.606934-2 6.668660-2 1.318257-1 7.039287-3 1.678804-1 3.227511-3 2.000000-1 1.848100-3 2.344229-1 1.122661-3 2.691535-1 7.327999-4 3.054921-1 4.989849-4 3.467369-1 3.422646-4 3.890451-1 2.446816-4 4.365158-1 1.762374-4 4.841724-1 1.320692-4 5.370318-1 9.964621-5 5.956621-1 7.572599-5 6.606935-1 5.799660-5 7.328245-1 4.476837-5 8.511380-1 3.115070-5 9.120108-1 2.650291-5 9.660509-1 2.329220-5 1.023293+0 2.059436-5 1.109175+0 1.744795-5 1.188600+0 1.521900-5 1.303167+0 1.279734-5 1.445440+0 1.060503-5 1.698244+0 7.981339-6 1.927525+0 6.428955-6 2.162719+0 5.315913-6 2.454709+0 4.346699-6 2.786121+0 3.580314-6 3.273407+0 2.821093-6 3.801894+0 2.278582-6 4.466836+0 1.825042-6 5.308844+0 1.450661-6 6.309573+0 1.161777-6 7.673615+0 9.105279-7 9.440609+0 7.089393-7 1.174898+1 5.487023-7 1.500000+1 4.152400-7 1.972423+1 3.063481-7 2.600160+1 2.269750-7 3.758374+1 1.533718-7 5.754399+1 9.833636-8 9.772372+1 5.706434-8 1.862087+2 2.964653-8 3.715352+2 1.477558-8 1.479108+3 3.696158-9 1.000000+5 5.45940-11 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.077000-5 1.077000-5 1.000000+5 1.077000-5 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.077000-5 0.0 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 9.630000-6 6.940658+7 9.900000-6 6.706460+7 1.011579-5 6.498645+7 1.042000-5 6.177394+7 1.071519-5 5.846101+7 1.100000-5 5.519861+7 1.135011-5 5.117005+7 1.174898-5 4.671536+7 1.216186-5 4.233543+7 1.258925-5 3.812130+7 1.310000-5 3.356230+7 1.365000-5 2.923944+7 1.428894-5 2.493403+7 1.513561-5 2.026987+7 1.640590-5 1.504463+7 2.143000-5 5.507426+6 2.400000-5 3.622796+6 2.660725-5 2.492086+6 2.917427-5 1.796491+6 3.198895-5 1.303856+6 3.507519-5 9.530713+5 3.801894-5 7.295221+5 4.073803-5 5.836497+5 4.365158-5 4.700841+5 4.650000-5 3.884163+5 4.900000-5 3.336763+5 5.188000-5 2.848225+5 5.432503-5 2.522726+5 5.688529-5 2.248243+5 5.956621-5 2.016701+5 6.237348-5 1.821000+5 6.531306-5 1.655166+5 6.839116-5 1.514237+5 7.161434-5 1.393870+5 7.500000-5 1.290015+5 7.943282-5 1.179965+5 8.413951-5 1.086471+5 9.015711-5 9.911068+4 9.800000-5 8.944458+4 1.080000-4 8.005092+4 1.202264-4 7.139103+4 1.364583-4 6.283884+4 2.137962-4 4.089291+4 2.426610-4 3.601837+4 2.691535-4 3.225162+4 3.000000-4 2.853600+4 3.427678-4 2.435982+4 3.935501-4 2.051796+4 4.518559-4 1.716725+4 5.128614-4 1.447692+4 5.754399-4 1.231764+4 6.382635-4 1.057943+4 7.244360-4 8.713650+3 8.317638-4 6.994219+3 9.440609-4 5.674656+3 1.071519-3 4.570606+3 1.216186-3 3.655661+3 1.380384-3 2.903541+3 1.566751-3 2.290257+3 1.778279-3 1.794116+3 2.018366-3 1.395802+3 2.290868-3 1.078594+3 2.600160-3 8.276782+2 2.951209-3 6.306479+2 3.349654-3 4.771515+2 3.801894-3 3.583636+2 4.315191-3 2.671058+2 4.841724-3 2.030688+2 5.495409-3 1.490679+2 6.237348-3 1.085760+2 7.079458-3 7.847157+1 8.035261-3 5.629058+1 9.120108-3 4.008662+1 1.035142-2 2.834241+1 1.174898-2 1.989761+1 1.333521-2 1.387183+1 1.513561-2 9.604501+0 1.737801-2 6.381134+0 2.000000-2 4.176961+0 2.290868-2 2.753298+0 2.660725-2 1.725687+0 3.090295-2 1.073389+0 3.548134-2 6.879566-1 4.168694-2 4.064136-1 5.011872-2 2.209461-1 6.095369-2 1.147516-1 7.852356-2 4.860804-2 1.333521-1 7.994999-3 1.698244-1 3.531663-3 2.000000-1 2.047000-3 2.290868-1 1.310149-3 2.600160-1 8.701038-4 2.917427-1 6.038861-4 3.273407-1 4.222849-4 3.630781-1 3.082396-4 4.027170-1 2.266694-4 4.415705-1 1.736591-4 4.841724-1 1.339353-4 5.308844-1 1.040299-4 5.821032-1 8.139047-5 6.382635-1 6.416185-5 6.998420-1 5.096641-5 7.673615-1 4.078987-5 8.511380-1 3.197893-5 9.225714-1 2.665408-5 9.885531-1 2.296106-5 1.083927+0 1.900157-5 1.188600+0 1.583200-5 1.303167+0 1.329045-5 1.445440+0 1.099900-5 1.678804+0 8.440594-6 1.905461+0 6.795784-6 2.137962+0 5.615676-6 2.426610+0 4.588520-6 2.754229+0 3.777171-6 3.235937+0 2.974351-6 3.758374+0 2.400923-6 4.365158+0 1.952233-6 5.188000+0 1.550138-6 6.165950+0 1.240253-6 7.498942+0 9.711491-7 9.225714+0 7.554945-7 1.135011+1 5.921061-7 1.462177+1 4.430732-7 1.949845+1 3.216675-7 2.570396+1 2.382684-7 3.715352+1 1.609608-7 5.623413+1 1.044176-7 9.549926+1 6.057275-8 1.819701+2 3.146164-8 3.630781+2 1.567934-8 1.445440+3 3.921646-9 1.000000+5 5.66040-11 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 9.630000-6 9.630000-6 1.000000+5 9.630000-6 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 9.630000-6 0.0 1.000000+5 1.000000+5 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.843470-7 1.027500+0 1.001340-6 1.028100+0 1.363300-6 1.028750+0 1.843470-6 1.029500+0 2.522840-6 1.030100+0 3.172770-6 1.031000+0 4.341440-6 1.032000+0 5.940170-6 1.033200+0 8.321180-6 1.034000+0 1.021500-5 1.035300+0 1.386540-5 1.036640+0 1.843470-5 1.038200+0 2.487820-5 1.039700+0 3.232180-5 1.041500+0 4.300370-5 1.043800+0 5.969060-5 1.046400+0 8.304820-5 1.048300+0 1.033970-4 1.051200+0 1.402560-4 1.054080+0 1.843470-4 1.057700+0 2.512780-4 1.061100+0 3.268500-4 1.065100+0 4.327160-4 1.070400+0 6.036880-4 1.076200+0 8.342990-4 1.080600+0 1.041900-3 1.087100+0 1.403780-3 1.093710+0 1.843470-3 1.102600+0 2.555810-3 1.110700+0 3.333070-3 1.120600+0 4.458260-3 1.133300+0 6.198270-3 1.147500+0 8.557330-3 1.158200+0 1.063450-2 1.174100+0 1.421480-2 1.190110+0 1.843470-2 1.205100+0 2.295600-2 1.227500+0 3.073420-2 1.250000+0 3.969000-2 1.265600+0 4.648540-2 1.294900+0 6.038660-2 1.320600+0 7.361450-2 1.343000+0 8.580600-2 1.382200+0 1.083570-1 1.433800+0 1.399800-1 1.500000+0 1.836000-1 1.589800+0 2.492350-1 1.665000+0 3.097580-1 1.784700+0 4.148350-1 1.892300+0 5.157510-1 2.000000+0 6.193000-1 2.044000+0 6.615000-1 2.163500+0 7.764590-1 2.372600+0 9.777570-1 2.647100+0 1.237930+0 3.000000+0 1.561000+0 3.500000+0 1.992260+0 4.000000+0 2.393000+0 4.750000+0 2.940920+0 5.000000+0 3.110000+0 6.000000+0 3.728000+0 7.000000+0 4.278000+0 8.000000+0 4.772000+0 9.000000+0 5.221000+0 1.000000+1 5.632000+0 1.100000+1 6.011000+0 1.200000+1 6.362000+0 1.300000+1 6.688000+0 1.400000+1 6.988000+0 1.500000+1 7.267000+0 1.600000+1 7.525000+0 1.800000+1 7.996000+0 2.000000+1 8.419000+0 2.200000+1 8.802000+0 2.400000+1 9.150000+0 2.600000+1 9.468000+0 2.800000+1 9.758000+0 3.000000+1 1.003000+1 4.000000+1 1.111000+1 5.000000+1 1.192000+1 6.000000+1 1.255000+1 8.000000+1 1.347000+1 1.000000+2 1.413000+1 1.500000+2 1.518000+1 2.000000+2 1.581000+1 3.000000+2 1.654000+1 4.000000+2 1.696000+1 5.000000+2 1.723000+1 6.000000+2 1.743000+1 8.000000+2 1.769000+1 1.000000+3 1.786000+1 1.500000+3 1.811000+1 2.000000+3 1.825000+1 3.000000+3 1.839000+1 4.000000+3 1.847000+1 5.000000+3 1.852000+1 6.000000+3 1.855000+1 8.000000+3 1.860000+1 1.000000+4 1.863000+1 1.500000+4 1.867000+1 2.000000+4 1.869000+1 3.000000+4 1.871000+1 4.000000+4 1.872000+1 5.000000+4 1.873000+1 6.000000+4 1.873000+1 8.000000+4 1.874000+1 1.000000+5 1.874000+1 1 53000 7 8 1.269040+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.316080-7 2.099900+0 1.245100-6 2.106600+0 1.732040-6 2.114000+0 2.396490-6 2.119500+0 2.983620-6 2.127900+0 4.046350-6 2.136250+0 5.316080-6 2.147000+0 7.288720-6 2.156900+0 9.467170-6 2.169000+0 1.263450-5 2.184500+0 1.756240-5 2.201800+0 2.429810-5 2.214800+0 3.027360-5 2.234200+0 4.072330-5 2.253680+0 5.316080-5 2.281500+0 7.446110-5 2.307000+0 9.780430-5 2.338200+0 1.315060-4 2.377400+0 1.821200-4 2.410200+0 2.316270-4 2.446800+0 2.946420-4 2.485900+0 3.709710-4 2.532900+0 4.747630-4 2.556430+0 5.316080-4 2.611900+0 6.778620-4 2.660400+0 8.195010-4 2.745300+0 1.096850-3 2.809000+0 1.328360-3 2.904500+0 1.711260-3 3.000000+0 2.136000-3 3.125000+0 2.754200-3 3.234400+0 3.351110-3 3.425800+0 4.512320-3 3.569300+0 5.471240-3 3.784700+0 7.032600-3 4.000000+0 8.711000-3 4.250000+0 1.076310-2 4.625000+0 1.398800-2 5.000000+0 1.734000-2 5.500000+0 2.193920-2 6.000000+0 2.660000-2 6.750000+0 3.353810-2 7.000000+0 3.582000-2 8.000000+0 4.474000-2 9.000000+0 5.328000-2 1.000000+1 6.138000-2 1.100000+1 6.904000-2 1.200000+1 7.627000-2 1.300000+1 8.307000-2 1.400000+1 8.954000-2 1.500000+1 9.566000-2 1.600000+1 1.015000-1 1.800000+1 1.122000-1 2.000000+1 1.220000-1 2.200000+1 1.310000-1 2.400000+1 1.392000-1 2.600000+1 1.468000-1 2.800000+1 1.538000-1 3.000000+1 1.604000-1 4.000000+1 1.874000-1 5.000000+1 2.079000-1 6.000000+1 2.242000-1 8.000000+1 2.486000-1 1.000000+2 2.664000-1 1.500000+2 2.959000-1 2.000000+2 3.143000-1 3.000000+2 3.369000-1 4.000000+2 3.505000-1 5.000000+2 3.597000-1 6.000000+2 3.665000-1 8.000000+2 3.759000-1 1.000000+3 3.821000-1 1.500000+3 3.913000-1 2.000000+3 3.965000-1 3.000000+3 4.022000-1 4.000000+3 4.055000-1 5.000000+3 4.076000-1 6.000000+3 4.090000-1 8.000000+3 4.109000-1 1.000000+4 4.121000-1 1.500000+4 4.137000-1 2.000000+4 4.147000-1 3.000000+4 4.156000-1 4.000000+4 4.162000-1 5.000000+4 4.165000-1 6.000000+4 4.167000-1 8.000000+4 4.170000-1 1.000000+5 4.172000-1 1 53000 7 8 1.269040+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 53000 7 9 1.269040+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.300000+1 1.000000+5 5.300000+1 5.000000+5 5.298600+1 7.187500+5 5.297070+1 8.125000+5 5.296560+1 1.000000+6 5.295200+1 1.250000+6 5.292370+1 1.500000+6 5.289500+1 2.000000+6 5.281400+1 2.500000+6 5.271100+1 3.000000+6 5.258600+1 3.750000+6 5.235710+1 4.000000+6 5.227300+1 4.750000+6 5.198310+1 5.000000+6 5.188400+1 5.500000+6 5.166230+1 6.250000+6 5.129610+1 6.500000+6 5.116610+1 7.000000+6 5.090000+1 7.875000+6 5.039960+1 8.500000+6 5.001950+1 8.625000+6 4.993980+1 9.000000+6 4.970800+1 1.000000+7 4.905700+1 1.109400+7 4.831210+1 1.187500+7 4.777150+1 1.203100+7 4.766360+1 1.250000+7 4.733500+1 1.375000+7 4.644790+1 1.437500+7 4.600690+1 1.500000+7 4.556800+1 1.687500+7 4.426620+1 1.750000+7 4.384200+1 1.937500+7 4.259510+1 2.000000+7 4.219500+1 2.250000+7 4.064570+1 2.375000+7 3.990840+1 2.500000+7 3.919900+1 2.750000+7 3.783640+1 2.875000+7 3.718650+1 3.000000+7 3.655400+1 3.437500+7 3.444890+1 3.812500+7 3.275970+1 4.000000+7 3.195000+1 4.500000+7 2.988340+1 5.000000+7 2.797300+1 5.750000+7 2.540420+1 6.000000+7 2.463600+1 7.000000+7 2.199000+1 8.000000+7 1.995600+1 9.000000+7 1.837400+1 1.000000+8 1.707600+1 1.109400+8 1.583470+1 1.125000+8 1.566580+1 1.203100+8 1.483970+1 1.250000+8 1.435400+1 1.312500+8 1.371230+1 1.406300+8 1.277220+1 1.437500+8 1.246620+1 1.500000+8 1.186700+1 1.562500+8 1.128540+1 1.671900+8 1.032550+1 1.750000+8 9.693580+0 1.815400+8 9.199950+0 2.000000+8 7.977900+0 2.171900+8 7.060930+0 2.289100+8 6.564160+0 2.375000+8 6.266050+0 2.394500+8 6.205790+0 2.473600+8 5.987820+0 2.500000+8 5.924500+0 3.000000+8 5.095300+0 3.125000+8 4.870800+0 3.500000+8 4.266200+0 3.750000+8 3.981090+0 3.937500+8 3.789770+0 4.000000+8 3.724400+0 4.179700+8 3.526020+0 4.330100+8 3.354880+0 4.497600+8 3.165260+0 4.677000+8 2.968380+0 4.750000+8 2.890970+0 5.000000+8 2.640800+0 5.500000+8 2.216180+0 6.000000+8 1.884100+0 6.343800+8 1.702950+0 6.578100+8 1.603080+0 6.789100+8 1.529770+0 7.000000+8 1.472100+0 7.125000+8 1.445010+0 8.000000+8 1.313800+0 8.250000+8 1.274200+0 8.468800+8 1.237180+0 8.851600+8 1.170910+0 1.000000+9 9.973000-1 1.031300+9 9.612640-1 1.089800+9 9.047390-1 1.294900+9 7.591850-1 1.365400+9 7.154510-1 1.375000+9 7.095050-1 1.413500+9 6.857530-1 1.471200+9 6.499260-1 1.500000+9 6.319300-1 1.562500+9 5.926130-1 1.641100+9 5.440860-1 1.706900+9 5.051750-1 1.780200+9 4.643410-1 1.858700+9 4.238900-1 1.952900+9 3.800550-1 2.000000+9 3.600700-1 2.139200+9 3.077530-1 2.272600+9 2.658720-1 2.443000+9 2.218710-1 2.602800+9 1.883680-1 2.825100+9 1.513970-1 2.961100+9 1.331300-1 3.215900+9 1.056510-1 3.536500+9 8.033060-2 3.804800+9 6.472060-2 4.103600+9 5.153720-2 4.423800+9 4.092930-2 5.000000+9 2.790700-2 5.703100+9 1.833070-2 6.523400+9 1.185320-2 8.000000+9 6.069900-3 1.00000+10 2.917000-3 1.13510+10 1.929820-3 1.41440+10 9.481110-4 1.70770+10 5.190060-4 2.01080+10 3.091200-4 2.51010+10 1.539290-4 2.97820+10 9.031510-5 3.85600+10 4.064210-5 4.62400+10 2.328350-5 5.96800+10 1.070690-5 7.98400+10 4.445080-6 1.00000+11 2.261700-6 1.34280+11 9.385690-7 1.77440+11 4.105740-7 2.63330+11 1.282600-7 4.88110+11 2.114670-8 1.16740+12 1.705990-9 3.55150+12 7.14876-11 1.00000+14 5.93300-15 2.05350+15 1.13928-18 1.00000+17 1.73830-23 1 53000 7 0 1.269040+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.40000-12 1.000000+2 5.40000-10 1.000000+3 5.400000-8 1.000000+4 5.400000-6 1.000000+5 5.400000-4 5.000000+5 1.350000-2 7.187500+5 2.789648-2 8.125000+5 3.564844-2 1.000000+6 5.400000-2 1.250000+6 8.410350-2 1.500000+6 1.205000-1 2.000000+6 2.128000-1 2.500000+6 3.296000-1 3.000000+6 4.696000-1 3.750000+6 7.198310-1 4.000000+6 8.132000-1 4.750000+6 1.119730+0 5.000000+6 1.230000+0 5.500000+6 1.460900+0 6.250000+6 1.830020+0 6.500000+6 1.958230+0 7.000000+6 2.221300+0 7.875000+6 2.697960+0 8.500000+6 3.047960+0 8.625000+6 3.118400+0 9.000000+6 3.331400+0 1.000000+7 3.903000+0 1.109400+7 4.529360+0 1.187500+7 4.974590+0 1.203100+7 5.062650+0 1.250000+7 5.328100+0 1.375000+7 6.025620+0 1.437500+7 6.368710+0 1.500000+7 6.709000+0 1.687500+7 7.705520+0 1.750000+7 8.030000+0 1.937500+7 8.978870+0 2.000000+7 9.287000+0 2.250000+7 1.047110+1 2.375000+7 1.103440+1 2.500000+7 1.157900+1 2.750000+7 1.260750+1 2.875000+7 1.309360+1 3.000000+7 1.356400+1 3.437500+7 1.509200+1 3.812500+7 1.629840+1 4.000000+7 1.687600+1 4.500000+7 1.835750+1 5.000000+7 1.977700+1 5.750000+7 2.181430+1 6.000000+7 2.247100+1 7.000000+7 2.498000+1 8.000000+7 2.726900+1 9.000000+7 2.929800+1 1.000000+8 3.105600+1 1.109400+8 3.269590+1 1.125000+8 3.290870+1 1.203100+8 3.391340+1 1.250000+8 3.447400+1 1.312500+8 3.517140+1 1.406300+8 3.613600+1 1.437500+8 3.644080+1 1.500000+8 3.702400+1 1.562500+8 3.757660+1 1.671900+8 3.848970+1 1.750000+8 3.909720+1 1.815400+8 3.957810+1 2.000000+8 4.082800+1 2.171900+8 4.185450+1 2.289100+8 4.248980+1 2.375000+8 4.293040+1 2.394500+8 4.302530+1 2.473600+8 4.340440+1 2.500000+8 4.352900+1 3.000000+8 4.552600+1 3.125000+8 4.594590+1 3.500000+8 4.705400+1 3.750000+8 4.768070+1 3.937500+8 4.810160+1 4.000000+8 4.823300+1 4.179700+8 4.858150+1 4.330100+8 4.885070+1 4.497600+8 4.912490+1 4.677000+8 4.939170+1 4.750000+8 4.949120+1 5.000000+8 4.981100+1 5.500000+8 5.031950+1 6.000000+8 5.071400+1 6.343800+8 5.092860+1 6.578100+8 5.105750+1 6.789100+8 5.116330+1 7.000000+8 5.126600+1 7.125000+8 5.131740+1 8.000000+8 5.164700+1 8.250000+8 5.172260+1 8.468800+8 5.178690+1 8.851600+8 5.189580+1 1.000000+9 5.216500+1 1.031300+9 5.222290+1 1.089800+9 5.232680+1 1.294900+9 5.259910+1 1.365400+9 5.267010+1 1.375000+9 5.267750+1 1.413500+9 5.270680+1 1.471200+9 5.274940+1 1.500000+9 5.277000+1 1.562500+9 5.280280+1 1.641100+9 5.284000+1 1.706900+9 5.286280+1 1.780200+9 5.288710+1 1.858700+9 5.290760+1 1.952900+9 5.292740+1 2.000000+9 5.293700+1 2.139200+9 5.295470+1 2.272600+9 5.297060+1 2.443000+9 5.298530+1 2.602800+9 5.299230+1 2.825100+9 5.300130+1 2.961100+9 5.300650+1 3.215900+9 5.300800+1 3.536500+9 5.300630+1 3.804800+9 5.300490+1 4.103600+9 5.300360+1 4.423800+9 5.300220+1 5.000000+9 5.300000+1 5.703100+9 5.300000+1 6.523400+9 5.300000+1 8.000000+9 5.300000+1 1.00000+10 5.300000+1 1.13510+10 5.300000+1 1.41440+10 5.300000+1 1.70770+10 5.300000+1 2.01080+10 5.300000+1 2.51010+10 5.300000+1 2.97820+10 5.300000+1 3.85600+10 5.300000+1 4.62400+10 5.300000+1 5.96800+10 5.300000+1 7.98400+10 5.300000+1 1.00000+11 5.300000+1 1.34280+11 5.300000+1 1.77440+11 5.300000+1 2.63330+11 5.300000+1 4.88110+11 5.300000+1 1.16740+12 5.300000+1 3.55150+12 5.300000+1 1.00000+14 5.300000+1 2.05350+15 5.300000+1 1.00000+17 5.300000+1 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.130055-6 0.0 1.132837-6 2.331764-7 1.135618-6 4.613919-7 1.138400-6 8.427700-7 1.141181-6 1.421026-6 1.143963-6 2.211815-6 1.146744-6 3.177968-6 1.149526-6 4.215063-6 1.152307-6 5.160747-6 1.155089-6 5.832772-6 1.157870-6 6.085430-6 1.160651-6 5.860863-6 1.163433-6 5.210576-6 1.166214-6 4.276258-6 1.171777-6 2.265594-6 1.174559-6 1.462589-6 1.177340-6 8.715983-7 1.180122-6 4.794734-7 1.182903-6 2.434819-7 1.185685-6 0.0 3.564683-6 0.0 6.321202-6 0.0 6.344540-6 1.262198+0 6.352319-6 1.677593+0 6.367878-6 3.064261+0 6.383437-6 5.166765+0 6.400941-6 8.480210+0 6.427926-6 1.479435+1 6.447617-6 1.906897+1 6.462659-6 2.129176+1 6.478874-6 2.201715+1 6.494092-6 2.104539+1 6.511102-6 1.824918+1 6.537350-6 1.218579+1 6.554584-6 8.237565+0 6.571115-6 5.183884+0 6.585702-6 3.169079+0 6.601261-6 1.743336+0 6.623627-6 4.984854-1 6.632378-6 0.0 7.252157-6 0.0 7.270008-6 1.414563-6 7.287858-6 2.799029-6 7.304314-6 4.931498-6 7.305708-6 5.203527-6 7.323558-6 9.875561-6 7.341409-6 1.586258-5 7.359259-6 2.368603-5 7.412810-6 5.156818-5 7.430660-6 5.827340-5 7.451267-6 6.152099-5 7.483362-6 5.733205-1 7.487947-6 6.543785-1 7.506288-6 1.195222+0 7.524628-6 2.015267+0 7.542968-6 3.136716+0 7.597989-6 7.318728+0 7.618622-6 8.316456+0 7.636963-6 8.590343+0 7.654157-6 8.254085+0 7.673643-6 7.224110+0 7.703518-6 4.956727+0 7.726372-6 3.212955+0 7.744712-6 2.074172+0 7.763052-6 1.236058+0 7.781393-6 6.799658-1 7.804318-6 2.591228-1 7.818073-6 0.0 7.834221-6 0.0 7.838310-6 4.250247-2 7.876896-6 3.941649+0 7.896189-6 7.178324+0 7.915482-6 1.207017+1 7.936453-6 1.945372+1 7.989951-6 4.221712+1 8.013718-6 4.922559+1 8.032849-6 5.106879+1 8.053782-6 4.855000+1 8.074236-6 4.245831+1 8.130117-6 2.042243+1 8.146998-6 1.518914+1 8.167497-6 1.074760+1 8.185584-6 8.128742+0 8.205290-6 6.282957+0 8.224170-6 4.176839+0 8.244712-6 3.707398+0 8.264423-6 3.042618+0 8.303846-6 1.612002+0 8.323557-6 1.040652+0 8.343268-6 6.201544-1 8.362979-6 3.411520-1 8.392546-6 8.672223-2 8.402401-6 2.13435-14 8.423486-6 4.31831-14 8.434378-6 6.20065-14 8.475899-6 1.974626-6 8.496659-6 3.606816-6 8.511939-6 5.427200-6 8.514496-6 1.151566-2 8.556411-6 1.840929+0 8.577369-6 3.356800+0 8.598326-6 5.650954+0 8.623046-6 9.536289+0 8.684798-6 2.110973+1 8.706166-6 2.376032+1 8.725984-6 2.475108+1 8.748098-6 2.381675+1 8.773693-6 2.055451+1 8.832044-6 1.003658+1 8.851124-6 7.460532+0 8.871343-6 5.459385+0 8.891840-6 4.370066+0 8.901099-6 4.248599+0 8.920880-6 4.242132+0 8.934376-6 4.556675+0 8.945371-6 5.359692+0 8.965294-6 7.134676+0 9.115534-6 2.686356+1 9.147379-6 3.064899+1 9.171223-6 3.229707+1 9.194652-6 3.255403+1 9.216613-6 3.140696+1 9.244800-6 2.815639+1 9.301528-6 1.998444+1 9.330365-6 1.695700+1 9.349365-6 1.549428+1 9.396727-6 1.321282+1 9.418540-6 1.247542+1 9.499943-6 1.115454+1 9.589129-6 9.872282+0 9.647335-6 9.619996+0 9.696722-6 1.044176+1 9.714743-6 1.096533+1 9.741796-6 1.226606+1 9.774198-6 1.447926+1 9.836727-6 1.918903+1 9.862467-6 2.039876+1 9.883424-6 2.077245+1 9.913487-6 2.005348+1 9.947342-6 1.804336+1 1.000553-5 1.410707+1 1.003623-5 1.327455+1 1.005899-5 1.319711+1 1.008504-5 1.400717+1 1.011889-5 1.606810+1 1.018709-5 2.263023+1 1.021433-5 2.443234+1 1.024141-5 2.520437+1 1.026228-5 2.509498+1 1.029550-5 2.361028+1 1.036964-5 1.875051+1 1.040693-5 1.694557+1 1.046131-5 1.548244+1 1.051938-5 1.493411+1 1.080163-5 1.433297+1 1.103364-5 1.367259+1 1.114005-5 1.370027+1 1.119603-5 1.539059+1 1.122515-5 1.695696+1 1.125479-5 1.936892+1 1.129068-5 2.335468+1 1.135825-5 3.166166+1 1.138826-5 3.387965+1 1.141222-5 3.446837+1 1.144203-5 3.330544+1 1.147394-5 3.026980+1 1.154674-5 2.097450+1 1.158101-5 1.759401+1 1.160156-5 1.600946+1 1.163582-5 1.437749+1 1.168379-5 1.283365+1 1.455422-5 8.246819+0 1.585749-5 6.607293+0 1.731452-5 5.210730+0 1.843992-5 4.385001+0 1.867823-5 4.406826+0 1.889380-5 4.525896+0 1.925690-5 3.925156+0 1.967122-5 3.695040+0 2.004947-5 3.575619+0 2.110600-5 3.066901+0 2.250000-5 2.567226+0 2.432048-5 2.077923+0 2.618634-5 1.709715+0 2.860908-5 1.365705+0 3.116972-5 1.110947+0 3.388442-5 9.191089-1 3.617208-5 7.994642-1 3.937750-5 6.760815-1 4.375326-5 5.617872-1 4.740054-5 4.978339-1 4.764054-5 1.027539+0 4.775449-5 1.444575+0 4.787427-5 2.112308+0 4.799094-5 2.997630+0 4.813499-5 4.408586+0 4.833366-5 6.561966+0 4.846921-5 7.709746+0 4.859878-5 8.390363+0 4.870762-5 8.615940+0 4.882019-5 8.515496+0 4.903135-5 7.756893+0 4.928016-5 6.278769+0 4.973370-5 2.901625+0 4.984479-5 2.348298+0 4.996311-5 1.894549+0 5.008143-5 1.592366+0 5.019975-5 1.414419+0 5.031806-5 1.312068+0 5.043638-5 1.156791+0 5.053220-5 1.135156+0 5.065330-5 1.058529+0 5.101660-5 7.134728-1 5.113770-5 6.191292-1 5.125880-5 5.493365-1 5.137990-5 5.026084-1 5.162210-5 4.444730-1 5.470462-5 4.165747-1 5.497391-5 5.286326-1 5.510856-5 6.218995-1 5.524321-5 7.638521-1 5.540489-5 1.007280+0 5.579463-5 1.708435+0 5.593188-5 1.884623+0 5.606795-5 1.956811+0 5.620764-5 1.924847+0 5.659830-5 1.573355+0 5.675311-5 1.494537+0 5.688868-5 1.500641+0 5.703885-5 1.594057+0 5.760708-5 2.264077+0 5.775737-5 2.370776+0 5.790018-5 2.392927+0 5.812565-5 2.294218+0 5.850253-5 2.053803+0 5.868056-5 2.015816+0 5.887301-5 2.031800+0 6.036735-5 2.427970+0 6.107273-5 2.748645+0 6.172330-5 3.175952+0 6.240000-5 3.779894+0 6.318900-5 4.760039+0 6.385594-5 5.900719+0 6.457435-5 7.557760+0 6.519969-5 9.473215+0 6.584652-5 1.204461+1 6.639772-5 1.482153+1 6.707403-5 1.912579+1 6.782856-5 2.526387+1 6.872481-5 3.451145+1 7.135009-5 6.674523+1 7.235000-5 7.502223+1 7.343467-5 7.825783+1 7.456563-5 7.598705+1 7.705406-5 6.157984+1 7.968386-5 4.683919+1 8.199546-5 3.741376+1 8.450000-5 2.997261+1 8.719952-5 2.398693+1 8.997589-5 1.928506+1 9.332543-5 1.494998+1 9.666455-5 1.167031+1 1.001174-4 9.094364+0 1.035142-4 7.165934+0 1.073150-4 5.535488+0 1.109175-4 4.378587+0 1.143207-4 3.541270+0 1.179629-4 2.854667+0 1.219691-4 2.285290+0 1.260965-4 1.858327+0 1.279136-4 1.710675+0 1.288625-4 1.765866+0 1.291818-4 1.830831+0 1.295418-4 1.943307+0 1.304963-4 2.346747+0 1.308026-4 2.443688+0 1.311323-4 2.497017+0 1.314370-4 2.497047+0 1.329820-4 2.206701+0 1.346465-4 2.079648+0 1.372630-4 1.966371+0 1.390563-4 1.926007+0 1.404878-4 1.989179+0 1.422510-4 2.249952+0 1.433031-4 2.270194+0 1.458700-4 2.184546+0 1.531087-4 2.214646+0 1.648496-4 2.420422+0 1.769125-4 2.746355+0 1.784843-4 2.964098+0 1.803790-4 3.388215+0 1.812456-4 3.433998+0 1.839592-4 3.035957+0 1.853959-4 2.990974+0 1.872385-4 3.140259+0 1.902300-4 3.493314+0 2.246548-4 4.593041+0 2.603937-4 5.409501+0 2.985383-4 5.975993+0 3.433281-4 6.317354+0 4.214595-4 6.411973+0 5.636100-4 5.900294+0 6.114481-4 5.711963+0 6.218532-4 5.977894+0 6.251104-4 6.363653+0 6.273287-4 6.948528+0 6.293740-4 7.866151+0 6.310393-4 8.974077+0 6.329152-4 1.069098+1 6.348021-4 1.295473+1 6.373194-4 1.676964+1 6.440545-4 2.849769+1 6.480569-4 3.377650+1 6.518416-4 3.693289+1 6.593483-4 3.993334+1 6.700474-4 4.063943+1 6.904236-4 3.768599+1 7.088750-4 3.479022+1 7.417104-4 3.197605+1 8.491887-4 2.721095+1 8.628142-4 2.754447+1 8.778840-4 2.934431+1 9.214096-4 2.873815+1 9.468801-4 2.896296+1 1.040158-3 2.660441+1 1.075346-3 2.640415+1 1.318321-3 2.085247+1 1.580907-3 1.652944+1 1.872261-3 1.314628+1 2.166515-3 1.071546+1 2.490291-3 8.767028+0 2.865785-3 7.124651+0 3.287570-3 5.793910+0 3.715352-3 4.802600+0 4.265737-3 3.871305+0 4.448408-3 3.642455+0 4.477553-3 3.752944+0 4.494636-3 4.009252+0 4.509413-3 4.443031+0 4.523184-3 5.067566+0 4.539701-3 6.078196+0 4.580003-3 8.788052+0 4.603175-3 9.764084+0 4.637138-3 1.026706+1 4.782217-3 1.004748+1 4.818355-3 1.043109+1 4.895178-3 1.245522+1 4.941931-3 1.281758+1 5.098195-3 1.247395+1 5.199894-3 1.344243+1 5.295676-3 1.334473+1 6.188524-3 1.050590+1 7.126840-3 8.387456+0 8.059987-3 6.877603+0 9.231525-3 5.504786+0 1.051943-2 4.423644+0 1.202264-2 3.526436+0 1.326661-2 2.976143+0 1.462166-2 2.515146+0 1.639944-2 2.058402+0 1.848986-2 1.665613+0 2.085548-2 1.344871+0 2.335786-2 1.097419+0 2.612172-2 8.970782-1 2.938138-2 7.247191-1 3.232858-2 6.118486-1 3.250084-2 6.282142-1 3.261063-2 6.696147-1 3.269297-2 7.337376-1 3.276912-2 8.307220-1 3.286055-2 1.008324+0 3.295669-2 1.274363+0 3.305624-2 1.626196+0 3.332763-2 2.673033+0 3.347737-2 3.074006+0 3.365248-2 3.309499+0 3.391263-2 3.377750+0 3.952625-2 2.644984+0 4.548601-2 2.098980+0 5.139697-2 1.705784+0 5.836451-2 1.368328+0 6.564994-2 1.112967+0 7.373072-2 9.047000-1 8.379588-2 7.181084-1 9.458097-2 5.761559-1 1.054673-1 4.712822-1 1.173667-1 3.867514-1 1.286296-1 3.264446-1 1.426212-1 2.693183-1 1.579760-1 2.228013-1 1.755503-1 1.831156-1 1.964921-1 1.485592-1 2.172192-1 1.235850-1 2.426610-1 1.009587-1 2.710800-1 8.279722-2 3.021582-1 6.833579-2 3.381895-1 5.625742-2 3.783133-1 4.662272-2 4.316744-1 3.763615-2 4.841724-1 3.147921-2 5.422252-1 2.660882-2 6.025596-1 2.291367-2 6.829281-1 1.937075-2 7.776098-1 1.646754-2 9.002746-1 1.389423-2 1.070165+0 1.156543-2 1.286622+0 9.461318-3 1.546860+0 7.740008-3 1.860009+0 6.330888-3 2.135261+0 5.446576-3 2.567148+0 4.455673-3 3.086391+0 3.645047-3 3.710658+0 2.981899-3 4.461192+0 2.439398-3 5.363532+0 1.995595-3 6.448384+0 1.632534-3 7.752663+0 1.335525-3 9.320751+0 1.092551-3 9.760024+0 1.039057-3 1.000000+1 2.118561-3 1 53000 7 0 1.269040+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.298537+1 3.077883-6-5.281720+1 5.690375-6-5.114731+1 6.161405-6-4.878257+1 6.289673-6-4.604837+1 6.352319-6-4.163514+1 6.388785-6-3.862788+1 6.414555-6-3.835998+1 6.436920-6-4.077972+1 6.462659-6-4.703915+1 6.487773-6-5.465774+1 6.515352-6-4.762351+1 6.539025-6-4.489657+1 6.568198-6-4.530831+1 6.661399-6-5.267171+1 6.744114-6-5.463070+1 7.392728-6-4.757156+1 7.558723-6-4.229673+1 7.597989-6-4.327871+1 7.680664-6-4.891259+1 7.726372-6-4.852151+1 7.790563-6-4.364105+1 7.830184-6-3.879660+1 7.860390-6-3.354121+1 7.917894-6-2.391942+1 7.939705-6-2.210443+1 7.953472-6-2.261820+1 7.965029-6-2.404258+1 7.981063-6-2.759081+1 7.999574-6-3.464823+1 8.011947-6-4.062374+1 8.032849-6-5.246241+1 8.050983-6-5.047599+1 8.075907-6-3.939858+1 8.094882-6-3.462874+1 8.115336-6-3.221627+1 8.127705-6-3.229118+1 8.149410-6-3.431774+1 8.205290-6-4.123065+1 8.244712-6-4.574598+1 8.417510-6-5.712109+1 8.515521-6-5.081773+1 8.607135-6-4.274902+1 8.636955-6-4.177574+1 8.669260-6-4.353042+1 8.702436-6-4.886719+1 8.725984-6-5.423178+1 8.747032-6-5.720421+1 8.784224-6-5.163026+1 8.818687-6-5.044799+1 8.866627-6-5.468340+1 8.894859-6-5.863241+1 8.971239-6-4.899892+1 9.018009-6-4.708520+1 9.073034-6-4.825300+1 9.130363-6-5.336568+1 9.168926-6-6.005962+1 9.236368-6-4.774374+1 9.270619-6-4.460641+1 9.301528-6-4.396263+1 9.499943-6-5.069671+1 9.654376-6-5.574096+1 9.778874-6-6.038645+1 9.836727-6-5.880831+1 9.938775-6-5.129580+1 9.988252-6-5.104005+1 1.013213-5-5.907945+1 1.018531-5-5.778530+1 1.030304-5-4.707963+1 1.036343-5-4.526037+1 1.059366-5-4.847209+1 1.097621-5-5.033084+1 1.112970-5-5.324763+1 1.119305-5-5.541047+1 1.127828-5-5.122222+1 1.132628-5-5.220109+1 1.135668-5-5.430556+1 1.141222-5-4.544823+1 1.146794-5-3.679848+1 1.150392-5-3.359589+1 1.154161-5-3.261192+1 1.159642-5-3.414670+1 1.171754-5-3.920523+1 1.187263-5-4.129281+1 1.232212-5-4.245927+1 1.694531-5-4.197212+1 1.902593-5-4.223408+1 4.284841-5-4.971351+1 4.689670-5-5.296749+1 4.748096-5-5.422776+1 4.819106-5-5.256938+1 4.853973-5-5.474601+1 4.915200-5-4.914961+1 4.962736-5-4.785690+1 5.101660-5-5.120617+1 5.593188-5-5.811776+1 5.722926-5-5.952927+1 5.906560-5-6.160078+1 6.258735-5-6.985235+1 6.602402-5-8.342402+1 6.839978-5-9.279498+1 6.962478-5-9.285466+1 7.070000-5-8.736205+1 7.194109-5-7.432850+1 7.430000-5-4.237064+1 7.528806-5-3.179709+1 7.599301-5-2.599705+1 7.681720-5-2.090464+1 7.774007-5-1.693029+1 7.867908-5-1.430245+1 7.968386-5-1.255491+1 8.092427-5-1.139886+1 8.274431-5-1.083974+1 8.504328-5-1.105536+1 8.883750-5-1.236882+1 1.073150-4-2.126012+1 1.219691-4-2.643834+1 1.304963-4-2.921735+1 1.342596-4-2.929115+1 1.479060-4-3.136542+1 1.937621-4-3.433384+1 3.960304-4-3.422449+1 4.800097-4-3.571683+1 5.394810-4-3.852566+1 5.797352-4-4.245527+1 6.044553-4-4.714464+1 6.191483-4-5.263553+1 6.280688-4-5.949656+1 6.373194-4-6.832582+1 6.426342-4-6.852036+1 6.505000-4-6.151728+1 6.636088-4-4.947150+1 6.754999-4-4.177594+1 6.883472-4-3.632355+1 7.014031-4-3.323231+1 7.314372-4-2.943100+1 7.823352-4-2.568461+1 8.312578-4-2.375647+1 8.549116-4-2.393922+1 8.688086-4-2.473689+1 8.824313-4-2.327956+1 9.007808-4-2.160570+1 9.315620-4-2.048184+1 9.573175-4-1.850267+1 1.001728-3-1.643138+1 1.040158-3-1.547942+1 1.056490-3-1.527847+1 1.085622-3-1.378962+1 1.147809-3-1.184822+1 1.237503-3-9.946942+0 1.356954-3-8.234971+0 1.485476-3-7.015492+0 1.626464-3-6.158693+0 1.815252-3-5.478602+0 2.073600-3-5.053277+0 2.368816-3-4.963344+0 2.737435-3-5.170580+0 3.135090-3-5.664633+0 3.589800-3-6.569920+0 3.926191-3-7.625854+0 4.150665-3-8.731490+0 4.311118-3-1.000411+1 4.410272-3-1.133972+1 4.461263-3-1.255377+1 4.539701-3-1.566030+1 4.568463-3-1.571118+1 4.650097-3-1.284625+1 4.702772-3-1.192664+1 4.763730-3-1.167855+1 4.851623-3-1.227184+1 4.895178-3-1.154525+1 4.960996-3-9.962463+0 5.030847-3-9.076372+0 5.098195-3-8.805351+0 5.155461-3-8.697875+0 5.199894-3-8.141295+0 5.271492-3-6.980786+0 5.368447-3-5.977275+0 5.511125-3-4.955700+0 5.680839-3-4.062772+0 5.906023-3-3.185061+0 6.146887-3-2.487193+0 6.390725-3-1.958568+0 6.672808-3-1.483746+0 6.955569-3-1.126879+0 7.126840-3-9.502060-1 7.319067-3-7.838080-1 7.527391-3-6.349677-1 7.673615-3-5.449041-1 7.850238-3-4.493904-1 8.059987-3-3.515740-1 8.263946-3-2.725101-1 8.481385-3-2.015013-1 8.661201-3-1.535065-1 8.818317-3-1.170514-1 9.028695-3-7.325725-2 9.231525-3-4.124925-2 9.310848-3-3.079578-2 9.418663-3-1.776410-2 9.515629-3-6.949620-3 9.553764-3-3.254899-3 9.623694-3 2.836847-3 9.664393-3 6.447111-3 9.725022-3 1.046716-2 9.831751-3 1.662587-2 9.964087-3 2.317744-2 1.005315-2 2.706684-2 1.021584-2 3.215049-2 1.031673-2 3.444464-2 1.051943-2 3.685229-2 1.080034-2 3.683325-2 1.102808-2 3.493594-2 1.126873-2 2.732660-2 1.154990-2 1.549065-2 1.163958-2 1.181173-2 1.188035-2-2.610052-4 1.188502-2-4.924429-4 1.202264-2-7.150716-3 1.232913-2-2.516316-2 1.244514-2-3.251002-2 1.289640-2-6.497776-2 1.411912-2-1.622813-1 2.247330-2-8.989963-1 2.521511-2-1.168611+0 2.764901-2-1.468436+0 2.938138-2-1.767033+0 3.058279-2-2.072139+0 3.136218-2-2.367663+0 3.192151-2-2.686587+0 3.232858-2-3.060046+0 3.261063-2-3.509783+0 3.302325-2-4.406435+0 3.318503-2-4.489782+0 3.335513-2-4.269417+0 3.377082-2-3.258678+0 3.398508-2-2.883715+0 3.426827-2-2.544738+0 3.472941-2-2.169971+0 3.532179-2-1.839509+0 3.611402-2-1.519545+0 3.710492-2-1.225120+0 3.801894-2-1.026222+0 3.900919-2-8.556942-1 4.053863-2-6.586773-1 4.166351-2-5.433802-1 4.348530-2-3.992730-1 4.478639-2-3.169327-1 4.673674-2-2.228239-1 4.807876-2-1.717775-1 4.898806-2-1.432554-1 5.012219-2-1.115348-1 5.139697-2-8.095012-2 5.273152-2-5.456988-2 5.392765-2-3.556318-2 5.550252-2-1.427303-2 5.639929-2-5.511114-3 5.685332-2-1.486503-3 5.701617-2-2.186866-5 5.746477-2 4.116600-3 5.800364-2 9.140603-3 5.971266-2 2.139194-2 6.092326-2 2.743079-2 6.235350-2 3.372047-2 6.396529-2 3.926326-2 6.564994-2 4.292816-2 6.909440-2 4.513241-2 7.176120-2 4.305307-2 7.553756-2 3.744808-2 7.970385-2 2.954278-2 8.184059-2 2.450637-2 8.465444-2 1.662385-2 8.779709-2 7.620058-3 9.023575-2 1.723403-4 9.179050-2-4.469493-3 9.362812-2-1.028231-2 1.092648-1-5.595722-2 1.245316-1-9.618135-2 1.426212-1-1.354086-1 1.633885-1-1.713998-1 1.964921-1-2.134477-1 2.426610-1-2.522430-1 3.145088-1-2.876755-1 4.316744-1-3.161764-1 6.550131-1-3.370538-1 1.286622+0-3.496410-1 3.885536+0-3.537713-1 1.000000+1-3.540785-1 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.558221-3 1.068373-6 2.031226-3 1.139063-6 2.642627-3 1.281474-6 4.260362-3 1.321520-6 4.819182-3 1.362817-6 5.465852-3 1.500000-6 8.155473-3 1.541322-6 9.114463-3 1.743208-6 1.523278-2 1.971538-6 2.563785-2 2.096684-6 3.339305-2 2.229775-6 4.338709-2 2.371313-6 5.657148-2 2.521836-6 7.397116-2 2.779424-6 1.141603-1 2.953138-6 1.502516-1 3.137710-6 1.986350-1 3.333816-6 2.639348-1 3.444845-6 3.085356-1 3.660147-6 4.143252-1 3.763566-6 4.757881-1 3.888907-6 5.610805-1 4.103022-6 7.389852-1 4.209587-6 8.458689-1 4.312822-6 9.630821-1 4.518407-6 1.243769+0 4.608000-6 1.388564+0 4.805220-6 1.768884+0 4.867902-6 1.910558+0 5.030643-6 2.333236+0 5.185797-6 2.822119+0 5.331253-6 3.377036+0 5.467618-6 4.002330+0 5.600156-6 4.729511+0 5.715312-6 5.475824+0 5.827674-6 6.333169+0 5.933013-6 7.278614+0 6.040799-6 8.419445+0 6.144000-6 9.701576+0 6.211147-6 1.065755+1 6.292519-6 1.198081+1 6.368805-6 1.341160+1 6.447883-6 1.512468+1 6.507371-6 1.659765+1 6.575187-6 1.851066+1 6.629158-6 2.024331+1 6.684404-6 2.225180+1 6.736197-6 2.439268+1 6.784753-6 2.666885+1 6.830275-6 2.908269+1 6.872951-6 3.163868+1 6.912960-6 3.434366+1 6.950468-6 3.720451+1 6.985632-6 4.022659+1 7.018599-6 4.341416+1 7.053073-6 4.718584+1 7.078479-6 5.030736+1 7.105643-6 5.402840+1 7.131445-6 5.799874+1 7.154983-6 6.206135+1 7.177365-6 6.638686+1 7.200000-6 7.130562+1 7.237691-6 8.102229+1 7.272117-6 9.213676+1 7.302239-6 1.043912+2 7.328596-6 1.179632+2 7.351658-6 1.330737+2 7.371838-6 1.499295+2 7.389495-6 1.686373+2 7.404945-6 1.891339+2 7.418464-6 2.111705+2 7.430292-6 2.343474+2 7.440643-6 2.581788+2 7.449699-6 2.821605+2 7.457624-6 3.058241+2 7.464558-6 3.287716+2 7.476692-6 3.744297+2 7.518585-6 5.937657+2 7.531587-6 6.824016+2 7.545457-6 7.867987+2 7.550080-6 8.235802+2 7.568572-6 9.781164+2 7.570884-6 9.980189+2 7.587065-6 1.138233+3 7.593422-6 1.192709+3 7.605557-6 1.293270+3 7.611914-6 1.343140+3 7.617982-6 1.388295+3 7.624050-6 1.430579+3 7.632140-6 1.481699+3 7.639942-6 1.524409+3 7.647166-6 1.557435+3 7.653233-6 1.579874+3 7.661035-6 1.601092+3 7.671437-6 1.615223+3 7.680105-6 1.614135+3 7.683324-6 1.610708+3 7.692509-6 1.591967+3 7.700497-6 1.565086+3 7.705735-6 1.542311+3 7.714486-6 1.495681+3 7.723213-6 1.439338+3 7.735583-6 1.344925+3 7.743854-6 1.274003+3 7.749881-6 1.219230+3 7.757832-6 1.143952+3 7.764026-6 1.083598+3 7.771990-6 1.004753+3 7.780081-6 9.242697+2 7.788532-6 8.409432+2 7.799729-6 7.335879+2 7.807819-6 6.592988+2 7.810131-6 6.386949+2 7.818799-6 5.642210+2 7.827468-6 4.945791+2 7.845960-6 3.638651+2 7.853076-6 3.203183+2 7.858764-6 2.882023+2 7.864453-6 2.584460+2 7.872543-6 2.200776+2 7.880020-6 1.885772+2 7.888258-6 1.580129+2 7.895274-6 1.351849+2 7.899905-6 1.216197+2 7.904509-6 1.092489+2 7.909078-6 9.801263+1 7.913610-6 8.782609+1 7.918108-6 7.860822+1 7.926997-6 6.277366+1 7.935748-6 4.994031+1 7.944363-6 3.960651+1 7.952843-6 3.133658+1 7.961192-6 2.475739+1 7.969403-6 1.955789+1 7.991303-6 1.035509+1 7.999045-6 8.306009+0 8.002875-6 7.466940+0 8.006675-6 6.734377+0 8.010445-6 6.096679+0 8.014186-6 5.543473+0 8.017897-6 5.065535+0 8.025262-6 4.301078+0 8.032512-6 3.752438+0 8.039649-6 3.376222+0 8.046674-6 3.138694+0 8.053589-6 3.013716+0 8.060397-6 2.981069+0 8.073799-6 3.135880+0 8.086782-6 3.515978+0 8.099359-6 4.065754+0 8.111543-6 4.748982+0 8.135151-6 6.450900+0 8.157282-6 8.458523+0 8.178031-6 1.067238+1 8.216934-6 1.561166+1 8.250975-6 2.069965+1 8.370116-6 4.368501+1 8.434494-6 6.019248+1 8.489258-6 7.751773+1 8.606087-6 1.300475+2 8.656420-6 1.629974+2 8.677315-6 1.794943+2 8.698210-6 1.981411+2 8.719105-6 2.194164+2 8.740000-6 2.439398+2 8.760896-6 2.724967+2 8.781791-6 3.060467+2 8.802686-6 3.457009+2 8.823581-6 3.926542+2 8.844477-6 4.480644+2 8.899210-6 6.389791+2 8.928526-6 7.685421+2 8.935552-6 8.020900+2 8.957438-6 9.119000+2 8.984796-6 1.059124+3 9.006682-6 1.185200+3 9.044982-6 1.436595+3 9.061397-6 1.566503+3 9.066868-6 1.614368+3 9.088754-6 1.836274+3 9.094226-6 1.900934+3 9.113012-6 2.157919+3 9.128059-6 2.409268+3 9.138140-6 2.603468+3 9.159883-6 3.099293+3 9.195790-6 4.149700+3 9.220070-6 4.991844+3 9.227599-6 5.265454+3 9.244782-6 5.894527+3 9.253384-6 6.204591+3 9.264444-6 6.589921+3 9.272520-6 6.857042+3 9.281161-6 7.125083+3 9.290864-6 7.399071+3 9.301573-6 7.661811+3 9.310792-6 7.849616+3 9.323959-6 8.048612+3 9.333921-6 8.140533+3 9.347633-6 8.179761+3 9.357471-6 8.144439+3 9.363678-6 8.095051+3 9.374725-6 7.956630+3 9.382922-6 7.813904+3 9.399895-6 7.419615+3 9.407798-6 7.195688+3 9.418119-6 6.870773+3 9.427284-6 6.556313+3 9.433175-6 6.343616+3 9.442519-6 5.993020+3 9.453093-6 5.582384+3 9.464138-6 5.145122+3 9.477923-6 4.598925+3 9.489158-6 4.161828+3 9.501799-6 3.686912+3 9.511630-6 3.334178+3 9.534101-6 2.596398+3 9.541826-6 2.367396+3 9.556573-6 1.967337+3 9.566404-6 1.727934+3 9.578254-6 1.467965+3 9.591086-6 1.220471+3 9.603110-6 1.018888+3 9.618570-6 7.994833+2 9.624278-6 7.289275+2 9.641402-6 5.477695+2 9.647109-6 4.967374+2 9.687065-6 2.472969+2 9.692773-6 2.246989+2 9.701335-6 1.959304+2 9.709897-6 1.729281+2 9.721313-6 1.505924+2 9.727021-6 1.427966+2 9.731302-6 1.383664+2 9.733870-6 1.362802+2 9.736116-6 1.348023+2 9.738292-6 1.336764+2 9.746460-6 1.321016+2 9.750165-6 1.327523+2 9.763192-6 1.417252+2 9.768511-6 1.483753+2 9.773165-6 1.556205+2 9.777237-6 1.630585+2 9.780801-6 1.704134+2 9.783918-6 1.775014+2 9.789375-6 1.913839+2 9.796536-6 2.124942+2 9.808965-6 2.570712+2 9.825913-6 3.345254+2 9.833108-6 3.733239+2 9.845180-6 4.463698+2 9.855743-6 5.183412+2 9.860270-6 5.514258+2 9.876114-6 6.772151+2 9.882904-6 7.355323+2 9.905539-6 9.454023+2 9.910511-6 9.939504+2 9.916185-6 1.050060+3 9.933209-6 1.220518+3 9.940663-6 1.294835+3 9.948639-6 1.373101+3 9.955153-6 1.435493+3 9.963702-6 1.514479+3 9.971945-6 1.586619+3 9.982525-6 1.671916+3 9.992804-6 1.745313+3 1.000230-5 1.803460+3 1.000754-5 1.831112+3 1.001891-5 1.879564+3 1.002869-5 1.907669+3 1.003442-5 1.918073+3 1.004441-5 1.925268+3 1.005380-5 1.919303+3 1.006052-5 1.907551+3 1.007102-5 1.877122+3 1.008125-5 1.834112+3 1.008741-5 1.802274+3 1.010416-5 1.696257+3 1.011405-5 1.622504+3 1.012500-5 1.533643+3 1.013496-5 1.448278+3 1.014689-5 1.342887+3 1.015919-5 1.233929+3 1.017263-5 1.118329+3 1.020724-5 8.606957+2 1.021605-5 8.082549+2 1.022485-5 7.621224+2 1.024428-5 6.832262+2 1.025099-5 6.633135+2 1.025927-5 6.438224+2 1.026592-5 6.320414+2 1.027440-5 6.218097+2 1.028530-5 6.159359+2 1.029412-5 6.165960+2 1.030323-5 6.217418+2 1.031199-5 6.304033+2 1.032308-5 6.456890+2 1.033585-5 6.679082+2 1.036442-5 7.281461+2 1.039354-5 7.942222+2 1.044548-5 9.163003+2 1.046041-5 9.580666+2 1.047565-5 1.008147+3 1.048752-5 1.054331+3 1.050119-5 1.117522+3 1.051395-5 1.188053+3 1.052586-5 1.265569+3 1.054016-5 1.375153+3 1.055503-5 1.509945+3 1.056156-5 1.576151+3 1.062689-5 2.459237+3 1.064098-5 2.689364+3 1.065393-5 2.905618+3 1.066772-5 3.136178+3 1.067956-5 3.330261+3 1.069333-5 3.546548+3 1.070502-5 3.717925+3 1.071841-5 3.896284+3 1.073082-5 4.040360+3 1.074380-5 4.165971+3 1.074912-5 4.209328+3 1.075973-5 4.280678+3 1.077154-5 4.335683+3 1.079454-5 4.366342+3 1.080766-5 4.338776+3 1.082893-5 4.228410+3 1.084266-5 4.117913+3 1.085709-5 3.972770+3 1.086533-5 3.878351+3 1.087885-5 3.708036+3 1.089149-5 3.534559+3 1.090437-5 3.347101+3 1.091834-5 3.135699+3 1.092439-5 3.042620+3 1.094250-5 2.761629+3 1.094900-5 2.661100+3 1.096486-5 2.419142+3 1.098180-5 2.169503+3 1.099244-5 2.019040+3 1.101088-5 1.772141+3 1.102447-5 1.602941+3 1.104482-5 1.371153+3 1.106871-5 1.133444+3 1.111643-5 7.681384+2 1.112895-5 6.953081+2 1.114790-5 6.020089+2 1.116789-5 5.249080+2 1.117928-5 4.903427+2 1.118751-5 4.695046+2 1.119062-5 4.625295+2 1.120250-5 4.402510+2 1.121265-5 4.266598+2 1.123947-5 4.140626+2 1.125059-5 4.183726+2 1.126786-5 4.354907+2 1.127739-5 4.500803+2 1.128649-5 4.671924+2 1.129745-5 4.916419+2 1.131160-5 5.288113+2 1.135611-5 6.752913+2 1.137431-5 7.414317+2 1.138961-5 7.964178+2 1.140423-5 8.466837+2 1.141613-5 8.847755+2 1.143002-5 9.250132+2 1.144041-5 9.514580+2 1.145171-5 9.761995+2 1.146472-5 9.990416+2 1.146795-5 1.003718+3 1.149054-5 1.025092+3 1.150000-5 1.028118+3 1.151807-5 1.024553+3 1.153023-5 1.015754+3 1.154473-5 9.993500+2 1.155343-5 9.868486+2 1.157149-5 9.558911+2 1.159471-5 9.096985+2 1.162487-5 8.474659+2 1.165606-5 7.909426+2 1.168168-5 7.562408+2 1.169795-5 7.408665+2 1.170830-5 7.338642+2 1.171606-5 7.299961+2 1.172770-5 7.263217+2 1.174578-5 7.252569+2 1.176510-5 7.294143+2 1.179110-5 7.413219+2 1.186933-5 7.916621+2 1.188731-5 8.020570+2 1.193039-5 8.225946+2 1.195661-5 8.325351+2 1.213805-5 8.912568+2 1.217579-5 9.002840+2 1.221562-5 9.043933+2 1.225114-5 9.014397+2 1.229534-5 8.872076+2 1.230987-5 8.798245+2 1.232894-5 8.681358+2 1.235432-5 8.492716+2 1.236970-5 8.361778+2 1.240280-5 8.045205+2 1.243820-5 7.670600+2 1.251172-5 6.872097+2 1.254190-5 6.569996+2 1.257222-5 6.294806+2 1.260230-5 6.054108+2 1.264995-5 5.740179+2 1.269129-5 5.529219+2 1.271941-5 5.413097+2 1.278625-5 5.203818+2 1.284976-5 5.063174+2 1.290733-5 4.964608+2 1.299519-5 4.845520+2 1.310292-5 4.731423+2 1.323500-5 4.621403+2 1.342905-5 4.491938+2 1.371490-5 4.338331+2 1.415168-5 4.147183+2 1.553281-5 3.645731+2 1.684400-5 3.241154+2 2.003720-5 2.508516+2 2.057658-5 2.403083+2 2.102326-5 2.305656+2 2.112624-5 2.294681+2 2.117774-5 2.293899+2 2.127211-5 2.301227+2 2.148669-5 2.339036+2 2.153819-5 2.345205+2 2.161271-5 2.348080+2 2.169266-5 2.342329+2 2.179565-5 2.323338+2 2.210310-5 2.242484+2 2.221138-5 2.219857+2 2.235433-5 2.198208+2 2.283858-5 2.152065+2 2.382153-5 2.043983+2 2.473638-5 1.947750+2 2.709326-5 1.750718+2 2.992055-5 1.568150+2 3.507519-5 1.320042+2 3.826595-5 1.193032+2 4.058716-5 1.107032+2 4.265795-5 1.033377+2 4.369872-5 9.962321+1 4.473218-5 9.593438+1 4.574827-5 9.228700+1 4.679312-5 8.847824+1 4.832734-5 8.278452+1 4.949728-5 7.834851+1 5.095128-5 7.268603+1 5.248422-5 6.647694+1 5.433739-5 5.862957+1 5.612292-5 5.060353+1 5.729250-5 4.507036+1 5.821961-5 4.053391+1 5.907576-5 3.617893+1 6.003104-5 3.113086+1 6.048038-5 2.868647+1 6.105393-5 2.548598+1 6.155579-5 2.260239+1 6.215979-5 1.901824+1 6.253243-5 1.672600+1 6.293413-5 1.415066+1 6.309273-5 1.309750+1 6.321474-5 1.227432+1 6.336957-5 1.121878+1 6.352440-5 1.016345+1 6.367924-5 9.130342+0 6.398720-5 7.279040+0 6.419675-5 6.323847+0 6.424976-5 6.138778+0 6.434772-5 5.867329+0 6.440712-5 5.750343+0 6.456543-5 5.624758+0 6.460383-5 5.635730+0 6.472186-5 5.768015+0 6.475782-5 5.836554+0 6.482076-5 5.985756+0 6.486796-5 6.120266+0 6.493877-5 6.354082+0 6.505742-5 6.814353+0 6.520310-5 7.447894+0 6.532602-5 7.990135+0 6.536410-5 8.152358+0 6.553723-5 8.816149+0 6.558050-5 8.957331+0 6.569360-5 9.270518+0 6.576574-5 9.426698+0 6.582830-5 9.535271+0 6.590263-5 9.634230+0 6.597414-5 9.702441+0 6.612283-5 9.782254+0 6.636687-5 9.855775+0 6.651841-5 9.950824+0 6.656667-5 9.997109+0 6.670977-5 1.018660+1 6.686509-5 1.047388+1 6.718545-5 1.117020+1 6.730378-5 1.138095+1 6.748769-5 1.156504+1 6.753274-5 1.157611+1 6.766788-5 1.151812+1 6.773478-5 1.143755+1 6.783629-5 1.125152+1 6.793931-5 1.099043+1 6.801940-5 1.074418+1 6.813216-5 1.034721+1 6.825015-5 9.889756+0 6.865814-5 8.314685+0 6.881750-5 7.825582+0 6.895880-5 7.489167+0 6.904155-5 7.338927+0 6.913920-5 7.208051+0 6.931438-5 7.103066+0 6.940000-5 7.114247+0 6.949321-5 7.174939+0 6.958750-5 7.290038+0 6.967250-5 7.442634+0 6.979800-5 7.758843+0 6.995788-5 8.334894+0 7.011777-5 9.130407+0 7.021563-5 9.738368+0 7.035622-5 1.078946+1 7.047031-5 1.180888+1 7.057119-5 1.284340+1 7.075366-5 1.505470+1 7.126976-5 2.395803+1 7.146243-5 2.839772+1 7.163116-5 3.283618+1 7.180000-5 3.782470+1 7.194055-5 4.241882+1 7.211563-5 4.873354+1 7.227160-5 5.494064+1 7.246244-5 6.331800+1 7.269739-5 7.486754+1 7.286065-5 8.372521+1 7.303888-5 9.419157+1 7.330000-5 1.110482+2 7.353133-5 1.275038+2 7.384131-5 1.518024+2 7.417479-5 1.808295+2 7.452479-5 2.145392+2 7.482173-5 2.457363+2 7.514527-5 2.823304+2 7.546615-5 3.210221+2 7.569289-5 3.495484+2 7.586736-5 3.720191+2 7.609186-5 4.014176+2 7.632703-5 4.325907+2 7.657330-5 4.654338+2 7.681956-5 4.983252+2 7.705978-5 5.303757+2 7.730000-5 5.623662+2 7.759488-5 6.015361+2 7.797968-5 6.523514+2 7.816024-5 6.759670+2 7.843072-5 7.108735+2 7.876465-5 7.528601+2 7.910000-5 7.934578+2 7.944809-5 8.337917+2 7.978276-5 8.709018+2 8.018210-5 9.131431+2 8.059124-5 9.538894+2 8.099466-5 9.908049+2 8.139381-5 1.023229+3 8.192000-5 1.058935+3 8.248551-5 1.089124+3 8.294524-5 1.108814+3 8.326191-5 1.120315+3 8.377897-5 1.135647+3 8.428116-5 1.146408+3 8.511248-5 1.156592+3 8.640287-5 1.162843+3 8.731759-5 1.162677+3 8.794478-5 1.158580+3 8.885143-5 1.146804+3 8.974223-5 1.131276+3 9.044245-5 1.117309+3 9.149564-5 1.091625+3 9.209550-5 1.073628+3 9.271935-5 1.052791+3 9.439559-5 9.931197+2 9.834116-5 8.648652+2 1.018092-4 7.752088+2 1.059135-4 6.890855+2 1.113173-4 5.986439+2 1.162242-4 5.332722+2 1.223212-4 4.683650+2 1.335000-4 3.783646+2 1.365000-4 3.568017+2 1.374996-4 3.492776+2 1.388562-4 3.381513+2 1.403504-4 3.232501+2 1.419456-4 3.048701+2 1.422933-4 3.016632+2 1.426485-4 2.992336+2 1.430129-4 2.978938+2 1.433964-4 2.979471+2 1.438478-4 2.999954+2 1.440731-4 3.017578+2 1.444233-4 3.052913+2 1.455642-4 3.195812+2 1.460350-4 3.247422+2 1.463184-4 3.272564+2 1.467875-4 3.302731+2 1.471670-4 3.316511+2 1.477110-4 3.320943+2 1.482583-4 3.309964+2 1.490414-4 3.274429+2 1.500678-4 3.207992+2 1.537516-4 2.964198+2 1.549175-4 2.902622+2 1.556558-4 2.878912+2 1.564016-4 2.873297+2 1.572591-4 2.888996+2 1.591501-4 2.949107+2 1.599148-4 2.959832+2 1.608609-4 2.956208+2 1.621811-4 2.928396+2 1.641129-4 2.873187+2 1.680000-4 2.788768+2 1.751908-4 2.687601+2 1.927525-4 2.487932+2 2.008847-4 2.393860+2 2.029805-4 2.362138+2 2.039730-4 2.356547+2 2.046546-4 2.359790+2 2.056002-4 2.374682+2 2.079842-4 2.439104+2 2.091249-4 2.461510+2 2.104140-4 2.471485+2 2.190000-4 2.460972+2 2.264644-4 2.474530+2 2.438239-4 2.525919+2 2.693660-4 2.613343+2 3.072000-4 2.745597+2 3.367075-4 2.827254+2 3.537872-4 2.861128+2 3.731301-4 2.884806+2 3.936917-4 2.888919+2 4.242027-4 2.855733+2 4.508720-4 2.784160+2 4.722057-4 2.696354+2 4.937862-4 2.578681+2 5.127535-4 2.448345+2 5.295315-4 2.308253+2 5.457268-4 2.149472+2 5.599610-4 1.987980+2 5.740701-4 1.805694+2 5.852797-4 1.643047+2 5.917177-4 1.542535+2 5.990554-4 1.420460+2 6.062452-4 1.292545+2 6.133737-4 1.157681+2 6.183723-4 1.058536+2 6.210477-4 1.003949+2 6.255680-4 9.094347+1 6.302489-4 8.088327+1 6.352914-4 6.980775+1 6.391152-4 6.133490+1 6.419098-4 5.517983+1 6.440372-4 5.057369+1 6.472282-4 4.393680+1 6.507612-4 3.732452+1 6.523097-4 3.484351+1 6.538386-4 3.277624+1 6.550122-4 3.153367+1 6.561695-4 3.069108+1 6.570735-4 3.036391+1 6.579045-4 3.037569+1 6.586437-4 3.068371+1 6.591533-4 3.108330+1 6.597195-4 3.172863+1 6.601735-4 3.241480+1 6.605570-4 3.312182+1 6.610598-4 3.424011+1 6.615672-4 3.560754+1 6.621795-4 3.760717+1 6.627104-4 3.967881+1 6.633006-4 4.238288+1 6.637023-4 4.448331+1 6.640981-4 4.677235+1 6.645655-4 4.977091+1 6.650543-4 5.326773+1 6.656273-4 5.786587+1 6.661873-4 6.290848+1 6.674333-4 7.622073+1 6.693915-4 1.035105+2 6.707131-4 1.266410+2 6.718851-4 1.504184+2 6.725083-4 1.643032+2 6.730397-4 1.768089+2 6.737256-4 1.938406+2 6.745140-4 2.146127+2 6.753206-4 2.371220+2 6.761583-4 2.617632+2 6.768351-4 2.825494+2 6.776376-4 3.081313+2 6.783957-4 3.331505+2 6.791568-4 3.590212+2 6.801283-4 3.930182+2 6.810968-4 4.278529+2 6.819794-4 4.602947+2 6.830365-4 4.998744+2 6.842889-4 5.475495+2 6.853476-4 5.883178+2 6.868582-4 6.468381+2 6.879806-4 6.902792+2 6.894381-4 7.461751+2 6.909100-4 8.014306+2 6.917165-4 8.309557+2 6.932386-4 8.847486+2 6.947334-4 9.345371+2 6.963750-4 9.850535+2 6.975835-4 1.019140+3 6.992809-4 1.062305+3 7.012090-4 1.104617+3 7.022887-4 1.125303+3 7.036068-4 1.147827+3 7.052982-4 1.172735+3 7.070127-4 1.193974+3 7.096105-4 1.219794+3 7.129212-4 1.243879+3 7.166187-4 1.261208+3 7.188590-4 1.267145+3 7.207660-4 1.269509+3 7.237848-4 1.268268+3 7.280000-4 1.257183+3 7.328245-4 1.234596+3 7.410726-4 1.188558+3 7.456524-4 1.166660+3 7.512014-4 1.146821+3 7.585776-4 1.130808+3 7.697652-4 1.120210+3 7.975351-4 1.111532+3 8.155126-4 1.110577+3 8.625583-4 1.114141+3 8.734741-4 1.109164+3 8.831596-4 1.099358+3 8.936955-4 1.082106+3 9.074047-4 1.054663+3 9.113895-4 1.051952+3 9.148712-4 1.054910+3 9.188485-4 1.065860+3 9.220976-4 1.080770+3 9.282416-4 1.119036+3 9.353937-4 1.165362+3 9.402978-4 1.190364+3 9.454420-4 1.209015+3 9.544769-4 1.227931+3 9.774610-4 1.252253+3 9.846967-4 1.265664+3 1.001768-3 1.311570+3 1.010633-3 1.332963+3 1.021250-3 1.352358+3 1.035142-3 1.370666+3 1.050948-3 1.385421+3 1.069651-3 1.396983+3 1.106541-3 1.406605+3 1.114728-3 1.413207+3 1.125694-3 1.428854+3 1.144101-3 1.459345+3 1.155529-3 1.473516+3 1.174898-3 1.489681+3 1.197085-3 1.501459+3 1.230269-3 1.514321+3 1.297068-3 1.529581+3 1.368516-3 1.536895+3 1.479108-3 1.539075+3 1.562565-3 1.531770+3 1.722860-3 1.504169+3 1.861377-3 1.475121+3 1.997417-3 1.441125+3 2.274362-3 1.369219+3 2.495426-3 1.308399+3 2.615171-3 1.276498+3 2.866645-3 1.207642+3 2.990623-3 1.174203+3 3.132517-3 1.135983+3 3.287570-3 1.094947+3 3.435085-3 1.055777+3 3.586981-3 1.015842+3 3.723381-3 9.791033+2 3.866034-3 9.396916+2 3.981072-3 9.068730+2 4.091049-3 8.742816+2 4.186956-3 8.443237+2 4.271965-3 8.158650+2 4.346835-3 7.888845+2 4.412998-3 7.629037+2 4.469347-3 7.384974+2 4.518041-3 7.149415+2 4.546772-3 6.994753+2 4.583712-3 6.770340+2 4.613738-3 6.556260+2 4.638648-3 6.347280+2 4.658497-3 6.156305+2 4.683707-3 5.887072+2 4.719371-3 5.513193+2 4.736222-3 5.380334+2 4.748467-3 5.316952+2 4.755016-3 5.296804+2 4.764518-3 5.285948+2 4.778556-3 5.310316+2 4.793973-3 5.388693+2 4.811248-3 5.527081+2 4.858840-3 6.005244+2 4.868374-3 6.092294+2 4.885970-3 6.232017+2 4.901729-3 6.331823+2 4.925000-3 6.436393+2 4.947863-3 6.494885+2 4.971241-3 6.516615+2 4.991790-3 6.510264+2 5.053374-3 6.445522+2 5.066343-3 6.448114+2 5.081895-3 6.469788+2 5.094644-3 6.504936+2 5.117802-3 6.608874+2 5.145364-3 6.784030+2 5.173090-3 6.980446+2 5.193996-3 7.118959+2 5.213955-3 7.232765+2 5.234288-3 7.326374+2 5.258900-3 7.409857+2 5.284013-3 7.465779+2 5.330949-3 7.518468+2 5.375933-3 7.565164+2 5.410431-3 7.643715+2 5.440365-3 7.751851+2 5.511901-3 8.070544+2 5.559043-3 8.240927+2 5.592008-3 8.330006+2 5.636194-3 8.421153+2 5.730030-3 8.552487+2 5.846644-3 8.654129+2 5.973791-3 8.712885+2 6.099722-3 8.735014+2 6.294911-3 8.722641+2 6.557176-3 8.644253+2 6.805979-3 8.521254+2 7.156444-3 8.311717+2 7.645566-3 7.969898+2 8.198794-3 7.562674+2 8.848355-3 7.092154+2 9.687362-3 6.523649+2 1.079053-2 5.855805+2 1.211682-2 5.175911+2 1.377407-2 4.482312+2 1.514101-2 4.011343+2 1.686068-2 3.511942+2 1.827821-2 3.160963+2 1.980066-2 2.832885+2 2.134753-2 2.542025+2 2.312397-2 2.253050+2 2.508893-2 1.978890+2 2.705298-2 1.743320+2 2.864148-2 1.574587+2 2.992592-2 1.448843+2 3.099180-2 1.348785+2 3.176603-2 1.276290+2 3.233191-2 1.221517+2 3.284989-2 1.167711+2 3.306372-2 1.143471+2 3.326135-2 1.119191+2 3.342694-2 1.096757+2 3.356801-2 1.075566+2 3.375733-2 1.043503+2 3.420799-2 9.606762+1 3.433656-2 9.434504+1 3.444193-2 9.345811+1 3.453891-2 9.313302+1 3.465697-2 9.338281+1 3.477979-2 9.430377+1 3.495237-2 9.636294+1 3.523464-2 1.001707+2 3.540905-2 1.021075+2 3.563343-2 1.038921+2 3.591641-2 1.052285+2 3.625955-2 1.060160+2 3.663176-2 1.063021+2 3.711358-2 1.061758+2 3.801722-2 1.051050+2 3.913615-2 1.029435+2 4.048553-2 9.970701+1 4.209386-2 9.552206+1 4.467020-2 8.878378+1 4.774265-2 8.123941+1 5.127720-2 7.338719+1 5.528836-2 6.554280+1 6.095369-2 5.615342+1 6.845087-2 4.633483+1 7.791200-2 3.708080+1 9.973285-2 2.395038+1 1.197085-1 1.723984+1 1.538215-1 1.087416+1 1.949185-1 6.996894+0 2.371347-1 4.824465+0 3.168874-1 2.759554+0 4.722584-1 1.267880+0 7.328245-1 5.340262-1 1.286622+0 1.748394-1 3.231848+0 2.783101-2 9.760024+0 3.053918-3 2.947480+1 3.348836-4 8.901248+1 3.671959-5 2.688134+2 4.026228-6 8.118035+2 4.414671-7 2.511886+3 4.611053-8 7.943282+3 4.611053-9 2.511886+4 4.61105-10 7.943282+4 4.61105-11 1.000000+5 2.90938-11 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.117400-6 1.258900-6 1.771000-6 1.584900-6 2.806800-6 1.995300-6 4.448400-6 2.511900-6 7.050300-6 3.162300-6 1.117400-5 3.981100-6 1.770900-5 5.011900-6 2.806700-5 6.309600-6 4.448300-5 7.943300-6 7.050000-5 1.000000-5 1.117300-4 1.258900-5 1.770800-4 1.584900-5 2.805800-4 1.995300-5 4.445200-4 2.511900-5 7.043000-4 3.162300-5 1.116000-3 3.981100-5 1.768400-3 5.011900-5 2.802200-3 6.309600-5 4.440700-3 7.943300-5 7.037000-3 1.000000-4 1.114800-2 1.258900-4 1.765400-2 1.584900-4 2.793300-2 1.995300-4 4.417900-2 2.511900-4 6.977700-2 3.162300-4 1.100000-1 3.981100-4 1.728700-1 5.011900-4 2.704300-1 6.309600-4 4.190700-1 7.943300-4 6.412600-1 1.000000-3 9.640500-1 1.258900-3 1.415900+0 1.584900-3 2.021700+0 1.995300-3 2.799000+0 2.511900-3 3.764200+0 3.162300-3 4.925400+0 3.981100-3 6.259200+0 5.011900-3 7.710900+0 6.309600-3 9.267400+0 7.943300-3 1.096900+1 1.000000-2 1.283900+1 1.258900-2 1.483200+1 1.584900-2 1.678800+1 1.995300-2 1.863900+1 2.511900-2 2.028600+1 3.162300-2 2.169900+1 3.981100-2 2.282800+1 5.011900-2 2.363000+1 6.309600-2 2.406200+1 7.943300-2 2.408500+1 1.000000-1 2.372100+1 1.258900-1 2.301100+1 1.584900-1 2.207100+1 1.995300-1 2.091300+1 2.511900-1 1.961100+1 3.162300-1 1.822200+1 3.981100-1 1.679800+1 5.011900-1 1.537700+1 6.309600-1 1.398400+1 7.943300-1 1.263200+1 1.000000+0 1.134400+1 1.258900+0 1.011900+1 1.584900+0 8.969300+0 1.995300+0 7.898600+0 2.511900+0 6.911200+0 3.162300+0 6.009800+0 3.981100+0 5.195200+0 5.011900+0 4.465700+0 6.309600+0 3.818700+0 7.943300+0 3.249700+0 1.000000+1 2.753200+0 1.258900+1 2.323200+0 1.584900+1 1.953200+0 1.995300+1 1.636700+0 2.511900+1 1.367300+0 3.162300+1 1.139200+0 3.981100+1 9.468400-1 5.011900+1 7.852100-1 6.309600+1 6.498700-1 7.943300+1 5.368800-1 1.000000+2 4.428000-1 1.258900+2 3.646600-1 1.584900+2 2.998900-1 1.995300+2 2.463100-1 2.511900+2 2.020600-1 3.162300+2 1.655900-1 3.981100+2 1.355600-1 5.011900+2 1.108700-1 6.309600+2 9.060200-2 7.943300+2 7.397700-2 1.000000+3 6.035600-2 1.258900+3 4.920800-2 1.584900+3 4.009100-2 1.995300+3 3.264300-2 2.511900+3 2.656200-2 3.162300+3 2.160100-2 3.981100+3 1.755700-2 5.011900+3 1.426300-2 6.309600+3 1.158100-2 7.943300+3 9.399100-3 1.000000+4 7.624600-3 1.258900+4 6.182400-3 1.584900+4 5.010900-3 1.995300+4 4.059800-3 2.511900+4 3.287900-3 3.162300+4 2.661800-3 3.981100+4 2.154100-3 5.011900+4 1.742700-3 6.309600+4 1.409400-3 7.943300+4 1.139500-3 1.000000+5 9.209300-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159545-4 3.981072-4 3.976747-4 5.011872-4 5.005031-4 6.309573-4 6.298742-4 7.943282-4 7.926243-4 1.000000-3 9.973137-4 1.258925-3 1.254710-3 1.584893-3 1.578297-3 1.995262-3 1.984986-3 2.511886-3 2.495869-3 3.162278-3 3.137300-3 3.981072-3 3.942318-3 5.011872-3 4.951824-3 6.309573-3 6.216536-3 7.943282-3 7.798748-3 1.000000-2 9.774987-3 1.258925-2 1.223942-2 1.584893-2 1.530723-2 1.995262-2 1.912047-2 2.511886-2 2.384423-2 3.162278-2 2.967842-2 3.981072-2 3.685659-2 5.011872-2 4.565926-2 6.309573-2 5.640224-2 7.943282-2 6.947957-2 1.000000-1 8.533101-2 1.258925-1 1.045157-1 1.584893-1 1.274487-1 1.995262-1 1.549701-1 2.511886-1 1.878031-1 3.162278-1 2.268658-1 3.981072-1 2.731680-1 5.011872-1 3.278744-1 6.309573-1 3.923826-1 7.943282-1 4.684765-1 1.000000+0 5.578134-1 1.258925+0 6.632289-1 1.584893+0 7.875059-1 1.995262+0 9.346153-1 2.511886+0 1.109138+0 3.162278+0 1.316863+0 3.981072+0 1.564856+0 5.011872+0 1.861621+0 6.309573+0 2.217841+0 7.943282+0 2.646345+0 1.000000+1 3.162948+0 1.258925+1 3.787015+0 1.584893+1 4.542161+0 1.995262+1 5.457378+0 2.511886+1 6.568204+0 3.162278+1 7.918052+0 3.981072+1 9.560696+0 5.011872+1 1.156137+1 6.309573+1 1.400102+1 7.943282+1 1.697865+1 1.000000+2 2.061598+1 1.258925+2 2.506320+1 1.584893+2 3.050481+1 1.995262+2 3.716857+1 2.511886+2 4.533338+1 3.162278+2 5.534594+1 3.981072+2 6.763045+1 5.011872+2 8.271377+1 6.309573+2 1.012428+2 7.943282+2 1.240184+2 1.000000+3 1.520288+2 1.258925+3 1.864919+2 1.584893+3 2.289162+2 1.995262+3 2.811778+2 2.511886+3 3.455617+2 3.162278+3 4.249378+2 3.981072+3 5.228238+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88236-10 1.995262-5 1.090721-9 2.511886-5 1.728646-9 3.162278-5 2.739708-9 3.981072-5 4.342112-9 5.011872-5 6.881655-9 6.309573-5 1.090632-8 7.943282-5 1.728448-8 1.000000-4 2.738946-8 1.258925-4 4.340162-8 1.584893-4 6.876030-8 1.995262-4 1.089407-7 2.511886-4 1.725597-7 3.162278-4 2.732342-7 3.981072-4 4.325040-7 5.011872-4 6.841785-7 6.309573-4 1.083161-6 7.943282-4 1.703885-6 1.000000-3 2.686330-6 1.258925-3 4.215806-6 1.584893-3 6.596193-6 1.995262-3 1.027641-5 2.511886-3 1.601758-5 3.162278-3 2.497742-5 3.981072-3 3.875323-5 5.011872-3 6.004785-5 6.309573-3 9.303791-5 7.943282-3 1.445345-4 1.000000-2 2.250134-4 1.258925-2 3.498347-4 1.584893-2 5.416997-4 1.995262-2 8.321514-4 2.511886-2 1.274633-3 3.162278-2 1.944359-3 3.981072-2 2.954128-3 5.011872-2 4.459462-3 6.309573-2 6.693491-3 7.943282-2 9.953258-3 1.000000-1 1.466899-2 1.258925-1 2.137685-2 1.584893-1 3.104066-2 1.995262-1 4.455615-2 2.511886-1 6.338558-2 3.162278-1 8.936202-2 3.981072-1 1.249392-1 5.011872-1 1.733128-1 6.309573-1 2.385747-1 7.943282-1 3.258517-1 1.000000+0 4.421866-1 1.258925+0 5.956965-1 1.584893+0 7.973873-1 1.995262+0 1.060647+0 2.511886+0 1.402749+0 3.162278+0 1.845415+0 3.981072+0 2.416216+0 5.011872+0 3.150252+0 6.309573+0 4.091733+0 7.943282+0 5.296938+0 1.000000+1 6.837052+0 1.258925+1 8.802239+0 1.584893+1 1.130677+1 1.995262+1 1.449525+1 2.511886+1 1.855066+1 3.162278+1 2.370472+1 3.981072+1 3.025002+1 5.011872+1 3.855735+1 6.309573+1 4.909471+1 7.943282+1 6.245417+1 1.000000+2 7.938402+1 1.258925+2 1.008293+2 1.584893+2 1.279845+2 1.995262+2 1.623577+2 2.511886+2 2.058553+2 3.162278+2 2.608818+2 3.981072+2 3.304767+2 5.011872+2 4.184735+2 6.309573+2 5.297146+2 7.943282+2 6.703098+2 1.000000+3 8.479712+2 1.258925+3 1.072434+3 1.584893+3 1.355977+3 1.995262+3 1.714085+3 2.511886+3 2.166325+3 3.162278+3 2.737340+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 1.096000-5 8.154120+7 1.120000-5 7.978760+7 1.148154-5 7.714463+7 1.174898-5 7.419793+7 1.202264-5 7.085391+7 1.230269-5 6.726154+7 1.235000-5 6.661238+7 1.235000-5 1.050740+8 1.260000-5 1.012386+8 1.285000-5 9.708860+7 1.288250-5 9.653778+7 1.307000-5 9.328608+7 1.320000-5 9.100128+7 1.340000-5 8.746641+7 1.364583-5 8.316432+7 1.370000-5 8.221446+7 1.400000-5 7.702108+7 1.412538-5 7.491663+7 1.430000-5 7.201521+7 1.470000-5 6.570668+7 1.515000-5 5.910337+7 1.531087-5 5.689683+7 1.570000-5 5.188270+7 1.621810-5 4.593048+7 1.630000-5 4.505647+7 1.717908-5 3.674508+7 1.778279-5 3.207366+7 1.862087-5 2.673845+7 2.089296-5 1.694052+7 2.162719-5 1.479262+7 2.300000-5 1.163761+7 2.361000-5 1.052130+7 2.361000-5 1.061114+7 2.371374-5 1.043183+7 2.398833-5 9.979324+6 2.511886-5 8.358290+6 2.520000-5 8.256520+6 2.570000-5 7.663277+6 2.580000-5 7.551271+6 2.610000-5 7.230311+6 2.635000-5 6.976157+6 2.665000-5 6.686152+6 2.691535-5 6.442478+6 2.720000-5 6.193679+6 2.730000-5 6.109257+6 2.750000-5 5.946795+6 2.770000-5 5.789931+6 2.795000-5 5.601334+6 2.818383-5 5.432120+6 2.820000-5 5.420761+6 2.840000-5 5.282865+6 2.860000-5 5.149523+6 2.890000-5 4.957661+6 2.920000-5 4.775074+6 2.951209-5 4.594399+6 2.985383-5 4.406747+6 3.020000-5 4.229217+6 3.060000-5 4.035716+6 3.090295-5 3.896966+6 3.109800-5 3.811730+6 3.170000-5 3.563986+6 3.235937-5 3.316883+6 3.400000-5 2.801214+6 3.427678-5 2.725196+6 3.500000-5 2.541028+6 3.507519-5 2.522861+6 3.589219-5 2.339335+6 3.672823-5 2.170302+6 3.770000-5 1.994684+6 3.801894-5 1.941388+6 3.850000-5 1.866625+6 3.950000-5 1.723839+6 4.030000-5 1.620709+6 4.073803-5 1.567922+6 4.150000-5 1.483613+6 4.216965-5 1.414787+6 4.265795-5 1.368053+6 4.365158-5 1.279591+6 4.400000-5 1.251286+6 4.518559-5 1.161533+6 4.650000-5 1.072940+6 4.677351-5 1.056258+6 4.850000-5 9.602150+5 4.900000-5 9.348415+5 5.011872-5 8.832641+5 5.069907-5 8.581284+5 5.188000-5 8.111266+5 5.400000-5 7.382674+5 5.432503-5 7.279675+5 5.623413-5 6.744857+5 5.688529-5 6.575996+5 5.800000-5 6.312272+5 5.821032-5 6.265495+5 5.956621-5 5.974105+5 6.095369-5 5.709793+5 6.150000-5 5.609761+5 6.237348-5 5.459249+5 6.400000-5 5.207612+5 6.500000-5 5.060490+5 6.531306-5 5.016921+5 6.760830-5 4.729000+5 6.778000-5 4.708270+5 6.778000-5 1.446475+6 6.800000-5 1.471497+6 6.837000-5 1.523989+6 6.839116-5 1.527656+6 6.868000-5 1.579273+6 6.890000-5 1.625858+6 6.918310-5 1.695676+6 6.940000-5 1.757681+6 6.970000-5 1.857834+6 6.984000-5 1.912169+6 6.984000-5 2.540265+6 7.000000-5 2.618968+6 7.015000-5 2.701189+6 7.030000-5 2.788851+6 7.040000-5 2.853198+6 7.060000-5 2.990429+6 7.070000-5 3.066437+6 7.092800-5 3.252900+6 7.100000-5 3.317945+6 7.124000-5 3.550444+6 7.130000-5 3.614167+6 7.150000-5 3.840878+6 7.161434-5 3.983038+6 7.180000-5 4.230914+6 7.190000-5 4.376797+6 7.210000-5 4.690145+6 7.220000-5 4.862018+6 7.244360-5 5.316517+6 7.250000-5 5.432401+6 7.277000-5 6.033441+6 7.285000-5 6.226741+6 7.300000-5 6.621753+6 7.328245-5 7.446396+6 7.330000-5 7.502265+6 7.340000-5 7.832446+6 7.344600-5 7.965374+6 7.365000-5 8.668994+6 7.400000-5 1.004323+7 7.413102-5 1.061858+7 7.420000-5 1.087259+7 7.435000-5 1.137514+7 7.470000-5 1.266158+7 7.500000-5 1.390115+7 7.503900-5 1.407143+7 7.540000-5 1.577861+7 7.560000-5 1.680884+7 7.585776-5 1.804255+7 7.635000-5 2.067069+7 7.650000-5 2.144531+7 7.710000-5 2.395973+7 7.730000-5 2.464810+7 7.852356-5 2.905289+7 7.860000-5 2.935606+7 7.910000-5 3.080029+7 7.930900-5 3.112320+7 7.943282-5 3.130266+7 8.095000-5 3.359731+7 8.110000-5 3.375086+7 8.128305-5 3.383160+7 8.155000-5 3.395580+7 8.222426-5 3.342575+7 8.370000-5 3.231730+7 8.400000-5 3.189579+7 8.413951-5 3.166419+7 8.650000-5 2.783839+7 8.710000-5 2.695872+7 8.728500-5 2.668288+7 8.800000-5 2.525744+7 9.015711-5 2.146803+7 9.070000-5 2.062226+7 9.110000-5 1.991253+7 9.120108-5 1.972131+7 9.354600-5 1.581784+7 9.549926-5 1.326882+7 9.580000-5 1.292240+7 9.623200-5 1.240838+7 9.660509-5 1.201657+7 9.772372-5 1.092380+7 9.900000-5 9.813115+6 1.023293-4 7.482512+6 1.035142-4 6.811823+6 1.047129-4 6.196942+6 1.059254-4 5.639206+6 1.071519-4 5.129844+6 1.083927-4 4.668200+6 1.109175-4 3.864151+6 1.150000-4 2.878756+6 1.161449-4 2.658098+6 1.202264-4 2.020724+6 1.220000-4 1.802695+6 1.244515-4 1.549657+6 1.260000-4 1.413807+6 1.288250-4 1.205984+6 1.290000-4 1.194603+6 1.315000-4 1.049405+6 1.318257-4 1.032671+6 1.335000-4 9.533271+5 1.341800-4 9.242003+5 1.350000-4 8.913365+5 1.365000-4 8.367384+5 1.380384-4 7.882609+5 1.385000-4 7.750006+5 1.396368-4 7.444635+5 1.400000-4 7.355143+5 1.412538-4 7.065832+5 1.415000-4 7.014081+5 1.430000-4 6.720200+5 1.445440-4 6.464546+5 1.462177-4 6.234011+5 1.479108-4 6.045420+5 1.479800-4 6.038676+5 1.479800-4 9.635736+5 1.480000-4 9.633630+5 1.496236-4 9.477991+5 1.513561-4 9.347774+5 1.531087-4 9.248954+5 1.548817-4 9.178651+5 1.550000-4 9.174752+5 1.566751-4 9.134256+5 1.570000-4 9.128347+5 1.584893-4 9.112712+5 1.590000-4 9.110100+5 1.603600-4 9.111937+5 1.606900-4 9.114129+5 1.606900-4 1.041282+6 1.610000-4 1.041794+6 1.621810-4 1.044494+6 1.627000-4 1.045700+6 1.630000-4 1.046543+6 1.639000-4 1.048682+6 1.650000-4 1.051946+6 1.670000-4 1.058119+6 1.680000-4 1.061729+6 1.705000-4 1.071236+6 1.715000-4 1.075396+6 1.720000-4 1.077351+6 1.740000-4 1.085783+6 1.750000-4 1.090117+6 1.778279-4 1.101519+6 1.800000-4 1.110701+6 1.850000-4 1.134115+6 1.862087-4 1.139722+6 1.883649-4 1.150242+6 1.905461-4 1.161226+6 1.927525-4 1.171476+6 1.972423-4 1.193893+6 1.980000-4 1.197461+6 1.995262-4 1.204384+6 2.041738-4 1.226741+6 2.065380-4 1.236774+6 2.083700-4 1.244866+6 2.083700-4 1.369783+6 2.097000-4 1.379907+6 2.110000-4 1.389104+6 2.113489-4 1.391428+6 2.125000-4 1.398362+6 2.148000-4 1.411310+6 2.150000-4 1.412373+6 2.162719-4 1.419261+6 2.170000-4 1.422940+6 2.187762-4 1.431482+6 2.190000-4 1.432493+6 2.220000-4 1.445340+6 2.238721-4 1.452937+6 2.250000-4 1.457023+6 2.264644-4 1.461985+6 2.285000-4 1.468323+6 2.290868-4 1.470004+6 2.317395-4 1.477372+6 2.330000-4 1.480331+6 2.344229-4 1.483346+6 2.380000-4 1.489970+6 2.400000-4 1.493321+6 2.430000-4 1.497126+6 2.450000-4 1.499168+6 2.483133-4 1.502179+6 2.500000-4 1.503062+6 2.511886-4 1.503672+6 2.540973-4 1.504501+6 2.580000-4 1.505333+6 2.600160-4 1.505016+6 2.660725-4 1.502872+6 2.691535-4 1.501802+6 2.722701-4 1.499071+6 2.730000-4 1.498438+6 2.754229-4 1.496448+6 2.786121-4 1.493567+6 2.800000-4 1.492324+6 2.851018-4 1.485414+6 2.900000-4 1.478962+6 2.917427-4 1.476653+6 2.951209-4 1.470712+6 3.054921-4 1.452222+6 3.100000-4 1.442357+6 3.126079-4 1.436673+6 3.200000-4 1.420925+6 3.235937-4 1.411867+6 3.350000-4 1.383676+6 3.427678-4 1.362565+6 3.467369-4 1.352083+6 3.507519-4 1.341576+6 3.548134-4 1.329607+6 3.630781-4 1.305963+6 3.700000-4 1.286749+6 3.801894-4 1.256732+6 3.890451-4 1.231371+6 3.930000-4 1.219941+6 3.935501-4 1.218293+6 4.027170-4 1.191480+6 4.073803-4 1.178208+6 4.120975-4 1.165071+6 4.168694-4 1.151498+6 4.365158-4 1.096317+6 4.430000-4 1.078696+6 4.518559-4 1.054593+6 4.623810-4 1.026749+6 4.677351-4 1.012786+6 4.731513-4 9.990003+5 4.786301-4 9.849482+5 4.897788-4 9.573380+5 4.954502-4 9.435235+5 5.011872-4 9.298420+5 5.128614-4 9.019551+5 5.188000-4 8.883248+5 5.248075-4 8.748966+5 5.370318-4 8.481316+5 5.400000-4 8.416765+5 5.432503-4 8.346685+5 5.500000-4 8.202663+5 5.650000-4 7.896321+5 5.821032-4 7.564648+5 5.888437-4 7.437271+5 5.956621-4 7.311501+5 6.000000-4 7.233305+5 6.025596-4 7.187437+5 6.095369-4 7.064434+5 6.100000-4 7.056387+5 6.237348-4 6.820984+5 6.456542-4 6.463934+5 6.531306-4 6.349135+5 6.700000-4 6.097303+5 6.775200-4 5.987045+5 6.775200-4 2.605427+6 6.839116-4 2.622443+6 6.909100-4 2.641430+6 6.909100-4 4.081366+6 6.937000-4 4.150940+6 6.950000-4 4.168635+6 7.000000-4 4.205169+6 7.079458-4 4.267071+6 7.080000-4 4.267509+6 7.084470-4 4.263048+6 7.161434-4 4.187596+6 7.170000-4 4.179350+6 7.213000-4 4.111566+6 7.220000-4 4.095304+6 7.244360-4 4.027608+6 7.280000-4 3.894106+6 7.310000-4 3.771551+6 7.321500-4 3.729269+6 7.350000-4 3.634249+6 7.365000-4 3.589198+6 7.400000-4 3.494805+6 7.413102-4 3.465485+6 7.440000-4 3.406314+6 7.450000-4 3.386472+6 7.480000-4 3.332301+6 7.520000-4 3.267848+6 7.540000-4 3.239034+6 7.585776-4 3.178155+6 7.673615-4 3.074883+6 7.762471-4 2.979355+6 7.852356-4 2.886866+6 7.858600-4 2.880587+6 7.943282-4 2.801679+6 7.950000-4 2.795537+6 8.000000-4 2.751844+6 8.105900-4 2.668392+6 8.200000-4 2.600838+6 8.222426-4 2.585520+6 8.280000-4 2.546793+6 8.317638-4 2.522674+6 8.511380-4 2.403407+6 8.609938-4 2.345915+6 8.709636-4 2.288410+6 8.810489-4 2.215859+6 8.912509-4 2.158787+6 9.015711-4 2.103195+6 9.200000-4 2.008847+6 9.225714-4 2.017171+6 9.265600-4 1.998891+6 9.265600-4 2.273531+6 9.332543-4 2.241952+6 9.440609-4 2.192312+6 9.549926-4 2.143837+6 9.630000-4 2.104205+6 9.660509-4 2.089242+6 9.885531-4 1.990265+6 9.894700-4 1.986379+6 9.894700-4 2.087419+6 9.985000-4 2.053205+6 1.000000-3 2.047412+6 1.004000-3 2.031944+6 1.011579-3 2.002250+6 1.017000-3 1.981457+6 1.023800-3 1.955457+6 1.030000-3 1.931691+6 1.035142-3 1.912284+6 1.040000-3 1.894024+6 1.047129-3 1.867184+6 1.059254-3 1.822155+6 1.083927-3 1.735501+6 1.100000-3 1.681861+6 1.122000-3 1.612139+6 1.122000-3 1.680696+6 1.122018-3 1.680640+6 1.135011-3 1.640569+6 1.148154-3 1.601464+6 1.161449-3 1.562725+6 1.188502-3 1.488187+6 1.190000-3 1.484222+6 1.202264-3 1.452458+6 1.216186-3 1.417176+6 1.230269-3 1.382304+6 1.244515-3 1.348107+6 1.258925-3 1.314765+6 1.300000-3 1.225231+6 1.303167-3 1.218710+6 1.318257-3 1.188115+6 1.333521-3 1.158112+6 1.348963-3 1.128843+6 1.350000-3 1.126918+6 1.364583-3 1.100326+6 1.412538-3 1.019231+6 1.428894-3 9.930543+5 1.462177-3 9.427744+5 1.479108-3 9.183935+5 1.513561-3 8.715571+5 1.531087-3 8.487491+5 1.548817-3 8.264495+5 1.570000-3 8.009365+5 1.621810-3 7.428401+5 1.640590-3 7.232732+5 1.659587-3 7.041893+5 1.698244-3 6.672782+5 1.717908-3 6.495947+5 1.730000-3 6.390591+5 1.737801-3 6.323463+5 1.757924-3 6.154930+5 1.819701-3 5.675131+5 1.883649-3 5.229606+5 1.905461-3 5.088086+5 1.927525-3 4.950493+5 1.950000-3 4.815820+5 1.995262-3 4.559229+5 2.000000-3 4.533412+5 2.020000-3 4.426777+5 2.041738-3 4.314900+5 2.113489-3 3.971366+5 2.137962-3 3.863236+5 2.150000-3 3.811580+5 2.162719-3 3.757880+5 2.213095-3 3.554110+5 2.220000-3 3.527268+5 2.264644-3 3.360594+5 2.290868-3 3.267931+5 2.317395-3 3.177488+5 2.371374-3 3.003852+5 2.398833-3 2.920759+5 2.400000-3 2.917303+5 2.454709-3 2.760779+5 2.511886-3 2.609866+5 2.540973-3 2.536893+5 2.570396-3 2.465893+5 2.600160-3 2.396964+5 2.630268-3 2.330062+5 2.722701-3 2.140192+5 2.754229-3 2.080192+5 2.786121-3 2.021530+5 2.800000-3 1.996729+5 2.851018-3 1.909179+5 2.917427-3 1.802260+5 2.951209-3 1.751152+5 2.985383-3 1.701562+5 3.054921-3 1.606762+5 3.090295-3 1.561245+5 3.126079-3 1.517047+5 3.162278-3 1.473897+5 3.198895-3 1.431995+5 3.235937-3 1.391106+5 3.311311-3 1.312875+5 3.349654-3 1.275411+5 3.400000-3 1.228526+5 3.427678-3 1.203676+5 3.507519-3 1.135427+5 3.548134-3 1.102707+5 3.589219-3 1.070823+5 3.650000-3 1.026021+5 3.672823-3 1.009886+5 3.801894-3 9.251715+4 3.890451-3 8.728097+4 3.900000-3 8.673953+4 3.935501-3 8.475524+4 3.981072-3 8.228949+4 4.000000-3 8.129448+4 4.073803-3 7.757384+4 4.168694-3 7.312397+4 4.216965-3 7.100002+4 4.315191-3 6.694146+4 4.365158-3 6.499140+4 4.466836-3 6.123966+4 4.518559-3 5.944662+4 4.570882-3 5.770460+4 4.600000-3 5.676403+4 4.677351-3 5.436815+4 4.731513-3 5.277500+4 4.774700-3 5.155208+4 4.774700-3 1.552572+5 4.852000-3 1.492837+5 4.897788-3 1.461095+5 4.925000-3 1.442621+5 4.954502-3 1.419734+5 4.985000-3 1.396574+5 5.011872-3 1.377345+5 5.069907-3 1.337060+5 5.103900-3 1.314218+5 5.103900-3 1.803805+5 5.128614-3 1.779584+5 5.165000-3 1.744025+5 5.248075-3 1.676731+5 5.250000-3 1.675215+5 5.300000-3 1.633548+5 5.310000-3 1.625382+5 5.370318-3 1.578376+5 5.416900-3 1.543363+5 5.416900-3 1.778207+5 5.432503-3 1.765624+5 5.500000-3 1.711885+5 5.559043-3 1.666673+5 5.575000-3 1.654739+5 5.623413-3 1.619018+5 5.700000-3 1.564706+5 5.754399-3 1.528134+5 5.821032-3 1.484973+5 5.888437-3 1.443066+5 5.900000-3 1.435971+5 6.095369-3 1.321504+5 6.237348-3 1.246190+5 6.309573-3 1.209874+5 6.382635-3 1.174620+5 6.456542-3 1.140403+5 6.531306-3 1.106945+5 6.606934-3 1.074485+5 6.760830-3 1.012465+5 6.800000-3 9.974921+4 6.918310-3 9.538386+4 7.079458-3 8.981204+4 7.244360-3 8.457000+4 7.328245-3 8.206797+4 7.413102-3 7.963382+4 7.498942-3 7.727296+4 7.500000-3 7.724447+4 7.852356-3 6.851880+4 7.943282-3 6.649023+4 8.035261-3 6.450838+4 8.222426-3 6.073686+4 8.317638-3 5.892942+4 8.413951-3 5.717730+4 8.500000-3 5.567314+4 8.511380-3 5.547833+4 8.609938-3 5.383050+4 8.810489-3 5.065868+4 8.912509-3 4.914358+4 9.015711-3 4.767277+4 9.120108-3 4.624674+4 9.332543-3 4.352451+4 9.440609-3 4.222272+4 9.549926-3 4.094422+4 9.660509-3 3.970518+4 9.800000-3 3.821580+4 9.885531-3 3.734080+4 1.000000-2 3.621179+4 1.011579-2 3.510999+4 1.035142-2 3.300699+4 1.047129-2 3.200427+4 1.071519-2 3.009054+4 1.083927-2 2.917817+4 1.096478-2 2.829411+4 1.120000-2 2.673563+4 1.122018-2 2.660659+4 1.135011-2 2.579320+4 1.148154-2 2.500100+4 1.161449-2 2.423379+4 1.174898-2 2.349019+4 1.188502-2 2.277003+4 1.216186-2 2.139667+4 1.230269-2 2.074219+4 1.244515-2 2.010761+4 1.258925-2 1.949292+4 1.273503-2 1.889363+4 1.300000-2 1.786399+4 1.303167-2 1.774561+4 1.333521-2 1.666454+4 1.364583-2 1.565018+4 1.380384-2 1.516699+4 1.396368-2 1.469913+4 1.428894-2 1.380723+4 1.445440-2 1.338191+4 1.450000-2 1.326707+4 1.479108-2 1.256439+4 1.513561-2 1.179787+4 1.531087-2 1.143025+4 1.566751-2 1.072942+4 1.584893-2 1.039562+4 1.621810-2 9.756954+3 1.640590-2 9.452891+3 1.659587-2 9.158541+3 1.678804-2 8.873277+3 1.698244-2 8.596861+3 1.730000-2 8.170512+3 1.737801-2 8.069605+3 1.757924-2 7.817164+3 1.798871-2 7.336021+3 1.819701-2 7.106946+3 1.840772-2 6.883871+3 1.862087-2 6.667939+3 1.883649-2 6.458951+3 1.905461-2 6.256472+3 1.927525-2 6.059877+3 1.949845-2 5.869607+3 1.950000-2 5.868314+3 1.972423-2 5.684559+3 2.018366-2 5.331822+3 2.089296-2 4.844034+3 2.137962-2 4.544448+3 2.162719-2 4.401841+3 2.213095-2 4.128626+3 2.238721-2 3.998616+3 2.317395-2 3.629697+3 2.344229-2 3.514442+3 2.398833-2 3.295053+3 2.426610-2 3.190658+3 2.483133-2 2.991920+3 2.511886-2 2.897357+3 2.540973-2 2.805759+3 2.570396-2 2.717109+3 2.600160-2 2.630964+3 2.630268-2 2.547438+3 2.650000-2 2.494674+3 2.700000-2 2.366558+3 2.722701-2 2.311351+3 2.754229-2 2.237490+3 2.786121-2 2.166046+3 2.851018-2 2.030062+3 2.884032-2 1.965379+3 2.917427-2 1.902808+3 2.985383-2 1.783610+3 3.000000-2 1.759325+3 3.019952-2 1.726899+3 3.054921-2 1.672025+3 3.090295-2 1.618934+3 3.126079-2 1.567274+3 3.162278-2 1.516902+3 3.200000-2 1.466726+3 3.235937-2 1.420963+3 3.311311-2 1.331149+3 3.388442-2 1.247134+3 3.389150-2 1.246396+3 3.427678-2 1.207151+3 3.455600-2 1.179763+3 3.455600-2 7.086779+3 3.467369-2 7.015858+3 3.480000-2 6.940799+3 3.548134-2 6.616976+3 3.565000-2 6.540120+3 3.589219-2 6.419495+3 3.640000-2 6.176272+3 3.672823-2 6.036994+3 3.715352-2 5.862741+3 3.758374-2 5.693444+3 3.801894-2 5.528975+3 3.810000-2 5.499077+3 4.000000-2 4.828597+3 4.027170-2 4.742069+3 4.073803-2 4.598472+3 4.168694-2 4.328694+3 4.216965-2 4.199831+3 4.265795-2 4.074818+3 4.315191-2 3.953542+3 4.415704-2 3.721453+3 4.466836-2 3.610565+3 4.518559-2 3.502990+3 4.570882-2 3.398592+3 4.677351-2 3.194511+3 4.786301-2 3.002685+3 4.841724-2 2.911146+3 4.897788-2 2.822410+3 4.954502-2 2.736389+3 5.011872-2 2.653000+3 5.069907-2 2.572157+3 5.188000-2 2.417616+3 5.370318-2 2.199811+3 5.495409-2 2.065654+3 5.623413-2 1.939700+3 5.821032-2 1.765011+3 5.956621-2 1.657404+3 6.000000-2 1.624877+3 6.025596-2 1.606069+3 6.095369-2 1.556290+3 6.165950-2 1.508059+3 6.500000-2 1.305442+3 6.531306-2 1.288115+3 7.079458-2 1.029561+3 7.244360-2 9.656684+2 7.413102-2 9.057452+2 7.498942-2 8.771892+2 7.673615-2 8.227561+2 7.762471-2 7.968206+2 8.035261-2 7.238279+2 8.128305-2 7.010177+2 8.317638-2 6.569697+2 8.413951-2 6.359971+2 8.511380-2 6.156952+2 8.810489-2 5.585409+2 9.015711-2 5.234208+2 9.885531-2 4.036875+2 1.000000-1 3.907946+2 1.035142-1 3.545385+2 1.047129-1 3.430971+2 1.059254-1 3.320149+2 1.109175-1 2.911542+2 1.174898-1 2.470769+2 1.188502-1 2.390985+2 1.202264-1 2.313778+2 1.230269-1 2.166787+2 1.288250-1 1.900266+2 1.303167-1 1.838943+2 1.318257-1 1.779601+2 1.333521-1 1.722180+2 1.364583-1 1.612841+2 1.380384-1 1.560808+2 1.396368-1 1.510422+2 1.445440-1 1.368820+2 1.462177-1 1.324639+2 1.500000-1 1.231651+2 1.548817-1 1.124238+2 1.566751-1 1.087961+2 1.584893-1 1.052862+2 1.621810-1 9.860273+1 1.640590-1 9.542192+1 1.659587-1 9.234399+1 1.678804-1 8.936545+1 1.717908-1 8.369403+1 1.757924-1 7.838271+1 1.798871-1 7.340888+1 1.862087-1 6.653512+1 1.883649-1 6.439011+1 1.927525-1 6.030629+1 1.949845-1 5.836261+1 1.972423-1 5.648174+1 2.018366-1 5.290024+1 2.065380-1 4.954653+1 2.113489-1 4.643283+1 2.162719-1 4.351543+1 2.187762-1 4.212657+1 2.213095-1 4.078206+1 2.238721-1 3.948051+1 2.264644-1 3.822050+1 2.290868-1 3.700200+1 2.317395-1 3.582241+1 2.371374-1 3.357493+1 2.398833-1 3.250468+1 2.426610-1 3.146861+1 2.454709-1 3.046576+1 2.483133-1 2.949511+1 2.511886-1 2.855541+1 2.570396-1 2.678637+1 2.600160-1 2.594345+1 2.630268-1 2.512705+1 2.660725-1 2.433655+1 2.691535-1 2.357093+1 2.722701-1 2.282942+1 2.754229-1 2.211123+1 2.786121-1 2.141675+1 2.851018-1 2.009280+1 2.884032-1 1.946182+1 2.917427-1 1.885075+1 2.951209-1 1.825887+1 2.985383-1 1.769486+1 3.000060-1 1.745993+1 3.019952-1 1.714833+1 3.054921-1 1.661873+1 3.090295-1 1.610549+1 3.126079-1 1.560823+1 3.162278-1 1.512646+1 3.198895-1 1.465967+1 3.235937-1 1.420728+1 3.273407-1 1.376889+1 3.388442-1 1.253517+1 3.427678-1 1.215557+1 3.467369-1 1.178757+1 3.548134-1 1.108466+1 3.589219-1 1.074916+1 3.630781-1 1.042383+1 3.758374-1 9.506084+0 3.801894-1 9.219015+0 3.845918-1 8.940699+0 3.890451-1 8.675915+0 3.981072-1 8.169686+0 4.027170-1 7.927835+0 4.073803-1 7.693140+0 4.120975-1 7.465400+0 4.168694-1 7.244400+0 4.216965-1 7.030034+0 4.265795-1 6.822064+0 4.315191-1 6.620665+0 4.365158-1 6.425220+0 4.415705-1 6.239503+0 4.466836-1 6.059182+0 4.623810-1 5.549000+0 4.731513-1 5.233056+0 4.786301-1 5.081974+0 4.841724-1 4.935588+0 4.897788-1 4.793423+0 4.954502-1 4.658461+0 5.000000-1 4.554037+0 5.069907-1 4.399910+0 5.248075-1 4.038850+0 5.308844-1 3.925220+0 5.370318-1 3.814843+0 5.432503-1 3.707833+0 5.495409-1 3.606148+0 5.559043-1 3.507276+0 5.623413-1 3.411142+0 5.754399-1 3.226729+0 5.821032-1 3.138301+0 5.888437-1 3.052301+0 5.956621-1 2.968661+0 6.025596-1 2.887354+0 6.095369-1 2.810348+0 6.237348-1 2.662518+0 6.309573-1 2.591554+0 6.382635-1 2.522486+0 6.531306-1 2.389833+0 6.606935-1 2.326146+0 6.683439-1 2.264366+0 6.839117-1 2.148724+0 6.918310-1 2.093137+0 6.998420-1 2.039000+0 7.079458-1 1.986263+0 7.161434-1 1.934893+0 7.244360-1 1.884852+0 7.328245-1 1.836106+0 7.413102-1 1.788788+0 7.498942-1 1.743961+0 7.585776-1 1.700257+0 7.673615-1 1.657651+0 7.852356-1 1.575629+0 8.035261-1 1.497668+0 8.222427-1 1.423583+0 8.413951-1 1.355456+0 8.511380-1 1.322626+0 8.609938-1 1.290592+0 8.709636-1 1.259341+0 8.810489-1 1.228848+0 9.015711-1 1.170061+0 9.120108-1 1.141740+0 9.225714-1 1.114955+0 9.332543-1 1.088799+0 9.440609-1 1.063351+0 9.549926-1 1.038502+0 9.660509-1 1.014234+0 9.772372-1 9.905434-1 9.885531-1 9.674077-1 1.000000+0 9.448236-1 1.011579+0 9.232957-1 1.023293+0 9.023132-1 1.035142+0 8.818090-1 1.047129+0 8.617751-1 1.059254+0 8.421997-1 1.071519+0 8.230771-1 1.083927+0 8.043883-1 1.096478+0 7.861251-1 1.109175+0 7.682757-1 1.135011+0 7.337849-1 1.148154+0 7.171350-1 1.161449+0 7.014510-1 1.174898+0 6.861122-1 1.188600+0 6.710069-1 1.202264+0 6.564416-1 1.216186+0 6.420948-1 1.230269+0 6.280618-1 1.250000+0 6.091776-1 1.258925+0 6.009395-1 1.273503+0 5.881598-1 1.288250+0 5.756525-1 1.303167+0 5.634120-1 1.318257+0 5.514317-1 1.333521+0 5.397067-1 1.348963+0 5.282327-1 1.364583+0 5.170048-1 1.380384+0 5.060183-1 1.396368+0 4.952652-1 1.412538+0 4.847406-1 1.428894+0 4.744409-1 1.445440+0 4.643899-1 1.462177+0 4.548549-1 1.479108+0 4.455155-1 1.513561+0 4.274079-1 1.531087+0 4.186338-1 1.548817+0 4.100393-1 1.584893+0 3.933795-1 1.603245+0 3.853334-1 1.640590+0 3.702177-1 1.659587+0 3.628842-1 1.678804+0 3.556964-1 1.698244+0 3.486508-1 1.757924+0 3.283445-1 1.778279+0 3.218422-1 1.798871+0 3.154909-1 1.819701+0 3.094569-1 1.840772+0 3.035384-1 1.862087+0 2.977330-1 1.883649+0 2.920390-1 1.905461+0 2.864542-1 1.927525+0 2.809765-1 1.972423+0 2.703348-1 2.000000+0 2.641137-1 2.018366+0 2.601104-1 2.041738+0 2.553014-1 2.044000+0 2.548440-1 2.089296+0 2.459550-1 2.113489+0 2.414111-1 2.137962+0 2.369515-1 2.162719+0 2.325742-1 2.187762+0 2.282780-1 2.238721+0 2.199234-1 2.264644+0 2.158615-1 2.290868+0 2.118882-1 2.317395+0 2.081061-1 2.371374+0 2.007481-1 2.398833+0 1.971675-1 2.426610+0 1.936510-1 2.454709+0 1.901972-1 2.483133+0 1.868051-1 2.570396+0 1.769888-1 2.600160+0 1.738327-1 2.630268+0 1.707440-1 2.660725+0 1.678027-1 2.722701+0 1.620749-1 2.754229+0 1.592848-1 2.786121+0 1.565431-1 2.818383+0 1.538485-1 2.851018+0 1.512004-1 2.951209+0 1.435275-1 3.000000+0 1.400223-1 3.019952+0 1.386347-1 3.054921+0 1.363285-1 3.126079+0 1.318334-1 3.162278+0 1.296418-1 3.198895+0 1.274869-1 3.235937+0 1.253677-1 3.311311+0 1.212347-1 3.427678+0 1.152901-1 3.467369+0 1.133740-1 3.507519+0 1.114962-1 3.548134+0 1.097050-1 3.630781+0 1.062107-1 3.672823+0 1.045056-1 3.715352+0 1.028280-1 3.758374+0 1.011774-1 3.845918+0 9.795518-2 4.000000+0 9.269397-2 4.027170+0 9.181628-2 4.073803+0 9.034761-2 4.120975+0 8.894472-2 4.216965+0 8.620568-2 4.265795+0 8.486804-2 4.315191+0 8.355121-2 4.365158+0 8.225486-2 4.415704+0 8.097861-2 4.518559+0 7.848526-2 4.677351+0 7.488893-2 4.731513+0 7.372714-2 4.786301+0 7.258723-2 4.841724+0 7.149730-2 4.954502+0 6.936765-2 5.011872+0 6.832680-2 5.069907+0 6.730161-2 5.128614+0 6.629181-2 5.188000+0 6.529719-2 5.370318+0 6.240197-2 5.559043+0 5.963551-2 5.623413+0 5.874089-2 5.688529+0 5.786257-2 5.754399+0 5.702176-2 5.888437+0 5.537760-2 6.000000+0 5.407262-2 6.025596+0 5.378096-2 6.095369+0 5.300003-2 6.165950+0 5.223044-2 6.456542+0 4.926229-2 6.683439+0 4.714767-2 6.760830+0 4.646316-2 6.839116+0 4.579071-2 6.918310+0 4.514592-2 7.079458+0 4.388418-2 7.244360+0 4.265776-2 7.413102+0 4.146570-2 7.498942+0 4.088222-2 7.852356+0 3.862930-2 8.128305+0 3.702168-2 8.222427+0 3.650081-2 8.317638+0 3.598885-2 8.413951+0 3.549770-2 8.511380+0 3.501325-2 8.709636+0 3.406413-2 8.810489+0 3.359926-2 9.015711+0 3.268854-2 9.225714+0 3.180249-2 9.772372+0 2.969108-2 1.023293+1 2.810352-2 1.035142+1 2.772125-2 1.047129+1 2.735407-2 1.071519+1 2.663433-2 1.083927+1 2.628157-2 1.100000+1 2.583740-2 1.135011+1 2.491677-2 1.230269+1 2.269672-2 1.303167+1 2.123328-2 1.318257+1 2.095278-2 1.333521+1 2.068243-2 1.348963+1 2.041575-2 1.380384+1 1.989270-2 1.400000+1 1.957881-2 1.412538+1 1.938305-2 1.445440+1 1.888648-2 1.513561+1 1.793121-2 1.678804+1 1.595494-2 1.737801+1 1.534742-2 1.757924+1 1.515528-2 1.778279+1 1.496560-2 1.819701+1 1.459363-2 1.840772+1 1.441113-2 1.883649+1 1.405297-2 2.264644+1 1.149048-2 2.511886+1 1.026246-2 2.540973+1 1.013694-2 2.570396+1 1.001298-2 2.630268+1 9.769750-3 2.660725+1 9.650364-3 3.090295+1 8.224975-3 3.548134+1 7.098835-3 3.589219+1 7.013685-3 3.630781+1 6.929565-3 3.672823+1 6.846460-3 3.715352+1 6.764391-3 3.758374+1 6.683307-3 3.801894+1 6.603196-3 3.845918+1 6.524052-3 4.570882+1 5.444610-3 5.432503+1 4.545090-3 5.495409+1 4.491467-3 5.559043+1 4.438482-3 5.623413+1 4.386125-3 5.688529+1 4.334401-3 5.754399+1 4.283293-3 5.821032+1 4.232788-3 5.888437+1 4.182880-3 6.000000+1 4.102781-3 7.244360+1 3.378797-3 8.912509+1 2.730100-3 9.120108+1 2.666882-3 9.225714+1 2.635827-3 9.332543+1 2.605133-3 9.549926+1 2.544829-3 9.660509+1 2.515205-3 9.772372+1 2.485926-3 9.885531+1 2.456988-3 1.000000+2 2.428387-3 1.011579+2 2.400120-3 1.023293+2 2.372182-3 1.035142+2 2.344570-3 1.364583+2 1.770220-3 1.778279+2 1.352622-3 1.819701+2 1.321545-3 1.840772+2 1.306276-3 1.862087+2 1.291184-3 1.905461+2 1.261524-3 1.927525+2 1.246951-3 1.949845+2 1.232547-3 1.972423+2 1.218310-3 1.995262+2 1.204237-3 2.018366+2 1.190326-3 2.041738+2 1.176577-3 2.065380+2 1.162986-3 2.722701+2 8.799888-4 3.548134+2 6.737537-4 3.630781+2 6.583611-4 3.672823+2 6.507977-4 3.715352+2 6.433211-4 3.801894+2 6.286259-4 3.845918+2 6.214050-4 3.890451+2 6.142672-4 3.935501+2 6.072111-4 3.981072+2 6.002363-4 4.027170+2 5.933416-4 4.073803+2 5.865261-4 4.120975+2 5.797891-4 1.083927+3 2.196903-4 1.412538+3 1.684433-4 1.445440+3 1.646074-4 1.462177+3 1.627224-4 1.479108+3 1.608590-4 1.513561+3 1.571961-4 1.531087+3 1.553961-4 1.548817+3 1.536166-4 1.566751+3 1.518576-4 1.584893+3 1.501187-4 1.603245+3 1.483998-4 1.621810+3 1.467005-4 1.640590+3 1.450207-4 1.000000+5 2.376049-6 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 1.096000-5 1.096000-5 1.235000-5 1.096000-5 1.235000-5 1.146880-5 1.470000-5 1.153412-5 2.361000-5 1.154795-5 2.361000-5 1.165007-5 2.795000-5 1.160785-5 3.109800-5 1.164676-5 3.427678-5 1.175858-5 3.801894-5 1.198320-5 4.216965-5 1.233010-5 4.850000-5 1.298452-5 5.688529-5 1.387605-5 6.237348-5 1.438032-5 6.778000-5 1.478886-5 6.778000-5 2.710128-5 6.868000-5 2.773810-5 6.984000-5 2.879501-5 6.984000-5 2.961466-5 7.220000-5 3.126959-5 7.344600-5 3.192186-5 7.435000-5 3.221182-5 7.635000-5 3.245229-5 8.800000-5 3.241861-5 9.900000-5 3.214518-5 1.083927-4 3.171329-5 1.161449-4 3.113909-5 1.220000-4 3.054740-5 1.315000-4 2.933020-5 1.400000-4 2.822948-5 1.445440-4 2.779066-5 1.479800-4 2.757674-5 1.479800-4 4.140290-5 1.531087-4 4.174804-5 1.590000-4 4.186108-5 1.606900-4 4.184925-5 1.606900-4 4.460978-5 1.670000-4 4.450061-5 1.750000-4 4.407013-5 1.927525-4 4.281580-5 2.083700-4 4.200811-5 2.083700-4 4.478352-5 2.187762-4 4.473198-5 2.600160-4 4.374550-5 2.917427-4 4.333639-5 3.467369-4 4.305674-5 4.168694-4 4.306791-5 5.370318-4 4.340468-5 6.775200-4 4.398013-5 6.775200-4 7.380020-5 6.909100-4 7.421110-5 6.909100-4 7.688570-5 7.084470-4 7.730811-5 7.244360-4 7.722669-5 7.450000-4 7.657825-5 8.000000-4 7.611798-5 9.265600-4 7.587734-5 9.265600-4 8.309661-5 9.894700-4 8.362551-5 9.894700-4 8.624295-5 1.040000-3 8.701754-5 1.122000-3 8.777717-5 1.122000-3 9.107400-5 1.303167-3 9.322010-5 1.730000-3 9.726141-5 2.162719-3 1.006335-4 2.754229-3 1.043336-4 3.427678-3 1.076793-4 4.216965-3 1.108008-4 4.774700-3 1.126300-4 4.774700-3 1.584518-4 5.103900-3 1.589079-4 5.103900-3 1.673523-4 5.416900-3 1.675531-4 5.416900-3 1.751308-4 7.500000-3 1.781078-4 1.122018-2 1.817819-4 1.678804-2 1.854665-4 2.426610-2 1.888070-4 3.455600-2 1.918686-4 3.455600-2 1.940036-4 8.511380-2 1.949865-4 3.273407-1 1.956336-4 1.000000+5 1.957954-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.096000-5 0.0 6.984000-5 0.0 6.984000-5 1.461481-9 7.000000-5 1.449225-9 7.015000-5 1.434449-9 7.060000-5 1.396983-9 7.070000-5 1.386824-9 7.130000-5 1.336924-9 7.190000-5 1.290410-9 7.277000-5 1.230544-9 7.330000-5 1.199625-9 7.340000-5 1.194847-9 7.344600-5 1.196197-9 7.365000-5 1.190062-9 7.400000-5 1.185620-9 7.413102-5 1.186120-9 7.420000-5 1.193105-9 7.435000-5 1.215860-9 7.470000-5 1.276348-9 7.503900-5 1.342438-9 7.540000-5 1.421305-9 7.560000-5 1.455117-9 7.635000-5 1.608491-9 7.650000-5 1.647978-9 7.710000-5 1.880728-9 7.730000-5 1.921450-9 7.860000-5 2.144624-9 7.910000-5 2.277734-9 7.943282-5 2.307404-9 8.095000-5 2.430378-9 8.110000-5 2.448534-9 8.155000-5 2.522652-9 8.370000-5 2.602400-9 8.413951-5 2.590688-9 8.728500-5 2.521317-9 9.070000-5 2.605816-9 9.120108-5 2.596849-9 9.354600-5 2.593834-9 9.580000-5 2.578908-9 9.623200-5 2.565946-9 1.059254-4 2.514252-9 1.109175-4 2.475155-9 1.161449-4 2.416063-9 1.202264-4 2.357450-9 1.220000-4 2.328203-9 1.260000-4 2.250891-9 1.315000-4 2.123497-9 1.380384-4 1.954427-9 1.415000-4 1.865469-9 1.445440-4 1.795610-9 1.462177-4 1.761230-9 1.479800-4 1.728807-9 1.479800-4 2.199055-9 1.531087-4 2.171083-9 1.590000-4 2.153234-9 1.606900-4 2.150117-9 1.606900-4 2.813215-9 1.650000-4 2.819806-9 1.720000-4 2.807345-9 1.750000-4 2.796241-9 1.862087-4 2.737523-9 1.972423-4 2.703201-9 2.083700-4 2.686779-9 2.083700-4 3.002479-9 2.125000-4 3.019466-9 2.220000-4 3.033961-9 2.344229-4 3.032903-9 2.600160-4 3.013038-9 2.917427-4 3.006580-9 3.700000-4 3.021255-9 5.500000-4 3.089857-9 6.775200-4 3.139897-9 6.775200-4 3.868748-9 6.909100-4 3.879806-9 6.909100-4 1.053543-7 6.937000-4 1.079441-7 6.950000-4 1.084759-7 7.080000-4 1.159561-7 7.170000-4 1.144806-7 7.213000-4 1.145011-7 7.220000-4 1.142721-7 7.244360-4 1.129561-7 7.280000-4 1.120796-7 7.321500-4 1.100106-7 7.365000-4 1.080369-7 7.440000-4 1.054208-7 7.480000-4 1.044007-7 7.520000-4 1.036856-7 7.585776-4 1.029302-7 7.673615-4 1.024317-7 7.858600-4 1.019809-7 8.105900-4 1.010448-7 8.317638-4 1.007354-7 8.709636-4 1.006140-7 8.810489-4 9.921246-8 9.200000-4 9.835045-8 9.225714-4 1.003064-7 9.265600-4 1.003555-7 9.265600-4 1.590607-7 9.549926-4 1.615564-7 9.660509-4 1.620546-7 9.894700-4 1.637280-7 9.894700-4 1.956072-7 1.004000-3 1.989710-7 1.023800-3 2.020796-7 1.059254-3 2.058781-7 1.122000-3 2.118372-7 1.122000-3 2.380495-7 1.230269-3 2.509775-7 1.364583-3 2.645863-7 1.640590-3 2.900488-7 1.883649-3 3.092158-7 2.041738-3 3.210199-7 2.317395-3 3.390066-7 2.630268-3 3.571348-7 2.985383-3 3.749242-7 3.400000-3 3.931332-7 3.935501-3 4.131988-7 4.518559-3 4.315160-7 4.774700-3 4.386452-7 4.774700-3 2.741749-4 4.954502-3 2.749907-4 5.103900-3 2.750037-4 5.103900-3 3.376326-4 5.165000-3 3.371928-4 5.416900-3 3.376513-4 5.416900-3 3.534662-4 6.918310-3 3.561205-4 1.122018-2 3.592464-4 2.238721-2 3.617947-4 3.455600-2 3.628257-4 3.455600-2 2.308906-2 4.786301-2 2.338730-2 7.079458-2 2.360811-2 1.109175-1 2.375122-2 2.317395-1 2.384597-2 1.303167+0 2.394233-2 1.000000+5 2.393971-2 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 1.096000-5 0.0 1.235000-5 1.390000-6 1.235000-5 8.812002-7 1.288250-5 1.390473-6 1.370000-5 2.183124-6 1.470000-5 3.165885-6 1.717908-5 5.630715-6 2.361000-5 1.206205-5 2.361000-5 1.195993-5 2.840000-5 1.679080-5 3.235937-5 2.067641-5 3.672823-5 2.483324-5 4.265795-5 3.028087-5 6.095369-5 4.669478-5 6.778000-5 5.299114-5 6.778000-5 4.067872-5 6.890000-5 4.097952-5 6.984000-5 4.104499-5 6.984000-5 4.022388-5 7.220000-5 4.092914-5 7.344600-5 4.152294-5 7.435000-5 4.213697-5 7.650000-5 4.403911-5 9.120108-5 5.883832-5 1.071519-4 7.536469-5 1.202264-4 8.948141-5 1.430000-4 1.150770-4 1.479800-4 1.204015-4 1.479800-4 1.065749-4 1.570000-4 1.151462-4 1.606900-4 1.188386-4 1.606900-4 1.160774-4 1.740000-4 1.298602-4 2.065380-4 1.644491-4 2.083700-4 1.663592-4 2.083700-4 1.635835-4 3.054921-4 2.622549-4 6.237348-4 5.799905-4 6.775200-4 6.335367-4 6.775200-4 6.037159-4 6.909100-4 6.166950-4 6.909100-4 6.139189-4 9.265600-4 8.505823-4 9.265600-4 8.433043-4 9.894700-4 9.056808-4 9.894700-4 9.030314-4 1.122000-3 1.034011-3 1.122000-3 1.030688-3 3.162278-3 3.055451-3 4.774700-3 4.661631-3 4.774700-3 4.342073-3 5.103900-3 4.669988-3 5.103900-3 4.598915-3 5.416900-3 4.911696-3 5.416900-3 4.888303-3 3.455600-2 3.400131-2 3.455600-2 1.127293-2 3.548134-2 1.217074-2 4.570882-2 2.216036-2 6.531306-2 4.154115-2 1.798871-1 1.558655-1 1.000000+5 9.999997+4 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.455600-2 5.907016+3 3.480000-2 5.784273+3 3.565000-2 5.459800+3 3.640000-2 5.157580+3 3.810000-2 4.604300+3 4.073803-2 3.859003+3 4.570882-2 2.865839+3 5.188000-2 2.046704+3 6.500000-2 1.111388+3 8.128305-2 5.991859+2 1.035142-1 3.039447+2 2.065380-1 4.265364+1 2.511886-1 2.459442+1 2.951209-1 1.573073+1 3.388442-1 1.080338+1 3.845918-1 7.707965+0 4.365158-1 5.541035+0 4.897788-1 4.134896+0 5.432503-1 3.199458+0 6.025596-1 2.492343+0 6.683439-1 1.955022+0 7.413102-1 1.544666+0 8.222427-1 1.229679+0 9.120108-1 9.866759-1 1.000000+0 8.169071-1 1.148154+0 6.202103-1 1.258925+0 5.196981-1 1.445440+0 4.015443-1 1.603245+0 3.331694-1 1.798871+0 2.727860-1 2.018366+0 2.249063-1 2.290868+0 1.832106-1 2.630268+0 1.476363-1 3.019952+0 1.198753-1 3.507519+0 9.640806-2 4.073803+0 7.812143-2 4.786301+0 6.276455-2 5.688529+0 5.003250-2 6.839116+0 3.959431-2 8.317638+0 3.111907-2 1.035142+1 2.397026-2 1.318257+1 1.811761-2 1.737801+1 1.327013-2 2.511886+1 8.873174-3 3.548134+1 6.137816-3 5.432503+1 3.929793-3 8.912509+1 2.360507-3 1.778279+2 1.169551-3 3.548134+2 5.825568-4 1.412538+3 1.456479-4 1.000000+5 2.054600-6 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.455600-2 1.944300-4 1.000000+5 1.944300-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.455600-2 2.762800-2 1.000000+5 2.762800-2 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.455600-2 6.733570-3 1.000000+5 9.999997+4 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.416900-3 2.348442+4 5.575000-3 2.240878+4 5.700000-3 2.155100+4 5.888437-3 2.049829+4 6.456542-3 1.749471+4 6.918310-3 1.556484+4 7.328245-3 1.402156+4 8.035261-3 1.181649+4 8.609938-3 1.042693+4 9.332543-3 8.929100+3 1.120000-2 6.252240+3 1.273503-2 4.809346+3 1.445440-2 3.697182+3 1.730000-2 2.512000+3 1.950000-2 1.927454+3 2.238721-2 1.411682+3 2.650000-2 9.554220+2 3.126079-2 6.454307+2 3.672823-2 4.362974+2 4.315191-2 2.925205+2 5.069907-2 1.945622+2 6.000000-2 1.260460+2 7.079458-2 8.170677+1 8.511380-2 5.003858+1 1.047129-1 2.858657+1 1.380384-1 1.341796+1 2.264644-1 3.423241+0 2.754229-1 2.007580+0 3.273407-1 1.262567+0 3.758374-1 8.770231-1 4.265795-1 6.322247-1 4.786301-1 4.726742-1 5.370318-1 3.558930-1 6.025596-1 2.700022-1 6.606935-1 2.178254-1 7.328245-1 1.723570-1 8.222427-1 1.338902-1 9.332543-1 1.022420-1 1.011579+0 8.663008-2 1.148154+0 6.726266-2 1.250000+0 5.713196-2 1.428894+0 4.450381-2 1.584893+0 3.690326-2 1.778279+0 3.019107-2 2.000000+0 2.477599-2 2.264644+0 2.024859-2 2.600160+0 1.630497-2 3.000000+0 1.313400-2 3.467369+0 1.063337-2 4.027170+0 8.611708-3 4.731513+0 6.915133-3 5.623413+0 5.509570-3 6.760830+0 4.358083-3 8.222427+0 3.423629-3 1.023293+1 2.635973-3 1.303167+1 1.991726-3 1.678804+1 1.496168-3 2.264644+1 1.077158-3 3.090295+1 7.709916-4 4.570882+1 5.103522-4 7.244360+1 3.167103-4 1.364583+2 1.659487-4 2.722701+2 8.252015-5 1.083927+3 2.060353-5 1.000000+5 2.229000-7 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.416900-3 2.249300-4 1.000000+5 2.249300-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.416900-3 4.574000-4 1.000000+5 4.574000-4 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.416900-3 4.734570-3 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.103900-3 4.895867+4 5.165000-3 4.702166+4 5.250000-3 4.554300+4 5.310000-3 4.418400+4 5.432503-3 4.178700+4 6.237348-3 2.919500+4 6.800000-3 2.314900+4 8.222426-3 1.370600+4 1.000000-2 7.908700+3 1.122018-2 5.664100+3 1.300000-2 3.681300+3 1.584893-2 2.034400+3 1.905461-2 1.159600+3 2.238721-2 7.034100+2 2.600160-2 4.396100+2 3.090295-2 2.539300+2 3.758374-2 1.352800+2 4.677351-2 6.640200+1 6.165950-2 2.678600+1 1.202264-1 2.950255+0 1.500000-1 1.429978+0 1.798871-1 7.944813-1 2.113489-1 4.749829-1 2.426610-1 3.076975-1 2.786121-1 2.008092-1 3.162278-1 1.367998-1 3.548134-1 9.715940-2 3.981072-1 6.949671-2 4.466836-1 5.009175-2 4.954502-1 3.756656-2 5.495409-1 2.836925-2 6.095369-1 2.158269-2 6.683439-1 1.703927-2 7.413102-1 1.317458-2 8.222427-1 1.026384-2 9.332543-1 7.620535-3 9.885531-1 6.691847-3 1.059254+0 5.773144-3 1.135011+0 5.014082-3 1.202264+0 4.483193-3 1.333521+0 3.700403-3 1.548817+0 2.831364-3 1.778279+0 2.223663-3 2.000000+0 1.823902-3 2.264644+0 1.490755-3 2.600160+0 1.200524-3 3.000000+0 9.671400-4 3.467369+0 7.830003-4 4.027170+0 6.341312-4 4.731513+0 5.092014-4 5.623413+0 4.057063-4 6.760830+0 3.209075-4 8.222427+0 2.520986-4 1.023293+1 1.941062-4 1.318257+1 1.447335-4 1.757924+1 1.046646-4 2.540973+1 7.001265-5 3.589219+1 4.844211-5 5.495409+1 3.102184-5 9.120108+1 1.841915-5 1.819701+2 9.128236-6 3.630781+2 4.547447-6 1.445440+3 1.137028-6 1.000000+5 1.641400-8 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.103900-3 1.900200-4 1.000000+5 1.900200-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.103900-3 5.057500-4 1.000000+5 5.057500-4 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.103900-3 4.408130-3 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 4.774700-3 1.037051+5 4.852000-3 9.982113+4 4.925000-3 9.667040+4 4.985000-3 9.354120+4 5.128614-3 8.696393+4 5.900000-3 5.973320+4 6.456542-3 4.649654+4 7.943282-3 2.580551+4 9.440609-3 1.567133+4 1.135011-2 9.047954+3 1.258925-2 6.613393+3 1.513561-2 3.751603+3 1.819701-2 2.104527+3 2.162719-2 1.212563+3 2.570396-2 6.927172+2 3.090295-2 3.779299+2 3.715352-2 2.045308+2 4.518559-2 1.056859+2 5.623413-2 5.013953+1 7.673615-2 1.719194+1 1.288250-1 2.871075+0 1.566751-1 1.469534+0 1.883649-1 7.884629-1 2.162719-1 4.976642-1 2.454709-1 3.286320-1 2.754229-1 2.268588-1 3.090295-1 1.577419-1 3.427678-1 1.145313-1 3.801894-1 8.376980-2 4.216965-1 6.175322-2 4.623810-1 4.741783-2 5.069907-1 3.666771-2 5.559043-1 2.855993-2 6.095369-1 2.240630-2 6.683439-1 1.771049-2 7.328245-1 1.410564-2 8.035261-1 1.131819-2 9.015711-1 8.669826-3 9.660509-1 7.439299-3 1.035142+0 6.432553-3 1.135011+0 5.337266-3 1.230269+0 4.564967-3 1.364583+0 3.764195-3 1.584893+0 2.877656-3 1.798871+0 2.308198-3 2.018366+0 1.902290-3 2.290868+0 1.549496-3 2.630268+0 1.248525-3 3.019952+0 1.013683-3 3.507519+0 8.152602-4 4.073803+0 6.606358-4 4.786301+0 5.307709-4 5.688529+0 4.231018-4 6.839116+0 3.348350-4 8.317638+0 2.631601-4 1.035142+1 2.027068-4 1.333521+1 1.511981-4 1.778279+1 1.093897-4 2.570396+1 7.319541-5 3.672823+1 5.004551-5 5.688529+1 3.168233-5 9.549926+1 1.860104-5 1.905461+2 9.222836-6 3.801894+2 4.595794-6 1.513561+3 1.149292-6 1.000000+5 1.737400-8 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 4.774700-3 1.812300-4 1.000000+5 1.812300-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.774700-3 4.102500-4 1.000000+5 4.102500-4 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 4.774700-3 4.183220-3 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.122000-3 6.855700+4 1.202264-3 6.547447+4 1.230269-3 6.403085+4 1.333521-3 5.771691+4 1.640590-3 4.324246+4 1.950000-3 3.349800+4 2.113489-3 2.951547+4 2.540973-3 2.190801+4 2.851018-3 1.803015+4 3.311311-3 1.391730+4 3.935501-3 1.021301+4 4.518559-3 7.920314+3 5.300000-3 5.864580+3 6.309573-3 4.186521+3 7.500000-3 2.971880+3 8.912509-3 2.093609+3 1.047129-2 1.498173+3 1.230269-2 1.064215+3 1.428894-2 7.694820+2 1.678804-2 5.387230+2 1.972423-2 3.743001+2 2.317395-2 2.580674+2 2.722701-2 1.766057+2 3.200000-2 1.198508+2 3.758374-2 8.085041+1 4.415704-2 5.410485+1 5.188000-2 3.594837+1 6.165950-2 2.302191+1 7.413102-2 1.419924+1 9.015711-2 8.427462+0 1.109175-1 4.812949+0 1.462177-1 2.260085+0 2.018366-1 9.312073-1 2.630268-1 4.517480-1 3.126079-1 2.837718-1 3.630781-1 1.909848-1 4.168694-1 1.334912-1 4.731513-1 9.685011-2 5.308844-1 7.288323-2 5.956621-1 5.527125-2 6.606935-1 4.339310-2 7.328245-1 3.429812-2 8.222427-1 2.661873-2 9.120108-1 2.134241-2 1.000000+0 1.766122-2 1.148154+0 1.340705-2 1.258925+0 1.123452-2 1.445440+0 8.680572-3 1.603245+0 7.202626-3 1.798871+0 5.897214-3 2.041738+0 4.770342-3 2.317395+0 3.887999-3 2.660725+0 3.135056-3 3.054921+0 2.547112-3 3.548134+0 2.049692-3 4.120975+0 1.661805-3 4.841724+0 1.335848-3 5.754399+0 1.065449-3 6.918310+0 8.435370-4 8.317638+0 6.725798-4 1.035142+1 5.180692-4 1.333521+1 3.864309-4 1.778279+1 2.795800-4 2.570396+1 1.870739-4 3.672823+1 1.279081-4 5.623413+1 8.194504-5 9.332543+1 4.867137-5 1.862087+2 2.412658-5 3.715352+2 1.202087-5 1.479108+3 3.006038-6 1.000000+5 4.440500-8 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.122000-3 1.686000-4 1.000000+5 1.686000-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.122000-3 8.544400-7 1.000000+5 8.544400-7 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.122000-3 9.525456-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 9.894700-4 1.010402+5 9.985000-4 1.044782+5 1.004000-3 1.057843+5 1.017000-3 1.072339+5 1.023800-3 1.075600+5 1.040000-3 1.069163+5 1.100000-3 1.016674+5 1.190000-3 9.357459+4 1.202264-3 9.268900+4 1.303167-3 8.436920+4 1.412538-3 7.616257+4 1.513561-3 6.935539+4 1.621810-3 6.278691+4 1.757924-3 5.552923+4 1.950000-3 4.686180+4 2.150000-3 3.973760+4 2.317395-3 3.475984+4 2.630268-3 2.745694+4 2.851018-3 2.350004+4 3.198895-3 1.864776+4 3.507519-3 1.541962+4 3.935501-3 1.205086+4 4.365158-3 9.596222+3 4.954502-3 7.197103+3 5.500000-3 5.639180+3 6.237348-3 4.171028+3 7.079458-3 3.052612+3 7.943282-3 2.282580+3 8.912509-3 1.696142+3 1.011579-2 1.214691+3 1.161449-2 8.368182+2 1.333521-2 5.716401+2 1.531087-2 3.873560+2 1.757924-2 2.604664+2 2.018366-2 1.738820+2 2.317395-2 1.153113+2 2.700000-2 7.265800+1 3.162278-2 4.473359+1 3.715352-2 2.707976+1 4.466836-2 1.513865+1 5.495409-2 7.804717+0 7.079458-2 3.442913+0 1.318257-1 4.556258-1 1.640590-1 2.250801-1 1.949845-1 1.298400-1 2.018366-1 1.165109-1 2.600160-1 5.373340-2 2.851018-1 4.032084-2 3.000060-1 3.428760-2 3.388442-1 2.387085-2 3.801894-1 1.706391-2 4.265795-1 1.228193-2 4.731513-1 9.194303-3 5.248075-1 6.929816-3 5.821032-1 5.260973-3 6.382635-1 4.145001-3 7.079458-1 3.193367-3 7.852356-1 2.479207-3 8.709636-1 1.931761-3 9.332543-1 1.646605-3 9.885531-1 1.450133-3 1.071519+0 1.224985-3 1.161449+0 1.041819-3 1.258925+0 8.930809-4 1.396368+0 7.383456-4 1.659587+0 5.433424-4 1.883649+0 4.369984-4 2.113489+0 3.611470-4 2.398833+0 2.949244-4 2.754229+0 2.382609-4 3.162278+0 1.939092-4 3.672823+0 1.563215-4 4.265795+0 1.269476-4 5.011872+0 1.022087-4 6.000000+0 8.088200-5 7.244360+0 6.380572-5 8.810489+0 5.026238-5 1.083927+1 3.932093-5 1.400000+1 2.928100-5 1.840772+1 2.155693-5 2.630268+1 1.461783-5 3.715352+1 1.012145-5 5.754399+1 6.408964-6 9.660509+1 3.763520-6 1.927525+2 1.866248-6 3.845918+2 9.299960-7 1.531087+3 2.325908-7 1.000000+5 3.556800-9 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 9.894700-4 1.377000-4 1.000000+5 1.377000-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.894700-4 8.223300-7 1.000000+5 8.223300-7 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 9.894700-4 8.509477-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 9.265600-4 2.746400+5 9.630000-4 2.669777+5 1.000000-3 2.578500+5 1.040000-3 2.470940+5 1.083927-3 2.352796+5 1.216186-3 2.020828+5 1.303167-3 1.833831+5 1.412538-3 1.628655+5 1.531087-3 1.435752+5 1.659587-3 1.258477+5 1.819701-3 1.072098+5 2.041738-3 8.726280+4 2.213095-3 7.500184+4 2.511886-3 5.853850+4 2.754229-3 4.859569+4 3.126079-3 3.724161+4 3.427678-3 3.051701+4 3.900000-3 2.287708+4 4.315191-3 1.813125+4 4.897788-3 1.344571+4 5.500000-3 1.014260+4 6.095369-3 7.855723+3 6.918310-3 5.690632+3 7.852356-3 4.088591+3 8.810489-3 3.007078+3 9.885531-3 2.198004+3 1.122018-2 1.546004+3 1.273503-2 1.079374+3 1.450000-2 7.414360+2 1.659587-2 4.978291+2 1.883649-2 3.403141+2 2.162719-2 2.231764+2 2.511886-2 1.401789+2 2.917427-2 8.736837+1 3.388442-2 5.406166+1 4.000000-2 3.150332+1 4.786301-2 1.742470+1 5.821032-2 9.060649+0 7.244360-2 4.326688+0 1.333521-1 5.413203-1 1.678804-1 2.486690-1 1.972423-1 1.452421-1 2.264644-1 9.221310-2 2.570396-1 6.121471-2 2.884032-1 4.245744-2 3.235937-1 2.965413-2 3.589219-1 2.161713-2 3.981072-1 1.587570-2 4.365158-1 1.215276-2 4.786301-1 9.364870-3 5.248075-1 7.266154-3 5.754399-1 5.677533-3 6.309573-1 4.468344-3 6.918310-1 3.542607-3 7.585776-1 2.829513-3 8.511380-1 2.155213-3 9.120108-1 1.841376-3 9.772372-1 1.583574-3 1.059254+0 1.339494-3 1.161449+0 1.113816-3 1.273503+0 9.339779-4 1.412538+0 7.717074-4 1.640590+0 5.909732-4 1.862087+0 4.750468-4 2.089296+0 3.923173-4 2.371374+0 3.201610-4 2.722701+0 2.584889-4 3.126079+0 2.102578-4 3.630781+0 1.694056-4 4.216965+0 1.374982-4 4.954502+0 1.106418-4 5.888437+0 8.833117-5 7.079458+0 7.000041-5 8.511380+0 5.586233-5 1.047129+1 4.364928-5 1.348963+1 3.256847-5 1.778279+1 2.387549-5 2.570396+1 1.597586-5 3.630781+1 1.105641-5 5.559043+1 7.081984-6 9.225714+1 4.205638-6 1.840772+2 2.084543-6 3.672823+2 1.038521-6 1.462177+3 2.596891-7 1.000000+5 3.792100-9 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 9.265600-4 1.356400-4 1.000000+5 1.356400-4 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.265600-4 5.863300-7 1.000000+5 5.863300-7 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.265600-4 7.903337-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 6.909100-4 1.439936+6 6.937000-4 1.501838+6 7.080000-4 1.662848+6 7.213000-4 1.581272+6 7.220000-4 1.571759+6 7.280000-4 1.464892+6 7.321500-4 1.376090+6 7.365000-4 1.299800+6 7.400000-4 1.249568+6 7.440000-4 1.202616+6 7.480000-4 1.164676+6 7.520000-4 1.134032+6 7.585776-4 1.094568+6 7.673615-4 1.053682+6 7.950000-4 9.498560+5 8.105900-4 9.015513+5 8.280000-4 8.579040+5 8.709636-4 7.697371+5 8.810489-4 7.345360+5 9.200000-4 6.598903+5 9.225714-4 6.763416+5 9.549926-4 6.313679+5 9.660509-4 6.099508+5 1.035142-3 5.189504+5 1.122018-3 4.270981+5 1.216186-3 3.490304+5 1.318257-3 2.833863+5 1.462177-3 2.153823+5 1.570000-3 1.771680+5 1.819701-3 1.168178+5 1.995262-3 8.941158+4 2.290868-3 5.935127+4 2.511886-3 4.486914+4 2.851018-3 3.033141+4 3.198895-3 2.106881+4 3.548134-3 1.509626+4 4.073803-3 9.586383+3 4.570882-3 6.516521+3 5.128614-3 4.402415+3 5.888437-3 2.726685+3 6.800000-3 1.640024+3 7.852356-3 9.774200+2 9.015711-3 5.895407+2 1.035142-2 3.526243+2 1.188502-2 2.092241+2 1.364583-2 1.231935+2 1.566751-2 7.203091+1 1.819701-2 3.998010+1 2.137962-2 2.104406+1 2.511886-2 1.099898+1 3.019952-2 5.198417+0 3.715352-2 2.218786+0 4.954502-2 6.737551-1 7.762471-2 1.045751-1 9.885531-2 3.862193-2 1.188502-1 1.820946-2 1.396368-1 9.500320-3 1.621810-1 5.231102-3 1.862087-1 3.038560-3 2.113489-1 1.860441-3 2.371374-1 1.199282-3 2.660725-1 7.787092-4 2.951209-1 5.315119-4 3.273407-1 3.653725-4 3.630781-1 2.529836-4 4.027170-1 1.764737-4 4.415705-1 1.289208-4 4.841724-1 9.483951-5 5.248075-1 7.296809-5 5.754399-1 5.448396-5 6.237348-1 4.247779-5 6.839117-1 3.220362-5 7.498942-1 2.459221-5 8.035261-1 2.016501-5 8.609938-1 1.645963-5 9.120108-1 1.399868-5 9.549926-1 1.237906-5 1.000000+0 1.102700-5 1.047129+0 9.902332-6 1.096478+0 8.953850-6 1.148154+0 8.146522-6 1.216186+0 7.295199-6 1.318257+0 6.312060-6 1.531087+0 4.885732-6 1.819701+0 3.614588-6 2.018366+0 3.035264-6 2.290868+0 2.472383-6 2.630268+0 1.992209-6 3.019952+0 1.617514-6 3.507519+0 1.300836-6 4.073803+0 1.054080-6 4.786301+0 8.468807-7 5.688529+0 6.750860-7 6.839116+0 5.342478-7 8.317638+0 4.198906-7 1.035142+1 3.234317-7 1.333521+1 2.412500-7 1.757924+1 1.767784-7 2.540973+1 1.182511-7 3.589219+1 8.181521-8 5.495409+1 5.239487-8 9.120108+1 3.110885-8 1.819701+2 1.541777-8 3.630781+2 7.680468-9 1.445440+3 1.920468-9 1.000000+5 2.77220-11 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 6.909100-4 8.179200-5 1.000000+5 8.179200-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.909100-4 2.915000-7 1.000000+5 2.915000-7 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 6.909100-4 6.088265-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 6.775200-4 2.006723+6 6.950000-4 2.078415+6 7.170000-4 2.026762+6 7.244360-4 1.964000+6 7.310000-4 1.843350+6 7.350000-4 1.785444+6 7.400000-4 1.727982+6 7.450000-4 1.682130+6 7.540000-4 1.616232+6 7.858600-4 1.431457+6 8.000000-4 1.365696+6 8.200000-4 1.290456+6 8.609938-4 1.160414+6 9.660509-4 8.929617+5 1.047129-3 7.368581+5 1.148154-3 5.869306+5 1.258925-3 4.633722+5 1.412538-3 3.416403+5 1.513561-3 2.828206+5 1.730000-3 1.938720+5 1.883649-3 1.516897+5 2.162719-3 1.007159+5 2.400000-3 7.345920+4 2.722701-3 4.971533+4 3.054921-3 3.453135+4 3.400000-3 2.445894+4 3.890451-3 1.569733+4 4.365158-3 1.066228+4 4.897788-3 7.196235+3 5.559043-3 4.634576+3 6.382635-3 2.842777+3 7.328245-3 1.728385+3 8.500000-3 1.003218+3 9.800000-3 5.896728+2 1.122018-2 3.527717+2 1.273503-2 2.165772+2 1.450000-2 1.304808+2 1.659587-2 7.652127+1 1.927525-2 4.203034+1 2.238721-2 2.292866+1 2.630268-2 1.184588+1 3.162278-2 5.523066+0 3.758374-2 2.683531+0 4.897788-2 8.789516-1 8.035261-2 1.083672-1 9.885531-2 4.538396-2 1.174898-1 2.212583-2 1.364583-1 1.195788-2 1.548817-1 7.152423-3 1.757924-1 4.309626-3 1.972423-1 2.737500-3 2.213095-1 1.749107-3 2.454709-1 1.177195-3 2.691535-1 8.337042-4 2.951209-1 5.949241-4 3.198895-1 4.460085-4 3.467369-1 3.366549-4 3.758374-1 2.557893-4 4.073803-1 1.956040-4 4.466836-1 1.450704-4 4.897788-1 1.084387-4 5.370318-1 8.162568-5 5.821032-1 6.408025-5 6.382635-1 4.896383-5 6.839117-1 4.027600-5 7.328245-1 3.335922-5 7.852356-1 2.785409-5 8.511380-1 2.275415-5 9.120108-1 1.927758-5 9.660509-1 1.689847-5 1.023293+0 1.491220-5 1.096478+0 1.291748-5 1.174898+0 1.125941-5 1.273503+0 9.669057-6 1.412538+0 8.005832-6 1.698244+0 5.780273-6 1.905461+0 4.746479-6 2.137962+0 3.925471-6 2.426610+0 3.207895-6 2.786121+0 2.593438-6 3.235937+0 2.076841-6 3.758374+0 1.676240-6 4.415704+0 1.341537-6 5.188000+0 1.081742-6 6.165950+0 8.652957-7 7.498942+0 6.772625-7 9.225714+0 5.268736-7 1.135011+1 4.128214-7 1.445440+1 3.128875-7 1.840772+1 2.387912-7 2.660725+1 1.599282-7 3.801894+1 1.094331-7 5.888437+1 6.932036-8 1.000000+2 4.024500-8 1.995262+2 1.996280-8 3.981072+2 9.950231-9 1.584893+3 2.488871-9 1.000000+5 3.94000-11 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 6.775200-4 8.269700-5 1.000000+5 8.269700-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.775200-4 4.086200-9 1.000000+5 4.086200-9 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 6.775200-4 5.948189-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.083700-4 1.249170+5 2.097000-4 1.290992+5 2.110000-4 1.324332+5 2.125000-4 1.356444+5 2.148000-4 1.395762+5 2.170000-4 1.426018+5 2.190000-4 1.448298+5 2.220000-4 1.473966+5 2.250000-4 1.491698+5 2.285000-4 1.503554+5 2.330000-4 1.506934+5 2.380000-4 1.498718+5 2.450000-4 1.473972+5 2.730000-4 1.352694+5 3.054921-4 1.246739+5 3.235937-4 1.187186+5 3.467369-4 1.109443+5 4.027170-4 9.463951+4 4.365158-4 8.635760+4 4.786301-4 7.712293+4 5.500000-4 6.448840+4 6.025596-4 5.698262+4 7.000000-4 4.605120+4 7.852356-4 3.886509+4 9.225714-4 3.034459+4 1.059254-3 2.435694+4 1.230269-3 1.907480+4 1.462177-3 1.426963+4 1.757924-3 1.038507+4 2.137962-3 7.347639+3 2.570396-3 5.268822+3 3.126079-3 3.675271+3 3.801894-3 2.545636+3 4.570882-3 1.789392+3 5.500000-3 1.246558+3 6.531306-3 8.846907+2 7.852356-3 6.079647+2 9.440609-3 4.144256+2 1.122018-2 2.872785+2 1.333521-2 1.976991+2 1.566751-2 1.385167+2 1.840772-2 9.636979+1 2.162719-2 6.657085+1 2.540973-2 4.565442+1 3.000000-2 3.072100+1 3.548134-2 2.042863+1 4.216965-2 1.331266+1 5.011872-2 8.607802+0 6.000000-2 5.421116+0 7.244360-2 3.309687+0 8.810489-2 1.967131+0 1.059254-1 1.197459+0 1.396368-1 5.629927-1 2.398833-1 1.275155-1 2.884032-1 7.739313-2 3.388442-1 5.033825-2 3.890451-1 3.505794-2 4.415705-1 2.534012-2 5.000000-1 1.856703-2 5.623413-1 1.394532-2 6.237348-1 1.090768-2 6.918310-1 8.589317-3 7.673615-1 6.809794-3 8.609938-1 5.301792-3 9.440609-1 4.368709-3 1.047129+0 3.541488-3 1.174898+0 2.819036-3 1.348963+0 2.169710-3 1.513561+0 1.755495-3 1.698244+0 1.432279-3 1.927525+0 1.154269-3 2.187762+0 9.374185-4 2.483133+0 7.669216-4 2.851018+0 6.208507-4 3.311311+0 4.978174-4 3.845918+0 4.022564-4 4.518559+0 3.222982-4 5.370318+0 2.562569-4 6.456542+0 2.023049-4 7.852356+0 1.586368-4 9.772372+0 1.219383-4 1.230269+1 9.321533-5 1.513561+1 7.363990-5 1.883649+1 5.770942-5 2.660725+1 3.963963-5 3.801894+1 2.712296-5 5.888437+1 1.718146-5 1.011579+2 9.858523-6 2.018366+2 4.890697-6 4.027170+2 2.437863-6 1.603245+3 6.098009-7 1.000000+5 9.765400-9 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.083700-4 7.244200-5 1.000000+5 7.244200-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.083700-4 6.148600-9 1.000000+5 6.148600-9 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.083700-4 1.359219-4 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.606900-4 1.298690+5 1.630000-4 1.321406+5 1.650000-4 1.332122+5 1.680000-4 1.337044+5 1.715000-4 1.334336+5 1.740000-4 1.325093+5 1.750000-4 1.319366+5 1.800000-4 1.269684+5 1.862087-4 1.218939+5 1.927525-4 1.176740+5 1.995262-4 1.145811+5 2.065380-4 1.124936+5 2.150000-4 1.109602+5 2.660725-4 1.064445+5 2.900000-4 1.041106+5 3.100000-4 1.016710+5 3.350000-4 9.816440+4 3.630781-4 9.400947+4 3.890451-4 9.004668+4 4.168694-4 8.568359+4 4.518559-4 8.023644+4 4.954502-4 7.384312+4 5.400000-4 6.784720+4 5.888437-4 6.182183+4 6.531306-4 5.484358+4 7.161434-4 4.896939+4 7.852356-4 4.341501+4 8.709636-4 3.765675+4 9.660509-4 3.242546+4 1.083927-3 2.723489+4 1.202264-3 2.312494+4 1.364583-3 1.877465+4 1.531087-3 1.541325+4 1.717908-3 1.256979+4 1.950000-3 9.964040+3 2.220000-3 7.791920+3 2.511886-3 6.118919+3 2.851018-3 4.740306+3 3.235937-3 3.644560+3 3.650000-3 2.818480+3 4.073803-3 2.215769+3 4.600000-3 1.686240+3 5.128614-3 1.312107+3 5.821032-3 9.726288+2 6.606934-3 7.153841+2 7.498942-3 5.221778+2 8.511380-3 3.783351+2 9.660509-3 2.721591+2 1.096478-2 1.944209+2 1.244515-2 1.379444+2 1.428894-2 9.414729+1 1.640590-2 6.375192+1 1.883649-2 4.284774+1 2.162719-2 2.859283+1 2.511886-2 1.830808+1 2.917427-2 1.163795+1 3.427678-2 7.091708+0 4.073803-2 4.137185+0 4.954502-2 2.228012+0 6.165950-2 1.106563+0 8.413951-2 4.047778-1 1.303167-1 9.798258-2 1.659587-1 4.504136-2 1.972423-1 2.602338-2 2.317395-1 1.570621-2 2.660725-1 1.025893-2 3.019952-1 6.989313-3 3.427678-1 4.796808-3 3.845918-1 3.430484-3 4.315191-1 2.471245-3 4.786301-1 1.851933-3 5.308844-1 1.397289-3 5.888437-1 1.061804-3 6.531306-1 8.129497-4 7.244360-1 6.272170-4 8.413951-1 4.361534-4 9.015711-1 3.706812-4 9.660509-1 3.172802-4 1.023293+0 2.805665-4 1.109175+0 2.377285-4 1.188600+0 2.073600-4 1.303167+0 1.743525-4 1.445440+0 1.444586-4 1.698244+0 1.086386-4 1.905461+0 8.921167-5 2.137962+0 7.377593-5 2.426610+0 6.028490-5 2.786121+0 4.873395-5 3.198895+0 3.968588-5 3.715352+0 3.201188-5 4.315191+0 2.601017-5 5.069907+0 2.095196-5 6.025596+0 1.674363-5 7.244360+0 1.328053-5 8.810489+0 1.046159-5 1.083927+1 8.184316-6 1.400000+1 6.094600-6 1.840772+1 4.486986-6 2.660725+1 3.005071-6 3.845918+1 2.031507-6 6.000000+1 1.277500-6 1.023293+2 7.386663-7 2.041738+2 3.664780-7 4.073803+2 1.826935-7 1.621810+3 4.569917-8 1.000000+5 7.40330-10 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.606900-4 6.398300-5 1.000000+5 6.398300-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.606900-4 7.466800-9 1.000000+5 7.466800-9 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.606900-4 9.669953-5 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.479800-4 3.597060+5 2.290868-4 3.117392+5 2.540973-4 2.989325+5 2.754229-4 2.874299+5 2.951209-4 2.760464+5 3.200000-4 2.611856+5 3.507519-4 2.433644+5 3.801894-4 2.272462+5 4.120975-4 2.105938+5 4.518559-4 1.914150+5 5.011872-4 1.706000+5 5.432503-4 1.550690+5 6.000000-4 1.367388+5 6.700000-4 1.180328+5 7.413102-4 1.023640+5 8.317638-4 8.634171+4 9.225714-4 7.358438+4 1.035142-3 6.113842+4 1.161449-3 5.044353+4 1.318257-3 4.048063+4 1.462177-3 3.361049+4 1.659587-3 2.658634+4 1.905461-3 2.040118+4 2.162719-3 1.587912+4 2.454709-3 1.226776+4 2.800000-3 9.309680+3 3.162278-3 7.162495+3 3.548134-3 5.553199+3 3.981072-3 4.278028+3 4.466836-3 3.274496+3 5.069907-3 2.422049+3 5.754399-3 1.777022+3 6.531306-3 1.293381+3 7.413102-3 9.340964+2 8.413951-3 6.696470+2 9.549926-3 4.765369+2 1.083927-2 3.366443+2 1.230269-2 2.361716+2 1.396368-2 1.645461+2 1.584893-2 1.138558+2 1.819701-2 7.560546+1 2.089296-2 4.982303+1 2.398833-2 3.259118+1 2.786121-2 2.041920+1 3.235937-2 1.269666+1 3.801894-2 7.552226+0 4.466836-2 4.459054+0 5.370318-2 2.422766+0 6.531306-2 1.257414+0 8.035261-2 6.236611-1 1.333521-1 1.113452-1 1.678804-1 5.121559-2 1.972423-1 2.994004-2 2.290868-1 1.831712-2 2.600160-1 1.217196-2 2.917427-1 8.451733-3 3.235937-1 6.125898-3 3.589219-1 4.469866-3 3.981072-1 3.285242-3 4.415705-1 2.433943-3 4.841724-1 1.877310-3 5.308844-1 1.457958-3 5.821032-1 1.140333-3 6.382635-1 8.986169-4 6.998420-1 7.134664-4 7.673615-1 5.706203-4 8.609938-1 4.349618-4 9.225714-1 3.718733-4 9.885531-1 3.200824-4 1.083927+0 2.646743-4 1.174898+0 2.254891-4 1.288250+0 1.892750-4 1.445440+0 1.533148-4 1.678804+0 1.175628-4 1.883649+0 9.649032-5 2.113489+0 7.974639-5 2.398833+0 6.512307-5 2.754229+0 5.261102-5 3.162278+0 4.281767-5 3.672823+0 3.451783-5 4.265795+0 2.803169-5 5.011872+0 2.256905-5 6.000000+0 1.786000-5 7.244360+0 1.408934-5 8.810489+0 1.109866-5 1.083927+1 8.682701-6 1.400000+1 6.465700-6 1.840772+1 4.760178-6 2.660725+1 3.188054-6 3.845918+1 2.155210-6 6.000000+1 1.355300-6 1.035142+2 7.744891-7 2.065380+2 3.842988-7 4.120975+2 1.915877-7 1.640590+3 4.792599-8 1.000000+5 7.85400-10 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.479800-4 6.461400-5 1.000000+5 6.461400-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.479800-4 2.988500-9 1.000000+5 2.988500-9 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.479800-4 8.336301-5 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 6.984000-5 6.280960+5 7.015000-5 6.555320+5 7.040000-5 6.820000+5 7.070000-5 7.194640+5 7.100000-5 7.644360+5 7.130000-5 8.174640+5 7.161434-5 8.840657+5 7.190000-5 9.555160+5 7.220000-5 1.043460+6 7.250000-5 1.147068+6 7.277000-5 1.256076+6 7.300000-5 1.362536+6 7.330000-5 1.522620+6 7.365000-5 1.745388+6 7.400000-5 2.014524+6 7.435000-5 2.339884+6 7.470000-5 2.734076+6 7.503900-5 3.195848+6 7.540000-5 3.794108+6 7.560000-5 4.137990+6 7.710000-5 7.623626+6 7.730000-5 8.012467+6 7.910000-5 1.186893+7 7.930900-5 1.209668+7 8.155000-5 1.449189+7 8.370000-5 1.422862+7 8.413951-5 1.387833+7 8.710000-5 1.152414+7 9.070000-5 9.091461+6 9.580000-5 5.638098+6 9.623200-5 5.386620+6 9.900000-5 4.235560+6 1.059254-4 2.398725+6 1.109175-4 1.618118+6 1.244515-4 5.978170+5 1.288250-4 4.462386+5 1.318257-4 3.694328+5 1.341800-4 3.212224+5 1.365000-4 2.822808+5 1.385000-4 2.545220+5 1.400000-4 2.367716+5 1.415000-4 2.213668+5 1.430000-4 2.080752+5 1.445440-4 1.963830+5 1.462177-4 1.857537+5 1.480000-4 1.765204+5 1.496236-4 1.697752+5 1.513561-4 1.641315+5 1.531087-4 1.598720+5 1.548817-4 1.568721+5 1.566751-4 1.550165+5 1.584893-4 1.541966+5 1.603600-4 1.543211+5 1.627000-4 1.556640+5 1.650000-4 1.580640+5 1.680000-4 1.624936+5 1.705000-4 1.670752+5 1.740000-4 1.745092+5 1.800000-4 1.890648+5 1.905461-4 2.169060+5 1.980000-4 2.364692+5 2.041738-4 2.519083+5 2.113489-4 2.685746+5 2.187762-4 2.841192+5 2.264644-4 2.982258+5 2.344229-4 3.106327+5 2.430000-4 3.215640+5 2.511886-4 3.297753+5 2.600160-4 3.363992+5 2.691535-4 3.410944+5 2.800000-4 3.442472+5 2.917427-4 3.452678+5 3.054921-4 3.439839+5 3.200000-4 3.402940+5 3.350000-4 3.344020+5 3.507519-4 3.264444+5 3.700000-4 3.150460+5 3.890451-4 3.026850+5 4.120975-4 2.870823+5 4.365158-4 2.705492+5 4.623810-4 2.534482+5 4.897788-4 2.359130+5 5.248075-4 2.147729+5 5.650000-4 1.927228+5 6.100000-4 1.708696+5 6.531306-4 1.524759+5 7.079458-4 1.321924+5 7.673615-4 1.137825+5 8.317638-4 9.724304+4 9.015711-4 8.249905+4 9.885531-4 6.786426+4 1.083927-3 5.538051+4 1.190000-3 4.471480+4 1.300000-3 3.628476+4 1.428894-3 2.882011+4 1.570000-3 2.276368+4 1.737801-3 1.752041+4 1.927525-3 1.331476+4 2.137962-3 1.004602+4 2.371374-3 7.525261+3 2.630268-3 5.597736+3 2.917427-3 4.135174+3 3.235937-3 3.033843+3 3.589219-3 2.210740+3 4.000000-3 1.576372+3 4.466836-3 1.108520+3 5.011872-3 7.618167+2 5.623413-3 5.194588+2 6.309573-3 3.516055+2 7.079458-3 2.363139+2 8.035261-3 1.514311+2 9.120108-3 9.629653+1 1.035142-2 6.077829+1 1.174898-2 3.807159+1 1.333521-2 2.367701+1 1.513561-2 1.462424+1 1.737801-2 8.580996+0 2.018366-2 4.778246+0 2.344229-2 2.640846+0 2.754229-2 1.384293+0 3.311311-2 6.564531-1 4.073803-2 2.811661-1 8.317638-2 1.480525-2 1.035142-1 6.042322-3 1.230269-1 2.998099-3 1.445440-1 1.570017-3 1.678804-1 8.676067-4 1.927525-1 5.057022-4 2.187762-1 3.105515-4 2.454709-1 2.007222-4 2.754229-1 1.306957-4 3.054921-1 8.945908-5 3.388442-1 6.169492-5 3.758374-1 4.285202-5 4.216965-1 2.882023-5 4.623810-1 2.112642-5 5.069907-1 1.559816-5 5.559043-1 1.160923-5 6.095369-1 8.704876-6 6.683439-1 6.574515-6 7.328245-1 5.002782-6 8.609938-1 3.135278-6 9.120108-1 2.670402-6 9.549926-1 2.363349-6 1.000000+0 2.105800-6 1.047129+0 1.890869-6 1.096478+0 1.710374-6 1.148154+0 1.557008-6 1.216186+0 1.395007-6 1.318257+0 1.206965-6 1.479108+0 9.903913-7 1.840772+0 6.767269-7 2.044000+0 5.677200-7 2.317395+0 4.635758-7 2.660725+0 3.737861-7 3.054921+0 3.036683-7 3.548134+0 2.443706-7 4.120975+0 1.981257-7 4.841724+0 1.592588-7 5.754399+0 1.270238-7 6.918310+0 1.005673-7 8.413951+0 7.907736-8 1.047129+1 6.093685-8 1.348963+1 4.546762-8 1.778279+1 3.333158-8 2.570396+1 2.230246-8 3.672823+1 1.524914-8 5.623413+1 9.769544-9 9.332543+1 5.802643-9 1.862087+2 2.876472-9 3.715352+2 1.433122-9 1.479108+3 3.58380-10 1.000000+5 5.29400-12 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 6.984000-5 3.211000-5 1.000000+5 3.211000-5 1 54000 7 7 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.984000-5 5.910800-9 1.000000+5 5.910800-9 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.984000-5 3.772409-5 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.778000-5 9.756480+5 6.800000-5 1.003302+6 6.837000-5 1.060158+6 6.868000-5 1.118844+6 6.890000-5 1.167804+6 6.918310-5 1.240645+6 6.940000-5 1.304940+6 6.970000-5 1.408224+6 7.000000-5 1.530324+6 7.030000-5 1.674084+6 7.060000-5 1.843200+6 7.092800-5 2.062278+6 7.124000-5 2.309689+6 7.150000-5 2.549952+6 7.180000-5 2.872146+6 7.210000-5 3.250674+6 7.244360-5 3.766572+6 7.285000-5 4.515078+6 7.328245-5 5.517867+6 7.340000-5 5.834400+6 7.344600-5 5.939030+6 7.413102-5 8.079161+6 7.420000-5 8.269924+6 7.540000-5 1.158600+7 7.560000-5 1.227382+7 7.635000-5 1.465413+7 7.650000-5 1.507579+7 7.860000-5 1.832911+7 8.095000-5 1.942183+7 8.110000-5 1.940946+7 8.400000-5 1.756360+7 8.728500-5 1.497326+7 9.110000-5 1.085289+7 9.354600-5 8.574996+6 9.549926-5 7.179394+6 1.035142-4 3.631978+6 1.083927-4 2.442820+6 1.220000-4 8.678280+5 1.260000-4 6.580680+5 1.290000-4 5.413314+5 1.315000-4 4.647072+5 1.335000-4 4.145664+5 1.350000-4 3.825648+5 1.365000-4 3.548118+5 1.380384-4 3.303032+5 1.396368-4 3.086366+5 1.412538-4 2.902353+5 1.430000-4 2.738946+5 1.445440-4 2.621662+5 1.462177-4 2.520142+5 1.479108-4 2.441549+5 1.496236-4 2.383868+5 1.513561-4 2.345195+5 1.531087-4 2.323767+5 1.550000-4 2.318040+5 1.570000-4 2.328936+5 1.590000-4 2.354706+5 1.610000-4 2.393034+5 1.639000-4 2.466880+5 1.670000-4 2.564484+5 1.720000-4 2.749968+5 1.850000-4 3.300834+5 1.905461-4 3.537492+5 1.972423-4 3.811051+5 2.041738-4 4.074339+5 2.113489-4 4.321683+5 2.162719-4 4.475188+5 2.238721-4 4.684936+5 2.317395-4 4.867662+5 2.400000-4 5.022450+5 2.483133-4 5.142054+5 2.580000-4 5.240484+5 2.691535-4 5.307951+5 2.800000-4 5.335440+5 2.917427-4 5.330963+5 3.054921-4 5.289024+5 3.200000-4 5.211084+5 3.350000-4 5.102850+5 3.507519-4 4.965872+5 3.700000-4 4.775004+5 3.930000-4 4.529802+5 4.168694-4 4.272204+5 4.430000-4 3.994518+5 4.731513-4 3.685783+5 5.011872-4 3.414003+5 5.370318-4 3.090524+5 5.821032-4 2.729148+5 6.237348-4 2.436393+5 6.700000-4 2.151558+5 7.244360-4 1.864330+5 7.943282-4 1.561739+5 8.609938-4 1.326888+5 9.332543-4 1.120077+5 1.030000-3 9.029880+4 1.135011-3 7.238714+4 1.244515-3 5.827050+4 1.350000-3 4.784130+4 1.479108-3 3.810990+4 1.640590-3 2.922173+4 1.819701-3 2.223763+4 2.020000-3 1.675794+4 2.264644-3 1.218634+4 2.511886-3 9.067712+3 2.786121-3 6.701998+3 3.090295-3 4.918768+3 3.427678-3 3.583882+3 3.801894-3 2.593494+3 4.216965-3 1.864137+3 4.677351-3 1.331031+3 5.248075-3 9.085668+2 5.888437-3 6.153955+2 6.606934-3 4.136745+2 7.413102-3 2.761264+2 8.317638-3 1.830697+2 9.440609-3 1.155890+2 1.071519-2 7.241750+1 1.216186-2 4.503203+1 1.380384-2 2.779895+1 1.566751-2 1.703677+1 1.798871-2 9.907696+0 2.089296-2 5.462645+0 2.426610-2 2.989112+0 2.851018-2 1.549432+0 3.389150-2 7.596240-1 4.168694-2 3.201907-1 8.128305-2 1.927031-2 1.000000-1 8.103278-3 1.188502-1 3.961336-3 1.380384-1 2.145942-3 1.584893-1 1.227874-3 1.798871-1 7.416410-4 2.018366-1 4.723822-4 2.238721-1 3.167927-4 2.483133-1 2.139689-4 2.722701-1 1.519647-4 2.985383-1 1.086740-4 3.273407-1 7.828926-5 3.548134-1 5.913954-5 3.801894-1 4.674934-5 4.120975-1 3.577692-5 4.466836-1 2.755687-5 4.841724-1 2.136086-5 5.308844-1 1.608111-5 5.754399-1 1.263282-5 6.095369-1 1.068438-5 6.606935-1 8.518728-6 7.161434-1 6.842612-6 8.222427-1 4.759826-6 8.810489-1 3.981796-6 9.332543-1 3.453809-6 9.885531-1 3.018195-6 1.047129+0 2.659297-6 1.109175+0 2.357179-6 1.174898+0 2.101579-6 1.258925+0 1.845068-6 1.380384+0 1.562245-6 1.757924+0 1.022457-6 1.972423+0 8.409647-7 2.238721+0 6.840693-7 2.570396+0 5.504769-7 2.951209+0 4.463964-7 3.427678+0 3.585719-7 4.000000+0 2.883300-7 4.677351+0 2.329285-7 5.559043+0 1.854940-7 6.683439+0 1.466555-7 8.128305+0 1.151514-7 1.023293+1 8.743244-8 1.303167+1 6.606312-8 1.678804+1 4.962589-8 2.264644+1 3.572842-8 3.090295+1 2.557319-8 4.570882+1 1.692731-8 7.244360+1 1.050493-8 1.364583+2 5.504259-9 2.722701+2 2.737092-9 1.083927+3 6.83404-10 1.000000+5 7.39340-12 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.778000-5 3.304300-5 1.000000+5 3.304300-5 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.778000-5 3.473700-5 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.361000-5 8.984040+4 2.398833-5 7.910660+4 2.520000-5 5.289080+4 2.570000-5 4.536420+4 2.610000-5 4.048640+4 2.635000-5 3.790780+4 2.665000-5 3.525260+4 2.691535-5 3.327474+4 2.720000-5 3.150840+4 2.750000-5 3.001280+4 2.770000-5 2.921000+4 2.795000-5 2.840840+4 2.820000-5 2.781660+4 2.840000-5 2.748520+4 2.860000-5 2.727120+4 2.890000-5 2.715480+4 2.920000-5 2.726540+4 2.951209-5 2.759982+4 2.985383-5 2.819734+4 3.020000-5 2.902280+4 3.060000-5 3.022140+4 3.109800-5 3.203060+4 3.170000-5 3.460660+4 3.400000-5 4.696120+4 3.500000-5 5.297700+4 3.589219-5 5.843759+4 3.672823-5 6.354946+4 3.770000-5 6.939500+4 3.850000-5 7.407680+4 3.950000-5 7.971240+4 4.030000-5 8.402080+4 4.150000-5 9.011500+4 4.265795-5 9.555231+4 4.400000-5 1.012930+5 4.518559-5 1.058617+5 4.677351-5 1.112564+5 4.850000-5 1.162180+5 5.011872-5 1.200700+5 5.188000-5 1.234565+5 5.400000-5 1.265400+5 5.623413-5 1.287702+5 5.821032-5 1.299970+5 6.095369-5 1.307332+5 6.400000-5 1.304958+5 6.760830-5 1.291531+5 7.161434-5 1.267381+5 7.585776-5 1.235027+5 8.128305-5 1.188196+5 8.800000-5 1.126988+5 9.549926-5 1.059197+5 1.047129-4 9.799494+4 1.150000-4 8.984040+4 1.260000-4 8.193540+4 1.380384-4 7.420140+4 1.531087-4 6.581101+4 1.778279-4 5.485130+4 2.187762-4 4.229634+4 2.500000-4 3.555280+4 2.851018-4 2.972306+4 3.427678-4 2.291853+4 4.027170-4 1.813832+4 5.128614-4 1.263001+4 5.956621-4 1.003605+4 7.084470-4 7.620960+3 8.511380-4 5.648142+3 1.035142-3 4.072062+3 1.244515-3 2.969025+3 1.531087-3 2.064349+3 1.883649-3 1.425409+3 2.398833-3 9.165779+2 2.985383-3 6.099462+2 3.672823-3 4.116258+2 4.570882-3 2.696536+2 5.559043-3 1.833019+2 6.531306-3 1.325399+2 7.943282-3 8.870847+1 9.660509-3 5.892993+1 1.188502-2 3.800605+1 1.396368-2 2.683463+1 1.584893-2 2.029240+1 1.862087-2 1.410641+1 2.213095-2 9.477784+0 2.600160-2 6.491874+0 3.054921-2 4.415112+0 3.589219-2 2.981187+0 4.265795-2 1.941324+0 5.069907-2 1.254390+0 6.025596-2 8.044878-1 7.244360-2 4.966007-1 8.810489-2 2.951642-1 1.059254-1 1.796854-1 1.396368-1 8.448758-2 2.398833-1 1.913940-2 2.884032-1 1.161679-2 3.388442-1 7.556050-3 3.890451-1 5.262560-3 4.415705-1 3.804003-3 5.000000-1 2.787400-3 5.623413-1 2.093658-3 6.237348-1 1.637687-3 6.918310-1 1.289688-3 7.673615-1 1.022580-3 8.609938-1 7.962779-4 9.440609-1 6.562351-4 1.047129+0 5.320204-4 1.174898+0 4.235087-4 1.348963+0 3.259554-4 1.513561+0 2.637041-4 1.698244+0 2.151172-4 1.905461+0 1.767454-4 2.162719+0 1.434946-4 2.454709+0 1.173291-4 2.818383+0 9.490502-5 3.235937+0 7.732857-5 3.758374+0 6.241296-5 4.415704+0 4.995109-5 5.188000+0 4.027772-5 6.165950+0 3.221807-5 7.498942+0 2.521692-5 9.225714+0 1.961732-5 1.135011+1 1.537062-5 1.445440+1 1.164993-5 1.840772+1 8.891083-6 2.630268+1 6.028852-6 3.758374+1 4.124186-6 5.821032+1 2.611997-6 9.772372+1 1.534116-6 1.949845+2 7.607938-7 3.890451+2 3.791577-7 1.548817+3 9.483009-8 1.000000+5 1.467000-9 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.361000-5 2.361000-5 1.000000+5 2.361000-5 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.361000-5 0.0 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.235000-5 3.846160+7 1.260000-5 3.791540+7 1.285000-5 3.708680+7 1.307000-5 3.617820+7 1.340000-5 3.457240+7 1.370000-5 3.293760+7 1.400000-5 3.121720+7 1.430000-5 2.946980+7 1.470000-5 2.713900+7 1.515000-5 2.461700+7 1.570000-5 2.176560+7 1.630000-5 1.898944+7 1.717908-5 1.555362+7 1.862087-5 1.133205+7 2.162719-5 6.263599+6 2.371374-5 4.374954+6 2.580000-5 3.171580+6 2.818383-5 2.280080+6 3.090295-5 1.627998+6 3.427678-5 1.123640+6 3.801894-5 7.807837+5 4.216965-5 5.459952+5 4.677351-5 3.843698+5 5.069907-5 2.943052+5 5.432503-5 2.355141+5 5.800000-5 1.919518+5 6.150000-5 1.609750+5 6.500000-5 1.373420+5 6.839116-5 1.195569+5 7.161434-5 1.061332+5 7.500000-5 9.480600+4 7.852356-5 8.531526+4 8.222426-5 7.725774+4 8.650000-5 6.977860+4 9.120108-5 6.323750+4 9.660509-5 5.728982+4 1.023293-4 5.229980+4 1.083927-4 4.807613+4 1.161449-4 4.380316+4 1.244515-4 4.021245+4 1.350000-4 3.665960+4 1.462177-4 3.372020+4 1.621810-4 3.049649+4 1.883649-4 2.663345+4 2.400000-4 2.150300+4 2.722701-4 1.910642+4 3.054921-4 1.702909+4 3.467369-4 1.489240+4 3.935501-4 1.293413+4 4.518559-4 1.100625+4 5.188000-4 9.294713+3 5.821032-4 8.023112+3 6.456542-4 6.978120+3 7.244360-4 5.931690+3 8.222426-4 4.922649+3 9.440609-4 3.984236+3 1.059254-3 3.318621+3 1.188502-3 2.744809+3 1.348963-3 2.210913+3 1.548817-3 1.731901+3 1.757924-3 1.375011+3 2.000000-3 1.079180+3 2.290868-3 8.300168+2 2.600160-3 6.450625+2 2.951209-3 4.977564+2 3.349654-3 3.812994+2 3.801894-3 2.899467+2 4.315191-3 2.188494+2 4.897788-3 1.639360+2 5.559043-3 1.218487+2 6.760830-3 7.660971+1 7.244360-3 6.468708+1 7.943282-3 5.125418+1 8.810489-3 3.915529+1 1.083927-2 2.254495+1 1.244515-2 1.551541+1 1.428894-2 1.059929+1 1.621810-2 7.421406+0 1.862087-2 4.993495+0 2.137962-2 3.335778+0 2.483133-2 2.138147+0 2.884032-2 1.360469+0 3.388442-2 8.297977-1 4.027170-2 4.845505-1 4.897788-2 2.611760-1 6.095369-2 1.298247-1 8.128305-2 5.119974-2 1.303167-1 1.108061-2 1.659587-1 5.093567-3 1.972423-1 2.942870-3 2.317395-1 1.776160-3 2.660725-1 1.160156-3 3.019952-1 7.904067-4 3.427678-1 5.424655-4 3.845918-1 3.879423-4 4.315191-1 2.794444-4 4.786301-1 2.093939-4 5.308844-1 1.579729-4 5.888437-1 1.200352-4 6.531306-1 9.190587-5 7.244360-1 7.091488-5 8.413951-1 4.931786-5 9.015711-1 4.191476-5 9.660509-1 3.587519-5 1.023293+0 3.172189-5 1.109175+0 2.687783-5 1.188600+0 2.344500-5 1.303167+0 1.971338-5 1.462177+0 1.600145-5 1.698244+0 1.228302-5 1.905461+0 1.008668-5 2.137962+0 8.341703-6 2.426610+0 6.816363-6 2.786121+0 5.510242-6 3.198895+0 4.487169-6 3.715352+0 3.619520-6 4.365158+0 2.895162-6 5.128614+0 2.333335-6 6.095369+0 1.865547-6 7.413102+0 1.459422-6 9.015711+0 1.150690-6 1.100000+1 9.096400-7 1.412538+1 6.821996-7 1.840772+1 5.073260-7 2.660725+1 3.397763-7 3.801894+1 2.324957-7 5.888437+1 1.472729-7 1.011579+2 8.450463-8 2.018366+2 4.192181-8 4.027170+2 2.089639-8 1.603245+3 5.227053-9 1.000000+5 8.37060-11 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.235000-5 1.235000-5 1.000000+5 1.235000-5 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.235000-5 0.0 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.096000-5 8.154120+7 1.120000-5 7.978760+7 1.148154-5 7.714463+7 1.174898-5 7.419793+7 1.202264-5 7.085391+7 1.230269-5 6.726154+7 1.260000-5 6.332320+7 1.288250-5 5.958761+7 1.320000-5 5.546920+7 1.364583-5 4.993998+7 1.412538-5 4.444652+7 1.470000-5 3.856768+7 1.531087-5 3.316130+7 1.621810-5 2.658983+7 1.778279-5 1.849387+7 2.089296-5 9.758548+6 2.300000-5 6.709440+6 2.511886-5 4.791594+6 2.730000-5 3.510088+6 2.985383-5 2.531347+6 3.235937-5 1.898370+6 3.507519-5 1.433117+6 3.801894-5 1.089368+6 4.073803-5 8.665719+5 4.365158-5 6.940945+5 4.650000-5 5.705360+5 4.900000-5 4.879440+5 5.188000-5 4.144343+5 5.432503-5 3.655857+5 5.688529-5 3.244707+5 5.956621-5 2.898579+5 6.237348-5 2.607112+5 6.531306-5 2.361408+5 6.839116-5 2.153599+5 7.161434-5 1.976924+5 7.500000-5 1.825468+5 7.943282-5 1.666226+5 8.413951-5 1.531859+5 9.015711-5 1.396043+5 9.772372-5 1.263555+5 1.071519-4 1.136616+5 1.202264-4 1.004244+5 1.396368-4 8.628689+4 2.187762-4 5.568697+4 2.500000-4 4.858720+4 2.786121-4 4.320014+4 3.126079-4 3.785064+4 3.548134-4 3.249171+4 4.073803-4 2.729991+4 4.677351-4 2.277904+4 5.432503-4 1.857612+4 6.095369-4 1.576800+4 6.839116-4 1.327748+4 7.762471-4 1.090560+4 8.912509-4 8.730606+3 1.011579-3 7.073529+3 1.148154-3 5.684980+3 1.303167-3 4.534115+3 1.479108-3 3.590324+3 1.698244-3 2.763237+3 1.927525-3 2.158342+3 2.213095-3 1.635985+3 2.511886-3 1.260040+3 2.851018-3 9.637314+2 3.235937-3 7.318901+2 3.672823-3 5.517811+2 4.168694-3 4.128653+2 4.731513-3 3.065490+2 5.370318-3 2.258610+2 6.095369-3 1.651280+2 6.918310-3 1.198007+2 7.852356-3 8.626172+1 8.912509-3 6.165402+1 1.011579-2 4.374751+1 1.148154-2 3.082288+1 1.303167-2 2.156523+1 1.479108-2 1.498440+1 1.698244-2 9.993894+0 1.949845-2 6.613816+0 2.238721-2 4.343566+0 2.570396-2 2.832217+0 2.985383-2 1.768728+0 3.467369-2 1.096559+0 4.073803-2 6.500886-1 4.841724-2 3.685098-1 5.956621-2 1.849255-1 7.498942-2 8.505059-2 1.364583-1 1.113572-2 1.717908-1 5.128528-3 2.018366-1 3.001710-3 2.317395-1 1.909084-3 2.630268-1 1.269668-3 2.951209-1 8.823792-4 3.273407-1 6.401435-4 3.630781-1 4.675449-4 4.027170-1 3.439873-4 4.415705-1 2.636102-4 4.841724-1 2.033505-4 5.308844-1 1.579755-4 5.821032-1 1.236150-4 6.382635-1 9.745521-5 6.998420-1 7.741038-5 7.673615-1 6.194489-5 8.511380-1 4.854221-5 9.120108-1 4.148944-5 9.772372-1 3.568964-5 1.059254+0 3.019672-5 1.161449+0 2.512084-5 1.273503+0 2.104813-5 1.412538+0 1.738874-5 1.659587+0 1.305298-5 1.883649+0 1.050011-5 2.113489+0 8.678139-6 2.398833+0 7.086809-6 2.754229+0 5.725188-6 3.162278+0 4.659455-6 3.672823+0 3.756282-6 4.265795+0 3.050453-6 5.011872+0 2.455979-6 6.000000+0 1.943500-6 7.244360+0 1.533211-6 8.709636+0 1.224645-6 1.071519+1 9.576437-7 1.380384+1 7.149978-7 1.819701+1 5.246122-7 2.630268+1 3.512493-7 3.758374+1 2.402851-7 5.821032+1 1.521752-7 9.885531+1 8.833451-8 1.972423+2 4.381263-8 3.935501+2 2.183594-8 1.566751+3 5.461610-9 1.000000+5 8.54690-11 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.096000-5 1.096000-5 1.000000+5 1.096000-5 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.096000-5 0.0 1.000000+5 1.000000+5 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.938230-7 1.027500+0 1.052810-6 1.028100+0 1.433380-6 1.028750+0 1.938230-6 1.029500+0 2.652520-6 1.030100+0 3.335860-6 1.031000+0 4.564600-6 1.032000+0 6.245520-6 1.033200+0 8.748910-6 1.034000+0 1.074010-5 1.035300+0 1.457820-5 1.036640+0 1.938230-5 1.038200+0 2.615700-5 1.039700+0 3.398320-5 1.041500+0 4.521430-5 1.043800+0 6.275890-5 1.046400+0 8.731710-5 1.048300+0 1.087120-4 1.051200+0 1.474660-4 1.054080+0 1.938230-4 1.057700+0 2.641940-4 1.061100+0 3.436510-4 1.065100+0 4.549590-4 1.070400+0 6.347190-4 1.076200+0 8.771840-4 1.080600+0 1.095460-3 1.087100+0 1.475940-3 1.093710+0 1.938230-3 1.102600+0 2.687190-3 1.110700+0 3.504410-3 1.120600+0 4.687440-3 1.133300+0 6.516900-3 1.147500+0 8.997240-3 1.158200+0 1.118120-2 1.174100+0 1.494560-2 1.190110+0 1.938230-2 1.205100+0 2.413590-2 1.227500+0 3.231380-2 1.250000+0 4.173000-2 1.265600+0 4.887530-2 1.294900+0 6.349330-2 1.320600+0 7.740450-2 1.343000+0 9.022600-2 1.382200+0 1.139410-1 1.433800+0 1.471870-1 1.500000+0 1.930000-1 1.589800+0 2.617960-1 1.665000+0 3.250920-1 1.784700+0 4.347490-1 1.892300+0 5.399050-1 2.000000+0 6.478000-1 2.044000+0 6.918000-1 2.163500+0 8.115880-1 2.372600+0 1.021020+0 2.647100+0 1.291170+0 3.000000+0 1.626000+0 3.500000+0 2.072390+0 4.000000+0 2.487000+0 4.750000+0 3.054030+0 5.000000+0 3.229000+0 6.000000+0 3.868000+0 7.000000+0 4.436000+0 8.000000+0 4.947000+0 9.000000+0 5.411000+0 1.000000+1 5.836000+0 1.100000+1 6.228000+0 1.200000+1 6.590000+0 1.300000+1 6.929000+0 1.400000+1 7.240000+0 1.500000+1 7.529000+0 1.600000+1 7.796000+0 1.800000+1 8.283000+0 2.000000+1 8.719000+0 2.200000+1 9.115000+0 2.400000+1 9.475000+0 2.600000+1 9.803000+0 2.800000+1 1.010000+1 3.000000+1 1.038000+1 4.000000+1 1.150000+1 5.000000+1 1.234000+1 6.000000+1 1.299000+1 8.000000+1 1.395000+1 1.000000+2 1.463000+1 1.500000+2 1.571000+1 2.000000+2 1.636000+1 3.000000+2 1.712000+1 4.000000+2 1.755000+1 5.000000+2 1.784000+1 6.000000+2 1.804000+1 8.000000+2 1.831000+1 1.000000+3 1.849000+1 1.500000+3 1.875000+1 2.000000+3 1.889000+1 3.000000+3 1.904000+1 4.000000+3 1.912000+1 5.000000+3 1.917000+1 6.000000+3 1.921000+1 8.000000+3 1.925000+1 1.000000+4 1.928000+1 1.500000+4 1.932000+1 2.000000+4 1.934000+1 3.000000+4 1.937000+1 4.000000+4 1.938000+1 5.000000+4 1.939000+1 6.000000+4 1.939000+1 8.000000+4 1.940000+1 1.000000+5 1.940000+1 1 54000 7 8 1.313000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.415630-7 2.099900+0 1.268420-6 2.106600+0 1.764470-6 2.114000+0 2.441370-6 2.119500+0 3.039490-6 2.127900+0 4.122120-6 2.136250+0 5.415630-6 2.147000+0 7.425210-6 2.156900+0 9.644450-6 2.169000+0 1.287110-5 2.184500+0 1.789130-5 2.201800+0 2.475310-5 2.214800+0 3.084050-5 2.234200+0 4.148590-5 2.253680+0 5.415630-5 2.281500+0 7.585550-5 2.307000+0 9.963580-5 2.338200+0 1.339690-4 2.377400+0 1.855310-4 2.410200+0 2.359640-4 2.446800+0 3.001600-4 2.485900+0 3.779180-4 2.532900+0 4.836540-4 2.556430+0 5.415630-4 2.611900+0 6.905540-4 2.660400+0 8.348450-4 2.745300+0 1.117390-3 2.809000+0 1.353220-3 2.904500+0 1.743300-3 3.000000+0 2.176000-3 3.125000+0 2.805820-3 3.234400+0 3.413950-3 3.425800+0 4.597020-3 3.569300+0 5.573980-3 3.784700+0 7.164550-3 4.000000+0 8.874000-3 4.250000+0 1.096340-2 4.625000+0 1.424640-2 5.000000+0 1.766000-2 5.500000+0 2.234820-2 6.000000+0 2.710000-2 6.750000+0 3.416600-2 7.000000+0 3.649000-2 8.000000+0 4.558000-2 9.000000+0 5.427000-2 1.000000+1 6.252000-2 1.100000+1 7.033000-2 1.200000+1 7.768000-2 1.300000+1 8.461000-2 1.400000+1 9.120000-2 1.500000+1 9.743000-2 1.600000+1 1.033000-1 1.800000+1 1.143000-1 2.000000+1 1.243000-1 2.200000+1 1.334000-1 2.400000+1 1.418000-1 2.600000+1 1.495000-1 2.800000+1 1.566000-1 3.000000+1 1.633000-1 4.000000+1 1.908000-1 5.000000+1 2.117000-1 6.000000+1 2.282000-1 8.000000+1 2.531000-1 1.000000+2 2.712000-1 1.500000+2 3.011000-1 2.000000+2 3.199000-1 3.000000+2 3.428000-1 4.000000+2 3.566000-1 5.000000+2 3.660000-1 6.000000+2 3.729000-1 8.000000+2 3.824000-1 1.000000+3 3.887000-1 1.500000+3 3.980000-1 2.000000+3 4.033000-1 3.000000+3 4.091000-1 4.000000+3 4.124000-1 5.000000+3 4.145000-1 6.000000+3 4.159000-1 8.000000+3 4.179000-1 1.000000+4 4.191000-1 1.500000+4 4.207000-1 2.000000+4 4.217000-1 3.000000+4 4.226000-1 4.000000+4 4.232000-1 5.000000+4 4.235000-1 6.000000+4 4.238000-1 8.000000+4 4.240000-1 1.000000+5 4.242000-1 1 54000 7 8 1.313000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 54000 7 9 1.313000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.400000+1 1.000000+5 5.400000+1 5.000000+5 5.398800+1 8.750000+5 5.396380+1 1.000000+6 5.395300+1 1.500000+6 5.389600+1 2.000000+6 5.381700+1 2.500000+6 5.371400+1 3.000000+6 5.359100+1 3.750000+6 5.336380+1 4.000000+6 5.328000+1 4.750000+6 5.299090+1 5.000000+6 5.289200+1 5.500000+6 5.267080+1 6.250000+6 5.230480+1 6.500000+6 5.217470+1 7.000000+6 5.190800+1 7.875000+6 5.140510+1 8.500000+6 5.102150+1 8.625000+6 5.094070+1 9.000000+6 5.070600+1 1.000000+7 5.004400+1 1.109400+7 4.928380+1 1.187500+7 4.873010+1 1.203100+7 4.861790+1 1.250000+7 4.828200+1 1.375000+7 4.736710+1 1.437500+7 4.691060+1 1.500000+7 4.645500+1 1.687500+7 4.509660+1 1.750000+7 4.465500+1 1.937500+7 4.335220+1 2.000000+7 4.293400+1 2.250000+7 4.131610+1 2.375000+7 4.054930+1 2.500000+7 3.981400+1 2.750000+7 3.841340+1 2.875000+7 3.775080+1 3.000000+7 3.711000+1 3.250000+7 3.588180+1 3.500000+7 3.471810+1 3.625000+7 3.415590+1 4.000000+7 3.253800+1 4.500000+7 3.050570+1 5.000000+7 2.861500+1 5.500000+7 2.685730+1 6.000000+7 2.525100+1 7.000000+7 2.251100+1 8.000000+7 2.036800+1 9.000000+7 1.870000+1 1.000000+8 1.735700+1 1.125000+8 1.594470+1 1.218800+8 1.497320+1 1.250000+8 1.465800+1 1.312500+8 1.403290+1 1.406300+8 1.311550+1 1.437500+8 1.281620+1 1.500000+8 1.222700+1 1.562500+8 1.165200+1 1.671900+8 1.069410+1 1.750000+8 1.005490+1 1.753900+8 1.002420+1 1.877000+8 9.101460+0 2.000000+8 8.278500+0 2.218800+8 7.073650+0 2.289100+8 6.767070+0 2.375000+8 6.446290+0 2.394500+8 6.381800+0 2.473600+8 6.149060+0 2.500000+8 6.081300+0 3.000000+8 5.214700+0 3.125000+8 4.984490+0 3.453100+8 4.414490+0 3.500000+8 4.348100+0 4.000000+8 3.798500+0 4.125000+8 3.658540+0 4.234400+8 3.531820+0 4.425800+8 3.308230+0 4.677000+8 3.025880+0 4.750000+8 2.947770+0 5.000000+8 2.699200+0 5.500000+8 2.285120+0 6.000000+8 1.953700+0 6.437500+8 1.718710+0 6.683600+8 1.615430+0 6.894500+8 1.544960+0 7.000000+8 1.516100+0 7.125000+8 1.487190+0 7.343800+8 1.446580+0 7.835900+8 1.374190+0 8.000000+8 1.349500+0 8.250000+8 1.307700+0 8.468800+8 1.268480+0 1.000000+9 1.016300+0 1.031300+9 9.793540-1 1.089800+9 9.223600-1 1.320600+9 7.643860-1 1.375000+9 7.315940-1 1.384600+9 7.258180-1 1.442300+9 6.907200-1 1.500000+9 6.549700-1 1.562500+9 6.154910-1 1.617200+9 5.811750-1 1.665000+9 5.518020-1 1.748800+9 5.025310-1 1.811600+9 4.679300-1 1.905800+9 4.201800-1 2.000000+9 3.775900-1 2.139200+9 3.234750-1 2.272600+9 2.800430-1 2.443000+9 2.342880-1 2.602800+9 1.993510-1 2.825100+9 1.606810-1 2.961100+9 1.415220-1 3.215900+9 1.126260-1 3.536500+9 8.590200-2 3.804800+9 6.937020-2 4.103600+9 5.536700-2 4.423800+9 4.406640-2 4.807900+9 3.406930-2 5.000000+9 3.014400-2 5.375000+9 2.399100-2 6.031300+9 1.659480-2 7.015600+9 1.016480-2 8.000000+9 6.619200-3 1.00000+10 3.193000-3 1.13510+10 2.116700-3 1.41440+10 1.043390-3 1.70770+10 5.726880-4 2.01080+10 3.418410-4 2.51010+10 1.706990-4 2.97820+10 1.003580-4 3.85600+10 4.529160-5 4.62400+10 2.599670-5 5.96800+10 1.198500-5 7.98400+10 4.989370-6 1.00000+11 2.543800-6 1.34280+11 1.058350-6 1.77440+11 4.640650-7 2.63330+11 1.454320-7 4.88110+11 2.409120-8 1.16740+12 1.955440-9 3.55150+12 8.25308-11 1.00000+14 6.98310-15 2.05350+15 1.36544-18 1.00000+17 2.13530-23 1 54000 7 0 1.313000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 5.20000-12 1.000000+2 5.20000-10 1.000000+3 5.200000-8 1.000000+4 5.200000-6 1.000000+5 5.200000-4 5.000000+5 1.300000-2 8.750000+5 3.981250-2 1.000000+6 5.200000-2 1.500000+6 1.162000-1 2.000000+6 2.053000-1 2.500000+6 3.183000-1 3.000000+6 4.539000-1 3.750000+6 6.966860-1 4.000000+6 7.875000-1 4.750000+6 1.086260+0 5.000000+6 1.194000+0 5.500000+6 1.419990+0 6.250000+6 1.782350+0 6.500000+6 1.908540+0 7.000000+6 2.167900+0 7.875000+6 2.639510+0 8.500000+6 2.987140+0 8.625000+6 3.057250+0 9.000000+6 3.269500+0 1.000000+7 3.841000+0 1.109400+7 4.469600+0 1.187500+7 4.917860+0 1.203100+7 5.006690+0 1.250000+7 5.274700+0 1.375000+7 5.981330+0 1.437500+7 6.330280+0 1.500000+7 6.677000+0 1.687500+7 7.697420+0 1.750000+7 8.032500+0 1.937500+7 9.017720+0 2.000000+7 9.340000+0 2.250000+7 1.058970+1 2.375000+7 1.118920+1 2.500000+7 1.177100+1 2.750000+7 1.287240+1 2.875000+7 1.339140+1 3.000000+7 1.389200+1 3.250000+7 1.483120+1 3.500000+7 1.570450+1 3.625000+7 1.612060+1 4.000000+7 1.730700+1 4.500000+7 1.877850+1 5.000000+7 2.017500+1 5.500000+7 2.152340+1 6.000000+7 2.283300+1 7.000000+7 2.532400+1 8.000000+7 2.761900+1 9.000000+7 2.968000+1 1.000000+8 3.148800+1 1.125000+8 3.340530+1 1.218800+8 3.464240+1 1.250000+8 3.502300+1 1.312500+8 3.573740+1 1.406300+8 3.672470+1 1.437500+8 3.703530+1 1.500000+8 3.762800+1 1.562500+8 3.818830+1 1.671900+8 3.911270+1 1.750000+8 3.972700+1 1.753900+8 3.975630+1 1.877000+8 4.065100+1 2.000000+8 4.147700+1 2.218800+8 4.278470+1 2.289100+8 4.316320+1 2.375000+8 4.361110+1 2.394500+8 4.370760+1 2.473600+8 4.409330+1 2.500000+8 4.422000+1 3.000000+8 4.625400+1 3.125000+8 4.668270+1 3.453100+8 4.768400+1 3.500000+8 4.781700+1 4.000000+8 4.903000+1 4.125000+8 4.928250+1 4.234400+8 4.949830+1 4.425800+8 4.983950+1 4.677000+8 5.023440+1 4.750000+8 5.033840+1 5.000000+8 5.067300+1 5.500000+8 5.120620+1 6.000000+8 5.162000+1 6.437500+8 5.190400+1 6.683600+8 5.203500+1 6.894500+8 5.214380+1 7.000000+8 5.219700+1 7.125000+8 5.225150+1 7.343800+8 5.234480+1 7.835900+8 5.253270+1 8.000000+8 5.259100+1 8.250000+8 5.266860+1 8.468800+8 5.273480+1 1.000000+9 5.312300+1 1.031300+9 5.318270+1 1.089800+9 5.328970+1 1.320600+9 5.359990+1 1.375000+9 5.365370+1 1.384600+9 5.366150+1 1.442300+9 5.370710+1 1.500000+9 5.375100+1 1.562500+9 5.378590+1 1.617200+9 5.381540+1 1.665000+9 5.383470+1 1.748800+9 5.386540+1 1.811600+9 5.388740+1 1.905800+9 5.390980+1 2.000000+9 5.393100+1 2.139200+9 5.395040+1 2.272600+9 5.396780+1 2.443000+9 5.398380+1 2.602800+9 5.399140+1 2.825100+9 5.400110+1 2.961100+9 5.400670+1 3.215900+9 5.400820+1 3.536500+9 5.400620+1 3.804800+9 5.400470+1 4.103600+9 5.400310+1 4.423800+9 5.400160+1 4.807900+9 5.399980+1 5.000000+9 5.399900+1 5.375000+9 5.399920+1 6.031300+9 5.399940+1 7.015600+9 5.399970+1 8.000000+9 5.400000+1 1.00000+10 5.400000+1 1.13510+10 5.400000+1 1.41440+10 5.400000+1 1.70770+10 5.400000+1 2.01080+10 5.400000+1 2.51010+10 5.400000+1 2.97820+10 5.400000+1 3.85600+10 5.400000+1 4.62400+10 5.400000+1 5.96800+10 5.400000+1 7.98400+10 5.400000+1 1.00000+11 5.400000+1 1.34280+11 5.400000+1 1.77440+11 5.400000+1 2.63330+11 5.400000+1 4.88110+11 5.400000+1 1.16740+12 5.400000+1 3.55150+12 5.400000+1 1.00000+14 5.400000+1 2.05350+15 5.400000+1 1.00000+17 5.400000+1 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.051489-6 0.0 7.513095-6 0.0 7.545457-6 3.725076+0 7.550080-6 4.251800+0 7.568572-6 7.766260+0 7.587065-6 1.309498+1 7.607869-6 2.149279+1 7.639942-6 3.749576+1 7.663622-6 4.842169+1 7.681225-6 5.396321+1 7.700497-6 5.580168+1 7.718649-6 5.331805+1 7.738802-6 4.625188+1 7.769999-6 3.088445+1 7.790483-6 2.087781+1 7.810131-6 1.313837+1 7.827468-6 8.031917+0 7.845960-6 4.418424+0 7.872543-6 1.263393+0 7.882945-6 0.0 8.489258-6 0.0 8.510153-6 4.173654-6 8.531048-6 8.258510-6 8.543005-6 1.216059-5 8.551943-6 1.653494-5 8.572839-6 3.024944-5 8.585060-6 4.046496-5 8.593734-6 4.865056-5 8.606087-6 6.215026-5 8.627115-6 8.878276-5 8.656420-6 1.303400-4 8.677315-6 1.568361-4 8.698210-6 1.759471-4 8.719105-6 1.841948-4 8.740000-6 1.800783-4 8.760896-6 1.645048-4 8.781791-6 1.404646-4 8.823581-6 8.362189-5 8.844477-6 5.826082-5 8.858418-6 4.411331-5 8.865372-6 3.788923-5 8.879445-6 2.716669-5 8.891780-6 1.956356-5 8.935552-6 1.625999+0 8.957438-6 2.970012+0 8.979324-6 5.007847+0 9.001210-6 7.794673+0 9.034039-6 1.302472+1 9.066868-6 1.818702+1 9.088754-6 2.055531+1 9.113012-6 2.137407+1 9.129616-6 2.087151+1 9.159883-6 2.427277+1 9.176298-6 2.553862+1 9.198184-6 2.997574+1 9.220070-6 3.856055+1 9.244782-6 5.423211+1 9.281161-6 8.487110+1 9.310792-6 1.107358+2 9.333921-6 1.240634+2 9.357471-6 1.289272+2 9.380586-6 1.237086+2 9.403490-6 1.100833+2 9.466687-6 5.717750+1 9.491967-6 3.992546+1 9.511630-6 2.933381+1 9.534101-6 2.054188+1 9.566404-6 1.129208+1 9.579044-6 7.489229+0 9.618570-6 4.243946+0 9.641402-6 2.739744+0 9.664233-6 1.632691+0 9.687065-6 8.981568-1 9.721313-6 2.283151-1 9.732729-6 0.0 9.805744-6 0.0 9.808965-6 3.354698-2 9.857252-6 4.873390+0 9.881395-6 8.884738+0 9.905539-6 1.506647+1 9.935802-6 2.616020+1 9.998586-6 5.348256+1 1.000754-5 5.702637+1 1.003442-5 6.408154+1 1.005380-5 6.601235+1 1.007824-5 6.351196+1 1.010828-5 5.452437+1 1.017263-5 2.913970+1 1.019591-5 2.235512+1 1.021605-5 1.887376+1 1.022485-5 1.799930+1 1.024521-5 1.755936+1 1.026592-5 1.914977+1 1.029282-5 2.205014+1 1.033585-5 3.174511+1 1.036442-5 3.616265+1 1.038847-5 3.807875+1 1.042157-5 3.807673+1 1.050332-5 3.383847+1 1.054016-5 3.625985+1 1.056156-5 3.859737+1 1.058907-5 4.348709+1 1.063094-5 5.404635+1 1.071841-5 8.453908+1 1.074912-5 9.004920+1 1.077154-5 9.066695+1 1.080067-5 8.604987+1 1.083730-5 7.470184+1 1.092439-5 4.189321+1 1.094900-5 3.475870+1 1.098180-5 2.729169+1 1.102156-5 1.969396+1 1.104482-5 1.762928+1 1.108071-5 1.528289+1 1.111643-5 1.387775+1 1.116789-5 1.292142+1 1.118751-5 1.287329+1 1.123947-5 1.494442+1 1.127132-5 1.723072+1 1.130093-5 2.053394+1 1.133309-5 2.538659+1 1.140968-5 3.872377+1 1.144041-5 4.201396+1 1.146795-5 4.283098+1 1.149398-5 4.160045+1 1.153023-5 3.731327+1 1.159471-5 2.787887+1 1.162487-5 2.498828+1 1.165606-5 2.397667+1 1.168528-5 2.453427+1 1.175786-5 2.894372+1 1.179481-5 3.092401+1 1.183756-5 3.142702+1 1.195661-5 3.012446+1 1.217579-5 2.975434+1 1.223036-5 2.904379+1 1.230987-5 2.676298+1 1.243820-5 2.140896+1 1.251172-5 1.935762+1 1.260230-5 1.832944+1 1.594736-5 1.117395+1 1.717908-5 9.037952+0 1.846327-5 7.311071+0 2.003720-5 5.737397+0 2.092027-5 5.049730+0 2.112624-5 5.059882+0 2.138371-5 5.360052+0 2.153819-5 5.192650+0 2.179565-5 4.572631+0 2.195013-5 4.389539+0 2.259196-5 4.194229+0 2.335712-5 3.754022+0 2.415259-5 3.362220+0 2.577486-5 2.798529+0 2.772785-5 2.290112+0 2.992055-5 1.873189+0 3.253794-5 1.516547+0 3.507519-5 1.267049+0 3.826595-5 1.042561+0 4.150000-5 8.815352-1 4.574827-5 7.351198-1 4.949728-5 6.459007-1 5.433739-5 5.659930-1 6.155579-5 4.933121-1 6.393502-5 4.773966-1 6.424976-5 6.998777-1 6.440712-5 8.844291-1 6.456543-5 1.167052+0 6.472186-5 1.548637+0 6.520310-5 3.046714+0 6.536410-5 3.408181+0 6.553723-5 3.592053+0 6.571793-5 3.544816+0 6.621205-5 2.996037+0 6.636687-5 2.934781+0 6.656667-5 3.046871+0 6.686509-5 3.457544+0 6.730378-5 4.169716+0 6.753274-5 4.251904+0 6.773478-5 4.111745+0 6.819116-5 3.439911+0 6.845740-5 3.141692+0 6.865814-5 3.052435+0 6.967250-5 3.093827+0 7.035622-5 3.085032+0 7.083911-5 3.345894+0 7.126976-5 3.767300+0 7.180000-5 4.498660+0 7.227160-5 5.356792+0 7.286065-5 6.776419+0 7.353133-5 8.919920+0 7.452479-5 1.294144+1 7.569289-5 1.874393+1 7.730000-5 2.705799+1 7.876465-5 3.320492+1 8.045139-5 3.763380+1 8.192000-5 3.920897+1 8.428116-5 3.773716+1 8.845359-5 3.092970+1 9.364507-5 2.108890+1 9.682116-5 1.640282+1 9.981470-5 1.314227+1 1.030920-4 1.041794+1 1.067923-4 8.081143+0 1.104010-4 6.360718+0 1.141782-4 4.997526+0 1.181023-4 3.941555+0 1.223212-4 3.101362+0 1.263463-4 2.512354+0 1.302440-4 2.091129+0 1.346272-4 1.750164+0 1.388562-4 1.524105+0 1.412503-4 1.431962+0 1.419456-4 1.557655+0 1.422933-4 1.669648+0 1.426485-4 1.850555+0 1.430129-4 2.110386+0 1.440731-4 3.133395+0 1.444233-4 3.405634+0 1.447772-4 3.573365+0 1.451318-4 3.620963+0 1.455642-4 3.540111+0 1.482583-4 2.487232+0 1.493900-4 2.188138+0 1.500678-4 2.075445+0 1.512594-4 2.024421+0 1.537516-4 2.029798+0 1.549175-4 2.144711+0 1.556558-4 2.320285+0 1.572591-4 2.873755+0 1.579990-4 2.971395+0 1.591501-4 2.871699+0 1.613545-4 2.567852+0 1.631698-4 2.462161+0 1.751908-4 2.734466+0 2.014748-4 3.502689+0 2.034252-4 3.682702+0 2.065380-4 4.351165+0 2.079842-4 4.423326+0 2.113175-4 4.231470+0 2.438239-4 5.220993+0 2.803366-4 5.978017+0 3.233609-4 6.526797+0 3.731301-4 6.814255+0 4.508720-4 6.816727+0 6.302489-4 6.051470+0 6.621795-4 5.955190+0 6.656273-4 6.242555+0 6.681362-4 6.872366+0 6.700385-4 7.773176+0 6.718851-4 9.116419+0 6.737256-4 1.094844+1 6.768351-4 1.497064+1 6.842889-4 2.528827+1 6.938251-4 3.669319+1 6.992809-4 4.078782+1 7.070127-4 4.264617+1 7.188590-4 4.231990+1 7.456524-4 3.617498+1 7.697652-4 3.360293+1 8.155126-4 3.074235+1 9.074047-4 2.703245+1 9.188485-4 2.783813+1 9.318696-4 2.967491+1 9.774610-4 2.878468+1 1.001768-3 2.925715+1 1.106541-3 2.646502+1 1.133564-3 2.669766+1 1.368516-3 2.141693+1 1.610784-3 1.740071+1 1.861377-3 1.432999+1 2.190680-3 1.142230+1 2.495426-3 9.473258+0 2.866645-3 7.727132+0 3.287570-3 6.290811+0 3.723381-3 5.198602+0 4.271965-3 4.200326+0 4.658497-3 3.675174+0 4.691462-3 3.785693+0 4.708914-3 4.026962+0 4.725146-3 4.472897+0 4.741870-3 5.209812+0 4.769112-3 6.910789+0 4.800529-3 8.851316+0 4.823902-3 9.753630+0 4.847439-3 1.015841+1 4.925000-3 1.015268+1 5.027431-3 9.993537+0 5.066343-3 1.047757+1 5.145364-3 1.245097+1 5.193996-3 1.273151+1 5.354129-3 1.238789+1 5.460443-3 1.336942+1 5.592008-3 1.314311+1 6.466651-3 1.051415+1 7.413103-3 8.451484+0 8.484413-3 6.794563+0 9.758319-3 5.398680+0 1.111271-2 4.342085+0 1.260441-2 3.505653+0 1.402410-2 2.916667+0 1.567995-2 2.402897+0 1.756081-2 1.970613+0 1.980066-2 1.594236+0 2.222789-2 1.297827+0 2.508893-2 1.044048+0 2.788779-2 8.623519-1 3.138058-2 6.964608-1 3.368552-2 6.148988-1 3.387307-2 6.321204-1 3.398127-2 6.716578-1 3.406855-2 7.366463-1 3.415556-2 8.453122-1 3.425213-2 1.031815+0 3.433656-2 1.256080+0 3.448114-2 1.754093+0 3.471180-2 2.609077+0 3.486357-2 3.020306+0 3.502238-2 3.258323+0 3.523464-2 3.360426+0 4.168694-2 2.584384+0 4.774265-2 2.065986+0 5.402488-2 1.673517+0 6.095369-2 1.357822+0 6.920094-2 1.086620+0 7.856494-2 8.664515-1 8.939970-2 6.859828-1 9.973285-2 5.622313-1 1.123533-1 4.515928-1 1.237243-1 3.777563-1 1.380338-1 3.086229-1 1.538215-1 2.526435-1 1.693363-1 2.114928-1 1.878762-1 1.744671-1 2.084791-1 1.440610-1 2.294884-1 1.209894-1 2.537318-1 1.008515-1 2.833777-1 8.288830-2 3.168874-1 6.824854-2 3.525231-1 5.691765-2 3.925602-1 4.762036-2 4.373018-1 4.004482-2 4.897788-1 3.361062-2 5.499364-1 2.834216-2 6.183723-1 2.404283-2 7.001388-1 2.040983-2 8.058422-1 1.716780-2 9.120109-1 1.490702-2 1.070165+0 1.259233-2 1.286622+0 1.029863-2 1.546860+0 8.422728-3 1.859734+0 6.888524-3 2.235892+0 5.633776-3 2.688134+0 4.607581-3 3.231848+0 3.768307-3 3.885536+0 3.081908-3 4.671441+0 2.520537-3 5.616308+0 2.061420-3 6.752287+0 1.685931-3 8.118035+0 1.378838-3 9.760024+0 1.127682-3 1.000000+1 2.300771-3 1 54000 7 0 1.313000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.395198+1 3.051489-6-5.349167+1 5.827674-6-5.094218+1 6.830275-6-4.746473+1 7.200000-6-4.388191+1 7.371838-6-3.993563+1 7.457624-6-3.572703+1 7.497737-6-3.198582+1 7.514250-6-2.908026+1 7.550080-6-2.303701+1 7.570884-6-1.897410+1 7.593422-6-1.536018+1 7.607869-6-1.414114+1 7.617982-6-1.423309+1 7.628673-6-1.514353+1 7.639942-6-1.737249+1 7.653233-6-2.168032+1 7.661035-6-2.516313+1 7.678011-6-3.423061+1 7.699429-6-4.848834+1 7.711924-6-5.635191+1 7.723213-6-4.912704+1 7.740639-6-4.031400+1 7.757832-6-3.456626+1 7.771990-6-3.214754+1 7.788532-6-3.155581+1 7.808975-6-3.363396+1 7.899905-6-4.994159+1 7.965318-6-5.553722+1 7.991303-6-5.630767+1 8.178031-6-5.033054+1 8.606087-6-4.048056+1 8.760896-6-3.489988+1 8.844477-6-3.023708+1 8.891780-6-2.611065+1 8.935552-6-2.125616+1 8.984796-6-1.497801+1 9.006682-6-1.255778+1 9.023096-6-1.120644+1 9.034039-6-1.053629+1 9.055925-6-9.936993+0 9.066868-6-9.976725+0 9.094226-6-1.050040+1 9.113012-6-1.033223+1 9.117163-6-1.010419+1 9.123390-6-9.467212+0 9.128059-6-8.698198+0 9.132716-6-7.562788+0 9.138140-6-6.645873+0 9.146276-6-5.461921+0 9.159883-6-3.671455+0 9.168091-6-2.189846+0 9.172194-6-1.270418+0 9.174246-6-7.365122-1 9.176298-6-7.651732-2 9.179034-6 7.943190-1 9.188609-6 3.365306+0 9.193396-6 4.744292+0 9.195790-6 5.524830+0 9.198184-6 6.503006+0 9.220070-6 1.353643+1 9.222808-6 1.458480+1 9.227599-6 1.584222+1 9.244782-6 1.943831+1 9.253384-6 2.002113+1 9.267253-6 1.925791+1 9.277128-6 1.716646+1 9.284689-6 1.466086+1 9.290864-6 1.203367+1 9.295495-6 9.690963+0 9.298968-6 7.698418+0 9.301573-6 6.051990+0 9.305480-6 3.279751+0 9.307434-6 1.705088+0 9.308410-6 8.393835-1 9.309387-6-1.603554-1 9.310792-6-1.573013+0 9.323959-6-1.316769+1 9.330377-6-1.967621+1 9.333921-6-2.410328+1 9.352211-6-4.409083+1 9.360874-6-5.519097+1 9.363678-6-5.828146+1 9.374725-6-4.713299+1 9.380586-6-3.986916+1 9.401119-6-2.004832+1 9.407798-6-1.474576+1 9.415127-6-1.004564+1 9.418119-6-8.366675+0 9.423356-6-5.714768+0 9.427284-6-3.945746+0 9.433175-6-1.619072+0 9.439067-6 3.439035-1 9.442519-6 1.325191+0 9.448561-6 2.713917+0 9.453093-6 3.484099+0 9.456491-6 3.900152+0 9.461589-6 4.229189+0 9.464138-6 4.226440+0 9.477923-6 3.059939+0 9.483540-6 2.391424+0 9.486349-6 1.909614+0 9.489158-6 1.186811+0 9.491967-6 4.233312-1 9.501799-6-1.636569+0 9.506714-6-2.772987+0 9.509172-6-3.430879+0 9.511630-6-4.261148+0 9.534101-6-1.065848+1 9.541826-6-1.294451+1 9.566404-6-1.915010+1 9.577464-6-2.281671+1 9.582672-6-2.519814+1 9.597957-6-2.977589+1 9.647109-6-4.089576+1 9.750165-6-5.975587+1 9.805744-6-4.939224+1 9.845180-6-4.062842+1 9.910511-6-2.584946+1 9.935802-6-2.250437+1 9.948639-6-2.201701+1 9.963702-6-2.277448+1 9.974693-6-2.422434+1 9.992804-6-2.798996+1 1.000602-5-3.232103+1 1.002949-5-4.215189+1 1.006052-5-5.852928+1 1.006753-5-5.999496+1 1.008517-5-5.135216+1 1.011025-5-4.275620+1 1.012979-5-3.919334+1 1.014992-5-3.795758+1 1.016944-5-3.924521+1 1.019526-5-4.451430+1 1.025771-5-6.188808+1 1.030517-5-5.307007+1 1.033350-5-5.218343+1 1.037871-5-5.621368+1 1.043456-5-6.167309+1 1.048000-5-6.176370+1 1.059361-5-4.975267+1 1.063608-5-4.833814+1 1.066460-5-5.117721+1 1.069333-5-5.758460+1 1.071453-5-6.562550+1 1.071601-5-6.644697+1 1.074472-5-5.343244+1 1.080067-5-2.473982+1 1.080766-5-2.183417+1 1.083159-5-1.297445+1 1.083730-5-1.120356+1 1.084768-5-8.595144+0 1.085709-5-6.703700+0 1.086533-5-5.351733+0 1.087254-5-4.376813+0 1.087885-5-3.672982+0 1.088989-5-2.764040+0 1.089816-5-2.348839+0 1.090437-5-2.193815+0 1.091369-5-2.245919+0 1.091834-5-2.423261+0 1.094250-5-4.447046+0 1.096775-5-7.314068+0 1.100166-5-1.180805+1 1.101622-5-1.423340+1 1.102447-5-1.606433+1 1.106010-5-2.183646+1 1.112895-5-3.137791+1 1.123947-5-4.558950+1 1.131160-5-5.343104+1 1.135611-5-5.515863+1 1.139853-5-5.292150+1 1.144041-5-4.627076+1 1.150000-5-3.530734+1 1.153023-5-3.157602+1 1.156375-5-3.003065+1 1.159035-5-3.046988+1 1.162487-5-3.323833+1 1.169204-5-3.959853+1 1.175061-5-4.147317+1 1.182254-5-3.878600+1 1.188731-5-3.658781+1 1.211345-5-3.354818+1 1.232894-5-2.782348+1 1.240280-5-2.733537+1 1.252629-5-2.952763+1 1.269129-5-3.223903+1 1.299519-5-3.372494+1 1.415168-5-3.424682+1 1.763228-5-3.451013+1 2.138371-5-3.625339+1 2.184714-5-3.602888+1 3.253794-5-3.950173+1 5.433739-5-4.468455+1 6.215979-5-4.869794+1 6.440712-5-5.182951+1 6.529707-5-5.248885+1 6.621205-5-5.171730+1 6.730378-5-5.256118+1 6.825015-5-5.218814+1 7.107417-5-5.762247+1 7.452479-5-6.600712+1 7.632703-5-6.649104+1 7.859768-5-6.059333+1 8.326191-5-4.034949+1 8.511248-5-3.401010+1 8.794478-5-2.719596+1 9.044245-5-2.347907+1 9.209550-5-2.190320+1 9.439559-5-2.107302+1 9.902980-5-2.140120+1 1.290000-4-2.937946+1 1.412503-4-3.245295+1 1.438478-4-3.350386+1 1.467875-4-3.185665+1 1.572591-4-3.355996+1 1.625200-4-3.330437+1 2.069387-4-3.554913+1 3.936917-4-3.426778+1 4.937862-4-3.529257+1 5.599610-4-3.766411+1 6.062452-4-4.115338+1 6.352914-4-4.532153+1 6.550122-4-5.074515+1 6.650543-4-5.639226+1 6.768351-4-6.715199+1 6.830365-4-6.792028+1 6.917165-4-6.445079+1 7.082987-4-4.877833+1 7.207660-4-4.028259+1 7.301742-4-3.579860+1 7.410726-4-3.308878+1 7.843511-4-2.839747+1 8.398932-4-2.504219+1 8.831596-4-2.348122+1 9.074047-4-2.397103+1 9.220976-4-2.489392+1 9.454420-4-2.206022+1 9.712647-4-2.068179+1 9.949738-4-1.996215+1 1.021250-3-1.803289+1 1.069651-3-1.594511+1 1.106541-3-1.514363+1 1.125694-3-1.484474+1 1.155529-3-1.339727+1 1.230269-3-1.127530+1 1.335554-3-9.309052+0 1.437143-3-7.997825+0 1.562565-3-6.858127+0 1.722860-3-5.940995+0 1.928731-3-5.266149+0 2.190680-3-4.883210+0 2.495426-3-4.811430+0 2.866645-3-5.020330+0 3.287570-3-5.525479+0 3.723381-3-6.336383+0 4.091049-3-7.388950+0 4.346835-3-8.551889+0 4.518041-3-9.821999+0 4.613738-3-1.099376+1 4.673451-3-1.225168+1 4.736222-3-1.468075+1 4.769112-3-1.556826+1 4.800529-3-1.519765+1 4.868374-3-1.278655+1 4.925000-3-1.175051+1 4.991790-3-1.138283+1 5.094644-3-1.205595+1 5.131039-3-1.161122+1 5.213955-3-9.756957+0 5.284013-3-8.938936+0 5.354129-3-8.699529+0 5.410431-3-8.591278+0 5.460443-3-7.981691+0 5.534502-3-6.851463+0 5.636194-3-5.861626+0 5.790994-3-4.836431+0 5.973791-3-3.945156+0 6.099722-3-3.455090+0 6.294911-3-2.839164+0 6.557176-3-2.203062+0 6.805979-3-1.743422+0 6.978109-3-1.479889+0 7.156444-3-1.254621+0 7.413103-3-9.848784-1 7.645566-3-7.883629-1 7.966475-3-5.743724-1 8.246868-3-4.292337-1 8.484413-3-3.289678-1 8.789187-3-2.247406-1 8.983332-3-1.714872-1 9.166162-3-1.307047-1 9.332543-3-9.653322-2 9.549926-3-5.940977-2 9.643496-3-4.595202-2 9.758319-3-3.142316-2 9.911700-3-1.531588-2 9.944390-3-1.238447-2 1.004123-2-4.526853-3 1.008955-2-5.041656-4 1.014495-2 4.196390-3 1.018839-2 7.401686-3 1.021917-2 9.295117-3 1.040369-2 1.920043-2 1.044952-2 2.131975-2 1.055919-2 2.498515-2 1.067743-2 2.819837-2 1.090837-2 3.111235-2 1.138127-2 3.163236-2 1.142385-2 3.118682-2 1.170558-2 2.365352-2 1.186206-2 1.775999-2 1.206332-2 9.567634-3 1.234237-2-3.399011-3 1.239463-2-5.760221-3 1.244515-2-8.317064-3 1.273503-2-2.418515-2 1.315054-2-5.033471-2 1.358643-2-8.048988-2 1.498554-2-1.901252-1 2.408025-2-9.641148-1 2.705298-2-1.257063+0 2.930675-2-1.545169+0 3.099180-2-1.850327+0 3.201139-2-2.118878+0 3.284989-2-2.448597+0 3.342694-2-2.808531+0 3.375733-2-3.145821+0 3.403792-2-3.623662+0 3.440090-2-4.384274+0 3.453891-2-4.484929+0 3.471180-2-4.336731+0 3.523464-2-3.167223+0 3.552782-2-2.734638+0 3.591641-2-2.365586+0 3.640000-2-2.047304+0 3.711358-2-1.712200+0 3.801722-2-1.406211+0 3.913615-2-1.130136+0 4.048553-2-8.906149-1 4.168694-2-7.315424-1 4.319074-2-5.757671-1 4.467020-2-4.571674-1 4.648912-2-3.415262-1 4.774265-2-2.783390-1 4.912623-2-2.208682-1 5.011872-2-1.870709-1 5.127720-2-1.519186-1 5.262694-2-1.169416-1 5.402488-2-8.718291-2 5.528836-2-6.540095-2 5.642787-2-4.924860-2 5.790189-2-3.128192-2 5.949263-2-1.560164-2 6.082410-2-5.378263-3 6.165950-2-1.021454-4 6.213608-2 2.930065-3 6.228377-2 3.888311-3 6.362739-2 1.051743-2 6.545568-2 1.842337-2 6.678362-2 2.196539-2 6.845087-2 2.509090-2 6.995510-2 2.624783-2 7.188636-2 2.703294-2 7.498713-2 2.475782-2 7.710109-2 2.237788-2 8.252062-2 1.258782-2 8.451458-2 7.645313-3 8.595091-2 4.395546-3 8.755111-2 1.752779-4 8.781396-2-5.087134-4 8.797194-2-9.123525-4 9.065066-2-8.478675-3 9.210540-2-1.245222-2 1.028392-1-4.350566-2 1.197085-1-8.959823-2 1.380338-1-1.324702-1 1.584893-1-1.706995-1 1.878762-1-2.123500-1 2.294884-1-2.529446-1 2.944316-1-2.915338-1 3.925602-1-3.223007-1 5.726585-1-3.463890-1 1.003994+0-3.623518-1 3.121256+0-3.692215-1 9.760024+0-3.700677-1 1.000000+1-3.698873-1 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 7.981547+0 1.016251-6 9.346316+0 1.030376-6 1.076983+1 1.043618-6 1.235346+1 1.056033-6 1.410930+1 1.067672-6 1.604955+1 1.078583-6 1.818658+1 1.088812-6 2.053286+1 1.098402-6 2.310091+1 1.107393-6 2.590328+1 1.115822-6 2.895240+1 1.123724-6 3.226056+1 1.131132-6 3.583979+1 1.138077-6 3.970184+1 1.144588-6 4.385804+1 1.150692-6 4.831928+1 1.156415-6 5.309598+1 1.161780-6 5.819797+1 1.166809-6 6.363455+1 1.171525-6 6.941444+1 1.175945-6 7.554592+1 1.180089-6 8.203698+1 1.183975-6 8.889552+1 1.187617-6 9.612937+1 1.191032-6 1.037461+2 1.194233-6 1.117527+2 1.197234-6 1.201559+2 1.200048-6 1.289629+2 1.202686-6 1.381821+2 1.205159-6 1.478250+2 1.209796-6 1.691915+2 1.213853-6 1.926267+2 1.217403-6 2.183379+2 1.220509-6 2.464493+2 1.223227-6 2.768950+2 1.225606-6 3.093687+2 1.227687-6 3.433501+2 1.229507-6 3.781822+2 1.231101-6 4.131655+2 1.232495-6 4.476387+2 1.233715-6 4.810334+2 1.235849-6 5.473790+2 1.242636-6 8.331363+2 1.245311-6 9.774234+2 1.247604-6 1.112944+3 1.248369-6 1.160017+3 1.251426-6 1.353765+3 1.251809-6 1.378216+3 1.254484-6 1.546790+3 1.255535-6 1.610317+3 1.257542-6 1.723979+3 1.258593-6 1.778216+3 1.259596-6 1.825762+3 1.260599-6 1.868598+3 1.261937-6 1.917445+3 1.263227-6 1.954594+3 1.264421-6 1.979475+3 1.265855-6 1.996418+3 1.267097-6 1.999188+3 1.268435-6 1.989494+3 1.269772-6 1.966625+3 1.270322-6 1.953468+3 1.271576-6 1.915459+3 1.272926-6 1.862721+3 1.273894-6 1.817827+3 1.275140-6 1.752276+3 1.276554-6 1.668561+3 1.277035-6 1.638169+3 1.279178-6 1.493375+3 1.280444-6 1.403065+3 1.282003-6 1.289910+3 1.283620-6 1.173635+3 1.285825-6 1.023514+3 1.288118-6 8.865239+2 1.289647-6 8.107802+2 1.290531-6 7.739416+2 1.291457-6 7.414816+2 1.292845-6 7.056788+2 1.293648-6 6.926140+2 1.294375-6 6.859292+2 1.294809-6 6.843723+2 1.296127-6 6.912841+2 1.296743-6 7.007566+2 1.297339-6 7.138630+2 1.300349-6 8.425680+2 1.301065-6 8.893432+2 1.301870-6 9.495732+2 1.303082-6 1.055989+3 1.304497-6 1.204411+3 1.308652-6 1.793883+3 1.310256-6 2.081813+3 1.313666-6 2.795669+3 1.314042-6 2.882060+3 1.316875-6 3.572375+3 1.317909-6 3.838343+3 1.319884-6 4.358678+3 1.321514-6 4.793138+3 1.322303-6 5.002812+3 1.323494-6 5.315225+3 1.324723-6 5.629659+3 1.326302-6 6.016371+3 1.327706-6 6.337752+3 1.329258-6 6.661804+3 1.329712-6 6.749626+3 1.331593-6 7.074168+3 1.333061-6 7.279601+3 1.334742-6 7.457877+3 1.336198-6 7.560141+3 1.337160-6 7.600369+3 1.338644-6 7.619215+3 1.340117-6 7.586428+3 1.342549-6 7.424160+3 1.344077-6 7.258041+3 1.345558-6 7.054540+3 1.347187-6 6.787911+3 1.348767-6 6.493237+3 1.350171-6 6.206916+3 1.351525-6 5.913884+3 1.353581-6 5.447054+3 1.355185-6 5.072740+3 1.356991-6 4.650052+3 1.358395-6 4.325238+3 1.361604-6 3.614411+3 1.362707-6 3.384479+3 1.364813-6 2.970984+3 1.367621-6 2.477337+3 1.371580-6 1.899353+3 1.376406-6 1.371993+3 1.378762-6 1.176027+3 1.381091-6 1.015626+3 1.383384-6 8.852997+2 1.385640-6 7.794220+2 1.387862-6 6.931768+2 1.390049-6 6.225583+2 1.392201-6 5.643098+2 1.394320-6 5.158314+2 1.396406-6 4.750769+2 1.398459-6 4.404520+2 1.402502-6 3.845523+2 1.406418-6 3.418201+2 1.410211-6 3.080510+2 1.413886-6 2.806566+2 1.417447-6 2.579758+2 1.420896-6 2.388930+2 1.424237-6 2.226260+2 1.427474-6 2.086066+2 1.433745-6 1.853854+2 1.439624-6 1.673473+2 1.445136-6 1.529856+2 1.450304-6 1.413250+2 1.455148-6 1.317036+2 1.459690-6 1.236549+2 1.468205-6 1.106425+2 1.475657-6 1.010539+2 1.482176-6 9.376960+1 1.487881-6 8.810409+1 1.497865-6 7.950242+1 1.505352-6 7.395443+1 1.516583-6 6.678616+1 1.531575-6 5.890719+1 1.542857-6 5.398192+1 1.554138-6 4.974435+1 1.569181-6 4.494453+1 1.583953-6 4.097819+1 1.599548-6 3.742421+1 1.619041-6 3.370008+1 1.638535-6 3.060083+1 1.658028-6 2.800074+1 1.687373-6 2.478387+1 1.711229-6 2.262077+1 1.733593-6 2.089365+1 1.754560-6 1.948992+1 1.774216-6 1.833761+1 1.811072-6 1.649056+1 1.843321-6 1.513536+1 1.871539-6 1.411605+1 1.896229-6 1.333308+1 1.939438-6 1.214317+1 1.971844-6 1.137354+1 2.020453-6 1.037754+1 2.109805-6 8.879220+0 2.170917-6 8.038821+0 2.313907-6 6.280890+0 2.349654-6 5.809338+0 2.376465-6 5.409607+0 2.396573-6 5.059430+0 2.411654-6 4.747382+0 2.422965-6 4.468978+0 2.431448-6 4.225454+0 2.437810-6 4.019587+0 2.442582-6 3.851685+0 2.449739-6 3.580907+0 2.456897-6 3.297887+0 2.465968-6 2.959991+0 2.468991-6 2.865095+0 2.473527-6 2.753283+0 2.475039-6 2.726564+0 2.477909-6 2.693894+0 2.479421-6 2.687497+0 2.481086-6 2.690173+0 2.482598-6 2.702205+0 2.487133-6 2.800383+0 2.490085-6 2.920872+0 2.491831-6 3.015521+0 2.497170-6 3.422288+0 2.499267-6 3.633359+0 2.503653-6 4.171950+0 2.508050-6 4.843632+0 2.515474-6 6.252401+0 2.519356-6 7.101339+0 2.522943-6 7.933193+0 2.524986-6 8.420136+0 2.527226-6 8.959102+0 2.529465-6 9.498623+0 2.533239-6 1.039448+1 2.533779-6 1.051984+1 2.539880-6 1.185990+1 2.540643-6 1.201444+1 2.545981-6 1.298949+1 2.548619-6 1.339248+1 2.551136-6 1.372282+1 2.553654-6 1.399734+1 2.555166-6 1.413464+1 2.557812-6 1.432461+1 2.559796-6 1.442518+1 2.562772-6 1.450996+1 2.565749-6 1.451852+1 2.568068-6 1.447546+1 2.570387-6 1.439202+1 2.574963-6 1.412209+1 2.576488-6 1.400497+1 2.582590-6 1.343092+1 2.588691-6 1.274214+1 2.591154-6 1.244710+1 2.610908-6 1.018283+1 2.618169-6 9.515787+0 2.623273-6 9.114296+0 2.629456-6 8.697819+0 2.635639-6 8.348946+0 2.644651-6 7.938554+0 2.653382-6 7.624490+0 2.670297-6 7.165848+0 2.686156-6 6.842819+0 2.715890-6 6.382842+0 2.741907-6 6.070046+0 2.855733-6 5.042361+0 2.889881-6 4.720656+0 2.906955-6 4.520342+0 2.915492-6 4.406566+0 2.938423-6 4.091603+0 2.945620-6 4.013422+0 2.952817-6 3.961450+0 2.955963-6 3.949712+0 2.963186-6 3.953820+0 2.967468-6 3.979211+0 2.971750-6 4.023008+0 2.976013-6 4.085186+0 2.979211-6 4.143732+0 2.986405-6 4.309684+0 2.996547-6 4.605125+0 3.006520-6 4.924164+0 3.013742-6 5.142839+0 3.015983-6 5.205033+0 3.022703-6 5.368703+0 3.026823-6 5.448902+0 3.029913-6 5.497830+0 3.034548-6 5.552390+0 3.039183-6 5.584234+0 3.042632-6 5.593630+0 3.049854-6 5.577080+0 3.057077-6 5.519093+0 3.064299-6 5.430594+0 3.078744-6 5.205655+0 3.104341-6 4.808809+0 3.154438-6 4.242942+0 3.169966-6 4.102279+0 3.183384-6 4.009186+0 3.191162-6 3.974599+0 3.198940-6 3.957967+0 3.203343-6 3.957163+0 3.209947-6 3.967677+0 3.216552-6 3.991297+0 3.230052-6 4.069929+0 3.245608-6 4.174717+0 3.255373-6 4.224246+0 3.260710-6 4.240957+0 3.268715-6 4.249453+0 3.276720-6 4.237335+0 3.288556-6 4.185659+0 3.304745-6 4.073345+0 3.320934-6 3.954296+0 3.329028-6 3.904442+0 3.339443-6 3.855593+0 3.353311-6 3.818129+0 3.369500-6 3.802745+0 3.393783-6 3.787367+0 3.410152-6 3.759152+0 3.471043-6 3.607005+0 3.639159-6 3.283973+0 3.696352-6 3.163750+0 4.018880-6 2.477437+0 4.124257-6 2.287738+0 4.221958-6 2.116968+0 4.328106-6 1.937473+0 4.419791-6 1.787369+0 4.473103-6 1.702632+0 4.534829-6 1.606979+0 4.608000-6 1.496906+0 4.705261-6 1.356340+0 4.759134-6 1.281434+0 4.827808-6 1.188657+0 4.864422-6 1.140321+0 4.929166-6 1.056395+0 4.996836-6 9.703514-1 5.043506-6 9.124621-1 5.101305-6 8.426895-1 5.158222-6 7.759036-1 5.214198-6 7.124242-1 5.286925-6 6.331940-1 5.327859-6 5.902282-1 5.400258-6 5.172563-1 5.475951-6 4.446204-1 5.528167-6 3.969738-1 5.594653-6 3.395622-1 5.655971-6 2.897805-1 5.713195-6 2.465435-1 5.775261-6 2.034023-1 5.859634-6 1.504816-1 5.914533-6 1.198251-1 5.980209-6 8.760353-2 6.059894-6 5.502537-2 6.138619-6 2.997304-2 6.205812-6 1.456672-2 6.234534-6 9.841996-3 6.270000-6 5.672932-3 6.331243-6 2.888442-3 6.426441-6 9.091126-3 6.480785-6 1.876675-2 6.535371-6 3.344507-2 6.611677-6 5.796733-2 6.662628-6 6.715972-2 6.668254-6 6.739055-2 6.724286-6 6.106847-2 6.770118-6 4.875867-2 6.850000-6 2.686162-2 6.900323-6 1.617647-2 6.943832-6 9.418990-3 6.986629-6 5.109563-3 7.071586-6 3.340984-3 7.100000-6 4.875118-3 7.155216-6 1.122535-2 7.237539-6 2.915522-2 7.318576-6 5.712443-2 7.398347-6 9.544856-2 7.476871-6 1.444011-1 7.554168-6 2.044163-1 7.630258-6 2.760209-1 7.715369-6 3.714784-1 7.780059-6 4.554550-1 7.845000-6 5.505170-1 7.925179-6 6.833959-1 7.985000-6 7.948320-1 8.065764-6 9.637809-1 8.201956-6 1.297888+0 8.333892-6 1.685632+0 8.461705-6 2.130960+0 8.609938-6 2.743203+0 8.709928-6 3.222311+0 8.850000-6 3.991900+0 8.934243-6 4.514681+0 9.043295-6 5.271675+0 9.148939-6 6.097574+0 9.350426-6 7.954925+0 9.446472-6 9.000917+0 9.639189-6 1.143435+1 1.040242-5 2.764488+1 1.064721-5 3.633770+1 1.086659-5 4.645418+1 1.105145-5 5.727494+1 1.116844-5 6.551011+1 1.129304-5 7.570020+1 1.136372-5 8.228258+1 1.149624-5 9.650232+1 1.161449-5 1.116740+2 1.171756-5 1.273622+2 1.180244-5 1.424848+2 1.189082-5 1.609109+2 1.196705-5 1.796114+2 1.200757-5 1.909022+2 1.206734-5 2.097657+2 1.210515-5 2.234179+2 1.214499-5 2.396856+2 1.217986-5 2.559645+2 1.224087-5 2.909309+2 1.228663-5 3.248649+2 1.232094-5 3.561516+2 1.234668-5 3.834553+2 1.238047-5 4.245779+2 1.243155-5 4.970566+2 1.245448-5 5.322877+2 1.248506-5 5.795197+2 1.251564-5 6.239453+2 1.254622-5 6.615370+2 1.255387-5 6.693648+2 1.257680-5 6.880431+2 1.258445-5 6.924709+2 1.259591-5 6.972476+2 1.260738-5 6.996576+2 1.261503-5 6.998916+2 1.262649-5 6.981216+2 1.263796-5 6.937648+2 1.265325-5 6.839254+2 1.266854-5 6.695863+2 1.268383-5 6.509986+2 1.269912-5 6.285531+2 1.270294-5 6.223972+2 1.272636-5 5.807043+2 1.273352-5 5.668106+2 1.276219-5 5.080738+2 1.277205-5 4.873605+2 1.279468-5 4.404523+2 1.283697-5 3.623723+2 1.285202-5 3.395895+2 1.286540-5 3.221359+2 1.287830-5 3.080050+2 1.288260-5 3.039077+2 1.289789-5 2.918851+2 1.290936-5 2.855038+2 1.291700-5 2.825042+2 1.293707-5 2.793189+2 1.294376-5 2.797244+2 1.297434-5 2.902686+2 1.298198-5 2.949700+2 1.300492-5 3.134308+2 1.302021-5 3.289707+2 1.304043-5 3.528693+2 1.306945-5 3.925754+2 1.336779-5 9.684716+2 1.340508-5 1.069093+3 1.343771-5 1.167927+3 1.349493-5 1.372202+3 1.353764-5 1.557625+3 1.356976-5 1.721138+3 1.359385-5 1.860592+3 1.362999-5 2.103664+3 1.366613-5 2.399587+3 1.369976-5 2.739897+3 1.373340-5 3.166806+3 1.376704-5 3.714140+3 1.378555-5 4.083111+3 1.380068-5 4.428834+3 1.381749-5 4.867791+3 1.383431-5 5.373249+3 1.385113-5 5.955530+3 1.386795-5 6.625861+3 1.388477-5 7.396217+3 1.391630-5 9.153936+3 1.399536-5 1.582496+4 1.402038-5 1.872294+4 1.402896-5 1.980849+4 1.405472-5 2.333630+4 1.407677-5 2.665764+4 1.411125-5 3.229837+4 1.411629-5 3.315722+4 1.414573-5 3.825931+4 1.415758-5 4.032145+4 1.416889-5 4.227150+4 1.418572-5 4.510404+4 1.420056-5 4.749987+4 1.421645-5 4.991124+4 1.422861-5 5.162349+4 1.424599-5 5.382625+4 1.426205-5 5.556436+4 1.426833-5 5.615798+4 1.428172-5 5.724687+4 1.429510-5 5.808353+4 1.430949-5 5.868605+4 1.432520-5 5.897901+4 1.434104-5 5.888117+4 1.435825-5 5.832845+4 1.436707-5 5.786821+4 1.438427-5 5.664089+4 1.439943-5 5.521520+4 1.442305-5 5.242068+4 1.443956-5 5.010910+4 1.444898-5 4.868015+4 1.446500-5 4.609621+4 1.447726-5 4.401258+4 1.449478-5 4.092216+4 1.451309-5 3.761156+4 1.453094-5 3.436433+4 1.454918-5 3.108401+4 1.456378-5 2.852199+4 1.457886-5 2.595932+4 1.459395-5 2.350366+4 1.462843-5 1.837576+4 1.464586-5 1.606920+4 1.467162-5 1.303282+4 1.469094-5 1.104527+4 1.471047-5 9.279849+3 1.472636-5 8.015401+3 1.474420-5 6.767056+3 1.476548-5 5.495682+3 1.478717-5 4.419101+3 1.481393-5 3.355307+3 1.484960-5 2.312855+3 1.488527-5 1.610052+3 1.489792-5 1.427089+3 1.490741-5 1.309668+3 1.491453-5 1.232022+3 1.491986-5 1.179370+3 1.492787-5 1.108981+3 1.493702-5 1.040548+3 1.494367-5 9.985598+2 1.494777-5 9.757073+2 1.495548-5 9.390489+2 1.496236-5 9.128953+2 1.498581-5 8.676307+2 1.499171-5 8.662883+2 1.499945-5 8.702945+2 1.500704-5 8.803691+2 1.501364-5 8.939034+2 1.502136-5 9.151905+2 1.503376-5 9.610625+2 1.504485-5 1.013644+3 1.505006-5 1.041864+3 1.508417-5 1.276626+3 1.510199-5 1.428147+3 1.512775-5 1.671743+3 1.514293-5 1.824090+3 1.515826-5 1.980485+3 1.517114-5 2.111703+3 1.518493-5 2.249343+3 1.519980-5 2.391783+3 1.521512-5 2.529001+3 1.522893-5 2.641747+3 1.523360-5 2.677167+3 1.525155-5 2.798569+3 1.526631-5 2.879046+3 1.528102-5 2.940168+3 1.529588-5 2.981296+3 1.531134-5 3.001380+3 1.532589-5 2.998969+3 1.534074-5 2.975586+3 1.535488-5 2.934494+3 1.537166-5 2.863537+3 1.539059-5 2.757764+3 1.540514-5 2.660727+3 1.542111-5 2.541661+3 1.543832-5 2.402354+3 1.545360-5 2.272707+3 1.547326-5 2.103136+3 1.549188-5 1.945040+3 1.553186-5 1.639339+3 1.555129-5 1.518449+3 1.556632-5 1.441616+3 1.557412-5 1.408164+3 1.558050-5 1.384370+3 1.559006-5 1.354945+3 1.560130-5 1.330536+3 1.560962-5 1.319915+3 1.561707-5 1.316076+3 1.564630-5 1.356715+3 1.567186-5 1.472698+3 1.568131-5 1.536621+3 1.568590-5 1.572020+3 1.569389-5 1.640626+3 1.569989-5 1.698238+3 1.571340-5 1.847678+3 1.572414-5 1.986989+3 1.573659-5 2.172636+3 1.575260-5 2.451603+3 1.577577-5 2.941574+3 1.582872-5 4.488413+3 1.585403-5 5.455269+3 1.587746-5 6.484231+3 1.589254-5 7.213346+3 1.591301-5 8.280819+3 1.593282-5 9.390890+3 1.594464-5 1.008390+4 1.597061-5 1.166881+4 1.598924-5 1.283832+4 1.600459-5 1.380786+4 1.602143-5 1.486329+4 1.603959-5 1.597389+4 1.605484-5 1.687008+4 1.607131-5 1.778593+4 1.608115-5 1.830061+4 1.610100-5 1.925266+4 1.611890-5 1.999628+4 1.613038-5 2.040833+4 1.614844-5 2.094554+4 1.616290-5 2.127171+4 1.617536-5 2.147596+4 1.620254-5 2.166800+4 1.621570-5 2.163615+4 1.624435-5 2.129426+4 1.626354-5 2.086858+4 1.627478-5 2.055249+4 1.629321-5 1.993678+4 1.630073-5 1.965370+4 1.631524-5 1.906207+4 1.633119-5 1.835011+4 1.634786-5 1.754975+4 1.637107-5 1.636390+4 1.638873-5 1.542589+4 1.639836-5 1.490699+4 1.642004-5 1.373472+4 1.642727-5 1.334559+4 1.646546-5 1.134083+4 1.647320-5 1.095069+4 1.650242-5 9.543732+3 1.653525-5 8.109673+3 1.657717-5 6.530214+3 1.666276-5 4.167876+3 1.668492-5 3.723717+3 1.670330-5 3.400204+3 1.673301-5 2.955125+3 1.674300-5 2.825391+3 1.675798-5 2.648144+3 1.677296-5 2.490615+3 1.679502-5 2.292225+3 1.681707-5 2.130999+3 1.685816-5 1.920882+3 1.686843-5 1.885372+3 1.689925-5 1.816451+3 1.691338-5 1.802633+3 1.694034-5 1.804647+3 1.695176-5 1.815889+3 1.696538-5 1.836688+3 1.697456-5 1.854900+3 1.699693-5 1.912013+3 1.702006-5 1.986938+3 1.706862-5 2.178090+3 1.710875-5 2.346134+3 1.713769-5 2.458698+3 1.715093-5 2.505291+3 1.718688-5 2.610179+3 1.720100-5 2.641207+3 1.722797-5 2.682599+3 1.724560-5 2.696566+3 1.725566-5 2.699890+3 1.727327-5 2.697785+3 1.728648-5 2.689856+3 1.731620-5 2.653916+3 1.734806-5 2.592072+3 1.738309-5 2.504563+3 1.749321-5 2.201237+3 1.752583-5 2.126749+3 1.756927-5 2.047283+3 1.760524-5 1.998614+3 1.762702-5 1.975972+3 1.764926-5 1.957421+3 1.770486-5 1.926458+3 1.774386-5 1.913264+3 1.793087-5 1.867784+3 1.804452-5 1.829168+3 1.812242-5 1.793428+3 1.819123-5 1.752479+3 1.824553-5 1.712675+3 1.830418-5 1.662173+3 1.836672-5 1.601045+3 1.844354-5 1.519751+3 1.861907-5 1.339975+3 1.867685-5 1.289564+3 1.872271-5 1.253494+3 1.879459-5 1.203637+3 1.884680-5 1.171913+3 1.898626-5 1.101090+3 1.910633-5 1.051080+3 1.923509-5 1.004737+3 1.934035-5 9.711025+2 1.946632-5 9.348657+2 1.967755-5 8.816224+2 1.992417-5 8.284265+2 2.012590-5 7.905873+2 2.035895-5 7.521250+2 2.068677-5 7.053003+2 2.111177-5 6.547265+2 2.150000-5 6.158810+2 2.188374-5 5.827115+2 2.221811-5 5.574175+2 2.252379-5 5.369457+2 2.300844-5 5.080346+2 2.351526-5 4.818388+2 2.426072-5 4.496050+2 2.483850-5 4.282861+2 2.583172-5 3.974519+2 2.697259-5 3.690698+2 2.810470-5 3.453908+2 2.919106-5 3.293067+2 2.989173-5 3.187350+2 3.185114-5 2.948848+2 3.373245-5 2.766594+2 3.556644-5 2.616688+2 3.767354-5 2.471880+2 4.167205-5 2.251246+2 4.550578-5 2.102463+2 4.830440-5 1.995940+2 4.976291-5 1.940101+2 5.128614-5 1.881150+2 5.290801-5 1.817686+2 5.471734-5 1.745522+2 5.692624-5 1.655058+2 5.837690-5 1.593781+2 6.033323-5 1.508057+2 6.309573-5 1.379945+2 6.555431-5 1.257061+2 6.778855-5 1.136151+2 6.983875-5 1.015683+2 7.133388-5 9.208540+1 7.267705-5 8.296622+1 7.395031-5 7.373581+1 7.481799-5 6.707771+1 7.571017-5 5.988931+1 7.651959-5 5.303219+1 7.723554-5 4.647549+1 7.756990-5 4.311644+1 7.793912-5 3.910986+1 7.838982-5 3.380168+1 7.868652-5 3.014381+1 7.886123-5 2.798678+1 7.914134-5 2.463330+1 7.963766-5 1.948714+1 7.984810-5 1.776742+1 7.999074-5 1.677648+1 8.008460-5 1.619850+1 8.024976-5 1.531077+1 8.041409-5 1.456578+1 8.064382-5 1.368938+1 8.119714-5 1.194927+1 8.142760-5 1.134902+1 8.153975-5 1.111203+1 8.165395-5 1.092584+1 8.173816-5 1.083293+1 8.186627-5 1.077872+1 8.196622-5 1.082065+1 8.208064-5 1.097087+1 8.219896-5 1.125117+1 8.223134-5 1.135117+1 8.232649-5 1.170469+1 8.242447-5 1.216364+1 8.251688-5 1.268575+1 8.261822-5 1.335814+1 8.274363-5 1.433370+1 8.288246-5 1.559641+1 8.308569-5 1.778686+1 8.334545-5 2.118793+1 8.377061-5 2.840018+1 8.415644-5 3.724762+1 8.450538-5 4.788439+1 8.476472-5 5.795724+1 8.505847-5 7.226097+1 8.538539-5 9.278796+1 8.605000-5 1.545552+2 8.627497-5 1.826888+2 8.650000-5 2.146520+2 8.667559-5 2.421271+2 8.681498-5 2.653891+2 8.698000-5 2.943995+2 8.711222-5 3.186309+2 8.724445-5 3.435754+2 8.741239-5 3.760260+2 8.758700-5 4.103244+2 8.772657-5 4.378861+2 8.782643-5 4.575628+2 8.802528-5 4.963432+2 8.812427-5 5.153252+2 8.829589-5 5.475192+2 8.844666-5 5.748892+2 8.861654-5 6.045250+2 8.880813-5 6.362466+2 8.901440-5 6.682242+2 8.913133-5 6.853086+2 8.934344-5 7.143440+2 8.948253-5 7.320143+2 8.977013-5 7.651603+2 9.006578-5 7.945961+2 9.021287-5 8.075441+2 9.044131-5 8.254885+2 9.077004-5 8.468375+2 9.110680-5 8.634970+2 9.147946-5 8.762487+2 9.173104-5 8.818278+2 9.201460-5 8.855933+2 9.258700-5 8.869145+2 9.321542-5 8.824375+2 9.440609-5 8.673140+2 9.527472-5 8.519370+2 9.591332-5 8.375231+2 9.830400-5 7.755827+2 9.942765-5 7.526279+2 1.011579-4 7.252905+2 1.069004-4 6.511741+2 1.110402-4 6.001458+2 1.228800-4 4.787468+2 1.317350-4 4.131392+2 1.444375-4 3.430989+2 1.553301-4 2.965778+2 1.585000-4 2.836892+2 1.601199-4 2.749905+2 1.617159-4 2.652000+2 1.621046-4 2.634808+2 1.625707-4 2.621808+2 1.631721-4 2.619939+2 1.637279-4 2.634023+2 1.641770-4 2.655574+2 1.646167-4 2.683775+2 1.663802-4 2.822822+2 1.668830-4 2.856544+2 1.675430-4 2.889183+2 1.681945-4 2.906165+2 1.690409-4 2.906346+2 1.701795-4 2.878780+2 1.750720-4 2.712008+2 1.763080-4 2.684457+2 1.771657-4 2.676766+2 1.782883-4 2.682681+2 1.809972-4 2.730238+2 1.824704-4 2.743145+2 1.837583-4 2.739639+2 1.864479-4 2.712347+2 1.933081-4 2.665582+2 2.234983-4 2.505076+2 2.261827-4 2.481249+2 2.270244-4 2.480035+2 2.279158-4 2.485354+2 2.291332-4 2.504083+2 2.316130-4 2.561892+2 2.330343-4 2.587743+2 2.352159-4 2.606960+2 2.430000-4 2.643603+2 3.072000-4 2.967024+2 3.394871-4 3.101811+2 3.550688-4 3.155360+2 3.733350-4 3.205628+2 3.981072-4 3.248159+2 4.221519-4 3.260921+2 4.518326-4 3.241514+2 4.807925-4 3.180284+2 5.079788-4 3.080661+2 5.314015-4 2.958092+2 5.528644-4 2.813103+2 5.701327-4 2.672242+2 5.881076-4 2.497569+2 6.037287-4 2.320974+2 6.175411-4 2.143535+2 6.296808-4 1.967809+2 6.408892-4 1.787596+2 6.496398-4 1.634223+2 6.564312-4 1.506762+2 6.604714-4 1.426893+2 6.661428-4 1.308565+2 6.725990-4 1.165654+2 6.782481-4 1.035789+2 6.831911-4 9.190282+1 6.889550-4 7.795873+1 6.926314-4 6.897577+1 6.953888-4 6.227748+1 6.986633-4 5.449796+1 6.998666-4 5.172723+1 7.015928-4 4.788237+1 7.056260-4 3.988704+1 7.067775-4 3.801022+1 7.082701-4 3.599654+1 7.094028-4 3.487996+1 7.104395-4 3.425938+1 7.113745-4 3.410732+1 7.120942-4 3.430617+1 7.128164-4 3.482893+1 7.134759-4 3.563017+1 7.140652-4 3.664191+1 7.145159-4 3.762452+1 7.150851-4 3.914973+1 7.156367-4 4.095892+1 7.161713-4 4.305261+1 7.166895-4 4.542932+1 7.172533-4 4.843697+1 7.177976-4 5.179042+1 7.181695-4 5.435269+1 7.185991-4 5.760375+1 7.194674-4 6.519051+1 7.200140-4 7.071293+1 7.211795-4 8.458442+1 7.239339-4 1.300586+2 7.251078-4 1.553360+2 7.257238-4 1.700614+2 7.263797-4 1.868440+2 7.270105-4 2.040447+2 7.276479-4 2.224641+2 7.283253-4 2.431515+2 7.290119-4 2.652420+2 7.298198-4 2.926035+2 7.305605-4 3.189061+2 7.314680-4 3.525807+2 7.320812-4 3.761474+2 7.331146-4 4.171696+2 7.342498-4 4.638079+2 7.350868-4 4.990400+2 7.361120-4 5.429271+2 7.369880-4 5.808923+2 7.378723-4 6.194828+2 7.390356-4 6.704277+2 7.399400-4 7.099951+2 7.416175-4 7.828154+2 7.430260-4 8.428889+2 7.440895-4 8.872670+2 7.452704-4 9.352556+2 7.468378-4 9.962763+2 7.484852-4 1.056277+3 7.496509-4 1.095632+3 7.511438-4 1.141672+3 7.528614-4 1.187852+3 7.540000-4 1.214138+3 7.551563-4 1.237157+3 7.561789-4 1.254405+3 7.570532-4 1.266858+3 7.586024-4 1.283906+3 7.595538-4 1.291360+3 7.608000-4 1.297930+3 7.622438-4 1.301464+3 7.645200-4 1.299630+3 7.673615-4 1.288021+3 7.719746-4 1.257480+3 7.798089-4 1.201705+3 7.836178-4 1.179583+3 7.871178-4 1.163180+3 7.933484-4 1.142378+3 8.023678-4 1.125250+3 8.125000-4 1.114945+3 8.228750-4 1.109029+3 8.350000-4 1.106935+3 8.526511-4 1.111269+3 8.733822-4 1.118858+3 8.903723-4 1.122012+3 9.115126-4 1.122065+3 9.273969-4 1.117391+3 9.399016-4 1.108797+3 9.525716-4 1.091615+3 9.641115-4 1.068187+3 9.677832-4 1.063632+3 9.715557-4 1.064680+3 9.744597-4 1.071342+3 9.773477-4 1.084066+3 9.800028-4 1.101250+3 9.838683-4 1.134173+3 9.914803-4 1.208399+3 9.942599-4 1.231617+3 9.965565-4 1.247359+3 9.995256-4 1.262553+3 1.001206-3 1.268635+3 1.004146-3 1.275462+3 1.008805-3 1.278993+3 1.032811-3 1.269940+3 1.040140-3 1.273227+3 1.044902-3 1.281006+3 1.051487-3 1.299307+3 1.061362-3 1.330652+3 1.064347-3 1.338303+3 1.078068-3 1.362314+3 1.097440-3 1.388340+3 1.114930-3 1.406522+3 1.131274-3 1.418518+3 1.150378-3 1.427206+3 1.175563-3 1.431043+3 1.184021-3 1.434632+3 1.191770-3 1.441894+3 1.225437-3 1.495006+3 1.238401-3 1.508756+3 1.256058-3 1.521981+3 1.303401-3 1.545044+3 1.338986-3 1.556894+3 1.371409-3 1.563420+3 1.456171-3 1.569968+3 1.571267-3 1.568940+3 1.694091-3 1.558770+3 1.787581-3 1.542652+3 1.929606-3 1.513052+3 2.091319-3 1.474814+3 2.323688-3 1.417107+3 2.613098-3 1.338913+3 2.862839-3 1.271087+3 2.973271-3 1.241643+3 3.250312-3 1.167869+3 3.406184-3 1.126569+3 3.561815-3 1.086105+3 3.732930-3 1.041112+3 3.876044-3 1.003527+3 4.020053-3 9.647411+2 4.151352-3 9.287147+2 4.256010-3 8.988750+2 4.354089-3 8.696097+2 4.443856-3 8.414152+2 4.527099-3 8.135841+2 4.588028-3 7.916318+2 4.655526-3 7.650066+2 4.707171-3 7.424107+2 4.756496-3 7.182217+2 4.795347-3 6.964975+2 4.827143-3 6.759900+2 4.854838-3 6.551716+2 4.885168-3 6.283848+2 4.921523-3 5.921849+2 4.946233-3 5.691132+2 4.963113-3 5.568562+2 4.974806-3 5.509995+2 4.984854-3 5.480424+2 4.993915-3 5.471505+2 5.007027-3 5.488834+2 5.019420-3 5.536306+2 5.036854-3 5.645853+2 5.060875-3 5.849201+2 5.084502-3 6.065613+2 5.100544-3 6.202569+2 5.117702-3 6.330759+2 5.128987-3 6.402838+2 5.145359-3 6.489509+2 5.170000-3 6.581940+2 5.194386-3 6.633570+2 5.218237-3 6.651592+2 5.240211-3 6.645145+2 5.301051-3 6.583171+2 5.326890-3 6.587322+2 5.351763-3 6.636295+2 5.376445-3 6.732619+2 5.421163-3 6.987400+2 5.461686-3 7.222578+2 5.481677-3 7.318214+2 5.503817-3 7.403309+2 5.528514-3 7.472743+2 5.555550-3 7.522014+2 5.645812-3 7.612048+2 5.682703-3 7.696204+2 5.717964-3 7.823009+2 5.788234-3 8.118937+2 5.815789-3 8.217471+2 5.844039-3 8.301395+2 5.875950-3 8.377645+2 5.918171-3 8.455906+2 5.969838-3 8.528596+2 6.090157-3 8.641284+2 6.197107-3 8.700526+2 6.328685-3 8.737141+2 6.540638-3 8.735557+2 6.794970-3 8.664692+2 7.049550-3 8.552563+2 7.325691-3 8.398461+2 7.671027-3 8.176673+2 8.050447-3 7.911596+2 8.647687-3 7.484169+2 9.319434-3 7.015318+2 1.026771-2 6.400887+2 1.140849-2 5.745625+2 1.294988-2 5.005667+2 1.446989-2 4.409142+2 1.631467-2 3.817536+2 1.778944-2 3.421742+2 1.930995-2 3.068310+2 2.088474-2 2.750549+2 2.261785-2 2.447382+2 2.451179-2 2.162282+2 2.658811-2 1.894952+2 2.857445-2 1.674764+2 3.018255-2 1.516383+2 3.148396-2 1.397658+2 3.242659-2 1.314653+2 3.322051-2 1.244336+2 3.383293-2 1.187682+2 3.432116-2 1.138609+2 3.468343-2 1.097156+2 3.485212-2 1.075064+2 3.498926-2 1.055173+2 3.523964-2 1.013809+2 3.561153-2 9.492727+1 3.576401-2 9.299408+1 3.587601-2 9.214255+1 3.600726-2 9.187047+1 3.610332-2 9.216557+1 3.621861-2 9.299625+1 3.638857-2 9.487473+1 3.670530-2 9.884975+1 3.691646-2 1.009551+2 3.713677-2 1.024819+2 3.728749-2 1.031984+2 3.764343-2 1.041844+2 3.804631-2 1.045877+2 3.859716-2 1.044969+2 3.916507-2 1.039469+2 4.026437-2 1.021445+2 4.140461-2 9.969965+1 4.315191-2 9.544204+1 4.562737-2 8.923604+1 4.840028-2 8.260158+1 5.191232-2 7.487897+1 5.583095-2 6.721807+1 6.129885-2 5.805301+1 6.879837-2 4.801448+1 7.827100-2 3.849813+1 9.992538-2 2.501048+1 1.183519-1 1.844923+1 1.553840-1 1.118851+1 1.981605-1 7.114704+0 2.441926-1 4.786176+0 3.281283-1 2.707142+0 4.897788-1 1.239347+0 7.635748-1 5.169934-1 1.347258+0 1.675473-1 3.575459+0 2.388904-2 1.120601+1 2.433548-3 3.384160+1 2.668507-4 1.022000+2 2.925981-5 3.086391+2 3.208277-6 9.320751+2 3.517806-7 3.162278+3 3.056143-8 1.000000+4 3.056143-9 3.162278+4 3.05614-10 1.000000+5 3.05614-11 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.260200-6 1.258900-6 3.582200-6 1.584900-6 5.677400-6 1.995300-6 8.998100-6 2.511900-6 1.426100-5 3.162300-6 2.260200-5 3.981100-6 3.582200-5 5.011900-6 5.677300-5 6.309600-6 8.997900-5 7.943300-6 1.426100-4 1.000000-5 2.260100-4 1.258900-5 3.582000-4 1.584900-5 5.673800-4 1.995300-5 8.985800-4 2.511900-5 1.423300-3 3.162300-5 2.254700-3 3.981100-5 3.572300-3 5.011900-5 5.659200-3 6.309600-5 8.964300-3 7.943300-5 1.417300-2 1.000000-4 2.238900-2 1.258900-4 3.535400-2 1.584900-4 5.567800-2 1.995300-4 8.732700-2 2.511900-4 1.361700-1 3.162300-4 2.104600-1 3.981100-4 3.191600-1 5.011900-4 4.724700-1 6.309600-4 6.805100-1 7.943300-4 9.514900-1 1.000000-3 1.299700+0 1.258900-3 1.749100+0 1.584900-3 2.335500+0 1.995300-3 3.086000+0 2.511900-3 4.020700+0 3.162300-3 5.154600+0 3.981100-3 6.483900+0 5.011900-3 7.954200+0 6.309600-3 9.520300+0 7.943300-3 1.122100+1 1.000000-2 1.308300+1 1.258900-2 1.507900+1 1.584900-2 1.707700+1 1.995300-2 1.893800+1 2.511900-2 2.060500+1 3.162300-2 2.204200+1 3.981100-2 2.318600+1 5.011900-2 2.400400+1 6.309600-2 2.444900+1 7.943300-2 2.447600+1 1.000000-1 2.412500+1 1.258900-1 2.341000+1 1.584900-1 2.245900+1 1.995300-1 2.128400+1 2.511900-1 1.996200+1 3.162300-1 1.855300+1 3.981100-1 1.710300+1 5.011900-1 1.565700+1 6.309600-1 1.423900+1 7.943300-1 1.286300+1 1.000000+0 1.155200+1 1.258900+0 1.030400+1 1.584900+0 9.133900+0 1.995300+0 8.043800+0 2.511900+0 7.038300+0 3.162300+0 6.120500+0 3.981100+0 5.290700+0 5.011900+0 4.547900+0 6.309600+0 3.889100+0 7.943300+0 3.309600+0 1.000000+1 2.804000+0 1.258900+1 2.366000+0 1.584900+1 1.989200+0 1.995300+1 1.666800+0 2.511900+1 1.392500+0 3.162300+1 1.160200+0 3.981100+1 9.643000-1 5.011900+1 7.997000-1 6.309600+1 6.618600-1 7.943300+1 5.467900-1 1.000000+2 4.509700-1 1.258900+2 3.713800-1 1.584900+2 3.054200-1 1.995300+2 2.508500-1 2.511900+2 2.057900-1 3.162300+2 1.686400-1 3.981100+2 1.380600-1 5.011900+2 1.129200-1 6.309600+2 9.227300-2 7.943300+2 7.534200-2 1.000000+3 6.147000-2 1.258900+3 5.011600-2 1.584900+3 4.083100-2 1.995300+3 3.324500-2 2.511900+3 2.705200-2 3.162300+3 2.200000-2 3.981100+3 1.788100-2 5.011900+3 1.452600-2 6.309600+3 1.179500-2 7.943300+3 9.572400-3 1.000000+4 7.765200-3 1.258900+4 6.296400-3 1.584900+4 5.103300-3 1.995300+4 4.134700-3 2.511900+4 3.348600-3 3.162300+4 2.710900-3 3.981100+4 2.193900-3 5.011900+4 1.774900-3 6.309600+4 1.435400-3 7.943300+4 1.160500-3 1.000000+5 9.379200-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997264-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510168-4 3.162278-4 3.159557-4 3.981072-4 3.976799-4 5.011872-4 5.005151-4 6.309573-4 6.299046-4 7.943282-4 7.926827-4 1.000000-3 9.974304-4 1.258925-3 1.254889-3 1.584893-3 1.578554-3 1.995262-3 1.985290-3 2.511886-3 2.496225-3 3.162278-3 3.137694-3 3.981072-3 3.942702-3 5.011872-3 4.952156-3 6.309573-3 6.216772-3 7.943282-3 7.799229-3 1.000000-2 9.775703-3 1.258925-2 1.224027-2 1.584893-2 1.530855-2 1.995262-2 1.912093-2 2.511886-2 2.384477-2 3.162278-2 2.967809-2 3.981072-2 3.685689-2 5.011872-2 4.565608-2 6.309573-2 5.640688-2 7.943282-2 6.948691-2 1.000000-1 8.532317-2 1.258925-1 1.045047-1 1.584893-1 1.274325-1 1.995262-1 1.549508-1 2.511886-1 1.877864-1 3.162278-1 2.268383-1 3.981072-1 2.731322-1 5.011872-1 3.278563-1 6.309573-1 3.924069-1 7.943282-1 4.684537-1 1.000000+0 5.577971-1 1.258925+0 6.631884-1 1.584893+0 7.874634-1 1.995262+0 9.345606-1 2.511886+0 1.109091+0 3.162278+0 1.316820+0 3.981072+0 1.564754+0 5.011872+0 1.861629+0 6.309573+0 2.217778+0 7.943282+0 2.646276+0 1.000000+1 3.162902+0 1.258925+1 3.786935+0 1.584893+1 4.542087+0 1.995262+1 5.457304+0 2.511886+1 6.567898+0 3.162278+1 7.917953+0 3.981072+1 9.560641+0 5.011872+1 1.156132+1 6.309573+1 1.400094+1 7.943282+1 1.697859+1 1.000000+2 2.061589+1 1.258925+2 2.506323+1 1.584893+2 3.050480+1 1.995262+2 3.716838+1 2.511886+2 4.533333+1 3.162278+2 5.534592+1 3.981072+2 6.763032+1 5.011872+2 8.271361+1 6.309573+2 1.012429+2 7.943282+2 1.240192+2 1.000000+3 1.520278+2 1.258925+3 1.864919+2 1.584893+3 2.289154+2 1.995262+3 2.811790+2 2.511886+3 3.455616+2 3.162278+3 4.249387+2 3.981072+3 5.228225+2 5.011872+3 6.435822+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88183-10 1.995262-5 1.090595-9 2.511886-5 1.728449-9 3.162278-5 2.739453-9 3.981072-5 4.341814-9 5.011872-5 6.880970-9 6.309573-5 1.090480-8 7.943282-5 1.727322-8 1.000000-4 2.736381-8 1.258925-4 4.335536-8 1.584893-4 6.865227-8 1.995262-4 1.086450-7 2.511886-4 1.718152-7 3.162278-4 2.720195-7 3.981072-4 4.273020-7 5.011872-4 6.721408-7 6.309573-4 1.052748-6 7.943282-4 1.645549-6 1.000000-3 2.569605-6 1.258925-3 4.036751-6 1.584893-3 6.339062-6 1.995262-3 9.971830-6 2.511886-3 1.566133-5 3.162278-3 2.458410-5 3.981072-3 3.836984-5 5.011872-3 5.971616-5 6.309573-3 9.280180-5 7.943282-3 1.440536-4 1.000000-2 2.242968-4 1.258925-2 3.489888-4 1.584893-2 5.403830-4 1.995262-2 8.316925-4 2.511886-2 1.274097-3 3.162278-2 1.944682-3 3.981072-2 2.953828-3 5.011872-2 4.462641-3 6.309573-2 6.688854-3 7.943282-2 9.945912-3 1.000000-1 1.467683-2 1.258925-1 2.138783-2 1.584893-1 3.105677-2 1.995262-1 4.457543-2 2.511886-1 6.340222-2 3.162278-1 8.938949-2 3.981072-1 1.249750-1 5.011872-1 1.733309-1 6.309573-1 2.385504-1 7.943282-1 3.258745-1 1.000000+0 4.422029-1 1.258925+0 5.957370-1 1.584893+0 7.974298-1 1.995262+0 1.060702+0 2.511886+0 1.402796+0 3.162278+0 1.845457+0 3.981072+0 2.416318+0 5.011872+0 3.150243+0 6.309573+0 4.091796+0 7.943282+0 5.297007+0 1.000000+1 6.837098+0 1.258925+1 8.802319+0 1.584893+1 1.130685+1 1.995262+1 1.449532+1 2.511886+1 1.855097+1 3.162278+1 2.370482+1 3.981072+1 3.025008+1 5.011872+1 3.855741+1 6.309573+1 4.909479+1 7.943282+1 6.245423+1 1.000000+2 7.938411+1 1.258925+2 1.008293+2 1.584893+2 1.279845+2 1.995262+2 1.623579+2 2.511886+2 2.058553+2 3.162278+2 2.608818+2 3.981072+2 3.304769+2 5.011872+2 4.184736+2 6.309573+2 5.297144+2 7.943282+2 6.703090+2 1.000000+3 8.479722+2 1.258925+3 1.072434+3 1.584893+3 1.355978+3 1.995262+3 1.714083+3 2.511886+3 2.166325+3 3.162278+3 2.737339+3 3.981072+3 3.458249+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 3.690000-6 5.018380+5 3.715352-6 4.855844+5 3.770000-6 4.505120+5 3.960000-6 3.436640+5 4.216965-6 2.411339+5 4.500000-6 1.657030+5 4.786301-6 1.151209+5 5.128614-6 7.605130+4 5.623413-6 4.363679+4 5.888437-6 3.324107+4 6.100000-6 2.715790+4 6.270000-6 2.334090+4 6.420000-6 2.060250+4 6.550000-6 1.862350+4 6.700000-6 1.671960+4 6.850000-6 1.515590+4 7.000000-6 1.387420+4 7.100000-6 1.315250+4 7.244360-6 1.226986+4 7.350000-6 1.172720+4 7.500000-6 1.108390+4 7.650000-6 1.056720+4 7.770000-6 1.023060+4 7.920000-6 9.890480+3 8.050000-6 9.657280+3 8.222426-6 9.421154+3 8.420000-6 9.234020+3 8.609938-6 9.120532+3 8.850000-6 9.048370+3 9.120108-6 9.037150+3 9.440609-6 9.089134+3 9.885531-6 9.229816+3 1.161449-5 9.902890+3 1.258925-5 1.018705+4 1.364583-5 1.040369+4 1.496236-5 1.057317+4 1.640590-5 1.066261+4 1.643000-5 1.066273+4 1.643000-5 5.435626+7 1.680000-5 4.666306+7 1.710000-5 4.156947+7 1.750000-5 3.603251+7 1.780000-5 3.259939+7 1.819701-5 2.880093+7 1.827000-5 2.816067+7 1.827000-5 5.365787+7 1.830000-5 5.309676+7 1.850000-5 4.960196+7 1.870000-5 4.647308+7 1.883649-5 4.451256+7 1.920000-5 3.988791+7 1.927525-5 3.902685+7 1.950000-5 3.663966+7 1.995262-5 3.243931+7 2.041738-5 2.888998+7 2.070000-5 2.700293+7 2.090000-5 2.578412+7 2.150000-5 2.257450+7 2.213095-5 1.982004+7 2.238721-5 1.884031+7 2.290868-5 1.705782+7 2.350000-5 1.531239+7 2.371374-5 1.474712+7 2.470000-5 1.248619+7 2.483133-5 1.222292+7 2.583000-5 1.046224+7 2.600160-5 1.019659+7 2.650000-5 9.471690+6 2.730000-5 8.454457+6 2.851018-5 7.180588+6 2.917427-5 6.592286+6 3.090295-5 5.337388+6 3.097000-5 5.295664+6 3.097000-5 5.327657+6 3.126079-5 5.152104+6 3.162278-5 4.944140+6 3.170000-5 4.901579+6 3.210000-5 4.688850+6 3.235937-5 4.557471+6 3.250000-5 4.488261+6 3.311311-5 4.202532+6 3.400000-5 3.830945+6 3.548134-5 3.309438+6 3.650000-5 3.007772+6 3.715352-5 2.833906+6 3.730000-5 2.797423+6 3.830000-5 2.564901+6 3.845918-5 2.530373+6 3.920000-5 2.378163+6 4.000000-5 2.227870+6 4.027170-5 2.179812+6 4.110000-5 2.044715+6 4.168694-5 1.955998+6 4.220000-5 1.883523+6 4.265795-5 1.821904+6 4.315191-5 1.758769+6 4.330000-5 1.740858+6 4.450000-5 1.604790+6 4.570882-5 1.482932+6 4.677351-5 1.388496+6 4.720000-5 1.353665+6 4.731513-5 1.344437+6 4.800000-5 1.291527+6 4.850000-5 1.255777+6 5.011872-5 1.149580+6 5.069907-5 1.115564+6 5.188000-5 1.052047+6 5.248075-5 1.021697+6 5.400000-5 9.530647+5 5.432503-5 9.392417+5 5.500000-5 9.120015+5 5.559043-5 8.899635+5 5.623413-5 8.669578+5 5.754399-5 8.226886+5 5.888437-5 7.832939+5 6.025596-5 7.458503+5 6.095369-5 7.285938+5 6.165950-5 7.121697+5 6.309573-5 6.803098+5 6.400000-5 6.621937+5 6.500000-5 6.435458+5 6.606934-5 6.243371+5 6.760830-5 5.993750+5 6.900000-5 5.787853+5 6.918310-5 5.761297+5 7.079458-5 5.545180+5 7.300000-5 5.278374+5 7.328245-5 5.247217+5 7.413102-5 5.153961+5 7.673615-5 4.891809+5 7.800000-5 4.778268+5 7.943282-5 4.655897+5 8.150000-5 4.489448+5 8.222426-5 4.436022+5 8.317638-5 4.369303+5 8.324000-5 4.364805+5 8.324000-5 2.833702+6 8.433300-5 4.937835+6 8.440000-5 5.046282+6 8.511380-5 5.895023+6 8.561000-5 6.571249+6 8.561000-5 7.704721+6 8.565000-5 7.804411+6 8.579000-5 8.185238+6 8.590000-5 8.514401+6 8.605000-5 9.014218+6 8.609938-5 9.194942+6 8.620000-5 9.584139+6 8.635000-5 1.024228+7 8.646000-5 1.079199+7 8.650000-5 1.101133+7 8.661000-5 1.165862+7 8.676000-5 1.269323+7 8.687000-5 1.358604+7 8.702000-5 1.504181+7 8.706000-5 1.556476+7 8.732000-5 1.773126+7 8.762000-5 2.027253+7 8.766000-5 2.067291+7 8.873000-5 2.583244+7 8.912509-5 2.616253+7 8.998000-5 2.689045+7 9.100000-5 2.617162+7 9.120108-5 2.581471+7 9.145000-5 2.538118+7 9.160000-5 2.496849+7 9.225714-5 2.341754+7 9.300000-5 2.183847+7 9.335000-5 2.113478+7 9.420000-5 1.973933+7 9.500000-5 1.834000+7 9.549926-5 1.739843+7 9.660509-5 1.550481+7 9.720000-5 1.461124+7 9.760000-5 1.408857+7 9.800000-5 1.363985+7 9.850000-5 1.310191+7 1.000000-4 1.168102+7 1.011579-4 1.071631+7 1.023293-4 9.818203+6 1.035142-4 8.997099+6 1.040000-4 8.677184+6 1.059254-4 7.514814+6 1.060000-4 7.473563+6 1.061300-4 7.401012+6 1.090000-4 5.969636+6 1.096478-4 5.689000+6 1.109175-4 5.178440+6 1.122018-4 4.715609+6 1.135011-4 4.296122+6 1.161449-4 3.569485+6 1.194100-4 2.864693+6 1.205000-4 2.667696+6 1.216186-4 2.483870+6 1.220000-4 2.424737+6 1.244515-4 2.085534+6 1.260000-4 1.901404+6 1.273503-4 1.758882+6 1.280000-4 1.695151+6 1.303167-4 1.492271+6 1.318257-4 1.378701+6 1.326900-4 1.318745+6 1.333521-4 1.275705+6 1.358000-4 1.134760+6 1.364583-4 1.101327+6 1.380384-4 1.027623+6 1.390000-4 9.873145+5 1.400000-4 9.485168+5 1.415000-4 8.958671+5 1.435000-4 8.357776+5 1.450000-4 7.972470+5 1.465000-4 7.637281+5 1.482800-4 7.298812+5 1.485000-4 7.261264+5 1.500000-4 7.023975+5 1.515000-4 6.823700+5 1.531087-4 6.644730+5 1.548817-4 6.486206+5 1.566751-4 6.361706+5 1.584893-4 6.268627+5 1.585000-4 6.268184+5 1.603245-4 6.205220+5 1.606600-4 6.195819+5 1.621810-4 6.166445+5 1.627000-4 6.159590+5 1.643000-4 6.150624+5 1.650000-4 6.150350+5 1.660000-4 6.157341+5 1.677600-4 6.177582+5 1.677600-4 1.044850+6 1.678804-4 1.044040+6 1.680000-4 1.043311+6 1.705000-4 1.029888+6 1.730000-4 1.020025+6 1.737801-4 1.017487+6 1.740000-4 1.016789+6 1.744000-4 1.015702+6 1.757924-4 1.014754+6 1.760000-4 1.014635+6 1.762000-4 1.014593+6 1.780000-4 1.016176+6 1.785000-4 1.016798+6 1.800000-4 1.020040+6 1.816100-4 1.024215+6 1.819700-4 1.025444+6 1.819700-4 1.166733+6 1.835000-4 1.168896+6 1.850000-4 1.171741+6 1.862087-4 1.174914+6 1.890000-4 1.183039+6 1.910000-4 1.190243+6 1.930000-4 1.198268+6 1.940000-4 1.202077+6 1.950000-4 1.206206+6 1.972423-4 1.216140+6 1.990000-4 1.224528+6 2.000000-4 1.229176+6 2.041738-4 1.248269+6 2.065380-4 1.259905+6 2.089296-4 1.270405+6 2.120000-4 1.284624+6 2.162719-4 1.302078+6 2.187762-4 1.312703+6 2.190000-4 1.313639+6 2.264644-4 1.339838+6 2.318600-4 1.355383+6 2.318600-4 1.481262+6 2.332000-4 1.491426+6 2.344229-4 1.499692+6 2.355000-4 1.505379+6 2.368000-4 1.511428+6 2.383000-4 1.517420+6 2.398833-4 1.522831+6 2.400000-4 1.523233+6 2.418000-4 1.528534+6 2.430000-4 1.531565+6 2.440000-4 1.533457+6 2.470000-4 1.538048+6 2.511886-4 1.543482+6 2.600160-4 1.549175+6 2.660725-4 1.549941+6 2.691535-4 1.550410+6 2.722701-4 1.549192+6 2.754229-4 1.547721+6 2.800000-4 1.545698+6 2.818383-4 1.543871+6 2.884032-4 1.537380+6 2.917427-4 1.534174+6 2.951209-4 1.529189+6 3.000000-4 1.521790+6 3.019952-4 1.518768+6 3.050000-4 1.514284+6 3.054921-4 1.513313+6 3.090295-4 1.506308+6 3.162278-4 1.492425+6 3.198895-4 1.485367+6 3.200000-4 1.485137+6 3.311311-4 1.459170+6 3.350000-4 1.450341+6 3.430000-4 1.429911+6 3.507519-4 1.410338+6 3.548134-4 1.399037+6 3.700000-4 1.358317+6 3.715352-4 1.353887+6 3.801894-4 1.328797+6 3.845918-4 1.316342+6 3.890451-4 1.303975+6 4.073803-4 1.251066+6 4.100000-4 1.243759+6 4.120975-4 1.237772+6 4.168694-4 1.223669+6 4.200000-4 1.214522+6 4.315191-4 1.181995+6 4.365158-4 1.168402+6 4.415704-4 1.154059+6 4.500000-4 1.130398+6 4.518559-4 1.125283+6 4.623810-4 1.097077+6 4.731513-4 1.067998+6 4.841724-4 1.039523+6 4.897788-4 1.025420+6 4.929400-4 1.017211+6 5.128614-4 9.680499+5 5.188000-4 9.541716+5 5.308844-4 9.255142+5 5.370318-4 9.113739+5 5.500000-4 8.827436+5 5.559043-4 8.702207+5 5.650000-4 8.506522+5 5.688529-4 8.425512+5 5.821032-4 8.155656+5 5.956621-4 7.891901+5 6.000000-4 7.809230+5 6.025596-4 7.759959+5 6.095369-4 7.628218+5 6.165950-4 7.498744+5 6.382635-4 7.121915+5 6.456542-4 6.998341+5 6.683439-4 6.628754+5 6.839116-4 6.393346+5 6.850000-4 6.377331+5 7.000000-4 6.160135+5 7.161434-4 5.935391+5 7.244360-4 5.824121+5 7.329800-4 5.712515+5 7.329800-4 3.172452+6 7.356500-4 3.168560+6 7.357000-4 3.139618+6 7.413102-4 3.030248+6 7.465000-4 2.933393+6 7.477000-4 2.915292+6 7.477000-4 4.546392+6 7.500000-4 4.514312+6 7.507500-4 4.503963+6 7.515000-4 4.490602+6 7.539000-4 4.418999+6 7.540000-4 4.415678+6 7.573000-4 4.276546+6 7.585776-4 4.220174+6 7.608000-4 4.124492+6 7.615000-4 4.092860+6 7.650000-4 3.951175+6 7.673615-4 3.862913+6 7.680000-4 3.834787+6 7.700000-4 3.754923+6 7.710000-4 3.714807+6 7.740000-4 3.605853+6 7.762471-4 3.532383+6 7.780000-4 3.480005+6 7.790000-4 3.452723+6 7.820000-4 3.379072+6 7.852356-4 3.309198+6 7.890000-4 3.242185+6 7.943282-4 3.160077+6 8.000000-4 3.083238+6 8.035261-4 3.036699+6 8.050000-4 3.017504+6 8.150000-4 2.901775+6 8.222426-4 2.826958+6 8.240000-4 2.809177+6 8.317638-4 2.742093+6 8.350000-4 2.714784+6 8.413951-4 2.665242+6 8.470000-4 2.624116+6 8.709636-4 2.464918+6 8.912509-4 2.340727+6 9.015711-4 2.282374+6 9.225714-4 2.172235+6 9.332543-4 2.119158+6 9.440609-4 2.067378+6 9.500000-4 2.039700+6 9.549926-4 2.016813+6 9.772372-4 1.917261+6 9.906800-4 1.859620+6 9.906800-4 2.128363+6 1.000000-3 2.086082+6 1.030000-3 1.958027+6 1.035142-3 1.936848+6 1.047129-3 1.888750+6 1.059254-3 1.843807+6 1.059500-3 1.842912+6 1.059500-3 1.947352+6 1.070000-3 1.909100+6 1.079000-3 1.876358+6 1.100000-3 1.802966+6 1.109175-3 1.771950+6 1.122018-3 1.729881+6 1.135011-3 1.688113+6 1.150000-3 1.640924+6 1.161449-3 1.606167+6 1.165000-3 1.595595+6 1.174898-3 1.566561+6 1.196400-3 1.506021+6 1.196400-3 1.573098+6 1.205000-3 1.549285+6 1.216186-3 1.519126+6 1.230269-3 1.482078+6 1.244515-3 1.445465+6 1.258925-3 1.409598+6 1.273503-3 1.374673+6 1.288250-3 1.340636+6 1.318257-3 1.275089+6 1.333521-3 1.243330+6 1.350000-3 1.210108+6 1.364583-3 1.181448+6 1.380384-3 1.151539+6 1.428894-3 1.066316+6 1.445440-3 1.039197+6 1.450000-3 1.031887+6 1.479108-3 9.868510+5 1.531087-3 9.130288+5 1.566751-3 8.664131+5 1.570000-3 8.623453+5 1.584893-3 8.440566+5 1.603245-3 8.219912+5 1.621810-3 8.003843+5 1.650000-3 7.691449+5 1.698244-3 7.192501+5 1.717908-3 7.002737+5 1.737801-3 6.816609+5 1.798871-3 6.284068+5 1.819701-3 6.116481+5 1.840772-3 5.953454+5 1.862087-3 5.794935+5 1.905461-3 5.489883+5 1.927525-3 5.342176+5 1.949845-3 5.198142+5 1.972423-3 5.058217+5 2.018366-3 4.788405+5 2.041738-3 4.658897+5 2.065380-3 4.532846+5 2.070000-3 4.508801+5 2.089296-3 4.409559+5 2.113489-3 4.289380+5 2.137962-3 4.172659+5 2.150000-3 4.116916+5 2.162719-3 4.058764+5 2.187762-3 3.947251+5 2.264644-3 3.631238+5 2.290868-3 3.531586+5 2.317395-3 3.434724+5 2.344229-3 3.339988+5 2.371374-3 3.247988+5 2.398833-3 3.157957+5 2.400000-3 3.154212+5 2.426610-3 3.070456+5 2.454709-3 2.985188+5 2.483133-3 2.902412+5 2.540973-3 2.743186+5 2.600160-3 2.593013+5 2.630268-3 2.521170+5 2.660725-3 2.451025+5 2.722701-3 2.315508+5 2.754229-3 2.250546+5 2.800000-3 2.160476+5 2.818383-3 2.125765+5 2.917427-3 1.951894+5 2.951209-3 1.896947+5 2.985383-3 1.843246+5 3.000000-3 1.820920+5 3.019952-3 1.790953+5 3.054921-3 1.740125+5 3.090295-3 1.690811+5 3.126079-3 1.642748+5 3.273407-3 1.464083+5 3.311311-3 1.422671+5 3.349654-3 1.381910+5 3.427678-3 1.303983+5 3.467369-3 1.266748+5 3.500000-3 1.237177+5 3.507519-3 1.230484+5 3.548134-3 1.195216+5 3.630781-3 1.127755+5 3.650000-3 1.112851+5 3.715352-3 1.063938+5 3.722400-3 1.058828+5 3.758374-3 1.033163+5 3.801894-3 1.003281+5 3.845918-3 9.743038+4 3.890451-3 9.461841+4 3.900000-3 9.403064+4 4.000000-3 8.816072+4 4.027170-3 8.665557+4 4.073803-3 8.415617+4 4.120975-3 8.173237+4 4.150000-3 8.028630+4 4.168694-3 7.936776+4 4.216965-3 7.705810+4 4.265795-3 7.480749+4 4.415704-3 6.845571+4 4.466836-3 6.646594+4 4.500000-3 6.521513+4 4.518559-3 6.452908+4 4.623810-3 6.082786+4 4.677351-3 5.904339+4 4.731513-3 5.731361+4 4.786301-3 5.563465+4 4.800000-3 5.522438+4 5.000000-3 4.968718+4 5.006100-3 4.953094+4 5.006100-3 1.475449+5 5.011872-3 1.470883+5 5.050000-3 1.441199+5 5.069907-3 1.427903+5 5.128614-3 1.389661+5 5.170000-3 1.363587+5 5.188000-3 1.351332+5 5.308844-3 1.272646+5 5.363200-3 1.239321+5 5.363200-3 1.691957+5 5.370318-3 1.686551+5 5.432503-3 1.640332+5 5.453000-3 1.625219+5 5.550000-3 1.554421+5 5.559043-3 1.547778+5 5.623413-3 1.501585+5 5.684900-3 1.459228+5 5.684900-3 1.681548+5 5.688529-3 1.678876+5 5.754399-3 1.631381+5 5.821032-3 1.585231+5 5.880000-3 1.545934+5 5.888437-3 1.540379+5 5.956621-3 1.496123+5 6.025596-3 1.453156+5 6.165950-3 1.371937+5 6.300000-3 1.299489+5 6.309573-3 1.294444+5 6.382635-3 1.256835+5 6.456542-3 1.220350+5 6.531306-3 1.184929+5 6.606934-3 1.150497+5 6.683439-3 1.117070+5 6.760830-3 1.084376+5 6.839116-3 1.052663+5 7.000000-3 9.914620+4 7.079458-3 9.628537+4 7.244360-3 9.071003+4 7.300000-3 8.893179+4 7.328245-3 8.804245+4 7.413102-3 8.542604+4 7.498942-3 8.288858+4 7.673615-3 7.804311+4 7.762471-3 7.573027+4 7.852356-3 7.348357+4 8.000000-3 6.998837+4 8.222426-3 6.515065+4 8.317638-3 6.322189+4 8.413951-3 6.135130+4 8.511380-3 5.951915+4 8.609938-3 5.774257+4 8.709636-3 5.602032+4 8.912509-3 5.273226+4 9.015711-3 5.116341+4 9.332543-3 4.670795+4 9.549926-3 4.395647+4 9.660509-3 4.264335+4 9.800000-3 4.106206+4 9.885531-3 4.012110+4 1.000000-2 3.890690+4 1.023293-2 3.659017+4 1.035142-2 3.547861+4 1.059254-2 3.335747+4 1.071519-2 3.234634+4 1.083927-2 3.136588+4 1.096478-2 3.041581+4 1.120000-2 2.873765+4 1.122018-2 2.859934+4 1.135011-2 2.773061+4 1.150000-2 2.677358+4 1.161449-2 2.607098+4 1.174898-2 2.527218+4 1.188502-2 2.449835+4 1.202264-2 2.374881+4 1.230269-2 2.231952+4 1.244515-2 2.163752+4 1.273503-2 2.033551+4 1.288250-2 1.971012+4 1.303167-2 1.910393+4 1.318257-2 1.851681+4 1.333521-2 1.794648+4 1.348963-2 1.739128+4 1.364583-2 1.685375+4 1.396368-2 1.582932+4 1.412538-2 1.534122+4 1.462177-2 1.396536+4 1.479108-2 1.353542+4 1.496236-2 1.311901+4 1.500000-2 1.302989+4 1.513561-2 1.271313+4 1.548817-2 1.193806+4 1.566751-2 1.156629+4 1.584893-2 1.120640+4 1.603245-2 1.085793+4 1.621810-2 1.052020+4 1.678804-2 9.566169+3 1.698244-2 9.268318+3 1.717908-2 8.980011+3 1.737801-2 8.700830+3 1.757924-2 8.430478+3 1.778279-2 8.168505+3 1.819701-2 7.666205+3 1.840772-2 7.427003+3 1.862087-2 7.195193+3 1.883649-2 6.969369+3 1.949845-2 6.333117+3 1.972423-2 6.134566+3 1.995262-2 5.942391+3 2.000000-2 5.903574+3 2.018366-2 5.755626+3 2.041738-2 5.574665+3 2.065380-2 5.399498+3 2.089296-2 5.229785+3 2.113489-2 5.065506+3 2.150000-2 4.830625+3 2.162719-2 4.752304+3 2.187762-2 4.602750+3 2.213400-2 4.456316+3 2.238721-2 4.317304+3 2.264644-2 4.181140+3 2.300000-2 4.004835+3 2.317395-2 3.921246+3 2.344229-2 3.796961+3 2.398833-2 3.560321+3 2.426610-2 3.447678+3 2.454709-2 3.338462+3 2.500000-2 3.172261+3 2.570396-2 2.935748+3 2.576800-2 2.915457+3 2.600160-2 2.842869+3 2.630268-2 2.752950+3 2.722701-2 2.499278+3 2.754229-2 2.419540+3 2.786121-2 2.342408+3 2.818383-2 2.267773+3 2.851018-2 2.195511+3 2.884032-2 2.125496+3 2.917427-2 2.057768+3 3.019952-2 1.867450+3 3.054921-2 1.808095+3 3.126079-2 1.695101+3 3.162278-2 1.641033+3 3.198895-2 1.588734+3 3.235937-2 1.537748+3 3.311311-2 1.440725+3 3.349654-2 1.394549+3 3.388442-2 1.349811+3 3.427678-2 1.306540+3 3.548134-2 1.184994+3 3.589219-2 1.147100+3 3.598500-2 1.138771+3 3.598500-2 6.751196+3 3.630781-2 6.611116+3 3.680000-2 6.387283+3 3.715352-2 6.243595+3 3.758374-2 6.050339+3 3.801894-2 5.862738+3 3.890451-2 5.530752+3 3.935501-2 5.371906+3 3.950000-2 5.322129+3 4.000000-2 5.146832+3 4.073803-2 4.902337+3 4.120975-2 4.754389+3 4.216965-2 4.471811+3 4.265795-2 4.336913+3 4.315191-2 4.206100+3 4.415704-2 3.959261+3 4.466836-2 3.841187+3 4.518559-2 3.726651+3 4.570882-2 3.615545+3 4.623810-2 3.507726+3 4.677351-2 3.403101+3 4.731513-2 3.301605+3 4.800000-2 3.179142+3 4.897788-2 3.011196+3 5.011872-2 2.830302+3 5.069907-2 2.743988+3 5.128614-2 2.660316+3 5.188000-2 2.579206+3 5.248075-2 2.500577+3 5.308844-2 2.424254+3 5.370318-2 2.350266+3 5.432503-2 2.278546+3 5.495409-2 2.207981+3 5.559043-2 2.139590+3 5.623413-2 2.073320+3 5.956621-2 1.771523+3 6.095369-2 1.663523+3 6.200000-2 1.587959+3 6.237348-2 1.562093+3 6.309573-2 1.513679+3 6.382635-2 1.466770+3 6.456542-2 1.421319+3 6.531306-2 1.377279+3 6.606934-2 1.334600+3 6.760830-2 1.253172+3 6.918310-2 1.175490+3 7.079458-2 1.102631+3 7.161434-2 1.067913+3 7.413102-2 9.701958+2 7.762471-2 8.535684+2 7.852356-2 8.266770+2 7.943282-2 8.006290+2 8.000000-2 7.849443+2 8.128305-2 7.509730+2 8.317638-2 7.044022+2 8.413951-2 6.822140+2 8.500000-2 6.631878+2 8.511380-2 6.606935+2 8.609938-2 6.396147+2 8.912509-2 5.803366+2 9.120108-2 5.438694+2 9.225714-2 5.265059+2 9.440609-2 4.934268+2 9.772372-2 4.476608+2 1.000000-1 4.195363+2 1.011580-1 4.061444+2 1.035142-1 3.806335+2 1.083927-1 3.343241+2 1.096478-1 3.235543+2 1.161449-1 2.746498+2 1.188502-1 2.572279+2 1.202264-1 2.489376+2 1.216186-1 2.409134+2 1.244515-1 2.256360+2 1.258925-1 2.183655+2 1.318257-1 1.915520+2 1.364583-1 1.736290+2 1.380384-1 1.680358+2 1.396368-1 1.626233+2 1.412538-1 1.573851+2 1.428894-1 1.523161+2 1.462177-1 1.426602+2 1.513561-1 1.293130+2 1.566751-1 1.172177+2 1.603245-1 1.097916+2 1.640590-1 1.028364+2 1.659587-1 9.953199+1 1.678804-1 9.633399+1 1.698244-1 9.323894+1 1.757924-1 8.453849+1 1.778279-1 8.182293+1 1.819701-1 7.665068+1 1.840772-1 7.418907+1 1.883649-1 6.950165+1 1.927525-1 6.511060+1 1.972423-1 6.099719+1 2.000000-1 5.864381+1 2.018366-1 5.714426+1 2.041738-1 5.531008+1 2.089296-1 5.181665+1 2.137962-1 4.854402+1 2.187762-1 4.547943+1 2.238721-1 4.263839+1 2.264644-1 4.128517+1 2.290868-1 3.997489+1 2.344229-1 3.747815+1 2.371374-1 3.628892+1 2.398833-1 3.513747+1 2.426610-1 3.402257+1 2.454709-1 3.294433+1 2.483133-1 3.190076+1 2.511886-1 3.089026+1 2.570396-1 2.896428+1 2.600160-1 2.804707+1 2.650000-1 2.659759+1 2.691535-1 2.548174+1 2.722701-1 2.468599+1 2.754229-1 2.391508+1 2.786121-1 2.316846+1 2.818383-1 2.244518+1 2.917427-1 2.040859+1 2.951209-1 1.977263+1 2.985383-1 1.915648+1 3.000060-1 1.889989+1 3.019952-1 1.855956+1 3.054921-1 1.798125+1 3.090295-1 1.742113+1 3.126079-1 1.688758+1 3.198895-1 1.586906+1 3.235937-1 1.538318+1 3.273407-1 1.491219+1 3.311311-1 1.445565+1 3.349654-1 1.401310+1 3.388442-1 1.358412+1 3.427678-1 1.316898+1 3.467369-1 1.276663+1 3.507519-1 1.237659+1 3.548134-1 1.199846+1 3.589219-1 1.163862+1 3.630781-1 1.128964+1 3.672823-1 1.095116+1 3.758374-1 1.030434+1 3.801894-1 9.995403+0 3.845918-1 9.695810+0 3.890451-1 9.405230+0 3.935501-1 9.123883+0 3.981072-1 8.850960+0 4.000000-1 8.740907+0 4.027170-1 8.586216+0 4.073803-1 8.334312+0 4.168694-1 7.852660+0 4.216965-1 7.622380+0 4.365158-1 6.971446+0 4.415705-1 6.767085+0 4.466836-1 6.569149+0 4.518559-1 6.377017+0 4.570882-1 6.194417+0 4.623810-1 6.017049+0 4.841724-1 5.357386+0 4.897788-1 5.204111+0 4.954502-1 5.055236+0 5.000000-1 4.940070+0 5.011872-1 4.910699+0 5.069907-1 4.770608+0 5.188000-1 4.508512+0 5.308844-1 4.260937+0 5.370318-1 4.142303+0 5.432503-1 4.026977+0 5.495409-1 3.914861+0 5.559043-1 3.805880+0 5.623413-1 3.699993+0 5.688529-1 3.599613+0 5.821032-1 3.406954+0 5.888437-1 3.314580+0 5.956621-1 3.224714+0 6.025596-1 3.137284+0 6.095369-1 3.052226+0 6.165950-1 2.969498+0 6.237348-1 2.889046+0 6.309573-1 2.812656+0 6.382635-1 2.738483+0 6.456542-1 2.666272+0 6.531306-1 2.596002+0 6.606935-1 2.527584+0 6.683439-1 2.460972+0 6.760830-1 2.396132+0 6.839117-1 2.333019+0 6.918310-1 2.271579+0 6.998420-1 2.213224+0 7.079458-1 2.156516+0 7.161434-1 2.101263+0 7.244360-1 2.047456+0 7.328245-1 1.995027+0 7.413102-1 1.943956+0 7.498942-1 1.894192+0 7.585776-1 1.845714+0 7.673615-1 1.798484+0 7.762471-1 1.753757+0 7.943282-1 1.667873+0 8.000000-1 1.642195+0 8.035261-1 1.626529+0 8.222427-1 1.546915+0 8.317638-1 1.508591+0 8.511380-1 1.434782+0 8.609938-1 1.400309+0 8.709636-1 1.366780+0 8.810489-1 1.334055+0 8.912509-1 1.302134+0 9.015711-1 1.270989+0 9.120108-1 1.240589+0 9.225714-1 1.210918+0 9.332543-1 1.181961+0 9.440609-1 1.154573+0 9.549926-1 1.127923+0 9.660509-1 1.101900+0 9.772372-1 1.076496+0 9.885531-1 1.051683+0 1.000000+0 1.027442+0 1.011579+0 1.003772+0 1.023293+0 9.806530-1 1.035142+0 9.586482-1 1.047129+0 9.371911-1 1.059254+0 9.162177-1 1.071519+0 8.957162-1 1.083927+0 8.756796-1 1.096478+0 8.561029-1 1.109175+0 8.369629-1 1.135011+0 7.999695-1 1.148154+0 7.820918-1 1.161449+0 7.646199-1 1.174898+0 7.475416-1 1.202264+0 7.154487-1 1.216186+0 6.999221-1 1.230269+0 6.847374-1 1.250000+0 6.643085-1 1.273503+0 6.411712-1 1.288250+0 6.272763-1 1.303167+0 6.136835-1 1.318257+0 6.007904-1 1.333521+0 5.881689-1 1.348963+0 5.758152-1 1.364583+0 5.637226-1 1.380384+0 5.518839-1 1.396368+0 5.403038-1 1.412538+0 5.289660-1 1.428894+0 5.178676-1 1.462177+0 4.963642-1 1.479108+0 4.862775-1 1.500000+0 4.742655-1 1.513561+0 4.667158-1 1.531087+0 4.572332-1 1.548817+0 4.479426-1 1.603245+0 4.212070-1 1.621810+0 4.126544-1 1.640590+0 4.042758-1 1.678804+0 3.885451-1 1.698244+0 3.809111-1 1.717908+0 3.734277-1 1.737801+0 3.660943-1 1.757924+0 3.589052-1 1.798871+0 3.449570-1 1.819701+0 3.381875-1 1.840772+0 3.315509-1 1.862087+0 3.250449-1 1.905461+0 3.128226-1 1.927525+0 3.068853-1 1.949845+0 3.010609-1 1.972423+0 2.953503-1 2.000000+0 2.886073-1 2.018366+0 2.842550-1 2.044000+0 2.783539-1 2.065380+0 2.735806-1 2.113489+0 2.633078-1 2.162719+0 2.537540-1 2.187762+0 2.491082-1 2.213095+0 2.445477-1 2.238721+0 2.400731-1 2.264644+0 2.356803-1 2.290868+0 2.313706-1 2.317395+0 2.271399-1 2.344229+0 2.229865-1 2.398833+0 2.149068-1 2.454709+0 2.073771-1 2.483133+0 2.037120-1 2.511886+0 2.001119-1 2.540973+0 1.965771-1 2.570396+0 1.931049-1 2.600160+0 1.896963-1 2.630268+0 1.863479-1 2.660725+0 1.830586-1 2.722701+0 1.766535-1 2.754229+0 1.736380-1 2.818383+0 1.677616-1 2.851018+0 1.648986-1 2.884032+0 1.620844-1 2.917427+0 1.593199-1 2.951209+0 1.566025-1 2.985383+0 1.539331-1 3.019952+0 1.513093-1 3.054921+0 1.487303-1 3.126079+0 1.437037-1 3.162278+0 1.413356-1 3.235937+0 1.367168-1 3.273407+0 1.344644-1 3.311311+0 1.322492-1 3.349654+0 1.300717-1 3.388442+0 1.279299-1 3.467369+0 1.237543-1 3.507519+0 1.217179-1 3.548134+0 1.197150-1 3.630781+0 1.158077-1 3.672823+0 1.139631-1 3.758374+0 1.103619-1 3.801894+0 1.086044-1 3.845918+0 1.068748-1 3.890451+0 1.051737-1 3.935501+0 1.034996-1 4.073803+0 9.863834-2 4.120975+0 9.706923-2 4.168694+0 9.552505-2 4.265795+0 9.251023-2 4.315191+0 9.108388-2 4.415704+0 8.829726-2 4.466836+0 8.693613-2 4.518559+0 8.559606-2 4.570882+0 8.427728-2 4.623810+0 8.297883-2 4.786301+0 7.920462-2 4.841724+0 7.798509-2 4.897788+0 7.678436-2 5.011872+0 7.443820-2 5.069907+0 7.332915-2 5.188000+0 7.116071-2 5.248075+0 7.010071-2 5.308844+0 6.905655-2 5.370318+0 6.802845-2 5.432503+0 6.701566-2 5.623413+0 6.406868-2 5.754399+0 6.217638-2 5.821032+0 6.125129-2 5.956621+0 5.944232-2 6.025596+0 5.858450-2 6.165950+0 5.690604-2 6.237348+0 5.608497-2 6.382635+0 5.447825-2 6.456542+0 5.369263-2 6.531306+0 5.291832-2 6.760830+0 5.066313-2 6.918310+0 4.921332-2 7.000000+0 4.849025-2 7.161434+0 4.711611-2 7.244360+0 4.645730-2 7.413102+0 4.516738-2 7.498942+0 4.453593-2 7.673615+0 4.329945-2 7.762471+0 4.269415-2 7.852356+0 4.209758-2 7.943282+0 4.150935-2 8.222427+0 3.979451-2 8.413951+0 3.869083-2 8.511380+0 3.815052-2 8.609938+0 3.761777-2 8.810489+0 3.657452-2 8.912509+0 3.607888-2 9.120108+0 3.510778-2 9.225714+0 3.463210-2 9.440609+0 3.370001-2 9.549926+0 3.324342-2 9.660509+0 3.279321-2 9.772372+0 3.234911-2 1.011579+1 3.105328-2 1.035142+1 3.021834-2 1.059254+1 2.940584-2 1.071519+1 2.900787-2 1.100000+1 2.812103-2 1.109175+1 2.785327-2 1.135011+1 2.712433-2 1.148154+1 2.676706-2 1.174898+1 2.606661-2 1.188502+1 2.572330-2 1.202264+1 2.538457-2 1.216186+1 2.505034-2 1.230269+1 2.472052-2 1.303167+1 2.313618-2 1.333521+1 2.253126-2 1.380384+1 2.165339-2 1.412538+1 2.108726-2 1.428894+1 2.081745-2 1.445440+1 2.055110-2 1.462177+1 2.028818-2 1.479108+1 2.002871-2 1.500000+1 1.971707-2 1.717908+1 1.694357-2 1.819701+1 1.588782-2 1.883649+1 1.528622-2 1.905461+1 1.509080-2 1.927525+1 1.490282-2 2.162719+1 1.314857-2 2.600160+1 1.076106-2 2.630268+1 1.062713-2 2.660725+1 1.049765-2 2.754229+1 1.011886-2 3.715352+1 7.358856-3 3.758374+1 7.269260-3 3.801894+1 7.182341-3 3.935501+1 6.927932-3 5.688529+1 4.715610-3 5.754399+1 4.659262-3 5.821032+1 4.604392-3 5.888437+1 4.550180-3 6.095369+1 4.391391-3 9.440609+1 2.800269-3 9.549926+1 2.767309-3 9.660509+1 2.734739-3 9.772372+1 2.702931-3 1.011579+2 2.609740-3 1.883649+2 1.387761-3 1.905461+2 1.371625-3 1.927525+2 1.355677-3 1.949845+2 1.340038-3 2.018366+2 1.294204-3 3.758374+2 6.917430-4 3.801894+2 6.837647-4 3.845918+2 6.758786-4 3.890451+2 6.681186-4 4.027170+2 6.453714-4 1.496236+3 1.730392-4 1.513561+3 1.710528-4 1.531087+3 1.690891-4 1.548817+3 1.671527-4 1.603245+3 1.614760-4 1.000000+5 2.584982-6 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 3.690000-6 3.690000-6 1.643000-5 3.690000-6 1.643000-5 1.642750-5 1.827000-5 1.642517-5 1.827000-5 1.730180-5 2.150000-5 1.722099-5 3.097000-5 1.717678-5 3.097000-5 1.725961-5 3.400000-5 1.732822-5 3.845918-5 1.755029-5 4.330000-5 1.793005-5 6.025596-5 1.957223-5 6.760830-5 2.015791-5 7.413102-5 2.057408-5 8.317638-5 2.100255-5 8.324000-5 2.100484-5 8.324000-5 4.138012-5 8.433300-5 4.300142-5 8.561000-5 4.355480-5 8.561000-5 4.367017-5 8.732000-5 4.419100-5 9.225714-5 4.430321-5 9.850000-5 4.412796-5 1.061300-4 4.373518-5 1.135011-4 4.312405-5 1.220000-4 4.208379-5 1.303167-4 4.071017-5 1.435000-4 3.822562-5 1.485000-4 3.750362-5 1.531087-4 3.707996-5 1.566751-4 3.692796-5 1.621810-4 3.696634-5 1.677600-4 3.725029-5 1.677600-4 5.819006-5 1.744000-4 5.666987-5 1.800000-4 5.586093-5 1.819700-4 5.563750-5 1.819700-4 5.947842-5 1.910000-4 5.836979-5 2.000000-4 5.758793-5 2.162719-4 5.667160-5 2.318600-4 5.607871-5 2.318600-4 5.974983-5 2.368000-4 6.003659-5 2.440000-4 5.998076-5 2.722701-4 5.919834-5 3.054921-4 5.871867-5 3.548134-4 5.844701-5 4.200000-4 5.845904-5 5.559043-4 5.894775-5 7.329800-4 5.990955-5 7.329800-4 1.029646-4 7.357000-4 1.029266-4 7.477000-4 1.024795-4 7.477000-4 1.057301-4 7.585776-4 1.053936-4 7.852356-4 1.040853-4 8.317638-4 1.034040-4 9.906800-4 1.029516-4 9.906800-4 1.131955-4 1.059500-3 1.136261-4 1.059500-3 1.174566-4 1.196400-3 1.191848-4 1.196400-3 1.238333-4 1.570000-3 1.287757-4 1.972423-3 1.332395-4 2.426610-3 1.374293-4 3.019952-3 1.419011-4 3.758374-3 1.463431-4 4.677351-3 1.507194-4 5.006100-3 1.520337-4 5.006100-3 2.134856-4 5.363200-3 2.140677-4 5.363200-3 2.252909-4 5.684900-3 2.257004-4 5.684900-3 2.360023-4 8.000000-3 2.402654-4 1.202264-2 2.452708-4 1.778279-2 2.501326-4 2.630268-2 2.549076-4 3.598500-2 2.585521-4 3.598500-2 2.598306-4 9.120108-2 2.611531-4 3.630781-1 2.620149-4 1.000000+5 2.622000-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.690000-6 0.0 8.561000-5 0.0 8.561000-5 1.557348-9 8.565000-5 1.594175-9 8.579000-5 1.745200-9 8.590000-5 1.879321-9 8.605000-5 2.086709-9 8.620000-5 2.324265-9 8.635000-5 2.595961-9 8.646000-5 2.817269-9 8.661000-5 3.153484-9 8.676000-5 3.530203-9 8.687000-5 3.832329-9 8.702000-5 4.281183-9 8.706000-5 4.439126-9 8.732000-5 4.872328-9 8.766000-5 5.598283-9 8.873000-5 6.368281-9 8.998000-5 6.267303-9 9.100000-5 5.913776-9 9.145000-5 5.874883-9 9.160000-5 5.832469-9 9.335000-5 5.244459-9 9.420000-5 5.020079-9 9.500000-5 4.866869-9 9.660509-5 4.680014-9 9.720000-5 4.603329-9 9.760000-5 4.571003-9 9.850000-5 4.550767-9 1.011579-4 4.525314-9 1.061300-4 4.513898-9 1.096478-4 4.480814-9 1.135011-4 4.422084-9 1.161449-4 4.369944-9 1.205000-4 4.266408-9 1.260000-4 4.102470-9 1.303167-4 3.947202-9 1.333521-4 3.822447-9 1.380384-4 3.612140-9 1.450000-4 3.285163-9 1.485000-4 3.135914-9 1.515000-4 3.026407-9 1.531087-4 2.975685-9 1.548817-4 2.926931-9 1.566751-4 2.885862-9 1.585000-4 2.852293-9 1.606600-4 2.824004-9 1.621810-4 2.808069-9 1.643000-4 2.796100-9 1.660000-4 2.792431-9 1.677600-4 2.795429-9 1.677600-4 3.378838-9 1.737801-4 3.354885-9 1.762000-4 3.353158-9 1.819700-4 3.371067-9 1.819700-4 4.536989-9 1.890000-4 4.454132-9 1.940000-4 4.410168-9 2.000000-4 4.384148-9 2.089296-4 4.377163-9 2.318600-4 4.407664-9 2.318600-4 4.843680-9 2.355000-4 4.890136-9 2.400000-4 4.916695-9 2.470000-4 4.925601-9 2.818383-4 4.929411-9 6.382635-4 5.158733-9 7.329800-4 5.213286-9 7.329800-4 6.422536-9 7.477000-4 6.409956-9 7.477000-4 1.287714-7 7.515000-4 1.303325-7 7.540000-4 1.318003-7 7.573000-4 1.340770-7 7.615000-4 1.361283-7 7.650000-4 1.369611-7 7.673615-4 1.369354-7 7.710000-4 1.350274-7 7.790000-4 1.294940-7 7.820000-4 1.278189-7 7.852356-4 1.265026-7 7.890000-4 1.253816-7 7.943282-4 1.244892-7 8.150000-4 1.231138-7 8.350000-4 1.214679-7 8.470000-4 1.210667-7 9.225714-4 1.202178-7 9.906800-4 1.199102-7 9.906800-4 1.925316-7 1.047129-3 1.949057-7 1.059500-3 1.961619-7 1.059500-3 2.291630-7 1.100000-3 2.339646-7 1.196400-3 2.433692-7 1.196400-3 2.744424-7 1.380384-3 2.944022-7 1.479108-3 3.044609-7 1.737801-3 3.284869-7 2.041738-3 3.528807-7 2.290868-3 3.707514-7 2.660725-3 3.937578-7 3.054921-3 4.148105-7 3.507519-3 4.357112-7 4.073803-3 4.579043-7 4.731513-3 4.794176-7 5.006100-3 4.873051-7 5.006100-3 3.027918-4 5.128614-3 3.031896-4 5.363200-3 3.034691-4 5.363200-3 3.735120-4 5.623413-3 3.744635-4 5.684900-3 3.744604-4 5.684900-3 3.924147-4 7.328245-3 3.955879-4 1.174898-2 3.990874-4 2.317395-2 4.020324-4 3.598500-2 4.033441-4 3.598500-2 2.415063-2 4.216965-2 2.433070-2 5.495409-2 2.455601-2 7.943282-2 2.474961-2 1.318257-1 2.489351-2 3.388442-1 2.498406-2 1.303167+0 2.506650-2 1.000000+5 2.506542-2 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.690000-6 0.0 1.643000-5 1.274000-5 1.643000-5 2.499127-9 1.827000-5 1.844827-6 1.827000-5 9.682001-7 1.883649-5 1.559328-6 1.950000-5 2.243816-6 2.090000-5 3.671345-6 2.483133-5 7.634519-6 3.097000-5 1.379322-5 3.097000-5 1.371039-5 3.400000-5 1.667178-5 3.845918-5 2.090889-5 4.450000-5 2.646099-5 6.165950-5 4.196495-5 7.413102-5 5.355694-5 8.324000-5 6.223516-5 8.324000-5 4.185988-5 8.433300-5 4.133158-5 8.561000-5 4.205520-5 8.561000-5 4.193827-5 8.732000-5 4.312413-5 9.160000-5 4.728600-5 9.850000-5 5.436748-5 1.096478-4 6.616858-5 1.194100-4 7.696397-5 1.303167-4 8.960258-5 1.465000-4 1.087345-4 1.548817-4 1.178935-4 1.650000-4 1.279120-4 1.677600-4 1.305069-4 1.677600-4 1.095666-4 1.762000-4 1.198356-4 1.819700-4 1.263291-4 1.819700-4 1.224870-4 1.972423-4 1.394376-4 2.190000-4 1.624444-4 2.318600-4 1.757769-4 2.318600-4 1.721053-4 2.430000-4 1.829954-4 3.054921-4 2.467685-4 5.128614-4 4.541045-4 7.329800-4 6.730652-4 7.329800-4 6.300089-4 7.477000-4 6.452141-4 7.477000-4 6.418411-4 8.350000-4 7.314977-4 9.906800-4 8.876085-4 9.906800-4 8.772920-4 1.059500-3 9.456778-4 1.059500-3 9.418142-4 1.196400-3 1.076972-3 1.196400-3 1.072292-3 3.019952-3 2.877638-3 5.006100-3 4.853579-3 5.006100-3 4.489823-3 5.363200-3 4.845663-3 5.363200-3 4.764397-3 5.684900-3 5.084739-3 5.684900-3 5.056483-3 3.598500-2 3.532310-2 3.598500-2 1.157454-2 3.758374-2 1.311150-2 4.265795-2 1.805764-2 5.432503-2 2.951520-2 9.225714-2 6.719227-2 1.000000+5 9.999997+4 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.598500-2 5.612425+3 3.630781-2 5.500675+3 3.680000-2 5.318200+3 3.715352-2 5.202919+3 3.801894-2 4.887702+3 3.950000-2 4.447600+3 4.315191-2 3.525903+3 4.800000-2 2.677020+3 5.432503-2 1.925996+3 6.760830-2 1.065033+3 8.500000-2 5.659220+2 1.083927-1 2.861525+2 1.640590-1 8.828481+1 2.187762-1 3.908293+1 2.650000-1 2.286940+1 3.090295-1 1.498466+1 3.548134-1 1.032379+1 4.027170-1 7.390162+0 4.518559-1 5.490354+0 5.069907-1 4.108648+0 5.623413-1 3.187689+0 6.237348-1 2.489750+0 6.918310-1 1.958256+0 7.673615-1 1.550920+0 8.511380-1 1.237791+0 9.332543-1 1.020079+0 1.023293+0 8.465742-1 1.174898+0 6.454298-1 1.303167+0 5.298365-1 1.462177+0 4.285079-1 1.640590+0 3.489971-1 1.862087+0 2.806042-1 2.113489+0 2.273089-1 2.398833+0 1.855260-1 2.722701+0 1.525032-1 3.126079+0 1.240596-1 3.630781+0 9.997722-2 4.265795+0 7.986447-2 5.011872+0 6.426270-2 5.956621+0 5.131668-2 7.161434+0 4.067548-2 8.810489+0 3.157486-2 1.100000+1 2.427700-2 1.412538+1 1.820484-2 1.905461+1 1.302828-2 2.630268+1 9.174703-3 3.758374+1 6.275770-3 5.754399+1 4.022474-3 9.660509+1 2.360986-3 1.927525+2 1.170398-3 3.845918+2 5.835081-4 1.531087+3 1.459802-4 1.000000+5 2.231700-6 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.598500-2 2.600900-4 1.000000+5 2.600900-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.598500-2 2.896900-2 1.000000+5 2.896900-2 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.598500-2 6.755910-3 1.000000+5 9.999997+4 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.684900-3 2.223200+4 5.880000-3 2.107700+4 6.025596-3 2.020002+4 6.165950-3 1.950930+4 7.300000-3 1.460246+4 7.762471-3 1.306238+4 9.015711-3 9.912281+3 9.885531-3 8.294079+3 1.161449-2 6.054820+3 1.318257-2 4.675554+3 1.500000-2 3.576360+3 1.778279-2 2.481147+3 2.000000-2 1.914528+3 2.300000-2 1.397870+3 2.722701-2 9.466204+2 3.198895-2 6.461907+2 3.758374-2 4.372565+2 4.415704-2 2.934117+2 5.248075-2 1.896872+2 6.200000-2 1.235030+2 7.413102-2 7.735314+1 8.912509-2 4.737756+1 1.096478-1 2.707897+1 1.428894-1 1.312515+1 2.426610-1 3.066138+0 2.917427-1 1.861371+0 3.388442-1 1.248999+0 3.890451-1 8.701371-1 4.415705-1 6.290486-1 5.000000-1 4.609264-1 5.623413-1 3.462721-1 6.309573-1 2.636600-1 6.998420-1 2.077327-1 7.762471-1 1.647192-1 8.609938-1 1.315831-1 9.440609-1 1.085230-1 1.035142+0 9.013154-2 1.174898+0 7.030466-2 1.303167+0 5.771161-2 1.462177+0 4.667365-2 1.640590+0 3.801118-2 1.862087+0 3.056026-2 2.113489+0 2.475559-2 2.398833+0 2.020454-2 2.722701+0 1.660719-2 3.126079+0 1.350881-2 3.630781+0 1.088625-2 4.265795+0 8.696141-3 5.011872+0 6.997372-3 5.956621+0 5.587689-3 7.161434+0 4.428957-3 8.810489+0 3.438068-3 1.100000+1 2.643400-3 1.412538+1 1.982248-3 1.905461+1 1.418617-3 2.630268+1 9.989993-4 3.758374+1 6.833463-4 5.754399+1 4.379910-4 9.660509+1 2.570762-4 1.927525+2 1.274409-4 3.845918+2 6.353559-5 1.531087+3 1.589513-5 1.000000+5 2.430000-7 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.684900-3 3.036200-4 1.000000+5 3.036200-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.684900-3 5.102600-4 1.000000+5 5.102600-4 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.684900-3 4.871020-3 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.363200-3 4.526361+4 5.453000-3 4.386600+4 5.550000-3 4.223600+4 5.888437-3 3.634700+4 6.683439-3 2.609400+4 7.328245-3 2.033600+4 8.413951-3 1.388500+4 1.023293-2 8.025300+3 1.120000-2 6.188800+3 1.333521-2 3.719700+3 1.621810-2 2.074200+3 1.883649-2 1.316100+3 2.162719-2 8.604700+2 2.576800-2 4.982200+2 3.126079-2 2.703400+2 3.801894-2 1.443700+2 4.731513-2 7.105200+1 6.237348-2 2.876000+1 1.216186-1 3.194475+0 1.513561-1 1.565509+0 1.819701-1 8.647510-1 2.137962-1 5.180908-1 2.454709-1 3.362388-1 2.818383-1 2.198422-1 3.198895-1 1.500209-1 3.589219-1 1.067151-1 4.027170-1 7.645152-2 4.518559-1 5.519069-2 5.011872-1 4.144861-2 5.559043-1 3.134463-2 6.165950-1 2.387980-2 6.760830-1 1.887903-2 7.498942-1 1.461671-2 8.317638-1 1.140147-2 9.440609-1 8.475156-3 1.000000+0 7.454100-3 1.071519+0 6.445798-3 1.148154+0 5.613767-3 1.250000+0 4.774158-3 1.380384+0 3.984064-3 1.717908+0 2.710701-3 1.949845+0 2.184048-3 2.213095+0 1.774315-3 2.511886+0 1.452073-3 2.884032+0 1.175946-3 3.311311+0 9.594478-4 3.845918+0 7.754122-4 4.518559+0 6.210268-4 5.308844+0 5.010248-4 6.382635+0 3.952398-4 7.762471+0 3.097218-4 9.549926+0 2.411734-4 1.202264+1 1.841777-4 1.462177+1 1.472796-4 1.927525+1 1.082013-4 2.660725+1 7.621771-5 3.801894+1 5.214670-5 5.821032+1 3.343122-5 9.660509+1 1.985772-5 1.927525+2 9.844032-6 3.845918+2 4.907666-6 1.531087+3 1.227819-6 1.000000+5 1.877000-8 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.363200-3 2.560200-4 1.000000+5 2.560200-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.363200-3 5.652900-4 1.000000+5 5.652900-4 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.363200-3 4.541890-3 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.006100-3 9.801399+4 5.050000-3 9.569348+4 5.170000-3 9.078560+4 5.432503-3 7.979782+4 6.300000-3 5.350200+4 7.000000-3 3.983656+4 8.413951-3 2.356875+4 9.800000-3 1.516948+4 1.150000-2 9.417320+3 1.273503-2 6.928486+3 1.548817-2 3.798234+3 1.862087-2 2.133018+3 2.213400-2 1.229677+3 2.630268-2 7.035826+2 3.126079-2 3.992093+2 3.758374-2 2.164364+2 4.570882-2 1.120383+2 5.623413-2 5.538822+1 7.079458-2 2.514618+1 1.188502-1 4.216577+0 1.566751-1 1.639097+0 1.840772-1 9.510807-1 2.137962-1 5.780029-1 2.454709-1 3.677903-1 2.754229-1 2.540367-1 3.090295-1 1.767330-1 3.427678-1 1.283927-1 3.801894-1 9.394947-2 4.216965-1 6.927473-2 4.623810-1 5.321032-2 5.069907-1 4.115408-2 5.559043-1 3.205306-2 6.095369-1 2.514781-2 6.683439-1 1.988389-2 7.328245-1 1.583789-2 8.222427-1 1.202783-2 8.912509-1 9.974622-3 9.549926-1 8.555093-3 1.011579+0 7.572131-3 1.109175+0 6.282154-3 1.216186+0 5.251129-3 1.333521+0 4.421808-3 1.500000+0 3.579806-3 1.717908+0 2.819031-3 1.949845+0 2.271764-3 2.213095+0 1.845313-3 2.511886+0 1.510046-3 2.884032+0 1.222839-3 3.311311+0 9.976930-4 3.845918+0 8.063191-4 4.518559+0 6.457779-4 5.308844+0 5.209969-4 6.382635+0 4.109979-4 7.762471+0 3.220686-4 9.549926+0 2.507862-4 1.188502+1 1.940868-4 1.462177+1 1.531486-4 1.927525+1 1.125125-4 2.660725+1 7.925570-5 3.801894+1 5.422572-5 5.821032+1 3.476346-5 9.772372+1 2.040800-5 1.949845+2 1.011786-5 3.890451+2 5.044602-6 1.548817+3 1.262077-6 1.000000+5 1.951900-8 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.006100-3 2.445400-4 1.000000+5 2.445400-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.006100-3 4.555600-4 1.000000+5 4.555600-4 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.006100-3 4.306000-3 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.196400-3 6.707716+4 1.380384-3 5.625791+4 1.445440-3 5.297601+4 1.737801-3 4.074266+4 2.018366-3 3.272837+4 2.187762-3 2.885558+4 2.660725-3 2.102089+4 2.985383-3 1.729429+4 3.467369-3 1.334590+4 4.168694-3 9.587363+3 4.800000-3 7.388100+3 5.559043-3 5.599220+3 6.606934-3 4.008110+3 7.852356-3 2.844714+3 9.332543-3 2.002607+3 1.096478-2 1.432506+3 1.288250-2 1.017168+3 1.500000-2 7.311900+2 1.757924-2 5.145771+2 2.065380-2 3.573941+2 2.426610-2 2.463322+2 2.851018-2 1.685188+2 3.349654-2 1.144232+2 3.935501-2 7.711463+1 4.623810-2 5.158971+1 5.495409-2 3.327633+1 6.531306-2 2.129988+1 7.852356-2 1.313094+1 9.440609-2 8.035435+0 1.202264-1 4.176880+0 2.570396-1 5.239696-1 3.054921-1 3.292671-1 3.548134-1 2.215804-1 4.073803-1 1.548179-1 4.623810-1 1.122526-1 5.188000-1 8.439886-2 5.821032-1 6.393657-2 6.456542-1 5.013943-2 7.161434-1 3.958274-2 8.000000-1 3.097703-2 8.810489-1 2.515757-2 9.660509-1 2.076894-2 1.083927+0 1.650089-2 1.230269+0 1.290441-2 1.380384+0 1.039988-2 1.548817+0 8.440810-3 1.757924+0 6.761982-3 2.000000+0 5.437703-3 2.264644+0 4.440530-3 2.570396+0 3.638390-3 2.951209+0 2.950175-3 3.388442+0 2.409842-3 3.935501+0 1.949762-3 4.623810+0 1.563159-3 5.432503+0 1.262448-3 6.531306+0 9.968824-4 7.943282+0 7.818838-4 9.772372+0 6.093537-4 1.230269+1 4.656863-4 1.500000+1 3.716300-4 1.927525+1 2.809538-4 2.660725+1 1.979115-4 3.801894+1 1.354044-4 5.888437+1 8.578002-5 9.772372+1 5.096052-5 1.949845+2 2.526483-5 3.890451+2 1.259684-5 1.548817+3 3.151598-6 1.000000+5 4.874000-8 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.196400-3 2.282000-4 1.000000+5 2.282000-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.196400-3 9.721000-7 1.000000+5 9.721000-7 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.196400-3 9.672279-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.059500-3 1.044400+5 1.079000-3 1.031563+5 1.165000-3 9.668700+4 1.244515-3 9.055058+4 1.333521-3 8.350325+4 1.450000-3 7.518080+4 1.584893-3 6.670082+4 1.717908-3 5.937239+4 1.862087-3 5.244625+4 2.041738-3 4.505623+4 2.264644-3 3.778451+4 2.426610-3 3.340812+4 2.722701-3 2.694685+4 3.000000-3 2.235240+4 3.311311-3 1.832727+4 3.715352-3 1.444536+4 4.120975-3 1.156460+4 4.623810-3 8.973156+3 5.188000-3 6.903419+3 5.754399-3 5.420514+3 6.531306-3 4.000366+3 7.328245-3 3.012588+3 8.222426-3 2.254515+3 9.332543-3 1.626791+3 1.071519-2 1.129811+3 1.230269-2 7.779094+2 1.412538-2 5.311511+2 1.621810-2 3.597858+2 1.862087-2 2.418611+2 2.150000-2 1.587768+2 2.500000-2 1.013356+2 2.917427-2 6.348720+1 3.427678-2 3.867532+1 4.073803-2 2.257344+1 4.897788-2 1.261283+1 6.095369-2 6.266905+0 8.128305-2 2.474438+0 1.318257-1 5.164242-1 1.659587-1 2.465643-1 1.972423-1 1.425762-1 2.426610-1 7.481124-2 2.786121-1 4.901437-2 3.126079-1 3.467775-2 3.548134-1 2.387843-2 4.000000-1 1.689976-2 4.466836-1 1.237574-2 5.000000-1 9.070375-3 5.559043-1 6.824774-3 6.165950-1 5.206229-3 6.839117-1 4.002099-3 7.585776-1 3.100022-3 8.609938-1 2.285323-3 9.225714-1 1.946509-3 9.772372-1 1.712185-3 1.047129+0 1.479103-3 1.135011+0 1.257282-3 1.230269+0 1.076584-3 1.348963+0 9.082578-4 1.621810+0 6.549393-4 1.840772+0 5.259903-4 2.065380+0 4.337797-4 2.344229+0 3.535579-4 2.660725+0 2.902416-4 3.054921+0 2.357929-4 3.548134+0 1.897920-4 4.168694+0 1.514495-4 4.897788+0 1.217373-4 5.821032+0 9.711277-5 7.000000+0 7.688300-5 8.511380+0 6.047942-5 1.059254+1 4.661761-5 1.380384+1 3.433158-5 1.883649+1 2.424195-5 2.630268+1 1.685624-5 3.758374+1 1.153040-5 5.754399+1 7.390461-6 9.549926+1 4.389151-6 1.905461+2 2.175617-6 3.801894+2 1.084602-6 1.513561+3 2.713236-7 1.000000+5 4.100300-9 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.059500-3 1.850500-4 1.000000+5 1.850500-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.059500-3 8.114900-7 1.000000+5 8.114900-7 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.059500-3 8.736385-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 9.906800-4 2.687429+5 1.047129-3 2.470921+5 1.070000-3 2.439790+5 1.100000-3 2.372612+5 1.135011-3 2.285932+5 1.174898-3 2.182056+5 1.333521-3 1.829912+5 1.479108-3 1.570473+5 1.603245-3 1.384356+5 1.737801-3 1.211877+5 1.927525-3 1.010550+5 2.150000-3 8.301720+4 2.317395-3 7.203946+4 2.660725-3 5.490448+4 2.917427-3 4.550247+4 3.311311-3 3.481850+4 3.650000-3 2.815852+4 4.150000-3 2.110576+4 4.623810-3 1.642959+4 5.188000-3 1.249953+4 5.888437-3 9.172532+3 6.531306-3 7.075948+3 7.328245-3 5.271148+3 8.413951-3 3.669319+3 9.660509-3 2.531043+3 1.096478-2 1.786575+3 1.244515-2 1.251855+3 1.412538-2 8.709623+2 1.603245-2 6.017634+2 1.840772-2 3.989911+2 2.113489-2 2.625318+2 2.426610-2 1.715270+2 2.818383-2 1.073510+2 3.311311-2 6.428189+1 3.890451-2 3.817569+1 4.623810-2 2.167384+1 5.559043-2 1.175724+1 6.918310-2 5.640262+0 9.225714-2 2.125915+0 1.380384-1 5.405853-1 1.678804-1 2.796841-1 1.972423-1 1.636674-1 2.290868-1 1.001944-1 2.600160-1 6.661238-2 2.917427-1 4.626616-2 3.273407-1 3.236217-2 3.630781-1 2.362390-2 4.027170-1 1.737337-2 4.415705-1 1.331372-2 4.841724-1 1.026975-2 5.308844-1 7.975711-3 5.821032-1 6.237590-3 6.382635-1 4.914031-3 6.998420-1 3.900083-3 7.673615-1 3.118347-3 8.511380-1 2.441280-3 9.120108-1 2.085595-3 9.772372-1 1.793860-3 1.059254+0 1.518539-3 1.161449+0 1.264772-3 1.273503+0 1.061059-3 1.412538+0 8.778867-4 1.678804+0 6.465369-4 1.905461+0 5.203254-4 2.162719+0 4.220364-4 2.454709+0 3.449050-4 2.818383+0 2.789410-4 3.235937+0 2.273137-4 3.758374+0 1.835064-4 4.415704+0 1.468145-4 5.188000+0 1.183204-4 6.165950+0 9.462566-5 7.413102+0 7.510527-5 9.120108+0 5.837975-5 1.135011+1 4.511067-5 1.428894+1 3.463185-5 1.905461+1 2.510796-5 2.630268+1 1.768090-5 3.758374+1 1.209414-5 5.754399+1 7.751973-6 9.549926+1 4.603824-6 1.905461+2 2.282006-6 3.801894+2 1.137640-6 1.513561+3 2.845935-7 1.000000+5 4.300900-9 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 9.906800-4 1.840800-4 1.000000+5 1.840800-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.906800-4 6.950500-7 1.000000+5 6.950500-7 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 9.906800-4 8.059050-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 7.477000-4 1.631100+6 7.507500-4 1.634015+6 7.539000-4 1.624172+6 7.573000-4 1.600954+6 7.608000-4 1.565916+6 7.650000-4 1.512720+6 7.673615-4 1.478673+6 7.700000-4 1.422796+6 7.762471-4 1.293828+6 7.790000-4 1.246436+6 7.820000-4 1.203268+6 7.852356-4 1.165631+6 7.890000-4 1.131384+6 7.943282-4 1.094482+6 8.050000-4 1.038568+6 8.240000-4 9.548280+5 8.350000-4 9.162800+5 8.470000-4 8.825960+5 9.015711-4 7.629221+5 9.772372-4 6.388819+5 1.047129-3 5.452236+5 1.135011-3 4.495074+5 1.216186-3 3.789540+5 1.318257-3 3.085038+5 1.428894-3 2.495931+5 1.584893-3 1.889462+5 1.717908-3 1.509167+5 1.972423-3 1.017904+5 2.162719-3 7.769910+4 2.483133-3 5.140933+4 2.754229-3 3.741604+4 3.090295-3 2.613608+4 3.500000-3 1.757048+4 3.900000-3 1.236556+4 4.466836-3 7.887926+3 5.069907-3 5.140596+3 5.688529-3 3.460549+3 6.456542-3 2.223575+3 7.413102-3 1.361146+3 8.511380-3 8.261677+2 9.800000-3 4.921000+2 1.122018-2 2.968737+2 1.288250-2 1.758233+2 1.479108-2 1.033687+2 1.717908-2 5.769742+1 2.000000-2 3.166496+1 2.344229-2 1.680075+1 2.818383-2 7.989672+0 3.388442-2 3.770612+0 4.265795-2 1.462805+0 7.943282-2 1.118427-1 1.000000-1 4.345189-2 1.202264-1 2.053590-2 1.412538-1 1.073709-2 1.640590-1 5.924359-3 1.883649-1 3.447904-3 2.137962-1 2.114337-3 2.398833-1 1.364609-3 2.691535-1 8.871598-4 3.000060-1 5.955553-4 3.311311-1 4.173824-4 3.672823-1 2.894731-4 4.073803-1 2.023103-4 4.466836-1 1.481143-4 4.897788-1 1.092083-4 5.308844-1 8.420930-5 5.821032-1 6.300904-5 6.456542-1 4.580678-5 7.079458-1 3.474166-5 7.762471-1 2.654118-5 8.035261-1 2.402555-5 8.511380-1 2.028689-5 9.015711-1 1.724389-5 9.440609-1 1.523934-5 9.885531-1 1.356370-5 1.035142+0 1.217144-5 1.083927+0 1.100108-5 1.135011+0 1.000484-5 1.202264+0 8.950133-6 1.303167+0 7.732452-6 1.428894+0 6.602329-6 1.513561+0 5.993611-6 1.840772+0 4.261543-6 2.044000+0 3.572897-6 2.317395+0 2.915489-6 2.630268+0 2.391869-6 3.019952+0 1.941927-6 3.507519+0 1.562144-6 4.120975+0 1.245885-6 4.841724+0 1.000923-6 5.754399+0 7.980323-7 6.918310+0 6.316757-7 8.413951+0 4.965539-7 1.035142+1 3.877926-7 1.333521+1 2.891390-7 1.819701+1 2.039073-7 2.600160+1 1.381809-7 3.715352+1 9.449645-8 5.688529+1 6.055566-8 9.549926+1 3.553704-8 1.905461+2 1.761512-8 3.801894+2 8.781239-9 1.513561+3 2.196814-9 1.000000+5 3.31990-11 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 7.477000-4 1.115400-4 1.000000+5 1.115400-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 7.477000-4 3.474700-7 1.000000+5 3.474700-7 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 7.477000-4 6.358125-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 7.329800-4 2.601200+6 7.356500-4 2.600725+6 7.357000-4 2.571847+6 7.465000-4 2.379189+6 7.515000-4 2.310887+6 7.540000-4 2.247186+6 7.615000-4 1.999986+6 7.650000-4 1.906668+6 7.680000-4 1.841610+6 7.710000-4 1.788828+6 7.740000-4 1.745898+6 7.780000-4 1.699890+6 7.852356-4 1.634989+6 8.050000-4 1.491564+6 8.150000-4 1.431402+6 8.240000-4 1.386420+6 8.413951-4 1.316257+6 8.912509-4 1.150237+6 9.549926-4 9.865563+5 1.030000-3 8.280420+5 1.122018-3 6.733491+5 1.230269-3 5.343006+5 1.350000-3 4.196934+5 1.531087-3 2.993681+5 1.650000-3 2.431578+5 1.905461-3 1.611284+5 2.070000-3 1.264242+5 2.371374-3 8.412796+4 2.630268-3 6.124379+4 2.951209-3 4.274931+4 3.311311-3 2.961504+4 3.722400-3 2.024516+4 4.216965-3 1.338635+4 4.786301-3 8.722704+3 5.370318-3 5.868182+3 6.025596-3 3.923167+3 6.839116-3 2.501453+3 7.852356-3 1.518187+3 9.015711-3 9.134401+2 1.035142-2 5.448726+2 1.174898-2 3.368051+2 1.333521-2 2.067791+2 1.513561-2 1.261353+2 1.737801-2 7.307380+1 2.018366-2 4.014001+1 2.344229-2 2.189391+1 2.786121-2 1.079645+1 3.349654-2 5.038450+0 4.000000-2 2.401314+0 5.370318-2 6.948468-1 8.128305-2 1.210379-1 1.000000-1 5.081377-2 1.188502-1 2.482504-2 1.380384-1 1.344217-2 1.566751-1 8.053320-3 1.778279-1 4.860079-3 2.000000-1 3.063631-3 2.238721-1 1.979588-3 2.483133-1 1.335146-3 2.722701-1 9.474184-4 2.985383-1 6.773552-4 3.235937-1 5.085839-4 3.507519-1 3.843160-4 3.845918-1 2.811302-4 4.216965-1 2.071905-4 4.623810-1 1.538561-4 5.069907-1 1.151386-4 5.495409-1 8.988827-5 5.888437-1 7.314102-5 6.237348-1 6.194038-5 6.683439-1 5.106375-5 7.244360-1 4.107775-5 8.035261-1 3.125798-5 8.609938-1 2.622927-5 9.120108-1 2.280003-5 9.660509-1 1.994723-5 1.023293+0 1.757951-5 1.096478+0 1.523117-5 1.174898+0 1.329128-5 1.273503+0 1.142022-5 1.396368+0 9.669213-6 1.737801+0 6.585767-6 1.972423+0 5.309318-6 2.238721+0 4.315772-6 2.540973+0 3.534104-6 2.917427+0 2.863976-6 3.349654+0 2.338095-6 3.890451+0 1.890672-6 4.570882+0 1.515020-6 5.370318+0 1.222936-6 6.456542+0 9.652076-7 7.852356+0 7.566928-7 9.660509+0 5.894677-7 1.216186+1 4.503299-7 1.479108+1 3.602539-7 1.927525+1 2.681006-7 2.660725+1 1.888592-7 3.801894+1 1.292126-7 5.821032+1 8.283644-8 9.660509+1 4.920342-8 1.927525+2 2.439194-8 3.845918+2 1.216098-8 1.531087+3 3.042270-9 1.000000+5 4.65100-11 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 7.329800-4 1.124200-4 1.000000+5 1.124200-4 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.329800-4 6.688100-9 1.000000+5 6.688100-9 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.329800-4 6.205533-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.318600-4 1.258792+5 2.332000-4 1.321154+5 2.344229-4 1.367747+5 2.355000-4 1.400384+5 2.368000-4 1.431478+5 2.383000-4 1.457264+5 2.400000-4 1.476416+5 2.418000-4 1.487698+5 2.440000-4 1.491952+5 2.470000-4 1.486498+5 3.000000-4 1.287430+5 3.162278-4 1.233870+5 3.715352-4 1.061103+5 4.168694-4 9.409704+4 4.500000-4 8.622680+4 5.128614-4 7.342656+4 5.688529-4 6.426763+4 6.382635-4 5.491511+4 7.244360-4 4.589908+4 8.317638-4 3.739077+4 9.440609-4 3.079239+4 1.109175-3 2.383887+4 1.318257-3 1.795784+4 1.570000-3 1.336680+4 1.905461-3 9.554391+3 2.317395-3 6.746957+3 2.800000-3 4.786260+3 3.427678-3 3.291386+3 4.168694-3 2.274413+3 5.011872-3 1.594924+3 6.025596-3 1.110306+3 7.244360-3 7.668571+2 8.609938-3 5.380301+2 1.035142-2 3.658907+2 1.230269-2 2.530439+2 1.462177-2 1.737068+2 1.737801-2 1.183176+2 2.041738-2 8.208378+1 2.398833-2 5.653410+1 2.851018-2 3.761516+1 3.349654-2 2.552377+1 3.935501-2 1.719560+1 4.677351-2 1.117640+1 5.495409-2 7.421796+0 6.606934-2 4.611506+0 8.000000-2 2.790605+0 9.772372-2 1.634694+0 1.258925-1 8.235262-1 2.290868-1 1.599844-1 2.818383-1 9.130258-2 3.349654-1 5.762113-2 3.845918-1 4.014341-2 4.365158-1 2.901927-2 4.897788-1 2.174788-2 5.495409-1 1.641481-2 6.165950-1 1.248431-2 6.839117-1 9.826771-3 7.585776-1 7.786925-3 8.511380-1 6.057385-3 9.332543-1 4.987376-3 1.023293+0 4.137164-3 1.161449+0 3.224836-3 1.303167+0 2.588891-3 1.462177+0 2.093910-3 1.640590+0 1.705285-3 1.862087+0 1.370992-3 2.113489+0 1.110672-3 2.398833+0 9.065131-4 2.754229+0 7.321583-4 3.162278+0 5.959037-4 3.672823+0 4.805011-4 4.315191+0 3.840388-4 5.069907+0 3.091850-4 6.025596+0 2.470204-4 7.244360+0 1.958835-4 8.912509+0 1.521229-4 1.109175+1 1.174483-4 1.412538+1 8.893253-5 1.905461+1 6.364464-5 2.630268+1 4.481921-5 3.758374+1 3.065711-5 5.754399+1 1.964985-5 9.549926+1 1.166988-5 1.905461+2 5.784562-6 3.801894+2 2.883685-6 1.513561+3 7.213997-7 1.000000+5 1.090200-8 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.318600-4 9.927800-5 1.000000+5 9.927800-5 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.318600-4 9.538400-9 1.000000+5 9.538400-9 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.318600-4 1.325725-4 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.819700-4 1.412888+5 1.835000-4 1.381098+5 1.910000-4 1.258784+5 1.940000-4 1.220724+5 1.972423-4 1.189083+5 2.000000-4 1.168592+5 2.041738-4 1.146425+5 2.089296-4 1.130330+5 2.162719-4 1.115988+5 2.398833-4 1.089998+5 2.818383-4 1.054260+5 3.054921-4 1.030576+5 3.311311-4 1.000929+5 3.548134-4 9.694412+4 3.801894-4 9.324906+4 4.120975-4 8.850076+4 4.415704-4 8.413417+4 4.731513-4 7.948528+4 5.188000-4 7.308471+4 5.650000-4 6.715000+4 6.165950-4 6.109854+4 6.839116-4 5.417404+4 7.500000-4 4.832440+4 8.317638-4 4.216902+4 9.225714-4 3.652388+4 1.035142-3 3.086810+4 1.150000-3 2.627700+4 1.288250-3 2.192330+4 1.450000-3 1.801336+4 1.621810-3 1.485299+4 1.840772-3 1.184779+4 2.070000-3 9.539760+3 2.317395-3 7.696055+3 2.600160-3 6.144299+3 2.951209-3 4.761486+3 3.349654-3 3.662131+3 3.758374-3 2.865648+3 4.216965-3 2.228144+3 4.731513-3 1.721220+3 5.308844-3 1.320930+3 5.956621-3 1.007217+3 6.760830-3 7.417153+2 7.673615-3 5.421367+2 8.709636-3 3.932775+2 1.000000-2 2.748880+2 1.135011-2 1.965210+2 1.303167-2 1.352223+2 1.496236-2 9.231212+1 1.717908-2 6.252851+1 1.972423-2 4.204414+1 2.264644-2 2.806913+1 2.630268-2 1.798410+1 3.054921-2 1.143987+1 3.589219-2 6.975231+0 4.265795-2 4.074931+0 5.128614-2 2.280051+0 6.456542-2 1.093381+0 9.120108-2 3.593638-1 1.364583-1 9.782639-2 1.678804-1 5.041135-2 2.018366-1 2.816547-2 2.344229-1 1.766358-2 2.691535-1 1.156016-2 3.054921-1 7.890536-3 3.467369-1 5.425575-3 3.890451-1 3.886793-3 4.365158-1 2.804696-3 4.841724-1 2.104879-3 5.370318-1 1.590215-3 5.956621-1 1.209919-3 6.606935-1 9.277856-4 7.328245-1 7.169542-4 8.609938-1 4.857302-4 9.225714-1 4.137331-4 9.772372-1 3.641078-4 1.047129+0 3.148952-4 1.135011+0 2.677358-4 1.230269+0 2.291278-4 1.348963+0 1.932528-4 1.603245+0 1.421761-4 1.840772+0 1.118936-4 2.065380+0 9.227794-5 2.344229+0 7.521243-5 2.660725+0 6.174350-5 3.054921+0 5.016091-5 3.548134+0 4.037516-5 4.168694+0 3.221844-5 4.897788+0 2.589748-5 5.821032+0 2.065854-5 7.000000+0 1.635500-5 8.609938+0 1.268786-5 1.071519+1 9.784011-6 1.380384+1 7.303368-6 1.883649+1 5.157026-6 2.630268+1 3.585932-6 3.758374+1 2.452818-6 5.754399+1 1.572159-6 9.660509+1 9.227906-7 1.927525+2 4.574468-7 3.845918+2 2.280624-7 1.531087+3 5.705696-8 1.000000+5 8.72260-10 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.819700-4 8.735500-5 1.000000+5 8.735500-5 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.819700-4 1.299900-8 1.000000+5 1.299900-8 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.819700-4 9.460200-5 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.677600-4 4.270913+5 1.744000-4 3.786000+5 1.762000-4 3.700296+5 1.785000-4 3.616584+5 1.816100-4 3.532672+5 1.850000-4 3.468980+5 1.890000-4 3.419436+5 1.950000-4 3.374612+5 2.187762-4 3.257673+5 2.511886-4 3.093091+5 2.722701-4 2.980607+5 2.951209-4 2.851488+5 3.200000-4 2.709700+5 3.430000-4 2.577700+5 3.715352-4 2.415565+5 4.073803-4 2.224256+5 4.415704-4 2.055546+5 4.841724-4 1.862633+5 5.308844-4 1.676542+5 5.821032-4 1.498901+5 6.456542-4 1.310700+5 7.161434-4 1.138080+5 8.000000-4 9.704720+4 8.912509-4 8.249954+4 1.000000-3 6.883320+4 1.122018-3 5.701159+4 1.273503-3 4.595258+4 1.428894-3 3.749692+4 1.603245-3 3.039838+4 1.819701-3 2.395356+4 2.089296-3 1.830840+4 2.400000-3 1.385684+4 2.754229-3 1.041556+4 3.126079-3 7.949634+3 3.548134-3 6.022585+3 4.000000-3 4.598520+3 4.500000-3 3.504292+3 5.069907-3 2.643269+3 5.688529-3 1.999766+3 6.456542-3 1.459906+3 7.328245-3 1.057756+3 8.317638-3 7.605209+2 9.549926-3 5.261620+2 1.083927-2 3.726317+2 1.230269-2 2.620032+2 1.396368-2 1.829327+2 1.584893-2 1.268537+2 1.819701-2 8.444368+1 2.089296-2 5.578183+1 2.398833-2 3.657459+1 2.786121-2 2.297141+1 3.235937-2 1.431748+1 3.801894-2 8.537339+0 4.466836-2 5.053121+0 5.308844-2 2.859968+0 6.456542-2 1.488797+0 8.511380-2 5.861420-1 1.396368-1 1.093830-1 1.698244-1 5.669677-2 2.000000-1 3.296780-2 2.290868-1 2.113756-2 2.600160-1 1.405946-2 2.917427-1 9.770335-3 3.273407-1 6.840633-3 3.630781-1 4.998000-3 4.027170-1 3.678031-3 4.466836-1 2.727857-3 4.897788-1 2.105960-3 5.370318-1 1.637190-3 5.888437-1 1.281859-3 6.456542-1 1.011279-3 7.079458-1 8.037605-4 7.762471-1 6.434657-4 8.609938-1 5.039367-4 9.225714-1 4.307589-4 9.885531-1 3.708072-4 1.071519+0 3.141518-4 1.174898+0 2.618718-4 1.288250+0 2.199169-4 1.428894+0 1.821227-4 1.698244+0 1.342280-4 1.927525+0 1.080938-4 2.187762+0 8.773074-5 2.483133+0 7.174311-5 2.851018+0 5.806221-5 3.273407+0 4.734483-5 3.801894+0 3.824217-5 4.466836+0 3.061268-5 5.248075+0 2.468469-5 6.237348+0 1.974969-5 7.498942+0 1.568289-5 9.225714+0 1.219586-5 1.148154+1 9.427567-6 1.428894+1 7.334883-6 1.905461+1 5.317732-6 2.630268+1 3.744840-6 3.758374+1 2.561544-6 5.688529+1 1.661584-6 9.549926+1 9.750843-7 1.905461+2 4.833275-7 3.801894+2 2.409371-7 1.513561+3 6.027635-8 1.000000+5 9.10920-10 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.677600-4 8.847800-5 1.000000+5 8.847800-5 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.677600-4 4.222700-9 1.000000+5 4.222700-9 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.677600-4 7.927778-5 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.561000-5 1.133472+6 8.565000-5 1.175288+6 8.579000-5 1.349412+6 8.590000-5 1.511552+6 8.605000-5 1.776880+6 8.620000-5 2.104296+6 8.635000-5 2.511672+6 8.646000-5 2.872088+6 8.661000-5 3.473008+6 8.676000-5 4.232920+6 8.687000-5 4.918400+6 8.702000-5 6.083200+6 8.706000-5 6.526918+6 8.762000-5 1.055238+7 8.766000-5 1.093263+7 8.873000-5 1.554017+7 8.998000-5 1.592014+7 9.145000-5 1.408572+7 9.335000-5 1.047048+7 9.720000-5 6.353707+6 9.760000-5 6.083400+6 9.850000-5 5.632320+6 1.000000-4 5.002160+6 1.040000-4 3.707092+6 1.061300-4 3.155811+6 1.090000-4 2.532604+6 1.135011-4 1.794617+6 1.220000-4 9.670840+5 1.280000-4 6.452800+5 1.326900-4 4.793642+5 1.364583-4 3.830904+5 1.390000-4 3.324228+5 1.415000-4 2.917256+5 1.435000-4 2.647672+5 1.450000-4 2.474104+5 1.465000-4 2.322512+5 1.485000-4 2.151020+5 1.500000-4 2.042992+5 1.515000-4 1.950812+5 1.531087-4 1.867809+5 1.548817-4 1.793376+5 1.566751-4 1.734272+5 1.585000-4 1.688900+5 1.603245-4 1.656667+5 1.621810-4 1.635727+5 1.643000-4 1.624576+5 1.660000-4 1.624216+5 1.680000-4 1.632268+5 1.705000-4 1.653448+5 1.730000-4 1.684936+5 1.760000-4 1.733796+5 1.800000-4 1.813464+5 1.862087-4 1.959331+5 1.990000-4 2.294576+5 2.065380-4 2.489265+5 2.120000-4 2.622144+5 2.190000-4 2.779200+5 2.264644-4 2.928843+5 2.344229-4 3.068093+5 2.430000-4 3.195656+5 2.511886-4 3.296690+5 2.600160-4 3.384063+5 2.691535-4 3.452538+5 2.800000-4 3.508052+5 2.917427-4 3.539657+5 3.050000-4 3.546056+5 3.198895-4 3.524044+5 3.350000-4 3.477640+5 3.507519-4 3.410247+5 3.700000-4 3.309172+5 3.890451-4 3.194877+5 4.100000-4 3.058492+5 4.365158-4 2.879637+5 4.623810-4 2.706920+5 4.897788-4 2.529241+5 5.188000-4 2.348543+5 5.559043-4 2.133276+5 5.956621-4 1.924446+5 6.382635-4 1.724368+5 6.850000-4 1.530944+5 7.413102-4 1.330238+5 8.035261-4 1.144381+5 8.709636-4 9.769211+4 9.500000-4 8.180080+4 1.047129-3 6.643469+4 1.150000-3 5.393280+4 1.244515-3 4.498266+4 1.380384-3 3.518069+4 1.531087-3 2.728220+4 1.698244-3 2.099166+4 1.905461-3 1.554933+4 2.137962-3 1.141257+4 2.371374-3 8.574398+3 2.660725-3 6.189827+3 2.951209-3 4.581628+3 3.273407-3 3.368499+3 3.630781-3 2.460061+3 4.027170-3 1.784578+3 4.466836-3 1.285853+3 5.000000-3 8.934200+2 5.623413-3 6.063395+2 6.309573-3 4.116340+2 7.079458-3 2.774700+2 8.000000-3 1.811452+2 9.015711-3 1.185248+2 1.023293-2 7.507275+1 1.161449-2 4.719738+1 1.318257-2 2.945987+1 1.500000-2 1.808776+1 1.717908-2 1.075390+1 1.995262-2 6.010532+0 2.317395-2 3.333788+0 2.722701-2 1.753897+0 3.235937-2 8.747861-1 3.935501-2 3.945911-1 5.248075-2 1.211343-1 8.317638-2 1.822680-2 1.035142-1 7.457069-3 1.244515-1 3.538745-3 1.462177-1 1.856986-3 1.678804-1 1.075706-3 1.927525-1 6.277198-4 2.187762-1 3.858262-4 2.454709-1 2.495636-4 2.754229-1 1.626305-4 3.054921-1 1.114220-4 3.388442-1 7.694558-5 3.758374-1 5.351062-5 4.216965-1 3.602229-5 4.623810-1 2.641337-5 5.069907-1 1.949758-5 5.559043-1 1.449868-5 6.025596-1 1.125857-5 6.531306-1 8.800328-6 7.079458-1 6.921520-6 7.762471-1 5.299738-6 8.609938-1 3.931968-6 9.120108-1 3.352462-6 9.549926-1 2.969416-6 1.000000+0 2.647900-6 1.047129+0 2.379502-6 1.096478+0 2.154162-6 1.148154+0 1.962456-6 1.216186+0 1.759181-6 1.318257+0 1.521994-6 1.513561+0 1.203080-6 1.840772+0 8.554175-7 2.044000+0 7.172000-7 2.317395+0 5.852272-7 2.630268+0 4.801227-7 3.019952+0 3.898116-7 3.507519+0 3.135811-7 4.120975+0 2.500977-7 4.841724+0 2.009218-7 5.754399+0 1.601947-7 6.918310+0 1.268040-7 8.413951+0 9.967419-8 1.035142+1 7.784270-8 1.333521+1 5.804012-8 1.819701+1 4.093160-8 2.600160+1 2.773717-8 3.715352+1 1.896857-8 5.688529+1 1.215559-8 9.440609+1 7.217877-9 1.883649+2 3.577387-9 3.758374+2 1.783199-9 1.496236+3 4.46080-10 1.000000+5 6.66410-12 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.561000-5 4.433900-5 1.000000+5 4.433900-5 1 55000 7 7 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.561000-5 1.058600-8 1.000000+5 1.058600-8 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.561000-5 4.126041-5 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 8.324000-5 2.397222+6 8.433300-5 4.508947+6 8.440000-5 4.617851+6 8.732000-5 9.160477+6 9.100000-5 1.116217+7 9.160000-5 1.082605+7 9.300000-5 1.040621+7 9.420000-5 1.000551+7 9.500000-5 9.538953+6 9.660509-5 8.288252+6 9.850000-5 7.115880+6 1.011579-4 5.792150+6 1.035142-4 4.820757+6 1.060000-4 3.961650+6 1.096478-4 2.967490+6 1.205000-4 1.309494+6 1.260000-4 8.945820+5 1.303167-4 6.753166+5 1.333521-4 5.607078+5 1.358000-4 4.869246+5 1.380384-4 4.315939+5 1.400000-4 3.912828+5 1.415000-4 3.649818+5 1.435000-4 3.353076+5 1.450000-4 3.166626+5 1.465000-4 3.007788+5 1.482800-4 2.851412+5 1.500000-4 2.729808+5 1.515000-4 2.644824+5 1.531087-4 2.573129+5 1.548817-4 2.514890+5 1.566751-4 2.475539+5 1.584893-4 2.453292+5 1.606600-4 2.446792+5 1.627000-4 2.457870+5 1.650000-4 2.487276+5 1.678804-4 2.545053+5 1.705000-4 2.613984+5 1.740000-4 2.724978+5 1.780000-4 2.871252+5 1.930000-4 3.500310+5 2.000000-4 3.794538+5 2.065380-4 4.053347+5 2.120000-4 4.253544+5 2.190000-4 4.485978+5 2.264644-4 4.702940+5 2.344229-4 4.900154+5 2.430000-4 5.076138+5 2.511886-4 5.211868+5 2.600160-4 5.325555+5 2.691535-4 5.409996+5 2.800000-4 5.471688+5 2.917427-4 5.496795+5 3.050000-4 5.481600+5 3.200000-4 5.421792+5 3.350000-4 5.329986+5 3.507519-4 5.209092+5 3.700000-4 5.035638+5 3.890451-4 4.844136+5 4.120975-4 4.599148+5 4.365158-4 4.336966+5 4.623810-4 4.064119+5 4.897788-4 3.785652+5 5.188000-4 3.506390+5 5.559043-4 3.175229+5 6.000000-4 2.823216+5 6.456542-4 2.503638+5 7.000000-4 2.174124+5 7.585776-4 1.875990+5 8.222426-4 1.605557+5 8.912509-4 1.364715+5 9.772372-4 1.124574+5 1.070000-3 9.216600+4 1.161449-3 7.654857+4 1.288250-3 6.003178+4 1.428894-3 4.667553+4 1.584893-3 3.599323+4 1.737801-3 2.837916+4 1.905461-3 2.224600+4 2.089296-3 1.733758+4 2.290868-3 1.343592+4 2.540973-3 1.001838+4 2.818383-3 7.417250+3 3.126079-3 5.453375+3 3.467369-3 3.981760+3 3.845918-3 2.887478+3 4.265795-3 2.079776+3 4.731513-3 1.488107+3 5.308844-3 1.018185+3 5.956621-3 6.912436+2 6.683439-3 4.656345+2 7.498942-3 3.114077+2 8.511380-3 1.984978+2 9.660509-3 1.255189+2 1.096478-2 7.875312+1 1.244515-2 4.904111+1 1.412538-2 3.031648+1 1.603245-2 1.860614+1 1.840772-2 1.083921+1 2.113489-2 6.268289+0 2.454709-2 3.437089+0 2.884032-2 1.785597+0 3.388442-2 9.209849-1 4.120975-2 4.081488-1 8.128305-2 2.362302-2 1.011580-1 9.494609-3 1.202264-1 4.653089-3 1.396368-1 2.526259-3 1.603245-1 1.448298-3 1.819701-1 8.762883-4 2.041738-1 5.590495-4 2.264644-1 3.755391-4 2.511886-1 2.540733-4 2.754229-1 1.807073-4 3.019952-1 1.293946-4 3.311311-1 9.332926-5 3.589219-1 7.056979-5 3.890451-1 5.369692-5 4.216965-1 4.113633-5 4.570882-1 3.173192-5 4.954502-1 2.464852-5 5.370318-1 1.928757-5 5.821032-1 1.519879-5 6.309573-1 1.205744-5 6.839117-1 9.629319-6 7.413102-1 7.742201-6 8.511380-1 5.388901-6 9.015711-1 4.660491-6 9.549926-1 4.057945-6 1.000000+0 3.653600-6 1.059254+0 3.227902-6 1.135011+0 2.803998-6 1.216186+0 2.453565-6 1.318257+0 2.115225-6 1.462177+0 1.762342-6 1.798871+0 1.227342-6 2.018366+0 1.010465-6 2.290868+0 8.224303-7 2.600160+0 6.743029-7 2.985383+0 5.471332-7 3.467369+0 4.398642-7 4.073803+0 3.506224-7 4.786301+0 2.815313-7 5.623413+0 2.277131-7 6.760830+0 1.800695-7 8.222427+0 1.414338-7 1.011579+1 1.103603-7 1.303167+1 8.222505-8 1.717908+1 6.021297-8 2.162719+1 4.674815-8 2.754229+1 3.598048-8 3.935501+1 2.463425-8 6.095369+1 1.561511-8 1.011579+2 9.281240-9 2.018366+2 4.602884-9 4.027170+2 2.295423-9 1.603245+3 5.74375-10 1.000000+5 9.19520-12 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 8.324000-5 4.509000-5 1.000000+5 4.509000-5 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.324000-5 3.815000-5 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.097000-5 3.199300+4 3.126079-5 3.264338+4 3.170000-5 3.392220+4 3.210000-5 3.535220+4 3.250000-5 3.700600+4 3.311311-5 3.994373+4 3.548134-5 5.413086+4 3.650000-5 6.094340+4 3.730000-5 6.636780+4 3.830000-5 7.310380+4 3.920000-5 7.902440+4 4.000000-5 8.410940+4 4.110000-5 9.075860+4 4.220000-5 9.695800+4 4.330000-5 1.026716+5 4.450000-5 1.083378+5 4.570882-5 1.134564+5 4.720000-5 1.189760+5 4.850000-5 1.231270+5 5.011872-5 1.274918+5 5.188000-5 1.313284+5 5.400000-5 1.348538+5 5.623413-5 1.374910+5 5.888437-5 1.394679+5 6.165950-5 1.404874+5 6.500000-5 1.406282+5 6.900000-5 1.396522+5 7.328245-5 1.376407+5 7.800000-5 1.346346+5 8.317638-5 1.306812+5 8.912509-5 1.255917+5 9.549926-5 1.197956+5 1.023293-4 1.134596+5 1.109175-4 1.056546+5 1.216186-4 9.657323+4 1.364583-4 8.558166+4 1.548817-4 7.437513+4 1.737801-4 6.502261+4 1.950000-4 5.639460+4 2.264644-4 4.645497+4 2.660725-4 3.744192+4 3.090295-4 3.041972+4 3.845918-4 2.224854+4 4.518559-4 1.754671+4 5.500000-4 1.302962+4 6.683439-4 9.611282+3 7.852356-4 7.421986+3 9.332543-4 5.585648+3 1.122018-3 4.092758+3 1.364583-3 2.918765+3 1.698244-3 1.984019+3 2.113489-3 1.338073+3 2.630268-3 8.952665+2 3.273407-3 5.943779+2 4.073803-3 3.914868+2 5.000000-3 2.628684+2 6.025596-3 1.815932+2 7.328245-3 1.221324+2 8.912509-3 8.150221+1 1.135011-2 4.900890+1 1.348963-2 3.383439+1 1.566751-2 2.437019+1 1.840772-2 1.697764+1 2.187762-2 1.143472+1 2.570396-2 7.850105+0 3.019952-2 5.350986+0 3.548134-2 3.620766+0 4.216965-2 2.364143+0 5.011872-2 1.531548+0 5.956621-2 9.840355-1 7.161434-2 6.092277-1 8.413951-2 3.979391-1 1.035142-1 2.281375-1 1.364583-1 1.076877-1 2.454709-1 2.164607-2 2.951209-1 1.316999-2 3.467369-1 8.585693-3 4.000000-1 5.919700-3 4.518559-1 4.340614-3 5.069907-1 3.259746-3 5.688529-1 2.465926-3 6.309573-1 1.931040-3 6.998420-1 1.522289-3 7.762471-1 1.208189-3 8.709636-1 9.413963-4 9.549926-1 7.765399-4 1.059254+0 6.307190-4 1.202264+0 4.925752-4 1.333521+0 4.049197-4 1.500000+0 3.264700-4 1.698244+0 2.621384-4 1.927525+0 2.111961-4 2.187762+0 1.714491-4 2.483133+0 1.402091-4 2.851018+0 1.134650-4 3.273407+0 9.251834-5 3.801894+0 7.473047-5 4.466836+0 5.982051-5 5.248075+0 4.823636-5 6.237348+0 3.859334-5 7.498942+0 3.064525-5 9.225714+0 2.383191-5 1.148154+1 1.842201-5 1.445440+1 1.414849-5 1.905461+1 1.039163-5 2.630268+1 7.317745-6 3.758374+1 5.005609-6 5.754399+1 3.208314-6 9.660509+1 1.883133-6 1.927525+2 9.335283-7 3.845918+2 4.654046-7 1.531087+3 1.164339-7 1.000000+5 1.780000-9 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.097000-5 3.097000-5 1.000000+5 3.097000-5 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.097000-5 0.0 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.827000-5 2.549720+7 1.850000-5 2.327700+7 1.883649-5 2.056796+7 1.920000-5 1.817400+7 1.950000-5 1.652532+7 1.995262-5 1.445343+7 2.041738-5 1.273265+7 2.090000-5 1.126500+7 2.150000-5 9.777760+6 2.213095-5 8.518357+6 2.290868-5 7.280262+6 2.371374-5 6.262426+6 2.470000-5 5.278120+6 2.583000-5 4.404990+6 2.730000-5 3.549740+6 2.917427-5 2.763438+6 3.162278-5 2.056235+6 3.548134-5 1.359890+6 4.168694-5 7.691456+5 4.677351-5 5.149565+5 5.069907-5 3.914434+5 5.432503-5 3.115382+5 5.754399-5 2.592303+5 6.095369-5 2.172308+5 6.400000-5 1.881966+5 6.760830-5 1.613316+5 7.079458-5 1.426417+5 7.413102-5 1.268549+5 7.800000-5 1.122154+5 8.222426-5 9.959051+4 8.650000-5 8.945680+4 9.120108-5 8.059655+4 9.549926-5 7.407680+4 1.000000-4 6.848040+4 1.059254-4 6.255136+4 1.122018-4 5.758250+4 1.194100-4 5.306512+4 1.273503-4 4.911266+4 1.380384-4 4.492820+4 1.531087-4 4.042742+4 1.757924-4 3.543952+4 2.344229-4 2.710146+4 2.754229-4 2.317079+4 3.162278-4 2.012100+4 3.715352-4 1.692716+4 4.200000-4 1.474070+4 4.731513-4 1.279558+4 5.370318-4 1.093124+4 6.025596-4 9.409554+3 6.839116-4 7.922677+3 7.673615-4 6.727605+3 8.709636-4 5.576876+3 9.772372-4 4.669176+3 1.109175-3 3.812096+3 1.258925-3 3.089376+3 1.428894-3 2.485546+3 1.621810-3 1.985678+3 1.840772-3 1.575311+3 2.113489-3 1.214223+3 2.398833-3 9.497124+2 2.722701-3 7.376694+2 3.090295-3 5.689342+2 3.507519-3 4.356597+2 4.000000-3 3.277540+2 4.518559-3 2.499162+2 5.128614-3 1.871656+2 5.821032-3 1.390910+2 6.606934-3 1.025718+2 7.498942-3 7.508034+1 8.413951-3 5.616993+1 1.000000-2 3.603879+1 1.135011-2 2.578606+1 1.288250-2 1.831629+1 1.479108-2 1.251387+1 1.698244-2 8.485980+0 1.949845-2 5.712418+0 2.238721-2 3.817721+0 2.600160-2 2.448596+0 3.019952-2 1.559095+0 3.548134-2 9.515248-1 4.216965-2 5.563664-1 5.069907-2 3.115520-1 6.309573-2 1.551025-1 8.609938-2 5.702371-2 1.364583-1 1.289436-2 1.698244-1 6.407193-3 2.041738-1 3.581982-3 2.371374-1 2.247755-3 2.722701-1 1.471972-3 3.090295-1 1.005313-3 3.507519-1 6.916674-4 3.935501-1 4.957882-4 4.415705-1 3.579883-4 4.897788-1 2.688361-4 5.432503-1 2.032540-4 6.025596-1 1.547717-4 6.683439-1 1.187682-4 7.413102-1 9.184364-5 8.609938-1 6.399930-5 9.225714-1 5.451708-5 9.772372-1 4.798155-5 1.047129+0 4.149938-5 1.135011+0 3.528572-5 1.230269+0 3.019739-5 1.348963+0 2.546830-5 1.603245+0 1.873466-5 1.819701+0 1.503612-5 2.044000+0 1.237100-5 2.317395+0 1.009607-5 2.630268+0 8.282584-6 3.019952+0 6.723812-6 3.507519+0 5.408801-6 4.120975+0 4.313778-6 4.841724+0 3.465653-6 5.754399+0 2.763167-6 6.918310+0 2.187105-6 8.413951+0 1.719323-6 1.035142+1 1.342682-6 1.333521+1 1.001150-6 1.819701+1 7.060276-7 2.600160+1 4.784384-7 3.715352+1 3.271859-7 5.688529+1 2.096659-7 9.549926+1 1.230415-7 1.905461+2 6.099005-8 3.801894+2 3.040390-8 1.513561+3 7.606245-9 1.000000+5 1.14950-10 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.827000-5 1.827000-5 1.000000+5 1.827000-5 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.827000-5 0.0 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.643000-5 5.434560+7 1.680000-5 4.665240+7 1.710000-5 4.155880+7 1.750000-5 3.602184+7 1.780000-5 3.258872+7 1.830000-5 2.789172+7 1.870000-5 2.484164+7 1.927525-5 2.127306+7 1.995262-5 1.797526+7 2.070000-5 1.514496+7 2.150000-5 1.278616+7 2.238721-5 1.074588+7 2.350000-5 8.787280+6 2.483133-5 7.046299+6 2.650000-5 5.475000+6 2.851018-5 4.156190+6 3.090295-5 3.089769+6 3.400000-5 2.191084+6 3.715352-5 1.603138+6 4.027170-5 1.215347+6 4.315191-5 9.654183+5 4.570882-5 8.021310+5 4.800000-5 6.892440+5 5.011872-5 6.059360+5 5.248075-5 5.312478+5 5.500000-5 4.677520+5 5.754399-5 4.164729+5 6.025596-5 3.725282+5 6.309573-5 3.354617+5 6.606934-5 3.040581+5 6.918310-5 2.773207+5 7.300000-5 2.509336+5 7.673615-5 2.301488+5 8.150000-5 2.089204+5 8.609938-5 1.925543+5 9.120108-5 1.778446+5 9.800000-5 1.622684+5 1.059254-4 1.481392+5 1.161449-4 1.340620+5 1.318257-4 1.178952+5 1.862087-4 8.404177+4 2.162719-4 7.207832+4 2.511886-4 6.135826+4 2.884032-4 5.251569+4 3.311311-4 4.462572+4 3.845918-4 3.714737+4 4.315191-4 3.206763+4 4.929400-4 2.684308+4 5.559043-4 2.271889+4 6.382635-4 1.860364+4 7.244360-4 1.537704+4 8.222426-4 1.261333+4 9.332543-4 1.026816+4 1.059254-3 8.296136+3 1.205000-3 6.629534+3 1.380384-3 5.193381+3 1.584893-3 4.019281+3 1.798871-3 3.155419+3 2.065380-3 2.404856+3 2.344229-3 1.861903+3 2.660725-3 1.431737+3 3.019952-3 1.093353+3 3.427678-3 8.291339+2 3.890451-3 6.242068+2 4.415704-3 4.664012+2 5.011872-3 3.458695+2 5.688529-3 2.545602+2 6.382635-3 1.913179+2 7.244360-3 1.386955+2 8.222426-3 9.980556+1 9.332543-3 7.130756+1 1.059254-2 5.058349+1 1.202264-2 3.562984+1 1.364583-2 2.492289+1 1.548817-2 1.731389+1 1.778279-2 1.154660+1 2.041738-2 7.641224+0 2.344229-2 5.018763+0 2.722701-2 3.157747+0 3.162278-2 1.971337+0 3.715352-2 1.177205+0 4.415704-2 6.720126-1 5.188000-2 3.954605-1 6.382635-2 1.981995-1 8.317638-2 8.124952-2 1.462177-1 1.202727-2 1.757924-1 6.490910-3 2.089296-1 3.668402-3 2.398833-1 2.339709-3 2.722701-1 1.560611-3 3.054921-1 1.087713-3 3.388442-1 7.912138-4 3.758374-1 5.794817-4 4.168694-1 4.275986-4 4.570882-1 3.285701-4 5.011872-1 2.541565-4 5.495409-1 1.979858-4 6.025596-1 1.553353-4 6.606935-1 1.227984-4 7.244360-1 9.779307-5 7.943282-1 7.845002-5 8.709636-1 6.321819-5 9.332543-1 5.412254-5 1.000000+0 4.666800-5 1.096478+0 3.868696-5 1.202264+0 3.230982-5 1.318257+0 2.718073-5 1.479108+0 2.208238-5 1.717908+0 1.696491-5 1.949845+0 1.367121-5 2.213095+0 1.110254-5 2.511886+0 9.085213-6 2.884032+0 7.358059-6 3.311311+0 6.003595-6 3.845918+0 4.852044-6 4.518559+0 3.885963-6 5.308844+0 3.135059-6 6.382635+0 2.473164-6 7.762471+0 1.938058-6 9.549926+0 1.509121-6 1.202264+1 1.152483-6 1.462177+1 9.215893-7 1.927525+1 6.770415-7 2.660725+1 4.769171-7 3.801894+1 3.263048-7 5.821032+1 2.091933-7 9.660509+1 1.242540-7 1.927525+2 6.159761-8 3.845918+2 3.070929-8 1.531087+3 7.682860-9 1.000000+5 1.17450-10 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.643000-5 1.643000-5 1.000000+5 1.643000-5 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.643000-5 0.0 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 3.690000-6 5.018380+5 3.715352-6 4.855844+5 3.770000-6 4.505120+5 3.960000-6 3.436640+5 4.216965-6 2.411339+5 4.500000-6 1.657030+5 4.786301-6 1.151209+5 5.128614-6 7.605130+4 5.623413-6 4.363679+4 5.888437-6 3.324107+4 6.100000-6 2.715790+4 6.270000-6 2.334090+4 6.420000-6 2.060250+4 6.550000-6 1.862350+4 6.700000-6 1.671960+4 6.850000-6 1.515590+4 7.000000-6 1.387420+4 7.100000-6 1.315250+4 7.244360-6 1.226986+4 7.350000-6 1.172720+4 7.500000-6 1.108390+4 7.650000-6 1.056720+4 7.770000-6 1.023060+4 7.920000-6 9.890480+3 8.050000-6 9.657280+3 8.222426-6 9.421154+3 8.420000-6 9.234020+3 8.609938-6 9.120532+3 8.850000-6 9.048370+3 9.120108-6 9.037150+3 9.440609-6 9.089134+3 9.885531-6 9.229816+3 1.161449-5 9.902890+3 1.258925-5 1.018705+4 1.364583-5 1.040369+4 1.496236-5 1.057317+4 1.640590-5 1.066261+4 1.819701-5 1.067112+4 2.213095-5 1.056447+4 2.600160-5 1.040065+4 3.235937-5 1.011556+4 3.845918-5 9.801719+3 4.265795-5 9.566402+3 4.731513-5 9.267119+3 5.188000-5 8.952041+3 5.559043-5 8.671724+3 6.025596-5 8.297838+3 6.500000-5 7.905080+3 6.918310-5 7.546907+3 7.413102-5 7.121483+3 7.943282-5 6.675365+3 8.511380-5 6.210859+3 9.225714-5 5.663943+3 1.000000-4 5.125760+3 1.109175-4 4.464985+3 1.244515-4 3.798494+3 1.566751-4 2.717800+3 2.041738-4 1.863965+3 2.691535-4 1.270543+3 3.019952-4 1.077639+3 5.308844-4 4.553686+2 6.095369-4 3.664623+2 8.413951-4 2.165852+2 1.035142-3 1.527969+2 1.273503-3 1.069256+2 1.566751-3 7.426589+1 1.949845-3 5.016151+1 2.454709-3 3.295530+1 3.054921-3 2.194218+1 3.801894-3 1.449509+1 4.677351-3 9.716619+0 5.688529-3 6.611055+0 6.839116-3 4.567145+0 8.222426-3 3.131737+0 9.885531-3 2.131234+0 1.188502-2 1.439225+0 1.412538-2 9.886856-1 1.678804-2 6.741054-1 1.995262-2 4.560560-1 2.344229-2 3.143459-1 2.754229-2 2.151380-1 3.235937-2 1.461810-1 3.801894-2 9.861390-2 4.518559-2 6.418537-2 5.308844-2 4.267971-2 6.382635-2 2.655190-2 7.762471-2 1.590417-2 9.225714-2 1.003802-2 1.161449-1 5.390290-3 2.483133-1 6.776303-4 2.985383-1 4.126660-4 3.467369-1 2.775612-4 3.981072-1 1.938475-4 4.518559-1 1.405336-4 5.069907-1 1.056430-4 5.688529-1 8.001109-5 6.309573-1 6.274263-5 6.998420-1 4.955098-5 7.762471-1 3.942016-5 8.511380-1 3.238013-5 9.440609-1 2.614062-5 1.059254+0 2.077998-5 1.216186+0 1.588391-5 1.364583+0 1.278332-5 1.531087+0 1.035914-5 1.717908+0 8.458859-6 1.949845+0 6.820465-6 2.213095+0 5.540386-6 2.511886+0 4.533773-6 2.884032+0 3.671478-6 3.311311+0 2.995523-6 3.845918+0 2.420952-6 4.518559+0 1.938911-6 5.308844+0 1.564278-6 6.382635+0 1.234000-6 7.673615+0 9.807344-7 9.440609+0 7.633472-7 1.174898+1 5.905408-7 1.445440+1 4.658104-7 1.905461+1 3.421101-7 2.630268+1 2.409166-7 3.758374+1 1.647951-7 5.821032+1 1.043711-7 9.660509+1 6.199749-8 1.927525+2 3.073352-8 3.845918+2 1.532241-8 1.531087+3 3.833346-9 1.000000+5 5.86030-11 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 3.690000-6 3.690000-6 1.000000+5 3.690000-6 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 3.690000-6 0.0 1.000000+5 1.000000+5 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.037160-7 1.027500+0 1.106550-6 1.028100+0 1.506540-6 1.028750+0 2.037160-6 1.029500+0 2.787910-6 1.030100+0 3.506130-6 1.031000+0 4.797580-6 1.032000+0 6.564300-6 1.033200+0 9.195470-6 1.034000+0 1.128830-5 1.035300+0 1.532220-5 1.036640+0 2.037160-5 1.038200+0 2.749210-5 1.039700+0 3.571780-5 1.041500+0 4.752210-5 1.043800+0 6.596220-5 1.046400+0 9.177390-5 1.048300+0 1.142610-4 1.051200+0 1.549930-4 1.054080+0 2.037160-4 1.057700+0 2.776790-4 1.061100+0 3.611920-4 1.065100+0 4.781810-4 1.070400+0 6.671160-4 1.076200+0 9.219570-4 1.080600+0 1.151370-3 1.087100+0 1.551270-3 1.093710+0 2.037160-3 1.102600+0 2.824350-3 1.110700+0 3.683280-3 1.120600+0 4.926700-3 1.133300+0 6.849540-3 1.147500+0 9.456480-3 1.158200+0 1.175190-2 1.174100+0 1.570840-2 1.190110+0 2.037160-2 1.205100+0 2.536780-2 1.227500+0 3.396300-2 1.250000+0 4.386000-2 1.265600+0 5.137030-2 1.294900+0 6.673580-2 1.320600+0 8.135860-2 1.343000+0 9.483600-2 1.382200+0 1.197620-1 1.433800+0 1.546960-1 1.500000+0 2.028000-1 1.589800+0 2.749230-1 1.665000+0 3.411770-1 1.784700+0 4.556710-1 1.892300+0 5.652110-1 2.000000+0 6.774000-1 2.044000+0 7.231000-1 2.163500+0 8.474950-1 2.372600+0 1.064960+0 2.647100+0 1.345570+0 3.000000+0 1.693000+0 3.500000+0 2.154800+0 4.000000+0 2.583000+0 4.750000+0 3.169140+0 5.000000+0 3.350000+0 6.000000+0 4.010000+0 7.000000+0 4.597000+0 8.000000+0 5.124000+0 9.000000+0 5.603000+0 1.000000+1 6.042000+0 1.100000+1 6.447000+0 1.200000+1 6.822000+0 1.300000+1 7.171000+0 1.400000+1 7.494000+0 1.500000+1 7.792000+0 1.600000+1 8.069000+0 1.800000+1 8.572000+0 2.000000+1 9.023000+0 2.200000+1 9.432000+0 2.400000+1 9.804000+0 2.600000+1 1.014000+1 2.800000+1 1.045000+1 3.000000+1 1.074000+1 4.000000+1 1.190000+1 5.000000+1 1.276000+1 6.000000+1 1.344000+1 8.000000+1 1.443000+1 1.000000+2 1.513000+1 1.500000+2 1.625000+1 2.000000+2 1.692000+1 3.000000+2 1.770000+1 4.000000+2 1.815000+1 5.000000+2 1.845000+1 6.000000+2 1.866000+1 8.000000+2 1.894000+1 1.000000+3 1.913000+1 1.500000+3 1.939000+1 2.000000+3 1.953000+1 3.000000+3 1.969000+1 4.000000+3 1.977000+1 5.000000+3 1.983000+1 6.000000+3 1.986000+1 8.000000+3 1.991000+1 1.000000+4 1.994000+1 1.500000+4 1.999000+1 2.000000+4 2.001000+1 3.000000+4 2.003000+1 4.000000+4 2.004000+1 5.000000+4 2.005000+1 6.000000+4 2.006000+1 8.000000+4 2.006000+1 1.000000+5 2.007000+1 1 55000 7 8 1.329050+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.515180-7 2.099900+0 1.291730-6 2.106600+0 1.796910-6 2.114000+0 2.486250-6 2.119500+0 3.095360-6 2.127900+0 4.197890-6 2.136250+0 5.515180-6 2.147000+0 7.561700-6 2.156900+0 9.821740-6 2.169000+0 1.310770-5 2.184500+0 1.822020-5 2.201800+0 2.520810-5 2.214800+0 3.140740-5 2.234200+0 4.224850-5 2.253680+0 5.515180-5 2.281500+0 7.724980-5 2.307000+0 1.014670-4 2.338200+0 1.364320-4 2.377400+0 1.889410-4 2.410200+0 2.403020-4 2.446800+0 3.056770-4 2.485900+0 3.848640-4 2.532900+0 4.925440-4 2.556430+0 5.515180-4 2.611900+0 7.032490-4 2.660400+0 8.501920-4 2.745300+0 1.137930-3 2.809000+0 1.378100-3 2.904500+0 1.775350-3 3.000000+0 2.216000-3 3.125000+0 2.857370-3 3.234400+0 3.476660-3 3.425800+0 4.681450-3 3.569300+0 5.676390-3 3.784700+0 7.296440-3 4.000000+0 9.038000-3 4.250000+0 1.116730-2 4.625000+0 1.451340-2 5.000000+0 1.799000-2 5.500000+0 2.275770-2 6.000000+0 2.759000-2 6.750000+0 3.479150-2 7.000000+0 3.716000-2 8.000000+0 4.641000-2 9.000000+0 5.526000-2 1.000000+1 6.366000-2 1.100000+1 7.161000-2 1.200000+1 7.909000-2 1.300000+1 8.614000-2 1.400000+1 9.285000-2 1.500000+1 9.919000-2 1.600000+1 1.052000-1 1.800000+1 1.164000-1 2.000000+1 1.265000-1 2.200000+1 1.358000-1 2.400000+1 1.443000-1 2.600000+1 1.522000-1 2.800000+1 1.594000-1 3.000000+1 1.662000-1 4.000000+1 1.942000-1 5.000000+1 2.154000-1 6.000000+1 2.322000-1 8.000000+1 2.575000-1 1.000000+2 2.759000-1 1.500000+2 3.064000-1 2.000000+2 3.255000-1 3.000000+2 3.489000-1 4.000000+2 3.629000-1 5.000000+2 3.726000-1 6.000000+2 3.796000-1 8.000000+2 3.894000-1 1.000000+3 3.959000-1 1.500000+3 4.056000-1 2.000000+3 4.111000-1 3.000000+3 4.172000-1 4.000000+3 4.208000-1 5.000000+3 4.229000-1 6.000000+3 4.245000-1 8.000000+3 4.265000-1 1.000000+4 4.279000-1 1.500000+4 4.296000-1 2.000000+4 4.307000-1 3.000000+4 4.317000-1 4.000000+4 4.323000-1 5.000000+4 4.327000-1 6.000000+4 4.329000-1 8.000000+4 4.332000-1 1.000000+5 4.334000-1 1 55000 7 8 1.329050+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 55000 7 9 1.329050+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.500000+1 1.000000+5 5.500000+1 5.000000+5 5.497100+1 1.000000+6 5.492000+1 1.250000+6 5.488150+1 1.500000+6 5.484100+1 1.750000+6 5.478040+1 2.000000+6 5.472000+1 2.250000+6 5.464460+1 2.500000+6 5.457000+1 2.875000+6 5.443990+1 3.000000+6 5.439300+1 3.250000+6 5.428890+1 3.625000+6 5.413270+1 4.000000+6 5.397000+1 4.437500+6 5.376660+1 4.812500+6 5.358460+1 5.000000+6 5.349100+1 5.500000+6 5.322200+1 6.250000+6 5.279490+1 6.500000+6 5.265320+1 7.000000+6 5.236100+1 8.500000+6 5.145900+1 9.000000+6 5.114600+1 1.000000+7 5.049900+1 1.187500+7 4.928380+1 1.250000+7 4.887400+1 1.437500+7 4.760270+1 1.500000+7 4.717200+1 1.687500+7 4.586330+1 1.750000+7 4.543400+1 2.000000+7 4.374100+1 2.250000+7 4.210040+1 2.500000+7 4.054200+1 2.750000+7 3.908100+1 3.000000+7 3.772700+1 3.250000+7 3.646500+1 3.500000+7 3.528570+1 3.625000+7 3.471660+1 4.000000+7 3.309900+1 4.500000+7 3.109020+1 4.750000+7 3.013770+1 5.000000+7 2.921800+1 5.500000+7 2.746650+1 6.000000+7 2.584900+1 7.000000+7 2.304300+1 8.000000+7 2.080600+1 9.000000+7 1.905100+1 1.000000+8 1.765100+1 1.125000+8 1.621430+1 1.156300+8 1.588560+1 1.250000+8 1.494100+1 1.312500+8 1.433170+1 1.406300+8 1.343970+1 1.437500+8 1.314860+1 1.500000+8 1.257400+1 1.562500+8 1.200950+1 1.671900+8 1.105900+1 1.750000+8 1.041680+1 1.753900+8 1.038550+1 1.877000+8 9.443910+0 2.000000+8 8.588600+0 2.250000+8 7.159810+0 2.359400+8 6.697180+0 2.375000+8 6.640040+0 2.453100+8 6.381870+0 2.500000+8 6.250800+0 3.000000+8 5.338900+0 3.500000+8 4.427100+0 4.000000+8 3.882300+0 4.125000+8 3.745570+0 4.234400+8 3.621310+0 4.425800+8 3.400990+0 4.677000+8 3.120400+0 4.750000+8 3.042660+0 5.000000+8 2.792600+0 5.500000+8 2.370110+0 5.875000+8 2.105550+0 6.000000+8 2.025100+0 6.437500+8 1.777180+0 6.683600+8 1.667780+0 6.894500+8 1.593140+0 7.000000+8 1.562600+0 7.125000+8 1.532060+0 8.000000+8 1.386400+0 8.250000+8 1.341800+0 8.468800+8 1.299940+0 1.000000+9 1.033900+0 1.045900+9 9.802710-1 1.088000+9 9.400500-1 1.115500+9 9.172090-1 1.331800+9 7.784370-1 1.375000+9 7.532900-1 1.391900+9 7.433150-1 1.445900+9 7.111340-1 1.500000+9 6.779400-1 1.562500+9 6.384410-1 1.617200+9 6.038230-1 1.665000+9 5.740230-1 1.748800+9 5.237730-1 1.811600+9 4.883110-1 1.905800+9 4.392420-1 2.000000+9 3.953500-1 2.139200+9 3.394500-1 2.272600+9 2.944770-1 2.443000+9 2.469760-1 2.602800+9 2.106080-1 2.825100+9 1.702370-1 2.961100+9 1.501820-1 3.215900+9 1.198540-1 3.536500+9 9.170500-2 3.804800+9 7.422730-2 4.103600+9 5.938550-2 4.423800+9 4.736930-2 4.807900+9 3.670830-2 5.000000+9 3.251100-2 5.375000+9 2.592070-2 6.031300+9 1.797530-2 7.015600+9 1.104290-2 8.000000+9 7.208100-3 1.00000+10 3.490300-3 1.13510+10 2.318510-3 1.41440+10 1.146700-3 1.70770+10 6.310830-4 2.01080+10 3.775510-4 2.51010+10 1.890500-4 2.97820+10 1.113790-4 3.85600+10 5.040910-5 4.62400+10 2.899040-5 5.96800+10 1.339940-5 7.98400+10 5.593560-6 1.00000+11 2.857700-6 1.34280+11 1.192080-6 1.77440+11 5.239440-7 2.63330+11 1.647140-7 4.88110+11 2.741940-8 1.16740+12 2.239470-9 3.55150+12 9.52098-11 1.00000+14 8.21650-15 2.05350+15 1.63669-18 1.00000+17 2.62470-23 1 55000 7 0 1.329050+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.05000-11 1.000000+2 1.050000-9 1.000000+3 1.050000-7 1.000000+4 1.050000-5 1.000000+5 1.050000-3 5.000000+5 2.625000-2 1.000000+6 1.050000-1 1.250000+6 1.622790-1 1.500000+6 2.307000-1 1.750000+6 3.090660-1 2.000000+6 3.964000-1 2.250000+6 4.917050-1 2.500000+6 5.940000-1 2.875000+6 7.578650-1 3.000000+6 8.148000-1 3.250000+6 9.312770-1 3.625000+6 1.111330+0 4.000000+6 1.295500+0 4.437500+6 1.512750+0 4.812500+6 1.699560+0 5.000000+6 1.793000+0 5.500000+6 2.040630+0 6.250000+6 2.410710+0 6.500000+6 2.533980+0 7.000000+6 2.781600+0 8.500000+6 3.536470+0 9.000000+6 3.794100+0 1.000000+7 4.320000+0 1.187500+7 5.331630+0 1.250000+7 5.672300+0 1.437500+7 6.687540+0 1.500000+7 7.023000+0 1.687500+7 8.013700+0 1.750000+7 8.339200+0 2.000000+7 9.615000+0 2.250000+7 1.084970+1 2.500000+7 1.203500+1 2.750000+7 1.316130+1 3.000000+7 1.421700+1 3.250000+7 1.519460+1 3.500000+7 1.610400+1 3.625000+7 1.653600+1 4.000000+7 1.775300+1 4.500000+7 1.923120+1 4.750000+7 1.992930+1 5.000000+7 2.061200+1 5.500000+7 2.194050+1 6.000000+7 2.322800+1 7.000000+7 2.569100+1 8.000000+7 2.798100+1 9.000000+7 3.006400+1 1.000000+8 3.191400+1 1.125000+8 3.389300+1 1.156300+8 3.433760+1 1.250000+8 3.556500+1 1.312500+8 3.629980+1 1.406300+8 3.731100+1 1.437500+8 3.762830+1 1.500000+8 3.823200+1 1.562500+8 3.880110+1 1.671900+8 3.973830+1 1.750000+8 4.035980+1 1.753900+8 4.038940+1 1.877000+8 4.129380+1 2.000000+8 4.212900+1 2.250000+8 4.362590+1 2.359400+8 4.421450+1 2.375000+8 4.429330+1 2.453100+8 4.468260+1 2.500000+8 4.491200+1 3.000000+8 4.698100+1 3.500000+8 4.857700+1 4.000000+8 4.982400+1 4.125000+8 5.008500+1 4.234400+8 5.030810+1 4.425800+8 5.066180+1 4.677000+8 5.107250+1 4.750000+8 5.118090+1 5.000000+8 5.153000+1 5.500000+8 5.208850+1 5.875000+8 5.242520+1 6.000000+8 5.252300+1 6.437500+8 5.282100+1 6.683600+8 5.296140+1 6.894500+8 5.307440+1 7.000000+8 5.312700+1 7.125000+8 5.318340+1 8.000000+8 5.353400+1 8.250000+8 5.361380+1 8.468800+8 5.368180+1 1.000000+9 5.408100+1 1.045900+9 5.417070+1 1.088000+9 5.424960+1 1.115500+9 5.429960+1 1.331800+9 5.458660+1 1.375000+9 5.463020+1 1.391900+9 5.464450+1 1.445900+9 5.468900+1 1.500000+9 5.473200+1 1.562500+9 5.476890+1 1.617200+9 5.480000+1 1.665000+9 5.482050+1 1.748800+9 5.485330+1 1.811600+9 5.487690+1 1.905800+9 5.490110+1 2.000000+9 5.492400+1 2.139200+9 5.494510+1 2.272600+9 5.496410+1 2.443000+9 5.498170+1 2.602800+9 5.499010+1 2.825100+9 5.500090+1 2.961100+9 5.500710+1 3.215900+9 5.500900+1 3.536500+9 5.500710+1 3.804800+9 5.500560+1 4.103600+9 5.500400+1 4.423800+9 5.500250+1 4.807900+9 5.500080+1 5.000000+9 5.500000+1 5.375000+9 5.500000+1 6.031300+9 5.500000+1 7.015600+9 5.500000+1 8.000000+9 5.500000+1 1.00000+10 5.500000+1 1.13510+10 5.500000+1 1.41440+10 5.500000+1 1.70770+10 5.500000+1 2.01080+10 5.500000+1 2.51010+10 5.500000+1 2.97820+10 5.500000+1 3.85600+10 5.500000+1 4.62400+10 5.500000+1 5.96800+10 5.500000+1 7.98400+10 5.500000+1 1.00000+11 5.500000+1 1.34280+11 5.500000+1 1.77440+11 5.500000+1 2.63330+11 5.500000+1 4.88110+11 5.500000+1 1.16740+12 5.500000+1 3.55150+12 5.500000+1 1.00000+14 5.500000+1 2.05350+15 5.500000+1 1.00000+17 5.500000+1 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.242254-6 0.0 1.247604-6 3.917717+0 1.248369-6 4.471680+0 1.251426-6 8.167889+0 1.254484-6 1.377218+1 1.257924-6 2.260428+1 1.263227-6 3.943483+1 1.267097-6 5.082896+1 1.269963-6 5.668230+1 1.273111-6 5.877895+1 1.276315-6 5.592263+1 1.279520-6 4.879991+1 1.284656-6 3.273138+1 1.288118-6 2.195750+1 1.291271-6 1.399642+1 1.294375-6 8.271397+0 1.297339-6 4.611267+0 1.301870-6 1.187027+0 1.303406-6 0.0 1.303838-6 0.0 1.309454-6 8.109751+0 1.310256-6 9.256466+0 1.313465-6 1.690769+1 1.316875-6 2.949799+1 1.320285-6 4.679130+1 1.326006-6 8.263851+1 1.329712-6 1.043759+2 1.333240-6 1.178362+2 1.336382-6 1.214537+2 1.339434-6 1.163860+2 1.342925-6 1.011734+2 1.347977-6 7.012094+1 1.351976-6 4.545246+1 1.355185-6 2.934253+1 1.358395-6 1.748605+1 1.361604-6 9.619218+0 1.366418-6 2.445244+0 1.368022-6 0.0 1.527815-6 0.0 1.531575-6 1.002563-6 1.535336-6 1.983795-6 1.539096-6 3.623564-6 1.542857-6 6.109827-6 1.546617-6 9.509895-6 1.550378-6 1.366395-5 1.554138-6 1.812304-5 1.557899-6 2.218909-5 1.561659-6 2.507852-5 1.565420-6 2.616485-5 1.569181-6 2.519930-5 1.572941-6 2.240333-5 1.576702-6 1.838615-5 1.583953-6 1.004204-5 1.587983-6 8.145896-6 1.591750-6 7.302594-6 1.595649-6 8.521683-6 1.599548-6 1.192671-5 1.603447-6 1.705678-5 1.607345-6 2.450743-5 1.611244-6 3.250516-5 1.615143-6 3.979796-5 1.619041-6 4.498039-5 1.622940-6 4.692881-5 1.626839-6 4.519702-5 1.630737-6 4.018222-5 1.634636-6 3.297707-5 1.642433-6 1.747151-5 1.646332-6 1.127900-5 1.650231-6 6.721475-6 1.654130-6 3.697539-6 1.658028-6 1.877651-6 1.661927-6 0.0 2.069063-6 0.0 2.074155-6 6.76855-16 2.079248-6 1.33931-15 2.084341-6 2.44636-15 2.089434-6 4.12490-15 2.094526-6 6.42037-15 2.099619-6 9.22488-15 2.104712-6 1.22353-14 2.109805-6 1.49804-14 2.114897-6 1.69311-14 2.119990-6 1.76645-14 2.125083-6 1.70127-14 2.130175-6 1.51250-14 2.135268-6 1.24129-14 2.145454-6 6.57647-15 2.150546-6 4.24554-15 2.155639-6 2.53004-15 2.160732-6 1.39180-15 2.165825-6 7.06769-16 2.170917-6 0.0 2.456897-6 0.0 2.465968-6 4.157498-2 2.468991-6 5.525752-2 2.475039-6 1.009324-1 2.478866-6 1.447224-1 2.481086-6 2.069109-1 2.487133-6 4.010484-1 2.491069-6 5.401535-1 2.497170-6 8.278360-1 2.503653-6 1.224539+0 2.520604-6 2.447002+0 2.524986-6 2.733627+0 2.529465-6 2.946581+0 2.533779-6 3.072952+0 2.540643-6 3.033676+0 2.546940-6 2.779605+0 2.555166-6 2.209402+0 2.568068-6 1.189628+0 2.570387-6 1.018040+0 2.576488-6 6.406988-1 2.582590-6 3.779335-1 2.588691-6 2.079238-1 2.599718-6 2.042239-2 2.600894-6 3.249043-5 2.605886-6 2.315800-5 2.610908-6 1.568754-5 2.617090-6 8.420725-6 2.618169-6 7.474451-6 2.623273-6 4.461320-6 2.629456-6 2.265508-6 2.635639-6 0.0 2.924029-6 0.0 2.934296-6 6.387765-3 2.938423-6 2.101729-2 2.945620-6 4.925397-2 2.948741-6 6.307012-2 2.952817-6 8.895263-2 2.955963-6 1.107462-1 2.963186-6 1.801381-1 2.971750-6 2.913954-1 2.988803-6 5.428365-1 2.996547-6 6.227631-1 2.999298-6 6.458132-1 3.006520-6 6.606281-1 3.013742-6 6.250518-1 3.022703-6 5.216522-1 3.039183-6 2.765411-1 3.042632-6 2.287382-1 3.049854-6 1.461384-1 3.057077-6 8.627920-2 3.064299-6 4.598751-2 3.067971-6 3.268925-2 3.078744-6 1.647080-6 3.080516-6 1.158888-6 3.087643-6 0.0 3.154438-6 0.0 3.160049-6 1.061433-3 3.169966-6 1.311207-2 3.175606-6 2.056846-2 3.183384-6 3.703502-2 3.191162-6 6.161018-2 3.198940-6 9.468974-2 3.216552-6 1.865324-1 3.224316-6 2.208581-1 3.230052-6 2.391407-1 3.237830-6 2.472256-1 3.245608-6 2.360706-1 3.255373-6 1.984753-1 3.276720-6 8.864096-2 3.284498-6 5.687418-2 3.288556-6 4.492310-2 3.292276-6 3.611124-2 3.300054-6 2.527193-2 3.304745-6 2.227410-2 3.309722-6 2.071005-2 3.312839-6 2.049211-2 3.315611-6 2.143778-2 3.320934-6 2.928120-2 3.329028-6 4.526135-2 3.353311-6 1.037105-1 3.361406-6 1.166025-1 3.369500-6 1.214128-1 3.377594-6 1.190002-1 3.385689-6 1.083703-1 3.401877-6 7.991307-2 3.410152-6 6.939895-2 3.418444-6 6.448091-2 3.426735-6 6.567232-2 3.443318-6 7.526911-2 3.459902-6 7.964984-2 3.471043-6 7.850599-2 3.494215-6 7.208188-2 3.575858-6 6.564356-2 3.615342-6 5.915840-2 3.647240-6 5.097564-2 3.673190-6 4.475298-2 3.721462-6 3.022815-2 3.735766-6 2.731106-2 3.757153-6 2.490677-2 3.783735-6 2.386438-2 4.018880-6 1.820914-2 4.221958-6 1.448025-2 4.419791-6 1.164098-2 4.660834-6 8.993895-3 4.864422-6 7.281051-3 5.101305-6 5.739773-3 5.327859-6 4.613798-3 5.594653-6 3.608639-3 5.859634-6 2.874473-3 6.138619-6 2.308639-3 6.426441-6 1.888501-3 6.724286-6 1.585931-3 7.071586-6 1.353466-3 7.476871-6 1.197675-3 7.925179-6 1.122028-3 8.461705-6 1.115489-3 9.254298-6 1.199682-3 1.189082-5 1.697793-3 1.242390-5 1.801250-3 1.247742-5 1.444056+0 1.248506-5 1.647990+0 1.251564-5 3.008696+0 1.254622-5 5.071832+0 1.257680-5 7.893255+0 1.262649-5 1.365090+1 1.266854-5 1.841462+1 1.270294-5 2.092477+1 1.273352-5 2.161383+1 1.276219-5 2.076787+1 1.279468-5 1.817662+1 1.284449-5 1.247224+1 1.288260-5 8.085188+0 1.291318-5 5.220191+0 1.294376-5 3.111631+0 1.297434-5 1.712594+0 1.302021-5 4.367774-1 1.303550-5 1.916194-3 1.376704-5 2.073507-3 1.395170-5 2.265721-3 1.400782-5 2.275216+0 1.402038-5 7.059519+0 1.405472-5 2.098590+1 1.407677-5 3.059286+1 1.411125-5 5.416068+1 1.414573-5 8.880912+1 1.418572-5 1.435454+2 1.426833-5 2.749707+2 1.430949-5 3.226336+2 1.432520-5 3.330084+2 1.435797-5 3.387547+2 1.439266-5 3.195165+2 1.442885-5 2.766504+2 1.451731-5 1.397716+2 1.454918-5 9.863158+1 1.455947-5 8.612838+1 1.459395-5 5.530957+1 1.462843-5 3.441210+1 1.467162-5 1.892316+1 1.469738-5 9.875207+0 1.481393-5 1.000854+1 1.484960-5 9.675758+0 1.488527-5 8.911868+0 1.493587-5 7.079025+0 1.501040-5 1.064177+1 1.504787-5 1.488617+1 1.508417-5 2.194059+1 1.512775-5 3.464946+1 1.523360-5 7.214563+1 1.527361-5 8.099265+1 1.531134-5 8.312169+1 1.534764-5 7.904552+1 1.540060-5 6.522800+1 1.548142-5 4.002806+1 1.549188-5 3.736047+1 1.552741-5 3.046044+1 1.556409-5 2.694499+1 1.560348-5 2.691290+1 1.567609-5 3.089358+1 1.573125-5 3.585961+1 1.576812-5 3.816882+1 1.584951-5 5.193875+1 1.588786-5 6.226317+1 1.592791-5 7.908212+1 1.597723-5 1.089801+2 1.608115-5 1.811571+2 1.612625-5 1.984465+2 1.616290-5 2.014123+2 1.620254-5 1.906717+2 1.625116-5 1.614750+2 1.635341-5 8.402023+1 1.638873-5 6.219871+1 1.642727-5 4.425326+1 1.646546-5 3.199805+1 1.654115-5 1.667720+1 1.661986-5 1.577968+1 1.673301-5 1.501405+1 1.681707-5 1.688451+1 1.685816-5 1.870872+1 1.690439-5 2.237672+1 1.694431-5 2.693236+1 1.707363-5 4.522113+1 1.711338-5 4.859858+1 1.715093-5 4.960414+1 1.719202-5 4.796837+1 1.723410-5 4.395734+1 1.734074-5 3.032200+1 1.737385-5 2.726906+1 1.739233-5 2.581190+1 1.743346-5 2.444179+1 1.749321-5 2.472940+1 1.759613-5 2.676554+1 1.764926-5 2.748263+1 1.774386-5 2.659636+1 1.812242-5 2.160075+1 1.841791-5 1.500346+1 1.847538-5 1.406333+1 1.856950-5 1.312107+1 1.872271-5 1.237083+1 1.946632-5 1.032507+1 2.035895-5 8.552632+0 2.150000-5 6.956639+0 2.252379-5 5.921175+0 2.394939-5 4.858455+0 2.541071-5 4.060601+0 2.697259-5 3.419925+0 2.823010-5 3.041847+0 2.871496-5 2.966084+0 2.935513-5 2.716533+0 3.185114-5 2.198222+0 3.470362-5 1.774449+0 3.767354-5 1.460325+0 4.061064-5 1.234673+0 4.402460-5 1.044309+0 4.830440-5 8.780343-1 5.290801-5 7.585997-1 5.837690-5 6.666431-1 6.555431-5 5.941299-1 7.651959-5 5.378442-1 7.886123-5 5.308392-1 7.924944-5 6.703972-1 7.944355-5 7.861326-1 7.963766-5 9.619005-1 7.984810-5 1.227168+0 8.041409-5 2.149024+0 8.064382-5 2.429436+0 8.083714-5 2.567313+0 8.119714-5 2.593178+0 8.165395-5 2.581696+0 8.186627-5 2.703058+0 8.219896-5 3.132777+0 8.251688-5 3.745069+0 8.308569-5 4.927061+0 8.415644-5 6.712492+0 8.487643-5 8.379403+0 8.554520-5 1.036649+1 8.605000-5 1.248755+1 8.655372-5 1.551746+1 8.802528-5 2.708623+1 8.880813-5 3.135723+1 8.948253-5 3.326214+1 9.044131-5 3.389248+1 9.173104-5 3.214308+1 9.654785-5 2.167693+1 9.868679-5 1.830514+1 1.024000-4 1.434810+1 1.069004-4 1.070396+1 1.110402-4 8.178801+0 1.145302-4 6.564105+0 1.175642-4 5.466207+0 1.215244-4 4.356605+0 1.257051-4 3.489576+0 1.297086-4 2.869815+0 1.342789-4 2.349453+0 1.386056-4 1.995394+0 1.429408-4 1.746488+0 1.481618-4 1.555300+0 1.536000-4 1.452705+0 1.601199-4 1.424842+0 1.609081-4 1.507005+0 1.613068-4 1.576120+0 1.617159-4 1.684597+0 1.621046-4 1.834489+0 1.631721-4 2.422854+0 1.641770-4 2.967998+0 1.651725-4 3.275854+0 1.658763-4 3.369711+0 1.668830-4 3.327522+0 1.675430-4 3.176460+0 1.690409-4 2.736063+0 1.701795-4 2.552354+0 1.716712-4 2.515424+0 1.741037-4 2.535328+0 1.759307-4 2.665880+0 1.785923-4 3.151974+0 1.803050-4 3.265223+0 1.827448-4 3.185124+0 1.853483-4 3.115583+0 2.003893-4 3.528154+0 2.254755-4 4.345230+0 2.279158-4 4.678369+0 2.304120-4 5.091163+0 2.352159-4 5.072298+0 2.639498-4 5.847470+0 3.072000-4 6.629524+0 3.550688-4 7.098224+0 4.221519-4 7.292056+0 5.314015-4 7.024514+0 7.156367-4 6.148045+0 7.194674-4 6.454163+0 7.218956-4 7.051920+0 7.239339-4 8.017088+0 7.257238-4 9.348302+0 7.276479-4 1.137209+1 7.298198-4 1.436363+1 7.378723-4 2.773996+1 7.440895-4 3.566317+1 7.511438-4 4.265227+1 7.561789-4 4.479194+1 7.632500-4 4.380978+1 7.836178-4 3.774026+1 8.023678-4 3.509169+1 8.350000-4 3.246020+1 9.525716-4 2.764586+1 9.715557-4 2.740570+1 9.800028-4 2.881460+1 9.890580-4 3.106095+1 9.965565-4 3.108146+1 1.014981-3 2.935388+1 1.040140-3 2.872838+1 1.061362-3 3.001136+1 1.097440-3 2.845018+1 1.184021-3 2.637791+1 1.215312-3 2.646555+1 1.456171-3 2.130250+1 1.737801-3 1.695417+1 2.001276-3 1.399655+1 2.323688-3 1.134841+1 2.613098-3 9.581916+0 2.973271-3 7.924224+0 3.406184-3 6.459414+0 3.876044-3 5.299287+0 4.443856-3 4.284125+0 4.885168-3 3.705957+0 4.917448-3 3.914939+0 4.933802-3 4.219308+0 4.951631-3 4.830638+0 4.969230-3 5.737388+0 5.013988-3 8.639556+0 5.036854-3 9.661910+0 5.060875-3 1.016994+1 5.117702-3 1.021442+1 5.262074-3 9.903750+0 5.301051-3 1.021849+1 5.351763-3 1.149301+1 5.389852-3 1.240105+1 5.440188-3 1.269313+1 5.604708-3 1.225811+1 5.682703-3 1.283623+1 5.738930-3 1.329608+1 6.024406-3 1.253999+1 6.980817-3 9.975869+0 7.950430-3 8.096390+0 9.087355-3 6.518088+0 1.047068-2 5.156530+0 1.197893-2 4.113031+0 1.361641-2 3.304978+0 1.520315-2 2.733494+0 1.713736-2 2.217857+0 1.930995-2 1.798471+0 2.172396-2 1.459486+0 2.451179-2 1.176326+0 2.761639-2 9.492626-1 3.084789-2 7.769797-1 3.485212-2 6.221855-1 3.517578-2 6.215057-1 3.532744-2 6.487754-1 3.544026-2 7.067739-1 3.552668-2 7.894947-1 3.561153-2 9.151349-1 3.571285-2 1.133276+0 3.583228-2 1.484580+0 3.614453-2 2.586534+0 3.630898-2 3.012269+0 3.649064-2 3.259288+0 3.670530-2 3.347878+0 4.373394-2 2.543535+0 4.945673-2 2.076394+0 5.583095-2 1.689766+0 6.280921-2 1.377868+0 7.199495-2 1.084676+0 8.150176-2 8.696617-1 9.203503-2 6.982720-1 1.027008-1 5.720950-1 1.144985-1 4.688618-1 1.263928-1 3.907733-1 1.399524-1 3.237419-1 1.553840-1 2.669421-1 1.718047-1 2.219313-1 1.912849-1 1.822111-1 2.127986-1 1.498571-1 2.364558-1 1.238397-1 2.626486-1 1.025420-1 2.937577-1 8.419760-2 3.281283-1 6.959110-2 3.684886-1 5.727038-2 4.085912-1 4.839112-2 4.531584-1 4.107472-2 5.077634-1 3.455025-2 5.690576-1 2.929976-2 6.384932-1 2.500280-2 7.281093-1 2.109425-2 8.378406-1 1.780666-2 9.522478-1 1.546068-2 1.173413+0 1.236869-2 1.410753+0 1.011301-2 1.696098+0 8.268707-3 2.039158+0 6.760745-3 2.451607+0 5.527791-3 2.814822+0 4.753017-3 3.384160+0 3.886211-3 4.068655+0 3.177484-3 4.891600+0 2.598007-3 5.880996+0 2.124209-3 7.070513+0 1.736818-3 8.500626+0 1.420075-3 9.760024+0 1.221038-3 1.000000+1 2.492899-3 1 55000 7 0 1.329050+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.157043+1 1.123724-6-4.812980+1 1.180089-6-4.413562+1 1.209796-6-3.971905+1 1.225606-6-3.538628+1 1.233715-6-3.177909+1 1.239552-6-2.774816+1 1.242254-6-2.462201+1 1.245311-6-2.087791+1 1.248369-6-1.725635+1 1.251809-6-1.254534+1 1.254866-6-8.847091+0 1.255535-6-8.217607+0 1.257924-6-6.565103+0 1.258593-6-6.369780+0 1.259596-6-6.385572+0 1.260599-6-6.641712+0 1.261364-6-7.034556+0 1.261937-6-7.501428+0 1.263227-6-9.033661+0 1.264995-6-1.222448+1 1.266285-6-1.520858+1 1.269103-6-2.389425+1 1.272830-6-3.838470+1 1.277035-6-5.437596+1 1.281126-6-4.496186+1 1.283620-6-4.158899+1 1.286398-6-4.096159+1 1.288118-6-4.197101+1 1.291457-6-4.631314+1 1.296127-6-5.480936+1 1.302254-6-4.046383+1 1.303730-6-3.514001+1 1.304815-6-3.098051+1 1.307047-6-2.483605+1 1.310056-6-1.703199+1 1.313465-6-7.380588+0 1.313666-6-6.686421+0 1.314042-6-5.630622+0 1.316675-6 5.652615-1 1.316875-6 1.151862+0 1.317251-6 1.970816+0 1.317909-6 3.091342+0 1.320285-6 6.113579+0 1.320987-6 6.435525+0 1.321514-6 6.430156+0 1.322303-6 6.117074+0 1.323093-6 5.557507+0 1.323494-6 5.163603+0 1.324196-6 4.089742+0 1.324723-6 3.035705+0 1.325118-6 2.107625+0 1.325710-6 4.793647-1 1.326006-6-4.578087-1 1.326302-6-1.530592+0 1.327105-6-4.582697+0 1.327706-6-7.030180+0 1.328496-6-1.063630+1 1.329258-6-1.475078+1 1.329712-6-1.784519+1 1.331875-6-3.154857+1 1.332771-6-3.877841+1 1.334868-6-5.500966+1 1.336005-6-4.501663+1 1.337160-6-3.536984+1 1.339016-6-2.095775+1 1.339434-6-1.709065+1 1.340117-6-1.200660+1 1.342348-6 2.557317+0 1.342549-6 3.970991+0 1.342925-6 6.224971+0 1.343583-6 9.686728+0 1.344077-6 1.201874+1 1.345558-6 1.820262+1 1.346661-6 2.191924+1 1.347977-6 2.498749+1 1.349569-6 2.693020+1 1.351525-6 2.751506+1 1.354383-6 2.458219+1 1.358044-6 1.710200+1 1.361604-6 8.351676+0 1.362005-6 7.247512+0 1.362707-6 5.670547+0 1.366418-6-1.601820+0 1.367220-6-3.371485+0 1.367822-6-4.942063+0 1.368178-6-6.202712+0 1.368490-6-7.071671+0 1.369113-6-8.511054+0 1.370350-6-1.085176+1 1.372801-6-1.447584+1 1.376406-6-1.850068+1 1.381091-6-2.241918+1 1.387862-6-2.656596+1 1.398459-6-3.104769+1 1.413886-6-3.528517+1 1.439624-6-3.952589+1 1.487881-6-4.366580+1 1.587983-6-4.732203+1 1.843321-6-5.026956+1 2.475039-6-5.312619+1 2.519356-6-5.343633+1 2.564260-6-5.015385+1 2.686156-6-5.182979+1 3.006520-6-5.234232+1 6.986629-6-5.506027+1 9.639189-6-5.089833+1 1.105145-5-4.582157+1 1.180244-5-4.056657+1 1.217986-5-3.587100+1 1.236687-5-3.167708+1 1.243155-5-2.877365+1 1.255387-5-2.233535+1 1.259591-5-2.125531+1 1.262649-5-2.167530+1 1.266472-5-2.408025+1 1.269912-5-2.797283+1 1.277205-5-3.786395+1 1.281655-5-4.183765+1 1.286250-5-4.299914+1 1.291700-5-4.105964+1 1.306945-5-3.147330+1 1.340508-5-1.638268+1 1.349493-5-1.143872+1 1.353764-5-8.767788+0 1.359385-5-4.837088+0 1.362999-5-2.005251+0 1.366613-5 1.117976+0 1.369976-5 4.338416+0 1.373340-5 7.921194+0 1.376704-5 1.194431+1 1.380068-5 1.651003+1 1.383431-5 2.176061+1 1.386795-5 2.789982+1 1.389738-5 3.424521+1 1.393523-5 4.436329+1 1.397392-5 5.850150+1 1.399536-5 6.841629+1 1.400782-5 7.652718+1 1.402896-5 8.981216+1 1.407677-5 1.161815+2 1.411629-5 1.405988+2 1.415758-5 1.600743+2 1.419088-5 1.650762+2 1.421645-5 1.580127+2 1.424599-5 1.384579+2 1.426519-5 1.177369+2 1.429343-5 7.493861+1 1.431381-5 3.696314+1 1.431704-5 2.993047+1 1.431920-5 2.437735+1 1.432129-5 1.969269+1 1.432520-5 1.156442+1 1.433205-5-1.963229+0 1.434104-5-1.962809+1 1.434894-5-3.617779+1 1.435273-5-4.567767+1 1.435814-5-5.839006+1 1.436707-5-4.047486+1 1.438145-5-1.284056+1 1.438427-5-7.125990+0 1.438567-5-4.098747+0 1.438638-5-2.492507+0 1.438708-5-6.919466-1 1.438762-5 7.138059-1 1.438868-5 3.120006+0 1.439073-5 7.373596+0 1.439266-5 1.110493+1 1.439943-5 2.315732+1 1.442600-5 6.583288+1 1.443956-5 8.260915+1 1.445752-5 9.918857+1 1.447726-5 1.119193+2 1.450042-5 1.201796+2 1.451731-5 1.206882+2 1.454918-5 1.123844+2 1.459395-5 8.862014+1 1.464586-5 5.725716+1 1.468450-5 3.752509+1 1.469577-5 3.047235+1 1.470114-5 2.610171+1 1.471047-5 2.067686+1 1.471895-5 1.656258+1 1.473314-5 1.060812+1 1.474420-5 6.511821+0 1.475271-5 3.611888+0 1.476548-5-4.077647-1 1.477826-5-4.089838+0 1.478717-5-6.496787+0 1.480055-5-9.907212+0 1.483176-5-1.703332+1 1.491986-5-3.537405+1 1.496236-5-4.630577+1 1.501657-5-5.942486+1 1.509506-5-4.029501+1 1.513094-5-3.454918+1 1.515826-5-3.295020+1 1.518493-5-3.364798+1 1.521017-5-3.641927+1 1.522893-5-4.046150+1 1.526790-5-5.238446+1 1.528869-5-5.994187+1 1.532589-5-4.583662+1 1.535488-5-3.591237+1 1.539059-5-2.797095+1 1.540514-5-2.586346+1 1.542763-5-2.426108+1 1.544705-5-2.418971+1 1.546589-5-2.535347+1 1.548959-5-2.910881+1 1.552412-5-3.612603+1 1.560962-5-5.701054+1 1.561707-5-5.851872+1 1.567609-5-5.325149+1 1.575879-5-4.086752+1 1.578489-5-3.493712+1 1.583664-5-2.606916+1 1.585403-5-2.178267+1 1.588141-5-1.568044+1 1.588786-5-1.363133+1 1.589254-5-1.245447+1 1.590073-5-1.073803+1 1.592222-5-6.642672+0 1.592791-5-5.046733+0 1.593282-5-4.143437+0 1.593712-5-3.557089+0 1.594464-5-2.814807+0 1.596730-5-1.524442+0 1.597061-5-1.308291+0 1.597723-5-1.436582+0 1.598343-5-1.899756+0 1.598924-5-2.573351+0 1.599469-5-3.395229+0 1.599980-5-4.324468+0 1.600459-5-5.331498+0 1.601357-5-7.569310+0 1.602143-5-9.903711+0 1.602831-5-1.224180+1 1.603959-5-1.670912+1 1.605175-5-2.250236+1 1.606484-5-3.015318+1 1.607516-5-3.786714+1 1.608115-5-4.342813+1 1.610752-5-6.455739+1 1.612060-5-5.241970+1 1.613038-5-4.255856+1 1.615115-5-2.344904+1 1.615827-5-1.598083+1 1.616051-5-1.304655+1 1.616290-5-1.040120+1 1.619867-5 2.320939+1 1.620254-5 2.726581+1 1.621570-5 3.817284+1 1.625116-5 6.312793+1 1.627478-5 7.412383+1 1.630073-5 8.192380+1 1.633119-5 8.624774+1 1.635341-5 8.538262+1 1.638873-5 7.911674+1 1.642727-5 6.870014+1 1.647320-5 5.437821+1 1.652736-5 3.980800+1 1.654115-5 3.490249+1 1.655354-5 3.055256+1 1.657717-5 2.458913+1 1.660480-5 1.902273+1 1.664131-5 1.290477+1 1.666276-5 9.768807+0 1.672596-5 1.197041+0 1.673301-5 2.229645-1 1.674300-5-1.229804+0 1.675798-5-3.131358+0 1.681707-5-1.011059+1 1.686843-5-1.635632+1 1.691338-5-2.118640+1 1.695176-5-2.427455+1 1.698921-5-2.539648+1 1.703236-5-2.457644+1 1.706350-5-2.245492+1 1.710436-5-1.751105+1 1.714174-5-1.187561+1 1.715093-5-1.015715+1 1.718688-5-4.925739+0 1.719202-5-4.101879+0 1.720100-5-2.945013+0 1.722797-5 6.696714-2 1.723410-5 7.470007-1 1.724560-5 1.681530+0 1.725566-5 2.311138+0 1.727327-5 3.092222+0 1.728648-5 3.440348+0 1.730629-5 3.585003+0 1.731620-5 3.472161+0 1.732610-5 3.166653+0 1.734074-5 2.559955+0 1.734806-5 2.210030+0 1.737385-5 5.325444-1 1.738309-5-9.312027-2 1.739233-5-9.082208-1 1.744568-5-5.059278+0 1.749321-5-7.601073+0 1.752583-5-8.716639+0 1.756927-5-9.706294+0 1.759613-5-9.961729+0 1.770486-5-8.653107+0 1.774386-5-8.334834+0 1.791731-5-8.151337+0 1.804452-5-7.934145+0 1.814346-5-7.578212+0 1.824553-5-7.566055+0 1.833946-5-8.290141+0 1.839572-5-9.033654+0 1.861907-5-1.276055+1 1.879459-5-1.484739+1 1.910633-5-1.725720+1 1.967755-5-2.026308+1 2.068677-5-2.370592+1 2.221811-5-2.694136+1 2.483850-5-3.018746+1 2.989173-5-3.341979+1 4.167205-5-3.676806+1 6.555431-5-4.134252+1 7.481799-5-4.501703+1 7.868652-5-4.827549+1 8.064382-5-5.115565+1 8.196622-5-5.300519+1 8.571997-5-6.045928+1 8.698000-5-6.302486+1 8.792628-5-6.056388+1 9.110680-5-4.052641+1 9.228396-5-3.536261+1 9.377524-5-3.140843+1 9.591332-5-2.803827+1 9.868679-5-2.662616+1 1.051687-4-2.571890+1 1.154590-4-2.709835+1 1.465000-4-3.277595+1 1.617159-4-3.529684+1 1.646167-4-3.533681+1 1.690409-4-3.425074+1 1.790370-4-3.521964+1 2.309982-4-3.609802+1 3.981072-4-3.398976+1 5.079788-4-3.436865+1 5.881076-4-3.639419+1 6.408892-4-3.940325+1 6.782481-4-4.354856+1 7.015928-4-4.856250+1 7.148027-4-5.406842+1 7.226405-4-6.063564+1 7.305605-4-6.883825+1 7.361120-4-6.977583+1 7.461056-4-6.350933+1 7.551563-4-5.286721+1 7.622438-4-4.490778+1 7.702453-4-3.956681+1 7.798089-4-3.624791+1 8.023678-4-3.243568+1 8.350000-4-2.914198+1 8.903723-4-2.556913+1 9.399016-4-2.395484+1 9.641115-4-2.428226+1 9.800028-4-2.580719+1 9.872109-4-2.496422+1 9.995256-4-2.177637+1 1.012447-3-2.098832+1 1.040140-3-2.057951+1 1.051487-3-2.048873+1 1.097440-3-1.739748+1 1.150378-3-1.538584+1 1.197510-3-1.464769+1 1.238401-3-1.283066+1 1.303401-3-1.109579+1 1.371409-3-9.761211+0 1.493870-3-8.064421+0 1.610182-3-6.940456+0 1.737801-3-6.086381+0 1.929606-3-5.300270+0 2.164984-3-4.796876+0 2.405748-3-4.600121+0 2.738420-3-4.628905+0 3.111634-3-4.908325+0 3.561815-3-5.496515+0 4.020053-3-6.410620+0 4.354089-3-7.424395+0 4.588028-3-8.519522+0 4.756496-3-9.786569+0 4.854838-3-1.103900+1 4.908320-3-1.223915+1 4.984854-3-1.501915+1 5.013988-3-1.526811+1 5.053721-3-1.421816+1 5.100544-3-1.261074+1 5.145359-3-1.169931+1 5.218237-3-1.108087+1 5.276755-3-1.117859+1 5.351763-3-1.176651+1 5.389852-3-1.137614+1 5.481677-3-9.495294+0 5.555550-3-8.737002+0 5.682703-3-8.415336+0 5.738930-3-7.708408+0 5.815789-3-6.635356+0 5.918171-3-5.714616+0 6.090157-3-4.657280+0 6.278554-3-3.805704+0 6.468744-3-3.149011+0 6.713262-3-2.494464+0 6.980817-3-1.949287+0 7.241509-3-1.535963+0 7.498942-3-1.210875+0 7.671027-3-1.035562+0 7.950430-3-8.005389-1 8.228298-3-6.122827-1 8.511380-3-4.614408-1 8.647687-3-3.979748-1 8.848298-3-3.197293-1 9.087355-3-2.395047-1 9.319434-3-1.755991-1 9.553336-3-1.237480-1 9.741409-3-8.803382-2 9.997929-3-4.509858-2 1.012516-2-2.967313-2 1.025257-2-1.491010-2 1.034909-2-6.296780-3 1.043368-2 2.123788-4 1.044871-2 1.401542-3 1.047068-2 3.022385-3 1.055556-2 8.605308-3 1.071903-2 1.832409-2 1.083738-2 2.407412-2 1.105920-2 3.185884-2 1.127477-2 3.645375-2 1.150000-2 3.754409-2 1.179981-2 3.632804-2 1.213608-2 2.885815-2 1.249899-2 1.620980-2 1.268049-2 8.591028-3 1.277293-2 4.309870-3 1.289177-2-1.035096-3 1.294988-2-3.855746-3 1.319212-2-1.673981-2 1.339712-2-2.850867-2 1.381253-2-5.460470-2 1.446989-2-1.022493-1 1.568725-2-1.950521-1 2.554987-2-1.009406+0 2.857445-2-1.304294+0 3.084789-2-1.597137+0 3.242659-2-1.885132+0 3.350835-2-2.174262+0 3.432116-2-2.502549+0 3.485212-2-2.839535+0 3.523964-2-3.257524+0 3.555702-2-3.852610+0 3.583228-2-4.383813+0 3.600726-2-4.466820+0 3.618175-2-4.269009+0 3.661316-2-3.311570+0 3.691646-2-2.831699+0 3.728749-2-2.457246+0 3.785665-2-2.075833+0 3.859716-2-1.736989+0 3.953982-2-1.427137+0 4.026437-2-1.242558+0 4.140461-2-1.017537+0 4.273091-2-8.236890-1 4.411417-2-6.684479-1 4.562737-2-5.357383-1 4.693396-2-4.423010-1 4.840028-2-3.558765-1 4.945673-2-3.048189-1 5.059769-2-2.574319-1 5.191232-2-2.112266-1 5.309794-2-1.760300-1 5.436169-2-1.437940-1 5.583095-2-1.116225-1 5.718374-2-8.803139-2 5.839255-2-7.080231-2 5.996265-2-5.161835-2 6.129885-2-3.875149-2 6.280921-2-2.658359-2 6.448275-2-1.573463-2 6.602704-2-8.115646-3 6.732930-2-2.703282-3 6.784706-2-4.852164-4 6.809369-2 5.957560-4 6.879837-2 2.276990-3 6.950868-2 4.078987-3 7.048642-2 5.687665-3 7.127899-2 7.133610-3 7.286495-2 8.254065-3 7.495209-2 8.894900-3 7.721100-2 6.993543-3 7.827100-2 6.291070-3 8.008848-2 4.155752-3 8.051736-2 3.709275-3 8.188993-2 1.239802-3 8.209049-2 8.929561-4 8.247530-2 1.829996-4 8.286323-2-4.993431-4 8.401888-2-2.482072-3 8.585312-2-5.899365-3 8.630138-2-6.690789-3 8.782627-2-1.045571-2 8.990909-2-1.512899-2 9.307609-2-2.344277-2 1.010491-1-4.537704-2 1.224043-1-1.024611-1 1.399524-1-1.429332-1 1.659587-1-1.904723-1 1.981605-1-2.331634-1 2.441926-1-2.744335-1 3.153916-1-3.124875-1 4.231974-1-3.421244-1 6.384932-1-3.659936-1 1.228714+0-3.806157-1 3.710658+0-3.856557-1 1.000000+1-3.860775-1 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.908020-1 1.070798-6 7.160668-1 1.094654-6 8.126114-1 1.117765-6 9.183622-1 1.140153-6 1.033886+0 1.161842-6 1.159768+0 1.182853-6 1.296616+0 1.203207-6 1.445059+0 1.222926-6 1.605747+0 1.242028-6 1.779350+0 1.260533-6 1.966563+0 1.278460-6 2.168101+0 1.295826-6 2.384701+0 1.328949-6 2.866149+0 1.360033-6 3.417250+0 1.389205-6 4.044697+0 1.416582-6 4.755637+0 1.429633-6 5.145776+0 1.442275-6 5.562236+0 1.466770-6 6.483374+0 1.489734-6 7.510272+0 1.511263-6 8.655807+0 1.531446-6 9.929074+0 1.550368-6 1.133923+1 1.568107-6 1.289562+1 1.584737-6 1.460773+1 1.600328-6 1.648511+1 1.614945-6 1.853740+1 1.628648-6 2.077421+1 1.641495-6 2.320508+1 1.653538-6 2.583947+1 1.664829-6 2.868668+1 1.675414-6 3.175580+1 1.685338-6 3.505567+1 1.694642-6 3.859487+1 1.703364-6 4.238165+1 1.711540-6 4.642393+1 1.719206-6 5.072928+1 1.726393-6 5.530494+1 1.733131-6 6.015789+1 1.739447-6 6.529498+1 1.745369-6 7.072315+1 1.750920-6 7.644945+1 1.756125-6 8.248087+1 1.761004-6 8.882414+1 1.765578-6 9.548567+1 1.769867-6 1.024720+2 1.773887-6 1.097908+2 1.777656-6 1.174517+2 1.784724-6 1.344486+2 1.790907-6 1.531341+2 1.796318-6 1.737092+2 1.801053-6 1.963298+2 1.805195-6 2.210079+2 1.808820-6 2.475520+2 1.811992-6 2.755723+2 1.814767-6 3.045389+2 1.817195-6 3.338604+2 1.819320-6 3.629588+2 1.822806-6 4.185372+2 1.827788-6 5.171534+2 1.835534-6 7.204874+2 1.838708-6 8.213028+2 1.842094-6 9.384116+2 1.843223-6 9.792503+2 1.847738-6 1.148327+3 1.848302-6 1.169793+3 1.852252-6 1.318754+3 1.853804-6 1.375432+3 1.856767-6 1.477883+3 1.858319-6 1.527416+3 1.859800-6 1.571339+3 1.861281-6 1.611473+3 1.863257-6 1.658265+3 1.865161-6 1.695219+3 1.866925-6 1.721554+3 1.868406-6 1.737400+3 1.870311-6 1.748913+3 1.872850-6 1.748165+3 1.874966-6 1.733241+3 1.875752-6 1.724400+3 1.877546-6 1.697651+3 1.879549-6 1.657335+3 1.881682-6 1.603054+3 1.883793-6 1.538806+3 1.885507-6 1.479886+3 1.888579-6 1.361716+3 1.890349-6 1.287930+3 1.891458-6 1.240170+3 1.893166-6 1.164986+3 1.894968-6 1.084436+3 1.897057-6 9.909037+2 1.898527-6 9.257723+2 1.900485-6 8.410252+2 1.901913-6 7.812112+2 1.904735-6 6.698669+2 1.907239-6 5.805130+2 1.910942-6 4.683360+2 1.915598-6 3.668513+2 1.916832-6 3.480809+2 1.917617-6 3.380149+2 1.918795-6 3.257003+2 1.919972-6 3.167968+2 1.920766-6 3.127545+2 1.921743-6 3.100011+2 1.922508-6 3.095756+2 1.923327-6 3.108349+2 1.924119-6 3.137691+2 1.924919-6 3.184664+2 1.925535-6 3.232910+2 1.926136-6 3.290310+2 1.926719-6 3.355729+2 1.927284-6 3.428430+2 1.936033-6 5.825221+2 1.942662-6 9.456963+2 1.945221-6 1.133888+3 1.946716-6 1.256964+3 1.948142-6 1.383693+3 1.949569-6 1.519542+3 1.951962-6 1.768003+3 1.954355-6 2.041852+3 1.959441-6 2.702618+3 1.960002-6 2.781430+3 1.964228-6 3.405455+3 1.965771-6 3.643736+3 1.968716-6 4.107251+3 1.971147-6 4.491931+3 1.973503-6 4.859766+3 1.975933-6 5.227076+3 1.978290-6 5.564305+3 1.980384-6 5.843033+3 1.982698-6 6.122275+3 1.983376-6 6.197556+3 1.986180-6 6.473658+3 1.988371-6 6.645769+3 1.990886-6 6.791900+3 1.993066-6 6.871461+3 1.994496-6 6.899222+3 1.996702-6 6.903828+3 1.998895-6 6.862833+3 2.002523-6 6.699361+3 2.004802-6 6.540072+3 2.007010-6 6.348385+3 2.009441-6 6.100145+3 2.011797-6 5.828056+3 2.013892-6 5.565180+3 2.015911-6 5.297251+3 2.018978-6 4.872153+3 2.021371-6 4.532509+3 2.024064-6 4.150009+3 2.026158-6 3.856722+3 2.030945-6 3.216573+3 2.032590-6 3.009953+3 2.035731-6 2.638899+3 2.039920-6 2.196771+3 2.045712-6 1.689027+3 2.051606-6 1.290186+3 2.054539-6 1.131206+3 2.057460-6 9.956117+2 2.060369-6 8.805225+2 2.063268-6 7.831533+2 2.066155-6 7.009036+2 2.069030-6 6.314143+2 2.071895-6 5.725971+2 2.074748-6 5.226410+2 2.077590-6 4.800045+2 2.080421-6 4.433953+2 2.086061-6 3.840750+2 2.091657-6 3.384285+2 2.097209-6 3.022546+2 2.102718-6 2.728363+2 2.108184-6 2.483989+2 2.113607-6 2.277536+2 2.118988-6 2.100763+2 2.124326-6 1.947742+2 2.129623-6 1.814065+2 2.134879-6 1.696363+2 2.140093-6 1.592000+2 2.150441-6 1.414707+2 2.160626-6 1.270688+2 2.170653-6 1.151634+2 2.180523-6 1.051815+2 2.190239-6 9.671269+1 2.199803-6 8.945371+1 2.209218-6 8.317569+1 2.218485-6 7.770317+1 2.227608-6 7.289858+1 2.236588-6 6.865112+1 2.254267-6 6.143278+1 2.271394-6 5.559199+1 2.287986-6 5.078647+1 2.304060-6 4.677927+1 2.319631-6 4.339641+1 2.334715-6 4.051021+1 2.349328-6 3.802652+1 2.363485-6 3.587117+1 2.390913-6 3.225728+1 2.416627-6 2.940415+1 2.440733-6 2.711165+1 2.463333-6 2.524113+1 2.484521-6 2.369623+1 2.524248-6 2.121173+1 2.559008-6 1.938240+1 2.589424-6 1.800227+1 2.616038-6 1.693828+1 2.662612-6 1.531840+1 2.697542-6 1.426885+1 2.749938-6 1.290785+1 2.843720-6 1.091113+1 2.940286-6 9.267357+0 3.066048-6 7.378652+0 3.106472-6 6.756879+0 3.136790-6 6.260398+0 3.159528-6 5.856314+0 3.176582-6 5.526108+0 3.189372-6 5.257474+0 3.208558-6 4.807941+0 3.218150-6 4.555369+0 3.227743-6 4.279261+0 3.235785-6 4.027268+0 3.243750-6 3.758552+0 3.251714-6 3.472672+0 3.259679-6 3.175769+0 3.267643-6 2.880436+0 3.271438-6 2.746112+0 3.283572-6 2.391337+0 3.285557-6 2.350904+0 3.287542-6 2.317458+0 3.293581-6 2.267795+0 3.295594-6 2.271941+0 3.299621-6 2.317584+0 3.301634-6 2.361280+0 3.303647-6 2.420388+0 3.305978-6 2.509607+0 3.307945-6 2.603399+0 3.309822-6 2.709776+0 3.311699-6 2.833511+0 3.312970-6 2.927614+0 3.315195-6 3.113182+0 3.320201-6 3.633872+0 3.324204-6 4.159875+0 3.335773-6 6.267250+0 3.341261-6 7.574175+0 3.345521-6 8.716201+0 3.349396-6 9.841812+0 3.353066-6 1.097426+1 3.356991-6 1.224292+1 3.360499-6 1.341380+1 3.363090-6 1.429336+1 3.367136-6 1.567540+1 3.371181-6 1.704776+1 3.376346-6 1.874699+1 3.379146-6 1.962707+1 3.387609-6 2.202020+1 3.388545-6 2.225450+1 3.395096-6 2.369041+1 3.397893-6 2.418535+1 3.403233-6 2.491817+1 3.406157-6 2.519803+1 3.410745-6 2.546282+1 3.412935-6 2.551516+1 3.417863-6 2.546474+1 3.419505-6 2.539843+1 3.423573-6 2.513507+1 3.427642-6 2.474217+1 3.433744-6 2.394599+1 3.435778-6 2.363435+1 3.443914-6 2.221790+1 3.452050-6 2.063648+1 3.460187-6 1.901710+1 3.477181-6 1.591121+1 3.484080-6 1.484224+1 3.490763-6 1.392886+1 3.497237-6 1.315637+1 3.503509-6 1.250623+1 3.515661-6 1.148385+1 3.527053-6 1.075026+1 3.537734-6 1.020549+1 3.557759-6 9.427727+0 3.575282-6 8.908575+0 3.605947-6 8.200763+0 3.628945-6 7.770580+0 3.716222-6 6.464644+0 3.734427-6 6.199601+0 3.752631-6 5.911879+0 3.761733-6 5.754510+0 3.770836-6 5.586046+0 3.783055-6 5.342465+0 3.812080-6 4.743243+0 3.816266-6 4.668711+0 3.825449-6 4.534583+0 3.830846-6 4.481270+0 3.834551-6 4.458474+0 3.840229-6 4.448856+0 3.842575-6 4.454743+0 3.849612-6 4.510534+0 3.851958-6 4.542568+0 3.858995-6 4.680934+0 3.861763-6 4.752907+0 3.866605-6 4.902372+0 3.872962-6 5.141742+0 3.881134-6 5.512466+0 3.898400-6 6.438387+0 3.905910-6 6.850536+0 3.908256-6 6.974803+0 3.915293-6 7.325306+0 3.922210-6 7.625435+0 3.928885-6 7.861913+0 3.933303-6 7.985965+0 3.936616-6 8.061088+0 3.941586-6 8.144444+0 3.946555-6 8.192822+0 3.950438-6 8.207010+0 3.954321-6 8.201501+0 3.958264-6 8.177015+0 3.962208-6 8.135017+0 3.971591-6 7.974960+0 3.980974-6 7.750610+0 3.996804-6 7.293540+0 4.036154-6 6.170762+0 4.049555-6 5.855858+0 4.057510-6 5.688814+0 4.069490-6 5.468559+0 4.077484-6 5.345868+0 4.087471-6 5.225100+0 4.097458-6 5.146208+0 4.107445-6 5.114066+0 4.112907-6 5.117069+0 4.121101-6 5.148217+0 4.129295-6 5.208570+0 4.139263-6 5.313437+0 4.159206-6 5.570423+0 4.169165-6 5.688224+0 4.179681-6 5.782256+0 4.184528-6 5.811595+0 4.191798-6 5.836956+0 4.199067-6 5.839460+0 4.209035-6 5.807995+0 4.217302-6 5.756169+0 4.227289-6 5.671916+0 4.248905-6 5.465838+0 4.265126-6 5.341765+0 4.273001-6 5.299729+0 4.288134-6 5.252635+0 4.308786-6 5.237557+0 4.340339-6 5.227783+0 4.363954-6 5.188931+0 4.425289-6 5.051689+0 4.530290-6 4.866122+0 4.582736-6 4.746731+0 4.654727-6 4.576558+0 4.855027-6 4.253893+0 5.080050-6 3.903838+0 5.375787-6 3.478613+0 5.516691-6 3.292191+0 5.765128-6 2.973256+0 5.926633-6 2.778694+0 6.066757-6 2.613462+0 6.240608-6 2.411601+0 6.389602-6 2.242314+0 6.570434-6 2.044129+0 6.668868-6 1.939740+0 6.850000-6 1.754317+0 7.000981-6 1.606525+0 7.099793-6 1.512660+0 7.200000-6 1.418486+0 7.294565-6 1.330917+0 7.393385-6 1.241182+0 7.461530-6 1.180460+0 7.544132-6 1.108307+0 7.640557-6 1.025706+0 7.737377-6 9.443074-1 7.838508-6 8.612046-1 7.908218-6 8.052138-1 7.992688-6 7.392957-1 8.081649-6 6.721753-1 8.192000-6 5.917975-1 8.283295-6 5.281336-1 8.375644-6 4.664098-1 8.453726-6 4.165531-1 8.541539-6 3.633761-1 8.636637-6 3.091616-1 8.752153-6 2.480015-1 8.848692-6 2.012313-1 8.966612-6 1.497264-1 9.032086-6 1.239949-1 9.120108-6 9.302940-2 9.234339-6 5.910766-2 9.335322-6 3.536460-2 9.454405-6 1.541583-2 9.571628-6 4.641510-3 9.600000-6 3.471813-3 9.629323-6 2.903068-3 9.686568-6 3.708443-3 9.743365-6 6.825674-3 9.799719-6 1.127949-2 9.883262-6 1.603447-2 9.897077-6 1.619888-2 9.965802-6 1.399923-2 1.002042-5 1.002858-2 1.007461-5 6.154763-3 1.012837-5 3.639911-3 1.018172-5 3.019174-3 1.023465-5 4.450915-3 1.033968-5 1.359795-2 1.044307-5 3.130813-2 1.054484-5 5.802102-2 1.064503-5 9.411783-2 1.074365-5 1.399060-1 1.084500-5 1.982513-1 1.096500-5 2.829158-1 1.103035-5 3.368254-1 1.112295-5 4.237068-1 1.121410-5 5.221569-1 1.130383-5 6.325901-1 1.142000-5 7.967362-1 1.148048-5 8.923475-1 1.161449-5 1.131488+0 1.165161-5 1.204853+0 1.181739-5 1.572992+0 1.197799-5 1.998677+0 1.213358-5 2.483765+0 1.228430-5 3.033372+0 1.244515-5 3.718776+0 1.257175-5 4.339848+0 1.273503-5 5.261191+0 1.297012-5 6.869260+0 1.333230-5 1.018070+1 1.386430-5 1.764770+1 1.423593-5 2.580000+1 1.440597-5 3.067162+1 1.456539-5 3.610561+1 1.471484-5 4.213373+1 1.485496-5 4.877976+1 1.498631-5 5.606489+1 1.510946-5 6.400738+1 1.522490-5 7.262544+1 1.533314-5 8.193726+1 1.543461-5 9.195672+1 1.552973-5 1.026917+2 1.561891-5 1.141443+2 1.570252-5 1.263107+2 1.578090-5 1.391822+2 1.585439-5 1.527482+2 1.592328-5 1.669980+2 1.598786-5 1.819190+2 1.604841-5 1.974907+2 1.615839-5 2.304462+2 1.625817-5 2.667531+2 1.634548-5 3.048916+2 1.642187-5 3.444401+2 1.648872-5 3.849528+2 1.654721-5 4.259574+2 1.660027-5 4.685875+2 1.664317-5 5.075408+2 1.668235-5 5.472336+2 1.675092-5 6.281173+2 1.680235-5 7.005904+2 1.684092-5 7.632697+2 1.689878-5 8.741865+2 1.695663-5 1.011679+3 1.699837-5 1.133131+3 1.704011-5 1.279681+3 1.708184-5 1.459642+3 1.712358-5 1.684813+3 1.716532-5 1.971801+3 1.719663-5 2.241194+3 1.721779-5 2.456418+3 1.724954-5 2.840737+3 1.728128-5 3.315017+3 1.730245-5 3.691405+3 1.733229-5 4.319182+3 1.737495-5 5.451775+3 1.747134-5 9.329451+3 1.751229-5 1.163950+4 1.753438-5 1.306140+4 1.754763-5 1.397278+4 1.757995-5 1.636888+4 1.759610-5 1.765227+4 1.763380-5 2.082866+4 1.764861-5 2.212988+4 1.768227-5 2.514496+4 1.770584-5 2.725816+4 1.772536-5 2.897721+4 1.774429-5 3.059135+4 1.775879-5 3.177689+4 1.777951-5 3.337219+4 1.780115-5 3.488401+4 1.782499-5 3.632692+4 1.784753-5 3.744025+4 1.787717-5 3.848552+4 1.789929-5 3.892827+4 1.792548-5 3.906106+4 1.793976-5 3.895228+4 1.797983-5 3.797819+4 1.799910-5 3.717634+4 1.801876-5 3.615478+4 1.803527-5 3.515249+4 1.805561-5 3.375696+4 1.807793-5 3.205266+4 1.809501-5 3.064849+4 1.811420-5 2.899325+4 1.813022-5 2.756465+4 1.815083-5 2.569060+4 1.817237-5 2.371532+4 1.819391-5 2.175399+4 1.821815-5 1.959786+4 1.823700-5 1.797806+4 1.828008-5 1.453274+4 1.829489-5 1.344544+4 1.832317-5 1.152211+4 1.835548-5 9.577319+3 1.838200-5 8.182929+3 1.841765-5 6.581947+3 1.846052-5 5.035738+3 1.853193-5 3.218032+3 1.857550-5 2.465281+3 1.860036-5 2.126466+3 1.862212-5 1.874070+3 1.864115-5 1.682078+3 1.867446-5 1.400150+3 1.870000-5 1.222278+3 1.873692-5 1.011048+3 1.877439-5 8.395091+2 1.882060-5 6.717380+2 1.891302-5 4.323655+2 1.897794-5 3.141770+2 1.904137-5 2.257478+2 1.914408-5 1.268477+2 1.919029-5 9.909372+1 1.922559-5 8.574631+1 1.925683-5 8.063345+1 1.928008-5 8.168458+1 1.929170-5 8.400287+1 1.930332-5 8.765273+1 1.931807-5 9.439009+1 1.933098-5 1.024126+2 1.933663-5 1.066006+2 1.934689-5 1.153426+2 1.935154-5 1.198165+2 1.936237-5 1.315436+2 1.937113-5 1.424513+2 1.938290-5 1.592725+2 1.940242-5 1.932330+2 1.946755-5 3.757333+2 1.948353-5 4.408653+2 1.950637-5 5.511358+2 1.952472-5 6.560662+2 1.954392-5 7.831423+2 1.955735-5 8.834778+2 1.957655-5 1.044482+3 1.959603-5 1.230504+3 1.961734-5 1.462025+3 1.962457-5 1.547568+3 1.967518-5 2.251362+3 1.969585-5 2.593439+3 1.971285-5 2.898858+3 1.972948-5 3.218395+3 1.974913-5 3.621121+3 1.979422-5 4.640232+3 1.981525-5 5.153229+3 1.984888-5 6.008113+3 1.986886-5 6.527965+3 1.988446-5 6.935137+3 1.990683-5 7.514954+3 1.993003-5 8.101923+3 1.994971-5 8.580272+3 1.996848-5 9.013606+3 1.999092-5 9.494096+3 2.001605-5 9.973225+3 2.003944-5 1.035323+4 2.005660-5 1.058693+4 2.007944-5 1.083368+4 2.010121-5 1.099688+4 2.012317-5 1.108780+4 2.014619-5 1.110282+4 2.015094-5 1.109574+4 2.018667-5 1.093415+4 2.020775-5 1.075322+4 2.022618-5 1.054717+4 2.024817-5 1.024818+4 2.026969-5 9.905975+3 2.029520-5 9.446981+3 2.032185-5 8.918728+3 2.035195-5 8.280284+3 2.037591-5 7.754010+3 2.041334-5 6.924205+3 2.042382-5 6.694070+3 2.047739-5 5.563921+3 2.052732-5 4.618072+3 2.062294-5 3.187722+3 2.066018-5 2.768059+3 2.069967-5 2.398213+3 2.072674-5 2.184143+3 2.077775-5 1.854011+3 2.083952-5 1.554554+3 2.089221-5 1.361293+3 2.093080-5 1.245750+3 2.097826-5 1.126163+3 2.102927-5 1.018953+3 2.105794-5 9.665248+2 2.109013-5 9.134114+2 2.113871-5 8.432938+2 2.118219-5 7.894634+2 2.121967-5 7.488735+2 2.125252-5 7.171626+2 2.132034-5 6.611669+2 2.147124-5 5.677773+2 2.153373-5 5.368218+2 2.168967-5 4.705335+2 2.193308-5 3.872060+2 2.211137-5 3.379371+2 2.221610-5 3.139559+2 2.229776-5 2.982168+2 2.236568-5 2.872461+2 2.240749-5 2.814734+2 2.247596-5 2.736508+2 2.250947-5 2.705664+2 2.265181-5 2.630820+2 2.272117-5 2.627910+2 2.276977-5 2.638182+2 2.284974-5 2.672621+2 2.299740-5 2.753983+2 2.307683-5 2.779048+2 2.311473-5 2.781653+2 2.316287-5 2.775232+2 2.323515-5 2.746310+2 2.328063-5 2.718509+2 2.339315-5 2.633338+2 2.346790-5 2.575963+2 2.357006-5 2.508982+2 2.363544-5 2.474655+2 2.374710-5 2.428006+2 2.421979-5 2.275194+2 2.512683-5 2.035453+2 2.559487-5 1.932833+2 2.616705-5 1.826233+2 2.687801-5 1.712231+2 2.757449-5 1.616891+2 2.825126-5 1.537187+2 2.915001-5 1.446340+2 3.094841-5 1.293971+2 3.370163-5 1.112447+2 3.523474-5 1.026918+2 3.583444-5 1.005664+2 3.614732-5 9.920669+1 3.678430-5 9.582808+1 3.903952-5 8.626880+1 4.098045-5 7.881946+1 4.332898-5 7.045330+1 4.460412-5 6.613060+1 4.539743-5 6.350871+1 4.677351-5 5.908399+1 4.786301-5 5.565500+1 4.942147-5 5.087354+1 5.045003-5 4.774638+1 5.188000-5 4.348663+1 5.267726-5 4.116332+1 5.449380-5 3.589708+1 5.625762-5 3.083273+1 5.759443-5 2.705631+1 5.888436-5 2.348545+1 6.009983-5 2.019421+1 6.147780-5 1.656035+1 6.244638-5 1.409125+1 6.345999-5 1.161227+1 6.429369-5 9.672200+0 6.516740-5 7.749809+0 6.603753-5 5.971574+0 6.683439-5 4.488830+0 6.723498-5 3.806720+0 6.762932-5 3.183907+0 6.820855-5 2.379162+0 6.877280-5 1.820337+0 6.916409-5 1.668808+0 6.918685-5 1.667411+0 6.960302-5 1.786375+0 7.012573-5 2.260630+0 7.064676-5 2.973644+0 7.098779-5 3.540436+0 7.132349-5 4.175094+0 7.165394-5 4.879046+0 7.197923-5 5.654407+0 7.244360-5 6.914504+0 7.292492-5 8.428256+0 7.353101-5 1.067064+1 7.401069-5 1.274601+1 7.440964-5 1.470055+1 7.500000-5 1.801998+1 7.552093-5 2.142711+1 7.605067-5 2.541939+1 7.656385-5 2.986612+1 7.754261-5 4.023411+1 7.900986-5 6.186632+1 8.125330-5 1.170791+2 8.227257-5 1.564579+2 8.319924-5 2.043899+2 8.376977-5 2.416104+2 8.433504-5 2.859437+2 8.482361-5 3.316961+2 8.530167-5 3.847464+2 8.574985-5 4.436095+2 8.624231-5 5.208973+2 8.656392-5 5.800787+2 8.698176-5 6.696264+2 8.727941-5 7.439165+2 8.760398-5 8.370086+2 8.790826-5 9.380057+2 8.819353-5 1.047228+3 8.846096-5 1.164984+3 8.871169-5 1.291575+3 8.894674-5 1.427298+3 8.916710-5 1.572449+3 8.937369-5 1.727326+3 8.956736-5 1.892237+3 8.974893-5 2.067515+3 8.998301-5 2.329560+3 9.007874-5 2.450722+3 9.022835-5 2.659565+3 9.036861-5 2.880595+3 9.050010-5 3.114354+3 9.074666-5 3.640491+3 9.096239-5 4.225913+3 9.115115-5 4.869521+3 9.131632-5 5.565301+3 9.146084-5 6.302637+3 9.158730-5 7.067694+3 9.169795-5 7.845237+3 9.179477-5 8.620318+3 9.187949-5 9.379534+3 9.202774-5 1.091251+4 9.228487-5 1.428886+4 9.257750-5 1.943884+4 9.272676-5 2.265999+4 9.316890-5 3.453445+4 9.339710-5 4.176140+4 9.342562-5 4.269693+4 9.362530-5 4.932045+4 9.370374-5 5.191083+4 9.385350-5 5.672327+4 9.392548-5 5.893413+4 9.399078-5 6.086052+4 9.409792-5 6.381891+4 9.415231-5 6.520825+4 9.421822-5 6.677576+4 9.431871-5 6.889375+4 9.441805-5 7.063045+4 9.452682-5 7.208646+4 9.465933-5 7.318838+4 9.477343-5 7.352566+4 9.481315-5 7.350975+4 9.492650-5 7.309294+4 9.504581-5 7.208489+4 9.515574-5 7.068238+4 9.527799-5 6.865740+4 9.539440-5 6.635581+4 9.553895-5 6.313073+4 9.571685-5 5.886873+4 9.609484-5 5.025730+4 9.620083-5 4.825177+4 9.633447-5 4.610453+4 9.643933-5 4.474748+4 9.655771-5 4.357540+4 9.666158-5 4.285772+4 9.677167-5 4.239619+4 9.689869-5 4.220601+4 9.704239-5 4.235422+4 9.716155-5 4.269155+4 9.755388-5 4.424172+4 9.780146-5 4.476245+4 9.789414-5 4.474238+4 9.807759-5 4.427135+4 9.816050-5 4.385749+4 9.823242-5 4.339525+4 9.834749-5 4.245954+4 9.843806-5 4.156059+4 9.852225-5 4.060552+4 9.864804-5 3.898567+4 9.872947-5 3.782960+4 9.888671-5 3.540736+4 9.901838-5 3.323996+4 9.917991-5 3.048823+4 9.941219-5 2.652021+4 9.946278-5 2.567396+4 9.978231-5 2.064557+4 1.000134-4 1.746931+4 1.003694-4 1.346142+4 1.006256-4 1.122340+4 1.007959-4 1.000209+4 1.009403-4 9.112175+3 1.011064-4 8.233830+3 1.013554-4 7.158899+3 1.016045-4 6.314410+3 1.018820-4 5.575738+3 1.021600-4 4.991682+3 1.024790-4 4.458862+3 1.027985-4 4.030688+3 1.030949-4 3.702736+3 1.034093-4 3.410217+3 1.037483-4 3.144485+3 1.041134-4 2.903576+3 1.044462-4 2.716594+3 1.048937-4 2.504051+3 1.054750-4 2.279391+3 1.058000-4 2.173666+3 1.060518-4 2.099777+3 1.066242-4 1.953704+3 1.071920-4 1.833194+3 1.077554-4 1.732454+3 1.083539-4 1.641612+3 1.088690-4 1.574097+3 1.094193-4 1.510779+3 1.099653-4 1.455273+3 1.110488-4 1.361362+3 1.121153-4 1.284092+3 1.132010-4 1.216558+3 1.141987-4 1.162113+3 1.152160-4 1.112614+3 1.173030-4 1.025085+3 1.183849-4 9.856273+2 1.203096-4 9.228275+2 1.222587-4 8.671725+2 1.254646-4 7.894795+2 1.288119-4 7.230999+2 1.342315-4 6.366815+2 1.388451-4 5.774840+2 1.465000-4 5.008291+2 1.519022-4 4.580113+2 1.603245-4 4.050806+2 1.686068-4 3.635568+2 1.740000-4 3.382026+2 1.767620-4 3.252705+2 1.798561-4 3.090634+2 1.812102-4 3.018060+2 1.821234-4 2.982314+2 1.829831-4 2.965027+2 1.839968-4 2.964125+2 1.865000-4 2.985318+2 1.888897-4 2.975632+2 1.910634-4 2.954787+2 1.978932-4 2.855634+2 2.007599-4 2.827764+2 2.092283-4 2.810774+2 2.306904-4 2.727549+2 2.426394-4 2.677026+2 2.504714-4 2.622508+2 2.516657-4 2.622705+2 2.534003-4 2.636367+2 2.587628-4 2.714321+2 2.610778-4 2.735180+2 2.851018-4 2.871151+2 2.979490-4 2.933738+2 3.135090-4 3.001241+2 3.292305-4 3.060456+2 3.443905-4 3.109822+2 3.602593-4 3.152080+2 3.772207-4 3.182521+2 4.096000-4 3.208462+2 4.346353-4 3.200624+2 4.631543-4 3.162839+2 4.965651-4 3.075601+2 5.246451-4 2.966864+2 5.427375-4 2.874810+2 5.689098-4 2.689195+2 5.919128-4 2.484348+2 6.095369-4 2.298457+2 6.198564-4 2.177332+2 6.361488-4 1.965167+2 6.455172-4 1.828201+2 6.531305-4 1.706043+2 6.598095-4 1.595499+2 6.648721-4 1.509754+2 6.730044-4 1.367015+2 6.772150-4 1.290543+2 6.828141-4 1.186064+2 6.891510-4 1.064345+2 6.929843-4 9.892734+1 6.986633-4 8.767379+1 7.020701-4 8.089371+1 7.059777-4 7.314770+1 7.097791-4 6.571375+1 7.137203-4 5.821648+1 7.172814-4 5.174853+1 7.198163-4 4.740563+1 7.255058-4 3.884937+1 7.280867-4 3.571289+1 7.305062-4 3.331461+1 7.328246-4 3.158019+1 7.349012-4 3.054461+1 7.361266-4 3.017812+1 7.368949-4 3.004349+1 7.378294-4 2.997900+1 7.392134-4 3.008012+1 7.404615-4 3.036151+1 7.420819-4 3.096027+1 7.443276-4 3.209529+1 7.478133-4 3.401451+1 7.505826-4 3.542125+1 7.517497-4 3.615253+1 7.526721-4 3.694234+1 7.535413-4 3.799023+1 7.543571-4 3.938300+1 7.554875-4 4.229206+1 7.558411-4 4.351341+1 7.565260-4 4.642301+1 7.571681-4 4.993392+1 7.577701-4 5.406543+1 7.583345-4 5.881967+1 7.589013-4 6.460188+1 7.593609-4 7.014440+1 7.598247-4 7.661836+1 7.602607-4 8.360446+1 7.606694-4 9.103337+1 7.610526-4 9.884695+1 7.617710-4 1.159736+2 7.623997-4 1.339533+2 7.638522-4 1.883700+2 7.655306-4 2.793049+2 7.666216-4 3.585134+2 7.673203-4 4.189415+2 7.676774-4 4.530229+2 7.700902-4 7.464985+2 7.708417-4 8.624573+2 7.710789-4 9.016208+2 7.723240-4 1.127792+3 7.730966-4 1.285513+3 7.747292-4 1.660760+3 7.755200-4 1.861313+3 7.767579-4 2.195724+3 7.775495-4 2.419917+3 7.781127-4 2.582872+3 7.785744-4 2.717892+3 7.794203-4 2.966826+3 7.800515-4 3.152181+3 7.808960-4 3.396931+3 7.816639-4 3.613592+3 7.821244-4 3.739725+3 7.830978-4 3.994299+3 7.839534-4 4.201699+3 7.847438-4 4.377393+3 7.857763-4 4.581286+3 7.864958-4 4.705057+3 7.874977-4 4.851595+3 7.884960-4 4.967888+3 7.896308-4 5.065607+3 7.905750-4 5.121197+3 7.918721-4 5.164243+3 7.932089-4 5.175154+3 7.946819-4 5.156935+3 7.957569-4 5.128452+3 7.979235-4 5.041965+3 7.998325-4 4.937824+3 8.016025-4 4.815678+3 8.030056-4 4.697880+3 8.044955-4 4.549447+3 8.058601-4 4.390967+3 8.073944-4 4.187435+3 8.087000-4 3.995201+3 8.098188-4 3.819066+3 8.113213-4 3.570948+3 8.126338-4 3.348723+3 8.135995-4 3.185166+3 8.155353-4 2.866033+3 8.191000-4 2.347325+3 8.209964-4 2.122720+3 8.225910-4 1.964257+3 8.239212-4 1.852752+3 8.250948-4 1.769006+3 8.259540-4 1.715733+3 8.275508-4 1.632892+3 8.290837-4 1.570502+3 8.306302-4 1.521506+3 8.321647-4 1.483978+3 8.341612-4 1.447764+3 8.369075-4 1.414214+3 8.399938-4 1.390475+3 8.426097-4 1.377136+3 8.454915-4 1.366665+3 8.511205-4 1.352936+3 8.671030-4 1.328650+3 8.919689-4 1.303395+3 9.084868-4 1.292270+3 9.539663-4 1.272905+3 9.758408-4 1.260084+3 9.945402-4 1.243388+3 1.008672-3 1.223968+3 1.019066-3 1.202698+3 1.027923-3 1.182218+3 1.033508-3 1.175640+3 1.036354-3 1.176959+3 1.038860-3 1.181666+3 1.041371-3 1.190075+3 1.043538-3 1.200312+3 1.046158-3 1.216054+3 1.055850-3 1.290111+3 1.061126-3 1.325229+3 1.064192-3 1.340329+3 1.066651-3 1.349428+3 1.070052-3 1.358076+3 1.077068-3 1.365882+3 1.089596-3 1.367269+3 1.100470-3 1.366060+3 1.109135-3 1.369218+3 1.114964-3 1.378014+3 1.119698-3 1.390488+3 1.135376-3 1.448183+3 1.142140-3 1.466503+3 1.148124-3 1.476599+3 1.156620-3 1.484965+3 1.181352-3 1.501909+3 1.202914-3 1.511733+3 1.221448-3 1.515273+3 1.257832-3 1.511499+3 1.265440-3 1.516608+3 1.277446-3 1.534064+3 1.296270-3 1.565720+3 1.315033-3 1.586101+3 1.333811-3 1.599978+3 1.379422-3 1.621661+3 1.437948-3 1.636564+3 1.518223-3 1.644829+3 1.638400-3 1.643195+3 1.728000-3 1.634203+3 1.871796-3 1.606505+3 2.006161-3 1.575722+3 2.067983-3 1.560218+3 2.238721-3 1.511299+3 2.423324-3 1.456024+3 2.821426-3 1.342036+3 3.102550-3 1.268823+3 3.383177-3 1.194060+3 3.543509-3 1.152370+3 3.706007-3 1.111004+3 3.873691-3 1.067673+3 4.029235-3 1.027524+3 4.169991-3 9.904826+2 4.313402-3 9.522606+2 4.433215-3 9.193893+2 4.546182-3 8.867706+2 4.643816-3 8.571017+2 4.728109-3 8.298632+2 4.806774-3 8.024454+2 4.867923-3 7.793029+2 4.922417-3 7.567770+2 4.966840-3 7.365239+2 5.007380-3 7.158936+2 5.046186-3 6.932609+2 5.077386-3 6.719330+2 5.101675-3 6.527001+2 5.130899-3 6.263624+2 5.177654-3 5.826698+2 5.198375-3 5.677113+2 5.210623-3 5.616441+2 5.221146-3 5.584688+2 5.228011-3 5.574954+2 5.240950-3 5.580803+2 5.253189-3 5.614615+2 5.267587-3 5.685790+2 5.283085-3 5.792375+2 5.340000-3 6.273287+2 5.358010-3 6.405870+2 5.369854-3 6.481216+2 5.388095-3 6.577782+2 5.411807-3 6.669339+2 5.437502-3 6.730005+2 5.465094-3 6.757159+2 5.491289-3 6.752548+2 5.562968-3 6.667077+2 5.591587-3 6.660976+2 5.606404-3 6.677373+2 5.620268-3 6.707012+2 5.646657-3 6.800750+2 5.688530-3 7.018670+2 5.734179-3 7.264695+2 5.756685-3 7.363523+2 5.781744-3 7.449287+2 5.805869-3 7.508048+2 5.832906-3 7.550286+2 5.906259-3 7.612145+2 5.949161-3 7.686382+2 5.982394-3 7.786955+2 6.074201-3 8.145381+2 6.128352-3 8.308292+2 6.160522-3 8.379976+2 6.209389-3 8.464177+2 6.300155-3 8.572532+2 6.416033-3 8.656471+2 6.560430-3 8.710790+2 6.770490-3 8.722395+2 7.053716-3 8.661336+2 7.359953-3 8.532157+2 7.707599-3 8.339750+2 8.111410-3 8.083133+2 8.694203-3 7.685157+2 9.344301-3 7.238532+2 1.026242-2 6.641634+2 1.127684-2 6.042501+2 1.266193-2 5.338149+2 1.436273-2 4.629622+2 1.597550-2 4.081505+2 1.763155-2 3.610331+2 1.909879-2 3.253274+2 2.059444-2 2.935520+2 2.224270-2 2.629783+2 2.395383-2 2.353528+2 2.591922-2 2.079306+2 2.794821-2 1.835977+2 3.003902-2 1.619577+2 3.166831-2 1.470012+2 3.294601-2 1.361001+2 3.398183-2 1.274984+2 3.472503-2 1.212395+2 3.532221-2 1.159517+2 3.560982-2 1.132274+2 3.583498-2 1.109547+2 3.604597-2 1.086515+2 3.622542-2 1.064946+2 3.637564-2 1.044963+2 3.659022-2 1.012743+2 3.706528-2 9.352366+1 3.721490-2 9.173647+1 3.732731-2 9.090199+1 3.745310-2 9.058018+1 3.757869-2 9.090552+1 3.773931-2 9.210986+1 3.822155-2 9.761488+1 3.839069-2 9.919006+1 3.857003-2 1.004518+2 3.884857-2 1.017170+2 3.916482-2 1.024763+2 3.961351-2 1.028628+2 4.014818-2 1.027306+2 4.072335-2 1.021805+2 4.158793-2 1.008763+2 4.266613-2 9.876683+1 4.422483-2 9.523920+1 4.667893-2 8.938062+1 4.998778-2 8.178268+1 5.325763-2 7.485496+1 5.702099-2 6.766763+1 6.156775-2 6.005766+1 6.871822-2 5.020873+1 7.707084-2 4.133294+1 9.292359-2 2.977300+1 1.118179-1 2.140866+1 1.364382-1 1.489022+1 1.810045-1 8.830147+0 2.226158-1 5.984417+0 2.852084-1 3.722997+0 3.988060-1 1.942372+0 5.889496-1 9.050565-1 9.360412-1 3.624084-1 1.776032+0 1.013798-1 5.363532+0 1.114521-2 1.619761+1 1.222407-3 4.891600+1 1.340386-4 1.477239+2 1.469709-5 4.461192+2 1.611505-6 1.584893+3 1.276831-7 5.011872+3 1.276831-8 1.584893+4 1.276831-9 5.011872+4 1.27683-10 1.000000+5 3.20725-11 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.687600-6 1.258900-6 4.259600-6 1.584900-6 6.751000-6 1.995300-6 1.070000-5 2.511900-6 1.695800-5 3.162300-6 2.687600-5 3.981100-6 4.259500-5 5.011900-6 6.750800-5 6.309600-6 1.069900-4 7.943300-6 1.695700-4 1.000000-5 2.687500-4 1.258900-5 4.259300-4 1.584900-5 6.747000-4 1.995300-5 1.068600-3 2.511900-5 1.692700-3 3.162300-5 2.681500-3 3.981100-5 4.248600-3 5.011900-5 6.730800-3 6.309600-5 1.066200-2 7.943300-5 1.686800-2 1.000000-4 2.667300-2 1.258900-4 4.210400-2 1.584900-4 6.631200-2 1.995300-4 1.040500-1 2.511900-4 1.624100-1 3.162300-4 2.513000-1 3.981100-4 3.828300-1 5.011900-4 5.709200-1 6.309600-4 8.280200-1 7.943300-4 1.159600+0 1.000000-3 1.567000+0 1.258900-3 2.054900+0 1.584900-3 2.652100+0 1.995300-3 3.393200+0 2.511900-3 4.311000+0 3.162300-3 5.419800+0 3.981100-3 6.733800+0 5.011900-3 8.214000+0 6.309600-3 9.797300+0 7.943300-3 1.149100+1 1.000000-2 1.334300+1 1.258900-2 1.533700+1 1.584900-2 1.735300+1 1.995300-2 1.924300+1 2.511900-2 2.093200+1 3.162300-2 2.232400+1 3.981100-2 2.354600+1 5.011900-2 2.438000+1 6.309600-2 2.483800+1 7.943300-2 2.488300+1 1.000000-1 2.452600+1 1.258900-1 2.380500+1 1.584900-1 2.284300+1 1.995300-1 2.165300+1 2.511900-1 2.031100+1 3.162300-1 1.888000+1 3.981100-1 1.740800+1 5.011900-1 1.593700+1 6.309600-1 1.449500+1 7.943300-1 1.309500+1 1.000000+0 1.176100+1 1.258900+0 1.049100+1 1.584900+0 9.299700+0 1.995300+0 8.189900+0 2.511900+0 7.166300+0 3.162300+0 6.231800+0 3.981100+0 5.386900+0 5.011900+0 4.630600+0 6.309600+0 3.959800+0 7.943300+0 3.369800+0 1.000000+1 2.855000+0 1.258900+1 2.409100+0 1.584900+1 2.025400+0 1.995300+1 1.697200+0 2.511900+1 1.417900+0 3.162300+1 1.181300+0 3.981100+1 9.818600-1 5.011900+1 8.142500-1 6.309600+1 6.739100-1 7.943300+1 5.567400-1 1.000000+2 4.591800-1 1.258900+2 3.781400-1 1.584900+2 3.109800-1 1.995300+2 2.554200-1 2.511900+2 2.095400-1 3.162300+2 1.717100-1 3.981100+2 1.405700-1 5.011900+2 1.149700-1 6.309600+2 9.395300-2 7.943300+2 7.671300-2 1.000000+3 6.258900-2 1.258900+3 5.102800-2 1.584900+3 4.157400-2 1.995300+3 3.385000-2 2.511900+3 2.754400-2 3.162300+3 2.240000-2 3.981100+3 1.820700-2 5.011900+3 1.479100-2 6.309600+3 1.201000-2 7.943300+3 9.746700-3 1.000000+4 7.906600-3 1.258900+4 6.411100-3 1.584900+4 5.196200-3 1.995300+4 4.209900-3 2.511900+4 3.409500-3 3.162300+4 2.760200-3 3.981100+4 2.233800-3 5.011900+4 1.807200-3 6.309600+4 1.461500-3 7.943300+4 1.181600-3 1.000000+5 9.549900-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510168-4 3.162278-4 3.159563-4 3.981072-4 3.976792-4 5.011872-4 5.005145-4 6.309573-4 6.299032-4 7.943282-4 7.926804-4 1.000000-3 9.974385-4 1.258925-3 1.254932-3 1.584893-3 1.578659-3 1.995262-3 1.985457-3 2.511886-3 2.496494-3 3.162278-3 3.138083-3 3.981072-3 3.943106-3 5.011872-3 4.952546-3 6.309573-3 6.217266-3 7.943282-3 7.799748-3 1.000000-2 9.776451-3 1.258925-2 1.224121-2 1.584893-2 1.530941-2 1.995262-2 1.912152-2 2.511886-2 2.384520-2 3.162278-2 2.967793-2 3.981072-2 3.685838-2 5.011872-2 4.565600-2 6.309573-2 5.639967-2 7.943282-2 6.947014-2 1.000000-1 8.531660-2 1.258925-1 1.044947-1 1.584893-1 1.274190-1 1.995262-1 1.549334-1 2.511886-1 1.877645-1 3.162278-1 2.268115-1 3.981072-1 2.730993-1 5.011872-1 3.278156-1 6.309573-1 3.923577-1 7.943282-1 4.684010-1 1.000000+0 5.577482-1 1.258925+0 6.631359-1 1.584893+0 7.874167-1 1.995262+0 9.345191-1 2.511886+0 1.109076+0 3.162278+0 1.316784+0 3.981072+0 1.564718+0 5.011872+0 1.861595+0 6.309573+0 2.217749+0 7.943282+0 2.646251+0 1.000000+1 3.162879+0 1.258925+1 3.786916+0 1.584893+1 4.542066+0 1.995262+1 5.457285+0 2.511886+1 6.568039+0 3.162278+1 7.918121+0 3.981072+1 9.560633+0 5.011872+1 1.156131+1 6.309573+1 1.400092+1 7.943282+1 1.697858+1 1.000000+2 2.061588+1 1.258925+2 2.506319+1 1.584893+2 3.050476+1 1.995262+2 3.716834+1 2.511886+2 4.533333+1 3.162278+2 5.534592+1 3.981072+2 6.763034+1 5.011872+2 8.271356+1 6.309573+2 1.012429+2 7.943282+2 1.240192+2 1.000000+3 1.520277+2 1.258925+3 1.864916+2 1.584893+3 2.289199+2 1.995262+3 2.811787+2 2.511886+3 3.455661+2 3.162278+3 4.249384+2 3.981072+3 5.228227+2 5.011872+3 6.435831+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88191-10 1.995262-5 1.090613-9 2.511886-5 1.728477-9 3.162278-5 2.739489-9 3.981072-5 4.341857-9 5.011872-5 6.881044-9 6.309573-5 1.090495-8 7.943282-5 1.727630-8 1.000000-4 2.737191-8 1.258925-4 4.335615-8 1.584893-4 6.864898-8 1.995262-4 1.086554-7 2.511886-4 1.718746-7 3.162278-4 2.715086-7 3.981072-4 4.279415-7 5.011872-4 6.727111-7 6.309573-4 1.054157-6 7.943282-4 1.647832-6 1.000000-3 2.561508-6 1.258925-3 3.993262-6 1.584893-3 6.234453-6 1.995262-3 9.805544-6 2.511886-3 1.539240-5 3.162278-3 2.419505-5 3.981072-3 3.796558-5 5.011872-3 5.932680-5 6.309573-3 9.230713-5 7.943282-3 1.435341-4 1.000000-2 2.235485-4 1.258925-2 3.480435-4 1.584893-2 5.395171-4 1.995262-2 8.311036-4 2.511886-2 1.273665-3 3.162278-2 1.944846-3 3.981072-2 2.952334-3 5.011872-2 4.462724-3 6.309573-2 6.696064-3 7.943282-2 9.962688-3 1.000000-1 1.468340-2 1.258925-1 2.139789-2 1.584893-1 3.107037-2 1.995262-1 4.459288-2 2.511886-1 6.342410-2 3.162278-1 8.941628-2 3.981072-1 1.250078-1 5.011872-1 1.733716-1 6.309573-1 2.385996-1 7.943282-1 3.259272-1 1.000000+0 4.422518-1 1.258925+0 5.957896-1 1.584893+0 7.974765-1 1.995262+0 1.060743+0 2.511886+0 1.402810+0 3.162278+0 1.845494+0 3.981072+0 2.416353+0 5.011872+0 3.150277+0 6.309573+0 4.091824+0 7.943282+0 5.297032+0 1.000000+1 6.837121+0 1.258925+1 8.802339+0 1.584893+1 1.130687+1 1.995262+1 1.449534+1 2.511886+1 1.855083+1 3.162278+1 2.370466+1 3.981072+1 3.025008+1 5.011872+1 3.855741+1 6.309573+1 4.909481+1 7.943282+1 6.245425+1 1.000000+2 7.938412+1 1.258925+2 1.008294+2 1.584893+2 1.279846+2 1.995262+2 1.623579+2 2.511886+2 2.058553+2 3.162278+2 2.608818+2 3.981072+2 3.304768+2 5.011872+2 4.184737+2 6.309573+2 5.297145+2 7.943282+2 6.703090+2 1.000000+3 8.479723+2 1.258925+3 1.072434+3 1.584893+3 1.355973+3 1.995262+3 1.714084+3 2.511886+3 2.166320+3 3.162278+3 2.737339+3 3.981072+3 3.458249+3 5.011872+3 4.368289+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.640000-6 2.455217+6 5.011872-6 1.681515+6 5.308844-6 1.259367+6 5.600000-6 9.570620+5 5.888437-6 7.347307+5 6.200000-6 5.562940+5 6.531306-6 4.168675+5 6.850000-6 3.179580+5 7.200000-6 2.377480+5 7.585776-6 1.739540+5 8.035261-6 1.222812+5 8.810489-6 6.915924+4 9.120108-6 5.613883+4 9.350000-6 4.854220+4 9.600000-6 4.189600+4 9.772372-6 3.813490+4 9.960000-6 3.468820+4 1.015000-5 3.179240+4 1.027000-5 3.023340+4 1.042000-5 2.854540+4 1.060000-5 2.685960+4 1.077000-5 2.556580+4 1.092000-5 2.463560+4 1.110000-5 2.374820+4 1.127000-5 2.311140+4 1.142000-5 2.269180+4 1.161449-5 2.232055+4 1.180000-5 2.212460+4 1.202264-5 2.206241+4 1.222000-5 2.214080+4 1.244515-5 2.235793+4 1.273503-5 2.280039+4 1.303167-5 2.339974+4 1.348963-5 2.453836+4 1.423200-5 2.670057+4 1.548817-5 3.060812+4 1.621810-5 3.280101+4 1.698244-5 3.495109+4 1.778279-5 3.700785+4 1.870000-5 3.910640+4 1.950000-5 4.071400+4 2.041738-5 4.230962+4 2.150000-5 4.386700+4 2.200000-5 4.443378+4 2.200000-5 1.421415+7 2.270000-5 1.273615+7 2.317395-5 1.184651+7 2.400000-5 1.045358+7 2.430000-5 1.000007+7 2.430000-5 1.689101+7 2.483133-5 1.568762+7 2.540973-5 1.448064+7 2.630268-5 1.284264+7 2.691535-5 1.184698+7 2.851018-5 9.683697+6 2.884032-5 9.298701+6 3.019952-5 7.896328+6 3.126079-5 6.985751+6 3.198895-5 6.433063+6 3.400000-5 5.172619+6 3.427678-5 5.024866+6 3.630781-5 4.085270+6 3.839000-5 3.351902+6 3.839000-5 3.418507+6 3.900000-5 3.239511+6 3.935501-5 3.141205+6 4.000000-5 2.975595+6 4.120975-5 2.696113+6 4.168694-5 2.595846+6 4.220000-5 2.493804+6 4.265795-5 2.409167+6 4.365158-5 2.238837+6 4.400000-5 2.183763+6 4.466836-5 2.083271+6 4.500000-5 2.035891+6 4.518559-5 2.010588+6 4.677351-5 1.811522+6 4.731513-5 1.750138+6 4.786301-5 1.692466+6 4.841724-5 1.637701+6 4.850000-5 1.629755+6 5.011872-5 1.485027+6 5.150000-5 1.378898+6 5.188000-5 1.352158+6 5.248075-5 1.311306+6 5.308844-5 1.272952+6 5.400000-5 1.218751+6 5.500000-5 1.163139+6 5.623413-5 1.102626+6 5.754399-5 1.043580+6 5.821032-5 1.016461+6 6.025596-5 9.407416+5 6.070000-5 9.261361+5 6.165950-5 8.955569+5 6.309573-5 8.538092+5 6.531306-5 7.973232+5 6.606934-5 7.796675+5 6.839116-5 7.316251+5 6.918310-5 7.165048+5 7.161434-5 6.752250+5 7.244360-5 6.621967+5 7.328245-5 6.500023+5 7.500000-5 6.263068+5 7.585776-5 6.151060+5 7.852356-5 5.839100+5 7.943282-5 5.741883+5 8.000000-5 5.681521+5 8.222426-5 5.465502+5 8.413951-5 5.296039+5 8.500000-5 5.221651+5 8.650000-5 5.101559+5 8.709636-5 5.056337+5 9.015711-5 4.835733+5 9.500000-5 4.533559+5 9.660509-5 4.443416+5 9.772372-5 4.384891+5 9.946000-5 4.294953+5 9.946000-5 1.857237+6 9.977000-5 1.983229+6 1.000000-4 2.075199+6 1.002000-4 2.152413+6 1.005000-4 2.264301+6 1.008500-4 2.390082+6 1.012000-4 2.509498+6 1.016500-4 2.655569+6 1.020000-4 2.762588+6 1.021600-4 2.807886+6 1.021600-4 3.726310+6 1.024000-4 3.856409+6 1.025000-4 3.909411+6 1.027000-4 4.013661+6 1.028000-4 4.063990+6 1.031000-4 4.212042+6 1.032000-4 4.260739+6 1.034000-4 4.352609+6 1.037000-4 4.488409+6 1.041000-4 4.653856+6 1.042000-4 4.693941+6 1.045000-4 4.805642+6 1.047129-4 4.883107+6 1.052000-4 5.039961+6 1.056500-4 5.163189+6 1.058000-4 5.202097+6 1.060000-4 5.246364+6 1.064000-4 5.329069+6 1.065000-4 5.347728+6 1.069500-4 5.415151+6 1.071519-4 5.440703+6 1.075000-4 5.474340+6 1.077000-4 5.489114+6 1.080000-4 5.502883+6 1.083927-4 5.512039+6 1.086000-4 5.510805+6 1.090000-4 5.500559+6 1.092000-4 5.491485+6 1.096478-4 5.459614+6 1.100000-4 5.427476+6 1.102000-4 5.404738+6 1.109175-4 5.310428+6 1.110000-4 5.298033+6 1.117000-4 5.181036+6 1.120000-4 5.126445+6 1.122018-4 5.087179+6 1.125000-4 5.029901+6 1.131000-4 4.907442+6 1.135011-4 4.822541+6 1.145000-4 4.605438+6 1.148154-4 4.536152+6 1.150000-4 4.494607+6 1.156000-4 4.362865+6 1.161449-4 4.242688+6 1.170000-4 4.057757+6 1.180000-4 3.847354+6 1.188502-4 3.674992+6 1.190000-4 3.644927+6 1.208000-4 3.306420+6 1.208200-4 3.302822+6 1.216186-4 3.159920+6 1.230269-4 2.925966+6 1.241300-4 2.754977+6 1.260000-4 2.487730+6 1.273503-4 2.312158+6 1.290000-4 2.115629+6 1.303167-4 1.971909+6 1.330000-4 1.715908+6 1.350000-4 1.551682+6 1.365000-4 1.441906+6 1.380384-4 1.341420+6 1.390000-4 1.283410+6 1.400000-4 1.227882+6 1.415000-4 1.151776+6 1.430000-4 1.083977+6 1.435000-4 1.063012+6 1.450000-4 1.005072+6 1.465000-4 9.541248+5 1.472000-4 9.324755+5 1.479108-4 9.118528+5 1.485000-4 8.952445+5 1.495000-4 8.692554+5 1.500000-4 8.571124+5 1.513561-4 8.267997+5 1.515000-4 8.237932+5 1.531087-4 7.929468+5 1.548817-4 7.642280+5 1.550000-4 7.625081+5 1.566751-4 7.400144+5 1.585000-4 7.199399+5 1.603245-4 7.039121+5 1.621810-4 6.912753+5 1.640590-4 6.819205+5 1.643000-4 6.808939+5 1.659587-4 6.753859+5 1.660000-4 6.752490+5 1.663400-4 6.743301+5 1.680000-4 6.710525+5 1.698244-4 6.697293+5 1.705000-4 6.695911+5 1.720000-4 6.703583+5 1.732100-4 6.715713+5 1.740000-4 6.728309+5 1.760000-4 6.768349+5 1.790000-4 6.857408+5 1.800000-4 6.891457+5 1.820000-4 6.969448+5 1.840772-4 7.059096+5 1.850000-4 7.099429+5 1.862087-4 7.152625+5 1.865000-4 7.165966+5 1.883500-4 7.256742+5 1.883500-4 1.083832+6 1.883649-4 1.083893+6 1.930000-4 1.103601+6 1.995262-4 1.134210+6 2.042100-4 1.156364+6 2.042100-4 1.271805+6 2.065380-4 1.282902+6 2.113489-4 1.304004+6 2.137962-4 1.315131+6 2.190000-4 1.336075+6 2.213095-4 1.346033+6 2.290868-4 1.374712+6 2.371374-4 1.399683+6 2.454709-4 1.420516+6 2.500000-4 1.428450+6 2.540973-4 1.435761+6 2.563500-4 1.438444+6 2.563500-4 1.582981+6 2.570396-4 1.583585+6 2.600160-4 1.586224+6 2.614700-4 1.587521+6 2.630268-4 1.588968+6 2.730000-4 1.592681+6 2.818383-4 1.591470+6 2.830000-4 1.591247+6 2.851018-4 1.589675+6 2.917427-4 1.584409+6 2.951209-4 1.581841+6 3.019952-4 1.572963+6 3.054921-4 1.568462+6 3.090295-4 1.563043+6 3.198895-4 1.543834+6 3.235937-4 1.536887+6 3.311311-4 1.521323+6 3.350000-4 1.513170+6 3.388442-4 1.504617+6 3.467369-4 1.485766+6 3.507519-4 1.476419+6 3.548134-4 1.466421+6 3.550000-4 1.465953+6 3.600000-4 1.452538+6 3.672823-4 1.433372+6 3.715352-4 1.421951+6 3.850000-4 1.384292+6 3.935501-4 1.359982+6 3.981072-4 1.346649+6 4.073803-4 1.320271+6 4.120975-4 1.306788+6 4.168694-4 1.293358+6 4.216965-4 1.279371+6 4.265795-4 1.265333+6 4.315191-4 1.251441+6 4.430000-4 1.219349+6 4.500000-4 1.199692+6 4.518559-4 1.194554+6 4.570882-4 1.180277+6 4.623810-4 1.165479+6 4.700000-4 1.144779+6 4.850000-4 1.104588+6 4.954502-4 1.077323+6 5.000000-4 1.065777+6 5.011872-4 1.062769+6 5.069907-4 1.047805+6 5.128614-4 1.033047+6 5.188000-4 1.018480+6 5.248075-4 1.003793+6 5.370318-4 9.749001+5 5.500000-4 9.448847+5 5.559043-4 9.316220+5 5.623413-4 9.172499+5 5.754399-4 8.890982+5 5.888437-4 8.609625+5 5.956621-4 8.472176+5 6.025596-4 8.334533+5 6.200000-4 7.999857+5 6.237348-4 7.929554+5 6.382635-4 7.663575+5 6.606934-4 7.275567+5 6.683439-4 7.147837+5 6.700000-4 7.120653+5 6.760830-4 7.021424+5 6.839116-4 6.896989+5 6.850000-4 6.879911+5 6.998420-4 6.650609+5 7.161434-4 6.412337+5 7.244360-4 6.294105+5 7.413102-4 6.064162+5 7.498942-4 5.949882+5 7.585776-4 5.837673+5 7.673615-4 5.727169+5 7.762471-4 5.618730+5 7.904900-4 5.448339+5 7.904900-4 1.974573+6 7.978500-4 1.985167+6 8.035261-4 1.985103+6 8.066400-4 1.985059+6 8.066400-4 2.923460+6 8.100000-4 2.928580+6 8.180000-4 2.936578+6 8.191000-4 2.936425+6 8.280000-4 2.929996+6 8.317638-4 2.922761+6 8.413951-4 2.892823+6 8.450000-4 2.878188+6 8.470000-4 2.868152+6 8.520000-4 2.828180+6 8.609938-4 2.755142+6 8.709636-4 2.677274+6 8.780000-4 2.624110+6 8.810489-4 2.600524+6 8.912509-4 2.529084+6 9.000000-4 2.470037+6 9.015711-4 2.460168+6 9.120108-4 2.398046+6 9.225714-4 2.337363+6 9.332543-4 2.278899+6 9.500000-4 2.191446+6 9.700000-4 2.093138+6 9.772372-4 2.059345+6 9.885531-4 2.008081+6 1.000000-3 1.958099+6 1.023293-3 1.861654+6 1.035142-3 1.815216+6 1.047129-3 1.769817+6 1.050000-3 1.758976+6 1.057000-3 1.732611+6 1.057000-3 1.978631+6 1.059254-3 1.970081+6 1.075000-3 1.911944+6 1.083927-3 1.879067+6 1.098000-3 1.828875+6 1.109175-3 1.790051+6 1.122018-3 1.746950+6 1.132200-3 1.712841+6 1.132200-3 1.806860+6 1.140000-3 1.782274+6 1.142000-3 1.776054+6 1.150000-3 1.751068+6 1.160000-3 1.720624+6 1.161449-3 1.716209+6 1.170000-3 1.690263+6 1.190000-3 1.630738+6 1.216186-3 1.557179+6 1.244515-3 1.481465+6 1.258925-3 1.444548+6 1.273400-3 1.408844+6 1.273400-3 1.471381+6 1.273503-3 1.471126+6 1.288250-3 1.435380+6 1.303167-3 1.400547+6 1.318257-3 1.365887+6 1.333521-3 1.331967+6 1.348963-3 1.298736+6 1.364583-3 1.266219+6 1.380384-3 1.234530+6 1.412538-3 1.173436+6 1.428894-3 1.143464+6 1.445440-3 1.114265+6 1.450000-3 1.106415+6 1.479108-3 1.058200+6 1.500000-3 1.025496+6 1.513561-3 1.004968+6 1.531087-3 9.792456+5 1.548817-3 9.541496+5 1.570000-3 9.252480+5 1.603245-3 8.824106+5 1.621810-3 8.595524+5 1.640590-3 8.372957+5 1.650000-3 8.264604+5 1.678804-3 7.943593+5 1.690000-3 7.823608+5 1.717908-3 7.535060+5 1.757924-3 7.139671+5 1.778279-3 6.950053+5 1.819701-3 6.584532+5 1.850000-3 6.334123+5 1.862087-3 6.238117+5 1.883649-3 6.071990+5 1.905461-3 5.909678+5 1.950000-3 5.595643+5 1.972423-3 5.445909+5 2.018366-3 5.155518+5 2.041738-3 5.016367+5 2.089296-3 4.749659+5 2.113489-3 4.621902+5 2.137962-3 4.497655+5 2.150000-3 4.437786+5 2.162719-3 4.375184+5 2.187762-3 4.255665+5 2.213095-3 4.139276+5 2.238721-3 4.026087+5 2.371374-3 3.503498+5 2.400000-3 3.403453+5 2.426610-3 3.313993+5 2.454709-3 3.222199+5 2.483133-3 3.132380+5 2.600160-3 2.798678+5 2.691535-3 2.572284+5 2.722701-3 2.500730+5 2.754229-3 2.430617+5 2.786121-3 2.362234+5 2.851018-3 2.231471+5 2.951209-3 2.048998+5 3.019952-3 1.935800+5 3.054921-3 1.881003+5 3.090295-3 1.827802+5 3.126079-3 1.775840+5 3.162278-3 1.725428+5 3.198895-3 1.676516+5 3.235937-3 1.628998+5 3.300000-3 1.550998+5 3.388442-3 1.451900+5 3.400000-3 1.439562+5 3.427678-3 1.410474+5 3.507519-3 1.330815+5 3.548134-3 1.292709+5 3.589219-3 1.255748+5 3.630781-3 1.219891+5 3.672823-3 1.185011+5 3.715352-3 1.151176+5 3.758374-3 1.118269+5 3.845918-3 1.054863+5 3.935501-3 9.947643+4 4.000000-3 9.544666+4 4.027170-3 9.381843+4 4.073803-3 9.110317+4 4.168694-3 8.591627+4 4.216965-3 8.343675+4 4.265795-3 8.101808+4 4.315191-3 7.866591+4 4.415704-3 7.415638+4 4.466836-3 7.200182+4 4.518559-3 6.990784+4 4.570882-3 6.787004+4 4.623810-3 6.589411+4 4.677351-3 6.397576+4 4.731513-3 6.210319+4 4.841724-3 5.852808+4 4.897788-3 5.681127+4 4.954502-3 5.514643+4 5.011872-3 5.353084+4 5.069907-3 5.195838+4 5.128614-3 5.043323+4 5.188000-3 4.895018+4 5.243400-3 4.762222+4 5.243400-3 1.389820+5 5.248075-3 1.387271+5 5.308844-3 1.354782+5 5.340000-3 1.338530+5 5.400000-3 1.304191+5 5.432503-3 1.284027+5 5.500000-3 1.243481+5 5.559043-3 1.209443+5 5.630300-3 1.170060+5 5.630300-3 1.594033+5 5.688529-3 1.556928+5 5.700000-3 1.549763+5 5.740000-3 1.523613+5 5.754399-3 1.513921+5 5.821032-3 1.470173+5 5.888437-3 1.426292+5 5.956621-3 1.383731+5 5.960800-3 1.381174+5 5.960800-3 1.593128+5 6.165950-3 1.463333+5 6.237348-3 1.421231+5 6.309573-3 1.380344+5 6.350000-3 1.358166+5 6.382635-3 1.340798+5 6.456542-3 1.302618+5 6.531306-3 1.265555+5 6.650000-3 1.209111+5 6.683439-3 1.193629+5 6.760830-3 1.158807+5 6.918310-3 1.092261+5 7.079458-3 1.029640+5 7.161434-3 9.996652+4 7.244360-3 9.703650+4 7.328245-3 9.419401+4 7.585776-3 8.610782+4 7.673615-3 8.357087+4 7.800000-3 8.010274+4 7.943282-3 7.638604+4 8.035261-3 7.411712+4 8.128305-3 7.191582+4 8.222426-3 6.977912+4 8.317638-3 6.770721+4 8.413951-3 6.569462+4 8.609938-3 6.184859+4 8.810489-3 5.822869+4 9.120108-3 5.318090+4 9.225714-3 5.159917+4 9.332543-3 5.006449+4 9.660509-3 4.572233+4 9.772372-3 4.435299+4 9.885531-3 4.302401+4 1.000000-2 4.173584+4 1.011579-2 4.048603+4 1.023293-2 3.926018+4 1.035142-2 3.807214+4 1.047129-2 3.692068+4 1.059254-2 3.580414+4 1.071519-2 3.472212+4 1.083927-2 3.367336+4 1.096478-2 3.265022+4 1.135011-2 2.976530+4 1.148154-2 2.886033+4 1.150000-2 2.873632+4 1.161449-2 2.798347+4 1.174898-2 2.713399+4 1.188502-2 2.631092+4 1.202264-2 2.551211+4 1.216186-2 2.473810+4 1.230269-2 2.398187+4 1.288250-2 2.118310+4 1.303167-2 2.053721+4 1.318257-2 1.990621+4 1.333521-2 1.929516+4 1.348963-2 1.870088+4 1.350000-2 1.866189+4 1.364583-2 1.812502+4 1.380384-2 1.756732+4 1.400000-2 1.690713+4 1.412538-2 1.650067+4 1.428894-2 1.599045+4 1.462177-2 1.501811+4 1.479108-2 1.455487+4 1.500000-2 1.401029+4 1.513561-2 1.367192+4 1.531087-2 1.325121+4 1.548817-2 1.284349+4 1.580000-2 1.216785+4 1.584893-2 1.206560+4 1.603245-2 1.168963+4 1.621810-2 1.132535+4 1.678804-2 1.030079+4 1.698244-2 9.980710+3 1.717908-2 9.670841+3 1.737801-2 9.369570+3 1.757924-2 9.077868+3 1.778279-2 8.795307+3 1.800000-2 8.507107+3 1.819701-2 8.256714+3 1.840772-2 8.000095+3 1.862087-2 7.750413+3 1.883649-2 7.507311+3 1.949845-2 6.823870+3 1.995262-2 6.403992+3 2.000000-2 6.362267+3 2.018366-2 6.204018+3 2.041738-2 6.010428+3 2.065380-2 5.822741+3 2.080000-2 5.710024+3 2.089296-2 5.639677+3 2.150000-2 5.208505+3 2.187762-2 4.962027+3 2.213095-2 4.805481+3 2.238721-2 4.653993+3 2.264644-2 4.507399+3 2.290000-2 4.370131+3 2.290868-2 4.365535+3 2.344229-2 4.095327+3 2.371374-2 3.966562+3 2.426610-2 3.721224+3 2.500000-2 3.424480+3 2.511886-2 3.379400+3 2.570396-2 3.168214+3 2.600160-2 3.067625+3 2.630268-2 2.970306+3 2.722701-2 2.696864+3 2.754229-2 2.611492+3 2.786121-2 2.528816+3 2.818383-2 2.448821+3 2.851018-2 2.371413+3 2.951209-2 2.152342+3 2.985383-2 2.083768+3 3.019952-2 2.017430+3 3.054921-2 1.953017+3 3.126079-2 1.830416+3 3.171060-2 1.758336+3 3.235937-2 1.661033+3 3.273407-2 1.608155+3 3.311311-2 1.556992+3 3.349654-2 1.507156+3 3.467369-2 1.367210+3 3.507519-2 1.323574+3 3.548134-2 1.281229+3 3.589219-2 1.240210+3 3.672823-2 1.162154+3 3.744900-2 1.100024+3 3.744900-2 6.467960+3 3.801894-2 6.229727+3 3.845918-2 6.053846+3 3.870000-2 5.960588+3 3.890451-2 5.876491+3 3.935501-2 5.696907+3 3.981072-2 5.522836+3 4.073803-2 5.210552+3 4.120975-2 5.061144+3 4.168694-2 4.908467+3 4.216965-2 4.760380+3 4.265795-2 4.616712+3 4.365158-2 4.342313+3 4.415704-2 4.211307+3 4.500000-2 4.004431+3 4.518559-2 3.961371+3 4.570882-2 3.843367+3 4.623810-2 3.728857+3 4.677351-2 3.617775+3 4.786301-2 3.405485+3 4.841724-2 3.304082+3 4.897788-2 3.205714+3 4.954502-2 3.110265+3 5.128614-2 2.834707+3 5.188000-2 2.748306+3 5.248075-2 2.664547+3 5.308844-2 2.583316+3 5.432503-2 2.428226+3 5.495409-2 2.354220+3 5.559043-2 2.282476+3 5.623413-2 2.212927+3 5.754399-2 2.078130+3 5.821032-2 2.013853+3 5.956621-2 1.891193+3 6.025596-2 1.832692+3 6.309573-2 1.616031+3 6.382635-2 1.566003+3 6.531306-2 1.470552+3 6.760830-2 1.338204+3 6.918310-2 1.256661+3 7.000000-2 1.217018+3 7.079458-2 1.179478+3 7.161434-2 1.142383+3 7.244360-2 1.106413+3 7.498942-2 1.005175+3 7.585776-2 9.735358+2 7.943282-2 8.566460+2 8.222426-2 7.783050+2 8.317638-2 7.538200+2 8.511380-2 7.071322+2 8.609938-2 6.848864+2 8.709636-2 6.633182+2 8.810489-2 6.424306+2 9.015711-2 6.021219+2 9.660509-2 4.957660+2 9.885531-2 4.646736+2 1.000000-1 4.498648+2 1.023293-1 4.216505+2 1.035142-1 4.082155+2 1.047129-1 3.952086+2 1.059254-1 3.826044+2 1.109175-1 3.360870+2 1.135011-1 3.148318+2 1.188502-1 2.762735+2 1.202264-1 2.673980+2 1.230269-1 2.504939+2 1.244515-1 2.424475+2 1.258925-1 2.346605+2 1.273503-1 2.271234+2 1.303167-1 2.127670+2 1.348963-1 1.929216+2 1.380384-1 1.807250+2 1.396368-1 1.749194+2 1.412538-1 1.693003+2 1.428894-1 1.638627+2 1.479108-1 1.485762+2 1.531088-1 1.347192+2 1.573050-1 1.247807+2 1.621810-1 1.144412+2 1.640590-1 1.107683+2 1.698244-1 1.004428+2 1.717908-1 9.722001+1 1.737801-1 9.410060+1 1.778279-1 8.815942+1 1.819701-1 8.259446+1 1.840772-1 7.994531+1 1.883649-1 7.489939+1 1.905461-1 7.249721+1 1.949845-1 6.792276+1 2.000000-1 6.321149+1 2.018366-1 6.159713+1 2.041738-1 5.962243+1 2.065380-1 5.771122+1 2.089296-1 5.586131+1 2.162719-1 5.066104+1 2.187762-1 4.905535+1 2.213095-1 4.750095+1 2.238721-1 4.599586+1 2.264644-1 4.453847+1 2.290868-1 4.312732+1 2.317395-1 4.176094+1 2.344229-1 4.043795+1 2.371374-1 3.915690+1 2.398833-1 3.791653+1 2.426610-1 3.671547+1 2.454709-1 3.555404+1 2.483133-1 3.442939+1 2.540973-1 3.228671+1 2.630268-1 2.932027+1 2.660725-1 2.840561+1 2.722701-1 2.666108+1 2.754229-1 2.582945+1 2.786121-1 2.502380+1 2.917427-1 2.204634+1 2.951209-1 2.136011+1 3.000000-1 2.041953+1 3.000060-1 2.041840+1 3.019952-1 2.005127+1 3.054921-1 1.942740+1 3.090295-1 1.883261+1 3.126079-1 1.825604+1 3.162278-1 1.769728+1 3.311311-1 1.562866+1 3.349654-1 1.515053+1 3.427678-1 1.423772+1 3.467369-1 1.380291+1 3.507519-1 1.338150+1 3.548134-1 1.298031+1 3.589219-1 1.259126+1 3.630781-1 1.221387+1 3.672823-1 1.184781+1 3.715352-1 1.149274+1 3.801894-1 1.081422+1 3.845918-1 1.049016+1 3.935501-1 9.871067+0 3.981072-1 9.575920+0 4.000000-1 9.459157+0 4.027170-1 9.294980+0 4.073803-1 9.022390+0 4.120975-1 8.757819+0 4.168694-1 8.501008+0 4.265795-1 8.009770+0 4.315191-1 7.774963+0 4.365158-1 7.547068+0 4.466836-1 7.111120+0 4.518559-1 6.907387+0 4.570882-1 6.709497+0 4.623810-1 6.517366+0 4.677351-1 6.330738+0 4.731513-1 6.149500+0 4.897788-1 5.636345+0 4.954502-1 5.475019+0 5.000000-1 5.350225+0 5.011872-1 5.318324+0 5.069907-1 5.170178+0 5.128614-1 5.026163+0 5.370318-1 4.489523+0 5.432503-1 4.364577+0 5.495409-1 4.243109+0 5.559043-1 4.125036+0 5.623413-1 4.010288+0 5.688529-1 3.901641+0 5.754399-1 3.795940+0 5.888437-1 3.593154+0 5.956621-1 3.495870+0 6.025596-1 3.401219+0 6.095369-1 3.309133+0 6.165950-1 3.219540+0 6.237348-1 3.132438+0 6.309573-1 3.049712+0 6.382635-1 2.969383+0 6.456542-1 2.891212+0 6.531306-1 2.815104+0 6.606935-1 2.741001+0 6.760830-1 2.598597+0 6.839117-1 2.530233+0 6.918310-1 2.463681+0 6.998420-1 2.400441+0 7.079458-1 2.338979+0 7.161434-1 2.279128+0 7.244360-1 2.220809+0 7.413102-1 2.108612+0 7.498942-1 2.054672+0 7.585776-1 2.002126+0 7.673615-1 1.950933+0 7.762471-1 1.902438+0 7.852356-1 1.855295+0 8.035261-1 1.764530+0 8.317638-1 1.636642+0 8.413951-1 1.596115+0 8.511380-1 1.556603+0 8.609938-1 1.519222+0 8.709636-1 1.482865+0 9.015711-1 1.379007+0 9.120108-1 1.346041+0 9.225714-1 1.313864+0 9.332543-1 1.282463+0 9.440609-1 1.252768+0 9.549926-1 1.223873+0 9.660509-1 1.195666+0 9.772372-1 1.168122+0 9.885531-1 1.141214+0 1.000000+0 1.114931+0 1.011579+0 1.089265+0 1.023293+0 1.064189+0 1.035142+0 1.040316+0 1.047129+0 1.017046+0 1.059254+0 9.943121-1 1.071519+0 9.720870-1 1.083927+0 9.503677-1 1.096478+0 9.291348-1 1.135011+0 8.682385-1 1.148154+0 8.488474-1 1.161449+0 8.298965-1 1.174898+0 8.113712-1 1.188502+0 7.937882-1 1.202264+0 7.765965-1 1.216186+0 7.597763-1 1.230269+0 7.433207-1 1.244515+0 7.272217-1 1.250000+0 7.211652-1 1.258925+0 7.114798-1 1.288250+0 6.810164-1 1.303167+0 6.662792-1 1.318257+0 6.518628-1 1.333521+0 6.381921-1 1.364583+0 6.117209-1 1.380384+0 5.989009-1 1.396368+0 5.863560-1 1.428894+0 5.620487-1 1.462177+0 5.387510-1 1.479108+0 5.274684-1 1.500000+0 5.144355-1 1.513561+0 5.062480-1 1.548817+0 4.858889-1 1.603245+0 4.568760-1 1.659587+0 4.295950-1 1.678804+0 4.211513-1 1.698244+0 4.128738-1 1.717908+0 4.047660-1 1.737801+0 3.968189-1 1.757924+0 3.890279-1 1.798871+0 3.739021-1 1.819701+0 3.665612-1 1.840772+0 3.593644-1 1.862087+0 3.523089-1 1.883649+0 3.456344-1 1.905461+0 3.390866-1 1.927525+0 3.326686-1 1.949845+0 3.263739-1 1.972423+0 3.201985-1 2.000000+0 3.129061-1 2.018366+0 3.081960-1 2.044000+0 3.018094-1 2.065380+0 2.966432-1 2.089296+0 2.910318-1 2.113489+0 2.857060-1 2.137962+0 2.804781-1 2.162719+0 2.753461-1 2.187762+0 2.703116-1 2.213095+0 2.653705-1 2.238721+0 2.605198-1 2.290868+0 2.510826-1 2.317395+0 2.464930-1 2.344229+0 2.419873-1 2.371374+0 2.375639-1 2.398833+0 2.332226-1 2.426610+0 2.291005-1 2.454709+0 2.250515-1 2.483133+0 2.210745-1 2.511886+0 2.171704-1 2.540973+0 2.133362-1 2.570396+0 2.095698-1 2.630268+0 2.022353-1 2.660725+0 1.986648-1 2.691535+0 1.951574-1 2.722701+0 1.917120-1 2.754229+0 1.883281-1 2.786121+0 1.851127-1 2.818383+0 1.819523-1 2.851018+0 1.788461-1 2.884032+0 1.757950-1 2.917427+0 1.727968-1 2.951209+0 1.698498-1 3.019952+0 1.641055-1 3.054921+0 1.613067-1 3.090295+0 1.585557-1 3.126079+0 1.558515-1 3.162278+0 1.531941-1 3.198895+0 1.506683-1 3.235937+0 1.481842-1 3.273407+0 1.457413-1 3.311311+0 1.433404-1 3.349654+0 1.409796-1 3.427678+0 1.363740-1 3.507519+0 1.319189-1 3.548134+0 1.297462-1 3.589219+0 1.276094-1 3.630781+0 1.255076-1 3.672823+0 1.234411-1 3.715352+0 1.214761-1 3.758374+0 1.195425-1 3.801894+0 1.176398-1 3.845918+0 1.157687-1 3.890451+0 1.139279-1 4.000000+0 1.096073-1 4.073803+0 1.068526-1 4.120975+0 1.051535-1 4.168694+0 1.034815-1 4.216965+0 1.018360-1 4.315191+0 9.862398-2 4.365158+0 9.710678-2 4.415704+0 9.561300-2 4.466836+0 9.414231-2 4.518559+0 9.269527-2 4.570882+0 9.127082-2 4.677351+0 8.848731-2 4.786301+0 8.578867-2 4.841724+0 8.447037-2 4.897788+0 8.317234-2 4.954502+0 8.189425-2 5.069907+0 7.939732-2 5.128614+0 7.821550-2 5.188000+0 7.705135-2 5.248075+0 7.590460-2 5.308844+0 7.477497-2 5.370318+0 7.366284-2 5.432503+0 7.256754-2 5.559043+0 7.042555-2 5.688529+0 6.834680-2 5.754399+0 6.733055-2 5.821032+0 6.632941-2 5.888437+0 6.534314-2 6.025596+0 6.341489-2 6.095369+0 6.250144-2 6.165950+0 6.160120-2 6.237348+0 6.071400-2 6.309573+0 5.983959-2 6.382635+0 5.897830-2 6.456542+0 5.812962-2 6.683439+0 5.565614-2 6.839116+0 5.406591-2 6.918310+0 5.328790-2 7.000000+0 5.250618-2 7.079458+0 5.176534-2 7.328245+0 4.956319-2 7.413102+0 4.887139-2 7.498942+0 4.818928-2 7.585776+0 4.751675-2 7.673615+0 4.685363-2 7.762471+0 4.620015-2 7.852356+0 4.555594-2 8.128305+0 4.367671-2 8.317638+0 4.246716-2 8.413951+0 4.187501-2 8.511380+0 4.129111-2 8.609938+0 4.071535-2 8.912509+0 3.903621-2 9.015711+0 3.850723-2 9.120108+0 3.798545-2 9.225714+0 3.747078-2 9.332543+0 3.696309-2 9.549926+0 3.596880-2 9.660509+0 3.548184-2 1.000000+1 3.406015-2 1.035142+1 3.269543-2 1.047129+1 3.225276-2 1.059254+1 3.181611-2 1.083927+1 3.096047-2 1.109175+1 3.012803-2 1.122018+1 2.973180-2 1.135011+1 2.934081-2 1.148154+1 2.895501-2 1.161449+1 2.857429-2 1.174898+1 2.819878-2 1.188502+1 2.782830-2 1.244515+1 2.639432-2 1.318257+1 2.470533-2 1.348963+1 2.406040-2 1.380384+1 2.343230-2 1.428894+1 2.252076-2 1.445440+1 2.222492-2 1.462177+1 2.193298-2 1.479108+1 2.165278-2 1.500000+1 2.131628-2 1.513561+1 2.110327-2 1.548817+1 2.056792-2 1.659587+1 1.904204-2 1.737801+1 1.808820-2 1.800000+1 1.739213-2 1.862087+1 1.674628-2 1.883649+1 1.653255-2 1.905461+1 1.632580-2 1.927525+1 1.612176-2 1.949845+1 1.592027-2 2.238721+1 1.369010-2 2.317395+1 1.318320-2 2.344229+1 1.301843-2 2.371374+1 1.285573-2 2.511886+1 1.208162-2 2.540973+1 1.193248-2 2.570396+1 1.178518-2 2.917427+1 1.028015-2 2.951209+1 1.015581-2 3.235937+1 9.214171-3 3.427678+1 8.670521-3 3.672823+1 8.060312-3 4.415704+1 6.634931-3 4.466836+1 6.554719-3 4.731513+1 6.174792-3 5.011872+1 5.816892-3 5.559043+1 5.224135-3 7.079458+1 4.065394-3 7.161434+1 4.017135-3 7.585776+1 3.787584-3 8.128305+1 3.529373-3 9.332543+1 3.064562-3 1.273503+2 2.230374-3 1.288250+2 2.204506-3 1.380384+2 2.055671-3 1.531087+2 1.851047-3 1.840772+2 1.536257-3 2.540973+2 1.108652-3 2.570396+2 1.095873-3 2.754229+2 1.022286-3 3.054921+2 9.210654-4 3.672823+2 7.652256-4 5.069907+2 5.532390-4 5.128614+2 5.468914-4 1.096478+3 2.554631-4 1.216186+3 2.302767-4 1.462177+3 1.914747-4 4.027170+3 6.939830-5 4.073803+3 6.860358-5 1.000000+5 2.792956-6 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.640000-6 4.640000-6 2.200000-5 4.640000-6 2.200000-5 2.194573-5 2.430000-5 2.191933-5 2.430000-5 2.289056-5 3.427678-5 2.280268-5 3.839000-5 2.272823-5 3.839000-5 2.303337-5 4.400000-5 2.329008-5 5.011872-5 2.373667-5 6.606934-5 2.517275-5 7.500000-5 2.579853-5 8.413951-5 2.624021-5 9.500000-5 2.658183-5 9.946000-5 2.668356-5 9.946000-5 5.008373-5 1.002000-4 5.110428-5 1.012000-4 5.202234-5 1.021600-4 5.261611-5 1.021600-4 5.353000-5 1.037000-4 5.412333-5 1.060000-4 5.454902-5 1.092000-4 5.469306-5 1.135011-4 5.448255-5 1.190000-4 5.388823-5 1.260000-4 5.279931-5 1.330000-4 5.133815-5 1.472000-4 4.781114-5 1.515000-4 4.694194-5 1.566751-4 4.621966-5 1.603245-4 4.595146-5 1.643000-4 4.587825-5 1.698244-4 4.609034-5 1.760000-4 4.660724-5 1.883500-4 4.797249-5 1.883500-4 5.931487-5 2.042100-4 5.935186-5 2.042100-4 6.390742-5 2.290868-4 6.344860-5 2.563500-4 6.319753-5 2.563500-4 6.774120-5 2.951209-4 6.729548-5 3.550000-4 6.712725-5 4.700000-4 6.735454-5 7.904900-4 6.876156-5 7.904900-4 1.149419-4 8.066400-4 1.156466-4 8.066400-4 1.207161-4 8.413951-4 1.214200-4 1.000000-3 1.206910-4 1.057000-3 1.205398-4 1.057000-3 1.313647-4 1.132200-3 1.321446-4 1.132200-3 1.364361-4 1.216186-3 1.377085-4 1.273400-3 1.383863-4 1.273400-3 1.435806-4 1.650000-3 1.486647-4 2.137962-3 1.540249-4 2.600160-3 1.582381-4 3.235937-3 1.629904-4 4.073803-3 1.679558-4 5.128614-3 1.728468-4 5.243400-3 1.733088-4 5.243400-3 2.437315-4 5.559043-3 2.446051-4 5.630300-3 2.446975-4 5.630300-3 2.583400-4 5.960800-3 2.588644-4 5.960800-3 2.706740-4 8.609938-3 2.757751-4 1.303167-2 2.814959-4 1.883649-2 2.866102-4 2.786121-2 2.919615-4 3.744900-2 2.958114-4 3.744900-2 2.964410-4 9.015711-2 2.978519-4 3.507519-1 2.988504-4 1.000000+5 2.990764-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.640000-6 0.0 1.021600-4 0.0 1.021600-4 3.997499-9 1.025000-4 4.171010-9 1.028000-4 4.316165-9 1.034000-4 4.571702-9 1.041000-4 4.828212-9 1.047129-4 5.026867-9 1.056500-4 5.305489-9 1.064000-4 5.503700-9 1.069500-4 5.637525-9 1.080000-4 5.863627-9 1.090000-4 6.043824-9 1.096478-4 6.142721-9 1.102000-4 6.215386-9 1.110000-4 6.300718-9 1.117000-4 6.366858-9 1.125000-4 6.422425-9 1.135011-4 6.472269-9 1.150000-4 6.507647-9 1.161449-4 6.517461-9 1.170000-4 6.522188-9 1.190000-4 6.502743-9 1.230269-4 6.416396-9 1.260000-4 6.324558-9 1.290000-4 6.208488-9 1.330000-4 6.009329-9 1.365000-4 5.804405-9 1.415000-4 5.458674-9 1.479108-4 4.987388-9 1.513561-4 4.751394-9 1.550000-4 4.534405-9 1.566751-4 4.448724-9 1.585000-4 4.365970-9 1.603245-4 4.295213-9 1.621810-4 4.235675-9 1.643000-4 4.184054-9 1.663400-4 4.148207-9 1.680000-4 4.127444-9 1.698244-4 4.114552-9 1.720000-4 4.111820-9 1.740000-4 4.119437-9 1.790000-4 4.168714-9 1.820000-4 4.213485-9 1.883500-4 4.335667-9 1.883500-4 7.024359-9 2.042100-4 6.988774-9 2.042100-4 8.112614-9 2.213095-4 8.019171-9 2.454709-4 7.964172-9 2.563500-4 7.950531-9 2.563500-4 8.714358-9 2.830000-4 8.669244-9 3.235937-4 8.656340-9 4.265795-4 8.737750-9 7.904900-4 9.164492-9 7.904900-4 1.103225-8 8.066400-4 1.106546-8 8.066400-4 1.406763-7 8.280000-4 1.441705-7 8.317638-4 1.449826-7 8.470000-4 1.466145-7 8.810489-4 1.469339-7 9.015711-4 1.460215-7 9.700000-4 1.450846-7 1.057000-3 1.445824-7 1.057000-3 2.029029-7 1.083927-3 2.050198-7 1.132200-3 2.077082-7 1.132200-3 2.474771-7 1.170000-3 2.530451-7 1.273400-3 2.625631-7 1.273400-3 2.974121-7 1.380384-3 3.089971-7 1.570000-3 3.272801-7 1.850000-3 3.516556-7 2.113489-3 3.717932-7 2.400000-3 3.915880-7 2.754229-3 4.127388-7 3.090295-3 4.305839-7 3.427678-3 4.465261-7 3.845918-3 4.642170-7 4.466836-3 4.869728-7 5.243400-3 5.105967-7 5.243400-3 3.316436-4 5.400000-3 3.338316-4 5.630300-3 3.338613-4 5.630300-3 4.127279-4 5.821032-3 4.141411-4 5.960800-3 4.141512-4 5.960800-3 4.350161-4 7.800000-3 4.388585-4 1.230269-2 4.428818-4 2.238721-2 4.463054-4 3.744900-2 4.485246-4 3.744900-2 2.524299-2 4.415704-2 2.543262-2 5.623413-2 2.565465-2 8.222426-2 2.586439-2 1.348963-1 2.601308-2 3.162278-1 2.610282-2 1.258925+0 2.620251-2 1.000000+5 2.619935-2 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.640000-6 0.0 2.200000-5 1.736000-5 2.200000-5 5.426777-8 2.430000-5 2.380668-6 2.430000-5 1.409439-6 2.630268-5 3.416885-6 3.198895-5 9.154154-6 3.839000-5 1.566177-5 3.839000-5 1.535663-5 4.365158-5 2.038259-5 5.011872-5 2.638205-5 6.839116-5 4.303478-5 8.000000-5 5.393829-5 9.772372-5 7.107459-5 9.946000-5 7.277644-5 9.946000-5 4.937627-5 1.002000-4 4.909572-5 1.012000-4 4.917766-5 1.021600-4 4.954389-5 1.021600-4 4.862601-5 1.037000-4 4.957199-5 1.060000-4 5.144558-5 1.092000-4 5.450087-5 1.145000-4 6.009773-5 1.216186-4 6.809060-5 1.290000-4 7.677547-5 1.400000-4 9.040509-5 1.500000-4 1.027745-4 1.566751-4 1.104510-4 1.643000-4 1.184176-4 1.740000-4 1.275773-4 1.883500-4 1.403732-4 1.883500-4 1.290281-4 2.042100-4 1.448511-4 2.042100-4 1.402945-4 2.563500-4 1.931445-4 2.563500-4 1.886001-4 3.600000-4 2.928601-4 7.904900-4 7.217193-4 7.904900-4 6.755371-4 8.066400-4 6.909823-4 8.066400-4 6.857832-4 9.500000-4 8.290060-4 1.057000-3 9.363157-4 1.057000-3 9.254324-4 1.132200-3 9.998477-4 1.132200-3 9.955164-4 1.273400-3 1.134751-3 1.273400-3 1.129522-3 3.162278-3 2.999358-3 5.243400-3 5.069581-3 5.243400-3 4.668025-3 5.630300-3 5.051741-3 5.630300-3 4.959232-3 5.960800-3 5.287784-3 5.960800-3 5.255110-3 3.744900-2 3.670466-2 3.744900-2 1.190956-2 3.935501-2 1.374555-2 4.415704-2 1.842764-2 5.623413-2 3.028228-2 9.015711-2 6.395549-2 2.371374+0 2.344876+0 1.000000+5 9.999997+4 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.744900-2 5.367936+3 3.870000-2 4.958377+3 3.981072-2 4.597990+3 4.120975-2 4.222528+3 4.500000-2 3.351120+3 4.954502-2 2.613600+3 5.623413-2 1.867045+3 7.000000-2 1.032348+3 8.810489-2 5.472047+2 1.109175-1 2.871133+2 2.162719-1 4.345204+1 2.630268-1 2.516329+1 3.054921-1 1.667927+1 3.507519-1 1.149312+1 3.981072-1 8.227441+0 4.466836-1 6.111773+0 5.011872-1 4.572405+0 5.623413-1 3.449094+0 6.237348-1 2.694912+0 6.918310-1 2.120283+0 7.673615-1 1.679565+0 8.511380-1 1.340653+0 9.332543-1 1.104994+0 1.023293+0 9.171996-1 1.174898+0 6.994135-1 1.318257+0 5.618837-1 1.479108+0 4.546151-1 1.659587+0 3.702513-1 1.862087+0 3.036458-1 2.089296+0 2.508338-1 2.398833+0 2.010107-1 2.754229+0 1.623182-1 3.162278+0 1.320374-1 3.672823+0 1.063936-1 4.315191+0 8.500374-2 5.069907+0 6.843218-2 6.025596+0 5.465718-2 7.328245+0 4.271841-2 8.912509+0 3.364523-2 1.109175+1 2.596732-2 1.462177+1 1.890414-2 1.883649+1 1.424967-2 2.371374+1 1.108061-2 2.917427+1 8.860617-3 4.466836+1 5.649637-3 7.161434+1 3.462449-3 1.273503+2 1.922380-3 2.540973+2 9.555616-4 5.069907+2 4.768454-4 4.027170+3 5.981554-5 1.000000+5 2.407300-6 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.744900-2 2.965700-4 1.000000+5 2.965700-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.744900-2 3.032400-2 1.000000+5 3.032400-2 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.744900-2 6.828430-3 1.000000+5 9.999997+4 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 5.960800-3 2.119536+4 6.350000-3 1.901602+4 6.531306-3 1.820796+4 7.161434-3 1.550648+4 7.800000-3 1.339172+4 8.317638-3 1.190601+4 9.660509-3 9.013389+3 1.216186-2 5.745546+3 1.333521-2 4.764186+3 1.580000-2 3.349380+3 1.840772-2 2.410806+3 2.065380-2 1.871571+3 2.426610-2 1.301451+3 2.851018-2 8.962236+2 3.311311-2 6.286421+2 3.801894-2 4.501288+2 4.415704-2 3.113073+2 5.128614-2 2.138190+2 6.025596-2 1.416528+2 7.161434-2 9.042248+1 8.609938-2 5.557424+1 1.047129-1 3.288163+1 1.348963-1 1.652112+1 2.426610-1 3.311314+0 2.917427-1 2.013089+0 3.427678-1 1.311865+0 3.935501-1 9.153044-1 4.466836-1 6.626203-1 5.011872-1 4.972626-1 5.623413-1 3.759639-1 6.309573-1 2.864008-1 6.998420-1 2.257277-1 7.762471-1 1.790341-1 8.609938-1 1.430443-1 9.440609-1 1.179880-1 1.035142+0 9.799848-2 1.174898+0 7.645344-2 1.318257+0 6.142126-2 1.479108+0 4.969582-2 1.659587+0 4.047243-2 1.862087+0 3.319003-2 2.089296+0 2.741595-2 2.398833+0 2.196913-2 2.754229+0 1.773936-2 3.162278+0 1.442945-2 3.672823+0 1.162693-2 4.315191+0 9.289322-3 5.069907+0 7.478319-3 6.025596+0 5.972945-3 7.328245+0 4.668246-3 8.912509+0 3.676758-3 1.109175+1 2.837681-3 1.462177+1 2.065882-3 1.883649+1 1.557180-3 2.371374+1 1.210886-3 2.917427+1 9.682836-4 4.466836+1 6.173930-4 7.161434+1 3.783710-4 1.288250+2 2.076389-4 2.570396+2 1.032203-4 5.128614+2 5.151058-5 4.073803+3 6.461820-6 1.000000+5 2.630700-7 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 5.960800-3 3.476300-4 1.000000+5 3.476300-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.960800-3 5.709800-4 1.000000+5 5.709800-4 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 5.960800-3 5.042190-3 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.630300-3 4.239732+4 5.700000-3 4.165186+4 5.740000-3 4.113800+4 5.821032-3 3.988900+4 6.165950-3 3.450800+4 7.161434-3 2.328300+4 7.943282-3 1.755900+4 9.332543-3 1.122700+4 1.083927-2 7.374000+3 1.216186-2 5.284600+3 1.400000-2 3.505100+3 1.717908-2 1.903300+3 2.080000-2 1.063400+3 2.500000-2 6.017600+2 3.019952-2 3.323900+2 3.672823-2 1.782600+2 4.570882-2 8.810600+1 5.956621-2 3.721000+1 1.188502-1 3.864107+0 1.479108-1 1.896787+0 1.778279-1 1.048809+0 2.089296-1 6.286669-1 2.426610-1 3.937477-1 2.786121-1 2.575819-1 3.162278-1 1.758378-1 3.548134-1 1.251056-1 3.981072-1 8.963385-2 4.466836-1 6.470550-2 5.000000-1 4.739205-2 5.559043-1 3.563026-2 6.165950-1 2.716049-2 6.760830-1 2.148290-2 7.498942-1 1.664069-2 8.317638-1 1.298598-2 9.440609-1 9.657868-3 1.000000+0 8.496131-3 1.071519+0 7.348447-3 1.148154+0 6.400716-3 1.250000+0 5.443571-3 1.380384+0 4.541766-3 1.717908+0 3.087067-3 1.927525+0 2.535538-3 2.187762+0 2.059841-3 2.511886+0 1.655022-3 2.884032+0 1.339813-3 3.311311+0 1.092452-3 3.845918+0 8.823012-4 4.518559+0 7.065011-4 5.370318+0 5.613977-4 6.382635+0 4.494757-4 7.762471+0 3.521034-4 9.549926+0 2.741349-4 1.174898+1 2.149355-4 1.500000+1 1.625400-4 1.905461+1 1.245111-4 2.371374+1 9.805170-5 2.951209+1 7.745643-5 4.466836+1 4.999435-5 7.161434+1 3.063978-5 1.288250+2 1.681375-5 2.570396+2 8.358474-6 5.128614+2 4.171171-6 4.073803+3 5.232613-7 1.000000+5 2.130300-8 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.630300-3 2.959900-4 1.000000+5 2.959900-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.630300-3 6.303800-4 1.000000+5 6.303800-4 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.630300-3 4.703930-3 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.243400-3 9.135979+4 5.340000-3 8.843096+4 5.400000-3 8.629708+4 5.700000-3 7.499360+4 6.650000-3 4.937720+4 7.328245-3 3.760574+4 8.810489-3 2.221614+4 1.011579-2 1.490724+4 1.135011-2 1.058498+4 1.303167-2 6.996067+3 1.584893-2 3.839292+3 1.862087-2 2.320351+3 2.150000-2 1.471140+3 2.511886-2 8.925427+2 2.951209-2 5.281156+2 3.507519-2 2.988182+2 4.216965-2 1.615936+2 5.248075-2 7.721752+1 6.760830-2 3.254628+1 1.303167-1 3.415349+0 1.573050-1 1.799470+0 1.905461-1 9.445697-1 2.187762-1 5.976660-1 2.483133-1 3.955587-1 2.786121-1 2.736045-1 3.126079-1 1.906152-1 3.467369-1 1.386335-1 3.845918-1 1.015670-1 4.265795-1 7.499050-2 4.677351-1 5.765878-2 5.128614-1 4.463809-2 5.623413-1 3.480895-2 6.165950-1 2.733993-2 6.760830-1 2.163449-2 7.413102-1 1.724817-2 8.413951-1 1.275905-2 9.015711-1 1.088193-2 9.660509-1 9.342511-3 1.035142+0 8.084412-3 1.135011+0 6.720475-3 1.250000+0 5.581429-3 1.380384+0 4.648778-3 1.659587+0 3.348765-3 1.862087+0 2.745238-3 2.065380+0 2.310504-3 2.371374+0 1.850415-3 2.722701+0 1.493150-3 3.126079+0 1.213730-3 3.630781+0 9.774024-4 4.216965+0 7.928806-4 4.954502+0 6.376453-4 5.888437+0 5.087821-4 7.079458+0 4.030131-4 8.609938+0 3.169863-4 1.083927+1 2.410749-4 1.428894+1 1.753649-4 1.862087+1 1.304159-4 2.371374+1 1.001404-4 2.951209+1 7.910506-5 4.466836+1 5.105930-5 7.161434+1 3.129194-5 1.288250+2 1.717187-5 2.570396+2 8.536339-6 5.128614+2 4.259982-6 4.073803+3 5.344056-7 1.000000+5 2.175700-8 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.243400-3 2.804400-4 1.000000+5 2.804400-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.243400-3 5.042500-4 1.000000+5 5.042500-4 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.243400-3 4.458710-3 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.273400-3 6.253674+4 1.348963-3 5.894142+4 1.531087-3 5.010475+4 1.621810-3 4.621256+4 2.018366-3 3.358205+4 2.187762-3 2.976756+4 2.400000-3 2.567920+4 2.851018-3 1.939013+4 3.198895-3 1.593147+4 3.715352-3 1.227468+4 4.466836-3 8.801940+3 5.128614-3 6.809659+3 5.956621-3 5.126209+3 7.079458-3 3.663794+3 8.413951-3 2.596297+3 1.000000-2 1.824912+3 1.188502-2 1.272105+3 1.380384-2 9.241971+2 1.603245-2 6.671097+2 1.862087-2 4.783956+2 2.187762-2 3.319659+2 2.570396-2 2.286184+2 3.019952-2 1.562617+2 3.548134-2 1.060067+2 4.168694-2 7.138433+1 4.897788-2 4.772206+1 5.821032-2 3.076103+1 6.918310-2 1.967982+1 8.317638-2 1.212735+1 9.885531-2 7.650654+0 1.273503-1 3.858295+0 2.483133-1 6.255452-1 3.000060-1 3.762639-1 3.507519-1 2.489163-1 4.027170-1 1.739669-1 4.570882-1 1.261458-1 5.128614-1 9.483225-2 5.754399-1 7.182209-2 6.382635-1 5.630304-2 7.079458-1 4.442943-2 7.852356-1 3.529561-2 8.709636-1 2.820788-2 9.549926-1 2.326919-2 1.047129+0 1.933630-2 1.188502+0 1.509349-2 1.333521+0 1.213508-2 1.500000+0 9.781613-3 1.698244+0 7.848393-3 1.905461+0 6.445462-3 2.162719+0 5.233050-3 2.483133+0 4.201557-3 2.851018+0 3.398818-3 3.273407+0 2.769560-3 3.801894+0 2.235516-3 4.466836+0 1.789109-3 5.308844+0 1.420869-3 6.309573+0 1.137056-3 7.673615+0 8.903471-4 9.332543+0 7.024632-4 1.161449+1 5.430466-4 1.500000+1 4.052300-4 1.905461+1 3.104191-4 2.371374+1 2.444572-4 2.917427+1 1.954854-4 4.466836+1 1.246406-4 7.161434+1 7.638897-5 1.288250+2 4.191862-5 2.570396+2 2.083830-5 5.128614+2 1.039939-5 4.073803+3 1.304523-6 1.000000+5 5.311100-8 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.273400-3 2.606000-4 1.000000+5 2.606000-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.273400-3 1.082500-6 1.000000+5 1.082500-6 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.273400-3 1.011718-3 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.132200-3 9.401880+4 1.142000-3 9.511120+4 1.160000-3 9.605858+4 1.170000-3 9.605931+4 1.190000-3 9.484670+4 1.244515-3 9.123117+4 1.318257-3 8.603461+4 1.380384-3 8.158102+4 1.513561-3 7.255381+4 1.690000-3 6.245660+4 1.819701-3 5.605959+4 1.972423-3 4.947516+4 2.137962-3 4.328187+4 2.426610-3 3.482608+4 2.600160-3 3.074429+4 2.951209-3 2.420014+4 3.235937-3 2.021599+4 3.630781-3 1.598822+4 4.027170-3 1.287000+4 4.518559-3 1.002135+4 5.011872-3 7.954888+3 5.688529-3 5.944124+3 6.309573-3 4.653892+3 7.161434-3 3.423880+3 8.128305-3 2.498206+3 9.225714-3 1.808872+3 1.047129-2 1.299882+3 1.188502-2 9.272841+2 1.350000-2 6.554160+2 1.531087-2 4.620334+2 1.757924-2 3.124631+2 2.041738-2 2.028351+2 2.371374-2 1.305902+2 2.754229-2 8.346358+1 3.235937-2 5.112958+1 3.801894-2 3.110190+1 4.570882-2 1.748431+1 5.495409-2 9.758107+0 7.079458-2 4.337527+0 1.380384-1 5.038882-1 1.698244-1 2.600206-1 2.041738-1 1.454702-1 2.371374-1 9.133629-2 2.722701-1 5.984336-2 3.126079-1 3.950863-2 3.548134-1 2.720938-2 3.981072-1 1.952931-2 4.466836-1 1.413310-2 5.011872-1 1.030890-2 5.559043-1 7.812356-3 6.165950-1 5.962332-3 6.839117-1 4.585231-3 7.585776-1 3.553119-3 8.609938-1 2.619532-3 9.225714-1 2.231750-3 9.772372-1 1.964471-3 1.047129+0 1.699388-3 1.135011+0 1.445201-3 1.244515+0 1.210314-3 1.364583+0 1.021603-3 1.678804+0 7.072574-4 1.883649+0 5.801799-4 2.113489+0 4.795245-4 2.426610+0 3.845521-4 2.786121+0 3.107478-4 3.198895+0 2.529408-4 3.715352+0 2.039349-4 4.365158+0 1.630260-4 5.128614+0 1.313106-4 6.095369+0 1.049311-4 7.413102+0 8.204826-5 9.015711+0 6.464962-5 1.122018+1 4.991703-5 1.462177+1 3.683087-5 1.883649+1 2.776166-5 2.371374+1 2.158790-5 2.951209+1 1.705298-5 4.466836+1 1.100718-5 7.161434+1 6.745687-6 1.288250+2 3.701743-6 2.570396+2 1.840183-6 5.128614+2 9.183398-7 4.073803+3 1.152033-7 1.000000+5 4.690100-9 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.132200-3 2.146200-4 1.000000+5 2.146200-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.132200-3 9.719900-7 1.000000+5 9.719900-7 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.132200-3 9.166080-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.057000-3 2.460195+5 1.075000-3 2.445743+5 1.098000-3 2.399090+5 1.161449-3 2.257408+5 1.244515-3 2.074136+5 1.333521-3 1.886781+5 1.500000-3 1.587344+5 1.650000-3 1.370204+5 1.778279-3 1.212202+5 1.905461-3 1.076556+5 2.238721-3 8.050372+4 2.426610-3 6.914104+4 2.754229-3 5.383537+4 3.019952-3 4.464340+4 3.400000-3 3.474432+4 3.758374-3 2.795157+4 4.216965-3 2.159305+4 4.677351-3 1.701382+4 5.308844-3 1.260764+4 5.956621-3 9.527697+3 6.683439-3 7.150694+3 7.585776-3 5.173981+3 8.609938-3 3.713893+3 9.772372-3 2.645538+3 1.096478-2 1.930941+3 1.230269-2 1.400950+3 1.400000-2 9.702600+2 1.584893-2 6.773092+2 1.800000-2 4.652400+2 2.041738-2 3.187170+2 2.344229-2 2.090762+2 2.722701-2 1.313821+2 3.171060-2 8.122200+1 3.672823-2 5.074545+1 4.365158-2 2.895302+1 5.248075-2 1.578436+1 6.382635-2 8.220770+0 8.222426-2 3.502762+0 1.412538-1 5.604364-1 1.698244-1 3.020970-1 2.000000-1 1.757305-1 2.317395-1 1.086034-1 2.630268-1 7.231044-2 2.951209-1 5.029283-2 3.311311-1 3.522854-2 3.672823-1 2.574967-2 4.073803-1 1.896140-2 4.466836-1 1.454554-2 4.897788-1 1.123105-2 5.370318-1 8.730821-3 5.888437-1 6.834912-3 6.456542-1 5.390722-3 7.079458-1 4.283325-3 7.762471-1 3.428507-3 8.609938-1 2.685658-3 9.225714-1 2.296370-3 9.885531-1 1.977472-3 1.071519+0 1.675952-3 1.174898+0 1.397232-3 1.288250+0 1.173256-3 1.428894+0 9.713366-4 1.698244+0 7.151947-4 1.905461+0 5.871187-4 2.137962+0 4.855774-4 2.454709+0 3.896121-4 2.818383+0 3.149894-4 3.235937+0 2.565202-4 3.758374+0 2.069332-4 4.415704+0 1.655173-4 5.188000+0 1.333896-4 6.165950+0 1.066451-4 7.498942+0 8.342583-5 9.120108+0 6.576383-5 1.135011+1 5.079850-5 1.479108+1 3.749517-5 1.905461+1 2.827284-5 2.371374+1 2.226464-5 2.917427+1 1.780461-5 4.466836+1 1.135220-5 7.161434+1 6.957250-6 1.288250+2 3.817864-6 2.570396+2 1.897918-6 5.128614+2 9.471367-7 4.073803+3 1.188168-7 1.000000+5 4.837200-9 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.057000-3 2.076000-4 1.000000+5 2.076000-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.057000-3 6.136300-7 1.000000+5 6.136300-7 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.057000-3 8.487864-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 8.066400-4 9.384014+5 8.191000-4 9.574666+5 8.317638-4 9.691964+5 8.450000-4 9.652200+5 8.470000-4 9.626405+5 8.780000-4 8.832288+5 9.000000-4 8.255320+5 9.225714-4 7.785878+5 9.700000-4 6.946080+5 1.050000-3 5.817080+5 1.122018-3 4.985221+5 1.216186-3 4.099749+5 1.303167-3 3.447771+5 1.412538-3 2.799937+5 1.548817-3 2.190303+5 1.717908-3 1.651700+5 1.883649-3 1.272804+5 2.137962-3 8.840084+4 2.371374-3 6.502266+4 2.691535-3 4.438304+4 3.019952-3 3.108572+4 3.388442-3 2.164138+4 3.845918-3 1.439853+4 4.265795-3 1.025469+4 4.841724-3 6.721304+3 5.500000-3 4.357520+3 6.237348-3 2.820248+3 7.079458-3 1.806844+3 8.128305-3 1.102677+3 9.332543-3 6.673778+2 1.071519-2 4.006159+2 1.230269-2 2.385695+2 1.412538-2 1.409679+2 1.621810-2 8.269751+1 1.883649-2 4.606980+1 2.213095-2 2.434169+1 2.600160-2 1.277027+1 3.126079-2 6.064972+0 3.845918-2 2.602530+0 5.188000-2 7.592320-1 7.943282-2 1.310791-1 1.000000-1 5.104920-2 1.202264-1 2.417501-2 1.412538-1 1.265992-2 1.640590-1 6.995430-3 1.883649-1 4.076314-3 2.162719-1 2.393888-3 2.426610-1 1.546803-3 2.722701-1 1.006888-3 3.019952-1 6.890911-4 3.349654-1 4.753624-4 3.715352-1 3.304009-4 4.120975-1 2.314484-4 4.518559-1 1.698210-4 5.000000-1 1.217401-4 5.495409-1 8.988123-5 6.025596-1 6.732805-5 6.606935-1 5.074943-5 7.161434-1 3.987831-5 7.762471-1 3.154082-5 8.609938-1 2.344045-5 9.120108-1 2.002180-5 9.549926-1 1.775954-5 1.000000+0 1.585702-5 1.047129+0 1.426393-5 1.096478+0 1.292108-5 1.148154+0 1.177458-5 1.216186+0 1.055476-5 1.318257+0 9.126859-6 1.513561+0 7.203408-6 1.798871+0 5.323331-6 2.000000+0 4.448902-6 2.290868+0 3.569568-6 2.630268+0 2.875061-6 3.019952+0 2.332899-6 3.507519+0 1.875335-6 4.073803+0 1.518863-6 4.786301+0 1.219575-6 5.688529+0 9.716039-7 6.839116+0 7.685315-7 8.317638+0 6.036657-7 1.035142+1 4.647889-7 1.318257+1 3.511511-7 1.659587+1 2.706775-7 2.238721+1 1.946191-7 2.917427+1 1.462581-7 4.466836+1 9.325600-8 7.161434+1 5.715254-8 1.288250+2 3.136258-8 2.570396+2 1.559112-8 5.128614+2 7.780542-9 4.073803+3 9.76043-10 1.000000+5 3.97370-11 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 8.066400-4 1.314400-4 1.000000+5 1.314400-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 8.066400-4 4.148500-7 1.000000+5 4.148500-7 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 8.066400-4 6.747852-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 7.904900-4 1.429739+6 7.978500-4 1.448815+6 8.100000-4 1.462349+6 8.180000-4 1.466851+6 8.280000-4 1.460948+6 8.413951-4 1.436980+6 8.470000-4 1.421662+6 8.520000-4 1.400160+6 8.810489-4 1.274363+6 9.015711-4 1.204950+6 1.047129-3 8.562870+5 1.122018-3 7.267918+5 1.216186-3 5.957160+5 1.303167-3 4.996531+5 1.412538-3 4.045989+5 1.603245-3 2.873720+5 1.717908-3 2.373081+5 1.950000-3 1.650348+5 2.150000-3 1.241400+5 2.454709-3 8.338852+4 2.722701-3 6.073648+4 3.090295-3 4.087498+4 3.427678-3 2.937167+4 3.845918-3 2.020817+4 4.315191-3 1.380253+4 4.841724-3 9.362492+3 5.432503-3 6.309125+3 6.165950-3 4.056573+3 7.079458-3 2.484294+3 8.035261-3 1.572746+3 9.120108-3 9.885322+2 1.023293-2 6.440844+2 1.150000-2 4.146876+2 1.288250-2 2.687403+2 1.462177-2 1.646043+2 1.678804-2 9.574993+1 1.949845-2 5.282316+1 2.290000-2 2.765814+1 2.754229-2 1.303382+1 3.235937-2 6.711927+0 3.935501-2 2.974623+0 5.128614-2 9.799098-1 8.222426-2 1.345035-1 1.023293-1 5.394328-2 1.202264-1 2.769710-2 1.396368-1 1.502052-2 1.621810-1 8.210297-3 1.819701-1 5.195514-3 2.000000-1 3.590634-3 2.018366-1 3.478909-3 2.238721-1 2.335472-3 2.483133-1 1.579000-3 2.754229-1 1.075814-3 3.019952-1 7.702628-4 3.311311-1 5.554073-4 3.630781-1 4.034598-4 3.981072-1 2.953617-4 4.315191-1 2.263064-4 4.677351-1 1.745208-4 5.069907-1 1.354818-4 5.495409-1 1.058866-4 5.888437-1 8.626609-5 6.165950-1 7.560251-5 6.606935-1 6.244684-5 7.161434-1 5.032984-5 8.035261-1 3.735194-5 8.609938-1 3.113575-5 9.120108-1 2.690343-5 9.660509-1 2.340878-5 1.011579+0 2.107418-5 1.071519+0 1.861856-5 1.135011+0 1.655904-5 1.216186+0 1.449228-5 1.318257+0 1.250167-5 1.603245+0 8.871658-6 1.840772+0 6.976390-6 2.044000+0 5.854104-6 2.344229+0 4.693648-6 2.691535+0 3.785518-6 3.090295+0 3.075691-6 3.589219+0 2.475428-6 4.168694+0 2.007044-6 4.897788+0 1.613210-6 5.821032+0 1.286507-6 7.000000+0 1.018300-6 8.511380+0 8.008304-7 1.059254+1 6.170879-7 1.380384+1 4.544134-7 1.800000+1 3.373100-7 2.344229+1 2.526209-7 2.917427+1 1.995140-7 4.415704+1 1.287534-7 7.079458+1 7.889278-8 1.273503+2 4.328674-8 2.540973+2 2.151699-8 5.069907+2 1.073726-8 4.027170+3 1.346848-9 1.000000+5 5.42060-11 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 7.904900-4 1.325400-4 1.000000+5 1.325400-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.904900-4 1.174400-8 1.000000+5 1.174400-8 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 7.904900-4 6.579383-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.563500-4 1.445375+5 2.851018-4 1.358874+5 2.951209-4 1.324287+5 3.507519-4 1.149849+5 3.715352-4 1.091006+5 3.981072-4 1.015736+5 4.570882-4 8.741824+4 4.954502-4 7.950432+4 5.623413-4 6.773790+4 6.237348-4 5.910999+4 6.998420-4 5.035775+4 8.035261-4 4.124994+4 9.332543-4 3.289537+4 1.059254-3 2.699195+4 1.244515-3 2.081299+4 1.500000-3 1.525226+4 1.819701-3 1.094935+4 2.213095-3 7.759214+3 2.691535-3 5.454798+3 3.300000-3 3.749960+3 4.027170-3 2.580820+3 4.897788-3 1.774534+3 5.888437-3 1.238138+3 7.079458-3 8.572306+2 8.413951-3 6.029136+2 1.000000-2 4.211180+2 1.188502-2 2.920732+2 1.412538-2 2.011040+2 1.678804-2 1.374226+2 1.995262-2 9.317171+1 2.344229-2 6.434582+1 2.754229-2 4.412319+1 3.235937-2 3.003945+1 3.801894-2 2.030389+1 4.518559-2 1.324240+1 5.308844-2 8.822681+0 6.309573-2 5.667380+0 7.585776-2 3.508076+0 9.015711-2 2.221050+0 1.135011-1 1.197095+0 1.531088-1 5.311352-1 2.264644-1 1.822787-1 2.786121-1 1.041542-1 3.311311-1 6.578179-2 3.801894-1 4.584499-2 4.315191-1 3.314649-2 4.897788-1 2.414358-2 5.495409-1 1.823260-2 6.165950-1 1.387284-2 6.839117-1 1.092355-2 7.585776-1 8.658522-3 8.511380-1 6.736811-3 9.332543-1 5.547362-3 1.023293+0 4.602096-3 1.161449+0 3.587770-3 1.303167+0 2.880255-3 1.462177+0 2.329050-3 1.659587+0 1.857793-3 1.862087+0 1.523531-3 2.089296+0 1.258312-3 2.398833+0 1.008247-3 2.754229+0 8.141773-4 3.162278+0 6.623028-4 3.672823+0 5.336642-4 4.315191+0 4.263682-4 5.069907+0 3.432456-4 6.025596+0 2.741511-4 7.328245+0 2.142668-4 8.912509+0 1.687572-4 1.122018+1 1.285093-4 1.462177+1 9.482160-5 1.883649+1 7.147356-5 2.371374+1 5.557755-5 2.951209+1 4.390315-5 4.466836+1 2.833799-5 7.161434+1 1.736716-5 1.273503+2 9.642260-6 2.540973+2 4.793022-6 5.069907+2 2.391815-6 4.027170+3 3.000312-7 1.000000+5 1.207500-8 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.563500-4 1.129600-4 1.000000+5 1.129600-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.563500-4 1.631600-8 1.000000+5 1.631600-8 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.563500-4 1.433737-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.042100-4 1.154413+5 2.614700-4 1.074305+5 3.019952-4 1.038490+5 3.311311-4 1.009172+5 3.600000-4 9.748940+4 3.850000-4 9.416880+4 4.120975-4 9.031035+4 4.500000-4 8.490060+4 4.850000-4 8.000740+4 5.248075-4 7.458090+4 5.754399-4 6.817965+4 6.237348-4 6.263098+4 6.839116-4 5.640047+4 7.585776-4 4.974113+4 8.317638-4 4.416130+4 9.225714-4 3.834728+4 1.023293-3 3.305599+4 1.150000-3 2.773680+4 1.288250-3 2.319659+4 1.450000-3 1.910702+4 1.640590-3 1.547768+4 1.850000-3 1.251312+4 2.089296-3 1.001610+4 2.371374-3 7.883206+3 2.691535-3 6.157009+3 3.054921-3 4.772764+3 3.507519-3 3.584319+3 4.000000-3 2.706940+3 4.518559-3 2.070810+3 5.069907-3 1.597334+3 5.688529-3 1.224104+3 6.382635-3 9.318624+2 7.244360-3 6.853928+2 8.222426-3 5.002276+2 9.332543-3 3.624371+2 1.059254-2 2.607739+2 1.202264-2 1.863329+2 1.380384-2 1.281477+2 1.584893-2 8.744221+1 1.819701-2 5.921421+1 2.089296-2 3.980674+1 2.426610-2 2.568438+1 2.818383-2 1.644736+1 3.273407-2 1.045766+1 3.890451-2 6.152844+0 4.677351-2 3.466453+0 5.623413-2 1.938615+0 7.244360-2 8.642532-1 1.412538-1 1.011207-1 1.737801-1 5.230296-2 2.089296-1 2.932557-2 2.426610-1 1.845048-2 2.786121-1 1.211345-2 3.162278-1 8.293799-3 3.589219-1 5.720998-3 4.027170-1 4.110562-3 4.518559-1 2.974964-3 5.011872-1 2.238854-3 5.559043-1 1.696462-3 6.165950-1 1.294884-3 6.839117-1 9.961011-4 7.585776-1 7.721469-4 8.709636-1 5.541411-4 9.332543-1 4.726872-4 9.885531-1 4.165950-4 1.071519+0 3.524578-4 1.161449+0 3.002916-4 1.258925+0 2.574512-4 1.396368+0 2.130269-4 1.698244+0 1.506360-4 1.905461+0 1.236438-4 2.137962+0 1.022625-4 2.454709+0 8.205407-5 2.818383+0 6.633647-5 3.235937+0 5.402274-5 3.758374+0 4.358075-5 4.415704+0 3.485869-5 5.188000+0 2.809196-5 6.165950+0 2.245900-5 7.498942+0 1.756919-5 9.120108+0 1.385017-5 1.135011+1 1.069765-5 1.479108+1 7.896471-6 1.905461+1 5.954236-6 2.371374+1 4.688869-6 2.951209+1 3.703973-6 4.466836+1 2.390723-6 7.161434+1 1.465216-6 1.288250+2 8.040296-7 2.570396+2 3.997041-7 5.128614+2 1.994685-7 4.073803+3 2.502210-8 1.000000+5 1.018700-9 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.042100-4 1.095400-4 1.000000+5 1.095400-4 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.042100-4 1.937000-8 1.000000+5 1.937000-8 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.042100-4 9.465063-5 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.883500-4 3.581577+5 2.190000-4 3.346516+5 2.454709-4 3.214304+5 2.818383-4 3.013738+5 3.054921-4 2.883487+5 3.311311-4 2.738861+5 3.548134-4 2.605280+5 3.850000-4 2.436640+5 4.216965-4 2.244333+5 4.570882-4 2.073250+5 5.000000-4 1.882880+5 5.500000-4 1.687724+5 6.025596-4 1.509333+5 6.700000-4 1.315084+5 7.413102-4 1.144873+5 8.317638-4 9.696506+4 9.225714-4 8.290909+4 1.035142-3 6.916281+4 1.161449-3 5.724645+4 1.303167-3 4.705880+4 1.479108-3 3.763229+4 1.678804-3 2.984855+4 1.883649-3 2.401699+4 2.113489-3 1.920785+4 2.400000-3 1.490024+4 2.722701-3 1.149606+4 3.090295-3 8.796285+3 3.507519-3 6.681327+3 3.935501-3 5.169910+3 4.415704-3 3.975331+3 4.954502-3 3.037213+3 5.559043-3 2.305596+3 6.237348-3 1.738785+3 7.079458-3 1.265477+3 8.035261-3 9.137023+2 9.120108-3 6.549570+2 1.035142-2 4.659292+2 1.174898-2 3.291739+2 1.333521-2 2.309579+2 1.513561-2 1.609342+2 1.737801-2 1.076590+2 2.000000-2 7.095720+1 2.290868-2 4.707859+1 2.630268-2 3.079471+1 3.054921-2 1.929609+1 3.548134-2 1.200127+1 4.168694-2 7.142635+0 4.954502-2 4.064551+0 6.025596-2 2.127255+0 7.498942-2 1.022647+0 1.412538-1 1.204861-1 1.717908-1 6.259558-2 2.041738-1 3.538654-2 2.344229-1 2.256246-2 2.660725-1 1.503987-2 3.000000-1 1.031514-2 3.349654-1 7.347747-3 3.715352-1 5.378740-3 4.120975-1 3.966345-3 4.518559-1 3.045713-3 4.954502-1 2.354181-3 5.432503-1 1.832548-3 5.956621-1 1.436575-3 6.531306-1 1.134300-3 7.161434-1 9.021020-4 7.852356-1 7.226443-4 8.609938-1 5.816558-4 9.225714-1 4.972799-4 9.885531-1 4.281627-4 1.071519+0 3.628329-4 1.174898+0 3.024956-4 1.288250+0 2.540197-4 1.428894+0 2.103042-4 1.698244+0 1.548641-4 1.905461+0 1.271306-4 2.137962+0 1.051239-4 2.454709+0 8.434305-5 2.818383+0 6.819511-5 3.235937+0 5.554061-5 3.758374+0 4.480517-5 4.415704+0 3.583757-5 5.188000+0 2.888051-5 6.165950+0 2.308976-5 7.498942+0 1.806306-5 9.120108+0 1.423901-5 1.135011+1 1.099848-5 1.479108+1 8.118351-6 1.905461+1 6.121505-6 2.371374+1 4.820654-6 2.951209+1 3.808039-6 4.466836+1 2.457879-6 7.161434+1 1.506352-6 1.273503+2 8.363346-7 2.540973+2 4.157279-7 5.069907+2 2.074570-7 4.027170+3 2.602317-8 1.000000+5 1.047300-9 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.883500-4 8.229600-5 1.000000+5 8.229600-5 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.883500-4 1.247200-8 1.000000+5 1.247200-8 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.883500-4 1.060415-4 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.021600-4 9.184240+5 1.025000-4 1.005376+6 1.028000-4 1.081500+6 1.031000-4 1.155156+6 1.034000-4 1.226884+6 1.037000-4 1.296056+6 1.041000-4 1.385400+6 1.045000-4 1.470224+6 1.047129-4 1.513455+6 1.052000-4 1.607860+6 1.056500-4 1.688960+6 1.060000-4 1.747244+6 1.064000-4 1.808348+6 1.069500-4 1.882240+6 1.075000-4 1.944096+6 1.080000-4 1.989448+6 1.086000-4 2.030420+6 1.090000-4 2.049720+6 1.096478-4 2.067753+6 1.102000-4 2.071184+6 1.109175-4 2.061063+6 1.117000-4 2.033844+6 1.125000-4 1.991748+6 1.135011-4 1.924458+6 1.145000-4 1.846284+6 1.156000-4 1.753484+6 1.170000-4 1.631756+6 1.188502-4 1.474043+6 1.208000-4 1.318504+6 1.230269-4 1.157541+6 1.260000-4 9.700840+5 1.290000-4 8.098440+5 1.330000-4 6.357640+5 1.400000-4 4.210560+5 1.430000-4 3.571912+5 1.450000-4 3.221036+5 1.472000-4 2.894916+5 1.495000-4 2.612284+5 1.513561-4 2.422129+5 1.531087-4 2.269810+5 1.550000-4 2.131772+5 1.566751-4 2.029792+5 1.585000-4 1.937996+5 1.603245-4 1.864142+5 1.621810-4 1.805301+5 1.640590-4 1.760594+5 1.660000-4 1.728200+5 1.680000-4 1.707708+5 1.698244-4 1.699017+5 1.720000-4 1.699484+5 1.740000-4 1.708912+5 1.760000-4 1.725700+5 1.790000-4 1.762536+5 1.820000-4 1.810572+5 1.865000-4 1.898252+5 1.930000-4 2.046668+5 2.065380-4 2.387857+5 2.137962-4 2.568475+5 2.213095-4 2.744525+5 2.290868-4 2.910427+5 2.371374-4 3.062016+5 2.454709-4 3.196770+5 2.540973-4 3.313620+5 2.630268-4 3.412344+5 2.730000-4 3.498308+5 2.830000-4 3.560896+5 2.951209-4 3.607872+5 3.054921-4 3.625859+5 3.198895-4 3.623085+5 3.350000-4 3.594252+5 3.507519-4 3.541538+5 3.672823-4 3.466953+5 3.850000-4 3.371040+5 4.073803-4 3.235206+5 4.315191-4 3.079142+5 4.570882-4 2.909542+5 4.850000-4 2.725496+5 5.188000-4 2.511053+5 5.559043-4 2.290383+5 5.956621-4 2.073435+5 6.382635-4 1.864168+5 6.850000-4 1.660604+5 7.413102-4 1.448432+5 8.035261-4 1.250041+5 8.709636-4 1.071099+5 9.500000-4 8.996160+4 1.035142-3 7.517041+4 1.140000-3 6.091725+4 1.244515-3 4.994803+4 1.364583-3 4.028415+4 1.513561-3 3.137326+4 1.678804-3 2.423375+4 1.862087-3 1.857512+4 2.041738-3 1.457219+4 2.238721-3 1.136758+4 2.454709-3 8.817975+3 2.722701-3 6.582285+3 3.019952-3 4.879287+3 3.388442-3 3.469949+3 3.758374-3 2.535696+3 4.168694-3 1.840706+3 4.623810-3 1.327316+3 5.128614-3 9.508206+2 5.754399-3 6.513400+2 6.456542-3 4.428451+2 7.244360-3 2.989197+2 8.222426-3 1.924540+2 9.332543-3 1.229351+2 1.059254-2 7.792228+1 1.202264-2 4.902937+1 1.364583-2 3.063108+1 1.548817-2 1.900462+1 1.778279-2 1.120482+1 2.041738-2 6.559097+0 2.371374-2 3.644700+0 2.786121-2 1.921218+0 3.349654-2 9.167198-1 4.120975-2 3.954929-1 5.559043-2 1.162252-1 8.511380-2 2.026674-2 1.059254-1 8.320218-3 1.258925-1 4.147156-3 1.479108-1 2.181105-3 1.698244-1 1.266101-3 1.949845-1 7.403545-4 2.213095-1 4.558280-4 2.483133-1 2.952752-4 2.786121-1 1.926847-4 3.090295-1 1.321604-4 3.427678-1 9.132508-5 3.801894-1 6.357791-5 4.168694-1 4.638763-5 4.623810-1 3.278661-5 5.128614-1 2.334692-5 5.623413-1 1.737164-5 6.095369-1 1.350057-5 6.606935-1 1.057715-5 7.244360-1 8.063643-6 8.035261-1 5.988681-6 8.609938-1 4.889119-6 9.120108-1 4.158977-6 9.549926-1 3.678707-6 9.885531-1 3.371371-6 1.035142+0 3.023178-6 1.083927+0 2.731357-6 1.135011+0 2.483630-6 1.202264+0 2.221975-6 1.303167+0 1.920249-6 1.428894+0 1.640263-6 1.513561+0 1.489292-6 1.819701+0 1.079057-6 2.018366+0 9.059542-7 2.317395+0 7.245423-7 2.660725+0 5.839443-7 3.054921+0 4.741182-7 3.548134+0 3.813531-7 4.120975+0 3.090259-7 4.841724+0 2.482574-7 5.754399+0 1.978889-7 6.918310+0 1.565999-7 8.413951+0 1.230625-7 1.047129+1 9.479267-8 1.348963+1 7.070141-8 1.737801+1 5.315355-8 2.317395+1 3.876138-8 2.951209+1 2.986795-8 4.466836+1 1.927837-8 7.161434+1 1.181478-8 1.288250+2 6.483565-9 2.570396+2 3.223167-9 5.128614+2 1.608453-9 4.073803+3 2.01775-10 1.000000+5 8.21480-12 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.021600-4 5.632400-5 1.000000+5 5.632400-5 1 56000 7 7 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.021600-4 1.621900-8 1.000000+5 1.621900-8 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.021600-4 4.581978-5 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 9.946000-5 1.427742+6 9.977000-5 1.555302+6 1.000000-4 1.648428+6 1.002000-4 1.726620+6 1.005000-4 1.839966+6 1.008500-4 1.967436+6 1.012000-4 2.088528+6 1.016500-4 2.236734+6 1.020000-4 2.345400+6 1.024000-4 2.462076+6 1.027000-4 2.544198+6 1.032000-4 2.670492+6 1.037000-4 2.782986+6 1.042000-4 2.880654+6 1.047129-4 2.964810+6 1.052000-4 3.029376+6 1.058000-4 3.088230+6 1.065000-4 3.128910+6 1.071519-4 3.141389+6 1.077000-4 3.134628+6 1.083927-4 3.106257+6 1.092000-4 3.049788+6 1.100000-4 2.974212+6 1.110000-4 2.860344+6 1.120000-4 2.732730+6 1.131000-4 2.584614+6 1.148154-4 2.351440+6 1.161449-4 2.176691+6 1.180000-4 1.948110+6 1.208200-4 1.639626+6 1.241300-4 1.335083+6 1.273503-4 1.091120+6 1.365000-4 6.219960+5 1.390000-4 5.393538+5 1.415000-4 4.716732+5 1.435000-4 4.268430+5 1.450000-4 3.979878+5 1.465000-4 3.727962+5 1.485000-4 3.442950+5 1.500000-4 3.263298+5 1.515000-4 3.109758+5 1.531087-4 2.971244+5 1.548817-4 2.846700+5 1.566751-4 2.747410+5 1.585000-4 2.670780+5 1.603245-4 2.615904+5 1.621810-4 2.579723+5 1.643000-4 2.559570+5 1.663400-4 2.558608+5 1.680000-4 2.569374+5 1.705000-4 2.602290+5 1.732100-4 2.656859+5 1.760000-4 2.729460+5 1.800000-4 2.855502+5 1.862087-4 3.084910+5 1.995262-4 3.631937+5 2.065380-4 3.918216+5 2.137962-4 4.198298+5 2.213095-4 4.463100+5 2.290868-4 4.705779+5 2.371374-4 4.922310+5 2.454709-4 5.111029+5 2.540973-4 5.271391+5 2.630268-4 5.402935+5 2.730000-4 5.511606+5 2.830000-4 5.583660+5 2.951209-4 5.627874+5 3.090295-4 5.631019+5 3.235937-4 5.590624+5 3.388442-4 5.514116+5 3.550000-4 5.402010+5 3.715352-4 5.261532+5 3.935501-4 5.049170+5 4.168694-4 4.809415+5 4.430000-4 4.533366+5 4.700000-4 4.247682+5 5.011872-4 3.929482+5 5.370318-4 3.587016+5 5.754399-4 3.248324+5 6.200000-4 2.896380+5 6.606934-4 2.611148+5 7.161434-4 2.271697+5 7.762471-4 1.961773+5 8.413951-4 1.680871+5 9.120108-4 1.430775+5 1.000000-3 1.180200+5 1.083927-3 9.906822+4 1.190000-3 8.030760+4 1.318257-3 6.323448+4 1.428894-3 5.207930+4 1.570000-3 4.126092+4 1.757924-3 3.092366+4 1.972423-3 2.284123+4 2.213095-3 1.671783+4 2.454709-3 1.252834+4 2.722701-3 9.323599+3 3.019952-3 6.889509+3 3.388442-3 4.881497+3 3.758374-3 3.555775+3 4.168694-3 2.572815+3 4.623810-3 1.848968+3 5.128614-3 1.319893+3 5.754399-3 9.005293+2 6.456542-3 6.097428+2 7.244360-3 4.098194+2 8.128305-3 2.734967+2 9.225714-3 1.739432+2 1.047129-2 1.097544+2 1.188502-2 6.871924+1 1.348963-2 4.270646+1 1.531087-2 2.634929+1 1.757924-2 1.543507+1 2.018366-2 8.973046+0 2.344229-2 4.945619+0 2.722701-2 2.705746+0 3.235937-2 1.338378+0 3.801894-2 6.883062-1 4.786301-2 2.638822-1 8.317638-2 2.614532-2 1.035142-1 1.053925-2 1.230269-1 5.177385-3 1.428894-1 2.817015-3 1.640590-1 1.618330-3 1.840772-1 1.026521-3 2.065380-1 6.556896-4 2.290868-1 4.409321-4 2.540973-1 2.987553-4 2.786121-1 2.128861-4 3.054921-1 1.528076-4 3.349654-1 1.105308-4 3.672823-1 8.055823-5 4.027170-1 5.915101-5 4.365158-1 4.538458-5 4.731513-1 3.505182-5 5.069907-1 2.825408-5 5.495409-1 2.213790-5 5.956621-1 1.747325-5 6.456542-1 1.388694-5 6.998420-1 1.111537-5 7.585776-1 8.961176-6 8.511380-1 6.647291-6 9.015711-1 5.758503-6 9.549926-1 5.021717-6 1.000000+0 4.525900-6 1.059254+0 4.002307-6 1.135011+0 3.479462-6 1.216186+0 3.045733-6 1.333521+0 2.570508-6 1.757924+0 1.580094-6 1.972423+0 1.299395-6 2.238721+0 1.056928-6 2.570396+0 8.502256-7 2.951209+0 6.891097-7 3.427678+0 5.532654-7 4.000000+0 4.446500-7 4.677351+0 3.590006-7 5.559043+0 2.857162-7 6.683439+0 2.257864-7 8.128305+0 1.771872-7 1.000000+1 1.381900-7 1.244515+1 1.070760-7 1.548817+1 8.347281-8 1.949845+1 6.463559-8 2.570396+1 4.781841-8 3.672823+1 3.269858-8 5.559043+1 2.119305-8 9.332543+1 1.243229-8 1.840772+2 6.235285-9 3.672823+2 3.106398-9 1.462177+3 7.76943-10 1.000000+5 1.13420-11 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 9.946000-5 5.712300-5 1.000000+5 5.712300-5 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.946000-5 4.233700-5 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.839000-5 6.660480+4 4.000000-5 7.507560+4 4.120975-5 8.145294+4 4.265795-5 8.886677+4 4.400000-5 9.540740+4 4.518559-5 1.008731+5 4.677351-5 1.077478+5 4.850000-5 1.146030+5 5.011872-5 1.204298+5 5.188000-5 1.261092+5 5.400000-5 1.320586+5 5.623413-5 1.373114+5 5.821032-5 1.411276+5 6.070000-5 1.448830+5 6.309573-5 1.474542+5 6.531306-5 1.490038+5 6.839116-5 1.500039+5 7.161434-5 1.498727+5 7.500000-5 1.487424+5 7.943282-5 1.461846+5 8.413951-5 1.426341+5 9.015711-5 1.374713+5 9.772372-5 1.306347+5 1.047129-4 1.242590+5 1.122018-4 1.174874+5 1.216186-4 1.092215+5 1.330000-4 9.987280+4 1.479108-4 8.903889+4 1.659587-4 7.806198+4 1.850000-4 6.845820+4 2.113489-4 5.778354+4 2.500000-4 4.628020+4 2.917427-4 3.742888+4 3.507519-4 2.884120+4 4.265795-4 2.167451+4 5.069907-4 1.673111+4 6.025596-4 1.283459+4 7.244360-4 9.601185+3 8.709636-4 7.124538+3 1.047129-3 5.243657+3 1.258925-3 3.829577+3 1.531087-3 2.721627+3 1.883649-3 1.881909+3 2.371374-3 1.238646+3 2.951209-3 8.261872+2 3.672823-3 5.468330+2 4.570882-3 3.591437+2 5.559043-3 2.447615+2 6.683439-3 1.694013+2 8.035261-3 1.163946+2 9.660509-3 7.938337+1 1.161449-2 5.369887+1 1.412538-2 3.516843+1 1.737801-2 2.230794+1 2.018366-2 1.595478+1 2.344229-2 1.131555+1 2.754229-2 7.755305+0 3.273407-2 5.132309+0 3.890451-2 3.369963+0 4.623810-2 2.195294+0 5.432503-2 1.460795+0 6.531306-2 9.096824-1 7.943282-2 5.454916-1 9.660509-2 3.239463-1 1.230269-1 1.687560-1 2.454709-1 2.573737-2 2.951209-1 1.568191-2 3.467369-1 1.023524-2 4.000000-1 7.063700-3 4.518559-1 5.183207-3 5.069907-1 3.894846-3 5.688529-1 2.947828-3 6.309573-1 2.309286-3 6.998420-1 1.821049-3 7.762471-1 1.445662-3 8.709636-1 1.126597-3 9.549926-1 9.293850-4 1.047129+0 7.723589-4 1.188502+0 6.028879-4 1.333521+0 4.847070-4 1.500000+0 3.907000-4 1.698244+0 3.134757-4 1.905461+0 2.574402-4 2.162719+0 2.090217-4 2.483133+0 1.678239-4 2.851018+0 1.357591-4 3.273407+0 1.106234-4 3.801894+0 8.929115-5 4.466836+0 7.145965-5 5.248075+0 5.761690-5 6.237348+0 4.608655-5 7.585776+0 3.606969-5 9.225714+0 2.844552-5 1.148154+1 2.198191-5 1.479108+1 1.644289-5 1.905461+1 1.239831-5 2.511886+1 9.170980-6 3.235937+1 6.994190-6 4.731513+1 4.687820-6 7.585776+1 2.875697-6 1.380384+2 1.560856-6 2.754229+2 7.762834-7 1.096478+3 1.938529-7 1.000000+5 2.121300-9 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.839000-5 3.839000-5 1.000000+5 3.839000-5 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.839000-5 0.0 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.430000-5 6.890940+6 2.483133-5 6.430505+6 2.630268-5 5.303632+6 2.884032-5 3.870021+6 3.126079-5 2.921385+6 3.427678-5 2.102477+6 4.365158-5 8.738952+5 4.786301-5 6.298714+5 5.150000-5 4.887720+5 5.500000-5 3.916500+5 5.821032-5 3.252526+5 6.165950-5 2.710387+5 6.531306-5 2.275621+5 6.839116-5 1.990879+5 7.161434-5 1.752312+5 7.500000-5 1.551856+5 7.852356-5 1.384650+5 8.222426-5 1.243463+5 8.650000-5 1.113210+5 9.015711-5 1.022851+5 9.500000-5 9.254280+4 1.000000-4 8.448160+4 1.060000-4 7.678060+4 1.122018-4 7.047908+4 1.190000-4 6.496560+4 1.273503-4 5.960660+4 1.380384-4 5.428199+4 1.513561-4 4.915866+4 1.720000-4 4.320740+4 2.570396-4 2.928909+4 3.019952-4 2.487350+4 3.507519-4 2.121883+4 4.073803-4 1.794251+4 4.623810-4 1.546277+4 5.248075-4 1.323171+4 5.956621-4 1.124323+4 6.760830-4 9.482972+3 7.673615-4 7.937286+3 8.709636-4 6.590651+3 9.885531-4 5.429595+3 1.122018-3 4.438324+3 1.273503-3 3.600252+3 1.445440-3 2.897961+3 1.640590-3 2.315780+3 1.862087-3 1.837555+3 2.137962-3 1.417042+3 2.426610-3 1.109087+3 2.754229-3 8.621179+2 3.126079-3 6.655221+2 3.548134-3 5.101717+2 4.027170-3 3.882825+2 4.570882-3 2.933362+2 5.188000-3 2.199744+2 5.888437-3 1.637352+2 6.683439-3 1.209466+2 7.585776-3 8.867985+1 8.609938-3 6.453487+1 9.885531-3 4.527221+1 1.148154-2 3.065513+1 1.318257-2 2.123581+1 1.500000-2 1.495377+1 1.698244-2 1.057637+1 1.949845-2 7.137671+0 2.264644-2 4.624686+0 2.630268-2 2.973149+0 3.054921-2 1.897468+0 3.589219-2 1.160905+0 4.265795-2 6.805775-1 5.128614-2 3.821436-1 6.382635-2 1.908656-1 8.709636-2 7.049393-2 1.380384-1 1.604189-2 1.717908-1 7.995834-3 2.065380-1 4.481552-3 2.398833-1 2.818180-3 2.754229-1 1.849142-3 3.126079-1 1.265219-3 3.548134-1 8.720855-4 4.000000-1 6.177500-4 4.466836-1 4.528365-4 5.000000-1 3.322000-4 5.559043-1 2.501073-4 6.165950-1 1.908909-4 6.839117-1 1.468180-4 7.585776-1 1.137881-4 8.609938-1 8.390821-5 9.225714-1 7.149355-5 9.772372-1 6.293406-5 1.047129+0 5.444193-5 1.135011+0 4.629792-5 1.244515+0 3.877167-5 1.364583+0 3.272410-5 1.678804+0 2.265358-5 1.883649+0 1.858204-5 2.113489+0 1.535408-5 2.398833+0 1.253556-5 2.754229+0 1.012271-5 3.162278+0 8.234516-6 3.672823+0 6.635151-6 4.315191+0 5.301180-6 5.069907+0 4.267746-6 6.025596+0 3.408663-6 7.328245+0 2.664094-6 8.912509+0 2.098263-6 1.109175+1 1.619440-6 1.445440+1 1.194435-6 1.883649+1 8.886505-7 2.371374+1 6.910157-7 2.951209+1 5.458625-7 4.466836+1 3.523365-7 7.161434+1 2.159284-7 1.288250+2 1.184953-7 2.570396+2 5.890510-8 5.128614+2 2.939573-8 4.073803+3 3.687625-9 1.000000+5 1.50130-10 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.430000-5 2.430000-5 1.000000+5 2.430000-5 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.430000-5 0.0 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.200000-5 1.416972+7 2.317395-5 1.180089+7 2.851018-5 5.610450+6 3.630781-5 2.334170+6 3.935501-5 1.753111+6 4.220000-5 1.377688+6 4.500000-5 1.111892+6 4.731513-5 9.459498+5 5.011872-5 7.912830+5 5.248075-5 6.900114+5 5.500000-5 6.037760+5 5.754399-5 5.341257+5 6.025596-5 4.745908+5 6.309573-5 4.246655+5 6.606934-5 3.827532+5 6.918310-5 3.474867+5 7.244360-5 3.176886+5 7.585776-5 2.923714+5 8.000000-5 2.676092+5 8.500000-5 2.439200+5 9.015711-5 2.244764+5 9.660509-5 2.051145+5 1.047129-4 1.860740+5 1.150000-4 1.674976+5 1.303167-4 1.468571+5 1.840772-4 1.032255+5 2.213095-4 8.493792+4 2.600160-4 7.110514+4 3.019952-4 5.980921+4 3.467369-4 5.064367+4 3.935501-4 4.320615+4 4.518559-4 3.609594+4 5.128614-4 3.039984+4 5.888437-4 2.502373+4 6.683439-4 2.078532+4 7.498942-4 1.745611+4 8.609938-4 1.404265+4 9.772372-4 1.141567+4 1.109175-3 9.211952+3 1.258925-3 7.380996+3 1.428894-3 5.873004+3 1.640590-3 4.542196+3 1.883649-3 3.485137+3 2.162719-3 2.653140+3 2.454709-3 2.051944+3 2.786121-3 1.576269+3 3.162278-3 1.202630+3 3.589219-3 9.112068+2 4.073803-3 6.854699+2 4.623810-3 5.118866+2 5.248075-3 3.794126+2 5.956621-3 2.790849+2 6.760830-3 2.036877+2 7.673615-3 1.475319+2 8.810489-3 1.029032+2 1.000000-2 7.341214+1 1.135011-2 5.197055+1 1.288250-2 3.652698+1 1.479108-2 2.466851+1 1.698244-2 1.653417+1 1.949845-2 1.099775+1 2.238721-2 7.258683+0 2.570396-2 4.756086+0 2.985383-2 2.985442+0 3.467369-2 1.859604+0 4.073803-2 1.108462+0 4.841724-2 6.318386-1 5.754399-2 3.573327-1 7.161434-2 1.721916-1 1.000000-1 5.595409-2 1.396368-1 1.810465-2 1.698244-1 9.403351-3 2.018366-1 5.314005-3 2.317395-1 3.386644-3 2.630268-1 2.256322-3 2.951209-1 1.570344-3 3.311311-1 1.101094-3 3.672823-1 8.055639-4 4.073803-1 5.936305-4 4.518559-1 4.409036-4 4.954502-1 3.408257-4 5.432503-1 2.653089-4 5.956621-1 2.079883-4 6.531306-1 1.642693-4 7.161434-1 1.306900-4 7.852356-1 1.047294-4 8.609938-1 8.431347-5 9.225714-1 7.208906-5 9.885531-1 6.207266-5 1.071519+0 5.260301-5 1.174898+0 4.385554-5 1.288250+0 3.682740-5 1.428894+0 3.048971-5 1.698244+0 2.244936-5 1.905461+0 1.842882-5 2.137962+0 1.524135-5 2.454709+0 1.222917-5 2.818383+0 9.887030-6 3.235937+0 8.051948-6 3.758374+0 6.495599-6 4.415704+0 5.195567-6 5.188000+0 4.186978-6 6.165950+0 3.347425-6 7.498942+0 2.618673-6 9.120108+0 2.064246-6 1.135011+1 1.594563-6 1.462177+1 1.192344-6 1.883649+1 8.987533-7 2.371374+1 6.988765-7 2.951209+1 5.520712-7 4.466836+1 3.563391-7 7.161434+1 2.183804-7 1.288250+2 1.198374-7 2.570396+2 5.957503-8 5.128614+2 2.973015-8 4.073803+3 3.729558-9 1.000000+5 1.51840-10 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.200000-5 2.200000-5 1.000000+5 2.200000-5 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.200000-5 0.0 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 4.640000-6 2.455217+6 5.011872-6 1.681515+6 5.308844-6 1.259367+6 5.600000-6 9.570620+5 5.888437-6 7.347307+5 6.200000-6 5.562940+5 6.531306-6 4.168675+5 6.850000-6 3.179580+5 7.200000-6 2.377480+5 7.585776-6 1.739540+5 8.035261-6 1.222812+5 8.810489-6 6.915924+4 9.120108-6 5.613883+4 9.350000-6 4.854220+4 9.600000-6 4.189600+4 9.772372-6 3.813490+4 9.960000-6 3.468820+4 1.015000-5 3.179240+4 1.027000-5 3.023340+4 1.042000-5 2.854540+4 1.060000-5 2.685960+4 1.077000-5 2.556580+4 1.092000-5 2.463560+4 1.110000-5 2.374820+4 1.127000-5 2.311140+4 1.142000-5 2.269180+4 1.161449-5 2.232055+4 1.180000-5 2.212460+4 1.202264-5 2.206241+4 1.222000-5 2.214080+4 1.244515-5 2.235793+4 1.273503-5 2.280039+4 1.303167-5 2.339974+4 1.348963-5 2.453836+4 1.423200-5 2.670057+4 1.548817-5 3.060812+4 1.621810-5 3.280101+4 1.698244-5 3.495109+4 1.778279-5 3.700785+4 1.870000-5 3.910640+4 1.950000-5 4.071400+4 2.041738-5 4.230962+4 2.150000-5 4.386700+4 2.270000-5 4.521780+4 2.400000-5 4.629700+4 2.540973-5 4.708702+4 2.691535-5 4.756566+4 2.851018-5 4.773470+4 3.019952-5 4.759451+4 3.198895-5 4.714544+4 3.400000-5 4.636160+4 3.630781-5 4.520623+4 3.900000-5 4.363300+4 4.168694-5 4.191605+4 4.466836-5 3.992050+4 4.841724-5 3.742544+4 5.308844-5 3.447464+4 5.821032-5 3.150517+4 6.531306-5 2.793084+4 7.328245-5 2.459845+4 8.709636-5 2.015520+4 1.188502-4 1.390299+4 1.350000-4 1.188270+4 1.500000-4 1.036726+4 1.659587-4 9.021075+3 1.883649-4 7.513336+3 2.570396-4 4.747359+3 3.672823-4 2.775237+3 4.570882-4 1.983504+3 5.888437-4 1.335570+3 7.498942-4 9.041768+2 8.912509-4 6.806262+2 1.083927-3 4.886603+2 1.333521-3 3.416041+2 1.621810-3 2.419072+2 1.972423-3 1.701117+2 2.483133-3 1.117347+2 3.090295-3 7.440305+1 3.845918-3 4.916834+1 4.731513-3 3.297561+1 5.754399-3 2.244913+1 6.918310-3 1.551983+1 8.317638-3 1.065152+1 1.000000-2 7.255661+0 1.202264-2 4.904265+0 1.428894-2 3.372164+0 1.698244-2 2.301686+0 2.018366-2 1.558995+0 2.371374-2 1.075801+0 2.786121-2 7.371597-1 3.273407-2 5.014828-1 3.890451-2 3.292679-1 4.623810-2 2.144881-1 5.432503-2 1.427248-1 6.531306-2 8.888219-2 7.943282-2 5.330129-2 9.660509-2 3.165433-2 1.244515-1 1.598385-2 2.483133-1 2.439001-3 3.000000-1 1.468000-3 3.507519-1 9.715634-4 4.027170-1 6.794452-4 4.570882-1 4.931062-4 5.128614-1 3.710333-4 5.754399-1 2.812724-4 6.382635-1 2.207246-4 7.079458-1 1.744036-4 7.852356-1 1.387821-4 8.709636-1 1.112309-4 9.549926-1 9.196768-5 1.071519+0 7.312460-5 1.230269+0 5.592699-5 1.380384+0 4.504365-5 1.548817+0 3.652472-5 1.737801+0 2.982804-5 1.949845+0 2.453260-5 2.213095+0 1.994214-5 2.540973+0 1.603133-5 2.917427+0 1.298525-5 3.349654+0 1.059413-5 3.890451+0 8.561301-6 4.570882+0 6.859277-6 5.432503+0 5.453374-6 6.456542+0 4.368255-6 7.852356+0 3.423467-6 9.660509+0 2.666504-6 1.188502+1 2.091518-6 1.513561+1 1.586645-6 1.927525+1 1.212396-6 2.540973+1 8.968653-7 3.427678+1 6.515998-7 5.011872+1 4.371886-7 8.128305+1 2.652740-7 1.531087+2 1.391571-7 3.054921+2 6.925171-8 1.216186+3 1.730442-8 1.000000+5 2.10070-10 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 4.640000-6 4.640000-6 1.000000+5 4.640000-6 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 4.640000-6 0.0 1.000000+5 1.000000+5 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.138880-7 1.027500+0 1.161800-6 1.028100+0 1.581770-6 1.028750+0 2.138880-6 1.029500+0 2.927110-6 1.030100+0 3.681200-6 1.031000+0 5.037140-6 1.032000+0 6.892070-6 1.033200+0 9.654620-6 1.034000+0 1.185190-5 1.035300+0 1.608730-5 1.036640+0 2.138880-5 1.038200+0 2.886490-5 1.039700+0 3.750120-5 1.041500+0 4.989490-5 1.043800+0 6.925580-5 1.046400+0 9.635640-5 1.048300+0 1.199660-4 1.051200+0 1.627320-4 1.054080+0 2.138880-4 1.057700+0 2.915440-4 1.061100+0 3.792270-4 1.065100+0 5.020570-4 1.070400+0 7.004270-4 1.076200+0 9.679930-4 1.080600+0 1.208870-3 1.087100+0 1.628730-3 1.093710+0 2.138880-3 1.102600+0 2.965380-3 1.110700+0 3.867190-3 1.120600+0 5.172700-3 1.133300+0 7.191560-3 1.147500+0 9.928670-3 1.158200+0 1.233880-2 1.174100+0 1.649280-2 1.190110+0 2.138880-2 1.205100+0 2.663440-2 1.227500+0 3.565890-2 1.250000+0 4.605000-2 1.265600+0 5.393530-2 1.294900+0 7.006770-2 1.320600+0 8.541950-2 1.343000+0 9.956750-2 1.382200+0 1.257290-1 1.433800+0 1.623780-1 1.500000+0 2.128000-1 1.589800+0 2.882740-1 1.665000+0 3.574860-1 1.784700+0 4.768880-1 1.892300+0 5.909440-1 2.000000+0 7.078000-1 2.044000+0 7.554000-1 2.163500+0 8.848590-1 2.372600+0 1.110750+0 2.647100+0 1.401570+0 3.000000+0 1.761000+0 3.500000+0 2.238480+0 4.000000+0 2.681000+0 4.750000+0 3.286220+0 5.000000+0 3.473000+0 6.000000+0 4.155000+0 7.000000+0 4.761000+0 8.000000+0 5.305000+0 9.000000+0 5.799000+0 1.000000+1 6.252000+0 1.100000+1 6.670000+0 1.200000+1 7.057000+0 1.300000+1 7.419000+0 1.400000+1 7.752000+0 1.500000+1 8.060000+0 1.600000+1 8.346000+0 1.800000+1 8.866000+0 2.000000+1 9.332000+0 2.200000+1 9.754000+0 2.400000+1 1.014000+1 2.600000+1 1.049000+1 2.800000+1 1.081000+1 3.000000+1 1.110000+1 4.000000+1 1.231000+1 5.000000+1 1.320000+1 6.000000+1 1.389000+1 8.000000+1 1.491000+1 1.000000+2 1.564000+1 1.500000+2 1.680000+1 2.000000+2 1.749000+1 3.000000+2 1.830000+1 4.000000+2 1.876000+1 5.000000+2 1.907000+1 6.000000+2 1.929000+1 8.000000+2 1.958000+1 1.000000+3 1.977000+1 1.500000+3 2.004000+1 2.000000+3 2.019000+1 3.000000+3 2.035000+1 4.000000+3 2.044000+1 5.000000+3 2.049000+1 6.000000+3 2.053000+1 8.000000+3 2.058000+1 1.000000+4 2.061000+1 1.500000+4 2.066000+1 2.000000+4 2.068000+1 3.000000+4 2.070000+1 4.000000+4 2.072000+1 5.000000+4 2.073000+1 6.000000+4 2.073000+1 8.000000+4 2.074000+1 1.000000+5 2.074000+1 1 56000 7 8 1.373400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.614730-7 2.099900+0 1.315050-6 2.106600+0 1.829340-6 2.114000+0 2.531120-6 2.119500+0 3.151230-6 2.127900+0 4.273670-6 2.136250+0 5.614730-6 2.147000+0 7.698190-6 2.156900+0 9.999020-6 2.169000+0 1.334430-5 2.184500+0 1.854910-5 2.201800+0 2.566320-5 2.214800+0 3.197430-5 2.234200+0 4.301110-5 2.253680+0 5.614730-5 2.281500+0 7.864420-5 2.307000+0 1.032990-4 2.338200+0 1.388940-4 2.377400+0 1.923520-4 2.410200+0 2.446390-4 2.446800+0 3.111950-4 2.485900+0 3.918120-4 2.532900+0 5.014350-4 2.556430+0 5.614730-4 2.611900+0 7.159410-4 2.660400+0 8.655360-4 2.745300+0 1.158470-3 2.809000+0 1.402970-3 2.904500+0 1.807390-3 3.000000+0 2.256000-3 3.125000+0 2.908990-3 3.234400+0 3.539520-3 3.425800+0 4.766180-3 3.569300+0 5.779160-3 3.784700+0 7.428430-3 4.000000+0 9.201000-3 4.250000+0 1.136750-2 4.625000+0 1.477150-2 5.000000+0 1.831000-2 5.500000+0 2.316780-2 6.000000+0 2.809000-2 6.750000+0 3.541050-2 7.000000+0 3.782000-2 8.000000+0 4.725000-2 9.000000+0 5.625000-2 1.000000+1 6.480000-2 1.100000+1 7.289000-2 1.200000+1 8.050000-2 1.300000+1 8.768000-2 1.400000+1 9.450000-2 1.500000+1 1.010000-1 1.600000+1 1.071000-1 1.800000+1 1.184000-1 2.000000+1 1.287000-1 2.200000+1 1.382000-1 2.400000+1 1.468000-1 2.600000+1 1.548000-1 2.800000+1 1.622000-1 3.000000+1 1.691000-1 4.000000+1 1.976000-1 5.000000+1 2.192000-1 6.000000+1 2.363000-1 8.000000+1 2.620000-1 1.000000+2 2.807000-1 1.500000+2 3.116000-1 2.000000+2 3.311000-1 3.000000+2 3.549000-1 4.000000+2 3.693000-1 5.000000+2 3.791000-1 6.000000+2 3.864000-1 8.000000+2 3.964000-1 1.000000+3 4.031000-1 1.500000+3 4.132000-1 2.000000+3 4.190000-1 3.000000+3 4.253000-1 4.000000+3 4.290000-1 5.000000+3 4.313000-1 6.000000+3 4.330000-1 8.000000+3 4.351000-1 1.000000+4 4.365000-1 1.500000+4 4.384000-1 2.000000+4 4.395000-1 3.000000+4 4.405000-1 4.000000+4 4.412000-1 5.000000+4 4.416000-1 6.000000+4 4.418000-1 8.000000+4 4.421000-1 1.000000+5 4.423000-1 1 56000 7 8 1.373400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 56000 7 9 1.373400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.600000+1 1.000000+5 5.600000+1 5.000000+5 5.597000+1 7.500000+5 5.594000+1 9.375000+5 5.592000+1 1.000000+6 5.591200+1 1.250000+6 5.586770+1 1.500000+6 5.582200+1 1.875000+6 5.572520+1 2.000000+6 5.568800+1 2.375000+6 5.556410+1 2.500000+6 5.551900+1 2.875000+6 5.537270+1 3.000000+6 5.532000+1 3.250000+6 5.520870+1 3.625000+6 5.503000+1 4.000000+6 5.484100+1 4.437500+6 5.460990+1 4.812500+6 5.440030+1 5.000000+6 5.429100+1 5.500000+6 5.398500+1 5.875000+6 5.374730+1 6.437500+6 5.337940+1 6.500000+6 5.333820+1 7.000000+6 5.301300+1 7.875000+6 5.243470+1 9.000000+6 5.167900+1 1.000000+7 5.100000+1 1.250000+7 4.935600+1 1.500000+7 4.771500+1 1.750000+7 4.606800+1 2.000000+7 4.443900+1 2.250000+7 4.283140+1 2.375000+7 4.204280+1 2.500000+7 4.127700+1 2.875000+7 3.908970+1 3.000000+7 3.840700+1 3.250000+7 3.710410+1 3.500000+7 3.588690+1 3.625000+7 3.530400+1 4.000000+7 3.365100+1 4.500000+7 3.163410+1 5.000000+7 2.977500+1 5.500000+7 2.804110+1 6.000000+7 2.643100+1 6.750000+7 2.425110+1 7.000000+7 2.359000+1 8.000000+7 2.126900+1 9.000000+7 1.942400+1 1.000000+8 1.795400+1 1.125000+8 1.648100+1 1.187500+8 1.582910+1 1.250000+8 1.521000+1 1.359400+8 1.417070+1 1.437500+8 1.345540+1 1.453100+8 1.331390+1 1.500000+8 1.289400+1 1.562500+8 1.234250+1 1.671900+8 1.140740+1 1.750000+8 1.076850+1 1.784700+8 1.049310+1 1.907700+8 9.560040+0 2.000000+8 8.905200+0 2.281300+8 7.247810+0 2.359400+8 6.908100+0 2.375000+8 6.846730+0 2.453100+8 6.572720+0 2.500000+8 6.433600+0 3.000000+8 5.468600+0 3.500000+8 4.503600+0 3.625000+8 4.344660+0 3.906300+8 4.058130+0 4.000000+8 3.964200+0 4.179700+8 3.770220+0 4.330100+8 3.600580+0 4.497600+8 3.411240+0 4.750000+8 3.136100+0 4.784700+8 3.099920+0 5.000000+8 2.885400+0 5.437500+8 2.505550+0 5.812500+8 2.226180+0 6.000000+8 2.099000+0 6.437500+8 1.837900+0 6.683600+8 1.722000+0 6.894500+8 1.642930+0 7.000000+8 1.610600+0 7.125000+8 1.578310+0 8.000000+8 1.424100+0 8.250000+8 1.376560+0 8.468800+8 1.331830+0 1.000000+9 1.051200+0 1.045900+9 9.962760-1 1.088000+9 9.558580-1 1.115500+9 9.330850-1 1.331800+9 7.989360-1 1.375000+9 7.746130-1 1.391900+9 7.650230-1 1.445900+9 7.336170-1 1.500000+9 7.008300-1 1.562500+9 6.613840-1 1.617200+9 6.265400-1 1.665000+9 5.963300-1 1.748800+9 5.451600-1 1.811600+9 5.088760-1 1.905800+9 4.585230-1 2.000000+9 4.133400-1 2.139200+9 3.556850-1 2.272600+9 3.091900-1 2.443000+9 2.599580-1 2.602800+9 2.221640-1 2.825100+9 1.800890-1 2.961100+9 1.591310-1 3.215900+9 1.273560-1 3.536500+9 9.775470-2 3.804800+9 7.931150-2 4.103600+9 6.360290-2 4.423800+9 5.084630-2 4.807900+9 3.949390-2 5.000000+9 3.501400-2 5.375000+9 2.796580-2 6.031300+9 1.944320-2 7.015600+9 1.198020-2 8.000000+9 7.838700-3 1.00000+10 3.810300-3 1.13510+10 2.536330-3 1.41440+10 1.258810-3 1.70770+10 6.945850-4 2.01080+10 4.164460-4 2.51010+10 2.091220-4 2.97820+10 1.234640-4 3.85600+10 5.604190-5 4.62400+10 3.229180-5 5.96800+10 1.496330-5 7.98400+10 6.263890-6 1.00000+11 3.206800-6 1.34280+11 1.341190-6 1.77440+11 5.908920-7 2.63330+11 1.863670-7 4.88110+11 3.117400-8 1.16740+12 2.562330-9 3.55150+12 1.09750-10 1.00000+14 9.66550-15 2.05350+15 1.96227-18 1.00000+17 3.22860-23 1 56000 7 0 1.373400+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.24000-11 1.000000+2 1.240000-9 1.000000+3 1.240000-7 1.000000+4 1.240000-5 1.000000+5 1.240000-3 5.000000+5 3.100000-2 7.500000+5 6.975000-2 9.375000+5 1.089844-1 1.000000+6 1.240000-1 1.250000+6 1.915790-1 1.500000+6 2.723000-1 1.875000+6 4.168330-1 2.000000+6 4.707000-1 2.375000+6 6.467710-1 2.500000+6 7.099000-1 2.875000+6 9.104640-1 3.000000+6 9.806000-1 3.250000+6 1.124610+0 3.625000+6 1.348200+0 4.000000+6 1.577800+0 4.437500+6 1.848700+0 4.812500+6 2.080690+0 5.000000+6 2.196000+0 5.500000+6 2.498300+0 5.875000+6 2.720180+0 6.437500+6 3.043810+0 6.500000+6 3.079060+0 7.000000+6 3.356400+0 7.875000+6 3.821760+0 9.000000+6 4.397600+0 1.000000+7 4.902000+0 1.250000+7 6.175400+0 1.500000+7 7.468000+0 1.750000+7 8.740500+0 2.000000+7 9.976000+0 2.250000+7 1.117610+1 2.375000+7 1.176390+1 2.500000+7 1.234300+1 2.875000+7 1.401390+1 3.000000+7 1.454400+1 3.250000+7 1.555100+1 3.500000+7 1.649440+1 3.625000+7 1.694280+1 4.000000+7 1.820100+1 4.500000+7 1.970100+1 5.000000+7 2.107800+1 5.500000+7 2.238760+1 6.000000+7 2.365400+1 6.750000+7 2.548840+1 7.000000+7 2.608300+1 8.000000+7 2.835900+1 9.000000+7 3.045300+1 1.000000+8 3.233600+1 1.125000+8 3.437190+1 1.187500+8 3.527070+1 1.250000+8 3.609900+1 1.359400+8 3.739070+1 1.437500+8 3.821940+1 1.453100+8 3.837510+1 1.500000+8 3.883600+1 1.562500+8 3.941520+1 1.671900+8 4.036670+1 1.750000+8 4.099580+1 1.784700+8 4.126090+1 1.907700+8 4.215640+1 2.000000+8 4.278400+1 2.281300+8 4.447270+1 2.359400+8 4.489680+1 2.375000+8 4.497680+1 2.453100+8 4.537210+1 2.500000+8 4.560500+1 3.000000+8 4.770900+1 3.500000+8 4.933600+1 3.625000+8 4.968110+1 3.906300+8 5.039840+1 4.000000+8 5.061500+1 4.179700+8 5.099900+1 4.330100+8 5.129750+1 4.497600+8 5.160790+1 4.750000+8 5.202090+1 4.784700+8 5.207600+1 5.000000+8 5.238300+1 5.437500+8 5.290070+1 5.812500+8 5.326520+1 6.000000+8 5.342300+1 6.437500+8 5.373180+1 6.683600+8 5.388340+1 6.894500+8 5.399860+1 7.000000+8 5.405500+1 7.125000+8 5.411370+1 8.000000+8 5.447700+1 8.250000+8 5.455970+1 8.468800+8 5.463010+1 1.000000+9 5.503800+1 1.045900+9 5.513030+1 1.088000+9 5.521150+1 1.115500+9 5.526300+1 1.331800+9 5.556080+1 1.375000+9 5.560630+1 1.391900+9 5.562130+1 1.445900+9 5.566790+1 1.500000+9 5.571300+1 1.562500+9 5.575190+1 1.617200+9 5.578470+1 1.665000+9 5.580660+1 1.748800+9 5.584140+1 1.811600+9 5.586650+1 1.905800+9 5.589240+1 2.000000+9 5.591700+1 2.139200+9 5.593970+1 2.272600+9 5.596020+1 2.443000+9 5.597930+1 2.602800+9 5.598870+1 2.825100+9 5.600090+1 2.961100+9 5.600780+1 3.215900+9 5.600800+1 3.536500+9 5.600630+1 3.804800+9 5.600490+1 4.103600+9 5.600360+1 4.423800+9 5.600220+1 4.807900+9 5.600070+1 5.000000+9 5.600000+1 5.375000+9 5.600000+1 6.031300+9 5.600000+1 7.015600+9 5.600000+1 8.000000+9 5.600000+1 1.00000+10 5.600000+1 1.13510+10 5.600000+1 1.41440+10 5.600000+1 1.70770+10 5.600000+1 2.01080+10 5.600000+1 2.51010+10 5.600000+1 2.97820+10 5.600000+1 3.85600+10 5.600000+1 4.62400+10 5.600000+1 5.96800+10 5.600000+1 7.98400+10 5.600000+1 1.00000+11 5.600000+1 1.34280+11 5.600000+1 1.77440+11 5.600000+1 2.63330+11 5.600000+1 4.88110+11 5.600000+1 1.16740+12 5.600000+1 3.55150+12 5.600000+1 1.00000+14 5.600000+1 2.05350+15 5.600000+1 1.00000+17 5.600000+1 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.834194-6 0.0 1.842094-6 3.736288+0 1.843223-6 4.264597+0 1.847738-6 7.789636+0 1.852252-6 1.313440+1 1.857331-6 2.155748+1 1.865161-6 3.760862+1 1.870875-6 4.847508+1 1.875240-6 5.412564+1 1.879818-6 5.602751+1 1.884548-6 5.324979+1 1.889100-6 4.676583+1 1.896031-6 3.284982+1 1.901913-6 2.094065+1 1.906710-6 1.317791+1 1.910942-6 8.056093+0 1.915598-6 4.363715+0 1.922226-6 1.128316+0 1.924486-6 0.0 1.944782-6 0.0 1.951962-6 6.632174+0 1.954355-6 8.814857+0 1.959142-6 1.610106+1 1.964228-6 2.809070+1 1.969314-6 4.455898+1 1.977848-6 7.869598+1 1.983376-6 9.939635+1 1.988638-6 1.122145+2 1.993340-6 1.156450+2 1.997876-6 1.108334+2 2.003084-6 9.634659+1 2.010619-6 6.677560+1 2.016584-6 4.328401+1 2.021371-6 2.794265+1 2.026158-6 1.665182+1 2.030945-6 9.160303+0 2.038125-6 2.328586+0 2.040518-6 0.0 2.802334-6 0.0 2.809232-6 4.08766-16 2.816129-6 8.08835-16 2.823027-6 1.47740-15 2.829924-6 2.49111-15 2.836822-6 3.87739-15 2.843720-6 5.57108-15 2.850617-6 7.38915-15 2.857515-6 9.04696-15 2.864412-6 1.02250-14 2.871310-6 1.06680-14 2.878208-6 1.02743-14 2.885105-6 9.13431-15 2.892003-6 7.49642-15 2.905798-6 3.97166-15 2.912696-6 2.56397-15 2.919593-6 1.52794-15 2.926491-6 8.40533-16 2.933388-6 4.26832-16 2.940286-6 0.0 3.227743-6 0.0 3.235785-6 3.537407-6 3.243750-6 1.206108-5 3.251714-6 2.279586-5 3.259679-6 3.982516-5 3.267643-6 6.431651-5 3.271438-6 7.939205-5 3.287542-6 9.258590-2 3.295594-6 1.690250-1 3.303647-6 2.848969-1 3.305597-6 3.232029-1 3.312970-6 6.250930-1 3.322156-6 1.039309+0 3.332257-6 1.667274+0 3.342571-6 2.464797+0 3.363090-6 4.187407+0 3.371679-6 4.715186+0 3.379146-6 4.965211+0 3.388545-6 4.874440+0 3.396113-6 4.519559+0 3.404250-6 3.884537+0 3.423573-6 2.026310+0 3.427642-6 1.652715+0 3.435778-6 1.047987+0 3.443914-6 6.245252-1 3.452050-6 3.435565-1 3.460187-6 1.744618-1 3.468323-6 0.0 3.697940-6 0.0 3.698018-6 6.02487-14 3.716222-6 3.25839-11 3.725325-6 5.94869-11 3.734427-6 1.00256-10 3.743529-6 1.55979-10 3.752631-6 2.24021-10 3.761733-6 2.97016-10 3.770836-6 3.63526-10 3.779938-6 4.10731-10 3.783055-6 4.16814-10 3.786559-6 4.470776-7 3.797021-6 3.730438-6 3.812080-6 1.485502-2 3.816266-6 3.733658-2 3.825449-6 9.187401-2 3.830846-6 1.280018-1 3.834551-6 1.633993-1 3.840229-6 2.226606-1 3.849612-6 3.591236-1 3.858995-6 5.369197-1 3.881134-6 1.023554+0 3.890480-6 1.180352+0 3.898400-6 1.256798+0 3.905910-6 1.273706+0 3.915293-6 1.201267+0 3.928885-6 9.561148-1 3.946555-6 5.649291-1 3.954321-6 4.100368-1 3.962208-6 2.782337-1 3.971591-6 1.641151-1 3.980974-6 8.636261-2 3.983939-6 7.034689-2 3.996804-6 1.325330-2 3.999740-6 2.94543-12 4.016479-6 1.94385-11 4.026317-6 3.54935-11 4.036154-6 5.98272-11 4.045992-6 9.30922-11 4.049555-6 1.07783-10 4.057510-6 2.709668-3 4.069490-6 2.631813-2 4.077484-6 4.362377-2 4.087471-6 7.831672-2 4.097458-6 1.299187-1 4.107445-6 1.991387-1 4.129295-6 3.840869-1 4.139263-6 4.566832-1 4.149230-6 5.021185-1 4.159206-6 5.104622-1 4.169165-6 4.798695-1 4.179681-6 4.126301-1 4.199067-6 2.534446-1 4.209035-6 1.850648-1 4.217302-6 1.404606-1 4.227289-6 1.101376-1 4.237276-6 1.042274-1 4.248905-6 1.211895-1 4.257250-6 1.408241-1 4.273001-6 2.066290-1 4.288134-6 2.570279-1 4.298460-6 2.720267-1 4.308786-6 2.694866-1 4.340339-6 2.096918-1 4.353945-6 1.956066-1 4.363954-6 1.932030-1 4.389713-6 2.016298-1 4.425289-6 1.983630-1 4.530290-6 1.768017-1 4.569760-6 1.596909-1 4.596186-6 1.502489-1 4.629949-6 1.495296-1 4.685904-6 1.528239-1 4.759591-6 1.474341-1 5.080050-6 1.143116-1 5.375787-6 9.090887-2 5.679839-6 7.228238-2 5.993800-6 5.732422-2 6.312022-6 4.554890-2 6.668868-6 3.537706-2 7.000981-6 2.808552-2 7.393385-6 2.149194-2 7.737377-6 1.708786-2 8.081649-6 1.366414-2 8.453726-6 1.081918-2 8.848692-6 8.544311-3 9.234339-6 6.908041-3 9.686568-6 5.546408-3 1.012837-5 4.661418-3 1.054484-5 4.135884-3 1.103035-5 3.805805-3 1.161449-5 3.713148-3 1.228430-5 3.904843-3 1.309470-5 4.415926-3 1.440597-5 5.624143-3 1.719663-5 8.766081-3 1.733229-5 9.036235-3 1.740694-5 1.953298+0 1.741761-5 2.228218+0 1.746027-5 4.062494+0 1.750455-5 6.987265+0 1.754763-5 2.084515+1 1.759072-5 3.532192+1 1.763380-5 5.664712+1 1.768227-5 9.048526+1 1.772536-5 1.281160+2 1.782499-5 2.244357+2 1.785192-5 2.468570+2 1.789929-5 2.704433+2 1.793976-5 2.738838+2 1.798244-5 2.582107+2 1.802757-5 2.234738+2 1.815083-5 9.789824+1 1.819391-5 6.258834+1 1.823700-5 3.730221+1 1.828008-5 2.052477+1 1.834471-5 5.224991+0 1.836625-5 1.007242-2 1.948353-5 1.159257-2 1.960124-5 1.179990-2 1.968699-5 9.808747+0 1.969880-5 1.117910+1 1.974612-5 2.009475+1 1.979422-5 3.393358+1 1.985428-5 5.863245+1 1.997904-5 1.195044+2 2.001605-5 1.333536+2 2.004980-5 1.422715+2 2.009351-5 1.460616+2 2.014075-5 1.395501+2 2.019134-5 1.221209+2 2.032800-5 5.682790+1 2.037591-5 3.835633+1 2.042382-5 2.504237+1 2.047147-5 1.662530+1 2.056616-5 7.132668+0 2.062294-5 7.963782+0 2.067260-5 8.205767+0 2.072674-5 7.815107+0 2.077775-5 7.159780+0 2.089221-5 5.024322+0 2.093080-5 4.473383+0 2.097826-5 4.060676+0 2.102927-5 3.973282+0 2.118219-5 4.551348+0 2.125252-5 4.905292+0 2.132034-5 5.007191+0 2.165092-5 4.614411+0 2.170030-5 4.616413+0 2.180190-5 4.477042+0 2.202519-5 4.365184+0 2.219852-5 4.575127+0 2.232765-5 4.984640+0 2.250947-5 5.775368+0 2.272117-5 6.597741+0 2.288691-5 7.740113+0 2.294215-5 7.992437+0 2.299740-5 8.037816+0 2.307683-5 7.703475+0 2.323515-5 6.495241+0 2.328063-5 6.241230+0 2.333745-5 6.070406+0 2.346790-5 6.116207+0 2.363544-5 6.305248+0 2.559487-5 5.176696+0 2.757449-5 4.297160+0 3.004509-5 3.459634+0 3.298863-5 2.722382+0 3.506340-5 2.338641+0 3.574877-5 2.302444+0 3.651981-5 2.097575+0 3.970138-5 1.733842+0 4.332898-5 1.422065+0 4.677351-5 1.212984+0 5.045003-5 1.053378+0 5.449380-5 9.289316-1 6.009983-5 8.139701-1 6.820855-5 7.175933-1 7.948557-5 6.523645-1 9.247251-5 6.195559-1 9.271250-5 1.342568+0 9.316890-5 3.036037+1 9.339710-5 5.455507+1 9.362530-5 9.096050+1 9.385350-5 1.403745+2 9.455236-5 3.241577+2 9.478725-5 3.631828+2 9.501651-5 3.745058+2 9.530992-5 3.496646+2 9.556323-5 3.073675+2 9.594161-5 2.297717+2 9.617538-5 1.965135+2 9.640141-5 1.832202+2 9.664173-5 1.898865+2 9.716155-5 2.343078+2 9.755388-5 2.525845+2 9.780146-5 2.399321+2 9.807759-5 2.044268+2 9.872947-5 9.252328+1 9.895051-5 6.197372+1 9.917991-5 3.862765+1 9.941219-5 2.297924+1 9.987341-5 3.763596+0 1.007959-4 4.242325+0 1.035828-4 6.510929+0 1.057158-4 7.766458+0 1.077554-4 8.398912+0 1.099653-4 8.492888+0 1.132010-4 7.892703+0 1.222587-4 5.346334+0 1.272971-4 4.232029+0 1.325867-4 3.332099+0 1.376996-4 2.691198+0 1.432487-4 2.205496+0 1.482760-4 1.916540+0 1.542908-4 1.710227+0 1.603245-4 1.617019+0 1.686068-4 1.619076+0 1.795477-4 1.767388+0 1.807415-4 1.854656+0 1.816432-4 2.005398+0 1.821234-4 2.131464+0 1.839968-4 2.725595+0 1.849082-4 2.837546+0 1.875506-4 2.864192+0 1.969099-4 3.182285+0 2.039733-4 3.703882+0 2.494211-4 5.126356+0 2.555170-4 5.790200+0 2.979490-4 6.720342+0 3.443905-4 7.343203+0 4.096000-4 7.694366+0 4.965651-4 7.627256+0 7.328246-4 6.476961+0 7.670403-4 6.311351+0 7.708417-4 1.268197+1 7.728634-4 1.853581+1 7.748749-4 2.747486+1 7.769209-4 3.989685+1 7.821244-4 7.802616+1 7.845413-4 9.168217+1 7.864958-4 9.688722+1 7.887232-4 9.645651+1 7.946819-4 8.499206+1 7.985875-4 8.389166+1 8.023754-4 8.349521+1 8.058601-4 7.386106+1 8.106405-4 5.581291+1 8.126338-4 4.850666+1 8.135995-4 4.534881+1 8.155353-4 4.079785+1 8.177429-4 3.760598+1 8.214298-4 3.423432+1 8.454915-4 3.463268+1 9.539663-4 2.964092+1 1.033508-3 2.721573+1 1.043538-3 2.841936+1 1.055850-3 3.054306+1 1.089596-3 2.897958+1 1.114964-3 2.872524+1 1.135376-3 2.952064+1 1.247937-3 2.632798+1 1.296270-3 2.627350+1 1.555864-3 2.103017+1 1.871796-3 1.650817+1 2.169611-3 1.348356+1 2.511887-3 1.094918+1 2.821426-3 9.247499+0 3.246134-3 7.510163+0 3.706007-3 6.144772+0 4.169991-3 5.124062+0 4.806774-3 4.103075+0 5.114382-3 3.731904+0 5.139775-3 3.836647+0 5.157550-3 4.037969+0 5.177654-3 4.509332+0 5.198375-3 5.357335+0 5.237208-3 7.658490+0 5.261751-3 8.964631+0 5.283085-3 9.702324+0 5.311548-3 1.012320+1 5.437502-3 9.963262+0 5.535178-3 9.846005+0 5.577135-3 1.031917+1 5.661186-3 1.225550+1 5.710407-3 1.254647+1 5.884881-3 1.217058+1 6.025596-3 1.321336+1 7.239312-3 1.007373+1 8.327650-3 8.045620+0 9.503655-3 6.493780+0 1.092491-2 5.156005+0 1.241831-2 4.157044+0 1.410303-2 3.345775+0 1.597550-2 2.699359+0 1.763155-2 2.272845+0 1.981957-2 1.850750+0 2.224270-2 1.509041+0 2.490041-2 1.234266+0 2.794821-2 1.003097+0 3.166831-2 8.001140-1 3.583498-2 6.391427-1 3.659022-2 6.235182-1 3.675387-2 6.480956-1 3.686861-2 6.993971-1 3.695677-2 7.732159-1 3.704153-2 8.835144-1 3.714721-2 1.086412+0 3.724325-2 1.336327+0 3.740609-2 1.869361+0 3.764197-2 2.652586+0 3.782562-2 3.068973+0 3.797627-2 3.248239+0 3.829603-2 3.338176+0 4.464822-2 2.614109+0 5.104760-2 2.097589+0 5.849460-2 1.663790+0 6.623549-2 1.341778+0 7.585776-2 1.057165+0 8.619542-2 8.423763-1 9.748302-2 6.745075-1 1.081638-1 5.585868-1 1.193631-1 4.663973-1 1.318243-1 3.885931-1 1.461263-1 3.215837-1 1.639362-1 2.604528-1 1.810045-1 2.172156-1 2.015587-1 1.784590-1 2.226158-1 1.489141-1 2.463016-1 1.241638-1 2.741160-1 1.027027-1 3.054921-1 8.495483-2 3.422748-1 7.002385-2 3.843908-1 5.778660-2 4.307048-1 4.815871-2 4.832587-1 4.031909-2 5.432503-1 3.393251-2 6.219422-1 2.808042-2 7.018593-1 2.396045-2 8.059256-1 2.022543-2 9.360412-1 1.707897-2 1.120601+0 1.411347-2 1.347258+0 1.153651-2 1.619761+0 9.430072-3 1.947381+0 7.708247-3 2.341267+0 6.300807-3 2.814822+0 5.150351-3 3.384160+0 4.209955-3 3.885536+0 3.619161-3 4.671441+0 2.958343-3 5.616308+0 2.418183-3 6.752287+0 1.976650-3 8.118035+0 1.615736-3 9.760024+0 1.320720-3 1.000000+1 2.698186-3 1 56000 7 0 1.373400+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.514817+1 1.489734-6-5.267440+1 1.675414-6-4.918887+1 1.756125-6-4.514256+1 1.796318-6-4.074604+1 1.817195-6-3.636168+1 1.829390-6-3.173507+1 1.834194-6-2.839050+1 1.843223-6-2.156688+1 1.848302-6-1.720686+1 1.852817-6-1.381251+1 1.857331-6-1.178487+1 1.858319-6-1.163352+1 1.861281-6-1.200334+1 1.863257-6-1.290202+1 1.865161-6-1.444349+1 1.868406-6-1.849574+1 1.870311-6-2.182311+1 1.874332-6-3.021897+1 1.879549-6-4.390029+1 1.884363-6-5.579279+1 1.889987-6-4.453654+1 1.894158-6-3.952973+1 1.897399-6-3.780857+1 1.901556-6-3.793549+1 1.906710-6-4.122672+1 1.915872-6-5.038650+1 1.921743-6-5.587718+1 1.927284-6-4.934771+1 1.939758-6-3.676509+1 1.943987-6-3.099722+1 1.945765-6-2.743007+1 1.953757-6-1.598548+1 1.959142-6-7.060710+0 1.959441-6-6.437864+0 1.960002-6-5.502206+0 1.963929-6-3.131571-2 1.964228-6 4.982725-1 1.964789-6 1.224962+0 1.965771-6 2.202625+0 1.969314-6 4.792393+0 1.970361-6 5.022816+0 1.971147-6 4.962963+0 1.972325-6 4.586292+0 1.973503-6 3.978913+0 1.974101-6 3.567403+0 1.975148-6 2.483287+0 1.975933-6 1.435179+0 1.976522-6 5.190493-1 1.977406-6-1.078570+0 1.977848-6-1.993925+0 1.978290-6-3.038015+0 1.979486-6-6.003474+0 1.980384-6-8.376626+0 1.981562-6-1.186421+1 1.982698-6-1.583177+1 1.983376-6-1.880702+1 1.986601-6-3.198288+1 1.987938-6-3.891601+1 1.991407-6-5.582251+1 1.994076-6-4.076756+1 1.997345-6-2.438298+1 1.997876-6-2.123261+1 1.998895-6-1.636552+1 2.002224-6-2.418095+0 2.002523-6-1.065194+0 2.003084-6 1.093606+0 2.004065-6 4.411352+0 2.004802-6 6.647580+0 2.007010-6 1.258097+1 2.007609-6 1.403917+1 2.009441-6 1.748338+1 2.011208-6 1.974901+1 2.013892-6 2.142973+1 2.015911-6 2.160384+1 2.020174-6 1.887330+1 2.021371-6 1.737670+1 2.025634-6 1.182100+1 2.026158-6 1.085402+1 2.030945-6 3.549041+0 2.031543-6 2.503970+0 2.032590-6 1.013262+0 2.038125-6-5.857890+0 2.039322-6-7.532216+0 2.040219-6-9.019857+0 2.041262-6-1.111370+1 2.042748-6-1.318049+1 2.045712-6-1.634618+1 2.050137-6-1.993373+1 2.057460-6-2.429442+1 2.069030-6-2.905362+1 2.086061-6-3.364146+1 2.113607-6-3.818675+1 2.160626-6-4.248075+1 2.254267-6-4.651991+1 2.463333-6-4.989847+1 3.271438-6-5.397660+1 3.350989-6-5.542363+1 3.416220-6-4.978337+1 3.537734-6-5.217088+1 3.890480-6-5.338846+1 3.962208-6-5.241177+1 4.169165-6-5.305111+1 1.033968-5-5.587986+1 1.348963-5-5.179800+1 1.498631-5-4.693951+1 1.578090-5-4.176726+1 1.625817-5-3.640469+1 1.654721-5-3.139420+1 1.675092-5-2.638091+1 1.689878-5-2.145724+1 1.699837-5-1.719929+1 1.708184-5-1.277914+1 1.712358-5-1.017900+1 1.716532-5-7.245048+0 1.719663-5-4.778400+0 1.721779-5-2.957720+0 1.724954-5 4.966680-2 1.728128-5 3.464640+0 1.730245-5 6.033216+0 1.732361-5 8.933793+0 1.737495-5 1.718923+1 1.740694-5 2.299388+1 1.744961-5 3.259221+1 1.747964-5 4.114809+1 1.750143-5 4.922870+1 1.751229-5 5.480643+1 1.754763-5 6.676392+1 1.759072-5 8.063208+1 1.764861-5 9.932820+1 1.769170-5 1.080486+2 1.773546-5 1.078898+2 1.775879-5 1.022392+2 1.778617-5 9.063889+1 1.780614-5 7.790962+1 1.783560-5 5.401642+1 1.784753-5 4.191874+1 1.785192-5 3.636567+1 1.787212-5 1.417537+1 1.787717-5 8.435344+0 1.788095-5 3.971406+0 1.788379-5 4.997249-1 1.788805-5-5.002007+0 1.789125-5-9.559103+0 1.789299-5-1.252979+1 1.789688-5-1.818072+1 1.792734-5-5.714527+1 1.793557-5-4.478123+1 1.793976-5-3.824713+1 1.797849-5 1.137135+1 1.797983-5 1.347842+1 1.798244-5 1.699740+1 1.799161-5 2.782707+1 1.802757-5 6.479514+1 1.804926-5 8.124009+1 1.807793-5 9.631140+1 1.810199-5 1.044433+2 1.813022-5 1.088918+2 1.815083-5 1.074236+2 1.818853-5 9.923093+1 1.823700-5 8.099585+1 1.829489-5 5.782423+1 1.835548-5 3.780218+1 1.836625-5 3.284635+1 1.837577-5 2.843875+1 1.839426-5 2.234419+1 1.841765-5 1.624469+1 1.843959-5 1.145496+1 1.846052-5 7.470675+0 1.848014-5 4.130889+0 1.849853-5 1.281279+0 1.851577-5-1.182550+0 1.853193-5-3.335153+0 1.854709-5-5.231844+0 1.857550-5-8.514918+0 1.862212-5-1.327117+1 1.870000-5-1.993480+1 1.882060-5-2.822910+1 1.904137-5-4.028910+1 1.934689-5-5.668106+1 1.936237-5-5.766000+1 1.949658-5-4.726771+1 1.956833-5-3.890011+1 1.959603-5-3.411405+1 1.961734-5-2.926313+1 1.968699-5-1.753325+1 1.971285-5-1.216367+1 1.973780-5-7.478270+0 1.974196-5-6.602035+0 1.974913-5-4.772546+0 1.979422-5 3.362415+0 1.979764-5 4.131350+0 1.980404-5 5.157550+0 1.981525-5 6.487527+0 1.985428-5 9.645891+0 1.985935-5 9.797361+0 1.986886-5 9.727890+0 1.987718-5 9.370090+0 1.988446-5 8.856955+0 1.989719-5 7.537211+0 1.990683-5 6.187692+0 1.991391-5 5.001660+0 1.992466-5 2.862405+0 1.993003-5 1.619492+0 1.993541-5 1.989938-1 1.994971-5-3.863652+0 1.996043-5-7.208290+0 1.996848-5-9.975378+0 1.997904-5-1.403452+1 1.999092-5-1.950952+1 1.999701-5-2.295859+1 2.003020-5-4.012056+1 2.005660-5-5.718440+1 2.006754-5-5.236520+1 2.008780-5-3.909841+1 2.009619-5-3.284709+1 2.013305-5-1.032600+1 2.013635-5-7.928967+0 2.013785-5-6.769193+0 2.014075-5-4.839334+0 2.014619-5-1.569874+0 2.015094-5 1.090363+0 2.019134-5 2.175183+1 2.020775-5 2.825291+1 2.023498-5 3.633858+1 2.026137-5 4.183238+1 2.029520-5 4.584123+1 2.032185-5 4.628084+1 2.036992-5 4.172604+1 2.041858-5 3.348931+1 2.048848-5 2.000389+1 2.054674-5 1.125910+1 2.056130-5 8.687523+0 2.056971-5 6.635275+0 2.057636-5 5.381558+0 2.058801-5 3.598390+0 2.059674-5 2.458592+0 2.060984-5 9.734024-1 2.062294-5-2.649694-1 2.064777-5-2.254927+0 2.066018-5-3.121283+0 2.067260-5-3.855029+0 2.069967-5-5.326684+0 2.072674-5-6.656758+0 2.102927-5-1.927063+1 2.113871-5-2.256687+1 2.125252-5-2.484668+1 2.180190-5-3.133033+1 2.244584-5-3.679471+1 2.284974-5-3.795193+1 2.316287-5-3.634280+1 2.363544-5-3.801365+1 2.757449-5-4.112617+1 4.220000-5-4.560224+1 6.244638-5-5.148658+1 6.960302-5-5.463907+1 7.706100-5-4.889861+1 8.125330-5-4.296242+1 8.376977-5-3.731521+1 8.574985-5-3.077456+1 8.698176-5-2.511605+1 8.790826-5-1.962317+1 8.846096-5-1.561757+1 8.894674-5-1.150556+1 8.937369-5-7.314187+0 8.956736-5-5.197267+0 8.974893-5-3.071545+0 8.991916-5-9.401276-1 9.007874-5 1.192868+0 9.022835-5 3.323630+0 9.036861-5 5.448798+0 9.050010-5 7.564451+0 9.074666-5 1.189644+1 9.096239-5 1.614287+1 9.131632-5 2.426969+1 9.158730-5 3.176286+1 9.187949-5 4.156203+1 9.213893-5 5.240777+1 9.237869-5 6.523536+1 9.257750-5 7.950054+1 9.269563-5 9.105316+1 9.272676-5 9.563133+1 9.316890-5 1.389725+2 9.342562-5 1.680612+2 9.370374-5 1.942792+2 9.392548-5 2.047480+2 9.409792-5 2.004194+2 9.427564-5 1.853587+2 9.441805-5 1.646038+2 9.453810-5 1.377172+2 9.472619-5 8.797383+1 9.476630-5 7.440214+1 9.481315-5 5.848150+1 9.494350-5 1.928197+1 9.497537-5 8.727748+0 9.498494-5 5.232446+0 9.498972-5 3.348549+0 9.499211-5 2.337544+0 9.499656-5 1.828169-1 9.500065-5-1.525782+0 9.500871-5-4.571536+0 9.501651-5-7.321728+0 9.503163-5-1.232924+1 9.507156-5-2.441936+1 9.515574-5-4.741034+1 9.519525-5-5.769788+1 9.525664-5-4.073223+1 9.528471-5-3.244642+1 9.532135-5-2.343715+1 9.536156-5-1.447146+1 9.539440-5-7.611681+0 9.544365-5 2.200239+0 9.548059-5 9.541374+0 9.549969-5 1.382576+1 9.551306-5 1.646150+1 9.553895-5 2.099255+1 9.558599-5 2.806595+1 9.564734-5 3.563232+1 9.571685-5 4.224976+1 9.580586-5 4.786335+1 9.585814-5 4.951597+1 9.591874-5 4.923917+1 9.594161-5 4.794933+1 9.607485-5 4.363444+1 9.613980-5 3.931094+1 9.617538-5 3.494672+1 9.633447-5 2.256284+1 9.636788-5 1.908141+1 9.638641-5 1.612995+1 9.641415-5 1.306472+1 9.643933-5 1.090384+1 9.646135-5 9.254705+0 9.649990-5 6.688172+0 9.655771-5 3.140833+0 9.658662-5 1.248328+0 9.660108-5 1.533180-1 9.660830-5-4.868888-1 9.661553-5-1.334868+0 9.662090-5-1.993163+0 9.663148-5-2.894024+0 9.664173-5-3.586028+0 9.666158-5-4.638076+0 9.668019-5-5.381851+0 9.669764-5-5.914516+0 9.671400-5-6.291027+0 9.674467-5-6.719118+0 9.677167-5-6.829447+0 9.679504-5-6.743448+0 9.681554-5-6.536945+0 9.685149-5-5.892135+0 9.687846-5-5.178811+0 9.689869-5-4.514834+0 9.692903-5-3.303478+0 9.695937-5-1.771171+0 9.700681-5 1.009139+0 9.704239-5 3.344130+0 9.706950-5 5.326392+0 9.708909-5 6.885808+0 9.711912-5 9.536461+0 9.713413-5 1.102630+1 9.716155-5 1.427539+1 9.729386-5 2.812357+1 9.740436-5 4.122901+1 9.748667-5 5.312011+1 9.753894-5 6.283281+1 9.755388-5 6.672651+1 9.783275-5 1.175685+2 9.812518-5 1.572408+2 9.834749-5 1.729527+2 9.857870-5 1.781051+2 9.872947-5 1.745644+2 9.901838-5 1.569412+2 9.946278-5 1.219597+2 9.985365-5 9.491196+1 9.996253-5 8.563929+1 1.002359-4 7.114721+1 1.006256-4 5.687703+1 1.011064-4 4.420127+1 1.016045-4 3.443559+1 1.021600-4 2.609282+1 1.024790-4 2.217508+1 1.030949-4 1.589372+1 1.035828-4 1.182834+1 1.041134-4 8.116977+0 1.046018-4 5.213454+0 1.048937-4 3.679828+0 1.054750-4 9.886550-1 1.057526-4-1.059863-1 1.060518-4-1.280511+0 1.066242-4-3.207896+0 1.071920-4-4.859933+0 1.077554-4-6.286977+0 1.088690-4-8.621312+0 1.099653-4-1.045342+1 1.121153-4-1.319213+1 1.152160-4-1.606670+1 1.203096-4-1.947889+1 1.288119-4-2.347928+1 1.432487-4-2.798340+1 1.643000-4-3.211918+1 1.839968-4-3.520756+1 2.565519-4-3.674653+1 4.096000-4-3.522376+1 5.427375-4-3.617132+1 6.198564-4-3.879380+1 6.772150-4-4.307901+1 7.137203-4-4.855399+1 7.361266-4-5.488231+1 7.505826-4-6.225063+1 7.602607-4-5.723099+1 7.651074-4-5.180442+1 7.670403-4-4.751279+1 7.725315-4-3.401841+1 7.730966-4-3.224816+1 7.751530-4-2.772138+1 7.772522-4-2.598444+1 7.785744-4-2.737643+1 7.800515-4-3.118767+1 7.813692-4-3.668172+1 7.836454-4-5.143785+1 7.864958-4-7.639002+1 7.896308-4-5.795765+1 7.918721-4-4.879533+1 7.940187-4-4.307767+1 7.979235-4-3.680201+1 8.002060-4-3.074518+1 8.021509-4-2.337405+1 8.030056-4-1.947678+1 8.044955-4-1.405442+1 8.058601-4-1.014251+1 8.073944-4-6.607151+0 8.079109-4-5.543948+0 8.083806-4-4.782849+0 8.092024-4-3.783764+0 8.098188-4-3.281164+0 8.102812-4-3.040455+0 8.109746-4-2.956708+0 8.113213-4-3.061627+0 8.131166-4-4.717319+0 8.155353-4-8.437842+0 8.177429-4-1.214917+1 8.209964-4-1.657073+1 8.220227-4-1.842805+1 8.239212-4-2.036357+1 8.275508-4-2.255316+1 8.341612-4-2.452147+1 8.454915-4-2.554942+1 9.084868-4-2.368240+1 9.758408-4-2.170605+1 1.019066-3-2.158112+1 1.036354-3-2.278284+1 1.046158-3-2.333833+1 1.055850-3-2.179396+1 1.066651-3-1.998594+1 1.089596-3-1.903984+1 1.123085-3-1.865960+1 1.142140-3-1.682166+1 1.202914-3-1.461325+1 1.247937-3-1.374615+1 1.271317-3-1.355660+1 1.315033-3-1.177766+1 1.379422-3-1.011045+1 1.475965-3-8.398096+0 1.593470-3-6.990700+0 1.728000-3-5.895832+0 1.871796-3-5.157237+0 2.067983-3-4.609128+0 2.238721-3-4.382381+0 2.511887-3-4.345032+0 2.954662-3-4.486086+0 3.383177-3-4.856685+0 3.873691-3-5.558244+0 4.313402-3-6.503503+0 4.643816-3-7.584001+0 4.867923-3-8.730728+0 5.007380-3-9.862739+0 5.101675-3-1.113682+1 5.157550-3-1.253790+1 5.221146-3-1.476912+1 5.253189-3-1.500523+1 5.292106-3-1.403693+1 5.358010-3-1.203462+1 5.411807-3-1.121694+1 5.491289-3-1.077827+1 5.562968-3-1.113515+1 5.620268-3-1.152880+1 5.661186-3-1.111231+1 5.756685-3-9.303582+0 5.832906-3-8.599597+0 5.964101-3-8.276570+0 6.098276-3-6.540870+0 6.209389-3-5.602658+0 6.350000-3-4.757851+0 6.560430-3-3.829055+0 6.770490-3-3.125038+0 7.053716-3-2.414561+0 7.239312-3-2.043970+0 7.548342-3-1.557718+0 7.865370-3-1.178766+0 8.111410-3-9.448549-1 8.424079-3-7.121245-1 8.694203-3-5.508590-1 8.950865-3-4.285775-1 9.172759-3-3.390838-1 9.344301-3-2.788907-1 9.613702-3-1.989388-1 9.942601-3-1.217741-1 1.005406-2-1.002186-1 1.026242-2-6.317755-2 1.031734-2-5.466623-2 1.052416-2-2.815373-2 1.062629-2-1.701100-2 1.072525-2-7.249050-3 1.080107-2-1.269327-4 1.080811-2 3.992976-4 1.092491-2 9.292656-3 1.099639-2 1.484070-2 1.127684-2 2.941300-2 1.138017-2 3.370099-2 1.157769-2 4.022385-2 1.182196-2 4.390932-2 1.230269-2 4.328326-2 1.253594-2 3.877859-2 1.266193-2 3.571041-2 1.310690-2 2.072087-2 1.335442-2 1.069431-2 1.345401-2 6.228041-3 1.357563-2 5.070445-4 1.362094-2-1.547813-3 1.364338-2-2.730656-3 1.410303-2-2.895315-2 1.453261-2-5.679531-2 1.597550-2-1.602778-1 2.591922-2-9.507141-1 2.905373-2-1.234257+0 3.166831-2-1.536885+0 3.349363-2-1.835338+0 3.472503-2-2.131528+0 3.560982-2-2.453129+0 3.622542-2-2.805330+0 3.659022-2-3.147206+0 3.689920-2-3.633868+0 3.729006-2-4.374993+0 3.747537-2-4.456090+0 3.768589-2-4.202245+0 3.811365-2-3.286707+0 3.839069-2-2.862028+0 3.884857-2-2.426621+0 3.937130-2-2.094946+0 4.014818-2-1.752225+0 4.115330-2-1.435866+0 4.218810-2-1.194732+0 4.336023-2-9.874032-1 4.464822-2-8.155207-1 4.630973-2-6.452354-1 4.827808-2-4.941102-1 4.998778-2-3.910415-1 5.174951-2-3.093305-1 5.325763-2-2.521144-1 5.558074-2-1.848446-1 5.702099-2-1.511797-1 5.849460-2-1.226817-1 5.982676-2-1.018700-1 6.156775-2-7.865273-2 6.434511-2-5.258689-2 6.623549-2-3.895343-2 6.759112-2-3.196952-2 6.918310-2-2.478639-2 7.101366-2-1.814384-2 7.295401-2-1.343704-2 7.469526-2-1.130920-2 7.625291-2-1.071591-2 7.825834-2-1.065032-2 7.997729-2-1.178553-2 8.193605-2-1.367426-2 8.408799-2-1.638448-2 8.874344-2-2.401517-2 9.292359-2-3.293486-2 1.271091-1-1.209174-1 1.461263-1-1.628212-1 1.686974-1-2.028598-1 2.015587-1-2.464037-1 2.463016-1-2.869970-1 3.177102-1-3.261230-1 4.307048-1-3.577651-1 6.479814-1-3.820526-1 1.228714+0-3.968642-1 3.720884+0-4.021985-1 1.000000+1-4.026521-1 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.235045-1 1.034444-6 2.645766-1 1.066770-6 3.091889-1 1.100107-6 3.622892-1 1.132501-6 4.218255-1 1.163883-6 4.880192-1 1.194285-6 5.612816-1 1.223736-6 6.422191-1 1.252267-6 7.313576-1 1.279906-6 8.292187-1 1.306682-6 9.363422-1 1.332621-6 1.053286+0 1.357749-6 1.180626+0 1.382092-6 1.318982+0 1.405675-6 1.469936+0 1.440000-6 1.722107+0 1.472091-6 1.995228+0 1.492861-6 2.196588+0 1.512982-6 2.413867+0 1.551357-6 2.896311+0 1.587371-6 3.447514+0 1.621169-6 4.073902+0 1.637280-6 4.418204+0 1.652888-6 4.786521+0 1.683128-6 5.602182+0 1.711478-6 6.513108+0 1.738056-6 7.530996+0 1.762973-6 8.663973+0 1.786333-6 9.920174+0 1.808232-6 1.130774+1 1.828763-6 1.283514+1 1.848011-6 1.451122+1 1.866056-6 1.634477+1 1.882973-6 1.834449+1 1.898832-6 2.051901+1 1.913701-6 2.287691+1 1.927640-6 2.542665+1 1.940708-6 2.817653+1 1.952959-6 3.113468+1 1.964445-6 3.430900+1 1.975212-6 3.770715+1 1.985307-6 4.133655+1 1.994771-6 4.520443+1 2.003643-6 4.931801+1 2.011961-6 5.368462+1 2.019759-6 5.831145+1 2.027069-6 6.320488+1 2.033923-6 6.837026+1 2.040348-6 7.381231+1 2.048000-6 8.120054+1 2.057313-6 9.185357+1 2.062277-6 9.846184+1 2.066930-6 1.053814+2 2.071292-6 1.126230+2 2.079471-6 1.286923+2 2.086628-6 1.463696+2 2.092891-6 1.658529+2 2.098370-6 1.872933+2 2.103165-6 2.107006+2 2.107360-6 2.358886+2 2.111031-6 2.624822+2 2.114243-6 2.899742+2 2.117054-6 3.178010+2 2.119513-6 3.454130+2 2.123547-6 3.981439+2 2.129314-6 4.916913+2 2.138289-6 6.848830+2 2.141986-6 7.813234+2 2.145931-6 8.935338+2 2.147246-6 9.327133+2 2.152505-6 1.095226+3 2.153162-6 1.115897+3 2.157764-6 1.259649+3 2.159572-6 1.314511+3 2.163024-6 1.414001+3 2.164831-6 1.462301+3 2.166557-6 1.505281+3 2.168283-6 1.544723+3 2.170584-6 1.591015+3 2.172803-6 1.627975+3 2.174857-6 1.654764+3 2.176583-6 1.671334+3 2.178801-6 1.684241+3 2.181760-6 1.686150+3 2.184225-6 1.674105+3 2.185141-6 1.666478+3 2.187230-6 1.642770+3 2.189564-6 1.606247+3 2.192048-6 1.556382+3 2.194545-6 1.495813+3 2.196777-6 1.433830+3 2.197830-6 1.402334+3 2.200321-6 1.322786+3 2.202098-6 1.262499+3 2.203410-6 1.216459+3 2.205427-6 1.143865+3 2.207526-6 1.066720+3 2.209826-6 9.815179+2 2.211672-6 9.134654+2 2.213952-6 8.307320+2 2.215616-6 7.718620+2 2.218246-6 6.824094+2 2.220876-6 5.984503+2 2.222437-6 5.516436+2 2.225210-6 4.747712+2 2.232474-6 3.161921+2 2.233519-6 2.988247+2 2.235086-6 2.754289+2 2.236654-6 2.552448+2 2.237886-6 2.416418+2 2.239215-6 2.292266+2 2.240332-6 2.206132+2 2.241549-6 2.131167+2 2.242582-6 2.083123+2 2.243548-6 2.051236+2 2.244624-6 2.030641+2 2.245668-6 2.025765+2 2.246177-6 2.028837+2 2.247181-6 2.045424+2 2.248153-6 2.074944+2 2.249095-6 2.116315+2 2.250920-6 2.232875+2 2.254342-6 2.585510+2 2.257335-6 3.045957+2 2.259955-6 3.574055+2 2.262247-6 4.139225+2 2.268887-6 6.385325+2 2.272120-6 7.848040+2 2.274821-6 9.276870+2 2.277804-6 1.109006+3 2.280335-6 1.283080+3 2.282118-6 1.417214+3 2.283900-6 1.561039+3 2.286704-6 1.806972+3 2.289508-6 2.076706+3 2.295466-6 2.723676+3 2.296124-6 2.800560+3 2.301074-6 3.407619+3 2.302881-6 3.638687+3 2.306331-6 4.087066+3 2.309179-6 4.458048+3 2.311939-6 4.811738+3 2.313638-6 5.023731+3 2.316065-6 5.315624+3 2.318601-6 5.602256+3 2.320922-6 5.844070+3 2.323505-6 6.085449+3 2.326791-6 6.343531+3 2.329357-6 6.502158+3 2.332346-6 6.635200+3 2.334775-6 6.700174+3 2.340153-6 6.702678+3 2.341686-6 6.668039+3 2.345831-6 6.499836+3 2.347977-6 6.372677+3 2.350366-6 6.202181+3 2.351901-6 6.077871+3 2.354558-6 5.838728+3 2.357257-6 5.569235+3 2.359511-6 5.327669+3 2.362409-6 5.000726+3 2.365213-6 4.672933+3 2.368016-6 4.339927+3 2.371171-6 3.965923+3 2.373624-6 3.679796+3 2.379760-6 3.001235+3 2.380751-6 2.898265+3 2.387687-6 2.241208+3 2.392581-6 1.850242+3 2.404812-6 1.131368+3 2.407666-6 1.010485+3 2.410520-6 9.044452+2 2.413374-6 8.117472+2 2.416229-6 7.309149+2 2.419083-6 6.605326+2 2.421937-6 5.992721+2 2.424791-6 5.459115+2 2.427645-6 4.993453+2 2.433354-6 4.227777+2 2.436780-6 3.852747+2 2.442775-6 3.310282+2 2.447272-6 2.976355+2 2.460761-6 2.223721+2 2.466818-6 1.972529+2 2.472875-6 1.763546+2 2.478932-6 1.593606+2 2.484989-6 1.461206+2 2.488017-6 1.408719+2 2.491046-6 1.365101+2 2.492560-6 1.346528+2 2.494831-6 1.322578+2 2.497103-6 1.303146+2 2.500131-6 1.283854+2 2.503159-6 1.271501+2 2.506188-6 1.265287+2 2.509216-6 1.264294+2 2.515273-6 1.273835+2 2.528901-6 1.310972+2 2.534958-6 1.315793+2 2.539501-6 1.309576+2 2.542529-6 1.300072+2 2.545557-6 1.286151+2 2.548586-6 1.267901+2 2.551614-6 1.245572+2 2.554643-6 1.219555+2 2.559238-6 1.174205+2 2.563728-6 1.124907+2 2.571836-6 1.030792+2 2.581899-6 9.218757+1 2.587584-6 8.714316+1 2.590734-6 8.481442+1 2.593883-6 8.284642+1 2.597033-6 8.124710+1 2.600183-6 8.001235+1 2.603332-6 7.912664+1 2.608057-6 7.839317+1 2.609632-6 7.828933+1 2.615931-6 7.842790+1 2.630104-6 8.021844+1 2.634828-6 8.067061+1 2.641128-6 8.079664+1 2.644277-6 8.060273+1 2.647427-6 8.022084+1 2.650577-6 7.964796+1 2.653726-6 7.888795+1 2.660025-6 7.685065+1 2.666325-6 7.423934+1 2.672624-6 7.122609+1 2.678923-6 6.799107+1 2.694960-6 5.978215+1 2.707451-6 5.419802+1 2.714099-6 5.164632+1 2.720746-6 4.940325+1 2.727394-6 4.746679+1 2.734042-6 4.582743+1 2.740689-6 4.446816+1 2.747337-6 4.336274+1 2.753985-6 4.247415+1 2.760632-6 4.175501+1 2.787223-6 3.948239+1 2.793871-6 3.883839+1 2.800518-6 3.811795+1 2.807166-6 3.732408+1 2.820461-6 3.557932+1 2.845371-6 3.225168+1 2.867873-6 2.965357+1 2.888968-6 2.762259+1 2.908746-6 2.598687+1 2.945828-6 2.338890+1 2.978275-6 2.147688+1 3.006666-6 2.002787+1 3.056350-6 1.785823+1 3.093613-6 1.647088+1 3.149508-6 1.468996+1 3.260631-6 1.185889+1 3.363197-6 9.807162+0 3.421217-6 8.773958+0 3.462990-6 8.055453+0 3.496266-6 7.484679+0 3.521283-6 7.048824+0 3.546299-6 6.600029+0 3.554638-6 6.446290+0 3.591276-6 5.734503+0 3.609595-6 5.346171+0 3.627914-6 4.924187+0 3.636843-6 4.702398+0 3.645773-6 4.467631+0 3.654702-6 4.218044+0 3.663632-6 3.952190+0 3.673306-6 3.645455+0 3.680001-6 3.422931+0 3.685695-6 3.228866+0 3.691389-6 3.032779+0 3.700430-6 2.726173+0 3.705777-6 2.554897+0 3.718513-6 2.220177+0 3.721266-6 2.169527+0 3.724020-6 2.129636+0 3.730861-6 2.087551+0 3.733141-6 2.095024+0 3.737702-6 2.148551+0 3.739982-6 2.196816+0 3.742262-6 2.260920+0 3.744213-6 2.329178+0 3.746586-6 2.430020+0 3.748766-6 2.540904+0 3.750847-6 2.663961+0 3.752929-6 2.804668+0 3.754388-6 2.914299+0 3.756942-6 3.128776+0 3.762689-6 3.722642+0 3.767414-6 4.333432+0 3.777786-6 6.084739+0 3.783691-6 7.335101+0 3.788371-6 8.450451+0 3.792265-6 9.455248+0 3.796461-6 1.060786+1 3.800436-6 1.175653+1 3.804687-6 1.303278+1 3.808168-6 1.410400+1 3.810708-6 1.489452+1 3.815318-6 1.633400+1 3.819496-6 1.762583+1 3.824827-6 1.922478+1 3.829149-6 2.045512+1 3.838370-6 2.278302+1 3.840027-6 2.314805+1 3.847591-6 2.456758+1 3.850760-6 2.503185+1 3.856811-6 2.568849+1 3.861245-6 2.597342+1 3.865988-6 2.609479+1 3.869862-6 2.605680+1 3.874947-6 2.582929+1 3.878216-6 2.558348+1 3.882979-6 2.509859+1 3.884474-6 2.491803+1 3.891414-6 2.392620+1 3.893727-6 2.354709+1 3.903218-6 2.180899+1 3.912136-6 2.001886+1 3.915731-6 1.928393+1 3.928622-6 1.671992+1 3.941180-6 1.449329+1 3.948033-6 1.343964+1 3.957631-6 1.217845+1 3.967301-6 1.116332+1 3.972136-6 1.074838+1 3.976971-6 1.039167+1 3.981620-6 1.010043+1 3.988594-6 9.751034+0 3.995568-6 9.494951+0 4.001590-6 9.337981+0 4.007613-6 9.230299+0 4.012358-6 9.173647+0 4.017103-6 9.136503+0 4.026594-6 9.101542+0 4.049307-6 9.051778+0 4.060503-6 8.962860+0 4.067086-6 8.877372+0 4.073669-6 8.765784+0 4.083339-6 8.556615+0 4.093009-6 8.300852+0 4.102678-6 8.010070+0 4.115979-6 7.577114+0 4.148610-6 6.536385+0 4.158771-6 6.259590+0 4.168932-6 6.017382+0 4.179094-6 5.812994+0 4.186243-6 5.692122+0 4.193392-6 5.589228+0 4.201554-6 5.491329+0 4.209716-6 5.410247+0 4.240498-6 5.152890+0 4.252383-6 5.026420+0 4.264202-6 4.869192+0 4.275599-6 4.692609+0 4.296415-6 4.370124+0 4.301029-6 4.312897+0 4.311190-6 4.225505+0 4.314038-6 4.212950+0 4.322583-6 4.213305+0 4.325148-6 4.225526+0 4.332844-6 4.298202+0 4.338517-6 4.387060+0 4.343150-6 4.481473+0 4.346625-6 4.564591+0 4.354444-6 4.786606+0 4.366970-6 5.220513+0 4.374197-6 5.495907+0 4.384730-6 5.899513+0 4.387363-6 5.997014+0 4.397028-6 6.330052+0 4.404750-6 6.557599+0 4.409384-6 6.673971+0 4.414617-6 6.785598+0 4.418542-6 6.855076+0 4.424429-6 6.936305+0 4.430317-6 6.990615+0 4.440404-6 7.025754+0 4.448840-6 7.006125+0 4.461385-6 6.911709+0 4.472839-6 6.774969+0 4.486301-6 6.571688+0 4.500347-6 6.325446+0 4.511263-6 6.117168+0 4.529307-6 5.755572+0 4.554926-6 5.260410+0 4.568997-6 5.031594+0 4.583064-6 4.852676+0 4.589674-6 4.788183+0 4.599589-6 4.715248+0 4.610047-6 4.667162+0 4.622320-6 4.641691+0 4.648556-6 4.644909+0 4.667993-6 4.643019+0 4.688494-6 4.612019+0 4.704318-6 4.582539+0 4.715757-6 4.573559+0 4.729166-6 4.591178+0 4.734639-6 4.609697+0 4.744216-6 4.659486+0 4.751399-6 4.711033+0 4.767561-6 4.863040+0 4.784392-6 5.045062+0 4.796111-6 5.160611+0 4.803109-6 5.217100+0 4.814256-6 5.278982+0 4.821514-6 5.297274+0 4.832401-6 5.289277+0 4.843288-6 5.239435+0 4.855652-6 5.138513+0 4.865258-6 5.035249+0 4.878140-6 4.876483+0 4.895706-6 4.652577+0 4.910225-6 4.486021+0 4.919039-6 4.400184+0 4.932260-6 4.297822+0 4.945917-6 4.226857+0 4.969412-6 4.180421+0 4.974665-6 4.181064+0 5.006403-6 4.240858+0 5.028476-6 4.305629+0 5.050826-6 4.353285+0 5.067494-6 4.361204+0 5.080438-6 4.347405+0 5.093716-6 4.316253+0 5.114786-6 4.242016+0 5.135787-6 4.159227+0 5.156247-6 4.091831+0 5.169737-6 4.060330+0 5.183159-6 4.039342+0 5.231216-6 4.003280+0 5.254685-6 3.974996+0 5.281033-6 3.922799+0 5.340928-6 3.774379+0 5.367234-6 3.723239+0 5.401309-6 3.678991+0 5.483577-6 3.609575+0 5.537840-6 3.542135+0 5.594832-6 3.463965+0 5.653323-6 3.400696+0 5.765030-6 3.310875+0 6.309573-6 2.895811+0 6.540881-6 2.758316+0 6.918310-6 2.578259+0 7.662579-6 2.348676+0 8.192000-6 2.249499+0 8.738215-6 2.192345+0 9.943052-6 2.112053+0 1.064878-5 2.059219+0 1.139205-5 2.003796+0 1.153267-5 1.997505+0 1.165264-5 2.000507+0 1.170518-5 2.009205+0 1.181812-5 2.049119+0 1.191243-5 2.101111+0 1.207279-5 2.215604+0 1.223976-5 2.366329+0 1.240000-5 2.546734+0 1.257072-5 2.780638+0 1.274036-5 3.058220+0 1.289304-5 3.353521+0 1.307657-5 3.769482+0 1.320000-5 4.089366+0 1.341680-5 4.738616+0 1.365000-5 5.576448+0 1.389113-5 6.619619+0 1.412759-5 7.846249+0 1.436345-5 9.308079+0 1.458990-5 1.097605+1 1.494445-5 1.420894+1 1.530865-5 1.855923+1 1.549227-5 2.125448+1 1.567223-5 2.431052+1 1.589736-5 2.879533+1 1.609728-5 3.352064+1 1.629490-5 3.904205+1 1.649252-5 4.559989+1 1.669014-5 5.343657+1 1.688051-5 6.248605+1 1.704194-5 7.160474+1 1.720337-5 8.237462+1 1.734889-5 9.381834+1 1.750607-5 1.084411+2 1.761321-5 1.200535+2 1.773311-5 1.349972+2 1.784552-5 1.512572+2 1.795090-5 1.688876+2 1.804970-5 1.879357+2 1.815460-5 2.113880+2 1.822916-5 2.304864+2 1.831056-5 2.541044+2 1.838688-5 2.793505+2 1.845843-5 3.062603+2 1.853909-5 3.411075+2 1.858839-5 3.651961+2 1.864734-5 3.972814+2 1.870261-5 4.311403+2 1.875443-5 4.667806+2 1.880300-5 5.041981+2 1.884854-5 5.433792+2 1.890890-5 6.025732+2 1.896879-5 6.712920+2 1.903915-5 7.683144+2 1.910071-5 8.722481+2 1.915458-5 9.827635+2 1.920171-5 1.099345+3 1.924296-5 1.221204+3 1.927904-5 1.347240+3 1.931062-5 1.476071+3 1.933825-5 1.606116+3 1.936242-5 1.735707+3 1.940473-5 2.005872+3 1.943646-5 2.253056+3 1.946026-5 2.469048+3 1.947811-5 2.650963+3 1.950488-5 2.960404+3 1.953165-5 3.319993+3 1.957973-5 4.116263+3 1.962780-5 5.147665+3 1.972395-5 8.114299+3 1.977506-5 1.027188+4 1.979193-5 1.107941+4 1.986898-5 1.534421+4 1.991764-5 1.845429+4 1.993437-5 1.957536+4 1.997239-5 2.217551+4 2.000000-5 2.406942+4 2.002106-5 2.549037+4 2.004244-5 2.689195+4 2.006646-5 2.839092+4 2.008652-5 2.956203+4 2.011230-5 3.093114+4 2.013359-5 3.192358+4 2.015904-5 3.292016+4 2.019253-5 3.387589+4 2.021751-5 3.430140+4 2.024704-5 3.446896+4 2.026323-5 3.440376+4 2.030849-5 3.363852+4 2.032179-5 3.325630+4 2.035791-5 3.188859+4 2.037926-5 3.087470+4 2.039408-5 3.009245+4 2.041929-5 2.863388+4 2.043858-5 2.742581+4 2.046026-5 2.599569+4 2.047836-5 2.475679+4 2.050163-5 2.312587+4 2.052596-5 2.140041+4 2.055029-5 1.968105+4 2.057767-5 1.778425+4 2.059896-5 1.635477+4 2.064762-5 1.330138+4 2.066435-5 1.233404+4 2.069629-5 1.061820+4 2.073279-5 8.876670+3 2.077365-5 7.205287+3 2.081442-5 5.817576+3 2.091107-5 3.481689+3 2.094765-5 2.878476+3 2.098338-5 2.402406+3 2.101799-5 2.028565+3 2.105151-5 1.732997+3 2.108399-5 1.497165+3 2.111546-5 1.306935+3 2.114594-5 1.151634+3 2.117547-5 1.023253+3 2.120407-5 9.157961+2 2.123920-5 8.023056+2 2.128548-5 6.772603+2 2.138300-5 4.776212+2 2.142725-5 4.072402+2 2.146872-5 3.497057+2 2.154649-5 2.595995+2 2.168258-5 1.462868+2 2.173362-5 1.172765+2 2.178337-5 9.708511+1 2.181735-5 8.878162+1 2.185047-5 8.592331+1 2.186549-5 8.662264+1 2.187958-5 8.856280+1 2.190000-5 9.382989+1 2.191677-5 1.005817+2 2.192765-5 1.062625+2 2.193785-5 1.125972+2 2.194741-5 1.194843+2 2.195624-5 1.267068+2 2.197034-5 1.401042+2 2.198141-5 1.523298+2 2.199466-5 1.691351+2 2.201195-5 1.949119+2 2.203800-5 2.430334+2 2.209086-5 3.822762+2 2.211465-5 4.669006+2 2.212994-5 5.297164+2 2.215883-5 6.683729+2 2.217667-5 7.683242+2 2.219961-5 9.144600+2 2.222316-5 1.086797+3 2.224467-5 1.265383+3 2.225960-5 1.401878+3 2.227179-5 1.521280+3 2.230836-5 1.923955+3 2.232803-5 2.169005+3 2.234771-5 2.434236+3 2.240244-5 3.276578+3 2.241228-5 3.443511+3 2.246060-5 4.324312+3 2.247824-5 4.667486+3 2.251515-5 5.412485+3 2.253317-5 5.784914+3 2.256032-5 6.349760+3 2.258443-5 6.848215+3 2.260962-5 7.357837+3 2.263061-5 7.767870+3 2.265692-5 8.255380+3 2.267784-5 8.615833+3 2.271098-5 9.126292+3 2.273700-5 9.465724+3 2.276173-5 9.731681+3 2.278814-5 9.949325+3 2.284240-5 1.016687+4 2.286048-5 1.016903+4 2.287198-5 1.015224+4 2.290934-5 1.000290+4 2.293450-5 9.824818+3 2.295650-5 9.622186+3 2.298274-5 9.328627+3 2.299849-5 9.128282+3 2.302509-5 8.754255+3 2.305073-5 8.358174+3 2.308665-5 7.760277+3 2.311402-5 7.282716+3 2.314481-5 6.735084+3 2.316876-5 6.308794+3 2.322349-5 5.360629+3 2.324316-5 5.035722+3 2.328806-5 4.338108+3 2.334278-5 3.585635+3 2.344458-5 2.496365+3 2.349768-5 2.079993+3 2.352955-5 1.873677+3 2.355106-5 1.750852+3 2.358333-5 1.588966+3 2.361559-5 1.450890+3 2.363408-5 1.381249+3 2.365334-5 1.315242+3 2.367260-5 1.255305+3 2.372960-5 1.108002+3 2.378660-5 9.959333+2 2.392494-5 8.153957+2 2.398001-5 7.659690+2 2.401462-5 7.392370+2 2.406161-5 7.072573+2 2.410859-5 6.793648+2 2.416693-5 6.491987+2 2.422526-5 6.227164+2 2.451694-5 5.137354+2 2.465350-5 4.691453+2 2.477964-5 4.337139+2 2.486933-5 4.123939+2 2.493006-5 3.995925+2 2.506614-5 3.744867+2 2.552114-5 3.073473+2 2.587030-5 2.652392+2 2.602627-5 2.492592+2 2.612211-5 2.409784+2 2.619050-5 2.360099+2 2.629712-5 2.300184+2 2.637666-5 2.269553+2 2.643913-5 2.253348+2 2.651257-5 2.242151+2 2.662689-5 2.238808+2 2.672061-5 2.245927+2 2.699190-5 2.282587+2 2.710565-5 2.285484+2 2.719680-5 2.276483+2 2.733298-5 2.246327+2 2.763835-5 2.158860+2 2.789093-5 2.105895+2 2.819320-5 2.057034+2 2.883490-5 1.965829+2 2.951209-5 1.872206+2 3.067470-5 1.739884+2 3.193520-5 1.621027+2 3.290112-5 1.542949+2 3.784556-5 1.234486+2 3.928263-5 1.159204+2 4.015023-5 1.114137+2 4.063954-5 1.100594+2 4.093312-5 1.094402+2 4.132994-5 1.079689+2 4.232980-5 1.030841+2 4.460659-5 9.418084+1 4.580760-5 8.976576+1 4.765682-5 8.305228+1 4.879226-5 7.908253+1 5.019090-5 7.431506+1 5.150000-5 6.996784+1 5.300297-5 6.509827+1 5.423820-5 6.112258+1 5.578923-5 5.621210+1 5.721327-5 5.176313+1 5.871512-5 4.709237+1 6.022991-5 4.240385+1 6.239516-5 3.574620+1 6.400000-5 3.087763+1 6.536387-5 2.678948+1 6.658180-5 2.319992+1 6.801976-5 1.907714+1 6.946417-5 1.508604+1 7.038988-5 1.263793+1 7.128690-5 1.037571+1 7.216606-5 8.307017+0 7.299508-5 6.837780+0 7.337856-5 6.607179+0 7.340389-5 6.605962+0 7.413887-5 7.289642+0 7.464315-5 8.332068+0 7.542234-5 1.038338+1 7.614971-5 1.266769+1 7.686813-5 1.531197+1 7.771553-5 1.900024+1 7.856825-5 2.343195+1 7.990330-5 3.215451+1 8.246127-5 5.748859+1 8.421332-5 8.469847+1 8.558580-5 1.148369+2 8.647414-5 1.401230+2 8.709636-5 1.612978+2 8.810489-5 2.033374+2 8.874896-5 2.364183+2 8.963438-5 2.922615+2 9.023975-5 3.392466+2 9.080729-5 3.915003+2 9.133936-5 4.493200+2 9.192627-5 5.253665+2 9.230581-5 5.829366+2 9.274422-5 6.594833+2 9.315522-5 7.430118+2 9.354054-5 8.338434+2 9.390924-5 9.344684+2 9.425000-5 1.041848+3 9.455794-5 1.153162+3 9.485559-5 1.276177+3 9.513464-5 1.407935+3 9.539624-5 1.548688+3 9.564150-5 1.698679+3 9.587143-5 1.858136+3 9.608699-5 2.027286+3 9.628907-5 2.206359+3 9.647853-5 2.395601+3 9.665614-5 2.595291+3 9.682266-5 2.805751+3 9.697876-5 3.027343+3 9.712511-5 3.260459+3 9.740000-5 3.781999+3 9.763962-5 4.354795+3 9.784971-5 4.981573+3 9.803354-5 5.656900+3 9.819440-5 6.372167+3 9.833514-5 7.115454+3 9.845829-5 7.873032+3 9.856605-5 8.630933+3 9.866034-5 9.376228+3 9.882534-5 1.089022+4 9.904191-5 1.334813+4 9.958758-5 2.250844+4 9.971067-5 2.524233+4 9.980928-5 2.761509+4 1.000000-4 3.264538+4 1.001496-4 3.695999+4 1.003949-4 4.456769+4 1.004256-4 4.555062+4 1.006402-4 5.249573+4 1.007245-4 5.520438+4 1.008855-4 6.022281+4 1.009624-4 6.250726+4 1.010322-4 6.449382+4 1.011466-4 6.753595+4 1.012752-4 7.056242+4 1.013825-4 7.271696+4 1.014947-4 7.455632+4 1.016088-4 7.595708+4 1.017571-4 7.701949+4 1.018744-4 7.723330+4 1.019171-4 7.717344+4 1.020389-4 7.660600+4 1.021581-4 7.550476+4 1.022693-4 7.402838+4 1.023954-4 7.189245+4 1.025102-4 6.958687+4 1.026750-4 6.582905+4 1.028076-4 6.256891+4 1.030218-4 5.720510+4 1.033278-4 5.023575+4 1.034863-4 4.730311+4 1.036063-4 4.548878+4 1.037012-4 4.432243+4 1.038131-4 4.325859+4 1.039170-4 4.257114+4 1.039711-4 4.232370+4 1.041057-4 4.201573+4 1.042202-4 4.206537+4 1.043606-4 4.244843+4 1.045421-4 4.332055+4 1.049279-4 4.560139+4 1.051878-4 4.663611+4 1.052690-4 4.677970+4 1.054459-4 4.672292+4 1.055582-4 4.640284+4 1.056923-4 4.572300+4 1.058237-4 4.474833+4 1.059128-4 4.392214+4 1.060298-4 4.265168+4 1.061426-4 4.124754+4 1.063062-4 3.895113+4 1.064323-4 3.702036+4 1.064953-4 3.601612+4 1.066370-4 3.369367+4 1.066843-4 3.290738+4 1.069363-4 2.870984+4 1.070679-4 2.657303+4 1.073190-4 2.272198+4 1.075878-4 1.905361+4 1.079607-4 1.487301+4 1.082018-4 1.272673+4 1.084030-4 1.123611+4 1.086043-4 9.986018+3 1.087344-4 9.289627+3 1.090007-4 8.094968+3 1.092671-4 7.151241+3 1.095334-4 6.398189+3 1.097368-4 5.921621+3 1.098911-4 5.605710+3 1.101115-4 5.209983+3 1.103394-4 4.856783+3 1.106508-4 4.446428+3 1.109175-4 4.146774+3 1.112489-4 3.825508+3 1.115532-4 3.569872+3 1.120697-4 3.201800+3 1.125503-4 2.917508+3 1.129685-4 2.706966+3 1.133391-4 2.544661+3 1.138589-4 2.349001+3 1.144304-4 2.167584+3 1.151510-4 1.974574+3 1.159836-4 1.786903+3 1.167249-4 1.645946+3 1.171974-4 1.567716+3 1.179279-4 1.462581+3 1.183878-4 1.405078+3 1.188471-4 1.353484+3 1.197500-4 1.266583+3 1.205000-4 1.206440+3 1.215125-4 1.138808+3 1.225000-4 1.084639+3 1.235000-4 1.038740+3 1.247713-4 9.897822+2 1.265000-4 9.343018+2 1.290036-4 8.671394+2 1.310720-4 8.192375+2 1.334104-4 7.714932+2 1.355957-4 7.316067+2 1.396368-4 6.683597+2 1.445440-4 6.053120+2 1.500059-4 5.483530+2 1.570000-4 4.899213+2 1.633334-4 4.473248+2 1.720000-4 4.009621+2 1.865000-4 3.422115+2 1.909432-4 3.261173+2 1.926930-4 3.195136+2 1.950413-4 3.097386+2 1.983505-4 2.935456+2 1.994026-4 2.899304+2 2.023585-4 2.834938+2 2.052919-4 2.742634+2 2.061912-4 2.722741+2 2.068186-4 2.715129+2 2.074399-4 2.713104+2 2.080995-4 2.716584+2 2.094246-4 2.736526+2 2.129510-4 2.804253+2 2.156163-4 2.833449+2 2.196167-4 2.850340+2 2.239998-4 2.850232+2 2.254918-4 2.859605+2 2.318272-4 2.933177+2 2.457600-4 3.031697+2 2.594927-4 3.102665+2 2.777821-4 3.160012+2 2.790156-4 3.168571+2 2.814870-4 3.198108+2 2.893739-4 3.321561+2 3.043950-4 3.481507+2 3.174817-4 3.598588+2 3.311311-4 3.710360+2 3.499955-4 3.851447+2 3.666159-4 3.964050+2 3.840000-4 4.070348+2 4.012085-4 4.163607+2 4.265795-4 4.268423+2 4.567280-4 4.359504+2 4.888605-4 4.419008+2 5.295555-4 4.427772+2 5.682094-4 4.366767+2 6.025596-4 4.249771+2 6.327287-4 4.095875+2 6.568040-4 3.931591+2 6.822573-4 3.715013+2 7.027436-4 3.501039+2 7.202778-4 3.279504+2 7.360104-4 3.053335+2 7.501745-4 2.822518+2 7.615513-4 2.616171+2 7.685532-4 2.477573+2 7.786617-4 2.259164+2 7.868009-4 2.066085+2 7.941306-4 1.878010+2 7.986595-4 1.758854+2 8.026223-4 1.676911+2 8.049762-4 1.672573+2 8.095571-4 2.007616+2 8.147582-4 4.135413+2 8.154488-4 4.698780+2 8.177805-4 7.346737+2 8.194630-4 1.011206+3 8.215311-4 1.464644+3 8.235532-4 2.032430+3 8.255752-4 2.708655+3 8.273300-4 3.356130+3 8.291896-4 4.063101+3 8.306980-4 4.618679+3 8.313985-4 4.862828+3 8.328101-4 5.314673+3 8.336901-4 5.562721+3 8.349625-4 5.867370+3 8.356857-4 6.009688+3 8.371102-4 6.221616+3 8.377078-4 6.283482+3 8.404853-4 6.375701+3 8.416949-4 6.328381+3 8.426476-4 6.261140+3 8.441280-4 6.114160+3 8.455944-4 5.928972+3 8.472800-4 5.680447+3 8.487939-4 5.432414+3 8.504750-4 5.133828+3 8.517047-4 4.900833+3 8.528939-4 4.663936+3 8.539498-4 4.444286+3 8.553074-4 4.150013+3 8.564854-4 3.885561+3 8.576780-4 3.611785+3 8.584248-4 3.438697+3 8.595583-4 3.175943+3 8.607873-4 2.894695+3 8.621521-4 2.592305+3 8.636625-4 2.276919+3 8.658000-4 1.878048+3 8.680000-4 1.537822+3 8.693950-4 1.361701+3 8.697506-4 1.321689+3 8.709349-4 1.202339+3 8.714300-4 1.158562+3 8.720463-4 1.108863+3 8.734932-4 1.011746+3 8.741113-4 9.779462+2 8.766074-4 8.808088+2 8.778028-4 8.526449+2 8.794884-4 8.279904+2 8.813119-4 8.160712+2 8.828191-4 8.142512+2 8.856555-4 8.226192+2 8.874462-4 8.321890+2 8.967461-4 8.904534+2 8.998089-4 9.079350+2 9.055162-4 9.372975+2 9.106748-4 9.605218+2 9.168657-4 9.845697+2 9.242374-4 1.008452+3 9.330233-4 1.031806+3 9.421796-4 1.051998+3 9.520180-4 1.070122+3 9.650088-4 1.090024+3 9.764437-4 1.104811+3 9.930832-4 1.122273+3 1.005981-3 1.132301+3 1.026377-3 1.144270+3 1.046354-3 1.151259+3 1.062124-3 1.151895+3 1.090284-3 1.145064+3 1.096752-3 1.150748+3 1.102213-3 1.161534+3 1.120306-3 1.214672+3 1.151635-3 1.280604+3 1.160838-3 1.297308+3 1.179673-3 1.326238+3 1.205278-3 1.374967+3 1.232165-3 1.417959+3 1.244094-3 1.435059+3 1.259172-3 1.451454+3 1.277477-3 1.465256+3 1.296384-3 1.474374+3 1.335707-3 1.483005+3 1.345520-3 1.490947+3 1.359796-3 1.511195+3 1.373226-3 1.532502+3 1.383280-3 1.545543+3 1.398379-3 1.559664+3 1.421758-3 1.574622+3 1.445067-3 1.585765+3 1.480574-3 1.598366+3 1.562306-3 1.615409+3 1.649482-3 1.622815+3 1.738369-3 1.621151+3 1.895647-3 1.604463+3 2.003895-3 1.587433+3 2.193398-3 1.546782+3 2.350000-3 1.511937+3 2.463556-3 1.483886+3 2.678253-3 1.428248+3 2.930050-3 1.362008+3 3.062073-3 1.328142+3 3.219953-3 1.286832+3 3.517629-3 1.209639+3 3.681541-3 1.168732+3 3.843158-3 1.127966+3 4.031519-3 1.081090+3 4.208818-3 1.036572+3 4.376828-3 9.941909+2 4.524253-3 9.561281+2 4.647005-3 9.235974+2 4.755405-3 8.937304+2 4.860650-3 8.630659+2 4.949434-3 8.355942+2 5.026771-3 8.099692+2 5.090012-3 7.872788+2 5.150804-3 7.633004+2 5.202954-3 7.403540+2 5.245551-3 7.191931+2 5.283896-3 6.972653+2 5.315163-3 6.763592+2 5.347821-3 6.507268+2 5.385153-3 6.174172+2 5.418220-3 5.890770+2 5.436711-3 5.767936+2 5.449520-3 5.708258+2 5.466951-3 5.668195+2 5.477123-3 5.668473+2 5.492172-3 5.700602+2 5.507193-3 5.766946+2 5.525523-3 5.884427+2 5.581301-3 6.331922+2 5.609943-3 6.529223+2 5.633004-3 6.651509+2 5.653862-3 6.733824+2 5.680496-3 6.804165+2 5.711087-3 6.844223+2 5.740128-3 6.848326+2 5.787525-3 6.801022+2 5.829654-3 6.742221+2 5.860924-3 6.729199+2 5.878433-3 6.744961+2 5.906141-3 6.810356+2 5.942774-3 6.962787+2 6.003799-3 7.269885+2 6.025541-3 7.362718+2 6.046445-3 7.436147+2 6.071098-3 7.501891+2 6.099779-3 7.552681+2 6.200000-3 7.644096+2 6.238571-3 7.720839+2 6.278647-3 7.847567+2 6.355397-3 8.133776+2 6.383217-3 8.222033+2 6.416014-3 8.308426+2 6.456542-3 8.392148+2 6.502692-3 8.464660+2 6.556823-3 8.528574+2 6.620264-3 8.583673+2 6.775830-3 8.664914+2 6.933660-3 8.698998+2 7.171045-3 8.686146+2 7.462608-3 8.595908+2 7.742946-3 8.470206+2 8.155305-3 8.238239+2 8.629041-3 7.937602+2 9.258310-3 7.518567+2 9.964087-3 7.051996+2 1.088592-2 6.484678+2 1.211818-2 5.804079+2 1.372017-2 5.062755+2 1.525589-2 4.477872+2 1.699161-2 3.930878+2 1.864769-2 3.494009+2 2.017573-2 3.147236+2 2.180575-2 2.825494+2 2.353212-2 2.529046+2 2.556102-2 2.228645+2 2.769117-2 1.959021+2 2.991233-2 1.719567+2 3.184971-2 1.538821+2 3.345820-2 1.403856+2 3.469865-2 1.305667+2 3.559137-2 1.235762+2 3.636406-2 1.173535+2 3.696449-2 1.121715+2 3.738680-2 1.080988+2 3.759374-2 1.058508+2 3.776632-2 1.037722+2 3.802156-2 1.002504+2 3.853883-2 9.227856+1 3.869956-2 9.045169+1 3.881646-2 8.962795+1 3.895219-2 8.930569+1 3.909369-2 8.969308+1 3.921445-2 9.051997+1 3.947665-2 9.323088+1 3.979563-2 9.661070+1 3.998174-2 9.811003+1 4.024901-2 9.957874+1 4.056253-2 1.005458+2 4.098288-2 1.011009+2 4.149923-2 1.011460+2 4.240875-2 1.003570+2 4.356057-2 9.855030+1 4.493431-2 9.577793+1 4.685422-2 9.149790+1 4.958960-2 8.533482+1 5.324147-2 7.756442+1 5.723944-2 6.985503+1 6.192593-2 6.192021+1 6.720836-2 5.429616+1 7.533002-2 4.487880+1 8.652059-2 3.529347+1 1.055544-1 2.483625+1 1.256276-1 1.812564+1 1.733320-1 1.001740+1 2.079374-1 7.129900+0 2.556619-1 4.813150+0 3.508771-1 2.611275+0 5.173090-1 1.223732+0 8.246127-1 4.882924-1 1.491829+0 1.504678-1 4.461192+0 1.689015-2 1.347258+1 1.852775-3 4.068655+1 2.031626-4 1.228714+2 2.227645-5 3.710658+2 2.442566-6 1.258925+3 2.122013-7 3.981072+3 2.122013-8 1.258925+4 2.122013-9 3.981072+4 2.12201-10 1.000000+5 3.36316-11 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.577500-6 1.258900-6 4.085000-6 1.584900-6 6.474300-6 1.995300-6 1.026100-5 2.511900-6 1.626300-5 3.162300-6 2.577500-5 3.981100-6 4.085000-5 5.011900-6 6.474200-5 6.309600-6 1.026100-4 7.943300-6 1.626200-4 1.000000-5 2.577400-4 1.258900-5 4.084800-4 1.584900-5 6.473800-4 1.995300-5 1.025900-3 2.511900-5 1.625100-3 3.162300-5 2.574100-3 3.981100-5 4.077800-3 5.011900-5 6.460400-3 6.309600-5 1.023600-2 7.943300-5 1.619900-2 1.000000-4 2.562300-2 1.258900-4 4.046900-2 1.584900-4 6.379000-2 1.995300-4 1.002300-1 2.511900-4 1.567500-1 3.162300-4 2.433100-1 3.981100-4 3.724700-1 5.011900-4 5.597200-1 6.309600-4 8.198800-1 7.943300-4 1.162400+0 1.000000-3 1.590100+0 1.258900-3 2.104700+0 1.584900-3 2.724000+0 1.995300-3 3.486500+0 2.511900-3 4.420200+0 3.162300-3 5.544200+0 3.981100-3 6.875700+0 5.011900-3 8.389900+0 6.309600-3 1.001400+1 7.943300-3 1.173000+1 1.000000-2 1.358600+1 1.258900-2 1.555400+1 1.584900-2 1.759100+1 1.995300-2 1.954200+1 2.511900-2 2.125800+1 3.162300-2 2.266900+1 3.981100-2 2.391000+1 5.011900-2 2.475600+1 6.309600-2 2.522800+1 7.943300-2 2.528000+1 1.000000-1 2.492400+1 1.258900-1 2.419900+1 1.584900-1 2.322700+1 1.995300-1 2.202000+1 2.511900-1 2.066100+1 3.162300-1 1.920600+1 3.981100-1 1.771400+1 5.011900-1 1.622000+1 6.309600-1 1.475300+1 7.943300-1 1.332900+1 1.000000+0 1.197100+1 1.258900+0 1.067900+1 1.584900+0 9.466700+0 1.995300+0 8.336800+0 2.511900+0 7.295000+0 3.162300+0 6.343600+0 3.981100+0 5.483700+0 5.011900+0 4.713800+0 6.309600+0 4.030900+0 7.943300+0 3.430200+0 1.000000+1 2.906200+0 1.258900+1 2.452300+0 1.584900+1 2.061700+0 1.995300+1 1.727600+0 2.511900+1 1.443300+0 3.162300+1 1.202500+0 3.981100+1 9.994700-1 5.011900+1 8.288600-1 6.309600+1 6.860000-1 7.943300+1 5.667300-1 1.000000+2 4.674200-1 1.258900+2 3.849300-1 1.584900+2 3.165600-1 1.995300+2 2.600000-1 2.511900+2 2.133000-1 3.162300+2 1.747900-1 3.981100+2 1.430900-1 5.011900+2 1.170400-1 6.309600+2 9.563800-2 7.943300+2 7.809000-2 1.000000+3 6.371200-2 1.258900+3 5.194400-2 1.584900+3 4.232000-2 1.995300+3 3.445700-2 2.511900+3 2.803800-2 3.162300+3 2.280200-2 3.981100+3 1.853400-2 5.011900+3 1.505600-2 6.309600+3 1.222500-2 7.943300+3 9.921500-3 1.000000+4 8.048400-3 1.258900+4 6.526100-3 1.584900+4 5.289500-3 1.995300+4 4.285500-3 2.511900+4 3.470700-3 3.162300+4 2.809800-3 3.981100+4 2.273900-3 5.011900+4 1.839600-3 6.309600+4 1.487700-3 7.943300+4 1.202800-3 1.000000+5 9.721200-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510167-4 3.162278-4 3.159553-4 3.981072-4 3.976785-4 5.011872-4 5.005114-4 6.309573-4 6.298970-4 7.943282-4 7.926741-4 1.000000-3 9.974229-4 1.258925-3 1.254915-3 1.584893-3 1.578630-3 1.995262-3 1.985463-3 2.511886-3 2.496498-3 3.162278-3 3.138111-3 3.981072-3 3.943155-3 5.011872-3 4.952570-3 6.309573-3 6.217256-3 7.943282-3 7.799822-3 1.000000-2 9.776763-3 1.258925-2 1.224117-2 1.584893-2 1.530913-2 1.995262-2 1.912193-2 2.511886-2 2.384528-2 3.162278-2 2.967844-2 3.981072-2 3.685721-2 5.011872-2 4.565606-2 6.309573-2 5.639858-2 7.943282-2 6.946743-2 1.000000-1 8.531074-2 1.258925-1 1.044860-1 1.584893-1 1.274215-1 1.995262-1 1.549157-1 2.511886-1 1.877400-1 3.162278-1 2.267890-1 3.981072-1 2.730602-1 5.011872-1 3.277563-1 6.309573-1 3.922590-1 7.943282-1 4.683437-1 1.000000+0 5.576783-1 1.258925+0 6.631085-1 1.584893+0 7.873609-1 1.995262+0 9.344968-1 2.511886+0 1.109075+0 3.162278+0 1.316769+0 3.981072+0 1.564731+0 5.011872+0 1.861522+0 6.309573+0 2.217745+0 7.943282+0 2.646236+0 1.000000+1 3.162880+0 1.258925+1 3.786938+0 1.584893+1 4.542091+0 1.995262+1 5.457330+0 2.511886+1 6.568116+0 3.162278+1 7.918153+0 3.981072+1 9.560558+0 5.011872+1 1.156133+1 6.309573+1 1.400099+1 7.943282+1 1.697860+1 1.000000+2 2.061599+1 1.258925+2 2.506304+1 1.584893+2 3.050489+1 1.995262+2 3.716821+1 2.511886+2 4.533332+1 3.162278+2 5.534586+1 3.981072+2 6.763043+1 5.011872+2 8.271366+1 6.309573+2 1.012433+2 7.943282+2 1.240194+2 1.000000+3 1.520286+2 1.258925+3 1.864942+2 1.584893+3 2.289163+2 1.995262+3 2.811763+2 2.511886+3 3.455628+2 3.162278+3 4.249379+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090816-9 2.511886-5 1.728588-9 3.162278-5 2.739446-9 3.981072-5 4.341652-9 5.011872-5 6.881035-9 6.309573-5 1.090553-8 7.943282-5 1.727799-8 1.000000-4 2.737523-8 1.258925-4 4.336391-8 1.584893-4 6.866796-8 1.995262-4 1.087035-7 2.511886-4 1.719903-7 3.162278-4 2.724755-7 3.981072-4 4.286714-7 5.011872-4 6.758433-7 6.309573-4 1.060321-6 7.943282-4 1.654146-6 1.000000-3 2.577102-6 1.258925-3 4.010264-6 1.584893-3 6.262951-6 1.995262-3 9.799540-6 2.511886-3 1.538802-5 3.162278-3 2.416628-5 3.981072-3 3.791667-5 5.011872-3 5.930234-5 6.309573-3 9.231702-5 7.943282-3 1.434604-4 1.000000-2 2.232371-4 1.258925-2 3.480858-4 1.584893-2 5.397984-4 1.995262-2 8.306961-4 2.511886-2 1.273582-3 3.162278-2 1.944341-3 3.981072-2 2.953503-3 5.011872-2 4.462663-3 6.309573-2 6.697158-3 7.943282-2 9.965391-3 1.000000-1 1.468926-2 1.258925-1 2.140655-2 1.584893-1 3.106777-2 1.995262-1 4.461057-2 2.511886-1 6.344869-2 3.162278-1 8.943878-2 3.981072-1 1.250469-1 5.011872-1 1.734310-1 6.309573-1 2.386983-1 7.943282-1 3.259845-1 1.000000+0 4.423217-1 1.258925+0 5.958169-1 1.584893+0 7.975323-1 1.995262+0 1.060766+0 2.511886+0 1.402812+0 3.162278+0 1.845509+0 3.981072+0 2.416341+0 5.011872+0 3.150350+0 6.309573+0 4.091829+0 7.943282+0 5.297046+0 1.000000+1 6.837120+0 1.258925+1 8.802316+0 1.584893+1 1.130684+1 1.995262+1 1.449529+1 2.511886+1 1.855075+1 3.162278+1 2.370462+1 3.981072+1 3.025016+1 5.011872+1 3.855740+1 6.309573+1 4.909474+1 7.943282+1 6.245422+1 1.000000+2 7.938401+1 1.258925+2 1.008295+2 1.584893+2 1.279844+2 1.995262+2 1.623580+2 2.511886+2 2.058553+2 3.162278+2 2.608819+2 3.981072+2 3.304767+2 5.011872+2 4.184736+2 6.309573+2 5.297141+2 7.943282+2 6.703088+2 1.000000+3 8.479714+2 1.258925+3 1.072431+3 1.584893+3 1.355977+3 1.995262+3 1.714086+3 2.511886+3 2.166324+3 3.162278+3 2.737340+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.140000-6 2.723952+6 5.340000-6 2.253835+6 5.340000-6 6.352807+6 5.559043-6 6.220940+6 5.580000-6 6.212938+6 5.580000-6 8.701178+6 5.623413-6 8.723216+6 5.821032-6 8.839491+6 5.850000-6 8.858804+6 6.025596-6 8.978751+6 6.100000-6 9.034923+6 6.309573-6 9.193080+6 6.382635-6 9.251536+6 6.456542-6 9.306963+6 6.606934-6 9.429027+6 6.700000-6 9.504623+6 6.760830-6 9.548993+6 6.918310-6 9.670345+6 7.100000-6 9.812024+6 7.244360-6 9.915838+6 7.413102-6 1.003413+7 7.500000-6 1.009726+7 7.600000-6 1.016218+7 7.762471-6 1.026068+7 7.852356-6 1.031661+7 8.000000-6 1.039629+7 8.128305-6 1.045939+7 8.317638-6 1.055504+7 8.413951-6 1.059536+7 8.511380-6 1.063084+7 8.709636-6 1.070453+7 8.850000-6 1.074572+7 9.120108-6 1.081128+7 9.225714-6 1.082797+7 9.549926-6 1.086125+7 9.700000-6 1.086353+7 1.000000-5 1.085085+7 1.011579-5 1.083514+7 1.027000-5 1.080505+7 1.050000-5 1.076216+7 1.060000-5 1.073397+7 1.071519-5 1.069412+7 1.092000-5 1.062522+7 1.100000-5 1.059897+7 1.110000-5 1.055676+7 1.127000-5 1.047651+7 1.142000-5 1.040746+7 1.150000-5 1.037130+7 1.161449-5 1.030281+7 1.180000-5 1.019448+7 1.195000-5 1.010913+7 1.202264-5 1.006850+7 1.207000-5 1.003556+7 1.222000-5 9.932906+6 1.240000-5 9.812897+6 1.250000-5 9.747693+6 1.260000-5 9.670386+6 1.280000-5 9.519576+6 1.303167-5 9.350873+6 1.320000-5 9.212783+6 1.340000-5 9.053702+6 1.350000-5 8.976132+6 1.365000-5 8.847370+6 1.396500-5 8.587563+6 1.400000-5 8.559549+6 1.428894-5 8.306937+6 1.462177-5 8.031393+6 1.480000-5 7.874061+6 1.530000-5 7.458628+6 1.531087-5 7.449641+6 1.590000-5 6.961766+6 1.603245-5 6.855795+6 1.659587-5 6.413183+6 1.678804-5 6.267971+6 1.737801-5 5.835473+6 1.770000-5 5.612219+6 1.819701-5 5.280337+6 1.830000-5 5.215162+6 1.862087-5 5.015149+6 1.905461-5 4.754518+6 1.927525-5 4.629362+6 1.980000-5 4.345024+6 2.000000-5 4.240592+6 2.041738-5 4.033827+6 2.089296-5 3.811512+6 2.113489-5 3.705024+6 2.190000-5 3.387690+6 2.264644-5 3.109383+6 2.300000-5 2.986181+6 2.371374-5 2.757421+6 2.426610-5 2.594605+6 2.454709-5 2.516862+6 2.540973-5 2.293345+6 2.559000-5 2.250135+6 2.559000-5 1.138941+7 2.570396-5 1.125991+7 2.620000-5 1.071792+7 2.650000-5 1.038311+7 2.660725-5 1.026639+7 2.691535-5 9.940832+6 2.754229-5 9.285965+6 2.786121-5 8.974231+6 2.818383-5 8.658962+6 2.833000-5 8.520932+6 2.833000-5 1.299797+7 2.851018-5 1.277365+7 2.884032-5 1.237543+7 2.917427-5 1.197630+7 2.940000-5 1.170935+7 2.951209-5 1.157634+7 2.985383-5 1.118248+7 3.000000-5 1.101951+7 3.054921-5 1.042104+7 3.080000-5 1.016151+7 3.090295-5 1.005534+7 3.150000-5 9.454764+6 3.162278-5 9.336955+6 3.198895-5 8.996848+6 3.235937-5 8.662994+6 3.273407-5 8.340816+6 3.350000-5 7.720561+6 3.450000-5 6.984737+6 3.507519-5 6.601586+6 3.548134-5 6.343475+6 3.589219-5 6.095002+6 3.650000-5 5.748958+6 3.715352-5 5.403862+6 3.758374-5 5.188581+6 3.850000-5 4.764812+6 3.981072-5 4.231853+6 4.000000-5 4.161239+6 4.027170-5 4.061892+6 4.073803-5 3.900244+6 4.220000-5 3.443363+6 4.265795-5 3.314367+6 4.315191-5 3.182091+6 4.365000-5 3.057028+6 4.365000-5 3.143553+6 4.466836-5 2.910752+6 4.570882-5 2.696572+6 4.700000-5 2.463536+6 4.731513-5 2.410947+6 4.841724-5 2.240240+6 4.900000-5 2.158383+6 4.920000-5 2.131283+6 5.011872-5 2.012702+6 5.128614-5 1.875362+6 5.150000-5 1.852468+6 5.308844-5 1.694105+6 5.400000-5 1.612226+6 5.500000-5 1.530783+6 5.650000-5 1.421252+6 5.688529-5 1.394946+6 5.821032-5 1.312247+6 5.888437-5 1.273104+6 5.900000-5 1.266669+6 5.956621-5 1.235716+6 6.025596-5 1.200618+6 6.165950-5 1.134120+6 6.237348-5 1.102423+6 6.400000-5 1.038370+6 6.456542-5 1.017395+6 6.531306-5 9.907601+5 6.606934-5 9.658981+5 6.650000-5 9.524563+5 6.683439-5 9.422381+5 6.839116-5 8.966956+5 6.918310-5 8.757946+5 7.161434-5 8.172828+5 7.244360-5 7.994353+5 7.413102-5 7.659700+5 7.500000-5 7.494975+5 7.585776-5 7.344633+5 7.762471-5 7.058882+5 7.852356-5 6.919187+5 7.943282-5 6.788113+5 8.128305-5 6.542115+5 8.150000-5 6.514473+5 8.222426-5 6.422052+5 8.317638-5 6.308772+5 8.511380-5 6.095576+5 8.609938-5 5.992776+5 8.709636-5 5.890563+5 8.810489-5 5.796702+5 9.070000-5 5.569573+5 9.120108-5 5.527993+5 9.150000-5 5.503008+5 9.300000-5 5.383467+5 9.332543-5 5.359235+5 9.500000-5 5.238206+5 9.549926-5 5.203297+5 9.580000-5 5.182910+5 9.740000-5 5.077335+5 9.800000-5 5.038991+5 9.950000-5 4.943902+5 1.000000-4 4.913076+5 1.011579-4 4.846994+5 1.023293-4 4.782138+5 1.035142-4 4.718437+5 1.047129-4 4.655929+5 1.059254-4 4.595813+5 1.071519-4 4.535391+5 1.083927-4 4.475980+5 1.096478-4 4.419525+5 1.109175-4 4.363986+5 1.110000-4 4.360505+5 1.122018-4 4.310598+5 1.135011-4 4.258051+5 1.137600-4 4.247769+5 1.137600-4 1.127815+6 1.140000-4 1.142052+6 1.146000-4 1.186637+6 1.148154-4 1.205153+6 1.152000-4 1.239317+6 1.161449-4 1.334869+6 1.167000-4 1.396125+6 1.168300-4 1.410099+6 1.168300-4 1.886055+6 1.169700-4 1.906201+6 1.174898-4 1.988729+6 1.175000-4 1.990460+6 1.180000-4 2.072143+6 1.185200-4 2.158322+6 1.187000-4 2.186847+6 1.190000-4 2.236090+6 1.195000-4 2.314151+6 1.200000-4 2.387980+6 1.202264-4 2.418938+6 1.205000-4 2.455279+6 1.209500-4 2.509794+6 1.210000-4 2.515559+6 1.215000-4 2.566098+6 1.216186-4 2.577223+6 1.220000-4 2.608306+6 1.221000-4 2.615479+6 1.225000-4 2.640183+6 1.227000-4 2.650063+6 1.230269-4 2.662944+6 1.232000-4 2.669861+6 1.238000-4 2.679036+6 1.240000-4 2.680061+6 1.243000-4 2.678211+6 1.244515-4 2.675771+6 1.247000-4 2.671851+6 1.249000-4 2.666916+6 1.254500-4 2.648166+6 1.255000-4 2.646046+6 1.260000-4 2.620939+6 1.262300-4 2.607642+6 1.265000-4 2.592185+6 1.267000-4 2.579515+6 1.275000-4 2.522951+6 1.283000-4 2.458297+6 1.290000-4 2.399996+6 1.300000-4 2.311519+6 1.303167-4 2.283168+6 1.307000-4 2.249474+6 1.311000-4 2.213871+6 1.322000-4 2.116725+6 1.333521-4 2.018415+6 1.340000-4 1.964511+6 1.350000-4 1.883161+6 1.364583-4 1.772407+6 1.365000-4 1.769371+6 1.369600-4 1.735697+6 1.400000-4 1.531252+6 1.412538-4 1.455386+6 1.445440-4 1.279576+6 1.462177-4 1.202980+6 1.472000-4 1.161010+6 1.490000-4 1.091319+6 1.496236-4 1.068982+6 1.513561-4 1.012163+6 1.520000-4 9.928469+5 1.531087-4 9.616196+5 1.540000-4 9.385780+5 1.550000-4 9.143828+5 1.560000-4 8.923467+5 1.570000-4 8.718518+5 1.580000-4 8.531690+5 1.584893-4 8.446335+5 1.585000-4 8.444484+5 1.600000-4 8.206232+5 1.603245-4 8.158661+5 1.620000-4 7.938261+5 1.621810-4 7.916465+5 1.630000-4 7.827716+5 1.640590-4 7.715445+5 1.659587-4 7.552973+5 1.660000-4 7.549507+5 1.678804-4 7.425583+5 1.680000-4 7.417830+5 1.698244-4 7.328528+5 1.720000-4 7.256103+5 1.737801-4 7.222256+5 1.740000-4 7.218131+5 1.760000-4 7.204024+5 1.778279-4 7.212250+5 1.780000-4 7.213054+5 1.790000-4 7.222438+5 1.800000-4 7.238158+5 1.805000-4 7.245981+5 1.820000-4 7.276900+5 1.835000-4 7.316394+5 1.840772-4 7.334159+5 1.865000-4 7.409231+5 1.883649-4 7.482792+5 1.905461-4 7.570839+5 1.930000-4 7.679508+5 1.949845-4 7.771320+5 1.950000-4 7.772044+5 2.000000-4 8.021428+5 2.041738-4 8.239681+5 2.070700-4 8.387934+5 2.070700-4 1.180977+6 2.113489-4 1.203158+6 2.120000-4 1.206595+6 2.137962-4 1.215579+6 2.162719-4 1.227752+6 2.190000-4 1.241445+6 2.220000-4 1.255149+6 2.242800-4 1.265266+6 2.247300-4 1.267282+6 2.247300-4 1.378012+6 2.264644-4 1.385667+6 2.270000-4 1.387819+6 2.292200-4 1.396290+6 2.300000-4 1.399298+6 2.344229-4 1.415490+6 2.371374-4 1.424404+6 2.380000-4 1.427258+6 2.426610-4 1.441700+6 2.454709-4 1.449289+6 2.500000-4 1.460555+6 2.511886-4 1.463536+6 2.540973-4 1.469645+6 2.570396-4 1.475115+6 2.600160-4 1.480364+6 2.630268-4 1.484607+6 2.660725-4 1.488206+6 2.691535-4 1.491907+6 2.722701-4 1.494295+6 2.730000-4 1.494857+6 2.791300-4 1.498268+6 2.791300-4 1.636408+6 2.800000-4 1.636643+6 2.818383-4 1.636495+6 2.830000-4 1.636412+6 2.851018-4 1.635803+6 2.884032-4 1.634870+6 2.917427-4 1.634003+6 2.950000-4 1.632181+6 2.951209-4 1.632089+6 2.985383-4 1.629461+6 3.000000-4 1.628355+6 3.019952-4 1.626785+6 3.054921-4 1.623028+6 3.150000-4 1.610743+6 3.162278-4 1.608854+6 3.198895-4 1.602630+6 3.200000-4 1.602444+6 3.235937-4 1.596438+6 3.273407-4 1.590064+6 3.280000-4 1.588955+6 3.311311-4 1.582973+6 3.350000-4 1.574989+6 3.427678-4 1.558857+6 3.430000-4 1.558384+6 3.467369-4 1.550010+6 3.507519-4 1.540563+6 3.548134-4 1.531058+6 3.600000-4 1.519056+6 3.630781-4 1.511363+6 3.672823-4 1.500231+6 3.758374-4 1.478234+6 3.801894-4 1.467261+6 3.845918-4 1.454827+6 3.890451-4 1.442505+6 3.935501-4 1.430017+6 4.000000-4 1.412575+6 4.027170-4 1.404602+6 4.073803-4 1.391133+6 4.100000-4 1.383596+6 4.216965-4 1.350759+6 4.265795-4 1.336195+6 4.315191-4 1.321786+6 4.365158-4 1.307534+6 4.466836-4 1.279260+6 4.623810-4 1.234969+6 4.731513-4 1.205922+6 4.897788-4 1.160503+6 5.011872-4 1.131024+6 5.150000-4 1.094565+6 5.248075-4 1.069833+6 5.300000-4 1.057142+6 5.370318-4 1.040299+6 5.432503-4 1.025032+6 5.559043-4 9.948690+5 5.754399-4 9.510645+5 5.800000-4 9.408370+5 5.821032-4 9.361787+5 5.888437-4 9.215099+5 6.000000-4 8.980866+5 6.025596-4 8.928553+5 6.095369-4 8.786976+5 6.165950-4 8.647076+5 6.382635-4 8.223453+5 6.531306-4 7.952700+5 6.606934-4 7.820594+5 6.700000-4 7.655734+5 6.839116-4 7.418000+5 6.918310-4 7.288028+5 7.000000-4 7.157850+5 7.079458-4 7.034849+5 7.161434-4 6.909783+5 7.328245-4 6.661112+5 7.413102-4 6.538810+5 7.498942-4 6.418655+5 7.500000-4 6.417196+5 7.585776-4 6.300443+5 7.673615-4 6.182999+5 7.762471-4 6.065679+5 8.128305-4 5.618371+5 8.200000-4 5.536277+5 8.222426-4 5.510897+5 8.317638-4 5.403816+5 8.413951-4 5.296950+5 8.472800-4 5.233240+5 8.472800-4 1.614024+6 8.580000-4 1.755031+6 8.609938-4 1.792383+6 8.620000-4 1.805201+6 8.649600-4 1.836556+6 8.649600-4 2.582023+6 8.658000-4 2.594031+6 8.680000-4 2.620289+6 8.700000-4 2.638823+6 8.757200-4 2.675208+6 8.810489-4 2.683989+6 8.835000-4 2.688199+6 8.890000-4 2.682470+6 8.912509-4 2.677889+6 8.950000-4 2.670483+6 8.980000-4 2.662152+6 9.015711-4 2.647886+6 9.050000-4 2.634322+6 9.100000-4 2.612545+6 9.120108-4 2.602263+6 9.150000-4 2.587090+6 9.225714-4 2.537372+6 9.440609-4 2.403526+6 9.549926-4 2.338485+6 9.650000-4 2.281127+6 9.772372-4 2.216163+6 9.885531-4 2.158354+6 1.000000-3 2.101929+6 1.011579-3 2.046997+6 1.059254-3 1.850777+6 1.071519-3 1.804691+6 1.083927-3 1.759657+6 1.110000-3 1.668339+6 1.122018-3 1.628065+6 1.122700-3 1.625821+6 1.122700-3 1.862511+6 1.135011-3 1.820390+6 1.161449-3 1.734628+6 1.170000-3 1.707693+6 1.174898-3 1.692355+6 1.188502-3 1.650219+6 1.204800-3 1.601779+6 1.204800-3 1.690959+6 1.220000-3 1.649038+6 1.230269-3 1.621173+6 1.238000-3 1.600508+6 1.244515-3 1.583180+6 1.245000-3 1.581882+6 1.255000-3 1.555040+6 1.258925-3 1.544619+6 1.273503-3 1.506811+6 1.288250-3 1.469514+6 1.310000-3 1.416934+6 1.333521-3 1.362988+6 1.350000-3 1.326697+6 1.350400-3 1.325822+6 1.350400-3 1.384667+6 1.380384-3 1.320199+6 1.396368-3 1.287349+6 1.400000-3 1.280058+6 1.412538-3 1.255360+6 1.428894-3 1.223861+6 1.430000-3 1.221772+6 1.445440-3 1.192962+6 1.462177-3 1.162874+6 1.479108-3 1.133587+6 1.500000-3 1.098559+6 1.513561-3 1.076614+6 1.531087-3 1.048988+6 1.548817-3 1.022083+6 1.566751-3 9.959349+5 1.570000-3 9.912863+5 1.603245-3 9.454426+5 1.621810-3 9.212071+5 1.630000-3 9.107148+5 1.659587-3 8.741598+5 1.698244-3 8.292584+5 1.717908-3 8.077135+5 1.737801-3 7.866402+5 1.757924-3 7.661203+5 1.778279-3 7.461378+5 1.800000-3 7.256017+5 1.840772-3 6.887700+5 1.850000-3 6.808206+5 1.862087-3 6.705074+5 1.883649-3 6.525572+5 1.905461-3 6.351150+5 1.927525-3 6.181172+5 1.950000-3 6.014829+5 1.972423-3 5.855208+5 2.000000-3 5.666275+5 2.041738-3 5.394942+5 2.089296-3 5.106250+5 2.113489-3 4.967944+5 2.137962-3 4.833576+5 2.150000-3 4.769444+5 2.162719-3 4.702969+5 2.187762-3 4.576018+5 2.238721-3 4.332232+5 2.264644-3 4.214080+5 2.300000-3 4.060318+5 2.344229-3 3.878150+5 2.350000-3 3.855117+5 2.371374-3 3.771448+5 2.400000-3 3.663513+5 2.426610-3 3.567024+5 2.454709-3 3.469123+5 2.511886-3 3.280641+5 2.540973-3 3.190179+5 2.570396-3 3.101528+5 2.600160-3 3.015162+5 2.630268-3 2.931240+5 2.650000-3 2.878081+5 2.691535-3 2.770592+5 2.722701-3 2.693450+5 2.786121-3 2.545863+5 2.818383-3 2.475270+5 2.884032-3 2.338520+5 2.900000-3 2.306885+5 2.917427-3 2.272867+5 2.951209-3 2.208977+5 3.000000-3 2.121013+5 3.019952-3 2.086472+5 3.054921-3 2.027737+5 3.150000-3 1.879709+5 3.162278-3 1.861739+5 3.198895-3 1.808949+5 3.200000-3 1.807390+5 3.235937-3 1.757679+5 3.273407-3 1.707936+5 3.300000-3 1.673760+5 3.311311-3 1.659506+5 3.400000-3 1.553126+5 3.467369-3 1.478726+5 3.507519-3 1.436570+5 3.548134-3 1.395671+5 3.589219-3 1.355721+5 3.630781-3 1.316969+5 3.650000-3 1.299587+5 3.758374-3 1.206898+5 3.845918-3 1.138814+5 3.890451-3 1.106175+5 3.935501-3 1.074498+5 4.000000-3 1.031040+5 4.027170-3 1.013490+5 4.073803-3 9.842196+4 4.120975-3 9.558344+4 4.216965-3 9.013796+4 4.300000-3 8.576674+4 4.315191-3 8.499971+4 4.365158-3 8.254288+4 4.415704-3 8.014393+4 4.466836-3 7.781612+4 4.518559-3 7.555914+4 4.570882-3 7.336208+4 4.623810-3 7.122543+4 4.677351-3 6.914875+4 4.786301-3 6.517310+4 4.897788-3 6.143465+4 4.954502-3 5.963543+4 5.069907-3 5.619611+4 5.128614-3 5.454896+4 5.248075-3 5.139210+4 5.300000-3 5.010045+4 5.308844-3 4.988408+4 5.370318-3 4.841605+4 5.432503-3 4.699250+4 5.483800-3 4.586219+4 5.483800-3 1.327908+5 5.500000-3 1.319415+5 5.522000-3 1.308008+5 5.559043-3 1.289084+5 5.575000-3 1.281059+5 5.623413-3 1.253836+5 5.700000-3 1.212403+5 5.754399-3 1.182722+5 5.902500-3 1.106728+5 5.902500-3 1.510141+5 5.956621-3 1.477515+5 5.985000-3 1.460815+5 6.000000-3 1.451730+5 6.025596-3 1.436117+5 6.095369-3 1.394737+5 6.100000-3 1.392046+5 6.165950-3 1.353142+5 6.200000-3 1.333614+5 6.237348-3 1.312639+5 6.241800-3 1.310170+5 6.241800-3 1.511480+5 6.309573-3 1.470951+5 6.382635-3 1.428965+5 6.400000-3 1.419226+5 6.456542-3 1.388399+5 6.500000-3 1.365106+5 6.531306-3 1.348509+5 6.650000-3 1.288078+5 6.760830-3 1.235593+5 6.839116-3 1.200342+5 6.918310-3 1.166123+5 6.998420-3 1.132124+5 7.000000-3 1.131468+5 7.244360-3 1.035917+5 7.413102-3 9.763798+4 7.500000-3 9.475840+4 7.585776-3 9.204091+4 7.673615-3 8.934792+4 7.762471-3 8.671139+4 7.852356-3 8.415498+4 7.943282-3 8.167589+4 8.128305-3 7.693327+4 8.222426-3 7.465079+4 8.317638-3 7.243721+4 8.511380-3 6.820858+4 8.609938-3 6.618044+4 8.709636-3 6.421403+4 8.810489-3 6.230213+4 8.912509-3 6.044862+4 9.000000-3 5.892012+4 9.015711-3 5.865100+4 9.120108-3 5.689881+4 9.225714-3 5.520016+4 9.332543-3 5.355230+4 9.440609-3 5.195397+4 9.660509-3 4.890283+4 9.772372-3 4.744686+4 9.885531-3 4.603546+4 1.000000-2 4.466723+4 1.011579-2 4.334083+4 1.023293-2 4.204135+4 1.035142-2 4.078154+4 1.047129-2 3.955940+4 1.059254-2 3.837396+4 1.096478-2 3.498939+4 1.109175-2 3.393037+4 1.122018-2 3.290436+4 1.135011-2 3.191012+4 1.148154-2 3.093977+4 1.174898-2 2.908659+4 1.188502-2 2.820309+4 1.202264-2 2.734655+4 1.230000-2 2.572702+4 1.244515-2 2.493214+4 1.258925-2 2.417662+4 1.273503-2 2.344462+4 1.288250-2 2.273027+4 1.288400-2 2.272316+4 1.303167-2 2.203388+4 1.318257-2 2.135840+4 1.333521-2 2.070412+4 1.350000-2 2.002866+4 1.364583-2 1.945595+4 1.396368-2 1.828402+4 1.412538-2 1.772293+4 1.428894-2 1.717773+4 1.445440-2 1.664692+4 1.462177-2 1.613254+4 1.479108-2 1.563448+4 1.513561-2 1.468409+4 1.531087-2 1.423131+4 1.548817-2 1.379249+4 1.580000-2 1.306491+4 1.603245-2 1.255584+4 1.621810-2 1.216893+4 1.640590-2 1.179427+4 1.659587-2 1.142884+4 1.678804-2 1.107501+4 1.698244-2 1.073210+4 1.717908-2 1.039754+4 1.737801-2 1.007365+4 1.778279-2 9.456177+3 1.819701-2 8.877222+3 1.840772-2 8.600459+3 1.862087-2 8.332489+3 1.905461-2 7.822008+3 1.927525-2 7.577760+3 1.949845-2 7.341086+3 1.950000-2 7.339478+3 1.972423-2 7.111761+3 2.000000-2 6.844782+3 2.041738-2 6.466471+3 2.065380-2 6.263793+3 2.089296-2 6.067612+3 2.113489-2 5.877726+3 2.137962-2 5.693939+3 2.162719-2 5.514930+3 2.187762-2 5.341653+3 2.213095-2 5.173956+3 2.238721-2 5.010937+3 2.264644-2 4.853180+3 2.300000-2 4.648784+3 2.317395-2 4.552477+3 2.344229-2 4.409234+3 2.371374-2 4.270583+3 2.454709-2 3.880876+3 2.483133-2 3.758636+3 2.511886-2 3.640342+3 2.540973-2 3.525010+3 2.570396-2 3.413394+3 2.630268-2 3.200711+3 2.650000-2 3.134635+3 2.691535-2 3.001511+3 2.754229-2 2.814151+3 2.818383-2 2.638759+3 2.884032-2 2.474558+3 2.917427-2 2.396425+3 2.951209-2 2.320814+3 2.985383-2 2.246759+3 3.000000-2 2.216076+3 3.019952-2 2.175107+3 3.054921-2 2.105785+3 3.090295-2 2.038724+3 3.126079-2 1.973815+3 3.162278-2 1.911002+3 3.300000-2 1.695441+3 3.311311-2 1.679218+3 3.427678-2 1.524104+3 3.467369-2 1.475347+3 3.507519-2 1.428182+3 3.548134-2 1.382555+3 3.589219-2 1.338258+3 3.630781-2 1.295411+3 3.672823-2 1.253942+3 3.715352-2 1.213825+3 3.894300-2 1.062883+3 3.894300-2 6.197685+3 3.927000-2 6.081932+3 3.935501-2 6.048067+3 3.981072-2 5.870933+3 4.000000-2 5.799387+3 4.027170-2 5.698760+3 4.073803-2 5.527146+3 4.168694-2 5.199342+3 4.216965-2 5.051340+3 4.265795-2 4.907574+3 4.315191-2 4.759567+3 4.365158-2 4.616036+3 4.570882-2 4.083964+3 4.623810-2 3.960867+3 4.677351-2 3.841347+3 4.786301-2 3.615413+3 4.841724-2 3.507493+3 4.954502-2 3.301267+3 5.011872-2 3.202743+3 5.069907-2 3.107167+3 5.128614-2 3.014455+3 5.188000-2 2.924500+3 5.248075-2 2.837209+3 5.308844-2 2.750614+3 5.370318-2 2.666670+3 5.495409-2 2.506229+3 5.754399-2 2.213827+3 5.841730-2 2.125818+3 5.888437-2 2.080715+3 6.000000-2 1.976827+3 6.095369-2 1.893569+3 6.165950-2 1.835002+3 6.309573-2 1.723262+3 6.382635-2 1.669911+3 6.531306-2 1.568130+3 6.606934-2 1.519586+3 6.683439-2 1.472546+3 7.161434-2 1.219410+3 7.244360-2 1.181680+3 7.300000-2 1.157251+3 7.413102-2 1.108938+3 7.500000-2 1.073669+3 7.762471-2 9.758788+2 8.000000-2 8.975572+2 8.128305-2 8.587866+2 8.413951-2 7.803046+2 8.609938-2 7.320162+2 8.709636-2 7.090070+2 9.015711-2 6.442238+2 9.120108-2 6.239534+2 9.332543-2 5.848298+2 9.772372-2 5.138013+2 1.000000-1 4.815966+2 1.011580-1 4.662600+2 1.023293-1 4.514142+2 1.035142-1 4.370413+2 1.059254-1 4.096542+2 1.071519-1 3.966132+2 1.109175-1 3.599232+2 1.122019-1 3.484648+2 1.188502-1 2.963802+2 1.202264-1 2.868732+2 1.216186-1 2.776727+2 1.244515-1 2.601489+2 1.258925-1 2.518075+2 1.273503-1 2.437332+2 1.288250-1 2.359181+2 1.318257-1 2.210357+2 1.348963-1 2.070933+2 1.364583-1 2.004522+2 1.380384-1 1.940244+2 1.396368-1 1.878025+2 1.412538-1 1.817802+2 1.428894-1 1.759517+2 1.445440-1 1.703102+2 1.496236-1 1.544493+2 1.500000-1 1.533550+2 1.531088-1 1.447072+2 1.603245-1 1.270303+2 1.621810-1 1.229605+2 1.640590-1 1.190212+2 1.659587-1 1.152083+2 1.698244-1 1.079454+2 1.717908-1 1.044881+2 1.737801-1 1.011415+2 1.757924-1 9.790223+1 1.819701-1 8.879447+1 1.862087-1 8.319984+1 1.883649-1 8.053623+1 1.905461-1 7.795851+1 1.972423-1 7.071043+1 2.000000-1 6.799044+1 2.018366-1 6.625719+1 2.041738-1 6.413706+1 2.065380-1 6.208488+1 2.089296-1 6.009842+1 2.137962-1 5.634853+1 2.162719-1 5.456266+1 2.187762-1 5.283388+1 2.238721-1 4.953905+1 2.264644-1 4.797107+1 2.290868-1 4.645272+1 2.317395-1 4.498249+1 2.344229-1 4.355891+1 2.398833-1 4.084570+1 2.426610-1 3.955321+1 2.454709-1 3.830165+1 2.483133-1 3.709005+1 2.511886-1 3.591735+1 2.540973-1 3.478172+1 2.570396-1 3.369614+1 2.630268-1 3.162562+1 2.660725-1 3.063865+1 2.722701-1 2.875621+1 2.754229-1 2.785884+1 2.786121-1 2.698952+1 2.818383-1 2.614753+1 2.851018-1 2.533188+1 2.884032-1 2.454299+1 2.951209-1 2.303822+1 3.000000-1 2.202357+1 3.000060-1 2.202236+1 3.019952-1 2.163275+1 3.054921-1 2.097043+1 3.090295-1 2.032840+1 3.126079-1 1.970603+1 3.162278-1 1.910288+1 3.198895-1 1.851822+1 3.235937-1 1.795148+1 3.311311-1 1.686977+1 3.349654-1 1.635364+1 3.388442-1 1.585413+1 3.427678-1 1.536993+1 3.467369-1 1.490053+1 3.507519-1 1.445374+1 3.548134-1 1.402037+1 3.589219-1 1.360000+1 3.630781-1 1.319224+1 3.672823-1 1.279682+1 3.715352-1 1.241328+1 3.801894-1 1.168034+1 3.845918-1 1.133027+1 3.890451-1 1.099144+1 3.935501-1 1.066276+1 3.981072-1 1.034972+1 4.000000-1 1.022344+1 4.027170-1 1.004595+1 4.073803-1 9.751156+0 4.120975-1 9.465112+0 4.168694-1 9.187457+0 4.265795-1 8.656365+0 4.315191-1 8.402515+0 4.365158-1 8.156117+0 4.415705-1 7.917441+0 4.466836-1 7.690394+0 4.518559-1 7.469862+0 4.570882-1 7.255768+0 4.623810-1 7.047872+0 4.677351-1 6.845937+0 4.731513-1 6.649838+0 4.786301-1 6.459362+0 4.954502-1 5.920053+0 5.000000-1 5.788304+0 5.011872-1 5.754605+0 5.069907-1 5.593801+0 5.128614-1 5.437615+0 5.248075-1 5.138298+0 5.432503-1 4.719938+0 5.495409-1 4.588204+0 5.559043-1 4.462984+0 5.623413-1 4.341506+0 5.688529-1 4.223420+0 5.754399-1 4.108604+0 5.956621-1 3.782557+0 6.000000-1 3.717425+0 6.025596-1 3.679737+0 6.095369-1 3.579714+0 6.165950-1 3.484656+0 6.237348-1 3.392153+0 6.309573-1 3.302379+0 6.382635-1 3.215025+0 6.456542-1 3.129985+0 6.531306-1 3.047195+0 6.606935-1 2.966600+0 6.683439-1 2.888138+0 6.760830-1 2.813887+0 6.839117-1 2.741567+0 6.918310-1 2.671129+0 6.998420-1 2.602694+0 7.079458-1 2.536049+0 7.161434-1 2.471112+0 7.244360-1 2.407842+0 7.328245-1 2.346193+0 7.413102-1 2.286123+0 7.585776-1 2.173415+0 7.673615-1 2.119178+0 7.762471-1 2.066436+0 7.852356-1 2.015034+0 7.943282-1 1.964914+0 8.035261-1 1.916040+0 8.222427-1 1.821911+0 8.413951-1 1.734604+0 8.511380-1 1.692553+0 8.609938-1 1.651652+0 8.709636-1 1.611749+0 8.912509-1 1.534872+0 9.015711-1 1.497821+0 9.120108-1 1.461678+0 9.225714-1 1.426407+0 9.332543-1 1.391990+0 9.440609-1 1.358524+0 9.549926-1 1.326988+0 9.660509-1 1.296209+0 9.772372-1 1.266158+0 9.885531-1 1.236804+0 1.000000+0 1.208137+0 1.011579+0 1.180148+0 1.022000+0 1.155778+0 1.023293+0 1.152807+0 1.035142+0 1.126910+0 1.047129+0 1.101605+0 1.059254+0 1.076871+0 1.071519+0 1.052706+0 1.083927+0 1.029094+0 1.096478+0 1.006013+0 1.109175+0 9.834491-1 1.122018+0 9.613932-1 1.135011+0 9.398298-1 1.148154+0 9.187581-1 1.161449+0 8.981668-1 1.174898+0 8.785544-1 1.188502+0 8.594296-1 1.202264+0 8.407204-1 1.216186+0 8.224297-1 1.244515+0 7.870348-1 1.250000+0 7.804503-1 1.258925+0 7.699214-1 1.273503+0 7.531845-1 1.288250+0 7.368113-1 1.303167+0 7.212548-1 1.318257+0 7.060754-1 1.333521+0 6.912162-1 1.348963+0 6.766688-1 1.364583+0 6.624377-1 1.380384+0 6.485061-1 1.396368+0 6.348749-1 1.412538+0 6.215303-1 1.428894+0 6.084672-1 1.445440+0 5.956789-1 1.462177+0 5.835118-1 1.479108+0 5.716320-1 1.513561+0 5.485927-1 1.531087+0 5.374315-1 1.584893+0 5.052917-1 1.640590+0 4.750739-1 1.659587+0 4.657210-1 1.678804+0 4.565545-1 1.698244+0 4.475683-1 1.717908+0 4.387605-1 1.737801+0 4.301337-1 1.757924+0 4.216767-1 1.798871+0 4.052587-1 1.819701+0 3.972909-1 1.840772+0 3.894799-1 1.862087+0 3.818224-1 1.883649+0 3.745607-1 1.905461+0 3.674391-1 1.927525+0 3.604530-1 1.949845+0 3.536006-1 1.972423+0 3.468852-1 2.018366+0 3.338350-1 2.041738+0 3.274949-1 2.044000+0 3.268916-1 2.113489+0 3.091886-1 2.137962+0 3.035218-1 2.162719+0 2.979587-1 2.187762+0 2.924984-1 2.213095+0 2.871398-1 2.238721+0 2.818833-1 2.290868+0 2.716569-1 2.317395+0 2.666838-1 2.398833+0 2.523041-1 2.426610+0 2.478470-1 2.454709+0 2.434686-1 2.483133+0 2.391682-1 2.511886+0 2.349450-1 2.540973+0 2.307993-1 2.600160+0 2.227261-1 2.630268+0 2.187962-1 2.722701+0 2.074174-1 2.754229+0 2.037575-1 2.786121+0 2.002835-1 2.818383+0 1.968687-1 2.851018+0 1.935126-1 2.884032+0 1.902145-1 2.917427+0 1.869750-1 3.000000+0 1.793486-1 3.019952+0 1.775836-1 3.162278+0 1.657915-1 3.198895+0 1.629679-1 3.235937+0 1.602828-1 3.273407+0 1.576420-1 3.311311+0 1.550450-1 3.349654+0 1.524915-1 3.388442+0 1.499818-1 3.467369+0 1.450858-1 3.507519+0 1.426980-1 3.672823+0 1.335336-1 3.715352+0 1.313360-1 3.758374+0 1.292468-1 3.801894+0 1.271908-1 3.845918+0 1.251679-1 3.890451+0 1.231777-1 3.935501+0 1.212204-1 4.027170+0 1.173989-1 4.073803+0 1.155335-1 4.265795+0 1.083638-1 4.315191+0 1.066420-1 4.365158+0 1.050020-1 4.415704+0 1.033871-1 4.466836+0 1.017973-1 4.518559+0 1.002324-1 4.623810+0 9.717640-2 4.731513+0 9.421356-2 4.786301+0 9.276622-2 5.011872+0 8.719578-2 5.069907+0 8.585625-2 5.188000+0 8.331678-2 5.248075+0 8.207534-2 5.308844+0 8.085257-2 5.370318+0 7.964830-2 5.495409+0 7.729487-2 5.623413+0 7.501099-2 5.688529+0 7.389448-2 6.000000+0 6.893753-2 6.025596+0 6.855634-2 6.165950+0 6.659157-2 6.237348+0 6.563041-2 6.309573+0 6.468323-2 6.382635+0 6.374995-2 6.456542+0 6.283073-2 6.606934+0 6.103190-2 6.760830+0 5.928456-2 6.839116+0 5.842975-2 7.244360+0 5.433704-2 7.498942+0 5.208833-2 7.585776+0 5.135964-2 7.673615+0 5.064122-2 7.762471+0 4.993304-2 7.852356+0 4.923521-2 8.035261+0 4.786870-2 8.222427+0 4.654011-2 8.317638+0 4.588971-2 8.709636+0 4.337775-2 8.810489+0 4.277156-2 9.120108+0 4.104998-2 9.332543+0 3.994094-2 9.440609+0 3.939776-2 9.660509+0 3.833370-2 9.772372+0 3.781280-2 1.011579+1 3.629225-2 1.023293+1 3.579909-2 1.035142+1 3.531265-2 1.083927+1 3.343208-2 1.096478+1 3.299018-2 1.122018+1 3.212392-2 1.148154+1 3.128037-2 1.161449+1 3.086699-2 1.200000+1 2.972428-2 1.202264+1 2.965963-2 1.216186+1 2.926795-2 1.288250+1 2.738585-2 1.303167+1 2.702422-2 1.318257+1 2.666736-2 1.364583+1 2.562482-2 1.380384+1 2.529535-2 1.400000+1 2.489736-2 1.412538+1 2.464913-2 1.428894+1 2.433226-2 1.445440+1 2.401947-2 1.500000+1 2.304008-2 1.531087+1 2.251539-2 1.698244+1 2.004214-2 1.717908+1 1.978469-2 1.757924+1 1.927965-2 1.819701+1 1.854617-2 1.840772+1 1.831289-2 1.862087+1 1.808313-2 1.883649+1 1.785625-2 1.905461+1 1.763222-2 1.972423+1 1.697701-2 2.000000+1 1.672065-2 2.264644+1 1.459183-2 2.290868+1 1.440888-2 2.317395+1 1.422823-2 2.344229+1 1.405286-2 2.371374+1 1.387998-2 2.570396+1 1.272815-2 2.630268+1 1.241709-2 3.273407+1 9.816065-3 3.311311+1 9.695377-3 3.349654+1 9.576440-3 3.507519+1 9.124715-3 3.548134+1 9.015200-3 3.589219+1 8.907000-3 5.069907+1 6.200342-3 5.128614+1 6.125926-3 5.188000+1 6.052404-3 5.248075+1 5.979876-3 5.559043+1 5.634978-3 5.623413+1 5.568444-3 5.688529+1 5.502696-3 8.317638+1 3.718370-3 8.413951+1 3.674468-3 8.511380+1 3.631137-3 8.609938+1 3.588326-3 9.225714+1 3.344580-3 9.440609+1 3.267087-3 9.549926+1 3.229016-3 1.621810+2 1.883266-3 1.640590+2 1.861321-3 1.659587+2 1.839651-3 1.678804+2 1.818233-3 1.698244+2 1.797067-3 1.717908+2 1.776311-3 1.840772+2 1.656717-3 1.883649+2 1.618676-3 1.905461+2 1.599984-3 3.235937+2 9.377407-4 3.273407+2 9.269122-4 3.311311+2 9.162142-4 3.349654+2 9.056396-4 3.388442+2 8.951877-4 3.427678+2 8.849027-4 3.672823+2 8.256293-4 3.758374+2 8.067690-4 3.801894+2 7.975011-4 1.288250+3 2.343331-4 1.303167+3 2.316412-4 1.318257+3 2.289810-4 1.333521+3 2.263515-4 1.348963+3 2.237521-4 1.364583+3 2.211898-4 1.462177+3 2.064208-4 1.496236+3 2.017204-4 1.513561+3 1.994106-4 1.000000+5 3.013992-6 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.140000-6 5.140000-6 5.340000-6 5.140000-6 5.340000-6 5.269044-6 5.580000-6 5.281688-6 5.580000-6 5.366995-6 6.700000-6 5.408690-6 9.225714-6 5.431119-6 2.559000-5 5.432612-6 2.559000-5 2.160763-5 2.786121-5 2.159221-5 2.833000-5 2.157207-5 2.833000-5 2.389978-5 3.198895-5 2.390558-5 4.365000-5 2.368556-5 4.365000-5 2.423508-5 4.841724-5 2.460142-5 5.400000-5 2.523677-5 6.918310-5 2.737835-5 7.585776-5 2.818534-5 8.317638-5 2.887357-5 9.150000-5 2.942327-5 1.011579-4 2.982370-5 1.122018-4 3.007002-5 1.137600-4 3.009227-5 1.137600-4 4.969624-5 1.168300-4 5.234466-5 1.168300-4 5.448144-5 1.190000-4 5.566242-5 1.210000-4 5.635861-5 1.232000-4 5.670721-5 1.262300-4 5.669316-5 1.307000-4 5.614083-5 1.369600-4 5.493348-5 1.472000-4 5.246103-5 1.540000-4 5.085360-5 1.585000-4 5.001777-5 1.630000-4 4.945921-5 1.680000-4 4.916955-5 1.740000-4 4.925453-5 1.805000-4 4.972163-5 2.070700-4 5.257597-5 2.070700-4 6.334787-5 2.247300-4 6.360634-5 2.247300-4 6.724994-5 2.791300-4 6.701985-5 2.791300-4 7.155557-5 3.350000-4 7.126050-5 4.623810-4 7.142546-5 8.472800-4 7.306688-5 8.472800-4 1.189804-4 8.620000-4 1.219132-4 8.649600-4 1.223545-4 8.649600-4 1.274663-4 8.757200-4 1.282057-4 9.050000-4 1.287157-4 1.122700-3 1.278714-4 1.122700-3 1.394801-4 1.204800-3 1.402194-4 1.204800-3 1.447392-4 1.310000-3 1.462424-4 1.350400-3 1.466929-4 1.350400-3 1.521652-4 1.757924-3 1.575427-4 2.264644-3 1.629778-4 2.818383-3 1.678388-4 3.548134-3 1.730013-4 4.466836-3 1.781575-4 5.483800-3 1.826569-4 5.483800-3 2.565730-4 5.902500-3 2.574744-4 5.902500-3 2.717944-4 6.241800-3 2.722697-4 6.241800-3 2.847867-4 9.015711-3 2.901784-4 1.350000-2 2.960578-4 1.972423-2 3.016120-4 2.917427-2 3.072574-4 3.894300-2 3.112097-4 3.894300-2 3.106051-4 1.011580-1 3.121595-4 4.120975-1 3.131624-4 1.000000+5 3.133467-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.140000-6 0.0 1.168300-4 0.0 1.168300-4 5.169499-9 1.169700-4 5.167264-9 1.175000-4 5.198813-9 1.180000-4 5.264242-9 1.187000-4 5.405721-9 1.190000-4 5.477472-9 1.195000-4 5.613767-9 1.200000-4 5.768797-9 1.221000-4 6.476242-9 1.227000-4 6.665150-9 1.238000-4 6.966367-9 1.244515-4 7.110501-9 1.249000-4 7.201329-9 1.260000-4 7.371676-9 1.267000-4 7.447524-9 1.275000-4 7.508747-9 1.283000-4 7.551768-9 1.300000-4 7.580282-9 1.322000-4 7.546658-9 1.350000-4 7.437970-9 1.369600-4 7.339898-9 1.400000-4 7.163940-9 1.445440-4 6.841838-9 1.472000-4 6.630722-9 1.540000-4 6.044522-9 1.560000-4 5.880290-9 1.585000-4 5.694241-9 1.603245-4 5.567175-9 1.621810-4 5.450457-9 1.640590-4 5.346083-9 1.660000-4 5.255682-9 1.680000-4 5.179482-9 1.698244-4 5.124644-9 1.720000-4 5.076967-9 1.740000-4 5.048765-9 1.760000-4 5.034243-9 1.780000-4 5.030349-9 1.805000-4 5.042829-9 1.840772-4 5.085501-9 1.905461-4 5.208298-9 2.070700-4 5.615410-9 2.070700-4 8.016417-9 2.247300-4 8.122997-9 2.247300-4 9.433188-9 2.511886-4 9.433087-9 2.791300-4 9.469299-9 2.791300-4 1.034121-8 3.280000-4 1.035841-8 5.888437-4 1.071163-8 8.472800-4 1.105794-8 8.472800-4 1.311163-8 8.649600-4 1.326801-8 8.649600-4 1.133168-7 8.680000-4 1.132920-7 8.700000-4 1.135341-7 8.757200-4 1.148662-7 8.835000-4 1.180998-7 8.890000-4 1.210194-7 8.950000-4 1.236370-7 8.980000-4 1.247190-7 9.100000-4 1.274959-7 9.150000-4 1.281685-7 9.650000-4 1.275348-7 1.011579-3 1.277602-7 1.122700-3 1.271284-7 1.122700-3 2.018815-7 1.204800-3 2.076386-7 1.204800-3 2.534878-7 1.238000-3 2.591351-7 1.310000-3 2.672139-7 1.350400-3 2.711898-7 1.350400-3 3.125360-7 1.445440-3 3.246961-7 1.698244-3 3.526514-7 1.972423-3 3.796111-7 2.238721-3 4.028802-7 2.540973-3 4.268185-7 2.900000-3 4.513699-7 3.311311-3 4.763913-7 3.845918-3 5.041487-7 4.415704-3 5.293949-7 4.954502-3 5.501889-7 5.483800-3 5.681850-7 5.483800-3 3.651253-4 5.623413-3 3.666462-4 5.902500-3 3.669059-4 5.902500-3 4.562827-4 6.237348-3 4.574964-4 6.241800-3 4.574983-4 6.241800-3 4.811194-4 8.222426-3 4.855889-4 1.288400-2 4.902136-4 2.264644-2 4.940421-4 3.894300-2 4.968714-4 3.894300-2 2.635705-2 4.623810-2 2.656096-2 6.000000-2 2.680296-2 8.709636-2 2.701468-2 1.445440-1 2.716814-2 3.715352-1 2.726526-2 1.109175+0 2.735858-2 1.000000+5 2.735817-2 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.140000-6 0.0 5.340000-6 2.000000-7 5.340000-6 7.095556-8 5.580000-6 2.983117-7 5.580000-6 2.130047-7 5.850000-6 4.686888-7 6.100000-6 7.082991-7 6.456542-6 1.053616-6 7.244360-6 1.826449-6 9.225714-6 3.794595-6 2.559000-5 2.015739-5 2.559000-5 3.982368-6 2.620000-5 4.579394-6 2.691535-5 5.298958-6 2.833000-5 6.757931-6 2.833000-5 4.430220-6 2.940000-5 5.475696-6 3.162278-5 7.712609-6 4.220000-5 1.850047-5 4.365000-5 1.996444-5 4.365000-5 1.941492-5 4.731513-5 2.281455-5 5.150000-5 2.657084-5 5.900000-5 3.307662-5 7.161434-5 4.392058-5 8.150000-5 5.276238-5 9.332543-5 6.381051-5 1.110000-4 8.094823-5 1.137600-4 8.366773-5 1.137600-4 6.406376-5 1.168300-4 6.448534-5 1.168300-4 6.234339-5 1.190000-4 6.333210-5 1.210000-4 6.463529-5 1.232000-4 6.648598-5 1.265000-4 6.981776-5 1.322000-4 7.631046-5 1.412538-4 8.730052-5 1.550000-4 1.043477-4 1.621810-4 1.126412-4 1.698244-4 1.206680-4 1.805000-4 1.307733-4 2.070700-4 1.544884-4 2.070700-4 1.437141-4 2.247300-4 1.611155-4 2.247300-4 1.574706-4 2.791300-4 2.121007-4 2.791300-4 2.075641-4 4.623810-4 3.909450-4 8.472800-4 7.742021-4 8.472800-4 7.282865-4 8.649600-4 7.425922-4 8.649600-4 7.373803-4 9.225714-4 7.937515-4 1.122700-3 9.947015-4 1.122700-3 9.830180-4 1.204800-3 1.064373-3 1.204800-3 1.059807-3 1.350400-3 1.203436-3 1.350400-3 1.197922-3 3.400000-3 3.227458-3 5.483800-3 5.300575-3 5.483800-3 4.862102-3 5.902500-3 5.278120-3 5.902500-3 5.174423-3 6.241800-3 5.512032-3 6.241800-3 5.475894-3 3.894300-2 3.813492-2 3.894300-2 1.227535-2 4.027170-2 1.354642-2 4.954502-2 2.259892-2 6.683439-2 3.965023-2 1.318257-1 1.043655-1 1.000000+5 9.999997+4 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 3.894300-2 5.134802+3 3.927000-2 5.043800+3 4.027170-2 4.731944+3 4.168694-2 4.322774+3 4.265795-2 4.086357+3 4.677351-2 3.209025+3 5.248075-2 2.381537+3 5.888437-2 1.752819+3 7.300000-2 9.800400+2 9.120108-2 5.305220+2 1.188502-1 2.528302+2 2.089296-1 5.144914+1 2.540973-1 2.979240+1 3.000060-1 1.887202+1 3.467369-1 1.277458+1 3.935501-1 9.144727+0 4.415705-1 6.792493+0 4.954502-1 5.080714+0 5.495409-1 3.938899+0 6.095369-1 3.074096+0 6.683439-1 2.481012+0 7.413102-1 1.964977+0 8.222427-1 1.566901+0 9.440609-1 1.168937+0 1.023293+0 9.919983-1 1.161449+0 7.728980-1 1.288250+0 6.340306-1 1.445440+0 5.125700-1 1.640590+0 4.088003-1 1.862087+0 3.285609-1 2.113489+0 2.660593-1 2.398833+0 2.171105-1 2.754229+0 1.753378-1 3.198895+0 1.402394-1 3.715352+0 1.130193-1 4.315191+0 9.176934-2 5.069907+0 7.388198-2 6.025596+0 5.899502-2 7.244360+0 4.675865-2 8.810489+0 3.680611-2 1.083927+1 2.876925-2 1.364583+1 2.205100-2 1.819701+1 1.595936-2 2.317395+1 1.224371-2 3.349654+1 8.240826-3 5.248075+1 5.145909-3 8.609938+1 3.087872-3 1.698244+2 1.546437-3 3.388442+2 7.703457-4 1.348963+3 1.925488-4 1.000000+5 2.593700-6 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 3.894300-2 3.104800-4 1.000000+5 3.104800-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.894300-2 3.171000-2 1.000000+5 3.171000-2 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 3.894300-2 6.922520-3 1.000000+5 9.999997+4 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.241800-3 2.013109+4 6.400000-3 1.927957+4 6.500000-3 1.881192+4 6.650000-3 1.806958+4 6.918310-3 1.697389+4 7.500000-3 1.472244+4 8.128305-3 1.282765+4 8.709636-3 1.130413+4 1.011579-2 8.553957+3 1.273503-2 5.449111+3 1.412538-2 4.409768+3 1.640590-2 3.230625+3 1.905461-2 2.341066+3 2.137962-2 1.817829+3 2.511886-2 1.264424+3 2.951209-2 8.709372+2 3.427678-2 6.110605+2 3.981072-2 4.255273+2 4.623810-2 2.942096+2 5.370318-2 2.020313+2 6.309573-2 1.338209+2 7.500000-2 8.538660+1 9.015711-2 5.250260+1 1.122019-1 2.921287+1 1.348963-1 1.772188+1 2.238721-1 4.442438+0 2.851018-1 2.312366+0 3.349654-1 1.506634+0 3.845918-1 1.050724+0 4.365158-1 7.603643-1 4.954502-1 5.543728-1 5.559043-1 4.189767-1 6.237348-1 3.191346-1 6.918310-1 2.514766-1 7.673615-1 1.994833-1 8.511380-1 1.592097-1 9.332543-1 1.311652-1 1.023293+0 1.088457-1 1.174898+0 8.297655-2 1.303167+0 6.810458-2 1.462177+0 5.506940-2 1.640590+0 4.483646-2 1.862087+0 3.603542-2 2.113489+0 2.918286-2 2.398833+0 2.381366-2 2.754229+0 1.922971-2 3.198895+0 1.537875-2 3.715352+0 1.239347-2 4.315191+0 1.006332-2 5.069907+0 8.102035-3 6.025596+0 6.469480-3 7.244360+0 5.127637-3 8.810489+0 4.036302-3 1.083927+1 3.154862-3 1.364583+1 2.418094-3 1.840772+1 1.727904-3 2.344229+1 1.326119-3 3.311311+1 9.148397-4 5.188000+1 5.711108-4 8.413951+1 3.467075-4 1.640590+2 1.756237-4 3.273407+2 8.746764-5 1.303167+3 2.185866-5 1.000000+5 2.844300-7 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.241800-3 3.662500-4 1.000000+5 3.662500-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.241800-3 6.348500-4 1.000000+5 6.348500-4 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.241800-3 5.240700-3 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 5.902500-3 4.034134+4 5.985000-3 3.934844+4 6.100000-3 3.775500+4 6.456542-3 3.272200+4 7.585776-3 2.140400+4 8.511380-3 1.563200+4 1.011579-2 9.661700+3 1.135011-2 6.992100+3 1.396368-2 3.835100+3 1.580000-2 2.661000+3 1.819701-2 1.744500+3 2.213095-2 9.612300+2 2.691535-2 5.242800+2 3.300000-2 2.761500+2 4.000000-2 1.496000+2 4.954502-2 7.510200+1 6.683439-2 2.837522+1 1.202264-1 4.163995+0 1.500000-1 2.033776+0 1.819701-1 1.095648+0 2.137962-1 6.584768-1 2.483133-1 4.134958-1 2.851018-1 2.711805-1 3.235937-1 1.855596-1 3.630781-1 1.323151-1 4.073803-1 9.501525-2 4.570882-1 6.874869-2 5.069907-1 5.173452-2 5.623413-1 3.920101-2 6.237348-1 2.992363-2 6.839117-1 2.370065-2 7.585776-1 1.838253-2 8.413951-1 1.436278-2 9.440609-1 1.098136-2 1.000000+0 9.662010-3 1.071519+0 8.357037-3 1.148154+0 7.278787-3 1.250000+0 6.189555-3 1.380384+0 5.163838-3 1.717908+0 3.511539-3 1.949845+0 2.828288-3 2.187762+0 2.339710-3 2.483133+0 1.913165-3 2.851018+0 1.548145-3 3.311311+0 1.240408-3 3.845918+0 1.001423-3 4.466836+0 8.144914-4 5.308844+0 6.468405-4 6.309573+0 5.174939-4 7.673615+0 4.051030-4 9.440609+0 3.151676-4 1.161449+1 2.469381-4 1.445440+1 1.921772-4 1.905461+1 1.411045-4 2.371374+1 1.111098-4 3.349654+1 7.666468-5 5.248075+1 4.787337-5 8.511380+1 2.906805-5 1.678804+2 1.455571-5 3.349654+2 7.250184-6 1.333521+3 1.812133-6 1.000000+5 2.413000-8 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 5.902500-3 3.110800-4 1.000000+5 3.110800-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.902500-3 7.014800-4 1.000000+5 7.014800-4 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 5.902500-3 4.889940-3 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.483800-3 8.692863+4 5.575000-3 8.416698+4 5.700000-3 7.976360+4 6.000000-3 6.974840+4 6.918310-3 4.737518+4 7.673615-3 3.544630+4 9.015711-3 2.235014+4 1.059254-2 1.402755+4 1.288400-2 7.822701+3 1.428894-2 5.715317+3 1.698244-2 3.359523+3 2.041738-2 1.885643+3 2.454709-2 1.047765+3 2.951209-2 5.767473+2 3.548134-2 3.147842+2 4.265795-2 1.704823+2 5.188000-2 8.823264+1 6.531306-2 4.035241+1 1.288250-1 3.940255+0 1.603245-1 1.874058+0 1.883649-1 1.091170+0 2.162719-1 6.909157-1 2.483133-1 4.406739-1 2.786121-1 3.049712-1 3.126079-1 2.125732-1 3.467369-1 1.546940-1 3.845918-1 1.133803-1 4.265795-1 8.373340-2 4.677351-1 6.440280-2 5.128614-1 4.987179-2 5.623413-1 3.888762-2 6.165950-1 3.054458-2 6.760830-1 2.417464-2 7.413102-1 1.927245-2 8.413951-1 1.425195-2 9.015711-1 1.215430-2 9.660509-1 1.043504-2 1.035142+0 9.029036-3 1.135011+0 7.504377-3 1.250000+0 6.231575-3 1.380384+0 5.190532-3 1.659587+0 3.741215-3 1.883649+0 3.007800-3 2.113489+0 2.483090-3 2.398833+0 2.026149-3 2.754229+0 1.636219-3 3.198895+0 1.308623-3 3.715352+0 1.054604-3 4.315191+0 8.563191-4 5.069907+0 6.894176-4 6.025596+0 5.504960-4 7.244360+0 4.363137-4 8.810489+0 3.434493-4 1.083927+1 2.684531-4 1.364583+1 2.057647-4 1.819701+1 1.489133-4 2.344229+1 1.128360-4 3.349654+1 7.689597-5 5.248075+1 4.801797-5 8.511380+1 2.915530-5 1.678804+2 1.459960-5 3.349654+2 7.272076-6 1.333521+3 1.817555-6 1.000000+5 2.420300-8 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.483800-3 2.955700-4 1.000000+5 2.955700-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.483800-3 5.574600-4 1.000000+5 5.574600-4 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.483800-3 4.630770-3 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.350400-3 5.884489+4 1.430000-3 5.571080+4 1.548817-3 5.016049+4 1.630000-3 4.699060+4 1.737801-3 4.292129+4 2.238721-3 2.954913+4 2.400000-3 2.650340+4 2.951209-3 1.892863+4 3.300000-3 1.564910+4 3.845918-3 1.198940+4 4.623810-3 8.598637+3 5.300000-3 6.674160+3 6.095369-3 5.121490+3 7.244360-3 3.662495+3 8.709636-3 2.537517+3 1.035142-2 1.783676+3 1.230000-2 1.244072+3 1.445440-2 8.813479+2 1.678804-2 6.359251+2 1.950000-2 4.557900+2 2.300000-2 3.133600+2 2.691535-2 2.176888+2 3.162278-2 1.487331+2 3.715352-2 1.008752+2 4.365158-2 6.790283+1 5.128614-2 4.539044+1 6.095369-2 2.925207+1 7.244360-2 1.871261+1 8.709636-2 1.153366+1 1.071519-1 6.637056+0 1.380384-1 3.348419+0 2.454709-1 7.002613-1 2.951209-1 4.271582-1 3.467369-1 2.790726-1 4.000000-1 1.927416-1 4.518559-1 1.414882-1 5.069907-1 1.063588-1 5.688529-1 8.053466-2 6.309573-1 6.311263-2 6.998420-1 4.978317-2 7.762471-1 3.952946-2 8.709636-1 3.081045-2 9.549926-1 2.541858-2 1.059254+0 2.064683-2 1.202264+0 1.612369-2 1.348963+0 1.297207-2 1.513561+0 1.051148-2 1.717908+0 8.406110-3 1.949845+0 6.774708-3 2.213095+0 5.501172-3 2.511886+0 4.500882-3 2.884032+0 3.644062-3 3.349654+0 2.921243-3 3.890451+0 2.359775-3 4.518559+0 1.920315-3 5.370318+0 1.525810-3 6.382635+0 1.221242-3 7.762471+0 9.564740-4 9.660509+0 7.342967-4 1.202264+1 5.681671-4 1.500000+1 4.413400-4 1.972423+1 3.252897-4 2.570396+1 2.438046-4 3.507519+1 1.748582-4 5.559043+1 1.079866-4 9.225714+1 6.409785-5 1.840772+2 3.175414-5 3.672823+2 1.582489-5 1.462177+3 3.957267-6 1.000000+5 5.778400-8 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.350400-3 2.754600-4 1.000000+5 2.754600-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.350400-3 1.244100-6 1.000000+5 1.244100-6 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.350400-3 1.073696-3 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.204800-3 8.917946+4 1.220000-3 9.053288+4 1.238000-3 9.120118+4 1.245000-3 9.119883+4 1.255000-3 9.074595+4 1.310000-3 8.732280+4 1.412538-3 8.060512+4 1.500000-3 7.494460+4 1.659587-3 6.553068+4 1.778279-3 5.952241+4 1.905461-3 5.380725+4 2.041738-3 4.836213+4 2.187762-3 4.317011+4 2.511886-3 3.407928+4 2.691535-3 3.010704+4 3.019952-3 2.423693+4 3.311311-3 2.027621+4 3.650000-3 1.665482+4 4.120975-3 1.294177+4 4.570882-3 1.034915+4 5.128614-3 8.019780+3 5.754399-3 6.163218+3 6.382635-3 4.835102+3 7.244360-3 3.564395+3 8.128305-3 2.682370+3 9.225714-3 1.947625+3 1.047129-2 1.403339+3 1.188502-2 1.003749+3 1.350000-2 7.113600+2 1.531087-2 5.027997+2 1.737801-2 3.522835+2 1.972423-2 2.452743+2 2.264644-2 1.641376+2 2.650000-2 1.031012+2 3.090295-2 6.492119+1 3.630781-2 3.967492+1 4.315191-2 2.323447+1 5.248075-2 1.256838+1 6.606934-2 6.047570+0 1.364583-1 5.894875-1 1.698244-1 2.938263-1 2.000000-1 1.756420-1 2.454709-1 9.334911-2 2.818383-1 6.135407-2 3.198895-1 4.204534-2 3.589219-1 3.001443-2 4.027170-1 2.157874-2 4.518559-1 1.564086-2 5.069907-1 1.142516-2 5.623413-1 8.669502-3 6.237348-1 6.625107-3 6.918310-1 5.101167-3 7.673615-1 3.957817-3 8.709636-1 2.922125-3 9.332543-1 2.493466-3 9.885531-1 2.197970-3 1.071519+0 1.859676-3 1.161449+0 1.584336-3 1.258925+0 1.358167-3 1.396368+0 1.123725-3 1.698244+0 7.949669-4 1.927525+0 6.399059-4 2.162719+0 5.290187-4 2.454709+0 4.322622-4 2.818383+0 3.495184-4 3.273407+0 2.798600-4 3.801894+0 2.258052-4 4.415704+0 1.835561-4 5.248075+0 1.456977-4 6.237348+0 1.165063-4 7.585776+0 9.116205-5 9.332543+0 7.089386-5 1.148154+1 5.552340-5 1.428894+1 4.319629-5 1.905461+1 3.130524-5 2.371374+1 2.465104-5 3.349654+1 1.700821-5 5.248075+1 1.062088-5 8.609938+1 6.373315-6 1.717908+2 3.154886-6 3.427678+2 1.571625-6 1.364583+3 3.928712-7 1.000000+5 5.353400-9 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.204800-3 2.259200-4 1.000000+5 2.259200-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.204800-3 1.077000-6 1.000000+5 1.077000-6 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.204800-3 9.778030-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.122700-3 2.366900+5 1.170000-3 2.278289+5 1.230269-3 2.152414+5 1.333521-3 1.942645+5 1.412538-3 1.791259+5 1.566751-3 1.534237+5 1.717908-3 1.329360+5 1.862087-3 1.165021+5 2.000000-3 1.030296+5 2.344229-3 7.716654+4 2.540973-3 6.627549+4 2.818383-3 5.397159+4 3.162278-3 4.270839+4 3.467369-3 3.515088+4 3.935501-3 2.669846+4 4.365158-3 2.115651+4 4.897788-3 1.622935+4 5.522000-3 1.221074+4 6.165950-3 9.337757+3 7.000000-3 6.803920+3 7.943282-3 4.922589+3 9.000000-3 3.547848+3 1.011579-2 2.594107+3 1.148154-2 1.834596+3 1.303167-2 1.288049+3 1.479108-2 8.978491+2 1.698244-2 6.008506+2 1.927525-2 4.129000+2 2.213095-2 2.722844+2 2.570396-2 1.720188+2 2.951209-2 1.118006+2 3.427678-2 6.961657+1 4.027170-2 4.147512+1 4.786301-2 2.362404+1 5.754399-2 1.286238+1 7.161434-2 6.196223+0 1.023293-1 1.861339+0 1.396368-1 6.511351-1 1.698244-1 3.382506-1 2.018366-1 1.911905-1 2.317395-1 1.218649-1 2.630268-1 8.120489-2 2.951209-1 5.652659-2 3.311311-1 3.965290-2 3.672823-1 2.901710-2 4.073803-1 2.137841-2 4.518559-1 1.586296-2 4.954502-1 1.225164-2 5.432503-1 9.532379-3 5.956621-1 7.470707-3 6.531306-1 5.899667-3 7.161434-1 4.693446-3 7.852356-1 3.760871-3 8.609938-1 3.026725-3 9.225714-1 2.587144-3 9.885531-1 2.227138-3 1.071519+0 1.886969-3 1.174898+0 1.572818-3 1.288250+0 1.320657-3 1.428894+0 1.093559-3 1.698244+0 8.056432-4 1.927525+0 6.485556-4 2.162719+0 5.361691-4 2.454709+0 4.381014-4 2.818383+0 3.542399-4 3.273407+0 2.836400-4 3.801894+0 2.288545-4 4.415704+0 1.860356-4 5.248075+0 1.476696-4 6.237348+0 1.180844-4 7.585776+0 9.239328-5 9.332543+0 7.185239-5 1.148154+1 5.627453-5 1.412538+1 4.435578-5 1.883649+1 3.213400-5 2.371374+1 2.498444-5 3.349654+1 1.723894-5 5.248075+1 1.076447-5 8.609938+1 6.459499-6 1.717908+2 3.197535-6 3.427678+2 1.592885-6 1.364583+3 3.981835-7 1.000000+5 5.425800-9 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.122700-3 2.192200-4 1.000000+5 2.192200-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.122700-3 7.153600-7 1.000000+5 7.153600-7 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.122700-3 9.027646-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 8.649600-4 7.454674+5 8.890000-4 8.338168+5 8.950000-4 8.502721+5 8.980000-4 8.559363+5 9.050000-4 8.602243+5 9.100000-4 8.609326+5 9.150000-4 8.575688+5 9.440609-4 7.948033+5 9.650000-4 7.519960+5 1.110000-3 5.484120+5 1.174898-3 4.802304+5 1.273503-3 3.947058+5 1.380384-3 3.220754+5 1.513561-3 2.532587+5 1.659587-3 1.976569+5 1.850000-3 1.465304+5 2.041738-3 1.105369+5 2.300000-3 7.823400+4 2.570396-3 5.612543+4 2.900000-3 3.890688+4 3.273407-3 2.667686+4 3.650000-3 1.889732+4 4.216965-3 1.183745+4 4.677351-3 8.403912+3 5.300000-3 5.522480+3 6.095369-3 3.420637+3 7.000000-3 2.110344+3 7.943282-3 1.347408+3 9.000000-3 8.591400+2 1.023293-2 5.372479+2 1.174898-2 3.216325+2 1.333521-2 1.995743+2 1.531087-2 1.177380+2 1.778279-2 6.595779+1 2.089296-2 3.504619+1 2.483133-2 1.765197+1 2.985383-2 8.422247+0 3.672823-2 3.632593+0 4.677351-2 1.350244+0 8.128305-2 1.392565-1 1.011580-1 5.702404-2 1.216186-1 2.706934-2 1.428894-1 1.420492-2 1.659587-1 7.864692-3 1.905461-1 4.591395-3 2.187762-1 2.701140-3 2.454709-1 1.748052-3 2.722701-1 1.189176-3 3.019952-1 8.145760-4 3.349654-1 5.626568-4 3.715352-1 3.915142-4 4.120975-1 2.744679-4 4.570882-1 1.938705-4 5.069907-1 1.379591-4 5.559043-1 1.025735-4 6.165950-1 7.407562-5 6.683439-1 5.786826-5 7.161434-1 4.710662-5 7.673615-1 3.859731-5 8.511380-1 2.888272-5 9.015711-1 2.471119-5 9.440609-1 2.192223-5 9.885531-1 1.956287-5 1.035142+0 1.758171-5 1.083927+0 1.590917-5 1.148154+0 1.415460-5 1.216186+0 1.268525-5 1.318257+0 1.096352-5 1.531087+0 8.471202-6 1.819701+0 6.265720-6 2.041738+0 5.158866-6 2.317395+0 4.200797-6 2.630268+0 3.445808-6 3.019952+0 2.796744-6 3.507519+0 2.247134-6 4.073803+0 1.819437-6 4.786301+0 1.461016-6 5.688529+0 1.163816-6 6.839116+0 9.202634-7 8.317638+0 7.227371-7 1.035142+1 5.562355-7 1.318257+1 4.200822-7 1.757924+1 3.037389-7 2.290868+1 2.270600-7 3.273407+1 1.546772-7 5.128614+1 9.653902-8 8.317638+1 5.859542-8 1.640590+2 2.933344-8 3.273407+2 1.460928-8 1.303167+3 3.650888-9 1.000000+5 4.75060-11 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 8.649600-4 1.400600-4 1.000000+5 1.400600-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 8.649600-4 3.598000-7 1.000000+5 3.598000-7 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 8.649600-4 7.245402-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 8.472800-4 1.090700+6 8.580000-4 1.243003+6 8.620000-4 1.297291+6 8.658000-4 1.341564+6 8.680000-4 1.362242+6 8.700000-4 1.375636+6 8.757200-4 1.396971+6 8.835000-4 1.388652+6 1.011579-3 9.899148+5 1.083927-3 8.466163+5 1.161449-3 7.191420+5 1.244515-3 6.069846+5 1.350000-3 4.936950+5 1.479108-3 3.883185+5 1.621810-3 3.026769+5 1.800000-3 2.269350+5 1.972423-3 1.745801+5 2.238721-3 1.206894+5 2.454709-3 9.159392+4 2.818383-3 6.009437+4 3.162278-3 4.193082+4 3.548134-3 2.906489+4 4.027170-3 1.925584+4 4.518559-3 1.314521+4 5.069907-3 8.912935+3 5.754399-3 5.768546+3 6.531306-3 3.704567+3 7.413102-3 2.361407+3 8.317638-3 1.558370+3 9.332543-3 1.022368+3 1.059254-2 6.387035+2 1.202264-2 3.962449+2 1.364583-2 2.441326+2 1.548817-2 1.494383+2 1.778279-2 8.687524+1 2.065380-2 4.790729+1 2.454709-2 2.389522+1 2.917427-2 1.181788+1 3.507519-2 5.532935+0 4.315191-2 2.337111+0 8.413951-2 1.422744-1 1.035142-1 6.005496-2 1.216186-1 3.090100-2 1.412538-1 1.679498-2 1.621810-1 9.640001-3 1.819701-1 6.110548-3 2.041738-1 3.901270-3 2.264644-1 2.623366-3 2.511886-1 1.776383-3 2.786121-1 1.211831-3 3.054921-1 8.683354-4 3.349654-1 6.263266-4 3.672823-1 4.550830-4 4.000000-1 3.409291-4 4.365158-1 2.556221-4 4.731513-1 1.974274-4 5.128614-1 1.536369-4 5.559043-1 1.205139-4 6.000000-1 9.645797-5 6.456542-1 7.860632-5 6.998420-1 6.321792-5 8.035261-1 4.403017-5 8.609938-1 3.657062-5 9.120108-1 3.150532-5 9.549926-1 2.810867-5 1.000000+0 2.522384-5 1.059254+0 2.222276-5 1.122018+0 1.972675-5 1.188502+0 1.762304-5 1.273503+0 1.549609-5 1.396368+0 1.316039-5 1.531087+0 1.122593-5 1.798871+0 8.469063-6 2.018366+0 6.969358-6 2.290868+0 5.671664-6 2.600160+0 4.649610-6 3.000000+0 3.744400-6 3.467369+0 3.028722-6 4.027170+0 2.450831-6 4.731513+0 1.966941-6 5.623413+0 1.566010-6 6.760830+0 1.237758-6 8.222427+0 9.715842-7 1.035142+1 7.373875-7 1.318257+1 5.568951-7 1.757924+1 4.026599-7 2.290868+1 3.010064-7 3.311311+1 2.025493-7 5.188000+1 1.264551-7 8.413951+1 7.676756-8 1.659587+2 3.843570-8 3.311311+2 1.914365-8 1.318257+3 4.784421-9 1.000000+5 6.29780-11 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 8.472800-4 1.410100-4 1.000000+5 1.410100-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 8.472800-4 1.409700-8 1.000000+5 1.409700-8 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 8.472800-4 7.062559-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.791300-4 1.381400+5 3.000000-4 1.320610+5 3.235937-4 1.250736+5 3.507519-4 1.171564+5 3.758374-4 1.101310+5 4.073803-4 1.019568+5 4.897788-4 8.318345+4 5.300000-4 7.571100+4 6.025596-4 6.420959+4 6.700000-4 5.575320+4 7.500000-4 4.756840+4 8.609938-4 3.889963+4 9.885531-4 3.152072+4 1.122018-3 2.584721+4 1.333521-3 1.953550+4 1.603245-3 1.435298+4 1.927525-3 1.045219+4 2.344229-3 7.400208+3 2.884032-3 5.089032+3 3.548134-3 3.471230+3 4.315191-3 2.400823+3 5.248075-3 1.648306+3 6.309573-3 1.148387+3 7.585776-3 7.939287+2 9.120108-3 5.445268+2 1.096478-2 3.704828+2 1.303167-2 2.563410+2 1.548817-2 1.760699+2 1.840772-2 1.200169+2 2.162719-2 8.332335+1 2.540973-2 5.743620+1 3.000000-2 3.886000+1 3.548134-2 2.597825+1 4.216965-2 1.702866+1 5.011872-2 1.107471+1 6.000000-2 7.012864+0 7.161434-2 4.441430+0 8.413951-2 2.911301+0 1.035142-1 1.677190+0 1.348963-1 8.218095-1 2.344229-1 1.828173-1 2.851018-1 1.080389-1 3.388442-1 6.839171-2 3.890451-1 4.776362-2 4.415705-1 3.460473-2 5.011872-1 2.525960-2 5.623413-1 1.911345-2 6.237348-1 1.496809-2 6.918310-1 1.179869-2 7.673615-1 9.361802-3 8.609938-1 7.291225-3 9.440609-1 6.009720-3 1.035142+0 4.989858-3 1.174898+0 3.891719-3 1.303167+0 3.194385-3 1.462177+0 2.583188-3 1.640590+0 2.103224-3 1.862087+0 1.690342-3 2.113489+0 1.368890-3 2.398833+0 1.117040-3 2.754229+0 9.020294-4 3.198895+0 7.213991-4 3.715352+0 5.813701-4 4.315191+0 4.720645-4 5.069907+0 3.800563-4 6.025596+0 3.034686-4 7.244360+0 2.405306-4 8.810489+0 1.893350-4 1.096478+1 1.460065-4 1.380384+1 1.119585-4 1.840772+1 8.105465-5 2.344229+1 6.220404-5 3.349654+1 4.239081-5 5.248075+1 2.647127-5 8.609938+1 1.588419-5 1.717908+2 7.862828-6 3.427678+2 3.917035-6 1.364583+3 9.791491-7 1.000000+5 1.334200-8 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.791300-4 1.207500-4 1.000000+5 1.207500-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.791300-4 1.979800-8 1.000000+5 1.979800-8 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.791300-4 1.583602-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.247300-4 1.107304+5 2.951209-4 1.047438+5 3.235937-4 1.021858+5 3.548134-4 9.890837+4 3.801894-4 9.593093+4 4.100000-4 9.215860+4 4.365158-4 8.855968+4 4.731513-4 8.349764+4 5.150000-4 7.795440+4 5.559043-4 7.275011+4 6.095369-4 6.634897+4 6.700000-4 5.992400+4 7.328245-4 5.398726+4 8.200000-4 4.694300+4 9.015711-4 4.141798+4 1.011579-3 3.526222+4 1.110000-3 3.077960+4 1.258925-3 2.537688+4 1.400000-3 2.140180+4 1.570000-3 1.768788+4 1.778279-3 1.426200+4 2.000000-3 1.155508+4 2.238721-3 9.382778+3 2.540973-3 7.371582+3 2.900000-3 5.684140+3 3.311311-3 4.343196+3 3.758374-3 3.333399+3 4.300000-3 2.495320+3 4.897788-3 1.870426+3 5.500000-3 1.436854+3 6.200000-3 1.086746+3 7.000000-3 8.132240+2 7.852356-3 6.138698+2 8.912509-3 4.471435+2 1.011579-2 3.233607+2 1.148154-2 2.322070+2 1.318257-2 1.605646+2 1.513561-2 1.101528+2 1.737801-2 7.498802+1 2.000000-2 5.033110+1 2.317395-2 3.287299+1 2.691535-2 2.115924+1 3.126079-2 1.352059+1 3.672823-2 8.284136+0 4.365158-2 4.864551+0 5.248075-2 2.736179+0 6.606934-2 1.320507+0 9.332543-2 4.381360-1 1.380384-1 1.251598-1 1.717908-1 6.255346-2 2.065380-1 3.513408-2 2.398833-1 2.212774-2 2.754229-1 1.453810-2 3.126079-1 9.958134-3 3.548134-1 6.870729-3 4.000000-1 4.871301-3 4.466836-1 3.573715-3 5.000000-1 2.623843-3 5.559043-1 1.977144-3 6.165950-1 1.510152-3 6.839117-1 1.162090-3 7.585776-1 9.010607-4 8.609938-1 6.649758-4 9.225714-1 5.668426-4 9.772372-1 4.991103-4 1.047129+0 4.318219-4 1.135011+0 3.672206-4 1.244515+0 3.074776-4 1.364583+0 2.594991-4 1.659587+0 1.833653-4 1.883649+0 1.474085-4 2.113489+0 1.216669-4 2.398833+0 9.926984-5 2.722701+0 8.158726-5 3.162278+0 6.522020-5 3.672823+0 5.252980-5 4.265795+0 4.262920-5 5.011872+0 3.430281-5 6.000000+0 2.712300-5 7.244360+0 2.138066-5 8.709636+0 1.706538-5 1.083927+1 1.315463-5 1.364583+1 1.008300-5 1.819701+1 7.297357-6 2.317395+1 5.598493-6 3.311311+1 3.814416-6 5.188000+1 2.381374-6 8.413951+1 1.445648-6 1.678804+2 7.154189-7 3.349654+2 3.563496-7 1.333521+3 8.906800-8 1.000000+5 1.186000-9 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.247300-4 1.089500-4 1.000000+5 1.089500-4 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.247300-4 2.442800-8 1.000000+5 2.442800-8 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.247300-4 1.157556-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.070700-4 3.421834+5 2.190000-4 3.409157+5 2.270000-4 3.386380+5 2.570396-4 3.242611+5 2.691535-4 3.176733+5 3.054921-4 2.971880+5 3.350000-4 2.806180+5 3.630781-4 2.650237+5 3.890451-4 2.509103+5 4.216965-4 2.335665+5 4.623810-4 2.136149+5 5.011872-4 1.963962+5 5.432503-4 1.793522+5 6.025596-4 1.583895+5 6.606934-4 1.408861+5 7.328245-4 1.225389+5 8.128305-4 1.058577+5 9.120108-4 8.922516+4 1.011579-3 7.599124+4 1.135011-3 6.311726+4 1.273503-3 5.203981+4 1.428894-3 4.261044+4 1.621810-3 3.393768+4 1.850000-3 2.656460+4 2.089296-3 2.102856+4 2.344229-3 1.675055+4 2.650000-3 1.305936+4 3.000000-3 1.008176+4 3.400000-3 7.709600+3 3.845918-3 5.878743+3 4.365158-3 4.416795+3 4.954502-3 3.293333+3 5.623413-3 2.436561+3 6.382635-3 1.788874+3 7.244360-3 1.302696+3 8.222426-3 9.415777+2 9.332543-3 6.754136+2 1.059254-2 4.809340+2 1.202264-2 3.400823+2 1.364583-2 2.388238+2 1.548817-2 1.665608+2 1.778279-2 1.115450+2 2.041738-2 7.412388+1 2.344229-2 4.888529+1 2.691535-2 3.201166+1 3.126079-2 2.008197+1 3.630781-2 1.250474+1 4.265795-2 7.451553+0 5.069907-2 4.246143+0 6.165950-2 2.226253+0 7.762471-2 1.031719+0 1.445440-1 1.272209-1 1.757924-1 6.626984-2 2.089296-1 3.755264-2 2.398833-1 2.399611-2 2.722701-1 1.603020-2 3.054921-1 1.118636-2 3.427678-1 7.865730-3 3.801894-1 5.770082-3 4.168694-1 4.408556-3 4.623810-1 3.281433-3 5.069907-1 2.541450-3 5.559043-1 1.981833-3 6.095369-1 1.556318-3 6.683439-1 1.231188-3 7.328245-1 9.810163-4 8.222427-1 7.451942-4 8.912509-1 6.180083-4 9.549926-1 5.300529-4 1.011579+0 4.691427-4 1.109175+0 3.892032-4 1.216186+0 3.253041-4 1.333521+0 2.739027-4 1.513561+0 2.181731-4 1.737801+0 1.711080-4 1.972423+0 1.379286-4 2.213095+0 1.141599-4 2.511886+0 9.340159-5 2.884032+0 7.562736-5 3.349654+0 6.062746-5 3.890451+0 4.897424-5 4.518559+0 3.985378-5 5.370318+0 3.166677-5 6.382635+0 2.534667-5 7.762471+0 1.985107-5 9.660509+0 1.523982-5 1.200000+1 1.181800-5 1.500000+1 9.159600-6 1.972423+1 6.751196-6 2.570396+1 5.059942-6 3.548134+1 3.585243-6 5.623413+1 2.214600-6 9.440609+1 1.299323-6 1.883649+2 6.438562-7 3.758374+2 3.209069-7 1.496236+3 8.025855-8 1.000000+5 1.199300-9 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.070700-4 8.975300-5 1.000000+5 8.975300-5 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.070700-4 1.390200-8 1.000000+5 1.390200-8 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.070700-4 1.173031-4 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.168300-4 4.759560+5 1.169700-4 4.808320+5 1.174898-4 5.046074+5 1.180000-4 5.325000+5 1.187000-4 5.770800+5 1.202264-4 6.905223+5 1.209500-4 7.461600+5 1.215000-4 7.865000+5 1.221000-4 8.268720+5 1.227000-4 8.622440+5 1.232000-4 8.871720+5 1.238000-4 9.110640+5 1.243000-4 9.258360+5 1.249000-4 9.375320+5 1.254500-4 9.427680+5 1.260000-4 9.431640+5 1.267000-4 9.378080+5 1.275000-4 9.247840+5 1.283000-4 9.062480+5 1.290000-4 8.867760+5 1.300000-4 8.553560+5 1.311000-4 8.181440+5 1.322000-4 7.798000+5 1.340000-4 7.176520+5 1.365000-4 6.363320+5 1.400000-4 5.355040+5 1.490000-4 3.448944+5 1.520000-4 3.012368+5 1.540000-4 2.769468+5 1.560000-4 2.561512+5 1.580000-4 2.385304+5 1.600000-4 2.237648+5 1.620000-4 2.115564+5 1.640590-4 2.013542+5 1.660000-4 1.936920+5 1.680000-4 1.875544+5 1.698244-4 1.833346+5 1.720000-4 1.798340+5 1.740000-4 1.778992+5 1.760000-4 1.770408+5 1.780000-4 1.771256+5 1.805000-4 1.783756+5 1.835000-4 1.812792+5 1.865000-4 1.854212+5 1.905461-4 1.924881+5 1.950000-4 2.016588+5 2.137962-4 2.465646+5 2.220000-4 2.661888+5 2.300000-4 2.841988+5 2.380000-4 3.005344+5 2.454709-4 3.140803+5 2.540973-4 3.275951+5 2.630268-4 3.392775+5 2.730000-4 3.497808+5 2.830000-4 3.578724+5 2.950000-4 3.646696+5 3.054921-4 3.682725+5 3.162278-4 3.699833+5 3.311311-4 3.695987+5 3.467369-4 3.664811+5 3.630781-4 3.609417+5 3.801894-4 3.532995+5 4.000000-4 3.426152+5 4.216965-4 3.294864+5 4.466836-4 3.135281+5 4.731513-4 2.962802+5 5.011872-4 2.780427+5 5.370318-4 2.555755+5 5.754399-4 2.331538+5 6.165950-4 2.110491+5 6.606934-4 1.897340+5 7.079458-4 1.695272+5 7.585776-4 1.504868+5 8.222426-4 1.300700+5 8.912509-4 1.115713+5 9.772372-4 9.286087+4 1.059254-3 7.850532+4 1.161449-3 6.433924+4 1.273503-3 5.230823+4 1.380384-3 4.339891+4 1.531087-3 3.387607+4 1.698244-3 2.622447+4 1.862087-3 2.074828+4 2.041738-3 1.632309+4 2.264644-3 1.237540+4 2.540973-3 9.021747+3 2.818383-3 6.737524+3 3.150000-3 4.886760+3 3.467369-3 3.680821+3 3.890451-3 2.599868+3 4.315191-3 1.888293+3 4.786301-3 1.362283+3 5.370318-3 9.405729+2 6.025596-3 6.443560+2 6.760830-3 4.381074+2 7.585776-3 2.957239+2 8.609938-3 1.904214+2 9.660509-3 1.267197+2 1.096478-2 8.037565+1 1.244515-2 5.061964+1 1.412538-2 3.165741+1 1.603245-2 1.966040+1 1.840772-2 1.160471+1 2.113489-2 6.800611+0 2.454709-2 3.783384+0 2.884032-2 1.997050+0 3.467369-2 9.546171-1 4.265795-2 4.127556-1 5.841730-2 1.144899-1 8.609938-2 2.346387-2 1.071519-1 9.661717-3 1.273503-1 4.827494-3 1.496236-1 2.544523-3 1.717908-1 1.479622-3 1.972423-1 8.667524-4 2.238721-1 5.346642-4 2.511886-1 3.470068-4 2.818383-1 2.268889-4 3.090295-1 1.624975-4 3.427678-1 1.124161-4 3.801894-1 7.830791-5 4.265795-1 5.280142-5 4.677351-1 3.877627-5 5.069907-1 2.977034-5 5.559043-1 2.217526-5 6.095369-1 1.664279-5 6.683439-1 1.258455-5 7.328245-1 9.590096-6 8.609938-1 6.033161-6 9.120108-1 5.147148-6 9.549926-1 4.561135-6 1.000000+0 4.068900-6 1.047129+0 3.657559-6 1.096478+0 3.311704-6 1.148154+0 3.017099-6 1.216186+0 2.704360-6 1.318257+0 2.339183-6 1.513561+0 1.847971-6 1.819701+0 1.339431-6 2.018366+0 1.124022-6 2.290868+0 9.147555-7 2.600160+0 7.498652-7 3.000000+0 6.038000-7 3.467369+0 4.883918-7 4.027170+0 3.952040-7 4.731513+0 3.171777-7 5.623413+0 2.525229-7 6.760830+0 1.995868-7 8.222427+0 1.566749-7 1.023293+1 1.205324-7 1.303167+1 9.099048-8 1.717908+1 6.661940-8 2.264644+1 4.914526-8 3.273407+1 3.306465-8 5.069907+1 2.088576-8 8.317638+1 1.252556-8 1.621810+2 6.344202-9 3.235937+2 3.159432-9 1.288250+3 7.89518-10 1.000000+5 1.01550-11 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.168300-4 6.081200-5 1.000000+5 6.081200-5 1 57000 7 7 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.168300-4 2.048500-8 1.000000+5 2.048500-8 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.168300-4 5.599752-5 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.137600-4 7.030380+5 1.140000-4 7.182240+5 1.146000-4 7.651620+5 1.152000-4 8.202060+5 1.167000-4 9.828540+5 1.175000-4 1.075080+6 1.180000-4 1.131252+6 1.185200-4 1.186528+6 1.190000-4 1.233420+6 1.195000-4 1.276944+6 1.200000-4 1.314186+6 1.205000-4 1.344576+6 1.210000-4 1.367886+6 1.216186-4 1.387026+6 1.220000-4 1.393692+6 1.225000-4 1.396914+6 1.232000-4 1.392012+6 1.240000-4 1.375062+6 1.247000-4 1.352436+6 1.255000-4 1.319964+6 1.265000-4 1.272666+6 1.275000-4 1.221012+6 1.290000-4 1.140522+6 1.307000-4 1.050246+6 1.333521-4 9.186912+5 1.369600-4 7.630436+5 1.445440-4 5.199603+5 1.472000-4 4.589274+5 1.496236-4 4.127778+5 1.513561-4 3.848645+5 1.531087-4 3.605488+5 1.550000-4 3.383358+5 1.570000-4 3.189330+5 1.585000-4 3.068628+5 1.603245-4 2.947559+5 1.621810-4 2.850396+5 1.640590-4 2.775880+5 1.660000-4 2.721240+5 1.680000-4 2.685882+5 1.698244-4 2.669966+5 1.720000-4 2.668830+5 1.740000-4 2.682726+5 1.760000-4 2.708994+5 1.790000-4 2.767884+5 1.820000-4 2.845668+5 1.865000-4 2.988396+5 1.930000-4 3.228834+5 2.041738-4 3.676986+5 2.120000-4 3.988236+5 2.190000-4 4.253766+5 2.264644-4 4.517145+5 2.344229-4 4.769925+5 2.426610-4 4.997421+5 2.511886-4 5.195532+5 2.600160-4 5.363018+5 2.691535-4 5.500678+5 2.800000-4 5.623014+5 2.917427-4 5.710718+5 3.019952-4 5.752585+5 3.150000-4 5.764536+5 3.280000-4 5.738868+5 3.430000-4 5.674680+5 3.600000-4 5.569278+5 3.801894-4 5.408338+5 4.000000-4 5.224962+5 4.216965-4 5.005748+5 4.466836-4 4.744499+5 4.731513-4 4.467856+5 5.011872-4 4.179786+5 5.370318-4 3.827755+5 5.754399-4 3.479780+5 6.165950-4 3.140411+5 6.606934-4 2.814471+5 7.161434-4 2.458212+5 7.673615-4 2.174389+5 8.317638-4 1.871461+5 9.015711-4 1.599314+5 9.885531-4 1.325212+5 1.071519-3 1.116549+5 1.174898-3 9.113531+4 1.288250-3 7.380802+4 1.412538-3 5.938272+4 1.570000-3 4.588506+4 1.757924-3 3.449695+4 1.950000-3 2.634180+4 2.150000-3 2.029482+4 2.350000-3 1.591626+4 2.600160-3 1.199594+4 2.884032-3 8.916177+3 3.200000-3 6.574560+3 3.548134-3 4.826130+3 3.935501-3 3.513117+3 4.415704-3 2.449685+3 4.897788-3 1.758633+3 5.432503-3 1.254126+3 6.095369-3 8.549091+2 6.839116-3 5.783443+2 7.673615-3 3.883692+2 8.609938-3 2.590088+2 9.660509-3 1.715356+2 1.096478-2 1.081999+2 1.244515-2 6.775002+1 1.412538-2 4.211440+1 1.603245-2 2.598770+1 1.840772-2 1.522659+1 2.113489-2 8.853713+0 2.454709-2 4.881646+0 2.884032-2 2.550390+0 3.427678-2 1.261916+0 4.168694-2 5.637996-1 5.308844-2 2.065476-1 8.709636-2 2.610350-2 1.059254-1 1.160053-2 1.244515-1 5.990523-3 1.445440-1 3.267243-3 1.640590-1 1.969300-3 1.862087-1 1.195717-3 2.089296-1 7.652235-4 2.317395-1 5.154667-4 2.570396-1 3.497228-4 2.818383-1 2.493659-4 3.090295-1 1.790167-4 3.388442-1 1.294634-4 3.672823-1 9.813129-5 3.981072-1 7.490652-5 4.315191-1 5.755971-5 4.677351-1 4.452213-5 5.069907-1 3.466705-5 5.495409-1 2.717481-5 5.956621-1 2.144628-5 6.456542-1 1.704330-5 6.998420-1 1.363765-5 7.585776-1 1.098738-5 8.511380-1 8.131494-6 9.015711-1 7.033347-6 9.549926-1 6.124730-6 1.000000+0 5.514800-6 1.059254+0 4.872422-6 1.135011+0 4.232517-6 1.216186+0 3.703357-6 1.318257+0 3.192368-6 1.462177+0 2.659325-6 1.798871+0 1.851017-6 2.018366+0 1.523499-6 2.290868+0 1.239739-6 2.600160+0 1.016272-6 3.000000+0 8.183600-7 3.467369+0 6.619399-7 4.027170+0 5.356361-7 4.731513+0 4.298781-7 5.623413+0 3.422631-7 6.760830+0 2.705114-7 8.222427+0 2.123534-7 1.035142+1 1.611551-7 1.318257+1 1.217155-7 1.757924+1 8.800350-8 2.290868+1 6.578644-8 3.311311+1 4.426904-8 5.188000+1 2.763697-8 8.413951+1 1.677802-8 1.659587+2 8.400370-9 3.311311+2 4.183972-9 1.318257+3 1.045668-9 1.000000+5 1.37640-11 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.137600-4 6.154100-5 1.000000+5 6.154100-5 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.137600-4 5.221900-5 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.365000-5 8.652540+4 4.700000-5 9.887560+4 4.920000-5 1.067648+5 5.150000-5 1.144470+5 5.400000-5 1.221086+5 5.650000-5 1.289300+5 5.900000-5 1.348418+5 6.165950-5 1.401086+5 6.400000-5 1.438506+5 6.683439-5 1.472865+5 6.918310-5 1.492625+5 7.161434-5 1.505370+5 7.413102-5 1.511134+5 7.762471-5 1.508577+5 8.150000-5 1.494688+5 8.609938-5 1.468030+5 9.120108-5 1.430884+5 9.800000-5 1.375680+5 1.059254-4 1.308894+5 1.148154-4 1.233784+5 1.230269-4 1.164956+5 1.333521-4 1.080844+5 1.462177-4 9.835477+4 1.640590-4 8.667118+4 1.840772-4 7.580983+4 2.041738-4 6.670369+4 2.371374-4 5.492335+4 2.722701-4 4.562321+4 3.200000-4 3.640480+4 3.801894-4 2.843377+4 4.731513-4 2.057277+4 5.821032-4 1.500105+4 7.000000-4 1.124042+4 8.317638-4 8.523817+3 9.885531-4 6.416849+3 1.188502-3 4.703578+3 1.445440-3 3.353770+3 1.778279-3 2.325581+3 2.238721-3 1.535487+3 2.722701-3 1.071856+3 3.507519-3 6.670854+2 4.315191-3 4.492583+2 5.308844-3 3.002294+2 6.456542-3 2.036213+2 7.852356-3 1.370188+2 9.440609-3 9.367275+1 1.135011-2 6.355288+1 1.364583-2 4.278028+1 1.621810-2 2.930059+1 1.927525-2 1.992392+1 2.317395-2 1.310874+1 2.754229-2 8.786177+0 3.162278-2 6.338654+0 3.715352-2 4.296347+0 4.365158-2 2.890719+0 5.188000-2 1.876004+0 6.165950-2 1.208141+0 7.413102-2 7.499104-1 8.609938-2 5.059791-1 1.071519-1 2.822269-1 1.428894-1 1.297124-1 2.483133-1 2.894012-2 3.000000-1 1.743900-2 3.507519-1 1.155032-2 4.027170-1 8.081203-3 4.570882-1 5.866313-3 5.128614-1 4.413895-3 5.754399-1 3.344938-3 6.382635-1 2.623371-3 7.079458-1 2.070941-3 7.852356-1 1.645689-3 8.709636-1 1.315496-3 9.549926-1 1.085274-3 1.059254+0 8.814810-4 1.202264+0 6.883747-4 1.348963+0 5.538271-4 1.513561+0 4.487741-4 1.717908+0 3.588800-4 1.949845+0 2.892369-4 2.213095+0 2.348795-4 2.511886+0 1.921709-4 2.884032+0 1.555820-4 3.349654+0 1.247206-4 3.890451+0 1.007498-4 4.518559+0 8.198709-5 5.370318+0 6.514487-5 6.456542+0 5.138733-5 7.852356+0 4.026408-5 9.772372+0 3.092411-5 1.216186+1 2.393644-5 1.531087+1 1.841278-5 2.000000+1 1.367800-5 2.630268+1 1.015384-5 3.589219+1 7.286430-6 5.688529+1 4.501741-6 9.549926+1 2.641701-6 1.905461+2 1.309238-6 3.801894+2 6.525572-7 1.513561+3 1.632144-7 1.000000+5 2.467100-9 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.365000-5 4.365000-5 1.000000+5 4.365000-5 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.365000-5 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.833000-5 4.477040+6 2.884032-5 4.315139+6 2.940000-5 4.124680+6 3.000000-5 3.915760+6 3.090295-5 3.605886+6 3.198895-5 3.253045+6 3.350000-5 2.812300+6 3.507519-5 2.414537+6 3.715352-5 1.977917+6 4.000000-5 1.517896+6 4.731513-5 8.230746+5 5.128614-5 6.175090+5 5.500000-5 4.844480+5 5.888437-5 3.850225+5 6.237348-5 3.192872+5 6.606934-5 2.666158+5 6.918310-5 2.321365+5 7.244360-5 2.033099+5 7.585776-5 1.792402+5 7.943282-5 1.591410+5 8.317638-5 1.423218+5 8.709636-5 1.281908+5 9.150000-5 1.154926+5 9.549926-5 1.061405+5 1.000000-4 9.748160+4 1.047129-4 9.003267+4 1.109175-4 8.211606+4 1.174898-4 7.545659+4 1.244515-4 6.980575+4 1.333521-4 6.407756+4 1.445440-4 5.848187+4 1.603245-4 5.245344+4 1.905461-4 4.421427+4 2.540973-4 3.340769+4 2.985383-4 2.835635+4 3.507519-4 2.387312+4 4.027170-4 2.044710+4 4.623810-4 1.738628+4 5.248075-4 1.488180+4 6.000000-4 1.253366+4 6.839116-4 1.051411+4 7.762471-4 8.806358+3 8.810489-4 7.319412+3 1.000000-3 6.036680+3 1.135011-3 4.940293+3 1.288250-3 4.012587+3 1.462177-3 3.235252+3 1.659587-3 2.590113+3 1.883649-3 2.059247+3 2.162719-3 1.591279+3 2.454709-3 1.247717+3 2.786121-3 9.717252+2 3.162278-3 7.516498+2 3.589219-3 5.774133+2 4.073803-3 4.404193+2 4.623810-3 3.334949+2 5.248075-3 2.506576+2 5.956621-3 1.869845+2 6.760830-3 1.384508+2 7.673615-3 1.017383+2 8.709636-3 7.421749+1 9.885531-3 5.375405+1 1.122018-2 3.866056+1 1.288250-2 2.677722+1 1.513561-2 1.730669+1 1.717908-2 1.217878+1 1.972423-2 8.237319+0 2.264644-2 5.532211+0 2.630268-2 3.567086+0 3.054921-2 2.283099+0 3.589219-2 1.401063+0 4.265795-2 8.239502-1 5.128614-2 4.641445-1 6.382635-2 2.326751-1 8.609938-2 8.959878-2 1.396368-1 1.906808-2 1.737801-1 9.533510-3 2.089296-1 5.357102-3 2.426610-1 3.375939-3 2.786121-1 2.219463-3 3.162278-1 1.521327-3 3.589219-1 1.050466-3 4.027170-1 7.554217-4 4.518559-1 5.471967-4 5.011872-1 4.120978-4 5.559043-1 3.124664-4 6.165950-1 2.386283-4 6.839117-1 1.836316-4 7.585776-1 1.423890-4 8.609938-1 1.050675-4 9.225714-1 8.955018-5 9.772372-1 7.884185-5 1.047129+0 6.820659-5 1.135011+0 5.799936-5 1.244515+0 4.856374-5 1.364583+0 4.098758-5 1.678804+0 2.838110-5 1.905461+0 2.282986-5 2.137962+0 1.886343-5 2.426610+0 1.540374-5 2.786121+0 1.244627-5 3.235937+0 9.959403-6 3.758374+0 8.030980-6 4.365158+0 6.524617-6 5.188000+0 5.176201-6 6.165950+0 4.137177-6 7.498942+0 3.235598-6 9.120108+0 2.550248-6 1.122018+1 1.995728-6 1.400000+1 1.547000-6 1.862087+1 1.123643-6 2.344229+1 8.733766-7 3.349654+1 5.951840-7 5.248075+1 3.716637-7 8.609938+1 2.230201-7 1.717908+2 1.103987-7 3.427678+2 5.499644-8 1.364583+3 1.374732-8 1.000000+5 1.87330-10 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.833000-5 2.833000-5 1.000000+5 2.833000-5 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.833000-5 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.559000-5 9.139280+6 2.620000-5 8.607400+6 2.691535-5 7.981314+6 2.786121-5 7.194554+6 2.917427-5 6.214268+6 3.080000-5 5.186760+6 3.273407-5 4.202006+6 3.589219-5 3.027856+6 4.027170-5 2.004902+6 4.315191-5 1.574601+6 4.570882-5 1.295234+6 4.841724-5 1.072599+6 5.128614-5 8.950150+5 5.400000-5 7.664840+5 5.688529-5 6.602980+5 5.956621-5 5.825365+5 6.237348-5 5.173928+5 6.531306-5 4.628428+5 6.839116-5 4.171617+5 7.161434-5 3.788529+5 7.500000-5 3.465084+5 7.852356-5 3.192774+5 8.222426-5 2.959541+5 8.709636-5 2.712201+5 9.300000-5 2.476256+5 1.000000-4 2.257092+5 1.083927-4 2.051700+5 1.190000-4 1.850980+5 1.364583-4 1.606211+5 1.800000-4 1.212128+5 2.113489-4 1.023058+5 2.500000-4 8.503760+4 2.851018-4 7.312762+4 3.311311-4 6.111847+4 3.758374-4 5.220554+4 4.365158-4 4.300414+4 5.011872-4 3.570335+4 5.800000-4 2.908716+4 6.531306-4 2.446912+4 7.413102-4 2.022455+4 8.413951-4 1.659766+4 9.549926-4 1.352852+4 1.083927-3 1.094528+4 1.230269-3 8.792314+3 1.396368-3 7.013614+3 1.603245-3 5.438526+3 1.840772-3 4.183682+3 2.113489-3 3.193408+3 2.426610-3 2.418914+3 2.786121-3 1.817825+3 3.198895-3 1.355252+3 3.630781-3 1.028029+3 4.120975-3 7.743015+2 4.677351-3 5.789707+2 5.308844-3 4.296866+2 6.025596-3 3.164833+2 6.839116-3 2.313406+2 7.762471-3 1.678468+2 8.810489-3 1.208385+2 1.000000-2 8.637120+1 1.135011-2 6.130119+1 1.288250-2 4.318415+1 1.479108-2 2.923639+1 1.698244-2 1.964293+1 1.949845-2 1.309646+1 2.238721-2 8.664080+0 2.570396-2 5.689992+0 2.985383-2 3.580359+0 3.467369-2 2.235420+0 4.073803-2 1.335739+0 4.841724-2 7.633101-1 5.754399-2 4.327261-1 7.161434-2 2.091241-1 1.000000-1 6.822890-2 1.412538-1 2.131521-2 1.717908-1 1.109564-2 2.041738-1 6.282322-3 2.344229-1 4.010210-3 2.660725-1 2.675781-3 3.000000-1 1.836800-3 3.349654-1 1.309471-3 3.715352-1 9.592293-4 4.120975-1 7.077567-4 4.570882-1 5.263005-4 5.011872-1 4.072685-4 5.495409-1 3.173622-4 6.025596-1 2.490461-4 6.606935-1 1.968864-4 7.244360-1 1.567776-4 7.943282-1 1.257381-4 8.709636-1 1.012764-4 9.332543-1 8.667553-5 1.000000+0 7.471900-5 1.096478+0 6.193014-5 1.202264+0 5.171616-5 1.318257+0 4.350438-5 1.479108+0 3.534278-5 1.717908+0 2.714283-5 1.949845+0 2.186544-5 2.187762+0 1.808650-5 2.483133+0 1.478805-5 2.851018+0 1.196589-5 3.311311+0 9.586954-6 3.845918+0 7.739676-6 4.466836+0 6.294898-6 5.308844+0 4.999210-6 6.309573+0 3.999552-6 7.673615+0 3.130895-6 9.440609+0 2.435831-6 1.161449+1 1.908556-6 1.428894+1 1.504717-6 1.905461+1 1.090530-6 2.371374+1 8.587280-7 3.349654+1 5.925215-7 5.248075+1 3.699963-7 8.511380+1 2.246528-7 1.678804+2 1.124949-7 3.349654+2 5.603444-8 1.333521+3 1.400498-8 1.000000+5 1.86490-10 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.559000-5 2.559000-5 1.000000+5 2.559000-5 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.559000-5 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 5.580000-6 2.488240+6 5.821032-6 2.690859+6 6.025596-6 2.851302+6 6.309573-6 3.055134+6 6.606934-6 3.247318+6 6.918310-6 3.426686+6 7.244360-6 3.594247+6 7.600000-6 3.753568+6 8.000000-6 3.903932+6 8.413951-6 4.030176+6 8.850000-6 4.133440+6 9.225714-6 4.197581+6 9.700000-6 4.246520+6 1.011579-5 4.260861+6 1.060000-5 4.246200+6 1.110000-5 4.198080+6 1.150000-5 4.138160+6 1.202264-5 4.034914+6 1.250000-5 3.920348+6 1.303167-5 3.773131+6 1.350000-5 3.630452+6 1.400000-5 3.469528+6 1.462177-5 3.263432+6 1.530000-5 3.037384+6 1.590000-5 2.839852+6 1.659587-5 2.619398+6 1.737801-5 2.385736+6 1.830000-5 2.132972+6 1.927525-5 1.893892+6 2.041738-5 1.649509+6 2.190000-5 1.383392+6 2.371374-5 1.123418+6 2.570396-5 9.025870+5 2.754229-5 7.431771+5 2.951209-5 6.079627+5 3.150000-5 4.995600+5 3.350000-5 4.120640+5 3.548134-5 3.420507+5 3.758374-5 2.818537+5 3.981072-5 2.305659+5 4.220000-5 1.868168+5 4.466836-5 1.510685+5 4.731513-5 1.210262+5 5.011872-5 9.634320+4 5.308844-5 7.619721+4 5.650000-5 5.873760+4 6.025596-5 4.453507+4 6.400000-5 3.413940+4 6.839116-5 2.528177+4 7.413102-5 1.741690+4 8.128305-5 1.135171+4 8.511380-5 9.215404+3 8.810489-5 7.926982+3 9.070000-5 7.024800+3 9.332543-5 6.278650+3 9.580000-5 5.702960+3 9.800000-5 5.279040+3 1.000000-4 4.955200+3 1.023293-4 4.641303+3 1.047129-4 4.380107+3 1.071519-4 4.165983+3 1.096478-4 3.993812+3 1.122018-4 3.859035+3 1.148154-4 3.757143+3 1.174898-4 3.683852+3 1.205000-4 3.631812+3 1.230269-4 3.608497+3 1.262300-4 3.600177+3 1.303167-4 3.615167+3 1.350000-4 3.656704+3 1.412538-4 3.737082+3 1.630000-4 4.053280+3 1.737801-4 4.179449+3 1.840772-4 4.268628+3 1.949845-4 4.332354+3 2.041738-4 4.361343+3 2.162719-4 4.367239+3 2.292200-4 4.343082+3 2.426610-4 4.291337+3 2.570396-4 4.212675+3 2.722701-4 4.109755+3 2.884032-4 3.985197+3 3.054921-4 3.841391+3 3.273407-4 3.647472+3 3.507519-4 3.437121+3 3.758374-4 3.215829+3 4.027170-4 2.988858+3 4.315191-4 2.761717+3 4.623810-4 2.536192+3 5.011872-4 2.279076+3 5.432503-4 2.032021+3 5.888437-4 1.798480+3 6.382635-4 1.581005+3 6.918310-4 1.380455+3 7.498942-4 1.197203+3 8.128305-4 1.031462+3 8.912509-4 8.632029+2 9.772372-4 7.168505+2 1.071519-3 5.908223+2 1.174898-3 4.833916+2 1.288250-3 3.927291+2 1.412538-3 3.169350+2 1.566751-3 2.471347+2 1.737801-3 1.912397+2 1.927525-3 1.468730+2 2.137962-3 1.119802+2 2.371374-3 8.477969+1 2.630268-3 6.375429+1 2.917427-3 4.762647+1 3.235937-3 3.532735+1 3.589219-3 2.602091+1 4.000000-3 1.876105+1 4.466836-3 1.334291+1 4.954502-3 9.624066+0 5.559043-3 6.643594+0 6.237348-3 4.549841+0 6.998420-3 3.092560+0 7.852356-3 2.086859+0 8.810489-3 1.398444+0 1.000000-2 8.934481-1 1.135011-2 5.665139-1 1.288250-2 3.565711-1 1.462177-2 2.228352-1 1.659587-2 1.382835-1 1.905461-2 8.156730-2 2.187762-2 4.776561-2 2.540973-2 2.655541-2 3.019952-2 1.338023-2 3.630781-2 6.388060-3 4.570882-2 2.513172-3 9.015711-2 1.572093-4 1.109175-1 6.793290-5 1.318257-1 3.399181-5 1.531088-1 1.877967-5 1.757924-1 1.093357-5 2.018366-1 6.413300-6 2.290868-1 3.961001-6 2.570396-1 2.573989-6 2.884032-1 1.685283-6 3.198895-1 1.159716-6 3.548134-1 8.038304-7 3.935501-1 5.612032-7 4.365158-1 3.947005-7 4.786301-1 2.905915-7 5.248075-1 2.153428-7 5.754399-1 1.607035-7 6.237348-1 1.252323-7 6.760830-1 9.823847-8 7.413102-1 7.498864-8 8.035261-1 5.954075-8 8.609938-1 4.871136-8 9.120108-1 4.151310-8 9.549926-1 3.676914-8 1.000000+0 3.280200-8 1.047129+0 2.949683-8 1.096478+0 2.670638-8 1.148154+0 2.432277-8 1.216186+0 2.178909-8 1.318257+0 1.884488-8 1.513561+0 1.489803-8 1.840772+0 1.058745-8 2.044000+0 8.874200-9 2.317395+0 7.239759-9 2.630268+0 5.938545-9 3.019952+0 4.819767-9 3.507519+0 3.872596-9 4.073803+0 3.135504-9 4.786301+0 2.517778-9 5.688529+0 2.005632-9 6.839116+0 1.585903-9 8.317638+0 1.245513-9 1.035142+1 9.58581-10 1.318257+1 7.23952-10 1.757924+1 5.23446-10 2.290868+1 3.91291-10 3.311311+1 2.63319-10 5.188000+1 1.64389-10 8.413951+1 9.97914-11 1.678804+2 4.93854-11 3.349654+2 2.45992-11 1.333521+3 6.14833-12 1.000000+5 8.18700-14 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 5.580000-6 5.580000-6 1.000000+5 5.580000-6 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 5.580000-6 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 5.340000-6 4.098972+6 5.623413-6 4.457106+6 5.850000-6 4.719270+6 6.100000-6 4.981134+6 6.382635-6 5.244593+6 6.700000-6 5.507262+6 7.100000-6 5.786904+6 7.500000-6 6.019560+6 7.852356-6 6.186464+6 8.317638-6 6.355393+6 8.709636-6 6.454825+6 9.120108-6 6.519818+6 9.549926-6 6.546334+6 1.000000-5 6.531000+6 1.050000-5 6.465600+6 1.100000-5 6.354120+6 1.150000-5 6.202020+6 1.202264-5 6.006207+6 1.250000-5 5.801604+6 1.303167-5 5.552518+6 1.350000-5 5.320062+6 1.400000-5 5.063448+6 1.462177-5 4.739655+6 1.531087-5 4.385447+6 1.603245-5 4.026942+6 1.678804-5 3.673270+6 1.770000-5 3.280638+6 1.862087-5 2.923654+6 1.980000-5 2.524356+6 2.113489-5 2.144385+6 2.264644-5 1.791271+6 2.454709-5 1.440681+6 2.650000-5 1.162794+6 2.851018-5 9.404075+5 3.054921-5 7.640857+5 3.235937-5 6.385471+5 3.450000-5 5.190954+5 3.650000-5 4.296846+5 3.850000-5 3.569232+5 4.073803-5 2.912887+5 4.315191-5 2.351396+5 4.570882-5 1.884289+5 4.841724-5 1.500323+5 5.150000-5 1.166298+5 5.500000-5 8.850720+4 5.821032-5 6.931017+4 6.237348-5 5.106284+4 6.650000-5 3.819288+4 7.943282-5 1.679242+4 8.317638-5 1.366848+4 8.609938-5 1.178774+4 8.810489-5 1.072725+4 9.070000-5 9.586200+3 9.300000-5 8.757600+3 9.500000-5 8.154240+3 9.740000-5 7.553142+3 9.950000-5 7.122180+3 1.011579-4 6.835964+3 1.035142-4 6.499305+3 1.059254-4 6.226993+3 1.083927-4 6.012046+3 1.110000-4 5.844168+3 1.135011-4 5.730554+3 1.161449-4 5.650879+3 1.190000-4 5.602302+3 1.220000-4 5.585658+3 1.260000-4 5.605434+3 1.303167-4 5.662523+3 1.364583-4 5.783881+3 1.584893-4 6.284504+3 1.678804-4 6.451401+3 1.778279-4 6.583576+3 1.883649-4 6.677795+3 2.000000-4 6.732300+3 2.113489-4 6.728587+3 2.242800-4 6.678446+3 2.371374-4 6.589999+3 2.511886-4 6.459560+3 2.660725-4 6.292986+3 2.818383-4 6.094394+3 3.000000-4 5.847930+3 3.198895-4 5.565093+3 3.427678-4 5.237945+3 3.672823-4 4.895250+3 3.935501-4 4.544681+3 4.265795-4 4.136855+3 4.623810-4 3.735356+3 5.011872-4 3.346104+3 5.432503-4 2.974212+3 5.888437-4 2.624471+3 6.382635-4 2.300115+3 6.918310-4 2.002479+3 7.498942-4 1.732192+3 8.128305-4 1.488681+3 8.912509-4 1.242155+3 9.772372-4 1.028584+3 1.071519-3 8.453555+2 1.174898-3 6.897123+2 1.288250-3 5.588059+2 1.412538-3 4.497240+2 1.566751-3 3.496000+2 1.737801-3 2.696981+2 1.927525-3 2.064959+2 2.137962-3 1.569597+2 2.344229-3 1.220968+2 2.600160-3 9.136425+1 2.884032-3 6.790232+1 3.273407-3 4.688327+1 3.630781-3 3.439076+1 4.027170-3 2.505991+1 4.466836-3 1.813205+1 4.954502-3 1.303233+1 5.522000-3 9.159515+0 6.165950-3 6.351825+0 6.918310-3 4.302273+0 7.762471-3 2.892490+0 8.709636-3 1.930782+0 9.772372-3 1.279982+0 1.109175-2 8.082803-1 1.258925-2 5.065201-1 1.428894-2 3.150625-1 1.621810-2 1.945413-1 1.862087-2 1.140710-1 2.137962-2 6.637232-2 2.483133-2 3.661945-2 2.917427-2 1.914396-2 3.467369-2 9.475705-3 4.216965-2 4.235970-3 5.308844-2 1.629833-3 8.609938-2 2.172914-4 1.071519-1 8.792492-5 1.258925-1 4.543873-5 1.445440-1 2.597365-5 1.640590-1 1.565563-5 1.862087-1 9.506398-6 2.089296-1 6.084622-6 2.317395-1 4.099622-6 2.570396-1 2.782684-6 2.818383-1 1.985552-6 3.090295-1 1.426845-6 3.388442-1 1.033195-6 3.715352-1 7.540423-7 4.027170-1 5.762264-7 4.365158-1 4.431590-7 4.731513-1 3.430732-7 5.128614-1 2.673958-7 5.559043-1 2.098686-7 6.025596-1 1.659132-7 6.531306-1 1.322147-7 7.079458-1 1.061407-7 7.673615-1 8.582210-8 8.609938-1 6.384282-8 9.120108-1 5.540272-8 9.660509-1 4.839864-8 1.022000+0 4.272700-8 1.083927+0 3.777035-8 1.161449+0 3.291371-8 1.258925+0 2.825419-8 1.380384+0 2.390983-8 1.757924+0 1.564098-8 1.972423+0 1.285734-8 2.238721+0 1.044792-8 2.540973+0 8.553822-9 2.917427+0 6.929700-9 3.388442+0 5.558268-9 3.935501+0 4.492526-9 4.623810+0 3.601491-9 5.495409+0 2.864544-9 6.606934+0 2.261795-9 8.035261+0 1.773850-9 1.011579+1 1.345048-9 1.288250+1 1.015026-9 1.698244+1 7.42885-10 2.264644+1 5.41024-10 3.273407+1 3.63992-10 5.128614+1 2.27189-10 8.317638+1 1.37892-10 1.640590+2 6.90307-11 3.273407+2 3.43801-11 1.303167+3 8.59172-12 1.000000+5 1.11800-13 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 5.340000-6 5.340000-6 1.000000+5 5.340000-6 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 5.340000-6 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.140000-6 2.723952+6 5.559043-6 1.846180+6 5.821032-6 1.463136+6 6.100000-6 1.149536+6 6.456542-6 8.514480+5 6.760830-6 6.632538+5 7.100000-6 5.050960+5 7.413102-6 3.948817+5 7.762471-6 3.016386+5 8.128305-6 2.288045+5 8.511380-6 1.724431+5 9.700000-6 7.586940+4 1.000000-5 6.292720+4 1.027000-5 5.372820+4 1.050000-5 4.738960+4 1.071519-5 4.250407+4 1.092000-5 3.865420+4 1.110000-5 3.582720+4 1.127000-5 3.357480+4 1.142000-5 3.188580+4 1.161449-5 3.006386+4 1.180000-5 2.866660+4 1.195000-5 2.775060+4 1.207000-5 2.714120+4 1.222000-5 2.651820+4 1.240000-5 2.595340+4 1.260000-5 2.553120+4 1.280000-5 2.529640+4 1.303167-5 2.522398+4 1.320000-5 2.528700+4 1.340000-5 2.547000+4 1.365000-5 2.583900+4 1.396500-5 2.648424+4 1.428894-5 2.730943+4 1.480000-5 2.884540+4 1.659587-5 3.512248+4 1.737801-5 3.782927+4 1.819701-5 4.049126+4 1.905461-5 4.304096+4 2.000000-5 4.554500+4 2.089296-5 4.761497+4 2.190000-5 4.962060+4 2.300000-5 5.143520+4 2.426610-5 5.307282+4 2.540973-5 5.418047+4 2.660725-5 5.501339+4 2.818383-5 5.567524+4 2.985383-5 5.592511+4 3.162278-5 5.578211+4 3.350000-5 5.525820+4 3.548134-5 5.436922+4 3.758374-5 5.314885+4 4.000000-5 5.151080+4 4.265795-5 4.953383+4 4.570882-5 4.716153+4 4.900000-5 4.457100+4 5.308844-5 4.145886+4 5.821032-5 3.786005+4 6.456542-5 3.391567+4 7.413102-5 2.903349+4 8.709636-5 2.401283+4 1.364583-4 1.397043+4 1.513561-4 1.226135+4 1.659587-4 1.084797+4 1.840772-4 9.381562+3 2.264644-4 6.931044+3 2.851018-4 4.904387+3 3.845918-4 3.118309+3 4.731513-4 2.258441+3 6.095369-4 1.518279+3 7.762471-4 1.025724+3 9.225714-4 7.718922+2 1.135011-3 5.431161+2 1.258925-3 4.532825+2 1.927525-3 2.124734+2 2.454709-3 1.371919+2 3.054921-3 9.167182+1 3.758374-3 6.205280+1 4.623810-3 4.168509+1 5.623413-3 2.841896+1 6.839116-3 1.923203+1 8.222426-3 1.322225+1 9.885531-3 9.023832+0 1.188502-2 6.110849+0 1.412538-2 4.209645+0 1.678804-2 2.879126+0 2.000000-2 1.943864+0 2.371374-2 1.315926+0 2.818383-2 8.789805-1 3.311311-2 5.986660-1 3.935501-2 3.935999-1 4.677351-2 2.567422-1 5.495409-2 1.710501-1 6.606934-2 1.066778-1 8.000000-2 6.481800-2 9.772372-2 3.810824-2 1.258925-1 1.928469-2 2.511886-1 2.961212-3 3.019952-1 1.808966-3 3.507519-1 1.219749-3 4.027170-1 8.537120-4 4.570882-1 6.200157-4 5.128614-1 4.667676-4 5.754399-1 3.539768-4 6.382635-1 2.778477-4 7.079458-1 2.195727-4 7.852356-1 1.747253-4 8.709636-1 1.400033-4 9.660509-1 1.130401-4 1.096478+0 8.788500-5 1.250000+0 6.821400-5 1.412538+0 5.428487-5 1.584893+0 4.409435-5 1.798871+0 3.536481-5 2.044000+0 2.852800-5 2.317395+0 2.327301-5 2.630268+0 1.909027-5 3.019952+0 1.549424-5 3.507519+0 1.244943-5 4.073803+0 1.007991-5 4.786301+0 8.094035-6 5.688529+0 6.447415-6 6.839116+0 5.098349-6 8.317638+0 4.004085-6 1.035142+1 3.081586-6 1.318257+1 2.327303-6 1.757924+1 1.682715-6 2.290868+1 1.257901-6 3.311311+1 8.464995-7 5.188000+1 5.284631-7 8.413951+1 3.208152-7 1.659587+2 1.606224-7 3.311311+2 8.000276-8 1.318257+3 1.999401-8 1.000000+5 2.63190-10 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.140000-6 5.140000-6 1.000000+5 5.140000-6 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.140000-6 0.0 1.000000+5 1.000000+5 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.243850-7 1.027100+0 9.731160-7 1.027500+0 1.218820-6 1.028100+0 1.659400-6 1.028750+0 2.243850-6 1.029500+0 3.070770-6 1.030100+0 3.861860-6 1.031000+0 5.284350-6 1.032000+0 7.230310-6 1.033200+0 1.012840-5 1.034000+0 1.243360-5 1.035300+0 1.687680-5 1.036640+0 2.243850-5 1.038200+0 3.028150-5 1.039700+0 3.934170-5 1.041500+0 5.234360-5 1.043800+0 7.265470-5 1.046400+0 1.010850-4 1.048300+0 1.258540-4 1.051200+0 1.707180-4 1.054080+0 2.243850-4 1.057700+0 3.058520-4 1.061100+0 3.978380-4 1.065100+0 5.266970-4 1.070400+0 7.348020-4 1.076200+0 1.015500-3 1.080600+0 1.268190-3 1.087100+0 1.708660-3 1.093710+0 2.243850-3 1.102600+0 3.110910-3 1.110700+0 4.056990-3 1.120600+0 5.426570-3 1.133300+0 7.544510-3 1.147500+0 1.041600-2 1.158200+0 1.294430-2 1.174100+0 1.730220-2 1.190110+0 2.243850-2 1.205100+0 2.794150-2 1.227500+0 3.740870-2 1.250000+0 4.831000-2 1.265600+0 5.658280-2 1.294900+0 7.350900-2 1.320600+0 8.961710-2 1.343000+0 1.044620-1 1.382200+0 1.319120-1 1.433800+0 1.703530-1 1.500000+0 2.232000-1 1.589800+0 3.021700-1 1.665000+0 3.744510-1 1.784700+0 4.989010-1 1.892300+0 6.175830-1 2.000000+0 7.391000-1 2.044000+0 7.886000-1 2.163500+0 9.231510-1 2.372600+0 1.157650+0 2.647100+0 1.459080+0 3.000000+0 1.831000+0 3.500000+0 2.324220+0 4.000000+0 2.781000+0 4.750000+0 3.406050+0 5.000000+0 3.599000+0 6.000000+0 4.303000+0 7.000000+0 4.927000+0 8.000000+0 5.488000+0 9.000000+0 5.998000+0 1.000000+1 6.465000+0 1.100000+1 6.896000+0 1.200000+1 7.296000+0 1.300000+1 7.669000+0 1.400000+1 8.013000+0 1.500000+1 8.332000+0 1.600000+1 8.627000+0 1.800000+1 9.163000+0 2.000000+1 9.643000+0 2.200000+1 1.008000+1 2.400000+1 1.048000+1 2.600000+1 1.084000+1 2.800000+1 1.117000+1 3.000000+1 1.147000+1 4.000000+1 1.271000+1 5.000000+1 1.363000+1 6.000000+1 1.435000+1 8.000000+1 1.541000+1 1.000000+2 1.616000+1 1.500000+2 1.735000+1 2.000000+2 1.807000+1 3.000000+2 1.890000+1 4.000000+2 1.938000+1 5.000000+2 1.970000+1 6.000000+2 1.992000+1 8.000000+2 2.022000+1 1.000000+3 2.042000+1 1.500000+3 2.070000+1 2.000000+3 2.085000+1 3.000000+3 2.102000+1 4.000000+3 2.111000+1 5.000000+3 2.117000+1 6.000000+3 2.121000+1 8.000000+3 2.126000+1 1.000000+4 2.129000+1 1.500000+4 2.134000+1 2.000000+4 2.136000+1 3.000000+4 2.139000+1 4.000000+4 2.140000+1 5.000000+4 2.141000+1 6.000000+4 2.141000+1 8.000000+4 2.142000+1 1.000000+5 2.142000+1 1 57000 7 8 1.389100+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.714290-7 2.094700+0 1.006020-6 2.099900+0 1.338370-6 2.106600+0 1.861780-6 2.114000+0 2.576010-6 2.119500+0 3.207110-6 2.127900+0 4.349450-6 2.136250+0 5.714290-6 2.147000+0 7.834690-6 2.156900+0 1.017630-5 2.169000+0 1.358090-5 2.184500+0 1.887800-5 2.201800+0 2.611820-5 2.214800+0 3.254120-5 2.234200+0 4.377370-5 2.253680+0 5.714290-5 2.281500+0 8.003870-5 2.307000+0 1.051310-4 2.338200+0 1.413570-4 2.377400+0 1.957630-4 2.410200+0 2.489770-4 2.446800+0 3.167130-4 2.485900+0 3.987590-4 2.532900+0 5.103260-4 2.556430+0 5.714290-4 2.611900+0 7.286360-4 2.660400+0 8.808830-4 2.745300+0 1.179010-3 2.809000+0 1.427850-3 2.904500+0 1.839440-3 3.000000+0 2.296000-3 3.125000+0 2.960560-3 3.234400+0 3.602270-3 3.425800+0 4.850710-3 3.569300+0 5.881720-3 3.784700+0 7.560470-3 4.000000+0 9.365000-3 4.250000+0 1.157100-2 4.625000+0 1.503740-2 5.000000+0 1.864000-2 5.500000+0 2.358290-2 6.000000+0 2.859000-2 6.750000+0 3.603870-2 7.000000+0 3.849000-2 8.000000+0 4.808000-2 9.000000+0 5.724000-2 1.000000+1 6.594000-2 1.100000+1 7.417000-2 1.200000+1 8.192000-2 1.300000+1 8.921000-2 1.400000+1 9.616000-2 1.500000+1 1.027000-1 1.600000+1 1.090000-1 1.800000+1 1.205000-1 2.000000+1 1.310000-1 2.200000+1 1.406000-1 2.400000+1 1.494000-1 2.600000+1 1.575000-1 2.800000+1 1.650000-1 3.000000+1 1.720000-1 4.000000+1 2.010000-1 5.000000+1 2.229000-1 6.000000+1 2.403000-1 8.000000+1 2.664000-1 1.000000+2 2.854000-1 1.500000+2 3.169000-1 2.000000+2 3.367000-1 3.000000+2 3.609000-1 4.000000+2 3.755000-1 5.000000+2 3.856000-1 6.000000+2 3.930000-1 8.000000+2 4.032000-1 1.000000+3 4.100000-1 1.500000+3 4.203000-1 2.000000+3 4.261000-1 3.000000+3 4.326000-1 4.000000+3 4.364000-1 5.000000+3 4.387000-1 6.000000+3 4.404000-1 8.000000+3 4.426000-1 1.000000+4 4.440000-1 1.500000+4 4.458000-1 2.000000+4 4.470000-1 3.000000+4 4.480000-1 4.000000+4 4.487000-1 5.000000+4 4.491000-1 6.000000+4 4.494000-1 8.000000+4 4.497000-1 1.000000+5 4.499000-1 1 57000 7 8 1.389100+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 57000 7 9 1.389100+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.700000+1 1.000000+5 5.700000+1 5.000000+5 5.696400+1 7.500000+5 5.693180+1 1.000000+6 5.690900+1 1.250000+6 5.686940+1 1.500000+6 5.682700+1 1.875000+6 5.673150+1 2.000000+6 5.669500+1 2.375000+6 5.657410+1 2.500000+6 5.653000+1 2.875000+6 5.638550+1 3.000000+6 5.633300+1 3.250000+6 5.622190+1 3.625000+6 5.604350+1 4.000000+6 5.585600+1 4.437500+6 5.562770+1 4.812500+6 5.541900+1 5.000000+6 5.530900+1 5.500000+6 5.499370+1 5.875000+6 5.475100+1 6.437500+6 5.437240+1 6.500000+6 5.433160+1 7.000000+6 5.398900+1 7.500000+6 5.364420+1 8.250000+6 5.311680+1 8.500000+6 5.294230+1 9.000000+6 5.258700+1 1.000000+7 5.186700+1 1.250000+7 5.012500+1 1.500000+7 4.840000+1 1.750000+7 4.671700+1 2.000000+7 4.507400+1 2.250000+7 4.345330+1 2.375000+7 4.265840+1 2.500000+7 4.188700+1 2.875000+7 3.968500+1 3.000000+7 3.899700+1 3.250000+7 3.768300+1 3.500000+7 3.645230+1 3.625000+7 3.586490+1 4.000000+7 3.420700+1 4.500000+7 3.219390+1 5.000000+7 3.034500+1 5.500000+7 2.862010+1 6.000000+7 2.701000+1 6.750000+7 2.480720+1 7.000000+7 2.413300+1 8.000000+7 2.174000+1 9.000000+7 1.981200+1 1.000000+8 1.827300+1 1.125000+8 1.674970+1 1.250000+8 1.546900+1 1.359400+8 1.444600+1 1.437500+8 1.374750+1 1.453100+8 1.361040+1 1.500000+8 1.320200+1 1.589800+8 1.243310+1 1.665000+8 1.180450+1 1.748800+8 1.112440+1 1.750000+8 1.111480+1 1.838500+8 1.042160+1 1.946200+8 9.613030+0 2.000000+8 9.225300+0 2.281300+8 7.490340+0 2.359400+8 7.131910+0 2.375000+8 7.066870+0 2.453100+8 6.776950+0 2.500000+8 6.630200+0 2.562500+8 6.464440+0 2.671900+8 6.228100+0 2.877000+8 5.849150+0 2.959000+8 5.689390+0 3.000000+8 5.604500+0 3.500000+8 4.578800+0 3.625000+8 4.417090+0 4.000000+8 4.044600+0 4.179700+8 3.855200+0 4.330100+8 3.688400+0 4.497600+8 3.501180+0 4.750000+8 3.227350+0 4.784700+8 3.191200+0 5.000000+8 2.976100+0 5.437500+8 2.591540+0 5.718800+8 2.373600+0 6.000000+8 2.173100+0 6.500000+8 1.866580+0 6.718800+8 1.762730+0 6.906300+8 1.690880+0 7.000000+8 1.660800+0 7.125000+8 1.626780+0 8.000000+8 1.463300+0 8.250000+8 1.412460+0 8.468800+8 1.364670+0 8.851600+8 1.279830+0 9.569300+8 1.136560+0 1.000000+9 1.068300+0 1.031300+9 1.028280+0 1.060500+9 9.967480-1 1.115500+9 9.485860-1 1.163500+9 9.144670-1 1.331800+9 8.190960-1 1.375000+9 7.957130-1 1.405400+9 7.789340-1 1.468500+9 7.425990-1 1.500000+9 7.236000-1 1.562500+9 6.843050-1 1.617200+9 6.492230-1 1.665000+9 6.186870-1 1.748800+9 5.666240-1 1.811600+9 5.295860-1 1.905800+9 4.779820-1 2.000000+9 4.315500-1 2.139200+9 3.721730-1 2.272600+9 3.241790-1 2.443000+9 2.732320-1 2.602800+9 2.340170-1 2.825100+9 1.902340-1 2.961100+9 1.683680-1 3.215900+9 1.351290-1 3.536500+9 1.040510-1 3.804800+9 8.462000-2 4.103600+9 6.801670-2 4.423800+9 5.450190-2 4.807900+9 4.242850-2 5.000000+9 3.765600-2 5.375000+9 3.012840-2 6.031300+9 2.100320-2 7.015600+9 1.298030-2 8.000000+9 8.513300-3 1.00000+10 4.154300-3 1.13510+10 2.771080-3 1.41440+10 1.380020-3 1.70770+10 7.635490-4 2.01080+10 4.588230-4 2.51010+10 2.310540-4 2.97820+10 1.367020-4 3.85600+10 6.223010-5 4.62400+10 3.592830-5 5.96800+10 1.669250-5 7.98400+10 7.007060-6 1.00000+11 3.594700-6 1.34280+11 1.507390-6 1.77440+11 6.657210-7 2.63330+11 2.106630-7 4.88110+11 3.541100-8 1.16740+12 2.929420-9 3.55150+12 1.26429-10 1.00000+14 1.13680-14 2.05350+15 2.35319-18 1.00000+17 3.97470-23 1 57000 7 0 1.389100+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.19000-11 1.000000+2 1.190000-9 1.000000+3 1.190000-7 1.000000+4 1.190000-5 1.000000+5 1.190000-3 5.000000+5 2.975000-2 7.500000+5 6.693750-2 1.000000+6 1.190000-1 1.250000+6 1.840910-1 1.500000+6 2.622000-1 1.875000+6 4.025190-1 2.000000+6 4.550000-1 2.375000+6 6.273560-1 2.500000+6 6.895000-1 2.875000+6 8.877820-1 3.000000+6 9.575000-1 3.250000+6 1.101290+0 3.625000+6 1.326350+0 4.000000+6 1.559600+0 4.437500+6 1.837850+0 4.812500+6 2.078580+0 5.000000+6 2.199000+0 5.500000+6 2.517150+0 5.875000+6 2.752450+0 6.437500+6 3.097650+0 6.500000+6 3.135270+0 7.000000+6 3.432600+0 7.500000+6 3.720490+0 8.250000+6 4.138200+0 8.500000+6 4.274170+0 9.000000+6 4.542400+0 1.000000+7 5.068000+0 1.250000+7 6.366900+0 1.500000+7 7.671000+0 1.750000+7 8.956500+0 2.000000+7 1.020400+1 2.250000+7 1.141050+1 2.375000+7 1.200090+1 2.500000+7 1.258300+1 2.875000+7 1.427310+1 3.000000+7 1.481400+1 3.250000+7 1.585150+1 3.500000+7 1.683110+1 3.625000+7 1.729840+1 4.000000+7 1.860900+1 4.500000+7 2.015720+1 5.000000+7 2.155500+1 5.500000+7 2.285820+1 6.000000+7 2.410900+1 6.750000+7 2.591690+1 7.000000+7 2.650200+1 8.000000+7 2.875900+1 9.000000+7 3.085400+1 1.000000+8 3.275800+1 1.125000+8 3.484410+1 1.250000+8 3.662300+1 1.359400+8 3.795250+1 1.437500+8 3.880520+1 1.453100+8 3.896690+1 1.500000+8 3.943800+1 1.589800+8 4.027940+1 1.665000+8 4.093780+1 1.748800+8 4.162130+1 1.750000+8 4.163080+1 1.838500+8 4.230940+1 1.946200+8 4.307740+1 2.000000+8 4.344300+1 2.281300+8 4.515300+1 2.359400+8 4.558290+1 2.375000+8 4.566410+1 2.453100+8 4.606480+1 2.500000+8 4.630100+1 2.562500+8 4.659680+1 2.671900+8 4.710180+1 2.877000+8 4.796140+1 2.959000+8 4.827950+1 3.000000+8 4.843600+1 3.500000+8 5.009400+1 3.625000+8 5.044670+1 4.000000+8 5.140300+1 4.179700+8 5.179820+1 4.330100+8 5.210610+1 4.497600+8 5.242690+1 4.750000+8 5.285530+1 4.784700+8 5.291240+1 5.000000+8 5.323200+1 5.437500+8 5.377290+1 5.718800+8 5.406530+1 6.000000+8 5.432000+1 6.500000+8 5.468510+1 6.718800+8 5.482210+1 6.906300+8 5.492870+1 7.000000+8 5.498100+1 7.125000+8 5.504200+1 8.000000+8 5.541900+1 8.250000+8 5.550400+1 8.468800+8 5.557650+1 8.851600+8 5.569900+1 9.569300+8 5.588840+1 1.000000+9 5.599500+1 1.031300+9 5.606000+1 1.060500+9 5.611900+1 1.115500+9 5.622600+1 1.163500+9 5.630630+1 1.331800+9 5.653350+1 1.375000+9 5.658070+1 1.405400+9 5.660870+1 1.468500+9 5.666480+1 1.500000+9 5.669200+1 1.562500+9 5.673300+1 1.617200+9 5.676750+1 1.665000+9 5.679080+1 1.748800+9 5.682790+1 1.811600+9 5.685460+1 1.905800+9 5.688250+1 2.000000+9 5.690900+1 2.139200+9 5.693360+1 2.272600+9 5.695570+1 2.443000+9 5.697640+1 2.602800+9 5.698670+1 2.825100+9 5.700000+1 2.961100+9 5.700760+1 3.215900+9 5.700900+1 3.536500+9 5.700880+1 3.804800+9 5.700860+1 4.103600+9 5.700840+1 4.423800+9 5.700540+1 4.807900+9 5.700170+1 5.000000+9 5.700000+1 5.375000+9 5.700000+1 6.031300+9 5.700000+1 7.015600+9 5.700000+1 8.000000+9 5.700000+1 1.00000+10 5.700000+1 1.13510+10 5.700000+1 1.41440+10 5.700000+1 1.70770+10 5.700000+1 2.01080+10 5.700000+1 2.51010+10 5.700000+1 2.97820+10 5.700000+1 3.85600+10 5.700000+1 4.62400+10 5.700000+1 5.96800+10 5.700000+1 7.98400+10 5.700000+1 1.00000+11 5.700000+1 1.34280+11 5.700000+1 1.77440+11 5.700000+1 2.63330+11 5.700000+1 4.88110+11 5.700000+1 1.16740+12 5.700000+1 3.55150+12 5.700000+1 1.00000+14 5.700000+1 2.05350+15 5.700000+1 1.00000+17 5.700000+1 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.136727-6 0.0 2.145931-6 3.687124+0 2.147246-6 4.208482+0 2.152505-6 7.687136+0 2.157764-6 1.296157+1 2.163681-6 2.127382+1 2.172803-6 3.711374+1 2.179459-6 4.783722+1 2.184544-6 5.341343+1 2.189877-6 5.529027+1 2.195314-6 5.263134+1 2.200620-6 4.626365+1 2.209295-6 3.146204+1 2.215616-6 2.066511+1 2.221204-6 1.300451+1 2.226135-6 7.950087+0 2.231559-6 4.306295+0 2.239215-6 1.140406+0 2.241880-6 1.392649-2 2.241893-6 8.236555-3 2.241895-6 7.721775-3 2.241902-6 4.546585-3 2.241907-6 2.557459-3 2.241909-6 1.438573-3 2.241911-6 7.192868-4 2.241912-6 1.798218-4 2.241913-6 0.0 2.278293-6 0.0 2.288106-6 7.631594+0 2.289508-6 8.710698+0 2.295116-6 1.591080+1 2.301074-6 2.775877+1 2.307032-6 4.403246+1 2.323505-6 9.822185+1 2.329670-6 1.108885+2 2.334775-6 1.145823+2 2.340493-6 1.095238+2 2.346306-6 9.604170+1 2.362409-6 4.277255+1 2.368016-6 2.761247+1 2.373624-6 1.645506+1 2.379232-6 9.052062+0 2.389067-6 1.133424+0 2.390447-6 2.93401-13 2.404812-6 1.39669-13 2.410520-6 9.01654-14 2.416229-6 5.37321-14 2.421937-6 2.95585-14 2.427645-6 1.50101-14 2.433354-6 0.0 2.460761-6 0.0 2.466818-6 1.834846-1 2.472875-6 3.630655-1 2.478932-6 6.631688-1 2.484989-6 1.118194+0 2.491046-6 1.740459+0 2.501645-6 3.112411+0 2.509216-6 4.060950+0 2.515273-6 4.589761+0 2.521330-6 4.788576+0 2.527387-6 4.611865+0 2.533444-6 4.100160+0 2.542529-6 2.957587+0 2.551614-6 1.782778+0 2.557671-6 1.150899+0 2.559238-6 1.030835+0 2.563728-6 7.626691-1 2.569785-6 5.562461-1 2.571836-6 5.278784-1 2.578135-6 5.088968-1 2.581899-6 5.493546-1 2.584435-6 6.571744-1 2.590734-6 1.022886+0 2.600183-6 1.709220+0 2.609632-6 2.386664+0 2.615931-6 2.697451+0 2.622230-6 2.814297+0 2.628529-6 2.710442+0 2.634828-6 2.409708+0 2.644277-6 1.738206+0 2.653726-6 1.047757+0 2.660025-6 6.763957-1 2.666325-6 4.030835-1 2.672624-6 2.217395-1 2.678923-6 1.126018-1 2.685222-6 0.0 2.700803-6 0.0 2.707451-6 2.003229-2 2.714099-6 3.963838-2 2.720746-6 7.240274-2 2.727394-6 1.220810-1 2.734042-6 1.900180-1 2.740689-6 2.730206-1 2.747337-6 3.621179-1 2.753985-6 4.433621-1 2.760632-6 5.010960-1 2.767280-6 5.228020-1 2.773928-6 5.035093-1 2.780575-6 4.476429-1 2.787223-6 3.673752-1 2.800518-6 1.946382-1 2.807166-6 1.256516-1 2.813814-6 7.487939-2 2.820461-6 4.119177-2 2.827109-6 2.091764-2 2.833757-6 0.0 3.205403-6 0.0 3.213293-6 5.16824-15 3.221182-6 1.02265-14 3.229072-6 1.86796-14 3.236962-6 3.14963-14 3.244852-6 4.90238-14 3.252741-6 7.04380-14 3.260631-6 9.34247-14 3.268521-6 1.14385-13 3.276410-6 1.29280-13 3.284300-6 1.34880-13 3.292190-6 1.29903-13 3.300079-6 1.15490-13 3.307969-6 9.47811-14 3.323748-6 5.02157-14 3.331638-6 3.24175-14 3.339528-6 1.93185-14 3.347418-6 1.06273-14 3.355307-6 5.39665-15 3.363197-6 0.0 3.387862-6 0.0 3.396201-6 1.030579-8 3.404540-6 2.039232-8 3.412878-6 3.724825-8 3.421217-6 6.280566-8 3.429556-6 9.775649-8 3.437895-6 1.404579-7 3.446234-6 1.862949-7 3.454572-6 2.280916-7 3.462990-6 2.578986-7 3.471250-6 2.689602-7 3.479589-6 2.590349-7 3.487928-6 2.302940-7 3.496266-6 1.889995-7 3.512944-6 1.001334-7 3.521283-6 6.464263-8 3.529622-6 3.852238-8 3.537960-6 2.119148-8 3.546299-6 1.076127-8 3.554638-6 0.0 3.627914-6 0.0 3.636843-6 5.642424-9 3.645773-6 1.116480-8 3.654702-6 2.039342-8 3.663632-6 3.438611-8 3.673306-6 5.546653-8 3.680001-6 2.859922-6 3.691389-6 1.442738-5 3.698117-6 2.302004-5 3.700430-6 2.689347-5 3.705777-6 3.772335-5 3.724020-6 9.492340-2 3.733141-6 1.733457-1 3.742262-6 2.922334-1 3.746163-6 3.616592-1 3.754388-6 6.802564-1 3.765451-6 1.149835+0 3.775195-6 1.695396+0 3.785347-6 2.397630+0 3.810708-6 4.380026+0 3.820505-6 4.961819+0 3.829149-6 5.254170+0 3.840027-6 5.176216+0 3.848743-6 4.803942+0 3.858353-6 4.103518+0 3.884474-6 1.763401+0 3.893727-6 1.123544+0 3.903218-6 6.606374-1 3.912136-6 3.688576-1 3.928622-6 3.979066-2 3.930577-6 4.737756-3 3.948033-6 4.672829-2 3.957631-6 8.483460-2 3.967301-6 1.430413-1 3.976971-6 2.226413-1 4.001590-6 4.734777-1 4.007613-6 5.308751-1 4.017103-6 5.909373-1 4.026594-6 6.095839-1 4.036084-6 5.825573-1 4.045575-6 5.156114-1 4.073669-6 2.280530-1 4.083339-6 1.472231-1 4.093009-6 8.773442-2 4.102678-6 4.826345-2 4.115979-6 1.531906-2 4.122018-6 1.341394-7 4.126061-6 1.666225-7 4.128287-6 1.915244-7 4.148610-6 2.480814-2 4.158771-6 4.531389-2 4.168932-6 7.647366-2 4.179094-6 1.216831-1 4.209716-6 2.945353-1 4.219977-6 3.397119-1 4.230237-6 3.638414-1 4.240498-6 3.627567-1 4.252383-6 3.308925-1 4.279398-6 2.133413-1 4.291801-6 2.210174-1 4.301029-6 2.418106-1 4.311190-6 3.089722-1 4.322583-6 4.464756-1 4.332844-6 6.162877-1 4.357050-6 1.117397+0 4.372390-6 1.345844+0 4.384730-6 1.413802+0 4.397028-6 1.337984+0 4.424429-6 9.523199-1 4.430317-6 8.644564-1 4.440404-6 7.524432-1 4.448840-6 6.842795-1 4.461385-6 6.242723-1 4.478515-6 5.658206-1 4.486301-6 5.251186-1 4.490062-6 4.942431-1 4.500347-6 4.513389-1 4.522178-6 3.386872-1 4.529307-6 3.086120-1 4.536855-6 2.928257-1 4.544010-6 2.910950-1 4.554926-6 2.985462-1 4.568997-6 3.303191-1 4.583064-6 3.746976-1 4.626591-6 6.019706-1 4.637574-6 6.366206-1 4.648556-6 6.474672-1 4.667993-6 6.107804-1 4.688494-6 5.585126-1 4.704318-6 5.486139-1 4.715757-6 5.680961-1 4.734639-6 6.566631-1 4.772948-6 8.803621-1 4.784392-6 9.097594-1 4.796111-6 8.971375-1 4.810108-6 8.279132-1 4.843288-6 5.618676-1 4.855652-6 4.818121-1 4.865258-6 4.373362-1 4.878140-6 4.076698-1 4.895706-6 4.021323-1 4.910225-6 4.306593-1 4.945917-6 5.514461-1 4.974665-6 6.189225-1 5.028476-6 7.121636-1 5.050826-6 7.075387-1 5.093716-6 5.983932-1 5.114786-6 5.611576-1 5.135787-6 5.608788-1 5.202958-6 6.598611-1 5.231216-6 6.480349-1 5.281033-6 6.111571-1 5.340928-6 6.154223-1 5.434540-6 6.657146-1 5.594832-6 6.802771-1 5.765030-6 7.254075-1 6.918310-6 9.567959-1 9.232227-6 1.429011+0 1.081768-5 1.648089+0 1.223976-5 1.735940+0 1.389113-5 1.717701+0 1.649252-5 1.532845+0 1.953165-5 1.254111+0 1.962780-5 3.331421+0 1.967588-5 5.051213+0 1.972395-5 7.660950+0 1.977203-5 1.130512+1 1.986898-5 3.905060+1 1.991764-5 5.879597+1 1.997239-5 8.935421+1 2.002106-5 1.231042+2 2.013359-5 2.101336+2 2.016401-5 2.306885+2 2.021751-5 2.527526+2 2.026323-5 2.563941+2 2.031143-5 2.423632+2 2.036240-5 2.104036+2 2.050163-5 9.300127+1 2.055029-5 6.044958+1 2.059896-5 3.649134+1 2.064762-5 2.059363+1 2.072062-5 6.093812+0 2.074495-5 1.151605+0 2.223823-5 1.036904+0 2.234771-5 1.146608+1 2.240244-5 2.008934+1 2.246060-5 3.428143+1 2.251515-5 5.238076+1 2.267784-5 1.182206+2 2.273852-5 1.337417+2 2.278814-5 1.384211+2 2.284641-5 1.318234+2 2.291492-5 1.110273+2 2.305928-5 5.222896+1 2.311402-5 3.406042+1 2.316876-5 2.070759+1 2.322349-5 1.195042+1 2.333297-5 1.413838+0 2.338757-5 1.699754+0 2.344458-5 2.109246+0 2.361559-5 3.639009+0 2.367260-5 4.094281+0 2.372960-5 4.377689+0 2.378660-5 4.477334+0 2.392494-5 4.455917+0 2.401462-5 4.683108+0 2.416693-5 5.394421+0 2.422526-5 5.461226+0 2.428360-5 5.310664+0 2.447722-5 4.228738+0 2.451694-5 4.076176+0 2.457635-5 3.969215+0 2.493006-5 4.347398+0 2.552114-5 4.084439+0 2.587030-5 4.054676+0 2.606069-5 4.207411+0 2.619050-5 4.479744+0 2.643913-5 5.283572+0 2.692691-5 6.158348+0 2.705690-5 6.100199+0 2.733298-5 5.420000+0 2.763835-5 5.429072+0 2.855245-5 5.236416+0 3.193520-5 4.135969+0 3.573676-5 3.166074+0 3.928263-5 2.495749+0 4.015023-5 2.395699+0 4.073803-5 2.425656+0 4.160594-5 2.169573+0 4.687459-5 1.667788+0 5.150000-5 1.366047+0 5.578923-5 1.175432+0 6.022991-5 1.036329+0 6.658180-5 9.055014-1 7.464315-5 8.077147-1 8.647414-5 7.365624-1 9.932036-5 7.037349-1 9.965902-5 1.669424+0 9.980928-5 1.071339+1 1.001496-4 3.179635+1 1.003949-4 5.683658+1 1.006402-4 9.437092+1 1.008855-4 1.451508+2 1.016367-4 3.329048+2 1.018892-4 3.724164+2 1.021449-4 3.830547+2 1.024114-4 3.611783+2 1.027332-4 3.085096+2 1.031671-4 2.206623+2 1.033610-4 1.929484+2 1.036063-4 1.750054+2 1.038551-4 1.777426+2 1.041433-4 2.004563+2 1.044427-4 2.301270+2 1.046204-4 2.428979+2 1.048055-4 2.541345+2 1.049279-4 2.587134+2 1.051878-4 2.477565+2 1.054459-4 2.183537+2 1.061802-4 9.686466+1 1.064323-4 6.277844+1 1.066843-4 3.769189+1 1.069363-4 2.104686+1 1.073797-4 3.188992+0 1.074404-4 6.940543-1 1.082018-4 6.937674-1 1.087344-4 7.854503-1 1.090007-4 8.613334-1 1.092671-4 9.765487-1 1.095334-4 1.134293+0 1.103394-4 1.767067+0 1.106508-4 1.950357+0 1.109175-4 2.039423+0 1.112489-4 2.057738+0 1.120697-4 1.989096+0 1.123227-4 2.023173+0 1.128098-4 2.225148+0 1.133391-4 2.557659+0 1.138589-4 2.810931+0 1.144304-4 2.889096+0 1.151510-4 2.848142+0 1.159836-4 2.933584+0 1.183878-4 3.604198+0 1.208083-4 4.275648+0 1.230269-4 4.647873+0 1.255000-4 4.723074+0 1.290036-4 4.421694+0 1.380616-4 3.279006+0 1.445440-4 2.651251+0 1.500059-4 2.270986+0 1.555000-4 2.013061+0 1.607886-4 1.865100+0 1.688496-4 1.783635+0 1.768944-4 1.825484+0 1.865000-4 1.977743+0 1.926930-4 2.124646+0 1.968966-4 2.250101+0 1.983505-4 2.435944+0 1.994026-4 2.760512+0 2.008499-4 3.365476+0 2.013402-4 3.505421+0 2.018538-4 3.570270+0 2.023585-4 3.552448+0 2.040795-4 3.252212+0 2.052919-4 3.241001+0 2.080995-4 3.507839+0 2.166016-4 3.878664+0 2.196167-4 4.118496+0 2.273187-4 4.516450+0 2.717561-4 5.848790+0 2.777821-4 6.528156+0 3.311311-4 7.493580+0 3.840000-4 7.993949+0 4.567280-4 8.167171+0 5.682094-4 7.857051+0 8.154488-4 6.550903+0 8.194630-4 1.440967+1 8.215311-4 2.122203+1 8.235532-4 3.130437+1 8.255752-4 4.503433+1 8.313985-4 9.376854+1 8.336901-4 1.080796+2 8.356857-4 1.144634+2 8.377078-4 1.138577+2 8.447115-4 9.238213+1 8.472800-4 9.010478+1 8.528939-4 9.100095+1 8.553074-4 8.513802+1 8.584248-4 7.376317+1 8.640387-4 4.842680+1 8.658000-4 4.250862+1 8.674054-4 3.843504+1 8.697506-4 3.508900+1 8.734932-4 3.188799+1 8.813119-4 3.356099+1 9.055162-4 3.405330+1 1.062124-3 2.797180+1 1.096752-3 2.722797+1 1.104886-3 2.806979+1 1.117607-3 3.042546+1 1.126282-3 3.047382+1 1.151635-3 2.909645+1 1.185379-3 2.867976+1 1.205278-3 2.949632+1 1.325372-3 2.624904+1 1.373226-3 2.624315+1 1.649482-3 2.092996+1 1.938653-3 1.692049+1 2.193398-3 1.427841+1 2.583840-3 1.132461+1 2.930050-3 9.431419+0 3.364147-3 7.680853+0 3.843158-3 6.275878+0 4.376828-3 5.135820+0 5.026771-3 4.133431+0 5.347821-3 3.759378+0 5.385153-3 3.967055+0 5.406445-3 4.349567+0 5.424133-3 4.918292+0 5.442770-3 5.774248+0 5.492172-3 8.578360+0 5.520677-3 9.630649+0 5.552080-3 1.010082+1 5.680496-3 9.931960+0 5.787525-3 9.736912+0 5.829654-3 1.000545+1 5.878433-3 1.100268+1 5.928988-3 1.212137+1 5.975357-3 1.245675+1 6.177020-3 1.213583+1 6.298569-3 1.310111+1 6.502692-3 1.269421+1 7.518971-3 1.013210+1 8.629041-3 8.128516+0 9.868284-3 6.532068+0 1.126873-2 5.248137+0 1.285519-2 4.206414+0 1.461573-2 3.378766+0 1.662755-2 2.706386+0 1.864769-2 2.215535+0 2.098487-2 1.801017+0 2.353212-2 1.469719+0 2.657585-2 1.183150+0 2.991233-2 9.566988-1 3.345820-2 7.812556-1 3.776632-2 6.269506-1 3.809758-2 6.298724-1 3.825337-2 6.612975-1 3.836336-2 7.179974-1 3.846239-2 8.100219-1 3.856930-2 9.690003-1 3.867524-2 1.195955+0 3.881646-2 1.599390+0 3.913533-2 2.625974+0 3.931189-2 3.026454+0 3.947665-2 3.229732+0 3.979563-2 3.330953+0 4.685422-2 2.565061+0 5.324147-2 2.079741+0 6.051264-2 1.672954+0 6.720836-2 1.395240+0 7.597917-2 1.126310+0 8.561587-2 9.115115-1 9.498384-2 7.566879-1 1.055544-1 6.252475-1 1.170666-1 5.183424-1 1.303654-1 4.257438-1 1.446350-1 3.520534-1 1.611430-1 2.889172-1 1.788867-1 2.386599-1 2.004550-1 1.938587-1 2.225058-1 1.605459-1 2.471351-1 1.329747-1 2.747524-1 1.103236-1 3.038205-1 9.259252-2 3.392711-1 7.672860-2 3.801894-1 6.355486-2 4.257746-1 5.300353-2 4.786301-1 4.424739-2 5.399378-1 3.704179-2 6.201546-1 3.052812-2 6.998420-1 2.606578-2 8.006044-1 2.213599-2 9.468801-1 1.830532-2 1.120833+0 1.528430-2 1.286622+0 1.313962-2 1.546860+0 1.073759-2 1.859734+0 8.774676-3 2.235892+0 7.170597-3 2.688134+0 5.859756-3 3.231848+0 4.788547-3 3.885536+0 3.913163-3 4.671441+0 3.197806-3 5.616308+0 2.613222-3 6.752287+0 2.135505-3 8.118035+0 1.745118-3 9.760024+0 1.426097-3 1.000000+1 2.915406-3 1 57000 7 0 1.389100+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.642521+1 1.711478-6-5.390303+1 1.940708-6-5.058095+1 2.040348-6-4.671483+1 2.086628-6-4.287356+1 2.114243-6-3.850977+1 2.129314-6-3.415476+1 2.136336-6-3.050316+1 2.141986-6-2.673714+1 2.147246-6-2.346978+1 2.153162-6-1.921330+1 2.159572-6-1.535830+1 2.163681-6-1.395939+1 2.166557-6-1.390863+1 2.169598-6-1.465304+1 2.172803-6-1.668595+1 2.176583-6-2.073394+1 2.178801-6-2.404833+1 2.183629-6-3.271633+1 2.189564-6-4.600963+1 2.194746-6-5.681643+1 2.201669-6-4.466336+1 2.206582-6-3.952054+1 2.210357-6-3.770609+1 2.215200-6-3.766164+1 2.221204-6-4.065893+1 2.242161-6-5.673738+1 2.254342-6-4.809103+1 2.270063-6-3.741373+1 2.276340-6-3.133668+1 2.280335-6-2.542608+1 2.288807-6-1.566519+1 2.295116-6-7.030250+0 2.295466-6-6.423830+0 2.296124-6-5.515949+0 2.300724-6-2.179885-1 2.301074-6 2.976042-1 2.301731-6 1.001344+0 2.302881-6 1.942696+0 2.307032-6 4.413074+0 2.308259-6 4.612624+0 2.309179-6 4.530447+0 2.310559-6 4.116897+0 2.311939-6 3.442360+0 2.312845-6 2.833316+0 2.313638-6 2.130107+0 2.315025-6 5.860287-1 2.316065-6-8.303448-1 2.316845-6-2.043441+0 2.318016-6-4.126871+0 2.318601-6-5.305105+0 2.320178-6-8.992405+0 2.321480-6-1.234720+1 2.322945-6-1.683750+1 2.323505-6-1.898700+1 2.327284-6-3.206421+1 2.328850-6-3.893358+1 2.333190-6-5.690039+1 2.334775-6-4.891067+1 2.341129-6-2.119762+1 2.345585-6-5.133451+0 2.345831-6-4.145698+0 2.346306-6-2.518449+0 2.347197-6 1.654816-1 2.347977-6 2.266339+0 2.349342-6 5.533302+0 2.350366-6 7.700219+0 2.351901-6 1.056369+1 2.353436-6 1.304463+1 2.355539-6 1.574780+1 2.357257-6 1.732214+1 2.359511-6 1.854966+1 2.361684-6 1.866358+1 2.366614-6 1.584860+1 2.368016-6 1.436186+1 2.368717-6 1.344949+1 2.372397-6 9.622974+0 2.373011-6 8.857228+0 2.373624-6 7.900550+0 2.379232-6 6.796516-1 2.379760-6-1.226735-1 2.380751-6-1.356093+0 2.387687-6-8.723325+0 2.389757-6-1.128057+1 2.390896-6-1.325986+1 2.392581-6-1.539966+1 2.395448-6-1.816214+1 2.399545-6-2.124502+1 2.407666-6-2.579131+1 2.419083-6-3.029995+1 2.436780-6-3.510082+1 2.478932-6-4.273980+1 2.501645-6-4.500578+1 2.527387-6-4.316878+1 2.545557-6-4.244877+1 2.600183-6-4.719911+1 2.650577-6-4.570959+1 2.747337-6-4.916518+1 3.221182-6-5.265514+1 3.705777-6-5.506225+1 3.797351-6-5.667736+1 3.840027-6-5.302250+1 3.874947-6-5.072032+1 3.995568-6-5.349540+1 4.374197-6-5.451184+1 4.490062-6-5.390201+1 6.918310-6-5.529393+1 1.207279-5-5.643905+1 1.549227-5-5.164328+1 1.704194-5-4.686368+1 1.795090-5-4.138798+1 1.845843-5-3.605187+1 1.880300-5-3.032958+1 1.903915-5-2.448248+1 1.920171-5-1.881431+1 1.931062-5-1.377631+1 1.936242-5-1.086523+1 1.940473-5-8.158246+0 1.943646-5-5.886489+0 1.946026-5-4.017166+0 1.947811-5-2.503879+0 1.950488-5-1.024767-2 1.951827-5 1.371222+0 1.957973-5 8.637618+0 1.961578-5 1.332041+1 1.966386-5 2.082106+1 1.971193-5 2.991744+1 1.974799-5 3.842377+1 1.976902-5 4.487911+1 1.978093-5 4.976467+1 1.979193-5 5.303006+1 1.993437-5 8.706485+1 1.998304-5 9.405531+1 2.003246-5 9.342150+1 2.006646-5 8.593272+1 2.009941-5 7.304639+1 2.013359-5 5.264140+1 2.015327-5 3.834900+1 2.016097-5 3.134268+1 2.016401-5 2.828978+1 2.018682-5 8.040865+0 2.019253-5 2.785669+0 2.019680-5-1.303805+0 2.020001-5-4.485317+0 2.020242-5-6.956988+0 2.020783-5-1.296432+1 2.021189-5-1.828000+1 2.022261-5-2.993620+1 2.024799-5-5.619132+1 2.025810-5-4.409121+1 2.026323-5-3.738020+1 2.030697-5 8.753265+0 2.030849-5 1.072254+1 2.031143-5 1.401014+1 2.032179-5 2.413281+1 2.036240-5 5.894296+1 2.038691-5 7.444480+1 2.041929-5 8.861564+1 2.044647-5 9.625431+1 2.047836-5 1.004235+2 2.050163-5 9.898574+1 2.054421-5 9.145388+1 2.059896-5 7.487848+1 2.066435-5 5.325678+1 2.073279-5 3.451242+1 2.074495-5 2.985067+1 2.075283-5 2.664840+1 2.077365-5 2.070065+1 2.079416-5 1.604902+1 2.081442-5 1.211509+1 2.083436-5 8.699150+0 2.085399-5 5.678280+0 2.087332-5 2.972701+0 2.089234-5 5.261697-1 2.091107-5-1.703092+0 2.092951-5-3.747277+0 2.094765-5-5.631859+0 2.098338-5-9.025920+0 2.101799-5-1.197941+1 2.108399-5-1.690183+1 2.117547-5-2.259947+1 2.133581-5-3.062061+1 2.192765-5-5.468941+1 2.197034-5-5.613923+1 2.211465-5-4.718276+1 2.219961-5-3.921950+1 2.223238-5-3.459187+1 2.225263-5-3.065556+1 2.233787-5-1.884086+1 2.240244-5-8.120998+0 2.240586-5-7.398052+0 2.241228-5-6.316414+0 2.245718-5 1.707673-2 2.246060-5 6.363176-1 2.246702-5 1.483617+0 2.247824-5 2.623833+0 2.251192-5 5.247177+0 2.251515-5 5.583622+0 2.252142-5 5.909619+0 2.253317-5 6.052630+0 2.254345-5 5.827170+0 2.255245-5 5.403296+0 2.256032-5 4.871163+0 2.257410-5 3.591570+0 2.258443-5 2.343417+0 2.259218-5 1.241868+0 2.260381-5-6.914704-1 2.260962-5-1.798273+0 2.261543-5-3.037342+0 2.263061-5-6.557629+0 2.264199-5-9.493074+0 2.265692-5-1.390206+1 2.267253-5-1.950723+1 2.267784-5-2.199475+1 2.271968-5-3.991730+1 2.274923-5-5.587194+1 2.276173-5-5.125661+1 2.278488-5-3.849850+1 2.278814-5-3.617278+1 2.284034-5-8.141946+0 2.284240-5-6.757547+0 2.284641-5-4.497362+0 2.285392-5-7.303526-1 2.286048-5 2.290650+0 2.287198-5 7.193435+0 2.291492-5 2.426791+1 2.293450-5 3.024287+1 2.296700-5 3.745353+1 2.299849-5 4.194681+1 2.302509-5 4.402008+1 2.305073-5 4.440051+1 2.310734-5 4.018782+1 2.316277-5 3.234096+1 2.324316-5 1.901054+1 2.331052-5 9.872589+0 2.332735-5 7.126175+0 2.333638-5 5.084921+0 2.334278-5 3.919256+0 2.335398-5 2.210948+0 2.337078-5 3.980542-2 2.338757-5-1.855502+0 2.340183-5-3.303990+0 2.342320-5-5.247194+0 2.344458-5-6.993220+0 2.346582-5-8.557867+0 2.349768-5-1.061770+1 2.355106-5-1.348904+1 2.363408-5-1.687295+1 2.372960-5-1.955726+1 2.401462-5-2.532750+1 2.416693-5-2.706784+1 2.440406-5-2.855619+1 2.477964-5-3.235749+1 2.633412-5-3.953091+1 2.699190-5-3.950418+1 3.290112-5-4.237359+1 6.658180-5-5.119108+1 7.340389-5-5.421822+1 8.192000-5-4.837864+1 8.647414-5-4.269815+1 8.963438-5-3.639846+1 9.133936-5-3.152158+1 9.274422-5-2.622507+1 9.390924-5-2.050958+1 9.485559-5-1.457248+1 9.539624-5-1.045101+1 9.587143-5-6.252948+0 9.608699-5-4.134888+0 9.628907-5-2.008662+0 9.647853-5 1.221826-1 9.665614-5 2.253894+0 9.682266-5 4.382729+0 9.712511-5 8.616976+0 9.740000-5 1.294743+1 9.763962-5 1.717113+1 9.803354-5 2.525970+1 9.833514-5 3.270196+1 9.866034-5 4.240731+1 9.895956-5 5.355155+1 9.921594-5 6.563985+1 9.946852-5 8.154028+1 9.964116-5 9.682734+1 9.971067-5 1.055335+2 1.001496-4 1.459902+2 1.004256-4 1.755692+2 1.007245-4 2.020160+2 1.009624-4 2.122651+2 1.011934-4 2.047050+2 1.014170-4 1.817533+2 1.015710-4 1.540750+2 1.018236-4 9.048878+1 1.018667-4 7.649302+1 1.019171-4 6.007243+1 1.020572-4 1.960080+1 1.020914-4 8.726219+0 1.021017-4 5.134635+0 1.021069-4 3.203230+0 1.021094-4 2.168955+0 1.021120-4 9.966779-1 1.021158-4-6.914913-1 1.021234-4-3.531995+0 1.021307-4-6.078111+0 1.021581-4-1.482664+1 1.022041-4-2.812015+1 1.023057-4-5.535861+1 1.023560-4-4.106048+1 1.023871-4-3.184391+1 1.024405-4-1.896169+1 1.024900-4-8.345475+0 1.025102-4-4.260952+0 1.026750-4 2.728274+1 1.027332-4 3.625466+1 1.028076-4 4.530606+1 1.028892-4 5.280870+1 1.029771-4 5.825550+1 1.030804-4 6.090565+1 1.031463-4 5.967102+1 1.032956-4 5.166064+1 1.033385-4 4.761136+1 1.033889-4 4.271152+1 1.035142-4 3.301195+1 1.035655-4 2.791679+1 1.035838-4 2.520508+1 1.036063-4 2.198670+1 1.036585-4 1.688919+1 1.037971-4 5.934113+0 1.038131-4 4.456123+0 1.038211-4 3.613362+0 1.038291-4 2.543540+0 1.038329-4 1.973753+0 1.038405-4 1.121441+0 1.038551-4-2.236429-1 1.038688-4-1.290724+0 1.038945-4-2.979249+0 1.039170-4-4.218434+0 1.039367-4-5.163857+0 1.039711-4-6.574840+0 1.040851-4-1.051802+1 1.041057-4-1.099265+1 1.041433-4-1.127564+1 1.041923-4-1.087151+1 1.042447-4-9.627029+0 1.042848-4-8.134917+0 1.043176-4-6.557943+0 1.043422-4-5.144228+0 1.043606-4-3.935892+0 1.043883-4-1.823593+0 1.044021-4-5.715810-1 1.044090-4 1.417558-1 1.044159-4 1.016676+0 1.044252-4 2.160365+0 1.044427-4 3.874219+0 1.044733-4 6.520710+0 1.045191-4 1.010116+1 1.045535-4 1.238350+1 1.045714-4 1.297786+1 1.045835-4 1.372087+1 1.046046-4 1.549728+1 1.046204-4 1.711461+1 1.046561-4 2.170088+1 1.046911-4 2.774992+1 1.048342-4 4.834157+1 1.049093-4 6.135265+1 1.049279-4 6.581425+1 1.052690-4 1.256235+2 1.054867-4 1.569488+2 1.056923-4 1.750870+2 1.059128-4 1.853490+2 1.061426-4 1.855811+2 1.064323-4 1.711651+2 1.070679-4 1.242969+2 1.074101-4 1.020765+2 1.075093-4 9.353208+1 1.077056-4 8.243047+1 1.079607-4 7.169796+1 1.084030-4 5.781451+1 1.087344-4 4.977143+1 1.092671-4 3.944214+1 1.098911-4 3.018862+1 1.103394-4 2.494764+1 1.109175-4 1.949127+1 1.115532-4 1.448263+1 1.123227-4 9.158608+0 1.128098-4 6.252216+0 1.129685-4 5.356973+0 1.133391-4 3.522329+0 1.138589-4 1.316035+0 1.141728-4 1.446002-1 1.142395-4-1.012524-1 1.151510-4-3.265220+0 1.156659-4-4.951732+0 1.167249-4-8.001199+0 1.179279-4-1.079093+1 1.194276-4-1.352003+1 1.218221-4-1.658053+1 1.255000-4-1.947531+1 1.334104-4-2.338257+1 1.458660-4-2.748362+1 1.660000-4-3.169838+1 2.074399-4-3.726618+1 2.741088-4-3.610119+1 4.265795-4-3.282008+1 5.682094-4-3.216897+1 6.822573-4-3.385423+1 7.501745-4-3.671330+1 7.941306-4-4.053359+1 8.194630-4-4.490610+1 8.328101-4-4.965835+1 8.472800-4-5.769540+1 8.576780-4-5.798328+1 8.684887-4-5.474345+1 8.856555-4-4.559461+1 9.055162-4-3.926859+1 9.330233-4-3.375695+1 9.650088-4-2.987524+1 1.005981-3-2.671469+1 1.062124-3-2.419542+1 1.099717-3-2.381533+1 1.122728-3-2.466356+1 1.151635-3-2.178764+1 1.179673-3-2.038092+1 1.205278-3-1.990218+1 1.244094-3-1.750669+1 1.296384-3-1.560784+1 1.335707-3-1.492590+1 1.359796-3-1.438694+1 1.398379-3-1.282762+1 1.480574-3-1.085129+1 1.603245-3-8.901692+0 1.738369-3-7.457772+0 1.895647-3-6.328281+0 2.063238-3-5.557854+0 2.277995-3-4.977375+0 2.463556-3-4.698036+0 2.799360-3-4.531030+0 3.219953-3-4.665807+0 3.681541-3-5.086387+0 4.208818-3-5.867539+0 4.647005-3-6.867881+0 4.949434-3-7.942701+0 5.150804-3-9.073666+0 5.283896-3-1.029882+1 5.366141-3-1.166489+1 5.429513-3-1.367751+1 5.466951-3-1.476075+1 5.499697-3-1.480006+1 5.552080-3-1.330708+1 5.609943-3-1.176499+1 5.680496-3-1.088913+1 5.763928-3-1.058604+1 5.829654-3-1.094586+1 5.894432-3-1.137687+1 5.942774-3-1.083349+1 6.025541-3-9.316841+0 6.099779-3-8.608282+0 6.238571-3-8.280548+0 6.298569-3-7.609828+0 6.383217-3-6.530719+0 6.502692-3-5.565751+0 6.620264-3-4.880126+0 6.854291-3-3.872791+0 7.107531-3-3.068057+0 7.350029-3-2.489665+0 7.664323-3-1.914189+0 7.829788-3-1.669421+0 8.155305-3-1.277062+0 8.416461-3-1.028981+0 8.779636-3-7.578408-1 9.015711-3-6.177597-1 9.406705-3-4.367553-1 9.699238-3-3.335040-1 9.964087-3-2.571373-1 1.031477-2-1.738035-1 1.041118-2-1.535943-1 1.063980-2-1.132603-1 1.085504-2-8.111874-2 1.112709-2-5.203983-2 1.139291-2-2.894246-2 1.150897-2-2.050046-2 1.165273-2-1.333490-2 1.178072-2-7.482305-3 1.189778-2-3.181840-3 1.191650-2-2.449668-3 1.194905-2-1.446108-3 1.200759-2-7.734278-5 1.203373-2 5.384280-4 1.211818-2 2.173078-3 1.226253-2 5.284687-3 1.236641-2 6.443567-3 1.237756-2 6.462360-3 1.253586-2 5.577691-3 1.274868-2 4.921989-3 1.290105-2 4.278994-3 1.299698-2 2.688997-3 1.305177-2 1.841589-3 1.311475-2 5.026934-4 1.319672-2-1.203016-3 1.325195-2-2.241147-3 1.332562-2-3.988874-3 1.335127-2-4.806168-3 1.346103-2-9.049797-3 1.379391-2-2.137993-2 1.428894-2-4.239083-2 1.461573-2-5.979286-2 1.525589-2-9.924994-2 1.699161-2-2.189588-1 2.769117-2-1.030826+0 3.091964-2-1.320596+0 3.345820-2-1.622002+0 3.515061-2-1.909190+0 3.636406-2-2.214678+0 3.714859-2-2.511671+0 3.776632-2-2.880056+0 3.815509-2-3.281860+0 3.853883-2-3.965101+0 3.881646-2-4.411174+0 3.899622-2-4.442150+0 3.921445-2-4.152650+0 3.969941-2-3.175322+0 3.998174-2-2.795172+0 4.040529-2-2.423933+0 4.098288-2-2.077987+0 4.170771-2-1.773614+0 4.278091-2-1.446782+0 4.387221-2-1.203093+0 4.493431-2-1.023262+0 4.621211-2-8.525735-1 4.788884-2-6.823568-1 4.958960-2-5.493881-1 5.189688-2-4.137558-1 5.324147-2-3.500336-1 5.459936-2-2.965680-1 5.723944-2-2.169173-1 5.888437-2-1.779554-1 6.051264-2-1.465358-1 6.192593-2-1.246764-1 6.380518-2-1.002120-1 6.539471-2-8.425054-2 6.720836-2-6.938780-2 6.914547-2-5.670943-2 7.215634-2-4.353327-2 7.402274-2-3.741106-2 7.597917-2-3.316113-2 7.773341-2-3.139153-2 7.999754-2-3.015031-2 8.348612-2-3.189088-2 8.652059-2-3.467401-2 9.279982-2-4.479262-2 9.959751-2-5.993181-2 1.256276-1-1.252207-1 1.446350-1-1.677010-1 1.666047-1-2.081575-1 2.004550-1-2.550311-1 2.471351-1-2.990329-1 3.148371-1-3.379863-1 4.257746-1-3.713672-1 6.456542-1-3.977721-1 1.232916+0-4.135290-1 3.710658+0-4.191285-1 1.000000+1-4.196226-1 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.577188-1 1.075492-6 5.254732-1 1.102705-6 6.025857-1 1.129067-6 6.876134-1 1.154605-6 7.810672-1 1.179346-6 8.834763-1 1.203313-6 9.953889-1 1.226531-6 1.117372+0 1.249024-6 1.250014+0 1.270813-6 1.393920+0 1.291922-6 1.549717+0 1.312371-6 1.718053+0 1.332181-6 1.899595+0 1.351372-6 2.095032+0 1.387974-6 2.530441+0 1.422324-6 3.030197+0 1.454560-6 3.600541+0 1.484813-6 4.248894+0 1.499235-6 4.607144+0 1.526739-6 5.388236+0 1.552962-6 6.275656+0 1.577545-6 7.268846+0 1.600592-6 8.376295+0 1.622198-6 9.606479+0 1.642454-6 1.096807+1 1.661444-6 1.246989+1 1.679247-6 1.412089+1 1.695938-6 1.593012+1 1.711585-6 1.790665+1 1.726254-6 2.005953+1 1.740007-6 2.239778+1 1.752900-6 2.493031+1 1.764987-6 2.766589+1 1.776319-6 3.061312+1 1.786942-6 3.378036+1 1.796902-6 3.717574+1 1.806239-6 4.080709+1 1.814992-6 4.468196+1 1.823199-6 4.880759+1 1.830892-6 5.319095+1 1.838105-6 5.783885+1 1.844867-6 6.275812+1 1.851206-6 6.795575+1 1.857149-6 7.343882+1 1.862720-6 7.921415+1 1.867944-6 8.528800+1 1.872841-6 9.166616+1 1.877432-6 9.835458+1 1.881736-6 1.053604+2 1.889553-6 1.203649+2 1.896646-6 1.373912+2 1.902852-6 1.561324+2 1.908282-6 1.767829+2 1.913034-6 1.994507+2 1.917191-6 2.240725+2 1.920829-6 2.503808+2 1.924012-6 2.779335+2 1.926798-6 3.061827+2 1.929235-6 3.345521+2 1.931367-6 3.625016+2 1.933233-6 3.895703+2 1.936498-6 4.433341+2 1.947717-6 6.980043+2 1.951085-6 7.960784+2 1.954678-6 9.101117+2 1.955876-6 9.499070+2 1.960666-6 1.114844+3 1.961265-6 1.135807+3 1.965457-6 1.281461+3 1.967103-6 1.336979+3 1.970247-6 1.437526+3 1.971894-6 1.486257+3 1.973466-6 1.529559+3 1.975038-6 1.569226+3 1.977134-6 1.615659+3 1.979155-6 1.652570+3 1.981026-6 1.679145+3 1.982598-6 1.695407+3 1.984619-6 1.707743+3 1.987314-6 1.708594+3 1.989559-6 1.695420+3 1.990393-6 1.687320+3 1.992297-6 1.662432+3 1.994422-6 1.624444+3 1.996685-6 1.572880+3 1.998936-6 1.511204+3 2.000712-6 1.456037+3 2.003931-6 1.343868+3 2.005839-6 1.271514+3 2.007035-6 1.224535+3 2.008871-6 1.150567+3 2.010783-6 1.072110+3 2.012637-6 9.956097+2 2.014560-6 9.167483+2 2.016637-6 8.332119+2 2.018153-6 7.739506+2 2.021147-6 6.627405+2 2.023804-6 5.722655+2 2.027488-6 4.624612+2 2.032674-6 3.436601+2 2.033984-6 3.208521+2 2.034817-6 3.079252+2 2.036066-6 2.908664+2 2.037315-6 2.766452+2 2.038438-6 2.663196+2 2.039297-6 2.600063+2 2.040342-6 2.542159+2 2.041366-6 2.505648+2 2.042292-6 2.490144+2 2.043129-6 2.490598+2 2.043943-6 2.504404+2 2.044341-6 2.515985+2 2.045125-6 2.548166+2 2.045883-6 2.591332+2 2.046618-6 2.644553+2 2.048042-6 2.780193+2 2.049378-6 2.947244+2 2.054384-6 3.938515+2 2.056262-6 4.469446+2 2.059342-6 5.546415+2 2.064349-6 7.896057+2 2.067271-6 9.645127+2 2.069872-6 1.145394+3 2.071462-6 1.268207+3 2.072980-6 1.394279+3 2.074498-6 1.529085+3 2.077045-6 1.774956+3 2.079591-6 2.045199+3 2.085003-6 2.695120+3 2.085600-6 2.772485+3 2.090097-6 3.384153+3 2.091738-6 3.617333+3 2.094872-6 4.070368+3 2.097459-6 4.445790+3 2.099966-6 4.804272+3 2.102552-6 5.161701+3 2.105059-6 5.489296+3 2.107288-6 5.759558+3 2.109750-6 6.029712+3 2.110471-6 6.102410+3 2.113456-6 6.368322+3 2.115786-6 6.533181+3 2.118463-6 6.671927+3 2.120783-6 6.746033+3 2.122304-6 6.770742+3 2.124651-6 6.771508+3 2.126985-6 6.727785+3 2.130741-6 6.568164+3 2.132616-6 6.450060+3 2.134701-6 6.291303+3 2.136042-6 6.175280+3 2.138436-6 5.943873+3 2.140970-6 5.669800+3 2.143086-6 5.422362+3 2.145808-6 5.085737+3 2.148355-6 4.758200+3 2.150901-6 4.424759+3 2.153767-6 4.049532+3 2.155995-6 3.761989+3 2.161561-6 3.079479+3 2.162445-6 2.977290+3 2.168640-6 2.322994+3 2.173005-6 1.931900+3 2.184269-6 1.187630+3 2.186874-6 1.063836+3 2.189478-6 9.552737+2 2.192083-6 8.604235+2 2.194688-6 7.777838+2 2.197293-6 7.059121+2 2.199898-6 6.434533+2 2.202502-6 5.891592+2 2.205107-6 5.418997+2 2.210317-6 4.645773+2 2.215526-6 4.048562+2 2.220736-6 3.578283+2 2.226723-6 3.149648+2 2.232336-6 2.825817+2 2.237598-6 2.572517+2 2.242532-6 2.368959+2 2.247157-6 2.201885+2 2.255829-6 1.936943+2 2.263416-6 1.744958+2 2.270056-6 1.600294+2 2.275865-6 1.488022+2 2.286032-6 1.316813+2 2.293657-6 1.204853+2 2.316532-6 9.286953+1 2.322233-6 8.724878+1 2.327935-6 8.221868+1 2.333637-6 7.786925+1 2.339339-6 7.429192+1 2.345041-6 7.155579+1 2.347892-6 7.051260+1 2.350743-6 6.968328+1 2.353594-6 6.906012+1 2.356444-6 6.863060+1 2.359295-6 6.837743+1 2.364997-6 6.830929+1 2.373550-6 6.887702+1 2.382103-6 6.950086+1 2.387805-6 6.957233+1 2.393506-6 6.918650+1 2.396357-6 6.879701+1 2.399208-6 6.827289+1 2.402059-6 6.761711+1 2.407761-6 6.594109+1 2.413463-6 6.385739+1 2.419165-6 6.148136+1 2.424867-6 5.893247+1 2.435018-6 5.428354+1 2.466168-6 4.182419+1 2.472239-6 3.990450+1 2.478309-6 3.821626+1 2.484379-6 3.680816+1 2.490449-6 3.573138+1 2.496519-6 3.502766+1 2.499554-6 3.482290+1 2.502589-6 3.471617+1 2.505624-6 3.470447+1 2.508660-6 3.478232+1 2.511695-6 3.494168+1 2.517765-6 3.546100+1 2.532940-6 3.724933+1 2.539010-6 3.783256+1 2.545080-6 3.818419+1 2.551151-6 3.824656+1 2.557221-6 3.800327+1 2.563291-6 3.747534+1 2.569361-6 3.671169+1 2.575431-6 3.577672+1 2.581501-6 3.473831+1 2.601692-6 3.123121+1 2.617808-6 2.887761+1 2.629895-6 2.741749+1 2.648026-6 2.557601+1 2.672718-6 2.349151+1 2.692406-6 2.211923+1 2.705530-6 2.136711+1 2.718655-6 2.074516+1 2.758030-6 1.923845+1 2.777717-6 1.842998+1 2.814583-6 1.688897+1 2.844645-6 1.579600+1 2.889739-6 1.440397+1 2.963728-6 1.252083+1 3.079307-6 1.022784+1 3.215718-6 7.946460+0 3.259564-6 7.203933+0 3.292448-6 6.610976+0 3.317112-6 6.125283+0 3.335609-6 5.724615+0 3.349483-6 5.394964+0 3.359888-6 5.126110+0 3.375495-6 4.678076+0 3.383299-6 4.430032+0 3.391102-6 4.164431+0 3.400150-6 3.835378+0 3.407796-6 3.543424+0 3.411969-6 3.381344+0 3.420421-6 3.056831+0 3.426372-6 2.841848+0 3.433626-6 2.613907+0 3.437217-6 2.522715+0 3.440809-6 2.451173+0 3.447350-6 2.386440+0 3.449530-6 2.387930+0 3.453703-6 2.429677+0 3.455790-6 2.471996+0 3.457876-6 2.530157+0 3.459791-6 2.598439+0 3.462042-6 2.698311+0 3.463781-6 2.790828+0 3.465442-6 2.892307+0 3.467830-6 3.061983+0 3.469194-6 3.172058+0 3.471582-6 3.388731+0 3.476955-6 3.994967+0 3.481341-6 4.619956+0 3.493053-6 6.900092+0 3.498285-6 8.208034+0 3.502881-6 9.495344+0 3.507083-6 1.077462+1 3.510328-6 1.182140+1 3.513966-6 1.304517+1 3.518169-6 1.451049+1 3.521348-6 1.564307+1 3.525609-6 1.717393+1 3.529869-6 1.869609+1 3.534395-6 2.027359+1 3.538389-6 2.160593+1 3.547443-6 2.430309+1 3.548441-6 2.456593+1 3.555431-6 2.617218+1 3.558359-6 2.671316+1 3.563951-6 2.751166+1 3.568106-6 2.789968+1 3.572551-6 2.812034+1 3.576181-6 2.815466+1 3.580945-6 2.801019+1 3.584008-6 2.781093+1 3.587071-6 2.753499+1 3.589513-6 2.726436+1 3.595903-6 2.637027+1 3.598033-6 2.602101+1 3.606554-6 2.443588+1 3.615074-6 2.266833+1 3.623595-6 2.085947+1 3.644286-6 1.689697+1 3.649424-6 1.607444+1 3.658407-6 1.481031+1 3.667389-6 1.375703+1 3.676372-6 1.288988+1 3.685354-6 1.217786+1 3.694337-6 1.158989+1 3.703320-6 1.109836+1 3.712302-6 1.068073+1 3.721285-6 1.031956+1 3.730267-6 1.000186+1 3.748233-6 9.461362+0 3.766198-6 9.009524+0 3.793146-6 8.439199+0 3.875939-6 7.051365+0 3.895019-6 6.742556+0 3.914099-6 6.410394+0 3.923639-6 6.229976+0 3.936773-6 5.961920+0 3.955012-6 5.555181+0 3.977021-6 5.068055+0 3.980264-6 5.005529+0 3.990420-6 4.843373+0 3.996599-6 4.778499+0 4.003686-6 4.745595+0 4.008835-6 4.754514+0 4.016176-6 4.821599+0 4.018624-6 4.859178+0 4.025965-6 5.019660+0 4.028762-6 5.099807+0 4.033657-6 5.264902+0 4.040081-6 5.527228+0 4.048340-6 5.931305+0 4.066741-6 6.997703+0 4.074910-6 7.482054+0 4.077357-6 7.621720+0 4.086232-6 8.090701+0 4.088916-6 8.217658+0 4.096966-6 8.546666+0 4.103910-6 8.759918+0 4.107224-6 8.836919+0 4.112195-6 8.921763+0 4.117166-6 8.970118+0 4.123855-6 8.979898+0 4.128749-6 8.949666+0 4.133644-6 8.890943+0 4.143433-6 8.701280+0 4.153221-6 8.439122+0 4.156539-6 8.338839+0 4.172799-6 7.804894+0 4.210012-6 6.629965+0 4.225885-6 6.223131+0 4.237910-6 5.964373+0 4.246688-6 5.807029+0 4.257090-6 5.660820+0 4.267491-6 5.564456+0 4.273461-6 5.533748+0 4.279430-6 5.521681+0 4.285164-6 5.527635+0 4.293764-6 5.567478+0 4.302364-6 5.640501+0 4.315760-6 5.803053+0 4.331427-6 6.023228+0 4.342089-6 6.158952+0 4.352750-6 6.261474+0 4.357775-6 6.294433+0 4.365312-6 6.323156+0 4.372850-6 6.326539+0 4.383230-6 6.292408+0 4.397400-6 6.188860+0 4.429633-6 5.877884+0 4.443123-6 5.780821+0 4.451121-6 5.740493+0 4.461970-6 5.705394+0 4.472925-6 5.688293+0 4.516748-6 5.669410+0 4.547820-6 5.612894+0 4.583032-6 5.527708+0 4.710369-6 5.276461+0 4.816934-6 5.026949+0 4.910387-6 4.857172+0 5.016934-6 4.644547+0 5.041715-6 4.607534+0 5.091353-6 4.566291+0 5.142413-6 4.533970+0 5.176396-6 4.490700+0 5.225320-6 4.400643+0 5.360026-6 4.142899+0 5.386218-6 4.103866+0 5.451700-6 4.036658+0 5.477893-6 4.013217+0 5.535032-6 3.941403+0 5.603955-6 3.831175+0 5.684894-6 3.729411+0 5.753013-6 3.642864+0 5.905232-6 3.417909+0 6.103132-6 3.197894+0 6.378929-6 2.869315+0 6.681120-6 2.528072+0 6.825547-6 2.371085+0 6.965011-6 2.225918+0 7.161434-6 2.029727+0 7.317706-6 1.877929+0 7.420000-6 1.780367+0 7.520556-6 1.686028+0 7.680000-6 1.540404+0 7.804827-6 1.428373+0 7.909062-6 1.335767+0 8.009285-6 1.248807+0 8.192000-6 1.096760+0 8.350000-6 9.713145-1 8.545611-6 8.222123-1 8.653733-6 7.432115-1 8.751764-6 6.745992-1 8.955986-6 5.394098-1 9.052873-6 4.794903-1 9.248978-6 3.670731-1 9.501159-6 2.399619-1 9.623218-6 1.860179-1 9.716560-6 1.495631-1 9.943052-6 7.544515-2 1.004101-5 5.030815-2 1.012580-5 3.296605-2 1.022374-5 1.793081-2 1.032015-5 8.465903-3 1.041505-5 4.605441-3 1.050847-5 6.393824-3 1.060043-5 1.386854-2 1.069096-5 2.701728-2 1.077972-5 4.490258-2 1.086710-5 6.246938-2 1.093162-5 6.911351-2 1.093695-5 6.927584-2 1.105332-5 5.894601-2 1.114250-5 4.218506-2 1.121859-5 2.884696-2 1.129946-5 1.767926-2 1.137906-5 1.017487-2 1.145742-5 6.418219-3 1.153455-5 6.508694-3 1.161048-5 1.058832-2 1.168522-5 1.873641-2 1.183237-5 4.720332-2 1.197492-5 9.194573-2 1.212132-5 1.575956-1 1.225707-5 2.379454-1 1.237640-5 3.259989-1 1.250195-5 4.383290-1 1.262357-5 5.683369-1 1.274140-5 7.163710-1 1.285554-5 8.827914-1 1.299421-5 1.119138+0 1.307324-5 1.272936+0 1.330000-5 1.791790+0 1.347536-5 2.283111+0 1.366875-5 2.933875+0 1.382879-5 3.571566+0 1.398911-5 4.317887+0 1.413942-5 5.129417+0 1.441243-5 6.930416+0 1.480000-5 1.042891+1 1.543689-5 1.976173+1 1.566121-5 2.469550+1 1.584893-5 2.975118+1 1.598180-5 3.395731+1 1.608485-5 3.766693+1 1.623941-5 4.408325+1 1.643433-5 5.384810+1 1.655539-5 6.107841+1 1.667644-5 6.943858+1 1.679750-5 7.914808+1 1.690843-5 8.946657+1 1.699926-5 9.912099+1 1.712031-5 1.139931+2 1.723812-5 1.311006+2 1.736176-5 1.525218+2 1.744419-5 1.692459+2 1.756782-5 1.989572+2 1.764859-5 2.220548+2 1.772432-5 2.469647+2 1.779531-5 2.737358+2 1.786186-5 3.024129+2 1.793566-5 3.390830+2 1.799349-5 3.721131+2 1.803759-5 4.003256+2 1.808901-5 4.370679+2 1.813720-5 4.759183+2 1.818239-5 5.168924+2 1.822475-5 5.599937+2 1.826447-5 6.052165+2 1.830170-5 6.525498+2 1.833660-5 7.019810+2 1.840772-5 8.214671+2 1.845932-5 9.285496+2 1.850942-5 1.054834+3 1.855327-5 1.189274+3 1.859163-5 1.331056+3 1.862520-5 1.478927+3 1.865457-5 1.631216+3 1.868027-5 1.785934+3 1.870276-5 1.940940+3 1.874212-5 2.266095+3 1.877163-5 2.565189+3 1.879377-5 2.827262+3 1.881037-5 3.048264+3 1.884773-5 3.634657+3 1.886018-5 3.861173+3 1.890660-5 4.867327+3 1.902364-5 8.861075+3 1.906417-5 1.083736+4 1.909229-5 1.240292+4 1.910771-5 1.332874+4 1.914242-5 1.557686+4 1.915985-5 1.678582+4 1.920090-5 1.980723+4 1.921703-5 2.104619+4 1.924782-5 2.345795+4 1.927589-5 2.566940+4 1.928950-5 2.672995+4 1.930899-5 2.822026+4 1.932966-5 2.974561+4 1.934549-5 3.086058+4 1.936812-5 3.235203+4 1.939175-5 3.375294+4 1.942073-5 3.520561+4 1.944425-5 3.613661+4 1.946898-5 3.684814+4 1.948998-5 3.722274+4 1.951850-5 3.737924+4 1.953269-5 3.730379+4 1.957882-5 3.636664+4 1.959636-5 3.574549+4 1.960538-5 3.537308+4 1.963656-5 3.383135+4 1.965897-5 3.250500+4 1.967782-5 3.127031+4 1.969799-5 2.984922+4 1.972063-5 2.815648+4 1.973955-5 2.668549+4 1.976387-5 2.474774+4 1.978733-5 2.286006+4 1.981078-5 2.098379+4 1.983717-5 1.891917+4 1.985770-5 1.736681+4 1.990461-5 1.406136+4 1.992427-5 1.279560+4 1.996179-5 1.059646+4 1.999615-5 8.840780+3 2.002496-5 7.556663+3 2.007180-5 5.814452+3 2.015574-5 3.607666+3 2.018366-5 3.084255+3 2.020710-5 2.709320+3 2.023106-5 2.379068+3 2.025047-5 2.145756+3 2.026988-5 1.939401+3 2.029838-5 1.678713+3 2.032688-5 1.460363+3 2.036967-5 1.195687+3 2.039305-5 1.076647+3 2.041956-5 9.592054+2 2.046945-5 7.780699+2 2.051934-5 6.360038+2 2.064794-5 3.825795+2 2.066902-5 3.516274+2 2.071891-5 2.868249+2 2.076880-5 2.321355+2 2.081869-5 1.858779+2 2.097648-5 8.392432+1 2.101826-5 6.697722+1 2.106815-5 5.245683+1 2.109310-5 4.778550+1 2.111804-5 4.508065+1 2.113489-5 4.449567+1 2.114597-5 4.471265+1 2.116793-5 4.670296+1 2.118205-5 4.919436+1 2.119617-5 5.274628+1 2.120244-5 5.469333+1 2.121274-5 5.841549+1 2.122384-5 6.321397+1 2.123215-5 6.738226+1 2.124636-5 7.573893+1 2.125845-5 8.417770+1 2.128461-5 1.072135+2 2.131078-5 1.378784+2 2.136310-5 2.285900+2 2.137618-5 2.587867+2 2.140561-5 3.401844+2 2.142851-5 4.182124+2 2.144813-5 4.968631+2 2.146775-5 5.876736+2 2.149064-5 7.107046+2 2.150536-5 8.004385+2 2.152008-5 8.991738+2 2.153533-5 1.011657+3 2.156180-5 1.232972+3 2.158598-5 1.466608+3 2.160257-5 1.645272+3 2.161840-5 1.830497+3 2.163423-5 2.030529+3 2.166079-5 2.400369+3 2.168403-5 2.759815+3 2.168735-5 2.813908+3 2.174047-5 3.770790+3 2.175001-5 3.960257+3 2.179740-5 4.970532+3 2.181709-5 5.419208+3 2.182648-5 5.638088+3 2.185940-5 6.422616+3 2.188522-5 7.048318+3 2.190693-5 7.573804+3 2.193016-5 8.127596+3 2.195522-5 8.705713+3 2.198104-5 9.270118+3 2.200430-5 9.742082+3 2.203345-5 1.027193+4 2.205880-5 1.066689+4 2.208158-5 1.096266+4 2.210655-5 1.121648+4 2.212677-5 1.136509+4 2.215092-5 1.147341+4 2.217492-5 1.150532+4 2.218768-5 1.149166+4 2.223212-5 1.128318+4 2.225613-5 1.107232+4 2.227712-5 1.083665+4 2.230217-5 1.049901+4 2.231720-5 1.027009+4 2.233400-5 9.993674+3 2.235604-5 9.602348+3 2.238439-5 9.061072+3 2.240770-5 8.592448+3 2.243765-5 7.971726+3 2.246089-5 7.484192+3 2.248413-5 6.998284+3 2.253884-5 5.891391+3 2.255764-5 5.530589+3 2.260057-5 4.758248+3 2.265459-5 3.903216+3 2.275846-5 2.649425+3 2.279038-5 2.360792+3 2.282524-5 2.090688+3 2.285828-5 1.873494+3 2.290186-5 1.636645+3 2.294118-5 1.463571+3 2.299576-5 1.273772+3 2.303618-5 1.162613+3 2.308977-5 1.043983+3 2.314520-5 9.466687+2 2.320376-5 8.637796+2 2.324120-5 8.187180+2 2.330310-5 7.543701+2 2.336725-5 6.978942+2 2.344020-5 6.431402+2 2.348829-5 6.113930+2 2.357780-5 5.595867+2 2.366758-5 5.151421+2 2.379386-5 4.620472+2 2.397987-5 3.978585+2 2.409992-5 3.633293+2 2.421547-5 3.350294+2 2.427922-5 3.215934+2 2.436268-5 3.064327+2 2.443565-5 2.954737+2 2.451058-5 2.864691+2 2.462685-5 2.770971+2 2.468764-5 2.744682+2 2.474749-5 2.733813+2 2.478864-5 2.734427+2 2.484076-5 2.743439+2 2.493186-5 2.774739+2 2.504640-5 2.819629+2 2.510657-5 2.834696+2 2.514435-5 2.838687+2 2.522185-5 2.831272+2 2.526733-5 2.817099+2 2.531235-5 2.796737+2 2.541538-5 2.733348+2 2.555382-5 2.636821+2 2.567576-5 2.562865+2 2.577121-5 2.516268+2 2.593190-5 2.453835+2 2.626510-5 2.349806+2 2.675913-5 2.212869+2 2.699815-5 2.147464+2 2.756108-5 2.015090+2 2.819514-5 1.892312+2 2.885774-5 1.784097+2 2.951930-5 1.693110+2 3.036025-5 1.592876+2 3.126079-5 1.502984+2 3.207048-5 1.431580+2 3.311311-5 1.351798+2 3.417826-5 1.280738+2 3.831794-5 1.066076+2 3.887968-5 1.048967+2 3.916055-5 1.041570+2 3.953504-5 1.028024+2 4.000100-5 1.007822+2 4.152084-5 9.548381+1 4.623810-5 8.207431+1 4.800000-5 7.779539+1 5.042891-5 7.216845+1 5.350000-5 6.550172+1 5.744563-5 5.743596+1 6.075000-5 5.064756+1 6.355302-5 4.469610+1 6.553600-5 4.037768+1 6.722301-5 3.663418+1 6.839888-5 3.396691+1 7.000000-5 3.029243+1 7.149400-5 2.686693+1 7.256447-5 2.439980+1 7.372800-5 2.173383+1 7.480757-5 1.931466+1 7.587321-5 1.699071+1 7.673615-5 1.517417+1 7.738871-5 1.385569+1 7.814894-5 1.240586+1 7.891906-5 1.119448+1 7.959435-5 1.079064+1 7.961724-5 1.079353+1 8.027486-5 1.135533+1 8.073702-5 1.219319+1 8.142838-5 1.385404+1 8.212242-5 1.588971+1 8.274747-5 1.805279+1 8.337650-5 2.059055+1 8.413951-5 2.422048+1 8.486964-5 2.834864+1 8.543731-5 3.207684+1 8.651997-5 4.068716+1 8.753603-5 5.098456+1 8.853535-5 6.380704+1 8.981103-5 8.525065+1 9.041698-5 9.797894+1 9.138814-5 1.228667+2 9.225714-5 1.511638+2 9.277715-5 1.715326+2 9.340825-5 2.005031+2 9.400051-5 2.328435+2 9.456516-5 2.694235+2 9.509452-5 3.100036+2 9.559080-5 3.548152+2 9.612591-5 4.121548+2 9.654838-5 4.655280+2 9.698375-5 5.297481+2 9.729099-5 5.818423+2 9.764392-5 6.499765+2 9.798085-5 7.248627+2 9.830400-5 8.075267+2 9.859287-5 8.921828+2 9.887050-5 9.849793+2 9.913078-5 1.084097+3 9.937479-5 1.189702+3 9.962394-5 1.312668+3 9.981801-5 1.421033+3 1.000191-4 1.547103+3 1.002076-4 1.680366+3 1.003843-4 1.821046+3 1.005499-4 1.969402+3 1.007052-4 2.125714+3 1.008508-4 2.290273+3 1.011239-4 2.658027+3 1.013627-4 3.063553+3 1.015736-4 3.510242+3 1.017547-4 3.981432+3 1.019147-4 4.483228+3 1.020547-4 5.002578+3 1.021772-4 5.529726+3 1.022845-4 6.055005+3 1.023783-4 6.569655+3 1.025424-4 7.609998+3 1.027579-4 9.286971+3 1.032375-4 1.457954+4 1.034392-4 1.754120+4 1.035421-4 1.922681+4 1.037182-4 2.237332+4 1.038502-4 2.493455+4 1.038942-4 2.582261+4 1.041487-4 3.122280+4 1.041805-4 3.192158+4 1.044032-4 3.686595+4 1.044907-4 3.879766+4 1.046577-4 4.238187+4 1.047375-4 4.401821+4 1.048100-4 4.544237+4 1.049289-4 4.762545+4 1.050200-4 4.914335+4 1.050943-4 5.026902+4 1.051919-4 5.157324+4 1.053174-4 5.293160+4 1.054093-4 5.368049+4 1.055262-4 5.431389+4 1.056575-4 5.458413+4 1.057547-4 5.448043+4 1.058742-4 5.400408+4 1.059978-4 5.312394+4 1.061021-4 5.209652+4 1.062291-4 5.053159+4 1.063616-4 4.858451+4 1.064522-4 4.710742+4 1.066086-4 4.435714+4 1.067859-4 4.108718+4 1.072411-4 3.327821+4 1.073759-4 3.143649+4 1.075091-4 2.992395+4 1.076228-4 2.889484+4 1.077231-4 2.819640+4 1.078229-4 2.769595+4 1.079424-4 2.734497+4 1.080407-4 2.724804+4 1.081401-4 2.731108+4 1.082602-4 2.757797+4 1.083931-4 2.807331+4 1.085986-4 2.912420+4 1.089121-4 3.093556+4 1.090255-4 3.152508+4 1.093150-4 3.258411+4 1.094091-4 3.274358+4 1.096122-4 3.272118+4 1.097005-4 3.254783+4 1.097807-4 3.230421+4 1.098615-4 3.197688+4 1.099659-4 3.143691+4 1.100599-4 3.084405+4 1.101832-4 2.992550+4 1.103115-4 2.882098+4 1.105027-4 2.694903+4 1.106515-4 2.535647+4 1.108097-4 2.358610+4 1.110988-4 2.030203+4 1.112966-4 1.812603+4 1.115317-4 1.570888+4 1.119132-4 1.232763+4 1.122188-4 1.015282+4 1.123593-4 9.308032+3 1.125577-4 8.268173+3 1.127657-4 7.350784+3 1.129492-4 6.668698+3 1.131217-4 6.121324+3 1.133783-4 5.445456+3 1.136216-4 4.926890+3 1.139364-4 4.388955+3 1.142424-4 3.971647+3 1.144987-4 3.680815+3 1.147228-4 3.460360+3 1.150824-4 3.158172+3 1.154251-4 2.916251+3 1.157820-4 2.701568+3 1.161277-4 2.522803+3 1.164734-4 2.367514+3 1.167290-4 2.265429+3 1.170041-4 2.165972+3 1.174285-4 2.030721+3 1.180011-4 1.876990+3 1.185095-4 1.762718+3 1.192000-4 1.633643+3 1.198033-4 1.540317+3 1.204120-4 1.460670+3 1.210773-4 1.387001+3 1.216720-4 1.330739+3 1.222762-4 1.281037+3 1.233893-4 1.204524+3 1.245505-4 1.139825+3 1.257497-4 1.084367+3 1.268190-4 1.041897+3 1.280598-4 9.986880+2 1.296185-4 9.510640+2 1.313382-4 9.046950+2 1.332562-4 8.591263+2 1.358946-4 8.049750+2 1.380841-4 7.655180+2 1.408459-4 7.215792+2 1.461312-4 6.520679+2 1.507245-4 6.030302+2 1.560000-4 5.559755+2 1.614250-4 5.156221+2 1.675442-4 4.779200+2 1.750000-4 4.405612+2 1.921476-4 3.745420+2 1.984183-4 3.506894+2 2.014141-4 3.363322+2 2.024020-4 3.330568+2 2.029121-4 3.321557+2 2.037793-4 3.320653+2 2.049107-4 3.343197+2 2.065983-4 3.394177+2 2.072775-4 3.409818+2 2.083391-4 3.423702+2 2.103695-4 3.424440+2 2.143924-4 3.397676+2 2.212990-4 3.332557+2 2.236177-4 3.321494+2 2.259312-4 3.324120+2 2.301517-4 3.343996+2 2.388054-4 3.356840+2 2.585700-4 3.352997+2 2.734106-4 3.324002+2 2.778864-4 3.299062+2 2.792435-4 3.298102+2 2.809896-4 3.309214+2 2.838004-4 3.353469+2 2.883320-4 3.428331+2 2.920379-4 3.464166+2 3.085355-4 3.576788+2 3.247763-4 3.668833+2 3.470362-4 3.780783+2 3.840387-4 3.935956+2 4.031007-4 3.997857+2 4.265795-4 4.048697+2 4.551191-4 4.080509+2 4.915564-4 4.081335+2 5.244300-4 4.035402+2 5.543065-4 3.950659+2 5.891571-4 3.796503+2 6.222135-4 3.587155+2 6.498811-4 3.359834+2 6.758971-4 3.096285+2 6.948624-4 2.869360+2 7.115993-4 2.637944+2 7.258504-4 2.417412+2 7.383545-4 2.204315+2 7.487624-4 2.010840+2 7.585406-4 1.819477+2 7.679986-4 1.624511+2 7.747474-4 1.478620+2 7.805809-4 1.348051+2 7.864320-4 1.213474+2 7.898443-4 1.133642+2 7.928333-4 1.063104+2 7.969089-4 9.663591+1 8.009487-4 8.704483+1 8.043119-4 7.912914+1 8.076701-4 7.137008+1 8.108184-4 6.431913+1 8.140578-4 5.740933+1 8.206971-4 4.502231+1 8.226664-4 4.199222+1 8.249417-4 3.894756+1 8.268855-4 3.676145+1 8.278592-4 3.581424+1 8.288025-4 3.499123+1 8.306015-4 3.367893+1 8.314590-4 3.317215+1 8.322898-4 3.275512+1 8.330946-4 3.242216+1 8.342773-4 3.206644+1 8.353498-4 3.189467+1 8.365661-4 3.190283+1 8.371883-4 3.200581+1 8.377529-4 3.216740+1 8.386892-4 3.260361+1 8.392893-4 3.301398+1 8.398754-4 3.353248+1 8.404431-4 3.416373+1 8.409931-4 3.491555+1 8.415259-4 3.579587+1 8.420421-4 3.681255+1 8.425421-4 3.797322+1 8.430266-4 3.928514+1 8.434958-4 4.075504+1 8.439504-4 4.238900+1 8.443908-4 4.419240+1 8.452441-4 4.839841+1 8.460441-4 5.334879+1 8.463111-4 5.525240+1 8.467940-4 5.905367+1 8.474971-4 6.550677+1 8.481563-4 7.268609+1 8.487742-4 8.055551+1 8.493535-4 8.906680+1 8.498966-4 9.816195+1 8.509360-4 1.190176+2 8.518525-4 1.417793+2 8.553177-4 2.779427+2 8.564996-4 3.480237+2 8.578209-4 4.444292+2 8.588895-4 5.380907+2 8.593648-4 5.846442+2 8.602614-4 6.811653+2 8.617631-4 8.696518+2 8.626277-4 9.940572+2 8.629267-4 1.039836+3 8.643358-4 1.274531+3 8.648781-4 1.373048+3 8.668638-4 1.769794+3 8.677852-4 1.970861+3 8.691838-4 2.291730+3 8.701444-4 2.519664+3 8.710010-4 2.725498+3 8.719874-4 2.962548+3 8.728665-4 3.171070+3 8.736400-4 3.350286+3 8.745268-4 3.548573+3 8.752900-4 3.711263+3 8.756007-4 3.775011+3 8.766879-4 3.985238+3 8.777179-4 4.163649+3 8.784492-4 4.276857+3 8.795369-4 4.423323+3 8.801921-4 4.498630+3 8.813955-4 4.611771+3 8.825938-4 4.693417+3 8.837855-4 4.746731+3 8.853654-4 4.781237+3 8.871697-4 4.782856+3 8.899501-4 4.741364+3 8.961321-4 4.603191+3 8.984338-4 4.528998+3 8.998297-4 4.467373+3 9.006609-4 4.422811+3 9.029412-4 4.265420+3 9.039444-4 4.178832+3 9.052974-4 4.045460+3 9.068719-4 3.868329+3 9.081828-4 3.705796+3 9.097651-4 3.496419+3 9.112709-4 3.289466+3 9.133242-4 3.006049+3 9.173306-4 2.495292+3 9.198274-4 2.229593+3 9.212352-4 2.101364+3 9.228449-4 1.973998+3 9.243236-4 1.874357+3 9.262123-4 1.769194+3 9.271929-4 1.723365+3 9.290527-4 1.650677+3 9.304384-4 1.606909+3 9.320938-4 1.564139+3 9.342621-4 1.520520+3 9.368176-4 1.482388+3 9.398990-4 1.449280+3 9.437790-4 1.420044+3 9.479750-4 1.397815+3 9.519041-4 1.382566+3 9.580933-4 1.365660+3 9.647291-4 1.353997+3 9.739415-4 1.344817+3 9.908014-4 1.339057+3 1.006456-3 1.339878+3 1.053662-3 1.350543+3 1.078827-3 1.346285+3 1.095445-3 1.336180+3 1.113774-3 1.317013+3 1.123999-3 1.299945+3 1.140077-3 1.265354+3 1.145089-3 1.260420+3 1.148081-3 1.261619+3 1.150725-3 1.266044+3 1.153596-3 1.274823+3 1.158352-3 1.298398+3 1.164080-3 1.338092+3 1.169700-3 1.380526+3 1.175155-3 1.416170+3 1.178973-3 1.435006+3 1.181786-3 1.445383+3 1.185000-3 1.453949+3 1.193104-3 1.464534+3 1.212141-3 1.468942+3 1.232868-3 1.468851+3 1.239272-3 1.475263+3 1.247428-3 1.493958+3 1.265173-3 1.555445+3 1.273102-3 1.574767+3 1.280679-3 1.585708+3 1.314145-3 1.608241+3 1.333201-3 1.615633+3 1.354541-3 1.618684+3 1.383316-3 1.613814+3 1.394069-3 1.614619+3 1.402154-3 1.620056+3 1.415945-3 1.639112+3 1.436947-3 1.671125+3 1.457997-3 1.691617+3 1.477415-3 1.704552+3 1.525325-3 1.724684+3 1.581018-3 1.738317+3 1.662348-3 1.747163+3 1.783666-3 1.745169+3 1.921985-3 1.726692+3 2.079901-3 1.695410+3 2.297471-3 1.636795+3 2.461479-3 1.589648+3 2.638398-3 1.536035+3 2.840524-3 1.473035+3 3.139605-3 1.391770+3 3.295762-3 1.349643+3 3.615139-3 1.265350+3 3.796794-3 1.218819+3 3.971058-3 1.174132+3 4.158208-3 1.126694+3 4.338541-3 1.081344+3 4.507768-3 1.038324+3 4.661568-3 9.989380+2 4.801713-3 9.620798+2 4.929013-3 9.273528+2 5.037600-3 8.964473+2 5.136419-3 8.666340+2 5.219138-3 8.398568+2 5.286111-3 8.165297+2 5.351031-3 7.919576+2 5.405745-3 7.690918+2 5.445680-3 7.505577+2 5.489147-3 7.277279+2 5.524678-3 7.059705+2 5.552857-3 6.859248+2 5.572232-3 6.704968+2 5.611633-3 6.360343+2 5.641357-3 6.108318+2 5.663744-3 5.958005+2 5.677089-3 5.896034+2 5.688554-3 5.863213+2 5.699280-3 5.851103+2 5.709424-3 5.856597+2 5.724549-3 5.894415+2 5.739584-3 5.963498+2 5.765886-3 6.139736+2 5.800127-3 6.413194+2 5.818287-3 6.552388+2 5.835711-3 6.672188+2 5.855303-3 6.786591+2 5.873879-3 6.874210+2 5.901501-3 6.969369+2 5.930904-3 7.031017+2 5.961482-3 7.059241+2 5.992688-3 7.055754+2 6.020558-3 7.028964+2 6.093245-3 6.915887+2 6.125510-3 6.900742+2 6.143218-3 6.915966+2 6.170601-3 6.977345+2 6.200602-3 7.090963+2 6.278636-3 7.456127+2 6.297134-3 7.527205+2 6.322184-3 7.604957+2 6.347937-3 7.662637+2 6.377929-3 7.705291+2 6.458816-3 7.766339+2 6.505332-3 7.840763+2 6.539903-3 7.935719+2 6.647974-3 8.308978+2 6.679739-3 8.395977+2 6.715534-3 8.474392+2 6.759581-3 8.548244+2 6.823553-3 8.626982+2 6.921055-3 8.708363+2 7.048104-3 8.770016+2 7.257301-3 8.803103+2 7.519120-3 8.767636+2 7.785983-3 8.676315+2 8.151734-3 8.500030+2 8.613155-3 8.230046+2 9.192581-3 7.854797+2 9.849587-3 7.417253+2 1.071519-2 6.865371+2 1.182149-2 6.220708+2 1.327104-2 5.490940+2 1.488316-2 4.818220+2 1.666993-2 4.208610+2 1.889568-2 3.595093+2 2.047814-2 3.231651+2 2.213899-2 2.900492+2 2.391939-2 2.592086+2 2.591547-2 2.293421+2 2.798238-2 2.027779+2 3.018980-2 1.786025+2 3.231283-2 1.586931+2 3.419537-2 1.431634+2 3.560128-2 1.324191+2 3.673687-2 1.239539+2 3.756262-2 1.176885+2 3.825495-2 1.121243+2 3.871651-2 1.080360+2 3.894622-2 1.057785+2 3.914446-2 1.036319+2 3.930997-2 1.016453+2 3.953550-2 9.859827+1 4.005550-2 9.104793+1 4.021625-2 8.938004+1 4.032454-2 8.867435+1 4.043763-2 8.835545+1 4.052492-2 8.840715+1 4.065600-2 8.893391+1 4.083387-2 9.031819+1 4.128469-2 9.485412+1 4.150548-2 9.660277+1 4.177649-2 9.806219+1 4.193905-2 9.864017+1 4.234617-2 9.944528+1 4.282328-2 9.969724+1 4.342540-2 9.946067+1 4.447452-2 9.824913+1 4.581802-2 9.594445+1 4.740698-2 9.271814+1 4.952269-2 8.815777+1 5.196038-2 8.294769+1 5.479040-2 7.720241+1 5.886852-2 6.958349+1 6.331461-2 6.224200+1 6.820845-2 5.525637+1 7.662579-2 4.551751+1 8.769377-2 3.603487+1 1.068872-1 2.540473+1 1.262056-1 1.880823+1 1.747391-1 1.032999+1 2.108268-1 7.275142+0 2.593213-1 4.906769+0 3.467369-1 2.800098+0 5.191735-1 1.273515+0 8.035261-1 5.387738-1 1.410753+0 1.763330-1 3.710658+0 2.559573-2 1.120601+1 2.808327-3 3.384160+1 3.079490-4 1.022000+2 3.376620-5 3.086391+2 3.702393-6 9.320751+2 4.059594-7 3.162278+3 3.526829-8 1.000000+4 3.526829-9 3.162278+4 3.52683-10 1.000000+5 3.52683-11 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.517200-6 1.258900-6 3.989600-6 1.584900-6 6.323000-6 1.995300-6 1.002100-5 2.511900-6 1.588300-5 3.162300-6 2.517200-5 3.981100-6 3.989500-5 5.011900-6 6.322900-5 6.309600-6 1.002100-4 7.943300-6 1.588200-4 1.000000-5 2.517100-4 1.258900-5 3.989300-4 1.584900-5 6.319100-4 1.995300-5 1.000800-3 2.511900-5 1.585200-3 3.162300-5 2.511300-3 3.981100-5 3.978800-3 5.011900-5 6.304400-3 6.309600-5 9.989600-3 7.943300-5 1.581100-2 1.000000-4 2.501100-2 1.258900-4 3.950700-2 1.584900-4 6.228600-2 1.995300-4 9.789200-2 2.511900-4 1.531700-1 3.162300-4 2.379300-1 3.981100-4 3.645500-1 5.011900-4 5.485000-1 6.309600-4 8.047000-1 7.943300-4 1.143400+0 1.000000-3 1.568000+0 1.258900-3 2.080500+0 1.584900-3 2.698600+0 1.995300-3 3.459900+0 2.511900-3 4.396900+0 3.162300-3 5.531000+0 3.981100-3 6.873300+0 5.011900-3 8.406300+0 6.309600-3 1.006000+1 7.943300-3 1.180700+1 1.000000-2 1.367800+1 1.258900-2 1.571500+1 1.584900-2 1.779400+1 1.995300-2 1.976900+1 2.511900-2 2.153300+1 3.162300-2 2.303900+1 3.981100-2 2.425000+1 5.011900-2 2.511900+1 6.309600-2 2.560600+1 7.943300-2 2.566600+1 1.000000-1 2.532100+1 1.258900-1 2.459200+1 1.584900-1 2.360800+1 1.995300-1 2.238700+1 2.511900-1 2.100900+1 3.162300-1 1.953300+1 3.981100-1 1.801700+1 5.011900-1 1.650000+1 6.309600-1 1.500800+1 7.943300-1 1.356400+1 1.000000+0 1.218000+1 1.258900+0 1.086600+1 1.584900+0 9.632800+0 1.995300+0 8.483200+0 2.511900+0 7.423000+0 3.162300+0 6.455100+0 3.981100+0 5.580200+0 5.011900+0 4.796800+0 6.309600+0 4.101800+0 7.943300+0 3.490700+0 1.000000+1 2.957400+0 1.258900+1 2.495500+0 1.584900+1 2.098100+0 1.995300+1 1.758100+0 2.511900+1 1.468700+0 3.162300+1 1.223700+0 3.981100+1 1.017100+0 5.011900+1 8.434600-1 6.309600+1 6.980800-1 7.943300+1 5.767100-1 1.000000+2 4.756500-1 1.258900+2 3.917100-1 1.584900+2 3.221300-1 1.995300+2 2.645800-1 2.511900+2 2.170500-1 3.162300+2 1.778700-1 3.981100+2 1.456200-1 5.011900+2 1.191000-1 6.309600+2 9.732400-2 7.943300+2 7.946500-2 1.000000+3 6.483400-2 1.258900+3 5.285900-2 1.584900+3 4.306600-2 1.995300+3 3.506500-2 2.511900+3 2.853300-2 3.162300+3 2.320400-2 3.981100+3 1.886000-2 5.011900+3 1.532100-2 6.309600+3 1.244000-2 7.943300+3 1.009600-2 1.000000+4 8.190200-3 1.258900+4 6.641100-3 1.584900+4 5.382700-3 1.995300+4 4.361000-3 2.511900+4 3.531800-3 3.162300+4 2.859300-3 3.981100+4 2.314000-3 5.011900+4 1.872000-3 6.309600+4 1.513900-3 7.943300+4 1.224000-3 1.000000+5 9.892500-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159552-4 3.981072-4 3.976784-4 5.011872-4 5.005111-4 6.309573-4 6.298964-4 7.943282-4 7.926726-4 1.000000-3 9.974199-4 1.258925-3 1.254910-3 1.584893-3 1.578622-3 1.995262-3 1.985434-3 2.511886-3 2.496444-3 3.162278-3 3.138074-3 3.981072-3 3.943099-3 5.011872-3 4.952476-3 6.309573-3 6.217089-3 7.943282-3 7.799580-3 1.000000-2 9.776234-3 1.258925-2 1.224150-2 1.584893-2 1.530949-2 1.995262-2 1.912076-2 2.511886-2 2.384354-2 3.162278-2 2.967700-2 3.981072-2 3.685472-2 5.011872-2 4.565337-2 6.309573-2 5.639548-2 7.943282-2 6.947500-2 1.000000-1 8.530251-2 1.258925-1 1.044754-1 1.584893-1 1.274094-1 1.995262-1 1.549019-1 2.511886-1 1.877259-1 3.162278-1 2.267596-1 3.981072-1 2.730331-1 5.011872-1 3.277188-1 6.309573-1 3.922139-1 7.943282-1 4.681749-1 1.000000+0 5.575880-1 1.258925+0 6.630343-1 1.584893+0 7.873444-1 1.995262+0 9.344361-1 2.511886+0 1.108961+0 3.162278+0 1.316696+0 3.981072+0 1.564684+0 5.011872+0 1.861463+0 6.309573+0 2.217687+0 7.943282+0 2.646200+0 1.000000+1 3.162848+0 1.258925+1 3.786877+0 1.584893+1 4.542022+0 1.995262+1 5.457242+0 2.511886+1 6.568019+0 3.162278+1 7.918044+0 3.981072+1 9.560525+0 5.011872+1 1.156125+1 6.309573+1 1.400091+1 7.943282+1 1.697852+1 1.000000+2 2.061592+1 1.258925+2 2.506302+1 1.584893+2 3.050474+1 1.995262+2 3.716814+1 2.511886+2 4.533331+1 3.162278+2 5.534591+1 3.981072+2 6.763035+1 5.011872+2 8.271354+1 6.309573+2 1.012432+2 7.943282+2 1.240193+2 1.000000+3 1.520281+2 1.258925+3 1.864910+2 1.584893+3 2.289220+2 1.995262+3 2.811763+2 2.511886+3 3.455638+2 3.162278+3 4.249370+2 3.981072+3 5.228238+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88186-10 1.995262-5 1.090601-9 2.511886-5 1.728459-9 3.162278-5 2.739466-9 3.981072-5 4.341829-9 5.011872-5 6.881344-9 6.309573-5 1.090594-8 7.943282-5 1.727860-8 1.000000-4 2.737617-8 1.258925-4 4.336584-8 1.584893-4 6.867250-8 1.995262-4 1.087150-7 2.511886-4 1.720177-7 3.162278-4 2.725409-7 3.981072-4 4.288093-7 5.011872-4 6.761540-7 6.309573-4 1.060983-6 7.943282-4 1.655635-6 1.000000-3 2.580109-6 1.258925-3 4.015563-6 1.584893-3 6.271497-6 1.995262-3 9.828797-6 2.511886-3 1.544193-5 3.162278-3 2.420376-5 3.981072-3 3.797238-5 5.011872-3 5.939676-5 6.309573-3 9.248476-5 7.943282-3 1.437023-4 1.000000-2 2.237664-4 1.258925-2 3.477546-4 1.584893-2 5.394462-4 1.995262-2 8.318603-4 2.511886-2 1.275325-3 3.162278-2 1.945775-3 3.981072-2 2.955997-3 5.011872-2 4.465356-3 6.309573-2 6.700254-3 7.943282-2 9.957822-3 1.000000-1 1.469749-2 1.258925-1 2.141719-2 1.584893-1 3.107995-2 1.995262-1 4.462429-2 2.511886-1 6.346270-2 3.162278-1 8.946817-2 3.981072-1 1.250741-1 5.011872-1 1.734685-1 6.309573-1 2.387434-1 7.943282-1 3.261533-1 1.000000+0 4.424120-1 1.258925+0 5.958911-1 1.584893+0 7.975488-1 1.995262+0 1.060826+0 2.511886+0 1.402926+0 3.162278+0 1.845582+0 3.981072+0 2.416388+0 5.011872+0 3.150409+0 6.309573+0 4.091886+0 7.943282+0 5.297083+0 1.000000+1 6.837152+0 1.258925+1 8.802377+0 1.584893+1 1.130691+1 1.995262+1 1.449538+1 2.511886+1 1.855085+1 3.162278+1 2.370473+1 3.981072+1 3.025019+1 5.011872+1 3.855748+1 6.309573+1 4.909482+1 7.943282+1 6.245430+1 1.000000+2 7.938408+1 1.258925+2 1.008295+2 1.584893+2 1.279846+2 1.995262+2 1.623581+2 2.511886+2 2.058553+2 3.162278+2 2.608819+2 3.981072+2 3.304768+2 5.011872+2 4.184737+2 6.309573+2 5.297141+2 7.943282+2 6.703090+2 1.000000+3 8.479719+2 1.258925+3 1.072434+3 1.584893+3 1.355971+3 1.995262+3 1.714086+3 2.511886+3 2.166323+3 3.162278+3 2.737341+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.810000-6 2.729420+6 4.841724-6 2.653342+6 4.950000-6 2.391320+6 5.248075-6 1.807066+6 5.623413-6 1.286945+6 5.956621-6 9.630081+5 6.309573-6 7.158129+5 6.510000-6 6.066916+5 6.510000-6 6.718238+5 6.683439-6 5.951009+5 6.720000-6 5.801390+5 6.850000-6 5.313655+5 6.850000-6 5.770911+5 6.918310-6 5.543350+5 7.000000-6 5.292464+5 7.079458-6 5.068448+5 7.161434-6 4.849777+5 7.200000-6 4.753811+5 7.413102-6 4.289954+5 7.420000-6 4.276213+5 7.673615-6 3.843048+5 7.762471-6 3.718772+5 7.852356-6 3.606755+5 8.000000-6 3.441981+5 8.200000-6 3.264379+5 8.317638-6 3.181734+5 8.350000-6 3.160836+5 8.810489-6 2.964313+5 9.350000-6 2.917563+5 9.549926-6 2.937291+5 9.700000-6 2.962642+5 1.000000-5 3.038610+5 1.027000-5 3.131241+5 1.050000-5 3.225890+5 1.071519-5 3.326105+5 1.083927-5 3.388855+5 1.092000-5 3.430095+5 1.110000-5 3.527229+5 1.127000-5 3.624454+5 1.148154-5 3.752372+5 1.150000-5 3.763952+5 1.165000-5 3.858167+5 1.185000-5 3.989063+5 1.202264-5 4.106568+5 1.222000-5 4.242897+5 1.244515-5 4.404231+5 1.260000-5 4.518612+5 1.273503-5 4.620680+5 1.280100-5 4.670400+5 1.303167-5 4.848259+5 1.330000-5 5.061815+5 1.333521-5 5.090436+5 1.357000-5 5.279558+5 1.390000-5 5.553575+5 1.396368-5 5.607636+5 1.428894-5 5.884639+5 1.479108-5 6.328509+5 1.480000-5 6.336382+5 1.531087-5 6.797529+5 1.548817-5 6.959270+5 1.621810-5 7.646775+5 1.659587-5 8.006849+5 1.737801-5 8.766863+5 1.778279-5 9.172817+5 1.800000-5 9.388379+5 1.840772-5 9.791890+5 1.927525-5 1.067524+6 2.018366-5 1.158477+6 2.065380-5 1.206743+6 2.070000-5 1.211421+6 2.113489-5 1.254080+6 2.190000-5 1.330408+6 2.213095-5 1.353220+6 2.230000-5 1.369333+6 2.317395-5 1.453527+6 2.350000-5 1.484384+6 2.355000-5 1.488924+6 2.359000-5 1.492550+6 2.359000-5 1.542487+7 2.454709-5 1.362743+7 2.483133-5 1.315629+7 2.600160-5 1.146613+7 2.630268-5 1.108862+7 2.635000-5 1.103099+7 2.635000-5 1.772823+7 2.722701-5 1.606027+7 2.754229-5 1.551109+7 2.786121-5 1.498420+7 2.800000-5 1.476313+7 2.917427-5 1.308619+7 2.951209-5 1.266019+7 2.985383-5 1.225080+7 3.090295-5 1.111748+7 3.126079-5 1.077090+7 3.162278-5 1.043784+7 3.235937-5 9.814426+6 3.273407-5 9.522009+6 3.311311-5 9.241349+6 3.350000-5 8.966333+6 3.467369-5 8.221085+6 3.507519-5 7.992658+6 3.570000-5 7.659537+6 3.630781-5 7.361995+6 3.672823-5 7.168330+6 3.758374-5 6.804818+6 3.801894-5 6.633814+6 3.845918-5 6.470483+6 3.935501-5 6.169214+6 4.027170-5 5.892220+6 4.073803-5 5.761397+6 4.168694-5 5.517029+6 4.175000-5 5.502019+6 4.175000-5 5.564034+6 4.220000-5 5.461838+6 4.315191-5 5.260531+6 4.365158-5 5.161785+6 4.466836-5 4.977490+6 4.518559-5 4.893186+6 4.623810-5 4.733323+6 4.650000-5 4.695419+6 4.677351-5 4.656855+6 4.731513-5 4.583652+6 4.800000-5 4.499509+6 4.900000-5 4.383840+6 4.954502-5 4.323502+6 5.011872-5 4.263078+6 5.069907-5 4.206526+6 5.150000-5 4.131257+6 5.188000-5 4.097232+6 5.300000-5 4.000776+6 5.350000-5 3.961513+6 5.370318-5 3.945929+6 5.500000-5 3.849014+6 5.559043-5 3.805978+6 5.580000-5 3.791238+6 5.688529-5 3.719932+6 5.754399-5 3.677630+6 5.821032-5 3.636460+6 5.956621-5 3.555718+6 6.000000-5 3.531384+6 6.025596-5 3.517305+6 6.095369-5 3.478688+6 6.165950-5 3.442020+6 6.237348-5 3.406103+6 6.309573-5 3.369257+6 6.382635-5 3.333717+6 6.400000-5 3.325655+6 6.650000-5 3.211517+6 6.683439-5 3.196433+6 6.839116-5 3.131080+6 6.918310-5 3.098383+6 7.000000-5 3.065469+6 7.161434-5 3.005284+6 7.244360-5 2.975465+6 7.328245-5 2.944702+6 7.413102-5 2.915356+6 7.500000-5 2.885084+6 7.585776-5 2.855768+6 7.673615-5 2.826538+6 7.852356-5 2.770979+6 7.943282-5 2.743585+6 8.035261-5 2.715476+6 8.128305-5 2.688454+6 8.222426-5 2.660912+6 8.413951-5 2.606516+6 8.511380-5 2.580475+6 8.709636-5 2.527095+6 8.810489-5 2.499920+6 8.912509-5 2.473291+6 9.015711-5 2.447339+6 9.225714-5 2.396349+6 9.300000-5 2.378050+6 9.332543-5 2.370078+6 9.500000-5 2.328470+6 9.660509-5 2.290390+6 9.900000-5 2.236245+6 1.000000-4 2.213499+6 1.011579-4 2.186812+6 1.059300-4 2.084626+6 1.060000-4 2.083137+6 1.071519-4 2.059035+6 1.080000-4 2.041076+6 1.096478-4 2.006860+6 1.122018-4 1.956312+6 1.124400-4 1.951745+6 1.124400-4 2.807747+6 1.131000-4 2.913349+6 1.135500-4 2.988317+6 1.140000-4 3.063763+6 1.144500-4 3.138872+6 1.150000-4 3.229389+6 1.155500-4 3.316326+6 1.157900-4 3.351573+6 1.157900-4 3.919957+6 1.161449-4 4.012113+6 1.164000-4 4.076099+6 1.166500-4 4.139404+6 1.170000-4 4.225998+6 1.175000-4 4.344242+6 1.180000-4 4.454833+6 1.181000-4 4.476760+6 1.185000-4 4.557522+6 1.187000-4 4.597238+6 1.188502-4 4.624456+6 1.190000-4 4.651997+6 1.192000-4 4.687349+6 1.195000-4 4.735193+6 1.198600-4 4.790162+6 1.200000-4 4.808814+6 1.202264-4 4.836794+6 1.205000-4 4.871264+6 1.210000-4 4.919136+6 1.212000-4 4.936042+6 1.216186-4 4.964121+6 1.218000-4 4.973912+6 1.222000-4 4.989144+6 1.225000-4 4.997072+6 1.227000-4 4.999072+6 1.232000-4 4.998655+6 1.233000-4 4.997399+6 1.238000-4 4.982969+6 1.243000-4 4.962245+6 1.244515-4 4.954092+6 1.245000-4 4.951491+6 1.250000-4 4.918646+6 1.251000-4 4.911128+6 1.258925-4 4.843060+6 1.260000-4 4.832683+6 1.267000-4 4.758160+6 1.273503-4 4.684158+6 1.275000-4 4.666031+6 1.285000-4 4.538885+6 1.290000-4 4.473490+6 1.295000-4 4.406453+6 1.307000-4 4.244160+6 1.307800-4 4.233311+6 1.322000-4 4.040508+6 1.330000-4 3.934658+6 1.333521-4 3.888423+6 1.340000-4 3.805602+6 1.350000-4 3.679989+6 1.364583-4 3.504768+6 1.365000-4 3.499940+6 1.380384-4 3.325720+6 1.392500-4 3.196247+6 1.412538-4 2.997182+6 1.415000-4 2.974173+6 1.428894-4 2.847360+6 1.450000-4 2.671994+6 1.479108-4 2.455859+6 1.490000-4 2.382876+6 1.520000-4 2.203764+6 1.531087-4 2.144891+6 1.540000-4 2.100165+6 1.548817-4 2.058477+6 1.550000-4 2.053006+6 1.560000-4 2.007437+6 1.566751-4 1.978950+6 1.580000-4 1.924808+6 1.590000-4 1.886854+6 1.600000-4 1.851008+6 1.610000-4 1.817540+6 1.620000-4 1.785769+6 1.627000-4 1.764947+6 1.640590-4 1.726690+6 1.650000-4 1.702132+6 1.659587-4 1.678458+6 1.660000-4 1.677450+6 1.670000-4 1.654443+6 1.678804-4 1.635258+6 1.680000-4 1.632660+6 1.690000-4 1.611882+6 1.698244-4 1.595579+6 1.705000-4 1.583097+6 1.720000-4 1.556706+6 1.737801-4 1.529037+6 1.740000-4 1.525676+6 1.760000-4 1.498556+6 1.778279-4 1.476942+6 1.780000-4 1.474906+6 1.800000-4 1.454221+6 1.805000-4 1.449395+6 1.820000-4 1.436223+6 1.829800-4 1.428246+6 1.830000-4 1.428096+6 1.842000-4 1.418870+6 1.850000-4 1.413186+6 1.865000-4 1.403518+6 1.883649-4 1.392677+6 1.890000-4 1.389401+6 1.905461-4 1.382208+6 1.915000-4 1.377900+6 1.927525-4 1.373306+6 1.950000-4 1.365190+6 1.972423-4 1.359161+6 1.990000-4 1.354606+6 2.018366-4 1.348880+6 2.041738-4 1.345128+6 2.065380-4 1.342479+6 2.089296-4 1.340486+6 2.093500-4 1.340156+6 2.093500-4 1.681556+6 2.113489-4 1.679235+6 2.150000-4 1.675710+6 2.220000-4 1.671603+6 2.238721-4 1.670834+6 2.264644-4 1.669654+6 2.281200-4 1.669044+6 2.285800-4 1.668917+6 2.285800-4 1.775840+6 2.300000-4 1.775413+6 2.317395-4 1.774463+6 2.344229-4 1.772970+6 2.350000-4 1.772731+6 2.371374-4 1.771901+6 2.380000-4 1.771668+6 2.398833-4 1.770602+6 2.400000-4 1.770536+6 2.426610-4 1.768654+6 2.454709-4 1.766963+6 2.483133-4 1.764654+6 2.540973-4 1.760089+6 2.570396-4 1.757314+6 2.600160-4 1.754040+6 2.620000-4 1.751968+6 2.630268-4 1.750888+6 2.660725-4 1.746804+6 2.691535-4 1.742372+6 2.730000-4 1.737365+6 2.754229-4 1.733660+6 2.786121-4 1.728241+6 2.830000-4 1.721169+6 2.850100-4 1.717563+6 2.850100-4 1.849568+6 2.851018-4 1.849388+6 2.884032-4 1.842430+6 2.917427-4 1.835620+6 2.951209-4 1.828157+6 2.985383-4 1.820329+6 3.019952-4 1.812651+6 3.054921-4 1.803844+6 3.100000-4 1.792224+6 3.126079-4 1.785646+6 3.150000-4 1.779579+6 3.162278-4 1.776154+6 3.235937-4 1.754729+6 3.273407-4 1.744256+6 3.280000-4 1.742428+6 3.388442-4 1.709164+6 3.430000-4 1.696845+6 3.507519-4 1.671695+6 3.548134-4 1.658984+6 3.589219-4 1.646253+6 3.600000-4 1.642965+6 3.630781-4 1.632586+6 3.715352-4 1.605099+6 3.780000-4 1.584646+6 3.801894-4 1.577153+6 3.845918-4 1.562324+6 3.850000-4 1.560960+6 3.930000-4 1.534730+6 3.981072-4 1.518472+6 4.000000-4 1.511975+6 4.027170-4 1.502609+6 4.120975-4 1.471353+6 4.168694-4 1.455879+6 4.200000-4 1.445809+6 4.365158-4 1.391378+6 4.415704-4 1.375441+6 4.430000-4 1.370980+6 4.518559-4 1.342206+6 4.570882-4 1.325769+6 4.677351-4 1.293531+6 4.700000-4 1.286872+6 4.731513-4 1.277112+6 4.786301-4 1.260390+6 4.954502-4 1.211162+6 5.000000-4 1.198201+6 5.011872-4 1.194745+6 5.150000-4 1.155839+6 5.188000-4 1.145517+6 5.248075-4 1.129291+6 5.308844-4 1.113014+6 5.370318-4 1.096520+6 5.432503-4 1.080267+6 5.495409-4 1.064257+6 5.559043-4 1.048483+6 5.623413-4 1.032609+6 5.688529-4 1.016929+6 5.900000-4 9.671086+5 6.000000-4 9.446678+5 6.025596-4 9.390676+5 6.095369-4 9.240165+5 6.100000-4 9.230323+5 6.200000-4 9.016624+5 6.309573-4 8.792039+5 6.531306-4 8.355801+5 6.606934-4 8.211862+5 6.683439-4 8.069896+5 6.760830-4 7.930330+5 6.918310-4 7.654757+5 7.079458-4 7.387085+5 7.161434-4 7.253941+5 7.244360-4 7.122367+5 7.328245-4 6.991426+5 7.413102-4 6.862917+5 7.585776-4 6.613059+5 7.673615-4 6.489303+5 7.762471-4 6.367021+5 7.852356-4 6.247084+5 8.000000-4 6.054807+5 8.035261-4 6.010300+5 8.128305-4 5.895280+5 8.222426-4 5.782493+5 8.500000-4 5.463222+5 8.511380-4 5.450587+5 8.709636-4 5.236251+5 8.810489-4 5.131984+5 8.861400-4 5.080586+5 8.861400-4 1.787497+6 8.912509-4 1.770939+6 9.015711-4 1.738077+6 9.054900-4 1.725856+6 9.054900-4 2.646846+6 9.120108-4 2.613610+6 9.225714-4 2.561157+6 9.236000-4 2.556125+6 9.549926-4 2.409770+6 9.660509-4 2.361259+6 9.700000-4 2.344009+6 1.000000-3 2.218907+6 1.011579-3 2.170869+6 1.035142-3 2.078011+6 1.047129-3 2.033137+6 1.050000-3 2.020527+6 1.071519-3 1.930615+6 1.083927-3 1.881317+6 1.096478-3 1.833274+6 1.122018-3 1.740725+6 1.135011-3 1.696229+6 1.148154-3 1.652877+6 1.150000-3 1.646917+6 1.161449-3 1.610564+6 1.170500-3 1.582094+6 1.170500-3 1.810208+6 1.174898-3 1.796444+6 1.185000-3 1.765459+6 1.190000-3 1.749749+6 1.202264-3 1.711549+6 1.216186-3 1.669659+6 1.230269-3 1.628407+6 1.244515-3 1.588207+6 1.258925-3 1.548979+6 1.259900-3 1.546334+6 1.259900-3 1.635057+6 1.273503-3 1.598728+6 1.285000-3 1.569008+6 1.287000-3 1.563879+6 1.288250-3 1.560654+6 1.303167-3 1.522522+6 1.305000-3 1.517929+6 1.333521-3 1.448452+6 1.350000-3 1.410473+6 1.364583-3 1.378087+6 1.373000-3 1.359601+6 1.380384-3 1.343623+6 1.400000-3 1.302192+6 1.409900-3 1.281803+6 1.409900-3 1.338821+6 1.412538-3 1.333353+6 1.428894-3 1.300199+6 1.445440-3 1.267915+6 1.450000-3 1.259223+6 1.462177-3 1.236337+6 1.470000-3 1.221967+6 1.479108-3 1.205490+6 1.500000-3 1.168550+6 1.513561-3 1.145375+6 1.531087-3 1.116367+6 1.584893-3 1.033063+6 1.603245-3 1.006659+6 1.621810-3 9.809683+5 1.650000-3 9.433780+5 1.659587-3 9.310411+5 1.678804-3 9.068618+5 1.698244-3 8.833374+5 1.717908-3 8.603781+5 1.737801-3 8.380483+5 1.778279-3 7.949374+5 1.819701-3 7.541160+5 1.850000-3 7.260927+5 1.883649-3 6.963717+5 1.900000-3 6.824584+5 1.905461-3 6.778725+5 1.927525-3 6.597929+5 1.949845-3 6.421877+5 1.970000-3 6.268815+5 2.000000-3 6.050155+5 2.018366-3 5.920793+5 2.041738-3 5.761807+5 2.065380-3 5.606423+5 2.070000-3 5.576785+5 2.113489-3 5.306766+5 2.162719-3 5.022940+5 2.213095-3 4.754718+5 2.238721-3 4.626190+5 2.264644-3 4.501179+5 2.317395-3 4.260527+5 2.371374-3 4.031378+5 2.426610-3 3.812966+5 2.454709-3 3.708051+5 2.540973-3 3.411114+5 2.570396-3 3.317018+5 2.600160-3 3.225656+5 2.630268-3 3.135893+5 2.660725-3 3.048482+5 2.720000-3 2.888112+5 2.722701-3 2.881095+5 2.754229-3 2.800959+5 2.786121-3 2.723174+5 2.851018-3 2.574351+5 2.900000-3 2.468700+5 2.917427-3 2.432365+5 2.951209-3 2.364030+5 2.985383-3 2.297399+5 3.019952-3 2.232729+5 3.090295-3 2.109001+5 3.162278-3 1.992424+5 3.198895-3 1.936371+5 3.235937-3 1.881970+5 3.273407-3 1.828802+5 3.311311-3 1.776772+5 3.349654-3 1.726292+5 3.507519-3 1.538678+5 3.548134-3 1.494976+5 3.589219-3 1.452272+5 3.630781-3 1.410829+5 3.650000-3 1.392241+5 3.715352-3 1.331284+5 3.758374-3 1.293061+5 3.801894-3 1.255987+5 3.845918-3 1.219989+5 3.890451-3 1.184970+5 3.981072-3 1.118010+5 4.000000-3 1.104710+5 4.027170-3 1.086014+5 4.073803-3 1.054760+5 4.120975-3 1.024450+5 4.168694-3 9.949545+4 4.216965-3 9.662054+4 4.265795-3 9.382466+4 4.315191-3 9.111329+4 4.365158-3 8.847923+4 4.415704-3 8.591487+4 4.466836-3 8.342736+4 4.518559-3 8.100185+4 4.570882-3 7.864857+4 4.677351-3 7.415194+4 4.786301-3 6.989581+4 4.800000-3 6.938535+4 4.841724-3 6.785848+4 4.897788-3 6.587923+4 4.954502-3 6.396034+4 5.011872-3 6.209546+4 5.069907-3 6.027478+4 5.128614-3 5.850874+4 5.248075-3 5.513536+4 5.308844-3 5.351932+4 5.370318-3 5.194737+4 5.432503-3 5.042311+4 5.495409-3 4.893950+4 5.500000-3 4.883366+4 5.559043-3 4.749954+4 5.623413-3 4.610380+4 5.688529-3 4.474297+4 5.712800-3 4.424907+4 5.712800-3 1.272383+5 5.754399-3 1.252123+5 5.830000-3 1.216505+5 5.930000-3 1.166538+5 5.956621-3 1.152981+5 6.000000-3 1.131354+5 6.025596-3 1.118858+5 6.095369-3 1.085691+5 6.165300-3 1.053779+5 6.165300-3 1.438175+5 6.237348-3 1.398606+5 6.280000-3 1.375456+5 6.280670-3 1.375082+5 6.300000-3 1.364328+5 6.309573-3 1.359036+5 6.370000-3 1.326294+5 6.400000-3 1.309959+5 6.456542-3 1.279919+5 6.513300-3 1.250713+5 6.513300-3 1.443888+5 6.531306-3 1.433709+5 6.606934-3 1.392043+5 6.620000-3 1.385013+5 6.683439-3 1.352504+5 6.700000-3 1.344196+5 6.770000-3 1.309487+5 6.800000-3 1.294840+5 6.839116-3 1.276072+5 6.918310-3 1.239220+5 7.079458-3 1.169466+5 7.161434-3 1.136114+5 7.244360-3 1.103333+5 7.328245-3 1.071513+5 7.498942-3 1.009740+5 7.673615-3 9.516182+4 7.762471-3 9.238553+4 7.800000-3 9.125128+4 7.852356-3 8.970036+4 8.035261-3 8.452117+4 8.128305-3 8.204444+4 8.222426-3 7.962566+4 8.317638-3 7.728009+4 8.413951-3 7.499006+4 8.511380-3 7.276957+4 8.609938-3 7.061666+4 8.709636-3 6.851888+4 8.810489-3 6.648514+4 8.912509-3 6.451125+4 9.015711-3 6.258795+4 9.120108-3 6.072105+4 9.225714-3 5.891046+4 9.332543-3 5.715517+4 9.440609-3 5.545208+4 9.660509-3 5.220025+4 9.885531-3 4.913817+4 1.011579-2 4.625763+4 1.023293-2 4.487868+4 1.035142-2 4.354029+4 1.040000-2 4.300763+4 1.047129-2 4.223609+4 1.059254-2 4.096775+4 1.071519-2 3.973832+4 1.096478-2 3.739149+4 1.109175-2 3.627169+4 1.122018-2 3.518554+4 1.148154-2 3.308503+4 1.150000-2 3.294339+4 1.174898-2 3.111294+4 1.179700-2 3.077585+4 1.188502-2 3.017113+4 1.202264-2 2.925855+4 1.216186-2 2.836763+4 1.258925-2 2.585876+4 1.273503-2 2.507418+4 1.288250-2 2.431389+4 1.303167-2 2.357679+4 1.318257-2 2.285735+4 1.333521-2 2.216048+4 1.348963-2 2.148519+4 1.350000-2 2.144088+4 1.364583-2 2.082696+4 1.380384-2 2.018914+4 1.412538-2 1.897279+4 1.428894-2 1.839317+4 1.450000-2 1.767817+4 1.479108-2 1.675110+4 1.500000-2 1.612650+4 1.513561-2 1.573600+4 1.531087-2 1.525049+4 1.548817-2 1.477992+4 1.566751-2 1.432364+4 1.584893-2 1.388181+4 1.603245-2 1.345391+4 1.650000-2 1.244037+4 1.678804-2 1.186830+4 1.698244-2 1.150279+4 1.717908-2 1.114596+4 1.737801-2 1.080046+4 1.757924-2 1.046586+4 1.778279-2 1.014191+4 1.798871-2 9.827555+3 1.800000-2 9.810713+3 1.819701-2 9.521329+3 1.840772-2 9.224760+3 1.883649-2 8.659649+3 1.927525-2 8.129963+3 1.950000-2 7.874999+3 1.972423-2 7.631427+3 2.000000-2 7.344717+3 2.018366-2 7.161970+3 2.041738-2 6.938423+3 2.065380-2 6.721806+3 2.089296-2 6.511908+3 2.137962-2 6.112015+3 2.162719-2 5.921604+3 2.187762-2 5.736226+3 2.238721-2 5.380944+3 2.290868-2 5.047996+3 2.317395-2 4.889493+3 2.344229-2 4.736078+3 2.371374-2 4.586949+3 2.398833-2 4.442639+3 2.426610-2 4.302985+3 2.454709-2 4.167662+3 2.483133-2 4.036707+3 2.540973-2 3.787308+3 2.570396-2 3.668569+3 2.600160-2 3.552796+3 2.630268-2 3.440158+3 2.691535-2 3.225691+3 2.722701-2 3.123554+3 2.754229-2 3.024722+3 2.786121-2 2.929096+3 2.818383-2 2.836565+3 2.851018-2 2.747019+3 2.917427-2 2.575850+3 2.951209-2 2.494405+3 2.985383-2 2.415597+3 3.000000-2 2.382941+3 3.019952-2 2.339331+3 3.054921-2 2.265006+3 3.090295-2 2.193036+3 3.126079-2 2.123402+3 3.273407-2 1.865620+3 3.311311-2 1.806327+3 3.349654-2 1.748964+3 3.467369-2 1.587618+3 3.548134-2 1.487749+3 3.589219-2 1.440225+3 3.630781-2 1.394250+3 3.672823-2 1.349723+3 3.715352-2 1.306648+3 3.758374-2 1.264975+3 3.845918-2 1.185408+3 3.890451-2 1.147562+3 3.935501-2 1.110950+3 3.981072-2 1.075487+3 4.000000-2 1.061122+3 4.045600-2 1.027580+3 4.045600-2 5.936863+3 4.073803-2 5.839490+3 4.103000-2 5.741077+3 4.120975-2 5.675732+3 4.140000-2 5.607688+3 4.168694-2 5.515229+3 4.190000-2 5.447975+3 4.216965-2 5.352446+3 4.265795-2 5.185189+3 4.270000-2 5.171120+3 4.300000-2 5.080234+3 4.315191-2 5.035049+3 4.365158-2 4.890327+3 4.450000-2 4.657644+3 4.570882-2 4.336437+3 4.623810-2 4.205165+3 4.677351-2 4.077852+3 4.800000-2 3.805577+3 4.897788-2 3.609026+3 4.954502-2 3.501430+3 5.011872-2 3.397058+3 5.069907-2 3.295804+3 5.128614-2 3.197573+3 5.188000-2 3.102286+3 5.248075-2 3.009843+3 5.308844-2 2.920172+3 5.432503-2 2.748582+3 5.495409-2 2.664604+3 5.623413-2 2.504296+3 5.821032-2 2.281728+3 6.000000-2 2.102985+3 6.095369-2 2.015532+3 6.165950-2 1.954000+3 6.237348-2 1.893605+3 6.456542-2 1.723225+3 6.531306-2 1.669907+3 6.606934-2 1.618242+3 6.918310-2 1.427125+3 6.998420-2 1.382993+3 7.161434-2 1.298793+3 7.244360-2 1.258639+3 7.328245-2 1.219724+3 7.413102-2 1.182013+3 7.585776-2 1.109974+3 7.673615-2 1.075091+3 7.762471-2 1.041307+3 7.852356-2 1.008581+3 8.000000-2 9.577959+2 8.317638-2 8.597710+2 8.413951-2 8.327615+2 8.709636-2 7.567255+2 8.912509-2 7.099415+2 9.120108-2 6.660085+2 9.225714-2 6.450745+2 9.332543-2 6.247998+2 9.500000-2 5.947225+2 9.772372-2 5.493513+2 1.023293-1 4.827419+2 1.035142-1 4.673944+2 1.047129-1 4.525342+2 1.059254-1 4.381483+2 1.083927-1 4.107363+2 1.161449-1 3.383237+2 1.188502-1 3.171446+2 1.202264-1 3.070583+2 1.216186-1 2.972943+2 1.244515-1 2.785802+2 1.258925-1 2.696711+2 1.273503-1 2.610466+2 1.288250-1 2.526996+2 1.303167-1 2.446204+2 1.333521-1 2.292186+2 1.348963-1 2.218854+2 1.380384-1 2.079162+2 1.396368-1 2.012656+2 1.412538-1 1.948277+2 1.428894-1 1.885965+2 1.445440-1 1.825646+2 1.462177-1 1.767264+2 1.496236-1 1.656045+2 1.513561-1 1.603093+2 1.548817-1 1.502235+2 1.610000-1 1.346657+2 1.659587-1 1.236213+2 1.698244-1 1.158473+2 1.717908-1 1.121459+2 1.737801-1 1.085629+2 1.757924-1 1.050946+2 1.819701-1 9.534165+1 1.840772-1 9.229688+1 1.862087-1 8.934944+1 1.883649-1 8.649619+1 1.905461-1 8.373476+1 1.949845-1 7.847385+1 1.995262-1 7.354385+1 2.000000-1 7.305397+1 2.018366-1 7.119632+1 2.041738-1 6.892373+1 2.065380-1 6.672383+1 2.089296-1 6.459481+1 2.113489-1 6.253386+1 2.162719-1 5.864410+1 2.187762-1 5.679101+1 2.213095-1 5.499697+1 2.213400-1 5.497584+1 2.264644-1 5.157726+1 2.317395-1 4.837390+1 2.344229-1 4.684771+1 2.371374-1 4.536979+1 2.398833-1 4.393854+1 2.426610-1 4.255261+1 2.454709-1 4.121041+1 2.483133-1 3.991061+1 2.511886-1 3.865184+1 2.540973-1 3.743333+1 2.570396-1 3.625329+1 2.600160-1 3.512665+1 2.630268-1 3.403507+1 2.660725-1 3.297742+1 2.691535-1 3.195266+1 2.722701-1 3.095978+1 2.754229-1 2.999780+1 2.786121-1 2.906580+1 2.818383-1 2.816300+1 2.851018-1 2.728850+1 2.884032-1 2.644115+1 2.985383-1 2.405788+1 3.000000-1 2.374098+1 3.019952-1 2.331756+1 3.054921-1 2.260005+1 3.090295-1 2.190468+1 3.126079-1 2.123070+1 3.162278-1 2.057746+1 3.198895-1 1.994455+1 3.273407-1 1.873656+1 3.311311-1 1.817025+1 3.349654-1 1.762124+1 3.388442-1 1.708882+1 3.427678-1 1.657339+1 3.467369-1 1.607358+1 3.507519-1 1.558885+1 3.589219-1 1.466308+1 3.630781-1 1.422104+1 3.672823-1 1.379235+1 3.715352-1 1.337669+1 3.758374-1 1.297356+1 3.801894-1 1.259027+1 3.845918-1 1.221833+1 3.890451-1 1.185753+1 3.935501-1 1.150815+1 4.027170-1 1.084007+1 4.073803-1 1.052074+1 4.120975-1 1.021082+1 4.168694-1 9.910120+0 4.216965-1 9.618279+0 4.265795-1 9.335051+0 4.315191-1 9.065665+0 4.365158-1 8.804137+0 4.415705-1 8.550258+0 4.466836-1 8.304237+0 4.518559-1 8.065323+0 4.570882-1 7.833293+0 4.623810-1 7.607952+0 4.677351-1 7.389164+0 4.731513-1 7.176666+0 4.786301-1 6.970342+0 4.954502-1 6.398339+0 5.011872-1 6.218392+0 5.069907-1 6.043923+0 5.128614-1 5.874394+0 5.188000-1 5.709666+0 5.370318-1 5.242812+0 5.432503-1 5.099256+0 5.495409-1 4.959631+0 5.559043-1 4.823832+0 5.623413-1 4.691832+0 5.688529-1 4.563788+0 5.754399-1 4.439323+0 5.821032-1 4.318253+0 5.888437-1 4.200485+0 5.956621-1 4.085932+0 6.025596-1 3.977070+0 6.095369-1 3.871112+0 6.165950-1 3.767985+0 6.237348-1 3.667637+0 6.309573-1 3.570025+0 6.382635-1 3.475293+0 6.531306-1 3.293306+0 6.606935-1 3.205918+0 6.623700-1 3.187463+0 6.683439-1 3.122928+0 6.760830-1 3.042090+0 6.839117-1 2.963370+0 6.918310-1 2.886688+0 6.998420-1 2.811996+0 7.079458-1 2.739487+0 7.244360-1 2.600050+0 7.328245-1 2.533018+0 7.413102-1 2.469316+0 7.585776-1 2.346714+0 7.673615-1 2.287716+0 7.762471-1 2.230205+0 7.852356-1 2.174188+0 7.943282-1 2.119730+0 8.035261-1 2.066637+0 8.128305-1 2.014874+0 8.222427-1 1.965783+0 8.317638-1 1.917890+0 8.413951-1 1.871167+0 8.511380-1 1.825612+0 8.609938-1 1.781166+0 8.709636-1 1.737807+0 8.810489-1 1.695679+0 8.912509-1 1.654573+0 9.015711-1 1.615613+0 9.120108-1 1.577606+0 9.225714-1 1.540492+0 9.332543-1 1.504255+0 9.440609-1 1.468872+0 9.549926-1 1.434321+0 9.660509-1 1.400736+0 9.772372-1 1.367970+0 9.885531-1 1.336967+0 1.000000+0 1.306668+0 1.011579+0 1.277057+0 1.023293+0 1.248115+0 1.035142+0 1.219830+0 1.047129+0 1.192207+0 1.059254+0 1.165213+0 1.071519+0 1.138914+0 1.083927+0 1.113207+0 1.096478+0 1.088082+0 1.109175+0 1.063523+0 1.122018+0 1.040095+0 1.135011+0 1.017188+0 1.148154+0 9.947973-1 1.161449+0 9.729003-1 1.188502+0 9.305432-1 1.202264+0 9.100612-1 1.216186+0 8.901062-1 1.230269+0 8.705891-1 1.244515+0 8.515068-1 1.250000+0 8.443294-1 1.258925+0 8.328506-1 1.288250+0 7.978078-1 1.303167+0 7.808440-1 1.318257+0 7.642407-1 1.333521+0 7.479914-1 1.348963+0 7.320864-1 1.364583+0 7.165860-1 1.380384+0 7.014147-1 1.396368+0 6.865699-1 1.412538+0 6.720386-1 1.428894+0 6.582103-1 1.479108+0 6.184087-1 1.513561+0 5.932206-1 1.531087+0 5.810644-1 1.566751+0 5.574936-1 1.584893+0 5.460717-1 1.659587+0 5.039038-1 1.698244+0 4.840642-1 1.717908+0 4.744399-1 1.778279+0 4.468092-1 1.798871+0 4.379611-1 1.819701+0 4.295355-1 1.840772+0 4.212721-1 1.883649+0 4.052192-1 1.927525+0 3.897840-1 1.949845+0 3.822884-1 2.000000+0 3.663232-1 2.018366+0 3.607416-1 2.041738+0 3.538326-1 2.044000+0 3.531751-1 2.065380+0 3.472434-1 2.113489+0 3.344693-1 2.137962+0 3.282618-1 2.162719+0 3.221699-1 2.213095+0 3.103236-1 2.264644+0 2.989628-1 2.290868+0 2.934392-1 2.317395+0 2.880177-1 2.344229+0 2.828635-1 2.398833+0 2.728302-1 2.426610+0 2.679496-1 2.454709+0 2.631565-1 2.511886+0 2.538265-1 2.570396+0 2.448655-1 2.600160+0 2.405043-1 2.630268+0 2.362210-1 2.660725+0 2.321407-1 2.722701+0 2.241905-1 2.754229+0 2.203194-1 2.786121+0 2.165153-1 2.818383+0 2.127770-1 2.884032+0 2.054931-1 2.951209+0 1.984872-1 3.000000+0 1.936441-1 3.019952+0 1.917199-1 3.054921+0 1.885147-1 3.162278+0 1.792169-1 3.198895+0 1.762218-1 3.235937+0 1.732767-1 3.273407+0 1.703811-1 3.349654+0 1.647342-1 3.427678+0 1.592968-1 3.467369+0 1.566457-1 3.507519+0 1.540389-1 3.548134+0 1.515520-1 3.672823+0 1.443298-1 3.715352+0 1.420006-1 3.758374+0 1.397089-1 3.801894+0 1.374543-1 3.890451+0 1.330539-1 4.000000+0 1.279550-1 4.027170+0 1.267419-1 4.073803+0 1.247051-1 4.120975+0 1.227599-1 4.265795+0 1.171043-1 4.315191+0 1.152783-1 4.365158+0 1.134807-1 4.415704+0 1.117113-1 4.570882+0 1.065669-1 4.677351+0 1.032827-1 4.731513+0 1.016788-1 4.786301+0 1.000998-1 4.841724+0 9.858917-2 5.011872+0 9.419269-2 5.069907+0 9.277166-2 5.188000+0 8.999363-2 5.248075+0 8.863603-2 5.432503+0 8.468500-2 5.559043+0 8.215895-2 5.623413+0 8.092435-2 5.688529+0 7.970829-2 5.754399+0 7.854446-2 5.956621+0 7.515394-2 6.000000+0 7.446065-2 6.025596+0 7.405692-2 6.165950+0 7.191080-2 6.237348+0 7.086125-2 6.456542+0 6.780362-2 6.683439+0 6.488883-2 6.760830+0 6.394535-2 6.839116+0 6.301560-2 6.918310+0 6.212409-2 7.161434+0 5.952458-2 7.244360+0 5.868268-2 7.413102+0 5.703456-2 7.585776+0 5.543281-2 7.852356+0 5.311418-2 8.128305+0 5.090042-2 8.222427+0 5.018320-2 8.317638+0 4.947609-2 8.413951+0 4.879738-2 8.709636+0 4.681659-2 8.810489+0 4.617452-2 8.912509+0 4.554127-2 9.015711+0 4.491674-2 9.225714+0 4.369331-2 9.549926+0 4.192040-2 1.000000+1 3.967566-2 1.023293+1 3.859878-2 1.035142+1 3.808369-2 1.083927+1 3.609111-2 1.100000+1 3.547662-2 1.122018+1 3.466575-2 1.135011+1 3.420324-2 1.161449+1 3.329675-2 1.216186+1 3.155524-2 1.258925+1 3.031350-2 1.273503+1 2.991053-2 1.288250+1 2.952215-2 1.300000+1 2.921950-2 1.348963+1 2.801881-2 1.364583+1 2.765518-2 1.412538+1 2.659232-2 1.428894+1 2.624722-2 1.479108+1 2.523860-2 1.566751+1 2.364294-2 1.584893+1 2.333692-2 1.621810+1 2.273702-2 1.640590+1 2.244288-2 1.659587+1 2.215870-2 1.678804+1 2.187817-2 1.737801+1 2.105771-2 1.840772+1 1.975834-2 1.862087+1 1.950826-2 1.972423+1 1.830459-2 2.089296+1 1.717521-2 2.113489+1 1.695845-2 2.137962+1 1.674442-2 2.162719+1 1.653698-2 2.200000+1 1.623378-2 2.238721+1 1.593004-2 2.454709+1 1.441833-2 2.511886+1 1.406339-2 2.660725+1 1.321382-2 2.818383+1 1.241558-2 2.851018+1 1.226184-2 2.884032+1 1.211036-2 2.951209+1 1.181847-2 3.019952+1 1.153361-2 3.126079+1 1.111923-2 3.388442+1 1.020929-2 3.467369+1 9.963274-3 3.672823+1 9.373876-3 4.027170+1 8.502505-3 4.073803+1 8.399449-3 4.120975+1 8.297807-3 4.168694+1 8.197427-3 4.216965+1 8.099725-3 4.315191+1 7.907827-3 4.466836+1 7.628473-3 4.677351+1 7.271342-3 5.188000+1 6.527737-3 5.308844+1 6.373110-3 5.623413+1 6.002391-3 6.165950+1 5.453572-3 6.237348+1 5.388602-3 6.382635+1 5.261157-3 6.456542+1 5.198588-3 6.531306+1 5.137578-3 6.683439+1 5.017715-3 7.079458+1 4.730147-3 7.498942+1 4.459094-3 8.413951+1 3.962694-3 8.709636+1 3.824847-3 9.332543+1 3.563379-3 1.035142+2 3.204308-3 1.047129+2 3.166714-3 1.059254+2 3.129565-3 1.071519+2 3.092890-3 1.096478+2 3.020821-3 1.109175+2 2.985425-3 1.122018+2 2.950447-3 1.148154+2 2.882330-3 1.202264+2 2.750795-3 1.318257+2 2.505454-3 1.462177+2 2.255524-3 1.678804+2 1.960628-3 1.737801+2 1.893138-3 1.862087+2 1.765051-3 2.065380+2 1.588985-3 2.089296+2 1.570540-3 2.113489+2 1.552310-3 2.137962+2 1.534304-3 2.187762+2 1.498916-3 2.213095+2 1.481532-3 2.238721+2 1.464350-3 2.290868+2 1.430785-3 2.398833+2 1.365949-3 2.630268+2 1.244959-3 2.917427+2 1.121614-3 3.349654+2 9.759507-4 3.467369+2 9.425926-4 3.715352+2 8.792594-4 4.120975+2 7.921483-4 4.168694+2 7.830186-4 4.216965+2 7.739942-4 4.265795+2 7.650781-4 4.365158+2 7.475528-4 4.415704+2 7.389421-4 4.466836+2 7.304305-4 4.570882+2 7.137685-4 4.786301+2 6.815773-4 1.047129+3 3.110262-4 1.161449+3 2.803519-4 1.333521+3 2.441063-4 1.380384+3 2.358022-4 1.479108+3 2.200319-4 3.273407+3 9.925954-5 3.311311+3 9.812101-5 3.349654+3 9.699554-5 3.388442+3 9.588316-5 3.467369+3 9.369657-5 3.507519+3 9.262209-5 3.548134+3 9.155994-5 3.630781+3 8.947543-5 3.801894+3 8.544779-5 6.606934+4 4.914905-6 1.000000+5 3.247052-6 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.810000-6 4.810000-6 6.510000-6 4.810000-6 6.510000-6 4.974812-6 6.850000-6 5.032130-6 6.850000-6 5.176169-6 7.200000-6 5.286844-6 7.673615-6 5.470325-6 8.810489-6 5.962502-6 9.350000-6 6.155779-6 9.700000-6 6.254834-6 1.027000-5 6.374391-6 1.092000-5 6.460389-6 1.185000-5 6.524821-6 1.333521-5 6.562600-6 2.230000-5 6.597266-6 2.359000-5 6.600385-6 2.359000-5 2.194604-5 2.483133-5 2.151710-5 2.635000-5 2.092144-5 2.635000-5 2.297220-5 2.800000-5 2.247163-5 2.985383-5 2.182550-5 3.273407-5 2.068080-5 3.672823-5 1.891151-5 4.073803-5 1.709677-5 4.175000-5 1.665584-5 4.175000-5 1.693553-5 4.365158-5 1.621303-5 4.623810-5 1.532396-5 4.800000-5 1.478910-5 5.011872-5 1.422060-5 5.188000-5 1.380572-5 5.370318-5 1.343093-5 5.580000-5 1.305601-5 5.821032-5 1.269541-5 6.095369-5 1.236283-5 6.400000-5 1.206714-5 6.683439-5 1.184806-5 7.161434-5 1.157468-5 7.585776-5 1.139736-5 8.128305-5 1.123402-5 8.810489-5 1.110515-5 9.500000-5 1.103360-5 1.060000-4 1.100686-5 1.124400-4 1.102588-5 1.124400-4 1.921111-5 1.135500-4 2.053050-5 1.144500-4 2.150758-5 1.155500-4 2.255220-5 1.157900-4 2.275019-5 1.157900-4 2.532126-5 1.170000-4 2.646290-5 1.181000-4 2.730318-5 1.192000-4 2.796602-5 1.205000-4 2.854345-5 1.218000-4 2.891681-5 1.233000-4 2.914136-5 1.251000-4 2.917269-5 1.273503-4 2.895056-5 1.295000-4 2.856011-5 1.333521-4 2.761840-5 1.392500-4 2.593287-5 1.479108-4 2.336063-5 1.531087-4 2.196426-5 1.566751-4 2.114976-5 1.600000-4 2.052432-5 1.627000-4 2.011668-5 1.660000-4 1.973761-5 1.690000-4 1.951000-5 1.720000-4 1.938944-5 1.740000-4 1.936344-5 1.780000-4 1.942554-5 1.820000-4 1.962682-5 1.865000-4 1.998275-5 1.927525-4 2.063258-5 2.018366-4 2.177104-5 2.093500-4 2.276408-5 2.093500-4 3.022569-5 2.281200-4 3.200283-5 2.285800-4 3.204369-5 2.285800-4 3.453682-5 2.454709-4 3.576040-5 2.660725-4 3.697232-5 2.850100-4 3.787095-5 2.850100-4 4.121553-5 3.162278-4 4.225695-5 3.600000-4 4.327874-5 4.120975-4 4.419112-5 4.954502-4 4.518989-5 6.025596-4 4.611924-5 7.762471-4 4.724247-5 8.861400-4 4.782460-5 8.861400-4 7.809842-5 9.054900-4 7.816327-5 9.054900-4 8.308851-5 1.083927-3 8.312025-5 1.170500-3 8.298755-5 1.170500-3 9.033078-5 1.259900-3 9.090332-5 1.259900-3 9.397387-5 1.409900-3 9.518104-5 1.409900-3 9.873495-5 1.850000-3 1.023947-4 2.371374-3 1.059574-4 2.951209-3 1.091870-4 3.650000-3 1.123686-4 4.570882-3 1.157214-4 5.712800-3 1.189931-4 5.712800-3 1.653585-4 6.165300-3 1.659756-4 6.165300-3 1.754839-4 6.513300-3 1.758095-4 6.513300-3 1.840790-4 9.332543-3 1.875700-4 1.412538-2 1.916085-4 2.065380-2 1.953152-4 3.019952-2 1.989718-4 4.045600-2 2.016351-4 4.045600-2 1.998778-4 1.059254-1 2.008899-4 4.265795-1 2.015427-4 1.000000+5 2.016559-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.810000-6 0.0 1.157900-4 0.0 1.157900-4 1.459255-9 1.161449-4 1.521340-9 1.180000-4 1.857186-9 1.190000-4 2.028611-9 1.195000-4 2.110910-9 1.205000-4 2.262626-9 1.210000-4 2.333057-9 1.216186-4 2.412295-9 1.222000-4 2.479937-9 1.227000-4 2.532057-9 1.233000-4 2.585834-9 1.238000-4 2.627627-9 1.245000-4 2.673535-9 1.251000-4 2.705139-9 1.260000-4 2.738300-9 1.267000-4 2.757189-9 1.275000-4 2.766628-9 1.285000-4 2.767721-9 1.295000-4 2.757454-9 1.307800-4 2.731848-9 1.322000-4 2.692848-9 1.340000-4 2.630422-9 1.365000-4 2.530754-9 1.392500-4 2.410521-9 1.428894-4 2.238514-9 1.490000-4 1.944400-9 1.531087-4 1.752874-9 1.560000-4 1.629293-9 1.590000-4 1.514624-9 1.610000-4 1.446772-9 1.627000-4 1.394688-9 1.650000-4 1.332770-9 1.670000-4 1.286922-9 1.690000-4 1.248981-9 1.705000-4 1.225452-9 1.720000-4 1.206049-9 1.740000-4 1.185757-9 1.760000-4 1.171842-9 1.780000-4 1.163931-9 1.800000-4 1.161702-9 1.820000-4 1.164664-9 1.842000-4 1.173617-9 1.865000-4 1.188365-9 1.890000-4 1.210055-9 1.915000-4 1.236524-9 1.950000-4 1.280405-9 1.990000-4 1.337919-9 2.041738-4 1.420822-9 2.093500-4 1.508972-9 2.093500-4 3.195334-9 2.285800-4 3.423681-9 2.285800-4 4.036277-9 2.426610-4 4.168417-9 2.620000-4 4.325792-9 2.850100-4 4.481593-9 2.850100-4 5.098695-9 3.162278-4 5.251405-9 3.630781-4 5.423740-9 4.120975-4 5.569670-9 4.786301-4 5.721836-9 5.623413-4 5.878284-9 6.918310-4 6.074799-9 8.709636-4 6.300114-9 8.861400-4 6.315823-9 8.861400-4 7.636046-9 9.054900-4 7.644160-9 9.054900-4 4.084410-7 1.000000-3 3.979098-7 1.050000-3 3.889605-7 1.170500-3 3.865023-7 1.170500-3 4.503528-7 1.202264-3 4.525960-7 1.259900-3 4.549475-7 1.259900-3 5.210913-7 1.305000-3 5.273260-7 1.409900-3 5.378820-7 1.409900-3 5.832899-7 1.584893-3 6.035676-7 1.883649-3 6.340184-7 2.162719-3 6.593961-7 2.600160-3 6.939207-7 3.090295-3 7.264169-7 3.650000-3 7.576901-7 4.315191-3 7.891825-7 5.069907-3 8.188925-7 5.712800-3 8.405490-7 5.712800-3 4.026560-4 5.830000-3 4.043592-4 6.165300-3 4.047713-4 6.165300-3 5.058485-4 6.456542-3 5.072873-4 6.513300-3 5.073176-4 6.513300-3 5.338200-4 8.709636-3 5.390099-4 1.380384-2 5.443229-4 2.454709-2 5.487262-4 4.045600-2 5.516322-4 4.045600-2 2.748622-2 4.570882-2 2.765876-2 6.095369-2 2.794378-2 8.709636-2 2.816200-2 1.462177-1 2.833697-2 3.589219-1 2.843684-2 1.230269+0 2.854593-2 1.000000+5 2.854300-2 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.810000-6 0.0 6.510000-6 1.700000-6 6.510000-6 1.535188-6 6.720000-6 1.711884-6 6.850000-6 1.817870-6 6.850000-6 1.673831-6 7.079458-6 1.833389-6 7.200000-6 1.913156-6 7.420000-6 2.052525-6 7.762471-6 2.254592-6 8.350000-6 2.582501-6 8.810489-6 2.847987-6 9.350000-6 3.194221-6 9.700000-6 3.445166-6 1.000000-5 3.676224-6 1.027000-5 3.895609-6 1.071519-5 4.277203-6 1.127000-5 4.779170-6 1.222000-5 5.680919-6 1.428894-5 7.717446-6 2.359000-5 1.698962-5 2.359000-5 1.643958-6 2.454709-5 2.926818-6 2.483133-5 3.314231-6 2.600160-5 4.936890-6 2.635000-5 5.428558-6 2.635000-5 3.377798-6 2.722701-5 4.508864-6 2.800000-5 5.528372-6 2.951209-5 7.562931-6 3.162278-5 1.048359-5 3.350000-5 1.314551-5 3.801894-5 1.969891-5 4.175000-5 2.509416-5 4.175000-5 2.481447-5 4.518559-5 2.951429-5 4.800000-5 3.321090-5 5.188000-5 3.807428-5 5.688529-5 4.399895-5 6.309573-5 5.094888-5 7.244360-5 6.091076-5 8.912509-5 7.803434-5 1.124400-4 1.014141-4 1.124400-4 9.322889-5 1.150000-4 9.294858-5 1.157900-4 9.303981-5 1.157900-4 9.046728-5 1.175000-4 9.063020-5 1.195000-4 9.138188-5 1.218000-4 9.288076-5 1.245000-4 9.531032-5 1.285000-4 9.973967-5 1.365000-4 1.097607-4 1.540000-4 1.322516-4 1.627000-4 1.425819-4 1.720000-4 1.526094-4 1.842000-4 1.644146-4 2.093500-4 1.865844-4 2.093500-4 1.791211-4 2.285800-4 1.965329-4 2.285800-4 1.940391-4 2.786121-4 2.410263-4 2.850100-4 2.471346-4 2.850100-4 2.437894-4 3.930000-4 3.490995-4 8.128305-4 7.653814-4 8.861400-4 8.383091-4 8.861400-4 8.080339-4 9.054900-4 8.273191-4 9.054900-4 8.219930-4 1.170500-3 1.087126-3 1.170500-3 1.079719-3 1.259900-3 1.168542-3 1.259900-3 1.165405-3 1.409900-3 1.314181-3 1.409900-3 1.310582-3 4.841724-3 4.724337-3 5.712800-3 5.592966-3 5.712800-3 5.144786-3 6.165300-3 5.594553-3 6.165300-3 5.483968-3 6.513300-3 5.830173-3 6.513300-3 5.795401-3 4.045600-2 3.970273-2 4.045600-2 1.276990-2 4.216965-2 1.440646-2 5.128614-2 2.330413-2 6.998420-2 4.174407-2 1.428894-1 1.143569-1 1.000000+5 9.999997+4 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.045600-2 4.909283+3 4.103000-2 4.753682+3 4.140000-2 4.645060+3 4.190000-2 4.517480+3 4.270000-2 4.289060+3 4.450000-2 3.872820+3 4.800000-2 3.172580+3 5.432503-2 2.303289+3 6.165950-2 1.643778+3 7.585776-2 9.385501+2 9.500000-2 5.049200+2 1.216186-1 2.531785+2 2.113489-1 5.344640+1 2.570396-1 3.100178+1 2.985383-1 2.058515+1 3.273407-1 1.603427+1 3.758374-1 1.110660+1 4.265795-1 7.994864+0 4.786301-1 5.971710+0 5.370318-1 4.493368+0 5.956621-1 3.503118+0 6.606935-1 2.749685+0 7.328245-1 2.173403+0 8.128305-1 1.729595+0 8.912509-1 1.421034+0 9.772372-1 1.175291+0 1.109175+0 9.138931-1 1.258925+0 7.156741-1 1.412538+0 5.774446-1 1.584893+0 4.691750-1 1.798871+0 3.762972-1 2.044000+0 3.034489-1 2.317395+0 2.474678-1 2.630268+0 2.029660-1 3.019952+0 1.647348-1 3.507519+0 1.323569-1 4.073803+0 1.071518-1 4.786301+0 8.601025-2 5.688529+0 6.848927-2 6.839116+0 5.414546-2 8.317638+0 4.251208-2 1.023293+1 3.316553-2 1.273503+1 2.570097-2 1.640590+1 1.928438-2 2.137962+1 1.438861-2 2.884032+1 1.040659-2 4.168694+1 7.044070-3 6.456542+1 4.467130-3 1.122018+2 2.535309-3 2.238721+2 1.258333-3 4.466836+2 6.276634-4 3.548134+3 7.867919-5 1.000000+5 2.790300-6 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.045600-2 1.995100-4 1.000000+5 1.995100-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.045600-2 3.312400-2 1.000000+5 3.312400-2 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.045600-2 7.132490-3 1.000000+5 9.999997+4 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.513300-3 1.931750+4 6.620000-3 1.867512+4 6.770000-3 1.803588+4 6.918310-3 1.736053+4 7.161434-3 1.644688+4 7.762471-3 1.427084+4 8.317638-3 1.269256+4 8.912509-3 1.120289+4 9.660509-3 9.628599+3 1.040000-2 8.405480+3 1.303167-2 5.408512+3 1.428894-2 4.486942+3 1.698244-2 3.135086+3 1.972423-2 2.272301+3 2.187762-2 1.810544+3 2.570396-2 1.260358+3 3.019952-2 8.688764+2 3.467369-2 6.270504+2 3.981072-2 4.497028+2 4.570882-2 3.205402+2 5.308844-2 2.206209+2 6.237348-2 1.464758+2 7.413102-2 9.373391+1 8.912509-2 5.775842+1 1.083927-1 3.427141+1 1.303167-1 2.085252+1 2.264644-1 4.633936+0 2.884032-1 2.417745+0 3.388442-1 1.578022+0 3.890451-1 1.102176+0 4.415705-1 7.987209-1 5.011872-1 5.831389-1 5.623413-1 4.412860-1 6.309573-1 3.365434-1 6.998420-1 2.654788-1 7.852356-1 2.055409-1 8.709636-1 1.643325-1 9.549926-1 1.356293-1 1.059254+0 1.101811-1 1.202264+0 8.604063-2 1.348963+0 6.921586-2 1.513561+0 5.608020-2 1.717908+0 4.484844-2 1.949845+0 3.613880-2 2.213095+0 2.933363-2 2.511886+0 2.399339-2 2.884032+0 1.942263-2 3.349654+0 1.556904-2 3.890451+0 1.257573-2 4.570882+0 1.007265-2 5.432503+0 8.004665-3 6.456542+0 6.408416-3 7.852356+0 5.020362-3 9.549926+0 3.962059-3 1.216186+1 2.982924-3 1.566751+1 2.235129-3 2.089296+1 1.623993-3 2.851018+1 1.159605-3 4.073803+1 7.943075-4 6.237348+1 5.095595-4 1.059254+2 2.959222-4 2.113489+2 1.467890-4 4.216965+2 7.319921-5 3.349654+3 9.173271-6 1.000000+5 3.071100-7 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.513300-3 2.376200-4 1.000000+5 2.376200-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.513300-3 7.054100-4 1.000000+5 7.054100-4 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.513300-3 5.570270-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 6.165300-3 3.843965+4 6.280000-3 3.717100+4 6.370000-3 3.601900+4 6.700000-3 3.173600+4 7.852356-3 2.091100+4 8.609938-3 1.628200+4 1.011579-2 1.041200+4 1.202264-2 6.410300+3 1.450000-2 3.723100+3 1.603245-2 2.770300+3 1.927525-2 1.597500+3 2.344229-2 8.802200+2 2.851018-2 4.801400+2 3.467369-2 2.595800+2 4.300000-2 1.308400+2 5.432503-2 6.165100+1 7.328245-2 2.332400+1 1.202264-1 4.652200+0 1.513561-1 2.211500+0 1.819701-1 1.228300+0 2.065380-1 8.240200-1 2.511886-1 4.496991-1 2.884032-1 2.954159-1 3.273407-1 2.024749-1 3.672823-1 1.446014-1 4.120975-1 1.040007-1 4.623810-1 7.537342-2 5.128614-1 5.680298-2 5.688529-1 4.310485-2 6.309573-1 3.294824-2 6.998420-1 2.537460-2 7.762471-1 1.961399-2 8.413951-1 1.615710-2 9.015711-1 1.376855-2 9.660509-1 1.181431-2 1.035142+0 1.021697-2 1.122018+0 8.683888-3 1.230269+0 7.264662-3 1.348963+0 6.123299-3 1.566751+0 4.685896-3 1.798871+0 3.681788-3 2.044000+0 2.967790-3 2.317395+0 2.420194-3 2.630268+0 1.984834-3 3.019952+0 1.610810-3 3.507519+0 1.294195-3 4.073803+0 1.047732-3 4.786301+0 8.410188-4 5.688529+0 6.697023-4 6.839116+0 5.294402-4 8.317638+0 4.156913-4 1.023293+1 3.243003-4 1.288250+1 2.480084-4 1.659587+1 1.861564-4 2.137962+1 1.406960-4 2.884032+1 1.017524-4 4.216965+1 6.805036-5 6.531306+1 4.316441-5 1.148154+2 2.421510-5 2.290868+2 1.202129-5 4.570882+2 5.997058-6 3.630781+3 7.518170-7 1.000000+5 2.728400-8 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 6.165300-3 2.015500-4 1.000000+5 2.015500-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.165300-3 7.829400-4 1.000000+5 7.829400-4 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.165300-3 5.180810-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.712800-3 8.298927+4 5.830000-3 7.968080+4 5.930000-3 7.649880+4 6.237348-3 6.702301+4 7.328245-3 4.322876+4 8.128305-3 3.227486+4 9.660509-3 1.967259+4 1.122018-2 1.274722+4 1.350000-2 7.332800+3 1.500000-2 5.327680+3 1.800000-2 3.037160+3 2.162719-2 1.706349+3 2.600160-2 9.473661+2 3.126079-2 5.211444+2 3.758374-2 2.843396+2 4.570882-2 1.481576+2 5.623413-2 7.373670+1 7.244360-2 3.117677+1 1.273503-1 4.534401+0 1.610000-1 2.048262+0 1.883649-1 1.211055+0 2.187762-1 7.391532-1 2.511886-1 4.721463-1 2.818383-1 3.271777-1 3.162278-1 2.283539-1 3.507519-1 1.663819-1 3.890451-1 1.220932-1 4.315191-1 9.027607-2 4.731513-1 6.951041-2 5.188000-1 5.388255-2 5.688529-1 4.205746-2 6.165950-1 3.406315-2 6.760830-1 2.696021-2 7.413102-1 2.149271-2 8.413951-1 1.589169-2 9.015711-1 1.355113-2 9.660509-1 1.163310-2 1.035142+0 1.006494-2 1.135011+0 8.364683-3 1.250000+0 6.945518-3 1.380384+0 5.785164-3 1.659587+0 4.169716-3 1.883649+0 3.351839-3 2.113489+0 2.766302-3 2.398833+0 2.256598-3 2.722701+0 1.854151-3 3.162278+0 1.481904-3 3.672823+0 1.193523-3 4.265795+0 9.683724-4 5.011872+0 7.789197-4 5.956621+0 6.214801-4 7.161434+0 4.922587-4 8.709636+0 3.871592-4 1.083927+1 2.984748-4 1.348963+1 2.317211-4 1.737801+1 1.741731-4 2.200000+1 1.343100-4 3.019952+1 9.540268-5 4.466836+1 6.309567-5 7.079458+1 3.912166-5 1.318257+2 2.072041-5 2.630268+2 1.029877-5 1.047129+3 2.571477-6 6.606934+4 4.066742-8 1.000000+5 2.687100-8 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.712800-3 1.900800-4 1.000000+5 1.900800-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.712800-3 6.169000-4 1.000000+5 6.169000-4 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.712800-3 4.905820-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.409900-3 5.701751+4 1.500000-3 5.328540+4 1.698244-3 4.533850+4 1.778279-3 4.248536+4 2.238721-3 3.030009+4 2.426610-3 2.683373+4 2.660725-3 2.314629+4 3.162278-3 1.743405+4 3.548134-3 1.430981+4 4.120975-3 1.100982+4 4.954502-3 7.882289+3 5.688529-3 6.090865+3 6.606934-3 4.579237+3 7.852356-3 3.267753+3 9.332543-3 2.312228+3 1.109175-2 1.622673+3 1.303167-2 1.157395+3 1.531087-2 8.194618+2 1.778279-2 5.907270+2 2.065380-2 4.230883+2 2.426610-2 2.931967+2 2.851018-2 2.016467+2 3.349654-2 1.376515+2 3.935501-2 9.327046+1 4.623810-2 6.274072+1 5.432503-2 4.190437+1 6.456542-2 2.698754+1 7.762471-2 1.674505+1 9.332543-2 1.031299+1 1.161449-1 5.751449+0 1.548817-1 2.642622+0 2.264644-1 9.427669-1 2.786121-1 5.403240-1 3.311311-1 3.420787-1 3.845918-1 2.318469-1 4.365158-1 1.679500-1 4.954502-1 1.225559-1 5.559043-1 9.271166-2 6.237348-1 7.066215-2 6.998420-1 5.428701-2 7.762471-1 4.311732-2 8.709636-1 3.361534-2 9.549926-1 2.773533-2 1.059254+0 2.252781-2 1.202264+0 1.759195-2 1.348963+0 1.415208-2 1.513561+0 1.146627-2 1.717908+0 9.169657-3 1.949845+0 7.389008-3 2.213095+0 5.997876-3 2.511886+0 4.905944-3 2.884032+0 3.971230-3 3.349654+0 3.183286-3 3.890451+0 2.571281-3 4.570882+0 2.059507-3 5.432503+0 1.636669-3 6.456542+0 1.310258-3 7.852356+0 1.026475-3 9.549926+0 8.100821-4 1.216186+1 6.098866-4 1.584893+1 4.511098-4 2.089296+1 3.320346-4 2.851018+1 2.370914-4 4.120975+1 1.604535-4 6.382635+1 1.017322-4 1.096478+2 5.840899-5 2.187762+2 2.898381-5 4.365158+2 1.445581-5 3.467369+3 1.811922-6 1.000000+5 6.279200-8 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.409900-3 1.786300-4 1.000000+5 1.786300-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.409900-3 1.604100-6 1.000000+5 1.604100-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.409900-3 1.229666-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.259900-3 8.872273+4 1.287000-3 8.845382+4 1.305000-3 8.780330+4 1.373000-3 8.388040+4 1.470000-3 7.803180+4 1.531087-3 7.433055+4 1.650000-3 6.751040+4 1.819701-3 5.906937+4 1.970000-3 5.265400+4 2.113489-3 4.725595+4 2.264644-3 4.224447+4 2.630268-3 3.265863+4 2.851018-3 2.825533+4 3.162278-3 2.322234+4 3.507519-3 1.898250+4 3.845918-3 1.574911+4 4.365158-3 1.208982+4 4.800000-3 9.844500+3 5.432503-3 7.477555+3 6.095369-3 5.740698+3 6.800000-3 4.438820+3 7.800000-3 3.184600+3 8.810489-3 2.352324+3 9.885531-3 1.755526+3 1.122018-2 1.263281+3 1.288250-2 8.749308+2 1.479108-2 6.009411+2 1.698244-2 4.094438+2 1.950000-2 2.767920+2 2.238721-2 1.858412+2 2.600160-2 1.197720+2 3.054921-2 7.401987+1 3.630781-2 4.382003+1 4.315191-2 2.574057+1 5.188000-2 1.448587+1 6.531306-2 6.996374+0 9.225714-2 2.324008+0 1.380384-1 6.404926-1 1.717908-1 3.203017-1 2.065380-1 1.800082-1 2.398833-1 1.134354-1 2.754229-1 7.456751-2 3.162278-1 4.938660-2 3.589219-1 3.410993-2 4.027170-1 2.454451-2 4.518559-1 1.780457-2 5.069907-1 1.301499-2 5.623413-1 9.881632-3 6.237348-1 7.555478-3 6.918310-1 5.820509-3 7.673615-1 4.518272-3 8.609938-1 3.430220-3 9.225714-1 2.924932-3 9.772372-1 2.575885-3 1.047129+0 2.228782-3 1.135011+0 1.895403-3 1.244515+0 1.587063-3 1.364583+0 1.339393-3 1.659587+0 9.463293-4 1.883649+0 7.607132-4 2.113489+0 6.278644-4 2.398833+0 5.122348-4 2.722701+0 4.209316-4 3.162278+0 3.364550-4 3.672823+0 2.709760-4 4.265795+0 2.198594-4 5.011872+0 1.768515-4 6.000000+0 1.398000-4 7.244360+0 1.101737-4 8.912509+0 8.549622-5 1.122018+1 6.508103-5 1.412538+1 4.992219-5 1.840772+1 3.709420-5 2.454709+1 2.706671-5 3.388442+1 1.916474-5 5.188000+1 1.225374-5 8.413951+1 7.438511-6 1.678804+2 3.681009-6 3.349654+2 1.832954-6 1.333521+3 4.582929-7 1.000000+5 6.101000-9 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.259900-3 1.474900-4 1.000000+5 1.474900-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.259900-3 1.673900-6 1.000000+5 1.673900-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.259900-3 1.110736-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.170500-3 2.281140+5 1.185000-3 2.274853+5 1.216186-3 2.219420+5 1.285000-3 2.085972+5 1.380384-3 1.903966+5 1.450000-3 1.776896+5 1.584893-3 1.557409+5 1.737801-3 1.351469+5 1.900000-3 1.169540+5 2.070000-3 1.009696+5 2.371374-3 7.885462+4 2.600160-3 6.637300+4 2.851018-3 5.536708+4 3.235937-3 4.283542+4 3.548134-3 3.528949+4 4.027170-3 2.682157+4 4.466836-3 2.126863+4 5.011872-3 1.632907+4 5.623413-3 1.243697+4 6.300000-3 9.444960+3 7.161434-3 6.865829+3 8.035261-3 5.117720+3 9.015711-3 3.791134+3 1.023293-2 2.705366+3 1.174898-2 1.856311+3 1.350000-2 1.259976+3 1.548817-2 8.516439+2 1.778279-2 5.697439+2 2.041738-2 3.781770+2 2.344229-2 2.491350+2 2.691535-2 1.629907+2 3.126079-2 1.021601+2 3.630781-2 6.357214+1 4.265795-2 3.786531+1 5.069907-2 2.156536+1 6.165950-2 1.130305+1 7.852356-2 5.042126+0 1.445440-1 6.470699-1 1.757924-1 3.371653-1 2.089296-1 1.911206-1 2.398833-1 1.221638-1 2.722701-1 8.163477-2 3.054921-1 5.698786-2 3.427678-1 4.009449-2 3.801894-1 2.941855-2 4.216965-1 2.173057-2 4.623810-1 1.670446-2 5.069907-1 1.292742-2 5.559043-1 1.007908-2 6.095369-1 7.915636-3 6.683439-1 6.263624-3 7.328245-1 4.992316-3 8.317638-1 3.690754-3 9.015711-1 3.063403-3 9.660509-1 2.629836-3 1.035142+0 2.275167-3 1.135011+0 1.890798-3 1.250000+0 1.570099-3 1.380384+0 1.307768-3 1.659587+0 9.425749-4 1.883649+0 7.577088-4 2.137962+0 6.136958-4 2.426610+0 5.009628-4 2.786121+0 4.047260-4 3.235937+0 3.238492-4 3.758374+0 2.611308-4 4.365158+0 2.121042-4 5.188000+0 1.682088-4 6.165950+0 1.344077-4 7.413102+0 1.066036-4 9.015711+0 8.395286-5 1.135011+1 6.393173-5 1.428894+1 4.905943-5 1.862087+1 3.646394-5 2.511886+1 2.628782-5 3.467369+1 1.862147-5 5.308844+1 1.191116-5 8.709636+1 7.148707-6 1.737801+2 3.538932-6 3.467369+2 1.762643-6 1.380384+3 4.407779-7 1.000000+5 6.074400-9 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.170500-3 1.412600-4 1.000000+5 1.412600-4 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.170500-3 8.931900-7 1.000000+5 8.931900-7 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.170500-3 1.028347-3 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 9.054900-4 9.209900+5 9.660509-4 8.084361+5 1.000000-3 7.517500+5 1.050000-3 6.688200+5 1.190000-3 5.008040+5 1.288250-3 4.136640+5 1.400000-3 3.359908+5 1.531087-3 2.665055+5 1.659587-3 2.149990+5 1.883649-3 1.520581+5 2.041738-3 1.210433+5 2.371374-3 7.846735+4 2.600160-3 5.964500+4 2.951209-3 4.064352+4 3.273407-3 2.948285+4 3.715352-3 1.977653+4 4.216965-3 1.314371+4 4.677351-3 9.354888+3 5.308844-3 6.126104+3 6.025596-3 3.980207+3 6.839116-3 2.567094+3 7.762471-3 1.643703+3 8.912509-3 1.002650+3 1.011579-2 6.327366+2 1.150000-2 3.942628+2 1.303167-2 2.469941+2 1.479108-2 1.528416+2 1.698244-2 8.992846+1 1.972423-2 5.024087+1 2.317395-2 2.663578+1 2.722701-2 1.402111+1 3.273407-2 6.684772+0 4.073803-2 2.750496+0 8.317638-2 1.478534-1 1.035142-1 6.073984-2 1.244515-1 2.891647-2 1.462177-1 1.521470-2 1.698244-1 8.445131-3 1.949845-1 4.942166-3 2.213095-1 3.044588-3 2.483133-1 1.973400-3 2.754229-1 1.344464-3 3.019952-1 9.614935-4 3.349654-1 6.647915-4 3.715352-1 4.629353-4 4.120975-1 3.246182-4 4.570882-1 2.292064-4 5.069907-1 1.630518-4 5.559043-1 1.212356-4 6.025596-1 9.411420-5 6.531306-1 7.355034-5 7.079458-1 5.786991-5 7.673615-1 4.585755-5 8.511380-1 3.421380-5 9.015711-1 2.925465-5 9.440609-1 2.595736-5 9.885531-1 2.317030-5 1.035142+0 2.082435-5 1.083927+0 1.884303-5 1.148154+0 1.676453-5 1.216186+0 1.502385-5 1.318257+0 1.298401-5 1.531087+0 1.003129-5 1.819701+0 7.419281-6 2.044000+0 6.096003-6 2.317395+0 4.971406-6 2.630268+0 4.077006-6 3.019952+0 3.308560-6 3.507519+0 2.658313-6 4.073803+0 2.152100-6 4.786301+0 1.727458-6 5.688529+0 1.375580-6 6.839116+0 1.087521-6 8.317638+0 8.538357-7 1.023293+1 6.661219-7 1.273503+1 5.162013-7 1.640590+1 3.873216-7 2.137962+1 2.889871-7 2.884032+1 2.090055-7 4.168694+1 1.414812-7 6.456542+1 8.972089-8 1.122018+2 5.091935-8 2.238721+2 2.527312-8 4.466836+2 1.260662-8 3.548134+3 1.580223-9 1.000000+5 5.60410-11 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 9.054900-4 9.231800-5 1.000000+5 9.231800-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.054900-4 1.159500-6 1.000000+5 1.159500-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.054900-4 8.120125-4 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 8.861400-4 1.279438+6 1.047129-3 9.849069+5 1.161449-3 7.732494+5 1.258925-3 6.358031+5 1.364583-3 5.191439+5 1.479108-3 4.209388+5 1.621810-3 3.291165+5 1.850000-3 2.291136+5 2.000000-3 1.834686+5 2.317395-3 1.194469+5 2.540973-3 9.066576+4 2.900000-3 6.059040+4 3.273407-3 4.149937+4 3.650000-3 2.935080+4 4.168694-3 1.906155+4 4.677351-3 1.301218+4 5.248075-3 8.825283+3 6.025596-3 5.489187+3 6.918310-3 3.382659+3 7.852356-3 2.153668+3 8.810489-3 1.419823+3 9.885531-3 9.306546+2 1.122018-2 5.808689+2 1.273503-2 3.600366+2 1.450000-2 2.189736+2 1.650000-2 1.325838+2 1.883649-2 7.877865+1 2.187762-2 4.342488+1 2.600160-2 2.165388+1 3.054921-2 1.122686+1 3.715352-2 5.015986+0 4.623810-2 2.021155+0 8.709636-2 1.430653-1 1.059254-1 6.349960-2 1.244515-1 3.274697-2 1.445440-1 1.783649-2 1.659587-1 1.025605-2 1.862087-1 6.511766-3 2.000000-1 4.930266-3 2.264644-1 3.108985-3 2.630268-1 1.788225-3 2.851018-1 1.320792-3 2.985383-1 1.107321-3 3.273407-1 7.974172-4 3.589219-1 5.783217-4 3.890451-1 4.394364-4 4.216965-1 3.361645-4 4.570882-1 2.589933-4 4.954502-1 2.010209-4 5.370318-1 1.573080-4 5.821032-1 1.240536-4 6.237348-1 1.018884-4 6.760830-1 8.158252-5 7.413102-1 6.375662-5 8.035261-1 5.162077-5 8.609938-1 4.287793-5 9.120108-1 3.694729-5 9.549926-1 3.297165-5 1.000000+0 2.959481-5 1.059254+0 2.607957-5 1.122018+0 2.315242-5 1.188502+0 2.068299-5 1.288250+0 1.780823-5 1.412538+0 1.513441-5 1.531087+0 1.316697-5 1.798871+0 9.932880-6 2.018366+0 8.171673-6 2.290868+0 6.647157-6 2.600160+0 5.447807-6 3.000000+0 4.386400-6 3.467369+0 3.547941-6 4.027170+0 2.870723-6 4.731513+0 2.303083-6 5.623413+0 1.833015-6 6.760830+0 1.448385-6 8.222427+0 1.136751-6 1.000000+1 8.985900-7 1.258925+1 6.866647-7 1.621810+1 5.150571-7 2.113489+1 3.841639-7 2.851018+1 2.777755-7 4.120975+1 1.879872-7 6.382635+1 1.191897-7 1.109175+2 6.763464-8 2.213095+2 3.356406-8 4.415704+2 1.674190-8 3.507519+3 2.098527-9 1.000000+5 7.35680-11 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 8.861400-4 9.012000-5 1.000000+5 9.012000-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 8.861400-4 8.160300-9 1.000000+5 8.160300-9 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 8.861400-4 7.960118-4 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.850100-4 1.320054+5 3.019952-4 1.286262+5 3.100000-4 1.268022+5 3.162278-4 1.251515+5 3.930000-4 1.046476+5 4.168694-4 9.903460+4 4.677351-4 8.758846+4 5.188000-4 7.807967+4 5.623413-4 7.085640+4 6.531306-4 5.849036+4 7.161434-4 5.168539+4 8.222426-4 4.250961+4 9.225714-4 3.590798+4 1.083927-3 2.807265+4 1.230269-3 2.297334+4 1.428894-3 1.800847+4 1.698244-3 1.348443+4 2.041738-3 9.816101+3 2.454709-3 7.089982+3 2.985383-3 4.977383+3 3.589219-3 3.543885+3 4.415704-3 2.399978+3 5.370318-3 1.648232+3 6.456542-3 1.148751+3 7.673615-3 8.133037+2 9.120108-3 5.717665+2 1.096478-2 3.896218+2 1.303167-2 2.699531+2 1.548817-2 1.856832+2 1.840772-2 1.267700+2 2.162719-2 8.814993+1 2.540973-2 6.086574+1 3.000000-2 4.125202+1 3.548134-2 2.762593+1 4.216965-2 1.814198+1 5.011872-2 1.182055+1 6.000000-2 7.499458+0 7.161434-2 4.758461+0 8.413951-2 3.124355+0 1.035142-1 1.803758+0 1.348963-1 8.861482-1 2.344229-1 1.981103-1 2.884032-1 1.137234-1 3.427678-1 7.211983-2 3.935501-1 5.044352-2 4.466836-1 3.659701-2 5.069907-1 2.675116-2 5.688529-1 2.026770-2 6.309573-1 1.589015-2 7.079458-1 1.221818-2 7.852356-1 9.711645-3 8.709636-1 7.764229-3 9.549926-1 6.405798-3 1.059254+0 5.202863-3 1.202264+0 4.062750-3 1.348963+0 3.268465-3 1.513561+0 2.648384-3 1.717908+0 2.118007-3 1.949845+0 1.706647-3 2.213095+0 1.385220-3 2.511886+0 1.133039-3 2.884032+0 9.172185-4 3.349654+0 7.352457-4 3.890451+0 5.938884-4 4.570882+0 4.756746-4 5.432503+0 3.780152-4 6.456542+0 3.026356-4 7.852356+0 2.370838-4 9.549926+0 1.870986-4 1.216186+1 1.408613-4 1.566751+1 1.055507-4 2.089296+1 7.668970-5 2.818383+1 5.544107-5 4.027170+1 3.796760-5 6.165950+1 2.435162-5 1.035142+2 1.430655-5 2.065380+2 7.095187-6 4.120975+2 3.537653-6 3.273407+3 4.433005-7 1.000000+5 1.450300-8 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.850100-4 8.473300-5 1.000000+5 8.473300-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.850100-4 1.312800-8 1.000000+5 1.312800-8 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.850100-4 2.002639-4 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.285800-4 1.069234+5 3.548134-4 9.566008+4 3.850000-4 9.273560+4 4.120975-4 8.981057+4 4.415704-4 8.633797+4 4.731513-4 8.242488+4 5.150000-4 7.732120+4 5.559043-4 7.250753+4 6.025596-4 6.722661+4 6.606934-4 6.119822+4 7.161434-4 5.602308+4 7.852356-4 5.026137+4 8.709636-4 4.415660+4 9.549926-4 3.907068+4 1.071519-3 3.325478+4 1.190000-3 2.848800+4 1.333521-3 2.390521+4 1.500000-3 1.977312+4 1.678804-3 1.637268+4 1.905461-3 1.313522+4 2.162719-3 1.044879+4 2.426610-3 8.428297+3 2.722701-3 6.755466+3 3.090295-3 5.257766+3 3.507519-3 4.061600+3 3.981072-3 3.114065+3 4.518559-3 2.369729+3 5.069907-3 1.836461+3 5.688529-3 1.414124+3 6.400000-3 1.075010+3 7.244360-3 7.999439+2 8.222426-3 5.870282+2 9.332543-3 4.275017+2 1.059254-2 3.091443+2 1.202264-2 2.220139+2 1.380384-2 1.535264+2 1.584893-2 1.053363+2 1.819701-2 7.172542+1 2.089296-2 4.848112+1 2.426610-2 3.146401+1 2.818383-2 2.026379+1 3.273407-2 1.295606+1 3.845918-2 7.944972+0 4.623810-2 4.506878+0 5.495409-2 2.630103+0 6.918310-2 1.272059+0 1.412538-1 1.310299-1 1.757924-1 6.571255-2 2.113489-1 3.701808-2 2.454709-1 2.337509-2 2.818383-1 1.539617-2 3.198895-1 1.057119-2 3.630781-1 7.311653-3 4.073803-1 5.266266-3 4.570882-1 3.820826-3 5.069907-1 2.881880-3 5.623413-1 2.188655-3 6.237348-1 1.674052-3 6.918310-1 1.289968-3 7.673615-1 1.001555-3 8.709636-1 7.401497-4 9.332543-1 6.318441-4 9.885531-1 5.571036-4 1.071519+0 4.714387-4 1.161449+0 4.016611-4 1.258925+0 3.443029-4 1.396368+0 2.848244-4 1.698244+0 2.014647-4 1.927525+0 1.621458-4 2.162719+0 1.340019-4 2.454709+0 1.094618-4 2.818383+0 8.849184-5 3.273407+0 7.085036-5 3.801894+0 5.716247-5 4.415704+0 4.645502-5 5.248075+0 3.685981-5 6.237348+0 2.946695-5 7.585776+0 2.305248-5 9.225714+0 1.816982-5 1.161449+1 1.384734-5 1.479108+1 1.049605-5 1.972423+1 7.611790-6 2.660725+1 5.496893-6 3.672823+1 3.898381-6 5.623413+1 2.496353-6 9.332543+1 1.481953-6 1.862087+2 7.342010-7 3.715352+2 3.658464-7 1.479108+3 9.151353-8 1.000000+5 1.351500-9 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.285800-4 7.345100-5 1.000000+5 7.345100-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.285800-4 1.359800-8 1.000000+5 1.359800-8 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.285800-4 1.551154-4 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.093500-4 3.414000+5 2.350000-4 3.288041+5 2.620000-4 3.151311+5 2.884032-4 3.014462+5 3.126079-4 2.893288+5 3.388442-4 2.760115+5 3.715352-4 2.592170+5 4.000000-4 2.447596+5 4.365158-4 2.267392+5 4.786301-4 2.076350+5 5.188000-4 1.909678+5 5.688529-4 1.721905+5 6.309573-4 1.521106+5 6.918310-4 1.352312+5 7.673615-4 1.176421+5 8.511380-4 1.015911+5 9.549926-4 8.562313+4 1.071519-3 7.158214+4 1.202264-3 5.939446+4 1.350000-3 4.885560+4 1.513561-3 4.000780+4 1.698244-3 3.250253+4 1.927525-3 2.566708+4 2.213095-3 1.966601+4 2.540973-3 1.493251+4 2.917427-3 1.124011+4 3.349654-3 8.386807+3 3.801894-3 6.363995+3 4.315191-3 4.793511+3 4.841724-3 3.681054+3 5.500000-3 2.727832+3 6.280670-3 1.980024+3 7.079458-3 1.471951+3 8.035261-3 1.067797+3 9.120108-3 7.686639+2 1.035142-2 5.492299+2 1.174898-2 3.896920+2 1.333521-2 2.745783+2 1.513561-2 1.921395+2 1.737801-2 1.291400+2 2.000000-2 8.552040+1 2.290868-2 5.699717+1 2.630268-2 3.745011+1 3.054921-2 2.357717+1 3.548134-2 1.473028+1 4.168694-2 8.807958+0 4.954502-2 5.036496+0 6.000000-2 2.687620+0 7.328245-2 1.383503+0 1.023293-1 4.520495-1 1.412538-1 1.530528-1 1.717908-1 7.979658-2 2.041738-1 4.523698-2 2.344229-1 2.890065-2 2.660725-1 1.929704-2 3.000000-1 1.325415-2 3.349654-1 9.453094-3 3.715352-1 6.927248-3 4.120975-1 5.113114-3 4.570882-1 3.803688-3 5.011872-1 2.944090-3 5.495409-1 2.294169-3 6.025596-1 1.800126-3 6.606935-1 1.422933-3 7.244360-1 1.132858-3 7.943282-1 9.083566-4 8.709636-1 7.313704-4 9.332543-1 6.257617-4 1.000000+0 5.393204-4 1.096478+0 4.469299-4 1.202264+0 3.731946-4 1.318257+0 3.139391-4 1.479108+0 2.550542-4 1.717908+0 1.958440-4 1.949845+0 1.577449-4 2.213095+0 1.280678-4 2.511886+0 1.047559-4 2.884032+0 8.478933-5 3.349654+0 6.796366-5 3.890451+0 5.489687-5 4.570882+0 4.396958-5 5.432503+0 3.494206-5 6.456542+0 2.797409-5 7.852356+0 2.191485-5 9.549926+0 1.729544-5 1.216186+1 1.302070-5 1.584893+1 9.631308-6 2.089296+1 7.088943-6 2.818383+1 5.124864-6 4.027170+1 3.509518-6 6.237348+1 2.224299-6 1.071519+2 1.276644-6 2.137962+2 6.333572-7 4.265795+2 3.158544-7 3.388442+3 3.958535-8 1.000000+5 1.340600-9 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.093500-4 5.951600-5 1.000000+5 5.951600-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.093500-4 9.815100-9 1.000000+5 9.815100-9 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.093500-4 1.498242-4 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.157900-4 5.683840+5 1.164000-4 6.353840+5 1.170000-4 7.044440+5 1.175000-4 7.631000+5 1.180000-4 8.220840+5 1.185000-4 8.804360+5 1.190000-4 9.377080+5 1.195000-4 9.932000+5 1.200000-4 1.045908+6 1.205000-4 1.095176+6 1.210000-4 1.140364+6 1.216186-4 1.189877+6 1.222000-4 1.229408+6 1.227000-4 1.257744+6 1.232000-4 1.280648+6 1.238000-4 1.301012+6 1.245000-4 1.315380+6 1.251000-4 1.320080+6 1.258925-4 1.316675+6 1.267000-4 1.303572+6 1.275000-4 1.282708+6 1.285000-4 1.248248+6 1.295000-4 1.207332+6 1.307800-4 1.149122+6 1.322000-4 1.081128+6 1.340000-4 9.946680+5 1.365000-4 8.801160+5 1.392500-4 7.655624+5 1.415000-4 6.814760+5 1.450000-4 5.673920+5 1.531087-4 3.735814+5 1.560000-4 3.249904+5 1.590000-4 2.839700+5 1.610000-4 2.612844+5 1.627000-4 2.445896+5 1.650000-4 2.254124+5 1.670000-4 2.115600+5 1.690000-4 2.000408+5 1.705000-4 1.927672+5 1.720000-4 1.865524+5 1.740000-4 1.797576+5 1.760000-4 1.744904+5 1.780000-4 1.705772+5 1.800000-4 1.678628+5 1.820000-4 1.662080+5 1.842000-4 1.654620+5 1.865000-4 1.657284+5 1.890000-4 1.670560+5 1.915000-4 1.692972+5 1.950000-4 1.736880+5 1.990000-4 1.800828+5 2.041738-4 1.899034+5 2.238721-4 2.337685+5 2.317395-4 2.512932+5 2.400000-4 2.685620+5 2.483133-4 2.843649+5 2.570396-4 2.990128+5 2.660725-4 3.120217+5 2.754229-4 3.232670+5 2.851018-4 3.327100+5 2.951209-4 3.403460+5 3.054921-4 3.461733+5 3.162278-4 3.501908+5 3.280000-4 3.524968+5 3.430000-4 3.527328+5 3.600000-4 3.501176+5 3.780000-4 3.449364+5 3.981072-4 3.368050+5 4.200000-4 3.259964+5 4.430000-4 3.133400+5 4.700000-4 2.976276+5 4.954502-4 2.824716+5 5.248075-4 2.651082+5 5.559043-4 2.473558+5 5.900000-4 2.288984+5 6.309573-4 2.082794+5 6.760830-4 1.877223+5 7.244360-4 1.680692+5 7.852356-4 1.465642+5 8.500000-4 1.271364+5 9.225714-4 1.089076+5 1.000000-3 9.288040+4 1.096478-3 7.679970+4 1.190000-3 6.440800+4 1.303167-3 5.262173+4 1.445440-3 4.141621+4 1.584893-3 3.322961+4 1.737801-3 2.649318+4 1.927525-3 2.037951+4 2.162719-3 1.508959+4 2.426610-3 1.107179+4 2.720000-3 8.074960+3 3.019952-3 6.001837+3 3.349654-3 4.442670+3 3.715352-3 3.266334+3 4.120975-3 2.385691+3 4.570882-3 1.730776+3 5.128614-3 1.202419+3 5.754399-3 8.287957+2 6.456542-3 5.668422+2 7.244360-3 3.847870+2 8.128305-3 2.593250+2 9.225714-3 1.666754+2 1.047129-2 1.063257+2 1.188502-2 6.731459+1 1.348963-2 4.230872+1 1.531087-2 2.640766+1 1.757924-2 1.567198+1 2.018366-2 9.232659+0 2.344229-2 5.163488+0 2.754229-2 2.739694+0 3.273407-2 1.378507+0 4.000000-2 6.160040-1 5.128614-2 2.249064-1 8.709636-2 2.602123-2 1.083927-1 1.074568-2 1.288250-1 5.381092-3 1.513561-1 2.842250-3 1.737801-1 1.655781-3 1.995262-1 9.717344-4 2.264644-1 6.003878-4 2.540973-1 3.902572-4 2.851018-1 2.555755-4 3.126079-1 1.833137-4 3.467369-1 1.270213-4 3.845918-1 8.862184-5 4.315191-1 5.985604-5 4.731513-1 4.401863-5 5.188000-1 3.259912-5 5.688529-1 2.432505-5 6.165950-1 1.894891-5 6.760830-1 1.435426-5 7.413102-1 1.095935-5 8.035261-1 8.704625-6 8.609938-1 7.130787-6 9.120108-1 6.081582-6 9.549926-1 5.387610-6 1.000000+0 4.804800-6 1.047129+0 4.318015-6 1.096478+0 3.909098-6 1.148154+0 3.561054-6 1.216186+0 3.191865-6 1.318257+0 2.761065-6 1.513561+0 2.181778-6 1.840772+0 1.550353-6 2.044000+0 1.299200-6 2.317395+0 1.059576-6 2.630268+0 8.689345-7 3.019952+0 7.051208-7 3.507519+0 5.665360-7 4.073803+0 4.586547-7 4.786301+0 3.681645-7 5.688529+0 2.931693-7 6.839116+0 2.317644-7 8.317638+0 1.819688-7 1.023293+1 1.419631-7 1.288250+1 1.085647-7 1.659587+1 8.149158-8 2.137962+1 6.158875-8 2.884032+1 4.454362-8 4.168694+1 3.015178-8 6.456542+1 1.912149-8 1.122018+2 1.085236-8 2.238721+2 5.386100-9 4.466836+2 2.686704-9 3.548134+3 3.36786-10 1.000000+5 1.19440-11 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.157900-4 4.048200-5 1.000000+5 4.048200-5 1 58000 7 7 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.157900-4 1.006400-8 1.000000+5 1.006400-8 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.157900-4 7.529794-5 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.124400-4 8.560020+5 1.131000-4 9.741540+5 1.135500-4 1.057590+6 1.140000-4 1.141434+6 1.144500-4 1.224870+6 1.150000-4 1.325472+6 1.155500-4 1.422811+6 1.161449-4 1.523233+6 1.166500-4 1.603350+6 1.170000-4 1.655484+6 1.175000-4 1.724490+6 1.181000-4 1.797838+6 1.187000-4 1.859892+6 1.192000-4 1.902492+6 1.198600-4 1.945827+6 1.205000-4 1.973994+6 1.212000-4 1.989996+6 1.218000-4 1.992294+6 1.225000-4 1.983138+6 1.233000-4 1.959246+6 1.243000-4 1.913412+6 1.250000-4 1.873248+6 1.260000-4 1.807818+6 1.273503-4 1.710280+6 1.290000-4 1.585548+6 1.307000-4 1.458096+6 1.330000-4 1.294824+6 1.350000-4 1.164384+6 1.380384-4 9.880208+5 1.415000-4 8.177880+5 1.490000-4 5.475324+5 1.520000-4 4.715760+5 1.540000-4 4.294434+5 1.560000-4 3.933540+5 1.580000-4 3.626730+5 1.600000-4 3.368280+5 1.620000-4 3.152724+5 1.640590-4 2.970488+5 1.660000-4 2.831370+5 1.680000-4 2.717292+5 1.698244-4 2.636237+5 1.720000-4 2.564934+5 1.740000-4 2.520852+5 1.760000-4 2.494812+5 1.780000-4 2.484630+5 1.805000-4 2.491224+5 1.829800-4 2.515834+5 1.850000-4 2.547126+5 1.883649-4 2.617656+5 1.915000-4 2.699832+5 1.950000-4 2.805642+5 2.018366-4 3.039983+5 2.150000-4 3.531804+5 2.220000-4 3.791082+5 2.300000-4 4.072356+5 2.380000-4 4.330380+5 2.454709-4 4.546186+5 2.540973-4 4.763269+5 2.630268-4 4.952651+5 2.730000-4 5.125224+5 2.830000-4 5.261202+5 2.917427-4 5.352342+5 3.019952-4 5.428699+5 3.150000-4 5.482680+5 3.280000-4 5.496012+5 3.430000-4 5.472090+5 3.600000-4 5.405790+5 3.780000-4 5.301684+5 3.981072-4 5.154218+5 4.200000-4 4.967256+5 4.430000-4 4.755066+5 4.700000-4 4.498890+5 5.000000-4 4.213176+5 5.308844-4 3.925191+5 5.688529-4 3.590928+5 6.100000-4 3.257106+5 6.531306-4 2.938625+5 7.079458-4 2.582218+5 7.585776-4 2.295586+5 8.222426-4 1.986196+5 8.912509-4 1.706196+5 9.700000-4 1.442832+5 1.047129-3 1.232561+5 1.150000-3 1.008090+5 1.244515-3 8.456543+4 1.364583-3 6.843718+4 1.513561-3 5.346934+4 1.650000-3 4.325556+4 1.819701-3 3.379044+4 2.018366-3 2.581940+4 2.264644-3 1.897833+4 2.540973-3 1.382562+4 2.851018-3 9.983240+3 3.162278-3 7.393320+3 3.507519-3 5.438505+3 3.890451-3 3.972464+3 4.315191-3 2.882233+3 4.786301-3 2.077450+3 5.308844-3 1.487458+3 5.956621-3 1.018421+3 6.683439-3 6.918987+2 7.498942-3 4.665246+2 8.413951-3 3.123384+2 9.440609-3 2.076594+2 1.071519-2 1.315081+2 1.216186-2 8.266444+1 1.380384-2 5.158141+1 1.566751-2 3.195250+1 1.798871-2 1.879813+1 2.065380-2 1.097381+1 2.398833-2 6.074755+0 2.786121-2 3.337572+0 3.273407-2 1.738310+0 3.935501-2 8.183536-1 4.897788-2 3.316738-1 6.095369-2 1.335473-1 8.709636-2 3.018347-2 1.059254-1 1.344072-2 1.244515-1 6.951204-3 1.445440-1 3.796086-3 1.659587-1 2.188324-3 1.883649-1 1.330945-3 2.113489-1 8.530957-4 2.344229-1 5.755089-4 2.600160-1 3.910468-4 2.851018-1 2.792105-4 3.126079-1 2.007295-4 3.427678-1 1.453856-4 3.715352-1 1.103452-4 4.027170-1 8.428983-5 4.365158-1 6.484207-5 4.731513-1 5.021338-5 5.128614-1 3.914476-5 5.559043-1 3.072083-5 6.025596-1 2.427226-5 6.531306-1 1.930882-5 7.079458-1 1.546532-5 7.673615-1 1.247162-5 8.609938-1 9.237939-6 9.120108-1 8.000728-6 9.660509-1 6.978048-6 1.011579+0 6.292535-6 1.071519+0 5.566689-6 1.148154+0 4.841771-6 1.230269+0 4.240728-6 1.333521+0 3.658929-6 1.778279+0 2.208864-6 2.000000+0 1.809200-6 2.264644+0 1.476558-6 2.570396+0 1.209348-6 2.951209+0 9.801653-7 3.427678+0 7.865997-7 4.000000+0 6.319000-7 4.677351+0 5.100422-7 5.559043+0 4.057385-7 6.683439+0 3.204442-7 8.128305+0 2.513802-7 1.000000+1 1.959400-7 1.258925+1 1.497309-7 1.621810+1 1.123129-7 2.113489+1 8.376824-8 2.851018+1 6.057188-8 4.120975+1 4.099131-8 6.382635+1 2.599071-8 1.096478+2 1.492266-8 2.187762+2 7.404601-9 4.365158+2 3.693097-9 3.467369+3 4.62893-10 1.000000+5 1.60420-11 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.124400-4 3.787400-5 1.000000+5 3.787400-5 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.124400-4 7.456600-5 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 6.850000-6 4.572566+4 7.000000-6 4.679786+4 7.200000-6 4.853349+4 7.420000-6 5.080158+4 7.673615-6 5.381076+4 8.000000-6 5.828607+4 8.350000-6 6.377675+4 8.810489-6 7.196935+4 9.549926-6 8.710235+4 1.150000-5 1.364400+5 1.273503-5 1.733655+5 1.396368-5 2.137704+5 1.531087-5 2.619169+5 1.659587-5 3.110095+5 1.800000-5 3.674958+5 1.927525-5 4.204283+5 2.065380-5 4.782403+5 2.190000-5 5.302269+5 2.317395-5 5.823212+5 2.454709-5 6.360866+5 2.600160-5 6.895033+5 2.754229-5 7.418140+5 2.917427-5 7.919038+5 3.090295-5 8.387726+5 3.273407-5 8.823193+5 3.467369-5 9.223060+5 3.672823-5 9.582623+5 3.935501-5 9.965067+5 4.220000-5 1.029112+6 4.518559-5 1.053987+6 4.800000-5 1.069466+6 5.069907-5 1.076788+6 5.370318-5 1.077328+6 5.688529-5 1.070203+6 6.025596-5 1.055359+6 6.400000-5 1.033397+6 6.839116-5 1.002317+6 7.413102-5 9.589979+5 8.128305-5 9.038591+5 8.709636-5 8.594938+5 9.332543-5 8.127427+5 1.000000-4 7.630544+5 1.071519-4 7.119066+5 1.161449-4 6.512531+5 1.260000-4 5.906067+5 1.350000-4 5.405152+5 1.450000-4 4.899961+5 1.566751-4 4.367011+5 1.678804-4 3.910971+5 1.778279-4 3.551486+5 1.927525-4 3.080693+5 2.089296-4 2.649089+5 2.238721-4 2.310983+5 2.398833-4 2.001801+5 2.570396-4 1.722343+5 2.754229-4 1.472460+5 2.985383-4 1.217068+5 3.235937-4 9.986519+4 3.507519-4 8.134671+4 3.801894-4 6.580373+4 4.120975-4 5.288542+4 4.518559-4 4.088917+4 4.954502-4 3.137305+4 5.432503-4 2.390029+4 6.000000-4 1.768586+4 6.606934-4 1.311369+4 7.328245-4 9.433772+3 8.128305-4 6.735134+3 9.015711-4 4.775181+3 1.000000-3 3.363043+3 1.122018-3 2.260996+3 1.258925-3 1.508351+3 1.412538-3 9.986366+2 1.584893-3 6.563357+2 1.778279-3 4.282327+2 2.000000-3 2.748498+2 2.238721-3 1.782577+2 2.454709-3 1.243220+2 2.754229-3 7.867971+1 3.162278-3 4.507131+1 3.548134-3 2.814740+1 4.000000-3 1.711039+1 4.466836-3 1.073259+1 5.011872-3 6.550820+0 5.623413-3 3.970012+0 6.309573-3 2.387936+0 7.244360-3 1.287049+0 8.511380-3 6.204995-1 9.885531-3 3.129334-1 1.148154-2 1.568061-1 1.318257-2 8.229284-2 1.500000-2 4.473099-2 1.717908-2 2.335707-2 2.000000-2 1.118881-2 2.398833-2 4.605092-3 2.951209-2 1.660502-3 3.890451-2 4.223348-4 6.165950-2 4.280679-5 7.673615-2 1.452811-5 9.120108-2 6.230642-6 1.047129-1 3.186664-6 1.188502-1 1.735404-6 1.348963-1 9.521257-7 1.513561-1 5.557156-7 1.698244-1 3.269875-7 1.905461-1 1.938520-7 2.162719-1 1.098953-7 2.398833-1 6.957748-8 2.630268-1 4.668456-8 2.851018-1 3.314346-8 3.090295-1 2.368437-8 3.349654-1 1.704313-8 3.672823-1 1.178557-8 4.216965-1 6.847963-9 4.623810-1 4.799172-9 5.011872-1 3.539827-9 5.432503-1 2.630235-9 5.888437-1 1.969696-9 6.237348-1 1.612137-9 6.683439-1 1.275972-9 7.244360-1 9.78561-10 8.035261-1 7.02198-10 8.511380-1 5.80255-10 8.912509-1 5.01098-10 9.225714-1 4.51013-10 9.549926-1 4.07928-10 9.885531-1 3.71067-10 1.023293+0 3.39729-10 1.059254+0 3.12923-10 1.096478+0 2.89778-10 1.148154+0 2.63462-10 1.202264+0 2.41208-10 1.288250+0 2.13235-10 1.380384+0 1.89869-10 1.513561+0 1.63522-10 1.883649+0 1.11705-10 2.065380+0 9.56941-11 2.344229+0 7.79638-11 2.660725+0 6.39753-11 3.054921+0 5.19408-11 3.548134+0 4.17573-11 4.120975+0 3.38245-11 4.841724+0 2.71656-11 5.754399+0 2.16428-11 6.918310+0 1.71177-11 8.413951+0 1.34464-11 1.035142+1 1.04940-11 1.300000+1 8.05110-12 1.678804+1 6.02849-12 2.162719+1 4.55748-12 2.951209+1 3.25656-12 4.315191+1 2.17895-12 6.683439+1 1.38263-12 1.202264+2 7.57927-13 2.398833+2 3.76417-13 4.786301+2 1.87822-13 3.801894+3 2.35511-14 1.000000+5 8.94970-16 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 6.850000-6 6.850000-6 1.000000+5 6.850000-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 6.850000-6 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 6.510000-6 6.513219+4 6.720000-6 6.760885+4 6.918310-6 7.039363+4 7.161434-6 7.438288+4 7.420000-6 7.926637+4 7.762471-6 8.664733+4 8.200000-6 9.741979+4 8.810489-6 1.146002+5 1.083927-5 1.853774+5 1.202264-5 2.342414+5 1.333521-5 2.937811+5 1.479108-5 3.655468+5 1.621810-5 4.408336+5 1.778279-5 5.275489+5 1.927525-5 6.127398+5 2.070000-5 6.945240+5 2.213095-5 7.749321+5 2.350000-5 8.491987+5 2.483133-5 9.176992+5 2.630268-5 9.877317+5 2.786121-5 1.055302+6 2.951209-5 1.119472+6 3.126079-5 1.178758+6 3.311311-5 1.233133+6 3.507519-5 1.282762+6 3.758374-5 1.334936+6 4.027170-5 1.379784+6 4.315191-5 1.415966+6 4.623810-5 1.441990+6 4.900000-5 1.454861+6 5.188000-5 1.457582+6 5.500000-5 1.450621+6 5.821032-5 1.433413+6 6.237348-5 1.400913+6 6.650000-5 1.361203+6 7.244360-5 1.298940+6 7.943282-5 1.223900+6 8.511380-5 1.164082+6 9.225714-5 1.090380+6 9.900000-5 1.021792+6 1.059300-4 9.541959+5 1.150000-4 8.710570+5 1.260000-4 7.798294+5 1.364583-4 7.024067+5 1.450000-4 6.451090+5 1.550000-4 5.840792+5 1.680000-4 5.133864+5 1.830000-4 4.434971+5 1.972423-4 3.870841+5 2.113489-4 3.394073+5 2.264644-4 2.954436+5 2.426610-4 2.554055+5 2.600160-4 2.193443+5 2.786121-4 1.871979+5 3.019952-4 1.544409+5 3.273407-4 1.264871+5 3.548134-4 1.028419+5 3.845918-4 8.304271+4 4.168694-4 6.662283+4 4.570882-4 5.140772+4 5.011872-4 3.936958+4 5.495409-4 2.994354+4 6.025596-4 2.261797+4 6.683439-4 1.636370+4 7.413102-4 1.174902+4 8.222426-4 8.374497+3 9.120108-4 5.926480+3 1.011579-3 4.165596+3 1.135011-3 2.794686+3 1.273503-3 1.861031+3 1.428894-3 1.230408+3 1.603245-3 8.079263+2 1.778279-3 5.494523+2 1.949845-3 3.875962+2 2.162719-3 2.595201+2 2.426610-3 1.648977+2 2.851018-3 8.647649+1 3.235937-3 5.170894+1 3.630781-3 3.217366+1 4.073803-3 1.987473+1 4.570882-3 1.217824+1 5.128614-3 7.408802+0 5.754399-3 4.475572+0 6.531306-3 2.548049+0 7.498942-3 1.366933+0 9.015711-3 5.904956-1 1.047129-2 2.962883-1 1.202264-2 1.556202-1 1.348963-2 9.040548-2 1.548817-2 4.676534-2 1.798871-2 2.272514-2 2.065380-2 1.159215-2 2.454709-2 4.956689-3 2.985383-2 1.876839-3 3.845918-2 5.293462-4 6.237348-2 4.677006-5 7.673615-2 1.663751-5 9.120108-2 7.071813-6 1.047129-1 3.591312-6 1.188502-1 1.943785-6 1.333521-1 1.120825-6 1.496236-1 6.511969-7 1.659587-1 4.022808-7 1.840772-1 2.503112-7 2.018366-1 1.652640-7 2.213400-1 1.097700-7 2.426610-1 7.345296-8 2.630268-1 5.200655-8 2.851018-1 3.708912-8 3.090295-1 2.666932-8 3.349654-1 1.932389-8 3.630781-1 1.411381-8 3.935501-1 1.038678-8 4.315191-1 7.378117-9 4.677351-1 5.505081-9 5.069907-1 4.139510-9 5.432503-1 3.264086-9 5.821032-1 2.591557-9 6.237348-1 2.072344-9 6.623700-1 1.716500-9 7.079458-1 1.404357-9 7.585776-1 1.148596-9 8.222427-1 9.15845-10 8.810489-1 7.59179-10 9.332543-1 6.53415-10 9.885531-1 5.65945-10 1.035142+0 5.08068-10 1.083927+0 4.59428-10 1.135011+0 4.18026-10 1.202264+0 3.74142-10 1.303167+0 3.23169-10 1.428894+0 2.75574-10 1.513561+0 2.49957-10 1.819701+0 1.81169-10 2.041738+0 1.49113-10 2.317395+0 1.21380-10 2.630268+0 9.95436-11 3.019952+0 8.07831-11 3.507519+0 6.49061-11 4.073803+0 5.25465-11 4.786301+0 4.21793-11 5.688529+0 3.35870-11 6.839116+0 2.65523-11 8.317638+0 2.08480-11 1.023293+1 1.62641-11 1.288250+1 1.24378-11 1.659587+1 9.33635-12 2.137962+1 7.05601-12 2.884032+1 5.10325-12 4.168694+1 3.45438-12 6.456542+1 2.19071-12 1.122018+2 1.24333-12 2.238721+2 6.17069-13 4.466836+2 3.07804-13 3.548134+3 3.85842-14 1.000000+5 1.36830-15 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 6.510000-6 6.510000-6 1.000000+5 6.510000-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 6.510000-6 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.175000-5 6.201440+4 4.466836-5 7.361665+4 4.650000-5 8.101540+4 4.800000-5 8.685880+4 4.954502-5 9.261320+4 5.150000-5 9.944860+4 5.350000-5 1.058548+5 5.559043-5 1.118754+5 5.754399-5 1.168754+5 5.956621-5 1.214142+5 6.165950-5 1.254411+5 6.400000-5 1.291634+5 6.650000-5 1.322638+5 6.918310-5 1.346466+5 7.161434-5 1.360395+5 7.500000-5 1.369334+5 7.852356-5 1.368127+5 8.222426-5 1.358111+5 8.709636-5 1.335404+5 9.300000-5 1.299112+5 1.000000-4 1.250116+5 1.080000-4 1.191182+5 1.161449-4 1.130191+5 1.244515-4 1.068293+5 1.350000-4 9.920500+4 1.479108-4 9.053861+4 1.659587-4 7.998427+4 1.850000-4 7.066300+4 2.065380-4 6.184979+4 2.371374-4 5.189156+4 2.754229-4 4.260746+4 3.235937-4 3.415871+4 3.845918-4 2.676499+4 4.700000-4 1.998016+4 5.623413-4 1.526654+4 6.683439-4 1.170562+4 8.000000-4 8.814640+3 9.549926-4 6.617203+3 1.148154-3 4.871994+3 1.380384-3 3.559401+3 1.678804-3 2.529842+3 2.065380-3 1.748753+3 2.540973-3 1.200362+3 3.235937-3 7.662619+2 4.000000-3 5.134250+2 4.897788-3 3.476551+2 6.000000-3 2.333921+2 7.244360-3 1.600627+2 8.709636-3 1.099278+2 1.035142-2 7.675995+1 1.258925-2 5.065540+1 1.584893-2 3.078509+1 1.883649-2 2.105978+1 2.137962-2 1.584711+1 2.483133-2 1.124235+1 2.917427-2 7.709680+0 3.467369-2 5.107655+0 4.120975-2 3.357142+0 4.897788-2 2.189317+0 5.821032-2 1.416164+0 6.998420-2 8.828077-1 8.317638-2 5.628534-1 1.023293-1 3.250959-1 1.333521-1 1.597903-1 2.317395-1 3.573129-2 2.851018-1 2.050361-2 3.388442-1 1.299676-2 3.890451-1 9.085550-3 4.415705-1 6.587570-3 5.011872-1 4.811882-3 5.623413-1 3.643187-3 6.237348-1 2.854333-3 6.998420-1 2.192994-3 7.762471-1 1.741842-3 8.709636-1 1.358030-3 9.549926-1 1.120505-3 1.059254+0 9.101306-4 1.202264+0 7.107074-4 1.348963+0 5.717483-4 1.513561+0 4.632593-4 1.717908+0 3.704762-4 1.949845+0 2.985273-4 2.213095+0 2.423138-4 2.511886+0 1.982003-4 2.884032+0 1.604428-4 3.349654+0 1.286114-4 3.890451+0 1.038857-4 4.570882+0 8.320681-5 5.432503+0 6.612325-5 6.456542+0 5.293775-5 7.852356+0 4.147146-5 9.549926+0 3.272900-5 1.216186+1 2.464107-5 1.584893+1 1.822602-5 2.089296+1 1.341534-5 2.818383+1 9.698118-6 4.027170+1 6.641430-6 6.165950+1 4.259617-6 1.047129+2 2.473352-6 2.089296+2 1.226815-6 4.168694+2 6.117090-7 3.311311+3 7.665668-8 1.000000+5 2.537000-9 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.175000-5 4.175000-5 1.000000+5 4.175000-5 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.175000-5 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.635000-5 6.697240+6 2.722701-5 6.009948+6 2.985383-5 4.375288+6 3.311311-5 3.043435+6 3.630781-5 2.186674+6 4.731513-5 8.276379+5 5.188000-5 5.943882+5 5.559043-5 4.666077+5 5.956621-5 3.687471+5 6.309573-5 3.048329+5 6.683439-5 2.535965+5 7.000000-5 2.199340+5 7.328245-5 1.920760+5 7.673615-5 1.686667+5 8.035261-5 1.490877+5 8.413951-5 1.326988+5 8.810489-5 1.189405+5 9.225714-5 1.073489+5 9.660509-5 9.753625+4 1.011579-4 8.918061+4 1.060000-4 8.192160+4 1.122018-4 7.445569+4 1.188502-4 6.814166+4 1.260000-4 6.276060+4 1.333521-4 5.831784+4 1.428894-4 5.371134+4 1.548817-4 4.916278+4 1.720000-4 4.415120+4 2.041738-4 3.740800+4 2.691535-4 2.875175+4 3.126079-4 2.476778+4 3.630781-4 2.118602+4 4.120975-4 1.843679+4 4.731513-4 1.573148+4 5.370318-4 1.350250+4 6.095369-4 1.151017+4 6.918310-4 9.738393+3 7.762471-4 8.312514+3 8.810489-4 6.933765+3 1.000000-3 5.737820+3 1.135011-3 4.711272+3 1.288250-3 3.838981+3 1.462177-3 3.103032+3 1.659587-3 2.489760+3 1.883649-3 1.983607+3 2.162719-3 1.535986+3 2.454709-3 1.206410+3 2.786121-3 9.410736+2 3.198895-3 7.121410+2 3.630781-3 5.476053+2 4.120975-3 4.181252+2 4.677351-3 3.169853+2 5.308844-3 2.385723+2 6.025596-3 1.782383+2 6.839116-3 1.321547+2 7.762471-3 9.726835+1 8.810489-3 7.105093+1 1.035142-2 4.721087+1 1.202264-2 3.208757+1 1.364583-2 2.298607+1 1.531087-2 1.686128+1 1.737801-2 1.188727+1 2.000000-2 8.001679+0 2.317395-2 5.244028+0 2.691535-2 3.386911+0 3.126079-2 2.171358+0 3.672823-2 1.334911+0 4.365158-2 7.866022-1 5.248075-2 4.440128-1 6.531306-2 2.231685-1 8.912509-2 8.315696-2 1.396368-1 1.987879-2 1.737801-1 9.965131-3 2.089296-1 5.611102-3 2.426610-1 3.541430-3 2.786121-1 2.331336-3 3.162278-1 1.599810-3 3.589219-1 1.105817-3 4.027170-1 7.959390-4 4.518559-1 5.770385-4 5.011872-1 4.348777-4 5.559043-1 3.299416-4 6.165950-1 2.521177-4 6.839117-1 1.941197-4 7.585776-1 1.505992-4 8.609938-1 1.111944-4 9.225714-1 9.479932-5 9.772372-1 8.347765-5 1.047129+0 7.222481-5 1.135011+0 6.141764-5 1.244515+0 5.142258-5 1.364583+0 4.339582-5 1.659587+0 3.065810-5 1.883649+0 2.464301-5 2.113489+0 2.033774-5 2.398833+0 1.659044-5 2.722701+0 1.363149-5 3.162278+0 1.089448-5 3.672823+0 8.774159-6 4.265795+0 7.119058-6 5.011872+0 5.726512-6 5.956621+0 4.568924-6 7.161434+0 3.618928-6 8.709636+0 2.846340-6 1.083927+1 2.194326-6 1.348963+1 1.703603-6 1.737801+1 1.280464-6 2.200000+1 9.874400-7 3.019952+1 7.013781-7 4.466836+1 4.638720-7 7.079458+1 2.876074-7 1.318257+2 1.523389-7 2.630268+2 7.571453-8 1.047129+3 1.890429-8 6.606934+4 2.98980-10 1.000000+5 1.97550-10 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.635000-5 2.635000-5 1.000000+5 2.635000-5 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.635000-5 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.359000-5 1.393232+7 3.235937-5 4.387919+6 3.845918-5 2.325934+6 4.168694-5 1.739479+6 4.466836-5 1.365220+6 4.731513-5 1.122773+6 5.011872-5 9.297003+5 5.300000-5 7.797160+5 5.580000-5 6.677760+5 5.821032-5 5.912399+5 6.095369-5 5.210669+5 6.382635-5 4.624226+5 6.683439-5 4.133702+5 7.000000-5 3.720976+5 7.328245-5 3.378184+5 7.673615-5 3.087767+5 8.035261-5 2.841764+5 8.413951-5 2.631727+5 8.912509-5 2.409037+5 9.500000-5 2.201952+5 1.011579-4 2.029450+5 1.096478-4 1.842143+5 1.202264-4 1.662684+5 1.364583-4 1.457663+5 1.905461-4 1.041632+5 2.281200-4 8.627880+4 2.691535-4 7.201379+4 3.126079-4 6.065020+4 3.589219-4 5.140369+4 4.120975-4 4.325305+4 4.731513-4 3.614009+4 5.370318-4 3.044972+4 6.200000-4 2.488076+4 7.079458-4 2.048592+4 8.035261-4 1.690412+4 9.120108-4 1.384694+4 1.035142-3 1.126013+4 1.174898-3 9.091639+3 1.333521-3 7.289145+3 1.513561-3 5.803291+3 1.717908-3 4.588342+3 1.949845-3 3.603097+3 2.238721-3 2.747162+3 2.570396-3 2.077995+3 2.917427-3 1.597534+3 3.311311-3 1.219973+3 3.758374-3 9.252447+2 4.265795-3 6.967757+2 4.841724-3 5.209577+2 5.495409-3 3.866678+2 6.237348-3 2.848487+2 7.079458-3 2.082365+2 8.035261-3 1.510642+2 9.120108-3 1.088080+2 1.035142-2 7.779969+1 1.179700-2 5.459357+1 1.348963-2 3.766459+1 1.548817-2 2.549129+1 1.778279-2 1.712195+1 2.041738-2 1.141213+1 2.344229-2 7.547805+0 2.691535-2 4.956346+0 3.090295-2 3.232478+0 3.589219-2 2.019435+0 4.216965-2 1.207593+0 5.011872-2 6.907034-1 6.095369-2 3.632030-1 7.673615-2 1.690624-1 1.047129-1 5.970196-2 1.428894-1 2.103085-2 1.737801-1 1.097218-2 2.065380-1 6.224383-3 2.371374-1 3.979736-3 2.691535-1 2.659458-3 3.019952-1 1.856037-3 3.388442-1 1.305008-3 3.758374-1 9.571098-4 4.168694-1 7.070854-4 4.623810-1 5.264807-4 5.069907-1 4.078642-4 5.559043-1 3.181416-4 6.095369-1 2.499053-4 6.683439-1 1.977632-4 7.328245-1 1.576281-4 8.317638-1 1.165610-4 9.015711-1 9.678474-5 9.660509-1 8.311228-5 1.035142+0 7.192100-5 1.135011+0 5.977766-5 1.250000+0 4.963600-5 1.380384+0 4.133969-5 1.659587+0 2.979330-5 1.883649+0 2.395015-5 2.137962+0 1.939702-5 2.426610+0 1.583372-5 2.754229+0 1.301798-5 3.198895+0 1.041065-5 3.715352+0 8.389488-6 4.315191+0 6.810663-6 5.069907+0 5.481172-6 6.025596+0 4.375322-6 7.244360+0 3.467212-6 8.810489+0 2.728145-6 1.100000+1 2.096200-6 1.364583+1 1.634092-6 1.737801+1 1.244469-6 2.238721+1 9.415574-7 3.126079+1 6.570186-7 4.677351+1 4.296252-7 7.498942+1 2.634558-7 1.462177+2 1.332599-7 2.917427+2 6.629067-8 1.161449+3 1.656239-8 1.000000+5 1.92000-10 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.359000-5 2.359000-5 1.000000+5 2.359000-5 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.359000-5 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 4.810000-6 2.729420+6 4.841724-6 2.653342+6 4.950000-6 2.391320+6 5.248075-6 1.807066+6 5.623413-6 1.286945+6 5.956621-6 9.630081+5 6.309573-6 7.158129+5 6.683439-6 5.279242+5 7.079458-6 3.863305+5 7.413102-6 2.991312+5 7.852356-6 2.156294+5 8.317638-6 1.543056+5 9.350000-6 7.736100+4 9.700000-6 6.255760+4 1.000000-5 5.275600+4 1.027000-5 4.574200+4 1.050000-5 4.087460+4 1.071519-5 3.709483+4 1.092000-5 3.409160+4 1.110000-5 3.186620+4 1.127000-5 3.007560+4 1.148154-5 2.821718+4 1.165000-5 2.699440+4 1.185000-5 2.580040+4 1.202264-5 2.496774+4 1.222000-5 2.421180+4 1.244515-5 2.357121+4 1.260000-5 2.324980+4 1.280100-5 2.295868+4 1.303167-5 2.277674+4 1.330000-5 2.273680+4 1.357000-5 2.285040+4 1.390000-5 2.315420+4 1.428894-5 2.369473+4 1.480000-5 2.461300+4 1.548817-5 2.607280+4 1.737801-5 3.041964+4 1.840772-5 3.264617+4 1.927525-5 3.435613+4 2.018366-5 3.596559+4 2.113489-5 3.744810+4 2.230000-5 3.898280+4 2.355000-5 4.029948+4 2.483133-5 4.133066+4 2.630268-5 4.217636+4 2.800000-5 4.277540+4 2.985383-5 4.305228+4 3.162278-5 4.301258+4 3.350000-5 4.269440+4 3.570000-5 4.203740+4 3.801894-5 4.111129+4 4.073803-5 3.982366+4 4.365158-5 3.829458+4 4.677351-5 3.655273+4 5.069907-5 3.434417+4 5.500000-5 3.201800+4 6.000000-5 2.950060+4 6.683439-5 2.643506+4 7.585776-5 2.306543+4 9.015711-5 1.895647+4 1.216186-4 1.331478+4 1.412538-4 1.111137+4 1.566751-4 9.739840+3 1.737801-4 8.470909+3 1.972423-4 7.082436+3 2.344229-4 5.511038+3 3.273407-4 3.356540+3 4.027170-4 2.462839+3 6.025596-4 1.321839+3 7.413102-4 9.489474+2 9.236000-4 6.635044+2 1.122018-3 4.787120+2 1.216186-3 4.169166+2 1.927525-3 1.846786+2 2.454709-3 1.195594+2 3.019952-3 8.179575+1 3.715352-3 5.546227+1 4.570882-3 3.731662+1 5.559043-3 2.547889+1 6.839116-3 1.687819+1 8.222426-3 1.162023+1 9.885531-3 7.942021+0 1.188502-2 5.385996+0 1.412538-2 3.715501+0 1.678804-2 2.544920+0 2.000000-2 1.720957+0 2.371374-2 1.166975+0 2.818383-2 7.808815-1 3.311311-2 5.327455-1 3.935501-2 3.508930-1 4.677351-2 2.293021-1 5.495409-2 1.530306-1 6.606934-2 9.562717-2 8.000000-2 5.822100-2 9.772372-2 3.429998-2 1.258925-1 1.740118-2 2.511886-1 2.688642-3 3.019952-1 1.644869-3 3.507519-1 1.110378-3 4.027170-1 7.779085-4 4.570882-1 5.653856-4 5.128614-1 4.259019-4 5.754399-1 3.231696-4 6.382635-1 2.537852-4 7.079458-1 2.006449-4 7.852356-1 1.597311-4 8.709636-1 1.280480-4 9.660509-1 1.034311-4 1.109175+0 7.864365-5 1.258925+0 6.158659-5 1.428894+0 4.863108-5 1.584893+0 4.034315-5 1.798871+0 3.235576-5 2.044000+0 2.609200-5 2.317395+0 2.127739-5 2.630268+0 1.744971-5 3.019952+0 1.416143-5 3.507519+0 1.137809-5 4.073803+0 9.211407-6 4.786301+0 7.394038-6 5.688529+0 5.887808-6 6.839116+0 4.654729-6 8.317638+0 3.654648-6 1.023293+1 2.851102-6 1.273503+1 2.209479-6 1.659587+1 1.636636-6 2.137962+1 1.236958-6 2.884032+1 8.946000-7 4.168694+1 6.055606-7 6.456542+1 3.840334-7 1.122018+2 2.179471-7 2.238721+2 1.081746-7 4.466836+2 5.395902-8 3.548134+3 6.763830-9 1.000000+5 2.39870-10 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 4.810000-6 4.810000-6 1.000000+5 4.810000-6 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 4.810000-6 0.0 1.000000+5 1.000000+5 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.352070-7 1.027100+0 1.020050-6 1.027500+0 1.277600-6 1.028100+0 1.739430-6 1.028750+0 2.352070-6 1.029500+0 3.218870-6 1.030100+0 4.048120-6 1.031000+0 5.539210-6 1.032000+0 7.579020-6 1.033200+0 1.061690-5 1.034000+0 1.303330-5 1.035300+0 1.769080-5 1.036640+0 2.352070-5 1.038200+0 3.174190-5 1.039700+0 4.123910-5 1.041500+0 5.486820-5 1.043800+0 7.615880-5 1.046400+0 1.059610-4 1.048300+0 1.319240-4 1.051200+0 1.789520-4 1.054080+0 2.352070-4 1.057700+0 3.206030-4 1.061100+0 4.170260-4 1.065100+0 5.520990-4 1.070400+0 7.702410-4 1.076200+0 1.064480-3 1.080600+0 1.329360-3 1.087100+0 1.791070-3 1.093710+0 2.352070-3 1.102600+0 3.260950-3 1.110700+0 4.252660-3 1.120600+0 5.688300-3 1.133300+0 7.908400-3 1.147500+0 1.091840-2 1.158200+0 1.356870-2 1.174100+0 1.813670-2 1.190110+0 2.352070-2 1.205100+0 2.928900-2 1.227500+0 3.921270-2 1.250000+0 5.064000-2 1.265600+0 5.931270-2 1.294900+0 7.705900-2 1.320600+0 9.394950-2 1.343000+0 1.095170-1 1.382200+0 1.383040-1 1.433800+0 1.786140-1 1.500000+0 2.340000-1 1.589800+0 3.166470-1 1.665000+0 3.921370-1 1.784700+0 5.218900-1 1.892300+0 6.453500-1 2.000000+0 7.714000-1 2.044000+0 8.227000-1 2.163500+0 9.620890-1 2.372600+0 1.204940+0 2.647100+0 1.517070+0 3.000000+0 1.902000+0 3.500000+0 2.411710+0 4.000000+0 2.883000+0 4.750000+0 3.527170+0 5.000000+0 3.726000+0 6.000000+0 4.452000+0 7.000000+0 5.096000+0 8.000000+0 5.674000+0 9.000000+0 6.199000+0 1.000000+1 6.681000+0 1.100000+1 7.125000+0 1.200000+1 7.537000+0 1.300000+1 7.921000+0 1.400000+1 8.276000+0 1.500000+1 8.606000+0 1.600000+1 8.911000+0 1.800000+1 9.464000+0 2.000000+1 9.960000+0 2.200000+1 1.041000+1 2.400000+1 1.082000+1 2.600000+1 1.119000+1 2.800000+1 1.153000+1 3.000000+1 1.185000+1 4.000000+1 1.313000+1 5.000000+1 1.408000+1 6.000000+1 1.482000+1 8.000000+1 1.591000+1 1.000000+2 1.668000+1 1.500000+2 1.792000+1 2.000000+2 1.865000+1 3.000000+2 1.951000+1 4.000000+2 2.001000+1 5.000000+2 2.033000+1 6.000000+2 2.057000+1 8.000000+2 2.088000+1 1.000000+3 2.108000+1 1.500000+3 2.137000+1 2.000000+3 2.153000+1 3.000000+3 2.170000+1 4.000000+3 2.179000+1 5.000000+3 2.185000+1 6.000000+3 2.189000+1 8.000000+3 2.194000+1 1.000000+4 2.198000+1 1.500000+4 2.202000+1 2.000000+4 2.205000+1 3.000000+4 2.207000+1 4.000000+4 2.209000+1 5.000000+4 2.210000+1 6.000000+4 2.210000+1 8.000000+4 2.211000+1 1.000000+5 2.211000+1 1 58000 7 8 1.401200+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.813840-7 2.094700+0 1.023540-6 2.099900+0 1.361680-6 2.106600+0 1.894210-6 2.114000+0 2.620880-6 2.119500+0 3.262980-6 2.127900+0 4.425220-6 2.136250+0 5.813840-6 2.147000+0 7.971180-6 2.156900+0 1.035360-5 2.169000+0 1.381750-5 2.184500+0 1.920680-5 2.201800+0 2.657320-5 2.214800+0 3.310820-5 2.234200+0 4.453630-5 2.253680+0 5.813840-5 2.281500+0 8.143310-5 2.307000+0 1.069620-4 2.338200+0 1.438200-4 2.377400+0 1.991730-4 2.410200+0 2.533150-4 2.446800+0 3.222310-4 2.485900+0 4.057060-4 2.532900+0 5.192170-4 2.556430+0 5.813840-4 2.611900+0 7.413290-4 2.660400+0 8.962270-4 2.745300+0 1.199540-3 2.809000+0 1.452720-3 2.904500+0 1.871470-3 3.000000+0 2.336000-3 3.125000+0 3.012170-3 3.234400+0 3.665110-3 3.425800+0 4.935410-3 3.569300+0 5.984450-3 3.784700+0 7.692410-3 4.000000+0 9.528000-3 4.250000+0 1.177130-2 4.625000+0 1.529590-2 5.000000+0 1.896000-2 5.500000+0 2.399170-2 6.000000+0 2.909000-2 6.750000+0 3.666780-2 7.000000+0 3.916000-2 8.000000+0 4.891000-2 9.000000+0 5.823000-2 1.000000+1 6.708000-2 1.100000+1 7.545000-2 1.200000+1 8.333000-2 1.300000+1 9.075000-2 1.400000+1 9.781000-2 1.500000+1 1.045000-1 1.600000+1 1.108000-1 1.800000+1 1.226000-1 2.000000+1 1.332000-1 2.200000+1 1.430000-1 2.400000+1 1.519000-1 2.600000+1 1.602000-1 2.800000+1 1.678000-1 3.000000+1 1.749000-1 4.000000+1 2.044000-1 5.000000+1 2.266000-1 6.000000+1 2.443000-1 8.000000+1 2.708000-1 1.000000+2 2.901000-1 1.500000+2 3.220000-1 2.000000+2 3.420000-1 3.000000+2 3.666000-1 4.000000+2 3.814000-1 5.000000+2 3.915000-1 6.000000+2 3.989000-1 8.000000+2 4.093000-1 1.000000+3 4.162000-1 1.500000+3 4.265000-1 2.000000+3 4.324000-1 3.000000+3 4.389000-1 4.000000+3 4.427000-1 5.000000+3 4.450000-1 6.000000+3 4.467000-1 8.000000+3 4.489000-1 1.000000+4 4.503000-1 1.500000+4 4.522000-1 2.000000+4 4.533000-1 3.000000+4 4.544000-1 4.000000+4 4.551000-1 5.000000+4 4.555000-1 6.000000+4 4.557000-1 8.000000+4 4.560000-1 1.000000+5 4.563000-1 1 58000 7 8 1.401200+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 58000 7 9 1.401200+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.800000+1 1.000000+5 5.800000+1 5.000000+5 5.796300+1 7.500000+5 5.793140+1 1.000000+6 5.790900+1 1.250000+6 5.787150+1 1.500000+6 5.783100+1 1.875000+6 5.773800+1 2.000000+6 5.770200+1 2.375000+6 5.758250+1 2.500000+6 5.753900+1 2.875000+6 5.739740+1 3.000000+6 5.734600+1 3.250000+6 5.723690+1 3.625000+6 5.706180+1 4.000000+6 5.687800+1 4.437500+6 5.665470+1 4.812500+6 5.645010+1 5.000000+6 5.634200+1 5.500000+6 5.603090+1 5.875000+6 5.579090+1 6.437500+6 5.541590+1 6.500000+6 5.537540+1 7.000000+6 5.503600+1 7.500000+6 5.469440+1 8.250000+6 5.417140+1 8.500000+6 5.399810+1 9.000000+6 5.364500+1 1.000000+7 5.292800+1 1.250000+7 5.118800+1 1.500000+7 4.945400+1 1.750000+7 4.776300+1 2.000000+7 4.610300+1 2.250000+7 4.445790+1 2.375000+7 4.364870+1 2.500000+7 4.286200+1 2.875000+7 4.060750+1 3.000000+7 3.990000+1 3.250000+7 3.854430+1 3.500000+7 3.727190+1 3.625000+7 3.666440+1 4.000000+7 3.495100+1 4.500000+7 3.287730+1 5.000000+7 3.098100+1 5.500000+7 2.921800+1 6.000000+7 2.757300+1 6.750000+7 2.531780+1 7.000000+7 2.462600+1 8.000000+7 2.216300+1 9.000000+7 2.016900+1 1.000000+8 1.857600+1 1.125000+8 1.700780+1 1.250000+8 1.571400+1 1.375000+8 1.456270+1 1.468800+8 1.374830+1 1.500000+8 1.348300+1 1.589800+8 1.273130+1 1.665000+8 1.211390+1 1.748800+8 1.144120+1 1.750000+8 1.143170+1 1.838500+8 1.073870+1 1.946200+8 9.922540+0 2.000000+8 9.526700+0 2.281300+8 7.731880+0 2.359400+8 7.357260+0 2.375000+8 7.289170+0 2.453100+8 6.986010+0 2.500000+8 6.832100+0 2.562500+8 6.658120+0 2.671900+8 6.410200+0 2.877000+8 6.005720+0 2.959000+8 5.835020+0 3.000000+8 5.743900+0 3.117200+8 5.462670+0 3.377000+8 4.871240+0 3.500000+8 4.655700+0 3.625000+8 4.491680+0 4.000000+8 4.125300+0 4.179700+8 3.939710+0 4.330100+8 3.775110+0 4.497600+8 3.589420+0 4.750000+8 3.316170+0 4.784700+8 3.279930+0 5.000000+8 3.064400+0 5.343800+8 2.754390+0 5.578100+8 2.562590+0 5.859400+8 2.348450+0 6.000000+8 2.247100+0 6.500000+8 1.928180+0 6.718800+8 1.819750+0 6.906300+8 1.744340+0 7.000000+8 1.712800+0 7.125000+8 1.677080+0 8.000000+8 1.503800+0 8.250000+8 1.449510+0 1.000000+9 1.085800+0 1.031300+9 1.044580+0 1.074300+9 9.990360-1 1.113800+9 9.654840-1 1.139500+9 9.466520-1 1.342300+9 8.337100-1 1.375000+9 8.166660-1 1.398600+9 8.041080-1 1.449300+9 7.760830-1 1.500000+9 7.462500-1 1.562500+9 7.071240-1 1.617200+9 6.718840-1 1.686000+9 6.276030-1 1.743500+9 5.914450-1 1.835100+9 5.367240-1 1.958800+9 4.701060-1 2.000000+9 4.499500-1 2.139200+9 3.888980-1 2.272600+9 3.394330-1 2.443000+9 2.867930-1 2.602800+9 2.461670-1 2.825100+9 2.006770-1 2.961100+9 1.778980-1 3.215900+9 1.431790-1 3.536500+9 1.106000-1 3.804800+9 9.015940-2 4.103600+9 7.264040-2 4.423800+9 5.833740-2 4.807900+9 4.552030-2 5.000000+9 4.044200-2 5.375000+9 3.241570-2 6.031300+9 2.265700-2 7.015600+9 1.404530-2 8.000000+9 9.234300-3 1.00000+10 4.523800-3 1.13510+10 3.023900-3 1.41440+10 1.511100-3 1.70770+10 8.383800-4 2.01080+10 5.049260-4 2.51010+10 2.550020-4 2.97820+10 1.511850-4 3.85600+10 6.902770-5 4.62400+10 3.992990-5 5.96800+10 1.859950-5 7.98400+10 7.830150-6 1.00000+11 4.025400-6 1.34280+11 1.692550-6 1.77440+11 7.492760-7 2.63330+11 2.379180-7 4.88110+11 4.018710-8 1.16740+12 3.346520-9 3.55150+12 1.45551-10 1.00000+14 1.33700-14 2.05350+15 2.82311-18 1.00000+17 4.89750-23 1 58000 7 0 1.401200+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.16000-11 1.000000+2 1.160000-9 1.000000+3 1.160000-7 1.000000+4 1.160000-5 1.000000+5 1.160000-3 5.000000+5 2.900000-2 7.500000+5 6.525000-2 1.000000+6 1.160000-1 1.250000+6 1.797480-1 1.500000+6 2.562000-1 1.875000+6 3.935230-1 2.000000+6 4.449000-1 2.375000+6 6.137730-1 2.500000+6 6.747000-1 2.875000+6 8.692360-1 3.000000+6 9.377000-1 3.250000+6 1.079040+0 3.625000+6 1.300540+0 4.000000+6 1.530400+0 4.437500+6 1.804910+0 4.812500+6 2.042810+0 5.000000+6 2.162000+0 5.500000+6 2.477590+0 5.875000+6 2.711550+0 6.437500+6 3.055440+0 6.500000+6 3.092950+0 7.000000+6 3.389600+0 7.500000+6 3.677020+0 8.250000+6 4.094360+0 8.500000+6 4.230320+0 9.000000+6 4.498700+0 1.000000+7 5.025000+0 1.250000+7 6.324500+0 1.500000+7 7.634000+0 1.750000+7 8.930100+0 2.000000+7 1.019000+1 2.250000+7 1.140880+1 2.375000+7 1.200420+1 2.500000+7 1.259200+1 2.875000+7 1.429740+1 3.000000+7 1.484400+1 3.250000+7 1.589640+1 3.500000+7 1.689400+1 3.625000+7 1.737100+1 4.000000+7 1.871300+1 4.500000+7 2.030430+1 5.000000+7 2.173700+1 5.500000+7 2.306620+1 6.000000+7 2.433400+1 6.750000+7 2.615920+1 7.000000+7 2.675000+1 8.000000+7 2.902500+1 9.000000+7 3.114300+1 1.000000+8 3.308300+1 1.125000+8 3.523000+1 1.250000+8 3.707500+1 1.375000+8 3.864510+1 1.468800+8 3.967870+1 1.500000+8 4.000100+1 1.589800+8 4.086950+1 1.665000+8 4.154660+1 1.748800+8 4.224890+1 1.750000+8 4.225860+1 1.838500+8 4.295050+1 1.946200+8 4.373370+1 2.000000+8 4.410400+1 2.281300+8 4.584080+1 2.359400+8 4.627710+1 2.375000+8 4.635950+1 2.453100+8 4.676630+1 2.500000+8 4.700600+1 2.562500+8 4.730640+1 2.671900+8 4.781940+1 2.877000+8 4.869280+1 2.959000+8 4.901600+1 3.000000+8 4.917500+1 3.117200+8 4.960640+1 3.377000+8 5.047860+1 3.500000+8 5.086000+1 3.625000+8 5.121960+1 4.000000+8 5.219700+1 4.179700+8 5.260270+1 4.330100+8 5.291940+1 4.497600+8 5.324980+1 4.750000+8 5.369260+1 4.784700+8 5.375170+1 5.000000+8 5.408300+1 5.343800+8 5.453570+1 5.578100+8 5.480840+1 5.859400+8 5.509050+1 6.000000+8 5.521700+1 6.500000+8 5.559780+1 6.718800+8 5.574060+1 6.906300+8 5.585160+1 7.000000+8 5.590600+1 7.125000+8 5.596950+1 8.000000+8 5.636100+1 8.250000+8 5.644850+1 1.000000+9 5.695200+1 1.031300+9 5.701870+1 1.074300+9 5.710720+1 1.113800+9 5.718550+1 1.139500+9 5.723170+1 1.342300+9 5.751900+1 1.375000+9 5.755500+1 1.398600+9 5.757770+1 1.449300+9 5.762510+1 1.500000+9 5.767100+1 1.562500+9 5.771410+1 1.617200+9 5.775040+1 1.686000+9 5.778500+1 1.743500+9 5.781200+1 1.835100+9 5.785040+1 1.958800+9 5.788880+1 2.000000+9 5.790100+1 2.139200+9 5.792750+1 2.272600+9 5.795120+1 2.443000+9 5.797480+1 2.602800+9 5.798880+1 2.825100+9 5.800100+1 2.961100+9 5.800500+1 3.215900+9 5.801200+1 3.536500+9 5.801120+1 3.804800+9 5.800880+1 4.103600+9 5.800640+1 4.423800+9 5.800400+1 4.807900+9 5.800130+1 5.000000+9 5.800000+1 5.375000+9 5.800000+1 6.031300+9 5.800000+1 7.015600+9 5.800000+1 8.000000+9 5.800000+1 1.00000+10 5.800000+1 1.13510+10 5.800000+1 1.41440+10 5.800000+1 1.70770+10 5.800000+1 2.01080+10 5.800000+1 2.51010+10 5.800000+1 2.97820+10 5.800000+1 3.85600+10 5.800000+1 4.62400+10 5.800000+1 5.96800+10 5.800000+1 7.98400+10 5.800000+1 1.00000+11 5.800000+1 1.34280+11 5.800000+1 1.77440+11 5.800000+1 2.63330+11 5.800000+1 4.88110+11 5.800000+1 1.16740+12 5.800000+1 3.55150+12 5.800000+1 1.00000+14 5.800000+1 2.05350+15 5.800000+1 1.00000+17 5.800000+1 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.946294-6 0.0 1.954678-6 3.703713+0 1.955876-6 4.227416+0 1.960666-6 7.721721+0 1.965457-6 1.301988+1 1.970846-6 2.136953+1 1.979155-6 3.728072+1 1.985218-6 4.805245+1 1.989849-6 5.365374+1 1.994708-6 5.553903+1 1.999684-6 5.283859+1 2.004493-6 4.647179+1 2.011912-6 3.256342+1 2.018153-6 2.075808+1 2.023243-6 1.306302+1 2.027734-6 7.985855+0 2.032674-6 4.325670+0 2.039648-6 1.145537+0 2.042083-6 1.044966-2 2.042106-6 0.0 2.069404-6 0.0 2.078318-6 7.652907+0 2.079591-6 8.735024+0 2.084685-6 1.595524+1 2.090097-6 2.783629+1 2.095509-6 4.415542+1 2.104589-6 7.798326+1 2.110471-6 9.849615+1 2.116071-6 1.111982+2 2.121074-6 1.145977+2 2.125901-6 1.098296+2 2.131156-6 9.640689+1 2.145808-6 4.289200+1 2.150901-6 2.768958+1 2.155995-6 1.650101+1 2.161089-6 9.077341+0 2.169958-6 1.194730+0 2.171276-6 2.19447-15 2.173850-6 2.15365-15 2.179059-6 1.91469-15 2.186874-6 1.38113-15 2.194688-6 8.32522-16 2.199898-6 5.37447-16 2.205107-6 3.20280-16 2.210317-6 1.76189-16 2.215526-6 8.94705-17 2.220736-6 0.0 2.316532-6 0.0 2.322233-6 7.729397-2 2.327935-6 1.529434-1 2.333637-6 2.793637-1 2.339339-6 4.710456-1 2.345041-6 7.331786-1 2.353594-6 1.225125+0 2.362146-6 1.710699+0 2.367848-6 1.933463+0 2.373550-6 2.017215+0 2.379252-6 1.942775+0 2.384954-6 1.727216+0 2.393506-6 1.245901+0 2.402059-6 7.510054-1 2.407761-6 4.848230-1 2.413463-6 2.889198-1 2.419165-6 1.589372-1 2.424867-6 8.071005-2 2.430568-6 0.0 2.466168-6 0.0 2.472239-6 5.620717-2 2.478309-6 1.112185-1 2.484379-6 2.031497-1 2.490449-6 3.425382-1 2.496519-6 5.331579-1 2.505624-6 8.908948-1 2.514730-6 1.243998+0 2.520800-6 1.405989+0 2.526870-6 1.466893+0 2.532940-6 1.412761+0 2.539010-6 1.256009+0 2.548116-6 9.060029-1 2.557221-6 5.461214-1 2.563291-6 3.525570-1 2.569361-6 2.100987-1 2.575431-6 1.155770-1 2.581501-6 5.869130-2 2.587572-6 0.0 2.666156-6 0.0 2.672718-6 4.225671-3 2.679281-6 8.361439-3 2.685843-6 1.527285-2 2.692406-6 2.575213-2 2.698968-6 4.008297-2 2.705530-6 5.759179-2 2.712093-6 7.638625-2 2.718655-6 9.352413-2 2.725218-6 1.057027-1 2.731780-6 1.102814-1 2.738342-6 1.062118-1 2.744905-6 9.442714-2 2.751467-6 7.749523-2 2.764592-6 4.105757-2 2.771154-6 2.650534-2 2.777717-6 1.579528-2 2.784279-6 8.689115-3 2.790842-6 4.412429-3 2.797404-6 0.0 2.934833-6 0.0 2.942057-6 2.94834-15 2.949280-6 5.83394-15 2.956504-6 1.06562-14 2.963728-6 1.79678-14 2.970951-6 2.79667-14 2.978175-6 4.01830-14 2.985399-6 5.32962-14 2.992623-6 6.52537-14 2.999846-6 7.37509-14 3.007070-6 7.69456-14 3.014294-6 7.41061-14 3.021517-6 6.58837-14 3.028741-6 5.40700-14 3.043189-6 2.86467-14 3.050412-6 1.84933-14 3.057636-6 1.10207-14 3.064860-6 6.06257-15 3.072083-6 3.07864-15 3.079307-6 0.0 3.391102-6 0.0 3.400150-6 3.705490-6 3.407796-6 1.127561-5 3.416143-6 2.169378-5 3.416888-6 2.288036-5 3.423954-6 3.686955-5 3.440809-6 9.743956-2 3.449530-6 1.821763-1 3.457876-6 3.041769-1 3.461705-6 3.798875-1 3.469194-6 6.992734-1 3.479528-6 1.180133+0 3.488532-6 1.728827+0 3.498285-6 2.460117+0 3.521348-6 4.391334+0 3.530401-6 4.962412+0 3.538389-6 5.246813+0 3.548441-6 5.162869+0 3.556496-6 4.788712+0 3.565396-6 4.087132+0 3.589513-6 1.754908+0 3.598033-6 1.121110+0 3.606554-6 6.681012-1 3.615074-6 3.675280-1 3.623595-6 1.866348-1 3.632115-6 3.11657-20 3.644286-6 2.27190-20 3.649424-6 1.89513-20 3.658407-6 8.815174-9 3.667389-6 1.744280-8 3.676372-6 3.186070-8 3.685354-6 5.372152-8 3.694337-6 8.361710-8 3.703320-6 1.201423-7 3.712302-6 1.593494-7 3.721285-6 1.951007-7 3.730267-6 2.205064-7 3.739250-6 2.300581-7 3.748233-6 2.215684-7 3.757215-6 1.969845-7 3.766198-6 1.616628-7 3.784163-6 8.565020-8 3.793146-6 5.529279-8 3.802128-6 3.295055-8 3.811111-6 1.812637-8 3.820093-6 9.204769-9 3.829076-6 0.0 3.870054-6 0.0 3.870093-6 2.78480-14 3.875939-6 9.76968-12 3.895019-6 1.222786-8 3.904559-6 2.233026-8 3.914099-6 3.764419-8 3.923639-6 5.858178-8 3.951089-6 1.335440-7 3.955012-6 6.212138-7 3.960458-6 2.273248-6 3.977021-6 1.680689-2 3.980264-6 3.490402-2 3.990420-6 9.807911-2 3.996599-6 1.411101-1 4.006387-6 2.447896-1 4.016176-6 3.938550-1 4.025965-6 5.875940-1 4.048340-6 1.100674+0 4.058107-6 1.275481+0 4.066741-6 1.366295+0 4.074910-6 1.384764+0 4.084699-6 1.305156+0 4.099491-6 1.024351+0 4.120510-6 5.450765-1 4.123855-6 4.731652-1 4.133644-6 3.019359-1 4.143433-6 1.781040-1 4.153221-6 9.332075-2 4.156539-6 7.581551-2 4.168966-6 1.811401-2 4.172799-6 4.355933-9 4.176225-6 3.393656-9 4.189489-6 1.142295-9 4.195912-6 2.91047-11 4.199750-6 3.50530-11 4.210012-6 5.90949-11 4.217150-6 8.19401-11 4.225885-6 3.100491-3 4.237910-6 2.812801-2 4.246688-6 4.816222-2 4.257090-6 8.640960-2 4.267491-6 1.432566-1 4.279430-6 2.327714-1 4.306467-6 4.680250-1 4.310570-6 4.996880-1 4.320950-6 5.511502-1 4.331427-6 5.618140-1 4.342089-6 5.275881-1 4.352750-6 4.563162-1 4.372850-6 2.860485-1 4.383230-6 2.104324-1 4.392309-6 1.613252-1 4.397400-6 1.448302-1 4.402930-6 1.316393-1 4.408144-6 1.284706-1 4.414370-6 1.313987-1 4.418888-6 1.382180-1 4.429633-6 1.631191-1 4.435125-6 1.805871-1 4.451121-6 2.488445-1 4.461970-6 2.858516-1 4.472925-6 3.022352-1 4.483881-6 2.996249-1 4.516748-6 2.393289-1 4.531710-6 2.239632-1 4.547820-6 2.225259-1 4.568127-6 2.304573-1 4.687882-6 2.079016-1 4.719886-6 1.980185-1 4.748738-6 1.855949-1 4.779455-6 1.815623-1 4.829549-6 1.868759-1 4.980160-6 1.657107-1 5.029192-6 1.684578-1 5.091353-6 1.884530-1 5.116172-6 1.853074-1 5.176396-6 1.521414-1 5.201030-6 1.434743-1 5.225320-6 1.381020-1 5.320737-6 1.287704-1 5.374184-6 1.300537-1 5.438604-6 1.432407-1 5.464796-6 1.413615-1 5.535032-6 1.159243-1 5.575904-6 1.098541-1 5.603955-6 1.106152-1 5.657646-6 1.153882-1 5.684894-6 1.135038-1 5.766636-6 9.580327-2 5.823746-6 9.075802-2 5.880803-6 9.081198-2 5.957068-6 9.370151-2 6.037650-6 9.215704-2 6.144688-6 7.854333-2 6.195806-6 7.640655-2 6.288599-6 7.655138-2 6.410774-6 6.691833-2 6.500227-6 6.400485-2 6.598332-6 6.334185-2 6.825547-6 5.487617-2 6.965011-6 5.373165-2 7.420000-6 4.543894-2 7.804827-6 4.097331-2 8.350000-6 3.783028-2 8.751764-6 3.735916-2 9.248978-6 3.860267-2 9.943052-6 4.304502-2 1.077972-5 5.186421-2 1.183237-5 6.738872-2 1.307324-5 9.137400-2 1.465238-5 1.303302-1 1.623941-5 1.785215-1 1.833660-5 2.559494-1 1.886018-5 2.765760-1 1.895302-5 2.468107+0 1.899945-5 4.278456+0 1.904587-5 7.022276+0 1.906016-5 8.175170+0 1.910771-5 2.220111+1 1.915399-5 3.638567+1 1.920090-5 5.725650+1 1.924782-5 8.566611+1 1.932001-5 1.435990+2 1.939720-5 2.110049+2 1.944664-5 2.460472+2 1.948998-5 2.649472+2 1.953269-5 2.688074+2 1.958217-5 2.518940+2 1.964451-5 2.058963+2 1.976387-5 9.625721+1 1.981078-5 6.185706+1 1.985770-5 3.699349+1 1.990461-5 2.049711+1 1.998012-5 4.334155+0 1.999844-5 3.276932-1 2.125845-5 3.856695-1 2.136310-5 6.513129-1 2.141548-5 8.695931-1 2.146775-5 1.198630+0 2.152008-5 1.648072+0 2.158111-5 2.294369+0 2.167407-5 1.272611+1 2.168735-5 1.419235+1 2.174047-5 2.355249+1 2.179740-5 3.884429+1 2.185940-5 6.161020+1 2.200772-5 1.266060+2 2.206665-5 1.435248+2 2.211830-5 1.488978+2 2.217129-5 1.432687+2 2.223743-5 1.224850+2 2.238439-5 5.826267+1 2.243101-5 4.100246+1 2.248413-5 2.632770+1 2.253884-5 1.631252+1 2.264349-5 4.854267+0 2.282524-5 5.395581+0 2.290186-5 5.616104+0 2.294118-5 5.683223+0 2.327994-5 5.342632+0 2.344020-5 5.220677+0 2.397987-5 4.998186+0 2.415805-5 5.125301+0 2.436268-5 5.673437+0 2.474749-5 7.141150+0 2.493186-5 8.307217+0 2.504640-5 8.632106+0 2.510657-5 8.489920+0 2.531235-5 7.226325+0 2.541538-5 6.894506+0 2.577121-5 7.045914+0 2.655753-5 6.648074+0 2.756108-5 6.109104+0 3.036025-5 5.076391+0 3.311311-5 4.380630+0 3.659633-5 3.786439+0 3.850518-5 3.592582+0 3.916055-5 3.575845+0 4.000100-5 3.429774+0 4.623810-5 3.131012+0 5.350000-5 3.031477+0 1.030349-4 3.161314+0 1.033853-4 3.974670+0 1.037182-4 2.049637+1 1.038942-4 2.937544+1 1.041487-4 5.048853+1 1.044032-4 8.213704+1 1.046577-4 1.249549+2 1.053174-4 2.612160+2 1.055262-4 2.951755+2 1.057252-4 3.175727+2 1.059978-4 3.233720+2 1.062573-4 3.037003+2 1.066332-4 2.472736+2 1.070021-4 1.834218+2 1.072103-4 1.536328+2 1.074648-4 1.328656+2 1.077231-4 1.306016+2 1.080147-4 1.474751+2 1.087777-4 2.137951+2 1.090255-4 2.211530+2 1.093150-4 2.094989+2 1.096122-4 1.799556+2 1.103447-4 8.203488+1 1.105918-4 5.536638+1 1.108370-4 3.554647+1 1.110988-4 2.154052+1 1.116225-4 4.587124+0 1.131217-4 5.603314+0 1.150824-4 6.151148+0 1.192000-4 7.951995+0 1.216720-4 8.596701+0 1.245505-4 8.779719+0 1.280598-4 8.405164+0 1.408459-4 6.124929+0 1.483812-4 5.153430+0 1.560000-4 4.486494+0 1.645329-4 4.038864+0 1.750000-4 3.787645+0 1.866825-4 3.746381+0 2.003770-4 3.891421+0 2.019245-4 4.078544+0 2.029121-4 4.331628+0 2.049107-4 5.006758+0 2.059223-4 5.142487+0 2.096393-4 5.045671+0 2.212990-4 5.344540+0 2.301517-4 5.849548+0 2.778864-4 6.918881+0 2.838004-4 7.507105+0 3.247763-4 8.134737+0 3.840387-4 8.588880+0 4.551191-4 8.664383+0 5.891571-4 8.165827+0 8.583928-4 6.622371+0 8.626277-4 1.296936+1 8.648781-4 1.875608+1 8.670088-4 2.704704+1 8.693721-4 3.975843+1 8.756007-4 7.973565+1 8.781861-4 9.097141+1 8.801112-4 9.525148+1 8.825938-4 9.374955+1 8.885931-4 7.998466+1 8.911224-4 7.788574+1 8.984338-4 8.131078+1 9.006609-4 7.786378+1 9.035025-4 7.182831+1 9.097651-4 5.007670+1 9.117729-4 4.441351+1 9.138153-4 4.015383+1 9.164156-4 3.686747+1 9.204745-4 3.353382+1 1.078827-3 2.936979+1 1.145089-3 2.755006+1 1.155592-3 2.868107+1 1.169700-3 3.091986+1 1.212141-3 2.917336+1 1.239272-3 2.880796+1 1.259520-3 2.974519+1 1.394069-3 2.642037+1 1.436947-3 2.641290+1 1.693835-3 2.154093+1 1.975264-3 1.761230+1 2.297471-3 1.430054+1 2.638398-3 1.175326+1 3.005049-3 9.722631+0 3.445606-3 7.933771+0 3.971058-3 6.395199+0 4.507768-3 5.258568+0 5.219138-3 4.178220+0 5.572232-3 3.777458+0 5.611633-3 3.974563+0 5.634564-3 4.364181+0 5.656246-3 5.050232+0 5.677089-3 6.020770+0 5.724549-3 8.582400+0 5.747347-3 9.436355+0 5.775220-3 9.978485+0 5.835711-3 1.010845+1 6.046284-3 9.675226+0 6.093245-3 9.966630+0 6.158045-3 1.131142+1 6.200602-3 1.211273+1 6.253273-3 1.238332+1 6.432916-3 1.204834+1 6.586128-3 1.307933+1 7.967064-3 9.853758+0 9.192581-3 7.825575+0 1.050567-2 6.296476+0 1.198455-2 5.062363+0 1.366303-2 4.059540+0 1.558882-2 3.240380+0 1.754166-2 2.643448+0 1.972423-2 2.154483+0 2.213899-2 1.759099+0 2.484489-2 1.433506+0 2.798238-2 1.159315+0 3.133548-2 9.462305-1 3.494743-2 7.768497-1 3.930997-2 6.280208-1 3.960813-2 6.355600-1 3.976170-2 6.713437-1 3.987841-2 7.370606-1 3.997561-2 8.324523-1 4.008583-2 9.994347-1 4.018289-2 1.204559+0 4.032454-2 1.591954+0 4.065600-2 2.611191+0 4.083387-2 2.999010+0 4.105459-2 3.241689+0 4.140159-2 3.312692+0 4.813462-2 2.603682+0 5.479040-2 2.106288+0 6.170155-2 1.722320+0 7.004530-2 1.383332+0 7.898775-2 1.121815+0 8.984116-2 8.929935-1 1.007720-1 7.270093-1 1.140213-1 5.815855-1 1.262056-1 4.839018-1 1.407451-1 3.966388-1 1.566907-1 3.260879-1 1.747391-1 2.674343-1 1.960310-1 2.169704-1 2.178710-1 1.791850-1 2.406519-1 1.500003-1 2.700980-1 1.223712-1 3.007145-1 1.015466-1 3.341500-1 8.483672-2 3.760644-1 6.972489-2 4.267330-1 5.698098-2 4.786618-1 4.775868-2 5.379987-1 4.020366-2 6.195034-1 3.304155-2 6.978566-1 2.827139-2 8.035261-1 2.377270-2 9.015711-1 2.084910-2 1.070165+0 1.740408-2 1.286622+0 1.421867-2 1.477239+0 1.221841-2 1.776032+0 9.982114-3 2.135261+0 8.155120-3 2.567148+0 6.662515-3 3.086391+0 5.443096-3 3.710658+0 4.446864-3 4.461192+0 3.632969-3 5.363532+0 2.968038-3 6.448384+0 2.424808-3 7.752663+0 1.981003-3 9.320751+0 1.618426-3 9.760024+0 1.538668-3 1.000000+1 3.147628-3 1 58000 7 0 1.401200+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.727285+1 1.577545-6-5.472925+1 1.776319-6-5.131369+1 1.862720-6-4.735982+1 1.908282-6-4.268348+1 1.931367-6-3.784008+1 1.942162-6-3.367707+1 1.946594-6-3.054325+1 1.955876-6-2.414017+1 1.961265-6-1.984389+1 1.967103-6-1.594625+1 1.970846-6-1.452298+1 1.973466-6-1.445838+1 1.976235-6-1.519081+1 1.979155-6-1.721557+1 1.982598-6-2.125972+1 1.984619-6-2.457518+1 1.989147-6-3.357437+1 1.994422-6-4.655680+1 1.999312-6-5.771840+1 2.005449-6-4.601903+1 2.009924-6-4.091224+1 2.013362-6-3.914114+1 2.017774-6-3.917170+1 2.023243-6-4.229311+1 2.041140-6-5.774512+1 2.049378-6-4.998062+1 2.062663-6-3.899504+1 2.067805-6-3.318037+1 2.071462-6-2.712193+1 2.078955-6-1.747176+1 2.084685-6-8.731371+0 2.085600-6-7.201252+0 2.089779-6-1.838624+0 2.090097-6-1.317915+0 2.090694-6-6.053245-1 2.091738-6 3.507403-1 2.095509-6 2.875041+0 2.096623-6 3.092042+0 2.097459-6 3.024526+0 2.098712-6 2.639405+0 2.099966-6 2.026177+0 2.100602-6 1.612815+0 2.101717-6 5.290389-1 2.102552-6-5.164553-1 2.103179-6-1.429323+0 2.104119-6-3.019834+0 2.104589-6-3.930496+0 2.106333-6-7.916616+0 2.108004-6-1.219485+1 2.109347-6-1.627388+1 2.114239-6-3.514404+1 2.116605-6-4.677549+1 2.119129-6-5.776443+1 2.121857-6-4.336430+1 2.125336-6-2.710521+1 2.125901-6-2.397875+1 2.126985-6-1.914540+1 2.130527-6-5.225885+0 2.130741-6-4.273236+0 2.131156-6-2.700209+0 2.131935-6-9.833817-2 2.132616-6 1.944941+0 2.133807-6 5.136108+0 2.134701-6 7.264369+0 2.136042-6 1.009688+1 2.137382-6 1.258179+1 2.139357-6 1.550706+1 2.140970-6 1.720942+1 2.143086-6 1.854617+1 2.145128-6 1.869870+1 2.149628-6 1.586207+1 2.150901-6 1.437188+1 2.151538-6 1.345750+1 2.154881-6 9.624626+0 2.155438-6 8.857670+0 2.155995-6 7.899301+0 2.161089-6 6.692140-1 2.161561-6-1.222478-1 2.162445-6-1.338848+0 2.168640-6-8.577095+0 2.170617-6-1.124108+1 2.172161-6-1.401747+1 2.175152-6-1.752867+1 2.179059-6-2.088697+1 2.186874-6-2.573708+1 2.197293-6-3.020257+1 2.215526-6-3.531855+1 2.247157-6-4.052595+1 2.293657-6-4.483271+1 2.356444-6-4.854740+1 2.402059-6-4.769120+1 2.511695-6-5.122775+1 2.563291-6-5.038606+1 2.758030-6-5.264478+1 3.433626-6-5.610723+1 3.508810-6-5.744572+1 3.555431-6-5.297228+1 3.587071-6-5.140675+1 3.685354-6-5.386232+1 4.058107-6-5.532000+1 4.133644-6-5.424752+1 4.331427-6-5.502678+1 1.145742-5-5.803081+1 1.480000-5-5.408964+1 1.643433-5-4.913342+1 1.723812-5-4.421025+1 1.779531-5-3.819550+1 1.813720-5-3.212561+1 1.833660-5-2.692652+1 1.845932-5-2.269783+1 1.859163-5-1.675979+1 1.868027-5-1.157353+1 1.874212-5-7.098055+0 1.877163-5-4.624120+0 1.879377-5-2.587367+0 1.881037-5-9.382186-1 1.883528-5 1.778673+0 1.884773-5 3.281967+0 1.890660-5 1.145882+1 1.894142-5 1.688277+1 1.898784-5 2.575198+1 1.903426-5 3.714282+1 1.905659-5 4.473137+1 1.907120-5 5.102910+1 1.910771-5 6.187059+1 1.915399-5 7.480718+1 1.921703-5 9.247995+1 1.926682-5 1.009936+2 1.930899-5 9.982423+1 1.933811-5 9.368645+1 1.936812-5 8.223513+1 1.939175-5 6.896884+1 1.942661-5 4.239946+1 1.943984-5 3.063461+1 1.944664-5 2.329625+1 1.946451-5 5.109118+0 1.946898-5 3.876384-1 1.947233-5-3.276538+0 1.947484-5-6.119899+0 1.947862-5-1.061162+1 1.948144-5-1.431464+1 1.948456-5-1.889794+1 1.949489-5-3.132916+1 1.951964-5-5.962019+1 1.952911-5-4.720099+1 1.953269-5-4.188501+1 1.957621-5 8.890048+0 1.957709-5 1.022444+1 1.957882-5 1.248179+1 1.958532-5 1.986824+1 1.959636-5 3.080060+1 1.960538-5 3.889236+1 1.963656-5 6.514941+1 1.965897-5 7.969455+1 1.968857-5 9.300722+1 1.972063-5 1.016026+2 1.975171-5 1.040393+2 1.980492-5 9.453688+1 1.985770-5 7.688360+1 1.992427-5 5.317777+1 1.998012-5 3.687394+1 1.999615-5 3.103087+1 2.000203-5 2.806289+1 2.001465-5 2.360545+1 2.002496-5 2.061693+1 2.004043-5 1.671564+1 2.005589-5 1.329287+1 2.007180-5 1.013901+1 2.008572-5 7.621912+0 2.011007-5 3.652404+0 2.012834-5 9.728838-1 2.015574-5-2.661107+0 2.018366-5-5.971009+0 2.020710-5-8.504652+0 2.025047-5-1.269769+1 2.032688-5-1.890898+1 2.041956-5-2.504558+1 2.059383-5-3.409809+1 2.122384-5-5.996049+1 2.125845-5-5.895749+1 2.141548-5-4.936675+1 2.150536-5-4.161364+1 2.156180-5-3.475330+1 2.158350-5-3.057914+1 2.161840-5-2.487104+1 2.167407-5-1.709176+1 2.174047-5-5.753782+0 2.174379-5-5.027355+0 2.175001-5-3.945684+0 2.179359-5 2.378948+0 2.179740-5 3.087979+0 2.180456-5 4.013347+0 2.181709-5 5.173801+0 2.182648-5 5.810331+0 2.185940-5 7.589936+0 2.186857-5 7.681951+0 2.187716-5 7.482238+0 2.188522-5 7.096997+0 2.189277-5 6.579313+0 2.190693-5 5.226482+0 2.191932-5 3.647222+0 2.193016-5 1.963473+0 2.193965-5 2.541548-1 2.194795-5-1.428465+0 2.195522-5-3.050320+0 2.196157-5-4.589845+0 2.197269-5-7.575524+0 2.198104-5-1.008521+1 2.199198-5-1.380110+1 2.200430-5-1.885021+1 2.200772-5-2.066880+1 2.204471-5-3.762558+1 2.205960-5-4.614551+1 2.208584-5-6.091597+1 2.211122-5-4.598104+1 2.212125-5-3.912685+1 2.216180-5-1.599896+1 2.216742-5-1.197949+1 2.217129-5-9.566433+0 2.217492-5-7.495102+0 2.218173-5-3.888856+0 2.218768-5-9.334518-1 2.223743-5 2.160698+1 2.225613-5 2.815538+1 2.228714-5 3.622075+1 2.231720-5 4.155651+1 2.234659-5 4.467554+1 2.237730-5 4.552035+1 2.242519-5 4.197178+1 2.247832-5 3.426896+1 2.255764-5 2.028912+1 2.262203-5 1.094586+1 2.263813-5 8.122515+0 2.264735-5 5.879103+0 2.265459-5 4.503286+0 2.266726-5 2.514735+0 2.268626-5 3.161087-2 2.270526-5-2.085420+0 2.272669-5-4.169601+0 2.275846-5-6.837085+0 2.279038-5-9.146900+0 2.282524-5-1.131000+1 2.285828-5-1.304204+1 2.294118-5-1.653512+1 2.308977-5-2.118202+1 2.330310-5-2.589693+1 2.357780-5-3.013055+1 2.427922-5-3.717758+1 2.478864-5-3.978568+1 2.504640-5-3.909107+1 2.531235-5-3.864389+1 2.577121-5-4.006336+1 2.951930-5-4.308434+1 4.152084-5-4.657164+1 7.149400-5-5.245956+1 7.961724-5-5.573274+1 8.753603-5-4.994029+1 9.225714-5-4.350167+1 9.509452-5-3.709284+1 9.698375-5-3.067262+1 9.830400-5-2.440429+1 9.913078-5-1.927904+1 9.981801-5-1.398724+1 1.002076-4-1.043128+1 1.005499-4-6.879860+0 1.007052-4-5.113808+0 1.008508-4-3.358677+0 1.011239-4 2.270564-1 1.013627-4 3.731372+0 1.015736-4 7.164748+0 1.017547-4 1.040895+1 1.020547-4 1.653016+1 1.023783-4 2.447993+1 1.026656-4 3.319281+1 1.029657-4 4.488982+1 1.031882-4 5.645959+1 1.033483-4 6.756037+1 1.034392-4 7.657849+1 1.038942-4 1.104177+2 1.041805-4 1.351575+2 1.044907-4 1.571748+2 1.047375-4 1.655168+2 1.049289-4 1.612173+2 1.051501-4 1.451985+2 1.052860-4 1.284016+2 1.054782-4 9.413208+1 1.056575-4 5.466857+1 1.056958-4 4.464224+1 1.057252-4 3.590035+1 1.058064-4 1.617650+1 1.058742-4 2.494275-1 1.058960-4-5.023638+0 1.059247-4-1.223711+1 1.059546-4-2.057931+1 1.059755-4-2.743240+1 1.060276-4-4.080316+1 1.060983-4-5.669508+1 1.062090-4-3.227671+1 1.062388-4-2.448493+1 1.062750-4-1.682755+1 1.063071-4-1.079142+1 1.063362-4-5.719760+0 1.063616-4-1.534055+0 1.063839-4 1.963809+0 1.064229-4 7.770053+0 1.065544-4 2.588560+1 1.066086-4 3.205433+1 1.066793-4 3.844301+1 1.067859-4 4.530680+1 1.068805-4 4.874848+1 1.069793-4 4.926881+1 1.071273-4 4.426882+1 1.071930-4 3.995516+1 1.072411-4 3.522216+1 1.073759-4 2.532191+1 1.074164-4 2.176500+1 1.074518-4 1.775236+1 1.074648-4 1.563867+1 1.074802-4 1.376862+1 1.075091-4 1.082685+1 1.075343-4 8.530836+0 1.076228-4 1.176346+0 1.076671-4-2.623151+0 1.076892-4-4.747040+0 1.077058-4-6.618237+0 1.077153-4-8.060944+0 1.077231-4-9.014442+0 1.077525-4-1.184204+1 1.078025-4-1.557971+1 1.078586-4-1.899502+1 1.079599-4-2.459745+1 1.080012-4-2.705622+1 1.080651-4-2.901745+1 1.081661-4-3.001050+1 1.082602-4-2.916538+1 1.083571-4-2.673979+1 1.084518-4-2.290812+1 1.085223-4-1.899723+1 1.085986-4-1.361261+1 1.086519-4-9.022787+0 1.086773-4-6.532208+0 1.086964-4-4.505810+0 1.087107-4-2.876995+0 1.087321-4-1.978891-1 1.087428-4 1.304146+0 1.087482-4 2.130209+0 1.087618-4 4.525494+0 1.087777-4 6.842520+0 1.089415-4 2.813980+1 1.090069-4 3.817800+1 1.090255-4 4.201174+1 1.093492-4 8.978400+1 1.096578-4 1.242546+2 1.098615-4 1.374058+2 1.101304-4 1.449436+2 1.103447-4 1.424437+2 1.105918-4 1.321343+2 1.112966-4 9.071237+1 1.115906-4 7.517462+1 1.116790-4 6.885989+1 1.119132-4 5.816505+1 1.122188-4 4.821377+1 1.125577-4 3.982594+1 1.129492-4 3.229131+1 1.133783-4 2.572358+1 1.139364-4 1.885654+1 1.144987-4 1.322781+1 1.147228-4 1.126106+1 1.150824-4 8.401048+0 1.154251-4 5.965269+0 1.157820-4 3.690925+0 1.161277-4 1.705678+0 1.164461-4 5.482240-2 1.164734-4-8.513105-2 1.167290-4-1.306690+0 1.170041-4-2.528276+0 1.174285-4-4.260505+0 1.180011-4-6.315087+0 1.186524-4-8.318007+0 1.192000-4-9.796521+0 1.204120-4-1.246880+1 1.222762-4-1.542908+1 1.245505-4-1.790419+1 1.280598-4-2.045748+1 1.358946-4-2.414376+1 1.483812-4-2.791203+1 1.712500-4-3.216169+1 2.049107-4-3.629611+1 2.143924-4-3.605604+1 2.851894-4-3.672476+1 4.551191-4-3.455396+1 5.891571-4-3.507625+1 6.758971-4-3.719832+1 7.383545-4-4.049675+1 7.864320-4-4.547728+1 8.165371-4-5.146912+1 8.357044-4-5.853545+1 8.386892-4-5.887283+1 8.498966-4-5.401401+1 8.559345-4-4.828781+1 8.583054-4-4.383189+1 8.602614-4-3.933578+1 8.629267-4-3.359413+1 8.648781-4-2.887268+1 8.672806-4-2.376870+1 8.693721-4-2.176822+1 8.704538-4-2.210325+1 8.715657-4-2.364113+1 8.728665-4-2.680034+1 8.739956-4-3.080548+1 8.751245-4-3.656521+1 8.777179-4-5.349392+1 8.799546-4-7.146596+1 8.801921-4-7.341405+1 8.828555-4-5.748130+1 8.853654-4-4.770971+1 8.874584-4-4.278958+1 8.905010-4-4.058025+1 8.915886-4-4.020868+1 8.943419-4-3.689497+1 8.967852-4-3.125558+1 8.990311-4-2.298102+1 8.998297-4-1.993688+1 9.006609-4-1.739301+1 9.029412-4-1.112686+1 9.035025-4-9.190911+0 9.039444-4-8.005124+0 9.047175-4-6.371297+0 9.052974-4-5.392928+0 9.061673-4-4.228960+0 9.070371-4-3.451185+0 9.077191-4-3.047013+0 9.087421-4-2.786534+0 9.092536-4-2.856160+0 9.097651-4-3.186506+0 9.112709-4-4.403238+0 9.133242-4-7.027723+0 9.164156-4-1.152220+1 9.198274-4-1.540406+1 9.204745-4-1.657787+1 9.219958-4-1.831284+1 9.243236-4-1.997815+1 9.290527-4-2.204658+1 9.368176-4-2.385072+1 9.519041-4-2.515570+1 9.824139-4-2.507226+1 1.078827-3-2.190650+1 1.123999-3-2.151700+1 1.140077-3-2.210926+1 1.155592-3-2.335082+1 1.164080-3-2.283640+1 1.178973-3-2.017302+1 1.198809-3-1.914618+1 1.232868-3-1.849895+1 1.247428-3-1.846652+1 1.273102-3-1.640090+1 1.333201-3-1.442378+1 1.383316-3-1.355408+1 1.408165-3-1.334937+1 1.457997-3-1.151205+1 1.525325-3-9.922539+0 1.621810-3-8.325563+0 1.737801-3-6.997850+0 1.874017-3-5.921239+0 2.031106-3-5.107473+0 2.211840-3-4.571769+0 2.461479-3-4.237521+0 2.725642-3-4.198342+0 3.295762-3-4.408617+0 3.796794-3-4.853474+0 4.338541-3-5.627991+0 4.801713-3-6.623926+0 5.136419-3-7.731957+0 5.351031-3-8.849269+0 5.489147-3-9.999128+0 5.572232-3-1.116047+1 5.626321-3-1.251066+1 5.688554-3-1.448476+1 5.724549-3-1.469860+1 5.765886-3-1.373675+1 5.835711-3-1.178033+1 5.901501-3-1.086225+1 5.992688-3-1.037891+1 6.064356-3-1.054818+1 6.143218-3-1.119488+1 6.185194-3-1.100722+1 6.297134-3-9.146524+0 6.377929-3-8.469710+0 6.505332-3-8.232682+0 6.561873-3-7.680440+0 6.647974-3-6.597447+0 6.759581-3-5.674219+0 6.921055-3-4.760146+0 7.115759-3-3.950029+0 7.334520-3-3.245593+0 7.608325-3-2.576339+0 7.904740-3-2.024252+0 8.151734-3-1.660554+0 8.389769-3-1.372241+0 8.746441-3-1.028347+0 9.093896-3-7.741479-1 9.397627-3-6.021311-1 9.643295-3-4.883503-1 9.849587-3-4.058617-1 1.007731-2-3.274099-1 1.028607-2-2.663388-1 1.055321-2-2.005527-1 1.076130-2-1.576288-1 1.100352-2-1.154292-1 1.125060-2-7.840470-2 1.135065-2-6.532908-2 1.159938-2-3.912613-2 1.182149-2-2.216590-2 1.194944-2-1.369546-2 1.211277-2-3.921226-3 1.213782-2-2.647333-3 1.216425-2-1.242667-3 1.223817-2 1.716641-3 1.232675-2 5.392123-3 1.242454-2 8.754586-3 1.268509-2 1.302710-2 1.299422-2 1.605616-2 1.318344-2 1.649398-2 1.333062-2 1.538651-2 1.358919-2 1.218186-2 1.380384-2 6.308698-3 1.392391-2 2.595784-3 1.404074-2-1.282414-3 1.411982-2-3.808962-3 1.428894-2-9.663749-3 1.442781-2-1.516038-2 1.473929-2-2.832462-2 1.512771-2-4.756040-2 1.558882-2-7.379550-2 1.606132-2-1.025964-1 1.754166-2-2.028612-1 2.904308-2-1.052117+0 3.231283-2-1.341265+0 3.494743-2-1.651368+0 3.673687-2-1.957951+0 3.794533-2-2.270075+0 3.871651-2-2.572248+0 3.930997-2-2.940793+0 3.966581-2-3.318427+0 4.028430-2-4.363002+0 4.048127-2-4.444678+0 4.069633-2-4.219724+0 4.118659-2-3.267285+0 4.150548-2-2.835310+0 4.193905-2-2.456704+0 4.256493-2-2.092793+0 4.342540-2-1.750297+0 4.447452-2-1.451303+0 4.581802-2-1.173954+0 4.740698-2-9.383430-1 4.905973-2-7.586594-1 5.070714-2-6.230248-1 5.196038-2-5.383573-1 5.400772-2-4.256776-1 5.599686-2-3.402615-1 5.734188-2-2.940566-1 5.886852-2-2.500151-1 6.023975-2-2.169334-1 6.170155-2-1.866869-1 6.331461-2-1.583637-1 6.472823-2-1.383949-1 6.660690-2-1.162129-1 6.820845-2-1.014846-1 7.004530-2-8.747406-2 7.202020-2-7.557180-2 7.507444-2-6.310299-2 7.693213-2-5.735384-2 7.898775-2-5.313014-2 8.321164-2-5.030413-2 8.769377-2-5.272490-2 9.014926-2-5.521882-2 9.653977-2-6.530146-2 1.068872-1-8.839801-2 1.407451-1-1.681704-1 1.676993-1-2.190690-1 2.030747-1-2.684250-1 2.499968-1-3.130375-1 3.240014-1-3.552868-1 4.441621-1-3.900280-1 6.683439-1-4.155148-1 1.286622+0-4.311002-1 3.885536+0-4.365771-1 1.000000+1-4.370328-1 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.044945-1 1.053842-6 3.993550-1 1.083270-6 4.621464-1 1.111778-6 5.317839-1 1.139396-6 6.087339-1 1.166150-6 6.934749-1 1.192069-6 7.865029-1 1.217177-6 8.883317-1 1.241501-6 9.994930-1 1.265065-6 1.120537+0 1.287893-6 1.252033+0 1.310007-6 1.394567+0 1.331430-6 1.548748+0 1.352183-6 1.715202+0 1.372288-6 1.894573+0 1.391765-6 2.087528+0 1.428911-6 2.516946+0 1.463772-6 3.009168+0 1.496489-6 3.570216+0 1.527192-6 4.206494+0 1.541828-6 4.555806+0 1.556007-6 4.928991+0 1.583478-6 5.754625+0 1.609232-6 6.675465+0 1.633376-6 7.703156+0 1.656011-6 8.845835+0 1.677232-6 1.011173+1 1.697127-6 1.150924+1 1.715778-6 1.304689+1 1.733263-6 1.473331+1 1.749655-6 1.657716+1 1.765023-6 1.858712+1 1.779431-6 2.077186+1 1.792938-6 2.313995+1 1.805600-6 2.569985+1 1.817472-6 2.845988+1 1.828601-6 3.142815+1 1.839035-6 3.461257+1 1.848817-6 3.802079+1 1.857987-6 4.166020+1 1.866584-6 4.553790+1 1.874644-6 4.966071+1 1.882200-6 5.403523+1 1.889284-6 5.866785+1 1.895925-6 6.356498+1 1.902151-6 6.873316+1 1.907988-6 7.417909+1 1.913460-6 7.990948+1 1.918591-6 8.593095+1 1.923400-6 9.225014+1 1.927909-6 9.887427+1 1.932136-6 1.058120+2 1.936099-6 1.130747+2 1.943529-6 1.291996+2 1.950031-6 1.469547+2 1.955720-6 1.665332+2 1.960698-6 1.880618+2 1.965053-6 2.115125+2 1.968864-6 2.366600+2 1.972199-6 2.631015+2 1.975117-6 2.903184+2 1.977670-6 3.177522+2 1.979904-6 3.448705+2 1.981859-6 3.712117+2 1.985280-6 4.237281+2 1.997000-6 6.740826+2 2.000454-6 7.692033+2 2.002910-6 8.420488+2 2.005366-6 9.185248+2 2.010278-6 1.078817+3 2.010892-6 1.099205+3 2.015189-6 1.240987+3 2.016878-6 1.295095+3 2.020101-6 1.393212+3 2.021790-6 1.440842+3 2.023401-6 1.483223+3 2.025013-6 1.522112+3 2.027162-6 1.567748+3 2.029234-6 1.604176+3 2.031153-6 1.630570+3 2.032764-6 1.646886+3 2.034836-6 1.659577+3 2.037599-6 1.661399+3 2.039902-6 1.649463+3 2.040757-6 1.641918+3 2.042708-6 1.618482+3 2.044888-6 1.582397+3 2.047208-6 1.533149+3 2.049530-6 1.473638+3 2.051277-6 1.422815+3 2.054637-6 1.312961+3 2.056594-6 1.243114+3 2.057819-6 1.197708+3 2.059702-6 1.126135+3 2.061663-6 1.050109+3 2.063811-6 9.661942+2 2.065535-6 8.992180+2 2.067665-6 8.178687+2 2.069219-6 7.600481+2 2.071675-6 6.723289+2 2.074131-6 5.902107+2 2.075589-6 5.445578+2 2.078827-6 4.525665+2 2.084405-6 3.281087+2 2.085939-6 3.020269+2 2.087402-6 2.805310+2 2.088866-6 2.624049+2 2.090017-6 2.505437+2 2.091258-6 2.401413+2 2.092301-6 2.333356+2 2.093381-6 2.281606+2 2.094402-6 2.250443+2 2.095330-6 2.237185+2 2.096234-6 2.238242+2 2.097109-6 2.252540+2 2.097964-6 2.279259+2 2.098792-6 2.317311+2 2.111631-6 4.600248+2 2.116943-6 6.645109+2 2.120236-6 8.307247+2 2.122683-6 9.758026+2 2.125543-6 1.170029+3 2.128140-6 1.370487+3 2.129698-6 1.502009+3 2.132313-6 1.741766+3 2.134927-6 2.005168+3 2.140483-6 2.638360+3 2.141096-6 2.713718+3 2.145712-6 3.309445+3 2.147397-6 3.536524+3 2.150614-6 3.977678+3 2.153270-6 4.343235+3 2.155844-6 4.692286+3 2.158499-6 5.040301+3 2.161073-6 5.359262+3 2.163360-6 5.622393+3 2.165888-6 5.885411+3 2.166629-6 5.956184+3 2.169693-6 6.215042+3 2.172085-6 6.375494+3 2.174833-6 6.510472+3 2.177215-6 6.582484+3 2.178776-6 6.606421+3 2.181186-6 6.606932+3 2.183582-6 6.564061+3 2.187545-6 6.402229+3 2.190034-6 6.246861+3 2.192447-6 6.060938+3 2.195103-6 5.821066+3 2.197676-6 5.558862+3 2.199964-6 5.306015+3 2.202170-6 5.048667+3 2.205520-6 4.640924+3 2.208135-6 4.315543+3 2.211076-6 3.949453+3 2.213364-6 3.668965+3 2.218593-6 3.057325+3 2.220390-6 2.860062+3 2.223822-6 2.505995+3 2.228397-6 2.084410+3 2.234091-6 1.644030+3 2.242825-6 1.139806+3 2.245298-6 1.030142+3 2.247763-6 9.334174+2 2.250217-6 8.483289+2 2.252662-6 7.736162+2 2.255097-6 7.080854+2 2.257523-6 6.506255+2 2.262356-6 5.557786+2 2.267151-6 4.823328+2 2.271909-6 4.247911+2 2.276629-6 3.790014+2 2.281312-6 3.419133+2 2.285959-6 3.113270+2 2.290570-6 2.856708+2 2.295145-6 2.638223+2 2.299683-6 2.449728+2 2.304187-6 2.285306+2 2.308655-6 2.140546+2 2.317522-6 1.896458+2 2.326250-6 1.699584+2 2.334841-6 1.537594+2 2.343299-6 1.402174+2 2.351624-6 1.287488+2 2.359819-6 1.189295+2 2.367887-6 1.104429+2 2.375828-6 1.030470+2 2.383645-6 9.655301+1 2.391340-6 9.081089+1 2.406489-6 8.105565+1 2.421165-6 7.316926+1 2.435382-6 6.667973+1 2.449155-6 6.126409+1 2.462498-6 5.668977+1 2.475423-6 5.278544+1 2.487945-6 4.942217+1 2.500075-6 4.649897+1 2.523578-6 4.159681+1 2.545612-6 3.772802+1 2.566269-6 3.461365+1 2.585634-6 3.206534+1 2.603789-6 2.995104+1 2.620810-6 2.817445+1 2.652723-6 2.526902+1 2.680648-6 2.309287+1 2.705082-6 2.142680+1 2.747841-6 1.891134+1 2.883197-6 1.306879+1 2.918593-6 1.183619+1 2.946910-6 1.088414+1 2.968148-6 1.016942+1 2.982306-6 9.683415+0 2.996464-6 9.181723+0 3.005479-6 8.849611+0 3.012840-6 8.568163+0 3.020202-6 8.274790+0 3.027563-6 7.966380+0 3.034925-6 7.639358+0 3.042286-6 7.290107+0 3.049647-6 6.915880+0 3.057009-6 6.516384+0 3.064370-6 6.096055+0 3.071731-6 5.666828+0 3.083445-6 5.024718+0 3.088748-6 4.784888+0 3.090410-6 4.720585+0 3.095398-6 4.568288+0 3.099198-6 4.501966+0 3.102048-6 4.486158+0 3.102998-6 4.488062+0 3.110598-6 4.650712+0 3.111548-6 4.691230+0 3.118199-6 5.115035+0 3.121123-6 5.382886+0 3.125799-6 5.917921+0 3.129238-6 6.394543+0 3.134755-6 7.298746+0 3.144028-6 9.143586+0 3.148600-6 1.015767+1 3.152875-6 1.113539+1 3.156675-6 1.200706+1 3.158456-6 1.241089+1 3.161128-6 1.300527+1 3.164275-6 1.368001+1 3.171400-6 1.505644+1 3.174013-6 1.549304+1 3.179000-6 1.620353+1 3.181613-6 1.650542+1 3.184107-6 1.674588+1 3.186601-6 1.693856+1 3.188501-6 1.705294+1 3.191351-6 1.717196+1 3.194201-6 1.722867+1 3.198001-6 1.721043+1 3.201801-6 1.709080+1 3.207501-6 1.674006+1 3.209401-6 1.658255+1 3.215101-6 1.600798+1 3.217002-6 1.578732+1 3.224602-6 1.479781+1 3.226502-6 1.453061+1 3.232202-6 1.370153+1 3.239802-6 1.257094+1 3.243968-6 1.195662+1 3.285179-6 7.018254+0 3.287201-6 6.850885+0 3.293266-6 6.406796+0 3.299330-6 6.060876+0 3.301352-6 5.970054+0 3.309438-6 5.744768+0 3.311459-6 5.725689+0 3.317524-6 5.765196+0 3.320303-6 5.833520+0 3.325610-6 6.053465+0 3.328389-6 6.215275+0 3.331043-6 6.398845+0 3.333696-6 6.609822+0 3.337233-6 6.931302+0 3.341782-6 7.405443+0 3.355932-6 9.177506+0 3.358965-6 9.582282+0 3.365156-6 1.039199+1 3.367051-6 1.062966+1 3.374126-6 1.144427+1 3.376906-6 1.172381+1 3.382212-6 1.217845+1 3.384234-6 1.232154+1 3.387266-6 1.250276+1 3.390298-6 1.264243+1 3.392320-6 1.271194+1 3.395352-6 1.278053+1 3.398384-6 1.280652+1 3.402427-6 1.277640+1 3.406470-6 1.267559+1 3.412535-6 1.240324+1 3.414556-6 1.228335+1 3.420621-6 1.184905+1 3.422642-6 1.168260+1 3.430728-6 1.093416+1 3.434771-6 1.052326+1 3.438814-6 1.009694+1 3.446901-6 9.220974+0 3.452150-6 8.649884+0 3.457162-6 8.111529+0 3.462173-6 7.584793+0 3.471874-6 6.611140+0 3.479216-6 5.924636+0 3.496859-6 4.520678+0 3.503870-6 4.100892+0 3.506208-6 3.985130+0 3.512648-6 3.742536+0 3.514795-6 3.690169+0 3.521236-6 3.634776+0 3.523383-6 3.654345+0 3.525952-6 3.705652+0 3.527878-6 3.765334+0 3.529706-6 3.839741+0 3.531971-6 3.957090+0 3.534472-6 4.120731+0 3.535899-6 4.230838+0 3.545890-6 5.371128+0 3.548341-6 5.756225+0 3.556040-6 7.251508+0 3.565606-6 9.714566+0 3.570541-6 1.123132+1 3.575360-6 1.285431+1 3.579993-6 1.452541+1 3.583498-6 1.584633+1 3.588463-6 1.777448+1 3.592622-6 1.941507+1 3.596648-6 2.099895+1 3.600673-6 2.255469+1 3.604256-6 2.389565+1 3.607042-6 2.489895+1 3.615564-6 2.766883+1 3.616629-6 2.797667+1 3.624085-6 2.984402+1 3.628294-6 3.065466+1 3.631660-6 3.116702+1 3.635025-6 3.155557+1 3.639050-6 3.185664+1 3.642338-6 3.197159+1 3.644803-6 3.198239+1 3.648502-6 3.188187+1 3.652200-6 3.164862+1 3.657146-6 3.114694+1 3.658795-6 3.093576+1 3.665309-6 2.991627+1 3.667480-6 2.951960+1 3.676165-6 2.772447+1 3.684850-6 2.572775+1 3.693535-6 2.368620+1 3.711512-6 1.980136+1 3.718749-6 1.846924+1 3.725760-6 1.732564+1 3.732552-6 1.635327+1 3.739131-6 1.553026+1 3.751879-6 1.422511+1 3.763830-6 1.327843+1 3.775034-6 1.256902+1 3.796042-6 1.154643+1 3.814424-6 1.085837+1 3.830508-6 1.035528+1 3.858655-6 9.618211+0 3.952840-6 7.730376+0 3.972251-6 7.357987+0 3.981957-6 7.161604+0 3.991662-6 6.955018+0 4.001368-6 6.736233+0 4.011073-6 6.504655+0 4.027264-6 6.096730+0 4.047213-6 5.608650+0 4.049896-6 5.550713+0 4.059666-6 5.370507+0 4.067136-6 5.277073+0 4.077098-6 5.234211+0 4.079589-6 5.240784+0 4.087060-6 5.307401+0 4.089901-6 5.352216+0 4.096000-6 5.486268+0 4.101018-6 5.635588+0 4.105559-6 5.800506+0 4.111518-6 6.057560+0 4.119181-6 6.447903+0 4.139019-6 7.650461+0 4.146830-6 8.135395+0 4.149320-6 8.284301+0 4.158290-6 8.780707+0 4.160911-6 8.910731+0 4.168776-6 9.249638+0 4.171606-6 9.350841+0 4.176559-6 9.499416+0 4.180273-6 9.586269+0 4.185845-6 9.676514+0 4.191416-6 9.719361+0 4.198534-6 9.708617+0 4.206600-6 9.616473+0 4.216562-6 9.406030+0 4.228291-6 9.060204+0 4.242008-6 8.582168+0 4.283773-6 7.145729+0 4.297385-6 6.763684+0 4.309380-6 6.476529+0 4.318540-6 6.293427+0 4.329118-6 6.127176+0 4.339695-6 6.015832+0 4.345648-6 5.979389+0 4.351600-6 5.962492+0 4.357876-6 5.965789+0 4.367291-6 6.009492+0 4.376706-6 6.094090+0 4.388542-6 6.242828+0 4.404470-6 6.472327+0 4.415311-6 6.614228+0 4.426152-6 6.721130+0 4.431667-6 6.757463+0 4.439940-6 6.786287+0 4.448214-6 6.783897+0 4.457150-6 6.748805+0 4.467566-6 6.673160+0 4.488979-6 6.455949+0 4.508935-6 6.264729+0 4.524666-6 6.163358+0 4.535588-6 6.122097+0 4.546510-6 6.100090+0 4.591556-6 6.069090+0 4.623022-6 6.005798+0 4.664118-6 5.899899+0 4.788001-6 5.638238+0 4.902743-6 5.332529+0 5.169777-6 4.853542+0 5.385797-6 4.494185+0 5.444243-6 4.397664+0 5.533103-6 4.245807+0 5.623413-6 4.085695+0 5.739260-6 3.872058+0 5.767999-6 3.839794+0 5.785483-6 3.830820+0 5.824648-6 3.837187+0 5.867135-6 3.853975+0 5.883476-6 3.852663+0 5.907535-6 3.837664+0 5.935580-6 3.801307+0 5.977649-6 3.722984+0 6.126563-6 3.432626+0 6.171581-6 3.368631+0 6.196431-6 3.345589+0 6.279153-6 3.307871+0 6.321639-6 3.278634+0 6.437260-6 3.160364+0 6.499750-6 3.079731+0 6.630206-6 2.884168+0 6.727229-6 2.771444+0 6.809719-6 2.697643+0 6.860539-6 2.657357+0 6.922160-6 2.597879+0 7.177830-6 2.324452+0 7.383912-6 2.117170+0 7.493087-6 2.014850+0 7.633719-6 1.877933+0 7.814555-6 1.710941+0 8.000645-6 1.545495+0 8.102028-6 1.457467+0 8.240997-6 1.339302+0 8.413951-6 1.195475+0 8.627270-6 1.027119+0 8.750580-6 9.346178-1 8.964407-6 7.806090-1 9.168476-6 6.424079-1 9.350000-6 5.283343-1 9.600000-6 3.852536-1 9.772372-6 2.959579-1 9.847401-6 2.604575-1 1.005626-5 1.719551-1 1.024245-5 1.069064-1 1.043077-5 5.628089-2 1.061320-5 2.311987-2 1.078993-5 6.915617-3 1.080000-5 6.494762-3 1.083927-5 5.448697-3 1.087553-5 5.359333-3 1.095980-5 8.492892-3 1.104275-5 1.615311-2 1.114250-5 3.155061-2 1.120478-5 4.473168-2 1.132285-5 7.550450-2 1.146143-5 1.003331-1 1.147082-5 1.005685-1 1.160069-5 8.463540-2 1.167363-5 6.796463-2 1.177750-5 4.542397-2 1.181610-5 3.816280-2 1.188567-5 2.690768-2 1.195415-5 1.828752-2 1.202156-5 1.230619-2 1.215000-5 8.045454-3 1.215428-5 8.070081-3 1.228285-5 1.415974-2 1.240741-5 3.065976-2 1.252807-5 5.765672-2 1.264496-5 9.520639-2 1.275820-5 1.433367-1 1.286790-5 2.021057-1 1.297417-5 2.718180-1 1.307712-5 3.527461-1 1.327658-5 5.484240-1 1.346358-5 7.839837-1 1.363889-5 1.058114+0 1.380325-5 1.368788+0 1.395733-5 1.715088+0 1.412538-5 2.161164+0 1.423721-5 2.502933+0 1.437358-5 2.975518+0 1.450464-5 3.494334+0 1.459478-5 3.892674+0 1.480400-5 4.956786+0 1.501052-5 6.222393+0 1.531087-5 8.540285+0 1.611012-5 1.910573+1 1.646878-5 2.720374+1 1.662896-5 3.188361+1 1.680075-5 3.784016+1 1.694930-5 4.393995+1 1.708810-5 5.061915+1 1.721125-5 5.750504+1 1.733440-5 6.547481+1 1.745755-5 7.473088+1 1.760639-5 8.797776+1 1.772007-5 9.994919+1 1.780220-5 1.098181+2 1.789102-5 1.218559+2 1.797429-5 1.346451+2 1.805235-5 1.481811+2 1.812554-5 1.624530+2 1.819415-5 1.774416+2 1.826788-5 1.955574+2 1.836382-5 2.228270+2 1.842832-5 2.439581+2 1.852770-5 2.819315+2 1.861465-5 3.218334+2 1.869074-5 3.632272+2 1.875731-5 4.056394+2 1.881557-5 4.485736+2 1.887598-5 5.001204+2 1.891114-5 5.340434+2 1.895016-5 5.756713+2 1.901846-5 6.606539+2 1.907722-5 7.493959+2 1.910810-5 8.033741+2 1.916572-5 9.214052+2 1.922334-5 1.068942+3 1.927066-5 1.220405+3 1.931797-5 1.409413+3 1.936529-5 1.649565+3 1.938895-5 1.794461+3 1.941261-5 1.959685+3 1.943626-5 2.148627+3 1.945992-5 2.365161+3 1.948358-5 2.613665+3 1.950724-5 2.899027+3 1.954209-5 3.398072+3 1.955371-5 3.588039+3 1.960187-5 4.523106+3 1.968606-5 6.862829+3 1.973419-5 8.691982+3 1.977535-5 1.057539+4 1.981144-5 1.247435+4 1.983707-5 1.395912+4 1.986878-5 1.594019+4 1.991135-5 1.880941+4 1.992807-5 1.998626+4 1.996000-5 2.227789+4 1.998994-5 2.443932+4 2.000445-5 2.547565+4 2.002597-5 2.698235+4 2.005065-5 2.863886+4 2.007726-5 3.030381+4 2.010088-5 3.164408+4 2.012271-5 3.274188+4 2.013606-5 3.333716+4 2.016126-5 3.428753+4 2.017232-5 3.462771+4 2.019727-5 3.521072+4 2.021866-5 3.549798+4 2.024306-5 3.557813+4 2.026237-5 3.545283+4 2.031040-5 3.443474+4 2.033201-5 3.366680+4 2.036152-5 3.234077+4 2.038505-5 3.108159+4 2.040483-5 2.990417+4 2.042600-5 2.854475+4 2.044977-5 2.692131+4 2.046962-5 2.550792+4 2.049515-5 2.364353+4 2.051948-5 2.184736+4 2.054380-5 2.006075+4 2.057117-5 1.809346+4 2.059245-5 1.661342+4 2.064110-5 1.345976+4 2.065782-5 1.246297+4 2.068975-5 1.069793+4 2.072624-5 8.910819+3 2.076432-5 7.307260+3 2.081423-5 5.587584+3 2.092423-5 3.069637+3 2.094995-5 2.677237+3 2.097567-5 2.341203+3 2.100139-5 2.053845+3 2.102744-5 1.805282+3 2.105283-5 1.597987+3 2.107855-5 1.417778+3 2.110427-5 1.262808+3 2.113095-5 1.124359+3 2.115570-5 1.012933+3 2.118271-5 9.069895+2 2.123446-5 7.399268+2 2.127224-5 6.410671+2 2.136146-5 4.611427+2 2.141290-5 3.818182+2 2.146434-5 3.153366+2 2.151578-5 2.591028+2 2.156722-5 2.112651+2 2.161866-5 1.704831+2 2.177297-5 8.208897+1 2.182441-5 6.233458+1 2.187463-5 4.742365+1 2.189371-5 4.290444+1 2.195905-5 3.255239+1 2.198027-5 3.105953+1 2.199088-5 3.069845+1 2.200149-5 3.061103+1 2.202844-5 3.172333+1 2.204191-5 3.306800+1 2.205201-5 3.445733+1 2.205538-5 3.499713+1 2.206506-5 3.677356+1 2.207611-5 3.923035+1 2.209295-5 4.393112+1 2.210519-5 4.814513+1 2.210927-5 4.971094+1 2.213621-5 6.230040+1 2.214968-5 7.022752+1 2.216316-5 7.939492+1 2.219010-5 1.019796+2 2.224399-5 1.686077+2 2.227093-5 2.157273+2 2.228441-5 2.435340+2 2.230461-5 2.912880+2 2.232482-5 3.471512+2 2.235419-5 4.449335+2 2.237307-5 5.195905+2 2.239195-5 6.046297+2 2.241228-5 7.089446+2 2.244209-5 8.885466+2 2.246537-5 1.053202+3 2.249010-5 1.253818+3 2.251021-5 1.438025+3 2.261929-5 2.805021+3 2.267469-5 3.748137+3 2.268464-5 3.934356+3 2.273355-5 4.913200+3 2.275141-5 5.292818+3 2.279001-5 6.141063+3 2.281469-5 6.693762+3 2.282913-5 7.017444+3 2.285282-5 7.543974+3 2.287836-5 8.098062+3 2.290104-5 8.570767+3 2.292610-5 9.063655+3 2.295117-5 9.517325+3 2.297419-5 9.892367+3 2.300336-5 1.030090+4 2.302959-5 1.059717+4 2.305547-5 1.081755+4 2.308011-5 1.095740+4 2.309788-5 1.101486+4 2.312530-5 1.103158+4 2.314995-5 1.097301+4 2.318835-5 1.074900+4 2.321495-5 1.050574+4 2.323052-5 1.033304+4 2.325607-5 1.000603+4 2.328475-5 9.582366+3 2.330871-5 9.190699+3 2.333951-5 8.648301+3 2.336869-5 8.106334+3 2.339491-5 7.606204+3 2.342927-5 6.945788+3 2.345031-5 6.544816+3 2.351344-5 5.393580+3 2.361212-5 3.857052+3 2.372225-5 2.611829+3 2.375286-5 2.350023+3 2.378347-5 2.120512+3 2.383038-5 1.824668+3 2.386432-5 1.647395+3 2.391629-5 1.425391+3 2.394227-5 1.333232+3 2.396988-5 1.246822+3 2.400822-5 1.143556+3 2.403092-5 1.090208+3 2.406760-5 1.014226+3 2.410594-5 9.460380+2 2.414099-5 8.918682+2 2.419368-5 8.220889+2 2.425459-5 7.548595+2 2.431595-5 6.980124+2 2.437427-5 6.516592+2 2.445225-5 5.985819+2 2.453626-5 5.500159+2 2.459168-5 5.217605+2 2.473322-5 4.597264+2 2.484839-5 4.174005+2 2.497748-5 3.768513+2 2.509829-5 3.450009+2 2.516525-5 3.298751+2 2.528687-5 3.070496+2 2.534672-5 2.980284+2 2.540973-5 2.901218+2 2.553033-5 2.796303+2 2.557893-5 2.771550+2 2.564348-5 2.753947+2 2.569645-5 2.751637+2 2.577893-5 2.765883+2 2.595325-5 2.825108+2 2.604403-5 2.841882+2 2.608832-5 2.841456+2 2.613007-5 2.835198+2 2.619279-5 2.815409+2 2.623870-5 2.793973+2 2.630064-5 2.758060+2 2.654590-5 2.596901+2 2.668869-5 2.522572+2 2.683752-5 2.462374+2 2.717615-5 2.353184+2 2.793328-5 2.141996+2 2.857237-5 1.994623+2 2.933776-5 1.852451+2 3.001046-5 1.748935+2 3.095431-5 1.629106+2 3.164044-5 1.554365+2 3.266670-5 1.459849+2 3.369863-5 1.378857+2 3.489295-5 1.297564+2 3.600945-5 1.232377+2 3.981474-5 1.056100+2 4.039842-5 1.040560+2 4.098950-5 1.024516+2 4.157476-5 1.002168+2 4.321244-5 9.530460+1 4.691363-5 8.612156+1 5.219359-5 7.602830+1 5.579079-5 6.998490+1 6.036445-5 6.289925+1 6.309573-5 5.865140+1 6.561000-5 5.463490+1 6.760830-5 5.125967+1 7.006799-5 4.690029+1 7.208235-5 4.315737+1 7.393128-5 3.956159+1 7.567333-5 3.607337+1 7.673615-5 3.390311+1 7.800000-5 3.128257+1 7.863344-5 2.996223+1 7.955912-5 2.803257+1 8.089025-5 2.527668+1 8.173873-5 2.353994+1 8.270105-5 2.161132+1 8.413951-5 1.897710+1 8.496604-5 1.819264+1 8.517011-5 1.820076+1 8.592647-5 1.903345+1 8.661746-5 2.061920+1 8.728836-5 2.259839+1 8.793846-5 2.485581+1 8.869671-5 2.794210+1 8.947689-5 3.170024+1 9.018955-5 3.573825+1 9.083099-5 3.995126+1 9.118294-5 4.252724+1 9.188767-5 4.832170+1 9.225714-5 5.173582+1 9.321903-5 6.205437+1 9.368892-5 6.796716+1 9.439438-5 7.810779+1 9.501230-5 8.843261+1 9.582706-5 1.045741+2 9.621545-5 1.134737+2 9.679836-5 1.285467+2 9.730929-5 1.436999+2 9.798274-5 1.669752+2 9.861475-5 1.929663+2 9.891602-5 2.070368+2 9.959714-5 2.436382+2 1.000470-4 2.721251+2 1.005600-4 3.097481+2 1.011310-4 3.594846+2 1.014919-4 3.961104+2 1.019146-4 4.452244+2 1.023293-4 5.011955+2 1.027677-4 5.705997+2 1.030307-4 6.183054+2 1.033994-4 6.943789+2 1.036800-4 7.607799+2 1.040236-4 8.542343+2 1.042852-4 9.361364+2 1.044717-4 1.001252+3 1.047082-4 1.093211+3 1.049299-4 1.190580+3 1.051378-4 1.293481+3 1.053326-4 1.402054+3 1.055153-4 1.516458+3 1.056865-4 1.636878+3 1.058471-4 1.763513+3 1.061481-4 2.046125+3 1.064116-4 2.357586+3 1.066420-4 2.697944+3 1.068437-4 3.065149+3 1.070202-4 3.454864+3 1.071746-4 3.860872+3 1.073097-4 4.275838+3 1.074279-4 4.692163+3 1.075313-4 5.102699+3 1.077124-4 5.939998+3 1.079500-4 7.308087+3 1.085350-4 1.233474+4 1.087341-4 1.467228+4 1.087883-4 1.536680+4 1.090966-4 1.976188+4 1.091993-4 2.138135+4 1.094668-4 2.587157+4 1.095002-4 2.645314+4 1.097342-4 3.057192+4 1.098262-4 3.218301+4 1.100035-4 3.520552+4 1.100806-4 3.646291+4 1.102149-4 3.853165+4 1.103177-4 3.998640+4 1.104021-4 4.108009+4 1.105119-4 4.234781+4 1.106181-4 4.338847+4 1.107664-4 4.450054+4 1.108208-4 4.480187+4 1.109775-4 4.533473+4 1.110961-4 4.539776+4 1.112593-4 4.500394+4 1.113838-4 4.434065+4 1.114907-4 4.353585+4 1.116209-4 4.228887+4 1.117579-4 4.069864+4 1.119038-4 3.875425+4 1.120586-4 3.649010+4 1.122297-4 3.385768+4 1.124254-4 3.084848+4 1.126984-4 2.699053+4 1.128526-4 2.513236+4 1.129576-4 2.404098+4 1.130742-4 2.301341+4 1.131984-4 2.214496+4 1.133029-4 2.159969+4 1.134217-4 2.118479+4 1.135239-4 2.099777+4 1.136105-4 2.095583+4 1.137237-4 2.105030+4 1.138208-4 2.125329+4 1.139473-4 2.166189+4 1.141077-4 2.236494+4 1.144991-4 2.448621+4 1.147010-4 2.552549+4 1.147306-4 2.566284+4 1.150205-4 2.669187+4 1.151205-4 2.688665+4 1.153248-4 2.698715+4 1.154290-4 2.687817+4 1.155167-4 2.670256+4 1.155883-4 2.650311+4 1.156805-4 2.617433+4 1.157702-4 2.578071+4 1.158580-4 2.532913+4 1.159310-4 2.490737+4 1.160826-4 2.391141+4 1.161234-4 2.361901+4 1.162805-4 2.241249+4 1.164409-4 2.107791+4 1.166001-4 1.968943+4 1.166471-4 1.927282+4 1.169216-4 1.683680+4 1.169816-4 1.631250+4 1.174364-4 1.261388+4 1.180392-4 8.801507+3 1.182336-4 7.861772+3 1.183735-4 7.266121+3 1.185900-4 6.465983+3 1.187877-4 5.849982+3 1.190368-4 5.205845+3 1.192859-4 4.682766+3 1.194841-4 4.336235+3 1.196760-4 4.048105+3 1.200560-4 3.583936+3 1.203454-4 3.301243+3 1.207686-4 2.964872+3 1.211961-4 2.691385+3 1.215932-4 2.480625+3 1.219480-4 2.319508+3 1.223962-4 2.145204+3 1.227343-4 2.031533+3 1.230212-4 1.945166+3 1.233369-4 1.859461+3 1.236081-4 1.792670+3 1.239640-4 1.713428+3 1.245219-4 1.605626+3 1.249033-4 1.541649+3 1.252469-4 1.489770+3 1.258925-4 1.404741+3 1.265237-4 1.334631+3 1.271550-4 1.274913+3 1.278523-4 1.218746+3 1.284319-4 1.178443+3 1.294000-4 1.121219+3 1.305000-4 1.067745+3 1.310000-4 1.046542+3 1.320000-4 1.008661+3 1.331647-4 9.705703+2 1.343948-4 9.355860+2 1.360184-4 8.952030+2 1.379949-4 8.520878+2 1.399688-4 8.139445+2 1.424215-4 7.724388+2 1.459305-4 7.210776+2 1.492806-4 6.794594+2 1.523960-4 6.459354+2 1.585728-4 5.894307+2 1.640590-4 5.487609+2 1.705000-4 5.092243+2 1.745000-4 4.882682+2 1.785000-4 4.697495+2 1.875000-4 4.345545+2 1.990000-4 3.978869+2 2.054648-4 3.778239+2 2.088480-4 3.649586+2 2.120416-4 3.512034+2 2.131553-4 3.481381+2 2.162719-4 3.427008+2 2.187374-4 3.371438+2 2.199990-4 3.362022+2 2.208930-4 3.368048+2 2.253077-4 3.461310+2 2.300000-4 3.522039+2 2.339813-4 3.548748+2 2.402536-4 3.571000+2 2.427058-4 3.594486+2 2.475217-4 3.658807+2 2.622989-4 3.787371+2 2.825856-4 3.910919+2 2.976059-4 3.968446+2 2.991141-4 3.981448+2 3.017172-4 4.016413+2 3.061622-4 4.093916+2 3.154525-4 4.220948+2 3.360140-4 4.426049+2 3.603715-4 4.628132+2 3.888000-4 4.830392+2 4.144765-4 4.980284+2 4.415704-4 5.107731+2 4.717798-4 5.217557+2 5.202954-4 5.320614+2 5.607251-4 5.337456+2 6.069109-4 5.276863+2 6.468949-4 5.150299+2 6.878599-4 4.942431+2 7.171748-4 4.732870+2 7.456611-4 4.474134+2 7.708316-4 4.201045+2 7.898443-4 3.961099+2 8.058422-4 3.730959+2 8.216512-4 3.475350+2 8.339926-4 3.253152+2 8.447316-4 3.039327+2 8.549436-4 2.815934+2 8.649097-4 2.575503+2 8.731761-4 2.356500+2 8.793669-4 2.179343+2 8.854479-4 1.994644+2 8.887386-4 1.895471+2 8.938199-4 1.786774+2 8.986874-4 1.916828+2 9.022157-4 2.450049+2 9.049064-4 3.369141+2 9.052202-4 3.517118+2 9.083081-4 5.565547+2 9.096763-4 6.874949+2 9.119690-4 9.706295+2 9.135890-4 1.220188+3 9.142705-4 1.336961+3 9.159455-4 1.650516+3 9.166928-4 1.800900+3 9.181126-4 2.099704+3 9.195536-4 2.413195+3 9.209603-4 2.719564+3 9.224346-4 3.030040+3 9.229080-4 3.125594+3 9.251576-4 3.538442+3 9.256773-4 3.622001+3 9.268324-4 3.789158+3 9.279019-4 3.919655+3 9.290313-4 4.031216+3 9.301217-4 4.113474+3 9.308924-4 4.157065+3 9.318276-4 4.194733+3 9.331154-4 4.221726+3 9.345872-4 4.222346+3 9.363291-4 4.190460+3 9.383909-4 4.120621+3 9.407067-4 4.015348+3 9.432277-4 3.876717+3 9.444889-4 3.797293+3 9.468186-4 3.627883+3 9.483118-4 3.500656+3 9.500099-4 3.336139+3 9.513682-4 3.189264+3 9.528767-4 3.011624+3 9.539434-4 2.878243+3 9.552347-4 2.710438+3 9.567341-4 2.510592+3 9.583052-4 2.300715+3 9.600545-4 2.073590+3 9.643866-4 1.583675+3 9.666559-4 1.385339+3 9.680987-4 1.282282+3 9.702384-4 1.161184+3 9.711430-4 1.120577+3 9.731461-4 1.050408+3 9.747632-4 1.010919+3 9.765456-4 9.817439+2 9.797605-4 9.569401+2 9.814454-4 9.537210+2 9.841644-4 9.570043+2 9.883291-4 9.724969+2 1.000661-3 1.030281+3 1.006199-3 1.053460+3 1.013269-3 1.079613+3 1.021323-3 1.104959+3 1.030120-3 1.128005+3 1.038452-3 1.146386+3 1.049452-3 1.166888+3 1.062996-3 1.188032+3 1.077808-3 1.207500+3 1.098619-3 1.229488+3 1.114221-3 1.241612+3 1.133523-3 1.252198+3 1.152338-3 1.256897+3 1.168345-3 1.255670+3 1.195713-3 1.245782+3 1.202044-3 1.248953+3 1.207970-3 1.257757+3 1.211072-3 1.264761+3 1.230940-3 1.325859+3 1.252773-3 1.379978+3 1.260285-3 1.396008+3 1.269494-3 1.412196+3 1.301761-3 1.450271+3 1.349240-3 1.531740+3 1.371720-3 1.561728+3 1.389489-3 1.577954+3 1.411162-3 1.591391+3 1.432954-3 1.599002+3 1.460646-3 1.602916+3 1.471968-3 1.609378+3 1.485903-3 1.626136+3 1.508854-3 1.660830+3 1.523477-3 1.677418+3 1.540006-3 1.690857+3 1.568229-3 1.707542+3 1.623302-3 1.728495+3 1.707126-3 1.742650+3 1.794346-3 1.748440+3 1.943056-3 1.744208+3 2.035870-3 1.734987+3 2.238721-3 1.698610+3 2.416219-3 1.660467+3 2.705890-3 1.588253+3 2.925836-3 1.529856+3 3.171131-3 1.465025+3 3.450412-3 1.389755+3 3.612145-3 1.347517+3 3.776135-3 1.305178+3 3.959111-3 1.258039+3 4.133225-3 1.213539+3 4.309786-3 1.169412+3 4.498427-3 1.122729+3 4.677351-3 1.077792+3 4.840853-3 1.036525+3 4.990611-3 9.975641+2 5.115976-3 9.640630+2 5.234874-3 9.310168+2 5.338394-3 9.005400+2 5.420170-3 8.749172+2 5.502775-3 8.471432+2 5.573230-3 8.213279+2 5.625187-3 8.004298+2 5.678050-3 7.767601+2 5.722651-3 7.538818+2 5.759088-3 7.320771+2 5.788667-3 7.114771+2 5.807887-3 6.964996+2 5.848955-3 6.613329+2 5.883192-3 6.330753+2 5.903270-3 6.200426+2 5.917178-3 6.136148+2 5.929129-3 6.101650+2 5.938121-3 6.089418+2 5.952471-3 6.094993+2 5.966719-3 6.130145+2 5.983131-3 6.203156+2 6.004722-3 6.339709+2 6.047167-3 6.665311+2 6.075462-3 6.868619+2 6.097173-3 6.999355+2 6.120309-3 7.110751+2 6.144707-3 7.198462+2 6.174246-3 7.269342+2 6.208033-3 7.311390+2 6.242431-3 7.318149+2 6.274122-3 7.295689+2 6.325168-3 7.215156+2 6.374239-3 7.134668+2 6.390979-3 7.121973+2 6.411335-3 7.124499+2 6.439741-3 7.166731+2 6.465768-3 7.243979+2 6.563285-3 7.660438+2 6.586981-3 7.741571+2 6.614925-3 7.814258+2 6.641407-3 7.861009+2 6.694415-3 7.908419+2 6.748374-3 7.946826+2 6.793299-3 8.019844+2 6.835316-3 8.134814+2 6.920000-3 8.418542+2 6.983807-3 8.586984+2 7.023622-3 8.662922+2 7.067847-3 8.727784+2 7.128919-3 8.794385+2 7.252051-3 8.878216+2 7.397244-3 8.926841+2 7.641339-3 8.936098+2 7.866495-3 8.883695+2 8.184431-3 8.758610+2 8.605099-3 8.537366+2 9.077188-3 8.246926+2 9.548262-3 7.936691+2 1.025227-2 7.468259+2 1.106907-2 6.948488+2 1.220320-2 6.290503+2 1.373449-2 5.526993+2 1.548817-2 4.809635+2 1.758551-2 4.121883+2 1.953308-2 3.603059+2 2.089276-2 3.293901+2 2.260030-2 2.953333+2 2.447954-2 2.628628+2 2.641821-2 2.338833+2 2.853694-2 2.066824+2 3.068303-2 1.832268+2 3.388442-2 1.543296+2 3.566654-2 1.405454+2 3.714070-2 1.298571+2 3.829408-2 1.216414+2 3.916482-2 1.152817+2 3.975764-2 1.106840+2 4.027170-2 1.062908+2 4.049051-2 1.041999+2 4.068745-2 1.021290+2 4.085434-2 1.001871+2 4.115000-2 9.627524+1 4.157400-2 9.042050+1 4.174739-2 8.864893+1 4.187349-2 8.784107+1 4.201590-2 8.750657+1 4.213932-2 8.771546+1 4.227930-2 8.844115+1 4.253888-2 9.066809+1 4.285843-2 9.368308+1 4.313246-2 9.566961+1 4.341613-2 9.699766+1 4.376904-2 9.789751+1 4.419077-2 9.833266+1 4.467761-2 9.834529+1 4.542488-2 9.780893+1 4.660972-2 9.623090+1 4.814799-2 9.348622+1 5.015029-2 8.946172+1 5.323129-2 8.310608+1 5.711087-2 7.552011+1 6.153220-2 6.768857+1 6.647518-2 6.003550+1 7.309905-2 5.143869+1 8.125107-2 4.301831+1 9.944673-2 3.021854+1 1.160321-1 2.293613+1 1.480107-1 1.469620+1 1.984252-1 8.538226+0 2.378209-1 6.066267+0 3.073386-1 3.707184+0 4.424462-1 1.825660+0 6.719605-1 8.040475-1 1.120601+0 2.922828-1 2.356220+0 6.651296-2 7.070513+0 7.398393-3 2.135261+1 8.113679-4 6.448384+1 8.896653-5 1.947381+2 9.755007-6 5.880996+2 1.069616-6 1.995262+3 9.292434-8 6.309573+3 9.292434-9 1.995262+4 9.29243-10 6.309573+4 9.29243-11 1.000000+5 3.69938-11 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.527700-6 1.258900-6 4.006100-6 1.584900-6 6.349200-6 1.995300-6 1.006300-5 2.511900-6 1.594800-5 3.162300-6 2.527600-5 3.981100-6 4.006000-5 5.011900-6 6.349100-5 6.309600-6 1.006300-4 7.943300-6 1.594800-4 1.000000-5 2.527500-4 1.258900-5 4.005800-4 1.584900-5 6.348700-4 1.995300-5 1.006100-3 2.511900-5 1.593600-3 3.162300-5 2.524200-3 3.981100-5 3.998600-3 5.011900-5 6.334900-3 6.309600-5 1.003700-2 7.943300-5 1.588300-2 1.000000-4 2.512000-2 1.258900-4 3.966600-2 1.584900-4 6.250700-2 1.995300-4 9.816100-2 2.511900-4 1.534100-1 3.162300-4 2.378600-1 3.981100-4 3.634500-1 5.011900-4 5.446700-1 6.309600-4 7.949800-1 7.943300-4 1.122600+0 1.000000-3 1.530700+0 1.258900-3 2.024500+0 1.584900-3 2.629100+0 1.995300-3 3.383800+0 2.511900-3 4.317500+0 3.162300-3 5.445200+0 3.981100-3 6.781300+0 5.011900-3 8.309500+0 6.309600-3 9.968200+0 7.943300-3 1.174800+1 1.000000-2 1.365800+1 1.258900-2 1.573900+1 1.584900-2 1.787700+1 1.995300-2 1.992400+1 2.511900-2 2.172500+1 3.162300-2 2.331500+1 3.981100-2 2.456900+1 5.011900-2 2.528200+1 6.309600-2 2.597400+1 7.943300-2 2.605500+1 1.000000-1 2.571800+1 1.258900-1 2.500200+1 1.584900-1 2.399100+1 1.995300-1 2.275400+1 2.511900-1 2.135800+1 3.162300-1 1.986000+1 3.981100-1 1.832100+1 5.011900-1 1.677900+1 6.309600-1 1.526300+1 7.943300-1 1.379300+1 1.000000+0 1.238800+1 1.258900+0 1.105200+1 1.584900+0 9.797800+0 1.995300+0 8.628500+0 2.511900+0 7.550200+0 3.162300+0 6.565700+0 3.981100+0 5.675900+0 5.011900+0 4.879100+0 6.309600+0 4.172200+0 7.943300+0 3.550500+0 1.000000+1 3.008100+0 1.258900+1 2.538300+0 1.584900+1 2.134100+0 1.995300+1 1.788200+0 2.511900+1 1.493900+0 3.162300+1 1.244700+0 3.981100+1 1.034500+0 5.011900+1 8.579400-1 6.309600+1 7.100600-1 7.943300+1 5.866100-1 1.000000+2 4.838100-1 1.258900+2 3.984300-1 1.584900+2 3.276600-1 1.995300+2 2.691200-1 2.511900+2 2.207800-1 3.162300+2 1.809200-1 3.981100+2 1.481100-1 5.011900+2 1.211400-1 6.309600+2 9.899300-2 7.943300+2 8.082900-2 1.000000+3 6.594700-2 1.258900+3 5.376500-2 1.584900+3 4.380500-2 1.995300+3 3.566600-2 2.511900+3 2.902200-2 3.162300+3 2.360200-2 3.981100+3 1.918400-2 5.011900+3 1.558400-2 6.309600+3 1.265400-2 7.943300+3 1.027000-2 1.000000+4 8.330700-3 1.258900+4 6.755000-3 1.584900+4 5.475000-3 1.995300+4 4.435800-3 2.511900+4 3.592400-3 3.162300+4 2.908300-3 3.981100+4 2.353700-3 5.011900+4 1.904100-3 6.309600+4 1.539900-3 7.943300+4 1.245000-3 1.000000+5 1.006200-3 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510167-4 3.162278-4 3.159554-4 3.981072-4 3.976788-4 5.011872-4 5.005121-4 6.309573-4 6.298985-4 7.943282-4 7.926745-4 1.000000-3 9.974273-4 1.258925-3 1.254919-3 1.584893-3 1.578632-3 1.995262-3 1.985437-3 2.511886-3 2.496443-3 3.162278-3 3.138022-3 3.981072-3 3.943032-3 5.011872-3 4.952381-3 6.309573-3 6.216802-3 7.943282-3 7.799220-3 1.000000-2 9.775602-3 1.258925-2 1.224052-2 1.584893-2 1.530793-2 1.995262-2 1.911834-2 2.511886-2 2.383976-2 3.162278-2 2.967275-2 3.981072-2 3.685087-2 5.011872-2 4.564315-2 6.309573-2 5.639540-2 7.943282-2 6.946721-2 1.000000-1 8.528912-2 1.258925-1 1.044051-1 1.584893-1 1.273801-1 1.995262-1 1.548830-1 2.511886-1 1.876961-1 3.162278-1 2.267345-1 3.981072-1 2.730009-1 5.011872-1 3.276843-1 6.309573-1 3.921795-1 7.943282-1 4.682599-1 1.000000+0 5.575548-1 1.258925+0 6.630086-1 1.584893+0 7.873299-1 1.995262+0 9.344078-1 2.511886+0 1.108936+0 3.162278+0 1.316672+0 3.981072+0 1.564669+0 5.011872+0 1.861439+0 6.309573+0 2.217661+0 7.943282+0 2.646190+0 1.000000+1 3.162830+0 1.258925+1 3.786851+0 1.584893+1 4.542012+0 1.995262+1 5.457238+0 2.511886+1 6.568000+0 3.162278+1 7.918027+0 3.981072+1 9.560491+0 5.011872+1 1.156125+1 6.309573+1 1.400091+1 7.943282+1 1.697851+1 1.000000+2 2.061592+1 1.258925+2 2.506299+1 1.584893+2 3.050477+1 1.995262+2 3.716813+1 2.511886+2 4.533329+1 3.162278+2 5.534590+1 3.981072+2 6.763038+1 5.011872+2 8.271356+1 6.309573+2 1.012432+2 7.943282+2 1.240193+2 1.000000+3 1.520283+2 1.258925+3 1.864907+2 1.584893+3 2.289227+2 1.995262+3 2.811761+2 2.511886+3 3.455630+2 3.162278+3 4.249372+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090815-9 2.511886-5 1.728574-9 3.162278-5 2.739416-9 3.981072-5 4.341608-9 5.011872-5 6.880980-9 6.309573-5 1.090546-8 7.943282-5 1.727759-8 1.000000-4 2.737422-8 1.258925-4 4.336122-8 1.584893-4 6.866108-8 1.995262-4 1.086859-7 2.511886-4 1.719480-7 3.162278-4 2.723717-7 3.981072-4 4.283945-7 5.011872-4 6.751723-7 6.309573-4 1.058837-6 7.943282-4 1.653729-6 1.000000-3 2.572721-6 1.258925-3 4.006681-6 1.584893-3 6.261132-6 1.995262-3 9.825237-6 2.511886-3 1.544330-5 3.162278-3 2.425527-5 3.981072-3 3.804011-5 5.011872-3 5.949098-5 6.309573-3 9.277137-5 7.943282-3 1.440621-4 1.000000-2 2.243977-4 1.258925-2 3.487294-4 1.584893-2 5.410048-4 1.995262-2 8.342876-4 2.511886-2 1.279107-3 3.162278-2 1.950027-3 3.981072-2 2.959848-3 5.011872-2 4.475574-3 6.309573-2 6.700330-3 7.943282-2 9.965613-3 1.000000-1 1.471088-2 1.258925-1 2.148744-2 1.584893-1 3.110920-2 1.995262-1 4.464326-2 2.511886-1 6.349257-2 3.162278-1 8.949324-2 3.981072-1 1.251062-1 5.011872-1 1.735029-1 6.309573-1 2.387779-1 7.943282-1 3.260683-1 1.000000+0 4.424452-1 1.258925+0 5.959168-1 1.584893+0 7.975633-1 1.995262+0 1.060854+0 2.511886+0 1.402950+0 3.162278+0 1.845605+0 3.981072+0 2.416403+0 5.011872+0 3.150434+0 6.309573+0 4.091912+0 7.943282+0 5.297092+0 1.000000+1 6.837170+0 1.258925+1 8.802403+0 1.584893+1 1.130692+1 1.995262+1 1.449539+1 2.511886+1 1.855086+1 3.162278+1 2.370475+1 3.981072+1 3.025023+1 5.011872+1 3.855748+1 6.309573+1 4.909483+1 7.943282+1 6.245431+1 1.000000+2 7.938408+1 1.258925+2 1.008296+2 1.584893+2 1.279846+2 1.995262+2 1.623581+2 2.511886+2 2.058554+2 3.162278+2 2.608819+2 3.981072+2 3.304768+2 5.011872+2 4.184737+2 6.309573+2 5.297141+2 7.943282+2 6.703089+2 1.000000+3 8.479717+2 1.258925+3 1.072435+3 1.584893+3 1.355971+3 1.995262+3 1.714086+3 2.511886+3 2.166323+3 3.162278+3 2.737340+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.890000-6 2.874159+6 5.308844-6 1.948219+6 5.623413-6 1.475995+6 5.956621-6 1.111617+6 6.309573-6 8.321129+5 6.700000-6 6.105620+5 7.100000-6 4.494980+5 7.240000-6 4.044439+5 7.240000-6 5.235589+5 7.413102-6 4.755773+5 7.500000-6 4.543518+5 7.600000-6 4.313051+5 7.650000-6 4.206913+5 7.650000-6 5.044859+5 7.852356-6 4.665027+5 7.943282-6 4.520517+5 8.100000-6 4.292789+5 8.350000-6 4.005309+5 8.413951-6 3.943771+5 8.609938-6 3.781296+5 8.709636-6 3.713032+5 8.912509-6 3.602052+5 9.015711-6 3.558173+5 9.225714-6 3.492860+5 9.350000-6 3.467287+5 9.600000-6 3.442879+5 9.700000-6 3.442023+5 9.772372-6 3.444465+5 1.000000-5 3.468184+5 1.011579-5 3.488202+5 1.023293-5 3.513282+5 1.035142-5 3.544375+5 1.050000-5 3.589164+5 1.060000-5 3.623588+5 1.083927-5 3.715946+5 1.085000-5 3.720517+5 1.109175-5 3.830950+5 1.110000-5 3.835000+5 1.127000-5 3.922194+5 1.150000-5 4.048194+5 1.172000-5 4.176647+5 1.174898-5 4.194244+5 1.188502-5 4.280050+5 1.195000-5 4.322516+5 1.216186-5 4.465866+5 1.230269-5 4.564504+5 1.250000-5 4.706958+5 1.273503-5 4.882811+5 1.290000-5 5.010052+5 1.310000-5 5.168340+5 1.318257-5 5.235108+5 1.333521-5 5.360626+5 1.357000-5 5.558612+5 1.385200-5 5.803581+5 1.412538-5 6.048292+5 1.445440-5 6.350701+5 1.480000-5 6.678604+5 1.531087-5 7.181943+5 1.595200-5 7.844127+5 1.621810-5 8.128894+5 1.650000-5 8.431468+5 1.800000-5 1.012140+6 1.819701-5 1.035055+6 1.850000-5 1.070245+6 1.950000-5 1.190493+6 2.000000-5 1.251369+6 2.070000-5 1.337415+6 2.113489-5 1.392186+6 2.150000-5 1.437467+6 2.190000-5 1.486630+6 2.264644-5 1.580230+6 2.300000-5 1.623939+6 2.317395-5 1.645040+6 2.400000-5 1.746632+6 2.426000-5 1.777830+6 2.426000-5 1.591011+7 2.454709-5 1.533667+7 2.540973-5 1.380071+7 2.600160-5 1.288850+7 2.691535-5 1.167027+7 2.726000-5 1.126230+7 2.726000-5 1.800912+7 2.754229-5 1.745870+7 2.786121-5 1.686778+7 2.851018-5 1.577089+7 2.884032-5 1.525639+7 2.917427-5 1.476025+7 3.019952-5 1.339639+7 3.090295-5 1.258197+7 3.198895-5 1.148848+7 3.273407-5 1.083590+7 3.400000-5 9.880224+6 3.467369-5 9.433733+6 3.589219-5 8.726875+6 3.672823-5 8.305365+6 3.715352-5 8.108012+6 3.845918-5 7.565527+6 3.900000-5 7.365756+6 3.935501-5 7.241205+6 4.000000-5 7.029543+6 4.120975-5 6.682939+6 4.168694-5 6.558541+6 4.220000-5 6.431066+6 4.315191-5 6.215334+6 4.330000-5 6.184600+6 4.330000-5 6.243987+6 4.415704-5 6.079638+6 4.466836-5 5.987404+6 4.518559-5 5.898213+6 4.623810-5 5.732990+6 4.731513-5 5.587500+6 4.786301-5 5.516367+6 4.841724-5 5.448603+6 4.900000-5 5.382407+6 4.960000-5 5.320138+6 5.011872-5 5.269382+6 5.150000-5 5.136887+6 5.188000-5 5.103462+6 5.248075-5 5.054504+6 5.308844-5 5.007826+6 5.350000-5 4.974897+6 5.495409-5 4.867259+6 5.559043-5 4.825430+6 5.623413-5 4.785166+6 5.650000-5 4.768284+6 5.688529-5 4.742763+6 5.754399-5 4.701289+6 5.956621-5 4.587964+6 6.025596-5 4.547823+6 6.095369-5 4.509877+6 6.165950-5 4.473537+6 6.237348-5 4.438080+6 6.309573-5 4.403663+6 6.400000-5 4.358334+6 6.500000-5 4.310285+6 6.606934-5 4.262045+6 6.650000-5 4.243769+6 6.683439-5 4.229723+6 6.918310-5 4.124321+6 7.000000-5 4.090898+6 7.161434-5 4.027815+6 7.244360-5 3.993015+6 7.300000-5 3.970681+6 7.448100-5 3.913796+6 7.585776-5 3.862922+6 7.673615-5 3.832183+6 7.762471-5 3.802195+6 7.800000-5 3.788358+6 7.852356-5 3.769163+6 7.943282-5 3.736484+6 8.035261-5 3.704762+6 8.150000-5 3.666592+6 8.317638-5 3.612474+6 8.413951-5 3.582829+6 8.511380-5 3.552415+6 8.518900-5 3.549959+6 8.709636-5 3.488732+6 8.810489-5 3.457825+6 9.015711-5 3.397481+6 9.120108-5 3.367629+6 9.225714-5 3.335134+6 9.549926-5 3.241308+6 9.660509-5 3.210558+6 9.772372-5 3.180304+6 9.800000-5 3.172620+6 1.011579-4 3.083097+6 1.023293-4 3.051417+6 1.047129-4 2.988834+6 1.060000-4 2.953401+6 1.096478-4 2.857909+6 1.120000-4 2.799416+6 1.122018-4 2.794531+6 1.135011-4 2.760747+6 1.174898-4 2.662390+6 1.183500-4 2.642002+6 1.185900-4 2.636386+6 1.185900-4 3.381598+6 1.193000-4 3.458343+6 1.200000-4 3.539435+6 1.202264-4 3.565313+6 1.207000-4 3.622326+6 1.212000-4 3.681714+6 1.218000-4 3.751603+6 1.222800-4 3.805559+6 1.222800-4 4.304887+6 1.223000-4 4.308686+6 1.227000-4 4.382371+6 1.230269-4 4.441636+6 1.232000-4 4.473790+6 1.236000-4 4.544688+6 1.238000-4 4.580380+6 1.244515-4 4.690225+6 1.245000-4 4.698352+6 1.247200-4 4.731326+6 1.252000-4 4.805843+6 1.257000-4 4.874300+6 1.258925-4 4.898807+6 1.260000-4 4.911671+6 1.262000-4 4.935894+6 1.265500-4 4.974004+6 1.268100-4 5.000526+6 1.271000-4 5.025917+6 1.275000-4 5.057985+6 1.277000-4 5.070889+6 1.283000-4 5.104522+6 1.288500-4 5.122269+6 1.290000-4 5.125646+6 1.295000-4 5.130418+6 1.298000-4 5.129976+6 1.302000-4 5.124958+6 1.303167-4 5.122249+6 1.305000-4 5.117915+6 1.308000-4 5.107605+6 1.315000-4 5.076955+6 1.318257-4 5.056167+6 1.322000-4 5.032591+6 1.325000-4 5.010912+6 1.330000-4 4.970931+6 1.337200-4 4.908193+6 1.337500-4 4.905400+6 1.345000-4 4.831044+6 1.348963-4 4.790052+6 1.350000-4 4.779338+6 1.353000-4 4.746973+6 1.364583-4 4.618157+6 1.365000-4 4.613630+6 1.375000-4 4.498134+6 1.380384-4 4.435625+6 1.390000-4 4.324835+6 1.400000-4 4.210893+6 1.401000-4 4.199793+6 1.407000-4 4.132710+6 1.412538-4 4.070852+6 1.428894-4 3.896707+6 1.430000-4 3.885413+6 1.445440-4 3.727500+6 1.460000-4 3.588224+6 1.462177-4 3.567866+6 1.479108-4 3.414718+6 1.492000-4 3.306174+6 1.500000-4 3.241255+6 1.531087-4 3.009788+6 1.540000-4 2.949026+6 1.560000-4 2.819964+6 1.584893-4 2.676649+6 1.590000-4 2.649057+6 1.603245-4 2.581355+6 1.610000-4 2.548262+6 1.635000-4 2.435297+6 1.640590-4 2.412314+6 1.650000-4 2.374585+6 1.659587-4 2.338191+6 1.660000-4 2.336626+6 1.670000-4 2.299939+6 1.680000-4 2.265382+6 1.690000-4 2.232479+6 1.705000-4 2.186115+6 1.720000-4 2.143766+6 1.725600-4 2.128481+6 1.740000-4 2.091291+6 1.757924-4 2.049138+6 1.760000-4 2.044351+6 1.778279-4 2.005772+6 1.780000-4 2.002143+6 1.800000-4 1.963612+6 1.820000-4 1.929003+6 1.840772-4 1.896320+6 1.842000-4 1.894416+6 1.850000-4 1.883128+6 1.865000-4 1.862323+6 1.885000-4 1.837604+6 1.890000-4 1.831762+6 1.900000-4 1.820805+6 1.908000-4 1.811896+6 1.915000-4 1.804488+6 1.930000-4 1.789635+6 1.940000-4 1.780291+6 1.949845-4 1.771739+6 1.950000-4 1.771606+6 1.972423-4 1.753477+6 1.980000-4 1.747325+6 2.000000-4 1.733014+6 2.020000-4 1.719935+6 2.040000-4 1.708134+6 2.041738-4 1.707194+6 2.050000-4 1.702773+6 2.089296-4 1.682013+6 2.137962-4 1.661324+6 2.162719-4 1.651634+6 2.195600-4 1.640493+6 2.195600-4 1.975683+6 2.213095-4 1.969497+6 2.220000-4 1.967017+6 2.300000-4 1.941366+6 2.317395-4 1.936407+6 2.371374-4 1.921605+6 2.380000-4 1.919404+6 2.401600-4 1.913524+6 2.406400-4 1.912194+6 2.406400-4 2.014623+6 2.454709-4 2.002182+6 2.483133-4 1.995102+6 2.500000-4 1.990685+6 2.511886-4 1.987641+6 2.540973-4 1.979729+6 2.570396-4 1.972057+6 2.600160-4 1.964327+6 2.660725-4 1.948284+6 2.691535-4 1.940118+6 2.722701-4 1.931306+6 2.754229-4 1.922659+6 2.786121-4 1.913823+6 2.851018-4 1.895477+6 2.884032-4 1.885753+6 2.900000-4 1.880729+6 2.917427-4 1.875385+6 2.951209-4 1.865157+6 2.992500-4 1.852589+6 2.992500-4 1.978627+6 3.000000-4 1.976274+6 3.054921-4 1.957971+6 3.090295-4 1.946217+6 3.126079-4 1.934598+6 3.162278-4 1.922252+6 3.200000-4 1.908992+6 3.240000-4 1.895215+6 3.280000-4 1.881027+6 3.311311-4 1.869746+6 3.320000-4 1.866664+6 3.349654-4 1.856070+6 3.350000-4 1.855947+6 3.388442-4 1.841532+6 3.427678-4 1.827307+6 3.430000-4 1.826438+6 3.435600-4 1.824336+6 3.507519-4 1.797845+6 3.589219-4 1.767116+6 3.600000-4 1.763027+6 3.630781-4 1.751479+6 3.672823-4 1.736000+6 3.715352-4 1.719922+6 3.758374-4 1.703994+6 3.801894-4 1.687778+6 3.850000-4 1.670134+6 3.890451-4 1.654960+6 3.935501-4 1.638410+6 4.027170-4 1.604903+6 4.050000-4 1.596795+6 4.100000-4 1.578515+6 4.120975-4 1.570958+6 4.216965-4 1.535875+6 4.265795-4 1.518672+6 4.350000-4 1.488672+6 4.365158-4 1.483270+6 4.415704-4 1.465342+6 4.466836-4 1.447702+6 4.518559-4 1.430134+6 4.600000-4 1.402254+6 4.623810-4 1.394137+6 4.677351-4 1.376191+6 4.786301-4 1.341182+6 4.850000-4 1.320781+6 4.897788-4 1.305477+6 5.011872-4 1.270047+6 5.069907-4 1.252762+6 5.150000-4 1.228738+6 5.248075-4 1.199904+6 5.300000-4 1.185126+6 5.308844-4 1.182634+6 5.370318-4 1.165411+6 5.400000-4 1.157265+6 5.432503-4 1.148204+6 5.495409-4 1.131028+6 5.500000-4 1.129769+6 5.559043-4 1.113735+6 5.688529-4 1.079964+6 5.754399-4 1.063438+6 5.800000-4 1.052245+6 5.888437-4 1.030360+6 6.000000-4 1.003459+6 6.095369-4 9.813922+5 6.200000-4 9.580440+5 6.237348-4 9.497426+5 6.309573-4 9.337741+5 6.456542-4 9.026544+5 6.606934-4 8.723875+5 6.683439-4 8.573476+5 6.700000-4 8.541474+5 6.918310-4 8.131092+5 7.079458-4 7.848272+5 7.140000-4 7.745513+5 7.150000-4 7.728746+5 7.161434-4 7.709218+5 7.328245-4 7.429827+5 7.413102-4 7.293502+5 7.585776-4 7.028639+5 7.673615-4 6.899682+5 7.762471-4 6.768807+5 7.852356-4 6.640514+5 8.035261-4 6.389830+5 8.128305-4 6.267819+5 8.317638-4 6.030690+5 8.413951-4 5.912116+5 8.511380-4 5.795937+5 8.709636-4 5.570513+5 8.810489-4 5.460465+5 8.912509-4 5.352433+5 9.000000-4 5.262201+5 9.015711-4 5.245763+5 9.225714-4 5.033586+5 9.332543-4 4.930795+5 9.348600-4 4.915630+5 9.348600-4 1.875167+6 9.440609-4 1.835666+6 9.549926-4 1.790308+6 9.559800-4 1.786292+6 9.559800-4 2.557185+6 9.700000-4 2.515902+6 9.772372-4 2.495568+6 9.850000-4 2.474409+6 9.865000-4 2.470387+6 9.885531-4 2.464079+6 9.950000-4 2.444583+6 1.000000-3 2.425717+6 1.004000-3 2.408644+6 1.015000-3 2.356363+6 1.025900-3 2.300437+6 1.030000-3 2.278970+6 1.047129-3 2.187895+6 1.050000-3 2.173136+6 1.059254-3 2.127960+6 1.060000-3 2.124371+6 1.070000-3 2.078968+6 1.083927-3 2.017904+6 1.109175-3 1.913470+6 1.110000-3 1.910191+6 1.122018-3 1.863769+6 1.135011-3 1.815395+6 1.150000-3 1.762242+6 1.161449-3 1.723136+6 1.174898-3 1.678722+6 1.188502-3 1.635365+6 1.202264-3 1.593131+6 1.216186-3 1.551974+6 1.228400-3 1.516462+6 1.228400-3 1.738938+6 1.230269-3 1.733306+6 1.244515-3 1.691277+6 1.250000-3 1.675314+6 1.258925-3 1.649468+6 1.273503-3 1.608471+6 1.318257-3 1.491564+6 1.325700-3 1.473079+6 1.325700-3 1.558250+6 1.333521-3 1.539199+6 1.344000-3 1.513969+6 1.348963-3 1.502065+6 1.350000-3 1.499595+6 1.363000-3 1.468826+6 1.364583-3 1.465120+6 1.380384-3 1.428864+6 1.390000-3 1.407436+6 1.396368-3 1.393473+6 1.400000-3 1.385602+6 1.428894-3 1.325217+6 1.445440-3 1.291957+6 1.462177-3 1.259217+6 1.479108-3 1.227075+6 1.480100-3 1.225230+6 1.480100-3 1.279630+6 1.500000-3 1.242710+6 1.530000-3 1.190028+6 1.531087-3 1.188182+6 1.548817-3 1.158363+6 1.566751-3 1.129285+6 1.570000-3 1.124135+6 1.584893-3 1.100550+6 1.603245-3 1.072257+6 1.640590-3 1.017777+6 1.659587-3 9.916465+5 1.678804-3 9.662027+5 1.698244-3 9.414399+5 1.737801-3 8.938547+5 1.757924-3 8.704707+5 1.798871-3 8.255259+5 1.800000-3 8.243363+5 1.819701-3 8.039152+5 1.840772-3 7.828943+5 1.862087-3 7.624347+5 1.883649-3 7.425143+5 1.900000-3 7.278493+5 1.950000-3 6.855049+5 1.972423-3 6.675997+5 2.018366-3 6.325531+5 2.041738-3 6.156591+5 2.065380-3 5.991740+5 2.089296-3 5.831331+5 2.113489-3 5.674202+5 2.137962-3 5.521482+5 2.162719-3 5.371956+5 2.187762-3 5.226697+5 2.213095-3 5.084618+5 2.238721-3 4.946013+5 2.264644-3 4.811268+5 2.300000-3 4.636028+5 2.317395-3 4.553058+5 2.371374-3 4.309081+5 2.400000-3 4.187018+5 2.426610-3 4.078007+5 2.454709-3 3.966833+5 2.483133-3 3.858858+5 2.511886-3 3.753039+5 2.540973-3 3.649904+5 2.570396-3 3.549769+5 2.630268-3 3.356450+5 2.660725-3 3.263983+5 2.722701-3 3.086053+5 2.754229-3 3.000292+5 2.786121-3 2.916797+5 2.818383-3 2.835136+5 2.851018-3 2.755806+5 2.884032-3 2.678729+5 2.900000-3 2.642575+5 2.917427-3 2.603892+5 2.951209-3 2.531218+5 3.000000-3 2.430978+5 3.019952-3 2.391648+5 3.090295-3 2.260147+5 3.126079-3 2.196955+5 3.162278-3 2.135170+5 3.198895-3 2.074860+5 3.235937-3 2.016280+5 3.273407-3 1.959404+5 3.311311-3 1.904079+5 3.388442-3 1.798003+5 3.400000-3 1.782852+5 3.427678-3 1.747174+5 3.500000-3 1.658707+5 3.507519-3 1.649812+5 3.589219-3 1.556936+5 3.630781-3 1.512548+5 3.650000-3 1.492620+5 3.672823-3 1.469349+5 3.758374-3 1.386642+5 3.801894-3 1.347080+5 3.845918-3 1.308688+5 3.890451-3 1.271444+5 3.935501-3 1.235309+5 3.981072-3 1.199675+5 4.027170-3 1.165123+5 4.120975-3 1.098882+5 4.168694-3 1.067222+5 4.265795-3 1.006744+5 4.315191-3 9.778625+4 4.365158-3 9.497776+4 4.415704-3 9.223286+4 4.466836-3 8.956342+4 4.570882-3 8.443579+4 4.623810-3 8.197831+4 4.677351-3 7.959482+4 4.841724-3 7.286273+4 4.897788-3 7.075182+4 4.954502-3 6.869329+4 5.000000-3 6.709843+4 5.011872-3 6.669081+4 5.069907-3 6.474106+4 5.188000-3 6.100542+4 5.248075-3 5.921860+4 5.370318-3 5.580377+4 5.432503-3 5.417320+4 5.495409-3 5.258203+4 5.559043-3 5.103945+4 5.623413-3 4.954342+4 5.688529-3 4.808737+4 5.754399-3 4.666615+4 5.888437-3 4.395216+4 5.954400-3 4.269744+4 5.954400-3 1.217145+5 6.000000-3 1.197349+5 6.025596-3 1.186441+5 6.070000-3 1.167865+5 6.165950-3 1.123186+5 6.190000-3 1.112342+5 6.237348-3 1.090355+5 6.309573-3 1.057962+5 6.382635-3 1.026546+5 6.442900-3 1.001550+5 6.442900-3 1.368212+5 6.456542-3 1.361136+5 6.531306-3 1.323252+5 6.570000-3 1.303875+5 6.660000-3 1.259260+5 6.683439-3 1.247645+5 6.760830-3 1.210324+5 6.799800-3 1.192112+5 6.799800-3 1.376259+5 6.918310-3 1.316960+5 6.920000-3 1.316139+5 7.000000-3 1.278953+5 7.079458-3 1.243116+5 7.220000-3 1.182406+5 7.244360-3 1.172437+5 7.300000-3 1.150103+5 7.328245-3 1.138991+5 7.413102-3 1.106517+5 7.585776-3 1.043647+5 7.673615-3 1.013158+5 7.800000-3 9.714614+4 7.852356-3 9.548755+4 8.035261-3 9.000896+4 8.128305-3 8.739170+4 8.222426-3 8.482876+4 8.317638-3 8.234218+4 8.413951-3 7.992938+4 8.511380-3 7.757097+4 8.810489-3 7.091502+4 8.912509-3 6.881354+4 9.120108-3 6.478102+4 9.225714-3 6.285668+4 9.332543-3 6.098970+4 9.440609-3 5.917276+4 9.500000-3 5.820650+4 9.549926-3 5.741070+4 9.660509-3 5.570134+4 9.800000-3 5.364330+4 1.000000-2 5.086256+4 1.011579-2 4.934253+4 1.023293-2 4.787406+4 1.035142-2 4.644650+4 1.059254-2 4.371929+4 1.071519-2 4.241822+4 1.083927-2 4.114601+4 1.096478-2 3.991271+4 1.135011-2 3.643365+4 1.148154-2 3.534299+4 1.150000-2 3.519349+4 1.161449-2 3.428515+4 1.174898-2 3.324719+4 1.202264-2 3.126283+4 1.216186-2 3.031640+4 1.230269-2 2.939937+4 1.244515-2 2.851065+4 1.258925-2 2.764311+4 1.273503-2 2.680246+4 1.288250-2 2.598810+4 1.318257-2 2.443309+4 1.333521-2 2.369188+4 1.350000-2 2.292660+4 1.364583-2 2.227679+4 1.380384-2 2.159913+4 1.396368-2 2.093776+4 1.400000-2 2.079142+4 1.412538-2 2.029630+4 1.450000-2 1.891094+4 1.462177-2 1.848855+4 1.500000-2 1.725755+4 1.513561-2 1.684408+4 1.531087-2 1.632618+4 1.548817-2 1.582449+4 1.584893-2 1.486465+4 1.603245-2 1.440697+4 1.621810-2 1.396146+4 1.640590-2 1.353003+4 1.659587-2 1.311177+4 1.678804-2 1.270673+4 1.737801-2 1.156708+4 1.757924-2 1.121096+4 1.778279-2 1.086610+4 1.819701-2 1.020342+4 1.840772-2 9.887766+3 1.862087-2 9.579802+3 1.905461-2 8.992384+3 1.927525-2 8.712652+3 1.949845-2 8.441841+3 1.972423-2 8.179617+3 2.018366-2 7.677889+3 2.041738-2 7.438948+3 2.089296-2 6.983441+3 2.113489-2 6.766537+3 2.137962-2 6.554985+3 2.150000-2 6.454268+3 2.162719-2 6.350062+3 2.187762-2 6.151602+3 2.213095-2 5.958542+3 2.317395-2 5.246376+3 2.344229-2 5.082359+3 2.371374-2 4.923585+3 2.398833-2 4.769024+3 2.426610-2 4.619431+3 2.454709-2 4.474093+3 2.483133-2 4.333300+3 2.511886-2 4.197032+3 2.540973-2 4.065151+3 2.570396-2 3.937368+3 2.630268-2 3.693013+3 2.660725-2 3.576722+3 2.722701-2 3.355286+3 2.754229-2 3.249152+3 2.786121-2 3.146359+3 2.851018-2 2.950608+3 2.884032-2 2.857372+3 2.917427-2 2.767145+3 2.985383-2 2.595340+3 3.000000-2 2.560181+3 3.019952-2 2.513242+3 3.054921-2 2.433507+3 3.162278-2 2.209510+3 3.198895-2 2.139636+3 3.235937-2 2.071510+3 3.273407-2 2.005549+3 3.311311-2 1.941731+3 3.349654-2 1.879938+3 3.388442-2 1.820148+3 3.507519-2 1.652194+3 3.548134-2 1.599736+3 3.589219-2 1.548980+3 3.630781-2 1.499703+3 3.715352-2 1.405706+3 3.758374-2 1.360985+3 3.801894-2 1.317394+3 3.845918-2 1.275210+3 3.890451-2 1.234394+3 3.935501-2 1.194881+3 3.981072-2 1.156657+3 4.027170-2 1.119680+3 4.073803-2 1.083910+3 4.120975-2 1.049308+3 4.168694-2 1.015788+3 4.201000-2 9.939267+2 4.201000-2 5.701152+3 4.265795-2 5.486207+3 4.300000-2 5.377314+3 4.350000-2 5.230974+3 4.365158-2 5.181920+3 4.415704-2 5.022754+3 4.466836-2 4.868286+3 4.518559-2 4.729728+3 4.570882-2 4.595132+3 4.600000-2 4.522540+3 4.731513-2 4.196087+3 4.841724-2 3.947068+3 4.897788-2 3.828153+3 4.954502-2 3.712834+3 5.069907-2 3.492562+3 5.128614-2 3.388644+3 5.188000-2 3.287831+3 5.370318-2 3.002727+3 5.495409-2 2.826505+3 5.559043-2 2.742322+3 5.623413-2 2.658967+3 5.688529-2 2.578138+3 5.754399-2 2.499774+3 5.821032-2 2.423783+3 5.888437-2 2.350111+3 5.956621-2 2.278688+3 6.025596-2 2.209443+3 6.165950-2 2.077228+3 6.237348-2 2.014046+3 6.382635-2 1.891502+3 6.683439-2 1.668386+3 6.760830-2 1.616856+3 6.839116-2 1.566922+3 6.998420-2 1.471599+3 7.244360-2 1.339410+3 7.328245-2 1.298049+3 7.413102-2 1.257919+3 7.585776-2 1.181353+3 7.673615-2 1.144841+3 7.762471-2 1.109459+3 7.800000-2 1.094964+3 7.943282-2 1.041143+3 8.222426-2 9.462019+2 8.317638-2 9.165172+2 8.511380-2 8.599195+2 8.609938-2 8.329480+2 8.709636-2 8.068250+2 8.810489-2 7.815232+2 8.912509-2 7.569879+2 9.120108-2 7.102089+2 9.772372-2 5.865412+2 1.000000-1 5.499027+2 1.011580-1 5.324480+2 1.023293-1 5.155501+2 1.035142-1 4.991888+2 1.047129-1 4.833468+2 1.059254-1 4.680096+2 1.071519-1 4.531604+2 1.080000-1 4.432648+2 1.096478-1 4.248443+2 1.148154-1 3.734023+2 1.188502-1 3.389576+2 1.216186-1 3.177810+2 1.244515-1 2.979323+2 1.258925-1 2.884280+2 1.273503-1 2.792266+2 1.288250-1 2.703178+2 1.303167-1 2.616941+2 1.318257-1 2.533395+2 1.348963-1 2.374265+2 1.364583-1 2.298494+2 1.396368-1 2.154139+2 1.428894-1 2.018863+2 1.445440-1 1.954452+2 1.462177-1 1.892102+2 1.479108-1 1.831743+2 1.513561-1 1.716747+2 1.531088-1 1.661986+2 1.548817-1 1.608986+2 1.584893-1 1.508008+2 1.603245-1 1.459924+2 1.621810-1 1.413371+2 1.659587-1 1.324696+2 1.698244-1 1.241590+2 1.717908-1 1.202017+2 1.737801-1 1.163705+2 1.757924-1 1.126618+2 1.798871-1 1.055960+2 1.840772-1 9.897373+1 1.862087-1 9.582078+1 1.883649-1 9.276835+1 1.905461-1 8.981321+1 1.949845-1 8.418268+1 1.972423-1 8.150201+1 2.000000-1 7.838254+1 2.018366-1 7.639431+1 2.041738-1 7.396182+1 2.065380-1 7.160690+1 2.089296-1 6.932712+1 2.113489-1 6.712068+1 2.162719-1 6.295508+1 2.238721-1 5.718688+1 2.264644-1 5.538462+1 2.290868-1 5.363916+1 2.317395-1 5.195048+1 2.344229-1 5.031537+1 2.371374-1 4.873176+1 2.398833-1 4.719812+1 2.426610-1 4.571281+1 2.511886-1 4.153248+1 2.540973-1 4.022583+1 2.570396-1 3.896066+1 2.583000-1 3.844197+1 2.600160-1 3.775084+1 2.630268-1 3.657863+1 2.691535-1 3.434231+1 2.722701-1 3.327607+1 2.786121-1 3.124193+1 2.818383-1 3.027205+1 2.851018-1 2.933237+1 2.884032-1 2.842234+1 2.917427-1 2.754184+1 2.985383-1 2.586234+1 3.019952-1 2.506142+1 3.054921-1 2.429755+1 3.090295-1 2.355698+1 3.126079-1 2.283899+1 3.198895-1 2.146802+1 3.235937-1 2.081394+1 3.273407-1 2.017981+1 3.311311-1 1.956502+1 3.349654-1 1.896911+1 3.388442-1 1.839138+1 3.427678-1 1.783244+1 3.467369-1 1.729050+1 3.507519-1 1.677382+1 3.548134-1 1.627259+1 3.630781-1 1.531490+1 3.672823-1 1.485744+1 3.715352-1 1.441365+1 3.722400-1 1.434190+1 3.758374-1 1.398323+1 3.801894-1 1.356570+1 3.845918-1 1.316065+1 3.890451-1 1.276770+1 3.935501-1 1.238724+1 4.000000-1 1.187897+1 4.073803-1 1.133223+1 4.168694-1 1.067936+1 4.216965-1 1.036727+1 4.265795-1 1.006432+1 4.315191-1 9.770221+0 4.365158-1 9.484728+0 4.415705-1 9.207651+0 4.466836-1 8.944879+0 4.570882-1 8.441831+0 4.623810-1 8.201038+0 4.677351-1 7.967116+0 4.786301-1 7.519263+0 4.841724-1 7.304933+0 4.897788-1 7.096717+0 4.954502-1 6.894434+0 5.011872-1 6.702257+0 5.069907-1 6.515991+0 5.128614-1 6.334904+0 5.188000-1 6.158878+0 5.248075-1 5.987791+0 5.308844-1 5.821512+0 5.370318-1 5.659848+0 5.495409-1 5.349869+0 5.559043-1 5.201307+0 5.623413-1 5.060223+0 5.688529-1 4.923424+0 5.754399-1 4.790334+0 5.956621-1 4.412488+0 6.095369-1 4.177301+0 6.165950-1 4.064452+0 6.237348-1 3.957328+0 6.309573-1 3.853029+0 6.382635-1 3.751863+0 6.456542-1 3.653387+0 6.606935-1 3.464120+0 6.683439-1 3.373198+0 6.760830-1 3.284662+0 6.839117-1 3.198458+0 6.918310-1 3.116573+0 6.998420-1 3.036810+0 7.079458-1 2.959094+0 7.161434-1 2.883637+0 7.244360-1 2.810105+0 7.328245-1 2.738462+0 7.413102-1 2.668647+0 7.498942-1 2.600617+0 7.585776-1 2.534321+0 7.673615-1 2.471357+0 7.762471-1 2.409958+0 7.852356-1 2.350088+0 7.943282-1 2.291742+0 8.035261-1 2.235022+0 8.317638-1 2.073149+0 8.511380-1 1.971832+0 8.609938-1 1.924417+0 8.709636-1 1.878160+0 8.810489-1 1.833059+0 8.912509-1 1.789189+0 9.015711-1 1.746369+0 9.101600-1 1.711875+0 9.120108-1 1.704574+0 9.225714-1 1.663784+0 9.332543-1 1.623988+0 9.440609-1 1.586398+0 9.549926-1 1.549679+0 9.660509-1 1.513844+0 9.772372-1 1.478970+0 9.885531-1 1.444903+0 1.000000+0 1.411658+0 1.011579+0 1.379180+0 1.023293+0 1.347446+0 1.035142+0 1.317226+0 1.047129+0 1.287682+0 1.059254+0 1.258806+0 1.071519+0 1.230597+0 1.083927+0 1.203041+0 1.096478+0 1.176103+0 1.135011+0 1.099054+0 1.148154+0 1.074510+0 1.161449+0 1.050516+0 1.174898+0 1.027061+0 1.202264+0 9.828418-1 1.216186+0 9.614673-1 1.230269+0 9.405580-1 1.244515+0 9.201036-1 1.250000+0 9.124085-1 1.258925+0 9.001377-1 1.273503+0 8.806311-1 1.288250+0 8.615553-1 1.303167+0 8.429002-1 1.318257+0 8.251387-1 1.333521+0 8.077523-1 1.348963+0 7.907308-1 1.380384+0 7.577848-1 1.396368+0 7.418301-1 1.412538+0 7.262117-1 1.428894+0 7.109757-1 1.462177+0 6.814624-1 1.500000+0 6.510071-1 1.513561+0 6.406019-1 1.584893+0 5.899463-1 1.640590+0 5.547124-1 1.659587+0 5.437691-1 1.678804+0 5.330418-1 1.698244+0 5.225267-1 1.778279+0 4.825590-1 1.798871+0 4.730539-1 1.819701+0 4.637678-1 1.840772+0 4.546640-1 1.862087+0 4.457390-1 1.883649+0 4.372558-1 1.905461+0 4.289340-1 1.927525+0 4.207715-1 2.000000+0 3.956756-1 2.018366+0 3.896952-1 2.044000+0 3.815869-1 2.065380+0 3.750503-1 2.113489+0 3.609811-1 2.137962+0 3.543468-1 2.162719+0 3.478342-1 2.187762+0 3.414421-1 2.264644+0 3.229902-1 2.290868+0 3.170637-1 2.317395+0 3.112461-1 2.344229+0 3.055542-1 2.398833+0 2.944807-1 2.426610+0 2.892550-1 2.454709+0 2.841220-1 2.483133+0 2.790805-1 2.570396+0 2.645088-1 2.600160+0 2.598227-1 2.630268+0 2.552196-1 2.660725+0 2.506981-1 2.691535+0 2.462715-1 2.754229+0 2.376515-1 2.786121+0 2.335806-1 2.818383+0 2.295794-1 2.851018+0 2.256472-1 2.951209+0 2.142675-1 2.985383+0 2.106032-1 3.000000+0 2.090676-1 3.019952+0 2.070016-1 3.054921+0 2.034617-1 3.090295+0 1.999939-1 3.162278+0 1.932345-1 3.198895+0 1.900379-1 3.235937+0 1.868940-1 3.273407+0 1.838026-1 3.427678+0 1.719574-1 3.467369+0 1.691173-1 3.507519+0 1.663242-1 3.548134+0 1.635772-1 3.589219+0 1.608845-1 3.672823+0 1.556312-1 3.715352+0 1.531434-1 3.758374+0 1.506953-1 3.801894+0 1.482866-1 4.000000+0 1.381256-1 4.027170+0 1.368251-1 4.120975+0 1.324925-1 4.168694+0 1.303779-1 4.216965+0 1.283036-1 4.315191+0 1.242535-1 4.365158+0 1.223328-1 4.415704+0 1.204418-1 4.466836+0 1.185801-1 4.677351+0 1.114273-1 4.731513+0 1.097076-1 4.841724+0 1.063473-1 4.897788+0 1.047060-1 4.954502+0 1.030952-1 5.069907+0 9.994770-2 5.128614+0 9.845429-2 5.188000+0 9.698321-2 5.248075+0 9.553420-2 5.495409+0 8.995984-2 5.559043+0 8.861783-2 5.754399+0 8.471075-2 5.821032+0 8.344704-2 5.888437+0 8.220593-2 6.025596+0 7.977883-2 6.095369+0 7.862373-2 6.165950+0 7.748535-2 6.309573+0 7.525797-2 6.606934+0 7.099944-2 6.683439+0 6.997300-2 6.918310+0 6.698186-2 7.000000+0 6.599467-2 7.079458+0 6.506195-2 7.244360+0 6.319990-2 7.328245+0 6.231317-2 7.413102+0 6.143888-2 7.585776+0 5.972705-2 8.035261+0 5.565877-2 8.128305+0 5.487900-2 8.413951+0 5.260460-2 8.511380+0 5.186761-2 8.609938+0 5.114295-2 8.810489+0 4.972389-2 9.015711+0 4.837681-2 9.120108+0 4.771702-2 9.332543+0 4.642439-2 1.000000+1 4.275740-2 1.011579+1 4.217506-2 1.047129+1 4.047508-2 1.059254+1 3.992382-2 1.083927+1 3.884677-2 1.109175+1 3.782464-2 1.122018+1 3.732374-2 1.148154+1 3.634173-2 1.244515+1 3.310779-2 1.258925+1 3.266994-2 1.318257+1 3.097557-2 1.333521+1 3.056591-2 1.348963+1 3.016164-2 1.380384+1 2.937115-2 1.412538+1 2.861895-2 1.428894+1 2.825012-2 1.462177+1 2.752669-2 1.584893+1 2.514002-2 1.603245+1 2.481640-2 1.621810+1 2.449694-2 1.717908+1 2.296029-2 1.737801+1 2.266472-2 1.757924+1 2.237296-2 1.778279+1 2.208569-2 1.819701+1 2.153410-2 1.840772+1 2.126351-2 1.862087+1 2.099658-2 2.089296+1 1.850490-2 2.162719+1 1.781674-2 2.238721+1 1.715417-2 2.400000+1 1.589355-2 2.426610+1 1.570242-2 2.454709+1 1.550979-2 2.630268+1 1.440378-2 2.884032+1 1.305081-2 3.235937+1 1.153689-2 3.467369+1 1.071419-2 3.507519+1 1.058541-2 3.630781+1 1.020862-2 4.073803+1 9.046876-3 4.786301+1 7.639112-3 5.188000+1 7.019643-3 5.248075+1 6.935481-3 5.308844+1 6.853562-3 5.495409+1 6.613661-3 6.237348+1 5.803670-3 7.852356+1 4.576574-3 8.709636+1 4.112609-3 8.810489+1 4.064113-3 8.912509+1 4.016722-3 9.015711+1 3.969898-3 9.440609+1 3.788054-3 1.096478+2 3.252639-3 1.428894+2 2.483977-3 1.640590+2 2.158032-3 1.659587+2 2.132884-3 1.678804+2 2.108229-3 1.698244+2 2.083860-3 1.717908+2 2.059777-3 1.737801+2 2.035973-3 1.862087+2 1.898840-3 2.187762+2 1.613711-3 2.851018+2 1.235201-3 3.273407+2 1.074409-3 3.311311+2 1.061995-3 3.349654+2 1.049791-3 3.388442+2 1.037726-3 3.427678+2 1.025802-3 3.467369+2 1.014016-3 3.715352+2 9.460939-4 4.365158+2 8.047781-4 1.135011+3 3.084224-4 1.303167+3 2.684878-4 1.318257+3 2.654032-4 1.333521+3 2.623637-4 1.348963+3 2.593588-4 1.364583+3 2.563886-4 1.380384+3 2.534526-4 1.479108+3 2.365296-4 3.467369+3 1.008665-4 1.000000+5 3.493014-6 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.890000-6 4.890000-6 7.240000-6 4.890000-6 7.240000-6 5.424649-6 7.650000-6 5.567185-6 7.650000-6 5.913139-6 8.912509-6 6.523372-6 9.350000-6 6.708695-6 9.772372-6 6.859543-6 1.035142-5 7.017730-6 1.085000-5 7.113637-6 1.150000-5 7.196506-6 1.250000-5 7.264730-6 1.412538-5 7.306247-6 2.317395-5 7.350587-6 2.426000-5 7.353891-6 2.426000-5 2.237087-5 2.600160-5 2.165931-5 2.726000-5 2.107396-5 2.726000-5 2.339145-5 2.917427-5 2.268617-5 3.198895-5 2.147716-5 3.467369-5 2.020129-5 4.000000-5 1.756750-5 4.220000-5 1.654004-5 4.330000-5 1.605176-5 4.330000-5 1.631092-5 4.518559-5 1.557860-5 4.731513-5 1.483474-5 4.960000-5 1.414662-5 5.188000-5 1.355940-5 5.350000-5 1.319829-5 5.623413-5 1.268047-5 5.754399-5 1.247157-5 6.025596-5 1.209917-5 6.309573-5 1.178686-5 6.683439-5 1.147198-5 7.000000-5 1.126929-5 7.300000-5 1.111350-5 7.852356-5 1.090116-5 8.518900-5 1.072870-5 9.225714-5 1.061172-5 1.011579-4 1.053486-5 1.135011-4 1.050466-5 1.185900-4 1.051197-5 1.185900-4 1.569515-5 1.207000-4 1.723209-5 1.218000-4 1.797123-5 1.222800-4 1.826693-5 1.222800-4 2.033866-5 1.238000-4 2.139987-5 1.247200-4 2.194571-5 1.258925-4 2.253256-5 1.271000-4 2.299162-5 1.283000-4 2.331747-5 1.298000-4 2.354875-5 1.315000-4 2.362578-5 1.330000-4 2.355397-5 1.353000-4 2.327447-5 1.380384-4 2.277286-5 1.430000-4 2.166044-5 1.500000-4 1.999523-5 1.560000-4 1.867015-5 1.603245-4 1.784431-5 1.640590-4 1.725445-5 1.670000-4 1.687406-5 1.705000-4 1.652539-5 1.740000-4 1.628562-5 1.780000-4 1.613505-5 1.820000-4 1.610709-5 1.865000-4 1.620049-5 1.915000-4 1.642989-5 1.980000-4 1.687850-5 2.050000-4 1.749354-5 2.195600-4 1.895744-5 2.195600-4 2.498802-5 2.406400-4 2.677164-5 2.406400-4 2.870408-5 2.570396-4 2.986611-5 2.786121-4 3.116148-5 2.992500-4 3.218714-5 2.992500-4 3.511606-5 3.320000-4 3.635927-5 3.672823-4 3.734994-5 4.120975-4 3.834667-5 4.677351-4 3.925699-5 5.500000-4 4.027040-5 6.606934-4 4.125649-5 8.128305-4 4.228326-5 9.348600-4 4.295340-5 9.348600-4 7.055262-5 9.559800-4 7.049693-5 9.559800-4 7.415639-5 1.004000-3 7.447131-5 1.228400-3 7.410640-5 1.228400-3 8.072252-5 1.325700-3 8.120085-5 1.325700-3 8.392553-5 1.480100-3 8.496750-5 1.480100-3 8.812077-5 1.900000-3 9.113511-5 2.454709-3 9.439667-5 3.019952-3 9.713699-5 3.801894-3 1.002179-4 4.677351-3 1.029761-4 5.888437-3 1.059946-4 5.954400-3 1.061411-4 5.954400-3 1.467673-4 6.442900-3 1.473440-4 6.442900-3 1.557470-4 6.799800-3 1.560186-4 6.799800-3 1.634220-4 9.800000-3 1.666208-4 1.462177-2 1.701192-4 2.137962-2 1.734614-4 3.054921-2 1.765341-4 4.201000-2 1.791443-4 4.201000-2 1.767628-4 1.096478-1 1.776544-4 4.415705-1 1.782364-4 1.000000+5 1.783338-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.890000-6 0.0 1.222800-4 0.0 1.222800-4 1.449423-9 1.230269-4 1.568411-9 1.238000-4 1.700627-9 1.252000-4 1.947932-9 1.260000-4 2.085695-9 1.265500-4 2.178563-9 1.271000-4 2.266363-9 1.277000-4 2.356367-9 1.283000-4 2.439154-9 1.290000-4 2.525716-9 1.295000-4 2.583612-9 1.303167-4 2.661144-9 1.308000-4 2.701576-9 1.315000-4 2.748091-9 1.322000-4 2.784443-9 1.330000-4 2.812858-9 1.337500-4 2.827692-9 1.345000-4 2.834153-9 1.353000-4 2.831551-9 1.365000-4 2.813521-9 1.375000-4 2.788719-9 1.390000-4 2.738245-9 1.412538-4 2.641560-9 1.430000-4 2.559655-9 1.462177-4 2.395530-9 1.540000-4 1.983201-9 1.584893-4 1.760234-9 1.603245-4 1.673780-9 1.635000-4 1.539192-9 1.660000-4 1.445081-9 1.680000-4 1.378840-9 1.705000-4 1.306814-9 1.720000-4 1.269019-9 1.740000-4 1.225728-9 1.760000-4 1.189603-9 1.780000-4 1.160555-9 1.800000-4 1.138526-9 1.820000-4 1.122775-9 1.842000-4 1.112602-9 1.865000-4 1.109049-9 1.885000-4 1.111280-9 1.908000-4 1.119748-9 1.930000-4 1.133265-9 1.950000-4 1.149400-9 1.980000-4 1.180067-9 2.000000-4 1.204111-9 2.041738-4 1.262068-9 2.089296-4 1.338407-9 2.162719-4 1.469560-9 2.195600-4 1.531119-9 2.195600-4 2.952559-9 2.406400-4 3.290639-9 2.406400-4 3.956289-9 2.570396-4 4.187338-9 2.754229-4 4.415286-9 2.917427-4 4.591704-9 2.992500-4 4.665540-9 2.992500-4 5.291167-9 3.280000-4 5.531396-9 3.507519-4 5.684206-9 3.850000-4 5.878365-9 4.216965-4 6.052896-9 4.623810-4 6.209318-9 5.308844-4 6.420678-9 6.095369-4 6.611843-9 7.161434-4 6.819750-9 8.709636-4 7.063120-9 9.348600-4 7.149522-9 9.348600-4 8.609945-9 9.559800-4 8.612894-9 9.559800-4 5.293837-7 9.885531-4 5.718591-7 9.950000-4 5.791531-7 1.000000-3 5.828745-7 1.004000-3 5.848016-7 1.015000-3 5.869799-7 1.060000-3 5.816475-7 1.202264-3 5.761062-7 1.228400-3 5.756353-7 1.228400-3 6.387809-7 1.325700-3 6.420359-7 1.325700-3 7.261915-7 1.380384-3 7.335520-7 1.480100-3 7.439744-7 1.480100-3 7.954711-7 1.698244-3 8.214303-7 2.089296-3 8.616793-7 2.483133-3 8.959711-7 2.951209-3 9.316996-7 3.507519-3 9.668272-7 4.168694-3 1.002394-6 5.000000-3 1.039218-6 5.954400-3 1.073998-6 5.954400-3 4.424106-4 6.070000-3 4.444645-4 6.442900-3 4.448915-4 6.442900-3 5.589381-4 6.799800-3 5.603705-4 6.799800-3 5.899581-4 8.912509-3 5.956384-4 1.412538-2 6.017128-4 2.483133-2 6.067146-4 4.201000-2 6.101599-4 4.201000-2 2.866438-2 4.954502-2 2.888643-2 6.382635-2 2.914515-2 9.120108-2 2.937005-2 1.531088-1 2.954903-2 4.000000-1 2.965785-2 1.202264+0 2.976769-2 1.000000+5 2.976502-2 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.890000-6 0.0 7.240000-6 2.350000-6 7.240000-6 1.815351-6 7.500000-6 1.988437-6 7.650000-6 2.082815-6 7.650000-6 1.736861-6 7.943282-6 1.890401-6 8.709636-6 2.280364-6 9.015711-6 2.446215-6 9.350000-6 2.641305-6 9.700000-6 2.863853-6 1.011579-5 3.155769-6 1.050000-5 3.450504-6 1.085000-5 3.736363-6 1.127000-5 4.098313-6 1.195000-5 4.716240-6 1.290000-5 5.619953-6 1.480000-5 7.486299-6 2.426000-5 1.690611-5 2.426000-5 1.889125-6 2.454709-5 2.285004-6 2.540973-5 3.495176-6 2.600160-5 4.342286-6 2.726000-5 6.186044-6 2.726000-5 3.868545-6 2.786121-5 4.679583-6 2.884032-5 6.022681-6 3.019952-5 7.934299-6 3.198895-5 1.051179-5 3.467369-5 1.447240-5 4.000000-5 2.243250-5 4.330000-5 2.724824-5 4.330000-5 2.698908-5 4.623810-5 3.103869-5 4.960000-5 3.545338-5 5.350000-5 4.030171-5 5.754399-5 4.507242-5 6.309573-5 5.130887-5 7.161434-5 6.043389-5 8.810489-5 7.743073-5 1.185900-4 1.080780-4 1.185900-4 1.028949-4 1.222800-4 1.040131-4 1.222800-4 1.019399-4 1.252000-4 1.029919-4 1.277000-4 1.045284-4 1.308000-4 1.071831-4 1.353000-4 1.120227-4 1.479108-4 1.274208-4 1.610000-4 1.432693-4 1.720000-4 1.555880-4 1.850000-4 1.688389-4 2.050000-4 1.875052-4 2.195600-4 2.006010-4 2.195600-4 1.945690-4 2.406400-4 2.138651-4 2.406400-4 2.119320-4 2.992500-4 2.670582-4 2.992500-4 2.641286-4 4.050000-4 3.667922-4 7.328245-4 6.910356-4 9.348600-4 8.918995-4 9.348600-4 8.642988-4 9.559800-4 8.854745-4 9.559800-4 8.812942-4 1.228400-3 1.153718-3 1.228400-3 1.147039-3 1.325700-3 1.243857-3 1.325700-3 1.241048-3 1.480100-3 1.394389-3 1.480100-3 1.391184-3 5.754399-3 5.647637-3 5.954400-3 5.847185-3 5.954400-3 5.365222-3 6.442900-3 5.850665-3 6.442900-3 5.728215-3 6.799800-3 6.083411-3 6.799800-3 6.046420-3 4.201000-2 4.122070-2 4.201000-2 1.316886-2 4.365158-2 1.473743-2 5.559043-2 2.639129-2 8.317638-2 5.367639-2 2.371374-1 2.073454-1 1.000000+5 9.999997+4 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.201000-2 4.707225+3 4.300000-2 4.446480+3 4.350000-2 4.329920+3 4.466836-2 4.032262+3 4.600000-2 3.753460+3 5.069907-2 2.908848+3 5.559043-2 2.293080+3 6.237348-2 1.690402+3 7.800000-2 9.242140+2 9.772372-2 4.970967+2 1.244515-1 2.532618+2 2.113489-1 5.726167+1 2.570396-1 3.325787+1 3.019952-1 2.140417+1 3.467369-1 1.477412+1 3.935501-1 1.058885+1 4.415705-1 7.873708+0 4.954502-1 5.897874+0 5.559043-1 4.451402+0 6.165950-1 3.479704+0 6.839117-1 2.739451+0 7.585776-1 2.171679+0 8.511380-1 1.690619+0 9.332543-1 1.392910+0 1.023293+0 1.155981+0 1.174898+0 8.812489-1 1.303167+0 7.232031-1 1.462177+0 5.846431-1 1.640590+0 4.758783-1 1.862087+0 3.823967-1 2.113489+0 3.096920-1 2.398833+0 2.526421-1 2.754229+0 2.038894-1 3.162278+0 1.657839-1 3.672823+0 1.335231-1 4.315191+0 1.066033-1 5.069907+0 8.575001-2 6.025596+0 6.844637-2 7.244360+0 5.422256-2 8.810489+0 4.266094-2 1.083927+1 3.332925-2 1.380384+1 2.519940-2 1.778279+1 1.894936-2 2.426610+1 1.347292-2 3.467369+1 9.192920-3 5.248075+1 5.950749-3 8.810489+1 3.487078-3 1.659587+2 1.830056-3 3.311311+2 9.112171-4 1.318257+3 2.277221-4 1.000000+5 2.997100-6 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.201000-2 1.762600-4 1.000000+5 1.762600-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.201000-2 3.458800-2 1.000000+5 3.458800-2 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.201000-2 7.245740-3 1.000000+5 9.999997+4 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 6.799800-3 1.841462+4 6.920000-3 1.778570+4 7.079458-3 1.716797+4 7.220000-3 1.658230+4 7.413102-3 1.592043+4 7.852356-3 1.438834+4 8.810489-3 1.180002+4 9.332543-3 1.062506+4 1.011579-2 9.130986+3 1.071519-2 8.217402+3 1.174898-2 6.869984+3 1.380384-2 5.006864+3 1.548817-2 3.954941+3 1.778279-2 2.966504+3 2.113489-2 2.044228+3 2.371374-2 1.584456+3 2.722701-2 1.160005+3 3.198895-2 7.988501+2 3.758374-2 5.451621+2 4.415704-2 3.688344+2 5.188000-2 2.475083+2 6.165950-2 1.600525+2 7.328245-2 1.026644+2 8.810489-2 6.342060+1 1.080000-1 3.693850+1 1.303167-1 2.229758+1 2.290868-1 4.827323+0 2.884032-1 2.603037+0 3.388442-1 1.700903+0 3.890451-1 1.189076+0 4.415705-1 8.623617-1 5.011872-1 6.300428-1 5.623413-1 4.770457-1 6.309573-1 3.639860-1 7.079458-1 2.798776-1 7.943282-1 2.169043-1 8.810489-1 1.735931-1 9.660509-1 1.434126-1 1.096478+0 1.114310-1 1.250000+0 8.645401-2 1.412538+0 6.881182-2 1.584893+0 5.589507-2 1.798871+0 4.481581-2 2.044000+0 3.615000-2 2.317395+0 2.948534-2 2.660725+0 2.374723-2 3.054921+0 1.927272-2 3.548134+0 1.549454-2 4.168694+0 1.235012-2 4.897788+0 9.918382-3 5.821032+0 7.904955-3 7.000000+0 6.251800-3 8.511380+0 4.913706-3 1.059254+1 3.782709-3 1.348963+1 2.857908-3 1.757924+1 2.120200-3 2.426610+1 1.488305-3 3.467369+1 1.015572-3 5.188000+1 6.652667-4 8.709636+1 3.897631-4 1.659587+2 2.021553-4 3.311311+2 1.006557-4 1.318257+3 2.515522-5 1.000000+5 3.310700-7 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 6.799800-3 2.113500-4 1.000000+5 2.113500-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.799800-3 7.815000-4 1.000000+5 7.815000-4 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 6.799800-3 5.806950-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 6.442900-3 3.666622+4 6.570000-3 3.527200+4 6.660000-3 3.422400+4 7.000000-3 3.020300+4 8.128305-3 2.040900+4 8.912509-3 1.590000+4 1.023293-2 1.084800+4 1.244515-2 6.268800+3 1.400000-2 4.460000+3 1.603245-2 3.005300+3 1.972423-2 1.621500+3 2.426610-2 8.640300+2 2.985383-2 4.552700+2 3.630781-2 2.463500+2 4.466836-2 1.275400+2 5.623413-2 6.090800+1 7.762471-2 2.144900+1 1.216186-1 4.998200+0 1.531088-1 2.382800+0 1.840772-1 1.326600+0 2.089296-1 8.914400-1 2.426610-1 5.622500-1 2.917427-1 3.209790-1 3.311311-1 2.203699-1 3.715352-1 1.576243-1 4.168694-1 1.135420-1 4.677351-1 8.241284-2 5.188000-1 6.219193-2 5.754399-1 4.725794-2 6.382635-1 3.617091-2 7.244360-1 2.632964-2 7.943282-1 2.098726-2 8.609938-1 1.733051-2 9.225714-1 1.480452-2 9.885531-1 1.273812-2 1.071519+0 1.078681-2 1.174898+0 8.989432-3 1.288250+0 7.548495-3 1.428894+0 6.250686-3 1.698244+0 4.604004-3 1.927525+0 3.705578-3 2.187762+0 3.006501-3 2.483133+0 2.457118-3 2.851018+0 1.986734-3 3.273407+0 1.618308-3 3.801894+0 1.305666-3 4.466836+0 1.044116-3 5.248075+0 8.412065-4 6.309573+0 6.626134-4 7.585776+0 5.258888-4 9.332543+0 4.087356-4 1.148154+1 3.199704-4 1.462177+1 2.424019-4 1.840772+1 1.872818-4 2.454709+1 1.366430-4 3.507519+1 9.325351-5 5.308844+1 6.037812-5 9.015711+1 3.497157-5 1.737801+2 1.793523-5 3.467369+2 8.932829-6 1.380384+3 2.232901-6 1.000000+5 3.077500-8 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 6.442900-3 1.787000-4 1.000000+5 1.787000-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.442900-3 8.704600-4 1.000000+5 8.704600-4 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.442900-3 5.393740-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 5.954400-3 7.901706+4 6.070000-3 7.617040+4 6.190000-3 7.263360+4 6.531306-3 6.308726+4 7.585776-3 4.196973+4 8.413951-3 3.135232+4 9.800000-3 2.025084+4 1.161449-2 1.237759+4 1.364583-2 7.647362+3 1.513561-2 5.595123+3 1.840772-2 3.064055+3 2.187762-2 1.783321+3 2.570396-2 1.067697+3 3.019952-2 6.347500+2 3.589219-2 3.609818+2 4.365158-2 1.888682+2 5.370318-2 9.435223+1 6.839116-2 4.164881+1 1.318257-1 4.448510+0 1.621810-1 2.211090+0 1.949845-1 1.196422+0 2.238721-1 7.600012-1 2.540973-1 5.048046-1 2.851018-1 3.503003-1 3.198895-1 2.448322-1 3.548134-1 1.785734-1 3.935501-1 1.312006-1 4.365158-1 9.713202-2 4.786301-1 7.485691-2 5.248075-1 5.809036-2 5.754399-1 4.539963-2 6.309573-1 3.573069-2 6.918310-1 2.832367-2 7.585776-1 2.261572-2 8.317638-1 1.818872-2 9.332543-1 1.397247-2 9.885531-1 1.232008-2 1.071519+0 1.042874-2 1.174898+0 8.689688-3 1.273503+0 7.454969-3 1.412538+0 6.169839-3 1.698244+0 4.452364-3 1.927525+0 3.583418-3 2.187762+0 2.907471-3 2.483133+0 2.376180-3 2.851018+0 1.921236-3 3.273407+0 1.564936-3 3.801894+0 1.262605-3 4.466836+0 1.009682-3 5.248075+0 8.134629-4 6.309573+0 6.407571-4 7.585776+0 5.085406-4 9.332543+0 3.952531-4 1.148154+1 3.094170-4 1.462177+1 2.344044-4 1.840772+1 1.811086-4 2.454709+1 1.321333-4 3.507519+1 9.017895-5 5.308844+1 5.838714-5 9.015711+1 3.381771-5 1.737801+2 1.734411-5 3.467369+2 8.638124-6 1.380384+3 2.159320-6 1.000000+5 2.976000-8 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 5.954400-3 1.687200-4 1.000000+5 1.687200-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.954400-3 6.808900-4 1.000000+5 6.808900-4 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 5.954400-3 5.104790-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.480100-3 5.440052+4 1.570000-3 5.105920+4 1.800000-3 4.269340+4 2.213095-3 3.157889+4 2.511886-3 2.613356+4 2.722701-3 2.298317+4 3.311311-3 1.666804+4 3.758374-3 1.340431+4 4.315191-3 1.051926+4 5.188000-3 7.527311+3 6.000000-3 5.735160+3 6.918310-3 4.369271+3 8.128305-3 3.188386+3 9.660509-3 2.256135+3 1.150000-2 1.578112+3 1.350000-2 1.127526+3 1.584893-2 7.996502+2 1.840772-2 5.765125+2 2.150000-2 4.077620+2 2.540973-2 2.787245+2 2.985383-2 1.916093+2 3.507519-2 1.307523+2 4.120975-2 8.856494+1 4.841724-2 5.955733+1 5.754399-2 3.862624+1 6.839116-2 2.486092+1 8.222426-2 1.541822+1 1.000000-1 9.207540+0 1.273503-1 4.827837+0 1.603245-1 2.594899+0 2.317395-1 9.575742-1 2.851018-1 5.501774-1 3.388442-1 3.491053-1 3.935501-1 2.371333-1 4.466836-1 1.721227-1 5.011872-1 1.294580-1 5.623413-1 9.806054-2 6.309573-1 7.483391-2 7.079458-1 5.756021-2 7.852356-1 4.576303-2 8.709636-1 3.659449-2 9.549926-1 3.019671-2 1.059254+0 2.452912-2 1.202264+0 1.915410-2 1.348963+0 1.540719-2 1.513561+0 1.248140-2 1.698244+0 1.017992-2 1.927525+0 8.197375-3 2.187762+0 6.651886-3 2.483133+0 5.436459-3 2.851018+0 4.395600-3 3.273407+0 3.580352-3 3.801894+0 2.888600-3 4.466836+0 2.310016-3 5.248075+0 1.861128-3 6.309573+0 1.465948-3 7.585776+0 1.163441-3 9.332543+0 9.042923-4 1.148154+1 7.079001-4 1.462177+1 5.362861-4 1.840772+1 4.143572-4 2.454709+1 3.023099-4 3.507519+1 2.063176-4 5.248075+1 1.351916-4 8.912509+1 7.828964-5 1.698244+2 4.061699-5 3.388442+2 2.022667-5 1.348963+3 5.055439-6 1.000000+5 6.808800-8 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.480100-3 1.591400-4 1.000000+5 1.591400-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.480100-3 1.955300-6 1.000000+5 1.955300-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.480100-3 1.319005-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.325700-3 8.517155+4 1.344000-3 8.518008+4 1.363000-3 8.449859+4 1.390000-3 8.313019+4 1.445440-3 8.012310+4 1.531087-3 7.537169+4 1.603245-3 7.137329+4 1.757924-3 6.329791+4 1.900000-3 5.685180+4 2.041738-3 5.123924+4 2.213095-3 4.528270+4 2.371374-3 4.046250+4 2.754229-3 3.126940+4 2.951209-3 2.762203+4 3.273407-3 2.271404+4 3.650000-3 1.838236+4 4.027170-3 1.505794+4 4.570882-3 1.155643+4 5.069907-3 9.229801+3 5.688529-3 7.143794+3 6.382635-3 5.483249+3 7.079458-3 4.297659+3 8.128305-3 3.076926+3 9.225714-3 2.245791+3 1.035142-2 1.675841+3 1.174898-2 1.205856+3 1.350000-2 8.334700+2 1.548817-2 5.736831+2 1.778279-2 3.909406+2 2.041738-2 2.644061+2 2.371374-2 1.716920+2 2.754229-2 1.106417+2 3.235937-2 6.837150+1 3.801894-2 4.193615+1 4.518559-2 2.466107+1 5.370318-2 1.440428+1 6.760830-2 6.973786+0 9.772372-2 2.161811+0 1.396368-1 6.937361-1 1.737801-1 3.479718-1 2.089296-1 1.960424-1 2.426610-1 1.237890-1 2.786121-1 8.152607-2 3.198895-1 5.409732-2 3.630781-1 3.743014-2 4.073803-1 2.697862-2 4.570882-1 1.960053-2 5.128614-1 1.434845-2 5.688529-1 1.090811-2 6.309573-1 8.351675-3 6.998420-1 6.442809-3 7.762471-1 5.008414-3 8.709636-1 3.807354-3 9.332543-1 3.251425-3 9.885531-1 2.867493-3 1.071519+0 2.427019-3 1.161449+0 2.067944-3 1.273503+0 1.734937-3 1.412538+0 1.436119-3 1.698244+0 1.036602-3 1.927525+0 8.343716-4 2.187762+0 6.770575-4 2.483133+0 5.534068-4 2.851018+0 4.475201-4 3.273407+0 3.645435-4 3.801894+0 2.941116-4 4.466836+0 2.351959-4 5.248075+0 1.894896-4 6.309573+0 1.492589-4 7.585776+0 1.184670-4 9.332543+0 9.207227-5 1.148154+1 7.207663-5 1.462177+1 5.460330-5 1.862087+1 4.165567-5 2.454709+1 3.078062-5 3.507519+1 2.100721-5 5.248075+1 1.376459-5 8.912509+1 7.971228-6 1.698244+2 4.135527-6 3.388442+2 2.059438-6 1.348963+3 5.147302-7 1.000000+5 6.932500-9 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.325700-3 1.310500-4 1.000000+5 1.310500-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.325700-3 2.181700-6 1.000000+5 2.181700-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.325700-3 1.192468-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.228400-3 2.224758+5 1.250000-3 2.190448+5 1.333521-3 2.036924+5 1.445440-3 1.835036+5 1.531087-3 1.690903+5 1.737801-3 1.396127+5 1.883649-3 1.228176+5 2.018366-3 1.095540+5 2.187762-3 9.520118+4 2.570396-3 7.082444+4 2.786121-3 6.071189+4 3.162278-3 4.711420+4 3.500000-3 3.823076+4 3.935501-3 2.973603+4 4.365158-3 2.367954+4 4.897788-3 1.823672+4 5.432503-3 1.433158+4 6.165950-3 1.058781+4 6.918310-3 7.980113+3 7.800000-3 5.901320+3 8.810489-3 4.311536+3 1.000000-2 3.087328+3 1.135011-2 2.194117+3 1.288250-2 1.547971+3 1.450000-2 1.110344+3 1.640590-2 7.797917+2 1.862087-2 5.390922+2 2.113489-2 3.702919+2 2.454709-2 2.356424+2 2.851018-2 1.487207+2 3.311311-2 9.316663+1 3.890451-2 5.585376+1 4.570882-2 3.323478+1 5.495409-2 1.821645+1 6.683439-2 9.541655+0 8.810489-2 3.793424+0 1.428894-1 7.483526-1 1.737801-1 3.904327-1 2.065380-1 2.215060-1 2.371374-1 1.416397-1 2.691535-1 9.466247-2 3.019952-1 6.607582-2 3.388442-1 4.647921-2 3.758374-1 3.409289-2 4.216965-1 2.434929-2 4.677351-1 1.812530-2 5.128614-1 1.404325-2 5.623413-1 1.096160-2 6.165950-1 8.618575-3 6.760830-1 6.826876-3 7.413102-1 5.446187-3 8.511380-1 3.920903-3 9.120108-1 3.346158-3 9.772372-1 2.875447-3 1.047129+0 2.490202-3 1.148154+0 2.071323-3 1.258925+0 1.735871-3 1.396368+0 1.435070-3 1.678804+0 1.034693-3 1.905461+0 8.322176-4 2.162719+0 6.747733-4 2.454709+0 5.511279-4 2.818383+0 4.453207-4 3.235937+0 3.625131-4 3.758374+0 2.923068-4 4.415704+0 2.336257-4 5.188000+0 1.881238-4 6.165950+0 1.503067-4 7.413102+0 1.191830-4 9.120108+0 9.255658-5 1.122018+1 7.239773-5 1.428894+1 5.480161-5 1.819701+1 4.178160-5 2.454709+1 3.009819-5 3.507519+1 2.054167-5 5.308844+1 1.329911-5 9.015711+1 7.703131-6 1.717908+2 3.997031-6 3.427678+2 1.990496-6 1.364583+3 4.975486-7 1.000000+5 6.778800-9 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.228400-3 1.258200-4 1.000000+5 1.258200-4 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.228400-3 1.069200-6 1.000000+5 1.069200-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.228400-3 1.101511-3 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 9.559800-4 7.708928+5 9.865000-4 8.021438+5 9.950000-4 8.073718+5 1.000000-3 8.063654+5 1.004000-3 8.033764+5 1.015000-3 7.889083+5 1.025900-3 7.691707+5 1.060000-3 7.046760+5 1.135011-3 5.985262+5 1.244515-3 4.828296+5 1.350000-3 3.963724+5 1.462177-3 3.243772+5 1.584893-3 2.633172+5 1.737801-3 2.059147+5 1.950000-3 1.500904+5 2.089296-3 1.236762+5 2.426610-3 8.016421+4 2.660725-3 6.104473+4 3.090295-3 3.877068+4 3.400000-3 2.883960+4 3.935501-3 1.816450+4 4.415704-3 1.251612+4 4.954502-3 8.572289+3 5.688529-3 5.392786+3 6.456542-3 3.497084+3 7.244360-3 2.344329+3 8.222426-3 1.499798+3 9.500000-3 8.935200+2 1.096478-2 5.296441+2 1.258925-2 3.174353+2 1.450000-2 1.865752+2 1.659587-2 1.114853+2 1.905461-2 6.538374+1 2.213095-2 3.642893+1 2.630268-2 1.840120+1 3.162278-2 8.810319+0 3.890451-2 3.815592+0 5.128614-2 1.238359+0 8.317638-2 1.717225-1 1.035142-1 7.069744-2 1.258925-1 3.220912-2 1.479108-1 1.698187-2 1.717908-1 9.444619-3 1.972423-1 5.537275-3 2.238721-1 3.416815-3 2.511886-1 2.218184-3 2.786121-1 1.513423-3 3.054921-1 1.083915-3 3.388442-1 7.505205-4 3.758374-1 5.232865-4 4.216965-1 3.531908-4 4.677351-1 2.497232-4 5.188000-1 1.779313-4 5.688529-1 1.325936-4 6.095369-1 1.069446-4 6.606935-1 8.385467-5 7.161434-1 6.619564-5 8.609938-1 3.916692-5 9.120108-1 3.345605-5 9.549926-1 2.966974-5 1.000000+0 2.648199-5 1.047129+0 2.381207-5 1.096478+0 2.156385-5 1.148154+0 1.964629-5 1.216186+0 1.760828-5 1.318257+0 1.522639-5 1.513561+0 1.202120-5 1.819701+0 8.709666-6 2.018366+0 7.308497-6 2.290868+0 5.946428-6 2.630268+0 4.786013-6 3.019952+0 3.881774-6 3.507519+0 3.118939-6 4.120975+0 2.484606-6 4.841724+0 1.994312-6 5.754399+0 1.588595-6 6.918310+0 1.256144-6 8.413951+0 9.865847-7 1.047129+1 7.591958-7 1.318257+1 5.810027-7 1.717908+1 4.306794-7 2.400000+1 2.982000-7 3.467369+1 2.010702-7 5.188000+1 1.317189-7 8.709636+1 7.717186-8 1.640590+2 4.049554-8 3.273407+2 2.016190-8 1.303167+3 5.038410-9 1.000000+5 6.55510-11 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 9.559800-4 8.263600-5 1.000000+5 8.263600-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.559800-4 1.736100-6 1.000000+5 1.736100-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 9.559800-4 8.716079-4 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 9.348600-4 1.383604+6 1.030000-3 1.106052+6 1.050000-3 1.052832+6 1.110000-3 9.211320+5 1.216186-3 7.425835+5 1.318257-3 6.098014+5 1.428894-3 4.973444+5 1.570000-3 3.888348+5 1.737801-3 2.955113+5 1.972423-3 2.079606+5 2.137962-3 1.649973+5 2.483133-3 1.063497+5 2.722701-3 8.056572+4 3.126079-3 5.271066+4 3.507519-3 3.669986+4 3.935501-3 2.538523+4 4.466836-3 1.678108+4 5.011872-3 1.143445+4 5.623413-3 7.739184+3 6.382635-3 4.999676+3 7.300000-3 3.119574+3 8.317638-3 1.957016+3 9.500000-3 1.207740+3 1.071519-2 7.749005+2 1.202264-2 5.039360+2 1.350000-2 3.249402+2 1.531087-2 2.004997+2 1.737801-2 1.225656+2 2.018366-2 6.800832+1 2.344229-2 3.744654+1 2.754229-2 1.954987+1 3.273407-2 9.672053+0 3.981072-2 4.320355+0 5.128614-2 1.508626+0 8.609938-2 1.737029-1 1.059254-1 7.362610-2 1.244515-1 3.802022-2 1.445440-1 2.073344-2 1.659587-1 1.193649-2 1.862087-1 7.585743-3 2.000000-1 5.745996-3 2.041738-1 5.326459-3 2.264644-1 3.587193-3 2.511886-1 2.432205-3 2.786121-1 1.660755-3 3.090295-1 1.142474-3 3.388442-1 8.248176-4 3.672823-1 6.240396-4 4.000000-1 4.677307-4 4.315191-1 3.646782-4 4.677351-1 2.819208-4 5.069907-1 2.196031-4 5.495409-1 1.724331-4 5.956621-1 1.363507-4 6.456542-1 1.085351-4 7.079458-1 8.425516-5 8.709636-1 4.854317-5 9.225714-1 4.193145-5 9.660509-1 3.750424-5 1.011579+0 3.374680-5 1.071519+0 2.980371-5 1.135011+0 2.649907-5 1.216186+0 2.318592-5 1.318257+0 2.000018-5 1.840772+0 1.116221-5 2.044000+0 9.358679-6 2.317395+0 7.633374-6 2.660725+0 6.147829-6 3.054921+0 4.989396-6 3.548134+0 4.011286-6 4.168694+0 3.197251-6 4.897788+0 2.567718-6 5.821032+0 2.046428-6 7.000000+0 1.618500-6 8.511380+0 1.272108-6 1.047129+1 9.926438-7 1.318257+1 7.596741-7 1.717908+1 5.631254-7 2.400000+1 3.899000-7 3.467369+1 2.629068-7 5.188000+1 1.722320-7 8.709636+1 1.009047-7 1.640590+2 5.294895-8 3.273407+2 2.636142-8 1.303167+3 6.587831-9 1.000000+5 8.57100-11 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 9.348600-4 8.035800-5 1.000000+5 8.035800-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.348600-4 9.128800-9 1.000000+5 9.128800-9 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.348600-4 8.544929-4 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 2.992500-4 1.260386+5 3.320000-4 1.197547+5 3.430000-4 1.168842+5 4.100000-4 1.008470+5 4.365158-4 9.511837+4 5.069907-4 8.105670+4 5.500000-4 7.396220+4 6.000000-4 6.651360+4 6.918310-4 5.540013+4 7.585776-4 4.891936+4 8.810489-4 3.956243+4 9.885531-4 3.337552+4 1.150000-3 2.647440+4 1.333521-3 2.092126+4 1.548817-3 1.637305+4 1.819701-3 1.248308+4 2.162719-3 9.261803+3 2.570396-3 6.824023+3 3.126079-3 4.789499+3 3.801894-3 3.336213+3 4.623810-3 2.306876+3 5.623413-3 1.583456+3 6.760830-3 1.102996+3 8.035261-3 7.804927+2 9.660509-3 5.356170+2 1.161449-2 3.646034+2 1.380384-2 2.523639+2 1.640590-2 1.734152+2 1.949845-2 1.182751+2 2.317395-2 8.002971+1 2.754229-2 5.372102+1 3.235937-2 3.675978+1 3.845918-2 2.428700+1 4.570882-2 1.591946+1 5.370318-2 1.065546+1 6.382635-2 6.878932+0 7.673615-2 4.280695+0 9.120108-2 2.723469+0 1.148154-1 1.477619+0 1.531088-1 6.819967-1 2.290868-1 2.292930-1 2.818383-1 1.317283-1 3.349654-1 8.355941-2 3.890451-1 5.673420-2 4.415705-1 4.116652-2 5.011872-1 3.009018-2 5.623413-1 2.279403-2 6.309573-1 1.739535-2 7.079458-1 1.338008-2 7.852356-1 1.063761-2 8.709636-1 8.506189-3 9.549926-1 7.018765-3 1.059254+0 5.701015-3 1.202264+0 4.451762-3 1.348963+0 3.580969-3 1.513561+0 2.900967-3 1.698244+0 2.365978-3 1.927525+0 1.905203-3 2.187762+0 1.546092-3 2.483133+0 1.263590-3 2.851018+0 1.021620-3 3.273407+0 8.321237-4 3.801894+0 6.713486-4 4.466836+0 5.368693-4 5.248075+0 4.325431-4 6.309573+0 3.407097-4 7.585776+0 2.704060-4 9.332543+0 2.101704-4 1.148154+1 1.645267-4 1.462177+1 1.246431-4 1.840772+1 9.630157-5 2.454709+1 7.026071-5 3.507519+1 4.795097-5 5.308844+1 3.104580-5 9.015711+1 1.798208-5 1.717908+2 9.330460-6 3.427678+2 4.646697-6 1.364583+3 1.161503-6 1.000000+5 1.582500-8 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 2.992500-4 7.816700-5 1.000000+5 7.816700-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.992500-4 1.448700-8 1.000000+5 1.448700-8 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 2.992500-4 2.210685-4 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.406400-4 1.024287+5 3.311311-4 9.539143+4 3.600000-4 9.331080+4 3.890451-4 9.091966+4 4.216965-4 8.779877+4 4.518559-4 8.461655+4 4.850000-4 8.086200+4 5.300000-4 7.576520+4 5.688529-4 7.151074+4 6.095369-4 6.717791+4 6.700000-4 6.116640+4 7.328245-4 5.557115+4 8.035261-4 4.994746+4 8.912509-4 4.394972+4 9.772372-4 3.895449+4 1.083927-3 3.375371+4 1.202264-3 2.904167+4 1.350000-3 2.434480+4 1.500000-3 2.059000+4 1.678804-3 1.709375+4 1.883649-3 1.403065+4 2.113489-3 1.143625+4 2.400000-3 9.053680+3 2.722701-3 7.123973+3 3.090295-3 5.557417+3 3.500000-3 4.321900+3 3.935501-3 3.388049+3 4.466836-3 2.586297+3 5.069907-3 1.959358+3 5.754399-3 1.473266+3 6.531306-3 1.099101+3 7.413102-3 8.136283+2 8.413951-3 5.977420+2 9.549926-3 4.359082+2 1.083927-2 3.156383+2 1.230269-2 2.269571+2 1.412538-2 1.571575+2 1.621810-2 1.079807+2 1.862087-2 7.363546+1 2.137962-2 4.984515+1 2.483133-2 3.240212+1 2.884032-2 2.090266+1 3.349654-2 1.338656+1 3.935501-2 8.224243+0 4.731513-2 4.675469+0 5.688529-2 2.637219+0 7.244360-2 1.233055+0 1.462177-1 1.330316-1 1.798871-1 6.942463-2 2.162719-1 3.922517-2 2.511886-1 2.483269-2 2.884032-1 1.639701-2 3.273407-1 1.128535-2 3.715352-1 7.824909-3 4.168694-1 5.649175-3 4.677351-1 4.108593-3 5.188000-1 3.105691-3 5.754399-1 2.363572-3 6.382635-1 1.811752-3 7.079458-1 1.399143-3 7.852356-1 1.088721-3 8.709636-1 8.506480-4 9.332543-1 7.263699-4 9.885531-1 6.405462-4 1.071519+0 5.421053-4 1.161449+0 4.618857-4 1.273503+0 3.875011-4 1.412538+0 3.207580-4 1.698244+0 2.314972-4 1.927525+0 1.863151-4 2.187762+0 1.511814-4 2.483133+0 1.235581-4 2.851018+0 9.989881-5 3.273407+0 8.136923-5 3.801894+0 6.564761-5 4.466836+0 5.249808-5 5.248075+0 4.229659-5 6.309573+0 3.331615-5 7.585776+0 2.644161-5 9.332543+0 2.055155-5 1.148154+1 1.608847-5 1.462177+1 1.218764-5 1.862087+1 9.297825-6 2.454709+1 6.870487-6 3.507519+1 4.688893-6 5.308844+1 3.035905-6 9.015711+1 1.758402-6 1.717908+2 9.123850-7 3.427678+2 4.543785-7 1.364583+3 1.135783-7 1.000000+5 1.547400-9 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.406400-4 6.478000-5 1.000000+5 6.478000-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.406400-4 1.638300-8 1.000000+5 1.638300-8 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.406400-4 1.758436-4 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.195600-4 3.351900+5 2.500000-4 3.205106+5 2.851018-4 3.037931+5 3.200000-4 2.868152+5 3.507519-4 2.718531+5 3.801894-4 2.574314+5 4.120975-4 2.420977+5 4.466836-4 2.258165+5 4.897788-4 2.068954+5 5.308844-4 1.905174+5 5.800000-4 1.727108+5 6.456542-4 1.520256+5 7.079458-4 1.353270+5 7.852356-4 1.177961+5 8.709636-4 1.018261+5 9.700000-4 8.685680+4 1.083927-3 7.318473+4 1.216186-3 6.081560+4 1.364583-3 5.016000+4 1.531087-3 4.108025+4 1.737801-3 3.272178+4 1.972423-3 2.585378+4 2.238721-3 2.026892+4 2.511886-3 1.614059+4 2.818383-3 1.277498+4 3.198895-3 9.808728+3 3.630781-3 7.476025+3 4.120975-3 5.657502+3 4.677351-3 4.249420+3 5.248075-3 3.254634+3 5.888437-3 2.477277+3 6.683439-3 1.821396+3 7.585776-3 1.328643+3 8.511380-3 9.908660+2 9.660509-3 7.123707+2 1.096478-2 5.084866+2 1.244515-2 3.603978+2 1.412538-2 2.536611+2 1.603245-2 1.773189+2 1.840772-2 1.190737+2 2.113489-2 7.934013+1 2.426610-2 5.246636+1 2.786121-2 3.445005+1 3.198895-2 2.246628+1 3.715352-2 1.403674+1 4.365158-2 8.395787+0 5.128614-2 4.986714+0 6.237348-2 2.625576+0 7.943282-2 1.178182+0 1.059254-1 4.502619-1 1.445440-1 1.589053-1 1.757924-1 8.301159-2 2.089296-1 4.715404-2 2.398833-1 3.019168-2 2.722701-1 2.020349-2 3.054921-1 1.411882-2 3.427678-1 9.940778-3 3.801894-1 7.299672-3 4.216965-1 5.399364-3 4.677351-1 4.024809-3 5.128614-1 3.120870-3 5.623413-1 2.436226-3 6.165950-1 1.915263-3 6.760830-1 1.516976-3 7.413102-1 1.210099-3 8.511380-1 8.713417-4 9.120108-1 7.437712-4 9.772372-1 6.392710-4 1.047129+0 5.537094-4 1.148154+0 4.606063-4 1.258925+0 3.860010-4 1.396368+0 3.190943-4 1.678804+0 2.300492-4 1.905461+0 1.850308-4 2.162719+0 1.500292-4 2.454709+0 1.225395-4 2.818383+0 9.901410-5 3.235937+0 8.060171-5 3.758374+0 6.499137-5 4.415704+0 5.194505-5 5.188000+0 4.182909-5 6.165950+0 3.342045-5 7.413102+0 2.649989-5 9.120108+0 2.057893-5 1.122018+1 1.609740-5 1.428894+1 1.218447-5 1.840772+1 9.172337-6 2.454709+1 6.692075-6 3.507519+1 4.567110-6 5.308844+1 2.957055-6 8.912509+1 1.733061-6 1.698244+2 8.991031-7 3.388442+2 4.477407-7 1.348963+3 1.119143-7 1.000000+5 1.507200-9 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.195600-4 5.450300-5 1.000000+5 5.450300-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.195600-4 9.909400-9 1.000000+5 9.909400-9 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.195600-4 1.650471-4 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.222800-4 4.993280+5 1.236000-4 6.063840+5 1.244515-4 6.818186+5 1.252000-4 7.491560+5 1.258925-4 8.108270+5 1.265500-4 8.671720+5 1.271000-4 9.115360+5 1.277000-4 9.562160+5 1.283000-4 9.963760+5 1.288500-4 1.028680+6 1.295000-4 1.060740+6 1.302000-4 1.087612+6 1.308000-4 1.104240+6 1.315000-4 1.116512+6 1.322000-4 1.121396+6 1.330000-4 1.118960+6 1.337500-4 1.110032+6 1.345000-4 1.095704+6 1.353000-4 1.075648+6 1.365000-4 1.038776+6 1.375000-4 1.003844+6 1.390000-4 9.477000+5 1.407000-4 8.823120+5 1.430000-4 7.958800+5 1.460000-4 6.912840+5 1.492000-4 5.922000+5 1.531087-4 4.889215+5 1.603245-4 3.457603+5 1.635000-4 2.999672+5 1.660000-4 2.702156+5 1.680000-4 2.499680+5 1.705000-4 2.286208+5 1.720000-4 2.177080+5 1.740000-4 2.051340+5 1.760000-4 1.946196+5 1.780000-4 1.859472+5 1.800000-4 1.789072+5 1.820000-4 1.733224+5 1.842000-4 1.686724+5 1.865000-4 1.652856+5 1.885000-4 1.634196+5 1.908000-4 1.623612+5 1.930000-4 1.623024+5 1.950000-4 1.629548+5 1.980000-4 1.650096+5 2.000000-4 1.669928+5 2.040000-4 1.721432+5 2.089296-4 1.801551+5 2.162719-4 1.942362+5 2.317395-4 2.272265+5 2.401600-4 2.450718+5 2.483133-4 2.613177+5 2.570396-4 2.771893+5 2.660725-4 2.917333+5 2.754229-4 3.047105+5 2.851018-4 3.159926+5 2.951209-4 3.255141+5 3.054921-4 3.332395+5 3.162278-4 3.391537+5 3.280000-4 3.434568+5 3.427678-4 3.460646+5 3.589219-4 3.459786+5 3.758374-4 3.432888+5 3.935501-4 3.383327+5 4.120975-4 3.312958+5 4.350000-4 3.207356+5 4.600000-4 3.078156+5 4.850000-4 2.941544+5 5.150000-4 2.773296+5 5.495409-4 2.580882+5 5.888437-4 2.371739+5 6.237348-4 2.196988+5 6.700000-4 1.982804+5 7.161434-4 1.790862+5 7.673615-4 1.600883+5 8.317638-4 1.393711+5 9.000000-4 1.208116+5 9.772372-4 1.032546+5 1.059254-3 8.794665+4 1.161449-3 7.260828+4 1.258925-3 6.099280+4 1.380384-3 4.962747+4 1.530000-3 3.906612+4 1.659587-3 3.214520+4 1.840772-3 2.489104+4 2.041738-3 1.912066+4 2.300000-3 1.398832+4 2.570396-3 1.035875+4 2.900000-3 7.407400+3 3.235937-3 5.417426+3 3.589219-3 4.002631+3 4.027170-3 2.836744+3 4.466836-3 2.066659+3 5.000000-3 1.453268+3 5.559043-3 1.036388+3 6.237348-3 7.124787+2 7.000000-3 4.857240+2 7.852356-3 3.292073+2 8.810489-3 2.213528+2 1.000000-2 1.419936+2 1.135011-2 9.038423+1 1.288250-2 5.710602+1 1.462177-2 3.582527+1 1.678804-2 2.137709+1 1.927525-2 1.265988+1 2.213095-2 7.443208+0 2.570396-2 4.155992+0 3.019952-2 2.202373+0 3.630781-2 1.057357+0 4.518559-2 4.386299-1 8.912509-2 2.789132-2 1.096478-1 1.210237-2 1.303167-1 6.075144-3 1.531088-1 3.216184-3 1.757924-1 1.877321-3 2.018366-1 1.103893-3 2.290868-1 6.833053-4 2.570396-1 4.448831-4 2.884032-1 2.917969-4 3.198895-1 2.010910-4 3.548134-1 1.395612-4 3.935501-1 9.754057-5 4.365158-1 6.863183-5 4.786301-1 5.055664-5 5.188000-1 3.892980-5 5.688529-1 2.908891-5 6.237348-1 2.189066-5 6.839117-1 1.658960-5 7.498942-1 1.266943-5 8.609938-1 8.528395-6 9.120108-1 7.280413-6 9.549926-1 6.454441-6 1.000000+0 5.760100-6 1.047129+0 5.179237-6 1.096478+0 4.690163-6 1.148154+0 4.273053-6 1.216186+0 3.829783-6 1.318257+0 3.311786-6 1.513561+0 2.614800-6 1.819701+0 1.894632-6 2.018366+0 1.589678-6 2.290868+0 1.293250-6 2.600160+0 1.059582-6 3.000000+0 8.527000-7 3.467369+0 6.897182-7 4.027170+0 5.580048-7 4.731513+0 4.474132-7 5.559043+0 3.614042-7 6.683439+0 2.853671-7 8.128305+0 2.238217-7 1.011579+1 1.720159-7 1.258925+1 1.332447-7 1.621810+1 9.989893-8 2.238721+1 6.996160-8 3.235937+1 4.706319-8 4.786301+1 3.116083-8 7.852356+1 1.866883-8 1.428894+2 1.013249-8 2.851018+2 5.040172-9 1.135011+3 1.258677-9 1.000000+5 1.42580-11 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.222800-4 3.612800-5 1.000000+5 3.612800-5 1 59000 7 7 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.222800-4 1.249600-8 1.000000+5 1.249600-8 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.222800-4 8.613950-5 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.185900-4 7.452120+5 1.193000-4 8.384340+5 1.200000-4 9.355740+5 1.207000-4 1.034670+6 1.212000-4 1.105632+6 1.218000-4 1.189278+6 1.223000-4 1.256910+6 1.227000-4 1.309134+6 1.232000-4 1.371366+6 1.238000-4 1.440396+6 1.245000-4 1.511820+6 1.252000-4 1.571976+6 1.257000-4 1.607532+6 1.262000-4 1.636698+6 1.268100-4 1.663614+6 1.275000-4 1.682886+6 1.283000-4 1.691364+6 1.290000-4 1.687728+6 1.298000-4 1.672656+6 1.305000-4 1.651512+6 1.315000-4 1.611048+6 1.325000-4 1.561758+6 1.337200-4 1.493936+6 1.350000-4 1.417944+6 1.365000-4 1.327050+6 1.380384-4 1.235163+6 1.401000-4 1.117629+6 1.430000-4 9.667380+5 1.462177-4 8.204450+5 1.560000-4 5.017104+5 1.590000-4 4.367508+5 1.610000-4 4.005210+5 1.635000-4 3.623046+5 1.650000-4 3.427782+5 1.670000-4 3.203010+5 1.690000-4 3.015072+5 1.705000-4 2.895828+5 1.725600-4 2.759403+5 1.740000-4 2.681022+5 1.760000-4 2.592960+5 1.780000-4 2.526630+5 1.800000-4 2.479584+5 1.820000-4 2.449638+5 1.842000-4 2.434086+5 1.865000-4 2.434842+5 1.890000-4 2.452608+5 1.915000-4 2.485350+5 1.940000-4 2.530632+5 1.980000-4 2.623914+5 2.020000-4 2.736432+5 2.089296-4 2.960313+5 2.220000-4 3.422790+5 2.300000-4 3.704778+5 2.380000-4 3.973062+5 2.454709-4 4.205034+5 2.511886-4 4.368050+5 2.600160-4 4.592843+5 2.691535-4 4.790975+5 2.786121-4 4.961284+5 2.884032-4 5.103917+5 3.000000-4 5.233038+5 3.126079-4 5.328813+5 3.240000-4 5.379186+5 3.350000-4 5.399454+5 3.507519-4 5.389185+5 3.672823-4 5.340464+5 3.850000-4 5.254458+5 4.050000-4 5.126544+5 4.265795-4 4.960476+5 4.518559-4 4.744774+5 4.786301-4 4.506657+5 5.069907-4 4.250944+5 5.400000-4 3.956160+5 5.800000-4 3.617238+5 6.200000-4 3.302820+5 6.606934-4 3.008142+5 7.150000-4 2.658432+5 7.673615-4 2.363026+5 8.317638-4 2.050296+5 9.000000-4 1.771638+5 9.850000-4 1.485876+5 1.070000-3 1.255170+5 1.174898-3 1.028914+5 1.273503-3 8.610214+4 1.400000-3 6.935880+4 1.548817-3 5.460115+4 1.698244-3 4.358428+4 1.862087-3 3.457271+4 2.065380-3 2.644757+4 2.300000-3 1.986414+4 2.570396-3 1.465635+4 2.851018-3 1.095748+4 3.162278-3 8.135671+3 3.507519-3 5.998584+3 3.935501-3 4.241479+3 4.365158-3 3.083385+3 4.841724-3 2.226339+3 5.370318-3 1.596921+3 6.025596-3 1.095584+3 6.760830-3 7.457979+2 7.585776-3 5.038239+2 8.511380-3 3.379336+2 9.549926-3 2.250687+2 1.083927-2 1.428098+2 1.230269-2 8.993397+1 1.396368-2 5.621853+1 1.584893-2 3.488843+1 1.819701-2 2.056829+1 2.089296-2 1.203168+1 2.398833-2 6.986226+0 2.786121-2 3.848555+0 3.273407-2 2.009830+0 3.935501-2 9.489021-1 4.897788-2 3.858384-1 6.237348-2 1.416442-1 8.810489-2 3.373820-2 1.071519-1 1.505794-2 1.258925-1 7.800766-3 1.462177-1 4.266879-3 1.659587-1 2.578242-3 1.883649-1 1.569389-3 2.113489-1 1.006543-3 2.344229-1 6.793331-4 2.600160-1 4.618285-4 2.851018-1 3.299756-4 3.126079-1 2.374229-4 3.427678-1 1.720956-4 3.722400-1 1.298677-4 4.073803-1 9.627374-5 4.415705-1 7.417126-5 4.841724-1 5.546787-5 5.308844-1 4.178719-5 5.754399-1 3.283945-5 6.095369-1 2.777958-5 6.606935-1 2.215311-5 7.161434-1 1.779462-5 8.709636-1 1.064577-5 9.225714-1 9.215830-6 9.772372-1 8.037271-6 1.023293+0 7.250079-6 1.083927+0 6.417027-6 1.148154+0 5.714952-6 1.230269+0 5.007012-6 1.333521+0 4.321347-6 1.778279+0 2.609316-6 2.000000+0 2.137300-6 2.264644+0 1.744608-6 2.570396+0 1.428499-6 2.951209+0 1.157215-6 3.427678+0 9.286466-7 4.000000+0 7.459400-7 4.677351+0 6.017533-7 5.495409+0 4.858212-7 6.606934+0 3.834302-7 8.035261+0 3.005872-7 1.000000+1 2.309200-7 1.244515+1 1.787985-7 1.584893+1 1.357642-7 2.089296+1 9.993646-8 2.630268+1 7.783213-8 3.630781+1 5.515910-8 5.495409+1 3.573626-8 9.440609+1 2.046712-8 1.862087+2 1.026090-8 3.715352+2 5.112236-9 1.479108+3 1.278325-9 1.000000+5 1.88810-11 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.185900-4 3.403200-5 1.000000+5 3.403200-5 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.185900-4 8.455800-5 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 7.650000-6 8.379461+4 7.852356-6 8.427067+4 8.100000-6 8.544687+4 8.350000-6 8.714581+4 8.609938-6 8.949732+4 8.912509-6 9.286004+4 9.225714-6 9.707550+4 9.600000-6 1.029712+5 1.000000-5 1.102458+5 1.050000-5 1.206173+5 1.109175-5 1.345709+5 1.188502-5 1.558546+5 1.318257-5 1.962050+5 1.650000-5 3.253245+5 1.819701-5 4.032615+5 2.000000-5 4.922456+5 2.150000-5 5.694692+5 2.300000-5 6.473936+5 2.454709-5 7.269712+5 2.600160-5 7.997514+5 2.754229-5 8.729970+5 2.917427-5 9.452318+5 3.090295-5 1.015602+6 3.273407-5 1.082865+6 3.467369-5 1.145986+6 3.672823-5 1.205103+6 3.900000-5 1.262238+6 4.168694-5 1.319400+6 4.466836-5 1.371775+6 4.731513-5 1.408634+6 5.011872-5 1.437827+6 5.308844-5 1.458533+6 5.623413-5 1.468814+6 5.956621-5 1.468384+6 6.309573-5 1.457682+6 6.683439-5 1.437060+6 7.161434-5 1.402905+6 7.762471-5 1.352321+6 8.413951-5 1.294713+6 9.120108-5 1.230355+6 9.772372-5 1.169722+6 1.047129-4 1.104779+6 1.122018-4 1.035560+6 1.202264-4 9.648581+5 1.303167-4 8.818742+5 1.412538-4 7.995355+5 1.500000-4 7.390300+5 1.603245-4 6.731176+5 1.720000-4 6.051567+5 1.820000-4 5.528476+5 1.972423-4 4.826045+5 2.137962-4 4.174058+5 2.317395-4 3.574580+5 2.483133-4 3.107343+5 2.660725-4 2.682889+5 2.851018-4 2.301391+5 3.090295-4 1.909336+5 3.349654-4 1.571488+5 3.630781-4 1.283635+5 3.935501-4 1.041016+5 4.265795-4 8.386685+4 4.623810-4 6.713439+4 5.069907-4 5.167224+4 5.559043-4 3.947518+4 6.095369-4 2.994560+4 6.683439-4 2.256722+4 7.328245-4 1.689582+4 8.128305-4 1.211032+4 9.015711-4 8.617912+3 1.000000-3 6.090280+3 1.109175-3 4.275320+3 1.244515-3 2.863572+3 1.396368-3 1.903056+3 1.566751-3 1.255287+3 1.757924-3 8.219702+2 1.972423-3 5.342276+2 2.213095-3 3.446153+2 2.483133-3 2.206678+2 2.786121-3 1.402765+2 3.126079-3 8.853454+1 3.388442-3 6.381919+1 3.845918-3 3.781886+1 4.415704-3 2.120475+1 4.954502-3 1.299922+1 5.559043-3 7.903280+0 6.309573-3 4.534517+0 7.244360-3 2.452881+0 8.317638-3 1.316789+0 9.660509-3 6.658602-1 1.148154-2 3.009916-1 1.318257-2 1.583601-1 1.500000-2 8.630305-2 1.737801-2 4.279905-2 2.018366-2 2.081269-2 2.398833-2 8.985377-3 2.917427-2 3.439958-3 3.801894-2 9.298632-4 6.165950-2 8.473105-5 7.673615-2 2.884989-5 9.120108-2 1.239926-5 1.047129-1 6.350741-6 1.188502-1 3.462276-6 1.348963-1 1.901411-6 1.513561-1 1.110708-6 1.698244-1 6.541556-7 1.905461-1 3.881456-7 2.162719-1 2.201929-7 2.398833-1 1.394756-7 2.630268-1 9.363232-8 2.851018-1 6.651453-8 3.090295-1 4.756718-8 3.349654-1 3.425931-8 3.672823-1 2.371461-8 4.265795-1 1.318738-8 4.677351-1 9.252376-9 5.069907-1 6.833834-9 5.495409-1 5.087746-9 5.956621-1 3.816955-9 6.382635-1 3.005852-9 6.918310-1 2.291791-9 7.498942-1 1.760090-9 8.035261-1 1.409715-9 8.511380-1 1.163446-9 8.912509-1 1.003815-9 9.225714-1 9.02938-10 9.549926-1 8.16263-10 9.885531-1 7.42203-10 1.023293+0 6.79333-10 1.059254+0 6.25609-10 1.096478+0 5.79260-10 1.148154+0 5.26608-10 1.202264+0 4.82120-10 1.288250+0 4.26236-10 1.380384+0 3.79572-10 1.500000+0 3.32090-10 1.883649+0 2.23282-10 2.065380+0 1.91310-10 2.344229+0 1.55865-10 2.691535+0 1.25614-10 3.090295+0 1.02005-10 3.589219+0 8.20555-11 4.216965+0 6.54392-11 4.954502+0 5.25829-11 5.888437+0 4.19301-11 7.079458+0 3.31862-11 8.609938+0 2.60872-11 1.059254+1 2.03650-11 1.333521+1 1.55904-11 1.737801+1 1.15614-11 2.400000+1 8.10820-12 3.467369+1 5.46724-12 5.248075+1 3.53895-12 8.810489+1 2.07377-12 1.678804+2 1.07574-12 3.349654+2 5.35649-13 1.333521+3 1.33879-13 1.000000+5 1.78240-15 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 7.650000-6 7.650000-6 1.000000+5 7.650000-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 7.650000-6 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 7.240000-6 1.191150+5 7.413102-6 1.196557+5 7.600000-6 1.207654+5 7.852356-6 1.230875+5 8.100000-6 1.261423+5 8.413951-6 1.311053+5 8.709636-6 1.367950+5 9.015711-6 1.436081+5 9.350000-6 1.520412+5 9.772372-6 1.640923+5 1.023293-5 1.788022+5 1.083927-5 2.003868+5 1.174898-5 2.369913+5 1.412538-5 3.526430+5 1.621810-5 4.741826+5 1.800000-5 5.891809+5 1.950000-5 6.918600+5 2.113489-5 8.074909+5 2.264644-5 9.151687+5 2.400000-5 1.010454+6 2.540973-5 1.106300+6 2.691535-5 1.203497+6 2.851018-5 1.299834+6 3.019952-5 1.393107+6 3.198895-5 1.481631+6 3.400000-5 1.569993+6 3.589219-5 1.643161+6 3.845918-5 1.728059+6 4.120975-5 1.804518+6 4.415704-5 1.870767+6 4.731513-5 1.924874+6 5.011872-5 1.959431+6 5.308844-5 1.981007+6 5.650000-5 1.989708+6 5.956621-5 1.983963+6 6.309573-5 1.963800+6 6.683439-5 1.932738+6 7.161434-5 1.881165+6 7.762471-5 1.809860+6 8.511380-5 1.716078+6 9.120108-5 1.638594+6 9.800000-5 1.552204+6 1.047129-4 1.465870+6 1.122018-4 1.372634+6 1.230269-4 1.244752+6 1.348963-4 1.117433+6 1.445440-4 1.023250+6 1.540000-4 9.387623+5 1.659587-4 8.409222+5 1.778279-4 7.539612+5 1.900000-4 6.752760+5 2.050000-4 5.908300+5 2.213095-4 5.119927+5 2.371374-4 4.467294+5 2.540973-4 3.870465+5 2.722701-4 3.330903+5 2.917427-4 2.848285+5 3.162278-4 2.355236+5 3.435600-4 1.921398+5 3.715352-4 1.573936+5 4.027170-4 1.272888+5 4.365158-4 1.022641+5 4.786301-4 7.901952+4 5.248075-4 6.059648+4 5.754399-4 4.613408+4 6.309573-4 3.487548+4 6.918310-4 2.618866+4 7.673615-4 1.883548+4 8.511380-4 1.344350+4 9.440609-4 9.523793+3 1.059254-3 6.441385+3 1.174898-3 4.500097+3 1.318257-3 2.997975+3 1.479108-3 1.982361+3 1.659587-3 1.301151+3 1.862087-3 8.478887+2 2.137962-3 5.029677+2 2.371374-3 3.377378+2 2.630268-3 2.251412+2 2.884032-3 1.556184+2 3.198895-3 1.019982+2 3.672823-3 5.755701+1 4.168694-3 3.387516+1 4.677351-3 2.078058+1 5.188000-3 1.330308+1 5.888437-3 7.648355+0 6.683439-3 4.363494+0 7.673615-3 2.347565+0 8.810489-3 1.253375+0 1.011579-2 6.643658-1 1.216186-2 2.823592-1 1.396368-2 1.475776-1 1.603245-2 7.657529-2 1.757924-2 4.920613-2 2.041738-2 2.377343-2 2.398833-2 1.077398-2 3.054921-2 3.256506-3 4.073803-2 7.766243-4 7.328245-2 4.141238-5 8.709636-2 1.760366-5 1.011580-1 8.447812-6 1.148154-1 4.568125-6 1.288250-1 2.629549-6 1.428894-1 1.609732-6 1.584893-1 9.926497-7 1.757924-1 6.164087-7 1.949845-1 3.855797-7 2.162719-1 2.427936-7 2.371374-1 1.621233-7 2.583000-1 1.122700-7 2.786121-1 8.166516-8 3.019952-1 5.860402-8 3.235937-1 4.436169-8 3.507519-1 3.231089-8 3.801894-1 2.370339-8 4.216965-1 1.605222-8 4.570882-1 1.193873-8 4.897788-1 9.324190-9 5.188000-1 7.632647-9 5.559043-1 6.043363-9 5.956621-1 4.817705-9 6.382635-1 3.867798-9 6.839117-1 3.125333-9 7.413102-1 2.455564-9 7.943282-1 2.005674-9 8.511380-1 1.649345-9 9.101600-1 1.374400-9 9.549926-1 1.210535-9 1.000000+0 1.079300-9 1.047129+0 9.70014-10 1.096478+0 8.78173-10 1.148154+0 7.99977-10 1.216186+0 7.17005-10 1.318257+0 6.20172-10 1.513561+0 4.89951-10 1.819701+0 3.54998-10 2.018366+0 2.97866-10 2.290868+0 2.42342-10 2.600160+0 1.98550-10 2.985383+0 1.60939-10 3.467369+0 1.29235-10 4.027170+0 1.04558-10 4.731513+0 8.38355-11 5.559043+0 6.77181-11 6.683439+0 5.34707-11 8.128305+0 4.19379-11 1.011579+1 3.22310-11 1.258925+1 2.49666-11 1.603245+1 1.89628-11 2.162719+1 1.36147-11 2.884032+1 9.97313-12 4.073803+1 6.91294-12 6.237348+1 4.43497-12 1.096478+2 2.48549-12 2.187762+2 1.23362-12 4.365158+2 6.15133-13 3.467369+3 7.70948-14 1.000000+5 2.67160-15 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 7.240000-6 7.240000-6 1.000000+5 7.240000-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 7.240000-6 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.330000-5 5.938700+4 4.786301-5 7.520637+4 4.960000-5 8.130660+4 5.150000-5 8.772040+4 5.350000-5 9.408740+4 5.559043-5 1.002196+5 5.754399-5 1.054299+5 5.956621-5 1.102791+5 6.165950-5 1.147048+5 6.400000-5 1.189480+5 6.650000-5 1.226758+5 6.918310-5 1.257876+5 7.161434-5 1.278576+5 7.448100-5 1.294677+5 7.800000-5 1.303854+5 8.150000-5 1.303604+5 8.518900-5 1.295606+5 9.015711-5 1.275963+5 9.549926-5 1.247635+5 1.023293-4 1.205742+5 1.096478-4 1.157718+5 1.174898-4 1.104764+5 1.260000-4 1.046850+5 1.364583-4 9.768857+4 1.479108-4 9.042219+4 1.640590-4 8.120532+4 1.840772-4 7.151407+4 2.041738-4 6.333206+4 2.317395-4 5.413343+4 2.722701-4 4.395514+4 3.126079-4 3.649518+4 3.758374-4 2.824463+4 4.518559-4 2.166839+4 5.370318-4 1.678528+4 6.456542-4 1.269049+4 7.762471-4 9.522423+3 9.332543-4 7.089824+3 1.122018-3 5.236480+3 1.348963-3 3.837174+3 1.640590-3 2.735136+3 2.018366-3 1.895723+3 2.454709-3 1.331478+3 3.019952-3 9.092102+2 3.758374-3 6.031027+2 4.677351-3 3.970863+2 5.688529-3 2.712824+2 6.918310-3 1.839755+2 8.413951-3 1.237902+2 1.011579-2 8.462069+1 1.216186-2 5.740150+1 1.462177-2 3.863597+1 1.757924-2 2.579637+1 2.137962-2 1.665734+1 2.540973-2 1.124693+1 3.000000-2 7.652749+0 3.507519-2 5.279177+0 4.120975-2 3.573195+0 4.897788-2 2.333489+0 5.821032-2 1.512077+0 6.998420-2 9.444164-1 8.317638-2 6.032078-1 1.023293-1 3.491306-1 1.318257-1 1.774488-1 2.317395-1 3.866465-2 2.851018-1 2.222366-2 3.388442-1 1.410471-2 3.890451-1 9.869111-3 4.415705-1 7.161261-3 5.011872-1 5.234585-3 5.623413-1 3.965397-3 6.309573-1 3.026259-3 7.079458-1 2.327774-3 7.852356-1 1.850712-3 8.709636-1 1.480016-3 9.549926-1 1.221280-3 1.059254+0 9.919838-4 1.202264+0 7.746331-4 1.348963+0 6.231058-4 1.513561+0 5.047661-4 1.698244+0 4.116759-4 1.927525+0 3.315065-4 2.187762+0 2.690289-4 2.483133+0 2.198760-4 2.851018+0 1.777713-4 3.273407+0 1.447926-4 3.801894+0 1.168122-4 4.466836+0 9.341504-5 5.248075+0 7.526421-5 6.309573+0 5.928448-5 7.585776+0 4.705218-5 9.332543+0 3.657028-5 1.148154+1 2.862765-5 1.462177+1 2.168767-5 1.840772+1 1.675671-5 2.454709+1 1.222547-5 3.507519+1 8.343827-6 5.248075+1 5.467179-6 8.912509+1 3.166073-6 1.698244+2 1.642543-6 3.388442+2 8.179622-7 1.348963+3 2.044436-7 1.000000+5 2.753500-9 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.330000-5 4.330000-5 1.000000+5 4.330000-5 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.330000-5 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.726000-5 6.746819+6 2.884032-5 5.553729+6 3.400000-5 3.109520+6 3.715352-5 2.259050+6 4.168694-5 1.479398+6 4.841724-5 8.507269+5 5.308844-5 6.091693+5 5.688529-5 4.769843+5 6.095369-5 3.759019+5 6.500000-5 3.031900+5 6.918310-5 2.479215+5 7.300000-5 2.099740+5 7.673615-5 1.811824+5 8.035261-5 1.591680+5 8.413951-5 1.407667+5 8.810489-5 1.253739+5 9.225714-5 1.124544+5 9.660509-5 1.015670+5 1.011579-4 9.234830+4 1.060000-4 8.439000+4 1.120000-4 7.649160+4 1.183500-4 6.987597+4 1.244515-4 6.476604+4 1.318257-4 5.979101+4 1.400000-4 5.538560+4 1.500000-4 5.109220+4 1.640590-4 4.639353+4 1.850000-4 4.112920+4 2.900000-4 2.682800+4 3.388442-4 2.294499+4 3.890451-4 1.983827+4 4.415704-4 1.724235+4 5.011872-4 1.489301+4 5.688529-4 1.277217+4 6.456542-4 1.087749+4 7.413102-4 9.052933+3 8.413951-4 7.590906+3 9.549926-4 6.316237+3 1.083927-3 5.214592+3 1.230269-3 4.272130+3 1.396368-3 3.473626+3 1.584893-3 2.803358+3 1.798871-3 2.245912+3 2.041738-3 1.786579+3 2.317395-3 1.411505+3 2.630268-3 1.107485+3 3.000000-3 8.546020+2 3.427678-3 6.523272+2 3.890451-3 5.010588+2 4.415704-3 3.821557+2 5.011872-3 2.893900+2 5.688529-3 2.175632+2 6.456542-3 1.623580+2 7.328245-3 1.202471+2 8.317638-3 8.840105+1 9.440609-3 6.452696+1 1.071519-2 4.675925+1 1.216186-2 3.365000+1 1.462177-2 2.064724+1 1.640590-2 1.510692+1 1.862087-2 1.063654+1 2.162719-2 6.969592+0 2.511886-2 4.530480+0 2.917427-2 2.922614+0 3.388442-2 1.871648+0 4.027170-2 1.110259+0 4.841724-2 6.308893-1 5.888437-2 3.431263-1 7.585776-2 1.546252-1 1.188502-1 3.720665-2 1.548817-1 1.610230-2 1.883649-1 8.727980-3 2.238721-1 5.119014-3 2.600160-1 3.246450-3 2.985383-1 2.147743-3 3.388442-1 1.481204-3 3.845918-1 1.029275-3 4.315191-1 7.446662-4 4.841724-1 5.427893-4 5.370318-1 4.111466-4 5.956621-1 3.135801-4 6.606935-1 2.409693-4 7.328245-1 1.865680-4 8.609938-1 1.267810-4 9.225714-1 1.081189-4 9.772372-1 9.522223-5 1.047129+0 8.239395-5 1.135011+0 7.006911-5 1.244515+0 5.866555-5 1.380384+0 4.848056-5 1.678804+0 3.425400-5 1.905461+0 2.754914-5 2.137962+0 2.276116-5 2.426610+0 1.857925-5 2.786121+0 1.500242-5 3.198895+0 1.220498-5 3.715352+0 9.835350-6 4.365158+0 7.856693-6 5.128614+0 6.323282-6 6.095369+0 5.049678-6 7.328245+0 4.002184-6 9.015711+0 3.106763-6 1.109175+1 2.429063-6 1.412538+1 1.837993-6 1.819701+1 1.383133-6 2.454709+1 9.963283-7 3.507519+1 6.799879-7 5.308844+1 4.402635-7 9.015711+1 2.549989-7 1.717908+2 1.323185-7 3.427678+2 6.589433-8 1.364583+3 1.647098-8 1.000000+5 2.24410-10 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.726000-5 2.726000-5 1.000000+5 2.726000-5 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.726000-5 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.426000-5 1.413228+7 2.786121-5 8.423054+6 4.000000-5 2.214228+6 4.315191-5 1.682473+6 4.623810-5 1.319083+6 4.900000-5 1.082404+6 5.188000-5 8.971245+5 5.495409-5 7.482648+5 5.754399-5 6.512176+5 6.025596-5 5.702243+5 6.309573-5 5.026287+5 6.606934-5 4.461993+5 6.918310-5 3.990494+5 7.244360-5 3.595948+5 7.585776-5 3.265352+5 7.943282-5 2.986909+5 8.317638-5 2.751034+5 8.709636-5 2.549637+5 9.225714-5 2.336186+5 9.800000-5 2.147540+5 1.047129-4 1.972091+5 1.135011-4 1.792177+5 1.247200-4 1.615892+5 1.412538-4 1.421783+5 1.949845-4 1.030043+5 2.317395-4 8.605854+4 2.691535-4 7.317257+4 3.090295-4 6.257097+4 3.589219-4 5.240512+4 4.120975-4 4.416942+4 4.786301-4 3.640508+4 5.432503-4 3.069958+4 6.237348-4 2.530503+4 7.140000-4 2.079052+4 8.128305-4 1.709581+4 9.225714-4 1.401888+4 1.047129-3 1.141560+4 1.188502-3 9.229178+3 1.348963-3 7.408678+3 1.531087-3 5.905498+3 1.737801-3 4.674468+3 1.972423-3 3.674784+3 2.264644-3 2.805149+3 2.570396-3 2.174755+3 2.917427-3 1.674705+3 3.311311-3 1.281033+3 3.758374-3 9.732092+2 4.265795-3 7.342235+2 4.841724-3 5.499921+2 5.495409-3 4.089593+2 6.237348-3 3.018491+2 7.079458-3 2.211502+2 8.035261-3 1.608201+2 9.120108-3 1.160418+2 1.035142-2 8.314741+1 1.174898-2 5.912737+1 1.333521-2 4.174737+1 1.531087-2 2.833793+1 1.757924-2 1.908990+1 2.018366-2 1.276098+1 2.317395-2 8.463938+0 2.660725-2 5.573351+0 3.054921-2 3.644766+0 3.548134-2 2.283419+0 4.168694-2 1.369411+0 4.954502-2 7.855779-1 5.956621-2 4.303868-1 7.413102-2 2.089117-1 1.011580-1 7.411990-2 1.428894-1 2.332823-2 1.737801-1 1.219227-2 2.065380-1 6.926230-3 2.371374-1 4.432979-3 2.691535-1 2.964826-3 3.019952-1 2.070571-3 3.388442-1 1.456742-3 3.758374-1 1.068903-3 4.168694-1 7.899856-4 4.623810-1 5.883885-4 5.069907-1 4.559259-4 5.559043-1 3.556965-4 6.095369-1 2.794394-4 6.683439-1 2.211427-4 7.328245-1 1.762579-4 8.317638-1 1.303194-4 9.015711-1 1.081944-4 9.660509-1 9.290164-5 1.035142+0 8.038811-5 1.135011+0 6.681255-5 1.250000+0 5.547500-5 1.380384+0 4.619817-5 1.659587+0 3.328305-5 1.883649+0 2.675258-5 2.113489+0 2.208569-5 2.398833+0 1.801545-5 2.754229+0 1.453871-5 3.162278+0 1.182138-5 3.672823+0 9.520729-6 4.315191+0 7.601173-6 5.069907+0 6.114329-6 6.025596+0 4.880518-6 7.244360+0 3.866325-6 8.810489+0 3.041880-6 1.083927+1 2.376553-6 1.380384+1 1.796797-6 1.778279+1 1.351159-6 2.426610+1 9.606765-7 3.507519+1 6.475665-7 5.308844+1 4.192666-7 9.015711+1 2.428399-7 1.737801+2 1.245427-7 3.467369+2 6.202905-8 1.380384+3 1.550499-8 1.000000+5 2.13700-10 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.426000-5 2.426000-5 1.000000+5 2.426000-5 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.426000-5 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 4.890000-6 2.874159+6 5.308844-6 1.948219+6 5.623413-6 1.475995+6 5.956621-6 1.111617+6 6.309573-6 8.321129+5 6.700000-6 6.105620+5 7.100000-6 4.494980+5 7.500000-6 3.341780+5 7.943282-6 2.431354+5 8.413951-6 1.755466+5 9.700000-6 7.743120+4 1.011579-5 6.120521+4 1.035142-5 5.402218+4 1.060000-5 4.771320+4 1.085000-5 4.247340+4 1.110000-5 3.816420+4 1.127000-5 3.568920+4 1.150000-5 3.284580+4 1.172000-5 3.059800+4 1.195000-5 2.867080+4 1.216186-5 2.722437+4 1.230269-5 2.641582+4 1.250000-5 2.546400+4 1.273503-5 2.457284+4 1.290000-5 2.408460+4 1.310000-5 2.362520+4 1.333521-5 2.324689+4 1.357000-5 2.301860+4 1.385200-5 2.290805+4 1.412538-5 2.294502+4 1.445440-5 2.313945+4 1.480000-5 2.348220+4 1.531087-5 2.417888+4 1.595200-5 2.526158+4 1.850000-5 3.019300+4 1.950000-5 3.199980+4 2.070000-5 3.393980+4 2.190000-5 3.560420+4 2.317395-5 3.706227+4 2.454709-5 3.829849+4 2.600160-5 3.927697+4 2.754229-5 3.999566+4 2.917427-5 4.045501+4 3.090295-5 4.065697+4 3.273407-5 4.059523+4 3.467369-5 4.027184+4 3.672823-5 3.970989+4 3.935501-5 3.875646+4 4.220000-5 3.752260+4 4.518559-5 3.608066+4 4.841724-5 3.443011+4 5.248075-5 3.235230+4 5.688529-5 3.018768+4 6.237348-5 2.767238+4 7.000000-5 2.460980+4 7.852356-5 2.174187+4 9.225714-5 1.812522+4 1.230269-4 1.293333+4 1.428894-4 1.081098+4 1.584893-4 9.494786+3 1.757924-4 8.275088+3 1.972423-4 7.050155+3 2.317395-4 5.590015+3 3.890451-4 2.600198+3 4.677351-4 1.962498+3 6.095369-4 1.304857+3 7.328245-4 9.738514+2 9.332543-4 6.583203+2 1.122018-3 4.844091+2 1.364583-3 3.469490+2 1.640590-3 2.516437+2 2.041738-3 1.705238+2 2.540973-3 1.146630+2 3.235937-3 7.331814+1 3.981072-3 4.962852+1 4.897788-3 3.334294+1 6.000000-3 2.241402+1 7.328245-3 1.504278+1 8.810489-3 1.034276+1 1.059254-2 7.058492+0 1.273503-2 4.779543+0 1.531087-2 3.210854+0 1.819701-2 2.195073+0 2.162719-2 1.489272+0 2.570396-2 1.002481+0 3.019952-2 6.878995-1 3.589219-2 4.558228-1 4.265795-2 2.996539-1 5.069907-2 1.954525-1 6.025596-2 1.264640-1 7.244360-2 7.887475-2 8.511380-2 5.184747-2 1.047129-1 2.998494-2 1.364583-1 1.476706-2 2.344229-1 3.423887-3 2.884032-1 1.969397-3 3.427678-1 1.251006-3 3.935501-1 8.761814-4 4.466836-1 6.364632-4 5.011872-1 4.790822-4 5.623413-1 3.631762-4 6.237348-1 2.848960-4 6.918310-1 2.249753-4 7.673615-1 1.788647-4 8.511380-1 1.431812-4 9.440609-1 1.154601-4 1.047129+0 9.382486-5 1.202264+0 7.164699-5 1.348963+0 5.761400-5 1.513561+0 4.664646-5 1.698244+0 3.804064-5 1.927525+0 3.063458-5 2.187762+0 2.486236-5 2.483133+0 2.031971-5 2.851018+0 1.642799-5 3.273407+0 1.338053-5 3.801894+0 1.079523-5 4.466836+0 8.632874-6 5.248075+0 6.955355-6 6.309573+0 5.478668-6 7.585776+0 4.348229-6 9.332543+0 3.379520-6 1.148154+1 2.645617-6 1.462177+1 2.004177-6 1.862087+1 1.529002-6 2.454709+1 1.129816-6 3.507519+1 7.710666-7 5.308844+1 4.992262-7 9.015711+1 2.891546-7 1.737801+2 1.482972-7 3.467369+2 7.385805-8 1.380384+3 1.846222-8 1.000000+5 2.54460-10 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 4.890000-6 4.890000-6 1.000000+5 4.890000-6 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 4.890000-6 0.0 1.000000+5 1.000000+5 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.464000-7 1.027100+0 1.068590-6 1.027500+0 1.338400-6 1.028100+0 1.822210-6 1.028750+0 2.464000-6 1.029500+0 3.372050-6 1.030100+0 4.240760-6 1.031000+0 5.802810-6 1.032000+0 7.939690-6 1.033200+0 1.112220-5 1.034000+0 1.365350-5 1.035300+0 1.853270-5 1.036640+0 2.464000-5 1.038200+0 3.325250-5 1.039700+0 4.320160-5 1.041500+0 5.747920-5 1.043800+0 7.978300-5 1.046400+0 1.110030-4 1.048300+0 1.382020-4 1.051200+0 1.874680-4 1.054080+0 2.464000-4 1.057700+0 3.358600-4 1.061100+0 4.368710-4 1.065100+0 5.783720-4 1.070400+0 8.068950-4 1.076200+0 1.115130-3 1.080600+0 1.392620-3 1.087100+0 1.876300-3 1.093710+0 2.464000-3 1.102600+0 3.416130-3 1.110700+0 4.455040-3 1.120600+0 5.959000-3 1.133300+0 8.284760-3 1.147500+0 1.143800-2 1.158200+0 1.421440-2 1.174100+0 1.899990-2 1.190110+0 2.464000-2 1.205100+0 3.068270-2 1.227500+0 4.107860-2 1.250000+0 5.305000-2 1.265600+0 6.213610-2 1.294900+0 8.072950-2 1.320600+0 9.842730-2 1.343000+0 1.147390-1 1.382200+0 1.449010-1 1.433800+0 1.871270-1 1.500000+0 2.451000-1 1.589800+0 3.314680-1 1.665000+0 4.102120-1 1.784700+0 5.453030-1 1.892300+0 6.736420-1 2.000000+0 8.046000-1 2.044000+0 8.579000-1 2.163500+0 1.002580+0 2.372600+0 1.254140+0 2.647100+0 1.576720+0 3.000000+0 1.974000+0 3.500000+0 2.500270+0 4.000000+0 2.987000+0 4.750000+0 3.651140+0 5.000000+0 3.856000+0 6.000000+0 4.604000+0 7.000000+0 5.267000+0 8.000000+0 5.862000+0 9.000000+0 6.403000+0 1.000000+1 6.900000+0 1.100000+1 7.358000+0 1.200000+1 7.782000+0 1.300000+1 8.178000+0 1.400000+1 8.544000+0 1.500000+1 8.884000+0 1.600000+1 9.199000+0 1.800000+1 9.770000+0 2.000000+1 1.028000+1 2.200000+1 1.075000+1 2.400000+1 1.117000+1 2.600000+1 1.155000+1 2.800000+1 1.190000+1 3.000000+1 1.223000+1 4.000000+1 1.355000+1 5.000000+1 1.453000+1 6.000000+1 1.529000+1 8.000000+1 1.642000+1 1.000000+2 1.721000+1 1.500000+2 1.848000+1 2.000000+2 1.924000+1 3.000000+2 2.013000+1 4.000000+2 2.064000+1 5.000000+2 2.097000+1 6.000000+2 2.121000+1 8.000000+2 2.153000+1 1.000000+3 2.174000+1 1.500000+3 2.204000+1 2.000000+3 2.220000+1 3.000000+3 2.238000+1 4.000000+3 2.248000+1 5.000000+3 2.254000+1 6.000000+3 2.258000+1 8.000000+3 2.263000+1 1.000000+4 2.267000+1 1.500000+4 2.271000+1 2.000000+4 2.274000+1 3.000000+4 2.277000+1 4.000000+4 2.278000+1 5.000000+4 2.279000+1 6.000000+4 2.280000+1 8.000000+4 2.280000+1 1.000000+5 2.281000+1 1 59000 7 8 1.409070+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 5.915880-7 2.094700+0 1.041510-6 2.099900+0 1.385580-6 2.106600+0 1.927460-6 2.114000+0 2.666880-6 2.119500+0 3.320250-6 2.127900+0 4.502890-6 2.136250+0 5.915880-6 2.147000+0 8.111090-6 2.156900+0 1.053530-5 2.169000+0 1.406010-5 2.184500+0 1.954390-5 2.201800+0 2.703960-5 2.214800+0 3.368930-5 2.234200+0 4.531800-5 2.253680+0 5.915880-5 2.281500+0 8.286230-5 2.307000+0 1.088390-4 2.338200+0 1.463440-4 2.377400+0 2.026680-4 2.410200+0 2.577600-4 2.446800+0 3.278850-4 2.485900+0 4.128250-4 2.532900+0 5.283290-4 2.556430+0 5.915880-4 2.611900+0 7.543450-4 2.660400+0 9.119690-4 2.745300+0 1.220620-3 2.809000+0 1.478250-3 2.904500+0 1.904360-3 3.000000+0 2.377000-3 3.125000+0 3.064860-3 3.234400+0 3.728960-3 3.425800+0 5.020740-3 3.569300+0 6.087380-3 3.784700+0 7.824060-3 4.000000+0 9.691000-3 4.250000+0 1.197390-2 4.625000+0 1.556180-2 5.000000+0 1.929000-2 5.500000+0 2.440180-2 6.000000+0 2.958000-2 6.750000+0 3.729190-2 7.000000+0 3.983000-2 8.000000+0 4.975000-2 9.000000+0 5.922000-2 1.000000+1 6.822000-2 1.100000+1 7.673000-2 1.200000+1 8.474000-2 1.300000+1 9.228000-2 1.400000+1 9.946000-2 1.500000+1 1.062000-1 1.600000+1 1.127000-1 1.800000+1 1.246000-1 2.000000+1 1.355000-1 2.200000+1 1.454000-1 2.400000+1 1.545000-1 2.600000+1 1.629000-1 2.800000+1 1.706000-1 3.000000+1 1.779000-1 4.000000+1 2.077000-1 5.000000+1 2.303000-1 6.000000+1 2.482000-1 8.000000+1 2.751000-1 1.000000+2 2.946000-1 1.500000+2 3.269000-1 2.000000+2 3.471000-1 3.000000+2 3.719000-1 4.000000+2 3.868000-1 5.000000+2 3.970000-1 6.000000+2 4.045000-1 8.000000+2 4.148000-1 1.000000+3 4.217000-1 1.500000+3 4.321000-1 2.000000+3 4.380000-1 3.000000+3 4.445000-1 4.000000+3 4.483000-1 5.000000+3 4.506000-1 6.000000+3 4.523000-1 8.000000+3 4.545000-1 1.000000+4 4.559000-1 1.500000+4 4.578000-1 2.000000+4 4.589000-1 3.000000+4 4.600000-1 4.000000+4 4.607000-1 5.000000+4 4.611000-1 6.000000+4 4.613000-1 8.000000+4 4.616000-1 1.000000+5 4.618000-1 1 59000 7 8 1.409070+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 59000 7 9 1.409070+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 5.900000+1 1.000000+5 5.900000+1 5.000000+5 5.896800+1 7.500000+5 5.893640+1 1.000000+6 5.891400+1 1.250000+6 5.887530+1 1.500000+6 5.883400+1 1.875000+6 5.874200+1 2.000000+6 5.870700+1 2.375000+6 5.859130+1 2.500000+6 5.854900+1 2.875000+6 5.841020+1 3.000000+6 5.836000+1 3.250000+6 5.824860+1 3.625000+6 5.808100+1 4.000000+6 5.790600+1 4.437500+6 5.768860+1 4.812500+6 5.749020+1 5.000000+6 5.738600+1 5.500000+6 5.709170+1 5.875000+6 5.686140+1 6.437500+6 5.650300+1 6.500000+6 5.646280+1 7.000000+6 5.614500+1 7.875000+6 5.557800+1 9.000000+6 5.483200+1 1.000000+7 5.415700+1 1.250000+7 5.250900+1 1.500000+7 5.084100+1 1.750000+7 4.916800+1 2.000000+7 4.749300+1 2.250000+7 4.581330+1 2.375000+7 4.498090+1 2.500000+7 4.416900+1 2.875000+7 4.182380+1 3.000000+7 4.108600+1 3.437500+7 3.865510+1 3.500000+7 3.832710+1 3.812500+7 3.676260+1 4.000000+7 3.588200+1 4.500000+7 3.369620+1 5.000000+7 3.170300+1 5.500000+7 2.985820+1 6.000000+7 2.814400+1 6.750000+7 2.580330+1 7.000000+7 2.508700+1 8.000000+7 2.254300+1 9.000000+7 2.049100+1 1.000000+8 1.885800+1 1.125000+8 1.725860+1 1.250000+8 1.595000+1 1.375000+8 1.480490+1 1.468800+8 1.400120+1 1.500000+8 1.374100+1 1.562500+8 1.322540+1 1.671900+8 1.234020+1 1.750000+8 1.172050+1 1.753900+8 1.168970+1 1.815400+8 1.120940+1 1.907700+8 1.050030+1 2.000000+8 9.808300+0 2.281300+8 7.968670+0 2.359400+8 7.580780+0 2.375000+8 7.510340+0 2.453100+8 7.195740+0 2.500000+8 7.035500+0 2.562500+8 6.854030+0 2.671900+8 6.593450+0 2.877000+8 6.164960+0 2.959000+8 5.982730+0 3.000000+8 5.885400+0 3.117200+8 5.585330+0 3.377000+8 4.959530+0 3.500000+8 4.735300+0 3.617200+8 4.576490+0 4.000000+8 4.207100+0 4.179700+8 4.024250+0 4.330100+8 3.861000+0 4.497600+8 3.676050+0 4.750000+8 3.402910+0 4.784700+8 3.366630+0 5.000000+8 3.150600+0 5.343800+8 2.839000+0 5.578100+8 2.645040+0 5.859400+8 2.426410+0 6.000000+8 2.322100+0 6.562500+8 1.956270+0 6.718800+8 1.877570+0 6.906300+8 1.798690+0 7.000000+8 1.765600+0 7.125000+8 1.728150+0 8.000000+8 1.545000+0 8.250000+8 1.487120+0 1.000000+9 1.103700+0 1.031300+9 1.064100+0 1.074300+9 1.027040+0 1.113800+9 9.953550-1 1.162000+9 9.594260-1 1.362000+9 8.359080-1 1.411300+9 8.105080-1 1.470400+9 7.821620-1 1.500000+9 7.687500-1 1.560500+9 7.310870-1 1.615500+9 6.955710-1 1.686000+9 6.497530-1 1.764500+9 5.999690-1 1.823400+9 5.642330-1 1.911700+9 5.140910-1 2.000000+9 4.685200-1 2.139200+9 4.058450-1 2.272600+9 3.549440-1 2.443000+9 3.006380-1 2.602800+9 2.586130-1 2.825100+9 2.114190-1 2.961100+9 1.877230-1 3.215900+9 1.515120-1 3.536500+9 1.174080-1 3.804800+9 9.593530-2 4.103600+9 7.747650-2 4.423800+9 6.236070-2 4.807900+9 4.877590-2 5.000000+9 4.337700-2 5.375000+9 3.483100-2 6.031300+9 2.440930-2 7.015600+9 1.517780-2 8.000000+9 1.000400-2 1.00000+10 4.920400-3 1.27030+10 2.313560-3 1.55700+10 1.225150-3 2.00890+10 5.567300-4 2.65200+10 2.377270-4 3.11120+10 1.462950-4 3.97230+10 6.995090-5 5.38510+10 2.812140-5 7.03330+10 1.271850-5 1.00000+11 4.503500-6 1.34280+11 1.898650-6 1.77440+11 8.425820-7 2.63330+11 2.684480-7 4.88110+11 4.557490-8 1.16740+12 3.820440-9 3.55150+12 1.67483-10 1.00000+14 1.57230-14 2.05350+15 3.38814-18 1.00000+17 6.04040-23 1 59000 7 0 1.409070+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.16000-11 1.000000+2 1.160000-9 1.000000+3 1.160000-7 1.000000+4 1.160000-5 1.000000+5 1.160000-3 5.000000+5 2.900000-2 7.500000+5 6.525000-2 1.000000+6 1.160000-1 1.250000+6 1.801120-1 1.500000+6 2.569000-1 1.875000+6 3.938830-1 2.000000+6 4.450000-1 2.375000+6 6.128780-1 2.500000+6 6.733000-1 2.875000+6 8.655970-1 3.000000+6 9.331000-1 3.250000+6 1.072050+0 3.625000+6 1.288980+0 4.000000+6 1.513100+0 4.437500+6 1.779510+0 4.812500+6 2.009280+0 5.000000+6 2.124000+0 5.500000+6 2.426630+0 5.875000+6 2.650000+0 6.437500+6 2.977950+0 6.500000+6 3.013710+0 7.000000+6 3.296300+0 7.875000+6 3.772300+0 9.000000+6 4.361900+0 1.000000+7 4.876000+0 1.250000+7 6.171400+0 1.500000+7 7.489000+0 1.750000+7 8.790600+0 2.000000+7 1.005100+1 2.250000+7 1.126820+1 2.375000+7 1.186210+1 2.500000+7 1.244700+1 2.875000+7 1.414400+1 3.000000+7 1.468800+1 3.437500+7 1.648530+1 3.500000+7 1.672930+1 3.812500+7 1.789420+1 4.000000+7 1.855400+1 4.500000+7 2.017070+1 5.000000+7 2.164400+1 5.500000+7 2.301870+1 6.000000+7 2.433100+1 6.750000+7 2.621160+1 7.000000+7 2.681800+1 8.000000+7 2.914500+1 9.000000+7 3.131100+1 1.000000+8 3.330400+1 1.125000+8 3.552690+1 1.250000+8 3.745100+1 1.375000+8 3.909550+1 1.468800+8 4.017810+1 1.500000+8 4.051500+1 1.562500+8 4.115610+1 1.671900+8 4.218460+1 1.750000+8 4.285950+1 1.753900+8 4.289210+1 1.815400+8 4.339100+1 1.907700+8 4.409520+1 2.000000+8 4.475700+1 2.281300+8 4.653010+1 2.359400+8 4.697450+1 2.375000+8 4.705830+1 2.453100+8 4.747210+1 2.500000+8 4.771600+1 2.562500+8 4.802150+1 2.671900+8 4.854310+1 2.877000+8 4.943090+1 2.959000+8 4.975940+1 3.000000+8 4.992100+1 3.117200+8 5.035950+1 3.377000+8 5.124620+1 3.500000+8 5.163400+1 3.617200+8 5.197620+1 4.000000+8 5.299600+1 4.179700+8 5.341110+1 4.330100+8 5.373550+1 4.497600+8 5.407470+1 4.750000+8 5.453070+1 4.784700+8 5.459160+1 5.000000+8 5.493400+1 5.343800+8 5.540360+1 5.578100+8 5.568720+1 5.859400+8 5.598110+1 6.000000+8 5.611300+1 6.562500+8 5.655510+1 6.718800+8 5.665870+1 6.906300+8 5.677430+1 7.000000+8 5.683100+1 7.125000+8 5.689700+1 8.000000+8 5.730300+1 8.250000+8 5.739280+1 1.000000+9 5.790800+1 1.031300+9 5.797640+1 1.074300+9 5.806710+1 1.113800+9 5.814740+1 1.162000+9 5.823330+1 1.362000+9 5.851600+1 1.411300+9 5.856540+1 1.470400+9 5.862230+1 1.500000+9 5.865000+1 1.560500+9 5.869370+1 1.615500+9 5.873190+1 1.686000+9 5.876950+1 1.764500+9 5.880800+1 1.823400+9 5.883440+1 1.911700+9 5.886390+1 2.000000+9 5.889200+1 2.139200+9 5.892020+1 2.272600+9 5.894550+1 2.443000+9 5.897070+1 2.602800+9 5.898580+1 2.825100+9 5.899890+1 2.961100+9 5.900340+1 3.215900+9 5.901120+1 3.536500+9 5.901070+1 3.804800+9 5.900840+1 4.103600+9 5.900610+1 4.423800+9 5.900380+1 4.807900+9 5.900120+1 5.000000+9 5.900000+1 5.375000+9 5.900000+1 6.031300+9 5.900000+1 7.015600+9 5.900000+1 8.000000+9 5.900000+1 1.00000+10 5.900000+1 1.27030+10 5.900000+1 1.55700+10 5.900000+1 2.00890+10 5.900000+1 2.65200+10 5.900000+1 3.11120+10 5.900000+1 3.97230+10 5.900000+1 5.38510+10 5.900000+1 7.03330+10 5.900000+1 1.00000+11 5.900000+1 1.34280+11 5.900000+1 1.77440+11 5.900000+1 2.63330+11 5.900000+1 4.88110+11 5.900000+1 1.16740+12 5.900000+1 3.55150+12 5.900000+1 1.00000+14 5.900000+1 2.05350+15 5.900000+1 1.00000+17 5.900000+1 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.995542-6 0.0 2.002910-6 3.141993+0 2.005366-6 4.176039+0 2.010278-6 7.627877+0 2.015189-6 1.286165+1 2.020715-6 2.110982+1 2.029234-6 3.682764+1 2.035450-6 4.746846+1 2.040199-6 5.300168+1 2.045181-6 5.486406+1 2.050337-6 5.213081+1 2.055213-6 4.590701+1 2.063316-6 3.121951+1 2.069219-6 2.050580+1 2.074438-6 1.290426+1 2.079042-6 7.888801+0 2.084108-6 4.273099+0 2.091258-6 1.131615+0 2.093713-6 2.905979-2 2.093745-6 1.453012-2 2.093762-6 7.265116-3 2.093778-6 0.0 2.124469-6 0.0 2.133620-6 7.556711+0 2.134927-6 8.625227+0 2.140156-6 1.575468+1 2.145712-6 2.748640+1 2.151268-6 4.360040+1 2.160590-6 7.700303+1 2.166629-6 9.725808+1 2.172377-6 1.098005+2 2.177513-6 1.131572+2 2.182469-6 1.084491+2 2.188158-6 9.427393+1 2.196390-6 6.533908+1 2.202906-6 4.235286+1 2.208135-6 2.734153+1 2.213364-6 1.629360+1 2.218593-6 8.963241+0 2.226437-6 2.278492+0 2.229051-6 0.0 2.876118-6 0.0 2.883197-6 4.41014-16 2.890276-6 8.72645-16 2.897356-6 1.59396-15 2.904435-6 2.68763-15 2.911514-6 4.18328-15 2.918593-6 6.01059-15 2.925672-6 7.97208-15 2.932752-6 9.76068-15 2.939831-6 1.10317-14 2.946910-6 1.15096-14 2.953989-6 1.10848-14 2.961068-6 9.85493-15 2.968148-6 8.08782-15 2.982306-6 4.28499-15 2.989385-6 2.76624-15 2.990756-6 2.55016-15 2.996464-6 3.31392-15 3.003544-6 4.60514-15 3.005479-6 5.03732-15 3.012840-6 8.08364-15 3.020202-6 1.30965-14 3.027563-6 2.03846-14 3.034925-6 2.92889-14 3.042286-6 3.88470-14 3.049647-6 4.75626-14 3.057009-6 5.37562-14 3.064370-6 5.60847-14 3.071731-6 5.40151-14 3.079093-6 4.80219-14 3.087798-6 3.76706-14 3.099198-6 1.943468-1 3.102998-6 2.583073-1 3.110598-6 4.718194-1 3.118674-6 8.231594-1 3.126560-6 1.293744+0 3.149550-6 2.936143+0 3.156675-6 3.274262+0 3.164275-6 3.399050+0 3.172350-6 3.235756+0 3.179950-6 2.851862+0 3.191351-6 2.031646+0 3.201801-6 1.268378+0 3.209401-6 8.188210-1 3.217002-6 4.879587-1 3.224602-6 2.684301-1 3.232202-6 1.363118-1 3.239802-6 0.0 3.285179-6 0.0 3.299330-6 1.645681-1 3.301352-6 1.878379-1 3.309438-6 3.431013-1 3.317524-6 5.785160-1 3.326620-6 9.495181-1 3.340645-6 1.656504+0 3.349868-6 2.101000+0 3.358965-6 2.387420+0 3.367051-6 2.466046+0 3.375137-6 2.353003+0 3.382212-6 2.121285+0 3.395352-6 1.477388+0 3.406470-6 9.223495-1 3.414556-6 5.954367-1 3.422642-6 3.548377-1 3.430728-6 1.951991-1 3.438814-6 9.912427-2 3.446901-6 0.0 3.462173-6 0.0 3.471874-6 3.787014-6 3.479216-6 1.070268-5 3.487738-6 2.083418-5 3.489032-6 2.282096-5 3.496859-6 4.570636-2 3.506208-6 1.068082-1 3.514795-6 1.960186-1 3.523383-6 3.322258-1 3.528520-6 4.441520-1 3.532841-6 6.348972-1 3.546433-6 1.304264+0 3.556040-6 1.926167+0 3.568756-6 2.941458+0 3.587255-6 4.484273+0 3.592622-6 4.869939+0 3.601469-6 5.313140+0 3.607042-6 5.477618+0 3.616629-6 5.374651+0 3.624769-6 4.981442+0 3.637172-6 3.918477+0 3.658795-6 1.800426+0 3.667480-6 1.150168+0 3.676165-6 6.846477-1 3.684850-6 3.766303-1 3.693535-6 1.912570-1 3.702220-6 0.0 3.943096-6 0.0 3.943135-6 2.66465-14 3.952840-6 1.55167-11 3.962546-6 3.06954-11 3.972251-6 5.60543-11 3.981957-6 9.44942-11 3.991662-6 1.47049-10 4.001368-6 2.11242-10 4.011073-6 2.80129-10 4.020779-6 3.42922-10 4.023077-6 3.53474-10 4.027264-6 4.959868-7 4.029909-6 1.266314-6 4.047213-6 1.774788-2 4.049896-6 3.288076-2 4.059666-6 9.409994-2 4.067136-6 1.468970-1 4.077098-6 2.544567-1 4.087060-6 4.088751-1 4.101018-6 7.026264-1 4.119181-6 1.126276+0 4.129100-6 1.310520+0 4.139019-6 1.414296+0 4.146830-6 1.430682+0 4.158290-6 1.320597+0 4.171606-6 1.063300+0 4.191416-6 6.024118-1 4.198534-6 4.533787-1 4.206600-6 3.115849-1 4.216562-6 1.837957-1 4.226524-6 9.607835-2 4.228291-6 8.595735-2 4.242008-6 2.133407-2 4.246447-6 4.05524-12 4.262891-6 1.88676-11 4.273332-6 3.44574-11 4.283773-6 5.80910-11 4.288270-6 7.19848-11 4.297385-6 3.290038-3 4.309380-6 2.879845-2 4.318540-6 5.014514-2 4.329118-6 8.993604-2 4.339695-6 1.490534-1 4.351600-6 2.400046-1 4.376706-6 4.663055-1 4.383265-6 5.178191-1 4.393820-6 5.720646-1 4.404470-6 5.840540-1 4.415311-6 5.493233-1 4.426152-6 4.758375-1 4.448214-6 2.883346-1 4.457150-6 2.219399-1 4.467566-6 1.674886-1 4.477202-6 1.418913-1 4.480979-6 1.395097-1 4.488979-6 1.431524-1 4.499686-6 1.650806-1 4.508935-6 1.906124-1 4.524666-6 2.599019-1 4.535588-6 2.982204-1 4.546510-6 3.158936-1 4.557432-6 3.144993-1 4.591556-6 2.528639-1 4.606441-6 2.374714-1 4.623022-6 2.363061-1 4.645924-6 2.437656-1 4.788001-6 2.123288-1 4.821021-6 1.949027-1 4.851218-6 1.860892-1 4.935924-6 1.905616-1 5.444243-6 1.345310-1 5.697191-6 1.129581-1 5.725237-6 1.165681-1 5.739260-6 1.202700-1 5.753837-6 1.267740-1 5.785483-6 1.498318-1 5.809374-6 1.690529-1 5.824648-6 1.766401-1 5.838811-6 1.782378-1 5.852973-6 1.738362-1 5.867135-6 1.642603-1 5.907535-6 1.262770-1 5.921557-6 1.153459-1 5.935580-6 1.070586-1 5.949603-6 1.012513-1 5.977649-6 9.351657-2 6.096551-6 8.638105-2 6.141569-6 9.102209-2 6.171581-6 1.010666-1 6.216598-6 1.241318-1 6.231604-6 1.293244-1 6.248394-6 1.306720-1 6.263773-6 1.284293-1 6.321639-6 1.035259-1 6.336645-6 9.994434-2 6.351651-6 9.877121-2 6.406848-6 1.003056-1 6.421870-6 9.857077-2 6.437260-6 9.471233-2 6.499750-6 7.347977-2 6.514210-6 7.021035-2 6.560379-6 6.614029-2 6.595270-6 6.857600-2 6.643030-6 7.389616-2 6.674870-6 7.588821-2 6.727229-6 7.529562-2 6.762003-6 7.871541-2 6.809719-6 8.595203-2 6.821320-6 8.656166-2 6.842358-6 8.469890-2 6.860539-6 8.149060-2 6.922160-6 6.738515-2 6.958215-6 6.391814-2 6.987187-6 6.306279-2 7.056225-6 6.707174-2 7.098587-6 6.621986-2 7.181655-6 5.717735-2 7.216474-6 5.667052-2 7.318408-6 5.996232-2 7.417491-6 5.883867-2 7.493087-6 5.626522-2 7.592257-6 5.175311-2 7.664072-6 5.187016-2 7.777121-6 5.318512-2 8.240997-6 4.865768-2 8.750580-6 4.621696-2 9.350000-6 4.642788-2 1.005626-5 5.009959-2 1.087553-5 5.815976-2 1.195415-5 7.414817-2 1.307712-5 9.653239-2 1.459478-5 1.355373-1 1.611012-5 1.849697-1 1.797429-5 2.600300-1 1.955371-5 3.364842-1 1.964997-5 2.488150+0 1.969810-5 4.265029+0 1.974623-5 6.957888+0 1.976540-5 8.422461+0 1.979436-5 1.635226+1 1.986270-5 3.617341+1 1.991135-5 5.658473+1 1.996000-5 8.429976+1 2.003913-5 1.440575+2 2.013606-5 2.215064+2 2.017232-5 2.433994+2 2.022282-5 2.604748+2 2.025927-5 2.614916+2 2.031333-5 2.423514+2 2.036988-5 2.027506+2 2.049515-5 9.423616+1 2.054380-5 6.065334+1 2.059245-5 3.630468+1 2.064110-5 2.015014+1 2.071408-5 5.419968+0 2.073840-5 3.991677-1 2.189371-5 4.659644-1 2.200149-5 7.280389-1 2.205538-5 9.425038-1 2.210927-5 1.265972+0 2.216316-5 1.707109+0 2.232482-5 3.349731+0 2.244209-5 4.229414+0 2.250848-5 4.442307+0 2.261929-5 1.556147+1 2.267469-5 2.490160+1 2.273355-5 4.018618+1 2.279001-5 5.999317+1 2.294439-5 1.235378+2 2.300336-5 1.401839+2 2.302959-5 1.438104+2 2.308011-5 1.450740+2 2.313240-5 1.369947+2 2.319779-5 1.155786+2 2.333951-5 5.716210+1 2.339491-5 3.892501+1 2.345031-5 2.551428+1 2.350715-5 1.656178+1 2.361652-5 5.948041+0 2.414099-5 5.463212+0 2.484839-5 5.241544+0 2.503460-5 5.355641+0 2.516525-5 5.628839+0 2.534672-5 6.233500+0 2.564348-5 7.361981+0 2.582831-5 8.545104+0 2.595325-5 8.926770+0 2.604403-5 8.628715+0 2.623870-5 7.522123+0 2.630064-5 7.302833+0 2.644114-5 7.230589+0 2.668869-5 7.354344+0 2.753430-5 6.927150+0 3.001046-5 5.856256+0 3.266670-5 5.092692+0 3.600945-5 4.466625+0 3.981474-5 4.054460+0 4.059298-5 4.072953+0 4.157476-5 3.932767+0 4.691363-5 3.785082+0 5.579079-5 3.839847+0 9.118294-5 4.386940+0 1.082554-4 4.481072+0 1.086644-4 5.299653+0 1.087883-4 1.053181+1 1.091993-4 2.846216+1 1.094668-4 4.768683+1 1.097342-4 7.645371+1 1.100424-4 1.225502+2 1.108041-4 2.566801+2 1.110961-4 2.886577+2 1.113690-4 2.969094+2 1.116441-4 2.814829+2 1.119952-4 2.351618+2 1.125187-4 1.547312+2 1.126984-4 1.325212+2 1.129438-4 1.121162+2 1.131085-4 1.074257+2 1.132288-4 1.068503+2 1.134913-4 1.166240+2 1.140832-4 1.634174+2 1.143925-4 1.907894+2 1.146105-4 1.992700+2 1.147306-4 2.020962+2 1.150205-4 1.927177+2 1.153248-4 1.672882+2 1.161234-4 7.571307+1 1.163721-4 5.242390+1 1.166471-4 3.347635+1 1.169216-4 2.094404+1 1.174636-4 5.659207+0 1.183735-4 6.092142+0 1.196760-4 6.865374+0 1.219480-4 7.402369+0 1.265237-4 8.962677+0 1.297023-4 9.479026+0 1.331647-4 9.421206+0 1.492806-4 7.052253+0 1.585728-4 6.068910+0 1.675000-4 5.476242+0 1.785000-4 5.089531+0 1.933160-4 4.942811+0 2.104051-4 5.066923+0 2.125663-4 5.370548+0 2.152715-4 6.252578+0 2.168503-4 6.373973+0 2.208930-4 6.222528+0 2.339813-4 6.544161+0 2.427058-4 6.980112+0 2.920576-4 7.879802+0 2.991141-4 8.483358+0 3.603715-4 9.078989+0 4.415704-4 9.251883+0 5.607251-4 8.830410+0 9.052202-4 6.772281+0 9.096763-4 1.283649+1 9.119690-4 1.809838+1 9.142705-4 2.617967+1 9.166928-4 3.793674+1 9.229080-4 7.498404+1 9.256773-4 8.624672+1 9.279019-4 9.156691+1 9.303457-4 9.064461+1 9.377227-4 7.542121+1 9.403201-4 7.433301+1 9.475256-4 7.991407+1 9.503353-4 7.758877+1 9.539434-4 6.989372+1 9.609460-4 4.808101+1 9.620919-4 4.508134+1 9.643866-4 4.076893+1 9.666559-4 3.800357+1 9.711430-4 3.457237+1 1.006199-3 3.449074+1 1.168345-3 2.842960+1 1.202044-3 2.770903+1 1.211072-3 2.851556+1 1.227790-3 3.108250+1 1.282215-3 2.908327+1 1.308446-3 2.902474+1 1.329864-3 2.974105+1 1.460646-3 2.652127+1 1.508854-3 2.649041+1 1.794346-3 2.132416+1 2.084791-3 1.748913+1 2.416219-3 1.424895+1 2.812305-3 1.147290+1 3.171131-3 9.624331+0 3.612145-3 7.921328+0 4.133225-3 6.452975+0 4.677351-3 5.329554+0 5.338394-3 4.330624+0 5.807887-3 3.798401+0 5.848955-3 3.989150+0 5.872360-3 4.358671+0 5.895454-3 5.042080+0 5.917178-3 5.997848+0 5.966719-3 8.543256+0 5.991023-3 9.414079+0 6.019574-3 9.950381+0 6.075462-3 1.010098+1 6.325168-3 9.621011+0 6.374239-3 9.979792+0 6.477238-3 1.199065+1 6.537465-3 1.229676+1 6.721004-3 1.199388+1 6.862388-3 1.298132+1 7.067847-3 1.262911+1 8.184431-3 1.005725+1 9.329291-3 8.152288+0 1.049885-2 6.724893+0 1.186854-2 5.497265+0 1.355924-2 4.398089+0 1.548817-2 3.508371+0 1.758551-2 2.819388+0 1.953308-2 2.349432+0 2.178337-2 1.941088+0 2.447954-2 1.579951+0 2.752991-2 1.282035+0 3.068303-2 1.055836+0 3.478753-2 8.421242-1 3.945915-2 6.700062-1 4.099237-2 6.298828-1 4.120975-2 6.509230-1 4.134342-2 6.975784-1 4.144464-2 7.664720-1 4.153828-2 8.670430-1 4.164926-2 1.042723+0 4.177919-2 1.331263+0 4.195804-2 1.843748+0 4.223206-2 2.640554+0 4.242292-2 3.021525+0 4.266606-2 3.249610+0 4.313246-2 3.291332+0 5.015029-2 2.582644+0 5.711087-2 2.085179+0 6.494185-2 1.677087+0 7.309905-2 1.367370+0 8.323624-2 1.089873+0 9.273969-2 9.000675-1 1.046112-1 7.257102-1 1.185414-1 5.794125-1 1.327077-1 4.722549-1 1.480107-1 3.874237-1 1.659587-1 3.147573-1 1.856187-1 2.568993-1 2.053677-1 2.139002-1 2.285924-1 1.765943-1 2.559323-1 1.444748-1 2.863645-1 1.187795-1 3.185811-1 9.900284-2 3.578904-1 8.148233-2 3.973381-1 6.876058-2 4.424462-1 5.803838-2 4.968783-1 4.870045-2 5.579342-1 4.118129-2 6.420162-1 3.400951-2 7.182076-1 2.944950-2 8.258409-1 2.488869-2 9.441234-1 2.143552-2 1.120601+0 1.786094-2 1.347258+0 1.458800-2 1.619761+0 1.191481-2 1.947381+0 9.731474-3 2.235892+0 8.360788-3 2.688134+0 6.828709-3 3.231848+0 5.577378-3 3.885536+0 4.555347-3 4.671441+0 3.720600-3 5.616308+0 3.038816-3 6.752287+0 2.481966-3 8.118035+0 2.027156-3 9.760024+0 1.655689-3 1.000000+1 3.389266-3 1 59000 7 0 1.409070+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.832926+1 1.609232-6-5.586597+1 1.828601-6-5.222899+1 1.918591-6-4.795070+1 1.960698-6-4.336219+1 1.981859-6-3.876036+1 1.992295-6-3.462412+1 2.005366-6-2.574609+1 2.010892-6-2.151437+1 2.016878-6-1.767895+1 2.020715-6-1.628344+1 2.023401-6-1.622743+1 2.026241-6-1.695969+1 2.029234-6-1.896961+1 2.032764-6-2.297696+1 2.034836-6-2.625981+1 2.039547-6-3.533526+1 2.045181-6-4.878304+1 2.049742-6-5.877541+1 2.056193-6-4.678418+1 2.060782-6-4.170814+1 2.064307-6-3.993152+1 2.068830-6-3.992254+1 2.074438-6-4.294890+1 2.093625-6-5.868173+1 2.098792-6-5.396781+1 2.116943-6-4.035653+1 2.122683-6-3.433867+1 2.126581-6-2.821298+1 2.134273-6-1.875656+1 2.140156-6-1.016833+1 2.141096-6-8.663410+0 2.145385-6-3.393151+0 2.145712-6-2.880749+0 2.146325-6-2.180372+0 2.147397-6-1.241875+0 2.150614-6 8.228059-1 2.151268-6 1.232110+0 2.152412-6 1.441288+0 2.153270-6 1.370907+0 2.154557-6 9.852258-1 2.155844-6 3.744974-1 2.156497-6-3.624332-2 2.157641-6-1.110790+0 2.158499-6-2.146347+0 2.159142-6-3.050094+0 2.160108-6-4.624066+0 2.160590-6-5.524974+0 2.162380-6-9.467069+0 2.164096-6-1.369707+1 2.165888-6-1.911803+1 2.170497-6-3.637601+1 2.174243-6-5.356563+1 2.175517-6-5.881742+1 2.178318-6-4.459436+1 2.181889-6-2.853979+1 2.182469-6-2.545373+1 2.183582-6-2.068483+1 2.187218-6-7.017367+0 2.187545-6-5.691849+0 2.188158-6-3.576299+0 2.189230-6-3.244509-1 2.190034-6 1.867687+0 2.191241-6 4.867307+0 2.193101-6 9.114911+0 2.194245-6 1.118723+1 2.195103-6 1.249406+1 2.197033-6 1.471927+1 2.199964-6 1.637583+1 2.202170-6 1.655473+1 2.205520-6 1.479536+1 2.207481-6 1.329826+1 2.208788-6 1.154138+1 2.212220-6 7.773590+0 2.212792-6 7.018313+0 2.213364-6 6.073862+0 2.218593-6-1.059080+0 2.219247-6-2.079912+0 2.220390-6-3.535530+0 2.226437-6-1.024395+1 2.228397-6-1.280839+1 2.229683-6-1.511304+1 2.232834-6-1.879018+1 2.237848-6-2.285898+1 2.245298-6-2.718118+1 2.257523-6-3.204552+1 2.276629-6-3.692153+1 2.308655-6-4.174712+1 2.367887-6-4.638721+1 2.487945-6-5.049303+1 2.779910-6-5.395186+1 3.095398-6-5.663116+1 3.145171-6-5.709574+1 3.194201-6-5.368978+1 3.341782-6-5.679958+1 3.404449-6-5.438489+1 3.572869-6-5.823662+1 3.615564-6-5.446164+1 3.648502-6-5.199226+1 3.775034-6-5.475685+1 4.129100-6-5.620651+1 4.206600-6-5.509852+1 4.404470-6-5.591971+1 1.202156-5-5.908688+1 1.551738-5-5.506877+1 1.708810-5-5.040665+1 1.797429-5-4.503698+1 1.852770-5-3.894482+1 1.881557-5-3.390758+1 1.901846-5-2.888973+1 1.916572-5-2.398419+1 1.927066-5-1.948534+1 1.936529-5-1.435774+1 1.941261-5-1.126118+1 1.945992-5-7.682431+0 1.948358-5-5.664589+0 1.950724-5-3.455181+0 1.953047-5-1.048043+0 1.954209-5 2.760568-1 1.955371-5 1.762026+0 1.960187-5 8.024811+0 1.963794-5 1.324307+1 1.968606-5 2.175231+1 1.973419-5 3.257064+1 1.976061-5 4.069248+1 1.977535-5 4.674836+1 1.981144-5 5.696068+1 1.986270-5 7.026347+1 1.992807-5 8.728778+1 1.996737-5 9.443736+1 2.000445-5 9.514655+1 2.003913-5 9.122931+1 2.006954-5 8.271092+1 2.010088-5 6.906527+1 2.012271-5 5.586902+1 2.015286-5 3.142259+1 2.016546-5 2.022682+1 2.017232-5 1.293711+1 2.019228-5-6.410007+0 2.020102-5-1.515314+1 2.021014-5-2.513626+1 2.021866-5-3.557514+1 2.024152-5-6.086615+1 2.025170-5-4.792105+1 2.025767-5-3.971171+1 2.026237-5-3.422814+1 2.030889-5 1.395642+1 2.031040-5 1.587304+1 2.031333-5 1.907316+1 2.032361-5 2.890664+1 2.036152-5 6.018108+1 2.038505-5 7.487008+1 2.041612-5 8.829215+1 2.044977-5 9.696588+1 2.048239-5 9.946925+1 2.053772-5 9.020995+1 2.059245-5 7.302734+1 2.065782-5 5.093357+1 2.072624-5 3.182978+1 2.073840-5 2.708632+1 2.074583-5 2.398406+1 2.076432-5 1.849143+1 2.078843-5 1.286969+1 2.080219-5 1.011054+1 2.081423-5 7.892478+0 2.083530-5 4.365702+0 2.085110-5 1.965329+0 2.087481-5-1.314905+0 2.089851-5-4.276123+0 2.092423-5-7.191714+0 2.094995-5-9.848435+0 2.100139-5-1.453745+1 2.107855-5-2.039866+1 2.118271-5-2.678758+1 2.136146-5-3.530088+1 2.177297-5-5.014547+1 2.207611-5-6.159768+1 2.234160-5-4.873898+1 2.245038-5-4.060391+1 2.249929-5-3.466727+1 2.251021-5-3.245190+1 2.261929-5-1.667948+1 2.267469-5-7.680896+0 2.267815-5-6.949852+0 2.268464-5-5.872906+0 2.273009-5 2.609742-1 2.273355-5 8.634112-1 2.274004-5 1.662049+0 2.275141-5 2.689957+0 2.279001-5 5.052422+0 2.279878-5 5.213872+0 2.280699-5 5.109516+0 2.281469-5 4.836594+0 2.282913-5 3.924869+0 2.284176-5 2.729547+0 2.285282-5 1.389313+0 2.286249-5-9.066647-3 2.287096-5-1.408806+0 2.287836-5-2.772581+0 2.289132-5-5.488498+0 2.290104-5-7.823280+0 2.291380-5-1.133563+1 2.292610-5-1.536555+1 2.296387-5-3.039325+1 2.300996-5-5.296055+1 2.302618-5-6.229822+1 2.306773-5-4.011942+1 2.308011-5-3.220405+1 2.312337-5-1.006664+1 2.312899-5-6.632666+0 2.313240-5-4.771118+0 2.313878-5-1.622533+0 2.314995-5 3.359303+0 2.318835-5 1.896826+1 2.320665-5 2.496318+1 2.323052-5 3.100766+1 2.325607-5 3.585822+1 2.328475-5 3.955547+1 2.330871-5 4.122814+1 2.333225-5 4.134718+1 2.338799-5 3.700159+1 2.344425-5 2.920186+1 2.351344-5 1.800264+1 2.360772-5 5.387672+0 2.361212-5 4.632986+0 2.362174-5 2.571850+0 2.363184-5 9.691492-1 2.363924-5-2.773827-2 2.364132-5-3.089335-1 2.365909-5-2.384547+0 2.367464-5-3.970573+0 2.370185-5-6.390913+0 2.372225-5-7.983221+0 2.375286-5-1.009863+1 2.378347-5-1.194262+1 2.386432-5-1.598884+1 2.396988-5-2.000716+1 2.414099-5-2.472670+1 2.437427-5-2.916152+1 2.484839-5-3.496438+1 2.534672-5-3.929787+1 2.580334-5-4.090756+1 2.613007-5-3.959014+1 2.691535-5-4.142516+1 3.095431-5-4.448390+1 4.321244-5-4.775451+1 7.673615-5-5.325275+1 8.517011-5-5.635055+1 9.321903-5-5.052675+1 9.798274-5-4.406605+1 1.005600-4-3.835593+1 1.023293-4-3.265336+1 1.036800-4-2.661734+1 1.047082-4-2.043879+1 1.053326-4-1.567152+1 1.058471-4-1.093198+1 1.061481-4-7.715546+0 1.064116-4-4.567787+0 1.066420-4-1.509694+0 1.068437-4 1.441541+0 1.070202-4 4.270309+0 1.071746-4 6.963985+0 1.074279-4 1.191087+1 1.077124-4 1.845622+1 1.079500-4 2.501236+1 1.081791-4 3.269670+1 1.084343-4 4.370479+1 1.085997-4 5.306158+1 1.087341-4 6.399996+1 1.091736-4 9.150444+1 1.095002-4 1.160241+2 1.098262-4 1.358301+2 1.100806-4 1.432763+2 1.102697-4 1.399238+2 1.104689-4 1.286518+2 1.106181-4 1.145630+2 1.107853-4 9.096960+1 1.110010-4 5.208012+1 1.110627-4 3.892683+1 1.110961-4 3.035585+1 1.111265-4 2.372472+1 1.112327-4 1.853526+0 1.112593-4-3.707862+0 1.112942-4-1.130735+1 1.113222-4-1.791719+1 1.113369-4-2.188462+1 1.113534-4-2.664195+1 1.114108-4-3.966660+1 1.114907-4-5.584541+1 1.115197-4-5.202609+1 1.116013-4-3.496345+1 1.116288-4-2.828814+1 1.116719-4-1.995731+1 1.117193-4-1.189262+1 1.117579-4-5.823606+0 1.118840-4 1.277205+1 1.119231-4 1.788444+1 1.119952-4 2.571641+1 1.120873-4 3.364979+1 1.121885-4 4.011509+1 1.122975-4 4.462907+1 1.123983-4 4.643926+1 1.124954-4 4.560466+1 1.126369-4 3.956010+1 1.127755-4 2.992646+1 1.128526-4 2.431940+1 1.129324-4 1.730472+1 1.129576-4 1.441901+1 1.130425-4 6.447910+0 1.130742-4 3.137955+0 1.131085-4 6.349045-2 1.131599-4-4.377073+0 1.131856-4-6.703992+0 1.132048-4-8.648159+0 1.132172-4-1.019982+1 1.132506-4-1.334164+1 1.133029-4-1.738619+1 1.135079-4-3.191557+1 1.135832-4-3.532636+1 1.137039-4-3.823537+1 1.138510-4-3.893752+1 1.140681-4-3.660699+1 1.141600-4-3.274339+1 1.142228-4-2.849460+1 1.143543-4-1.711403+1 1.143925-4-1.327490+1 1.144293-4-8.952178+0 1.144416-4-7.119096+0 1.144503-4-5.754356+0 1.144673-4-3.529484+0 1.144991-4 2.753344-1 1.146383-4 1.632303+1 1.147010-4 2.454444+1 1.147306-4 2.957237+1 1.150589-4 7.253731+1 1.153804-4 1.051699+2 1.155883-4 1.173178+2 1.158580-4 1.244867+2 1.160826-4 1.239356+2 1.163721-4 1.141418+2 1.169816-4 8.321286+1 1.174364-4 6.259344+1 1.175669-4 5.519692+1 1.177300-4 4.890037+1 1.180392-4 3.985781+1 1.183735-4 3.240248+1 1.187877-4 2.518095+1 1.190368-4 2.160203+1 1.194841-4 1.622548+1 1.200560-4 1.069776+1 1.203454-4 8.294881+0 1.207686-4 5.141220+0 1.211961-4 2.317749+0 1.215721-4 9.419587-2 1.215932-4-1.870256-2 1.219480-4-1.897652+0 1.223962-4-4.020962+0 1.230212-4-6.588456+0 1.236081-4-8.656708+0 1.245219-4-1.136269+1 1.258925-4-1.450915+1 1.278523-4-1.767277+1 1.305000-4-2.041971+1 1.343948-4-2.293958+1 1.424215-4-2.611328+1 1.585728-4-3.003295+1 1.875000-4-3.405291+1 2.208930-4-3.753645+1 2.825856-4-3.600852+1 3.061622-4-3.568341+1 4.415704-4-3.269164+1 5.607251-4-3.170148+1 6.878599-4-3.235402+1 7.898443-4-3.484101+1 8.549436-4-3.857039+1 8.887386-4-4.241230+1 9.096763-4-4.693081+1 9.209603-4-5.189754+1 9.331154-4-5.877052+1 9.415295-4-5.871808+1 9.600545-4-5.303544+1 9.765456-4-4.496777+1 9.952442-4-3.952045+1 1.021323-3-3.446434+1 1.049452-3-3.088724+1 1.098619-3-2.695710+1 1.152338-3-2.442753+1 1.195713-3-2.361587+1 1.227790-3-2.460210+1 1.260285-3-2.159426+1 1.293356-3-2.002783+1 1.329864-3-1.931275+1 1.371720-3-1.695103+1 1.432954-3-1.507204+1 1.485903-3-1.430805+1 1.523477-3-1.283827+1 1.599325-3-1.101798+1 1.707126-3-9.276400+0 1.843703-3-7.740851+0 1.986667-3-6.633248+0 2.147953-3-5.770272+0 2.327736-3-5.162122+0 2.608352-3-4.637086+0 2.925836-3-4.413906+0 3.302694-3-4.450367+0 3.776135-3-4.758915+0 4.309786-3-5.361939+0 4.840853-3-6.269716+0 5.234874-3-7.302491+0 5.502775-3-8.400998+0 5.678050-3-9.555750+0 5.788667-3-1.078744+1 5.848955-3-1.200553+1 5.929129-3-1.439809+1 5.966719-3-1.460735+1 6.013025-3-1.355083+1 6.075462-3-1.183656+1 6.144707-3-1.082845+1 6.242431-3-1.025268+1 6.325168-3-1.033669+1 6.427160-3-1.109259+1 6.477238-3-1.072324+1 6.586981-3-9.002394+0 6.668536-3-8.413710+0 6.793299-3-8.204857+0 6.862388-3-7.509618+0 6.949160-3-6.495973+0 7.067847-3-5.598236+0 7.252051-3-4.642118+0 7.471675-3-3.807827+0 7.710605-3-3.110428+0 7.991041-3-2.496646+0 8.255707-3-2.037838+0 8.605099-3-1.566500+0 8.960788-3-1.201160+0 9.329291-3-9.092209-1 9.712445-3-6.837315-1 1.002797-2-5.378590-1 1.036519-2-4.125562-1 1.077870-2-2.941901-1 1.106907-2-2.280959-1 1.135754-2-1.764217-1 1.185087-2-1.049945-1 1.220320-2-7.297113-2 1.241831-2-5.879723-2 1.271234-2-4.376037-2 1.287815-2-3.727978-2 1.302712-2-3.318562-2 1.330789-2-2.828189-2 1.360316-2-2.690396-2 1.373449-2-2.706202-2 1.423925-2-3.275435-2 1.494386-2-5.430872-2 1.537226-2-7.168674-2 1.606096-2-1.054661-1 1.664526-2-1.381990-1 1.894865-2-2.874622-1 2.950048-2-1.025632+0 3.283678-2-1.293639+0 3.566654-2-1.585986+0 3.776042-2-1.895225+0 3.916482-2-2.209323+0 4.004775-2-2.510060+0 4.068745-2-2.848376+0 4.115000-2-3.270074+0 4.153828-2-3.891669+0 4.183171-2-4.359906+0 4.201590-2-4.445212+0 4.223206-2-4.258792+0 4.276356-2-3.278525+0 4.313246-2-2.806208+0 4.358629-2-2.440493+0 4.419077-2-2.106053+0 4.505572-2-1.774475+0 4.621726-2-1.455812+0 4.732827-2-1.230991+0 4.904686-2-9.761076-1 5.090004-2-7.805978-1 5.250185-2-6.504363-1 5.419875-2-5.413395-1 5.641390-2-4.281666-1 5.839083-2-3.509830-1 5.977822-2-3.070927-1 6.153220-2-2.597006-1 6.325114-2-2.210766-1 6.494185-2-1.903903-1 6.647518-2-1.681055-1 6.845382-2-1.435529-1 7.009106-2-1.277326-1 7.309905-2-1.060733-1 7.692965-2-8.704310-2 7.917899-2-7.953706-2 8.125107-2-7.502120-2 8.557629-2-7.128004-2 9.023661-2-7.296776-2 9.273969-2-7.514080-2 1.021675-1-8.995312-2 1.480107-1-1.924068-1 1.783806-1-2.458419-1 2.201086-1-2.983922-1 2.756729-1-3.435603-1 3.578904-1-3.825532-1 4.968783-1-4.147270-1 7.829788-1-4.384299-1 1.947381+0-4.519670-1 5.880996+0-4.548817-1 1.000000+1-4.548653-1 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.728548-1 1.053996-6 3.566053-1 1.084900-6 4.149947-1 1.114839-6 4.796522-1 1.143843-6 5.513029-1 1.171939-6 6.304142-1 1.199158-6 7.174706-1 1.225527-6 8.129736-1 1.251071-6 9.174428-1 1.275817-6 1.031416+0 1.299790-6 1.155448+0 1.323014-6 1.290114+0 1.345511-6 1.436008+0 1.367306-6 1.593741+0 1.388420-6 1.763947+0 1.408874-6 1.947275+0 1.428689-6 2.144396+0 1.466480-6 2.582799+0 1.501946-6 3.084906+0 1.535230-6 3.656780+0 1.566467-6 4.304861+0 1.581356-6 4.660477+0 1.595781-6 5.040219+0 1.623729-6 5.879977+0 1.649930-6 6.815982+0 1.674493-6 7.859932+0 1.697522-6 9.019985+0 1.719111-6 1.030437+1 1.739350-6 1.172149+1 1.758325-6 1.327987+1 1.776114-6 1.498811+1 1.792791-6 1.685486+1 1.808425-6 1.888880+1 1.823083-6 2.109856+1 1.836824-6 2.349269+1 1.849707-6 2.607963+1 1.861784-6 2.886767+1 1.873107-6 3.186492+1 1.883722-6 3.507927+1 1.893673-6 3.851836+1 1.903003-6 4.218958+1 1.911749-6 4.610007+1 1.919949-6 5.025666+1 1.927636-6 5.466598+1 1.934843-6 5.933451+1 1.941600-6 6.426875+1 1.947934-6 6.947534+1 1.953872-6 7.496110+1 1.959439-6 8.073289+1 1.964658-6 8.679753+1 1.969551-6 9.316191+1 1.974138-6 9.983361+1 1.978439-6 1.068218+2 1.982470-6 1.141383+2 1.990030-6 1.303884+2 1.996644-6 1.482919+2 2.002432-6 1.680447+2 2.007496-6 1.897715+2 2.011927-6 2.134373+2 2.015805-6 2.388074+2 2.019197-6 2.654694+2 2.022166-6 2.928972+2 2.024763-6 3.205272+2 2.027036-6 3.478241+2 2.029025-6 3.743255+2 2.032505-6 4.271274+2 2.044438-6 6.787177+2 2.048000-6 7.755546+2 2.050488-6 8.484387+2 2.053002-6 9.257668+2 2.058031-6 1.087964+3 2.058659-6 1.108607+3 2.063059-6 1.252261+3 2.064788-6 1.307135+3 2.068088-6 1.406743+3 2.069816-6 1.455158+3 2.071466-6 1.498284+3 2.073116-6 1.537907+3 2.075316-6 1.584499+3 2.077438-6 1.621809+3 2.079402-6 1.648976+3 2.081052-6 1.665901+3 2.083173-6 1.679313+3 2.086002-6 1.681970+3 2.088359-6 1.670602+3 2.089234-6 1.663237+3 2.091232-6 1.640141+3 2.093463-6 1.604320+3 2.095838-6 1.555208+3 2.098232-6 1.495240+3 2.100328-6 1.435011+3 2.101345-6 1.403510+3 2.103748-6 1.323972+3 2.105857-6 1.249319+3 2.107393-6 1.192736+3 2.109219-6 1.123819+3 2.111314-6 1.043392+3 2.113344-6 9.650649+2 2.115544-6 8.808980+2 2.117577-6 8.047341+2 2.118372-6 7.755403+2 2.120886-6 6.861921+2 2.123401-6 6.022501+2 2.124894-6 5.554167+2 2.127545-6 4.784397+2 2.134490-6 3.193751+2 2.135489-6 3.019302+2 2.136988-6 2.784228+2 2.138486-6 2.581372+2 2.139115-6 2.505942+2 2.140567-6 2.353624+2 2.141787-6 2.249512+2 2.142933-6 2.171616+2 2.144045-6 2.114639+2 2.144890-6 2.083627+2 2.145653-6 2.064845+2 2.146646-6 2.053548+2 2.147609-6 2.056925+2 2.148549-6 2.073970+2 2.149459-6 2.103581+2 2.150342-6 2.144714+2 2.152051-6 2.259896+2 2.158460-6 3.134438+2 2.160864-6 3.658564+2 2.162967-6 4.214301+2 2.170138-6 6.877995+2 2.173442-6 8.558432+2 2.175897-6 1.001504+3 2.178790-6 1.197211+3 2.181452-6 1.401397+3 2.183049-6 1.535245+3 2.185729-6 1.779065+3 2.188409-6 2.046741+3 2.194104-6 2.689688+3 2.194732-6 2.766172+3 2.199464-6 3.370627+3 2.201192-6 3.600965+3 2.204489-6 4.048363+3 2.207211-6 4.419013+3 2.209850-6 4.772858+3 2.212572-6 5.125577+3 2.215210-6 5.448766+3 2.217555-6 5.715304+3 2.220146-6 5.981622+3 2.220905-6 6.053258+3 2.224045-6 6.315126+3 2.226498-6 6.477250+3 2.229315-6 6.613354+3 2.231677-6 6.683967+3 2.236818-6 6.696321+3 2.238283-6 6.664602+3 2.242345-6 6.498883+3 2.244897-6 6.340300+3 2.247370-6 6.150776+3 2.250092-6 5.906483+3 2.252730-6 5.639636+3 2.255075-6 5.382447+3 2.257337-6 5.120790+3 2.260771-6 4.706404+3 2.263451-6 4.375860+3 2.266466-6 4.004089+3 2.268811-6 3.719331+3 2.274171-6 3.098607+3 2.276013-6 2.898477+3 2.279531-6 2.539331+3 2.284221-6 2.111812+3 2.290805-6 1.614892+3 2.296677-6 1.268839+3 2.299597-6 1.127403+3 2.302505-6 1.004536+3 2.305403-6 8.982472+2 2.308289-6 8.065852+2 2.311163-6 7.276901+2 2.314027-6 6.598344+2 2.316879-6 6.014474+2 2.319720-6 5.511262+2 2.322550-6 5.076381+2 2.328188-6 4.369214+2 2.333782-6 3.826886+2 2.339332-6 3.401210+2 2.344839-6 3.059042+2 2.350303-6 2.777879+2 2.355724-6 2.542418+2 2.361103-6 2.342107+2 2.366440-6 2.169498+2 2.371735-6 2.019180+2 2.376989-6 1.887110+2 2.382201-6 1.770187+2 2.392545-6 1.571869+2 2.402728-6 1.411006+2 2.412751-6 1.278139+2 2.422617-6 1.166771+2 2.432330-6 1.072282+2 2.441890-6 9.912749+1 2.451302-6 9.211954+1 2.460566-6 8.600825+1 2.469685-6 8.063984+1 2.478662-6 7.589132+1 2.496336-6 6.781825+1 2.513457-6 6.128455+1 2.530043-6 5.590521+1 2.546110-6 5.141548+1 2.561676-6 4.762263+1 2.576755-6 4.438479+1 2.591363-6 4.159616+1 2.605515-6 3.917342+1 2.632933-6 3.510906+1 2.658638-6 3.189906+1 2.682736-6 2.931656+1 2.705329-6 2.720742+1 2.726509-6 2.546212+1 2.766221-6 2.265263+1 2.800970-6 2.058131+1 2.831375-6 1.901546+1 2.857980-6 1.780517+1 2.904537-6 1.595867+1 2.939456-6 1.475864+1 3.066689-6 1.130980+1 3.164098-6 9.295930+0 3.194069-6 8.743663+0 3.277738-6 7.279763+0 3.340490-6 6.202931+0 3.384612-6 5.421947+0 3.418393-6 4.786818+0 3.432187-6 4.512555+0 3.456326-6 4.003270+0 3.474431-6 3.589223+0 3.488009-6 3.255194+0 3.498193-6 2.989088+0 3.505831-6 2.780234+0 3.517288-6 2.453339+0 3.523016-6 2.285519+0 3.528744-6 2.116935+0 3.536098-6 1.903811+0 3.549767-6 1.547923+0 3.551280-6 1.514618+0 3.563487-6 1.326416+0 3.566124-6 1.310989+0 3.567443-6 1.307591+0 3.568762-6 1.307298+0 3.573132-6 1.330809+0 3.575318-6 1.358200+0 3.577503-6 1.397189+0 3.578595-6 1.421315+0 3.582420-6 1.532039+0 3.584332-6 1.603848+0 3.586244-6 1.687456+0 3.589370-6 1.851163+0 3.592248-6 2.033583+0 3.595456-6 2.275183+0 3.599461-6 2.637322+0 3.612236-6 4.285671+0 3.614002-6 4.576035+0 3.620574-6 5.790747+0 3.624228-6 6.555836+0 3.628899-6 7.620577+0 3.632677-6 8.547079+0 3.635920-6 9.382987+0 3.639215-6 1.026470+1 3.642725-6 1.123218+1 3.646550-6 1.230957+1 3.650534-6 1.344285+1 3.654556-6 1.458239+1 3.659976-6 1.607910+1 3.663872-6 1.710456+1 3.666708-6 1.781361+1 3.670181-6 1.862858+1 3.673654-6 1.937450+1 3.682395-6 2.088056+1 3.683966-6 2.108738+1 3.691136-6 2.175725+1 3.694141-6 2.189860+1 3.697009-6 2.195497+1 3.701456-6 2.189104+1 3.705710-6 2.166132+1 3.708138-6 2.145917+1 3.712121-6 2.102190+1 3.715374-6 2.057403+1 3.719643-6 1.987508+1 3.723760-6 1.909761+1 3.725132-6 1.881907+1 3.731764-6 1.736686+1 3.733975-6 1.685358+1 3.741712-6 1.500750+1 3.751111-6 1.282129+1 3.757601-6 1.146828+1 3.760502-6 1.092799+1 3.764923-6 1.019958+1 3.768792-6 9.669070+0 3.771045-6 9.410634+0 3.772987-6 9.219689+0 3.778810-6 8.833029+0 3.780469-6 8.776127+0 3.782362-6 8.740913+0 3.787333-6 8.801513+0 3.789702-6 8.908875+0 3.792305-6 9.084989+0 3.797276-6 9.586770+0 3.799881-6 9.933623+0 3.802781-6 1.038376+1 3.806508-6 1.105557+1 3.812262-6 1.227493+1 3.822053-6 1.473397+1 3.825551-6 1.568598+1 3.830961-6 1.718479+1 3.835866-6 1.853190+1 3.839653-6 1.953816+1 3.844017-6 2.063632+1 3.853250-6 2.263854+1 3.856225-6 2.316647+1 3.861906-6 2.398840+1 3.865080-6 2.433455+1 3.868109-6 2.458643+1 3.871139-6 2.476069+1 3.873447-6 2.484141+1 3.878640-6 2.486122+1 3.880372-6 2.481937+1 3.884988-6 2.459536+1 3.889604-6 2.421863+1 3.896529-6 2.340318+1 3.898837-6 2.307386+1 3.905762-6 2.194797+1 3.908070-6 2.153503+1 3.917303-6 1.975922+1 3.919611-6 1.929541+1 3.926536-6 1.788793+1 3.934615-6 1.626058+1 3.942720-6 1.469292+1 4.001352-6 6.672883+0 4.005280-6 6.370188+0 4.012781-6 5.900170+0 4.018982-6 5.631434+0 4.021049-6 5.568422+0 4.030898-6 5.469140+0 4.032129-6 5.481480+0 4.040747-6 5.731744+0 4.044133-6 5.910228+0 4.050596-6 6.376646+0 4.053861-6 6.673414+0 4.057494-6 7.049488+0 4.063400-6 7.755983+0 4.076363-6 9.631718+0 4.081919-6 1.051995+1 4.087973-6 1.150306+1 4.092915-6 1.229378+1 4.096378-6 1.283059+1 4.100456-6 1.343527+1 4.109689-6 1.464972+1 4.114547-6 1.518070+1 4.118431-6 1.554396+1 4.123710-6 1.594578+1 4.128614-6 1.622292+1 4.132618-6 1.638198+1 4.135622-6 1.646332+1 4.142380-6 1.653735+1 4.147845-6 1.650139+1 4.151058-6 1.644745+1 4.158933-6 1.623919+1 4.182178-6 1.543482+1 4.192820-6 1.517008+1 4.200622-6 1.505128+1 4.207503-6 1.499424+1 4.230190-6 1.494976+1 4.242795-6 1.486326+1 4.252248-6 1.470832+1 4.257919-6 1.457167+1 4.267616-6 1.426353+1 4.276280-6 1.391898+1 4.286407-6 1.345644+1 4.301711-6 1.269967+1 4.338076-6 1.101703+1 4.365626-6 9.964843+0 4.379661-6 9.492246+0 4.388296-6 9.228656+0 4.400453-6 8.906204+0 4.409740-6 8.709031+0 4.415493-6 8.612073+0 4.421245-6 8.535983+0 4.426443-6 8.485747+0 4.436774-6 8.437656+0 4.447267-6 8.453266+0 4.457989-6 8.521286+0 4.485118-6 8.769742+0 4.496130-6 8.832949+0 4.501637-6 8.845961+0 4.509896-6 8.838549+0 4.518155-6 8.797929+0 4.528271-6 8.706129+0 4.538404-6 8.576731+0 4.573218-6 8.040478+0 4.587888-6 7.858849+0 4.595242-6 7.787685+0 4.606255-6 7.705389+0 4.617267-6 7.647390+0 4.668025-6 7.479591+0 4.718213-6 7.252314+0 4.878790-6 6.644847+0 4.965997-6 6.311647+0 5.063007-6 6.039652+0 5.582835-6 4.903589+0 5.838919-6 4.455991+0 6.000754-6 4.175072+0 6.100000-6 4.002751+0 6.187246-6 3.850223+0 6.287892-6 3.654461+0 6.334322-6 3.569049+0 6.349799-6 3.550001+0 6.378065-6 3.535494+0 6.390855-6 3.538398+0 6.411706-6 3.554524+0 6.473614-6 3.630621+0 6.499364-6 3.642016+0 6.520044-6 3.633928+0 6.535521-6 3.617966+0 6.566475-6 3.565914+0 6.597428-6 3.498051+0 6.783275-6 3.089431+0 6.816504-6 3.033347+0 6.845202-6 3.000265+0 6.864081-6 2.988296+0 6.882961-6 2.984228+0 6.916190-6 2.992663+0 6.983079-6 3.024275+0 7.012862-6 3.023257+0 7.047598-6 3.001378+0 7.082334-6 2.958153+0 7.130225-6 2.875520+0 7.191185-6 2.764197+0 7.261125-6 2.660465+0 7.383520-6 2.515376+0 7.448752-6 2.459032+0 7.541775-6 2.400366+0 7.581209-6 2.366701+0 7.650701-6 2.290667+0 7.965070-6 1.959625+0 8.082927-6 1.855008+0 8.179436-6 1.766716+0 8.294089-6 1.656389+0 8.532544-6 1.446060+0 8.709636-6 1.298434+0 8.850000-6 1.184806+0 9.015711-6 1.054426+0 9.192161-6 9.214443-1 9.387300-6 7.833352-1 9.645250-6 6.115054-1 9.876221-6 4.697009-1 1.007289-5 3.605525-1 1.020225-5 2.956089-1 1.039621-5 2.087166-1 1.057251-5 1.413024-1 1.074901-5 8.578914-2 1.085000-5 5.990204-2 1.092833-5 4.332146-2 1.108564-5 1.921434-2 1.124611-5 7.773417-3 1.140156-5 1.038402-2 1.147686-5 1.697154-2 1.155098-5 2.723558-2 1.165000-5 4.697091-2 1.176646-5 7.876372-2 1.190430-5 1.197208-1 1.197977-5 1.313246-1 1.198806-5 1.317154-1 1.213750-5 1.116255-1 1.227629-5 7.561063-2 1.238448-5 5.117900-2 1.250435-5 3.024740-2 1.262048-5 1.669717-2 1.273299-5 1.050885-2 1.284197-5 1.166184-2 1.294755-5 2.012123-2 1.304983-5 3.586162-2 1.315880-5 6.171434-2 1.324491-5 8.944483-2 1.343089-5 1.723883-1 1.361685-5 2.894616-1 1.376870-5 4.141341-1 1.392194-5 5.707789-1 1.406560-5 7.493543-1 1.420029-5 9.482193-1 1.433203-5 1.176280+0 1.444493-5 1.401771+0 1.466688-5 1.929950+0 1.486109-5 2.496654+0 1.503102-5 3.087732+0 1.517971-5 3.689866+0 1.542366-5 4.886212+0 1.562288-5 6.084871+0 1.588436-5 8.031667+0 1.605246-5 9.561264+0 1.673979-5 1.894331+1 1.706291-5 2.599106+1 1.722726-5 3.053947+1 1.739162-5 3.591088+1 1.751488-5 4.059052+1 1.763380-5 4.573715+1 1.784980-5 5.702240+1 1.803965-5 6.956563+1 1.820650-5 8.328341+1 1.828219-5 9.053588+1 1.842412-5 1.062232+2 1.854830-5 1.226407+2 1.865695-5 1.395840+2 1.875203-5 1.568423+2 1.883522-5 1.741963+2 1.890801-5 1.914280+2 1.897171-5 2.083333+2 1.904305-5 2.296227+2 1.912497-5 2.576895+2 1.919812-5 2.866680+2 1.927438-5 3.216628+2 1.933527-5 3.538199+2 1.941756-5 4.046065+2 1.948694-5 4.555309+2 1.956094-5 5.202818+2 1.960874-5 5.692440+2 1.965653-5 6.251273+2 1.970432-5 6.894074+2 1.976181-5 7.806297+2 1.979991-5 8.515870+2 1.984771-5 9.556595+2 1.989550-5 1.081191+3 1.994329-5 1.235100+3 1.999109-5 1.427064+3 2.003888-5 1.670513+3 2.006278-5 1.817052+3 2.008668-5 1.983788+3 2.011080-5 2.175864+3 2.013491-5 2.395621+3 2.015939-5 2.651332+3 2.018387-5 2.944905+3 2.022186-5 3.488432+3 2.028179-5 4.612686+3 2.040908-5 8.477816+3 2.045574-5 1.051600+4 2.049444-5 1.247954+4 2.053231-5 1.463165+4 2.055122-5 1.578490+4 2.059525-5 1.863901+4 2.061255-5 1.981108+4 2.065186-5 2.253454+4 2.067938-5 2.445065+4 2.070367-5 2.611518+4 2.073101-5 2.792338+4 2.075194-5 2.923658+4 2.077544-5 3.061234+4 2.080138-5 3.197952+4 2.082031-5 3.285879+4 2.084354-5 3.378200+4 2.087359-5 3.469333+4 2.089951-5 3.520010+4 2.091060-5 3.533382+4 2.093820-5 3.544509+4 2.095260-5 3.537657+4 2.099939-5 3.456430+4 2.102190-5 3.386737+4 2.104486-5 3.296852+4 2.106414-5 3.207994+4 2.108790-5 3.083582+4 2.111396-5 2.930907+4 2.113392-5 2.804680+4 2.115633-5 2.655497+4 2.117504-5 2.526465+4 2.119911-5 2.356882+4 2.122427-5 2.177804+4 2.124943-5 1.999699+4 2.127773-5 1.803609+4 2.129975-5 1.656109+4 2.135007-5 1.341882+4 2.136737-5 1.242583+4 2.140039-5 1.066774+4 2.143813-5 8.887946+3 2.147281-5 7.468161+3 2.151568-5 5.985966+3 2.164126-5 3.098023+3 2.166770-5 2.705723+3 2.169414-5 2.369381+3 2.172383-5 2.048998+3 2.174702-5 1.835018+3 2.177704-5 1.597769+3 2.180364-5 1.419339+3 2.183025-5 1.265858+3 2.186795-5 1.083375+3 2.190565-5 9.336339+2 2.195852-5 7.651964+2 2.201140-5 6.324478+2 2.217003-5 3.641699+2 2.222291-5 3.021800+2 2.227578-5 2.493660+2 2.232866-5 2.041425+2 2.246875-5 1.134337+2 2.248389-5 1.057937+2 2.251203-5 9.259553+1 2.254657-5 7.811897+1 2.259457-5 6.101696+1 2.264991-5 4.542486+1 2.270525-5 3.401796+1 2.271909-5 3.179853+1 2.276059-5 2.663894+1 2.277443-5 2.542174+1 2.281594-5 2.333047+1 2.282977-5 2.317821+1 2.285052-5 2.349931+1 2.286609-5 2.420135+1 2.287819-5 2.504086+1 2.289938-5 2.718112+1 2.290619-5 2.806431+1 2.292279-5 3.065168+1 2.292863-5 3.171830+1 2.293984-5 3.400876+1 2.295263-5 3.704249+1 2.296222-5 3.963471+1 2.297661-5 4.407814+1 2.299101-5 4.925148+1 2.301431-5 5.938546+1 2.304146-5 7.440238+1 2.312916-5 1.561758+2 2.316077-5 2.031261+2 2.318907-5 2.558845+2 2.321736-5 3.207854+2 2.324566-5 4.000000+2 2.327395-5 4.959286+2 2.330225-5 6.111792+2 2.333054-5 7.485310+2 2.335263-5 8.729464+2 2.338161-5 1.061686+3 2.340839-5 1.264255+3 2.343585-5 1.502469+3 2.345407-5 1.678742+3 2.348099-5 1.967144+3 2.350155-5 2.210596+3 2.352915-5 2.569896+3 2.353628-5 2.668880+3 2.359784-5 3.624574+3 2.365215-5 4.606701+3 2.367687-5 5.088684+3 2.369663-5 5.485885+3 2.372163-5 5.999027+3 2.375019-5 6.592819+3 2.377421-5 7.091533+3 2.379991-5 7.616710+3 2.382763-5 8.163944+3 2.385158-5 8.613038+3 2.387706-5 9.058773+3 2.388927-5 9.258317+3 2.392294-5 9.753632+3 2.395006-5 1.008587+4 2.398361-5 1.040389+4 2.400648-5 1.055732+4 2.406347-5 1.070448+4 2.409086-5 1.065511+4 2.412593-5 1.048253+4 2.415423-5 1.025961+4 2.417738-5 1.002666+4 2.420602-5 9.682524+3 2.422320-5 9.449853+3 2.425347-5 8.999778+3 2.428266-5 8.526865+3 2.429239-5 8.362644+3 2.432051-5 7.874593+3 2.435241-5 7.306006+3 2.438916-5 6.646990+3 2.440146-5 6.428099+3 2.445917-5 5.435339+3 2.449273-5 4.895466+3 2.453248-5 4.302764+3 2.458855-5 3.563636+3 2.469756-5 2.460935+3 2.472345-5 2.259525+3 2.476229-5 1.995512+3 2.480113-5 1.772510+3 2.484811-5 1.549846+3 2.491195-5 1.314325+3 2.495776-5 1.182549+3 2.499370-5 1.096161+3 2.502331-5 1.034185+3 2.505004-5 9.842939+2 2.507487-5 9.423511+2 2.510486-5 8.966082+2 2.517307-5 8.086207+2 2.521325-5 7.649927+2 2.526179-5 7.184929+2 2.534347-5 6.520970+2 2.545617-5 5.778930+2 2.557707-5 5.135781+2 2.568337-5 4.662463+2 2.580732-5 4.194488+2 2.587053-5 3.986188+2 2.593374-5 3.797121+2 2.600160-5 3.614964+2 2.610813-5 3.371539+2 2.619025-5 3.218767+2 2.625247-5 3.123161+2 2.637136-5 2.989461+2 2.643939-5 2.942292+2 2.651031-5 2.915393+2 2.656585-5 2.908961+2 2.662482-5 2.913976+2 2.675925-5 2.952186+2 2.682240-5 2.971503+2 2.691211-5 2.986876+2 2.694772-5 2.986991+2 2.700287-5 2.979351+2 2.706648-5 2.958842+2 2.715709-5 2.911532+2 2.738419-5 2.756266+2 2.750954-5 2.680399+2 2.763741-5 2.617899+2 2.785447-5 2.535150+2 2.852016-5 2.331764+2 2.876407-5 2.257200+2 2.925438-5 2.126777+2 2.998714-5 1.971588+2 3.056531-5 1.869189+2 3.137368-5 1.750666+2 3.209165-5 1.660675+2 3.276800-5 1.588540+2 3.379200-5 1.492495+2 3.479872-5 1.412137+2 3.588456-5 1.338711+2 3.725001-5 1.259856+2 4.107170-5 1.086807+2 4.141039-5 1.075557+2 4.220000-5 1.058402+2 4.259196-5 1.046676+2 4.359500-5 1.013416+2 4.480000-5 9.812841+1 4.640476-5 9.452069+1 6.324738-5 6.978693+1 6.918310-5 6.336213+1 7.244359-5 5.914155+1 7.498942-5 5.544663+1 7.673615-5 5.274110+1 7.890874-5 4.917347+1 8.035261-5 4.664270+1 8.205061-5 4.354203+1 8.344254-5 4.090794+1 8.418641-5 3.946468+1 8.511380-5 3.763787+1 8.623299-5 3.541358+1 8.749087-5 3.291276+1 9.002000-5 2.818092+1 9.083379-5 2.747777+1 9.105436-5 2.751592+1 9.161860-5 2.813742+1 9.246107-5 3.018738+1 9.311314-5 3.233552+1 9.374499-5 3.475974+1 9.440609-5 3.767055+1 9.524023-5 4.196329+1 9.581058-5 4.536034+1 9.648864-5 4.996737+1 9.717379-5 5.533653+1 9.791925-5 6.212672+1 9.841973-5 6.733497+1 9.900000-5 7.413456+1 9.933400-5 7.846314+1 1.000000-4 8.811973+1 1.006202-4 9.852127+1 1.011579-4 1.088303+2 1.017896-4 1.227431+2 1.025095-4 1.414211+2 1.031852-4 1.622821+2 1.038193-4 1.854878+2 1.041539-4 1.994239+2 1.047682-4 2.286197+2 1.052562-4 2.557426+2 1.058743-4 2.962327+2 1.062534-4 3.251627+2 1.067058-4 3.646290+2 1.071991-4 4.150526+2 1.075275-4 4.537802+2 1.079003-4 5.037248+2 1.082497-4 5.574088+2 1.085773-4 6.149406+2 1.089060-4 6.810431+2 1.091724-4 7.419409+2 1.094424-4 8.115905+2 1.096954-4 8.854527+2 1.099709-4 9.771180+2 1.101551-4 1.046146+3 1.103637-4 1.133154+3 1.105591-4 1.224741+3 1.107424-4 1.321030+3 1.109175-4 1.424190+3 1.110753-4 1.528278+3 1.113774-4 1.764242+3 1.116416-4 2.022867+3 1.118729-4 2.303690+3 1.120752-4 2.604563+3 1.122522-4 2.921631+3 1.124072-4 3.249727+3 1.125427-4 3.582995+3 1.126613-4 3.915530+3 1.128689-4 4.604971+3 1.130245-4 5.226496+3 1.132289-4 6.201664+3 1.138915-4 1.092209+4 1.140539-4 1.249547+4 1.141784-4 1.381654+4 1.143469-4 1.575831+4 1.145249-4 1.798400+4 1.148054-4 2.177828+4 1.148405-4 2.227009+4 1.150860-4 2.575592+4 1.151824-4 2.712091+4 1.153665-4 2.965910+4 1.154813-4 3.116492+4 1.156078-4 3.272127+4 1.157422-4 3.422701+4 1.158575-4 3.536977+4 1.159686-4 3.632218+4 1.160942-4 3.720103+4 1.162255-4 3.787600+4 1.163899-4 3.834369+4 1.165142-4 3.840809+4 1.166854-4 3.808570+4 1.168160-4 3.752767+4 1.169009-4 3.702734+4 1.170378-4 3.600869+4 1.171678-4 3.482280+4 1.173148-4 3.326747+4 1.174502-4 3.167666+4 1.175746-4 3.012130+4 1.177093-4 2.838002+4 1.178910-4 2.602017+4 1.183206-4 2.098658+4 1.184778-4 1.951952+4 1.185654-4 1.881814+4 1.186908-4 1.797036+4 1.187780-4 1.749383+4 1.188873-4 1.703008+4 1.189793-4 1.675492+4 1.190847-4 1.656653+4 1.191714-4 1.650935+4 1.192648-4 1.654126+4 1.193676-4 1.668051+4 1.193944-4 1.673349+4 1.196054-4 1.735941+4 1.197722-4 1.806241+4 1.202164-4 2.031288+4 1.204063-4 2.122087+4 1.204590-4 2.144891+4 1.207504-4 2.243181+4 1.208875-4 2.269755+4 1.210924-4 2.282482+4 1.212417-4 2.270676+4 1.213276-4 2.255903+4 1.213962-4 2.240041+4 1.214990-4 2.209730+4 1.216101-4 2.168687+4 1.217482-4 2.106706+4 1.218725-4 2.041745+4 1.219168-4 2.016759+4 1.220763-4 1.920000+4 1.221990-4 1.839706+4 1.222771-4 1.786587+4 1.224248-4 1.683272+4 1.224769-4 1.646235+4 1.227648-4 1.440899+4 1.228283-4 1.396247+4 1.233083-4 1.081834+4 1.239695-4 7.471689+3 1.241488-4 6.778855+3 1.242865-4 6.304417+3 1.244879-4 5.693610+3 1.246879-4 5.174910+3 1.249238-4 4.660187+3 1.251089-4 4.319104+3 1.253712-4 3.913300+3 1.256347-4 3.579471+3 1.259833-4 3.224043+3 1.262608-4 2.993469+3 1.265368-4 2.798612+3 1.268701-4 2.598318+3 1.270029-4 2.527174+3 1.273524-4 2.358784+3 1.278842-4 2.144563+3 1.284011-4 1.973193+3 1.288461-4 1.848249+3 1.293156-4 1.734798+3 1.296838-4 1.656923+3 1.300162-4 1.593779+3 1.304008-4 1.528120+3 1.308164-4 1.464916+3 1.312920-4 1.401060+3 1.317958-4 1.341788+3 1.325000-4 1.270901+3 1.331090-4 1.218844+3 1.337580-4 1.171095+3 1.344636-4 1.126619+3 1.350438-4 1.094826+3 1.363084-4 1.037020+3 1.375563-4 9.913909+2 1.390684-4 9.464142+2 1.404250-4 9.124006+2 1.423560-4 8.708609+2 1.441285-4 8.380802+2 1.462588-4 8.028699+2 1.480579-4 7.761956+2 1.523025-4 7.220633+2 1.562446-4 6.797144+2 1.599747-4 6.453257+2 1.635875-4 6.161808+2 1.672466-4 5.902081+2 1.754397-4 5.416524+2 1.797336-4 5.207154+2 1.844809-4 5.003600+2 1.899984-4 4.800541+2 1.957000-4 4.614345+2 2.105000-4 4.207879+2 2.175204-4 4.000984+2 2.216354-4 3.838848+2 2.226557-4 3.817505+2 2.232126-4 3.815266+2 2.241554-4 3.828776+2 2.254559-4 3.877754+2 2.271405-4 3.957957+2 2.280718-4 3.992560+2 2.290377-4 4.015616+2 2.302521-4 4.028425+2 2.312597-4 4.030374+2 2.442723-4 3.987820+2 2.498310-4 4.002701+2 2.519387-4 4.014288+2 2.545977-4 4.041225+2 2.601158-4 4.121883+2 2.755828-4 4.275362+2 2.982236-4 4.431100+2 3.114239-4 4.490834+2 3.148015-4 4.527970+2 3.213464-4 4.645301+2 3.324853-4 4.798809+2 3.585830-4 5.061688+2 3.819717-4 5.257938+2 4.081138-4 5.445416+2 4.409354-4 5.634417+2 4.748894-4 5.788507+2 5.248800-4 5.935934+2 5.706168-4 5.993057+2 6.164011-4 5.969450+2 6.616037-4 5.867162+2 7.008005-4 5.708862+2 7.410804-4 5.458154+2 7.785565-4 5.153491+2 8.098203-4 4.835775+2 8.348537-4 4.529812+2 8.564173-4 4.219351+2 8.745746-4 3.916266+2 8.870047-4 3.682430+2 9.005850-4 3.395081+2 9.120108-4 3.122169+2 9.226578-4 2.836591+2 9.290080-4 2.648792+2 9.355439-4 2.446824+2 9.402455-4 2.329933+2 9.465671-4 2.455533+2 9.510071-4 3.202592+2 9.525341-4 3.715907+2 9.529113-4 3.870098+2 9.565995-4 6.089026+2 9.600232-4 9.554681+2 9.621850-4 1.250729+3 9.624149-4 1.285433+3 9.646373-4 1.649012+3 9.649767-4 1.708394+3 9.670080-4 2.077466+3 9.688915-4 2.427534+3 9.708663-4 2.781776+3 9.714805-4 2.885910+3 9.743882-4 3.316416+3 9.763236-4 3.530009+3 9.767745-4 3.570318+3 9.779163-4 3.656089+3 9.790982-4 3.720722+3 9.802328-4 3.760894+3 9.811216-4 3.778622+3 9.822708-4 3.785669+3 9.832315-4 3.779685+3 9.847301-4 3.753061+3 9.862355-4 3.710708+3 9.886528-4 3.623483+3 9.920814-4 3.481221+3 9.934484-4 3.419705+3 9.971369-4 3.225920+3 9.982739-4 3.153590+3 9.993885-4 3.075258+3 1.000388-3 2.998344+3 1.001939-3 2.866043+3 1.004433-3 2.622991+3 1.005812-3 2.475588+3 1.007300-3 2.309880+3 1.009635-3 2.045407+3 1.011296-3 1.861496+3 1.015854-3 1.417648+3 1.018254-3 1.236289+3 1.020492-3 1.103628+3 1.023054-3 9.926138+2 1.026447-3 9.020760+2 1.028646-3 8.698002+2 1.031488-3 8.494135+2 1.034766-3 8.450409+2 1.038660-3 8.537471+2 1.056209-3 9.248766+2 1.065350-3 9.588264+2 1.074279-3 9.893191+2 1.088616-3 1.034200+3 1.107786-3 1.088707+3 1.124703-3 1.131048+3 1.146978-3 1.179121+3 1.175302-3 1.229078+3 1.193457-3 1.251643+3 1.211072-3 1.264639+3 1.227965-3 1.268501+3 1.253118-3 1.264520+3 1.259807-3 1.268615+3 1.266026-3 1.278247+3 1.274946-3 1.301992+3 1.290132-3 1.351589+3 1.302385-3 1.385305+3 1.315635-3 1.416798+3 1.324034-3 1.433835+3 1.335332-3 1.451692+3 1.367745-3 1.485883+3 1.386889-3 1.517690+3 1.419159-3 1.573179+3 1.431461-3 1.590701+3 1.447741-3 1.609264+3 1.468991-3 1.626469+3 1.490691-3 1.637838+3 1.535806-3 1.648160+3 1.546758-3 1.656391+3 1.562449-3 1.677558+3 1.588631-3 1.715476+3 1.604492-3 1.730908+3 1.628589-3 1.746896+3 1.686681-3 1.770568+3 1.764260-3 1.788066+3 1.900253-3 1.798821+3 1.990960-3 1.797600+3 2.115771-3 1.784476+3 2.317701-3 1.751532+3 2.393660-3 1.736716+3 2.664557-3 1.672317+3 2.936910-3 1.601973+3 3.151133-3 1.545843+3 3.323171-3 1.499219+3 3.624641-3 1.418771+3 3.765175-3 1.382392+3 3.939751-3 1.336723+3 4.131367-3 1.287413+3 4.319493-3 1.240229+3 4.518559-3 1.190914+3 4.717914-3 1.141462+3 4.904842-3 1.095039+3 5.073411-3 1.052562+3 5.229887-3 1.012485+3 5.361509-3 9.774174+2 5.483559-3 9.434907+2 5.589018-3 9.126434+2 5.670504-3 8.873232+2 5.743072-3 8.631013+2 5.811003-3 8.384069+2 5.867025-3 8.160135+2 5.917992-3 7.933505+2 5.965649-3 7.691138+2 6.002025-3 7.475078+2 6.032114-3 7.268022+2 6.069212-3 6.974838+2 6.124305-3 6.522223+2 6.147455-3 6.374158+2 6.161939-3 6.309012+2 6.174384-3 6.273934+2 6.184428-3 6.260949+2 6.198760-3 6.266780+2 6.214330-3 6.304542+2 6.236226-3 6.405747+2 6.266228-3 6.606520+2 6.315757-3 6.972533+2 6.335633-3 7.099999+2 6.349799-3 7.179431+2 6.369667-3 7.273998+2 6.400000-3 7.382578+2 6.433266-3 7.459260+2 6.472383-3 7.504141+2 6.509306-3 7.508816+2 6.544494-3 7.482266+2 6.601022-3 7.388346+2 6.651160-3 7.296443+2 6.685678-3 7.270848+2 6.702703-3 7.278536+2 6.719908-3 7.301950+2 6.748515-3 7.374294+2 6.799860-3 7.574535+2 6.849453-3 7.775778+2 6.872594-3 7.852144+2 6.897022-3 7.915847+2 6.925463-3 7.968245+2 6.984152-3 8.021598+2 7.039654-3 8.058476+2 7.085318-3 8.126273+2 7.128341-3 8.234712+2 7.240994-3 8.582487+2 7.274375-3 8.663384+2 7.318446-3 8.747649+2 7.405205-3 8.858922+2 7.523871-3 8.945854+2 7.675736-3 9.000947+2 7.863912-3 9.014193+2 8.067764-3 8.984783+2 8.385104-3 8.876427+2 8.735526-3 8.707875+2 9.192581-3 8.442755+2 9.683654-3 8.128461+2 1.037006-2 7.676285+2 1.115779-2 7.170903+2 1.230650-2 6.495205+2 1.372229-2 5.768467+2 1.552443-2 5.003016+2 1.770738-2 4.264524+2 1.992393-2 3.666817+2 2.156230-2 3.298099+2 2.335311-2 2.948971+2 2.521329-2 2.634098+2 2.733823-2 2.324337+2 2.949883-2 2.056244+2 3.293714-2 1.709854+2 3.520634-2 1.522822+2 3.709706-2 1.383625+2 3.860814-2 1.278868+2 3.973045-2 1.202194+2 4.057379-2 1.143371+2 4.130821-2 1.089018+2 4.160279-2 1.065490+2 4.187008-2 1.042587+2 4.209826-2 1.021215+2 4.228740-2 1.001659+2 4.257348-2 9.679548+1 4.314453-2 8.934441+1 4.333538-2 8.752077+1 4.346876-2 8.675096+1 4.361658-2 8.646989+1 4.372225-2 8.663739+1 4.389595-2 8.748799+1 4.417473-2 8.978002+1 4.443883-2 9.212563+1 4.469314-2 9.396088+1 4.494929-2 9.524689+1 4.513603-2 9.587861+1 4.557535-2 9.668306+1 4.606489-2 9.692263+1 4.674716-2 9.665966+1 4.789282-2 9.542610+1 4.901606-2 9.371649+1 5.073612-2 9.058437+1 5.293229-2 8.626292+1 5.571140-2 8.079130+1 5.966102-2 7.347200+1 6.397450-2 6.622357+1 6.875477-2 5.917685+1 7.555021-2 5.073122+1 8.370715-2 4.262632+1 1.003053-1 3.108846+1 1.169231-1 2.363984+1 1.566999-1 1.382785+1 2.012664-1 8.694417+0 2.471967-1 5.894691+0 3.194295-1 3.600386+0 4.651932-1 1.732489+0 7.002198-1 7.760687-1 1.173413+0 2.793009-1 2.451607+0 6.435208-2 7.403736+0 7.066907-3 2.235892+1 7.750054-4 6.752287+1 8.497927-5 2.039158+2 9.317811-6 6.158159+2 1.021678-6 1.995262+3 9.732307-8 6.309573+3 9.732307-9 1.995262+4 9.73231-10 6.309573+4 9.73231-11 1.000000+5 3.87450-11 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.479400-6 1.258900-6 3.929600-6 1.584900-6 6.228000-6 1.995300-6 9.870600-6 2.511900-6 1.564400-5 3.162300-6 2.479400-5 3.981100-6 3.929500-5 5.011900-6 6.227800-5 6.309600-6 9.870400-5 7.943300-6 1.564300-4 1.000000-5 2.479300-4 1.258900-5 3.929300-4 1.584900-5 6.224600-4 1.995300-5 9.859500-4 2.511900-5 1.561800-3 3.162300-5 2.474400-3 3.981100-5 3.920500-3 5.011900-5 6.211400-3 6.309600-5 9.839700-3 7.943300-5 1.555900-2 1.000000-4 2.459300-2 1.258900-4 3.886900-2 1.584900-4 6.124000-2 1.995300-4 9.626800-2 2.511900-4 1.505300-1 3.162300-4 2.335600-1 3.981100-4 3.572000-1 5.011900-4 5.359000-1 6.309600-4 7.835300-1 7.943300-4 1.108700+0 1.000000-3 1.515400+0 1.258900-3 2.008300+0 1.584900-3 2.612300+0 1.995300-3 3.366800+0 2.511900-3 4.302200+0 3.162300-3 5.433000+0 3.981100-3 6.773200+0 5.011900-3 8.311700+0 6.309600-3 9.990700+0 7.943300-3 1.179600+1 1.000000-2 1.373200+1 1.258900-2 1.581700+1 1.584900-2 1.802000+1 1.995300-2 2.012100+1 2.511900-2 2.197600+1 3.162300-2 2.361400+1 3.981100-2 2.479500+1 5.011900-2 2.582000+1 6.309600-2 2.634800+1 7.943300-2 2.644200+1 1.000000-1 2.611100+1 1.258900-1 2.539400+1 1.584900-1 2.437100+1 1.995300-1 2.311800+1 2.511900-1 2.170300+1 3.162300-1 2.018700+1 3.981100-1 1.862500+1 5.011900-1 1.705700+1 6.309600-1 1.551500+1 7.943300-1 1.402000+1 1.000000+0 1.259300+1 1.258900+0 1.123400+1 1.584900+0 9.958900+0 1.995300+0 8.770600+0 2.511900+0 7.674600+0 3.162300+0 6.673800+0 3.981100+0 5.769200+0 5.011900+0 4.959200+0 6.309600+0 4.240700+0 7.943300+0 3.608800+0 1.000000+1 3.057600+0 1.258900+1 2.580000+0 1.584900+1 2.169100+0 1.995300+1 1.817600+0 2.511900+1 1.518500+0 3.162300+1 1.265100+0 3.981100+1 1.051500+0 5.011900+1 8.720200-1 6.309600+1 7.217200-1 7.943300+1 5.962400-1 1.000000+2 4.917600-1 1.258900+2 4.049700-1 1.584900+2 3.330400-1 1.995300+2 2.735400-1 2.511900+2 2.244000-1 3.162300+2 1.838900-1 3.981100+2 1.505400-1 5.011900+2 1.231300-1 6.309600+2 1.006200-1 7.943300+2 8.215500-2 1.000000+3 6.702900-2 1.258900+3 5.464800-2 1.584900+3 4.452300-2 1.995300+3 3.625200-2 2.511900+3 2.949800-2 3.162300+3 2.398900-2 3.981100+3 1.949900-2 5.011900+3 1.584000-2 6.309600+3 1.286200-2 7.943300+3 1.043800-2 1.000000+4 8.467500-3 1.258900+4 6.865900-3 1.584900+4 5.564900-3 1.995300+4 4.508600-3 2.511900+4 3.651400-3 3.162300+4 2.956100-3 3.981100+4 2.392300-3 5.011900+4 1.935400-3 6.309600+4 1.565200-3 7.943300+4 1.265400-3 1.000000+5 1.022700-3 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510162-4 3.162278-4 3.159560-4 3.981072-4 3.976786-4 5.011872-4 5.005130-4 6.309573-4 6.298978-4 7.943282-4 7.926731-4 1.000000-3 9.974245-4 1.258925-3 1.254914-3 1.584893-3 1.578626-3 1.995262-3 1.985428-3 2.511886-3 2.496428-3 3.162278-3 3.138001-3 3.981072-3 3.943002-3 5.011872-3 4.952325-3 6.309573-3 6.216683-3 7.943282-3 7.799020-3 1.000000-2 9.775313-3 1.258925-2 1.223958-2 1.584893-2 1.530729-2 1.995262-2 1.911706-2 2.511886-2 2.383764-2 3.162278-2 2.966964-2 3.981072-2 3.684563-2 5.011872-2 4.564440-2 6.309573-2 5.638508-2 7.943282-2 6.946124-2 1.000000-1 8.528010-2 1.258925-1 1.043923-1 1.584893-1 1.273671-1 1.995262-1 1.548677-1 2.511886-1 1.876782-1 3.162278-1 2.267020-1 3.981072-1 2.729673-1 5.011872-1 3.276608-1 6.309573-1 3.921963-1 7.943282-1 4.682494-1 1.000000+0 5.575606-1 1.258925+0 6.630314-1 1.584893+0 7.873286-1 1.995262+0 9.344487-1 2.511886+0 1.109027+0 3.162278+0 1.316735+0 3.981072+0 1.564726+0 5.011872+0 1.861501+0 6.309573+0 2.217699+0 7.943282+0 2.646328+0 1.000000+1 3.162911+0 1.258925+1 3.786910+0 1.584893+1 4.542070+0 1.995262+1 5.457275+0 2.511886+1 6.568018+0 3.162278+1 7.918048+0 3.981072+1 9.560561+0 5.011872+1 1.156133+1 6.309573+1 1.400096+1 7.943282+1 1.697860+1 1.000000+2 2.061600+1 1.258925+2 2.506310+1 1.584893+2 3.050496+1 1.995262+2 3.716819+1 2.511886+2 4.533335+1 3.162278+2 5.534595+1 3.981072+2 6.763034+1 5.011872+2 8.271377+1 6.309573+2 1.012433+2 7.943282+2 1.240192+2 1.000000+3 1.520288+2 1.258925+3 1.864943+2 1.584893+3 2.289152+2 1.995262+3 2.811782+2 2.511886+3 3.455627+2 3.162278+3 4.249432+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88202-10 1.995262-5 1.090640-9 2.511886-5 1.728519-9 3.162278-5 2.739543-9 3.981072-5 4.341920-9 5.011872-5 6.881152-9 6.309573-5 1.090512-8 7.943282-5 1.727405-8 1.000000-4 2.736891-8 1.258925-4 4.336719-8 1.584893-4 6.866637-8 1.995262-4 1.087114-7 2.511886-4 1.724411-7 3.162278-4 2.717777-7 3.981072-4 4.285338-7 5.011872-4 6.741951-7 6.309573-4 1.059501-6 7.943282-4 1.655177-6 1.000000-3 2.575547-6 1.258925-3 4.011281-6 1.584893-3 6.267331-6 1.995262-3 9.834425-6 2.511886-3 1.545797-5 3.162278-3 2.427644-5 3.981072-3 3.806994-5 5.011872-3 5.954688-5 6.309573-3 9.289010-5 7.943282-3 1.442627-4 1.000000-2 2.246874-4 1.258925-2 3.496775-4 1.584893-2 5.416428-4 1.995262-2 8.355624-4 2.511886-2 1.281226-3 3.162278-2 1.953137-3 3.981072-2 2.965087-3 5.011872-2 4.474321-3 6.309573-2 6.710657-3 7.943282-2 9.971582-3 1.000000-1 1.471990-2 1.258925-1 2.150027-2 1.584893-1 3.112218-2 1.995262-1 4.465851-2 2.511886-1 6.351044-2 3.162278-1 8.952574-2 3.981072-1 1.251399-1 5.011872-1 1.735265-1 6.309573-1 2.387611-1 7.943282-1 3.260788-1 1.000000+0 4.424394-1 1.258925+0 5.958940-1 1.584893+0 7.975646-1 1.995262+0 1.060814+0 2.511886+0 1.402859+0 3.162278+0 1.845543+0 3.981072+0 2.416346+0 5.011872+0 3.150371+0 6.309573+0 4.091875+0 7.943282+0 5.296954+0 1.000000+1 6.837089+0 1.258925+1 8.802345+0 1.584893+1 1.130686+1 1.995262+1 1.449535+1 2.511886+1 1.855085+1 3.162278+1 2.370473+1 3.981072+1 3.025016+1 5.011872+1 3.855739+1 6.309573+1 4.909477+1 7.943282+1 6.245423+1 1.000000+2 7.938400+1 1.258925+2 1.008294+2 1.584893+2 1.279844+2 1.995262+2 1.623580+2 2.511886+2 2.058553+2 3.162278+2 2.608818+2 3.981072+2 3.304768+2 5.011872+2 4.184735+2 6.309573+2 5.297141+2 7.943282+2 6.703091+2 1.000000+3 8.479712+2 1.258925+3 1.072431+3 1.584893+3 1.355978+3 1.995262+3 1.714084+3 2.511886+3 2.166324+3 3.162278+3 2.737334+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.960000-6 3.025600+6 5.370318-6 2.090208+6 5.754399-6 1.504117+6 6.100000-6 1.132560+6 6.456542-6 8.544015+5 6.850000-6 6.328020+5 7.244360-6 4.733925+5 7.700000-6 3.424820+5 7.850000-6 3.083882+5 7.850000-6 4.925145+5 8.100000-6 4.424596+5 8.200000-6 4.255254+5 8.320000-6 4.065028+5 8.320000-6 5.358592+5 8.413951-6 5.217463+5 8.511380-6 5.085902+5 8.709636-6 4.852590+5 8.850000-6 4.712120+5 9.015711-6 4.570213+5 9.120108-6 4.494752+5 9.332543-6 4.366602+5 9.440609-6 4.314795+5 9.660509-6 4.232256+5 9.772372-6 4.201926+5 9.930000-6 4.171023+5 1.000000-5 4.160545+5 1.011579-5 4.150498+5 1.035142-5 4.147628+5 1.050000-5 4.158950+5 1.071519-5 4.188618+5 1.085000-5 4.217361+5 1.100000-5 4.255973+5 1.122018-5 4.320559+5 1.127000-5 4.338823+5 1.150000-5 4.429163+5 1.165000-5 4.492509+5 1.174898-5 4.537694+5 1.180000-5 4.561858+5 1.200000-5 4.664908+5 1.216186-5 4.752235+5 1.222000-5 4.785313+5 1.244515-5 4.917699+5 1.264200-5 5.043026+5 1.273503-5 5.103898+5 1.288250-5 5.204495+5 1.310000-5 5.357132+5 1.318257-5 5.416436+5 1.333521-5 5.530766+5 1.350000-5 5.656976+5 1.357000-5 5.712398+5 1.380384-5 5.901278+5 1.410000-5 6.147340+5 1.428894-5 6.308355+5 1.440000-5 6.406341+5 1.445440-5 6.454911+5 1.470000-5 6.680647+5 1.500000-5 6.963408+5 1.531087-5 7.264194+5 1.570000-5 7.651555+5 1.584893-5 7.803123+5 1.630000-5 8.275818+5 1.717908-5 9.242400+5 1.927525-5 1.178119+6 1.950000-5 1.206720+6 1.972423-5 1.235582+6 2.070000-5 1.363410+6 2.113489-5 1.422404+6 2.162719-5 1.488922+6 2.190000-5 1.525832+6 2.290868-5 1.665997+6 2.317395-5 1.702619+6 2.454709-5 1.893533+6 2.488000-5 1.938424+6 2.488000-5 1.640690+7 2.600160-5 1.429274+7 2.722701-5 1.246427+7 2.754229-5 1.207358+7 2.812000-5 1.141084+7 2.812000-5 1.826634+7 2.917427-5 1.638534+7 2.985383-5 1.533692+7 3.080000-5 1.407390+7 3.090295-5 1.394773+7 3.235937-5 1.236429+7 3.273407-5 1.201218+7 3.427678-5 1.075360+7 3.467369-5 1.047396+7 3.630781-5 9.476024+6 3.650000-5 9.372793+6 3.672823-5 9.252962+6 3.890451-5 8.280265+6 3.900000-5 8.243821+6 3.935501-5 8.110648+6 4.027170-5 7.795880+6 4.073803-5 7.649423+6 4.168694-5 7.382874+6 4.220000-5 7.248225+6 4.415704-5 6.812020+6 4.466836-5 6.717633+6 4.480000-5 6.693849+6 4.480000-5 6.750817+6 4.500000-5 6.715986+6 4.518559-5 6.683494+6 4.590000-5 6.565435+6 4.731513-5 6.362061+6 4.786301-5 6.294617+6 4.800000-5 6.277959+6 4.841724-5 6.226803+6 5.011872-5 6.043391+6 5.069907-5 5.990550+6 5.128614-5 5.941532+6 5.150000-5 5.923726+6 5.248075-5 5.842786+6 5.308844-5 5.796812+6 5.432503-5 5.715188+6 5.450000-5 5.702905+6 5.559043-5 5.630756+6 5.623413-5 5.592326+6 5.650000-5 5.577637+6 5.688529-5 5.556919+6 5.754399-5 5.523240+6 5.850000-5 5.469814+6 5.900000-5 5.443405+6 6.000000-5 5.395163+6 6.095369-5 5.353385+6 6.165950-5 5.318101+6 6.309573-5 5.253033+6 6.456542-5 5.192140+6 6.531306-5 5.158403+6 6.760830-5 5.062108+6 6.800000-5 5.047185+6 6.839116-5 5.032448+6 6.900000-5 5.008387+6 6.918310-5 5.001374+6 7.079458-5 4.936361+6 7.300000-5 4.855348+6 7.328245-5 4.844704+6 7.413102-5 4.810594+6 7.650000-5 4.722133+6 7.673615-5 4.713613+6 7.762471-5 4.682370+6 7.852356-5 4.652196+6 8.000000-5 4.601605+6 8.035261-5 4.588825+6 8.128305-5 4.555948+6 8.400000-5 4.465793+6 8.413951-5 4.461297+6 8.500000-5 4.434123+6 8.511380-5 4.430351+6 8.609938-5 4.398532+6 8.810489-5 4.331835+6 8.912509-5 4.299074+6 9.000000-5 4.271877+6 9.225714-5 4.203953+6 9.300000-5 4.182425+6 9.332543-5 4.172549+6 9.440609-5 4.137519+6 9.660509-5 4.069171+6 9.900000-5 3.998336+6 1.000000-4 3.968189+6 1.011579-4 3.932183+6 1.060000-4 3.790214+6 1.071519-4 3.756605+6 1.083927-4 3.718768+6 1.109175-4 3.644277+6 1.122018-4 3.607744+6 1.135011-4 3.570235+6 1.161449-4 3.496187+6 1.170000-4 3.471691+6 1.202264-4 3.382634+6 1.220000-4 3.333669+6 1.230269-4 3.305879+6 1.244515-4 3.268193+6 1.246200-4 3.263598+6 1.246200-4 3.933210+6 1.260000-4 4.037730+6 1.267000-4 4.096740+6 1.273503-4 4.153011+6 1.280000-4 4.208878+6 1.286000-4 4.259067+6 1.286800-4 4.265161+6 1.286800-4 4.717073+6 1.293000-4 4.802081+6 1.299000-4 4.882525+6 1.303167-4 4.936081+6 1.305500-4 4.966919+6 1.310000-4 5.022167+6 1.312000-4 5.046581+6 1.312600-4 5.053165+6 1.318257-4 5.117062+6 1.325000-4 5.184236+6 1.332000-4 5.243069+6 1.338000-4 5.283781+6 1.344000-4 5.315151+6 1.348963-4 5.332273+6 1.350000-4 5.335840+6 1.352000-4 5.341053+6 1.357000-4 5.348677+6 1.359000-4 5.350118+6 1.363000-4 5.349164+6 1.367000-4 5.344967+6 1.370000-4 5.339196+6 1.375000-4 5.325197+6 1.377000-4 5.317974+6 1.380384-4 5.302742+6 1.385000-4 5.282283+6 1.390000-4 5.252576+6 1.396368-4 5.211110+6 1.398000-4 5.199301+6 1.408000-4 5.120058+6 1.410900-4 5.095490+6 1.412538-4 5.080705+6 1.416000-4 5.049711+6 1.428000-4 4.937696+6 1.428894-4 4.929033+6 1.439000-4 4.828782+6 1.445440-4 4.764341+6 1.447000-4 4.748979+6 1.450000-4 4.718785+6 1.462177-4 4.595754+6 1.465800-4 4.559966+6 1.470000-4 4.517856+6 1.485000-4 4.369978+6 1.500000-4 4.227825+6 1.510000-4 4.136291+6 1.513561-4 4.104003+6 1.531087-4 3.950912+6 1.540000-4 3.877357+6 1.566751-4 3.667854+6 1.570000-4 3.643783+6 1.584893-4 3.536285+6 1.621810-4 3.296758+6 1.650000-4 3.136758+6 1.659587-4 3.087030+6 1.678804-4 2.990834+6 1.680000-4 2.985130+6 1.698244-4 2.902820+6 1.705000-4 2.873523+6 1.713000-4 2.840321+6 1.720000-4 2.812381+6 1.740000-4 2.736174+6 1.757924-4 2.674101+6 1.760000-4 2.667091+6 1.765800-4 2.648233+6 1.780000-4 2.604082+6 1.790000-4 2.574735+6 1.800000-4 2.546616+6 1.810000-4 2.519272+6 1.820000-4 2.492976+6 1.828000-4 2.472995+6 1.842000-4 2.439463+6 1.850000-4 2.421321+6 1.862087-4 2.395079+6 1.873000-4 2.372168+6 1.885000-4 2.348092+6 1.895000-4 2.329114+6 1.905461-4 2.310079+6 1.908000-4 2.305493+6 1.915000-4 2.293408+6 1.927525-4 2.272668+6 1.930000-4 2.268613+6 1.937000-4 2.257671+6 1.950000-4 2.238199+6 1.957000-4 2.227549+6 1.972423-4 2.205958+6 1.980000-4 2.195505+6 2.000000-4 2.170198+6 2.010000-4 2.158209+6 2.018366-4 2.148708+6 2.030000-4 2.135307+6 2.041738-4 2.122505+6 2.060000-4 2.103868+6 2.065380-4 2.098668+6 2.089296-4 2.075384+6 2.090000-4 2.074740+6 2.113489-4 2.054384+6 2.120000-4 2.048911+6 2.162719-4 2.015968+6 2.170000-4 2.010576+6 2.213095-4 1.981537+6 2.238721-4 1.964813+6 2.264644-4 1.949298+6 2.290868-4 1.934759+6 2.297200-4 1.931270+6 2.297200-4 2.262869+6 2.300000-4 2.261176+6 2.344229-4 2.235162+6 2.380000-4 2.216332+6 2.398833-4 2.206688+6 2.400000-4 2.206074+6 2.454709-4 2.178630+6 2.500000-4 2.156682+6 2.527600-4 2.144066+6 2.527600-4 2.242053+6 2.540973-4 2.236174+6 2.570396-4 2.222914+6 2.580000-4 2.218590+6 2.620000-4 2.200899+6 2.630268-4 2.196298+6 2.660725-4 2.182845+6 2.691535-4 2.169508+6 2.722701-4 2.155852+6 2.754229-4 2.142874+6 2.786121-4 2.129349+6 2.800000-4 2.123217+6 2.818383-4 2.115452+6 2.851018-4 2.101940+6 2.888500-4 2.086592+6 2.917427-4 2.074426+6 2.951209-4 2.060480+6 2.985383-4 2.045997+6 3.000000-4 2.040024+6 3.019952-4 2.031487+6 3.054921-4 2.016786+6 3.100000-4 1.998033+6 3.126079-4 1.987031+6 3.135800-4 1.983013+6 3.135800-4 2.104553+6 3.162278-4 2.093289+6 3.200000-4 2.076796+6 3.235937-4 2.060823+6 3.273407-4 2.044548+6 3.280000-4 2.041703+6 3.320000-4 2.024221+6 3.349654-4 2.011002+6 3.390000-4 1.993489+6 3.427678-4 1.977205+6 3.430000-4 1.976201+6 3.507519-4 1.942045+6 3.589219-4 1.906896+6 3.600000-4 1.902175+6 3.650000-4 1.880207+6 3.715352-4 1.851899+6 3.758374-4 1.833789+6 3.801894-4 1.815205+6 3.845918-4 1.796259+6 3.890451-4 1.777692+6 3.935501-4 1.759386+6 3.981072-4 1.740301+6 4.027170-4 1.720957+6 4.120975-4 1.682980+6 4.150000-4 1.671596+6 4.168694-4 1.664045+6 4.216965-4 1.644437+6 4.265795-4 1.625152+6 4.365158-4 1.586924+6 4.466836-4 1.547328+6 4.518559-4 1.527968+6 4.570882-4 1.508802+6 4.600000-4 1.498375+6 4.623810-4 1.489439+6 4.731513-4 1.449997+6 4.786301-4 1.430690+6 4.841724-4 1.411709+6 4.850000-4 1.408910+6 4.897788-4 1.392110+6 5.069907-4 1.334706+6 5.150000-4 1.309383+6 5.188000-4 1.297103+6 5.248075-4 1.278066+6 5.308844-4 1.259364+6 5.432503-4 1.222697+6 5.500000-4 1.202622+6 5.623413-4 1.167183+6 5.688529-4 1.149206+6 5.754399-4 1.131487+6 5.800000-4 1.119475+6 5.821032-4 1.113773+6 6.000000-4 1.067246+6 6.095369-4 1.043684+6 6.165950-4 1.026800+6 6.200000-4 1.018834+6 6.237348-4 1.009830+6 6.382635-4 9.760023+5 6.606934-4 9.275283+5 6.683439-4 9.113711+5 6.760830-4 8.954015+5 6.839116-4 8.796795+5 7.000000-4 8.487758+5 7.079458-4 8.341830+5 7.244360-4 8.041903+5 7.328245-4 7.896370+5 7.413102-4 7.752511+5 7.585776-4 7.472217+5 7.673615-4 7.331371+5 7.800000-4 7.136068+5 8.035261-4 6.794034+5 8.128305-4 6.665780+5 8.200000-4 6.567822+5 8.413951-4 6.283897+5 8.511380-4 6.161078+5 8.709636-4 5.922780+5 8.810489-4 5.807279+5 8.912509-4 5.690808+5 9.015711-4 5.576452+5 9.120108-4 5.464281+5 9.225714-4 5.353683+5 9.440609-4 5.139335+5 9.549926-4 5.035356+5 9.700000-4 4.894242+5 9.772372-4 4.828422+5 9.843200-4 4.765144+5 9.843200-4 1.687255+6 9.885531-4 1.674872+6 1.007300-3 1.621731+6 1.007300-3 2.188178+6 1.011579-3 2.179050+6 1.023293-3 2.154735+6 1.033000-3 2.135280+6 1.034000-3 2.130306+6 1.035142-3 2.127913+6 1.047129-3 2.103089+6 1.055000-3 2.087292+6 1.059254-3 2.076893+6 1.083927-3 2.018775+6 1.110000-3 1.961151+6 1.122018-3 1.927999+6 1.135011-3 1.893263+6 1.161449-3 1.824288+6 1.174898-3 1.786444+6 1.188502-3 1.746360+6 1.202264-3 1.703503+6 1.216186-3 1.658974+6 1.230269-3 1.615556+6 1.244515-3 1.573197+6 1.273503-3 1.491812+6 1.287100-3 1.455679+6 1.287100-3 1.670513+6 1.303167-3 1.626684+6 1.318257-3 1.586415+6 1.333521-3 1.547195+6 1.340000-3 1.530739+6 1.348963-3 1.508181+6 1.380384-3 1.432872+6 1.392800-3 1.404655+6 1.392800-3 1.486569+6 1.396368-3 1.478563+6 1.412538-3 1.443113+6 1.413000-3 1.442099+6 1.428894-3 1.407483+6 1.432000-3 1.400860+6 1.445440-3 1.372637+6 1.450000-3 1.363257+6 1.462177-3 1.338392+6 1.470000-3 1.322751+6 1.479108-3 1.304779+6 1.500000-3 1.264903+6 1.531087-3 1.208509+6 1.548817-3 1.177622+6 1.551800-3 1.172541+6 1.551800-3 1.224672+6 1.584893-3 1.169219+6 1.603245-3 1.139566+6 1.610000-3 1.128915+6 1.640590-3 1.082447+6 1.650000-3 1.068734+6 1.659587-3 1.054979+6 1.678804-3 1.028080+6 1.698244-3 1.001599+6 1.730000-3 9.604965+5 1.737801-3 9.507031+5 1.757924-3 9.261210+5 1.770000-3 9.117508+5 1.778279-3 9.020998+5 1.819701-3 8.558980+5 1.840772-3 8.337246+5 1.850000-3 8.242815+5 1.862087-3 8.121207+5 1.883649-3 7.908666+5 1.927525-3 7.501125+5 1.950000-3 7.301600+5 1.972423-3 7.109547+5 2.065380-3 6.388460+5 2.070000-3 6.355508+5 2.089296-3 6.220446+5 2.113489-3 6.054329+5 2.137962-3 5.891868+5 2.187762-3 5.577678+5 2.213095-3 5.427081+5 2.238721-3 5.280753+5 2.264644-3 5.138166+5 2.300000-3 4.951420+5 2.344229-3 4.730382+5 2.350000-3 4.702469+5 2.398833-3 4.475513+5 2.426610-3 4.353556+5 2.454709-3 4.234665+5 2.511886-3 4.006770+5 2.540973-3 3.897536+5 2.570396-3 3.791444+5 2.600160-3 3.688385+5 2.630268-3 3.587155+5 2.650000-3 3.522961+5 2.660725-3 3.488725+5 2.691535-3 3.391842+5 2.722701-3 3.297547+5 2.754229-3 3.206007+5 2.786121-3 3.117044+5 2.851018-3 2.946852+5 2.884032-3 2.865033+5 2.917427-3 2.785014+5 2.951209-3 2.707279+5 2.985383-3 2.631583+5 3.000000-3 2.600119+5 3.054921-3 2.486175+5 3.090295-3 2.416532+5 3.198895-3 2.219663+5 3.235937-3 2.157837+5 3.273407-3 2.096855+5 3.311311-3 2.037686+5 3.349654-3 1.979896+5 3.400000-3 1.907486+5 3.427678-3 1.869270+5 3.507519-3 1.765013+5 3.589219-3 1.666865+5 3.600000-3 1.654416+5 3.650000-3 1.598372+5 3.672823-3 1.573652+5 3.800000-3 1.444193+5 3.801894-3 1.442382+5 3.845918-3 1.401140+5 3.900000-3 1.352760+5 3.935501-3 1.322289+5 3.981072-3 1.284612+5 4.000000-3 1.269419+5 4.027170-3 1.247940+5 4.073803-3 1.212137+5 4.168694-3 1.143385+5 4.216965-3 1.110425+5 4.265795-3 1.078436+5 4.300000-3 1.056817+5 4.315191-3 1.047406+5 4.415704-3 9.880793+4 4.466836-3 9.596582+4 4.518559-3 9.318812+4 4.570882-3 9.048696+4 4.623810-3 8.786753+4 4.677351-3 8.531561+4 4.731513-3 8.283931+4 4.786301-3 8.043035+4 4.841724-3 7.809491+4 4.897788-3 7.582786+4 5.011872-3 7.149802+4 5.069907-3 6.940842+4 5.188000-3 6.541884+4 5.248075-3 6.350401+4 5.300000-3 6.191190+4 5.308844-3 6.164568+4 5.500000-3 5.627191+4 5.559043-3 5.474633+4 5.623413-3 5.313889+4 5.688529-3 5.157998+4 5.754399-3 5.006287+4 5.821032-3 4.859166+4 5.888437-3 4.716021+4 5.956621-3 4.576865+4 6.025596-3 4.441987+4 6.200700-3 4.123346+4 6.200700-3 1.171783+5 6.237348-3 1.155311+5 6.309573-3 1.123795+5 6.382635-3 1.093030+5 6.400000-3 1.085894+5 6.531306-3 1.029597+5 6.606934-3 9.990089+4 6.683439-3 9.693360+4 6.727400-3 9.528197+4 6.727400-3 1.303080+5 6.760830-3 1.287098+5 6.800000-3 1.268725+5 6.839116-3 1.250410+5 6.918310-3 1.214437+5 6.930000-3 1.209248+5 7.000000-3 1.177604+5 7.079458-3 1.143012+5 7.093300-3 1.137128+5 7.093300-3 1.313205+5 7.161434-3 1.281496+5 7.200000-3 1.264024+5 7.244360-3 1.244590+5 7.250000-3 1.242146+5 7.328245-3 1.209419+5 7.350000-3 1.200440+5 7.413102-3 1.174552+5 7.500000-3 1.140173+5 7.585776-3 1.107921+5 7.673615-3 1.076226+5 7.762471-3 1.045447+5 7.852356-3 1.015564+5 7.943282-3 9.858808+4 8.035261-3 9.570408+4 8.128305-3 9.290597+4 8.222426-3 9.018980+4 8.317638-3 8.755256+4 8.413951-3 8.499430+4 8.511380-3 8.252023+4 8.609938-3 8.010334+4 8.709636-3 7.775932+4 8.810489-3 7.548483+4 8.912509-3 7.325792+4 9.120108-3 6.900503+4 9.225714-3 6.696968+4 9.300000-3 6.557853+4 9.332543-3 6.497893+4 9.772372-3 5.757926+4 9.800000-3 5.715479+4 9.885531-3 5.586693+4 1.011579-2 5.258915+4 1.035142-2 4.950742+4 1.047129-2 4.802995+4 1.059254-2 4.659656+4 1.096478-2 4.254135+4 1.109175-2 4.127131+4 1.148154-2 3.769040+4 1.150000-2 3.753184+4 1.161449-2 3.656200+4 1.174898-2 3.546451+4 1.188502-2 3.440055+4 1.202264-2 3.336923+4 1.216186-2 3.235668+4 1.244515-2 3.042527+4 1.258925-2 2.950418+4 1.273503-2 2.861164+4 1.300000-2 2.708377+4 1.303167-2 2.690751+4 1.333521-2 2.529491+4 1.348963-2 2.452583+4 1.364583-2 2.378081+4 1.380384-2 2.305666+4 1.396368-2 2.235436+4 1.412538-2 2.167404+4 1.462177-2 1.975783+4 1.479108-2 1.915413+4 1.513561-2 1.800141+4 1.531087-2 1.745185+4 1.548817-2 1.691946+4 1.566751-2 1.639904+4 1.584893-2 1.589506+4 1.603245-2 1.540693+4 1.621810-2 1.493205+4 1.640590-2 1.447026+4 1.698244-2 1.317076+4 1.717908-2 1.276429+4 1.737801-2 1.237067+4 1.757924-2 1.198943+4 1.778279-2 1.162001+4 1.819701-2 1.091572+4 1.840772-2 1.057934+4 1.883649-2 9.938066+3 1.900000-2 9.706084+3 1.905461-2 9.630212+3 1.927525-2 9.329906+3 1.949845-2 9.038897+3 1.972423-2 8.757137+3 2.000000-2 8.429290+3 2.018366-2 8.220162+3 2.041738-2 7.964319+3 2.089296-2 7.476825+3 2.113489-2 7.244645+3 2.162719-2 6.800552+3 2.187762-2 6.589102+3 2.213095-2 6.384202+3 2.238721-2 6.184562+3 2.264644-2 5.991314+3 2.290868-2 5.804237+3 2.300000-2 5.740982+3 2.317395-2 5.622394+3 2.344229-2 5.445983+3 2.371374-2 5.275245+3 2.426610-2 4.950044+3 2.483133-2 4.645361+3 2.511886-2 4.499447+3 2.570396-2 4.221286+3 2.600160-2 4.088438+3 2.630268-2 3.959730+3 2.660725-2 3.835143+3 2.691535-2 3.714496+3 2.754229-2 3.484723+3 2.818383-2 3.268495+3 2.900000-2 3.019364+3 2.917427-2 2.969183+3 2.951209-2 2.875132+3 3.019952-2 2.696074+3 3.054921-2 2.610871+3 3.090295-2 2.528308+3 3.126079-2 2.448410+3 3.162278-2 2.370846+3 3.235937-2 2.223183+3 3.273407-2 2.152900+3 3.311311-2 2.084883+3 3.349654-2 2.018808+3 3.427678-2 1.892928+3 3.548134-2 1.717720+3 3.589219-2 1.663067+3 3.630781-2 1.610120+3 3.672823-2 1.558871+3 3.758374-2 1.461317+3 3.801894-2 1.414904+3 3.845918-2 1.369900+3 3.890451-2 1.326342+3 4.027170-2 1.203890+3 4.168694-2 1.091828+3 4.216965-2 1.056886+3 4.265795-2 1.023042+3 4.315191-2 9.902848+2 4.359700-2 9.619910+2 4.359700-2 5.470789+3 4.530000-2 4.975919+3 4.570882-2 4.854183+3 4.600000-2 4.769942+3 4.623810-2 4.707804+3 4.677351-2 4.572140+3 4.731513-2 4.440365+3 4.810000-2 4.258410+3 4.897788-2 4.058026+3 4.954502-2 3.935379+3 5.011872-2 3.816426+3 5.069907-2 3.701082+3 5.128614-2 3.589240+3 5.188000-2 3.480794+3 5.248075-2 3.375630+3 5.370318-2 3.177734+3 5.432503-2 3.083197+3 5.495409-2 2.991484+3 5.559043-2 2.902504+3 5.623413-2 2.816067+3 5.800000-2 2.596513+3 5.888437-2 2.493172+3 5.956621-2 2.417306+3 6.025596-2 2.343755+3 6.095369-2 2.272435+3 6.309573-2 2.071219+3 6.382635-2 2.008202+3 6.456542-2 1.947107+3 6.531306-2 1.887875+3 6.606934-2 1.829608+3 6.760830-2 1.718290+3 7.000000-2 1.562947+3 7.244360-2 1.423408+3 7.328245-2 1.379446+3 7.413102-2 1.336846+3 7.498942-2 1.295565+3 7.673615-2 1.216800+3 7.852356-2 1.142833+3 7.943282-2 1.107514+3 8.128305-2 1.040125+3 8.317638-2 9.759105+2 8.413951-2 9.453095+2 8.511380-2 9.156633+2 8.609938-2 8.869481+2 8.709636-2 8.591361+2 8.912509-2 8.061056+2 9.015711-2 7.808338+2 9.120108-2 7.563562+2 9.332543-2 7.096819+2 9.549926-2 6.658945+2 1.011580-1 5.678060+2 1.023293-1 5.499999+2 1.035142-1 5.325529+2 1.047129-1 5.156556+2 1.059254-1 4.992965+2 1.071519-1 4.834578+2 1.096478-1 4.532733+2 1.122019-1 4.249762+2 1.135011-1 4.114992+2 1.148154-1 3.984493+2 1.202264-1 3.502673+2 1.216186-1 3.391499+2 1.258925-1 3.078751+2 1.273503-1 2.981055+2 1.288250-1 2.886463+2 1.318257-1 2.706210+2 1.333521-1 2.620376+2 1.348963-1 2.537262+2 1.364583-1 2.456474+2 1.380384-1 2.378262+2 1.396368-1 2.302543+2 1.428894-1 2.158273+2 1.445440-1 2.089570+2 1.462177-1 2.023062+2 1.479108-1 1.958674+2 1.496236-1 1.896334+2 1.513561-1 1.835986+2 1.548817-1 1.721011+2 1.584893-1 1.613248+2 1.621810-1 1.512239+2 1.659587-1 1.417586+2 1.678804-1 1.372508+2 1.717908-1 1.286611+2 1.737801-1 1.245701+2 1.757924-1 1.206095+2 1.778279-1 1.167755+2 1.798871-1 1.130633+2 1.819701-1 1.094692+2 1.862087-1 1.026221+2 1.905461-1 9.620362+1 1.949845-1 9.018837+1 1.972423-1 8.732345+1 2.000000-1 8.398927+1 2.041738-1 7.926372+1 2.089296-1 7.430884+1 2.113489-1 7.194903+1 2.137962-1 6.968515+1 2.162719-1 6.749253+1 2.187762-1 6.536951+1 2.238721-1 6.132190+1 2.317395-1 5.571723+1 2.344229-1 5.396705+1 2.371374-1 5.227222+1 2.398833-1 5.063069+1 2.426610-1 4.904087+1 2.483133-1 4.600964+1 2.511886-1 4.456512+1 2.540973-1 4.316627+1 2.570396-1 4.181176+1 2.600160-1 4.051431+1 2.630268-1 3.925717+1 2.660725-1 3.803905+1 2.722701-1 3.571511+1 2.786121-1 3.353338+1 2.818383-1 3.249304+1 2.851018-1 3.148507+1 2.884032-1 3.050870+1 2.917427-1 2.956316+1 2.985383-1 2.776164+1 3.019952-1 2.691815+1 3.054921-1 2.610031+1 3.090295-1 2.530740+1 3.126079-1 2.453858+1 3.162278-1 2.379312+1 3.198895-1 2.307035+1 3.235937-1 2.236972+1 3.273407-1 2.169044+1 3.388442-1 1.977439+1 3.427678-1 1.917415+1 3.467369-1 1.859337+1 3.507519-1 1.803019+1 3.548134-1 1.749343+1 3.589219-1 1.697281+1 3.672823-1 1.597760+1 3.715352-1 1.550226+1 3.758374-1 1.504108+1 3.801894-1 1.459361+1 3.935501-1 1.332966+1 3.981072-1 1.293424+1 4.027170-1 1.255763+1 4.120975-1 1.183699+1 4.168694-1 1.149245+1 4.216965-1 1.115796+1 4.265795-1 1.083320+1 4.365158-1 1.021183+1 4.415705-1 9.914729+0 4.466836-1 9.626279+0 4.472100-1 9.597326+0 4.518559-1 9.352261+0 4.623810-1 8.828545+0 4.677351-1 8.577886+0 4.731513-1 8.334362+0 4.786301-1 8.097760+0 4.841724-1 7.867941+0 4.897788-1 7.644649+0 4.954502-1 7.427693+0 5.011872-1 7.216898+0 5.069907-1 7.016567+0 5.128614-1 6.822382+0 5.188000-1 6.633646+0 5.248075-1 6.450143+0 5.308844-1 6.271779+0 5.370318-1 6.098345+0 5.495409-1 5.765737+0 5.559043-1 5.606300+0 5.623413-1 5.451276+0 5.688529-1 5.304074+0 5.754399-1 5.161355+0 5.821032-1 5.022532+0 5.956621-1 4.755991+0 6.025596-1 4.628073+0 6.095369-1 4.503598+0 6.165950-1 4.382471+0 6.237348-1 4.264615+0 6.309573-1 4.152691+0 6.382635-1 4.043833+0 6.456542-1 3.938143+0 6.606935-1 3.734978+0 6.683439-1 3.637363+0 6.760830-1 3.542298+0 6.918310-1 3.359576+0 6.998420-1 3.273949+0 7.079458-1 3.190518+0 7.161434-1 3.109268+0 7.244360-1 3.030320+0 7.413102-1 2.878392+0 7.585776-1 2.734093+0 7.673615-1 2.664703+0 7.762471-1 2.598756+0 7.852356-1 2.534463+0 8.035261-1 2.410678+0 8.222427-1 2.293287+0 8.317638-1 2.236753+0 8.413951-1 2.181632+0 8.511380-1 2.127890+0 8.609938-1 2.075477+0 8.709636-1 2.025819+0 8.810489-1 1.977386+0 8.912509-1 1.930112+0 9.015711-1 1.884134+0 9.120108-1 1.839271+0 9.225714-1 1.795495+0 9.332543-1 1.752761+0 9.440609-1 1.711050+0 9.549926-1 1.671594+0 9.660509-1 1.633078+0 9.772372-1 1.595469+0 9.885531-1 1.558874+0 1.000000+0 1.523144+0 1.011579+0 1.488234+0 1.023293+0 1.454122+0 1.035142+0 1.420793+0 1.047129+0 1.389008+0 1.059254+0 1.357940+0 1.071519+0 1.327595+0 1.083927+0 1.297929+0 1.096478+0 1.268928+0 1.109175+0 1.240573+0 1.122018+0 1.212859+0 1.135011+0 1.185831+0 1.148154+0 1.159416+0 1.161449+0 1.133603+0 1.174898+0 1.108364+0 1.188502+0 1.083691+0 1.202264+0 1.060211+0 1.216186+0 1.037253+0 1.230269+0 1.014792+0 1.250000+0 9.845512-1 1.258925+0 9.713270-1 1.273503+0 9.503827-1 1.288250+0 9.298920-1 1.318257+0 8.902280-1 1.333521+0 8.710358-1 1.348963+0 8.527756-1 1.380384+0 8.174197-1 1.396368+0 8.003006-1 1.412538+0 7.835451-1 1.500000+0 7.018961-1 1.513561+0 6.907494-1 1.548817+0 6.630485-1 1.584893+0 6.364594-1 1.659587+0 5.866018-1 1.678804+0 5.747635-1 1.698244+0 5.631647-1 1.717908+0 5.521452-1 1.737801+0 5.413483-1 1.798871+0 5.102091-1 1.819701+0 5.002690-1 1.840772+0 4.905227-1 1.862087+0 4.809662-1 1.883649+0 4.715959-1 1.905461+0 4.624110-1 1.927525+0 4.534061-1 1.949845+0 4.448498-1 1.972423+0 4.364611-1 2.018366+0 4.201556-1 2.044000+0 4.114784-1 2.065380+0 4.044842-1 2.113489+0 3.894269-1 2.137962+0 3.821121-1 2.187762+0 3.678932-1 2.213095+0 3.611903-1 2.238721+0 3.546142-1 2.290868+0 3.418187-1 2.317395+0 3.355952-1 2.344229+0 3.295066-1 2.398833+0 3.176589-1 2.426610+0 3.118977-1 2.483133+0 3.006877-1 2.511886+0 2.953967-1 2.540973+0 2.902023-1 2.600160+0 2.800860-1 2.630268+0 2.751610-1 2.660725+0 2.703233-1 2.691535+0 2.655864-1 2.754229+0 2.563604-1 2.786121+0 2.518698-1 2.851018+0 2.431238-1 2.884032+0 2.389905-1 2.917427+0 2.349305-1 3.000000+0 2.253717-1 3.019952+0 2.231593-1 3.054921+0 2.193687-1 3.126079+0 2.120031-1 3.198895+0 2.048848-1 3.235937+0 2.014168-1 3.311311+0 1.946567-1 3.349654+0 1.914597-1 3.388442+0 1.883172-1 3.467369+0 1.821864-1 3.507519+0 1.791962-1 3.548134+0 1.762556-1 3.630781+0 1.705371-1 3.715352+0 1.650042-1 3.758374+0 1.623063-1 3.845918+0 1.570425-1 3.890451+0 1.545512-1 3.935501+0 1.521011-1 4.027170+0 1.473169-1 4.073803+0 1.449815-1 4.120975+0 1.426835-1 4.216965+0 1.382107-1 4.315191+0 1.338781-1 4.365158+0 1.317637-1 4.415704+0 1.296828-1 4.518559+0 1.256192-1 4.570882+0 1.236940-1 4.623810+0 1.217997-1 4.731513+0 1.180976-1 4.786301+0 1.162890-1 4.841724+0 1.145083-1 4.954502+0 1.110400-1 5.069907+0 1.076767-1 5.128614+0 1.060340-1 5.188000+0 1.044164-1 5.308844+0 1.012550-1 5.370318+0 9.975464-2 5.432503+0 9.827748-2 5.559043+0 9.538844-2 5.688529+0 9.258437-2 5.754399+0 9.121360-2 5.888437+0 8.854079-2 6.025596+0 8.594632-2 6.095369+0 8.467809-2 6.237348+0 8.219767-2 6.382635+0 7.978992-2 6.456542+0 7.864411-2 6.531306+0 7.751543-2 6.683439+0 7.530647-2 6.839116+0 7.316046-2 6.918310+0 7.211064-2 7.079458+0 7.006208-2 7.244360+0 6.807172-2 7.328245+0 6.709813-2 7.498942+0 6.519264-2 7.673615+0 6.334129-2 7.762471+0 6.245833-2 7.943282+0 6.073030-2 8.128305+0 5.905009-2 8.317638+0 5.741636-2 8.413951+0 5.661665-2 8.511380+0 5.583035-2 8.609938+0 5.505497-2 8.912509+0 5.279287-2 9.015711+0 5.205989-2 9.225714+0 5.062440-2 9.332543+0 4.992158-2 9.440609+0 4.924592-2 9.549926+0 4.857958-2 9.660509+0 4.792270-2 9.885531+0 4.663546-2 1.000000+1 4.600486-2 1.023293+1 4.476914-2 1.035142+1 4.416387-2 1.047129+1 4.356841-2 1.071519+1 4.240158-2 1.109175+1 4.070958-2 1.122018+1 4.016090-2 1.148154+1 3.908560-2 1.161449+1 3.855882-2 1.174898+1 3.805110-2 1.188502+1 3.755022-2 1.202264+1 3.705621-2 1.230269+1 3.608756-2 1.258925+1 3.514428-2 1.288250+1 3.422560-2 1.303167+1 3.377539-2 1.318257+1 3.333109-2 1.333521+1 3.289385-2 1.364583+1 3.203645-2 1.412538+1 3.079207-2 1.445440+1 2.998971-2 1.462177+1 2.959642-2 1.479108+1 2.921675-2 1.500000+1 2.876089-2 1.513561+1 2.847230-2 1.566751+1 2.739140-2 1.621810+1 2.635155-2 1.659587+1 2.568033-2 1.678804+1 2.535121-2 1.698244+1 2.502629-2 1.717908+1 2.470633-2 1.737801+1 2.439043-2 1.757924+1 2.407858-2 1.800000+1 2.345036-2 1.840772+1 2.287072-2 1.883649+1 2.228978-2 1.905461+1 2.201049-2 1.927525+1 2.173477-2 1.949845+1 2.146249-2 1.972423+1 2.119377-2 2.113489+1 1.965064-2 2.187762+1 1.892173-2 2.238721+1 1.845088-2 2.264644+1 1.821989-2 2.290868+1 1.799226-2 2.317395+1 1.776747-2 2.344229+1 1.754550-2 2.400000+1 1.710076-2 2.426610+1 1.689613-2 2.483133+1 1.647670-2 2.570396+1 1.586700-2 2.600160+1 1.567286-2 2.630268+1 1.548113-2 2.660725+1 1.529176-2 2.691535+1 1.510480-2 2.851018+1 1.420372-2 2.917427+1 1.385853-2 3.000000+1 1.345134-2 3.019952+1 1.335641-2 3.090295+1 1.303244-2 3.126079+1 1.287341-2 3.198895+1 1.256115-2 3.311311+1 1.210691-2 3.388442+1 1.181329-2 3.507519+1 1.138619-2 3.715352+1 1.070839-2 3.758374+1 1.057991-2 3.801894+1 1.045298-2 3.845918+1 1.032759-2 3.890451+1 1.020371-2 3.935501+1 1.008137-2 4.168694+1 9.491301-3 4.265795+1 9.265062-3 4.365158+1 9.044216-3 4.415704+1 8.935967-3 4.466836+1 8.829014-3 4.518559+1 8.723343-3 4.677351+1 8.413855-3 4.841724+1 8.115346-3 4.954502+1 7.922277-3 5.248075+1 7.459476-3 5.688529+1 6.856624-3 5.754399+1 6.775707-3 5.888437+1 6.616726-3 6.000000+1 6.489920-3 6.095369+1 6.385257-3 6.165950+1 6.309939-3 6.606934+1 5.876339-3 6.760830+1 5.738531-3 6.918310+1 5.603955-3 6.998420+1 5.537956-3 7.079458+1 5.472735-3 7.161434+1 5.408283-3 7.413102+1 5.219444-3 7.673615+1 5.037198-3 7.762471+1 4.977883-3 8.413951+1 4.581790-3 9.440609+1 4.069990-3 9.549926+1 4.022590-3 1.000000+2 3.838445-3 1.023293+2 3.749568-3 1.047129+2 3.662748-3 1.059254+2 3.620106-3 1.071519+2 3.577962-3 1.161449+2 3.296368-3 1.188502+2 3.220065-3 1.216186+2 3.145525-3 1.230269+2 3.108907-3 1.244515+2 3.072751-3 1.273503+2 3.001699-3 1.333521+2 2.864485-3 1.412538+2 2.701750-3 1.428894+2 2.670334-3 1.621810+2 2.347954-3 1.883649+2 2.016762-3 1.905461+2 1.993467-3 1.995262+2 1.902948-3 2.041738+2 1.859245-3 2.089296+2 1.816545-3 2.113489+2 1.795567-3 2.137962+2 1.774832-3 2.317395+2 1.636237-3 2.371374+2 1.598664-3 2.426610+2 1.561955-3 2.454709+2 1.543918-3 2.483133+2 1.526099-3 2.540973+2 1.491075-3 2.660725+2 1.423420-3 2.818383+2 1.343152-3 2.851018+2 1.327651-3 3.235937+2 1.168501-3 3.758374+2 1.004829-3 3.801894+2 9.932821-4 3.981072+2 9.484079-4 4.073803+2 9.267378-4 4.168694+2 9.055629-4 4.216965+2 8.951586-4 4.265795+2 8.848738-4 4.623810+2 8.161145-4 4.731513+2 7.974691-4 4.841724+2 7.792497-4 4.897788+2 7.702970-4 4.954502+2 7.614512-4 5.069907+2 7.440632-4 5.308844+2 7.104694-4 5.623413+2 6.706020-4 5.688529+2 6.629014-4 6.456542+2 5.838140-4 1.496236+3 2.512568-4 1.513561+3 2.483792-4 1.584893+3 2.371940-4 1.621810+3 2.317918-4 1.659587+3 2.265127-4 1.678804+3 2.239185-4 1.698244+3 2.213541-4 1.840772+3 2.042069-4 1.883649+3 1.995563-4 1.927525+3 1.950116-4 3.890451+3 9.658585-5 3.935501+3 9.547987-5 4.027170+3 9.330582-5 4.216965+3 8.910507-5 4.466836+3 8.411908-5 4.518559+3 8.315590-5 5.128614+3 7.326163-5 1.000000+5 3.753984-6 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.960000-6 4.960000-6 7.850000-6 4.960000-6 7.850000-6 6.040425-6 8.320000-6 6.254234-6 8.320000-6 6.752910-6 9.120108-6 7.120308-6 9.772372-6 7.371462-6 1.035142-5 7.545947-6 1.100000-5 7.687246-6 1.180000-5 7.798515-6 1.288250-5 7.878356-6 1.470000-5 7.928811-6 2.317395-5 7.978004-6 2.488000-5 7.984091-6 2.488000-5 2.288380-5 2.600160-5 2.240630-5 2.812000-5 2.137276-5 2.812000-5 2.390505-5 2.985383-5 2.320507-5 3.273407-5 2.187012-5 3.672823-5 1.982439-5 4.073803-5 1.775943-5 4.220000-5 1.704770-5 4.480000-5 1.587077-5 4.480000-5 1.611489-5 4.731513-5 1.516579-5 4.841724-5 1.479479-5 5.069907-5 1.410595-5 5.308844-5 1.349807-5 5.450000-5 1.318642-5 5.688529-5 1.273412-5 5.900000-5 1.239809-5 6.165950-5 1.204809-5 6.456542-5 1.174021-5 6.900000-5 1.139267-5 7.413102-5 1.110962-5 8.035261-5 1.087806-5 8.609938-5 1.073081-5 9.440609-5 1.059164-5 1.011579-4 1.052257-5 1.122018-4 1.046700-5 1.246200-4 1.045454-5 1.246200-4 1.410554-5 1.280000-4 1.572934-5 1.286800-4 1.603071-5 1.286800-4 1.772148-5 1.305500-4 1.868080-5 1.318257-4 1.923614-5 1.332000-4 1.971308-5 1.344000-4 2.002182-5 1.359000-4 2.027325-5 1.375000-4 2.039420-5 1.390000-4 2.038864-5 1.412538-4 2.022118-5 1.439000-4 1.986296-5 1.485000-4 1.905097-5 1.584893-4 1.718603-5 1.621810-4 1.656256-5 1.659587-4 1.600257-5 1.698244-4 1.552037-5 1.720000-4 1.528858-5 1.760000-4 1.495303-5 1.800000-4 1.472014-5 1.842000-4 1.458636-5 1.885000-4 1.454992-5 1.937000-4 1.462140-5 1.980000-4 1.476072-5 2.041738-4 1.506436-5 2.120000-4 1.557405-5 2.213095-4 1.627584-5 2.297200-4 1.696493-5 2.297200-4 2.204443-5 2.527600-4 2.371759-5 2.527600-4 2.530516-5 2.722701-4 2.655580-5 2.951209-4 2.783370-5 3.135800-4 2.871455-5 3.135800-4 3.135530-5 3.390000-4 3.236267-5 3.650000-4 3.322766-5 4.027170-4 3.424669-5 4.466836-4 3.519766-5 5.069907-4 3.619903-5 5.821032-4 3.715795-5 6.839116-4 3.814373-5 8.200000-4 3.915110-5 9.843200-4 4.010388-5 9.843200-4 6.477365-5 1.007300-3 6.483134-5 1.007300-3 6.801739-5 1.110000-3 6.871843-5 1.202264-3 6.895524-5 1.287100-3 6.887160-5 1.287100-3 7.495306-5 1.392800-3 7.540408-5 1.392800-3 7.793475-5 1.551800-3 7.887835-5 1.551800-3 8.178916-5 1.972423-3 8.446420-5 2.570396-3 8.758661-5 3.273407-3 9.054812-5 4.073803-3 9.324942-5 5.069907-3 9.595164-5 6.200700-3 9.838454-5 6.200700-3 1.354990-4 6.727400-3 1.359544-4 6.727400-3 1.437133-4 7.093300-3 1.439434-4 7.093300-3 1.508254-4 1.011579-2 1.537218-4 1.513561-2 1.569970-4 2.213095-2 1.601012-4 3.235937-2 1.631294-4 4.359700-2 1.653913-4 4.359700-2 1.625551-4 1.148154-1 1.633755-4 4.518559-1 1.639058-4 1.000000+5 1.639935-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.960000-6 0.0 1.286800-4 0.0 1.286800-4 1.298999-9 1.293000-4 1.377115-9 1.299000-4 1.457653-9 1.305500-4 1.550968-9 1.332000-4 1.952594-9 1.338000-4 2.038245-9 1.344000-4 2.119450-9 1.350000-4 2.195536-9 1.357000-4 2.275920-9 1.363000-4 2.337430-9 1.370000-4 2.399492-9 1.377000-4 2.450963-9 1.385000-4 2.496878-9 1.390000-4 2.519416-9 1.398000-4 2.544636-9 1.408000-4 2.561330-9 1.416000-4 2.563791-9 1.428894-4 2.549754-9 1.439000-4 2.528810-9 1.450000-4 2.496176-9 1.470000-4 2.419786-9 1.485000-4 2.356609-9 1.513561-4 2.220920-9 1.584893-4 1.865951-9 1.621810-4 1.689987-9 1.659587-4 1.523886-9 1.680000-4 1.440844-9 1.713000-4 1.320729-9 1.740000-4 1.236262-9 1.765800-4 1.166952-9 1.790000-4 1.112106-9 1.810000-4 1.074287-9 1.828000-4 1.045840-9 1.850000-4 1.017712-9 1.873000-4 9.95899-10 1.895000-4 9.81882-10 1.915000-4 9.74393-10 1.937000-4 9.71477-10 1.957000-4 9.73546-10 1.980000-4 9.80999-10 2.000000-4 9.91286-10 2.030000-4 1.013056-9 2.065380-4 1.047480-9 2.090000-4 1.075735-9 2.120000-4 1.114419-9 2.170000-4 1.187315-9 2.238721-4 1.300126-9 2.297200-4 1.402776-9 2.297200-4 2.654224-9 2.527600-4 3.031361-9 2.527600-4 3.658894-9 2.691535-4 3.911493-9 2.888500-4 4.189218-9 3.054921-4 4.398050-9 3.135800-4 4.489832-9 3.135800-4 5.104832-9 3.349654-4 5.322051-9 3.600000-4 5.542612-9 3.890451-4 5.758613-9 4.265795-4 5.992802-9 4.623810-4 6.177389-9 5.150000-4 6.397865-9 5.800000-4 6.621410-9 6.382635-4 6.784029-9 7.413102-4 7.023499-9 8.709636-4 7.260739-9 9.843200-4 7.435617-9 9.843200-4 8.843354-9 1.007300-3 8.853891-9 1.007300-3 6.219924-7 1.033000-3 6.546884-7 1.034000-3 6.535364-7 1.055000-3 6.782044-7 1.110000-3 7.212718-7 1.135011-3 7.468186-7 1.161449-3 7.719461-7 1.174898-3 7.805062-7 1.188502-3 7.859079-7 1.202264-3 7.878635-7 1.287100-3 7.843688-7 1.287100-3 8.463083-7 1.392800-3 8.487748-7 1.392800-3 9.535163-7 1.479108-3 9.648678-7 1.551800-3 9.722798-7 1.551800-3 1.030653-6 1.778279-3 1.059081-6 2.187762-3 1.102863-6 2.660725-3 1.145867-6 3.273407-3 1.192173-6 3.981072-3 1.235982-6 4.841724-3 1.279742-6 5.888437-3 1.322781-6 6.200700-3 1.334056-6 6.200700-3 4.864637-4 6.400000-3 4.881159-4 6.727400-3 4.880148-4 6.727400-3 6.161288-4 7.093300-3 6.174359-4 7.093300-3 6.504272-4 9.332543-3 6.568601-4 1.462177-2 6.636152-4 2.511886-2 6.691271-4 4.359700-2 6.732014-4 4.359700-2 2.984248-2 5.069907-2 3.006261-2 6.606934-2 3.034423-2 9.332543-2 3.057294-2 1.584893-1 3.076886-2 4.731513-1 3.089744-2 1.250000+0 3.100250-2 1.000000+5 3.099588-2 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.960000-6 0.0 7.850000-6 2.890000-6 7.850000-6 1.809575-6 8.200000-6 2.002370-6 8.320000-6 2.065766-6 8.320000-6 1.567090-6 8.709636-6 1.772442-6 9.120108-6 1.999800-6 9.440609-6 2.190231-6 9.772372-6 2.400910-6 1.000000-5 2.554246-6 1.035142-5 2.805473-6 1.071519-5 3.083585-6 1.100000-5 3.312754-6 1.150000-5 3.736372-6 1.216186-5 4.329768-6 1.310000-5 5.211747-6 1.470000-5 6.771189-6 2.488000-5 1.689591-5 2.488000-5 1.996198-6 2.600160-5 3.595303-6 2.722701-5 5.402686-6 2.812000-5 6.747243-6 2.812000-5 4.214949-6 2.917427-5 5.685908-6 2.985383-5 6.648758-6 3.090295-5 8.164276-6 3.273407-5 1.086395-5 3.467369-5 1.378069-5 4.073803-5 2.297860-5 4.415704-5 2.800700-5 4.480000-5 2.892923-5 4.480000-5 2.868511-5 4.841724-5 3.362245-5 5.150000-5 3.761102-5 5.559043-5 4.262125-5 6.095369-5 4.882107-5 6.800000-5 5.653692-5 8.000000-5 6.911086-5 1.060000-4 9.550986-5 1.246200-4 1.141655-4 1.246200-4 1.105145-4 1.286800-4 1.126493-4 1.286800-4 1.109572-4 1.325000-4 1.130116-4 1.359000-4 1.156245-4 1.398000-4 1.194485-4 1.470000-4 1.276686-4 1.659587-4 1.499546-4 1.790000-4 1.642294-4 1.950000-4 1.803423-4 2.238721-4 2.073885-4 2.297200-4 2.127537-4 2.297200-4 2.076729-4 2.527600-4 2.290394-4 2.527600-4 2.274512-4 3.135800-4 2.848610-4 3.135800-4 2.822196-4 4.265795-4 3.917792-4 7.413102-4 7.026976-4 9.843200-4 9.442087-4 9.843200-4 9.195375-4 1.007300-3 9.424598-4 1.007300-3 9.386606-4 1.287100-3 1.217444-3 1.287100-3 1.211301-3 1.392800-3 1.316547-3 1.392800-3 1.313912-3 1.551800-3 1.471949-3 1.551800-3 1.468980-3 6.200700-3 6.100981-3 6.200700-3 5.578737-3 6.727400-3 6.103431-3 6.727400-3 5.967558-3 7.093300-3 6.331921-3 7.093300-3 6.292047-3 4.359700-2 4.275841-2 4.359700-2 1.359196-2 4.570882-2 1.561835-2 5.128614-2 2.104879-2 6.531306-2 3.481372-2 1.096478-1 7.883554-2 1.000000+5 9.999997+4 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.359700-2 4.508798+3 4.530000-2 4.112480+3 4.600000-2 3.943000+3 4.810000-2 3.529440+3 5.248075-2 2.806438+3 5.800000-2 2.167980+3 6.531306-2 1.582232+3 8.128305-2 8.765196+2 1.023293-1 4.654117+2 1.348963-1 2.154295+2 2.113489-1 6.126732+1 2.570396-1 3.562852+1 2.985383-1 2.366689+1 3.507519-1 1.538030+1 3.981072-1 1.103803+1 4.472100-1 8.193511+0 5.011872-1 6.163787+0 5.623413-1 4.657967+0 6.237348-1 3.645435+0 6.918310-1 2.873067+0 7.673615-1 2.279988+0 8.609938-1 1.776840+0 9.440609-1 1.465390+0 1.035142+0 1.217097+0 1.188502+0 9.284390-1 1.333521+0 7.462064-1 1.500000+0 6.012437-1 1.698244+0 4.823973-1 1.927525+0 3.883865-1 2.187762+0 3.151405-1 2.483133+0 2.575707-1 2.851018+0 2.082658-1 3.311311+0 1.667474-1 3.845918+0 1.345276-1 4.518559+0 1.076087-1 5.308844+0 8.673741-2 6.382635+0 6.835040-2 7.673615+0 5.425995-2 9.332543+0 4.276387-2 1.161449+1 3.303026-2 1.462177+1 2.535319-2 1.883649+1 1.909416-2 2.570396+1 1.359204-2 3.715352+1 9.173018-3 5.688529+1 5.873481-3 9.440609+1 3.486396-3 1.883649+2 1.727626-3 3.758374+2 8.608148-4 1.496236+3 2.152309-4 1.000000+5 3.216100-6 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.359700-2 1.619500-4 1.000000+5 1.619500-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.359700-2 3.606600-2 1.000000+5 3.606600-2 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.359700-2 7.369050-3 1.000000+5 9.999996+4 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 7.093300-3 1.760767+4 7.200000-3 1.708686+4 7.250000-3 1.687888+4 7.350000-3 1.653502+4 7.500000-3 1.595260+4 7.852356-3 1.481814+4 8.413951-3 1.311151+4 9.225714-3 1.118933+4 9.885531-3 9.857586+3 1.150000-2 7.428740+3 1.462177-2 4.629875+3 1.621810-2 3.741967+3 1.883649-2 2.737046+3 2.213095-2 1.931194+3 2.483133-2 1.496737+3 2.900000-2 1.053264+3 3.427678-2 7.141304+2 4.027170-2 4.865070+2 4.731513-2 3.286406+2 5.559043-2 2.202180+2 6.606934-2 1.422147+2 7.852356-2 9.111773+1 9.549926-2 5.454694+1 1.202264-1 2.956970+1 2.317395-1 5.022777+0 2.917427-1 2.714453+0 3.427678-1 1.776715+0 3.935501-1 1.243926+0 4.466836-1 9.034046-1 5.069907-1 6.609345-1 5.688529-1 5.010762-1 6.382635-1 3.827806-1 7.161434-1 2.946697-1 8.035261-1 2.285963-1 8.912509-1 1.831472-1 9.772372-1 1.514533-1 1.122018+0 1.151462-1 1.258925+0 9.220864-2 1.412538+0 7.438105-2 1.584893+0 6.040740-2 1.798871+0 4.842159-2 2.044000+0 3.905299-2 2.317395+0 3.185285-2 2.660725+0 2.565411-2 3.054921+0 2.081696-2 3.548134+0 1.672556-2 4.120975+0 1.353915-2 4.841724+0 1.086626-2 5.754399+0 8.655387-3 6.918310+0 6.843126-3 8.413951+0 5.372747-3 1.035142+1 4.190847-3 1.318257+1 3.162844-3 1.698244+1 2.374931-3 2.264644+1 1.728969-3 3.019952+1 1.267389-3 4.365158+1 8.582366-4 6.918310+1 5.317772-4 1.230269+2 2.950304-4 2.454709+2 1.465906-4 4.897788+2 7.312062-5 3.890451+3 9.169062-6 1.000000+5 3.565300-7 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 7.093300-3 1.952700-4 1.000000+5 1.952700-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.093300-3 8.634900-4 1.000000+5 8.634900-4 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.093300-3 6.034540-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 6.727400-3 3.502600+4 6.930000-3 3.287800+4 7.328245-3 2.857700+4 8.511380-3 1.928500+4 9.300000-3 1.517300+4 1.059254-2 1.059000+4 1.300000-2 5.967900+3 1.603245-2 3.252700+3 1.819701-2 2.237600+3 2.113489-2 1.431100+3 2.570396-2 7.894600+2 3.126079-2 4.312300+2 3.801894-2 2.335900+2 4.677351-2 1.210900+2 6.025596-2 5.378700+1 1.202264-1 5.778885+0 1.513561-1 2.761687+0 1.819701-1 1.540367+0 2.162719-1 8.976284-1 2.511886-1 5.662282-1 2.884032-1 3.728367-1 3.273407-1 2.560518-1 3.672823-1 1.831780-1 4.120975-1 1.319581-1 4.623810-1 9.577939-2 5.128614-1 7.227272-2 5.688529-1 5.490859-2 6.309573-1 4.201641-2 6.998420-1 3.239099-2 7.762471-1 2.506276-2 8.413951-1 2.066045-2 9.015711-1 1.761581-2 9.660509-1 1.512253-2 1.035142+0 1.308259-2 1.135011+0 1.087153-2 1.250000+0 9.026861-3 1.380384+0 7.518058-3 1.659587+0 5.415775-3 1.883649+0 4.352199-3 2.113489+0 3.593090-3 2.398833+0 2.931132-3 2.754229+0 2.365444-3 3.198895+0 1.890448-3 3.715352+0 1.522530-3 4.315191+0 1.235182-3 5.069907+0 9.934901-4 6.025596+0 7.929365-4 7.244360+0 6.280500-4 8.912509+0 4.871255-4 1.109175+1 3.756303-4 1.412538+1 2.841629-4 1.800000+1 2.164300-4 2.400000+1 1.578000-4 3.311311+1 1.116957-4 4.841724+1 7.486862-5 7.673615+1 4.646930-5 1.412538+2 2.492599-5 2.818383+2 1.239906-5 5.623413+2 6.187476-6 4.466836+3 7.763373-7 1.000000+5 3.466200-8 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 6.727400-3 1.648200-4 1.000000+5 1.648200-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.727400-3 9.646400-4 1.000000+5 9.646400-4 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 6.727400-3 5.597940-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.200700-3 7.594480+4 6.400000-3 7.061760+4 6.800000-3 6.022920+4 7.852356-3 4.069779+4 8.810489-3 2.943640+4 1.035142-2 1.851950+4 1.202264-2 1.200395+4 1.364583-2 8.224764+3 1.548817-2 5.620963+3 1.905461-2 2.973112+3 2.300000-2 1.648268+3 2.754229-2 9.279634+2 3.311311-2 5.112978+2 4.027170-2 2.689995+2 4.897788-2 1.403795+2 6.095369-2 6.734595+1 8.128305-2 2.539489+1 1.318257-1 4.905643+0 1.621810-1 2.439575+0 1.905461-1 1.427140+0 2.238721-1 8.409696-1 2.540973-1 5.589029-1 2.851018-1 3.880459-1 3.198895-1 2.713784-1 3.548134-1 1.980457-1 3.935501-1 1.455434-1 4.365158-1 1.077857-1 4.786301-1 8.309005-2 5.248075-1 6.447897-2 5.754399-1 5.039631-2 6.309573-1 3.967562-2 6.918310-1 3.145632-2 7.585776-1 2.511168-2 8.317638-1 2.018977-2 9.120108-1 1.635255-2 9.885531-1 1.367838-2 1.059254+0 1.184389-2 1.148154+0 1.007972-2 1.258925+0 8.447313-3 1.396368+0 6.987975-3 1.698244+0 4.940313-3 1.927525+0 3.975061-3 2.187762+0 3.224912-3 2.483133+0 2.635637-3 2.851018+0 2.130970-3 3.311311+0 1.706113-3 3.845918+0 1.376449-3 4.518559+0 1.101011-3 5.308844+0 8.874523-4 6.382635+0 6.993232-4 7.673615+0 5.551565-4 9.440609+0 4.315565-4 1.174898+1 3.334622-4 1.479108+1 2.560408-4 1.905461+1 1.928913-4 2.600160+1 1.373509-4 3.801894+1 9.160055-5 5.888437+1 5.797929-5 1.000000+2 3.363300-5 1.995262+2 1.667694-5 3.981072+2 8.311580-6 1.584893+3 2.078815-6 1.000000+5 3.290600-8 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.200700-3 1.556500-4 1.000000+5 1.556500-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.200700-3 7.498600-4 1.000000+5 7.498600-4 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.200700-3 5.295190-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.551800-3 5.213070+4 1.650000-3 4.863480+4 1.770000-3 4.433000+4 1.850000-3 4.189060+4 1.950000-3 3.890620+4 2.511886-3 2.679000+4 2.691535-3 2.409500+4 3.311311-3 1.719078+4 3.650000-3 1.458500+4 4.415704-3 1.046124+4 5.188000-3 7.814456+3 5.888437-3 6.180539+3 6.918310-3 4.552287+3 8.222426-3 3.252553+3 9.800000-3 2.291140+3 1.161449-2 1.618954+3 1.380384-2 1.128156+3 1.621810-2 7.992395+2 1.900000-2 5.656140+2 2.213095-2 4.026248+2 2.600160-2 2.790616+2 3.054921-2 1.919599+2 3.589219-2 1.310899+2 4.216965-2 8.885122+1 4.954502-2 5.979121+1 5.888437-2 3.881143+1 7.000000-2 2.498720+1 8.413951-2 1.551867+1 1.035142-1 8.999922+0 1.348963-1 4.442437+0 2.344229-1 1.002076+0 2.884032-1 5.769360-1 3.427678-1 3.667082-1 3.935501-1 2.569273-1 4.466836-1 1.866880-1 5.069907-1 1.366371-1 5.688529-1 1.036012-1 6.309573-1 8.127543-2 7.079458-1 6.253778-2 7.852356-1 4.973548-2 8.709636-1 3.977936-2 9.549926-1 3.282772-2 1.059254+0 2.666606-2 1.202264+0 2.082296-2 1.348963+0 1.674850-2 1.513561+0 1.356602-2 1.717908+0 1.084261-2 1.949845+0 8.735429-3 2.213095+0 7.092721-3 2.511886+0 5.800378-3 2.884032+0 4.692591-3 3.349654+0 3.759158-3 3.890451+0 3.034474-3 4.570882+0 2.428647-3 5.370318+0 1.958651-3 6.456542+0 1.544206-3 7.762471+0 1.226409-3 9.549926+0 9.537779-4 1.188502+1 7.372580-4 1.500000+1 5.646800-4 1.949845+1 4.213502-4 2.660725+1 3.002086-4 3.890451+1 2.003180-4 6.095369+1 1.253460-4 1.047129+2 7.190139-5 2.089296+2 3.566896-5 4.168694+2 1.778077-5 1.659587+3 4.448229-6 1.000000+5 7.373200-8 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.551800-3 1.472600-4 1.000000+5 1.472600-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.551800-3 2.343600-6 1.000000+5 2.343600-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.551800-3 1.402196-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.392800-3 8.191470+4 1.413000-3 8.162982+4 1.432000-3 8.090818+4 1.470000-3 7.920084+4 1.584893-3 7.322795+4 1.659587-3 6.944218+4 1.778279-3 6.353790+4 1.927525-3 5.696007+4 2.089296-3 5.077020+4 2.238721-3 4.575569+4 2.426610-3 4.024829+4 2.600160-3 3.581156+4 3.000000-3 2.787140+4 3.235937-3 2.423967+4 3.672823-3 1.899079+4 4.027170-3 1.581124+4 4.518559-3 1.245688+4 5.011872-3 9.994667+3 5.688529-3 7.559198+3 6.309573-3 5.978305+3 7.244360-3 4.330226+3 8.128305-3 3.283282+3 9.120108-3 2.473812+3 1.047129-2 1.745985+3 1.202264-2 1.221287+3 1.364583-2 8.734756+2 1.548817-2 6.204456+2 1.757924-2 4.377710+2 2.000000-2 3.048360+2 2.300000-2 2.045100+2 2.660725-2 1.339090+2 3.126079-2 8.313138+1 3.630781-2 5.302507+1 4.265795-2 3.245214+1 5.188000-2 1.773323+1 6.456542-2 8.947711+0 8.511380-2 3.736993+0 1.396368-1 7.771028-1 1.737801-1 3.906348-1 2.041738-1 2.367389-1 2.426610-1 1.396464-1 2.818383-1 8.898822-2 3.235937-1 5.916174-2 3.672823-1 4.100666-2 4.120975-1 2.960435-2 4.623810-1 2.153963-2 5.188000-1 1.578951-2 5.754399-1 1.201886-2 6.382635-1 9.215109-3 7.079458-1 7.119342-3 7.852356-1 5.542426-3 8.709636-1 4.333104-3 9.332543-1 3.701411-3 9.885531-1 3.264830-3 1.071519+0 2.763569-3 1.174898+0 2.302621-3 1.273503+0 1.975418-3 1.412538+0 1.634944-3 1.698244+0 1.179652-3 1.927525+0 9.492944-4 2.187762+0 7.702549-4 2.483133+0 6.295741-4 2.851018+0 5.090727-4 3.311311+0 4.075849-4 3.845918+0 3.288228-4 4.518559+0 2.630268-4 5.308844+0 2.120102-4 6.382635+0 1.670668-4 7.762471+0 1.307564-4 9.549926+0 1.016915-4 1.188502+1 7.860503-5 1.500000+1 6.020500-5 1.949845+1 4.492310-5 2.660725+1 3.200780-5 3.890451+1 2.135797-5 6.165950+1 1.320564-5 1.071519+2 7.488049-6 2.137962+2 3.715632-6 4.265795+2 1.852373-6 1.698244+3 4.634567-7 1.000000+5 7.861200-9 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.392800-3 1.213300-4 1.000000+5 1.213300-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.392800-3 2.749600-6 1.000000+5 2.749600-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.392800-3 1.268720-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.287100-3 2.148341+5 1.340000-3 2.060661+5 1.412538-3 1.934404+5 1.500000-3 1.788716+5 1.584893-3 1.654800+5 1.757924-3 1.414267+5 1.927525-3 1.223610+5 2.113489-3 1.050084+5 2.264644-3 9.306490+4 2.660725-3 6.919788+4 2.884032-3 5.932283+4 3.235937-3 4.711406+4 3.589219-3 3.808730+4 4.000000-3 3.021736+4 4.466836-3 2.373054+4 5.011872-3 1.828636+4 5.559043-3 1.438167+4 6.309573-3 1.063197+4 7.000000-3 8.246520+3 7.943282-3 6.008440+3 9.120108-3 4.211015+3 1.035142-2 3.015180+3 1.161449-2 2.211298+3 1.303167-2 1.612148+3 1.479108-2 1.130972+3 1.698244-2 7.620802+2 1.927525-2 5.269688+2 2.187762-2 3.620180+2 2.511886-2 2.386596+2 2.900000-2 1.536268+2 3.349654-2 9.803289+1 3.890451-2 6.107469+1 4.623810-2 3.509132+1 5.495409-2 2.001154+1 6.760830-2 1.011445+1 8.709636-2 4.354068+0 1.445440-1 7.995350-1 1.757924-1 4.180204-1 2.089296-1 2.375918-1 2.398833-1 1.521648-1 2.722701-1 1.018457-1 3.054921-1 7.118826-2 3.427678-1 5.014090-2 3.801894-1 3.682150-2 4.265795-1 2.633045-2 4.677351-1 2.026706-2 5.128614-1 1.570679-2 5.623413-1 1.226329-2 6.165950-1 9.643722-3 6.760830-1 7.639145-3 7.413102-1 6.093780-3 8.511380-1 4.385682-3 9.120108-1 3.742010-3 9.772372-1 3.215180-3 1.047129+0 2.784345-3 1.148154+0 2.315891-3 1.258925+0 1.940717-3 1.396368+0 1.604338-3 1.678804+0 1.156445-3 1.905461+0 9.299486-4 2.137962+0 7.682263-4 2.426610+0 6.270646-4 2.786121+0 5.063456-4 3.235937+0 4.048954-4 3.758374+0 3.262759-4 4.365158+0 2.648347-4 5.128614+0 2.131311-4 6.095369+0 1.701955-4 7.328245+0 1.348619-4 9.015711+0 1.046499-4 1.122018+1 8.073155-5 1.412538+1 6.190097-5 1.800000+1 4.714500-5 2.426610+1 3.396350-5 3.388442+1 2.374346-5 4.954502+1 1.592205-5 7.762471+1 1.000348-5 1.428894+2 5.366710-6 2.851018+2 2.669840-6 5.688529+2 1.332340-6 4.518559+3 1.671745-7 1.000000+5 7.550500-9 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.287100-3 1.161600-4 1.000000+5 1.161600-4 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.287100-3 1.266000-6 1.000000+5 1.266000-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.287100-3 1.169674-3 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.007300-3 5.664471+5 1.033000-3 5.822223+5 1.034000-3 5.798297+5 1.055000-3 5.898550+5 1.135011-3 5.898544+5 1.161449-3 5.877162+5 1.174898-3 5.819792+5 1.188502-3 5.729023+5 1.202264-3 5.602482+5 1.333521-3 4.381741+5 1.450000-3 3.565016+5 1.584893-3 2.840728+5 1.730000-3 2.255452+5 1.927525-3 1.681135+5 2.137962-3 1.260331+5 2.344229-3 9.667219+4 2.660725-3 6.675081+4 2.951209-3 4.887614+4 3.311311-3 3.438954+4 3.672823-3 2.488326+4 4.168694-3 1.664540+4 4.731513-3 1.103332+4 5.300000-3 7.583160+3 6.025596-3 4.923591+3 6.839116-3 3.189643+3 7.762471-3 2.051586+3 8.810489-3 1.310328+3 1.011579-2 7.972332+2 1.161449-2 4.812013+2 1.333521-2 2.882165+2 1.548817-2 1.640041+2 1.778279-2 9.673676+1 2.041738-2 5.668833+1 2.371374-2 3.156433+1 2.818383-2 1.593887+1 3.427678-2 7.286314+0 4.265795-2 3.012635+0 8.609938-2 1.727805-1 1.059254-1 7.475995-2 1.273503-1 3.576748-2 1.496236-1 1.889604-2 1.717908-1 1.101077-2 1.972423-1 6.462930-3 2.238721-1 3.992227-3 2.511886-1 2.594047-3 2.818383-1 1.698255-3 3.090295-1 1.217902-3 3.427678-1 8.441913-4 3.801894-1 5.891760-4 4.265795-1 3.980374-4 4.731513-1 2.817401-4 5.248075-1 2.010374-4 5.688529-1 1.556033-4 6.095369-1 1.256265-4 6.606935-1 9.869680-5 7.244360-1 7.551144-5 8.035261-1 5.630356-5 8.609938-1 4.607022-5 9.120108-1 3.925152-5 9.549926-1 3.475273-5 1.000000+0 3.098924-5 1.047129+0 2.785534-5 1.096478+0 2.521381-5 1.148154+0 2.296048-5 1.216186+0 2.056806-5 1.318257+0 1.778957-5 1.513561+0 1.406497-5 1.840772+0 9.987584-6 2.044000+0 8.369931-6 2.317395+0 6.826629-6 2.660725+0 5.498148-6 3.054921+0 4.461512-6 3.548134+0 3.584622-6 4.120975+0 2.901723-6 4.841724+0 2.328901-6 5.754399+0 1.855013-6 6.918310+0 1.466634-6 8.511380+0 1.135507-6 1.047129+1 8.860616-7 1.333521+1 6.689812-7 1.717908+1 5.025198-7 2.290868+1 3.659371-7 3.090295+1 2.650425-7 4.466836+1 1.795530-7 7.079458+1 1.112982-7 1.273503+2 6.104982-8 2.540973+2 3.034281-8 5.069907+2 1.513732-8 4.027170+3 1.898396-9 1.000000+5 7.64120-11 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.007300-3 7.713900-5 1.000000+5 7.713900-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.007300-3 2.377400-6 1.000000+5 2.377400-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.007300-3 9.277836-4 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 9.843200-4 1.210741+6 1.110000-3 9.901560+5 1.174898-3 8.627349+5 1.303167-3 6.730457+5 1.412538-3 5.508593+5 1.531087-3 4.479172+5 1.678804-3 3.510128+5 1.862087-3 2.646579+5 2.089296-3 1.918362+5 2.300000-3 1.452036+5 2.600160-3 1.011812+5 2.851018-3 7.658949+4 3.235937-3 5.189367+4 3.672823-3 3.482990+4 4.073803-3 2.498928+4 4.623810-3 1.651994+4 5.188000-3 1.125577+4 5.821032-3 7.620303+3 6.683439-3 4.729742+3 7.673615-3 2.909002+3 8.709636-3 1.848960+3 9.800000-3 1.204674+3 1.096478-2 7.968466+2 1.244515-2 4.967040+2 1.412538-2 3.075242+2 1.621810-2 1.809117+2 1.840772-2 1.105294+2 2.113489-2 6.415225+1 2.483133-2 3.373587+1 2.917427-2 1.761184+1 3.548134-2 7.925362+0 4.315191-2 3.540432+0 5.623413-2 1.179376+0 8.709636-2 1.910095-1 1.071519-1 8.115795-2 1.258925-1 4.198600-2 1.462177-1 2.293578-2 1.659587-1 1.384504-2 1.862087-1 8.806646-3 2.000000-1 6.673980-3 2.089296-1 5.664416-3 2.317395-1 3.822827-3 2.570396-1 2.597483-3 2.851018-1 1.777370-3 3.162278-1 1.225348-3 3.467369-1 8.865957-4 3.758374-1 6.722572-4 4.027170-1 5.331877-4 4.365158-1 4.100144-4 4.731513-1 3.175595-4 5.128614-1 2.477618-4 5.559043-1 1.947212-4 6.095369-1 1.489998-4 6.683439-1 1.147905-4 7.244360-1 9.195997-5 7.852356-1 7.413840-5 8.609938-1 5.814956-5 9.120108-1 5.027319-5 9.660509-1 4.378345-5 1.011579+0 3.944947-5 1.071519+0 3.487726-5 1.135011+0 3.102431-5 1.216186+0 2.714383-5 1.318257+0 2.340121-5 1.798871+0 1.356455-5 2.018366+0 1.115976-5 2.290868+0 9.077515-6 2.600160+0 7.437381-6 3.000000+0 5.985000-6 3.467369+0 4.838174-6 4.027170+0 3.912133-6 4.731513+0 3.136350-6 5.559043+0 2.533274-6 6.683439+0 2.000027-6 8.128305+0 1.568221-6 1.000000+1 1.221700-6 1.258925+1 9.332502-7 1.621810+1 6.996811-7 2.187762+1 5.024239-7 2.917427+1 3.680060-7 4.265795+1 2.460349-7 6.760830+1 1.523822-7 1.188502+2 8.550990-8 2.371374+2 4.247458-8 4.731513+2 2.118372-8 1.883649+3 5.302435-9 1.000000+5 9.97680-11 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 9.843200-4 7.448300-5 1.000000+5 7.448300-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.843200-4 9.397400-9 1.000000+5 9.397400-9 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 9.843200-4 9.098276-4 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.135800-4 1.215400+5 3.349654-4 1.171487+5 3.600000-4 1.116929+5 3.890451-4 1.052611+5 4.216965-4 9.819878+4 4.518559-4 9.226092+4 5.069907-4 8.171104+4 5.623413-4 7.294078+4 6.095369-4 6.626634+4 7.079458-4 5.480167+4 7.800000-4 4.815380+4 9.015711-4 3.927297+4 1.011579-3 3.318400+4 1.174898-3 2.642698+4 1.348963-3 2.124975+4 1.548817-3 1.698125+4 1.840772-3 1.272365+4 2.213095-3 9.265935+3 2.660725-3 6.692889+3 3.198895-3 4.797684+3 3.845918-3 3.415716+3 4.731513-3 2.312637+3 5.754399-3 1.587863+3 6.918310-3 1.106558+3 8.222426-3 7.833749+2 9.772372-3 5.507259+2 1.161449-2 3.844959+2 1.380384-2 2.664999+2 1.640590-2 1.833902+2 1.949845-2 1.252679+2 2.317395-2 8.490098+1 2.754229-2 5.708843+1 3.235937-2 3.912672+1 3.845918-2 2.589608+1 4.570882-2 1.700427+1 5.370318-2 1.140056+1 6.382635-2 7.373164+0 7.673615-2 4.596986+0 9.120108-2 2.929835+0 1.135011-1 1.642788+0 1.513561-1 7.606377-1 2.317395-1 2.412419-1 2.851018-1 1.388800-1 3.388442-1 8.824862-2 3.935501-1 6.001352-2 4.466836-1 4.360716-2 5.069907-1 3.191940-2 5.688529-1 2.420986-2 6.382635-1 1.849872-2 7.161434-1 1.424537-2 8.035261-1 1.105651-2 8.912509-1 8.855414-3 9.772372-1 7.320327-3 1.109175+0 5.691125-3 1.258925+0 4.456043-3 1.412538+0 3.594705-3 1.584893+0 2.919656-3 1.798871+0 2.340527-3 2.044000+0 1.887400-3 2.317395+0 1.539215-3 2.630268+0 1.261916-3 3.019952+0 1.023515-3 3.507519+0 8.218572-4 4.073803+0 6.649137-4 4.786301+0 5.333514-4 5.688529+0 4.246083-4 6.839116+0 3.355443-4 8.317638+0 2.633413-4 1.023293+1 2.053260-4 1.288250+1 1.569613-4 1.659587+1 1.177654-4 2.238721+1 8.461872-5 3.000000+1 6.169100-5 4.365158+1 4.147937-5 6.918310+1 2.570080-5 1.216186+2 1.442709-5 2.426610+2 7.167501-6 4.841724+2 3.575090-6 1.927525+3 8.949397-7 1.000000+5 1.723100-8 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.135800-4 7.444100-5 1.000000+5 7.444100-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.135800-4 1.513900-8 1.000000+5 1.513900-8 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.135800-4 2.391239-4 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.527600-4 9.798727+4 2.951209-4 9.504346+4 3.600000-4 9.113840+4 3.981072-4 8.841353+4 4.265795-4 8.603715+4 4.600000-4 8.293160+4 4.897788-4 7.989984+4 5.308844-4 7.557692+4 5.754399-4 7.101216+4 6.200000-4 6.657340+4 6.760830-4 6.126169+4 7.413102-4 5.567505+4 8.035261-4 5.086661+4 8.912509-4 4.491064+4 9.772372-4 3.994196+4 1.083927-3 3.471910+4 1.202264-3 2.996786+4 1.333521-3 2.567557+4 1.479108-3 2.185713+4 1.659587-3 1.813497+4 1.862087-3 1.493619+4 2.089296-3 1.221364+4 2.344229-3 9.917670+3 2.650000-3 7.888060+3 3.000000-3 6.210360+3 3.427678-3 4.764326+3 3.900000-3 3.656400+3 4.415704-3 2.813740+3 5.011872-3 2.138309+3 5.688529-3 1.612741+3 6.382635-3 1.239700+3 7.244360-3 9.215230+2 8.222426-3 6.797553+2 9.332543-3 4.976245+2 1.059254-2 3.616441+2 1.202264-2 2.609975+2 1.380384-2 1.814531+2 1.584893-2 1.251665+2 1.819701-2 8.568585+1 2.089296-2 5.822601+1 2.426610-2 3.800448+1 2.818383-2 2.461375+1 3.273407-2 1.582361+1 3.845918-2 9.759082+0 4.570882-2 5.771120+0 5.432503-2 3.388801+0 6.760830-2 1.712439+0 9.332543-2 6.202589-1 1.428894-1 1.614436-1 1.778279-1 8.141892-2 2.137962-1 4.607205-2 2.483133-1 2.919608-2 2.851018-1 1.929234-2 3.235937-1 1.328515-2 3.672823-1 9.215173-3 4.120975-1 6.654320-3 4.623810-1 4.840025-3 5.188000-1 3.547699-3 5.754399-1 2.701437-3 6.382635-1 2.071931-3 7.079458-1 1.601041-3 7.852356-1 1.246519-3 8.709636-1 9.743649-4 9.332543-1 8.321939-4 9.885531-1 7.339647-4 1.071519+0 6.212343-4 1.161449+0 5.293221-4 1.273503+0 4.440704-4 1.412538+0 3.675415-4 1.698244+0 2.651645-4 1.927525+0 2.133686-4 2.187762+0 1.731324-4 2.483133+0 1.415022-4 2.851018+0 1.144006-4 3.311311+0 9.158628-5 3.845918+0 7.388660-5 4.518559+0 5.910197-5 5.308844+0 4.763915-5 6.382635+0 3.754003-5 7.673615+0 2.980176-5 9.440609+0 2.316630-5 1.174898+1 1.789998-5 1.479108+1 1.374434-5 1.927525+1 1.022376-5 2.630268+1 7.281966-6 3.845918+1 4.857783-6 6.000000+1 3.052400-6 1.023293+2 1.763548-6 2.041738+2 8.746468-7 4.073803+2 4.359587-7 1.621810+3 1.090539-7 1.000000+5 1.766400-9 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.527600-4 6.004300-5 1.000000+5 6.004300-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.527600-4 1.739000-8 1.000000+5 1.739000-8 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.527600-4 1.926996-4 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.297200-4 3.315992+5 2.800000-4 3.047820+5 2.917427-4 3.003383+5 3.273407-4 2.839287+5 3.600000-4 2.687544+5 3.935501-4 2.531393+5 4.265795-4 2.380725+5 4.623810-4 2.220829+5 5.069907-4 2.034673+5 5.500000-4 1.872000+5 6.000000-4 1.699932+5 6.683439-4 1.495254+5 7.328245-4 1.331119+5 8.200000-4 1.144804+5 9.120108-4 9.851189+4 1.023293-3 8.302748+4 1.135011-3 7.069804+4 1.273503-3 5.870679+4 1.428894-3 4.838503+4 1.603245-3 3.959682+4 1.819701-3 3.151495+4 2.070000-3 2.477484+4 2.344229-3 1.948945+4 2.650000-3 1.527540+4 2.985383-3 1.197474+4 3.349654-3 9.407713+3 3.800000-3 7.172080+3 4.300000-3 5.459360+3 4.841724-3 4.174023+3 5.500000-3 3.105568+3 6.237348-3 2.302356+3 7.079458-3 1.690239+3 8.035261-3 1.231249+3 9.120108-3 8.903465+2 1.035142-2 6.388867+2 1.174898-2 4.551600+2 1.333521-2 3.220213+2 1.513561-2 2.262592+2 1.737801-2 1.527794+2 2.000000-2 1.016511+2 2.290868-2 6.804627+1 2.630268-2 4.490705+1 3.054921-2 2.840453+1 3.548134-2 1.782534+1 4.168694-2 1.070922+1 4.954502-2 6.154881+0 5.956621-2 3.378862+0 7.413102-2 1.643882+0 1.011580-1 5.848834-1 1.445440-1 1.774848-1 1.757924-1 9.288030-2 2.089296-1 5.283379-2 2.398833-1 3.386270-2 2.722701-1 2.267901-2 3.054921-1 1.585953-2 3.427678-1 1.117307-2 3.801894-1 8.208253-3 4.216965-1 6.073445-3 4.677351-1 4.528364-3 5.128614-1 3.511980-3 5.623413-1 2.742036-3 6.165950-1 2.155999-3 6.760830-1 1.707827-3 7.413102-1 1.362396-3 8.511380-1 9.808434-4 9.120108-1 8.371027-4 9.772372-1 7.193807-4 1.047129+0 6.230306-4 1.148154+0 5.182547-4 1.258925+0 4.343110-4 1.396368+0 3.590231-4 1.678804+0 2.587626-4 1.905461+0 2.080799-4 2.137962+0 1.719145-4 2.426610+0 1.403282-4 2.786121+0 1.133037-4 3.235937+0 9.059893-5 3.758374+0 7.300957-5 4.415704+0 5.833468-5 5.188000+0 4.697048-5 6.237348+0 3.697703-5 7.498942+0 2.932854-5 9.225714+0 2.277767-5 1.148154+1 1.758676-5 1.445440+1 1.349394-5 1.840772+1 1.029079-5 2.483133+1 7.412482-6 3.507519+1 5.121847-6 5.248075+1 3.355323-6 8.413951+1 2.060709-6 1.621810+2 1.056164-6 3.235937+2 5.258251-7 6.456542+2 2.625472-7 5.128614+3 3.295705-8 1.000000+5 1.689600-9 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.297200-4 5.162800-5 1.000000+5 5.162800-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.297200-4 9.942800-9 1.000000+5 9.942800-9 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.297200-4 1.780821-4 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.286800-4 4.519120+5 1.310000-4 6.000280+5 1.318257-4 6.586830+5 1.325000-4 7.066880+5 1.332000-4 7.550400+5 1.338000-4 7.942800+5 1.344000-4 8.308280+5 1.350000-4 8.640040+5 1.357000-4 8.977920+5 1.363000-4 9.221400+5 1.370000-4 9.448600+5 1.377000-4 9.612920+5 1.385000-4 9.727280+5 1.390000-4 9.759880+5 1.398000-4 9.757600+5 1.408000-4 9.671920+5 1.416000-4 9.548200+5 1.428000-4 9.292720+5 1.439000-4 9.005880+5 1.450000-4 8.687160+5 1.465800-4 8.199605+5 1.485000-4 7.595200+5 1.510000-4 6.830200+5 1.540000-4 5.979080+5 1.570000-4 5.216120+5 1.678804-4 3.188066+5 1.713000-4 2.766644+5 1.740000-4 2.494748+5 1.765800-4 2.279196+5 1.790000-4 2.111792+5 1.810000-4 1.996032+5 1.828000-4 1.907484+5 1.850000-4 1.817396+5 1.873000-4 1.742340+5 1.895000-4 1.686640+5 1.915000-4 1.648116+5 1.937000-4 1.617579+5 1.957000-4 1.599396+5 1.980000-4 1.588456+5 2.000000-4 1.586612+5 2.030000-4 1.595388+5 2.060000-4 1.615896+5 2.090000-4 1.646044+5 2.120000-4 1.684008+5 2.170000-4 1.760592+5 2.238721-4 1.883992+5 2.400000-4 2.207684+5 2.500000-4 2.407544+5 2.580000-4 2.557736+5 2.660725-4 2.697176+5 2.754229-4 2.841355+5 2.851018-4 2.970363+5 2.951209-4 3.082833+5 3.054921-4 3.178176+5 3.162278-4 3.255902+5 3.280000-4 3.318776+5 3.390000-4 3.358528+5 3.507519-4 3.383174+5 3.650000-4 3.391964+5 3.801894-4 3.380274+5 3.981072-4 3.344221+5 4.168694-4 3.287101+5 4.365158-4 3.210382+5 4.600000-4 3.103792+5 4.850000-4 2.979800+5 5.150000-4 2.823456+5 5.432503-4 2.673895+5 5.800000-4 2.483048+5 6.200000-4 2.285020+5 6.606934-4 2.096358+5 7.079458-4 1.895970+5 7.585776-4 1.703162+5 8.200000-4 1.497584+5 8.810489-4 1.321376+5 9.549926-4 1.139664+5 1.035142-3 9.760282+4 1.122018-3 8.299850+4 1.216186-3 7.013737+4 1.333521-3 5.741310+4 1.450000-3 4.754640+4 1.603245-3 3.762739+4 1.778279-3 2.930474+4 1.950000-3 2.329680+4 2.137962-3 1.841661+4 2.350000-3 1.437588+4 2.630268-3 1.061514+4 2.917427-3 7.972446+3 3.235937-3 5.945807+3 3.600000-3 4.365440+3 4.000000-3 3.194296+3 4.466836-3 2.285774+3 5.011872-3 1.600289+3 5.623413-3 1.111048+3 6.309573-3 7.653616+2 7.079458-3 5.232363+2 7.943282-3 3.550746+2 8.912509-3 2.392045+2 1.011579-2 1.537596+2 1.148154-2 9.806516+1 1.303167-2 6.207843+1 1.479108-2 3.901982+1 1.698244-2 2.333397+1 1.949845-2 1.384896+1 2.238721-2 8.159712+0 2.600160-2 4.566566+0 3.054921-2 2.425784+0 3.672823-2 1.167692+0 4.570882-2 4.858973-1 9.015711-2 3.118615-2 1.122019-1 1.296034-2 1.333521-1 6.523602-3 1.548817-1 3.622188-3 1.778279-1 2.118325-3 2.041738-1 1.247888-3 2.317395-1 7.736714-4 2.600160-1 5.044347-4 2.917427-1 3.313218-4 3.235937-1 2.285931-4 3.589219-1 1.588280-4 3.981072-1 1.111615-4 4.415705-1 7.838384-5 4.841724-1 5.785798-5 5.308844-1 4.301192-5 5.821032-1 3.220642-5 6.382635-1 2.428516-5 6.998420-1 1.844550-5 7.673615-1 1.411757-5 8.609938-1 1.014924-5 9.120108-1 8.661057-6 9.549926-1 7.676317-6 1.000000+0 6.848800-6 1.047129+0 6.156944-6 1.096478+0 5.574934-6 1.148154+0 5.078926-6 1.216186+0 4.552127-6 1.318257+0 3.936642-6 1.513561+0 3.108369-6 1.819701+0 2.251230-6 2.018366+0 1.888828-6 2.290868+0 1.536830-6 2.630268+0 1.236944-6 3.019952+0 1.003118-6 3.507519+0 8.054737-7 4.073803+0 6.516561-7 4.786301+0 5.227172-7 5.688529+0 4.161439-7 6.839116+0 3.288620-7 8.317638+0 2.580892-7 1.023293+1 2.012293-7 1.303167+1 1.518050-7 1.678804+1 1.139514-7 2.238721+1 8.293228-8 3.000000+1 6.046100-8 4.365158+1 4.065186-8 6.918310+1 2.518840-8 1.230269+2 1.397448-8 2.454709+2 6.943565-9 4.897788+2 3.463523-9 3.890451+3 4.34315-10 1.000000+5 1.68880-11 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.286800-4 3.367900-5 1.000000+5 3.367900-5 1 60000 7 7 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.286800-4 1.355900-8 1.000000+5 1.355900-8 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.286800-4 9.498744-5 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.246200-4 6.696120+5 1.260000-4 8.112960+5 1.267000-4 8.888400+5 1.273503-4 9.621432+5 1.280000-4 1.034790+6 1.286000-4 1.100322+6 1.293000-4 1.173330+6 1.299000-4 1.231632+6 1.305500-4 1.289066+6 1.312000-4 1.339542+6 1.318257-4 1.380814+6 1.325000-4 1.416738+6 1.332000-4 1.444428+6 1.338000-4 1.460502+6 1.344000-4 1.469790+6 1.352000-4 1.472412+6 1.359000-4 1.466484+6 1.367000-4 1.451664+6 1.375000-4 1.429698+6 1.385000-4 1.394418+6 1.396368-4 1.346737+6 1.410900-4 1.278659+6 1.428894-4 1.189645+6 1.447000-4 1.100022+6 1.470000-4 9.908820+5 1.500000-4 8.604720+5 1.540000-4 7.100340+5 1.621810-4 4.822852+5 1.650000-4 4.260270+5 1.680000-4 3.768432+5 1.705000-4 3.433272+5 1.720000-4 3.261342+5 1.740000-4 3.062850+5 1.760000-4 2.896242+5 1.780000-4 2.758176+5 1.800000-4 2.645802+5 1.820000-4 2.556396+5 1.842000-4 2.481588+5 1.862087-4 2.432428+5 1.885000-4 2.396040+5 1.908000-4 2.378076+5 1.930000-4 2.376090+5 1.957000-4 2.391168+5 1.980000-4 2.417070+5 2.010000-4 2.465952+5 2.041738-4 2.532854+5 2.089296-4 2.655211+5 2.162719-4 2.877775+5 2.300000-4 3.337554+5 2.380000-4 3.605322+5 2.454709-4 3.844809+5 2.540973-4 4.101610+5 2.620000-4 4.314084+5 2.691535-4 4.485842+5 2.786121-4 4.682665+5 2.888500-4 4.859025+5 3.000000-4 5.012082+5 3.100000-4 5.118330+5 3.200000-4 5.197728+5 3.320000-4 5.260326+5 3.430000-4 5.289534+5 3.589219-4 5.291981+5 3.758374-4 5.254894+5 3.935501-4 5.183547+5 4.150000-4 5.061930+5 4.365158-4 4.912165+5 4.600000-4 4.727568+5 4.850000-4 4.519494+5 5.150000-4 4.264986+5 5.432503-4 4.025349+5 5.800000-4 3.722010+5 6.200000-4 3.412356+5 6.606934-4 3.120602+5 7.079458-4 2.811702+5 7.585776-4 2.517884+5 8.128305-4 2.240304+5 8.810489-4 1.940433+5 9.549926-4 1.668433+5 1.035142-3 1.424035+5 1.122018-3 1.207536+5 1.230269-3 9.920912+4 1.333521-3 8.299904+4 1.462177-3 6.722210+4 1.610000-3 5.349480+4 1.757924-3 4.315768+4 1.950000-3 3.324846+4 2.187762-3 2.466228+4 2.454709-3 1.811970+4 2.754229-3 1.319427+4 3.054921-3 9.843217+3 3.400000-3 7.219980+3 3.801894-3 5.184009+3 4.216965-3 3.786265+3 4.677351-3 2.746342+3 5.248075-3 1.907484+3 5.888437-3 1.314432+3 6.606934-3 8.985777+2 7.413102-3 6.095407+2 8.317638-3 4.104593+2 9.332543-3 2.744389+2 1.059254-2 1.748224+2 1.202264-2 1.105228+2 1.364583-2 6.935387+1 1.548817-2 4.320400+1 1.757924-2 2.672359+1 2.018366-2 1.570394+1 2.317395-2 9.157240+0 2.691535-2 5.066203+0 3.162278-2 2.657157+0 3.758374-2 1.320627+0 4.570882-2 5.932765-1 5.888437-2 2.088050-1 8.912509-2 3.752037-2 1.096478-1 1.601377-2 1.288250-1 8.315541-3 1.479108-1 4.773350-3 1.678804-1 2.888481-3 1.905461-1 1.760896-3 2.137962-1 1.130869-3 2.371374-1 7.642499-4 2.630268-1 5.203678-4 2.884032-1 3.723916-4 3.126079-1 2.795503-4 3.427678-1 2.029094-4 3.758374-1 1.484209-4 4.120975-1 1.094063-4 4.518559-1 8.127499-5 4.954502-1 6.085334-5 5.370318-1 4.752410-5 5.821032-1 3.736706-5 6.165950-1 3.164270-5 6.683439-1 2.527805-5 7.244360-1 2.034206-5 8.609938-1 1.293766-5 9.120108-1 1.118338-5 9.660509-1 9.735432-6 1.011579+0 8.767771-6 1.071519+0 7.748235-6 1.135011+0 6.891171-6 1.216186+0 6.029594-6 1.318257+0 5.199305-6 1.798871+0 3.015139-6 2.018366+0 2.480728-6 2.290868+0 2.018076-6 2.600160+0 1.653453-6 3.000000+0 1.330500-6 3.467369+0 1.075552-6 4.027170+0 8.696876-7 4.731513+0 6.972262-7 5.559043+0 5.631597-7 6.683439+0 4.446273-7 8.128305+0 3.486249-7 9.885531+0 2.753389-7 1.230269+1 2.130660-7 1.566751+1 1.617088-7 2.113489+1 1.159908-7 2.851018+1 8.385228-8 4.168694+1 5.603303-8 6.606934+1 3.469060-8 1.161449+2 1.946133-8 2.317395+2 9.664487-9 4.623810+2 4.819562-9 1.840772+3 1.206226-9 1.000000+5 2.21790-11 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.246200-4 3.190000-5 1.000000+5 3.190000-5 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.246200-4 9.272000-5 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 8.320000-6 1.293564+5 8.511380-6 1.285160+5 8.850000-6 1.281063+5 9.120108-6 1.285930+5 9.440609-6 1.300498+5 9.772372-6 1.325649+5 1.011579-5 1.360999+5 1.050000-5 1.411582+5 1.085000-5 1.467014+5 1.122018-5 1.534426+5 1.165000-5 1.623508+5 1.216186-5 1.743883+5 1.273503-5 1.895497+5 1.350000-5 2.123028+5 1.445440-5 2.443762+5 1.584893-5 2.979747+5 1.972423-5 4.819370+5 2.162719-5 5.860091+5 2.317395-5 6.747593+5 2.454709-5 7.544050+5 2.600160-5 8.384076+5 2.754229-5 9.253372+5 2.917427-5 1.013740+6 3.080000-5 1.096782+6 3.235937-5 1.170989+6 3.427678-5 1.254794+6 3.650000-5 1.342279+6 3.890451-5 1.425926+6 4.168694-5 1.510029+6 4.466836-5 1.587429+6 4.786301-5 1.656119+6 5.128614-5 1.714143+6 5.432503-5 1.752330+6 5.754399-5 1.778514+6 6.095369-5 1.792480+6 6.456542-5 1.793217+6 6.839116-5 1.781131+6 7.300000-5 1.755484+6 7.852356-5 1.713169+6 8.500000-5 1.657101+6 9.300000-5 1.581522+6 9.900000-5 1.521588+6 1.060000-4 1.449729+6 1.122018-4 1.384378+6 1.202264-4 1.301216+6 1.303167-4 1.200213+6 1.396368-4 1.113187+6 1.513561-4 1.011611+6 1.621810-4 9.243989+5 1.720000-4 8.513130+5 1.862087-4 7.553987+5 2.018366-4 6.630010+5 2.162719-4 5.885181+5 2.290868-4 5.301287+5 2.454709-4 4.643579+5 2.630268-4 4.039458+5 2.818383-4 3.490858+5 3.019952-4 2.997386+5 3.235937-4 2.557265+5 3.507519-4 2.108721+5 3.801894-4 1.725391+5 4.120975-4 1.401450+5 4.466836-4 1.130492+5 4.841724-4 9.059172+4 5.308844-4 6.980048+4 5.821032-4 5.337309+4 6.382635-4 4.052867+4 7.000000-4 3.054728+4 7.673615-4 2.290392+4 8.511380-4 1.642774+4 9.440609-4 1.169278+4 1.059254-3 7.947678+3 1.174898-3 5.575999+3 1.318257-3 3.732517+3 1.479108-3 2.479002+3 1.659587-3 1.634034+3 1.862087-3 1.068928+3 2.089296-3 6.939979+2 2.344229-3 4.472218+2 2.630268-3 2.860906+2 2.951209-3 1.816978+2 3.273407-3 1.200402+2 3.672823-3 7.497899+1 4.265795-3 4.031057+1 4.786301-3 2.484118+1 5.308844-3 1.596123+1 5.956621-3 9.691831+0 6.760830-3 5.554983+0 7.673615-3 3.160386+0 8.810489-3 1.695300+0 1.047129-2 7.712620-1 1.216186-2 3.872720-1 1.396368-2 2.036398-1 1.566751-2 1.184954-1 1.819701-2 5.814611-2 2.089296-2 2.993743-2 2.483133-2 1.294692-2 3.019952-2 4.965498-3 6.309573-2 1.309220-4 7.943282-2 4.229661-5 9.332543-2 1.928013-5 1.071519-1 9.900013-6 1.216186-1 5.411654-6 1.380384-1 2.980285-6 1.548817-1 1.745455-6 1.737801-1 1.030102-6 1.949845-1 6.125871-7 2.187762-1 3.669064-7 2.426610-1 2.330521-7 2.660725-1 1.567753-7 2.917427-1 1.062411-7 3.162278-1 7.607835-8 3.467369-1 5.233370-8 3.801894-1 3.626893-8 4.265795-1 2.313791-8 4.677351-1 1.627414-8 5.069907-1 1.204089-8 5.495409-1 8.967714-9 5.956621-1 6.729985-9 6.382635-1 5.309775-9 6.918310-1 4.059272-9 7.585776-1 3.011651-9 8.035261-1 2.505409-9 8.511380-1 2.064598-9 8.912509-1 1.778729-9 9.225714-1 1.598156-9 9.549926-1 1.443146-9 9.885531-1 1.310881-9 1.023293+0 1.198813-9 1.059254+0 1.103321-9 1.096478+0 1.021166-9 1.135011+0 9.49842-10 1.188502+0 8.68153-10 1.258925+0 7.82281-10 1.348963+0 6.95333-10 1.500000+0 5.86250-10 1.883649+0 3.94041-10 2.065380+0 3.37556-10 2.344229+0 2.74997-10 2.691535+0 2.21627-10 3.126079+0 1.76899-10 3.630781+0 1.42301-10 4.216965+0 1.15317-10 4.954502+0 9.26504-11 5.888437+0 7.38764-11 7.079458+0 5.84611-11 8.609938+0 4.59394-11 1.071519+1 3.53795-11 1.364583+1 2.67337-11 1.737801+1 2.03545-11 2.317395+1 1.48265-11 3.126079+1 1.07415-11 4.518559+1 7.27849-12 7.161434+1 4.51252-12 1.273503+2 2.50474-12 2.540973+2 1.24489-12 5.069907+2 6.21025-13 4.027170+3 7.78876-14 1.000000+5 3.13500-15 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 8.320000-6 8.320000-6 1.000000+5 8.320000-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 8.320000-6 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 7.850000-6 1.841263+5 8.100000-6 1.823853+5 8.413951-6 1.819025+5 8.709636-6 1.828549+5 9.015711-6 1.852248+5 9.332543-6 1.890212+5 9.660509-6 1.942725+5 1.000000-5 2.010060+5 1.035142-5 2.092852+5 1.071519-5 2.191360+5 1.122018-5 2.347614+5 1.180000-5 2.552452+5 1.244515-5 2.809539+5 1.318257-5 3.137463+5 1.428894-5 3.690811+5 1.927525-5 6.908538+5 2.113489-5 8.324852+5 2.290868-5 9.728870+5 2.454709-5 1.103547+6 2.600160-5 1.218013+6 2.754229-5 1.334927+6 2.917427-5 1.452351+6 3.090295-5 1.568708+6 3.273407-5 1.681530+6 3.467369-5 1.789129+6 3.672823-5 1.891554+6 3.900000-5 1.991994+6 4.168694-5 2.094609+6 4.500000-5 2.201756+6 4.800000-5 2.280236+6 5.150000-5 2.350647+6 5.432503-5 2.391425+6 5.754399-5 2.419212+6 6.095369-5 2.430826+6 6.456542-5 2.424907+6 6.918310-5 2.396268+6 7.328245-5 2.358567+6 8.000000-5 2.280887+6 8.609938-5 2.202955+6 9.332543-5 2.106519+6 1.000000-4 2.012634+6 1.071519-4 1.911044+6 1.161449-4 1.781672+6 1.244515-4 1.665732+6 1.348963-4 1.529245+6 1.462177-4 1.392323+6 1.566751-4 1.275091+6 1.659587-4 1.178960+6 1.800000-4 1.045920+6 1.950000-4 9.208737+5 2.065380-4 8.359269+5 2.213095-4 7.397812+5 2.398833-4 6.354142+5 2.570396-4 5.535959+5 2.754229-4 4.789544+5 2.951209-4 4.116241+5 3.162278-4 3.515663+5 3.427678-4 2.902691+5 3.715352-4 2.377879+5 4.027170-4 1.933526+5 4.365158-4 1.561205+5 4.731513-4 1.252243+5 5.188000-4 9.659862+4 5.688529-4 7.395433+4 6.237348-4 5.619545+4 6.839116-4 4.239848+4 7.585776-4 3.064598+4 8.413951-4 2.197859+4 9.440609-4 1.507860+4 1.047129-3 1.066471+4 1.161449-3 7.486193+3 1.244515-3 5.882794+3 1.380384-3 4.067715+3 1.548817-3 2.679451+3 1.883649-3 1.305439+3 2.113489-3 8.490727+2 2.344229-3 5.724293+2 2.570396-3 3.997379+2 2.851018-3 2.649382+2 3.198895-3 1.664361+2 3.589219-3 1.038898+2 4.027170-3 6.439812+1 4.518559-3 3.964380+1 5.069907-3 2.423968+1 5.754399-3 1.399963+1 6.531306-3 8.024094+0 7.413102-3 4.565421+0 8.511380-3 2.447938+0 9.772372-3 1.302658+0 1.161449-2 5.867360-1 1.348963-2 2.919080-1 1.548817-2 1.521390-1 1.737801-2 8.786440-2 2.018366-2 4.262670-2 2.371374-2 1.940337-2 2.951209-2 6.605393-3 3.801894-2 1.879874-3 7.328245-2 7.156238-5 8.709636-2 3.048572-5 1.011580-1 1.465551-5 1.148154-1 7.936487-6 1.288250-1 4.574103-6 1.428894-1 2.803232-6 1.584893-1 1.729248-6 1.757924-1 1.074200-6 1.949845-1 6.721685-7 2.137962-1 4.461226-7 2.344229-1 2.981783-7 2.570396-1 2.007834-7 2.786121-1 1.430027-7 3.019952-1 1.025340-7 3.273407-1 7.404648-8 3.548134-1 5.387550-8 3.801894-1 4.128185-8 4.120975-1 3.050551-8 4.466836-1 2.272062-8 4.897788-1 1.636391-8 5.248075-1 1.287046-8 5.623413-1 1.018817-8 6.025596-1 8.123096-9 6.456542-1 6.538455-9 6.918310-1 5.298665-9 7.585776-1 4.038064-9 8.222427-1 3.200611-9 8.810489-1 2.640309-9 9.440609-1 2.193725-9 1.000000+0 1.891300-9 1.035142+0 1.741833-9 1.083927+0 1.571736-9 1.135011+0 1.428218-9 1.202264+0 1.277504-9 1.288250+0 1.127200-9 1.396368+0 9.81706-10 1.513561+0 8.58457-10 1.862087+0 5.97694-10 2.065380+0 5.02135-10 2.344229+0 4.09070-10 2.691535+0 3.29678-10 3.126079+0 2.63142-10 3.630781+0 2.11674-10 4.216965+0 1.71535-10 4.954502+0 1.37820-10 5.888437+0 1.09894-10 7.079458+0 8.69646-11 8.609938+0 6.83381-11 1.071519+1 5.26298-11 1.364583+1 3.97680-11 1.757924+1 2.98936-11 2.344229+1 2.17807-11 3.198895+1 1.55908-11 4.677351+1 1.04433-11 7.413102+1 6.47821-12 1.333521+2 3.55558-12 2.660725+2 1.76786-12 5.308844+2 8.82059-13 4.216965+3 1.10645-13 1.000000+5 4.66350-15 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 7.850000-6 7.850000-6 1.000000+5 7.850000-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 7.850000-6 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.480000-5 5.696820+4 4.590000-5 5.988400+4 5.011872-5 7.279185+4 5.248075-5 8.009969+4 5.450000-5 8.610020+4 5.650000-5 9.169220+4 5.850000-5 9.686520+4 6.095369-5 1.025916+5 6.309573-5 1.070129+5 6.531306-5 1.110141+5 6.800000-5 1.150820+5 7.079458-5 1.184331+5 7.328245-5 1.206956+5 7.650000-5 1.226980+5 8.000000-5 1.238452+5 8.400000-5 1.240898+5 8.810489-5 1.234413+5 9.332543-5 1.216969+5 9.900000-5 1.190630+5 1.060000-4 1.152496+5 1.135011-4 1.108377+5 1.220000-4 1.056494+5 1.312600-4 9.991819+4 1.412538-4 9.381586+4 1.531087-4 8.692456+4 1.698244-4 7.816470+4 1.905461-4 6.892446+4 2.113489-4 6.109810+4 2.400000-4 5.225060+4 2.800000-4 4.287380+4 3.235937-4 3.532433+4 3.845918-4 2.781488+4 4.570882-4 2.172748+4 5.432503-4 1.685918+4 6.606934-4 1.254317+4 8.035261-4 9.253292+3 9.700000-4 6.848220+3 1.161449-3 5.095074+3 1.396368-3 3.736111+3 1.698244-3 2.664765+3 2.065380-3 1.886125+3 2.540973-3 1.298395+3 3.198895-3 8.492416+2 3.935501-3 5.756458+2 4.841724-3 3.872524+2 5.956621-3 2.584828+2 7.244360-3 1.751956+2 8.810489-3 1.178282+2 1.059254-2 8.050411+1 1.273503-2 5.457965+1 1.531087-2 3.671625+1 1.840772-2 2.450211+1 2.264644-2 1.541516+1 2.691535-2 1.040044+1 3.090295-2 7.545606+0 3.630781-2 5.145724+0 4.265795-2 3.483127+0 5.069907-2 2.275073+0 6.025596-2 1.474670+0 7.244360-2 9.214741-1 8.511380-2 6.067086-1 1.047129-1 3.516008-1 1.364583-1 1.735925-1 2.371374-1 3.920361-2 2.917427-1 2.258953-2 3.427678-1 1.480543-2 3.935501-1 1.037478-2 4.466836-1 7.538699-3 5.069907-1 5.518264-3 5.688529-1 4.185558-3 6.382635-1 3.198268-3 7.161434-1 2.462964-3 8.035261-1 1.911699-3 8.912509-1 1.531290-3 9.772372-1 1.265867-3 1.109175+0 9.840876-4 1.258925+0 7.705780-4 1.412538+0 6.216220-4 1.584893+0 5.048633-4 1.798871+0 4.046987-4 2.044000+0 3.263800-4 2.317395+0 2.661940-4 2.660725+0 2.143952-4 3.054921+0 1.739777-4 3.548134+0 1.397844-4 4.120975+0 1.131540-4 4.841724+0 9.081471-5 5.754399+0 7.233645-5 6.918310+0 5.719092-5 8.413951+0 4.490251-5 1.035142+1 3.502470-5 1.318257+1 2.643331-5 1.698244+1 1.984802-5 2.264644+1 1.444984-5 3.019952+1 1.059276-5 4.415704+1 7.086659-6 6.998420+1 4.391804-6 1.244515+2 2.437013-6 2.483133+2 1.210987-6 4.954502+2 6.040720-7 3.935501+3 7.575263-8 1.000000+5 2.979700-9 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.480000-5 4.480000-5 1.000000+5 4.480000-5 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.480000-5 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.812000-5 6.855500+6 3.630781-5 2.750759+6 4.027170-5 1.883662+6 5.069907-5 8.012937+5 5.559043-5 5.732621+5 6.000000-5 4.374740+5 6.456542-5 3.399487+5 6.900000-5 2.725440+5 7.328245-5 2.248026+5 7.673615-5 1.951779+5 8.035261-5 1.704470+5 8.413951-5 1.497974+5 8.810489-5 1.325570+5 9.225714-5 1.181303+5 9.660509-5 1.060266+5 1.011579-4 9.582947+4 1.060000-4 8.707060+4 1.109175-4 7.983414+4 1.170000-4 7.261980+4 1.230269-4 6.689653+4 1.303167-4 6.136673+4 1.380384-4 5.671551+4 1.462177-4 5.275778+4 1.566751-4 4.871001+4 1.720000-4 4.410040+4 1.927525-4 3.939073+4 2.985383-4 2.607290+4 3.507519-4 2.220081+4 4.027170-4 1.920858+4 4.623810-4 1.648975+4 5.248075-4 1.424103+4 6.000000-4 1.210114+4 6.760830-4 1.039701+4 7.673615-4 8.788187+3 8.709636-4 7.373190+3 9.885531-4 6.138174+3 1.122018-3 5.070873+3 1.273503-3 4.156644+3 1.445440-3 3.381342+3 1.640590-3 2.730063+3 1.862087-3 2.188123+3 2.113489-3 1.741384+3 2.398833-3 1.376293+3 2.722701-3 1.080198+3 3.090295-3 8.419692+2 3.507519-3 6.517942+2 4.000000-3 4.960960+2 4.570882-3 3.731260+2 5.188000-3 2.826640+2 5.888437-3 2.126017+2 6.683439-3 1.587183+2 7.585776-3 1.176130+2 8.609938-3 8.651414+1 9.772372-3 6.318214+1 1.109175-2 4.581857+1 1.258925-2 3.299730+1 1.513561-2 2.026434+1 1.717908-2 1.436670+1 1.972423-2 9.794917+0 2.264644-2 6.631006+0 2.630268-2 4.312310+0 3.054921-2 2.783335+0 3.589219-2 1.723045+0 4.265795-2 1.022554+0 5.128614-2 5.814369-1 6.309573-2 3.053864-1 8.317638-2 1.282413-1 1.445440-1 2.239350-2 1.798871-1 1.129841-2 2.162719-1 6.396729-3 2.511886-1 4.056125-3 2.884032-1 2.681963-3 3.273407-1 1.848098-3 3.715352-1 1.282816-3 4.168694-1 9.269055-4 4.677351-1 6.745930-4 5.188000-1 5.102071-4 5.754399-1 3.884925-4 6.382635-1 2.979575-4 7.079458-1 2.302327-4 7.852356-1 1.792408-4 8.709636-1 1.400854-4 9.332543-1 1.196323-4 9.885531-1 1.055034-4 1.071519+0 8.929243-5 1.161449+0 7.607699-5 1.273503+0 6.382110-5 1.412538+0 5.282375-5 1.698244+0 3.811236-5 1.927525+0 3.066734-5 2.187762+0 2.488205-5 2.483133+0 2.033572-5 2.851018+0 1.644133-5 3.311311+0 1.316320-5 3.845918+0 1.061977-5 4.518559+0 8.494660-6 5.308844+0 6.846963-6 6.382635+0 5.395473-6 7.673615+0 4.283201-6 9.332543+0 3.375739-6 1.161449+1 2.607430-6 1.462177+1 2.001344-6 1.883649+1 1.507284-6 2.570396+1 1.072899-6 3.758374+1 7.153701-7 5.754399+1 4.581432-7 9.549926+1 2.719920-7 1.905461+2 1.348024-7 3.801894+2 6.716914-8 1.513561+3 1.679595-8 1.000000+5 2.53880-10 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.812000-5 2.812000-5 1.000000+5 2.812000-5 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.812000-5 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.488000-5 1.446848+7 2.722701-5 1.020910+7 2.985383-5 7.216942+6 4.073803-5 2.268116+6 4.415704-5 1.689742+6 4.731513-5 1.321847+6 5.011872-5 1.084207+6 5.308844-5 8.954936+5 5.623413-5 7.454396+5 5.900000-5 6.439640+5 6.165950-5 5.663021+5 6.456542-5 4.984119+5 6.760830-5 4.417999+5 7.079458-5 3.945619+5 7.413102-5 3.550875+5 7.762471-5 3.220494+5 8.128305-5 2.942723+5 8.511380-5 2.707963+5 8.912509-5 2.507993+5 9.440609-5 2.296521+5 1.000000-4 2.118140+5 1.071519-4 1.937295+5 1.161449-4 1.760541+5 1.273503-4 1.591312+5 1.445440-4 1.397776+5 1.972423-4 1.026521+5 2.344229-4 8.588733+4 2.722701-4 7.311370+4 3.126079-4 6.259020+4 3.589219-4 5.321087+4 4.120975-4 4.492501+4 4.786301-4 3.708814+4 5.432503-4 3.132612+4 6.237348-4 2.586271+4 7.079458-4 2.155223+4 8.128305-4 1.753375+4 9.225714-4 1.440296+4 1.047129-3 1.175123+4 1.188502-3 9.518882+3 1.348963-3 7.655850+3 1.531087-3 6.113976+3 1.737801-3 4.848323+3 1.972423-3 3.818218+3 2.264644-3 2.919953+3 2.570396-3 2.267431+3 2.917427-3 1.748887+3 3.349654-3 1.307485+3 3.801894-3 9.943557+2 4.315191-3 7.510063+2 4.897788-3 5.632132+2 5.559043-3 4.193049+2 6.309573-3 3.098939+2 7.161434-3 2.273628+2 8.128305-3 1.655709+2 9.225714-3 1.196370+2 1.047129-2 8.583331+1 1.188502-2 6.113013+1 1.348963-2 4.322378+1 1.548817-2 2.938701+1 1.778279-2 1.982718+1 2.041738-2 1.327404+1 2.344229-2 8.818260+0 2.691535-2 5.816007+0 3.090295-2 3.809429+0 3.589219-2 2.390574+0 4.216965-2 1.436229+0 5.011872-2 8.254490-1 6.025596-2 4.531092-1 7.498942-2 2.204655-1 1.023293-1 7.847188-2 1.445440-1 2.479062-2 1.757924-1 1.298459-2 2.089296-1 7.390061-3 2.398833-1 4.737357-3 2.722701-1 3.173097-3 3.054921-1 2.219089-3 3.427678-1 1.563407-3 3.801894-1 1.148597-3 4.216965-1 8.499216-4 4.677351-1 6.337684-4 5.128614-1 4.916021-4 5.623413-1 3.839214-4 6.165950-1 3.019206-4 6.760830-1 2.391551-4 7.413102-1 1.907793-4 8.511380-1 1.374029-4 9.120108-1 1.173106-4 9.772372-1 1.008449-4 1.047129+0 8.735518-5 1.148154+0 7.267014-5 1.258925+0 6.089791-5 1.396368+0 5.033466-5 1.678804+0 3.627402-5 1.905461+0 2.916987-5 2.137962+0 2.409961-5 2.426610+0 1.967170-5 2.786121+0 1.588359-5 3.235937+0 1.270078-5 3.758374+0 1.023490-5 4.365158+0 8.307651-6 5.128614+0 6.685705-6 6.095369+0 5.338816-6 7.328245+0 4.230564-6 9.015711+0 3.282797-6 1.122018+1 2.532492-6 1.412538+1 1.941798-6 1.800000+1 1.478900-6 2.400000+1 1.078300-6 3.311311+1 7.632678-7 4.841724+1 5.115920-7 7.673615+1 3.175292-7 1.412538+2 1.703328-7 2.818383+2 8.472589-8 5.623413+2 4.228053-8 4.466836+3 5.304877-9 1.000000+5 2.36850-10 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.488000-5 2.488000-5 1.000000+5 2.488000-5 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.488000-5 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 4.960000-6 3.025600+6 5.370318-6 2.090208+6 5.754399-6 1.504117+6 6.100000-6 1.132560+6 6.456542-6 8.544015+5 6.850000-6 6.328020+5 7.244360-6 4.733925+5 7.700000-6 3.424820+5 8.200000-6 2.432960+5 8.709636-6 1.741301+5 9.930000-6 8.329340+4 1.035142-5 6.627510+4 1.071519-5 5.516319+4 1.100000-5 4.826880+4 1.127000-5 4.292120+4 1.150000-5 3.913160+4 1.174898-5 3.570223+4 1.200000-5 3.284860+4 1.222000-5 3.077380+4 1.244515-5 2.900484+4 1.264200-5 2.771399+4 1.288250-5 2.641746+4 1.310000-5 2.547560+4 1.333521-5 2.466955+4 1.357000-5 2.405480+4 1.380384-5 2.360417+4 1.410000-5 2.322780+4 1.440000-5 2.303380+4 1.470000-5 2.299260+4 1.500000-5 2.307560+4 1.531087-5 2.326706+4 1.570000-5 2.362500+4 1.630000-5 2.436200+4 1.717908-5 2.568269+4 1.950000-5 2.948240+4 2.070000-5 3.128540+4 2.190000-5 3.288180+4 2.317395-5 3.432324+4 2.454709-5 3.558085+4 2.600160-5 3.660583+4 2.754229-5 3.739436+4 2.917427-5 3.794426+4 3.090295-5 3.825619+4 3.273407-5 3.832706+4 3.467369-5 3.814969+4 3.672823-5 3.773415+4 3.935501-5 3.695833+4 4.220000-5 3.590520+4 4.518559-5 3.464588+4 4.841724-5 3.316747+4 5.248075-5 3.126430+4 5.688529-5 2.925483+4 6.165950-5 2.719533+4 6.839116-5 2.456081+4 7.673615-5 2.177814+4 9.000000-5 1.825390+4 1.083927-4 1.473239+4 1.428894-4 1.063980+4 1.584893-4 9.363199+3 1.757924-4 8.182929+3 1.972423-4 6.994989+3 2.264644-4 5.747005+3 3.890451-4 2.597689+3 4.623810-4 1.998797+3 6.165950-4 1.284732+3 7.244360-4 9.965023+2 9.440609-4 6.503180+2 1.122018-3 4.888135+2 1.318257-3 3.721781+2 2.213095-3 1.487965+2 2.786121-3 9.826157+1 3.235937-3 7.462184+1 3.981072-3 5.057628+1 4.897788-3 3.401081+1 6.025596-3 2.269066+1 7.328245-3 1.537685+1 8.810489-3 1.058615+1 1.059254-2 7.234359+0 1.273503-2 4.905484+0 1.531087-2 3.300312+0 1.819701-2 2.259515+0 2.162719-2 1.535368+0 2.570396-2 1.035208+0 3.019952-2 7.114855-1 3.589219-2 4.722735-1 4.265795-2 3.110190-1 5.069907-2 2.032282-1 6.025596-2 1.317292-1 7.244360-2 8.231384-2 8.511380-2 5.419674-2 1.047129-1 3.140860-2 1.364583-1 1.550791-2 2.371374-1 3.503317-3 2.884032-1 2.081546-3 3.427678-1 1.323888-3 3.935501-1 9.280667-4 4.466836-1 6.746639-4 5.069907-1 4.941361-4 5.688529-1 3.750599-4 6.309573-1 2.945504-4 6.998420-1 2.328468-4 7.762471-1 1.853065-4 8.609938-1 1.484573-4 9.549926-1 1.198164-4 1.071519+0 9.525211-5 1.230269+0 7.282244-5 1.380384+0 5.863695-5 1.548817+0 4.753743-5 1.737801+0 3.881363-5 1.972423+0 3.129542-5 2.238721+0 2.542842-5 2.540973+0 2.080791-5 2.917427+0 1.684385-5 3.388442+0 1.350169-5 3.935501+0 1.090541-5 4.623810+0 8.732945-6 5.432503+0 7.046404-6 6.531306+0 5.558031-6 7.943282+0 4.354054-6 9.660509+0 3.435898-6 1.202264+1 2.656980-6 1.513561+1 2.041401-6 1.972423+1 1.519476-6 2.691535+1 1.082985-6 3.935501+1 7.227943-7 6.165950+1 4.523779-7 1.059254+2 2.595339-7 2.113489+2 1.287678-7 4.216965+2 6.419277-8 1.678804+3 1.605986-8 1.000000+5 2.69290-10 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 4.960000-6 4.960000-6 1.000000+5 4.960000-6 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 4.960000-6 0.0 1.000000+5 1.000000+5 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.579190-7 1.027100+0 1.118550-6 1.027500+0 1.400970-6 1.028100+0 1.907390-6 1.028750+0 2.579190-6 1.029500+0 3.529690-6 1.030100+0 4.439010-6 1.031000+0 6.074080-6 1.032000+0 8.310870-6 1.033200+0 1.164210-5 1.034000+0 1.429180-5 1.035300+0 1.939910-5 1.036640+0 2.579190-5 1.038200+0 3.480700-5 1.039700+0 4.522130-5 1.041500+0 6.016630-5 1.043800+0 8.351280-5 1.046400+0 1.161920-4 1.048300+0 1.446630-4 1.051200+0 1.962320-4 1.054080+0 2.579190-4 1.057700+0 3.515610-4 1.061100+0 4.572950-4 1.065100+0 6.054110-4 1.070400+0 8.446160-4 1.076200+0 1.167260-3 1.080600+0 1.457720-3 1.087100+0 1.964020-3 1.093710+0 2.579190-3 1.102600+0 3.575840-3 1.110700+0 4.663310-3 1.120600+0 6.237590-3 1.133300+0 8.672090-3 1.147500+0 1.197270-2 1.158200+0 1.487900-2 1.174100+0 1.988820-2 1.190110+0 2.579190-2 1.205100+0 3.211700-2 1.227500+0 4.299860-2 1.250000+0 5.553000-2 1.265600+0 6.504190-2 1.294900+0 8.450910-2 1.320600+0 1.030410-1 1.343000+0 1.201240-1 1.382200+0 1.517120-1 1.433800+0 1.959290-1 1.500000+0 2.566000-1 1.589800+0 3.468430-1 1.665000+0 4.289680-1 1.784700+0 5.695640-1 1.892300+0 7.029140-1 2.000000+0 8.388000-1 2.044000+0 8.941000-1 2.163500+0 1.044150+0 2.372600+0 1.304810+0 2.647100+0 1.638640+0 3.000000+0 2.049000+0 3.500000+0 2.591070+0 4.000000+0 3.092000+0 4.750000+0 3.776790+0 5.000000+0 3.988000+0 6.000000+0 4.758000+0 7.000000+0 5.441000+0 8.000000+0 6.054000+0 9.000000+0 6.610000+0 1.000000+1 7.121000+0 1.100000+1 7.593000+0 1.200000+1 8.029000+0 1.300000+1 8.437000+0 1.400000+1 8.814000+0 1.500000+1 9.165000+0 1.600000+1 9.490000+0 1.800000+1 1.008000+1 2.000000+1 1.061000+1 2.200000+1 1.108000+1 2.400000+1 1.152000+1 2.600000+1 1.191000+1 2.800000+1 1.228000+1 3.000000+1 1.261000+1 4.000000+1 1.397000+1 5.000000+1 1.498000+1 6.000000+1 1.577000+1 8.000000+1 1.693000+1 1.000000+2 1.775000+1 1.500000+2 1.906000+1 2.000000+2 1.984000+1 3.000000+2 2.075000+1 4.000000+2 2.128000+1 5.000000+2 2.162000+1 6.000000+2 2.187000+1 8.000000+2 2.220000+1 1.000000+3 2.241000+1 1.500000+3 2.272000+1 2.000000+3 2.289000+1 3.000000+3 2.307000+1 4.000000+3 2.317000+1 5.000000+3 2.323000+1 6.000000+3 2.327000+1 8.000000+3 2.333000+1 1.000000+4 2.336000+1 1.500000+4 2.341000+1 2.000000+4 2.344000+1 3.000000+4 2.347000+1 4.000000+4 2.348000+1 5.000000+4 2.349000+1 6.000000+4 2.350000+1 8.000000+4 2.351000+1 1.000000+5 2.351000+1 1 60000 7 8 1.442400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.015430-7 2.094700+0 1.059040-6 2.099900+0 1.408900-6 2.106600+0 1.959890-6 2.114000+0 2.711760-6 2.119500+0 3.376120-6 2.127900+0 4.578660-6 2.136250+0 6.015430-6 2.147000+0 8.247580-6 2.156900+0 1.071260-5 2.169000+0 1.429670-5 2.184500+0 1.987280-5 2.201800+0 2.749460-5 2.214800+0 3.425620-5 2.234200+0 4.608060-5 2.253680+0 6.015430-5 2.281500+0 8.425670-5 2.307000+0 1.106710-4 2.338200+0 1.488060-4 2.377400+0 2.060790-4 2.410200+0 2.620980-4 2.446800+0 3.334030-4 2.485900+0 4.197730-4 2.532900+0 5.372200-4 2.556430+0 6.015430-4 2.611900+0 7.670370-4 2.660400+0 9.273100-4 2.745300+0 1.241150-3 2.809000+0 1.503110-3 2.904500+0 1.936390-3 3.000000+0 2.417000-3 3.125000+0 3.116510-3 3.234400+0 3.791910-3 3.425800+0 5.105730-3 3.569300+0 6.190590-3 3.784700+0 7.956770-3 4.000000+0 9.855000-3 4.250000+0 1.217520-2 4.625000+0 1.582090-2 5.000000+0 1.961000-2 5.500000+0 2.481030-2 6.000000+0 3.008000-2 6.750000+0 3.792090-2 7.000000+0 4.050000-2 8.000000+0 5.058000-2 9.000000+0 6.021000-2 1.000000+1 6.936000-2 1.100000+1 7.800000-2 1.200000+1 8.615000-2 1.300000+1 9.382000-2 1.400000+1 1.011000-1 1.500000+1 1.080000-1 1.600000+1 1.146000-1 1.800000+1 1.267000-1 2.000000+1 1.377000-1 2.200000+1 1.478000-1 2.400000+1 1.570000-1 2.600000+1 1.655000-1 2.800000+1 1.734000-1 3.000000+1 1.808000-1 4.000000+1 2.111000-1 5.000000+1 2.340000-1 6.000000+1 2.522000-1 8.000000+1 2.794000-1 1.000000+2 2.992000-1 1.500000+2 3.319000-1 2.000000+2 3.524000-1 3.000000+2 3.774000-1 4.000000+2 3.925000-1 5.000000+2 4.028000-1 6.000000+2 4.103000-1 8.000000+2 4.208000-1 1.000000+3 4.277000-1 1.500000+3 4.381000-1 2.000000+3 4.441000-1 3.000000+3 4.506000-1 4.000000+3 4.545000-1 5.000000+3 4.568000-1 6.000000+3 4.585000-1 8.000000+3 4.607000-1 1.000000+4 4.621000-1 1.500000+4 4.640000-1 2.000000+4 4.652000-1 3.000000+4 4.662000-1 4.000000+4 4.669000-1 5.000000+4 4.673000-1 6.000000+4 4.676000-1 8.000000+4 4.679000-1 1.000000+5 4.681000-1 1 60000 7 8 1.442400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 60000 7 9 1.442400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.000000+1 1.000000+5 6.000000+1 5.000000+5 5.996700+1 1.000000+6 5.991400+1 1.375000+6 5.986090+1 1.500000+6 5.983700+1 1.875000+6 5.974750+1 2.000000+6 5.971300+1 2.375000+6 5.959870+1 2.500000+6 5.955700+1 2.875000+6 5.942120+1 3.000000+6 5.937200+1 3.250000+6 5.926250+1 3.625000+6 5.909790+1 4.000000+6 5.892600+1 4.437500+6 5.871010+1 4.812500+6 5.851560+1 5.000000+6 5.841500+1 5.500000+6 5.812400+1 5.875000+6 5.789580+1 6.437500+6 5.754060+1 6.500000+6 5.750070+1 7.000000+6 5.718600+1 7.500000+6 5.686160+1 8.250000+6 5.637880+1 9.000000+6 5.588500+1 1.000000+7 5.521300+1 1.250000+7 5.357000+1 1.500000+7 5.190000+1 1.750000+7 5.022500+1 2.000000+7 4.854200+1 2.250000+7 4.684560+1 2.375000+7 4.600250+1 2.500000+7 4.517900+1 2.875000+7 4.279250+1 3.000000+7 4.203900+1 3.437500+7 3.954500+1 3.500000+7 3.920770+1 3.812500+7 3.759760+1 4.000000+7 3.669100+1 4.500000+7 3.444200+1 5.000000+7 3.239500+1 5.500000+7 3.050440+1 6.000000+7 2.874900+1 6.750000+7 2.634990+1 7.000000+7 2.561400+1 8.000000+7 2.299100+1 9.000000+7 2.086600+1 1.000000+8 1.917100+1 1.125000+8 1.751870+1 1.250000+8 1.618400+1 1.375000+8 1.503890+1 1.500000+8 1.399200+1 1.617200+8 1.305210+1 1.712900+8 1.230070+1 1.718800+8 1.225420+1 1.815400+8 1.150490+1 1.907700+8 1.079730+1 2.000000+8 1.010000+1 2.125000+8 9.192250+0 2.289100+8 8.175920+0 2.375000+8 7.745130+0 2.394500+8 7.657640+0 2.473600+8 7.343130+0 2.500000+8 7.252100+0 2.562500+8 7.062690+0 2.835900+8 6.425780+0 2.945300+8 6.171760+0 3.000000+8 6.033600+0 3.062500+8 5.864840+0 3.335900+8 5.141180+0 3.445300+8 4.910890+0 3.500000+8 4.815100+0 3.562500+8 4.722220+0 3.671900+8 4.591300+0 4.000000+8 4.288600+0 4.179700+8 4.108390+0 4.330100+8 3.946090+0 4.497600+8 3.761410+0 4.750000+8 3.488370+0 4.784700+8 3.452130+0 5.000000+8 3.235700+0 5.343800+8 2.923730+0 5.578100+8 2.728220+0 5.859400+8 2.506140+0 6.000000+8 2.399100+0 6.562500+8 2.019690+0 6.718800+8 1.937490+0 6.906300+8 1.854960+0 7.000000+8 1.820300+0 7.125000+8 1.781030+0 8.000000+8 1.587400+0 8.250000+8 1.525820+0 1.000000+9 1.121700+0 1.031300+9 1.077910+0 1.500000+9 7.910900-1 1.560500+9 7.536770-1 1.615500+9 7.180950-1 1.686000+9 6.718850-1 1.764500+9 6.214200-1 1.823400+9 5.850710-1 1.911700+9 5.338960-1 2.000000+9 4.872600-1 2.139200+9 4.230100-1 2.272600+9 3.707060-1 2.443000+9 3.147590-1 2.602800+9 2.713480-1 2.825100+9 2.224550-1 2.961100+9 1.978410-1 3.215900+9 1.601260-1 3.438900+9 1.341840-1 3.500000+9 1.280030-1 3.634100+9 1.156300-1 3.975600+9 9.023410-2 4.231700+9 7.562770-2 4.615800+9 5.884030-2 5.000000+9 4.646600-2 5.375000+9 3.737920-2 6.031300+9 2.626270-2 7.015600+9 1.638340-2 8.000000+9 1.082500-2 1.00000+10 5.345600-3 1.27030+10 2.523510-3 1.55700+10 1.340520-3 2.00890+10 6.113830-4 2.65200+10 2.620220-4 3.11120+10 1.615570-4 3.97230+10 7.746560-5 5.38510+10 3.124320-5 7.03330+10 1.416840-5 1.00000+11 5.033700-6 1.34280+11 2.127920-6 1.77440+11 9.466830-7 2.63330+11 3.026460-7 4.88110+11 5.164350-8 1.16740+12 4.358610-9 3.55150+12 1.92623-10 1.00000+14 1.84920-14 2.05350+15 4.06845-18 1.00000+17 7.45770-23 1 60000 7 0 1.442400+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.14000-11 1.000000+2 1.140000-9 1.000000+3 1.140000-7 1.000000+4 1.140000-5 1.000000+5 1.140000-3 5.000000+5 2.850000-2 1.000000+6 1.140000-1 1.375000+6 2.128940-1 1.500000+6 2.521000-1 1.875000+6 3.867340-1 2.000000+6 4.370000-1 2.375000+6 6.021420-1 2.500000+6 6.616000-1 2.875000+6 8.510330-1 3.000000+6 9.176000-1 3.250000+6 1.054760+0 3.625000+6 1.269190+0 4.000000+6 1.491000+0 4.437500+6 1.754970+0 4.812500+6 1.982990+0 5.000000+6 2.097000+0 5.500000+6 2.398320+0 5.875000+6 2.621180+0 6.437500+6 2.948870+0 6.500000+6 2.984630+0 7.000000+6 3.267300+0 7.500000+6 3.541990+0 8.250000+6 3.942680+0 9.000000+6 4.334000+0 1.000000+7 4.849000+0 1.250000+7 6.143600+0 1.500000+7 7.463000+0 1.750000+7 8.769600+0 2.000000+7 1.003600+1 2.250000+7 1.125730+1 2.375000+7 1.185270+1 2.500000+7 1.243900+1 2.875000+7 1.414140+1 3.000000+7 1.468800+1 3.437500+7 1.650190+1 3.500000+7 1.674900+1 3.812500+7 1.793140+1 4.000000+7 1.860300+1 4.500000+7 2.025360+1 5.000000+7 2.175900+1 5.500000+7 2.315940+1 6.000000+7 2.449300+1 6.750000+7 2.639860+1 7.000000+7 2.701200+1 8.000000+7 2.936400+1 9.000000+7 3.155600+1 1.000000+8 3.358100+1 1.125000+8 3.585930+1 1.250000+8 3.784800+1 1.375000+8 3.955690+1 1.500000+8 4.103300+1 1.617200+8 4.224560+1 1.712900+8 4.313150+1 1.718800+8 4.318410+1 1.815400+8 4.400600+1 1.907700+8 4.472950+1 2.000000+8 4.540400+1 2.125000+8 4.625120+1 2.289100+8 4.725820+1 2.375000+8 4.775010+1 2.394500+8 4.785610+1 2.473600+8 4.827980+1 2.500000+8 4.841900+1 2.562500+8 4.873160+1 2.835900+8 4.998760+1 2.945300+8 5.044250+1 3.000000+8 5.066000+1 3.062500+8 5.089910+1 3.335900+8 5.187170+1 3.445300+8 5.222610+1 3.500000+8 5.240000+1 3.562500+8 5.258690+1 3.671900+8 5.290790+1 4.000000+8 5.378800+1 4.179700+8 5.421260+1 4.330100+8 5.454650+1 4.497600+8 5.488990+1 4.750000+8 5.536240+1 4.784700+8 5.542120+1 5.000000+8 5.577800+1 5.343800+8 5.626460+1 5.578100+8 5.655920+1 5.859400+8 5.686540+1 6.000000+8 5.700300+1 6.562500+8 5.746490+1 6.718800+8 5.757310+1 6.906300+8 5.769380+1 7.000000+8 5.775300+1 7.125000+8 5.782160+1 8.000000+8 5.824300+1 8.250000+8 5.833860+1 1.000000+9 5.886500+1 1.031300+9 5.893500+1 1.500000+9 5.962700+1 1.560500+9 5.967270+1 1.615500+9 5.971270+1 1.686000+9 5.975250+1 1.764500+9 5.979320+1 1.823400+9 5.982130+1 1.911700+9 5.985280+1 2.000000+9 5.988300+1 2.139200+9 5.991330+1 2.272600+9 5.994060+1 2.443000+9 5.996770+1 2.602800+9 5.998390+1 2.825100+9 5.999820+1 2.961100+9 6.000310+1 3.215900+9 6.001160+1 3.438900+9 6.001200+1 3.500000+9 6.001140+1 3.634100+9 6.001020+1 3.975600+9 6.000740+1 4.231700+9 6.000530+1 4.615800+9 6.000260+1 5.000000+9 6.000000+1 5.375000+9 6.000000+1 6.031300+9 6.000000+1 7.015600+9 6.000000+1 8.000000+9 6.000000+1 1.00000+10 6.000000+1 1.27030+10 6.000000+1 1.55700+10 6.000000+1 2.00890+10 6.000000+1 2.65200+10 6.000000+1 3.11120+10 6.000000+1 3.97230+10 6.000000+1 5.38510+10 6.000000+1 7.03330+10 6.000000+1 1.00000+11 6.000000+1 1.34280+11 6.000000+1 1.77440+11 6.000000+1 2.63330+11 6.000000+1 4.88110+11 6.000000+1 1.16740+12 6.000000+1 3.55150+12 6.000000+1 1.00000+14 6.000000+1 2.05350+15 6.000000+1 1.00000+17 6.000000+1 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.007017-6 6.904244-8 1.009490-6 1.366160-7 1.011962-6 2.495402-7 1.014435-6 4.207591-7 1.016907-6 6.549081-7 1.019380-6 9.409814-7 1.021852-6 1.248060-6 1.024325-6 1.528073-6 1.026797-6 1.727056-6 1.029270-6 1.801867-6 1.031743-6 1.735374-6 1.034215-6 1.542827-6 1.036688-6 1.266180-6 1.041633-6 6.708318-7 1.044105-6 4.330657-7 1.046578-6 2.580761-7 1.049050-6 1.419698-7 1.051523-6 7.209384-8 1.053996-6 0.0 2.042945-6 0.0 2.052374-6 3.947454+0 2.053002-6 4.208195+0 2.058031-6 7.686611+0 2.063059-6 1.296068+1 2.068716-6 2.127236+1 2.077438-6 3.711121+1 2.083802-6 4.783396+1 2.088663-6 5.340978+1 2.093763-6 5.528650+1 2.099051-6 5.252191+1 2.104034-6 4.626049+1 2.112329-6 3.145989+1 2.118372-6 2.066370+1 2.123715-6 1.300363+1 2.128429-6 7.949545+0 2.133615-6 4.306001+0 2.140935-6 1.140328+0 2.143482-6 1.449748-2 2.143510-6 1.812209-3 2.143515-6 0.0 2.177689-6 0.0 2.187069-6 7.611371+0 2.188409-6 8.687615+0 2.193769-6 1.586864+1 2.199464-6 2.768521+1 2.205159-6 4.391577+1 2.214715-6 7.756001+1 2.220905-6 9.796157+1 2.226797-6 1.105947+2 2.231677-6 1.142786+2 2.237142-6 1.092335+2 2.242973-6 9.495584+1 2.251411-6 6.581170+1 2.258091-6 4.265921+1 2.263451-6 2.753930+1 2.268811-6 1.641145+1 2.274171-6 9.028075+0 2.282211-6 2.294973+0 2.284891-6 0.0 3.044211-6 0.0 3.051704-6 3.53121-15 3.059196-6 6.98730-15 3.066689-6 1.27629-14 3.074182-6 2.15200-14 3.081675-6 3.34956-14 3.089168-6 4.81270-14 3.096661-6 6.38327-14 3.104154-6 7.81541-14 3.111647-6 8.83313-14 3.119140-6 9.21575-14 3.126633-6 8.87567-14 3.134126-6 7.89087-14 3.141619-6 6.47595-14 3.156605-6 3.43101-14 3.164098-6 2.21494-14 3.171591-6 1.31994-14 3.179084-6 7.26112-15 3.186576-6 3.68728-15 3.194069-6 0.0 3.528744-6 0.0 3.530872-6 3.17031-16 3.541325-6 3.955258-6 3.548254-6 1.026660-5 3.551280-6 1.376168-5 3.568762-6 1.029517-1 3.577503-6 1.880389-1 3.586244-6 3.170438-1 3.592573-6 4.463735-1 3.596794-6 6.314871-1 3.610625-6 1.285270+0 3.621068-6 1.942475+0 3.632677-6 2.833589+0 3.655038-6 4.689429+0 3.666708-6 5.341160+0 3.673654-6 5.541714+0 3.683966-6 5.389613+0 3.692229-6 4.962475+0 3.702935-6 4.056453+0 3.725132-6 1.863560+0 3.733975-6 1.199159+0 3.742817-6 7.146130-1 3.751111-6 4.131053-1 3.751660-6 4.041575-1 3.764923-6 3.765279-1 3.769345-6 3.640009-1 3.778810-6 6.732732-1 3.788620-6 1.174626+0 3.797853-6 1.815109+0 3.814437-6 3.250015+0 3.825551-6 4.156304+0 3.834784-6 4.672281+0 3.844017-6 4.850351+0 3.853250-6 4.649739+0 3.863060-6 4.069528+0 3.876909-6 2.899102+0 3.889604-6 1.809941+0 3.898837-6 1.168435+0 3.908070-6 6.963036-1 3.917303-6 3.830423-1 3.931152-6 9.737091-2 3.935769-6 0.0 4.001352-6 0.0 4.021049-6 2.688297-1 4.030898-6 4.910394-1 4.040747-6 8.279599-1 4.051319-6 1.330369+0 4.076363-6 2.782426+0 4.081919-6 3.077408+0 4.090607-6 3.407883+0 4.100456-6 3.542024+0 4.110478-6 3.399432+0 4.123710-6 2.883924+0 4.144633-6 1.846102+0 4.151058-6 1.598349+0 4.158933-6 1.370773+0 4.168782-6 1.245462+0 4.178631-6 1.257135+0 4.195574-6 1.382772+0 4.200622-6 1.413938+0 4.207503-6 1.487338+0 4.217205-6 1.492171+0 4.227670-6 1.385409+0 4.237753-6 1.201718+0 4.257919-6 7.421344-1 4.267616-6 5.528105-1 4.276280-6 4.233723-1 4.286407-6 3.290671-1 4.296534-6 2.794598-1 4.306888-6 2.679064-1 4.317284-6 2.471120-1 4.327680-6 2.578161-1 4.338076-6 2.483021-1 4.348472-6 2.207519-1 4.365626-6 1.561989-1 4.379661-6 1.310481-1 4.388296-6 1.251763-1 4.397862-6 1.384713-1 4.400453-6 1.469894-1 4.409740-6 1.885068-1 4.421245-6 2.695366-1 4.431641-6 3.570981-1 4.441906-6 4.564559-1 4.452628-6 5.462938-1 4.463350-6 6.044921-1 4.474106-6 6.182976-1 4.485118-6 5.826602-1 4.496130-6 5.056689-1 4.518155-6 3.120427-1 4.528271-6 2.345440-1 4.538404-6 1.807656-1 4.549126-6 1.543630-1 4.559849-6 1.575409-1 4.573218-6 1.887084-1 4.580534-6 2.103642-1 4.595242-6 2.778734-1 4.606255-6 3.174617-1 4.617267-6 3.359700-1 4.628280-6 3.347622-1 4.668025-6 2.646879-1 4.683880-6 2.527458-1 4.718213-6 2.608873-1 4.833084-6 2.366752-1 4.867316-6 2.249934-1 4.896828-6 2.094658-1 4.928502-6 2.024289-1 4.996202-6 2.062630-1 5.482304-6 1.487868-1 5.838919-6 1.171619-1 6.187246-6 9.352983-2 6.287892-6 8.779714-2 6.318845-6 9.556725-2 6.334322-6 1.025407-1 6.349799-6 1.135493-1 6.365276-6 1.289555-1 6.411706-6 1.870408-1 6.427183-6 2.000293-1 6.442660-6 2.044224-1 6.458137-6 1.990392-1 6.473614-6 1.849720-1 6.520044-6 1.223948-1 6.535521-6 1.051974-1 6.550998-6 9.234544-2 6.566475-6 8.361279-2 6.597428-6 7.240516-2 6.750046-6 6.593263-2 6.783275-6 7.097969-2 6.799889-6 7.560458-2 6.816504-6 8.299977-2 6.833118-6 9.340334-2 6.864081-6 1.203932-1 6.882961-6 1.379079-1 6.899576-6 1.505468-1 6.916190-6 1.589690-1 6.937100-6 1.618163-1 6.956492-6 1.583288-1 6.983079-6 1.463670-1 7.012862-6 1.281465-1 7.082334-6 7.855265-2 7.107985-6 6.695549-2 7.130225-6 6.084161-2 7.156215-6 5.797135-2 7.180397-6 5.809727-2 7.261125-6 7.273334-2 7.278610-6 7.374617-2 7.348550-6 6.897765-2 7.366035-6 6.935194-2 7.383520-6 7.151989-2 7.401251-6 7.562980-2 7.448752-6 9.027834-2 7.475497-6 9.592681-2 7.495830-6 9.646153-2 7.515519-6 9.374984-2 7.581209-6 7.359840-2 7.607177-6 6.749056-2 7.627627-6 6.493809-2 7.674183-6 6.388643-2 7.724299-6 6.696657-2 7.746985-6 6.714124-2 7.833261-6 6.140019-2 7.879543-6 6.283694-2 7.941857-6 6.684092-2 8.014325-6 6.737033-2 8.143571-6 6.430423-2 8.264616-6 5.790210-2 8.327645-6 5.837877-2 8.446825-6 6.194593-2 9.192161-6 5.854045-2 9.876221-6 5.911299-2 1.074901-5 6.456428-2 1.165000-5 7.494836-2 1.273299-5 9.310269-2 1.406560-5 1.233005-1 1.562288-5 1.694187-1 1.739162-5 2.363076-1 1.912497-5 3.181456-1 2.022186-5 3.766246-1 2.032141-5 2.527082+0 2.037344-5 4.424237+0 2.042096-5 6.993424+0 2.044429-5 8.715533+0 2.049444-5 2.232844+1 2.054493-5 3.647655+1 2.059525-5 5.680109+1 2.065186-5 8.865980+1 2.070367-5 1.249846+2 2.084686-5 2.341395+2 2.090532-5 2.579954+2 2.095260-5 2.614073+2 2.100244-5 2.466892+2 2.105514-5 2.137551+2 2.119911-5 9.388582+1 2.124943-5 6.049914+1 2.129975-5 3.623379+1 2.135007-5 2.013468+1 2.142555-5 5.455309+0 2.145071-5 4.518207-1 2.248389-5 5.168330-1 2.259457-5 7.804285-1 2.264991-5 9.957102-1 2.270525-5 1.320064+0 2.276059-5 1.762164+0 2.292863-5 3.422305+0 2.304146-5 4.274035+0 2.316077-5 4.677423+0 2.321736-5 5.010774+0 2.327395-5 5.599599+0 2.335263-5 6.874481+0 2.341887-5 8.115855+0 2.353628-5 2.033057+1 2.359784-5 3.000778+1 2.365616-5 4.339175+1 2.372163-5 6.391261+1 2.388927-5 1.260722+2 2.395162-5 1.401804+2 2.400648-5 1.436632+2 2.406718-5 1.360856+2 2.413201-5 1.170089+2 2.429239-5 5.529472+1 2.434520-5 3.877258+1 2.440146-5 2.572903+1 2.445917-5 1.684248+1 2.457223-5 6.038526+0 2.476229-5 5.837174+0 2.568337-5 5.460835+0 2.593374-5 5.653995+0 2.619025-5 6.395214+0 2.643939-5 7.296950+0 2.662482-5 8.422394+0 2.675925-5 9.199789+0 2.682240-5 9.316067+0 2.691211-5 9.046033+0 2.715709-5 7.753537+0 2.729972-5 7.590106+0 2.763741-5 7.686294+0 2.831596-5 7.352083+0 2.925438-5 6.811220+0 3.209165-5 5.802239+0 3.479872-5 5.175725+0 3.858748-5 4.641313+0 4.141039-5 4.446863+0 4.220000-5 4.456590+0 4.291216-5 4.356310+0 5.011872-5 4.333313+0 8.623299-5 5.412067+0 1.116416-4 5.788991+0 1.134915-4 5.799401+0 1.139639-4 6.625766+0 1.144804-4 2.624703+1 1.145249-4 2.795488+1 1.148054-4 4.563151+1 1.150860-4 7.203439+1 1.154064-4 1.138594+2 1.162080-4 2.368445+2 1.165142-4 2.659563+2 1.168004-4 2.733733+2 1.170890-4 2.591572+2 1.174208-4 2.208887+2 1.180138-4 1.389151+2 1.181891-4 1.175153+2 1.184608-4 9.535778+1 1.187456-4 8.740340+1 1.190263-4 9.392612+1 1.196249-4 1.353511+2 1.199232-4 1.631678+2 1.201830-4 1.802623+2 1.204590-4 1.871284+2 1.207718-4 1.785039+2 1.211242-4 1.523502+2 1.219168-4 7.273487+1 1.221990-4 4.973987+1 1.224769-4 3.286882+1 1.227648-4 2.122467+1 1.233435-4 6.943234+0 1.242865-4 7.204585+0 1.259833-4 8.133245+0 1.288461-4 8.728685+0 1.337580-4 1.007082+1 1.375563-4 1.044348+1 1.423560-4 1.012927+1 1.562446-4 8.275198+0 1.672466-4 7.235680+0 1.797336-4 6.571457+0 1.957000-4 6.237437+0 2.201747-4 6.288789+0 2.226557-4 6.602061+0 2.254559-4 7.536513+0 2.271405-4 7.677140+0 2.312597-4 7.450439+0 2.460867-4 7.747544+0 2.545977-4 8.141575+0 3.064451-4 8.883158+0 3.129113-4 9.429907+0 3.819717-4 9.874237+0 4.748894-4 9.805778+0 7.008005-4 8.492224+0 9.529113-4 6.920419+0 9.576022-4 1.274381+1 9.600232-4 1.782062+1 9.624149-4 2.545658+1 9.649767-4 3.678019+1 9.714805-4 7.207757+1 9.743882-4 8.292149+1 9.767745-4 8.756067+1 9.790982-4 8.706633+1 9.862355-4 7.123553+1 9.886528-4 6.846718+1 9.909225-4 6.866547+1 9.971369-4 7.568860+1 1.001939-3 7.288639+1 1.005156-3 6.553805+1 1.011296-3 4.708495+1 1.013454-3 4.177126+1 1.015854-3 3.748429+1 1.018254-3 3.469381+1 1.023054-3 3.126038+1 1.107786-3 3.111248+1 1.211072-3 2.902881+1 1.259807-3 2.788122+1 1.269366-3 2.868573+1 1.286780-3 3.126344+1 1.348963-3 2.912814+1 1.374493-3 2.905476+1 1.397396-3 2.981702+1 1.523885-3 2.668815+1 1.575719-3 2.669448+1 1.851399-3 2.180307+1 2.169425-3 1.766820+1 2.475996-3 1.469997+1 2.838736-3 1.210060+1 3.151133-3 1.038836+1 3.624641-3 8.437830+0 4.131367-3 6.917198+0 4.717914-3 5.636003+0 5.361509-3 4.612613+0 6.049316-3 3.821895+0 6.091468-3 4.011534+0 6.117253-3 4.412670+0 6.139316-3 5.047160+0 6.161939-3 5.996558+0 6.214330-3 8.570290+0 6.249932-3 9.669585+0 6.281685-3 1.004685+1 6.433266-3 9.860796+0 6.601022-3 9.550719+0 6.651160-3 9.853726+0 6.763153-3 1.191305+1 6.823623-3 1.222195+1 7.013948-3 1.194344+1 7.153010-3 1.290386+1 7.318446-3 1.271430+1 8.385104-3 1.029247+1 9.683654-3 8.175097+0 1.099029-2 6.651833+0 1.234497-2 5.493404+0 1.410506-2 4.393262+0 1.612501-2 3.501199+0 1.770738-2 2.979708+0 1.992393-2 2.429536+0 2.245174-2 1.972009+0 2.521329-2 1.607219+0 2.833618-2 1.306099+0 3.172534-2 1.067145+0 3.520634-2 8.847613-1 3.973045-2 7.111658-1 4.245180-2 6.324308-1 4.272522-2 6.461837-1 4.287336-2 6.853924-1 4.301029-2 7.682187-1 4.310746-2 8.682079-1 4.322263-2 1.042886+0 4.335747-2 1.329778+0 4.357254-2 1.926079+0 4.383986-2 2.661476+0 4.400295-2 2.978172+0 4.424274-2 3.221272+0 4.455801-2 3.288793+0 5.293229-2 2.501520+0 6.101111-2 1.979334+0 7.020329-2 1.558085+0 7.943282-2 1.259247+0 9.020454-2 1.006672+0 1.003053-1 8.347070-1 1.129172-1 6.749430-1 1.263721-1 5.511518-1 1.418725-1 4.473431-1 1.566999-1 3.737663-1 1.745101-1 3.076100-1 1.944241-1 2.530816-1 2.141811-1 2.126460-1 2.390935-1 1.748898-1 2.660127-1 1.449581-1 2.961446-1 1.203291-1 3.325976-1 9.893958-2 3.735856-1 8.172417-2 4.162954-1 6.874530-2 4.651932-1 5.791575-2 5.227393-1 4.873876-2 5.888827-1 4.119213-2 6.797414-1 3.404639-2 7.676376-1 2.925677-2 8.735645-1 2.517132-2 1.008672+0 2.161667-2 1.173413+0 1.833145-2 1.410753+0 1.496827-2 1.696098+0 1.222213-2 2.039158+0 9.979800-3 2.451607+0 8.148860-3 2.814822+0 6.999679-3 3.384160+0 5.715486-3 4.068655+0 4.666897-3 4.891600+0 3.810687-3 5.880996+0 3.111561-3 7.070513+0 2.540700-3 8.500626+0 2.074571-3 9.760024+0 1.782008-3 1.000000+1 3.650238-3 1 60000 7 0 1.442400+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-5.936521+1 1.649930-6-5.683373+1 1.873107-6-5.318358+1 1.964658-6-4.889903+1 2.007496-6-4.430669+1 2.029025-6-3.970134+1 2.039642-6-3.556260+1 2.053002-6-2.664942+1 2.058659-6-2.239618+1 2.064788-6-1.854459+1 2.068716-6-1.714775+1 2.071466-6-1.709834+1 2.074373-6-1.784410+1 2.077438-6-1.987830+1 2.081052-6-2.392765+1 2.083173-6-2.724273+1 2.087995-6-3.640512+1 2.098298-6-5.984355+1 2.104569-6-4.802891+1 2.109735-6-4.222030+1 2.113344-6-4.040562+1 2.117974-6-4.036128+1 2.123715-6-4.335962+1 2.143913-6-5.973170+1 2.160864-6-4.760359+1 2.172026-6-3.892906+1 2.176793-6-3.352346+1 2.179854-6-2.866242+1 2.187739-6-1.919994+1 2.193769-6-1.058593+1 2.194732-6-9.075241+0 2.199129-6-3.788195+0 2.199464-6-3.273588+0 2.200093-6-2.570918+0 2.201192-6-1.630353+0 2.204489-6 4.360377-1 2.205159-6 8.457753-1 2.206332-6 1.052164+0 2.207211-6 9.781437-1 2.208530-6 5.851273-1 2.209850-6-3.439432-2 2.210520-6-4.502662-1 2.211692-6-1.536269+0 2.212572-6-2.582001+0 2.213231-6-3.494256+0 2.214220-6-5.082503+0 2.214715-6-5.991343+0 2.216550-6-9.967043+0 2.218308-6-1.423230+1 2.220146-6-1.969711+1 2.224870-6-3.709090+1 2.228710-6-5.441289+1 2.230037-6-5.983384+1 2.231677-6-5.129349+1 2.237751-6-2.366422+1 2.242345-6-6.400895+0 2.242973-6-4.269122+0 2.244073-6-9.921700-1 2.244897-6 1.216988+0 2.246134-6 4.240014+0 2.248040-6 8.520895+0 2.249213-6 1.060973+1 2.250092-6 1.192713+1 2.252071-6 1.417089+1 2.255075-6 1.584297+1 2.257337-6 1.602570+1 2.260771-6 1.425726+1 2.262781-6 1.275137+1 2.264121-6 1.098310+1 2.267638-6 7.191373+0 2.268224-6 6.431166+0 2.268811-6 5.480412+0 2.274171-6-1.699527+0 2.274841-6-2.727197+0 2.276013-6-4.192401+0 2.282211-6-1.094465+1 2.284221-6-1.352621+1 2.285633-6-1.598376+1 2.287854-6-1.864054+1 2.292277-6-2.248418+1 2.299597-6-2.701643+1 2.311163-6-3.191671+1 2.328188-6-3.663991+1 2.355724-6-4.133946+1 2.402728-6-4.581072+1 2.496336-6-5.005947+1 2.705329-6-5.367288+1 3.551280-6-5.857771+1 3.613178-6-5.972158+1 3.655038-6-5.964740+1 3.710262-6-5.462986+1 3.752765-6-5.624454+1 3.809556-6-5.881075+1 3.856225-6-5.504391+1 3.889604-6-5.377210+1 4.068396-6-5.833935+1 4.142380-6-5.501083+1 4.217205-6-5.553721+1 4.501637-6-5.627162+1 1.250435-5-6.017914+1 1.605246-5-5.626386+1 1.774528-5-5.135869+1 1.865695-5-4.580031+1 1.919812-5-3.980122+1 1.948694-5-3.474810+1 1.970432-5-2.934088+1 1.984771-5-2.449637+1 1.994329-5-2.039957+1 2.003888-5-1.528171+1 2.011080-5-1.046033+1 2.015939-5-6.518065+0 2.018387-5-4.242083+0 2.020287-5-2.290914+0 2.022186-5-4.909132-2 2.028179-5 7.460012+0 2.030160-5 1.019686+1 2.032141-5 1.325494+1 2.036043-5 1.995492+1 2.040908-5 3.032831+1 2.043846-5 3.881788+1 2.045574-5 4.553322+1 2.049444-5 5.583010+1 2.054493-5 6.836296+1 2.061255-5 8.509333+1 2.066287-5 9.265493+1 2.070367-5 9.279123+1 2.074217-5 8.608116+1 2.077544-5 7.483372+1 2.080138-5 6.224739+1 2.082031-5 5.003093+1 2.084022-5 3.450964+1 2.085000-5 2.512032+1 2.087359-5 4.059251+0 2.087949-5-1.391517+0 2.088391-5-5.629599+0 2.088972-5-1.148401+1 2.089531-5-1.770136+1 2.089951-5-2.320150+1 2.091060-5-3.524675+1 2.093658-5-6.207056+1 2.094770-5-4.870632+1 2.095260-5-4.249470+1 2.099782-5 4.766850+0 2.099939-5 6.777146+0 2.100244-5 1.013472+1 2.100815-5 1.583307+1 2.102190-5 2.810998+1 2.104814-5 5.000098+1 2.105514-5 5.587759+1 2.107258-5 6.727426+1 2.110180-5 8.151575+1 2.113392-5 9.197982+1 2.116702-5 9.758928+1 2.119309-5 9.769100+1 2.124314-5 8.890284+1 2.129975-5 7.180773+1 2.136737-5 4.979352+1 2.143813-5 3.076042+1 2.145071-5 2.603421+1 2.145645-5 2.361770+1 2.147281-5 1.868453+1 2.149585-5 1.324362+1 2.151568-5 9.310257+0 2.153551-5 5.846344+0 2.154873-5 3.741606+0 2.156856-5 8.358926-1 2.158839-5-1.815898+0 2.161741-5-5.321890+0 2.164126-5-7.924156+0 2.166770-5-1.056520+1 2.172383-5-1.548762+1 2.180364-5-2.129015+1 2.190565-5-2.730246+1 2.206428-5-3.469661+1 2.232866-5-4.428435+1 2.290619-5-6.286407+1 2.314497-5-5.470789+1 2.327395-5-4.740547+1 2.336919-5-3.987564+1 2.341363-5-3.470268+1 2.343585-5-3.107039+1 2.353194-5-2.046186+1 2.359422-5-1.234283+1 2.359784-5-1.172811+1 2.365215-5-5.607869+0 2.365616-5-5.021442+0 2.366369-5-4.281628+0 2.367687-5-3.392310+0 2.369663-5-2.585547+0 2.371639-5-1.904097+0 2.372163-5-1.686628+0 2.373177-5-1.714971+0 2.374128-5-2.014759+0 2.375019-5-2.485625+0 2.375854-5-3.077679+0 2.377421-5-4.556551+0 2.378792-5-6.233258+0 2.379991-5-7.993807+0 2.381041-5-9.764108+0 2.382763-5-1.315884+1 2.384081-5-1.620498+1 2.385965-5-2.134844+1 2.387706-5-2.723132+1 2.393421-5-5.164909+1 2.395601-5-6.337995+1 2.398361-5-5.164080+1 2.399908-5-4.312635+1 2.400648-5-3.846436+1 2.406156-5-1.116645+1 2.406347-5-9.984534+0 2.406718-5-8.031181+0 2.407413-5-4.742114+0 2.408021-5-2.081362+0 2.409086-5 2.273887+0 2.413201-5 1.815158+1 2.414341-5 2.171087+1 2.416270-5 2.670909+1 2.418884-5 3.198731+1 2.422320-5 3.657202+1 2.425347-5 3.870976+1 2.428266-5 3.908298+1 2.433860-5 3.506513+1 2.439531-5 2.766442+1 2.446623-5 1.677711+1 2.449273-5 1.325701+1 2.453248-5 8.415652+0 2.455235-5 5.812637+0 2.456229-5 4.345988+0 2.456726-5 3.519045+0 2.457790-5 1.350379+0 2.458855-5-2.699692-1 2.460717-5-2.587974+0 2.462113-5-4.084672+0 2.464208-5-6.069687+0 2.466303-5-7.805156+0 2.469756-5-1.031079+1 2.476229-5-1.419478+1 2.484811-5-1.810106+1 2.497843-5-2.253211+1 2.519291-5-2.760071+1 2.545617-5-3.186280+1 2.600160-5-3.799542+1 2.656585-5-4.144317+1 2.688838-5-4.043142+1 2.715709-5-4.060130+1 2.798206-5-4.234108+1 3.276800-5-4.571769+1 4.640476-5-4.896546+1 8.205061-5-5.392328+1 9.161860-5-5.671447+1 9.933400-5-5.087070+1 1.038193-4-4.461455+1 1.067058-4-3.787744+1 1.085773-4-3.113134+1 1.096954-4-2.547540+1 1.105591-4-1.974646+1 1.110753-4-1.549523+1 1.113774-4-1.262320+1 1.116416-4-9.823087+0 1.118729-4-7.111866+0 1.120752-4-4.504391+0 1.122522-4-2.013194+0 1.124072-4 3.514260-1 1.125427-4 2.582043+0 1.126613-4 4.674250+0 1.128689-4 8.703391+0 1.130245-4 1.209146+1 1.132289-4 1.714108+1 1.134259-4 2.287725+1 1.137011-4 3.294119+1 1.138915-4 4.212905+1 1.139639-4 4.719526+1 1.140539-4 5.343016+1 1.144804-4 7.637441+1 1.148405-4 9.983321+1 1.151824-4 1.177834+2 1.154064-4 1.241052+2 1.156078-4 1.224020+2 1.158081-4 1.137150+2 1.159686-4 1.015612+2 1.161511-4 8.087705+1 1.164145-4 3.978570+1 1.164700-4 2.962185+1 1.165142-4 1.979950+1 1.165461-4 1.369505+1 1.166854-4-1.158267+1 1.167426-4-2.277888+1 1.167657-4-2.803754+1 1.167924-4-3.451280+1 1.168910-4-5.316697+1 1.169009-4-5.491453+1 1.169752-4-4.610197+1 1.170466-4-3.265974+1 1.170729-4-2.703467+1 1.171182-4-1.928090+1 1.171678-4-1.173485+1 1.172084-4-6.022909+0 1.172692-4 2.083157+0 1.173148-4 8.106366+0 1.173388-4 1.165166+1 1.173560-4 1.389241+1 1.173895-4 1.774478+1 1.174502-4 2.375285+1 1.175294-4 3.017921+1 1.176142-4 3.557752+1 1.177093-4 3.996689+1 1.177888-4 4.227698+1 1.178910-4 4.301524+1 1.180532-4 4.066014+1 1.181494-4 3.677863+1 1.181891-4 3.365905+1 1.183534-4 2.372668+1 1.184027-4 2.017161+1 1.184459-4 1.619679+1 1.184608-4 1.425105+1 1.184778-4 1.253340+1 1.185096-4 9.745199+0 1.186490-4-1.124161+0 1.186908-4-4.648185+0 1.187117-4-6.619877+0 1.187273-4-8.327094+0 1.187369-4-9.673776+0 1.187623-4-1.232912+1 1.188331-4-1.812369+1 1.189962-4-2.991460+1 1.190350-4-3.364489+1 1.191176-4-3.860296+1 1.192648-4-4.382456+1 1.193944-4-4.619381+1 1.196433-4-4.806353+1 1.197722-4-4.510369+1 1.198734-4-4.035199+1 1.200419-4-2.753996+1 1.201106-4-2.146229+1 1.201544-4-1.670246+1 1.201652-4-1.513537+1 1.201830-4-1.297016+1 1.202164-4-9.345274+0 1.203332-4 2.673527+0 1.203624-4 5.797641+0 1.204063-4 1.078761+1 1.204390-4 1.498438+1 1.204590-4 1.815665+1 1.208118-4 5.982682+1 1.211242-4 8.776187+1 1.213276-4 9.978097+1 1.214990-4 1.057415+2 1.217482-4 1.088657+2 1.219168-4 1.071650+2 1.221990-4 9.913508+1 1.227648-4 7.452362+1 1.233083-4 5.284314+1 1.234010-4 4.785121+1 1.235978-4 4.081221+1 1.238354-4 3.441831+1 1.241488-4 2.773647+1 1.244879-4 2.196644+1 1.249238-4 1.599837+1 1.253712-4 1.111776+1 1.256347-4 8.685897+0 1.259833-4 5.861098+0 1.262608-4 3.851292+0 1.265368-4 2.019766+0 1.268701-4 2.665630-2 1.270029-4-7.701000-1 1.273524-4-2.660751+0 1.278842-4-5.241378+0 1.284011-4-7.434714+0 1.293156-4-1.068508+1 1.304008-4-1.373154+1 1.317958-4-1.673709+1 1.337580-4-1.973147+1 1.363084-4-2.226983+1 1.404250-4-2.470157+1 1.480579-4-2.737639+1 1.672466-4-3.128097+1 1.957000-4-3.454208+1 2.221554-4-3.711842+1 2.265549-4-3.692175+1 2.601158-4-3.653026+1 3.213464-4-3.531502+1 4.409354-4-3.246238+1 5.706168-4-3.109973+1 7.008005-4-3.135491+1 8.098203-4-3.324354+1 8.870047-4-3.649500+1 9.290080-4-4.006959+1 9.529113-4-4.386382+1 9.670080-4-4.830231+1 9.822708-4-5.577538+1 9.909225-4-5.564867+1 1.013454-3-4.930959+1 1.031488-3-4.279509+1 1.056209-3-3.799596+1 1.088616-3-3.396102+1 1.146978-3-2.889304+1 1.211072-3-2.517784+1 1.253118-3-2.421900+1 1.286780-3-2.508924+1 1.324034-3-2.171721+1 1.359324-3-2.013739+1 1.397396-3-1.940637+1 1.431461-3-1.743372+1 1.490691-3-1.545526+1 1.535806-3-1.475253+1 1.562449-3-1.421995+1 1.604492-3-1.268466+1 1.686681-3-1.087310+1 1.804243-3-9.092363+0 1.945077-3-7.621406+0 2.115771-3-6.410778+0 2.317701-3-5.496088+0 2.582736-3-4.831103+0 2.838736-3-4.506165+0 3.151133-3-4.377703+0 3.624641-3-4.507097+0 4.131367-3-4.906608+0 4.717914-3-5.648929+0 5.229887-3-6.638992+0 5.589018-3-7.723575+0 5.811003-3-8.775796+0 5.965649-3-9.957736+0 6.049316-3-1.104050+1 6.108409-3-1.239600+1 6.174384-3-1.429460+1 6.214330-3-1.448879+1 6.266228-3-1.329525+1 6.335633-3-1.153870+1 6.400000-3-1.069005+1 6.509306-3-1.006891+1 6.601022-3-1.015523+1 6.702703-3-1.093381+1 6.748515-3-1.077912+1 6.872594-3-8.957459+0 6.953776-3-8.378540+0 7.085318-3-8.161690+0 7.153010-3-7.531920+0 7.240994-3-6.526868+0 7.359754-3-5.634643+0 7.523871-3-4.782995+0 7.762745-3-3.879871+0 8.067764-3-3.032632+0 8.385104-3-2.389395+0 8.735526-3-1.854729+0 8.989799-3-1.546371+0 9.259876-3-1.276601+0 9.418186-3-1.138305+0 9.815650-3-8.628858-1 1.008082-2-7.148829-1 1.037006-2-5.820526-1 1.063358-2-4.794118-1 1.099029-2-3.695031-1 1.137926-2-2.747328-1 1.156733-2-2.366572-1 1.185047-2-1.854920-1 1.221448-2-1.355077-1 1.234497-2-1.212092-1 1.272930-2-8.866421-2 1.300991-2-7.079023-2 1.317797-2-6.269380-2 1.349926-2-5.219457-2 1.372229-2-4.758729-2 1.386357-2-4.552280-2 1.427816-2-4.576883-2 1.449490-2-4.714635-2 1.476639-2-5.080851-2 1.507238-2-5.791905-2 1.569008-2-7.723106-2 1.612501-2-9.424901-2 1.662724-2-1.179512-1 1.770738-2-1.796208-1 1.992393-2-3.183883-1 3.172534-2-1.118033+0 3.520634-2-1.406461+0 3.789848-2-1.707224+0 3.973045-2-2.005824+0 4.096737-2-2.308371+0 4.187008-2-2.653158+0 4.245180-2-3.019819+0 4.282495-2-3.428456+0 4.341197-2-4.356271+0 4.361658-2-4.438970+0 4.383986-2-4.238217+0 4.443883-2-3.189621+0 4.480453-2-2.768527+0 4.533419-2-2.384290+0 4.606489-2-2.030402+0 4.703828-2-1.702308+0 4.828400-2-1.399579+0 4.972873-2-1.146136+0 5.131170-2-9.425541-1 5.293229-2-7.860690-1 5.514512-2-6.248915-1 5.726945-2-5.059575-1 5.966102-2-4.020375-1 6.251190-2-3.125662-1 6.537437-2-2.471240-1 6.712357-2-2.148819-1 6.875477-2-1.909596-1 7.213707-2-1.538220-1 7.555021-2-1.286543-1 7.760187-2-1.175281-1 8.188158-2-1.012048-1 8.572267-2-9.440700-2 9.020454-2-9.249215-2 9.700889-2-9.745349-2 1.069683-1-1.131896-1 1.518823-1-2.101596-1 1.874546-1-2.697551-1 2.300903-1-3.202575-1 2.961446-1-3.693835-1 4.017221-1-4.111455-1 5.888827-1-4.426641-1 1.008672+0-4.627890-1 3.086391+0-4.720347-1 9.320751+0-4.733892-1 1.000000+1-4.731196-1 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.399684-1 1.078856-6 3.523996-1 1.118997-6 4.269149-1 1.176258-6 5.576215-1 1.216201-6 6.720492-1 1.269928-6 8.624581-1 1.295540-6 9.708892-1 1.320351-6 1.088987+0 1.344386-6 1.217307+0 1.367671-6 1.356424+0 1.390228-6 1.506928+0 1.412080-6 1.669431+0 1.433249-6 1.844563+0 1.453756-6 2.032972+0 1.492869-6 2.452306+0 1.529575-6 2.932996+0 1.564023-6 3.480903+0 1.596351-6 4.102250+0 1.611762-6 4.443335+0 1.626691-6 4.807743+0 1.655616-6 5.613864+0 1.682733-6 6.512821+0 1.708155-6 7.515945+0 1.731989-6 8.631128+0 1.754333-6 9.866351+0 1.775280-6 1.122976+1 1.794918-6 1.272962+1 1.813329-6 1.437429+1 1.830589-6 1.617220+1 1.846770-6 1.813176+1 1.861940-6 2.026138+1 1.876162-6 2.256941+1 1.889495-6 2.506409+1 1.901995-6 2.775352+1 1.913713-6 3.064564+1 1.924699-6 3.374818+1 1.934999-6 3.706867+1 1.944654-6 4.061438+1 1.953706-6 4.439234+1 1.962193-6 4.840932+1 1.970149-6 5.267189+1 1.977608-6 5.718646+1 1.984600-6 6.195949+1 1.991156-6 6.699758+1 1.997302-6 7.230756+1 2.003064-6 7.789635+1 2.008465-6 8.377075+1 2.013529-6 8.993760+1 2.018277-6 9.640416+1 2.022728-6 1.031791+2 2.026900-6 1.102734+2 2.034724-6 1.260317+2 2.041570-6 1.433948+2 2.048000-6 1.641558+2 2.052801-6 1.836609+2 2.057387-6 2.066845+2 2.061400-6 2.314192+2 2.064911-6 2.574744+2 2.067984-6 2.843404+2 2.070672-6 3.114635+2 2.073024-6 3.383123+2 2.076883-6 3.894274+2 2.082399-6 4.797035+2 2.091017-6 6.659777+2 2.094633-6 7.605670+2 2.097204-6 8.330710+2 2.099776-6 9.092518+2 2.104919-6 1.069155+3 2.105562-6 1.089519+3 2.110062-6 1.231318+3 2.111830-6 1.285535+3 2.115205-6 1.384046+3 2.116973-6 1.431986+3 2.118660-6 1.474734+3 2.120348-6 1.514060+3 2.122598-6 1.560392+3 2.124768-6 1.597609+3 2.126777-6 1.624836+3 2.128464-6 1.641924+3 2.130634-6 1.655697+3 2.133527-6 1.659102+3 2.135938-6 1.648581+3 2.136833-6 1.641580+3 2.138876-6 1.619409+3 2.141159-6 1.584760+3 2.143588-6 1.537037+3 2.146036-6 1.478578+3 2.148117-6 1.421576+3 2.149179-6 1.390198+3 2.151367-6 1.321291+3 2.152996-6 1.266784+3 2.155406-6 1.182329+3 2.157801-6 1.095246+3 2.159416-6 1.035508+3 2.161492-6 9.583676+2 2.163742-6 8.753625+2 2.165550-6 8.098367+2 2.166635-6 7.712680+2 2.169207-6 6.827862+2 2.171778-6 5.994334+2 2.173305-6 5.528047+2 2.176017-6 4.758982+2 2.176921-6 4.520624+2 2.184142-6 2.969462+2 2.185674-6 2.724507+2 2.187207-6 2.509812+2 2.187850-6 2.428800+2 2.188975-6 2.299920+2 2.189819-6 2.214043+2 2.190926-6 2.115375+2 2.192097-6 2.028454+2 2.193260-6 1.959786+2 2.194324-6 1.912471+2 2.195155-6 1.885886+2 2.195700-6 1.873383+2 2.196236-6 1.864916+2 2.197285-6 1.859419+2 2.198308-6 1.868246+2 2.199300-6 1.890301+2 2.200260-6 1.924482+2 2.202122-6 2.027212+2 2.209101-6 2.868438+2 2.211719-6 3.387380+2 2.214009-6 3.943339+2 2.220643-6 6.161096+2 2.222846-6 7.121736+2 2.225993-6 8.712570+2 2.229187-6 1.060773+3 2.232258-6 1.271487+3 2.233894-6 1.395543+3 2.235529-6 1.527974+3 2.238274-6 1.769084+3 2.241018-6 2.033642+3 2.246850-6 2.668678+3 2.247494-6 2.744190+3 2.252339-6 3.340773+3 2.254108-6 3.568030+3 2.257485-6 4.009321+3 2.260273-6 4.374791+3 2.262974-6 4.723581+3 2.265762-6 5.071144+3 2.268463-6 5.389487+3 2.270865-6 5.651919+3 2.273518-6 5.914002+3 2.274295-6 5.984470+3 2.277511-6 6.241909+3 2.280023-6 6.401090+3 2.282907-6 6.534445+3 2.285327-6 6.603315+3 2.290590-6 6.613755+3 2.292091-6 6.581971+3 2.296251-6 6.417157+3 2.298864-6 6.259918+3 2.301397-6 6.072221+3 2.304184-6 5.830473+3 2.306886-6 5.566553+3 2.309287-6 5.312287+3 2.311603-6 5.053678+3 2.315119-6 4.644235+3 2.317864-6 4.317716+3 2.320951-6 3.950542+3 2.323353-6 3.669348+3 2.328842-6 3.056506+3 2.330729-6 2.858947+3 2.334331-6 2.504452+3 2.339133-6 2.082527+3 2.345705-6 1.603164+3 2.354454-6 1.129955+3 2.357349-6 1.009597+3 2.360232-6 9.049997+2 2.363104-6 8.143808+2 2.365965-6 7.360331+2 2.368815-6 6.683600+2 2.371653-6 6.098993+2 2.374481-6 5.593353+2 2.380113-6 4.772436+2 2.385702-6 4.146820+2 2.391247-6 3.660549+2 2.396749-6 3.274055+2 2.402208-6 2.959964+2 2.407624-6 2.699497+2 2.412997-6 2.479718+2 2.418329-6 2.291580+2 2.423619-6 2.128603+2 2.428868-6 1.986023+2 2.434076-6 1.860242+2 2.444410-6 1.647793+2 2.454583-6 1.476255+2 2.464597-6 1.335076+2 2.474454-6 1.217086+2 2.484158-6 1.117217+2 2.493709-6 1.031773+2 2.503112-6 9.579835+1 2.512367-6 8.937331+1 2.521478-6 8.373676+1 2.530447-6 7.875693+1 2.548104-6 7.030394+1 2.565209-6 6.347565+1 2.581780-6 5.786225+1 2.597833-6 5.318304+1 2.613384-6 4.923457+1 2.628449-6 4.586731+1 2.643043-6 4.296971+1 2.657182-6 4.045412+1 2.684574-6 3.623885+1 2.710255-6 3.291443+1 2.734331-6 3.024227+1 2.756902-6 2.805870+1 2.778063-6 2.624956+1 2.797901-6 2.473252+1 2.835097-6 2.225602+1 2.867643-6 2.040571+1 2.896121-6 1.899615+1 2.945958-6 1.688022+1 2.983336-6 1.552809+1 3.039402-6 1.379715+1 3.148803-6 1.110421+1 3.247851-6 9.198343+0 3.335303-6 7.724383+0 3.400892-6 6.655015+0 3.450083-6 5.828863+0 3.484671-6 5.204918+0 3.512918-6 4.645564+0 3.534103-6 4.179647+0 3.549992-6 3.792643+0 3.561908-6 3.475484+0 3.570846-6 3.220826+0 3.577549-6 3.020669+0 3.587604-6 2.708847+0 3.592631-6 2.550288+0 3.597658-6 2.392560+0 3.611293-6 1.994696+0 3.624224-6 1.730094+0 3.626647-6 1.702677+0 3.629070-6 1.684709+0 3.635737-6 1.693568+0 3.637959-6 1.718792+0 3.642403-6 1.808809+0 3.644625-6 1.875757+0 3.646848-6 1.958803+0 3.650551-6 2.136031+0 3.653213-6 2.295856+0 3.655552-6 2.460364+0 3.657769-6 2.638304+0 3.661003-6 2.938461+0 3.665083-6 3.390208+0 3.678682-6 5.542311+0 3.683892-6 6.645752+0 3.687941-6 7.610273+0 3.692819-6 8.891601+0 3.697148-6 1.012998+1 3.701520-6 1.146688+1 3.705599-6 1.278003+1 3.709567-6 1.410527+1 3.713923-6 1.559723+1 3.718235-6 1.709215+1 3.723617-6 1.894832+1 3.727402-6 2.022411+1 3.732089-6 2.174263+1 3.735735-6 2.285826+1 3.745179-6 2.538013+1 3.746221-6 2.561934+1 3.753512-6 2.704050+1 3.756568-6 2.749524+1 3.762401-6 2.811852+1 3.765643-6 2.832356+1 3.768584-6 2.842243+1 3.773410-6 2.840885+1 3.777350-6 2.824228+1 3.782522-6 2.782672+1 3.787510-6 2.723552+1 3.789172-6 2.700133+1 3.795918-6 2.588918+1 3.798167-6 2.546920+1 3.804913-6 2.409952+1 3.807161-6 2.361528+1 3.816156-6 2.160701+1 3.825150-6 1.958970+1 3.844536-6 1.568360+1 3.851882-6 1.444837+1 3.858998-6 1.339317+1 3.865892-6 1.249891+1 3.872570-6 1.174351+1 3.885510-6 1.054687+1 3.897641-6 9.678231+0 3.909014-6 9.025498+0 3.930338-6 8.078311+0 3.948996-6 7.433086+0 3.981649-6 6.530538+0 4.079635-6 4.419472+0 4.091854-6 4.164210+0 4.099718-6 3.997327+0 4.109759-6 3.779886+0 4.119801-6 3.556239+0 4.129842-6 3.325464+0 4.142212-6 3.031861+0 4.150451-6 2.832540+0 4.159958-6 2.602853+0 4.180436-6 2.143155+0 4.190676-6 1.956379+0 4.197394-6 1.859091+0 4.199633-6 1.831952+0 4.210175-6 1.744448+0 4.211430-6 1.738734+0 4.220216-6 1.728084+0 4.224140-6 1.739855+0 4.227886-6 1.760249+0 4.232968-6 1.801282+0 4.237663-6 1.851431+0 4.245451-6 1.955222+0 4.260553-6 2.191324+0 4.264330-6 2.249103+0 4.270939-6 2.341634+0 4.276605-6 2.408672+0 4.283214-6 2.469652+0 4.286676-6 2.494064+0 4.294538-6 2.533389+0 4.307008-6 2.581163+0 4.312584-6 2.618857+0 4.315414-6 2.647610+0 4.319128-6 2.699310+0 4.323007-6 2.774927+0 4.326088-6 2.854377+0 4.334700-6 3.193996+0 4.339867-6 3.501122+0 4.342195-6 3.669458+0 4.345521-6 3.945308+0 4.349488-6 4.332584+0 4.354326-6 4.896788+0 4.356718-6 5.215051+0 4.373372-6 8.179393+0 4.379641-6 9.623376+0 4.384622-6 1.088152+1 4.389613-6 1.222430+1 4.394264-6 1.353372+1 4.399231-6 1.497303+1 4.404076-6 1.639546+1 4.408823-6 1.778358+1 4.411940-6 1.868068+1 4.417354-6 2.018888+1 4.422213-6 2.146428+1 4.427263-6 2.268570+1 4.432193-6 2.375243+1 4.442099-6 2.544701+1 4.446660-6 2.600168+1 4.454877-6 2.661763+1 4.458349-6 2.672847+1 4.461498-6 2.675360+1 4.466665-6 2.664455+1 4.470885-6 2.642407+1 4.476423-6 2.597026+1 4.481764-6 2.537528+1 4.483544-6 2.514653+1 4.492856-6 2.374644+1 4.494186-6 2.352324+1 4.504829-6 2.160015+1 4.507490-6 2.109395+1 4.517304-6 1.920091+1 4.523717-6 1.797714+1 4.536757-6 1.561713+1 4.552117-6 1.315596+1 4.574471-6 1.020706+1 4.590537-6 8.460777+0 4.611749-6 6.558913+0 4.617190-6 6.155870+0 4.625613-6 5.620196+0 4.628421-6 5.469154+0 4.632614-6 5.272810+0 4.635905-6 5.145394+0 4.639661-6 5.031317+0 4.650929-6 4.918094+0 4.654297-6 4.959176+0 4.656926-6 5.017561+0 4.667471-6 5.500572+0 4.669490-6 5.640894+0 4.678710-6 6.485670+0 4.683899-6 7.109622+0 4.691333-6 8.185501+0 4.703933-6 1.045286+1 4.710487-6 1.181292+1 4.715855-6 1.299270+1 4.719772-6 1.387951+1 4.725704-6 1.524434+1 4.727681-6 1.570076+1 4.732194-6 1.673639+1 4.737432-6 1.791323+1 4.743550-6 1.922696+1 4.749033-6 2.032397+1 4.759910-6 2.219286+1 4.763898-6 2.275528+1 4.771512-6 2.362102+1 4.775032-6 2.392437+1 4.779050-6 2.419369+1 4.782064-6 2.434168+1 4.786584-6 2.447759+1 4.791104-6 2.451248+1 4.794495-6 2.447468+1 4.799582-6 2.432050+1 4.804669-6 2.405763+1 4.812839-6 2.343551+1 4.815562-6 2.318065+1 4.824156-6 2.225174+1 4.827020-6 2.190775+1 4.838478-6 2.042087+1 4.842286-6 1.990348+1 4.860666-6 1.741922+1 4.875318-6 1.562138+1 4.884982-6 1.458304+1 4.890536-6 1.404618+1 4.902296-6 1.305645+1 4.908155-6 1.263639+1 4.920803-6 1.188403+1 4.928231-6 1.153197+1 4.938086-6 1.115465+1 4.952044-6 1.076742+1 4.962760-6 1.056238+1 4.976247-6 1.038527+1 4.998058-6 1.020419+1 5.021228-6 1.003633+1 5.033482-6 9.926515+0 5.050292-6 9.740323+0 5.072420-6 9.440851+0 5.111389-6 8.862867+0 5.148969-6 8.373148+0 5.180519-6 8.044110+0 5.219562-6 7.715060+0 5.293051-6 7.226427+0 5.370647-6 6.820365+0 5.461207-6 6.434031+0 5.567436-6 6.055775+0 5.693940-6 5.678480+0 5.894869-6 5.175710+0 6.305931-6 4.356645+0 6.495099-6 4.019300+0 6.584365-6 3.859687+0 6.695591-6 3.643535+0 6.807088-6 3.384622+0 6.823761-6 3.355574+0 6.840434-6 3.335311+0 6.859448-6 3.325624+0 6.881199-6 3.334052+0 6.902949-6 3.362141+0 6.959518-6 3.478897+0 6.976197-6 3.507205+0 6.989925-6 3.523243+0 7.003654-6 3.531350+0 7.023834-6 3.527893+0 7.040506-6 3.511827+0 7.057179-6 3.485562+0 7.073852-6 3.451424+0 7.107197-6 3.369352+0 7.280061-6 2.942715+0 7.339143-6 2.805888+0 7.368514-6 2.754508+0 7.396019-6 2.727706+0 7.418472-6 2.725280+0 7.436737-6 2.736624+0 7.450364-6 2.752021+0 7.522825-6 2.870878+0 7.547528-6 2.894609+0 7.562349-6 2.898892+0 7.577170-6 2.895077+0 7.590805-6 2.884623+0 7.618062-6 2.846599+0 7.655198-6 2.771182+0 7.713624-6 2.645347+0 7.756891-6 2.569123+0 7.911001-6 2.357849+0 7.965897-6 2.298534+0 7.992487-6 2.277589+0 8.063458-6 2.240571+0 8.106424-6 2.217740+0 8.160011-6 2.173421+0 8.216028-6 2.108306+0 8.327235-6 1.972601+0 8.432014-6 1.870703+0 8.598796-6 1.729169+0 8.658053-6 1.678954+0 8.751755-6 1.596524+0 8.887632-6 1.471578+0 9.075255-6 1.315537+0 9.334868-6 1.113451+0 9.600000-6 9.168035-1 9.902108-6 7.071343-1 1.015711-5 5.445411-1 1.035142-5 4.326873-1 1.050903-5 3.498478-1 1.071519-5 2.523725-1 1.083782-5 2.008163-1 1.102681-5 1.315639-1 1.117009-5 8.815252-2 1.132848-5 5.050715-2 1.148192-5 2.493130-2 1.163056-5 1.124747-2 1.177456-5 9.207723-3 1.191406-5 1.852504-2 1.204920-5 3.886566-2 1.215000-5 6.200100-2 1.224252-5 8.970411-2 1.236642-5 1.337553-1 1.250090-5 1.676305-1 1.251550-5 1.687080-1 1.264480-5 1.536864-1 1.280325-5 1.082465-1 1.291776-5 7.740960-2 1.302153-5 5.403932-2 1.312207-5 3.600101-2 1.321945-5 2.319250-2 1.331380-5 1.556318-2 1.340520-5 1.312220-2 1.349374-5 1.577425-2 1.366875-5 3.598789-2 1.382611-5 7.273336-2 1.398894-5 1.320108-1 1.411824-5 1.966096-1 1.425076-5 2.811461-1 1.440000-5 4.011337-1 1.449146-5 4.893176-1 1.470984-5 7.475273-1 1.490092-5 1.035562+0 1.506812-5 1.344096+0 1.521442-5 1.664356+0 1.535296-5 2.017556+0 1.556645-5 2.663598+0 1.573447-5 3.272374+0 1.586048-5 3.800478+0 1.604949-5 4.723318+0 1.627848-5 6.073689+0 1.647832-5 7.503261+0 1.686190-5 1.110114+1 1.739880-5 1.885532+1 1.773546-5 2.618518+1 1.800000-5 3.394272+1 1.819701-5 4.128303+1 1.836229-5 4.879197+1 1.852798-5 5.785183+1 1.867296-5 6.731914+1 1.881678-5 7.847421+1 1.891082-5 8.692826+1 1.900794-5 9.682138+1 1.909292-5 1.066068+2 1.916833-5 1.163035+2 1.929742-5 1.355129+2 1.939501-5 1.526707+2 1.946821-5 1.673438+2 1.957801-5 1.928494+2 1.968781-5 2.235021+2 1.978473-5 2.559748+2 1.988165-5 2.949414+2 1.993010-5 3.174171+2 1.997856-5 3.422617+2 2.002702-5 3.698188+2 2.009656-5 4.149380+2 2.017240-5 4.733201+2 2.022850-5 5.241959+2 2.027829-5 5.761412+2 2.032808-5 6.358895+2 2.037325-5 6.983418+2 2.041470-5 7.640904+2 2.046315-5 8.537093+2 2.051161-5 9.607698+2 2.056007-5 1.090615+3 2.059345-5 1.197059+3 2.062682-5 1.320962+3 2.065699-5 1.451290+3 2.067661-5 1.547112+3 2.070151-5 1.683346+3 2.072640-5 1.838482+3 2.075129-5 2.015611+3 2.077619-5 2.218257+3 2.080108-5 2.450392+3 2.082598-5 2.716442+3 2.085988-5 3.142124+3 2.087118-5 3.302305+3 2.092556-5 4.222843+3 2.106383-5 8.027396+3 2.110637-5 9.720981+3 2.112804-5 1.068772+4 2.120716-5 1.479243+4 2.121365-5 1.516623+4 2.125910-5 1.790914+4 2.127695-5 1.903562+4 2.131753-5 2.165353+4 2.134594-5 2.349587+4 2.137078-5 2.508186+4 2.139817-5 2.677235+4 2.141914-5 2.800342+4 2.144269-5 2.929825+4 2.146868-5 3.059349+4 2.148764-5 3.143382+4 2.151492-5 3.246398+4 2.154641-5 3.336015+4 2.157317-5 3.385119+4 2.158461-5 3.398140+4 2.161279-5 3.409291+4 2.162796-5 3.402867+4 2.167627-5 3.325397+4 2.169950-5 3.258650+4 2.172320-5 3.172461+4 2.174310-5 3.087192+4 2.176762-5 2.967739+4 2.179453-5 2.821076+4 2.181513-5 2.699777+4 2.183826-5 2.556379+4 2.185758-5 2.432324+4 2.188242-5 2.269247+4 2.190839-5 2.097006+4 2.193436-5 1.925670+4 2.196358-5 1.737002+4 2.198630-5 1.595066+4 2.203824-5 1.292641+4 2.205610-5 1.197059+4 2.209019-5 1.027815+4 2.212914-5 8.564616+3 2.216362-5 7.244737+3 2.220983-5 5.751813+3 2.233185-5 3.094990+3 2.235897-5 2.704428+3 2.238609-5 2.369047+3 2.242676-5 1.953638+3 2.246743-5 1.624156+3 2.249455-5 1.442953+3 2.252167-5 1.287000+3 2.254878-5 1.152295+3 2.257590-5 1.035429+3 2.263013-5 8.441545+2 2.268437-5 6.953931+2 2.273860-5 5.769546+2 2.284706-5 4.007524+2 2.290130-5 3.336370+2 2.299279-5 2.423731+2 2.303951-5 2.042719+2 2.308179-5 1.739398+2 2.315293-5 1.307753+2 2.321111-5 1.020354+2 2.326635-5 7.966807+1 2.332306-5 6.125103+1 2.337976-5 4.701682+1 2.340812-5 4.133481+1 2.343647-5 3.653828+1 2.346483-5 3.257475+1 2.347901-5 3.088949+1 2.349318-5 2.939381+1 2.350874-5 2.796381+1 2.353208-5 2.621836+1 2.355541-5 2.493325+1 2.356991-5 2.435862+1 2.359165-5 2.380874+1 2.360796-5 2.363744+1 2.361702-5 2.363058+1 2.362404-5 2.366847+1 2.363720-5 2.384124+1 2.364872-5 2.410163+1 2.365880-5 2.441378+1 2.367533-5 2.509895+1 2.368884-5 2.582171+1 2.369897-5 2.646301+1 2.371226-5 2.743829+1 2.372454-5 2.847981+1 2.373873-5 2.985957+1 2.374481-5 3.051075+1 2.376291-5 3.268089+1 2.378046-5 3.513778+1 2.379923-5 3.819436+1 2.382227-5 4.263430+1 2.384531-5 4.795817+1 2.385572-5 5.069922+1 2.390329-5 6.648156+1 2.392492-5 7.586068+1 2.395128-5 8.968983+1 2.396813-5 1.001744+2 2.399591-5 1.208485+2 2.402369-5 1.466275+2 2.409021-5 2.367248+2 2.418168-5 4.616925+2 2.422141-5 6.132216+2 2.426021-5 8.029891+2 2.429447-5 1.010804+3 2.432038-5 1.196312+3 2.444011-5 2.423572+3 2.450272-5 3.327616+3 2.451357-5 3.501960+3 2.456633-5 4.416093+3 2.458563-5 4.773882+3 2.462246-5 5.482345+3 2.464882-5 6.002485+3 2.467541-5 6.530728+3 2.469096-5 6.838455+3 2.471649-5 7.336138+3 2.474401-5 7.855447+3 2.477238-5 8.362331+3 2.479842-5 8.793945+3 2.480585-5 8.909959+3 2.483539-5 9.336500+3 2.486420-5 9.691557+3 2.488070-5 9.865033+3 2.490900-5 1.010759+4 2.493587-5 1.027036+4 2.495346-5 1.034011+4 2.498284-5 1.039071+4 2.500726-5 1.037025+4 2.501880-5 1.034118+4 2.505882-5 1.014776+4 2.508827-5 9.919349+3 2.510550-5 9.754910+3 2.513377-5 9.440914+3 2.516551-5 9.031356+3 2.519203-5 8.651327+3 2.521759-5 8.259252+3 2.525375-5 7.674382+3 2.528887-5 7.086968+3 2.532816-5 6.425297+3 2.534126-5 6.206755+3 2.540767-5 5.140531+3 2.543519-5 4.728375+3 2.547686-5 4.146898+3 2.554179-5 3.354512+3 2.564751-5 2.368036+3 2.570138-5 1.997111+3 2.573164-5 1.822144+3 2.577076-5 1.627002+3 2.581164-5 1.455749+3 2.585373-5 1.308854+3 2.589070-5 1.200357+3 2.593039-5 1.101534+3 2.598787-5 9.843328+2 2.605553-5 8.759022+2 2.612786-5 7.849712+2 2.619932-5 7.127436+2 2.628955-5 6.387275+2 2.638450-5 5.751711+2 2.648871-5 5.172886+2 2.661923-5 4.576120+2 2.669211-5 4.293024+2 2.674951-5 4.092371+2 2.682431-5 3.858489+2 2.694668-5 3.539345+2 2.701030-5 3.403180+2 2.707550-5 3.284332+2 2.717906-5 3.138636+2 2.720166-5 3.113917+2 2.727335-5 3.052322+2 2.734357-5 3.016151+2 2.739554-5 3.003664+2 2.746983-5 3.003614+2 2.760283-5 3.035301+2 2.766690-5 3.053026+2 2.776720-5 3.067515+2 2.783286-5 3.062679+2 2.788766-5 3.048720+2 2.798895-5 3.001464+2 2.806942-5 2.949773+2 2.832387-5 2.774268+2 2.847073-5 2.694048+2 2.862441-5 2.627878+2 2.889727-5 2.534872+2 2.919234-5 2.444039+2 2.964985-5 2.297162+2 3.014804-5 2.160607+2 3.081485-5 2.014552+2 3.148617-5 1.892739+2 3.235937-5 1.761830+2 3.315584-5 1.663709+2 3.416535-5 1.558783+2 3.570000-5 1.430412+2 3.687305-5 1.350837+2 3.814922-5 1.276987+2 4.073803-5 1.156318+2 4.260645-5 1.084033+2 4.291952-5 1.075304+2 4.354566-5 1.063476+2 4.396308-5 1.053035+2 4.464002-5 1.031020+2 4.693146-5 9.761644+1 4.900000-5 9.361535+1 5.150000-5 8.956930+1 5.446934-5 8.583818+1 5.888436-5 8.169834+1 6.531306-5 7.715999+1 7.016342-5 7.393721+1 7.373605-5 7.115005+1 7.604850-5 6.912958+1 7.900000-5 6.614856+1 8.140606-5 6.339155+1 8.349394-5 6.071170+1 8.511381-5 5.845233+1 8.709636-5 5.547855+1 8.867088-5 5.290594+1 9.015711-5 5.031567+1 9.163127-5 4.765181+1 9.267380-5 4.572771+1 9.387772-5 4.347733+1 9.576205-5 4.001573+1 9.667576-5 3.882289+1 9.728831-5 3.878367+1 9.799189-5 3.982439+1 9.891428-5 4.257241+1 9.956350-5 4.507990+1 1.004495-4 4.911176+1 1.012946-4 5.368039+1 1.018405-4 5.706893+1 1.025873-4 6.235588+1 1.033779-4 6.891783+1 1.040000-4 7.490420+1 1.047756-4 8.356207+1 1.052127-4 8.912240+1 1.057832-4 9.724176+1 1.064437-4 1.080455+2 1.072017-4 1.226382+2 1.079129-4 1.389275+2 1.085805-4 1.570343+2 1.092069-4 1.770789+2 1.095055-4 1.878610+2 1.101489-4 2.142811+2 1.106265-4 2.372160+2 1.111350-4 2.654147+2 1.116118-4 2.961088+2 1.120587-4 3.293957+2 1.125863-4 3.755502+2 1.128705-4 4.041158+2 1.132388-4 4.457262+2 1.135841-4 4.902798+2 1.140117-4 5.545032+2 1.142112-4 5.885119+2 1.144956-4 6.423244+2 1.147623-4 6.993474+2 1.150124-4 7.596344+2 1.152468-4 8.232376+2 1.154665-4 8.902135+2 1.156725-4 9.606277+2 1.159264-4 1.059615+3 1.162165-4 1.193338+3 1.165348-4 1.373592+3 1.168133-4 1.570650+3 1.170570-4 1.784237+3 1.172702-4 2.012876+3 1.174568-4 2.253818+3 1.176200-4 2.503304+3 1.177629-4 2.757003+3 1.178879-4 3.010490+3 1.181066-4 3.537267+3 1.182707-4 4.013615+3 1.184860-4 4.763723+3 1.189090-4 6.735586+3 1.192686-4 9.024955+3 1.194154-4 1.013518+4 1.195342-4 1.110876+4 1.197125-4 1.268944+4 1.198915-4 1.440925+4 1.201844-4 1.745159+4 1.202264-4 1.790378+4 1.204781-4 2.065217+4 1.205935-4 2.190827+4 1.207005-4 2.305269+4 1.208456-4 2.455305+4 1.209740-4 2.580751+4 1.211183-4 2.710532+4 1.212388-4 2.807820+4 1.213550-4 2.890379+4 1.214668-4 2.958097+4 1.215627-4 3.006180+4 1.217043-4 3.058983+4 1.218756-4 3.092123+4 1.220052-4 3.094001+4 1.221400-4 3.074587+4 1.222819-4 3.031068+4 1.223074-4 3.020804+4 1.225765-4 2.870864+4 1.227234-4 2.760429+4 1.228722-4 2.632074+4 1.230183-4 2.493643+4 1.231429-4 2.368900+4 1.232891-4 2.218396+4 1.234799-4 2.021979+4 1.239397-4 1.599039+4 1.241022-4 1.481299+4 1.242351-4 1.401318+4 1.243314-4 1.353201+4 1.244443-4 1.307762+4 1.244651-4 1.300703+4 1.246185-4 1.261213+4 1.247269-4 1.246496+4 1.248304-4 1.242251+4 1.249092-4 1.245149+4 1.250191-4 1.257477+4 1.251475-4 1.282991+4 1.252819-4 1.320824+4 1.254526-4 1.381915+4 1.259439-4 1.596536+4 1.261344-4 1.677112+4 1.262625-4 1.725528+4 1.265670-4 1.812564+4 1.267016-4 1.835586+4 1.269015-4 1.850101+4 1.270532-4 1.844951+4 1.272100-4 1.825180+4 1.273151-4 1.804048+4 1.274203-4 1.776976+4 1.275331-4 1.741773+4 1.276041-4 1.716644+4 1.277633-4 1.652777+4 1.278106-4 1.632017+4 1.279863-4 1.549050+4 1.280960-4 1.493433+4 1.282842-4 1.393455+4 1.283819-4 1.340132+4 1.286888-4 1.171634+4 1.292859-4 8.697276+3 1.298854-4 6.342508+3 1.300248-4 5.903794+3 1.302364-4 5.311971+3 1.304390-4 4.822480+3 1.306676-4 4.351681+3 1.308848-4 3.973773+3 1.311220-4 3.626607+3 1.314733-4 3.214061+3 1.318282-4 2.890788+3 1.320517-4 2.723410+3 1.322751-4 2.577755+3 1.326501-4 2.371411+3 1.331641-4 2.144978+3 1.337851-4 1.930278+3 1.344061-4 1.759340+3 1.351137-4 1.602549+3 1.354367-4 1.541594+3 1.359478-4 1.456350+3 1.363719-4 1.394600+3 1.368912-4 1.328373+3 1.373868-4 1.273333+3 1.380384-4 1.211044+3 1.386328-4 1.162482+3 1.391276-4 1.127070+3 1.398578-4 1.081763+3 1.403931-4 1.052996+3 1.411469-4 1.017753+3 1.423927-4 9.700228+2 1.438500-4 9.260912+2 1.451720-4 8.938191+2 1.465000-4 8.664103+2 1.481665-4 8.368775+2 1.500000-4 8.087990+2 1.531838-4 7.669637+2 1.567344-4 7.267584+2 1.621810-4 6.760709+2 1.667067-4 6.408269+2 1.713438-4 6.101292+2 1.761253-4 5.826352+2 1.808814-4 5.591779+2 1.851607-4 5.404476+2 1.905684-4 5.199690+2 2.021273-4 4.848673+2 2.219473-4 4.393097+2 2.272011-4 4.255770+2 2.305615-4 4.166272+2 2.322740-4 4.148387+2 2.357534-4 4.138538+2 2.393883-4 4.078112+2 2.405721-4 4.073999+2 2.418551-4 4.088426+2 2.452534-4 4.175355+2 2.493874-4 4.259186+2 2.578048-4 4.349109+2 2.647251-4 4.400738+2 2.770129-4 4.574192+2 2.985383-4 4.780890+2 3.195429-4 4.913981+2 3.262675-4 4.955453+2 3.305095-4 5.013037+2 3.372201-4 5.138741+2 3.527768-4 5.344814+2 3.785515-4 5.601554+2 4.109579-4 5.862603+2 4.467639-4 6.092442+2 4.776549-4 6.251156+2 5.249018-4 6.424637+2 5.754399-4 6.521309+2 6.246842-4 6.527710+2 6.732582-4 6.447965+2 7.147598-4 6.302337+2 7.535390-4 6.093259+2 7.957283-4 5.797804+2 8.315532-4 5.477065+2 8.619236-4 5.143449+2 8.848608-4 4.842096+2 9.080819-4 4.485453+2 9.258966-4 4.169039+2 9.403278-4 3.876553+2 9.533689-4 3.577320+2 9.622139-4 3.351185+2 9.699644-4 3.133669+2 9.789280-4 2.856125+2 9.837140-4 2.701677+2 9.899655-4 2.551933+2 9.951506-4 2.665355+2 9.998582-4 3.361269+2 1.001060-3 3.703898+2 1.001499-3 3.851641+2 1.004772-3 5.401741+2 1.006429-3 6.541158+2 1.008895-3 8.738846+2 1.011527-3 1.175959+3 1.013668-3 1.466631+3 1.014194-3 1.543026+3 1.016278-3 1.857846+3 1.018184-3 2.151806+3 1.020173-3 2.448659+3 1.020784-3 2.535347+3 1.023747-3 2.905278+3 1.025815-3 3.100342+3 1.026628-3 3.160777+3 1.027740-3 3.228371+3 1.028972-3 3.283368+3 1.030251-3 3.319653+3 1.031238-3 3.334600+3 1.032407-3 3.339534+3 1.033378-3 3.334745+3 1.034854-3 3.315455+3 1.036368-3 3.285176+3 1.043449-3 3.106133+3 1.047139-3 2.999839+3 1.048636-3 2.945278+3 1.050224-3 2.875970+3 1.053040-3 2.717529+3 1.053443-3 2.690870+3 1.056406-3 2.466375+3 1.058471-3 2.285329+3 1.060685-3 2.078409+3 1.061770-3 1.975385+3 1.063415-3 1.820943+3 1.068499-3 1.396540+3 1.071042-3 1.232130+3 1.073985-3 1.087764+3 1.076033-3 1.014857+3 1.078076-3 9.618611+2 1.081739-3 9.062765+2 1.085476-3 8.856643+2 1.089224-3 8.857725+2 1.095000-3 9.033365+2 1.106396-3 9.490829+2 1.116859-3 9.885302+2 1.128496-3 1.029089+3 1.141260-3 1.069461+3 1.154782-3 1.107195+3 1.173464-3 1.152889+3 1.196326-3 1.202507+3 1.220464-3 1.249121+3 1.242788-3 1.283825+3 1.265524-3 1.306892+3 1.281422-3 1.313731+3 1.313672-3 1.310767+3 1.319185-3 1.314232+3 1.327448-3 1.327247+3 1.337639-3 1.355550+3 1.356018-3 1.414150+3 1.373902-3 1.461068+3 1.381499-3 1.477983+3 1.391434-3 1.496242+3 1.405212-3 1.514180+3 1.430606-3 1.536394+3 1.446431-3 1.556880+3 1.489322-3 1.630708+3 1.500781-3 1.646992+3 1.516853-3 1.664953+3 1.539926-3 1.683018+3 1.562035-3 1.694030+3 1.609012-3 1.704922+3 1.619819-3 1.713086+3 1.636963-3 1.735626+3 1.651710-3 1.757645+3 1.665728-3 1.774832+3 1.682166-3 1.789280+3 1.706999-3 1.804194+3 1.773169-3 1.829870+3 1.844778-3 1.845743+3 1.935824-3 1.855196+3 2.028665-3 1.856207+3 2.168502-3 1.843331+3 2.339700-3 1.819787+3 2.459129-3 1.796543+3 2.646167-3 1.752789+3 2.856087-3 1.700414+3 3.064002-3 1.647322+3 3.273624-3 1.590459+3 3.560442-3 1.512790+3 3.717900-3 1.471595+3 4.063556-3 1.380323+3 4.235699-3 1.336096+3 4.440519-3 1.284664+3 4.643816-3 1.233859+3 4.861309-3 1.180170+3 5.055336-3 1.132496+3 5.231447-3 1.088790+3 5.387783-3 1.049356+3 5.528377-3 1.012946+3 5.657150-3 9.784383+2 5.774212-3 9.456611+2 5.868249-3 9.177842+2 5.949161-3 8.920282+2 6.025340-3 8.658016+2 6.084349-3 8.436472+2 6.136626-3 8.220718+2 6.181920-3 8.011999+2 6.225724-3 7.780535+2 6.260352-3 7.567105+2 6.295612-3 7.314678+2 6.344593-3 6.918912+2 6.381700-3 6.640083+2 6.403105-3 6.520669+2 6.411568-3 6.486211+2 6.425259-3 6.448386+2 6.444475-3 6.435486+2 6.467050-3 6.480291+2 6.486800-3 6.566159+2 6.515288-3 6.743639+2 6.571846-3 7.145324+2 6.595162-3 7.288150+2 6.613600-3 7.384145+2 6.641161-3 7.498959+2 6.671266-3 7.588773+2 6.705069-3 7.653176+2 6.746808-3 7.690519+2 6.786244-3 7.689671+2 6.822681-3 7.659928+2 6.884757-3 7.554856+2 6.937861-3 7.452893+2 6.970937-3 7.420688+2 7.004232-3 7.435561+2 7.035631-3 7.498423+2 7.073666-3 7.624604+2 7.142902-3 7.888691+2 7.169475-3 7.970478+2 7.195802-3 8.033071+2 7.225861-3 8.082280+2 7.284772-3 8.129248+2 7.343260-3 8.167379+2 7.391371-3 8.240051+2 7.438311-3 8.358058+2 7.525493-3 8.619995+2 7.589131-3 8.771582+2 7.633820-3 8.848816+2 7.688352-3 8.918129+2 7.823804-3 9.021776+2 7.974781-3 9.074953+2 8.164551-3 9.089600+2 8.408655-3 9.047801+2 8.715799-3 8.942094+2 9.054719-3 8.778821+2 9.515629-3 8.509643+2 1.007289-2 8.156742+2 1.078675-2 7.691832+2 1.174079-2 7.093215+2 1.279013-2 6.492831+2 1.414910-2 5.808872+2 1.614750-2 4.978396+2 1.762388-2 4.475535+2 1.980758-2 3.858190+2 2.209217-2 3.334197+2 2.397108-2 2.971388+2 2.590742-2 2.647795+2 2.801100-2 2.345071+2 3.045442-2 2.048763+2 3.412758-2 1.694265+2 3.644357-2 1.511551+2 3.845773-2 1.369055+2 4.006272-2 1.262133+2 4.120975-2 1.187015+2 4.215064-2 1.124121+2 4.285653-2 1.074123+2 4.315508-2 1.051398+2 4.343830-2 1.028283+2 4.367661-2 1.007004+2 4.387651-2 9.872798+1 4.416568-2 9.548505+1 4.477135-2 8.805439+1 4.493633-2 8.657559+1 4.507207-2 8.579105+1 4.518559-2 8.548429+1 4.535234-2 8.562042+1 4.550327-2 8.627669+1 4.576554-2 8.820226+1 4.609597-2 9.094826+1 4.634675-2 9.264305+1 4.665889-2 9.407715+1 4.702877-2 9.501514+1 4.750975-2 9.550374+1 4.803213-2 9.551792+1 4.881485-2 9.500716+1 5.011872-2 9.341050+1 5.145799-2 9.127730+1 5.373942-2 8.709911+1 5.680697-2 8.126873+1 6.021803-2 7.504723+1 6.470495-2 6.754634+1 7.018704-2 5.953794+1 7.569418-2 5.266221+1 8.329616-2 4.481627+1 9.891518-2 3.325503+1 1.123764-1 2.652272+1 1.355944-1 1.884136+1 1.894865-1 1.016865+1 2.267467-1 7.262459+0 2.806241-1 4.834008+0 3.888224-1 2.571165+0 5.761132-1 1.191953+0 9.339260-1 4.596059-1 1.696098+0 1.404435-1 5.122134+0 1.545125-2 1.546860+1 1.694823-3 4.671441+1 1.858412-4 1.410753+2 2.037718-5 4.260405+2 2.234314-6 1.584893+3 1.614530-7 5.011872+3 1.614530-8 1.584893+4 1.614530-9 5.011872+4 1.61453-10 1.000000+5 4.05552-11 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.427900-6 1.258900-6 3.847900-6 1.584900-6 6.098600-6 1.995300-6 9.665600-6 2.511900-6 1.531900-5 3.162300-6 2.427900-5 3.981100-6 3.847900-5 5.011900-6 6.098500-5 6.309600-6 9.665300-5 7.943300-6 1.531800-4 1.000000-5 2.427800-4 1.258900-5 3.847700-4 1.584900-5 6.098100-4 1.995300-5 9.664000-4 2.511900-5 1.530800-3 3.162300-5 2.424700-3 3.981100-5 3.841100-3 5.011900-5 6.085500-3 6.309600-5 9.642100-3 7.943300-5 1.525900-2 1.000000-4 2.413600-2 1.258900-4 3.812200-2 1.584900-4 6.009200-2 1.995300-4 9.441800-2 2.511900-4 1.476800-1 3.162300-4 2.293000-1 3.981100-4 3.511000-1 5.011900-4 5.274800-1 6.309600-4 7.723900-1 7.943300-4 1.095200+0 1.000000-3 1.499800+0 1.258900-3 1.991200+0 1.584900-3 2.593900+0 1.995300-3 3.347800+0 2.511900-3 4.284200+0 3.162300-3 5.417800+0 3.981100-3 6.761800+0 5.011900-3 8.309600+0 6.309600-3 1.000700+1 7.943300-3 1.183600+1 1.000000-2 1.380800+1 1.258900-2 1.593200+1 1.584900-2 1.812000+1 1.995300-2 2.030100+1 2.511900-2 2.221400+1 3.162300-2 2.389600+1 3.981100-2 2.521700+1 5.011900-2 2.616600+1 6.309600-2 2.671700+1 7.943300-2 2.682000+1 1.000000-1 2.650100+1 1.258900-1 2.578000+1 1.584900-1 2.475300+1 1.995300-1 2.348700+1 2.511900-1 2.205300+1 3.162300-1 2.051400+1 3.981100-1 1.892600+1 5.011900-1 1.733800+1 6.309600-1 1.577400+1 7.943300-1 1.425800+1 1.000000+0 1.280500+1 1.258900+0 1.142400+1 1.584900+0 1.012800+1 1.995300+0 8.920300+0 2.511900+0 7.805800+0 3.162300+0 6.788200+0 3.981100+0 5.868300+0 5.011900+0 5.044500+0 6.309600+0 4.313700+0 7.943300+0 3.671000+0 1.000000+1 3.110200+0 1.258900+1 2.624500+0 1.584900+1 2.206500+0 1.995300+1 1.848900+0 2.511900+1 1.544700+0 3.162300+1 1.287000+0 3.981100+1 1.069700+0 5.011900+1 8.870600-1 6.309600+1 7.341700-1 7.943300+1 6.065200-1 1.000000+2 5.002400-1 1.258900+2 4.119600-1 1.584900+2 3.387900-1 1.995300+2 2.782600-1 2.511900+2 2.282700-1 3.162300+2 1.870700-1 3.981100+2 1.531400-1 5.011900+2 1.252500-1 6.309600+2 1.023500-1 7.943300+2 8.357300-2 1.000000+3 6.818600-2 1.258900+3 5.559100-2 1.584900+3 4.529200-2 1.995300+3 3.687700-2 2.511900+3 3.000700-2 3.162300+3 2.440300-2 3.981100+3 1.983500-2 5.011900+3 1.611300-2 6.309600+3 1.308300-2 7.943300+3 1.061800-2 1.000000+4 8.613600-3 1.258900+4 6.984400-3 1.584900+4 5.660900-3 1.995300+4 4.586400-3 2.511900+4 3.714400-3 3.162300+4 3.007100-3 3.981100+4 2.433600-3 5.011900+4 1.968800-3 6.309600+4 1.592200-3 7.943300+4 1.287300-3 1.000000+5 1.040400-3 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159553-4 3.981072-4 3.976785-4 5.011872-4 5.005114-4 6.309573-4 6.298971-4 7.943282-4 7.926741-4 1.000000-3 9.974219-4 1.258925-3 1.254910-3 1.584893-3 1.578620-3 1.995262-3 1.985419-3 2.511886-3 2.496414-3 3.162278-3 3.137979-3 3.981072-3 3.942970-3 5.011872-3 4.952270-3 6.309573-3 6.216565-3 7.943282-3 7.798828-3 1.000000-2 9.775321-3 1.258925-2 1.223980-2 1.584893-2 1.530583-2 1.995262-2 1.911584-2 2.511886-2 2.383547-2 3.162278-2 2.966709-2 3.981072-2 3.684409-2 5.011872-2 4.564046-2 6.309573-2 5.637964-2 7.943282-2 6.945450-2 1.000000-1 8.527298-2 1.258925-1 1.043849-1 1.584893-1 1.273625-1 1.995262-1 1.548448-1 2.511886-1 1.876602-1 3.162278-1 2.266810-1 3.981072-1 2.729392-1 5.011872-1 3.276192-1 6.309573-1 3.921381-1 7.943282-1 4.680572-1 1.000000+0 5.575092-1 1.258925+0 6.628883-1 1.584893+0 7.871919-1 1.995262+0 9.342863-1 2.511886+0 1.108820+0 3.162278+0 1.316560+0 3.981072+0 1.564536+0 5.011872+0 1.861334+0 6.309573+0 2.217541+0 7.943282+0 2.646136+0 1.000000+1 3.162698+0 1.258925+1 3.786749+0 1.584893+1 4.541900+0 1.995262+1 5.457095+0 2.511886+1 6.567968+0 3.162278+1 7.917877+0 3.981072+1 9.560437+0 5.011872+1 1.156113+1 6.309573+1 1.400078+1 7.943282+1 1.697845+1 1.000000+2 2.061578+1 1.258925+2 2.506294+1 1.584893+2 3.050458+1 1.995262+2 3.716803+1 2.511886+2 4.533322+1 3.162278+2 5.534582+1 3.981072+2 6.763020+1 5.011872+2 8.271363+1 6.309573+2 1.012425+2 7.943282+2 1.240189+2 1.000000+3 1.520278+2 1.258925+3 1.864910+2 1.584893+3 2.289211+2 1.995262+3 2.811762+2 2.511886+3 3.455641+2 3.162278+3 4.249364+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090816-9 2.511886-5 1.728589-9 3.162278-5 2.739448-9 3.981072-5 4.341655-9 5.011872-5 6.881039-9 6.309573-5 1.090553-8 7.943282-5 1.727802-8 1.000000-4 2.737530-8 1.258925-4 4.336411-8 1.584893-4 6.866849-8 1.995262-4 1.087050-7 2.511886-4 1.719939-7 3.162278-4 2.725045-7 3.981072-4 4.287074-7 5.011872-4 6.758300-7 6.309573-4 1.060225-6 7.943282-4 1.654103-6 1.000000-3 2.578070-6 1.258925-3 4.015397-6 1.584893-3 6.273307-6 1.995262-3 9.843363-6 2.511886-3 1.547229-5 3.162278-3 2.429845-5 3.981072-3 3.810127-5 5.011872-3 5.960219-5 6.309573-3 9.300855-5 7.943282-3 1.444545-4 1.000000-2 2.246790-4 1.258925-2 3.494538-4 1.584893-2 5.431017-4 1.995262-2 8.367811-4 2.511886-2 1.283394-3 3.162278-2 1.955688-3 3.981072-2 2.966629-3 5.011872-2 4.478259-3 6.309573-2 6.716091-3 7.943282-2 9.978325-3 1.000000-1 1.472702-2 1.258925-1 2.150765-2 1.584893-1 3.112678-2 1.995262-1 4.468142-2 2.511886-1 6.352846-2 3.162278-1 8.954679-2 3.981072-1 1.251679-1 5.011872-1 1.735681-1 6.309573-1 2.388193-1 7.943282-1 3.262711-1 1.000000+0 4.424908-1 1.258925+0 5.960371-1 1.584893+0 7.977013-1 1.995262+0 1.060976+0 2.511886+0 1.403066+0 3.162278+0 1.845717+0 3.981072+0 2.416536+0 5.011872+0 3.150538+0 6.309573+0 4.092033+0 7.943282+0 5.297146+0 1.000000+1 6.837302+0 1.258925+1 8.802505+0 1.584893+1 1.130703+1 1.995262+1 1.449553+1 2.511886+1 1.855090+1 3.162278+1 2.370490+1 3.981072+1 3.025028+1 5.011872+1 3.855759+1 6.309573+1 4.909495+1 7.943282+1 6.245437+1 1.000000+2 7.938422+1 1.258925+2 1.008296+2 1.584893+2 1.279847+2 1.995262+2 1.623582+2 2.511886+2 2.058554+2 3.162278+2 2.608819+2 3.981072+2 3.304770+2 5.011872+2 4.184736+2 6.309573+2 5.297149+2 7.943282+2 6.703093+2 1.000000+3 8.479722+2 1.258925+3 1.072434+3 1.584893+3 1.355972+3 1.995262+3 1.714086+3 2.511886+3 2.166322+3 3.162278+3 2.737341+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.030000-6 3.183855+6 5.500000-6 2.107140+6 5.888437-6 1.528697+6 6.350000-6 1.062928+6 6.760830-6 7.803448+5 7.200000-6 5.683160+5 7.673615-6 4.092471+5 8.128305-6 3.021659+5 8.350000-6 2.614379+5 8.350000-6 5.192702+5 8.609938-6 4.743804+5 8.709636-6 4.597443+5 8.880000-6 4.365317+5 8.880000-6 6.172050+5 8.912509-6 6.126966+5 9.120108-6 5.870270+5 9.225714-6 5.754732+5 9.440609-6 5.553920+5 9.600000-6 5.426407+5 9.700000-6 5.358514+5 9.930000-6 5.225019+5 1.000000-5 5.191602+5 1.023293-5 5.100144+5 1.035142-5 5.066449+5 1.060000-5 5.015078+5 1.071519-5 5.001517+5 1.100000-5 4.991491+5 1.110000-5 4.995297+5 1.135011-5 5.021583+5 1.150000-5 5.048193+5 1.165000-5 5.081616+5 1.180000-5 5.118466+5 1.190000-5 5.148258+5 1.216186-5 5.239547+5 1.230269-5 5.291688+5 1.240000-5 5.335075+5 1.264200-5 5.447311+5 1.273503-5 5.492033+5 1.290000-5 5.576894+5 1.310000-5 5.690510+5 1.330000-5 5.807256+5 1.333521-5 5.828996+5 1.350000-5 5.932589+5 1.357000-5 5.979370+5 1.380384-5 6.138748+5 1.396368-5 6.250102+5 1.410000-5 6.349390+5 1.428894-5 6.489640+5 1.440000-5 6.576276+5 1.462177-5 6.752357+5 1.470000-5 6.816845+5 1.500000-5 7.068565+5 1.513561-5 7.184444+5 1.531087-5 7.340486+5 1.548817-5 7.500812+5 1.570000-5 7.699375+5 1.610000-5 8.083049+5 1.640590-5 8.383809+5 1.659587-5 8.578103+5 1.717908-5 9.202630+5 1.800000-5 1.012228+6 1.819701-5 1.035000+6 2.070000-5 1.350106+6 2.162719-5 1.477829+6 2.187762-5 1.512584+6 2.213095-5 1.547665+6 2.350000-5 1.744058+6 2.400000-5 1.816666+6 2.483133-5 1.938094+6 2.511886-5 1.980926+6 2.546000-5 2.030799+6 2.546000-5 1.695460+7 2.570396-5 1.642950+7 2.630268-5 1.524752+7 2.660725-5 1.470058+7 2.722701-5 1.368525+7 2.730000-5 1.357773+7 2.800000-5 1.261934+7 2.818383-5 1.238886+7 2.896000-5 1.149760+7 2.896000-5 1.851096+7 2.900000-5 1.843305+7 2.985383-5 1.691645+7 3.054921-5 1.583286+7 3.162278-5 1.438810+7 3.198895-5 1.394948+7 3.235937-5 1.353452+7 3.350000-5 1.240681+7 3.427678-5 1.174327+7 3.548134-5 1.085608+7 3.570000-5 1.071075+7 3.630781-5 1.033135+7 3.758374-5 9.634714+6 3.801894-5 9.423610+6 3.850000-5 9.203525+6 4.000000-5 8.604074+6 4.073803-5 8.350003+6 4.168694-5 8.056797+6 4.216965-5 7.924058+6 4.265795-5 7.797858+6 4.365158-5 7.561889+6 4.518559-5 7.250984+6 4.570882-5 7.161251+6 4.627000-5 7.069107+6 4.627000-5 7.123999+6 4.677351-5 7.048180+6 4.841724-5 6.829309+6 4.900000-5 6.765026+6 5.011872-5 6.649478+6 5.150000-5 6.524166+6 5.188000-5 6.494612+6 5.248075-5 6.451626+6 5.308844-5 6.408529+6 5.432503-5 6.326144+6 5.559043-5 6.257083+6 5.580000-5 6.245502+6 5.650000-5 6.208747+6 5.688529-5 6.188223+6 5.754399-5 6.155791+6 5.821032-5 6.126546+6 5.888437-5 6.099032+6 5.900000-5 6.094525+6 5.956621-5 6.070217+6 6.025596-5 6.039613+6 6.070000-5 6.021588+6 6.165950-5 5.984937+6 6.237348-5 5.960277+6 6.309573-5 5.933126+6 6.382635-5 5.905167+6 6.531306-5 5.852814+6 6.606934-5 5.828157+6 6.683439-5 5.801810+6 6.800000-5 5.759518+6 6.918310-5 5.719053+6 7.000000-5 5.693451+6 7.079458-5 5.666526+6 7.161434-5 5.636855+6 7.244360-5 5.607893+6 7.328245-5 5.580370+6 7.413102-5 5.553291+6 7.500000-5 5.526835+6 7.585776-5 5.498047+6 7.800000-5 5.424787+6 7.900000-5 5.392630+6 8.035261-5 5.351127+6 8.128305-5 5.320919+6 8.222426-5 5.289052+6 8.609938-5 5.167946+6 8.650000-5 5.156174+6 8.709636-5 5.138999+6 8.810489-5 5.107415+6 9.015711-5 5.041052+6 9.440609-5 4.914038+6 9.500000-5 4.897231+6 9.549926-5 4.882453+6 9.900000-5 4.773398+6 1.000000-4 4.743679+6 1.011579-4 4.710184+6 1.023293-4 4.676826+6 1.040000-4 4.623274+6 1.060000-4 4.561431+6 1.083927-4 4.490580+6 1.096478-4 4.454530+6 1.100000-4 4.444046+6 1.135011-4 4.334872+6 1.141600-4 4.315116+6 1.161449-4 4.257037+6 1.174898-4 4.216586+6 1.202264-4 4.132379+6 1.230269-4 4.050099+6 1.244515-4 4.009743+6 1.260000-4 3.965042+6 1.305900-4 3.831093+6 1.305900-4 4.444575+6 1.324000-4 4.543825+6 1.330000-4 4.581069+6 1.333521-4 4.604629+6 1.340000-4 4.645896+6 1.348000-4 4.695896+6 1.350000-4 4.707475+6 1.350500-4 4.710418+6 1.350500-4 5.126962+6 1.354000-4 5.162838+6 1.355000-4 5.172489+6 1.360000-4 5.224162+6 1.367000-4 5.293860+6 1.373000-4 5.351013+6 1.375000-4 5.368522+6 1.380384-4 5.416006+6 1.385000-4 5.451980+6 1.387700-4 5.472539+6 1.393000-4 5.507690+6 1.395000-4 5.520317+6 1.400000-4 5.546602+6 1.403000-4 5.561180+6 1.407000-4 5.576342+6 1.411000-4 5.589255+6 1.415000-4 5.598302+6 1.419000-4 5.604719+6 1.422000-4 5.606879+6 1.427000-4 5.607201+6 1.428894-4 5.605854+6 1.435000-4 5.597554+6 1.442000-4 5.578189+6 1.445440-4 5.566228+6 1.450000-4 5.546936+6 1.457000-4 5.512187+6 1.458000-4 5.506620+6 1.465000-4 5.463267+6 1.472000-4 5.416411+6 1.473000-4 5.409284+6 1.479108-4 5.362916+6 1.480000-4 5.356214+6 1.481000-4 5.348727+6 1.485000-4 5.316840+6 1.492000-4 5.259430+6 1.500000-4 5.191097+6 1.505000-4 5.147217+6 1.520000-4 5.013302+6 1.535000-4 4.877405+6 1.548817-4 4.755659+6 1.550000-4 4.745192+6 1.566751-4 4.598977+6 1.570000-4 4.571713+6 1.584893-4 4.448959+6 1.590000-4 4.407323+6 1.621810-4 4.162383+6 1.640590-4 4.029514+6 1.650000-4 3.966439+6 1.659587-4 3.903646+6 1.693900-4 3.694732+6 1.698244-4 3.670404+6 1.720000-4 3.551585+6 1.740000-4 3.451037+6 1.750000-4 3.403803+6 1.760000-4 3.358488+6 1.778279-4 3.280365+6 1.780000-4 3.273097+6 1.800000-4 3.193726+6 1.810000-4 3.156359+6 1.820000-4 3.120490+6 1.826000-4 3.099896+6 1.835000-4 3.068929+6 1.840772-4 3.049723+6 1.842000-4 3.045667+6 1.858000-4 2.995211+6 1.865000-4 2.974026+6 1.880000-4 2.930832+6 1.885000-4 2.916953+6 1.900000-4 2.877177+6 1.905461-4 2.863227+6 1.922000-4 2.822189+6 1.927525-4 2.809010+6 1.945000-4 2.768298+6 1.950000-4 2.757088+6 1.965000-4 2.724974+6 1.973000-4 2.708508+6 1.990000-4 2.675270+6 2.000000-4 2.656523+6 2.010000-4 2.638597+6 2.020000-4 2.621284+6 2.030000-4 2.604727+6 2.041738-4 2.585981+6 2.050000-4 2.572599+6 2.065380-4 2.549402+6 2.070000-4 2.542528+6 2.080000-4 2.528161+6 2.089296-4 2.515438+6 2.100000-4 2.500354+6 2.113489-4 2.482176+6 2.120000-4 2.473522+6 2.128000-4 2.463357+6 2.162719-4 2.421875+6 2.170000-4 2.413703+6 2.190000-4 2.392430+6 2.205000-4 2.376409+6 2.213095-4 2.368167+6 2.238721-4 2.342936+6 2.260000-4 2.323163+6 2.264644-4 2.319058+6 2.344229-4 2.250984+6 2.350000-4 2.246537+6 2.371374-4 2.229952+6 2.398700-4 2.209399+6 2.398700-4 2.532869+6 2.398833-4 2.532765+6 2.426610-4 2.511745+6 2.450000-4 2.495012+6 2.454709-4 2.491572+6 2.500000-4 2.459158+6 2.540973-4 2.431050+6 2.600160-4 2.392888+6 2.630268-4 2.374747+6 2.650100-4 2.362172+6 2.650100-4 2.456213+6 2.691535-4 2.431247+6 2.722701-4 2.412539+6 2.754229-4 2.393686+6 2.786121-4 2.375696+6 2.800000-4 2.367819+6 2.818383-4 2.357072+6 2.884032-4 2.319906+6 2.900000-4 2.310898+6 2.951209-4 2.281814+6 2.985383-4 2.263634+6 3.000000-4 2.255844+6 3.019952-4 2.244889+6 3.090295-4 2.207497+6 3.100000-4 2.202509+6 3.126079-4 2.188275+6 3.200000-4 2.149860+6 3.235937-4 2.130893+6 3.280700-4 2.107746+6 3.280700-4 2.224957+6 3.311311-4 2.209137+6 3.320000-4 2.204667+6 3.427678-4 2.148293+6 3.430000-4 2.147145+6 3.467369-4 2.127632+6 3.548134-4 2.086401+6 3.550000-4 2.085471+6 3.680000-4 2.019672+6 3.700000-4 2.010076+6 3.715352-4 2.002289+6 3.758374-4 1.980839+6 3.801894-4 1.959530+6 3.845918-4 1.938454+6 3.850000-4 1.936512+6 3.935501-4 1.894555+6 4.027170-4 1.852421+6 4.050000-4 1.842078+6 4.073803-4 1.831049+6 4.100000-4 1.818967+6 4.120975-4 1.809411+6 4.168694-4 1.787938+6 4.216965-4 1.766719+6 4.315191-4 1.723025+6 4.415704-4 1.681058+6 4.430000-4 1.675218+6 4.466836-4 1.659450+6 4.518559-4 1.637514+6 4.677351-4 1.573828+6 4.731513-4 1.552222+6 4.786301-4 1.530805+6 4.841724-4 1.509640+6 4.850000-4 1.506532+6 4.897788-4 1.488687+6 4.954502-4 1.467995+6 5.069907-4 1.425696+6 5.128614-4 1.405061+6 5.188000-4 1.384810+6 5.248075-4 1.364807+6 5.308844-4 1.344210+6 5.432503-4 1.303678+6 5.500000-4 1.282505+6 5.559043-4 1.264485+6 5.688529-4 1.224986+6 5.800000-4 1.192701+6 5.821032-4 1.186736+6 5.888437-4 1.167936+6 5.900000-4 1.164757+6 5.956621-4 1.148793+6 6.237348-4 1.075076+6 6.309573-4 1.057451+6 6.382635-4 1.039310+6 6.500000-4 1.011131+6 6.531306-4 1.003828+6 6.700000-4 9.660532+5 6.760830-4 9.528652+5 6.839116-4 9.359902+5 6.918310-4 9.193996+5 7.000000-4 9.027663+5 7.161434-4 8.711132+5 7.244360-4 8.554020+5 7.413102-4 8.242697+5 7.500000-4 8.089821+5 7.585776-4 7.943264+5 7.673615-4 7.797039+5 7.800000-4 7.590010+5 8.222426-4 6.950053+5 8.317638-4 6.815730+5 8.413951-4 6.683945+5 8.511380-4 6.552218+5 8.810489-4 6.171125+5 8.912509-4 6.049420+5 9.015711-4 5.928930+5 9.120108-4 5.810637+5 9.225714-4 5.692901+5 9.332543-4 5.577518+5 9.440609-4 5.464498+5 9.549926-4 5.353052+5 9.660509-4 5.242490+5 9.885531-4 5.028585+5 1.000000-3 4.923459+5 1.023293-3 4.719470+5 1.034600-3 4.625164+5 1.034600-3 1.714448+6 1.035142-3 1.712368+6 1.042000-3 1.686352+6 1.059254-3 1.623258+6 1.059600-3 1.622026+6 1.059600-3 2.100766+6 1.071519-3 2.071353+6 1.083927-3 2.042379+6 1.095000-3 2.018022+6 1.096478-3 2.014318+6 1.100000-3 2.005573+6 1.122018-3 1.960522+6 1.135011-3 1.935607+6 1.148154-3 1.904923+6 1.150000-3 1.900706+6 1.174898-3 1.840079+6 1.210000-3 1.761594+6 1.216186-3 1.747474+6 1.230269-3 1.711394+6 1.244515-3 1.676409+6 1.258925-3 1.637685+6 1.273503-3 1.594467+6 1.318257-3 1.471356+6 1.333521-3 1.432453+6 1.346900-3 1.399515+6 1.346900-3 1.610258+6 1.364583-3 1.564649+6 1.380384-3 1.524888+6 1.396368-3 1.486167+6 1.400000-3 1.477552+6 1.412538-3 1.448061+6 1.420000-3 1.430920+6 1.445440-3 1.375071+6 1.461600-3 1.341255+6 1.461600-3 1.420433+6 1.462177-3 1.419229+6 1.479108-3 1.384519+6 1.480000-3 1.382699+6 1.485000-3 1.372525+6 1.513561-3 1.316175+6 1.531087-3 1.283002+6 1.548817-3 1.250701+6 1.566751-3 1.219208+6 1.570000-3 1.213612+6 1.584893-3 1.188266+6 1.603245-3 1.158111+6 1.621810-3 1.128730+6 1.625100-3 1.123550+6 1.625100-3 1.173386+6 1.659587-3 1.120017+6 1.678804-3 1.091400+6 1.698244-3 1.063561+6 1.717908-3 1.036429+6 1.730000-3 1.020198+6 1.737801-3 1.009888+6 1.757924-3 9.840036+5 1.778279-3 9.587956+5 1.798871-3 9.340063+5 1.819701-3 9.098972+5 1.840772-3 8.862705+5 1.850000-3 8.762125+5 1.862087-3 8.631969+5 1.883649-3 8.406520+5 1.905461-3 8.187083+5 1.949845-3 7.766045+5 1.950000-3 7.764632+5 1.972423-3 7.562073+5 2.000000-3 7.322960+5 2.018366-3 7.169101+5 2.041738-3 6.980176+5 2.070000-3 6.760971+5 2.089296-3 6.615987+5 2.150000-3 6.188547+5 2.187762-3 5.942691+5 2.213095-3 5.785649+5 2.220000-3 5.743373+5 2.238721-3 5.629669+5 2.290868-3 5.328369+5 2.317395-3 5.184162+5 2.400000-3 4.769631+5 2.426610-3 4.644481+5 2.454709-3 4.516843+5 2.483133-3 4.392667+5 2.511886-3 4.272093+5 2.600160-3 3.930918+5 2.630268-3 3.823105+5 2.660725-3 3.718403+5 2.691535-3 3.616726+5 2.722701-3 3.517976+5 2.754229-3 3.421985+5 2.786121-3 3.327302+5 2.818383-3 3.235040+5 2.917427-3 2.972755+5 2.951209-3 2.890300+5 3.000000-3 2.777002+5 3.019952-3 2.732423+5 3.054921-3 2.656266+5 3.090295-3 2.581442+5 3.126079-3 2.508839+5 3.150000-3 2.461929+5 3.162278-3 2.438323+5 3.235937-3 2.303405+5 3.273407-3 2.238652+5 3.311311-3 2.175745+5 3.349654-3 2.114678+5 3.400000-3 2.038209+5 3.427678-3 1.997702+5 3.500000-3 1.896479+5 3.548134-3 1.832878+5 3.630781-3 1.730276+5 3.672823-3 1.681218+5 3.801894-3 1.542276+5 3.845918-3 1.498361+5 3.890451-3 1.455528+5 3.935501-3 1.413979+5 4.000000-3 1.357252+5 4.027170-3 1.334229+5 4.168694-3 1.222783+5 4.216965-3 1.187801+5 4.315191-3 1.120616+5 4.365158-3 1.088334+5 4.415704-3 1.056924+5 4.466836-3 1.026343+5 4.500000-3 1.007186+5 4.518559-3 9.966796+4 4.570882-3 9.678721+4 4.731513-3 8.865391+4 4.786301-3 8.608709+4 4.800000-3 8.546167+4 4.897788-3 8.117034+4 5.000000-3 7.698931+4 5.011872-3 7.652210+4 5.069907-3 7.429390+4 5.188000-3 7.002106+4 5.308844-3 6.600250+4 5.370318-3 6.407379+4 5.432503-3 6.220302+4 5.500000-3 6.025296+4 5.559043-3 5.861288+4 5.623413-3 5.689539+4 5.688529-3 5.523059+4 5.754399-3 5.361247+4 5.821032-3 5.204207+4 5.888437-3 5.051566+4 5.956621-3 4.903507+4 6.000000-3 4.811881+4 6.025596-3 4.758936+4 6.165950-3 4.482783+4 6.237348-3 4.350442+4 6.309573-3 4.221691+4 6.382635-3 4.096901+4 6.451900-3 3.983403+4 6.451900-3 1.122701+5 6.456542-3 1.120803+5 6.531306-3 1.090844+5 6.640000-3 1.049301+5 6.683439-3 1.031617+5 6.760830-3 1.001124+5 6.800000-3 9.861671+4 6.839116-3 9.715072+4 6.918310-3 9.427233+4 7.000000-3 9.142274+4 7.019200-3 9.075175+4 7.019200-3 1.241902+5 7.079458-3 1.214815+5 7.098000-3 1.206640+5 7.161434-3 1.180014+5 7.244360-3 1.145439+5 7.270000-3 1.135035+5 7.328245-3 1.111349+5 7.394100-3 1.085388+5 7.394100-3 1.253704+5 7.413102-3 1.245506+5 7.500000-3 1.208935+5 7.510000-3 1.204824+5 7.585776-3 1.174924+5 7.673615-3 1.141530+5 7.700000-3 1.131669+5 7.762471-3 1.108616+5 7.800000-3 1.095084+5 7.852356-3 1.076577+5 8.035261-3 1.015851+5 8.128305-3 9.868101+4 8.150000-3 9.801278+4 8.317638-3 9.301021+4 8.413951-3 9.029836+4 8.511380-3 8.766546+4 8.609938-3 8.510727+4 8.709636-3 8.262548+4 8.810489-3 8.021776+4 8.912509-3 7.788584+4 9.015711-3 7.558550+4 9.225714-3 7.119073+4 9.332543-3 6.909157+4 9.440609-3 6.705619+4 9.549926-3 6.508261+4 9.660509-3 6.316740+4 9.772372-3 6.129665+4 9.800000-3 6.084662+4 9.885531-3 5.948051+4 1.011579-2 5.599183+4 1.023293-2 5.431955+4 1.035142-2 5.269802+4 1.047129-2 5.112253+4 1.071519-2 4.811532+4 1.083927-2 4.668042+4 1.096478-2 4.528896+4 1.109175-2 4.393852+4 1.120000-2 4.283148+4 1.122018-2 4.262919+4 1.135011-2 4.135738+4 1.161449-2 3.892382+4 1.188502-2 3.663660+4 1.202264-2 3.554529+4 1.216186-2 3.447972+4 1.230269-2 3.344688+4 1.244515-2 3.244531+4 1.258925-2 3.146275+4 1.273503-2 3.050926+4 1.303167-2 2.868901+4 1.333521-2 2.697894+4 1.348963-2 2.616324+4 1.350000-2 2.610970+4 1.396368-2 2.384881+4 1.412538-2 2.312280+4 1.428894-2 2.241862+4 1.445440-2 2.173644+4 1.448320-2 2.162069+4 1.450000-2 2.155356+4 1.462177-2 2.107518+4 1.479108-2 2.043444+4 1.500000-2 1.968073+4 1.513561-2 1.921224+4 1.531087-2 1.862545+4 1.548817-2 1.805638+4 1.603245-2 1.645394+4 1.621810-2 1.594795+4 1.650000-2 1.522015+4 1.659587-2 1.498304+4 1.678804-2 1.452100+4 1.737801-2 1.321679+4 1.757924-2 1.280924+4 1.778279-2 1.241453+4 1.798871-2 1.203228+4 1.819701-2 1.166181+4 1.840772-2 1.130262+4 1.862087-2 1.095472+4 1.883649-2 1.061691+4 1.905461-2 1.028957+4 1.927525-2 9.972567+3 1.950000-2 9.663504+3 1.972423-2 9.366148+3 1.995262-2 9.074272+3 2.018366-2 8.791673+3 2.041738-2 8.518101+3 2.065380-2 8.253264+3 2.089296-2 7.996874+3 2.113489-2 7.748075+3 2.137962-2 7.507163+3 2.162719-2 7.273881+3 2.187762-2 7.047895+3 2.290868-2 6.210562+3 2.317395-2 6.016624+3 2.344229-2 5.828867+3 2.371374-2 5.647101+3 2.398833-2 5.470236+3 2.400000-2 5.462891+3 2.426610-2 5.298894+3 2.454709-2 5.133015+3 2.483133-2 4.972287+3 2.540973-2 4.665834+3 2.570396-2 4.519952+3 2.660725-2 4.107430+3 2.691535-2 3.978238+3 2.754229-2 3.732202+3 2.786121-2 3.614969+3 2.818383-2 3.501476+3 2.851018-2 3.391169+3 2.884032-2 3.284421+3 2.900000-2 3.234420+3 2.917427-2 3.180983+3 2.951209-2 3.080826+3 3.000000-2 2.943697+3 3.054921-2 2.798190+3 3.090295-2 2.709683+3 3.162278-2 2.541159+3 3.198895-2 2.460958+3 3.235937-2 2.383277+3 3.311311-2 2.234953+3 3.349654-2 2.164366+3 3.388442-2 2.095797+3 3.427678-2 2.029418+3 3.467369-2 1.965112+3 3.548134-2 1.842661+3 3.589219-2 1.783957+3 3.715352-2 1.619053+3 3.758374-2 1.567573+3 3.801894-2 1.517757+3 3.935501-2 1.377803+3 4.000000-2 1.316432+3 4.027170-2 1.291706+3 4.073803-2 1.250534+3 4.120975-2 1.210706+3 4.168694-2 1.172163+3 4.216965-2 1.134601+3 4.265795-2 1.098266+3 4.365158-2 1.029121+3 4.415704-2 9.962301+2 4.518559-2 9.335789+2 4.521900-2 9.316359+2 4.521900-2 5.257726+3 4.590000-2 5.070715+3 4.623810-2 4.972600+3 4.677351-2 4.837953+3 4.680000-2 4.831428+3 4.731513-2 4.690118+3 4.800000-2 4.510846+3 4.841724-2 4.413070+3 4.897788-2 4.286254+3 5.000000-2 4.067431+3 5.011872-2 4.041800+3 5.069907-2 3.919660+3 5.188000-2 3.686392+3 5.248075-2 3.575039+3 5.370318-2 3.362340+3 5.432503-2 3.260807+3 5.559043-2 3.069416+3 5.623413-2 2.977997+3 5.754399-2 2.803239+3 5.821032-2 2.719762+3 5.956621-2 2.559993+3 6.025596-2 2.483674+3 6.095369-2 2.409641+3 6.165950-2 2.336128+3 6.237348-2 2.264865+3 6.382635-2 2.128792+3 6.683439-2 1.880744+3 6.839116-2 1.767792+3 6.918310-2 1.713265+3 7.000000-2 1.659340+3 7.328245-2 1.464619+3 7.413102-2 1.419413+3 7.498942-2 1.375606+3 7.585776-2 1.333155+3 7.852356-2 1.213522+3 7.943282-2 1.176086+3 8.035261-2 1.139806+3 8.222426-2 1.070558+3 8.317638-2 1.037492+3 8.413951-2 1.005450+3 8.709636-2 9.138788+2 8.912509-2 8.575242+2 9.015711-2 8.306671+2 9.120108-2 8.046531+2 9.332543-2 7.550496+2 9.660509-2 6.863314+2 9.885531-2 6.440288+2 1.000000-1 6.238677+2 1.011580-1 6.043162+2 1.023293-1 5.853805+2 1.059254-1 5.320616+2 1.071519-1 5.152024+2 1.083927-1 4.988773+2 1.109175-1 4.677661+2 1.135011-1 4.385988+2 1.161449-1 4.112533+2 1.216186-1 3.615803+2 1.230269-1 3.501289+2 1.244515-1 3.390428+2 1.258925-1 3.282979+2 1.273503-1 3.178949+2 1.303167-1 2.980694+2 1.318257-1 2.886260+2 1.348963-1 2.706280+2 1.380384-1 2.537541+2 1.428894-1 2.303977+2 1.445440-1 2.230815+2 1.479108-1 2.091407+2 1.500000-1 2.010802+2 1.531088-1 1.898482+2 1.548817-1 1.838221+2 1.566751-1 1.779876+2 1.584893-1 1.723379+2 1.603245-1 1.668690+2 1.621810-1 1.615749+2 1.678804-1 1.466807+2 1.717908-1 1.375231+2 1.737801-1 1.331610+2 1.778279-1 1.248484+2 1.798871-1 1.208889+2 1.840772-1 1.133440+2 1.883649-1 1.062706+2 1.905461-1 1.029021+2 1.927525-1 9.964139+1 1.949845-1 9.648402+1 1.972423-1 9.342685+1 1.995262-1 9.046670+1 2.000000-1 8.986861+1 2.065380-1 8.213749+1 2.089296-1 7.953544+1 2.113489-1 7.701588+1 2.137962-1 7.459795+1 2.162719-1 7.225608+1 2.187762-1 6.998786+1 2.238721-1 6.566425+1 2.264644-1 6.360423+1 2.317395-1 5.967612+1 2.344229-1 5.780447+1 2.371374-1 5.599164+1 2.398833-1 5.423744+1 2.454709-1 5.089228+1 2.511886-1 4.775383+1 2.540973-1 4.625840+1 2.570396-1 4.480997+1 2.600160-1 4.342334+1 2.630268-1 4.208002+1 2.660725-1 4.077828+1 2.786121-1 3.596197+1 2.818383-1 3.484966+1 2.851018-1 3.377180+1 2.884032-1 3.272787+1 2.917427-1 3.171768+1 2.951209-1 3.075049+1 2.985383-1 2.981279+1 3.054921-1 2.802287+1 3.090295-1 2.716865+1 3.126079-1 2.634047+1 3.162278-1 2.553760+1 3.198895-1 2.475924+1 3.273407-1 2.327343+1 3.311311-1 2.256433+1 3.349654-1 2.187689+1 3.388442-1 2.122175+1 3.402400-1 2.099270+1 3.427678-1 2.058660+1 3.467369-1 1.997161+1 3.507519-1 1.937502+1 3.548134-1 1.879630+1 3.589219-1 1.823504+1 3.630781-1 1.769054+1 3.672823-1 1.716233+1 3.715352-1 1.664989+1 3.758374-1 1.615275+1 3.845918-1 1.520265+1 3.890451-1 1.475747+1 3.935501-1 1.432534+1 4.000000-1 1.373821+1 4.027170-1 1.350088+1 4.168694-1 1.235236+1 4.216965-1 1.199169+1 4.315191-1 1.130166+1 4.365158-1 1.097180+1 4.415705-1 1.065842+1 4.466836-1 1.035400+1 4.472100-1 1.032337+1 4.518559-1 1.005903+1 4.570882-1 9.772523+0 4.677351-1 9.223788+0 4.731513-1 8.961103+0 4.786301-1 8.705929+0 4.897788-1 8.217459+0 4.954502-1 7.988681+0 5.000000-1 7.811579+0 5.069907-1 7.550066+0 5.128614-1 7.340484+0 5.188000-1 7.136726+0 5.248075-1 6.938641+0 5.308844-1 6.746133+0 5.370318-1 6.559021+0 5.432503-1 6.377106+0 5.495409-1 6.200235+0 5.559043-1 6.032125+0 5.623413-1 5.868576+0 5.688529-1 5.709462+0 5.754399-1 5.555157+0 5.821032-1 5.405073+0 5.888437-1 5.259057+0 5.956621-1 5.117041+0 6.025596-1 4.978858+0 6.095369-1 4.844408+0 6.165950-1 4.716695+0 6.237348-1 4.592349+0 6.309573-1 4.471292+0 6.382635-1 4.353529+0 6.456542-1 4.239236+0 6.531306-1 4.127953+0 6.606935-1 4.019633+0 6.683439-1 3.914157+0 6.839117-1 3.716543+0 6.918310-1 3.621518+0 6.998420-1 3.528954+0 7.079458-1 3.438756+0 7.161434-1 3.351150+0 7.244360-1 3.265795+0 7.328245-1 3.182644+0 7.413102-1 3.101611+0 7.498942-1 3.024583+0 7.585776-1 2.949473+0 7.762471-1 2.804846+0 7.852356-1 2.735216+0 7.943282-1 2.667315+0 8.035261-1 2.601318+0 8.317638-1 2.412988+0 8.413951-1 2.354723+0 8.511380-1 2.297885+0 8.609938-1 2.242419+0 8.709636-1 2.188320+0 8.810489-1 2.135532+0 8.912509-1 2.084052+0 9.015711-1 2.033822+0 9.120108-1 1.984934+0 9.225714-1 1.937223+0 9.332543-1 1.890686+0 9.440609-1 1.845271+0 9.549926-1 1.802367+0 9.660509-1 1.760460+0 9.691100-1 1.749138+0 9.772372-1 1.719582+0 9.885531-1 1.679820+0 1.000000+0 1.641007+0 1.011579+0 1.603095+0 1.023293+0 1.566055+0 1.035142+0 1.530846+0 1.047129+0 1.496427+0 1.059254+0 1.462784+0 1.071519+0 1.429899+0 1.083927+0 1.397769+0 1.096478+0 1.366379+0 1.109175+0 1.335779+0 1.135011+0 1.276653+0 1.148154+0 1.248079+0 1.161449+0 1.220145+0 1.174898+0 1.193542+0 1.202264+0 1.142095+0 1.216186+0 1.117207+0 1.230269+0 1.092873+0 1.244515+0 1.069084+0 1.258925+0 1.045893+0 1.273503+0 1.023207+0 1.288250+0 1.001013+0 1.303167+0 9.793139-1 1.318257+0 9.586860-1 1.333521+0 9.384937-1 1.380384+0 8.804523-1 1.396368+0 8.619263-1 1.412538+0 8.438448-1 1.428894+0 8.261467-1 1.445440+0 8.088253-1 1.462177+0 7.918681-1 1.500000+0 7.564631-1 1.513561+0 7.443671-1 1.531087+0 7.291754-1 1.548817+0 7.142955-1 1.566751+0 6.997204-1 1.584893+0 6.854519-1 1.603245+0 6.715170-1 1.640590+0 6.444948-1 1.659587+0 6.313949-1 1.698244+0 6.067177-1 1.737801+0 5.830158-1 1.757924+0 5.715142-1 1.778279+0 5.602520-1 1.798871+0 5.492483-1 1.819701+0 5.384627-1 1.840772+0 5.278890-1 1.862087+0 5.175233-1 1.883649+0 5.076714-1 1.905461+0 4.980069-1 1.949845+0 4.792364-1 1.972423+0 4.701183-1 2.000000+0 4.593648-1 2.018366+0 4.524439-1 2.065380+0 4.354722-1 2.089296+0 4.272268-1 2.137962+0 4.116529-1 2.213095+0 3.893602-1 2.264644+0 3.751734-1 2.290868+0 3.682818-1 2.317395+0 3.615384-1 2.371374+0 3.484218-1 2.398833+0 3.420433-1 2.454709+0 3.299864-1 2.540973+0 3.127013-1 2.600160+0 3.016840-1 2.630268+0 2.963273-1 2.660725+0 2.910825-1 2.722701+0 2.808714-1 2.754229+0 2.759010-1 2.818383+0 2.664980-1 2.917427+0 2.529974-1 3.000000+0 2.425890-1 3.019952+0 2.401832-1 3.054921+0 2.360753-1 3.126079+0 2.280702-1 3.162278+0 2.241700-1 3.235937+0 2.167892-1 3.349654+0 2.061763-1 3.467369+0 1.960828-1 3.507519+0 1.928327-1 3.548134+0 1.896469-1 3.630781+0 1.834333-1 3.672823+0 1.804034-1 3.758374+0 1.746611-1 3.890451+0 1.663925-1 4.027170+0 1.585153-1 4.073803+0 1.559759-1 4.120975+0 1.534852-1 4.216965+0 1.486233-1 4.265795+0 1.462505-1 4.365158+0 1.417476-1 4.415704+0 1.395486-1 4.570882+0 1.331565-1 4.731513+0 1.270573-1 4.786301+0 1.250890-1 4.841724+0 1.231574-1 4.954502+0 1.193839-1 5.011872+0 1.175408-1 5.128614+0 1.140410-1 5.188000+0 1.123306-1 5.370318+0 1.073535-1 5.623413+0 1.010587-1 5.688529+0 9.954504-2 5.754399+0 9.805867-2 5.888437+0 9.515261-2 5.956621+0 9.373210-2 6.095369+0 9.102819-2 6.165950+0 8.970575-2 6.456542+0 8.460715-2 6.760830+0 7.979833-2 6.839116+0 7.864056-2 6.918310+0 7.750294-2 7.079458+0 7.527717-2 7.161434+0 7.418841-2 7.328245+0 7.211324-2 7.413102+0 7.109754-2 7.498942+0 7.009621-2 7.852356+0 6.623133-2 8.222427+0 6.257954-2 8.317638+0 6.169933-2 8.413951+0 6.083410-2 8.609938+0 5.914010-2 8.709636+0 5.831090-2 8.912509+0 5.672864-2 9.015711+0 5.595370-2 9.120108+0 5.518939-2 9.660509+0 5.152281-2 1.011579+1 4.876577-2 1.023293+1 4.810003-2 1.035142+1 4.744380-2 1.047129+1 4.679828-2 1.071519+1 4.553376-2 1.083927+1 4.491434-2 1.109175+1 4.373105-2 1.122018+1 4.315119-2 1.135011+1 4.257900-2 1.202264+1 3.983090-2 1.258925+1 3.776067-2 1.273503+1 3.726028-2 1.300000+1 3.638218-2 1.303167+1 3.628006-2 1.318257+1 3.580073-2 1.348963+1 3.486111-2 1.380384+1 3.394618-2 1.412538+1 3.307478-2 1.445440+1 3.222579-2 1.462177+1 3.180954-2 1.548817+1 2.980807-2 1.621810+1 2.829799-2 1.640590+1 2.793266-2 1.659587+1 2.757225-2 1.678804+1 2.721737-2 1.717908+1 2.652132-2 1.757924+1 2.584308-2 1.819701+1 2.487868-2 1.862087+1 2.425584-2 1.883649+1 2.395031-2 1.905461+1 2.364864-2 2.041738+1 2.191715-2 2.113489+1 2.109954-2 2.137962+1 2.083390-2 2.162719+1 2.057170-2 2.200000+1 2.018928-2 2.213095+1 2.005817-2 2.290868+1 1.931187-2 2.371374+1 1.859336-2 2.483133+1 1.769517-2 2.540973+1 1.726248-2 2.570396+1 1.705012-2 2.691535+1 1.622673-2 2.786121+1 1.563538-2 2.818383+1 1.544313-2 2.851018+1 1.525331-2 2.951209+1 1.469868-2 3.019952+1 1.434017-2 3.273407+1 1.315297-2 3.311311+1 1.299159-2 3.467369+1 1.236564-2 3.589219+1 1.192410-2 3.672823+1 1.163853-2 3.715352+1 1.149833-2 3.801894+1 1.122304-2 3.935501+1 1.082242-2 3.981072+1 1.069210-2 4.000000+1 1.063890-2 4.120975+1 1.031132-2 4.216965+1 1.006510-2 4.265795+1 9.944212-3 4.570882+1 9.248776-3 4.623810+1 9.137696-3 4.954502+1 8.498672-3 5.248075+1 8.006802-3 5.559043+1 7.543403-3 5.623413+1 7.453997-3 5.688529+1 7.365661-3 5.956621+1 7.022676-3 6.309573+1 6.616317-3 6.456542+1 6.460459-3 6.531306+1 6.384049-3 6.683439+1 6.233932-3 6.918310+1 6.015348-3 6.998420+1 5.944209-3 7.413102+1 5.600934-3 7.585776+1 5.469242-3 8.035261+1 5.153401-3 8.511380+1 4.859395-3 9.015711+1 4.582165-3 9.120108+1 4.528647-3 9.225714+1 4.475755-3 9.332543+1 4.423486-3 9.885531+1 4.171168-3 1.071519+2 3.841916-3 1.109175+2 3.708900-3 1.122018+2 3.665641-3 1.161449+2 3.538886-3 1.230269+2 3.337298-3 1.244515+2 3.298381-3 1.258925+2 3.259921-3 1.412538+2 2.899118-3 1.445440+2 2.831899-3 1.584893+2 2.578253-3 1.678804+2 2.432526-3 1.798871+2 2.268485-3 1.819701+2 2.242241-3 1.840772+2 2.216301-3 1.862087+2 2.190664-3 1.972423+2 2.066858-3 2.137962+2 1.905196-3 2.213095+2 1.839846-3 2.238721+2 1.818580-3 2.317395+2 1.756253-3 2.454709+2 1.657085-3 2.483133+2 1.637934-3 2.511886+2 1.619005-3 2.818383+2 1.441335-3 2.884032+2 1.408213-3 3.162278+2 1.283164-3 3.349654+2 1.211085-3 3.589219+2 1.129915-3 3.630781+2 1.116925-3 3.672823+2 1.104085-3 3.715352+2 1.091394-3 3.935501+2 1.030091-3 4.265795+2 9.500088-4 4.415704+2 9.176242-4 4.466836+2 9.070808-4 4.623810+2 8.761748-4 4.897788+2 8.269871-4 4.954502+2 8.174862-4 5.011872+2 8.080945-4 1.122018+3 3.598990-4 1.148154+3 3.516769-4 1.258925+3 3.206253-4 1.333521+3 3.026768-4 1.428894+3 2.824598-4 1.445440+3 2.792240-4 1.462177+3 2.760255-4 1.479108+3 2.728637-4 1.566751+3 2.575894-4 1.698244+3 2.376311-4 1.757924+3 2.295584-4 1.778279+3 2.269296-4 1.840772+3 2.192224-4 1.949845+3 2.069544-4 1.972423+3 2.045845-4 3.981072+3 1.013334-4 1.000000+5 4.029030-6 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.030000-6 5.030000-6 8.350000-6 5.030000-6 8.350000-6 6.678474-6 8.880000-6 6.925015-6 8.880000-6 7.497294-6 9.600000-6 7.772980-6 1.035142-5 8.001757-6 1.110000-5 8.167471-6 1.190000-5 8.285262-6 1.290000-5 8.371550-6 1.440000-5 8.430792-6 1.819701-5 8.472096-6 2.546000-5 8.505387-6 2.546000-5 2.342920-5 2.730000-5 2.258974-5 2.896000-5 2.172433-5 2.896000-5 2.446575-5 3.054921-5 2.378983-5 3.350000-5 2.235732-5 4.073803-5 1.850395-5 4.365158-5 1.705910-5 4.570882-5 1.612973-5 4.627000-5 1.589351-5 4.627000-5 1.612757-5 4.900000-5 1.511813-5 5.011872-5 1.475509-5 5.188000-5 1.423477-5 5.432503-5 1.361896-5 5.688529-5 1.308451-5 5.956621-5 1.263040-5 6.237348-5 1.224782-5 6.606934-5 1.185762-5 7.000000-5 1.155173-5 7.500000-5 1.127132-5 8.035261-5 1.106163-5 8.810489-5 1.085785-5 9.549926-5 1.073194-5 1.060000-4 1.062588-5 1.202264-4 1.056378-5 1.305900-4 1.055294-5 1.305900-4 1.332541-5 1.333521-4 1.425928-5 1.350500-4 1.482817-5 1.350500-4 1.623728-5 1.373000-4 1.709985-5 1.387700-4 1.757013-5 1.403000-4 1.795308-5 1.419000-4 1.822569-5 1.435000-4 1.837474-5 1.450000-4 1.840907-5 1.472000-4 1.832648-5 1.500000-4 1.805034-5 1.535000-4 1.757529-5 1.650000-4 1.585018-5 1.698244-4 1.521667-5 1.750000-4 1.465219-5 1.780000-4 1.438449-5 1.826000-4 1.407116-5 1.865000-4 1.388884-5 1.905461-4 1.377427-5 1.950000-4 1.373107-5 2.010000-4 1.378710-5 2.070000-4 1.394816-5 2.128000-4 1.418521-5 2.213095-4 1.463013-5 2.264644-4 1.493509-5 2.398700-4 1.581103-5 2.398700-4 2.016143-5 2.650100-4 2.176939-5 2.650100-4 2.311552-5 2.818383-4 2.410801-5 3.019952-4 2.517623-5 3.235937-4 2.618705-5 3.280700-4 2.638106-5 3.280700-4 2.878780-5 3.550000-4 2.983286-5 3.850000-4 3.081396-5 4.216965-4 3.181467-5 4.677351-4 3.284690-5 5.308844-4 3.394080-5 5.956621-4 3.483743-5 6.918310-4 3.586492-5 7.800000-4 3.661958-5 9.332543-4 3.766565-5 1.034600-3 3.823811-5 1.034600-3 6.176659-5 1.059600-3 6.170421-5 1.059600-3 6.437683-5 1.150000-3 6.500346-5 1.244515-3 6.537367-5 1.346900-3 6.531546-5 1.346900-3 7.067541-5 1.461600-3 7.100922-5 1.461600-3 7.342347-5 1.625100-3 7.423884-5 1.625100-3 7.692056-5 2.089296-3 7.946811-5 2.722701-3 8.229520-5 3.427678-3 8.485566-5 4.315191-3 8.745073-5 5.432503-3 9.003509-5 6.451900-3 9.193488-5 6.451900-3 1.262238-4 7.019200-3 1.266825-4 7.019200-3 1.341158-4 7.394100-3 1.343168-4 7.394100-3 1.408219-4 1.071519-2 1.436736-4 1.548817-2 1.465038-4 2.187762-2 1.491601-4 3.162278-2 1.519560-4 4.521900-2 1.545304-4 4.521900-2 1.511319-4 1.216186-1 1.519054-4 4.786301-1 1.523946-4 1.000000+5 1.524680-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.030000-6 0.0 1.350500-4 0.0 1.350500-4 1.167502-9 1.355000-4 1.210211-9 1.360000-4 1.264347-9 1.367000-4 1.344677-9 1.380384-4 1.511431-9 1.395000-4 1.702712-9 1.400000-4 1.767707-9 1.407000-4 1.853606-9 1.415000-4 1.945231-9 1.422000-4 2.018138-9 1.428894-4 2.082257-9 1.435000-4 2.131900-9 1.442000-4 2.181126-9 1.450000-4 2.225715-9 1.458000-4 2.257907-9 1.465000-4 2.279203-9 1.473000-4 2.292523-9 1.481000-4 2.297437-9 1.492000-4 2.291504-9 1.505000-4 2.269566-9 1.520000-4 2.229420-9 1.535000-4 2.178649-9 1.550000-4 2.119890-9 1.570000-4 2.035765-9 1.650000-4 1.675828-9 1.698244-4 1.471674-9 1.720000-4 1.387120-9 1.750000-4 1.277177-9 1.780000-4 1.180564-9 1.810000-4 1.097372-9 1.835000-4 1.038335-9 1.858000-4 9.92336-10 1.880000-4 9.55293-10 1.900000-4 9.27197-10 1.922000-4 9.02532-10 1.945000-4 8.83446-10 1.965000-4 8.71861-10 1.990000-4 8.63344-10 2.010000-4 8.61022-10 2.030000-4 8.62295-10 2.050000-4 8.67178-10 2.070000-4 8.75248-10 2.100000-4 8.92961-10 2.128000-4 9.15088-10 2.162719-4 9.48432-10 2.205000-4 9.96569-10 2.264644-4 1.076052-9 2.350000-4 1.205554-9 2.398700-4 1.284520-9 2.398700-4 2.405610-9 2.650100-4 2.814102-9 2.650100-4 3.416471-9 2.818383-4 3.683824-9 3.000000-4 3.949738-9 3.126079-4 4.121322-9 3.280700-4 4.313595-9 3.280700-4 4.921440-9 3.467369-4 5.130189-9 3.715352-4 5.379013-9 4.050000-4 5.660984-9 4.430000-4 5.935062-9 4.841724-4 6.179886-9 5.308844-4 6.410262-9 5.956621-4 6.674623-9 6.700000-4 6.917596-9 7.673615-4 7.176220-9 8.810489-4 7.418307-9 1.023293-3 7.666505-9 1.034600-3 7.684890-9 1.034600-3 9.089046-9 1.059600-3 9.093483-9 1.059600-3 7.195138-7 1.096478-3 8.084207-7 1.135011-3 8.836857-7 1.150000-3 9.042690-7 1.210000-3 9.941124-7 1.216186-3 1.002030-6 1.244515-3 1.026115-6 1.258925-3 1.032379-6 1.346900-3 1.027824-6 1.346900-3 1.105169-6 1.461600-3 1.106975-6 1.461600-3 1.235501-6 1.625100-3 1.256398-6 1.625100-3 1.324222-6 1.883649-3 1.360581-6 2.290868-3 1.409476-6 2.786121-3 1.459890-6 3.349654-3 1.508133-6 4.027170-3 1.556903-6 4.897788-3 1.607770-6 5.956621-3 1.658131-6 6.451900-3 1.678507-6 6.451900-3 5.321133-4 6.683439-3 5.342164-4 7.019200-3 5.341948-4 7.019200-3 6.778420-4 7.394100-3 6.791404-4 7.394100-3 7.158779-4 9.800000-3 7.232599-4 1.500000-2 7.305650-4 2.483133-2 7.364812-4 4.521900-2 7.416897-4 4.521900-2 3.107881-2 5.248075-2 3.130526-2 6.839116-2 3.159923-2 9.885531-2 3.184900-2 1.678804-1 3.204477-2 5.888437-1 3.220366-2 1.258925+0 3.228647-2 1.000000+5 3.228150-2 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.030000-6 0.0 8.350000-6 3.320000-6 8.350000-6 1.671526-6 8.880000-6 1.954985-6 8.880000-6 1.382706-6 9.225714-6 1.589274-6 9.440609-6 1.723874-6 9.700000-6 1.892986-6 1.000000-5 2.097462-6 1.035142-5 2.349663-6 1.071519-5 2.625304-6 1.110000-5 2.932529-6 1.150000-5 3.267169-6 1.190000-5 3.614738-6 1.264200-5 4.287828-6 1.357000-5 5.164913-6 1.531087-5 6.863340-6 2.546000-5 1.695461-5 2.546000-5 2.030800-6 2.570396-5 2.376717-6 2.630268-5 3.237671-6 2.660725-5 3.683130-6 2.730000-5 4.710257-6 2.818383-5 6.042621-6 2.896000-5 7.235672-6 2.896000-5 4.494250-6 2.985383-5 5.758852-6 3.054921-5 6.759383-6 3.198895-5 8.875639-6 3.427678-5 1.232123-5 4.073803-5 2.223408-5 4.365158-5 2.659248-5 4.627000-5 3.037649-5 4.627000-5 3.014243-5 4.900000-5 3.388187-5 5.248075-5 3.840840-5 5.688529-5 4.380078-5 6.237348-5 5.012566-5 7.000000-5 5.844827-5 8.222426-5 7.122030-5 1.100000-4 9.940015-5 1.305900-4 1.200371-4 1.305900-4 1.172646-4 1.350500-4 1.202218-4 1.350500-4 1.188115-4 1.400000-4 1.221122-4 1.445440-4 1.261339-4 1.505000-4 1.325077-4 1.740000-4 1.592473-4 1.900000-4 1.762133-4 2.120000-4 1.978506-4 2.398700-4 2.240577-4 2.398700-4 2.197062-4 2.650100-4 2.432378-4 2.650100-4 2.418911-4 3.280700-4 3.016846-4 3.280700-4 2.992773-4 4.518559-4 4.193322-4 7.800000-4 7.433732-4 1.034600-3 9.963542-4 1.034600-3 9.728243-4 1.059600-3 9.978867-4 1.059600-3 9.945037-4 1.346900-3 1.280557-3 1.346900-3 1.275119-3 1.461600-3 1.389484-3 1.461600-3 1.386941-3 1.625100-3 1.549605-3 1.625100-3 1.546855-3 6.451900-3 6.358287-3 6.451900-3 5.793563-3 7.019200-3 6.358323-3 7.019200-3 6.207242-3 7.394100-3 6.580643-3 7.394100-3 6.537400-3 4.521900-2 4.432278-2 4.521900-2 1.398905-2 4.731513-2 1.599868-2 5.370318-2 2.222175-2 6.839116-2 3.664042-2 1.135011-1 8.143284-2 1.000000+5 9.999997+4 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.521900-2 4.326090+3 4.590000-2 4.177500+3 4.623810-2 4.097653+3 4.680000-2 3.985720+3 4.800000-2 3.723280+3 5.000000-2 3.365780+3 5.432503-2 2.706302+3 6.095369-2 2.009570+3 6.839116-2 1.479480+3 8.413951-2 8.458491+2 1.059254-1 4.494730+2 1.428894-1 1.953328+2 2.113489-1 6.546010+1 2.570396-1 3.811600+1 2.917427-1 2.699347+1 3.349654-1 1.862618+1 3.845918-1 1.294992+1 4.365158-1 9.350091+0 4.897788-1 7.005688+0 5.495409-1 5.288399+0 6.095369-1 4.133693+0 6.683439-1 3.341335+0 7.413102-1 2.649100+0 8.317638-1 2.062228+0 9.440609-1 1.577947+0 1.023293+0 1.339425+0 1.161449+0 1.043683+0 1.303167+0 8.376679-1 1.462177+0 6.772704-1 1.659587+0 5.400022-1 1.862087+0 4.426150-1 2.089296+0 3.653946-1 2.398833+0 2.925419-1 2.754229+0 2.359751-1 3.162278+0 1.917313-1 3.672823+0 1.542989-1 4.265795+0 1.250871-1 5.011872+0 1.005316-1 5.956621+0 8.016912-2 7.161434+0 6.345350-2 8.709636+0 4.987363-2 1.083927+1 3.841553-2 1.380384+1 2.903424-2 1.757924+1 2.210381-2 2.371374+1 1.590244-2 3.467369+1 1.057600-2 4.954502+1 7.268685-3 8.035261+1 4.407557-3 1.584893+2 2.205153-3 3.162278+2 1.097535-3 1.258925+3 2.742415-4 1.000000+5 3.446400-6 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.521900-2 1.504000-4 1.000000+5 1.504000-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.521900-2 3.761200-2 1.000000+5 3.761200-2 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.521900-2 7.456600-3 1.000000+5 9.999996+4 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 7.394100-3 1.683157+4 7.510000-3 1.631494+4 7.700000-3 1.566944+4 7.852356-3 1.513728+4 8.150000-3 1.426898+4 8.810489-3 1.243318+4 9.660509-3 1.060394+4 1.035142-2 9.337397+3 1.202264-2 7.054062+3 1.513561-2 4.481518+3 1.678804-2 3.622571+3 1.950000-2 2.649540+3 2.290868-2 1.870065+3 2.570396-2 1.449456+3 3.000000-2 1.021654+3 3.548134-2 6.917888+2 4.168694-2 4.713530+2 4.897788-2 3.184671+2 5.821032-2 2.073862+2 6.918310-2 1.338875+2 8.222426-2 8.577940+1 1.000000-1 5.136800+1 1.244515-1 2.871653+1 2.371374-1 5.059705+0 2.884032-1 3.004511+0 3.427678-1 1.910177+0 3.935501-1 1.338548+0 4.472100-1 9.697099-1 5.069907-1 7.120701-1 5.688529-1 5.401257-1 6.382635-1 4.127143-1 7.079458-1 3.265139-1 7.943282-1 2.535269-1 9.015711-1 1.934941-1 9.772372-1 1.635806-1 1.096478+0 1.299802-1 1.244515+0 1.016882-1 1.396368+0 8.199266-2 1.584893+0 6.519868-2 1.778279+0 5.329031-2 2.000000+0 4.369300-2 2.290868+0 3.502744-2 2.630268+0 2.818263-2 3.019952+0 2.284154-2 3.507519+0 1.833850-2 4.073803+0 1.483456-2 4.786301+0 1.189724-2 5.688529+0 9.467878-3 6.839116+0 7.479845-3 8.317638+0 5.868391-3 1.035142+1 4.512798-3 1.300000+1 3.460400-3 1.659587+1 2.622579-3 2.162719+1 1.956795-3 2.851018+1 1.450559-3 4.000000+1 1.011700-3 6.456542+1 6.143319-4 1.109175+2 3.526732-4 2.213095+2 1.750071-4 4.415704+2 8.728198-5 1.757924+3 2.184164-5 1.000000+5 3.834400-7 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 7.394100-3 1.827700-4 1.000000+5 1.827700-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.394100-3 9.527800-4 1.000000+5 9.527800-4 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.394100-3 6.258550-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 7.019200-3 3.343844+4 7.098000-3 3.259637+4 7.161434-3 3.201695+4 7.270000-3 3.092900+4 7.673615-3 2.699100+4 8.912509-3 1.822200+4 9.885531-3 1.375400+4 1.135011-2 9.379600+3 1.350000-2 5.771600+3 1.659587-2 3.177800+3 1.862087-2 2.263600+3 2.187762-2 1.400400+3 2.660725-2 7.733900+2 3.235937-2 4.229800+2 3.935501-2 2.294400+2 4.841724-2 1.191300+2 6.237348-2 5.304400+1 1.230269-1 5.962100+0 1.584893-1 2.657375+0 1.905461-1 1.487207+0 2.238721-1 9.015088-1 2.600160-1 5.705477-1 2.985383-1 3.768627-1 3.402400-1 2.564881-1 3.845918-1 1.802103-1 4.315191-1 1.302952-1 4.786301-1 9.795382-2 5.308844-1 7.412869-2 5.888437-1 5.648934-2 6.531306-1 4.337231-2 7.244360-1 3.355233-2 8.413951-1 2.341161-2 9.015711-1 1.992467-2 9.660509-1 1.707473-2 1.023293+0 1.511173-2 1.109175+0 1.282794-2 1.216186+0 1.072045-2 1.333521+0 9.028332-3 1.531087+0 7.046980-3 1.757924+0 5.524589-3 1.972423+0 4.542563-3 2.264644+0 3.625441-3 2.600160+0 2.915393-3 3.000000+0 2.344300-3 3.467369+0 1.894761-3 4.027170+0 1.531835-3 4.731513+0 1.227814-3 5.623413+0 9.766359-4 6.760830+0 7.712256-4 8.222427+0 6.047930-4 1.011579+1 4.712795-4 1.258925+1 3.648921-4 1.621810+1 2.734786-4 2.113489+1 2.039199-4 2.786121+1 1.510949-4 3.935501+1 1.045863-4 6.309573+1 6.393288-5 1.071519+2 3.712344-5 2.137962+2 1.841632-5 4.265795+2 9.183179-6 1.698244+3 2.297629-6 1.000000+5 3.896600-8 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 7.019200-3 1.542900-4 1.000000+5 1.542900-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.019200-3 1.067700-3 1.000000+5 1.067700-3 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.019200-3 5.797210-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.451900-3 7.243604+4 6.640000-3 6.796960+4 7.000000-3 5.922200+4 8.128305-3 3.940765+4 8.912509-3 3.043834+4 1.011579-2 2.118230+4 1.244515-2 1.162764+4 1.396368-2 8.247218+3 1.603245-2 5.445736+3 1.972423-2 2.880924+3 2.371374-2 1.617726+3 2.818383-2 9.335524+2 3.349654-2 5.345307+2 4.027170-2 2.925797+2 4.897788-2 1.530124+2 6.095369-2 7.356581+1 7.943282-2 3.004975+1 1.258925-1 6.306930+0 1.603245-1 2.794546+0 1.883649-1 1.634710+0 2.187762-1 1.000667+0 2.511886-1 6.407821-1 2.851018-1 4.290852-1 3.198895-1 3.002043-1 3.548134-1 2.191845-1 3.935501-1 1.611481-1 4.365158-1 1.193661-1 4.786301-1 9.204736-2 5.248075-1 7.144915-2 5.754399-1 5.583756-2 6.309573-1 4.395423-2 6.918310-1 3.485274-2 7.585776-1 2.783161-2 8.609938-1 2.060545-2 9.225714-1 1.760180-2 9.885531-1 1.514483-2 1.071519+0 1.282719-2 1.174898+0 1.069034-2 1.288250+0 8.975641-3 1.428894+0 7.430257-3 1.698244+0 5.468148-3 1.905461+0 4.486393-3 2.137962+0 3.708104-3 2.454709+0 2.972349-3 2.818383+0 2.400311-3 3.235937+0 1.952509-3 3.758374+0 1.573178-3 4.415704+0 1.256750-3 5.188000+0 1.011651-3 6.165950+0 8.079155-4 7.498942+0 6.312302-4 9.120108+0 4.970189-4 1.135011+1 3.834539-4 1.462177+1 2.864595-4 1.905461+1 2.129388-4 2.570396+1 1.535518-4 3.715352+1 1.035580-4 5.623413+1 6.712326-5 9.225714+1 4.030559-5 1.840772+2 1.996388-5 3.672823+2 9.946860-6 1.462177+3 2.486993-6 1.000000+5 3.630800-8 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.451900-3 1.450800-4 1.000000+5 1.450800-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.451900-3 8.238100-4 1.000000+5 8.238100-4 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.451900-3 5.483010-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.625100-3 4.983596+4 1.717908-3 4.683969+4 1.972423-3 3.906483+4 2.089296-3 3.595757+4 2.426610-3 2.884628+4 2.786121-3 2.342676+4 3.019952-3 2.058382+4 3.672823-3 1.489891+4 4.168694-3 1.196768+4 4.800000-3 9.331380+3 5.821032-3 6.559255+3 6.839116-3 4.840693+3 7.852356-3 3.708817+3 9.225714-3 2.699713+3 1.096478-2 1.905227+3 1.303167-2 1.333471+3 1.531087-2 9.486801+2 1.798871-2 6.699831+2 2.089296-2 4.818922+2 2.454709-2 3.354665+2 2.900000-2 2.288380+2 3.427678-2 1.546881+2 4.027170-2 1.052483+2 4.731513-2 7.108963+1 5.623413-2 4.632368+1 6.683439-2 2.995472+1 8.035261-2 1.866543+1 9.660509-2 1.154553+1 1.216186-1 6.278800+0 1.566751-1 3.189920+0 2.317395-1 1.113518+0 2.851018-1 6.418726-1 3.388442-1 4.083079-1 3.935501-1 2.779008-1 4.466836-1 2.020759-1 5.069907-1 1.479998-1 5.688529-1 1.122814-1 6.309573-1 8.813060-2 7.079458-1 6.784048-2 7.943282-1 5.262886-2 8.810489-1 4.212810-2 9.660509-1 3.479920-2 1.083927+0 2.765575-2 1.230269+0 2.162435-2 1.380384+0 1.741686-2 1.566751+0 1.383467-2 1.757924+0 1.129990-2 1.972423+0 9.295121-3 2.264644+0 7.417699-3 2.600160+0 5.964575-3 3.000000+0 4.796000-3 3.467369+0 3.876364-3 4.027170+0 3.133904-3 4.731513+0 2.511950-3 5.623413+0 1.998023-3 6.760830+0 1.577728-3 8.222427+0 1.237258-3 1.023293+1 9.510443-4 1.273503+1 7.366424-4 1.640590+1 5.522861-4 2.137962+1 4.119487-4 2.818383+1 3.053042-4 3.981072+1 2.113734-4 6.456542+1 1.277113-4 1.122018+2 7.246223-5 2.238721+2 3.596278-5 4.466836+2 1.793597-5 1.778279+3 4.488705-6 1.000000+5 7.971500-8 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.625100-3 1.373800-4 1.000000+5 1.373800-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.625100-3 2.853300-6 1.000000+5 2.853300-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.625100-3 1.484867-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.461600-3 7.917827+4 1.485000-3 7.836238+4 1.566751-3 7.464829+4 1.621810-3 7.205056+4 1.730000-3 6.691760+4 1.850000-3 6.140820+4 2.041738-3 5.366032+4 2.220000-3 4.756260+4 2.400000-3 4.219460+4 2.600160-3 3.703675+4 3.000000-3 2.890180+4 3.235937-3 2.522940+4 3.548134-3 2.119724+4 4.000000-3 1.678106+4 4.365158-3 1.405665+4 5.000000-3 1.057714+4 5.500000-3 8.602880+3 6.237348-3 6.498678+3 6.918310-3 5.121709+3 7.800000-3 3.861760+3 8.810489-3 2.875420+3 9.885531-3 2.161478+3 1.122018-2 1.567665+3 1.273503-2 1.128527+3 1.450000-2 7.998520+2 1.650000-2 5.637540+2 1.883649-2 3.910910+2 2.162719-2 2.650984+2 2.483133-2 1.784352+2 2.884032-2 1.153528+2 3.388442-2 7.153049+1 4.027170-2 4.251544+1 4.841724-2 2.420739+1 5.956621-2 1.273765+1 7.585776-2 5.970584+0 1.445440-1 7.797461-1 1.798871-1 3.934246-1 2.065380-1 2.568237-1 2.540973-1 1.368656-1 2.917427-1 9.058607-2 3.311311-1 6.247128-2 3.758374-1 4.340655-2 4.168694-1 3.243220-2 4.677351-1 2.363208-2 5.248075-1 1.734838-2 5.821032-1 1.322363-2 6.456542-1 1.015357-2 7.161434-1 7.855383-3 7.943282-1 6.123708-3 8.709636-1 4.922173-3 9.332543-1 4.205507-3 9.885531-1 3.709879-3 1.071519+0 3.140501-3 1.174898+0 2.616800-3 1.288250+0 2.197295-3 1.428894+0 1.819563-3 1.698244+0 1.339511-3 1.905461+0 1.098983-3 2.137962+0 9.081843-4 2.454709+0 7.279491-4 2.818383+0 5.878978-4 3.235937+0 4.782356-4 3.758374+0 3.853160-4 4.365158+0 3.127102-4 5.128614+0 2.515944-4 6.095369+0 2.008252-4 7.413102+0 1.568322-4 9.015711+0 1.234401-4 1.122018+1 9.519276-5 1.445440+1 7.108863-5 1.862087+1 5.350402-5 2.570396+1 3.760908-5 3.715352+1 2.536427-5 5.688529+1 1.624506-5 9.332543+1 9.756676-6 1.862087+2 4.833145-6 3.715352+2 2.408281-6 1.479108+3 6.021580-7 1.000000+5 8.893100-9 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.461600-3 1.143200-4 1.000000+5 1.143200-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.461600-3 3.412700-6 1.000000+5 3.412700-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.461600-3 1.343867-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.346900-3 2.107435+5 1.420000-3 1.960552+5 1.480000-3 1.861492+5 1.570000-3 1.722152+5 1.659587-3 1.590325+5 1.850000-3 1.347424+5 2.070000-3 1.125572+5 2.238721-3 9.856557+4 2.400000-3 8.716240+4 2.818383-3 6.465063+4 3.054921-3 5.535266+4 3.400000-3 4.460600+4 3.801894-3 3.540953+4 4.216965-3 2.834039+4 4.731513-3 2.199080+4 5.308844-3 1.691892+4 5.956621-3 1.293085+4 6.800000-3 9.403400+3 7.585776-3 7.177477+3 8.511380-3 5.367088+3 9.800000-3 3.725192+3 1.120000-2 2.612704+3 1.258925-2 1.902282+3 1.412538-2 1.383598+3 1.603245-2 9.682878+2 1.819701-2 6.729652+2 2.089296-2 4.490631+2 2.400000-2 2.969388+2 2.754229-2 1.955595+2 3.198895-2 1.232372+2 3.715352-2 7.709891+1 4.415704-2 4.450042+1 5.248075-2 2.548228+1 6.382635-2 1.343561+1 8.035261-2 6.274104+0 1.479108-1 8.204856-1 1.798871-1 4.300718-1 2.137962-1 2.450099-1 2.454709-1 1.572558-1 2.786121-1 1.054762-1 3.126079-1 7.388128-2 3.507519-1 5.214425-2 3.890451-1 3.836526-2 4.315191-1 2.841314-2 4.731513-1 2.189485-2 5.188000-1 1.698885-2 5.688529-1 1.327876-2 6.237348-1 1.045274-2 6.839117-1 8.286801-3 7.498942-1 6.615166-3 8.609938-1 4.763646-3 9.225714-1 4.068174-3 9.885531-1 3.499550-3 1.071519+0 2.963646-3 1.174898+0 2.469777-3 1.288250+0 2.073651-3 1.428894+0 1.716761-3 1.698244+0 1.263488-3 1.905461+0 1.036640-3 2.137962+0 8.568246-4 2.454709+0 6.868259-4 2.818383+0 5.546433-4 3.235937+0 4.511629-4 3.758374+0 3.635041-4 4.415704+0 2.903841-4 5.188000+0 2.337518-4 6.165950+0 1.866795-4 7.498942+0 1.458527-4 9.120108+0 1.148406-4 1.135011+1 8.860287-5 1.462177+1 6.619129-5 1.883649+1 4.983432-5 2.570396+1 3.547998-5 3.672823+1 2.422147-5 5.559043+1 1.569641-5 9.120108+1 9.423611-6 1.819701+2 4.666958-6 3.630781+2 2.325149-6 1.445440+3 5.813129-7 1.000000+5 8.389600-9 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.346900-3 1.062700-4 1.000000+5 1.062700-4 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.346900-3 1.618800-6 1.000000+5 1.618800-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.346900-3 1.239011-3 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.059600-3 4.787399+5 1.095000-3 5.154732+5 1.135011-3 5.430284+5 1.210000-3 5.566031+5 1.216186-3 5.565797+5 1.244515-3 5.468946+5 1.258925-3 5.375512+5 1.400000-3 4.169080+5 1.513561-3 3.436133+5 1.659587-3 2.714072+5 1.819701-3 2.126479+5 2.000000-3 1.643856+5 2.220000-3 1.229816+5 2.426610-3 9.518229+4 2.754229-3 6.571459+4 3.054921-3 4.812421+4 3.500000-3 3.174240+4 3.935501-3 2.197094+4 4.415704-3 1.522020+4 5.069907-3 9.702154+3 5.688529-3 6.617592+3 6.456542-3 4.312842+3 7.413102-3 2.679893+3 8.413951-3 1.719582+3 9.549926-3 1.095860+3 1.096478-2 6.652362+2 1.258925-2 4.006672+2 1.450000-2 2.366748+2 1.659587-2 1.421064+2 1.905461-2 8.374364+1 2.187762-2 4.904047+1 2.570396-2 2.608111+1 3.054921-2 1.315992+1 3.715352-2 6.014636+0 4.731513-2 2.266573+0 8.709636-2 1.903751-1 1.071519-1 8.257951-2 1.273503-1 4.145079-2 1.500000-1 2.171663-2 1.737801-1 1.223667-2 1.995262-1 7.195078-3 2.264644-1 4.451815-3 2.540973-1 2.897243-3 2.851018-1 1.899713-3 3.126079-1 1.364099-3 3.467369-1 9.465260-4 3.845918-1 6.613152-4 4.315191-1 4.473835-4 4.786301-1 3.171741-4 5.248075-1 2.352451-4 5.688529-1 1.822103-4 6.095369-1 1.471912-4 6.606935-1 1.157040-4 7.244360-1 8.855444-5 8.035261-1 6.601502-5 8.609938-1 5.395775-5 9.120108-1 4.592849-5 9.549926-1 4.063686-5 1.000000+0 3.621656-5 1.047129+0 3.254238-5 1.096478+0 2.945012-5 1.148154+0 2.681570-5 1.216186+0 2.402183-5 1.318257+0 2.077939-5 1.513561+0 1.643374-5 1.819701+0 1.189924-5 2.018366+0 9.984714-6 2.317395+0 7.977542-6 2.660725+0 6.422743-6 3.054921+0 5.208999-6 3.548134+0 4.184557-6 4.120975+0 3.386851-6 4.841724+0 2.717698-6 5.754399+0 2.163916-6 6.918310+0 1.710328-6 8.413951+0 1.342485-6 1.047129+1 1.032779-6 1.318257+1 7.900440-7 1.678804+1 6.006327-7 2.213095+1 4.426729-7 3.019952+1 3.163553-7 4.265795+1 2.193706-7 6.998420+1 1.311430-7 1.258925+2 7.191681-8 2.511886+2 3.572882-8 5.011872+2 1.782846-8 3.981072+3 2.236188-9 1.000000+5 8.89580-11 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.059600-3 7.343200-5 1.000000+5 7.343200-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.059600-3 3.126500-6 1.000000+5 3.126500-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.059600-3 9.830415-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.034600-3 1.251932+6 1.100000-3 1.074272+6 1.150000-3 9.759960+5 1.230269-3 8.270969+5 1.364583-3 6.436836+5 1.479108-3 5.261445+5 1.621810-3 4.147463+5 1.778279-3 3.243202+5 1.950000-3 2.518830+5 2.213095-3 1.765439+5 2.400000-3 1.394664+5 2.754229-3 9.279773+4 3.019952-3 7.016651+4 3.427678-3 4.745524+4 3.845918-3 3.298649+4 4.315191-3 2.278568+4 4.897788-3 1.503870+4 5.432503-3 1.063851+4 6.165950-3 6.919292+3 7.079458-3 4.288165+3 8.035261-3 2.743627+3 9.015711-3 1.816997+3 1.023293-2 1.147217+3 1.161449-2 7.192622+2 1.333521-2 4.288464+2 1.531087-2 2.536915+2 1.737801-2 1.557422+2 1.995262-2 9.083835+1 2.317395-2 5.028843+1 2.754229-2 2.519953+1 3.311311-2 1.195534+1 4.000000-2 5.518038+0 5.069907-2 2.074327+0 8.912509-2 1.996770-1 1.083927-1 8.918861-2 1.273503-1 4.623157-2 1.479108-1 2.530146-2 1.678804-1 1.529528-2 1.905461-1 9.315508-3 2.000000-1 7.723680-3 2.089296-1 6.556590-3 2.317395-1 4.427251-3 2.570396-1 3.009789-3 2.851018-1 2.060765-3 3.162278-1 1.421868-3 3.467369-1 1.029715-3 3.758374-1 7.814093-4 4.027170-1 6.201620-4 4.365158-1 4.772191-4 4.731513-1 3.697524-4 5.128614-1 2.884454-4 5.559043-1 2.265254-4 6.165950-1 1.674550-4 6.683439-1 1.331283-4 7.244360-1 1.065245-4 7.852356-1 8.585672-5 8.511380-1 6.957409-5 9.015711-1 6.023426-5 9.549926-1 5.250838-5 1.000000+0 4.731757-5 1.059254+0 4.184052-5 1.135011+0 3.637010-5 1.216186+0 3.183110-5 1.333521+0 2.685668-5 1.698244+0 1.751377-5 1.905461+0 1.436397-5 2.137962+0 1.186861-5 2.454709+0 9.513167-6 2.818383+0 7.683167-6 3.235937+0 6.250116-6 3.758374+0 5.035730-6 4.365158+0 4.086819-6 5.128614+0 3.288134-6 6.095369+0 2.624714-6 7.413102+0 2.049675-6 9.015711+0 1.613206-6 1.122018+1 1.244067-6 1.445440+1 9.290598-7 1.862087+1 6.992477-7 2.540973+1 4.976634-7 3.672823+1 3.355500-7 5.559043+1 2.174507-7 9.015711+1 1.320947-7 1.798871+2 6.541164-8 3.589219+2 3.258617-8 1.428894+3 8.146573-9 1.000000+5 1.16230-10 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.034600-3 7.045900-5 1.000000+5 7.045900-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.034600-3 9.607800-9 1.000000+5 9.607800-9 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.034600-3 9.641314-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.280700-4 1.172111+5 3.680000-4 1.091832+5 4.466836-4 9.314955+4 4.731513-4 8.833886+4 5.500000-4 7.535140+4 5.956621-4 6.895636+4 6.500000-4 6.206120+4 7.500000-4 5.173280+4 8.222426-4 4.573026+4 9.549926-4 3.703904+4 1.071519-3 3.127609+4 1.244515-3 2.489975+4 1.445440-3 1.964705+4 1.659587-3 1.568362+4 1.949845-3 1.197080+4 2.317395-3 8.889494+3 2.754229-3 6.553153+3 3.311311-3 4.698198+3 4.027170-3 3.274263+3 4.897788-3 2.264631+3 6.000000-3 1.533066+3 7.244360-3 1.058968+3 8.609938-3 7.493008+2 1.035142-2 5.141630+2 1.244515-2 3.499738+2 1.479108-2 2.422285+2 1.757924-2 1.664481+2 2.089296-2 1.135166+2 2.483133-2 7.681667+1 2.951209-2 5.157516+1 3.467369-2 3.529477+1 4.120975-2 2.332668+1 4.897788-2 1.529640+1 5.821032-2 9.949338+0 7.000000-2 6.234933+0 8.317638-2 3.998901+0 1.023293-1 2.324101+0 1.318257-1 1.186964+0 2.344229-1 2.532859-1 2.884032-1 1.461134-1 3.427678-1 9.300958-2 3.935501-1 6.523375-2 4.466836-1 4.743627-2 5.069907-1 3.474582-2 5.688529-1 2.636822-2 6.382635-1 2.015743-2 7.161434-1 1.552863-2 8.035261-1 1.205600-2 8.912509-1 9.657479-3 9.772372-1 7.984189-3 1.109175+0 6.207861-3 1.258925+0 4.860611-3 1.412538+0 3.920427-3 1.603245+0 3.118600-3 1.798871+0 2.550825-3 2.018366+0 2.101281-3 2.317395+0 1.679004-3 2.660725+0 1.351784-3 3.054921+0 1.096301-3 3.548134+0 8.806756-4 4.120975+0 7.127768-4 4.841724+0 5.719465-4 5.754399+0 4.554023-4 6.918310+0 3.599473-4 8.413951+0 2.825292-4 1.047129+1 2.173526-4 1.318257+1 1.662642-4 1.678804+1 1.264088-4 2.213095+1 9.316231-5 3.019952+1 6.657739-5 4.216965+1 4.672845-5 6.918310+1 2.792972-5 1.230269+2 1.549431-5 2.454709+2 7.696064-6 4.897788+2 3.839881-6 1.949845+3 9.613706-7 1.000000+5 1.872100-8 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.280700-4 7.206700-5 1.000000+5 7.206700-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.280700-4 1.585200-8 1.000000+5 1.585200-8 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.280700-4 2.559871-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.650100-4 9.404149+4 3.715352-4 8.805635+4 4.100000-4 8.560140+4 4.415704-4 8.324359+4 4.731513-4 8.060387+4 5.069907-4 7.751560+4 5.432503-4 7.401056+4 5.888437-4 6.964974+4 6.382635-4 6.510151+4 6.918310-4 6.036293+4 7.585776-4 5.494004+4 8.222426-4 5.029288+4 9.015711-4 4.511548+4 1.000000-3 3.962160+4 1.096478-3 3.505494+4 1.230269-3 2.982302+4 1.364583-3 2.559085+4 1.531087-3 2.142006+4 1.698244-3 1.812316+4 1.905461-3 1.494532+4 2.150000-3 1.211408+4 2.426610-3 9.738827+3 2.754229-3 7.689618+3 3.126079-3 6.024036+3 3.548134-3 4.683090+3 4.027170-3 3.613507+3 4.570882-3 2.767515+3 5.188000-3 2.103988+3 5.888437-3 1.587520+3 6.683439-3 1.188678+3 7.500000-3 9.074220+2 8.413951-3 6.889040+2 9.549926-3 5.049516+2 1.083927-2 3.674481+2 1.230269-2 2.655121+2 1.412538-2 1.848330+2 1.621810-2 1.276713+2 1.862087-2 8.752319+1 2.137962-2 5.955804+1 2.483133-2 3.893595+1 2.884032-2 2.525822+1 3.349654-2 1.626389+1 3.935501-2 1.004873+1 4.677351-2 5.954174+0 5.559043-2 3.502959+0 7.000000-2 1.710912+0 9.885531-2 5.790611-1 1.445440-1 1.752435-1 1.798871-1 8.864713-2 2.187762-1 4.854997-2 2.540973-1 3.084651-2 2.917427-1 2.043399-2 3.311311-1 1.410503-2 3.758374-1 9.807754-3 4.216965-1 7.098343-3 4.731513-1 5.174812-3 5.308844-1 3.801777-3 5.888437-1 2.900942-3 6.531306-1 2.229995-3 7.244360-1 1.727075-3 8.413951-1 1.206885-3 9.015711-1 1.027729-3 9.660509-1 8.811443-4 1.023293+0 7.800722-4 1.109175+0 6.623060-4 1.216186+0 5.534820-4 1.333521+0 4.660848-4 1.531087+0 3.637304-4 1.757924+0 2.851319-4 1.972423+0 2.344373-4 2.264644+0 1.870922-4 2.600160+0 1.504394-4 3.000000+0 1.209600-4 3.467369+0 9.776527-5 4.027170+0 7.903955-5 4.731513+0 6.335379-5 5.623413+0 5.039171-5 6.760830+0 3.979195-5 8.222427+0 3.120513-5 1.011579+1 2.431615-5 1.258925+1 1.882709-5 1.621810+1 1.410975-5 2.137962+1 1.038986-5 2.818383+1 7.700127-6 3.981072+1 5.330966-6 6.456542+1 3.221135-6 1.109175+2 1.849138-6 2.213095+2 9.176316-7 4.415704+2 4.576358-7 1.757924+3 1.145206-7 1.000000+5 2.010500-9 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.650100-4 5.692800-5 1.000000+5 5.692800-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.650100-4 1.854700-8 1.000000+5 1.854700-8 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.650100-4 2.080635-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.398700-4 3.234700+5 2.786121-4 3.053074+5 3.126079-4 2.903824+5 3.467369-4 2.753573+5 3.801894-4 2.605482+5 4.120975-4 2.464833+5 4.466836-4 2.315640+5 4.850000-4 2.154396+5 5.308844-4 1.975052+5 5.800000-4 1.801796+5 6.309573-4 1.639014+5 7.000000-4 1.447136+5 7.673615-4 1.287502+5 8.511380-4 1.119914+5 9.440609-4 9.673572+4 1.059254-3 8.153173+4 1.174898-3 6.942545+4 1.318257-3 5.764953+4 1.479108-3 4.751275+4 1.659587-3 3.888156+4 1.883649-3 3.094311+4 2.150000-3 2.416668+4 2.454709-3 1.870402+4 2.786121-3 1.452852+4 3.150000-3 1.129244+4 3.548134-3 8.787454+3 4.000000-3 6.781560+3 4.500000-3 5.224240+3 5.069907-3 3.985932+3 5.754399-3 2.969306+3 6.531306-3 2.195171+3 7.413102-3 1.610510+3 8.413951-3 1.172320+3 9.549926-3 8.470460+2 1.083927-2 6.075827+2 1.230269-2 4.326465+2 1.396368-2 3.059048+2 1.603245-2 2.079488+2 1.840772-2 1.402418+2 2.113489-2 9.384378+1 2.426610-2 6.232093+1 2.786121-2 4.109113+1 3.235937-2 2.596746+1 3.758374-2 1.628738+1 4.415704-2 9.780526+0 5.248075-2 5.617989+0 6.382635-2 2.971625+0 7.943282-2 1.446284+0 1.531088-1 1.633527-1 1.840772-1 8.911763-2 2.187762-1 5.087052-2 2.511886-1 3.271668-2 2.851018-1 2.198804-2 3.198895-1 1.543010-2 3.589219-1 1.091020-2 4.000000-1 7.932739-3 4.415705-1 5.972591-3 4.897788-1 4.469790-3 5.370318-1 3.478875-3 5.888437-1 2.726069-3 6.456542-1 2.151702-3 7.079458-1 1.710465-3 7.762471-1 1.369161-3 8.609938-1 1.071450-3 9.225714-1 9.153042-4 9.885531-1 7.875472-4 1.071519+0 6.670330-4 1.174898+0 5.559189-4 1.288250+0 4.667506-4 1.428894+0 3.863912-4 1.698244+0 2.843531-4 1.905461+0 2.333011-4 2.137962+0 1.928376-4 2.454709+0 1.545796-4 2.818383+0 1.248297-4 3.235937+0 1.015390-4 3.758374+0 8.180943-5 4.365158+0 6.639264-5 5.128614+0 5.341675-5 6.095369+0 4.263926-5 7.328245+0 3.377907-5 8.912509+0 2.657430-5 1.109175+1 2.048545-5 1.412538+1 1.549372-5 1.819701+1 1.165417-5 2.483133+1 8.288279-6 3.589219+1 5.585854-6 5.248075+1 3.750488-6 8.511380+1 2.276316-6 1.678804+2 1.139655-6 3.349654+2 5.674777-7 1.333521+3 1.418251-7 1.000000+5 1.888100-9 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.398700-4 4.987600-5 1.000000+5 4.987600-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.398700-4 1.006300-8 1.000000+5 1.006300-8 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.398700-4 1.899839-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.350500-4 4.165440+5 1.355000-4 4.356160+5 1.375000-4 5.393640+5 1.385000-4 5.968720+5 1.393000-4 6.431280+5 1.400000-4 6.823080+5 1.407000-4 7.193000+5 1.415000-4 7.578280+5 1.422000-4 7.874360+5 1.428894-4 8.123055+5 1.435000-4 8.304400+5 1.442000-4 8.466760+5 1.450000-4 8.591440+5 1.457000-4 8.650520+5 1.465000-4 8.665200+5 1.473000-4 8.629720+5 1.481000-4 8.551400+5 1.492000-4 8.386920+5 1.505000-4 8.129400+5 1.520000-4 7.777840+5 1.535000-4 7.394680+5 1.550000-4 7.000200+5 1.570000-4 6.476640+5 1.590000-4 5.971160+5 1.621810-4 5.224293+5 1.659587-4 4.440216+5 1.750000-4 3.025232+5 1.780000-4 2.689004+5 1.810000-4 2.410368+5 1.835000-4 2.217520+5 1.858000-4 2.068376+5 1.880000-4 1.948368+5 1.900000-4 1.856444+5 1.922000-4 1.772524+5 1.945000-4 1.701908+5 1.965000-4 1.653304+5 1.990000-4 1.607292+5 2.010000-4 1.580996+5 2.030000-4 1.563008+5 2.050000-4 1.552472+5 2.070000-4 1.548604+5 2.100000-4 1.553736+5 2.128000-4 1.568676+5 2.162719-4 1.598457+5 2.205000-4 1.648056+5 2.260000-4 1.728700+5 2.344229-4 1.874166+5 2.500000-4 2.170328+5 2.600160-4 2.358744+5 2.691535-4 2.519871+5 2.786121-4 2.670771+5 2.884032-4 2.808307+5 2.985383-4 2.930652+5 3.100000-4 3.045792+5 3.200000-4 3.127440+5 3.320000-4 3.203804+5 3.430000-4 3.254592+5 3.550000-4 3.291200+5 3.700000-4 3.313420+5 3.850000-4 3.314264+5 4.027170-4 3.293165+5 4.216965-4 3.249058+5 4.430000-4 3.179568+5 4.677351-4 3.079552+5 4.954502-4 2.953668+5 5.248075-4 2.811924+5 5.559043-4 2.657267+5 5.900000-4 2.488964+5 6.309573-4 2.295286+5 6.700000-4 2.120856+5 7.161434-4 1.929739+5 7.673615-4 1.738513+5 8.222426-4 1.555595+5 8.912509-4 1.355975+5 9.549926-4 1.198000+5 1.042000-3 1.016433+5 1.122018-3 8.786097+4 1.230269-3 7.269466+4 1.333521-3 6.118091+4 1.462177-3 4.987266+4 1.603245-3 4.034535+4 1.757924-3 3.241791+4 1.950000-3 2.513936+4 2.187762-3 1.877962+4 2.454709-3 1.389393+4 2.722701-3 1.051164+4 3.054921-3 7.646195+3 3.427678-3 5.514658+3 3.845918-3 3.943484+3 4.315191-3 2.797858+3 4.786301-3 2.039392+3 5.370318-3 1.424176+3 6.025596-3 9.868297+2 6.760830-3 6.785620+2 7.585776-3 4.631048+2 8.511380-3 3.137034+2 9.660509-3 2.027725+2 1.096478-2 1.300431+2 1.244515-2 8.275695+1 1.412538-2 5.228227+1 1.621810-2 3.143380+1 1.862087-2 1.875420+1 2.137962-2 1.110588+1 2.483133-2 6.246508+0 2.917427-2 3.334749+0 3.467369-2 1.688919+0 4.216965-2 7.750747-1 5.370318-2 2.936611-1 9.120108-2 3.472069-2 1.135011-1 1.446821-2 1.348963-1 7.297897-3 1.566751-1 4.059729-3 1.798871-1 2.378472-3 2.065380-1 1.403566-3 2.344229-1 8.715151-4 2.630268-1 5.690481-4 2.951209-1 3.743417-4 3.273407-1 2.586926-4 3.630781-1 1.800453-4 4.027170-1 1.262386-4 4.466836-1 8.921159-5 4.954502-1 6.354034-5 5.432503-1 4.729559-5 5.956621-1 3.545000-5 6.456542-1 2.774522-5 7.079458-1 2.112464-5 8.035261-1 1.468966-5 8.609938-1 1.203001-5 9.120108-1 1.025620-5 9.549926-1 9.083017-6 1.000000+0 8.098100-6 1.035142+0 7.467867-6 1.083927+0 6.748056-6 1.135011+0 6.137981-6 1.202264+0 5.493764-6 1.303167+0 4.747013-6 1.428894+0 4.050122-6 1.513561+0 3.674553-6 1.819701+0 2.660024-6 2.018366+0 2.232525-6 2.317395+0 1.784134-6 2.660725+0 1.436326-6 3.054921+0 1.164726-6 3.548134+0 9.356657-7 4.120975+0 7.572997-7 4.841724+0 6.076727-7 5.754399+0 4.838386-7 6.918310+0 3.824357-7 8.413951+0 3.001790-7 1.047129+1 2.309347-7 1.318257+1 1.766544-7 1.678804+1 1.343002-7 2.213095+1 9.898233-8 3.019952+1 7.073577-8 4.265795+1 4.905209-8 6.918310+1 2.967465-8 1.244515+2 1.626977-8 2.483133+2 8.082574-9 4.954502+2 4.032876-9 1.972423+3 1.009712-9 1.000000+5 1.98910-11 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.350500-4 3.217200-5 1.000000+5 3.217200-5 1 61000 7 7 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.350500-4 1.437000-8 1.000000+5 1.437000-8 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.350500-4 1.028636-4 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.305900-4 6.134820+5 1.324000-4 7.630380+5 1.333521-4 8.497443+5 1.340000-4 9.091500+5 1.348000-4 9.813060+5 1.354000-4 1.033356+6 1.360000-4 1.082598+6 1.367000-4 1.135356+6 1.373000-4 1.175796+6 1.380384-4 1.218613+6 1.387700-4 1.252845+6 1.395000-4 1.278558+6 1.403000-4 1.297146+6 1.411000-4 1.306116+6 1.419000-4 1.306338+6 1.427000-4 1.298838+6 1.435000-4 1.284756+6 1.445440-4 1.258388+6 1.458000-4 1.217766+6 1.472000-4 1.165086+6 1.485000-4 1.112328+6 1.500000-4 1.049712+6 1.520000-4 9.667860+5 1.548817-4 8.533966+5 1.584893-4 7.259994+5 1.693900-4 4.461629+5 1.720000-4 4.006962+5 1.740000-4 3.707196+5 1.760000-4 3.446124+5 1.780000-4 3.220662+5 1.800000-4 3.027600+5 1.820000-4 2.863866+5 1.842000-4 2.714424+5 1.865000-4 2.588796+5 1.885000-4 2.502210+5 1.905461-4 2.433159+5 1.927525-4 2.378401+5 1.950000-4 2.341278+5 1.973000-4 2.320482+5 2.000000-4 2.315412+5 2.020000-4 2.323404+5 2.050000-4 2.351430+5 2.080000-4 2.395692+5 2.120000-4 2.474850+5 2.170000-4 2.597922+5 2.238721-4 2.795198+5 2.371374-4 3.214765+5 2.454709-4 3.480058+5 2.540973-4 3.743585+5 2.630268-4 3.996692+5 2.722701-4 4.232068+5 2.800000-4 4.406004+5 2.900000-4 4.599900+5 3.000000-4 4.760784+5 3.100000-4 4.891854+5 3.200000-4 4.995996+5 3.320000-4 5.088426+5 3.430000-4 5.144370+5 3.550000-4 5.177142+5 3.700000-4 5.183004+5 3.850000-4 5.158224+5 4.050000-4 5.089638+5 4.216965-4 5.006810+5 4.430000-4 4.876854+5 4.677351-4 4.701381+5 4.954502-4 4.487289+5 5.248075-4 4.252734+5 5.559043-4 4.003451+5 5.900000-4 3.735804+5 6.309573-4 3.430251+5 6.760830-4 3.118667+5 7.244360-4 2.814866+5 7.800000-4 2.504022+5 8.413951-4 2.204817+5 9.120108-4 1.910490+5 9.885531-4 1.643321+5 1.071519-3 1.403252+5 1.174898-3 1.162064+5 1.273503-3 9.783124+4 1.396368-3 7.979461+4 1.548817-3 6.286077+4 1.698244-3 5.046259+4 1.862087-3 4.024903+4 2.070000-3 3.078768+4 2.317395-3 2.292510+4 2.600160-3 1.681579+4 2.917427-3 1.222489+4 3.273407-3 8.809656+3 3.630781-3 6.512916+3 4.027170-3 4.782142+3 4.518559-3 3.365757+3 5.011872-3 2.436821+3 5.559043-3 1.752813+3 6.165950-3 1.252637+3 6.918310-3 8.558890+2 7.762471-3 5.803022+2 8.709636-3 3.906669+2 9.772372-3 2.610559+2 1.109175-2 1.662500+2 1.258925-2 1.050717+2 1.428894-2 6.591498+1 1.621810-2 4.105062+1 1.862087-2 2.429598+1 2.137962-2 1.426752+1 2.454709-2 8.317205+0 2.851018-2 4.601059+0 3.349654-2 2.413106+0 4.027170-2 1.144677+0 5.011872-2 4.680263-1 6.382635-2 1.728370-1 9.015711-2 4.153048-2 1.109175-1 1.777219-2 1.303167-1 9.248069-3 1.500000-1 5.265273-3 1.717908-1 3.080924-3 1.927525-1 1.968190-3 2.162719-1 1.265879-3 2.398833-1 8.567593-4 2.660725-1 5.842867-4 2.917427-1 4.187754-4 3.198895-1 3.023699-4 3.507519-1 2.199878-4 3.845918-1 1.612550-4 4.216965-1 1.190480-4 4.570882-1 9.184981-5 4.954502-1 7.131248-5 5.370318-1 5.572845-5 5.821032-1 4.385680-5 6.165950-1 3.714775-5 6.683439-1 2.966340-5 7.244360-1 2.385747-5 8.609938-1 1.517875-5 9.120108-1 1.313034-5 9.660509-1 1.143884-5 1.011579+0 1.030746-5 1.071519+0 9.113206-6 1.135011+0 8.106790-6 1.216186+0 7.092991-6 1.318257+0 6.114588-6 1.798871+0 3.541176-6 2.000000+0 2.959200-6 2.290868+0 2.372412-6 2.630268+0 1.908790-6 3.019952+0 1.546996-6 3.507519+0 1.242041-6 4.073803+0 1.004725-6 4.786301+0 8.057537-7 5.688529+0 6.412325-7 6.839116+0 5.065916-7 8.317638+0 3.974576-7 1.035142+1 3.056364-7 1.303167+1 2.337152-7 1.659587+1 1.776217-7 2.162719+1 1.325325-7 2.851018+1 9.824398-8 4.000000+1 6.851800-8 6.531306+1 4.111512-8 1.122018+2 2.360696-8 2.238721+2 1.171596-8 4.466836+2 5.843419-9 1.778279+3 1.462337-9 1.000000+5 2.59700-11 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.305900-4 3.063900-5 1.000000+5 3.063900-5 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.305900-4 9.995100-5 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 8.880000-6 1.806733+5 9.120108-6 1.779461+5 9.440609-6 1.752961+5 9.700000-6 1.740193+5 1.000000-5 1.734422+5 1.035142-5 1.740018+5 1.071519-5 1.757643+5 1.110000-5 1.789402+5 1.150000-5 1.835619+5 1.190000-5 1.893750+5 1.230269-5 1.963739+5 1.273503-5 2.051091+5 1.330000-5 2.182674+5 1.396368-5 2.360437+5 1.462177-5 2.559393+5 1.548817-5 2.853383+5 1.659587-5 3.278008+5 1.819701-5 3.980499+5 2.187762-5 5.915650+5 2.400000-5 7.171724+5 2.570396-5 8.216451+5 2.730000-5 9.195098+5 2.900000-5 1.021906+6 3.054921-5 1.112080+6 3.235937-5 1.212274+6 3.427678-5 1.311139+6 3.630781-5 1.407334+6 3.850000-5 1.501931+6 4.073803-5 1.589356+6 4.365158-5 1.690307+6 4.677351-5 1.784546+6 5.011872-5 1.870379+6 5.308844-5 1.932956+6 5.650000-5 1.989856+6 5.956621-5 2.026627+6 6.309573-5 2.052730+6 6.683439-5 2.064736+6 7.079458-5 2.061683+6 7.585776-5 2.041688+6 8.128305-5 2.006987+6 8.810489-5 1.952838+6 9.500000-5 1.889983+6 1.023293-4 1.818065+6 1.096478-4 1.739869+6 1.161449-4 1.668667+6 1.244515-4 1.575575+6 1.333521-4 1.478679+6 1.450000-4 1.357984+6 1.548817-4 1.261109+6 1.650000-4 1.168058+6 1.778279-4 1.057489+6 1.905461-4 9.571009+5 2.041738-4 8.607206+5 2.190000-4 7.675017+5 2.350000-4 6.785473+5 2.500000-4 6.051179+5 2.691535-4 5.239508+5 2.884032-4 4.546138+5 3.090295-4 3.917921+5 3.311311-4 3.354939+5 3.548134-4 2.855087+5 3.845918-4 2.347555+5 4.168694-4 1.915410+5 4.518559-4 1.551428+5 4.897788-4 1.247965+5 5.308844-4 9.973671+4 5.821032-4 7.662320+4 6.382635-4 5.843712+4 7.000000-4 4.422392+4 7.673615-4 3.328404+4 8.413951-4 2.486648+4 9.332543-4 1.778052+4 1.035142-3 1.262200+4 1.148154-3 8.897158+3 1.273503-3 6.228774+3 1.412538-3 4.331837+3 1.584893-3 2.872040+3 1.778279-3 1.889663+3 2.000000-3 1.222941+3 2.238721-3 7.995620+2 2.511886-3 5.143225+2 2.818383-3 3.284422+2 3.162278-3 2.082569+2 3.427678-3 1.506181+2 3.890451-3 8.974244+1 4.466836-3 5.063752+1 5.011872-3 3.121250+1 5.623413-3 1.908152+1 6.309573-3 1.158232+1 7.161434-3 6.636184+0 8.128305-3 3.772558+0 9.332543-3 2.022011+0 1.122018-2 8.725963-1 1.303167-2 4.375747-1 1.500000-2 2.271210-1 1.737801-2 1.134337-1 2.018366-2 5.557607-2 2.371374-2 2.554052-2 2.851018-2 1.041583-2 3.589219-2 3.365041-3 6.237348-2 2.216911-4 7.852356-2 7.182667-5 9.332543-2 3.101876-5 1.071519-1 1.595023-5 1.216186-1 8.727071-6 1.380384-1 4.809856-6 1.548817-1 2.819003-6 1.737801-1 1.665069-6 1.949845-1 9.909011-7 2.187762-1 5.935430-7 2.398833-1 3.963609-7 2.630268-1 2.664977-7 2.851018-1 1.895194-7 3.090295-1 1.356407-7 3.349654-1 9.773908-8 3.672823-1 6.768725-8 4.168694-1 4.123136-8 4.570882-1 2.892464-8 5.000000-1 2.063100-8 5.432503-1 1.521123-8 5.888437-1 1.139727-8 6.309573-1 8.964556-9 6.839117-1 6.827911-9 7.413102-1 5.238338-9 8.035261-1 4.040883-9 8.511380-1 3.332819-9 8.912509-1 2.874009-9 9.225714-1 2.584197-9 9.549926-1 2.335313-9 9.885531-1 2.122784-9 1.023293+0 1.942503-9 1.059254+0 1.788585-9 1.096478+0 1.655900-9 1.148154+0 1.505293-9 1.202264+0 1.378129-9 1.288250+0 1.218432-9 1.380384+0 1.085070-9 1.500000+0 9.49360-10 1.883649+0 6.37788-10 2.065380+0 5.46597-10 2.371374+0 4.37316-10 2.722701+0 3.52513-10 3.126079+0 2.86228-10 3.630781+0 2.30205-10 4.216965+0 1.86525-10 4.954502+0 1.49837-10 5.888437+0 1.19427-10 7.079458+0 9.44803-11 8.609938+0 7.42274-11 1.071519+1 5.71508-11 1.348963+1 4.37512-11 1.717908+1 3.32847-11 2.290868+1 2.42368-11 3.311311+1 1.63018-11 4.623810+1 1.14650-11 7.585776+1 6.86305-12 1.445440+2 3.55346-12 2.884032+2 1.76741-12 1.148154+3 4.41406-13 1.000000+5 5.05820-15 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 8.880000-6 8.880000-6 1.000000+5 8.880000-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 8.880000-6 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 8.350000-6 2.578323+5 8.609938-6 2.526947+5 8.912509-6 2.487528+5 9.225714-6 2.464644+5 9.600000-6 2.459649+5 9.930000-6 2.474309+5 1.023293-5 2.501277+5 1.060000-5 2.550417+5 1.100000-5 2.623152+5 1.135011-5 2.701704+5 1.180000-5 2.820957+5 1.230269-5 2.976777+5 1.290000-5 3.190311+5 1.350000-5 3.433139+5 1.428894-5 3.791802+5 1.513561-5 4.221814+5 1.640590-5 4.946270+5 2.162719-5 8.707010+5 2.350000-5 1.025528+6 2.511886-5 1.162520+6 2.660725-5 1.288460+6 2.818383-5 1.419016+6 2.985383-5 1.551698+6 3.162278-5 1.684926+6 3.350000-5 1.816481+6 3.548134-5 1.943120+6 3.758374-5 2.065320+6 4.000000-5 2.191695+6 4.265795-5 2.313817+6 4.570882-5 2.436462+6 4.900000-5 2.548332+6 5.248075-5 2.643679+6 5.559043-5 2.709909+6 5.900000-5 2.760092+6 6.237348-5 2.789435+6 6.606934-5 2.800575+6 7.000000-5 2.791691+6 7.500000-5 2.760354+6 8.035261-5 2.708187+6 8.709636-5 2.630723+6 9.549926-5 2.521191+6 1.023293-4 2.424707+6 1.100000-4 2.311392+6 1.174898-4 2.196059+6 1.260000-4 2.066772+6 1.380384-4 1.890724+6 1.500000-4 1.727250+6 1.584893-4 1.618408+6 1.698244-4 1.481787+6 1.826000-4 1.339049+6 1.927525-4 1.235580+6 2.089296-4 1.087909+6 2.264644-4 9.488643+5 2.450000-4 8.221963+5 2.630268-4 7.166334+5 2.818383-4 6.225483+5 3.019952-4 5.371924+5 3.235937-4 4.605242+5 3.467369-4 3.923385+5 3.758374-4 3.229869+5 4.073803-4 2.638371+5 4.415704-4 2.139380+5 4.786301-4 1.722663+5 5.188000-4 1.377952+5 5.688529-4 1.059530+5 6.237348-4 8.086516+4 6.839116-4 6.128495+4 7.585776-4 4.451549+4 8.317638-4 3.327722+4 9.225714-4 2.380909+4 1.023293-3 1.690643+4 1.135011-3 1.191674+4 1.258925-3 8.338997+3 1.396368-3 5.793321+3 1.548817-3 3.996820+3 1.737801-3 2.626458+3 2.000000-3 1.560634+3 2.238721-3 1.020218+3 2.483133-3 6.855631+2 2.691535-3 5.005291+2 3.000000-3 3.249218+2 3.349654-3 2.079607+2 3.935501-3 1.072546+2 4.466836-3 6.325707+1 5.011872-3 3.887181+1 5.559043-3 2.492611+1 6.237348-3 1.509311+1 7.079458-3 8.627197+0 8.128305-3 4.649100+0 9.332543-3 2.487826+0 1.071519-2 1.321606+0 1.244515-2 6.608236-1 1.445440-2 3.280944-1 1.678804-2 1.616628-1 1.927525-2 8.351887-2 2.162719-2 4.785696-2 2.540973-2 2.177536-2 3.162278-2 7.409445-3 4.265795-2 1.680814-3 7.328245-2 1.144779-4 8.709636-2 4.887900-5 1.011580-1 2.353331-5 1.161449-1 1.206667-5 1.303167-1 6.962407-6 1.445440-1 4.271133-6 1.603245-1 2.638760-6 1.778279-1 1.641598-6 1.972423-1 1.028758-6 2.187762-1 6.490423-7 2.398833-1 4.342631-7 2.600160-1 3.076294-7 2.818383-1 2.195734-7 3.054921-1 1.578461-7 3.273407-1 1.196634-7 3.548134-1 8.727633-8 3.845918-1 6.411693-8 4.168694-1 4.743151-8 4.518559-1 3.528038-8 4.897788-1 2.643434-8 5.248075-1 2.077996-8 5.623413-1 1.645863-8 6.025596-1 1.312353-8 6.456542-1 1.053418-8 6.918310-1 8.514529-9 7.413102-1 6.925886-9 8.035261-1 5.484047-9 8.609938-1 4.509590-9 9.120108-1 3.852747-9 9.691100-1 3.284400-9 1.000000+0 3.033200-9 1.035142+0 2.794844-9 1.083927+0 2.523042-9 1.135011+0 2.293212-9 1.202264+0 2.051331-9 1.288250+0 1.809528-9 1.396368+0 1.575031-9 1.513561+0 1.376383-9 1.840772+0 9.76971-10 2.018366+0 8.36215-10 2.317395+0 6.68206-10 2.660725+0 5.37960-10 3.054921+0 4.36263-10 3.548134+0 3.50460-10 4.120975+0 2.83650-10 4.841724+0 2.27610-10 5.754399+0 1.81222-10 6.918310+0 1.43246-10 8.413951+0 1.12438-10 1.047129+1 8.64965-11 1.318257+1 6.61668-11 1.678804+1 5.03040-11 2.200000+1 3.73160-11 2.951209+1 2.71568-11 4.120975+1 1.90509-11 6.683439+1 1.15183-11 1.161449+2 6.53815-12 2.317395+2 3.24584-12 4.623810+2 1.61913-12 1.840772+3 4.05270-13 1.000000+5 7.45030-15 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 8.350000-6 8.350000-6 1.000000+5 8.350000-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 8.350000-6 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.627000-5 5.489220+4 4.677351-5 5.585599+4 4.841724-5 5.966237+4 5.308844-5 7.223842+4 5.580000-5 7.962040+4 5.821032-5 8.583631+4 6.070000-5 9.175700+4 6.309573-5 9.690056+4 6.531306-5 1.011525+5 6.800000-5 1.056174+5 7.079458-5 1.094666+5 7.328245-5 1.122269+5 7.585776-5 1.144510+5 7.900000-5 1.163586+5 8.222426-5 1.175034+5 8.609938-5 1.179777+5 9.015711-5 1.176502+5 9.500000-5 1.164584+5 1.011579-4 1.141190+5 1.083927-4 1.107090+5 1.161449-4 1.066678+5 1.244515-4 1.021145+5 1.333521-4 9.711314+4 1.428894-4 9.176113+4 1.548817-4 8.526404+4 1.698244-4 7.781717+4 1.905461-4 6.886665+4 2.113489-4 6.125115+4 2.371374-4 5.333918+4 2.754229-4 4.418063+4 3.126079-4 3.743343+4 3.715352-4 2.959568+4 4.315191-4 2.398917+4 5.188000-4 1.838232+4 6.237348-4 1.397419+4 7.413102-4 1.073322+4 8.810489-4 8.189694+3 1.059254-3 6.090545+3 1.273503-3 4.493328+3 1.513561-3 3.354678+3 1.840772-3 2.389825+3 2.238721-3 1.689544+3 2.691535-3 1.210921+3 3.427678-3 7.748560+2 4.216965-3 5.244934+2 5.188000-3 3.523176+2 6.382635-3 2.348470+2 7.762471-3 1.589580+2 9.332543-3 1.093040+2 1.122018-2 7.459928+1 1.348963-2 5.052442+1 1.603245-2 3.481351+1 1.927525-2 2.322316+1 2.344229-2 1.499505+1 2.786121-2 1.011853+1 3.162278-2 7.539583+0 3.715352-2 5.144321+0 4.365158-2 3.484267+0 5.188000-2 2.277416+0 6.165950-2 1.477343+0 7.413102-2 9.239805-1 8.709636-2 6.087690-1 1.083927-1 3.426425-1 1.428894-1 1.642996-1 2.371374-1 4.216679-2 2.917427-1 2.433673-2 3.467369-1 1.550043-2 4.000000-1 1.074800-2 4.570882-1 7.692625-3 5.188000-1 5.642870-3 5.821032-1 4.288337-3 6.531306-1 3.283330-3 7.328245-1 2.533337-3 8.317638-1 1.921136-3 9.120108-1 1.580390-3 1.000000+0 1.309000-3 1.148154+0 9.966345-4 1.288250+0 7.992176-4 1.445440+0 6.454848-4 1.640590+0 5.141969-4 1.840772+0 4.211665-4 2.065380+0 3.474433-4 2.371374+0 2.779772-4 2.722701+0 2.240731-4 3.126079+0 1.819399-4 3.630781+0 1.463295-4 4.216965+0 1.185637-4 4.954502+0 9.524216-5 5.888437+0 7.591197-5 7.079458+0 6.005698-5 8.609938+0 4.718262-5 1.071519+1 3.632821-5 1.348963+1 2.781031-5 1.717908+1 2.115729-5 2.290868+1 1.540629-5 3.273407+1 1.049115-5 4.570882+1 7.376036-6 7.413102+1 4.467136-6 1.412538+2 2.312216-6 2.818383+2 1.149817-6 1.122018+3 2.871286-7 1.000000+5 3.215200-9 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.627000-5 4.627000-5 1.000000+5 4.627000-5 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.627000-5 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.896000-5 7.013360+6 3.235937-5 4.661614+6 3.801894-5 2.601807+6 4.216965-5 1.776335+6 5.188000-5 8.195709+5 5.688529-5 5.848132+5 6.165950-5 4.385266+5 6.606934-5 3.449799+5 7.000000-5 2.838200+5 7.413102-5 2.353144+5 7.800000-5 2.005180+5 8.222426-5 1.710911+5 8.650000-5 1.480130+5 9.015711-5 1.322929+5 9.440609-5 1.175486+5 9.900000-5 1.048354+5 1.040000-4 9.384260+4 1.083927-4 8.602543+4 1.141600-4 7.771586+4 1.202264-4 7.076704+4 1.260000-4 6.542680+4 1.330000-4 6.019840+4 1.400000-4 5.598940+4 1.480000-4 5.208720+4 1.584893-4 4.800612+4 1.720000-4 4.390460+4 1.905461-4 3.957776+4 2.213095-4 3.432873+4 2.951209-4 2.625930+4 3.427678-4 2.269285+4 3.935501-4 1.970800+4 4.466836-4 1.720259+4 5.128614-4 1.472474+4 5.800000-4 1.272862+4 6.531306-4 1.099121+4 7.413102-4 9.332433+3 8.413951-4 7.866271+3 9.549926-4 6.580092+3 1.083927-3 5.461876+3 1.230269-3 4.498560+3 1.396368-3 3.676779+3 1.584893-3 2.982321+3 1.798871-3 2.400994+3 2.041738-3 1.918997+3 2.317395-3 1.523012+3 2.630268-3 1.200263+3 3.000000-3 9.303760+2 3.427678-3 7.133664+2 3.890451-3 5.503178+2 4.415704-3 4.216157+2 5.011872-3 3.207417+2 5.688529-3 2.422460+2 6.456542-3 1.816478+2 7.328245-3 1.352276+2 8.317638-3 9.992965+1 9.440609-3 7.329679+1 1.071519-2 5.338081+1 1.216186-2 3.860843+1 1.448320-2 2.445668+1 1.603245-2 1.865254+1 1.819701-2 1.321326+1 2.089296-2 9.004493+0 2.398833-2 6.094350+0 2.786121-2 3.962704+0 3.235937-2 2.557335+0 3.801894-2 1.583402+0 4.518559-2 9.401002-1 5.370318-2 5.541491-1 6.683439-2 2.812789-1 9.015711-2 1.101627-1 1.445440-1 2.495992-2 1.798871-1 1.262599-2 2.162719-1 7.162844-3 2.511886-1 4.548878-3 2.884032-1 3.011726-3 3.273407-1 2.077622-3 3.715352-1 1.443605-3 4.168694-1 1.043990-3 4.677351-1 7.604272-4 5.188000-1 5.755238-4 5.754399-1 4.385129-4 6.382635-1 3.365209-4 7.079458-1 2.601704-4 7.852356-1 2.026468-4 8.709636-1 1.584646-4 9.332543-1 1.353667-4 9.885531-1 1.193965-4 1.071519+0 1.010590-4 1.161449+0 8.610988-5 1.273503+0 7.223879-5 1.412538+0 5.977800-5 1.698244+0 4.310329-5 1.905461+0 3.536301-5 2.137962+0 2.923102-5 2.454709+0 2.343194-5 2.818383+0 1.892153-5 3.235937+0 1.539111-5 3.758374+0 1.240095-5 4.415704+0 9.906425-6 5.188000+0 7.974319-6 6.165950+0 6.368463-6 7.498942+0 4.975693-6 9.120108+0 3.917743-6 1.135011+1 3.022572-6 1.462177+1 2.258079-6 1.883649+1 1.700091-6 2.570396+1 1.210341-6 3.672823+1 8.262744-7 5.559043+1 5.354668-7 9.120108+1 3.214730-7 1.819701+2 1.592098-7 3.630781+2 7.931953-8 1.445440+3 1.983130-8 1.000000+5 2.86200-10 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.896000-5 2.896000-5 1.000000+5 2.896000-5 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.896000-5 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.546000-5 1.492380+7 2.722701-5 1.139645+7 2.900000-5 8.914560+6 3.198895-5 6.148129+6 4.168694-5 2.277436+6 4.518559-5 1.692867+6 4.841724-5 1.321495+6 5.150000-5 1.066648+6 5.432503-5 8.918943+5 5.754399-5 7.410164+5 6.025596-5 6.429141+5 6.309573-5 5.612218+5 6.606934-5 4.931915+5 6.918310-5 4.365288+5 7.244360-5 3.893078+5 7.585776-5 3.498964+5 7.900000-5 3.205640+5 8.222426-5 2.957819+5 8.609938-5 2.714549+5 9.015711-5 2.508111+5 9.500000-5 2.309240+5 1.000000-4 2.143248+5 1.060000-4 1.981624+5 1.135011-4 1.820156+5 1.230269-4 1.659352+5 1.350000-4 1.502908+5 1.566751-4 1.294636+5 2.041738-4 9.965806+4 2.426610-4 8.341746+4 2.818383-4 7.102264+4 3.235937-4 6.080069+4 3.715352-4 5.168455+4 4.216965-4 4.426182+4 4.841724-4 3.710970+4 5.500000-4 3.133892+4 6.309573-4 2.593299+4 7.244360-4 2.126900+4 8.222426-4 1.761550+4 9.440609-4 1.422979+4 1.071519-3 1.161717+4 1.216186-3 9.415887+3 1.380384-3 7.577383+3 1.566751-3 6.054654+3 1.778279-3 4.803944+3 2.018366-3 3.785334+3 2.290868-3 2.962685+3 2.600160-3 2.303112+3 2.951209-3 1.778269+3 3.349654-3 1.363825+3 3.801894-3 1.038855+3 4.315191-3 7.858980+2 4.897788-3 5.904146+2 5.559043-3 4.404510+2 6.309573-3 3.262021+2 7.161434-3 2.397845+2 8.128305-3 1.749345+2 9.225714-3 1.267078+2 1.047129-2 9.108382+1 1.188502-2 6.499715+1 1.348963-2 4.605212+1 1.548817-2 3.137897+1 1.778279-2 2.121694+1 2.041738-2 1.423504+1 2.344229-2 9.477152+0 2.691535-2 6.263985+0 3.090295-2 4.111482+0 3.589219-2 2.585800+0 4.216965-2 1.557085+0 5.011872-2 8.970311-1 6.025596-2 4.935994-1 7.498942-2 2.408230-1 1.011580-1 8.938694-2 1.445440-1 2.727068-2 1.778279-1 1.377891-2 2.137962-1 7.569878-3 2.454709-1 4.863188-3 2.786121-1 3.264334-3 3.126079-1 2.287661-3 3.507519-1 1.615191-3 3.890451-1 1.189007-3 4.315191-1 8.816098-4 4.786301-1 6.587328-4 5.248075-1 5.119254-4 5.754399-1 4.005351-4 6.309573-1 3.155865-4 6.918310-1 2.504305-4 7.585776-1 2.001212-4 8.609938-1 1.482997-4 9.225714-1 1.267343-4 9.885531-1 1.090717-4 1.071519+0 9.239030-5 1.174898+0 7.700526-5 1.288250+0 6.465362-5 1.428894+0 5.351581-5 1.698244+0 3.938242-5 1.905461+0 3.231205-5 2.137962+0 2.670485-5 2.454709+0 2.140564-5 2.818383+0 1.728663-5 3.235937+0 1.406192-5 3.758374+0 1.132995-5 4.415704+0 9.050989-6 5.188000+0 7.285815-6 6.165950+0 5.818597-6 7.498942+0 4.546138-6 9.120108+0 3.579483-6 1.135011+1 2.761613-6 1.462177+1 2.063133-6 1.883649+1 1.553286-6 2.570396+1 1.105864-6 3.715352+1 7.458092-7 5.623413+1 4.834174-7 9.225714+1 2.902814-7 1.840772+2 1.437812-7 3.672823+2 7.163674-8 1.462177+3 1.791127-8 1.000000+5 2.61490-10 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.546000-5 2.546000-5 1.000000+5 2.546000-5 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.546000-5 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.030000-6 3.183855+6 5.500000-6 2.107140+6 5.888437-6 1.528697+6 6.350000-6 1.062928+6 6.760830-6 7.803448+5 7.200000-6 5.683160+5 7.673615-6 4.092471+5 8.128305-6 3.021659+5 8.709636-6 2.083705+5 1.023293-5 8.607164+4 1.071519-5 6.724441+4 1.110000-5 5.602920+4 1.135011-5 5.015247+4 1.165000-5 4.430380+4 1.190000-5 4.027040+4 1.216186-5 3.673737+4 1.240000-5 3.404980+4 1.264200-5 3.175768+4 1.290000-5 2.973260+4 1.310000-5 2.841980+4 1.333521-5 2.712515+4 1.357000-5 2.606700+4 1.380384-5 2.521426+4 1.410000-5 2.437920+4 1.440000-5 2.377180+4 1.470000-5 2.336280+4 1.500000-5 2.311800+4 1.531087-5 2.300727+4 1.570000-5 2.303380+4 1.610000-5 2.321160+4 1.659587-5 2.358964+4 1.717908-5 2.419114+4 1.800000-5 2.521180+4 2.070000-5 2.889500+4 2.213095-5 3.064592+4 2.350000-5 3.207900+4 2.483133-5 3.322902+4 2.630268-5 3.423329+4 2.800000-5 3.508760+4 2.985383-5 3.570114+4 3.162278-5 3.601545+4 3.350000-5 3.610080+4 3.570000-5 3.592580+4 3.801894-5 3.548921+4 4.073803-5 3.474928+4 4.365158-5 3.375793+4 4.677351-5 3.254481+4 5.011872-5 3.114304+4 5.432503-5 2.935560+4 5.888437-5 2.746511+4 6.382635-5 2.552552+4 7.161434-5 2.279428+4 8.035261-5 2.019870+4 9.440609-5 1.690104+4 1.202264-4 1.279107+4 1.479108-4 1.002447+4 1.640590-4 8.824364+3 1.840772-4 7.598283+3 2.065380-4 6.493645+3 2.398833-4 5.243753+3 3.090295-4 3.617247+3 3.845918-4 2.633646+3 4.415704-4 2.140702+3 6.237348-4 1.262630+3 7.244360-4 9.990851+2 9.660509-4 6.294376+2 1.148154-3 4.737318+2 1.333521-3 3.679341+2 1.678804-3 2.445035+2 2.041738-3 1.723055+2 2.660725-3 1.080531+2 3.090295-3 8.258041+1 3.672823-3 5.997638+1 4.415704-3 4.231986+1 5.370318-3 2.899065+1 6.918310-3 1.760379+1 8.413951-3 1.188095+1 1.011579-2 8.145762+0 1.216186-2 5.541793+0 1.462177-2 3.741189+0 1.737801-2 2.569974+0 2.065380-2 1.752575+0 2.454709-2 1.186022+0 2.917427-2 7.963800-1 3.427678-2 5.450960-1 4.073803-2 3.603497-1 4.841724-2 2.363708-1 5.754399-2 1.537989-1 6.918310-2 9.647073-2 8.222426-2 6.186557-2 1.011580-1 3.597198-2 1.303167-1 1.838075-2 1.621810-1 1.023396-2 2.344229-1 3.805577-3 2.884032-1 2.196069-3 3.427678-1 1.398470-3 3.935501-1 9.812437-4 4.466836-1 7.138623-4 5.069907-1 5.231964-4 5.688529-1 3.973252-4 6.309573-1 3.121553-4 6.998420-1 2.468355-4 7.762471-1 1.964819-4 8.609938-1 1.574376-4 9.549926-1 1.270773-4 1.071519+0 1.010274-4 1.230269+0 7.724175-5 1.380384+0 6.218758-5 1.548817+0 5.040335-5 1.737801+0 4.113978-5 1.949845+0 3.381833-5 2.213095+0 2.747376-5 2.540973+0 2.206413-5 2.917427+0 1.785028-5 3.349654+0 1.454566-5 3.890451+0 1.173963-5 4.570882+0 9.394338-6 5.370318+0 7.574026-6 6.456542+0 5.969225-6 7.852356+0 4.672512-6 9.660509+0 3.634928-6 1.202264+1 2.809952-6 1.548817+1 2.103049-6 2.041738+1 1.546326-6 2.691535+1 1.145033-6 3.801894+1 7.919520-7 5.956621+1 4.954724-7 9.885531+1 2.942997-7 1.972423+2 1.458738-7 3.935501+2 7.271186-8 1.566751+3 1.818497-8 1.000000+5 2.84510-10 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.030000-6 5.030000-6 1.000000+5 5.030000-6 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.030000-6 0.0 1.000000+5 1.000000+5 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.697630-7 1.027100+0 1.169910-6 1.027500+0 1.465300-6 1.028100+0 1.994980-6 1.028750+0 2.697630-6 1.029500+0 3.691780-6 1.030100+0 4.642860-6 1.031000+0 6.353010-6 1.032000+0 8.692520-6 1.033200+0 1.217670-5 1.034000+0 1.494810-5 1.035300+0 2.028990-5 1.036640+0 2.697630-5 1.038200+0 3.640540-5 1.039700+0 4.729790-5 1.041500+0 6.292930-5 1.043800+0 8.734780-5 1.046400+0 1.215280-4 1.048300+0 1.513060-4 1.051200+0 2.052430-4 1.054080+0 2.697630-4 1.057700+0 3.677050-4 1.061100+0 4.782940-4 1.065100+0 6.332120-4 1.070400+0 8.834020-4 1.076200+0 1.220860-3 1.080600+0 1.524660-3 1.087100+0 2.054210-3 1.093710+0 2.697630-3 1.102600+0 3.740050-3 1.110700+0 4.877460-3 1.120600+0 6.524050-3 1.133300+0 9.070370-3 1.147500+0 1.252260-2 1.158200+0 1.556230-2 1.174100+0 2.080150-2 1.190110+0 2.697630-2 1.205100+0 3.359160-2 1.227500+0 4.497260-2 1.250000+0 5.808000-2 1.265600+0 6.803030-2 1.294900+0 8.839800-2 1.320600+0 1.077910-1 1.343000+0 1.256710-1 1.382200+0 1.587370-1 1.433800+0 2.050230-1 1.500000+0 2.685000-1 1.589800+0 3.627730-1 1.665000+0 4.484010-1 1.784700+0 5.946760-1 1.892300+0 7.331180-1 2.000000+0 8.740000-1 2.044000+0 9.313000-1 2.163500+0 1.086640+0 2.372600+0 1.356110+0 2.647100+0 1.700710+0 3.000000+0 2.124000+0 3.500000+0 2.683380+0 4.000000+0 3.200000+0 4.750000+0 3.904680+0 5.000000+0 4.122000+0 6.000000+0 4.915000+0 7.000000+0 5.617000+0 8.000000+0 6.247000+0 9.000000+0 6.820000+0 1.000000+1 7.346000+0 1.100000+1 7.831000+0 1.200000+1 8.281000+0 1.300000+1 8.701000+0 1.400000+1 9.090000+0 1.500000+1 9.451000+0 1.600000+1 9.786000+0 1.800000+1 1.039000+1 2.000000+1 1.093000+1 2.200000+1 1.143000+1 2.400000+1 1.187000+1 2.600000+1 1.228000+1 2.800000+1 1.265000+1 3.000000+1 1.300000+1 4.000000+1 1.440000+1 5.000000+1 1.544000+1 6.000000+1 1.625000+1 8.000000+1 1.745000+1 1.000000+2 1.830000+1 1.500000+2 1.964000+1 2.000000+2 2.045000+1 3.000000+2 2.138000+1 4.000000+2 2.192000+1 5.000000+2 2.228000+1 6.000000+2 2.253000+1 8.000000+2 2.287000+1 1.000000+3 2.309000+1 1.500000+3 2.340000+1 2.000000+3 2.358000+1 3.000000+3 2.376000+1 4.000000+3 2.386000+1 5.000000+3 2.393000+1 6.000000+3 2.397000+1 8.000000+3 2.403000+1 1.000000+4 2.406000+1 1.500000+4 2.412000+1 2.000000+4 2.414000+1 3.000000+4 2.417000+1 4.000000+4 2.418000+1 5.000000+4 2.419000+1 6.000000+4 2.420000+1 8.000000+4 2.421000+1 1.000000+5 2.421000+1 1 61000 7 8 1.450000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.114980-7 2.094700+0 1.076560-6 2.099900+0 1.432210-6 2.106600+0 1.992330-6 2.114000+0 2.756640-6 2.119500+0 3.431990-6 2.127900+0 4.654430-6 2.136250+0 6.114980-6 2.147000+0 8.384070-6 2.156900+0 1.088990-5 2.169000+0 1.453320-5 2.184500+0 2.020170-5 2.201800+0 2.794960-5 2.214800+0 3.482310-5 2.234200+0 4.684320-5 2.253680+0 6.114980-5 2.281500+0 8.565110-5 2.307000+0 1.125020-4 2.338200+0 1.512690-4 2.377400+0 2.094890-4 2.410200+0 2.664360-4 2.446800+0 3.389210-4 2.485900+0 4.267200-4 2.532900+0 5.461110-4 2.556430+0 6.114980-4 2.611900+0 7.797300-4 2.660400+0 9.426540-4 2.745300+0 1.261690-3 2.809000+0 1.527980-3 2.904500+0 1.968430-3 3.000000+0 2.457000-3 3.125000+0 3.168130-3 3.234400+0 3.854770-3 3.425800+0 5.190550-3 3.569300+0 6.293630-3 3.784700+0 8.089600-3 4.000000+0 1.002000-2 4.250000+0 1.237970-2 4.625000+0 1.608730-2 5.000000+0 1.994000-2 5.500000+0 2.522520-2 6.000000+0 3.058000-2 6.750000+0 3.854920-2 7.000000+0 4.117000-2 8.000000+0 5.141000-2 9.000000+0 6.120000-2 1.000000+1 7.050000-2 1.100000+1 7.928000-2 1.200000+1 8.756000-2 1.300000+1 9.535000-2 1.400000+1 1.028000-1 1.500000+1 1.098000-1 1.600000+1 1.164000-1 1.800000+1 1.287000-1 2.000000+1 1.399000-1 2.200000+1 1.501000-1 2.400000+1 1.595000-1 2.600000+1 1.682000-1 2.800000+1 1.762000-1 3.000000+1 1.837000-1 4.000000+1 2.145000-1 5.000000+1 2.377000-1 6.000000+1 2.561000-1 8.000000+1 2.838000-1 1.000000+2 3.038000-1 1.500000+2 3.369000-1 2.000000+2 3.576000-1 3.000000+2 3.829000-1 4.000000+2 3.981000-1 5.000000+2 4.085000-1 6.000000+2 4.161000-1 8.000000+2 4.266000-1 1.000000+3 4.336000-1 1.500000+3 4.441000-1 2.000000+3 4.501000-1 3.000000+3 4.567000-1 4.000000+3 4.606000-1 5.000000+3 4.629000-1 6.000000+3 4.646000-1 8.000000+3 4.668000-1 1.000000+4 4.682000-1 1.500000+4 4.702000-1 2.000000+4 4.713000-1 3.000000+4 4.723000-1 4.000000+4 4.731000-1 5.000000+4 4.735000-1 6.000000+4 4.737000-1 8.000000+4 4.740000-1 1.000000+5 4.742000-1 1 61000 7 8 1.450000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 61000 7 9 1.450000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.100000+1 1.000000+5 6.100000+1 5.000000+5 6.096700+1 7.500000+5 6.093660+1 1.000000+6 6.091500+1 1.250000+6 6.087890+1 1.500000+6 6.084000+1 1.875000+6 6.075170+1 2.000000+6 6.071800+1 2.375000+6 6.060670+1 2.500000+6 6.056600+1 2.875000+6 6.043250+1 3.000000+6 6.038400+1 3.250000+6 6.027620+1 3.625000+6 6.011420+1 4.000000+6 5.994500+1 4.437500+6 5.973260+1 4.812500+6 5.954110+1 5.000000+6 5.944200+1 5.500000+6 5.915490+1 5.875000+6 5.892640+1 6.437500+6 5.858060+1 6.500000+6 5.854310+1 7.000000+6 5.822800+1 7.500000+6 5.790600+1 8.250000+6 5.742640+1 9.000000+6 5.693600+1 1.000000+7 5.626900+1 1.250000+7 5.463200+1 1.500000+7 5.296200+1 1.750000+7 5.128700+1 2.000000+7 4.959800+1 2.250000+7 4.788900+1 2.375000+7 4.703720+1 2.500000+7 4.620400+1 2.875000+7 4.378020+1 3.000000+7 4.301200+1 3.437500+7 4.045860+1 3.812500+7 3.846040+1 4.000000+7 3.752600+1 4.500000+7 3.521320+1 5.000000+7 3.311100+1 5.500000+7 3.117290+1 6.000000+7 2.937400+1 6.750000+7 2.691230+1 7.000000+7 2.615600+1 8.000000+7 2.345300+1 9.000000+7 2.125200+1 1.000000+8 1.949300+1 1.125000+8 1.777990+1 1.187500+8 1.706440+1 1.250000+8 1.641500+1 1.375000+8 1.526660+1 1.437500+8 1.473860+1 1.500000+8 1.423200+1 1.617200+8 1.331100+1 1.712900+8 1.257430+1 1.718800+8 1.252960+1 1.815400+8 1.178970+1 1.907700+8 1.108570+1 2.000000+8 1.038600+1 2.125000+8 9.466750+0 2.312500+8 8.299310+0 2.375000+8 7.984500+0 2.406300+8 7.841910+0 2.500000+8 7.474700+0 2.562500+8 7.277560+0 2.835900+8 6.605440+0 2.945300+8 6.333720+0 3.000000+8 6.186000+0 3.062500+8 6.005780+0 3.335900+8 5.238190+0 3.445300+8 4.996810+0 3.500000+8 4.897400+0 3.562500+8 4.801960+0 3.671900+8 4.669510+0 4.000000+8 4.371200+0 4.125000+8 4.249190+0 4.234400+8 4.134600+0 4.425800+8 3.925050+0 4.677000+8 3.649580+0 4.750000+8 3.571940+0 5.000000+8 3.318800+0 5.343800+8 3.006780+0 5.578100+8 2.810430+0 5.859400+8 2.585620+0 6.000000+8 2.476400+0 6.500000+8 2.122600+0 6.750000+8 1.984220+0 6.937500+8 1.901140+0 7.000000+8 1.877600+0 7.125000+8 1.837900+0 8.000000+8 1.631800+0 8.250000+8 1.566250+0 8.468800+8 1.505060+0 8.851600+8 1.397200+0 9.569300+8 1.220760+0 9.856400+8 1.164730+0 1.000000+9 1.140200+0 1.031300+9 1.094910+0 1.060500+9 1.060720+0 1.088000+9 1.033970+0 1.139500+9 9.942930-1 1.184600+9 9.671410-1 1.362000+9 8.843960-1 1.411300+9 8.609570-1 1.470400+9 8.300220-1 1.500000+9 8.132500-1 1.560500+9 7.761210-1 1.615500+9 7.405100-1 1.686000+9 6.939670-1 1.764500+9 6.428550-1 1.823400+9 6.059260-1 1.911700+9 5.537770-1 2.000000+9 5.061400-1 2.139200+9 4.403700-1 2.272600+9 3.866990-1 2.443000+9 3.291440-1 2.602800+9 2.843640-1 2.825100+9 2.337800-1 2.961100+9 2.082470-1 3.215900+9 1.690200-1 3.438900+9 1.419530-1 3.500000+9 1.354930-1 3.634100+9 1.225460-1 3.975600+9 9.590430-2 4.231700+9 8.053320-2 4.615800+9 6.281530-2 5.000000+9 4.971300-2 5.375000+9 4.006420-2 6.031300+9 2.822440-2 6.892600+9 1.866540-2 8.000000+9 1.170000-2 1.00000+10 5.801200-3 1.27030+10 2.749630-3 1.55700+10 1.465270-3 2.00890+10 6.707330-4 2.65200+10 2.885110-4 3.54180+10 1.207810-4 4.72580+10 5.108930-5 6.04430+10 2.464780-5 8.02220+10 1.071420-5 1.00000+11 5.621500-6 1.34280+11 2.382890-6 1.77440+11 1.062780-6 2.63330+11 3.409370-7 4.88110+11 5.847880-8 1.16740+12 4.969610-9 3.55150+12 2.21440-10 1.00000+14 2.17510-14 2.05350+15 4.88839-18 1.00000+17 9.21790-23 1 61000 7 0 1.450000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.12000-11 1.000000+2 1.120000-9 1.000000+3 1.120000-7 1.000000+4 1.120000-5 1.000000+5 1.120000-3 5.000000+5 2.800000-2 7.500000+5 6.300000-2 1.000000+6 1.120000-1 1.250000+6 1.736350-1 1.500000+6 2.475000-1 1.875000+6 3.798540-1 2.000000+6 4.293000-1 2.375000+6 5.917410-1 2.500000+6 6.503000-1 2.875000+6 8.370550-1 3.000000+6 9.027000-1 3.250000+6 1.038080+0 3.625000+6 1.249910+0 4.000000+6 1.469400+0 4.437500+6 1.731160+0 4.812500+6 1.957660+0 5.000000+6 2.071000+0 5.500000+6 2.370790+0 5.875000+6 2.592730+0 6.437500+6 2.919420+0 6.500000+6 2.955090+0 7.000000+6 3.237300+0 7.500000+6 3.511860+0 8.250000+6 3.912610+0 9.000000+6 4.303800+0 1.000000+7 4.818000+0 1.250000+7 6.111700+0 1.500000+7 7.432000+0 1.750000+7 8.742500+0 2.000000+7 1.001400+1 2.250000+7 1.124030+1 2.375000+7 1.183790+1 2.500000+7 1.242600+1 2.875000+7 1.413290+1 3.000000+7 1.468200+1 3.437500+7 1.651070+1 3.812500+7 1.795900+1 4.000000+7 1.864100+1 4.500000+7 2.032170+1 5.000000+7 2.185600+1 5.500000+7 2.328110+1 6.000000+7 2.463400+1 6.750000+7 2.656160+1 7.000000+7 2.718300+1 8.000000+7 2.955900+1 9.000000+7 3.177600+1 1.000000+8 3.383200+1 1.125000+8 3.616180+1 1.187500+8 3.722010+1 1.250000+8 3.821200+1 1.375000+8 3.998650+1 1.437500+8 4.077910+1 1.500000+8 4.152300+1 1.617200+8 4.278230+1 1.712900+8 4.370160+1 1.718800+8 4.375580+1 1.815400+8 4.460200+1 1.907700+8 4.534480+1 2.000000+8 4.604000+1 2.125000+8 4.690700+1 2.312500+8 4.807920+1 2.375000+8 4.843610+1 2.406300+8 4.861190+1 2.500000+8 4.911900+1 2.562500+8 4.943710+1 2.835900+8 5.071460+1 2.945300+8 5.117700+1 3.000000+8 5.139800+1 3.062500+8 5.164090+1 3.335900+8 5.262910+1 3.445300+8 5.298930+1 3.500000+8 5.316600+1 3.562500+8 5.335610+1 3.671900+8 5.368250+1 4.000000+8 5.457900+1 4.125000+8 5.488250+1 4.234400+8 5.514190+1 4.425800+8 5.556170+1 4.677000+8 5.605770+1 4.750000+8 5.619260+1 5.000000+8 5.662100+1 5.343800+8 5.712460+1 5.578100+8 5.743020+1 5.859400+8 5.774860+1 6.000000+8 5.789200+1 6.500000+8 5.832460+1 6.750000+8 5.850780+1 6.937500+8 5.863300+1 7.000000+8 5.867400+1 7.125000+8 5.874510+1 8.000000+8 5.918100+1 8.250000+8 5.927950+1 8.468800+8 5.936350+1 8.851600+8 5.949190+1 9.569300+8 5.970670+1 9.856400+8 5.978340+1 1.000000+9 5.982100+1 1.031300+9 5.989290+1 1.060500+9 5.995800+1 1.088000+9 6.001790+1 1.139500+9 6.012260+1 1.184600+9 6.020310+1 1.362000+9 6.046160+1 1.411300+9 6.051440+1 1.470400+9 6.057540+1 1.500000+9 6.060500+1 1.560500+9 6.065260+1 1.615500+9 6.069430+1 1.686000+9 6.073610+1 1.764500+9 6.077900+1 1.823400+9 6.080860+1 1.911700+9 6.084200+1 2.000000+9 6.087400+1 2.139200+9 6.090620+1 2.272600+9 6.093520+1 2.443000+9 6.096400+1 2.602800+9 6.098130+1 2.825100+9 6.099640+1 2.961100+9 6.100160+1 3.215900+9 6.101070+1 3.438900+9 6.101120+1 3.500000+9 6.101060+1 3.634100+9 6.100940+1 3.975600+9 6.100650+1 4.231700+9 6.100440+1 4.615800+9 6.100160+1 5.000000+9 6.099900+1 5.375000+9 6.099920+1 6.031300+9 6.099940+1 6.892600+9 6.099970+1 8.000000+9 6.100000+1 1.00000+10 6.100000+1 1.27030+10 6.100000+1 1.55700+10 6.100000+1 2.00890+10 6.100000+1 2.65200+10 6.100000+1 3.54180+10 6.100000+1 4.72580+10 6.100000+1 6.04430+10 6.100000+1 8.02220+10 6.100000+1 1.00000+11 6.100000+1 1.34280+11 6.100000+1 1.77440+11 6.100000+1 2.63330+11 6.100000+1 4.88110+11 6.100000+1 1.16740+12 6.100000+1 3.55150+12 6.100000+1 1.00000+14 6.100000+1 2.05350+15 6.100000+1 1.00000+17 6.100000+1 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.159139-6 0.0 1.161992-6 1.056279-7 1.164845-6 2.090084-7 1.167698-6 3.817710-7 1.170552-6 6.437183-7 1.173405-6 1.001942-6 1.176258-6 1.439605-6 1.179111-6 1.909405-6 1.181964-6 2.337795-6 1.184817-6 2.642219-6 1.187670-6 2.756672-6 1.190523-6 2.654944-6 1.193376-6 2.360367-6 1.196229-6 1.937125-6 1.201935-6 1.026304-6 1.204788-6 6.625461-7 1.207642-6 3.948301-7 1.210495-6 2.171993-7 1.213348-6 1.102962-7 1.216201-6 0.0 2.089490-6 0.0 2.097204-6 3.148699+0 2.099776-6 4.184952+0 2.104919-6 7.644157+0 2.110062-6 1.288910+1 2.115848-6 2.115487+1 2.124768-6 3.690624+1 2.131277-6 4.756976+1 2.136249-6 5.311479+1 2.141465-6 5.498115+1 2.146783-6 5.233523+1 2.151970-6 4.600499+1 2.160454-6 3.128613+1 2.166635-6 2.054957+1 2.172100-6 1.293180+1 2.176921-6 7.905638+0 2.182225-6 4.282219+0 2.189819-6 1.088268+0 2.192315-6 1.533852-2 2.192332-6 7.669321-3 2.192350-6 0.0 2.230040-6 0.0 2.239646-6 7.564572+0 2.241018-6 8.634199+0 2.246507-6 1.577107+1 2.252339-6 2.751499+1 2.258171-6 4.364575+1 2.267957-6 7.708313+1 2.274295-6 9.735925+1 2.280330-6 1.099147+2 2.285327-6 1.135760+2 2.290923-6 1.085619+2 2.296894-6 9.437199+1 2.305535-6 6.540705+1 2.312375-6 4.239692+1 2.317864-6 2.736997+1 2.323353-6 1.631055+1 2.328842-6 8.972565+0 2.337075-6 2.280862+0 2.339820-6 0.0 3.095469-6 0.0 3.103088-6 2.57772-15 3.110707-6 5.10059-15 3.118326-6 9.31665-15 3.125945-6 1.57092-14 3.133564-6 2.44512-14 3.141184-6 3.51318-14 3.148803-6 4.65967-14 3.156422-6 5.70510-14 3.164041-6 6.44801-14 3.171660-6 6.72732-14 3.179279-6 6.47907-14 3.186898-6 5.76019-14 3.194517-6 4.72732-14 3.209756-6 2.50457-14 3.217375-6 1.61686-14 3.224994-6 9.63534-15 3.232613-6 5.30048-15 3.240232-6 2.69164-15 3.247851-6 0.0 3.597658-6 0.0 3.608970-6 4.081090-6 3.611293-6 6.090045-6 3.629070-6 1.055751-1 3.637959-6 1.928374-1 3.646848-6 3.251441-1 3.654380-6 4.816031-1 3.672264-6 1.321563+0 3.684354-6 2.100164+0 3.697148-6 3.095521+0 3.718235-6 4.837058+0 3.728443-6 5.433674+0 3.735735-6 5.682517+0 3.746221-6 5.582860+0 3.754624-6 5.182460+0 3.764074-6 4.418134+0 3.789172-6 1.914467+0 3.798167-6 1.235913+0 3.807161-6 7.365157-1 3.816156-6 4.051634-1 3.829648-6 1.029942-1 3.834145-6 0.0 4.079606-6 0.0 4.079635-6 1.88478-14 4.099718-6 2.99438-11 4.109759-6 5.46863-11 4.119801-6 9.21945-11 4.129842-6 1.43480-10 4.158689-6 3.26862-10 4.159958-6 1.440058-7 4.178755-6 2.025033-2 4.180436-6 3.023775-2 4.190676-6 9.829772-2 4.199633-6 1.662762-1 4.210175-6 2.904143-1 4.220216-6 4.579216-1 4.232968-6 7.398200-1 4.252999-6 1.232186+0 4.264330-6 1.444579+0 4.274402-6 1.545293+0 4.284473-6 1.537799+0 4.294538-6 1.423074+0 4.304594-6 1.223514+0 4.323903-6 7.440523-1 4.334700-6 7.411775-1 4.345521-6 7.909916-1 4.356079-6 1.048222+0 4.367073-6 1.578775+0 4.379641-6 2.509875+0 4.398957-6 4.327462+0 4.411940-6 5.426239+0 4.422213-6 5.988450+0 4.432193-6 6.149763+0 4.442840-6 5.870358+0 4.456669-6 4.910996+0 4.483544-6 2.538900+0 4.494186-6 1.821160+0 4.504829-6 1.326144+0 4.515472-6 1.025140+0 4.530130-6 7.852171-1 4.536757-6 6.421539-1 4.541012-6 6.464502-1 4.552117-6 6.107655-1 4.563294-6 5.312210-1 4.585648-6 3.305089-1 4.595425-6 2.527631-1 4.606307-6 1.933592-1 4.617190-6 1.664945-1 4.628421-6 1.715639-1 4.632614-6 1.816165-1 4.654297-6 5.789153-1 4.655419-6 6.008824-1 4.668173-6 9.915383-1 4.679412-6 1.462339+0 4.691333-6 2.106314+0 4.719772-6 3.899283+0 4.732194-6 4.475313+0 4.738791-6 4.670154+0 4.749033-6 4.762921+0 4.761360-6 4.488449+0 4.772736-6 3.948860+0 4.804669-6 1.906734+0 4.815562-6 1.342014+0 4.827020-6 9.045953-1 4.838478-6 6.149368-1 4.860666-6 2.636886-1 4.890536-6 2.808563-1 4.908155-6 3.151636-1 4.938086-6 4.127024-1 4.962760-6 5.082076-1 4.976247-6 5.370908-1 4.987803-6 5.386161-1 5.000034-6 5.185308-1 5.021228-6 4.393969-1 5.045736-6 3.333642-1 5.060942-6 2.841627-1 5.072420-6 2.572586-1 5.083167-6 2.397715-1 5.104148-6 2.153365-1 5.567436-6 1.587419-1 5.966187-6 1.226809-1 6.305931-6 9.924965-2 6.695591-6 7.851310-2 6.773743-6 7.498348-2 6.807088-6 8.717340-2 6.823761-6 9.771815-2 6.840434-6 1.140769-1 6.859448-6 1.406098-1 6.902949-6 2.149197-1 6.926162-6 2.418968-1 6.942840-6 2.466926-1 6.959518-6 2.376021-1 6.976197-6 2.165276-1 7.023834-6 1.316969-1 7.040506-6 1.073588-1 7.057179-6 8.928183-2 7.073852-6 7.711287-2 7.107197-6 6.177917-2 7.303191-6 5.526875-2 7.328284-6 6.078993-2 7.339143-6 6.485009-2 7.357119-6 7.447279-2 7.375095-6 8.908231-2 7.396019-6 1.141659-1 7.436737-6 1.795360-1 7.450364-6 2.024278-1 7.468479-6 2.254373-1 7.486594-6 2.370474-1 7.504710-6 2.346352-1 7.522825-6 2.186509-1 7.547528-6 1.814222-1 7.577170-6 1.298479-1 7.590805-6 1.086361-1 7.607461-6 8.875351-2 7.626757-6 7.213465-2 7.636630-6 6.680391-2 7.655198-6 5.973097-2 7.662709-6 5.770873-2 7.689036-6 5.953666-2 7.738212-6 7.352476-2 7.756891-6 7.768409-2 7.775570-6 7.953839-2 7.794249-6 7.918787-2 7.864222-6 6.998357-2 7.888422-6 7.079823-2 7.911001-6 7.335232-2 7.933313-6 7.805085-2 7.965897-6 8.774508-2 8.019247-6 1.087096-1 8.044420-6 1.141943-1 8.063458-6 1.147146-1 8.083305-6 1.114044-1 8.146143-6 8.629372-2 8.180174-6 7.384229-2 8.199794-6 6.932561-2 8.216028-6 6.718282-2 8.254579-6 6.622934-2 8.327235-6 7.487392-2 8.499730-6 8.157122-2 8.658053-6 7.994939-2 8.751755-6 7.515816-2 8.831212-6 7.077156-2 8.887632-6 7.137132-2 8.992863-6 7.606332-2 9.075255-6 7.681438-2 9.902108-6 7.426909-2 1.083782-5 7.750095-2 1.177456-5 8.615537-2 1.291776-5 1.033213-1 1.425076-5 1.318558-1 1.573447-5 1.745772-1 1.723360-5 2.287003-1 1.909292-5 3.126506-1 2.087118-5 4.110239-1 2.097535-5 2.577130+0 2.102530-5 4.277170+0 2.107667-5 6.926417+0 2.110327-5 8.799581+0 2.112804-5 1.502414+1 2.120716-5 3.612956+1 2.125910-5 5.607158+1 2.131753-5 8.727901+1 2.137078-5 1.226843+2 2.151492-5 2.271557+2 2.157916-5 2.530730+2 2.162796-5 2.564243+2 2.167941-5 2.420068+2 2.173381-5 2.097219+2 2.188242-5 9.213766+1 2.193436-5 5.942546+1 2.198630-5 3.561006+1 2.203824-5 1.980955+1 2.211616-5 5.402584+0 2.214213-5 4.919430-1 2.303951-5 5.545084-1 2.315293-5 8.156259-1 2.321111-5 1.037053+0 2.326635-5 1.349734+0 2.332306-5 1.787166+0 2.349318-5 3.415500+0 2.360252-5 4.195422+0 2.367533-5 4.492053+0 2.374481-5 4.768421+0 2.379923-5 5.149594+0 2.385572-5 5.807872+0 2.392492-5 6.989083+0 2.402369-5 8.920236+0 2.409021-5 9.775689+0 2.414934-5 1.002805+1 2.420847-5 9.727087+0 2.429447-5 8.563192+0 2.432038-5 8.146336+0 2.444011-5 1.686946+1 2.450272-5 2.563819+1 2.456633-5 3.991244+1 2.462800-5 5.889109+1 2.480585-5 1.240183+2 2.487366-5 1.387661+2 2.493264-5 1.419141+2 2.499313-5 1.344758+2 2.505882-5 1.162956+2 2.522612-5 5.484880+1 2.528138-5 3.837775+1 2.534126-5 2.533017+1 2.540034-5 1.677275+1 2.551775-5 6.156287+0 2.648871-5 5.659042+0 2.674951-5 5.832561+0 2.701030-5 6.542908+0 2.727335-5 7.501256+0 2.751130-5 9.037539+0 2.760283-5 9.554128+0 2.766690-5 9.673902+0 2.776720-5 9.372296+0 2.798895-5 8.182341+0 2.815000-5 7.943688+0 2.862441-5 7.962947+0 2.919234-5 7.655468+0 3.014804-5 7.097937+0 3.235937-5 6.272160+0 3.570000-5 5.474273+0 3.945840-5 4.973477+0 4.291952-5 4.785571+0 4.354566-5 4.818608+0 4.464002-5 4.718566+0 5.150000-5 4.806828+0 8.511381-5 6.324876+0 1.101489-4 6.990798+0 1.187628-4 7.095077+0 1.193035-4 7.904091+0 1.198915-4 2.711493+1 1.201844-4 4.294335+1 1.204781-4 6.659875+1 1.208456-4 1.082123+2 1.215216-4 1.969816+2 1.217043-4 2.180836+2 1.220052-4 2.403841+2 1.223074-4 2.447225+2 1.226103-4 2.299558+2 1.229356-4 1.968439+2 1.234799-4 1.296719+2 1.237492-4 1.010658+2 1.240191-4 8.078748+1 1.241533-4 7.532467+1 1.243314-4 7.136924+1 1.244651-4 7.187356+1 1.246591-4 7.663055+1 1.248724-4 8.721701+1 1.252098-4 1.070446+2 1.256542-4 1.450799+2 1.259819-4 1.633201+2 1.262625-4 1.692645+2 1.265878-4 1.617607+2 1.269351-4 1.402016+2 1.278106-4 6.564955+1 1.280960-4 4.601224+1 1.283819-4 3.129533+1 1.286888-4 2.084006+1 1.292859-4 8.239956+0 1.304390-4 8.476034+0 1.322751-4 9.414285+0 1.363719-4 1.025241+1 1.411469-4 1.125709+1 1.451720-4 1.147420+1 1.531838-4 1.075139+1 1.667067-4 9.203260+0 1.808814-4 8.184684+0 1.973000-4 7.650648+0 2.219473-4 7.501848+0 2.305615-4 7.572415+0 2.327902-4 7.869489+0 2.362389-4 8.951004+0 2.374954-4 8.995301+0 2.418551-4 8.711762+0 2.578048-4 8.946214+0 2.647251-4 9.312352+0 3.216017-4 9.952725+0 3.278468-4 1.044190+1 4.109579-4 1.066386+1 5.249018-4 1.023847+1 1.001060-3 7.044341+0 1.001499-3 7.065761+0 1.006429-3 1.249169+1 1.008895-3 1.700579+1 1.011527-3 2.449635+1 1.014194-3 3.497476+1 1.020784-3 6.676426+1 1.023747-3 7.761084+1 1.026628-3 8.206048+1 1.028972-3 8.187716+1 1.036368-3 6.657140+1 1.038766-3 6.367022+1 1.041909-3 6.445326+1 1.048636-3 7.253719+1 1.053443-3 7.134107+1 1.056406-3 6.590642+1 1.063415-3 4.694172+1 1.065957-3 4.135657+1 1.068499-3 3.731259+1 1.071042-3 3.469065+1 1.076033-3 3.147771+1 1.173464-3 3.095101+1 1.281422-3 2.882562+1 1.319185-3 2.805974+1 1.332921-3 2.949513+1 1.347508-3 3.144098+1 1.419708-3 2.909629+1 1.446431-3 2.927725+1 1.466837-3 2.984167+1 1.597210-3 2.674660+1 1.651710-3 2.675180+1 1.935824-3 2.187845+1 2.280755-3 1.758127+1 2.646167-3 1.427144+1 3.064002-3 1.156384+1 3.560442-3 9.259799+0 4.063556-3 7.586585+0 4.643816-3 6.179962+0 5.231447-3 5.132882+0 6.025340-3 4.104887+0 6.295612-3 3.844006+0 6.337645-3 4.019724+0 6.359912-3 4.314441+0 6.381700-3 4.836798+0 6.403105-3 5.602149+0 6.467050-3 8.563248+0 6.498401-3 9.530451+0 6.540141-3 1.003253+1 6.786244-3 9.630350+0 6.905982-3 9.539221+0 6.955645-3 9.995344+0 7.053456-3 1.179230+1 7.115249-3 1.214294+1 7.313648-3 1.188887+1 7.464370-3 1.286400+1 7.688352-3 1.250018+1 8.823078-3 1.009534+1 1.014935-2 8.064644+0 1.161044-2 6.475133+0 1.307041-2 5.325331+0 1.492827-2 4.259640+0 1.694590-2 3.433879+0 1.870396-2 2.897846+0 2.124675-2 2.322773+0 2.397108-2 1.880707+0 2.697284-2 1.527017+0 3.045442-2 1.230667+0 3.412758-2 1.003596+0 3.845773-2 8.092418-1 4.367661-2 6.425527-1 4.416568-2 6.364987-1 4.437444-2 6.594874-1 4.451818-2 7.102061-1 4.462465-2 7.817078-1 4.474970-2 9.183896-1 4.487701-2 1.127944+0 4.502709-2 1.466317+0 4.544758-2 2.599451+0 4.566262-2 2.999469+0 4.589434-2 3.211620+0 4.634675-2 3.272590+0 5.425497-2 2.541568+0 6.183723-2 2.051551+0 7.018704-2 1.654894+0 7.985088-2 1.325044+0 8.978890-2 1.079638+0 1.014171-1 8.711785-1 1.123764-1 7.255618-1 1.258925-1 5.916263-1 1.409478-1 4.829884-1 1.573222-1 3.964114-1 1.763144-1 3.228368-1 1.967738-1 2.649373-1 2.183535-1 2.199606-1 2.421922-1 1.831730-1 2.705701-1 1.509181-1 3.021582-1 1.248369-1 3.353244-1 1.047365-1 3.773066-1 8.634824-2 4.219512-1 7.230340-2 4.731513-1 6.068116-2 5.324146-1 5.104859-2 6.077850-1 4.244025-2 6.993386-1 3.537395-2 8.058422-1 2.981536-2 9.339260-1 2.523792-2 1.120601+0 2.075583-2 1.347258+0 1.694381-2 1.619761+0 1.383190-2 1.947381+0 1.129152-2 2.341267+0 9.217718-3 2.814822+0 7.524787-3 3.384160+0 6.142780-3 3.885536+0 5.275554-3 4.671441+0 4.306643-3 5.616308+0 3.515683-3 6.752287+0 2.869991-3 8.118035+0 2.342887-3 9.760024+0 1.912591-3 1.000000+1 3.920036-3 1 61000 7 0 1.450000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.040500+1 1.682733-6-5.790540+1 1.913713-6-5.431560+1 2.008465-6-5.009267+1 2.052801-6-4.555049+1 2.075082-6-4.097544+1 2.086498-6-3.661983+1 2.094633-6-3.121892+1 2.099776-6-2.798064+1 2.105562-6-2.376099+1 2.111830-6-1.994283+1 2.115848-6-1.856227+1 2.118660-6-1.851953+1 2.121634-6-1.926832+1 2.124768-6-2.129929+1 2.128464-6-2.533638+1 2.130634-6-2.863946+1 2.135566-6-3.776670+1 2.145998-6-6.089344+1 2.151970-6-4.961778+1 2.157273-6-4.341564+1 2.161492-6-4.116899+1 2.166635-6-4.127126+1 2.172100-6-4.402959+1 2.193475-6-6.073343+1 2.221818-6-4.176226+1 2.228333-6-3.540724+1 2.232258-6-2.955680+1 2.240332-6-2.020618+1 2.246507-6-1.167676+1 2.247494-6-1.017982+1 2.251996-6-4.943961+0 2.252339-6-4.433837+0 2.252983-6-3.737921+0 2.254108-6-2.807285+0 2.257485-6-7.652355-1 2.258171-6-3.602439-1 2.259372-6-1.589173-1 2.260273-6-2.352429-1 2.261623-6-6.298556-1 2.262974-6-1.249433+0 2.263660-6-1.664658+0 2.264861-6-2.747240+0 2.265762-6-3.788917+0 2.266437-6-4.697307+0 2.267450-6-6.278348+0 2.268463-6-8.213346+0 2.270865-6-1.347808+1 2.272215-6-1.691319+1 2.273735-6-2.157080+1 2.278627-6-3.922095+1 2.280905-6-4.962663+1 2.283673-6-6.083520+1 2.285327-6-5.245791+1 2.291546-6-2.498911+1 2.296251-6-7.825598+0 2.296894-6-5.706113+0 2.298020-6-2.447903+0 2.298864-6-2.512934-1 2.300131-6 2.754665+0 2.301397-6 5.578475+0 2.302083-6 7.011493+0 2.303284-6 9.088838+0 2.304184-6 1.039913+1 2.306210-6 1.263127+1 2.309287-6 1.429622+1 2.311603-6 1.448007+1 2.315119-6 1.272575+1 2.317178-6 1.123092+1 2.318550-6 9.474689+0 2.322152-6 5.709214+0 2.322752-6 4.954153+0 2.323353-6 4.009712+0 2.328842-6-3.122026+0 2.329528-6-4.142896+0 2.330729-6-5.598262+0 2.337075-6-1.230486+1 2.339477-6-1.539369+1 2.340558-6-1.728081+1 2.344238-6-2.125632+1 2.348631-6-2.463729+1 2.357349-6-2.945674+1 2.371653-6-3.468008+1 2.396749-6-4.021045+1 2.434076-6-4.483925+1 2.503112-6-4.923169+1 2.657182-6-5.329822+1 3.039402-6-5.649080+1 3.611293-6-5.931803+1 3.703006-6-6.099346+1 3.746221-6-5.699419+1 3.780306-6-5.451989+1 3.897641-6-5.731897+1 4.272041-6-5.960083+1 4.326088-6-5.954819+1 4.376576-6-6.068402+1 4.411316-6-6.045995+1 4.464254-6-5.529799+1 4.515472-6-5.599537+1 4.705913-6-5.991690+1 4.791104-6-5.491832+1 4.962760-6-5.717612+1 1.264480-5-6.147123+1 1.647832-5-5.769495+1 1.827392-5-5.294083+1 1.916833-5-4.803519+1 1.978473-5-4.191096+1 2.009656-5-3.689420+1 2.032808-5-3.154675+1 2.051161-5-2.557061+1 2.062682-5-2.053083+1 2.070151-5-1.645224+1 2.077619-5-1.144089+1 2.082598-5-7.350794+0 2.084858-5-5.202944+0 2.085988-5-4.026897+0 2.092556-5 3.684934+0 2.095045-5 6.862880+0 2.097535-5 1.044486+1 2.101281-5 1.651011+1 2.106383-5 2.666068+1 2.108997-5 3.341252+1 2.110327-5 3.802845+1 2.112804-5 4.585986+1 2.127695-5 8.084527+1 2.132890-5 8.819604+1 2.137078-5 8.835909+1 2.140935-5 8.208724+1 2.144269-5 7.158344+1 2.146868-5 5.986953+1 2.148764-5 4.854086+1 2.151102-5 3.169810+1 2.151881-5 2.486845+1 2.152206-5 2.176365+1 2.154641-5 1.150947+0 2.155250-5-4.186655+0 2.156049-5-1.156479+1 2.156883-5-2.016147+1 2.157317-5-2.554912+1 2.158461-5-3.734968+1 2.161106-5-6.326166+1 2.162247-5-5.050389+1 2.162796-5-4.373098+1 2.167464-5 2.600275+0 2.167627-5 4.571475+0 2.167941-5 7.863667+0 2.168531-5 1.345113+1 2.169950-5 2.548994+1 2.172659-5 4.696313+1 2.173381-5 5.272939+1 2.175181-5 6.390905+1 2.178197-5 7.787727+1 2.181513-5 8.813887+1 2.184930-5 9.363686+1 2.187621-5 9.372912+1 2.192787-5 8.510474+1 2.198630-5 6.836448+1 2.205610-5 4.677539+1 2.211616-5 3.174222+1 2.213888-5 2.489397+1 2.214613-5 2.177365+1 2.215312-5 1.948919+1 2.216362-5 1.659737+1 2.218519-5 1.164882+1 2.219627-5 9.438707+0 2.220983-5 6.954456+0 2.223017-5 3.590048+0 2.225050-5 5.717504-1 2.226689-5-1.654546+0 2.228327-5-3.725661+0 2.230522-5-6.289095+0 2.233185-5-9.131717+0 2.238609-5-1.417696+1 2.246743-5-2.038127+1 2.257590-5-2.694997+1 2.273860-5-3.457482+1 2.308179-5-4.668592+1 2.347901-5-5.811599+1 2.374481-5-6.439903+1 2.402369-5-5.614858+1 2.420108-5-5.109250+1 2.427432-5-4.647869+1 2.431856-5-4.133824+1 2.444011-5-2.553475+1 2.450272-5-1.632253+1 2.451357-5-1.452571+1 2.456259-5-8.479656+0 2.456633-5-7.884204+0 2.457335-5-7.091132+0 2.458563-5-6.062374+0 2.462800-5-3.601731+0 2.463874-5-3.431488+0 2.464882-5-3.572926+0 2.465847-5-3.925546+0 2.466711-5-4.398022+0 2.467541-5-4.988540+0 2.469096-5-6.439094+0 2.470458-5-8.070558+0 2.471649-5-9.778233+0 2.473603-5-1.317035+1 2.475136-5-1.638923+1 2.477238-5-2.171834+1 2.478827-5-2.667998+1 2.479842-5-3.059809+1 2.480585-5-3.398094+1 2.485285-5-5.300331+1 2.487850-5-6.629105+1 2.492240-5-4.537629+1 2.493587-5-3.761873+1 2.498284-5-1.578065+1 2.498911-5-1.223075+1 2.499313-5-1.022044+1 2.500067-5-6.844925+0 2.500726-5-4.122681+0 2.501880-5 3.163577-1 2.505882-5 1.479085+1 2.506927-5 1.803977+1 2.508827-5 2.295071+1 2.510550-5 2.662264+1 2.513377-5 3.133527+1 2.516551-5 3.488368+1 2.519203-5 3.644791+1 2.521759-5 3.653284+1 2.527447-5 3.239773+1 2.533511-5 2.478996+1 2.540767-5 1.419943+1 2.543519-5 1.074122+1 2.547686-5 5.948346+0 2.549711-5 3.442588+0 2.550743-5 2.000028+0 2.551259-5 1.182929+0 2.551775-5 1.635313-1 2.552166-5-6.345434-1 2.552898-5-1.783287+0 2.554179-5-3.455195+0 2.556100-5-5.562667+0 2.558021-5-7.388498+0 2.559704-5-8.822040+0 2.564751-5-1.241192+1 2.570138-5-1.549822+1 2.577076-5-1.873229+1 2.589070-5-2.301284+1 2.605553-5-2.730910+1 2.628955-5-3.160591+1 2.682431-5-3.831981+1 2.739554-5-4.223871+1 2.766690-5-4.166388+1 2.795269-5-4.119646+1 2.869922-5-4.307087+1 3.315584-5-4.650543+1 4.693146-5-4.992530+1 8.709636-5-5.450920+1 9.799189-5-5.731159+1 1.057832-4-5.123705+1 1.101489-4-4.482168+1 1.128705-4-3.806769+1 1.144956-4-3.190723+1 1.156725-4-2.561251+1 1.165348-4-1.936105+1 1.170570-4-1.453312+1 1.174568-4-1.007413+1 1.177629-4-6.061164+0 1.178879-4-4.236009+0 1.181066-4-7.250226-1 1.182707-4 2.222731+0 1.183937-4 4.647143+0 1.184860-4 6.607002+0 1.186244-4 9.819111+0 1.187628-4 1.347178+1 1.189820-4 2.017197+1 1.191638-4 2.701318+1 1.192860-4 3.318813+1 1.193474-4 3.740089+1 1.195342-4 4.641174+1 1.198462-4 6.055746+1 1.202264-4 8.156234+1 1.205935-4 9.775283+1 1.209141-4 1.024940+2 1.211183-4 9.791504+1 1.213162-4 8.770180+1 1.215627-4 6.596891+1 1.216706-4 5.329163+1 1.217043-4 4.808084+1 1.218756-4 2.488884+1 1.219398-4 1.521135+1 1.219687-4 1.021955+1 1.219875-4 6.309455+0 1.220052-4 3.122281+0 1.220383-4-2.369563+0 1.222155-4-3.020124+1 1.222692-4-4.005805+1 1.223074-4-4.752070+1 1.225630-4-2.742303+1 1.225939-4-2.214450+1 1.226543-4-1.375977+1 1.226794-4-1.058592+1 1.227234-4-5.319741+0 1.227893-4 2.129877+0 1.228388-4 7.666561+0 1.228722-4 1.179456+1 1.229049-4 1.513932+1 1.229643-4 2.029080+1 1.230183-4 2.424044+1 1.231067-4 2.950326+1 1.232061-4 3.378619+1 1.232891-4 3.606278+1 1.233691-4 3.696617+1 1.235903-4 3.463218+1 1.237056-4 3.098109+1 1.237492-4 2.828539+1 1.238762-4 2.183095+1 1.239397-4 1.820449+1 1.239873-4 1.488842+1 1.240191-4 1.196707+1 1.241022-4 5.640589+0 1.241533-4 1.381722+0 1.242760-4-7.590970+0 1.243067-4-1.003108+1 1.243314-4-1.230465+1 1.244333-4-2.038103+1 1.244651-4-2.295341+1 1.246591-4-3.620204+1 1.248074-4-4.448863+1 1.249966-4-5.067626+1 1.252583-4-5.692157+1 1.254119-4-5.585539+1 1.255666-4-5.092166+1 1.256542-4-4.555612+1 1.258664-4-3.092020+1 1.259439-4-2.393384+1 1.259819-4-1.974068+1 1.261344-4-5.904999+0 1.261640-4-3.129555+0 1.262085-4 1.283691+0 1.262308-4 3.693888+0 1.262419-4 5.002610+0 1.262625-4 7.830298+0 1.265670-4 3.896445+1 1.266268-4 4.496692+1 1.269351-4 6.953995+1 1.271399-4 8.058294+1 1.274203-4 8.860323+1 1.277008-4 9.035620+1 1.280764-4 8.250795+1 1.286888-4 5.998392+1 1.292548-4 4.082872+1 1.293536-4 3.636527+1 1.295105-4 3.150016+1 1.297474-4 2.585002+1 1.300248-4 2.054549+1 1.302364-4 1.715008+1 1.304390-4 1.427573+1 1.306676-4 1.140345+1 1.308848-4 8.954232+0 1.311220-4 6.562887+0 1.314733-4 3.485767+0 1.318282-4 8.270779-1 1.320517-4-6.614834-1 1.322751-4-2.031327+0 1.326501-4-4.109636+0 1.331641-4-6.628403+0 1.337851-4-9.300637+0 1.344061-4-1.162664+1 1.354367-4-1.480520+1 1.368912-4-1.820622+1 1.386328-4-2.112174+1 1.411469-4-2.392094+1 1.451720-4-2.646526+1 1.531838-4-2.901226+1 1.713438-4-3.219974+1 2.021273-4-3.522243+1 2.418551-4-3.793389+1 2.985383-4-3.601183+1 3.372201-4-3.523050+1 4.776549-4-3.198039+1 6.246842-4-3.073642+1 7.535390-4-3.125111+1 8.619236-4-3.330596+1 9.403278-4-3.679867+1 9.837140-4-4.081685+1 1.006429-3-4.495606+1 1.018184-3-4.924486+1 1.032407-3-5.610516+1 1.040544-3-5.584202+1 1.071042-3-4.636283+1 1.089224-3-4.107511+1 1.116859-3-3.668411+1 1.154782-3-3.254710+1 1.220464-3-2.774375+1 1.281422-3-2.475608+1 1.319185-3-2.429119+1 1.347508-3-2.506530+1 1.381499-3-2.189193+1 1.419708-3-2.007118+1 1.466837-3-1.916370+1 1.500781-3-1.725714+1 1.562035-3-1.532658+1 1.609012-3-1.464285+1 1.636963-3-1.406730+1 1.682166-3-1.250182+1 1.773169-3-1.062857+1 1.883649-3-9.041599+0 2.028665-3-7.577570+0 2.168502-3-6.589309+0 2.339700-3-5.724865+0 2.548607-3-5.063033+0 2.856087-3-4.547256+0 3.147870-3-4.347646+0 3.560442-3-4.363228+0 4.063556-3-4.649468+0 4.643816-3-5.237249+0 5.231447-3-6.140273+0 5.657150-3-7.141479+0 5.949161-3-8.205234+0 6.136626-3-9.283131+0 6.260352-3-1.045487+1 6.337645-3-1.181433+1 6.425259-3-1.418428+1 6.461190-3-1.440041+1 6.507264-3-1.353822+1 6.571846-3-1.182920+1 6.641161-3-1.075329+1 6.746808-3-1.001163+1 6.855696-3-9.882582+0 6.937861-3-1.037344+1 7.004232-3-1.081588+1 7.053456-3-1.050757+1 7.169475-3-8.867455+0 7.254680-3-8.308362+0 7.391371-3-8.080058+0 7.464370-3-7.387023+0 7.555467-3-6.417956+0 7.688352-3-5.502830+0 7.890590-3-4.555834+0 8.164551-3-3.632400+0 8.408655-3-3.017299+0 8.715799-3-2.418969+0 9.054719-3-1.907669+0 9.427032-3-1.483711+0 9.778087-3-1.171975+0 1.014935-2-9.140625-1 1.049108-2-7.257242-1 1.090381-2-5.526592-1 1.128215-2-4.272920-1 1.161044-2-3.410340-1 1.196354-2-2.650899-1 1.236371-2-1.968318-1 1.262857-2-1.611157-1 1.279013-2-1.430138-1 1.307041-2-1.183721-1 1.345085-2-9.190249-2 1.367533-2-8.015542-2 1.401024-2-6.926878-2 1.431466-2-6.308032-2 1.471076-2-6.140425-2 1.533314-2-6.758032-2 1.583753-2-7.837645-2 1.635874-2-9.518286-2 1.694590-2-1.187283-1 1.762388-2-1.526597-1 1.941445-2-2.563233-1 3.045442-2-9.624275-1 3.543032-2-1.323523+0 3.845773-2-1.614327+0 4.067498-2-1.918588+0 4.215064-2-2.223142+0 4.315508-2-2.541218+0 4.387651-2-2.910133+0 4.431479-2-3.299846+0 4.477135-2-3.992038+0 4.507207-2-4.391837+0 4.531112-2-4.404244+0 4.560512-2-4.020560+0 4.609597-2-3.189927+0 4.646438-2-2.784336+0 4.702877-2-2.387808+0 4.779418-2-2.030975+0 4.881485-2-1.704822+0 5.011872-2-1.406006+0 5.145799-2-1.177305+0 5.333684-2-9.466612-1 5.520557-2-7.794047-1 5.762293-2-6.163413-1 6.021803-2-4.876968-1 6.183723-2-4.233976-1 6.343324-2-3.708943-1 6.654347-2-2.927863-1 6.842174-2-2.557356-1 7.018704-2-2.271641-1 7.390065-2-1.831578-1 7.769242-2-1.537292-1 7.985088-2-1.414499-1 8.541942-2-1.220313-1 8.978890-2-1.153793-1 9.654476-2-1.160659-1 1.041589-1-1.242272-1 1.123764-1-1.377385-1 1.573222-1-2.312864-1 1.967738-1-2.940649-1 2.421922-1-3.442123-1 3.133548-1-3.929212-1 4.219512-1-4.323341-1 6.382635-1-4.645427-1 1.183196+0-4.836635-1 3.713375+0-4.911407-1 1.000000+1-4.918066-1 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.139605-1 1.104050-6 3.518606-1 1.136030-6 4.086806-1 1.200474-6 5.506373-1 1.231231-6 6.331211-1 1.254300-6 7.032350-1 1.288902-6 8.229705-1 1.339792-6 1.034255+0 1.378883-6 1.234903+0 1.412002-6 1.436904+0 1.434617-6 1.593514+0 1.456526-6 1.762373+0 1.477750-6 1.944139+0 1.518230-6 2.349016+0 1.556219-6 2.813579+0 1.591871-6 3.343555+0 1.625329-6 3.945016+0 1.641278-6 4.275333+0 1.656729-6 4.628425+0 1.686665-6 5.409807+0 1.714730-6 6.281646+0 1.741040-6 7.255030+0 1.765707-6 8.337675+0 1.788832-6 9.537400+0 1.810511-6 1.086218+1 1.830835-6 1.232014+1 1.849890-6 1.391947+1 1.867753-6 1.566845+1 1.884500-6 1.757535+1 1.900200-6 1.964846+1 1.914919-6 2.189600+1 1.928718-6 2.432609+1 1.941654-6 2.694674+1 1.953782-6 2.976582+1 1.965152-6 3.279099+1 1.975812-6 3.602972+1 1.985805-6 3.948928+1 1.995174-6 4.317680+1 2.003957-6 4.709946+1 2.012191-6 5.126456+1 2.019910-6 5.567923+1 2.027147-6 6.034986+1 2.033932-6 6.528186+1 2.040293-6 7.048016+1 2.048000-6 7.767430+1 2.057087-6 8.773068+1 2.062001-6 9.405658+1 2.066607-6 1.006850+2 2.070925-6 1.076275+2 2.079023-6 1.230544+2 2.086107-6 1.400611+2 2.092307-6 1.588454+2 2.097731-6 1.795526+2 2.102478-6 2.021855+2 2.106631-6 2.265538+2 2.110265-6 2.522846+2 2.113444-6 2.788798+2 2.116227-6 3.057902+2 2.118661-6 3.324831+2 2.122655-6 3.834324+2 2.128363-6 4.737540+2 2.137263-6 6.605624+2 2.140959-6 7.546694+2 2.143588-6 8.268347+2 2.146216-6 9.026894+2 2.151473-6 1.062018+3 2.152130-6 1.082320+3 2.156729-6 1.223781+3 2.158536-6 1.277918+3 2.161986-6 1.376376+3 2.163793-6 1.424347+3 2.165518-6 1.467166+3 2.167243-6 1.506605+3 2.169543-6 1.553155+3 2.171760-6 1.590659+3 2.173814-6 1.618218+3 2.175539-6 1.635634+3 2.177756-6 1.649892+3 2.180713-6 1.654046+3 2.183178-6 1.644231+3 2.184093-6 1.637507+3 2.186181-6 1.615998+3 2.188514-6 1.582124+3 2.190997-6 1.535254+3 2.193507-6 1.477464+3 2.195608-6 1.421915+3 2.196699-6 1.390744+3 2.198948-6 1.322218+3 2.200613-6 1.268235+3 2.203076-6 1.184503+3 2.205524-6 1.098062+3 2.207175-6 1.038706+3 2.209297-6 9.619905+2 2.211597-6 8.793509+2 2.213445-6 8.140411+2 2.214554-6 7.755666+2 2.217182-6 6.871948+2 2.219811-6 6.037814+2 2.223219-6 5.046413+2 2.225067-6 4.557107+2 2.234014-6 2.726334+2 2.235581-6 2.501694+2 2.236895-6 2.335563+2 2.237881-6 2.224310+2 2.239174-6 2.095610+2 2.240542-6 1.980899+2 2.241717-6 1.899718+2 2.242925-6 1.833102+2 2.243837-6 1.794067+2 2.244434-6 1.773774+2 2.245023-6 1.757796+2 2.245604-6 1.746031+2 2.246175-6 1.738296+2 2.246737-6 1.734417+2 2.247845-6 1.737653+2 2.265006-6 3.818422+2 2.272108-6 6.076618+2 2.274465-6 7.063844+2 2.277835-6 8.708406+2 2.280340-6 1.012204+3 2.283023-6 1.182899+3 2.285999-6 1.396506+3 2.287785-6 1.537261+3 2.290593-6 1.777951+3 2.293402-6 2.041972+3 2.299370-6 2.675492+3 2.300028-6 2.750805+3 2.304987-6 3.345682+3 2.306798-6 3.572228+3 2.310254-6 4.012039+3 2.313106-6 4.376178+3 2.315871-6 4.723600+3 2.318723-6 5.069688+3 2.321488-6 5.386565+3 2.323946-6 5.647683+3 2.326661-6 5.908324+3 2.327457-6 5.978375+3 2.330748-6 6.234139+3 2.333318-6 6.392086+3 2.336270-6 6.524131+3 2.338746-6 6.592010+3 2.344133-6 6.600702+3 2.345669-6 6.568530+3 2.349926-6 6.402918+3 2.352600-6 6.245385+3 2.355192-6 6.057551+3 2.358044-6 5.815812+3 2.360809-6 5.552050+3 2.363267-6 5.298035+3 2.365636-6 5.039753+3 2.369235-6 4.630946+3 2.372044-6 4.305013+3 2.375203-6 3.938568+3 2.377661-6 3.657975+3 2.383278-6 3.046556+3 2.385209-6 2.849486+3 2.388895-6 2.495902+3 2.393810-6 2.075121+3 2.400369-6 1.607664+3 2.409074-6 1.143533+3 2.411954-6 1.024460+3 2.414823-6 9.205243+2 2.417681-6 8.300816+2 2.420527-6 7.515479+2 2.423362-6 6.834330+2 2.426187-6 6.243627+2 2.429000-6 5.730917+2 2.434604-6 4.894928+2 2.440165-6 4.255102+2 2.445682-6 3.756625+2 2.451157-6 3.360127+2 2.456588-6 3.037980+2 2.461977-6 2.771009+2 2.467324-6 2.545901+2 2.472629-6 2.353304+2 2.477893-6 2.186517+2 2.483115-6 2.040620+2 2.488297-6 1.911909+2 2.498579-6 1.694468+2 2.508701-6 1.518826+2 2.518665-6 1.374205+2 2.528473-6 1.253277+2 2.538127-6 1.150868+2 2.547631-6 1.063206+2 2.556987-6 9.874658+1 2.566196-6 9.214854+1 2.575261-6 8.635757+1 2.584185-6 8.123918+1 2.601753-6 7.254685+1 2.618773-6 6.552181+1 2.635260-6 5.974377+1 2.651233-6 5.492491+1 2.666706-6 5.085691+1 2.681696-6 4.738651+1 2.696217-6 4.439904+1 2.710284-6 4.180446+1 2.737540-6 3.745570+1 2.763092-6 3.402544+1 2.787048-6 3.126736+1 2.809506-6 2.901319+1 2.830560-6 2.714535+1 2.850299-6 2.557874+1 2.887308-6 2.302160+1 2.919692-6 2.111169+1 2.948027-6 1.965665+1 2.997614-6 1.747362+1 3.034805-6 1.607956+1 3.090590-6 1.429604+1 3.192842-6 1.167451+1 3.301264-6 9.523254+0 3.392035-6 7.972116+0 3.460113-6 6.850876+0 3.507980-6 6.039653+0 3.527526-6 5.690196+0 3.544629-6 5.369825+0 3.559593-6 5.074885+0 3.584145-6 4.551463+0 3.604195-6 4.073396+0 3.619233-6 3.673947+0 3.630512-6 3.347297+0 3.638970-6 3.087463+0 3.645314-6 2.885968+0 3.650073-6 2.732671+0 3.657210-6 2.503049+0 3.673622-6 2.022206+0 3.682385-6 1.838667+0 3.685578-6 1.794284+0 3.687174-6 1.777772+0 3.688770-6 1.765457+0 3.695547-6 1.767543+0 3.697805-6 1.790916+0 3.700064-6 1.827379+0 3.703452-6 1.909030+0 3.705993-6 1.993522+0 3.706840-6 2.026439+0 3.711145-6 2.233324+0 3.713633-6 2.385308+0 3.716445-6 2.587978+0 3.719029-6 2.805020+0 3.722423-6 3.137606+0 3.726709-6 3.639733+0 3.739395-6 5.715317+0 3.744942-6 6.915862+0 3.750009-6 8.169078+0 3.755406-6 9.661270+0 3.759860-6 1.100549+1 3.764012-6 1.233977+1 3.767865-6 1.363702+1 3.771589-6 1.493433+1 3.775425-6 1.630242+1 3.779813-6 1.788859+1 3.785215-6 1.983904+1 3.789098-6 2.121513+1 3.792238-6 2.229836+1 3.795937-6 2.352687+1 3.800545-6 2.496328+1 3.805311-6 2.631306+1 3.808836-6 2.720629+1 3.817675-6 2.898923+1 3.820776-6 2.944511+1 3.826695-6 3.005608+1 3.831354-6 3.029472+1 3.836340-6 3.031743+1 3.840411-6 3.016483+1 3.845755-6 2.974717+1 3.850908-6 2.913378+1 3.852626-6 2.888822+1 3.859484-6 2.773314+1 3.861771-6 2.729504+1 3.868629-6 2.586179+1 3.870916-6 2.535385+1 3.880061-6 2.324256+1 3.889206-6 2.111641+1 3.908818-6 1.701002+1 3.916218-6 1.571476+1 3.923387-6 1.460742+1 3.930332-6 1.366863+1 3.937060-6 1.287574+1 3.950095-6 1.162151+1 3.962315-6 1.071475+1 3.973772-6 1.003765+1 3.984512-6 9.513042+0 4.004651-6 8.723441+0 4.022272-6 8.168095+0 4.053109-6 7.375226+0 4.099365-6 6.412504+0 4.145640-6 5.554392+0 4.155844-6 5.364400+0 4.166048-6 5.169869+0 4.176252-6 4.968575+0 4.186456-6 4.758540+0 4.196660-6 4.538625+0 4.206864-6 4.309381+0 4.214925-6 4.123732+0 4.242535-6 3.518869+0 4.248972-6 3.406051+0 4.254170-6 3.330116+0 4.258795-6 3.276590+0 4.263420-6 3.238561+0 4.273863-6 3.220530+0 4.276735-6 3.234226+0 4.285353-6 3.329012+0 4.287951-6 3.374074+0 4.291849-6 3.456314+0 4.295747-6 3.556107+0 4.301222-6 3.725298+0 4.305694-6 3.887438+0 4.311562-6 4.130033+0 4.328750-6 4.982789+0 4.337324-6 5.443363+0 4.347719-6 5.980991+0 4.349018-6 6.044322+0 4.358113-6 6.450268+0 4.362318-6 6.611077+0 4.370345-6 6.861049+0 4.372945-6 6.924575+0 4.377494-6 7.014130+0 4.380906-6 7.062929+0 4.386024-6 7.106509+0 4.391142-6 7.115152+0 4.395416-6 7.096618+0 4.399690-6 7.055936+0 4.407486-6 6.929837+0 4.410085-6 6.874433+0 4.420479-6 6.597937+0 4.430500-6 6.269000+0 4.451385-6 5.493679+0 4.466383-6 4.936860+0 4.495987-6 3.978433+0 4.507792-6 3.668126+0 4.518120-6 3.435911+0 4.529186-6 3.231515+0 4.540915-6 3.068776+0 4.546435-6 3.012029+0 4.551956-6 2.967938+0 4.555170-6 2.947972+0 4.560794-6 2.922715+0 4.565012-6 2.911410+0 4.571339-6 2.905537+0 4.577667-6 2.911057+0 4.586719-6 2.933543+0 4.610255-6 3.010570+0 4.619537-6 3.021407+0 4.626930-6 3.013290+0 4.631365-6 2.999955+0 4.637065-6 2.972732+0 4.641339-6 2.944643+0 4.647752-6 2.890178+0 4.654164-6 2.821438+0 4.658730-6 2.764391+0 4.663296-6 2.701231+0 4.668351-6 2.624968+0 4.673407-6 2.543019+0 4.684448-6 2.349442+0 4.695489-6 2.144772+0 4.702240-6 2.018382+0 4.708991-6 1.893267+0 4.721032-6 1.677541+0 4.732149-6 1.491139+0 4.751570-6 1.209528+0 4.755099-6 1.166997+0 4.760393-6 1.110348+0 4.765688-6 1.064266+0 4.769385-6 1.039828+0 4.774932-6 1.018007+0 4.777705-6 1.015050+0 4.780479-6 1.018293+0 4.783643-6 1.030538+0 4.786412-6 1.049654+0 4.788835-6 1.073553+0 4.793075-6 1.133525+0 4.796255-6 1.195588+0 4.798640-6 1.252897+0 4.800428-6 1.302449+0 4.803111-6 1.388144+0 4.805795-6 1.488532+0 4.808758-6 1.617981+0 4.811954-6 1.781288+0 4.815704-6 2.007205+0 4.820662-6 2.368682+0 4.827822-6 3.032771+0 4.838128-6 4.327902+0 4.842160-6 4.955984+0 4.854662-6 7.376299+0 4.855363-6 7.533863+0 4.866287-6 1.028706+1 4.869843-6 1.130024+1 4.872103-6 1.197240+1 4.879424-6 1.428558+1 4.883498-6 1.565240+1 4.888970-6 1.755969+1 4.893629-6 1.923136+1 4.897805-6 2.075236+1 4.902994-6 2.265087+1 4.908043-6 2.448301+1 4.913371-6 2.637077+1 4.918485-6 2.811043+1 4.923316-6 2.966418+1 4.927595-6 3.094883+1 4.934388-6 3.277738+1 4.939303-6 3.391405+1 4.950213-6 3.579728+1 4.955615-6 3.637670+1 4.963233-6 3.678123+1 4.968617-6 3.677771+1 4.972359-6 3.663816+1 4.975538-6 3.643445+1 4.979500-6 3.607586+1 4.985800-6 3.528236+1 4.989407-6 3.471534+1 4.994267-6 3.383585+1 4.997918-6 3.309727+1 5.006375-6 3.117688+1 5.012948-6 2.953138+1 5.020706-6 2.748357+1 5.032420-6 2.431591+1 5.034934-6 2.364069+1 5.046986-6 2.050507+1 5.057677-6 1.793856+1 5.090107-6 1.180845+1 5.105695-6 9.714500+0 5.122904-6 7.891155+0 5.146246-6 6.001343+0 5.153569-6 5.517563+0 5.161468-6 5.052075+0 5.168433-6 4.693820+0 5.174789-6 4.415155+0 5.178471-6 4.277385+0 5.181540-6 4.177240+0 5.185530-6 4.068734+0 5.189520-6 3.986979+0 5.192386-6 3.946218+0 5.193954-6 3.930672+0 5.196896-6 3.915162+0 5.202044-6 3.933873+0 5.209765-6 4.083501+0 5.213626-6 4.218777+0 5.216521-6 4.348795+0 5.219719-6 4.522191+0 5.227363-6 5.070669+0 5.231084-6 5.409373+0 5.236026-6 5.934654+0 5.242690-6 6.782263+0 5.261039-6 9.929021+0 5.268646-6 1.154937+1 5.275046-6 1.302749+1 5.280473-6 1.434524+1 5.286466-6 1.584816+1 5.292255-6 1.732576+1 5.294203-6 1.782415+1 5.300392-6 1.939861+1 5.306146-6 2.082848+1 5.308528-6 2.140486+1 5.313944-6 2.266966+1 5.319360-6 2.385545+1 5.320159-6 2.402254+1 5.332937-6 2.636848+1 5.337055-6 2.697577+1 5.344917-6 2.790868+1 5.349309-6 2.829467+1 5.353502-6 2.857058+1 5.357695-6 2.875592+1 5.360890-6 2.883687+1 5.368078-6 2.883333+1 5.370474-6 2.877698+1 5.376863-6 2.849981+1 5.383252-6 2.805180+1 5.389641-6 2.745291+1 5.396030-6 2.672534+1 5.405614-6 2.544432+1 5.408809-6 2.497866+1 5.421587-6 2.299958+1 5.434366-6 2.095867+1 5.465787-6 1.645548+1 5.472473-6 1.566861+1 5.479158-6 1.495254+1 5.485844-6 1.430785+1 5.492529-6 1.373344+1 5.499215-6 1.322690+1 5.505900-6 1.278474+1 5.512586-6 1.240269+1 5.519271-6 1.207590+1 5.525957-6 1.179911+1 5.532642-6 1.156687+1 5.539328-6 1.137361+1 5.552699-6 1.108207+1 5.566070-6 1.088224+1 5.592812-6 1.061332+1 5.618406-6 1.036249+1 5.632925-6 1.018645+1 5.646296-6 9.999264+0 5.673039-6 9.572256+0 5.713784-6 8.900319+0 5.741502-6 8.498036+0 5.777104-6 8.071400+0 5.833982-6 7.550466+0 5.905080-6 7.057463+0 5.990398-6 6.592519+0 6.061496-6 6.272854+0 6.153022-6 5.921939+0 6.244548-6 5.615827+0 6.336769-6 5.343556+0 6.595512-6 4.701303+0 6.830664-6 4.210901+0 6.948243-6 3.976646+0 7.045869-6 3.772974+0 7.102576-6 3.636780+0 7.206894-6 3.354986+0 7.224546-6 3.321104+0 7.242198-6 3.299278+0 7.259850-6 3.292401+0 7.274474-6 3.299275+0 7.289098-6 3.317635+0 7.312806-6 3.369002+0 7.365762-6 3.527945+0 7.383414-6 3.572984+0 7.397987-6 3.600540+0 7.413102-6 3.617783+0 7.424465-6 3.622544+0 7.436370-6 3.619961+0 7.454022-6 3.602762+0 7.471674-6 3.571816+0 7.489326-6 3.530351+0 7.524630-6 3.429338+0 7.659383-6 3.044261+0 7.781943-6 2.719531+0 7.811458-6 2.662804+0 7.833706-6 2.636580+0 7.852707-6 2.628335+0 7.864862-6 2.630442+0 7.886331-6 2.647977+0 7.901329-6 2.669589+0 7.941478-6 2.751121+0 7.979090-6 2.827309+0 8.004771-6 2.860434+0 8.022911-6 2.870009+0 8.041051-6 2.867358+0 8.060184-6 2.852192+0 8.086739-6 2.814224+0 8.117582-6 2.754920+0 8.202113-6 2.585080+0 8.341535-6 2.356645+0 8.382437-6 2.298387+0 8.409445-6 2.265369+0 8.440854-6 2.234374+0 8.477746-6 2.208830+0 8.566031-6 2.171670+0 8.592598-6 2.155825+0 8.623633-6 2.129536+0 8.665430-6 2.081145+0 8.776394-6 1.935047+0 8.832208-6 1.879093+0 9.009245-6 1.735824+0 9.124544-6 1.640834+0 9.211696-6 1.566192+0 9.300000-6 1.485100+0 9.479704-6 1.325906+0 9.600000-6 1.233390+0 9.885531-6 1.016286+0 1.023293-5 7.691742-1 1.043334-5 6.386102-1 1.071589-5 4.705127-1 1.085702-5 3.936597-1 1.110855-5 2.720169-1 1.141790-5 1.489334-1 1.157095-5 1.003009-1 1.171921-5 6.293466-2 1.186284-5 3.585030-2 1.200198-5 1.867338-2 1.213677-5 1.110631-2 1.215000-5 1.087925-2 1.216186-5 1.075791-2 1.226738-5 1.319542-2 1.239385-5 2.468665-2 1.251640-5 4.516979-2 1.263511-5 7.447915-2 1.275012-5 1.123499-1 1.291464-5 1.773034-1 1.304876-5 2.097169-1 1.323693-5 1.766832-1 1.335546-5 1.377386-1 1.344796-5 1.093689-1 1.355625-5 8.025892-2 1.365000-5 5.909569-2 1.371250-5 4.727240-2 1.378992-5 3.528381-2 1.394776-5 2.011316-2 1.409573-5 1.807989-2 1.423446-5 2.843158-2 1.436451-5 5.018366-2 1.450000-5 8.653484-2 1.460074-5 1.238087-1 1.470790-5 1.741909-1 1.490883-5 2.997378-1 1.508464-5 4.466841-1 1.523848-5 6.088239-1 1.540000-5 8.176966-1 1.549086-5 9.547951-1 1.570000-5 1.328641+0 1.585156-5 1.658910+0 1.610000-5 2.325223+0 1.635548-5 3.191618+0 1.651611-5 3.854008+0 1.667674-5 4.629575+0 1.687753-5 5.775152+0 1.705422-5 6.970355+0 1.738757-5 9.831305+0 1.803689-5 1.868228+1 1.838733-5 2.630285+1 1.858597-5 3.197549+1 1.876619-5 3.822567+1 1.892389-5 4.475121+1 1.906187-5 5.146301+1 1.918260-5 5.826966+1 1.928825-5 6.507417+1 1.941806-5 7.471067+1 1.950000-5 8.163058+1 1.962217-5 9.337481+1 1.970927-5 1.029765+2 1.978889-5 1.128115+2 1.990831-5 1.297976+2 2.002774-5 1.500256+2 2.012633-5 1.697489+2 2.022493-5 1.928537+2 2.032352-5 2.201208+2 2.042211-5 2.525755+2 2.052070-5 2.916029+2 2.057000-5 3.141497+2 2.061929-5 3.391046+2 2.069244-5 3.813567+2 2.076718-5 4.323803+2 2.081647-5 4.713765+2 2.086577-5 5.155289+2 2.091507-5 5.658423+2 2.096436-5 6.236063+2 2.101366-5 6.905080+2 2.104809-5 7.438243+2 2.109889-5 8.347658+2 2.114970-5 9.441641+2 2.120355-5 1.086832+3 2.125131-5 1.244133+3 2.130212-5 1.454353+3 2.132752-5 1.580662+3 2.135293-5 1.724245+3 2.137833-5 1.887913+3 2.140373-5 2.074867+3 2.142914-5 2.288725+3 2.145454-5 2.533526+3 2.149384-5 2.983642+3 2.150693-5 3.155625+3 2.155987-5 3.982339+3 2.163928-5 5.705545+3 2.170545-5 7.689580+3 2.175070-5 9.374529+3 2.177162-5 1.024767+4 2.185477-5 1.428896+4 2.186146-5 1.465072+4 2.190830-5 1.730576+4 2.192670-5 1.839643+4 2.196852-5 2.093182+4 2.199779-5 2.271668+4 2.202328-5 2.424755+4 2.205115-5 2.586607+4 2.208119-5 2.750952+4 2.210787-5 2.884697+4 2.213574-5 3.008908+4 2.216750-5 3.127279+4 2.217929-5 3.164159+4 2.221065-5 3.241867+4 2.223814-5 3.283968+4 2.227080-5 3.300773+4 2.228842-5 3.294577+4 2.233820-5 3.220101+4 2.236214-5 3.155692+4 2.238657-5 3.072434+4 2.240708-5 2.990013+4 2.243235-5 2.874495+4 2.246008-5 2.732608+4 2.248130-5 2.615227+4 2.250514-5 2.476433+4 2.252505-5 2.356342+4 2.255065-5 2.198454+4 2.257741-5 2.031671+4 2.260418-5 1.865745+4 2.263429-5 1.683014+4 2.265770-5 1.545532+4 2.271566-5 1.229887+4 2.273225-5 1.147153+4 2.278203-5 9.217387+3 2.282070-5 7.708907+3 2.286185-5 6.332612+3 2.290697-5 5.077823+3 2.300414-5 3.141889+3 2.303191-5 2.745279+3 2.305967-5 2.404055+3 2.308744-5 2.111088+3 2.311520-5 1.859811+3 2.314296-5 1.644278+3 2.317073-5 1.459189+3 2.319849-5 1.299890+3 2.322626-5 1.162342+3 2.325402-5 1.043083+3 2.328179-5 9.391780+2 2.333731-5 7.679637+2 2.339284-5 6.335321+2 2.344956-5 5.234722+2 2.357054-5 3.501953+2 2.361348-5 3.030353+2 2.368657-5 2.355335+2 2.374459-5 1.915790+2 2.380260-5 1.548547+2 2.386062-5 1.244572+2 2.397665-5 7.974405+1 2.400566-5 7.146595+1 2.403467-5 6.421469+1 2.406773-5 5.712983+1 2.410079-5 5.122916+1 2.413045-5 4.688794+1 2.414528-5 4.504080+1 2.416011-5 4.340247+1 2.417494-5 4.196798+1 2.420089-5 3.993356+1 2.422396-5 3.861555+1 2.424956-5 3.766954+1 2.426415-5 3.736265+1 2.427875-5 3.721784+1 2.431344-5 3.748734+1 2.433066-5 3.791990+1 2.433807-5 3.816284+1 2.439269-5 4.087952+1 2.442478-5 4.310339+1 2.452321-5 5.151076+1 2.457278-5 5.600633+1 2.463468-5 6.156340+1 2.469228-5 6.717913+1 2.471434-5 6.973043+1 2.472709-5 7.138410+1 2.475215-5 7.516503+1 2.476910-5 7.824012+1 2.477822-5 8.011416+1 2.479021-5 8.284527+1 2.480364-5 8.632312+1 2.481046-5 8.827788+1 2.483289-5 9.576172+1 2.484422-5 1.002454+2 2.485795-5 1.064149+2 2.487548-5 1.156337+2 2.489024-5 1.247149+2 2.490602-5 1.359654+2 2.492375-5 1.507461+2 2.493855-5 1.650578+2 2.495758-5 1.864364+2 2.498413-5 2.226839+2 2.501909-5 2.840047+2 2.510468-5 5.212200+2 2.513939-5 6.631788+2 2.517646-5 8.512590+2 2.520563-5 1.029180+3 2.522503-5 1.163486+3 2.534370-5 2.301195+3 2.540932-5 3.180486+3 2.542050-5 3.347649+3 2.547575-5 4.239156+3 2.549739-5 4.614089+3 2.550772-5 4.797137+3 2.554425-5 5.460592+3 2.557446-5 6.020737+3 2.559986-5 6.492794+3 2.562705-5 6.991692+3 2.565636-5 7.513863+3 2.568169-5 7.944582+3 2.571045-5 8.402154+3 2.572137-5 8.565422+3 2.575849-5 9.069097+3 2.578772-5 9.402092+3 2.580249-5 9.546547+3 2.583163-5 9.781274+3 2.585572-5 9.922504+3 2.591359-5 1.005782+4 2.594347-5 1.001463+4 2.596481-5 9.938125+3 2.599478-5 9.769579+3 2.601450-5 9.622063+3 2.603240-5 9.464924+3 2.606176-5 9.163367+3 2.609473-5 8.768284+3 2.612226-5 8.400602+3 2.614881-5 8.020539+3 2.618704-5 7.442119+3 2.621642-5 6.982655+3 2.625284-5 6.407373+3 2.627470-5 6.064339+3 2.633737-5 5.114314+3 2.635954-5 4.796388+3 2.641014-5 4.117708+3 2.647744-5 3.330861+3 2.659437-5 2.292708+3 2.665070-5 1.928687+3 2.667884-5 1.775141+3 2.671135-5 1.618546+3 2.674505-5 1.477304+3 2.680412-5 1.273571+3 2.686170-5 1.118375+3 2.691293-5 1.007953+3 2.695145-5 9.383374+2 2.700858-5 8.516312+2 2.707286-5 7.720486+2 2.713403-5 7.093249+2 2.721142-5 6.431441+2 2.728690-5 5.890424+2 2.741727-5 5.128834+2 2.749523-5 4.753207+2 2.755158-5 4.512179+2 2.762679-5 4.225980+2 2.774356-5 3.854184+2 2.780092-5 3.701430+2 2.785206-5 3.581074+2 2.789403-5 3.493271+2 2.796292-5 3.370504+2 2.801802-5 3.291377+2 2.809057-5 3.212936+2 2.815596-5 3.166644+2 2.820959-5 3.144800+2 2.825819-5 3.136144+2 2.833689-5 3.139996+2 2.849340-5 3.177831+2 2.856626-5 3.190618+2 2.860999-5 3.192704+2 2.866954-5 3.187005+2 2.872507-5 3.172267+2 2.882046-5 3.127460+2 2.891075-5 3.068479+2 2.909608-5 2.932574+2 2.923704-5 2.841192+2 2.939844-5 2.757828+2 2.961647-5 2.670383+2 3.005982-5 2.520222+2 3.059301-5 2.339919+2 3.100652-5 2.223892+2 3.166743-5 2.071850+2 3.230732-5 1.948823+2 3.313661-5 1.819413+2 3.412912-5 1.691769+2 3.520320-5 1.579123+2 3.610608-5 1.500185+2 3.686658-5 1.441401+2 3.803381-5 1.362626+2 3.935501-5 1.287609+2 4.223875-5 1.159018+2 4.413957-5 1.089875+2 4.450346-5 1.081451+2 4.504302-5 1.072688+2 4.546257-5 1.062848+2 4.621783-5 1.040175+2 4.893414-5 9.825584+1 5.120000-5 9.456543+1 5.382237-5 9.122790+1 5.599333-5 8.915787+1 6.088311-5 8.618838+1 6.730000-5 8.396229+1 7.413102-5 8.215535+1 7.762471-5 8.090015+1 8.035261-5 7.961584+1 8.222426-5 7.854370+1 8.522000-5 7.649269+1 8.709636-5 7.492531+1 8.912509-5 7.297611+1 9.120108-5 7.070291+1 9.316910-5 6.820626+1 9.507102-5 6.553037+1 9.696734-5 6.261931+1 9.837844-5 6.028490+1 9.971628-5 5.793542+1 1.019133-4 5.390535+1 1.029363-4 5.232468+1 1.038682-4 5.212922+1 1.047129-4 5.370690+1 1.054316-4 5.614409+1 1.062923-4 5.989331+1 1.071519-4 6.438006+1 1.079004-4 6.895630+1 1.084061-4 7.246087+1 1.088960-4 7.621939+1 1.093706-4 8.024076+1 1.100318-4 8.654480+1 1.107120-4 9.400471+1 1.115302-4 1.045335+2 1.123024-4 1.163661+2 1.130272-4 1.295362+2 1.137074-4 1.441305+2 1.143457-4 1.602339+2 1.149448-4 1.779323+2 1.153255-4 1.907301+2 1.157836-4 2.080004+2 1.163023-4 2.304511+2 1.167886-4 2.548331+2 1.172445-4 2.812179+2 1.177237-4 3.134032+2 1.180726-4 3.402738+2 1.184482-4 3.730785+2 1.188004-4 4.081485+2 1.191305-4 4.455348+2 1.194401-4 4.852797+2 1.197302-4 5.274176+2 1.200023-4 5.719781+2 1.202573-4 6.189896+2 1.206471-4 7.028004+2 1.209307-4 7.750725+2 1.212820-4 8.818365+2 1.214856-4 9.548086+2 1.218102-4 1.093463+3 1.220943-4 1.244541+3 1.223429-4 1.407743+3 1.225604-4 1.581861+3 1.227507-4 1.764763+3 1.229172-4 1.953595+3 1.230629-4 2.145116+3 1.231904-4 2.336044+3 1.234135-4 2.731700+3 1.235809-4 3.088481+3 1.238005-4 3.648986+3 1.240829-4 4.550009+3 1.246100-4 6.885275+3 1.247159-4 7.468382+3 1.253106-4 1.144555+4 1.256175-4 1.388472+4 1.256559-4 1.420153+4 1.259244-4 1.645216+4 1.260300-4 1.733632+4 1.262314-4 1.898590+4 1.263417-4 1.985112+4 1.264597-4 2.073300+4 1.265561-4 2.141138+4 1.266826-4 2.223319+4 1.268046-4 2.293990+4 1.269220-4 2.352947+4 1.270227-4 2.395721+4 1.271713-4 2.444554+4 1.273512-4 2.479162+4 1.274872-4 2.486676+4 1.276745-4 2.470227+4 1.278212-4 2.436003+4 1.279201-4 2.402721+4 1.280689-4 2.338190+4 1.281891-4 2.274403+4 1.284083-4 2.135066+4 1.285415-4 2.038817+4 1.286908-4 1.923551+4 1.288446-4 1.799688+4 1.289937-4 1.677943+4 1.291855-4 1.523893+4 1.296171-4 1.217553+4 1.297844-4 1.123299+4 1.299243-4 1.057764+4 1.300105-4 1.023889+4 1.300840-4 9.990262+3 1.301886-4 9.701836+3 1.302811-4 9.510542+3 1.303803-4 9.372014+3 1.305623-4 9.291213+3 1.306643-4 9.339034+3 1.307408-4 9.415722+3 1.308615-4 9.602510+3 1.309893-4 9.879213+3 1.311467-4 1.031305+4 1.313906-4 1.113237+4 1.317219-4 1.236933+4 1.318952-4 1.299813+4 1.320455-4 1.350046+4 1.321487-4 1.381209+4 1.324688-4 1.454720+4 1.326101-4 1.474079+4 1.328409-4 1.486587+4 1.329820-4 1.482344+4 1.330704-4 1.475160+4 1.331560-4 1.464983+4 1.332992-4 1.441188+4 1.334228-4 1.414283+4 1.335726-4 1.374565+4 1.337068-4 1.333220+4 1.339128-4 1.261001+4 1.340582-4 1.205189+4 1.341470-4 1.169644+4 1.343084-4 1.103178+4 1.343662-4 1.079025+4 1.346797-4 9.475630+3 1.347469-4 9.197902+3 1.352608-4 7.215744+3 1.358805-4 5.312549+3 1.360626-4 4.866286+3 1.362470-4 4.464190+3 1.363993-4 4.167525+3 1.366191-4 3.791323+3 1.368441-4 3.462824+3 1.370898-4 3.160682+3 1.371766-4 3.066190+3 1.374183-4 2.832396+3 1.376794-4 2.620917+3 1.379848-4 2.416545+3 1.382834-4 2.251538+3 1.386592-4 2.080532+3 1.390181-4 1.945601+3 1.394575-4 1.807881+3 1.398169-4 1.712118+3 1.401894-4 1.625252+3 1.408887-4 1.488245+3 1.415771-4 1.378841+3 1.420751-4 1.312050+3 1.426056-4 1.250310+3 1.432437-4 1.186815+3 1.438858-4 1.132710+3 1.447000-4 1.075490+3 1.455321-4 1.027513+3 1.465283-4 9.809410+2 1.471563-4 9.563871+2 1.485063-4 9.129953+2 1.499125-4 8.778200+2 1.513799-4 8.486968+2 1.531087-4 8.209295+2 1.554885-4 7.894916+2 1.587751-4 7.533976+2 1.633579-4 7.115992+2 1.699595-4 6.630135+2 1.744354-4 6.354187+2 1.795613-4 6.084166+2 1.851399-4 5.829775+2 1.904847-4 5.622326+2 1.966814-4 5.418361+2 2.041738-4 5.216617+2 2.101745-4 5.077684+2 2.209000-4 4.872710+2 2.336388-4 4.634685+2 2.381199-4 4.517441+2 2.404127-4 4.437828+2 2.423702-4 4.386828+2 2.436112-4 4.382856+2 2.454906-4 4.417441+2 2.471623-4 4.448129+2 2.503161-4 4.450374+2 2.521536-4 4.470400+2 2.556284-4 4.563737+2 2.601203-4 4.662499+2 2.701625-4 4.783490+2 2.779616-4 4.856183+2 2.862329-4 4.990506+2 3.020821-4 5.181055+2 3.240000-4 5.373408+2 3.379348-4 5.455854+2 3.427530-4 5.503922+2 3.455831-4 5.550039+2 3.525445-4 5.683984+2 3.687501-4 5.904714+2 3.995283-4 6.214728+2 4.335421-4 6.481024+2 4.680718-4 6.703082+2 5.173089-4 6.939092+2 5.689247-4 7.091765+2 6.219422-4 7.152517+2 6.766443-4 7.114059+2 7.249574-4 6.980433+2 7.733202-4 6.758076+2 8.179244-4 6.479873+2 8.535914-4 6.196503+2 8.874114-4 5.866880+2 9.174529-4 5.511711+2 9.430812-4 5.149838+2 9.605801-4 4.865313+2 9.800765-4 4.498438+2 9.962966-4 4.143015+2 1.010250-3 3.793805+2 1.020352-3 3.508789+2 1.028818-3 3.245248+2 1.035049-3 3.051762+2 1.042537-3 2.970181+2 1.048764-3 3.503528+2 1.050462-3 3.866832+2 1.051020-3 4.015915+2 1.054679-3 5.437430+2 1.056194-3 6.290065+2 1.058781-3 8.149743+2 1.061383-3 1.053642+3 1.064088-3 1.348998+3 1.064341-3 1.378570+3 1.066740-3 1.667781+3 1.069074-3 1.951967+3 1.071435-3 2.221242+3 1.074653-3 2.524102+3 1.077207-3 2.690697+3 1.079042-3 2.766057+3 1.079867-3 2.788222+3 1.080971-3 2.807393+3 1.082272-3 2.816086+3 1.083661-3 2.811401+3 1.084562-3 2.802176+3 1.086166-3 2.777086+3 1.092962-3 2.641627+3 1.099393-3 2.542758+3 1.101004-3 2.510253+3 1.102727-3 2.465362+3 1.103353-3 2.445898+3 1.105987-3 2.342845+3 1.106496-3 2.318861+3 1.109478-3 2.152624+3 1.111722-3 2.003534+3 1.113887-3 1.847437+3 1.117153-3 1.607150+3 1.122251-3 1.273790+3 1.124809-3 1.142951+3 1.128604-3 1.001104+3 1.130111-3 9.612207+2 1.133747-3 8.973931+2 1.136693-3 8.720975+2 1.141293-3 8.628315+2 1.147048-3 8.772719+2 1.161451-3 9.377539+2 1.173132-3 9.838508+2 1.185939-3 1.031043+3 1.210708-3 1.117599+3 1.227328-3 1.170170+3 1.251287-3 1.234232+3 1.273503-3 1.281979+3 1.298841-3 1.323329+3 1.318257-3 1.344571+3 1.336623-3 1.354292+3 1.352265-3 1.354494+3 1.371882-3 1.350652+3 1.378542-3 1.353708+3 1.385883-3 1.363420+3 1.395612-3 1.387346+3 1.416982-3 1.455602+3 1.431056-3 1.494284+3 1.446399-3 1.529445+3 1.457773-3 1.549327+3 1.473830-3 1.568612+3 1.507593-3 1.597235+3 1.525398-3 1.624002+3 1.561320-3 1.685373+3 1.573915-3 1.703091+3 1.591968-3 1.723156+3 1.612669-3 1.739440+3 1.633151-3 1.749671+3 1.682456-3 1.760134+3 1.694576-3 1.768584+3 1.711759-3 1.789995+3 1.740689-3 1.828790+3 1.759718-3 1.845815+3 1.783675-3 1.860483+3 1.846707-3 1.884203+3 1.928187-3 1.902086+3 2.032942-3 1.911866+3 2.134798-3 1.909950+3 2.280998-3 1.895507+3 2.415562-3 1.875829+3 2.639392-3 1.829776+3 2.818383-3 1.786403+3 3.112612-3 1.713389+3 3.232658-3 1.682551+3 3.502689-3 1.607388+3 3.845918-3 1.515347+3 4.198798-3 1.421701+3 4.390778-3 1.372271+3 4.597269-3 1.320177+3 4.807828-3 1.268090+3 5.016325-3 1.217290+3 5.231447-3 1.164499+3 5.422923-3 1.117356+3 5.583095-3 1.077688+3 5.736824-3 1.038923+3 5.867634-3 1.004444+3 5.988002-3 9.713117+2 6.093085-3 9.407744+2 6.183915-3 9.125515+2 6.268306-3 8.841397+2 6.335595-3 8.592697+2 6.391177-3 8.365039+2 6.442193-3 8.128521+2 6.484404-3 7.901388+2 6.517880-3 7.692040+2 6.544134-3 7.506541+2 6.596336-3 7.097364+2 6.634914-3 6.815456+2 6.659548-3 6.684021+2 6.680786-3 6.619309+2 6.693596-3 6.605669+2 6.713574-3 6.623796+2 6.730812-3 6.675766+2 6.757950-3 6.812668+2 6.832878-3 7.320291+2 6.868897-3 7.525229+2 6.907391-3 7.684329+2 6.935099-3 7.763634+2 6.972735-3 7.833572+2 7.009293-3 7.868601+2 7.053124-3 7.875596+2 7.095402-3 7.849069+2 7.132402-3 7.799670+2 7.232856-3 7.599778+2 7.270589-3 7.559563+2 7.302595-3 7.570323+2 7.335650-3 7.629802+2 7.373809-3 7.746872+2 7.446673-3 8.007164+2 7.472285-3 8.081562+2 7.498945-3 8.142172+2 7.529914-3 8.190956+2 7.649341-3 8.273848+2 7.698190-3 8.342176+2 7.768857-3 8.517764+2 7.867233-3 8.785237+2 7.943410-3 8.926393+2 8.001081-3 8.997609+2 8.133968-3 9.095993+2 8.271383-3 9.142780+2 8.529687-3 9.153323+2 8.728961-3 9.116298+2 9.088841-3 8.981261+2 9.549926-3 8.744936+2 1.014852-2 8.386731+2 1.076180-2 7.994079+2 1.164231-2 7.434905+2 1.280531-2 6.749688+2 1.399824-2 6.126221+2 1.578107-2 5.333337+2 1.790781-2 4.575166+2 1.998613-2 3.979439+2 2.233283-2 3.430959+2 2.417379-2 3.068691+2 2.621934-2 2.721284+2 2.817274-2 2.434768+2 3.160856-2 2.022535+2 3.547496-2 1.668816+2 3.800918-2 1.478650+2 4.004775-2 1.340828+2 4.163610-2 1.239462+2 4.291194-2 1.159407+2 4.382220-2 1.101018+2 4.453998-2 1.052027+2 4.485413-2 1.028810+2 4.512061-2 1.007570+2 4.535038-2 9.875029+1 4.554030-2 9.692148+1 4.580942-2 9.401277+1 4.641195-2 8.702817+1 4.661846-2 8.534513+1 4.678557-2 8.460888+1 4.689759-2 8.447304+1 4.707096-2 8.481082+1 4.727934-2 8.592941+1 4.783391-2 9.014740+1 4.798214-2 9.109378+1 4.828712-2 9.254870+1 4.862791-2 9.350717+1 4.910092-2 9.410257+1 4.960000-2 9.421488+1 5.036107-2 9.384181+1 5.173090-2 9.234224+1 5.327999-2 9.000779+1 5.519185-2 8.667485+1 5.766280-2 8.215926+1 6.086976-2 7.641034+1 6.574331-2 6.836553+1 7.114884-2 6.052805+1 7.681152-2 5.347785+1 8.626609-2 4.396734+1 1.023000-1 3.270046+1 1.164860-1 2.594403+1 1.487347-1 1.659778+1 1.988941-1 9.705603+0 2.408909-1 6.765938+0 3.054097-1 4.292438+0 4.299021-1 2.210622+0 6.578472-1 9.602993-1 1.070165+0 3.670718-1 2.039158+0 1.017784-1 6.158159+0 1.118657-2 1.859734+1 1.226905-3 5.616308+1 1.345314-4 1.696098+2 1.475112-5 5.122134+2 1.617429-6 1.584893+3 1.689379-7 5.011872+3 1.689379-8 1.584893+4 1.689379-9 5.011872+4 1.68938-10 1.000000+5 4.24353-11 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.385900-6 1.258900-6 3.781400-6 1.584900-6 5.993000-6 1.995300-6 9.498300-6 2.511900-6 1.505400-5 3.162300-6 2.385900-5 3.981100-6 3.781300-5 5.011900-6 5.992900-5 6.309600-6 9.498100-5 7.943300-6 1.505300-4 1.000000-5 2.385800-4 1.258900-5 3.781100-4 1.584900-5 5.989300-4 1.995300-5 9.485500-4 2.511900-5 1.502500-3 3.162300-5 2.380200-3 3.981100-5 3.771000-3 5.011900-5 5.975100-3 6.309600-5 9.467900-3 7.943300-5 1.497500-2 1.000000-4 2.367300-2 1.258900-4 3.742000-2 1.584900-4 5.897200-2 1.995300-4 9.273600-2 2.511900-4 1.451000-1 3.162300-4 2.253800-1 3.981100-4 3.453500-1 5.011900-4 5.192700-1 6.309600-4 7.615300-1 7.943300-4 1.081600+0 1.000000-3 1.484000+0 1.258900-3 1.973800+0 1.584900-3 2.574400+0 1.995300-3 3.326800+0 2.511900-3 4.261700+0 3.162300-3 5.398100+0 3.981100-3 6.744200+0 5.011900-3 8.298300+0 6.309600-3 1.001300+1 7.943300-3 1.186000+1 1.000000-2 1.385600+1 1.258900-2 1.598600+1 1.584900-2 1.826000+1 1.995300-2 2.047000+1 2.511900-2 2.243900+1 3.162300-2 2.417400+1 3.981100-2 2.553100+1 5.011900-2 2.651100+1 6.309600-2 2.708300+1 7.943300-2 2.720000+1 1.000000-1 2.689000+1 1.258900-1 2.615100+1 1.584900-1 2.513200+1 1.995300-1 2.385200+1 2.511900-1 2.239800+1 3.162300-1 2.083900+1 3.981100-1 1.922900+1 5.011900-1 1.761600+1 6.309600-1 1.602800+1 7.943300-1 1.448900+1 1.000000+0 1.301300+1 1.258900+0 1.161000+1 1.584900+0 1.029300+1 1.995300+0 9.065700+0 2.511900+0 7.933300+0 3.162300+0 6.899100+0 3.981100+0 5.964200+0 5.011900+0 5.127000+0 6.309600+0 4.384300+0 7.943300+0 3.731000+0 1.000000+1 3.161100+0 1.258900+1 2.667400+0 1.584900+1 2.242600+0 1.995300+1 1.879200+0 2.511900+1 1.569900+0 3.162300+1 1.308000+0 3.981100+1 1.087200+0 5.011900+1 9.015800-1 6.309600+1 7.461900-1 7.943300+1 6.164500-1 1.000000+2 5.084300-1 1.258900+2 4.187000-1 1.584900+2 3.443300-1 1.995300+2 2.828100-1 2.511900+2 2.320100-1 3.162300+2 1.901300-1 3.981100+2 1.556500-1 5.011900+2 1.273000-1 6.309600+2 1.040300-1 7.943300+2 8.494100-2 1.000000+3 6.930200-2 1.258900+3 5.650100-2 1.584900+3 4.603300-2 1.995300+3 3.748100-2 2.511900+3 3.049900-2 3.162300+3 2.480300-2 3.981100+3 2.016000-2 5.011900+3 1.637700-2 6.309600+3 1.329800-2 7.943300+3 1.079200-2 1.000000+4 8.754600-3 1.258900+4 7.098700-3 1.584900+4 5.753600-3 1.995300+4 4.661500-3 2.511900+4 3.775200-3 3.162300+4 3.056300-3 3.981100+4 2.473400-3 5.011900+4 2.001000-3 6.309600+4 1.618300-3 7.943300+4 1.308300-3 1.000000+5 1.057400-3 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159559-4 3.981072-4 3.976784-4 5.011872-4 5.005125-4 6.309573-4 6.298966-4 7.943282-4 7.926729-4 1.000000-3 9.974196-4 1.258925-3 1.254906-3 1.584893-3 1.578607-3 1.995262-3 1.985411-3 2.511886-3 2.496370-3 3.162278-3 3.137958-3 3.981072-3 3.942941-3 5.011872-3 4.952221-3 6.309573-3 6.216584-3 7.943282-3 7.798648-3 1.000000-2 9.775046-3 1.258925-2 1.223888-2 1.584893-2 1.530600-2 1.995262-2 1.911447-2 2.511886-2 2.383310-2 3.162278-2 2.966384-2 3.981072-2 3.683998-2 5.011872-2 4.563601-2 6.309573-2 5.637442-2 7.943282-2 6.944646-2 1.000000-1 8.526329-2 1.258925-1 1.044235-1 1.584893-1 1.273475-1 1.995262-1 1.548269-1 2.511886-1 1.876416-1 3.162278-1 2.266530-1 3.981072-1 2.729163-1 5.011872-1 3.275854-1 6.309573-1 3.920979-1 7.943282-1 4.680168-1 1.000000+0 5.574581-1 1.258925+0 6.628401-1 1.584893+0 7.871288-1 1.995262+0 9.342297-1 2.511886+0 1.108792+0 3.162278+0 1.316508+0 3.981072+0 1.564474+0 5.011872+0 1.861272+0 6.309573+0 2.217459+0 7.943282+0 2.646077+0 1.000000+1 3.162639+0 1.258925+1 3.786693+0 1.584893+1 4.541844+0 1.995262+1 5.457035+0 2.511886+1 6.567919+0 3.162278+1 7.917802+0 3.981072+1 9.560404+0 5.011872+1 1.156111+1 6.309573+1 1.400073+1 7.943282+1 1.697841+1 1.000000+2 2.061575+1 1.258925+2 2.506292+1 1.584893+2 3.050452+1 1.995262+2 3.716840+1 2.511886+2 4.533319+1 3.162278+2 5.534577+1 3.981072+2 6.763015+1 5.011872+2 8.271327+1 6.309573+2 1.012424+2 7.943282+2 1.240188+2 1.000000+3 1.520269+2 1.258925+3 1.864903+2 1.584893+3 2.289183+2 1.995262+3 2.811764+2 2.511886+3 3.455614+2 3.162278+3 4.249364+2 3.981072+3 5.228230+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88185-10 1.995262-5 1.090598-9 2.511886-5 1.728454-9 3.162278-5 2.739459-9 3.981072-5 4.341821-9 5.011872-5 6.881335-9 6.309573-5 1.090589-8 7.943282-5 1.727542-8 1.000000-4 2.737078-8 1.258925-4 4.336977-8 1.584893-4 6.867248-8 1.995262-4 1.087252-7 2.511886-4 1.720205-7 3.162278-4 2.718848-7 3.981072-4 4.288081-7 5.011872-4 6.747707-7 6.309573-4 1.060790-6 7.943282-4 1.655317-6 1.000000-3 2.580363-6 1.258925-3 4.019263-6 1.584893-3 6.286553-6 1.995262-3 9.851202-6 2.511886-3 1.551612-5 3.162278-3 2.431942-5 3.981072-3 3.813095-5 5.011872-3 5.965174-5 6.309573-3 9.298904-5 7.943282-3 1.446347-4 1.000000-2 2.249536-4 1.258925-2 3.503705-4 1.584893-2 5.429329-4 1.995262-2 8.381532-4 2.511886-2 1.285763-3 3.162278-2 1.958937-3 3.981072-2 2.970732-3 5.011872-2 4.482709-3 6.309573-2 6.721314-3 7.943282-2 9.986361-3 1.000000-1 1.473671-2 1.258925-1 2.146905-2 1.584893-1 3.114187-2 1.995262-1 4.469929-2 2.511886-1 6.354708-2 3.162278-1 8.957477-2 3.981072-1 1.251908-1 5.011872-1 1.736018-1 6.309573-1 2.388594-1 7.943282-1 3.263114-1 1.000000+0 4.425419-1 1.258925+0 5.960853-1 1.584893+0 7.977644-1 1.995262+0 1.061033+0 2.511886+0 1.403095+0 3.162278+0 1.845770+0 3.981072+0 2.416598+0 5.011872+0 3.150601+0 6.309573+0 4.092115+0 7.943282+0 5.297205+0 1.000000+1 6.837361+0 1.258925+1 8.802561+0 1.584893+1 1.130709+1 1.995262+1 1.449559+1 2.511886+1 1.855095+1 3.162278+1 2.370497+1 3.981072+1 3.025031+1 5.011872+1 3.855761+1 6.309573+1 4.909501+1 7.943282+1 6.245441+1 1.000000+2 7.938425+1 1.258925+2 1.008296+2 1.584893+2 1.279848+2 1.995262+2 1.623578+2 2.511886+2 2.058555+2 3.162278+2 2.608820+2 3.981072+2 3.304770+2 5.011872+2 4.184740+2 6.309573+2 5.297149+2 7.943282+2 6.703094+2 1.000000+3 8.479731+2 1.258925+3 1.072435+3 1.584893+3 1.355975+3 1.995262+3 1.714086+3 2.511886+3 2.166325+3 3.162278+3 2.737341+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.090000-6 3.348340+6 5.248075-6 2.929013+6 5.500000-6 2.367300+6 5.956621-6 1.636465+6 6.456542-6 1.116899+6 6.918310-6 7.987524+5 7.413102-6 5.669996+5 7.852356-6 4.235331+5 8.413951-6 2.962195+5 8.750000-6 2.408559+5 8.750000-6 5.799274+5 9.015711-6 5.359129+5 9.100000-6 5.232114+5 9.370000-6 4.884101+5 9.370000-6 7.252611+5 9.500000-6 7.076275+5 9.660509-6 6.885389+5 9.885531-6 6.652287+5 1.000000-5 6.550768+5 1.023293-5 6.369494+5 1.035142-5 6.292263+5 1.050000-5 6.207387+5 1.060000-5 6.154862+5 1.070000-5 6.110975+5 1.100000-5 6.004891+5 1.110000-5 5.980202+5 1.135011-5 5.935843+5 1.150000-5 5.922788+5 1.174898-5 5.916733+5 1.190000-5 5.925099+5 1.202264-5 5.937643+5 1.216186-5 5.954418+5 1.230269-5 5.979266+5 1.258925-5 6.045920+5 1.260000-5 6.049003+5 1.273503-5 6.089424+5 1.290000-5 6.145435+5 1.310000-5 6.216422+5 1.318257-5 6.249952+5 1.340000-5 6.347961+5 1.365000-5 6.463923+5 1.390000-5 6.602345+5 1.420000-5 6.772689+5 1.428894-5 6.827013+5 1.450000-5 6.965720+5 1.480000-5 7.166962+5 1.500000-5 7.309460+5 1.507000-5 7.362341+5 1.540000-5 7.615550+5 1.548817-5 7.684230+5 1.570000-5 7.856218+5 1.584893-5 7.978766+5 1.610000-5 8.196404+5 1.621810-5 8.300170+5 1.650000-5 8.557865+5 1.690000-5 8.931166+5 1.698244-5 9.011627+5 1.717908-5 9.205562+5 1.757924-5 9.616910+5 1.819701-5 1.027078+6 1.830000-5 1.038446+6 1.840772-5 1.050425+6 1.950000-5 1.178294+6 2.000000-5 1.239341+6 2.187762-5 1.484623+6 2.344229-5 1.706111+6 2.400000-5 1.786931+6 2.500000-5 1.934480+6 2.540973-5 1.996541+6 2.600160-5 2.085187+6 2.602000-5 2.087911+6 2.602000-5 1.758147+7 2.660725-5 1.627837+7 2.730000-5 1.493616+7 2.750000-5 1.458263+7 2.786121-5 1.400555+7 2.818383-5 1.352325+7 2.884032-5 1.263282+7 2.900000-5 1.244067+7 2.951209-5 1.185989+7 2.979000-5 1.156672+7 2.979000-5 1.878318+7 3.000000-5 1.837896+7 3.054921-5 1.738997+7 3.080000-5 1.697564+7 3.126079-5 1.625656+7 3.198895-5 1.522605+7 3.273407-5 1.430882+7 3.311311-5 1.388129+7 3.388442-5 1.308486+7 3.400000-5 1.297450+7 3.467369-5 1.237635+7 3.507519-5 1.204634+7 3.589219-5 1.143139+7 3.672823-5 1.087775+7 3.730000-5 1.053462+7 3.801894-5 1.014028+7 3.900000-5 9.666830+6 3.935501-5 9.509925+6 4.027170-5 9.137255+6 4.070000-5 8.978158+6 4.168694-5 8.648056+6 4.265795-5 8.357132+6 4.365158-5 8.102711+6 4.466836-5 7.878162+6 4.518559-5 7.771398+6 4.650000-5 7.532317+6 4.774000-5 7.349277+6 4.774000-5 7.402507+6 4.800000-5 7.368658+6 4.841724-5 7.312848+6 4.954502-5 7.178299+6 4.970000-5 7.161936+6 5.000000-5 7.131414+6 5.150000-5 6.998344+6 5.248075-5 6.917657+6 5.370318-5 6.835136+6 5.400000-5 6.817673+6 5.500000-5 6.764665+6 5.559043-5 6.731683+6 5.688529-5 6.671264+6 5.821032-5 6.620705+6 5.888437-5 6.591893+6 5.956621-5 6.566956+6 6.165950-5 6.503295+6 6.220000-5 6.485126+6 6.309573-5 6.457140+6 6.382635-5 6.436314+6 6.456542-5 6.417432+6 6.531306-5 6.400665+6 6.730000-5 6.342803+6 6.760830-5 6.334595+6 6.839116-5 6.315548+6 6.918310-5 6.297903+6 7.000000-5 6.273209+6 7.079458-5 6.250136+6 7.300000-5 6.193633+6 7.328245-5 6.186964+6 7.413102-5 6.160932+6 7.585776-5 6.112370+6 7.762471-5 6.065850+6 7.800000-5 6.056822+6 7.852356-5 6.042830+6 7.900000-5 6.028170+6 8.128305-5 5.960469+6 8.150000-5 5.954427+6 8.222426-5 5.934741+6 8.317638-5 5.909301+6 8.511380-5 5.855093+6 8.522000-5 5.851972+6 8.912509-5 5.741905+6 9.015711-5 5.714949+6 9.120108-5 5.685700+6 9.332543-5 5.622057+6 9.800000-5 5.492716+6 9.885531-5 5.468971+6 9.900000-5 5.464969+6 1.023293-4 5.366436+6 1.040000-4 5.319306+6 1.047129-4 5.299757+6 1.060000-4 5.262250+6 1.071519-4 5.226495+6 1.109175-4 5.114560+6 1.122018-4 5.078092+6 1.135011-4 5.039692+6 1.174898-4 4.916101+6 1.190000-4 4.871354+6 1.202264-4 4.833767+6 1.216186-4 4.791810+6 1.230269-4 4.747528+6 1.288250-4 4.574980+6 1.303167-4 4.530762+6 1.350000-4 4.389252+6 1.365200-4 4.345403+6 1.365200-4 4.914704+6 1.380384-4 4.971610+6 1.390000-4 5.015250+6 1.400000-4 5.063076+6 1.407000-4 5.096597+6 1.412538-4 5.121594+6 1.414000-4 5.128270+6 1.414000-4 5.516860+6 1.415000-4 5.524829+6 1.421000-4 5.569116+6 1.423000-4 5.585263+6 1.428894-4 5.629260+6 1.430000-4 5.637813+6 1.437000-4 5.687529+6 1.445000-4 5.740034+6 1.445440-4 5.742552+6 1.450000-4 5.769275+6 1.453000-4 5.786478+6 1.458000-4 5.810997+6 1.460000-4 5.820234+6 1.467000-4 5.847418+6 1.467200-4 5.848062+6 1.473000-4 5.864126+6 1.475000-4 5.868172+6 1.480000-4 5.875990+6 1.482000-4 5.879050+6 1.482300-4 5.879337+6 1.490000-4 5.879928+6 1.492000-4 5.878993+6 1.497000-4 5.873095+6 1.500000-4 5.867789+6 1.505000-4 5.855930+6 1.510000-4 5.840850+6 1.513561-4 5.828161+6 1.520000-4 5.800880+6 1.528000-4 5.759363+6 1.531087-4 5.741669+6 1.538000-4 5.699443+6 1.545000-4 5.653138+6 1.548817-4 5.626797+6 1.560000-4 5.545264+6 1.570000-4 5.467347+6 1.580000-4 5.388030+6 1.585000-4 5.347941+6 1.602000-4 5.210751+6 1.603245-4 5.200668+6 1.608400-4 5.158851+6 1.620000-4 5.065166+6 1.621810-4 5.050894+6 1.622200-4 5.047774+6 1.640590-4 4.901948+6 1.643000-4 4.883219+6 1.670000-4 4.680312+6 1.678804-4 4.617248+6 1.698244-4 4.483974+6 1.705000-4 4.439197+6 1.757924-4 4.117355+6 1.790000-4 3.946011+6 1.800000-4 3.896767+6 1.819701-4 3.803781+6 1.820000-4 3.802409+6 1.842000-4 3.705203+6 1.850000-4 3.671847+6 1.865000-4 3.611770+6 1.880000-4 3.554950+6 1.883649-4 3.541626+6 1.885000-4 3.536615+6 1.908000-4 3.455266+6 1.927525-4 3.391695+6 1.930000-4 3.383803+6 1.950000-4 3.323862+6 1.957000-4 3.303871+6 1.972423-4 3.261446+6 1.973000-4 3.259841+6 1.980000-4 3.241010+6 1.995262-4 3.201340+6 2.000000-4 3.189546+6 2.018366-4 3.144030+6 2.020000-4 3.140034+6 2.041738-4 3.090065+6 2.065380-4 3.039694+6 2.090000-4 2.991238+6 2.113489-4 2.948591+6 2.120000-4 2.936974+6 2.142000-4 2.899526+6 2.150000-4 2.886480+6 2.162719-4 2.866610+6 2.170000-4 2.854851+6 2.187762-4 2.827247+6 2.190000-4 2.823812+6 2.198000-4 2.811967+6 2.213095-4 2.790381+6 2.220000-4 2.780670+6 2.240000-4 2.753628+6 2.250000-4 2.740754+6 2.260000-4 2.727637+6 2.290868-4 2.689286+6 2.300000-4 2.678315+6 2.317395-4 2.658243+6 2.350000-4 2.622587+6 2.426610-4 2.543512+6 2.430000-4 2.540129+6 2.480000-4 2.493030+6 2.500600-4 2.474469+6 2.500600-4 2.792189+6 2.540973-4 2.755849+6 2.580000-4 2.721600+6 2.600160-4 2.704358+6 2.660725-4 2.653920+6 2.691535-4 2.629465+6 2.722701-4 2.605575+6 2.754229-4 2.581797+6 2.774300-4 2.566328+6 2.774300-4 2.656331+6 2.786121-4 2.647406+6 2.818383-4 2.623309+6 2.830000-4 2.614940+6 2.884032-4 2.576494+6 2.917427-4 2.553662+6 2.951209-4 2.529816+6 2.985383-4 2.506110+6 3.019952-4 2.482632+6 3.054921-4 2.458896+6 3.090295-4 2.435999+6 3.126079-4 2.413257+6 3.162278-4 2.389523+6 3.200000-4 2.365367+6 3.235937-4 2.342748+6 3.240000-4 2.340250+6 3.280000-4 2.315271+6 3.320000-4 2.291184+6 3.349654-4 2.273534+6 3.350000-4 2.273327+6 3.388442-4 2.249796+6 3.427700-4 2.226309+6 3.427700-4 2.338400+6 3.430000-4 2.337009+6 3.470000-4 2.312751+6 3.500000-4 2.294473+6 3.548134-4 2.266202+6 3.550000-4 2.265131+6 3.589219-4 2.242450+6 3.600000-4 2.236232+6 3.630781-4 2.218068+6 3.700000-4 2.177969+6 3.758374-4 2.145148+6 3.820000-4 2.110805+6 3.845918-4 2.096719+6 3.850000-4 2.094486+6 3.890451-4 2.072216+6 3.935501-4 2.047841+6 4.000000-4 2.013166+6 4.027170-4 1.998905+6 4.073803-4 1.974513+6 4.120975-4 1.950632+6 4.168694-4 1.926475+6 4.216965-4 1.902497+6 4.265795-4 1.878214+6 4.315191-4 1.854392+6 4.365158-4 1.830259+6 4.430000-4 1.799798+6 4.466836-4 1.782695+6 4.518559-4 1.759347+6 4.550000-4 1.745350+6 4.570882-4 1.735897+6 4.600000-4 1.722763+6 4.623810-4 1.712158+6 4.677351-4 1.688405+6 4.700000-4 1.678577+6 4.786301-4 1.641950+6 4.850000-4 1.615271+6 4.897788-4 1.595520+6 4.954502-4 1.572429+6 5.069907-4 1.527171+6 5.128614-4 1.504409+6 5.248075-4 1.459425+6 5.308844-4 1.437553+6 5.370318-4 1.415862+6 5.432503-4 1.393898+6 5.559043-4 1.350478+6 5.688529-4 1.308470+6 5.754399-4 1.287517+6 5.888437-4 1.245926+6 6.025596-4 1.205811+6 6.095369-4 1.185716+6 6.100000-4 1.184400+6 6.200000-4 1.156232+6 6.309573-4 1.126652+6 6.456542-4 1.088943+6 6.531306-4 1.070159+6 6.606934-4 1.051343+6 6.700000-4 1.028926+6 6.839116-4 9.968722+5 6.918310-4 9.794148+5 7.079458-4 9.442080+5 7.244360-4 9.103171+5 7.328245-4 8.937239+5 7.413102-4 8.774731+5 7.500000-4 8.608164+5 7.585776-4 8.448746+5 7.762471-4 8.134957+5 7.800000-4 8.070724+5 7.943282-4 7.833298+5 8.000000-4 7.741980+5 8.128305-4 7.534794+5 8.317638-4 7.245478+5 8.413951-4 7.105045+5 8.511380-4 6.967217+5 8.609938-4 6.832058+5 8.709636-4 6.695763+5 8.810489-4 6.561993+5 9.225714-4 6.051976+5 9.332543-4 5.930945+5 9.440609-4 5.808910+5 9.549926-4 5.689394+5 9.772372-4 5.457586+5 9.885531-4 5.344750+5 1.000000-3 5.234372+5 1.011579-3 5.125324+5 1.035142-3 4.911203+5 1.047129-3 4.807572+5 1.059254-3 4.706078+5 1.083927-3 4.508785+5 1.085800-3 4.494206+5 1.085800-3 1.519480+6 1.096478-3 1.496361+6 1.100000-3 1.488807+6 1.112900-3 1.461677+6 1.112900-3 1.922524+6 1.122018-3 1.910218+6 1.145000-3 1.881087+6 1.148154-3 1.877057+6 1.161449-3 1.860561+6 1.170000-3 1.850350+6 1.174898-3 1.842886+6 1.175000-3 1.842731+6 1.188502-3 1.828864+6 1.202000-3 1.815794+6 1.202264-3 1.815489+6 1.216186-3 1.799643+6 1.220000-3 1.795416+6 1.230269-3 1.775481+6 1.244515-3 1.746877+6 1.250000-3 1.735294+6 1.273503-3 1.682281+6 1.274000-3 1.681194+6 1.288250-3 1.646485+6 1.300000-3 1.618697+6 1.303167-3 1.611336+6 1.318257-3 1.571791+6 1.320000-3 1.566917+6 1.348963-3 1.489002+6 1.364583-3 1.449273+6 1.400000-3 1.364540+6 1.407700-3 1.347038+6 1.407700-3 1.549851+6 1.412538-3 1.538090+6 1.428894-3 1.499290+6 1.445440-3 1.461420+6 1.450000-3 1.451227+6 1.462177-3 1.424116+6 1.479108-3 1.387252+6 1.531087-3 1.283049+6 1.531900-3 1.281511+6 1.531900-3 1.358144+6 1.543000-3 1.336966+6 1.550000-3 1.323851+6 1.566751-3 1.293027+6 1.570000-3 1.287137+6 1.584893-3 1.260606+6 1.603245-3 1.228588+6 1.608000-3 1.220407+6 1.640590-3 1.166594+6 1.659587-3 1.136860+6 1.698244-3 1.079311+6 1.700000-3 1.076795+6 1.700100-3 1.076651+6 1.700100-3 1.124354+6 1.717908-3 1.098689+6 1.737801-3 1.071031+6 1.757924-3 1.043785+6 1.778279-3 1.017031+6 1.798871-3 9.908894+5 1.800000-3 9.894797+5 1.862087-3 9.160734+5 1.883649-3 8.924539+5 1.900000-3 8.751173+5 1.905461-3 8.694269+5 1.950000-3 8.245965+5 1.972423-3 8.031159+5 2.000000-3 7.778249+5 2.018366-3 7.615446+5 2.030000-3 7.514883+5 2.041738-3 7.415162+5 2.065380-3 7.220013+5 2.070000-3 7.182526+5 2.089296-3 7.028702+5 2.113489-3 6.842681+5 2.162719-3 6.485565+5 2.187762-3 6.314287+5 2.213095-3 6.147109+5 2.220000-3 6.102684+5 2.238721-3 5.983744+5 2.264644-3 5.824637+5 2.300000-3 5.616644+5 2.317395-3 5.517087+5 2.344229-3 5.368559+5 2.371374-3 5.224071+5 2.398833-3 5.082543+5 2.400000-3 5.076654+5 2.426610-3 4.944283+5 2.454709-3 4.809563+5 2.511886-3 4.551641+5 2.540973-3 4.427189+5 2.547010-3 4.401939+5 2.570396-3 4.306104+5 2.600160-3 4.187930+5 2.630268-3 4.072633+5 2.722701-3 3.745270+5 2.786121-3 3.542547+5 2.818383-3 3.445566+5 2.851018-3 3.351076+5 2.884032-3 3.259133+5 2.900000-3 3.215583+5 2.951209-3 3.081161+5 3.019952-3 2.912278+5 3.090295-3 2.751969+5 3.126079-3 2.675331+5 3.162278-3 2.600872+5 3.198895-3 2.528071+5 3.235937-3 2.457359+5 3.273407-3 2.388477+5 3.300000-3 2.340944+5 3.311311-3 2.321076+5 3.388442-3 2.191897+5 3.427678-3 2.130171+5 3.467369-3 2.070214+5 3.500000-3 2.022745+5 3.507519-3 2.011990+5 3.548134-3 1.955306+5 3.589219-3 1.900244+5 3.630781-3 1.846398+5 3.715352-3 1.743450+5 3.758374-3 1.694028+5 3.801894-3 1.646048+5 3.935501-3 1.509191+5 4.000000-3 1.448976+5 4.027170-3 1.424557+5 4.073803-3 1.383970+5 4.168694-3 1.306049+5 4.216965-3 1.268478+5 4.265795-3 1.232010+5 4.315191-3 1.196589+5 4.365158-3 1.162216+5 4.415704-3 1.128749+5 4.466836-3 1.096279+5 4.518559-3 1.064768+5 4.570882-3 1.034048+5 4.677351-3 9.753011+4 4.800000-3 9.131464+4 4.841724-3 8.931696+4 4.897788-3 8.673025+4 4.954502-3 8.421336+4 5.011872-3 8.176504+4 5.069907-3 7.939120+4 5.188000-3 7.485773+4 5.248075-3 7.267892+4 5.308844-3 7.056657+4 5.370318-3 6.850685+4 5.432503-3 6.650314+4 5.495409-3 6.455263+4 5.559043-3 6.266174+4 5.688529-3 5.904755+4 5.821032-3 5.565130+4 5.888437-3 5.402190+4 6.000000-3 5.147194+4 6.025596-3 5.090851+4 6.165950-3 4.795024+4 6.237348-3 4.653451+4 6.300000-3 4.534011+4 6.456542-3 4.253922+4 6.531306-3 4.128836+4 6.606934-3 4.007006+4 6.683439-3 3.888785+4 6.707900-3 3.852037+4 6.707900-3 1.078093+5 6.800000-3 1.044565+5 6.839116-3 1.030739+5 6.840000-3 1.030429+5 6.918310-3 1.001453+5 6.960000-3 9.864853+4 7.000000-3 9.717172+4 7.079458-3 9.432782+4 7.318200-3 8.644836+4 7.318200-3 1.184214+5 7.328245-3 1.179999+5 7.388000-3 1.154928+5 7.498942-3 1.112427+5 7.500000-3 1.112033+5 7.501810-3 1.111332+5 7.585776-3 1.079464+5 7.600000-3 1.074183+5 7.702300-3 1.036805+5 7.702300-3 1.198100+5 7.800000-3 1.159742+5 7.830000-3 1.148300+5 7.852356-3 1.140137+5 7.943282-3 1.107757+5 8.000000-3 1.088211+5 8.035261-3 1.076195+5 8.222426-3 1.015173+5 8.317638-3 9.860065+4 8.511380-3 9.302364+4 8.609938-3 9.033953+4 8.709636-3 8.769234+4 8.810489-3 8.512287+4 9.015711-3 8.021323+4 9.120108-3 7.786765+4 9.225714-3 7.559207+4 9.300000-3 7.405257+4 9.440609-3 7.123495+4 9.549926-3 6.913134+4 9.660509-3 6.709176+4 9.772372-3 6.511369+4 9.800000-3 6.463725+4 9.885531-3 6.319126+4 1.000000-2 6.132666+4 1.023293-2 5.773897+4 1.035142-2 5.602626+4 1.059254-2 5.273930+4 1.080000-2 5.012477+4 1.096478-2 4.816998+4 1.109175-2 4.673397+4 1.122018-2 4.534147+4 1.148154-2 4.266800+4 1.161449-2 4.139258+4 1.174898-2 4.015911+4 1.202264-2 3.780408+4 1.230269-2 3.558611+4 1.244515-2 3.451860+4 1.258925-2 3.348192+4 1.273503-2 3.247706+4 1.303167-2 3.055755+4 1.318257-2 2.963071+4 1.333521-2 2.873252+4 1.348963-2 2.786135+4 1.380384-2 2.619934+4 1.400000-2 2.523151+4 1.412538-2 2.463469+4 1.428894-2 2.388505+4 1.445440-2 2.315787+4 1.450000-2 2.296291+4 1.462177-2 2.245305+4 1.500000-2 2.096697+4 1.513561-2 2.046759+4 1.531087-2 1.984658+4 1.580000-2 1.824700+4 1.584893-2 1.809693+4 1.603245-2 1.754480+4 1.621810-2 1.700954+4 1.640590-2 1.648698+4 1.659587-2 1.598023+4 1.678804-2 1.548909+4 1.717908-2 1.455282+4 1.757924-2 1.367071+4 1.800000-2 1.282156+4 1.819701-2 1.244810+4 1.840772-2 1.206518+4 1.862087-2 1.169393+4 1.883649-2 1.133311+4 1.905461-2 1.098330+4 1.927525-2 1.064426+4 1.972423-2 9.996473+3 2.018366-2 9.389042+3 2.041738-2 9.099636+3 2.089296-2 8.544077+3 2.113489-2 8.279414+3 2.150000-2 7.898961+3 2.162719-2 7.772016+3 2.187762-2 7.529963+3 2.213095-2 7.295485+3 2.238721-2 7.068503+3 2.264644-2 6.848766+3 2.317395-2 6.428407+3 2.387700-2 5.921878+3 2.398833-2 5.846806+3 2.426610-2 5.665188+3 2.454709-2 5.488221+3 2.483133-2 5.316896+3 2.511886-2 5.150890+3 2.540973-2 4.989911+3 2.630268-2 4.535000+3 2.660725-2 4.393004+3 2.691535-2 4.255564+3 2.722701-2 4.122487+3 2.754229-2 3.993017+3 2.786121-2 3.867280+3 2.818383-2 3.745571+3 2.851018-2 3.627784+3 2.884032-2 3.513681+3 2.917427-2 3.403248+3 2.951209-2 3.296304+3 3.054921-2 2.995337+3 3.126079-2 2.809686+3 3.150000-2 2.750853+3 3.162278-2 2.721101+3 3.198895-2 2.634943+3 3.311311-2 2.392790+3 3.388442-2 2.243984+3 3.427678-2 2.172980+3 3.467369-2 2.104235+3 3.507519-2 2.037632+3 3.548134-2 1.973186+3 3.589219-2 1.910826+3 3.630781-2 1.850480+3 3.672823-2 1.792085+3 3.715352-2 1.735371+3 3.758374-2 1.680078+3 3.890451-2 1.524718+3 4.073803-2 1.339993+3 4.120975-2 1.297419+3 4.168694-2 1.256139+3 4.265795-2 1.177562+3 4.315191-2 1.140175+3 4.365158-2 1.104002+3 4.415704-2 1.068731+3 4.466836-2 1.034508+3 4.570882-2 9.693632+2 4.687600-2 9.027704+2 4.687600-2 5.054271+3 4.760000-2 4.868594+3 4.800000-2 4.763350+3 4.860000-2 4.622608+3 4.897788-2 4.525592+3 4.954502-2 4.385135+3 4.960000-2 4.371837+3 5.069907-2 4.135559+3 5.128614-2 4.016599+3 5.188000-2 3.900917+3 5.248075-2 3.783174+3 5.308844-2 3.668997+3 5.432503-2 3.450916+3 5.495409-2 3.346762+3 5.688529-2 3.052837+3 5.956621-2 2.705236+3 6.000000-2 2.654216+3 6.095369-2 2.546635+3 6.165950-2 2.470764+3 6.237348-2 2.397165+3 6.382635-2 2.253879+3 6.531306-2 2.119189+3 6.683439-2 1.992556+3 6.760830-2 1.932112+3 6.918310-2 1.816660+3 7.244360-2 1.602843+3 7.413102-2 1.505478+3 7.498942-2 1.459043+3 7.673615-2 1.370433+3 8.035261-2 1.209069+3 8.128305-2 1.171798+3 8.317638-2 1.100660+3 8.511380-2 1.033854+3 8.609938-2 1.001990+3 8.709636-2 9.710753+2 8.810489-2 9.406762+2 9.015711-2 8.827068+2 9.120108-2 8.550791+2 9.332543-2 8.023970+2 9.549926-2 7.529684+2 9.885531-2 6.844886+2 1.000000-1 6.630735+2 1.047129-1 5.839202+2 1.083927-1 5.307779+2 1.096478-1 5.141637+2 1.109175-1 4.979064+2 1.148154-1 4.521612+2 1.161449-1 4.378684+2 1.202264-1 3.976499+2 1.244515-1 3.611307+2 1.288250-1 3.279719+2 1.303167-1 3.176113+2 1.348963-1 2.884311+2 1.380384-1 2.704882+2 1.412538-1 2.536627+2 1.428894-1 2.456476+2 1.445440-1 2.378680+2 1.462177-1 2.303354+2 1.479108-1 2.230417+2 1.496236-1 2.159792+2 1.513561-1 2.091411+2 1.531088-1 2.025194+2 1.566751-1 1.899001+2 1.584893-1 1.838901+2 1.603245-1 1.780701+2 1.621810-1 1.724344+2 1.650000-1 1.643309+2 1.698244-1 1.516250+2 1.717908-1 1.468287+2 1.757924-1 1.376865+2 1.778279-1 1.333317+2 1.798871-1 1.291145+2 1.819701-1 1.250313+2 1.840772-1 1.210775+2 1.862087-1 1.172489+2 1.905461-1 1.099513+2 1.927525-1 1.064758+2 1.949845-1 1.031101+2 1.972423-1 9.985191+1 2.018366-1 9.364145+1 2.065380-1 8.781753+1 2.113489-1 8.235649+1 2.137962-1 7.975480+1 2.162719-1 7.723545+1 2.187762-1 7.482058+1 2.213095-1 7.248131+1 2.238721-1 7.021531+1 2.264644-1 6.802074+1 2.290868-1 6.589533+1 2.344229-1 6.184192+1 2.371374-1 5.991017+1 2.398833-1 5.803893+1 2.426610-1 5.622619+1 2.454709-1 5.447009+1 2.483133-1 5.277098+1 2.540973-1 4.953019+1 2.570396-1 4.798533+1 2.600160-1 4.648917+1 2.650000-1 4.412368+1 2.660725-1 4.364218+1 2.691535-1 4.229837+1 2.786121-1 3.851034+1 2.818383-1 3.732472+1 2.851018-1 3.617566+1 2.884032-1 3.506195+1 2.917427-1 3.398322+1 2.951209-1 3.293778+1 2.985383-1 3.192456+1 3.019952-1 3.094415+1 3.054921-1 3.000741+1 3.090295-1 2.909904+1 3.126079-1 2.821818+1 3.162278-1 2.736404+1 3.198895-1 2.653581+1 3.235937-1 2.573263+1 3.273407-1 2.495405+1 3.311311-1 2.419904+1 3.349654-1 2.346689+1 3.388442-1 2.275693+1 3.427678-1 2.206867+1 3.467369-1 2.140146+1 3.507519-1 2.076502+1 3.548134-1 2.014861+1 3.589219-1 1.955051+1 3.630781-1 1.897034+1 3.715352-1 1.786121+1 3.758374-1 1.733120+1 3.801894-1 1.681694+1 3.845918-1 1.631813+1 3.890451-1 1.583413+1 3.935501-1 1.536451+1 3.981072-1 1.491732+1 4.000000-1 1.473702+1 4.027170-1 1.448351+1 4.073803-1 1.406314+1 4.168694-1 1.325868+1 4.216965-1 1.287389+1 4.265795-1 1.250027+1 4.315191-1 1.213763+1 4.365158-1 1.178555+1 4.415705-1 1.144367+1 4.466836-1 1.111184+1 4.472100-1 1.107844+1 4.518559-1 1.079591+1 4.570882-1 1.048980+1 4.731513-1 9.624588+0 4.786301-1 9.352357+0 4.841724-1 9.087951+0 4.897788-1 8.831105+0 4.954502-1 8.581517+0 5.011872-1 8.338992+0 5.069907-1 8.108413+0 5.128614-1 7.884213+0 5.188000-1 7.666322+0 5.248075-1 7.454979+0 5.308844-1 7.249486+0 5.370318-1 7.049736+0 5.432503-1 6.855557+0 5.495409-1 6.666728+0 5.559043-1 6.483104+0 5.623413-1 6.304540+0 5.688529-1 6.134831+0 5.754399-1 5.969691+0 5.821032-1 5.809093+0 5.888437-1 5.653266+0 5.956621-1 5.501637+0 6.000000-1 5.408199+0 6.025596-1 5.354124+0 6.095369-1 5.210570+0 6.165950-1 5.070866+0 6.237348-1 4.934909+0 6.309573-1 4.805919+0 6.382635-1 4.680310+0 6.456542-1 4.558094+0 6.531306-1 4.439438+0 6.606935-1 4.323902+0 6.623700-1 4.298876+0 6.683439-1 4.211411+0 6.760830-1 4.101857+0 6.839117-1 3.995154+0 6.918310-1 3.893855+0 6.998420-1 3.795133+0 7.079458-1 3.698946+0 7.161434-1 3.605199+0 7.244360-1 3.513881+0 7.328245-1 3.425129+0 7.444800-1 3.307173+0 7.498942-1 3.254377+0 7.585776-1 3.172222+0 7.673615-1 3.092146+0 7.852356-1 2.941905+0 7.943282-1 2.869545+0 8.035261-1 2.798966+0 8.128305-1 2.730159+0 8.317638-1 2.597973+0 8.413951-1 2.534311+0 8.511380-1 2.472216+0 8.609938-1 2.411641+0 8.709636-1 2.353894+0 8.810489-1 2.297530+0 8.912509-1 2.242517+0 9.015711-1 2.188858+0 9.120108-1 2.136490+0 9.225714-1 2.085376+0 9.332543-1 2.035522+0 9.440609-1 1.987043+0 9.549926-1 1.939719+0 9.660509-1 1.893522+0 9.772372-1 1.850060+0 9.885531-1 1.807626+0 1.000000+0 1.766217+0 1.011579+0 1.725759+0 1.022000+0 1.690645+0 1.023293+0 1.686363+0 1.047129+0 1.610258+0 1.059254+0 1.573504+0 1.071519+0 1.537608+0 1.083927+0 1.503382+0 1.096478+0 1.469920+0 1.109175+0 1.437202+0 1.122018+0 1.405236+0 1.135011+0 1.373977+0 1.148154+0 1.343429+0 1.161449+0 1.313646+0 1.174898+0 1.284528+0 1.188502+0 1.256071+0 1.202264+0 1.228243+0 1.216186+0 1.201031+0 1.230269+0 1.175198+0 1.244515+0 1.149933+0 1.258925+0 1.125212+0 1.273503+0 1.101038+0 1.288250+0 1.077383+0 1.303167+0 1.054324+0 1.318257+0 1.031763+0 1.333521+0 1.009686+0 1.348963+0 9.880819-1 1.364583+0 9.669492-1 1.380384+0 9.468424-1 1.412538+0 9.078735-1 1.428894+0 8.890078-1 1.445440+0 8.705397-1 1.462177+0 8.525137-1 1.500000+0 8.138546-1 1.513561+0 8.006527-1 1.531087+0 7.840776-1 1.584893+0 7.376882-1 1.640590+0 6.940725-1 1.659587+0 6.801620-1 1.678804+0 6.665340-1 1.698244+0 6.531787-1 1.737801+0 6.272754-1 1.757924+0 6.150608-1 1.778279+0 6.030847-1 1.798871+0 5.913411-1 1.840772+0 5.685507-1 1.862087+0 5.574871-1 1.905461+0 5.360695-1 1.927525+0 5.256751-1 1.949845+0 5.154854-1 1.972423+0 5.054941-1 2.000000+0 4.940361-1 2.018366+0 4.866347-1 2.044000+0 4.765980-1 2.065380+0 4.684843-1 2.113489+0 4.510176-1 2.137962+0 4.425612-1 2.162719+0 4.342662-1 2.187762+0 4.261269-1 2.238721+0 4.103102-1 2.264644+0 4.028629-1 2.290868+0 3.955505-1 2.317395+0 3.883710-1 2.344229+0 3.813270-1 2.398833+0 3.676199-1 2.426610+0 3.609765-1 2.454709+0 3.544554-1 2.483133+0 3.480522-1 2.540973+0 3.355960-1 2.570396+0 3.297209-1 2.600160+0 3.239486-1 2.630268+0 3.182775-1 2.660725+0 3.127096-1 2.722701+0 3.018642-1 2.754229+0 2.966022-1 2.818383+0 2.863555-1 2.851018+0 2.813661-1 2.917427+0 2.716497-1 2.951209+0 2.670568-1 2.985383+0 2.625414-1 3.019952+0 2.581024-1 3.054921+0 2.537416-1 3.126079+0 2.452395-1 3.162278+0 2.410960-1 3.198895+0 2.370368-1 3.273407+0 2.291248-1 3.311311+0 2.252688-1 3.388442+0 2.177527-1 3.427678+0 2.141961-1 3.467369+0 2.106976-1 3.507519+0 2.072563-1 3.548134+0 2.038736-1 3.630781+0 1.972727-1 3.672823+0 1.940530-1 3.715352+0 1.908967-1 3.801894+0 1.847393-1 3.845918+0 1.817357-1 3.935501+0 1.758761-1 4.000000+0 1.719650-1 4.027170+0 1.703621-1 4.073803+0 1.676702-1 4.120975+0 1.650227-1 4.168694+0 1.624169-1 4.265795+0 1.573281-1 4.315191+0 1.548439-1 4.365158+0 1.524070-1 4.466836+0 1.476492-1 4.518559+0 1.453265-1 4.623810+0 1.407916-1 4.677351+0 1.386401-1 4.731513+0 1.365214-1 4.786301+0 1.344351-1 4.841724+0 1.323820-1 4.897788+0 1.303603-1 5.011872+0 1.264091-1 5.069907+0 1.244787-1 5.128614+0 1.225839-1 5.308844+0 1.170727-1 5.370318+0 1.152914-1 5.495409+0 1.118108-1 5.559043+0 1.101575-1 5.623413+0 1.085287-1 5.688529+0 1.069240-1 5.754399+0 1.053440-1 5.821032+0 1.037874-1 5.956621+0 1.007429-1 6.025596+0 9.925429-2 6.095369+0 9.779250-2 6.309573+0 9.353643-2 6.382635+0 9.215939-2 6.531306+0 8.946670-2 6.606934+0 8.818552-2 6.683439+0 8.692267-2 6.760830+0 8.567791-2 6.918310+0 8.324313-2 7.000000+0 8.202863-2 7.161434+0 7.972009-2 7.244360+0 7.857922-2 7.328245+0 7.745813-2 7.673615+0 7.313270-2 7.762471+0 7.208970-2 7.943282+0 7.004873-2 8.035261+0 6.907589-2 8.128305+0 6.811657-2 8.222427+0 6.717057-2 8.413951+0 6.531896-2 8.511380+0 6.441238-2 8.709636+0 6.263679-2 8.810489+0 6.176746-2 8.912509+0 6.091284-2 9.332543+0 5.761194-2 9.440609+0 5.681510-2 9.660509+0 5.525479-2 9.772372+0 5.450954-2 1.000000+1 5.304906-2 1.011579+1 5.233358-2 1.035142+1 5.093218-2 1.047129+1 5.024558-2 1.059254+1 4.956829-2 1.083927+1 4.824096-2 1.100000+1 4.741115-2 1.109175+1 4.695051-2 1.161449+1 4.447738-2 1.174898+1 4.387976-2 1.188502+1 4.329020-2 1.202264+1 4.270872-2 1.216186+1 4.213505-2 1.230269+1 4.158333-2 1.244515+1 4.103884-2 1.258925+1 4.050151-2 1.288250+1 3.944838-2 1.303167+1 3.893215-2 1.318257+1 3.842266-2 1.348963+1 3.742362-2 1.364583+1 3.693390-2 1.380384+1 3.645172-2 1.479108+1 3.368897-2 1.513561+1 3.281544-2 1.531087+1 3.238722-2 1.548817+1 3.196466-2 1.566751+1 3.154768-2 1.584893+1 3.114482-2 1.600000+1 3.081672-2 1.603245+1 3.074710-2 1.621810+1 3.035463-2 1.640590+1 2.996718-2 1.659587+1 2.958468-2 1.717908+1 2.846622-2 1.737801+1 2.810287-2 1.778279+1 2.739175-2 1.949845+1 2.472364-2 1.972423+1 2.440896-2 1.995262+1 2.409830-2 2.000000+1 2.403479-2 2.018366+1 2.379163-2 2.041738+1 2.349455-2 2.065380+1 2.320117-2 2.113489+1 2.262562-2 2.137962+1 2.234323-2 2.162719+1 2.206435-2 2.187762+1 2.178896-2 2.317395+1 2.046271-2 2.371374+1 1.995511-2 2.400000+1 1.969619-2 2.426610+1 1.946127-2 2.570396+1 1.827975-2 2.600160+1 1.805221-2 2.630268+1 1.782750-2 2.660725+1 1.760559-2 2.691535+1 1.739074-2 2.722701+1 1.717852-2 2.754229+1 1.696889-2 2.786121+1 1.676183-2 2.818383+1 1.655738-2 2.851018+1 1.635543-2 2.917427+1 1.595889-2 2.951209+1 1.576424-2 3.019952+1 1.538204-2 3.054921+1 1.519443-2 3.126079+1 1.482655-2 3.548134+1 1.295711-2 3.715352+1 1.233742-2 4.027170+1 1.132345-2 4.120975+1 1.104935-2 4.168694+1 1.091739-2 4.216965+1 1.078701-2 4.265795+1 1.065818-2 4.315191+1 1.053095-2 4.365158+1 1.040524-2 4.786301+1 9.454118-3 5.370318+1 8.386564-3 6.531306+1 6.841037-3 6.683439+1 6.679050-3 6.760830+1 6.600576-3 6.839116+1 6.523029-3 6.918310+1 6.446391-3 6.998420+1 6.370678-3 7.079458+1 6.295854-3 7.585776+1 5.865720-3 8.709636+1 5.091626-3 1.174898+2 3.746998-3 1.202264+2 3.659651-3 1.216186+2 3.616746-3 1.230269+2 3.574746-3 1.244515+2 3.533236-3 1.273503+2 3.451657-3 1.288250+2 3.411583-3 1.303167+2 3.371977-3 1.318257+2 3.332830-3 1.428894+2 3.071530-3 1.659587+2 2.639398-3 2.344229+2 1.860134-3 2.398833+2 1.817245-3 2.426610+2 1.796174-3 2.454709+2 1.775463-3 2.483133+2 1.754991-3 2.540973+2 1.714753-3 2.570396+2 1.694984-3 2.600160+2 1.675443-3 2.630268+2 1.656128-3 2.851018+2 1.527118-3 3.311311+2 1.313598-3 4.677351+2 9.279331-4 4.786301+2 9.066791-4 4.841724+2 8.962357-4 4.897788+2 8.859520-4 4.954502+2 8.757862-4 1.011579+3 4.282054-4 1.023293+3 4.232923-4 1.035142+3 4.184358-4 1.047129+3 4.136347-4 1.135011+3 3.815496-4 1.318257+3 3.284194-4 1.862087+3 2.323525-4 1.905461+3 2.270536-4 3.845918+3 1.123472-4 3.890451+3 1.110610-4 3.935501+3 1.097894-4 1.603245+4 2.694392-5 1.621810+4 2.663545-5 1.640590+4 2.633050-5 1.659587+4 2.602906-5 1.000000+5 4.318990-6 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.090000-6 5.090000-6 8.750000-6 5.090000-6 8.750000-6 7.229926-6 9.370000-6 7.496706-6 9.370000-6 8.108474-6 1.023293-5 8.367875-6 1.110000-5 8.560436-6 1.202264-5 8.698302-6 1.318257-5 8.798288-6 1.480000-5 8.861875-6 1.840772-5 8.903319-6 2.602000-5 8.939542-6 2.602000-5 2.399159-5 2.818383-5 2.297320-5 2.979000-5 2.210859-5 2.979000-5 2.505977-5 3.198895-5 2.405761-5 3.507519-5 2.246890-5 4.168694-5 1.886119-5 4.466836-5 1.736740-5 4.650000-5 1.653446-5 4.774000-5 1.600870-5 4.774000-5 1.623687-5 5.000000-5 1.540463-5 5.150000-5 1.491215-5 5.370318-5 1.428361-5 5.559043-5 1.381802-5 5.821032-5 1.327410-5 5.956621-5 1.303739-5 6.220000-5 1.263847-5 6.531306-5 1.226121-5 6.918310-5 1.190560-5 7.328245-5 1.162717-5 7.900000-5 1.135362-5 8.522000-5 1.115023-5 9.332543-5 1.097581-5 1.040000-4 1.083506-5 1.174898-4 1.074447-5 1.365200-4 1.070351-5 1.365200-4 1.292855-5 1.380384-4 1.328784-5 1.414000-4 1.415167-5 1.414000-4 1.536278-5 1.437000-4 1.604574-5 1.458000-4 1.655874-5 1.475000-4 1.685904-5 1.492000-4 1.705053-5 1.510000-4 1.713758-5 1.531087-4 1.711540-5 1.548817-4 1.701571-5 1.580000-4 1.672203-5 1.705000-4 1.519231-5 1.757924-4 1.460395-5 1.800000-4 1.421266-5 1.842000-4 1.388714-5 1.885000-4 1.363095-5 1.930000-4 1.344460-5 1.980000-4 1.332534-5 2.020000-4 1.329091-5 2.065380-4 1.330990-5 2.120000-4 1.339907-5 2.198000-4 1.363008-5 2.290868-4 1.401734-5 2.350000-4 1.430088-5 2.500600-4 1.511602-5 2.500600-4 1.895696-5 2.774300-4 2.049241-5 2.774300-4 2.165789-5 3.019952-4 2.294444-5 3.280000-4 2.415027-5 3.427700-4 2.476409-5 3.427700-4 2.696150-5 3.758374-4 2.819524-5 4.120975-4 2.931582-5 4.550000-4 3.042795-5 4.954502-4 3.130247-5 5.559043-4 3.236219-5 6.309573-4 3.341406-5 7.244360-4 3.444624-5 8.413951-4 3.545971-5 1.000000-3 3.653490-5 1.085800-3 3.702646-5 1.085800-3 5.852408-5 1.112900-3 5.863828-5 1.112900-3 6.156266-5 1.230269-3 6.260780-5 1.320000-3 6.285296-5 1.407700-3 6.279258-5 1.407700-3 6.788921-5 1.531900-3 6.824316-5 1.531900-3 7.056995-5 1.700100-3 7.132095-5 1.700100-3 7.387541-5 2.220000-3 7.648376-5 2.900000-3 7.924516-5 3.630781-3 8.164529-5 4.570882-3 8.413218-5 5.688529-3 8.649031-5 6.707900-3 8.824220-5 6.707900-3 1.205621-4 7.318200-3 1.210087-4 7.318200-3 1.281099-4 7.702300-3 1.282899-4 7.702300-3 1.345500-4 1.122018-2 1.373231-4 1.678804-2 1.402999-4 2.426610-2 1.430350-4 3.548134-2 1.457737-4 4.687600-2 1.476794-4 4.687600-2 1.439590-4 1.244515-1 1.446848-4 4.841724-1 1.451561-4 1.000000+5 1.452261-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.090000-6 0.0 1.414000-4 0.0 1.414000-4 1.053451-9 1.421000-4 1.107639-9 1.430000-4 1.190568-9 1.437000-4 1.259827-9 1.445440-4 1.349436-9 1.460000-4 1.510904-9 1.467200-4 1.590237-9 1.475000-4 1.671863-9 1.482300-4 1.742726-9 1.490000-4 1.812008-9 1.497000-4 1.867695-9 1.505000-4 1.922543-9 1.513561-4 1.969985-9 1.520000-4 1.998087-9 1.528000-4 2.024809-9 1.538000-4 2.045393-9 1.548817-4 2.053241-9 1.560000-4 2.048181-9 1.570000-4 2.034904-9 1.585000-4 2.001922-9 1.603245-4 1.947202-9 1.622200-4 1.881446-9 1.643000-4 1.802676-9 1.705000-4 1.554681-9 1.757924-4 1.349744-9 1.800000-4 1.206068-9 1.820000-4 1.142907-9 1.850000-4 1.058256-9 1.880000-4 9.84796-10 1.908000-4 9.27001-10 1.930000-4 8.88387-10 1.957000-4 8.48898-10 1.980000-4 8.21949-10 2.000000-4 8.03410-10 2.020000-4 7.89333-10 2.041738-4 7.78403-10 2.065380-4 7.71334-10 2.090000-4 7.68926-10 2.113489-4 7.70933-10 2.142000-4 7.78920-10 2.170000-4 7.91876-10 2.198000-4 8.09723-10 2.220000-4 8.26465-10 2.260000-4 8.62504-10 2.300000-4 9.04844-10 2.350000-4 9.64402-10 2.430000-4 1.072392-9 2.500600-4 1.175303-9 2.500600-4 2.209381-9 2.774300-4 2.631686-9 2.774300-4 3.205667-9 2.985383-4 3.533381-9 3.200000-4 3.838817-9 3.427700-4 4.131948-9 3.427700-4 4.727538-9 3.700000-4 5.041120-9 3.935501-4 5.278441-9 4.120975-4 5.447274-9 4.430000-4 5.705914-9 4.700000-4 5.902642-9 5.128614-4 6.173507-9 5.559043-4 6.402265-9 6.200000-4 6.691698-9 6.839116-4 6.928853-9 7.585776-4 7.161909-9 8.511380-4 7.405537-9 9.885531-4 7.701149-9 1.085800-3 7.877218-9 1.085800-3 9.170167-9 1.112900-3 9.187501-9 1.112900-3 9.634494-7 1.161449-3 1.066049-6 1.170000-3 1.083687-6 1.175000-3 1.091199-6 1.202264-3 1.152346-6 1.220000-3 1.186511-6 1.230269-3 1.209492-6 1.250000-3 1.247881-6 1.274000-3 1.281335-6 1.303167-3 1.308035-6 1.320000-3 1.313000-6 1.407700-3 1.308036-6 1.407700-3 1.381077-6 1.531900-3 1.381438-6 1.531900-3 1.538669-6 1.700100-3 1.559664-6 1.700100-3 1.635537-6 1.972423-3 1.675698-6 2.454709-3 1.735112-6 3.019952-3 1.793007-6 3.715352-3 1.852478-6 4.677351-3 1.918127-6 5.688529-3 1.973091-6 6.707900-3 2.019016-6 6.707900-3 5.810785-4 6.960000-3 5.835106-4 7.318200-3 5.833331-4 7.318200-3 7.442943-4 7.702300-3 7.454637-4 7.702300-3 7.863276-4 1.023293-2 7.947036-4 1.584893-2 8.031495-4 2.691535-2 8.101774-4 4.687600-2 8.154445-4 4.687600-2 3.230861-2 5.432503-2 3.254307-2 6.918310-2 3.283000-2 1.000000-1 3.309551-2 1.698244-1 3.330490-2 4.954502-1 3.345191-2 1.188502+0 3.356696-2 1.000000+5 3.356305-2 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.090000-6 0.0 8.750000-6 3.660000-6 8.750000-6 1.520074-6 9.370000-6 1.873294-6 9.370000-6 1.261526-6 9.660509-6 1.457422-6 1.000000-5 1.695657-6 1.035142-5 1.953192-6 1.070000-5 2.220163-6 1.110000-5 2.539564-6 1.150000-5 2.872423-6 1.202264-5 3.324338-6 1.273503-5 3.968084-6 1.365000-5 4.826785-6 1.507000-5 6.202010-6 1.950000-5 1.059031-5 2.602000-5 1.708046-5 2.602000-5 2.028412-6 2.660725-5 2.869908-6 2.750000-5 4.186285-6 2.818383-5 5.210626-6 2.951209-5 7.249548-6 2.979000-5 7.681415-6 2.979000-5 4.730231-6 3.080000-5 6.183042-6 3.198895-5 7.931340-6 3.400000-5 1.096009-5 3.730000-5 1.604621-5 4.168694-5 2.282575-5 4.518559-5 2.805848-5 4.774000-5 3.173130-5 4.774000-5 3.150313-5 5.000000-5 3.459537-5 5.248075-5 3.786047-5 5.559043-5 4.177241-5 5.956621-5 4.652882-5 6.531306-5 5.305185-5 7.413102-5 6.255124-5 9.015711-5 7.912287-5 1.303167-4 1.196079-4 1.365200-4 1.258165-4 1.365200-4 1.235915-4 1.414000-4 1.272483-4 1.414000-4 1.260362-4 1.473000-4 1.304681-4 1.528000-4 1.356714-4 1.643000-4 1.483426-4 1.842000-4 1.703118-4 2.020000-4 1.887083-4 2.317395-4 2.175968-4 2.500600-4 2.349428-4 2.500600-4 2.311008-4 2.774300-4 2.569350-4 2.774300-4 2.557689-4 3.427700-4 3.180018-4 3.427700-4 3.158038-4 4.897788-4 4.585830-4 8.810489-4 8.452828-4 1.085800-3 1.048766-3 1.085800-3 1.027267-3 1.112900-3 1.054252-3 1.112900-3 1.050374-3 1.407700-3 1.343599-3 1.407700-3 1.338430-3 1.531900-3 1.462275-3 1.531900-3 1.459791-3 1.700100-3 1.627219-3 1.700100-3 1.624589-3 6.707900-3 6.617639-3 6.707900-3 6.006259-3 7.318200-3 6.613858-3 7.318200-3 6.445796-3 7.702300-3 6.828546-3 7.702300-3 6.781422-3 4.687600-2 4.591288-2 4.687600-2 1.442343-2 4.897788-2 1.643579-2 5.495409-2 2.225369-2 6.918310-2 3.620880-2 1.148154-1 8.150216-2 7.328245+0 7.294534+0 1.000000+5 9.999997+4 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.687600-2 4.151501+3 4.760000-2 4.004000+3 4.800000-2 3.918900+3 4.860000-2 3.807220+3 4.960000-2 3.601920+3 5.188000-2 3.222656+3 5.688529-2 2.530375+3 6.237348-2 1.994722+3 6.918310-2 1.516858+3 8.709636-2 8.155116+2 1.096478-1 4.335833+2 1.428894-1 2.078237+2 2.162719-1 6.552642+1 2.650000-1 3.746720+1 3.019952-1 2.628948+1 3.467369-1 1.819201+1 3.935501-1 1.306621+1 4.472100-1 9.425618+0 5.011872-1 7.097973+0 5.623413-1 5.368976+0 6.237348-1 4.204539+0 6.839117-1 3.405341+0 7.673615-1 2.637258+0 8.609938-1 2.058178+0 9.660509-1 1.616785+0 1.071519+0 1.313199+0 1.216186+0 1.025775+0 1.364583+0 8.257959-1 1.531087+0 6.695415-1 1.737801+0 5.356453-1 1.972423+0 4.316652-1 2.238721+0 3.503841-1 2.540973+0 2.865871-1 2.917427+0 2.319762-1 3.388442+0 1.859516-1 3.935501+0 1.501916-1 4.623810+0 1.202318-1 5.495409+0 9.548228-2 6.531306+0 7.640146-2 7.943282+0 5.981920-2 9.660509+0 4.718556-2 1.216186+1 3.598199-2 1.566751+1 2.694108-2 2.018366+1 2.031723-2 2.660725+1 1.503510-2 4.120975+1 9.436132-3 6.683439+1 5.704037-3 1.216186+2 3.088773-3 2.426610+2 1.534022-3 4.841724+2 7.653507-4 3.845918+3 9.594033-5 1.000000+5 3.688700-6 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.687600-2 1.431500-4 1.000000+5 1.431500-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.687600-2 3.915700-2 1.000000+5 3.915700-2 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.687600-2 7.575850-3 1.000000+5 9.999996+4 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 7.702300-3 1.612953+4 7.830000-3 1.556730+4 8.035261-3 1.494941+4 8.511380-3 1.358786+4 9.225714-3 1.177718+4 1.000000-2 1.025446+4 1.080000-2 8.902060+3 1.161449-2 7.760037+3 1.230269-2 6.975571+3 1.584893-2 4.235884+3 1.800000-2 3.257520+3 2.041738-2 2.501754+3 2.426610-2 1.720674+3 2.722701-2 1.331927+3 3.150000-2 9.569080+2 3.715352-2 6.516801+2 4.365158-2 4.438538+2 5.128614-2 2.997601+2 6.095369-2 1.951345+2 7.244360-2 1.259527+2 8.609938-2 8.068689+1 1.047129-1 4.832747+1 1.303167-1 2.703238+1 2.454709-1 4.939810+0 2.985383-1 2.941587+0 3.507519-1 1.932079+0 4.027170-1 1.356691+0 4.570882-1 9.877865-1 5.188000-1 7.247311-1 5.821032-1 5.507999-1 6.456542-1 4.329766-1 7.244360-1 3.342885-1 8.128305-1 2.600116-1 9.332543-1 1.939776-1 1.011579+0 1.644737-1 1.148154+0 1.280470-1 1.288250+0 1.026804-1 1.445440+0 8.296819-2 1.640590+0 6.614238-2 1.862087+0 5.312930-2 2.113489+0 4.297390-2 2.398833+0 3.502777-2 2.722701+0 2.876030-2 3.162278+0 2.297033-2 3.672823+0 1.848929-2 4.315191+0 1.475286-2 5.069907+0 1.185917-2 6.025596+0 9.456747-3 7.244360+0 7.486543-3 8.810489+0 5.885101-3 1.100000+1 4.516900-3 1.364583+1 3.518924-3 1.737801+1 2.677747-3 2.371374+1 1.901231-3 3.054921+1 1.447838-3 4.365158+1 9.917709-4 7.079458+1 6.001312-4 1.318257+2 3.176968-4 2.630268+2 1.578753-4 1.047129+3 3.940722-5 1.659587+4 2.482146-6 1.000000+5 4.118400-7 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 7.702300-3 1.747900-4 1.000000+5 1.747900-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.702300-3 1.049000-3 1.000000+5 1.049000-3 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 7.702300-3 6.478510-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 7.318200-3 3.197300+4 7.388000-3 3.121660+4 7.500000-3 3.026800+4 7.600000-3 2.931800+4 8.000000-3 2.575800+4 9.300000-3 1.735500+4 1.035142-2 1.297500+4 1.202264-2 8.570600+3 1.400000-2 5.598200+3 1.717908-2 3.101600+3 1.927525-2 2.210800+3 2.264644-2 1.368800+3 2.754229-2 7.568500+2 3.388442-2 3.999500+2 4.120975-2 2.171500+2 5.069907-2 1.128900+2 6.531306-2 5.037000+1 1.244515-1 6.370575+0 1.566751-1 3.064425+0 1.905461-1 1.657141+0 2.238721-1 1.005890+0 2.600160-1 6.374488-1 2.985383-1 4.214627-1 3.388442-1 2.905432-1 3.801894-1 2.085950-1 4.265795-1 1.508635-1 4.786301-1 1.099342-1 5.370318-1 8.074214-2 5.956621-1 6.160361-2 6.623700-1 4.704989-2 7.328245-1 3.671795-2 8.128305-1 2.868425-2 9.332543-1 2.081459-2 9.885531-1 1.830749-2 1.059254+0 1.582124-2 1.135011+0 1.376392-2 1.230269+0 1.178237-2 1.348963+0 9.940570-3 1.659587+0 6.883456-3 1.905461+0 5.422871-3 2.137962+0 4.475446-3 2.426610+0 3.650836-3 2.754229+0 2.999747-3 3.198895+0 2.397496-3 3.715352+0 1.930942-3 4.365158+0 1.541618-3 5.128614+0 1.239897-3 6.095369+0 9.891955-4 7.328245+0 7.834314-4 8.912509+0 6.161177-4 1.109175+1 4.748645-4 1.380384+1 3.686965-4 1.778279+1 2.770476-4 2.400000+1 1.992200-4 3.126079+1 1.499721-4 4.365158+1 1.052894-4 7.079458+1 6.371029-5 1.318257+2 3.372622-5 2.630268+2 1.676051-5 1.047129+3 4.183540-6 1.659587+4 2.635031-7 1.000000+5 4.372100-8 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 7.318200-3 1.473100-4 1.000000+5 1.473100-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.318200-3 1.179500-3 1.000000+5 1.179500-3 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.318200-3 5.991390-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.707900-3 6.928890+4 6.840000-3 6.642840+4 6.960000-3 6.366720+4 7.328245-3 5.557444+4 8.609938-3 3.577844+4 9.440609-3 2.758254+4 1.122018-2 1.679072+4 1.303167-2 1.087571+4 1.621810-2 5.650174+3 1.862087-2 3.703228+3 2.113489-2 2.504182+3 2.540973-2 1.404101+3 3.054921-2 7.798290+2 3.672823-2 4.293750+2 4.415704-2 2.345975+2 5.432503-2 1.179158+2 6.918310-2 5.240628+1 1.348963-1 5.486576+0 1.650000-1 2.792141+0 1.949845-1 1.606426+0 2.264644-1 9.860806-1 2.570396-1 6.567253-1 2.884032-1 4.567703-1 3.235937-1 3.199561-1 3.589219-1 2.338610-1 3.981072-1 1.721278-1 4.415705-1 1.276443-1 4.841724-1 9.854112-2 5.308844-1 7.657302-2 5.821032-1 5.990555-2 6.382635-1 4.720484-2 6.998420-1 3.746314-2 7.673615-1 2.994069-2 8.609938-1 2.278606-2 9.225714-1 1.946293-2 9.885531-1 1.674365-2 1.071519+0 1.417792-2 1.174898+0 1.181365-2 1.288250+0 9.918312-3 1.428894+0 8.211854-3 1.698244+0 6.047960-3 1.927525+0 4.865323-3 2.187762+0 3.942995-3 2.483133+0 3.220590-3 2.851018+0 2.603456-3 3.311311+0 2.084416-3 3.845918+0 1.681661-3 4.518559+0 1.344790-3 5.370318+0 1.066847-3 6.382635+0 8.528113-4 7.762471+0 6.670930-4 9.440609+0 5.257602-4 1.188502+1 4.005989-4 1.531087+1 2.996946-4 2.000000+1 2.224700-4 2.660725+1 1.629731-4 4.120975+1 1.022853-4 6.683439+1 6.183052-5 1.202264+2 3.387674-5 2.398833+2 1.682283-5 4.786301+2 8.392780-6 1.905461+3 2.100825-6 1.000000+5 3.998500-8 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.707900-3 1.385300-4 1.000000+5 1.385300-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.707900-3 9.030000-4 1.000000+5 9.030000-4 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.707900-3 5.666370-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.700100-3 4.770229+4 1.798871-3 4.475876+4 2.030000-3 3.820280+4 2.162719-3 3.489708+4 2.511886-3 2.801778+4 2.900000-3 2.256380+4 3.162278-3 1.963128+4 3.801894-3 1.448470+4 4.265795-3 1.187421+4 4.954502-3 9.122684+3 6.000000-3 6.431400+3 6.918310-3 4.920224+3 7.943282-3 3.774229+3 9.440609-3 2.687968+3 1.122018-2 1.897906+3 1.333521-2 1.329118+3 1.580000-2 9.292020+2 1.840772-2 6.684936+2 2.150000-2 4.750580+2 2.511886-2 3.350625+2 2.951209-2 2.316558+2 3.467369-2 1.589562+2 4.073803-2 1.082803+2 4.800000-2 7.271280+1 5.688529-2 4.777475+1 6.760830-2 3.093448+1 8.128305-2 1.930304+1 9.885531-2 1.160107+1 1.244515-1 6.318250+0 1.584893-1 3.316118+0 2.344229-1 1.161758+0 2.884032-1 6.710540-1 3.427678-1 4.276207-1 3.981072-1 2.915119-1 4.518559-1 2.122722-1 5.128614-1 1.556828-1 5.754399-1 1.182571-1 6.382635-1 9.292670-2 7.161434-1 7.161377-2 8.035261-1 5.561306-2 8.912509-1 4.456197-2 9.772372-1 3.684338-2 1.109175+0 2.864021-2 1.258925+0 2.242128-2 1.412538+0 1.808591-2 1.584893+0 1.468996-2 1.798871+0 1.177611-2 2.044000+0 9.490125-3 2.317395+0 7.733381-3 2.630268+0 6.337437-3 3.019952+0 5.139258-3 3.507519+0 4.126869-3 4.073803+0 3.338660-3 4.786301+0 2.676925-3 5.688529+0 2.129161-3 6.760830+0 1.706075-3 8.222427+0 1.337640-3 1.011579+1 1.042042-3 1.258925+1 8.065370-4 1.603245+1 6.124827-4 2.065380+1 4.621210-4 2.786121+1 3.337200-4 4.265795+1 2.122991-4 6.918310+1 1.284119-4 1.273503+2 6.875719-5 2.540973+2 3.416042-5 1.011579+3 8.524453-6 1.603245+4 5.368762-7 1.000000+5 8.605400-8 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.700100-3 1.315300-4 1.000000+5 1.315300-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.700100-3 3.348000-6 1.000000+5 3.348000-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.700100-3 1.565222-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.531900-3 7.663302+4 1.550000-3 7.589849+4 1.608000-3 7.289084+4 1.700000-3 6.888400+4 1.800000-3 6.457840+4 1.900000-3 6.027940+4 2.070000-3 5.370040+4 2.264644-3 4.726397+4 2.426610-3 4.259615+4 2.630268-3 3.747110+4 2.818383-3 3.334212+4 3.235937-3 2.618045+4 3.500000-3 2.266380+4 4.000000-3 1.752458+4 4.365158-3 1.472704+4 4.897788-3 1.160455+4 5.432503-3 9.311366+3 6.165950-3 7.043934+3 6.839116-3 5.571658+3 7.800000-3 4.101140+3 8.709636-3 3.148717+3 9.800000-3 2.358040+3 1.122018-2 1.677891+3 1.273503-2 1.210958+3 1.450000-2 8.605220+2 1.659587-2 5.985695+2 1.905461-2 4.096367+2 2.187762-2 2.782240+2 2.511886-2 1.876327+2 2.917427-2 1.215504+2 3.427678-2 7.554666+1 4.073803-2 4.501203+1 4.897788-2 2.569285+1 6.000000-2 1.373692+1 7.673615-2 6.375392+0 1.445440-1 8.706279-1 1.798871-1 4.404028-1 2.065380-1 2.878995-1 2.570396-1 1.485584-1 2.951209-1 9.850534-2 3.349654-1 6.804328-2 3.801894-1 4.734937-2 4.265795-1 3.429808-2 4.786301-1 2.503272-2 5.308844-1 1.899139-2 5.888437-1 1.450982-2 6.531306-1 1.116182-2 7.244360-1 8.647553-3 8.413951-1 6.046373-3 9.015711-1 5.150858-3 9.660509-1 4.417346-3 1.023293+0 3.910892-3 1.109175+0 3.320243-3 1.216186+0 2.774222-3 1.333521+0 2.335906-3 1.513561+0 1.860961-3 1.737801+0 1.458842-3 1.972423+0 1.175048-3 2.238721+0 9.537389-4 2.540973+0 7.800393-4 2.917427+0 6.313460-4 3.388442+0 5.060774-4 3.935501+0 4.087536-4 4.623810+0 3.272098-4 5.495409+0 2.598522-4 6.531306+0 2.079241-4 7.943282+0 1.627983-4 9.660509+0 1.284180-4 1.202264+1 9.924046-5 1.548817+1 7.427407-5 2.018366+1 5.529386-5 2.691535+1 4.041017-5 4.168694+1 2.537120-5 6.760830+1 1.534027-5 1.230269+2 8.307860-6 2.454709+2 4.126507-6 4.897788+2 2.058918-6 3.890451+3 2.581094-7 1.000000+5 1.003900-8 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.531900-3 1.094800-4 1.000000+5 1.094800-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.531900-3 4.168000-6 1.000000+5 4.168000-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.531900-3 1.418252-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.407700-3 2.028122+5 1.479108-3 1.898171+5 1.566751-3 1.766321+5 1.659587-3 1.633969+5 1.778279-3 1.474815+5 2.000000-3 1.228460+5 2.220000-3 1.035128+5 2.400000-3 9.045880+4 2.570396-3 7.989361+4 3.019952-3 5.903908+4 3.273407-3 5.038939+4 3.801894-3 3.710401+4 4.168694-3 3.052928+4 4.800000-3 2.241896+4 5.308844-3 1.785010+4 6.025596-3 1.330474+4 6.800000-3 9.962560+3 7.585776-3 7.621565+3 8.609938-3 5.544729+3 9.772372-3 4.000933+3 1.096478-2 2.954447+3 1.244515-2 2.101750+3 1.428894-2 1.437477+3 1.640590-2 9.749226+2 1.883649-2 6.558274+2 2.162719-2 4.377077+2 2.483133-2 2.899358+2 2.851018-2 1.907161+2 3.311311-2 1.202357+2 3.890451-2 7.256472+1 4.570882-2 4.346177+1 5.495409-2 2.399249+1 6.683439-2 1.265952+1 8.511380-2 5.697052+0 1.479108-1 9.070840-1 1.798871-1 4.762468-1 2.137962-1 2.716783-1 2.454709-1 1.745427-1 2.786121-1 1.171594-1 3.126079-1 8.210461-2 3.507519-1 5.796554-2 3.890451-1 4.266122-2 4.315191-1 3.161203-2 4.786301-1 2.360392-2 5.248075-1 1.833853-2 5.754399-1 1.434860-2 6.309573-1 1.130505-2 6.918310-1 8.969136-3 7.585776-1 7.164670-3 8.609938-1 5.303652-3 9.225714-1 4.529214-3 9.885531-1 3.895765-3 1.071519+0 3.298525-3 1.174898+0 2.748365-3 1.288250+0 2.307457-3 1.428894+0 1.910583-3 1.698244+0 1.407400-3 1.949845+0 1.110327-3 2.187762+0 9.172292-4 2.483133+0 7.491434-4 2.818383+0 6.163208-4 3.273407+0 4.932006-4 3.801894+0 3.976841-4 4.466836+0 3.178423-4 5.308844+0 2.520127-4 6.309573+0 2.013544-4 7.673615+0 1.574341-4 9.332543+0 1.240240-4 1.161449+1 9.573962-5 1.479108+1 7.250629-5 1.949845+1 5.322952-5 2.570396+1 3.936232-5 3.548134+1 2.788442-5 4.786301+1 2.034776-5 7.585776+1 1.262636-5 1.428894+2 6.611948-6 2.851018+2 3.287864-6 1.135011+3 8.210958-7 1.000000+5 9.303000-9 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.407700-3 1.017400-4 1.000000+5 1.017400-4 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.407700-3 1.866200-6 1.000000+5 1.866200-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.407700-3 1.304094-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.112900-3 4.608469+5 1.145000-3 4.834403+5 1.170000-3 4.994213+5 1.175000-3 5.008412+5 1.202000-3 5.211751+5 1.220000-3 5.309599+5 1.230269-3 5.353136+5 1.244515-3 5.392966+5 1.250000-3 5.399291+5 1.274000-3 5.372228+5 1.303167-3 5.257047+5 1.318257-3 5.148027+5 1.462177-3 4.010402+5 1.603245-3 3.185907+5 1.757924-3 2.511449+5 1.950000-3 1.903924+5 2.187762-3 1.385761+5 2.371374-3 1.105277+5 2.600160-3 8.461191+4 2.951209-3 5.827030+4 3.300000-3 4.154440+4 3.715352-3 2.884942+4 4.168694-3 2.007422+4 4.677351-3 1.388907+4 5.370318-3 8.840193+3 6.000000-3 6.108960+3 6.800000-3 3.998288+3 7.852356-3 2.433268+3 9.015711-3 1.497383+3 1.023293-2 9.526667+2 1.161449-2 6.021553+2 1.318257-2 3.781632+2 1.500000-2 2.337812+2 1.717908-2 1.401218+2 1.972423-2 8.263250+1 2.317395-2 4.427905+1 2.754229-2 2.250393+1 3.311311-2 1.084437+1 4.073803-2 4.732137+0 5.308844-2 1.625479+0 8.709636-2 2.190948-1 1.083927-1 9.095941-2 1.288250-1 4.575435-2 1.513561-1 2.426074-2 1.757924-1 1.356161-2 2.018366-1 7.988069-3 2.290868-1 4.952275-3 2.570396-1 3.228346-3 2.884032-1 2.119598-3 3.235937-1 1.402265-3 3.589219-1 9.739262-4 3.981072-1 6.816736-4 4.365158-1 5.001458-4 4.786301-1 3.693661-4 5.308844-1 2.645684-4 5.821032-1 1.981044-4 6.165950-1 1.661405-4 6.683439-1 1.307581-4 7.328245-1 1.001625-4 8.035261-1 7.714570-5 8.609938-1 6.303884-5 9.120108-1 5.364497-5 9.549926-1 4.745470-5 1.000000+0 4.228457-5 1.047129+0 3.798805-5 1.096478+0 3.437306-5 1.148154+0 3.129441-5 1.216186+0 2.803112-5 1.303167+0 2.474346-5 1.428894+0 2.113102-5 1.513561+0 1.918428-5 1.862087+0 1.335820-5 2.065380+0 1.121363-5 2.344229+0 9.126819-6 2.660725+0 7.484436-6 3.054921+0 6.073502-6 3.548134+0 4.880054-6 4.168694+0 3.887412-6 4.897788+0 3.120119-6 5.821032+0 2.484181-6 7.000000+0 1.963300-6 8.511380+0 1.541669-6 1.059254+1 1.186312-6 1.318257+1 9.196220-7 1.659587+1 7.083165-7 2.162719+1 5.281714-7 2.917427+1 3.819599-7 4.315191+1 2.521744-7 6.998420+1 1.525650-7 1.288250+2 8.169827-8 2.570396+2 4.059459-8 1.023293+3 1.013046-8 1.621810+4 6.38065-10 1.000000+5 1.03460-10 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.112900-3 7.083800-5 1.000000+5 7.083800-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.112900-3 3.990100-6 1.000000+5 3.990100-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.112900-3 1.038072-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.085800-3 1.070059+6 1.220000-3 9.049952+5 1.450000-3 5.924772+5 1.584893-3 4.728174+5 1.737801-3 3.714473+5 1.905461-3 2.897052+5 2.065380-3 2.318160+5 2.300000-3 1.712514+5 2.511886-3 1.324762+5 2.884032-3 8.793922+4 3.162278-3 6.643510+4 3.589219-3 4.489433+4 4.073803-3 3.005504+4 4.518559-3 2.152052+4 5.188000-3 1.366135+4 5.821032-3 9.282395+3 6.531306-3 6.268075+3 7.500000-3 3.877410+3 8.609938-3 2.379378+3 9.800000-3 1.493412+3 1.109175-2 9.501135+2 1.244515-2 6.203938+2 1.412538-2 3.857140+2 1.603245-2 2.382555+2 1.819701-2 1.462449+2 2.089296-2 8.530248+1 2.454709-2 4.510569+1 2.884032-2 2.366804+1 3.467369-2 1.123308+1 4.265795-2 4.813832+0 5.432503-2 1.776459+0 9.015711-2 2.183416-1 1.096478-1 9.772388-2 1.288250-1 5.075297-2 1.496236-1 2.782742-2 1.698244-1 1.684721-2 1.927525-1 1.027612-2 2.018366-1 8.610697-3 2.344229-1 4.896173-3 2.600160-1 3.332818-3 2.884032-1 2.285491-3 3.198895-1 1.578175-3 3.507519-1 1.143736-3 3.801894-1 8.688679-4 4.073803-1 6.906871-4 4.415705-1 5.327299-4 4.786301-1 4.135876-4 5.248075-1 3.118498-4 5.754399-1 2.368368-4 6.382635-1 1.751409-4 6.918310-1 1.394633-4 7.444800-1 1.141728-4 8.035261-1 9.350376-5 8.609938-1 7.842045-5 9.120108-1 6.809212-5 9.660509-1 5.950517-5 1.022000+0 5.255319-5 1.083927+0 4.646921-5 1.161449+0 4.049365-5 1.258925+0 3.474963-5 1.380384+0 2.938961-5 1.757924+0 1.920324-5 2.000000+0 1.541177-5 2.264644+0 1.256794-5 2.570396+0 1.028568-5 2.951209+0 8.330185-6 3.427678+0 6.681303-6 4.000000+0 5.363700-6 4.677351+0 4.324593-6 5.559043+0 3.436113-6 6.606934+0 2.750810-6 8.035261+0 2.154720-6 9.772372+0 1.700374-6 1.230269+1 1.297160-6 1.584893+1 9.716230-7 2.041738+1 7.329274-7 2.722701+1 5.357735-7 4.216965+1 3.365053-7 6.839116+1 2.034965-7 1.244515+2 1.102292-7 2.483133+2 5.475543-8 4.954502+2 2.732096-8 3.935501+3 3.425211-9 1.000000+5 1.34760-10 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.085800-3 6.755300-5 1.000000+5 6.755300-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.085800-3 9.713200-9 1.000000+5 9.713200-9 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.085800-3 1.018237-3 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.427700-4 1.120904+5 3.820000-4 1.050950+5 4.570882-4 9.084832+4 4.897788-4 8.546015+4 5.248075-4 7.963264+4 6.095369-4 6.770749+4 6.606934-4 6.161557+4 7.500000-4 5.253080+4 8.317638-4 4.588214+4 9.225714-4 3.976347+4 1.059254-3 3.262073+4 1.202264-3 2.698451+4 1.364583-3 2.219454+4 1.603245-3 1.714912+4 1.862087-3 1.339421+4 2.162719-3 1.039380+4 2.540973-3 7.855794+3 3.019952-3 5.779255+3 3.630781-3 4.134838+3 4.415704-3 2.875081+3 5.370318-3 1.984103+3 6.531306-3 1.359019+3 7.852356-3 9.447553+2 9.440609-3 6.517538+2 1.122018-2 4.568606+2 1.348963-2 3.103319+2 1.603245-2 2.143871+2 1.905461-2 1.470303+2 2.264644-2 1.000683+2 2.691535-2 6.757455+1 3.162278-2 4.650631+1 3.758374-2 3.091936+1 4.466836-2 2.039505+1 5.248075-2 1.373266+1 6.237348-2 8.920826+0 7.498942-2 5.587882+0 8.810489-2 3.686422+0 1.096478-1 2.079020+0 1.445440-1 9.994254-1 2.371374-1 2.654978-1 2.917427-1 1.534393-1 3.467369-1 9.784087-2 4.000000-1 6.790483-2 4.570882-1 4.863997-2 5.188000-1 3.570366-2 5.821032-1 2.714761-2 6.531306-1 2.079396-2 7.328245-1 1.604902-2 8.317638-1 1.217415-2 9.225714-1 9.779694-3 1.011579+0 8.107347-3 1.161449+0 6.174924-3 1.303167+0 4.955031-3 1.462177+0 4.005011-3 1.640590+0 3.259993-3 1.862087+0 2.618723-3 2.113489+0 2.118037-3 2.398833+0 1.726332-3 2.722701+0 1.417471-3 3.162278+0 1.132159-3 3.672823+0 9.113234-4 4.315191+0 7.271696-4 5.069907+0 5.845345-4 6.025596+0 4.661043-4 7.244360+0 3.689957-4 8.810489+0 2.900679-4 1.100000+1 2.226300-4 1.380384+1 1.711733-4 1.778279+1 1.286296-4 2.426610+1 9.139522-5 3.126079+1 6.963088-5 4.365158+1 4.888362-5 7.079458+1 2.957927-5 1.318257+2 1.565869-5 2.630268+2 7.781479-6 1.047129+3 1.942340-6 1.659587+4 1.223440-7 1.000000+5 2.029900-8 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.427700-4 7.060600-5 1.000000+5 7.060600-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.427700-4 1.655700-8 1.000000+5 1.655700-8 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.427700-4 2.721474-4 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.774300-4 9.000327+4 3.126079-4 8.822332+4 3.890451-4 8.462696+4 4.265795-4 8.246154+4 4.600000-4 8.022100+4 4.954502-4 7.751366+4 5.308844-4 7.453820+4 5.688529-4 7.116591+4 6.200000-4 6.668620+4 6.700000-4 6.246260+4 7.244360-4 5.803710+4 8.000000-4 5.242840+4 8.709636-4 4.771950+4 9.549926-4 4.276531+4 1.059254-3 3.752460+4 1.161449-3 3.316533+4 1.300000-3 2.828980+4 1.445440-3 2.416552+4 1.603245-3 2.058051+4 1.798871-3 1.708247+4 2.018366-3 1.407379+4 2.264644-3 1.151061+4 2.540973-3 9.348260+3 2.884032-3 7.378836+3 3.273407-3 5.778526+3 3.758374-3 4.387311+3 4.315191-3 3.301468+3 4.897788-3 2.524161+3 5.559043-3 1.915663+3 6.300000-3 1.447822+3 7.079458-3 1.107904+3 8.000000-3 8.312480+2 9.120108-3 6.061776+2 1.035142-2 4.433637+2 1.174898-2 3.219762+2 1.333521-2 2.322099+2 1.531087-2 1.613348+2 1.757924-2 1.112339+2 2.018366-2 7.612150+1 2.317395-2 5.171405+1 2.691535-2 3.375859+1 3.126079-2 2.187084+1 3.672823-2 1.359449+1 4.365158-2 8.103071+0 5.188000-2 4.794588+0 6.382635-2 2.532469+0 8.317638-2 1.110585+0 1.462177-1 1.897943-1 1.819701-1 9.629187-2 2.187762-1 5.476146-2 2.540973-1 3.484682-2 2.917427-1 2.311318-2 3.311311-1 1.596867-2 3.758374-1 1.111273-2 4.216965-1 8.049853-3 4.731513-1 5.874190-3 5.308844-1 4.319100-3 5.888437-1 3.297634-3 6.531306-1 2.536527-3 7.244360-1 1.965672-3 8.413951-1 1.374632-3 9.015711-1 1.170862-3 9.660509-1 1.003993-3 1.023293+0 8.888287-4 1.109175+0 7.545607-4 1.216186+0 6.304698-4 1.333521+0 5.308951-4 1.513561+0 4.229988-4 1.737801+0 3.316094-4 1.972423+0 2.670948-4 2.238721+0 2.167798-4 2.540973+0 1.772986-4 2.917427+0 1.435060-4 3.388442+0 1.150353-4 3.935501+0 9.291492-5 4.623810+0 7.437961-5 5.495409+0 5.906834-5 6.531306+0 4.726400-5 7.943282+0 3.700542-5 9.660509+0 2.918999-5 1.216186+1 2.225918-5 1.566751+1 1.666610-5 2.018366+1 1.256866-5 2.691535+1 9.185788-6 4.168694+1 5.767305-6 6.760830+1 3.486976-6 1.230269+2 1.888491-6 2.454709+2 9.379962-7 4.897788+2 4.680099-7 3.890451+3 5.867020-8 1.000000+5 2.281900-9 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.774300-4 5.489000-5 1.000000+5 5.489000-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.774300-4 1.957200-8 1.000000+5 1.957200-8 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.774300-4 2.225204-4 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.500600-4 3.177200+5 2.951209-4 2.968703+5 3.280000-4 2.830132+5 3.630781-4 2.683543+5 4.000000-4 2.528096+5 4.365158-4 2.376139+5 4.700000-4 2.239896+5 5.069907-4 2.093446+5 5.559043-4 1.914328+5 6.025596-4 1.759719+5 6.531306-4 1.607051+5 7.244360-4 1.419257+5 7.943282-4 1.262344+5 8.810489-4 1.098035+5 9.772372-4 9.484575+4 1.096478-3 7.993838+4 1.216186-3 6.806822+4 1.364583-3 5.652156+4 1.531087-3 4.658170+4 1.717908-3 3.811755+4 1.950000-3 3.032792+4 2.220000-3 2.379932+4 2.511886-3 1.874744+4 2.818383-3 1.491176+4 3.162278-3 1.178847+4 3.548134-3 9.263482+3 4.027170-3 7.056295+3 4.570882-3 5.336248+3 5.188000-3 4.006074+3 5.821032-3 3.067164+3 6.606934-3 2.270532+3 7.501810-3 1.666504+3 8.511380-3 1.216077+3 9.660509-3 8.798225+2 1.096478-2 6.318170+2 1.244515-2 4.504900+2 1.412538-2 3.189601+2 1.603245-2 2.242900+2 1.840772-2 1.515890+2 2.113489-2 1.016583+2 2.426610-2 6.765941+1 2.786121-2 4.470777+1 3.198895-2 2.933697+1 3.715352-2 1.845005+1 4.365158-2 1.110919+1 5.188000-2 6.399260+0 6.237348-2 3.525150+0 7.673615-2 1.788168+0 1.047129-1 6.394987-1 1.531088-1 1.815059-1 1.862087-1 9.552534-2 2.213095-1 5.463358-2 2.540973-1 3.519332-2 2.884032-1 2.368608-2 3.235937-1 1.664034-2 3.630781-1 1.177847-2 4.027170-1 8.692318-3 4.466836-1 6.463594-3 4.954502-1 4.843910-3 5.432503-1 3.774359-3 6.000000-1 2.905453-3 6.606935-1 2.272374-3 7.244360-1 1.809425-3 8.128305-1 1.373201-3 8.810489-1 1.136748-3 9.440609-1 9.731918-4 1.000000+0 8.599433-4 1.083927+0 7.289834-4 1.188502+0 6.079991-4 1.288250+0 5.219408-4 1.428894+0 4.321321-4 1.698244+0 3.182678-4 1.927525+0 2.560338-4 2.187762+0 2.074876-4 2.483133+0 1.694715-4 2.851018+0 1.369995-4 3.311311+0 1.096885-4 3.845918+0 8.849492-5 4.518559+0 7.076581-5 5.370318+0 5.613966-5 6.382635+0 4.487733-5 7.762471+0 3.510482-5 9.440609+0 2.766728-5 1.188502+1 2.108061-5 1.531087+1 1.577078-5 2.000000+1 1.170700-5 2.600160+1 8.792915-6 3.715352+1 6.005627-6 5.370318+1 4.081747-6 8.709636+1 2.478057-6 1.659587+2 1.284925-6 3.311311+2 6.396616-7 1.318257+3 1.598456-7 1.000000+5 2.104100-9 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.500600-4 4.887100-5 1.000000+5 4.887100-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.500600-4 1.026300-8 1.000000+5 1.026300-8 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.500600-4 2.011787-4 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.414000-4 3.885892+5 1.421000-4 4.124480+5 1.450000-4 5.404320+5 1.458000-4 5.788840+5 1.467200-4 6.218109+5 1.475000-4 6.559760+5 1.482000-4 6.840360+5 1.490000-4 7.123880+5 1.497000-4 7.334280+5 1.505000-4 7.527600+5 1.513561-4 7.676777+5 1.520000-4 7.749840+5 1.528000-4 7.797280+5 1.538000-4 7.794600+5 1.548817-4 7.724771+5 1.560000-4 7.594080+5 1.570000-4 7.438840+5 1.585000-4 7.158440+5 1.602000-4 6.799817+5 1.622200-4 6.350037+5 1.643000-4 5.885840+5 1.670000-4 5.305640+5 1.705000-4 4.614560+5 1.820000-4 2.905724+5 1.850000-4 2.598124+5 1.880000-4 2.340800+5 1.908000-4 2.141640+5 1.930000-4 2.009980+5 1.957000-4 1.875268+5 1.980000-4 1.781188+5 2.000000-4 1.713368+5 2.020000-4 1.657216+5 2.041738-4 1.608262+5 2.065380-4 1.567679+5 2.090000-4 1.537872+5 2.113489-4 1.519903+5 2.142000-4 1.510096+5 2.170000-4 1.511560+5 2.198000-4 1.522408+5 2.220000-4 1.536592+5 2.260000-4 1.573012+5 2.300000-4 1.620392+5 2.350000-4 1.691112+5 2.430000-4 1.821352+5 2.600160-4 2.125998+5 2.691535-4 2.288241+5 2.786121-4 2.446393+5 2.884032-4 2.594997+5 2.985383-4 2.730697+5 3.090295-4 2.851643+5 3.200000-4 2.957984+5 3.320000-4 3.052308+5 3.430000-4 3.119832+5 3.550000-4 3.174272+5 3.700000-4 3.217124+5 3.850000-4 3.236392+5 4.027170-4 3.234896+5 4.216965-4 3.209999+5 4.430000-4 3.159068+5 4.623810-4 3.096972+5 4.850000-4 3.010460+5 5.128614-4 2.892005+5 5.432503-4 2.754527+5 5.754399-4 2.604161+5 6.100000-4 2.443628+5 6.531306-4 2.251494+5 6.918310-4 2.088276+5 7.413102-4 1.894551+5 8.000000-4 1.688792+5 8.609938-4 1.499712+5 9.332543-4 1.306538+5 1.000000-3 1.153644+5 1.083927-3 9.908415+4 1.174898-3 8.451728+4 1.288250-3 6.989467+4 1.400000-3 5.845800+4 1.543000-3 4.706931+4 1.698244-3 3.770025+4 1.862087-3 3.024722+4 2.041738-3 2.411199+4 2.264644-3 1.853998+4 2.540973-3 1.372100+4 2.851018-3 1.006232+4 3.198895-3 7.314469+3 3.589219-3 5.271682+3 4.000000-3 3.843776+3 4.466836-3 2.766120+3 4.954502-3 2.016511+3 5.559043-3 1.408958+3 6.237348-3 9.767472+2 7.000000-3 6.713520+2 7.852356-3 4.586397+2 8.810489-3 3.109117+2 9.885531-3 2.092378+2 1.122018-2 1.343248+2 1.273503-2 8.559079+1 1.445440-2 5.414726+1 1.640590-2 3.401889+1 1.883649-2 2.033660+1 2.162719-2 1.206759+1 2.511886-2 6.803395+0 2.951209-2 3.641082+0 3.507519-2 1.848399+0 4.315191-2 8.123852-1 5.495409-2 3.087355-1 9.332543-2 3.677225-2 1.161449-1 1.537041-2 1.380384-1 7.773098-3 1.603245-1 4.334357-3 1.840772-1 2.545119-3 2.113489-1 1.505540-3 2.398833-1 9.372357-4 2.691535-1 6.133773-4 3.019952-1 4.043560-4 3.349654-1 2.796967-4 3.715352-1 1.949044-4 4.073803-1 1.423907-4 4.518559-1 1.009340-4 5.069907-1 6.944636-5 5.559043-1 5.175591-5 6.025596-1 4.025150-5 6.531306-1 3.156968-5 7.161434-1 2.409932-5 8.035261-1 1.735669-5 8.609938-1 1.419764-5 9.120108-1 1.209441-5 9.549926-1 1.070746-5 1.000000+0 9.547600-6 1.047129+0 8.581868-6 1.096478+0 7.767593-6 1.148154+0 7.072839-6 1.216186+0 6.335153-6 1.318257+0 5.478899-6 1.513561+0 4.331664-6 1.840772+0 3.076278-6 2.044000+0 2.576200-6 2.317395+0 2.099318-6 2.630268+0 1.720375-6 3.019952+0 1.395118-6 3.507519+0 1.120303-6 4.120975+0 8.919173-7 4.841724+0 7.154917-7 5.754399+0 5.693740-7 6.918310+0 4.498884-7 8.413951+0 3.530352-7 1.035142+1 2.752518-7 1.288250+1 2.132144-7 1.621810+1 1.641231-7 2.113489+1 1.223137-7 2.818383+1 8.948086-8 4.315191+1 5.694018-8 6.998420+1 3.444748-8 1.288250+2 1.844780-8 2.570396+2 9.166062-9 1.023293+3 2.287480-9 1.621810+4 1.44071-10 1.000000+5 2.33610-11 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.414000-4 3.134600-5 1.000000+5 3.134600-5 1 62000 7 7 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.414000-4 1.495600-8 1.000000+5 1.495600-8 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.414000-4 1.100390-4 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.365200-4 5.693010+5 1.390000-4 7.404720+5 1.400000-4 8.167560+5 1.407000-4 8.699640+5 1.415000-4 9.289260+5 1.423000-4 9.842400+5 1.430000-4 1.028394+6 1.437000-4 1.067670+6 1.445000-4 1.105698+6 1.453000-4 1.135818+6 1.460000-4 1.155402+6 1.467000-4 1.168776+6 1.473000-4 1.175466+6 1.482300-4 1.177773+6 1.492000-4 1.170900+6 1.500000-4 1.159200+6 1.510000-4 1.138350+6 1.520000-4 1.112136+6 1.531087-4 1.078546+6 1.545000-4 1.032096+6 1.560000-4 9.792540+5 1.580000-4 9.078600+5 1.608400-4 8.097301+5 1.640590-4 7.073671+5 1.678804-4 6.004774+5 1.757924-4 4.303611+5 1.790000-4 3.796956+5 1.820000-4 3.407316+5 1.842000-4 3.168312+5 1.865000-4 2.956476+5 1.885000-4 2.801016+5 1.908000-4 2.651976+5 1.930000-4 2.536164+5 1.950000-4 2.451162+5 1.973000-4 2.375016+5 1.995262-4 2.320823+5 2.020000-4 2.280528+5 2.041738-4 2.260442+5 2.065380-4 2.252918+5 2.090000-4 2.259018+5 2.120000-4 2.282976+5 2.150000-4 2.322234+5 2.190000-4 2.393790+5 2.240000-4 2.506590+5 2.317395-4 2.714200+5 2.480000-4 3.201450+5 2.580000-4 3.499632+5 2.660725-4 3.728031+5 2.754229-4 3.972039+5 2.830000-4 4.150590+5 2.917427-4 4.333675+5 3.019952-4 4.517344+5 3.126079-4 4.674574+5 3.240000-4 4.809906+5 3.350000-4 4.910970+5 3.470000-4 4.990788+5 3.600000-4 5.044404+5 3.758374-4 5.069474+5 3.935501-4 5.055833+5 4.120975-4 5.006669+5 4.315191-4 4.925706+5 4.550000-4 4.796334+5 4.786301-4 4.642483+5 5.069907-4 4.439223+5 5.370318-4 4.214185+5 5.688529-4 3.973494+5 6.025596-4 3.722376+5 6.456542-4 3.415468+5 6.918310-4 3.110033+5 7.413102-4 2.811348+5 8.000000-4 2.495394+5 8.609938-4 2.208553+5 9.332543-4 1.916671+5 1.011579-3 1.650863+5 1.096478-3 1.411716+5 1.202264-3 1.170702+5 1.303167-3 9.868648+4 1.428894-3 8.059498+4 1.570000-3 6.498360+4 1.698244-3 5.400641+4 1.883649-3 4.198120+4 2.113489-3 3.141988+4 2.344229-3 2.400405+4 2.600160-3 1.819989+4 2.851018-3 1.414304+4 3.126079-3 1.092920+4 3.427678-3 8.399828+3 3.801894-3 6.205397+3 4.216965-3 4.554242+3 4.677351-3 3.319496+3 5.188000-3 2.403443+3 5.821032-3 1.666096+3 6.531306-3 1.145904+3 7.328245-3 7.820807+2 8.222426-3 5.296706+2 9.225714-3 3.560393+2 1.035142-2 2.377457+2 1.161449-2 1.576649+2 1.318257-2 9.959794+1 1.500000-2 6.186840+1 1.717908-2 3.723402+1 1.972423-2 2.202269+1 2.264644-2 1.292286+1 2.630268-2 7.195915+0 3.054921-2 3.977348+0 3.630781-2 1.990591+0 4.365158-2 9.438340-1 5.495409-2 3.682069-1 9.120108-2 4.577647-2 1.109175-1 2.058337-2 1.303167-1 1.072910-2 1.513561-1 5.902053-3 1.717908-1 3.582951-3 1.927525-1 2.290966-3 2.162719-1 1.475385-3 2.398833-1 9.997382-4 2.660725-1 6.823208-4 2.917427-1 4.890760-4 3.198895-1 3.529008-4 3.507519-1 2.564572-4 3.845918-1 1.877852-4 4.168694-1 1.439130-4 4.518559-1 1.110040-4 4.897788-1 8.618967-5 5.308844-1 6.739397-5 5.754399-1 5.306463-5 6.237348-1 4.207172-5 6.760830-1 3.358729-5 7.328245-1 2.699824-5 7.943282-1 2.185031-5 8.609938-1 1.772355-5 9.120108-1 1.535632-5 9.660509-1 1.339751-5 1.011579+0 1.208301-5 1.071519+0 1.068982-5 1.148154+0 9.297278-6 1.230269+0 8.141896-6 1.333521+0 7.022974-6 1.778279+0 4.235815-6 2.018366+0 3.414744-6 2.290868+0 2.775423-6 2.600160+0 2.272988-6 2.985383+0 1.842188-6 3.467369+0 1.478441-6 4.027170+0 1.195428-6 4.731513+0 9.579343-7 5.623413+0 7.615243-7 6.683439+0 6.099291-7 8.128305+0 4.779799-7 1.000000+1 3.722100-7 1.244515+1 2.879774-7 1.600000+1 2.162900-7 2.041738+1 1.648955-7 2.754229+1 1.190541-7 4.216965+1 7.570960-8 6.839116+1 4.578476-8 1.244515+2 2.480011-8 2.483133+2 1.231893-8 4.954502+2 6.146937-9 3.935501+3 7.70624-10 1.000000+5 3.03200-11 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.365200-4 2.991200-5 1.000000+5 2.991200-5 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.365200-4 1.066080-4 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 9.370000-6 2.368510+5 9.660509-6 2.308133+5 1.000000-5 2.256060+5 1.035142-5 2.217184+5 1.070000-5 2.193150+5 1.110000-5 2.182388+5 1.150000-5 2.188351+5 1.190000-5 2.210023+5 1.230269-5 2.245606+5 1.273503-5 2.298397+5 1.318257-5 2.367830+5 1.365000-5 2.455459+5 1.420000-5 2.576701+5 1.480000-5 2.729547+5 1.548817-5 2.928877+5 1.621810-5 3.166837+5 1.717908-5 3.519076+5 1.840772-5 4.028720+5 2.000000-5 4.777923+5 2.400000-5 7.002235+5 2.600160-5 8.238763+5 2.786121-5 9.410457+5 2.951209-5 1.044438+6 3.126079-5 1.151623+6 3.311311-5 1.260763+6 3.507519-5 1.369476+6 3.730000-5 1.483764+6 3.935501-5 1.581340+6 4.168694-5 1.682667+6 4.466836-5 1.798995+6 4.800000-5 1.914296+6 5.150000-5 2.018444+6 5.500000-5 2.106058+6 5.821032-5 2.171353+6 6.165950-5 2.224453+6 6.531306-5 2.263230+6 6.918310-5 2.285860+6 7.328245-5 2.292346+6 7.800000-5 2.283970+6 8.317638-5 2.260012+6 9.015711-5 2.214631+6 9.800000-5 2.150315+6 1.047129-4 2.088130+6 1.122018-4 2.010746+6 1.190000-4 1.935999+6 1.288250-4 1.823826+6 1.380384-4 1.718721+6 1.480000-4 1.609502+6 1.603245-4 1.480056+6 1.698244-4 1.384882+6 1.820000-4 1.269764+6 1.972423-4 1.136549+6 2.113489-4 1.025393+6 2.250000-4 9.289831+5 2.426610-4 8.177843+5 2.600160-4 7.217055+5 2.754229-4 6.465911+5 2.951209-4 5.633002+5 3.162278-4 4.873792+5 3.388442-4 4.188644+5 3.630781-4 3.576701+5 3.890451-4 3.035345+5 4.216965-4 2.487761+5 4.570882-4 2.023453+5 4.954502-4 1.633995+5 5.370318-4 1.310607+5 5.888437-4 1.010742+5 6.456542-4 7.736058+4 7.079458-4 5.877568+4 7.762471-4 4.433642+4 8.511380-4 3.321530+4 9.440609-4 2.382004+4 1.047129-3 1.695438+4 1.161449-3 1.198006+4 1.288250-3 8.405801+3 1.428894-3 5.858013+3 1.603245-3 3.892517+3 1.798871-3 2.566417+3 2.018366-3 1.679014+3 2.264644-3 1.090128+3 2.540973-3 7.025257+2 2.851018-3 4.494426+2 3.198895-3 2.854984+2 3.589219-3 1.800877+2 4.027170-3 1.128041+2 4.518559-3 7.017114+1 5.069907-3 4.322736+1 5.688529-3 2.644161+1 6.456542-3 1.528280+1 7.328245-3 8.766790+0 8.317638-3 4.991857+0 9.549926-3 2.679372+0 1.122018-2 1.286683+0 1.303167-2 6.465519-1 1.513561-2 3.225027-1 1.757924-2 1.596019-1 2.041738-2 7.840736-2 2.398833-2 3.612410-2 2.884032-2 1.477269-2 3.630781-2 4.788696-3 6.382635-2 3.009098-4 8.128305-2 9.251854-5 9.549926-2 4.236761-5 1.096478-1 2.184356-5 1.244515-1 1.198361-5 1.412538-1 6.623028-6 1.584893-1 3.891105-6 1.778279-1 2.303147-6 1.972423-1 1.446241-6 2.187762-1 9.142870-7 2.426610-1 5.820779-7 2.691535-1 3.733170-7 2.985383-1 2.412774-7 3.273407-1 1.644594-7 3.548134-1 1.183640-7 3.845918-1 8.579464-8 4.027170-1 7.166095-8 4.365158-1 5.279206-8 4.786301-1 3.749850-8 5.495409-1 2.258538-8 5.956621-1 1.691085-8 6.309573-1 1.385856-8 6.760830-1 1.098364-8 7.328245-1 8.434548-9 8.035261-1 6.280557-9 8.511380-1 5.183029-9 8.912509-1 4.470858-9 9.225714-1 4.020543-9 9.549926-1 3.633488-9 9.885531-1 3.302678-9 1.023293+0 3.021799-9 1.059254+0 2.782001-9 1.096478+0 2.575338-9 1.148154+0 2.340840-9 1.202264+0 2.142934-9 1.288250+0 1.894623-9 1.380384+0 1.687465-9 1.500000+0 1.476700-9 1.905461+0 9.73152-10 2.113489+0 8.17978-10 2.398833+0 6.66736-10 2.722701+0 5.47428-10 3.126079+0 4.44719-10 3.630781+0 3.57764-10 4.265795+0 2.85313-10 5.011872+0 2.29232-10 5.956621+0 1.82694-10 7.161434+0 1.44567-10 8.709636+0 1.13589-10 1.083927+1 8.74765-11 1.348963+1 6.78662-11 1.717908+1 5.16284-11 2.317395+1 3.71066-11 3.019952+1 2.78982-11 4.365158+1 1.88780-11 6.998420+1 1.15589-11 1.303167+2 6.11820-12 2.600160+2 3.04019-12 1.035142+3 7.58788-13 1.640590+4 4.77919-14 1.000000+5 7.83890-15 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 9.370000-6 9.370000-6 1.000000+5 9.370000-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 9.370000-6 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 8.750000-6 3.390715+5 9.100000-6 3.275759+5 9.500000-6 3.181857+5 9.885531-6 3.124047+5 1.023293-5 3.096643+5 1.060000-5 3.090774+5 1.100000-5 3.108372+5 1.135011-5 3.143175+5 1.174898-5 3.202614+5 1.216186-5 3.283974+5 1.258925-5 3.387690+5 1.310000-5 3.535644+5 1.365000-5 3.721816+5 1.428894-5 3.970009+5 1.500000-5 4.283004+5 1.584893-5 4.702691+5 1.690000-5 5.285346+5 1.819701-5 6.091501+5 2.344229-5 1.009902+6 2.540973-5 1.179066+6 2.730000-5 1.344126+6 2.900000-5 1.490945+6 3.080000-5 1.641088+6 3.273407-5 1.794746+6 3.467369-5 1.939180+6 3.672823-5 2.079928+6 3.900000-5 2.222293+6 4.168694-5 2.374488+6 4.466836-5 2.523343+6 4.800000-5 2.669687+6 5.150000-5 2.800415+6 5.500000-5 2.908000+6 5.821032-5 2.986601+6 6.165950-5 3.047690+6 6.531306-5 3.089393+6 6.918310-5 3.109593+6 7.328245-5 3.108424+6 7.852356-5 3.084410+6 8.511380-5 3.028264+6 9.120108-5 2.963833+6 9.900000-5 2.867906+6 1.060000-4 2.771776+6 1.135011-4 2.661361+6 1.216186-4 2.534143+6 1.303167-4 2.397470+6 1.412538-4 2.228443+6 1.513561-4 2.078995+6 1.621810-4 1.927857+6 1.757924-4 1.748189+6 1.883649-4 1.593567+6 2.000000-4 1.462484+6 2.162719-4 1.297484+6 2.350000-4 1.131291+6 2.540973-4 9.843137+5 2.722701-4 8.633096+5 2.917427-4 7.521325+5 3.126079-4 6.507897+5 3.349654-4 5.592702+5 3.589219-4 4.775446+5 3.845918-4 4.052572+5 4.168694-4 3.321444+5 4.518559-4 2.701566+5 4.897788-4 2.181728+5 5.308844-4 1.750379+5 5.754399-4 1.395283+5 6.309573-4 1.068606+5 6.918310-4 8.122062+4 7.585776-4 6.128809+4 8.413951-4 4.429288+4 9.332543-4 3.175643+4 1.035142-3 2.259306+4 1.148154-3 1.595889+4 1.273503-3 1.119576+4 1.412538-3 7.800633+3 1.566751-3 5.398946+3 1.757924-3 3.559808+3 1.972423-3 2.329002+3 2.213095-3 1.513633+3 2.454709-3 1.020191+3 2.722701-3 6.828108+2 3.019952-3 4.529626+2 3.388442-3 2.848073+2 3.935501-3 1.544490+2 4.466836-3 9.135329+1 5.011872-3 5.628947+1 5.559043-3 3.618591+1 6.237348-3 2.197566+1 7.079458-3 1.260031+1 8.035261-3 7.170804+0 9.225714-3 3.845595+0 1.059254-2 2.046944+0 1.258925-2 9.225962-1 1.462177-2 4.593658-1 1.678804-2 2.396629-1 1.905461-2 1.310405-1 2.213095-2 6.371827-2 2.630268-2 2.750614-2 3.198895-2 1.052529-2 4.168694-2 2.842930-3 7.244360-2 1.836961-4 8.609938-2 7.853628-5 1.000000-1 3.785979-5 1.148154-1 1.944301-5 1.303167-1 1.063216-5 1.462177-1 6.186744-6 1.621810-1 3.825527-6 1.798871-1 2.382275-6 1.972423-1 1.573985-6 2.162719-1 1.047419-6 2.371374-1 7.018823-7 2.600160-1 4.736086-7 2.851018-1 3.216505-7 3.090295-1 2.308338-7 3.349654-1 1.668116-7 3.589219-1 1.270419-7 3.845918-1 9.736258-8 4.073803-1 7.845475-8 4.365158-1 6.102585-8 4.731513-1 4.586954-8 5.370318-1 2.958414-8 5.754399-1 2.343121-8 6.165950-1 1.868505-8 6.531306-1 1.559522-8 6.998420-1 1.264224-8 7.673615-1 9.643265-9 8.317638-1 7.663472-9 8.912509-1 6.334694-9 9.549926-1 5.258119-9 9.885531-1 4.813654-9 1.023293+0 4.429787-9 1.071519+0 3.993042-9 1.122018+0 3.624003-9 1.188502+0 3.236234-9 1.273503+0 2.850558-9 1.380384+0 2.477812-9 1.513561+0 2.122960-9 1.862087+0 1.478016-9 2.065380+0 1.241011-9 2.344229+0 1.010250-9 2.660725+0 8.28381-10 3.054921+0 6.72094-10 3.548134+0 5.40029-10 4.168694+0 4.30187-10 4.897788+0 3.45279-10 5.821032+0 2.74906-10 7.000000+0 2.17260-10 8.511380+0 1.70614-10 1.059254+1 1.31280-10 1.318257+1 1.01769-10 1.659587+1 7.83831-11 2.187762+1 5.77146-11 2.951209+1 4.17537-11 4.365158+1 2.75711-11 7.079458+1 1.66836-11 1.318257+2 8.83162-12 2.630268+2 4.38898-12 1.047129+3 1.09554-12 1.659587+4 6.90018-14 1.000000+5 1.14490-14 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 8.750000-6 8.750000-6 1.000000+5 8.750000-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 8.750000-6 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.774000-5 5.323080+4 4.841724-5 5.420432+4 4.970000-5 5.649320+4 5.150000-5 6.029860+4 5.688529-5 7.320670+4 5.956621-5 7.956462+4 6.220000-5 8.540220+4 6.456542-5 9.020045+4 6.730000-5 9.516420+4 7.000000-5 9.941180+4 7.300000-5 1.033494+5 7.585776-5 1.063490+5 7.900000-5 1.088382+5 8.222426-5 1.105841+5 8.522000-5 1.115629+5 8.912509-5 1.120643+5 9.332543-5 1.118328+5 9.885531-5 1.106510+5 1.047129-4 1.086844+5 1.122018-4 1.055594+5 1.202264-4 1.018154+5 1.288250-4 9.755959+4 1.380384-4 9.285425+4 1.480000-4 8.775440+4 1.603245-4 8.164817+4 1.757924-4 7.459445+4 1.950000-4 6.691460+4 2.162719-4 5.962251+4 2.426610-4 5.200527+4 2.818383-4 4.315486+4 3.235937-4 3.606111+4 3.845918-4 2.854003+4 4.518559-4 2.277470+4 5.432503-4 1.745793+4 6.531306-4 1.327451+4 7.762471-4 1.019778+4 9.225714-4 7.782020+3 1.100000-3 5.867460+3 1.320000-3 4.344720+3 1.584893-3 3.189728+3 1.905461-3 2.318865+3 2.317395-3 1.640085+3 2.786121-3 1.175551+3 3.467369-3 7.854022+2 4.265795-3 5.320181+2 5.248075-3 3.576433+2 6.531306-3 2.332432+2 7.943282-3 1.579323+2 9.549926-3 1.086382+2 1.148154-2 7.417125+1 1.380384-2 5.025561+1 1.640590-2 3.464179+1 1.972423-2 2.312145+1 2.387700-2 1.509981+1 2.818383-2 1.035945+1 3.198895-2 7.724326+0 3.758374-2 5.275794+0 4.415704-2 3.577168+0 5.248075-2 2.340952+0 6.237348-2 1.520481+0 7.498942-2 9.522801-1 8.810489-2 6.281288-1 1.096478-1 3.541463-1 1.445440-1 1.702034-1 2.371374-1 4.524336-2 2.917427-1 2.615525-2 3.467369-1 1.667995-2 4.000000-1 1.157700-2 4.570882-1 8.292590-3 5.188000-1 6.087029-3 5.821032-1 4.628302-3 6.531306-1 3.545200-3 7.328245-1 2.736374-3 8.317638-1 2.075732-3 9.225714-1 1.667429-3 1.011579+0 1.382431-3 1.161449+0 1.052977-3 1.303167+0 8.448954-4 1.462177+0 6.828997-4 1.640590+0 5.558222-4 1.862087+0 4.464746-4 2.113489+0 3.611799-4 2.398833+0 2.944077-4 2.722701+0 2.417192-4 3.126079+0 1.963617-4 3.630781+0 1.579678-4 4.265795+0 1.259739-4 5.011872+0 1.012087-4 5.956621+0 8.066625-5 7.161434+0 6.383023-5 8.709636+0 5.015454-5 1.083927+1 3.862396-5 1.348963+1 2.996523-5 1.717908+1 2.279612-5 2.317395+1 1.638381-5 3.019952+1 1.231767-5 4.365158+1 8.335272-6 7.079458+1 5.043655-6 1.318257+2 2.669918-6 2.630268+2 1.326850-6 1.047129+3 3.311925-7 1.659587+4 2.086061-8 1.000000+5 3.461200-9 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.774000-5 4.774000-5 1.000000+5 4.774000-5 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.774000-5 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.979000-5 7.216460+6 3.198895-5 5.483960+6 3.400000-5 4.368180+6 4.027170-5 2.352622+6 4.518559-5 1.532735+6 5.370318-5 8.020472+5 5.888437-5 5.714788+5 6.382635-5 4.279379+5 6.839116-5 3.362108+5 7.300000-5 2.695060+5 7.762471-5 2.204533+5 8.150000-5 1.891552+5 8.511380-5 1.659186+5 8.912509-5 1.452358+5 9.332543-5 1.279879+5 9.800000-5 1.127786+5 1.023293-4 1.015196+5 1.071519-4 9.138642+4 1.122018-4 8.283277+4 1.174898-4 7.557502+4 1.230269-4 6.938965+4 1.288250-4 6.410048+4 1.350000-4 5.949080+4 1.430000-4 5.469000+4 1.513561-4 5.070271+4 1.620000-4 4.668580+4 1.757924-4 4.264761+4 1.927525-4 3.880861+4 2.213095-4 3.400350+4 3.054921-4 2.523872+4 3.548134-4 2.183266+4 4.073803-4 1.897723+4 4.623810-4 1.657614+4 5.308844-4 1.419908+4 6.025596-4 1.222889+4 6.839116-4 1.045867+4 7.800000-4 8.821600+3 8.810489-4 7.482407+3 9.885531-4 6.363240+3 1.122018-3 5.284676+3 1.273503-3 4.355197+3 1.445440-3 3.561751+3 1.640590-3 2.890567+3 1.862087-3 2.328339+3 2.113489-3 1.861863+3 2.398833-3 1.478260+3 2.722701-3 1.165402+3 3.090295-3 9.123624+2 3.507519-3 7.093598+2 4.000000-3 5.423600+2 4.570882-3 4.098478+2 5.188000-3 3.118777+2 5.888437-3 2.356364+2 6.683439-3 1.767620+2 7.585776-3 1.316524+2 8.609938-3 9.732678+1 9.772372-3 7.142379+1 1.109175-2 5.204596+1 1.258925-2 3.766436+1 1.513561-2 2.330234+1 1.717908-2 1.659961+1 1.972423-2 1.137608+1 2.264644-2 7.741536+0 2.630268-2 5.062728+0 3.054921-2 3.285709+0 3.589219-2 2.045773+0 4.265795-2 1.221374+0 5.069907-2 7.238030-1 6.237348-2 3.828744-1 8.035261-2 1.742841-1 1.202264-1 4.934310-2 1.584893-1 2.081873-2 1.927525-1 1.137093-2 2.290868-1 6.713387-3 2.660725-1 4.281728-3 3.054921-1 2.846912-3 3.467369-1 1.971840-3 3.935501-1 1.376113-3 4.415705-1 9.997238-4 4.954502-1 7.317131-4 5.495409-1 5.562186-4 6.095369-1 4.257019-4 6.760830-1 3.282253-4 7.498942-1 2.549366-4 8.609938-1 1.835533-4 9.225714-1 1.566688-4 9.772372-1 1.380499-4 1.047129+0 1.194854-4 1.135011+0 1.016180-4 1.244515+0 8.506564-5 1.380384+0 7.027526-5 1.678804+0 4.963875-5 1.905461+0 3.990612-5 2.162719+0 3.231805-5 2.454709+0 2.637893-5 2.818383+0 2.130977-5 3.273407+0 1.705112-5 3.801894+0 1.374879-5 4.466836+0 1.098839-5 5.308844+0 8.712645-6 6.309573+0 6.961322-6 7.673615+0 5.442839-6 9.332543+0 4.287860-6 1.174898+1 3.265840-6 1.513561+1 2.442142-6 1.972423+1 1.817083-6 2.600160+1 1.344011-6 3.715352+1 9.180259-7 5.370318+1 6.239233-7 8.709636+1 3.787825-7 1.659587+2 1.964087-7 3.311311+2 9.777781-8 1.318257+3 2.443357-8 1.000000+5 3.21630-10 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.979000-5 2.979000-5 1.000000+5 2.979000-5 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.979000-5 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.602000-5 1.549356+7 2.750000-5 1.227140+7 2.884032-5 1.012112+7 3.054921-5 8.079820+6 3.388442-5 5.443620+6 4.265795-5 2.282038+6 4.650000-5 1.658004+6 4.954502-5 1.318659+6 5.248075-5 1.077685+6 5.559043-5 8.867806+5 5.888437-5 7.353806+5 6.165950-5 6.370657+5 6.456542-5 5.552915+5 6.760830-5 4.872674+5 7.079458-5 4.306679+5 7.413102-5 3.835345+5 7.762471-5 3.442392+5 8.128305-5 3.114473+5 8.511380-5 2.839610+5 8.912509-5 2.608154+5 9.332543-5 2.411758+5 9.800000-5 2.233868+5 1.040000-4 2.050696+5 1.109175-4 1.883779+5 1.190000-4 1.729716+5 1.288250-4 1.582245+5 1.428894-4 1.420046+5 1.800000-4 1.131628+5 2.187762-4 9.323429+4 2.600160-4 7.794733+4 3.019952-4 6.626512+4 3.500000-4 5.600720+4 4.073803-4 4.671914+4 4.677351-4 3.930312+4 5.370318-4 3.283584+4 6.200000-4 2.701272+4 7.079458-4 2.239401+4 8.128305-4 1.828362+4 9.225714-4 1.507525+4 1.047129-3 1.234291+4 1.188502-3 1.003533+4 1.348963-3 8.101966+3 1.531087-3 6.494876+3 1.737801-3 5.169421+3 1.972423-3 4.085858+3 2.238721-3 3.207346+3 2.540973-3 2.500548+3 2.884032-3 1.936261+3 3.311311-3 1.453645+3 3.758374-3 1.109797+3 4.265795-3 8.415112+2 4.841724-3 6.336994+2 5.495409-3 4.739092+2 6.237348-3 3.518732+2 7.079458-3 2.593320+2 8.035261-3 1.897063+2 9.120108-3 1.377758+2 1.035142-2 9.931800+1 1.174898-2 7.106401+1 1.333521-2 5.048422+1 1.531087-2 3.449615+1 1.757924-2 2.339014+1 2.018366-2 1.573692+1 2.317395-2 1.050579+1 2.660725-2 6.962529+0 3.054921-2 4.582094+0 3.548134-2 2.889679+0 4.168694-2 1.744992+0 4.954502-2 1.008192+0 5.956621-2 5.563936-1 7.413102-2 2.723014-1 1.000000-1 1.014552-1 1.462177-1 2.878240-2 1.798871-1 1.457562-2 2.162719-1 8.023787-3 2.483133-1 5.163170-3 2.818383-1 3.470717-3 3.162278-1 2.435208-3 3.548134-1 1.721241-3 3.935501-1 1.268432-3 4.365158-1 9.417862-4 4.841724-1 7.046879-4 5.308844-1 5.482574-4 5.821032-1 4.293852-4 6.382635-1 3.386497-4 6.998420-1 2.689756-4 7.673615-1 2.151223-4 8.609938-1 1.638345-4 9.225714-1 1.399916-4 9.885531-1 1.204745-4 1.071519+0 1.020458-4 1.174898+0 8.503101-5 1.288250+0 7.138004-5 1.428894+0 5.909234-5 1.698244+0 4.351522-5 1.927525+0 3.500701-5 2.187762+0 2.837388-5 2.483133+0 2.317556-5 2.851018+0 1.873332-5 3.311311+0 1.499825-5 3.845918+0 1.210045-5 4.518559+0 9.676368-6 5.370318+0 7.676474-6 6.382635+0 6.136452-6 7.762471+0 4.800109-6 9.440609+0 3.783157-6 1.188502+1 2.882586-6 1.531087+1 2.156489-6 1.995262+1 1.604986-6 2.630268+1 1.187407-6 4.027170+1 7.540306-7 6.531306+1 4.556132-7 1.174898+2 2.495486-7 2.344229+2 1.239016-7 4.677351+2 6.180657-8 1.862087+3 1.546891-8 1.000000+5 2.87710-10 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.602000-5 2.602000-5 1.000000+5 2.602000-5 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.602000-5 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.090000-6 3.348340+6 5.248075-6 2.929013+6 5.500000-6 2.367300+6 5.956621-6 1.636465+6 6.456542-6 1.116899+6 6.918310-6 7.987524+5 7.413102-6 5.669996+5 7.852356-6 4.235331+5 8.413951-6 2.962195+5 9.015711-6 2.056453+5 1.050000-5 9.082260+4 1.100000-5 7.114820+4 1.135011-5 6.065290+4 1.174898-5 5.122161+4 1.202264-5 4.600923+4 1.230269-5 4.154712+4 1.260000-5 3.762300+4 1.290000-5 3.437500+4 1.318257-5 3.186499+4 1.340000-5 3.024280+4 1.365000-5 2.866480+4 1.390000-5 2.735360+4 1.420000-5 2.608060+4 1.450000-5 2.508860+4 1.480000-5 2.433100+4 1.507000-5 2.381840+4 1.540000-5 2.337460+4 1.570000-5 2.311700+4 1.610000-5 2.295020+4 1.650000-5 2.294500+4 1.698244-5 2.310450+4 1.757924-5 2.348570+4 1.830000-5 2.412640+4 1.950000-5 2.542080+4 2.187762-5 2.810600+4 2.344229-5 2.966364+4 2.500000-5 3.095240+4 2.660725-5 3.200891+4 2.818383-5 3.279802+4 3.000000-5 3.343560+4 3.198895-5 3.384279+4 3.400000-5 3.398240+4 3.589219-5 3.390125+4 3.801894-5 3.361813+4 4.070000-5 3.304180+4 4.365158-5 3.220091+4 4.650000-5 3.124240+4 5.000000-5 2.994080+4 5.400000-5 2.839700+4 5.821032-5 2.678348+4 6.309573-5 2.497721+4 7.000000-5 2.264080+4 7.800000-5 2.028820+4 9.015711-5 1.735884+4 1.071519-4 1.428994+4 1.445440-4 1.010313+4 1.621810-4 8.799206+3 1.819701-4 7.604751+3 2.018366-4 6.626122+3 2.290868-4 5.548784+3 3.090295-4 3.590989+3 3.845918-4 2.619718+3 4.466836-4 2.096100+3 6.309573-4 1.239153+3 7.328245-4 9.819151+2 9.885531-4 6.085045+2 1.174898-3 4.584213+2 1.412538-3 3.362756+2 1.717908-3 2.401229+2 2.089296-3 1.701973+2 2.547010-3 1.192628+2 3.311311-3 7.362912+1 4.073803-3 4.996068+1 5.011872-3 3.365067+1 6.165950-3 2.249414+1 7.498942-3 1.527019+1 9.120108-3 1.028678+1 1.096478-2 7.039004+0 1.318257-2 4.779860+0 1.584893-2 3.220721+0 1.883649-2 2.208293+0 2.238721-2 1.502992+0 2.660725-2 1.015175+0 3.126079-2 6.987976-1 3.715352-2 4.646875-1 4.415704-2 3.066021-1 5.188000-2 2.065150-1 6.165950-2 1.341973-1 7.413102-2 8.408764-2 8.709636-2 5.549121-2 1.083927-1 3.130079-2 1.428894-1 1.504953-2 2.371374-1 3.880681-3 2.917427-1 2.244019-3 3.427678-1 1.474675-3 3.935501-1 1.035668-3 4.466836-1 7.540545-4 5.069907-1 5.530453-4 5.688529-1 4.202215-4 6.382635-1 3.216890-4 7.079458-1 2.546480-4 7.852356-1 2.029091-4 8.709636-1 1.627445-4 9.660509-1 1.314890-4 1.109175+0 9.997739-5 1.258925+0 7.826742-5 1.428894+0 6.178146-5 1.584893+0 5.123737-5 1.798871+0 4.107623-5 2.065380+0 3.253509-5 2.344229+0 2.648089-5 2.660725+0 2.171496-5 3.054921+0 1.762071-5 3.548134+0 1.415863-5 4.168694+0 1.127882-5 4.897788+0 9.052472-6 5.821032+0 7.207422-6 7.000000+0 5.696100-6 8.511380+0 4.473068-6 1.047129+1 3.488980-6 1.303167+1 2.703640-6 1.640590+1 2.081844-6 2.137962+1 1.551924-6 2.851018+1 1.135758-6 4.315191+1 7.316394-7 6.998420+1 4.426262-7 1.288250+2 2.370405-7 2.570396+2 1.177752-7 1.023293+3 2.939268-8 1.621810+4 1.851265-9 1.000000+5 3.00170-10 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.090000-6 5.090000-6 1.000000+5 5.090000-6 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.090000-6 0.0 1.000000+5 1.000000+5 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.820250-7 1.027100+0 1.223090-6 1.027500+0 1.531910-6 1.028100+0 2.085660-6 1.028750+0 2.820250-6 1.029500+0 3.859590-6 1.030100+0 4.853900-6 1.031000+0 6.641790-6 1.032000+0 9.087630-6 1.033200+0 1.273020-5 1.034000+0 1.562750-5 1.035300+0 2.121220-5 1.036640+0 2.820250-5 1.038200+0 3.806020-5 1.039700+0 4.944780-5 1.041500+0 6.578970-5 1.043800+0 9.131820-5 1.046400+0 1.270520-4 1.048300+0 1.581830-4 1.051200+0 2.145720-4 1.054080+0 2.820250-4 1.057700+0 3.844190-4 1.061100+0 5.000350-4 1.065100+0 6.619940-4 1.070400+0 9.235570-4 1.076200+0 1.276360-3 1.080600+0 1.593960-3 1.087100+0 2.147580-3 1.093710+0 2.820250-3 1.102600+0 3.910050-3 1.110700+0 5.099170-3 1.120600+0 6.820610-3 1.133300+0 9.482680-3 1.147500+0 1.309180-2 1.158200+0 1.626980-2 1.174100+0 2.174710-2 1.190110+0 2.820250-2 1.205100+0 3.511840-2 1.227500+0 4.701660-2 1.250000+0 6.072000-2 1.265600+0 7.112320-2 1.294900+0 9.241940-2 1.320600+0 1.126980-1 1.343000+0 1.313940-1 1.382200+0 1.659710-1 1.433800+0 2.143660-1 1.500000+0 2.807000-1 1.562500+0 3.481760-1 1.617200+0 4.109630-1 1.712900+0 5.279620-1 1.838500+0 6.918070-1 1.946200+0 8.372730-1 2.000000+0 9.102000-1 2.044000+0 9.695000-1 2.163500+0 1.130200+0 2.372600+0 1.408810+0 2.647100+0 1.764940+0 3.000000+0 2.202000+0 3.500000+0 2.778470+0 4.000000+0 3.310000+0 4.750000+0 4.034220+0 5.000000+0 4.258000+0 6.000000+0 5.074000+0 7.000000+0 5.796000+0 8.000000+0 6.444000+0 9.000000+0 7.033000+0 1.000000+1 7.573000+0 1.100000+1 8.072000+0 1.200000+1 8.535000+0 1.300000+1 8.967000+0 1.400000+1 9.367000+0 1.500000+1 9.739000+0 1.600000+1 1.008000+1 1.800000+1 1.071000+1 2.000000+1 1.127000+1 2.200000+1 1.177000+1 2.400000+1 1.223000+1 2.600000+1 1.265000+1 2.800000+1 1.304000+1 3.000000+1 1.339000+1 4.000000+1 1.484000+1 5.000000+1 1.591000+1 6.000000+1 1.674000+1 8.000000+1 1.797000+1 1.000000+2 1.885000+1 1.500000+2 2.023000+1 2.000000+2 2.106000+1 3.000000+2 2.202000+1 4.000000+2 2.257000+1 5.000000+2 2.294000+1 6.000000+2 2.320000+1 8.000000+2 2.354000+1 1.000000+3 2.377000+1 1.500000+3 2.409000+1 2.000000+3 2.427000+1 3.000000+3 2.446000+1 4.000000+3 2.456000+1 5.000000+3 2.463000+1 6.000000+3 2.467000+1 8.000000+3 2.473000+1 1.000000+4 2.477000+1 1.500000+4 2.482000+1 2.000000+4 2.485000+1 3.000000+4 2.488000+1 4.000000+4 2.489000+1 5.000000+4 2.490000+1 6.000000+4 2.491000+1 8.000000+4 2.492000+1 1.000000+5 2.492000+1 1 62000 7 8 1.503500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.214530-7 2.094700+0 1.094090-6 2.099900+0 1.455530-6 2.106600+0 2.024760-6 2.114000+0 2.801510-6 2.119500+0 3.487870-6 2.127900+0 4.730210-6 2.136250+0 6.214530-6 2.147000+0 8.520560-6 2.156900+0 1.106720-5 2.169000+0 1.476980-5 2.184500+0 2.053060-5 2.201800+0 2.840470-5 2.214800+0 3.539000-5 2.234200+0 4.760580-5 2.253680+0 6.214530-5 2.281500+0 8.704540-5 2.307000+0 1.143340-4 2.338200+0 1.537320-4 2.377400+0 2.128990-4 2.410200+0 2.707720-4 2.446800+0 3.444380-4 2.485900+0 4.336660-4 2.532900+0 5.550010-4 2.556430+0 6.214530-4 2.611900+0 7.924260-4 2.660400+0 9.580070-4 2.745300+0 1.282240-3 2.809000+0 1.552880-3 2.904500+0 2.000500-3 3.000000+0 2.497000-3 3.125000+0 3.219600-3 3.234400+0 3.917250-3 3.425800+0 5.274290-3 3.569300+0 6.394800-3 3.784700+0 8.219090-3 4.000000+0 1.018000-2 4.250000+0 1.257740-2 4.625000+0 1.634490-2 5.000000+0 2.026000-2 5.500000+0 2.563000-2 6.000000+0 3.107000-2 6.750000+0 3.916670-2 7.000000+0 4.183000-2 8.000000+0 5.224000-2 9.000000+0 6.219000-2 1.000000+1 7.163000-2 1.100000+1 8.056000-2 1.200000+1 8.897000-2 1.300000+1 9.688000-2 1.400000+1 1.044000-1 1.500000+1 1.115000-1 1.600000+1 1.183000-1 1.800000+1 1.308000-1 2.000000+1 1.421000-1 2.200000+1 1.525000-1 2.400000+1 1.621000-1 2.600000+1 1.708000-1 2.800000+1 1.790000-1 3.000000+1 1.866000-1 4.000000+1 2.178000-1 5.000000+1 2.414000-1 6.000000+1 2.601000-1 8.000000+1 2.881000-1 1.000000+2 3.084000-1 1.500000+2 3.419000-1 2.000000+2 3.628000-1 3.000000+2 3.883000-1 4.000000+2 4.037000-1 5.000000+2 4.141000-1 6.000000+2 4.218000-1 8.000000+2 4.324000-1 1.000000+3 4.395000-1 1.500000+3 4.501000-1 2.000000+3 4.561000-1 3.000000+3 4.627000-1 4.000000+3 4.665000-1 5.000000+3 4.689000-1 6.000000+3 4.706000-1 8.000000+3 4.728000-1 1.000000+4 4.743000-1 1.500000+4 4.762000-1 2.000000+4 4.773000-1 3.000000+4 4.784000-1 4.000000+4 4.791000-1 5.000000+4 4.795000-1 6.000000+4 4.798000-1 8.000000+4 4.800000-1 1.000000+5 4.803000-1 1 62000 7 8 1.503500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 62000 7 9 1.503500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.200000+1 1.000000+5 6.200000+1 5.000000+5 6.196600+1 1.000000+6 6.191600+1 1.375000+6 6.186570+1 1.500000+6 6.184300+1 1.875000+6 6.175730+1 2.000000+6 6.172400+1 2.375000+6 6.161320+1 2.500000+6 6.157300+1 2.875000+6 6.144240+1 3.000000+6 6.139500+1 3.250000+6 6.128910+1 3.625000+6 6.112960+1 4.000000+6 6.096300+1 4.437500+6 6.075410+1 4.812500+6 6.056560+1 5.000000+6 6.046800+1 5.500000+6 6.018460+1 5.875000+6 5.995880+1 6.437500+6 5.961680+1 6.500000+6 5.957970+1 7.000000+6 5.926800+1 7.500000+6 5.894940+1 8.250000+6 5.847440+1 9.000000+6 5.798800+1 1.000000+7 5.732500+1 1.250000+7 5.569400+1 1.500000+7 5.402600+1 1.750000+7 5.235300+1 2.000000+7 5.065900+1 2.250000+7 4.894000+1 2.375000+7 4.808270+1 2.500000+7 4.724000+1 2.875000+7 4.478360+1 3.000000+7 4.400200+1 3.437500+7 4.139280+1 3.812500+7 3.934360+1 4.000000+7 3.838400+1 4.500000+7 3.600770+1 5.000000+7 3.384900+1 5.500000+7 3.186160+1 6.000000+7 3.001800+1 6.750000+7 2.749310+1 7.000000+7 2.671600+1 8.000000+7 2.393000+1 9.000000+7 2.165200+1 1.000000+8 1.982600+1 1.125000+8 1.804700+1 1.250000+8 1.664600+1 1.375000+8 1.548640+1 1.437500+8 1.496100+1 1.500000+8 1.446000+1 1.625000+8 1.349790+1 1.718800+8 1.279000+1 1.815400+8 1.206130+1 1.881300+8 1.156360+1 1.960400+8 1.096400+1 2.000000+8 1.066400+1 2.125000+8 9.734160+0 2.312500+8 8.549610+0 2.375000+8 8.227620+0 2.406300+8 8.080970+0 2.500000+8 7.702100+0 2.562500+8 7.497320+0 2.835900+8 6.789420+0 2.918000+8 6.575000+0 3.000000+8 6.342300+0 3.062500+8 6.150100+0 3.335900+8 5.337800+0 3.445300+8 5.085750+0 3.500000+8 4.982500+0 3.562500+8 4.884600+0 3.671900+8 4.749750+0 4.000000+8 4.454800+0 4.125000+8 4.333490+0 4.234400+8 4.218890+0 4.425800+8 4.008490+0 4.677000+8 3.731470+0 4.750000+8 3.653260+0 5.000000+8 3.399500+0 5.343800+8 3.087620+0 5.578100+8 2.891050+0 5.859400+8 2.664390+0 6.000000+8 2.553500+0 6.500000+8 2.191070+0 6.750000+8 2.047910+0 6.937500+8 1.961960+0 7.000000+8 1.937400+0 7.125000+8 1.897290+0 7.343800+8 1.837490+0 7.835900+8 1.715540+0 8.000000+8 1.678300+0 8.250000+8 1.608630+0 8.468800+8 1.543700+0 8.851600+8 1.429630+0 9.569300+8 1.244080+0 9.856400+8 1.185570+0 1.000000+9 1.160100+0 1.031300+9 1.113330+0 1.060500+9 1.078140+0 1.100900+9 1.039760+0 1.137900+9 1.012150+0 1.204300+9 9.742950-1 1.357400+9 9.065370-1 1.428700+9 8.733470-1 1.482200+9 8.452470-1 1.500000+9 8.352300-1 1.560500+9 7.983720-1 1.615500+9 7.627480-1 1.686000+9 7.159150-1 1.764500+9 6.642310-1 1.823400+9 6.267640-1 1.911700+9 5.737140-1 2.000000+9 5.251400-1 2.139200+9 4.579240-1 2.272600+9 4.029340-1 2.443000+9 3.438060-1 2.602800+9 2.976750-1 2.825100+9 2.454100-1 2.961100+9 2.189560-1 3.215900+9 1.782060-1 3.438900+9 1.500010-1 3.500000+9 1.432570-1 3.634100+9 1.297250-1 3.975600+9 1.018100-1 4.231700+9 8.565470-2 4.615800+9 6.697820-2 5.000000+9 5.312300-2 5.375000+9 4.289100-2 6.031300+9 3.029980-2 6.892600+9 2.009330-2 8.000000+9 1.263200-2 1.00000+10 6.288900-3 1.27030+10 2.993090-3 1.55700+10 1.599920-3 2.00890+10 7.350600-4 2.65200+10 3.173680-4 3.54180+10 1.333290-4 4.72580+10 5.658120-5 6.04430+10 2.736730-5 8.02220+10 1.193020-5 1.00000+11 6.272900-6 1.34280+11 2.666390-6 1.77440+11 1.192260-6 2.63330+11 3.838180-7 4.88110+11 6.618060-8 1.16740+12 5.663640-9 3.55150+12 2.54486-10 1.00000+14 2.55870-14 2.05350+15 5.87651-18 1.00000+17 1.14070-22 1 62000 7 0 1.503500+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.10000-11 1.000000+2 1.100000-9 1.000000+3 1.100000-7 1.000000+4 1.100000-5 1.000000+5 1.100000-3 5.000000+5 2.750000-2 1.000000+6 1.100000-1 1.375000+6 2.052900-1 1.500000+6 2.431000-1 1.875000+6 3.731580-1 2.000000+6 4.218000-1 2.375000+6 5.818060-1 2.500000+6 6.395000-1 2.875000+6 8.235700-1 3.000000+6 8.883000-1 3.250000+6 1.021880+0 3.625000+6 1.231160+0 4.000000+6 1.448300+0 4.437500+6 1.707670+0 4.812500+6 1.932420+0 5.000000+6 2.045000+0 5.500000+6 2.343080+0 5.875000+6 2.564030+0 6.437500+6 2.889590+0 6.500000+6 2.925160+0 7.000000+6 3.206700+0 7.500000+6 3.480790+0 8.250000+6 3.881110+0 9.000000+6 4.272100+0 1.000000+7 4.786000+0 1.250000+7 6.076200+0 1.500000+7 7.395000+0 1.750000+7 8.708000+0 2.000000+7 9.984000+0 2.250000+7 1.121350+1 2.375000+7 1.181210+1 2.500000+7 1.240100+1 2.875000+7 1.411050+1 3.000000+7 1.466100+1 3.437500+7 1.649980+1 3.812500+7 1.796270+1 4.000000+7 1.865200+1 4.500000+7 2.035950+1 5.000000+7 2.191900+1 5.500000+7 2.336730+1 6.000000+7 2.474100+1 6.750000+7 2.669530+1 7.000000+7 2.732500+1 8.000000+7 2.973000+1 9.000000+7 3.197500+1 1.000000+8 3.406200+1 1.125000+8 3.644230+1 1.250000+8 3.855400+1 1.375000+8 4.039440+1 1.437500+8 4.121890+1 1.500000+8 4.199300+1 1.625000+8 4.338170+1 1.718800+8 4.431140+1 1.815400+8 4.518700+1 1.881300+8 4.574200+1 1.960400+8 4.636940+1 2.000000+8 4.666900+1 2.125000+8 4.755520+1 2.312500+8 4.875250+1 2.375000+8 4.912330+1 2.406300+8 4.929950+1 2.500000+8 4.981600+1 2.562500+8 5.014000+1 2.835900+8 5.144080+1 2.918000+8 5.179650+1 3.000000+8 5.213600+1 3.062500+8 5.238290+1 3.335900+8 5.338670+1 3.445300+8 5.375250+1 3.500000+8 5.393200+1 3.562500+8 5.412520+1 3.671900+8 5.445690+1 4.000000+8 5.536900+1 4.125000+8 5.567870+1 4.234400+8 5.594360+1 4.425800+8 5.637290+1 4.677000+8 5.688160+1 4.750000+8 5.702020+1 5.000000+8 5.746100+1 5.343800+8 5.798110+1 5.578100+8 5.829740+1 5.859400+8 5.862790+1 6.000000+8 5.877700+1 6.500000+8 5.922770+1 6.750000+8 5.941870+1 6.937500+8 5.954920+1 7.000000+8 5.959200+1 7.125000+8 5.966610+1 7.343800+8 5.979280+1 7.835900+8 6.004250+1 8.000000+8 6.011900+1 8.250000+8 6.022080+1 8.468800+8 6.030750+1 8.851600+8 6.043950+1 9.569300+8 6.066000+1 9.856400+8 6.073850+1 1.000000+9 6.077700+1 1.031300+9 6.085050+1 1.060500+9 6.091720+1 1.100900+9 6.100660+1 1.137900+9 6.108260+1 1.204300+9 6.120290+1 1.357400+9 6.142740+1 1.428700+9 6.150630+1 1.482200+9 6.156270+1 1.500000+9 6.158100+1 1.560500+9 6.163060+1 1.615500+9 6.167410+1 1.686000+9 6.171800+1 1.764500+9 6.176320+1 1.823400+9 6.179440+1 1.911700+9 6.183000+1 2.000000+9 6.186400+1 2.139200+9 6.189840+1 2.272600+9 6.192930+1 2.443000+9 6.196010+1 2.602800+9 6.197870+1 2.825100+9 6.199500+1 2.961100+9 6.200070+1 3.215900+9 6.201060+1 3.438900+9 6.201130+1 3.500000+9 6.201070+1 3.634100+9 6.200950+1 3.975600+9 6.200650+1 4.231700+9 6.200450+1 4.615800+9 6.200160+1 5.000000+9 6.199900+1 5.375000+9 6.199920+1 6.031300+9 6.199940+1 6.892600+9 6.199970+1 8.000000+9 6.200000+1 1.00000+10 6.200000+1 1.27030+10 6.200000+1 1.55700+10 6.200000+1 2.00890+10 6.200000+1 2.65200+10 6.200000+1 3.54180+10 6.200000+1 4.72580+10 6.200000+1 6.04430+10 6.200000+1 8.02220+10 6.200000+1 1.00000+11 6.200000+1 1.34280+11 6.200000+1 1.77440+11 6.200000+1 2.63330+11 6.200000+1 4.88110+11 6.200000+1 1.16740+12 6.200000+1 3.55150+12 6.200000+1 1.00000+14 6.200000+1 2.05350+15 6.200000+1 1.00000+17 6.200000+1 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.082730-6 0.0 1.085395-6 5.104198-8 1.088060-6 1.009980-7 1.090725-6 1.844811-7 1.093390-6 3.110605-7 1.096055-6 4.841631-7 1.098720-6 6.956526-7 1.101385-6 9.226712-7 1.104050-6 1.129680-6 1.106715-6 1.276785-6 1.109380-6 1.332092-6 1.112045-6 1.282934-6 1.114710-6 1.140588-6 1.117375-6 9.360667-7 1.122705-6 4.959353-7 1.125370-6 3.201586-7 1.128035-6 1.907916-7 1.130700-6 1.049560-7 1.133365-6 5.329783-8 1.136030-6 0.0 1.323504-6 0.0 1.326761-6 1.585669-7 1.330019-6 3.137602-7 1.333277-6 5.731087-7 1.336534-6 9.663400-7 1.339792-6 1.504100-6 1.343049-6 2.161113-6 1.346307-6 2.866369-6 1.349565-6 3.509462-6 1.352822-6 3.966459-6 1.356080-6 4.138274-6 1.359338-6 3.985561-6 1.362595-6 3.543347-6 1.365853-6 2.907983-6 1.372368-6 1.540672-6 1.375626-6 9.946040-7 1.378883-6 5.927128-7 1.382141-6 3.260562-7 1.385399-6 1.655749-7 1.388656-6 0.0 2.135702-6 0.0 2.143588-6 3.147774+0 2.146216-6 4.183722+0 2.151473-6 7.641910+0 2.156729-6 1.288531+1 2.162643-6 2.114866+1 2.171760-6 3.689539+1 2.178414-6 4.755578+1 2.183496-6 5.309918+1 2.188827-6 5.496499+1 2.194379-6 5.219053+1 2.199564-6 4.599147+1 2.208236-6 3.127694+1 2.214554-6 2.054353+1 2.220139-6 1.292800+1 2.225067-6 7.903314+0 2.230488-6 4.280960+0 2.237881-6 1.243165+0 2.240819-6 7.788765-3 2.240838-6 0.0 2.282167-6 0.0 2.292700-6 8.091549+0 2.293402-6 8.626019+0 2.299019-6 1.575613+1 2.304987-6 2.748892+1 2.310956-6 4.360440+1 2.320970-6 7.701010+1 2.327457-6 9.726701+1 2.333632-6 1.098106+2 2.338746-6 1.134684+2 2.344473-6 1.084591+2 2.350584-6 9.428258+1 2.359427-6 6.534508+1 2.366426-6 4.235675+1 2.372044-6 2.734404+1 2.377661-6 1.629509+1 2.383278-6 8.964064+0 2.391704-6 2.278701+0 2.394513-6 0.0 3.146376-6 0.0 3.154120-6 8.10235-16 3.161865-6 1.60323-15 3.169609-6 2.92843-15 3.177354-6 4.93774-15 3.185098-6 7.68555-15 3.192842-6 1.10427-14 3.200587-6 1.46464-14 3.208331-6 1.79324-14 3.216076-6 2.02675-14 3.223820-6 2.11455-14 3.231564-6 2.03652-14 3.239309-6 1.81056-14 3.247053-6 1.48590-14 3.262542-6 7.87242-15 3.270286-6 5.08216-15 3.278031-6 3.02860-15 3.285775-6 1.66606-15 3.293520-6 8.46044-16 3.301264-6 0.0 3.664347-6 0.0 3.670700-6 2.201185-6 3.688770-6 1.086665-1 3.697805-6 1.984876-1 3.706840-6 3.346764-1 3.715593-6 5.190430-1 3.734985-6 1.467113+0 3.744632-6 2.080641+0 3.759549-6 3.237938+0 3.779813-6 4.924328+0 3.792238-6 5.627884+0 3.800545-6 5.844064+0 3.807573-6 5.807050+0 3.818803-6 5.238430+0 3.828315-6 4.438558+0 3.852626-6 1.980377+0 3.861771-6 1.278461+0 3.870916-6 7.618710-1 3.880061-6 4.191115-1 3.893779-6 1.065398-1 3.898351-6 0.0 4.145621-6 0.0 4.145640-6 1.22002-14 4.155844-6 1.49264-11 4.166048-6 2.95316-11 4.176252-6 5.39358-11 4.186456-6 9.09335-11 4.196660-6 1.41523-10 4.222987-6 3.04703-10 4.242535-6 2.154658-2 4.243775-6 2.911555-2 4.254170-6 1.001336-1 4.263420-6 1.711645-1 4.273863-6 2.952315-1 4.285353-6 4.952259-1 4.298667-6 8.002095-1 4.319108-6 1.311549+0 4.328750-6 1.499765+0 4.337324-6 1.607474+0 4.349018-6 1.611126+0 4.359642-6 1.490083+0 4.372945-6 1.208461+0 4.395416-6 6.449416-1 4.399690-6 5.440060-1 4.410085-6 3.468644-1 4.420479-6 2.046113-1 4.430500-6 1.083022-1 4.451385-6 5.89135-12 4.466383-6 1.85407-11 4.477323-6 3.38625-11 4.485710-6 5.16561-11 4.495987-6 4.055448-3 4.507792-6 3.185807-2 4.518120-6 5.845153-2 4.529186-6 1.047226-1 4.540915-6 1.786925-1 4.551956-6 2.715007-1 4.577667-6 5.285355-1 4.586719-6 6.049741-1 4.596120-6 6.605246-1 4.607161-6 6.778533-1 4.619537-6 6.335614-1 4.631365-6 5.432917-1 4.654164-6 3.356151-1 4.663296-6 2.638894-1 4.673407-6 2.080196-1 4.684448-6 1.809799-1 4.695489-6 1.863956-1 4.708991-6 2.223329-1 4.717327-6 2.485970-1 4.732149-6 3.192731-1 4.740156-6 3.498837-1 4.751570-6 3.717866-1 4.765688-6 3.675879-1 4.808758-6 2.947367-1 4.818533-6 2.897764-1 4.842160-6 8.559075-1 4.854662-6 1.361894+0 4.866287-6 2.059212+0 4.880483-6 3.266924+0 4.915181-6 6.709106+0 4.927595-6 7.462977+0 4.939303-6 7.654754+0 4.951027-6 7.286247+0 4.964756-6 6.244326+0 4.997918-6 2.896202+0 5.009236-6 1.977200+0 5.020706-6 1.286658+0 5.032420-6 8.191695-1 5.055640-6 2.424350-1 5.111395-6 2.475354-1 5.191576-6 2.281685-1 5.217487-6 6.481130-1 5.230310-6 9.959304-1 5.243089-6 1.519939+0 5.257536-6 2.346906+0 5.294203-6 4.871084+0 5.308528-6 5.488852+0 5.320159-6 5.667201+0 5.332937-6 5.439687+0 5.346514-6 4.784957+0 5.368078-6 3.290259+0 5.383252-6 2.237718+0 5.396030-6 1.514273+0 5.408809-6 9.813973-1 5.421587-6 6.272729-1 5.447144-6 2.094632-1 5.459101-6 2.210578-1 5.472473-6 2.438837-1 5.485844-6 2.793296-1 5.499215-6 3.283990-1 5.539328-6 5.125651-1 5.552699-6 5.540216-1 5.566070-6 5.686902-1 5.579441-6 5.527889-1 5.592812-6 5.095989-1 5.632925-6 3.163051-1 5.646296-6 2.633257-1 5.659667-6 2.239940-1 5.673039-6 1.974652-1 5.699781-6 1.639438-1 6.061496-6 1.308609-1 6.484477-6 1.015495-1 6.830664-6 8.312613-2 7.171590-6 6.867253-2 7.206894-6 8.573952-2 7.224546-6 1.002828-1 7.242198-6 1.227163-1 7.259850-6 1.536310-1 7.312806-6 2.693710-1 7.330458-6 2.955720-1 7.348110-6 3.050600-1 7.365762-6 2.955143-1 7.383414-6 2.689892-1 7.436370-6 1.498054-1 7.454022-6 1.172204-1 7.471674-6 9.309131-2 7.489326-6 7.689381-2 7.524630-6 5.666294-2 7.724901-6 5.094670-2 7.762929-6 5.701580-2 7.773193-6 5.991871-2 7.781943-6 6.505886-2 7.800957-6 7.961122-2 7.811458-6 8.946188-2 7.824295-6 1.046887-1 7.833706-6 1.176973-1 7.852707-6 1.490603-1 7.901329-6 2.416444-1 7.922651-6 2.720454-1 7.941478-6 2.853577-1 7.960284-6 2.830320-1 7.979090-6 2.653569-1 8.004771-6 2.246859-1 8.041051-6 1.555139-1 8.060184-6 1.254752-1 8.076731-6 1.068263-1 8.099721-6 9.009765-2 8.117582-6 8.563109-2 8.155847-6 8.588437-2 8.181994-6 9.025704-2 8.202113-6 9.018858-2 8.278048-6 7.954794-2 8.324621-6 7.848858-2 8.382437-6 8.452240-2 8.409445-6 9.132716-2 8.440854-6 1.035289-1 8.500674-6 1.319368-1 8.524346-6 1.374241-1 8.545203-6 1.374170-1 8.566031-6 1.319575-1 8.592598-6 1.182742-1 8.645481-6 8.676020-2 8.665430-6 7.846312-2 8.684626-6 7.380434-2 8.705290-6 7.316803-2 8.734376-6 7.735957-2 8.746657-6 8.034146-2 8.794610-6 9.596357-2 8.832208-6 1.018843-1 8.881950-6 1.023140-1 9.124544-6 9.892177-2 9.240899-6 9.136102-2 9.318520-6 8.601883-2 9.374722-6 8.694307-2 9.511622-6 9.485918-2 1.071589-5 9.363116-2 1.171921-5 9.924583-2 1.291464-5 1.137079-1 1.423446-5 1.384158-1 1.570000-5 1.766759-1 1.738757-5 2.348821-1 1.918260-5 3.135172-1 2.137833-5 4.339956-1 2.150693-5 4.415789-1 2.161281-5 2.533945+0 2.166574-5 4.261297+0 2.171868-5 6.878764+0 2.174771-5 8.838704+0 2.177162-5 1.458365+1 2.185477-5 3.580910+1 2.190830-5 5.544470+1 2.196852-5 8.613552+1 2.202328-5 1.208711+2 2.216750-5 2.208501+2 2.223514-5 2.487817+2 2.228842-5 2.523814+2 2.234144-5 2.381992+2 2.239751-5 2.064356+2 2.255065-5 9.071273+1 2.260418-5 5.854324+1 2.265770-5 3.509851+1 2.271123-5 1.954402+1 2.280035-5 3.769410+0 2.281829-5 5.276919-1 2.357054-5 5.837150-1 2.368657-5 8.437909-1 2.374459-5 1.055961+0 2.380260-5 1.375431+0 2.386062-5 1.810735+0 2.403467-5 3.430885+0 2.410079-5 3.827781+0 2.416011-5 4.299848+0 2.427875-5 4.721164+0 2.433807-5 5.113476+0 2.440805-5 5.991087+0 2.447982-5 7.329943+0 2.457869-5 9.418113+0 2.464819-5 1.042192+1 2.470296-5 1.076307+1 2.476073-5 1.053946+1 2.487548-5 8.944487+0 2.497276-5 7.453305+0 2.503834-5 6.811178+0 2.508984-5 6.611308+0 2.515306-5 6.625273+0 2.521926-5 6.771188+0 2.534370-5 1.727287+1 2.541321-5 2.737979+1 2.547575-5 4.088101+1 2.554425-5 6.098233+1 2.572137-5 1.220885+2 2.579612-5 1.370712+2 2.585572-5 1.397448+2 2.591764-5 1.324229+2 2.598392-5 1.151089+2 2.615766-5 5.443780+1 2.621642-5 3.790936+1 2.627470-5 2.561207+1 2.633737-5 1.686650+1 2.646074-5 6.257639+0 2.728690-5 5.847150+0 2.755158-5 6.011583+0 2.780092-5 6.608200+0 2.809057-5 7.709149+0 2.830728-5 9.171461+0 2.843113-5 9.964963+0 2.849340-5 1.010129+1 2.860999-5 9.747820+0 2.882046-5 8.630286+0 2.891075-5 8.383497+0 2.969166-5 8.220869+0 3.059301-5 7.581189+0 3.313661-5 6.571887+0 3.610608-5 5.832441+0 3.935501-5 5.357200+0 4.352893-5 5.070257+0 4.504302-5 5.116981+0 4.621783-5 5.040128+0 5.382237-5 5.257410+0 8.522000-5 7.130564+0 1.107120-4 8.107277+0 1.240829-4 8.366641+0 1.246967-4 9.152289+0 1.253106-4 2.626151+1 1.256175-4 4.039410+1 1.259244-4 6.142179+1 1.262697-4 9.403628+1 1.270874-4 1.848895+2 1.274687-4 2.140377+2 1.278046-4 2.200236+2 1.281140-4 2.089128+2 1.284449-4 1.812981+2 1.289937-4 1.201250+2 1.293006-4 9.180341+1 1.296171-4 6.928050+1 1.299243-4 5.821525+1 1.302444-4 5.859948+1 1.305897-4 7.066671+1 1.308896-4 8.569630+1 1.314279-4 1.256952+2 1.318588-4 1.472674+2 1.321487-4 1.521999+2 1.324918-4 1.451079+2 1.328695-4 1.248701+2 1.337551-4 6.077539+1 1.340582-4 4.308906+1 1.343662-4 2.976480+1 1.346797-4 2.072125+1 1.353041-4 9.540198+0 1.368441-4 9.857050+0 1.386592-4 1.073817+1 1.485063-4 1.245765+1 1.531087-4 1.255918+1 1.795613-4 1.007455+1 1.966814-4 9.221845+0 2.209000-4 8.836904+0 2.404127-4 8.853005+0 2.430000-4 9.179702+0 2.465326-4 1.029384+1 2.487277-4 1.026168+1 2.521536-4 1.001370+1 2.701625-4 1.020088+1 2.779616-4 1.056275+1 3.355863-4 1.096840+1 3.427530-4 1.146778+1 4.335421-4 1.143671+1 6.219422-4 1.023878+1 9.800765-4 7.612859+0 1.051020-3 7.210825+0 1.056194-3 1.220146+1 1.058781-3 1.635507+1 1.061383-3 2.271349+1 1.064341-3 3.288175+1 1.071435-3 6.288521+1 1.074653-3 7.245694+1 1.077416-3 7.558678+1 1.079867-3 7.537861+1 1.088078-3 5.935586+1 1.090493-3 5.682164+1 1.092962-3 5.690455+1 1.101004-3 6.660954+1 1.106496-3 6.625123+1 1.109478-3 6.153574+1 1.117153-3 4.375786+1 1.119621-3 3.915005+1 1.122251-3 3.559496+1 1.124809-3 3.333142+1 1.130111-3 3.045876+1 1.227328-3 3.122313+1 1.318257-3 2.962912+1 1.378542-3 2.820730+1 1.389771-3 2.910105+1 1.407958-3 3.156294+1 1.499415-3 2.896368+1 1.536892-3 2.989577+1 1.682456-3 2.675152+1 1.726573-3 2.683070+1 2.032942-3 2.179362+1 2.347183-3 1.798156+1 2.711155-3 1.468396+1 3.112612-3 1.204702+1 3.502689-3 1.012163+1 4.008018-3 8.271375+0 4.597269-3 6.706234+0 5.231447-3 5.486698+0 5.988002-3 4.433983+0 6.544134-3 3.860724+0 6.589111-3 4.033302+0 6.611025-3 4.299041+0 6.634914-3 4.833477+0 6.659548-3 5.683951+0 6.723132-3 8.509426+0 6.757950-3 9.536857+0 6.792520-3 9.976013+0 6.907391-3 9.925159+0 7.164362-3 9.422569+0 7.232856-3 9.685581+0 7.302595-3 1.083957+1 7.353973-3 1.170951+1 7.421108-3 1.206203+1 7.622362-3 1.184299+1 7.768857-3 1.278299+1 7.943410-3 1.259550+1 9.088841-3 1.022155+1 1.041741-2 8.216734+0 1.195950-2 6.561349+0 1.370695-2 5.238615+0 1.560046-2 4.215601+0 1.752354-2 3.458787+0 1.998613-2 2.759399+0 2.233283-2 2.275053+0 2.514775-2 1.848330+0 2.817274-2 1.512601+0 3.160856-2 1.232690+0 3.547496-2 1.002471+0 4.004775-2 8.059549-1 4.535038-2 6.435878-1 4.580942-2 6.403105-1 4.601943-2 6.664346-1 4.616878-2 7.225826-1 4.629748-2 8.166057-1 4.641195-2 9.497232-1 4.653808-2 1.159773+0 4.667705-2 1.464300+0 4.712811-2 2.624918+0 4.734481-2 3.001227+0 4.760822-2 3.215439+0 4.815000-2 3.254625+0 5.576484-2 2.570188+0 6.243475-2 2.136314+0 7.114884-2 1.714219+0 8.016177-2 1.396363+0 9.084971-2 1.123888+0 1.023000-1 9.119475-1 1.164860-1 7.243939-1 1.281489-1 6.106081-1 1.439502-1 4.959426-1 1.599794-1 4.102139-1 1.783977-1 3.375354-1 1.988941-1 2.777128-1 2.237967-1 2.251831-1 2.491435-1 1.865276-1 2.773593-1 1.548054-1 3.054097-1 1.313153-1 3.426753-1 1.083358-1 3.808740-1 9.124335-2 4.299021-1 7.541594-2 4.842045-1 6.296621-2 5.448162-1 5.308702-2 6.136147-1 4.506203-2 6.839116-1 3.911481-2 7.795562-1 3.334907-2 9.058688-1 2.809141-2 1.070165+0 2.350488-2 1.286622+0 1.918335-2 1.546860+0 1.565637-2 1.859734+0 1.277785-2 2.235892+0 1.042856-2 2.688134+0 8.511199-3 3.231848+0 6.946360-3 3.885536+0 5.669227-3 4.671441+0 4.626903-3 5.616308+0 3.776217-3 6.752287+0 3.081936-3 8.118035+0 2.515302-3 9.760024+0 2.052847-3 1.000000+1 4.209989-3 1 62000 7 0 1.503500+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.143808+1 1.714730-6-5.896127+1 1.953782-6-5.541257+1 2.048000-6-5.148163+1 2.097731-6-4.671230+1 2.120791-6-4.214189+1 2.132606-6-3.776957+1 2.146216-6-2.913171+1 2.152130-6-2.492292+1 2.158536-6-2.111747+1 2.162643-6-1.974546+1 2.165518-6-1.970880+1 2.168557-6-2.046416+1 2.171760-6-2.250212+1 2.175539-6-2.654760+1 2.178414-6-3.104247+1 2.182798-6-3.899483+1 2.193363-6-6.188930+1 2.199564-6-5.034239+1 2.205524-6-4.369362+1 2.209297-6-4.184731+1 2.214554-6-4.191764+1 2.220139-6-4.463574+1 2.242771-6-6.173948+1 2.273365-6-4.270897+1 2.280340-6-3.621801+1 2.284213-6-3.057726+1 2.292700-6-2.101250+1 2.300028-6-1.102854+1 2.304636-6-5.814789+0 2.304987-6-5.306360+0 2.305646-6-4.613343+0 2.306798-6-3.687407+0 2.310956-6-1.255476+0 2.312185-6-1.057848+0 2.313106-6-1.136656+0 2.314489-6-1.534611+0 2.315871-6-2.157185+0 2.316573-6-2.573786+0 2.317802-6-3.658366+0 2.318723-6-4.701262+0 2.319415-6-5.610412+0 2.320451-6-7.192334+0 2.321488-6-9.127817+0 2.323946-6-1.439283+1 2.325328-6-1.782750+1 2.326883-6-2.248378+1 2.331890-6-4.012637+1 2.334220-6-5.052610+1 2.337074-6-6.185886+1 2.338746-6-5.357520+1 2.345111-6-2.612360+1 2.349926-6-8.970394+0 2.350584-6-6.852147+0 2.351736-6-3.595699+0 2.352600-6-1.400197+0 2.353896-6 1.604344+0 2.355192-6 4.426875+0 2.355894-6 5.859277+0 2.357123-6 7.935928+0 2.358044-6 9.245917+0 2.359427-6 1.084708+1 2.360809-6 1.195245+1 2.363267-6 1.314433+1 2.364846-6 1.341337+1 2.365636-6 1.333013+1 2.369235-6 1.158054+1 2.371341-6 1.008883+1 2.372746-6 8.335361+0 2.375203-6 5.894889+0 2.376432-6 4.576225+0 2.377046-6 3.822325+0 2.377661-6 2.879220+0 2.383278-6-4.241928+0 2.383980-6-5.261376+0 2.385209-6-6.714579+0 2.391704-6-1.341092+1 2.394162-6-1.649545+1 2.395247-6-1.835131+1 2.398909-6-2.224054+1 2.403280-6-2.556014+1 2.411954-6-3.031164+1 2.426187-6-3.548803+1 2.451157-6-4.099961+1 2.488297-6-4.563751+1 2.556987-6-5.005996+1 2.710284-6-5.417348+1 3.090590-6-5.741104+1 3.673622-6-6.033499+1 3.764963-6-6.196486+1 3.808836-6-5.785646+1 3.843465-6-5.530105+1 3.962315-6-5.812593+1 4.328750-6-5.986947+1 4.410085-6-5.869324+1 4.610255-6-5.989869+1 4.819974-6-6.198133+1 4.895348-6-6.071535+1 4.919466-6-6.185942+1 4.972359-6-5.574742+1 5.012948-6-5.560828+1 5.122904-6-5.877636+1 5.277101-6-6.154337+1 5.368078-6-5.548711+1 5.539328-6-5.808652+1 8.881950-6-6.035371+1 1.365000-5-6.225792+1 1.738757-5-5.821795+1 1.906187-5-5.335345+1 1.990831-5-4.832978+1 2.042211-5-4.306055+1 2.076718-5-3.747181+1 2.101366-5-3.150710+1 2.114970-5-2.698928+1 2.125131-5-2.271989+1 2.135293-5-1.731312+1 2.142914-5-1.213871+1 2.145454-5-1.010556+1 2.148074-5-7.781272+0 2.149384-5-6.500506+0 2.155987-5 8.493338-1 2.158634-5 4.032070+0 2.159957-5 5.755158+0 2.163928-5 1.160230+1 2.166574-5 1.602546+1 2.170545-5 2.368052+1 2.173319-5 3.044248+1 2.174771-5 3.519985+1 2.177162-5 4.249678+1 2.192670-5 7.717567+1 2.198023-5 8.435596+1 2.202328-5 8.450963+1 2.206260-5 7.843441+1 2.209644-5 6.832793+1 2.211645-5 6.010970+1 2.213574-5 5.019607+1 2.215906-5 3.499771+1 2.217172-5 2.565880+1 2.217929-5 1.887189+1 2.220438-5-1.395049+0 2.221065-5-6.643884+0 2.221889-5-1.389959+1 2.222749-5-2.235373+1 2.223195-5-2.765188+1 2.224374-5-3.925762+1 2.227080-5-6.444947+1 2.228321-5-5.096030+1 2.228842-5-4.497224+1 2.233653-5 6.039401-1 2.233820-5 2.543240+0 2.234144-5 5.782188+0 2.234752-5 1.127936+1 2.235284-5 1.575460+1 2.236214-5 2.312414+1 2.239006-5 4.425476+1 2.239751-5 4.992998+1 2.241605-5 6.093143+1 2.244714-5 7.467488+1 2.248130-5 8.476955+1 2.251652-5 9.017503+1 2.254425-5 9.025967+1 2.259748-5 8.176654+1 2.265770-5 6.530735+1 2.273225-5 4.340925+1 2.280035-5 2.692615+1 2.281603-5 2.209853+1 2.282070-5 2.004809+1 2.283124-5 1.672621+1 2.285144-5 1.180075+1 2.286185-5 9.629062+0 2.287747-5 6.678943+0 2.289309-5 4.015650+0 2.290697-5 1.841337+0 2.293126-5-1.610448+0 2.294948-5-3.955702+0 2.297681-5-7.155030+0 2.300414-5-1.003759+1 2.305967-5-1.513221+1 2.314296-5-2.137675+1 2.325402-5-2.797154+1 2.339284-5-3.448446+1 2.368657-5-4.524603+1 2.397665-5-5.355901+1 2.441414-5-6.332812+1 2.457869-5-6.594376+1 2.484422-5-6.494950+1 2.499267-5-5.999025+1 2.513939-5-5.080248+1 2.520563-5-4.437158+1 2.522503-5-4.123438+1 2.534370-5-2.743217+1 2.542050-5-1.751861+1 2.547155-5-1.218638+1 2.547575-5-1.161428+1 2.548362-5-1.088969+1 2.549739-5-1.001817+1 2.550772-5-9.567854+0 2.554425-5-8.413166+0 2.555497-5-8.462267+0 2.556503-5-8.772420+0 2.558329-5-9.842256+0 2.559986-5-1.131823+1 2.561436-5-1.298730+1 2.563815-5-1.649599+1 2.566380-5-2.142963+1 2.569023-5-2.800829+1 2.571045-5-3.456225+1 2.572137-5-3.929706+1 2.577670-5-6.086606+1 2.579335-5-6.943366+1 2.584665-5-4.517960+1 2.585572-5-4.004903+1 2.591150-5-1.503381+1 2.591764-5-1.196442+1 2.592522-5-8.746600+0 2.593186-5-6.147372+0 2.594347-5-1.894128+0 2.598392-5 1.209664+1 2.599478-5 1.532754+1 2.601450-5 2.022330+1 2.603240-5 2.389262+1 2.606176-5 2.862543+1 2.609473-5 3.222518+1 2.612226-5 3.383753+1 2.614881-5 3.395070+1 2.620927-5 2.979062+1 2.626924-5 2.262803+1 2.634508-5 1.203432+1 2.635954-5 1.022026+1 2.641014-5 4.663952+0 2.643544-5 1.773331+0 2.644809-5 1.425131-1 2.645441-5-7.834289-1 2.646742-5-3.159804+0 2.647744-5-4.543643+0 2.648747-5-5.737061+0 2.651292-5-8.306413+0 2.654139-5-1.069673+1 2.659437-5-1.432326+1 2.667884-5-1.874133+1 2.680412-5-2.350103+1 2.700858-5-2.886627+1 2.728690-5-3.383819+1 2.774356-5-3.951047+1 2.825819-5-4.301997+1 2.877388-5-4.186619+1 2.961647-5-4.392268+1 3.412912-5-4.746889+1 4.688876-5-5.074787+1 9.316910-5-5.521634+1 1.038682-4-5.835973+1 1.115302-4-5.262195+1 1.157836-4-4.670282+1 1.184482-4-4.050604+1 1.202573-4-3.394891+1 1.214856-4-2.740531+1 1.223429-4-2.105237+1 1.229172-4-1.544882+1 1.231904-4-1.222659+1 1.234135-4-9.240426+0 1.235809-4-6.742495+0 1.237064-4-4.694464+0 1.238005-4-3.043623+0 1.239417-4-3.476660-1 1.240829-4 2.703428+0 1.242356-4 6.388469+0 1.243883-4 1.052606+1 1.245232-4 1.481154+1 1.246100-4 1.808620+1 1.246751-4 2.109125+1 1.247159-4 2.365710+1 1.253106-4 4.780627+1 1.256559-4 6.374805+1 1.260300-4 7.766528+1 1.262697-4 8.243014+1 1.264597-4 8.155120+1 1.266826-4 7.492665+1 1.268452-4 6.608779+1 1.270227-4 5.287772+1 1.271360-4 4.195454+1 1.271713-4 3.745155+1 1.273512-4 1.715402+1 1.274186-4 8.600220+0 1.274388-4 5.728281+0 1.274490-4 4.177014+0 1.274687-4 7.107440-1 1.274872-4-2.119417+0 1.275221-4-7.006162+0 1.276974-4-3.044281+1 1.277633-4-4.063525+1 1.278212-4-5.003978+1 1.278776-4-5.771922+1 1.280568-4-3.410640+1 1.280963-4-2.784719+1 1.281618-4-1.959184+1 1.281891-4-1.648323+1 1.283799-4 3.759133+0 1.283894-4 4.949690+0 1.284083-4 6.925281+0 1.284449-4 1.026814+1 1.285114-4 1.540569+1 1.285980-4 2.082428+1 1.286908-4 2.530711+1 1.287951-4 2.886764+1 1.288819-4 3.062557+1 1.289657-4 3.108452+1 1.291855-4 2.821497+1 1.292719-4 2.599263+1 1.294925-4 1.701381+1 1.295500-4 1.412617+1 1.295932-4 1.142528+1 1.296171-4 9.343603+0 1.296543-4 6.782464+0 1.297844-4-9.485140-1 1.298494-4-5.020316+0 1.298820-4-7.298160+0 1.299063-4-9.269679+0 1.299243-4-1.109302+1 1.299434-4-1.264527+1 1.300105-4-1.723681+1 1.302091-4-2.968529+1 1.302811-4-3.517090+1 1.303803-4-4.050014+1 1.306513-4-5.231303+1 1.308332-4-5.787023+1 1.309458-4-5.444138+1 1.311283-4-5.396870+1 1.313197-4-5.776887+1 1.314279-4-5.336164+1 1.316891-4-3.912274+1 1.317854-4-3.231736+1 1.318588-4-2.541693+1 1.320455-4-1.052970+1 1.320921-4-6.523749+0 1.321155-4-4.343085+0 1.321271-4-3.161400+0 1.321487-4-6.151406-1 1.324570-4 2.615843+1 1.324918-4 2.958566+1 1.326101-4 3.848600+1 1.329262-4 5.816123+1 1.331560-4 6.698441+1 1.334228-4 7.238446+1 1.336672-4 7.319294+1 1.340326-4 6.651823+1 1.343662-4 5.656863+1 1.347469-4 4.429869+1 1.352608-4 3.009066+1 1.353906-4 2.529000+1 1.355914-4 2.031078+1 1.357553-4 1.705963+1 1.360626-4 1.205022+1 1.362470-4 9.508449+0 1.363993-4 7.611393+0 1.366191-4 5.139578+0 1.368441-4 2.868077+0 1.371572-4 7.809680-2 1.374183-4-1.955257+0 1.376794-4-3.766557+0 1.379848-4-5.653145+0 1.382834-4-7.288549+0 1.386592-4-9.106664+0 1.394575-4-1.235362+1 1.401894-4-1.486493+1 1.415771-4-1.868478+1 1.432437-4-2.198027+1 1.455321-4-2.503938+1 1.485063-4-2.744521+1 1.531087-4-2.943933+1 1.633579-4-3.162801+1 1.966814-4-3.514563+1 2.418577-4-3.807723+1 2.521536-4-3.824098+1 3.020821-4-3.626196+1 3.525445-4-3.509002+1 4.680718-4-3.215466+1 6.219422-4-3.043875+1 7.733202-4-3.066536+1 8.874114-4-3.240511+1 9.605801-4-3.485729+1 1.020352-3-3.881711+1 1.051020-3-4.292661+1 1.066740-3-4.727553+1 1.083661-3-5.448630+1 1.092962-3-5.421321+1 1.122251-3-4.712805+1 1.141293-3-4.178544+1 1.173132-3-3.703412+1 1.251287-3-2.973336+1 1.318257-3-2.567923+1 1.366395-3-2.432447+1 1.395612-3-2.500802+1 1.412059-3-2.492780+1 1.446399-3-2.175115+1 1.488249-3-1.990003+1 1.536892-3-1.905432+1 1.573915-3-1.709103+1 1.633151-3-1.527118+1 1.682456-3-1.457312+1 1.711759-3-1.402732+1 1.759718-3-1.243208+1 1.846707-3-1.068559+1 1.978246-3-8.858471+0 2.134798-3-7.398241+0 2.280998-3-6.434507+0 2.486709-3-5.510284+0 2.711155-3-4.903074+0 3.022126-3-4.460987+0 3.348920-3-4.288896+0 3.845918-3-4.376673+0 4.390778-3-4.741987+0 5.016325-3-5.429730+0 5.583095-3-6.370076+0 5.988002-3-7.404849+0 6.268306-3-8.536341+0 6.442193-3-9.692612+0 6.544134-3-1.085932+1 6.611025-3-1.227337+1 6.680786-3-1.408368+1 6.723132-3-1.424484+1 6.774437-3-1.318537+1 6.844641-3-1.147964+1 6.907391-3-1.060797+1 7.009293-3-9.909359+0 7.132402-3-9.692798+0 7.212511-3-1.005203+1 7.302595-3-1.068826+1 7.353973-3-1.038703+1 7.472285-3-8.806872+0 7.557069-3-8.262406+0 7.698190-3-8.036659+0 7.768857-3-7.410271+0 7.867233-3-6.399462+0 8.001081-3-5.508564+0 8.204450-3-4.580068+0 8.447316-3-3.774307+0 8.728961-3-3.064074+0 9.088841-3-2.388637+0 9.465825-3-1.862594+0 9.801971-3-1.500050+0 1.014852-2-1.200461+0 1.041741-2-1.011385+0 1.076180-2-8.143994-1 1.113974-2-6.427348-1 1.155821-2-4.927788-1 1.195950-2-3.838223-1 1.233304-2-3.015419-1 1.264234-2-2.457019-1 1.312838-2-1.781844-1 1.345862-2-1.453594-1 1.370695-2-1.260984-1 1.399824-2-1.086506-1 1.437462-2-9.134134-2 1.469515-2-8.402097-2 1.527786-2-8.047149-2 1.584893-2-8.540716-2 1.636131-2-9.342584-2 1.692145-2-1.108516-1 1.752354-2-1.342474-1 1.865493-2-1.886925-1 2.151225-2-3.533740-1 3.414840-2-1.146101+0 3.800918-2-1.443441+0 4.086934-2-1.743348+0 4.291194-2-2.061063+0 4.419729-2-2.367019+0 4.512061-2-2.712779+0 4.570438-2-3.076176+0 4.612045-2-3.534162+0 4.667705-2-4.351074+0 4.689759-2-4.432701+0 4.712811-2-4.246086+0 4.770005-2-3.310836+0 4.798214-2-2.961693+0 4.843928-2-2.584106+0 4.910092-2-2.223618+0 4.999969-2-1.890307+0 5.128061-2-1.558611+0 5.281175-2-1.271046+0 5.442063-2-1.058241+0 5.636849-2-8.640056-1 5.824658-2-7.248043-1 6.086976-2-5.774272-1 6.243475-2-5.068143-1 6.404115-2-4.459501-1 6.574331-2-3.925223-1 6.770943-2-3.411954-1 6.970921-2-2.980543-1 7.296183-2-2.455662-1 7.681152-2-2.028019-1 8.016177-2-1.781037-1 8.257473-2-1.645170-1 8.849610-2-1.443402-1 9.309390-2-1.377248-1 1.000000-1-1.383997-1 1.083927-1-1.472615-1 1.233155-1-1.739295-1 1.662229-1-2.587839-1 2.060437-1-3.182689-1 2.580894-1-3.712617-1 3.289937-1-4.156912-1 4.472100-1-4.549559-1 6.839116-1-4.860615-1 1.349217+0-5.042224-1 4.068655+0-5.104189-1 1.000000+1-5.109336-1 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.879079-1 1.064303-6 2.552511-1 1.126775-6 3.414666-1 1.156592-6 3.910889-1 1.178954-6 4.329269-1 1.249107-6 5.927134-1 1.292045-6 7.170518-1 1.330791-6 8.519823-1 1.387125-6 1.094298+0 1.414011-6 1.232376+0 1.434176-6 1.348469+0 1.464423-6 1.544478+0 1.509386-6 1.889311+0 1.546176-6 2.235017+0 1.568249-6 2.475954+0 1.605964-6 2.955538+0 1.641358-6 3.500237+0 1.674575-6 4.117715+0 1.690409-6 4.458192+0 1.721087-6 5.211643+0 1.749848-6 6.052306+0 1.776811-6 6.990861+0 1.802089-6 8.034731+0 1.825788-6 9.191436+0 1.848005-6 1.046865+1 1.868833-6 1.187419+1 1.888360-6 1.341593+1 1.906666-6 1.510185+1 1.923828-6 1.693990+1 1.939918-6 1.893807+1 1.955002-6 2.110427+1 1.969143-6 2.344635+1 1.982401-6 2.597204+1 1.994829-6 2.868902+1 2.006481-6 3.160508+1 2.017405-6 3.472791+1 2.027646-6 3.806427+1 2.037247-6 4.161957+1 2.048000-6 4.619209+1 2.054686-6 4.940974+1 2.062597-6 5.365842+1 2.070014-6 5.815244+1 2.076967-6 6.289858+1 2.083485-6 6.790352+1 2.089596-6 7.317385+1 2.095325-6 7.871613+1 2.100696-6 8.453688+1 2.105731-6 9.064304+1 2.110452-6 9.704280+1 2.114878-6 1.037465+2 2.123175-6 1.186441+2 2.130436-6 1.350696+2 2.136789-6 1.532180+2 2.142348-6 1.732362+2 2.147212-6 1.951335+2 2.151468-6 2.187315+2 2.155192-6 2.436727+2 2.158451-6 2.694757+2 2.161302-6 2.956066+2 2.163797-6 3.215461+2 2.167890-6 3.711047+2 2.173740-6 4.590842+2 2.182855-6 6.412725+2 2.186630-6 7.329000+2 2.189314-6 8.031928+2 2.191999-6 8.771071+2 2.197368-6 1.032461+3 2.198039-6 1.052268+3 2.202737-6 1.190359+3 2.204582-6 1.243252+3 2.208106-6 1.339534+3 2.209951-6 1.386497+3 2.211713-6 1.428455+3 2.213474-6 1.467146+3 2.215823-6 1.512892+3 2.218088-6 1.549850+3 2.220186-6 1.577119+3 2.221947-6 1.594460+3 2.224212-6 1.608856+3 2.227232-6 1.613609+3 2.229749-6 1.604653+3 2.230683-6 1.598329+3 2.232817-6 1.577891+3 2.235199-6 1.545458+3 2.237089-6 1.512851+3 2.239698-6 1.458560+3 2.241948-6 1.403880+3 2.243540-6 1.361292+3 2.245856-6 1.294386+3 2.247557-6 1.242031+3 2.250072-6 1.160735+3 2.252572-6 1.076701+3 2.254258-6 1.018937+3 2.256426-6 9.442016+2 2.258774-6 8.635917+2 2.260662-6 7.998017+2 2.261794-6 7.621836+2 2.264479-6 6.756522+2 2.266912-6 6.012283+2 2.267499-6 5.839238+2 2.270645-6 4.961280+2 2.272532-6 4.477423+2 2.278237-6 3.230349+2 2.281619-6 2.651347+2 2.283270-6 2.412704+2 2.284612-6 2.240051+2 2.286374-6 2.042276+2 2.287922-6 1.895295+2 2.289207-6 1.792250+2 2.290408-6 1.711416+2 2.291575-6 1.647020+2 2.292713-6 1.597680+2 2.293667-6 1.566538+2 2.294291-6 1.551188+2 2.294906-6 1.539969+2 2.295511-6 1.532700+2 2.296702-6 1.529352+2 2.297855-6 1.540038+2 2.298973-6 1.563557+2 2.301138-6 1.646517+2 2.309259-6 2.425249+2 2.312304-6 2.928739+2 2.314969-6 3.477694+2 2.321125-6 5.189047+2 2.325250-6 6.735819+2 2.327343-6 7.660370+2 2.330089-6 9.028908+2 2.333373-6 1.091086+3 2.335713-6 1.242502+3 2.337539-6 1.370938+3 2.339365-6 1.508578+3 2.342237-6 1.743821+3 2.345109-6 2.001738+3 2.351212-6 2.620238+3 2.352558-6 2.768166+3 2.355587-6 3.113411+3 2.357629-6 3.354074+3 2.358807-6 3.495116+3 2.362340-6 3.924006+3 2.365257-6 4.279006+3 2.368084-6 4.617620+3 2.371001-6 4.954838+3 2.373828-6 5.263490+3 2.376341-6 5.517740+3 2.379118-6 5.771413+3 2.379931-6 5.839566+3 2.383297-6 6.088265+3 2.385925-6 6.241678+3 2.388944-6 6.369695+3 2.391475-6 6.435234+3 2.396983-6 6.442251+3 2.398554-6 6.410465+3 2.402907-6 6.247850+3 2.405641-6 6.093566+3 2.408292-6 5.909790+3 2.411209-6 5.673434+3 2.414036-6 5.415675+3 2.416549-6 5.167526+3 2.418972-6 4.915276+3 2.422652-6 4.516116+3 2.425523-6 4.197948+3 2.428754-6 3.840295+3 2.431267-6 3.566474+3 2.437011-6 2.969913+3 2.438986-6 2.777660+3 2.442755-6 2.432750+3 2.447781-6 2.022344+3 2.454316-6 1.576814+3 2.461531-6 1.195249+3 2.467253-6 9.646712+2 2.470097-6 8.702972+2 2.472930-6 7.879111+2 2.475752-6 7.161154+2 2.478563-6 6.536009+2 2.481363-6 5.991633+2 2.486942-6 5.101202+2 2.492476-6 4.418686+2 2.497968-6 3.887784+2 2.503416-6 3.467099+2 2.508822-6 3.127001+2 2.514186-6 2.846620+2 2.519508-6 2.611334+2 2.524788-6 2.410846+2 2.530027-6 2.237794+2 2.535225-6 2.086811+2 2.540382-6 1.953886+2 2.550617-6 1.729840+2 2.560691-6 1.549283+2 2.570608-6 1.400865+2 2.580370-6 1.276921+2 2.589980-6 1.172061+2 2.599439-6 1.082372+2 2.608751-6 1.004930+2 2.617917-6 9.375030+1 2.626940-6 8.783489+1 2.635822-6 8.260849+1 2.653308-6 7.373748+1 2.670248-6 6.657283+1 2.686658-6 6.068277+1 2.702555-6 5.577213+1 2.717956-6 5.162791+1 2.732876-6 4.809345+1 2.747329-6 4.505138+1 2.761331-6 4.240966+1 2.788459-6 3.798338+1 2.813891-6 3.449365+1 2.837734-6 3.168840+1 2.860087-6 2.939627+1 2.881043-6 2.749744+1 2.900689-6 2.590494+1 2.937525-6 2.330665+1 2.969757-6 2.136722+1 2.997960-6 1.988992+1 3.047315-6 1.767479+1 3.084331-6 1.626088+1 3.139855-6 1.445302+1 3.234705-6 1.196022+1 3.352680-6 9.579804+0 3.446578-6 7.974589+0 3.517002-6 6.818922+0 3.543411-6 6.378346+0 3.566519-6 5.980455+0 3.586738-6 5.617694+0 3.604430-6 5.284639+0 3.619910-6 4.977288+0 3.633456-6 4.692675+0 3.645308-6 4.428626+0 3.655679-6 4.183611+0 3.664753-6 3.956639+0 3.680633-6 3.526682+0 3.692543-6 3.175179+0 3.701476-6 2.897486+0 3.708175-6 2.684683+0 3.713200-6 2.525169+0 3.722621-6 2.236157+0 3.728273-6 2.077340+0 3.742903-6 1.779059+0 3.744765-6 1.759056+0 3.746627-6 1.744510+0 3.753509-6 1.746297+0 3.755803-6 1.769515+0 3.758097-6 1.805799+0 3.761539-6 1.887150+0 3.764120-6 1.971405+0 3.764980-6 2.004246+0 3.769904-6 2.241830+0 3.772750-6 2.420868+0 3.775557-6 2.630021+0 3.778725-6 2.907719+0 3.782863-6 3.341670+0 3.788953-6 4.138376+0 3.798121-6 5.723225+0 3.803939-6 6.981682+0 3.807571-6 7.867311+0 3.813055-6 9.346417+0 3.817672-6 1.071624+1 3.822061-6 1.211395+1 3.826334-6 1.355182+1 3.830362-6 1.496470+1 3.834270-6 1.637467+1 3.838059-6 1.776479+1 3.839866-6 1.843190+1 3.844512-6 2.014376+1 3.848831-6 2.171134+1 3.854093-6 2.355451+1 3.858449-6 2.499526+1 3.860118-6 2.552173+1 3.865835-6 2.719348+1 3.869410-6 2.812095+1 3.877031-6 2.974432+1 3.880225-6 3.026786+1 3.886323-6 3.099335+1 3.889561-6 3.122950+1 3.892499-6 3.135417+1 3.897320-6 3.137741+1 3.901256-6 3.123525+1 3.906423-6 3.084302+1 3.911405-6 3.026388+1 3.913066-6 3.003127+1 3.920882-6 2.871025+1 3.923488-6 2.819971+1 3.932779-6 2.617945+1 3.942070-6 2.398614+1 3.951361-6 2.178023+1 3.971180-6 1.754635+1 3.978622-6 1.621661+1 3.985832-6 1.507871+1 3.992816-6 1.411303+1 3.999582-6 1.329671+1 4.012692-6 1.200421+1 4.024982-6 1.106954+1 4.036504-6 1.037224+1 4.047305-6 9.832925+0 4.067559-6 9.023719+0 4.085281-6 8.456839+0 4.116294-6 7.650825+0 4.162813-6 6.676967+0 4.209362-6 5.809835+0 4.219723-6 5.614976+0 4.230084-6 5.414637+0 4.240444-6 5.206407+0 4.250805-6 4.988318+0 4.261166-6 4.759578+0 4.271527-6 4.521597+0 4.283917-6 4.231880+0 4.301810-6 3.839224+0 4.310313-6 3.685453+0 4.315598-6 3.608168+0 4.320512-6 3.552388+0 4.325425-6 3.514875+0 4.336738-6 3.512117+0 4.339381-6 3.530555+0 4.347309-6 3.633998+0 4.349951-6 3.685159+0 4.353915-6 3.777909+0 4.357879-6 3.889886+0 4.362834-6 4.056447+0 4.366880-6 4.213559+0 4.372191-6 4.446540+0 4.384305-6 5.072100+0 4.389590-6 5.374223+0 4.398839-6 5.920794+0 4.410730-6 6.605692+0 4.412052-6 6.677529+0 4.421301-6 7.140896+0 4.423943-6 7.258015+0 4.431871-6 7.560021+0 4.437931-6 7.735680+0 4.442880-6 7.841125+0 4.446592-6 7.897288+0 4.452160-6 7.944811+0 4.457728-6 7.949423+0 4.463582-6 7.910570+0 4.471509-6 7.793389+0 4.474152-6 7.739613+0 4.484722-6 7.463908+0 4.494935-6 7.128142+0 4.501575-6 6.886735+0 4.512170-6 6.483350+0 4.530409-6 5.791525+0 4.547929-6 5.186204+0 4.558606-6 4.861372+0 4.570317-6 4.550850+0 4.581511-6 4.304260+0 4.592705-6 4.112320+0 4.603899-6 3.979971+0 4.609496-6 3.937178+0 4.615093-6 3.910104+0 4.618378-6 3.901443+0 4.624127-6 3.898765+0 4.628438-6 3.906713+0 4.634906-6 3.933342+0 4.645024-6 4.004984+0 4.671064-6 4.272155+0 4.685236-6 4.398511+0 4.694169-6 4.449616+0 4.700389-6 4.468377+0 4.705053-6 4.472673+0 4.712050-6 4.463186+0 4.719048-6 4.435216+0 4.728119-6 4.374268+0 4.738229-6 4.280128+0 4.749353-6 4.156225+0 4.775048-6 3.861022+0 4.790371-6 3.717416+0 4.804763-6 3.614588+0 4.816160-6 3.551709+0 4.857621-6 3.368859+0 4.870157-6 3.305456+0 4.885578-6 3.217076+0 4.903276-6 3.104325+0 4.920975-6 2.984246+0 4.937835-6 2.866262+0 4.981919-6 2.544261+0 5.018883-6 2.248570+0 5.042594-6 2.039769+0 5.061167-6 1.863485+0 5.075566-6 1.718758+0 5.085479-6 1.615174+0 5.094280-6 1.520755+0 5.102060-6 1.435622+0 5.111276-6 1.333179+0 5.119077-6 1.245615+0 5.127232-6 1.153973+0 5.132404-6 1.096231+0 5.137753-6 1.037251+0 5.145210-6 9.571815-1 5.161520-6 7.997876-1 5.166763-6 7.581299-1 5.174632-6 7.088250-1 5.178558-6 6.919608-1 5.182490-6 6.815779-1 5.189949-6 6.841569-1 5.193679-6 6.988718-1 5.197408-6 7.244247-1 5.203410-6 7.924410-1 5.206410-6 8.409146-1 5.209411-6 9.004324-1 5.212039-6 9.625359-1 5.215981-6 1.075016+0 5.217952-6 1.140743+0 5.219924-6 1.213307+0 5.223551-6 1.366073+0 5.228216-6 1.602693+0 5.235767-6 2.095642+0 5.244684-6 2.884178+0 5.248968-6 3.354493+0 5.259433-6 4.789774+0 5.269650-6 6.629331+0 5.274772-6 7.728290+0 5.278867-6 8.694860+0 5.284102-6 1.004518+1 5.295379-6 1.338242+1 5.299022-6 1.457881+1 5.301338-6 1.536721+1 5.309093-6 1.814872+1 5.314245-6 2.009972+1 5.318587-6 2.179344+1 5.324218-6 2.403609+1 5.329236-6 2.605763+1 5.334100-6 2.801592+1 5.339595-6 3.020049+1 5.345248-6 3.238443+1 5.347605-6 3.326821+1 5.354842-6 3.584861+1 5.360608-6 3.772621+1 5.363115-6 3.848432+1 5.369181-6 4.015255+1 5.374005-6 4.129615+1 5.378034-6 4.211664+1 5.383804-6 4.306542+1 5.388046-6 4.358672+1 5.390693-6 4.383463+1 5.399440-6 4.422779+1 5.403600-6 4.418728+1 5.407570-6 4.401552+1 5.413154-6 4.356239+1 5.418095-6 4.296638+1 5.424447-6 4.195309+1 5.427674-6 4.134138+1 5.434934-6 3.975581+1 5.437354-6 3.917034+1 5.443808-6 3.749337+1 5.450261-6 3.568091+1 5.453488-6 3.473666+1 5.460748-6 3.255101+1 5.463168-6 3.181068+1 5.477688-6 2.736960+1 5.483335-6 2.568902+1 5.488981-6 2.405887+1 5.501888-6 2.058265+1 5.530334-6 1.442865+1 5.540158-6 1.279284+1 5.549368-6 1.146232+1 5.558002-6 1.037309+1 5.574192-6 8.672816+0 5.645021-6 4.148566+0 5.655646-6 3.737983+0 5.663614-6 3.491180+0 5.669590-6 3.348579+0 5.674072-6 3.269677+0 5.677434-6 3.228236+0 5.679955-6 3.208017+0 5.681846-6 3.199353+0 5.684683-6 3.197409+0 5.687956-6 3.212677+0 5.690393-6 3.237001+0 5.693174-6 3.279098+0 5.697346-6 3.372730+0 5.701518-6 3.505567+0 5.707643-6 3.777723+0 5.709611-6 3.885966+0 5.714041-6 4.168653+0 5.718391-6 4.501463+0 5.721173-6 4.744062+0 5.727170-6 5.349583+0 5.731391-6 5.845461+0 5.751483-6 9.017759+0 5.759083-6 1.055841+1 5.765860-6 1.207363+1 5.772580-6 1.369120+1 5.778942-6 1.530920+1 5.785435-6 1.702530+1 5.790899-6 1.850143+1 5.796672-6 2.007332+1 5.800592-6 2.113749+1 5.808061-6 2.313089+1 5.813948-6 2.464516+1 5.816385-6 2.525122+1 5.821948-6 2.657823+1 5.828385-6 2.799729+1 5.841509-6 3.040674+1 5.846895-6 3.117769+1 5.855508-6 3.211914+1 5.860320-6 3.248336+1 5.864914-6 3.272137+1 5.869507-6 3.285280+1 5.875632-6 3.286545+1 5.879569-6 3.277853+1 5.883506-6 3.262032+1 5.890506-6 3.217330+1 5.897506-6 3.153278+1 5.904505-6 3.072364+1 5.911505-6 2.977310+1 5.922004-6 2.814444+1 5.925504-6 2.756173+1 5.939503-6 2.512251+1 5.950777-6 2.312960+1 5.987288-6 1.744038+1 5.994594-6 1.653248+1 6.001899-6 1.571302+1 6.009205-6 1.498161+1 6.015036-6 1.445944+1 6.023783-6 1.377408+1 6.032530-6 1.319817+1 6.042784-6 1.264784+1 6.053038-6 1.221379+1 6.060343-6 1.196435+1 6.067649-6 1.175639+1 6.082712-6 1.142873+1 6.097684-6 1.119270+1 6.140492-6 1.065278+1 6.155315-6 1.044230+1 6.169926-6 1.021182+1 6.199149-6 9.700433+0 6.247402-6 8.851333+0 6.277345-6 8.398559+0 6.322261-6 7.851469+0 6.382148-6 7.301422+0 6.442296-6 6.871444+0 6.532518-6 6.360037+0 6.655342-6 5.812772+0 6.769449-6 5.399347+0 6.867255-6 5.095707+0 7.208681-6 4.228760+0 7.311401-6 3.987862+0 7.405100-6 3.745518+0 7.431271-6 3.667464+0 7.515370-6 3.398736+0 7.528865-6 3.362633+0 7.547306-6 3.323411+0 7.565747-6 3.299886+0 7.584187-6 3.295735+0 7.600346-6 3.309717+0 7.616504-6 3.340161+0 7.629755-6 3.376319+0 7.657949-6 3.477950+0 7.694831-6 3.624932+0 7.716624-6 3.695675+0 7.731381-6 3.729856+0 7.746138-6 3.750627+0 7.768593-6 3.755084+0 7.787033-6 3.735507+0 7.805474-6 3.698243+0 7.823915-6 3.647508+0 7.860796-6 3.523164+0 8.043548-6 2.937311+0 8.102943-6 2.774549+0 8.142539-6 2.684764+0 8.170952-6 2.636770+0 8.192000-6 2.612339+0 8.204527-6 2.602680+0 8.224671-6 2.594985+0 8.244816-6 2.596827+0 8.285106-6 2.626529+0 8.309894-6 2.658587+0 8.374250-6 2.759114+0 8.394034-6 2.784989+0 8.420359-6 2.808605+0 8.439673-6 2.816011+0 8.458987-6 2.814182+0 8.492741-6 2.789438+0 8.517912-6 2.755736+0 8.535314-6 2.726687+0 8.573188-6 2.653306+0 8.722434-6 2.358541+0 8.782164-6 2.264798+0 8.825784-6 2.212440+0 8.863466-6 2.180786+0 8.929458-6 2.147985+0 8.972524-6 2.126999+0 9.002030-6 2.105837+0 9.042928-6 2.064492+0 9.111291-6 1.976171+0 9.162892-6 1.913249+0 9.215921-6 1.862095+0 9.331337-6 1.774525+0 9.471311-6 1.662754+0 9.570325-6 1.581654+0 9.653162-6 1.509524+0 9.775677-6 1.396093+0 9.889940-6 1.299509+0 1.000000-5 1.217308+0 1.039439-5 9.292169-1 1.054522-5 8.252860-1 1.083927-5 6.356053-1 1.113173-5 4.655564-1 1.144215-5 3.093561-1 1.175482-5 1.809014-1 1.204794-5 8.962263-2 1.216186-5 6.257303-2 1.232275-5 3.438439-2 1.245156-5 2.017057-2 1.257635-5 1.409616-2 1.258925-5 1.392221-2 1.269724-5 1.595274-2 1.281435-5 2.540523-2 1.294022-5 4.435759-2 1.303771-5 6.571916-2 1.318257-5 1.088625-1 1.325094-5 1.342136-1 1.342300-5 2.084957-1 1.358443-5 2.550768-1 1.361786-5 2.557560-1 1.383258-5 2.014513-1 1.399329-5 1.462239-1 1.406990-5 1.226181-1 1.414412-5 1.018350-1 1.428792-5 6.769909-2 1.442272-5 4.359346-2 1.454910-5 2.876348-2 1.466759-5 2.243898-2 1.477867-5 2.397131-2 1.488280-5 3.264521-2 1.507805-5 6.873382-2 1.524890-5 1.238676-1 1.539839-5 1.932454-1 1.552920-5 2.725723-1 1.564365-5 3.579863-1 1.584893-5 5.510895-1 1.599417-5 7.236386-1 1.621950-5 1.060796+0 1.648531-5 1.576955+0 1.664722-5 1.968157+0 1.680912-5 2.432467+0 1.701151-5 3.125551+0 1.717908-5 3.808229+0 1.734809-5 4.615301+0 1.751682-5 5.557865+0 1.768554-5 6.658658+0 1.800000-5 9.223668+0 1.883649-5 2.115526+1 1.906705-5 2.652170+1 1.924087-5 3.146163+1 1.938707-5 3.635856+1 1.951775-5 4.143152+1 1.973214-5 5.152997+1 1.981968-5 5.641985+1 1.997288-5 6.627870+1 2.008778-5 7.496742+1 2.017396-5 8.235865+1 2.030322-5 9.511511+1 2.043248-5 1.102838+2 2.053306-5 1.241341+2 2.065463-5 1.438333+2 2.073423-5 1.588610+2 2.083482-5 1.807915+2 2.093540-5 2.067186+2 2.103598-5 2.376296+2 2.112484-5 2.701327+2 2.121546-5 3.096311+2 2.128744-5 3.467380+2 2.133774-5 3.763460+2 2.138803-5 4.095593+2 2.143832-5 4.470064+2 2.148881-5 4.896498+2 2.154904-5 5.485407+2 2.159280-5 5.980134+2 2.164480-5 6.658512+2 2.169680-5 7.459744+2 2.174879-5 8.418942+2 2.180079-5 9.584937+2 2.185278-5 1.102596+3 2.190478-5 1.283712+3 2.195678-5 1.514949+3 2.198277-5 1.654692+3 2.200877-5 1.814019+3 2.203477-5 1.996016+3 2.206077-5 2.204152+3 2.209655-5 2.540567+3 2.213234-5 2.945088+3 2.218682-5 3.719878+3 2.226853-5 5.336011+3 2.233663-5 7.198435+3 2.238398-5 8.810498+3 2.240472-5 9.602033+3 2.249120-5 1.344877+4 2.249808-5 1.379002+4 2.254628-5 1.629503+4 2.256522-5 1.732434+4 2.260826-5 1.971763+4 2.263838-5 2.140295+4 2.266456-5 2.284565+4 2.269303-5 2.436424+4 2.272374-5 2.590766+4 2.275100-5 2.716549+4 2.277948-5 2.833606+4 2.280389-5 2.920125+4 2.282517-5 2.983811+4 2.285745-5 3.057399+4 2.288573-5 3.097338+4 2.291944-5 3.113410+4 2.293748-5 3.107668+4 2.298871-5 3.037596+4 2.301335-5 2.976875+4 2.303848-5 2.898340+4 2.305959-5 2.820570+4 2.308560-5 2.711546+4 2.311413-5 2.577614+4 2.313598-5 2.466801+4 2.316051-5 2.335765+4 2.318100-5 2.222382+4 2.320734-5 2.073310+4 2.323488-5 1.915839+4 2.326243-5 1.759179+4 2.329342-5 1.586658+4 2.331752-5 1.456863+4 2.337735-5 1.157983+4 2.340184-5 1.047155+4 2.344858-5 8.561655+3 2.348980-5 7.107257+3 2.353604-5 5.725454+3 2.360701-5 4.072354+3 2.369218-5 2.704541+3 2.372057-5 2.366391+3 2.374896-5 2.075559+3 2.377735-5 1.825758+3 2.380573-5 1.611261+3 2.383412-5 1.426932+3 2.386251-5 1.268233+3 2.389785-5 1.100572+3 2.393348-5 9.590063+2 2.397607-5 8.186171+2 2.403285-5 6.686576+2 2.408166-5 5.651939+2 2.420021-5 3.800997+2 2.434839-5 2.321923+2 2.452622-5 1.282763+2 2.455585-5 1.164364+2 2.461581-5 9.624215+1 2.465870-5 8.458360+1 2.469155-5 7.707874+1 2.474038-5 6.804539+1 2.476404-5 6.452765+1 2.478260-5 6.214292+1 2.479682-5 6.053042+1 2.481105-5 5.910003+1 2.485651-5 5.569187+1 2.487925-5 5.461163+1 2.493229-5 5.352394+1 2.495313-5 5.357820+1 2.497302-5 5.384425+1 2.500049-5 5.450451+1 2.503801-5 5.582713+1 2.511832-5 5.939779+1 2.516519-5 6.133063+1 2.519921-5 6.242636+1 2.523734-5 6.322310+1 2.525392-5 6.340795+1 2.530864-5 6.328821+1 2.532861-5 6.297437+1 2.536674-5 6.202549+1 2.541281-5 6.041497+1 2.549992-5 5.706116+1 2.553532-5 5.612708+1 2.555936-5 5.583795+1 2.556881-5 5.582744+1 2.559179-5 5.610480+1 2.561089-5 5.672917+1 2.562198-5 5.728783+1 2.566192-5 6.080179+1 2.567852-5 6.311217+1 2.575275-5 8.244176+1 2.577147-5 9.044228+1 2.578067-5 9.496858+1 2.580006-5 1.059640+2 2.582074-5 1.201318+2 2.584211-5 1.378401+2 2.585714-5 1.524322+2 2.587086-5 1.674612+2 2.589487-5 1.981808+2 2.594663-5 2.874941+2 2.600729-5 4.443096+2 2.604123-5 5.634544+2 2.607617-5 7.147352+2 2.611006-5 8.930587+2 2.612609-5 9.893937+2 2.619405-5 1.493192+3 2.625548-5 2.094723+3 2.627101-5 2.269991+3 2.630358-5 2.667887+3 2.632681-5 2.976174+3 2.638217-5 3.786664+3 2.640918-5 4.215513+3 2.642994-5 4.557104+3 2.645689-5 5.012191+3 2.647837-5 5.381465+3 2.650582-5 5.856626+3 2.652188-5 6.134049+3 2.654824-5 6.583938+3 2.657665-5 7.055416+3 2.660593-5 7.518331+3 2.663282-5 7.915457+3 2.664069-5 8.025709+3 2.667223-5 8.435743+3 2.670140-5 8.764088+3 2.672605-5 8.998603+3 2.675436-5 9.215294+3 2.677490-5 9.335316+3 2.683972-5 9.499996+3 2.686471-5 9.476148+3 2.691052-5 9.311284+3 2.694244-5 9.110020+3 2.696112-5 8.962325+3 2.699176-5 8.677001+3 2.702616-5 8.301166+3 2.705490-5 7.950314+3 2.708261-5 7.587054+3 2.712072-5 7.058913+3 2.715823-5 6.520577+3 2.719908-5 5.929487+3 2.721294-5 5.730549+3 2.727731-5 4.836008+3 2.729962-5 4.542567+3 2.734222-5 4.013270+3 2.740581-5 3.309080+3 2.754457-5 2.152256+3 2.757353-5 1.972242+3 2.762013-5 1.720987+3 2.766673-5 1.511804+3 2.771183-5 1.343660+3 2.774657-5 1.233695+3 2.781441-5 1.058969+3 2.788682-5 9.174438+2 2.794455-5 8.288298+2 2.802206-5 7.338830+2 2.806931-5 6.860445+2 2.814517-5 6.209289+2 2.821281-5 5.721985+2 2.827911-5 5.310174+2 2.834608-5 4.947913+2 2.841475-5 4.623443+2 2.851018-5 4.239906+2 2.860346-5 3.930915+2 2.866245-5 3.766161+2 2.874427-5 3.574938+2 2.881251-5 3.447931+2 2.888508-5 3.344778+2 2.896902-5 3.265187+2 2.902184-5 3.235442+2 2.906146-5 3.222341+2 2.915061-5 3.216341+2 2.939395-5 3.260814+2 2.943597-5 3.262135+2 2.949851-5 3.255414+2 2.955360-5 3.240281+2 2.961766-5 3.212340+2 2.965952-5 3.188891+2 2.975801-5 3.122274+2 3.000506-5 2.940599+2 3.018990-5 2.831188+2 3.040287-5 2.735770+2 3.099167-5 2.525681+2 3.136222-5 2.395536+2 3.188336-5 2.243156+2 3.254925-5 2.087681+2 3.321134-5 1.959222+2 3.418025-5 1.806846+2 3.521466-5 1.677560+2 3.606176-5 1.589698+2 3.716311-5 1.495224+2 3.801894-5 1.430921+2 3.937222-5 1.343656+2 4.074167-5 1.270235+2 4.315191-5 1.166348+2 4.545738-5 1.085631+2 4.579140-5 1.077822+2 4.648017-5 1.067395+2 4.690480-5 1.058250+2 4.779954-5 1.033704+2 5.048196-5 9.834561+1 5.252158-5 9.539002+1 5.532665-5 9.238616+1 5.804302-5 9.056169+1 6.095369-5 8.949037+1 6.606934-5 8.896398+1 7.203852-5 8.957403+1 7.697129-5 9.031841+1 8.150000-5 9.064574+1 8.419560-5 9.059069+1 8.717400-5 9.018894+1 8.938199-5 8.961888+1 9.140257-5 8.887196+1 9.454205-5 8.718851+1 9.702297-5 8.531851+1 9.901876-5 8.345388+1 1.009050-4 8.137554+1 1.026495-4 7.919893+1 1.035354-4 7.799474+1 1.050855-4 7.570826+1 1.071519-4 7.231110+1 1.089732-4 6.910211+1 1.100000-4 6.768731+1 1.108350-4 6.772876+1 1.115861-4 6.922060+1 1.124110-4 7.223397+1 1.131979-4 7.599924+1 1.139484-4 8.023597+1 1.146681-4 8.493102+1 1.152000-4 8.886215+1 1.155783-4 9.192885+1 1.161449-4 9.699740+1 1.168396-4 1.040969+2 1.176162-4 1.133960+2 1.183451-4 1.237102+2 1.190290-4 1.351004+2 1.197103-4 1.484587+2 1.202733-4 1.613446+2 1.208488-4 1.766044+2 1.213777-4 1.928748+2 1.218830-4 2.108359+2 1.223567-4 2.302444+2 1.228800-4 2.551813+2 1.232902-4 2.778254+2 1.237022-4 3.038940+2 1.239734-4 3.231973+2 1.243165-4 3.504695+2 1.246381-4 3.794203+2 1.249396-4 4.100715+2 1.253322-4 4.561075+2 1.257358-4 5.124093+2 1.259687-4 5.500479+2 1.261870-4 5.894907+2 1.265837-4 6.739270+2 1.267636-4 7.189997+2 1.271009-4 8.184983+2 1.273961-4 9.265327+2 1.276544-4 1.042860+3 1.278804-4 1.166642+3 1.280782-4 1.296419+3 1.282512-4 1.430241+3 1.284026-4 1.565886+3 1.285351-4 1.701094+3 1.287669-4 1.981414+3 1.289408-4 2.234503+3 1.291690-4 2.632935+3 1.294624-4 3.275859+3 1.300549-4 5.124906+3 1.302740-4 6.019949+3 1.303898-4 6.540385+3 1.305634-4 7.380940+3 1.307371-4 8.289010+3 1.307951-4 8.606484+3 1.311155-4 1.045985+4 1.311555-4 1.070103+4 1.314358-4 1.241768+4 1.315460-4 1.309381+4 1.317562-4 1.435848+4 1.318713-4 1.502385+4 1.319945-4 1.570389+4 1.320951-4 1.622862+4 1.322272-4 1.686678+4 1.323545-4 1.741863+4 1.324770-4 1.788236+4 1.325821-4 1.822194+4 1.327373-4 1.861603+4 1.329250-4 1.890875+4 1.330670-4 1.898916+4 1.332625-4 1.889625+4 1.334082-4 1.867498+4 1.335254-4 1.840549+4 1.336727-4 1.795801+4 1.337931-4 1.750842+4 1.340248-4 1.645964+4 1.341744-4 1.567697+4 1.343020-4 1.496052+4 1.344153-4 1.429716+4 1.345609-4 1.342159+4 1.347463-4 1.229863+4 1.349598-4 1.104035+4 1.352802-4 9.336989+3 1.354821-4 8.438683+3 1.356131-4 7.946410+3 1.358021-4 7.375016+3 1.359209-4 7.103925+3 1.359814-4 6.992515+3 1.361463-4 6.781050+3 1.362050-4 6.737740+3 1.364843-4 6.751792+3 1.365959-4 6.851932+3 1.367073-4 6.999764+3 1.368472-4 7.246025+3 1.370154-4 7.617012+3 1.373256-4 8.449615+3 1.375957-4 9.241370+3 1.378046-4 9.837266+3 1.378895-4 1.006520+4 1.380783-4 1.052804+4 1.381739-4 1.073353+4 1.383693-4 1.108103+4 1.385403-4 1.129510+4 1.386137-4 1.135933+4 1.388632-4 1.144867+4 1.389736-4 1.142424+4 1.390795-4 1.136465+4 1.392462-4 1.120210+4 1.394283-4 1.093516+4 1.395767-4 1.065590+4 1.397254-4 1.032802+4 1.397749-4 1.020929+4 1.399641-4 9.719393+3 1.401039-4 9.327191+3 1.402991-4 8.750552+3 1.404161-4 8.394505+3 1.407479-4 7.377892+3 1.408163-4 7.171048+3 1.413533-4 5.653003+3 1.419847-4 4.223832+3 1.421688-4 3.888598+3 1.424400-4 3.458716+3 1.426156-4 3.217926+3 1.428782-4 2.907172+3 1.430435-4 2.738566+3 1.433946-4 2.439293+3 1.435947-4 2.298773+3 1.437934-4 2.176984+3 1.442329-4 1.957816+3 1.446481-4 1.798093+3 1.450076-4 1.686189+3 1.454039-4 1.583374+3 1.458538-4 1.485889+3 1.465271-4 1.367034+3 1.473759-4 1.249038+3 1.482438-4 1.154264+3 1.488969-4 1.096128+3 1.496000-4 1.043703+3 1.503752-4 9.958172+2 1.513505-4 9.471625+2 1.524186-4 9.051746+2 1.536000-4 8.689017+2 1.551150-4 8.334989+2 1.566500-4 8.063925+2 1.582500-4 7.843100+2 1.604178-4 7.605407+2 1.633795-4 7.346480+2 1.680887-4 7.004250+2 1.753456-4 6.576371+2 1.813957-4 6.281457+2 1.867455-4 6.060988+2 1.930000-4 5.839625+2 1.990369-4 5.657640+2 2.057214-4 5.492876+2 2.137225-4 5.332467+2 2.315728-4 5.064053+2 2.449416-4 4.861036+2 2.485978-4 4.800205+2 2.506992-4 4.785442+2 2.528393-4 4.795213+2 2.559707-4 4.822147+2 2.582023-4 4.808320+2 2.608231-4 4.790201+2 2.628911-4 4.817780+2 2.661014-4 4.909134+2 2.708699-4 5.021158+2 2.800399-4 5.146625+2 2.905747-4 5.264304+2 2.985383-4 5.403684+2 3.145148-4 5.615399+2 3.368992-4 5.833444+2 3.532855-4 5.944076+2 3.583294-4 6.005040+2 3.704674-4 6.228540+2 3.924190-4 6.504527+2 4.315191-4 6.862598+2 4.788023-4 7.196091+2 5.301210-4 7.456402+2 5.854637-4 7.625702+2 6.390992-4 7.690136+2 6.918310-4 7.660928+2 7.413102-4 7.531720+2 7.943282-4 7.308427+2 8.420008-4 7.029577+2 8.844710-4 6.705928+2 9.225714-4 6.343348+2 9.560334-4 5.952316+2 9.836154-4 5.561845+2 1.006713-3 5.175544+2 1.024398-3 4.835190+2 1.042126-3 4.446079+2 1.056209-3 4.093022+2 1.068824-3 3.734153+2 1.078111-3 3.438698+2 1.084395-3 3.233389+2 1.090969-3 3.088047+2 1.096161-3 3.196500+2 1.100914-3 3.755871+2 1.101488-3 3.871289+2 1.105757-3 5.180727+2 1.106911-3 5.693017+2 1.109622-3 7.196428+2 1.112477-3 9.232542+2 1.115048-3 1.140999+3 1.115404-3 1.173121+3 1.117965-3 1.412628+3 1.120576-3 1.659272+3 1.122845-3 1.860001+3 1.126193-3 2.106258+3 1.128727-3 2.237971+3 1.130633-3 2.302838+3 1.131796-3 2.328444+3 1.132971-3 2.344502+3 1.134104-3 2.351672+3 1.135435-3 2.351325+3 1.136418-3 2.346187+3 1.139552-3 2.313438+3 1.142857-3 2.274486+3 1.146059-3 2.250878+3 1.147986-3 2.244844+3 1.153034-3 2.236181+3 1.154906-3 2.224044+3 1.156132-3 2.210294+3 1.158064-3 2.176868+3 1.160555-3 2.109676+3 1.163668-3 1.987317+3 1.165503-3 1.898087+3 1.167420-3 1.795282+3 1.169726-3 1.664392+3 1.171714-3 1.550700+3 1.177093-3 1.273685+3 1.179792-3 1.164898+3 1.184031-3 1.042919+3 1.185316-3 1.017203+3 1.189144-3 9.668633+2 1.193898-3 9.454378+2 1.197458-3 9.477163+2 1.203066-3 9.663892+2 1.218693-3 1.036630+3 1.229408-3 1.081103+3 1.239459-3 1.119345+3 1.257197-3 1.180359+3 1.277777-3 1.242656+3 1.299421-3 1.299253+3 1.322056-3 1.348065+3 1.339811-3 1.376471+3 1.359350-3 1.398281+3 1.378471-3 1.411556+3 1.399201-3 1.417265+3 1.429878-3 1.409908+3 1.438437-3 1.411292+3 1.446491-3 1.419556+3 1.456171-3 1.440493+3 1.479617-3 1.515650+3 1.493776-3 1.556869+3 1.510450-3 1.595703+3 1.522299-3 1.615900+3 1.535969-3 1.632364+3 1.576472-3 1.662530+3 1.584204-3 1.671062+3 1.611110-3 1.714071+3 1.635266-3 1.753838+3 1.648310-3 1.771542+3 1.667294-3 1.791391+3 1.690776-3 1.807977+3 1.715576-3 1.817607+3 1.761642-3 1.823948+3 1.780558-3 1.840397+3 1.807400-3 1.877044+3 1.822564-3 1.894058+3 1.843565-3 1.910810+3 1.899017-3 1.937780+3 1.974553-3 1.958548+3 2.052048-3 1.969864+3 2.160444-3 1.972191+3 2.347183-3 1.957440+3 2.461784-3 1.941182+3 2.676086-3 1.899339+3 2.860751-3 1.855505+3 3.088072-3 1.798161+3 3.304006-3 1.740699+3 3.558546-3 1.671439+3 3.884215-3 1.585642+3 4.257276-3 1.484941+3 4.442233-3 1.436892+3 4.636161-3 1.387155+3 4.868443-3 1.329217+3 5.069907-3 1.279711+3 5.286111-3 1.226854+3 5.482404-3 1.179149+3 5.675734-3 1.132321+3 5.848557-3 1.089620+3 6.003915-3 1.050186+3 6.141745-3 1.013967+3 6.266412-3 9.796595+2 6.372454-3 9.487283+2 6.463822-3 9.201115+2 6.531306-3 8.972282+2 6.594763-3 8.737507+2 6.643804-3 8.537852+2 6.696774-3 8.295393+2 6.740214-3 8.064651+2 6.774833-3 7.851277+2 6.798664-3 7.686754+2 6.853896-3 7.266485+2 6.893154-3 6.988505+2 6.920884-3 6.847340+2 6.936789-3 6.798481+2 6.948357-3 6.780030+2 6.967910-3 6.783022+2 6.984919-3 6.819609+2 7.003894-3 6.893426+2 7.030266-3 7.039663+2 7.080109-3 7.372848+2 7.102156-3 7.513222+2 7.126735-3 7.651067+2 7.152918-3 7.772064+2 7.182687-3 7.877655+2 7.221051-3 7.970783+2 7.252661-3 8.018779+2 7.299154-3 8.053181+2 7.344666-3 8.051970+2 7.387556-3 8.020946+2 7.429169-3 7.963051+2 7.536444-3 7.745056+2 7.572699-3 7.702396+2 7.594772-3 7.699334+2 7.629741-3 7.736112+2 7.668245-3 7.829768+2 7.770078-3 8.159741+2 7.798819-3 8.228858+2 7.825876-3 8.276647+2 7.888863-3 8.334112+2 7.957460-3 8.370410+2 8.009089-3 8.433000+2 8.058261-3 8.537202+2 8.162684-3 8.814507+2 8.233589-3 8.959859+2 8.284173-3 9.032625+2 8.406648-3 9.141752+2 8.548096-3 9.202966+2 8.712370-3 9.227512+2 8.920140-3 9.209791+2 9.252306-3 9.113198+2 9.674309-3 8.920890+2 1.008672-2 8.692090+2 1.056738-2 8.399896+2 1.132066-2 7.922235+2 1.221613-2 7.367903+2 1.335727-2 6.715007+2 1.464124-2 6.064985+2 1.666768-2 5.206751+2 1.866885-2 4.526943+2 2.072247-2 3.958610+2 2.233283-2 3.580786+2 2.377754-2 3.281901+2 2.575222-2 2.923438+2 2.787625-2 2.591179+2 3.117095-2 2.169219+2 3.491984-2 1.800785+2 3.791859-2 1.564442+2 4.035704-2 1.396692+2 4.227558-2 1.275646+2 4.379479-2 1.184011+2 4.490263-2 1.117460+2 4.581802-2 1.060310+2 4.645444-2 1.017047+2 4.673411-2 9.960520+1 4.698112-2 9.757308+1 4.718409-2 9.572797+1 4.746292-2 9.288017+1 4.807486-2 8.615650+1 4.826440-2 8.461861+1 4.842972-2 8.379009+1 4.859645-2 8.352360+1 4.878716-2 8.390520+1 4.901259-2 8.509658+1 4.954366-2 8.890804+1 4.980889-2 9.042575+1 5.016066-2 9.175605+1 5.037525-2 9.225698+1 5.090288-2 9.285697+1 5.148391-2 9.291288+1 5.234183-2 9.240934+1 5.376183-2 9.080378+1 5.511663-2 8.880901+1 5.712315-2 8.543572+1 5.995182-2 8.045945+1 6.306027-2 7.513040+1 6.794970-2 6.739463+1 7.332280-2 5.990592+1 7.924567-2 5.280689+1 8.931081-2 4.313650+1 1.038475-1 3.320518+1 1.170383-1 2.683337+1 1.575710-1 1.558079+1 2.038100-1 9.682467+0 2.439727-1 6.898135+0 3.125236-1 4.289956+0 4.356921-1 2.250793+0 6.645077-1 9.841530-1 1.070165+0 3.838083-1 2.046716+0 1.056575-1 6.158159+0 1.169987-2 1.859734+1 1.283211-3 5.616308+1 1.407054-4 1.696098+2 1.542809-5 5.122134+2 1.691657-6 1.584893+3 1.766909-7 5.011872+3 1.766909-8 1.584893+4 1.766909-9 5.011872+4 1.76691-10 1.000000+5 4.43827-11 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.334300-6 1.258900-6 3.699600-6 1.584900-6 5.863400-6 1.995300-6 9.292900-6 2.511900-6 1.472800-5 3.162300-6 2.334300-5 3.981100-6 3.699500-5 5.011900-6 5.863300-5 6.309600-6 9.292700-5 7.943300-6 1.472800-4 1.000000-5 2.334200-4 1.258900-5 3.699300-4 1.584900-5 5.859800-4 1.995300-5 9.280700-4 2.511900-5 1.470000-3 3.162300-5 2.328800-3 3.981100-5 3.689700-3 5.011900-5 5.846300-3 6.309600-5 9.263900-3 7.943300-5 1.466200-2 1.000000-4 2.319400-2 1.258900-4 3.663900-2 1.584900-4 5.776900-2 1.995300-4 9.080200-2 2.511900-4 1.421000-1 3.162300-4 2.208400-1 3.981100-4 3.392800-1 5.011900-4 5.110400-1 6.309600-4 7.508200-1 7.943300-4 1.068300+0 1.000000-3 1.468300+0 1.258900-3 1.956300+0 1.584900-3 2.554900+0 1.995300-3 3.306000+0 2.511900-3 4.240400+0 3.162300-3 5.378200+0 3.981100-3 6.726900+0 5.011900-3 8.287200+0 6.309600-3 1.001200+1 7.943300-3 1.188200+1 1.000000-2 1.390000+1 1.258900-2 1.605400+1 1.584900-2 1.836400+1 1.995300-2 2.059500+1 2.511900-2 2.265200+1 3.162300-2 2.444000+1 3.981100-2 2.584200+1 5.011900-2 2.685000+1 6.309600-2 2.744400+1 7.943300-2 2.758600+1 1.000000-1 2.727600+1 1.258900-1 2.655800+1 1.584900-1 2.550700+1 1.995300-1 2.421300+1 2.511900-1 2.274200+1 3.162300-1 2.116300+1 3.981100-1 1.953000+1 5.011900-1 1.789400+1 6.309600-1 1.628200+1 7.943300-1 1.472000+1 1.000000+0 1.322100+1 1.258900+0 1.179600+1 1.584900+0 1.045800+1 1.995300+0 9.211500+0 2.511900+0 8.061000+0 3.162300+0 7.010200+0 3.981100+0 6.060200+0 5.011900+0 5.209600+0 6.309600+0 4.454900+0 7.943300+0 3.791100+0 1.000000+1 3.212100+0 1.258900+1 2.710400+0 1.584900+1 2.278800+0 1.995300+1 1.909500+0 2.511900+1 1.595300+0 3.162300+1 1.329100+0 3.981100+1 1.104700+0 5.011900+1 9.161200-1 6.309600+1 7.582200-1 7.943300+1 6.263900-1 1.000000+2 5.166300-1 1.258900+2 4.254500-1 1.584900+2 3.498900-1 1.995300+2 2.873700-1 2.511900+2 2.357500-1 3.162300+2 1.931900-1 3.981100+2 1.581600-1 5.011900+2 1.293600-1 6.309600+2 1.057100-1 7.943300+2 8.631100-2 1.000000+3 7.041900-2 1.258900+3 5.741200-2 1.584900+3 4.677600-2 1.995300+3 3.808500-2 2.511900+3 3.099100-2 3.162300+3 2.520300-2 3.981100+3 2.048500-2 5.011900+3 1.664100-2 6.309600+3 1.351200-2 7.943300+3 1.096600-2 1.000000+4 8.895800-3 1.258900+4 7.213200-3 1.584900+4 5.846400-3 1.995300+4 4.736700-3 2.511900+4 3.836100-3 3.162300+4 3.105600-3 3.981100+4 2.513300-3 5.011900+4 2.033300-3 6.309600+4 1.644400-3 7.943300+4 1.329400-3 1.000000+5 1.074500-3 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159552-4 3.981072-4 3.976780-4 5.011872-4 5.005120-4 6.309573-4 6.298977-4 7.943282-4 7.926715-4 1.000000-3 9.974173-4 1.258925-3 1.254902-3 1.584893-3 1.578601-3 1.995262-3 1.985403-3 2.511886-3 2.496357-3 3.162278-3 3.137939-3 3.981072-3 3.942912-3 5.011872-3 4.952170-3 6.309573-3 6.216369-3 7.943282-3 7.798479-3 1.000000-2 9.774788-3 1.258925-2 1.223849-2 1.584893-2 1.530538-2 1.995262-2 1.911231-2 2.511886-2 2.383078-2 3.162278-2 2.966063-2 3.981072-2 3.683498-2 5.011872-2 4.563105-2 6.309573-2 5.636861-2 7.943282-2 6.942802-2 1.000000-1 8.525352-2 1.258925-1 1.043530-1 1.584893-1 1.273344-1 1.995262-1 1.548095-1 2.511886-1 1.876174-1 3.162278-1 2.266261-1 3.981072-1 2.728757-1 5.011872-1 3.275448-1 6.309573-1 3.920508-1 7.943282-1 4.679661-1 1.000000+0 5.574003-1 1.258925+0 6.627743-1 1.584893+0 7.870749-1 1.995262+0 9.341776-1 2.511886+0 1.108742+0 3.162278+0 1.316463+0 3.981072+0 1.564419+0 5.011872+0 1.861288+0 6.309573+0 2.217412+0 7.943282+0 2.646009+0 1.000000+1 3.162599+0 1.258925+1 3.786653+0 1.584893+1 4.541814+0 1.995262+1 5.456999+0 2.511886+1 6.567881+0 3.162278+1 7.917759+0 3.981072+1 9.560362+0 5.011872+1 1.156107+1 6.309573+1 1.400070+1 7.943282+1 1.697838+1 1.000000+2 2.061570+1 1.258925+2 2.506287+1 1.584893+2 3.050448+1 1.995262+2 3.716799+1 2.511886+2 4.533316+1 3.162278+2 5.534573+1 3.981072+2 6.763020+1 5.011872+2 8.271322+1 6.309573+2 1.012430+2 7.943282+2 1.240188+2 1.000000+3 1.520269+2 1.258925+3 1.864901+2 1.584893+3 2.289181+2 1.995262+3 2.811760+2 2.511886+3 3.455607+2 3.162278+3 4.249361+2 3.981072+3 5.228233+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88187-10 1.995262-5 1.090604-9 2.511886-5 1.728464-9 3.162278-5 2.739472-9 3.981072-5 4.341836-9 5.011872-5 6.881351-9 6.309573-5 1.090594-8 7.943282-5 1.727868-8 1.000000-4 2.737637-8 1.258925-4 4.336638-8 1.584893-4 6.867392-8 1.995262-4 1.087187-7 2.511886-4 1.720269-7 3.162278-4 2.725892-7 3.981072-4 4.291266-7 5.011872-4 6.752716-7 6.309573-4 1.059661-6 7.943282-4 1.656732-6 1.000000-3 2.582657-6 1.258925-3 4.023064-6 1.584893-3 6.291959-6 1.995262-3 9.859307-6 2.511886-3 1.552961-5 3.162278-3 2.433834-5 3.981072-3 3.816015-5 5.011872-3 5.970205-5 6.309573-3 9.320479-5 7.943282-3 1.448032-4 1.000000-2 2.252117-4 1.258925-2 3.507621-4 1.584893-2 5.435532-4 1.995262-2 8.403122-4 2.511886-2 1.288087-3 3.162278-2 1.962145-3 3.981072-2 2.975733-3 5.011872-2 4.487672-3 6.309573-2 6.727123-3 7.943282-2 1.000481-2 1.000000-1 1.474648-2 1.258925-1 2.153957-2 1.584893-1 3.115489-2 1.995262-1 4.471674-2 2.511886-1 6.357129-2 3.162278-1 8.960164-2 3.981072-1 1.252315-1 5.011872-1 1.736424-1 6.309573-1 2.389065-1 7.943282-1 3.263622-1 1.000000+0 4.425997-1 1.258925+0 5.961511-1 1.584893+0 7.978183-1 1.995262+0 1.061085+0 2.511886+0 1.403144+0 3.162278+0 1.845815+0 3.981072+0 2.416653+0 5.011872+0 3.150584+0 6.309573+0 4.092162+0 7.943282+0 5.297273+0 1.000000+1 6.837401+0 1.258925+1 8.802601+0 1.584893+1 1.130712+1 1.995262+1 1.449562+1 2.511886+1 1.855098+1 3.162278+1 2.370502+1 3.981072+1 3.025035+1 5.011872+1 3.855765+1 6.309573+1 4.909503+1 7.943282+1 6.245445+1 1.000000+2 7.938430+1 1.258925+2 1.008297+2 1.584893+2 1.279848+2 1.995262+2 1.623582+2 2.511886+2 2.058555+2 3.162278+2 2.608820+2 3.981072+2 3.304770+2 5.011872+2 4.184740+2 6.309573+2 5.297143+2 7.943282+2 6.703094+2 1.000000+3 8.479731+2 1.258925+3 1.072435+3 1.584893+3 1.355975+3 1.995262+3 1.714086+3 2.511886+3 2.166326+3 3.162278+3 2.737342+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.160000-6 3.518220+6 5.600000-6 2.439880+6 6.025596-6 1.746545+6 6.531306-6 1.199296+6 7.000000-6 8.618140+5 7.500000-6 6.160880+5 8.035261-6 4.373753+5 8.609938-6 3.080400+5 9.080000-6 2.340137+5 9.080000-6 6.615337+5 9.225714-6 6.355479+5 9.400000-6 6.067767+5 9.700000-6 5.649301+5 9.770000-6 5.564694+5 9.770000-6 8.540526+5 1.000000-5 8.212762+5 1.011579-5 8.066959+5 1.035142-5 7.801494+5 1.050000-5 7.657312+5 1.071519-5 7.473715+5 1.083927-5 7.383072+5 1.096478-5 7.297180+5 1.110000-5 7.215934+5 1.135011-5 7.093163+5 1.150000-5 7.033060+5 1.174898-5 6.957254+5 1.180000-5 6.945134+5 1.190000-5 6.923364+5 1.216186-5 6.886828+5 1.220200-5 6.883497+5 1.230269-5 6.876666+5 1.250000-5 6.876519+5 1.258925-5 6.878042+5 1.273503-5 6.887471+5 1.280000-5 6.895519+5 1.303167-5 6.927665+5 1.310000-5 6.940282+5 1.318257-5 6.956449+5 1.342300-5 7.016895+5 1.350000-5 7.037222+5 1.365000-5 7.083237+5 1.372000-5 7.108416+5 1.400000-5 7.212151+5 1.420000-5 7.295563+5 1.430000-5 7.342478+5 1.445440-5 7.416298+5 1.462177-5 7.502328+5 1.480000-5 7.595509+5 1.490000-5 7.652830+5 1.500000-5 7.710823+5 1.515000-5 7.802752+5 1.548817-5 8.013136+5 1.550000-5 8.020593+5 1.584893-5 8.268356+5 1.621810-5 8.535267+5 1.659587-5 8.842155+5 1.698244-5 9.162026+5 1.717908-5 9.333001+5 1.750000-5 9.627533+5 1.778279-5 9.891191+5 1.800000-5 1.010205+6 1.819701-5 1.029552+6 1.870000-5 1.081384+6 1.883649-5 1.095679+6 1.950000-5 1.168242+6 2.018366-5 1.247567+6 2.089296-5 1.334316+6 2.230000-5 1.514972+6 2.317395-5 1.633377+6 2.483133-5 1.869887+6 2.500000-5 1.894825+6 2.600160-5 2.043189+6 2.651000-5 2.119364+6 2.656000-5 2.126922+6 2.656000-5 1.830672+7 2.691535-5 1.742526+7 2.754229-5 1.602470+7 2.818383-5 1.482889+7 2.851018-5 1.427768+7 2.900000-5 1.354570+7 2.951209-5 1.285014+7 3.000000-5 1.227290+7 3.019952-5 1.205199+7 3.061000-5 1.162154+7 3.061000-5 1.908528+7 3.090295-5 1.851264+7 3.122000-5 1.792350+7 3.198895-5 1.664631+7 3.273407-5 1.557909+7 3.350000-5 1.460744+7 3.388442-5 1.417149+7 3.400000-5 1.404691+7 3.469400-5 1.334249+7 3.507519-5 1.298515+7 3.589219-5 1.229713+7 3.672823-5 1.167441+7 3.801894-5 1.084938+7 3.900000-5 1.031794+7 4.027170-5 9.728598+6 4.073803-5 9.537051+6 4.168694-5 9.186122+6 4.300000-5 8.768321+6 4.315191-5 8.724918+6 4.365158-5 8.587397+6 4.466836-5 8.337313+6 4.570882-5 8.111919+6 4.677351-5 7.910664+6 4.800000-5 7.719208+6 4.900000-5 7.582444+6 4.921000-5 7.555462+6 4.921000-5 7.607486+6 5.000000-5 7.514121+6 5.011872-5 7.501098+6 5.110000-5 7.404924+6 5.188000-5 7.339114+6 5.248075-5 7.290510+6 5.308844-5 7.243883+6 5.400000-5 7.184193+6 5.432503-5 7.165059+6 5.559043-5 7.100642+6 5.623413-5 7.066820+6 5.821032-5 6.988967+6 5.900000-5 6.965176+6 5.956621-5 6.948146+6 6.025596-5 6.926796+6 6.165950-5 6.890443+6 6.237348-5 6.875953+6 6.309573-5 6.861183+6 6.531306-5 6.812561+6 6.580000-5 6.804585+6 6.606934-5 6.800403+6 6.683439-5 6.785991+6 6.839116-5 6.753339+6 6.918310-5 6.739556+6 7.000000-5 6.726637+6 7.079458-5 6.712065+6 7.161434-5 6.693509+6 7.328245-5 6.661543+6 7.413102-5 6.646658+6 7.500000-5 6.629038+6 7.585776-5 6.608857+6 7.650000-5 6.594198+6 7.673615-5 6.589016+6 7.852356-5 6.551721+6 7.900000-5 6.541059+6 8.035261-5 6.511657+6 8.150000-5 6.483603+6 8.222426-5 6.466904+6 8.413951-5 6.424334+6 8.500000-5 6.403703+6 8.511380-5 6.401048+6 8.609938-5 6.378770+6 8.912509-5 6.302643+6 9.015711-5 6.278506+6 9.332543-5 6.200272+6 9.440609-5 6.175263+6 9.800000-5 6.084186+6 1.000000-4 6.032304+6 1.011579-4 6.003082+6 1.023293-4 5.971245+6 1.035142-4 5.939858+6 1.047129-4 5.908880+6 1.071519-4 5.842900+6 1.083927-4 5.810458+6 1.100000-4 5.764318+6 1.122018-4 5.703132+6 1.161449-4 5.590633+6 1.174898-4 5.550749+6 1.192300-4 5.500559+6 1.230269-4 5.388794+6 1.260000-4 5.297903+6 1.273503-4 5.257750+6 1.288250-4 5.212296+6 1.330000-4 5.088754+6 1.350000-4 5.028172+6 1.364583-4 4.985000+6 1.400000-4 4.879234+6 1.412538-4 4.843060+6 1.421500-4 4.817606+6 1.424400-4 4.808946+6 1.424400-4 5.341973+6 1.450000-4 5.414601+6 1.460000-4 5.450439+6 1.462177-4 5.457880+6 1.470000-4 5.485617+6 1.477000-4 5.508854+6 1.477600-4 5.510563+6 1.477600-4 5.876111+6 1.480000-4 5.889240+6 1.481500-4 5.897614+6 1.485000-4 5.918799+6 1.489000-4 5.940957+6 1.492000-4 5.958943+6 1.500000-4 6.002960+6 1.507200-4 6.039217+6 1.515000-4 6.074541+6 1.520000-4 6.094084+6 1.523000-4 6.105124+6 1.530000-4 6.125648+6 1.532000-4 6.130992+6 1.538000-4 6.142543+6 1.540000-4 6.145659+6 1.547000-4 6.150305+6 1.548817-4 6.150701+6 1.550000-4 6.150988+6 1.555300-4 6.148347+6 1.560000-4 6.143832+6 1.563000-4 6.138995+6 1.566751-4 6.131171+6 1.570000-4 6.124534+6 1.571100-4 6.121739+6 1.578000-4 6.099906+6 1.584893-4 6.074594+6 1.587000-4 6.065473+6 1.595600-4 6.023997+6 1.600000-4 6.000829+6 1.603245-4 5.982466+6 1.605000-4 5.972601+6 1.615000-4 5.912263+6 1.627000-4 5.832049+6 1.635000-4 5.776481+6 1.640590-4 5.736741+6 1.655000-4 5.632046+6 1.659587-4 5.598368+6 1.660000-4 5.595305+6 1.670000-4 5.520196+6 1.690000-4 5.372278+6 1.698244-4 5.310536+6 1.713000-4 5.203995+6 1.720000-4 5.154228+6 1.737801-4 5.030974+6 1.740000-4 5.016236+6 1.760000-4 4.884951+6 1.770000-4 4.821116+6 1.778279-4 4.769182+6 1.800000-4 4.639206+6 1.810000-4 4.581229+6 1.820000-4 4.524671+6 1.850000-4 4.365986+6 1.880000-4 4.222051+6 1.883649-4 4.205618+6 1.893700-4 4.161107+6 1.900000-4 4.134044+6 1.908000-4 4.099278+6 1.927525-4 4.018619+6 1.930000-4 4.008481+6 1.949845-4 3.931279+6 1.950000-4 3.930688+6 1.973000-4 3.847706+6 1.980000-4 3.823702+6 1.995262-4 3.773112+6 2.000000-4 3.758036+6 2.018366-4 3.701406+6 2.020000-4 3.696570+6 2.041738-4 3.634254+6 2.050000-4 3.611498+6 2.065380-4 3.568508+6 2.066500-4 3.565491+6 2.089296-4 3.506096+6 2.090000-4 3.504287+6 2.113489-4 3.447369+6 2.137962-4 3.392212+6 2.162719-4 3.340273+6 2.187762-4 3.291454+6 2.190000-4 3.287015+6 2.213095-4 3.243783+6 2.220000-4 3.231312+6 2.240000-4 3.195487+6 2.260000-4 3.161202+6 2.270000-4 3.144774+6 2.300000-4 3.097654+6 2.317395-4 3.072191+6 2.340000-4 3.039995+6 2.344229-4 3.034192+6 2.350000-4 3.025950+6 2.371374-4 2.996513+6 2.380000-4 2.984553+6 2.430000-4 2.919300+6 2.454709-4 2.889356+6 2.511886-4 2.824606+6 2.580000-4 2.749240+6 2.603000-4 2.725293+6 2.603000-4 3.037333+6 2.630268-4 3.008907+6 2.660725-4 2.978652+6 2.691535-4 2.948878+6 2.700000-4 2.940522+6 2.754229-4 2.887719+6 2.800000-4 2.845514+6 2.830000-4 2.819018+6 2.884032-4 2.772913+6 2.894700-4 2.763874+6 2.900500-4 2.758921+6 2.900500-4 2.845576+6 2.917427-4 2.831268+6 2.930000-4 2.820504+6 2.930760-4 2.819855+6 2.985383-4 2.773616+6 3.000000-4 2.761583+6 3.019952-4 2.744977+6 3.090295-4 2.689841+6 3.100000-4 2.682192+6 3.126079-4 2.661367+6 3.200000-4 2.604565+6 3.235937-4 2.577152+6 3.311311-4 2.522827+6 3.320000-4 2.516675+6 3.349654-4 2.494897+6 3.350000-4 2.494641+6 3.427678-4 2.439719+6 3.430000-4 2.438147+6 3.548134-4 2.358701+6 3.550000-4 2.357490+6 3.577000-4 2.339170+6 3.577000-4 2.445600+6 3.589219-4 2.437303+6 3.672823-4 2.381580+6 3.700000-4 2.364013+6 3.715352-4 2.353909+6 3.780000-4 2.312806+6 3.801894-4 2.299321+6 3.845918-4 2.271843+6 3.850000-4 2.269309+6 3.935501-4 2.216335+6 3.981072-4 2.189005+6 4.027170-4 2.162079+6 4.073803-4 2.134683+6 4.120975-4 2.107361+6 4.216965-4 2.052791+6 4.265795-4 2.025642+6 4.315191-4 1.999109+6 4.365158-4 1.972629+6 4.415704-4 1.946486+6 4.430000-4 1.939139+6 4.466836-4 1.919969+6 4.518559-4 1.893458+6 4.623810-4 1.841206+6 4.731513-4 1.789881+6 4.786301-4 1.764343+6 4.841724-4 1.738964+6 4.850000-4 1.735212+6 4.954502-4 1.687892+6 5.011872-4 1.662674+6 5.069907-4 1.637972+6 5.128614-4 1.613583+6 5.150000-4 1.604660+6 5.188000-4 1.589007+6 5.248075-4 1.564559+6 5.432503-4 1.492539+6 5.500000-4 1.467280+6 5.559043-4 1.445809+6 5.623413-4 1.422552+6 5.688529-4 1.399599+6 5.754399-4 1.376987+6 5.821032-4 1.354295+6 5.900000-4 1.328304+6 6.095369-4 1.266886+6 6.100000-4 1.265476+6 6.165950-4 1.245258+6 6.200000-4 1.235007+6 6.237348-4 1.223943+6 6.456542-4 1.161755+6 6.531306-4 1.141760+6 6.606934-4 1.121754+6 6.683439-4 1.102006+6 6.760830-4 1.082270+6 6.918310-4 1.043882+6 7.000000-4 1.024864+6 7.150000-4 9.907189+5 7.244360-4 9.699700+5 7.328245-4 9.521630+5 7.413102-4 9.345420+5 7.500000-4 9.170285+5 7.673615-4 8.829662+5 7.943282-4 8.336604+5 8.035261-4 8.179199+5 8.128305-4 8.020906+5 8.222426-4 7.865300+5 8.413951-4 7.559780+5 8.609938-4 7.267379+5 8.810489-4 6.982596+5 8.912509-4 6.842762+5 9.015711-4 6.704086+5 9.225714-4 6.435830+5 9.332543-4 6.304142+5 9.549926-4 6.049532+5 9.772372-4 5.803418+5 9.885531-4 5.683514+5 1.000000-3 5.565501+5 1.023293-3 5.333684+5 1.035142-3 5.221468+5 1.071519-3 4.896353+5 1.083927-3 4.792641+5 1.096478-3 4.689327+5 1.109175-3 4.588403+5 1.122018-3 4.489159+5 1.137800-3 4.370724+5 1.137800-3 1.532946+6 1.150000-3 1.498419+6 1.161449-3 1.467041+6 1.167200-3 1.451646+6 1.167200-3 1.924751+6 1.175000-3 1.914114+6 1.188502-3 1.896910+6 1.190000-3 1.895104+6 1.195000-3 1.889211+6 1.196000-3 1.885683+6 1.202264-3 1.876527+6 1.216186-3 1.857202+6 1.223000-3 1.848218+6 1.230269-3 1.836414+6 1.244515-3 1.814163+6 1.258925-3 1.787277+6 1.273503-3 1.761181+6 1.288250-3 1.730725+6 1.303167-3 1.699357+6 1.318257-3 1.666562+6 1.333521-3 1.626026+6 1.348963-3 1.584417+6 1.350000-3 1.581678+6 1.364583-3 1.543866+6 1.380384-3 1.505486+6 1.400000-3 1.456116+6 1.412538-3 1.425701+6 1.428894-3 1.387376+6 1.445440-3 1.350089+6 1.469600-3 1.298096+6 1.469600-3 1.498642+6 1.479108-3 1.476425+6 1.500000-3 1.429225+6 1.504000-3 1.420308+6 1.531087-3 1.362939+6 1.540000-3 1.344745+6 1.548817-3 1.327525+6 1.584893-3 1.259706+6 1.603245-3 1.227122+6 1.604000-3 1.225808+6 1.604000-3 1.299973+6 1.621810-3 1.268674+6 1.640590-3 1.236886+6 1.659587-3 1.205353+6 1.678804-3 1.174648+6 1.690000-3 1.157266+6 1.698244-3 1.144599+6 1.710000-3 1.126892+6 1.730000-3 1.097638+6 1.737801-3 1.086523+6 1.757924-3 1.058365+6 1.776900-3 1.032859+6 1.776900-3 1.078480+6 1.778279-3 1.076622+6 1.840772-3 9.963562+5 1.862087-3 9.710360+5 1.883649-3 9.460376+5 1.905461-3 9.215004+5 1.927525-3 8.976100+5 1.949845-3 8.743743+5 1.950000-3 8.742161+5 1.972423-3 8.517133+5 2.000000-3 8.248422+5 2.018366-3 8.076641+5 2.041738-3 7.864188+5 2.065380-3 7.657662+5 2.070000-3 7.618252+5 2.089296-3 7.456576+5 2.113489-3 7.261019+5 2.137962-3 7.070136+5 2.150000-3 6.978480+5 2.187762-3 6.701410+5 2.213095-3 6.524611+5 2.238721-3 6.351629+5 2.264644-3 6.182458+5 2.290868-3 6.017856+5 2.317395-3 5.857892+5 2.344229-3 5.701398+5 2.371374-3 5.549239+5 2.400000-3 5.394738+5 2.454709-3 5.113324+5 2.483133-3 4.974491+5 2.500000-3 4.894623+5 2.511886-3 4.839420+5 2.540973-3 4.707240+5 2.570396-3 4.578763+5 2.600160-3 4.453566+5 2.630268-3 4.331982+5 2.660725-3 4.213190+5 2.691535-3 4.097783+5 2.720000-3 3.994842+5 2.754229-3 3.875541+5 2.800000-3 3.723856+5 2.818383-3 3.665160+5 2.851018-3 3.564042+5 2.884032-3 3.465756+5 2.917427-3 3.370333+5 3.000000-3 3.150339+5 3.019952-3 3.100329+5 3.054921-3 3.014444+5 3.070000-3 2.978335+5 3.090295-3 2.930422+5 3.126079-3 2.848649+5 3.150000-3 2.795794+5 3.198895-3 2.691404+5 3.273407-3 2.542951+5 3.349654-3 2.402962+5 3.388442-3 2.335663+5 3.400000-3 2.316131+5 3.427678-3 2.269974+5 3.467369-3 2.205886+5 3.500000-3 2.154941+5 3.589219-3 2.023982+5 3.630781-3 1.966905+5 3.672823-3 1.911520+5 3.715352-3 1.857758+5 3.758374-3 1.805584+5 3.845918-3 1.704611+5 3.890451-3 1.656116+5 3.900000-3 1.645980+5 3.935501-3 1.609049+5 3.981072-3 1.563096+5 4.120975-3 1.432995+5 4.168694-3 1.392199+5 4.216965-3 1.352584+5 4.300000-3 1.287869+5 4.315191-3 1.276505+5 4.320000-3 1.272892+5 4.365158-3 1.239649+5 4.415704-3 1.203886+5 4.466836-3 1.169193+5 4.570882-3 1.102916+5 4.623810-3 1.071227+5 4.677351-3 1.040493+5 4.731513-3 1.010542+5 4.841724-3 9.530432+4 4.897788-3 9.254703+4 4.954502-3 8.987063+4 5.069907-3 8.472213+4 5.128614-3 8.226461+4 5.188000-3 7.988192+4 5.308844-3 7.531587+4 5.370318-3 7.312927+4 5.432503-3 7.099780+4 5.500000-3 6.878405+4 5.559043-3 6.691533+4 5.623413-3 6.495424+4 5.754399-3 6.120812+4 5.888437-3 5.768478+4 6.025596-3 5.436014+4 6.165950-3 5.122243+4 6.237348-3 4.972011+4 6.300000-3 4.844453+4 6.309573-3 4.825323+4 6.456542-3 4.544547+4 6.500000-3 4.465946+4 6.531306-3 4.410498+4 6.683439-3 4.154560+4 6.760830-3 4.032047+4 6.800000-3 3.971970+4 6.839116-3 3.913051+4 6.918310-3 3.797522+4 6.968800-3 3.726310+4 6.968800-3 1.040203+5 7.017000-3 1.022393+5 7.079458-3 9.998797+4 7.220000-3 9.517134+4 7.244360-3 9.433258+4 7.413102-3 8.879519+4 7.585776-3 8.357645+4 7.624800-3 8.242991+4 7.624800-3 1.129739+5 7.673615-3 1.110875+5 7.700000-3 1.100853+5 7.762471-3 1.078534+5 7.852356-3 1.047530+5 8.000000-3 9.970562+4 8.018100-3 9.911014+4 8.018100-3 1.145539+5 8.128305-3 1.105771+5 8.145000-3 1.099912+5 8.222426-3 1.074152+5 8.317638-3 1.043644+5 8.350000-3 1.033558+5 8.400000-3 1.018086+5 8.413951-3 1.013788+5 8.511380-3 9.844494+4 8.810489-3 9.021961+4 8.900000-3 8.794695+4 8.912509-3 8.763287+4 9.015711-3 8.506559+4 9.120108-3 8.257164+4 9.332543-3 7.780536+4 9.440609-3 7.552832+4 9.549926-3 7.331776+4 9.660509-3 7.118194+4 9.885531-3 6.707217+4 1.000000-2 6.509374+4 1.011579-2 6.317501+4 1.023293-2 6.131348+4 1.035142-2 5.949660+4 1.059254-2 5.602662+4 1.071519-2 5.436104+4 1.083927-2 5.274632+4 1.122018-2 4.816885+4 1.135011-2 4.673534+4 1.148154-2 4.534504+4 1.150000-2 4.515443+4 1.161449-2 4.399568+4 1.174898-2 4.267839+4 1.188502-2 4.140057+4 1.202264-2 4.016203+4 1.216186-2 3.896022+4 1.230269-2 3.779537+4 1.288250-2 3.348264+4 1.300000-2 3.269373+4 1.303167-2 3.248531+4 1.333521-2 3.056557+4 1.348963-2 2.964918+4 1.350000-2 2.958902+4 1.364583-2 2.875090+4 1.380384-2 2.787900+4 1.396368-2 2.703360+4 1.428894-2 2.542080+4 1.462177-2 2.390678+4 1.479108-2 2.317984+4 1.513561-2 2.179152+4 1.531087-2 2.112973+4 1.548817-2 2.048846+4 1.566751-2 1.986658+4 1.584893-2 1.926397+4 1.603245-2 1.868015+4 1.621810-2 1.811301+4 1.640590-2 1.756312+4 1.659587-2 1.702631+4 1.678804-2 1.650619+4 1.698244-2 1.599851+4 1.717908-2 1.550627+4 1.757924-2 1.456786+4 1.778279-2 1.412068+4 1.800000-2 1.366391+4 1.819701-2 1.326721+4 1.840772-2 1.286050+4 1.862087-2 1.246659+4 1.905461-2 1.171339+4 1.927525-2 1.135092+4 1.950000-2 1.099756+4 1.972423-2 1.065973+4 1.995262-2 1.033031+4 2.018366-2 1.001135+4 2.041738-2 9.702455+3 2.065380-2 9.403082+3 2.089296-2 9.113161+3 2.113489-2 8.832419+3 2.187762-2 8.036699+3 2.213095-2 7.786628+3 2.238721-2 7.544536+3 2.264644-2 7.309667+3 2.317395-2 6.862069+3 2.344229-2 6.648893+3 2.371374-2 6.442367+3 2.426610-2 6.047172+3 2.511886-2 5.500422+3 2.540973-2 5.328592+3 2.570396-2 5.162262+3 2.600160-2 5.001084+3 2.630268-2 4.845059+3 2.650000-2 4.745942+3 2.660725-2 4.693187+3 2.691535-2 4.546088+3 2.722701-2 4.403665+3 2.786121-2 4.132217+3 2.818383-2 4.002977+3 2.851018-2 3.877260+3 2.884032-2 3.755571+3 2.917427-2 3.637773+3 2.951209-2 3.523371+3 2.985383-2 3.412650+3 3.054921-2 3.201591+3 3.126079-2 3.003883+3 3.162278-2 2.909641+3 3.198895-2 2.817968+3 3.235937-2 2.729252+3 3.311311-2 2.559161+3 3.349654-2 2.478216+3 3.388442-2 2.399872+3 3.427678-2 2.324065+3 3.467369-2 2.250701+3 3.589219-2 2.044355+3 3.672823-2 1.917306+3 3.715352-2 1.856765+3 3.758374-2 1.798146+3 3.801894-2 1.741404+3 3.890451-2 1.632209+3 4.000000-2 1.509757+3 4.027170-2 1.481356+3 4.168694-2 1.344625+3 4.216965-2 1.301975+3 4.265795-2 1.260703+3 4.315191-2 1.220768+3 4.365158-2 1.182078+3 4.415704-2 1.144635+3 4.466836-2 1.108312+3 4.570882-2 1.038641+3 4.731513-2 9.421375+2 4.786301-2 9.120261+2 4.856800-2 8.751952+2 4.856800-2 4.856351+3 4.930000-2 4.687245+3 4.960000-2 4.609858+3 5.011872-2 4.501949+3 5.069907-2 4.363331+3 5.128614-2 4.228966+3 5.150000-2 4.181430+3 5.188000-2 4.104661+3 5.248075-2 3.987274+3 5.350000-2 3.798341+3 5.432503-2 3.646646+3 5.500000-2 3.528690+3 5.559043-2 3.429754+3 5.623413-2 3.326202+3 5.821032-2 3.033857+3 5.956621-2 2.855939+3 6.165950-2 2.608461+3 6.237348-2 2.530854+3 6.382635-2 2.382319+3 6.531306-2 2.242539+3 6.606934-2 2.174243+3 6.760830-2 2.043845+3 6.839116-2 1.981620+3 6.918310-2 1.921291+3 7.079458-2 1.806108+3 7.161434-2 1.751129+3 7.328245-2 1.646131+3 7.498942-2 1.546188+3 7.673615-2 1.452327+3 7.943282-2 1.322142+3 8.128305-2 1.241922+3 8.222426-2 1.203661+3 8.317638-2 1.166582+3 8.413951-2 1.130650+3 8.511380-2 1.095826+3 8.609938-2 1.062071+3 8.709636-2 1.029358+3 8.810489-2 9.976176+2 8.912509-2 9.668570+2 9.015711-2 9.370461+2 9.120108-2 9.077495+2 9.225714-2 8.793712+2 9.549926-2 7.994620+2 9.885531-2 7.268311+2 1.000000-1 7.041215+2 1.023293-1 6.608137+2 1.035142-1 6.401718+2 1.059254-1 6.007965+2 1.096478-1 5.461812+2 1.109175-1 5.291035+2 1.122019-1 5.125610+2 1.135011-1 4.965377+2 1.148154-1 4.808532+2 1.188502-1 4.367171+2 1.273503-1 3.602459+2 1.300000-1 3.401595+2 1.303167-1 3.378620+2 1.318257-1 3.272019+2 1.333521-1 3.168792+2 1.412538-1 2.699078+2 1.445440-1 2.531336+2 1.462177-1 2.451419+2 1.479108-1 2.374032+2 1.496236-1 2.299088+2 1.513561-1 2.226519+2 1.531088-1 2.156239+2 1.548817-1 2.088185+2 1.584893-1 1.958468+2 1.603245-1 1.896668+2 1.621810-1 1.836820+2 1.640590-1 1.778876+2 1.717908-1 1.564890+2 1.778279-1 1.421488+2 1.798871-1 1.376672+2 1.819701-1 1.333272+2 1.840772-1 1.291244+2 1.862087-1 1.250542+2 1.883649-1 1.211127+2 1.905461-1 1.172956+2 1.927525-1 1.135990+2 1.949845-1 1.100200+2 1.995262-1 1.031987+2 2.041738-1 9.680063+1 2.065380-1 9.375213+1 2.162719-1 8.248907+1 2.187762-1 7.989167+1 2.199400-1 7.873380+1 2.213095-1 7.740040+1 2.238721-1 7.498708+1 2.264644-1 7.264976+1 2.290868-1 7.038530+1 2.317395-1 6.819212+1 2.344229-1 6.606734+1 2.371374-1 6.400881+1 2.398833-1 6.201697+1 2.454709-1 5.821746+1 2.511886-1 5.465095+1 2.540973-1 5.295050+1 2.570396-1 5.130325+1 2.600160-1 4.970779+1 2.630268-1 4.816203+1 2.660725-1 4.666436+1 2.754229-1 4.249915+1 2.818383-1 3.993116+1 2.851018-1 3.870600+1 2.884032-1 3.751842+1 2.917427-1 3.636743+1 2.951209-1 3.525412+1 3.000000-1 3.372709+1 3.019952-1 3.312875+1 3.054921-1 3.211467+1 3.090295-1 3.113192+1 3.162278-1 2.928408+1 3.198895-1 2.840175+1 3.235937-1 2.754600+1 3.273407-1 2.671613+1 3.311311-1 2.591155+1 3.427678-1 2.364046+1 3.467369-1 2.292860+1 3.507519-1 2.223986+1 3.548134-1 2.157183+1 3.589219-1 2.093469+1 3.630781-1 2.031637+1 3.672823-1 1.971657+1 3.715352-1 1.913449+1 3.758374-1 1.856960+1 3.801894-1 1.802143+1 3.845918-1 1.748946+1 3.890451-1 1.697320+1 3.935501-1 1.647234+1 3.981072-1 1.598627+1 4.000000-1 1.579057+1 4.027170-1 1.551542+1 4.073803-1 1.506718+1 4.120975-1 1.463191+1 4.168694-1 1.420921+1 4.216965-1 1.379873+1 4.315191-1 1.301307+1 4.365158-1 1.263719+1 4.415705-1 1.227229+1 4.466836-1 1.191793+1 4.518559-1 1.157396+1 4.570882-1 1.124762+1 4.731513-1 1.032332+1 4.841724-1 9.749783+0 4.897788-1 9.475082+0 4.954502-1 9.208318+0 5.011872-1 8.949070+0 5.069907-1 8.697124+0 5.128614-1 8.457603+0 5.188000-1 8.225226+0 5.248075-1 7.999370+0 5.308844-1 7.779742+0 5.370318-1 7.566141+0 5.477200-1 7.214186+0 5.495409-1 7.156562+0 5.623413-1 6.769284+0 5.688529-1 6.583577+0 5.754399-1 6.407064+0 5.821032-1 6.235713+0 5.888437-1 6.069074+0 6.025596-1 5.749177+0 6.095369-1 5.595612+0 6.309573-1 5.159255+0 6.382635-1 5.025205+0 6.456542-1 4.894642+0 6.531306-1 4.767942+0 6.606935-1 4.644614+0 6.683439-1 4.524480+0 6.760830-1 4.407452+0 6.918310-1 4.182474+0 6.998420-1 4.074331+0 7.079458-1 3.971665+0 7.161434-1 3.871631+0 7.244360-1 3.774125+0 7.328245-1 3.679334+0 7.413102-1 3.586995+0 7.444800-1 3.553364+0 7.498942-1 3.496973+0 7.762471-1 3.240248+0 7.852356-1 3.158991+0 7.943282-1 3.081751+0 8.035261-1 3.006403+0 8.128305-1 2.932899+0 8.222427-1 2.861385+0 8.317638-1 2.791627+0 8.413951-1 2.723612+0 8.609938-1 2.592570+0 8.709636-1 2.529467+0 8.810489-1 2.467907+0 8.912509-1 2.408999+0 9.015711-1 2.351496+0 9.120108-1 2.295394+0 9.225714-1 2.240640+0 9.332543-1 2.187265+0 9.549926-1 2.084645+0 9.660509-1 2.035156+0 9.885531-1 1.942889+0 1.000000+0 1.898374+0 1.011579+0 1.854889+0 1.023293+0 1.812567+0 1.035142+0 1.771213+0 1.047129+0 1.730818+0 1.071519+0 1.652776+0 1.096478+0 1.580025+0 1.122018+0 1.510478+0 1.135011+0 1.476859+0 1.148154+0 1.444004+0 1.161449+0 1.411885+0 1.174898+0 1.380588+0 1.188502+0 1.350007+0 1.202264+0 1.320101+0 1.216186+0 1.290857+0 1.244515+0 1.235908+0 1.250000+0 1.225683+0 1.273503+0 1.183319+0 1.288250+0 1.157871+0 1.303167+0 1.133070+0 1.318257+0 1.108816+0 1.333521+0 1.085082+0 1.364583+0 1.039124+0 1.380384+0 1.017496+0 1.412538+0 9.755955-1 1.428894+0 9.552976-1 1.445440+0 9.354297-1 1.462177+0 9.160414-1 1.513561+0 8.602903-1 1.531087+0 8.424713-1 1.621810+0 7.610191-1 1.640590+0 7.457018-1 1.659587+0 7.307514-1 1.698244+0 7.017528-1 1.737801+0 6.739182-1 1.778279+0 6.479273-1 1.840772+0 6.108076-1 1.862087+0 5.989154-1 1.883649+0 5.872982-1 1.927525+0 5.647435-1 1.972423+0 5.430665-1 2.018366+0 5.228086-1 2.044000+0 5.120276-1 2.065380+0 5.033060-1 2.089296+0 4.938293-1 2.113489+0 4.845329-1 2.137962+0 4.754497-1 2.187762+0 4.577977-1 2.238721+0 4.408108-1 2.290868+0 4.249531-1 2.317395+0 4.172395-1 2.344229+0 4.096660-1 2.371374+0 4.022299-1 2.398833+0 3.949303-1 2.426610+0 3.877926-1 2.483133+0 3.739071-1 2.540973+0 3.605261-1 2.600160+0 3.480079-1 2.630268+0 3.419129-1 2.660725+0 3.359246-1 2.691535+0 3.300411-1 2.722701+0 3.242619-1 2.786121+0 3.130500-1 2.851018+0 3.022299-1 2.917427+0 2.917892-1 3.000000+0 2.799596-1 3.019952+0 2.772214-1 3.054921+0 2.725289-1 3.090295+0 2.679159-1 3.126079+0 2.633811-1 3.162278+0 2.589236-1 3.235937+0 2.502680-1 3.311311+0 2.419048-1 3.388442+0 2.338251-1 3.467369+0 2.262373-1 3.507519+0 2.225363-1 3.548134+0 2.188958-1 3.589219+0 2.153149-1 3.630781+0 2.117926-1 3.672823+0 2.083285-1 3.758374+0 2.015955-1 3.845918+0 1.950823-1 3.935501+0 1.887827-1 4.073803+0 1.799558-1 4.120975+0 1.771062-1 4.168694+0 1.743017-1 4.216965+0 1.715417-1 4.265795+0 1.688254-1 4.315191+0 1.661525-1 4.415704+0 1.609533-1 4.518559+0 1.559186-1 4.623810+0 1.510439-1 4.786301+0 1.442120-1 4.841724+0 1.420040-1 4.897788+0 1.398299-1 4.954502+0 1.376891-1 5.011872+0 1.355811-1 5.069907+0 1.335057-1 5.188000+0 1.294663-1 5.248075+0 1.274933-1 5.308844+0 1.255509-1 5.370318+0 1.236386-1 5.623413+0 1.164745-1 5.688529+0 1.147493-1 5.821032+0 1.113752-1 5.888437+0 1.097255-1 6.000000+0 1.070884-1 6.025596+0 1.064993-1 6.095369+0 1.049265-1 6.237348+0 1.018522-1 6.309573+0 1.003494-1 6.382635+0 9.886905-2 6.531306+0 9.597442-2 6.839116+0 9.058206-2 6.918310+0 8.928197-2 7.000000+0 8.797562-2 7.079458+0 8.673754-2 7.244360+0 8.426569-2 7.328245+0 8.306018-2 7.498942+0 8.070212-2 7.585776+0 7.954869-2 7.673615+0 7.841197-2 7.852356+0 7.618767-2 8.317638+0 7.103120-2 8.413951+0 7.004258-2 8.511380+0 6.906771-2 8.609938+0 6.810640-2 8.810489+0 6.622380-2 8.912509+0 6.530497-2 9.120108+0 6.350647-2 9.225714+0 6.262616-2 9.332543+0 6.175820-2 9.549926+0 6.005869-2 1.023293+1 5.535007-2 1.035142+1 5.460202-2 1.047129+1 5.386402-2 1.059254+1 5.313605-2 1.071519+1 5.241794-2 1.100000+1 5.081769-2 1.109175+1 5.032268-2 1.135011+1 4.897629-2 1.148154+1 4.831685-2 1.161449+1 4.766640-2 1.188502+1 4.639202-2 1.202264+1 4.578217-2 1.288250+1 4.228769-2 1.303167+1 4.173179-2 1.318257+1 4.118319-2 1.333521+1 4.064183-2 1.348963+1 4.010754-2 1.380384+1 3.906002-2 1.396368+1 3.854790-2 1.412538+1 3.804273-2 1.428894+1 3.754434-2 1.445440+1 3.705250-2 1.500000+1 3.551342-2 1.531087+1 3.470601-2 1.678804+1 3.130102-2 1.698244+1 3.089959-2 1.717908+1 3.050332-2 1.737801+1 3.011212-2 1.757924+1 2.972593-2 1.778279+1 2.934473-2 1.800000+1 2.894807-2 1.819701+1 2.859809-2 1.840772+1 2.823264-2 1.862087+1 2.787192-2 1.905461+1 2.716441-2 1.949845+1 2.648872-2 2.238721+1 2.277329-2 2.290868+1 2.220683-2 2.344229+1 2.165446-2 2.371374+1 2.138344-2 2.400000+1 2.110460-2 2.426610+1 2.085156-2 2.454709+1 2.059063-2 2.483133+1 2.033360-2 2.511886+1 2.007984-2 2.570396+1 1.958192-2 2.630268+1 1.910466-2 3.054921+1 1.627366-2 3.090295+1 1.607412-2 3.126079+1 1.587703-2 3.198895+1 1.549006-2 3.235937+1 1.530013-2 3.273407+1 1.511253-2 3.311311+1 1.492725-2 3.388442+1 1.456416-2 3.427678+1 1.438598-2 3.467369+1 1.420999-2 3.548134+1 1.386451-2 3.890451+1 1.258423-2 4.315191+1 1.128467-2 4.365158+1 1.114882-2 4.466836+1 1.088202-2 4.518559+1 1.075102-2 4.570882+1 1.062162-2 4.623810+1 1.049402-2 4.677351+1 1.036798-2 4.731513+1 1.024346-2 4.954502+1 9.760253-3 6.165950+1 7.781607-3 7.079458+1 6.744149-3 7.161434+1 6.664209-3 7.244360+1 6.585217-3 7.328245+1 6.507163-3 7.413102+1 6.430039-3 7.498942+1 6.353964-3 7.585776+1 6.278805-3 7.673615+1 6.204546-3 7.943282+1 5.987006-3 1.035142+2 4.569405-3 1.303167+2 3.612568-3 1.318257+2 3.570375-3 1.348963+2 3.487462-3 1.364583+2 3.446732-3 1.380384+2 3.406477-3 1.396368+2 3.366691-3 1.428894+2 3.288512-3 1.445440+2 3.250151-3 1.462177+2 3.212245-3 1.513561+2 3.101166-3 1.566751+2 2.993930-3 2.065380+2 2.264708-3 2.600160+2 1.794683-3 2.630268+2 1.773930-3 2.691535+2 1.733142-3 2.722701+2 1.713101-3 2.754229+2 1.693291-3 2.786121+2 1.673711-3 2.851018+2 1.635229-3 2.884032+2 1.616335-3 2.917427+2 1.597662-3 3.019952+2 1.542929-3 3.126079+2 1.490073-3 5.188000+2 8.959882-4 8.222427+2 5.642600-4 1.035142+3 4.477833-4 1.047129+3 4.426364-4 1.071519+3 4.325201-4 1.083927+3 4.275487-4 1.096478+3 4.226347-4 1.109175+3 4.177769-4 1.135011+3 4.082287-4 1.148154+3 4.035387-4 1.161449+3 3.989030-4 1.202264+3 3.853137-4 1.244515+3 3.721870-4 2.065380+3 2.242204-4 5.188000+4 8.915097-6 1.000000+5 4.623962-6 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.160000-6 5.160000-6 9.080000-6 5.160000-6 9.080000-6 7.693323-6 9.770000-6 7.955630-6 9.770000-6 8.587823-6 1.071519-5 8.817109-6 1.174898-5 8.993186-6 1.280000-5 9.107142-6 1.430000-5 9.192844-6 1.698244-5 9.246310-6 2.656000-5 9.296165-6 2.656000-5 2.455424-5 2.851018-5 2.363201-5 3.061000-5 2.249405-5 3.061000-5 2.566798-5 3.350000-5 2.427642-5 3.672823-5 2.254189-5 4.168694-5 1.977699-5 4.466836-5 1.821711-5 4.677351-5 1.721246-5 4.900000-5 1.625328-5 4.921000-5 1.616891-5 4.921000-5 1.639486-5 5.110000-5 1.569754-5 5.308844-5 1.505059-5 5.559043-5 1.435445-5 5.821032-5 1.375868-5 6.025596-5 1.336596-5 6.309573-5 1.291491-5 6.606934-5 1.254012-5 6.918310-5 1.223102-5 7.161434-5 1.203302-5 7.585776-5 1.176548-5 8.035261-5 1.155408-5 8.609938-5 1.136047-5 9.440609-5 1.117238-5 1.047129-4 1.102796-5 1.192300-4 1.091815-5 1.424400-4 1.085732-5 1.424400-4 1.271022-5 1.462177-4 1.343719-5 1.477600-4 1.374255-5 1.477600-4 1.480529-5 1.507200-4 1.548230-5 1.523000-4 1.578044-5 1.540000-4 1.602474-5 1.560000-4 1.620679-5 1.578000-4 1.627185-5 1.600000-4 1.624762-5 1.627000-4 1.609765-5 1.670000-4 1.571092-5 1.778279-4 1.459468-5 1.820000-4 1.421251-5 1.880000-4 1.374703-5 1.930000-4 1.344770-5 1.980000-4 1.323659-5 2.041738-4 1.307899-5 2.090000-4 1.303464-5 2.162719-4 1.306640-5 2.240000-4 1.321053-5 2.340000-4 1.351453-5 2.454709-4 1.397340-5 2.603000-4 1.465408-5 2.603000-4 1.809877-5 2.900500-4 1.957806-5 2.900500-4 2.061936-5 3.200000-4 2.202044-5 3.430000-4 2.298192-5 3.577000-4 2.354729-5 3.577000-4 2.555494-5 3.935501-4 2.684497-5 4.365158-4 2.811799-5 4.850000-4 2.931934-5 5.248075-4 3.014404-5 5.900000-4 3.126729-5 6.683439-4 3.235781-5 7.500000-4 3.327624-5 8.609938-4 3.429315-5 1.000000-3 3.531129-5 1.137800-3 3.614238-5 1.137800-3 5.690940-5 1.167200-3 5.690709-5 1.167200-3 5.985373-5 1.258925-3 6.062293-5 1.333521-3 6.087632-5 1.469600-3 6.081731-5 1.469600-3 6.581446-5 1.604000-3 6.608183-5 1.604000-3 6.834723-5 1.776900-3 6.904513-5 1.776900-3 7.149965-5 2.317395-3 7.403051-5 3.054921-3 7.681313-5 3.935501-3 7.945436-5 4.954502-3 8.186673-5 6.309573-3 8.438597-5 6.968800-3 8.539650-5 6.968800-3 1.161332-4 7.624800-3 1.165057-4 7.624800-3 1.233470-4 8.018100-3 1.235203-4 8.018100-3 1.295923-4 1.161449-2 1.322503-4 1.717908-2 1.350589-4 2.426610-2 1.375431-4 3.467369-2 1.400545-4 4.856800-2 1.423024-4 4.856800-2 1.382261-4 1.333521-1 1.389399-4 5.248075-1 1.393805-4 1.000000+5 1.394379-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.160000-6 0.0 1.477600-4 0.0 1.477600-4 9.66295-10 1.481500-4 9.89228-10 1.489000-4 1.041008-9 1.500000-4 1.129790-9 1.507200-4 1.192451-9 1.515000-4 1.264727-9 1.530000-4 1.408589-9 1.540000-4 1.499085-9 1.548817-4 1.574978-9 1.555300-4 1.627218-9 1.563000-4 1.682079-9 1.571100-4 1.731132-9 1.578000-4 1.767836-9 1.587000-4 1.804750-9 1.595600-4 1.830722-9 1.605000-4 1.848678-9 1.615000-4 1.856878-9 1.627000-4 1.854687-9 1.640590-4 1.838528-9 1.655000-4 1.809635-9 1.670000-4 1.770958-9 1.690000-4 1.709663-9 1.720000-4 1.606808-9 1.800000-4 1.322942-9 1.820000-4 1.256331-9 1.850000-4 1.160994-9 1.883649-4 1.062186-9 1.900000-4 1.018058-9 1.930000-4 9.45170-10 1.950000-4 9.02511-10 1.980000-4 8.46616-10 2.000000-4 8.14766-10 2.020000-4 7.87096-10 2.041738-4 7.61571-10 2.066500-4 7.38615-10 2.090000-4 7.22075-10 2.113489-4 7.10199-10 2.137962-4 7.02494-10 2.162719-4 6.99149-10 2.190000-4 7.00257-10 2.213095-4 7.05038-10 2.240000-4 7.14644-10 2.270000-4 7.29828-10 2.300000-4 7.49069-10 2.344229-4 7.83929-10 2.380000-4 8.17134-10 2.430000-4 8.69950-10 2.511886-4 9.67138-10 2.603000-4 1.087786-9 2.603000-4 2.058755-9 2.754229-4 2.278752-9 2.900500-4 2.494102-9 2.900500-4 3.041153-9 3.090295-4 3.324208-9 3.235937-4 3.531444-9 3.430000-4 3.789995-9 3.577000-4 3.973100-9 3.577000-4 4.552638-9 3.801894-4 4.821807-9 3.981072-4 5.019196-9 4.315191-4 5.344602-9 4.623810-4 5.607854-9 4.954502-4 5.863025-9 5.248075-4 6.060904-9 5.623413-4 6.283953-9 5.900000-4 6.435565-9 6.456542-4 6.701604-9 7.150000-4 6.983013-9 7.943282-4 7.249763-9 8.810489-4 7.500993-9 9.885531-4 7.758631-9 1.122018-3 8.032894-9 1.137800-3 8.061275-9 1.137800-3 9.291245-9 1.167200-3 9.302984-9 1.167200-3 1.219724-6 1.195000-3 1.335766-6 1.196000-3 1.335491-6 1.223000-3 1.434159-6 1.244515-3 1.499631-6 1.273503-3 1.567107-6 1.288250-3 1.591838-6 1.303167-3 1.613538-6 1.318257-3 1.631114-6 1.333521-3 1.631841-6 1.380384-3 1.620181-6 1.469600-3 1.612906-6 1.469600-3 1.682076-6 1.604000-3 1.679453-6 1.604000-3 1.868980-6 1.776900-3 1.888902-6 1.776900-3 1.973403-6 1.927525-3 1.998596-6 2.483133-3 2.072889-6 3.090295-3 2.139686-6 3.890451-3 2.211227-6 4.897788-3 2.282711-6 6.165950-3 2.353542-6 6.968800-3 2.390412-6 6.968800-3 6.350224-4 7.244360-3 6.363172-4 7.624800-3 6.359866-4 7.624800-3 8.156467-4 8.018100-3 8.169989-4 8.018100-3 8.622973-4 1.071519-2 8.718635-4 1.678804-2 8.815416-4 2.884032-2 8.895378-4 4.856800-2 8.950906-4 4.856800-2 3.356994-2 5.350000-2 3.375945-2 7.161434-2 3.411319-2 1.023293-1 3.438643-2 1.717908-1 3.460332-2 4.897788-1 3.476535-2 1.174898+0 3.489088-2 1.000000+5 3.488479-2 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.160000-6 0.0 9.080000-6 3.920000-6 9.080000-6 1.386677-6 9.400000-6 1.582308-6 9.770000-6 1.814370-6 9.770000-6 1.182177-6 1.011579-5 1.436554-6 1.050000-5 1.729622-6 1.083927-5 1.996818-6 1.135011-5 2.416196-6 1.190000-5 2.886742-6 1.250000-5 3.419708-6 1.318257-5 4.046894-6 1.430000-5 5.107156-6 1.621810-5 6.980692-6 2.656000-5 1.726383-5 2.656000-5 2.005756-6 2.691535-5 2.515986-6 2.754229-5 3.432723-6 2.818383-5 4.385709-6 2.900000-5 5.621393-6 3.019952-5 7.472793-6 3.061000-5 8.115955-6 3.061000-5 4.942023-6 3.122000-5 5.827102-6 3.273407-5 8.069110-6 3.469400-5 1.104367-5 3.801894-5 1.619837-5 4.168694-5 2.190995-5 4.466836-5 2.645125-5 4.800000-5 3.133025-5 4.921000-5 3.304109-5 4.921000-5 3.281514-5 5.248075-5 3.724282-5 5.623413-5 4.203786-5 6.025596-5 4.689000-5 6.606934-5 5.352922-5 7.413102-5 6.226651-5 8.609938-5 7.473891-5 1.174898-4 1.065626-4 1.424400-4 1.315827-4 1.424400-4 1.297298-4 1.477600-4 1.340175-4 1.477600-4 1.329537-4 1.547000-4 1.385974-4 1.615000-4 1.453192-4 1.908000-4 1.772304-4 2.113489-4 1.983153-4 2.511886-4 2.369647-4 2.603000-4 2.456448-4 2.603000-4 2.421992-4 2.900500-4 2.704695-4 2.900500-4 2.694276-4 3.577000-4 3.341487-4 3.577000-4 3.321405-4 5.248075-4 4.946574-4 9.772372-4 9.420705-4 1.137800-3 1.101650-3 1.137800-3 1.080881-3 1.167200-3 1.110283-3 1.167200-3 1.106126-3 1.469600-3 1.407170-3 1.469600-3 1.402103-3 1.604000-3 1.536239-3 1.604000-3 1.533784-3 1.776900-3 1.705966-3 1.776900-3 1.703427-3 6.968800-3 6.881013-3 6.968800-3 6.217644-3 7.624800-3 6.872308-3 7.624800-3 6.685806-3 8.018100-3 7.077581-3 8.018100-3 7.026210-3 4.856800-2 4.753061-2 4.856800-2 1.485983-2 5.011872-2 1.631980-2 5.248075-2 1.862457-2 6.918310-2 3.496542-2 1.122019-1 7.762030-2 1.188502+0 1.153474+0 1.000000+5 9.999997+4 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 4.856800-2 3.981156+3 4.930000-2 3.848160+3 4.960000-2 3.784980+3 5.011872-2 3.700865+3 5.150000-2 3.439320+3 5.350000-2 3.131860+3 5.821032-2 2.508966+3 6.531306-2 1.863743+3 7.328245-2 1.372832+3 9.015711-2 7.855809+2 1.135011-1 4.180040+2 2.187762-1 6.765791+1 2.660725-1 3.955177+1 3.090295-1 2.640179+1 3.548134-1 1.830526+1 4.027170-1 1.317295+1 4.518559-1 9.831110+0 5.069907-1 7.390858+0 5.688529-1 5.597689+0 6.309573-1 4.388658+0 6.998420-1 3.467714+0 7.852356-1 2.690519+0 8.810489-1 2.103313+0 9.660509-1 1.735035+0 1.071519+0 1.409286+0 1.216186+0 1.100749+0 1.364583+0 8.860343-1 1.531087+0 7.182768-1 1.737801+0 5.745756-1 1.972423+0 4.630220-1 2.238721+0 3.758387-1 2.540973+0 3.073925-1 2.917427+0 2.487837-1 3.388442+0 1.993640-1 3.935501+0 1.609613-1 4.623810+0 1.287838-1 5.370318+0 1.054192-1 6.531306+0 8.183016-2 7.852356+0 6.495981-2 9.549926+0 5.120759-2 1.188502+1 3.955557-2 1.500000+1 3.028000-2 1.905461+1 2.316221-2 2.570396+1 1.669738-2 3.548134+1 1.182175-2 4.954502+1 8.322314-3 7.943282+1 5.104978-3 1.566751+2 2.552886-3 3.126079+2 1.270598-3 1.244515+3 3.173695-4 1.000000+5 3.943000-6 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 4.856800-2 1.373300-4 1.000000+5 1.373300-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.856800-2 4.075300-2 1.000000+5 4.075300-2 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 4.856800-2 7.677670-3 1.000000+5 9.999996+4 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.018100-3 1.544372+4 8.145000-3 1.492078+4 8.350000-3 1.434616+4 8.511380-3 1.386846+4 8.900000-3 1.290364+4 9.549926-3 1.138092+4 1.023293-2 1.010923+4 1.083927-2 9.115091+3 1.303167-2 6.450775+3 1.640590-2 4.095022+3 1.862087-2 3.153571+3 2.113489-2 2.418962+3 2.511886-2 1.663760+3 2.818383-2 1.288021+3 3.235937-2 9.417490+2 3.801894-2 6.476308+2 4.466836-2 4.414127+2 5.248075-2 2.983428+2 6.237348-2 1.943696+2 7.328245-2 1.293063+2 8.709636-2 8.295368+1 1.059254-1 4.975919+1 1.333521-1 2.704314+1 2.371374-1 5.791958+0 2.917427-1 3.347028+0 3.467369-1 2.134281+0 3.981072-1 1.499134+0 4.518559-1 1.091594+0 5.128614-1 8.008920-1 5.754399-1 6.085990-1 6.456542-1 4.658354-1 7.244360-1 3.597865-1 8.128305-1 2.799199-1 9.332543-1 2.088773-1 1.011579+0 1.771202-1 1.161449+0 1.348298-1 1.288250+0 1.105558-1 1.445440+0 8.932120-2 1.640590+0 7.119602-2 1.862087+0 5.718346-2 2.113489+0 4.625675-2 2.398833+0 3.770423-2 2.722701+0 3.095452-2 3.162278+0 2.471627-2 3.672823+0 1.988716-2 4.315191+0 1.586001-2 5.069907+0 1.274490-2 6.025596+0 1.016595-2 7.244360+0 8.043836-3 8.810489+0 6.321839-3 1.100000+1 4.851300-3 1.380384+1 3.729047-3 1.800000+1 2.763800-3 2.454709+1 1.966162-3 3.311311+1 1.425542-3 4.570882+1 1.014205-3 7.413102+1 6.140455-4 1.428894+2 3.140443-4 2.851018+2 1.561785-4 1.135011+3 3.899364-5 1.000000+5 4.417500-7 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.018100-3 1.685600-4 1.000000+5 1.685600-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.018100-3 1.153000-3 1.000000+5 1.153000-3 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.018100-3 6.696540-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 7.624800-3 3.054402+4 7.700000-3 2.980490+4 7.852356-3 2.859800+4 8.400000-3 2.412200+4 9.660509-3 1.671200+4 1.059254-2 1.302800+4 1.161449-2 1.010700+4 1.462177-2 5.315800+3 1.603245-2 4.080400+3 1.905461-2 2.471900+3 2.371374-2 1.291500+3 2.917427-2 6.898300+2 3.589219-2 3.646400+2 4.415704-2 1.910500+2 5.500000-2 9.558400+1 7.328245-2 3.833800+1 1.300000-1 6.143386+0 1.621810-1 3.051739+0 1.949845-1 1.716407+0 2.290868-1 1.044517+0 2.660725-1 6.635454-1 3.054921-1 4.398310-1 3.467369-1 3.039129-1 3.890451-1 2.186640-1 4.365158-1 1.584982-1 4.897788-1 1.157744-1 5.477200-1 8.598870-2 6.095369-1 6.516437-2 6.760830-1 5.017422-2 7.762471-1 3.570402-2 8.413951-1 2.947125-2 9.015711-1 2.515210-2 9.660509-1 2.160723-2 1.035142+0 1.869932-2 1.135011+0 1.553993-2 1.250000+0 1.289990-2 1.380384+0 1.074027-2 1.659587+0 7.735150-3 1.883649+0 6.215085-3 2.137962+0 5.030991-3 2.426610+0 4.104055-3 2.786121+0 3.312975-3 3.235937+0 2.648630-3 3.758374+0 2.133636-3 4.415704+0 1.703458-3 5.188000+0 1.370455-3 6.237348+0 1.078053-3 7.498942+0 8.541807-4 9.120108+0 6.721925-4 1.135011+1 5.184249-4 1.412538+1 4.026943-4 1.819701+1 3.027296-4 2.483133+1 2.152811-4 3.388442+1 1.541987-4 4.623810+1 1.110957-4 7.498942+1 6.727239-5 1.445440+2 3.441074-5 2.884032+2 1.711403-5 1.148154+3 4.273311-6 1.000000+5 4.897400-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 7.624800-3 1.418100-4 1.000000+5 1.418100-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.624800-3 1.300500-3 1.000000+5 1.300500-3 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.624800-3 6.182490-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 6.968800-3 6.675724+4 7.220000-3 6.120440+4 7.585776-3 5.372925+4 8.912509-3 3.458468+4 9.885531-3 2.580557+4 1.161449-2 1.622892+4 1.350000-2 1.048724+4 1.678804-2 5.461016+3 1.905461-2 3.708410+3 2.187762-2 2.420928+3 2.630268-2 1.357731+3 3.162278-2 7.543052+2 3.801894-2 4.155366+2 4.570882-2 2.271664+2 5.623413-2 1.142708+2 7.161434-2 5.085391+1 1.303167-1 6.753498+0 1.640590-1 3.124398+0 1.927525-1 1.833718+0 2.238721-1 1.125977+0 2.570396-1 7.230372-1 2.917427-1 4.854518-1 3.273407-1 3.404874-1 3.630781-1 2.491579-1 4.027170-1 1.836008-1 4.466836-1 1.363161-1 4.897788-1 1.053438-1 5.370318-1 8.193957-2 5.888437-1 6.416307-2 6.456542-1 5.059928-2 7.079458-1 4.018360-2 7.762471-1 3.213678-2 8.609938-1 2.513874-2 9.225714-1 2.147361-2 9.885531-1 1.847527-2 1.071519+0 1.564589-2 1.174898+0 1.303587-2 1.288250+0 1.094279-2 1.428894+0 9.058842-3 1.698244+0 6.670142-3 1.927525+0 5.365623-3 2.187762+0 4.349026-3 2.483133+0 3.552143-3 2.851018+0 2.870928-3 3.311311+0 2.297863-3 3.845918+0 1.853161-3 4.518559+0 1.481093-3 5.308844+0 1.192856-3 6.382635+0 9.392162-4 7.673615+0 7.449006-4 9.332543+0 5.867012-4 1.161449+1 4.528507-4 1.445440+1 3.520015-4 1.862087+1 2.648042-4 2.511886+1 1.907894-4 3.467369+1 1.350239-4 4.731513+1 9.731806-5 7.585776+1 5.965510-5 1.462177+2 3.051928-5 2.917427+2 1.518066-5 1.161449+3 3.790618-6 1.000000+5 4.394600-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 6.968800-3 1.332900-4 1.000000+5 1.332900-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.968800-3 9.881500-4 1.000000+5 9.881500-4 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 6.968800-3 5.847360-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.776900-3 4.562097+4 1.883649-3 4.273147+4 2.000000-3 3.943540+4 2.113489-3 3.673966+4 2.238721-3 3.387384+4 2.818383-3 2.409262+4 3.054921-3 2.131212+4 3.349654-3 1.835603+4 3.981072-3 1.379943+4 4.570882-3 1.086167+4 5.188000-3 8.684234+3 6.300000-3 6.088180+3 7.413102-3 4.478862+3 8.511380-3 3.430212+3 9.885531-3 2.553775+3 1.174898-2 1.802234+3 1.380384-2 1.292077+3 1.621810-2 9.196750+2 1.905461-2 6.498346+2 2.238721-2 4.558447+2 2.650000-2 3.120220+2 3.126079-2 2.135257+2 3.672823-2 1.463605+2 4.315191-2 9.960495+1 5.069907-2 6.729996+1 5.956621-2 4.515562+1 7.079458-2 2.923018+1 8.511380-2 1.823753+1 1.035142-1 1.096279+1 1.333521-1 5.621397+0 2.371374-1 1.210473+0 2.917427-1 7.006176-1 3.467369-1 4.472375-1 4.027170-1 3.053733-1 4.570882-1 2.226738-1 5.188000-1 1.635353-1 5.821032-1 1.243746-1 6.531306-1 9.530499-2 7.328245-1 7.358387-2 8.317638-1 5.583401-2 9.225714-1 4.486080-2 1.011579+0 3.719298-2 1.161449+0 2.832712-2 1.303167+0 2.272805-2 1.462177+0 1.836765-2 1.640590+0 1.494999-2 1.862087+0 1.200864-2 2.113489+0 9.711263-3 2.398833+0 7.914685-3 2.722701+0 6.498479-3 3.162278+0 5.189614-3 3.672823+0 4.175746-3 4.315191+0 3.330192-3 5.069907+0 2.676112-3 6.095369+0 2.103153-3 7.328245+0 1.664820-3 8.912509+0 1.308969-3 1.109175+1 1.008713-3 1.396368+1 7.727652-4 1.800000+1 5.803200-4 2.454709+1 4.128407-4 3.311311+1 2.993077-4 4.570882+1 2.129490-4 7.413102+1 1.289261-4 1.428894+2 6.593952-5 2.851018+2 3.279162-5 1.135011+3 8.187408-6 1.000000+5 9.275500-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.776900-3 1.270700-4 1.000000+5 1.270700-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.776900-3 3.886500-6 1.000000+5 3.886500-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.776900-3 1.645944-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.604000-3 7.416505+4 1.710000-3 6.905609+4 1.757924-3 6.681519+4 1.862087-3 6.269271+4 1.950000-3 5.919460+4 2.150000-3 5.193720+4 2.371374-3 4.515227+4 2.570396-3 3.996000+4 2.800000-3 3.481360+4 3.019952-3 3.058269+4 3.467369-3 2.394449+4 3.758374-3 2.060350+4 4.315191-3 1.574410+4 4.677351-3 1.338572+4 5.308844-3 1.027309+4 5.888437-3 8.221775+3 6.683439-3 6.202475+3 7.413102-3 4.894334+3 8.413951-3 3.634667+3 9.440609-3 2.752575+3 1.059254-2 2.071431+3 1.202264-2 1.503826+3 1.364583-2 1.083811+3 1.548817-2 7.756265+2 1.778279-2 5.343084+2 2.041738-2 3.652343+2 2.344229-2 2.478089+2 2.722701-2 1.615318+2 3.162278-2 1.044987+2 3.715352-2 6.488469+1 4.415704-2 3.863437+1 5.248075-2 2.284007+1 6.531306-2 1.163385+1 8.709636-2 4.744531+0 1.462177-1 9.368368-1 1.819701-1 4.754793-1 2.187762-1 2.705269-1 2.540973-1 1.722202-1 2.917427-1 1.142749-1 3.311311-1 7.897654-2 3.758374-1 5.497699-2 4.216965-1 3.983144-2 4.731513-1 2.907306-2 5.248075-1 2.205325-2 5.821032-1 1.684481-2 6.456542-1 1.295302-2 7.161434-1 1.003026-2 7.943282-1 7.824781-3 8.709636-1 6.295860-3 9.332543-1 5.382634-3 9.885531-1 4.750011-3 1.071519+0 4.021760-3 1.174898+0 3.350819-3 1.288250+0 2.813125-3 1.428894+0 2.329204-3 1.698244+0 1.715323-3 1.927525+0 1.379968-3 2.187762+0 1.118664-3 2.483133+0 9.137909-4 2.851018+0 7.386319-4 3.311311+0 5.912195-4 3.845918+0 4.768016-4 4.518559+0 3.810728-4 5.248075+0 3.116188-4 6.309573+0 2.452462-4 7.585776+0 1.944090-4 9.225714+0 1.530604-4 1.148154+1 1.180930-4 1.445440+1 9.056663-5 1.840772+1 6.900669-5 2.511886+1 4.908779-5 3.467369+1 3.474026-5 4.731513+1 2.503960-5 7.673615+1 1.516770-5 1.513561+2 7.581722-6 3.019952+2 3.772368-6 1.202264+3 9.420908-7 1.000000+5 1.130700-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.604000-3 1.057900-4 1.000000+5 1.057900-4 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.604000-3 5.001500-6 1.000000+5 5.001500-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.604000-3 1.493209-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.469600-3 2.005463+5 1.504000-3 1.915759+5 1.540000-3 1.840729+5 1.640590-3 1.698208+5 1.737801-3 1.568741+5 1.883649-3 1.389651+5 2.137962-3 1.137593+5 2.317395-3 9.950727+4 2.511886-3 8.648202+4 2.720000-3 7.475280+4 3.150000-3 5.668400+4 3.400000-3 4.875720+4 3.935501-3 3.613609+4 4.315191-3 2.973071+4 4.954502-3 2.196608+4 5.500000-3 1.734376+4 6.237348-3 1.295006+4 7.017000-3 9.769566+3 7.852356-3 7.417150+3 9.015711-3 5.239879+3 1.023293-2 3.778130+3 1.150000-2 2.775940+3 1.300000-2 1.995100+3 1.479108-2 1.398759+3 1.698244-2 9.487164+2 1.950000-2 6.381360+2 2.238721-2 4.260648+2 2.570396-2 2.823106+2 2.985383-2 1.793235+2 3.467369-2 1.130170+2 4.027170-2 7.072939+1 4.731513-2 4.238760+1 5.623413-2 2.430768+1 6.839116-2 1.284425+1 8.912509-2 5.368309+0 1.188502-1 2.065708+0 1.548817-1 8.597421-1 1.862087-1 4.702399-1 2.213095-1 2.690128-1 2.540973-1 1.733058-1 2.884032-1 1.166506-1 3.235937-1 8.197335-2 3.630781-1 5.803621-2 4.027170-1 4.282687-2 4.466836-1 3.182416-2 4.897788-1 2.460274-2 5.370318-1 1.915304-2 5.888437-1 1.501305-2 6.456542-1 1.184734-2 7.079458-1 9.412771-3 7.762471-1 7.529818-3 8.609938-1 5.889981-3 9.225714-1 5.030668-3 9.885531-1 4.327743-3 1.071519+0 3.664682-3 1.174898+0 3.053313-3 1.288250+0 2.563134-3 1.428894+0 2.121926-3 1.698244+0 1.562546-3 1.927525+0 1.256949-3 2.187762+0 1.018697-3 2.483133+0 8.320237-4 2.851018+0 6.724922-4 3.311311+0 5.382609-4 3.845918+0 4.340855-4 4.518559+0 3.469337-4 5.248075+0 2.837026-4 6.309573+0 2.232783-4 7.585776+0 1.769943-4 9.225714+0 1.393468-4 1.148154+1 1.075148-4 1.428894+1 8.354125-5 1.840772+1 6.282425-5 2.511886+1 4.469112-5 3.427678+1 3.201777-5 4.677351+1 2.307179-5 7.498942+1 1.414072-5 1.445440+2 7.232998-6 2.884032+2 3.597414-6 1.148154+3 8.982071-7 1.000000+5 1.029400-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.469600-3 9.816000-5 1.000000+5 9.816000-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.469600-3 2.129800-6 1.000000+5 2.129800-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.469600-3 1.369310-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.167200-3 4.731056+5 1.195000-3 5.088851+5 1.196000-3 5.078296+5 1.223000-3 5.347686+5 1.244515-3 5.490330+5 1.273503-3 5.571288+5 1.288250-3 5.561849+5 1.303167-3 5.535914+5 1.318257-3 5.488550+5 1.333521-3 5.357438+5 1.548817-3 3.718912+5 1.690000-3 2.984436+5 1.862087-3 2.319028+5 2.018366-3 1.868050+5 2.238721-3 1.404106+5 2.454709-3 1.084390+5 2.691535-3 8.302155+4 3.070000-3 5.633520+4 3.427678-3 4.033622+4 3.845918-3 2.830374+4 4.315191-3 1.969392+4 4.841724-3 1.362725+4 5.559043-3 8.674279+3 6.165950-3 6.143352+3 7.017000-3 3.966694+3 8.128305-3 2.388810+3 9.332543-3 1.470449+3 1.059254-2 9.358104+2 1.202264-2 5.916917+2 1.364583-2 3.717229+2 1.566751-2 2.222817+2 1.800000-2 1.316684+2 2.065380-2 7.784534+1 2.426610-2 4.172649+1 2.851018-2 2.220092+1 3.427678-2 1.071376+1 4.216965-2 4.682647+0 5.559043-2 1.539697+0 8.912509-2 2.291844-1 1.096478-1 9.991319-2 1.303167-1 5.036430-2 1.531088-1 2.675974-2 1.778279-1 1.498655-2 2.041738-1 8.842782-3 2.317395-1 5.491472-3 2.600160-1 3.585296-3 2.917427-1 2.357377-3 3.273407-1 1.561218-3 3.630781-1 1.085431-3 4.000000-1 7.783821-4 4.415705-1 5.591190-4 4.841724-1 4.136711-4 5.370318-1 2.970081-4 5.888437-1 2.228201-4 6.456542-1 1.683684-4 7.079458-1 1.281566-4 8.609938-1 7.302745-5 9.120108-1 6.231093-5 9.549926-1 5.521717-5 1.000000+0 4.925513-5 1.047129+0 4.427078-5 1.096478+0 4.007911-5 1.148154+0 3.650804-5 1.216186+0 3.271681-5 1.318257+0 2.829075-5 1.513561+0 2.233848-5 1.840772+0 1.586217-5 2.065380+0 1.305646-5 2.344229+0 1.062721-5 2.660725+0 8.714033-6 3.054921+0 7.069710-6 3.548134+0 5.678482-6 4.168694+0 4.521202-6 4.897788+0 3.627139-6 5.821032+0 2.888744-6 7.000000+0 2.282000-6 8.511380+0 1.791544-6 1.047129+1 1.397138-6 1.318257+1 1.068156-6 1.737801+1 7.810802-7 2.371374+1 5.547095-7 3.198895+1 4.019038-7 4.466836+1 2.823133-7 7.244360+1 1.708698-7 1.364583+2 8.942838-8 2.722701+2 4.445467-8 1.083927+3 1.109639-8 1.000000+5 1.20040-10 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.167200-3 6.889500-5 1.000000+5 6.889500-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.167200-3 4.933700-6 1.000000+5 4.933700-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.167200-3 1.093371-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.137800-3 1.095874+6 1.364583-3 7.312412+5 1.380384-3 7.138601+5 1.500000-3 5.819388+5 1.640590-3 4.634372+5 1.778279-3 3.753419+5 1.972423-3 2.839474+5 2.213095-3 2.061072+5 2.400000-3 1.639200+5 2.630268-3 1.254231+5 3.019952-3 8.317654+4 3.349654-3 6.059440+4 3.758374-3 4.238748+4 4.216965-3 2.941864+4 4.731513-3 2.028578+4 5.370318-3 1.336822+4 6.025596-3 9.084727+3 6.800000-3 6.012600+3 7.673615-3 3.952189+3 8.810489-3 2.426130+3 1.011579-2 1.476749+3 1.161449-2 8.915262+2 1.333521-2 5.339581+2 1.548817-2 3.037147+2 1.778279-2 1.789958+2 2.041738-2 1.047426+2 2.371374-2 5.818010+1 2.786121-2 3.064332+1 3.311311-2 1.530033+1 4.027170-2 6.904774+0 5.069907-2 2.685131+0 9.225714-2 2.270709-1 1.122019-1 1.019005-1 1.318257-1 5.304485-2 1.513561-1 3.051629-2 1.717908-1 1.850466-2 1.927525-1 1.181951-2 2.041738-1 9.480889-3 2.398833-1 5.169737-3 2.660725-1 3.526422-3 2.917427-1 2.526753-3 3.198895-1 1.822871-3 3.507519-1 1.324625-3 3.845918-1 9.698698-4 4.168694-1 7.432111-4 4.518559-1 5.731104-4 4.897788-1 4.447157-4 5.308844-1 3.473385-4 5.754399-1 2.729937-4 6.382635-1 2.018091-4 6.918310-1 1.606931-4 7.444800-1 1.315888-4 8.035261-1 1.078404-4 8.609938-1 9.058038-5 9.120108-1 7.876854-5 9.660509-1 6.893147-5 1.023293+0 6.077386-5 1.096478+0 5.266782-5 1.174898+0 4.595160-5 1.273503+0 3.946107-5 1.412538+0 3.270541-5 1.737801+0 2.269723-5 1.972423+0 1.827701-5 2.238721+0 1.483496-5 2.540973+0 1.213260-5 2.917427+0 9.818407-6 3.388442+0 7.867750-6 3.935501+0 6.352114-6 4.623810+0 5.082225-6 5.370318+0 4.160234-6 6.531306+0 3.229342-6 7.852356+0 2.563562-6 9.549926+0 2.020849-6 1.202264+1 1.540218-6 1.531087+1 1.167543-6 1.949845+1 8.911337-7 2.630268+1 6.427232-7 3.890451+1 4.231259-7 6.165950+1 2.616180-7 1.035142+2 1.536220-7 2.065380+2 7.616114-8 8.222427+2 1.897586-8 5.188000+4 2.99945-10 1.000000+5 1.55610-10 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.137800-3 6.519200-5 1.000000+5 6.519200-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.137800-3 9.781800-9 1.000000+5 9.781800-9 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.137800-3 1.072598-3 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.577000-4 1.064300+5 3.780000-4 1.038472+5 3.981072-4 1.007765+5 4.850000-4 8.588120+4 5.188000-4 8.075180+4 5.821032-4 7.153533+4 6.456542-4 6.387762+4 7.000000-4 5.804140+4 8.128305-4 4.804439+4 8.912509-4 4.251737+4 1.023293-3 3.504184+4 1.150000-3 2.957560+4 1.350000-3 2.319400+4 1.531087-3 1.902732+4 1.778279-3 1.493231+4 2.113489-3 1.118965+4 2.511886-3 8.312751+3 3.019952-3 6.004054+3 3.672823-3 4.212143+3 4.415704-3 2.995350+3 5.370318-3 2.069785+3 6.500000-3 1.432798+3 7.852356-3 9.880836+2 9.440609-3 6.826667+2 1.135011-2 4.679028+2 1.348963-2 3.259921+2 1.603245-2 2.255015+2 1.905461-2 1.548561+2 2.264644-2 1.055489+2 2.691535-2 7.139061+1 3.162278-2 4.920974+1 3.758374-2 3.277117+1 4.466836-2 2.165311+1 5.248075-2 1.460303+1 6.237348-2 9.502545+0 7.498942-2 5.963172+0 8.810489-2 3.940252+0 1.096478-1 2.226878+0 1.445440-1 1.073283+0 2.371374-1 2.863575-1 2.917427-1 1.657672-1 3.467369-1 1.058399-1 4.027170-1 7.228258-2 4.570882-1 5.271860-2 5.188000-1 3.872481-2 5.821032-1 2.945548-2 6.531306-1 2.257128-2 7.328245-1 1.742635-2 8.222427-1 1.355411-2 9.120108-1 1.088110-2 1.000000+0 9.013104-3 1.148154+0 6.860338-3 1.288250+0 5.500377-3 1.445440+0 4.442062-3 1.621810+0 3.612530-3 1.840772+0 2.899697-3 2.089296+0 2.344157-3 2.371374+0 1.909425-3 2.691535+0 1.566633-3 3.126079+0 1.250141-3 3.630781+0 1.005305-3 4.265795+0 8.012984-4 5.011872+0 6.435497-4 6.000000+0 5.083000-4 7.244360+0 3.999813-4 8.810489+0 3.143519-4 1.100000+1 2.412300-4 1.380384+1 1.854311-4 1.778279+1 1.393000-4 2.426610+1 9.899895-5 3.273407+1 7.175728-5 4.518559+1 5.104172-5 7.328245+1 3.089714-5 1.396368+2 1.598521-5 2.786121+2 7.948001-6 1.109175+3 1.984244-6 1.000000+5 2.196600-8 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.577000-4 6.968000-5 1.000000+5 6.968000-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.577000-4 1.729000-8 1.000000+5 1.729000-8 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.577000-4 2.880027-4 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 2.900500-4 8.665582+4 3.350000-4 8.422440+4 4.073803-4 8.122984+4 4.466836-4 7.919641+4 4.786301-4 7.724343+4 5.150000-4 7.472860+4 5.500000-4 7.205640+4 5.900000-4 6.880680+4 6.456542-4 6.432807+4 6.918310-4 6.073129+4 7.500000-4 5.635060+4 8.222426-4 5.134543+4 8.912509-4 4.703457+4 9.772372-4 4.222285+4 1.083927-3 3.711361+4 1.190000-3 3.279520+4 1.333521-3 2.797080+4 1.479108-3 2.401084+4 1.659587-3 2.010979+4 1.862087-3 1.670013+4 2.070000-3 1.398640+4 2.344229-3 1.126517+4 2.660725-3 8.960729+3 3.000000-3 7.159580+3 3.388442-3 5.661047+3 3.845918-3 4.400909+3 4.365158-3 3.395675+3 4.954502-3 2.600532+3 5.623413-3 1.976968+3 6.309573-3 1.530809+3 7.079458-3 1.178083+3 8.000000-3 8.860340+2 9.120108-3 6.478411+2 1.035142-2 4.750034+2 1.174898-2 3.458025+2 1.333521-2 2.499999+2 1.531087-2 1.741478+2 1.757924-2 1.203805+2 2.018366-2 8.259379+1 2.317395-2 5.625549+1 2.691535-2 3.682444+1 3.126079-2 2.392165+1 3.672823-2 1.491146+1 4.365158-2 8.914369+0 5.188000-2 5.289763+0 6.382635-2 2.803267+0 8.317638-2 1.234268+0 1.496236-1 1.978758-1 1.862087-1 1.007316-1 2.238721-1 5.745432-2 2.600160-1 3.665401-2 3.000000-1 2.402582-2 3.427678-1 1.632898-2 3.890451-1 1.139921-2 4.365158-1 8.282126-3 4.897788-1 6.061746-3 5.495409-1 4.470915-3 6.095369-1 3.423661-3 6.760830-1 2.640797-3 7.498942-1 2.051960-3 8.609938-1 1.478750-3 9.225714-1 1.262789-3 9.885531-1 1.085981-3 1.071519+0 9.192967-4 1.174898+0 7.659294-4 1.288250+0 6.430709-4 1.428894+0 5.324625-4 1.698244+0 3.921115-4 1.927525+0 3.154185-4 2.187762+0 2.556489-4 2.483133+0 2.088051-4 2.851018+0 1.687647-4 3.311311+0 1.350799-4 3.845918+0 1.089387-4 4.518559+0 8.706487-5 5.248075+0 7.119523-5 6.309573+0 5.603149-5 7.585776+0 4.441763-5 9.225714+0 3.497014-5 1.148154+1 2.698081-5 1.445440+1 2.069199-5 1.840772+1 1.576621-5 2.511886+1 1.121547-5 3.427678+1 8.035129-6 4.677351+1 5.789984-6 7.498942+1 3.548622-6 1.445440+2 1.815128-6 2.884032+2 9.027757-7 1.148154+3 2.254143-7 1.000000+5 2.583400-9 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 2.900500-4 5.377200-5 1.000000+5 5.377200-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.900500-4 2.045800-8 1.000000+5 2.045800-8 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 2.900500-4 2.362575-4 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.603000-4 3.120400+5 2.930000-4 2.981856+5 3.235937-4 2.851537+5 3.589219-4 2.701773+5 4.027170-4 2.521602+5 4.365158-4 2.387621+5 4.731513-4 2.245202+5 5.069907-4 2.116407+5 5.559043-4 1.940322+5 6.095369-4 1.766410+5 6.606934-4 1.616109+5 7.328245-4 1.429562+5 8.035261-4 1.273723+5 8.912509-4 1.109618+5 9.885531-4 9.600533+4 1.109175-3 8.103907+4 1.230269-3 6.911147+4 1.380384-3 5.746600+4 1.531087-3 4.836516+4 1.737801-3 3.886783+4 1.972423-3 3.096721+4 2.213095-3 2.501001+4 2.500000-3 1.980792+4 2.851018-3 1.528273+4 3.273407-3 1.153235+4 3.758374-3 8.626372+3 4.300000-3 6.446640+3 4.897788-3 4.826847+3 5.500000-3 3.705924+3 6.165950-3 2.839194+3 6.918310-3 2.157528+3 7.852356-3 1.583871+3 8.810489-3 1.187901+3 1.000000-2 8.594040+2 1.135011-2 6.172085+2 1.288250-2 4.400956+2 1.462177-2 3.116153+2 1.659587-2 2.191412+2 1.905461-2 1.481269+2 2.187762-2 9.935201+1 2.511886-2 6.614124+1 2.884032-2 4.371805+1 3.349654-2 2.769882+1 3.890451-2 1.741819+1 4.570882-2 1.048866+1 5.432503-2 6.042901+0 6.606934-2 3.207774+0 8.222426-2 1.567605+0 1.584893-1 1.795359-1 1.905461-1 9.838661-2 2.238721-1 5.852120-2 2.570396-1 3.775607-2 2.917427-1 2.544720-2 3.273407-1 1.790063-2 3.672823-1 1.268702-2 4.073803-1 9.374171-3 4.518559-1 6.978929-3 5.011872-1 5.236296-3 5.495409-1 4.084430-3 6.025596-1 3.207078-3 6.606935-1 2.535539-3 7.244360-1 2.018397-3 7.943282-1 1.617861-3 8.709636-1 1.302041-3 9.332543-1 1.113637-3 9.885531-1 9.830678-4 1.071519+0 8.325532-4 1.174898+0 6.937035-4 1.288250+0 5.823264-4 1.428894+0 4.820424-4 1.698244+0 3.549261-4 1.927525+0 2.855097-4 2.187762+0 2.314037-4 2.483133+0 1.890037-4 2.851018+0 1.527637-4 3.311311+0 1.222716-4 3.845918+0 9.860721-5 4.518559+0 7.880950-5 5.248075+0 6.444547-5 6.309573+0 5.071881-5 7.585776+0 4.020678-5 9.225714+0 3.165455-5 1.148154+1 2.442248-5 1.428894+1 1.897766-5 1.840772+1 1.427089-5 2.511886+1 1.015169-5 3.467369+1 7.184792-6 4.731513+1 5.178467-6 7.585776+1 3.174342-6 1.462177+2 1.623969-6 2.917427+2 8.077557-7 1.161449+3 2.017029-7 1.000000+5 2.338400-9 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.603000-4 4.818400-5 1.000000+5 4.818400-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.603000-4 1.053900-8 1.000000+5 1.053900-8 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.603000-4 2.121055-4 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.477600-4 3.655480+5 1.481500-4 3.755928+5 1.489000-4 3.981576+5 1.520000-4 5.154480+5 1.530000-4 5.554960+5 1.538000-4 5.861640+5 1.547000-4 6.180280+5 1.555300-4 6.440934+5 1.563000-4 6.647960+5 1.570000-4 6.803640+5 1.578000-4 6.942400+5 1.587000-4 7.047360+5 1.595600-4 7.099893+5 1.605000-4 7.108360+5 1.615000-4 7.067760+5 1.627000-4 6.963640+5 1.640590-4 6.790161+5 1.655000-4 6.561480+5 1.670000-4 6.293720+5 1.690000-4 5.913080+5 1.713000-4 5.468680+5 1.740000-4 4.962040+5 1.770000-4 4.434440+5 1.810000-4 3.803744+5 1.893700-4 2.770588+5 1.930000-4 2.439128+5 1.950000-4 2.283840+5 1.980000-4 2.084084+5 2.000000-4 1.971236+5 2.020000-4 1.873144+5 2.041738-4 1.781847+5 2.066500-4 1.695439+5 2.090000-4 1.629020+5 2.113489-4 1.576205+5 2.137962-4 1.534158+5 2.162719-4 1.503475+5 2.190000-4 1.481848+5 2.213095-4 1.472344+5 2.240000-4 1.470184+5 2.270000-4 1.477592+5 2.300000-4 1.493824+5 2.340000-4 1.526760+5 2.380000-4 1.570064+5 2.430000-4 1.635000+5 2.511886-4 1.758697+5 2.691535-4 2.060797+5 2.800000-4 2.242144+5 2.894700-4 2.390684+5 2.985383-4 2.520592+5 3.090295-4 2.654147+5 3.200000-4 2.774524+5 3.320000-4 2.884828+5 3.430000-4 2.967580+5 3.550000-4 3.038984+5 3.672823-4 3.092997+5 3.801894-4 3.130986+5 3.935501-4 3.152853+5 4.120975-4 3.159237+5 4.315191-4 3.141986+5 4.518559-4 3.102715+5 4.731513-4 3.043822+5 4.954502-4 2.967432+5 5.248075-4 2.852866+5 5.559043-4 2.722252+5 5.900000-4 2.573540+5 6.237348-4 2.425721+5 6.683439-4 2.236722+5 7.150000-4 2.050464+5 7.673615-4 1.857080+5 8.222426-4 1.674273+5 8.810489-4 1.499613+5 9.549926-4 1.308259+5 1.035142-3 1.132726+5 1.122018-3 9.732164+4 1.216186-3 8.305381+4 1.318257-3 7.038574+4 1.445440-3 5.782631+4 1.584893-3 4.712291+4 1.730000-3 3.852340+4 1.905461-3 3.062633+4 2.113489-3 2.374447+4 2.317395-3 1.880691+4 2.540973-3 1.480787+4 2.818383-3 1.123645+4 3.126079-3 8.464333+3 3.500000-3 6.165280+3 3.900000-3 4.516400+3 4.320000-3 3.342932+3 4.841724-3 2.372567+3 5.370318-3 1.725634+3 6.025596-3 1.202244+3 6.760830-3 8.310840+2 7.585776-3 5.700876+2 8.511380-3 3.882607+2 9.549926-3 2.625251+2 1.083927-2 1.693279+2 1.230269-2 1.083866+2 1.396368-2 6.887120+1 1.584893-2 4.345719+1 1.819701-2 2.609846+1 2.089296-2 1.555573+1 2.426610-2 8.809389+0 2.818383-2 4.952104+0 3.311311-2 2.643582+0 4.000000-2 1.256356+0 5.011872-2 5.125367-1 9.549926-2 3.881069-2 1.188502-1 1.627452-2 1.412538-1 8.252545-3 1.640590-1 4.612948-3 1.883649-1 2.715017-3 2.162719-1 1.609948-3 2.454709-1 1.004650-3 2.754229-1 6.590166-4 3.090295-1 4.354645-4 3.427678-1 3.019504-4 3.801894-1 2.109260-4 4.120975-1 1.605156-4 4.570882-1 1.138792-4 5.128614-1 7.842312-5 5.623413-1 5.852812-5 6.095369-1 4.557291-5 6.683439-1 3.452210-5 7.328245-1 2.635865-5 8.609938-1 1.662645-5 9.120108-1 1.419281-5 9.549926-1 1.258119-5 1.000000+0 1.122600-5 1.047129+0 1.009218-5 1.096478+0 9.137599-6 1.148154+0 8.323604-6 1.216186+0 7.458793-6 1.318257+0 6.449081-6 1.513561+0 5.091287-6 1.840772+0 3.615184-6 2.065380+0 2.975768-6 2.344229+0 2.422099-6 2.660725+0 1.986032-6 3.054921+0 1.611238-6 3.548134+0 1.294139-6 4.168694+0 1.030392-6 4.897788+0 8.266588-7 5.821032+0 6.583853-7 7.000000+0 5.200900-7 8.511380+0 4.083102-7 1.047129+1 3.184221-7 1.318257+1 2.434482-7 1.717908+1 1.803197-7 2.344229+1 1.280136-7 3.126079+1 9.387949-8 4.365158+1 6.591353-8 7.079458+1 3.987761-8 1.303167+2 2.135965-8 2.600160+2 1.061305-8 1.035142+3 2.648493-9 1.000000+5 2.73590-11 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.477600-4 3.082600-5 1.000000+5 3.082600-5 1 63000 7 7 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.477600-4 1.553300-8 1.000000+5 1.553300-8 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.477600-4 1.169185-4 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.424400-4 5.330268+5 1.450000-4 6.806820+5 1.460000-4 7.452120+5 1.470000-4 8.097720+5 1.477000-4 8.535540+5 1.485000-4 9.007560+5 1.492000-4 9.386640+5 1.500000-4 9.771540+5 1.507200-4 1.006706+6 1.515000-4 1.032828+6 1.523000-4 1.052946+6 1.532000-4 1.067574+6 1.540000-4 1.073790+6 1.550000-4 1.073376+6 1.560000-4 1.065018+6 1.571100-4 1.048134+6 1.584893-4 1.018667+6 1.600000-4 9.790380+5 1.615000-4 9.352200+5 1.635000-4 8.737860+5 1.660000-4 7.968960+5 1.690000-4 7.090680+5 1.720000-4 6.285600+5 1.820000-4 4.203312+5 1.850000-4 3.754350+5 1.880000-4 3.378270+5 1.908000-4 3.087138+5 1.930000-4 2.895132+5 1.950000-4 2.746008+5 1.973000-4 2.601666+5 1.995262-4 2.487074+5 2.018366-4 2.391547+5 2.041738-4 2.316587+5 2.065380-4 2.260583+5 2.090000-4 2.220996+5 2.113489-4 2.198991+5 2.137962-4 2.190500+5 2.162719-4 2.195088+5 2.190000-4 2.213466+5 2.220000-4 2.247456+5 2.260000-4 2.311194+5 2.300000-4 2.391486+5 2.350000-4 2.508810+5 2.580000-4 3.149400+5 2.660725-4 3.377389+5 2.754229-4 3.629050+5 2.830000-4 3.818754+5 2.917427-4 4.018470+5 3.000000-4 4.186704+5 3.100000-4 4.363704+5 3.200000-4 4.512942+5 3.320000-4 4.658784+5 3.430000-4 4.763742+5 3.550000-4 4.849614+5 3.700000-4 4.918458+5 3.850000-4 4.949538+5 4.027170-4 4.946780+5 4.216965-4 4.908108+5 4.430000-4 4.831806+5 4.623810-4 4.737571+5 4.850000-4 4.606686+5 5.128614-4 4.424480+5 5.432503-4 4.213060+5 5.754399-4 3.984460+5 6.100000-4 3.739536+5 6.531306-4 3.444077+5 7.000000-4 3.144312+5 7.500000-4 2.849976+5 8.035261-4 2.565523+5 8.609938-4 2.294852+5 9.225714-4 2.039554+5 1.000000-3 1.764930+5 1.083927-3 1.515807+5 1.175000-3 1.292549+5 1.273503-3 1.095144+5 1.400000-3 8.939700+4 1.531087-3 7.320746+4 1.678804-3 5.918431+4 1.862087-3 4.619085+4 2.070000-3 3.553698+4 2.264644-3 2.825455+4 2.483133-3 2.220484+4 2.754229-3 1.681191+4 3.054921-3 1.263522+4 3.400000-3 9.337560+3 3.758374-3 6.987191+3 4.168694-3 5.142925+3 4.677351-3 3.629132+3 5.188000-3 2.634509+3 5.754399-3 1.899454+3 6.456542-3 1.310735+3 7.244360-3 8.975318+2 8.128305-3 6.098771+2 9.120108-3 4.112402+2 1.023293-2 2.754317+2 1.148154-2 1.831891+2 1.303167-2 1.160802+2 1.479108-2 7.300160+1 1.678804-2 4.559044+1 1.927525-2 2.706791+1 2.213095-2 1.594329+1 2.540973-2 9.322416+0 2.951209-2 5.174290+0 3.467369-2 2.723711+0 4.168694-2 1.297479+0 5.188000-2 5.331138-1 9.120108-2 5.269377-2 1.109175-1 2.374139-2 1.303167-1 1.239437-2 1.513561-1 6.827350-3 1.717908-1 4.149270-3 1.927525-1 2.655525-3 2.162719-1 1.711571-3 2.398833-1 1.160512-3 2.660725-1 7.924467-4 2.951209-1 5.452949-4 3.235937-1 3.938620-4 3.548134-1 2.865034-4 3.890451-1 2.100078-4 4.216965-1 1.611273-4 4.570882-1 1.244445-4 4.954502-1 9.676852-5 5.370318-1 7.581226-5 5.821032-1 5.979751-5 6.382635-1 4.590393-5 6.918310-1 3.665494-5 7.498942-1 2.947283-5 8.317638-1 2.247712-5 8.810489-1 1.943422-5 9.332543-1 1.690777-5 9.885531-1 1.481708-5 1.047129+0 1.308712-5 1.122018+0 1.136197-5 1.202264+0 9.932197-6 1.318257+0 8.369749-6 1.462177+0 6.959086-6 1.778279+0 4.934310-6 2.018366+0 3.978512-6 2.290868+0 3.233867-6 2.600160+0 2.648215-6 3.000000+0 2.130200-6 3.467369+0 1.721535-6 4.073803+0 1.369192-6 4.786301+0 1.097249-6 5.623413+0 8.860967-7 6.839116+0 6.891351-7 8.317638+0 5.403802-7 1.023293+1 4.210597-7 1.288250+1 3.216679-7 1.678804+1 2.380949-7 2.238721+1 1.732214-7 3.054921+1 1.238058-7 4.315191+1 8.584318-8 7.079458+1 5.131173-8 1.303167+2 2.748360-8 2.600160+2 1.365679-8 5.188000+2 6.815406-9 2.065380+3 1.706677-9 1.000000+5 3.52040-11 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.424400-4 2.942700-5 1.000000+5 2.942700-5 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.424400-4 1.130130-4 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 9.770000-6 2.975832+5 1.011579-5 2.871794+5 1.050000-5 2.780415+5 1.096478-5 2.699315+5 1.135011-5 2.654810+5 1.174898-5 2.626813+5 1.216186-5 2.617542+5 1.258925-5 2.625927+5 1.303167-5 2.652343+5 1.350000-5 2.698284+5 1.400000-5 2.766651+5 1.445440-5 2.844437+5 1.500000-5 2.955957+5 1.550000-5 3.073980+5 1.621810-5 3.268361+5 1.698244-5 3.505343+5 1.778279-5 3.784379+5 1.883649-5 4.196897+5 2.018366-5 4.791046+5 2.230000-5 5.858850+5 2.600160-5 8.012204+5 2.818383-5 9.385184+5 3.019952-5 1.066274+6 3.198895-5 1.178066+6 3.400000-5 1.299609+6 3.589219-5 1.408623+6 3.801894-5 1.523780+6 4.027170-5 1.636942+6 4.300000-5 1.762791+6 4.570882-5 1.876625+6 4.900000-5 2.000871+6 5.248075-5 2.117258+6 5.559043-5 2.208039+6 5.900000-5 2.292045+6 6.237348-5 2.359736+6 6.606934-5 2.415711+6 7.000000-5 2.454894+6 7.413102-5 2.477918+6 7.852356-5 2.484516+6 8.413951-5 2.474179+6 9.015711-5 2.447827+6 9.800000-5 2.398047+6 1.047129-4 2.344675+6 1.122018-4 2.276285+6 1.192300-4 2.203571+6 1.273503-4 2.114128+6 1.364583-4 2.009201+6 1.462177-4 1.898208+6 1.584893-4 1.761460+6 1.690000-4 1.648599+6 1.800000-4 1.535307+6 1.927525-4 1.409688+6 2.041738-4 1.305103+6 2.220000-4 1.156245+6 2.371374-4 1.042991+6 2.511886-4 9.481454+5 2.700000-4 8.346750+5 2.930760-4 7.149450+5 3.126079-4 6.285447+5 3.349654-4 5.438749+5 3.589219-4 4.674429+5 3.845918-4 3.991556+5 4.120975-4 3.387267+5 4.466836-4 2.775977+5 4.841724-4 2.257758+5 5.248075-4 1.823342+5 5.688529-4 1.462621+5 6.165950-4 1.165688+5 6.760830-4 8.926579+4 7.413102-4 6.784028+4 8.128305-4 5.119008+4 8.912509-4 3.836641+4 9.772372-4 2.856322+4 1.083927-3 2.034663+4 1.202264-3 1.438847+4 1.333521-3 1.010315+4 1.479108-3 7.045633+3 1.640590-3 4.881571+3 1.840772-3 3.222472+3 2.065380-3 2.110623+3 2.317395-3 1.371856+3 2.600160-3 8.850235+2 2.917427-3 5.667946+2 3.273407-3 3.604560+2 3.672823-3 2.276218+2 4.120975-3 1.427275+2 4.623810-3 8.886951+1 5.128614-3 5.756206+1 5.754399-3 3.528354+1 6.531306-3 2.044467+1 7.413102-3 1.175645+1 8.317638-3 7.061307+0 9.549926-3 3.799085+0 1.122018-2 1.828529+0 1.303167-2 9.206357-1 1.513561-2 4.602341-1 1.757924-2 2.284744-1 2.018366-2 1.189015-1 2.344229-2 5.809026-2 2.786121-2 2.521917-2 3.589219-2 7.348658-3 6.918310-2 2.966872-4 8.413951-2 1.146478-4 9.885531-2 5.275951-5 1.148154-1 2.584615-5 1.303167-1 1.422930-5 1.462177-1 8.324681-6 1.640590-1 4.906636-6 1.840772-1 2.913975-6 2.065380-1 1.744094-6 2.290868-1 1.106497-6 2.540973-1 7.070081-7 2.818383-1 4.551746-7 3.162278-1 2.813898-7 3.427678-1 2.021472-7 3.715352-1 1.461716-7 4.000000-1 1.093100-7 4.315191-1 8.186178-8 4.731513-1 5.806262-8 5.308844-1 3.811717-8 5.821032-1 2.739414-8 6.456542-1 1.900530-8 6.918310-1 1.497840-8 7.413102-1 1.188463-8 7.943282-1 9.509291-9 8.609938-1 7.356052-9 9.015711-1 6.385792-9 9.332543-1 5.768413-9 9.660509-1 5.236155-9 1.000000+0 4.780900-9 1.035142+0 4.393624-9 1.071519+0 4.058887-9 1.122018+0 3.678221-9 1.174898+0 3.356700-9 1.244515+0 3.017669-9 1.333521+0 2.674155-9 1.513561+0 2.168550-9 1.883649+0 1.480145-9 2.089296+0 1.243467-9 2.371374+0 1.012911-9 2.691535+0 8.31037-10 3.090295+0 6.74544-10 3.589219+0 5.42125-10 4.216965+0 4.31874-10 4.954502+0 3.46656-10 5.888437+0 2.76238-10 7.079458+0 2.18371-10 8.609938+0 1.71468-10 1.059254+1 1.33781-10 1.333521+1 1.02318-10 1.737801+1 7.58135-11 2.371374+1 5.38409-11 3.198895+1 3.90102-11 4.466836+1 2.74022-11 7.244360+1 1.65844-11 1.348963+2 8.78225-12 2.691535+2 4.36524-12 1.071519+3 1.08958-12 1.000000+5 1.16520-14 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 9.770000-6 9.770000-6 1.000000+5 9.770000-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 9.770000-6 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.080000-6 4.275200+5 9.400000-6 4.113840+5 9.700000-6 3.991908+5 1.000000-5 3.894012+5 1.035142-5 3.807440+5 1.071519-5 3.747697+5 1.110000-5 3.712392+5 1.150000-5 3.703372+5 1.190000-5 3.720336+5 1.230269-5 3.760496+5 1.273503-5 3.826855+5 1.318257-5 3.918527+5 1.365000-5 4.037200+5 1.420000-5 4.204360+5 1.480000-5 4.417520+5 1.550000-5 4.703400+5 1.621810-5 5.034341+5 1.717908-5 5.531612+5 1.819701-5 6.120445+5 1.950000-5 6.958000+5 2.500000-5 1.126512+6 2.691535-5 1.293657+6 2.900000-5 1.477248+6 3.090295-5 1.642248+6 3.273407-5 1.794965+6 3.469400-5 1.950483+6 3.672823-5 2.102167+6 3.900000-5 2.258300+6 4.168694-5 2.426418+6 4.466836-5 2.594970+6 4.800000-5 2.761416+6 5.188000-5 2.930807+6 5.559043-5 3.067107+6 5.956621-5 3.184590+6 6.309573-5 3.264685+6 6.683439-5 3.322841+6 7.079458-5 3.360071+6 7.500000-5 3.374880+6 8.035261-5 3.365470+6 8.609938-5 3.333033+6 9.440609-5 3.260063+6 1.011579-4 3.184946+6 1.083927-4 3.094756+6 1.161449-4 2.984165+6 1.230269-4 2.880623+6 1.330000-4 2.722120+6 1.421500-4 2.577446+6 1.540000-4 2.395624+6 1.659587-4 2.218656+6 1.760000-4 2.076840+6 1.900000-4 1.889516+6 2.050000-4 1.703908+6 2.187762-4 1.549121+6 2.344229-4 1.391249+6 2.511886-4 1.239828+6 2.691535-4 1.095871+6 2.884032-4 9.620491+5 3.090295-4 8.382353+5 3.311311-4 7.253161+5 3.548134-4 6.233920+5 3.801894-4 5.323319+5 4.073803-4 4.517526+5 4.415704-4 3.702299+5 4.786301-4 3.011141+5 5.188000-4 2.431712+5 5.623413-4 1.950613+5 6.095369-4 1.554446+5 6.683439-4 1.190009+5 7.328245-4 9.040952+4 8.035261-4 6.820003+4 8.810489-4 5.110456+4 9.772372-4 3.665218+4 1.071519-3 2.709218+4 1.202264-3 1.839559+4 1.348963-3 1.240219+4 1.500000-3 8.562813+3 1.659587-3 5.978156+3 1.840772-3 4.109198+3 2.041738-3 2.806017+3 2.290868-3 1.822614+3 2.540973-3 1.227623+3 2.818383-3 8.213805+2 3.090295-3 5.712051+2 3.467369-3 3.596941+2 3.890451-3 2.247969+2 4.415704-3 1.330100+2 5.069907-3 7.462237+1 5.754399-3 4.360119+1 6.456542-3 2.656587+1 7.244360-3 1.605673+1 8.222426-3 9.155736+0 9.332543-3 5.181942+0 1.071519-2 2.763318+0 1.230269-2 1.462540+0 1.428894-2 7.284939-1 1.698244-2 3.233716-1 1.995262-2 1.503209-1 2.264644-2 8.185537-2 2.660725-2 3.742238-2 3.235937-2 1.434412-2 6.606934-2 4.227032-4 8.609938-2 1.152019-4 1.000000-1 5.556444-5 1.148154-1 2.854779-5 1.303167-1 1.562138-5 1.462177-1 9.096865-6 1.621810-1 5.629762-6 1.798871-1 3.509519-6 1.995262-1 2.204768-6 2.199400-1 1.434900-6 2.398833-1 9.849645-7 2.630268-1 6.653807-7 2.917427-1 4.315593-7 3.162278-1 3.102094-7 3.427678-1 2.246321-7 3.672823-1 1.714946-7 3.935501-1 1.319931-7 4.216965-1 1.022232-7 4.570882-1 7.643427-8 4.954502-1 5.754596-8 5.370318-1 4.366394-8 5.821032-1 3.339584-8 6.309573-1 2.574967-8 6.760830-1 2.074304-8 7.244360-1 1.681660-8 7.762471-1 1.372192-8 8.317638-1 1.127259-8 8.912509-1 9.325438-9 9.549926-1 7.754604-9 9.885531-1 7.105901-9 1.023293+0 6.543871-9 1.071519+0 5.902305-9 1.122018+0 5.358468-9 1.188502+0 4.785302-9 1.273503+0 4.213693-9 1.380384+0 3.660352-9 1.513561+0 3.133601-9 1.840772+0 2.224981-9 2.044000+0 1.863400-9 2.317395+0 1.518568-9 2.630268+0 1.244341-9 3.019952+0 1.008848-9 3.507519+0 8.09849-10 4.120975+0 6.44454-10 4.841724+0 5.16733-10 5.688529+0 4.17518-10 6.918310+0 3.24869-10 8.413951+0 2.54863-10 1.035142+1 1.98671-10 1.303167+1 1.51834-10 1.698244+1 1.12423-10 2.290868+1 8.07944-11 3.090295+1 5.84945-11 4.365158+1 4.05679-11 7.161434+1 2.42538-11 1.318257+2 1.29931-11 2.630268+2 6.45669-12 1.047129+3 1.61137-12 1.000000+5 1.68390-14 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.080000-6 9.080000-6 1.000000+5 9.080000-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.080000-6 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.921000-5 5.202400+4 5.000000-5 5.276740+4 5.110000-5 5.418180+4 5.248075-5 5.639713+4 5.432503-5 5.987036+4 6.025596-5 7.242467+4 6.309573-5 7.831107+4 6.580000-5 8.352220+4 6.839116-5 8.805463+4 7.079458-5 9.181093+4 7.328245-5 9.522312+4 7.585776-5 9.823134+4 7.900000-5 1.011958+5 8.222426-5 1.034664+5 8.511380-5 1.048933+5 8.912509-5 1.060488+5 9.332543-5 1.064182+5 9.800000-5 1.060618+5 1.035142-4 1.049033+5 1.100000-4 1.028784+5 1.174898-4 1.000246+5 1.260000-4 9.641600+4 1.350000-4 9.235400+4 1.450000-4 8.769180+4 1.566751-4 8.226070+4 1.698244-4 7.641156+4 1.883649-4 6.894939+4 2.089296-4 6.177641+4 2.317395-4 5.494454+4 2.630268-4 4.719233+4 3.019952-4 3.968900+4 3.427678-4 3.363880+4 4.073803-4 2.662264+4 4.786301-4 2.123690+4 5.688529-4 1.655364+4 6.918310-4 1.237492+4 8.413951-4 9.170555+3 1.000000-3 6.989680+3 1.188502-3 5.290588+3 1.412538-3 3.976990+3 1.698244-3 2.910870+3 2.041738-3 2.114547+3 2.483133-3 1.494359+3 3.019952-3 1.047607+3 3.715352-3 7.141250+2 4.570882-3 4.830863+2 5.623413-3 3.242773+2 6.918310-3 2.160658+2 8.413951-3 1.461539+2 1.011579-2 1.004336+2 1.216186-2 6.849880+1 1.462177-2 4.636639+1 1.757924-2 3.113648+1 2.187762-2 1.923090+1 2.600160-2 1.305703+1 3.054921-2 9.032857+0 3.589219-2 6.192419+0 4.216965-2 4.213888+0 5.011872-2 2.768116+0 5.956621-2 1.804494+0 7.161434-2 1.134383+0 8.413951-2 7.508482-1 1.035142-1 4.379722-1 1.333521-1 2.247030-1 2.371374-1 4.844602-2 2.917427-1 2.805170-2 3.467369-1 1.791145-2 4.027170-1 1.223257-2 4.570882-1 8.921843-3 5.188000-1 6.553734-3 5.821032-1 4.985127-3 6.531306-1 3.820188-3 7.328245-1 2.949543-3 8.222427-1 2.294243-3 9.120108-1 1.841866-3 1.000000+0 1.525600-3 1.148154+0 1.161158-3 1.288250+0 9.310252-4 1.445440+0 7.518921-4 1.621810+0 6.114792-4 1.840772+0 4.908186-4 2.089296+0 3.967841-4 2.371374+0 3.231967-4 2.691535+0 2.651707-4 3.090295+0 2.152454-4 3.589219+0 1.729895-4 4.216965+0 1.378080-4 4.954502+0 1.106154-4 5.888437+0 8.814854-5 7.079458+0 6.968365-5 8.609938+0 5.471675-5 1.071519+1 4.211197-5 1.348963+1 3.222319-5 1.757924+1 2.388323-5 2.400000+1 1.695800-5 3.235937+1 1.229650-5 4.466836+1 8.744199-6 7.244360+1 5.292246-6 1.348963+2 2.802472-6 2.691535+2 1.392934-6 1.071519+3 3.476815-7 1.000000+5 3.718100-9 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.921000-5 4.921000-5 1.000000+5 4.921000-5 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.921000-5 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.061000-5 7.463740+6 3.198895-5 6.231906+6 3.350000-5 5.200360+6 3.507519-5 4.368788+6 4.315191-5 2.031593+6 5.623413-5 7.508754+5 6.165950-5 5.348287+5 6.683439-5 4.004439+5 7.161434-5 3.145717+5 7.650000-5 2.515080+5 8.035261-5 2.140810+5 8.500000-5 1.792690+5 8.912509-5 1.553736+5 9.332543-5 1.360644+5 9.800000-5 1.190726+5 1.023293-4 1.065214+5 1.071519-4 9.525807+4 1.122018-4 8.579044+4 1.174898-4 7.779847+4 1.230269-4 7.102105+4 1.288250-4 6.524918+4 1.350000-4 6.023980+4 1.412538-4 5.608446+4 1.480000-4 5.239280+4 1.566751-4 4.854182+4 1.659587-4 4.522632+4 1.778279-4 4.182746+4 1.950000-4 3.799400+4 2.187762-4 3.398369+4 3.200000-4 2.394340+4 3.715352-4 2.072810+4 4.265795-4 1.802267+4 4.841724-4 1.574466+4 5.500000-4 1.365332+4 6.200000-4 1.186244+4 7.000000-4 1.022278+4 7.943282-4 8.692741+3 9.015711-4 7.335278+3 1.023293-3 6.142492+3 1.161449-3 5.104562+3 1.318257-3 4.209445+3 1.500000-3 3.430760+3 1.698244-3 2.797053+3 1.927525-3 2.254198+3 2.187762-3 1.803425+3 2.483133-3 1.432410+3 2.818383-3 1.129653+3 3.198895-3 8.847153+2 3.630781-3 6.881111+2 4.120975-3 5.314884+2 4.677351-3 4.076735+2 5.308844-3 3.105078+2 6.025596-3 2.348340+2 6.839116-3 1.763530+2 7.762471-3 1.314571+2 8.810489-3 9.729996+1 1.000000-2 7.149480+1 1.135011-2 5.215833+1 1.288250-2 3.778828+1 1.513561-2 2.488838+1 1.717908-2 1.777166+1 1.972423-2 1.221081+1 2.264644-2 8.330920+0 2.630268-2 5.463163+0 3.054921-2 3.555198+0 3.589219-2 2.219878+0 4.265795-2 1.329267+0 5.069907-2 7.900175-1 6.165950-2 4.343960-1 7.943282-2 1.985701-1 1.548817-1 2.480321-2 1.905461-1 1.309705-2 2.264644-1 7.743003-3 2.630268-1 4.942933-3 3.019952-1 3.288717-3 3.427678-1 2.278809-3 3.890451-1 1.590771-3 4.365158-1 1.155805-3 4.897788-1 8.459838-4 5.495409-1 6.240022-4 6.095369-1 4.778386-4 6.760830-1 3.685213-4 7.498942-1 2.863026-4 8.609938-1 2.063074-4 9.225714-1 1.761854-4 9.885531-1 1.515317-4 1.071519+0 1.282888-4 1.174898+0 1.068821-4 1.288250+0 8.972883-5 1.428894+0 7.429009-5 1.698244+0 5.470588-5 1.927525+0 4.400641-5 2.187762+0 3.566882-5 2.483133+0 2.913340-5 2.851018+0 2.354651-5 3.311311+0 1.884606-5 3.845918+0 1.519842-5 4.518559+0 1.214698-5 5.248075+0 9.933114-6 6.309573+0 7.817448-6 7.585776+0 6.197146-6 9.225714+0 4.878920-6 1.148154+1 3.764332-6 1.445440+1 2.886896-6 1.862087+1 2.171771-6 2.511886+1 1.564742-6 3.467369+1 1.107416-6 4.731513+1 7.981566-7 7.585776+1 4.892642-7 1.462177+2 2.503076-7 2.917427+2 1.245001-7 1.161449+3 3.108909-8 1.000000+5 3.60430-10 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.061000-5 3.061000-5 1.000000+5 3.061000-5 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.061000-5 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.656000-5 1.617980+7 2.754229-5 1.374965+7 2.851018-5 1.185514+7 2.951209-5 1.027625+7 3.122000-5 8.209594+6 3.388442-5 5.981130+6 4.300000-5 2.415808+6 4.677351-5 1.763060+6 5.011872-5 1.369337+6 5.308844-5 1.115834+6 5.623413-5 9.152517+5 5.956621-5 7.563999+5 6.237348-5 6.533758+5 6.531306-5 5.677756+5 6.839116-5 4.966401+5 7.161434-5 4.375144+5 7.500000-5 3.882088+5 7.852356-5 3.474127+5 8.150000-5 3.193864+5 8.511380-5 2.914426+5 8.912509-5 2.664349+5 9.332543-5 2.453371+5 9.800000-5 2.263700+5 1.035142-4 2.084113+5 1.100000-4 1.916148+5 1.174898-4 1.762600+5 1.273503-4 1.604667+5 1.400000-4 1.449616+5 1.603245-4 1.265840+5 2.137962-4 9.554184+4 2.511886-4 8.108311+4 2.917427-4 6.916561+4 3.311311-4 6.009859+4 3.801894-4 5.120250+4 4.365158-4 4.331905+4 5.011872-4 3.637289+4 5.754399-4 3.032480+4 6.606934-4 2.508348+4 7.500000-4 2.093740+4 8.609938-4 1.707006+4 9.772372-4 1.405776+4 1.109175-3 1.149572+4 1.258925-3 9.334448+3 1.428894-3 7.526064+3 1.621810-3 6.024783+3 1.840772-3 4.788936+3 2.089296-3 3.780133+3 2.371374-3 2.963285+3 2.691535-3 2.307027+3 3.054921-3 1.783895+3 3.467369-3 1.370106+3 3.935501-3 1.045131+3 4.466836-3 7.918074+2 5.069907-3 5.957489+2 5.754399-3 4.451132+2 6.531306-3 3.302108+2 7.413102-3 2.431794+2 8.413951-3 1.777790+2 9.549926-3 1.290116+2 1.083927-2 9.292390+1 1.230269-2 6.644613+1 1.396368-2 4.717836+1 1.603245-2 3.222283+1 1.840772-2 2.183739+1 2.113489-2 1.468436+1 2.426610-2 9.799398+0 2.786121-2 6.492548+0 3.198895-2 4.271405+0 3.715352-2 2.693442+0 4.365158-2 1.626569+0 5.128614-2 9.750627-1 6.165950-2 5.385866-1 7.673615-2 2.639669-1 1.023293-1 1.023887-1 1.479108-1 3.029798-2 1.819701-1 1.537786-2 2.187762-1 8.482140-3 2.511886-1 5.466612-3 2.851018-1 3.679979-3 3.198895-1 2.585407-3 3.589219-1 1.829801-3 4.000000-1 1.331600-3 4.415705-1 1.003590-3 4.897788-1 7.518021-4 5.370318-1 5.855110-4 5.888437-1 4.590051-4 6.456542-1 3.623056-4 7.079458-1 2.879573-4 7.762471-1 2.304568-4 8.609938-1 1.804114-4 9.225714-1 1.541712-4 9.885531-1 1.326783-4 1.071519+0 1.123727-4 1.174898+0 9.363576-5 1.288250+0 7.860154-5 1.428894+0 6.506105-5 1.698244+0 4.790192-5 1.927525+0 3.853422-5 2.187762+0 3.123294-5 2.483133+0 2.551024-5 2.851018+0 2.061844-5 3.311311+0 1.650276-5 3.845918+0 1.330878-5 4.518559+0 1.063663-5 5.248075+0 8.697952-6 6.309573+0 6.845403-6 7.585776+0 5.426509-6 9.225714+0 4.272225-6 1.148154+1 3.296241-6 1.428894+1 2.561323-6 1.840772+1 1.926148-6 2.511886+1 1.370154-6 3.388442+1 9.938229-7 4.623810+1 7.159255-7 7.498942+1 4.335331-7 1.445440+2 2.217593-7 2.884032+2 1.102926-7 1.148154+3 2.753889-8 1.000000+5 3.15610-10 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.656000-5 2.656000-5 1.000000+5 2.656000-5 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.656000-5 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.160000-6 3.518220+6 5.600000-6 2.439880+6 6.025596-6 1.746545+6 6.531306-6 1.199296+6 7.000000-6 8.618140+5 7.500000-6 6.160880+5 8.035261-6 4.373753+5 8.609938-6 3.080400+5 9.225714-6 2.155220+5 1.083927-5 9.262944+4 1.135011-5 7.316408+4 1.180000-5 6.033440+4 1.220200-5 5.146175+4 1.250000-5 4.614000+4 1.280000-5 4.167020+4 1.310000-5 3.794960+4 1.342300-5 3.464645+4 1.372000-5 3.214900+4 1.400000-5 3.019460+4 1.430000-5 2.846680+4 1.462177-5 2.696763+4 1.490000-5 2.592540+4 1.515000-5 2.515960+4 1.548817-5 2.434271+4 1.584893-5 2.370459+4 1.621810-5 2.325646+4 1.659587-5 2.297277+4 1.698244-5 2.283043+4 1.750000-5 2.282400+4 1.800000-5 2.297040+4 1.870000-5 2.335420+4 1.950000-5 2.395920+4 2.089296-5 2.521557+4 2.317395-5 2.730984+4 2.483133-5 2.863074+4 2.651000-5 2.972357+4 2.818383-5 3.057054+4 3.000000-5 3.124480+4 3.198895-5 3.171849+4 3.400000-5 3.194680+4 3.589219-5 3.196213+4 3.801894-5 3.178444+4 4.073803-5 3.133271+4 4.365158-5 3.064660+4 4.677351-5 2.974060+4 5.011872-5 2.864033+4 5.400000-5 2.728420+4 5.821032-5 2.580665+4 6.309573-5 2.413619+4 6.918310-5 2.218464+4 7.673615-5 2.003887+4 8.609938-5 1.776570+4 1.000000-4 1.508082+4 1.273503-4 1.145052+4 1.548817-4 9.122945+3 1.737801-4 7.928482+3 1.949845-4 6.841752+3 2.137962-4 6.040535+3 2.454709-4 4.970382+3 3.090295-4 3.560869+3 3.845918-4 2.602218+3 4.518559-4 2.049968+3 6.237348-4 1.258181+3 7.244360-4 9.994068+2 9.332543-4 6.686135+2 1.096478-3 5.155318+2 1.318257-3 3.800769+2 1.603245-3 2.727315+2 1.949845-3 1.942034+2 2.371374-3 1.372498+2 2.884032-3 9.628565+1 3.589219-3 6.432796+1 4.415704-3 4.357555+1 5.432503-3 2.929651+1 6.760830-3 1.911224+1 8.222426-3 1.294399+1 9.885531-3 8.905568+0 1.188502-2 6.081128+0 1.428894-2 4.120959+0 1.717908-2 2.770865+0 2.041738-2 1.895844+0 2.426610-2 1.287562+0 2.884032-2 8.677990-1 3.388442-2 5.961176-1 4.027170-2 3.956161-1 4.786301-2 2.605276-1 5.623413-2 1.751343-1 6.760830-2 1.103658-1 8.128305-2 6.901572-2 1.000000-1 4.030941-2 1.273503-1 2.134406-2 1.603245-1 1.157753-2 2.344229-1 4.201553-3 2.884032-1 2.432545-3 3.427678-1 1.552978-3 3.981072-1 1.060403-3 4.518559-1 7.731086-4 5.128614-1 5.677970-4 5.754399-1 4.319681-4 6.456542-1 3.310775-4 7.244360-1 2.557443-4 8.035261-1 2.041231-4 8.912509-1 1.640013-4 9.885531-1 1.327408-4 1.148154+0 9.881370-5 1.288250+0 7.921759-5 1.462177+0 6.261139-5 1.640590+0 5.094382-5 1.862087+0 4.092034-5 2.113489+0 3.310457-5 2.398833+0 2.698432-5 2.722701+0 2.215316-5 3.162278+0 1.768812-5 3.672823+0 1.423216-5 4.315191+0 1.135028-5 5.069907+0 9.121111-6 6.025596+0 7.275484-6 7.244360+0 5.756684-6 8.810489+0 4.524236-6 1.100000+1 3.471900-6 1.380384+1 2.668723-6 1.800000+1 1.977900-6 2.454709+1 1.407114-6 3.311311+1 1.020197-6 4.518559+1 7.346087-7 7.328245+1 4.446816-7 1.380384+2 2.327751-7 2.754229+2 1.157261-7 1.096478+3 2.888887-8 1.000000+5 3.16140-10 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.160000-6 5.160000-6 1.000000+5 5.160000-6 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.160000-6 0.0 1.000000+5 1.000000+5 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 2.947980-7 1.027100+0 1.278480-6 1.027500+0 1.601290-6 1.028100+0 2.180120-6 1.028750+0 2.947980-6 1.029500+0 4.034390-6 1.030100+0 5.073730-6 1.031000+0 6.942600-6 1.032000+0 9.499210-6 1.033200+0 1.330680-5 1.034000+0 1.633530-5 1.035300+0 2.217290-5 1.036640+0 2.947980-5 1.038200+0 3.978390-5 1.039700+0 5.168730-5 1.041500+0 6.876930-5 1.043800+0 9.545400-5 1.046400+0 1.328060-4 1.048300+0 1.653470-4 1.051200+0 2.242900-4 1.054080+0 2.947980-4 1.057700+0 4.018300-4 1.061100+0 5.226810-4 1.065100+0 6.919760-4 1.070400+0 9.653850-4 1.076200+0 1.334160-3 1.080600+0 1.666150-3 1.087100+0 2.244850-3 1.093710+0 2.947980-3 1.102600+0 4.087140-3 1.110700+0 5.330120-3 1.120600+0 7.129530-3 1.133300+0 9.912190-3 1.147500+0 1.368480-2 1.158200+0 1.700670-2 1.174100+0 2.273210-2 1.190110+0 2.947980-2 1.205100+0 3.670880-2 1.227500+0 4.914560-2 1.250000+0 6.347000-2 1.265600+0 7.434560-2 1.294900+0 9.660480-2 1.320600+0 1.178150-1 1.343000+0 1.373650-1 1.382200+0 1.735320-1 1.433800+0 2.241160-1 1.500000+0 2.934000-1 1.562500+0 3.637500-1 1.617200+0 4.291000-1 1.712900+0 5.506500-1 1.838500+0 7.205950-1 1.946200+0 8.715160-1 2.000000+0 9.473000-1 2.044000+0 1.009000+0 2.163500+0 1.175980+0 2.372600+0 1.464470+0 2.647100+0 1.831620+0 3.000000+0 2.281000+0 3.500000+0 2.874370+0 4.000000+0 3.422000+0 4.750000+0 4.167070+0 5.000000+0 4.397000+0 6.000000+0 5.235000+0 7.000000+0 5.977000+0 8.000000+0 6.643000+0 9.000000+0 7.248000+0 1.000000+1 7.803000+0 1.100000+1 8.316000+0 1.200000+1 8.791000+0 1.300000+1 9.236000+0 1.400000+1 9.648000+0 1.500000+1 1.003000+1 1.600000+1 1.039000+1 1.800000+1 1.103000+1 2.000000+1 1.160000+1 2.200000+1 1.212000+1 2.400000+1 1.260000+1 2.600000+1 1.303000+1 2.800000+1 1.342000+1 3.000000+1 1.379000+1 4.000000+1 1.527000+1 5.000000+1 1.638000+1 6.000000+1 1.724000+1 8.000000+1 1.850000+1 1.000000+2 1.940000+1 1.500000+2 2.083000+1 2.000000+2 2.168000+1 3.000000+2 2.266000+1 4.000000+2 2.323000+1 5.000000+2 2.360000+1 6.000000+2 2.387000+1 8.000000+2 2.423000+1 1.000000+3 2.446000+1 1.500000+3 2.479000+1 2.000000+3 2.497000+1 3.000000+3 2.516000+1 4.000000+3 2.527000+1 5.000000+3 2.534000+1 6.000000+3 2.538000+1 8.000000+3 2.544000+1 1.000000+4 2.548000+1 1.500000+4 2.553000+1 2.000000+4 2.556000+1 3.000000+4 2.559000+1 4.000000+4 2.561000+1 5.000000+4 2.562000+1 6.000000+4 2.562000+1 8.000000+4 2.563000+1 1.000000+5 2.564000+1 1 63000 7 8 1.519600+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.314090-7 2.094700+0 1.111620-6 2.099900+0 1.478850-6 2.106600+0 2.057200-6 2.114000+0 2.846400-6 2.119500+0 3.543740-6 2.127900+0 4.805990-6 2.136250+0 6.314090-6 2.147000+0 8.657060-6 2.156900+0 1.124450-5 2.169000+0 1.500650-5 2.184500+0 2.085950-5 2.201800+0 2.885970-5 2.214800+0 3.595690-5 2.234200+0 4.836850-5 2.253680+0 6.314090-5 2.281500+0 8.843990-5 2.307000+0 1.161650-4 2.338200+0 1.561940-4 2.377400+0 2.163100-4 2.410200+0 2.751100-4 2.446800+0 3.499550-4 2.485900+0 4.406130-4 2.532900+0 5.638920-4 2.556430+0 6.314090-4 2.611900+0 8.051240-4 2.660400+0 9.733600-4 2.745300+0 1.302800-3 2.809000+0 1.577770-3 2.904500+0 2.032570-3 3.000000+0 2.537000-3 3.125000+0 3.271090-3 3.234400+0 3.979770-3 3.425800+0 5.358110-3 3.569300+0 6.496090-3 3.784700+0 8.348690-3 4.000000+0 1.034000-2 4.250000+0 1.277470-2 4.625000+0 1.660160-2 5.000000+0 2.058000-2 5.500000+0 2.603930-2 6.000000+0 3.157000-2 6.750000+0 3.979560-2 7.000000+0 4.250000-2 8.000000+0 5.307000-2 9.000000+0 6.318000-2 1.000000+1 7.277000-2 1.100000+1 8.184000-2 1.200000+1 9.037000-2 1.300000+1 9.841000-2 1.400000+1 1.061000-1 1.500000+1 1.133000-1 1.600000+1 1.201000-1 1.800000+1 1.328000-1 2.000000+1 1.444000-1 2.200000+1 1.549000-1 2.400000+1 1.646000-1 2.600000+1 1.735000-1 2.800000+1 1.818000-1 3.000000+1 1.894000-1 4.000000+1 2.211000-1 5.000000+1 2.451000-1 6.000000+1 2.640000-1 8.000000+1 2.923000-1 1.000000+2 3.129000-1 1.500000+2 3.468000-1 2.000000+2 3.679000-1 3.000000+2 3.937000-1 4.000000+2 4.092000-1 5.000000+2 4.197000-1 6.000000+2 4.275000-1 8.000000+2 4.382000-1 1.000000+3 4.453000-1 1.500000+3 4.559000-1 2.000000+3 4.620000-1 3.000000+3 4.686000-1 4.000000+3 4.725000-1 5.000000+3 4.749000-1 6.000000+3 4.766000-1 8.000000+3 4.788000-1 1.000000+4 4.802000-1 1.500000+4 4.822000-1 2.000000+4 4.833000-1 3.000000+4 4.844000-1 4.000000+4 4.851000-1 5.000000+4 4.855000-1 6.000000+4 4.857000-1 8.000000+4 4.860000-1 1.000000+5 4.863000-1 1 63000 7 8 1.519600+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 63000 7 9 1.519600+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.300000+1 1.000000+5 6.300000+1 5.000000+5 6.296600+1 7.500000+5 6.293670+1 1.000000+6 6.291600+1 1.250000+6 6.288250+1 1.500000+6 6.284600+1 1.875000+6 6.276170+1 2.000000+6 6.272900+1 2.375000+6 6.262060+1 2.500000+6 6.258100+1 2.875000+6 6.245180+1 3.000000+6 6.240500+1 3.250000+6 6.230060+1 3.625000+6 6.214070+1 4.000000+6 6.198000+1 4.437500+6 6.177460+1 4.812500+6 6.158910+1 5.000000+6 6.149300+1 5.500000+6 6.121490+1 5.875000+6 6.099500+1 6.437500+6 6.065430+1 6.500000+6 6.061420+1 7.000000+6 6.030700+1 7.500000+6 5.999100+1 8.250000+6 5.951980+1 9.000000+6 5.903700+1 1.000000+7 5.837900+1 1.250000+7 5.675600+1 1.500000+7 5.509100+1 1.750000+7 5.342100+1 2.000000+7 5.172500+1 2.250000+7 4.999830+1 2.500000+7 4.828500+1 2.875000+7 4.579880+1 3.000000+7 4.500500+1 3.437500+7 4.234450+1 3.812500+7 4.024630+1 4.000000+7 3.926400+1 4.500000+7 3.682510+1 5.000000+7 3.460900+1 5.500000+7 3.257040+1 6.000000+7 3.068000+1 6.750000+7 2.809020+1 7.000000+7 2.729200+1 8.000000+7 2.442300+1 9.000000+7 2.206600+1 1.000000+8 2.017000+1 1.125000+8 1.832160+1 1.187500+8 1.755970+1 1.250000+8 1.687800+1 1.375000+8 1.570130+1 1.500000+8 1.467900+1 1.625000+8 1.373210+1 1.718800+8 1.303740+1 1.812500+8 1.234240+1 1.815400+8 1.232050+1 1.881300+8 1.182710+1 1.960400+8 1.123190+1 2.000000+8 1.093300+1 2.062500+8 1.046150+1 2.335900+8 8.672690+0 2.375000+8 8.472100+0 2.445300+8 8.149290+0 2.500000+8 7.933000+0 2.562500+8 7.721130+0 2.835900+8 6.976890+0 2.918000+8 6.749460+0 3.000000+8 6.502000+0 3.062500+8 6.298050+0 3.335900+8 5.441150+0 3.445300+8 5.178010+0 3.500000+8 5.071000+0 3.562500+8 4.970310+0 3.671900+8 4.833260+0 4.000000+8 4.539900+0 4.125000+8 4.418560+0 4.234400+8 4.303300+0 4.425800+8 4.091000+0 4.677000+8 3.811460+0 4.750000+8 3.732750+0 5.000000+8 3.477700+0 5.437500+8 3.086890+0 5.718800+8 2.855330+0 5.929700+8 2.686090+0 6.000000+8 2.630100+0 6.625000+8 2.182390+0 6.812500+8 2.080920+0 7.000000+8 1.998400+0 8.000000+8 1.726000+0 8.250000+8 1.652240+0 8.468800+8 1.583480+0 8.851600+8 1.463390+0 9.569300+8 1.268500+0 9.856400+8 1.207600+0 1.000000+9 1.181100+0 1.031300+9 1.132710+0 1.060500+9 1.096520+0 1.500000+9 8.570100-1 1.531300+9 8.385680-1 1.589800+9 8.016320-1 1.641100+9 7.677880-1 1.686000+9 7.377210-1 1.764500+9 6.855340-1 1.823400+9 6.475820-1 1.911700+9 5.937080-1 2.000000+9 5.442600-1 2.139200+9 4.756730-1 2.272600+9 4.194120-1 2.443000+9 3.587510-1 2.602800+9 3.112880-1 2.825100+9 2.573490-1 2.961100+9 2.299730-1 3.215900+9 1.876890-1 3.438900+9 1.583310-1 3.500000+9 1.512980-1 3.634100+9 1.371720-1 3.975600+9 1.079580-1 4.231700+9 9.099720-2 4.615800+9 7.133420-2 5.000000+9 5.670100-2 5.375000+9 4.586430-2 6.031300+9 3.248820-2 6.892600+9 2.160870-2 8.000000+9 1.362400-2 1.00000+10 6.810500-3 1.27030+10 3.254420-3 1.55700+10 1.745170-3 1.85560+10 1.023470-3 2.46860+10 4.324190-4 2.93940+10 2.563010-4 3.82190+10 1.172930-4 5.26990+10 4.541490-5 6.95920+10 2.009790-5 1.00000+11 6.994400-6 1.34280+11 2.981480-6 2.20600+11 7.161430-7 4.19930+11 1.145950-7 1.03480+12 9.041450-9 3.24440+12 3.75603-10 1.00000+14 3.01080-14 2.05350+15 7.06940-18 1.00000+17 1.41340-22 1 63000 7 0 1.519600+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.08000-11 1.000000+2 1.080000-9 1.000000+3 1.080000-7 1.000000+4 1.080000-5 1.000000+5 1.080000-3 5.000000+5 2.700000-2 7.500000+5 6.075000-2 1.000000+6 1.080000-1 1.250000+6 1.675220-1 1.500000+6 2.389000-1 1.875000+6 3.668440-1 2.000000+6 4.147000-1 2.375000+6 5.721770-1 2.500000+6 6.290000-1 2.875000+6 8.105210-1 3.000000+6 8.744000-1 3.250000+6 1.006260+0 3.625000+6 1.212980+0 4.000000+6 1.427800+0 4.437500+6 1.684940+0 4.812500+6 1.908130+0 5.000000+6 2.020000+0 5.500000+6 2.316380+0 5.875000+6 2.536200+0 6.437500+6 2.860290+0 6.500000+6 2.895720+0 7.000000+6 3.176200+0 7.500000+6 3.449430+0 8.250000+6 3.848930+0 9.000000+6 4.239800+0 1.000000+7 4.754000+0 1.250000+7 6.039400+0 1.500000+7 7.359000+0 1.750000+7 8.671200+0 2.000000+7 9.954000+0 2.250000+7 1.118610+1 2.500000+7 1.237400+1 2.875000+7 1.408960+1 3.000000+7 1.464300+1 3.437500+7 1.649200+1 3.812500+7 1.796590+1 4.000000+7 1.866200+1 4.500000+7 2.039100+1 5.000000+7 2.197600+1 5.500000+7 2.344670+1 6.000000+7 2.484000+1 6.750000+7 2.681870+1 7.000000+7 2.745600+1 8.000000+7 2.988900+1 9.000000+7 3.215900+1 1.000000+8 3.427500+1 1.125000+8 3.669710+1 1.187500+8 3.781350+1 1.250000+8 3.886600+1 1.375000+8 4.076690+1 1.500000+8 4.243200+1 1.625000+8 4.387550+1 1.718800+8 4.483970+1 1.812500+8 4.571990+1 1.815400+8 4.574610+1 1.881300+8 4.632120+1 1.960400+8 4.696930+1 2.000000+8 4.728100+1 2.062500+8 4.774980+1 2.335900+8 4.956370+1 2.375000+8 4.980020+1 2.445300+8 5.020170+1 2.500000+8 5.050800+1 2.562500+8 5.083860+1 2.835900+8 5.216440+1 2.918000+8 5.252650+1 3.000000+8 5.287200+1 3.062500+8 5.312310+1 3.335900+8 5.414380+1 3.445300+8 5.451560+1 3.500000+8 5.469800+1 3.562500+8 5.489430+1 3.671900+8 5.523140+1 4.000000+8 5.615900+1 4.125000+8 5.647460+1 4.234400+8 5.674440+1 4.425800+8 5.718260+1 4.677000+8 5.770320+1 4.750000+8 5.784520+1 5.000000+8 5.829800+1 5.437500+8 5.896710+1 5.718800+8 5.933550+1 5.929700+8 5.958300+1 6.000000+8 5.966000+1 6.625000+8 6.023500+1 6.812500+8 6.037320+1 7.000000+8 6.050800+1 8.000000+8 6.105600+1 8.250000+8 6.116110+1 8.468800+8 6.125060+1 8.851600+8 6.138620+1 9.569300+8 6.161230+1 9.856400+8 6.169260+1 1.000000+9 6.173200+1 1.031300+9 6.180730+1 1.060500+9 6.187550+1 1.500000+9 6.255800+1 1.531300+9 6.258490+1 1.589800+9 6.263390+1 1.641100+9 6.267270+1 1.686000+9 6.270070+1 1.764500+9 6.274800+1 1.823400+9 6.278070+1 1.911700+9 6.281820+1 2.000000+9 6.285400+1 2.139200+9 6.289040+1 2.272600+9 6.292310+1 2.443000+9 6.295570+1 2.602800+9 6.297550+1 2.825100+9 6.299300+1 2.961100+9 6.299910+1 3.215900+9 6.300990+1 3.438900+9 6.301080+1 3.500000+9 6.301030+1 3.634100+9 6.300910+1 3.975600+9 6.300620+1 4.231700+9 6.300430+1 4.615800+9 6.300150+1 5.000000+9 6.299900+1 5.375000+9 6.299920+1 6.031300+9 6.299940+1 6.892600+9 6.299970+1 8.000000+9 6.300000+1 1.00000+10 6.300000+1 1.27030+10 6.300000+1 1.55700+10 6.300000+1 1.85560+10 6.300000+1 2.46860+10 6.300000+1 2.93940+10 6.300000+1 3.82190+10 6.300000+1 5.26990+10 6.300000+1 6.95920+10 6.300000+1 1.00000+11 6.300000+1 1.34280+11 6.300000+1 2.20600+11 6.300000+1 4.19930+11 6.300000+1 1.03480+12 6.300000+1 3.24440+12 6.300000+1 1.00000+14 6.300000+1 2.05350+15 6.300000+1 1.00000+17 6.300000+1 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.246040-6 0.0 1.249107-6 7.758351-8 1.252174-6 1.535164-7 1.255241-6 2.804102-7 1.258308-6 4.728101-7 1.261375-6 7.359251-7 1.264442-6 1.057388-6 1.267509-6 1.402455-6 1.270576-6 1.717107-6 1.273643-6 1.940706-6 1.276710-6 2.024772-6 1.279777-6 1.950053-6 1.282844-6 1.733686-6 1.285911-6 1.422816-6 1.292045-6 7.538187-7 1.295112-6 4.866391-7 1.298179-6 2.900021-7 1.301246-6 1.595325-7 1.304313-6 8.101239-8 1.307380-6 0.0 1.494671-6 0.0 1.498350-6 2.292583-7 1.502028-6 4.536389-7 1.505707-6 8.286086-7 1.509386-6 1.397148-6 1.513065-6 2.174649-6 1.516744-6 3.124567-6 1.520423-6 4.144236-6 1.524102-6 5.074029-6 1.527781-6 5.734761-6 1.531460-6 5.983174-6 1.535139-6 5.762380-6 1.538818-6 5.123021-6 1.542497-6 4.204402-6 1.549855-6 2.227525-6 1.553534-6 1.438012-6 1.557213-6 8.569525-7 1.560892-6 4.714166-7 1.564570-6 2.393906-7 1.568249-6 0.0 2.181261-6 0.0 2.189314-6 3.112610+0 2.191999-6 4.136985+0 2.197368-6 7.556542+0 2.202737-6 1.274137+1 2.208777-6 2.091240+1 2.218088-6 3.648323+1 2.224883-6 4.702453+1 2.230074-6 5.250601+1 2.235519-6 5.435097+1 2.241149-6 5.165072+1 2.246485-6 4.547769+1 2.255342-6 3.092754+1 2.261794-6 2.031404+1 2.267499-6 1.278358+1 2.272532-6 7.815026+0 2.277901-6 4.299110+0 2.285619-6 1.229277+0 2.288639-6 0.0 2.333621-6 0.0 2.343673-6 7.466521+0 2.345109-6 8.522283+0 2.350853-6 1.556665+1 2.356956-6 2.715834+1 2.363058-6 4.308002+1 2.373298-6 7.608398+1 2.379931-6 9.609729+1 2.386246-6 1.084900+2 2.391475-6 1.121038+2 2.397331-6 1.071548+2 2.403580-6 9.314875+1 2.412622-6 6.455925+1 2.419780-6 4.184737+1 2.425523-6 2.701521+1 2.431267-6 1.609913+1 2.437011-6 8.856264+0 2.445627-6 2.251298+0 2.448499-6 0.0 3.195380-6 0.0 3.203245-6 3.40292-15 3.211110-6 6.73343-15 3.218975-6 1.22992-14 3.226840-6 2.07381-14 3.234705-6 3.22787-14 3.242570-6 4.63785-14 3.250435-6 6.15136-14 3.258300-6 7.53146-14 3.266165-6 8.51220-14 3.274030-6 8.88092-14 3.281895-6 8.55319-14 3.289760-6 7.60418-14 3.297625-6 6.24066-14 3.313355-6 3.30635-14 3.321220-6 2.13446-14 3.329085-6 1.27199-14 3.336950-6 6.99731-15 3.344815-6 3.55331-15 3.352680-6 0.0 3.728273-6 0.0 3.746627-6 1.108107-1 3.755803-6 2.024075-1 3.764980-6 3.412882-1 3.774975-6 5.552826-1 3.794956-6 1.541700+0 3.804926-6 2.171781+0 3.816229-6 3.028704+0 3.839866-6 4.987775+0 3.849738-6 5.624626+0 3.860118-6 5.954324+0 3.869410-6 5.883019+0 3.878193-6 5.477411+0 3.887994-6 4.682788+0 3.913066-6 2.133815+0 3.923488-6 1.308928+0 3.932779-6 7.800262-1 3.942070-6 4.290988-1 3.956007-6 1.090787-1 3.960653-6 0.0 4.209333-6 0.0 4.209362-6 1.75811-14 4.219723-6 1.45660-11 4.230084-6 2.88168-11 4.240444-6 5.26274-11 4.250805-6 8.87233-11 4.261166-6 1.38077-10 4.283917-6 2.74600-10 4.304237-6 2.273179-2 4.305028-6 2.766405-2 4.315598-6 1.012660-1 4.325425-6 1.780448-1 4.336738-6 3.185967-1 4.347309-6 5.055380-1 4.360522-6 8.127143-1 4.379019-6 1.291423+0 4.389590-6 1.519656+0 4.400160-6 1.658262+0 4.412052-6 1.664320+0 4.421301-6 1.572386+0 4.431871-6 1.365376+0 4.460655-6 6.330937-1 4.463582-6 5.630340-1 4.474152-6 3.588546-1 4.484722-6 2.112956-1 4.494935-6 1.114929-1 4.512170-6 2.115955-2 4.516123-6 6.55087-12 4.530409-6 1.81950-11 4.541505-6 3.32313-11 4.547929-6 4.64098-11 4.558606-6 4.300397-3 4.570317-6 3.253263-2 4.581511-6 6.263169-2 4.592705-6 1.115072-1 4.603899-6 1.835775-1 4.615093-6 2.794576-1 4.645024-6 5.819106-1 4.648676-6 6.157259-1 4.659870-6 6.847032-1 4.671064-6 7.037914-1 4.682258-6 6.686222-1 4.694169-6 5.799974-1 4.719048-6 3.494877-1 4.728119-6 2.775209-1 4.738229-6 2.213110-1 4.749353-6 1.943387-1 4.760617-6 2.009226-1 4.775048-6 2.413448-1 4.783647-6 2.694222-1 4.797096-6 3.353951-1 4.804763-6 3.649149-1 4.816160-6 3.877542-1 4.827730-6 3.884265-1 4.870157-6 3.142044-1 4.885578-6 3.019273-1 4.920975-6 3.091714-1 5.042594-6 2.807012-1 5.102060-6 2.521565-1 5.137753-6 2.479971-1 5.189949-6 2.526403-1 5.243801-6 2.463129-1 5.269650-6 8.913870-1 5.283351-6 1.465158+0 5.296186-6 2.281946+0 5.309093-6 3.395059+0 5.347208-6 7.421405+0 5.361729-6 8.388648+0 5.374005-6 8.660266+0 5.386534-6 8.318315+0 5.400953-6 7.235207+0 5.421271-6 5.079799+0 5.437354-6 3.367561+0 5.450261-6 2.249038+0 5.463168-6 1.425364+0 5.476075-6 8.782634-1 5.501888-6 2.081077-1 5.687519-6 1.852342-1 5.715955-6 6.691327-1 5.730166-6 1.075373+0 5.744481-6 1.697428+0 5.759083-6 2.565032+0 5.799731-6 5.495715+0 5.814796-6 6.198884+0 5.828385-6 6.419266+0 5.842384-6 6.159320+0 5.857258-6 5.410266+0 5.879569-6 3.799888+0 5.897506-6 2.494883+0 5.911505-6 1.666939+0 5.925504-6 1.057229+0 5.939503-6 6.561080-1 5.967501-6 1.937070-1 5.979982-6 2.162907-1 5.994594-6 2.570536-1 6.009205-6 3.132922-1 6.053038-6 5.239909-1 6.067649-6 5.716453-1 6.082712-6 5.882363-1 6.097684-6 5.684674-1 6.112655-6 5.169986-1 6.155315-6 3.044025-1 6.169926-6 2.447479-1 6.184538-6 2.005312-1 6.199149-6 1.707949-1 6.228371-6 1.335147-1 6.655342-6 1.045299-1 7.114112-6 8.115775-2 7.491984-6 6.646186-2 7.528865-6 8.866951-2 7.547306-6 1.074779-1 7.565747-6 1.363220-1 7.584187-6 1.759925-1 7.629755-6 2.972578-1 7.643005-6 3.307770-1 7.657949-6 3.580643-1 7.676390-6 3.703585-1 7.694831-6 3.583429-1 7.716624-6 3.159009-1 7.768593-6 1.729875-1 7.787033-6 1.315436-1 7.805474-6 1.008996-1 7.823915-6 8.038582-2 7.860796-6 5.493540-2 8.043548-6 5.012814-2 8.083145-6 5.813650-2 8.102943-6 6.510039-2 8.122741-6 7.590618-2 8.142539-6 9.085938-2 8.170952-6 1.178276-1 8.204527-6 1.615419-1 8.244816-6 2.047013-1 8.309894-6 2.576201-1 8.334682-6 2.760325-1 8.354466-6 2.834112-1 8.374250-6 2.823352-1 8.394034-6 2.714158-1 8.420359-6 2.428412-1 8.458987-6 1.911966-1 8.492741-6 1.526900-1 8.517912-6 1.316471-1 8.535314-6 1.196466-1 8.573188-6 9.848311-2 8.602551-6 9.348845-2 8.640357-6 9.133427-2 8.722434-6 9.109265-2 8.782164-6 9.855656-2 8.804029-6 1.043027-1 8.825784-6 1.125203-1 8.906346-6 1.522794-1 8.929458-6 1.570102-1 8.950261-6 1.549355-1 8.972524-6 1.464827-1 9.042928-6 1.036779-1 9.059563-6 9.674331-2 9.076689-6 9.300659-2 9.095610-6 9.258494-2 9.123097-6 9.817571-2 9.193366-6 1.223619-1 9.215921-6 1.269752-1 9.239262-6 1.289867-1 9.331337-6 1.234834-1 9.520006-6 1.210190-1 9.625543-6 1.141607-1 9.708926-6 1.068877-1 9.775677-6 1.073088-1 9.921702-6 1.166640-1 1.113173-5 1.147015-1 1.232275-5 1.212701-1 1.361786-5 1.378486-1 1.507805-5 1.674885-1 1.664722-5 2.119483-1 1.843909-5 2.787455-1 2.043248-5 3.741769-1 2.213234-5 4.731798-1 2.224129-5 2.514918+0 2.229577-5 4.200322+0 2.235024-5 6.754115+0 2.238102-5 8.724286+0 2.240472-5 1.410689+1 2.249120-5 3.498129+1 2.254628-5 5.407016+1 2.260826-5 8.387966+1 2.266456-5 1.175673+2 2.281281-5 2.144963+2 2.288265-5 2.417379+2 2.293748-5 2.452226+2 2.299204-5 2.314415+2 2.304974-5 2.005855+2 2.320734-5 8.816326+1 2.326243-5 5.692682+1 2.331752-5 3.414971+1 2.337260-5 1.903835+1 2.346568-5 3.480729+0 2.348278-5 5.639934-1 2.408166-5 6.076087-1 2.420021-5 8.639404-1 2.425948-5 1.073015+0 2.431876-5 1.387791+0 2.437803-5 1.816675+0 2.455585-5 3.413784+0 2.464099-5 3.922089+0 2.467640-5 4.228869+0 2.481105-5 4.745008+0 2.487925-5 5.296613+0 2.493987-5 6.127350+0 2.501470-5 7.636012+0 2.511832-5 9.968953+0 2.518481-5 1.100885+1 2.525392-5 1.141235+1 2.531590-5 1.108438+1 2.541281-5 9.713206+0 2.550758-5 8.157167+0 2.556881-5 7.462231+0 2.562198-5 7.150140+0 2.567852-5 7.059160+0 2.599261-5 7.528019+0 2.611999-5 7.426337+0 2.625153-5 1.753470+1 2.631468-5 2.563606+1 2.638648-5 4.010337+1 2.645689-5 5.952282+1 2.664069-5 1.191495+2 2.671326-5 1.332820+2 2.677490-5 1.364965+2 2.684378-5 1.289560+2 2.691052-5 1.126477+2 2.709185-5 5.324947+1 2.714960-5 3.777543+1 2.721294-5 2.523478+1 2.727731-5 1.677014+1 2.740581-5 6.406294+0 2.814517-5 6.062022+0 2.834608-5 6.196858+0 2.860346-5 6.765962+0 2.888508-5 7.808222+0 2.906146-5 9.013411+0 2.925076-5 1.035425+1 2.932120-5 1.050795+1 2.943597-5 1.016626+1 2.965952-5 8.995260+0 2.975801-5 8.756755+0 3.071334-5 8.475516+0 3.136222-5 7.931121+0 3.418025-5 6.781234+0 3.716311-5 6.053825+0 4.074167-5 5.562040+0 4.545738-5 5.322376+0 4.648017-5 5.389541+0 4.779954-5 5.330483+0 5.532665-5 5.628449+0 8.717400-5 7.915364+0 1.131979-4 9.180714+0 1.294624-4 9.617752+0 1.301544-4 1.038977+1 1.307951-4 2.525983+1 1.311155-4 3.750361+1 1.314358-4 5.567588+1 1.317963-4 8.380425+1 1.326497-4 1.620062+2 1.330477-4 1.870473+2 1.334082-4 1.919086+2 1.337302-4 1.819740+2 1.340583-4 1.594617+2 1.347766-4 9.300085+1 1.349998-4 7.666626+1 1.352802-4 5.984138+1 1.355857-4 4.884921+1 1.358318-4 4.611481+1 1.359594-4 4.671310+1 1.361867-4 5.101192+1 1.365130-4 6.062820+1 1.366207-4 6.592849+1 1.374418-4 1.149960+2 1.378460-4 1.301422+2 1.381739-4 1.330690+2 1.384984-4 1.268856+2 1.389202-4 1.072441+2 1.397749-4 5.593948+1 1.401039-4 3.998628+1 1.404161-4 2.864420+1 1.407479-4 2.063257+1 1.414114-4 1.082493+1 1.430435-4 1.114526+1 1.454039-4 1.212287+1 1.551150-4 1.361701+1 1.604178-4 1.369762+1 1.867455-4 1.144348+1 2.057214-4 1.057425+1 2.315728-4 1.019181+1 2.506992-4 1.018096+1 2.536525-4 1.060315+1 2.568786-4 1.163346+1 2.592190-4 1.160808+1 2.628911-4 1.132451+1 2.828005-4 1.148092+1 2.905747-4 1.182365+1 3.507133-4 1.205731+1 3.583294-4 1.252308+1 4.788023-4 1.207570+1 9.560334-4 8.258351+0 1.101488-3 7.356229+0 1.106911-3 1.180683+1 1.109622-3 1.551519+1 1.112477-3 2.155593+1 1.115404-3 3.012903+1 1.122845-3 5.705538+1 1.126193-3 6.583919+1 1.128925-3 6.882314+1 1.131796-3 6.840916+1 1.137985-3 5.835022+1 1.141214-3 5.342391+1 1.142857-3 5.206750+1 1.144988-3 5.162519+1 1.147986-3 5.399722+1 1.153034-3 6.056478+1 1.156132-3 6.304712+1 1.158064-3 6.388921+1 1.160555-3 6.306665+1 1.163668-3 5.899181+1 1.171714-3 4.349911+1 1.174333-3 3.945188+1 1.177093-3 3.637662+1 1.179792-3 3.442964+1 1.185316-3 3.195880+1 1.257197-3 3.221062+1 1.359350-3 3.031348+1 1.438437-3 2.836781+1 1.449823-3 2.907913+1 1.469748-3 3.169594+1 1.493776-3 3.095106+1 1.576472-3 2.902096+1 1.611110-3 2.989307+1 1.749361-3 2.686297+1 1.807400-3 2.684178+1 2.160444-3 2.133984+1 2.530545-3 1.721767+1 2.860751-3 1.447320+1 3.304006-3 1.175441+1 3.726061-3 9.838469+0 4.257276-3 8.047253+0 4.868443-3 6.548867+0 5.482404-3 5.442405+0 6.266412-3 4.405604+0 6.798664-3 3.879777+0 6.846320-3 4.053616+0 6.869004-3 4.318580+0 6.893154-3 4.833151+0 6.920884-3 5.755871+0 6.984919-3 8.489772+0 7.022298-3 9.544979+0 7.060615-3 9.982239+0 7.182687-3 9.897212+0 7.491876-3 9.382704+0 7.555034-3 9.838891+0 7.668245-3 1.168573+1 7.742461-3 1.198728+1 7.925186-3 1.175919+1 8.091653-3 1.273263+1 8.284173-3 1.249886+1 9.478820-3 1.014257+1 1.083927-2 8.183042+0 1.240045-2 6.571861+0 1.425300-2 5.222085+0 1.606313-2 4.273523+0 1.815539-2 3.469438+0 2.072247-2 2.764445+0 2.319525-2 2.273060+0 2.575222-2 1.893350+0 2.892159-2 1.542887+0 3.246562-2 1.256783+0 3.639455-2 1.024560+0 4.035704-2 8.509075-1 4.538870-2 6.883197-1 4.735409-2 6.406618-1 4.763044-2 6.590180-1 4.779736-2 7.065184-1 4.792963-2 7.851944-1 4.803955-2 8.908341-1 4.817661-2 1.085308+0 4.830116-2 1.325078+0 4.854479-2 1.921503+0 4.884736-2 2.652553+0 4.906553-2 3.004093+0 4.927747-2 3.180494+0 4.967833-2 3.254103+0 5.812661-2 2.534439+0 6.628362-2 2.044771+0 7.523263-2 1.650398+0 8.564825-2 1.320672+0 9.625944-2 1.077649+0 1.087612-1 8.696675-1 1.209986-1 7.197678-1 1.357071-1 5.864991-1 1.519576-1 4.793225-1 1.687229-1 3.976524-1 1.882908-1 3.268964-1 2.108006-1 2.672867-1 2.347183-1 2.212697-1 2.624596-1 1.820314-1 2.920828-1 1.515596-1 3.237953-1 1.274482-1 3.613609-1 1.063864-1 4.029603-1 8.937640-2 4.527382-1 7.465926-2 5.073556-1 6.306218-2 5.704227-1 5.341937-2 6.387229-1 4.587252-2 7.283561-1 3.887681-2 8.335612-1 3.315480-2 9.667461-1 2.812310-2 1.173413+0 2.282033-2 1.410753+0 1.862020-2 1.696098+0 1.519311-2 1.947381+0 1.304347-2 2.341267+0 1.064279-2 2.814822+0 8.683963-3 3.384160+0 7.085659-3 4.068655+0 5.781527-3 4.891600+0 4.717424-3 5.880996+0 3.849171-3 7.070513+0 3.140722-3 8.500626+0 2.562665-3 9.760024+0 2.200081-3 1.000000+1 4.514600-3 1 63000 7 0 1.519600+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.247360+1 1.749848-6-6.001776+1 1.994829-6-5.653370+1 2.095325-6-5.242594+1 2.142348-6-4.798457+1 2.167890-6-4.295100+1 2.179675-6-3.829179+1 2.186630-6-3.381733+1 2.197368-6-2.701112+1 2.204582-6-2.272581+1 2.209951-6-2.124903+1 2.214817-6-2.209900+1 2.218088-6-2.412112+1 2.221947-6-2.813013+1 2.224883-6-3.258187+1 2.229361-6-4.045699+1 2.240040-6-6.291752+1 2.246181-6-5.168447+1 2.252021-6-4.503688+1 2.256426-6-4.277251+1 2.261794-6-4.281358+1 2.267499-6-4.546633+1 2.291410-6-6.275934+1 2.322687-6-4.497916+1 2.330972-6-3.811282+1 2.333800-6-3.428110+1 2.337539-6-2.966777+1 2.344391-6-2.229713+1 2.352558-6-1.168190+1 2.356092-6-8.009958+0 2.356956-6-6.824580+0 2.357629-6-6.141862+0 2.358807-6-5.230414+0 2.363058-6-2.838982+0 2.364315-6-2.646821+0 2.365257-6-2.726934+0 2.366671-6-3.123383+0 2.368084-6-3.741634+0 2.368802-6-4.154791+0 2.370059-6-5.229001+0 2.371001-6-6.261307+0 2.371708-6-7.160958+0 2.373298-6-9.620931+0 2.376341-6-1.584659+1 2.378663-6-2.172478+1 2.384180-6-4.019024+1 2.388944-6-5.975441+1 2.389805-6-6.279576+1 2.391475-6-5.477755+1 2.397983-6-2.764819+1 2.402907-6-1.069594+1 2.403580-6-8.602481+0 2.404758-6-5.384009+0 2.405641-6-3.214038+0 2.406967-6-2.443479-1 2.408292-6 2.545490+0 2.409010-6 3.961331+0 2.410266-6 6.014151+0 2.411209-6 7.309226+0 2.412622-6 8.892366+0 2.414036-6 9.985648+0 2.416549-6 1.116526+1 2.418164-6 1.143234+1 2.418972-6 1.135073+1 2.422652-6 9.624924+0 2.424087-6 8.744623+0 2.424805-6 8.152688+0 2.426241-6 6.421296+0 2.428754-6 4.011851+0 2.430011-6 2.709859+0 2.430639-6 1.965426+0 2.431267-6 1.034058+0 2.437011-6-5.998005+0 2.437729-6-7.004783+0 2.438986-6-8.439805+0 2.447063-6-1.666462+1 2.449957-6-2.080685+1 2.454316-6-2.483913+1 2.461531-6-2.942141+1 2.472930-6-3.433880+1 2.492476-6-3.969523+1 2.524788-6-4.483445+1 2.580370-6-4.949311+1 2.686658-6-5.359619+1 2.937525-6-5.714629+1 3.728273-6-6.128335+1 3.825446-6-6.298674+1 3.869410-6-5.887261+1 3.904209-6-5.621005+1 4.036504-6-5.916666+1 4.389590-6-6.080102+1 4.474152-6-5.949289+1 4.671064-6-6.052902+1 5.203410-6-6.246415+1 5.248968-6-6.287604+1 5.324218-6-6.077691+1 5.358757-6-6.277214+1 5.411540-6-5.633395+1 5.453488-6-5.614818+1 5.558002-6-5.943498+1 5.731391-6-6.276984+1 5.796672-6-6.240931+1 5.875632-6-5.628986+1 5.950777-6-5.743790+1 6.082712-6-5.899300+1 8.394034-6-6.096432+1 1.414412-5-6.335293+1 1.800000-5-5.933841+1 1.973214-5-5.435522+1 2.065463-5-4.863829+1 2.112484-5-4.347275+1 2.148881-5-3.707317+1 2.169680-5-3.158931+1 2.185278-5-2.590248+1 2.195678-5-2.089585+1 2.203477-5-1.615081+1 2.209655-5-1.146585+1 2.211445-5-9.873531+0 2.218682-5-2.325596+0 2.221405-5 7.597576-1 2.222767-5 2.429924+0 2.224129-5 4.248715+0 2.226853-5 8.095967+0 2.229577-5 1.237914+1 2.233663-5 1.978209+1 2.236563-5 2.641346+1 2.238102-5 3.114717+1 2.239435-5 3.536958+1 2.240472-5 3.801763+1 2.256522-5 7.182215+1 2.262031-5 7.875654+1 2.266456-5 7.888964+1 2.270466-5 7.305865+1 2.273932-5 6.332682+1 2.275976-5 5.543651+1 2.277948-5 4.592638+1 2.280389-5 3.099802+1 2.281726-5 2.172609+1 2.282517-5 1.504766+1 2.285099-5-4.633054+0 2.286229-5-1.369404+1 2.287273-5-2.295312+1 2.288265-5-3.334693+1 2.291904-5-6.567743+1 2.293212-5-5.234671+1 2.293748-5-4.653213+1 2.298699-5-2.274782+0 2.298871-5-3.915759-1 2.299204-5 2.753669+0 2.299830-5 8.091802+0 2.300377-5 1.243757+1 2.301335-5 1.959393+1 2.304208-5 4.011425+1 2.304974-5 4.562585+1 2.306883-5 5.630902+1 2.310082-5 6.965368+1 2.313598-5 7.945308+1 2.317395-5 8.478992+1 2.320075-5 8.477002+1 2.325554-5 7.650755+1 2.331752-5 6.051767+1 2.338626-5 4.120631+1 2.346568-5 2.285434+1 2.347851-5 1.918098+1 2.348522-5 1.653204+1 2.349781-5 1.284697+1 2.350983-5 1.000588+1 2.352184-5 7.502136+0 2.353604-5 4.844653+0 2.355733-5 1.304322+0 2.357862-5-1.832648+0 2.360701-5-5.538481+0 2.363540-5-8.818597+0 2.366379-5-1.176049+1 2.372057-5-1.686114+1 2.380573-5-2.309929+1 2.393348-5-3.041362+1 2.414640-5-3.971660+1 2.443730-5-4.930980+1 2.504753-5-6.206756+1 2.542466-5-6.165119+1 2.562198-5-6.652559+1 2.567852-5-6.788832+1 2.596688-5-5.831529+1 2.607617-5-5.182824+1 2.611999-5-4.712383+1 2.630358-5-2.776595+1 2.632681-5-2.467579+1 2.639457-5-1.819478+1 2.640918-5-1.734125+1 2.645689-5-1.569990+1 2.647837-5-1.594998+1 2.650582-5-1.747945+1 2.653594-5-2.043651+1 2.656841-5-2.512678+1 2.659647-5-3.060298+1 2.662234-5-3.722753+1 2.669629-5-6.324278+1 2.671326-5-7.105470+1 2.676377-5-4.946597+1 2.677490-5-4.350378+1 2.683763-5-1.728129+1 2.684378-5-1.440714+1 2.685139-5-1.137786+1 2.686471-5-6.587600+0 2.691052-5 8.470587+0 2.692186-5 1.166078+1 2.694244-5 1.650207+1 2.696112-5 2.013259+1 2.699176-5 2.481777+1 2.702616-5 2.837735+1 2.705490-5 2.997705+1 2.708261-5 3.011304+1 2.714238-5 2.626416+1 2.715823-5 2.426382+1 2.720601-5 1.920115+1 2.727731-5 9.944073+0 2.728543-5 8.764469+0 2.729962-5 7.083530+0 2.737401-5-6.090084-1 2.738991-5-2.467923+0 2.739786-5-3.524594+0 2.740184-5-4.120925+0 2.741017-5-5.653030+0 2.741833-5-6.794124+0 2.743262-5-8.451325+0 2.745406-5-1.053420+1 2.747549-5-1.232313+1 2.750898-5-1.472679+1 2.757353-5-1.847561+1 2.766673-5-2.261254+1 2.781441-5-2.738338+1 2.806931-5-3.303515+1 2.841475-5-3.831878+1 2.888508-5-4.287840+1 2.918033-5-4.397228+1 2.955360-5-4.270624+1 3.048774-5-4.493952+1 3.418025-5-4.811425+1 4.624884-5-5.159989+1 1.009050-4-5.614623+1 1.108350-4-5.901935+1 1.183451-4-5.325344+1 1.223567-4-4.741037+1 1.249396-4-4.097277+1 1.265837-4-3.444606+1 1.276544-4-2.816457+1 1.284026-4-2.204748+1 1.287669-4-1.823945+1 1.291690-4-1.306819+1 1.293157-4-1.082802+1 1.294624-4-8.299261+0 1.296218-4-5.247604+0 1.297014-4-3.605036+0 1.297811-4-1.849958+0 1.298608-4 4.614674-2 1.299205-4 1.584411+0 1.300101-4 4.141063+0 1.300549-4 5.576029+0 1.300998-4 7.179763+0 1.301271-4 8.285778+0 1.301726-4 1.060414+1 1.302079-4 1.207641+1 1.302740-4 1.446109+1 1.307371-4 2.910817+1 1.311555-4 4.509651+1 1.315460-4 5.694119+1 1.317963-4 6.092885+1 1.319945-4 6.008149+1 1.321706-4 5.613498+1 1.323545-4 4.888446+1 1.325821-4 3.509246+1 1.326835-4 2.718111+1 1.327373-4 2.172416+1 1.328875-4 7.787229+0 1.329250-4 4.141710+0 1.329532-4 1.291840+0 1.329954-4-3.264234+0 1.330165-4-5.749541+0 1.330271-4-7.091515+0 1.330477-4-1.008842+1 1.330670-4-1.253700+1 1.331034-4-1.676690+1 1.333043-4-3.918601+1 1.334248-4-5.511601+1 1.334522-4-5.821832+1 1.336727-4-3.381375+1 1.337123-4-2.872920+1 1.337931-4-2.053003+1 1.339987-4-2.216176+0 1.340075-4-1.288606+0 1.340248-4 2.590361-1 1.340583-4 2.899766+0 1.340897-4 5.116834+0 1.341192-4 7.024756+0 1.341744-4 1.023529+1 1.342650-4 1.462905+1 1.343667-4 1.843802+1 1.344881-4 2.154822+1 1.346149-4 2.312105+1 1.347160-4 2.299321+1 1.347766-4 2.196040+1 1.349369-4 1.809502+1 1.349998-4 1.578553+1 1.351400-4 1.129063+1 1.352101-4 8.645280+0 1.352626-4 6.220565+0 1.352802-4 5.162481+0 1.354821-4-5.142859+0 1.355709-4-1.011970+1 1.356131-4-1.297073+1 1.359209-4-3.075479+1 1.359814-4-3.424171+1 1.362050-4-4.504833+1 1.365480-4-5.832283+1 1.366624-4-5.418522+1 1.368472-4-5.175649+1 1.370608-4-5.261616+1 1.372699-4-5.703955+1 1.373097-4-5.836568+1 1.376960-4-3.937504+1 1.378046-4-3.219032+1 1.378460-4-2.875181+1 1.380783-4-1.302531+1 1.381271-4-9.263631+0 1.381537-4-6.715645+0 1.381739-4-5.041173+0 1.384760-4 1.614313+1 1.384984-4 1.799381+1 1.385403-4 2.086963+1 1.386137-4 2.528887+1 1.389202-4 4.141351+1 1.391614-4 4.930795+1 1.394283-4 5.404028+1 1.396758-4 5.504395+1 1.400651-4 4.972786+1 1.404161-4 4.115418+1 1.408163-4 3.053559+1 1.413533-4 1.844180+1 1.414408-4 1.558348+1 1.414978-4 1.406234+1 1.416047-4 1.170803+1 1.416982-4 9.934140+0 1.418619-4 7.230770+0 1.419847-4 5.445108+0 1.421688-4 3.053809+0 1.423530-4 9.291240-1 1.424400-4 4.446527-2 1.426156-4-1.735989+0 1.428782-4-4.070004+0 1.430435-4-5.405223+0 1.433946-4-7.920628+0 1.437934-4-1.034534+1 1.442329-4-1.259156+1 1.450076-4-1.574419+1 1.465271-4-2.025895+1 1.482438-4-2.395030+1 1.503752-4-2.702555+1 1.536000-4-2.980375+1 1.582500-4-3.177772+1 1.753456-4-3.428185+1 2.137225-4-3.680122+1 2.628911-4-3.872307+1 3.145148-4-3.652398+1 3.632625-4-3.541378+1 4.788023-4-3.222831+1 6.390992-4-3.034006+1 7.943282-4-3.043522+1 9.225714-4-3.220618+1 1.006713-3-3.492502+1 1.056209-3-3.789415+1 1.090969-3-4.159764+1 1.112477-3-4.601056+1 1.135435-3-5.543176+1 1.144988-3-5.508446+1 1.174333-3-4.824385+1 1.197458-3-4.152540+1 1.229408-3-3.655224+1 1.277777-3-3.156476+1 1.339811-3-2.701753+1 1.399201-3-2.452756+1 1.438437-3-2.409863+1 1.469748-3-2.494158+1 1.510450-3-2.143962+1 1.553361-3-1.962339+1 1.611110-3-1.860702+1 1.648310-3-1.673785+1 1.715576-3-1.485482+1 1.780558-3-1.407672+1 1.843565-3-1.212768+1 1.930594-3-1.048364+1 2.052048-3-8.863566+0 2.216806-3-7.354655+0 2.405872-3-6.188555+0 2.599692-3-5.394607+0 2.860751-3-4.759355+0 3.198895-3-4.349565+0 3.558546-3-4.226245+0 4.065018-3-4.353734+0 4.636161-3-4.756132+0 5.286111-3-5.479359+0 5.848557-3-6.414661+0 6.266412-3-7.487667+0 6.531306-3-8.567776+0 6.696774-3-9.651292+0 6.798664-3-1.077679+1 6.869004-3-1.220622+1 6.936789-3-1.392011+1 6.973841-3-1.420503+1 7.022298-3-1.346828+1 7.102156-3-1.152574+1 7.182687-3-1.042645+1 7.299154-3-9.709040+0 7.429169-3-9.530693+0 7.515581-3-9.916769+0 7.594772-3-1.051844+1 7.648944-3-1.039171+1 7.798819-3-8.591793+0 7.888863-3-8.156854+0 8.009089-3-8.005505+0 8.091653-3-7.318770+0 8.199035-3-6.279600+0 8.346837-3-5.378326+0 8.548096-3-4.524454+0 8.811586-3-3.698671+0 9.144468-3-2.926594+0 9.478820-3-2.350553+0 9.897431-3-1.804677+0 1.035142-2-1.363727+0 1.074765-2-1.075408+0 1.101334-2-9.172341-1 1.132066-2-7.632963-1 1.161481-2-6.403956-1 1.193273-2-5.303873-1 1.240045-2-4.032693-1 1.285971-2-3.088114-1 1.322855-2-2.483330-1 1.369871-2-1.896115-1 1.404311-2-1.573774-1 1.437022-2-1.352324-1 1.464124-2-1.205885-1 1.501523-2-1.070588-1 1.562248-2-9.886984-2 1.606313-2-9.934103-2 1.666768-2-1.041944-1 1.723558-2-1.174999-1 1.815539-2-1.509316-1 1.947041-2-2.118810-1 2.233283-2-3.712172-1 3.491984-2-1.129263+0 3.918370-2-1.439349+0 4.227558-2-1.746481+0 4.436365-2-2.052949+0 4.581802-2-2.382850+0 4.673411-2-2.712519+0 4.735409-2-3.080931+0 4.779736-2-3.553030+0 4.836187-2-4.348906+0 4.859645-2-4.429123+0 4.884736-2-4.222095+0 4.954366-2-3.157742+0 4.999700-2-2.725311+0 5.062616-2-2.347227+0 5.148391-2-2.002071+0 5.277205-2-1.647994+0 5.419600-2-1.369916+0 5.578368-2-1.143061+0 5.757498-2-9.532489-1 5.995182-2-7.704292-1 6.179901-2-6.594544-1 6.459760-2-5.308358-1 6.628362-2-4.685109-1 6.929602-2-3.831828-1 7.123531-2-3.397799-1 7.332280-2-3.012975-1 7.697314-2-2.515014-1 7.924567-2-2.283424-1 8.337444-2-1.986562-1 8.732225-2-1.802395-1 9.151127-2-1.675596-1 9.625944-2-1.608033-1 1.038475-1-1.616017-1 1.170383-1-1.769840-1 1.753817-1-2.865984-1 2.186776-1-3.465103-1 2.820942-1-4.037864-1 3.762756-1-4.512331-1 5.500354-1-4.906528-1 9.197544-1-5.161481-1 2.814822+0-5.287368-1 8.500626+0-5.308044-1 1.000000+1-5.305052-1 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.022394-1 1.053569-6 1.308492-1 1.092367-6 1.557289-1 1.128740-6 1.827869-1 1.194809-6 2.427639-1 1.252877-6 3.098002-1 1.303913-6 3.827816-1 1.327065-6 4.214146-1 1.370474-6 5.038824-1 1.408457-6 5.885395-1 1.441692-6 6.742084-1 1.470773-6 7.593949-1 1.496218-6 8.431687-1 1.518483-6 9.253278-1 1.557447-6 1.089774+0 1.586670-6 1.233552+0 1.608587-6 1.356895+0 1.641463-6 1.569354+0 1.657900-6 1.690065+0 1.682581-6 1.895642+0 1.707308-6 2.137486+0 1.727914-6 2.374313+0 1.744398-6 2.593981+0 1.756762-6 2.781300+0 1.770841-6 3.024049+0 1.783161-6 3.269234+0 1.793940-6 3.517155+0 1.803372-6 3.768304+0 1.811625-6 4.023370+0 1.818847-6 4.283383+0 1.825166-6 4.549744+0 1.830695-6 4.823958+0 1.835532-6 5.106980+0 1.843469-6 5.696374+0 1.849951-6 6.342143+0 1.854813-6 6.956406+0 1.858459-6 7.503120+0 1.863244-6 8.341015+0 1.873998-6 1.067363+1 1.878600-6 1.177684+1 1.883201-6 1.284745+1 1.884351-6 1.309936+1 1.887802-6 1.379203+1 1.888953-6 1.399643+1 1.892404-6 1.450761+1 1.893554-6 1.463890+1 1.895279-6 1.479433+1 1.897005-6 1.489626+1 1.898155-6 1.493272+1 1.899881-6 1.493799+1 1.901606-6 1.488205+1 1.903907-6 1.471013+1 1.906207-6 1.442680+1 1.908508-6 1.403490+1 1.910521-6 1.360759+1 1.912175-6 1.320198+1 1.913792-6 1.276174+1 1.915698-6 1.219429+1 1.920155-6 1.070642+1 1.922213-6 9.969210+0 1.924756-6 9.039156+0 1.926917-6 8.248563+0 1.927922-6 7.884952+0 1.930142-6 7.098443+0 1.932463-6 6.312439+0 1.934988-6 5.513325+0 1.938109-6 4.625162+0 1.943505-6 3.390819+0 1.946269-6 2.915335+0 1.948041-6 2.665857+0 1.949478-6 2.494417+0 1.950849-6 2.355579+0 1.952220-6 2.240009+0 1.953047-6 2.181125+0 1.953991-6 2.123460+0 1.955406-6 2.055205+0 1.956822-6 2.007613+0 1.957972-6 1.983177+0 1.959697-6 1.968667+0 1.960560-6 1.970671+0 1.961646-6 1.981316+0 1.962973-6 2.005762+0 1.963842-6 2.028070+0 1.965553-6 2.085244+0 1.967210-6 2.155656+0 2.018575-6 6.952444+0 2.023544-6 7.587888+0 2.026028-6 7.905453+0 2.028512-6 8.216823+0 2.033481-6 8.797891+0 2.034723-6 8.929757+0 2.038449-6 9.279343+0 2.039691-6 9.377616+0 2.043418-6 9.605954+0 2.044660-6 9.657370+0 2.046523-6 9.709049+0 2.048386-6 9.728584+0 2.049628-6 9.723037+0 2.051491-6 9.686134+0 2.053355-6 9.614505+0 2.055839-6 9.465151+0 2.058323-6 9.256002+0 2.060807-6 8.990746+0 2.063292-6 8.674895+0 2.063913-6 8.588834+0 2.067717-6 8.010180+0 2.068881-6 7.818569+0 2.073539-6 7.012768+0 2.075140-6 6.729731+0 2.078818-6 6.089753+0 2.085688-6 5.021697+0 2.088134-6 4.706462+0 2.090308-6 4.461867+0 2.092404-6 4.260002+0 2.093102-6 4.200369+0 2.095587-6 4.019855+0 2.097450-6 3.916787+0 2.098692-6 3.863286+0 2.101952-6 3.778895+0 2.103039-6 3.768061+0 2.108008-6 3.818233+0 2.109250-6 3.853872+0 2.112976-6 4.007456+0 2.115460-6 4.143115+0 2.118692-6 4.351159+0 2.131407-6 5.368647+0 2.136547-6 5.815388+0 2.213634-6 1.253932+1 2.224531-6 1.364420+1 2.229980-6 1.419467+1 2.235429-6 1.472574+1 2.240877-6 1.522358+1 2.246326-6 1.567781+1 2.251774-6 1.608454+1 2.257223-6 1.644852+1 2.273569-6 1.746089+1 2.279017-6 1.785847+1 2.284466-6 1.833060+1 2.289914-6 1.889703+1 2.295363-6 1.956969+1 2.300811-6 2.035233+1 2.306260-6 2.124180+1 2.317157-6 2.330670+1 2.359817-6 3.414271+1 2.370434-6 3.760512+1 2.380388-6 4.125692+1 2.389720-6 4.511358+1 2.398468-6 4.918597+1 2.406670-6 5.348311+1 2.414359-6 5.801339+1 2.421568-6 6.278494+1 2.428325-6 6.780571+1 2.434661-6 7.308358+1 2.440601-6 7.862658+1 2.446169-6 8.444361+1 2.451389-6 9.054524+1 2.456283-6 9.694469+1 2.465460-6 1.112055+2 2.473489-6 1.269990+2 2.480515-6 1.445165+2 2.486662-6 1.638723+2 2.492041-6 1.850256+2 2.496748-6 2.077504+2 2.500866-6 2.316612+2 2.504470-6 2.562735+2 2.507623-6 2.810739+2 2.510382-6 3.055780+2 2.514908-6 3.521187+2 2.521377-6 4.340505+2 2.531543-6 6.037742+2 2.535921-6 6.924856+2 2.539035-6 7.607535+2 2.542148-6 8.327420+2 2.548374-6 9.847799+2 2.549153-6 1.004242+3 2.554601-6 1.140511+3 2.556741-6 1.193019+3 2.560827-6 1.289187+3 2.562968-6 1.336449+3 2.565011-6 1.378938+3 2.567054-6 1.418410+3 2.569778-6 1.465597+3 2.572405-6 1.504382+3 2.574837-6 1.533723+3 2.576880-6 1.553080+3 2.579507-6 1.570418+3 2.583009-6 1.579657+3 2.585928-6 1.574866+3 2.587012-6 1.570172+3 2.590104-6 1.548192+3 2.592968-6 1.516796+3 2.595377-6 1.482563+3 2.598355-6 1.431088+3 2.600504-6 1.388213+3 2.604608-6 1.294859+3 2.606851-6 1.238492+3 2.608509-6 1.194916+3 2.611418-6 1.115318+3 2.614185-6 1.037060+3 2.616866-6 9.599879+2 2.619590-6 8.815548+2 2.622436-6 8.005818+2 2.626206-6 6.965970+2 2.628930-6 6.248809+2 2.629708-6 6.050302+2 2.633357-6 5.163034+2 2.635546-6 4.668039+2 2.642161-6 3.360737+2 2.644168-6 3.022732+2 2.647999-6 2.453831+2 2.654980-6 1.667343+2 2.657399-6 1.466293+2 2.659479-6 1.321073+2 2.660996-6 1.230701+2 2.662478-6 1.154802+2 2.664043-6 1.087514+2 2.664987-6 1.053147+2 2.665921-6 1.023732+2 2.666840-6 9.991371+1 2.667745-6 9.790979+1 2.668635-6 9.633694+1 2.670389-6 9.438494+1 2.672087-6 9.392401+1 2.675378-6 9.699430+1 2.687720-6 1.569134+2 2.692348-6 2.018928+2 2.703041-6 3.690932+2 2.708128-6 4.885613+2 2.712022-6 6.019156+2 2.715004-6 7.032678+2 2.719265-6 8.724590+2 2.722433-6 1.018392+3 2.725949-6 1.202041+3 2.729387-6 1.404707+3 2.731451-6 1.537569+3 2.734804-6 1.771710+3 2.738157-6 2.028130+3 2.745283-6 2.642105+3 2.746855-6 2.788788+3 2.750391-6 3.130905+3 2.752775-6 3.369212+3 2.754151-6 3.508806+3 2.758277-6 3.932986+3 2.761683-6 4.283718+3 2.764984-6 4.617914+3 2.768389-6 4.950342+3 2.771690-6 5.254195+3 2.774624-6 5.504107+3 2.777866-6 5.752982+3 2.778816-6 5.819740+3 2.782746-6 6.062780+3 2.785814-6 6.211974+3 2.789389-6 6.336843+3 2.792295-6 6.397538+3 2.798726-6 6.398338+3 2.800560-6 6.365156+3 2.805510-6 6.205239+3 2.808023-6 6.087281+3 2.810819-6 5.929683+3 2.812617-6 5.814973+3 2.815780-6 5.590492+3 2.819067-6 5.331145+3 2.821813-6 5.098165+3 2.825343-6 4.782393+3 2.828696-6 4.471361+3 2.832050-6 4.155319+3 2.835822-6 3.800280+3 2.838756-6 3.528589+3 2.846101-6 2.883473+3 2.847298-6 2.784684+3 2.855673-6 2.154725+3 2.861345-6 1.794520+3 2.876303-6 1.096761+3 2.879741-6 9.820734+2 2.883180-6 8.816382+2 2.886618-6 7.940064+2 2.890056-6 7.177543+2 2.893494-6 6.515189+2 2.896933-6 5.940243+2 2.900371-6 5.440988+2 2.903809-6 5.006845+2 2.910686-6 4.297435+2 2.917562-6 3.750315+2 2.924439-6 3.320009+2 2.931315-6 2.974145+2 2.937775-6 2.705953+2 2.944033-6 2.485860+2 2.950095-6 2.301841+2 2.955968-6 2.145618+2 2.967346-6 1.891087+2 2.978013-6 1.696570+2 2.988014-6 1.543461+2 2.997389-6 1.420179+2 3.006179-6 1.319090+2 3.014419-6 1.234937+2 3.029869-6 1.099658+2 3.043388-6 1.000558+2 3.055217-6 9.255636+1 3.065568-6 8.673816+1 3.083681-6 7.792635+1 3.097266-6 7.225552+1 3.117644-6 6.494186+1 3.138022-6 5.877154+1 3.161193-6 5.285220+1 3.184365-6 4.786313+1 3.207536-6 4.360878+1 3.238432-6 3.882620+1 3.269327-6 3.483550+1 3.292498-6 3.225159+1 3.385326-6 2.408577+1 3.429452-6 2.092979+1 3.437851-6 2.043437+1 3.446251-6 2.000202+1 3.454651-6 1.964394+1 3.462499-6 1.938213+1 3.470347-6 1.919013+1 3.479850-6 1.904068+1 3.496650-6 1.892042+1 3.514751-6 1.880168+1 3.521657-6 1.871263+1 3.528563-6 1.858674+1 3.538649-6 1.833130+1 3.547049-6 1.805665+1 3.555449-6 1.773498+1 3.572248-6 1.700090+1 3.623456-6 1.476694+1 3.694051-6 1.230039+1 3.729297-6 1.122779+1 3.738960-6 1.097890+1 3.747942-6 1.077419+1 3.759756-6 1.054807+1 3.774888-6 1.032742+1 3.813509-6 9.928046+0 3.822648-6 9.814935+0 3.834045-6 9.641938+0 3.847751-6 9.379329+0 3.856863-6 9.171600+0 3.865975-6 8.940132+0 3.884199-6 8.425270+0 3.910584-6 7.662522+0 3.920162-6 7.420302+0 3.929740-6 7.215155+0 3.939319-6 7.056272+0 3.945921-6 6.976578+0 3.952524-6 6.921637+0 3.960289-6 6.887064+0 3.968053-6 6.880810+0 3.977632-6 6.902175+0 3.996788-6 6.979401+0 4.006367-6 7.001973+0 4.013550-6 7.000556+0 4.024326-6 6.960363+0 4.035101-6 6.869968+0 4.045271-6 6.739491+0 4.055035-6 6.577188+0 4.074565-6 6.165487+0 4.082993-6 5.959840+0 4.098453-6 5.549009+0 4.113623-6 5.110399+0 4.123388-6 4.811695+0 4.133153-6 4.501147+0 4.142917-6 4.179532+0 4.152682-6 3.847915+0 4.162446-6 3.508131+0 4.176374-6 3.016525+0 4.183337-6 2.772785+0 4.190311-6 2.535077+0 4.206080-6 2.052715+0 4.210939-6 1.930837+0 4.215266-6 1.838118+0 4.221852-6 1.733044+0 4.227010-6 1.688341+0 4.229589-6 1.680702+0 4.232168-6 1.684085+0 4.234486-6 1.697328+0 4.236910-6 1.722307+0 4.240545-6 1.782971+0 4.243272-6 1.848315+0 4.245568-6 1.917612+0 4.252852-6 2.233161+0 4.256009-6 2.419818+0 4.261475-6 2.822773+0 4.265788-6 3.218154+0 4.272583-6 3.992854+0 4.283727-6 5.706129+0 4.290172-6 6.967087+0 4.295477-6 8.158995+0 4.302411-6 9.925252+0 4.306961-6 1.120825+1 4.312060-6 1.275546+1 4.316731-6 1.426554+1 4.321498-6 1.588619+1 4.326512-6 1.766181+1 4.330658-6 1.917135+1 4.335163-6 2.083803+1 4.340367-6 2.277432+1 4.341941-6 2.335828+1 4.348088-6 2.560704+1 4.353370-6 2.747021+1 4.357267-6 2.878280+1 4.362655-6 3.048338+1 4.364450-6 3.101578+1 4.375321-6 3.379148+1 4.376615-6 3.406464+1 4.385674-6 3.559253+1 4.389677-6 3.604306+1 4.393499-6 3.634066+1 4.398850-6 3.653975+1 4.404231-6 3.648877+1 4.408624-6 3.626798+1 4.414391-6 3.574984+1 4.419952-6 3.502717+1 4.421806-6 3.474235+1 4.427779-6 3.369321+1 4.434013-6 3.241700+1 4.436091-6 3.195820+1 4.443970-6 3.010666+1 4.446596-6 2.946055+1 4.457101-6 2.681263+1 4.461070-6 2.581038+1 4.476827-6 2.200537+1 4.497425-6 1.780568+1 4.506006-6 1.636971+1 4.516490-6 1.485890+1 4.525476-6 1.375911+1 4.535886-6 1.268194+1 4.544239-6 1.194920+1 4.556768-6 1.103263+1 4.569297-6 1.029468+1 4.582916-6 9.653164+0 4.596534-6 9.144879+0 4.605212-6 8.877696+0 4.618229-6 8.543758+0 4.631247-6 8.272058+0 4.647950-6 7.982294+0 4.677805-6 7.511789+0 4.685698-6 7.379251+0 4.700707-6 7.105981+0 4.710853-6 6.903996+0 4.729439-6 6.500914+0 4.743582-6 6.172038+0 4.762153-6 5.723093+0 4.774316-6 5.425062+0 4.806178-6 4.680165+0 4.814670-6 4.510025+0 4.823136-6 4.364815+0 4.829436-6 4.277898+0 4.842628-6 4.174495+0 4.847126-6 4.169141+0 4.859164-6 4.246102+0 4.862220-6 4.288937+0 4.871386-6 4.478820+0 4.874662-6 4.569643+0 4.879577-6 4.728697+0 4.884492-6 4.914726+0 4.890820-6 5.192214+0 4.899862-6 5.655784+0 4.918363-6 6.777591+0 4.928840-6 7.450947+0 4.931568-6 7.623414+0 4.943141-6 8.314465+0 4.945993-6 8.470341+0 4.954550-6 8.891151+0 4.959439-6 9.095094+0 4.968772-6 9.400104+0 4.972172-6 9.481933+0 4.978122-6 9.586256+0 4.983815-6 9.639697+0 4.990357-6 9.646412+0 4.996125-6 9.606157+0 5.002436-6 9.516304+0 5.010006-6 9.352272+0 5.012991-6 9.272728+0 5.025240-6 8.875555+0 5.036191-6 8.451505+0 5.060024-6 7.449421+0 5.079188-6 6.692386+0 5.086826-6 6.423502+0 5.107082-6 5.834062+0 5.111577-6 5.730705+0 5.125152-6 5.484920+0 5.138208-6 5.345999+0 5.145477-6 5.310214+0 5.152211-6 5.302697+0 5.159053-6 5.318902+0 5.164963-6 5.350702+0 5.176322-6 5.451447+0 5.190148-6 5.624622+0 5.213297-6 5.948915+0 5.225973-6 6.095910+0 5.230528-6 6.137834+0 5.241860-6 6.211551+0 5.247368-6 6.230570+0 5.255630-6 6.238397+0 5.263892-6 6.222877+0 5.274915-6 6.171282+0 5.286775-6 6.087303+0 5.319023-6 5.822740+0 5.336427-6 5.716681+0 5.349139-6 5.666631+0 5.361958-6 5.637148+0 5.388743-6 5.616561+0 5.425250-6 5.597447+0 5.456506-6 5.555138+0 5.558061-6 5.385346+0 5.616511-6 5.271987+0 5.685381-6 5.119973+0 5.731284-6 5.041726+0 6.091292-6 4.588576+0 6.717599-6 3.914964+0 7.140847-6 3.570403+0 7.702730-6 3.133745+0 8.687881-6 2.481509+0 8.934166-6 2.319355+0 9.149666-6 2.173037+0 9.338228-6 2.037582+0 9.503220-6 1.912612+0 9.660509-6 1.788301+0 9.773910-6 1.695920+0 9.885531-6 1.602707+0 1.002064-5 1.487616+0 1.015203-5 1.375323+0 1.032529-5 1.238141+0 1.036690-5 1.210300+0 1.040331-5 1.188865+0 1.043516-5 1.172928+0 1.048743-5 1.153783+0 1.052745-5 1.146089+0 1.057059-5 1.146025+0 1.059950-5 1.152147+0 1.062662-5 1.164155+0 1.065219-5 1.183280+0 1.067456-5 1.208718+0 1.069095-5 1.234332+0 1.070079-5 1.253256+0 1.071063-5 1.275352+0 1.072375-5 1.310611+0 1.073686-5 1.353802+0 1.074998-5 1.406663+0 1.076310-5 1.471345+0 1.077621-5 1.550514+0 1.078933-5 1.647469+0 1.080245-5 1.766271+0 1.081557-5 1.911894+0 1.082868-5 2.090379+0 1.084180-5 2.308993+0 1.085492-5 2.576376+0 1.086803-5 2.902676+0 1.088115-5 3.299646+0 1.089427-5 3.780696+0 1.090738-5 4.360876+0 1.092050-5 5.056777+0 1.093690-5 6.116813+0 1.098584-5 1.089418+1 1.100726-5 1.392387+1 1.102114-5 1.623959+1 1.102947-5 1.776710+1 1.104301-5 2.047329+1 1.105655-5 2.345314+1 1.108533-5 3.063088+1 1.109167-5 3.235074+1 1.111071-5 3.773918+1 1.112113-5 4.079565+1 1.113780-5 4.575680+1 1.115145-5 4.981207+1 1.116162-5 5.277339+1 1.117090-5 5.540147+1 1.118284-5 5.863002+1 1.119132-5 6.079348+1 1.120345-5 6.365048+1 1.121465-5 6.600126+1 1.122073-5 6.714479+1 1.123660-5 6.964444+1 1.124899-5 7.106336+1 1.126203-5 7.201275+1 1.127460-5 7.237822+1 1.130154-5 7.132147+1 1.131346-5 7.007674+1 1.132905-5 6.778518+1 1.133986-5 6.579529+1 1.134898-5 6.389116+1 1.135783-5 6.186544+1 1.136820-5 5.930340+1 1.138152-5 5.576799+1 1.139337-5 5.246095+1 1.140480-5 4.918472+1 1.142215-5 4.416820+1 1.143569-5 4.032110+1 1.145684-5 3.463565+1 1.149155-5 2.678374+1 1.150243-5 2.482051+1 1.151113-5 2.344774+1 1.152000-5 2.223755+1 1.152588-5 2.154318+1 1.153381-5 2.074572+1 1.154210-5 2.008599+1 1.154900-5 1.967245+1 1.155533-5 1.940243+1 1.155797-5 1.932065+1 1.157685-5 1.925377+1 1.158451-5 1.948022+1 1.159196-5 1.983540+1 1.160083-5 2.042547+1 1.160980-5 2.119605+1 1.161835-5 2.208516+1 1.163597-5 2.433917+1 1.166469-5 2.897102+1 1.168484-5 3.266485+1 1.170159-5 3.583267+1 1.171666-5 3.864484+1 1.173426-5 4.175897+1 1.174743-5 4.388971+1 1.175227-5 4.461996+1 1.176610-5 4.651540+1 1.177528-5 4.760284+1 1.180372-5 4.998246+1 1.181605-5 5.051489+1 1.183578-5 5.071990+1 1.185057-5 5.036400+1 1.186491-5 4.962743+1 1.187765-5 4.867612+1 1.188585-5 4.793106+1 1.189404-5 4.709163+1 1.191038-5 4.517300+1 1.191582-5 4.447139+1 1.192997-5 4.253423+1 1.194411-5 4.047122+1 1.195118-5 3.940802+1 1.197239-5 3.616139+1 1.200068-5 3.189014+1 1.206884-5 2.314371+1 1.208704-5 2.132120+1 1.209797-5 2.033525+1 1.211253-5 1.914052+1 1.212710-5 1.807428+1 1.215623-5 1.628165+1 1.218536-5 1.485867+1 1.221450-5 1.370843+1 1.224363-5 1.274931+1 1.227276-5 1.192083+1 1.230269-5 1.116437+1 1.236016-5 9.904406+0 1.241842-5 8.843952+0 1.246483-5 8.145972+0 1.250000-5 7.696603+0 1.253765-5 7.282150+0 1.257241-5 6.951379+0 1.262454-5 6.529485+0 1.270788-5 5.987899+0 1.280149-5 5.507087+0 1.290018-5 5.095918+0 1.299543-5 4.764872+0 1.312524-5 4.387714+0 1.326659-5 4.045029+0 1.343997-5 3.690877+0 1.364308-5 3.343474+0 1.401450-5 2.819011+0 1.427916-5 2.486884+0 1.436163-5 2.404087+0 1.438122-5 2.388962+0 1.445440-5 2.356682+0 1.448742-5 2.357175+0 1.452281-5 2.368818+0 1.457333-5 2.402885+0 1.466440-5 2.485835+0 1.469980-5 2.510351+0 1.473520-5 2.522644+0 1.477945-5 2.515520+0 1.481042-5 2.494315+0 1.484651-5 2.453687+0 1.488924-5 2.387633+0 1.494759-5 2.279804+0 1.502573-5 2.138750+0 1.506986-5 2.075221+0 1.510668-5 2.035147+0 1.513561-5 2.012499+0 1.515874-5 1.999920+0 1.520446-5 1.988492+0 1.523942-5 1.990334+0 1.526040-5 1.995128+0 1.530543-5 2.012802+0 1.545521-5 2.100806+0 1.551360-5 2.124659+0 1.553584-5 2.129140+0 1.558830-5 2.126777+0 1.563210-5 2.109713+0 1.567686-5 2.078809+0 1.573568-5 2.022610+0 1.585647-5 1.894338+0 1.587606-5 1.876619+0 1.593571-5 1.833381+0 1.598707-5 1.810537+0 1.601809-5 1.803092+0 1.607654-5 1.800445+0 1.613125-5 1.808667+0 1.620248-5 1.829865+0 1.631290-5 1.876783+0 1.647817-5 1.966584+0 1.677820-5 2.151048+0 1.686141-5 2.211390+0 1.693643-5 2.277191+0 1.701586-5 2.363174+0 1.706269-5 2.422645+0 1.714631-5 2.544447+0 1.735063-5 2.904976+0 1.752317-5 3.256390+0 1.778132-5 3.870608+0 1.821158-5 5.159924+0 1.844876-5 6.047286+0 1.867415-5 7.051018+0 1.894461-5 8.479604+0 1.916999-5 9.888826+0 1.953354-5 1.268387+1 1.983243-5 1.558087+1 2.018366-5 1.990314+1 2.037617-5 2.278259+1 2.053600-5 2.551308+1 2.074098-5 2.954227+1 2.096558-5 3.476771+1 2.107264-5 3.762082+1 2.128008-5 4.394508+1 2.147455-5 5.099414+1 2.165687-5 5.881370+1 2.182779-5 6.745490+1 2.198803-5 7.697279+1 2.213826-5 8.742259+1 2.227909-5 9.885431+1 2.241113-5 1.113129+2 2.253491-5 1.248415+2 2.265095-5 1.394836+2 2.275974-5 1.552828+2 2.286174-5 1.722806+2 2.295736-5 1.905157+2 2.304700-5 2.100215+2 2.313104-5 2.308237+2 2.320982-5 2.529387+2 2.328369-5 2.763754+2 2.337491-5 3.096385+2 2.344229-5 3.378710+2 2.353577-5 3.833976+2 2.358926-5 4.134567+2 2.363941-5 4.448132+2 2.368642-5 4.774461+2 2.377458-5 5.489104+2 2.385171-5 6.254842+2 2.391920-5 7.068397+2 2.397825-5 7.924997+2 2.402992-5 8.817776+2 2.407514-5 9.737656+2 2.411470-5 1.067376+3 2.414932-5 1.161417+3 2.417961-5 1.254680+3 2.423261-5 1.447756+3 2.427237-5 1.623010+3 2.430218-5 1.775255+3 2.432454-5 1.902958+3 2.435809-5 2.119333+3 2.439163-5 2.369824+3 2.445167-5 2.920749+3 2.449670-5 3.438303+3 2.457174-5 4.548837+3 2.469182-5 7.144160+3 2.474704-5 8.738227+3 2.476086-5 9.179473+3 2.485763-5 1.272997+4 2.491851-5 1.532707+4 2.492612-5 1.566679+4 2.497939-5 1.810540+4 2.501628-5 1.982160+4 2.505954-5 2.180590+4 2.508592-5 2.297392+4 2.511555-5 2.422300+4 2.514825-5 2.549755+4 2.517211-5 2.634141+4 2.519838-5 2.717072+4 2.522977-5 2.800579+4 2.527108-5 2.881186+4 2.530022-5 2.916208+4 2.533202-5 2.932604+4 2.536389-5 2.925692+4 2.539374-5 2.898092+4 2.542459-5 2.848736+4 2.544099-5 2.814237+4 2.547605-5 2.722565+4 2.550463-5 2.631364+4 2.553233-5 2.530660+4 2.556282-5 2.408015+4 2.559237-5 2.279682+4 2.561720-5 2.166432+4 2.564912-5 2.015979+4 2.567956-5 1.869902+4 2.571001-5 1.723700+4 2.574425-5 1.561741+4 2.577089-5 1.439254+4 2.583177-5 1.176465+4 2.587268-5 1.016750+4 2.589266-5 9.442968+3 2.593832-5 7.929934+3 2.599163-5 6.416425+3 2.606496-5 4.756289+3 2.612574-5 3.707166+3 2.616130-5 3.210365+3 2.619242-5 2.836816+3 2.621965-5 2.551408+3 2.624347-5 2.329970+3 2.628517-5 1.997866+3 2.631644-5 1.788573+3 2.636334-5 1.527126+3 2.641025-5 1.316512+3 2.644275-5 1.194346+3 2.647525-5 1.088053+3 2.654026-5 9.131811+2 2.660725-5 7.723120+2 2.667073-5 6.651229+2 2.673622-5 5.740985+2 2.680170-5 4.979857+2 2.706364-5 2.870585+2 2.716751-5 2.296796+2 2.726010-5 1.866457+2 2.745656-5 1.146100+2 2.752969-5 9.339524+1 2.766521-5 6.140356+1 2.773297-5 4.890088+1 2.783462-5 3.439931+1 2.788544-5 2.898901+1 2.791085-5 2.672328+1 2.793626-5 2.474143+1 2.795320-5 2.357451+1 2.797861-5 2.205079+1 2.800402-5 2.079388+1 2.803790-5 1.952515+1 2.805484-5 1.906339+1 2.807178-5 1.871642+1 2.808656-5 1.850778+1 2.810068-5 1.839123+1 2.811901-5 1.836204+1 2.813748-5 1.847542+1 2.815072-5 1.864756+1 2.815911-5 1.879695+1 2.817380-5 1.913600+1 2.820683-5 2.028051+1 2.822312-5 2.105411+1 2.823087-5 2.147436+1 2.824464-5 2.230840+1 2.826635-5 2.386698+1 2.829039-5 2.597490+1 2.830265-5 2.722062+1 2.832349-5 2.963422+1 2.834690-5 3.283716+1 2.836646-5 3.596516+1 2.839159-5 4.068202+1 2.843497-5 5.103190+1 2.846750-5 6.106711+1 2.848908-5 6.904214+1 2.852667-5 8.597173+1 2.856426-5 1.076259+2 2.860760-5 1.400395+2 2.873760-5 3.099084+2 2.879105-5 4.265277+2 2.883409-5 5.482150+2 2.886585-5 6.568749+2 2.889456-5 7.707138+2 2.893363-5 9.521453+2 2.897398-5 1.175144+3 2.911670-5 2.300861+3 2.913844-5 2.521735+3 2.917532-5 2.926331+3 2.920160-5 3.236502+3 2.926624-5 4.068213+3 2.929101-5 4.408539+3 2.931498-5 4.746539+3 2.934466-5 5.173389+3 2.937941-5 5.679220+3 2.940864-5 6.104009+3 2.943992-5 6.551530+3 2.947364-5 7.018391+3 2.950925-5 7.484440+3 2.954208-5 7.881190+3 2.958703-5 8.359329+3 2.962068-5 8.658868+3 2.964194-5 8.819209+3 2.967522-5 9.021903+3 2.970668-5 9.156453+3 2.972713-5 9.213217+3 2.976130-5 9.253320+3 2.978915-5 9.235550+3 2.982191-5 9.157963+3 2.985323-5 9.028930+3 2.988027-5 8.877014+3 2.991063-5 8.665208+3 2.994686-5 8.361465+3 2.996860-5 8.155856+3 3.000505-5 7.778017+3 3.004020-5 7.382182+3 3.008366-5 6.862967+3 3.012421-5 6.361543+3 3.017048-5 5.784865+3 3.018590-5 5.594121+3 3.025739-5 4.738130+3 3.031151-5 4.137504+3 3.036909-5 3.557910+3 3.054412-5 2.218494+3 3.059603-5 1.937776+3 3.064282-5 1.723782+3 3.067703-5 1.588249+3 3.070347-5 1.494357+3 3.074869-5 1.353430+3 3.080000-5 1.219528+3 3.086096-5 1.089918+3 3.090664-5 1.009759+3 3.100363-5 8.756554+2 3.108759-5 7.881743+2 3.118522-5 7.087097+2 3.130049-5 6.354984+2 3.143912-5 5.667914+2 3.156901-5 5.152150+2 3.170193-5 4.712969+2 3.187604-5 4.232832+2 3.210966-5 3.705746+2 3.226773-5 3.408205+2 3.242580-5 3.155600+2 3.251578-5 3.032432+2 3.268461-5 2.842467+2 3.275916-5 2.775385+2 3.284122-5 2.713011+2 3.304416-5 2.607451+2 3.317760-5 2.572324+2 3.326956-5 2.560994+2 3.358976-5 2.555343+2 3.366952-5 2.550218+2 3.380801-5 2.530170+2 3.391042-5 2.506570+2 3.445453-5 2.350609+2 3.475590-5 2.288124+2 3.519557-5 2.208815+2 3.578383-5 2.098332+2 3.635068-5 2.005516+2 3.723382-5 1.885028+2 3.852563-5 1.743083+2 3.996347-5 1.616597+2 4.120975-5 1.524642+2 4.270071-5 1.431412+2 4.510159-5 1.307054+2 5.036737-5 1.102010+2 5.098724-5 1.085046+2 5.186700-5 1.073197+2 5.231109-5 1.062707+2 5.297910-5 1.042525+2 5.360277-5 1.027252+2 5.570942-5 9.844869+1 5.800000-5 9.456855+1 6.008830-5 9.176833+1 6.255327-5 8.918694+1 6.553600-5 8.696542+1 6.960070-5 8.547316+1 7.310489-5 8.509478+1 7.680000-5 8.537545+1 8.810489-5 8.735341+1 9.170955-5 8.758560+1 9.470250-5 8.747152+1 9.680985-5 8.716533+1 9.903030-5 8.659789+1 1.016913-4 8.548877+1 1.040738-4 8.409046+1 1.060325-4 8.263712+1 1.078707-4 8.097790+1 1.095959-4 7.917664+1 1.119866-4 7.629877+1 1.151481-4 7.215530+1 1.161449-4 7.194423+1 1.163923-4 7.218990+1 1.171793-4 7.390617+1 1.180437-4 7.717529+1 1.188682-4 8.120506+1 1.196546-4 8.571020+1 1.204019-4 9.061960+1 1.211315-4 9.609509+1 1.220000-4 1.036578+2 1.224742-4 1.083515+2 1.233009-4 1.176635+2 1.240767-4 1.279505+2 1.248048-4 1.392697+2 1.254880-4 1.516812+2 1.261293-4 1.652413+2 1.267311-4 1.799985+2 1.273615-4 1.980066+2 1.278427-4 2.138575+2 1.284701-4 2.378615+2 1.288400-4 2.541232+2 1.292629-4 2.750122+2 1.296783-4 2.983422+2 1.300679-4 3.232053+2 1.304330-4 3.496251+2 1.307754-4 3.776174+2 1.310964-4 4.071925+2 1.315000-4 4.498619+2 1.319438-4 5.054744+2 1.323576-4 5.678308+2 1.326421-4 6.182324+2 1.330379-4 7.016281+2 1.334329-4 8.055256+2 1.337112-4 8.957276+2 1.339862-4 1.003510+3 1.342267-4 1.117663+3 1.344372-4 1.236963+3 1.346214-4 1.359757+3 1.347826-4 1.484133+3 1.349236-4 1.608114+3 1.351704-4 1.865451+3 1.353555-4 2.098343+3 1.354943-4 2.299220+3 1.357025-4 2.648696+3 1.359107-4 3.063759+3 1.367031-4 5.385922+3 1.369143-4 6.230440+3 1.370401-4 6.779845+3 1.372301-4 7.673486+3 1.374174-4 8.622876+3 1.377540-4 1.046952+4 1.377960-4 1.070985+4 1.380905-4 1.242091+4 1.382062-4 1.309521+4 1.384271-4 1.435738+4 1.385275-4 1.491075+4 1.386982-4 1.580752+4 1.388290-4 1.644523+4 1.389357-4 1.692754+4 1.390758-4 1.749949+4 1.392222-4 1.801290+4 1.393916-4 1.848649+4 1.394579-4 1.863367+4 1.396551-4 1.893689+4 1.398043-4 1.902644+4 1.400097-4 1.894730+4 1.401581-4 1.874482+4 1.402939-4 1.845598+4 1.404622-4 1.796803+4 1.405672-4 1.759585+4 1.407982-4 1.661560+4 1.409503-4 1.586796+4 1.411092-4 1.502050+4 1.412632-4 1.415289+4 1.414248-4 1.321407+4 1.416145-4 1.210522+4 1.418206-4 1.093052+4 1.423083-4 8.506195+3 1.424660-4 7.884805+3 1.428134-4 6.875369+3 1.429231-4 6.666692+3 1.429794-4 6.580403+3 1.431063-4 6.438380+3 1.431855-4 6.385891+3 1.432876-4 6.358473+3 1.433925-4 6.375969+3 1.435042-4 6.443145+3 1.436231-4 6.566367+3 1.437563-4 6.762306+3 1.439003-4 7.034883+3 1.440878-4 7.468451+3 1.445590-4 8.794040+3 1.447835-4 9.454450+3 1.449691-4 9.972308+3 1.451396-4 1.040596+4 1.453136-4 1.079113+4 1.454869-4 1.110494+4 1.456536-4 1.133214+4 1.457252-4 1.140567+4 1.459715-4 1.154375+4 1.460829-4 1.154692+4 1.462422-4 1.148822+4 1.463446-4 1.141235+4 1.465144-4 1.122420+4 1.466324-4 1.105069+4 1.467874-4 1.077485+4 1.469367-4 1.046305+4 1.471610-4 9.925334+3 1.473354-4 9.462448+3 1.475535-4 8.847263+3 1.476851-4 8.464409+3 1.480333-4 7.443852+3 1.482118-4 6.932138+3 1.486419-4 5.781220+3 1.494157-4 4.130018+3 1.496154-4 3.798899+3 1.498861-4 3.408032+3 1.501567-4 3.077626+3 1.503577-4 2.866941+3 1.507202-4 2.550334+3 1.511278-4 2.272987+3 1.515169-4 2.066951+3 1.517628-4 1.959280+3 1.519961-4 1.870014+3 1.523201-4 1.762963+3 1.526769-4 1.663184+3 1.530403-4 1.576707+3 1.534242-4 1.498079+3 1.538609-4 1.420780+3 1.542797-4 1.355863+3 1.550417-4 1.254497+3 1.557742-4 1.172298+3 1.563801-4 1.113765+3 1.570499-4 1.058435+3 1.576155-4 1.019041+3 1.582747-4 9.807543+2 1.588566-4 9.525869+2 1.597458-4 9.166637+2 1.603245-4 8.961923+2 1.616707-4 8.535430+2 1.632212-4 8.119762+2 1.650573-4 7.739837+2 1.666310-4 7.497270+2 1.680311-4 7.330192+2 1.702283-4 7.133334+2 1.726000-4 6.980033+2 1.752871-4 6.840486+2 1.792500-4 6.663317+2 1.876425-4 6.348717+2 1.961867-4 6.079284+2 2.042559-4 5.873748+2 2.121871-4 5.706457+2 2.207246-4 5.563092+2 2.305125-4 5.440214+2 2.583838-4 5.177970+2 2.641674-4 5.160292+2 2.674920-4 5.165031+2 2.702845-4 5.207902+2 2.730157-4 5.256917+2 2.749264-4 5.250017+2 2.785136-4 5.186785+2 2.802836-4 5.193806+2 2.810139-4 5.207559+2 2.849691-4 5.332748+2 2.896530-4 5.457713+2 3.016140-4 5.647991+2 3.116584-4 5.770274+2 3.218840-4 5.959086+2 3.396604-4 6.207163+2 3.612431-4 6.431401+2 3.766831-4 6.550918+2 3.816022-4 6.611568+2 3.925602-4 6.820656+2 4.102630-4 7.071573+2 4.466836-4 7.441285+2 4.915796-4 7.785446+2 5.401321-4 8.064805+2 5.895994-4 8.256799+2 6.425737-4 8.369763+2 6.943832-4 8.391879+2 7.455899-4 8.333030+2 8.013793-4 8.153779+2 8.562192-4 7.888909+2 9.022201-4 7.592447+2 9.495110-4 7.206336+2 9.901406-4 6.790594+2 1.021821-3 6.395577+2 1.050147-3 5.976338+2 1.074608-3 5.546501+2 1.093327-3 5.160441+2 1.110843-3 4.743949+2 1.125285-3 4.349677+2 1.136686-3 4.012639+2 1.146503-3 3.915357+2 1.154319-3 4.718528+2 1.155079-3 4.891451+2 1.159353-3 6.344104+2 1.160765-3 7.031197+2 1.163608-3 8.759287+2 1.166452-3 1.093683+3 1.169494-3 1.366956+3 1.173134-3 1.719129+3 1.176365-3 2.015857+3 1.177559-3 2.113553+3 1.180461-3 2.309660+3 1.181009-3 2.338949+3 1.183887-3 2.448530+3 1.186766-3 2.484083+3 1.189714-3 2.456103+3 1.191790-3 2.409764+3 1.197725-3 2.249337+3 1.199993-3 2.205086+3 1.201678-3 2.183417+3 1.203714-3 2.169686+3 1.206803-3 2.167860+3 1.209902-3 2.172048+3 1.214281-3 2.145745+3 1.215012-3 2.134505+3 1.217959-3 2.064212+3 1.220906-3 1.953601+3 1.224840-3 1.755450+3 1.229386-3 1.494009+3 1.235096-3 1.195741+3 1.238013-3 1.078216+3 1.240938-3 9.891166+2 1.243849-3 9.278251+2 1.248080-3 8.797993+2 1.252323-3 8.668948+2 1.257040-3 8.766899+2 1.261292-3 8.958548+2 1.272406-3 9.549505+2 1.279689-3 9.913282+2 1.292746-3 1.051446+3 1.314389-3 1.143230+3 1.330646-3 1.205372+3 1.348963-3 1.266205+3 1.371737-3 1.329772+3 1.390285-3 1.371509+3 1.410806-3 1.406700+3 1.429665-3 1.428972+3 1.449870-3 1.443666+3 1.467975-3 1.448872+3 1.500774-3 1.445093+3 1.509106-3 1.448801+3 1.516949-3 1.458328+3 1.527693-3 1.481353+3 1.552227-3 1.549762+3 1.574375-3 1.606369+3 1.583058-3 1.625490+3 1.595937-3 1.648727+3 1.613349-3 1.670937+3 1.655588-3 1.703408+3 1.679741-3 1.733401+3 1.717908-3 1.791712+3 1.731459-3 1.809628+3 1.748810-3 1.827868+3 1.770960-3 1.844166+3 1.797683-3 1.855573+3 1.847084-3 1.863003+3 1.858904-3 1.870426+3 1.877186-3 1.891134+3 1.909802-3 1.931578+3 1.931777-3 1.949157+3 1.957011-3 1.963076+3 2.030746-3 1.988736+3 2.107036-3 2.002475+3 2.215485-3 2.007589+3 2.368816-3 2.000986+3 2.564853-3 1.974469+3 2.742846-3 1.941494+3 2.995185-3 1.882809+3 3.219678-3 1.828471+3 3.445432-3 1.766710+3 3.729333-3 1.689509+3 3.900000-3 1.644489+3 4.105590-3 1.589706+3 4.474300-3 1.492561+3 4.684088-3 1.438723+3 4.903959-3 1.383735+3 5.109736-3 1.333393+3 5.328135-3 1.280995+3 5.556543-3 1.226423+3 5.778506-3 1.173953+3 5.966105-3 1.128994+3 6.137244-3 1.087360+3 6.283179-3 1.050994+3 6.423327-3 1.014904+3 6.543649-3 9.823522+2 6.646193-3 9.528024+2 6.737632-3 9.245439+2 6.816270-3 8.981545+2 6.878842-3 8.750477+2 6.929692-3 8.541755+2 6.979708-3 8.308075+2 7.021276-3 8.081687+2 7.065877-3 7.796022+2 7.127778-3 7.344040+2 7.161434-3 7.115946+2 7.190378-3 6.968939+2 7.211961-3 6.904968+2 7.234148-3 6.887564+2 7.254824-3 6.916436+2 7.277015-3 6.991167+2 7.302890-3 7.122355+2 7.368043-3 7.531766+2 7.389261-3 7.655393+2 7.414537-3 7.783937+2 7.446035-3 7.912547+2 7.476081-3 8.004439+2 7.509680-3 8.077251+2 7.554042-3 8.135583+2 7.602699-3 8.161484+2 7.651584-3 8.153732+2 7.698276-3 8.115591+2 7.740444-3 8.054829+2 7.868328-3 7.799097+2 7.909366-3 7.767376+2 7.947684-3 7.793392+2 7.980805-3 7.858569+2 8.085511-3 8.171230+2 8.137097-3 8.286082+2 8.168532-3 8.329532+2 8.298935-3 8.410969+2 8.350620-3 8.479036+2 8.433494-3 8.668355+2 8.506862-3 8.850780+2 8.547341-3 8.933605+2 8.592609-3 9.007065+2 8.642448-3 9.067931+2 8.710104-3 9.126777+2 8.869263-3 9.202417+2 9.047961-3 9.227534+2 9.353562-3 9.191971+2 9.588556-3 9.120592+2 9.980682-3 8.947774+2 1.040815-2 8.719324+2 1.100653-2 8.364799+2 1.169205-2 7.940350+2 1.264970-2 7.359320+2 1.373048-2 6.754180+2 1.525253-2 6.002522+2 1.720196-2 5.203423+2 1.945792-2 4.463412+2 2.132585-2 3.963056+2 2.363860-2 3.445945+2 2.554996-2 3.082962+2 2.765327-2 2.737692+2 3.002695-2 2.407070+2 3.377786-2 1.991903+2 3.641942-2 1.759020+2 3.791432-2 1.642577+2 3.944903-2 1.531790+2 4.186959-2 1.372331+2 4.382286-2 1.254565+2 4.537711-2 1.165394+2 4.652087-2 1.100260+2 4.743597-2 1.046186+2 4.815281-2 9.999589+1 4.844764-2 9.787618+1 4.869125-2 9.595124+1 4.906525-2 9.255402+1 4.950483-2 8.791545+1 4.984273-2 8.458995+1 5.003948-2 8.322396+1 5.019573-2 8.260564+1 5.035203-2 8.245034+1 5.052344-2 8.279141+1 5.072630-2 8.375071+1 5.136559-2 8.799975+1 5.160791-2 8.924866+1 5.188000-2 9.024206+1 5.230937-2 9.112567+1 5.287834-2 9.153405+1 5.350000-2 9.145194+1 5.437514-2 9.084261+1 5.588415-2 8.908994+1 5.762848-2 8.649817+1 6.017435-2 8.229399+1 6.385816-2 7.612238+1 6.761313-2 7.018400+1 7.261321-2 6.302001+1 7.791362-2 5.634685+1 8.629781-2 4.754430+1 9.988631-2 3.699698+1 1.127685-1 2.986898+1 1.302433-1 2.301453+1 1.859504-1 1.196771+1 2.235502-1 8.489059+0 2.693883-1 5.955641+0 3.636582-1 3.338732+0 5.498375-1 1.490407+0 8.759917-1 5.956865-1 1.546860+0 1.927696-1 4.068655+0 2.798330-2 1.228714+1 3.070229-3 3.710658+1 3.366673-4 1.120601+2 3.691512-5 3.384160+2 4.047666-6 1.258925+3 2.924869-7 3.981072+3 2.924869-8 1.258925+4 2.924869-9 3.981072+4 2.92487-10 1.000000+5 4.63561-11 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.236900-6 1.258900-6 3.545200-6 1.584900-6 5.618700-6 1.995300-6 8.905100-6 2.511900-6 1.411400-5 3.162300-6 2.236800-5 3.981100-6 3.545100-5 5.011900-6 5.618600-5 6.309600-6 8.904900-5 7.943300-6 1.411300-4 1.000000-5 2.236800-4 1.258900-5 3.545000-4 1.584900-5 5.615700-4 1.995300-5 8.895000-4 2.511900-5 1.409100-3 3.162300-5 2.232300-3 3.981100-5 3.537000-3 5.011900-5 5.604600-3 6.309600-5 8.880900-3 7.943300-5 1.405900-2 1.000000-4 2.224600-2 1.258900-4 3.515700-2 1.584900-4 5.547300-2 1.995300-4 8.729600-2 2.511900-4 1.368600-1 3.162300-4 2.132800-1 3.981100-4 3.289300-1 5.011900-4 4.984200-1 6.309600-4 7.377600-1 7.943300-4 1.059600+0 1.000000-3 1.470800+0 1.258900-3 1.973500+0 1.584900-3 2.583500+0 1.995300-3 3.337600+0 2.511900-3 4.274800+0 3.162300-3 5.415800+0 3.981100-3 6.774100+0 5.011900-3 8.358500+0 6.309600-3 1.011800+1 7.943300-3 1.201800+1 1.000000-2 1.405500+1 1.258900-2 1.624100+1 1.584900-2 1.854300+1 1.995300-2 2.080000+1 2.511900-2 2.290400+1 3.162300-2 2.473200+1 3.981100-2 2.616700+1 5.011900-2 2.720000+1 6.309600-2 2.781200+1 7.943300-2 2.796700+1 1.000000-1 2.766600+1 1.258900-1 2.694100+1 1.584900-1 2.588800+1 1.995300-1 2.458000+1 2.511900-1 2.309000+1 3.162300-1 2.149100+1 3.981100-1 1.983500+1 5.011900-1 1.817100+1 6.309600-1 1.653500+1 7.943300-1 1.494600+1 1.000000+0 1.342700+1 1.258900+0 1.198100+1 1.584900+0 1.062200+1 1.995300+0 9.355400+0 2.511900+0 8.187000+0 3.162300+0 7.119900+0 3.981100+0 6.155100+0 5.011900+0 5.291100+0 6.309600+0 4.524800+0 7.943300+0 3.850600+0 1.000000+1 3.262500+0 1.258900+1 2.753000+0 1.584900+1 2.314500+0 1.995300+1 1.939500+0 2.511900+1 1.620300+0 3.162300+1 1.350000+0 3.981100+1 1.122000+0 5.011900+1 9.305100-1 6.309600+1 7.701300-1 7.943300+1 6.362300-1 1.000000+2 5.247400-1 1.258900+2 4.321400-1 1.584900+2 3.553800-1 1.995300+2 2.918900-1 2.511900+2 2.394500-1 3.162300+2 1.962300-1 3.981100+2 1.606400-1 5.011900+2 1.313900-1 6.309600+2 1.073700-1 7.943300+2 8.766700-2 1.000000+3 7.152500-2 1.258900+3 5.831400-2 1.584900+3 4.751000-2 1.995300+3 3.868300-2 2.511900+3 3.147700-2 3.162300+3 2.559900-2 3.981100+3 2.080700-2 5.011900+3 1.690300-2 6.309600+3 1.372400-2 7.943300+3 1.113800-2 1.000000+4 9.035500-3 1.258900+4 7.326500-3 1.584900+4 5.938200-3 1.995300+4 4.811000-3 2.511900+4 3.896300-3 3.162300+4 3.154400-3 3.981100+4 2.552800-3 5.011900+4 2.065200-3 6.309600+4 1.670200-3 7.943300+4 1.350300-3 1.000000+5 1.091300-3 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159549-4 3.981072-4 3.976775-4 5.011872-4 5.005105-4 6.309573-4 6.298946-4 7.943282-4 7.926649-4 1.000000-3 9.974019-4 1.258925-3 1.254885-3 1.584893-3 1.578594-3 1.995262-3 1.985399-3 2.511886-3 2.496398-3 3.162278-3 3.137953-3 3.981072-3 3.942857-3 5.011872-3 4.952141-3 6.309573-3 6.216266-3 7.943282-3 7.798356-3 1.000000-2 9.774756-3 1.258925-2 1.223914-2 1.584893-2 1.530562-2 1.995262-2 1.911216-2 2.511886-2 2.382995-2 3.162278-2 2.965916-2 3.981072-2 3.683270-2 5.011872-2 4.562799-2 6.309573-2 5.636528-2 7.943282-2 6.942245-2 1.000000-1 8.524216-2 1.258925-1 1.043439-1 1.584893-1 1.272988-1 1.995262-1 1.547913-1 2.511886-1 1.875958-1 3.162278-1 2.266121-1 3.981072-1 2.728510-1 5.011872-1 3.275302-1 6.309573-1 3.920204-1 7.943282-1 4.680730-1 1.000000+0 5.573945-1 1.258925+0 6.627039-1 1.584893+0 7.870644-1 1.995262+0 9.341414-1 2.511886+0 1.108698+0 3.162278+0 1.316397+0 3.981072+0 1.564356+0 5.011872+0 1.861186+0 6.309573+0 2.217380+0 7.943282+0 2.645920+0 1.000000+1 3.162511+0 1.258925+1 3.786538+0 1.584893+1 4.541696+0 1.995262+1 5.456940+0 2.511886+1 6.567631+0 3.162278+1 7.917659+0 3.981072+1 9.560260+0 5.011872+1 1.156097+1 6.309573+1 1.400065+1 7.943282+1 1.697824+1 1.000000+2 2.061568+1 1.258925+2 2.506288+1 1.584893+2 3.050456+1 1.995262+2 3.716808+1 2.511886+2 4.533295+1 3.162278+2 5.534566+1 3.981072+2 6.763015+1 5.011872+2 8.271341+1 6.309573+2 1.012429+2 7.943282+2 1.240187+2 1.000000+3 1.520278+2 1.258925+3 1.864916+2 1.584893+3 2.289204+2 1.995262+3 2.811768+2 2.511886+3 3.455580+2 3.162278+3 4.249389+2 3.981072+3 5.228222+2 5.011872+3 6.435810+2 6.309573+3 7.926416+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88202-10 1.995262-5 1.090640-9 2.511886-5 1.728519-9 3.162278-5 2.739543-9 3.981072-5 4.341919-9 5.011872-5 6.881443-9 6.309573-5 1.090605-8 7.943282-5 1.727959-8 1.000000-4 2.737876-8 1.258925-4 4.337283-8 1.584893-4 6.869588-8 1.995262-4 1.087615-7 2.511886-4 1.721304-7 3.162278-4 2.728432-7 3.981072-4 4.297009-7 5.011872-4 6.767534-7 6.309573-4 1.062699-6 7.943282-4 1.663301-6 1.000000-3 2.598085-6 1.258925-3 4.040019-6 1.584893-3 6.299658-6 1.995262-3 9.863033-6 2.511886-3 1.548838-5 3.162278-3 2.432417-5 3.981072-3 3.821471-5 5.011872-3 5.973160-5 6.309573-3 9.330736-5 7.943282-3 1.449261-4 1.000000-2 2.252443-4 1.258925-2 3.501095-4 1.584893-2 5.433141-4 1.995262-2 8.404654-4 2.511886-2 1.288910-3 3.162278-2 1.963619-3 3.981072-2 2.978015-3 5.011872-2 4.490736-3 6.309573-2 6.730454-3 7.943282-2 1.001037-2 1.000000-1 1.475784-2 1.258925-1 2.154864-2 1.584893-1 3.119053-2 1.995262-1 4.473489-2 2.511886-1 6.359285-2 3.162278-1 8.961568-2 3.981072-1 1.252562-1 5.011872-1 1.736571-1 6.309573-1 2.389369-1 7.943282-1 3.262552-1 1.000000+0 4.426055-1 1.258925+0 5.962216-1 1.584893+0 7.978288-1 1.995262+0 1.061121+0 2.511886+0 1.403189+0 3.162278+0 1.845881+0 3.981072+0 2.416715+0 5.011872+0 3.150686+0 6.309573+0 4.092194+0 7.943282+0 5.297362+0 1.000000+1 6.837489+0 1.258925+1 8.802716+0 1.584893+1 1.130724+1 1.995262+1 1.449568+1 2.511886+1 1.855123+1 3.162278+1 2.370512+1 3.981072+1 3.025046+1 5.011872+1 3.855775+1 6.309573+1 4.909509+1 7.943282+1 6.245459+1 1.000000+2 7.938432+1 1.258925+2 1.008297+2 1.584893+2 1.279848+2 1.995262+2 1.623581+2 2.511886+2 2.058557+2 3.162278+2 2.608821+2 3.981072+2 3.304770+2 5.011872+2 4.184738+2 6.309573+2 5.297145+2 7.943282+2 6.703095+2 1.000000+3 8.479722+2 1.258925+3 1.072434+3 1.584893+3 1.355973+3 1.995262+3 1.714086+3 2.511886+3 2.166328+3 3.162278+3 2.737339+3 3.981072+3 3.458250+3 5.011872+3 4.368291+3 6.309573+3 5.516932+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.850000-6 3.547428+6 5.100000-6 3.788412+6 5.190000-6 3.865075+6 5.190000-6 5.882575+6 5.308844-6 6.056486+6 5.495409-6 6.309604+6 5.600000-6 6.444955+6 5.700000-6 6.562914+6 5.710000-6 6.574071+6 5.710000-6 1.043871+7 5.888437-6 1.013532+7 5.956621-6 1.003443+7 6.200000-6 9.739313+6 6.237348-6 9.702355+6 6.531306-6 9.443087+6 6.606934-6 9.391496+6 6.700000-6 9.329968+6 6.918310-6 9.213960+6 7.079458-6 9.147115+6 7.244360-6 9.086326+6 7.350000-6 9.054601+6 7.585776-6 8.995335+6 7.762471-6 8.957173+6 7.852356-6 8.941745+6 8.128305-6 8.901568+6 8.222426-6 8.887959+6 8.413951-6 8.866270+6 8.709636-6 8.837662+6 9.015711-6 8.807038+6 9.225714-6 8.786179+6 9.332543-6 8.777430+6 9.660509-6 8.740429+6 9.885531-6 8.713182+6 1.000000-5 8.700773+6 1.023293-5 8.665997+6 1.059254-5 8.607600+6 1.071519-5 8.583130+6 1.083927-5 8.559310+6 1.122018-5 8.478512+6 1.150000-5 8.409252+6 1.180000-5 8.327981+6 1.188502-5 8.305865+6 1.215000-5 8.224997+6 1.230269-5 8.174449+6 1.250000-5 8.111114+6 1.273503-5 8.025622+6 1.318257-5 7.857343+6 1.333521-5 7.795264+6 1.350000-5 7.724480+6 1.380384-5 7.598401+6 1.400000-5 7.510812+6 1.412538-5 7.451943+6 1.445440-5 7.302497+6 1.462177-5 7.222133+6 1.470000-5 7.182915+6 1.500000-5 7.036628+6 1.513561-5 6.972554+6 1.531087-5 6.884432+6 1.560000-5 6.735642+6 1.590000-5 6.587671+6 1.603245-5 6.519541+6 1.620000-5 6.430795+6 1.620000-5 6.835767+6 1.621810-5 6.826016+6 1.650000-5 6.677480+6 1.659587-5 6.628333+6 1.678804-5 6.525743+6 1.680000-5 6.519173+6 1.703000-5 6.395136+6 1.703000-5 6.673899+6 1.717908-5 6.594595+6 1.737801-5 6.491443+6 1.757924-5 6.384192+6 1.800000-5 6.161794+6 1.830000-5 6.012111+6 1.840772-5 5.957208+6 1.850000-5 5.909285+6 1.883649-5 5.740052+6 1.905461-5 5.635361+6 1.927525-5 5.532804+6 1.949845-5 5.424853+6 1.950000-5 5.424119+6 1.972423-5 5.320344+6 2.018366-5 5.118093+6 2.041738-5 5.014569+6 2.090000-5 4.812869+6 2.113489-5 4.720588+6 2.137962-5 4.625953+6 2.162719-5 4.530306+6 2.190000-5 4.429973+6 2.238721-5 4.261703+6 2.264644-5 4.175812+6 2.270000-5 4.158614+6 2.300000-5 4.061938+6 2.344229-5 3.928612+6 2.371374-5 3.851802+6 2.400000-5 3.773533+6 2.426610-5 3.701699+6 2.450000-5 3.641583+6 2.454709-5 3.629905+6 2.500000-5 3.521836+6 2.511886-5 3.495037+6 2.570396-5 3.369530+6 2.580000-5 3.349494+6 2.600160-5 3.309659+6 2.660725-5 3.197854+6 2.691535-5 3.147237+6 2.754229-5 3.050499+6 2.851018-5 2.924067+6 2.900000-5 2.871953+6 2.917427-5 2.854321+6 2.951209-5 2.822142+6 3.018000-5 2.767541+6 3.018000-5 1.284446+7 3.080000-5 1.221348+7 3.090295-5 1.211421+7 3.126079-5 1.175572+7 3.162278-5 1.141123+7 3.198895-5 1.108015+7 3.235937-5 1.074686+7 3.273407-5 1.042884+7 3.350000-5 9.832429+6 3.388442-5 9.548257+6 3.467369-5 9.013484+6 3.483000-5 8.915117+6 3.483000-5 1.364020+7 3.548134-5 1.306012+7 3.570000-5 1.286705+7 3.589219-5 1.269878+7 3.630781-5 1.234929+7 3.672823-5 1.200006+7 3.730000-5 1.155660+7 3.758374-5 1.134866+7 3.801894-5 1.103576+7 3.845918-5 1.073761+7 3.850000-5 1.071037+7 3.900000-5 1.038726+7 3.920000-5 1.026423+7 3.935501-5 1.016940+7 4.027170-5 9.647062+6 4.073803-5 9.403986+6 4.120975-5 9.168804+6 4.150000-5 9.030909+6 4.168694-5 8.945057+6 4.220000-5 8.719165+6 4.265795-5 8.529075+6 4.315191-5 8.333470+6 4.415704-5 7.972244+6 4.500000-5 7.703631+6 4.518559-5 7.647757+6 4.570882-5 7.496294+6 4.650000-5 7.288110+6 4.677351-5 7.220453+6 4.731513-5 7.094438+6 4.800000-5 6.947315+6 4.841724-5 6.863316+6 4.900000-5 6.754657+6 4.954502-5 6.660853+6 5.011872-5 6.568811+6 5.069907-5 6.483992+6 5.128614-5 6.406007+6 5.188000-5 6.334573+6 5.248075-5 6.265109+6 5.370318-5 6.147901+6 5.432503-5 6.097770+6 5.466000-5 6.073187+6 5.466000-5 6.134070+6 5.500000-5 6.111003+6 5.520000-5 6.096685+6 5.575000-5 6.060377+6 5.623413-5 6.032926+6 5.754399-5 5.973270+6 5.800000-5 5.957082+6 5.821032-5 5.950295+6 5.900000-5 5.922531+6 5.920000-5 5.916872+6 5.956621-5 5.907515+6 6.095369-5 5.883479+6 6.165950-5 5.876885+6 6.237348-5 5.867703+6 6.309573-5 5.862987+6 6.500000-5 5.864983+6 6.531306-5 5.867396+6 6.800000-5 5.885034+6 6.839116-5 5.889919+6 6.918310-5 5.895211+6 7.000000-5 5.902588+6 7.161434-5 5.923742+6 7.328245-5 5.938055+6 7.400000-5 5.945992+6 7.500000-5 5.958690+6 7.762471-5 5.978148+6 7.800000-5 5.981722+6 7.852356-5 5.986911+6 7.900000-5 5.990451+6 8.000000-5 5.993161+6 8.128305-5 5.998722+6 8.150000-5 5.999780+6 8.222426-5 6.004128+6 8.300000-5 6.006367+6 8.317638-5 6.006939+6 8.413951-5 6.005319+6 8.500000-5 6.004333+6 8.511380-5 6.004281+6 8.650000-5 6.005243+6 8.709636-5 6.004032+6 8.800000-5 6.002441+6 8.810489-5 6.001823+6 8.912509-5 5.996131+6 9.015711-5 5.991786+6 9.120108-5 5.987713+6 9.332543-5 5.975007+6 9.400000-5 5.969522+6 9.660509-5 5.949515+6 9.800000-5 5.936303+6 9.900000-5 5.927685+6 1.000000-4 5.915874+6 1.023293-4 5.889621+6 1.035142-4 5.874098+6 1.040000-4 5.868003+6 1.050000-4 5.855666+6 1.060000-4 5.843608+6 1.071519-4 5.826386+6 1.083927-4 5.808443+6 1.096478-4 5.790586+6 1.115000-4 5.761246+6 1.122018-4 5.750370+6 1.135011-4 5.730732+6 1.148154-4 5.707127+6 1.150000-4 5.703851+6 1.161449-4 5.683627+6 1.174898-4 5.657497+6 1.190000-4 5.628921+6 1.202264-4 5.606155+6 1.220000-4 5.568774+6 1.230269-4 5.547542+6 1.244515-4 5.515698+6 1.250000-4 5.503671+6 1.258925-4 5.484288+6 1.273503-4 5.453115+6 1.280000-4 5.437841+6 1.288250-4 5.418634+6 1.288400-4 5.418287+6 1.303167-4 5.384544+6 1.307000-4 5.375183+6 1.315000-4 5.355795+6 1.318257-4 5.347961+6 1.333521-4 5.311557+6 1.345000-4 5.284637+6 1.350000-4 5.273034+6 1.362400-4 5.241868+6 1.375000-4 5.210694+6 1.380384-4 5.197523+6 1.390000-4 5.172520+6 1.405000-4 5.134114+6 1.412538-4 5.115085+6 1.415000-4 5.108904+6 1.430000-4 5.071650+6 1.440000-4 5.045368+6 1.445440-4 5.031209+6 1.462177-4 4.988239+6 1.480000-4 4.943433+6 1.496236-4 4.901377+6 1.500000-4 4.891765+6 1.513561-4 4.857499+6 1.515000-4 4.853887+6 1.540000-4 4.792106+6 1.548817-4 4.769090+6 1.563000-4 4.732585+6 1.563000-4 5.191480+6 1.566751-4 5.184719+6 1.570000-4 5.178920+6 1.577000-4 5.170049+6 1.584893-4 5.163557+6 1.594000-4 5.159221+6 1.603245-4 5.158684+6 1.605000-4 5.158717+6 1.621600-4 5.163269+6 1.621600-4 5.481545+6 1.621810-4 5.481648+6 1.623000-4 5.482237+6 1.627000-4 5.483198+6 1.632000-4 5.486179+6 1.635000-4 5.489011+6 1.639000-4 5.491335+6 1.643000-4 5.495171+6 1.647000-4 5.497658+6 1.650000-4 5.500467+6 1.655000-4 5.502292+6 1.659587-4 5.505290+6 1.665000-4 5.506134+6 1.669000-4 5.507426+6 1.678804-4 5.505952+6 1.685000-4 5.502460+6 1.688000-4 5.500426+6 1.695000-4 5.492901+6 1.698244-4 5.488744+6 1.705000-4 5.476848+6 1.710000-4 5.466796+6 1.713000-4 5.459776+6 1.717908-4 5.446920+6 1.722000-4 5.436339+6 1.730000-4 5.410931+6 1.737801-4 5.383995+6 1.740000-4 5.375910+6 1.750000-4 5.336294+6 1.755000-4 5.315237+6 1.757924-4 5.302433+6 1.761000-4 5.289036+6 1.765600-4 5.267950+6 1.772000-4 5.237991+6 1.778279-4 5.207562+6 1.785000-4 5.174427+6 1.798871-4 5.104903+6 1.800000-4 5.099340+6 1.810000-4 5.047920+6 1.820000-4 4.996696+6 1.842000-4 4.885471+6 1.851100-4 4.840379+6 1.862087-4 4.786944+6 1.865000-4 4.772659+6 1.900000-4 4.606366+6 1.905461-4 4.581380+6 1.927525-4 4.481765+6 1.950000-4 4.386471+6 1.952700-4 4.375332+6 1.980000-4 4.267676+6 2.000000-4 4.193697+6 2.010000-4 4.157132+6 2.020000-4 4.121618+6 2.040000-4 4.053649+6 2.041738-4 4.047698+6 2.065380-4 3.970907+6 2.070000-4 3.956564+6 2.090000-4 3.896525+6 2.100000-4 3.867836+6 2.113489-4 3.830427+6 2.122300-4 3.806924+6 2.128000-4 3.791395+6 2.137962-4 3.764961+6 2.150000-4 3.734225+6 2.162719-4 3.702696+6 2.170000-4 3.685293+6 2.187762-4 3.644162+6 2.190000-4 3.638900+6 2.198000-4 3.620632+6 2.213095-4 3.587220+6 2.220000-4 3.572464+6 2.238721-4 3.533622+6 2.240000-4 3.530997+6 2.264644-4 3.483143+6 2.270000-4 3.472912+6 2.290868-4 3.435336+6 2.300000-4 3.418387+6 2.300300-4 3.417843+6 2.330000-4 3.366192+6 2.340000-4 3.349530+6 2.344229-4 3.342696+6 2.365000-4 3.308420+6 2.371374-4 3.298271+6 2.380400-4 3.284026+6 2.400000-4 3.254266+6 2.440000-4 3.196948+6 2.450000-4 3.183352+6 2.454709-4 3.177097+6 2.483133-4 3.138678+6 2.500000-4 3.116636+6 2.511886-4 3.101670+6 2.540973-4 3.064942+6 2.570396-4 3.029384+6 2.580000-4 3.018126+6 2.600160-4 2.995193+6 2.630268-4 2.960458+6 2.660725-4 2.926451+6 2.722701-4 2.859610+6 2.730000-4 2.852170+6 2.786121-4 2.796476+6 2.788600-4 2.794098+6 2.788600-4 3.092707+6 2.800000-4 3.081539+6 2.830000-4 3.051843+6 2.851018-4 3.031301+6 2.884032-4 2.999348+6 2.900000-4 2.984458+6 2.917427-4 2.968357+6 2.951209-4 2.937445+6 3.000000-4 2.893723+6 3.019952-4 2.875817+6 3.054921-4 2.844720+6 3.090295-4 2.814722+6 3.100000-4 2.806746+6 3.113000-4 2.795621+6 3.113000-4 2.878093+6 3.198895-4 2.808772+6 3.200000-4 2.807929+6 3.273407-4 2.747736+6 3.311311-4 2.717773+6 3.320000-4 2.710936+6 3.388442-4 2.657526+6 3.430000-4 2.626704+6 3.467369-4 2.598673+6 3.507519-4 2.568798+6 3.550000-4 2.537893+6 3.589219-4 2.509046+6 3.600000-4 2.501306+6 3.672823-4 2.450707+6 3.700000-4 2.431935+6 3.715352-4 2.421175+6 3.758374-4 2.391250+6 3.801894-4 2.362137+6 3.813900-4 2.354149+6 3.813900-4 2.456735+6 3.845918-4 2.435302+6 3.850000-4 2.432612+6 3.890451-4 2.405583+6 3.935501-4 2.376503+6 4.000000-4 2.334485+6 4.027170-4 2.316891+6 4.073803-4 2.287069+6 4.100000-4 2.270787+6 4.120975-4 2.257710+6 4.168694-4 2.228708+6 4.240000-4 2.185799+6 4.280000-4 2.162504+6 4.315191-4 2.142132+6 4.365158-4 2.113246+6 4.415704-4 2.083803+6 4.466836-4 2.055015+6 4.500000-4 2.036826+6 4.600000-4 1.983316+6 4.623810-4 1.970714+6 4.677351-4 1.942860+6 4.700000-4 1.931356+6 4.730000-4 1.916210+6 4.731513-4 1.915441+6 4.786301-4 1.887571+6 4.850000-4 1.856331+6 4.897788-4 1.833029+6 4.954502-4 1.806130+6 5.011872-4 1.779331+6 5.050000-4 1.761854+6 5.069907-4 1.752801+6 5.080000-4 1.748234+6 5.128614-4 1.726064+6 5.230000-4 1.681283+6 5.300000-4 1.651292+6 5.370318-4 1.622207+6 5.400000-4 1.609963+6 5.495409-4 1.571566+6 5.500000-4 1.569753+6 5.559043-4 1.546338+6 5.688529-4 1.496973+6 5.754399-4 1.472424+6 5.800000-4 1.455895+6 5.821032-4 1.448391+6 5.888437-4 1.424495+6 5.956621-4 1.400950+6 6.000000-4 1.386364+6 6.025596-4 1.377843+6 6.095369-4 1.354413+6 6.165950-4 1.331413+6 6.309573-4 1.286200+6 6.382635-4 1.264306+6 6.456542-4 1.242424+6 6.500000-4 1.229887+6 6.531306-4 1.220934+6 6.606934-4 1.199238+6 6.683439-4 1.177937+6 6.839116-4 1.136697+6 6.850000-4 1.133854+6 6.998420-4 1.096233+6 7.000000-4 1.095840+6 7.079458-4 1.076371+6 7.161434-4 1.056787+6 7.244360-4 1.037365+6 7.328245-4 1.018363+6 7.413102-4 9.993906+5 7.500000-4 9.805533+5 7.585776-4 9.623253+5 7.673615-4 9.442532+5 7.852356-4 9.091615+5 8.035261-4 8.745303+5 8.222426-4 8.409861+5 8.317638-4 8.247625+5 8.413951-4 8.088512+5 8.511380-4 7.930176+5 8.609938-4 7.774978+5 8.709636-4 7.619504+5 8.810489-4 7.467392+5 8.912509-4 7.318669+5 9.015711-4 7.173239+5 9.120108-4 7.028605+5 9.225714-4 6.886784+5 9.440609-4 6.609609+5 9.549926-4 6.474563+5 9.660509-4 6.341820+5 9.772372-4 6.212062+5 9.885531-4 6.083359+5 1.000000-3 5.955779+5 1.023293-3 5.709275+5 1.047129-3 5.473695+5 1.059254-3 5.357638+5 1.071519-3 5.243506+5 1.083927-3 5.130667+5 1.096478-3 5.020452+5 1.135011-3 4.704041+5 1.161449-3 4.502350+5 1.188502-3 4.307270+5 1.199800-3 4.229325+5 1.199800-3 1.363120+6 1.202264-3 1.359354+6 1.216186-3 1.338407+6 1.230269-3 1.317802+6 1.231600-3 1.315873+6 1.231600-3 1.733331+6 1.258925-3 1.721000+6 1.261500-3 1.719985+6 1.272000-3 1.712948+6 1.273503-3 1.713508+6 1.274000-3 1.713697+6 1.288250-3 1.708192+6 1.303167-3 1.703199+6 1.318257-3 1.694277+6 1.320000-3 1.693165+6 1.333521-3 1.676098+6 1.340000-3 1.666769+6 1.350000-3 1.648908+6 1.364583-3 1.623643+6 1.370000-3 1.613811+6 1.396368-3 1.559214+6 1.428894-3 1.480643+6 1.462177-3 1.401967+6 1.479108-3 1.364145+6 1.496236-3 1.327282+6 1.500000-3 1.319364+6 1.531087-3 1.256481+6 1.541800-3 1.235805+6 1.541800-3 1.422315+6 1.566751-3 1.372637+6 1.570000-3 1.366360+6 1.603245-3 1.303666+6 1.610000-3 1.291452+6 1.621810-3 1.270257+6 1.640590-3 1.237118+6 1.650000-3 1.221107+6 1.659587-3 1.205102+6 1.670000-3 1.188052+6 1.678804-3 1.173771+6 1.686900-3 1.160860+6 1.686900-3 1.230693+6 1.699000-3 1.211302+6 1.717908-3 1.181911+6 1.757924-3 1.122430+6 1.770000-3 1.105341+6 1.778279-3 1.093815+6 1.800000-3 1.064125+6 1.840772-3 1.011201+6 1.862087-3 9.850732+5 1.864600-3 9.820259+5 1.864600-3 1.025377+6 1.883649-3 1.002262+6 1.900000-3 9.830177+5 1.905461-3 9.766797+5 1.927525-3 9.516898+5 1.960000-3 9.161420+5 1.995262-3 8.795770+5 2.018366-3 8.567894+5 2.041738-3 8.345478+5 2.070000-3 8.084956+5 2.113489-3 7.707063+5 2.137962-3 7.504439+5 2.150000-3 7.407176+5 2.162719-3 7.306341+5 2.187762-3 7.113354+5 2.238721-3 6.742559+5 2.264644-3 6.564819+5 2.317395-3 6.220524+5 2.350000-3 6.020920+5 2.371374-3 5.893606+5 2.400000-3 5.728917+5 2.426610-3 5.581552+5 2.454709-3 5.431576+5 2.483133-3 5.285854+5 2.511886-3 5.144268+5 2.540973-3 5.006669+5 2.570396-3 4.871432+5 2.600160-3 4.739229+5 2.630268-3 4.610333+5 2.691535-3 4.361305+5 2.722701-3 4.241994+5 2.754229-3 4.126023+5 2.786121-3 4.012059+5 2.818383-3 3.901416+5 2.884032-3 3.688981+5 2.900000-3 3.639847+5 2.917427-3 3.587276+5 2.951209-3 3.488113+5 3.019952-3 3.298195+5 3.090295-3 3.118544+5 3.162278-3 2.949031+5 3.198895-3 2.867862+5 3.235937-3 2.788133+5 3.300000-3 2.656682+5 3.427678-3 2.418855+5 3.467369-3 2.351262+5 3.507519-3 2.285571+5 3.548134-3 2.221246+5 3.589219-3 2.158308+5 3.715352-3 1.980302+5 3.801894-3 1.869879+5 3.890451-3 1.765521+5 3.900000-3 1.754773+5 3.935501-3 1.715611+5 3.981072-3 1.667179+5 4.000000-3 1.647627+5 4.027170-3 1.619959+5 4.073803-3 1.573971+5 4.168694-3 1.485531+5 4.216965-3 1.443086+5 4.265795-3 1.401782+5 4.315191-3 1.361620+5 4.365158-3 1.322642+5 4.415704-3 1.284837+5 4.466836-3 1.248134+5 4.518559-3 1.212295+5 4.623810-3 1.143529+5 4.677351-3 1.110652+5 4.731513-3 1.078755+5 4.786301-3 1.047650+5 4.800000-3 1.040070+5 4.841724-3 1.017378+5 4.897788-3 9.879967+4 5.011872-3 9.318250+4 5.069907-3 9.048754+4 5.128614-3 8.787446+4 5.188000-3 8.532446+4 5.248075-3 8.285210+4 5.308844-3 8.044483+4 5.370318-3 7.810184+4 5.432503-3 7.583051+4 5.495409-3 7.362705+4 5.500000-3 7.346974+4 5.688529-3 6.739011+4 5.754399-3 6.542358+4 5.888437-3 6.165223+4 5.956621-3 5.984430+4 6.000000-3 5.873218+4 6.025596-3 5.808966+4 6.095369-3 5.638858+4 6.165950-3 5.473307+4 6.382635-3 5.006256+4 6.456542-3 4.860025+4 6.531306-3 4.716827+4 6.606934-3 4.577647+4 6.683439-3 4.442693+4 6.760830-3 4.311394+4 6.839116-3 4.184152+4 6.918310-3 4.060711+4 7.000000-3 3.938433+4 7.161434-3 3.711667+4 7.242700-3 3.604526+4 7.242700-3 9.950511+4 7.244360-3 9.945198+4 7.293000-3 9.791119+4 7.328245-3 9.681378+4 7.380000-3 9.523181+4 7.413102-3 9.416747+4 7.500000-3 9.145189+4 7.585776-3 8.874750+4 7.673615-3 8.609232+4 7.762471-3 8.351725+4 7.852356-3 8.101627+4 7.943282-3 7.859074+4 7.947000-3 7.849159+4 7.947000-3 1.076566+5 8.000000-3 1.057570+5 8.040000-3 1.043539+5 8.070000-3 1.034549+5 8.128305-3 1.015406+5 8.245900-3 9.782179+4 8.317638-3 9.560033+4 8.349800-3 9.462521+4 8.349800-3 1.093687+5 8.480000-3 1.050853+5 8.511380-3 1.041151+5 8.709636-3 9.826993+4 8.810489-3 9.542967+4 8.912509-3 9.267358+4 8.920000-3 9.247543+4 9.015711-3 9.001257+4 9.120108-3 8.743170+4 9.225714-3 8.492725+4 9.332543-3 8.246649+4 9.549926-3 7.769690+4 9.660509-3 7.541810+4 9.885531-3 7.106272+4 1.000000-2 6.898292+4 1.011579-2 6.697225+4 1.023293-2 6.501019+4 1.047129-2 6.125997+4 1.059254-2 5.945200+4 1.071519-2 5.769748+4 1.083927-2 5.599627+4 1.096478-2 5.433367+4 1.109175-2 5.271165+4 1.135011-2 4.961547+4 1.148154-2 4.813807+4 1.150000-2 4.793555+4 1.161449-2 4.670122+4 1.174898-2 4.530740+4 1.188502-2 4.395416+4 1.202264-2 4.264227+4 1.216186-2 4.137031+4 1.220000-2 4.103073+4 1.244515-2 3.894482+4 1.258925-2 3.778374+4 1.273503-2 3.665816+4 1.288250-2 3.556381+4 1.303167-2 3.450310+4 1.318257-2 3.347491+4 1.330000-2 3.270431+4 1.333521-2 3.247620+4 1.348963-2 3.150046+4 1.350000-2 3.143641+4 1.364583-2 3.055452+4 1.380384-2 2.963737+4 1.400000-2 2.855075+4 1.412538-2 2.787742+4 1.428894-2 2.703183+4 1.462177-2 2.541855+4 1.479108-2 2.464935+4 1.496236-2 2.390342+4 1.513561-2 2.318074+4 1.531087-2 2.247946+4 1.540000-2 2.213418+4 1.548817-2 2.179742+4 1.566751-2 2.113392+4 1.584893-2 2.049065+4 1.603245-2 1.986751+4 1.678804-2 1.756316+4 1.698244-2 1.703130+4 1.717908-2 1.651196+4 1.730000-2 1.620354+4 1.737801-2 1.600859+4 1.757924-2 1.552008+4 1.778279-2 1.504294+4 1.798871-2 1.458034+4 1.800000-2 1.455556+4 1.819701-2 1.413228+4 1.840772-2 1.369834+4 1.900000-2 1.257368+4 1.905461-2 1.247612+4 1.927525-2 1.209143+4 1.972423-2 1.135813+4 2.000000-2 1.093771+4 2.018366-2 1.066963+4 2.041738-2 1.034143+4 2.065380-2 1.002303+4 2.089296-2 9.714694+3 2.113489-2 9.416053+3 2.162719-2 8.843701+3 2.187762-2 8.570463+3 2.213095-2 8.303946+3 2.264644-2 7.796109+3 2.317395-2 7.319548+3 2.344229-2 7.092508+3 2.371374-2 6.872523+3 2.398833-2 6.659539+3 2.400000-2 6.650690+3 2.426610-2 6.452299+3 2.511886-2 5.869118+3 2.540973-2 5.686319+3 2.600160-2 5.338068+3 2.660725-2 5.009428+3 2.691535-2 4.852955+3 2.722701-2 4.701367+3 2.754229-2 4.554600+3 2.786121-2 4.412533+3 2.800000-2 4.352614+3 2.818383-2 4.274618+3 2.851018-2 4.140717+3 2.884032-2 4.011069+3 2.917427-2 3.885590+3 3.000000-2 3.596424+3 3.054921-2 3.420209+3 3.090295-2 3.312648+3 3.126079-2 3.208545+3 3.162278-2 3.107713+3 3.198895-2 3.010129+3 3.311311-2 2.735721+3 3.349654-2 2.649962+3 3.388442-2 2.566016+3 3.427678-2 2.484792+3 3.500000-2 2.344123+3 3.548134-2 2.256465+3 3.630781-2 2.116216+3 3.672823-2 2.049467+3 3.715352-2 1.984827+3 3.758374-2 1.922261+3 3.801894-2 1.861555+3 3.845918-2 1.802813+3 3.890451-2 1.745965+3 3.935501-2 1.690949+3 3.981072-2 1.637253+3 4.027170-2 1.585283+3 4.073803-2 1.534830+3 4.216965-2 1.392993+3 4.265795-2 1.348751+3 4.315191-2 1.305942+3 4.365158-2 1.264501+3 4.570882-2 1.111695+3 4.623810-2 1.076534+3 4.677351-2 1.042193+3 4.731513-2 1.008925+3 4.786301-2 9.767302+2 4.841724-2 9.455814+2 4.954502-2 8.860939+2 5.030300-2 8.489729+2 5.030300-2 4.682469+3 5.050000-2 4.631124+3 5.069907-2 4.586450+3 5.128614-2 4.458199+3 5.140000-2 4.433914+3 5.188000-2 4.329962+3 5.248075-2 4.204584+3 5.308844-2 4.075660+3 5.350000-2 3.991413+3 5.432503-2 3.839969+3 5.495409-2 3.729699+3 5.559043-2 3.622590+3 5.623413-2 3.513418+3 5.688529-2 3.407550+3 5.754399-2 3.304886+3 5.821032-2 3.205318+3 6.025596-2 2.924241+3 6.095369-2 2.836125+3 6.237348-2 2.669598+3 6.309573-2 2.590054+3 6.382635-2 2.512892+3 6.456542-2 2.438034+3 6.531306-2 2.365314+3 6.683439-2 2.226313+3 6.760830-2 2.159916+3 6.839116-2 2.095510+3 7.079458-2 1.909814+3 7.161434-2 1.851657+3 7.244360-2 1.795276+3 7.585776-2 1.586465+3 7.673615-2 1.537659+3 7.762471-2 1.490300+3 7.852356-2 1.444393+3 8.035261-2 1.356776+3 8.128305-2 1.314985+3 8.222426-2 1.274485+3 8.317638-2 1.235235+3 8.511380-2 1.160335+3 8.609938-2 1.124610+3 9.015711-2 9.924069+2 9.120108-2 9.618672+2 9.225714-2 9.322345+2 9.332543-2 9.035173+2 9.549926-2 8.479691+2 9.772372-2 7.958443+2 9.885531-2 7.709976+2 1.011580-1 7.236117+2 1.023293-1 7.010265+2 1.047129-1 6.579508+2 1.109175-1 5.615138+2 1.122019-1 5.439970+2 1.135011-1 5.270121+2 1.148154-1 5.105580+2 1.161449-1 4.946159+2 1.174898-1 4.791726+2 1.188502-1 4.640735+2 1.230269-1 4.215744+2 1.258925-1 3.954343+2 1.288250-1 3.709167+2 1.303167-1 3.592356+2 1.318257-1 3.479248+2 1.333521-1 3.369714+2 1.348963-1 3.263625+2 1.380384-1 3.061387+2 1.412538-1 2.871696+2 1.462177-1 2.609012+2 1.479108-1 2.526849+2 1.496236-1 2.447281+2 1.513561-1 2.370228+2 1.548817-1 2.223308+2 1.566751-1 2.153309+2 1.584893-1 2.085514+2 1.603245-1 2.019856+2 1.640590-1 1.894713+2 1.717908-1 1.667296+2 1.757924-1 1.564049+2 1.798871-1 1.467205+2 1.819701-1 1.421061+2 1.840772-1 1.376370+2 1.883649-1 1.291170+2 1.927525-1 1.211251+2 1.972423-1 1.136324+2 2.000000-1 1.093405+2 2.018366-1 1.066038+2 2.041738-1 1.032543+2 2.065380-1 1.000102+2 2.162719-1 8.802310+1 2.187762-1 8.525835+1 2.213095-1 8.258053+1 2.238721-1 7.998697+1 2.264644-1 7.750150+1 2.290868-1 7.509393+1 2.344229-1 7.050115+1 2.371374-1 6.831171+1 2.398833-1 6.619268+1 2.454709-1 6.214997+1 2.483133-1 6.022226+1 2.511886-1 5.835454+1 2.540973-1 5.654473+1 2.570396-1 5.479117+1 2.630268-1 5.144686+1 2.660725-1 4.985259+1 2.691535-1 4.830775+1 2.722701-1 4.682859+1 2.754229-1 4.539470+1 2.786121-1 4.400480+1 2.818383-1 4.265746+1 2.851018-1 4.135151+1 2.884032-1 4.008553+1 2.917427-1 3.885873+1 2.951209-1 3.767157+1 3.000000-1 3.604325+1 3.019952-1 3.540517+1 3.054921-1 3.432402+1 3.090295-1 3.329060+1 3.162278-1 3.131619+1 3.198895-1 3.037347+1 3.235937-1 2.945911+1 3.273407-1 2.857234+1 3.311311-1 2.771255+1 3.349654-1 2.687865+1 3.388442-1 2.606989+1 3.427678-1 2.528549+1 3.467369-1 2.452521+1 3.507519-1 2.378915+1 3.548134-1 2.308685+1 3.589219-1 2.240535+1 3.630781-1 2.174396+1 3.672823-1 2.110234+1 3.801894-1 1.928889+1 3.845918-1 1.871979+1 3.890451-1 1.816766+1 3.935501-1 1.763182+1 3.981072-1 1.711183+1 4.000000-1 1.690613+1 4.027170-1 1.661683+1 4.120975-1 1.567167+1 4.168694-1 1.521945+1 4.216965-1 1.478029+1 4.265795-1 1.435381+1 4.315191-1 1.393967+1 4.365158-1 1.353761+1 4.415705-1 1.314719+1 4.466836-1 1.276804+1 4.518559-1 1.239997+1 4.570882-1 1.205024+1 4.623810-1 1.171129+1 4.677351-1 1.138192+1 4.731513-1 1.106182+1 4.786301-1 1.075073+1 4.841724-1 1.044851+1 4.897788-1 1.015481+1 4.954502-1 9.869375+0 5.000000-1 9.648547+0 5.069907-1 9.322552+0 5.188000-1 8.817036+0 5.248075-1 8.575333+0 5.308844-1 8.340297+0 5.370318-1 8.111795+0 5.432503-1 7.889576+0 5.495409-1 7.673522+0 5.559043-1 7.463391+0 5.623413-1 7.259019+0 5.688529-1 7.060243+0 5.821032-1 6.687341+0 5.888437-1 6.508864+0 6.000000-1 6.228250+0 6.095369-1 6.001941+0 6.165950-1 5.841935+0 6.309573-1 5.534613+0 6.382635-1 5.391003+0 6.456542-1 5.251123+0 6.531306-1 5.115300+0 6.606935-1 4.983128+0 6.683439-1 4.854441+0 6.760830-1 4.729077+0 6.839117-1 4.606954+0 6.918310-1 4.487986+0 6.998420-1 4.372091+0 7.079458-1 4.262039+0 7.161434-1 4.154767+0 7.244360-1 4.050196+0 7.328245-1 3.948618+0 7.413102-1 3.849647+0 7.444800-1 3.813606+0 7.498942-1 3.753172+0 7.585776-1 3.659117+0 7.762471-1 3.478023+0 7.852356-1 3.390872+0 7.943282-1 3.308006+0 8.035261-1 3.227184+0 8.128305-1 3.148338+0 8.222427-1 3.071623+0 8.317638-1 2.996779+0 8.413951-1 2.923837+0 8.511380-1 2.852684+0 8.609938-1 2.783262+0 8.709636-1 2.715539+0 8.810489-1 2.649495+0 8.912509-1 2.586278+0 9.015711-1 2.524570+0 9.120108-1 2.464374+0 9.225714-1 2.405615+0 9.332543-1 2.348307+0 9.440609-1 2.292584+0 9.549926-1 2.238185+0 9.660509-1 2.185076+0 9.885531-1 2.086078+0 1.000000+0 2.038308+0 1.011579+0 1.991634+0 1.023293+0 1.946207+0 1.035142+0 1.901851+0 1.047129+0 1.858503+0 1.059254+0 1.816146+0 1.071519+0 1.774755+0 1.083927+0 1.735261+0 1.096478+0 1.696647+0 1.109175+0 1.658890+0 1.122018+0 1.621994+0 1.135011+0 1.585918+0 1.148154+0 1.550645+0 1.161449+0 1.516158+0 1.174898+0 1.482558+0 1.188502+0 1.449728+0 1.202264+0 1.417624+0 1.216186+0 1.386229+0 1.230269+0 1.356405+0 1.244515+0 1.327226+0 1.273503+0 1.270739+0 1.288250+0 1.243403+0 1.303167+0 1.216669+0 1.318257+0 1.190611+0 1.333521+0 1.165118+0 1.348963+0 1.140178+0 1.364583+0 1.115775+0 1.380384+0 1.092569+0 1.428894+0 1.025806+0 1.462177+0 9.835942-1 1.479108+0 9.632202-1 1.496236+0 9.432707-1 1.513561+0 9.237360-1 1.531087+0 9.046090-1 1.548817+0 8.858770-1 1.584893+0 8.505979-1 1.640590+0 8.002980-1 1.659587+0 7.842125-1 1.678804+0 7.685060-1 1.698244+0 7.531137-1 1.737801+0 7.232613-1 1.757924+0 7.087867-1 1.798871+0 6.815095-1 1.819701+0 6.682682-1 1.840772+0 6.552842-1 1.862087+0 6.425525-1 1.883649+0 6.300776-1 1.927525+0 6.059373-1 1.949845+0 5.942221-1 1.972423+0 5.827383-1 2.018366+0 5.610718-1 2.044000+0 5.495411-1 2.113489+0 5.201286-1 2.137962+0 5.103756-1 2.187762+0 4.914779-1 2.213095+0 4.822975-1 2.238721+0 4.732921-1 2.290868+0 4.562800-1 2.317395+0 4.480055-1 2.398833+0 4.240716-1 2.426610+0 4.163866-1 2.454709+0 4.088664-1 2.511886+0 3.942315-1 2.540973+0 3.871147-1 2.570396+0 3.801292-1 2.630268+0 3.669282-1 2.660725+0 3.605012-1 2.754229+0 3.418877-1 2.786121+0 3.359035-1 2.818383+0 3.300445-1 2.884032+0 3.186313-1 2.917427+0 3.130762-1 2.951209+0 3.076199-1 3.019952+0 2.973042-1 3.054921+0 2.922774-1 3.162278+0 2.777009-1 3.198895+0 2.730088-1 3.235937+0 2.684118-1 3.311311+0 2.594491-1 3.349654+0 2.550826-1 3.427678+0 2.465717-1 3.507519+0 2.385859-1 3.548134+0 2.346909-1 3.672823+0 2.233833-1 3.715352+0 2.197390-1 3.758374+0 2.161667-1 3.845918+0 2.091954-1 3.890451+0 2.057961-1 4.000000+0 1.978254-1 4.073803+0 1.928892-1 4.120975+0 1.898444-1 4.315191+0 1.781383-1 4.365158+0 1.753283-1 4.415704+0 1.725722-1 4.518559+0 1.671892-1 4.570882+0 1.645621-1 4.677351+0 1.594332-1 4.786301+0 1.545976-1 4.841724+0 1.522353-1 5.128614+0 1.409543-1 5.188000+0 1.388020-1 5.248075+0 1.366895-1 5.370318+0 1.325606-1 5.432503+0 1.305440-1 5.559043+0 1.266038-1 5.688529+0 1.228900-1 5.754399+0 1.210744-1 6.095369+0 1.123905-1 6.165950+0 1.107312-1 6.237348+0 1.091020-1 6.309573+0 1.074968-1 6.382635+0 1.059158-1 6.456542+0 1.043587-1 6.606934+0 1.013129-1 6.760830+0 9.843442-2 6.839116+0 9.702614-2 7.413102+0 8.771636-2 7.498942+0 8.646219-2 7.585776+0 8.522981-2 7.673615+0 8.401500-2 7.762471+0 8.281787-2 7.852356+0 8.163835-2 8.035261+0 7.932945-2 8.222427+0 7.714400-2 8.317638+0 7.607405-2 9.015711+0 6.898858-2 9.120108+0 6.803231-2 9.225714+0 6.709204-2 9.440609+0 6.525031-2 9.549926+0 6.434877-2 9.660509+0 6.346006-2 9.885531+0 6.171931-2 1.000000+1 6.088870-2 1.011579+1 6.006931-2 1.023293+1 5.926093-2 1.109175+1 5.389906-2 1.122018+1 5.317421-2 1.135011+1 5.246106-2 1.174898+1 5.037857-2 1.188502+1 4.970317-2 1.202264+1 4.903705-2 1.244515+1 4.709174-2 1.258925+1 4.647526-2 1.273503+1 4.586681-2 1.288250+1 4.526635-2 1.300000+1 4.479838-2 1.303167+1 4.467379-2 1.412538+1 4.073739-2 1.428894+1 4.020442-2 1.445440+1 3.967987-2 1.500000+1 3.803779-2 1.513561+1 3.764939-2 1.531087+1 3.715852-2 1.584893+1 3.572396-2 1.603245+1 3.526824-2 1.621810+1 3.481833-2 1.640590+1 3.437418-2 1.840772+1 3.023278-2 1.862087+1 2.984734-2 1.883649+1 2.946780-2 1.949845+1 2.835788-2 1.972423+1 2.799737-2 2.000000+1 2.756883-2 2.041738+1 2.694345-2 2.065380+1 2.660742-2 2.113489+1 2.594789-2 2.137962+1 2.562430-2 2.162719+1 2.530474-2 2.540973+1 2.122762-2 2.570396+1 2.096302-2 2.630268+1 2.044492-2 2.722701+1 1.969169-2 2.754229+1 1.944697-2 2.800000+1 1.910193-2 2.818383+1 1.896944-2 2.884032+1 1.851051-2 2.917427+1 1.828524-2 3.507519+1 1.503203-2 3.589219+1 1.466851-2 3.630781+1 1.449037-2 3.801894+1 1.379923-2 3.981072+1 1.314106-2 4.027170+1 1.298149-2 4.073803+1 1.282392-2 4.120975+1 1.266826-2 4.168694+1 1.251449-2 4.216965+1 1.236489-2 4.265795+1 1.221708-2 4.315191+1 1.207104-2 4.365158+1 1.192675-2 4.415704+1 1.178418-2 5.188000+1 9.958277-3 5.308844+1 9.721718-3 5.370318+1 9.605754-3 5.559043+1 9.266123-3 5.754399+1 8.938504-3 5.821032+1 8.831893-3 5.888437+1 8.726573-3 6.000000+1 8.557591-3 6.095369+1 8.418143-3 6.165950+1 8.319021-3 6.237348+1 8.221066-3 6.309573+1 8.124264-3 6.456542+1 7.934066-3 6.531306+1 7.840642-3 6.606934+1 7.748325-3 6.760830+1 7.566934-3 8.709636+1 5.831145-3 8.912509+1 5.694675-3 9.015711+1 5.627727-3 9.332543+1 5.431582-3 9.549926+1 5.304632-3 9.660509+1 5.242274-3 9.772372+1 5.180659-3 9.885531+1 5.119776-3 1.011579+2 5.000151-3 1.023293+2 4.941968-3 1.047129+2 4.827626-3 1.059254+2 4.771454-3 1.096478+2 4.606826-3 1.122018+2 4.500242-3 1.135011+2 4.447877-3 1.188502+2 4.244449-3 1.717908+2 2.918564-3 1.757924+2 2.851052-3 1.840772+2 2.720802-3 1.862087+2 2.689180-3 1.883649+2 2.657925-3 1.905461+2 2.627036-3 1.949845+2 2.566339-3 1.972423+2 2.536519-3 2.018366+2 2.478331-3 2.065380+2 2.421476-3 2.089296+2 2.393540-3 2.187762+2 2.284982-3 2.238721+2 2.232564-3 2.264644+2 2.206808-3 2.371374+2 2.106721-3 3.427678+2 1.453274-3 3.507519+2 1.419940-3 3.672823+2 1.355579-3 3.715352+2 1.339951-3 3.758374+2 1.324502-3 3.801894+2 1.309232-3 3.890451+2 1.279220-3 3.935501+2 1.264473-3 4.518559+2 1.100784-3 4.731513+2 1.051074-3 8.035261+2 6.177867-4 8.222427+2 6.036761-4 8.317638+2 5.967422-4 8.709636+2 5.697937-4 8.912509+2 5.567794-4 1.364583+3 3.631168-4 1.396368+3 3.548237-4 1.462177+3 3.388067-4 1.479108+3 3.349167-4 1.496236+3 3.310713-4 1.513561+3 3.272704-4 1.548817+3 3.197989-4 1.566751+3 3.161275-4 1.798871+3 2.753226-4 1.883649+3 2.629270-4 1.273503+4 3.886450-5 1.303167+4 3.797953-5 1.318257+4 3.754463-5 1.380384+4 3.585430-5 1.412538+4 3.503786-5 1.000000+5 4.945959-6 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.850000-6 4.850000-6 5.190000-6 4.850000-6 5.190000-6 4.966607-6 5.710000-6 4.970222-6 5.710000-6 5.244104-6 6.237348-6 5.169672-6 6.918310-6 5.103201-6 7.852356-6 5.049640-6 9.332543-6 5.011644-6 1.250000-5 4.992963-6 1.620000-5 4.992828-6 1.620000-5 5.656775-6 1.703000-5 5.680554-6 1.703000-5 6.154611-6 1.883649-5 6.275322-6 2.018366-5 6.401159-6 2.137962-5 6.551810-6 2.270000-5 6.765062-6 2.371374-5 6.968119-6 2.454709-5 7.163783-6 2.570396-5 7.477135-6 2.691535-5 7.863022-6 2.754229-5 8.081576-6 2.900000-5 8.648438-6 3.018000-5 9.151881-6 3.018000-5 2.564916-5 3.235937-5 2.522301-5 3.483000-5 2.458555-5 3.483000-5 2.813432-5 3.672823-5 2.773698-5 3.935501-5 2.700472-5 4.315191-5 2.572294-5 5.011872-5 2.319474-5 5.248075-5 2.240875-5 5.466000-5 2.174902-5 5.466000-5 2.207568-5 5.800000-5 2.122707-5 6.095369-5 2.061452-5 6.309573-5 2.024051-5 6.531306-5 1.990370-5 6.918310-5 1.944105-5 7.328245-5 1.907600-5 7.900000-5 1.871717-5 8.650000-5 1.842160-5 9.660509-5 1.818410-5 1.122018-4 1.798505-5 1.362400-4 1.785824-5 1.563000-4 1.782470-5 1.563000-4 1.996395-5 1.584893-4 2.010132-5 1.621600-4 2.053909-5 1.621600-4 2.179946-5 1.669000-4 2.241482-5 1.698244-4 2.266855-5 1.722000-4 2.274737-5 1.755000-4 2.267171-5 1.800000-4 2.236992-5 1.927525-4 2.132191-5 2.000000-4 2.085306-5 2.070000-4 2.055539-5 2.137962-4 2.041136-5 2.220000-4 2.040673-5 2.300300-4 2.054217-5 2.400000-4 2.086309-5 2.540973-4 2.148590-5 2.788600-4 2.279947-5 2.788600-4 2.695263-5 3.113000-4 2.884941-5 3.113000-4 2.999856-5 3.430000-4 3.169137-5 3.813900-4 3.346684-5 3.813900-4 3.585406-5 4.240000-4 3.757244-5 4.700000-4 3.909726-5 5.128614-4 4.032413-5 5.688529-4 4.166228-5 6.500000-4 4.321215-5 7.413102-4 4.460710-5 8.609938-4 4.603601-5 1.000000-3 4.734881-5 1.199800-3 4.882650-5 1.199800-3 7.666098-5 1.231600-3 7.691239-5 1.231600-3 8.105405-5 1.320000-3 8.241286-5 1.396368-3 8.289909-5 1.541800-3 8.280677-5 1.541800-3 8.942014-5 1.686900-3 8.996647-5 1.686900-3 9.292974-5 1.864600-3 9.384759-5 1.864600-3 9.712592-5 2.426610-3 1.004230-4 3.198895-3 1.040699-4 4.073803-3 1.073573-4 5.188000-3 1.106713-4 6.683439-3 1.141090-4 7.242700-3 1.151773-4 7.242700-3 1.567734-4 7.947000-3 1.573522-4 7.947000-3 1.663972-4 8.349800-3 1.666101-4 8.349800-3 1.746917-4 1.202264-2 1.781434-4 1.778279-2 1.818407-4 2.540973-2 1.852099-4 3.715352-2 1.886997-4 5.030300-2 1.913323-4 5.030300-2 1.859189-4 1.380384-1 1.868588-4 5.495409-1 1.874413-4 1.000000+5 1.875108-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.850000-6 0.0 1.621600-4 0.0 1.621600-4 1.104073-9 1.627000-4 1.105317-9 1.632000-4 1.111299-9 1.639000-4 1.126650-9 1.647000-4 1.153555-9 1.655000-4 1.189119-9 1.665000-4 1.243719-9 1.678804-4 1.329832-9 1.695000-4 1.434989-9 1.705000-4 1.494162-9 1.713000-4 1.535625-9 1.722000-4 1.574691-9 1.730000-4 1.602327-9 1.740000-4 1.626546-9 1.750000-4 1.640645-9 1.761000-4 1.645381-9 1.772000-4 1.641087-9 1.785000-4 1.626762-9 1.800000-4 1.600793-9 1.820000-4 1.556319-9 1.842000-4 1.499467-9 1.927525-4 1.259580-9 1.952700-4 1.192971-9 1.980000-4 1.124697-9 2.010000-4 1.054368-9 2.041738-4 9.90217-10 2.070000-4 9.41706-10 2.100000-4 8.98866-10 2.128000-4 8.66968-10 2.150000-4 8.47452-10 2.170000-4 8.33527-10 2.198000-4 8.19954-10 2.220000-4 8.13943-10 2.240000-4 8.11682-10 2.270000-4 8.13582-10 2.300300-4 8.21544-10 2.330000-4 8.34834-10 2.365000-4 8.56700-10 2.400000-4 8.84444-10 2.440000-4 9.22180-10 2.500000-4 9.89140-10 2.580000-4 1.092887-9 2.660725-4 1.208366-9 2.730000-4 1.313958-9 2.788600-4 1.406975-9 2.788600-4 2.425414-9 3.113000-4 2.967665-9 3.113000-4 3.637058-9 3.320000-4 3.986270-9 3.550000-4 4.344967-9 3.813900-4 4.724253-9 3.813900-4 5.397495-9 4.120975-4 5.803018-9 4.315191-4 6.031980-9 4.500000-4 6.237996-9 4.954502-4 6.687304-9 5.300000-4 6.985068-9 5.688529-4 7.276794-9 6.165950-4 7.594689-9 6.683439-4 7.891769-9 7.244360-4 8.172518-9 7.673615-4 8.365928-9 8.511380-4 8.691353-9 9.549926-4 9.034309-9 1.096478-3 9.418220-9 1.199800-3 9.656128-9 1.199800-3 1.099067-8 1.231600-3 1.101953-8 1.231600-3 1.456234-6 1.261500-3 1.567471-6 1.272000-3 1.599006-6 1.274000-3 1.610298-6 1.303167-3 1.716527-6 1.320000-3 1.765181-6 1.340000-3 1.835618-6 1.370000-3 1.915885-6 1.396368-3 1.957342-6 1.428894-3 1.965832-6 1.541800-3 1.956008-6 1.541800-3 2.021389-6 1.686900-3 2.018935-6 1.686900-3 2.242468-6 1.864600-3 2.266592-6 1.864600-3 2.361751-6 2.137962-3 2.407494-6 2.722701-3 2.485796-6 3.300000-3 2.551054-6 4.168694-3 2.631486-6 5.308844-3 2.714251-6 6.760830-3 2.795438-6 7.242700-3 2.818098-6 7.242700-3 6.883291-4 7.500000-3 6.910428-4 7.947000-3 6.906137-4 7.947000-3 8.904586-4 8.349800-3 8.917854-4 8.349800-3 9.419484-4 1.109175-2 9.525758-4 1.698244-2 9.630365-4 2.722701-2 9.711801-4 4.954502-2 9.788560-4 5.030300-2 9.790147-4 5.030300-2 3.486136-2 6.025596-2 3.514456-2 7.673615-2 3.544258-2 1.109175-1 3.572024-2 1.972423-1 3.594159-2 8.511380-1 3.618951-2 1.000000+5 3.621362-2 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.850000-6 0.0 5.190000-6 3.400000-7 5.190000-6 2.233929-7 5.710000-6 7.397779-7 5.710000-6 4.658959-7 5.956621-6 7.501586-7 6.237348-6 1.067676-6 6.606934-6 1.476971-6 7.079458-6 1.988228-6 7.762471-6 2.709046-6 8.709636-6 3.686520-6 1.083927-5 5.841292-6 1.620000-5 1.120717-5 1.620000-5 1.054322-5 1.703000-5 1.134945-5 1.703000-5 1.087539-5 1.950000-5 1.316796-5 2.137962-5 1.482781-5 2.300000-5 1.617802-5 2.454709-5 1.738331-5 2.600160-5 1.843405-5 2.754229-5 1.946071-5 2.951209-5 2.065207-5 3.018000-5 2.102812-5 3.018000-5 4.530838-6 3.090295-5 5.372421-6 3.198895-5 6.680325-6 3.350000-5 8.555386-6 3.483000-5 1.024445-5 3.483000-5 6.695683-6 3.570000-5 7.727708-6 3.672823-5 8.991246-6 3.801894-5 1.062159-5 3.935501-5 1.235029-5 4.168694-5 1.544640-5 5.069907-5 2.770313-5 5.466000-5 3.291098-5 5.466000-5 3.258432-5 5.920000-5 3.823680-5 6.309573-5 4.285522-5 6.839116-5 4.886684-5 7.500000-5 5.604971-5 8.810489-5 6.973110-5 1.202264-4 1.023009-4 1.563000-4 1.384753-4 1.563000-4 1.363361-4 1.621600-4 1.416209-4 1.621600-4 1.403594-4 1.713000-4 1.485675-4 1.820000-4 1.597922-4 2.041738-4 1.835174-4 2.270000-4 2.065227-4 2.788600-4 2.560591-4 2.788600-4 2.519049-4 3.113000-4 2.824476-4 3.113000-4 2.812978-4 3.813900-4 3.479184-4 3.813900-4 3.455305-4 5.400000-4 4.989808-4 9.225714-4 8.759060-4 1.199800-3 1.150964-3 1.199800-3 1.123128-3 1.231600-3 1.154676-3 1.231600-3 1.149089-3 1.541800-3 1.457037-3 1.541800-3 1.450358-3 1.686900-3 1.594914-3 1.686900-3 1.591728-3 1.864600-3 1.768486-3 1.864600-3 1.765112-3 7.242700-3 7.124704-3 7.242700-3 6.397598-3 7.947000-3 7.099034-3 7.947000-3 6.890144-3 8.349800-3 7.291404-3 8.349800-3 7.233160-3 3.981072-2 3.864501-2 5.030300-2 4.913265-2 5.030300-2 1.525573-2 5.308844-2 1.794512-2 5.821032-2 2.292205-2 7.244360-2 3.687007-2 1.188502-1 8.290108-2 1.927525+0 1.891125+0 1.000000+5 9.999997+4 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.030300-2 3.833496+3 5.050000-2 3.791448+3 5.140000-2 3.634975+3 5.248075-2 3.451073+3 5.350000-2 3.277560+3 5.559043-2 2.981875+3 6.095369-2 2.342273+3 6.839116-2 1.739113+3 7.585776-2 1.320737+3 9.332543-2 7.560848+2 1.174898-1 4.026501+2 2.238721-1 6.761139+1 2.691535-1 4.086606+1 3.054921-1 2.905196+1 3.507519-1 2.014816+1 3.981072-1 1.450056+1 4.518559-1 1.051309+1 5.069907-1 7.907864+0 5.688529-1 5.992158+0 6.309573-1 4.699711+0 6.998420-1 3.714661+0 7.852356-1 2.882936+0 8.810489-1 2.254228+0 9.660509-1 1.859750+0 1.071519+0 1.510814+0 1.216186+0 1.180137+0 1.364583+0 9.498304-1 1.548817+0 7.540394-1 1.757924+0 6.032988-1 1.972423+0 4.960250-1 2.238721+0 4.028765-1 2.570396+0 3.235713-1 2.951209+0 2.618525-1 3.427678+0 2.098843-1 4.000000+0 1.683900-1 4.677351+0 1.357113-1 5.559043+0 1.077671-1 6.606934+0 8.623904-2 8.035261+0 6.752668-2 9.885531+0 5.253642-2 1.244515+1 4.008506-2 1.584893+1 3.040881-2 2.041738+1 2.293512-2 2.800000+1 1.626000-2 4.168694+1 1.065265-2 6.095369+1 7.165859-3 1.011579+2 4.256412-3 1.972423+2 2.159300-3 3.935501+2 1.076449-3 1.566751+3 2.691226-4 1.000000+5 4.210600-6 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.030300-2 1.847200-4 1.000000+5 1.847200-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.030300-2 4.236500-2 1.000000+5 4.236500-2 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.030300-2 7.753280-3 1.000000+5 9.999996+4 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.349800-3 1.474346+4 8.480000-3 1.426946+4 8.709636-3 1.367328+4 8.920000-3 1.312162+4 9.225714-3 1.243113+4 1.000000-2 1.077086+4 1.083927-2 9.375171+3 1.150000-2 8.408460+3 1.220000-2 7.516940+3 1.330000-2 6.403960+3 1.698244-2 3.955804+3 1.905461-2 3.120404+3 2.187762-2 2.337085+3 2.600160-2 1.607490+3 2.917427-2 1.244575+3 3.349654-2 9.100512+2 3.935501-2 6.258712+2 4.623810-2 4.266319+2 5.432503-2 2.884049+2 6.456542-2 1.879364+2 7.673615-2 1.214528+2 9.120108-2 7.789985+1 1.122019-1 4.533344+1 1.462177-1 2.249930+1 2.371374-1 6.184749+0 2.917427-1 3.579762+0 3.467369-1 2.285621+0 4.027170-1 1.560948+0 4.570882-1 1.138216+0 5.188000-1 8.362224-1 5.821032-1 6.362104-1 6.456542-1 5.005256-1 7.244360-1 3.867131-1 8.128305-1 3.009530-1 9.332543-1 2.246316-1 1.011579+0 1.904996-1 1.161449+0 1.450327-1 1.303167+0 1.163742-1 1.462177+0 9.407074-2 1.659587+0 7.499845-2 1.883649+0 6.026578-2 2.137962+0 4.881315-2 2.426610+0 3.981712-2 2.786121+0 3.212173-2 3.198895+0 2.610490-2 3.715352+0 2.101208-2 4.365158+0 1.676663-2 5.188000+0 1.327300-2 6.165950+0 1.058822-2 7.498942+0 8.268343-3 9.120108+0 6.505991-3 1.122018+1 5.084545-3 1.428894+1 3.844370-3 1.862087+1 2.854302-3 2.570396+1 2.004823-3 3.589219+1 1.402662-3 5.308844+1 9.296698-4 8.912509+1 5.446591-4 1.757924+2 2.727219-4 3.507519+2 1.358529-4 1.396368+3 3.394972-5 1.000000+5 4.733400-7 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.349800-3 2.265600-4 1.000000+5 2.265600-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.349800-3 1.263900-3 1.000000+5 1.263900-3 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.349800-3 6.859340-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 7.947000-3 2.916500+4 8.040000-3 2.828700+4 8.070000-3 2.814800+4 8.245900-3 2.677200+4 8.709636-3 2.331500+4 1.011579-2 1.573600+4 1.096478-2 1.266600+4 1.273503-2 8.378800+3 1.540000-2 4.925800+3 1.900000-2 2.686800+3 2.162719-2 1.835200+3 2.511886-2 1.176000+3 3.054921-2 6.506100+2 3.758374-2 3.442000+2 4.623810-2 1.805600+2 5.821032-2 8.746600+1 1.230269-1 8.100673+0 1.603245-1 3.511445+0 1.927525-1 1.977114+0 2.264644-1 1.204523+0 2.630268-1 7.656604-1 3.019952-1 5.077351-1 3.427678-1 3.509566-1 3.845918-1 2.525789-1 4.315191-1 1.830498-1 4.786301-1 1.378982-1 5.308844-1 1.045616-1 5.888437-1 7.982087-2 6.531306-1 6.136527-2 7.244360-1 4.752410-2 8.317638-1 3.414341-2 9.015711-1 2.830971-2 9.660509-1 2.428266-2 1.023293+0 2.150159-2 1.109175+0 1.825647-2 1.216186+0 1.525421-2 1.333521+0 1.284142-2 1.513561+0 1.022553-2 1.737801+0 8.010573-3 1.949845+0 6.578761-3 2.213095+0 5.339382-3 2.540973+0 4.285356-3 2.917427+0 3.465663-3 3.349654+0 2.823094-3 3.890451+0 2.277533-3 4.570882+0 1.821379-3 5.432503+0 1.444863-3 6.382635+0 1.172158-3 7.762471+0 9.165682-4 9.549926+0 7.121866-4 1.188502+1 5.500488-4 1.513561+1 4.166313-4 1.972423+1 3.098886-4 2.722701+1 2.179723-4 4.027170+1 1.436996-4 5.888437+1 9.660249-5 9.772372+1 5.735371-5 1.905461+2 2.908390-5 3.801894+2 1.449648-5 1.513561+3 3.623605-6 1.000000+5 5.476800-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 7.947000-3 1.907400-4 1.000000+5 1.907400-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.947000-3 1.428300-3 1.000000+5 1.428300-3 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 7.947000-3 6.327960-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 7.242700-3 6.345985+4 7.380000-3 6.091320+4 7.500000-3 5.855440+4 7.943282-3 5.028887+4 9.332543-3 3.232983+4 1.047129-2 2.332979+4 1.244515-2 1.417381+4 1.400000-2 1.006876+4 1.757924-2 5.091464+3 2.113489-2 2.895288+3 2.400000-2 1.949484+3 2.800000-2 1.199860+3 3.349654-2 6.767309+2 4.027170-2 3.725833+2 4.841724-2 2.036226+2 6.025596-2 9.858850+1 7.852356-2 4.062107+1 1.303167-1 7.387484+0 1.640590-1 3.423526+0 1.927525-1 2.011471+0 2.238721-1 1.236280+0 2.570396-1 7.945102-1 2.917427-1 5.337966-1 3.273407-1 3.745948-1 3.630781-1 2.742264-1 4.027170-1 2.021412-1 4.466836-1 1.501223-1 4.954502-1 1.124090-1 5.432503-1 8.751879-2 6.000000-1 6.731133-2 6.606935-1 5.259342-2 7.244360-1 4.183968-2 7.943282-1 3.351825-2 8.709636-1 2.696122-2 9.332543-1 2.305333-2 9.885531-1 2.034742-2 1.071519+0 1.723108-2 1.174898+0 1.435801-2 1.288250+0 1.205315-2 1.428894+0 9.976584-3 1.698244+0 7.341518-3 1.927525+0 5.905380-3 2.187762+0 4.789350-3 2.511886+0 3.841343-3 2.884032+0 3.104691-3 3.311311+0 2.527582-3 3.845918+0 2.037972-3 4.518559+0 1.628902-3 5.370318+0 1.291512-3 6.309573+0 1.047233-3 7.673615+0 8.185275-4 9.440609+0 6.357321-4 1.174898+1 4.907971-4 1.500000+1 3.705500-4 1.949845+1 2.763140-4 2.722701+1 1.918967-4 4.027170+1 1.265126-4 5.821032+1 8.606784-5 9.660509+1 5.109098-5 1.883649+2 2.590556-5 3.758374+2 1.291172-5 1.496236+3 3.227210-6 1.000000+5 4.821800-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 7.242700-3 1.804000-4 1.000000+5 1.804000-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.242700-3 1.077700-3 1.000000+5 1.077700-3 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.242700-3 5.984600-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.864600-3 4.335066+4 1.960000-3 4.110680+4 2.264644-3 3.394749+4 2.371374-3 3.176840+4 2.900000-3 2.354580+4 3.198895-3 2.029502+4 3.467369-3 1.782121+4 4.216965-3 1.287749+4 4.731513-3 1.054425+4 5.500000-3 8.076960+3 6.683439-3 5.647244+3 7.762471-3 4.254198+3 8.912509-3 3.257296+3 1.047129-2 2.368674+3 1.244515-2 1.669776+3 1.479108-2 1.167313+3 1.737801-2 8.295890+2 2.041738-2 5.852628+2 2.400000-2 4.093820+2 2.818383-2 2.848838+2 3.311311-2 1.965544+2 3.935501-2 1.309798+2 4.677351-2 8.655819+1 5.495409-2 5.837277+1 6.531306-2 3.798702+1 7.762471-2 2.453533+1 9.332543-2 1.528032+1 1.148154-1 8.898101+0 1.513561-1 4.290353+0 2.344229-1 1.338570+0 2.884032-1 7.757044-1 3.427678-1 4.955474-1 3.981072-1 3.384908-1 4.570882-1 2.399630-1 5.188000-1 1.763571-1 5.821032-1 1.342003-1 6.531306-1 1.028793-1 7.328245-1 7.945881-2 8.317638-1 6.030719-2 9.225714-1 4.846098-2 1.011579+0 4.018195-2 1.161449+0 3.060755-2 1.303167+0 2.455716-2 1.462177+0 1.984233-2 1.640590+0 1.614164-2 1.862087+0 1.296208-2 2.113489+0 1.049059-2 2.398833+0 8.551629-3 2.754229+0 6.894889-3 3.162278+0 5.600305-3 3.672823+0 4.505064-3 4.315191+0 3.592763-3 5.128614+0 2.842681-3 6.095369+0 2.266531-3 7.413102+0 1.769080-3 9.015711+0 1.391361-3 1.109175+1 1.086945-3 1.412538+1 8.215588-4 1.840772+1 6.097383-4 2.540973+1 4.281462-4 3.507519+1 3.031594-4 5.188000+1 2.008351-4 8.709636+1 1.176137-4 1.717908+2 5.887686-5 3.427678+2 2.932336-5 1.364583+3 7.327265-6 1.000000+5 9.983200-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.864600-3 1.713900-4 1.000000+5 1.713900-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.864600-3 4.517400-6 1.000000+5 4.517400-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.864600-3 1.688693-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.686900-3 6.983207+4 1.770000-3 6.665132+4 1.927525-3 6.074782+4 2.018366-3 5.745454+4 2.187762-3 5.159780+4 2.400000-3 4.526880+4 2.600160-3 4.020667+4 2.818383-3 3.542011+4 3.019952-3 3.157385+4 3.548134-3 2.378020+4 3.801894-3 2.094716+4 4.265795-3 1.677952+4 4.731513-3 1.366512+4 5.248075-3 1.103099+4 5.888437-3 8.640521+3 6.531306-3 6.880824+3 7.328245-3 5.310239+3 8.317638-3 3.956296+3 9.225714-3 3.091439+3 1.059254-2 2.205783+3 1.216186-2 1.559125+3 1.380384-2 1.125669+3 1.566751-2 8.070721+2 1.778279-2 5.747426+2 2.041738-2 3.939083+2 2.344229-2 2.679522+2 2.691535-2 1.810122+2 3.126079-2 1.174864+2 3.672823-2 7.318024+1 4.315191-2 4.525616+1 5.188000-2 2.592451+1 6.382635-2 1.373708+1 8.222426-2 6.266676+0 1.479108-1 1.004254+0 1.840772-1 5.109210-1 2.065380-1 3.595321-1 2.570396-1 1.863529-1 2.951209-1 1.238816-1 3.349654-1 8.575846-2 3.801894-1 5.979772-2 4.265795-1 4.338995-2 4.786301-1 3.171877-2 5.308844-1 2.409395-2 5.888437-1 1.842834-2 6.531306-1 1.418933-2 7.244360-1 1.100223-2 8.317638-1 7.914545-3 9.015711-1 6.566170-3 9.660509-1 5.634233-3 1.023293+0 4.989966-3 1.122018+0 4.141662-3 1.230269+0 3.463756-3 1.348963+0 2.918224-3 1.584893+0 2.185706-3 1.798871+0 1.751114-3 2.018366+0 1.441121-3 2.290868+0 1.171902-3 2.630268+0 9.423911-4 3.019952+0 7.635418-4 3.507519+0 6.127576-4 4.073803+0 4.954396-4 4.786301+0 3.970572-4 5.688529+0 3.156152-4 6.760830+0 2.528288-4 8.222427+0 1.981435-4 1.011579+1 1.542917-4 1.273503+1 1.178081-4 1.621810+1 8.943852-5 2.113489+1 6.664725-5 2.884032+1 4.754863-5 4.365158+1 3.063260-5 6.531306+1 2.013753-5 1.122018+2 1.155783-5 2.238721+2 5.734338-6 8.912509+2 1.429652-6 1.412538+4 8.999617-8 1.000000+5 1.271000-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.686900-3 1.421900-4 1.000000+5 1.421900-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.686900-3 5.958400-6 1.000000+5 5.958400-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.686900-3 1.538752-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.541800-3 1.865098+5 1.610000-3 1.775505+5 1.640590-3 1.731624+5 1.670000-3 1.694728+5 1.800000-3 1.528824+5 1.900000-3 1.410668+5 2.137962-3 1.171294+5 2.350000-3 1.003536+5 2.570396-3 8.596899+4 2.754229-3 7.584797+4 3.235937-3 5.597860+4 3.507519-3 4.777533+4 4.073803-3 3.515203+4 4.466836-3 2.891853+4 5.128614-3 2.135837+4 5.688529-3 1.689623+4 6.456542-3 1.258781+4 7.293000-3 9.403642+3 8.128305-3 7.208224+3 9.225714-3 5.243045+3 1.047129-2 3.783228+3 1.174898-2 2.793429+3 1.333521-2 1.986920+3 1.513561-2 1.403177+3 1.730000-2 9.646600+2 1.972423-2 6.629701+2 2.264644-2 4.431782+2 2.600160-2 2.940684+2 3.000000-2 1.908968+2 3.500000-2 1.188636+2 4.073803-2 7.400770+1 4.841724-2 4.281691+1 5.754399-2 2.458460+1 7.079458-2 1.252597+1 9.332543-2 5.051293+0 1.479108-1 1.101486+0 1.798871-1 5.801973-1 2.162719-1 3.197875-1 2.483133-1 2.059546-1 2.818383-1 1.385450-1 3.162278-1 9.726751-2 3.548134-1 6.878697-2 3.935501-1 5.071324-2 4.365158-1 3.767560-2 4.841724-1 2.819878-2 5.370318-1 2.125939-2 5.888437-1 1.664825-2 6.456542-1 1.313156-2 7.079458-1 1.043187-2 7.762471-1 8.345396-3 8.609938-1 6.528471-3 9.225714-1 5.576349-3 9.885531-1 4.797481-3 1.071519+0 4.062746-3 1.174898+0 3.385273-3 1.288250+0 2.841795-3 1.428894+0 2.352219-3 1.698244+0 1.730888-3 1.927525+0 1.392312-3 2.187762+0 1.129283-3 2.511886+0 9.057691-4 2.884032+0 7.320459-4 3.311311+0 5.959620-4 3.845918+0 4.805188-4 4.518559+0 3.840697-4 5.370318+0 3.045208-4 6.382635+0 2.433149-4 7.762471+0 1.902584-4 9.549926+0 1.478404-4 1.188502+1 1.141823-4 1.513561+1 8.648401-5 1.972423+1 6.432648-5 2.722701+1 4.524630-5 4.027170+1 2.982907-5 5.821032+1 2.029343-5 9.660509+1 1.204682-5 1.883649+2 6.108040-6 3.758374+2 3.044288-6 1.496236+3 7.609121-7 1.000000+5 1.136900-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.541800-3 1.332400-4 1.000000+5 1.332400-4 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.541800-3 2.454600-6 1.000000+5 2.454600-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.541800-3 1.406105-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.231600-3 4.174585+5 1.261500-3 4.461223+5 1.272000-3 4.532973+5 1.274000-3 4.567201+5 1.303167-3 4.840687+5 1.318257-3 4.939151+5 1.340000-3 5.067899+5 1.364583-3 5.118438+5 1.370000-3 5.122726+5 1.396368-3 5.057123+5 1.428894-3 4.823213+5 1.621810-3 3.539630+5 1.778279-3 2.802439+5 1.927525-3 2.270453+5 2.113489-3 1.772821+5 2.350000-3 1.322568+5 2.630268-3 9.614660+4 2.917427-3 7.099181+4 3.300000-3 4.923760+4 3.715352-3 3.427927+4 4.168694-3 2.398728+4 4.800000-3 1.532260+4 5.308844-3 1.106182+4 6.095369-3 7.015867+3 6.918310-3 4.582302+3 7.762471-3 3.091995+3 8.912509-3 1.913203+3 1.023293-2 1.173995+3 1.174898-2 7.147174+2 1.350000-2 4.306080+2 1.548817-2 2.589769+2 1.800000-2 1.473048+2 2.089296-2 8.351626+1 2.426610-2 4.689916+1 2.851018-2 2.501907+1 3.427678-2 1.210468+1 4.216965-2 5.306450+0 5.559043-2 1.751205+0 9.015711-2 2.502948-1 1.109175-1 1.093918-1 1.318257-1 5.525800-2 1.566751-1 2.813382-2 1.798871-1 1.650733-2 2.065380-1 9.756827-3 2.344229-1 6.068874-3 2.630268-1 3.968163-3 2.951209-1 2.613040-3 3.311311-1 1.732946-3 3.672823-1 1.206558-3 4.027170-1 8.806214-4 4.415705-1 6.477339-4 4.841724-1 4.796255-4 5.370318-1 3.446786-4 5.888437-1 2.587323-4 6.531306-1 1.887579-4 7.161434-1 1.436562-4 8.609938-1 8.459361-5 9.120108-1 7.220964-5 9.549926-1 6.401262-5 1.000000+0 5.712197-5 1.047129+0 5.135783-5 1.096478+0 4.650454-5 1.148154+0 4.236523-5 1.216186+0 3.796593-5 1.318257+0 3.282370-5 1.513561+0 2.590275-5 1.819701+0 1.875084-5 2.018366+0 1.572590-5 2.290868+0 1.278636-5 2.630268+0 1.028259-5 3.019952+0 8.332071-6 3.507519+0 6.686702-6 4.073803+0 5.406475-6 4.786301+0 4.332849-6 5.688529+0 3.444143-6 6.760830+0 2.758886-6 8.222427+0 2.162254-6 1.011579+1 1.683675-6 1.273503+1 1.285603-6 1.603245+1 9.887220-7 2.065380+1 7.459266-7 2.818383+1 5.318390-7 4.216965+1 3.466481-7 6.237348+1 2.304712-7 1.047129+2 1.353383-7 2.065380+2 6.788610-8 8.222427+2 1.691432-8 1.303167+4 1.064498-9 1.000000+5 1.38690-10 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.231600-3 9.410900-5 1.000000+5 9.410900-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.231600-3 6.011700-6 1.000000+5 6.011700-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.231600-3 1.131479-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.199800-3 9.401876+5 1.320000-3 8.474396+5 1.333521-3 8.293873+5 1.570000-3 5.537832+5 1.717908-3 4.400520+5 1.862087-3 3.560169+5 2.041738-3 2.776303+5 2.264644-3 2.081448+5 2.540973-3 1.500904+5 2.754229-3 1.185010+5 3.198895-3 7.577404+4 3.548134-3 5.512824+4 4.000000-3 3.792810+4 4.518559-3 2.570644+4 5.011872-3 1.836928+4 5.754399-3 1.163022+4 6.456542-3 7.885832+3 7.244360-3 5.314608+3 8.317638-3 3.281730+3 9.549926-3 2.008807+3 1.083927-2 1.271471+3 1.216186-2 8.340412+2 1.364583-2 5.441868+2 1.548817-2 3.380836+2 1.778279-2 1.996832+2 2.018366-2 1.224557+2 2.317395-2 7.137027+1 2.722701-2 3.772654+1 3.198895-2 1.979392+1 3.845918-2 9.399818+0 4.786301-2 3.849634+0 9.015711-2 2.846072-1 1.122019-1 1.164831-1 1.318257-1 6.072925-2 1.513561-1 3.498351-2 1.717908-1 2.124150-2 1.927525-1 1.358466-2 2.162719-1 8.748851-3 2.398833-1 5.928080-3 2.660725-1 4.045913-3 2.917427-1 2.900310-3 3.198895-1 2.093258-3 3.507519-1 1.521660-3 3.845918-1 1.114414-3 4.168694-1 8.540272-4 4.570882-1 6.348089-4 5.000000-1 4.791664-4 5.432503-1 3.719848-4 5.888437-1 2.927728-4 6.456542-1 2.242370-4 6.918310-1 1.847359-4 7.444800-1 1.514591-4 8.035261-1 1.242627-4 8.609938-1 1.044217-4 9.120108-1 9.081531-5 9.660509-1 7.947282-5 1.023293+0 7.006545-5 1.096478+0 6.072132-5 1.174898+0 5.298122-5 1.288250+0 4.454224-5 1.428894+0 3.694569-5 1.757924+0 2.563532-5 1.972423+0 2.106316-5 2.238721+0 1.710724-5 2.570396+0 1.374003-5 2.951209+0 1.111957-5 3.427678+0 8.912806-6 4.000000+0 7.150700-6 4.677351+0 5.762848-6 5.559043+0 4.576228-6 6.606934+0 3.662069-6 8.035261+0 2.867446-6 1.000000+1 2.200500-6 1.258925+1 1.679637-6 1.603245+1 1.274688-6 2.065380+1 9.616479-7 2.818383+1 6.856547-7 4.216965+1 4.468956-7 6.165950+1 3.006908-7 1.023293+2 1.786360-7 2.018366+2 8.958180-8 8.035261+2 2.231535-8 1.273503+4 1.404362-9 1.000000+5 1.78800-10 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.199800-3 8.918200-5 1.000000+5 8.918200-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.199800-3 1.159100-8 1.000000+5 1.159100-8 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.199800-3 1.110606-3 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.813900-4 1.025865+5 4.240000-4 9.596620+4 5.069907-4 8.273578+4 5.500000-4 7.682600+4 6.025596-4 6.970342+4 6.850000-4 6.049500+4 7.413102-4 5.504897+4 8.511380-4 4.615336+4 9.440609-4 4.021160+4 1.071519-3 3.365087+4 1.216186-3 2.798380+4 1.428894-3 2.189441+4 1.621810-3 1.792934+4 1.883649-3 1.405985+4 2.238721-3 1.052713+4 2.691535-3 7.658800+3 3.235937-3 5.524376+3 3.890451-3 3.953366+3 4.677351-3 2.809006+3 5.688529-3 1.939266+3 6.918310-3 1.328590+3 8.317638-3 9.239102+2 1.000000-2 6.376620+2 1.202264-2 4.366030+2 1.428894-2 3.038730+2 1.698244-2 2.099871+2 2.018366-2 1.440531+2 2.398833-2 9.808526+1 2.851018-2 6.627417+1 3.349654-2 4.563199+1 3.981072-2 3.035636+1 4.731513-2 2.003790+1 5.559043-2 1.350127+1 6.683439-2 8.529877+0 8.035261-2 5.347722+0 9.772372-2 3.226960+0 1.230269-1 1.766855+0 1.566751-1 9.323235-1 2.371374-1 3.094646-1 2.917427-1 1.794438-1 3.467369-1 1.147166-1 4.027170-1 7.842219-2 4.623810-1 5.564301-2 5.248075-1 4.092812-2 5.888437-1 3.116916-2 6.606935-1 2.391378-2 7.413102-1 1.848367-2 8.413951-1 1.403934-2 9.332543-1 1.129167-2 1.023293+0 9.370768-3 1.174898+0 7.142263-3 1.318257+0 5.734552-3 1.479108+0 4.636634-3 1.659587+0 3.774317-3 1.883649+0 3.033055-3 2.137962+0 2.456654-3 2.426610+0 2.003880-3 2.786121+0 1.616595-3 3.198895+0 1.313784-3 3.715352+0 1.057468-3 4.365158+0 8.437997-4 5.188000+0 6.679901-4 6.165950+0 5.328938-4 7.498942+0 4.161240-4 9.120108+0 3.274298-4 1.122018+1 2.558876-4 1.428894+1 1.934780-4 1.862087+1 1.436467-4 2.570396+1 1.008958-4 3.630781+1 6.973812-5 5.370318+1 4.623140-5 9.015711+1 2.709013-5 1.757924+2 1.372533-5 3.507519+2 6.837207-6 1.396368+3 1.708613-6 1.000000+5 2.382200-8 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.813900-4 9.063600-5 1.000000+5 9.063600-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.813900-4 2.084700-8 1.000000+5 2.084700-8 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.813900-4 2.907332-4 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.113000-4 8.247202+4 4.168694-4 7.931151+4 4.466836-4 7.793660+4 4.897788-4 7.557353+4 5.300000-4 7.301240+4 5.688529-4 7.031501+4 6.095369-4 6.726348+4 6.606934-4 6.336412+4 7.161434-4 5.931421+4 7.673615-4 5.570984+4 8.317638-4 5.141689+4 9.120108-4 4.660185+4 9.885531-4 4.248720+4 1.096478-3 3.740882+4 1.202264-3 3.319636+4 1.333521-3 2.878485+4 1.479108-3 2.478753+4 1.650000-3 2.100160+4 1.840772-3 1.766586+4 2.070000-3 1.455516+4 2.317395-3 1.199411+4 2.600160-3 9.776421+3 2.917427-3 7.913143+3 3.300000-3 6.264680+3 3.715352-3 4.968969+3 4.216965-3 3.850702+3 4.800000-3 2.944360+3 5.432503-3 2.261559+3 6.165950-3 1.713963+3 7.000000-3 1.288604+3 7.852356-3 9.888387+2 8.912509-3 7.333735+2 1.023293-2 5.248291+2 1.161449-2 3.832736+2 1.318257-2 2.779149+2 1.513561-2 1.941993+2 1.737801-2 1.346674+2 2.000000-2 9.208944+1 2.317395-2 6.133100+1 2.691535-2 4.025659+1 3.126079-2 2.622086+1 3.672823-2 1.638933+1 4.365158-2 9.825707+0 5.188000-2 5.847114+0 6.382635-2 3.108992+0 8.317638-2 1.374497+0 1.513561-1 2.143638-1 1.883649-1 1.094490-1 2.264644-1 6.258047-2 2.630268-1 4.000534-2 3.019952-1 2.664945-2 3.427678-1 1.848607-2 3.890451-1 1.291758-2 4.365158-1 9.392812-3 4.897788-1 6.879975-3 5.495409-1 5.078621-3 6.095369-1 3.891728-3 6.760830-1 3.003367-3 7.498942-1 2.334704-3 8.609938-1 1.683445-3 9.225714-1 1.438034-3 9.885531-1 1.237133-3 1.071519+0 1.047656-3 1.174898+0 8.729512-4 1.288250+0 7.328322-4 1.428894+0 6.066508-4 1.698244+0 4.464806-4 1.927525+0 3.591361-4 2.187762+0 2.912435-4 2.511886+0 2.335948-4 2.884032+0 1.888082-4 3.311311+0 1.537153-4 3.845918+0 1.239399-4 4.518559+0 9.906066-5 5.370318+0 7.854223-5 6.382635+0 6.275638-5 7.762471+0 4.907309-5 9.549926+0 3.813077-5 1.188502+1 2.944921-5 1.513561+1 2.230646-5 1.972423+1 1.659111-5 2.722701+1 1.167026-5 3.981072+1 7.787566-6 5.754399+1 5.296938-6 9.549926+1 3.143844-6 1.883649+2 1.575362-6 3.758374+2 7.851808-7 1.496236+3 1.962532-7 1.000000+5 2.932300-9 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.113000-4 6.895200-5 1.000000+5 6.895200-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.113000-4 2.632800-8 1.000000+5 2.632800-8 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.113000-4 2.423217-4 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.788600-4 2.986088+5 3.200000-4 2.870520+5 3.388442-4 2.804289+5 3.600000-4 2.723284+5 3.935501-4 2.592485+5 4.315191-4 2.442120+5 4.623810-4 2.323761+5 5.011872-4 2.179353+5 5.400000-4 2.039628+5 5.888437-4 1.873992+5 6.500000-4 1.689204+5 7.079458-4 1.532919+5 7.852356-4 1.351247+5 8.609938-4 1.200604+5 9.549926-4 1.042736+5 1.059254-3 8.997149+4 1.188502-3 7.572337+4 1.318257-3 6.442162+4 1.496236-3 5.241663+4 1.659587-3 4.398633+4 1.883649-3 3.523060+4 2.150000-3 2.769028+4 2.426610-3 2.204115+4 2.722701-3 1.762634+4 3.090295-3 1.368466+4 3.507519-3 1.054480+4 4.027170-3 7.868574+3 4.623810-3 5.820714+3 5.248075-3 4.382153+3 5.956621-3 3.275446+3 6.683439-3 2.498014+3 7.500000-3 1.892692+3 8.511380-3 1.385958+3 9.660509-3 1.006753+3 1.096478-2 7.259744+2 1.244515-2 5.196708+2 1.412538-2 3.693555+2 1.603245-2 2.607156+2 1.840772-2 1.769358+2 2.113489-2 1.191456+2 2.426610-2 7.962587+1 2.786121-2 5.283016+1 3.198895-2 3.480591+1 3.715352-2 2.198237+1 4.365158-2 1.329531+1 5.188000-2 7.694064+0 6.237348-2 4.258305+0 7.673615-2 2.170925+0 1.023293-1 8.434489-1 1.548817-1 2.152728-1 1.883649-1 1.137242-1 2.213095-1 6.769001-2 2.540973-1 4.368433-2 2.884032-1 2.944477-2 3.235937-1 2.071011-2 3.630781-1 1.467401-2 4.027170-1 1.083811-2 4.466836-1 8.065643-3 4.954502-1 6.048589-3 5.432503-1 4.715298-3 6.000000-1 3.630852-3 6.606935-1 2.838838-3 7.244360-1 2.259461-3 7.943282-1 1.810801-3 8.709636-1 1.457276-3 9.332543-1 1.246480-3 9.885531-1 1.100454-3 1.071519+0 9.321442-4 1.174898+0 7.767364-4 1.288250+0 6.519858-4 1.428894+0 5.396115-4 1.698244+0 3.970645-4 1.927525+0 3.193943-4 2.187762+0 2.590331-4 2.511886+0 2.077633-4 2.884032+0 1.679253-4 3.311311+0 1.367138-4 3.845918+0 1.102323-4 4.518559+0 8.810299-5 5.370318+0 6.985331-5 6.382635+0 5.581418-5 7.762471+0 4.364396-5 9.549926+0 3.391193-5 1.188502+1 2.619183-5 1.513561+1 1.983872-5 1.972423+1 1.475622-5 2.722701+1 1.037897-5 4.027170+1 6.842438-6 5.821032+1 4.655134-6 9.660509+1 2.763332-6 1.905461+2 1.384886-6 3.801894+2 6.902854-7 1.513561+3 1.725483-7 1.000000+5 2.607900-9 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.788600-4 6.581400-5 1.000000+5 6.581400-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.788600-4 1.195500-8 1.000000+5 1.195500-8 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.788600-4 2.130340-4 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.621600-4 3.182764+5 1.627000-4 3.187312+5 1.632000-4 3.206304+5 1.639000-4 3.253648+5 1.647000-4 3.335184+5 1.655000-4 3.440904+5 1.665000-4 3.601412+5 1.685000-4 3.967336+5 1.695000-4 4.145280+5 1.705000-4 4.303600+5 1.713000-4 4.409240+5 1.722000-4 4.502000+5 1.730000-4 4.559600+5 1.740000-4 4.598560+5 1.750000-4 4.604240+5 1.761000-4 4.576640+5 1.772000-4 4.520640+5 1.785000-4 4.426800+5 1.800000-4 4.292920+5 1.820000-4 4.089640+5 1.842000-4 3.852540+5 1.865000-4 3.603260+5 1.900000-4 3.238184+5 2.010000-4 2.305100+5 2.041738-4 2.107861+5 2.070000-4 1.959464+5 2.100000-4 1.828380+5 2.128000-4 1.728644+5 2.150000-4 1.664252+5 2.170000-4 1.615456+5 2.198000-4 1.561268+5 2.220000-4 1.529204+5 2.240000-4 1.507256+5 2.270000-4 1.485932+5 2.300000-4 1.476668+5 2.330000-4 1.477892+5 2.365000-4 1.490572+5 2.400000-4 1.513656+5 2.440000-4 1.550440+5 2.500000-4 1.621240+5 2.580000-4 1.734668+5 2.786121-4 2.063597+5 2.900000-4 2.243720+5 3.000000-4 2.392732+5 3.100000-4 2.528440+5 3.200000-4 2.649352+5 3.311311-4 2.765673+5 3.430000-4 2.868801+5 3.550000-4 2.953340+5 3.672823-4 3.021767+5 3.801894-4 3.075699+5 3.935501-4 3.113453+5 4.100000-4 3.136984+5 4.280000-4 3.138408+5 4.500000-4 3.114304+5 4.731513-4 3.066531+5 4.954502-4 3.003393+5 5.230000-4 2.908200+5 5.500000-4 2.803032+5 5.821032-4 2.671136+5 6.165950-4 2.526769+5 6.531306-4 2.373958+5 6.998420-4 2.184968+5 7.500000-4 1.995588+5 8.035261-4 1.809597+5 8.609938-4 1.629258+5 9.225714-4 1.457871+5 9.885531-4 1.296377+5 1.071519-3 1.122313+5 1.161449-3 9.645688+4 1.258925-3 8.231088+4 1.364583-3 6.978410+4 1.479108-3 5.877869+4 1.621810-3 4.796760+4 1.778279-3 3.884454+4 1.927525-3 3.211123+4 2.137962-3 2.495248+4 2.371374-3 1.922841+4 2.630268-3 1.470099+4 2.884032-3 1.150732+4 3.162278-3 8.957488+3 3.507519-3 6.712141+3 3.900000-3 4.959640+3 4.315191-3 3.691775+3 4.786301-3 2.710633+3 5.308844-3 1.977646+3 5.888437-3 1.433370+3 6.606934-3 9.949520+2 7.413102-3 6.854716+2 8.317638-3 4.687167+2 9.332543-3 3.181557+2 1.047129-2 2.145137+2 1.188502-2 1.379621+2 1.348963-2 8.804861+1 1.531087-2 5.578917+1 1.757924-2 3.365369+1 2.018366-2 2.014663+1 2.344229-2 1.146206+1 2.722701-2 6.471629+0 3.198895-2 3.469962+0 3.845918-2 1.687820+0 4.731513-2 7.440186-1 6.531306-2 2.059071-1 9.549926-2 4.520287-2 1.188502-1 1.900354-2 1.412538-1 9.654255-3 1.640590-1 5.404288-3 1.883649-1 3.184700-3 2.162719-1 1.890856-3 2.454709-1 1.181314-3 2.754229-1 7.756200-4 3.090295-1 5.128737-4 3.427678-1 3.557565-4 3.801894-1 2.485597-4 4.168694-1 1.819741-4 4.570882-1 1.341307-4 5.069907-1 9.589301-5 5.559043-1 7.163632-5 6.095369-1 5.387170-5 6.683439-1 4.078103-5 7.328245-1 3.110665-5 8.511380-1 2.028899-5 9.015711-1 1.732025-5 9.440609-1 1.534941-5 9.885531-1 1.368723-5 1.035142+0 1.229227-5 1.083927+0 1.111726-5 1.135011+0 1.011549-5 1.202264+0 9.052117-6 1.318257+0 7.657322-6 1.531087+0 5.916151-6 1.819701+0 4.370065-6 2.018366+0 3.665672-6 2.290868+0 2.980929-6 2.630268+0 2.397154-6 3.019952+0 1.942222-6 3.507519+0 1.558665-6 4.073803+0 1.260237-6 4.786301+0 1.009982-6 5.688529+0 8.028313-7 6.760830+0 6.431028-7 8.222427+0 5.040181-7 1.011579+1 3.924567-7 1.273503+1 2.996711-7 1.621810+1 2.275058-7 2.113489+1 1.695254-7 2.884032+1 1.209488-7 4.265795+1 7.982907-8 6.309573+1 5.308594-8 1.059254+2 3.117900-8 2.089296+2 1.564060-8 8.317638+2 3.897315-9 1.318257+4 2.45293-10 1.000000+5 3.23290-11 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.621600-4 4.224600-5 1.000000+5 4.224600-5 1 64000 7 7 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.621600-4 1.901500-8 1.000000+5 1.901500-8 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.621600-4 1.198950-4 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.563000-4 4.588950+5 1.570000-4 4.641126+5 1.577000-4 4.728570+5 1.584893-4 4.860557+5 1.594000-4 5.054250+5 1.605000-4 5.332128+5 1.623000-4 5.838468+5 1.635000-4 6.162300+5 1.643000-4 6.353040+5 1.650000-4 6.496440+5 1.659587-4 6.650917+5 1.669000-4 6.751860+5 1.678804-4 6.803706+5 1.688000-4 6.806460+5 1.698244-4 6.764036+5 1.710000-4 6.666960+5 1.722000-4 6.527460+5 1.737801-4 6.301731+5 1.755000-4 6.024480+5 1.778279-4 5.628919+5 1.810000-4 5.094258+5 1.851100-4 4.451808+5 1.927525-4 3.475022+5 1.952700-4 3.221243+5 1.980000-4 2.983878+5 2.000000-4 2.834052+5 2.020000-4 2.703528+5 2.041738-4 2.582245+5 2.065380-4 2.472905+5 2.090000-4 2.381886+5 2.113489-4 2.314705+5 2.137962-4 2.263053+5 2.162719-4 2.227932+5 2.190000-4 2.206884+5 2.213095-4 2.201828+5 2.240000-4 2.209368+5 2.270000-4 2.231586+5 2.300300-4 2.267296+5 2.340000-4 2.330730+5 2.380400-4 2.410688+5 2.450000-4 2.573832+5 2.630268-4 3.059790+5 2.730000-4 3.331176+5 2.830000-4 3.590856+5 2.917427-4 3.802437+5 3.000000-4 3.985596+5 3.100000-4 4.182936+5 3.200000-4 4.353210+5 3.320000-4 4.522308+5 3.430000-4 4.646850+5 3.550000-4 4.753644+5 3.700000-4 4.849500+5 3.850000-4 4.907670+5 4.000000-4 4.932150+5 4.168694-4 4.925694+5 4.365158-4 4.883210+5 4.600000-4 4.797162+5 4.850000-4 4.674672+5 5.080000-4 4.539720+5 5.370318-4 4.352665+5 5.688529-4 4.137597+5 6.025596-4 3.905759+5 6.382635-4 3.662607+5 6.839116-4 3.365478+5 7.328245-4 3.068407+5 7.852356-4 2.776501+5 8.413951-4 2.496441+5 9.015711-4 2.229915+5 9.772372-4 1.939919+5 1.047129-3 1.711455+5 1.135011-3 1.468045+5 1.230269-3 1.251159+5 1.350000-3 1.031568+5 1.462177-3 8.684334+4 1.621810-3 6.883190+4 1.757924-3 5.706048+4 1.927525-3 4.577185+4 2.162719-3 3.440920+4 2.426610-3 2.560637+4 2.691535-3 1.946646+4 2.951209-3 1.516122+4 3.235937-3 1.174228+4 3.589219-3 8.749591+3 3.981072-3 6.474515+3 4.415704-3 4.758660+3 4.897788-3 3.474468+3 5.495409-3 2.430272+3 6.095369-3 1.750109+3 6.839116-3 1.205932+3 7.673615-3 8.247159+2 8.511380-3 5.819206+2 9.660509-3 3.769602+2 1.083927-2 2.521785+2 1.216186-2 1.675407+2 1.380384-2 1.060473+2 1.566751-2 6.662673+1 1.778279-2 4.156722+1 2.041738-2 2.465450+1 2.344229-2 1.451226+1 2.722701-2 8.109344+0 3.162278-2 4.497403+0 3.758374-2 2.259250+0 4.570882-2 1.026609+0 5.688529-2 4.217714-1 9.225714-2 5.828154-2 1.135011-1 2.512305-2 1.333521-1 1.314725-2 1.548817-1 7.259593-3 1.757924-1 4.422203-3 1.972423-1 2.836418-3 2.213095-1 1.832324-3 2.454709-1 1.244892-3 2.722701-1 8.516882-4 3.000000-1 6.010882-4 3.273407-1 4.421330-4 3.589219-1 3.219637-4 3.890451-1 2.455559-4 4.168694-1 1.958163-4 4.518559-1 1.513627-4 4.897788-1 1.177496-4 5.370318-1 8.902694-5 5.821032-1 7.016595-5 6.382635-1 5.383770-5 6.918310-1 4.298735-5 7.498942-1 3.456210-5 8.413951-1 2.557380-5 8.912509-1 2.212344-5 9.440609-1 1.926274-5 1.000000+0 1.690000-5 1.059254+0 1.494287-5 1.135011+0 1.298779-5 1.216186+0 1.136548-5 1.333521+0 9.587851-6 1.698244+0 6.250522-6 1.927525+0 5.025817-6 2.187762+0 4.075606-6 2.511886+0 3.268884-6 2.884032+0 2.642084-6 3.311311+0 2.150985-6 3.845918+0 1.734329-6 4.518559+0 1.386231-6 5.370318+0 1.099107-6 6.309573+0 8.912023-7 7.673615+0 6.965696-7 9.440609+0 5.410035-7 1.174898+1 4.176686-7 1.500000+1 3.153400-7 1.949845+1 2.351369-7 2.722701+1 1.633081-7 3.981072+1 1.089739-7 5.754399+1 7.412351-8 9.549926+1 4.399378-8 1.883649+2 2.204569-8 3.758374+2 1.098693-8 1.496236+3 2.746302-9 1.000000+5 4.10330-11 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.563000-4 4.202600-5 1.000000+5 4.202600-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.563000-4 1.142740-4 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.703000-5 2.787636+5 1.949845-5 2.626354+5 2.041738-5 2.591975+5 2.113489-5 2.581768+5 2.190000-5 2.589156+5 2.264644-5 2.614921+5 2.344229-5 2.662698+5 2.426610-5 2.734697+5 2.500000-5 2.818692+5 2.580000-5 2.931867+5 2.660725-5 3.069167+5 2.754229-5 3.257378+5 2.851018-5 3.484696+5 2.951209-5 3.754125+5 3.080000-5 4.149870+5 3.235937-5 4.697238+5 3.730000-5 6.808560+5 3.935501-5 7.784084+5 4.120975-5 8.679689+5 4.315191-5 9.612740+5 4.518559-5 1.056961+6 4.731513-5 1.154691+6 4.954502-5 1.254087+6 5.188000-5 1.354198+6 5.500000-5 1.481985+6 5.821032-5 1.606525+6 6.165950-5 1.731872+6 6.531306-5 1.853309+6 6.839116-5 1.944605+6 7.161434-5 2.027979+6 7.500000-5 2.101548+6 7.852356-5 2.163152+6 8.222426-5 2.212358+6 8.650000-5 2.251788+6 9.120108-5 2.278150+6 9.660509-5 2.292333+6 1.023293-4 2.292595+6 1.096478-4 2.275990+6 1.161449-4 2.248212+6 1.230269-4 2.205752+6 1.303167-4 2.149863+6 1.380384-4 2.081961+6 1.480000-4 1.986264+6 1.584893-4 1.883566+6 1.698244-4 1.771496+6 1.800000-4 1.672755+6 1.905461-4 1.570950+6 2.040000-4 1.446555+6 2.187762-4 1.317549+6 2.344229-4 1.193253+6 2.511886-4 1.071894+6 2.660725-4 9.744996+5 2.851018-4 8.623184+5 3.019952-4 7.743098+5 3.273407-4 6.607352+5 3.507519-4 5.720699+5 3.715352-4 5.046759+5 4.027170-4 4.201135+5 4.365158-4 3.468340+5 4.700000-4 2.887977+5 5.050000-4 2.402160+5 5.495409-4 1.920161+5 6.000000-4 1.510092+5 6.531306-4 1.188596+5 7.161434-4 9.095603+4 7.852356-4 6.907521+4 8.609938-4 5.208876+4 9.440609-4 3.901659+4 1.047129-3 2.797287+4 1.161449-3 1.989982+4 1.288250-3 1.405143+4 1.428894-3 9.851198+3 1.603245-3 6.587663+3 1.778279-3 4.554675+3 1.995262-3 2.999567+3 2.238721-3 1.960021+3 2.511886-3 1.270952+3 2.818383-3 8.179695+2 3.162278-3 5.225929+2 3.548134-3 3.314958+2 4.000000-3 2.048361+2 4.518559-3 1.246137+2 5.069907-3 7.736216+1 5.688529-3 4.767774+1 6.382635-3 2.916926+1 7.161434-3 1.771763+1 8.000000-3 1.089327+1 9.120108-3 6.067089+0 1.109175-2 2.504734+0 1.303167-2 1.199335+0 1.531087-2 5.697666-1 1.778279-2 2.834838-1 2.041738-2 1.478426-1 2.371374-2 7.242100-2 2.818383-2 3.154160-2 3.548134-2 1.032190-2 6.839116-2 4.203728-4 8.317638-2 1.628321-4 9.772372-2 7.505400-5 1.135011-1 3.680721-5 1.288250-1 2.027514-5 1.462177-1 1.124985-5 1.640590-1 6.634808-6 1.840772-1 3.942468-6 2.041738-1 2.484749-6 2.264644-1 1.576987-6 2.511886-1 1.007972-6 2.818383-1 6.179293-7 3.090295-1 4.203156-7 3.388442-1 2.879816-7 3.672823-1 2.082539-7 3.935501-1 1.588896-7 4.265795-1 1.166526-7 4.677351-1 8.255721-8 5.188000-1 5.642919-8 5.688529-1 4.051424-8 6.456542-1 2.590324-8 6.918310-1 2.041217-8 7.413102-1 1.619655-8 7.852356-1 1.344665-8 8.609938-1 1.004413-8 9.015711-1 8.729765-9 9.332543-1 7.893006-9 9.660509-1 7.170864-9 1.000000+0 6.552200-9 1.035142+0 6.024720-9 1.071519+0 5.567649-9 1.122018+0 5.046526-9 1.174898+0 4.605292-9 1.244515+0 4.139132-9 1.333521+0 3.666945-9 1.513561+0 2.971632-9 1.862087+0 2.067727-9 2.044000+0 1.766500-9 2.317395+0 1.439946-9 2.660725+0 1.158712-9 3.054921+0 9.39431-10 3.548134+0 7.54367-10 4.120975+0 6.10266-10 4.841724+0 4.89338-10 5.754399+0 3.89171-10 6.839116+0 3.11900-10 8.317638+0 2.44556-10 1.023293+1 1.90501-10 1.288250+1 1.45516-10 1.640590+1 1.10511-10 2.137962+1 8.23756-11 2.884032+1 5.95169-11 4.315191+1 3.88097-11 6.456542+1 2.55080-11 1.096478+2 1.48110-11 2.187762+2 7.34664-12 8.709636+2 1.83128-12 1.380384+4 1.15274-13 1.000000+5 1.59090-14 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.703000-5 1.703000-5 1.000000+5 1.703000-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.703000-5 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.620000-5 4.049720+5 1.800000-5 3.783968+5 1.883649-5 3.695505+5 1.950000-5 3.649924+5 2.018366-5 3.625739+5 2.090000-5 3.625980+5 2.162719-5 3.653341+5 2.238721-5 3.711299+5 2.300000-5 3.779720+5 2.371374-5 3.883814+5 2.450000-5 4.028760+5 2.511886-5 4.165060+5 2.580000-5 4.337600+5 2.660725-5 4.572538+5 2.754229-5 4.885306+5 2.851018-5 5.253831+5 2.951209-5 5.681472+5 3.090295-5 6.347780+5 3.630781-5 9.545339+5 3.850000-5 1.099640+6 4.027170-5 1.218303+6 4.220000-5 1.346460+6 4.415704-5 1.473607+6 4.650000-5 1.620620+6 4.900000-5 1.771416+6 5.188000-5 1.936397+6 5.500000-5 2.106384+6 5.821032-5 2.270907+6 6.165950-5 2.434152+6 6.531306-5 2.590581+6 6.839116-5 2.707037+6 7.161434-5 2.811423+6 7.500000-5 2.901236+6 7.900000-5 2.983244+6 8.317638-5 3.043566+6 8.800000-5 3.085352+6 9.332543-5 3.106406+6 9.900000-5 3.108524+6 1.060000-4 3.087308+6 1.135011-4 3.043367+6 1.202264-4 2.986420+6 1.273503-4 2.910687+6 1.350000-4 2.818436+6 1.430000-4 2.712504+6 1.540000-4 2.563580+6 1.650000-4 2.413328+6 1.765600-4 2.259134+6 1.862087-4 2.131606+6 2.000000-4 1.956544+6 2.122300-4 1.809018+6 2.290868-4 1.623268+6 2.454709-4 1.459538+6 2.600160-4 1.328501+6 2.800000-4 1.166476+6 2.951209-4 1.057896+6 3.200000-4 9.032120+5 3.467369-4 7.646386+5 3.672823-4 6.744153+5 3.935501-4 5.767152+5 4.315191-4 4.635768+5 4.730000-4 3.689976+5 5.128614-4 2.991135+5 5.559043-4 2.410959+5 6.025596-4 1.930739+5 6.531306-4 1.535944+5 7.161434-4 1.173905+5 7.852356-4 8.906122+4 8.609938-4 6.709545+4 9.440609-4 5.019810+4 1.047129-3 3.593530+4 1.161449-3 2.552925+4 1.288250-3 1.800250+4 1.428894-3 1.260448+4 1.603245-3 8.415540+3 1.778279-3 5.809723+3 1.995262-3 3.819558+3 2.238721-3 2.491539+3 2.511886-3 1.612763+3 2.818383-3 1.036072+3 3.162278-3 6.608461+2 3.548134-3 4.184989+2 4.000000-3 2.581153+2 4.518559-3 1.566582+2 5.069907-3 9.705677+1 5.688529-3 5.969471+1 6.382635-3 3.644008+1 7.161434-3 2.207937+1 8.000000-3 1.352836+1 9.015711-3 7.910920+0 1.023293-2 4.447409+0 1.188502-2 2.233400+0 1.496236-2 7.673576-1 1.737801-2 3.805230-1 2.000000-2 1.956306-1 2.344229-2 9.128044-2 2.786121-2 3.952206-2 3.427678-2 1.435083-2 4.623810-2 3.288851-3 7.161434-2 3.807202-4 8.609938-2 1.545522-4 1.011580-1 7.072524-5 1.161449-1 3.642729-5 1.318257-1 1.997358-5 1.479108-1 1.164992-5 1.640590-1 7.218742-6 1.819701-1 4.504957-6 2.000000-1 2.951000-6 2.187762-1 1.988905-6 2.398833-1 1.335472-6 2.691535-1 8.187209-7 2.917427-1 5.844830-7 3.162278-1 4.200317-7 3.388442-1 3.183590-7 3.589219-1 2.540908-7 3.890451-1 1.867682-7 4.216965-1 1.383890-7 4.570882-1 1.033022-7 4.954502-1 7.770324-8 5.370318-1 5.889779-8 5.821032-1 4.498754-8 6.309573-1 3.461117-8 6.760830-1 2.782125-8 7.244360-1 2.251198-8 7.762471-1 1.835324-8 8.317638-1 1.506594-8 8.912509-1 1.245129-8 9.549926-1 1.033425-8 9.885531-1 9.460966-9 1.023293+0 8.706111-9 1.071519+0 7.847344-9 1.122018+0 7.121966-9 1.188502+0 6.359934-9 1.273503+0 5.601858-9 1.380384+0 4.868674-9 1.513561+0 4.170550-9 1.840772+0 2.959760-9 2.044000+0 2.479500-9 2.317395+0 2.021232-9 2.660725+0 1.626464-9 3.054921+0 1.318629-9 3.548134+0 1.058843-9 4.120975+0 8.56572-10 4.841724+0 6.86842-10 5.754399+0 5.46240-10 6.839116+0 4.37782-10 8.317638+0 3.43253-10 1.023293+1 2.67389-10 1.300000+1 2.02120-10 1.640590+1 1.55116-10 2.162719+1 1.14169-10 2.917427+1 8.25147-11 4.415704+1 5.31716-11 6.760830+1 3.41394-11 1.188502+2 1.91487-11 2.371374+2 9.50541-12 4.731513+2 4.74244-12 1.883649+3 1.18690-12 1.000000+5 2.23300-14 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.620000-5 1.620000-5 1.000000+5 1.620000-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.620000-5 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.466000-5 6.088320+4 5.520000-5 6.111800+4 5.623413-5 6.192181+4 5.754399-5 6.333941+4 5.920000-5 6.559460+4 6.165950-5 6.949957+4 6.800000-5 8.051220+4 7.161434-5 8.643874+4 7.500000-5 9.140100+4 7.800000-5 9.521060+4 8.128305-5 9.868167+4 8.413951-5 1.010948+5 8.709636-5 1.030215+5 9.015711-5 1.044424+5 9.400000-5 1.054938+5 9.800000-5 1.058686+5 1.023293-4 1.056383+5 1.083927-4 1.045412+5 1.150000-4 1.026936+5 1.230269-4 9.992243+4 1.318257-4 9.650236+4 1.412538-4 9.255864+4 1.513561-4 8.813265+4 1.621810-4 8.333317+4 1.757924-4 7.750397+4 1.950000-4 7.003720+4 2.162719-4 6.283711+4 2.371374-4 5.667790+4 2.660725-4 4.941408+4 3.054921-4 4.161302+4 3.467369-4 3.529812+4 4.120975-4 2.794572+4 4.786301-4 2.266881+4 5.821032-4 1.709715+4 7.079458-4 1.277900+4 8.511380-4 9.642025+3 1.023293-3 7.221071+3 1.230269-3 5.366544+3 1.479108-3 3.957008+3 1.778279-3 2.894967+3 2.137962-3 2.102413+3 2.600160-3 1.485205+3 3.162278-3 1.041061+3 3.890451-3 7.091950+2 4.786301-3 4.794245+2 5.888437-3 3.218019+2 7.161434-3 2.192683+2 8.709636-3 1.482878+2 1.047129-2 1.018749+2 1.258925-2 6.948128+1 1.513561-2 4.702992+1 1.819701-2 3.157878+1 2.264644-2 1.950869+1 2.691535-2 1.324371+1 3.090295-2 9.657894+0 3.630781-2 6.626713+0 4.265795-2 4.513860+0 5.069907-2 2.968598+0 6.025596-2 1.937612+0 7.244360-2 1.219770+0 8.511380-2 8.082930-1 1.047129-1 4.722278-1 1.348963-1 2.427626-1 2.398833-1 5.260116-2 2.951209-1 3.052029-2 3.507519-1 1.952240-2 4.027170-1 1.374613-2 4.623810-1 9.753521-3 5.248075-1 7.174313-3 5.888437-1 5.463757-3 6.606935-1 4.192063-3 7.413102-1 3.240264-3 8.413951-1 2.461223-3 9.332543-1 1.979550-3 1.023293+0 1.642758-3 1.174898+0 1.252091-3 1.318257+0 1.005320-3 1.479108+0 8.128336-4 1.659587+0 6.616402-4 1.862087+0 5.421863-4 2.113489+0 4.388735-4 2.426610+0 3.513097-4 2.786121+0 2.834073-4 3.198895+0 2.303160-4 3.715352+0 1.853805-4 4.365158+0 1.479221-4 5.188000+0 1.171022-4 6.165950+0 9.342071-5 7.498942+0 7.294969-5 9.120108+0 5.740078-5 1.122018+1 4.486015-5 1.428894+1 3.391856-5 1.862087+1 2.518296-5 2.570396+1 1.768810-5 3.589219+1 1.237618-5 5.308844+1 8.202279-6 8.912509+1 4.805437-6 1.757924+2 2.406131-6 3.507519+2 1.198650-6 1.396368+3 2.995337-7 1.000000+5 4.176200-9 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.466000-5 5.466000-5 1.000000+5 5.466000-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.466000-5 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.483000-5 4.725080+6 3.548134-5 4.530025+6 3.630781-5 4.264686+6 3.758374-5 3.857529+6 3.920000-5 3.382020+6 4.073803-5 2.982839+6 4.265795-5 2.550229+6 4.500000-5 2.110840+6 4.800000-5 1.666294+6 5.956621-5 7.374569+5 6.500000-5 5.337340+5 7.000000-5 4.084000+5 7.500000-5 3.205460+5 8.000000-5 2.573960+5 8.500000-5 2.110260+5 8.912509-5 1.817829+5 9.332543-5 1.582048+5 9.800000-5 1.375078+5 1.023293-4 1.222689+5 1.071519-4 1.086366+5 1.122018-4 9.722330+4 1.174898-4 8.762785+4 1.230269-4 7.952442+4 1.288400-4 7.263948+4 1.350000-4 6.672320+4 1.412538-4 6.182513+4 1.480000-4 5.749600+4 1.566751-4 5.301708+4 1.659587-4 4.920850+4 1.778279-4 4.535545+4 1.927525-4 4.156583+4 2.137962-4 3.746392+4 2.483133-4 3.253470+4 3.200000-4 2.573780+4 3.758374-4 2.203176+4 4.315191-4 1.915148+4 4.897788-4 1.673309+4 5.559043-4 1.452888+4 6.309573-4 1.252746+4 7.161434-4 1.072759+4 8.035261-4 9.258290+3 9.015711-4 7.944255+3 1.023293-3 6.665099+3 1.161449-3 5.551184+3 1.318257-3 4.587273+3 1.500000-3 3.746520+3 1.699000-3 3.058856+3 1.905461-3 2.520740+3 2.162719-3 2.021180+3 2.454709-3 1.608917+3 2.786121-3 1.271629+3 3.162278-3 9.980522+2 3.589219-3 7.779338+2 4.073803-3 6.021653+2 4.623810-3 4.629191+2 5.248075-3 3.534030+2 6.000000-3 2.636391+2 6.839116-3 1.964762+2 7.762471-3 1.467625+2 8.810489-3 1.088372+2 1.000000-2 8.013276+1 1.135011-2 5.854212+1 1.303167-2 4.125724+1 1.584893-2 2.488469+1 1.819701-2 1.731606+1 2.041738-2 1.271904+1 2.317395-2 8.976972+0 2.660725-2 6.089271+0 3.090295-2 3.966999+0 3.630781-2 2.482428+0 4.315191-2 1.489929+0 5.128614-2 8.875572-1 6.309573-2 4.724112-1 8.128305-2 2.166294-1 1.566751-1 2.828391-2 1.927525-1 1.497482-2 2.290868-1 8.873531-3 2.660725-1 5.676192-3 3.054921-1 3.783765-3 3.467369-1 2.626560-3 3.935501-1 1.836800-3 4.415705-1 1.336644-3 4.954502-1 9.798227-4 5.559043-1 7.238401-4 6.165950-1 5.550600-4 6.839117-1 4.286372-4 7.585776-1 3.334362-4 8.609938-1 2.471393-4 9.225714-1 2.111224-4 9.885531-1 1.816283-4 1.071519+0 1.538028-4 1.174898+0 1.281537-4 1.288250+0 1.075817-4 1.428894+0 8.905129-5 1.698244+0 6.553114-5 1.927525+0 5.271212-5 2.187762+0 4.275260-5 2.511886+0 3.429040-5 2.884032+0 2.771386-5 3.311311+0 2.256230-5 3.845918+0 1.819198-5 4.518559+0 1.454024-5 5.370318+0 1.152864-5 6.382635+0 9.211622-6 7.762471+0 7.203052-6 9.549926+0 5.596877-6 1.188502+1 4.322673-6 1.513561+1 3.274163-6 1.972423+1 2.435307-6 2.722701+1 1.712960-6 4.073803+1 1.115667-6 5.888437+1 7.591716-7 9.772372+1 4.507313-7 1.905461+2 2.285630-7 3.801894+2 1.139295-7 1.513561+3 2.847729-8 1.000000+5 4.30410-10 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.483000-5 3.483000-5 1.000000+5 3.483000-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.483000-5 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 3.018000-5 1.007692+7 3.090295-5 9.394399+6 3.198895-5 8.409692+6 3.350000-5 7.195320+6 3.570000-5 5.760320+6 3.845918-5 4.404581+6 4.168694-5 3.268422+6 4.900000-5 1.783212+6 5.248075-5 1.387028+6 5.575000-5 1.119036+6 5.900000-5 9.214160+5 6.237348-5 7.672549+5 6.531306-5 6.634646+5 6.839116-5 5.772948+5 7.161434-5 5.057038+5 7.500000-5 4.460680+5 7.852356-5 3.968468+5 8.150000-5 3.631292+5 8.511380-5 3.296517+5 8.912509-5 2.998385+5 9.332543-5 2.748300+5 9.800000-5 2.525284+5 1.035142-4 2.315989+5 1.096478-4 2.131523+5 1.161449-4 1.974925+5 1.244515-4 1.814868+5 1.350000-4 1.655808+5 1.496236-4 1.487621+5 2.187762-4 1.024437+5 2.540973-4 8.788213+4 2.951209-4 7.488440+4 3.388442-4 6.415398+4 3.890451-4 5.456251+4 4.415704-4 4.675881+4 5.069907-4 3.923385+4 5.800000-4 3.285140+4 6.606934-4 2.747730+4 7.585776-4 2.257495+4 8.709636-4 1.840534+4 9.885531-4 1.516064+4 1.135011-3 1.217406+4 1.288250-3 9.885361+3 1.462177-3 7.971459+3 1.659587-3 6.382743+3 1.883649-3 5.075027+3 2.137962-3 4.007243+3 2.426610-3 3.142265+3 2.754229-3 2.447117+3 3.162278-3 1.848519+3 3.589219-3 1.419280+3 4.073803-3 1.082303+3 4.623810-3 8.197175+2 5.248075-3 6.166200+2 6.000000-3 4.529120+2 6.839116-3 3.323603+2 7.762471-3 2.446105+2 8.810489-3 1.786703+2 1.000000-2 1.295576+2 1.135011-2 9.324262+1 1.288250-2 6.663060+1 1.462177-2 4.728274+1 1.678804-2 3.227744+1 1.927525-2 2.186243+1 2.213095-2 1.469344+1 2.540973-2 9.801843+0 2.917427-2 6.492369+0 3.349654-2 4.269840+0 3.890451-2 2.692187+0 4.570882-2 1.625917+0 5.308844-2 1.011159+0 6.382635-2 5.590896-1 8.035261-2 2.643007-1 1.047129-1 1.108096-1 1.496236-1 3.419314-2 1.840772-1 1.739336-2 2.187762-1 9.972743-3 2.511886-1 6.433327-3 2.851018-1 4.334081-3 3.198895-1 3.046840-3 3.589219-1 2.157545-3 4.000000-1 1.570800-3 4.415705-1 1.184291-3 4.897788-1 8.874217-4 5.370318-1 6.912322-4 5.888437-1 5.419197-4 6.456542-1 4.277666-4 7.079458-1 3.399837-4 7.762471-1 2.720810-4 8.609938-1 2.129560-4 9.225714-1 1.819586-4 9.885531-1 1.565813-4 1.071519+0 1.326198-4 1.174898+0 1.105120-4 1.288250+0 9.276829-5 1.428894+0 7.677980-5 1.698244+0 5.649906-5 1.927525+0 4.544670-5 2.187762+0 3.685540-5 2.511886+0 2.956031-5 2.884032+0 2.389284-5 3.311311+0 1.945201-5 3.845918+0 1.568404-5 4.518559+0 1.253568-5 5.370318+0 9.939183-6 6.382635+0 7.941600-6 7.762471+0 6.209990-6 9.549926+0 4.825241-6 1.188502+1 3.726723-6 1.513561+1 2.822783-6 1.972423+1 2.099600-6 2.722701+1 1.476853-6 3.981072+1 9.854889-7 5.754399+1 6.703099-7 9.549926+1 3.978427-7 1.862087+2 2.017012-7 3.715352+2 1.005190-7 1.479108+3 2.512340-8 1.000000+5 3.71070-10 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 3.018000-5 3.018000-5 1.000000+5 3.018000-5 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 3.018000-5 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 5.190000-6 2.017500+6 5.495409-6 2.205341+6 5.700000-6 2.319580+6 5.956621-6 2.447856+6 6.237348-6 2.572211+6 6.531306-6 2.685528+6 6.918310-6 2.815124+6 7.350000-6 2.935396+6 7.852356-6 3.048134+6 8.413951-6 3.147701+6 9.015711-6 3.225790+6 9.660509-6 3.279991+6 1.023293-5 3.304857+6 1.083927-5 3.308884+6 1.150000-5 3.290444+6 1.215000-5 3.248884+6 1.273503-5 3.192951+6 1.333521-5 3.120590+6 1.400000-5 3.025564+6 1.462177-5 2.923574+6 1.531087-5 2.800172+6 1.603245-5 2.662271+6 1.678804-5 2.512603+6 1.757924-5 2.354445+6 1.840772-5 2.191076+6 1.927525-5 2.025555+6 2.018366-5 1.860861+6 2.113489-5 1.699874+6 2.238721-5 1.507452+6 2.371374-5 1.327531+6 2.511886-5 1.161852+6 2.691535-5 9.833636+5 2.900000-5 8.150880+5 3.126079-5 6.696136+5 3.350000-5 5.549320+5 3.589219-5 4.567161+5 3.801894-5 3.859303+5 4.027170-5 3.241119+5 4.265795-5 2.704019+5 4.518559-5 2.241309+5 4.800000-5 1.826152+5 5.069907-5 1.507724+5 5.370318-5 1.224177+5 5.754399-5 9.455665+4 6.095369-5 7.573731+4 6.531306-5 5.758484+4 6.918310-5 4.552650+4 7.400000-5 3.432148+4 7.852356-5 2.655189+4 8.317638-5 2.056308+4 8.810489-5 1.581916+4 1.040000-4 7.294640+3 1.083927-4 6.038205+3 1.122018-4 5.184654+3 1.161449-4 4.484473+3 1.190000-4 4.072320+3 1.220000-4 3.711192+3 1.250000-4 3.412844+3 1.280000-4 3.167460+3 1.307000-4 2.985080+3 1.333521-4 2.836450+3 1.362400-4 2.704309+3 1.390000-4 2.602820+3 1.415000-4 2.528768+3 1.445440-4 2.458147+3 1.480000-4 2.399980+3 1.515000-4 2.360860+3 1.548817-4 2.338332+3 1.603245-4 2.323577+3 1.659587-4 2.327595+3 1.717908-4 2.347976+3 1.778279-4 2.382548+3 1.862087-4 2.447209+3 2.000000-4 2.578848+3 2.264644-4 2.710309+3 2.454709-4 2.781859+3 2.630268-4 2.827048+3 2.786121-4 2.849157+3 2.851018-4 2.852594+3 3.019952-4 2.832045+3 3.198895-4 2.792446+3 3.388442-4 2.734938+3 3.589219-4 2.661696+3 3.801894-4 2.574888+3 4.073803-4 2.456122+3 4.365158-4 2.325249+3 4.677351-4 2.185537+3 5.011872-4 2.040422+3 5.370318-4 1.893568+3 5.754399-4 1.746435+3 6.165950-4 1.601010+3 6.683439-4 1.435948+3 7.244360-4 1.278446+3 7.852356-4 1.130331+3 8.511380-4 9.924957+2 9.225714-4 8.655830+2 1.000000-3 7.499039+2 1.083927-3 6.455675+2 1.188502-3 5.399123+2 1.303167-3 4.481536+2 1.428894-3 3.692200+2 1.566751-3 3.019562+2 1.717908-3 2.451114+2 1.905461-3 1.923333+2 2.137962-3 1.457147+2 2.371374-3 1.126951+2 2.630268-3 8.651872+1 2.917427-3 6.592414+1 3.198895-3 5.142276+1 3.548134-3 3.859266+1 3.935501-3 2.875187+1 4.365158-3 2.128263+1 4.841724-3 1.565006+1 5.370318-3 1.143283+1 6.025596-3 8.004806+0 6.760830-3 5.560895+0 7.585776-3 3.833573+0 8.511380-3 2.622951+0 9.549926-3 1.781418+0 1.071519-2 1.201466+0 1.216186-2 7.730561-1 1.380384-2 4.936107-1 1.566751-2 3.129092-1 1.798871-2 1.888329-1 2.065380-2 1.130781-1 2.371374-2 6.721957-2 2.754229-2 3.798236-2 3.198895-2 2.131077-2 3.801894-2 1.085600-2 4.677351-2 4.793106-3 6.095369-2 1.671455-3 9.549926-2 2.788586-4 1.188502-1 1.172876-4 1.412538-1 5.959862-5 1.640590-1 3.336560-5 1.883649-1 1.966248-5 2.162719-1 1.167396-5 2.454709-1 7.292928-6 2.754229-1 4.787984-6 3.090295-1 3.165528-6 3.427678-1 2.195250-6 3.801894-1 1.533666-6 4.120975-1 1.167291-6 4.570882-1 8.284409-7 5.069907-1 5.925397-7 5.559043-1 4.425470-7 6.095369-1 3.327077-7 6.683439-1 2.518788-7 7.244360-1 1.986896-7 7.852356-1 1.577330-7 8.609938-1 1.214466-7 9.120108-1 1.038551-7 9.549926-1 9.218635-8 1.000000+0 8.235200-8 1.047129+0 7.409847-8 1.096478+0 6.712564-8 1.161449+0 5.980189-8 1.230269+0 5.365526-8 1.333521+0 4.641313-8 1.479108+0 3.884897-8 1.840772+0 2.649857-8 2.044000+0 2.220200-8 2.317395+0 1.809766-8 2.660725+0 1.456313-8 3.054921+0 1.180725-8 3.548134+0 9.481305-9 4.120975+0 7.670211-9 4.841724+0 6.150351-9 5.754399+0 4.891333-9 6.839116+0 3.920122-9 8.317638+0 3.073642-9 1.023293+1 2.394337-9 1.303167+1 1.804832-9 1.640590+1 1.388987-9 2.137962+1 1.035369-9 2.884032+1 7.48044-10 4.365158+1 4.81920-10 6.606934+1 3.13059-10 1.135011+2 1.79709-10 2.264644+2 8.91723-11 4.518559+2 4.44818-11 1.798871+3 1.11298-11 1.000000+5 1.99950-13 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 5.190000-6 5.190000-6 1.000000+5 5.190000-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 5.190000-6 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 4.850000-6 3.547428+6 5.100000-6 3.788412+6 5.308844-6 3.966603+6 5.600000-6 4.181412+6 5.888437-6 4.359520+6 6.237348-6 4.540588+6 6.606934-6 4.695022+6 7.079458-6 4.851875+6 7.585776-6 4.976527+6 8.128305-6 5.069822+6 8.709636-6 5.131933+6 9.332543-6 5.160840+6 1.000000-5 5.152758+6 1.059254-5 5.114139+6 1.122018-5 5.043611+6 1.188502-5 4.939828+6 1.250000-5 4.818810+6 1.318257-5 4.659480+6 1.380384-5 4.497488+6 1.445440-5 4.312298+6 1.513561-5 4.107763+6 1.590000-5 3.870852+6 1.659587-5 3.652308+6 1.737801-5 3.408196+6 1.830000-5 3.129186+6 1.927525-5 2.849998+6 2.018366-5 2.607135+6 2.137962-5 2.314897+6 2.270000-5 2.030004+6 2.400000-5 1.785924+6 2.570396-5 1.513963+6 2.754229-5 1.273232+6 2.951209-5 1.063796+6 3.162278-5 8.829861+5 3.388442-5 7.281770+5 3.630781-5 5.958098+5 3.845918-5 5.010936+5 4.073803-5 4.186635+5 4.315191-5 3.475102+5 4.570882-5 2.864902+5 4.841724-5 2.344395+5 5.128614-5 1.906150+5 5.432503-5 1.538562+5 5.800000-5 1.197162+5 6.165950-5 9.395712+4 6.531306-5 7.437466+4 6.918310-5 5.848544+4 7.328245-5 4.572307+4 7.762471-5 3.550240+4 8.300000-5 2.625606+4 9.015711-5 1.790384+4 1.000000-4 1.104282+4 1.050000-4 8.854020+3 1.083927-4 7.708700+3 1.115000-4 6.854280+3 1.148154-4 6.110603+3 1.174898-4 5.615732+3 1.202264-4 5.192184+3 1.230269-4 4.833547+3 1.258925-4 4.532831+3 1.288250-4 4.283304+3 1.315000-4 4.099512+3 1.345000-4 3.936276+3 1.375000-4 3.811368+3 1.405000-4 3.717870+3 1.440000-4 3.641430+3 1.462177-4 3.608597+3 1.500000-4 3.575820+3 1.548817-4 3.557575+3 1.603245-4 3.564029+3 1.659587-4 3.594239+3 1.717908-4 3.645156+3 1.798871-4 3.740334+3 1.905461-4 3.893608+3 2.000000-4 4.042206+3 2.187762-4 4.172430+3 2.371374-4 4.264999+3 2.540973-4 4.318025+3 2.722701-4 4.340143+3 2.884032-4 4.330777+3 3.019952-4 4.300247+3 3.198895-4 4.217309+3 3.388442-4 4.110572+3 3.589219-4 3.982886+3 3.845918-4 3.806324+3 4.120975-4 3.609371+3 4.415704-4 3.397500+3 4.731513-4 3.176102+3 5.128614-4 2.912682+3 5.495409-4 2.687282+3 5.956621-4 2.427807+3 6.456542-4 2.175607+3 7.000000-4 1.934466+3 7.585776-4 1.709519+3 8.222426-4 1.500272+3 8.912509-4 1.308135+3 9.660509-4 1.132848+3 1.059254-3 9.536056+2 1.161449-3 7.963943+2 1.273503-3 6.599759+2 1.396368-3 5.428345+2 1.531087-3 4.432408+2 1.678804-3 3.593658+2 1.840772-3 2.893922+2 2.041738-3 2.250579+2 2.238721-3 1.787431+2 2.483133-3 1.366163+2 2.786121-3 1.004898+2 3.090295-3 7.574394+1 3.427678-3 5.670945+1 3.801894-3 4.217519+1 4.216965-3 3.115813+1 4.677351-3 2.286657+1 5.188000-3 1.666983+1 5.754399-3 1.207195+1 6.456542-3 8.370484+0 7.244360-3 5.758444+0 8.128305-3 3.930900+0 9.120108-3 2.662793+0 1.023293-2 1.790597+0 1.148154-2 1.195721+0 1.303167-2 7.609789-1 1.479108-2 4.805792-1 1.678804-2 3.012925-1 1.905461-2 1.875753-1 2.187762-2 1.109961-1 2.511886-2 6.519246-2 2.917427-2 3.635112-2 3.388442-2 2.011543-2 4.027170-2 1.008492-2 4.954502-2 4.367837-3 9.549926-2 3.009140-4 1.174898-1 1.300308-4 1.380384-1 6.818286-5 1.584893-1 3.947510-5 1.798871-1 2.408373-5 2.018366-1 1.547294-5 2.264644-1 1.001453-5 2.511886-1 6.817425-6 2.786121-1 4.674769-6 3.054921-1 3.365075-6 3.349654-1 2.438980-6 3.672823-1 1.781064-6 4.000000-1 1.340700-6 4.365158-1 1.010954-6 4.731513-1 7.844265-7 5.188000-1 5.915063-7 5.623413-1 4.651741-7 6.095369-1 3.682973-7 6.606935-1 2.936631-7 7.161434-1 2.358190-7 7.762471-1 1.907388-7 8.511380-1 1.505461-7 9.015711-1 1.305666-7 9.549926-1 1.139637-7 1.011579+0 1.002212-7 1.071519+0 8.875232-8 1.148154+0 7.724802-8 1.244515+0 6.622074-8 1.364583+0 5.595155-8 1.737801+0 3.650670-8 1.949845+0 2.997110-8 2.213095+0 2.432267-8 2.540973+0 1.952153-8 2.917427+0 1.578831-8 3.349654+0 1.286100-8 3.890451+0 1.037543-8 4.570882+0 8.297266-9 5.432503+0 6.582102-9 6.456542+0 5.261916-9 7.852356+0 4.116481-9 9.660509+0 3.199940-9 1.202264+1 2.472469-9 1.531087+1 1.873398-9 2.000000+1 1.390300-9 2.754229+1 9.80736-10 4.120975+1 6.38918-10 6.000000+1 4.31610-10 9.885531+1 2.58220-10 1.949845+2 1.29442-10 3.890451+2 6.45302-11 1.548817+3 1.61315-11 1.000000+5 2.49500-13 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 4.850000-6 4.850000-6 1.000000+5 4.850000-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 4.850000-6 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.710000-6 3.864639+6 6.200000-6 2.662320+6 6.700000-6 1.861414+6 7.244360-6 1.287081+6 7.762471-6 9.215445+5 8.222426-6 6.936820+5 8.709636-6 5.192231+5 9.225714-6 3.864109+5 9.885531-6 2.691632+5 1.071519-5 1.750961+5 1.180000-5 1.044150+5 1.230269-5 8.386090+4 1.273503-5 7.029508+4 1.318257-5 5.933847+4 1.350000-5 5.309240+4 1.380384-5 4.808925+4 1.412538-5 4.367312+4 1.445440-5 3.994330+4 1.470000-5 3.760320+4 1.500000-5 3.518640+4 1.531087-5 3.312367+4 1.560000-5 3.155020+4 1.590000-5 3.021820+4 1.621810-5 2.908997+4 1.650000-5 2.830260+4 1.680000-5 2.765060+4 1.717908-5 2.705878+4 1.757924-5 2.666663+4 1.800000-5 2.646260+4 1.850000-5 2.643860+4 1.905461-5 2.662353+4 1.972423-5 2.706016+4 2.041738-5 2.767758+4 2.162719-5 2.897568+4 2.454709-5 3.226929+4 2.600160-5 3.370421+4 2.754229-5 3.498328+4 2.917427-5 3.605376+4 3.090295-5 3.689110+4 3.273407-5 3.748114+4 3.467369-5 3.781491+4 3.672823-5 3.789085+4 3.900000-5 3.769140+4 4.150000-5 3.719200+4 4.415704-5 3.642806+4 4.677351-5 3.551424+4 5.011872-5 3.419708+4 5.370318-5 3.267998+4 5.800000-5 3.081360+4 6.309573-5 2.866682+4 6.918310-5 2.628787+4 7.762471-5 2.337356+4 8.912509-5 2.013327+4 1.122018-4 1.551005+4 1.621810-4 1.015164+4 1.798871-4 8.954613+3 2.000000-4 7.820120+3 2.238721-4 6.711038+3 2.570396-4 5.518310+3 3.090295-4 4.225924+3 3.801894-4 3.137146+3 4.466836-4 2.470732+3 5.821032-4 1.652954+3 7.161434-4 1.203718+3 8.810489-4 8.672178+2 1.071519-3 6.337067+2 1.288250-3 4.681311+2 1.566751-3 3.366597+2 1.905461-3 2.402518+2 2.317395-3 1.701623+2 2.818383-3 1.196436+2 3.548134-3 7.838202+1 4.365158-3 5.317382+1 5.370318-3 3.580554+1 6.683439-3 2.339760+1 8.128305-3 1.587156+1 9.885531-3 1.068313+1 1.188502-2 7.304279+0 1.428894-2 4.956495+0 1.717908-2 3.337193+0 2.041738-2 2.286359+0 2.426610-2 1.555014+0 2.884032-2 1.049674+0 3.388442-2 7.220788-1 4.027170-2 4.799498-1 4.786301-2 3.165687-1 5.623413-2 2.131550-1 6.760830-2 1.345793-1 8.128305-2 8.431635-2 9.885531-2 5.084735-2 1.258925-1 2.699498-2 1.603245-1 1.423472-2 2.371374-1 5.027095-3 2.917427-1 2.916305-3 3.467369-1 1.864988-3 4.027170-1 1.275424-3 4.570882-1 9.311048-4 5.188000-1 6.847413-4 5.821032-1 5.215380-4 6.531306-1 4.001507-4 7.328245-1 3.093862-4 8.222427-1 2.411061-4 9.120108-1 1.939935-4 1.011579+0 1.572757-4 1.174898+0 1.172283-4 1.318257+0 9.410553-5 1.496236+0 7.447682-5 1.678804+0 6.065944-5 1.883649+0 4.974304-5 2.137962+0 4.029381-5 2.454709+0 3.227612-5 2.818383+0 2.605389-5 3.235937+0 2.118547-5 3.758374+0 1.706177-5 4.415704+0 1.362223-5 5.248075+0 1.078978-5 6.237348+0 8.611991-6 7.585776+0 6.728045-6 9.225714+0 5.296171-6 1.135011+1 4.140790-6 1.445440+1 3.131887-6 1.883649+1 2.326162-6 2.630268+1 1.614053-6 3.801894+1 1.089416-6 5.559043+1 7.315382-7 9.332543+1 4.288845-7 1.840772+2 2.148644-7 3.672823+2 1.070696-7 1.462177+3 2.676068-8 1.000000+5 3.90710-10 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.710000-6 5.710000-6 1.000000+5 5.710000-6 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.710000-6 0.0 1.000000+5 1.000000+5 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.078030-7 1.027100+0 1.334880-6 1.027500+0 1.671930-6 1.028100+0 2.276300-6 1.028750+0 3.078030-6 1.029500+0 4.212370-6 1.030100+0 5.297560-6 1.031000+0 7.248870-6 1.032000+0 9.918270-6 1.033200+0 1.389380-5 1.034000+0 1.705590-5 1.035300+0 2.315100-5 1.036640+0 3.078030-5 1.038200+0 4.153900-5 1.039700+0 5.396750-5 1.041500+0 7.180310-5 1.043800+0 9.966500-5 1.046400+0 1.386650-4 1.048300+0 1.726420-4 1.051200+0 2.341850-4 1.054080+0 3.078030-4 1.057700+0 4.195560-4 1.061100+0 5.457400-4 1.065100+0 7.225020-4 1.070400+0 1.007970-3 1.076200+0 1.393020-3 1.080600+0 1.739660-3 1.087100+0 2.343880-3 1.093710+0 3.078030-3 1.102600+0 4.267450-3 1.110700+0 5.565260-3 1.120600+0 7.444060-3 1.133300+0 1.034950-2 1.147500+0 1.428860-2 1.158200+0 1.775700-2 1.174100+0 2.373500-2 1.190110+0 3.078030-2 1.205100+0 3.832810-2 1.227500+0 5.131340-2 1.250000+0 6.627000-2 1.265600+0 7.762610-2 1.294900+0 1.008700-1 1.320600+0 1.230210-1 1.343000+0 1.434390-1 1.382200+0 1.812140-1 1.433800+0 2.340480-1 1.500000+0 3.064000-1 1.562500+0 3.798290-1 1.617200+0 4.479930-1 1.712900+0 5.746120-1 1.838500+0 7.511670-1 1.946200+0 9.073450-1 2.000000+0 9.855000-1 2.044000+0 1.049000+0 2.163500+0 1.220820+0 2.372600+0 1.517990+0 2.647100+0 1.896840+0 3.000000+0 2.361000+0 3.500000+0 2.972810+0 4.000000+0 3.536000+0 4.750000+0 4.300810+0 5.000000+0 4.537000+0 6.000000+0 5.399000+0 7.000000+0 6.160000+0 8.000000+0 6.844000+0 9.000000+0 7.466000+0 1.000000+1 8.036000+0 1.100000+1 8.563000+0 1.200000+1 9.051000+0 1.300000+1 9.509000+0 1.400000+1 9.932000+0 1.500000+1 1.033000+1 1.600000+1 1.069000+1 1.800000+1 1.135000+1 2.000000+1 1.194000+1 2.200000+1 1.248000+1 2.400000+1 1.296000+1 2.600000+1 1.341000+1 2.800000+1 1.381000+1 3.000000+1 1.419000+1 4.000000+1 1.572000+1 5.000000+1 1.685000+1 6.000000+1 1.774000+1 8.000000+1 1.904000+1 1.000000+2 1.996000+1 1.500000+2 2.143000+1 2.000000+2 2.230000+1 3.000000+2 2.331000+1 4.000000+2 2.390000+1 5.000000+2 2.428000+1 6.000000+2 2.455000+1 8.000000+2 2.491000+1 1.000000+3 2.515000+1 1.500000+3 2.549000+1 2.000000+3 2.568000+1 3.000000+3 2.588000+1 4.000000+3 2.598000+1 5.000000+3 2.605000+1 6.000000+3 2.610000+1 8.000000+3 2.616000+1 1.000000+4 2.620000+1 1.500000+4 2.625000+1 2.000000+4 2.628000+1 3.000000+4 2.631000+1 4.000000+4 2.633000+1 5.000000+4 2.634000+1 6.000000+4 2.635000+1 8.000000+4 2.635000+1 1.000000+5 2.636000+1 1 64000 7 8 1.572500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.413640-7 2.094700+0 1.129140-6 2.099900+0 1.502160-6 2.106600+0 2.089630-6 2.114000+0 2.891270-6 2.119500+0 3.599620-6 2.127900+0 4.881760-6 2.136250+0 6.413640-6 2.147000+0 8.793550-6 2.156900+0 1.142180-5 2.169000+0 1.524310-5 2.184500+0 2.118840-5 2.201800+0 2.931470-5 2.214800+0 3.652380-5 2.234200+0 4.913100-5 2.253680+0 6.413640-5 2.281500+0 8.983440-5 2.307000+0 1.179970-4 2.338200+0 1.586570-4 2.377400+0 2.197210-4 2.410200+0 2.794490-4 2.446800+0 3.554750-4 2.485900+0 4.475620-4 2.532900+0 5.727830-4 2.556430+0 6.413640-4 2.611900+0 8.178110-4 2.660400+0 9.886900-4 2.745300+0 1.323300-3 2.809000+0 1.602590-3 2.904500+0 2.064550-3 3.000000+0 2.577000-3 3.125000+0 3.322910-3 3.234400+0 4.043170-3 3.425800+0 5.444410-3 3.569300+0 6.601540-3 3.784700+0 8.485420-3 4.000000+0 1.051000-2 4.250000+0 1.298420-2 4.625000+0 1.687090-2 5.000000+0 2.091000-2 5.500000+0 2.645350-2 6.000000+0 3.207000-2 6.750000+0 4.042280-2 7.000000+0 4.317000-2 8.000000+0 5.391000-2 9.000000+0 6.417000-2 1.000000+1 7.391000-2 1.100000+1 8.311000-2 1.200000+1 9.178000-2 1.300000+1 9.994000-2 1.400000+1 1.077000-1 1.500000+1 1.150000-1 1.600000+1 1.220000-1 1.800000+1 1.349000-1 2.000000+1 1.466000-1 2.200000+1 1.573000-1 2.400000+1 1.671000-1 2.600000+1 1.762000-1 2.800000+1 1.845000-1 3.000000+1 1.923000-1 4.000000+1 2.245000-1 5.000000+1 2.487000-1 6.000000+1 2.679000-1 8.000000+1 2.967000-1 1.000000+2 3.175000-1 1.500000+2 3.518000-1 2.000000+2 3.732000-1 3.000000+2 3.994000-1 4.000000+2 4.150000-1 5.000000+2 4.257000-1 6.000000+2 4.335000-1 8.000000+2 4.443000-1 1.000000+3 4.515000-1 1.500000+3 4.623000-1 2.000000+3 4.684000-1 3.000000+3 4.751000-1 4.000000+3 4.790000-1 5.000000+3 4.814000-1 6.000000+3 4.831000-1 8.000000+3 4.854000-1 1.000000+4 4.868000-1 1.500000+4 4.888000-1 2.000000+4 4.899000-1 3.000000+4 4.910000-1 4.000000+4 4.917000-1 5.000000+4 4.921000-1 6.000000+4 4.924000-1 8.000000+4 4.927000-1 1.000000+5 4.929000-1 1 64000 7 8 1.572500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 64000 7 9 1.572500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.400000+1 1.000000+5 6.400000+1 5.000000+5 6.396000+1 7.500000+5 6.393190+1 1.000000+6 6.391200+1 1.250000+6 6.388260+1 1.500000+6 6.384900+1 1.875000+6 6.376530+1 2.000000+6 6.373300+1 2.375000+6 6.362680+1 2.500000+6 6.358800+1 2.875000+6 6.346050+1 3.000000+6 6.341400+1 3.437500+6 6.323690+1 3.812500+6 6.306810+1 4.000000+6 6.299000+1 4.437500+6 6.278590+1 4.812500+6 6.260060+1 5.000000+6 6.250400+1 5.500000+6 6.222090+1 5.875000+6 6.199630+1 6.437500+6 6.164290+1 6.500000+6 6.160300+1 7.000000+6 6.128700+1 7.500000+6 6.095850+1 8.250000+6 6.046840+1 9.000000+6 5.996700+1 1.000000+7 5.928400+1 1.250000+7 5.757700+1 1.500000+7 5.584200+1 1.750000+7 5.415100+1 2.000000+7 5.244600+1 2.250000+7 5.072540+1 2.375000+7 4.986710+1 2.500000+7 4.902600+1 2.875000+7 4.655850+1 3.000000+7 4.576800+1 3.437500+7 4.310400+1 3.500000+7 4.274210+1 3.875000+7 4.065870+1 4.000000+7 4.000400+1 4.500000+7 3.754490+1 5.000000+7 3.531000+1 5.500000+7 3.325430+1 5.750000+7 3.228150+1 6.000000+7 3.134600+1 6.750000+7 2.872140+1 7.000000+7 2.791200+1 7.750000+7 2.566270+1 8.000000+7 2.497700+1 9.000000+7 2.254000+1 1.000000+8 2.056100+1 1.125000+8 1.862230+1 1.187500+8 1.782610+1 1.250000+8 1.711900+1 1.437500+8 1.538440+1 1.500000+8 1.489200+1 1.625000+8 1.396010+1 1.718800+8 1.328030+1 1.812500+8 1.259910+1 1.815400+8 1.257760+1 1.881300+8 1.209180+1 1.960400+8 1.150300+1 2.000000+8 1.120600+1 2.062500+8 1.073560+1 2.335900+8 8.932390+0 2.375000+8 8.728140+0 2.445300+8 8.398360+0 2.500000+8 8.176000+0 2.625000+8 7.766600+0 2.812500+8 7.240300+0 2.906300+8 6.968190+0 3.000000+8 6.669500+0 3.062500+8 6.453050+0 3.335900+8 5.548640+0 3.418000+8 5.336130+0 3.500000+8 5.163000+0 3.562500+8 5.059250+0 3.671900+8 4.919980+0 4.000000+8 4.626600+0 4.125000+8 4.504540+0 4.234400+8 4.387960+0 4.425800+8 4.172690+0 4.712900+8 3.850360+0 4.750000+8 3.810090+0 5.000000+8 3.553800+0 5.437500+8 3.164760+0 5.718800+8 2.933960+0 5.929700+8 2.763970+0 6.000000+8 2.707400+0 6.625000+8 2.250240+0 6.812500+8 2.145690+0 7.000000+8 2.060300+0 8.000000+8 1.774700+0 8.125000+8 1.736830+0 1.000000+9 1.203400+0 1.031300+9 1.153310+0 1.060500+9 1.116110+0 1.100900+9 1.083430+0 1.137900+9 1.059440+0 1.183200+9 1.031780+0 1.370600+9 9.339570-1 1.416800+9 9.132130-1 1.472300+9 8.897460-1 1.500000+9 8.785800-1 1.531300+9 8.602920-1 1.589800+9 8.234660-1 1.641100+9 7.895590-1 1.686000+9 7.593380-1 1.764500+9 7.067120-1 1.823400+9 6.683310-1 1.911700+9 6.137110-1 2.000000+9 5.634600-1 2.139200+9 4.935850-1 2.272600+9 4.361100-1 2.443000+9 3.739600-1 2.602800+9 3.251890-1 2.825100+9 2.695920-1 2.961100+9 2.412950-1 3.215900+9 1.974700-1 3.438900+9 1.669460-1 3.500000+9 1.596210-1 3.634100+9 1.448910-1 3.975600+9 1.143450-1 4.231700+9 9.657160-2 4.615800+9 7.588660-2 5.000000+9 6.045100-2 5.539100+9 4.483880-2 5.990200+9 3.551680-2 6.708000+9 2.521660-2 8.000000+9 1.467800-2 1.00000+10 7.368000-3 1.27030+10 3.535260-3 1.55700+10 1.901920-3 1.85560+10 1.118410-3 2.46860+10 4.743690-4 2.93940+10 2.817970-4 3.82190+10 1.293780-4 5.26990+10 5.027280-5 6.95920+10 2.231260-5 1.00000+11 7.793200-6 1.34280+11 3.331410-6 2.20600+11 8.038960-7 4.19930+11 1.293720-7 1.03480+12 1.028480-8 3.24440+12 4.31113-10 1.00000+14 3.54370-14 2.05350+15 8.51091-18 1.00000+17 1.75360-22 1 64000 7 0 1.572500+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.04000-11 1.000000+2 1.040000-9 1.000000+3 1.040000-7 1.000000+4 1.040000-5 1.000000+5 1.040000-3 5.000000+5 2.600000-2 7.500000+5 5.850000-2 1.000000+6 1.040000-1 1.250000+6 1.611740-1 1.500000+6 2.299000-1 1.875000+6 3.538040-1 2.000000+6 4.003000-1 2.375000+6 5.536810-1 2.500000+6 6.092000-1 2.875000+6 7.873410-1 3.000000+6 8.503000-1 3.437500+6 1.082140+0 3.812500+6 1.292710+0 4.000000+6 1.401300+0 4.437500+6 1.660370+0 4.812500+6 1.886780+0 5.000000+6 2.001000+0 5.500000+6 2.305470+0 5.875000+6 2.532930+0 6.437500+6 2.870180+0 6.500000+6 2.907150+0 7.000000+6 3.200300+0 7.500000+6 3.486160+0 8.250000+6 3.902970+0 9.000000+6 4.307000+0 1.000000+7 4.831000+0 1.250000+7 6.119600+0 1.500000+7 7.420000+0 1.750000+7 8.725900+0 2.000000+7 1.000700+1 2.250000+7 1.124890+1 2.375000+7 1.185510+1 2.500000+7 1.245200+1 2.875000+7 1.418770+1 3.000000+7 1.474900+1 3.437500+7 1.663730+1 3.500000+7 1.689620+1 3.875000+7 1.839300+1 4.000000+7 1.886900+1 4.500000+7 2.064910+1 5.000000+7 2.226900+1 5.500000+7 2.375830+1 5.750000+7 2.446400+1 6.000000+7 2.515500+1 6.750000+7 2.713060+1 7.000000+7 2.776600+1 7.750000+7 2.960240+1 8.000000+7 3.019400+1 9.000000+7 3.246300+1 1.000000+8 3.458300+1 1.125000+8 3.702430+1 1.187500+8 3.815410+1 1.250000+8 3.922400+1 1.437500+8 4.205620+1 1.500000+8 4.288400+1 1.625000+8 4.437430+1 1.718800+8 4.537070+1 1.812500+8 4.628360+1 1.815400+8 4.631090+1 1.881300+8 4.690380+1 1.960400+8 4.757180+1 2.000000+8 4.789000+1 2.062500+8 4.837190+1 2.335900+8 5.022920+1 2.375000+8 5.047100+1 2.445300+8 5.088060+1 2.500000+8 5.119300+1 2.625000+8 5.186090+1 2.812500+8 5.277370+1 2.906300+8 5.319650+1 3.000000+8 5.360000+1 3.062500+8 5.385530+1 3.335900+8 5.489280+1 3.418000+8 5.517720+1 3.500000+8 5.545600+1 3.562500+8 5.565560+1 3.671900+8 5.599830+1 4.000000+8 5.694200+1 4.125000+8 5.726380+1 4.234400+8 5.753890+1 4.425800+8 5.798650+1 4.712900+8 5.859340+1 4.750000+8 5.866500+1 5.000000+8 5.913000+1 5.437500+8 5.982030+1 5.718800+8 6.020150+1 5.929700+8 6.045810+1 6.000000+8 6.053800+1 6.625000+8 6.113570+1 6.812500+8 6.127970+1 7.000000+8 6.142000+1 8.000000+8 6.199000+1 8.125000+8 6.204480+1 1.000000+9 6.268700+1 1.031300+9 6.276400+1 1.060500+9 6.283390+1 1.100900+9 6.292760+1 1.137900+9 6.300720+1 1.183200+9 6.309410+1 1.370600+9 6.338590+1 1.416800+9 6.343990+1 1.472300+9 6.350260+1 1.500000+9 6.353300+1 1.531300+9 6.356100+1 1.589800+9 6.361170+1 1.641100+9 6.365220+1 1.686000+9 6.368150+1 1.764500+9 6.373110+1 1.823400+9 6.376540+1 1.911700+9 6.380510+1 2.000000+9 6.384300+1 2.139200+9 6.388190+1 2.272600+9 6.391690+1 2.443000+9 6.394960+1 2.602800+9 6.396880+1 2.825100+9 6.399360+1 2.961100+9 6.399990+1 3.215900+9 6.400820+1 3.438900+9 6.401280+1 3.500000+9 6.401210+1 3.634100+9 6.401070+1 3.975600+9 6.400740+1 4.231700+9 6.400510+1 4.615800+9 6.400190+1 5.000000+9 6.399900+1 5.539100+9 6.399920+1 5.990200+9 6.399940+1 6.708000+9 6.399960+1 8.000000+9 6.400000+1 1.00000+10 6.400000+1 1.27030+10 6.400000+1 1.55700+10 6.400000+1 1.85560+10 6.400000+1 2.46860+10 6.400000+1 2.93940+10 6.400000+1 3.82190+10 6.400000+1 5.26990+10 6.400000+1 6.95920+10 6.400000+1 1.00000+11 6.400000+1 1.34280+11 6.400000+1 2.20600+11 6.400000+1 4.19930+11 6.400000+1 1.03480+12 6.400000+1 3.24440+12 6.400000+1 1.00000+14 6.400000+1 2.05350+15 6.400000+1 1.00000+17 6.400000+1 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.674338-6 0.0 1.678459-6 2.82317-15 1.682581-6 5.58627-15 1.686702-6 1.02038-14 1.690823-6 1.72050-14 1.694944-6 2.67794-14 1.699065-6 3.84770-14 1.703186-6 5.10336-14 1.707308-6 6.24834-14 1.711429-6 7.06199-14 1.715550-6 7.36789-14 1.719671-6 7.09600-14 1.723792-6 6.30867-14 1.727914-6 5.17745-14 1.736156-6 2.74305-14 1.740277-6 1.77082-14 1.744398-6 1.05528-14 1.748519-6 5.80519-15 1.752641-6 2.94794-15 1.756762-6 0.0 1.869397-6 0.0 1.877449-6 2.706815-1 1.878600-6 3.089557-1 1.883201-6 5.643328-1 1.887802-6 9.515427-1 1.892404-6 1.481068+0 1.900743-6 2.692012+0 1.906207-6 3.455723+0 1.911096-6 3.916273+0 1.915698-6 4.065530+0 1.920434-6 3.884648+0 1.925296-6 3.396336+0 1.933055-6 2.284286+0 1.938524-6 1.504572+0 1.943231-6 9.610586-1 1.947763-6 5.754502-1 1.952220-6 3.210634-1 1.957972-6 1.223515-1 1.961423-6 0.0 2.018575-6 0.0 2.026028-6 1.357145-1 2.028512-6 1.803788-1 2.033481-6 3.294766-1 2.038449-6 5.555429-1 2.043418-6 8.646979-1 2.051491-6 1.495587+0 2.058323-6 2.017568+0 2.063913-6 2.292615+0 2.068881-6 2.368119+0 2.073539-6 2.275422+0 2.078818-6 1.991487+0 2.086911-6 1.366432+0 2.093102-6 8.857226-1 2.098071-6 5.717917-1 2.103039-6 3.407469-1 2.108008-6 1.874477-1 2.115460-6 4.764996-2 2.117945-6 0.0 2.213634-6 0.0 2.219083-6 1.741945-2 2.224531-6 3.446828-2 2.229980-6 6.295914-2 2.235429-6 1.061578-1 2.240877-6 1.652337-1 2.246326-6 2.374101-1 2.251774-6 3.148864-1 2.257223-6 3.855337-1 2.262671-6 4.357373-1 2.268120-6 4.546122-1 2.273569-6 4.378358-1 2.279017-6 3.892562-1 2.284466-6 3.194579-1 2.295363-6 1.692513-1 2.300811-6 1.092627-1 2.306260-6 6.511276-2 2.311709-6 3.581906-2 2.317157-6 1.818932-2 2.322606-6 0.0 2.529695-6 0.0 2.539035-6 3.104490+0 2.542148-6 4.126194+0 2.548374-6 7.536830+0 2.554601-6 1.270813+1 2.561606-6 2.085785+1 2.572405-6 3.638806+1 2.580285-6 4.690186+1 2.586305-6 5.236904+1 2.592620-6 5.420919+1 2.598992-6 5.166271+1 2.605691-6 4.488552+1 2.615525-6 3.097180+1 2.623093-6 2.026104+1 2.629708-6 1.275024+1 2.635546-6 7.794639+0 2.641772-6 4.287895+0 2.650723-6 1.226070+0 2.654225-6 0.0 2.724744-6 0.0 2.736480-6 7.446376+0 2.738157-6 8.499290+0 2.744864-6 1.552465+1 2.751989-6 2.708507+1 2.759115-6 4.296379+1 2.771071-6 7.587871+1 2.778816-6 9.583801+1 2.786189-6 1.081973+2 2.792295-6 1.118014+2 2.799132-6 1.068656+2 2.806067-6 9.376233+1 2.825343-6 4.173447+1 2.832050-6 2.694232+1 2.838756-6 1.605569+1 2.845463-6 8.832369+0 2.857275-6 1.072836+0 2.858876-6 3.955328-7 2.862550-6 4.045152-7 2.869427-6 3.895876-7 2.876303-6 3.463612-7 2.886618-6 2.498424-7 2.896933-6 1.506002-7 2.903809-6 9.722228-8 2.910686-6 5.793752-8 2.917562-6 3.187191-8 2.924439-6 1.618491-8 2.931315-6 0.0 3.138022-6 0.0 3.145745-6 8.986401-9 3.153469-6 1.778161-8 3.161193-6 3.247957-8 3.168917-6 5.476501-8 3.176641-6 8.524129-8 3.184365-6 1.224759-7 3.192088-6 1.624446-7 3.199812-6 1.988904-7 3.207536-6 2.247896-7 3.215260-6 2.345268-7 3.222984-6 2.258722-7 3.230708-6 2.008107-7 3.238432-6 1.648030-7 3.253879-6 8.731388-8 3.261603-6 5.636680-8 3.269327-6 3.359058-8 3.277051-6 1.847846-8 3.284775-6 9.383564-9 3.292498-6 0.0 3.357724-6 0.0 3.368743-6 1.10051-14 3.378864-6 1.737764-8 3.385326-6 6.898415-8 3.393618-6 1.437466-7 3.395497-6 1.633743-7 3.403813-6 2.876237-7 3.412652-6 4.835417-7 3.429452-6 3.166516-2 3.437851-6 5.783845-2 3.446251-6 9.752292-2 3.454651-6 1.517929-1 3.479850-6 3.541703-1 3.488250-6 4.002893-1 3.496650-6 4.176284-1 3.505050-6 4.022166-1 3.514751-6 3.476713-1 3.538649-6 1.554820-1 3.547049-6 1.003737-1 3.555449-6 5.981557-2 3.563848-6 3.290503-2 3.572248-6 1.670954-2 3.580648-6 0.0 3.649141-6 0.0 3.658123-6 5.85068-15 3.667105-6 1.15769-14 3.676087-6 2.11461-14 3.685069-6 3.56552-14 3.694051-6 5.54971-14 3.701961-6 7.68410-14 3.720185-6 1.654538-2 3.729297-6 3.022150-2 3.738960-6 5.266988-2 3.747942-6 8.091385-2 3.774888-6 1.890442-1 3.784630-6 2.171335-1 3.793877-6 2.298525-1 3.803124-6 2.269846-1 3.813509-6 2.074434-1 3.847751-6 1.048819-1 3.856863-6 8.249044-2 3.865975-6 6.356573-2 3.878888-6 4.047385-2 3.884199-6 3.021199-2 3.891427-6 2.347959-2 3.897215-6 3.018253-2 3.906379-6 4.194959-2 3.910584-6 4.798339-2 3.920162-6 7.560205-2 3.929740-6 1.212290-1 3.939319-6 1.849949-1 3.968053-6 4.308045-1 3.977632-6 4.922763-1 3.987210-6 5.188714-1 3.996788-6 5.092237-1 4.006367-6 4.685995-1 4.035101-6 2.883080-1 4.045271-6 2.418825-1 4.055035-6 2.090074-1 4.074565-6 1.575217-1 4.082993-6 1.262853-1 4.098453-6 9.088358-2 4.113623-6 5.398538-2 4.123388-6 3.485107-2 4.133153-6 2.076874-2 4.142917-6 1.142505-2 4.152682-6 5.801756-3 4.162446-6 0.0 4.190301-6 0.0 4.190311-6 5.959874-7 4.210939-6 2.619457-2 4.213071-6 3.066137-2 4.221852-6 9.817933-2 4.232168-6 1.879722-1 4.234486-6 2.136143-1 4.244180-6 3.563956-1 4.256009-6 6.059373-1 4.268173-6 9.428590-1 4.290856-6 2.143088+0 4.306961-6 3.191209+0 4.341941-6 5.789986+0 4.354873-6 6.467912+0 4.364450-6 6.713178+0 4.376615-6 6.519465+0 4.387130-6 5.962975+0 4.401720-6 4.712911+0 4.421806-6 2.769930+0 4.427779-6 2.278210+0 4.436091-6 1.674169+0 4.446596-6 1.113148+0 4.457101-6 7.444098-1 4.472974-6 3.880096-1 4.478112-6 2.638130-1 4.506006-6 2.021421-1 4.516490-6 1.884227-1 4.525476-6 1.854538-1 4.535886-6 1.900575-1 4.569297-6 2.427127-1 4.596534-6 3.104043-1 4.631247-6 4.147986-1 4.647950-6 4.424223-1 4.661788-6 4.369517-1 4.685698-6 3.842290-1 4.710853-6 3.179830-1 4.729439-6 2.889232-1 4.743582-6 2.835153-1 4.762153-6 2.966871-1 4.823136-6 3.895412-1 4.847126-6 5.492926-1 4.859164-6 6.884848-1 4.871386-6 9.001723-1 4.890820-6 1.360379+0 4.911488-6 1.880947+0 4.920654-6 2.057881+0 4.931568-6 2.184765+0 4.943141-6 2.196789+0 4.956328-6 2.047616+0 4.972172-6 1.715682+0 4.996125-6 1.125447+0 5.002436-6 9.874314-1 5.012991-6 7.920941-1 5.025240-6 6.291026-1 5.036191-6 5.273767-1 5.060024-6 4.106581-1 5.086826-6 4.217434-1 5.111577-6 4.865260-1 5.125152-6 5.485821-1 5.138208-6 6.357421-1 5.159053-6 8.288051-1 5.180308-6 1.047087+0 5.190148-6 1.128384+0 5.201044-6 1.188014+0 5.213297-6 1.203449+0 5.230528-6 1.128659+0 5.255630-6 9.337357-1 5.274915-6 7.875723-1 5.286775-6 7.378385-1 5.299369-6 7.244354-1 5.319023-6 7.678257-1 5.349139-6 8.766421-1 5.361958-6 9.060704-1 5.388743-6 8.982289-1 5.425250-6 8.569879-1 5.600000-6 8.463816-1 5.685381-6 8.359513-1 5.763723-6 8.519733-1 6.717599-6 8.954468-1 8.934166-6 1.125760+0 1.100239-5 1.340780+0 1.105655-5 2.164950+0 1.108533-5 2.908808+0 1.111241-5 3.961648+0 1.114061-5 5.463745+0 1.122073-5 1.059941+1 1.125050-5 1.179331+1 1.127540-5 1.213917+1 1.130315-5 1.165281+1 1.133223-5 1.032490+1 1.140860-5 5.398662+0 1.143569-5 3.974802+0 1.146277-5 2.927457+0 1.149155-5 2.207138+0 1.154504-5 1.947037+0 1.157685-5 2.483253+0 1.160825-5 3.345019+0 1.163904-5 4.501637+0 1.171903-5 8.069081+0 1.174911-5 8.933005+0 1.177528-5 9.216372+0 1.180572-5 8.843790+0 1.183942-5 7.746925+0 1.191582-5 4.392265+0 1.194411-5 3.407722+0 1.197239-5 2.713250+0 1.200068-5 2.290105+0 1.205725-5 1.850560+0 1.211253-5 1.959256+0 1.215623-5 1.953309+0 1.221450-5 1.815062+0 1.230269-5 1.567202+0 1.236016-5 1.484116+0 1.244235-5 1.446058+0 1.438122-5 1.507927+0 1.454051-5 1.584860+0 1.469980-5 1.752918+0 1.477945-5 1.747250+0 1.498298-5 1.548068+0 1.510668-5 1.533662+0 1.557317-5 1.758616+0 1.571622-5 1.694343+0 1.587606-5 1.608977+0 1.611190-5 1.625916+0 1.686141-5 1.620678+0 2.018366-5 1.477816+0 2.439163-5 1.280902+0 2.451170-5 3.250544+0 2.457174-5 4.880138+0 2.463178-5 7.352059+0 2.469182-5 1.073329+1 2.473586-5 1.376220+1 2.485763-5 3.990162+1 2.491851-5 5.757865+1 2.497939-5 8.103643+1 2.507361-5 1.296027+2 2.519838-5 1.984018+2 2.523590-5 2.161346+2 2.530347-5 2.344865+2 2.536067-5 2.357810+2 2.541777-5 2.223775+2 2.548308-5 1.912803+2 2.564912-5 8.728254+1 2.571001-5 5.678468+1 2.577089-5 3.433863+1 2.583177-5 1.944510+1 2.592310-5 5.862514+0 2.595354-5 1.232914+0 2.752969-5 1.202667+0 2.766521-5 1.426170+0 2.773297-5 1.611483+0 2.780073-5 1.892885+0 2.788544-5 2.395592+0 2.807715-5 3.741346+0 2.817380-5 4.263395+0 2.824464-5 4.489965+0 2.839159-5 4.637543+0 2.848908-5 4.972126+0 2.860760-5 5.764330+0 2.874754-5 6.796298+0 2.883409-5 7.020376+0 2.893363-5 6.786829+0 2.897160-5 6.630411+0 2.911670-5 1.591815+1 2.918782-5 2.386013+1 2.926624-5 3.783414+1 2.934466-5 5.710181+1 2.954964-5 1.162844+2 2.963549-5 1.305951+2 2.970668-5 1.328434+2 2.977310-5 1.263317+2 2.985323-5 1.085516+2 3.005192-5 5.097416+1 3.011540-5 3.596886+1 3.018590-5 2.372143+1 3.025739-5 1.548681+1 3.039790-5 5.450629+0 3.210966-5 5.042891+0 3.242580-5 5.217773+0 3.268461-5 5.695282+0 3.326956-5 7.084376+0 3.342313-5 7.499242+0 3.358976-5 7.556870+0 3.391042-5 7.001397+0 3.503635-5 6.846341+0 3.635068-5 6.406337+0 3.996347-5 5.617565+0 4.377741-5 5.080143+0 4.773140-5 4.785450+0 5.098724-5 4.751947+0 5.186700-5 4.815306+0 5.297910-5 4.743692+0 6.008830-5 5.070661+0 7.680000-5 6.557137+0 9.903030-5 8.391986+0 1.233009-4 9.768127+0 1.359107-4 1.020227+1 1.367442-4 1.115461+1 1.374174-4 2.619170+1 1.377540-4 3.849685+1 1.380905-4 5.667204+1 1.384789-4 8.548290+1 1.394368-4 1.680667+2 1.398043-4 1.874124+2 1.401581-4 1.918702+2 1.405011-4 1.818139+2 1.408545-4 1.586924+2 1.417765-4 7.882200+1 1.421505-4 5.744465+1 1.424660-4 4.543562+1 1.428134-4 4.163682+1 1.431855-4 4.713838+1 1.435098-4 5.613904+1 1.445590-4 1.160972+2 1.449301-4 1.297599+2 1.452740-4 1.339498+2 1.456536-4 1.274257+2 1.459715-4 1.147792+2 1.469865-4 5.658873+1 1.473354-4 4.023728+1 1.476851-4 2.818777+1 1.480333-4 2.022293+1 1.487311-4 1.046746+1 1.511278-4 1.073374+1 1.534242-4 1.166339+1 1.563801-4 1.168832+1 1.597458-4 1.269334+1 1.726000-4 1.337428+1 2.121871-4 1.156279+1 2.426610-4 1.116911+1 2.674920-4 1.114931+1 2.702845-4 1.154926+1 2.736019-4 1.270942+1 2.757288-4 1.273257+1 2.802836-4 1.232299+1 3.043813-4 1.260586+1 3.218840-4 1.285076+1 3.738526-4 1.295947+1 3.816022-4 1.343198+1 5.401321-4 1.243344+1 9.022201-4 9.245507+0 1.155079-3 7.554617+0 1.160765-3 1.243309+1 1.163608-3 1.648871+1 1.166452-3 2.263560+1 1.169494-3 3.175438+1 1.177559-3 6.146797+1 1.181009-3 7.003292+1 1.183887-3 7.241087+1 1.186766-3 7.064005+1 1.189714-3 6.550425+1 1.195080-3 5.294238+1 1.197725-3 4.885623+1 1.200727-3 4.781486+1 1.203714-3 5.028789+1 1.209902-3 6.015887+1 1.215012-3 6.462007+1 1.217959-3 6.345691+1 1.220906-3 5.935253+1 1.229386-3 4.180181+1 1.232332-3 3.711559+1 1.235096-3 3.400169+1 1.238013-3 3.202786+1 1.243849-3 2.985083+1 1.261292-3 3.099897+1 1.330646-3 3.192363+1 1.410806-3 3.075687+1 1.509106-3 2.842464+1 1.521051-3 2.929946+1 1.541550-3 3.176565+1 1.630032-3 2.929444+1 1.664198-3 2.911111+1 1.691847-3 2.983030+1 1.833588-3 2.683125+1 1.894610-3 2.681477+1 2.264719-3 2.127661+1 2.676086-3 1.694059+1 3.101889-3 1.371984+1 3.574817-3 1.115464+1 4.105590-3 9.070520+0 4.684088-3 7.418852+0 5.328135-3 6.078601+0 6.137244-3 4.867281+0 7.021276-3 3.927951+0 7.065877-3 3.902214+0 7.116032-3 4.092374+0 7.142909-3 4.435431+0 7.171001-3 5.095280+0 7.197425-3 6.020045+0 7.254824-3 8.385929+0 7.293917-3 9.480515+0 7.335675-3 9.951672+0 7.476081-3 9.852780+0 7.804043-3 9.311289+0 7.868328-3 9.721584+0 7.980805-3 1.151305+1 8.051313-3 1.190884+1 8.267141-3 1.173133+1 8.433494-3 1.268059+1 8.789184-3 1.208341+1 1.014587-2 9.651577+0 1.169205-2 7.681808+0 1.331851-2 6.210843+0 1.525253-2 4.958495+0 1.720196-2 4.051298+0 1.945792-2 3.282551+0 2.225308-2 2.605703+0 2.457802-2 2.191936+0 2.765327-2 1.783070+0 3.119303-2 1.441527+0 3.506746-2 1.170522+0 3.944903-2 9.484816-1 4.467049-2 7.580971-1 4.906525-2 6.437707-1 4.933194-2 6.619993-1 4.950483-2 7.094110-1 4.964182-2 7.879468-1 4.978093-2 9.225656-1 4.989762-2 1.087311+0 5.003948-2 1.353607+0 5.028037-2 1.924006+0 5.059266-2 2.648543+0 5.080502-2 2.980525+0 5.106326-2 3.183684+0 5.142702-2 3.243517+0 6.061652-2 2.498604+0 6.934883-2 2.003577+0 7.791362-2 1.645352+0 8.866446-2 1.317838+0 9.988631-2 1.071300+0 1.127685-1 8.661207-1 1.255575-1 7.161049-1 1.406106-1 5.853356-1 1.554119-1 4.898185-1 1.727389-1 4.060660-1 1.926677-1 3.344626-1 2.157376-1 2.736725-1 2.411471-1 2.252061-1 2.693883-1 1.858720-1 3.019273-1 1.531410-1 3.373540-1 1.273748-1 3.811689-1 1.045362-1 4.290422-1 8.687350-2 4.842905-1 7.238247-2 5.498375-1 6.030399-2 6.220123-1 5.096850-2 7.013544-1 4.368442-2 7.966178-1 3.749069-2 9.120713-1 3.216948-2 1.070165+0 2.712407-2 1.286622+0 2.212651-2 1.546860+0 1.804974-2 1.859734+0 1.472411-2 2.235892+0 1.201122-2 2.688134+0 9.798177-3 3.231848+0 7.992881-3 3.885536+0 6.520208-3 4.671441+0 5.318872-3 5.616308+0 4.338880-3 6.752287+0 3.539449-3 8.118035+0 2.887312-3 9.760024+0 2.355330-3 1.000000+1 4.836012-3 1 64000 7 0 1.572500+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.361164+1 1.830695-6-6.137634+1 1.901606-6-5.948820+1 1.935203-6-6.390491+1 2.055839-6-6.021040+1 2.093102-6-6.241797+1 2.370434-6-5.662700+1 2.456283-6-5.241043+1 2.500866-6-4.749454+1 2.521377-6-4.281781+1 2.529695-6-3.909112+1 2.548374-6-2.909385+1 2.556741-6-2.487256+1 2.562968-6-2.344350+1 2.568611-6-2.433486+1 2.572405-6-2.638326+1 2.578194-6-3.190184+1 2.585478-6-4.280133+1 2.597117-6-6.403489+1 2.600504-6-5.790788+1 2.606851-6-4.908573+1 2.613291-6-4.364212+1 2.619590-6-4.185610+1 2.626206-6-4.304845+1 2.635546-6-4.792611+1 2.662903-6-6.410714+1 2.705754-6-4.780833+1 2.717439-6-4.133975+1 2.723588-6-3.621639+1 2.727324-6-3.170051+1 2.737319-6-2.264043+1 2.746855-6-1.219066+1 2.750981-6-8.579048+0 2.751989-6-7.408507+0 2.752775-6-6.736526+0 2.754151-6-5.842742+0 2.759115-6-3.509108+0 2.760582-6-3.331658+0 2.761683-6-3.421928+0 2.763333-6-3.832446+0 2.764984-6-4.463687+0 2.765822-6-4.882998+0 2.767289-6-5.966753+0 2.768389-6-7.005384+0 2.769214-6-7.909321+0 2.771071-6-1.037740+1 2.774624-6-1.661316+1 2.777336-6-2.249497+1 2.783777-6-4.095390+1 2.789389-6-6.067241+1 2.790422-6-6.396781+1 2.792295-6-5.623465+1 2.799894-6-2.912413+1 2.806067-6-1.090041+1 2.807110-6-8.319354+0 2.808023-6-6.294631+0 2.809621-6-3.137221+0 2.810819-6-1.035612+0 2.812617-6 1.754064+0 2.814414-6 4.189501+0 2.815780-6 5.787044+0 2.816976-6 6.961809+0 2.819067-6 8.580449+0 2.820636-6 9.431711+0 2.821813-6 9.856167+0 2.823578-6 1.010409+1 2.824461-6 1.000829+1 2.828696-6 8.185379+0 2.830373-6 7.299013+0 2.831211-6 6.706335+0 2.832888-6 4.977200+0 2.835822-6 2.574401+0 2.837289-6 1.277269+0 2.838023-6 5.357479-1 2.838756-6-3.920672-1 2.845463-6-7.385803+0 2.846101-6-8.170455+0 2.847298-6-9.374806+0 2.857275-6-1.810987+1 2.860139-6-2.170431+1 2.864269-6-2.520576+1 2.872865-6-3.015160+1 2.886618-6-3.536654+1 2.910686-6-4.100503+1 2.950095-6-4.623141+1 3.014419-6-5.071655+1 3.153469-6-5.506515+1 3.496650-6-5.872973+1 4.190311-6-6.206394+1 4.317688-6-6.435207+1 4.364450-6-6.090890+1 4.408624-6-5.700454+1 4.582916-6-6.033113+1 4.918363-6-6.169802+1 5.010006-6-6.021549+1 5.201044-6-6.131276+1 1.052745-5-6.388967+1 1.093690-5-6.241501+1 1.116162-5-5.822843+1 1.123342-5-6.111808+1 1.127419-5-6.370186+1 1.135783-5-5.822044+1 1.143399-5-5.827139+1 1.160535-5-6.379252+1 1.169927-5-6.362661+1 1.173723-5-6.302658+1 1.185774-5-5.723563+1 1.195118-5-5.725178+1 1.215623-5-5.978985+1 1.326659-5-6.205476+1 1.653613-5-6.343597+1 2.037617-5-5.841072+1 2.198803-5-5.350966+1 2.295736-5-4.751533+1 2.344229-5-4.220343+1 2.377458-5-3.658518+1 2.402992-5-3.011047+1 2.417961-5-2.474706+1 2.430218-5-1.883719+1 2.437486-5-1.419381+1 2.445167-5-7.971420+0 2.448169-5-5.415929+0 2.449670-5-4.044428+0 2.451170-5-2.552655+0 2.454172-5 5.465622-1 2.455673-5 2.159209+0 2.460176-5 7.531375+0 2.463178-5 1.144735+1 2.467681-5 1.797756+1 2.471384-5 2.451022+1 2.473035-5 2.815261+1 2.474704-5 3.286465+1 2.476086-5 3.569221+1 2.492612-5 6.254660+1 2.498848-5 6.986592+1 2.501628-5 7.074142+1 2.505954-5 6.933887+1 2.509670-5 6.410737+1 2.512969-5 5.610003+1 2.516018-5 4.566341+1 2.519838-5 2.764471+1 2.521315-5 1.981215+1 2.522265-5 1.423619+1 2.522977-5 9.554422+0 2.523590-5 4.885313+0 2.527108-5-1.867251+1 2.528328-5-2.760667+1 2.529163-5-3.466206+1 2.530022-5-4.233750+1 2.532924-5-6.423450+1 2.535128-5-4.604390+1 2.536067-5-3.727317+1 2.537550-5-2.571665+1 2.540300-5-5.436834+0 2.540763-5-1.829479+0 2.540994-5 7.851170-2 2.541413-5 3.975788+0 2.541777-5 6.913995+0 2.542459-5 1.190295+1 2.544099-5 2.264763+1 2.548308-5 4.803303+1 2.550463-5 5.813798+1 2.553984-5 7.140599+1 2.557759-5 8.014854+1 2.561720-5 8.323426+1 2.564912-5 8.222473+1 2.570239-5 7.577819+1 2.577089-5 6.056156+1 2.585291-5 4.052127+1 2.592310-5 2.661026+1 2.594593-5 2.130706+1 2.595711-5 1.763888+1 2.596419-5 1.571997+1 2.597813-5 1.260230+1 2.599163-5 1.001153+1 2.600471-5 7.761080+0 2.601739-5 5.764334+0 2.604194-5 2.289876+0 2.606496-5-5.997263-1 2.608654-5-3.053845+0 2.610677-5-5.168798+0 2.612574-5-7.011751+0 2.616130-5-1.015921+1 2.621965-5-1.462629+1 2.631644-5-2.065396+1 2.644275-5-2.678268+1 2.660725-5-3.291067+1 2.686719-5-4.013761+1 2.752969-5-5.322705+1 2.817380-5-6.449727+1 2.826635-5-6.519127+1 2.864469-5-5.656293+1 2.884679-5-4.989416+1 2.893363-5-4.470491+1 2.912202-5-2.585381+1 2.918228-5-1.937754+1 2.920160-5-1.685570+1 2.926144-5-1.126645+1 2.926624-5-1.068034+1 2.927525-5-9.925254+0 2.929101-5-8.991380+0 2.934466-5-7.099496+0 2.935700-5-7.067544+0 2.936857-5-7.297280+0 2.938958-5-8.209117+0 2.940864-5-9.527782+0 2.942568-5-1.108687+1 2.945269-5-1.428490+1 2.948247-5-1.893812+1 2.950925-5-2.430137+1 2.953497-5-3.096948+1 2.954964-5-3.611860+1 2.961259-5-5.637271+1 2.963891-5-6.736493+1 2.969356-5-4.649055+1 2.971412-5-3.766544+1 2.976374-5-1.940969+1 2.977310-5-1.536796+1 2.978915-5-9.836174+0 2.980226-5-5.781737+0 2.982191-5-8.525694-2 2.983666-5 4.157262+0 2.984554-5 7.036195+0 2.985323-5 9.134556+0 2.986765-5 1.253082+1 2.989131-5 1.715336+1 2.992512-5 2.223314+1 2.995773-5 2.565844+1 3.000505-5 2.825645+1 3.004020-5 2.853801+1 3.009953-5 2.553088+1 3.017819-5 1.797401+1 3.024756-5 1.004900+1 3.026617-5 7.841762+0 3.028263-5 6.135206+0 3.034027-5 8.935854-1 3.036909-5-1.836821+0 3.038349-5-3.379880+0 3.039070-5-4.257711+0 3.040209-5-6.053025+0 3.040993-5-7.047965+0 3.042366-5-8.499410+0 3.044426-5-1.033328+1 3.048631-5-1.340016+1 3.054412-5-1.673660+1 3.064282-5-2.105727+1 3.080000-5-2.596050+1 3.100363-5-3.030889+1 3.130049-5-3.460594+1 3.187604-5-3.976308+1 3.275916-5-4.489253+1 3.342313-5-4.607373+1 3.418348-5-4.640487+1 3.996347-5-4.958095+1 5.800000-5-5.323085+1 1.078707-4-5.758851+1 1.171793-4-5.956152+1 1.248048-4-5.358310+1 1.288400-4-4.764759+1 1.315000-4-4.098992+1 1.330379-4-3.498469+1 1.339862-4-2.977140+1 1.347826-4-2.386635+1 1.353555-4-1.821105+1 1.357025-4-1.387464+1 1.359107-4-1.074386+1 1.360780-4-7.911390+0 1.362453-4-4.800813+0 1.363289-4-3.089056+0 1.364543-4-2.541451-1 1.365171-4 1.319922+0 1.365798-4 3.043715+0 1.366620-4 5.583921+0 1.367237-4 7.866425+0 1.367655-4 9.916200+0 1.368027-4 1.137236+1 1.369143-4 1.509526+1 1.373702-4 2.871101+1 1.377960-4 4.399011+1 1.382062-4 5.551070+1 1.385275-4 5.929632+1 1.387679-4 5.658944+1 1.389357-4 5.203286+1 1.391209-4 4.436201+1 1.392560-4 3.647110+1 1.393916-4 2.646593+1 1.394579-4 2.019580+1 1.396157-4 6.243152+0 1.396551-4 2.596838+0 1.396847-4-2.521531-1 1.397290-4-4.803987+0 1.397623-4-8.624590+0 1.397839-4-1.161332+1 1.398425-4-1.827871+1 1.400677-4-4.228899+1 1.401759-4-5.605401+1 1.401993-4-5.859544+1 1.404405-4-3.321153+1 1.404823-4-2.811437+1 1.405672-4-1.992389+1 1.407832-4-1.650392+0 1.407982-4-2.229356-1 1.408272-4 2.097326+0 1.408545-4 4.051866+0 1.409056-4 7.342437+0 1.409503-4 9.909117+0 1.409894-4 1.195280+1 1.410578-4 1.512703+1 1.411092-4 1.720071+1 1.411862-4 1.985603+1 1.413244-4 2.335227+1 1.414248-4 2.478738+1 1.415069-4 2.525090+1 1.416145-4 2.478276+1 1.417010-4 2.326444+1 1.417529-4 2.133350+1 1.418206-4 1.871205+1 1.419750-4 1.397435+1 1.420523-4 1.125004+1 1.421102-4 8.763591+0 1.421505-4 6.491073+0 1.423083-4-6.033764-1 1.423872-4-4.349540+0 1.424266-4-6.455158+0 1.424562-4-8.274156+0 1.424660-4-9.036590+0 1.428134-4-2.855396+1 1.429231-4-3.446341+1 1.432876-4-5.076203+1 1.434797-4-5.849382+1 1.435864-4-5.359011+1 1.437856-4-4.963560+1 1.440000-4-4.897729+1 1.442343-4-5.164102+1 1.444589-4-5.780378+1 1.444760-4-5.846652+1 1.448314-4-4.027047+1 1.449691-4-3.063739+1 1.451396-4-1.981026+1 1.452164-4-1.437499+1 1.452529-4-1.111238+1 1.452740-4-9.414060+0 1.453136-4-6.533292+0 1.453830-4-1.872710+0 1.454869-4 4.859242+0 1.455649-4 1.016933+1 1.456127-4 1.406216+1 1.456536-4 1.686264+1 1.457252-4 2.121748+1 1.459715-4 3.517167+1 1.460829-4 4.028118+1 1.462422-4 4.581193+1 1.465144-4 5.220320+1 1.467874-4 5.492032+1 1.469865-4 5.401631+1 1.472918-4 4.974764+1 1.476851-4 4.065850+1 1.482118-4 2.770234+1 1.486419-4 1.872682+1 1.487311-4 1.620080+1 1.487616-4 1.519677+1 1.488531-4 1.297643+1 1.489438-4 1.115501+1 1.490799-4 8.794470+0 1.492159-4 6.731150+0 1.494157-4 4.078268+0 1.496154-4 1.751953+0 1.498861-4-1.001851+0 1.501567-4-3.396629+0 1.503577-4-4.996388+0 1.507202-4-7.585058+0 1.511278-4-1.010550+1 1.517628-4-1.338393+1 1.526769-4-1.696221+1 1.538609-4-2.019159+1 1.563801-4-2.544302+1 1.582747-4-2.823047+1 1.632212-4-3.181991+1 1.702283-4-3.432099+1 1.961867-4-3.649951+1 2.810139-4-3.903112+1 3.069088-4-3.762891+1 3.766831-4-3.551160+1 4.915796-4-3.210351+1 6.425737-4-3.003570+1 8.013793-4-2.969890+1 9.495110-4-3.113158+1 1.050147-3-3.374573+1 1.110843-3-3.683590+1 1.154319-3-4.109183+1 1.173134-3-4.472507+1 1.197725-3-5.358159+1 1.208581-3-5.308704+1 1.240938-3-4.688672+1 1.261292-3-4.175463+1 1.292746-3-3.726517+1 1.348963-3-3.149341+1 1.410806-3-2.697967+1 1.467975-3-2.458878+1 1.513181-3-2.418925+1 1.541550-3-2.492419+1 1.583058-3-2.155017+1 1.630032-3-1.955752+1 1.664198-3-1.893391+1 1.691847-3-1.854732+1 1.731459-3-1.666032+1 1.797683-3-1.485831+1 1.868108-3-1.401111+1 1.931777-3-1.210523+1 2.030746-3-1.032676+1 2.161573-3-8.695860+0 2.308701-3-7.406362+0 2.488320-3-6.303746+0 2.676086-3-5.502073+0 2.895468-3-4.905997+0 3.219678-3-4.426638+0 3.574817-3-4.214061+0 4.105590-3-4.267394+0 4.684088-3-4.601447+0 5.328135-3-5.221791+0 5.966105-3-6.143495+0 6.423327-3-7.155520+0 6.737632-3-8.248376+0 6.929692-3-9.325286+0 7.054450-3-1.051364+1 7.133419-3-1.194877+1 7.211961-3-1.382428+1 7.254824-3-1.403319+1 7.311310-3-1.302464+1 7.389261-3-1.126736+1 7.476081-3-1.021366+1 7.602699-3-9.511131+0 7.740444-3-9.357168+0 7.828267-3-9.728088+0 7.930119-3-1.041395+1 7.980805-3-1.018850+1 8.110478-3-8.639329+0 8.199597-3-8.134637+0 8.350620-3-7.891209+0 8.471265-3-6.802473+0 8.592609-3-5.860734+0 8.789184-3-4.898000+0 9.047961-3-4.017441+0 9.353562-3-3.243449+0 9.730273-3-2.542449+0 1.014587-2-1.974961+0 1.059825-2-1.511411+0 1.100653-2-1.189065+0 1.145175-2-9.223102-1 1.185144-2-7.354666-1 1.235592-2-5.592644-1 1.280053-2-4.384020-1 1.331851-2-3.281358-1 1.373048-2-2.635821-1 1.424983-2-2.008189-1 1.471559-2-1.638235-1 1.502709-2-1.459678-1 1.542075-2-1.288643-1 1.582614-2-1.177551-1 1.630760-2-1.140239-1 1.672775-2-1.149195-1 1.747834-2-1.248233-1 1.819701-2-1.445051-1 1.945792-2-1.934662-1 2.132585-2-2.870154-1 2.657365-2-5.837497-1 3.641942-2-1.158514+0 4.073803-2-1.464503+0 4.382286-2-1.762179+0 4.599953-2-2.071952+0 4.743597-2-2.386069+0 4.844764-2-2.739177+0 4.906525-2-3.101190+0 4.950483-2-3.556045+0 5.008951-2-4.348020+0 5.035203-2-4.420635+0 5.066027-2-4.128841+0 5.123924-2-3.250581+0 5.160791-2-2.865882+0 5.205502-2-2.554431+0 5.287834-2-2.167828+0 5.393033-2-1.837303+0 5.528841-2-1.533484+0 5.688530-2-1.273176+0 5.926520-2-1.004887+0 6.157974-2-8.223600-1 6.385816-2-6.864902-1 6.604744-2-5.854074-1 6.934883-2-4.681173-1 7.261321-2-3.849891-1 7.598575-2-3.234528-1 7.976824-2-2.737457-1 8.395808-2-2.367866-1 8.866446-2-2.100502-1 9.470492-2-1.911055-1 9.988631-2-1.843106-1 1.076061-1-1.852676-1 1.214868-1-2.010502-1 1.794669-1-3.061521-1 2.316613-1-3.747800-1 3.019273-1-4.320639-1 4.121981-1-4.800282-1 6.220123-1-5.176867-1 1.120601+0-5.401326-1 3.414075+0-5.493940-1 1.000000+1-5.505064-1 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.494087-1 1.047119-6 1.865227-1 1.081237-6 2.182337-1 1.113222-6 2.522787-1 1.171320-6 3.267473-1 1.222383-6 4.084832-1 1.288978-6 5.450458-1 1.326981-6 6.409092-1 1.360234-6 7.381047-1 1.389329-6 8.349728-1 1.414788-6 9.300992-1 1.437065-6 1.023059+0 1.476049-6 1.207981+0 1.505287-6 1.367918+0 1.527215-6 1.503304+0 1.560108-6 1.733566+0 1.608684-6 2.140131+0 1.647894-6 2.546803+0 1.671420-6 2.832668+0 1.694241-6 3.143991+0 1.714209-6 3.447281+0 1.731681-6 3.741885+0 1.762257-6 4.326285+0 1.785190-6 4.831655+0 1.802389-6 5.259010+0 1.828188-6 5.987032+0 1.863113-6 7.162802+0 1.890493-6 8.289019+0 1.917873-6 9.645674+0 1.940690-6 1.099878+1 1.965747-6 1.277346+1 1.984960-6 1.438116+1 2.002972-6 1.613221+1 2.019858-6 1.803548+1 2.035688-6 2.009844+1 2.050530-6 2.232828+1 2.064443-6 2.473234+1 2.077488-6 2.731808+1 2.089716-6 3.009282+1 2.101181-6 3.306364+1 2.111929-6 3.623734+1 2.122005-6 3.962054+1 2.131452-6 4.321965+1 2.140308-6 4.704095+1 2.148610-6 5.109068+1 2.156394-6 5.537519+1 2.163691-6 5.990108+1 2.170532-6 6.467510+1 2.176946-6 6.970386+1 2.182959-6 7.499364+1 2.188596-6 8.055053+1 2.193880-6 8.638101+1 2.198835-6 9.249285+1 2.207834-6 1.056041+2 2.215998-6 1.205262+2 2.223142-6 1.370121+2 2.229393-6 1.552462+2 2.234862-6 1.753264+2 2.239648-6 1.971888+2 2.243836-6 2.205837+2 2.247500-6 2.451056+2 2.250706-6 2.702577+2 2.253512-6 2.955207+2 2.258114-6 3.445175+2 2.261873-6 3.923988+2 2.274810-6 6.199699+2 2.278744-6 7.090632+2 2.281542-6 7.774659+2 2.284339-6 8.494450+2 2.289935-6 1.000922+3 2.290634-6 1.020254+3 2.295530-6 1.155197+3 2.297453-6 1.206968+3 2.301125-6 1.301368+3 2.303048-6 1.347511+3 2.304884-6 1.388810+3 2.306720-6 1.426975+3 2.309168-6 1.472244+3 2.311528-6 1.509005+3 2.313714-6 1.536336+3 2.315549-6 1.553916+3 2.317910-6 1.568874+3 2.321057-6 1.574823+3 2.323680-6 1.567241+3 2.324654-6 1.561511+3 2.326877-6 1.542587+3 2.329360-6 1.512088+3 2.331329-6 1.481174+3 2.333967-6 1.431101+3 2.336377-6 1.377428+3 2.338043-6 1.336406+3 2.340465-6 1.271810+3 2.342238-6 1.221335+3 2.344859-6 1.142804+3 2.347197-6 1.069927+3 2.349673-6 9.909503+2 2.351480-6 9.328528+2 2.353928-6 8.544118+2 2.355895-6 7.922232+2 2.357075-6 7.554981+2 2.359873-6 6.708607+2 2.362321-6 6.003077+2 2.363020-6 5.808512+2 2.366298-6 4.943351+2 2.368265-6 4.464474+2 2.374210-6 3.218892+2 2.380854-6 2.202365+2 2.383280-6 1.929565+2 2.385205-6 1.749547+2 2.386823-6 1.622559+2 2.388200-6 1.531776+2 2.389584-6 1.456253+2 2.390701-6 1.406618+2 2.391433-6 1.379594+2 2.392155-6 1.357087+2 2.392866-6 1.338991+2 2.393567-6 1.325097+2 2.394256-6 1.315203+2 2.415968-6 3.065533+2 2.423134-6 4.769136+2 2.426543-6 5.857644+2 2.429153-6 6.831478+2 2.432884-6 8.456303+2 2.435656-6 9.856243+2 2.438594-6 1.153046+3 2.441772-6 1.357425+3 2.443680-6 1.491943+3 2.446680-6 1.721751+3 2.449680-6 1.973594+3 2.456055-6 2.577117+3 2.457461-6 2.721387+3 2.460625-6 3.057984+3 2.462758-6 3.292530+3 2.463988-6 3.429953+3 2.467680-6 3.847683+3 2.470727-6 4.193257+3 2.473680-6 4.522708+3 2.476727-6 4.850610+3 2.479680-6 5.150536+3 2.482305-6 5.397417+3 2.485205-6 5.643518+3 2.486055-6 5.709588+3 2.489571-6 5.950423+3 2.492316-6 6.098647+3 2.495514-6 6.223252+3 2.498114-6 6.284418+3 2.503868-6 6.288371+3 2.505508-6 6.256587+3 2.510055-6 6.095959+3 2.512912-6 5.944334+3 2.515680-6 5.764083+3 2.518727-6 5.532574+3 2.521680-6 5.280345+3 2.524305-6 5.037688+3 2.526836-6 4.791142+3 2.530680-6 4.401207+3 2.533680-6 4.090527+3 2.537055-6 3.741408+3 2.539680-6 3.474194+3 2.545680-6 2.892219+3 2.547743-6 2.704718+3 2.551680-6 2.368393+3 2.556930-6 1.968302+3 2.563415-6 1.553590+3 2.573352-6 1.078575+3 2.576166-6 9.750915+2 2.578970-6 8.837469+2 2.581763-6 8.033282+2 2.584545-6 7.326620+2 2.587316-6 6.706358+2 2.590076-6 6.162133+2 2.595574-6 5.263094+2 2.601030-6 4.566414+2 2.606443-6 4.020468+2 2.611814-6 3.586119+2 2.617143-6 3.234509+2 2.622430-6 2.944758+2 2.627676-6 2.701907+2 2.632881-6 2.495251+2 2.638045-6 2.317070+2 2.643169-6 2.161719+2 2.653337-6 1.902777+2 2.663346-6 1.696473+2 2.673198-6 1.528330+2 2.682897-6 1.388840+2 2.692444-6 1.271461+2 2.701841-6 1.171508+2 2.711092-6 1.085527+2 2.720199-6 1.010905+2 2.729163-6 9.456215+1 2.737987-6 8.880836+1 2.755359-6 7.907366+1 2.772189-6 7.124124+1 2.788493-6 6.482163+1 2.804287-6 5.948253+1 2.819587-6 5.498623+1 2.834410-6 5.115856+1 2.848769-6 4.786910+1 2.862679-6 4.501616+1 2.889631-6 4.024511+1 2.914898-6 3.649234+1 2.938586-6 3.348057+1 2.960793-6 3.102332+1 2.981613-6 2.899031+1 3.001131-6 2.728699+1 3.037728-6 2.451384+1 3.072000-6 2.230912+1 3.097769-6 2.085961+1 3.122286-6 1.962470+1 3.165191-6 1.773048+1 3.197369-6 1.649328+1 3.245637-6 1.487559+1 3.334442-6 1.243410+1 3.456055-6 9.869424+0 3.573600-6 7.807720+0 3.625629-6 6.933693+0 3.676729-6 6.054343+0 3.697594-6 5.675630+0 3.715852-6 5.328419+0 3.731827-6 5.008412+0 3.745805-6 4.712535+0 3.758036-6 4.438521+0 3.768738-6 4.184738+0 3.786297-6 3.733926+0 3.800636-6 3.329360+0 3.811390-6 3.005067+0 3.819456-6 2.753601+0 3.825505-6 2.563688+0 3.833445-6 2.319151+0 3.846019-6 1.971055+0 3.853114-6 1.818450+0 3.857844-6 1.744943+0 3.860210-6 1.718927+0 3.862575-6 1.701194+0 3.869670-6 1.706956+0 3.872035-6 1.731852+0 3.873218-6 1.749201+0 3.877357-6 1.838035+0 3.879426-6 1.900227+0 3.881496-6 1.975321+0 3.882679-6 2.024335+0 3.886818-6 2.233332+0 3.889922-6 2.431236+0 3.893529-6 2.709573+0 3.897341-6 3.064725+0 3.902034-6 3.595014+0 3.915989-6 5.851328+0 3.921753-6 7.104191+0 3.926648-6 8.319544+0 3.933014-6 1.010296+1 3.937102-6 1.136244+1 3.941862-6 1.293083+1 3.946350-6 1.449744+1 3.950520-6 1.601547+1 3.954796-6 1.761889+1 3.959237-6 1.931443+1 3.960987-6 1.998614+1 3.965779-6 2.182108+1 3.970234-6 2.349903+1 3.975663-6 2.546880+1 3.980156-6 2.700570+1 3.981878-6 2.756657+1 3.987774-6 2.934419+1 3.990339-6 3.003938+1 3.999324-6 3.203989+1 4.003978-6 3.278308+1 4.007698-6 3.322413+1 4.012759-6 3.360159+1 4.017472-6 3.372349+1 4.021321-6 3.366310+1 4.026372-6 3.337624+1 4.031243-6 3.289256+1 4.035264-6 3.235486+1 4.037662-6 3.198056+1 4.044850-6 3.065239+1 4.047246-6 3.015162+1 4.054434-6 2.852025+1 4.056830-6 2.794402+1 4.066415-6 2.555636+1 4.075999-6 2.316095+1 4.096206-6 1.862175+1 4.103717-6 1.720828+1 4.110992-6 1.599553+1 4.118040-6 1.496340+1 4.124868-6 1.408843+1 4.138097-6 1.269819+1 4.150499-6 1.168957+1 4.162126-6 1.093628+1 4.173027-6 1.035403+1 4.193465-6 9.482458+0 4.211348-6 8.874009+0 4.242644-6 8.011732+0 4.289588-6 6.972139+0 4.336551-6 6.041210+0 4.347225-6 5.825255+0 4.357899-6 5.602068+0 4.368573-6 5.369196+0 4.379247-6 5.125191+0 4.389921-6 4.870627+0 4.405777-6 4.482432+0 4.424810-6 4.046014+0 4.430587-6 3.934206+0 4.439314-6 3.797588+0 4.446934-6 3.720478+0 4.449475-6 3.705401+0 4.460373-6 3.712374+0 4.463263-6 3.735876+0 4.471934-6 3.866820+0 4.474652-6 3.927324+0 4.478729-6 4.035906+0 4.482807-6 4.165884+0 4.488555-6 4.384773+0 4.495010-6 4.677655+0 4.505600-6 5.251291+0 4.515427-6 5.858317+0 4.524941-6 6.476738+0 4.526300-6 6.565175+0 4.537173-6 7.250285+0 4.538532-6 7.331359+0 4.548047-6 7.854160+0 4.550765-6 7.986287+0 4.558920-6 8.327098+0 4.561638-6 8.420560+0 4.566395-6 8.558262+0 4.569963-6 8.639371+0 4.575315-6 8.724924+0 4.580666-6 8.767453+0 4.586103-6 8.767966+0 4.591540-6 8.727818+0 4.599695-6 8.598534+0 4.602413-6 8.538967+0 4.613286-6 8.232867+0 4.623845-6 7.857394+0 4.629620-6 7.631093+0 4.640519-6 7.183691+0 4.658214-6 6.455924+0 4.672249-6 5.920553+0 4.683749-6 5.527861+0 4.695274-6 5.185503+0 4.706802-6 4.901813+0 4.718331-6 4.683839+0 4.729859-6 4.537495+0 4.735624-6 4.492380+0 4.741388-6 4.466109+0 4.747152-6 4.458365+0 4.751475-6 4.464296+0 4.757960-6 4.490938+0 4.764445-6 4.536901+0 4.773091-6 4.623221+0 4.799030-6 4.966966+0 4.813441-6 5.138668+0 4.822087-6 5.212614+0 4.831738-6 5.261093+0 4.836344-6 5.270558+0 4.843254-6 5.268158+0 4.850163-6 5.246818+0 4.856844-6 5.210053+0 4.868201-6 5.118587+0 4.880462-6 4.994274+0 4.897077-6 4.817984+0 4.918161-6 4.635071+0 4.927831-6 4.575768+0 4.933873-6 4.546589+0 4.945958-6 4.503634+0 4.974046-6 4.447640+0 5.004598-6 4.383275+0 5.038010-6 4.275630+0 5.117158-6 3.997058+0 5.173802-6 3.792845+0 5.213602-6 3.628235+0 5.278540-6 3.340020+0 5.352816-6 3.031778+0 5.382317-6 2.907069+0 5.402542-6 2.818140+0 5.433700-6 2.675227+0 5.465097-6 2.524160+0 5.512192-6 2.284347+0 5.533598-6 2.169544+0 5.562328-6 2.008799+0 5.605423-6 1.751725+0 5.626971-6 1.615442+0 5.648519-6 1.473714+0 5.662422-6 1.379346+0 5.676325-6 1.282740+0 5.690228-6 1.184030+0 5.704131-6 1.083470+0 5.718034-6 9.814936-1 5.731938-6 8.788157-1 5.745841-6 7.766184-1 5.759744-6 6.768699-1 5.773647-6 5.828888-1 5.787550-6 5.003020-1 5.794502-6 4.660379-1 5.801453-6 4.385988-1 5.808405-6 4.201597-1 5.815356-6 4.134810-1 5.822308-6 4.220321-1 5.825784-6 4.333296-1 5.829259-6 4.501254-1 5.832735-6 4.731134-1 5.837949-6 5.208987-1 5.840556-6 5.515584-1 5.843162-6 5.872544-1 5.846638-6 6.434249-1 5.849245-6 6.925792-1 5.851200-6 7.337259-1 5.854133-6 8.028492-1 5.858803-6 9.330371-1 5.864729-6 1.138512+0 5.882713-6 2.117271+0 5.889461-6 2.659680+0 5.896810-6 3.386028+0 5.903344-6 4.166414+0 5.909772-6 5.072500+0 5.914058-6 5.759491+0 5.917189-6 6.305745+0 5.921885-6 7.198810+0 5.926581-6 8.184040+0 5.929585-6 8.864259+0 5.936343-6 1.054218+1 5.941210-6 1.187967+1 5.950159-6 1.462548+1 5.955755-6 1.652944+1 5.958738-6 1.760135+1 5.966568-6 2.059475+1 5.970301-6 2.210730+1 5.973284-6 2.335263+1 5.983142-6 2.766752+1 5.990066-6 3.084069+1 5.996778-6 3.398314+1 6.002971-6 3.690309+1 6.008974-6 3.971569+1 6.014960-6 4.246637+1 6.021267-6 4.526636+1 6.026324-6 4.740997+1 6.035020-6 5.081860+1 6.041826-6 5.318403+1 6.050627-6 5.577209+1 6.056502-6 5.716812+1 6.059549-6 5.778015+1 6.067016-6 5.894112+1 6.072492-6 5.947852+1 6.075382-6 5.965358+1 6.084960-6 5.969959+1 6.091885-6 5.923380+1 6.098596-6 5.840385+1 6.105983-6 5.709187+1 6.113142-6 5.546201+1 6.119506-6 5.375491+1 6.125642-6 5.191296+1 6.134960-6 4.882350+1 6.142233-6 4.623345+1 6.155188-6 4.141180+1 6.171324-6 3.538623+1 6.179506-6 3.244987+1 6.185869-6 3.025872+1 6.200415-6 2.563366+1 6.231805-6 1.776179+1 6.237859-6 1.657507+1 6.249210-6 1.461042+1 6.259142-6 1.314409+1 6.267833-6 1.203107+1 6.283042-6 1.040499+1 6.294448-6 9.404808+0 6.311558-6 8.171138+0 6.328668-6 7.170850+0 6.359822-6 5.722932+0 6.406554-6 4.013762+0 6.422131-6 3.516737+0 6.453286-6 2.662411+0 6.461074-6 2.496631+0 6.468863-6 2.360897+0 6.476651-6 2.263039+0 6.484440-6 2.212371+0 6.488819-6 2.208603+0 6.493198-6 2.225269+0 6.498649-6 2.277987+0 6.502737-6 2.343380+0 6.505803-6 2.408345+0 6.508103-6 2.466622+0 6.511121-6 2.556245+0 6.515002-6 2.694696+0 6.517619-6 2.803704+0 6.520795-6 2.953873+0 6.525335-6 3.204476+0 6.528253-6 3.389187+0 6.531172-6 3.593311+0 6.536638-6 4.030541+0 6.544821-6 4.827880+0 6.563853-6 7.411357+0 6.571427-6 8.741152+0 6.579145-6 1.027506+1 6.584727-6 1.149454+1 6.595641-6 1.412894+1 6.602938-6 1.605625+1 6.609061-6 1.776040+1 6.615506-6 1.962322+1 6.620784-6 2.118888+1 6.626967-6 2.305271+1 6.633721-6 2.510291+1 6.640771-6 2.722983+1 6.644117-6 2.822514+1 6.651721-6 3.043035+1 6.659023-6 3.244302+1 6.662816-6 3.343554+1 6.670656-6 3.534863+1 6.676832-6 3.670369+1 6.692398-6 3.941426+1 6.697566-6 4.006672+1 6.709025-6 4.104186+1 6.714628-6 4.127822+1 6.722636-6 4.134453+1 6.727783-6 4.122298+1 6.732931-6 4.097823+1 6.738583-6 4.057457+1 6.746001-6 3.984568+1 6.753155-6 3.894975+1 6.763557-6 3.735947+1 6.771575-6 3.594639+1 6.775584-6 3.519198+1 6.787611-6 3.279381+1 6.803647-6 2.944722+1 6.826022-6 2.491903+1 6.853124-6 2.024882+1 6.867718-6 1.823806+1 6.876057-6 1.725504+1 6.884396-6 1.638886+1 6.892735-6 1.563344+1 6.901074-6 1.498085+1 6.909414-6 1.442183+1 6.917753-6 1.394625+1 6.926092-6 1.354355+1 6.942770-6 1.291464+1 6.959448-6 1.245508+1 6.976126-6 1.209637+1 7.026161-6 1.117968+1 7.042839-6 1.085621+1 7.076196-6 1.017174+1 7.139948-6 8.927218+0 7.167064-6 8.488004+0 7.212860-6 7.879914+0 7.265990-6 7.333042+0 7.336830-6 6.764661+0 7.407670-6 6.307984+0 7.513930-6 5.749947+0 7.739182-6 4.803160+0 7.854881-6 4.322520+0 7.899182-6 4.110640+0 7.957510-6 3.834095+0 7.972375-6 3.776817+0 7.991902-6 3.719104+0 8.011429-6 3.687811+0 8.030956-6 3.688727+0 8.039923-6 3.700925+0 8.053373-6 3.733339+0 8.066824-6 3.782041+0 8.086913-6 3.881246+0 8.131477-6 4.164194+0 8.150964-6 4.285036+0 8.171381-6 4.390130+0 8.179483-6 4.423240+0 8.192000-6 4.463127+0 8.203790-6 4.487350+0 8.220578-6 4.498949+0 8.228912-6 4.494954+0 8.245751-6 4.468647+0 8.265278-6 4.411744+0 8.284805-6 4.333207+0 8.306860-6 4.227699+0 8.366408-6 3.918227+0 8.479752-6 3.415104+0 8.521495-6 3.266630+0 8.542367-6 3.203229+0 8.563239-6 3.149280+0 8.584111-6 3.106126+0 8.601703-6 3.078534+0 8.633011-6 3.047674+0 8.691305-6 3.022530+0 8.712697-6 3.009186+0 8.734090-6 2.986903+0 8.765029-6 2.935103+0 8.797872-6 2.858591+0 8.837597-6 2.760219+0 8.848494-6 2.737379+0 8.867159-6 2.706909+0 8.891692-6 2.688881+0 8.903963-6 2.690830+0 8.922370-6 2.708078+0 8.940778-6 2.741585+0 8.959834-6 2.790602+0 9.024561-6 2.998652+0 9.049738-6 3.063649+0 9.065019-6 3.091663+0 9.087941-6 3.114553+0 9.110863-6 3.113893+0 9.132439-6 3.093488+0 9.154014-6 3.057230+0 9.172957-6 3.015540+0 9.217658-6 2.896733+0 9.347466-6 2.550424+0 9.412634-6 2.407640+0 9.453201-6 2.337628+0 9.477641-6 2.305184+0 9.499033-6 2.283281+0 9.531234-6 2.260824+0 9.623558-6 2.227373+0 9.657250-6 2.208417+0 9.699147-6 2.172979+0 9.817944-6 2.045347+0 9.908433-6 1.968165+0 9.966637-6 1.923440+0 1.006098-5 1.848311+0 1.015908-5 1.766912+0 1.024344-5 1.691317+0 1.032505-5 1.611394+0 1.042472-5 1.514666+0 1.051692-5 1.436731+0 1.065860-5 1.333165+0 1.097025-5 1.104728+0 1.114338-5 9.804517-1 1.140822-5 7.986288-1 1.171521-5 6.085013-1 1.216186-5 3.732506-1 1.243886-5 2.503465-1 1.271422-5 1.517234-1 1.297237-5 8.279565-2 1.321438-5 4.054642-2 1.333900-5 2.805689-2 1.344127-5 2.337819-2 1.350000-5 2.302543-2 1.365398-5 3.029449-2 1.366875-5 3.162911-2 1.385339-5 5.811691-2 1.404034-5 1.045552-1 1.421287-5 1.666252-1 1.437478-5 2.427736-1 1.452673-5 3.224233-1 1.465097-5 3.645893-1 1.466810-5 3.667634-1 1.488750-5 3.211777-1 1.500162-5 2.748245-1 1.515000-5 2.170587-1 1.532603-5 1.567577-1 1.542094-5 1.285534-1 1.550992-5 1.051794-1 1.567675-5 6.970099-2 1.582273-5 4.833354-2 1.592498-5 3.954366-2 1.595047-5 3.822043-2 1.606223-5 3.678255-2 1.611900-5 3.890605-2 1.625782-5 5.284778-2 1.640451-5 8.235314-2 1.662455-5 1.577793-1 1.684459-5 2.753816-1 1.698244-5 3.750155-1 1.709336-5 4.723155-1 1.725920-5 6.486749-1 1.742504-5 8.656628-1 1.759089-5 1.129479+0 1.775466-5 1.442837+0 1.792903-5 1.842257+0 1.810785-5 2.332630+0 1.827778-5 2.885972+0 1.845215-5 3.556214+0 1.858294-5 4.138134+0 1.876040-5 5.052219+0 1.892678-5 6.056709+0 1.922898-5 8.328771+0 2.012516-5 2.050943+1 2.042920-5 2.772078+1 2.057808-5 3.217192+1 2.075704-5 3.855053+1 2.094735-5 4.684419+1 2.114171-5 5.739274+1 2.129354-5 6.752117+1 2.142241-5 7.774739+1 2.152787-5 8.747871+1 2.164987-5 1.006011+2 2.173879-5 1.116755+2 2.184424-5 1.268012+2 2.194970-5 1.445290+2 2.205516-5 1.654515+2 2.216061-5 1.903473+2 2.226607-5 2.202565+2 2.237153-5 2.565852+2 2.247699-5 3.012832+2 2.256329-5 3.460161+2 2.261815-5 3.792988+2 2.267302-5 4.172105+2 2.272788-5 4.606993+2 2.278274-5 5.109950+2 2.283760-5 5.697257+2 2.289246-5 6.390908+2 2.294732-5 7.221140+2 2.300218-5 8.230015+2 2.305705-5 9.476387+2 2.311191-5 1.104244+3 2.316677-5 1.304178+3 2.319420-5 1.425024+3 2.322163-5 1.562842+3 2.324906-5 1.720331+3 2.327649-5 1.900531+3 2.329725-5 2.054072+3 2.334396-5 2.462659+3 2.335953-5 2.620927+3 2.341703-5 3.318948+3 2.356077-5 6.082305+3 2.361664-5 7.645482+3 2.364702-5 8.623375+3 2.373679-5 1.202688+4 2.374406-5 1.233331+4 2.379493-5 1.458289+4 2.381491-5 1.550727+4 2.386033-5 1.765652+4 2.389213-5 1.916988+4 2.391985-5 2.046963+4 2.395023-5 2.184750+4 2.397350-5 2.285199+4 2.399962-5 2.390998+4 2.402845-5 2.497060+4 2.404949-5 2.566062+4 2.407418-5 2.636716+4 2.410167-5 2.700893+4 2.413192-5 2.752224+4 2.415989-5 2.780504+4 2.419213-5 2.789337+4 2.422199-5 2.774538+4 2.425009-5 2.740719+4 2.427605-5 2.692999+4 2.429233-5 2.655410+4 2.432604-5 2.560141+4 2.435078-5 2.476705+4 2.436795-5 2.412880+4 2.439717-5 2.294730+4 2.441953-5 2.197474+4 2.443780-5 2.114579+4 2.446177-5 2.002196+4 2.449259-5 1.853844+4 2.452166-5 1.712348+4 2.455073-5 1.571597+4 2.458344-5 1.416613+4 2.460887-5 1.300025+4 2.467218-5 1.030974+4 2.469884-5 9.284501+3 2.474974-5 7.524643+3 2.479210-5 6.262159+3 2.483480-5 5.170503+3 2.488288-5 4.144609+3 2.501861-5 2.201186+3 2.506047-5 1.818552+3 2.508634-5 1.619692+3 2.512108-5 1.390891+3 2.515745-5 1.191139+3 2.518383-5 1.067630+3 2.521468-5 9.424384+2 2.524552-5 8.348290+2 2.527636-5 7.420083+2 2.530720-5 6.616294+2 2.534726-5 5.726306+2 2.540059-5 4.757759+2 2.546141-5 3.884538+2 2.552309-5 3.188037+2 2.555393-5 2.896271+2 2.561562-5 2.404121+2 2.566085-5 2.108728+2 2.567730-5 2.013287+2 2.573898-5 1.706468+2 2.577064-5 1.577814+2 2.580220-5 1.467491+2 2.583376-5 1.374196+2 2.589688-5 1.235474+2 2.591266-5 1.210172+2 2.596000-5 1.154907+2 2.597143-5 1.145908+2 2.599145-5 1.133911+2 2.600646-5 1.127865+2 2.602898-5 1.123154+2 2.605149-5 1.123146+2 2.608513-5 1.130506+2 2.613130-5 1.151167+2 2.622037-5 1.203987+2 2.626870-5 1.227438+2 2.630268-5 1.237646+2 2.633872-5 1.240986+2 2.636939-5 1.236955+2 2.639390-5 1.228942+2 2.641842-5 1.216651+2 2.643854-5 1.203442+2 2.645615-5 1.189673+2 2.648748-5 1.160431+2 2.651303-5 1.132560+2 2.652870-5 1.113920+2 2.656839-5 1.062439+2 2.659208-5 1.029518+2 2.665287-5 9.413861+1 2.678518-5 7.603412+1 2.682656-5 7.131591+1 2.687289-5 6.675272+1 2.690579-5 6.399592+1 2.694732-5 6.109375+1 2.698397-5 5.905910+1 2.700123-5 5.826690+1 2.703179-5 5.711802+1 2.706155-5 5.630077+1 2.709369-5 5.574019+1 2.713113-5 5.549168+1 2.716240-5 5.560520+1 2.720081-5 5.613233+1 2.722454-5 5.666927+1 2.725501-5 5.759871+1 2.728020-5 5.858098+1 2.731687-5 6.039380+1 2.734639-5 6.224021+1 2.737868-5 6.475827+1 2.739409-5 6.618732+1 2.743601-5 7.105588+1 2.744895-5 7.292281+1 2.747351-5 7.707154+1 2.748869-5 8.010888+1 2.752120-5 8.813851+1 2.755150-5 9.800636+1 2.758876-5 1.143604+2 2.760146-5 1.212593+2 2.762222-5 1.342742+2 2.763880-5 1.464310+2 2.765699-5 1.618219+2 2.768230-5 1.873322+2 2.771003-5 2.216895+2 2.773735-5 2.632678+2 2.778941-5 3.684443+2 2.785472-5 5.616844+2 2.789295-5 7.142359+2 2.792904-5 8.896343+2 2.795972-5 1.065298+3 2.797412-5 1.156784+3 2.799934-5 1.331348+3 2.803716-5 1.629057+3 2.806553-5 1.881419+3 2.807498-5 1.971141+3 2.814635-5 2.737189+3 2.817437-5 3.078701+3 2.821254-5 3.576182+3 2.823898-5 3.939828+3 2.828520-5 4.602768+3 2.830702-5 4.923820+3 2.833037-5 5.269683+3 2.835659-5 5.657455+3 2.837849-5 5.977850+3 2.840665-5 6.380692+3 2.842688-5 6.660898+3 2.845343-5 7.013079+3 2.848517-5 7.404869+3 2.852303-5 7.820825+3 2.855559-5 8.125721+3 2.857941-5 8.313852+3 2.861227-5 8.521165+3 2.864343-5 8.658615+3 2.865604-5 8.697343+3 2.868914-5 8.752120+3 2.871481-5 8.747908+3 2.876828-5 8.611908+3 2.878814-5 8.519784+3 2.881680-5 8.350084+3 2.883476-5 8.223112+3 2.886761-5 7.953739+3 2.890274-5 7.619136+3 2.893208-5 7.309258+3 2.896038-5 6.989682+3 2.900503-5 6.455878+3 2.904025-5 6.019925+3 2.907942-5 5.530800+3 2.910645-5 5.195910+3 2.917522-5 4.375497+3 2.921057-5 3.980546+3 2.927807-5 3.293079+3 2.934891-5 2.676704+3 2.945644-5 1.949046+3 2.949060-5 1.766230+3 2.952602-5 1.598494+3 2.956144-5 1.451032+3 2.960866-5 1.282471+3 2.963839-5 1.190865+3 2.970000-5 1.031130+3 2.974463-5 9.366712+2 2.978899-5 8.571056+2 2.986158-5 7.512964+2 2.993019-5 6.724403+2 3.001621-5 5.944140+2 3.006567-5 5.574390+2 3.020602-5 4.751017+2 3.026351-5 4.489553+2 3.029661-5 4.355797+2 3.035471-5 4.148272+2 3.042906-5 3.930256+2 3.051380-5 3.742424+2 3.059416-5 3.619540+2 3.063779-5 3.573367+2 3.070323-5 3.527959+2 3.078054-5 3.504688+2 3.083775-5 3.502832+2 3.104153-5 3.528075+2 3.109647-5 3.527250+2 3.115314-5 3.518302+2 3.120296-5 3.502981+2 3.127155-5 3.470737+2 3.132176-5 3.439895+2 3.141504-5 3.370723+2 3.165087-5 3.176667+2 3.177439-5 3.087774+2 3.193557-5 2.993149+2 3.214659-5 2.896042+2 3.255595-5 2.732167+2 3.301571-5 2.546831+2 3.331046-5 2.443083+2 3.367640-5 2.332719+2 3.417607-5 2.204724+2 3.467369-5 2.096087+2 3.540581-5 1.961350+2 3.636509-5 1.816806+2 3.698023-5 1.739024+2 3.815328-5 1.616198+2 3.919780-5 1.525012+2 4.027170-5 1.445660+2 4.150491-5 1.367898+2 4.291432-5 1.293353+2 4.415704-5 1.238051+2 4.575440-5 1.176677+2 4.827808-5 1.095828+2 4.869961-5 1.087171+2 4.939986-5 1.078808+2 4.987171-5 1.070328+2 5.106448-5 1.043437+2 5.323452-5 1.008871+2 5.561707-5 9.815173+1 5.863221-5 9.597307+1 6.229198-5 9.506396+1 6.621548-5 9.566910+1 7.150000-5 9.835037+1 7.679849-5 1.022696+2 9.198345-5 1.152353+2 9.660509-5 1.185154+2 1.000000-4 1.204976+2 1.036746-4 1.219919+2 1.068756-4 1.226202+2 1.081245-4 1.226730+2 1.106181-4 1.223066+2 1.129225-4 1.214728+2 1.150000-4 1.202324+2 1.169590-4 1.185482+2 1.184878-4 1.168113+2 1.198756-4 1.149315+2 1.210285-4 1.131640+2 1.222217-4 1.111399+2 1.242948-4 1.072724+2 1.251242-4 1.060769+2 1.260000-4 1.060847+2 1.261402-4 1.062716+2 1.267160-4 1.076507+2 1.275528-4 1.112854+2 1.283384-4 1.160800+2 1.290818-4 1.216171+2 1.297795-4 1.277223+2 1.304342-4 1.343854+2 1.310720-4 1.419203+2 1.316254-4 1.494617+2 1.321665-4 1.579171+2 1.326744-4 1.670092+2 1.331511-4 1.767553+2 1.336055-4 1.873494+2 1.340657-4 1.996298+2 1.344309-4 2.106921+2 1.348053-4 2.234738+2 1.351563-4 2.370126+2 1.354854-4 2.513168+2 1.357939-4 2.663915+2 1.360832-4 2.822404+2 1.364583-4 3.057572+2 1.368469-4 3.344711+2 1.372798-4 3.732654+2 1.376602-4 4.153456+2 1.378399-4 4.386146+2 1.381564-4 4.864979+2 1.384396-4 5.389106+2 1.386873-4 5.945811+2 1.389481-4 6.660586+2 1.390938-4 7.131982+2 1.392598-4 7.744153+2 1.395321-4 8.958519+2 1.397545-4 1.018702+3 1.399213-4 1.127688+3 1.400464-4 1.220283+3 1.402341-4 1.378802+3 1.404217-4 1.563682+3 1.407673-4 1.983684+3 1.413096-4 2.885071+3 1.415899-4 3.477717+3 1.417869-4 3.945579+3 1.419839-4 4.452770+3 1.423317-4 5.428294+3 1.423751-4 5.555849+3 1.426794-4 6.468296+3 1.427990-4 6.830155+3 1.430272-4 7.511635+3 1.431302-4 7.810494+3 1.433055-4 8.298310+3 1.434397-4 8.648621+3 1.435903-4 9.011580+3 1.437162-4 9.285564+3 1.438780-4 9.592780+3 1.440464-4 9.851963+3 1.442552-4 1.007804+4 1.444291-4 1.017965+4 1.444896-4 1.019583+4 1.446624-4 1.018660+4 1.447986-4 1.012147+4 1.451299-4 9.757207+3 1.452384-4 9.578607+3 1.454768-4 9.095551+3 1.456322-4 8.723015+3 1.457945-4 8.294695+3 1.459518-4 7.850316+3 1.461343-4 7.310866+3 1.462964-4 6.821910+3 1.465048-4 6.196875+3 1.467764-4 5.421209+3 1.471698-4 4.454626+3 1.474223-4 3.973892+3 1.475939-4 3.721424+3 1.477834-4 3.517062+3 1.481514-4 3.347987+3 1.482539-4 3.353117+3 1.483476-4 3.376658+3 1.484584-4 3.426684+3 1.485713-4 3.500902+3 1.487072-4 3.618812+3 1.488547-4 3.778224+3 1.490427-4 4.020781+3 1.495643-4 4.831960+3 1.497691-4 5.164121+3 1.499731-4 5.479174+3 1.500663-4 5.614216+3 1.502450-4 5.851549+3 1.503892-4 6.018468+3 1.507498-4 6.318855+3 1.508764-4 6.380147+3 1.511179-4 6.429882+3 1.512926-4 6.410898+3 1.514037-4 6.375528+3 1.514870-4 6.337560+3 1.516120-4 6.263039+3 1.517370-4 6.168656+3 1.519243-4 5.993461+3 1.521049-4 5.791187+3 1.523284-4 5.504304+3 1.524918-4 5.275260+3 1.527135-4 4.946983+3 1.528465-4 4.744315+3 1.531997-4 4.203112+3 1.535899-4 3.630429+3 1.544846-4 2.555172+3 1.546610-4 2.390084+3 1.548661-4 2.217385+3 1.550856-4 2.054043+3 1.552966-4 1.916382+3 1.554697-4 1.816474+3 1.558176-4 1.646521+3 1.562366-4 1.487162+3 1.565644-4 1.389251+3 1.568675-4 1.314760+3 1.571612-4 1.254126+3 1.574686-4 1.200256+3 1.578901-4 1.138613+3 1.584138-4 1.076399+3 1.592177-4 1.001608+3 1.600870-4 9.390870+2 1.610500-4 8.848512+2 1.621307-4 8.378953+2 1.634179-4 7.963377+2 1.646299-4 7.676785+2 1.660517-4 7.432799+2 1.678000-4 7.226150+2 1.696000-4 7.082112+2 1.715000-4 6.975257+2 1.742986-4 6.861226+2 1.846148-4 6.550567+2 2.014036-4 6.144706+2 2.097864-4 5.992922+2 2.162719-4 5.893753+2 2.280468-4 5.765398+2 2.519134-4 5.605189+2 2.650010-4 5.510412+2 2.712264-4 5.502725+2 2.737353-4 5.533441+2 2.773460-4 5.590745+2 2.822818-4 5.597802+2 2.844055-4 5.638449+2 2.879137-4 5.746678+2 2.937503-4 5.890917+2 3.087535-4 6.115515+2 3.166110-4 6.227517+2 3.266348-4 6.417506+2 3.442829-4 6.671059+2 3.676146-4 6.925157+2 3.815121-4 7.034008+2 3.871280-4 7.096709+2 3.898572-4 7.140810+2 3.997042-4 7.337756+2 4.180986-4 7.602327+2 4.499093-4 7.931835+2 4.930000-4 8.279283+2 5.416890-4 8.575515+2 5.905409-4 8.780744+2 6.488574-4 8.917805+2 7.082708-4 8.943505+2 7.717915-4 8.847878+2 8.337976-4 8.616344+2 8.883763-4 8.332958+2 9.366180-4 8.006709+2 9.793976-4 7.647450+2 1.013587-3 7.301652+2 1.050587-3 6.850305+2 1.080812-3 6.404477+2 1.105409-3 5.976582+2 1.126873-3 5.546673+2 1.144854-3 5.134188+2 1.158776-3 4.771703+2 1.171178-3 4.407753+2 1.181795-3 4.059577+2 1.188989-3 3.816347+2 1.197971-3 3.635813+2 1.204722-3 3.894543+2 1.205332-3 3.951293+2 1.210562-3 4.775711+2 1.211266-3 4.939776+2 1.214350-3 5.825688+2 1.220604-3 8.401970+2 1.223727-3 9.942328+2 1.226626-3 1.137619+3 1.228781-3 1.236974+3 1.232147-3 1.367627+3 1.232512-3 1.379503+3 1.235502-3 1.457507+3 1.237333-3 1.488028+3 1.238498-3 1.500960+3 1.239630-3 1.509142+3 1.241654-3 1.514582+3 1.243366-3 1.512194+3 1.248885-3 1.490108+3 1.250427-3 1.486913+3 1.252011-3 1.487216+3 1.253257-3 1.490382+3 1.256236-3 1.508438+3 1.263958-3 1.588446+3 1.265528-3 1.600237+3 1.269078-3 1.607766+3 1.272148-3 1.587316+3 1.275479-3 1.535643+3 1.277638-3 1.488015+3 1.280809-3 1.404153+3 1.284331-3 1.302678+3 1.286997-3 1.227995+3 1.290044-3 1.151571+3 1.293092-3 1.089113+3 1.297163-3 1.030654+3 1.299188-3 1.011960+3 1.302856-3 9.933255+2 1.306735-3 9.904735+2 1.310813-3 9.999900+2 1.316867-3 1.026489+3 1.325868-3 1.073703+3 1.338447-3 1.136986+3 1.351597-3 1.196582+3 1.363854-3 1.246410+3 1.382372-3 1.312018+3 1.403742-3 1.375681+3 1.422640-3 1.421343+3 1.446491-3 1.465742+3 1.462966-3 1.487951+3 1.483967-3 1.507231+3 1.501696-3 1.516569+3 1.524314-3 1.519808+3 1.554642-3 1.509618+3 1.564111-3 1.509674+3 1.573739-3 1.517908+3 1.579439-3 1.527813+3 1.591611-3 1.560030+3 1.608167-3 1.613752+3 1.623854-3 1.660307+3 1.640096-3 1.699132+3 1.653180-3 1.722689+3 1.670520-3 1.744551+3 1.687709-3 1.758348+3 1.721360-3 1.776357+3 1.740139-3 1.794734+3 1.783968-3 1.862962+3 1.798149-3 1.881330+3 1.815296-3 1.898298+3 1.838279-3 1.913955+3 1.863840-3 1.924350+3 1.916636-3 1.931102+3 1.930112-3 1.938907+3 1.949834-3 1.961003+3 1.981047-3 1.999509+3 2.002212-3 2.016986+3 2.025861-3 2.030473+3 2.093645-3 2.054348+3 2.191245-3 2.069687+3 2.344229-3 2.073246+3 2.463374-3 2.064479+3 2.663598-3 2.035520+3 2.799360-3 2.009449+3 3.063727-3 1.949329+3 3.174817-3 1.922500+3 3.379388-3 1.867505+3 3.762896-3 1.762434+3 4.066618-3 1.680756+3 4.448117-3 1.579025+3 4.854317-3 1.473152+3 5.075382-3 1.417464+3 5.308844-3 1.360476+3 5.558042-3 1.300516+3 5.770207-3 1.250377+3 6.014496-3 1.192507+3 6.207127-3 1.146685+3 6.387485-3 1.103267+3 6.546015-3 1.064082+3 6.675099-3 1.030877+3 6.791917-3 9.995251+2 6.897814-3 9.695266+2 6.984535-3 9.432523+2 7.057335-3 9.192981+2 7.126735-3 8.941032+2 7.182722-3 8.714757+2 7.233836-3 8.480309+2 7.275847-3 8.256972+2 7.323950-3 7.955799+2 7.384329-3 7.523800+2 7.423695-3 7.262266+2 7.448538-3 7.137055+2 7.473447-3 7.060378+2 7.489296-3 7.041652+2 7.511575-3 7.056640+2 7.530810-3 7.106320+2 7.553096-3 7.199710+2 7.588120-3 7.398154+2 7.647862-3 7.765652+2 7.666339-3 7.865301+2 7.694581-3 7.996191+2 7.729529-3 8.121490+2 7.765027-3 8.212095+2 7.810774-3 8.286378+2 7.860626-3 8.327001+2 7.914755-3 8.334250+2 7.965591-3 8.309451+2 8.012752-3 8.258104+2 8.056723-3 8.184822+2 8.165173-3 7.951453+2 8.206007-3 7.897413+2 8.247733-3 7.897095+2 8.286296-3 7.951711+2 8.351950-3 8.126984+2 8.417114-3 8.307683+2 8.474209-3 8.410920+2 8.538682-3 8.462998+2 8.609938-3 8.498545+2 8.668625-3 8.564794+2 8.718227-3 8.660341+2 8.826223-3 8.916629+2 8.910180-3 9.070072+2 9.006973-3 9.176709+2 9.153423-3 9.257519+2 9.353702-3 9.293300+2 9.577453-3 9.278304+2 9.900870-3 9.191144+2 1.030127-2 9.019982+2 1.081466-2 8.746346+2 1.135043-2 8.429430+2 1.198060-2 8.044777+2 1.280480-2 7.547990+2 1.396796-2 6.891670+2 1.546650-2 6.147232+2 1.730278-2 5.380120+2 1.929954-2 4.698229+2 2.159608-2 4.062343+2 2.401260-2 3.516425+2 2.609792-2 3.119896+2 2.828273-2 2.763282+2 3.181106-2 2.297035+2 3.586967-2 1.891692+2 3.875780-2 1.659823+2 4.164575-2 1.459712+2 4.391148-2 1.320543+2 4.583615-2 1.211777+2 4.732904-2 1.130921+2 4.849287-2 1.067557+2 4.933707-2 1.019126+2 4.970253-2 9.966154+1 5.002785-2 9.751196+1 5.030498-2 9.550906+1 5.053244-2 9.369310+1 5.085678-2 9.076252+1 5.154463-2 8.400857+1 5.173457-2 8.263850+1 5.189084-2 8.190370+1 5.209245-2 8.157008+1 5.228996-2 8.190453+1 5.253060-2 8.300673+1 5.313081-2 8.677916+1 5.342264-2 8.819750+1 5.372284-2 8.918808+1 5.396235-2 8.969845+1 5.449172-2 9.024745+1 5.515951-2 9.029062+1 5.595486-2 8.984754+1 5.742519-2 8.833036+1 5.889994-2 8.633630+1 6.111770-2 8.288823+1 6.425111-2 7.780313+1 6.790228-2 7.207144+1 7.261624-2 6.526460+1 7.786487-2 5.851573+1 8.551932-2 5.016820+1 9.947635-2 3.878272+1 1.117616-1 3.161348+1 1.286966-1 2.450687+1 1.864160-1 1.242103+1 2.227512-1 8.913398+0 2.685248-1 6.251466+0 3.613609-1 3.527208+0 5.354883-1 1.638540+0 8.413951-1 6.735270-1 1.477239+0 2.206389-1 3.543651+0 3.852284-2 1.070165+1 4.227492-3 3.231848+1 4.635788-4 9.760024+1 5.083092-5 2.947480+2 5.573506-6 8.901248+2 6.111229-7 3.162278+3 4.842062-8 1.000000+4 4.842062-9 3.162278+4 4.84206-10 1.000000+5 4.84206-11 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.206900-6 1.258900-6 3.497600-6 1.584900-6 5.543400-6 1.995300-6 8.785600-6 2.511900-6 1.392400-5 3.162300-6 2.206800-5 3.981100-6 3.497600-5 5.011900-6 5.543300-5 6.309600-6 8.785400-5 7.943300-6 1.392400-4 1.000000-5 2.206800-4 1.258900-5 3.497400-4 1.584900-5 5.540400-4 1.995300-5 8.775500-4 2.511900-5 1.390100-3 3.162300-5 2.202300-3 3.981100-5 3.489500-3 5.011900-5 5.529200-3 6.309600-5 8.761500-3 7.943300-5 1.386200-2 1.000000-4 2.192200-2 1.258900-4 3.466600-2 1.584900-4 5.467900-2 1.995300-4 8.608700-2 2.511900-4 1.349600-1 3.162300-4 2.102700-1 3.981100-4 3.242600-1 5.011900-4 4.916100-1 6.309600-4 7.284400-1 7.943300-4 1.047800+0 1.000000-3 1.456800+0 1.258900-3 1.957900+0 1.584900-3 2.566300+0 1.995300-3 3.318900+0 2.511900-3 4.255900+0 3.162300-3 5.399100+0 3.981100-3 6.762900+0 5.011900-3 8.357200+0 6.309600-3 1.013700+1 7.943300-3 1.206500+1 1.000000-2 1.412800+1 1.258900-2 1.632200+1 1.584900-2 1.864200+1 1.995300-2 2.100500+1 2.511900-2 2.316100+1 3.162300-2 2.500500+1 3.981100-2 2.648100+1 5.011900-2 2.754200+1 6.309600-2 2.792900+1 7.943300-2 2.834800+1 1.000000-1 2.803900+1 1.258900-1 2.730300+1 1.584900-1 2.626400+1 1.995300-1 2.494200+1 2.511900-1 2.343700+1 3.162300-1 2.181300+1 3.981100-1 2.013900+1 5.011900-1 1.845200+1 6.309600-1 1.679100+1 7.943300-1 1.518000+1 1.000000+0 1.362800+1 1.258900+0 1.216700+1 1.584900+0 1.078600+1 1.995300+0 9.499700+0 2.511900+0 8.313200+0 3.162300+0 7.229400+0 3.981100+0 6.249700+0 5.011900+0 5.372400+0 6.309600+0 4.593900+0 7.943300+0 3.909600+0 1.000000+1 3.312400+0 1.258900+1 2.795100+0 1.584900+1 2.349900+0 1.995300+1 1.969100+0 2.511900+1 1.645100+0 3.162300+1 1.370600+0 3.981100+1 1.139200+0 5.011900+1 9.447400-1 6.309600+1 7.819000-1 7.943300+1 6.459600-1 1.000000+2 5.327600-1 1.258900+2 4.387400-1 1.584900+2 3.608100-1 1.995300+2 2.963500-1 2.511900+2 2.431200-1 3.162300+2 1.992300-1 3.981100+2 1.631000-1 5.011900+2 1.334000-1 6.309600+2 1.090100-1 7.943300+2 8.900700-2 1.000000+3 7.261900-2 1.258900+3 5.920500-2 1.584900+3 4.823700-2 1.995300+3 3.927500-2 2.511900+3 3.195800-2 3.162300+3 2.599000-2 3.981100+3 2.112500-2 5.011900+3 1.716100-2 6.309600+3 1.393400-2 7.943300+3 1.130900-2 1.000000+4 9.173600-3 1.258900+4 7.438400-3 1.584900+4 6.029000-3 1.995300+4 4.884600-3 2.511900+4 3.955900-3 3.162300+4 3.202600-3 3.981100+4 2.591800-3 5.011900+4 2.096800-3 6.309600+4 1.695700-3 7.943300+4 1.370900-3 1.000000+5 1.108000-3 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976775-4 5.011872-4 5.005104-4 6.309573-4 6.298943-4 7.943282-4 7.926640-4 1.000000-3 9.973999-4 1.258925-3 1.254882-3 1.584893-3 1.578589-3 1.995262-3 1.985392-3 2.511886-3 2.496387-3 3.162278-3 3.137934-3 3.981072-3 3.942822-3 5.011872-3 4.952081-3 6.309573-3 6.216144-3 7.943282-3 7.798147-3 1.000000-2 9.774463-3 1.258925-2 1.223831-2 1.584893-2 1.530433-2 1.995262-2 1.911249-2 2.511886-2 2.382915-2 3.162278-2 2.965646-2 3.981072-2 3.682923-2 5.011872-2 4.562378-2 6.309573-2 5.635527-2 7.943282-2 6.941574-2 1.000000-1 8.526060-2 1.258925-1 1.043860-1 1.584893-1 1.272871-1 1.995262-1 1.547738-1 2.511886-1 1.875646-1 3.162278-1 2.265719-1 3.981072-1 2.728112-1 5.011872-1 3.274786-1 6.309573-1 3.919686-1 7.943282-1 4.679278-1 1.000000+0 5.576016-1 1.258925+0 6.627135-1 1.584893+0 7.871055-1 1.995262+0 9.342094-1 2.511886+0 1.108797+0 3.162278+0 1.316497+0 3.981072+0 1.564480+0 5.011872+0 1.861271+0 6.309573+0 2.217698+0 7.943282+0 2.646091+0 1.000000+1 3.162699+0 1.258925+1 3.786715+0 1.584893+1 4.541884+0 1.995262+1 5.457100+0 2.511886+1 6.567826+0 3.162278+1 7.917840+0 3.981072+1 9.560349+0 5.011872+1 1.156116+1 6.309573+1 1.400082+1 7.943282+1 1.697844+1 1.000000+2 2.061581+1 1.258925+2 2.506286+1 1.584893+2 3.050481+1 1.995262+2 3.716805+1 2.511886+2 4.533320+1 3.162278+2 5.534581+1 3.981072+2 6.763030+1 5.011872+2 8.271365+1 6.309573+2 1.012430+2 7.943282+2 1.240190+2 1.000000+3 1.520287+2 1.258925+3 1.864937+2 1.584893+3 2.289208+2 1.995262+3 2.811760+2 2.511886+3 3.455604+2 3.162278+3 4.249395+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88201-10 1.995262-5 1.090637-9 2.511886-5 1.728515-9 3.162278-5 2.739537-9 3.981072-5 4.341913-9 5.011872-5 6.881436-9 6.309573-5 1.090602-8 7.943282-5 1.727691-8 1.000000-4 2.737422-8 1.258925-4 4.337614-8 1.584893-4 6.869129-8 1.995262-4 1.087694-7 2.511886-4 1.721325-7 3.162278-4 2.721671-7 3.981072-4 4.296833-7 5.011872-4 6.768248-7 6.309573-4 1.063072-6 7.943282-4 1.664250-6 1.000000-3 2.600056-6 1.258925-3 4.043460-6 1.584893-3 6.304692-6 1.995262-3 9.870129-6 2.511886-3 1.549968-5 3.162278-3 2.434411-5 3.981072-3 3.824969-5 5.011872-3 5.979157-5 6.309573-3 9.342984-5 7.943282-3 1.451353-4 1.000000-2 2.255367-4 1.258925-2 3.509424-4 1.584893-2 5.446034-4 1.995262-2 8.401343-4 2.511886-2 1.289711-3 3.162278-2 1.966321-3 3.981072-2 2.981486-3 5.011872-2 4.494940-3 6.309573-2 6.740468-3 7.943282-2 1.001708-2 1.000000-1 1.473940-2 1.258925-1 2.150658-2 1.584893-1 3.120218-2 1.995262-1 4.475244-2 2.511886-1 6.362400-2 3.162278-1 8.965584-2 3.981072-1 1.252960-1 5.011872-1 1.737087-1 6.309573-1 2.389888-1 7.943282-1 3.264004-1 1.000000+0 4.423984-1 1.258925+0 5.962119-1 1.584893+0 7.977877-1 1.995262+0 1.061053+0 2.511886+0 1.403089+0 3.162278+0 1.845780+0 3.981072+0 2.416592+0 5.011872+0 3.150601+0 6.309573+0 4.091876+0 7.943282+0 5.297192+0 1.000000+1 6.837301+0 1.258925+1 8.802539+0 1.584893+1 1.130705+1 1.995262+1 1.449552+1 2.511886+1 1.855104+1 3.162278+1 2.370494+1 3.981072+1 3.025037+1 5.011872+1 3.855756+1 6.309573+1 4.909492+1 7.943282+1 6.245438+1 1.000000+2 7.938419+1 1.258925+2 1.008297+2 1.584893+2 1.279845+2 1.995262+2 1.623582+2 2.511886+2 2.058554+2 3.162278+2 2.608820+2 3.981072+2 3.304769+2 5.011872+2 4.184736+2 6.309573+2 5.297143+2 7.943282+2 6.703093+2 1.000000+3 8.479713+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714086+3 2.511886+3 2.166326+3 3.162278+3 2.737338+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 3.878440+6 5.688529-6 2.825191+6 6.237348-6 1.876550+6 6.760830-6 1.302121+6 7.328245-6 8.967814+5 7.943282-6 6.130313+5 8.609938-6 4.156559+5 9.332543-6 2.797029+5 9.530000-6 2.518874+5 9.530000-6 8.792286+5 9.772372-6 8.253311+5 1.020000-5 7.484009+5 1.039000-5 7.201280+5 1.039000-5 1.153416+6 1.050000-5 1.131818+6 1.083927-5 1.072564+6 1.085000-5 1.070870+6 1.122018-5 1.019056+6 1.130000-5 1.009314+6 1.148154-5 9.890041+5 1.165000-5 9.712801+5 1.170000-5 9.666035+5 1.202264-5 9.397842+5 1.205000-5 9.376468+5 1.216186-5 9.299668+5 1.250000-5 9.099868+5 1.260000-5 9.052332+5 1.290000-5 8.934358+5 1.310000-5 8.875867+5 1.333521-5 8.822666+5 1.333900-5 8.821877+5 1.350000-5 8.799785+5 1.375300-5 8.779637+5 1.380384-5 8.776378+5 1.400000-5 8.777108+5 1.412538-5 8.784509+5 1.428894-5 8.796066+5 1.450000-5 8.824689+5 1.480000-5 8.882463+5 1.500000-5 8.933917+5 1.515000-5 8.978973+5 1.531087-5 9.028490+5 1.550000-5 9.097084+5 1.584893-5 9.240969+5 1.590000-5 9.262348+5 1.611900-5 9.366183+5 1.621810-5 9.417542+5 1.659587-5 9.615702+5 1.678804-5 9.728098+5 1.698244-5 9.850217+5 1.737801-5 1.010137+6 1.750000-5 1.018594+6 1.778279-5 1.039403+6 1.819701-5 1.070228+6 1.830000-5 1.077962+6 1.870000-5 1.111676+6 1.920000-5 1.154451+6 1.927525-5 1.161206+6 2.000000-5 1.230363+6 2.018366-5 1.248169+6 2.041738-5 1.271729+6 2.070000-5 1.301524+6 2.137962-5 1.374467+6 2.166500-5 1.406412+6 2.187762-5 1.430449+6 2.264644-5 1.521608+6 2.344229-5 1.620689+6 2.483133-5 1.800518+6 2.630268-5 2.001947+6 2.759000-5 2.186178+6 2.759000-5 2.011278+7 2.818383-5 1.834977+7 2.820000-5 1.830500+7 2.884032-5 1.673525+7 2.951209-5 1.538373+7 2.970000-5 1.503782+7 3.019952-5 1.422294+7 3.054921-5 1.369880+7 3.162278-5 1.235000+7 3.224000-5 1.171542+7 3.224000-5 1.980802+7 3.235937-5 1.955478+7 3.273407-5 1.879418+7 3.311311-5 1.807259+7 3.388442-5 1.680063+7 3.400000-5 1.662356+7 3.450000-5 1.591685+7 3.467369-5 1.568465+7 3.507519-5 1.517025+7 3.548134-5 1.469477+7 3.589219-5 1.424974+7 3.650000-5 1.363953+7 3.672823-5 1.343014+7 3.801894-5 1.236732+7 3.845918-5 1.204810+7 3.900000-5 1.168866+7 4.027170-5 1.094187+7 4.150000-5 1.033783+7 4.168694-5 1.025403+7 4.300000-5 9.729842+6 4.415704-5 9.340334+6 4.466836-5 9.185625+6 4.570882-5 8.904669+6 4.731513-5 8.542057+6 4.786301-5 8.435114+6 4.900000-5 8.239644+6 5.069907-5 7.998975+6 5.128614-5 7.926818+6 5.217000-5 7.832743+6 5.217000-5 7.883819+6 5.280000-5 7.824730+6 5.300000-5 7.807357+6 5.400000-5 7.725090+6 5.495409-5 7.659639+6 5.500000-5 7.656892+6 5.623413-5 7.585206+6 5.688529-5 7.554078+6 5.800000-5 7.505588+6 5.821032-5 7.497727+6 5.888437-5 7.476317+6 5.900000-5 7.473104+6 5.956621-5 7.455340+6 6.025596-5 7.436704+6 6.095369-5 7.421128+6 6.165950-5 7.405373+6 6.309573-5 7.384175+6 6.456542-5 7.364629+6 6.500000-5 7.360637+6 6.683439-5 7.346538+6 6.839116-5 7.333231+6 6.918310-5 7.330073+6 7.000000-5 7.324841+6 7.079458-5 7.321521+6 7.161434-5 7.314792+6 7.300000-5 7.307856+6 7.328245-5 7.306818+6 7.500000-5 7.295776+6 7.585776-5 7.288502+6 7.762471-5 7.276224+6 7.852356-5 7.267556+6 7.900000-5 7.263674+6 7.943282-5 7.260268+6 8.035261-5 7.248512+6 8.150000-5 7.235396+6 8.222426-5 7.228187+6 8.300000-5 7.220795+6 8.511380-5 7.195650+6 8.810489-5 7.155147+6 8.900000-5 7.141099+6 9.015711-5 7.124211+6 9.120108-5 7.109842+6 9.150000-5 7.104544+6 9.300000-5 7.078412+6 9.500000-5 7.046025+6 9.549926-5 7.037093+6 9.660509-5 7.017519+6 1.000000-4 6.961557+6 1.011579-4 6.939486+6 1.023293-4 6.917991+6 1.047129-4 6.869619+6 1.060000-4 6.844377+6 1.075600-4 6.814884+6 1.096478-4 6.770277+6 1.109175-4 6.744021+6 1.122018-4 6.715037+6 1.150000-4 6.654287+6 1.161449-4 6.630247+6 1.174898-4 6.597786+6 1.194100-4 6.548067+6 1.205000-4 6.520580+6 1.244515-4 6.424518+6 1.260000-4 6.384038+6 1.273503-4 6.346677+6 1.318257-4 6.227804+6 1.333521-4 6.188839+6 1.350000-4 6.139467+6 1.380384-4 6.050850+6 1.445440-4 5.872644+6 1.450000-4 5.859840+6 1.513561-4 5.674692+6 1.542900-4 5.594070+6 1.542900-4 6.069858+6 1.548817-4 6.076112+6 1.551000-4 6.078059+6 1.575000-4 6.116355+6 1.584893-4 6.135744+6 1.588000-4 6.142598+6 1.599000-4 6.164329+6 1.603245-4 6.171554+6 1.605900-4 6.176327+6 1.605900-4 6.505368+6 1.607000-4 6.509303+6 1.610500-4 6.520423+6 1.614000-4 6.532964+6 1.618000-4 6.545714+6 1.621810-4 6.559269+6 1.628000-4 6.579010+6 1.630000-4 6.584539+6 1.636000-4 6.602437+6 1.644000-4 6.622754+6 1.652000-4 6.639703+6 1.654000-4 6.643005+6 1.659587-4 6.651348+6 1.665000-4 6.654728+6 1.670000-4 6.656984+6 1.673000-4 6.656587+6 1.678804-4 6.654337+6 1.680000-4 6.653941+6 1.683000-4 6.651355+6 1.690000-4 6.643014+6 1.692000-4 6.639778+6 1.700000-4 6.624103+6 1.707000-4 6.605141+6 1.714000-4 6.584044+6 1.715000-4 6.580666+6 1.723000-4 6.550952+6 1.725000-4 6.542808+6 1.733000-4 6.508052+6 1.740000-4 6.475636+6 1.750000-4 6.424029+6 1.757924-4 6.381175+6 1.761000-4 6.363992+6 1.772000-4 6.300188+6 1.778279-4 6.262779+6 1.785000-4 6.222175+6 1.798871-4 6.137119+6 1.800000-4 6.129993+6 1.819701-4 6.001537+6 1.820000-4 5.999637+6 1.835000-4 5.903510+6 1.842000-4 5.859101+6 1.865000-4 5.716076+6 1.880000-4 5.626054+6 1.893200-4 5.549224+6 1.905461-4 5.479320+6 1.930000-4 5.340601+6 1.965000-4 5.155367+6 1.995262-4 5.009398+6 2.000000-4 4.987479+6 2.018366-4 4.905896+6 2.030000-4 4.855929+6 2.040000-4 4.814697+6 2.041738-4 4.807433+6 2.050000-4 4.773492+6 2.060000-4 4.731795+6 2.080000-4 4.652344+6 2.089296-4 4.616826+6 2.113489-4 4.528815+6 2.137962-4 4.445991+6 2.142000-4 4.432898+6 2.162719-4 4.367830+6 2.170000-4 4.345892+6 2.187762-4 4.294058+6 2.198000-4 4.265367+6 2.213095-4 4.224333+6 2.220000-4 4.204960+6 2.240000-4 4.150362+6 2.264644-4 4.087009+6 2.290868-4 4.023715+6 2.317395-4 3.963685+6 2.344229-4 3.906813+6 2.350000-4 3.894980+6 2.366500-4 3.862221+6 2.371374-4 3.852308+6 2.380000-4 3.834687+6 2.400000-4 3.795168+6 2.415000-4 3.766533+6 2.430000-4 3.738849+6 2.454709-4 3.694955+6 2.465000-4 3.677319+6 2.500000-4 3.619811+6 2.511886-4 3.601088+6 2.540973-4 3.553306+6 2.600160-4 3.462754+6 2.630268-4 3.419863+6 2.660725-4 3.378242+6 2.691535-4 3.338131+6 2.770000-4 3.234410+6 2.786121-4 3.214224+6 2.810400-4 3.184662+6 2.810400-4 3.483151+6 2.851018-4 3.434151+6 2.884032-4 3.395638+6 2.900000-4 3.376276+6 2.951209-4 3.316477+6 3.000000-4 3.262000+6 3.050000-4 3.209091+6 3.060000-4 3.198641+6 3.090295-4 3.166894+6 3.100000-4 3.156551+6 3.150000-4 3.104248+6 3.160000-4 3.093914+6 3.160000-4 3.172998+6 3.200000-4 3.132744+6 3.240000-4 3.093701+6 3.273407-4 3.061614+6 3.311311-4 3.025677+6 3.349654-4 2.988937+6 3.350000-4 2.988613+6 3.430000-4 2.914687+6 3.467369-4 2.881679+6 3.470000-4 2.879405+6 3.507519-4 2.846704+6 3.548134-4 2.811801+6 3.550000-4 2.810182+6 3.600000-4 2.767212+6 3.630781-4 2.741136+6 3.672823-4 2.706731+6 3.715352-4 2.672729+6 3.758374-4 2.638607+6 3.801894-4 2.604704+6 3.850000-4 2.567153+6 3.883900-4 2.540935+6 3.883900-4 2.638759+6 3.935501-4 2.599637+6 4.000000-4 2.552191+6 4.027170-4 2.532388+6 4.073803-4 2.498501+6 4.100000-4 2.479602+6 4.168694-4 2.430951+6 4.265795-4 2.364589+6 4.280000-4 2.355212+6 4.315191-4 2.331986+6 4.365158-4 2.299518+6 4.390000-4 2.283097+6 4.415704-4 2.266371+6 4.472100-4 2.230375+6 4.570882-4 2.169592+6 4.623810-4 2.137899+6 4.677351-4 2.106493+6 4.700000-4 2.093321+6 4.786301-4 2.044042+6 4.850000-4 2.008288+6 4.930000-4 1.965259+6 5.011872-4 1.922622+6 5.069907-4 1.892642+6 5.188000-4 1.833891+6 5.248075-4 1.804708+6 5.308844-4 1.775536+6 5.432503-4 1.719099+6 5.495409-4 1.691150+6 5.559043-4 1.663497+6 5.754399-4 1.581251+6 5.888437-4 1.528675+6 5.900000-4 1.524267+6 5.956621-4 1.502597+6 6.025596-4 1.476645+6 6.095369-4 1.451240+6 6.100000-4 1.449572+6 6.237348-4 1.401090+6 6.382635-4 1.352194+6 6.456542-4 1.328332+6 6.480700-4 1.320602+6 6.606934-4 1.281225+6 6.683439-4 1.258012+6 6.700000-4 1.253091+6 6.760830-4 1.235194+6 6.850000-4 1.209797+6 6.918310-4 1.190750+6 7.000000-4 1.168442+6 7.079458-4 1.147071+6 7.244360-4 1.104623+6 7.300000-4 1.090937+6 7.328245-4 1.084060+6 7.500000-4 1.043357+6 7.585776-4 1.023580+6 7.673615-4 1.003910+6 7.762471-4 9.846762+5 7.852356-4 9.657647+5 7.943282-4 9.470448+5 8.035261-4 9.287376+5 8.128305-4 9.104795+5 8.317638-4 8.749799+5 8.413951-4 8.577600+5 8.511380-4 8.407437+5 8.609938-4 8.240312+5 8.709636-4 8.074108+5 8.810489-4 7.911626+5 9.000000-4 7.620206+5 9.015711-4 7.596709+5 9.120108-4 7.441871+5 9.225714-4 7.290059+5 9.332543-4 7.139582+5 9.549926-4 6.847813+5 9.660509-4 6.706630+5 9.700000-4 6.657231+5 9.885531-4 6.430658+5 1.000000-3 6.295089+5 1.023293-3 6.031210+5 1.035142-3 5.903376+5 1.047129-3 5.778499+5 1.059254-3 5.655308+5 1.071519-3 5.534669+5 1.083927-3 5.415146+5 1.109175-3 5.184136+5 1.110000-3 5.176842+5 1.122018-3 5.071783+5 1.135011-3 4.961994+5 1.161449-3 4.747408+5 1.174898-3 4.642388+5 1.216186-3 4.341357+5 1.230269-3 4.245564+5 1.244515-3 4.150999+5 1.244600-3 4.150442+5 1.244600-3 1.372719+6 1.258925-3 1.348867+6 1.273503-3 1.325186+6 1.279000-3 1.316441+6 1.279000-3 1.755996+6 1.288250-3 1.750273+6 1.293000-3 1.747474+6 1.317000-3 1.743821+6 1.318257-3 1.742907+6 1.333521-3 1.732234+6 1.345000-3 1.724671+6 1.355000-3 1.714065+6 1.364583-3 1.699447+6 1.380384-3 1.672199+6 1.390000-3 1.656200+6 1.396368-3 1.644280+6 1.412538-3 1.609540+6 1.420600-3 1.592688+6 1.445440-3 1.536669+6 1.450000-3 1.524997+6 1.462177-3 1.494399+6 1.479108-3 1.453611+6 1.500000-3 1.405350+6 1.513561-3 1.375238+6 1.566751-3 1.265608+6 1.584893-3 1.231024+6 1.596800-3 1.209011+6 1.596800-3 1.393213+6 1.603245-3 1.380470+6 1.621810-3 1.344698+6 1.650000-3 1.292827+6 1.678804-3 1.242219+6 1.698244-3 1.209941+6 1.737801-3 1.147469+6 1.753400-3 1.124107+6 1.753400-3 1.192156+6 1.757924-3 1.185319+6 1.778279-3 1.155248+6 1.800000-3 1.124083+6 1.827000-3 1.086562+6 1.840772-3 1.068218+6 1.862087-3 1.040727+6 1.900000-3 9.939600+5 1.927525-3 9.616500+5 1.935800-3 9.522398+5 1.935800-3 9.941679+5 1.972423-3 9.532739+5 2.000000-3 9.237018+5 2.018366-3 9.046105+5 2.041738-3 8.812561+5 2.065380-3 8.583021+5 2.089296-3 8.359846+5 2.113489-3 8.141087+5 2.137962-3 7.928126+5 2.162719-3 7.721032+5 2.187762-3 7.517574+5 2.213095-3 7.319729+5 2.220000-3 7.266824+5 2.238721-3 7.126157+5 2.300000-3 6.692723+5 2.320000-3 6.559432+5 2.344229-3 6.402825+5 2.371374-3 6.232706+5 2.400000-3 6.059108+5 2.426610-3 5.903034+5 2.483133-3 5.590457+5 2.511886-3 5.440797+5 2.570396-3 5.152943+5 2.600160-3 5.014096+5 2.630268-3 4.879201+5 2.660725-3 4.748128+5 2.691535-3 4.619205+5 2.722701-3 4.493802+5 2.818383-3 4.134652+5 2.851018-3 4.020673+5 2.917427-3 3.802303+5 2.951209-3 3.697269+5 3.000000-3 3.552471+5 3.019952-3 3.495446+5 3.054921-3 3.398565+5 3.126079-3 3.213158+5 3.162278-3 3.124426+5 3.198895-3 3.037697+5 3.311311-3 2.792147+5 3.349654-3 2.714824+5 3.388442-3 2.639089+5 3.400000-3 2.617092+5 3.467369-3 2.493325+5 3.507519-3 2.423541+5 3.589219-3 2.289164+5 3.630781-3 2.224813+5 3.650000-3 2.195933+5 3.672823-3 2.162305+5 3.715352-3 2.101429+5 3.758374-3 2.042086+5 3.801894-3 1.984506+5 3.890451-3 1.873309+5 3.935501-3 1.820152+5 4.073803-3 1.669427+5 4.120975-3 1.622127+5 4.168694-3 1.576229+5 4.216965-3 1.531365+5 4.315191-3 1.445549+5 4.365158-3 1.404334+5 4.400000-3 1.376450+5 4.466836-3 1.324842+5 4.570882-3 1.249907+5 4.623810-3 1.214124+5 4.677351-3 1.179395+5 4.731513-3 1.145675+5 4.786301-3 1.112772+5 4.800000-3 1.104755+5 4.841724-3 1.080698+5 4.897788-3 1.049428+5 5.069907-3 9.608327+4 5.188000-3 9.061609+4 5.248075-3 8.800374+4 5.308844-3 8.546883+4 5.370318-3 8.298867+4 5.432503-3 8.058101+4 5.500000-3 7.807141+4 5.688529-3 7.159012+4 5.754399-3 6.950213+4 5.821032-3 6.747613+4 5.956621-3 6.360782+4 6.000000-3 6.243690+4 6.025596-3 6.176000+4 6.095369-3 5.995300+4 6.237348-3 5.647963+4 6.456542-3 5.164623+4 6.531306-3 5.013143+4 6.606934-3 4.866309+4 6.614500-3 4.851914+4 6.683439-3 4.723513+4 6.760830-3 4.585028+4 6.839116-3 4.450795+4 6.918310-3 4.319639+4 7.000000-3 4.189125+4 7.161434-3 3.946715+4 7.413102-3 3.606883+4 7.498942-3 3.500528+4 7.500000-3 3.499245+4 7.505300-3 3.492799+4 7.505300-3 9.594963+4 7.673615-3 9.105532+4 7.720000-3 8.976800+4 7.762471-3 8.848528+4 7.852356-3 8.585264+4 7.943282-3 8.329215+4 8.035261-3 8.080709+4 8.128305-3 7.839682+4 8.260900-3 7.505083+4 8.260900-3 1.030200+5 8.340000-3 1.004422+5 8.413951-3 9.821861+4 8.500000-3 9.571538+4 8.511380-3 9.537725+4 8.609938-3 9.251707+4 8.673100-3 9.074596+4 8.673100-3 1.049328+5 8.709636-3 1.037912+5 8.735000-3 1.030084+5 8.785000-3 1.014869+5 8.810489-3 1.007518+5 8.912509-3 9.788416+4 9.015711-3 9.510056+4 9.120108-3 9.235084+4 9.225714-3 8.967973+4 9.332543-3 8.711150+4 9.440609-3 8.461889+4 9.549926-3 8.219743+4 9.660509-3 7.979263+4 1.000000-2 7.300111+4 1.011579-2 7.086678+4 1.023293-2 6.879612+4 1.035142-2 6.678772+4 1.047129-2 6.484333+4 1.059254-2 6.294344+4 1.071519-2 6.108400+4 1.080000-2 5.984341+4 1.083927-2 5.928055+4 1.096478-2 5.752980+4 1.109175-2 5.583181+4 1.122018-2 5.418564+4 1.135011-2 5.258916+4 1.148154-2 5.102764+4 1.150000-2 5.081326+4 1.174898-2 4.802497+4 1.202264-2 4.520166+4 1.216186-2 4.385439+4 1.230269-2 4.254738+4 1.244515-2 4.128034+4 1.288250-2 3.769657+4 1.303167-2 3.657198+4 1.318257-2 3.548184+4 1.333521-2 3.442370+4 1.350000-2 3.332994+4 1.364583-2 3.239975+4 1.380384-2 3.143257+4 1.400000-2 3.028660+4 1.412538-2 2.958011+4 1.428894-2 2.869252+4 1.450000-2 2.760146+4 1.462177-2 2.699027+4 1.479108-2 2.617134+4 1.496236-2 2.537783+4 1.531087-2 2.386427+4 1.548817-2 2.314173+4 1.580000-2 2.194318+4 1.584893-2 2.176291+4 1.603245-2 2.110487+4 1.659587-2 1.923702+4 1.678804-2 1.865215+4 1.698244-2 1.808545+4 1.717908-2 1.753648+4 1.737801-2 1.700460+4 1.757924-2 1.648934+4 1.778279-2 1.598643+4 1.800000-2 1.547297+4 1.819701-2 1.502660+4 1.840772-2 1.456479+4 1.862087-2 1.411743+4 1.883649-2 1.368418+4 1.905461-2 1.326447+4 1.927525-2 1.285749+4 1.949845-2 1.246327+4 2.000000-2 1.163444+4 2.018366-2 1.134872+4 2.041738-2 1.099902+4 2.089296-2 1.033232+4 2.113489-2 1.001445+4 2.162719-2 9.407802+3 2.187762-2 9.117422+3 2.213095-2 8.835932+3 2.238721-2 8.563327+3 2.264644-2 8.299299+3 2.317395-2 7.792327+3 2.371374-2 7.316990+3 2.400000-2 7.081168+3 2.426610-2 6.871310+3 2.454709-2 6.658042+3 2.483133-2 6.450455+3 2.511886-2 6.249504+3 2.570396-2 5.866266+3 2.660725-2 5.336030+3 2.691535-2 5.170393+3 2.722701-2 5.009077+3 2.754229-2 4.852888+3 2.786121-2 4.701689+3 2.818383-2 4.554957+3 2.851018-2 4.412821+3 2.884032-2 4.275212+3 2.900000-2 4.210650+3 2.951209-2 4.011601+3 3.000000-2 3.833895+3 3.019952-2 3.764359+3 3.090295-2 3.531535+3 3.162278-2 3.313428+3 3.198895-2 3.209573+3 3.200000-2 3.206509+3 3.235937-2 3.109019+3 3.273407-2 3.011414+3 3.349654-2 2.825410+3 3.388442-2 2.736782+3 3.427678-2 2.650900+3 3.467369-2 2.567770+3 3.500000-2 2.501851+3 3.507519-2 2.486887+3 3.548134-2 2.408147+3 3.630781-2 2.258232+3 3.715352-2 2.117850+3 3.758374-2 2.051028+3 3.801894-2 1.986345+3 3.890451-2 1.863090+3 3.935501-2 1.804378+3 3.981072-2 1.747421+3 4.027170-2 1.692304+3 4.120975-2 1.587213+3 4.168694-2 1.536820+3 4.216965-2 1.487899+3 4.265795-2 1.440569+3 4.315191-2 1.394772+3 4.466836-2 1.266090+3 4.518559-2 1.225936+3 4.570882-2 1.187062+3 4.677351-2 1.112998+3 4.731513-2 1.077751+3 4.786301-2 1.043600+3 4.800000-2 1.035295+3 4.897788-2 9.784697+2 5.011872-2 9.169983+2 5.069907-2 8.877541+2 5.206000-2 8.238489+2 5.206000-2 4.499814+3 5.308844-2 4.288520+3 5.400000-2 4.112788+3 5.432503-2 4.045580+3 5.500000-2 3.910711+3 5.559043-2 3.806300+3 5.623413-2 3.696868+3 5.754399-2 3.487356+3 5.821032-2 3.382357+3 5.888437-2 3.280385+3 5.956621-2 3.181501+3 6.025596-2 3.085610+3 6.095369-2 2.992621+3 6.309573-2 2.730117+3 6.531306-2 2.492988+3 6.606934-2 2.418629+3 6.683439-2 2.346498+3 6.918310-2 2.142749+3 7.161434-2 1.956529+3 7.244360-2 1.896814+3 7.413102-2 1.782815+3 7.498942-2 1.728419+3 7.585776-2 1.675688+3 7.943282-2 1.480409+3 8.035261-2 1.434903+3 8.222426-2 1.348037+3 8.317638-2 1.306552+3 8.413951-2 1.266345+3 8.511380-2 1.227374+3 8.609938-2 1.189605+3 8.810489-2 1.117530+3 9.015711-2 1.049833+3 9.120108-2 1.017540+3 9.225714-2 9.862447+2 9.332543-2 9.559143+2 9.660509-2 8.704214+2 9.772372-2 8.432956+2 9.885531-2 8.170172+2 1.011580-1 7.668384+2 1.035142-1 7.197511+2 1.047129-1 6.973037+2 1.071519-1 6.544953+2 1.122019-1 5.766145+2 1.135011-1 5.586412+2 1.174898-1 5.080188+2 1.202264-1 4.768522+2 1.216186-1 4.619914+2 1.230269-1 4.474752+2 1.273503-1 4.065726+2 1.303167-1 3.814112+2 1.333521-1 3.578146+2 1.348963-1 3.465700+2 1.428894-1 2.954397+2 1.479108-1 2.684635+2 1.496236-1 2.600308+2 1.500000-1 2.582262+2 1.513561-1 2.518644+2 1.531088-1 2.439545+2 1.548817-1 2.362938+2 1.566751-1 2.288732+2 1.603245-1 2.147250+2 1.621810-1 2.079843+2 1.650000-1 1.982866+2 1.659587-1 1.951299+2 1.737801-1 1.717631+2 1.757924-1 1.663730+2 1.798871-1 1.560957+2 1.840772-1 1.464541+2 1.862087-1 1.418598+2 1.883649-1 1.374097+2 1.905461-1 1.330995+2 1.949845-1 1.248810+2 1.972423-1 1.209665+2 2.041738-1 1.099447+2 2.065380-1 1.064989+2 2.089296-1 1.031611+2 2.187762-1 9.082563+1 2.213095-1 8.797996+1 2.238721-1 8.525103+1 2.264644-1 8.260685+1 2.290868-1 8.004547+1 2.344229-1 7.516024+1 2.371374-1 7.283067+1 2.398833-1 7.057399+1 2.426610-1 6.838730+1 2.454709-1 6.626840+1 2.483133-1 6.421524+1 2.511886-1 6.222575+1 2.540973-1 6.030021+1 2.570396-1 5.843436+1 2.600160-1 5.662641+1 2.630268-1 5.487505+1 2.660725-1 5.317791+1 2.691535-1 5.153377+1 2.722701-1 4.995400+1 2.786121-1 4.693832+1 2.851018-1 4.410484+1 2.884032-1 4.275301+1 2.917427-1 4.144269+1 2.951209-1 4.017300+1 2.985383-1 3.894272+1 3.019952-1 3.777210+1 3.054921-1 3.663672+1 3.126079-1 3.447132+1 3.162278-1 3.343711+1 3.198895-1 3.243398+1 3.235937-1 3.146101+1 3.273407-1 3.051728+1 3.311311-1 2.960189+1 3.388442-1 2.785325+1 3.427678-1 2.701815+1 3.467369-1 2.620810+1 3.507519-1 2.542297+1 3.548134-1 2.466137+1 3.589219-1 2.393558+1 3.630781-1 2.323243+1 3.672823-1 2.254998+1 3.722400-1 2.178068+1 3.845918-1 2.001574+1 3.890451-1 1.942807+1 3.935501-1 1.885786+1 3.981072-1 1.830439+1 4.000000-1 1.808113+1 4.027170-1 1.776721+1 4.073803-1 1.725575+1 4.120975-1 1.675921+1 4.216965-1 1.581036+1 4.265795-1 1.535629+1 4.315191-1 1.491526+1 4.365158-1 1.448695+1 4.415705-1 1.407108+1 4.466836-1 1.366720+1 4.518559-1 1.327492+1 4.570882-1 1.289404+1 4.623810-1 1.253172+1 4.677351-1 1.217979+1 4.841724-1 1.118426+1 4.897788-1 1.087088+1 4.954502-1 1.056642+1 5.011872-1 1.027049+1 5.069907-1 9.982960+0 5.128614-1 9.703477+0 5.188000-1 9.438022+0 5.248075-1 9.179826+0 5.370318-1 8.685872+0 5.432503-1 8.448979+0 5.477200-1 8.284337+0 5.495409-1 8.218589+0 5.559043-1 7.994624+0 5.688529-1 7.564853+0 5.754399-1 7.358712+0 5.821032-1 7.162858+0 5.888437-1 6.972217+0 5.956621-1 6.787236+0 6.000000-1 6.673180+0 6.025596-1 6.607173+0 6.095369-1 6.431974+0 6.309573-1 5.933968+0 6.456542-1 5.623580+0 6.531306-1 5.478116+0 6.606935-1 5.336419+0 6.683439-1 5.198910+0 6.760830-1 5.064957+0 6.839117-1 4.934510+0 6.918310-1 4.807425+0 6.998420-1 4.683614+0 7.079458-1 4.562991+0 7.181900-1 4.416819+0 7.244360-1 4.332949+0 7.328245-1 4.223951+0 7.413102-1 4.117697+0 7.498942-1 4.014478+0 7.673615-1 3.815791+0 7.852356-1 3.626941+0 7.943282-1 3.536052+0 8.035261-1 3.449793+0 8.222427-1 3.283540+0 8.317638-1 3.203687+0 8.413951-1 3.125815+0 8.511380-1 3.049900+0 8.609938-1 2.975828+0 8.709636-1 2.903567+0 8.810489-1 2.833100+0 8.912509-1 2.766366+0 9.015711-1 2.701205+0 9.120108-1 2.637616+0 9.225714-1 2.575725+0 9.332543-1 2.515296+0 9.440609-1 2.456376+0 9.549926-1 2.398836+0 9.660509-1 2.342645+0 9.772372-1 2.287805+0 9.885531-1 2.235883+0 1.000000+0 2.185184+0 1.011579+0 2.135786+0 1.022000+0 2.092750+0 1.023293+0 2.087501+0 1.035142+0 2.040346+0 1.047129+0 1.994277+0 1.059254+0 1.949252+0 1.071519+0 1.905244+0 1.083927+0 1.862254+0 1.096478+0 1.820237+0 1.122018+0 1.739024+0 1.135011+0 1.700686+0 1.148154+0 1.663214+0 1.161449+0 1.626667+0 1.174898+0 1.590923+0 1.188502+0 1.556016+0 1.216186+0 1.488479+0 1.230269+0 1.455818+0 1.244515+0 1.423873+0 1.250000+0 1.411857+0 1.273503+0 1.362099+0 1.288250+0 1.333060+0 1.303167+0 1.304748+0 1.318257+0 1.277036+0 1.333521+0 1.249937+0 1.380384+0 1.172039+0 1.396368+0 1.147177+0 1.428894+0 1.099024+0 1.445440+0 1.076351+0 1.462177+0 1.054217+0 1.479108+0 1.032538+0 1.496236+0 1.011321+0 1.513561+0 9.905421-1 1.603245+0 8.928755-1 1.621810+0 8.750586-1 1.659587+0 8.405981-1 1.678804+0 8.239013-1 1.698244+0 8.075358-1 1.717908+0 7.915043-1 1.819701+0 7.159934-1 1.840772+0 7.021919-1 1.862087+0 6.887021-1 1.883649+0 6.754713-1 1.905461+0 6.625118-1 1.927525+0 6.498012-1 1.949845+0 6.373415-1 2.018366+0 6.013786-1 2.044000+0 5.887500-1 2.065380+0 5.785375-1 2.089296+0 5.677655-1 2.113489+0 5.572294-1 2.137962+0 5.468932-1 2.162719+0 5.367576-1 2.187762+0 5.268101-1 2.213095+0 5.170523-1 2.290868+0 4.888501-1 2.317395+0 4.797954-1 2.344229+0 4.709085-1 2.371374+0 4.624431-1 2.398833+0 4.541580-1 2.426610+0 4.460249-1 2.454709+0 4.380446-1 2.483133+0 4.302072-1 2.511886+0 4.225135-1 2.630268+0 3.930927-1 2.660725+0 3.860634-1 2.691535+0 3.791597-1 2.722701+0 3.725767-1 2.754229+0 3.661293-1 2.786121+0 3.597966-1 2.818383+0 3.535789-1 2.851018+0 3.474689-1 2.884032+0 3.414670-1 3.019952+0 3.184811-1 3.054921+0 3.129806-1 3.090295+0 3.075751-1 3.126079+0 3.024130-1 3.198895+0 2.923798-1 3.235937+0 2.874907-1 3.273407+0 2.826880-1 3.311311+0 2.779654-1 3.349654+0 2.733243-1 3.507519+0 2.555219-1 3.548134+0 2.512556-1 3.589219+0 2.470605-1 3.630781+0 2.430537-1 3.715352+0 2.352597-1 3.758374+0 2.314585-1 3.801894+0 2.277220-1 3.845918+0 2.240459-1 3.890451+0 2.204311-1 4.073803+0 2.065458-1 4.120975+0 2.032133-1 4.168694+0 1.999346-1 4.216965+0 1.967991-1 4.315191+0 1.906943-1 4.365158+0 1.877145-1 4.415704+0 1.847833-1 4.518559+0 1.790586-1 4.570882+0 1.762645-1 4.786301+0 1.655177-1 4.841724+0 1.629349-1 4.897788+0 1.603925-1 4.954502+0 1.579579-1 5.069907+0 1.532138-1 5.188000+0 1.486140-1 5.248075+0 1.463676-1 5.370318+0 1.419771-1 5.432503+0 1.398326-1 5.688529+0 1.315736-1 5.754399+0 1.295863-1 5.821032+0 1.276289-1 5.888437+0 1.257552-1 6.025596+0 1.221016-1 6.165950+0 1.185557-1 6.237348+0 1.168227-1 6.382635+0 1.134330-1 6.456542+0 1.117760-1 6.760830+0 1.053867-1 6.918310+0 1.023303-1 7.000000+0 1.008065-1 7.079458+0 9.939865-2 7.328245+0 9.522353-2 7.498942+0 9.253898-2 7.585776+0 9.122607-2 7.673615+0 8.993180-2 7.762471+0 8.865608-2 7.852356+0 8.739896-2 7.943282+0 8.615978-2 8.222427+0 8.254668-2 8.413951+0 8.022254-2 8.511380+0 7.908511-2 8.609938+0 7.799385-2 8.912509+0 7.481930-2 9.120108+0 7.277584-2 9.225714+0 7.177579-2 9.332543+0 7.078949-2 9.440609+0 6.981688-2 9.549926+0 6.885802-2 9.660509+0 6.791240-2 1.000000+1 6.515278-2 1.035142+1 6.250530-2 1.047129+1 6.164689-2 1.059254+1 6.082111-2 1.100000+1 5.819783-2 1.109175+1 5.763592-2 1.122018+1 5.686633-2 1.135011+1 5.610736-2 1.148154+1 5.535856-2 1.161449+1 5.461976-2 1.174898+1 5.389092-2 1.188502+1 5.317208-2 1.216186+1 5.176309-2 1.258925+1 4.971933-2 1.318257+1 4.711924-2 1.333521+1 4.649078-2 1.348963+1 4.588574-2 1.380384+1 4.470249-2 1.396368+1 4.412237-2 1.400000+1 4.399256-2 1.412538+1 4.355014-2 1.428894+1 4.298545-2 1.445440+1 4.242807-2 1.462177+1 4.187799-2 1.479108+1 4.133521-2 1.548817+1 3.923362-2 1.640590+1 3.675628-2 1.737801+1 3.443537-2 1.757924+1 3.399914-2 1.778279+1 3.356958-2 1.800000+1 3.312282-2 1.819701+1 3.272732-2 1.840772+1 3.231416-2 1.883649+1 3.150377-2 2.000000+1 2.948851-2 2.162719+1 2.705114-2 2.371374+1 2.443812-2 2.400000+1 2.412365-2 2.426610+1 2.383894-2 2.454709+1 2.354549-2 2.483133+1 2.325566-2 2.511886+1 2.296940-2 2.540973+1 2.268677-2 2.630268+1 2.185966-2 2.884032+1 1.979849-2 3.349654+1 1.685538-2 3.388442+1 1.665166-2 3.427678+1 1.645081-2 3.467369+1 1.625250-2 3.507519+1 1.605660-2 3.548134+1 1.586313-2 3.630781+1 1.548315-2 4.027170+1 1.388281-2 5.128614+1 1.076265-2 5.188000+1 1.063297-2 5.248075+1 1.050716-2 5.308844+1 1.038292-2 5.370318+1 1.026019-2 5.432503+1 1.013891-2 5.821032+1 9.440769-3 8.709636+1 6.226839-3 8.810489+1 6.153238-3 8.912509+1 6.081431-3 9.015711+1 6.010493-3 9.120108+1 5.940402-3 9.225714+1 5.871128-3 9.885531+1 5.472124-3 1.678804+2 3.190215-3 1.698244+2 3.153012-3 1.717908+2 3.116583-3 1.737801+2 3.080577-3 1.757924+2 3.044993-3 1.778279+2 3.009823-3 1.819701+2 2.940694-3 1.949845+2 2.742691-3 3.349654+2 1.588688-3 3.388442+2 1.570338-3 3.427678+2 1.552268-3 3.467369+2 1.534407-3 3.507519+2 1.516754-3 3.548134+2 1.499304-3 3.630781+2 1.465003-3 3.890451+2 1.366739-3 6.683439+2 7.933904-4 6.760830+2 7.842624-4 1.333521+3 3.972121-4 1.348963+3 3.926583-4 1.364583+3 3.881585-4 1.380384+3 3.837104-4 1.396368+3 3.793135-4 1.412538+3 3.749668-4 1.445440+3 3.664227-4 1.548817+3 3.419408-4 1.059254+4 4.989719-5 1.071519+4 4.932545-5 1.000000+5 5.284010-6 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 5.290000-6 9.530000-6 5.290000-6 9.530000-6 8.315296-6 1.039000-5 8.567408-6 1.039000-5 9.252076-6 1.165000-5 9.460510-6 1.290000-5 9.597402-6 1.450000-5 9.695559-6 1.698244-5 9.757506-6 2.759000-5 9.813215-6 2.759000-5 2.565773-5 2.970000-5 2.463901-5 3.224000-5 2.323204-5 3.224000-5 2.691225-5 3.589219-5 2.501112-5 4.415704-5 2.032953-5 4.570882-5 1.949707-5 4.786301-5 1.840892-5 4.900000-5 1.787138-5 5.128614-5 1.687388-5 5.217000-5 1.652181-5 5.217000-5 1.675275-5 5.400000-5 1.608449-5 5.500000-5 1.574896-5 5.688529-5 1.518222-5 5.900000-5 1.462624-5 6.165950-5 1.404329-5 6.309573-5 1.377224-5 6.500000-5 1.345335-5 6.683439-5 1.319059-5 7.000000-5 1.281174-5 7.328245-5 1.250340-5 7.585776-5 1.230746-5 8.035261-5 1.203893-5 8.511380-5 1.182948-5 9.150000-5 1.162991-5 1.011579-4 1.143063-5 1.122018-4 1.129205-5 1.273503-4 1.118551-5 1.513561-4 1.111562-5 1.542900-4 1.111158-5 1.542900-4 1.250263-5 1.575000-4 1.289214-5 1.605900-4 1.329564-5 1.605900-4 1.417210-5 1.636000-4 1.462544-5 1.659587-4 1.491362-5 1.683000-4 1.511297-5 1.707000-4 1.521265-5 1.733000-4 1.521101-5 1.761000-4 1.510960-5 1.800000-4 1.486556-5 1.930000-4 1.389658-5 2.000000-4 1.345568-5 2.060000-4 1.316194-5 2.113489-4 1.297391-5 2.170000-4 1.284370-5 2.240000-4 1.276921-5 2.317395-4 1.278383-5 2.400000-4 1.288637-5 2.511886-4 1.312801-5 2.660725-4 1.357095-5 2.810400-4 1.409129-5 2.810400-4 1.695185-5 3.160000-4 1.833077-5 3.160000-4 1.919076-5 3.550000-4 2.067672-5 3.883900-4 2.183524-5 3.883900-4 2.357161-5 4.315191-4 2.495297-5 4.786301-4 2.623541-5 5.308844-4 2.745123-5 5.754399-4 2.833793-5 6.382635-4 2.940839-5 7.079458-4 3.042192-5 7.943282-4 3.146796-5 9.120108-4 3.263283-5 1.047129-3 3.371801-5 1.230269-3 3.489943-5 1.244600-3 3.498139-5 1.244600-3 5.347437-5 1.279000-3 5.362777-5 1.279000-3 5.671248-5 1.345000-3 5.744070-5 1.420600-3 5.781035-5 1.596800-3 5.779419-5 1.596800-3 6.241582-5 1.753400-3 6.279508-5 1.753400-3 6.499355-5 1.935800-3 6.566159-5 1.935800-3 6.797942-5 2.511886-3 7.040435-5 3.198895-3 7.276476-5 3.935501-3 7.485212-5 4.897788-3 7.707918-5 6.095369-3 7.929020-5 7.505300-3 8.136409-5 7.505300-3 1.092045-4 8.260900-3 1.096332-4 8.260900-3 1.161156-4 8.673100-3 1.162749-4 8.673100-3 1.220675-4 1.244515-2 1.245606-4 1.840772-2 1.272584-4 2.660725-2 1.297981-4 3.801894-2 1.321853-4 5.206000-2 1.341776-4 5.206000-2 1.295395-4 1.428894-1 1.302049-4 5.370318-1 1.306160-4 1.000000+5 1.306701-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 0.0 1.605900-4 0.0 1.605900-4 8.21620-10 1.610500-4 8.39677-10 1.618000-4 8.75381-10 1.630000-4 9.43343-10 1.636000-4 9.80929-10 1.644000-4 1.033702-9 1.673000-4 1.236690-9 1.683000-4 1.301834-9 1.692000-4 1.355333-9 1.700000-4 1.397561-9 1.707000-4 1.430396-9 1.715000-4 1.461832-9 1.725000-4 1.492039-9 1.733000-4 1.511129-9 1.740000-4 1.522165-9 1.750000-4 1.531329-9 1.761000-4 1.532696-9 1.772000-4 1.526612-9 1.785000-4 1.511386-9 1.800000-4 1.485631-9 1.820000-4 1.443107-9 1.842000-4 1.388005-9 1.865000-4 1.325534-9 1.905461-4 1.210189-9 1.965000-4 1.047913-9 2.000000-4 9.60681-10 2.030000-4 8.91724-10 2.050000-4 8.49439-10 2.080000-4 7.92288-10 2.113489-4 7.37535-10 2.142000-4 6.98010-10 2.170000-4 6.65473-10 2.198000-4 6.38834-10 2.220000-4 6.22057-10 2.240000-4 6.10032-10 2.264644-4 5.98688-10 2.290868-4 5.90606-10 2.317395-4 5.86310-10 2.344229-4 5.85572-10 2.371374-4 5.88354-10 2.400000-4 5.95221-10 2.430000-4 6.05867-10 2.465000-4 6.22265-10 2.500000-4 6.42429-10 2.540973-4 6.70845-10 2.600160-4 7.18797-10 2.660725-4 7.74145-10 2.691535-4 8.04467-10 2.786121-4 9.04547-10 2.810400-4 9.31343-10 2.810400-4 1.815944-9 2.951209-4 1.990495-9 3.160000-4 2.255060-9 3.160000-4 2.743746-9 3.430000-4 3.102705-9 3.715352-4 3.458735-9 3.883900-4 3.657485-9 3.883900-4 4.218402-9 4.168694-4 4.545363-9 4.365158-4 4.753894-9 4.472100-4 4.863822-9 4.850000-4 5.214356-9 5.248075-4 5.544903-9 5.559043-4 5.775704-9 5.956621-4 6.040005-9 6.382635-4 6.296062-9 6.918310-4 6.581869-9 7.500000-4 6.852953-9 8.128305-4 7.110129-9 9.015711-4 7.426785-9 9.885531-4 7.689822-9 1.083927-3 7.944859-9 1.230269-3 8.279259-9 1.244600-3 8.307519-9 1.244600-3 9.300259-9 1.279000-3 9.325994-9 1.279000-3 1.777207-6 1.293000-3 1.839648-6 1.317000-3 1.974656-6 1.345000-3 2.081759-6 1.355000-3 2.107648-6 1.380384-3 2.194108-6 1.390000-3 2.228162-6 1.396368-3 2.246131-6 1.420600-3 2.290784-6 1.445440-3 2.317722-6 1.596800-3 2.301307-6 1.596800-3 2.354482-6 1.753400-3 2.347866-6 1.753400-3 2.596033-6 1.935800-3 2.617967-6 1.935800-3 2.719460-6 2.238721-3 2.769108-6 2.951209-3 2.862336-6 3.935501-3 2.962118-6 4.897788-3 3.039300-6 6.237348-3 3.123562-6 7.505300-3 3.187086-6 7.505300-3 7.484953-4 7.762471-3 7.514286-4 8.260900-3 7.509079-4 8.260900-3 9.731766-4 8.673100-3 9.746877-4 8.673100-3 1.029918-3 1.150000-2 1.041667-3 1.757924-2 1.053401-3 2.851018-2 1.062669-3 5.069907-2 1.070957-3 5.206000-2 1.071198-3 5.206000-2 3.614936-2 5.888437-2 3.638655-2 7.585776-2 3.672365-2 1.071519-1 3.701381-2 1.757924-1 3.724385-2 4.677351-1 3.742841-2 1.174898+0 3.758263-2 1.000000+5 3.757279-2 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 0.0 9.530000-6 4.240000-6 9.530000-6 1.214704-6 9.772372-6 1.383613-6 1.020000-5 1.685821-6 1.039000-5 1.822592-6 1.039000-5 1.137924-6 1.085000-5 1.513254-6 1.130000-5 1.889822-6 1.170000-5 2.232901-6 1.216186-5 2.637891-6 1.290000-5 3.302598-6 1.380384-5 4.142588-6 1.515000-5 5.430623-6 1.750000-5 7.736496-6 2.759000-5 1.777679-5 2.759000-5 1.932265-6 2.820000-5 2.820103-6 2.884032-5 3.766768-6 2.970000-5 5.060987-6 3.054921-5 6.363055-6 3.224000-5 9.007965-6 3.224000-5 5.327746-6 3.311311-5 6.636280-6 3.507519-5 9.622619-6 3.801894-5 1.419569-5 4.415704-5 2.382751-5 4.731513-5 2.863920-5 5.069907-5 3.358072-5 5.217000-5 3.564819-5 5.217000-5 3.541725-5 5.500000-5 3.925104-5 5.900000-5 4.437376-5 6.309573-5 4.932349-5 6.918310-5 5.628218-5 7.762471-5 6.543284-5 9.300000-5 8.140787-5 1.333521-4 1.221926-4 1.542900-4 1.431784-4 1.542900-4 1.417874-4 1.605900-4 1.472944-4 1.605900-4 1.464171-4 1.692000-4 1.540353-4 1.785000-4 1.635304-4 2.089296-4 1.958775-4 2.400000-4 2.271130-4 2.810400-4 2.669478-4 2.810400-4 2.640863-4 3.160000-4 2.976670-4 3.160000-4 2.968065-4 3.883900-4 3.665511-4 3.883900-4 3.648142-4 6.025596-4 5.737302-4 1.174898-3 1.140320-3 1.244600-3 1.209610-3 1.244600-3 1.191116-3 1.279000-3 1.225363-3 1.279000-3 1.220510-3 1.596800-3 1.536704-3 1.596800-3 1.532030-3 1.753400-3 1.688257-3 1.753400-3 1.685810-3 1.935800-3 1.867520-3 1.935800-3 1.865101-3 7.505300-3 7.420749-3 7.505300-3 6.647600-3 8.260900-3 7.400359-3 8.260900-3 7.171608-3 8.673100-3 7.582137-3 8.673100-3 7.521114-3 4.027170-2 3.907118-2 5.206000-2 5.085463-2 5.206000-2 1.578110-2 5.432503-2 1.794077-2 6.095369-2 2.439335-2 7.585776-2 3.900428-2 1.230269-1 8.579919-2 1.949845+0 1.912141+0 1.000000+5 9.999997+4 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.206000-2 3.675965+3 5.400000-2 3.369580+3 5.500000-2 3.204900+3 5.754399-2 2.865803+3 6.309573-2 2.250928+3 7.161434-2 1.621693+3 7.943282-2 1.230753+3 9.660509-2 7.271665+2 1.216186-1 3.875419+2 2.213095-1 7.421656+1 2.691535-1 4.351603+1 2.985383-1 3.289668+1 3.548134-1 2.085151+1 4.027170-1 1.503101+1 4.570882-1 1.091427+1 5.128614-1 8.217830+0 5.754399-1 6.235726+0 6.456542-1 4.768239+0 7.181900-1 3.747115+0 7.943282-1 3.001528+0 8.810489-1 2.406419+0 9.772372-1 1.944302+0 1.122018+0 1.478337+0 1.273503+0 1.157925+0 1.428894+0 9.341803-1 1.603245+0 7.588852-1 1.819701+0 6.085505-1 2.065380+0 4.917274-1 2.344229+0 4.002496-1 2.691535+0 3.222684-1 3.090295+0 2.614254-1 3.589219+0 2.099907-1 4.168694+0 1.699362-1 4.897788+0 1.363270-1 5.821032+0 1.084800-1 7.000000+0 8.568200-2 8.511380+0 6.721925-2 1.047129+1 5.239767-2 1.333521+1 3.951553-2 1.737801+1 2.926946-2 2.371374+1 2.077197-2 3.349654+1 1.432693-2 5.188000+1 9.038138-3 8.810489+1 5.230323-3 1.698244+2 2.680105-3 3.388442+2 1.334818-3 6.760830+2 6.665522-4 1.071519+4 4.192364-5 1.000000+5 4.491500-6 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.206000-2 1.285000-4 1.000000+5 1.285000-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.206000-2 4.401100-2 1.000000+5 4.401100-2 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.206000-2 7.920500-3 1.000000+5 9.999996+4 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 8.673100-3 1.418680+4 8.785000-3 1.376856+4 9.015711-3 1.320343+4 9.225714-3 1.267967+4 9.549926-3 1.200086+4 1.035142-2 1.040311+4 1.135011-2 8.867527+3 1.318257-2 6.706881+3 1.400000-2 5.987780+3 1.757924-2 3.820120+3 1.949845-2 3.086523+3 2.264644-2 2.257010+3 2.691535-2 1.552406+3 3.019952-2 1.201966+3 3.500000-2 8.602720+2 4.120975-2 5.883887+2 4.897788-2 3.899398+2 5.821032-2 2.559699+2 6.918310-2 1.665354+2 8.222426-2 1.074936+2 9.885531-2 6.686820+1 1.230269-1 3.772167+1 1.621810-1 1.813390+1 2.511886-1 5.667704+0 3.054921-1 3.391456+0 3.589219-1 2.237910+0 4.120975-1 1.577849+0 4.677351-1 1.152882+0 5.248075-1 8.723429-1 5.888437-1 6.645781-1 6.606935-1 5.098479-1 7.413102-1 3.939896-1 8.222427-1 3.144240-1 9.120108-1 2.527153-1 1.000000+0 2.094582-1 1.148154+0 1.594451-1 1.288250+0 1.278240-1 1.445440+0 1.031981-1 1.621810+0 8.389319-2 1.840772+0 6.732023-2 2.089296+0 5.443364-2 2.371374+0 4.433558-2 2.722701+0 3.571963-2 3.126079+0 2.899169-2 3.630781+0 2.330153-2 4.216965+0 1.886715-2 4.954502+0 1.514346-2 5.888437+0 1.205578-2 7.079458+0 9.529537-3 8.609938+0 7.477386-3 1.059254+1 5.831080-3 1.348963+1 4.399382-3 1.757924+1 3.259780-3 2.400000+1 2.312900-3 3.388442+1 1.596589-3 5.188000+1 1.019606-3 8.810489+1 5.900531-4 1.698244+2 3.023516-4 3.388442+2 1.505800-4 1.348963+3 3.762507-5 1.000000+5 5.067000-7 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 8.673100-3 1.591200-4 1.000000+5 1.591200-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.673100-3 1.383200-3 1.000000+5 1.383200-3 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 8.673100-3 7.130780-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.260900-3 2.796915+4 8.340000-3 2.729371+4 8.500000-3 2.621800+4 9.015711-3 2.261100+4 1.047129-2 1.528300+4 1.150000-2 1.186800+4 1.350000-2 7.620500+3 1.603245-2 4.714200+3 2.000000-2 2.491700+3 2.426610-2 1.409000+3 2.786121-2 9.314500+2 3.235937-2 5.921100+2 3.935501-2 3.247400+2 4.800000-2 1.752200+2 6.095369-2 8.275700+1 1.273503-1 8.007009+0 1.603245-1 3.883265+0 1.949845-1 2.114216+0 2.290868-1 1.290498+0 2.660725-1 8.220395-1 3.054921-1 5.461390-1 3.467369-1 3.781058-1 3.890451-1 2.724984-1 4.365158-1 1.978226-1 4.897788-1 1.447046-1 5.477200-1 1.076191-1 6.095369-1 8.166340-2 6.760830-1 6.295230-2 7.498942-1 4.889140-2 8.317638-1 3.814538-2 9.015711-1 3.167030-2 9.660509-1 2.719343-2 1.035142+0 2.352605-2 1.135011+0 1.954759-2 1.250000+0 1.622630-2 1.380384+0 1.350898-2 1.659587+0 9.725906-3 1.883649+0 7.812889-3 2.113489+0 6.445876-3 2.398833+0 5.253912-3 2.754229+0 4.236060-3 3.198895+0 3.382290-3 3.715352+0 2.721660-3 4.315191+0 2.206132-3 5.069907+0 1.772545-3 6.025596+0 1.412508-3 7.328245+0 1.101530-3 8.912509+0 8.655135-4 1.109175+1 6.667070-4 1.396368+1 5.105016-4 1.778279+1 3.884870-4 2.426610+1 2.758896-4 3.427678+1 1.903946-4 5.248075+1 1.216164-4 8.912509+1 7.039270-5 1.717908+2 3.607497-5 3.427678+2 1.796817-5 1.364583+3 4.489827-6 1.000000+5 6.116600-8 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.260900-3 1.335100-4 1.000000+5 1.335100-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.260900-3 1.569600-3 1.000000+5 1.569600-3 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.260900-3 6.557790-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 7.505300-3 6.102164+4 7.720000-3 5.731680+4 8.128305-3 5.005105+4 9.549926-3 3.220760+4 1.059254-2 2.404683+4 1.244515-2 1.510997+4 1.450000-2 9.696040+3 1.819701-2 4.911018+3 2.162719-2 2.893520+3 2.454709-2 1.952836+3 2.900000-2 1.155768+3 3.467369-2 6.531939+2 4.168694-2 3.597915+2 5.069907-2 1.894311+2 6.309573-2 9.176225+1 8.413951-2 3.504234+1 1.303167-1 8.067900+0 1.650000-1 3.675035+0 1.949845-1 2.121619+0 2.264644-1 1.305996+0 2.600160-1 8.404937-1 2.951209-1 5.654540-1 3.311311-1 3.973159-1 3.672823-1 2.911902-1 4.073803-1 2.148900-1 4.518559-1 1.597780-1 5.011872-1 1.197722-1 5.495409-1 9.334119-2 6.025596-1 7.322846-2 6.606935-1 5.785449-2 7.244360-1 4.602393-2 7.943282-1 3.686777-2 8.709636-1 2.965144-2 9.332543-1 2.535085-2 9.885531-1 2.237343-2 1.071519+0 1.894485-2 1.174898+0 1.578404-2 1.288250+0 1.324903-2 1.428894+0 1.096607-2 1.698244+0 8.070552-3 1.927525+0 6.491318-3 2.187762+0 5.262609-3 2.483133+0 4.297257-3 2.851018+0 3.470941-3 3.311311+0 2.776303-3 3.845918+0 2.237942-3 4.518559+0 1.788547-3 5.370318+0 1.418122-3 6.382635+0 1.132960-3 7.762471+0 8.854727-4 9.440609+0 6.973314-4 1.174898+1 5.382545-4 1.462177+1 4.183545-4 1.840772+1 3.228622-4 2.511886+1 2.295232-4 3.507519+1 1.604650-4 5.308844+1 1.037825-4 9.015711+1 6.008033-5 1.737801+2 3.079477-5 3.467369+2 1.533904-5 1.380384+3 3.833109-6 1.000000+5 5.282500-8 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 7.505300-3 1.251400-4 1.000000+5 1.251400-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.505300-3 1.175100-3 1.000000+5 1.175100-3 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.505300-3 6.205060-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 1.935800-3 4.192816+4 2.000000-3 4.045314+4 2.018366-3 3.995524+4 2.041738-3 3.943274+4 2.320000-3 3.333820+4 2.426610-3 3.126922+4 2.851018-3 2.468616+4 3.311311-3 1.967531+4 3.589219-3 1.728446+4 4.365158-3 1.249310+4 4.897788-3 1.023211+4 5.688529-3 7.850707+3 6.839116-3 5.600126+3 7.852356-3 4.315566+3 9.120108-3 3.234314+3 1.083927-2 2.299567+3 1.288250-2 1.620964+3 1.531087-2 1.133161+3 1.800000-2 8.041680+2 2.113489-2 5.680659+2 2.454709-2 4.081543+2 2.884032-2 2.838739+2 3.388442-2 1.959513+2 4.027170-2 1.306616+2 4.731513-2 8.883874+1 5.623413-2 5.830575+1 6.683439-2 3.796983+1 8.035261-2 2.383359+1 9.660509-2 1.484988+1 1.202264-1 8.396986+0 1.548817-1 4.307911+0 2.371374-1 1.391236+0 2.917427-1 8.078627-1 3.467369-1 5.169884-1 4.027170-1 3.537141-1 4.623810-1 2.511706-1 5.248075-1 1.848699-1 5.888437-1 1.408598-1 6.606935-1 1.081034-1 7.413102-1 8.357280-2 8.413951-1 6.349140-2 9.332543-1 5.107345-2 1.023293+0 4.238607-2 1.174898+0 3.230249-2 1.318257+0 2.593271-2 1.479108+0 2.096568-2 1.659587+0 1.706810-2 1.883649+0 1.371581-2 2.137962+0 1.110491-2 2.426610+0 9.056228-3 2.786121+0 7.305661-3 3.235937+0 5.836478-3 3.758374+0 4.699285-3 4.365158+0 3.811201-3 5.188000+0 3.017032-3 6.165950+0 2.406727-3 7.498942+0 1.878588-3 9.120108+0 1.477324-3 1.122018+1 1.154509-3 1.400000+1 8.933500-4 1.778279+1 6.818560-4 2.426610+1 4.842223-4 3.427678+1 3.341633-4 5.248075+1 2.134600-4 8.912509+1 1.235499-4 1.698244+2 6.405989-5 3.388442+2 3.190454-5 6.760830+2 1.593161-5 1.071519+4 1.002103-6 1.000000+5 1.073600-7 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 1.935800-3 1.206200-4 1.000000+5 1.206200-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.935800-3 5.024500-6 1.000000+5 5.024500-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 1.935800-3 1.810156-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.753400-3 6.804944+4 1.778279-3 6.699750+4 1.827000-3 6.477607+4 2.000000-3 5.870460+4 2.089296-3 5.567807+4 2.300000-3 4.900300+4 2.511886-3 4.326764+4 2.722701-3 3.836875+4 2.951209-3 3.376967+4 3.162278-3 3.008590+4 3.672823-3 2.312459+4 3.935501-3 2.037812+4 4.365158-3 1.670237+4 4.841724-3 1.361781+4 5.308844-3 1.127455+4 6.025596-3 8.630713+3 6.606934-3 7.060057+3 7.500000-3 5.314680+3 8.413951-3 4.074362+3 9.440609-3 3.102453+3 1.080000-2 2.236220+3 1.216186-2 1.662627+3 1.380384-2 1.203578+3 1.580000-2 8.460480+2 1.819701-2 5.803566+2 2.089296-2 3.982687+2 2.426610-2 2.626774+2 2.818383-2 1.718375+2 3.273407-2 1.115650+2 3.801894-2 7.194737+1 4.518559-2 4.303012+1 5.432503-2 2.467459+1 6.683439-2 1.309647+1 8.810489-2 5.575549+0 1.479108-1 1.115418+0 1.840772-1 5.688660-1 2.089296-1 3.871060-1 2.570396-1 2.082258-1 2.951209-1 1.385986-1 3.388442-1 9.293411-2 3.845918-1 6.491267-2 4.315191-1 4.717550-2 4.841724-1 3.454029-2 5.370318-1 2.627442-2 6.000000-1 1.975558-2 6.683439-1 1.507866-2 7.413102-1 1.171636-2 8.609938-1 8.221797-3 9.225714-1 7.024365-3 9.885531-1 6.043263-3 1.071519+0 5.117232-3 1.174898+0 4.263491-3 1.288250+0 3.578756-3 1.428894+0 2.962071-3 1.698244+0 2.179674-3 1.927525+0 1.753180-3 2.187762+0 1.421635-3 2.511886+0 1.140067-3 2.884032+0 9.213041-4 3.311311+0 7.498772-4 3.845918+0 6.044691-4 4.518559+0 4.830745-4 5.370318+0 3.830177-4 6.382635+0 3.060065-4 7.762471+0 2.391653-4 9.440609+0 1.883463-4 1.174898+1 1.453785-4 1.462177+1 1.129933-4 1.840772+1 8.720332-5 2.511886+1 6.199359-5 3.507519+1 4.334040-5 5.308844+1 2.803084-5 9.015711+1 1.622759-5 1.757924+2 8.221095-6 3.507519+2 4.095416-6 1.396368+3 1.023447-6 1.000000+5 1.426800-8 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.753400-3 1.013100-4 1.000000+5 1.013100-4 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.753400-3 6.695500-6 1.000000+5 6.695500-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.753400-3 1.645395-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.596800-3 1.842016+5 1.678804-3 1.714254+5 1.778279-3 1.590207+5 1.900000-3 1.448484+5 2.089296-3 1.251342+5 2.344229-3 1.039619+5 2.570396-3 8.892341+4 2.818383-3 7.546483+4 3.162278-3 6.074781+4 3.507519-3 4.978189+4 3.801894-3 4.234198+4 4.400000-3 3.125808+4 4.800000-3 2.592816+4 5.500000-3 1.917832+4 6.095369-3 1.516449+4 6.918310-3 1.127009+4 7.852356-3 8.300049+3 8.735000-3 6.378133+3 1.000000-2 4.526920+3 1.148154-2 3.159584+3 1.288250-2 2.325346+3 1.450000-2 1.686876+3 1.659587-2 1.160531+3 1.905461-2 7.850837+2 2.187762-2 5.268971+2 2.511886-2 3.509376+2 2.884032-2 2.320653+2 3.349654-2 1.471396+2 3.890451-2 9.259729+1 4.570882-2 5.581254+1 5.432503-2 3.219514+1 6.531306-2 1.776301+1 8.317638-2 8.067065+0 1.500000-1 1.156152+0 1.840772-1 5.927345-1 2.187762-1 3.397724-1 2.511886-1 2.191550-1 2.851018-1 1.476312-1 3.198895-1 1.037794-1 3.589219-1 7.348714-2 4.000000-1 5.350210-2 4.415705-1 4.034523-2 4.897788-1 3.022924-2 5.432503-1 2.281268-2 6.000000-1 1.754603-2 6.606935-1 1.371316-2 7.244360-1 1.091268-2 7.943282-1 8.744945-3 8.709636-1 7.035518-3 9.332543-1 6.016200-3 9.885531-1 5.310104-3 1.071519+0 4.496545-3 1.174898+0 3.746306-3 1.288250+0 3.144568-3 1.428894+0 2.602713-3 1.698244+0 1.915553-3 1.927525+0 1.540717-3 2.187762+0 1.248999-3 2.483133+0 1.019866-3 2.851018+0 8.237696-4 3.311311+0 6.589197-4 3.845918+0 5.311495-4 4.518559+0 4.244827-4 5.370318+0 3.365595-4 6.382635+0 2.688904-4 7.852356+0 2.071768-4 9.549926+0 1.632323-4 1.188502+1 1.260463-4 1.479108+1 9.799930-5 1.883649+1 7.469200-5 2.540973+1 5.380075-5 3.507519+1 3.808358-5 5.308844+1 2.463107-5 9.015711+1 1.425890-5 1.737801+2 7.308637-6 3.467369+2 3.640537-6 1.380384+3 9.097455-7 1.000000+5 1.253700-8 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.596800-3 9.275000-5 1.000000+5 9.275000-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.596800-3 2.703500-6 1.000000+5 2.703500-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.596800-3 1.501347-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.279000-3 4.395553+5 1.293000-3 4.528699+5 1.317000-3 4.852552+5 1.345000-3 5.060775+5 1.390000-3 5.203144+5 1.396368-3 5.207528+5 1.420600-3 5.144816+5 1.445440-3 5.022454+5 1.698244-3 3.367610+5 1.862087-3 2.662724+5 2.041738-3 2.089898+5 2.213095-3 1.681028+5 2.400000-3 1.343456+5 2.722701-3 9.409993+4 3.000000-3 7.085920+4 3.400000-3 4.887120+4 3.801894-3 3.475657+4 4.315191-3 2.347254+4 4.897788-3 1.569967+4 5.432503-3 1.123949+4 6.237348-3 7.133085+3 7.000000-3 4.845040+3 7.943282-3 3.149112+3 9.120108-3 1.950002+3 1.035142-2 1.247673+3 1.174898-2 7.930499+2 1.350000-2 4.788720+2 1.548817-2 2.886396+2 1.778279-2 1.722560+2 2.041738-2 1.021154+2 2.400000-2 5.494080+1 2.851018-2 2.815511+1 3.427678-2 1.365911+1 4.265795-2 5.736689+0 5.623413-2 1.899321+0 9.120108-2 2.730634-1 1.122019-1 1.196398-1 1.333521-1 6.056000-2 1.566751-1 3.231019-2 1.798871-1 1.897977-2 2.065380-1 1.123046-2 2.344229-1 6.992062-3 2.630268-1 4.575462-3 2.951209-1 3.015207-3 3.311311-1 2.000925-3 3.672823-1 1.393933-3 4.027170-1 1.017953-3 4.415705-1 7.492945-4 4.841724-1 5.552112-4 5.370318-1 3.992475-4 5.956621-1 2.893793-4 6.606935-1 2.112075-4 7.244360-1 1.608011-4 8.609938-1 9.797153-5 9.120108-1 8.368522-5 9.549926-1 7.422318-5 1.000000+0 6.626195-5 1.047129+0 5.959349-5 1.096478+0 5.397002-5 1.161449+0 4.807387-5 1.230269+0 4.313306-5 1.333521+0 3.731710-5 1.479108+0 3.124611-5 1.862087+0 2.089991-5 2.065380+0 1.754975-5 2.344229+0 1.428342-5 2.691535+0 1.150058-5 3.090295+0 9.329665-6 3.589219+0 7.494190-6 4.168694+0 6.064790-6 4.897788+0 4.865324-6 5.821032+0 3.871291-6 7.000000+0 3.057800-6 8.511380+0 2.398855-6 1.047129+1 1.869940-6 1.333521+1 1.410185-6 1.737801+1 1.044577-6 2.371374+1 7.413132-7 3.349654+1 5.112947-7 5.188000+1 3.225465-7 8.810489+1 1.866604-7 1.698244+2 9.564747-8 3.388442+2 4.763532-8 1.348963+3 1.190214-8 1.000000+5 1.60290-10 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.279000-3 6.595100-5 1.000000+5 6.595100-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.279000-3 7.071900-6 1.000000+5 7.071900-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.279000-3 1.205977-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.244600-3 9.576748+5 1.355000-3 8.542328+5 1.364583-3 8.414726+5 1.462177-3 7.058112+5 1.650000-3 5.214852+5 1.800000-3 4.168650+5 1.972423-3 3.272379+5 2.162719-3 2.545633+5 2.371374-3 1.968805+5 2.660725-3 1.418282+5 2.917427-3 1.081103+5 3.349654-3 7.146354+4 3.715352-3 5.194035+4 4.168694-3 3.624297+4 4.731513-3 2.417949+4 5.308844-3 1.662241+4 6.025596-3 1.091937+4 6.839116-3 7.114940+3 7.673615-3 4.787499+3 8.709636-3 3.074293+3 1.000000-2 1.880616+3 1.150000-2 1.134234+3 1.333521-2 6.579210+2 1.531087-2 3.926066+2 1.757924-2 2.325214+2 2.018366-2 1.367131+2 2.317395-2 7.984171+1 2.722701-2 4.230257+1 3.200000-2 2.221494+1 3.801894-2 1.109298+1 4.677351-2 4.777281+0 9.120108-2 3.088620-1 1.135011-1 1.267250-1 1.333521-1 6.619001-2 1.531088-1 3.819077-2 1.737801-1 2.322426-2 1.949845-1 1.487375-2 2.187762-1 9.592707-3 2.426610-1 6.508521-3 2.691535-1 4.448143-3 2.951209-1 3.192625-3 3.235937-1 2.307207-3 3.548134-1 1.679302-3 3.890451-1 1.231324-3 4.265795-1 9.097702-4 4.677351-1 6.774835-4 5.128614-1 5.085531-4 5.559043-1 3.983512-4 6.025596-1 3.141543-4 6.531306-1 2.495169-4 7.079458-1 1.996802-4 7.852356-1 1.514499-4 8.413951-1 1.268493-4 8.912509-1 1.100848-4 9.440609-1 9.612992-5 1.000000+0 8.452720-5 1.071519+0 7.307998-5 1.148154+0 6.362888-5 1.250000+0 5.408743-5 1.380384+0 4.510610-5 1.717908+0 3.063171-5 1.949845+0 2.464890-5 2.213095+0 1.999695-5 2.511886+0 1.633947-5 2.884032+0 1.320659-5 3.349654+0 1.057036-5 3.890451+0 8.525627-6 4.570882+0 6.817367-6 5.432503+0 5.408065-6 6.456542+0 4.322843-6 7.943282+0 3.332256-6 9.660509+0 2.626559-6 1.216186+1 2.001913-6 1.548817+1 1.517380-6 2.000000+1 1.140400-6 2.630268+1 8.456293-7 3.630781+1 5.990068-7 5.432503+1 3.923489-7 9.225714+1 2.272155-7 1.819701+2 1.138046-7 3.630781+2 5.670743-8 1.445440+3 1.417328-8 1.000000+5 2.04540-10 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.244600-3 6.148900-5 1.000000+5 6.148900-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.244600-3 9.730500-9 1.000000+5 9.730500-9 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.244600-3 1.183101-3 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 3.883900-4 9.782377+4 4.265795-4 9.326117+4 4.390000-4 9.134660+4 5.188000-4 7.993330+4 5.559043-4 7.517523+4 6.025596-4 6.923249+4 6.918310-4 5.971260+4 7.500000-4 5.435500+4 8.609938-4 4.575717+4 9.549926-4 3.996155+4 1.083927-3 3.353728+4 1.216186-3 2.843445+4 1.412538-3 2.272248+4 1.603245-3 1.866754+4 1.862087-3 1.468538+4 2.187762-3 1.124685+4 2.570396-3 8.545579+3 3.054921-3 6.317412+3 3.630781-3 4.635510+3 4.365158-3 3.307458+3 5.308844-3 2.292648+3 6.456542-3 1.576965+3 7.762471-3 1.101034+3 9.332543-3 7.631188+2 1.122018-2 5.248405+2 1.333521-2 3.667988+2 1.584893-2 2.545441+2 1.883649-2 1.753858+2 2.238721-2 1.199554+2 2.660725-2 8.142338+1 3.162278-2 5.483862+1 3.758374-2 3.664001+1 4.466836-2 2.429064+1 5.308844-2 1.597861+1 6.309573-2 1.042699+1 7.585776-2 6.563058+0 9.015711-2 4.221090+0 1.122019-1 2.393521+0 1.479108-1 1.158694+0 2.371374-1 3.313876-1 2.917427-1 1.924707-1 3.467369-1 1.232003-1 4.027170-1 8.430603-2 4.623810-1 5.986735-2 5.248075-1 4.406485-2 5.888437-1 3.357569-2 6.606935-1 2.577139-2 7.413102-1 1.992652-2 8.413951-1 1.514055-2 9.332543-1 1.217985-2 1.023293+0 1.010750-2 1.174898+0 7.702854-3 1.318257+0 6.184163-3 1.479108+0 4.999704-3 1.659587+0 4.070029-3 1.883649+0 3.270567-3 2.137962+0 2.648223-3 2.426610+0 2.159749-3 2.786121+0 1.742234-3 3.235937+0 1.391844-3 3.758374+0 1.120658-3 4.415704+0 8.945818-4 5.248075+0 7.085355-4 6.237348+0 5.655028-4 7.673615+0 4.353106-4 9.332543+0 3.426628-4 1.161449+1 2.643927-4 1.445440+1 2.054230-4 1.840772+1 1.564695-4 2.511886+1 1.112333-4 3.507519+1 7.776644-5 5.308844+1 5.029616-5 9.015711+1 2.911692-5 1.737801+2 1.492433-5 3.467369+2 7.433958-6 1.380384+3 1.857656-6 1.000000+5 2.560100-8 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 3.883900-4 6.867300-5 1.000000+5 6.867300-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.883900-4 1.878800-8 1.000000+5 1.878800-8 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 3.883900-4 3.196982-4 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.160000-4 7.908431+4 3.349654-4 7.839438+4 3.467369-4 7.786394+4 4.415704-4 7.486236+4 4.850000-4 7.302320+4 5.188000-4 7.134496+4 5.559043-4 6.923502+4 5.956621-4 6.674395+4 6.382635-4 6.385951+4 6.918310-4 6.020098+4 7.500000-4 5.637080+4 8.035261-4 5.295637+4 8.810489-4 4.831981+4 9.660509-4 4.377148+4 1.059254-3 3.932657+4 1.174898-3 3.458386+4 1.288250-3 3.063781+4 1.445440-3 2.609642+4 1.584893-3 2.280776+4 1.778279-3 1.912288+4 1.972423-3 1.620316+4 2.220000-3 1.331066+4 2.511886-3 1.074646+4 2.818383-3 8.738393+3 3.162278-3 7.057745+3 3.589219-3 5.537021+3 4.073803-3 4.309961+3 4.623810-3 3.329739+3 5.248075-3 2.553481+3 6.000000-3 1.913180+3 6.839116-3 1.431167+3 7.762471-3 1.072541+3 8.810489-3 7.979260+2 1.000000-2 5.892140+2 1.135011-2 4.319634+2 1.288250-2 3.143736+2 1.462177-2 2.272050+2 1.678804-2 1.582515+2 1.927525-2 1.093970+2 2.213095-2 7.506841+1 2.570396-2 4.952721+1 3.000000-2 3.197446+1 3.507519-2 2.037185+1 4.120975-2 1.270187+1 4.897788-2 7.599608+0 5.888437-2 4.358241+0 7.413102-2 2.156760+0 1.035142-1 7.700879-1 1.513561-1 2.379163-1 1.883649-1 1.217848-1 2.264644-1 6.977056-2 2.630268-1 4.466729-2 3.019952-1 2.979256-2 3.427678-1 2.068852-2 3.890451-1 1.447109-2 4.365158-1 1.053143-2 4.897788-1 7.720178-3 5.495409-1 5.703133-3 6.095369-1 4.372982-3 6.760830-1 3.376538-3 7.498942-1 2.626037-3 8.609938-1 1.894823-3 9.225714-1 1.619116-3 9.885531-1 1.393213-3 1.071519+0 1.179924-3 1.174898+0 9.831040-4 1.288250+0 8.252005-4 1.428894+0 6.830213-4 1.698244+0 5.026799-4 1.927525+0 4.043089-4 2.187762+0 3.277756-4 2.483133+0 2.676507-4 2.851018+0 2.161867-4 3.311311+0 1.729213-4 3.845918+0 1.393883-4 4.518559+0 1.113965-4 5.370318+0 8.832335-5 6.382635+0 7.056450-5 7.852356+0 5.436979-5 9.549926+0 4.283650-5 1.188502+1 3.307794-5 1.479108+1 2.571757-5 1.883649+1 1.960184-5 2.540973+1 1.411873-5 3.548134+1 9.873171-6 5.370318+1 6.387053-6 9.120108+1 3.698153-6 1.778279+2 1.873840-6 3.548134+2 9.335150-7 1.412538+3 2.333022-7 1.000000+5 3.290200-9 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.160000-4 5.283500-5 1.000000+5 5.283500-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.160000-4 2.186200-8 1.000000+5 2.186200-8 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.160000-4 2.631431-4 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.810400-4 2.984890+5 3.100000-4 2.865057+5 3.715352-4 2.630930+5 4.027170-4 2.519071+5 4.415704-4 2.378347+5 4.786301-4 2.246371+5 5.188000-4 2.107437+5 5.559043-4 1.982887+5 6.095369-4 1.813525+5 6.700000-4 1.642920+5 7.300000-4 1.491248+5 8.128305-4 1.309191+5 9.000000-4 1.148640+5 1.000000-3 9.948880+4 1.110000-3 8.570160+4 1.244515-3 7.217412+4 1.380384-3 6.136560+4 1.566751-3 4.990235+4 1.757924-3 4.102442+4 1.972423-3 3.349573+4 2.238721-3 2.658307+4 2.511886-3 2.139044+4 2.818383-3 1.710346+4 3.198895-3 1.327634+4 3.650000-3 1.011524+4 4.168694-3 7.629019+3 4.731513-3 5.787972+3 5.370318-3 4.359671+3 6.095369-3 3.260017+3 6.839116-3 2.487126+3 7.673615-3 1.886086+3 8.609938-3 1.421294+3 9.660509-3 1.064632+3 1.096478-2 7.691192+2 1.244515-2 5.516355+2 1.412538-2 3.928539+2 1.603245-2 2.778388+2 1.840772-2 1.889416+2 2.113489-2 1.274848+2 2.426610-2 8.536633+1 2.786121-2 5.674912+1 3.198895-2 3.746138+1 3.715352-2 2.370994+1 4.315191-2 1.489892+1 5.069907-2 8.967388+0 6.095369-2 4.978585+0 7.498942-2 2.546716+0 9.660509-2 1.112627+0 1.566751-1 2.272916-1 1.905461-1 1.203239-1 2.238721-1 7.174012-2 2.570396-1 4.636879-2 2.917427-1 3.129842-2 3.273407-1 2.204220-2 3.672823-1 1.563834-2 4.073803-1 1.156457-2 4.518559-1 8.616561-3 5.011872-1 6.469192-3 5.559043-1 4.896102-3 6.095369-1 3.848347-3 6.683439-1 3.044930-3 7.328245-1 2.425564-3 8.317638-1 1.791629-3 9.015711-1 1.486614-3 9.660509-1 1.275925-3 1.035142+0 1.103659-3 1.135011+0 9.169534-4 1.250000+0 7.611418-4 1.380384+0 6.336755-4 1.659587+0 4.562031-4 1.883649+0 3.664406-4 2.113489+0 3.022934-4 2.398833+0 2.463700-4 2.754229+0 1.986224-4 3.198895+0 1.585813-4 3.715352+0 1.276072-4 4.315191+0 1.034364-4 5.069907+0 8.310798-5 6.025596+0 6.622866-5 7.328245+0 5.164713-5 8.912509+0 4.058048-5 1.100000+1 3.156600-5 1.380384+1 2.425186-5 1.757924+1 1.844976-5 2.400000+1 1.309100-5 3.388442+1 9.036099-6 5.188000+1 5.770818-6 8.709636+1 3.379218-6 1.678804+2 1.731322-6 3.349654+2 8.621829-7 6.683439+2 4.305381-7 1.059254+4 2.707899-8 1.000000+5 2.867800-9 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.810400-4 4.747200-5 1.000000+5 4.747200-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.810400-4 1.125400-8 1.000000+5 1.125400-8 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.810400-4 2.335567-4 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.605900-4 3.290408+5 1.610500-4 3.370504+5 1.618000-4 3.527452+5 1.630000-4 3.823860+5 1.654000-4 4.515360+5 1.665000-4 4.840840+5 1.673000-4 5.067800+5 1.683000-4 5.330560+5 1.692000-4 5.539960+5 1.700000-4 5.699080+5 1.707000-4 5.816280+5 1.715000-4 5.922080+5 1.723000-4 5.998560+5 1.733000-4 6.054240+5 1.740000-4 6.068080+5 1.750000-4 6.055960+5 1.761000-4 6.004720+5 1.772000-4 5.920920+5 1.785000-4 5.789280+5 1.800000-4 5.606320+5 1.820000-4 5.330040+5 1.842000-4 5.006440+5 1.865000-4 4.664400+5 1.893200-4 4.256131+5 1.930000-4 3.757972+5 2.041738-4 2.563229+5 2.080000-4 2.269144+5 2.113489-4 2.056242+5 2.142000-4 1.904832+5 2.170000-4 1.780396+5 2.198000-4 1.677456+5 2.220000-4 1.610272+5 2.240000-4 1.558640+5 2.264644-4 1.506306+5 2.290868-4 1.462959+5 2.317395-4 1.430650+5 2.344229-4 1.408348+5 2.371374-4 1.395297+5 2.400000-4 1.390644+5 2.430000-4 1.394512+5 2.465000-4 1.408684+5 2.500000-4 1.431588+5 2.540973-4 1.467446+5 2.600160-4 1.532268+5 2.660725-4 1.609978+5 2.900000-4 1.962568+5 3.000000-4 2.110828+5 3.100000-4 2.251188+5 3.200000-4 2.379812+5 3.311311-4 2.507313+5 3.430000-4 2.624448+5 3.550000-4 2.724264+5 3.672823-4 2.808606+5 3.801894-4 2.879123+5 3.935501-4 2.933684+5 4.100000-4 2.977248+5 4.280000-4 2.999456+5 4.472100-4 3.000106+5 4.700000-4 2.977192+5 4.930000-4 2.933084+5 5.188000-4 2.864355+5 5.432503-4 2.786025+5 5.754399-4 2.671580+5 6.100000-4 2.541584+5 6.456542-4 2.403982+5 6.850000-4 2.252956+5 7.328245-4 2.076910+5 7.852356-4 1.896199+5 8.413951-4 1.718158+5 9.015711-4 1.546576+5 9.700000-4 1.373824+5 1.047129-3 1.204864+5 1.135011-3 1.041612+5 1.230269-3 8.937924+4 1.333521-3 7.617219+4 1.450000-3 6.405480+4 1.584893-3 5.290196+4 1.737801-3 4.305447+4 1.900000-3 3.502664+4 2.113489-3 2.714392+4 2.344229-3 2.099660+4 2.570396-3 1.659784+4 2.818383-3 1.304400+4 3.126079-3 9.876467+3 3.467369-3 7.424684+3 3.890451-3 5.362777+3 4.315191-3 3.972954+3 4.786301-3 2.923884+3 5.308844-3 2.138064+3 5.956621-3 1.498458+3 6.683439-3 1.041975+3 7.498942-3 7.191449+2 8.413951-3 4.926004+2 9.440609-3 3.349696+2 1.059254-2 2.262312+2 1.202264-2 1.457638+2 1.364583-2 9.319475+1 1.548817-2 5.915454+1 1.778279-2 3.575097+1 2.041738-2 2.144224+1 2.371374-2 1.222483+1 2.754229-2 6.916860+0 3.235937-2 3.716941+0 3.890451-2 1.812493+0 4.786301-2 8.011829-1 9.772372-2 4.693658-2 1.202264-1 2.071028-2 1.428894-1 1.054423-2 1.659587-1 5.913720-3 1.905461-1 3.491048-3 2.187762-1 2.076377-3 2.483133-1 1.299308-3 2.786121-1 8.543567-4 3.126079-1 5.657686-4 3.467369-1 3.930115-4 3.845918-1 2.749959-4 4.216965-1 2.016143-4 4.677351-1 1.433203-4 5.188000-1 1.026902-4 5.688529-1 7.686814-5 6.309573-1 5.593287-5 6.918310-1 4.247691-5 7.498942-1 3.360151-5 8.609938-1 2.269178-5 9.120108-1 1.940289-5 9.549926-1 1.722102-5 1.000000+0 1.538200-5 1.047129+0 1.383868-5 1.096478+0 1.253535-5 1.161449+0 1.116694-5 1.230269+0 1.001885-5 1.333521+0 8.666296-6 1.479108+0 7.253834-6 1.840772+0 4.948123-6 2.044000+0 4.145000-6 2.317395+0 3.377908-6 2.660725+0 2.717863-6 3.054921+0 2.203320-6 3.548134+0 1.768778-6 4.120975+0 1.430637-6 4.841724+0 1.147123-6 5.754399+0 9.122833-7 6.918310+0 7.204210-7 8.413951+0 5.647800-7 1.035142+1 4.400603-7 1.318257+1 3.317308-7 1.737801+1 2.424837-7 2.371374+1 1.720870-7 3.349654+1 1.186959-7 5.128614+1 7.578123-8 8.709636+1 4.384604-8 1.678804+2 2.246377-8 3.349654+2 1.118722-8 6.683439+2 5.586285-9 1.059254+4 3.51344-10 1.000000+5 3.72100-11 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.605900-4 3.062400-5 1.000000+5 3.062400-5 1 65000 7 7 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.605900-4 1.624400-8 1.000000+5 1.624400-8 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.605900-4 1.299498-4 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.542900-4 4.757880+5 1.551000-4 5.063994+5 1.575000-4 6.148020+5 1.588000-4 6.781980+5 1.599000-4 7.309020+5 1.607000-4 7.672200+5 1.614000-4 7.968600+5 1.621810-4 8.269291+5 1.628000-4 8.481180+5 1.636000-4 8.717040+5 1.644000-4 8.906520+5 1.652000-4 9.048660+5 1.659587-4 9.139852+5 1.670000-4 9.199320+5 1.680000-4 9.190920+5 1.690000-4 9.126660+5 1.700000-4 9.015360+5 1.714000-4 8.797380+5 1.725000-4 8.588040+5 1.740000-4 8.266380+5 1.757924-4 7.850112+5 1.778279-4 7.361180+5 1.800000-4 6.842460+5 1.835000-4 6.045900+5 1.880000-4 5.127858+5 1.965000-4 3.767844+5 2.000000-4 3.348318+5 2.030000-4 3.048516+5 2.060000-4 2.799156+5 2.089296-4 2.599640+5 2.113489-4 2.464357+5 2.137962-4 2.351854+5 2.162719-4 2.260461+5 2.187762-4 2.188552+5 2.213095-4 2.134631+5 2.240000-4 2.095806+5 2.264644-4 2.074966+5 2.290868-4 2.066433+5 2.317395-4 2.070410+5 2.350000-4 2.090316+5 2.380000-4 2.121114+5 2.415000-4 2.169624+5 2.454709-4 2.237920+5 2.511886-4 2.354787+5 2.770000-4 2.995584+5 2.851018-4 3.200291+5 2.951209-4 3.441864+5 3.050000-4 3.661716+5 3.150000-4 3.861498+5 3.240000-4 4.020372+5 3.350000-4 4.188024+5 3.470000-4 4.339914+5 3.600000-4 4.471500+5 3.715352-4 4.562212+5 3.850000-4 4.639626+5 4.000000-4 4.693008+5 4.168694-4 4.717218+5 4.365158-4 4.707187+5 4.570882-4 4.663500+5 4.786301-4 4.590139+5 5.011872-4 4.488721+5 5.248075-4 4.364119+5 5.559043-4 4.182033+5 5.900000-4 3.970368+5 6.237348-4 3.757078+5 6.606934-4 3.525959+5 7.000000-4 3.288456+5 7.500000-4 3.003870+5 8.035261-4 2.724213+5 8.609938-4 2.452982+5 9.225714-4 2.194562+5 9.885531-4 1.951643+5 1.071519-3 1.689315+5 1.161449-3 1.451745+5 1.258925-3 1.238532+5 1.364583-3 1.049796+5 1.479108-3 8.839060+4 1.621810-3 7.209885+4 1.800000-3 5.671740+4 1.972423-3 4.559164+4 2.162719-3 3.635650+4 2.400000-3 2.792622+4 2.691535-3 2.069054+4 3.019952-3 1.516725+4 3.388442-3 1.101873+4 3.801894-3 7.934879+3 4.216965-3 5.862309+3 4.677351-3 4.302181+3 5.188000-3 3.136777+3 5.754399-3 2.271794+3 6.456542-3 1.575464+3 7.161434-3 1.125642+3 8.035261-3 7.690095+2 9.015711-3 5.215955+2 1.011579-2 3.510851+2 1.135011-2 2.346882+2 1.288250-2 1.495392+2 1.462177-2 9.455668+1 1.659587-2 5.935727+1 1.883649-2 3.700291+1 2.162719-2 2.192887+1 2.483133-2 1.289883+1 2.884032-2 7.203740+0 3.388442-2 3.815748+0 4.027170-2 1.916158+0 4.897788-2 8.707157-1 6.095369-2 3.579704-1 9.332543-2 6.290728-2 1.135011-1 2.847397-2 1.333521-1 1.492218-2 1.548817-1 8.249616-3 1.757924-1 5.029925-3 1.972423-1 3.228737-3 2.213095-1 2.087311-3 2.454709-1 1.419026-3 2.722701-1 9.713963-4 3.019952-1 6.699821-4 3.311311-1 4.849523-4 3.630781-1 3.536183-4 3.935501-1 2.700180-4 4.265795-1 2.077273-4 4.623810-1 1.608820-4 5.069907-1 1.210596-4 5.495409-1 9.500101-5 6.000000-1 7.346040-5 6.531306-1 5.767358-5 7.079458-1 4.614138-5 7.673615-1 3.717530-5 8.511380-1 2.838761-5 9.015711-1 2.458589-5 9.549926-1 2.143614-5 1.000000+0 1.931700-5 1.059254+0 1.707874-5 1.135011+0 1.484259-5 1.216186+0 1.298719-5 1.333521+0 1.095533-5 1.678804+0 7.288336-6 1.905461+0 5.855881-6 2.137962+0 4.833625-6 2.426610+0 3.941970-6 2.786121+0 3.179974-6 3.235937+0 2.540477-6 3.758374+0 2.045505-6 4.415704+0 1.632872-6 5.248075+0 1.293291-6 6.237348+0 1.032205-6 7.585776+0 8.060355-7 9.225714+0 6.341882-7 1.148154+1 4.891275-7 1.428894+1 3.798981-7 1.819701+1 2.892826-7 2.483133+1 2.055822-7 3.467369+1 1.436851-7 5.248075+1 9.291182-8 8.912509+1 5.377775-8 1.717908+2 2.756020-8 3.427678+2 1.372702-8 1.364583+3 3.430112-9 1.000000+5 4.67290-11 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.542900-4 2.885800-5 1.000000+5 2.885800-5 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.542900-4 1.254320-4 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.039000-5 4.332880+5 1.083927-5 4.088196+5 1.130000-5 3.889579+5 1.170000-5 3.751532+5 1.216186-5 3.628456+5 1.260000-5 3.542868+5 1.310000-5 3.478824+5 1.350000-5 3.448958+5 1.400000-5 3.435879+5 1.450000-5 3.447793+5 1.500000-5 3.482041+5 1.550000-5 3.536099+5 1.611900-5 3.628089+5 1.678804-5 3.755385+5 1.750000-5 3.920243+5 1.830000-5 4.138480+5 1.920000-5 4.422867+5 2.018366-5 4.776777+5 2.137962-5 5.260797+5 2.264644-5 5.832419+5 2.483133-5 6.940175+5 2.951209-5 9.671191+5 3.162278-5 1.097665+6 3.388442-5 1.237080+6 3.589219-5 1.358315+6 3.801894-5 1.481828+6 4.027170-5 1.605604+6 4.300000-5 1.746174+6 4.570882-5 1.875753+6 4.900000-5 2.019996+6 5.300000-5 2.179172+6 5.688529-5 2.316489+6 6.095369-5 2.441785+6 6.500000-5 2.546792+6 6.918310-5 2.632691+6 7.328245-5 2.696310+6 7.762471-5 2.742472+6 8.300000-5 2.774433+6 8.810489-5 2.785890+6 9.500000-5 2.779378+6 1.023293-4 2.755583+6 1.109175-4 2.709003+6 1.174898-4 2.662366+6 1.260000-4 2.588885+6 1.333521-4 2.516627+6 1.445440-4 2.397161+6 1.548817-4 2.282151+6 1.659587-4 2.159992+6 1.798871-4 2.007423+6 1.905461-4 1.892378+6 2.040000-4 1.752634+6 2.213095-4 1.582991+6 2.371374-4 1.440318+6 2.511886-4 1.324350+6 2.691535-4 1.188528+6 2.884032-4 1.057687+6 3.060000-4 9.512286+5 3.273407-4 8.375566+5 3.507519-4 7.298989+5 3.758374-4 6.316086+5 4.027170-4 5.428221+5 4.315191-4 4.633819+5 4.623810-4 3.930842+5 5.011872-4 3.219904+5 5.432503-4 2.617600+5 5.888437-4 2.112384+5 6.382635-4 1.692757+5 6.918310-4 1.347585+5 7.585776-4 1.030680+5 8.317638-4 7.823967+4 9.120108-4 5.896251+4 1.000000-3 4.411488+4 1.109175-3 3.159228+4 1.230269-3 2.245007+4 1.364583-3 1.583499+4 1.513561-3 1.108947+4 1.678804-3 7.713779+3 1.862087-3 5.329525+3 2.089296-3 3.506922+3 2.344229-3 2.289555+3 2.630268-3 1.483370+3 2.951209-3 9.539303+2 3.311311-3 6.090856+2 3.715352-3 3.861626+2 4.216965-3 2.320778+2 4.731513-3 1.450086+2 5.308844-3 8.978218+1 6.000000-3 5.352946+1 6.760830-3 3.209866+1 7.673615-3 1.852181+1 8.735000-3 1.047453+1 1.000000-2 5.729002+0 1.148154-2 3.069817+0 1.333521-2 1.549575+0 1.603245-2 6.619759-1 1.862087-2 3.294085-1 2.113489-2 1.813925-1 2.483133-2 8.421021-2 3.000000-2 3.394123-2 3.801894-2 1.077146-2 6.683439-2 6.919301-4 8.222426-2 2.540365-4 9.772372-2 1.109996-4 1.135011-1 5.451288-5 1.303167-1 2.848612-5 1.479108-1 1.583271-5 1.659587-1 9.354073-6 1.862087-1 5.567704-6 2.065380-1 3.513947-6 2.290868-1 2.232705-6 2.540973-1 1.428651-6 2.851018-1 8.768503-7 3.126079-1 5.972297-7 3.427678-1 4.098132-7 3.722400-1 2.945700-7 4.027170-1 2.170463-7 4.415705-1 1.529806-7 4.841724-1 1.086208-7 5.370318-1 7.440096-8 5.888437-1 5.351336-8 6.456542-1 3.870642-8 6.998420-1 2.936102-8 7.498942-1 2.333568-8 8.609938-1 1.496706-8 9.015711-1 1.297271-8 9.332543-1 1.170440-8 9.660509-1 1.061242-8 1.000000+0 9.680400-9 1.035142+0 8.889871-9 1.071519+0 8.208464-9 1.122018+0 7.435793-9 1.174898+0 6.785059-9 1.244515+0 6.100624-9 1.333521+0 5.407978-9 1.513561+0 4.389054-9 1.883649+0 2.994137-9 2.089296+0 2.515803-9 2.371374+0 2.049193-9 2.722701+0 1.650873-9 3.126079+0 1.339847-9 3.630781+0 1.076894-9 4.216965+0 8.71973-10 4.954502+0 6.99885-10 5.888437+0 5.57173-10 7.079458+0 4.40414-10 8.609938+0 3.45581-10 1.059254+1 2.69487-10 1.348963+1 2.03325-10 1.737801+1 1.52606-10 2.371374+1 1.08298-10 3.349654+1 7.46981-11 5.128614+1 4.76911-11 8.709636+1 2.75940-11 1.678804+2 1.41375-11 3.349654+2 7.04029-12 1.333521+3 1.75903-12 1.000000+5 2.34180-14 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.039000-5 1.039000-5 1.000000+5 1.039000-5 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.039000-5 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.530000-6 6.273412+5 9.772372-6 6.031844+5 1.020000-5 5.690986+5 1.050000-5 5.496534+5 1.085000-5 5.309026+5 1.122018-5 5.154918+5 1.165000-5 5.021041+5 1.205000-5 4.936088+5 1.250000-5 4.880518+5 1.290000-5 4.861664+5 1.333900-5 4.870167+5 1.380384-5 4.909180+5 1.428894-5 4.979283+5 1.480000-5 5.082653+5 1.531087-5 5.213012+5 1.590000-5 5.394037+5 1.659587-5 5.646021+5 1.737801-5 5.973684+5 1.830000-5 6.414432+5 1.927525-5 6.938932+5 2.041738-5 7.622065+5 2.187762-5 8.590288+5 2.818383-5 1.361881+6 3.054921-5 1.566747+6 3.273407-5 1.754906+6 3.467369-5 1.916693+6 3.672823-5 2.080894+6 3.900000-5 2.252933+6 4.150000-5 2.428818+6 4.415704-5 2.601089+6 4.731513-5 2.789413+6 5.069907-5 2.971500+6 5.500000-5 3.177393+6 5.900000-5 3.343024+6 6.309573-5 3.484257+6 6.683439-5 3.589289+6 7.079458-5 3.672738+6 7.500000-5 3.734318+6 7.943282-5 3.773327+6 8.511380-5 3.789776+6 9.120108-5 3.781925+6 1.000000-4 3.735727+6 1.075600-4 3.674575+6 1.161449-4 3.586536+6 1.244515-4 3.481565+6 1.333521-4 3.357198+6 1.450000-4 3.180375+6 1.548817-4 3.027279+6 1.659587-4 2.858899+6 1.798871-4 2.649674+6 1.905461-4 2.493669+6 2.050000-4 2.291206+6 2.213095-4 2.077049+6 2.366500-4 1.892206+6 2.511886-4 1.732473+6 2.691535-4 1.552200+6 2.884032-4 1.379078+6 3.090295-4 1.216797+6 3.311311-4 1.065433+6 3.548134-4 9.261043+5 3.801894-4 7.993561+5 4.073803-4 6.853063+5 4.365158-4 5.837285+5 4.677351-4 4.941438+5 5.069907-4 4.038527+5 5.495409-4 3.275973+5 5.956621-4 2.638112+5 6.480700-4 2.087477+5 7.079458-4 1.620946+5 7.762471-4 1.235818+5 8.511380-4 9.353179+4 9.332543-4 7.027724+4 1.023293-3 5.243399+4 1.135011-3 3.743249+4 1.258925-3 2.651700+4 1.396368-3 1.864837+4 1.566751-3 1.251213+4 1.737801-3 8.676899+3 1.927525-3 5.976720+3 2.137962-3 4.088840+3 2.371374-3 2.777490+3 2.660725-3 1.793922+3 3.000000-3 1.128399+3 3.349654-3 7.326688+2 3.758374-3 4.633248+2 4.120975-3 3.192102+2 4.623810-3 1.986970+2 5.188000-3 1.227316+2 5.821032-3 7.526891+1 6.614500-3 4.340996+1 7.498942-3 2.511558+1 8.511380-3 1.435483+1 9.660509-3 8.145710+0 1.109175-2 4.357272+0 1.288250-2 2.194914+0 1.496236-2 1.098244+0 1.737801-2 5.454334-1 2.018366-2 2.688568-1 2.371374-2 1.243362-1 2.818383-2 5.399572-2 3.388442-2 2.200996-2 4.466836-2 5.672906-3 7.161434-2 5.570522-4 8.609938-2 2.266218-4 1.011580-1 1.038921-4 1.174898-1 5.074392-5 1.333521-1 2.786028-5 1.496236-1 1.627014-5 1.659587-1 1.009578-5 1.840772-1 6.310917-6 2.041738-1 3.975180-6 2.238721-1 2.653816-6 2.454709-1 1.783458-6 2.691535-1 1.207586-6 2.917427-1 8.641147-7 3.162278-1 6.224632-7 3.427678-1 4.516457-7 3.672823-1 3.452883-7 3.981072-1 2.543226-7 4.265795-1 1.969620-7 4.570882-1 1.535440-7 4.954502-1 1.157178-7 5.370318-1 8.789871-8 5.821032-1 6.722518-8 6.309573-1 5.180734-8 6.839117-1 4.024561-8 7.328245-1 3.261730-8 7.852356-1 2.660435-8 8.413951-1 2.184962-8 8.912509-1 1.859240-8 9.332543-1 1.642398-8 9.772372-1 1.459812-8 1.022000+0 1.311000-8 1.071519+0 1.179435-8 1.122018+0 1.071231-8 1.188502+0 9.571426-9 1.288250+0 8.256831-9 1.396368+0 7.173077-9 1.513561+0 6.255675-9 1.819701+0 4.528281-9 2.018366+0 3.797446-9 2.290868+0 3.087225-9 2.630268+0 2.482341-9 3.019952+0 2.011108-9 3.507519+0 1.613484-9 4.073803+0 1.304280-9 4.786301+0 1.045226-9 5.688529+0 8.30847-10 6.760830+0 6.65408-10 8.222427+0 5.21202-10 1.000000+1 4.11350-10 1.258925+1 3.13875-10 1.640590+1 2.32046-10 2.162719+1 1.70780-10 2.884032+1 1.24966-10 4.027170+1 8.76313-11 5.821032+1 5.96046-11 9.885531+1 3.45523-11 1.949845+2 1.73201-11 3.890451+2 8.63399-12 1.548817+3 2.15855-12 1.000000+5 3.33830-14 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.530000-6 9.530000-6 1.000000+5 9.530000-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.530000-6 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.217000-5 5.107540+4 5.280000-5 5.102280+4 5.400000-5 5.136740+4 5.500000-5 5.201500+4 5.623413-5 5.313771+4 5.800000-5 5.526420+4 6.025596-5 5.852894+4 6.683439-5 6.936957+4 7.000000-5 7.440740+4 7.300000-5 7.879660+4 7.585776-5 8.253849+4 7.900000-5 8.609640+4 8.222426-5 8.912203+4 8.511380-5 9.130175+4 8.810489-5 9.305206+4 9.150000-5 9.446760+4 9.549926-5 9.545927+4 1.000000-4 9.586440+4 1.047129-4 9.566988+4 1.109175-4 9.472483+4 1.174898-4 9.315502+4 1.260000-4 9.060020+4 1.350000-4 8.751900+4 1.450000-4 8.381200+4 1.548817-4 7.999026+4 1.659587-4 7.568666+4 1.800000-4 7.043160+4 1.995262-4 6.377271+4 2.220000-4 5.709460+4 2.454709-4 5.106196+4 2.786121-4 4.397119+4 3.200000-4 3.705780+4 3.630781-4 3.148323+4 4.315191-4 2.498014+4 5.011872-4 2.029346+4 5.956621-4 1.585796+4 7.244360-4 1.188501+4 8.709636-4 8.987304+3 1.035142-3 6.867915+3 1.230269-3 5.212359+3 1.462177-3 3.928457+3 1.757924-3 2.883462+3 2.113489-3 2.099782+3 2.570396-3 1.487386+3 3.054921-3 1.089754+3 3.715352-3 7.605946+2 4.570882-3 5.157386+2 5.688529-3 3.395096+2 6.918310-3 2.318828+2 8.413951-3 1.572101+2 1.023293-2 1.057667+2 1.230269-2 7.230006+1 1.479108-2 4.905472+1 1.778279-2 3.301545+1 2.213095-2 2.045429+1 2.660725-2 1.356787+1 3.090295-2 9.655616+0 3.630781-2 6.636047+0 4.265795-2 4.527504+0 5.069907-2 2.982567+0 6.025596-2 1.949800+0 7.244360-2 1.229439+0 8.511380-2 8.158983-1 1.047129-1 4.776169-1 1.348963-1 2.461173-1 2.398833-1 5.359787-2 2.951209-1 3.114894-2 3.507519-1 1.994916-2 4.027170-1 1.405937-2 4.623810-1 9.984095-3 5.248075-1 7.348915-3 5.888437-1 5.599748-3 6.606935-1 4.298314-3 7.413102-1 3.323586-3 8.413951-1 2.525286-3 9.332543-1 2.031433-3 1.023293+0 1.685949-3 1.174898+0 1.284880-3 1.318257+0 1.031503-3 1.479108+0 8.339307-4 1.659587+0 6.788862-4 1.883649+0 5.455369-4 2.137962+0 4.416905-4 2.426610+0 3.602076-4 2.786121+0 2.905815-4 3.235937+0 2.321456-4 3.758374+0 1.869139-4 4.365158+0 1.515923-4 5.188000+0 1.200055-4 6.165950+0 9.572902-5 7.498942+0 7.472046-5 9.120108+0 5.876352-5 1.135011+1 4.530363-5 1.412538+1 3.517342-5 1.800000+1 2.675700-5 2.454709+1 1.902148-5 3.467369+1 1.312993-5 5.248075+1 8.490350-6 8.912509+1 4.914228-6 1.717908+2 2.518493-6 3.427678+2 1.254385-6 1.364583+3 3.134480-7 1.000000+5 4.270200-9 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.217000-5 5.217000-5 1.000000+5 5.217000-5 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.217000-5 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.224000-5 8.092600+6 3.311311-5 7.142033+6 3.400000-5 6.349760+6 3.507519-5 5.569678+6 3.650000-5 4.746320+6 3.845918-5 3.883053+6 4.731513-5 1.785708+6 5.888437-5 7.791151+5 6.500000-5 5.392700+5 7.000000-5 4.117800+5 7.500000-5 3.222220+5 8.035261-5 2.538374+5 8.511380-5 2.093056+5 9.015711-5 1.738327+5 9.500000-5 1.479042+5 1.000000-4 1.271994+5 1.047129-4 1.118754+5 1.096478-4 9.908102+4 1.150000-4 8.803160+4 1.205000-4 7.897680+4 1.260000-4 7.167720+4 1.318257-4 6.539753+4 1.380384-4 5.995688+4 1.450000-4 5.503320+4 1.513561-4 5.136581+4 1.584893-4 4.796699+4 1.678804-4 4.435162+4 1.778279-4 4.128699+4 1.905461-4 3.815841+4 2.080000-4 3.480780+4 2.317395-4 3.134004+4 3.467369-4 2.171214+4 4.027170-4 1.881870+4 4.623810-4 1.638084+4 5.248075-4 1.432373+4 5.956621-4 1.244413+4 6.760830-4 1.073180+4 7.673615-4 9.189687+3 8.709636-4 7.811402+3 9.885531-4 6.590139+3 1.122018-3 5.516328+3 1.273503-3 4.583538+3 1.445440-3 3.779756+3 1.621810-3 3.150240+3 1.840772-3 2.557601+3 2.089296-3 2.060577+3 2.371374-3 1.647690+3 2.691535-3 1.307943+3 3.054921-3 1.030873+3 3.467369-3 8.068875+2 3.935501-3 6.271539+2 4.466836-3 4.841040+2 5.069907-3 3.710913+2 5.754399-3 2.824780+2 6.531306-3 2.135175+2 7.413102-3 1.602589+2 8.413951-3 1.194391+2 9.549926-3 8.838881+1 1.071519-2 6.678691+1 1.230269-2 4.733426+1 1.428894-2 3.233977+1 1.717908-2 2.010272+1 1.949845-2 1.440248+1 2.162719-2 1.088755+1 2.454709-2 7.676639+0 2.818383-2 5.203249+0 3.349654-2 3.172090+0 3.935501-2 1.983121+0 4.677351-2 1.189558+0 5.559043-2 7.081894-1 6.918310-2 3.640088-1 9.225714-2 1.502242-1 1.513561-1 3.251744-2 1.883649-1 1.664549-2 2.264644-1 9.537198-3 2.630268-1 6.106333-3 3.019952-1 4.073154-3 3.427678-1 2.828560-3 3.890451-1 1.978588-3 4.365158-1 1.440086-3 4.897788-1 1.055761-3 5.495409-1 7.798769-4 6.095369-1 5.979142-4 6.760830-1 4.616139-4 7.498942-1 3.589728-4 8.609938-1 2.590276-4 9.225714-1 2.213474-4 9.885531-1 1.904579-4 1.071519+0 1.612824-4 1.174898+0 1.343778-4 1.288250+0 1.127954-4 1.428894+0 9.335567-5 1.698244+0 6.870449-5 1.927525+0 5.525968-5 2.187762+0 4.479742-5 2.483133+0 3.657989-5 2.851018+0 2.954700-5 3.311311+0 2.363423-5 3.845918+0 1.905120-5 4.518559+0 1.522520-5 5.370318+0 1.207150-5 6.382635+0 9.644286-6 7.852356+0 7.430970-6 9.549926+0 5.854585-6 1.188502+1 4.520834-6 1.479108+1 3.514957-6 1.883649+1 2.678962-6 2.540973+1 1.929732-6 3.507519+1 1.365924-6 5.308844+1 8.834516-7 9.015711+1 5.114435-7 1.757924+2 2.591016-7 3.507519+2 1.290745-7 1.396368+3 3.225568-8 1.000000+5 4.49680-10 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.224000-5 3.224000-5 1.000000+5 3.224000-5 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.224000-5 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.759000-5 1.792660+7 2.820000-5 1.602896+7 2.884032-5 1.436563+7 2.970000-5 1.254044+7 3.054921-5 1.107430+7 3.162278-5 9.566474+6 3.311311-5 7.927678+6 3.548134-5 6.034667+6 4.168694-5 3.236355+6 4.731513-5 1.994013+6 5.128614-5 1.474637+6 5.495409-5 1.146843+6 5.821032-5 9.363464+5 6.165950-5 7.700084+5 6.500000-5 6.482920+5 6.839116-5 5.532629+5 7.161434-5 4.825986+5 7.500000-5 4.238040+5 7.852356-5 3.752886+5 8.150000-5 3.420440+5 8.511380-5 3.090556+5 8.900000-5 2.805312+5 9.300000-5 2.568768+5 9.660509-5 2.393485+5 1.011579-4 2.211109+5 1.060000-4 2.053088+5 1.122018-4 1.889881+5 1.194100-4 1.739380+5 1.273503-4 1.607460+5 1.380384-4 1.467676+5 1.513561-4 1.333035+5 2.264644-4 9.004521+4 2.660725-4 7.650255+4 3.090295-4 6.531050+4 3.507519-4 5.677811+4 4.027170-4 4.839445+4 4.623810-4 4.095921+4 5.308844-4 3.440444+4 6.095369-4 2.869240+4 7.000000-4 2.373324+4 7.943282-4 1.982466+4 9.015711-4 1.645143+4 1.023293-3 1.355843+4 1.161449-3 1.109833+4 1.318257-3 9.022030+3 1.500000-3 7.251520+3 1.698244-3 5.836725+3 1.927525-3 4.644821+3 2.187762-3 3.670372+3 2.483133-3 2.880116+3 2.818383-3 2.244344+3 3.198895-3 1.736874+3 3.630781-3 1.334941+3 4.120975-3 1.019026+3 4.677351-3 7.725942+2 5.370318-3 5.667986+2 6.095369-3 4.236131+2 6.918310-3 3.143267+2 7.852356-3 2.315604+2 8.912509-3 1.693616+2 1.011579-2 1.229758+2 1.148154-2 8.864086+1 1.303167-2 6.342622+1 1.479108-2 4.506579+1 1.698244-2 3.080673+1 1.949845-2 2.089458+1 2.238721-2 1.406197+1 2.570396-2 9.393478+0 2.951209-2 6.230430+0 3.427678-2 3.961509+0 3.981072-2 2.500143+0 4.677351-2 1.511558+0 5.432503-2 9.408742-1 6.606934-2 5.019337-1 8.317638-2 2.376400-1 1.071519-1 1.036640-1 1.513561-1 3.334238-2 1.840772-1 1.764215-2 2.213095-1 9.763532-3 2.540973-1 6.307980-3 2.884032-1 4.255652-3 3.235937-1 2.995577-3 3.630781-1 2.124014-3 4.027170-1 1.569646-3 4.466836-1 1.168642-3 4.954502-1 8.766826-4 5.495409-1 6.629067-4 6.025596-1 5.206447-4 6.606935-1 4.117151-4 7.244360-1 3.277953-4 8.035261-1 2.556893-4 8.709636-1 2.114992-4 9.332543-1 1.809005-4 1.000000+0 1.558600-4 1.083927+0 1.321289-4 1.188502+0 1.101948-4 1.303167+0 9.258160-5 1.462177+0 7.511724-5 1.717908+0 5.646034-5 1.949845+0 4.544264-5 2.213095+0 3.686340-5 2.511886+0 3.011954-5 2.884032+0 2.434399-5 3.349654+0 1.948458-5 3.890451+0 1.571547-5 4.570882+0 1.256622-5 5.432503+0 9.968578-6 6.456542+0 7.968299-6 7.852356+0 6.230537-6 9.549926+0 4.908834-6 1.188502+1 3.790585-6 1.479108+1 2.947159-6 1.883649+1 2.246191-6 2.540973+1 1.618001-6 3.507519+1 1.145286-6 5.308844+1 7.407366-7 9.015711+1 4.288182-7 1.737801+2 2.197930-7 3.467369+2 1.094814-7 1.380384+3 2.735888-8 1.000000+5 3.77040-10 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.759000-5 2.759000-5 1.000000+5 2.759000-5 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.759000-5 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.290000-6 3.878440+6 5.688529-6 2.825191+6 6.237348-6 1.876550+6 6.760830-6 1.302121+6 7.328245-6 8.967814+5 7.943282-6 6.130313+5 8.609938-6 4.156559+5 9.332543-6 2.797029+5 1.148154-5 9.918339+4 1.202264-5 7.914506+4 1.250000-5 6.573900+4 1.290000-5 5.686900+4 1.333521-5 4.914492+4 1.375300-5 4.323998+4 1.412538-5 3.898016+4 1.450000-5 3.547400+4 1.480000-5 3.313700+4 1.515000-5 3.085320+4 1.550000-5 2.897860+4 1.584893-5 2.744929+4 1.621810-5 2.614106+4 1.659587-5 2.507788+4 1.698244-5 2.422979+4 1.737801-5 2.357024+4 1.778279-5 2.307542+4 1.819701-5 2.272386+4 1.870000-5 2.246720+4 1.927525-5 2.235283+4 2.000000-5 2.241080+4 2.070000-5 2.261740+4 2.166500-5 2.305577+4 2.344229-5 2.407798+4 2.630268-5 2.571767+4 2.818383-5 2.659739+4 3.019952-5 2.733095+4 3.235937-5 2.788404+4 3.450000-5 2.820420+4 3.672823-5 2.832051+4 3.900000-5 2.824180+4 4.168694-5 2.795081+4 4.466836-5 2.744446+4 4.786301-5 2.673559+4 5.128614-5 2.584389+4 5.500000-5 2.478780+4 5.956621-5 2.345885+4 6.456542-5 2.201756+4 7.079458-5 2.030829+4 7.852356-5 1.840607+4 8.810489-5 1.637037+4 1.011579-4 1.412199+4 1.273503-4 1.091785+4 1.603245-4 8.391874+3 1.819701-4 7.210766+3 2.018366-4 6.329868+3 2.264644-4 5.421395+3 2.630268-4 4.394472+3 3.935501-4 2.474164+3 4.786301-4 1.858262+3 6.683439-4 1.124861+3 7.852356-4 8.780504+2 1.035142-3 5.672120+2 1.258925-3 4.129534+2 1.513561-3 3.040866+2 2.065380-3 1.766243+2 2.600160-3 1.182395+2 3.054921-3 8.876614+1 3.672823-3 6.333747+1 4.466836-3 4.389833+1 5.688529-3 2.765964+1 6.918310-3 1.889653+1 8.413951-3 1.281516+1 1.023293-2 8.624296+0 1.230269-2 5.896831+0 1.479108-2 4.001588+0 1.778279-2 2.693985+0 2.113489-2 1.845478+0 2.511886-2 1.255035+0 3.000000-2 8.376800-1 3.548134-2 5.672588-1 4.216965-2 3.769228-1 5.011872-2 2.485397-1 5.956621-2 1.625753-1 7.161434-2 1.025606-1 8.413951-2 6.809505-2 1.035142-1 3.987925-2 1.333521-1 2.055795-2 2.371374-1 4.478492-3 2.917427-1 2.602370-3 3.467369-1 1.666404-3 4.027170-1 1.140795-3 4.570882-1 8.336256-4 5.188000-1 6.135176-4 5.821032-1 4.674963-4 6.531306-1 3.589021-4 7.328245-1 2.776486-4 8.222427-1 2.164760-4 9.120108-1 1.742418-4 1.011579+0 1.412751-4 1.174898+0 1.052894-4 1.318257+0 8.451363-5 1.496236+0 6.687837-5 1.678804+0 5.447741-5 1.905461+0 4.380989-5 2.162719+0 3.549605-5 2.454709+0 2.896647-5 2.818383+0 2.338197-5 3.273407+0 1.869095-5 3.801894+0 1.505768-5 4.415704+0 1.221886-5 5.248075+0 9.678067-6 6.237348+0 7.724062-6 7.585776+0 6.031552-6 9.225714+0 4.745685-6 1.148154+1 3.660174-6 1.428894+1 2.842812-6 1.819701+1 2.164710-6 2.483133+1 1.538356-6 3.467369+1 1.075234-6 5.248075+1 6.952621-7 8.912509+1 4.024180-7 1.737801+2 2.038433-7 3.467369+2 1.015373-7 1.380384+3 2.537332-8 1.000000+5 3.49680-10 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.290000-6 5.290000-6 1.000000+5 5.290000-6 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.290000-6 0.0 1.000000+5 1.000000+5 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.211330-7 1.026600+0 1.023650-6 1.027100+0 1.392690-6 1.027500+0 1.744330-6 1.028100+0 2.374880-6 1.028750+0 3.211330-6 1.029500+0 4.394790-6 1.030100+0 5.526980-6 1.031000+0 7.562790-6 1.032000+0 1.034780-5 1.033200+0 1.449550-5 1.034000+0 1.779460-5 1.035300+0 2.415360-5 1.036640+0 3.211330-5 1.038200+0 4.333790-5 1.039700+0 5.630460-5 1.041500+0 7.491260-5 1.043800+0 1.039810-4 1.046400+0 1.446700-4 1.048300+0 1.801180-4 1.051200+0 2.443270-4 1.054080+0 3.211330-4 1.057700+0 4.377260-4 1.061100+0 5.693740-4 1.065100+0 7.537920-4 1.070400+0 1.051620-3 1.076200+0 1.453350-3 1.080600+0 1.814990-3 1.087100+0 2.445380-3 1.093710+0 3.211330-3 1.102600+0 4.452260-3 1.110700+0 5.806290-3 1.120600+0 7.766470-3 1.133300+0 1.079780-2 1.147500+0 1.490750-2 1.158200+0 1.852610-2 1.174100+0 2.476300-2 1.190110+0 3.211330-2 1.205100+0 3.998760-2 1.227500+0 5.353480-2 1.250000+0 6.914000-2 1.265600+0 8.099060-2 1.294900+0 1.052530-1 1.320600+0 1.283820-1 1.343000+0 1.497060-1 1.382200+0 1.891670-1 1.433800+0 2.443630-1 1.500000+0 3.199000-1 1.562500+0 3.964620-1 1.617200+0 4.673990-1 1.712900+0 5.988800-1 1.838500+0 7.819340-1 1.946200+0 9.438580-1 2.000000+0 1.025000+0 2.044000+0 1.091000+0 2.163500+0 1.269330+0 2.372600+0 1.576630+0 2.647100+0 1.966610+0 3.000000+0 2.443000+0 3.500000+0 3.071560+0 4.000000+0 3.651000+0 4.750000+0 4.437480+0 5.000000+0 4.680000+0 6.000000+0 5.564000+0 7.000000+0 6.346000+0 8.000000+0 7.048000+0 9.000000+0 7.686000+0 1.000000+1 8.271000+0 1.100000+1 8.812000+0 1.200000+1 9.314000+0 1.300000+1 9.784000+0 1.400000+1 1.022000+1 1.500000+1 1.062000+1 1.600000+1 1.100000+1 1.800000+1 1.168000+1 2.000000+1 1.228000+1 2.200000+1 1.283000+1 2.400000+1 1.333000+1 2.600000+1 1.379000+1 2.800000+1 1.421000+1 3.000000+1 1.459000+1 4.000000+1 1.617000+1 5.000000+1 1.734000+1 6.000000+1 1.824000+1 8.000000+1 1.958000+1 1.000000+2 2.053000+1 1.500000+2 2.203000+1 2.000000+2 2.293000+1 3.000000+2 2.397000+1 4.000000+2 2.456000+1 5.000000+2 2.496000+1 6.000000+2 2.524000+1 8.000000+2 2.561000+1 1.000000+3 2.585000+1 1.500000+3 2.620000+1 2.000000+3 2.639000+1 3.000000+3 2.659000+1 4.000000+3 2.670000+1 5.000000+3 2.677000+1 6.000000+3 2.682000+1 8.000000+3 2.688000+1 1.000000+4 2.692000+1 1.500000+4 2.698000+1 2.000000+4 2.701000+1 3.000000+4 2.704000+1 4.000000+4 2.706000+1 5.000000+4 2.707000+1 6.000000+4 2.707000+1 8.000000+4 2.708000+1 1.000000+5 2.709000+1 1 65000 7 8 1.589240+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.513190-7 2.094700+0 1.146670-6 2.099900+0 1.525480-6 2.106600+0 2.122070-6 2.114000+0 2.936150-6 2.119500+0 3.655490-6 2.127900+0 4.957530-6 2.136250+0 6.513190-6 2.147000+0 8.930040-6 2.156900+0 1.159900-5 2.169000+0 1.547970-5 2.184500+0 2.151720-5 2.201800+0 2.976970-5 2.214800+0 3.709080-5 2.234200+0 4.989360-5 2.253680+0 6.513190-5 2.281500+0 9.122870-5 2.307000+0 1.198290-4 2.338200+0 1.611200-4 2.377400+0 2.231310-4 2.410200+0 2.837860-4 2.446800+0 3.609910-4 2.485900+0 4.545080-4 2.532900+0 5.816730-4 2.556430+0 6.513190-4 2.611900+0 8.305080-4 2.660400+0 1.004040-3 2.745300+0 1.343860-3 2.809000+0 1.627490-3 2.904500+0 2.096620-3 3.000000+0 2.617000-3 3.125000+0 3.374390-3 3.234400+0 4.105660-3 3.425800+0 5.528140-3 3.569300+0 6.702710-3 3.784700+0 8.614910-3 4.000000+0 1.067000-2 4.250000+0 1.318190-2 4.625000+0 1.712840-2 5.000000+0 2.123000-2 5.500000+0 2.685830-2 6.000000+0 3.256000-2 6.750000+0 4.104030-2 7.000000+0 4.383000-2 8.000000+0 5.474000-2 9.000000+0 6.516000-2 1.000000+1 7.504000-2 1.100000+1 8.439000-2 1.200000+1 9.319000-2 1.300000+1 1.015000-1 1.400000+1 1.093000-1 1.500000+1 1.168000-1 1.600000+1 1.239000-1 1.800000+1 1.369000-1 2.000000+1 1.488000-1 2.200000+1 1.597000-1 2.400000+1 1.696000-1 2.600000+1 1.788000-1 2.800000+1 1.873000-1 3.000000+1 1.952000-1 4.000000+1 2.278000-1 5.000000+1 2.524000-1 6.000000+1 2.718000-1 8.000000+1 3.010000-1 1.000000+2 3.221000-1 1.500000+2 3.568000-1 2.000000+2 3.784000-1 3.000000+2 4.048000-1 4.000000+2 4.206000-1 5.000000+2 4.314000-1 6.000000+2 4.393000-1 8.000000+2 4.502000-1 1.000000+3 4.574000-1 1.500000+3 4.682000-1 2.000000+3 4.744000-1 3.000000+3 4.811000-1 4.000000+3 4.851000-1 5.000000+3 4.875000-1 6.000000+3 4.892000-1 8.000000+3 4.915000-1 1.000000+4 4.929000-1 1.500000+4 4.949000-1 2.000000+4 4.960000-1 3.000000+4 4.971000-1 4.000000+4 4.978000-1 5.000000+4 4.983000-1 6.000000+4 4.985000-1 8.000000+4 4.988000-1 1.000000+5 4.990000-1 1 65000 7 8 1.589240+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 65000 7 9 1.589240+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.500000+1 1.000000+5 6.500000+1 5.000000+5 6.496000+1 1.000000+6 6.491300+1 1.375000+6 6.487160+1 1.500000+6 6.485100+1 1.875000+6 6.476960+1 2.000000+6 6.473800+1 2.375000+6 6.463330+1 2.500000+6 6.459500+1 2.875000+6 6.446890+1 3.000000+6 6.442300+1 3.437500+6 6.424880+1 3.812500+6 6.408280+1 4.000000+6 6.400600+1 4.437500+6 6.380500+1 4.812500+6 6.362230+1 5.000000+6 6.352700+1 5.500000+6 6.324700+1 5.875000+6 6.302160+1 6.437500+6 6.267770+1 6.500000+6 6.264030+1 7.000000+6 6.232400+1 7.500000+6 6.199870+1 8.250000+6 6.151320+1 9.000000+6 6.101600+1 1.000000+7 6.033800+1 1.250000+7 5.863900+1 1.500000+7 5.690900+1 1.750000+7 5.522200+1 2.000000+7 5.351500+1 2.250000+7 5.179030+1 2.375000+7 5.092860+1 2.500000+7 5.008300+1 2.875000+7 4.759330+1 3.000000+7 4.679300+1 3.437500+7 4.408530+1 3.500000+7 4.371650+1 4.000000+7 4.091900+1 4.500000+7 3.839850+1 5.000000+7 3.610600+1 5.500000+7 3.399830+1 5.750000+7 3.300110+1 6.000000+7 3.204200+1 6.750000+7 2.934980+1 7.000000+7 2.851900+1 7.750000+7 2.620710+1 8.000000+7 2.550100+1 9.000000+7 2.298400+1 1.000000+8 2.093200+1 1.125000+8 1.891580+1 1.187500+8 1.808970+1 1.250000+8 1.735900+1 1.437500+8 1.559350+1 1.500000+8 1.509700+1 1.625000+8 1.417220+1 1.718800+8 1.350230+1 1.812500+8 1.283240+1 1.815400+8 1.281160+1 1.881300+8 1.233330+1 1.960400+8 1.175130+1 2.000000+8 1.145600+1 2.062500+8 1.098810+1 2.250000+8 9.685790+0 2.335900+8 9.179860+0 2.445300+8 8.638070+0 2.500000+8 8.410800+0 2.625000+8 7.986060+0 2.812500+8 7.437360+0 2.906300+8 7.150310+0 2.976600+8 6.916670+0 3.000000+8 6.835400+0 3.062500+8 6.607580+0 3.335900+8 5.660350+0 3.418000+8 5.439320+0 3.500000+8 5.260100+0 3.562500+8 5.153360+0 3.671900+8 5.011250+0 4.000000+8 4.715800+0 4.125000+8 4.591960+0 4.234400+8 4.473190+0 4.425800+8 4.253790+0 4.712900+8 3.926000+0 4.750000+8 3.885000+0 5.000000+8 3.627200+0 5.500000+8 3.188750+0 5.750000+8 2.985700+0 5.937500+8 2.834270+0 6.000000+8 2.783700+0 6.625000+8 2.318450+0 6.812500+8 2.211060+0 7.000000+8 2.123000+0 8.000000+8 1.824300+0 8.125000+8 1.784330+0 1.000000+9 1.226800+0 1.031300+9 1.174970+0 1.060500+9 1.136630+0 1.100900+9 1.095530+0 1.137900+9 1.066840+0 1.183200+9 1.039600+0 1.352100+9 9.688710-1 1.426100+9 9.374240-1 1.481500+9 9.099560-1 1.500000+9 8.999300-1 1.560500+9 8.638470-1 1.615500+9 8.282350-1 1.686000+9 7.807710-1 1.764500+9 7.277760-1 1.823400+9 6.890190-1 1.911700+9 6.337350-1 2.000000+9 5.827500-1 2.139200+9 5.116700-1 2.272600+9 4.530340-1 2.443000+9 3.894410-1 2.602800+9 3.393860-1 2.825100+9 2.821390-1 2.961100+9 2.529260-1 3.215900+9 2.075560-1 3.438900+9 1.758570-1 3.500000+9 1.682260-1 3.634100+9 1.528920-1 3.975600+9 1.209890-1 4.231700+9 1.023650-1 4.615800+9 8.064450-2 5.000000+9 6.437900-2 5.539100+9 4.787610-2 5.990200+9 3.799310-2 6.708000+9 2.704300-2 8.000000+9 1.579800-2 1.00000+10 7.963500-3 1.27030+10 3.836790-3 1.70630+10 1.571230-3 2.16210+10 7.722700-4 2.93940+10 3.095860-4 3.82190+10 1.425920-4 5.26990+10 5.560670-5 6.95920+10 2.475300-5 1.00000+11 8.677200-6 1.34280+11 3.719970-6 2.20600+11 9.018760-7 4.19930+11 1.459850-7 1.03480+12 1.169510-8 3.24440+12 4.94745-10 1.00000+14 4.17230-14 2.05350+15 1.02546-17 1.00000+17 2.17880-22 1 65000 7 0 1.589240+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.02000-11 1.000000+2 1.020000-9 1.000000+3 1.020000-7 1.000000+4 1.020000-5 1.000000+5 1.020000-3 5.000000+5 2.550000-2 1.000000+6 1.020000-1 1.375000+6 1.909180-1 1.500000+6 2.263000-1 1.875000+6 3.483200-1 2.000000+6 3.941000-1 2.375000+6 5.453990-1 2.500000+6 6.002000-1 2.875000+6 7.759630-1 3.000000+6 8.381000-1 3.437500+6 1.067180+0 3.812500+6 1.275560+0 4.000000+6 1.383100+0 4.437500+6 1.639890+0 4.812500+6 1.864570+0 5.000000+6 1.978000+0 5.500000+6 2.280720+0 5.875000+6 2.507150+0 6.437500+6 2.843250+0 6.500000+6 2.880120+0 7.000000+6 3.172600+0 7.500000+6 3.458030+0 8.250000+6 3.874460+0 9.000000+6 4.278300+0 1.000000+7 4.802000+0 1.250000+7 6.088300+0 1.500000+7 7.387000+0 1.750000+7 8.693600+0 2.000000+7 9.979000+0 2.250000+7 1.122660+1 2.375000+7 1.183590+1 2.500000+7 1.243600+1 2.875000+7 1.418260+1 3.000000+7 1.474800+1 3.437500+7 1.665350+1 3.500000+7 1.691520+1 4.000000+7 1.891400+1 4.500000+7 2.072540+1 5.000000+7 2.237700+1 5.500000+7 2.389450+1 5.750000+7 2.461490+1 6.000000+7 2.531500+1 6.750000+7 2.731720+1 7.000000+7 2.796100+1 7.750000+7 2.981520+1 8.000000+7 3.041400+1 9.000000+7 3.270300+1 1.000000+8 3.484200+1 1.125000+8 3.731410+1 1.187500+8 3.846110+1 1.250000+8 3.955300+1 1.437500+8 4.245970+1 1.500000+8 4.331500+1 1.625000+8 4.485600+1 1.718800+8 4.588750+1 1.812500+8 4.683290+1 1.815400+8 4.686110+1 1.881300+8 4.747450+1 1.960400+8 4.816470+1 2.000000+8 4.849300+1 2.062500+8 4.898620+1 2.250000+8 5.033580+1 2.335900+8 5.089540+1 2.445300+8 5.156160+1 2.500000+8 5.188000+1 2.625000+8 5.256200+1 2.812500+8 5.349300+1 2.906300+8 5.392400+1 2.976600+8 5.423410+1 3.000000+8 5.433500+1 3.062500+8 5.459490+1 3.335900+8 5.564990+1 3.418000+8 5.593880+1 3.500000+8 5.622200+1 3.562500+8 5.642460+1 3.671900+8 5.677250+1 4.000000+8 5.773100+1 4.125000+8 5.805840+1 4.234400+8 5.833840+1 4.425800+8 5.879460+1 4.712900+8 5.941450+1 4.750000+8 5.948780+1 5.000000+8 5.996400+1 5.500000+8 6.076650+1 5.750000+8 6.110760+1 5.937500+8 6.134140+1 6.000000+8 6.141500+1 6.625000+8 6.203600+1 6.812500+8 6.218590+1 7.000000+8 6.233200+1 8.000000+8 6.292400+1 8.125000+8 6.298060+1 1.000000+9 6.364100+1 1.031300+9 6.371980+1 1.060500+9 6.379130+1 1.100900+9 6.388720+1 1.137900+9 6.396870+1 1.183200+9 6.405750+1 1.352100+9 6.433200+1 1.426100+9 6.442310+1 1.481500+9 6.448710+1 1.500000+9 6.450800+1 1.560500+9 6.456350+1 1.615500+9 6.461220+1 1.686000+9 6.466250+1 1.764500+9 6.471430+1 1.823400+9 6.475030+1 1.911700+9 6.479210+1 2.000000+9 6.483200+1 2.139200+9 6.487810+1 2.272600+9 6.491120+1 2.443000+9 6.494510+1 2.602800+9 6.496850+1 2.825100+9 6.498630+1 2.961100+9 6.499650+1 3.215900+9 6.500770+1 3.438900+9 6.500790+1 3.500000+9 6.500800+1 3.634100+9 6.500810+1 3.975600+9 6.500850+1 4.231700+9 6.500820+1 4.615800+9 6.500340+1 5.000000+9 6.499900+1 5.539100+9 6.499920+1 5.990200+9 6.499940+1 6.708000+9 6.499960+1 8.000000+9 6.500000+1 1.00000+10 6.500000+1 1.27030+10 6.500000+1 1.70630+10 6.500000+1 2.16210+10 6.500000+1 2.93940+10 6.500000+1 3.82190+10 6.500000+1 5.26990+10 6.500000+1 6.95920+10 6.500000+1 1.00000+11 6.500000+1 1.34280+11 6.500000+1 2.20600+11 6.500000+1 4.19930+11 6.500000+1 1.03480+12 6.500000+1 3.24440+12 6.500000+1 1.00000+14 6.500000+1 2.05350+15 6.500000+1 1.00000+17 6.500000+1 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.593000-6 0.0 1.596921-6 1.657508-7 1.600842-6 3.279751-7 1.604763-6 5.990733-7 1.608684-6 1.010120-6 1.612605-6 1.572243-6 1.616526-6 2.259022-6 1.620447-6 2.996229-6 1.624368-6 3.668458-6 1.628289-6 4.146159-6 1.632210-6 4.325758-6 1.636131-6 4.166127-6 1.640052-6 3.703878-6 1.643973-6 3.039729-6 1.651815-6 1.610472-6 1.655736-6 1.039664-6 1.659657-6 6.195656-7 1.663578-6 3.408281-7 1.667499-6 1.730763-7 1.671420-6 0.0 1.853986-6 0.0 1.858550-6 4.535539-7 1.863113-6 8.974581-7 1.867677-6 1.639281-6 1.872240-6 2.764052-6 1.876803-6 4.302224-6 1.881367-6 6.181498-6 1.885930-6 8.198763-6 1.890493-6 1.003822-5 1.895057-6 1.134538-5 1.899620-6 1.183683-5 1.904183-6 1.140002-5 1.908747-6 1.013515-5 1.913310-6 8.317794-6 1.922437-6 4.406831-6 1.927000-6 2.844897-6 1.931563-6 1.695355-6 1.936127-6 9.326286-7 1.940690-6 4.735991-7 1.945254-6 0.0 2.273149-6 0.0 2.281542-6 3.081592+0 2.284339-6 4.095759+0 2.289935-6 7.481239+0 2.295530-6 1.261440+1 2.301824-6 2.070401+1 2.311528-6 3.611967+1 2.318609-6 4.655592+1 2.324019-6 5.198277+1 2.329693-6 5.380935+1 2.335542-6 5.115511+1 2.341121-6 4.502450+1 2.349673-6 3.173521+1 2.357075-6 2.011160+1 2.363020-6 1.265619+1 2.368265-6 7.737147+0 2.373861-6 4.256268+0 2.381903-6 1.217027+0 2.385051-6 0.0 2.437680-6 0.0 2.448180-6 7.377302+0 2.449680-6 8.420448+0 2.455680-6 1.538064+1 2.462055-6 2.683382+1 2.468430-6 4.256525+1 2.479126-6 7.517484+1 2.486055-6 9.494900+1 2.492651-6 1.071936+2 2.498114-6 1.107643+2 2.504231-6 1.058743+2 2.510758-6 9.203570+1 2.520204-6 6.378782+1 2.527680-6 4.134733+1 2.533680-6 2.669240+1 2.539680-6 1.590676+1 2.545680-6 8.750438+0 2.554680-6 2.224397+0 2.557680-6 0.0 3.293905-6 0.0 3.302012-6 3.58086-15 3.310120-6 7.08553-15 3.318227-6 1.29423-14 3.326335-6 2.18225-14 3.334442-6 3.39665-14 3.342550-6 4.88036-14 3.350657-6 6.47301-14 3.358765-6 7.92528-14 3.366872-6 8.95730-14 3.374980-6 9.34531-14 3.383088-6 9.00044-14 3.391195-6 8.00181-14 3.399303-6 6.56699-14 3.415518-6 3.47924-14 3.423625-6 2.24608-14 3.431733-6 1.33850-14 3.439840-6 7.36320-15 3.447948-6 3.73912-15 3.456055-6 0.0 3.843653-6 0.0 3.860210-6 1.019557-1 3.862575-6 1.163722-1 3.872035-6 2.125659-1 3.881496-6 3.584175-1 3.890957-6 5.578782-1 3.894046-6 6.408434-1 3.914566-6 1.670677+0 3.924938-6 2.321239+0 3.935536-6 3.110421+0 3.960987-6 5.210801+0 3.971170-6 5.880386+0 3.981878-6 6.236667+0 3.990339-6 6.219794+0 4.000080-6 5.788393+0 4.012759-6 4.710425+0 4.035264-6 2.376354+0 4.037662-6 2.145229+0 4.047246-6 1.384883+0 4.056830-6 8.252894-1 4.066415-6 4.539968-1 4.080791-6 1.154076-1 4.085583-6 0.0 4.336532-6 0.0 4.336551-6 1.09657-14 4.347225-6 1.40340-11 4.357899-6 2.77661-11 4.368573-6 5.07115-11 4.379247-6 8.54979-11 4.389921-6 1.33064-10 4.405777-6 2.21420-10 4.427678-6 2.563271-2 4.439314-6 1.112852-1 4.449475-6 1.945814-1 4.460373-6 3.339276-1 4.471934-6 5.475443-1 4.485873-6 8.849106-1 4.507333-6 1.453265+0 4.515427-6 1.633229+0 4.526300-6 1.781110+0 4.538532-6 1.787135+0 4.548047-6 1.688405+0 4.561638-6 1.393205+0 4.586103-6 7.420861-1 4.591540-6 6.054309-1 4.602413-6 3.860731-1 4.613286-6 2.268723-1 4.623845-6 1.201488-1 4.640519-6 2.871636-2 4.645642-6 8.04924-12 4.658214-6 1.77364-11 4.669624-6 3.23936-11 4.672249-6 3.74944-11 4.683749-6 4.873968-3 4.695274-6 3.424589-2 4.706802-6 6.631947-2 4.718331-6 1.186821-1 4.729859-6 1.962638-1 4.741388-6 2.999178-1 4.770209-6 6.093614-1 4.775973-6 6.662549-1 4.787502-6 7.422154-1 4.799030-6 7.639532-1 4.810558-6 7.264980-1 4.825596-6 6.052356-1 4.850163-6 3.690026-1 4.856844-6 3.144898-1 4.868201-6 2.507277-1 4.873923-6 2.351025-1 4.880462-6 2.254927-1 4.891258-6 2.353885-1 4.914534-6 3.089659-1 4.921788-6 3.501275-1 4.933873-6 4.000768-1 4.945958-6 4.250420-1 4.958042-6 4.253111-1 5.004598-6 3.456726-1 5.038010-6 3.427964-1 5.054719-6 3.446583-1 5.117158-6 3.317554-1 5.190254-6 3.071934-1 5.235098-6 2.831972-1 5.272538-6 2.813101-1 5.320710-6 2.862550-1 5.815356-6 2.133211-1 5.909505-6 2.019003-1 5.938596-6 9.698532-1 5.953142-6 1.605746+0 5.968596-6 2.653080+0 5.983142-6 3.991646+0 6.010149-6 7.096321+0 6.026324-6 8.850693+0 6.042634-6 1.000166+1 6.056502-6 1.031854+1 6.070841-6 9.881764+0 6.086665-6 8.612524+0 6.109562-6 6.022761+0 6.127687-6 3.965491+0 6.142233-6 2.621708+0 6.156778-6 1.632340+0 6.171324-6 9.754054-1 6.198597-6 2.222215-1 6.200415-6 1.710704-1 6.515002-6 1.437526-1 6.547660-6 7.378078-1 6.563853-6 1.231372+0 6.579646-6 1.953326+0 6.596547-6 3.019959+0 6.644117-6 6.655003+0 6.661024-6 7.487346+0 6.676832-6 7.743994+0 6.692398-6 7.435953+0 6.709025-6 6.548682+0 6.755539-6 2.970054+0 6.771575-6 1.961114+0 6.787611-6 1.232455+0 6.803647-6 7.585092-1 6.826022-6 3.802858-1 6.835718-6 2.240311-1 6.842701-6 2.447589-1 6.859379-6 3.127529-1 6.909414-6 5.670646-1 6.926092-6 6.246913-1 6.942770-6 6.457104-1 6.959448-6 6.251379-1 6.976126-6 5.674045-1 7.026161-6 3.074249-1 7.042839-6 2.363808-1 7.059518-6 1.838871-1 7.076196-6 1.487530-1 7.109552-6 1.050894-1 7.513930-6 8.577340-2 7.933321-6 7.008166-2 7.972375-6 1.045840-1 7.991902-6 1.335482-1 8.011429-6 1.778162-1 8.030956-6 2.385811-1 8.080217-6 4.279932-1 8.093610-6 4.763625-1 8.111990-6 5.200531-1 8.131477-6 5.335847-1 8.150964-6 5.108065-1 8.171381-6 4.532190-1 8.228912-6 2.282428-1 8.245751-6 1.740138-1 8.265278-6 1.276069-1 8.284805-6 9.663607-2 8.323859-6 5.835130-2 8.479752-6 5.435336-2 8.521495-6 6.682700-2 8.542367-6 7.748550-2 8.563239-6 9.389860-2 8.584111-6 1.165239-1 8.646726-6 2.012523-1 8.667598-6 2.204275-1 8.691305-6 2.264033-1 8.712697-6 2.172172-1 8.746465-6 1.802650-1 8.783593-6 1.336067-1 8.797872-6 1.260388-1 8.815898-6 1.223103-1 8.827638-6 1.241424-1 8.848494-6 1.403970-1 8.867159-6 1.697072-1 8.891692-6 2.231028-1 8.940778-6 3.647326-1 8.959834-6 4.105660-1 8.981410-6 4.438188-1 9.002986-6 4.519196-1 9.024561-6 4.339641-1 9.049738-6 3.872411-1 9.110863-6 2.409306-1 9.132439-6 2.005979-1 9.154014-6 1.703688-1 9.172957-6 1.511912-1 9.217658-6 1.259392-1 9.299149-6 1.198129-1 9.347466-6 1.132809-1 9.412634-6 1.140383-1 9.436970-6 1.217632-1 9.462196-6 1.358975-1 9.531234-6 1.955893-1 9.552039-6 2.099895-1 9.573720-6 2.181488-1 9.596391-6 2.175848-1 9.623558-6 2.077870-1 9.684391-6 1.712805-1 9.707692-6 1.626888-1 9.730367-6 1.596157-1 9.753355-6 1.616645-1 9.842109-6 1.828774-1 9.866275-6 1.847616-1 9.966637-6 1.773206-1 1.015908-5 1.725437-1 1.032505-5 1.545506-1 1.037581-5 1.533502-1 1.054103-5 1.669699-1 1.065860-5 1.682048-1 1.171521-5 1.618547-1 1.297237-5 1.654649-1 1.452673-5 1.835612-1 1.611900-5 2.160852-1 1.792903-5 2.696980-1 1.993984-5 3.498724-1 2.237153-5 4.772451-1 2.335953-5 5.393886-1 2.347453-5 2.496939+0 2.353202-5 4.112502+0 2.358952-5 6.560080+0 2.362051-5 8.361409+0 2.364702-5 1.378557+1 2.373679-5 3.331363+1 2.379493-5 5.146551+1 2.386033-5 7.980009+1 2.391985-5 1.118499+2 2.404949-5 1.897051+2 2.412272-5 2.216888+2 2.415355-5 2.297417+2 2.421283-5 2.316085+2 2.426929-5 2.177708+2 2.433124-5 1.872368+2 2.449259-5 8.371254+1 2.455073-5 5.406909+1 2.460887-5 3.247596+1 2.466701-5 1.815018+1 2.476652-5 3.206887+0 2.478329-5 6.367250-1 2.506047-5 6.576102-1 2.518383-5 9.106866-1 2.524552-5 1.116840+0 2.530720-5 1.427014+0 2.536888-5 1.849473+0 2.555393-5 3.422022+0 2.561562-5 3.781928+0 2.564440-5 3.856163+0 2.567730-5 4.168535+0 2.575481-5 4.526197+0 2.583376-5 4.885558+0 2.589688-5 5.499976+0 2.596000-5 6.530369+0 2.610119-5 1.009279+1 2.614936-5 1.139614+1 2.622037-5 1.279572+1 2.628349-5 1.336000+1 2.634370-5 1.318966+1 2.645615-5 1.150130+1 2.659208-5 9.176474+0 2.667141-5 8.476355+0 2.675635-5 8.327599+0 2.707794-5 8.627019+0 2.755150-5 7.984357+0 2.793746-5 7.592723+0 2.807498-5 1.689629+1 2.815049-5 2.578305+1 2.821683-5 3.739962+1 2.828520-5 5.365731+1 2.848972-5 1.130287+2 2.856595-5 1.269953+2 2.863623-5 1.306455+2 2.870018-5 1.255361+2 2.876828-5 1.118154+2 2.896981-5 5.291153+1 2.904025-5 3.622454+1 2.910645-5 2.455713+1 2.917522-5 1.650221+1 2.931274-5 6.621974+0 2.974463-5 6.442584+0 2.993019-5 6.556595+0 3.020602-5 7.093485+0 3.042906-5 7.895578+0 3.059416-5 8.864418+0 3.083775-5 1.099938+1 3.095166-5 1.154739+1 3.104153-5 1.142859+1 3.132176-5 9.937208+0 3.141504-5 9.681458+0 3.222369-5 9.379500+0 3.301571-5 8.623372+0 3.540581-5 7.496137+0 3.815328-5 6.702506+0 4.150491-5 6.140734+0 4.575440-5 5.824220+0 4.869961-5 5.817349+0 4.987171-5 5.831993+0 5.561707-5 6.063014+0 6.621548-5 6.960331+0 9.198345-5 9.331594+0 1.198756-4 1.120174+1 1.405945-4 1.214449+1 1.412884-4 1.270945+1 1.419839-4 2.332756+1 1.423317-4 3.201203+1 1.426794-4 4.483418+1 1.430804-4 6.513425+1 1.440922-4 1.242060+2 1.444502-4 1.370174+2 1.447986-4 1.404328+2 1.451701-4 1.330678+2 1.455344-4 1.168205+2 1.465048-4 5.901948+1 1.467002-4 4.963850+1 1.468743-4 4.319682+1 1.472003-4 3.467607+1 1.474223-4 3.150419+1 1.475939-4 3.058022+1 1.477834-4 3.084307+1 1.481784-4 3.466728+1 1.482849-4 3.709719+1 1.485713-4 4.667672+1 1.496152-4 8.738535+1 1.500193-4 9.711802+1 1.503892-4 9.952566+1 1.507498-4 9.517032+1 1.511566-4 8.337736+1 1.521651-4 4.435823+1 1.524918-4 3.403901+1 1.528465-4 2.575149+1 1.531997-4 2.023268+1 1.539218-4 1.336020+1 1.562366-4 1.396693+1 1.584138-4 1.471472+1 1.696000-4 1.607116+1 1.778500-4 1.591759+1 2.014036-4 1.418995+1 2.280468-4 1.321164+1 2.712264-4 1.288574+1 2.746454-4 1.337626+1 2.779821-4 1.437813+1 2.822818-4 1.414503+1 3.087535-4 1.406706+1 3.166110-4 1.436855+1 3.815121-4 1.426474+1 3.898572-4 1.466618+1 5.905409-4 1.285454+1 8.883763-4 9.909229+0 1.171178-3 7.827806+0 1.205332-3 7.644650+0 1.211266-3 1.095227+1 1.214350-3 1.388139+1 1.217418-3 1.834308+1 1.220604-3 2.473984+1 1.228781-3 4.511537+1 1.232512-3 5.184683+1 1.235502-3 5.420618+1 1.239630-3 5.263274+1 1.243366-3 4.887269+1 1.248885-3 4.243104+1 1.250427-3 4.120447+1 1.253257-3 4.085765+1 1.256236-3 4.248022+1 1.265528-3 5.195221+1 1.269078-3 5.409920+1 1.272148-3 5.355250+1 1.275479-3 5.082642+1 1.284331-3 3.998228+1 1.286997-3 3.733216+1 1.290044-3 3.517918+1 1.297163-3 3.279728+1 1.299188-3 3.219764+1 1.351597-3 3.314149+1 1.422640-3 3.230318+1 1.564111-3 2.869684+1 1.579439-3 2.973890+1 1.598166-3 3.191768+1 1.721360-3 2.906850+1 1.763126-3 2.987924+1 1.916636-3 2.693904+1 1.966400-3 2.699232+1 2.344229-3 2.148246+1 2.728585-3 1.745850+1 3.174817-3 1.406188+1 3.599567-3 1.171053+1 4.066618-3 9.760831+0 4.649240-3 7.969158+0 5.308844-3 6.494534+0 6.014496-3 5.342087+0 6.897814-3 4.297681+0 7.323950-3 3.917598+0 7.374459-3 4.082126+0 7.404296-3 4.424266+0 7.431001-3 4.997923+0 7.458383-3 5.876801+0 7.530810-3 8.661535+0 7.565913-3 9.517800+0 7.604210-3 9.927029+0 7.729529-3 9.888268+0 8.091788-3 9.236516+0 8.165173-3 9.484753+0 8.247733-3 1.065750+1 8.305440-3 1.149578+1 8.384126-3 1.183704+1 8.575712-3 1.165442+1 8.754059-3 1.261291+1 9.006973-3 1.228904+1 1.038277-2 9.849754+0 1.198060-2 7.826074+0 1.367040-2 6.310360+0 1.546650-2 5.142472+0 1.764971-2 4.120837+0 1.983810-2 3.377719+0 2.264645-2 2.690527+0 2.507129-2 2.254813+0 2.828273-2 1.826622+0 3.181106-2 1.484334+0 3.586967-2 1.199469+0 4.033000-2 9.731322-1 4.493842-2 8.008627-1 5.053244-2 6.487090-1 5.095605-2 6.531658-1 5.115243-2 6.842939-1 5.130884-2 7.464443-1 5.143742-2 8.382603-1 5.158365-2 1.002404+0 5.173457-2 1.246547+0 5.194899-2 1.706422+0 5.228996-2 2.498780+0 5.253060-2 2.908253+0 5.279322-2 3.142766+0 5.313081-2 3.227711+0 6.313504-2 2.463014+0 7.089012-2 2.038776+0 7.953138-2 1.679420+0 8.972120-2 1.366025+0 1.020245-1 1.093903+0 1.152398-1 8.837511-1 1.286966-1 7.276803-1 1.434369-1 6.002312-1 1.604327-1 4.922496-1 1.800783-1 4.012817-1 1.998551-1 3.337121-1 2.227512-1 2.756364-1 2.496331-1 2.261510-1 2.789494-1 1.868586-1 3.085852-1 1.576123-1 3.495158-1 1.283828-1 3.920795-1 1.068611-1 4.394362-1 8.960263-2 4.962053-1 7.475925-2 5.585104-1 6.319682-2 6.396428-1 5.262880-2 7.265241-1 4.478761-2 8.413951-1 3.764461-2 9.772372-1 3.200723-2 1.173413+0 2.628515-2 1.410753+0 2.143701-2 1.696098+0 1.748309-2 2.039158+0 1.425844-2 2.451607+0 1.162856-2 2.947480+0 9.483739-3 3.543651+0 7.734521-3 4.068655+0 6.637795-3 4.891600+0 5.413494-3 5.880996+0 4.415008-3 7.070513+0 3.600687-3 8.500626+0 2.936562-3 9.760024+0 2.520168-3 1.000000+1 5.177516-3 1 65000 7 0 1.589240+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.453062+1 1.828188-6-6.203425+1 2.089716-6-5.838313+1 2.193880-6-5.396968+1 2.239648-6-4.929477+1 2.261873-6-4.458887+1 2.272257-6-4.029946+1 2.289935-6-2.963463+1 2.297453-6-2.541353+1 2.303048-6-2.396924+1 2.308118-6-2.482833+1 2.312315-6-2.753683+1 2.316730-6-3.229016+1 2.323275-6-4.306617+1 2.334194-6-6.493097+1 2.339728-6-5.514408+1 2.343834-6-4.959137+1 2.349071-6-4.530823+1 2.354715-6-4.402525+1 2.362670-6-4.670267+1 2.389584-6-6.483873+1 2.424953-6-4.738804+1 2.434083-6-4.070450+1 2.437680-6-3.650184+1 2.441772-6-3.163263+1 2.448930-6-2.440666+1 2.457461-6-1.397195+1 2.461152-6-1.036351+1 2.462055-6-9.196809+0 2.462758-6-8.525698+0 2.463988-6-7.631028+0 2.468430-6-5.287985+0 2.469742-6-5.103576+0 2.470727-6-5.186713+0 2.472203-6-5.584225+0 2.473680-6-6.200693+0 2.474430-6-6.611687+0 2.475742-6-7.677802+0 2.477465-6-9.592687+0 2.479126-6-1.202885+1 2.482305-6-1.819024+1 2.484731-6-2.400547+1 2.490493-6-4.226616+1 2.496356-6-6.502894+1 2.498114-6-5.706504+1 2.504912-6-3.024566+1 2.510055-6-1.348637+1 2.510758-6-1.141667+1 2.511989-6-8.234513+0 2.512912-6-6.088893+0 2.514296-6-3.152369+0 2.515680-6-3.936033-1 2.516430-6 1.006524+0 2.517743-6 3.036885+0 2.518727-6 4.318008+0 2.520204-6 5.884468+0 2.520942-6 6.502037+0 2.523180-6 7.716373+0 2.524305-6 8.136132+0 2.525993-6 8.402353+0 2.526836-6 8.322858+0 2.530680-6 6.622671+0 2.532180-6 5.754758+0 2.532930-6 5.170815+0 2.534430-6 3.461916+0 2.537055-6 1.084320+0 2.538368-6-2.006319-1 2.539024-6-9.354387-1 2.539680-6-1.854954+0 2.545680-6-8.796697+0 2.546430-6-9.790697+0 2.547743-6-1.120728+1 2.556180-6-1.932609+1 2.559118-6-2.332158+1 2.563415-6-2.714454+1 2.570526-6-3.152775+1 2.584545-6-3.720930+1 2.606443-6-4.260517+1 2.643169-6-4.773938+1 2.711092-6-5.251884+1 2.848769-6-5.663798+1 3.197369-6-6.007405+1 3.853114-6-6.350329+1 3.946579-6-6.504422+1 3.990339-6-6.093996+1 4.026372-6-5.800471+1 4.162126-6-6.107131+1 4.515427-6-6.273829+1 4.599695-6-6.128488+1 4.799030-6-6.234149+1 5.808405-6-6.438298+1 5.896810-6-6.450134+1 5.993422-6-6.126464+1 6.034250-6-6.420777+1 6.043404-6-6.466589+1 6.095241-6-5.782865+1 6.134960-6-5.695840+1 6.259142-6-6.106137+1 6.536638-6-6.484631+1 6.623672-6-6.413598+1 6.644117-6-6.491225+1 6.722636-6-5.805728+1 6.775584-6-5.788734+1 6.901074-6-6.072971+1 8.179483-6-6.237178+1 1.532603-5-6.543374+1 1.922898-5-6.153105+1 2.104814-5-5.633617+1 2.194970-5-5.064842+1 2.247699-5-4.451039+1 2.278274-5-3.874285+1 2.300218-5-3.259420+1 2.316677-5-2.595572+1 2.327649-5-1.981808+1 2.334396-5-1.482063+1 2.341703-5-7.909500+0 2.344578-5-4.969145+0 2.346015-5-3.376936+0 2.347453-5-1.642355+0 2.350328-5 2.028215+0 2.351765-5 3.980538+0 2.353202-5 6.117477+0 2.356077-5 1.069933+1 2.357515-5 1.319661+1 2.358952-5 1.600121+1 2.361276-5 2.130934+1 2.362382-5 2.488200+1 2.364702-5 3.055553+1 2.381491-5 6.230054+1 2.387305-5 6.882750+1 2.391985-5 6.886243+1 2.395023-5 6.540711+1 2.398300-5 5.844177+1 2.401209-5 4.944738+1 2.403897-5 3.825360+1 2.407418-5 1.847961+1 2.408652-5 1.103178+1 2.409274-5 6.973727+0 2.409578-5 4.872120+0 2.410167-5 3.570823-1 2.412798-5-1.859380+1 2.413932-5-2.772707+1 2.415017-5-3.804814+1 2.418798-5-6.810606+1 2.420392-5-5.391185+1 2.421601-5-4.266012+1 2.425696-5-1.106608+1 2.426210-5-6.754272+0 2.426568-5-3.278569+0 2.426929-5-2.783563-1 2.427605-5 4.802151+0 2.428197-5 8.927590+0 2.429233-5 1.569837+1 2.433124-5 3.974594+1 2.435078-5 4.921774+1 2.438353-5 6.109507+1 2.441953-5 6.982071+1 2.446177-5 7.472191+1 2.448489-5 7.450783+1 2.454347-5 6.658319+1 2.460887-5 5.136988+1 2.468188-5 3.290492+1 2.474974-5 1.894286+1 2.476652-5 1.523375+1 2.477910-5 1.194379+1 2.478649-5 9.322267+0 2.479210-5 7.738906+0 2.480050-5 5.705118+0 2.480891-5 3.897561+0 2.482370-5 1.065345+0 2.483480-5-8.490121-1 2.485144-5-3.469148+0 2.486808-5-5.850297+0 2.488288-5-7.803974+0 2.490876-5-1.092252+1 2.495730-5-1.597724+1 2.501861-5-2.130255+1 2.512108-5-2.854972+1 2.527636-5-3.694897+1 2.546141-5-4.430218+1 2.602898-5-5.853367+1 2.618092-5-5.898526+1 2.643854-5-5.565606+1 2.659208-5-5.692921+1 2.713113-5-6.483457+1 2.752120-5-7.227000+1 2.760146-5-7.451023+1 2.777796-5-6.626313+1 2.790024-5-5.666560+1 2.797412-5-4.717241+1 2.807498-5-3.593890+1 2.817437-5-2.369195+1 2.821254-5-1.960581+1 2.822489-5-1.821102+1 2.823898-5-1.710742+1 2.829279-5-1.390334+1 2.830702-5-1.370110+1 2.833037-5-1.412713+1 2.835659-5-1.552600+1 2.837849-5-1.740003+1 2.840665-5-2.085350+1 2.844205-5-2.669901+1 2.846837-5-3.226654+1 2.848972-5-3.837149+1 2.854843-5-5.663783+1 2.857941-5-6.876702+1 2.859511-5-6.474053+1 2.862419-5-5.314590+1 2.864343-5-4.485406+1 2.869173-5-2.676373+1 2.870018-5-2.302275+1 2.871481-5-1.778396+1 2.876263-5-2.700672+0 2.876828-5-8.067714-1 2.877887-5 2.146022+0 2.878814-5 4.441886+0 2.880435-5 8.014761+0 2.881680-5 1.044404+1 2.883476-5 1.356171+1 2.885301-5 1.634345+1 2.888038-5 1.968168+1 2.890274-5 2.162617+1 2.893208-5 2.315966+1 2.896038-5 2.334922+1 2.902264-5 2.021141+1 2.904025-5 1.858822+1 2.909921-5 1.283122+1 2.910645-5 1.183086+1 2.917522-5 4.038116+0 2.918807-5 2.451116+0 2.921057-5 1.975503-1 2.927807-5-6.031557+0 2.929541-5-7.827422+0 2.930841-5-9.429238+0 2.931727-5-1.088264+1 2.933705-5-1.314817+1 2.936662-5-1.574675+1 2.941976-5-1.938747+1 2.949060-5-2.312587+1 2.960866-5-2.778895+1 2.978899-5-3.292745+1 3.006567-5-3.838568+1 3.051380-5-4.402424+1 3.081529-5-4.553437+1 3.120296-5-4.416840+1 3.214659-5-4.657330+1 3.636509-5-5.024556+1 4.939986-5-5.376537+1 7.679849-5-5.558366+1 1.129225-4-5.692334+1 1.267160-4-5.989004+1 1.331511-4-5.405062+1 1.364583-4-4.799498+1 1.384396-4-4.148111+1 1.395321-4-3.565266+1 1.402341-4-3.010823+1 1.407673-4-2.401453+1 1.410482-4-1.973551+1 1.412445-4-1.564916+1 1.413469-4-1.261398+1 1.414586-4-1.006463+1 1.417869-4-3.546436+0 1.418854-4-1.509474+0 1.419346-4-3.958119-1 1.419839-4 9.241325-1 1.423317-4 9.148853+0 1.423751-4 1.034815+1 1.427229-4 1.732055+1 1.427990-4 1.841957+1 1.430804-4 2.097549+1 1.432274-4 2.068101+1 1.433770-4 1.912499+1 1.434945-4 1.710503+1 1.435903-4 1.493387+1 1.437162-4 1.131714+1 1.437971-4 8.465146+0 1.438375-4 6.848306+0 1.438780-4 5.031620+0 1.439742-4 3.575492-1 1.440224-4-2.219304+0 1.440464-4-3.629319+0 1.440922-4-6.735269+0 1.442960-4-1.919528+1 1.443953-4-2.619066+1 1.444896-4-3.396981+1 1.447522-4-5.351590+1 1.447986-4-5.790515+1 1.451299-4-3.614684+1 1.452384-4-2.874756+1 1.455065-4-1.308761+1 1.455865-4-9.363650+0 1.456721-4-6.065431+0 1.457421-4-3.774108+0 1.457945-4-2.263452+0 1.458731-4-3.038163-1 1.459518-4 1.319729+0 1.460209-4 2.464118+0 1.460814-4 3.234661+0 1.461343-4 3.738070+0 1.462269-4 4.229239+0 1.462964-4 4.255487+0 1.463485-4 4.065145+0 1.463876-4 3.790886+0 1.464462-4 3.128304+0 1.464755-4 2.648761+0 1.466025-4-2.586156-1 1.466513-4-1.412315+0 1.466757-4-2.062141+0 1.468335-4-6.966735+0 1.468743-4-8.546083+0 1.471392-4-1.673772+1 1.477834-4-4.049088+1 1.482457-4-5.607586+1 1.483476-4-5.938267+1 1.486241-4-5.336772+1 1.489198-4-5.165384+1 1.491870-4-5.345911+1 1.495037-4-5.942741+1 1.499285-4-4.427544+1 1.500663-4-3.747459+1 1.503276-4-2.564609+1 1.503892-4-2.202256+1 1.507253-4-6.472531+0 1.507498-4-5.132990+0 1.507958-4-3.049186+0 1.508764-4 1.562544-1 1.511566-4 1.019983+1 1.512292-4 1.234573+1 1.512926-4 1.394757+1 1.514037-4 1.630221+1 1.514870-4 1.775133+1 1.516120-4 1.946700+1 1.518440-4 2.122919+1 1.520508-4 2.151112+1 1.521651-4 2.087471+1 1.524510-4 1.814018+1 1.527800-4 1.325854+1 1.532795-4 4.663316+0 1.535899-4 2.100054-1 1.538386-4-3.347912+0 1.538802-4-4.072188+0 1.539675-4-5.943059+0 1.540532-4-7.313734+0 1.542030-4-9.266684+0 1.544846-4-1.219144+1 1.548661-4-1.530300+1 1.554697-4-1.908653+1 1.562366-4-2.262563+1 1.574686-4-2.642187+1 1.592177-4-2.978867+1 1.621307-4-3.338094+1 1.660517-4-3.582267+1 1.742986-4-3.739526+1 2.822818-4-3.987379+1 3.087535-4-3.820089+1 3.815121-4-3.579535+1 4.930000-4-3.239076+1 6.488574-4-3.009217+1 8.337976-4-2.970173+1 9.793976-4-3.114369+1 1.080812-3-3.366636+1 1.144854-3-3.670649+1 1.188989-3-4.053286+1 1.214350-3-4.477798+1 1.228781-3-4.968125+1 1.242305-3-5.468158+1 1.252011-3-5.445269+1 1.272148-3-5.083269+1 1.290044-3-4.717075+1 1.310813-3-4.184101+1 1.351597-3-3.581725+1 1.403742-3-3.057240+1 1.462966-3-2.653423+1 1.524314-3-2.425394+1 1.564111-3-2.394222+1 1.595054-3-2.480898+1 1.608167-3-2.402225+1 1.640096-3-2.132320+1 1.687709-3-1.935126+1 1.730353-3-1.858021+1 1.755216-3-1.833937+1 1.815296-3-1.585619+1 1.884691-3-1.432614+1 1.939185-3-1.381142+1 2.002212-3-1.198053+1 2.093645-3-1.036261+1 2.232370-3-8.655755+0 2.410057-3-7.164775+0 2.598289-3-6.105471+0 2.799360-3-5.324856+0 3.063727-3-4.699859+0 3.379388-3-4.313189+0 3.762896-3-4.143150+0 4.237211-3-4.213111+0 4.854317-3-4.561344+0 5.558042-3-5.231115+0 6.207127-3-6.154600+0 6.675099-3-7.173397+0 6.984535-3-8.219760+0 7.182722-3-9.292239+0 7.310224-3-1.046143+1 7.384329-3-1.171554+1 7.473447-3-1.375792+1 7.511575-3-1.399278+1 7.565913-3-1.320290+1 7.647862-3-1.136420+1 7.729529-3-1.029191+1 7.860626-3-9.479824+0 8.012752-3-9.192052+0 8.121334-3-9.506332+0 8.229880-3-1.028398+1 8.286296-3-1.017964+1 8.445900-3-8.458212+0 8.538682-3-8.064324+0 8.668625-3-7.887389+0 8.754059-3-7.215025+0 8.863787-3-6.240411+0 9.006973-3-5.406895+0 9.241207-3-4.482951+0 9.442645-3-3.882257+0 9.785315-3-3.097406+0 1.017624-2-2.441836+0 1.056424-2-1.948428+0 1.081466-2-1.688777+0 1.121628-2-1.353693+0 1.169205-2-1.042618+0 1.214683-2-8.191342-1 1.261174-2-6.437558-1 1.299889-2-5.272409-1 1.347992-2-4.151782-1 1.379101-2-3.553256-1 1.440860-2-2.651971-1 1.475388-2-2.269351-1 1.510298-2-1.969836-1 1.546650-2-1.743333-1 1.614362-2-1.469553-1 1.646753-2-1.409745-1 1.709129-2-1.367719-1 1.781640-2-1.422895-1 1.839945-2-1.531566-1 1.929954-2-1.809083-1 2.073600-2-2.402088-1 2.401260-2-4.093099-1 3.725547-2-1.147842+0 4.164575-2-1.439467+0 4.493842-2-1.730431+0 4.732904-2-2.038466+0 4.898295-2-2.368153+0 5.002785-2-2.700583+0 5.071742-2-3.063003+0 5.115243-2-3.460410+0 5.183905-2-4.347454+0 5.209245-2-4.426323+0 5.235110-2-4.231248+0 5.297245-2-3.328723+0 5.342264-2-2.868297+0 5.396235-2-2.517272+0 5.480846-2-2.151687+0 5.595486-2-1.816800+0 5.742519-2-1.513403+0 5.889994-2-1.286254+0 6.111770-2-1.042253+0 6.313504-2-8.807141-1 6.602384-2-7.106237-1 6.924945-2-5.729971-1 7.261624-2-4.671887-1 7.608109-2-3.892331-1 7.953138-2-3.337285-1 8.319710-2-2.910191-1 8.755111-2-2.565487-1 9.405774-2-2.262614-1 9.947635-2-2.125095-1 1.073437-1-2.075487-1 1.194821-1-2.172876-1 1.381695-1-2.467145-1 1.864160-1-3.305602-1 2.402288-1-3.981615-1 3.085852-1-4.522974-1 4.205963-1-5.001502-1 6.396428-1-5.385468-1 1.173413+0-5.610503-1 3.543651+0-5.699336-1 1.000000+1-5.710042-1 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.333295-1 1.122974-6 2.343631-1 1.163687-6 2.803292-1 1.201855-6 3.307810-1 1.237637-6 3.856022-1 1.271183-6 4.446306-1 1.302633-6 5.076627-1 1.332117-6 5.744583-1 1.385672-6 7.182233-1 1.409966-6 7.945952-1 1.432741-6 8.742481-1 1.475446-6 1.044829+0 1.512812-6 1.220686+0 1.545507-6 1.399526+0 1.574116-6 1.578453+0 1.599149-6 1.754987+0 1.621052-6 1.928365+0 1.659383-6 2.275483+0 1.688131-6 2.578359+0 1.709692-6 2.836931+0 1.742034-6 3.281109+0 1.783111-6 3.954624+0 1.813683-6 4.562798+0 1.844254-6 5.286148+0 1.861724-6 5.762091+0 1.883964-6 6.442426+0 1.903425-6 7.115428+0 1.920452-6 7.776807+0 1.935352-6 8.420724+0 1.961425-6 9.708564+0 1.980981-6 1.083497+1 1.995647-6 1.179371+1 2.017647-6 1.344377+1 2.044667-6 1.588344+1 2.064748-6 1.808585+1 2.084830-6 2.072122+1 2.099891-6 2.304815+1 2.114952-6 2.574627+1 2.130013-6 2.890092+1 2.140053-6 3.131010+1 2.151277-6 3.434840+1 2.161798-6 3.758724+1 2.171663-6 4.103301+1 2.180910-6 4.469269+1 2.189580-6 4.857297+1 2.197708-6 5.268018+1 2.205328-6 5.702056+1 2.212471-6 6.160048+1 2.219168-6 6.642651+1 2.225447-6 7.150534+1 2.231333-6 7.684370+1 2.236851-6 8.244856+1 2.242025-6 8.832762+1 2.246875-6 9.449020+1 2.251422-6 1.009482+2 2.259947-6 1.153162+2 2.267407-6 1.311898+2 2.273934-6 1.487558+2 2.279646-6 1.681329+2 2.284643-6 1.892909+2 2.289016-6 2.120165+2 2.292842-6 2.359349+2 2.296190-6 2.605679+2 2.299119-6 2.854044+2 2.301683-6 3.099588+2 2.305888-6 3.566301+2 2.311898-6 4.388712+2 2.321320-6 6.088513+2 2.325335-6 6.965949+2 2.328190-6 7.639869+2 2.331044-6 8.349271+2 2.336754-6 9.843069+2 2.337467-6 1.003382+3 2.342463-6 1.136597+3 2.344426-6 1.187745+3 2.348173-6 1.281085+3 2.350135-6 1.326756+3 2.352009-6 1.367667+3 2.353882-6 1.405512+3 2.356380-6 1.450470+3 2.358789-6 1.487066+3 2.361019-6 1.514370+3 2.362892-6 1.532025+3 2.365301-6 1.547213+3 2.368513-6 1.553702+3 2.371189-6 1.546770+3 2.372183-6 1.541326+3 2.374451-6 1.523140+3 2.376985-6 1.493594+3 2.378995-6 1.463525+3 2.381730-6 1.413824+3 2.384115-6 1.362939+3 2.385828-6 1.322519+3 2.388317-6 1.258784+3 2.390126-6 1.209278+3 2.392802-6 1.132181+3 2.395187-6 1.060562+3 2.397099-6 1.001880+3 2.399558-6 9.256793+2 2.402056-6 8.483899+2 2.404665-6 7.688747+2 2.408122-6 6.672055+2 2.410620-6 5.974144+2 2.411334-6 5.781501+2 2.414679-6 4.923758+2 2.416686-6 4.448014+2 2.422753-6 3.205471+2 2.430603-6 2.052798+2 2.433053-6 1.796805+2 2.434857-6 1.638510+2 2.436573-6 1.511221+2 2.438031-6 1.420516+2 2.439347-6 1.352115+2 2.440534-6 1.301191+2 2.441697-6 1.261077+2 2.442458-6 1.240011+2 2.443207-6 1.223254+2 2.443945-6 1.210593+2 2.467183-6 2.874278+2 2.474854-6 4.565475+2 2.478502-6 5.660536+2 2.481296-6 6.647558+2 2.483577-6 7.558159+2 2.486572-6 8.906785+2 2.490151-6 1.076348+3 2.492780-6 1.230697+3 2.494666-6 1.351098+3 2.496551-6 1.479747+3 2.499616-6 1.706548+3 2.502681-6 1.955021+3 2.509194-6 2.550211+3 2.510631-6 2.692444+3 2.514402-6 3.080890+3 2.517299-6 3.390776+3 2.521071-6 3.802305+3 2.524184-6 4.142655+3 2.527201-6 4.467039+3 2.530313-6 4.789806+3 2.533330-6 5.084939+3 2.536012-6 5.327789+3 2.538975-6 5.569770+3 2.539843-6 5.634710+3 2.543435-6 5.871306+3 2.546240-6 6.016764+3 2.549507-6 6.138820+3 2.552163-6 6.198487+3 2.558041-6 6.201044+3 2.559717-6 6.169352+3 2.564363-6 6.010078+3 2.567281-6 5.860084+3 2.570110-6 5.681937+3 2.573222-6 5.453272+3 2.576239-6 5.204257+3 2.578921-6 4.964767+3 2.581507-6 4.721496+3 2.585434-6 4.336830+3 2.588499-6 4.030410+3 2.591947-6 3.686133+3 2.594629-6 3.422658+3 2.600759-6 2.848914+3 2.602866-6 2.664088+3 2.606889-6 2.332590+3 2.612252-6 1.938286+3 2.618706-6 1.539109+3 2.628561-6 1.079385+3 2.634134-6 8.887349+2 2.636903-6 8.095408+2 2.639662-6 7.396644+2 2.642410-6 6.780860+2 2.645148-6 6.238499+2 2.650602-6 5.337956+2 2.656012-6 4.636032+2 2.661381-6 4.083645+2 2.666708-6 3.643030+2 2.671993-6 3.285924+2 2.677237-6 2.991595+2 2.682440-6 2.745012+2 2.687602-6 2.535316+2 2.692724-6 2.354628+2 2.697806-6 2.197167+2 2.707890-6 1.934817+2 2.717817-6 1.725823+2 2.727588-6 1.555451+2 2.737207-6 1.414060+2 2.746676-6 1.295026+2 2.755997-6 1.193616+2 2.765172-6 1.106338+2 2.774203-6 1.030554+2 2.783094-6 9.642217+1 2.791846-6 9.057344+1 2.809075-6 8.067299+1 2.825767-6 7.270282+1 2.841937-6 6.616680+1 2.857601-6 6.072790+1 2.872776-6 5.614535+1 2.887477-6 5.224258+1 2.901718-6 4.888709+1 2.915515-6 4.597563+1 2.942245-6 4.110498+1 2.967305-6 3.727274+1 2.990798-6 3.419587+1 3.012824-6 3.168465+1 3.033472-6 2.960626+1 3.052830-6 2.786385+1 3.089127-6 2.502427+1 3.120886-6 2.290538+1 3.148675-6 2.128644+1 3.172991-6 2.002371+1 3.215544-6 1.808598+1 3.247458-6 1.682046+1 3.295330-6 1.516589+1 3.376117-6 1.285465+1 3.507779-6 9.983956+0 3.606177-6 8.219793+0 3.679976-6 6.964087+0 3.707651-6 6.489257+0 3.731866-6 6.062561+0 3.753054-6 5.675172+0 3.771594-6 5.320795+0 3.787816-6 4.994870+0 3.802011-6 4.694035+0 3.814431-6 4.415808+0 3.825299-6 4.158417+0 3.834808-6 3.920692+0 3.843129-6 3.701933+0 3.857690-6 3.293247+0 3.868610-6 2.966484+0 3.876801-6 2.713715+0 3.882944-6 2.523231+0 3.891006-6 2.278583+0 3.901373-6 1.991044+0 3.903773-6 1.932051+0 3.910975-6 1.781342+0 3.915777-6 1.709435+0 3.918177-6 1.684307+0 3.920578-6 1.667509+0 3.927780-6 1.676301+0 3.930181-6 1.702252+0 3.931381-6 1.720132+0 3.935582-6 1.810827+0 3.937683-6 1.873940+0 3.939784-6 1.949944+0 3.940984-6 1.999471+0 3.945185-6 2.210220+0 3.948336-6 2.409392+0 3.951982-6 2.687831+0 3.955509-6 3.010117+0 3.960691-6 3.585632+0 3.974370-6 5.759963+0 3.983552-6 7.803188+0 3.988755-6 9.175264+0 3.993566-6 1.057719+1 3.998452-6 1.212445+1 4.003245-6 1.375153+1 4.007877-6 1.541143+1 4.012528-6 1.714756+1 4.016804-6 1.878721+1 4.020950-6 2.039808+1 4.024506-6 2.178263+1 4.030387-6 2.404353+1 4.034817-6 2.569197+1 4.039543-6 2.736846+1 4.042867-6 2.848057+1 4.048854-6 3.030947+1 4.051458-6 3.102420+1 4.060581-6 3.307764+1 4.065272-6 3.383298+1 4.069021-6 3.428058+1 4.074062-6 3.465935+1 4.078601-6 3.478247+1 4.082308-6 3.473351+1 4.087172-6 3.447430+1 4.090300-6 3.419740+1 4.093427-6 3.384017+1 4.099506-6 3.293808+1 4.106804-6 3.154974+1 4.109237-6 3.102711+1 4.116535-6 2.932652+1 4.118968-6 2.872638+1 4.128699-6 2.624184+1 4.131716-6 2.546312+1 4.140768-6 2.316920+1 4.158818-6 1.906578+1 4.166353-6 1.761354+1 4.173651-6 1.636587+1 4.180722-6 1.530246+1 4.187572-6 1.439970+1 4.200843-6 1.296264+1 4.213285-6 1.191820+1 4.224949-6 1.113756+1 4.235884-6 1.053417+1 4.256387-6 9.631642+0 4.274328-6 9.002251+0 4.305724-6 8.111045+0 4.352818-6 7.036778+0 4.399931-6 6.071456+0 4.410761-6 5.843945+0 4.421591-6 5.608441+0 4.432421-6 5.362612+0 4.443251-6 5.105470+0 4.454081-6 4.838528+0 4.466600-6 4.525045+0 4.485378-6 4.084515+0 4.492123-6 3.951304+0 4.500498-6 3.818423+0 4.508786-6 3.734611+0 4.511548-6 3.719500+0 4.522599-6 3.735570+0 4.525361-6 3.760788+0 4.533649-6 3.892627+0 4.536411-6 3.956045+0 4.540555-6 4.069853+0 4.544699-6 4.206097+0 4.549879-6 4.407424+0 4.554109-6 4.596436+0 4.559661-6 4.875719+0 4.577850-6 5.981924+0 4.587519-6 6.631546+0 4.588900-6 6.724472+0 4.599950-6 7.444567+0 4.601331-6 7.529804+0 4.611000-6 8.079543+0 4.617216-6 8.378960+0 4.622050-6 8.576917+0 4.628051-6 8.776039+0 4.632951-6 8.898412+0 4.636626-6 8.965909+0 4.642139-6 9.028141+0 4.647651-6 9.044538+0 4.651426-6 9.030377+0 4.655201-6 8.996635+0 4.663489-6 8.859557+0 4.666251-6 8.796483+0 4.677301-6 8.472629+0 4.688352-6 8.063010+0 4.695582-6 7.766261+0 4.706571-6 7.295370+0 4.721897-6 6.641721+0 4.746179-6 5.718248+0 4.757861-6 5.352179+0 4.769543-6 5.049190+0 4.781225-6 4.816793+0 4.792907-6 4.661118+0 4.798748-6 4.613233+0 4.804589-6 4.585408+0 4.810430-6 4.577262+0 4.814811-6 4.583602+0 4.821382-6 4.611890+0 4.827954-6 4.660588+0 4.836715-6 4.751896+0 4.863000-6 5.114656+0 4.874682-6 5.263893+0 4.883755-6 5.353677+0 4.889199-6 5.393144+0 4.895216-6 5.422745+0 4.904241-6 5.438451+0 4.913267-6 5.420635+0 4.921411-6 5.378889+0 4.933093-6 5.285859+0 4.944925-6 5.167213+0 4.971060-6 4.902987+0 4.985077-6 4.795790+0 4.997506-6 4.728867+0 5.009540-6 4.686346+0 5.027591-6 4.649358+0 5.061813-6 4.594023+0 5.086468-6 4.530811+0 5.214172-6 4.125466+0 5.259613-6 3.966980+0 5.361632-6 3.596348+0 5.424482-6 3.392677+0 5.464728-6 3.251125+0 5.485217-6 3.175667+0 5.529829-6 3.005557+0 5.570015-6 2.844636+0 5.610200-6 2.676133+0 5.688982-6 2.326929+0 5.739924-6 2.083516+0 5.788531-6 1.833949+0 5.806784-6 1.735336+0 5.828275-6 1.615524+0 5.860511-6 1.427966+0 5.876629-6 1.330610+0 5.892748-6 1.230931+0 5.907252-6 1.139367+0 5.921756-6 1.046237+0 5.936260-6 9.518607-1 5.950765-6 8.567431-1 5.965269-6 7.616673-1 5.979773-6 6.678585-1 5.994277-6 5.772662-1 6.001529-6 5.340998-1 6.016034-6 4.548899-1 6.023286-6 4.205209-1 6.030538-6 3.911787-1 6.037790-6 3.684372-1 6.045042-6 3.543142-1 6.052294-6 3.513786-1 6.059546-6 3.628725-1 6.063172-6 3.752609-1 6.066798-6 3.928468-1 6.070425-6 4.162870-1 6.076207-6 4.676011-1 6.078583-6 4.943111-1 6.081303-6 5.293642-1 6.084929-6 5.842397-1 6.087648-6 6.320727-1 6.089688-6 6.720207-1 6.094277-6 7.758622-1 6.099206-6 9.113782-1 6.107657-6 1.211658+0 6.119350-6 1.802504+0 6.128215-6 2.420546+0 6.133073-6 2.833734+0 6.139320-6 3.453238+0 6.145495-6 4.174046+0 6.151482-6 4.986535+0 6.158245-6 6.052618+0 6.162791-6 6.864342+0 6.169275-6 8.164138+0 6.173166-6 9.028097+0 6.176955-6 9.932611+0 6.182639-6 1.140949+1 6.189270-6 1.331934+1 6.191046-6 1.386554+1 6.200372-6 1.697364+1 6.206203-6 1.911982+1 6.219584-6 2.459398+1 6.224469-6 2.676346+1 6.234742-6 3.156549+1 6.241957-6 3.508322+1 6.248951-6 3.855600+1 6.255405-6 4.177323+1 6.261661-6 4.486314+1 6.267898-6 4.787591+1 6.274470-6 5.093255+1 6.279739-6 5.326475+1 6.288802-6 5.695598+1 6.296092-6 5.956737+1 6.305199-6 6.229696+1 6.311186-6 6.373205+1 6.314362-6 6.436988+1 6.322143-6 6.555595+1 6.327849-6 6.607747+1 6.330861-6 6.623263+1 6.340842-6 6.615771+1 6.348058-6 6.555489+1 6.355051-6 6.455611+1 6.362748-6 6.302203+1 6.370209-6 6.114593+1 6.376840-6 5.919898+1 6.383234-6 5.711107+1 6.392944-6 5.362896+1 6.400523-6 5.072345+1 6.414022-6 4.533870+1 6.430837-6 3.864344+1 6.438746-6 3.562304+1 6.457497-6 2.904237+1 6.493459-6 1.933454+1 6.501382-6 1.771965+1 6.509305-6 1.627560+1 6.517228-6 1.498933+1 6.525152-6 1.384672+1 6.533075-6 1.283326+1 6.548921-6 1.113695+1 6.564767-6 9.794052+0 6.580614-6 8.714475+0 6.596460-6 7.826962+0 6.608793-6 7.234238+0 6.641326-6 5.944164+0 6.691538-6 4.380012+0 6.723230-6 3.523861+0 6.739077-6 3.121755+0 6.755193-6 2.734697+0 6.779593-6 2.220312+0 6.787727-6 2.080786+0 6.795860-6 1.965476+0 6.803993-6 1.881173+0 6.812127-6 1.836065+0 6.816193-6 1.831171+0 6.820260-6 1.839818+0 6.824327-6 1.863447+0 6.830427-6 1.930360+0 6.833477-6 1.979474+0 6.836527-6 2.039994+0 6.840593-6 2.139737+0 6.843644-6 2.229841+0 6.847647-6 2.369480+0 6.851828-6 2.543118+0 6.856254-6 2.760125+0 6.861106-6 3.040358+0 6.866698-6 3.422466+0 6.874373-6 4.058964+0 6.893718-6 6.313853+0 6.903773-6 7.892369+0 6.911234-6 9.253835+0 6.918567-6 1.075071+1 6.924516-6 1.207864+1 6.931041-6 1.364784+1 6.940895-6 1.622496+1 6.946117-6 1.768110+1 6.953734-6 1.990021+1 6.959747-6 2.171662+1 6.966634-6 2.384737+1 6.972610-6 2.572210+1 6.979389-6 2.785469+1 6.986735-6 3.014431+1 6.991177-6 3.150369+1 7.000266-6 3.418945+1 7.007600-6 3.622582+1 7.011010-6 3.712303+1 7.019260-6 3.913883+1 7.025759-6 4.055219+1 7.042138-6 4.331702+1 7.047576-6 4.395791+1 7.057958-6 4.477504+1 7.066527-6 4.504354+1 7.074832-6 4.495941+1 7.082214-6 4.461177+1 7.086960-6 4.425993+1 7.095924-6 4.334175+1 7.105416-6 4.204625+1 7.108579-6 4.154951+1 7.117016-6 4.008934+1 7.125453-6 3.846521+1 7.129672-6 3.760489+1 7.142327-6 3.489332+1 7.159201-6 3.115452+1 7.176075-6 2.752147+1 7.208366-6 2.154066+1 7.219320-6 1.990139+1 7.225893-6 1.901927+1 7.234656-6 1.795962+1 7.243420-6 1.702828+1 7.252183-6 1.621759+1 7.260946-6 1.551800+1 7.269710-6 1.491861+1 7.278473-6 1.440775+1 7.296000-6 1.360388+1 7.313527-6 1.301424+1 7.331054-6 1.255829+1 7.383634-6 1.145579+1 7.401161-6 1.108715+1 7.436214-6 1.032344+1 7.491800-6 9.170149+0 7.528232-6 8.535518+0 7.564664-6 8.010408+0 7.619312-6 7.385049+0 7.692176-6 6.740975+0 7.776506-6 6.145557+0 7.925597-6 5.261602+0 8.020620-6 4.682073+0 8.064864-6 4.399228+0 8.091778-6 4.244700+0 8.104565-6 4.182579+0 8.124416-6 4.107969+0 8.144266-6 4.067728+0 8.155030-6 4.062957+0 8.165794-6 4.071249+0 8.178630-6 4.098739+0 8.188258-6 4.131849+0 8.202699-6 4.200545+0 8.217140-6 4.289499+0 8.245020-6 4.501597+0 8.264827-6 4.665122+0 8.284633-6 4.819886+0 8.304440-6 4.949964+0 8.323901-6 5.041773+0 8.335577-6 5.076617+0 8.349718-6 5.097346+0 8.363859-6 5.094852+0 8.383666-6 5.055317+0 8.402324-6 4.985441+0 8.422175-6 4.884905+0 8.449402-6 4.719815+0 8.539260-6 4.151849+0 8.607819-6 3.793425+0 8.650194-6 3.611649+0 8.671381-6 3.535948+0 8.692568-6 3.473065+0 8.713755-6 3.424699+0 8.731341-6 3.396135+0 8.748927-6 3.377730+0 8.777316-6 3.366090+0 8.840877-6 3.369919+0 8.865185-6 3.358512+0 8.882400-6 3.340188+0 8.899129-6 3.313002+0 8.918076-6 3.270927+0 8.947717-6 3.184012+0 8.990755-6 3.031120+0 9.034160-6 2.883912+0 9.056862-6 2.824899+0 9.079099-6 2.786175+0 9.101337-6 2.770328+0 9.114184-6 2.772603+0 9.127031-6 2.783494+0 9.142845-6 2.808554+0 9.166566-6 2.868394+0 9.190287-6 2.949845+0 9.234762-6 3.129738+0 9.257000-6 3.214996+0 9.279775-6 3.287302+0 9.291663-6 3.316669+0 9.306478-6 3.343891+0 9.329213-6 3.364062+0 9.346834-6 3.361697+0 9.368188-6 3.339386+0 9.389919-6 3.298001+0 9.412112-6 3.240664+0 9.454391-6 3.105329+0 9.504353-6 2.928846+0 9.586942-6 2.651330+0 9.619002-6 2.559595+0 9.635201-6 2.518841+0 9.657480-6 2.470295+0 9.682569-6 2.427317+0 9.704949-6 2.400018+0 9.735600-6 2.378675+0 9.757702-6 2.372836+0 9.848371-6 2.375316+0 9.874721-6 2.367567+0 9.901071-6 2.351908+0 9.942479-6 2.313133+0 1.003404-5 2.205966+0 1.009444-5 2.147029+0 1.021268-5 2.053477+0 1.032267-5 1.963381+0 1.043486-5 1.865133+0 1.052283-5 1.778996+0 1.065955-5 1.639930+0 1.074668-5 1.563725+0 1.086145-5 1.476713+0 1.119712-5 1.226007+0 1.139049-5 1.085489+0 1.183413-5 7.870776-1 1.215000-5 5.976388-1 1.244515-5 4.388388-1 1.273503-5 3.038989-1 1.300790-5 1.982332-1 1.324325-5 1.259540-1 1.350000-5 6.835749-2 1.366875-5 4.377204-2 1.371118-5 3.952876-2 1.392345-5 2.945431-2 1.400126-5 3.077293-2 1.412244-5 3.909988-2 1.449985-5 1.149529-1 1.470000-5 1.889380-1 1.487133-5 2.732015-1 1.507448-5 3.876827-1 1.520653-5 4.323825-1 1.521395-5 4.332605-1 1.545238-5 3.795754-1 1.565280-5 2.943677-1 1.582894-5 2.255944-1 1.595000-5 1.833894-1 1.605867-5 1.495667-1 1.620000-5 1.118335-1 1.630447-5 8.891032-2 1.640484-5 7.123219-2 1.658049-5 5.118357-2 1.669428-5 4.644136-2 1.671222-5 4.636043-2 1.678804-5 4.816604-2 1.690982-5 5.862345-2 1.710742-5 9.638875-2 1.719164-5 1.212144-1 1.730088-5 1.623727-1 1.740218-5 2.103043-1 1.752850-5 2.842841-1 1.765482-5 3.755537-1 1.778115-5 4.860696-1 1.790747-5 6.177948-1 1.807013-5 8.218029-1 1.820356-5 1.021808+0 1.833699-5 1.255327+0 1.851490-5 1.624568+0 1.869281-5 2.068494+0 1.887072-5 2.600313+0 1.895967-5 2.904168+0 1.914983-5 3.649488+0 1.932810-5 4.482455+0 1.952737-5 5.592592+0 1.979880-5 7.479668+0 2.089296-5 2.272706+1 2.112916-5 2.879686+1 2.133376-5 3.543900+1 2.150086-5 4.207421+1 2.162719-5 4.799243+1 2.172017-5 5.294253+1 2.186116-5 6.158411+1 2.200215-5 7.186641+1 2.211046-5 8.112845+1 2.223145-5 9.319013+1 2.232708-5 1.042627+2 2.243539-5 1.187902+2 2.254861-5 1.367166+2 2.265201-5 1.561016+2 2.276032-5 1.802632+2 2.286863-5 2.094146+2 2.292279-5 2.262941+2 2.297694-5 2.450033+2 2.306492-5 2.800219+2 2.313442-5 3.125947+2 2.319095-5 3.430037+2 2.324747-5 3.776471+2 2.330876-5 4.210009+2 2.336052-5 4.633323+2 2.341705-5 5.169619+2 2.347357-5 5.802640+2 2.353737-5 6.667899+2 2.358663-5 7.479081+2 2.364315-5 8.614107+2 2.369968-5 1.003978+3 2.375620-5 1.186016+3 2.378446-5 1.296097+3 2.381273-5 1.421709+3 2.384099-5 1.565351+3 2.386925-5 1.729855+3 2.389751-5 1.918390+3 2.392578-5 2.134456+3 2.396288-5 2.466401+3 2.400085-5 2.871817+3 2.405984-5 3.658612+3 2.416932-5 5.750962+3 2.422449-5 7.173315+3 2.425779-5 8.161190+3 2.434742-5 1.129132+4 2.435488-5 1.158013+4 2.440706-5 1.370097+4 2.442756-5 1.457272+4 2.447415-5 1.660012+4 2.450676-5 1.802800+4 2.453535-5 1.926110+4 2.456706-5 2.058329+4 2.459134-5 2.154584+4 2.461861-5 2.255748+4 2.464870-5 2.356790+4 2.467066-5 2.422199+4 2.470091-5 2.499086+4 2.473691-5 2.568272+4 2.476763-5 2.606315+4 2.478077-5 2.616377+4 2.481255-5 2.624932+4 2.484226-5 2.612565+4 2.487497-5 2.576519+4 2.490230-5 2.529099+4 2.492822-5 2.470476+4 2.495207-5 2.405703+4 2.498210-5 2.310916+4 2.500736-5 2.221260+4 2.503438-5 2.116974+4 2.505508-5 2.032384+4 2.508465-5 1.906119+4 2.511650-5 1.765518+4 2.515249-5 1.604294+4 2.518231-5 1.471437+4 2.521585-5 1.325234+4 2.524194-5 1.215311+4 2.530158-5 9.813111+3 2.532208-5 9.074187+3 2.534164-5 8.403149+3 2.536167-5 7.752168+3 2.540594-5 6.444074+3 2.544104-5 5.534241+3 2.548792-5 4.488271+3 2.554738-5 3.416522+3 2.565736-5 2.050378+3 2.572020-5 1.540699+3 2.575162-5 1.340400+3 2.578304-5 1.169693+3 2.581446-5 1.024183+3 2.584589-5 9.000176+2 2.587731-5 7.938593+2 2.590873-5 7.028518+2 2.594179-5 6.207918+2 2.597157-5 5.569921+2 2.600583-5 4.935146+2 2.603441-5 4.474322+2 2.609726-5 3.638825+2 2.614756-5 3.110468+2 2.616010-5 2.994854+2 2.622438-5 2.488089+2 2.625435-5 2.295574+2 2.627074-5 2.200904+2 2.633508-5 1.895459+2 2.639943-5 1.685828+2 2.641551-5 1.647006+2 2.646377-5 1.560157+2 2.648979-5 1.530321+2 2.651462-5 1.511788+2 2.653945-5 1.502012+2 2.656837-5 1.500302+2 2.659199-5 1.505477+2 2.662299-5 1.519442+2 2.666284-5 1.545839+2 2.672569-5 1.595341+2 2.678853-5 1.638413+2 2.685024-5 1.660145+2 2.687585-5 1.660899+2 2.690030-5 1.656574+2 2.692475-5 1.647192+2 2.694489-5 1.635681+2 2.696750-5 1.618783+2 2.699672-5 1.591039+2 2.703760-5 1.542190+2 2.707399-5 1.490486+2 2.711295-5 1.428675+2 2.716138-5 1.345970+2 2.719014-5 1.295392+2 2.726695-5 1.161804+2 2.733075-5 1.058630+2 2.741486-5 9.396721+1 2.746570-5 8.779686+1 2.752395-5 8.161103+1 2.760030-5 7.475057+1 2.765465-5 7.060007+1 2.771430-5 6.665564+1 2.776449-5 6.379911+1 2.780302-5 6.188972+1 2.785882-5 5.957214+1 2.791162-5 5.788664+1 2.795220-5 5.694154+1 2.799728-5 5.626028+1 2.803779-5 5.598615+1 2.807532-5 5.602552+1 2.810346-5 5.624784+1 2.812809-5 5.658672+1 2.815623-5 5.715403+1 2.818789-5 5.805501+1 2.822647-5 5.961578+1 2.825540-5 6.121676+1 2.826504-5 6.185211+1 2.830742-5 6.541543+1 2.834876-5 7.051781+1 2.836849-5 7.372675+1 2.841076-5 8.287656+1 2.845282-5 9.612849+1 2.849013-5 1.126446+2 2.853170-5 1.381334+2 2.855170-5 1.537206+2 2.856828-5 1.685770+2 2.858819-5 1.890021+2 2.862169-5 2.307010+2 2.865850-5 2.889967+2 2.873980-5 4.772989+2 2.877881-5 6.040024+2 2.881882-5 7.636606+2 2.885556-5 9.399754+2 2.888630-5 1.111433+3 2.890747-5 1.242952+3 2.892864-5 1.385885+3 2.896415-5 1.652133+3 2.899523-5 1.912801+3 2.899967-5 1.952161+3 2.907069-5 2.652475+3 2.908346-5 2.791814+3 2.914616-5 3.528627+3 2.916905-5 3.816069+3 2.921275-5 4.384363+3 2.924174-5 4.770213+3 2.926422-5 5.071307+3 2.929647-5 5.500932+3 2.933015-5 5.940455+3 2.935897-5 6.303005+3 2.939271-5 6.704507+3 2.942351-5 7.042979+3 2.946247-5 7.423618+3 2.949649-5 7.705224+3 2.952339-5 7.890231+3 2.955744-5 8.072861+3 2.958546-5 8.177740+3 2.960644-5 8.228587+3 2.964147-5 8.260202+3 2.966865-5 8.239045+3 2.972303-5 8.081246+3 2.975596-5 7.915733+3 2.978474-5 7.731969+3 2.981909-5 7.470193+3 2.983970-5 7.293531+3 2.987616-5 6.950541+3 2.991426-5 6.558975+3 2.995856-5 6.074042+3 2.999408-5 5.672296+3 3.003403-5 5.216392+3 3.006511-5 4.864718+3 3.013613-5 4.091790+3 3.016799-5 3.766312+3 3.022881-5 3.192078+3 3.030160-5 2.596048+3 3.042639-5 1.810864+3 3.047318-5 1.587195+3 3.051998-5 1.396842+3 3.057646-5 1.205823+3 3.061362-5 1.100167+3 3.065107-5 1.007494+3 3.072596-5 8.567056+2 3.076855-5 7.876912+2 3.081114-5 7.283844+2 3.088180-5 6.472164+2 3.095626-5 5.796368+2 3.101178-5 5.384070+2 3.105895-5 5.083485+2 3.110612-5 4.821806+2 3.116445-5 4.545128+2 3.125019-5 4.220479+2 3.132566-5 4.005927+2 3.139409-5 3.862653+2 3.145160-5 3.776031+2 3.151156-5 3.714544+2 3.157152-5 3.677920+2 3.165039-5 3.658580+2 3.178828-5 3.666018+2 3.189652-5 3.672090+2 3.197559-5 3.661884+2 3.202529-5 3.646860+2 3.210125-5 3.610773+2 3.216116-5 3.572315+2 3.225287-5 3.500864+2 3.246529-5 3.316171+2 3.265199-5 3.174422+2 3.283639-5 3.065957+2 3.348638-5 2.778646+2 3.381807-5 2.636189+2 3.407013-5 2.539435+2 3.456375-5 2.381260+2 3.509445-5 2.241925+2 3.561328-5 2.126053+2 3.625744-5 2.003490+2 3.694027-5 1.895287+2 3.758374-5 1.806591+2 3.845918-5 1.702969+2 3.950580-5 1.600951+2 4.057749-5 1.513943+2 4.168694-5 1.436474+2 4.307996-5 1.353249+2 4.449843-5 1.283572+2 4.611503-5 1.218150+2 4.766498-5 1.163699+2 4.940263-5 1.110035+2 4.991292-5 1.097297+2 5.076660-5 1.086802+2 5.138052-5 1.077529+2 5.258412-5 1.051770+2 5.497956-5 1.017423+2 5.740000-5 9.937372+1 6.028504-5 9.775075+1 6.405285-5 9.740231+1 6.800918-5 9.894250+1 7.245244-5 1.019354+2 7.697049-5 1.060253+2 8.317638-5 1.127150+2 9.133243-5 1.226029+2 9.659340-5 1.292433+2 1.028692-4 1.361961+2 1.080000-4 1.410625+2 1.098509-4 1.425238+2 1.135011-4 1.447557+2 1.162162-4 1.457783+2 1.180785-4 1.460591+2 1.202600-4 1.459168+2 1.221480-4 1.453595+2 1.237148-4 1.445060+2 1.257405-4 1.427674+2 1.273615-4 1.408586+2 1.287160-4 1.388896+2 1.300000-4 1.366774+2 1.318257-4 1.328979+2 1.328052-4 1.307452+2 1.336115-4 1.294754+2 1.343678-4 1.294838+2 1.346048-4 1.298401+2 1.352358-4 1.317322+2 1.358937-4 1.351238+2 1.365138-4 1.394721+2 1.370982-4 1.444643+2 1.376466-4 1.499273+2 1.381613-4 1.558058+2 1.386443-4 1.620882+2 1.393137-4 1.722768+2 1.397258-4 1.795911+2 1.401187-4 1.874632+2 1.404870-4 1.957838+2 1.408323-4 2.045578+2 1.412538-4 2.167912+2 1.414644-4 2.236390+2 1.417441-4 2.336239+2 1.420996-4 2.480252+2 1.424954-4 2.668361+2 1.429212-4 2.913276+2 1.432955-4 3.177607+2 1.436046-4 3.442951+2 1.437836-4 3.621796+2 1.440622-4 3.946834+2 1.443059-4 4.290074+2 1.445192-4 4.647754+2 1.447058-4 5.014903+2 1.450120-4 5.754843+2 1.452620-4 6.518673+2 1.454495-4 7.208196+2 1.456957-4 8.295586+2 1.458539-4 9.121176+2 1.460121-4 1.005919+3 1.461918-4 1.127532+3 1.465961-4 1.467869+3 1.470903-4 2.026987+3 1.474560-4 2.548983+3 1.476979-4 2.942482+3 1.480597-4 3.590685+3 1.481049-4 3.675700+3 1.484214-4 4.285758+3 1.485657-4 4.567502+3 1.487832-4 4.988271+3 1.489732-4 5.343920+3 1.491215-4 5.608477+3 1.492881-4 5.886866+3 1.494272-4 6.100568+3 1.496060-4 6.345152+3 1.498306-4 6.596082+3 1.499985-4 6.737270+3 1.501433-4 6.824375+3 1.503090-4 6.882497+3 1.504859-4 6.894132+3 1.506274-4 6.865576+3 1.509705-4 6.659647+3 1.510834-4 6.551858+3 1.513295-4 6.255145+3 1.514516-4 6.079822+3 1.515876-4 5.866064+3 1.517623-4 5.567074+3 1.519120-4 5.294335+3 1.520265-4 5.078109+3 1.521903-4 4.762496+3 1.524008-4 4.354374+3 1.526269-4 3.926759+3 1.531549-4 3.051712+3 1.534136-4 2.721799+3 1.535102-4 2.619261+3 1.536064-4 2.529129+3 1.539608-4 2.304047+3 1.540761-4 2.267848+3 1.541881-4 2.249952+3 1.542542-4 2.247245+3 1.543668-4 2.255746+3 1.544551-4 2.273606+3 1.545618-4 2.307831+3 1.546621-4 2.351909+3 1.547903-4 2.424036+3 1.549375-4 2.526530+3 1.551308-4 2.688759+3 1.557496-4 3.337012+3 1.558560-4 3.455597+3 1.561074-4 3.728205+3 1.562978-4 3.920082+3 1.565037-4 4.105503+3 1.566668-4 4.231703+3 1.570388-4 4.437120+3 1.571697-4 4.479257+3 1.574196-4 4.513902+3 1.576043-4 4.501054+3 1.577217-4 4.476424+3 1.578097-4 4.449886+3 1.580078-4 4.366339+3 1.581832-4 4.267135+3 1.583883-4 4.125090+3 1.585113-4 4.028352+3 1.586872-4 3.877821+3 1.588630-4 3.715903+3 1.590852-4 3.500173+3 1.592186-4 3.367248+3 1.595889-4 2.996228+3 1.596801-4 2.906407+3 1.602972-4 2.341985+3 1.607608-4 1.988030+3 1.611383-4 1.750406+3 1.612759-4 1.674893+3 1.614809-4 1.572676+3 1.618360-4 1.422588+3 1.621810-4 1.305271+3 1.625763-4 1.199099+3 1.629172-4 1.126727+3 1.633029-4 1.061289+3 1.637455-4 1.002264+3 1.642722-4 9.478787+2 1.649774-4 8.927686+2 1.659508-4 8.367564+2 1.668330-4 7.982086+2 1.678860-4 7.624592+2 1.689850-4 7.342114+2 1.703926-4 7.082305+2 1.716518-4 6.921060+2 1.729711-4 6.803432+2 1.747500-4 6.700899+2 1.766000-4 6.637336+2 1.792500-4 6.586723+2 1.875973-4 6.489339+2 2.101945-4 6.187422+2 2.174487-4 6.109699+2 2.277719-4 6.022407+2 2.412682-4 5.959765+2 2.559470-4 5.922708+2 2.723482-4 5.865195+2 2.779916-4 5.804655+2 2.812185-4 5.740441+2 2.831047-4 5.716730+2 2.840996-4 5.722785+2 2.851557-4 5.750751+2 2.863968-4 5.814693+2 2.886820-4 5.993158+2 2.900551-4 6.101977+2 2.912427-4 6.177206+2 2.929320-4 6.245565+2 2.959948-4 6.293160+2 3.130465-4 6.466965+2 3.207516-4 6.526006+2 3.237272-4 6.566613+2 3.300906-4 6.711136+2 3.371563-4 6.834404+2 3.584058-4 7.097670+2 3.811406-4 7.306117+2 3.962119-4 7.377917+2 3.993662-4 7.419585+2 4.061134-4 7.582420+2 4.130353-4 7.720240+2 4.322175-4 7.965860+2 4.650504-4 8.283449+2 5.055336-4 8.582037+2 5.500000-4 8.822660+2 5.993491-4 8.998462+2 6.542100-4 9.092079+2 7.074943-4 9.092668+2 7.674562-4 8.993736+2 8.305676-4 8.757140+2 8.709636-4 8.555457+2 9.258967-4 8.195003+2 9.698378-4 7.832155+2 1.008949-3 7.440118+2 1.045622-3 6.998453+2 1.079991-3 6.499428+2 1.103926-3 6.090769+2 1.121875-3 5.744893+2 1.141485-3 5.321105+2 1.157313-3 4.938546+2 1.169942-3 4.599947+2 1.184021-3 4.180517+2 1.194160-3 3.845575+2 1.204347-3 3.474884+2 1.212348-3 3.155462+2 1.219806-3 2.832088+2 1.226485-3 2.522346+2 1.231989-3 2.262683+2 1.236524-3 2.064152+2 1.240261-3 1.931756+2 1.242379-3 1.878449+2 1.245481-3 1.841801+2 1.248025-3 1.859832+2 1.249144-3 1.884442+2 1.251382-3 1.969152+2 1.253408-3 2.091630+2 1.255001-3 2.222119+2 1.256481-3 2.372375+2 1.257536-3 2.497755+2 1.259066-3 2.707601+2 1.259772-3 2.815865+2 1.261370-3 3.088944+2 1.264697-3 3.783805+2 1.268992-3 4.928557+2 1.271370-3 5.669505+2 1.272583-3 6.071379+2 1.274690-3 6.798457+2 1.276487-3 7.437794+2 1.277777-3 7.900474+2 1.279013-3 8.342468+2 1.280733-3 8.946320+2 1.282389-3 9.506268+2 1.283656-3 9.914019+2 1.285361-3 1.042634+3 1.287136-3 1.090712+3 1.288019-3 1.112365+3 1.289897-3 1.153154+3 1.291377-3 1.180063+3 1.293564-3 1.211643+3 1.295697-3 1.233912+3 1.298477-3 1.253258+3 1.303872-3 1.279377+3 1.306336-3 1.296118+3 1.308395-3 1.316221+3 1.311224-3 1.355412+3 1.312801-3 1.383452+3 1.315552-3 1.442157+3 1.323029-3 1.634306+3 1.326106-3 1.706785+3 1.326703-3 1.719215+3 1.330152-3 1.776704+3 1.330933-3 1.785901+3 1.333753-3 1.806242+3 1.335696-3 1.808432+3 1.338123-3 1.798365+3 1.339829-3 1.783682+3 1.342248-3 1.753988+3 1.345366-3 1.704586+3 1.352991-3 1.567524+3 1.357874-3 1.492349+3 1.360371-3 1.461682+3 1.363574-3 1.430628+3 1.368637-3 1.399073+3 1.376425-3 1.381731+3 1.387053-3 1.389743+3 1.400883-3 1.418644+3 1.418630-3 1.463081+3 1.448288-3 1.534239+3 1.476688-3 1.591288+3 1.503355-3 1.630927+3 1.520726-3 1.646963+3 1.541035-3 1.655743+3 1.560479-3 1.656275+3 1.580866-3 1.649065+3 1.596839-3 1.636066+3 1.620231-3 1.603760+3 1.629252-3 1.595445+3 1.635310-3 1.597149+3 1.640931-3 1.606566+3 1.645646-3 1.621041+3 1.653213-3 1.655813+3 1.667620-3 1.740472+3 1.673387-3 1.771322+3 1.678204-3 1.793059+3 1.684251-3 1.814620+3 1.693708-3 1.837373+3 1.702007-3 1.850126+3 1.716827-3 1.865831+3 1.740303-3 1.883231+3 1.758672-3 1.889946+3 1.790683-3 1.887011+3 1.801613-3 1.889352+3 1.810341-3 1.897683+3 1.822059-3 1.919685+3 1.844689-3 1.976037+3 1.852390-3 1.991059+3 1.862087-3 2.004894+3 1.881098-3 2.021051+3 1.910118-3 2.036104+3 1.935291-3 2.044012+3 1.994065-3 2.043662+3 2.007239-3 2.049367+3 2.024952-3 2.067403+3 2.053624-3 2.104392+3 2.078986-3 2.127419+3 2.103296-3 2.142094+3 2.171594-3 2.166665+3 2.261388-3 2.182206+3 2.351328-3 2.187750+3 2.471301-3 2.183354+3 2.649263-3 2.161634+3 2.848968-3 2.123253+3 3.073940-3 2.069567+3 3.271053-3 2.015222+3 3.507519-3 1.947500+3 3.733930-3 1.882820+3 3.873691-3 1.842689+3 4.351829-3 1.703847+3 4.549193-3 1.650373+3 4.954502-3 1.543238+3 5.165650-3 1.489548+3 5.385690-3 1.434536+3 5.639622-3 1.372544+3 5.876678-3 1.315286+3 6.131986-3 1.254397+3 6.343901-3 1.203986+3 6.540638-3 1.156926+3 6.714308-3 1.114462+3 6.870799-3 1.075111+3 7.000000-3 1.041256+3 7.115206-3 1.009123+3 7.218018-3 9.785727+2 7.297962-3 9.530455+2 7.355472-3 9.332419+2 7.422518-3 9.079621+2 7.481689-3 8.826836+2 7.528749-3 8.594007+2 7.566952-3 8.375310+2 7.617927-3 8.037261+2 7.687948-3 7.551607+2 7.714185-3 7.407863+2 7.732360-3 7.334826+2 7.747977-3 7.293490+2 7.771511-3 7.272595+2 7.792821-3 7.297312+2 7.818293-3 7.376285+2 7.847782-3 7.519226+2 7.927600-3 7.994065+2 7.969650-3 8.201869+2 7.998718-3 8.313243+2 8.034671-3 8.416709+2 8.078287-3 8.500668+2 8.126004-3 8.553608+2 8.172289-3 8.575872+2 8.228366-3 8.571529+2 8.281190-3 8.538093+2 8.334296-3 8.474230+2 8.378120-3 8.397351+2 8.491151-3 8.147583+2 8.531649-3 8.089640+2 8.556278-3 8.077264+2 8.598607-3 8.103751+2 8.636186-3 8.173331+2 8.743358-3 8.455751+2 8.800915-3 8.561067+2 8.864939-3 8.615681+2 8.939871-3 8.647734+2 9.001471-3 8.706255+2 9.079646-3 8.853397+2 9.177901-3 9.074318+2 9.261718-3 9.213730+2 9.319632-3 9.278229+2 9.444405-3 9.361242+2 9.613634-3 9.407346+2 9.794593-3 9.410825+2 1.002252-2 9.373943+2 1.027432-2 9.296333+2 1.068502-2 9.113141+2 1.128496-2 8.784625+2 1.195791-2 8.383614+2 1.274934-2 7.901733+2 1.369156-2 7.348278+2 1.506973-2 6.616202+2 1.681931-2 5.819926+2 1.899984-2 5.009445+2 2.131548-2 4.322092+2 2.362127-2 3.763407+2 2.530026-2 3.416378+2 2.746313-2 3.026674+2 2.984040-2 2.663956+2 3.498711-2 2.068204+2 3.796659-2 1.806919+2 4.097765-2 1.582437+2 4.390217-2 1.394449+2 4.622557-2 1.262468+2 4.806148-2 1.165733+2 4.948360-2 1.092523+2 5.055104-2 1.036205+2 5.132555-2 9.924167+1 5.163600-2 9.733520+1 5.192804-2 9.540043+1 5.218513-2 9.352895+1 5.257864-2 9.024178+1 5.332780-2 8.326240+1 5.356508-2 8.169492+1 5.374615-2 8.102010+1 5.391531-2 8.085648+1 5.409430-2 8.115592+1 5.427443-2 8.186111+1 5.503795-2 8.624438+1 5.529200-2 8.734137+1 5.552262-2 8.806730+1 5.588779-2 8.879137+1 5.648165-2 8.925895+1 5.718765-2 8.919447+1 5.812192-2 8.856579+1 5.967169-2 8.687682+1 6.148982-2 8.436381+1 6.422058-2 8.017717+1 6.780317-2 7.460112+1 7.244360-2 6.782902+1 7.865349-2 5.976246+1 8.655506-2 5.111645+1 9.791817-2 4.148691+1 1.112113-1 3.322667+1 1.291105-1 2.539552+1 1.857340-1 1.304125+1 2.212098-1 9.421402+0 2.687664-1 6.512886+0 3.510043-1 3.895633+0 5.084521-1 1.893539+0 7.914399-1 7.938022-1 1.347258+0 2.768115-1 2.947480+0 5.815350-2 8.901248+0 6.384395-3 2.688134+1 7.001329-4 8.118035+1 7.676922-5 2.451607+2 8.417592-6 7.403736+2 9.229707-7 2.511886+3 8.018437-8 7.943282+3 8.018437-9 2.511886+4 8.01844-10 7.943282+4 8.01844-11 1.000000+5 5.05929-11 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.217400-6 1.258900-6 3.514300-6 1.584900-6 5.569800-6 1.995300-6 8.827600-6 2.511900-6 1.399100-5 3.162300-6 2.217400-5 3.981100-6 3.514300-5 5.011900-6 5.569700-5 6.309600-6 8.827400-5 7.943300-6 1.399000-4 1.000000-5 2.217300-4 1.258900-5 3.514100-4 1.584900-5 5.566600-4 1.995300-5 8.816600-4 2.511900-5 1.396600-3 3.162300-5 2.212500-3 3.981100-5 3.505500-3 5.011900-5 5.554500-3 6.309600-5 8.801500-3 7.943300-5 1.393100-2 1.000000-4 2.204100-2 1.258900-4 3.482300-2 1.584900-4 5.488800-2 1.995300-4 8.636000-2 2.511900-4 1.352500-1 3.162300-4 2.104400-1 3.981100-4 3.237700-1 5.011900-4 4.890400-1 6.309600-4 7.207900-1 7.943300-4 1.030100+0 1.000000-3 1.423200+0 1.258900-3 1.904900+0 1.584900-3 2.497300+0 1.995300-3 3.241800+0 2.511900-3 4.178000+0 3.162300-3 5.325600+0 3.981100-3 6.692700+0 5.011900-3 8.281900+0 6.309600-3 1.007000+1 7.943300-3 1.201100+1 1.000000-2 1.410600+1 1.258900-2 1.634000+1 1.584900-2 1.873300+1 1.995300-2 2.112300+1 2.511900-2 2.334600+1 3.162300-2 2.525400+1 3.981100-2 2.677400+1 5.011900-2 2.787300+1 6.309600-2 2.853000+1 7.943300-2 2.872100+1 1.000000-1 2.843600+1 1.258900-1 2.768700+1 1.584900-1 2.664100+1 1.995300-1 2.530400+1 2.511900-1 2.378000+1 3.162300-1 2.213900+1 3.981100-1 2.043800+1 5.011900-1 1.872800+1 6.309600-1 1.704500+1 7.943300-1 1.540900+1 1.000000+0 1.383600+1 1.258900+0 1.235500+1 1.584900+0 1.095300+1 1.995300+0 9.647800+0 2.511900+0 8.443100+0 3.162300+0 7.342800+0 3.981100+0 6.347900+0 5.011900+0 5.457000+0 6.309600+0 4.666500+0 7.943300+0 3.971300+0 1.000000+1 3.364700+0 1.258900+1 2.839300+0 1.584900+1 2.387100+0 1.995300+1 2.000300+0 2.511900+1 1.671100+0 3.162300+1 1.392300+0 3.981100+1 1.157200+0 5.011900+1 9.596800-1 6.309600+1 7.942700-1 7.943300+1 6.561800-1 1.000000+2 5.411900-1 1.258900+2 4.456800-1 1.584900+2 3.665200-1 1.995300+2 3.010400-1 2.511900+2 2.469600-1 3.162300+2 2.023800-1 3.981100+2 1.656800-1 5.011900+2 1.355100-1 6.309600+2 1.107300-1 7.943300+2 9.041500-2 1.000000+3 7.376800-2 1.258900+3 6.014200-2 1.584900+3 4.900000-2 1.995300+3 3.989600-2 2.511900+3 3.246400-2 3.162300+3 2.640100-2 3.981100+3 2.145900-2 5.011900+3 1.743300-2 6.309600+3 1.415500-2 7.943300+3 1.148800-2 1.000000+4 9.318800-3 1.258900+4 7.556200-3 1.584900+4 6.124400-3 1.995300+4 4.961900-3 2.511900+4 4.018500-3 3.162300+4 3.253300-3 3.981100+4 2.632800-3 5.011900+4 2.130000-3 6.309600+4 1.722600-3 7.943300+4 1.392600-3 1.000000+5 1.125600-3 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159551-4 3.981072-4 3.976778-4 5.011872-4 5.005113-4 6.309573-4 6.298964-4 7.943282-4 7.926684-4 1.000000-3 9.974079-4 1.258925-3 1.254892-3 1.584893-3 1.578586-3 1.995262-3 1.985364-3 2.511886-3 2.496315-3 3.162278-3 3.137866-3 3.981072-3 3.942792-3 5.011872-3 4.951884-3 6.309573-3 6.216136-3 7.943282-3 7.797897-3 1.000000-2 9.773990-3 1.258925-2 1.223756-2 1.584893-2 1.530404-2 1.995262-2 1.911064-2 2.511886-2 2.382634-2 3.162278-2 2.965207-2 3.981072-2 3.682415-2 5.011872-2 4.562007-2 6.309573-2 5.635350-2 7.943282-2 6.940763-2 1.000000-1 8.522293-2 1.258925-1 1.043727-1 1.584893-1 1.272717-1 1.995262-1 1.547527-1 2.511886-1 1.875553-1 3.162278-1 2.265603-1 3.981072-1 2.727925-1 5.011872-1 3.274540-1 6.309573-1 3.919194-1 7.943282-1 4.679643-1 1.000000+0 5.574559-1 1.258925+0 6.625891-1 1.584893+0 7.869384-1 1.995262+0 9.340262-1 2.511886+0 1.108601+0 3.162278+0 1.316296+0 3.981072+0 1.564262+0 5.011872+0 1.861151+0 6.309573+0 2.217250+0 7.943282+0 2.645832+0 1.000000+1 3.162432+0 1.258925+1 3.786501+0 1.584893+1 4.541645+0 1.995262+1 5.456894+0 2.511886+1 6.567530+0 3.162278+1 7.917584+0 3.981072+1 9.560263+0 5.011872+1 1.156099+1 6.309573+1 1.400058+1 7.943282+1 1.697822+1 1.000000+2 2.061564+1 1.258925+2 2.506286+1 1.584893+2 3.050442+1 1.995262+2 3.716802+1 2.511886+2 4.533304+1 3.162278+2 5.534560+1 3.981072+2 6.763005+1 5.011872+2 8.271328+1 6.309573+2 1.012429+2 7.943282+2 1.240184+2 1.000000+3 1.520271+2 1.258925+3 1.864915+2 1.584893+3 2.289175+2 1.995262+3 2.811768+2 2.511886+3 3.455558+2 3.162278+3 4.249371+2 3.981072+3 5.228210+2 5.011872+3 6.435821+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88193-10 1.995262-5 1.090618-9 2.511886-5 1.728486-9 3.162278-5 2.739500-9 3.981072-5 4.341869-9 5.011872-5 6.881388-9 6.309573-5 1.090599-8 7.943282-5 1.727904-8 1.000000-4 2.737732-8 1.258925-4 4.336887-8 1.584893-4 6.867524-8 1.995262-4 1.087406-7 2.511886-4 1.720733-7 3.162278-4 2.726943-7 3.981072-4 4.293443-7 5.011872-4 6.759288-7 6.309573-4 1.060946-6 7.943282-4 1.659801-6 1.000000-3 2.592146-6 1.258925-3 4.033199-6 1.584893-3 6.307336-6 1.995262-3 9.898309-6 2.511886-3 1.557096-5 3.162278-3 2.441168-5 3.981072-3 3.827991-5 5.011872-3 5.998882-5 6.309573-3 9.343712-5 7.943282-3 1.453852-4 1.000000-2 2.260104-4 1.258925-2 3.516908-4 1.584893-2 5.448911-4 1.995262-2 8.419825-4 2.511886-2 1.292519-3 3.162278-2 1.970711-3 3.981072-2 2.986563-3 5.011872-2 4.498654-3 6.309573-2 6.742238-3 7.943282-2 1.002520-2 1.000000-1 1.477707-2 1.258925-1 2.151982-2 1.584893-1 3.121762-2 1.995262-1 4.477357-2 2.511886-1 6.363338-2 3.162278-1 8.966748-2 3.981072-1 1.253147-1 5.011872-1 1.737332-1 6.309573-1 2.390379-1 7.943282-1 3.263639-1 1.000000+0 4.425441-1 1.258925+0 5.963363-1 1.584893+0 7.979548-1 1.995262+0 1.061236+0 2.511886+0 1.403285+0 3.162278+0 1.845982+0 3.981072+0 2.416809+0 5.011872+0 3.150721+0 6.309573+0 4.092324+0 7.943282+0 5.297450+0 1.000000+1 6.837568+0 1.258925+1 8.802753+0 1.584893+1 1.130729+1 1.995262+1 1.449573+1 2.511886+1 1.855133+1 3.162278+1 2.370519+1 3.981072+1 3.025045+1 5.011872+1 3.855773+1 6.309573+1 4.909515+1 7.943282+1 6.245460+1 1.000000+2 7.938436+1 1.258925+2 1.008297+2 1.584893+2 1.279849+2 1.995262+2 1.623582+2 2.511886+2 2.058556+2 3.162278+2 2.608822+2 3.981072+2 3.304771+2 5.011872+2 4.184740+2 6.309573+2 5.297144+2 7.943282+2 6.703099+2 1.000000+3 8.479729+2 1.258925+3 1.072434+3 1.584893+3 1.355976+3 1.995262+3 1.714086+3 2.511886+3 2.166331+3 3.162278+3 2.737341+3 3.981072+3 3.458251+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.350000-6 4.068140+6 5.500000-6 3.625120+6 6.000000-6 2.485360+6 6.531306-6 1.708049+6 7.079458-6 1.188440+6 7.700000-6 8.083340+5 8.317638-6 5.635783+5 9.015711-6 3.839680+5 9.660000-6 2.747525+5 9.660000-6 1.015222+6 9.800000-6 9.776833+5 9.885531-6 9.571497+5 1.020000-5 8.874291+5 1.060000-5 8.153872+5 1.062000-5 8.122823+5 1.062000-5 1.321600+6 1.096478-5 1.246602+6 1.100000-5 1.239615+6 1.135011-5 1.177582+6 1.174898-5 1.120387+6 1.180000-5 1.113583+6 1.221400-5 1.068298+6 1.230269-5 1.059946+6 1.244515-5 1.047793+6 1.258925-5 1.036068+6 1.273503-5 1.025713+6 1.290000-5 1.015419+6 1.303167-5 1.007601+6 1.320000-5 9.992527+5 1.333521-5 9.935589+5 1.350000-5 9.870121+5 1.370000-5 9.809062+5 1.382700-5 9.778874+5 1.400000-5 9.740805+5 1.420000-5 9.712645+5 1.445440-5 9.694815+5 1.462177-5 9.695291+5 1.470000-5 9.696369+5 1.500000-5 9.715784+5 1.515000-5 9.736317+5 1.531087-5 9.765973+5 1.550000-5 9.802314+5 1.570000-5 9.852720+5 1.610000-5 9.975421+5 1.630000-5 1.005022+6 1.650000-5 1.013407+6 1.678804-5 1.025647+6 1.690000-5 1.031082+6 1.730000-5 1.052431+6 1.757924-5 1.067480+6 1.770000-5 1.075176+6 1.815000-5 1.104122+6 1.830000-5 1.113855+6 1.840772-5 1.121277+6 1.862087-5 1.137059+6 1.905461-5 1.169475+6 1.927525-5 1.186958+6 1.950000-5 1.205925+6 1.995262-5 1.244504+6 2.000000-5 1.248734+6 2.041738-5 1.286293+6 2.070000-5 1.313187+6 2.089296-5 1.331705+6 2.150000-5 1.392527+6 2.162719-5 1.405420+6 2.190000-5 1.434305+6 2.238721-5 1.487863+6 2.317395-5 1.576145+6 2.344229-5 1.607535+6 2.371374-5 1.640367+6 2.511886-5 1.815047+6 2.800000-5 2.203297+6 2.809000-5 2.215959+6 2.809000-5 2.122768+7 2.851018-5 1.977878+7 2.917427-5 1.788474+7 2.920000-5 1.781689+7 2.990000-5 1.621643+7 3.019952-5 1.563134+7 3.054921-5 1.499217+7 3.090295-5 1.442176+7 3.162278-5 1.337398+7 3.235937-5 1.248360+7 3.273407-5 1.207545+7 3.306000-5 1.175692+7 3.306000-5 2.023688+7 3.349654-5 1.929237+7 3.370000-5 1.887633+7 3.388442-5 1.852146+7 3.427678-5 1.780140+7 3.467369-5 1.715335+7 3.520000-5 1.635779+7 3.589219-5 1.544319+7 3.630781-5 1.493951+7 3.672823-5 1.447349+7 3.758374-5 1.362460+7 3.801894-5 1.324333+7 3.845918-5 1.288061+7 3.900000-5 1.246339+7 3.935501-5 1.220721+7 4.027170-5 1.161496+7 4.073803-5 1.134100+7 4.168694-5 1.083247+7 4.265795-5 1.037991+7 4.300000-5 1.023678+7 4.365158-5 9.980385+6 4.466836-5 9.619950+6 4.570882-5 9.302275+6 4.677351-5 9.019795+6 4.786301-5 8.767232+6 4.841724-5 8.653572+6 4.900000-5 8.545715+6 4.954502-5 8.451038+6 5.011872-5 8.358873+6 5.128614-5 8.189387+6 5.248075-5 8.045539+6 5.367000-5 7.926883+6 5.367000-5 7.978227+6 5.432503-5 7.922183+6 5.500000-5 7.867497+6 5.530000-5 7.845187+6 5.623413-5 7.783429+6 5.688529-5 7.748214+6 5.740000-5 7.721564+6 5.821032-5 7.685276+6 5.850000-5 7.672359+6 5.900000-5 7.651963+6 5.956621-5 7.631460+6 6.000000-5 7.618351+6 6.025596-5 7.611348+6 6.095369-5 7.595219+6 6.165950-5 7.579278+6 6.237348-5 7.566509+6 6.309573-5 7.552559+6 6.382635-5 7.542538+6 6.400000-5 7.540551+6 6.531306-5 7.530287+6 6.606934-5 7.524761+6 6.650000-5 7.522954+6 6.918310-5 7.513205+6 7.000000-5 7.511019+6 7.079458-5 7.511444+6 7.161434-5 7.508826+6 7.328245-5 7.508946+6 7.500000-5 7.508443+6 7.673615-5 7.502527+6 7.762471-5 7.501828+6 7.800000-5 7.501989+6 7.943282-5 7.497991+6 8.000000-5 7.494030+6 8.035261-5 7.491686+6 8.300000-5 7.479985+6 8.317638-5 7.478679+6 8.400000-5 7.473048+6 8.511380-5 7.466932+6 8.650000-5 7.453374+6 8.709636-5 7.447848+6 8.810489-5 7.439497+6 8.912509-5 7.431933+6 9.015711-5 7.421597+6 9.120108-5 7.412020+6 9.332543-5 7.385766+6 9.400000-5 7.378033+6 9.440609-5 7.373410+6 9.549926-5 7.361797+6 9.800000-5 7.329150+6 9.900000-5 7.316792+6 1.023293-4 7.266193+6 1.040000-4 7.242244+6 1.047129-4 7.232495+6 1.071519-4 7.194020+6 1.080000-4 7.181168+6 1.096478-4 7.151869+6 1.122018-4 7.108588+6 1.135011-4 7.084273+6 1.150000-4 7.056659+6 1.161449-4 7.032114+6 1.174898-4 7.004028+6 1.202600-4 6.948060+6 1.216186-4 6.921239+6 1.230269-4 6.890173+6 1.244515-4 6.859650+6 1.288250-4 6.756255+6 1.288400-4 6.755908+6 1.300000-4 6.729415+6 1.318257-4 6.684654+6 1.350000-4 6.600646+6 1.380384-4 6.523337+6 1.396368-4 6.483640+6 1.412538-4 6.440538+6 1.428894-4 6.397842+6 1.480000-4 6.255565+6 1.513561-4 6.166482+6 1.548817-4 6.070742+6 1.580000-4 5.983410+6 1.584893-4 5.970003+6 1.602400-4 5.922528+6 1.602400-4 6.374922+6 1.609000-4 6.378586+6 1.620000-4 6.390358+6 1.621810-4 6.392387+6 1.640590-4 6.419485+6 1.650000-4 6.434661+6 1.650900-4 6.436094+6 1.661000-4 6.450127+6 1.669000-4 6.459811+6 1.670700-4 6.461248+6 1.670700-4 6.775302+6 1.675000-4 6.785351+6 1.678804-4 6.795618+6 1.682000-4 6.802810+6 1.687000-4 6.815626+6 1.690000-4 6.822042+6 1.695000-4 6.834119+6 1.704200-4 6.852577+6 1.711000-4 6.863707+6 1.719000-4 6.874080+6 1.720000-4 6.874869+6 1.722000-4 6.876507+6 1.730000-4 6.882292+6 1.733000-4 6.882917+6 1.737801-4 6.882935+6 1.740000-4 6.882732+6 1.744000-4 6.880482+6 1.750000-4 6.875857+6 1.751000-4 6.874659+6 1.761000-4 6.860079+6 1.762000-4 6.858240+6 1.770000-4 6.840896+6 1.773400-4 6.832580+6 1.778279-4 6.819018+6 1.785000-4 6.796898+6 1.788000-4 6.786179+6 1.798871-4 6.743574+6 1.800000-4 6.738750+6 1.810000-4 6.693389+6 1.820000-4 6.645497+6 1.831500-4 6.585177+6 1.842000-4 6.528152+6 1.846000-4 6.506024+6 1.862087-4 6.414484+6 1.865000-4 6.397222+6 1.880000-4 6.307979+6 1.900000-4 6.190328+6 1.905461-4 6.157787+6 1.922000-4 6.059595+6 1.940000-4 5.955276+6 1.950000-4 5.898791+6 1.980000-4 5.735201+6 2.018366-4 5.535974+6 2.020000-4 5.527668+6 2.041738-4 5.419312+6 2.065380-4 5.308759+6 2.080000-4 5.243200+6 2.113489-4 5.102589+6 2.120000-4 5.076797+6 2.137962-4 5.007816+6 2.142000-4 4.992199+6 2.162719-4 4.915192+6 2.170000-4 4.888132+6 2.190000-4 4.816604+6 2.213095-4 4.738777+6 2.220000-4 4.716442+6 2.240000-4 4.653766+6 2.250000-4 4.623662+6 2.264644-4 4.580785+6 2.270000-4 4.565607+6 2.290868-4 4.508131+6 2.300000-4 4.483311+6 2.317395-4 4.437389+6 2.323000-4 4.422603+6 2.344229-4 4.368141+6 2.350000-4 4.353826+6 2.371374-4 4.302261+6 2.373000-4 4.298454+6 2.400000-4 4.237022+6 2.426610-4 4.180048+6 2.430000-4 4.172665+6 2.454709-4 4.121316+6 2.465000-4 4.099777+6 2.490000-4 4.049264+6 2.500000-4 4.029720+6 2.520000-4 3.991829+6 2.540973-4 3.953455+6 2.550000-4 3.937434+6 2.580000-4 3.885945+6 2.600160-4 3.852704+6 2.620000-4 3.819990+6 2.630268-4 3.803559+6 2.660725-4 3.753466+6 2.670000-4 3.738585+6 2.730000-4 3.647329+6 2.754229-4 3.612732+6 2.800000-4 3.548307+6 2.820000-4 3.521323+6 2.851018-4 3.478799+6 2.884032-4 3.434880+6 2.915600-4 3.394604+6 2.915600-4 3.688080+6 2.917427-4 3.685712+6 2.951209-4 3.641403+6 3.000000-4 3.579689+6 3.054921-4 3.511533+6 3.100000-4 3.457938+6 3.126079-4 3.427963+6 3.150000-4 3.400474+6 3.198895-4 3.345552+6 3.200000-4 3.344302+6 3.240000-4 3.299566+6 3.273407-4 3.262925+6 3.293800-4 3.241211+6 3.293800-4 3.316935+6 3.311311-4 3.298622+6 3.349654-4 3.259121+6 3.350000-4 3.258761+6 3.427678-4 3.179251+6 3.470000-4 3.136513+6 3.507519-4 3.099200+6 3.550000-4 3.058617+6 3.589219-4 3.022065+6 3.600000-4 3.011999+6 3.672823-4 2.945102+6 3.715352-4 2.906390+6 3.758374-4 2.867904+6 3.801894-4 2.830429+6 3.845918-4 2.793421+6 3.850000-4 2.789984+6 3.935501-4 2.718999+6 4.000000-4 2.666238+6 4.042000-4 2.632508+6 4.042000-4 2.726705+6 4.073803-4 2.701502+6 4.120975-4 2.664726+6 4.122800-4 2.663331+6 4.168694-4 2.627977+6 4.216965-4 2.591176+6 4.350000-4 2.492829+6 4.365158-4 2.481962+6 4.415704-4 2.446022+6 4.466836-4 2.410395+6 4.518559-4 2.375403+6 4.550000-4 2.354334+6 4.623810-4 2.304757+6 4.700000-4 2.255992+6 4.731513-4 2.236376+6 4.764600-4 2.215909+6 4.786301-4 2.202521+6 4.841724-4 2.168398+6 5.000000-4 2.075776+6 5.011872-4 2.069086+6 5.069907-4 2.036255+6 5.128614-4 2.003979+6 5.188000-4 1.972042+6 5.248075-4 1.940378+6 5.432503-4 1.846650+6 5.500000-4 1.814517+6 5.559043-4 1.786210+6 5.623413-4 1.756037+6 5.754399-4 1.696999+6 5.821032-4 1.668484+6 5.956621-4 1.611091+6 6.025596-4 1.583194+6 6.095369-4 1.555683+6 6.165950-4 1.528509+6 6.200000-4 1.515305+6 6.237348-4 1.501062+6 6.500000-4 1.407474+6 6.531306-4 1.397052+6 6.606934-4 1.371364+6 6.700000-4 1.340681+6 6.918310-4 1.273349+6 7.079458-4 1.226253+6 7.161434-4 1.203363+6 7.244360-4 1.180663+6 7.328245-4 1.158425+6 7.413102-4 1.136250+6 7.500000-4 1.114050+6 7.673615-4 1.071905+6 7.852356-4 1.031191+6 7.943282-4 1.010905+6 8.035261-4 9.907843+5 8.413951-4 9.148237+5 8.511380-4 8.965404+5 8.609938-4 8.784840+5 8.709636-4 8.606912+5 9.015711-4 8.094691+5 9.120108-4 7.928809+5 9.225714-4 7.765095+5 9.440609-4 7.447826+5 9.500000-4 7.363582+5 9.549926-4 7.293812+5 9.700000-4 7.089465+5 9.772372-4 6.992980+5 9.885531-4 6.844893+5 1.011579-3 6.558509+5 1.023293-3 6.419912+5 1.035142-3 6.284554+5 1.047129-3 6.151459+5 1.070000-3 5.904320+5 1.071519-3 5.888390+5 1.122018-3 5.396110+5 1.135011-3 5.277758+5 1.161449-3 5.046762+5 1.190000-3 4.815042+5 1.216186-3 4.616093+5 1.230269-3 4.513139+5 1.244515-3 4.411446+5 1.258925-3 4.312031+5 1.270000-3 4.237815+5 1.273503-3 4.214714+5 1.299500-3 4.049221+5 1.299500-3 1.362771+6 1.303167-3 1.355760+6 1.318257-3 1.327497+6 1.333521-3 1.299723+6 1.336600-3 1.294205+6 1.336600-3 1.703913+6 1.364583-3 1.685883+6 1.380384-3 1.677628+6 1.381500-3 1.677094+6 1.383000-3 1.674949+6 1.410000-3 1.658685+6 1.435000-3 1.621430+6 1.445440-3 1.605571+6 1.450000-3 1.598974+6 1.462177-3 1.576128+6 1.479108-3 1.543624+6 1.480300-3 1.541380+6 1.496236-3 1.507999+6 1.513561-3 1.466318+6 1.531087-3 1.425791+6 1.548817-3 1.386370+6 1.566751-3 1.348239+6 1.570000-3 1.341491+6 1.584893-3 1.311116+6 1.640590-3 1.205683+6 1.662100-3 1.168188+6 1.662100-3 1.344944+6 1.678804-3 1.314682+6 1.698244-3 1.280663+6 1.717908-3 1.247539+6 1.737801-3 1.215196+6 1.760000-3 1.180112+6 1.800000-3 1.120936+6 1.819701-3 1.092827+6 1.830900-3 1.077307+6 1.830900-3 1.142328+6 1.862087-3 1.099577+6 1.883649-3 1.071401+6 1.900000-3 1.050747+6 1.905461-3 1.043967+6 1.950000-3 9.903573+5 1.972423-3 9.647042+5 2.018200-3 9.149219+5 2.018200-3 9.551090+5 2.070000-3 9.020963+5 2.089296-3 8.831800+5 2.113489-3 8.602675+5 2.137962-3 8.378759+5 2.162719-3 8.160101+5 2.187762-3 7.945806+5 2.238721-3 7.534964+5 2.264644-3 7.337502+5 2.290868-3 7.143580+5 2.300000-3 7.077779+5 2.344229-3 6.769996+5 2.371374-3 6.590863+5 2.398833-3 6.415445+5 2.400000-3 6.408144+5 2.426610-3 6.244426+5 2.454709-3 6.078222+5 2.469600-3 5.992799+5 2.483133-3 5.916537+5 2.511886-3 5.758233+5 2.540973-3 5.604182+5 2.630268-3 5.164241+5 2.660725-3 5.025837+5 2.722701-3 4.758624+5 2.754229-3 4.630515+5 2.786121-3 4.503842+5 2.818383-3 4.380828+5 2.851018-3 4.261254+5 2.884032-3 4.144963+5 2.951209-3 3.919871+5 2.985383-3 3.812213+5 3.000000-3 3.767183+5 3.019952-3 3.706935+5 3.090295-3 3.504098+5 3.126079-3 3.407008+5 3.162278-3 3.312422+5 3.198895-3 3.220512+5 3.235937-3 3.131172+5 3.311311-3 2.960213+5 3.349654-3 2.878458+5 3.400000-3 2.775326+5 3.467369-3 2.645532+5 3.507519-3 2.571532+5 3.548134-3 2.499636+5 3.589219-3 2.429356+5 3.672823-3 2.294808+5 3.715352-3 2.230160+5 3.758374-3 2.167432+5 3.845918-3 2.047355+5 3.890451-3 1.989271+5 4.000000-3 1.855637+5 4.027170-3 1.824452+5 4.073803-3 1.772617+5 4.120975-3 1.722330+5 4.216965-3 1.626209+5 4.265795-3 1.580112+5 4.300000-3 1.548944+5 4.315191-3 1.535329+5 4.365158-3 1.491490+5 4.415704-3 1.448946+5 4.466836-3 1.407473+5 4.518559-3 1.367222+5 4.570882-3 1.328044+5 4.623810-3 1.289999+5 4.677351-3 1.253095+5 4.731513-3 1.217288+5 4.786301-3 1.182436+5 4.841724-3 1.148634+5 4.954502-3 1.083090+5 5.011872-3 1.051765+5 5.069907-3 1.021363+5 5.188000-3 9.632203+4 5.248075-3 9.354637+4 5.300000-3 9.123604+4 5.308844-3 9.084927+4 5.370318-3 8.822511+4 5.432503-3 8.568039+4 5.500000-3 8.301343+4 5.559043-3 8.076548+4 5.623413-3 7.841191+4 5.688529-3 7.612688+4 5.821032-3 7.176275+4 5.888437-3 6.968010+4 6.000000-3 6.641126+4 6.025596-3 6.569235+4 6.095369-3 6.378030+4 6.165950-3 6.191400+4 6.237348-3 6.009287+4 6.309573-3 5.832682+4 6.382635-3 5.661383+4 6.531306-3 5.334210+4 6.606934-3 5.178130+4 6.683439-3 5.026227+4 6.839116-3 4.736264+4 6.918310-3 4.597265+4 7.000000-3 4.459458+4 7.161434-3 4.201461+4 7.328245-3 3.956723+4 7.585776-3 3.617002+4 7.673615-3 3.510264+4 7.762471-3 3.406691+4 7.781000-3 3.385640+4 7.781000-3 9.264817+4 7.800000-3 9.209314+4 7.852356-3 9.058292+4 7.943282-3 8.803918+4 8.070500-3 8.464511+4 8.222426-3 8.056917+4 8.317638-3 7.815271+4 8.413951-3 7.580931+4 8.511380-3 7.353440+4 8.590700-3 7.171598+4 8.590700-3 9.843575+4 8.609938-3 9.786463+4 8.670000-3 9.611111+4 8.709636-3 9.501115+4 8.746820-3 9.399542+4 8.810489-3 9.229113+4 8.912509-3 8.951646+4 9.000000-3 8.722848+4 9.012500-3 8.690809+4 9.012500-3 1.005043+5 9.160000-3 9.636855+4 9.332543-3 9.197092+4 9.350000-3 9.154182+4 9.400000-3 9.031635+4 9.549926-3 8.674159+4 9.660509-3 8.425285+4 9.885531-3 7.949429+4 9.900000-3 7.920138+4 1.000000-2 7.719943+4 1.011579-2 7.494086+4 1.059254-2 6.654503+4 1.083927-2 6.271584+4 1.109175-2 5.909121+4 1.122018-2 5.735910+4 1.135011-2 5.566372+4 1.150000-2 5.379238+4 1.161449-2 5.242201+4 1.174898-2 5.087385+4 1.202264-2 4.789373+4 1.216186-2 4.646303+4 1.258925-2 4.242597+4 1.273503-2 4.116171+4 1.288250-2 3.992979+4 1.318257-2 3.757827+4 1.333521-2 3.645508+4 1.348963-2 3.537081+4 1.364583-2 3.431978+4 1.380384-2 3.330073+4 1.396368-2 3.231198+4 1.420000-2 3.092433+4 1.428894-2 3.041918+4 1.445440-2 2.950766+4 1.462177-2 2.862392+4 1.479108-2 2.775821+4 1.513561-2 2.610646+4 1.531087-2 2.531879+4 1.548817-2 2.455498+4 1.580000-2 2.328789+4 1.584893-2 2.309712+4 1.621810-2 2.171888+4 1.640590-2 2.106166+4 1.659587-2 2.042473+4 1.678804-2 1.980301+4 1.757924-2 1.750125+4 1.778279-2 1.697001+4 1.800000-2 1.642749+4 1.819701-2 1.595591+4 1.840772-2 1.546867+4 1.862087-2 1.499665+4 1.883649-2 1.453896+4 1.927525-2 1.366587+4 1.972423-2 1.283902+4 2.000000-2 1.236547+4 2.018366-2 1.206347+4 2.041738-2 1.169275+4 2.065380-2 1.133334+4 2.080000-2 1.111870+4 2.089296-2 1.098447+4 2.137962-2 1.031739+4 2.162719-2 9.999585+3 2.187762-2 9.691766+3 2.213095-2 9.393398+3 2.238721-2 9.104457+3 2.290868-2 8.552998+3 2.317395-2 8.290258+3 2.344229-2 8.035810+3 2.371374-2 7.787302+3 2.398833-2 7.545060+3 2.400000-2 7.534998+3 2.483133-2 6.863547+3 2.540973-2 6.444491+3 2.570396-2 6.244143+3 2.691535-2 5.503142+3 2.722701-2 5.332305+3 2.754229-2 5.166871+3 2.786121-2 5.006711+3 2.800000-2 4.939164+3 2.818383-2 4.851058+3 2.851018-2 4.699879+3 2.884032-2 4.553487+3 2.917427-2 4.411046+3 2.951209-2 4.273166+3 3.000000-2 4.084205+3 3.019952-2 4.010095+3 3.054921-2 3.884500+3 3.090295-2 3.762938+3 3.126079-2 3.645204+3 3.162278-2 3.531239+3 3.235937-2 3.313072+3 3.273407-2 3.209214+3 3.311311-2 3.108666+3 3.349654-2 3.011335+3 3.388442-2 2.917085+3 3.427678-2 2.825772+3 3.467369-2 2.737183+3 3.589219-2 2.487113+3 3.630781-2 2.408925+3 3.672823-2 2.332718+3 3.715352-2 2.258972+3 3.801894-2 2.118529+3 3.845918-2 2.051677+3 3.890451-2 1.986981+3 3.935501-2 1.924369+3 3.981072-2 1.863724+3 4.073803-2 1.748199+3 4.120975-2 1.693082+3 4.216965-2 1.588109+3 4.315191-2 1.489284+3 4.415704-2 1.396042+3 4.466836-2 1.351673+3 4.623810-2 1.226996+3 4.677351-2 1.188071+3 4.731513-2 1.150406+3 5.000000-2 9.860395+2 5.011872-2 9.795194+2 5.069907-2 9.484712+2 5.128614-2 9.184278+2 5.248075-2 8.606306+2 5.386100-2 7.998824+2 5.386100-2 4.335559+3 5.432503-2 4.244567+3 5.495409-2 4.125467+3 5.559043-2 4.009724+3 5.600000-2 3.937638+3 5.754399-2 3.659162+3 5.888437-2 3.454081+3 5.930000-2 3.393759+3 5.956621-2 3.353651+3 6.095369-2 3.154861+3 6.309573-2 2.878236+3 6.382635-2 2.791524+3 6.456542-2 2.707436+3 6.500000-2 2.659617+3 6.531306-2 2.625875+3 6.683439-2 2.471955+3 6.839116-2 2.327077+3 7.079458-2 2.125597+3 7.244360-2 2.001076+3 7.328245-2 1.940326+3 7.673615-2 1.715274+3 7.762471-2 1.663229+3 8.035261-2 1.516404+3 8.128305-2 1.469807+3 8.222426-2 1.424647+3 8.317638-2 1.380878+3 8.413951-2 1.338459+3 8.511380-2 1.297344+3 8.609938-2 1.257441+3 8.709636-2 1.218769+3 8.912509-2 1.144960+3 9.332543-2 1.010517+3 9.549926-2 9.493545+2 9.660509-2 9.201797+2 9.772372-2 8.919044+2 1.000000-1 8.379378+2 1.023293-1 7.866038+2 1.035142-1 7.621000+2 1.059254-1 7.153622+2 1.135011-1 5.916904+2 1.148154-1 5.732702+2 1.161449-1 5.554251+2 1.174898-1 5.381368+2 1.188502-1 5.213886+2 1.216186-1 4.894415+2 1.230269-1 4.742112+2 1.258925-1 4.451605+2 1.303167-1 4.045621+2 1.318257-1 3.918713+2 1.348963-1 3.676789+2 1.364583-1 3.561498+2 1.479108-1 2.849713+2 1.496236-1 2.760390+2 1.513561-1 2.673879+2 1.531088-1 2.590077+2 1.548817-1 2.508913+2 1.566751-1 2.430303+2 1.584893-1 2.354158+2 1.603245-1 2.280402+2 1.621810-1 2.208959+2 1.640590-1 2.139754+2 1.650000-1 2.106187+2 1.659587-1 2.072740+2 1.678804-1 2.007844+2 1.737801-1 1.825109+2 1.778279-1 1.712636+2 1.798871-1 1.659028+2 1.840772-1 1.556802+2 1.862087-1 1.508079+2 1.883649-1 1.460883+2 1.905461-1 1.415168+2 1.927525-1 1.370889+2 1.949845-1 1.327997+2 1.972423-1 1.286461+2 2.000000-1 1.238096+2 2.018366-1 1.207261+2 2.065380-1 1.132954+2 2.089296-1 1.097536+2 2.113489-1 1.063225+2 2.213095-1 9.363908+1 2.238721-1 9.074141+1 2.264644-1 8.793371+1 2.290868-1 8.521372+1 2.317395-1 8.257817+1 2.344229-1 8.002425+1 2.371374-1 7.755009+1 2.398833-1 7.515257+1 2.426610-1 7.282986+1 2.483133-1 6.839777+1 2.511886-1 6.628403+1 2.570396-1 6.225453+1 2.600160-1 6.033285+1 2.630268-1 5.847120+1 2.660725-1 5.666702+1 2.691535-1 5.491866+1 2.722701-1 5.324434+1 2.754229-1 5.162157+1 2.786121-1 5.004837+1 2.851018-1 4.704442+1 2.884032-1 4.561077+1 2.917427-1 4.422089+1 2.951209-1 4.287351+1 3.000000-1 4.102635+1 3.019952-1 4.030244+1 3.054921-1 3.907539+1 3.090295-1 3.790410+1 3.126079-1 3.676794+1 3.162278-1 3.566621+1 3.198895-1 3.459757+1 3.235937-1 3.356094+1 3.273407-1 3.255542+1 3.311311-1 3.158013+1 3.349654-1 3.063440+1 3.388442-1 2.971698+1 3.467369-1 2.796383+1 3.507519-1 2.712652+1 3.548134-1 2.632836+1 3.589219-1 2.555398+1 3.672823-1 2.407549+1 3.715352-1 2.336898+1 3.758374-1 2.268320+1 3.801894-1 2.201757+1 3.935501-1 2.013564+1 3.981072-1 1.954485+1 4.000000-1 1.931087+1 4.027170-1 1.898191+1 4.073803-1 1.843552+1 4.120975-1 1.790518+1 4.168694-1 1.739113+1 4.315191-1 1.593589+1 4.365158-1 1.547841+1 4.415705-1 1.503406+1 4.466836-1 1.460252+1 4.518559-1 1.418352+1 4.570882-1 1.378490+1 4.623810-1 1.339749+1 4.677351-1 1.302115+1 4.786301-1 1.230149+1 4.897788-1 1.162163+1 4.954502-1 1.129592+1 5.011872-1 1.097938+1 5.069907-1 1.067196+1 5.128614-1 1.037991+1 5.248075-1 9.819586+0 5.308844-1 9.551007+0 5.370318-1 9.290432+0 5.432503-1 9.036973+0 5.495409-1 8.790429+0 5.559043-1 8.550717+0 5.623413-1 8.317654+0 5.688529-1 8.090944+0 5.821032-1 7.665751+0 5.888437-1 7.461610+0 5.956621-1 7.263019+0 6.000000-1 7.140579+0 6.025596-1 7.069919+0 6.095369-1 6.882371+0 6.165950-1 6.699836+0 6.237348-1 6.522211+0 6.309573-1 6.349298+0 6.382635-1 6.180972+0 6.447400-1 6.040415+0 6.456542-1 6.020946+0 6.606935-1 5.713218+0 6.683439-1 5.565443+0 6.760830-1 5.421504+0 6.839117-1 5.281702+0 6.918310-1 5.145561+0 6.998420-1 5.012931+0 7.079458-1 4.883723+0 7.244360-1 4.640792+0 7.328245-1 4.523942+0 7.413102-1 4.410046+0 7.498942-1 4.299084+0 7.585776-1 4.190923+0 7.673615-1 4.085817+0 7.762471-1 3.983348+0 7.852356-1 3.883451+0 7.943282-1 3.788577+0 8.317638-1 3.431778+0 8.413951-1 3.347970+0 8.511380-1 3.266302+0 8.609938-1 3.186626+0 8.709636-1 3.109172+0 9.015711-1 2.894205+0 9.120108-1 2.825953+0 9.225714-1 2.759312+0 9.332543-1 2.694252+0 9.440609-1 2.630806+0 9.549926-1 2.568855+0 9.660509-1 2.508589+0 9.772372-1 2.451579+0 9.885531-1 2.395865+0 1.000000+0 2.341456+0 1.011579+0 2.288286+0 1.023293+0 2.236320+0 1.035142+0 2.185567+0 1.047129+0 2.135994+0 1.059254+0 2.087549+0 1.071519+0 2.040325+0 1.083927+0 1.994191+0 1.096478+0 1.949102+0 1.122018+0 1.863901+0 1.135011+0 1.822705+0 1.148154+0 1.782446+0 1.161449+0 1.743077+0 1.174898+0 1.704578+0 1.188502+0 1.666974+0 1.202264+0 1.630198+0 1.230269+0 1.559280+0 1.244515+0 1.524986+0 1.250000+0 1.512087+0 1.258925+0 1.492051+0 1.288250+0 1.429006+0 1.318257+0 1.368658+0 1.333521+0 1.339468+0 1.348963+0 1.310899+0 1.380384+0 1.255753+0 1.396368+0 1.229069+0 1.412538+0 1.202951+0 1.428894+0 1.178083+0 1.479108+0 1.106544+0 1.496236+0 1.083676+0 1.500000+0 1.078753+0 1.513561+0 1.061299+0 1.531087+0 1.039458+0 1.584893+0 9.765961-1 1.659587+0 9.007972-1 1.678804+0 8.827919-1 1.698244+0 8.651477-1 1.717908+0 8.478760-1 1.757924+0 8.144731-1 1.778279+0 7.982695-1 1.798871+0 7.823872-1 1.840772+0 7.524371-1 1.862087+0 7.378949-1 1.883649+0 7.236336-1 1.905461+0 7.096534-1 1.927525+0 6.959452-1 1.949845+0 6.825168-1 1.995262+0 6.565227-1 2.000000+0 6.539020-1 2.044000+0 6.303399-1 2.065380+0 6.196959-1 2.089296+0 6.081285-1 2.113489+0 5.967770-1 2.162719+0 5.747147-1 2.187762+0 5.639927-1 2.213095+0 5.534834-1 2.264644+0 5.331223-1 2.317395+0 5.135098-1 2.344229+0 5.042518-1 2.371374+0 4.951608-1 2.398833+0 4.862337-1 2.454709+0 4.688668-1 2.483133+0 4.604183-1 2.511886+0 4.521321-1 2.570396+0 4.360610-1 2.630268+0 4.205615-1 2.660725+0 4.132348-1 2.722701+0 3.989620-1 2.754229+0 3.920114-1 2.818383+0 3.784775-1 2.851018+0 3.718875-1 2.884032+0 3.654196-1 2.951209+0 3.528634-1 3.019952+0 3.407385-1 3.054921+0 3.349984-1 3.162278+0 3.183515-1 3.198895+0 3.129886-1 3.273407+0 3.025364-1 3.311311+0 2.974425-1 3.349654+0 2.924401-1 3.427678+0 2.827200-1 3.507519+0 2.733231-1 3.548134+0 2.688730-1 3.672823+0 2.559529-1 3.715352+0 2.517856-1 3.801894+0 2.436569-1 3.845918+0 2.396919-1 3.890451+0 2.357959-1 4.000000+0 2.266880-1 4.073803+0 2.208845-1 4.120975+0 2.174054-1 4.315191+0 2.040280-1 4.365158+0 2.008143-1 4.466836+0 1.945406-1 4.518559+0 1.914779-1 4.570882+0 1.884669-1 4.677351+0 1.826063-1 4.786301+0 1.769279-1 4.841724+0 1.742361-1 5.069907+0 1.638724-1 5.128614+0 1.613792-1 5.248075+0 1.565082-1 5.308844+0 1.541283-1 5.370318+0 1.517872-1 5.495409+0 1.472263-1 5.688529+0 1.406406-1 5.754399+0 1.385668-1 6.095369+0 1.286478-1 6.165950+0 1.267509-1 6.309573+0 1.230419-1 6.382635+0 1.212285-1 6.456542+0 1.194424-1 6.531306+0 1.176839-1 6.683439+0 1.142558-1 6.839116+0 1.109276-1 6.918310+0 1.093474-1 7.244360+0 1.032485-1 7.328245+0 1.017778-1 7.498942+0 9.889986-2 7.585776+0 9.749171-2 7.673615+0 9.610491-2 7.762471+0 9.473796-2 8.035261+0 9.076474-2 8.317638+0 8.695815-2 8.413951+0 8.575607-2 8.912509+0 7.999037-2 9.015711+0 7.888461-2 9.225714+0 7.671953-2 9.332543+0 7.565947-2 9.440609+0 7.461502-2 9.549926+0 7.358508-2 9.772372+0 7.157371-2 1.023293+1 6.771442-2 1.035142+1 6.680523-2 1.109175+1 6.160071-2 1.122018+1 6.077364-2 1.148154+1 5.915309-2 1.161449+1 5.835918-2 1.174898+1 5.757659-2 1.188502+1 5.680460-2 1.216186+1 5.529571-2 1.288250+1 5.169651-2 1.303167+1 5.102157-2 1.400000+1 4.701331-2 1.412538+1 4.653725-2 1.445440+1 4.533039-2 1.462177+1 4.473880-2 1.479108+1 4.415543-2 1.496236+1 4.357968-2 1.513561+1 4.301148-2 1.548817+1 4.190030-2 1.621810+1 3.976340-2 1.640590+1 3.925668-2 1.659587+1 3.875644-2 1.819701+1 3.497725-2 1.840772+1 3.453154-2 1.905461+1 3.322857-2 1.927525+1 3.280530-2 1.949845+1 3.238771-2 1.972423+1 3.197547-2 1.995262+1 3.156850-2 2.018366+1 3.116763-2 2.137962+1 2.923833-2 2.162719+1 2.887487-2 2.187762+1 2.851594-2 2.213095+1 2.816147-2 2.371374+1 2.612528-2 2.400000+1 2.578690-2 2.483133+1 2.485053-2 2.511886+1 2.454172-2 2.540973+1 2.423695-2 2.600160+1 2.363877-2 2.630268+1 2.334525-2 2.660725+1 2.305598-2 2.691535+1 2.277032-2 2.722701+1 2.248821-2 2.884032+1 2.112919-2 2.917427+1 2.087152-2 2.951209+1 2.061699-2 3.019952+1 2.011720-2 3.311311+1 1.823630-2 3.388442+1 1.779422-2 3.548134+1 1.694216-2 3.589219+1 1.673562-2 3.630781+1 1.653158-2 3.672823+1 1.633017-2 3.758374+1 1.593470-2 3.801894+1 1.574058-2 3.845918+1 1.554921-2 3.890451+1 1.536019-2 4.073803+1 1.462680-2 4.120975+1 1.445209-2 4.168694+1 1.427947-2 4.265795+1 1.394038-2 4.731513+1 1.251140-2 4.841724+1 1.221430-2 5.128614+1 1.150219-2 5.188000+1 1.136484-2 5.248075+1 1.122912-2 5.308844+1 1.109503-2 5.432503+1 1.083175-2 5.623413+1 1.044853-2 5.754399+1 1.020062-2 5.821032+1 1.007905-2 5.888437+1 9.958944-3 6.382635+1 9.157338-3 6.456542+1 9.049593-3 6.531306+1 8.943114-3 6.760830+1 8.631140-3 7.762471+1 7.488343-3 7.943282+1 7.313165-3 8.511380+1 6.811921-3 8.609938+1 6.731788-3 8.709636+1 6.652599-3 8.810489+1 6.574341-3 9.015711+1 6.420643-3 9.332543+1 6.196815-3 9.549926+1 6.051951-3 9.660509+1 5.980884-3 9.885531+1 5.841252-3 1.083927+2 5.314572-3 1.096478+2 5.252808-3 1.122018+2 5.131422-3 1.161449+2 4.954576-3 1.428894+2 4.014409-3 1.462177+2 3.921640-3 1.621810+2 3.530046-3 1.640590+2 3.489024-3 1.678804+2 3.408408-3 1.717908+2 3.329675-3 1.798871+2 3.177623-3 1.819701+2 3.140708-3 1.862087+2 3.068161-3 1.883649+2 3.032544-3 1.972423+2 2.894167-3 2.162719+2 2.636069-3 2.187762+2 2.605647-3 2.238721+2 2.545854-3 2.317395+2 2.458725-3 2.851018+2 1.995125-3 2.917427+2 1.949341-3 3.235937+2 1.755989-3 3.273407+2 1.735726-3 3.349654+2 1.695900-3 3.427678+2 1.656994-3 3.589219+2 1.581843-3 3.630781+2 1.563594-3 3.715352+2 1.527725-3 3.758374+2 1.510110-3 3.935501+2 1.441662-3 4.315191+2 1.313932-3 4.365158+2 1.298848-3 4.466836+2 1.269198-3 4.623810+2 1.225988-3 1.135011+3 4.981480-4 1.161449+3 4.867763-4 1.288250+3 4.387340-4 1.303167+3 4.336977-4 1.333521+3 4.237981-4 1.364583+3 4.141250-4 1.428894+3 3.954365-4 1.445440+3 3.908976-4 1.479108+3 3.819759-4 1.496236+3 3.775926-4 1.566751+3 3.605576-4 1.717908+3 3.287586-4 1.737801+3 3.249939-4 3.548134+3 1.591364-4 3.672823+3 1.537321-4 1.000000+5 5.639952-6 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.350000-6 5.350000-6 9.660000-6 5.350000-6 9.660000-6 8.493571-6 1.062000-5 8.742545-6 1.062000-5 9.466078-6 1.180000-5 9.638448-6 1.320000-5 9.777160-6 1.500000-5 9.875870-6 1.770000-5 9.933493-6 2.809000-5 9.983108-6 2.809000-5 2.619982-5 3.054921-5 2.498806-5 3.306000-5 2.357401-5 3.306000-5 2.754897-5 3.672823-5 2.557275-5 4.466836-5 2.101434-5 4.677351-5 1.986376-5 4.954502-5 1.847063-5 5.128614-5 1.767357-5 5.248075-5 1.716162-5 5.367000-5 1.668737-5 5.367000-5 1.692537-5 5.530000-5 1.632873-5 5.740000-5 1.564584-5 5.956621-5 1.503690-5 6.165950-5 1.453255-5 6.400000-5 1.405285-5 6.650000-5 1.361989-5 7.000000-5 1.314007-5 7.328245-5 1.278833-5 7.673615-5 1.249814-5 8.035261-5 1.226048-5 8.511380-5 1.202212-5 9.120108-5 1.180453-5 9.900000-5 1.161293-5 1.096478-4 1.144597-5 1.244515-4 1.131113-5 1.428894-4 1.122844-5 1.602400-4 1.119310-5 1.602400-4 1.243334-5 1.621810-4 1.261664-5 1.670700-4 1.314860-5 1.670700-4 1.395641-5 1.711000-4 1.444715-5 1.740000-4 1.469972-5 1.762000-4 1.481380-5 1.788000-4 1.485732-5 1.820000-4 1.479869-5 1.865000-4 1.457573-5 2.018366-4 1.358930-5 2.080000-4 1.326324-5 2.142000-4 1.300504-5 2.213095-4 1.280565-5 2.290868-4 1.269140-5 2.373000-4 1.267169-5 2.465000-4 1.274643-5 2.580000-4 1.294682-5 2.730000-4 1.332098-5 2.915600-4 1.387953-5 2.915600-4 1.653457-5 3.293800-4 1.786505-5 3.293800-4 1.865100-5 3.758374-4 2.025684-5 4.042000-4 2.115642-5 4.042000-4 2.278310-5 4.518559-4 2.419952-5 5.011872-4 2.547159-5 5.559043-4 2.668972-5 6.095369-4 2.771163-5 6.700000-4 2.871256-5 7.500000-4 2.984219-5 8.413951-4 3.091112-5 9.549926-4 3.202562-5 1.071519-3 3.297442-5 1.244515-3 3.413913-5 1.299500-3 3.446599-5 1.299500-3 5.225279-5 1.336600-3 5.234713-5 1.336600-3 5.527507-5 1.410000-3 5.604574-5 1.480300-3 5.639284-5 1.662100-3 5.638137-5 1.662100-3 6.083285-5 1.830900-3 6.126511-5 1.830900-3 6.339795-5 2.018200-3 6.405569-5 2.018200-3 6.630482-5 2.630268-3 6.873454-5 3.400000-3 7.120646-5 4.265795-3 7.345594-5 5.370318-3 7.575719-5 6.683439-3 7.792588-5 7.781000-3 7.940665-5 7.781000-3 1.059973-4 8.590700-3 1.063966-4 8.590700-3 1.126543-4 9.012500-3 1.128196-4 9.012500-3 1.184812-4 1.288250-2 1.209033-4 1.883649-2 1.234732-4 2.722701-2 1.259562-4 3.935501-2 1.283714-4 5.386100-2 1.303160-4 5.386100-2 1.253773-4 1.496236-1 1.260263-4 5.688529-1 1.264269-4 1.000000+5 1.264698-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.350000-6 0.0 1.670700-4 0.0 1.670700-4 7.80071-10 1.675000-4 7.94208-10 1.682000-4 8.22132-10 1.690000-4 8.59532-10 1.704200-4 9.37016-10 1.711000-4 9.76800-10 1.733000-4 1.113715-9 1.744000-4 1.180286-9 1.751000-4 1.220355-9 1.762000-4 1.278046-9 1.770000-4 1.314950-9 1.778279-4 1.347971-9 1.788000-4 1.380100-9 1.800000-4 1.408603-9 1.810000-4 1.424778-9 1.820000-4 1.432949-9 1.831500-4 1.434705-9 1.846000-4 1.426543-9 1.865000-4 1.401976-9 1.880000-4 1.376440-9 1.905461-4 1.321192-9 1.922000-4 1.282700-9 2.020000-4 1.034386-9 2.041738-4 9.81668-10 2.065380-4 9.27328-10 2.080000-4 8.95351-10 2.120000-4 8.13339-10 2.142000-4 7.73698-10 2.162719-4 7.38388-10 2.190000-4 6.98088-10 2.220000-4 6.59862-10 2.250000-4 6.27974-10 2.270000-4 6.10073-10 2.300000-4 5.88052-10 2.323000-4 5.75075-10 2.350000-4 5.63855-10 2.373000-4 5.57333-10 2.400000-4 5.53026-10 2.430000-4 5.52048-10 2.454709-4 5.54259-10 2.490000-4 5.61885-10 2.520000-4 5.71752-10 2.550000-4 5.84425-10 2.580000-4 5.99587-10 2.620000-4 6.23411-10 2.670000-4 6.58688-10 2.730000-4 7.06782-10 2.820000-4 7.88715-10 2.915600-4 8.83293-10 2.915600-4 1.746492-9 3.150000-4 2.019176-9 3.293800-4 2.190892-9 3.293800-4 2.666615-9 3.600000-4 3.051903-9 3.850000-4 3.353370-9 4.042000-4 3.575307-9 4.042000-4 4.135147-9 4.365158-4 4.496886-9 4.700000-4 4.839328-9 5.069907-4 5.181958-9 5.500000-4 5.543372-9 5.956621-4 5.879509-9 6.500000-4 6.232056-9 7.079458-4 6.561431-9 7.500000-4 6.778401-9 8.035261-4 7.026958-9 8.709636-4 7.303549-9 9.772372-4 7.682651-9 1.071519-3 7.968826-9 1.190000-3 8.283084-9 1.299500-3 8.536972-9 1.299500-3 9.427737-9 1.336600-3 9.453173-9 1.336600-3 2.011555-6 1.381500-3 2.290092-6 1.383000-3 2.294459-6 1.410000-3 2.448887-6 1.435000-3 2.566881-6 1.450000-3 2.631651-6 1.462177-3 2.664123-6 1.480300-3 2.705356-6 1.496236-3 2.726823-6 1.662100-3 2.706914-6 1.662100-3 2.749125-6 1.830900-3 2.740640-6 1.830900-3 3.027423-6 2.018200-3 3.051478-6 2.018200-3 3.163081-6 2.371374-3 3.222901-6 3.019952-3 3.309985-6 3.758374-3 3.392367-6 4.786301-3 3.484499-6 6.165950-3 3.580592-6 7.781000-3 3.667826-6 7.781000-3 8.119403-4 8.070500-3 8.145258-4 8.590700-3 8.136122-4 8.590700-3 1.059428-3 9.012500-3 1.061520-3 9.012500-3 1.122326-3 1.202264-2 1.135750-3 1.840772-2 1.148782-3 3.000000-2 1.159408-3 5.386100-2 1.168643-3 5.386100-2 3.753155-2 6.095369-2 3.777373-2 8.128305-2 3.816419-2 1.188502-1 3.847066-2 1.972423-1 3.868809-2 6.309573-1 3.890875-2 1.230269+0 3.901756-2 1.000000+5 3.901134-2 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.350000-6 0.0 9.660000-6 4.310000-6 9.660000-6 1.166429-6 1.020000-5 1.563382-6 1.062000-5 1.877455-6 1.062000-5 1.153922-6 1.100000-5 1.472727-6 1.135011-5 1.771388-6 1.180000-5 2.161552-6 1.244515-5 2.734181-6 1.333521-5 3.547545-6 1.445440-5 4.601144-6 1.610000-5 6.192159-6 1.950000-5 9.551542-6 2.809000-5 1.810689-5 2.809000-5 1.890180-6 2.851018-5 2.503172-6 2.920000-5 3.522862-6 3.019952-5 5.025625-6 3.090295-5 6.102822-6 3.235937-5 8.375111-6 3.306000-5 9.485989-6 3.306000-5 5.511028-6 3.520000-5 8.786651-6 3.801894-5 1.317511-5 4.466836-5 2.365402-5 4.786301-5 2.856360-5 5.128614-5 3.361257-5 5.367000-5 3.698263-5 5.367000-5 3.674463-5 5.740000-5 4.175416-5 6.165950-5 4.712695-5 6.650000-5 5.288011-5 7.328245-5 6.049412-5 8.400000-5 7.192857-5 1.047129-4 9.319899-5 1.602400-4 1.490469-4 1.602400-4 1.478067-4 1.670700-4 1.539214-4 1.670700-4 1.531128-4 1.773400-4 1.624948-4 1.922000-4 1.779938-4 2.220000-4 2.092078-4 2.630268-4 2.499661-4 2.915600-4 2.776796-4 2.915600-4 2.750237-4 3.293800-4 3.115128-4 3.293800-4 3.107263-4 4.042000-4 3.830400-4 4.042000-4 3.814128-4 6.500000-4 6.215957-4 1.299500-3 1.265025-3 1.299500-3 1.247238-3 1.336600-3 1.284243-3 1.336600-3 1.279313-3 1.662100-3 1.603012-3 1.662100-3 1.598518-3 1.830900-3 1.766894-3 1.830900-3 1.764475-3 2.018200-3 1.951093-3 2.018200-3 1.948732-3 7.781000-3 7.697926-3 7.781000-3 6.863062-3 8.590700-3 7.670691-3 8.590700-3 7.418617-3 9.012500-3 7.838160-3 9.012500-3 7.771693-3 3.715352-2 3.586235-2 5.386100-2 5.256204-2 5.386100-2 1.620407-2 5.600000-2 1.823359-2 5.888437-2 2.103615-2 8.035261-2 4.207299-2 1.348963-1 9.622722-2 1.000000+5 9.999996+4 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.386100-2 3.535677+3 5.600000-2 3.220827+3 5.754399-2 2.995129+3 5.930000-2 2.783480+3 6.531306-2 2.161100+3 7.244360-2 1.654197+3 8.035261-2 1.257776+3 1.000000-1 6.987920+2 1.258925-1 3.727459+2 2.213095-1 7.883258+1 2.691535-1 4.628386+1 3.054921-1 3.295429+1 3.507519-1 2.289187+1 3.981072-1 1.650379+1 4.518559-1 1.198349+1 5.069907-1 9.021135+0 5.688529-1 6.843581+0 6.382635-1 5.231228+0 7.079458-1 4.135556+0 7.852356-1 3.290330+0 8.709636-1 2.636398+0 9.660509-1 2.128448+0 1.096478+0 1.654182+0 1.250000+0 1.283316+0 1.412538+0 1.020827+0 1.584893+0 8.286432-1 1.798871+0 6.638617-1 2.044000+0 5.348581-1 2.317395+0 4.357334-1 2.630268+0 3.568612-1 3.019952+0 2.891295-1 3.507519+0 2.319253-1 4.073803+0 1.874287-1 4.786301+0 1.501298-1 5.688529+0 1.193375-1 6.839116+0 9.412661-2 8.317638+0 7.378667-2 1.023293+1 5.745801-2 1.288250+1 4.386571-2 1.621810+1 3.374135-2 2.137962+1 2.480974-2 2.884032+1 1.792933-2 4.073803+1 1.241159-2 6.382635+1 7.770472-3 1.083927+2 4.509681-3 2.162719+2 2.236947-3 4.315191+2 1.114982-3 1.717908+3 2.789870-4 1.000000+5 4.786300-6 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.386100-2 1.242600-4 1.000000+5 1.242600-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.386100-2 4.575800-2 1.000000+5 4.575800-2 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.386100-2 7.978740-3 1.000000+5 9.999995+4 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 9.012500-3 1.359623+4 9.160000-3 1.312054+4 9.350000-3 1.270014+4 9.549926-3 1.223386+4 9.900000-3 1.154864+4 1.083927-2 9.838435+3 1.174898-2 8.556531+3 1.273503-2 7.367023+3 1.333521-2 6.746899+3 1.420000-2 6.008920+3 1.819701-2 3.686502+3 2.018366-2 2.978629+3 2.344229-2 2.178120+3 2.800000-2 1.482062+3 3.162278-2 1.130325+3 3.630781-2 8.261651+2 4.315191-2 5.527357+2 5.128614-2 3.660848+2 6.095369-2 2.401997+2 7.244360-2 1.562310+2 8.511380-2 1.038290+2 1.023293-1 6.462207+1 1.258925-1 3.761772+1 2.511886-1 6.042961+0 3.054921-1 3.620813+0 3.589219-1 2.391461+0 4.120975-1 1.687450+0 4.677351-1 1.234297+0 5.308844-1 9.092693-1 6.000000-1 6.818405-1 6.760830-1 5.191503-1 7.585776-1 4.021241-1 8.609938-1 3.061075-1 9.549926-1 2.467314-1 1.059254+0 2.004627-1 1.202264+0 1.565257-1 1.348963+0 1.258565-1 1.513561+0 1.018899-1 1.717908+0 8.139899-2 1.949845+0 6.552413-2 2.213095+0 5.313259-2 2.511886+0 4.340408-2 2.884032+0 3.507938-2 3.349654+0 2.807273-2 3.890451+0 2.263693-2 4.570882+0 1.809334-2 5.370318+0 1.457109-2 6.531306+0 1.129838-2 7.762471+0 9.094179-3 9.549926+0 7.063879-3 1.188502+1 5.453048-3 1.513561+1 4.128881-3 1.995262+1 3.031133-3 2.630268+1 2.240942-3 3.801894+1 1.511266-3 5.754399+1 9.793523-4 9.549926+1 5.810354-4 1.862087+2 2.946222-4 3.715352+2 1.467169-4 1.479108+3 3.668986-5 1.000000+5 5.418100-7 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 9.012500-3 1.546700-4 1.000000+5 1.546700-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.012500-3 1.511000-3 1.000000+5 1.511000-3 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.012500-3 7.346830-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.590700-3 2.671977+4 8.670000-3 2.615136+4 8.810489-3 2.530000+4 9.400000-3 2.151400+4 1.083927-2 1.482400+4 1.202264-2 1.120900+4 1.428894-2 6.955000+3 1.659587-2 4.581300+3 2.080000-2 2.391300+3 2.540973-2 1.326200+3 3.000000-2 8.063400+2 3.427678-2 5.384600+2 4.073803-2 3.172400+2 5.000000-2 1.681000+2 6.309573-2 8.113400+1 1.318257-1 7.918293+0 1.650000-1 3.924319+0 2.000000-1 2.165280+0 2.344229-1 1.334756+0 2.722701-1 8.523668-1 3.126079-1 5.676440-1 3.548134-1 3.939042-1 4.000000-1 2.807574-1 4.466836-1 2.070120-1 5.011872-1 1.517690-1 5.559043-1 1.155547-1 6.165950-1 8.856753-2 6.839117-1 6.836588-2 7.585776-1 5.316666-2 8.413951-1 4.152151-2 9.015711-1 3.542783-2 9.660509-1 3.042731-2 1.035142+0 2.632995-2 1.135011+0 2.188150-2 1.250000+0 1.816487-2 1.380384+0 1.512312-2 1.659587+0 1.088635-2 1.883649+0 8.742715-3 2.113489+0 7.210132-3 2.398833+0 5.875254-3 2.754229+0 4.736541-3 3.198895+0 3.781582-3 3.715352+0 3.042417-3 4.365158+0 2.426320-3 5.128614+0 1.949787-3 6.165950+0 1.531517-3 7.328245+0 1.229675-3 9.015711+0 9.530960-4 1.122018+1 7.342666-4 1.412538+1 5.623550-4 1.840772+1 4.172009-4 2.400000+1 3.116400-4 3.388442+1 2.149834-4 4.841724+1 1.475730-4 7.943282+1 8.835511-5 1.462177+2 4.738349-5 2.917427+2 2.355781-5 1.161449+3 5.884238-6 1.000000+5 6.820500-8 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.590700-3 1.294500-4 1.000000+5 1.294500-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.590700-3 1.719200-3 1.000000+5 1.719200-3 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.590700-3 6.742050-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 7.781000-3 5.879177+4 8.070500-3 5.388475+4 8.511380-3 4.677797+4 1.000000-2 3.005688+4 1.122018-2 2.169720+4 1.462177-2 1.008675+4 1.584893-2 7.944293+3 1.927525-2 4.411946+3 2.371374-2 2.333935+3 2.884032-2 1.264541+3 3.467369-2 7.036120+2 4.216965-2 3.740270+2 5.128614-2 1.972283+2 6.500000-2 9.008240+1 8.709636-2 3.390732+1 1.303167-1 8.797296+0 1.650000-1 4.014248+0 1.949845-1 2.320030+0 2.264644-1 1.429405+0 2.600160-1 9.206388-1 2.951209-1 6.197735-1 3.311311-1 4.357069-1 3.672823-1 3.194518-1 4.073803-1 2.358238-1 4.518559-1 1.753891-1 5.011872-1 1.315000-1 5.495409-1 1.024931-1 6.025596-1 8.041394-2 6.606935-1 6.353276-2 7.244360-1 5.053976-2 7.943282-1 4.048233-2 8.709636-1 3.255175-2 9.332543-1 2.782713-2 9.885531-1 2.455787-2 1.071519+0 2.079530-2 1.174898+0 1.732663-2 1.288250+0 1.454500-2 1.428894+0 1.204013-2 1.698244+0 8.860610-3 1.927525+0 7.124369-3 2.187762+0 5.772792-3 2.483133+0 4.712732-3 2.851018+0 3.806353-3 3.311311+0 3.044324-3 3.845918+0 2.453517-3 4.518559+0 1.959928-3 5.308844+0 1.577495-3 6.382635+0 1.240801-3 7.585776+0 9.977662-4 9.332543+0 7.743510-4 1.161449+1 5.972946-4 1.462177+1 4.578953-4 1.927525+1 3.357918-4 2.511886+1 2.511825-4 3.630781+1 1.692101-4 5.308844+1 1.135512-4 8.810489+1 6.728654-5 1.678804+2 3.488921-5 3.349654+2 1.736285-5 1.333521+3 4.340133-6 1.000000+5 5.777300-8 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 7.781000-3 1.213100-4 1.000000+5 1.213100-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.781000-3 1.277400-3 1.000000+5 1.277400-3 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 7.781000-3 6.382290-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.018200-3 4.018705+4 2.137962-3 3.757853+4 2.264644-3 3.479421+4 2.400000-3 3.228000+4 2.511886-3 3.028057+4 3.019952-3 2.307862+4 3.467369-3 1.871803+4 3.758374-3 1.643344+4 4.518559-3 1.210849+4 5.069907-3 9.919526+3 5.888437-3 7.612022+3 7.000000-3 5.545340+3 7.943282-3 4.372706+3 9.332543-3 3.208070+3 1.109175-2 2.282134+3 1.318257-2 1.609613+3 1.580000-2 1.106102+3 1.862087-2 7.808803+2 2.187762-2 5.508512+2 2.570396-2 3.857229+2 3.019952-2 2.681056+2 3.589219-2 1.800963+2 4.216965-2 1.232831+2 5.000000-2 8.195120+1 5.888437-2 5.496659+1 7.079458-2 3.476516+1 8.511380-2 2.180892+1 1.023293-1 1.358162+1 1.303167-1 7.232366+0 1.621810-1 4.065074+0 2.398833-1 1.444077+0 2.951209-1 8.402555-1 3.507519-1 5.386639-1 4.027170-1 3.799131-1 4.623810-1 2.699954-1 5.248075-1 1.988576-1 5.888437-1 1.515976-1 6.606935-1 1.163975-1 7.413102-1 9.001875-2 8.413951-1 6.840783-2 9.332543-1 5.503634-2 1.023293+0 4.568094-2 1.174898+0 3.481967-2 1.318257+0 2.795610-2 1.496236+0 2.213454-2 1.698244+0 1.767233-2 1.927525+0 1.421616-2 2.187762+0 1.151762-2 2.483133+0 9.402472-3 2.851018+0 7.595108-3 3.311311+0 6.074803-3 3.845918+0 4.895745-3 4.518559+0 3.910846-3 5.308844+0 3.147853-3 6.456542+0 2.439725-3 7.585776+0 1.991031-3 9.332543+0 1.545185-3 1.161449+1 1.191885-3 1.462177+1 9.137058-4 1.927525+1 6.700513-4 2.511886+1 5.012231-4 3.630781+1 3.376435-4 5.308844+1 2.265870-4 8.810489+1 1.342661-4 1.678804+2 6.962010-5 3.349654+2 3.464691-5 1.333521+3 8.660526-6 1.000000+5 1.152800-7 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.018200-3 1.175100-4 1.000000+5 1.175100-4 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.018200-3 5.703900-6 1.000000+5 5.703900-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.018200-3 1.894986-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.830900-3 6.502110+4 2.113489-3 5.547668+4 2.238721-3 5.159092+4 2.469600-3 4.514117+4 2.660725-3 4.057166+4 2.884032-3 3.591523+4 3.126079-3 3.156523+4 3.349654-3 2.807256+4 3.890451-3 2.155323+4 4.216965-3 1.855321+4 4.841724-3 1.418582+4 5.300000-3 1.182326+4 6.025596-3 9.041308+3 6.606934-3 7.417072+3 7.585776-3 5.455583+3 8.413951-3 4.303406+3 9.549926-3 3.195905+3 1.083927-2 2.353076+3 1.216186-2 1.769648+3 1.380384-2 1.284238+3 1.580000-2 9.050700+2 1.800000-2 6.408900+2 2.041738-2 4.560719+2 2.344229-2 3.118317+2 2.691535-2 2.117083+2 3.090295-2 1.427747+2 3.589219-2 9.255124+1 4.216965-2 5.760289+1 5.011872-2 3.440596+1 6.095369-2 1.902450+1 7.762471-2 9.073628+0 1.531088-1 1.112710+0 1.905461-1 5.699244-1 2.290868-1 3.267877-1 2.660725-1 2.094016-1 3.054921-1 1.398011-1 3.467369-1 9.717313-2 3.935501-1 6.804001-2 4.415705-1 4.955991-2 4.954502-1 3.637084-2 5.495409-1 2.772906-2 6.095369-1 2.128218-2 6.760830-1 1.644150-2 7.498942-1 1.279142-2 8.609938-1 9.232727-3 9.225714-1 7.890309-3 9.885531-1 6.789963-3 1.071519+0 5.750852-3 1.174898+0 4.792239-3 1.288250+0 4.023017-3 1.428894+0 3.329988-3 1.698244+0 2.450470-3 1.927525+0 1.970494-3 2.187762+0 1.597027-3 2.483133+0 1.303945-3 2.851018+0 1.053257-3 3.311311+0 8.424114-4 3.845918+0 6.789153-4 4.518559+0 5.423311-4 5.308844+0 4.365198-4 6.456542+0 3.383207-4 7.673615+0 2.721779-4 9.440609+0 2.113273-4 1.174898+1 1.630710-4 1.479108+1 1.250495-4 1.949845+1 9.174193-5 2.540973+1 6.864107-5 3.672823+1 4.625432-5 5.432503+1 3.067751-5 9.015711+1 1.818509-5 1.717908+2 9.431825-6 3.427678+2 4.694520-6 1.364583+3 1.173603-6 1.000000+5 1.598600-8 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.830900-3 9.873600-5 1.000000+5 9.873600-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.830900-3 7.779000-6 1.000000+5 7.779000-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.830900-3 1.724385-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.662100-3 1.767553+5 1.760000-3 1.640824+5 1.800000-3 1.597252+5 1.950000-3 1.429004+5 2.070000-3 1.305100+5 2.300000-3 1.104408+5 2.540973-3 9.363068+4 2.754229-3 8.140664+4 2.985383-3 7.032573+4 3.548134-3 5.059979+4 3.845918-3 4.312071+4 4.415704-3 3.240163+4 4.841724-3 2.663850+4 5.500000-3 2.011432+4 6.095369-3 1.594128+4 7.000000-3 1.154428+4 7.800000-3 8.903800+3 8.810489-3 6.601705+3 1.011579-2 4.657598+3 1.135011-2 3.457505+3 1.273503-2 2.551422+3 1.462177-2 1.757374+3 1.678804-2 1.200193+3 1.927525-2 8.130265+2 2.238721-2 5.283997+2 2.570396-2 3.522011+2 2.951209-2 2.330662+2 3.388442-2 1.532018+2 3.935501-2 9.655259+1 4.623810-2 5.828536+1 5.495409-2 3.367637+1 6.683439-2 1.793450+1 8.413951-2 8.472024+0 1.548817-1 1.142007+0 1.883649-1 6.045143-1 2.238721-1 3.473185-1 2.570396-1 2.244964-1 2.917427-1 1.515412-1 3.273407-1 1.067372-1 3.672823-1 7.573746-2 4.073803-1 5.601604-2 4.518559-1 4.174515-2 5.011872-1 3.133597-2 5.559043-1 2.369090-2 6.095369-1 1.860329-2 6.683439-1 1.471410-2 7.328245-1 1.171918-2 8.317638-1 8.654365-3 9.015711-1 7.179130-3 9.660509-1 6.160662-3 1.035142+0 5.328491-3 1.135011+0 4.427114-3 1.250000+0 3.675202-3 1.380384+0 3.060201-3 1.678804+0 2.159061-3 1.905461+0 1.734831-3 2.162719+0 1.404717-3 2.454709+0 1.146043-3 2.818383+0 9.250541-4 3.273407+0 7.394080-4 3.801894+0 5.955614-4 4.466836+0 4.754917-4 5.248075+0 3.825161-4 6.309573+0 3.007378-4 7.498942+0 2.417115-4 9.225714+0 1.875035-4 1.148154+1 1.445754-4 1.445440+1 1.107925-4 1.905461+1 8.121959-5 2.483133+1 6.074169-5 3.548134+1 4.140879-5 5.128614+1 2.811054-5 8.511380+1 1.664810-5 1.621810+2 8.628751-6 3.235937+2 4.293048-6 1.288250+3 1.072962-6 1.000000+5 1.379700-8 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.662100-3 9.025300-5 1.000000+5 9.025300-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.662100-3 3.028100-6 1.000000+5 3.028100-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.662100-3 1.568819-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.336600-3 4.097075+5 1.381500-3 4.593568+5 1.383000-3 4.596477+5 1.410000-3 4.859452+5 1.435000-3 4.980064+5 1.450000-3 5.035467+5 1.462177-3 5.024980+5 1.480300-3 4.990518+5 1.496236-3 4.921310+5 1.800000-3 3.100924+5 1.972423-3 2.450443+5 2.162719-3 1.919958+5 2.371374-3 1.493488+5 2.660725-3 1.081931+5 2.884032-3 8.598488+4 3.349654-3 5.531225+4 3.672823-3 4.194134+4 4.300000-3 2.580960+4 4.731513-3 1.910499+4 5.432503-3 1.227563+4 6.165950-3 8.109917+3 6.839116-3 5.747451+3 7.852356-3 3.600953+3 9.000000-3 2.249756+3 1.011579-2 1.494050+3 1.150000-2 9.473000+2 1.318257-2 5.789184+2 1.531087-2 3.346285+2 1.757924-2 2.002588+2 2.041738-2 1.139545+2 2.371374-2 6.436573+1 2.800000-2 3.387828+1 3.311311-2 1.759539+1 4.120975-2 7.422420+0 5.248075-2 2.834225+0 9.332543-2 2.836487-1 1.148154-1 1.246378-1 1.364583-1 6.325100-2 1.603245-1 3.383234-2 1.840772-1 1.991879-2 2.113489-1 1.181364-2 2.398833-1 7.371746-3 2.691535-1 4.834215-3 3.019952-1 3.192580-3 3.349654-1 2.210773-3 3.715352-1 1.542360-3 4.027170-1 1.172540-3 4.415705-1 8.638190-4 4.897788-1 6.172844-4 5.432503-1 4.443311-4 6.025596-1 3.222752-4 6.606935-1 2.436456-4 7.244360-1 1.854980-4 7.852356-1 1.470872-4 8.609938-1 1.131248-4 9.120108-1 9.668470-5 9.549926-1 8.579068-5 1.000000+0 7.661864-5 1.047129+0 6.892891-5 1.096478+0 6.243677-5 1.161449+0 5.562227-5 1.230269+0 4.990626-5 1.333521+0 4.317427-5 1.479108+0 3.614309-5 1.862087+0 2.416412-5 2.065380+0 2.028545-5 2.344229+0 1.650614-5 2.660725+0 1.352668-5 3.054921+0 1.096578-5 3.548134+0 8.801431-6 4.120975+0 7.116601-6 4.841724+0 5.703504-6 5.754399+0 4.536086-6 6.918310+0 3.579392-6 8.413951+0 2.807204-6 1.035142+1 2.186857-6 1.303167+1 1.670212-6 1.659587+1 1.268578-6 2.213095+1 9.216750-7 3.019952+1 6.583900-7 4.265795+1 4.562660-7 6.760830+1 2.824959-7 1.161449+2 1.621674-7 2.317395+2 8.048900-8 4.623810+2 4.013425-8 3.672823+3 5.031624-9 1.000000+5 1.84680-10 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.336600-3 6.452400-5 1.000000+5 6.452400-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.336600-3 8.335900-6 1.000000+5 8.335900-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.336600-3 1.263740-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.299500-3 9.578493+5 1.410000-3 8.291400+5 1.445440-3 7.769040+5 1.548817-3 6.514742+5 1.737801-3 4.871676+5 1.905461-3 3.835053+5 2.070000-3 3.075438+5 2.264644-3 2.405029+5 2.483133-3 1.857739+5 2.754229-3 1.382502+5 3.019952-3 1.053749+5 3.467369-3 6.963045+4 3.845918-3 5.060021+4 4.315191-3 3.529889+4 4.841724-3 2.443474+4 5.432503-3 1.680735+4 6.165950-3 1.104688+4 6.918310-3 7.490507+3 7.800000-3 4.963014+3 8.810489-3 3.244797+3 1.011579-2 1.987585+3 1.161449-2 1.207392+3 1.333521-2 7.276417+2 1.531087-2 4.351004+2 1.778279-2 2.471744+2 2.065380-2 1.392222+2 2.400000-2 7.764360+1 2.818383-2 4.124433+1 3.349654-2 2.072578+1 4.120975-2 8.993308+0 5.128614-2 3.693528+0 9.660509-2 2.766780-1 1.161449-1 1.309825-1 1.364583-1 6.855740-2 1.566751-1 3.963044-2 1.778279-1 2.414221-2 2.000000-1 1.534632-2 2.371374-1 8.096278-3 2.630268-1 5.526875-3 2.884032-1 3.962485-3 3.162278-1 2.859971-3 3.467369-1 2.078763-3 3.801894-1 1.521741-3 4.168694-1 1.121878-3 4.570882-1 8.332293-4 4.954502-1 6.466041-4 5.370318-1 5.050877-4 5.821032-1 3.973194-4 6.237348-1 3.254789-4 6.760830-1 2.598469-4 7.328245-1 2.090294-4 7.943282-1 1.694054-4 8.609938-1 1.377426-4 9.120108-1 1.195516-4 9.660509-1 1.044558-4 1.023293+0 9.197585-5 1.083927+0 8.152818-5 1.161449+0 7.103673-5 1.258925+0 6.096213-5 1.380384+0 5.156191-5 1.757924+0 3.366804-5 1.995262+0 2.711627-5 2.264644+0 2.201939-5 2.570396+0 1.801143-5 2.951209+0 1.457572-5 3.427678+0 1.167812-5 4.000000+0 9.364600-6 4.677351+0 7.543090-6 5.495409+0 6.080786-6 6.683439+0 4.719794-6 8.035261+0 3.749023-6 9.772372+0 2.956115-6 1.216186+1 2.283766-6 1.548817+1 1.730596-6 2.018366+1 1.287410-6 2.722701+1 9.288440-7 3.890451+1 6.345147-7 5.888437+1 4.113589-7 9.885531+1 2.412735-7 1.972423+2 1.195676-7 3.935501+2 5.956669-8 1.566751+3 1.489972-8 1.000000+5 2.33080-10 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.299500-3 5.977200-5 1.000000+5 5.977200-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.299500-3 9.804300-9 1.000000+5 9.804300-9 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.299500-3 1.239718-3 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.042000-4 9.419641+4 4.466836-4 8.897327+4 5.432503-4 7.622209+4 5.821032-4 7.165285+4 6.500000-4 6.394080+4 7.244360-4 5.691690+4 7.852356-4 5.180465+4 9.015711-4 4.361580+4 9.885531-4 3.868191+4 1.122018-3 3.249148+4 1.270000-3 2.721620+4 1.479108-3 2.166417+4 1.678804-3 1.779764+4 1.950000-3 1.400030+4 2.300000-3 1.065244+4 2.722701-3 7.986991+3 3.235937-3 5.900576+3 3.890451-3 4.236853+3 4.677351-3 3.019089+3 5.688529-3 2.089908+3 6.839116-3 1.467961+3 8.222426-3 1.023916+3 9.885531-3 7.089616+2 1.174898-2 4.987103+2 1.396368-2 3.483986+2 1.678804-2 2.357474+2 2.000000-2 1.614184+2 2.371374-2 1.108554+2 2.818383-2 7.516481+1 3.349654-2 5.056728+1 3.981072-2 3.375109+1 4.731513-2 2.235368+1 5.559043-2 1.510760+1 6.683439-2 9.578054+0 8.035261-2 6.025757+0 9.772372-2 3.649585+0 1.230269-1 2.006921+0 1.566751-1 1.063723+0 2.398833-1 3.450264-1 2.951209-1 2.008022-1 3.507519-1 1.287583-1 4.073803-1 8.825136-2 4.677351-1 6.276181-2 5.308844-1 4.625747-2 6.000000-1 3.470000-2 6.760830-1 2.642477-2 7.585776-1 2.046932-2 8.609938-1 1.558060-2 9.549926-1 1.255733-2 1.059254+0 1.020243-2 1.202264+0 7.966107-3 1.348963+0 6.405194-3 1.513561+0 5.185493-3 1.717908+0 4.142567-3 1.949845+0 3.334749-3 2.213095+0 2.704298-3 2.511886+0 2.209165-3 2.884032+0 1.785401-3 3.349654+0 1.428784-3 3.890451+0 1.152127-3 4.570882+0 9.208513-4 5.370318+0 7.415700-4 6.531306+0 5.750318-4 7.762471+0 4.628401-4 9.549926+0 3.595127-4 1.188502+1 2.775266-4 1.513561+1 2.101367-4 1.995262+1 1.542637-4 2.660725+1 1.126404-4 3.845918+1 7.598672-5 5.821032+1 4.925084-5 9.660509+1 2.922522-5 1.883649+2 1.482084-5 3.758374+2 7.381137-6 1.496236+3 1.845940-6 1.000000+5 2.757500-8 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.042000-4 6.824400-5 1.000000+5 6.824400-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.042000-4 1.978100-8 1.000000+5 1.978100-8 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.042000-4 3.359362-4 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.293800-4 7.572389+4 4.623810-4 7.165940+4 5.011872-4 7.020425+4 5.432503-4 6.832781+4 5.821032-4 6.630528+4 6.237348-4 6.390918+4 6.700000-4 6.103360+4 7.328245-4 5.712416+4 7.943282-4 5.343304+4 8.609938-4 4.957451+4 9.500000-4 4.485260+4 1.035142-3 4.081225+4 1.135011-3 3.659318+4 1.258925-3 3.212248+4 1.380384-3 2.840140+4 1.531087-3 2.455160+4 1.698244-3 2.106834+4 1.905461-3 1.763331+4 2.113489-3 1.491602+4 2.371374-3 1.229591+4 2.660725-3 1.006051+4 3.000000-3 8.099940+3 3.400000-3 6.410340+3 3.845918-3 5.052579+3 4.365158-3 3.926064+3 4.954502-3 3.027952+3 5.623413-3 2.317957+3 6.382635-3 1.761521+3 7.328245-3 1.294629+3 8.317638-3 9.685960+2 9.400000-3 7.267640+2 1.059254-2 5.453416+2 1.202264-2 3.993632+2 1.364583-2 2.904871+2 1.548817-2 2.098621+2 1.778279-2 1.460758+2 2.041738-2 1.009191+2 2.344229-2 6.921774+1 2.722701-2 4.565130+1 3.162278-2 2.987613+1 3.715352-2 1.877033+1 4.415704-2 1.131464+1 5.248075-2 6.768289+0 6.456542-2 3.620774+0 8.317638-2 1.670793+0 1.216186-1 5.187610-1 1.621810-1 2.142898-1 2.000000-1 1.133290-1 2.371374-1 6.796965-2 2.754229-1 4.367192-2 3.162278-1 2.923371-2 3.589219-1 2.037333-2 4.027170-1 1.476801-2 4.518559-1 1.077984-2 5.069907-1 7.926471-3 5.688529-1 5.873976-3 6.309573-1 4.516893-3 6.998420-1 3.497590-3 7.762471-1 2.728075-3 8.709636-1 2.082099-3 9.332543-1 1.781617-3 1.000000+0 1.535391-3 1.096478+0 1.272179-3 1.202264+0 1.062096-3 1.318257+0 8.932150-4 1.479108+0 7.253235-4 1.717908+0 5.563921-4 1.949845+0 4.476706-4 2.213095+0 3.630176-4 2.511886+0 2.965517-4 2.884032+0 2.396666-4 3.349654+0 1.917936-4 3.890451+0 1.546564-4 4.570882+0 1.236175-4 5.370318+0 9.955144-5 6.531306+0 7.719175-5 7.762471+0 6.213158-5 9.549926+0 4.826069-5 1.188502+1 3.725478-5 1.513561+1 2.820796-5 1.972423+1 2.097431-5 2.600160+1 1.550097-5 3.758374+1 1.045183-5 5.623413+1 6.852837-6 9.332543+1 4.064324-6 1.798871+2 2.084435-6 3.589219+2 1.037819-6 1.428894+3 2.594908-7 1.000000+5 3.701700-9 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.293800-4 5.229200-5 1.000000+5 5.229200-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.293800-4 2.302900-8 1.000000+5 2.302900-8 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.293800-4 2.770650-4 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 2.915600-4 2.934768+5 3.935501-4 2.542906+5 4.122800-4 2.479020+5 4.700000-4 2.280704+5 5.069907-4 2.156714+5 5.500000-4 2.017324+5 5.956621-4 1.874755+5 6.531306-4 1.709719+5 7.161434-4 1.548476+5 7.852356-4 1.391038+5 8.709636-4 1.223624+5 9.549926-4 1.084566+5 1.070000-3 9.267880+4 1.190000-3 7.941000+4 1.333521-3 6.676582+4 1.496236-3 5.558895+4 1.678804-3 4.593912+4 1.900000-3 3.711792+4 2.137962-3 3.005922+4 2.400000-3 2.428040+4 2.722701-3 1.908652+4 3.090295-3 1.487328+4 3.507519-3 1.150113+4 4.000000-3 8.739400+3 4.570882-3 6.559521+3 5.248075-3 4.833016+3 6.025596-3 3.530099+3 6.839116-3 2.626654+3 7.673615-3 1.995213+3 8.746820-3 1.448744+3 9.885531-3 1.066162+3 1.122018-2 7.706903+2 1.273503-2 5.530973+2 1.445440-2 3.941406+2 1.640590-2 2.789197+2 1.883649-2 1.898062+2 2.162719-2 1.281571+2 2.483133-2 8.588011+1 2.851018-2 5.713484+1 3.273407-2 3.774614+1 3.801894-2 2.391251+1 4.466836-2 1.450933+1 5.248075-2 8.737577+0 6.309573-2 4.855122+0 7.673615-2 2.580726+0 1.035142-1 9.708422-1 1.566751-1 2.501325-1 1.905461-1 1.326063-1 2.238721-1 7.915998-2 2.570396-1 5.121021-2 2.917427-1 3.458989-2 3.273407-1 2.437512-2 3.672823-1 1.730312-2 4.073803-1 1.280119-2 4.518559-1 9.541373-3 5.011872-1 7.165381-3 5.559043-1 5.423647-3 6.095369-1 4.263216-3 6.683439-1 3.373360-3 7.328245-1 2.687248-3 8.317638-1 1.984738-3 9.015711-1 1.646626-3 9.660509-1 1.413204-3 1.035142+0 1.222493-3 1.135011+0 1.015768-3 1.250000+0 8.432067-4 1.380384+0 7.020771-4 1.678804+0 4.952979-4 1.905461+0 3.979852-4 2.162719+0 3.222817-4 2.454709+0 2.629400-4 2.818383+0 2.122295-4 3.273407+0 1.696291-4 3.801894+0 1.366241-4 4.466836+0 1.090803-4 5.248075+0 8.775350-5 6.309573+0 6.899287-5 7.498942+0 5.545076-5 9.225714+0 4.301606-5 1.148154+1 3.316655-5 1.445440+1 2.541832-5 1.905461+1 1.863264-5 2.483133+1 1.393465-5 3.589219+1 9.383924-6 5.248075+1 6.296029-6 8.709636+1 3.730144-6 1.640590+2 1.956556-6 3.273407+2 9.735425-7 1.303167+3 2.433191-7 1.000000+5 3.165100-9 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 2.915600-4 4.724500-5 1.000000+5 4.724500-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.915600-4 1.173100-8 1.000000+5 1.173100-8 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 2.915600-4 2.443033-4 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.670700-4 3.140540+5 1.675000-4 3.202200+5 1.682000-4 3.323316+5 1.690000-4 3.484320+5 1.722000-4 4.270720+5 1.733000-4 4.555000+5 1.744000-4 4.825560+5 1.751000-4 4.985160+5 1.762000-4 5.208360+5 1.770000-4 5.345200+5 1.778279-4 5.461906+5 1.788000-4 5.565160+5 1.798871-4 5.637418+5 1.810000-4 5.666760+5 1.820000-4 5.658480+5 1.831500-4 5.613990+5 1.846000-4 5.514960+5 1.862087-4 5.363176+5 1.880000-4 5.159280+5 1.900000-4 4.908120+5 1.922000-4 4.618600+5 1.950000-4 4.249880+5 1.980000-4 3.868684+5 2.020000-4 3.397552+5 2.120000-4 2.453596+5 2.162719-4 2.156587+5 2.190000-4 1.997988+5 2.220000-4 1.849308+5 2.250000-4 1.725320+5 2.270000-4 1.655092+5 2.300000-4 1.566592+5 2.323000-4 1.511276+5 2.350000-4 1.458748+5 2.373000-4 1.423536+5 2.400000-4 1.392348+5 2.430000-4 1.368776+5 2.454709-4 1.357346+5 2.490000-4 1.351964+5 2.520000-4 1.356192+5 2.550000-4 1.367364+5 2.580000-4 1.384492+5 2.620000-4 1.415072+5 2.670000-4 1.463284+5 2.730000-4 1.531800+5 3.000000-4 1.902440+5 3.100000-4 2.042408+5 3.200000-4 2.175472+5 3.311311-4 2.311254+5 3.427678-4 2.437440+5 3.550000-4 2.551760+5 3.672823-4 2.648675+5 3.801894-4 2.732803+5 3.935501-4 2.802098+5 4.073803-4 2.855885+5 4.216965-4 2.893785+5 4.365158-4 2.916238+5 4.550000-4 2.924600+5 4.764600-4 2.912939+5 5.000000-4 2.879244+5 5.248075-4 2.824552+5 5.500000-4 2.754620+5 5.821032-4 2.651571+5 6.165950-4 2.532038+5 6.531306-4 2.400667+5 6.918310-4 2.260246+5 7.413102-4 2.085805+5 7.943282-4 1.909806+5 8.511380-4 1.735113+5 9.120108-4 1.565553+5 9.772372-4 1.403527+5 1.047129-3 1.250302+5 1.135011-3 1.084656+5 1.230269-3 9.339437+4 1.333521-3 7.984059+4 1.450000-3 6.736200+4 1.584893-3 5.580086+4 1.717908-3 4.675385+4 1.900000-3 3.717480+4 2.089296-3 2.970578+4 2.290868-3 2.373756+4 2.540973-3 1.830212+4 2.818383-3 1.399889+4 3.162278-3 1.030111+4 3.548134-3 7.512233+3 4.000000-3 5.358280+3 4.466836-3 3.893830+3 4.954502-3 2.865888+3 5.559043-3 2.022890+3 6.237348-3 1.417240+3 7.000000-3 9.844160+2 7.852356-3 6.794331+2 8.810489-3 4.651939+2 9.885531-3 3.161784+2 1.109175-2 2.134166+2 1.258925-2 1.374590+2 1.428894-2 8.787205+1 1.621810-2 5.577630+1 1.862087-2 3.371169+1 2.137962-2 2.022175+1 2.483133-2 1.153196+1 2.884032-2 6.527232+0 3.388442-2 3.509114+0 4.073803-2 1.712724+0 5.069907-2 7.246315-1 1.035142-1 4.283191-2 1.258925-1 1.985473-2 1.496236-1 1.014667-2 1.737801-1 5.711213-3 2.000000-1 3.353481-3 2.264644-1 2.108177-3 2.570396-1 1.323201-3 2.884032-1 8.725471-4 3.235937-1 5.793811-4 3.589219-1 4.035797-4 3.981072-1 2.832557-4 4.365158-1 2.083444-4 4.786301-1 1.542398-4 5.308844-1 1.108089-4 5.821032-1 8.315178-5 6.456542-1 6.062773-5 7.079458-1 4.611725-5 7.673615-1 3.654118-5 8.609938-1 2.638169-5 9.120108-1 2.257635-5 9.549926-1 2.005018-5 1.000000+0 1.791900-5 1.047129+0 1.612808-5 1.096478+0 1.461307-5 1.161449+0 1.301981-5 1.230269+0 1.168112-5 1.333521+0 1.010283-5 1.479108+0 8.453493-6 1.840772+0 5.764518-6 2.044000+0 4.826900-6 2.317395+0 3.932038-6 2.630268+0 3.220271-6 3.019952+0 2.609115-6 3.507519+0 2.092876-6 4.073803+0 1.691351-6 4.786301+0 1.354824-6 5.688529+0 1.076886-6 6.839116+0 8.493995-7 8.317638+0 6.658477-7 1.023293+1 5.185030-7 1.288250+1 3.958405-7 1.640590+1 3.005574-7 2.162719+1 2.210695-7 2.917427+1 1.598063-7 4.120975+1 1.106521-7 6.456542+1 6.929005-8 1.096478+2 4.022016-8 2.187762+2 1.995283-8 4.365158+2 9.945478-9 1.737801+3 2.488732-9 1.000000+5 4.31920-11 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.670700-4 3.057600-5 1.000000+5 3.057600-5 1 66000 7 7 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.670700-4 1.682900-8 1.000000+5 1.682900-8 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.670700-4 1.364772-4 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.602400-4 4.523934+5 1.609000-4 4.737216+5 1.640590-4 6.001217+5 1.650900-4 6.446288+5 1.661000-4 6.873120+5 1.669000-4 7.194660+5 1.678804-4 7.557911+5 1.687000-4 7.828140+5 1.695000-4 8.056860+5 1.704200-4 8.272737+5 1.711000-4 8.398260+5 1.719000-4 8.508420+5 1.730000-4 8.595360+5 1.740000-4 8.613900+5 1.750000-4 8.581020+5 1.761000-4 8.493900+5 1.773400-4 8.343653+5 1.785000-4 8.164440+5 1.800000-4 7.893120+5 1.820000-4 7.488780+5 1.842000-4 7.018980+5 1.865000-4 6.525420+5 1.900000-4 5.803398+5 1.940000-4 5.049720+5 2.041738-4 3.551118+5 2.080000-4 3.143856+5 2.113489-4 2.851405+5 2.142000-4 2.645370+5 2.170000-4 2.477736+5 2.190000-4 2.377206+5 2.213095-4 2.279234+5 2.240000-4 2.187330+5 2.264644-4 2.122005+5 2.290868-4 2.070264+5 2.317395-4 2.034528+5 2.344229-4 2.013434+5 2.371374-4 2.005702+5 2.400000-4 2.010558+5 2.430000-4 2.028096+5 2.465000-4 2.062260+5 2.500000-4 2.108736+5 2.540973-4 2.175709+5 2.600160-4 2.290424+5 2.851018-4 2.878295+5 2.951209-4 3.118215+5 3.054921-4 3.354560+5 3.150000-4 3.555096+5 3.240000-4 3.727650+5 3.350000-4 3.913980+5 3.470000-4 4.086816+5 3.600000-4 4.240866+5 3.715352-4 4.351423+5 3.850000-4 4.452204+5 4.000000-4 4.531524+5 4.168694-4 4.583410+5 4.350000-4 4.601790+5 4.550000-4 4.586778+5 4.786301-4 4.533462+5 5.011872-4 4.455086+5 5.248075-4 4.349661+5 5.500000-4 4.220532+5 5.821032-4 4.041232+5 6.165950-4 3.838575+5 6.531306-4 3.620478+5 6.918310-4 3.393813+5 7.328245-4 3.163294+5 7.852356-4 2.885545+5 8.413951-4 2.613420+5 9.015711-4 2.351352+5 9.700000-4 2.086992+5 1.047129-3 1.829823+5 1.122018-3 1.614780+5 1.216186-3 1.386370+5 1.318257-3 1.181879+5 1.450000-3 9.704700+4 1.570000-3 8.174460+4 1.717908-3 6.686773+4 1.905461-3 5.257134+4 2.070000-3 4.309260+4 2.264644-3 3.452789+4 2.540973-3 2.575122+4 2.851018-3 1.901828+4 3.198895-3 1.391498+4 3.589219-3 1.009083+4 4.027170-3 7.254537+3 4.518559-3 5.170784+3 5.011872-3 3.786080+3 5.623413-3 2.657132+3 6.309573-3 1.850259+3 7.000000-3 1.325898+3 7.852356-3 9.100539+2 8.810489-3 6.195833+2 9.885531-3 4.186380+2 1.109175-2 2.808536+2 1.258925-2 1.796373+2 1.428894-2 1.140050+2 1.621810-2 7.182032+1 1.840772-2 4.492747+1 2.089296-2 2.791476+1 2.398833-2 1.648829+1 2.786121-2 9.247559+0 3.235937-2 5.147123+0 3.845918-2 2.596470+0 4.677351-2 1.185434+0 5.956621-2 4.459742-1 9.549926-2 6.531309-2 1.161449-1 2.963848-2 1.364583-1 1.556854-2 1.584893-1 8.626936-3 1.798871-1 5.271317-3 2.018366-1 3.390703-3 2.264644-1 2.196698-3 2.511886-1 1.496396-3 2.786121-1 1.026520-3 3.054921-1 7.390694-4 3.349654-1 5.357413-4 3.672823-1 3.912763-4 4.000000-1 2.945865-4 4.365158-1 2.222910-4 4.786301-1 1.664979-4 5.248075-1 1.256078-4 5.688529-1 9.875133-5 6.165950-1 7.814322-5 6.683439-1 6.226944-5 7.244360-1 4.996089-5 7.852356-1 4.036370-5 8.609938-1 3.176433-5 9.120108-1 2.751803-5 9.660509-1 2.400665-5 1.011579+0 2.165149-5 1.071519+0 1.915569-5 1.148154+0 1.666049-5 1.230269+0 1.458958-5 1.333521+0 1.258290-5 1.778279+0 7.579850-6 2.000000+0 6.202600-6 2.264644+0 5.056758-6 2.570396+0 4.136161-6 2.951209+0 3.346977-6 3.427678+0 2.681622-6 4.000000+0 2.150400-6 4.677351+0 1.732109-6 5.495409+0 1.396355-6 6.683439+0 1.083853-6 8.035261+0 8.608902-7 9.772372+0 6.788172-7 1.216186+1 5.244167-7 1.548817+1 3.973944-7 2.018366+1 2.956428-7 2.691535+1 2.159519-7 3.845918+1 1.474933-7 5.821032+1 9.559662-8 9.660509+1 5.672569-8 1.883649+2 2.876712-8 3.758374+2 1.432706-8 1.496236+3 3.582906-9 1.000000+5 5.35230-11 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.602400-4 2.867000-5 1.000000+5 2.867000-5 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.602400-4 1.315700-4 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.062000-5 5.093181+5 1.096478-5 4.842797+5 1.135011-5 4.607208+5 1.180000-5 4.384281+5 1.230269-5 4.190190+5 1.273503-5 4.061278+5 1.320000-5 3.958346+5 1.370000-5 3.881782+5 1.420000-5 3.835998+5 1.470000-5 3.818298+5 1.515000-5 3.823569+5 1.570000-5 3.854358+5 1.630000-5 3.914915+5 1.690000-5 4.000963+5 1.757924-5 4.126114+5 1.830000-5 4.288367+5 1.905461-5 4.488214+5 1.995262-5 4.762951+5 2.089296-5 5.089514+5 2.190000-5 5.479709+5 2.317395-5 6.026037+5 2.511886-5 6.963592+5 3.090295-5 1.023936+6 3.349654-5 1.180973+6 3.589219-5 1.324684+6 3.801894-5 1.448694+6 4.027170-5 1.574619+6 4.300000-5 1.718313+6 4.570882-5 1.851610+6 4.900000-5 2.002001+6 5.248075-5 2.147809+6 5.688529-5 2.314979+6 6.095369-5 2.451802+6 6.531306-5 2.577748+6 6.918310-5 2.671600+6 7.328245-5 2.750637+6 7.800000-5 2.818013+6 8.300000-5 2.865516+6 8.912509-5 2.895470+6 9.549926-5 2.905232+6 1.047129-4 2.890716+6 1.122018-4 2.861485+6 1.216186-4 2.806207+6 1.300000-4 2.739919+6 1.396368-4 2.651533+6 1.513561-4 2.530556+6 1.620000-4 2.416699+6 1.737801-4 2.289894+6 1.862087-4 2.155071+6 1.980000-4 2.029494+6 2.137962-4 1.865070+6 2.290868-4 1.714153+6 2.426610-4 1.589683+6 2.600160-4 1.441744+6 2.754229-4 1.320681+6 2.917427-4 1.203344+6 3.126079-4 1.067947+6 3.349654-4 9.411161+5 3.589219-4 8.229605+5 3.845918-4 7.143352+5 4.122800-4 6.150811+5 4.415704-4 5.270799+5 4.731513-4 4.483221+5 5.128614-4 3.683250+5 5.559043-4 3.002271+5 6.025596-4 2.428732+5 6.531306-4 1.950618+5 7.079458-4 1.556168+5 7.673615-4 1.233789+5 8.413951-4 9.393195+4 9.225714-4 7.097205+4 1.011579-3 5.323748+4 1.122018-3 3.822965+4 1.244515-3 2.723556+4 1.380384-3 1.925521+4 1.531087-3 1.351346+4 1.698244-3 9.417317+3 1.883649-3 6.517741+3 2.113489-3 4.296947+3 2.371374-3 2.810744+3 2.660725-3 1.824449+3 2.985383-3 1.175379+3 3.349654-3 7.517397+2 3.758374-3 4.773555+2 4.216965-3 3.009834+2 4.786301-3 1.798019+2 5.370318-3 1.115123+2 6.095369-3 6.541982+1 6.918310-3 3.809089+1 7.852356-3 2.201144+1 8.912509-3 1.262704+1 1.011579-2 7.187021+0 1.161449-2 3.857294+0 1.348963-2 1.950329+0 1.621810-2 8.349639-1 1.883649-2 4.162109-1 2.162719-2 2.174180-1 2.540973-2 1.011501-1 3.054921-2 4.185443-2 3.845918-2 1.375785-2 6.683439-2 9.413939-4 8.222426-2 3.465627-4 9.772372-2 1.517505-4 1.135011-1 7.465549-5 1.303167-1 3.906892-5 1.479108-1 2.174053-5 1.659587-1 1.285571-5 1.862087-1 7.657856-6 2.089296-1 4.597183-6 2.317395-1 2.924846-6 2.570396-1 1.874202-6 2.851018-1 1.210069-6 3.198895-1 7.502500-7 3.467369-1 5.402069-7 3.758374-1 3.915568-7 4.027170-1 2.990048-7 4.365158-1 2.204918-7 4.786301-1 1.567839-7 5.495409-1 9.475163-8 6.095369-1 6.545595-8 6.606935-1 4.937352-8 7.079458-1 3.901590-8 7.498942-1 3.224042-8 8.609938-1 2.070205-8 9.015711-1 1.795270-8 9.332543-1 1.620373-8 9.660509-1 1.469734-8 1.000000+0 1.341100-8 1.035142+0 1.231919-8 1.071519+0 1.137715-8 1.122018+0 1.030783-8 1.174898+0 9.406307-9 1.244515+0 8.457228-9 1.333521+0 7.496500-9 1.513561+0 6.082451-9 1.883649+0 4.147950-9 2.089296+0 3.483747-9 2.371374+0 2.836646-9 2.722701+0 2.285086-9 3.162278+0 1.823107-9 3.672823+0 1.465924-9 4.315191+0 1.168421-9 5.069907+0 9.38424-10 6.095369+0 7.36764-10 7.244360+0 5.91265-10 8.912509+0 4.58073-10 1.109175+1 3.52754-10 1.400000+1 2.69270-10 1.819701+1 2.00278-10 2.371374+1 1.49638-10 3.311311+1 1.04424-10 4.731513+1 7.16447-11 7.762471+1 4.28802-11 1.428894+2 2.29889-11 2.851018+2 1.14282-11 1.135011+3 2.85399-12 1.000000+5 3.23260-14 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.062000-5 1.062000-5 1.000000+5 1.062000-5 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.062000-5 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.660000-6 7.404690+5 9.800000-6 7.214463+5 1.020000-5 6.767148+5 1.060000-5 6.408748+5 1.100000-5 6.120290+5 1.135011-5 5.920349+5 1.180000-5 5.719319+5 1.221400-5 5.584818+5 1.258925-5 5.498893+5 1.303167-5 5.434769+5 1.350000-5 5.405575+5 1.400000-5 5.412878+5 1.445440-5 5.450219+5 1.500000-5 5.529313+5 1.550000-5 5.631210+5 1.610000-5 5.786633+5 1.678804-5 6.004905+5 1.757924-5 6.303235+5 1.840772-5 6.663973+5 1.927525-5 7.090029+5 2.041738-5 7.718739+5 2.162719-5 8.459555+5 2.344229-5 9.695462+5 2.917427-5 1.425874+6 3.162278-5 1.634560+6 3.388442-5 1.825076+6 3.630781-5 2.022721+6 3.845918-5 2.190392+6 4.073803-5 2.357506+6 4.365158-5 2.556371+6 4.677351-5 2.752662+6 5.011872-5 2.943815+6 5.432503-5 3.161916+6 5.821032-5 3.339844+6 6.237348-5 3.506293+6 6.650000-5 3.644277+6 7.079458-5 3.757413+6 7.500000-5 3.840963+6 7.943282-5 3.899836+6 8.511380-5 3.942151+6 9.120108-5 3.954304+6 9.900000-5 3.939112+6 1.080000-4 3.889060+6 1.150000-4 3.834054+6 1.244515-4 3.735857+6 1.318257-4 3.644492+6 1.428894-4 3.491329+6 1.548817-4 3.312865+6 1.650000-4 3.161254+6 1.778279-4 2.970195+6 1.905461-4 2.781549+6 2.018366-4 2.618612+6 2.162719-4 2.417854+6 2.317395-4 2.215123+6 2.454709-4 2.048703+6 2.630268-4 1.852758+6 2.820000-4 1.660013+6 3.000000-4 1.494950+6 3.198895-4 1.332362+6 3.427678-4 1.169167+6 3.672823-4 1.018821+6 3.935501-4 8.816540+5 4.216965-4 7.574057+5 4.518559-4 6.462756+5 4.841724-4 5.479449+5 5.188000-4 4.617229+5 5.623413-4 3.753554+5 6.095369-4 3.029006+5 6.606934-4 2.427390+5 7.161434-4 1.932790+5 7.852356-4 1.478496+5 8.609938-4 1.123152+5 9.440609-4 8.472324+4 1.035142-3 6.345569+4 1.122018-3 4.898116+4 1.230269-3 3.618632+4 1.364583-3 2.554401+4 1.513561-3 1.790087+4 1.678804-3 1.245802+4 1.862087-3 8.610986+3 2.089296-3 5.670073+3 2.344229-3 3.704720+3 2.630268-3 2.402093+3 2.951209-3 1.545838+3 3.311311-3 9.879359+2 3.715352-3 6.266158+2 4.120975-3 4.130186+2 4.623810-3 2.576686+2 5.188000-3 1.595185+2 5.821032-3 9.805490+1 6.683439-3 5.423574+1 7.585776-3 3.129382+1 8.609938-3 1.792416+1 9.660509-3 1.072899+1 1.109175-2 5.750543+0 1.273503-2 3.059409+0 1.513561-2 1.378965+0 1.757924-2 6.861779-1 2.041738-2 3.390208-1 2.317395-2 1.855486-1 2.754229-2 8.084371-2 3.349654-2 3.127369-2 4.315191-2 9.067310-3 6.839116-2 9.490326-4 8.912509-2 2.612486-4 1.035142-1 1.268275-4 1.188502-1 6.555694-5 1.348963-1 3.606836-5 1.513561-1 2.110358-5 1.678804-1 1.311460-5 1.862087-1 8.207369-6 2.065380-1 5.175976-6 2.264644-1 3.459669-6 2.483133-1 2.328431-6 2.722701-1 1.578718-6 2.951209-1 1.131221-6 3.198895-1 8.159193-7 3.467369-1 5.927324-7 3.758374-1 4.339373-7 3.981072-1 3.492054-7 4.315191-1 2.596868-7 4.677351-1 1.946601-7 5.069907-1 1.469976-7 5.495409-1 1.117198-7 5.956621-1 8.556235-8 6.447400-1 6.635300-8 6.918310-1 5.326555-8 7.413102-1 4.322795-8 7.943282-1 3.531714-8 8.511380-1 2.893771-8 9.015711-1 2.467995-8 9.440609-1 2.186197-8 9.885531-1 1.949046-8 1.035142+0 1.750343-8 1.083927+0 1.583026-8 1.135011+0 1.440398-8 1.202264+0 1.289010-8 1.318257+0 1.090416-8 1.531087+0 8.424441-9 1.840772+0 6.099405-9 2.044000+0 5.107400-9 2.317395+0 4.160685-9 2.630268+0 3.407478-9 3.019952+0 2.760703-9 3.507519+0 2.214539-9 4.073803+0 1.789687-9 4.786301+0 1.433531-9 5.688529+0 1.139472-9 6.839116+0 8.98743-10 8.317638+0 7.04532-10 1.023293+1 5.48625-10 1.288250+1 4.18840-10 1.640590+1 3.18018-10 2.187762+1 2.30969-10 2.951209+1 1.67009-10 4.168694+1 1.15676-10 6.531306+1 7.24473-11 1.122018+2 4.15687-11 2.238721+2 2.06255-11 4.466836+2 1.02825-11 3.548134+3 1.28879-12 1.000000+5 4.57010-14 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.660000-6 9.660000-6 1.000000+5 9.660000-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.660000-6 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.367000-5 5.134400+4 5.432503-5 5.099309+4 5.530000-5 5.080080+4 5.623413-5 5.092761+4 5.740000-5 5.141220+4 5.850000-5 5.218400+4 6.000000-5 5.357640+4 6.165950-5 5.547564+4 6.400000-5 5.859000+4 7.000000-5 6.731220+4 7.328245-5 7.190506+4 7.673615-5 7.631104+4 8.000000-5 7.996420+4 8.317638-5 8.298477+4 8.650000-5 8.557500+4 9.015711-5 8.776613+4 9.400000-5 8.938220+4 9.800000-5 9.041480+4 1.023293-4 9.091955+4 1.080000-4 9.084240+4 1.135011-4 9.018803+4 1.202600-4 8.885628+4 1.288250-4 8.664146+4 1.380384-4 8.385917+4 1.480000-4 8.055380+4 1.584893-4 7.687804+4 1.704200-4 7.264165+4 1.862087-4 6.723219+4 2.065380-4 6.089821+4 2.290868-4 5.474757+4 2.540973-4 4.883052+4 2.884032-4 4.208593+4 3.311311-4 3.551735+4 3.758374-4 3.018089+4 4.466836-4 2.396982+4 5.248075-4 1.917239+4 6.200000-4 1.511716+4 7.500000-4 1.142750+4 9.015711-4 8.648733+3 1.071519-3 6.613398+3 1.273503-3 5.022339+3 1.513561-3 3.787665+3 1.819701-3 2.781600+3 2.187762-3 2.027064+3 2.630268-3 1.466324+3 3.162278-3 1.052826+3 3.845918-3 7.349783+2 4.731513-3 4.984014+2 5.888437-3 3.281226+2 7.161434-3 2.240783+2 8.709636-3 1.518939+2 1.059254-2 1.021816+2 1.273503-2 6.984482+1 1.531087-2 4.738162+1 1.840772-2 3.188781+1 2.290868-2 1.976378+1 2.722701-2 1.345431+1 3.126079-2 9.832051+0 3.672823-2 6.763289+0 4.315191-2 4.618722+0 5.128614-2 3.045978+0 6.095369-2 1.993679+0 7.328245-2 1.258845+0 8.609938-2 8.363302-1 1.059254-1 4.903202-1 1.364583-1 2.531707-1 2.426610-1 5.540813-2 3.000000-1 3.186100-2 3.548134-1 2.070110-2 4.073803-1 1.461117-2 4.677351-1 1.039139-2 5.308844-1 7.659041-3 6.000000-1 5.745600-3 6.760830-1 4.375522-3 7.585776-1 3.389462-3 8.609938-1 2.580001-3 9.549926-1 2.079357-3 1.059254+0 1.689329-3 1.202264+0 1.319048-3 1.348963+0 1.060610-3 1.513561+0 8.586535-4 1.717908+0 6.859503-4 1.949845+0 5.521813-4 2.213095+0 4.477886-4 2.511886+0 3.658033-4 2.884032+0 2.956353-4 3.349654+0 2.365838-4 3.890451+0 1.907731-4 4.570882+0 1.524799-4 5.370318+0 1.227963-4 6.531306+0 9.521800-5 7.762471+0 7.664019-5 9.549926+0 5.953024-5 1.188502+1 4.595474-5 1.513561+1 3.479540-5 1.972423+1 2.587195-5 2.600160+1 1.912073-5 3.758374+1 1.289269-5 5.623413+1 8.453025-6 9.332543+1 5.013387-6 1.819701+2 2.541373-6 3.630781+2 1.265409-6 1.445440+3 3.164178-7 1.000000+5 4.566000-9 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.367000-5 5.367000-5 1.000000+5 5.367000-5 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.367000-5 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.306000-5 8.479960+6 3.370000-5 7.693420+6 3.427678-5 7.085572+6 3.520000-5 6.273740+6 3.630781-5 5.490857+6 3.758374-5 4.768103+6 3.935501-5 3.983189+6 4.265795-5 2.935223+6 4.954502-5 1.670105+6 6.025596-5 7.930606+5 6.606934-5 5.616860+5 7.161434-5 4.180381+5 7.762471-5 3.133861+5 8.317638-5 2.464800+5 8.810489-5 2.030415+5 9.332543-5 1.684373+5 9.800000-5 1.446472+5 1.023293-4 1.271235+5 1.071519-4 1.114833+5 1.122018-4 9.843322+4 1.174898-4 8.752257+4 1.230269-4 7.837477+4 1.288400-4 7.065988+4 1.350000-4 6.407860+4 1.412538-4 5.867304+4 1.480000-4 5.394200+4 1.548817-4 5.001669+4 1.621810-4 4.660849+4 1.720000-4 4.292760+4 1.820000-4 3.994520+4 1.950000-4 3.686180+4 2.113489-4 3.382337+4 2.317395-4 3.087928+4 2.660725-4 2.717771+4 3.507519-4 2.119456+4 4.122800-4 1.819674+4 4.731513-4 1.586957+4 5.432503-4 1.372639+4 6.200000-4 1.185970+4 7.079458-4 1.015890+4 8.035261-4 8.698494+3 9.120108-4 7.393574+3 1.023293-3 6.335922+3 1.161449-3 5.307667+3 1.318257-3 4.412956+3 1.496236-3 3.641068+3 1.678804-3 3.035807+3 1.905461-3 2.465807+3 2.162719-3 1.987645+3 2.454709-3 1.590240+3 2.786121-3 1.263001+3 3.162278-3 9.959354+2 3.589219-3 7.798079+2 4.073803-3 6.062968+2 4.623810-3 4.681398+2 5.248075-3 3.589470+2 6.000000-3 2.690117+2 6.839116-3 2.013837+2 7.762471-3 1.511030+2 8.810489-3 1.125845+2 9.885531-3 8.555280+1 1.135011-2 6.106684+1 1.318257-2 4.204379+1 1.621810-2 2.481575+1 1.862087-2 1.734159+1 2.065380-2 1.317448+1 2.344229-2 9.335307+0 2.691535-2 6.359335+0 3.162278-2 4.028061+0 3.715352-2 2.532238+0 4.415704-2 1.527357+0 5.248075-2 9.141739-1 6.382635-2 5.067427-1 8.128305-2 2.424663-1 1.566751-1 3.221977-2 1.927525-1 1.714175-2 2.317395-1 9.850516-3 2.691535-1 6.323163-3 3.090295-1 4.228101-3 3.507519-1 2.943027-3 3.981072-1 2.063639-3 4.466836-1 1.505414-3 5.011872-1 1.106138-3 5.623413-1 8.189520-4 6.237348-1 6.292045-4 6.918310-1 4.868171-4 7.673615-1 3.793954-4 8.609938-1 2.893475-4 9.225714-1 2.473228-4 9.885531-1 2.128658-4 1.071519+0 1.803084-4 1.174898+0 1.502515-4 1.288250+0 1.261233-4 1.428894+0 1.043836-4 1.698244+0 7.680663-5 1.927525+0 6.175713-5 2.187762+0 5.004217-5 2.483133+0 4.085355-5 2.851018+0 3.299661-5 3.311311+0 2.639017-5 3.845918+0 2.126807-5 4.518559+0 1.698943-5 5.308844+0 1.367470-5 6.456542+0 1.059853-5 7.673615+0 8.526668-6 9.440609+0 6.620218-6 1.174898+1 5.108525-6 1.496236+1 3.866528-6 1.972423+1 2.837607-6 2.600160+1 2.097261-6 3.758374+1 1.414122-6 5.623413+1 9.271483-7 9.332543+1 5.498723-7 1.798871+2 2.820061-7 3.589219+2 1.404055-7 1.428894+3 3.510798-8 1.000000+5 5.00810-10 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.306000-5 3.306000-5 1.000000+5 3.306000-5 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.306000-5 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.809000-5 1.901172+7 2.851018-5 1.750328+7 2.920000-5 1.544220+7 2.990000-5 1.374148+7 3.054921-5 1.242265+7 3.162278-5 1.064694+7 3.273407-5 9.188270+6 3.427678-5 7.605715+6 3.672823-5 5.780165+6 4.265795-5 3.229971+6 4.841724-5 1.984880+6 5.248075-5 1.465263+6 5.623413-5 1.137640+6 5.956621-5 9.274415+5 6.309573-5 7.614902+5 6.650000-5 6.406040+5 7.000000-5 5.451520+5 7.328245-5 4.752090+5 7.673615-5 4.169136+5 8.035261-5 3.685572+5 8.400000-5 3.297352+5 8.709636-5 3.028311+5 9.015711-5 2.805418+5 9.440609-5 2.551402+5 9.900000-5 2.332184+5 1.040000-4 2.141636+5 1.096478-4 1.969834+5 1.161449-4 1.812686+5 1.230269-4 1.679650+5 1.318257-4 1.544209+5 1.428894-4 1.411084+5 1.580000-4 1.271988+5 2.371374-4 8.581602+4 2.800000-4 7.251640+4 3.273407-4 6.142566+4 3.758374-4 5.263815+4 4.365158-4 4.417270+4 5.011872-4 3.728401+4 5.754399-4 3.123793+4 6.531306-4 2.638644+4 7.500000-4 2.179020+4 8.609938-4 1.785863+4 9.772372-4 1.478135+4 1.122018-3 1.193161+4 1.273503-3 9.735115+3 1.445440-3 7.887972+3 1.640590-3 6.345804+3 1.862087-3 5.069037+3 2.113489-3 4.020620+3 2.398833-3 3.166592+3 2.722701-3 2.476564+3 3.090295-3 1.923457+3 3.507519-3 1.483570+3 4.000000-3 1.124996+3 4.570882-3 8.430841+2 5.248075-3 6.204324+2 6.000000-3 4.573520+2 6.839116-3 3.368420+2 7.762471-3 2.487394+2 8.810489-3 1.823867+2 1.000000-2 1.327712+2 1.135011-2 9.595252+1 1.288250-2 6.884231+1 1.479108-2 4.753748+1 1.678804-2 3.361634+1 1.927525-2 2.286007+1 2.213095-2 1.542524+1 2.540973-2 1.033078+1 2.917427-2 6.869248+0 3.388442-2 4.380115+0 3.935501-2 2.771846+0 4.623810-2 1.679855+0 5.495409-2 9.744890-1 6.456542-2 5.822265-1 8.035261-2 2.868832-1 1.640590-1 2.787011-2 1.972423-1 1.536465-2 2.317395-1 9.188887-3 2.660725-1 5.956659-3 3.019952-1 4.032287-3 3.388442-1 2.847962-3 3.758374-1 2.096119-3 4.168694-1 1.553400-3 4.623810-1 1.159764-3 5.128614-1 8.724906-4 5.688529-1 6.616224-4 6.237348-1 5.210006-4 6.839117-1 4.130605-4 7.498942-1 3.297066-4 8.511380-1 2.439688-4 9.120108-1 2.081992-4 9.772372-1 1.789059-4 1.047129+0 1.549304-4 1.148154+0 1.288502-4 1.258925+0 1.079571-4 1.396368+0 8.922167-5 1.678804+0 6.427410-5 1.905461+0 5.164567-5 2.162719+0 4.181784-5 2.454709+0 3.411702-5 2.818383+0 2.753823-5 3.273407+0 2.201153-5 3.801894+0 1.772910-5 4.466836+0 1.415432-5 5.248075+0 1.138669-5 6.309573+0 8.952650-6 7.498942+0 7.195401-6 9.225714+0 5.581822-6 1.148154+1 4.303755-6 1.445440+1 3.298281-6 1.905461+1 2.417822-6 2.483133+1 1.808191-6 3.548134+1 1.232706-6 5.188000+1 8.268391-7 8.609938+1 4.897802-7 1.621810+2 2.568668-7 3.235937+2 1.277982-7 1.288250+3 3.194002-8 1.000000+5 4.10710-10 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.809000-5 2.809000-5 1.000000+5 2.809000-5 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.809000-5 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.350000-6 4.068140+6 5.500000-6 3.625120+6 6.000000-6 2.485360+6 6.531306-6 1.708049+6 7.079458-6 1.188440+6 7.700000-6 8.083340+5 8.317638-6 5.635783+5 9.015711-6 3.839680+5 9.885531-6 2.456647+5 1.174898-5 1.053897+5 1.244515-5 7.997321+4 1.290000-5 6.766180+4 1.333521-5 5.826659+4 1.382700-5 4.985496+4 1.420000-5 4.472180+4 1.462177-5 3.995957+4 1.500000-5 3.646420+4 1.531087-5 3.404701+4 1.570000-5 3.151580+4 1.610000-5 2.939120+4 1.650000-5 2.766800+4 1.690000-5 2.627820+4 1.730000-5 2.516580+4 1.770000-5 2.428420+4 1.815000-5 2.352100+4 1.862087-5 2.293462+4 1.905461-5 2.255115+4 1.950000-5 2.228480+4 2.000000-5 2.211000+4 2.070000-5 2.203680+4 2.150000-5 2.213060+4 2.238721-5 2.238078+4 2.371374-5 2.291437+4 2.800000-5 2.481000+4 3.019952-5 2.557126+4 3.235937-5 2.612410+4 3.467369-5 2.649522+4 3.672823-5 2.664569+4 3.900000-5 2.663760+4 4.168694-5 2.644032+4 4.466836-5 2.604153+4 4.786301-5 2.544679+4 5.128614-5 2.467199+4 5.500000-5 2.373300+4 5.900000-5 2.268020+4 6.382635-5 2.139792+4 6.918310-5 2.001264+4 7.673615-5 1.821575+4 8.511380-5 1.645594+4 9.800000-5 1.421030+4 1.174898-4 1.165119+4 1.584893-4 8.312635+3 1.798871-4 7.165348+3 2.018366-4 6.218072+3 2.264644-4 5.337736+3 2.600160-4 4.408218+3 4.120975-4 2.292939+3 5.011872-4 1.723761+3 7.244360-4 9.909902+2 8.413951-4 7.863070+2 1.071519-3 5.365298+2 1.303167-3 3.908865+2 1.566751-3 2.880640+2 1.905461-3 2.048188+2 2.426610-3 1.347875+2 2.951209-3 9.541875+1 3.507519-3 6.972855+1 4.265795-3 4.848803+1 5.308844-3 3.203741+1 6.531306-3 2.148133+1 7.943282-3 1.461758+1 9.660509-3 9.872464+0 1.161449-2 6.774801+0 1.396368-2 4.614863+0 1.659587-2 3.197196+0 1.972423-2 2.199522+0 2.344229-2 1.502415+0 2.786121-2 1.018715+0 3.273407-2 7.039036-1 3.890451-2 4.701326-1 4.623810-2 3.116067-1 5.432503-2 2.107679-1 6.456542-2 1.376219-1 7.762471-2 8.669091-2 9.332543-2 5.415673-2 1.174898-1 2.982105-2 1.531088-1 1.489532-2 2.371374-1 4.688840-3 2.917427-1 2.729000-3 3.467369-1 1.749645-3 4.027170-1 1.198954-3 4.623810-1 8.524937-4 5.248075-1 6.282638-4 5.888437-1 4.793200-4 6.606935-1 3.684259-4 7.413102-1 2.853307-4 8.317638-1 2.226857-4 9.225714-1 1.793964-4 1.023293+0 1.455843-4 1.188502+0 1.085807-4 1.333521+0 8.722417-5 1.500000+0 7.021300-5 1.698244+0 5.630173-5 1.927525+0 4.529391-5 2.187762+0 3.670745-5 2.483133+0 2.996747-5 2.851018+0 2.420329-5 3.311311+0 1.935726-5 3.845918+0 1.560036-5 4.518559+0 1.246194-5 5.308844+0 1.003048-5 6.456542+0 7.774042-6 7.673615+0 6.254325-6 9.440609+0 4.855970-6 1.174898+1 3.747162-6 1.496236+1 2.836090-6 1.972423+1 2.081391-6 2.600160+1 1.538298-6 3.758374+1 1.037225-6 5.623413+1 6.800641-7 9.332543+1 4.033313-7 1.798871+2 2.068529-7 3.589219+2 1.029895-7 1.428894+3 2.575166-8 1.000000+5 3.67350-10 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.350000-6 5.350000-6 1.000000+5 5.350000-6 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.350000-6 0.0 1.000000+5 1.000000+5 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.348350-7 1.026600+0 1.067320-6 1.027100+0 1.452120-6 1.027500+0 1.818760-6 1.028100+0 2.476210-6 1.028750+0 3.348350-6 1.029500+0 4.582310-6 1.030100+0 5.762810-6 1.031000+0 7.885480-6 1.032000+0 1.078930-5 1.033200+0 1.511400-5 1.034000+0 1.855380-5 1.035300+0 2.518420-5 1.036640+0 3.348350-5 1.038200+0 4.518710-5 1.039700+0 5.870700-5 1.041500+0 7.810900-5 1.043800+0 1.084180-4 1.046400+0 1.508430-4 1.048300+0 1.878040-4 1.051200+0 2.547520-4 1.054080+0 3.348350-4 1.057700+0 4.564030-4 1.061100+0 5.936670-4 1.065100+0 7.859540-4 1.070400+0 1.096490-3 1.076200+0 1.515360-3 1.080600+0 1.892430-3 1.087100+0 2.549720-3 1.093710+0 3.348350-3 1.102600+0 4.642230-3 1.110700+0 6.054050-3 1.120600+0 8.097880-3 1.133300+0 1.125850-2 1.147500+0 1.554370-2 1.158200+0 1.931680-2 1.174100+0 2.581970-2 1.190110+0 3.348350-2 1.205100+0 4.169350-2 1.227500+0 5.581820-2 1.250000+0 7.209000-2 1.265600+0 8.444860-2 1.294900+0 1.097570-1 1.320600+0 1.338880-1 1.343000+0 1.561420-1 1.382200+0 1.973340-1 1.433800+0 2.549600-1 1.500000+0 3.338000-1 1.562500+0 4.136310-1 1.617200+0 4.875090-1 1.712900+0 6.241950-1 1.838500+0 8.139590-1 1.946200+0 9.813110-1 2.000000+0 1.065000+0 2.044000+0 1.133000+0 2.163500+0 1.316710+0 2.372600+0 1.633400+0 2.647100+0 2.035620+0 3.000000+0 2.527000+0 3.500000+0 3.174020+0 4.000000+0 3.769000+0 4.750000+0 4.575250+0 5.000000+0 4.824000+0 6.000000+0 5.732000+0 7.000000+0 6.534000+0 8.000000+0 7.254000+0 9.000000+0 7.909000+0 1.000000+1 8.509000+0 1.100000+1 9.064000+0 1.200000+1 9.579000+0 1.300000+1 1.006000+1 1.400000+1 1.051000+1 1.500000+1 1.092000+1 1.600000+1 1.131000+1 1.800000+1 1.201000+1 2.000000+1 1.263000+1 2.200000+1 1.320000+1 2.400000+1 1.371000+1 2.600000+1 1.418000+1 2.800000+1 1.461000+1 3.000000+1 1.500000+1 4.000000+1 1.662000+1 5.000000+1 1.782000+1 6.000000+1 1.876000+1 8.000000+1 2.013000+1 1.000000+2 2.111000+1 1.500000+2 2.265000+1 2.000000+2 2.356000+1 3.000000+2 2.463000+1 4.000000+2 2.524000+1 5.000000+2 2.564000+1 6.000000+2 2.593000+1 8.000000+2 2.631000+1 1.000000+3 2.655000+1 1.500000+3 2.691000+1 2.000000+3 2.710000+1 3.000000+3 2.731000+1 4.000000+3 2.743000+1 5.000000+3 2.750000+1 6.000000+3 2.755000+1 8.000000+3 2.761000+1 1.000000+4 2.765000+1 1.500000+4 2.771000+1 2.000000+4 2.774000+1 3.000000+4 2.777000+1 4.000000+4 2.779000+1 5.000000+4 2.780000+1 6.000000+4 2.781000+1 8.000000+4 2.781000+1 1.000000+5 2.782000+1 1 66000 7 8 1.625000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.612740-7 2.094700+0 1.164190-6 2.099900+0 1.548790-6 2.106600+0 2.154500-6 2.114000+0 2.981030-6 2.119500+0 3.711360-6 2.127900+0 5.033300-6 2.136250+0 6.612740-6 2.147000+0 9.066530-6 2.156900+0 1.177630-5 2.169000+0 1.571630-5 2.184500+0 2.184610-5 2.201800+0 3.022480-5 2.214800+0 3.765770-5 2.234200+0 5.065620-5 2.253680+0 6.612740-5 2.281500+0 9.262300-5 2.307000+0 1.216600-4 2.338200+0 1.635820-4 2.377400+0 2.265410-4 2.410200+0 2.881220-4 2.446800+0 3.665070-4 2.485900+0 4.614530-4 2.532900+0 5.905630-4 2.556430+0 6.612740-4 2.611900+0 8.432060-4 2.660400+0 1.019400-3 2.745300+0 1.364420-3 2.809000+0 1.652400-3 2.904500+0 2.128710-3 3.000000+0 2.657000-3 3.125000+0 3.425800-3 3.234400+0 4.167980-3 3.425800+0 5.611500-3 3.569300+0 6.803360-3 3.784700+0 8.743840-3 4.000000+0 1.083000-2 4.250000+0 1.338130-2 4.625000+0 1.739200-2 5.000000+0 2.156000-2 5.500000+0 2.727430-2 6.000000+0 3.306000-2 6.750000+0 4.166810-2 7.000000+0 4.450000-2 8.000000+0 5.557000-2 9.000000+0 6.614000-2 1.000000+1 7.618000-2 1.100000+1 8.566000-2 1.200000+1 9.460000-2 1.300000+1 1.030000-1 1.400000+1 1.110000-1 1.500000+1 1.186000-1 1.600000+1 1.257000-1 1.800000+1 1.390000-1 2.000000+1 1.510000-1 2.200000+1 1.621000-1 2.400000+1 1.722000-1 2.600000+1 1.815000-1 2.800000+1 1.901000-1 3.000000+1 1.981000-1 4.000000+1 2.312000-1 5.000000+1 2.561000-1 6.000000+1 2.757000-1 8.000000+1 3.052000-1 1.000000+2 3.265000-1 1.500000+2 3.616000-1 2.000000+2 3.834000-1 3.000000+2 4.100000-1 4.000000+2 4.259000-1 5.000000+2 4.367000-1 6.000000+2 4.447000-1 8.000000+2 4.556000-1 1.000000+3 4.629000-1 1.500000+3 4.737000-1 2.000000+3 4.799000-1 3.000000+3 4.866000-1 4.000000+3 4.906000-1 5.000000+3 4.930000-1 6.000000+3 4.947000-1 8.000000+3 4.970000-1 1.000000+4 4.984000-1 1.500000+4 5.004000-1 2.000000+4 5.015000-1 3.000000+4 5.026000-1 4.000000+4 5.033000-1 5.000000+4 5.037000-1 6.000000+4 5.040000-1 8.000000+4 5.043000-1 1.000000+5 5.045000-1 1 66000 7 8 1.625000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 66000 7 9 1.625000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.600000+1 1.000000+5 6.600000+1 5.000000+5 6.596600+1 7.500000+5 6.593850+1 1.000000+6 6.591900+1 1.375000+6 6.587500+1 1.500000+6 6.585400+1 1.875000+6 6.577310+1 2.000000+6 6.574200+1 2.375000+6 6.563950+1 2.500000+6 6.560200+1 2.875000+6 6.547880+1 3.000000+6 6.543400+1 3.437500+6 6.526450+1 3.812500+6 6.510280+1 4.000000+6 6.502800+1 4.437500+6 6.483180+1 4.812500+6 6.465020+1 5.000000+6 6.456200+1 5.500000+6 6.429440+1 5.875000+6 6.408230+1 6.437500+6 6.375280+1 6.500000+6 6.371390+1 7.000000+6 6.341600+1 7.500000+6 6.310880+1 8.250000+6 6.265020+1 9.000000+6 6.218000+1 1.000000+7 6.153800+1 1.250000+7 5.993900+1 1.500000+7 5.829000+1 1.750000+7 5.663500+1 2.000000+7 5.493800+1 2.250000+7 5.319810+1 2.500000+7 5.145800+1 2.875000+7 4.890700+1 3.000000+7 4.807900+1 3.437500+7 4.528730+1 3.500000+7 4.490650+1 4.000000+7 4.201100+1 4.500000+7 3.939270+1 5.000000+7 3.700700+1 5.500000+7 3.481310+1 5.750000+7 3.377580+1 6.000000+7 3.277900+1 6.750000+7 2.998530+1 7.000000+7 2.912400+1 7.750000+7 2.672890+1 8.000000+7 2.599800+1 9.000000+7 2.339600+1 1.000000+8 2.127700+1 1.125000+8 1.919620+1 1.187500+8 1.834560+1 1.250000+8 1.759500+1 1.437500+8 1.579680+1 1.500000+8 1.529600+1 1.625000+8 1.437360+1 1.671900+8 1.404190+1 1.789100+8 1.321420+1 1.812500+8 1.304810+1 1.881300+8 1.255530+1 1.960400+8 1.197850+1 2.000000+8 1.168600+1 2.062500+8 1.122140+1 2.250000+8 9.922070+0 2.335900+8 9.414670+0 2.445300+8 8.866250+0 2.500000+8 8.635600+0 2.812500+8 7.628590+0 2.906300+8 7.328140+0 2.976600+8 7.083670+0 3.000000+8 6.998700+0 3.062500+8 6.760780+0 3.335900+8 5.775520+0 3.418000+8 5.546740+0 3.500000+8 5.361900+0 3.562500+8 5.252250+0 3.671900+8 5.106770+0 4.000000+8 4.807300+0 4.125000+8 4.680750+0 4.234400+8 4.559040+0 4.425800+8 4.334220+0 4.712900+8 3.999790+0 4.750000+8 3.958400+0 5.000000+8 3.698000+0 5.500000+8 3.262000+0 5.750000+8 3.060490+0 5.937500+8 2.909020+0 6.000000+8 2.858300+0 6.250000+8 2.655700+0 6.625000+8 2.387030+0 6.812500+8 2.277170+0 7.000000+8 2.186700+0 8.000000+8 1.874600+0 8.125000+8 1.832690+0 1.000000+9 1.250300+0 1.031300+9 1.196690+0 1.060500+9 1.157180+0 1.088000+9 1.127150+0 1.500000+9 9.210600-1 1.560500+9 8.852150-1 1.615500+9 8.496570-1 1.686000+9 8.020780-1 1.764500+9 7.487640-1 1.823400+9 7.096720-1 1.911700+9 6.537790-1 2.000000+9 6.021100-1 2.139200+9 5.298900-1 2.272600+9 4.701410-1 2.443000+9 4.051470-1 2.602800+9 3.538370-1 2.825100+9 2.949660-1 2.961100+9 2.648400-1 3.215900+9 2.179230-1 3.438900+9 1.850390-1 3.500000+9 1.771090-1 3.634100+9 1.611550-1 3.975600+9 1.278800-1 4.231700+9 1.083980-1 4.615800+9 8.560570-2 5.000000+9 6.848800-2 5.539100+9 5.106380-2 5.990200+9 4.059830-2 6.708000+9 2.897060-2 8.000000+9 1.698600-2 1.00000+10 8.599000-3 1.27030+10 4.160270-3 1.70630+10 1.711870-3 2.16210+10 8.443130-4 2.93940+10 3.398630-4 3.82190+10 1.570430-4 5.36640+10 5.830520-5 7.68320+10 2.061880-5 1.00000+11 9.655400-6 1.34280+11 4.151310-6 2.20600+11 1.011210-6 4.19930+11 1.646460-7 1.03480+12 1.329360-8 3.24440+12 5.67640-10 1.00000+14 4.91440-14 2.05350+15 1.23667-17 1.00000+17 2.71100-22 1 66000 7 0 1.625000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.03000-11 1.000000+2 1.030000-9 1.000000+3 1.030000-7 1.000000+4 1.030000-5 1.000000+5 1.030000-3 5.000000+5 2.575000-2 7.500000+5 5.793750-2 1.000000+6 1.030000-1 1.375000+6 1.919030-1 1.500000+6 2.272000-1 1.875000+6 3.492610-1 2.000000+6 3.950000-1 2.375000+6 5.455770-1 2.500000+6 6.000000-1 2.875000+6 7.741760-1 3.000000+6 8.356000-1 3.437500+6 1.061150+0 3.812500+6 1.265170+0 4.000000+6 1.370100+0 4.437500+6 1.619550+0 4.812500+6 1.836700+0 5.000000+6 1.946000+0 5.500000+6 2.236630+0 5.875000+6 2.453200+0 6.437500+6 2.773790+0 6.500000+6 2.808910+0 7.000000+6 3.087300+0 7.500000+6 3.358910+0 8.250000+6 3.756250+0 9.000000+6 4.144400+0 1.000000+7 4.654000+0 1.250000+7 5.931200+0 1.500000+7 7.245000+0 1.750000+7 8.568600+0 2.000000+7 9.867000+0 2.250000+7 1.112210+1 2.500000+7 1.233500+1 2.875000+7 1.408240+1 3.000000+7 1.464700+1 3.437500+7 1.654570+1 3.500000+7 1.680630+1 4.000000+7 1.879900+1 4.500000+7 2.061410+1 5.000000+7 2.228200+1 5.500000+7 2.382720+1 5.750000+7 2.456540+1 6.000000+7 2.528400+1 6.750000+7 2.734200+1 7.000000+7 2.800100+1 7.750000+7 2.989960+1 8.000000+7 3.051200+1 9.000000+7 3.284500+1 1.000000+8 3.502100+1 1.125000+8 3.754040+1 1.187500+8 3.871300+1 1.250000+8 3.983200+1 1.437500+8 4.282790+1 1.500000+8 4.371300+1 1.625000+8 4.531040+1 1.671900+8 4.585860+1 1.789100+8 4.712420+1 1.812500+8 4.736180+1 1.881300+8 4.802730+1 1.960400+8 4.874230+1 2.000000+8 4.908200+1 2.062500+8 4.959150+1 2.250000+8 5.098680+1 2.335900+8 5.156090+1 2.445300+8 5.224380+1 2.500000+8 5.256700+1 2.812500+8 5.421490+1 2.906300+8 5.465430+1 2.976600+8 5.497020+1 3.000000+8 5.507300+1 3.062500+8 5.533760+1 3.335900+8 5.641130+1 3.418000+8 5.670510+1 3.500000+8 5.699300+1 3.562500+8 5.719890+1 3.671900+8 5.755240+1 4.000000+8 5.852600+1 4.125000+8 5.885870+1 4.234400+8 5.914310+1 4.425800+8 5.960710+1 4.712900+8 6.023860+1 4.750000+8 6.031340+1 5.000000+8 6.080000+1 5.500000+8 6.162410+1 5.750000+8 6.197560+1 5.937500+8 6.221700+1 6.000000+8 6.229300+1 6.250000+8 6.257240+1 6.625000+8 6.293590+1 6.812500+8 6.309140+1 7.000000+8 6.324300+1 8.000000+8 6.385800+1 8.125000+8 6.391660+1 1.000000+9 6.459600+1 1.031300+9 6.467660+1 1.060500+9 6.474970+1 1.088000+9 6.481670+1 1.500000+9 6.548300+1 1.560500+9 6.553720+1 1.615500+9 6.558470+1 1.686000+9 6.564330+1 1.764500+9 6.569580+1 1.823400+9 6.572830+1 1.911700+9 6.577520+1 2.000000+9 6.582000+1 2.139200+9 6.586840+1 2.272600+9 6.590340+1 2.443000+9 6.593920+1 2.602800+9 6.596400+1 2.825100+9 6.598310+1 2.961100+9 6.599400+1 3.215900+9 6.600610+1 3.438900+9 6.600670+1 3.500000+9 6.600690+1 3.634100+9 6.600730+1 3.975600+9 6.600810+1 4.231700+9 6.600810+1 4.615800+9 6.600330+1 5.000000+9 6.599900+1 5.539100+9 6.599920+1 5.990200+9 6.599940+1 6.708000+9 6.599960+1 8.000000+9 6.600000+1 1.00000+10 6.600000+1 1.27030+10 6.600000+1 1.70630+10 6.600000+1 2.16210+10 6.600000+1 2.93940+10 6.600000+1 3.82190+10 6.600000+1 5.36640+10 6.600000+1 7.68320+10 6.600000+1 1.00000+11 6.600000+1 1.34280+11 6.600000+1 2.20600+11 6.600000+1 4.19930+11 6.600000+1 1.03480+12 6.600000+1 3.24440+12 6.600000+1 1.00000+14 6.600000+1 2.05350+15 6.600000+1 1.00000+17 6.600000+1 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.602448-6 1.003004-6 2.390993-6 1.005374-6 1.315305-6 1.007744-6 6.679263-7 1.010113-6 0.0 1.774376-6 0.0 1.778743-6 2.330979-7 1.783111-6 4.612365-7 1.787478-6 8.424861-7 1.791846-6 1.420547-6 1.796213-6 2.211070-6 1.800580-6 3.176898-6 1.804948-6 4.213644-6 1.809315-6 5.159009-6 1.813683-6 5.830807-6 1.818050-6 6.083381-6 1.822417-6 5.858889-6 1.826785-6 5.208821-6 1.831152-6 4.274818-6 1.839887-6 2.264831-6 1.844254-6 1.462096-6 1.848622-6 8.713047-7 1.852989-6 4.793119-7 1.857357-6 2.433999-7 1.861724-6 0.0 2.039647-6 0.0 2.044667-6 6.187650-7 2.049687-6 1.224365-6 2.054708-6 2.236403-6 2.059728-6 3.770883-6 2.064748-6 5.869349-6 2.069769-6 8.433165-6 2.074789-6 1.118524-5 2.079809-6 1.369474-5 2.084830-6 1.547804-5 2.089850-6 1.614851-5 2.094870-6 1.555259-5 2.099891-6 1.382696-5 2.104911-6 1.134763-5 2.114952-6 6.012059-6 2.119972-6 3.881176-6 2.124992-6 2.312903-6 2.130013-6 1.272347-6 2.135033-6 6.461119-7 2.140053-6 0.0 2.319625-6 0.0 2.328190-6 3.063921+0 2.331044-6 4.072272+0 2.336754-6 7.438339+0 2.342463-6 1.254206+1 2.348886-6 2.058528+1 2.358789-6 3.591254+1 2.366015-6 4.628895+1 2.371535-6 5.168468+1 2.377325-6 5.350078+1 2.383255-6 5.090005+1 2.388987-6 4.476631+1 2.398328-6 3.056706+1 2.405267-6 1.999627+1 2.411334-6 1.258362+1 2.416686-6 7.692779+0 2.422396-6 4.231861+0 2.430603-6 1.210048+0 2.433815-6 0.0 2.490421-6 0.0 2.501149-6 7.326153+0 2.502681-6 8.362067+0 2.508811-6 1.527400+1 2.515324-6 2.664777+1 2.521837-6 4.227013+1 2.532765-6 7.465363+1 2.539843-6 9.429069+1 2.546582-6 1.064504+2 2.552163-6 1.099963+2 2.558413-6 1.051403+2 2.565081-6 9.139759+1 2.574731-6 6.334556+1 2.582369-6 4.106066+1 2.588499-6 2.650733+1 2.594629-6 1.579647+1 2.600759-6 8.689769+0 2.609954-6 2.208974+0 2.613019-6 0.0 3.343201-6 0.0 3.351430-6 4.25396-15 3.359659-6 8.41742-15 3.367888-6 1.53751-14 3.376117-6 2.59245-14 3.384346-6 4.03513-14 3.392575-6 5.79774-14 3.400803-6 7.68977-14 3.409032-6 9.41503-14 3.417261-6 1.06410-13 3.425490-6 1.11020-13 3.433719-6 1.06923-13 3.441948-6 9.50594-14 3.450177-6 7.80141-14 3.466634-6 4.13325-14 3.474863-6 2.66828-14 3.483092-6 1.59010-14 3.491321-6 8.74729-15 3.499550-6 4.44197-15 3.507779-6 0.0 3.901373-6 0.0 3.918177-6 1.043959-1 3.920578-6 1.191574-1 3.930181-6 2.176512-1 3.939784-6 3.669922-1 3.949386-6 5.712224-1 3.953766-6 6.902591-1 3.974370-6 1.731543+0 3.984083-6 2.336837+0 3.996328-6 3.231710+0 4.024506-6 5.513464+0 4.037968-6 6.243474+0 4.042867-6 6.374323+0 4.051458-6 6.362546+0 4.061343-6 5.927310+0 4.074062-6 4.842619+0 4.093427-6 2.796136+0 4.099506-6 2.203788+0 4.109237-6 1.422687+0 4.118968-6 8.478182-1 4.128699-6 4.663910-1 4.140768-6 1.800432-1 4.148161-6 0.0 4.399912-6 0.0 4.399931-6 1.06008-14 4.410761-6 1.37650-11 4.421591-6 2.72341-11 4.432421-6 4.97399-11 4.443251-6 8.38599-11 4.454081-6 1.30515-10 4.466600-6 1.97036-10 4.488588-6 2.606005-2 4.489331-6 2.751174-2 4.500498-6 1.115100-1 4.511548-6 2.050983-1 4.522599-6 3.505235-1 4.533649-6 5.565579-1 4.547462-6 8.964437-1 4.566799-6 1.428545+0 4.577850-6 1.684560+0 4.588900-6 1.842211+0 4.601331-6 1.853371+0 4.612381-6 1.725712+0 4.622050-6 1.526088+0 4.651426-6 7.289156-1 4.655201-6 6.319909-1 4.666251-6 4.031629-1 4.677301-6 2.367551-1 4.686480-6 1.406995-1 4.688352-6 1.238632-1 4.706571-6 2.154251-2 4.710329-6 1.670909-8 4.710452-6 8.92681-12 4.721897-6 1.74845-11 4.733462-6 3.19353-11 4.734262-6 3.34473-11 4.746179-6 5.162010-3 4.757861-6 3.579699-2 4.769543-6 6.924752-2 4.781225-6 1.238069-1 4.792907-6 2.045782-1 4.804589-6 3.124176-1 4.833795-6 6.339962-1 4.839636-6 6.930738-1 4.851318-6 7.718626-1 4.863000-6 7.942816-1 4.874682-6 7.552014-1 4.895216-6 5.761659-1 4.913267-6 4.000330-1 4.921411-6 3.317536-1 4.933093-6 2.662972-1 4.944925-6 2.417746-1 4.956457-6 2.539259-1 4.979821-6 3.308092-1 4.990333-6 3.864453-1 4.997506-6 4.166130-1 5.009540-6 4.443022-1 5.021574-6 4.468842-1 5.069711-6 3.648569-1 5.121542-6 3.627848-1 5.214172-6 3.407231-1 5.299481-6 3.067387-1 5.332340-6 3.089389-1 5.373913-6 3.154585-1 5.485217-6 2.871046-1 5.936260-6 2.213770-1 6.158008-6 1.954125-1 6.188323-6 1.010184+0 6.203480-6 1.684763+0 6.219584-6 2.795724+0 6.234742-6 4.215553+0 6.262885-6 7.508668+0 6.279739-6 9.369621+0 6.296718-6 1.058998+1 6.311186-6 1.092672+1 6.326129-6 1.046363+1 6.342618-6 9.117640+0 6.366479-6 6.371199+0 6.385366-6 4.189459+0 6.400523-6 2.764401+0 6.415680-6 1.715234+0 6.430837-6 1.018643+0 6.461152-6 1.658135-1 6.855471-6 1.348812-1 6.889483-6 7.603657-1 6.906620-6 1.287831+0 6.923494-6 2.072475+0 6.940895-6 3.181525+0 6.990920-6 7.083506+0 7.009125-6 7.996671+0 7.025759-6 8.271543+0 7.042138-6 7.941995+0 7.060067-6 6.965178+0 7.086960-6 4.864608+0 7.108579-6 3.162425+0 7.125453-6 2.088468+0 7.142327-6 1.314223+0 7.159201-6 8.095655-1 7.192949-6 2.542947-1 7.212748-6 3.399428-1 7.260946-6 5.881718-1 7.278473-6 6.494794-1 7.296000-6 6.719376-1 7.313527-6 6.501863-1 7.331054-6 5.890006-1 7.383634-6 3.135352-1 7.401161-6 2.382637-1 7.418937-6 1.821052-1 7.436214-6 1.454248-1 7.471268-6 9.935030-2 8.020620-6 7.673238-2 8.064864-6 7.522986-2 8.104565-6 1.169698-1 8.124416-6 1.519117-1 8.144266-6 2.052442-1 8.165794-6 2.860146-1 8.217140-6 5.230764-1 8.245020-6 6.158286-1 8.264827-6 6.355089-1 8.284633-6 6.111611-1 8.304440-6 5.481427-1 8.363859-6 2.726675-1 8.383666-6 1.984621-1 8.402324-6 1.460435-1 8.422175-6 1.088555-1 8.461876-6 6.294168-2 8.607819-6 5.901418-2 8.650194-6 7.402570-2 8.671381-6 8.677748-2 8.692568-6 1.063834-1 8.713755-6 1.333884-1 8.777316-6 2.345345-1 8.798503-6 2.574444-1 8.819690-6 2.657552-1 8.840877-6 2.574574-1 8.865185-6 2.294877-1 8.918076-6 1.533995-1 8.930646-6 1.382090-1 8.947717-6 1.234142-1 8.969053-6 1.150988-1 8.990755-6 1.168677-1 9.010373-6 1.252267-1 9.034160-6 1.514950-1 9.056862-6 1.824102-1 9.079099-6 2.166716-1 9.101337-6 2.572016-1 9.142845-6 3.540264-1 9.190287-6 4.720463-1 9.212525-6 5.090839-1 9.234762-6 5.215219-1 9.257000-6 5.057147-1 9.279775-6 4.631415-1 9.346834-6 2.803963-1 9.368188-6 2.330565-1 9.389919-6 1.966636-1 9.412112-6 1.709142-1 9.454391-6 1.354873-1 9.504353-6 1.231431-1 9.565470-6 1.054381-1 9.610553-6 1.089693-1 9.635201-6 1.194319-1 9.657480-6 1.355343-1 9.682569-6 1.612649-1 9.757702-6 2.520249-1 9.779286-6 2.684706-1 9.802557-6 2.753300-1 9.824190-6 2.713219-1 9.848371-6 2.585507-1 9.901071-6 2.149480-1 9.920914-6 2.016015-1 9.942479-6 1.925917-1 9.963421-6 1.892945-1 1.003404-5 2.034494-1 1.006678-5 2.133244-1 1.009444-5 2.162513-1 1.021268-5 2.072585-1 1.038397-5 2.022421-1 1.056872-5 1.796092-1 1.064289-5 1.819180-1 1.077870-5 1.954799-1 1.215000-5 1.869412-1 1.350000-5 1.906881-1 1.507448-5 2.097991-1 1.690982-5 2.496597-1 1.895967-5 3.155014-1 2.112916-5 4.102664-1 2.381273-5 5.644185-1 2.396288-5 5.744951-1 2.408085-5 2.483296+0 2.413983-5 4.058491+0 2.419881-5 6.444802+0 2.422815-5 8.065692+0 2.425779-5 1.380190+1 2.434742-5 3.223598+1 2.440706-5 4.985432+1 2.447415-5 7.736804+1 2.453535-5 1.085606+2 2.470307-5 2.013615+2 2.477452-5 2.228465+2 2.483309-5 2.251940+2 2.488961-5 2.129300+2 2.495207-5 1.845030+2 2.512267-5 8.115311+1 2.518231-5 5.240737+1 2.524194-5 3.150116+1 2.530158-5 1.763136+1 2.539103-5 4.985911+0 2.542085-5 6.756647-1 2.553167-5 6.840880-1 2.565736-5 9.354811-1 2.572020-5 1.140158+0 2.578304-5 1.448029+0 2.584589-5 1.867292+0 2.603441-5 3.427273+0 2.609726-5 3.784294+0 2.613502-5 3.878154+0 2.616010-5 4.127246+0 2.622438-5 4.502183+0 2.627074-5 4.648664+0 2.633508-5 5.060163+0 2.639943-5 5.818601+0 2.647323-5 7.309391+0 2.666284-5 1.260172+1 2.672569-5 1.396039+1 2.678853-5 1.450704+1 2.685955-5 1.421415+1 2.696750-5 1.245342+1 2.708584-5 1.022842+1 2.717221-5 9.307428+0 2.726695-5 9.115100+0 2.754350-5 9.364711+0 2.807532-5 8.529186+0 2.885761-5 7.745915+0 2.899967-5 1.677519+1 2.907513-5 2.498761+1 2.914616-5 3.665430+1 2.922058-5 5.346019+1 2.942806-5 1.100122+2 2.950654-5 1.234429+2 2.958140-5 1.268744+2 2.965316-5 1.206683+2 2.973032-5 1.049198+2 2.992305-5 5.185084+1 2.999408-5 3.588721+1 3.006511-5 2.412667+1 3.013613-5 1.630849+1 3.027819-5 6.718550+0 3.065107-5 6.669449+0 3.101178-5 7.262902+0 3.132566-5 8.545336+0 3.145160-5 9.552276+0 3.165039-5 1.144371+1 3.171566-5 1.188375+1 3.178828-5 1.212193+1 3.189652-5 1.190777+1 3.216116-5 1.047321+1 3.235937-5 1.009950+1 3.316818-5 9.714951+0 3.381807-5 9.025942+0 3.625744-5 7.790324+0 3.950580-5 6.847565+0 4.307996-5 6.291618+0 4.766498-5 6.011339+0 5.043981-5 6.074182+0 5.258412-5 6.087910+0 6.028504-5 6.564404+0 9.659340-5 1.014629+1 1.257405-4 1.227550+1 1.461918-4 1.327790+1 1.469744-4 1.378787+1 1.476979-4 2.227869+1 1.480597-4 2.919869+1 1.484667-4 4.108376+1 1.488346-4 5.531954+1 1.496060-4 9.057771+1 1.501144-4 1.086926+2 1.503090-4 1.127562+2 1.506274-4 1.149870+2 1.510123-4 1.091521+2 1.514073-4 9.559502+1 1.524008-4 5.048859+1 1.527888-4 3.667303+1 1.531549-4 2.939144+1 1.535102-4 2.578808+1 1.539608-4 2.606314+1 1.542215-4 2.795773+1 1.543930-4 3.147964+1 1.548262-4 4.262976+1 1.558560-4 7.333200+1 1.562978-4 8.125618+1 1.566668-4 8.295365+1 1.570864-4 7.846073+1 1.574605-4 7.012201+1 1.585113-4 3.910644+1 1.588630-4 3.072583+1 1.592186-4 2.440156+1 1.595889-4 2.001572+1 1.603384-4 1.461766+1 1.633029-4 1.549803+1 1.668330-4 1.618243+1 1.766000-4 1.728453+1 1.875973-4 1.699452+1 2.174487-4 1.515826+1 2.559470-4 1.436060+1 2.831047-4 1.433366+1 2.872490-4 1.541563+1 2.900551-4 1.583488+1 2.959948-4 1.537744+1 3.237272-4 1.543485+1 3.371563-4 1.560429+1 3.962119-4 1.534901+1 4.061134-4 1.576336+1 8.709636-4 1.072445+1 1.141485-3 8.524334+0 1.258718-3 7.791559+0 1.264921-3 1.048095+1 1.268267-3 1.300649+1 1.271370-3 1.655562+1 1.275108-3 2.256153+1 1.283656-3 3.918088+1 1.287567-3 4.456900+1 1.290607-3 4.641419+1 1.294232-3 4.572827+1 1.299142-3 4.216910+1 1.303872-3 3.806524+1 1.308191-3 3.667746+1 1.312021-3 3.838900+1 1.323849-3 4.840794+1 1.326703-3 4.948651+1 1.330933-3 4.837048+1 1.338123-3 4.251311+1 1.345366-3 3.645215+1 1.351503-3 3.385918+1 1.358557-3 3.262550+1 1.418630-3 3.335040+1 1.503355-3 3.206013+1 1.629252-3 2.887828+1 1.645646-3 3.000969+1 1.663752-3 3.200148+1 1.801613-3 2.908556+1 1.834997-3 2.992677+1 1.994065-3 2.699302+1 2.053624-3 2.698280+1 2.408345-3 2.191286+1 2.848968-3 1.740553+1 3.271053-3 1.427878+1 3.733930-3 1.177252+1 4.153723-3 1.004033+1 4.752532-3 8.189120+0 5.385690-3 6.751807+0 6.131986-3 5.512218+0 7.000000-3 4.467946+0 7.592734-3 3.936051+0 7.646057-3 4.099103+0 7.677793-3 4.451851+0 7.703972-3 4.991142+0 7.732360-3 5.858397+0 7.804337-3 8.538449+0 7.847782-3 9.560497+0 7.902830-3 9.984112+0 8.414836-3 9.176957+0 8.491151-3 9.413588+0 8.556278-3 1.023491+1 8.636186-3 1.140704+1 8.714557-3 1.176131+1 8.904721-3 1.158388+1 9.112264-3 1.258917+1 1.086819-2 9.689149+0 1.254700-2 7.687594+0 1.431150-2 6.205436+0 1.627467-2 5.014139+0 1.837271-2 4.088723+0 2.056482-2 3.375399+0 2.265300-2 2.859138+0 2.530026-2 2.361551+0 2.865111-2 1.901733+0 3.231079-2 1.538854+0 3.650408-2 1.239973+0 4.097765-2 1.008859+0 4.622557-2 8.126501-1 5.218513-2 6.535102-1 5.269172-2 6.542104-1 5.290719-2 6.832711-1 5.308314-2 7.482710-1 5.321689-2 8.399345-1 5.336818-2 1.003179+0 5.352431-2 1.246092+0 5.374615-2 1.703653+0 5.409430-2 2.483051+0 5.435925-2 2.913104+0 5.464970-2 3.150004+0 5.516737-2 3.217297+0 6.422058-2 2.525234+0 7.244360-2 2.074562+0 8.258002-2 1.664348+0 9.299838-2 1.358076+0 1.057648-1 1.087563+0 1.197947-1 8.748831-1 1.335020-1 7.232871-1 1.487302-1 5.974749-1 1.663501-1 4.904941-1 1.857340-1 4.037592-1 2.062156-1 3.359995-1 2.292311-1 2.790862-1 2.582446-1 2.271944-1 2.898913-1 1.866552-1 3.241690-1 1.549987-1 3.648212-1 1.279429-1 4.133225-1 1.051521-1 4.694431-1 8.672990-2 5.282647-1 7.309873-2 6.031018-1 6.090017-2 6.958250-1 5.058947-2 7.914399-1 4.326555-2 9.226325-1 3.643153-2 1.120601+0 2.961006-2 1.347258+0 2.414287-2 1.619761+0 1.968514-2 1.947381+0 1.605048-2 2.341267+0 1.308693-2 2.814822+0 1.067056-2 3.384160+0 8.700354-3 4.068655+0 7.093924-3 4.891600+0 5.784105-3 5.616308+0 4.963046-3 6.752287+0 4.046671-3 8.118035+0 3.299496-3 9.760024+0 2.690278-3 1.000000+1 5.530254-3 1 66000 7 0 1.625000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.555673+1 1.883964-6-6.292356+1 2.140053-6-5.925331+1 2.242025-6-5.486327+1 2.289016-6-4.991163+1 2.309322-6-4.544037+1 2.319218-6-4.121007+1 2.336754-6-3.096320+1 2.344426-6-2.677626+1 2.350135-6-2.534845+1 2.355310-6-2.621069+1 2.359592-6-2.891088+1 2.364097-6-3.364513+1 2.370776-6-4.437269+1 2.381828-6-6.591117+1 2.387561-6-5.599046+1 2.391755-6-5.044993+1 2.397099-6-4.617355+1 2.402859-6-4.487632+1 2.410977-6-4.750274+1 2.439347-6-6.584773+1 2.476800-6-4.858854+1 2.486572-6-4.180187+1 2.490421-6-3.748886+1 2.494666-6-3.260902+1 2.501915-6-2.551831+1 2.510631-6-1.517924+1 2.514402-6-1.160439+1 2.515324-6-1.044776+1 2.516042-6-9.782816+0 2.517299-6-8.896932+0 2.521837-6-6.578845+0 2.523178-6-6.398119+0 2.524184-6-6.482436+0 2.525692-6-6.879754+0 2.527967-6-7.903797+0 2.529308-6-8.964620+0 2.531068-6-1.086889+1 2.532765-6-1.329064+1 2.536012-6-1.941382+1 2.538491-6-2.519197+1 2.544681-6-4.440747+1 2.549191-6-6.156256+1 2.550431-6-6.589036+1 2.552163-6-5.820855+1 2.559717-6-2.949014+1 2.564363-6-1.492132+1 2.565081-6-1.286541+1 2.566338-6-9.704349+0 2.567281-6-7.572894+0 2.568695-6-4.655684+0 2.570110-6-1.915024+0 2.570876-6-5.240598-1 2.572217-6 1.493159+0 2.573222-6 2.766087+0 2.574731-6 4.322697+0 2.575485-6 4.936481+0 2.576239-6 5.398580+0 2.577772-6 6.143865+0 2.578921-6 6.561432+0 2.580645-6 6.826860+0 2.581507-6 6.748432+0 2.585434-6 5.062296+0 2.586967-6 4.201248+0 2.587733-6 3.621769+0 2.589265-6 1.925537+0 2.591947-6-4.341875-1 2.593288-6-1.709557+0 2.593959-6-2.438938+0 2.594629-6-3.351749+0 2.600759-6-1.024250+1 2.601525-6-1.122927+1 2.602866-6-1.263545+1 2.611486-6-2.069445+1 2.614444-6-2.461467+1 2.620121-6-2.932247+1 2.628561-6-3.396630+1 2.645148-6-3.981546+1 2.671993-6-4.535183+1 2.717817-6-5.045313+1 2.809075-6-5.519996+1 3.012824-6-5.918474+1 3.918177-6-6.467847+1 3.992587-6-6.583581+1 4.024506-6-6.504348+1 4.082308-6-5.908090+1 4.146313-6-6.063092+1 4.352818-6-6.278678+1 4.577850-6-6.374716+1 4.663489-6-6.222770+1 4.863000-6-6.330503+1 6.037790-6-6.540624+1 6.136197-6-6.548940+1 6.245454-6-6.184985+1 6.287081-6-6.486965+1 6.297898-6-6.575118+1 6.351555-6-5.854245+1 6.392944-6-5.761028+1 6.517228-6-6.183480+1 6.866698-6-6.590566+1 6.966634-6-6.460989+1 6.999256-6-6.560896+1 7.074832-6-5.883503+1 7.129672-6-5.870362+1 7.260946-6-6.166547+1 8.294536-6-6.327420+1 1.582894-5-6.652885+1 1.995262-5-6.244199+1 2.172017-5-5.726942+1 2.254861-5-5.205767+1 2.306492-5-4.626079+1 2.341705-5-3.972405+1 2.364315-5-3.321513+1 2.378446-5-2.741916+1 2.386925-5-2.286083+1 2.394433-5-1.768007+1 2.403883-5-9.102937+0 2.405984-5-6.968280+0 2.408085-5-4.600039+0 2.411034-5-1.010084+0 2.412508-5 9.011292-1 2.413983-5 2.994268+0 2.416932-5 7.490000+0 2.418407-5 9.947225+0 2.419881-5 1.271560+1 2.422082-5 1.756044+1 2.423834-5 2.264032+1 2.425779-5 2.686808+1 2.441451-5 5.539261+1 2.447415-5 6.282397+1 2.452633-5 6.387477+1 2.455226-5 6.221248+1 2.459134-5 5.564225+1 2.461861-5 4.855523+1 2.464870-5 3.805847+1 2.466517-5 3.077480+1 2.468795-5 1.850081+1 2.469659-5 1.344718+1 2.470307-5 9.248988+0 2.470896-5 4.881808+0 2.474390-5-1.796115+1 2.475602-5-2.665599+1 2.476376-5-3.301063+1 2.477119-5-3.970902+1 2.481047-5-6.936501+1 2.482520-5-5.648592+1 2.484226-5-4.236882+1 2.487955-5-1.495870+1 2.488413-5-1.099459+1 2.488600-5-9.266098+0 2.488961-5-6.379313+0 2.489638-5-1.480269+0 2.490230-5 2.507501+0 2.491267-5 9.072938+0 2.493988-5 2.528896+1 2.495207-5 3.293196+1 2.497273-5 4.271913+1 2.499088-5 4.966539+1 2.502177-5 5.884115+1 2.505508-5 6.549861+1 2.509416-5 6.909916+1 2.512267-5 6.779498+1 2.517485-5 6.102460+1 2.523542-5 4.807219+1 2.532208-5 2.708987+1 2.539103-5 1.374379+1 2.540594-5 1.051711+1 2.541712-5 7.668726+0 2.542413-5 5.285029+0 2.543028-5 3.642746+0 2.544104-5 1.219527+0 2.545719-5-1.882412+0 2.547334-5-4.595993+0 2.548792-5-6.811905+0 2.550980-5-9.822794+0 2.554738-5-1.436468+1 2.559451-5-1.915793+1 2.565736-5-2.451506+1 2.575162-5-3.108744+1 2.587731-5-3.791272+1 2.603441-5-4.399965+1 2.651462-5-5.758545+1 2.666284-5-5.839978+1 2.694489-5-5.418891+1 2.711295-5-5.536817+1 2.752395-5-6.066306+1 2.815623-5-6.791944+1 2.845282-5-7.380335+1 2.872178-5-6.081329+1 2.883634-5-5.215547+1 2.888630-5-4.604058+1 2.899967-5-3.496977+1 2.908346-5-2.540234+1 2.915449-5-1.849087+1 2.916905-5-1.747996+1 2.922058-5-1.471235+1 2.924174-5-1.445508+1 2.926422-5-1.495764+1 2.929647-5-1.679392+1 2.933015-5-2.008098+1 2.936694-5-2.534291+1 2.940326-5-3.222299+1 2.942351-5-3.731165+1 2.948871-5-5.680804+1 2.952339-5-6.967993+1 2.957025-5-5.342975+1 2.959309-5-4.413506+1 2.964397-5-2.657688+1 2.965316-5-2.283821+1 2.966865-5-1.777248+1 2.971927-5-3.341972+0 2.972303-5-2.161472+0 2.973032-5-2.302431-1 2.974399-5 2.912382+0 2.975596-5 5.327018+0 2.976642-5 7.236275+0 2.978474-5 1.018496+1 2.979848-5 1.210086+1 2.981909-5 1.453664+1 2.983970-5 1.646045+1 2.986054-5 1.791387+1 2.988788-5 1.906643+1 2.991426-5 1.918175+1 2.997632-5 1.640936+1 2.999408-5 1.487105+1 3.000295-5 1.392306+1 3.004957-5 9.947314+0 3.005734-5 9.148947+0 3.006511-5 8.149782+0 3.013613-5 6.000702-1 3.014772-5-7.666017-1 3.016799-5-2.711060+0 3.022881-5-7.950702+0 3.025350-5-1.022560+1 3.027202-5-1.225495+1 3.028405-5-1.404193+1 3.030160-5-1.593425+1 3.034709-5-1.957754+1 3.042639-5-2.420205+1 3.051998-5-2.825173+1 3.065107-5-3.253579+1 3.088180-5-3.789319+1 3.125019-5-4.354970+1 3.157152-5-4.631246+1 3.210125-5-4.503308+1 3.301377-5-4.745167+1 3.694027-5-5.103547+1 4.991292-5-5.475882+1 7.697049-5-5.651719+1 1.202600-4-5.727822+1 1.336115-4-6.030494+1 1.352358-4-6.036211+1 1.408323-4-5.467120+1 1.436046-4-4.881281+1 1.450120-4-4.358649+1 1.460121-4-3.745965+1 1.465961-4-3.189198+1 1.469287-4-2.704200+1 1.470903-4-2.362651+1 1.476647-4-1.464630+1 1.480597-4-7.453640+0 1.481049-4-6.509615+0 1.484214-4-1.784638+0 1.484667-4-1.039165+0 1.485458-4-1.807181-1 1.487832-4 1.487014+0 1.488346-4 1.800046+0 1.488828-4 1.858781+0 1.489732-4 1.639143+0 1.490523-4 1.158202+0 1.491215-4 5.366760-1 1.491821-4-1.560109-1 1.492881-4-1.702930+0 1.493676-4-3.152774+0 1.494272-4-4.415346+0 1.495166-4-6.629844+0 1.495613-4-7.915614+0 1.498306-4-1.740198+1 1.499485-4-2.244013+1 1.502085-4-3.587821+1 1.503090-4-4.218559+1 1.505905-4-5.844172+1 1.506110-4-5.997665+1 1.510502-4-3.508390+1 1.513565-4-2.127746+1 1.514516-4-1.787312+1 1.515876-4-1.403246+1 1.516750-4-1.203125+1 1.517623-4-1.032075+1 1.518421-4-9.029017+0 1.519120-4-8.138115+0 1.520265-4-7.115474+0 1.521201-4-6.685920+0 1.521903-4-6.615541+0 1.522429-4-6.716781+0 1.523219-4-7.155860+0 1.523613-4-7.541151+0 1.526269-4-1.166714+1 1.527286-4-1.382547+1 1.528674-4-1.785453+1 1.531328-4-2.475360+1 1.535102-4-3.507852+1 1.544551-4-5.997248+1 1.548958-4-5.434760+1 1.552802-4-5.438461+1 1.556543-4-5.857451+1 1.557285-4-6.001950+1 1.562310-4-4.570875+1 1.566226-4-3.135026+1 1.566668-4-2.931563+1 1.570864-4-1.424931+1 1.571697-4-1.169748+1 1.574605-4-3.673722+0 1.575372-4-1.932293+0 1.576043-4-6.337968-1 1.576445-4 1.969052-2 1.577217-4 1.271327+0 1.578097-4 2.440359+0 1.579418-4 3.817351+0 1.580078-4 4.339108+0 1.580739-4 4.729433+0 1.581832-4 5.184683+0 1.582653-4 5.388739+0 1.583883-4 5.404286+0 1.584498-4 5.248158+0 1.586872-4 3.751389+0 1.587751-4 3.086773+0 1.588190-4 2.674226+0 1.589525-4 1.066908+0 1.590852-4-3.217858-1 1.591519-4-1.087238+0 1.592186-4-2.033541+0 1.596801-4-7.977989+0 1.602561-4-1.424067+1 1.603872-4-1.625123+1 1.606433-4-1.895937+1 1.611383-4-2.255831+1 1.618360-4-2.611548+1 1.629172-4-2.982214+1 1.642722-4-3.267802+1 1.678860-4-3.675637+1 1.729711-4-3.916682+1 1.826031-4-3.996854+1 2.812185-4-4.037321+1 2.880733-4-4.064963+1 2.948824-4-3.947289+1 3.962119-4-3.649854+1 5.055336-4-3.309522+1 6.542100-4-3.102282+1 8.305676-4-3.067177+1 9.698378-4-3.199213+1 1.079991-3-3.465492+1 1.157313-3-3.843854+1 1.204347-3-4.281116+1 1.231989-3-4.748431+1 1.249144-3-5.273348+1 1.258175-3-5.021469+1 1.271944-3-4.331557+1 1.276487-3-4.378143+1 1.280733-3-4.778595+1 1.283656-3-5.318429+1 1.287757-3-6.315535+1 1.294757-3-5.108581+1 1.299142-3-4.663274+1 1.303396-3-4.561362+1 1.312801-3-4.990080+1 1.317359-3-4.955731+1 1.323029-3-4.540430+1 1.330933-3-3.480495+1 1.334760-3-3.092095+1 1.339829-3-2.839986+1 1.344587-3-2.831185+1 1.360371-3-3.203133+1 1.376425-3-3.246927+1 1.418630-3-3.033724+1 1.503355-3-2.529410+1 1.560479-3-2.336280+1 1.612501-3-2.289529+1 1.649233-3-2.426964+1 1.663752-3-2.289025+1 1.678204-3-2.112218+1 1.702007-3-1.985006+1 1.758672-3-1.811267+1 1.801613-3-1.778802+1 1.822059-3-1.755865+1 1.852390-3-1.586355+1 1.935291-3-1.386251+1 1.994065-3-1.327717+1 2.024952-3-1.286960+1 2.078986-3-1.137167+1 2.171594-3-9.758620+0 2.308734-3-8.126287+0 2.471301-3-6.791947+0 2.649263-3-5.787786+0 2.848968-3-5.023760+0 3.073940-3-4.473899+0 3.388441-3-4.093299+0 3.733930-3-3.950017+0 4.351829-3-4.082318+0 4.954502-3-4.400794+0 5.639622-3-5.004342+0 6.343901-3-5.920913+0 6.870799-3-6.964889+0 7.218018-3-8.043957+0 7.422518-3-9.050520+0 7.566952-3-1.023228+1 7.646057-3-1.142206+1 7.747977-3-1.364938+1 7.792821-3-1.385831+1 7.847782-3-1.299786+1 7.943282-3-1.100326+1 8.034671-3-9.993875+0 8.172289-3-9.268893+0 8.334296-3-9.030938+0 8.445804-3-9.360375+0 8.556278-3-1.014770+1 8.616665-3-1.005744+1 8.768900-3-8.468173+0 8.864939-3-8.016883+0 9.001471-3-7.855876+0 9.079646-3-7.315126+0 9.219587-3-6.121898+0 9.383148-3-5.253651+0 9.613634-3-4.408935+0 9.907366-3-3.614949+0 1.027432-2-2.875054+0 1.068502-2-2.267511+0 1.111157-2-1.793743+0 1.154990-2-1.418302+0 1.195791-2-1.140978+0 1.242948-2-8.947568-1 1.274934-2-7.611812-1 1.307114-2-6.484623-1 1.335627-2-5.672895-1 1.369156-2-4.850802-1 1.423937-2-3.750497-1 1.466381-2-3.073238-1 1.506973-2-2.573190-1 1.566751-2-2.046210-1 1.605957-2-1.804133-1 1.671339-2-1.549410-1 1.709071-2-1.471360-1 1.767625-2-1.439844-1 1.837271-2-1.491419-1 1.933886-2-1.691444-1 1.994365-2-1.872872-1 2.131548-2-2.417291-1 2.430105-2-3.876606-1 3.947769-2-1.213550+0 4.390217-2-1.511917+0 4.717623-2-1.814833+0 4.948360-2-2.133957+0 5.098855-2-2.458974+0 5.192804-2-2.779344+0 5.257864-2-3.146785+0 5.302625-2-3.589675+0 5.363241-2-4.348990+0 5.391531-2-4.420987+0 5.421720-2-4.167007+0 5.488796-2-3.236706+0 5.529200-2-2.859959+0 5.588779-2-2.498416+0 5.682273-2-2.122416+0 5.812192-2-1.777414+0 5.967169-2-1.485195+0 6.148982-2-1.237776+0 6.356865-2-1.032119+0 6.636252-2-8.363928-1 6.942903-2-6.808974-1 7.244360-2-5.670354-1 7.442163-2-5.081901-1 7.865349-2-4.133691-1 8.258002-2-3.522335-1 8.655506-2-3.101825-1 9.081586-2-2.789940-1 9.791817-2-2.487013-1 1.032793-1-2.367744-1 1.112113-1-2.322594-1 1.244309-1-2.428207-1 1.663501-1-3.125219-1 2.212098-1-3.921544-1 2.898913-1-4.561388-1 3.954395-1-5.099438-1 5.709301-1-5.498357-1 9.677746-1-5.772206-1 2.947480+0-5.900753-1 8.901248+0-5.923575-1 1.000000+1-5.919583-1 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.200275-1 1.117966-6 2.046742-1 1.169699-6 2.564936-1 1.218249-6 3.155921-1 1.286231-6 4.203422-1 1.328269-6 5.001758-1 1.367678-6 5.880434-1 1.404625-6 6.838891-1 1.439263-6 7.875810-1 1.471735-6 8.989144-1 1.502179-6 1.017615+0 1.530719-6 1.143343+0 1.557476-6 1.275699+0 1.606077-6 1.558432+0 1.628124-6 1.707911+0 1.648792-6 1.863362+0 1.687547-6 2.195341+0 1.721457-6 2.536838+0 1.751128-6 2.884157+0 1.777090-6 3.232085+0 1.799807-6 3.575860+0 1.819684-6 3.911897+0 1.837077-6 4.237925+0 1.867514-6 4.884105+0 1.890342-6 5.442524+0 1.907463-6 5.914141+0 1.933145-6 6.716920+0 1.968469-6 8.036500+0 1.992576-6 9.126155+0 2.016683-6 1.040992+1 2.040790-6 1.193353+1 2.055254-6 1.298849+1 2.076729-6 1.478162+1 2.095520-6 1.661467+1 2.111961-6 1.847011+1 2.126348-6 2.032765+1 2.138936-6 2.216731+1 2.149951-6 2.396969+1 2.159589-6 2.571578+1 2.176455-6 2.921669+1 2.189105-6 3.229093+1 2.198592-6 3.490372+1 2.212823-6 3.941825+1 2.227054-6 4.481734+1 2.238017-6 4.974885+1 2.248980-6 5.553938+1 2.259944-6 6.241968+1 2.265425-6 6.636348+1 2.270907-6 7.070901+1 2.276388-6 7.551921+1 2.281870-6 8.087196+1 2.287352-6 8.686520+1 2.292833-6 9.362472+1 2.298315-6 1.013162+2 2.303796-6 1.101639+2 2.309278-6 1.204785+2 2.314760-6 1.326977+2 2.320241-6 1.474396+2 2.325723-6 1.655659+2 2.331204-6 1.882451+2 2.336686-6 2.169972+2 2.340404-6 2.408967+2 2.343658-6 2.653245+2 2.346505-6 2.897790+2 2.351176-6 3.370051+2 2.354990-6 3.829413+2 2.368162-6 6.003758+2 2.372258-6 6.871341+2 2.375170-6 7.537947+2 2.378083-6 8.239896+2 2.383907-6 9.718898+2 2.384635-6 9.907856+2 2.389732-6 1.122822+3 2.391734-6 1.173559+3 2.395557-6 1.266222+3 2.397559-6 1.311609+3 2.399470-6 1.352300+3 2.401381-6 1.389980+3 2.403930-6 1.434811+3 2.406387-6 1.471392+3 2.408662-6 1.498781+3 2.410573-6 1.516582+3 2.413031-6 1.532059+3 2.416307-6 1.539111+3 2.419037-6 1.532794+3 2.420051-6 1.527610+3 2.422366-6 1.510078+3 2.424950-6 1.481353+3 2.427001-6 1.451993+3 2.429798-6 1.403182+3 2.432183-6 1.354269+3 2.436329-6 1.255617+3 2.438610-6 1.195308+3 2.440161-6 1.152391+3 2.442882-6 1.074178+3 2.445470-6 9.974831+2 2.447979-6 9.221268+2 2.450527-6 8.456113+2 2.453189-6 7.667979+2 2.456716-6 6.658658+2 2.459264-6 5.964553+2 2.459992-6 5.772747+2 2.463405-6 4.917369+2 2.465453-6 4.441761+2 2.471641-6 3.193464+2 2.475310-6 2.593591+2 2.481084-6 1.860443+2 2.483576-6 1.620948+2 2.485429-6 1.471730+2 2.486781-6 1.377899+2 2.488319-6 1.286345+2 2.489707-6 1.217254+2 2.490960-6 1.165709+2 2.492188-6 1.125028+2 2.492991-6 1.103585+2 2.493781-6 1.086444+2 2.494560-6 1.073389+2 2.496092-6 1.058677+2 2.497576-6 1.058237+2 2.500452-6 1.095961+2 2.511238-6 1.711798+2 2.515282-6 2.160943+2 2.524627-6 3.789252+2 2.529072-6 4.924671+2 2.532475-6 5.986471+2 2.535081-6 6.925699+2 2.538805-6 8.476703+2 2.542583-6 1.032262+3 2.546002-6 1.224668+3 2.547928-6 1.344113+3 2.549853-6 1.471689+3 2.552984-6 1.696500+3 2.556114-6 1.942673+3 2.562766-6 2.531997+3 2.564234-6 2.672769+3 2.568085-6 3.057131+3 2.571045-6 3.363671+3 2.574896-6 3.770641+3 2.578076-6 4.107125+3 2.581157-6 4.427740+3 2.584336-6 4.746668+3 2.587418-6 5.038199+3 2.590157-6 5.278004+3 2.593183-6 5.516852+3 2.594070-6 5.580931+3 2.597738-6 5.814269+3 2.600603-6 5.957577+3 2.603940-6 6.077618+3 2.606652-6 6.136068+3 2.612656-6 6.137345+3 2.614368-6 6.105650+3 2.619113-6 5.947189+3 2.622093-6 5.798290+3 2.624982-6 5.621597+3 2.628161-6 5.394932+3 2.631243-6 5.148201+3 2.633982-6 4.910979+3 2.636623-6 4.670066+3 2.640634-6 4.289210+3 2.643764-6 3.985886+3 2.647286-6 3.645137+3 2.650025-6 3.384394+3 2.656286-6 2.816682+3 2.658438-6 2.633822+3 2.662547-6 2.305876+3 2.668025-6 1.915842+3 2.674444-6 1.530291+3 2.684213-6 1.083979+3 2.689737-6 8.968851+2 2.692482-6 8.186846+2 2.695217-6 7.494049+2 2.697941-6 6.881099+2 2.703367-6 5.858291+2 2.708752-6 5.058118+2 2.714094-6 4.428428+2 2.719395-6 3.927838+2 2.724654-6 3.524511+2 2.729872-6 3.194547+2 2.735049-6 2.920300+2 2.740186-6 2.688870+2 2.745283-6 2.490843+2 2.750340-6 2.319316+2 2.755357-6 2.169170+2 2.765313-6 1.917635+2 2.775114-6 1.716026+2 2.784762-6 1.550853+2 2.794259-6 1.413196+2 2.803607-6 1.296879+2 2.812810-6 1.197462+2 2.821869-6 1.111654+2 2.830786-6 1.036951+2 2.839564-6 9.714128+1 2.848204-6 9.135042+1 2.865216-6 8.152201+1 2.881695-6 7.358607+1 2.897660-6 6.706135+1 2.913126-6 6.161940+1 2.928108-6 5.702509+1 2.942623-6 5.310539+1 2.956683-6 4.972988+1 2.970305-6 4.679675+1 2.996696-6 4.188219+1 3.021438-6 3.801110+1 3.044633-6 3.490049+1 3.072000-6 3.174750+1 3.105878-6 2.846540+1 3.141714-6 2.557362+1 3.173071-6 2.341884+1 3.200508-6 2.177611+1 3.248522-6 1.931594+1 3.284533-6 1.774839+1 3.338550-6 1.574778+1 3.425968-6 1.312948+1 3.559574-6 1.013433+1 3.659475-6 8.305519+0 3.734401-6 7.010328+0 3.762499-6 6.522049+0 3.787084-6 6.084006+0 3.808596-6 5.686917+0 3.827419-6 5.324177+0 3.843889-6 4.991013+0 3.858300-6 4.683908+0 3.870910-6 4.400264+0 3.881944-6 4.138219+0 3.891598-6 3.896530+0 3.900046-6 3.674433+0 3.914830-6 3.260403+0 3.925917-6 2.930329+0 3.934233-6 2.675688+0 3.940470-6 2.484259+0 3.948655-6 2.239112+0 3.959180-6 1.952420+0 3.961616-6 1.893919+0 3.968925-6 1.745312+0 3.973797-6 1.675342+0 3.976234-6 1.651343+0 3.978670-6 1.635781+0 3.985979-6 1.648915+0 3.988415-6 1.676522+0 3.989633-6 1.695270+0 3.993896-6 1.789209+0 3.996028-6 1.854069+0 3.998160-6 1.931906+0 3.999378-6 1.982520+0 4.003641-6 2.197322+0 4.006839-6 2.399812+0 4.010587-6 2.686472+0 4.014691-6 3.066602+0 4.020096-6 3.681922+0 4.034348-6 6.011131+0 4.038585-6 6.918469+0 4.044116-6 8.257050+0 4.049267-6 9.659948+0 4.054182-6 1.113440+1 4.058819-6 1.263971+1 4.063510-6 1.426460+1 4.068356-6 1.603588+1 4.072489-6 1.760612+1 4.076784-6 1.927995+1 4.081207-6 2.102981+1 4.085619-6 2.277969+1 4.091840-6 2.520909+1 4.095249-6 2.649997+1 4.100441-6 2.837919+1 4.103947-6 2.957171+1 4.110024-6 3.145533+1 4.112667-6 3.219050+1 4.121928-6 3.429725+1 4.126571-6 3.505163+1 4.130283-6 3.550043+1 4.135281-6 3.588401+1 4.139800-6 3.601351+1 4.143490-6 3.596956+1 4.146258-6 3.585123+1 4.150409-6 3.554287+1 4.154561-6 3.508726+1 4.159721-6 3.433533+1 4.161441-6 3.404334+1 4.168849-6 3.258450+1 4.171319-6 3.203646+1 4.178728-6 3.025578+1 4.181197-6 2.962809+1 4.191075-6 2.703232+1 4.194303-6 2.617572+1 4.203988-6 2.365915+1 4.221604-6 1.956160+1 4.229154-6 1.806754+1 4.236468-6 1.678235+1 4.243553-6 1.568541+1 4.250417-6 1.475283+1 4.263716-6 1.326533+1 4.276184-6 1.218191+1 4.287873-6 1.137111+1 4.304100-6 1.047818+1 4.319378-6 9.806136+0 4.337356-6 9.152393+0 4.368818-6 8.227567+0 4.416011-6 7.113397+0 4.463223-6 6.108910+0 4.474209-6 5.868362+0 4.485195-6 5.619132+0 4.496180-6 5.359100+0 4.507166-6 5.087875+0 4.518152-6 4.808087+0 4.544917-6 4.147313+0 4.553451-6 3.972743+0 4.560854-6 3.850978+0 4.570254-6 3.751058+0 4.573387-6 3.734358+0 4.584588-6 3.756538+0 4.587389-6 3.784268+0 4.595790-6 3.926169+0 4.599641-6 4.021830+0 4.603316-6 4.131485+0 4.606992-6 4.259032+0 4.612242-6 4.471719+0 4.616531-6 4.670997+0 4.625777-6 5.171564+0 4.640597-6 6.125923+0 4.647598-6 6.610968+0 4.651798-6 6.903180+0 4.663000-6 7.655565+0 4.664400-6 7.744524+0 4.674202-6 8.317631+0 4.678052-6 8.514000+0 4.685403-6 8.834664+0 4.691620-6 9.044713+0 4.697456-6 9.187668+0 4.700504-6 9.240986+0 4.706215-6 9.301634+0 4.711926-6 9.312238+0 4.719008-6 9.259707+0 4.727410-6 9.112310+0 4.730210-6 9.044983+0 4.741412-6 8.700828+0 4.752613-6 8.267114+0 4.760298-6 7.937886+0 4.771500-6 7.437707+0 4.785500-6 6.816556+0 4.808573-6 5.896339+0 4.820664-6 5.496466+0 4.832385-6 5.176414+0 4.844106-6 4.930905+0 4.855916-6 4.765174+0 4.861834-6 4.714080+0 4.867752-6 4.684356+0 4.873669-6 4.675550+0 4.878108-6 4.682155+0 4.884765-6 4.711950+0 4.891423-6 4.763323+0 4.900300-6 4.859651+0 4.926930-6 5.242021+0 4.938766-6 5.399286+0 4.942060-6 5.436549+0 4.951944-6 5.525459+0 4.958038-6 5.560923+0 4.962609-6 5.577135+0 4.969465-6 5.584621+0 4.976321-6 5.572600+0 4.986108-6 5.525149+0 4.997944-6 5.430529+0 5.036410-6 5.043636+0 5.049753-6 4.942691+0 5.061641-6 4.878641+0 5.073830-6 4.835600+0 5.092230-6 4.799551+0 5.127558-6 4.748511+0 5.160993-6 4.664748+0 5.279125-6 4.316972+0 5.324267-6 4.170667+0 5.389749-6 3.925834+0 5.452994-6 3.711738+0 5.518359-6 3.511788+0 5.561685-6 3.374250+0 5.625054-6 3.162595+0 5.663075-6 3.028265+0 5.714560-6 2.837230+0 5.766045-6 2.637261+0 5.804886-6 2.480360+0 5.875519-6 2.178019+0 5.936244-6 1.896234+0 5.968224-6 1.738252+0 5.998022-6 1.584394+0 6.020370-6 1.464557+0 6.053893-6 1.277527+0 6.070655-6 1.180823+0 6.087416-6 1.082165+0 6.102399-6 9.925397-1 6.117383-6 9.018887-1 6.132366-6 8.107043-1 6.147350-6 7.197322-1 6.162333-6 6.300994-1 6.177316-6 5.435348-1 6.184808-6 5.021986-1 6.207283-6 3.921873-1 6.214775-6 3.628481-1 6.222267-6 3.391151-1 6.229758-6 3.226671-1 6.237250-6 3.156543-1 6.244742-6 3.208116-1 6.248488-6 3.290003-1 6.252233-6 3.415887-1 6.255979-6 3.591431-1 6.261598-6 3.961819-1 6.264407-6 4.201697-1 6.267217-6 4.482447-1 6.270963-6 4.926664-1 6.273772-6 5.317334-1 6.275879-6 5.645528-1 6.280620-6 6.504988-1 6.285712-6 7.637013-1 6.292146-6 9.426424-1 6.312167-6 1.837823+0 6.319776-6 2.353744+0 6.327150-6 2.971904+0 6.334759-6 3.750670+0 6.342134-6 4.661353+0 6.348994-6 5.663285+0 6.355901-6 6.838419+0 6.362757-6 8.184786+0 6.367429-6 9.211804+0 6.372101-6 1.033202+1 6.379592-6 1.233083+1 6.386148-6 1.429099+1 6.389868-6 1.549258+1 6.399398-6 1.886638+1 6.405386-6 2.119953+1 6.419196-6 2.716454+1 6.424237-6 2.952294+1 6.434840-6 3.473307+1 6.442287-6 3.854149+1 6.449506-6 4.229457+1 6.456166-6 4.576556+1 6.462623-6 4.909362+1 6.469060-6 5.233298+1 6.475843-6 5.561322+1 6.481282-6 5.811116+1 6.488859-6 6.134411+1 6.496467-6 6.424179+1 6.501899-6 6.606450+1 6.508859-6 6.806653+1 6.516251-6 6.975006+1 6.523421-6 7.092059+1 6.530936-6 7.164130+1 6.534043-6 7.178630+1 6.544345-6 7.163146+1 6.551792-6 7.092885+1 6.559011-6 6.980260+1 6.567108-6 6.805952+1 6.574957-6 6.593871+1 6.581951-6 6.374009+1 6.588695-6 6.138916+1 6.598937-6 5.748251+1 6.606930-6 5.423564+1 6.610594-6 5.271050+1 6.621585-6 4.807278+1 6.637229-6 4.154595+1 6.643300-6 3.910464+1 6.654890-6 3.466909+1 6.672183-6 2.873868+1 6.696817-6 2.190638+1 6.713240-6 1.838551+1 6.721451-6 1.690408+1 6.729662-6 1.558923+1 6.737874-6 1.442518+1 6.754296-6 1.248612+1 6.768540-6 1.114785+1 6.782783-6 1.005582+1 6.803565-6 8.788516+0 6.819987-6 7.983261+0 6.846366-6 6.930362+0 6.869255-6 6.176430+0 6.918524-6 4.842332+0 6.967792-6 3.717379+0 7.000637-6 3.025939+0 7.019674-6 2.642105+0 7.036331-6 2.321058+0 7.063659-6 1.854098+0 7.074818-6 1.702875+0 7.084582-6 1.601436+0 7.093125-6 1.544399+0 7.100601-6 1.525439+0 7.107142-6 1.537795+0 7.112865-6 1.574770+0 7.117873-6 1.630119+0 7.122255-6 1.698307+0 7.126090-6 1.774633+0 7.129445-6 1.855254+0 7.132380-6 1.937142+0 7.134949-6 2.017997+0 7.139163-6 2.170440+0 7.143707-6 2.364329+0 7.148391-6 2.598798+0 7.154712-6 2.975969+0 7.162835-6 3.573113+0 7.184486-6 5.884829+0 7.191757-6 6.926009+0 7.200501-6 8.370049+0 7.207364-6 9.653995+0 7.212860-6 1.077860+1 7.222698-6 1.300237+1 7.228718-6 1.449210+1 7.231778-6 1.528525+1 7.242060-6 1.811278+1 7.249088-6 2.017374+1 7.255012-6 2.197772+1 7.261729-6 2.408171+1 7.267879-6 2.604601+1 7.275006-6 2.834626+1 7.282224-6 3.067514+1 7.289968-6 3.313870+1 7.296255-6 3.508625+1 7.304226-6 3.745376+1 7.312201-6 3.967064+1 7.315217-6 4.046160+1 7.323825-6 4.255112+1 7.330606-6 4.400197+1 7.347696-6 4.677865+1 7.353370-6 4.739749+1 7.364202-6 4.813827+1 7.373143-6 4.831216+1 7.381808-6 4.811196+1 7.389511-6 4.764358+1 7.394462-6 4.720656+1 7.403816-6 4.611418+1 7.413719-6 4.461980+1 7.417020-6 4.405443+1 7.425823-6 4.240784+1 7.434626-6 4.059534+1 7.439028-6 3.964122+1 7.452232-6 3.665463+1 7.469838-6 3.257648+1 7.478220-6 3.067307+1 7.517055-6 2.293001+1 7.530755-6 2.077597+1 7.538203-6 1.974360+1 7.549375-6 1.837396+1 7.560547-6 1.720791+1 7.567288-6 1.659564+1 7.576421-6 1.586601+1 7.585554-6 1.524000+1 7.603820-6 1.424686+1 7.622086-6 1.351388+1 7.640352-6 1.294950+1 7.656278-6 1.253732+1 7.695151-6 1.164092+1 7.713417-6 1.122361+1 7.749950-6 1.037569+1 7.815508-6 8.963579+0 7.839687-6 8.523184+0 7.876905-6 7.938468+0 7.932733-6 7.229182+0 8.023377-6 6.304509+0 8.107677-6 5.505716+0 8.144757-6 5.165149+0 8.167398-6 4.978155+0 8.184872-6 4.855076+0 8.204899-6 4.747245+0 8.224946-6 4.685427+0 8.235986-6 4.674458+0 8.247026-6 4.681212+0 8.256000-6 4.700090+0 8.266907-6 4.739124+0 8.276396-6 4.786962+0 8.290629-6 4.880981+0 8.304862-6 4.997766+0 8.346561-6 5.409747+0 8.366468-6 5.601621+0 8.386375-6 5.762283+0 8.396329-6 5.825804+0 8.406282-6 5.876160+0 8.415327-6 5.909719+0 8.428894-6 5.937520+0 8.442461-6 5.938383+0 8.466003-6 5.880519+0 8.485910-6 5.782051+0 8.505608-6 5.651700+0 8.525656-6 5.497314+0 8.557226-6 5.235100+0 8.591813-6 4.951017+0 8.683555-6 4.312472+0 8.704929-6 4.191163+0 8.726302-6 4.082226+0 8.747676-6 3.987894+0 8.769049-6 3.910635+0 8.790423-6 3.852460+0 8.807736-6 3.819937+0 8.825049-6 3.800063+0 8.854543-6 3.791004+0 8.918663-6 3.816247+0 8.940037-6 3.814734+0 8.962198-6 3.798530+0 8.974525-6 3.782055+0 9.005762-6 3.716392+0 9.027766-6 3.652300+0 9.068278-6 3.510189+0 9.159790-6 3.177440+0 9.193977-6 3.071054+0 9.238686-6 2.964736+0 9.261041-6 2.934477+0 9.283395-6 2.925900+0 9.296101-6 2.932318+0 9.308807-6 2.947597+0 9.324640-6 2.979345+0 9.336515-6 3.012255+0 9.356813-6 3.085075+0 9.372522-6 3.153480+0 9.420164-6 3.391982+0 9.443953-6 3.504814+0 9.462337-6 3.578179+0 9.481029-6 3.635178+0 9.494304-6 3.663049+0 9.516274-6 3.684344+0 9.534051-6 3.678840+0 9.556491-6 3.644862+0 9.578092-6 3.587638+0 9.600343-6 3.509132+0 9.633677-6 3.367562+0 9.732520-6 2.927893+0 9.772078-6 2.786210+0 9.804567-6 2.693871+0 9.830014-6 2.638395+0 9.863671-6 2.588594+0 9.895030-6 2.565216+0 9.913964-6 2.560345+0 9.957314-6 2.566786+0 1.000555-5 2.581158+0 1.003005-5 2.582607+0 1.005458-5 2.576802+0 1.007911-5 2.562953+0 1.010374-5 2.541574+0 1.014893-5 2.488968+0 1.022899-5 2.389734+0 1.027613-5 2.341920+0 1.039696-5 2.242673+0 1.056322-5 2.102457+0 1.062317-5 2.046010+0 1.070726-5 1.958122+0 1.084360-5 1.811321+0 1.093887-5 1.725346+0 1.107010-5 1.623496+0 1.119844-5 1.525104+0 1.135011-5 1.412653+0 1.162624-5 1.209308+0 1.202264-5 9.308822-1 1.232927-5 7.329452-1 1.258925-5 5.814222-1 1.275106-5 4.954134-1 1.304217-5 3.563807-1 1.336200-5 2.275286-1 1.358112-5 1.556730-1 1.366875-5 1.312426-1 1.381083-5 9.747458-2 1.403571-5 5.853334-2 1.424653-5 3.936089-2 1.444418-5 3.813524-2 1.452305-5 4.266771-2 1.462947-5 5.384573-2 1.480319-5 8.457919-2 1.496605-5 1.279347-1 1.511872-5 1.825587-1 1.526186-5 2.471472-1 1.539605-5 3.204406-1 1.557892-5 4.344255-1 1.576098-5 5.095636-1 1.594563-5 4.793842-1 1.620320-5 3.659616-1 1.641985-5 2.754779-1 1.654348-5 2.291398-1 1.665166-5 1.922897-1 1.674631-5 1.631532-1 1.691196-5 1.197124-1 1.703620-5 9.400528-2 1.722255-5 6.756307-2 1.735068-5 5.885395-2 1.740890-5 5.780618-2 1.745175-5 5.828707-2 1.746123-5 5.854152-2 1.750000-5 6.015369-2 1.753745-5 6.260315-2 1.758030-5 6.651327-2 1.762315-5 7.164180-2 1.766600-5 7.802801-2 1.770885-5 8.571299-2 1.779455-5 1.051539-1 1.798125-5 1.679281-1 1.809450-5 2.211561-1 1.822305-5 2.971794-1 1.826772-5 3.277412-1 1.847447-5 4.991537-1 1.862087-5 6.538814-1 1.879278-5 8.768576-1 1.892920-5 1.090098+0 1.906562-5 1.339921+0 1.924751-5 1.736598+0 1.938393-5 2.088301+0 1.958720-5 2.711788+0 1.977776-5 3.421074+0 1.995642-5 4.216252+0 2.012390-5 5.096333+0 2.028092-5 6.059058+0 2.056614-5 8.221792+0 2.114374-5 1.493431+1 2.149355-5 2.126113+1 2.176136-5 2.789275+1 2.196641-5 3.443181+1 2.213387-5 4.098641+1 2.225946-5 4.679219+1 2.235366-5 5.174714+1 2.249495-5 6.032550+1 2.263624-5 7.055969+1 2.274767-5 8.006520+1 2.286995-5 9.228520+1 2.297054-5 1.040375+2 2.308197-5 1.192423+2 2.319340-5 1.372586+2 2.330483-5 1.587830+2 2.339537-5 1.794921+2 2.347398-5 2.003626+2 2.352770-5 2.164644+2 2.358341-5 2.350042+2 2.364401-5 2.576286+2 2.371374-5 2.874160+2 2.376253-5 3.110860+2 2.381839-5 3.415798+2 2.387735-5 3.784549+2 2.393507-5 4.202118+2 2.399341-5 4.694716+2 2.405174-5 5.276522+2 2.411008-5 5.972834+2 2.416842-5 6.818950+2 2.422676-5 7.864478+2 2.428510-5 9.179124+2 2.434344-5 1.085998+3 2.437261-5 1.187763+3 2.440178-5 1.303993+3 2.443095-5 1.437045+3 2.446012-5 1.589594+3 2.448555-5 1.740842+3 2.452369-5 2.004622+3 2.456184-5 2.320014+3 2.463513-5 3.104197+3 2.477344-5 5.433647+3 2.483014-5 6.784957+3 2.486849-5 7.842117+3 2.488946-5 8.468936+3 2.493664-5 1.000003+4 2.496001-5 1.081585+4 2.501349-5 1.280315+4 2.503450-5 1.361998+4 2.507460-5 1.521336+4 2.511119-5 1.667871+4 2.512892-5 1.738289+4 2.515648-5 1.845753+4 2.518635-5 1.957772+4 2.521967-5 2.074831+4 2.524926-5 2.169469+4 2.527661-5 2.247351+4 2.529368-5 2.290631+4 2.532712-5 2.362109+4 2.535922-5 2.412561+4 2.539008-5 2.442903+4 2.542726-5 2.454681+4 2.544749-5 2.449506+4 2.550433-5 2.391925+4 2.553166-5 2.342689+4 2.555955-5 2.279256+4 2.558297-5 2.216596+4 2.561182-5 2.128924+4 2.564347-5 2.021419+4 2.566771-5 1.932602+4 2.569493-5 1.827704+4 2.571766-5 1.737039+4 2.574688-5 1.617972+4 2.577744-5 1.492355+4 2.580800-5 1.367544+4 2.584238-5 1.230283+4 2.586911-5 1.127147+4 2.593023-5 9.077968+3 2.595219-5 8.355318+3 2.600233-5 6.850295+3 2.603993-5 5.857553+3 2.607984-5 4.930506+3 2.612362-5 4.057342+3 2.618761-5 3.027653+3 2.632266-5 1.620477+3 2.635288-5 1.412950+3 2.638297-5 1.235452+3 2.641638-5 1.067653+3 2.644355-5 9.507498+2 2.648016-5 8.166127+2 2.650753-5 7.312703+2 2.653995-5 6.441078+2 2.657152-5 5.715172+2 2.659600-5 5.223363+2 2.663550-5 4.540969+2 2.666749-5 4.073764+2 2.670110-5 3.652667+2 2.672891-5 3.351233+2 2.675834-5 3.073377+2 2.681576-5 2.637496+2 2.688910-5 2.254323+2 2.690568-5 2.191191+2 2.695542-5 2.047444+2 2.698307-5 1.994461+2 2.700946-5 1.959770+2 2.703585-5 1.938961+2 2.706448-5 1.930124+2 2.708787-5 1.931996+2 2.711857-5 1.944583+2 2.715804-5 1.973281+2 2.728591-5 2.093731+2 2.735052-5 2.130506+2 2.737892-5 2.135787+2 2.740604-5 2.133699+2 2.743680-5 2.122591+2 2.745453-5 2.111963+2 2.748704-5 2.084701+2 2.751342-5 2.055603+2 2.753407-5 2.028839+2 2.757024-5 1.974548+2 2.758202-5 1.955093+2 2.765347-5 1.823448+2 2.768083-5 1.769038+2 2.775162-5 1.625900+2 2.791426-5 1.328660+2 2.795955-5 1.259494+2 2.803259-5 1.160448+2 2.811206-5 1.067334+2 2.828357-5 9.006876+1 2.848960-5 7.394851+1 2.859044-5 6.759866+1 2.867096-5 6.341665+1 2.873217-5 6.082445+1 2.878707-5 5.895579+1 2.882542-5 5.791154+1 2.887450-5 5.689039+1 2.891701-5 5.629292+1 2.896394-5 5.594943+1 2.901908-5 5.600674+1 2.905310-5 5.633454+1 2.906908-5 5.658151+1 2.911243-5 5.762512+1 2.912721-5 5.813273+1 2.917595-5 6.054949+1 2.920133-5 6.239589+1 2.922314-5 6.440632+1 2.925632-5 6.841286+1 2.928810-5 7.361957+1 2.932977-5 8.315493+1 2.935804-5 9.188274+1 2.938456-5 1.021663+2 2.939721-5 1.078999+2 2.940946-5 1.140277+2 2.943319-5 1.276835+2 2.945544-5 1.428978+2 2.947950-5 1.623752+2 2.949585-5 1.776255+2 2.953137-5 2.172255+2 2.957675-5 2.830606+2 2.965783-5 4.555509+2 2.970250-5 5.884545+2 2.974519-5 7.459473+2 2.978060-5 9.020392+2 2.980423-5 1.020131+3 2.984065-5 1.225382+3 2.986250-5 1.362670+3 2.989916-5 1.617692+3 2.993124-5 1.866650+3 2.993582-5 1.904188+3 3.000914-5 2.570292+3 3.002232-5 2.702483+3 3.008705-5 3.400052+3 3.011068-5 3.671621+3 3.015579-5 4.207741+3 3.019065-5 4.631555+3 3.022113-5 5.003289+3 3.024659-5 5.311074+3 3.027932-5 5.698270+3 3.031115-5 6.060060+3 3.033942-5 6.364388+3 3.037320-5 6.701502+3 3.041356-5 7.057760+3 3.044829-5 7.316712+3 3.048158-5 7.518548+3 3.051662-5 7.677771+3 3.054377-5 7.761801+3 3.057777-5 7.817271+3 3.061352-5 7.815633+3 3.062095-5 7.807657+3 3.067681-5 7.666308+3 3.071079-5 7.513950+3 3.074049-5 7.343421+3 3.077594-5 7.099165+3 3.079720-5 6.933741+3 3.082220-5 6.723481+3 3.085502-5 6.425580+3 3.088667-5 6.119549+3 3.092977-5 5.682081+3 3.097150-5 5.246356+3 3.100358-5 4.909576+3 3.103566-5 4.575800+3 3.110898-5 3.842775+3 3.112322-5 3.707400+3 3.122289-5 2.844397+3 3.130449-5 2.262146+3 3.141502-5 1.653879+3 3.145344-5 1.486768+3 3.149402-5 1.332182+3 3.153460-5 1.197927+3 3.158289-5 1.061581+3 3.162388-5 9.632117+2 3.166426-5 8.797592+2 3.171959-5 7.837486+2 3.182663-5 6.446471+2 3.187573-5 5.964271+2 3.192483-5 5.557100+2 3.200067-5 5.048399+2 3.206825-5 4.695636+2 3.214510-5 4.388785+2 3.219030-5 4.248658+2 3.223550-5 4.134921+2 3.227609-5 4.053143+2 3.232145-5 3.982173+2 3.237302-5 3.924410+2 3.242328-5 3.887855+2 3.247353-5 3.866810+2 3.255543-5 3.855341+2 3.274304-5 3.857519+2 3.283552-5 3.839510+2 3.288974-5 3.818239+2 3.296317-5 3.776710+2 3.300914-5 3.744087+2 3.312790-5 3.643071+2 3.334376-5 3.442557+2 3.349728-5 3.318246+2 3.368518-5 3.197186+2 3.430184-5 2.898007+2 3.464661-5 2.738356+2 3.499018-5 2.599801+2 3.558978-5 2.406467+2 3.611810-5 2.267753+2 3.660300-5 2.158728+2 3.715352-5 2.051719+2 3.780000-5 1.944270+2 3.854017-5 1.839979+2 3.944653-5 1.732409+2 4.071588-5 1.608527+2 4.168694-5 1.529519+2 4.237711-5 1.479809+2 4.373816-5 1.395896+2 4.519030-5 1.321520+2 4.680760-5 1.251917+2 4.841724-5 1.194396+2 5.119617-5 1.111713+2 5.168948-5 1.102895+2 5.242938-5 1.096252+2 5.292800-5 1.088412+2 5.411202-5 1.064339+2 5.658113-5 1.032711+2 5.929087-5 1.009565+2 6.256947-5 9.972764+1 6.650000-5 1.001578+2 6.938251-5 1.015346+2 7.244360-5 1.039091+2 7.811298-5 1.099092+2 8.312075-5 1.165319+2 9.150000-5 1.290249+2 1.071519-4 1.536074+2 1.133196-4 1.624113+2 1.185026-4 1.686969+2 1.225997-4 1.724862+2 1.260511-4 1.745458+2 1.284547-4 1.751870+2 1.306534-4 1.750646+2 1.318822-4 1.746300+2 1.334329-4 1.736341+2 1.348797-4 1.722758+2 1.363866-4 1.703824+2 1.377760-4 1.681018+2 1.390982-4 1.653676+2 1.401875-4 1.626855+2 1.421808-4 1.574039+2 1.429023-4 1.564157+2 1.435664-4 1.568875+2 1.436925-4 1.571736+2 1.442818-4 1.594442+2 1.447335-4 1.622484+2 1.453645-4 1.676682+2 1.459382-4 1.740737+2 1.464599-4 1.811844+2 1.468737-4 1.878266+2 1.470872-4 1.916528+2 1.474560-4 1.990203+2 1.478955-4 2.093022+2 1.483538-4 2.222713+2 1.487565-4 2.362263+2 1.491105-4 2.511960+2 1.494216-4 2.671903+2 1.497038-4 2.847753+2 1.500000-4 3.074135+2 1.501669-4 3.225744+2 1.503560-4 3.423344+2 1.506662-4 3.821224+2 1.507929-4 4.015618+2 1.510681-4 4.516605+2 1.513055-4 5.052414+2 1.514926-4 5.555285+2 1.516796-4 6.140372+2 1.518663-4 6.816682+2 1.521463-4 8.026828+2 1.526556-4 1.092376+3 1.530632-4 1.396222+3 1.533828-4 1.680012+3 1.534973-4 1.790799+3 1.538733-4 2.183720+3 1.539203-4 2.235461+3 1.542753-4 2.638317+3 1.544097-4 2.793668+3 1.545380-4 2.941632+3 1.547130-4 3.140714+3 1.548771-4 3.321983+3 1.550027-4 3.455510+3 1.551822-4 3.635787+3 1.553697-4 3.807418+3 1.555763-4 3.972255+3 1.557716-4 4.100599+3 1.560284-4 4.223197+3 1.562201-4 4.277302+3 1.564413-4 4.297815+3 1.565708-4 4.288603+3 1.569180-4 4.187665+3 1.570363-4 4.128963+3 1.572972-4 3.959783+3 1.574903-4 3.803190+3 1.576031-4 3.701180+3 1.577878-4 3.520200+3 1.579898-4 3.306782+3 1.581691-4 3.108380+3 1.583997-4 2.848120+3 1.585864-4 2.638887+3 1.588065-4 2.400630+3 1.591693-4 2.045461+3 1.595127-4 1.773071+3 1.595515-4 1.747001+3 1.598233-4 1.594384+3 1.598544-4 1.580411+3 1.600928-4 1.497496+3 1.602148-4 1.472009+3 1.603245-4 1.458859+3 1.604424-4 1.454925+3 1.605099-4 1.457340+3 1.606214-4 1.468578+3 1.607475-4 1.491829+3 1.608597-4 1.521467+3 1.610057-4 1.571786+3 1.611743-4 1.644954+3 1.613476-4 1.734827+3 1.616680-4 1.931004+3 1.620496-4 2.193414+3 1.622620-4 2.341669+3 1.624882-4 2.493465+3 1.626611-4 2.601453+3 1.628596-4 2.713293+3 1.630505-4 2.805665+3 1.634367-4 2.937939+3 1.635794-4 2.966385+3 1.638592-4 2.988727+3 1.640059-4 2.982850+3 1.642164-4 2.954094+3 1.643503-4 2.924026+3 1.644851-4 2.885173+3 1.646905-4 2.810944+3 1.648886-4 2.724421+3 1.651465-4 2.594140+3 1.653328-4 2.490720+3 1.655704-4 2.351530+3 1.657130-4 2.265757+3 1.661016-4 2.031137+3 1.671760-4 1.464538+3 1.675373-4 1.318684+3 1.678393-4 1.215343+3 1.681584-4 1.123253+3 1.684701-4 1.048589+3 1.687925-4 9.850893+2 1.691741-4 9.249177+2 1.696986-4 8.627236+2 1.701342-4 8.243007+2 1.707739-4 7.824941+2 1.716575-4 7.423326+2 1.730891-4 6.993264+2 1.743820-4 6.729716+2 1.756703-4 6.546565+2 1.772213-4 6.404584+2 1.786979-4 6.326485+2 1.805000-4 6.281343+2 1.825500-4 6.269781+2 1.851592-4 6.284182+2 1.927525-4 6.347128+2 2.039468-4 6.342150+2 2.237500-4 6.246336+2 2.337000-4 6.215701+2 2.438650-4 6.207097+2 2.772123-4 6.237882+2 2.860575-4 6.212555+2 2.923647-4 6.117919+2 2.939354-4 6.110088+2 2.950495-4 6.127182+2 2.960858-4 6.165831+2 2.975541-4 6.258496+2 3.009926-4 6.545965+2 3.023409-4 6.632384+2 3.039591-4 6.699204+2 3.061078-4 6.743726+2 3.278218-4 7.008122+2 3.348692-4 7.073256+2 3.382109-4 7.129082+2 3.452060-4 7.308219+2 3.543031-4 7.510590+2 3.737359-4 7.813621+2 3.954989-4 8.076431+2 4.135748-4 8.237672+2 4.194536-4 8.314885+2 4.327242-4 8.583598+2 4.550000-4 8.905018+2 4.883712-4 9.267958+2 5.308844-4 9.626785+2 5.804302-4 9.934802+2 6.346272-4 1.015860+3 6.925676-4 1.025849+3 7.542234-4 1.026579+3 8.194250-4 1.017462+3 8.748000-4 1.001622+3 9.358383-4 9.752305+2 9.888504-4 9.429482+2 1.039005-3 9.026480+2 1.087052-3 8.561879+2 1.130217-3 8.058355+2 1.167112-3 7.543775+2 1.200010-3 6.999222+2 1.225819-3 6.496908+2 1.244675-3 6.071971+2 1.262478-3 5.611418+2 1.277524-3 5.164167+2 1.289456-3 4.760300+2 1.296884-3 4.491904+2 1.305894-3 4.213257+2 1.312382-3 4.161454+2 1.313100-3 4.170488+2 1.318667-3 4.386467+2 1.319600-3 4.451949+2 1.322848-3 4.754147+2 1.326096-3 5.172104+2 1.329521-3 5.723595+2 1.333110-3 6.383032+2 1.336182-3 6.965701+2 1.338735-3 7.426958+2 1.341688-3 7.899289+2 1.342515-3 8.015619+2 1.345763-3 8.393925+2 1.347935-3 8.574479+2 1.349031-3 8.644734+2 1.350906-3 8.736510+2 1.353980-3 8.828970+2 1.359113-3 8.937070+2 1.361830-3 9.035068+2 1.363111-3 9.101499+2 1.364977-3 9.226038+2 1.368260-3 9.529078+2 1.371835-3 9.965421+2 1.377725-3 1.078330+3 1.380504-3 1.113223+3 1.381704-3 1.126299+3 1.385016-3 1.153994+3 1.388469-3 1.167679+3 1.390671-3 1.168096+3 1.391860-3 1.165825+3 1.393714-3 1.159193+3 1.396486-3 1.143584+3 1.404682-3 1.081598+3 1.407920-3 1.060659+3 1.411240-3 1.045428+3 1.414836-3 1.037237+3 1.417790-3 1.036893+3 1.421320-3 1.043090+3 1.426839-3 1.063543+3 1.433541-3 1.098153+3 1.441972-3 1.145725+3 1.453814-3 1.209386+3 1.467898-3 1.278046+3 1.485637-3 1.355890+3 1.509263-3 1.445692+3 1.530093-3 1.508328+3 1.546678-3 1.546300+3 1.565222-3 1.578065+3 1.583679-3 1.601308+3 1.607627-3 1.622747+3 1.624703-3 1.632338+3 1.648482-3 1.637817+3 1.666074-3 1.634617+3 1.692274-3 1.625968+3 1.704118-3 1.632424+3 1.710561-3 1.641790+3 1.722883-3 1.671299+3 1.742252-3 1.733433+3 1.757331-3 1.779265+3 1.766879-3 1.804087+3 1.778851-3 1.830012+3 1.790708-3 1.850189+3 1.809134-3 1.872898+3 1.830704-3 1.890334+3 1.880087-3 1.911343+3 1.889614-3 1.918342+3 1.909728-3 1.942739+3 1.944209-3 1.995876+3 1.958616-3 2.014086+3 1.977700-3 2.032674+3 2.001259-3 2.048469+3 2.028217-3 2.059212+3 2.083262-3 2.066163+3 2.106735-3 2.082956+3 2.150980-3 2.134076+3 2.172219-3 2.150611+3 2.202035-3 2.166422+3 2.278306-3 2.190496+3 2.377353-3 2.205381+3 2.492980-3 2.207894+3 2.698934-3 2.192062+3 2.904246-3 2.158034+3 3.135372-3 2.108505+3 3.311311-3 2.065962+3 3.665301-3 1.971815+3 3.950269-3 1.894437+3 4.245644-3 1.810841+3 4.642981-3 1.702137+3 4.855024-3 1.645779+3 5.071055-3 1.589447+3 5.295491-3 1.531980+3 5.530444-3 1.473142+3 5.779297-3 1.412768+3 6.036984-3 1.350946+3 6.277114-3 1.294158+3 6.503168-3 1.241421+3 6.709942-3 1.192697+3 6.892863-3 1.149230+3 7.057339-3 1.109188+3 7.195816-3 1.073771+3 7.325774-3 1.039263+3 7.438817-3 1.007518+3 7.535780-3 9.782563+2 7.614692-3 9.522720+2 7.683213-3 9.273170+2 7.744234-3 9.022799+2 7.794145-3 8.787005+2 7.834666-3 8.565741+2 7.866672-3 8.368544+2 7.936758-3 7.890032+2 7.973984-3 7.655386+2 8.006269-3 7.504219+2 8.029662-3 7.440917+2 8.044509-3 7.424339+2 8.066384-3 7.434510+2 8.093206-3 7.499965+2 8.124095-3 7.633510+2 8.201938-3 8.080328+2 8.229398-3 8.225661+2 8.255249-3 8.343724+2 8.286353-3 8.459539+2 8.321301-3 8.557842+2 8.366338-3 8.644023+2 8.414304-3 8.698497+2 8.474204-3 8.727486+2 8.529192-3 8.723778+2 8.588248-3 8.690325+2 8.645954-3 8.626683+2 8.692966-3 8.549803+2 8.842005-3 8.229502+2 8.887751-3 8.183332+2 8.929495-3 8.196070+2 8.975501-3 8.268607+2 9.090340-3 8.547374+2 9.152169-3 8.647192+2 9.225020-3 8.697238+2 9.295841-3 8.728513+2 9.356517-3 8.790045+2 9.442832-3 8.951926+2 9.558765-3 9.190162+2 9.656710-3 9.320215+2 9.727215-3 9.377248+2 9.867778-3 9.440280+2 1.003288-2 9.464408+2 1.036162-2 9.424249+2 1.063945-2 9.336394+2 1.107113-2 9.142884+2 1.163540-2 8.838823+2 1.230268-2 8.447496+2 1.302421-2 8.013177+2 1.394177-2 7.478662+2 1.531730-2 6.747118+2 1.693149-2 6.002586+2 1.902448-2 5.202923+2 2.104435-2 4.573484+2 2.261388-2 4.158842+2 2.522811-2 3.574160+2 2.738420-2 3.170138+2 3.079244-2 2.647769+2 3.467369-2 2.194338+2 3.760741-2 1.922109+2 4.039551-2 1.701134+2 4.341713-2 1.495319+2 4.610038-2 1.337405+2 4.839957-2 1.216419+2 5.016216-2 1.129036+2 5.149039-2 1.063770+2 5.253843-2 1.010284+2 5.331654-2 9.669624+1 5.364461-2 9.466631+1 5.391436-2 9.283538+1 5.432848-2 8.961289+1 5.483576-2 8.503559+1 5.519320-2 8.204634+1 5.539298-2 8.083868+1 5.558023-2 8.017117+1 5.574000-2 8.000046+1 5.593333-2 8.026865+1 5.618380-2 8.123507+1 5.685037-2 8.489215+1 5.721929-2 8.639830+1 5.757774-2 8.730600+1 5.807468-2 8.791896+1 5.865934-2 8.808405+1 5.948176-2 8.777991+1 6.031509-2 8.711976+1 6.208244-2 8.514066+1 6.392005-2 8.262182+1 6.666379-2 7.854430+1 6.938496-2 7.446895+1 7.414949-2 6.770394+1 7.913137-2 6.130296+1 8.557464-2 5.404896+1 9.637566-2 4.429688+1 1.090684-1 3.577002+1 1.232005-1 2.877445+1 1.720049-1 1.564182+1 2.133519-1 1.050346+1 2.579927-1 7.338148+0 3.353875-1 4.434689+0 4.740032-1 2.264466+0 7.218018-1 9.927007-1 1.228714+0 3.467280-1 2.451607+0 8.764638-2 7.403736+0 9.628757-3 2.235892+1 1.055990-3 6.752287+1 1.157896-4 2.039158+2 1.269611-5 6.158159+2 1.392101-6 1.995262+3 1.326089-7 6.309573+3 1.326089-8 1.995262+4 1.326089-9 6.309573+4 1.32609-10 1.000000+5 5.27925-11 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.183300-6 1.258900-6 3.460200-6 1.584900-6 5.484100-6 1.995300-6 8.691700-6 2.511900-6 1.377500-5 3.162300-6 2.183200-5 3.981100-6 3.460200-5 5.011900-6 5.484000-5 6.309600-6 8.691500-5 7.943300-6 1.377500-4 1.000000-5 2.183200-4 1.258900-5 3.460000-4 1.584900-5 5.480900-4 1.995300-5 8.681000-4 2.511900-5 1.375100-3 3.162300-5 2.178500-3 3.981100-5 3.451600-3 5.011900-5 5.469100-3 6.309600-5 8.666200-3 7.943300-5 1.371800-2 1.000000-4 2.170200-2 1.258900-4 3.429000-2 1.584900-4 5.408300-2 1.995300-4 8.505600-2 2.511900-4 1.332200-1 3.162300-4 2.073100-1 3.981100-4 3.190600-1 5.011900-4 4.822500-1 6.309600-4 7.114900-1 7.943300-4 1.018200+0 1.000000-3 1.408800+0 1.258900-3 1.888400+0 1.584900-3 2.478200+0 1.995300-3 3.220100+0 2.511900-3 4.154800+0 3.162300-3 5.304000+0 3.981100-3 6.674400+0 5.011900-3 8.274200+0 6.309600-3 1.006800+1 7.943300-3 1.203400+1 1.000000-2 1.415300+1 1.258900-2 1.641200+1 1.584900-2 1.883600+1 1.995300-2 2.126800+1 2.511900-2 2.354600+1 3.162300-2 2.550500+1 3.981100-2 2.707200+1 5.011900-2 2.820300+1 6.309600-2 2.888600+1 7.943300-2 2.909300+1 1.000000-1 2.880800+1 1.258900-1 2.806700+1 1.584900-1 2.701500+1 1.995300-1 2.566700+1 2.511900-1 2.412600+1 3.162300-1 2.246100+1 3.981100-1 2.074200+1 5.011900-1 1.900800+1 6.309600-1 1.729900+1 7.943300-1 1.563900+1 1.000000+0 1.404200+1 1.258900+0 1.253800+1 1.584900+0 1.111600+1 1.995300+0 9.790600+0 2.511900+0 8.567900+0 3.162300+0 7.451100+0 3.981100+0 6.441400+0 5.011900+0 5.537300+0 6.309600+0 4.735000+0 7.943300+0 4.029600+0 1.000000+1 3.414200+0 1.258900+1 2.880900+0 1.584900+1 2.422100+0 1.995300+1 2.029600+0 2.511900+1 1.695600+0 3.162300+1 1.412700+0 3.981100+1 1.174200+0 5.011900+1 9.737600-1 6.309600+1 8.059200-1 7.943300+1 6.658000-1 1.000000+2 5.491300-1 1.258900+2 4.522200-1 1.584900+2 3.719000-1 1.995300+2 3.054500-1 2.511900+2 2.505800-1 3.162300+2 2.053500-1 3.981100+2 1.681100-1 5.011900+2 1.375000-1 6.309600+2 1.123600-1 7.943300+2 9.174100-2 1.000000+3 7.485000-2 1.258900+3 6.102400-2 1.584900+3 4.971800-2 1.995300+3 4.048100-2 2.511900+3 3.294000-2 3.162300+3 2.678800-2 3.981100+3 2.177400-2 5.011900+3 1.768800-2 6.309600+3 1.436200-2 7.943300+3 1.165600-2 1.000000+4 9.455400-3 1.258900+4 7.667000-3 1.584900+4 6.214200-3 1.995300+4 5.034600-3 2.511900+4 4.077400-3 3.162300+4 3.301000-3 3.981100+4 2.671400-3 5.011900+4 2.161200-3 6.309600+4 1.747800-3 7.943300+4 1.413100-3 1.000000+5 1.142100-3 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159551-4 3.981072-4 3.976778-4 5.011872-4 5.005112-4 6.309573-4 6.298960-4 7.943282-4 7.926675-4 1.000000-3 9.974061-4 1.258925-3 1.254889-3 1.584893-3 1.578581-3 1.995262-3 1.985357-3 2.511886-3 2.496303-3 3.162278-3 3.137846-3 3.981072-3 3.942759-3 5.011872-3 4.951917-3 6.309573-3 6.215902-3 7.943282-3 7.797725-3 1.000000-2 9.773732-3 1.258925-2 1.223718-2 1.584893-2 1.530351-2 1.995262-2 1.910969-2 2.511886-2 2.382450-2 3.162278-2 2.964948-2 3.981072-2 3.682012-2 5.011872-2 4.561492-2 6.309573-2 5.634763-2 7.943282-2 6.940020-2 1.000000-1 8.523998-2 1.258925-1 1.043589-1 1.584893-1 1.272561-1 1.995262-1 1.547370-1 2.511886-1 1.875301-1 3.162278-1 2.265400-1 3.981072-1 2.727496-1 5.011872-1 3.274089-1 6.309573-1 3.919152-1 7.943282-1 4.679458-1 1.000000+0 5.574849-1 1.258925+0 6.626229-1 1.584893+0 7.870136-1 1.995262+0 9.341170-1 2.511886+0 1.108703+0 3.162278+0 1.316410+0 3.981072+0 1.564391+0 5.011872+0 1.861185+0 6.309573+0 2.217611+0 7.943282+0 2.646008+0 1.000000+1 3.162625+0 1.258925+1 3.786637+0 1.584893+1 4.541809+0 1.995262+1 5.457028+0 2.511886+1 6.567742+0 3.162278+1 7.917742+0 3.981072+1 9.560267+0 5.011872+1 1.156110+1 6.309573+1 1.400075+1 7.943282+1 1.697838+1 1.000000+2 2.061575+1 1.258925+2 2.506277+1 1.584893+2 3.050476+1 1.995262+2 3.716799+1 2.511886+2 4.533315+1 3.162278+2 5.534576+1 3.981072+2 6.763025+1 5.011872+2 8.271360+1 6.309573+2 1.012430+2 7.943282+2 1.240189+2 1.000000+3 1.520287+2 1.258925+3 1.864937+2 1.584893+3 2.289205+2 1.995262+3 2.811751+2 2.511886+3 3.455586+2 3.162278+3 4.249391+2 3.981072+3 5.228242+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88194-10 1.995262-5 1.090621-9 2.511886-5 1.728490-9 3.162278-5 2.739505-9 3.981072-5 4.341875-9 5.011872-5 6.881394-9 6.309573-5 1.090599-8 7.943282-5 1.727910-8 1.000000-4 2.737748-8 1.258925-4 4.336939-8 1.584893-4 6.868704-8 1.995262-4 1.087387-7 2.511886-4 1.720755-7 3.162278-4 2.727090-7 3.981072-4 4.293886-7 5.011872-4 6.760772-7 6.309573-4 1.061340-6 7.943282-4 1.660695-6 1.000000-3 2.593930-6 1.258925-3 4.036340-6 1.584893-3 6.311716-6 1.995262-3 9.904890-6 2.511886-3 1.558303-5 3.162278-3 2.443180-5 3.981072-3 3.831234-5 5.011872-3 5.995493-5 6.309573-3 9.367165-5 7.943282-3 1.455569-4 1.000000-2 2.262684-4 1.258925-2 3.520747-4 1.584893-2 5.454187-4 1.995262-2 8.429355-4 2.511886-2 1.294361-3 3.162278-2 1.973296-3 3.981072-2 2.990598-3 5.011872-2 4.503799-3 6.309573-2 6.748105-3 7.943282-2 1.003263-2 1.000000-1 1.476002-2 1.258925-1 2.153363-2 1.584893-1 3.123324-2 1.995262-1 4.478928-2 2.511886-1 6.365855-2 3.162278-1 8.968776-2 3.981072-1 1.253576-1 5.011872-1 1.737784-1 6.309573-1 2.390422-1 7.943282-1 3.263824-1 1.000000+0 4.425151-1 1.258925+0 5.963026-1 1.584893+0 7.978796-1 1.995262+0 1.061145+0 2.511886+0 1.403183+0 3.162278+0 1.845868+0 3.981072+0 2.416681+0 5.011872+0 3.150688+0 6.309573+0 4.091963+0 7.943282+0 5.297274+0 1.000000+1 6.837375+0 1.258925+1 8.802617+0 1.584893+1 1.130712+1 1.995262+1 1.449559+1 2.511886+1 1.855112+1 3.162278+1 2.370503+1 3.981072+1 3.025045+1 5.011872+1 3.855763+1 6.309573+1 4.909498+1 7.943282+1 6.245444+1 1.000000+2 7.938425+1 1.258925+2 1.008298+2 1.584893+2 1.279846+2 1.995262+2 1.623582+2 2.511886+2 2.058555+2 3.162278+2 2.608820+2 3.981072+2 3.304769+2 5.011872+2 4.184736+2 6.309573+2 5.297144+2 7.943282+2 6.703093+2 1.000000+3 8.479713+2 1.258925+3 1.072432+3 1.584893+3 1.355973+3 1.995262+3 1.714087+3 2.511886+3 2.166328+3 3.162278+3 2.737339+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 4.261959+6 6.025596-6 2.708890+6 6.606934-6 1.813109+6 7.200000-6 1.238292+6 7.852356-6 8.369455+5 8.511380-6 5.777459+5 9.332543-6 3.753455+5 9.730000-6 3.077216+5 9.730000-6 1.171925+6 1.011579-5 1.059592+6 1.023293-5 1.030623+6 1.050000-5 9.692316+5 1.080000-5 9.114472+5 1.080000-5 1.503397+6 1.096478-5 1.458576+6 1.115000-5 1.413275+6 1.135011-5 1.369023+6 1.161449-5 1.317238+6 1.180000-5 1.284487+6 1.202264-5 1.249592+6 1.220100-5 1.224642+6 1.255000-5 1.182073+6 1.258925-5 1.177801+6 1.273503-5 1.163515+6 1.303167-5 1.136202+6 1.336200-5 1.112867+6 1.350000-5 1.103736+6 1.352100-5 1.102494+6 1.380384-5 1.088630+6 1.400000-5 1.079660+6 1.428894-5 1.070821+6 1.445440-5 1.066132+6 1.450000-5 1.065199+6 1.462177-5 1.063441+6 1.500000-5 1.058613+6 1.531087-5 1.058887+6 1.550000-5 1.059269+6 1.570000-5 1.062039+6 1.610000-5 1.067974+6 1.611900-5 1.068484+6 1.650000-5 1.078974+6 1.670000-5 1.084606+6 1.678804-5 1.087513+6 1.690000-5 1.091922+6 1.730000-5 1.107886+6 1.737801-5 1.111035+6 1.750000-5 1.116507+6 1.770000-5 1.126675+6 1.800000-5 1.142064+6 1.815000-5 1.150379+6 1.830000-5 1.158757+6 1.862087-5 1.178530+6 1.870000-5 1.183441+6 1.905461-5 1.206965+6 1.920000-5 1.216673+6 1.950000-5 1.238347+6 2.000000-5 1.276907+6 2.018366-5 1.291189+6 2.041738-5 1.310591+6 2.065380-5 1.331218+6 2.137962-5 1.395322+6 2.213095-5 1.468990+6 2.238721-5 1.494458+6 2.290868-5 1.548462+6 2.300000-5 1.558373+6 2.371374-5 1.636787+6 2.426610-5 1.700255+6 2.500000-5 1.786169+6 2.540973-5 1.835788+6 2.858000-5 2.248641+6 2.858000-5 2.250988+7 2.890000-5 2.122941+7 2.930000-5 1.984560+7 2.990000-5 1.810829+7 3.000000-5 1.785826+7 3.019952-5 1.737522+7 3.060000-5 1.646460+7 3.126079-5 1.519278+7 3.198895-5 1.403962+7 3.230000-5 1.359375+7 3.235937-5 1.351614+7 3.300000-5 1.273079+7 3.350000-5 1.217663+7 3.389000-5 1.179723+7 3.389000-5 2.071969+7 3.440000-5 1.954909+7 3.467369-5 1.898770+7 3.507519-5 1.821076+7 3.548134-5 1.751870+7 3.589219-5 1.686287+7 3.672823-5 1.570244+7 3.715352-5 1.518422+7 3.730000-5 1.501305+7 3.780000-5 1.446457+7 3.801894-5 1.424455+7 3.920000-5 1.316826+7 3.935501-5 1.304370+7 4.073803-5 1.204434+7 4.120975-5 1.174409+7 4.168694-5 1.146565+7 4.220000-5 1.118692+7 4.365158-5 1.050028+7 4.415704-5 1.028985+7 4.518559-5 9.901530+6 4.677351-5 9.403499+6 4.731513-5 9.255468+6 4.841724-5 8.983570+6 5.011872-5 8.646028+6 5.069907-5 8.546221+6 5.188000-5 8.364000+6 5.300000-5 8.218552+6 5.432503-5 8.080990+6 5.519000-5 7.999356+6 5.519000-5 8.051454+6 5.559043-5 8.017103+6 5.620000-5 7.969127+6 5.688529-5 7.921360+6 5.730000-5 7.896222+6 5.850000-5 7.834834+6 5.900000-5 7.813889+6 5.970000-5 7.782045+6 6.025596-5 7.760067+6 6.095369-5 7.737464+6 6.237348-5 7.703191+6 6.309573-5 7.691802+6 6.400000-5 7.673501+6 6.531306-5 7.657368+6 6.650000-5 7.650016+6 6.760830-5 7.648871+6 6.800000-5 7.648611+6 6.839116-5 7.646424+6 7.079458-5 7.645585+6 7.161434-5 7.650072+6 7.244360-5 7.652803+6 7.413102-5 7.652473+6 7.585776-5 7.660404+6 7.762471-5 7.666455+6 7.800000-5 7.666544+6 7.852356-5 7.666915+6 8.035261-5 7.670957+6 8.128305-5 7.671346+6 8.150000-5 7.671738+6 8.222426-5 7.673265+6 8.500000-5 7.667792+6 8.511380-5 7.667778+6 8.609938-5 7.663964+6 8.709636-5 7.661107+6 8.810489-5 7.658871+6 9.120108-5 7.643474+6 9.150000-5 7.641405+6 9.440609-5 7.624381+6 9.549926-5 7.613979+6 9.660509-5 7.604283+6 9.800000-5 7.593019+6 1.000000-4 7.571707+6 1.011579-4 7.560257+6 1.020000-4 7.552182+6 1.035142-4 7.538460+6 1.047129-4 7.523940+6 1.071519-4 7.496067+6 1.100000-4 7.458956+6 1.109175-4 7.447558+6 1.122018-4 7.428030+6 1.150000-4 7.387249+6 1.161449-4 7.368217+6 1.174898-4 7.346415+6 1.202264-4 7.303627+6 1.230269-4 7.251469+6 1.244515-4 7.225896+6 1.288250-4 7.139980+6 1.288400-4 7.139651+6 1.303167-4 7.107661+6 1.318257-4 7.075718+6 1.350000-4 7.003543+6 1.380384-4 6.937067+6 1.400000-4 6.888923+6 1.412538-4 6.858815+6 1.480000-4 6.690598+6 1.500000-4 6.643137+6 1.513561-4 6.605940+6 1.548817-4 6.511801+6 1.603245-4 6.373427+6 1.621810-4 6.324751+6 1.625630-4 6.314159+6 1.662300-4 6.214615+6 1.662300-4 6.646092+6 1.667000-4 6.646867+6 1.698244-4 6.674914+6 1.700000-4 6.677256+6 1.711000-4 6.691709+6 1.720000-4 6.702847+6 1.723000-4 6.706336+6 1.732800-4 6.714933+6 1.736300-4 6.717087+6 1.736300-4 7.017690+6 1.737801-4 7.020607+6 1.740000-4 7.024960+6 1.743000-4 7.029734+6 1.750000-4 7.043243+6 1.760000-4 7.060462+6 1.770000-4 7.073864+6 1.781000-4 7.083973+6 1.792000-4 7.089342+6 1.793000-4 7.089433+6 1.800000-4 7.089047+6 1.805000-4 7.087085+6 1.810000-4 7.084243+6 1.815000-4 7.079603+6 1.820000-4 7.073882+6 1.825000-4 7.066508+6 1.831000-4 7.056075+6 1.835000-4 7.047840+6 1.844000-4 7.026923+6 1.855000-4 6.994702+6 1.858000-4 6.985089+6 1.862087-4 6.970962+6 1.863000-4 6.967537+6 1.870000-4 6.939755+6 1.873200-4 6.926347+6 1.880000-4 6.896574+6 1.883649-4 6.879726+6 1.890000-4 6.850653+6 1.900000-4 6.801005+6 1.905461-4 6.772902+6 1.914000-4 6.729568+6 1.915000-4 6.724300+6 1.927525-4 6.657155+6 1.940000-4 6.589747+6 1.955000-4 6.507087+6 1.972423-4 6.411890+6 1.978000-4 6.381665+6 1.980000-4 6.370669+6 2.000000-4 6.260539+6 2.018366-4 6.159694+6 2.030000-4 6.097519+6 2.041738-4 6.035546+6 2.065380-4 5.915780+6 2.080000-4 5.844031+6 2.113489-4 5.688287+6 2.120000-4 5.659485+6 2.150000-4 5.524218+6 2.180000-4 5.398422+6 2.205000-4 5.300204+6 2.220000-4 5.244621+6 2.230000-4 5.208347+6 2.250000-4 5.138758+6 2.260000-4 5.105143+6 2.264644-4 5.089964+6 2.280000-4 5.038935+6 2.290868-4 5.004419+6 2.300000-4 4.975800+6 2.307000-4 4.953210+6 2.330000-4 4.882522+6 2.340000-4 4.852943+6 2.358000-4 4.801313+6 2.371374-4 4.764391+6 2.386900-4 4.722782+6 2.400000-4 4.688878+6 2.415000-4 4.651168+6 2.430000-4 4.614691+6 2.440000-4 4.591009+6 2.454709-4 4.557153+6 2.465000-4 4.532399+6 2.483133-4 4.490008+6 2.490000-4 4.474357+6 2.511886-4 4.425895+6 2.520000-4 4.408425+6 2.540973-4 4.364662+6 2.560000-4 4.326211+6 2.570396-4 4.305849+6 2.600160-4 4.249428+6 2.630268-4 4.192770+6 2.635000-4 4.183740+6 2.650000-4 4.155740+6 2.670000-4 4.119598+6 2.710000-4 4.050420+6 2.730000-4 4.017355+6 2.770000-4 3.953957+6 2.786121-4 3.929474+6 2.810000-4 3.892567+6 2.830000-4 3.860677+6 2.851018-4 3.828231+6 2.917427-4 3.731000+6 3.000000-4 3.619623+6 3.019952-4 3.593241+6 3.022000-4 3.590405+6 3.022000-4 3.879385+6 3.126079-4 3.738800+6 3.200000-4 3.646829+6 3.235937-4 3.604095+6 3.239550-4 3.599704+6 3.240000-4 3.599140+6 3.273407-4 3.557676+6 3.311311-4 3.512456+6 3.350000-4 3.467451+6 3.427678-4 3.381442+6 3.430500-4 3.378375+6 3.430500-4 3.451378+6 3.467369-4 3.411881+6 3.470000-4 3.408925+6 3.548134-4 3.323505+6 3.589219-4 3.280216+6 3.672823-4 3.196039+6 3.700000-4 3.169473+6 3.715352-4 3.154746+6 3.758374-4 3.111474+6 3.801894-4 3.069466+6 3.845918-4 3.027743+6 3.850000-4 3.023956+6 3.935501-4 2.946512+6 3.981072-4 2.906463+6 4.000000-4 2.889393+6 4.073803-4 2.824425+6 4.150000-4 2.760006+6 4.203500-4 2.716515+6 4.203500-4 2.805989+6 4.216965-4 2.795169+6 4.265795-4 2.756047+6 4.287500-4 2.738325+6 4.315191-4 2.715991+6 4.365158-4 2.676241+6 4.500000-4 2.573764+6 4.518559-4 2.560206+6 4.550000-4 2.537573+6 4.570882-4 2.522503+6 4.700000-4 2.430341+6 4.731513-4 2.408737+6 4.786301-4 2.371297+6 4.841724-4 2.334747+6 4.850000-4 2.329380+6 4.897788-4 2.298885+6 4.930000-4 2.278165+6 4.954502-4 2.262478+6 5.069907-4 2.190344+6 5.128614-4 2.155553+6 5.150000-4 2.143166+6 5.188000-4 2.121112+6 5.248075-4 2.086537+6 5.308844-4 2.051757+6 5.400000-4 2.001751+6 5.432503-4 1.984305+6 5.559043-4 1.918036+6 5.623413-4 1.885840+6 5.688529-4 1.854370+6 5.754399-4 1.822209+6 6.000000-4 1.709476+6 6.025596-4 1.698455+6 6.095369-4 1.668640+6 6.100000-4 1.666697+6 6.165950-4 1.638902+6 6.309573-4 1.580168+6 6.382635-4 1.551824+6 6.456542-4 1.523795+6 6.531306-4 1.495894+6 6.606934-4 1.468563+6 6.683439-4 1.441688+6 6.760830-4 1.414928+6 6.850000-4 1.384871+6 7.000000-4 1.336092+6 7.161434-4 1.286920+6 7.244360-4 1.262677+6 7.328245-4 1.238685+6 7.413102-4 1.214624+6 7.498942-4 1.191063+6 7.585776-4 1.168055+6 7.800000-4 1.113895+6 7.852356-4 1.101131+6 8.000000-4 1.066093+6 8.035261-4 1.057955+6 8.128305-4 1.036950+6 8.222426-4 1.016198+6 8.317638-4 9.958715+5 8.511380-4 9.560671+5 8.609938-4 9.368517+5 8.709636-4 9.179882+5 8.912509-4 8.807680+5 9.120108-4 8.446688+5 9.332543-4 8.102124+5 9.440609-4 7.934243+5 9.549926-4 7.768745+5 9.772372-4 7.442782+5 1.000000-3 7.131388+5 1.011579-3 6.979804+5 1.035142-3 6.686759+5 1.047129-3 6.542325+5 1.059254-3 6.401375+5 1.071519-3 6.262749+5 1.096478-3 5.992945+5 1.109175-3 5.862924+5 1.110000-3 5.854631+5 1.135011-3 5.608647+5 1.148154-3 5.485506+5 1.161449-3 5.364919+5 1.174898-3 5.245838+5 1.188502-3 5.129043+5 1.202264-3 5.015074+5 1.230269-3 4.792725+5 1.244515-3 4.685609+5 1.258925-3 4.580850+5 1.288250-3 4.376975+5 1.303167-3 4.277993+5 1.348963-3 3.990210+5 1.355300-3 3.952798+5 1.355300-3 1.254285+6 1.365000-3 1.240389+6 1.380384-3 1.218815+6 1.395200-3 1.198624+6 1.395200-3 1.635248+6 1.412538-3 1.631539+6 1.428894-3 1.629155+6 1.437000-3 1.628398+6 1.462177-3 1.615199+6 1.470000-3 1.610662+6 1.477000-3 1.603780+6 1.479108-3 1.602659+6 1.500000-3 1.577622+6 1.513561-3 1.556881+6 1.515000-3 1.554083+6 1.531087-3 1.519751+6 1.566751-3 1.436715+6 1.570000-3 1.429472+6 1.603245-3 1.358225+6 1.610000-3 1.344370+6 1.621810-3 1.320595+6 1.650000-3 1.266209+6 1.678804-3 1.213825+6 1.698244-3 1.180127+6 1.717908-3 1.147372+6 1.728500-3 1.130262+6 1.728500-3 1.301154+6 1.737801-3 1.285294+6 1.757924-3 1.251919+6 1.819701-3 1.156670+6 1.840772-3 1.126246+6 1.850000-3 1.113293+6 1.862087-3 1.096643+6 1.883649-3 1.067550+6 1.910400-3 1.033000+6 1.910400-3 1.095506+6 1.927525-3 1.073606+6 1.949845-3 1.045993+6 1.950000-3 1.045805+6 1.972423-3 1.018879+6 2.000000-3 9.871538+5 2.018366-3 9.666029+5 2.030000-3 9.537977+5 2.070000-3 9.116969+5 2.089296-3 8.923528+5 2.102500-3 8.794620+5 2.102500-3 9.179376+5 2.113489-3 9.071922+5 2.150000-3 8.727879+5 2.162719-3 8.611657+5 2.187762-3 8.388359+5 2.213095-3 8.170431+5 2.220000-3 8.112502+5 2.264644-3 7.746496+5 2.300000-3 7.473903+5 2.317395-3 7.344620+5 2.344229-3 7.151373+5 2.371374-3 6.963308+5 2.400000-3 6.771531+5 2.426610-3 6.599264+5 2.511886-3 6.084318+5 2.520700-3 6.034419+5 2.570396-3 5.763536+5 2.600160-3 5.609712+5 2.630268-3 5.459372+5 2.650000-3 5.364065+5 2.660725-3 5.313248+5 2.691535-3 5.169907+5 2.722701-3 5.030606+5 2.786121-3 4.763029+5 2.818383-3 4.634930+5 2.851018-3 4.509004+5 2.900000-3 4.329124+5 2.951209-3 4.151207+5 2.985383-3 4.037044+5 3.019952-3 3.925941+5 3.054921-3 3.818073+5 3.090295-3 3.712482+5 3.126079-3 3.609869+5 3.162278-3 3.509649+5 3.198895-3 3.412262+5 3.235937-3 3.317424+5 3.273407-3 3.225365+5 3.311311-3 3.135713+5 3.349654-3 3.048688+5 3.388442-3 2.964015+5 3.427678-3 2.881823+5 3.467369-3 2.801771+5 3.548134-3 2.648419+5 3.589219-3 2.574509+5 3.672823-3 2.432787+5 3.715352-3 2.364631+5 3.758374-3 2.298007+5 3.801894-3 2.233285+5 3.900000-3 2.096569+5 3.935501-3 2.049776+5 4.000000-3 1.968524+5 4.027170-3 1.935582+5 4.120975-3 1.827112+5 4.168694-3 1.775125+5 4.216965-3 1.724690+5 4.315191-3 1.628129+5 4.365158-3 1.581823+5 4.466836-3 1.493224+5 4.623810-3 1.369114+5 4.677351-3 1.330024+5 4.700000-3 1.313866+5 4.731513-3 1.291832+5 4.786301-3 1.254677+5 4.897788-3 1.183705+5 4.954502-3 1.149722+5 5.011872-3 1.116728+5 5.069907-3 1.084584+5 5.128614-3 1.053391+5 5.188000-3 1.022945+5 5.248075-3 9.934032+4 5.370318-3 9.367717+4 5.432503-3 9.095915+4 5.559043-3 8.576663+4 5.623413-3 8.328796+4 5.688529-3 8.087014+4 5.754399-3 7.852601+4 5.821032-3 7.625147+4 5.888437-3 7.403482+4 5.956621-3 7.187209+4 6.025596-3 6.977564+4 6.095369-3 6.773783+4 6.165950-3 6.576231+4 6.382635-3 6.017613+4 6.456542-3 5.841749+4 6.531306-3 5.671171+4 6.683439-3 5.343021+4 6.760830-3 5.185825+4 6.918310-3 4.884846+4 7.161434-3 4.467244+4 7.244360-3 4.335910+4 7.328245-3 4.208559+4 7.413102-3 4.085041+4 7.500000-3 3.962627+4 7.585776-3 3.846533+4 7.673615-3 3.732377+4 7.852356-3 3.514576+4 8.035261-3 3.309926+4 8.061700-3 3.281638+4 8.061700-3 8.938527+4 8.128305-3 8.756957+4 8.222426-3 8.509148+4 8.317638-3 8.268419+4 8.350000-3 8.188504+4 8.413951-3 8.024901+4 8.500000-3 7.811862+4 8.511380-3 7.784272+4 8.609938-3 7.550718+4 8.709636-3 7.324109+4 8.810489-3 7.104406+4 8.912509-3 6.886911+4 8.928700-3 6.853244+4 8.928700-3 9.423210+4 9.000000-3 9.223498+4 9.120108-3 8.916932+4 9.180000-3 8.769237+4 9.225714-3 8.654514+4 9.332543-3 8.394393+4 9.360200-3 8.328709+4 9.360200-3 9.631706+4 9.500000-3 9.271043+4 9.549926-3 9.146716+4 9.550000-3 9.146534+4 9.660509-3 8.886426+4 9.730000-3 8.728232+4 9.772372-3 8.632968+4 9.800000-3 8.571648+4 9.885531-3 8.383910+4 1.000000-2 8.141516+4 1.023293-2 7.678100+4 1.035142-2 7.456570+4 1.047129-2 7.238575+4 1.059254-2 7.027026+4 1.071519-2 6.821681+4 1.083927-2 6.622188+4 1.096478-2 6.428708+4 1.122018-2 6.058967+4 1.135011-2 5.882381+4 1.148154-2 5.711004+4 1.150000-2 5.687502+4 1.161449-2 5.542653+4 1.202264-2 5.066242+4 1.210000-2 4.982414+4 1.216186-2 4.916344+4 1.230269-2 4.770278+4 1.244515-2 4.628668+4 1.259700-2 4.484144+4 1.288250-2 4.227956+4 1.303167-2 4.101916+4 1.318257-2 3.979684+4 1.348963-2 3.746238+4 1.350000-2 3.738693+4 1.364583-2 3.634514+4 1.380384-2 3.525970+4 1.396368-2 3.420632+4 1.412538-2 3.318519+4 1.445440-2 3.123575+4 1.479108-2 2.940394+4 1.480000-2 2.935748+4 1.500000-2 2.833528+4 1.531087-2 2.683861+4 1.548817-2 2.603433+4 1.584893-2 2.447892+4 1.603245-2 2.373707+4 1.621810-2 2.301816+4 1.640590-2 2.232149+4 1.659587-2 2.164594+4 1.678804-2 2.099140+4 1.698244-2 2.035713+4 1.717908-2 1.974255+4 1.737801-2 1.914682+4 1.757924-2 1.856516+4 1.778279-2 1.800124+4 1.798871-2 1.745420+4 1.819701-2 1.692426+4 1.840772-2 1.641086+4 1.862087-2 1.591333+4 1.900000-2 1.507920+4 1.905461-2 1.496322+4 1.927525-2 1.450402+4 1.949845-2 1.405884+4 1.972423-2 1.362769+4 2.018366-2 1.280543+4 2.041738-2 1.241319+4 2.065380-2 1.203282+4 2.089296-2 1.166439+4 2.137962-2 1.096189+4 2.162719-2 1.062560+4 2.187762-2 1.029908+4 2.213095-2 9.981188+3 2.264644-2 9.375266+3 2.317395-2 8.806301+3 2.344229-2 8.535044+3 2.398833-2 8.017335+3 2.426610-2 7.770693+3 2.454709-2 7.530144+3 2.511886-2 7.071536+3 2.540973-2 6.851842+3 2.570396-2 6.639145+3 2.600160-2 6.433213+3 2.630268-2 6.233782+3 2.650000-2 6.107722+3 2.660725-2 6.040623+3 2.691535-2 5.853480+3 2.722701-2 5.671922+3 2.754229-2 5.495391+3 2.851018-2 4.998837+3 2.884032-2 4.843708+3 2.951209-2 4.546361+3 3.000000-2 4.346062+3 3.019952-2 4.267659+3 3.054921-2 4.134274+3 3.090295-2 4.005157+3 3.126079-2 3.879840+3 3.162278-2 3.758541+3 3.198895-2 3.641128+3 3.235937-2 3.527442+3 3.311311-2 3.309821+3 3.388442-2 3.105879+3 3.427678-2 3.008454+3 3.467369-2 2.914148+3 3.548134-2 2.734479+3 3.589219-2 2.648941+3 3.630781-2 2.566013+3 3.672823-2 2.485327+3 3.715352-2 2.407239+3 3.801894-2 2.257495+3 3.890451-2 2.117231+3 3.935501-2 2.050464+3 4.000000-2 1.959840+3 4.027170-2 1.923318+3 4.120975-2 1.804200+3 4.168694-2 1.747494+3 4.216965-2 1.692428+3 4.265795-2 1.639105+3 4.300000-2 1.603127+3 4.365158-2 1.537473+3 4.415704-2 1.489077+3 4.518559-2 1.395911+3 4.623810-2 1.308668+3 4.731513-2 1.226979+3 4.897788-2 1.114078+3 5.011872-2 1.044712+3 5.069907-2 1.011679+3 5.128614-2 9.796702+2 5.188000-2 9.486951+2 5.248075-2 9.186570+2 5.308844-2 8.893700+2 5.370318-2 8.610252+2 5.432503-2 8.335324+2 5.569900-2 7.769186+2 5.569900-2 4.177607+3 5.623413-2 4.080823+3 5.660000-2 4.016469+3 5.705000-2 3.933759+3 5.780000-2 3.811892+3 5.821032-2 3.739076+3 5.900000-2 3.604198+3 5.956621-2 3.518214+3 6.000000-2 3.454274+3 6.025596-2 3.417308+3 6.165950-2 3.224105+3 6.237348-2 3.127026+3 6.309573-2 3.032748+3 6.683439-2 2.602454+3 6.760830-2 2.524018+3 6.839116-2 2.448933+3 6.998420-2 2.305429+3 7.079458-2 2.236877+3 7.161434-2 2.170350+3 7.328245-2 2.043199+3 7.413102-2 1.982459+3 7.500000-2 1.922742+3 7.585776-2 1.865136+3 7.762471-2 1.753740+3 8.035261-2 1.599030+3 8.222426-2 1.503577+3 8.317638-2 1.458015+3 8.413951-2 1.413269+3 8.511380-2 1.369900+3 8.709636-2 1.287106+3 8.810489-2 1.247610+3 8.912509-2 1.209285+3 9.015711-2 1.172139+3 9.120108-2 1.136136+3 9.440609-2 1.034637+3 9.549926-2 1.002866+3 9.660509-2 9.720747+2 1.000000-1 8.852727+2 1.011580-1 8.581004+2 1.023293-1 8.317669+2 1.035142-1 8.062375+2 1.047129-1 7.811537+2 1.059254-1 7.568538+2 1.071519-1 7.332865+2 1.122019-1 6.461414+2 1.161449-1 5.876621+2 1.174898-1 5.693724+2 1.202264-1 5.344881+2 1.244515-1 4.861338+2 1.258925-1 4.710114+2 1.273503-1 4.563594+2 1.303167-1 4.284168+2 1.318257-1 4.150952+2 1.333521-1 4.021772+2 1.348963-1 3.896608+2 1.364583-1 3.774693+2 1.380384-1 3.656598+2 1.396368-1 3.542205+2 1.479108-1 3.021813+2 1.513561-1 2.835760+2 1.531088-1 2.747078+2 1.548817-1 2.661178+2 1.566751-1 2.577977+2 1.584893-1 2.497383+2 1.603245-1 2.419313+2 1.621810-1 2.343687+2 1.640590-1 2.270442+2 1.650000-1 2.234913+2 1.698244-1 2.064226+2 1.717908-1 1.999748+2 1.798871-1 1.761378+2 1.819701-1 1.706371+2 1.862087-1 1.601465+2 1.883649-1 1.551459+2 1.905461-1 1.503019+2 1.927525-1 1.456095+2 1.949845-1 1.410640+2 1.972423-1 1.366633+2 2.018366-1 1.282699+2 2.041738-1 1.242687+2 2.065380-1 1.203925+2 2.089296-1 1.166374+2 2.137962-1 1.094753+2 2.213095-1 9.954901+1 2.238721-1 9.647545+1 2.264644-1 9.349708+1 2.290868-1 9.061173+1 2.317395-1 8.781559+1 2.371374-1 8.248143+1 2.398833-1 7.993725+1 2.426610-1 7.747231+1 2.483133-1 7.277220+1 2.511886-1 7.053031+1 2.540973-1 6.835747+1 2.570396-1 6.625171+1 2.600160-1 6.421100+1 2.630268-1 6.223392+1 2.691535-1 5.846059+1 2.722701-1 5.668562+1 2.754229-1 5.496453+1 2.786121-1 5.329583+1 2.818383-1 5.167780+1 2.851018-1 5.010895+1 2.917427-1 4.711277+1 2.951209-1 4.568272+1 2.985383-1 4.429705+1 3.000000-1 4.372280+1 3.054921-1 4.165436+1 3.090295-1 4.039280+1 3.126079-1 3.916998+1 3.162278-1 3.798421+1 3.198895-1 3.685303+1 3.235937-1 3.575552+1 3.273407-1 3.469075+1 3.311311-1 3.365779+1 3.349654-1 3.265596+1 3.388442-1 3.168393+1 3.507519-1 2.893822+1 3.548134-1 2.807918+1 3.589219-1 2.724566+1 3.630781-1 2.643688+1 3.672823-1 2.566574+1 3.715352-1 2.491742+1 3.758374-1 2.419093+1 3.801894-1 2.348564+1 3.890451-1 2.213619+1 3.935501-1 2.149084+1 3.981072-1 2.086432+1 4.027170-1 2.025637+1 4.073803-1 1.966733+1 4.120975-1 1.909601+1 4.216965-1 1.802289+1 4.315191-1 1.701012+1 4.318900-1 1.697345+1 4.365158-1 1.652530+1 4.415705-1 1.605430+1 4.466836-1 1.559674+1 4.518559-1 1.515244+1 4.623810-1 1.430186+1 4.677351-1 1.389552+1 4.731513-1 1.350884+1 4.786301-1 1.313294+1 4.841724-1 1.276751+1 4.954502-1 1.206689+1 5.011872-1 1.173114+1 5.069907-1 1.140503+1 5.188000-1 1.077978+1 5.248075-1 1.048655+1 5.308844-1 1.020196+1 5.370318-1 9.925277+0 5.495409-1 9.394226+0 5.559043-1 9.139547+0 5.623413-1 8.891916+0 5.754399-1 8.416614+0 5.821032-1 8.188580+0 5.888437-1 7.971838+0 6.000000-1 7.631615+0 6.025596-1 7.556549+0 6.095369-1 7.357286+0 6.165950-1 7.163297+0 6.237348-1 6.974502+0 6.309573-1 6.790705+0 6.456542-1 6.437517+0 6.531306-1 6.267877+0 6.606935-1 6.106761+0 6.683439-1 5.950262+0 6.760830-1 5.797787+0 6.839117-1 5.649329+0 6.918310-1 5.504718+0 6.998420-1 5.363827+0 7.079458-1 5.226543+0 7.244360-1 4.962434+0 7.328245-1 4.835478+0 7.413102-1 4.714794+0 7.498942-1 4.597447+0 7.585776-1 4.483023+0 7.673615-1 4.371532+0 7.762471-1 4.262825+0 7.852356-1 4.156874+0 8.035261-1 3.952809+0 8.128305-1 3.854586+0 8.317638-1 3.670377+0 8.413951-1 3.581611+0 8.511380-1 3.495302+0 8.609938-1 3.411073+0 8.709636-1 3.328962+0 8.810489-1 3.248866+0 8.912509-1 3.170698+0 9.015711-1 3.094410+0 9.120108-1 3.022148+0 9.225714-1 2.951618+0 9.332543-1 2.882748+0 9.440609-1 2.815753+0 9.549926-1 2.750315+0 9.660509-1 2.686462+0 9.772372-1 2.624101+0 9.885531-1 2.563227+0 1.000000+0 2.503811+0 1.011579+0 2.447390+0 1.022000+0 2.398232+0 1.023293+0 2.392237+0 1.035142+0 2.338474+0 1.059254+0 2.234555+0 1.071519+0 2.184369+0 1.083927+0 2.135369+0 1.122018+0 1.994874+0 1.135011+0 1.950125+0 1.148154+0 1.906385+0 1.161449+0 1.863628+0 1.174898+0 1.822850+0 1.188502+0 1.783104+0 1.202264+0 1.744224+0 1.216186+0 1.706189+0 1.230269+0 1.669015+0 1.244515+0 1.632652+0 1.250000+0 1.618972+0 1.258925+0 1.597085+0 1.273503+0 1.562292+0 1.288250+0 1.528274+0 1.303167+0 1.495017+0 1.318257+0 1.463385+0 1.333521+0 1.432524+0 1.364583+0 1.372738+0 1.380384+0 1.343812+0 1.396368+0 1.315497+0 1.412538+0 1.287778+0 1.428894+0 1.260655+0 1.479108+0 1.182695+0 1.496236+0 1.158510+0 1.513561+0 1.134901+0 1.531087+0 1.111773+0 1.621810+0 1.003106+0 1.659587+0 9.626731-1 1.678804+0 9.436228-1 1.698244+0 9.250170-1 1.717908+0 9.067876-1 1.737801+0 8.889163-1 1.778279+0 8.542562-1 1.819701+0 8.209467-1 1.840772+0 8.047826-1 1.862087+0 7.889367-1 1.883649+0 7.734028-1 1.905461+0 7.586097-1 1.927525+0 7.441548-1 1.949845+0 7.299827-1 1.972423+0 7.160809-1 2.000000+0 6.996819-1 2.018366+0 6.890909-1 2.041738+0 6.759794-1 2.044000+0 6.747317-1 2.089296+0 6.505007-1 2.137962+0 6.259822-1 2.162719+0 6.144152-1 2.187762+0 6.031052-1 2.213095+0 5.920091-1 2.238721+0 5.811174-1 2.264644+0 5.704356-1 2.290868+0 5.599499-1 2.317395+0 5.496571-1 2.371374+0 5.296358-1 2.426610+0 5.103439-1 2.454709+0 5.012361-1 2.483133+0 4.923249-1 2.511886+0 4.835768-1 2.540973+0 4.749838-1 2.570396+0 4.665514-1 2.630268+0 4.501330-1 2.660725+0 4.421418-1 2.722701+0 4.265824-1 2.786121+0 4.115706-1 2.818383+0 4.044804-1 2.851018+0 3.975396-1 2.884032+0 3.907213-1 2.917427+0 3.840202-1 2.951209+0 3.774400-1 3.019952+0 3.646158-1 3.054921+0 3.583682-1 3.126079+0 3.461922-1 3.235937+0 3.286992-1 3.273407+0 3.232305-1 3.311311+0 3.178733-1 3.349654+0 3.126076-1 3.388442+0 3.074291-1 3.427678+0 3.023411-1 3.507519+0 2.924162-1 3.548134+0 2.875766-1 3.630781+0 2.781364-1 3.758374+0 2.645541-1 3.801894+0 2.602990-1 3.845918+0 2.561279-1 3.890451+0 2.520256-1 3.935501+0 2.479890-1 4.000000+0 2.424041-1 4.120975+0 2.324921-1 4.168694+0 2.287716-1 4.265795+0 2.215084-1 4.415704+0 2.110436-1 4.466836+0 2.077603-1 4.518559+0 2.045399-1 4.570882+0 2.013710-1 4.623810+0 1.982512-1 4.677351+0 1.951824-1 4.841724+0 1.862582-1 4.897788+0 1.833751-1 5.011872+0 1.777421-1 5.188000+0 1.696153-1 5.248075+0 1.670612-1 5.308844+0 1.645547-1 5.370318+0 1.620870-1 5.432503+0 1.596563-1 5.495409+0 1.572636-1 5.754399+0 1.480482-1 5.821032+0 1.458300-1 5.888437+0 1.436450-1 5.956621+0 1.414928-1 6.095369+0 1.372845-1 6.165950+0 1.352870-1 6.237348+0 1.333259-1 6.309573+0 1.313942-1 6.382635+0 1.294904-1 6.456542+0 1.276155-1 6.839116+0 1.186419-1 7.000000+0 1.151987-1 7.161434+0 1.119194-1 7.244360+0 1.102992-1 7.585776+0 1.040495-1 7.673615+0 1.025822-1 7.762471+0 1.011407-1 7.852356+0 9.972016-2 7.943282+0 9.831956-2 8.035261+0 9.693958-2 8.317638+0 9.291555-2 8.413951+0 9.161169-2 8.609938+0 8.905857-2 8.709636+0 8.780883-2 9.120108+0 8.298279-2 9.332543+0 8.072799-2 9.440609+0 7.962733-2 9.549926+0 7.854218-2 9.660509+0 7.747181-2 9.885531+0 7.537593-2 1.023293+1 7.233845-2 1.035142+1 7.135343-2 1.059254+1 6.942337-2 1.071519+1 6.847806-2 1.135011+1 6.394092-2 1.161449+1 6.225254-2 1.188502+1 6.061390-2 1.202264+1 5.981118-2 1.216186+1 5.901905-2 1.244515+1 5.746710-2 1.273503+1 5.595625-2 1.300000+1 5.463869-2 1.318257+1 5.376407-2 1.333521+1 5.305264-2 1.428894+1 4.897723-2 1.462177+1 4.771795-2 1.513561+1 4.589456-2 1.531087+1 4.530262-2 1.548817+1 4.471827-2 1.584893+1 4.357279-2 1.600000+1 4.310948-2 1.640590+1 4.190955-2 1.678804+1 4.083617-2 1.698244+1 4.030982-2 1.717908+1 3.979028-2 1.840772+1 3.681058-2 1.883649+1 3.588748-2 1.905461+1 3.543574-2 1.972423+1 3.411481-2 2.000000+1 3.359798-2 2.041738+1 3.284361-2 2.089296+1 3.202300-2 2.113489+1 3.162047-2 2.162719+1 3.083053-2 2.200000+1 3.025698-2 2.238721+1 2.968248-2 2.426610+1 2.716721-2 2.454709+1 2.682573-2 2.540973+1 2.584469-2 2.570396+1 2.552642-2 2.691535+1 2.429237-2 2.722701+1 2.399331-2 2.754229+1 2.369801-2 2.851018+1 2.283378-2 2.917427+1 2.227547-2 2.951209+1 2.200149-2 2.985383+1 2.173088-2 3.019952+1 2.146360-2 3.054921+1 2.119961-2 3.273407+1 1.968247-2 3.311311+1 1.944040-2 3.548134+1 1.807120-2 3.801894+1 1.680118-2 3.890451+1 1.639801-2 3.935501+1 1.620011-2 4.120975+1 1.543214-2 4.216965+1 1.506205-2 4.265795+1 1.488037-2 4.315191+1 1.470088-2 4.365158+1 1.452356-2 4.415704+1 1.434837-2 4.731513+1 1.334075-2 4.786301+1 1.317984-2 5.432503+1 1.155245-2 6.095369+1 1.025020-2 6.309573+1 9.888946-3 6.382635+1 9.771408-3 6.606934+1 9.427114-3 6.683439+1 9.315105-3 6.760830+1 9.204436-3 6.839116+1 9.095084-3 6.918310+1 8.987030-3 7.244360+1 8.567501-3 8.511380+1 7.263129-3 1.035142+2 5.945005-3 1.096478+2 5.604961-3 1.109175+2 5.539332-3 1.122018+2 5.474477-3 1.161449+2 5.284418-3 1.188502+2 5.161428-3 1.202264+2 5.101014-3 1.216186+2 5.041304-3 1.244515+2 4.923975-3 1.318257+2 4.642466-3 1.584893+2 3.851982-3 1.603245+2 3.807311-3 2.065380+2 2.946229-3 2.187762+2 2.779453-3 2.213095+2 2.747252-3 2.238721+2 2.715424-3 2.317395+2 2.622133-3 2.371374+2 2.561735-3 2.398833+2 2.532061-3 2.426610+2 2.502731-3 2.483133+2 2.445085-3 2.630268+2 2.306713-3 3.162278+2 1.916111-3 3.198895+2 1.894024-3 4.120975+2 1.467827-3 4.365158+2 1.385203-3 4.415704+2 1.369247-3 4.466836+2 1.353474-3 4.623810+2 1.307237-3 4.731513+2 1.277296-3 4.786301+2 1.262584-3 4.841724+2 1.248042-3 4.954502+2 1.219458-3 5.248075+2 1.150830-3 1.258925+3 4.788661-4 1.273503+3 4.733732-4 1.640590+3 3.672956-4 3.467369+3 1.735646-4 3.507519+3 1.715745-4 3.548134+3 1.696073-4 3.672823+3 1.638398-4 3.758374+3 1.601043-4 3.801894+3 1.582686-4 3.845918+3 1.564540-4 3.935501+3 1.528869-4 4.168694+3 1.443211-4 1.000000+5 6.013996-6 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 5.420000-6 9.730000-6 5.420000-6 9.730000-6 8.598289-6 1.080000-5 8.846397-6 1.080000-5 9.615612-6 1.220100-5 9.791296-6 1.380384-5 9.922856-6 1.570000-5 1.000585-5 1.920000-5 1.005967-5 2.858000-5 1.009718-5 2.858000-5 2.673365-5 3.060000-5 2.574222-5 3.300000-5 2.441669-5 3.389000-5 2.389266-5 3.389000-5 2.819779-5 3.935501-5 2.510762-5 4.518559-5 2.170526-5 4.731513-5 2.051279-5 5.011872-5 1.905853-5 5.300000-5 1.772849-5 5.519000-5 1.683640-5 5.519000-5 1.708457-5 5.730000-5 1.632387-5 5.970000-5 1.557284-5 6.237348-5 1.487064-5 6.400000-5 1.450462-5 6.650000-5 1.402047-5 6.839116-5 1.370441-5 7.161434-5 1.326147-5 7.413102-5 1.298030-5 7.800000-5 1.263485-5 8.222426-5 1.234796-5 8.709636-5 1.210293-5 9.150000-5 1.193530-5 9.800000-5 1.175296-5 1.071519-4 1.157724-5 1.202264-4 1.142283-5 1.380384-4 1.131053-5 1.662300-4 1.123734-5 1.662300-4 1.235651-5 1.720000-4 1.286877-5 1.736300-4 1.301363-5 1.736300-4 1.375392-5 1.781000-4 1.420100-5 1.810000-4 1.440340-5 1.835000-4 1.449894-5 1.863000-4 1.451884-5 1.900000-4 1.443420-5 1.955000-4 1.416756-5 2.080000-4 1.345684-5 2.150000-4 1.312163-5 2.230000-4 1.283579-5 2.307000-4 1.265912-5 2.386900-4 1.257390-5 2.465000-4 1.256531-5 2.570396-4 1.265226-5 2.670000-4 1.280970-5 2.830000-4 1.315862-5 3.022000-4 1.366835-5 3.022000-4 1.615074-5 3.430500-4 1.742437-5 3.430500-4 1.815558-5 3.935501-4 1.973416-5 4.203500-4 2.051063-5 4.203500-4 2.201946-5 4.700000-4 2.341495-5 5.248075-4 2.474621-5 5.754399-4 2.583334-5 6.309573-4 2.686590-5 7.000000-4 2.798113-5 7.852356-4 2.915337-5 8.912509-4 3.036975-5 1.011579-3 3.151932-5 1.161449-3 3.269643-5 1.355300-3 3.392971-5 1.355300-3 5.041646-5 1.395200-3 5.058515-5 1.395200-3 5.388906-5 1.470000-3 5.468097-5 1.531087-3 5.492427-5 1.728500-3 5.490048-5 1.728500-3 5.922775-5 1.910400-3 5.968549-5 1.910400-3 6.176708-5 2.102500-3 6.240495-5 2.102500-3 6.458895-5 2.722701-3 6.694160-5 3.467369-3 6.923369-5 4.365158-3 7.148688-5 5.432503-3 7.364746-5 6.760830-3 7.578378-5 8.061700-3 7.747118-5 8.061700-3 1.027598-4 8.928700-3 1.031456-4 8.928700-3 1.091904-4 9.360200-3 1.093348-4 9.360200-3 1.148482-4 1.350000-2 1.172885-4 1.972423-2 1.197972-4 2.754229-2 1.219972-4 3.935501-2 1.242950-4 5.569900-2 1.263993-4 5.569900-2 1.212308-4 1.548817-1 1.218598-4 5.754399-1 1.222429-4 1.000000+5 1.222857-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 0.0 1.736300-4 0.0 1.736300-4 7.67775-10 1.743000-4 7.88646-10 1.750000-4 8.15274-10 1.760000-4 8.59615-10 1.770000-4 9.10331-10 1.781000-4 9.69846-10 1.805000-4 1.108508-9 1.815000-4 1.163637-9 1.825000-4 1.214970-9 1.835000-4 1.260924-9 1.844000-4 1.296756-9 1.855000-4 1.332864-9 1.863000-4 1.353558-9 1.873200-4 1.372850-9 1.880000-4 1.383152-9 1.890000-4 1.391482-9 1.900000-4 1.394123-9 1.915000-4 1.388007-9 1.927525-4 1.376434-9 1.940000-4 1.359306-9 1.955000-4 1.333856-9 1.980000-4 1.282411-9 2.000000-4 1.237680-9 2.080000-4 1.045485-9 2.120000-4 9.53272-10 2.150000-4 8.89261-10 2.180000-4 8.29667-10 2.205000-4 7.83170-10 2.230000-4 7.41975-10 2.250000-4 7.10613-10 2.280000-4 6.69987-10 2.307000-4 6.38743-10 2.340000-4 6.07237-10 2.371374-4 5.83351-10 2.400000-4 5.66441-10 2.430000-4 5.53325-10 2.454709-4 5.45873-10 2.483133-4 5.41328-10 2.511886-4 5.40047-10 2.540973-4 5.42016-10 2.570396-4 5.47103-10 2.600160-4 5.55120-10 2.635000-4 5.68240-10 2.670000-4 5.84895-10 2.710000-4 6.07363-10 2.770000-4 6.46856-10 2.830000-4 6.92651-10 2.917427-4 7.68700-10 3.022000-4 8.66225-10 3.022000-4 1.721145-9 3.273407-4 1.999402-9 3.430500-4 2.179485-9 3.430500-4 2.649682-9 3.589219-4 2.846997-9 3.850000-4 3.160732-9 4.203500-4 3.564720-9 4.203500-4 4.119463-9 4.518559-4 4.479064-9 4.786301-4 4.761623-9 5.188000-4 5.150545-9 5.559043-4 5.480528-9 6.025596-4 5.853933-9 6.531306-4 6.208840-9 7.161434-4 6.604182-9 7.585776-4 6.843131-9 8.317638-4 7.207290-9 9.120108-4 7.559869-9 1.011579-3 7.939999-9 1.096478-3 8.219507-9 1.188502-3 8.492134-9 1.303167-3 8.790535-9 1.355300-3 8.916729-9 1.355300-3 9.657792-9 1.395200-3 9.689993-9 1.395200-3 2.583382-6 1.437000-3 2.874213-6 1.470000-3 3.038996-6 1.479108-3 3.069970-6 1.500000-3 3.111223-6 1.531087-3 3.152053-6 1.728500-3 3.127638-6 1.728500-3 3.158707-6 1.910400-3 3.145895-6 1.910400-3 3.475828-6 2.102500-3 3.501719-6 2.102500-3 3.623675-6 2.630268-3 3.713469-6 3.349654-3 3.810394-6 4.365158-3 3.918899-6 5.623413-3 4.023374-6 6.918310-3 4.109912-6 8.061700-3 4.171296-6 8.061700-3 8.783672-4 8.511380-3 8.802852-4 8.928700-3 8.795143-4 8.928700-3 1.151965-3 9.360200-3 1.153535-3 9.360200-3 1.220035-3 1.244515-2 1.234784-3 1.862087-2 1.248796-3 3.000000-2 1.260463-3 5.432503-2 1.271177-3 5.569900-2 1.271478-3 5.569900-2 3.890034-2 6.309573-2 3.915489-2 8.511380-2 3.956648-2 1.202264-1 3.985632-2 1.972423-1 4.008763-2 6.165950-1 4.032859-2 1.230269+0 4.044750-2 1.000000+5 4.043890-2 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 0.0 9.730000-6 4.310000-6 9.730000-6 1.131711-6 1.023293-5 1.515173-6 1.080000-5 1.953603-6 1.080000-5 1.184388-6 1.135011-5 1.658634-6 1.202264-5 2.250636-6 1.273503-5 2.892101-6 1.380384-5 3.880984-6 1.500000-5 5.018044-6 1.690000-5 6.866651-6 2.238721-5 1.231199-5 2.858000-5 1.848282-5 2.858000-5 1.846355-6 2.930000-5 2.905908-6 3.019952-5 4.249711-6 3.126079-5 5.868553-6 3.235937-5 7.575641-6 3.389000-5 9.997337-6 3.389000-5 5.692213-6 3.730000-5 1.100906-5 4.220000-5 1.876035-5 4.677351-5 2.596413-5 5.011872-5 3.106019-5 5.300000-5 3.527151-5 5.519000-5 3.835360-5 5.519000-5 3.810543-5 5.900000-5 4.322199-5 6.309573-5 4.839412-5 6.839116-5 5.468675-5 7.413102-5 6.115072-5 8.222426-5 6.987630-5 9.800000-5 8.624704-5 1.412538-4 1.299553-4 1.662300-4 1.549927-4 1.662300-4 1.538735-4 1.736300-4 1.606164-4 1.736300-4 1.598753-4 1.844000-4 1.698827-4 2.080000-4 1.945421-4 2.400000-4 2.274318-4 3.022000-4 2.885308-4 3.022000-4 2.860475-4 3.430500-4 3.256235-4 3.430500-4 3.248918-4 4.203500-4 3.998358-4 4.203500-4 3.983264-4 6.850000-4 6.572425-4 1.355300-3 1.321361-3 1.355300-3 1.304874-3 1.395200-3 1.344605-3 1.395200-3 1.338727-3 1.728500-3 1.670472-3 1.728500-3 1.666113-3 1.910400-3 1.847569-3 1.910400-3 1.845157-3 2.102500-3 2.036593-3 2.102500-3 2.034287-3 8.061700-3 7.980058-3 8.061700-3 7.080573-3 8.928700-3 7.946040-3 8.928700-3 7.667545-3 9.360200-3 8.097330-3 9.360200-3 8.025317-3 3.548134-2 3.409387-2 5.569900-2 5.430112-2 5.569900-2 1.667743-2 5.821032-2 1.907709-2 6.309573-2 2.381951-2 8.413951-2 4.446190-2 1.396368-1 9.956790-2 1.000000+5 9.999996+4 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.569900-2 3.400688+3 5.660000-2 3.273840+3 5.705000-2 3.207480+3 5.780000-2 3.111780+3 5.900000-2 2.943340+3 6.165950-2 2.640138+3 6.760830-2 2.073571+3 7.500000-2 1.586614+3 8.317638-2 1.207188+3 1.035142-1 6.711641+2 1.348963-1 3.258479+2 2.213095-1 8.363930+1 2.691535-1 4.917157+1 3.162278-1 3.197510+1 3.630781-1 2.227100+1 4.120975-1 1.609763+1 4.677351-1 1.172093+1 5.188000-1 9.097545+0 5.821032-1 6.915297+0 6.531306-1 5.296594+0 7.328245-1 4.088774+0 8.128305-1 3.261248+0 9.015711-1 2.620036+0 1.000000+0 2.121104+0 1.161449+0 1.579211+0 1.303167+0 1.266779+0 1.479108+0 1.001991+0 1.659587+0 8.155588-1 1.883649+0 6.552203-1 2.137962+0 5.303292-1 2.426610+0 4.323636-1 2.786121+0 3.486840-1 3.235937+0 2.784758-1 3.758374+0 2.241324-1 4.415704+0 1.787976-1 5.188000+0 1.436998-1 6.095369+0 1.163089-1 7.585776+0 8.815257-2 9.120108+0 7.030277-2 1.135011+1 5.417073-2 1.428894+1 4.149336-2 1.840772+1 3.118588-2 2.454709+1 2.272653-2 3.311311+1 1.646939-2 4.786301+1 1.116543-2 7.244360+1 7.257991-3 1.318257+2 3.932909-3 2.630268+2 1.954269-3 5.248075+2 9.749205-4 4.168694+3 1.222636-4 1.000000+5 5.095400-6 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.569900-2 1.200500-4 1.000000+5 1.200500-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.569900-2 4.749700-2 1.000000+5 4.749700-2 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.569900-2 8.081950-3 1.000000+5 9.999995+4 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 9.360200-3 1.302997+4 9.550000-3 1.250010+4 9.730000-3 1.213670+4 1.210000-2 8.325420+3 1.288250-2 7.421026+3 1.480000-2 5.720380+3 1.900000-2 3.494100+3 2.162719-2 2.673585+3 2.426610-2 2.100706+3 2.884032-2 1.445001+3 3.235937-2 1.118789+3 3.715352-2 8.181266+2 4.415704-2 5.477737+2 5.248075-2 3.630824+2 6.237348-2 2.384122+2 7.413102-2 1.551821+2 8.810489-2 1.002319+2 1.059254-1 6.241258+1 1.318257-1 3.527097+1 2.426610-1 7.044884+0 2.985383-1 4.098115+0 3.507519-1 2.707003+0 4.027170-1 1.909516+0 4.623810-1 1.357377+0 5.248075-1 9.999386-1 5.888437-1 7.624651-1 6.606935-1 5.856711-1 7.413102-1 4.531486-1 8.413951-1 3.445144-1 9.332543-1 2.772457-1 1.023293+0 2.301398-1 1.174898+0 1.754048-1 1.318257+0 1.408022-1 1.496236+0 1.114565-1 1.678804+0 9.078246-2 1.905461+0 7.298561-2 2.162719+0 5.911444-2 2.454709+0 4.822443-2 2.818383+0 3.891414-2 3.273407+0 3.109721-2 3.801894+0 2.504324-2 4.466836+0 1.998913-2 5.248075+0 1.607349-2 6.165950+0 1.301603-2 7.673615+0 9.869564-3 9.332543+0 7.765943-3 1.161449+1 5.988658-3 1.462177+1 4.590785-3 1.883649+1 3.452516-3 2.540973+1 2.486163-3 3.548134+1 1.738019-3 5.432503+1 1.111017-3 8.511380+1 6.984409-4 1.603245+2 3.661829-4 3.198895+2 1.822136-4 1.273503+3 4.552016-5 1.000000+5 5.787400-7 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 9.360200-3 1.500900-4 1.000000+5 1.500900-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.360200-3 1.645100-3 1.000000+5 1.645100-3 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.360200-3 7.565010-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 8.928700-3 2.569966+4 9.000000-3 2.515828+4 9.180000-3 2.410700+4 9.800000-3 2.044700+4 1.150000-2 1.345300+4 1.259700-2 1.051300+4 1.500000-2 6.491700+3 1.737801-2 4.305900+3 2.187762-2 2.219100+3 2.722701-2 1.164900+3 3.388442-2 6.038900+2 4.168694-2 3.208200+2 5.188000-2 1.631600+2 6.760830-2 7.132400+1 1.273503-1 9.727324+0 1.621810-1 4.572175+0 1.949845-1 2.589774+0 2.317395-1 1.531514+0 2.691535-1 9.785033-1 3.090295-1 6.519238-1 3.507519-1 4.525746-1 3.981072-1 3.166769-1 4.466836-1 2.305571-1 5.011872-1 1.691031-1 5.559043-1 1.287987-1 6.165950-1 9.876457-2 6.839117-1 7.627400-2 7.762471-1 5.597967-2 8.413951-1 4.627805-2 9.120108-1 3.854171-2 9.772372-1 3.317585-2 1.059254+0 2.808694-2 1.161449+0 2.338677-2 1.273503+0 1.960914-2 1.412538+0 1.621008-2 1.678804+0 1.191719-2 1.905461+0 9.576954-3 2.162719+0 7.755873-3 2.454709+0 6.327335-3 2.818383+0 5.106188-3 3.273407+0 4.080658-3 3.801894+0 3.286238-3 4.466836+0 2.623003-3 5.248075+0 2.109156-3 6.165950+0 1.707983-3 7.673615+0 1.295116-3 9.332543+0 1.019080-3 1.161449+1 7.858446-4 1.462177+1 6.024113-4 1.905461+1 4.472819-4 2.570396+1 3.221961-4 3.548134+1 2.280777-4 5.432503+1 1.457805-4 8.511380+1 9.165166-5 1.584893+2 4.861583-5 3.162278+2 2.418931-5 1.258925+3 6.042528-6 1.000000+5 7.594300-8 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 8.928700-3 1.253100-4 1.000000+5 1.253100-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.928700-3 1.878500-3 1.000000+5 1.878500-3 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 8.928700-3 6.924890-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.061700-3 5.656889+4 8.350000-3 5.194560+4 8.810489-3 4.504576+4 1.035142-2 2.894421+4 1.150000-2 2.147440+4 1.350000-2 1.352604+4 1.548817-2 9.074897+3 1.905461-2 4.881275+3 2.137962-2 3.437053+3 2.511886-2 2.091334+3 3.019952-2 1.173911+3 3.630781-2 6.529997+2 4.415704-2 3.471195+2 5.370318-2 1.830627+2 6.683439-2 8.888261+1 9.120108-2 3.154443+1 1.303167-1 9.576948+0 1.650000-1 4.377601+0 1.949845-1 2.532852+0 2.264644-1 1.561938+0 2.600160-1 1.006743+0 2.951209-1 6.781458-1 3.311311-1 4.769727-1 3.672823-1 3.498403-1 4.073803-1 2.583411-1 4.518559-1 1.921874-1 5.011872-1 1.441245-1 5.495409-1 1.123477-1 6.025596-1 8.815293-2 6.606935-1 6.964916-2 7.244360-1 5.540417-2 8.035261-1 4.317368-2 8.709636-1 3.567853-2 9.332543-1 3.049643-2 9.885531-1 2.691006-2 1.071519+0 2.278271-2 1.174898+0 1.898029-2 1.288250+0 1.593211-2 1.428894+0 1.318746-2 1.698244+0 9.704002-3 1.927525+0 7.802719-3 2.187762+0 6.323226-3 2.483133+0 5.161563-3 2.851018+0 4.167729-3 3.311311+0 3.332693-3 3.845918+0 2.685471-3 4.518559+0 2.144548-3 5.308844+0 1.725287-3 6.237348+0 1.397906-3 7.762471+0 1.060433-3 9.440609+0 8.348098-4 1.188502+1 6.353920-4 1.513561+1 4.811126-4 1.972423+1 3.575711-4 2.722701+1 2.514584-4 3.890451+1 1.718426-4 6.309573+1 1.036394-4 1.096478+2 5.874209-5 2.187762+2 2.914052-5 4.365158+2 1.452442-5 3.467369+3 1.820214-6 1.000000+5 6.308100-8 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.061700-3 1.174300-4 1.000000+5 1.174300-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.061700-3 1.385500-3 1.000000+5 1.385500-3 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.061700-3 6.558770-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.102500-3 3.847566+4 2.220000-3 3.616560+4 2.511886-3 3.074086+4 2.660725-3 2.832261+4 3.090295-3 2.273312+4 3.589219-3 1.811820+4 3.900000-3 1.584828+4 4.731513-3 1.150087+4 5.370318-3 9.228433+3 6.165950-3 7.223726+3 7.413102-3 5.150842+3 8.609938-3 3.881334+3 9.885531-3 2.972137+3 1.161449-2 2.161265+3 1.380384-2 1.523407+3 1.640590-2 1.064838+3 1.927525-2 7.566171+2 2.264644-2 5.336817+2 2.650000-2 3.770820+2 3.090295-2 2.666365+2 3.630781-2 1.840748+2 4.300000-2 1.237794+2 5.069907-2 8.346773+1 6.025596-2 5.479184+1 7.079458-2 3.673944+1 8.511380-2 2.308902+1 1.023293-1 1.440331+1 1.303167-1 7.687421+0 1.621810-1 4.329448+0 2.398833-1 1.543107+0 2.951209-1 8.993271-1 3.507519-1 5.772626-1 4.073803-1 3.959928-1 4.677351-1 2.818417-1 5.308844-1 2.078618-1 6.000000-1 1.560085-1 6.760830-1 1.188381-1 7.585776-1 9.207374-2 8.609938-1 7.009899-2 9.549926-1 5.650429-2 1.071519+0 4.487467-2 1.216186+0 3.505472-2 1.364583+0 2.820136-2 1.531087+0 2.284342-2 1.737801+0 1.826137-2 1.972423+0 1.471108-2 2.238721+0 1.193853-2 2.540973+0 9.757585-3 2.917427+0 7.888846-3 3.388442+0 6.315865-3 3.935501+0 5.094893-3 4.623810+0 4.073129-3 5.432503+0 3.280223-3 6.382635+0 2.660443-3 7.943282+0 2.020019-3 9.660509+0 1.591665-3 1.216186+1 1.212448-3 1.548817+1 9.187067-4 2.041738+1 6.746313-4 2.851018+1 4.690127-4 4.120975+1 3.169975-4 6.606934+1 1.936948-4 1.161449+2 1.085708-4 2.317395+2 5.388973-5 4.623810+2 2.686778-5 3.672823+3 3.367972-6 1.000000+5 1.236400-7 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.102500-3 1.145100-4 1.000000+5 1.145100-4 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.102500-3 6.411300-6 1.000000+5 6.411300-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.102500-3 1.981579-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.910400-3 6.250639+4 2.030000-3 5.828782+4 2.187762-3 5.366722+4 2.300000-3 5.044880+4 2.520700-3 4.459200+4 2.722701-3 3.996505+4 2.951209-3 3.544584+4 3.198895-3 3.119367+4 3.427678-3 2.778953+4 4.000000-3 2.118040+4 4.315191-3 1.841773+4 4.897788-3 1.442159+4 5.370318-3 1.200571+4 6.025596-3 9.456012+3 6.683439-3 7.585801+3 7.500000-3 5.884420+3 8.317638-3 4.659374+3 9.500000-3 3.420240+3 1.059254-2 2.637416+3 1.202264-2 1.934941+3 1.364583-2 1.408497+3 1.548817-2 1.017928+3 1.757924-2 7.305814+2 2.018366-2 5.049240+2 2.317395-2 3.463325+2 2.691535-2 2.283433+2 3.090295-2 1.543692+2 3.589219-2 1.003079+2 4.216965-2 6.259227+1 5.011872-2 3.748537+1 6.165950-2 2.008343+1 7.762471-2 9.952591+0 1.566751-1 1.146563+0 1.927525-1 6.097162-1 2.264644-1 3.758821-1 2.691535-1 2.254209-1 3.090295-1 1.507710-1 3.507519-1 1.049750-1 3.981072-1 7.362813-2 4.466836-1 5.371506-2 5.011872-1 3.948254-2 5.559043-1 3.014253-2 6.237348-1 2.250476-2 6.918310-1 1.742184-2 7.673615-1 1.358245-2 8.609938-1 1.036123-2 9.225714-1 8.856919-3 9.885531-1 7.622900-3 1.071519+0 6.456518-3 1.174898+0 5.379874-3 1.288250+0 4.515634-3 1.428894+0 3.736948-3 1.698244+0 2.749478-3 1.927525+0 2.211038-3 2.187762+0 1.792125-3 2.483133+0 1.463040-3 2.851018+0 1.181416-3 3.311311+0 9.447301-4 3.845918+0 7.612631-4 4.518559+0 6.079455-4 5.308844+0 4.890986-4 6.237348+0 3.962830-4 7.762471+0 3.006263-4 9.440609+0 2.366517-4 1.188502+1 1.801235-4 1.513561+1 1.363880-4 1.972423+1 1.013643-4 2.722701+1 7.128351-5 3.890451+1 4.871512-5 6.309573+1 2.938052-5 1.096478+2 1.665262-5 2.187762+2 8.260753-6 4.365158+2 4.117446-6 3.467369+3 5.159898-7 1.000000+5 1.788200-8 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.910400-3 9.616800-5 1.000000+5 9.616800-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.910400-3 8.928400-6 1.000000+5 8.928400-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.910400-3 1.805304-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.728500-3 1.708914+5 1.862087-3 1.558169+5 2.018366-3 1.391079+5 2.162719-3 1.252018+5 2.400000-3 1.060028+5 2.660725-3 8.927784+4 2.900000-3 7.674840+4 3.126079-3 6.687940+4 3.715352-3 4.804591+4 4.027170-3 4.089567+4 4.677351-3 2.996003+4 5.128614-3 2.458319+4 5.888437-3 1.809225+4 6.531306-3 1.427365+4 7.413102-3 1.060295+4 8.317638-3 8.028348+3 9.332543-3 6.040312+3 1.071519-2 4.254657+3 1.216186-2 3.060054+3 1.364583-2 2.253205+3 1.548817-2 1.598276+3 1.778279-2 1.090006+3 2.041738-2 7.374091+2 2.344229-2 4.949388+2 2.691535-2 3.297401+2 3.090295-2 2.181232+2 3.589219-2 1.383623+2 4.168694-2 8.713772+1 4.897788-2 5.256858+1 5.821032-2 3.036031+1 7.079458-2 1.616974+1 8.912509-2 7.643391+0 1.548817-1 1.250655+0 1.883649-1 6.630626-1 2.238721-1 3.814289-1 2.570396-1 2.467625-1 2.917427-1 1.666916-1 3.273407-1 1.174762-1 3.672823-1 8.339900-2 4.073803-1 6.170548-2 4.518559-1 4.599863-2 5.011872-1 3.453626-2 5.559043-1 2.611367-2 6.095369-1 2.050715-2 6.683439-1 1.622080-2 7.328245-1 1.291959-2 8.317638-1 9.540943-3 9.015711-1 7.914488-3 9.660509-1 6.791520-3 1.035142+0 5.873874-3 1.135011+0 4.879740-3 1.250000+0 4.050403-3 1.380384+0 3.372189-3 1.659587+0 2.427600-3 1.883649+0 1.949461-3 2.137962+0 1.577413-3 2.426610+0 1.285949-3 2.786121+0 1.037075-3 3.235937+0 8.282807-4 3.758374+0 6.666591-4 4.415704+0 5.318145-4 5.188000+0 4.274163-4 6.095369+0 3.459479-4 7.585776+0 2.622016-4 9.120108+0 2.091048-4 1.135011+1 1.611225-4 1.428894+1 1.234163-4 1.840772+1 9.275904-5 2.426610+1 6.844912-5 3.273407+1 4.958944-5 4.731513+1 3.361195-5 7.244360+1 2.158851-5 1.318257+2 1.169770-5 2.630268+2 5.812629-6 5.248075+2 2.899725-6 4.168694+3 3.636496-7 1.000000+5 1.515500-8 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.728500-3 8.784800-5 1.000000+5 8.784800-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.728500-3 3.364200-6 1.000000+5 3.364200-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.728500-3 1.637288-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.395200-3 4.366241+5 1.437000-3 4.839237+5 1.462177-3 5.014434+5 1.470000-3 5.061852+5 1.477000-3 5.074946+5 1.479108-3 5.088196+5 1.500000-3 5.076209+5 1.515000-3 5.034521+5 1.531087-3 4.954361+5 1.757924-3 3.504499+5 1.950000-3 2.693856+5 2.150000-3 2.086628+5 2.371374-3 1.601795+5 2.600160-3 1.241114+5 2.951209-3 8.669318+4 3.273407-3 6.395955+4 3.672823-3 4.540582+4 4.120975-3 3.193588+4 4.623810-3 2.233924+4 5.248075-3 1.494030+4 5.821032-3 1.069624+4 6.760830-3 6.534126+3 7.585776-3 4.438500+3 8.511380-3 2.998050+3 9.800000-3 1.838904+3 1.135011-2 1.095261+3 1.303167-2 6.672887+2 1.500000-2 3.998512+2 1.737801-2 2.321654+2 2.018366-2 1.325029+2 2.344229-2 7.505404+1 2.754229-2 4.039373+1 3.311311-2 1.972943+1 4.000000-2 9.389360+0 5.011872-2 3.841476+0 9.440609-2 3.078273-1 1.161449-1 1.355979-1 1.380384-1 6.895284-2 1.603245-1 3.863146-2 1.862087-1 2.179606-2 2.137962-1 1.294865-2 2.426610-1 8.092508-3 2.722701-1 5.314502-3 3.054921-1 3.514599-3 3.388442-1 2.437249-3 3.758374-1 1.702987-3 4.073803-1 1.296588-3 4.466836-1 9.567137-4 4.954502-1 6.846538-4 5.495409-1 4.931343-4 6.095369-1 3.578414-4 6.683439-1 2.707815-4 7.328245-1 2.064316-4 8.511380-1 1.346891-4 9.015711-1 1.150587-4 9.440609-1 1.020192-4 9.885531-1 9.101203-5 1.035142+0 8.176267-5 1.083927+0 7.396004-5 1.135011+0 6.729904-5 1.202264+0 6.021998-5 1.318257+0 5.092622-5 1.531087+0 3.932256-5 1.819701+0 2.903910-5 2.018366+0 2.434798-5 2.290868+0 1.978705-5 2.630268+0 1.590453-5 3.019952+0 1.288116-5 3.507519+0 1.033141-5 4.120975+0 8.214246-6 4.841724+0 6.580962-6 5.754399+0 5.231157-6 6.839116+0 4.191520-6 8.317638+0 3.282758-6 1.023293+1 2.555694-6 1.273503+1 1.976991-6 1.640590+1 1.480693-6 2.162719+1 1.089206-6 2.985383+1 7.678440-7 4.315191+1 5.194835-7 6.839116+1 3.214713-7 1.216186+2 1.781858-7 2.426610+2 8.847812-8 4.841724+2 4.412268-8 3.845918+3 5.531908-9 1.000000+5 2.12670-10 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.395200-3 6.295900-5 1.000000+5 6.295900-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.395200-3 9.648700-6 1.000000+5 9.648700-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.395200-3 1.322592-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.355300-3 8.590053+5 1.500000-3 7.484964+5 1.513561-3 7.374389+5 1.819701-3 4.611132+5 2.000000-3 3.602316+5 2.220000-3 2.721474+5 2.426610-3 2.127047+5 2.818383-3 1.391149+5 3.054921-3 1.098373+5 3.548134-3 7.014915+4 3.900000-3 5.246958+4 4.466836-3 3.432549+4 5.011872-3 2.375593+4 5.623413-3 1.633739+4 6.382635-3 1.073604+4 7.161434-3 7.278870+3 8.035261-3 4.903514+3 9.120108-3 3.152591+3 1.047129-2 1.930998+3 1.202264-2 1.173000+3 1.380384-2 7.069259+2 1.584893-2 4.227674+2 1.840772-2 2.402036+2 2.137962-2 1.353283+2 2.454709-2 7.913837+1 2.851018-2 4.396131+1 3.427678-2 2.113495+1 4.120975-2 1.007994+1 5.128614-2 4.151842+0 9.660509-2 3.131037-1 1.174898-1 1.417427-1 1.380384-1 7.432252-2 1.584893-1 4.303071-2 1.798871-1 2.625301-2 2.018366-1 1.686724-2 2.264644-1 1.094058-2 2.540973-1 7.144403-3 2.786121-1 5.112219-3 3.054921-1 3.681976-3 3.349654-1 2.670265-3 3.672823-1 1.950086-3 4.027170-1 1.434150-3 4.415705-1 1.061712-3 4.786301-1 8.215346-4 5.188000-1 6.400524-4 5.623413-1 5.022756-4 6.025596-1 4.104505-4 6.531306-1 3.268747-4 7.079458-1 2.622587-4 7.673615-1 2.119066-4 8.609938-1 1.573035-4 9.120108-1 1.363315-4 9.660509-1 1.189570-4 1.022000+0 1.049203-4 1.083927+0 9.267506-5 1.161449+0 8.069821-5 1.258925+0 6.923823-5 1.380384+0 5.860227-5 1.621810+0 4.411265-5 1.862087+0 3.467596-5 2.089296+0 2.857430-5 2.371374+0 2.326683-5 2.722701+0 1.873899-5 3.126079+0 1.520462-5 3.630781+0 1.221640-5 4.265795+0 9.729335-6 5.011872+0 7.807380-6 5.956621+0 6.215881-6 7.244360+0 4.844717-6 8.709636+0 3.856755-6 1.071519+1 3.007548-6 1.333521+1 2.329942-6 1.717908+1 1.747592-6 2.238721+1 1.303575-6 3.019952+1 9.426565-7 4.365158+1 6.379000-7 6.839116+1 3.995518-7 1.216186+2 2.214669-7 2.426610+2 1.099691-7 4.841724+2 5.483863-8 3.845918+3 6.875514-9 1.000000+5 2.64330-10 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.355300-3 5.800300-5 1.000000+5 5.800300-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.355300-3 9.998800-9 1.000000+5 9.998800-9 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.355300-3 1.297287-3 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.203500-4 8.947400+4 4.518559-4 8.603237+4 4.841724-4 8.231252+4 5.128614-4 7.887946+4 5.688529-4 7.264205+4 6.025596-4 6.900101+4 6.606934-4 6.281923+4 7.413102-4 5.561242+4 8.035261-4 5.071113+4 9.120108-4 4.339231+4 1.011579-3 3.798477+4 1.135011-3 3.247187+4 1.288250-3 2.714873+4 1.479108-3 2.212510+4 1.678804-3 1.822422+4 1.972423-3 1.410742+4 2.317395-3 1.082272+4 2.691535-3 8.399719+3 3.162278-3 6.348570+3 3.715352-3 4.765430+3 4.466836-3 3.407634+3 5.432503-3 2.366651+3 6.531306-3 1.667229+3 7.852356-3 1.166476+3 9.500000-3 8.001380+2 1.135011-2 5.585050+2 1.348963-2 3.911945+2 1.603245-2 2.720942+2 1.905461-2 1.878988+2 2.264644-2 1.288108+2 2.691535-2 8.764441+1 3.198895-2 5.917569+1 3.801894-2 3.964128+1 4.518559-2 2.635106+1 5.308844-2 1.787263+1 6.309573-2 1.170240+1 7.585776-2 7.392572+0 9.015711-2 4.770179+0 1.122019-1 2.715874+0 1.479108-1 1.321382+0 2.398833-1 3.697204-1 2.951209-1 2.155290-1 3.507519-1 1.383771-1 4.073803-1 9.493936-2 4.677351-1 6.757410-2 5.308844-1 4.983783-2 6.000000-1 3.740700-2 6.760830-1 2.849983-2 7.585776-1 2.208479-2 8.609938-1 1.681580-2 9.549926-1 1.355443-2 1.071519+0 1.076334-2 1.216186+0 8.408331-3 1.364583+0 6.764705-3 1.531087+0 5.479560-3 1.737801+0 4.380408-3 1.972423+0 3.528803-3 2.238721+0 2.863774-3 2.540973+0 2.340576-3 2.917427+0 1.892255-3 3.388442+0 1.514938-3 3.935501+0 1.222077-3 4.623810+0 9.770119-4 5.495409+0 7.749597-4 6.456542+0 6.288509-4 8.035261+0 4.776879-4 9.885531+0 3.713948-4 1.244515+1 2.831528-4 1.584893+1 2.147001-4 2.089296+1 1.577692-4 2.917427+1 1.097543-4 4.216965+1 7.421922-5 6.683439+1 4.591072-5 1.188502+2 2.543928-5 2.371374+2 1.262941-5 4.731513+2 6.297255-6 3.758374+3 7.894476-7 1.000000+5 2.965900-8 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.203500-4 6.782900-5 1.000000+5 6.782900-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.203500-4 2.096200-8 1.000000+5 2.096200-8 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.203500-4 3.525000-4 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.430500-4 7.300333+4 3.758374-4 7.111980+4 4.150000-4 6.965000+4 4.570882-4 6.922937+4 4.850000-4 6.851020+4 5.308844-4 6.694367+4 5.688529-4 6.538157+4 6.100000-4 6.342500+4 6.531306-4 6.114302+4 7.000000-4 5.847380+4 7.585776-4 5.513627+4 8.222426-4 5.162316+4 8.912509-4 4.793897+4 9.772372-4 4.369932+4 1.059254-3 4.005141+4 1.161449-3 3.597299+4 1.288250-3 3.162966+4 1.412538-3 2.800940+4 1.570000-3 2.417560+4 1.737801-3 2.083807+4 1.950000-3 1.746294+4 2.162719-3 1.479256+4 2.426610-3 1.220960+4 2.722701-3 1.000176+4 3.054921-3 8.134448+3 3.467369-3 6.428847+3 3.935501-3 5.039827+3 4.466836-3 3.920206+3 5.069907-3 3.026301+3 5.754399-3 2.319044+3 6.531306-3 1.764030+3 7.413102-3 1.332032+3 8.500000-3 9.751500+2 9.660509-3 7.227595+2 1.096478-2 5.334430+2 1.244515-2 3.908567+2 1.412538-2 2.843910+2 1.621810-2 1.994942+2 1.862087-2 1.388639+2 2.137962-2 9.594016+1 2.454709-2 6.581120+1 2.851018-2 4.341477+1 3.311311-2 2.841902+1 3.890451-2 1.786474+1 4.623810-2 1.077740+1 5.432503-2 6.677965+0 6.683439-2 3.579422+0 8.709636-2 1.599014+0 1.548817-1 2.740214-1 1.927525-1 1.410869-1 2.317395-1 8.122139-2 2.691535-1 5.220662-2 3.090295-1 3.494946-2 3.507519-1 2.435170-2 3.981072-1 1.709165-2 4.466836-1 1.247821-2 5.011872-1 9.175926-3 5.623413-1 6.799422-3 6.237348-1 5.227548-3 6.918310-1 4.046617-3 7.673615-1 3.155118-3 8.609938-1 2.408039-3 9.225714-1 2.059139-3 9.885531-1 1.772634-3 1.071519+0 1.501523-3 1.174898+0 1.251246-3 1.288250+0 1.050259-3 1.428894+0 8.690585-4 1.698244+0 6.393935-4 1.927525+0 5.141481-4 2.187762+0 4.166699-4 2.483133+0 3.401230-4 2.851018+0 2.746315-4 3.311311+0 2.196019-4 3.845918+0 1.769522-4 4.518559+0 1.413169-4 5.308844+0 1.136924-4 6.237348+0 9.211528-5 7.762471+0 6.987909-5 9.440609+0 5.500968-5 1.188502+1 4.186907-5 1.513561+1 3.170302-5 1.972423+1 2.356217-5 2.691535+1 1.677756-5 3.801894+1 1.160282-5 6.095369+1 7.078398-6 1.035142+2 4.105242-6 2.065380+2 2.035297-6 4.120975+2 1.014215-6 1.640590+3 2.536906-7 1.000000+5 4.156700-9 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.430500-4 5.199400-5 1.000000+5 5.199400-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.430500-4 2.440900-8 1.000000+5 2.440900-8 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.430500-4 2.910316-4 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.022000-4 2.889803+5 3.311311-4 2.746923+5 3.935501-4 2.529689+5 4.287500-4 2.416054+5 4.731513-4 2.270510+5 5.150000-4 2.136816+5 5.559043-4 2.010137+5 6.000000-4 1.878028+5 6.606934-4 1.708437+5 7.244360-4 1.549913+5 7.852356-4 1.414006+5 8.709636-4 1.246606+5 9.549926-4 1.107641+5 1.059254-3 9.621846+4 1.174898-3 8.301658+4 1.303167-3 7.112033+4 1.462177-3 5.944283+4 1.650000-3 4.883320+4 1.850000-3 4.023320+4 2.070000-3 3.303604+4 2.344229-3 2.635395+4 2.650000-3 2.092832+4 2.985383-3 1.660799+4 3.349654-3 1.319891+4 3.801894-3 1.017645+4 4.365158-3 7.597953+3 4.954502-3 5.768435+3 5.623413-3 4.348166+3 6.382635-3 3.253879+3 7.161434-3 2.484514+3 8.035261-3 1.885570+3 9.120108-3 1.382596+3 1.023293-2 1.035892+3 1.161449-2 7.487328+2 1.318257-2 5.372618+2 1.500000-2 3.802056+2 1.717908-2 2.623907+2 1.972423-2 1.784323+2 2.264644-2 1.204064+2 2.600160-2 8.064878+1 3.000000-2 5.285880+1 3.467369-2 3.420513+1 4.027170-2 2.165123+1 4.731513-2 1.312822+1 5.623413-2 7.620214+0 6.760830-2 4.232280+0 8.222426-2 2.248586+0 1.258925-1 5.602474-1 1.717908-1 2.037009-1 2.065380-1 1.126411-1 2.398833-1 7.007225-2 2.754229-1 4.554077-2 3.126079-1 3.090913-2 3.507519-1 2.188788-2 3.890451-1 1.615041-2 4.315191-1 1.200218-2 4.786301-1 8.985372-3 5.308844-1 6.778271-3 5.888437-1 5.153952-3 6.456542-1 4.068259-3 7.079458-1 3.232757-3 7.762471-1 2.586244-3 8.609938-1 2.023250-3 9.225714-1 1.728165-3 9.885531-1 1.486684-3 1.071519+0 1.258837-3 1.174898+0 1.048817-3 1.288250+0 8.803649-4 1.428894+0 7.286178-4 1.698244+0 5.361111-4 1.927525+0 4.310809-4 2.187762+0 3.493477-4 2.483133+0 2.851697-4 2.851018+0 2.302623-4 3.311311+0 1.841271-4 3.845918+0 1.483692-4 4.518559+0 1.184872-4 5.308844+0 9.532345-5 6.237348+0 7.723275-5 7.762471+0 5.858873-5 9.440609+0 4.612199-5 1.188502+1 3.510448-5 1.513561+1 2.658065-5 1.972423+1 1.975522-5 2.722701+1 1.389257-5 3.890451+1 9.494205-6 6.309573+1 5.726037-6 1.096478+2 3.245433-6 2.187762+2 1.609988-6 4.365158+2 8.024702-7 3.467369+3 1.005629-7 1.000000+5 3.485200-9 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.022000-4 4.699300-5 1.000000+5 4.699300-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.022000-4 1.234300-8 1.000000+5 1.234300-8 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.022000-4 2.551947-4 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.736300-4 3.006028+5 1.743000-4 3.093044+5 1.750000-4 3.203624+5 1.760000-4 3.386120+5 1.793000-4 4.111760+5 1.805000-4 4.383000+5 1.815000-4 4.596120+5 1.825000-4 4.790000+5 1.835000-4 4.958040+5 1.844000-4 5.083800+5 1.855000-4 5.201400+5 1.863000-4 5.261640+5 1.870000-4 5.297160+5 1.880000-4 5.321920+5 1.890000-4 5.318320+5 1.900000-4 5.289800+5 1.914000-4 5.214880+5 1.927525-4 5.112215+5 1.940000-4 4.997480+5 1.955000-4 4.842400+5 1.978000-4 4.582360+5 2.000000-4 4.323000+5 2.030000-4 3.969056+5 2.065380-4 3.568823+5 2.113489-4 3.072323+5 2.205000-4 2.315868+5 2.250000-4 2.037308+5 2.280000-4 1.883520+5 2.307000-4 1.765136+5 2.340000-4 1.644100+5 2.371374-4 1.550609+5 2.400000-4 1.481796+5 2.430000-4 1.424584+5 2.454709-4 1.387875+5 2.483133-4 1.356040+5 2.511886-4 1.333514+5 2.540973-4 1.319861+5 2.570396-4 1.314296+5 2.600160-4 1.316080+5 2.635000-4 1.326360+5 2.670000-4 1.344304+5 2.710000-4 1.372504+5 2.770000-4 1.426936+5 2.830000-4 1.491912+5 3.126079-4 1.875755+5 3.240000-4 2.024356+5 3.350000-4 2.159040+5 3.470000-4 2.292184+5 3.589219-4 2.408564+5 3.715352-4 2.514199+5 3.850000-4 2.608488+5 4.000000-4 2.692964+5 4.150000-4 2.757300+5 4.315191-4 2.806463+5 4.500000-4 2.837564+5 4.700000-4 2.848008+5 4.930000-4 2.837196+5 5.150000-4 2.808892+5 5.400000-4 2.759328+5 5.688529-4 2.685295+5 6.025596-4 2.583931+5 6.382635-4 2.467783+5 6.760830-4 2.340118+5 7.161434-4 2.203599+5 7.585776-4 2.062371+5 8.128305-4 1.891166+5 8.709636-4 1.720683+5 9.332543-4 1.554506+5 1.000000-3 1.395392+5 1.071519-3 1.244576+5 1.161449-3 1.081089+5 1.258925-3 9.320794+4 1.365000-3 7.972832+4 1.479108-3 6.782803+4 1.610000-3 5.677080+4 1.757924-3 4.688055+4 1.927525-3 3.806792+4 2.113489-3 3.068370+4 2.317395-3 2.456750+4 2.570396-3 1.897736+4 2.851018-3 1.454023+4 3.162278-3 1.105548+4 3.467369-3 8.612518+3 3.801894-3 6.672343+3 4.216965-3 4.974043+3 4.677351-3 3.682933+3 5.188000-3 2.708925+3 5.821032-3 1.911269+3 6.456542-3 1.387038+3 7.244360-3 9.641122+2 8.128305-3 6.651639+2 9.120108-3 4.555327+2 1.023293-2 3.097519+2 1.148154-2 2.091625+2 1.303167-2 1.347680+2 1.479108-2 8.618042+1 1.678804-2 5.472147+1 1.927525-2 3.308786+1 2.213095-2 1.985868+1 2.570396-2 1.133428+1 3.000000-2 6.302920+0 3.548134-2 3.306030+0 4.265795-2 1.615365+0 5.370318-2 6.541511-1 1.011580-1 5.359001-2 1.244515-1 2.377913-2 1.479108-1 1.216613-2 1.717908-1 6.853588-3 1.972423-1 4.062720-3 2.238721-1 2.532208-3 2.540973-1 1.589605-3 2.851018-1 1.048234-3 3.198895-1 6.959659-4 3.548134-1 4.846535-4 3.935501-1 3.400573-4 4.315191-1 2.500781-4 4.731513-1 1.851295-4 5.248075-1 1.329890-4 5.821032-1 9.629605-5 6.456542-1 7.022998-5 7.079458-1 5.342314-5 7.673615-1 4.233245-5 8.511380-1 3.157513-5 9.015711-1 2.699423-5 9.440609-1 2.394799-5 9.885531-1 2.137348-5 1.035142+0 1.920708-5 1.083927+0 1.737739-5 1.148154+0 1.545774-5 1.216186+0 1.384983-5 1.318257+0 1.196492-5 1.531087+0 9.235390-6 1.819701+0 6.820751-6 2.041738+0 5.609918-6 2.317395+0 4.561517-6 2.660725+0 3.669019-6 3.054921+0 2.973603-6 3.548134+0 2.386396-6 4.168694+0 1.898456-6 4.897788+0 1.521836-6 5.821032+0 1.210292-6 7.000000+0 9.559800-7 8.413951+0 7.602054-7 1.035142+1 5.920784-7 1.300000+1 4.534000-7 1.678804+1 3.388730-7 2.200000+1 2.510800-7 3.019952+1 1.781308-7 4.315191+1 1.220089-7 6.839116+1 7.550300-8 1.216186+2 4.184963-8 2.426610+2 2.078093-8 4.841724+2 1.036267-8 3.845918+3 1.299299-9 1.000000+5 4.99500-11 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.736300-4 3.029600-5 1.000000+5 3.029600-5 1 67000 7 7 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.736300-4 1.792400-8 1.000000+5 1.792400-8 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.736300-4 1.433161-4 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.662300-4 4.314774+5 1.667000-4 4.447380+5 1.700000-4 5.611038+5 1.711000-4 6.035160+5 1.723000-4 6.489360+5 1.732800-4 6.839681+5 1.740000-4 7.078740+5 1.750000-4 7.377180+5 1.760000-4 7.629600+5 1.770000-4 7.830300+5 1.781000-4 7.988400+5 1.792000-4 8.081340+5 1.800000-4 8.109960+5 1.810000-4 8.103660+5 1.820000-4 8.055780+5 1.831000-4 7.962120+5 1.844000-4 7.806916+5 1.858000-4 7.599000+5 1.873200-4 7.340373+5 1.890000-4 7.030140+5 1.915000-4 6.548100+5 1.940000-4 6.065760+5 1.972423-4 5.464734+5 2.018366-4 4.688730+5 2.113489-4 3.422402+5 2.150000-4 3.060144+5 2.180000-4 2.810250+5 2.205000-4 2.632572+5 2.230000-4 2.480442+5 2.260000-4 2.328846+5 2.280000-4 2.244828+5 2.307000-4 2.150976+5 2.330000-4 2.087256+5 2.358000-4 2.027736+5 2.386900-4 1.985066+5 2.415000-4 1.959336+5 2.440000-4 1.948218+5 2.465000-4 1.946958+5 2.490000-4 1.954476+5 2.520000-4 1.973688+5 2.560000-4 2.014056+5 2.600160-4 2.068506+5 2.650000-4 2.151162+5 2.730000-4 2.308146+5 2.917427-4 2.728439+5 3.019952-4 2.962648+5 3.126079-4 3.195711+5 3.200000-4 3.348846+5 3.311311-4 3.561059+5 3.427678-4 3.756782+5 3.548134-4 3.930263+5 3.672823-4 4.080332+5 3.801894-4 4.206970+5 3.935501-4 4.310263+5 4.073803-4 4.389930+5 4.216965-4 4.445603+5 4.365158-4 4.477576+5 4.550000-4 4.486590+5 4.731513-4 4.468936+5 4.954502-4 4.419850+5 5.188000-4 4.343168+5 5.432503-4 4.240231+5 5.754399-4 4.083005+5 6.100000-4 3.898704+5 6.456542-4 3.700147+5 6.850000-4 3.479286+5 7.328245-4 3.218575+5 7.800000-4 2.974230+5 8.317638-4 2.723525+5 8.912509-4 2.461443+5 9.549926-4 2.209648+5 1.035142-3 1.932607+5 1.110000-3 1.710312+5 1.202264-3 1.476189+5 1.303167-3 1.263928+5 1.412538-3 1.074225+5 1.531087-3 9.075082+4 1.678804-3 7.422975+4 1.819701-3 6.188801+4 2.018366-3 4.857054+4 2.220000-3 3.855684+4 2.400000-3 3.175392+4 2.660725-3 2.438695+4 2.985383-3 1.799332+4 3.349654-3 1.315258+4 3.758374-3 9.528251+3 4.216965-3 6.843119+3 4.700000-3 4.971510+3 5.248075-3 3.566436+3 5.821032-3 2.592007+3 6.531306-3 1.804305+3 7.328245-3 1.246344+3 8.222426-3 8.543941+2 9.225714-3 5.812601+2 1.035142-2 3.925844+2 1.161449-2 2.632587+2 1.318257-2 1.682894+2 1.500000-2 1.057722+2 1.698244-2 6.720314+1 1.927525-2 4.201548+1 2.213095-2 2.498163+1 2.540973-2 1.474531+1 2.951209-2 8.265970+0 3.467369-2 4.395651+0 4.120975-2 2.216469+0 5.011872-2 1.011792+0 6.165950-2 4.380310-1 9.549926-2 7.422528-2 1.174898-1 3.222538-2 1.380384-1 1.695844-2 1.603245-1 9.413104-3 1.819701-1 5.760248-3 2.041738-1 3.710392-3 2.290868-1 2.407302-3 2.540973-1 1.642098-3 2.818383-1 1.128074-3 3.090295-1 8.133200-4 3.388442-1 5.904896-4 3.715352-1 4.319522-4 4.027170-1 3.307911-4 4.365158-1 2.552015-4 4.786301-1 1.911246-4 5.308844-1 1.391999-4 5.754399-1 1.094892-4 6.165950-1 8.962774-5 6.683439-1 7.147663-5 7.244360-1 5.739630-5 7.852356-1 4.639688-5 8.609938-1 3.647666-5 9.120108-1 3.157054-5 9.660509-1 2.751611-5 1.011579+0 2.480002-5 1.071519+0 2.192828-5 1.148154+0 1.906586-5 1.230269+0 1.669583-5 1.333521+0 1.440193-5 1.778279+0 8.679451-6 2.000000+0 7.102600-6 2.264644+0 5.790747-6 2.570396+0 4.735767-6 2.951209+0 3.831092-6 3.427678+0 3.069023-6 4.000000+0 2.460600-6 4.677351+0 1.981356-6 5.495409+0 1.596501-6 6.456542+0 1.295532-6 8.035261+0 9.840799-7 9.885531+0 7.651054-7 1.244515+1 5.833205-7 1.600000+1 4.375700-7 2.113489+1 3.209380-7 2.917427+1 2.261078-7 4.216965+1 1.528995-7 6.683439+1 9.457931-8 1.188502+2 5.240743-8 2.371374+2 2.601725-8 4.731513+2 1.297302-8 3.758374+3 1.626341-9 1.000000+5 6.11000-11 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.662300-4 2.847600-5 1.000000+5 2.847600-5 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.662300-4 1.377540-4 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.080000-5 5.919498+5 1.115000-5 5.593175+5 1.161449-5 5.242081+5 1.202264-5 4.989534+5 1.255000-5 4.731309+5 1.303167-5 4.549048+5 1.350000-5 4.415008+5 1.400000-5 4.309356+5 1.450000-5 4.237793+5 1.500000-5 4.196972+5 1.550000-5 4.182990+5 1.610000-5 4.196468+5 1.670000-5 4.239806+5 1.737801-5 4.319940+5 1.800000-5 4.420038+5 1.870000-5 4.560166+5 1.950000-5 4.753041+5 2.041738-5 5.013624+5 2.137962-5 5.327403+5 2.238721-5 5.695837+5 2.371374-5 6.237541+5 2.540973-5 7.013090+5 3.198895-5 1.060661+6 3.467369-5 1.218896+6 3.715352-5 1.363589+6 3.935501-5 1.488498+6 4.168694-5 1.615486+6 4.415704-5 1.743040+6 4.731513-5 1.895934+6 5.069907-5 2.048128+6 5.432503-5 2.198368+6 5.900000-5 2.374527+6 6.309573-5 2.511966+6 6.760830-5 2.643055+6 7.161434-5 2.741482+6 7.585776-5 2.825324+6 8.035261-5 2.893231+6 8.511380-5 2.944902+6 9.120108-5 2.984096+6 9.800000-5 3.004700+6 1.071519-4 3.002511+6 1.150000-4 2.982331+6 1.244515-4 2.937356+6 1.318257-4 2.888161+6 1.412538-4 2.811487+6 1.500000-4 2.729696+6 1.621810-4 2.608429+6 1.760000-4 2.464423+6 1.862087-4 2.357157+6 2.000000-4 2.211544+6 2.120000-4 2.085206+6 2.264644-4 1.938671+6 2.454709-4 1.756615+6 2.630268-4 1.600988+6 2.786121-4 1.473396+6 3.000000-4 1.312831+6 3.239550-4 1.153021+6 3.467369-4 1.020131+6 3.715352-4 8.939398+5 3.981072-4 7.775766+5 4.265795-4 6.715060+5 4.570882-4 5.759096+5 4.897788-4 4.906493+5 5.248075-4 4.153211+5 5.688529-4 3.393144+5 6.165950-4 2.751010+5 6.683439-4 2.214486+5 7.244360-4 1.770477+5 7.852356-4 1.406366+5 8.609938-4 1.072860+5 9.440609-4 8.122819+4 1.035142-3 6.105909+4 1.135011-3 4.558045+4 1.244515-3 3.380092+4 1.380384-3 2.396478+4 1.531087-3 1.686428+4 1.698244-3 1.178570+4 1.883649-3 8.178854+3 2.089296-3 5.637504+3 2.344229-3 3.699915+3 2.630268-3 2.409236+3 2.951209-3 1.556901+3 3.311311-3 9.988197+2 3.715352-3 6.362006+2 4.168694-3 4.024169+2 4.677351-3 2.528000+2 5.248075-3 1.574062+2 5.956621-3 9.272846+1 6.760830-3 5.422618+1 7.673615-3 3.147153+1 8.709636-3 1.812966+1 9.772372-3 1.090226+1 1.122018-2 5.875266+0 1.303167-2 2.982480+0 1.531087-2 1.425472+0 1.798871-2 6.767612-1 2.089296-2 3.364085-1 2.454709-2 1.572231-1 2.951209-2 6.538787-2 3.589219-2 2.551598-2 6.839116-2 1.127394-3 8.413951-2 4.165421-4 1.000000-1 1.829700-4 1.161449-1 9.025723-5 1.333521-1 4.736107-5 1.513561-1 2.642325-5 1.698244-1 1.566211-5 1.905461-1 9.351515-6 2.137962-1 5.627208-6 2.371374-1 3.587965-6 2.630268-1 2.304210-6 2.917427-1 1.491059-6 3.235937-1 9.711480-7 3.507519-1 7.001058-7 3.801894-1 5.081498-7 4.027170-1 4.061866-7 4.365158-1 2.997378-7 4.841724-1 2.044877-7 5.495409-1 1.289389-7 6.095369-1 8.907158-8 6.606935-1 6.719283-8 7.079458-1 5.311150-8 7.498942-1 4.390742-8 8.511380-1 2.929868-8 8.912509-1 2.540116-8 9.332543-1 2.215918-8 9.660509-1 2.011267-8 1.000000+0 1.836200-8 1.035142+0 1.687293-8 1.071519+0 1.558633-8 1.122018+0 1.412368-8 1.174898+0 1.288863-8 1.244515+0 1.158652-8 1.333521+0 1.026675-8 1.513561+0 8.323748-9 1.883649+0 5.676466-9 2.089296+0 4.768016-9 2.371374+0 3.882183-9 2.722701+0 3.126642-9 3.126079+0 2.536943-9 3.630781+0 2.038393-9 4.265795+0 1.623386-9 5.011872+0 1.302642-9 5.888437+0 1.052726-9 7.161434+0 8.20154-10 8.609938+0 6.52596-10 1.059254+1 5.08692-10 1.318257+1 3.93948-10 1.698244+1 2.95373-10 2.238721+1 2.17497-10 3.054921+1 1.55353-10 4.415704+1 1.05159-10 6.918310+1 6.58789-11 1.244515+2 3.60954-11 2.483133+2 1.79275-11 4.954502+2 8.94065-12 3.935501+3 1.12110-12 1.000000+5 4.41040-14 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.080000-5 1.080000-5 1.000000+5 1.080000-5 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.080000-5 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.730000-6 8.642034+5 1.011579-5 8.038960+5 1.050000-5 7.553286+5 1.096478-5 7.085869+5 1.135011-5 6.780633+5 1.180000-5 6.498481+5 1.220100-5 6.304864+5 1.258925-5 6.162730+5 1.303167-5 6.046044+5 1.352100-5 5.965101+5 1.400000-5 5.928713+5 1.445440-5 5.928069+5 1.500000-5 5.966063+5 1.550000-5 6.033534+5 1.610000-5 6.151177+5 1.678804-5 6.329692+5 1.750000-5 6.557693+5 1.830000-5 6.860790+5 1.920000-5 7.254589+5 2.018366-5 7.742643+5 2.137962-5 8.408505+5 2.290868-5 9.360440+5 2.500000-5 1.081620+6 3.019952-5 1.492797+6 3.300000-5 1.725918+6 3.548134-5 1.929151+6 3.801894-5 2.128982+6 4.073803-5 2.332055+6 4.365158-5 2.534033+6 4.677351-5 2.734039+6 5.011872-5 2.931841+6 5.432503-5 3.156762+6 5.900000-5 3.380882+6 6.309573-5 3.551627+6 6.800000-5 3.725245+6 7.244360-5 3.850220+6 7.762471-5 3.958226+6 8.222426-5 4.024532+6 8.810489-5 4.072708+6 9.440609-5 4.094851+6 1.035142-4 4.085102+6 1.109175-4 4.053375+6 1.202264-4 3.989712+6 1.288250-4 3.906311+6 1.380384-4 3.800210+6 1.500000-4 3.639891+6 1.603245-4 3.492305+6 1.720000-4 3.323990+6 1.862087-4 3.116088+6 1.980000-4 2.944289+6 2.120000-4 2.744970+6 2.300000-4 2.498683+6 2.454709-4 2.300563+6 2.600160-4 2.128150+6 2.810000-4 1.898724+6 3.019952-4 1.691608+6 3.235937-4 1.502785+6 3.467369-4 1.324838+6 3.715352-4 1.159258+6 3.981072-4 1.007003+6 4.265795-4 8.684595+5 4.570882-4 7.438662+5 4.897788-4 6.329640+5 5.248075-4 5.351460+5 5.688529-4 4.366267+5 6.165950-4 3.535611+5 6.683439-4 2.842843+5 7.328245-4 2.196964+5 8.000000-4 1.705755+5 8.709636-4 1.325472+5 9.440609-4 1.036909+5 1.035142-3 7.777122+4 1.148154-3 5.582151+4 1.288250-3 3.829916+4 1.428894-3 2.707947+4 1.566751-3 1.976734+4 1.737801-3 1.377028+4 1.927525-3 9.524481+3 2.162719-3 6.274933+3 2.426610-3 4.103244+3 2.722701-3 2.662517+3 3.054921-3 1.716110+3 3.388442-3 1.147598+3 3.715352-3 7.974092+2 4.120975-3 5.242604+2 4.623810-3 3.265453+2 5.688529-3 1.379290+2 6.456542-3 8.089901+1 7.161434-3 5.195632+1 8.035261-3 3.146661+1 9.120108-3 1.798254+1 1.047129-2 9.687752+0 1.202264-2 5.181403+0 1.396368-2 2.609897+0 1.659587-2 1.173113+0 1.949845-2 5.518212-1 2.264644-2 2.719237-1 2.660725-2 1.257837-1 3.198895-2 5.171016-2 3.935501-2 1.887446-2 6.998420-2 1.132182-3 9.015711-2 3.307990-4 1.047129-1 1.609612-4 1.202264-1 8.337372-5 1.364583-1 4.595053-5 1.531088-1 2.692573-5 1.698244-1 1.675540-5 1.883649-1 1.050096-5 2.089296-1 6.632450-6 2.290868-1 4.439228-6 2.511886-1 2.991808-6 2.754229-1 2.031385-6 3.000000-1 1.428500-6 3.235937-1 1.051816-6 3.507519-1 7.648116-7 3.758374-1 5.860133-7 4.027170-1 4.520138-7 4.318900-1 3.496900-7 4.677351-1 2.629465-7 5.069907-1 1.986472-7 5.559043-1 1.454400-7 6.025596-1 1.114916-7 6.531306-1 8.614205-8 6.998420-1 6.951962-8 7.498942-1 5.648382-8 8.035261-1 4.620142-8 8.810489-1 3.567996-8 9.332543-1 3.051499-8 9.772372-1 2.710808-8 1.022000+0 2.433200-8 1.071519+0 2.188198-8 1.122018+0 1.987093-8 1.188502+0 1.775419-8 1.288250+0 1.531832-8 1.396368+0 1.331099-8 1.513561+0 1.161143-8 1.840772+0 8.237995-9 2.044000+0 6.898300-9 2.317395+0 5.619655-9 2.660725+0 4.520091-9 3.054921+0 3.663293-9 3.548134+0 2.939935-9 4.168694+0 2.338777-9 4.897788+0 1.874718-9 5.754399+0 1.513571-9 6.839116+0 1.212774-9 8.317638+0 9.49828-10 1.023293+1 7.39448-10 1.273503+1 5.72011-10 1.640590+1 4.28420-10 2.162719+1 3.15157-10 2.951209+1 2.24923-10 4.265795+1 1.52136-10 6.760830+1 9.41241-11 1.202264+2 5.21646-11 2.398833+2 2.58994-11 4.786301+2 1.29148-11 3.801894+3 1.61917-12 1.000000+5 6.15340-14 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.730000-6 9.730000-6 1.000000+5 9.730000-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.730000-6 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.519000-5 5.209740+4 5.620000-5 5.118640+4 5.730000-5 5.065840+4 5.850000-5 5.051960+4 5.970000-5 5.078660+4 6.095369-5 5.140010+4 6.237348-5 5.241992+4 6.400000-5 5.392860+4 6.650000-5 5.672520+4 7.413102-5 6.638106+4 7.800000-5 7.100500+4 8.150000-5 7.473100+4 8.511380-5 7.801911+4 8.810489-5 8.029027+4 9.150000-5 8.237400+4 9.549926-5 8.418921+4 1.000000-4 8.549820+4 1.047129-4 8.618090+4 1.100000-4 8.629900+4 1.161449-4 8.580923+4 1.230269-4 8.470971+4 1.318257-4 8.276150+4 1.412538-4 8.025372+4 1.513561-4 7.725396+4 1.621810-4 7.381992+4 1.737801-4 7.005848+4 1.883649-4 6.543841+4 2.080000-4 5.969400+4 2.300000-4 5.398480+4 2.540973-4 4.850675+4 2.851018-4 4.250888+4 3.273407-4 3.599953+4 3.715352-4 3.068855+4 4.365158-4 2.483096+4 5.069907-4 2.025461+4 6.095369-4 1.563059+4 7.328245-4 1.195854+4 8.709636-4 9.237553+3 1.035142-3 7.087805+3 1.230269-3 5.400760+3 1.462177-3 4.086814+3 1.737801-3 3.070895+3 2.089296-3 2.246728+3 2.511886-3 1.631270+3 3.019952-3 1.175666+3 3.672823-3 8.234362+2 4.466836-3 5.724471+2 5.559043-3 3.782087+2 6.760830-3 2.591606+2 8.222426-3 1.762825+2 1.000000-2 1.189973+2 1.202264-2 8.162305+1 1.445440-2 5.557744+1 1.737801-2 3.754425+1 2.162719-2 2.335890+1 2.600160-2 1.555713+1 3.054921-2 1.082466+1 3.589219-2 7.464661+0 4.216965-2 5.110341+0 5.011872-2 3.379103+0 5.956621-2 2.217450+0 7.161434-2 1.403923+0 8.413951-2 9.350270-1 1.035142-1 5.497080-1 1.333521-1 2.846940-1 1.640590-1 1.652494-1 2.398833-1 6.076691-2 2.951209-1 3.543012-2 3.507519-1 2.274808-2 4.073803-1 1.560752-2 4.677351-1 1.110922-2 5.308844-1 8.193645-3 6.000000-1 6.150100-3 6.760830-1 4.685649-3 7.585776-1 3.630955-3 8.609938-1 2.764744-3 9.549926-1 2.228617-3 1.071519+0 1.769788-3 1.216186+0 1.382535-3 1.364583+0 1.112271-3 1.531087+0 9.009630-4 1.737801+0 7.202352-4 1.972423+0 5.802146-4 2.238721+0 4.708741-4 2.540973+0 3.848513-4 2.917427+0 3.111377-4 3.388442+0 2.490958-4 3.935501+0 2.009409-4 4.623810+0 1.606474-4 5.495409+0 1.274204-4 6.456542+0 1.033956-4 8.035261+0 7.854320-5 9.885531+0 6.106647-5 1.244515+1 4.655650-5 1.600000+1 3.492400-5 2.113489+1 2.561560-5 2.917427+1 1.804655-5 4.216965+1 1.220341-5 6.683439+1 7.548806-6 1.188502+2 4.182814-6 2.371374+2 2.076610-6 4.731513+2 1.035402-6 3.758374+3 1.298088-7 1.000000+5 4.876600-9 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.519000-5 5.519000-5 1.000000+5 5.519000-5 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.519000-5 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.389000-5 8.922460+6 3.440000-5 8.209880+6 3.507519-5 7.418864+6 3.589219-5 6.632169+6 3.672823-5 5.971787+6 3.780000-5 5.272480+6 3.920000-5 4.543520+6 4.120975-5 3.735443+6 5.188000-5 1.559870+6 6.237348-5 7.724785+5 6.839116-5 5.467441+5 7.413102-5 4.066371+5 8.035261-5 3.045621+5 8.609938-5 2.393035+5 9.120108-5 1.969367+5 9.660509-5 1.631900+5 1.020000-4 1.376626+5 1.071519-4 1.188236+5 1.122018-4 1.042484+5 1.174898-4 9.208296+4 1.230269-4 8.190794+4 1.288400-4 7.335424+4 1.350000-4 6.608320+4 1.412538-4 6.013153+4 1.480000-4 5.494000+4 1.548817-4 5.065023+4 1.621810-4 4.694673+4 1.698244-4 4.377636+4 1.800000-4 4.038160+4 1.905461-4 3.757820+4 2.041738-4 3.469514+4 2.220000-4 3.175060+4 2.454709-4 2.878609+4 2.851018-4 2.511714+4 3.672823-4 2.001969+4 4.265795-4 1.739626+4 4.841724-4 1.535722+4 5.559043-4 1.330277+4 6.309573-4 1.158198+4 7.244360-4 9.874838+3 8.222426-4 8.466873+3 9.332543-4 7.206233+3 1.047129-3 6.182741+3 1.188502-3 5.185659+3 1.348963-3 4.317251+3 1.531087-3 3.566781+3 1.717908-3 2.977394+3 1.949845-3 2.421360+3 2.213095-3 1.954265+3 2.511886-3 1.565440+3 2.851018-3 1.244748+3 3.235937-3 9.825891+2 3.672823-3 7.700999+2 4.168694-3 5.993140+2 4.731513-3 4.631708+2 5.370318-3 3.554593+2 6.095369-3 2.708997+2 6.918310-3 2.050290+2 7.852356-3 1.540954+2 8.912509-3 1.150078+2 9.885531-3 8.999352+1 1.135011-2 6.439129+1 1.318257-2 4.444744+1 1.621810-2 2.632984+1 1.862087-2 1.844609+1 2.065380-2 1.404022+1 2.344229-2 9.971265+0 2.691535-2 6.809134+0 3.162278-2 4.325095+0 3.715352-2 2.726503+0 4.365158-2 1.705943+0 5.188000-2 1.024498+0 6.309573-2 5.699122-1 8.035261-2 2.737945-1 1.566751-1 3.543900-2 1.949845-1 1.825479-2 2.317395-1 1.088203-2 2.691535-1 6.995730-3 3.090295-1 4.683854-3 3.507519-1 3.263866-3 3.981072-1 2.290925-3 4.466836-1 1.672570-3 5.011872-1 1.229878-3 5.623413-1 9.112150-4 6.237348-1 7.005172-4 6.918310-1 5.423057-4 7.673615-1 4.228629-4 8.609938-1 3.226861-4 9.225714-1 2.758955-4 9.885531-1 2.374931-4 1.071519+0 2.011709-4 1.174898+0 1.676263-4 1.288250+0 1.406909-4 1.428894+0 1.164188-4 1.698244+0 8.564730-5 1.927525+0 6.886926-5 2.187762+0 5.581315-5 2.483133+0 4.556000-5 2.851018+0 3.678720-5 3.311311+0 2.941575-5 3.845918+0 2.370258-5 4.518559+0 1.892881-5 5.308844+0 1.522876-5 6.237348+0 1.233885-5 7.762471+0 9.360071-6 9.440609+0 7.368433-6 1.188502+1 5.608295-6 1.513561+1 4.246540-6 1.972423+1 3.156107-6 2.722701+1 2.219528-6 3.890451+1 1.516813-6 6.309573+1 9.147790-7 1.096478+2 5.184845-7 2.187762+2 2.572053-7 4.365158+2 1.281997-7 3.467369+3 1.606555-8 1.000000+5 5.56780-10 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.389000-5 3.389000-5 1.000000+5 3.389000-5 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.389000-5 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.858000-5 2.026124+7 2.890000-5 1.893712+7 2.930000-5 1.749824+7 2.990000-5 1.567728+7 3.060000-5 1.393584+7 3.126079-5 1.257127+7 3.230000-5 1.082432+7 3.350000-5 9.237120+6 3.507519-5 7.629732+6 3.730000-5 5.959000+6 4.168694-5 3.851819+6 4.841724-5 2.155856+6 5.300000-5 1.528108+6 5.688529-5 1.175718+6 6.025596-5 9.558986+5 6.400000-5 7.752880+5 6.760830-5 6.456414+5 7.079458-5 5.571860+5 7.413102-5 4.839333+5 7.762471-5 4.232451+5 8.128305-5 3.729451+5 8.500000-5 3.323324+5 8.810489-5 3.046814+5 9.150000-5 2.795372+5 9.549926-5 2.552756+5 1.000000-4 2.332772+5 1.047129-4 2.147517+5 1.100000-4 1.980052+5 1.161449-4 1.824182+5 1.230269-4 1.684846+5 1.303167-4 1.566033+5 1.400000-4 1.439968+5 1.513561-4 1.323484+5 1.698244-4 1.179033+5 2.371374-4 8.552233+4 2.786121-4 7.276831+4 3.235937-4 6.220281+4 3.700000-4 5.368360+4 4.265795-4 4.556581+4 4.841724-4 3.912944+4 5.623413-4 3.241637+4 6.456542-4 2.703837+4 7.413102-4 2.237993+4 8.511380-4 1.838604+4 9.772372-4 1.498692+4 1.109175-3 1.234146+4 1.258925-3 1.009302+4 1.428894-3 8.197149+3 1.621810-3 6.610714+3 1.840772-3 5.293814+3 2.089296-3 4.209271+3 2.371374-3 3.323107+3 2.691535-3 2.605137+3 3.054921-3 2.028122+3 3.467369-3 1.568080+3 3.935501-3 1.204031+3 4.466836-3 9.181474+2 5.069907-3 6.953128+2 5.754399-3 5.229169+2 6.531306-3 3.905965+2 7.413102-3 2.897084+2 8.413951-3 2.133599+2 9.549926-3 1.560119+2 1.083927-2 1.132388+2 1.230269-2 8.160068+1 1.396368-2 5.838602+1 1.584893-2 4.149097+1 1.819701-2 2.836299+1 2.089296-2 1.923758+1 2.398833-2 1.294923+1 2.754229-2 8.652833+0 3.162278-2 5.740946+0 3.672823-2 3.652946+0 4.265795-2 2.307200+0 5.011872-2 1.395963+0 6.000000-2 7.903620-1 7.328245-2 4.160333-1 9.549926-2 1.762053-1 1.603245-1 3.256697-2 1.949845-1 1.731380-2 2.290868-1 1.036113-2 2.630268-1 6.718401-3 3.000000-1 4.480900-3 3.388442-1 3.103307-3 3.801894-1 2.209555-3 4.216965-1 1.639407-3 4.677351-1 1.225352-3 5.188000-1 9.228413-4 5.754399-1 7.005397-4 6.309573-1 5.521582-4 6.918310-1 4.381439-4 7.585776-1 3.500165-4 8.609938-1 2.591761-4 9.225714-1 2.213837-4 9.885531-1 1.904592-4 1.071519+0 1.612810-4 1.174898+0 1.343712-4 1.288250+0 1.127854-4 1.428894+0 9.334494-5 1.698244+0 6.868075-5 1.927525+0 5.522576-5 2.187762+0 4.475737-5 2.483133+0 3.653513-5 2.851018+0 2.949938-5 3.311311+0 2.358815-5 3.845918+0 1.900703-5 4.518559+0 1.517928-5 5.370318+0 1.202682-5 6.309573+0 9.749329-6 7.852356+0 7.399299-6 9.549926+0 5.827520-6 1.202264+1 4.437340-6 1.531087+1 3.361144-6 2.000000+1 2.492300-6 2.754229+1 1.757862-6 3.935501+1 1.201632-6 6.382635+1 7.248780-7 1.109175+2 4.109229-7 2.213095+2 2.038672-7 4.415704+2 1.016193-7 3.507519+3 1.273566-8 1.000000+5 4.46490-10 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.858000-5 2.858000-5 1.000000+5 2.858000-5 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.858000-5 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.420000-6 4.261959+6 6.025596-6 2.708890+6 6.606934-6 1.813109+6 7.200000-6 1.238292+6 7.852356-6 8.369455+5 8.511380-6 5.777459+5 9.332543-6 3.753455+5 1.023293-5 2.420513+5 1.202264-5 1.116919+5 1.273503-5 8.519377+4 1.336200-5 6.841133+4 1.380384-5 5.928221+4 1.428894-5 5.123601+4 1.462177-5 4.668744+4 1.500000-5 4.230920+4 1.531087-5 3.924644+4 1.570000-5 3.598660+4 1.611900-5 3.308483+4 1.650000-5 3.090060+4 1.690000-5 2.899620+4 1.730000-5 2.742660+4 1.770000-5 2.613800+4 1.815000-5 2.496900+4 1.862087-5 2.400917+4 1.905461-5 2.332165+4 1.950000-5 2.277800+4 2.000000-5 2.232880+4 2.065380-5 2.194696+4 2.137962-5 2.173158+4 2.213095-5 2.167734+4 2.300000-5 2.176340+4 2.426610-5 2.206487+4 3.000000-5 2.392940+4 3.235937-5 2.450200+4 3.467369-5 2.488268+4 3.715352-5 2.508774+4 3.935501-5 2.510760+4 4.220000-5 2.494540+4 4.518559-5 2.460707+4 4.841724-5 2.408603+4 5.188000-5 2.339426+4 5.559043-5 2.255133+4 6.025596-5 2.143511+4 6.531306-5 2.021066+4 7.079458-5 1.891592+4 7.852356-5 1.723160+4 8.709636-5 1.558118+4 1.011579-4 1.334597+4 1.230269-4 1.078172+4 1.625630-4 7.887360+3 1.862087-4 6.730003+3 2.041738-4 6.010913+3 2.290868-4 5.168223+3 2.630268-4 4.276392+3 3.845918-4 2.503890+3 4.786301-4 1.829850+3 5.623413-4 1.441255+3 7.498942-4 9.359666+2 8.709636-4 7.429084+2 1.096478-3 5.167315+2 1.348963-3 3.699080+2 1.603245-3 2.780996+2 2.264644-3 1.535463+2 2.786121-3 1.067611+2 3.235937-3 8.163601+1 3.935501-3 5.702582+1 4.786301-3 3.954081+1 5.956621-3 2.606370+1 7.244360-3 1.781943+1 8.810489-3 1.209287+1 1.071519-2 8.143786+0 1.288250-2 5.572394+0 1.548817-2 3.784287+0 1.862087-2 2.549813+0 2.213095-2 1.748199+0 2.630268-2 1.189961+0 3.126079-2 8.038898-1 3.715352-2 5.388395-1 4.415704-2 3.584402-1 5.188000-2 2.433055-1 6.165950-2 1.594288-1 7.413102-2 1.007926-1 8.709636-2 6.703343-2 1.071519-1 3.936141-2 1.396368-1 1.976168-2 2.483133-1 4.347501-3 3.054921-1 2.538562-3 3.589219-1 1.681341-3 4.120975-1 1.188945-3 4.731513-1 8.471814-4 5.370318-1 6.256047-4 6.025596-1 4.781927-4 6.760830-1 3.682746-4 7.585776-1 2.857421-4 8.511380-1 2.233938-4 9.440609-1 1.802689-4 1.059254+0 1.432250-4 1.216186+0 1.093931-4 1.364583+0 8.797871-5 1.531087+0 7.123513-5 1.717908+0 5.809762-5 1.949845+0 4.677282-5 2.213095+0 3.793127-5 2.511886+0 3.098213-5 2.884032+0 2.503292-5 3.349654+0 2.002944-5 3.890451+0 1.614848-5 4.570882+0 1.290319-5 5.370318+0 1.038614-5 6.309573+0 8.419486-6 7.852356+0 6.389866-6 9.549926+0 5.032430-6 1.202264+1 3.831969-6 1.531087+1 2.902576-6 2.000000+1 2.152300-6 2.754229+1 1.518048-6 3.935501+1 1.037643-6 6.382635+1 6.259847-7 1.122018+2 3.507192-7 2.238721+2 1.740178-7 4.466836+2 8.674676-8 3.548134+3 1.087203-8 1.000000+5 3.85580-10 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.420000-6 5.420000-6 1.000000+5 5.420000-6 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.420000-6 0.0 1.000000+5 1.000000+5 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.488620-7 1.026600+0 1.112040-6 1.027100+0 1.512950-6 1.027500+0 1.894950-6 1.028100+0 2.579940-6 1.028750+0 3.488620-6 1.029500+0 4.774270-6 1.030100+0 6.004220-6 1.031000+0 8.215820-6 1.032000+0 1.124130-5 1.033200+0 1.574720-5 1.034000+0 1.933110-5 1.035300+0 2.623920-5 1.036640+0 3.488620-5 1.038200+0 4.708000-5 1.039700+0 6.116640-5 1.041500+0 8.138120-5 1.043800+0 1.129600-4 1.046400+0 1.571620-4 1.048300+0 1.956710-4 1.051200+0 2.654240-4 1.054080+0 3.488620-4 1.057700+0 4.755230-4 1.061100+0 6.185370-4 1.065100+0 8.188790-4 1.070400+0 1.142430-3 1.076200+0 1.578840-3 1.080600+0 1.971710-3 1.087100+0 2.656530-3 1.093710+0 3.488620-3 1.102600+0 4.836710-3 1.110700+0 6.307680-3 1.120600+0 8.437140-3 1.133300+0 1.173020-2 1.147500+0 1.619490-2 1.158200+0 2.012610-2 1.174100+0 2.690150-2 1.190110+0 3.488620-2 1.205100+0 4.343980-2 1.227500+0 5.815580-2 1.250000+0 7.511000-2 1.265600+0 8.798860-2 1.294900+0 1.143670-1 1.331800+0 1.509910-1 1.362600+0 1.838810-1 1.397000+0 2.225640-1 1.433800+0 2.658310-1 1.500000+0 3.481000-1 1.562500+0 4.313640-1 1.617200+0 5.083620-1 1.712900+0 6.506230-1 1.838500+0 8.476030-1 1.946200+0 1.020690+0 2.000000+0 1.107000+0 2.044000+0 1.177000+0 2.163500+0 1.366070+0 2.372600+0 1.692170+0 2.647100+0 2.106660+0 3.000000+0 2.613000+0 3.500000+0 3.277760+0 4.000000+0 3.888000+0 4.750000+0 4.715810+0 5.000000+0 4.971000+0 6.000000+0 5.902000+0 7.000000+0 6.724000+0 8.000000+0 7.463000+0 9.000000+0 8.134000+0 1.000000+1 8.750000+0 1.100000+1 9.319000+0 1.200000+1 9.848000+0 1.300000+1 1.034000+1 1.400000+1 1.080000+1 1.500000+1 1.123000+1 1.600000+1 1.163000+1 1.800000+1 1.234000+1 2.000000+1 1.298000+1 2.200000+1 1.356000+1 2.400000+1 1.409000+1 2.600000+1 1.457000+1 2.800000+1 1.501000+1 3.000000+1 1.542000+1 4.000000+1 1.708000+1 5.000000+1 1.831000+1 6.000000+1 1.927000+1 8.000000+1 2.069000+1 1.000000+2 2.168000+1 1.500000+2 2.326000+1 2.000000+2 2.420000+1 3.000000+2 2.530000+1 4.000000+2 2.592000+1 5.000000+2 2.633000+1 6.000000+2 2.662000+1 8.000000+2 2.701000+1 1.000000+3 2.727000+1 1.500000+3 2.763000+1 2.000000+3 2.783000+1 3.000000+3 2.804000+1 4.000000+3 2.816000+1 5.000000+3 2.823000+1 6.000000+3 2.828000+1 8.000000+3 2.835000+1 1.000000+4 2.839000+1 1.500000+4 2.845000+1 2.000000+4 2.848000+1 3.000000+4 2.851000+1 4.000000+4 2.853000+1 5.000000+4 2.854000+1 6.000000+4 2.855000+1 8.000000+4 2.855000+1 1.000000+5 2.856000+1 1 67000 7 8 1.649300+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.712290-7 2.094700+0 1.181720-6 2.099900+0 1.572110-6 2.106600+0 2.186940-6 2.114000+0 3.025900-6 2.119500+0 3.767230-6 2.127900+0 5.109080-6 2.136250+0 6.712290-6 2.147000+0 9.203020-6 2.156900+0 1.195360-5 2.169000+0 1.595290-5 2.184500+0 2.217500-5 2.201800+0 3.067980-5 2.214800+0 3.822460-5 2.234200+0 5.141880-5 2.253680+0 6.712290-5 2.281500+0 9.401750-5 2.307000+0 1.234920-4 2.338200+0 1.660450-4 2.377400+0 2.299530-4 2.410200+0 2.924610-4 2.446800+0 3.720280-4 2.485900+0 4.684030-4 2.532900+0 5.994550-4 2.556430+0 6.712290-4 2.611900+0 8.558920-4 2.660400+0 1.034730-3 2.745300+0 1.384910-3 2.809000+0 1.677210-3 2.904500+0 2.160680-3 3.000000+0 2.697000-3 3.125000+0 3.477680-3 3.234400+0 4.231530-3 3.425800+0 5.698150-3 3.569300+0 6.909290-3 3.784700+0 8.881080-3 4.000000+0 1.100000-2 4.250000+0 1.358920-2 4.625000+0 1.765550-2 5.000000+0 2.188000-2 5.500000+0 2.767590-2 6.000000+0 3.355000-2 6.750000+0 4.229470-2 7.000000+0 4.517000-2 8.000000+0 5.640000-2 9.000000+0 6.713000-2 1.000000+1 7.731000-2 1.100000+1 8.694000-2 1.200000+1 9.600000-2 1.300000+1 1.045000-1 1.400000+1 1.126000-1 1.500000+1 1.203000-1 1.600000+1 1.276000-1 1.800000+1 1.410000-1 2.000000+1 1.533000-1 2.200000+1 1.644000-1 2.400000+1 1.747000-1 2.600000+1 1.841000-1 2.800000+1 1.929000-1 3.000000+1 2.010000-1 4.000000+1 2.345000-1 5.000000+1 2.597000-1 6.000000+1 2.796000-1 8.000000+1 3.094000-1 1.000000+2 3.310000-1 1.500000+2 3.665000-1 2.000000+2 3.885000-1 3.000000+2 4.153000-1 4.000000+2 4.314000-1 5.000000+2 4.423000-1 6.000000+2 4.503000-1 8.000000+2 4.613000-1 1.000000+3 4.686000-1 1.500000+3 4.795000-1 2.000000+3 4.857000-1 3.000000+3 4.924000-1 4.000000+3 4.964000-1 5.000000+3 4.989000-1 6.000000+3 5.006000-1 8.000000+3 5.029000-1 1.000000+4 5.043000-1 1.500000+4 5.063000-1 2.000000+4 5.074000-1 3.000000+4 5.085000-1 4.000000+4 5.092000-1 5.000000+4 5.096000-1 6.000000+4 5.099000-1 8.000000+4 5.102000-1 1.000000+5 5.104000-1 1 67000 7 8 1.649300+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 67000 7 9 1.649300+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.700000+1 1.000000+5 6.700000+1 5.000000+5 6.696600+1 7.500000+5 6.693910+1 9.375000+5 6.692430+1 1.000000+6 6.692000+1 1.250000+6 6.688960+1 1.500000+6 6.685600+1 1.875000+6 6.677660+1 2.000000+6 6.674600+1 2.375000+6 6.664490+1 2.500000+6 6.660800+1 2.875000+6 6.648700+1 3.000000+6 6.644300+1 3.437500+6 6.627330+1 3.812500+6 6.611770+1 4.000000+6 6.604300+1 4.437500+6 6.584990+1 4.812500+6 6.567090+1 5.000000+6 6.558400+1 5.500000+6 6.531970+1 5.875000+6 6.510980+1 6.437500+6 6.478360+1 6.500000+6 6.474500+1 7.000000+6 6.445000+1 7.500000+6 6.414570+1 8.250000+6 6.369120+1 9.000000+6 6.322500+1 1.000000+7 6.258800+1 1.250000+7 6.099900+1 1.500000+7 5.935700+1 1.750000+7 5.770700+1 2.000000+7 5.601200+1 2.250000+7 5.427080+1 2.500000+7 5.252500+1 2.875000+7 4.995280+1 3.000000+7 4.912000+1 3.437500+7 4.629150+1 3.500000+7 4.590470+1 3.812500+7 4.402600+1 4.000000+7 4.295700+1 4.500000+7 4.028260+1 5.000000+7 3.784200+1 5.500000+7 3.559670+1 5.750000+7 3.453480+1 6.000000+7 3.351400+1 6.500000+7 3.157030+1 7.000000+7 2.976800+1 7.750000+7 2.730900+1 8.000000+7 2.655700+1 9.000000+7 2.387100+1 1.000000+8 2.167400+1 1.125000+8 1.950890+1 1.187500+8 1.862450+1 1.250000+8 1.784600+1 1.437500+8 1.600040+1 1.500000+8 1.549300+1 1.625000+8 1.457160+1 1.671900+8 1.424190+1 1.789100+8 1.342630+1 1.812500+8 1.326220+1 1.894500+8 1.268100+1 1.973600+8 1.211030+1 2.000000+8 1.191800+1 2.062500+8 1.145820+1 2.250000+8 1.016690+1 2.335900+8 9.657120+0 2.445300+8 9.104130+0 2.500000+8 8.869500+0 2.781300+8 7.927780+0 2.859400+8 7.673970+0 2.953100+8 7.345410+0 3.000000+8 7.168900+0 3.062500+8 6.920540+0 3.335900+8 5.896010+0 3.418000+8 5.659200+0 3.500000+8 5.468400+0 3.589800+8 5.313340+0 3.712900+8 5.162220+0 4.000000+8 4.901300+0 4.125000+8 4.771320+0 4.234400+8 4.646040+0 4.425800+8 4.414750+0 4.712900+8 4.071560+0 4.750000+8 4.029800+0 5.000000+8 3.767000+0 5.500000+8 3.333420+0 5.750000+8 3.133580+0 5.937500+8 2.982990+0 6.000000+8 2.932300+0 6.250000+8 2.729330+0 6.625000+8 2.456780+0 6.812500+8 2.344710+0 7.000000+8 2.252000+0 7.234400+8 2.162240+0 7.753900+8 2.004490+0 8.000000+8 1.925900+0 8.125000+8 1.881810+0 1.000000+9 1.273800+0 1.031300+9 1.218290+0 1.060500+9 1.177610+0 1.100900+9 1.134440+0 1.137900+9 1.104610+0 1.183200+9 1.076810+0 1.278200+9 1.035500+0 1.352100+9 1.008240+0 1.426100+9 9.783170-1 1.481500+9 9.517410-1 1.500000+9 9.419500-1 1.560500+9 9.063050-1 1.615500+9 8.708700-1 1.686000+9 8.232480-1 1.764500+9 7.696670-1 1.823400+9 7.302760-1 1.911700+9 6.738270-1 2.000000+9 6.215200-1 2.139200+9 5.482220-1 2.272600+9 4.874070-1 2.443000+9 4.210590-1 2.602800+9 3.685220-1 2.825100+9 3.080530-1 2.961100+9 2.770230-1 3.215900+9 2.285650-1 3.438900+9 1.944940-1 3.500000+9 1.862630-1 3.634100+9 1.696850-1 3.975600+9 1.350210-1 4.231700+9 1.146630-1 4.615800+9 9.077880-2 5.000000+9 7.278500-2 5.539100+9 5.440980-2 5.990200+9 4.334020-2 6.708000+9 3.100680-2 8.000000+9 1.824700-2 1.00000+10 9.276900-3 1.27030+10 4.507440-3 1.70630+10 1.863530-3 2.16210+10 9.222750-4 2.93940+10 3.727740-4 3.82190+10 1.728120-4 4.95460+10 8.119370-5 6.75650+10 3.310520-5 1.00000+11 1.073700-5 1.34280+11 4.629940-6 2.20600+11 1.133230-6 4.19930+11 1.856200-7 1.03480+12 1.510660-8 3.24440+12 6.51260-10 1.00000+14 5.79100-14 2.05350+15 1.49271-17 1.00000+17 3.37850-22 1 67000 7 0 1.649300+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.01000-11 1.000000+2 1.010000-9 1.000000+3 1.010000-7 1.000000+4 1.010000-5 1.000000+5 1.010000-3 5.000000+5 2.525000-2 7.500000+5 5.681250-2 9.375000+5 8.876953-2 1.000000+6 1.010000-1 1.250000+6 1.567380-1 1.500000+6 2.236000-1 1.875000+6 3.438360-1 2.000000+6 3.889000-1 2.375000+6 5.374200-1 2.500000+6 5.911000-1 2.875000+6 7.629660-1 3.000000+6 8.236000-1 3.437500+6 1.046440+0 3.812500+6 1.248260+0 4.000000+6 1.352100+0 4.437500+6 1.599200+0 4.812500+6 1.814540+0 5.000000+6 1.923000+0 5.500000+6 2.211690+0 5.875000+6 2.427050+0 6.437500+6 2.746140+0 6.500000+6 2.781120+0 7.000000+6 3.058500+0 7.500000+6 3.329290+0 8.250000+6 3.725590+0 9.000000+6 4.112800+0 1.000000+7 4.621000+0 1.250000+7 5.893700+0 1.500000+7 7.204000+0 1.750000+7 8.528300+0 2.000000+7 9.830000+0 2.250000+7 1.109010+1 2.500000+7 1.230800+1 2.875000+7 1.406130+1 3.000000+7 1.462800+1 3.437500+7 1.653720+1 3.500000+7 1.679960+1 3.812500+7 1.807520+1 4.000000+7 1.881000+1 4.500000+7 2.064800+1 5.000000+7 2.233800+1 5.500000+7 2.390530+1 5.750000+7 2.465410+1 6.000000+7 2.538300+1 6.500000+7 2.678870+1 7.000000+7 2.813700+1 7.750000+7 3.005840+1 8.000000+7 3.067800+1 9.000000+7 3.303900+1 1.000000+8 3.524000+1 1.125000+8 3.779120+1 1.187500+8 3.898200+1 1.250000+8 4.012100+1 1.437500+8 4.319010+1 1.500000+8 4.410100+1 1.625000+8 4.575080+1 1.671900+8 4.631810+1 1.789100+8 4.763080+1 1.812500+8 4.787440+1 1.894500+8 4.868830+1 1.973600+8 4.941990+1 2.000000+8 4.965600+1 2.062500+8 5.018200+1 2.250000+8 5.161930+1 2.335900+8 5.220910+1 2.445300+8 5.290970+1 2.500000+8 5.324100+1 2.781300+8 5.477080+1 2.859400+8 5.515650+1 2.953100+8 5.559000+1 3.000000+8 5.580300+1 3.062500+8 5.607250+1 3.335900+8 5.716490+1 3.418000+8 5.746340+1 3.500000+8 5.775600+1 3.589800+8 5.805560+1 3.712900+8 5.845680+1 4.000000+8 5.931400+1 4.125000+8 5.965230+1 4.234400+8 5.994160+1 4.425800+8 6.041380+1 4.712900+8 6.105750+1 4.750000+8 6.113390+1 5.000000+8 6.163100+1 5.500000+8 6.247800+1 5.750000+8 6.283840+1 5.937500+8 6.308750+1 6.000000+8 6.316600+1 6.250000+8 6.345510+1 6.625000+8 6.383210+1 6.812500+8 6.399350+1 7.000000+8 6.415100+1 7.234400+8 6.432010+1 7.753900+8 6.464890+1 8.000000+8 6.478900+1 8.125000+8 6.484960+1 1.000000+9 6.555000+1 1.031300+9 6.563250+1 1.060500+9 6.570740+1 1.100900+9 6.580780+1 1.137900+9 6.589310+1 1.183200+9 6.598590+1 1.278200+9 6.615550+1 1.352100+9 6.627280+1 1.426100+9 6.636870+1 1.481500+9 6.643600+1 1.500000+9 6.645800+1 1.560500+9 6.651400+1 1.615500+9 6.656320+1 1.686000+9 6.662380+1 1.764500+9 6.667830+1 1.823400+9 6.671220+1 1.911700+9 6.676120+1 2.000000+9 6.680800+1 2.139200+9 6.685880+1 2.272600+9 6.689560+1 2.443000+9 6.693330+1 2.602800+9 6.696100+1 2.825100+9 6.698610+1 2.961100+9 6.699370+1 3.215900+9 6.700450+1 3.438900+9 6.701070+1 3.500000+9 6.701020+1 3.634100+9 6.700900+1 3.975600+9 6.700620+1 4.231700+9 6.700420+1 4.615800+9 6.700150+1 5.000000+9 6.699900+1 5.539100+9 6.699920+1 5.990200+9 6.699940+1 6.708000+9 6.699960+1 8.000000+9 6.700000+1 1.00000+10 6.700000+1 1.27030+10 6.700000+1 1.70630+10 6.700000+1 2.16210+10 6.700000+1 2.93940+10 6.700000+1 3.82190+10 6.700000+1 4.95460+10 6.700000+1 6.75650+10 6.700000+1 1.00000+11 6.700000+1 1.34280+11 6.700000+1 2.20600+11 6.700000+1 4.19930+11 6.700000+1 1.03480+12 6.700000+1 3.24440+12 6.700000+1 1.00000+14 6.700000+1 2.05350+15 6.700000+1 1.00000+17 6.700000+1 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.065514-6 0.0 1.068136-6 5.839589-7 1.070759-6 1.155494-6 1.073382-6 2.110604-6 1.076004-6 3.558768-6 1.078627-6 5.539192-6 1.081249-6 7.958792-6 1.083872-6 1.055606-5 1.086495-6 1.292439-5 1.089117-6 1.460739-5 1.091740-6 1.524014-5 1.094363-6 1.467774-5 1.096985-6 1.304918-5 1.099608-6 1.070931-5 1.104853-6 5.673875-6 1.107476-6 3.662856-6 1.110098-6 2.182800-6 1.112721-6 1.200776-6 1.115344-6 6.097675-7 1.117966-6 0.0 1.958826-6 0.0 1.963647-6 3.209660-7 1.968469-6 6.351033-7 1.973290-6 1.160068-6 1.978112-6 1.956034-6 1.982933-6 3.044551-6 1.987754-6 4.374455-6 1.992576-6 5.802011-6 1.997397-6 7.103739-6 2.002219-6 8.028777-6 2.007040-6 8.376561-6 2.011861-6 8.067444-6 2.016683-6 7.172329-6 2.021504-6 5.886245-6 2.031147-6 3.118578-6 2.035968-6 2.013245-6 2.040790-6 1.199750-6 2.045611-6 6.599924-7 2.050433-6 3.351514-7 2.055254-6 0.0 2.227054-6 0.0 2.232536-6 8.298813-7 2.238017-6 1.642106-6 2.243499-6 2.999441-6 2.248980-6 5.057470-6 2.254462-6 7.871910-6 2.259944-6 1.131048-5 2.265425-6 1.500153-5 2.270907-6 1.836724-5 2.276388-6 2.075899-5 2.281870-6 2.165821-5 2.287352-6 2.085897-5 2.292833-6 1.854458-5 2.298315-6 1.521932-5 2.309278-6 8.063312-6 2.314760-6 5.205394-6 2.320241-6 3.102042-6 2.325723-6 1.706459-6 2.331204-6 8.665587-7 2.336686-6 0.0 2.366433-6 0.0 2.375170-6 3.052161+0 2.378083-6 4.056643+0 2.383907-6 7.409790+0 2.389732-6 1.249392+1 2.396285-6 2.050627+1 2.406387-6 3.577471+1 2.413759-6 4.611129+1 2.419390-6 5.148631+1 2.425297-6 5.329544+1 2.431298-6 5.075307+1 2.437525-6 4.412893+1 2.447352-6 2.946686+1 2.453803-6 1.991953+1 2.459992-6 1.253532+1 2.465453-6 7.663254+0 2.471277-6 4.215619+0 2.479650-6 1.205404+0 2.482927-6 0.0 2.543593-6 0.0 2.554549-6 7.288677+0 2.556114-6 8.319292+0 2.562375-6 1.519587+1 2.569027-6 2.651146+1 2.575679-6 4.205390+1 2.586840-6 7.427175+1 2.594070-6 9.380835+1 2.600953-6 1.059059+2 2.606652-6 1.094336+2 2.613035-6 1.046024+2 2.619846-6 9.093005+1 2.629702-6 6.302152+1 2.637504-6 4.085061+1 2.643764-6 2.637173+1 2.650025-6 1.571567+1 2.656286-6 8.645317+0 2.665677-6 2.197675+0 2.668807-6 0.0 3.392566-6 0.0 3.400917-6 4.59838-15 3.409267-6 9.09892-15 3.417617-6 1.66199-14 3.425968-6 2.80235-14 3.434318-6 4.36183-14 3.442669-6 6.26714-14 3.451019-6 8.31235-14 3.459369-6 1.01773-13 3.467720-6 1.15026-13 3.476070-6 1.20008-13 3.484420-6 1.15580-13 3.492771-6 1.02756-13 3.501121-6 8.43303-14 3.517822-6 4.46788-14 3.526172-6 2.88431-14 3.534523-6 1.71884-14 3.542873-6 9.45550-15 3.551223-6 4.80161-15 3.559574-6 0.0 3.959180-6 0.0 3.976234-6 1.070523-1 3.978670-6 1.221894-1 3.988415-6 2.231889-1 3.998160-6 3.763276-1 4.007905-6 5.857530-1 4.013499-6 7.380124-1 4.034882-6 1.833633+0 4.044462-6 2.434644+0 4.056116-6 3.274239+0 4.086158-6 5.696534+0 4.100441-6 6.447739+0 4.112667-6 6.517141+0 4.122682-6 6.078779+0 4.135281-6 5.002995+0 4.158001-6 2.606459+0 4.161441-6 2.266596+0 4.171319-6 1.463235+0 4.181197-6 8.719836-1 4.191075-6 4.796844-1 4.203988-6 1.688894-1 4.210832-6 1.024131-6 4.213873-6 0.0 4.463204-6 0.0 4.463223-6 1.02706-14 4.474209-6 1.35280-11 4.485195-6 2.67651-11 4.496180-6 4.88835-11 4.507166-6 8.24161-11 4.518152-6 1.28268-10 4.527423-6 1.75522-10 4.549711-6 2.696377-2 4.550983-6 2.950390-2 4.560854-6 1.046115-1 4.573387-6 2.131385-1 4.584588-6 3.637029-1 4.595790-6 5.768592-1 4.609792-6 9.284382-1 4.629395-6 1.479064+0 4.640597-6 1.744435+0 4.651798-6 1.908358+0 4.664400-6 1.920975+0 4.675602-6 1.789692+0 4.685403-6 1.583563+0 4.715467-6 7.501229-1 4.719008-6 6.571280-1 4.730210-6 4.194777-1 4.741412-6 2.462512-1 4.750297-6 1.511170-1 4.752613-6 1.292209-1 4.771500-6 2.063463-2 4.775017-6 5.320593-7 4.779195-6 1.26731-11 4.785500-6 1.72770-11 4.796227-6 3.03356-11 4.808573-6 5.482416-3 4.820664-6 3.820333-2 4.832385-6 7.305085-2 4.844106-6 1.294698-1 4.855916-6 2.134591-1 4.867752-6 3.257621-1 4.897341-6 6.602663-1 4.903259-6 7.216679-1 4.915094-6 8.034614-1 4.926930-6 8.265967-1 4.938766-6 7.857768-1 4.951944-6 6.769881-1 4.976321-6 4.329982-1 4.986108-6 3.490176-1 4.997944-6 2.828824-1 5.009780-6 2.593564-1 5.021616-6 2.736802-1 5.045287-6 3.554489-1 5.054219-6 4.032834-1 5.061641-6 4.355347-1 5.073830-6 4.649045-1 5.086019-6 4.682269-1 5.135711-6 3.847866-1 5.185667-6 3.833664-1 5.279125-6 3.601806-1 5.363749-6 3.175420-1 5.402109-6 3.153516-1 5.452994-6 3.216738-1 5.936244-6 2.454383-1 6.355644-6 1.954833-1 6.387084-6 1.053781+0 6.402575-6 1.751730+0 6.419196-6 2.912467+0 6.434840-6 4.395984+0 6.463886-6 7.836746+0 6.481282-6 9.781037+0 6.498855-6 1.105756+1 6.513738-6 1.140794+1 6.529160-6 1.092424+1 6.546178-6 9.518158+0 6.571032-6 6.622719+0 6.590943-6 4.308298+0 6.606930-6 2.811660+0 6.621585-6 1.784675+0 6.637229-6 1.057019+0 6.665110-6 2.649222-1 6.668516-6 1.662440-1 7.152930-6 1.306114-1 7.188692-6 7.995613-1 7.206298-6 1.348048+0 7.223904-6 2.176428+0 7.242060-6 3.347260+0 7.294188-6 7.462851+0 7.313250-6 8.430531+0 7.330606-6 8.720789+0 7.347696-6 8.373011+0 7.366403-6 7.341978+0 7.394462-6 5.124749+0 7.417020-6 3.327990+0 7.434626-6 2.204915+0 7.452232-6 1.387295+0 7.469838-6 8.614247-1 7.499636-6 3.772639-1 7.505050-6 2.933133-1 7.517055-6 3.472454-1 7.567288-6 6.068675-1 7.585554-6 6.710295-1 7.603820-6 6.945899-1 7.622086-6 6.719471-1 7.640352-6 6.080877-1 7.695151-6 3.204197-1 7.713417-6 2.418313-1 7.731684-6 1.837695-1 7.749950-6 1.449789-1 7.786482-6 9.696746-2 8.144757-6 8.253251-2 8.184872-6 1.325266-1 8.204899-6 1.742445-1 8.224946-6 2.379314-1 8.247026-6 3.361364-1 8.304862-6 6.503240-1 8.326654-6 7.279481-1 8.346561-6 7.517067-1 8.366468-6 7.233976-1 8.386375-6 6.491987-1 8.442461-6 3.411768-1 8.466003-6 2.331013-1 8.485910-6 1.675074-1 8.505608-6 1.240070-1 8.545703-6 6.941292-2 8.683555-6 6.544394-2 8.726302-6 8.319859-2 8.747676-6 9.828604-2 8.769049-6 1.214759-1 8.790423-6 1.533952-1 8.854543-6 2.728540-1 8.875917-6 2.999289-1 8.897290-6 3.097808-1 8.918663-6 3.000358-1 8.940037-6 2.728675-1 9.005762-6 1.648814-1 9.027766-6 1.430248-1 9.046904-6 1.347420-1 9.068278-6 1.366476-1 9.111025-6 1.584578-1 9.137786-6 1.795811-1 9.159790-6 1.895910-1 9.193977-6 1.939839-1 9.238686-6 2.180382-1 9.261041-6 2.418681-1 9.283395-6 2.816165-1 9.308807-6 3.469090-1 9.372522-6 5.472023-1 9.399412-6 5.996511-1 9.420164-6 6.131616-1 9.443953-6 5.908373-1 9.469870-6 5.292220-1 9.534051-6 3.155810-1 9.556491-6 2.538760-1 9.578092-6 2.070359-1 9.600343-6 1.716600-1 9.643550-6 1.241892-1 9.674589-6 1.173108-1 9.709252-6 1.179822-1 9.741559-6 1.239076-1 9.789038-6 1.499427-1 9.817694-6 1.711211-1 9.836991-6 1.879560-1 9.879350-6 2.360821-1 9.932897-6 2.990732-1 9.957314-6 3.179970-1 9.981039-6 3.247070-1 1.000555-5 3.184641-1 1.003005-5 3.026599-1 1.007911-5 2.549885-1 1.010374-5 2.356264-1 1.012471-5 2.249257-1 1.014893-5 2.210314-1 1.025150-5 2.472301-1 1.027613-5 2.502955-1 1.039696-5 2.406081-1 1.056322-5 2.343377-1 1.073249-5 2.091996-1 1.080300-5 2.084337-1 1.097230-5 2.259747-1 1.258925-5 2.122405-1 1.403571-5 2.166317-1 1.557892-5 2.363872-1 1.753745-5 2.806794-1 1.958720-5 3.491646-1 2.196641-5 4.573959-1 2.456184-5 6.103769-1 2.468275-5 2.470570+0 2.474321-5 4.005502+0 2.480366-5 6.330700+0 2.483014-5 7.720545+0 2.488946-5 1.885034+1 2.495237-5 3.108074+1 2.501349-5 4.816117+1 2.507460-5 7.124663+1 2.517192-5 1.196745+2 2.529368-5 1.838188+2 2.537429-5 2.132167+2 2.544749-5 2.184795+2 2.550803-5 2.060811+2 2.557204-5 1.785372+2 2.574688-5 7.854954+1 2.580800-5 5.070730+1 2.586911-5 3.050424+1 2.593023-5 1.710097+1 2.605246-5 8.234896-1 2.612362-5 9.614621-1 2.618761-5 1.165075+0 2.625159-5 1.471311+0 2.632266-5 1.944483+0 2.650753-5 3.439895+0 2.657152-5 3.795012+0 2.661920-5 3.910240+0 2.663550-5 4.081006+0 2.670110-5 4.506730+0 2.675834-5 4.727904+0 2.681576-5 5.103571+0 2.688910-5 6.090566+0 2.696548-5 7.844289+0 2.715804-5 1.377564+1 2.721686-5 1.523548+1 2.728591-5 1.590065+1 2.736085-5 1.553769+1 2.748704-5 1.329525+1 2.758202-5 1.138489+1 2.768083-5 1.025246+1 2.777513-5 1.000673+1 2.811206-5 1.004516+1 2.856213-5 9.182620+0 2.965783-5 7.990353+0 2.978918-5 7.865233+0 2.993582-5 1.660495+1 3.001373-5 2.456139+1 3.008705-5 3.586811+1 3.016351-5 5.206576+1 3.037805-5 1.069742+2 3.046153-5 1.202280+2 3.053185-5 1.236475+2 3.060503-5 1.182571+2 3.068434-5 1.034469+2 3.089722-5 4.885718+1 3.096233-5 3.510701+1 3.103566-5 2.370313+1 3.110898-5 1.612090+1 3.125562-5 6.838617+0 3.153460-5 6.936465+0 3.182663-5 7.443457+0 3.206825-5 8.360884+0 3.219030-5 9.142132+0 3.251272-5 1.225288+1 3.262526-5 1.280036+1 3.274304-5 1.255747+1 3.300914-5 1.109087+1 3.321233-5 1.065227+1 3.400282-5 1.018306+1 3.464661-5 9.444447+0 3.660300-5 8.319097+0 3.944653-5 7.325815+0 4.237711-5 6.733319+0 4.680760-5 6.291811+0 5.119617-5 6.208569+0 5.242938-5 6.329149+0 5.411202-5 6.314678+0 6.256947-5 6.891063+0 9.892933-5 1.072475+1 1.284547-4 1.312577+1 1.520529-4 1.445789+1 1.527454-4 1.481596+1 1.534973-4 2.120145+1 1.538733-4 2.638493+1 1.542753-4 3.470945+1 1.547130-4 4.698980+1 1.556682-4 7.748125+1 1.560284-4 8.564742+1 1.562592-4 8.875085+1 1.565708-4 8.988803+1 1.569618-4 8.534089+1 1.573650-4 7.529791+1 1.583997-4 4.177833+1 1.588065-4 3.146771+1 1.590404-4 2.694883+1 1.591693-4 2.532467+1 1.595515-4 2.265532+1 1.598544-4 2.199319+1 1.602148-4 2.221552+1 1.603512-4 2.355657+1 1.606766-4 2.802299+1 1.610863-4 3.554883+1 1.622620-4 6.041716+1 1.627052-4 6.568120+1 1.630505-4 6.677776+1 1.634843-4 6.346438+1 1.639374-4 5.584620+1 1.649546-4 3.428170+1 1.653328-4 2.781773+1 1.657130-4 2.302242+1 1.661016-4 1.978247+1 1.668722-4 1.586101+1 1.716575-4 1.722942+1 1.825500-4 1.842598+1 1.927525-4 1.835565+1 2.237500-4 1.658956+1 2.591301-4 1.581362+1 2.939354-4 1.571408+1 3.001221-4 1.721445+1 3.061078-4 1.676430+1 3.382109-4 1.678454+1 3.543031-4 1.687316+1 4.135748-4 1.652468+1 4.227266-4 1.686349+1 8.748000-4 1.139575+1 1.130217-3 9.144973+0 1.313100-3 7.933485+0 1.319600-3 9.991318+0 1.322848-3 1.172980+1 1.326096-3 1.438440+1 1.329521-3 1.828391+1 1.338735-3 3.174789+1 1.342515-3 3.606242+1 1.345763-3 3.809608+1 1.349031-3 3.830556+1 1.355408-3 3.536261+1 1.361830-3 3.201546+1 1.364977-3 3.167023+1 1.368260-3 3.259189+1 1.381704-3 4.218348+1 1.385016-3 4.339774+1 1.388469-3 4.332105+1 1.393714-3 4.107767+1 1.404682-3 3.518669+1 1.411240-3 3.355627+1 1.417790-3 3.281372+1 1.485637-3 3.382883+1 1.565222-3 3.226879+1 1.692274-3 2.901896+1 1.710561-3 3.001599+1 1.731577-3 3.215586+1 1.880087-3 2.910057+1 1.917308-3 2.991316+1 2.083262-3 2.702360+1 2.134516-3 2.708180+1 2.492980-3 2.210101+1 2.904246-3 1.793381+1 3.311311-3 1.486223+1 3.769207-3 1.230953+1 4.245644-3 1.030537+1 4.855024-3 8.411228+0 5.530444-3 6.879755+0 6.277114-3 5.643567+0 7.195816-3 4.544869+0 7.866672-3 3.952506+0 7.923346-3 4.117851+0 7.955738-3 4.467486+0 7.985323-3 5.067001+0 8.017408-3 6.048940+0 8.081159-3 8.355094+0 8.124095-3 9.418623+0 8.166454-3 9.887984+0 8.286353-3 9.888662+0 8.768084-3 9.122288+0 8.842005-3 9.491179+0 8.975501-3 1.132131+1 9.057978-3 1.168470+1 9.263055-3 1.155755+1 9.442832-3 1.248504+1 9.656710-3 1.229332+1 1.114635-2 9.831938+0 1.289409-2 7.785416+0 1.470673-2 6.282499+0 1.683338-2 5.022348+0 1.902448-2 4.091904+0 2.104435-2 3.445825+0 2.358790-2 2.834071+0 2.620536-2 2.362658+0 2.965018-2 1.905018+0 3.323294-2 1.559050+0 3.760741-2 1.252664+0 4.188199-2 1.034270+0 4.733534-2 8.305454-1 5.364461-2 6.633608-1 5.445483-2 6.550562-1 5.471264-2 6.856819-1 5.489460-2 7.502978-1 5.503362-2 8.419878-1 5.519320-2 1.008641+0 5.536269-2 1.266155+0 5.558023-2 1.699801+0 5.593333-2 2.461142+0 5.618380-2 2.865691+0 5.648362-2 3.121853+0 5.685037-2 3.204837+0 6.717609-2 2.469942+0 7.702354-2 1.974175+0 8.755191-2 1.590194+0 9.894152-2 1.290442+0 1.118762-1 1.043138+0 1.232005-1 8.815705-1 1.380384-1 7.224330-1 1.541036-1 5.953429-1 1.720049-1 4.906364-1 1.905584-1 4.099653-1 2.133519-1 3.362212-1 2.380563-1 2.781839-1 2.675409-1 2.276099-1 3.000000-1 1.877417-1 3.353875-1 1.562461-1 3.738314-1 1.312625-1 4.225328-1 1.084564-1 4.740032-1 9.126394-2 5.293586-1 7.785214-2 6.058202-1 6.471969-2 6.876125-1 5.492073-2 7.874990-1 4.656742-2 9.065460-1 3.970244-2 1.120601+0 3.168018-2 1.347258+0 2.582456-2 1.619761+0 2.105127-2 1.947381+0 1.716025-2 2.235892+0 1.472169-2 2.688134+0 1.200060-2 3.231848+0 9.782468-3 3.885536+0 7.974322-3 4.671441+0 6.500386-3 5.616308+0 5.298885-3 6.752287+0 4.319464-3 8.118035+0 3.521075-3 9.760024+0 2.870256-3 1.000000+1 5.903702-3 1 67000 7 0 1.649300+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.657934+1 1.907463-6-6.405300+1 2.176455-6-6.048363+1 2.287352-6-5.595696+1 2.331204-6-5.165315+1 2.354990-6-4.688824+1 2.365981-6-4.243344+1 2.390460-6-2.857392+1 2.397559-6-2.664183+1 2.402837-6-2.750837+1 2.407206-6-3.020497+1 2.411802-6-3.492871+1 2.418616-6-4.562757+1 2.429798-6-6.690104+1 2.432702-6-6.139896+1 2.439496-6-5.182624+1 2.445470-6-4.701598+1 2.451346-6-4.570378+1 2.459628-6-4.828735+1 2.489284-6-6.696229+1 2.529072-6-4.975044+1 2.540002-6-4.241928+1 2.543593-6-3.843984+1 2.547928-6-3.359994+1 2.555332-6-2.656725+1 2.564234-6-1.630223+1 2.568085-6-1.275348+1 2.569027-6-1.160457+1 2.571045-6-1.006542+1 2.575679-6-7.767159+0 2.577048-6-7.589562+0 2.578076-6-7.675058+0 2.579616-6-8.072694+0 2.581940-6-9.094900+0 2.583309-6-1.015222+1 2.585107-6-1.204921+1 2.586840-6-1.446085+1 2.590157-6-2.055685+1 2.592688-6-2.630842+1 2.599011-6-4.543249+1 2.603940-6-6.365245+1 2.604924-6-6.682109+1 2.606652-6-5.933260+1 2.614368-6-3.075471+1 2.619113-6-1.625688+1 2.619846-6-1.421097+1 2.621130-6-1.106518+1 2.622093-6-8.943967+0 2.623538-6-6.040707+0 2.624982-6-3.313117+0 2.625765-6-1.928763+0 2.627134-6 7.900706-2 2.628161-6 1.346064+0 2.629702-6 2.895652+0 2.630473-6 3.506758+0 2.631243-6 3.966949+0 2.632808-6 4.709333+0 2.633982-6 5.125432+0 2.635743-6 5.390484+0 2.636623-6 5.312937+0 2.640634-6 3.637538+0 2.642199-6 2.781685+0 2.642982-6 2.205559+0 2.643764-6 1.381347+0 2.644547-6 5.187662-1 2.647286-6-1.827592+0 2.648656-6-3.095809+0 2.649340-6-3.821149+0 2.650025-6-4.728985+0 2.658438-6-1.396166+1 2.667242-6-2.197615+1 2.670220-6-2.582964+1 2.675847-6-3.041632+1 2.684213-6-3.496420+1 2.697941-6-3.995599+1 2.724654-6-4.580059+1 2.765313-6-5.068663+1 2.848204-6-5.552969+1 3.021438-6-5.954467+1 3.559574-6-6.313720+1 3.976234-6-6.570685+1 4.045863-6-6.677043+1 4.083900-6-6.621888+1 4.143490-6-5.999978+1 4.203988-6-6.137636+1 4.368818-6-6.353931+1 4.640597-6-6.475080+1 4.727410-6-6.317344+1 4.915094-6-6.441436+1 6.207283-6-6.632476+1 6.327150-6-6.648492+1 6.445896-6-6.255967+1 6.481282-6-6.481209+1 6.500445-6-6.677593+1 6.555402-6-5.929938+1 6.590943-6-5.818695+1 6.729662-6-6.273950+1 7.156599-6-6.697640+1 7.265114-6-6.516442+1 7.305121-6-6.667435+1 7.381808-6-5.969794+1 7.439028-6-5.955894+1 7.567288-6-6.257372+1 8.346561-6-6.424354+1 1.641985-5-6.758282+1 2.056614-5-6.356602+1 2.235366-5-5.837994+1 2.319340-5-5.305806+1 2.371374-5-4.707460+1 2.405174-5-4.061797+1 2.428510-5-3.364502+1 2.443095-5-2.725749+1 2.452369-5-2.168974+1 2.456184-5-1.870718+1 2.463513-5-1.233400+1 2.465894-5-1.005181+1 2.468275-5-7.504048+0 2.471298-5-3.985194+0 2.472810-5-2.109196+0 2.474321-5-5.272459-2 2.477344-5 4.377006+0 2.478855-5 6.809349+0 2.480366-5 9.564222+0 2.482352-5 1.382371+1 2.483493-5 1.717652+1 2.485590-5 2.171574+1 2.488946-5 2.767754+1 2.494451-5 3.669992+1 2.496001-5 4.002216+1 2.503450-5 5.230410+1 2.508361-5 5.802560+1 2.511119-5 5.895704+1 2.515648-5 5.719780+1 2.518635-5 5.331259+1 2.521967-5 4.624063+1 2.524926-5 3.746814+1 2.526591-5 3.130468+1 2.528196-5 2.417925+1 2.529368-5 1.771672+1 2.531597-5 6.063878+0 2.532712-5-1.535858-1 2.533269-5-3.471899+0 2.533548-5-5.219337+0 2.533826-5-7.110921+0 2.536839-5-2.696589+1 2.537945-5-3.545316+1 2.539008-5-4.416476+1 2.542726-5-7.061083+1 2.544749-5-5.369469+1 2.550242-5-1.436406+1 2.550433-5-1.269269+1 2.550803-5-9.901285+0 2.551496-5-5.164413+0 2.552104-5-1.309080+0 2.553166-5 5.037285+0 2.555955-5 2.070355+1 2.556640-5 2.502833+1 2.558297-5 3.325403+1 2.560281-5 4.114727+1 2.562870-5 4.932601+1 2.566771-5 5.796623+1 2.570791-5 6.255339+1 2.573957-5 6.256261+1 2.580036-5 5.507314+1 2.586243-5 4.244613+1 2.593787-5 2.485253+1 2.595219-5 2.184550+1 2.602740-5 7.791152+0 2.603993-5 5.114307+0 2.604620-5 3.606784+0 2.604933-5 2.763377+0 2.605246-5 1.734915+0 2.605691-5 3.466898-1 2.606525-5-1.660069+0 2.607984-5-4.590032+0 2.609079-5-6.519683+0 2.610720-5-9.132360+0 2.613962-5-1.361562+1 2.618761-5-1.911888+1 2.625159-5-2.509959+1 2.635288-5-3.245699+1 2.648016-5-3.914923+1 2.675834-5-4.935884+1 2.700946-5-5.723813+1 2.715804-5-5.805250+1 2.743680-5-5.322094+1 2.758202-5-5.366945+1 2.795955-5-5.848632+1 2.882542-5-6.594726+1 2.928810-5-7.292215+1 2.959003-5-6.237007+1 2.973052-5-5.453607+1 2.978918-5-4.903700+1 2.986250-5-4.199169+1 2.993582-5-3.526895+1 3.002232-5-2.613567+1 3.009564-5-1.953982+1 3.016351-5-1.597720+1 3.019065-5-1.579244+1 3.022113-5-1.676959+1 3.024659-5-1.838113+1 3.027932-5-2.155067+1 3.031115-5-2.574480+1 3.035016-5-3.250969+1 3.037320-5-3.788303+1 3.044276-5-5.751123+1 3.047561-5-6.893469+1 3.048158-5-6.978992+1 3.052256-5-5.566920+1 3.054377-5-4.764095+1 3.059562-5-3.063412+1 3.060503-5-2.697250+1 3.062095-5-2.199662+1 3.067293-5-7.723845+0 3.067681-5-6.539937+0 3.068434-5-4.608146+0 3.069845-5-1.466852+0 3.071079-5 9.484426-1 3.072159-5 2.861080+0 3.074049-5 5.821589+0 3.075467-5 7.752545+0 3.077594-5 1.022147+1 3.079720-5 1.218509+1 3.082220-5 1.391867+1 3.085502-5 1.528188+1 3.087612-5 1.552043+1 3.089722-5 1.496951+1 3.094605-5 1.263324+1 3.096233-5 1.124549+1 3.097150-5 1.031640+1 3.101962-5 6.421183+0 3.102764-5 5.641464+0 3.103566-5 4.667257+0 3.110898-5-2.697932+0 3.112322-5-4.251320+0 3.122289-5-1.265097+1 3.125153-5-1.557905+1 3.126673-5-1.761007+1 3.130449-5-2.090014+1 3.138021-5-2.556309+1 3.149402-5-3.057491+1 3.166426-5-3.582951+1 3.192483-5-4.132933+1 3.227609-5-4.624380+1 3.251272-5-4.695119+1 3.288974-5-4.562516+1 3.386893-5-4.822545+1 3.780000-5-5.194933+1 5.021015-5-5.557285+1 7.811298-5-5.748498+1 1.306534-4-5.768862+1 1.421808-4-6.045583+1 1.442818-4-6.081908+1 1.487565-4-5.541251+1 1.507929-4-5.021590+1 1.518663-4-4.520062+1 1.525659-4-3.974381+1 1.530632-4-3.337500+1 1.534973-4-2.841126+1 1.539203-4-2.289695+1 1.543242-4-1.855583+1 1.546663-4-1.699449+1 1.548005-4-1.691222+1 1.550027-4-1.800559+1 1.551822-4-1.991458+1 1.553697-4-2.294594+1 1.556682-4-3.002709+1 1.560284-4-4.216635+1 1.564845-4-6.040489+1 1.565708-4-5.616447+1 1.570363-4-3.775881+1 1.573650-4-2.758479+1 1.575472-4-2.372400+1 1.577878-4-2.033845+1 1.579898-4-1.873257+1 1.581691-4-1.823632+1 1.583565-4-1.883725+1 1.587264-4-2.288112+1 1.590404-4-2.857737+1 1.591693-4-3.153085+1 1.602148-4-5.124199+1 1.605099-4-5.707097+1 1.607475-4-6.058040+1 1.611743-4-5.689213+1 1.616258-4-5.737262+1 1.620095-4-6.031032+1 1.622620-4-5.593832+1 1.626375-4-4.739503+1 1.630265-4-3.702116+1 1.634843-4-2.503397+1 1.638592-4-1.726069+1 1.640059-4-1.496226+1 1.642164-4-1.260170+1 1.643503-4-1.152911+1 1.644851-4-1.077262+1 1.646905-4-1.014773+1 1.648886-4-1.019403+1 1.652383-4-1.182005+1 1.657130-4-1.572254+1 1.661962-4-2.013676+1 1.668125-4-2.496380+1 1.670288-4-2.709914+1 1.675373-4-3.011738+1 1.684701-4-3.361645+1 1.701342-4-3.717743+1 1.730891-4-4.000758+1 1.786979-4-4.225806+1 1.927525-4-4.229161+1 2.772123-4-4.078420+1 2.987308-4-4.131620+1 3.061078-4-4.001716+1 4.135748-4-3.592373+1 5.308844-4-3.213787+1 6.925676-4-2.966490+1 8.748000-4-2.906647+1 1.039005-3-3.025115+1 1.167112-3-3.289626+1 1.244675-3-3.614587+1 1.296884-3-4.033505+1 1.322848-3-4.439896+1 1.341688-3-5.056707+1 1.353980-3-5.421304+1 1.364977-3-5.354001+1 1.385016-3-5.058907+1 1.401875-3-4.843114+1 1.426839-3-4.214859+1 1.467898-3-3.615132+1 1.530093-3-2.985688+1 1.583679-3-2.645561+1 1.648482-3-2.416727+1 1.692274-3-2.377132+1 1.727171-3-2.463393+1 1.742252-3-2.372481+1 1.778851-3-2.093595+1 1.830704-3-1.898355+1 1.880087-3-1.807560+1 1.909728-3-1.791150+1 1.977700-3-1.540708+1 2.050766-3-1.397489+1 2.106735-3-1.350472+1 2.172219-3-1.175666+1 2.278306-3-1.003505+1 2.432867-3-8.335915+0 2.623837-3-6.918689+0 2.845510-3-5.824519+0 3.068073-3-5.088324+0 3.311311-3-4.592065+0 3.665301-3-4.208822+0 4.081633-3-4.057441+0 4.642981-3-4.169658+0 5.295491-3-4.546941+0 6.036984-3-5.231292+0 6.709942-3-6.144966+0 7.195816-3-7.146268+0 7.535780-3-8.249450+0 7.744234-3-9.365025+0 7.866672-3-1.050162+1 7.945273-3-1.185077+1 8.029662-3-1.361155+1 8.066384-3-1.381924+1 8.109986-3-1.334818+1 8.229398-3-1.094271+1 8.321301-3-9.949393+0 8.474204-3-9.162502+0 8.645954-3-8.903105+0 8.768084-3-9.202365+0 8.909660-3-1.010019+1 8.975501-3-9.816660+0 9.122559-3-8.351993+0 9.225020-3-7.967154+0 9.356517-3-7.793441+0 9.442832-3-7.170668+0 9.558765-3-6.206477+0 9.727215-3-5.315293+0 9.961044-3-4.466158+0 1.025563-2-3.685036+0 1.063945-2-2.933847+0 1.107113-2-2.315302+0 1.152602-2-1.825144+0 1.196766-2-1.454084+0 1.248512-2-1.128833+0 1.302421-2-8.739952-1 1.335999-2-7.472577-1 1.394177-2-5.770279-1 1.437462-2-4.795093-1 1.487560-2-3.908223-1 1.531730-2-3.262310-1 1.581043-2-2.723612-1 1.628934-2-2.363800-1 1.693149-2-2.049804-1 1.762991-2-1.854492-1 1.812778-2-1.799562-1 1.933081-2-1.868483-1 2.037335-2-2.121734-1 2.241120-2-2.888621-1 2.620536-2-4.721944-1 4.039551-2-1.210738+0 4.495011-2-1.497826+0 4.839957-2-1.790704+0 5.090701-2-2.104967+0 5.253843-2-2.422221+0 5.364461-2-2.766138+0 5.432848-2-3.122423+0 5.483576-2-3.594349+0 5.546261-2-4.349313+0 5.574000-2-4.424540+0 5.607525-2-4.157736+0 5.668947-2-3.324445+0 5.721929-2-2.840780+0 5.780213-2-2.506302+0 5.865934-2-2.170847+0 5.997007-2-1.823604+0 6.157460-2-1.525845+0 6.334883-2-1.284173+0 6.561710-2-1.062806+0 6.831639-2-8.755222-1 7.193150-2-6.982936-1 7.508559-2-5.851382-1 7.913137-2-4.809951-1 8.332613-2-4.059045-1 8.755191-2-3.528836-1 9.198323-2-3.160016-1 9.894152-2-2.811108-1 1.061781-1-2.627799-1 1.146628-1-2.576879-1 1.326397-1-2.734323-1 2.056621-1-3.876883-1 2.675409-1-4.552072-1 3.617986-1-5.144973-1 5.128614-1-5.597737-1 8.135620-1-5.915806-1 2.039158+0-6.093521-1 6.158159+0-6.134572-1 1.000000+1-6.133648-1 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.101665-1 1.080511-6 1.588617-1 1.139633-6 2.058954-1 1.201138-6 2.672315-1 1.232954-6 3.054940-1 1.289117-6 3.854465-1 1.341824-6 4.777348-1 1.391289-6 5.832195-1 1.414868-6 6.416510-1 1.460553-6 7.708745-1 1.503382-6 9.145882-1 1.543535-6 1.073695+0 1.581178-6 1.248461+0 1.616468-6 1.439031+0 1.649553-6 1.645431+0 1.680570-6 1.867555+0 1.709648-6 2.105174+0 1.736909-6 2.357927+0 1.762466-6 2.625330+0 1.786426-6 2.906778+0 1.808888-6 3.201550+0 1.829947-6 3.508820+0 1.849689-6 3.827719+0 1.868197-6 4.157970+0 1.885549-6 4.499945+0 1.918083-6 5.230010+0 1.946551-6 5.981050+0 1.971460-6 6.746050+0 1.993255-6 7.514587+0 2.012326-6 8.277689+0 2.029013-6 9.027667+0 2.048000-6 9.986402+0 2.069167-6 1.120389+1 2.088331-6 1.247232+1 2.102704-6 1.355026+1 2.124264-6 1.540333+1 2.151105-6 1.818574+1 2.166950-6 2.014911+1 2.182795-6 2.241495+1 2.198640-6 2.504438+1 2.214485-6 2.811767+1 2.230330-6 3.174317+1 2.246175-6 3.606591+1 2.261599-6 4.112782+1 2.271107-6 4.477345+1 2.280021-6 4.863646+1 2.288378-6 5.272360+1 2.296212-6 5.704195+1 2.303557-6 6.159856+1 2.310443-6 6.640030+1 2.316898-6 7.145357+1 2.322950-6 7.676453+1 2.328624-6 8.233962+1 2.333943-6 8.818645+1 2.343604-6 1.007374+2 2.352370-6 1.150340+2 2.360040-6 1.308451+2 2.366751-6 1.483594+2 2.372623-6 1.676878+2 2.377762-6 1.887872+2 2.382257-6 2.114312+2 2.386191-6 2.352352+2 2.389634-6 2.597179+2 2.392646-6 2.843699+2 2.395281-6 3.087114+2 2.399605-6 3.549041+2 2.405784-6 4.361118+2 2.415101-6 5.961510+2 2.421363-6 7.291279+2 2.425611-6 8.292669+2 2.431552-6 9.784352+2 2.432295-6 9.975019+2 2.437493-6 1.130809+3 2.439536-6 1.182077+3 2.443435-6 1.275798+3 2.446066-6 1.334507+3 2.449205-6 1.398022+3 2.452360-6 1.452977+3 2.455419-6 1.496183+3 2.457973-6 1.523688+3 2.460950-6 1.544981+3 2.464414-6 1.554266+3 2.467199-6 1.549222+3 2.468419-6 1.543473+3 2.471370-6 1.520752+3 2.474102-6 1.488902+3 2.476401-6 1.454467+3 2.479242-6 1.402972+3 2.481759-6 1.349926+3 2.484869-6 1.276043+3 2.487071-6 1.219094+3 2.489470-6 1.153544+3 2.491492-6 1.096113+3 2.493339-6 1.042406+3 2.495567-6 9.766350+2 2.497273-6 9.259572+2 2.499711-6 8.536945+2 2.502552-6 7.707256+2 2.503588-6 7.410019+2 2.506187-6 6.682389+2 2.508787-6 5.985948+2 2.512639-6 5.024029+2 2.514728-6 4.542368+2 2.520910-6 3.298920+2 2.523783-6 2.817782+2 2.531560-6 1.822504+2 2.533926-6 1.605056+2 2.535787-6 1.460489+2 2.537217-6 1.364633+2 2.538843-6 1.271337+2 2.540366-6 1.198689+2 2.541689-6 1.146867+2 2.542986-6 1.106082+2 2.543834-6 1.084636+2 2.544669-6 1.067528+2 2.570975-6 2.618745+2 2.579658-6 4.318572+2 2.583789-6 5.447353+2 2.588242-6 6.946629+2 2.592197-6 8.556062+2 2.595136-6 9.938820+2 2.598430-6 1.169043+3 2.601708-6 1.365559+3 2.603674-6 1.494387+3 2.606871-6 1.721403+3 2.610067-6 1.969982+3 2.616859-6 2.564989+3 2.618358-6 2.707097+3 2.622291-6 3.095062+3 2.625312-6 3.404423+3 2.629246-6 3.815058+3 2.632492-6 4.154498+3 2.635638-6 4.477860+3 2.638885-6 4.799441+3 2.642031-6 5.093315+3 2.644828-6 5.334972+3 2.647919-6 5.575574+3 2.648824-6 5.640102+3 2.652570-6 5.874970+3 2.655495-6 6.019076+3 2.658902-6 6.139586+3 2.661672-6 6.198043+3 2.667803-6 6.198146+3 2.669551-6 6.165827+3 2.674395-6 6.005016+3 2.677439-6 5.854220+3 2.680389-6 5.675420+3 2.683635-6 5.446178+3 2.686782-6 5.196743+3 2.689578-6 4.956989+3 2.692275-6 4.713554+3 2.696371-6 4.328794+3 2.699567-6 4.022414+3 2.703163-6 3.678282+3 2.705960-6 3.414980+3 2.712353-6 2.841776+3 2.714551-6 2.657168+3 2.718746-6 2.326112+3 2.724340-6 1.932420+3 2.730719-6 1.552717+3 2.741762-6 1.060165+3 2.747219-6 8.833018+2 2.749932-6 8.090457+2 2.752634-6 7.430423+2 2.758017-6 6.322435+2 2.763357-6 5.450016+2 2.768656-6 4.760657+2 2.773914-6 4.211718+2 2.779130-6 3.769682+2 2.784306-6 3.408876+2 2.789442-6 3.110012+2 2.794537-6 2.858784+2 2.799592-6 2.644646+2 2.804608-6 2.459818+2 2.809585-6 2.298522+2 2.819460-6 2.029263+2 2.829182-6 1.814197+2 2.838751-6 1.638408+2 2.848171-6 1.492145+2 2.857444-6 1.368703+2 2.866572-6 1.263292+2 2.875557-6 1.172372+2 2.884402-6 1.093265+2 2.893109-6 1.023893+2 2.901679-6 9.626217+1 2.918553-6 8.586840+1 2.934899-6 7.748128+1 2.950734-6 7.058882+1 2.966075-6 6.484195+1 2.980936-6 5.999143+1 2.995332-6 5.585398+1 3.009279-6 5.229135+1 3.022790-6 4.919585+1 3.048967-6 4.400991+1 3.073509-6 3.992356+1 3.096516-6 3.663717+1 3.118086-6 3.395123+1 3.138307-6 3.172569+1 3.157265-6 2.985781+1 3.192810-6 2.681238+1 3.223913-6 2.454272+1 3.251127-6 2.281224+1 3.298753-6 2.022179+1 3.334472-6 1.857203+1 3.388050-6 1.646732+1 3.467042-6 1.393355+1 3.611051-6 1.050082+1 3.712486-6 8.562571+0 3.788563-6 7.197160+0 3.817091-6 6.684059+0 3.842054-6 6.224569+0 3.863896-6 5.808709+0 3.883008-6 5.429388+0 3.899731-6 5.081499+0 3.914364-6 4.761281+0 3.927167-6 4.465955+0 3.938370-6 4.193520+0 3.948173-6 3.942622+0 3.956750-6 3.712414+0 3.971761-6 3.284275+0 3.983018-6 2.944046+0 3.991462-6 2.682366+0 3.997794-6 2.486192+0 4.006106-6 2.235838+0 4.016792-6 1.944906+0 4.019263-6 1.885983+0 4.026679-6 1.737530+0 4.031622-6 1.669037+0 4.034094-6 1.646252+0 4.036565-6 1.632253+0 4.043981-6 1.652399+0 4.046452-6 1.683206+0 4.047688-6 1.703730+0 4.052014-6 1.804879+0 4.054176-6 1.873958+0 4.056339-6 1.956452+0 4.057575-6 2.009932+0 4.061900-6 2.236004+0 4.065145-6 2.448296+0 4.066226-6 2.527772+0 4.070385-6 2.876693+0 4.075043-6 3.354429+0 4.084147-6 4.583342+0 4.092340-6 6.058509+0 4.097764-6 7.241714+0 4.105433-6 9.203684+0 4.110239-6 1.060409+1 4.115447-6 1.226364+1 4.120219-6 1.390474+1 4.124813-6 1.558157+1 4.129455-6 1.735802+1 4.134276-6 1.927063+1 4.138605-6 2.102857+1 4.143307-6 2.295704+1 4.146995-6 2.446749+1 4.152128-6 2.653783+1 4.155791-6 2.797392+1 4.160165-6 2.962197+1 4.165165-6 3.138771+1 4.166338-6 3.178011+1 4.172493-6 3.368234+1 4.176399-6 3.473546+1 4.184868-6 3.654618+1 4.188266-6 3.707641+1 4.194755-6 3.775992+1 4.199083-6 3.797342+1 4.204248-6 3.797782+1 4.209862-6 3.768619+1 4.215520-6 3.710223+1 4.217406-6 3.684798+1 4.222776-6 3.597712+1 4.224565-6 3.564253+1 4.231101-6 3.426049+1 4.235785-6 3.314137+1 4.243304-6 3.118778+1 4.255125-6 2.792490+1 4.261413-6 2.618831+1 4.278342-6 2.183759+1 4.287818-6 1.972797+1 4.295264-6 1.826268+1 4.302477-6 1.700549+1 4.309465-6 1.593312+1 4.316235-6 1.502052+1 4.329351-6 1.355948+1 4.341648-6 1.248730+1 4.353176-6 1.167803+1 4.374791-6 1.050857+1 4.393704-6 9.723654+0 4.410253-6 9.151116+0 4.526115-6 6.274144+0 4.537256-6 6.011976+0 4.548396-6 5.740667+0 4.559537-6 5.458533+0 4.570677-6 5.165956+0 4.581818-6 4.866858+0 4.607309-6 4.217527+0 4.614710-6 4.062932+0 4.621812-6 3.942130+0 4.631739-6 3.834154+0 4.635048-6 3.817413+0 4.646401-6 3.848281+0 4.649239-6 3.879668+0 4.657754-6 4.036293+0 4.662287-6 4.159417+0 4.666614-6 4.303183+0 4.670941-6 4.472402+0 4.676163-6 4.709585+0 4.683627-6 5.107055+0 4.704363-6 6.482901+0 4.711326-6 6.990597+0 4.715503-6 7.294758+0 4.726644-6 8.072899+0 4.728036-6 8.164463+0 4.737784-6 8.752201+0 4.740569-6 8.899918+0 4.748925-6 9.278885+0 4.751719-6 9.382417+0 4.756610-6 9.533864+0 4.760277-6 9.622020+0 4.765779-6 9.712925+0 4.771281-6 9.754659+0 4.776957-6 9.747832+0 4.782633-6 9.693175+0 4.791148-6 9.530071+0 4.793986-6 9.456388+0 4.805339-6 9.082346+0 4.813850-6 8.737579+0 4.822368-6 8.356988+0 4.828044-6 8.091692+0 4.839397-6 7.551930+0 4.870635-6 6.181883+0 4.882624-6 5.753968+0 4.894612-6 5.399916+0 4.906601-6 5.128844+0 4.918589-6 4.947512+0 4.921898-6 4.913792+0 4.931824-6 4.855004+0 4.937762-6 4.849468+0 4.942216-6 4.859145+0 4.948896-6 4.894337+0 4.955576-6 4.951785+0 4.964483-6 5.056739+0 4.994173-6 5.506582+0 5.003080-6 5.626697+0 5.013110-6 5.731858+0 5.019127-6 5.775931+0 5.024099-6 5.800517+0 5.031556-6 5.816823+0 5.039013-6 5.809006+0 5.045184-6 5.785652+0 5.051355-6 5.748847+0 5.062460-6 5.655941+0 5.102146-6 5.248686+0 5.117906-6 5.133496+0 5.125408-6 5.094037+0 5.137750-6 5.048236+0 5.159385-6 5.006298+0 5.189989-6 4.964313+0 5.226244-6 4.877680+0 5.331880-6 4.567016+0 5.379863-6 4.414797+0 5.478820-6 4.072671+0 5.567231-6 3.814521+0 5.601339-6 3.707459+0 5.672070-6 3.475659+0 5.722461-6 3.304022+0 5.772853-6 3.123710+0 5.865812-6 2.774844+0 5.945387-6 2.462273+0 6.017676-6 2.152694+0 6.071893-6 1.900659+0 6.112556-6 1.699272+0 6.144000-6 1.535466+0 6.165926-6 1.416877+0 6.183081-6 1.321613+0 6.208813-6 1.174852+0 6.234545-6 1.024077+0 6.249890-6 9.327523-1 6.265236-6 8.408991-1 6.280581-6 7.491746-1 6.295927-6 6.585418-1 6.311272-6 5.704348-1 6.326618-6 4.870510-1 6.349636-6 3.790250-1 6.357309-6 3.506117-1 6.364982-6 3.279499-1 6.372654-6 3.127326-1 6.380327-6 3.071328-1 6.388000-6 3.139205-1 6.391836-6 3.230216-1 6.397591-6 3.452427-1 6.403346-6 3.795513-1 6.407182-6 4.102828-1 6.410059-6 4.380079-1 6.414375-6 4.879827-1 6.416533-6 5.171052-1 6.420609-6 5.804386-1 6.423756-6 6.374740-1 6.428254-6 7.327108-1 6.434996-6 9.099370-1 6.454657-6 1.736680+0 6.461895-6 2.192808+0 6.468564-6 2.704916+0 6.473599-6 3.157826+0 6.480073-6 3.833977+0 6.487866-6 4.804526+0 6.495419-6 5.928579+0 6.502292-6 7.125718+0 6.508915-6 8.450849+0 6.514826-6 9.785686+0 6.526110-6 1.276109+1 6.533638-6 1.507416+1 6.539024-6 1.689502+1 6.548873-6 2.058404+1 6.555033-6 2.312260+1 6.558316-6 2.454567+1 6.568165-6 2.908791+1 6.574325-6 3.211688+1 6.585121-6 3.770739+1 6.591901-6 4.135177+1 6.599352-6 4.542172+1 6.605969-6 4.904686+1 6.612880-6 5.279566+1 6.618907-6 5.599220+1 6.626593-6 5.991236+1 6.632702-6 6.285777+1 6.640457-6 6.631827+1 6.648175-6 6.939024+1 6.651718-6 7.065932+1 6.659532-6 7.310946+1 6.666811-6 7.492803+1 6.671424-6 7.583455+1 6.678028-6 7.678832+1 6.683516-6 7.726687+1 6.686697-6 7.741291+1 6.697656-6 7.718559+1 6.702638-6 7.671720+1 6.709760-6 7.567176+1 6.714338-6 7.477836+1 6.722085-6 7.290289+1 6.727630-6 7.130467+1 6.734908-6 6.892332+1 6.741926-6 6.636656+1 6.752270-6 6.223454+1 6.760275-6 5.882618+1 6.774533-6 5.252930+1 6.792293-6 4.472711+1 6.795463-6 4.337778+1 6.817657-6 3.459113+1 6.858798-6 2.229133+1 6.867047-6 2.047116+1 6.875255-6 1.885269+1 6.883483-6 1.740848+1 6.891712-6 1.612709+1 6.899940-6 1.499241+1 6.916397-6 1.310006+1 6.932854-6 1.161331+1 6.949310-6 1.043196+1 6.965767-6 9.476610+0 6.982224-6 8.687485+0 6.998681-6 8.021102+0 7.015137-6 7.446308+0 7.039795-6 6.709158+0 7.195008-6 3.430953+0 7.224723-6 2.902807+0 7.247839-6 2.505084+0 7.268065-6 2.169053+0 7.285763-6 1.890387+0 7.301249-6 1.667544+0 7.314800-6 1.499608+0 7.327010-6 1.381912+0 7.337030-6 1.319474+0 7.346108-6 1.298647+0 7.354051-6 1.315882+0 7.361001-6 1.364167+0 7.367082-6 1.436454+0 7.372403-6 1.526123+0 7.377059-6 1.627291+0 7.381133-6 1.734966+0 7.384698-6 1.845090+0 7.387817-6 1.954492+0 7.392934-6 2.162334+0 7.398452-6 2.429235+0 7.405253-6 2.825478+0 7.416131-6 3.632833+0 7.432448-6 5.308577+0 7.441799-6 6.554544+0 7.449871-6 7.813175+0 7.453495-6 8.435410+0 7.461647-6 9.968322+0 7.468109-6 1.131533+1 7.471733-6 1.212155+1 7.479885-6 1.406716+1 7.486347-6 1.573473+1 7.491329-6 1.709210+1 7.501980-6 2.018492+1 7.509260-6 2.242901+1 7.515397-6 2.438683+1 7.523353-6 2.699296+1 7.530444-6 2.935589+1 7.537316-6 3.165789+1 7.545082-6 3.424208+1 7.553380-6 3.694404+1 7.556400-6 3.790367+1 7.566627-6 4.101950+1 7.574774-6 4.331355+1 7.578759-6 4.436177+1 7.587054-6 4.636413+1 7.593704-6 4.777607+1 7.611408-6 5.058098+1 7.617285-6 5.118171+1 7.629646-6 5.188424+1 7.635523-6 5.195159+1 7.641133-6 5.185859+1 7.646744-6 5.161612+1 7.654359-6 5.105803+1 7.660578-6 5.041781+1 7.668741-6 4.934644+1 7.676612-6 4.809051+1 7.683220-6 4.688881+1 7.692339-6 4.504547+1 7.701457-6 4.303273+1 7.706017-6 4.197839+1 7.719695-6 3.869600+1 7.740213-6 3.370102+1 7.756800-6 2.985669+1 7.790761-6 2.318308+1 7.800295-6 2.166533+1 7.809828-6 2.030913+1 7.820138-6 1.901872+1 7.830447-6 1.790082+1 7.839898-6 1.701541+1 7.849349-6 1.625006+1 7.858799-6 1.559090+1 7.868250-6 1.502364+1 7.887151-6 1.410907+1 7.906053-6 1.340296+1 7.922279-6 1.289831+1 7.981659-6 1.131392+1 8.000560-6 1.081977+1 8.038363-6 9.837871+0 8.161603-6 7.122347+0 8.192000-6 6.618373+0 8.215609-6 6.297431+0 8.235732-6 6.088329+0 8.256007-6 5.950966+0 8.265916-6 5.913786+0 8.275977-6 5.897261+0 8.285421-6 5.901479+0 8.299587-6 5.943138+0 8.313754-6 6.024834+0 8.330697-6 6.168255+0 8.356467-6 6.454104+0 8.376590-6 6.701322+0 8.401743-6 6.990245+0 8.416835-6 7.132242+0 8.434235-6 7.252580+0 8.444675-6 7.298967+0 8.460939-6 7.330088+0 8.477203-6 7.311361+0 8.497326-6 7.224699+0 8.517448-6 7.079409+0 8.537571-6 6.890962+0 8.563377-6 6.611551+0 8.657245-6 5.588691+0 8.709224-6 5.130223+0 8.752097-6 4.823247+0 8.773533-6 4.698781+0 8.794970-6 4.597456+0 8.816407-6 4.521673+0 8.833371-6 4.480469+0 8.850335-6 4.455303+0 8.865526-6 4.445071+0 8.880717-6 4.444511+0 8.945027-6 4.485211+0 8.966463-6 4.487675+0 8.984095-6 4.477367+0 9.001726-6 4.454079+0 9.030773-6 4.387565+0 9.052277-6 4.319368+0 9.096405-6 4.152002+0 9.165629-6 3.895719+0 9.237637-6 3.669121+0 9.268654-6 3.569140+0 9.351477-6 3.294200+0 9.374866-6 3.234519+0 9.400567-6 3.194035+0 9.423873-6 3.188294+0 9.441108-6 3.206518+0 9.450929-6 3.226005+0 9.468535-6 3.277508+0 9.480259-6 3.323088+0 9.496195-6 3.397957+0 9.512845-6 3.489160+0 9.562535-6 3.793633+0 9.585673-6 3.921853+0 9.602687-6 3.998998+0 9.622324-6 4.063884+0 9.635693-6 4.091232+0 9.650408-6 4.104742+0 9.663380-6 4.102290+0 9.678227-6 4.083710+0 9.698252-6 4.034593+0 9.720037-6 3.955296+0 9.742650-6 3.852464+0 9.767811-6 3.723916+0 9.850757-6 3.304901+0 9.875526-6 3.200077+0 9.904483-6 3.093813+0 9.924141-6 3.032137+0 9.948449-6 2.968020+0 9.972756-6 2.917796+0 9.997063-6 2.881762+0 1.002151-5 2.859566+0 1.005044-5 2.849757+0 1.009429-5 2.859255+0 1.014291-5 2.879244+0 1.016721-5 2.883262+0 1.019205-5 2.879312+0 1.021583-5 2.866883+0 1.024014-5 2.845910+0 1.028888-5 2.786245+0 1.037152-5 2.677174+0 1.041366-5 2.632174+0 1.054275-5 2.522758+0 1.065116-5 2.430078+0 1.070250-5 2.382873+0 1.076088-5 2.324335+0 1.082097-5 2.256936+0 1.098136-5 2.065349+0 1.107533-5 1.973900+0 1.119135-5 1.880719+0 1.138730-5 1.725909+0 1.149789-5 1.638070+0 1.180000-5 1.401458+0 1.216186-5 1.136417+0 1.259933-5 8.407377-1 1.303167-5 5.840611-1 1.315946-5 5.159309-1 1.350000-5 3.535161-1 1.371757-5 2.646989-1 1.400000-5 1.689917-1 1.419662-5 1.168211-1 1.441848-5 7.402538-2 1.457347-5 5.484604-2 1.462647-5 5.057450-2 1.482147-5 4.490347-2 1.500427-5 5.449310-2 1.517566-5 7.789293-2 1.533633-5 1.135814-1 1.548696-5 1.603461-1 1.566751-5 2.346748-1 1.586955-5 3.427882-1 1.610841-5 5.004215-1 1.630340-5 5.935849-1 1.631467-5 5.954112-1 1.655900-5 5.398797-1 1.675661-5 4.460337-1 1.698859-5 3.417937-1 1.708332-5 3.026716-1 1.724909-5 2.398732-1 1.737801-5 1.965895-1 1.755990-5 1.448970-1 1.774640-5 1.045195-1 1.783376-5 9.059248-2 1.787744-5 8.496243-2 1.792112-5 8.027308-2 1.796480-5 7.656023-2 1.800848-5 7.385787-2 1.805216-5 7.219958-2 1.809584-5 7.161978-2 1.813952-5 7.215455-2 1.818320-5 7.384191-2 1.822688-5 7.672178-2 1.824832-5 7.858381-2 1.827056-5 8.083601-2 1.831424-5 8.622865-2 1.840160-5 1.010397-1 1.848896-5 1.215659-1 1.857632-5 1.482418-1 1.877074-5 2.317469-1 1.892147-5 3.219218-1 1.906119-5 4.282615-1 1.920091-5 5.594405-1 1.934063-5 7.182945-1 1.950000-5 9.371892-1 1.962006-5 1.132251+0 1.975978-5 1.396892+0 1.985293-5 1.598178+0 2.006979-5 2.151312+0 2.027310-5 2.792702+0 2.046370-5 3.524457+0 2.064239-5 4.347702+0 2.080991-5 5.262070+0 2.099569-5 6.462764+0 2.138164-5 9.759082+0 2.217982-5 2.222597+1 2.244770-5 2.927588+1 2.265278-5 3.626741+1 2.283693-5 4.407772+1 2.304010-5 5.490485+1 2.318142-5 6.421086+1 2.332274-5 7.537295+1 2.344048-5 8.643070+1 2.355236-5 9.876878+1 2.366718-5 1.137031+2 2.378199-5 1.314861+2 2.389680-5 1.528467+2 2.397204-5 1.692448+2 2.406902-5 1.938465+2 2.412642-5 2.106087+2 2.421355-5 2.398611+2 2.429864-5 2.738562+2 2.435605-5 3.005379+2 2.441345-5 3.308963+2 2.449791-5 3.838500+2 2.455821-5 4.292844+2 2.461851-5 4.829310+2 2.467881-5 5.471060+2 2.473911-5 6.250475+2 2.480343-5 7.285465+2 2.485971-5 8.424041+2 2.492000-5 9.973503+2 2.495928-5 1.122274+3 2.499233-5 1.245777+3 2.501045-5 1.321807+3 2.504060-5 1.463213+3 2.507075-5 1.625786+3 2.510423-5 1.835040+3 2.514224-5 2.115208+3 2.515602-5 2.229402+3 2.522150-5 2.879179+3 2.534209-5 4.656509+3 2.540369-5 5.921283+3 2.545251-5 7.115224+3 2.548783-5 8.086036+3 2.551888-5 9.011230+3 2.555867-5 1.028777+4 2.561343-5 1.218610+4 2.563609-5 1.300810+4 2.568383-5 1.477861+4 2.571805-5 1.605361+4 2.574641-5 1.709376+4 2.577522-5 1.811866+4 2.579497-5 1.879404+4 2.582506-5 1.976684+4 2.585650-5 2.069193+4 2.589113-5 2.157864+4 2.592139-5 2.222008+4 2.595958-5 2.282903+4 2.599182-5 2.315276+4 2.600560-5 2.323538+4 2.603935-5 2.329300+4 2.605784-5 2.323692+4 2.611604-5 2.266265+4 2.614403-5 2.218199+4 2.617258-5 2.156667+4 2.619656-5 2.096126+4 2.622708-5 2.008711+4 2.625852-5 1.908383+4 2.628334-5 1.823217+4 2.631121-5 1.722786+4 2.633448-5 1.636095+4 2.636441-5 1.522386+4 2.639570-5 1.402577+4 2.642699-5 1.283685+4 2.646239-5 1.152392+4 2.648992-5 1.053883+4 2.655295-5 8.445303+3 2.657530-5 7.766382+3 2.662631-5 6.354092+3 2.666457-5 5.423812+3 2.670079-5 4.644077+3 2.674074-5 3.893675+3 2.680004-5 2.975019+3 2.694327-5 1.532931+3 2.700524-5 1.157358+3 2.703779-5 1.002281+3 2.709685-5 7.789800+2 2.711464-5 7.239226+2 2.714702-5 6.357709+2 2.716801-5 5.860159+2 2.720056-5 5.188266+2 2.723312-5 4.622140+2 2.729822-5 3.750852+2 2.736817-5 3.122565+2 2.738501-5 3.010303+2 2.743553-5 2.750193+2 2.745869-5 2.665323+2 2.748079-5 2.602056+2 2.750289-5 2.554537+2 2.751973-5 2.527948+2 2.754736-5 2.500407+2 2.756993-5 2.490943+2 2.759954-5 2.493391+2 2.763762-5 2.515896+2 2.769656-5 2.577213+2 2.778077-5 2.675369+2 2.784813-5 2.726931+2 2.786287-5 2.732619+2 2.790890-5 2.735039+2 2.795194-5 2.715245+2 2.798396-5 2.686823+2 2.800891-5 2.657050+2 2.804526-5 2.602866+2 2.807855-5 2.543506+2 2.811051-5 2.479425+2 2.815049-5 2.392081+2 2.819218-5 2.295660+2 2.827453-5 2.101627+2 2.841414-5 1.803139+2 2.848569-5 1.674854+2 2.859340-5 1.511454+2 2.872325-5 1.348153+2 2.892904-5 1.128942+2 2.912560-5 9.468590+1 2.936930-5 7.598773+1 2.947209-5 6.968837+1 2.952226-5 6.701690+1 2.956469-5 6.497932+1 2.962803-5 6.232912+1 2.969626-5 6.001326+1 2.975103-5 5.856125+1 2.981154-5 5.737923+1 2.986224-5 5.674193+1 2.990679-5 5.647570+1 2.994722-5 5.651761+1 2.998628-5 5.688267+1 3.001354-5 5.737962+1 3.004062-5 5.812412+1 3.006431-5 5.902896+1 3.009581-5 6.069132+1 3.012534-5 6.285266+1 3.016008-5 6.636289+1 3.019499-5 7.125818+1 3.023018-5 7.800014+1 3.025146-5 8.317039+1 3.027006-5 8.849640+1 3.028167-5 9.224613+1 3.029516-5 9.705358+1 3.030882-5 1.024651+2 3.033530-5 1.146789+2 3.036012-5 1.284929+2 3.038339-5 1.438453+2 3.040521-5 1.606432+2 3.042566-5 1.787688+2 3.046523-5 2.213601+2 3.051028-5 2.841610+2 3.058362-5 4.276416+2 3.063765-5 5.742255+2 3.067520-5 7.006492+2 3.070830-5 8.308505+2 3.074799-5 1.012271+3 3.076302-5 1.088614+3 3.079103-5 1.242612+3 3.080810-5 1.344207+3 3.084699-5 1.597850+3 3.088375-5 1.866540+3 3.095939-5 2.506345+3 3.097298-5 2.633048+3 3.103976-5 3.300474+3 3.106414-5 3.559832+3 3.111068-5 4.071155+3 3.114462-5 4.451944+3 3.117430-5 4.785755+3 3.119908-5 5.062376+3 3.123095-5 5.411204+3 3.126615-5 5.782081+3 3.130244-5 6.141406+3 3.133514-5 6.439308+3 3.136548-5 6.689241+3 3.139873-5 6.929412+3 3.143471-5 7.144932+3 3.146872-5 7.302343+3 3.150380-5 7.414725+3 3.152574-5 7.458385+3 3.156239-5 7.484998+3 3.159101-5 7.465679+3 3.164815-5 7.325449+3 3.168116-5 7.186494+3 3.171001-5 7.033341+3 3.174444-5 6.815721+3 3.177879-5 6.565437+3 3.180276-5 6.374040+3 3.183421-5 6.105417+3 3.187464-5 5.737392+3 3.190870-5 5.413736+3 3.195222-5 4.990675+3 3.198531-5 4.667401+3 3.201841-5 4.347176+3 3.210211-5 3.573005+3 3.222295-5 2.606829+3 3.231404-5 2.025789+3 3.242243-5 1.498497+3 3.245818-5 1.359887+3 3.251181-5 1.180621+3 3.256544-5 1.031774+3 3.265113-5 8.462354+2 3.269552-5 7.708394+2 3.273991-5 7.069728+2 3.282030-5 6.153533+2 3.290148-5 5.475353+2 3.298108-5 4.993827+2 3.302127-5 4.806335+2 3.306146-5 4.650587+2 3.309566-5 4.540370+2 3.314697-5 4.408915+2 3.319827-5 4.312567+2 3.323450-5 4.262451+2 3.328396-5 4.213878+2 3.336635-5 4.171361+2 3.346397-5 4.157165+2 3.358187-5 4.150945+2 3.365570-5 4.136991+2 3.371094-5 4.117544+2 3.380586-5 4.064252+2 3.387544-5 4.010638+2 3.401063-5 3.882916+2 3.426261-5 3.632575+2 3.437774-5 3.534473+2 3.453646-5 3.420351+2 3.556706-5 2.860632+2 3.589862-5 2.717909+2 3.646878-5 2.521404+2 3.708895-5 2.349180+2 3.779534-5 2.189339+2 3.855287-5 2.048133+2 3.938574-5 1.921915+2 3.994296-5 1.849000+2 4.094045-5 1.736386+2 4.191617-5 1.644102+2 4.287570-5 1.567104+2 4.400000-5 1.489198+2 4.549846-5 1.401898+2 4.704349-5 1.327546+2 4.829161-5 1.276549+2 4.981236-5 1.223674+2 5.269742-5 1.139067+2 5.314862-5 1.130818+2 5.400000-5 1.123984+2 5.447627-5 1.117172+2 5.580116-5 1.093153+2 5.654566-5 1.086554+2 5.876197-5 1.089546+2 6.144000-5 1.100661+2 6.461190-5 1.120755+2 6.903969-5 1.162977+2 7.328731-5 1.219846+2 7.829788-5 1.302868+2 8.389769-5 1.412231+2 9.110243-5 1.570943+2 9.952143-5 1.775618+2 1.109175-4 2.076492+2 1.288799-4 2.588711+2 1.364583-4 2.805852+2 1.560459-4 3.333005+2 1.574291-4 3.685141+2 1.582311-4 4.459234+2 1.586042-4 5.123807+2 1.593849-4 7.442666+2 1.597753-4 9.139249+2 1.601657-4 1.116394+3 1.605561-4 1.341390+3 1.613447-4 1.789304+3 1.617272-4 1.957996+3 1.621176-4 2.068490+3 1.625080-4 2.102786+3 1.628984-4 2.057188+3 1.632888-4 1.939217+3 1.644599-4 1.349141+3 1.648503-4 1.153654+3 1.652444-4 9.912670+2 1.653774-4 9.467166+2 1.656337-4 8.772192+2 1.661917-4 8.035756+2 1.664118-4 8.031636+2 1.666041-4 8.149688+2 1.670057-4 8.714979+2 1.674127-4 9.623913+2 1.681801-4 1.170041+3 1.687200-4 1.293342+3 1.690968-4 1.346589+3 1.695133-4 1.363818+3 1.699192-4 1.335826+3 1.703324-4 1.265753+3 1.712849-4 1.001667+3 1.715120-4 9.308666+2 1.719080-4 8.114657+2 1.722974-4 7.055453+2 1.727044-4 6.120719+2 1.735186-4 4.832617+2 1.747662-4 4.042788+2 1.758709-4 3.938792+2 1.771837-4 4.008400+2 1.780623-4 4.068172+2 1.809546-4 4.253804+2 1.865054-4 4.733390+2 1.898423-4 5.002746+2 1.932403-4 5.239271+2 1.972423-4 5.463935+2 2.015018-4 5.645144+2 2.059976-4 5.785274+2 2.120025-4 5.919695+2 2.190000-4 6.028555+2 2.270310-4 6.116902+2 2.652500-4 6.460999+2 2.857721-4 6.641358+2 3.029422-4 6.743033+2 3.058489-4 6.805278+2 3.104479-4 6.934274+2 3.157855-4 7.015894+2 3.213941-4 7.190555+2 3.287801-4 7.386301+2 3.408685-4 7.614478+2 3.521207-4 7.800601+2 3.683427-4 8.134195+2 3.892390-4 8.484337+2 4.150024-4 8.807453+2 4.302370-4 8.950806+2 4.359185-4 9.030419+2 4.499093-4 9.313268+2 4.740885-4 9.661511+2 5.128614-4 1.007391+3 5.561043-4 1.042773+3 6.025759-4 1.071404+3 6.557469-4 1.093151+3 7.136880-4 1.106521+3 7.706816-4 1.108824+3 8.293732-4 1.099786+3 8.917083-4 1.082911+3 9.534799-4 1.057761+3 1.014495-3 1.024506+3 1.070749-3 9.841956+2 1.119759-3 9.387142+2 1.166400-3 8.871533+2 1.202264-3 8.402553+2 1.236979-3 7.869900+2 1.265511-3 7.358223+2 1.286051-3 6.934492+2 1.305029-3 6.485158+2 1.322607-3 6.007446+2 1.336610-3 5.570353+2 1.347096-3 5.201052+2 1.358892-3 4.766743+2 1.367306-3 4.531419+2 1.368477-3 4.512196+2 1.374721-3 4.502308+2 1.378590-3 4.594175+2 1.381950-3 4.742772+2 1.385318-3 4.952670+2 1.388516-3 5.197366+2 1.395114-3 5.764025+2 1.398866-3 6.067764+2 1.402291-3 6.305478+2 1.405625-3 6.494955+2 1.410212-3 6.705242+2 1.415169-3 6.926557+2 1.418811-3 7.134164+2 1.422440-3 7.409034+2 1.425009-3 7.650409+2 1.429460-3 8.149306+2 1.435284-3 8.876125+2 1.437061-3 9.091097+2 1.439295-3 9.343486+2 1.441327-3 9.549015+2 1.444524-3 9.813447+2 1.448118-3 1.001385+3 1.451790-3 1.011451+3 1.455000-3 1.013087+3 1.460380-3 1.006739+3 1.465214-3 9.988978+2 1.468557-3 9.958265+2 1.472051-3 9.963147+2 1.476808-3 1.003996+3 1.478893-3 1.009830+3 1.482269-3 1.022019+3 1.489164-3 1.054571+3 1.507956-3 1.158778+3 1.526310-3 1.254351+3 1.542006-3 1.327885+3 1.560968-3 1.405667+3 1.576930-3 1.460376+3 1.590258-3 1.497852+3 1.605642-3 1.532958+3 1.625479-3 1.568471+3 1.644373-3 1.594684+3 1.672469-3 1.623974+3 1.693284-3 1.638336+3 1.718559-3 1.646760+3 1.752003-3 1.642405+3 1.761796-3 1.643756+3 1.773384-3 1.654713+3 1.780776-3 1.668841+3 1.794041-3 1.706936+3 1.811055-3 1.766502+3 1.825948-3 1.814920+3 1.836031-3 1.842713+3 1.845527-3 1.864854+3 1.856280-3 1.885521+3 1.874380-3 1.911782+3 1.892908-3 1.930655+3 1.918622-3 1.947551+3 1.964995-3 1.965948+3 1.987553-3 1.989370+3 2.027394-3 2.049330+3 2.041871-3 2.067140+3 2.060562-3 2.084780+3 2.085009-3 2.100670+3 2.111866-3 2.110856+3 2.168872-3 2.117742+3 2.192489-3 2.134392+3 2.239701-3 2.188450+3 2.256909-3 2.202072+3 2.288801-3 2.219452+3 2.359296-3 2.243212+3 2.457600-3 2.259167+3 2.614230-3 2.262157+3 2.741689-3 2.254319+3 2.879216-3 2.236144+3 3.053615-3 2.204925+3 3.304171-3 2.147668+3 3.590319-3 2.073243+3 3.845918-3 2.006719+3 4.153349-3 1.919602+3 4.456013-3 1.835276+3 4.659296-3 1.780310+3 5.113874-3 1.659187+3 5.582091-3 1.538672+3 5.832906-3 1.477023+3 6.083593-3 1.416575+3 6.309573-3 1.363410+3 6.564293-3 1.303550+3 6.790082-3 1.251074+3 7.000000-3 1.202386+3 7.181540-3 1.159133+3 7.344750-3 1.119430+3 7.480876-3 1.085259+3 7.608325-3 1.051761+3 7.712452-3 1.022621+3 7.815382-3 9.917761+2 7.886331-3 9.687502+2 7.959754-3 9.426098+2 8.022515-3 9.174025+2 8.073594-3 8.937537+2 8.115061-3 8.715631+2 8.146738-3 8.524938+2 8.256576-3 7.813871+2 8.284269-3 7.681985+2 8.311973-3 7.599703+2 8.327208-3 7.579484+2 8.353138-3 7.588043+2 8.382535-3 7.659320+2 8.417716-3 7.811688+2 8.501607-3 8.276616+2 8.528844-3 8.410565+2 8.558766-3 8.535177+2 8.595622-3 8.655396+2 8.625625-3 8.728987+2 8.672115-3 8.808607+2 8.722021-3 8.859064+2 8.773411-3 8.883009+2 8.833562-3 8.882195+2 8.895291-3 8.852172+2 8.953936-3 8.795605+2 9.008966-3 8.714882+2 9.092024-3 8.541900+2 9.167323-3 8.370853+2 9.211028-3 8.303898+2 9.255022-3 8.285464+2 9.292963-3 8.314593+2 9.339147-3 8.396675+2 9.431104-3 8.609777+2 9.498464-3 8.719193+2 9.569118-3 8.769883+2 9.649393-3 8.802889+2 9.712174-3 8.862033+2 9.806978-3 9.030841+2 9.933136-3 9.271562+2 9.983450-3 9.339241+2 1.004645-2 9.400171+2 1.019576-2 9.478322+2 1.039153-2 9.509436+2 1.062808-2 9.488771+2 1.091223-2 9.413510+2 1.128684-2 9.262815+2 1.185940-2 8.970651+2 1.241831-2 8.653202+2 1.321098-2 8.184448+2 1.421131-2 7.603752+2 1.570505-2 6.813384+2 1.740304-2 6.038737+2 1.966080-2 5.193451+2 2.205301-2 4.477294+2 2.365221-2 4.074759+2 2.614509-2 3.538250+2 2.818383-2 3.166317+2 3.196264-2 2.608341+2 3.587202-2 2.172035+2 3.885095-2 1.904220+2 4.191684-2 1.669629+2 4.534417-2 1.449116+2 4.823707-2 1.290962+2 5.053964-2 1.177542+2 5.226814-2 1.096257+2 5.361980-2 1.032306+2 5.460012-2 9.833805+1 5.532661-2 9.431783+1 5.563309-2 9.240532+1 5.588464-2 9.067541+1 5.624334-2 8.789134+1 5.702120-2 8.136843+1 5.726120-2 7.995641+1 5.745136-2 7.931162+1 5.761460-2 7.913755+1 5.777356-2 7.929706+1 5.800993-2 8.003776+1 5.872457-2 8.367923+1 5.898538-2 8.478008+1 5.937620-2 8.591374+1 5.983922-2 8.661493+1 6.042345-2 8.689989+1 6.117125-2 8.674081+1 6.210332-2 8.611383+1 6.396046-2 8.415310+1 6.590069-2 8.160522+1 6.789945-2 7.876937+1 7.161434-2 7.342363+1 7.585776-2 6.759721+1 8.147725-2 6.059283+1 8.941817-2 5.212655+1 9.914025-2 4.384303+1 1.122172-1 3.535987+1 1.299190-1 2.718008+1 1.820586-1 1.466775+1 2.199835-1 1.032698+1 2.663222-1 7.194287+0 3.494529-1 4.268023+0 5.084521-1 2.057992+0 7.997047-1 8.456431-1 1.347258+0 3.011387-1 2.814822+0 6.938179-2 8.500626+0 7.618822-3 2.567148+1 8.355205-4 7.752663+1 9.161461-5 2.341267+2 1.004536-5 7.070513+2 1.101452-6 2.511886+3 8.727049-8 7.943282+3 8.727049-9 2.511886+4 8.72705-10 7.943282+4 8.72705-11 1.000000+5 5.50640-11 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.148400-6 1.258900-6 3.405000-6 1.584900-6 5.396600-6 1.995300-6 8.553000-6 2.511900-6 1.355600-5 3.162300-6 2.148400-5 3.981100-6 3.405000-5 5.011900-6 5.396500-5 6.309600-6 8.552800-5 7.943300-6 1.355500-4 1.000000-5 2.148300-4 1.258900-5 3.404800-4 1.584900-5 5.393500-4 1.995300-5 8.542700-4 2.511900-5 1.353200-3 3.162300-5 2.143800-3 3.981100-5 3.396700-3 5.011900-5 5.382100-3 6.309600-5 8.528300-3 7.943300-5 1.349200-2 1.000000-4 2.133400-2 1.258900-4 3.373200-2 1.584900-4 5.319200-2 1.995300-4 8.371600-2 2.511900-4 1.311600-1 3.162300-4 2.041700-1 3.981100-4 3.144200-1 5.011900-4 4.755900-1 6.309600-4 7.024700-1 7.943300-4 1.006600+0 1.000000-3 1.394700+0 1.258900-3 1.872000+0 1.584900-3 2.459400+0 1.995300-3 3.198800+0 2.511900-3 4.134600+0 3.162300-3 5.282200+0 3.981100-3 6.655700+0 5.011900-3 8.261700+0 6.309600-3 1.007200+1 7.943300-3 1.205200+1 1.000000-2 1.419300+1 1.258900-2 1.649500+1 1.584900-2 1.890500+1 1.995300-2 2.140300+1 2.511900-2 2.373500+1 3.162300-2 2.575100+1 3.981100-2 2.736500+1 5.011900-2 2.853100+1 6.309600-2 2.923600+1 7.943300-2 2.946200+1 1.000000-1 2.918600+1 1.258900-1 2.844800+1 1.584900-1 2.738900+1 1.995300-1 2.602800+1 2.511900-1 2.446700+1 3.162300-1 2.278700+1 3.981100-1 2.104100+1 5.011900-1 1.928500+1 6.309600-1 1.755400+1 7.943300-1 1.587200+1 1.000000+0 1.425200+1 1.258900+0 1.272700+1 1.584900+0 1.128400+1 1.995300+0 9.939400+0 2.511900+0 8.698600+0 3.162300+0 7.565100+0 3.981100+0 6.540100+0 5.011900+0 5.622300+0 6.309600+0 4.807700+0 7.943300+0 4.091600+0 1.000000+1 3.466700+0 1.258900+1 2.925300+0 1.584900+1 2.459400+0 1.995300+1 2.060900+0 2.511900+1 1.721700+0 3.162300+1 1.434500+0 3.981100+1 1.192300+0 5.011900+1 9.887600-1 6.309600+1 8.183400-1 7.943300+1 6.760600-1 1.000000+2 5.575900-1 1.258900+2 4.591900-1 1.584900+2 3.776300-1 1.995300+2 3.101600-1 2.511900+2 2.544500-1 3.162300+2 2.085100-1 3.981100+2 1.707000-1 5.011900+2 1.396100-1 6.309600+2 1.140900-1 7.943300+2 9.315500-2 1.000000+3 7.600300-2 1.258900+3 6.196500-2 1.584900+3 5.048500-2 1.995300+3 4.110500-2 2.511900+3 3.344800-2 3.162300+3 2.720100-2 3.981100+3 2.210900-2 5.011900+3 1.796100-2 6.309600+3 1.458400-2 7.943300+3 1.183600-2 1.000000+4 9.601200-3 1.258900+4 7.785100-3 1.584900+4 6.310000-3 1.995300+4 5.112200-3 2.511900+4 4.140300-3 3.162300+4 3.351800-3 3.981100+4 2.712600-3 5.011900+4 2.194500-3 6.309600+4 1.774800-3 7.943300+4 1.434800-3 1.000000+5 1.159700-3 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159557-4 3.981072-4 3.976777-4 5.011872-4 5.005110-4 6.309573-4 6.298955-4 7.943282-4 7.926666-4 1.000000-3 9.974044-4 1.258925-3 1.254886-3 1.584893-3 1.578577-3 1.995262-3 1.985351-3 2.511886-3 2.496326-3 3.162278-3 3.137826-3 3.981072-3 3.942727-3 5.011872-3 4.951865-3 6.309573-3 6.215946-3 7.943282-3 7.797566-3 1.000000-2 9.773485-3 1.258925-2 1.223735-2 1.584893-2 1.530228-2 1.995262-2 1.910876-2 2.511886-2 2.382273-2 3.162278-2 2.964651-2 3.981072-2 3.681668-2 5.011872-2 4.560753-2 6.309573-2 5.634620-2 7.943282-2 6.939296-2 1.000000-1 8.522939-2 1.258925-1 1.043457-1 1.584893-1 1.272539-1 1.995262-1 1.547181-1 2.511886-1 1.875102-1 3.162278-1 2.265094-1 3.981072-1 2.727286-1 5.011872-1 3.273733-1 6.309573-1 3.918566-1 7.943282-1 4.678760-1 1.000000+0 5.573526-1 1.258925+0 6.625014-1 1.584893+0 7.868589-1 1.995262+0 9.339458-1 2.511886+0 1.108527+0 3.162278+0 1.316227+0 3.981072+0 1.564200+0 5.011872+0 1.861093+0 6.309573+0 2.217374+0 7.943282+0 2.645783+0 1.000000+1 3.162384+0 1.258925+1 3.786460+0 1.584893+1 4.541603+0 1.995262+1 5.456840+0 2.511886+1 6.567648+0 3.162278+1 7.917519+0 3.981072+1 9.560237+0 5.011872+1 1.156092+1 6.309573+1 1.400054+1 7.943282+1 1.697818+1 1.000000+2 2.061558+1 1.258925+2 2.506278+1 1.584893+2 3.050435+1 1.995262+2 3.716807+1 2.511886+2 4.533300+1 3.162278+2 5.534557+1 3.981072+2 6.762999+1 5.011872+2 8.271319+1 6.309573+2 1.012429+2 7.943282+2 1.240183+2 1.000000+3 1.520269+2 1.258925+3 1.864912+2 1.584893+3 2.289170+2 1.995262+3 2.811760+2 2.511886+3 3.455540+2 3.162278+3 4.249365+2 3.981072+3 5.228216+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88196-10 1.995262-5 1.090625-9 2.511886-5 1.728496-9 3.162278-5 2.739513-9 3.981072-5 4.341885-9 5.011872-5 6.881405-9 6.309573-5 1.090598-8 7.943282-5 1.727645-8 1.000000-4 2.737318-8 1.258925-4 4.337421-8 1.584893-4 6.868558-8 1.995262-4 1.087565-7 2.511886-4 1.720986-7 3.162278-4 2.720834-7 3.981072-4 4.294713-7 5.011872-4 6.762703-7 6.309573-4 1.061798-6 7.943282-4 1.661620-6 1.000000-3 2.595646-6 1.258925-3 4.039201-6 1.584893-3 6.316003-6 1.995262-3 9.911404-6 2.511886-3 1.556024-5 3.162278-3 2.445116-5 3.981072-3 3.834474-5 5.011872-3 6.000776-5 6.309573-3 9.362761-5 7.943282-3 1.457164-4 1.000000-2 2.265149-4 1.258925-2 3.519044-4 1.584893-2 5.466542-4 1.995262-2 8.438664-4 2.511886-2 1.296138-3 3.162278-2 1.976264-3 3.981072-2 2.994035-3 5.011872-2 4.511197-3 6.309573-2 6.749537-3 7.943282-2 1.003987-2 1.000000-1 1.477061-2 1.258925-1 2.154687-2 1.584893-1 3.123543-2 1.995262-1 4.480813-2 2.511886-1 6.367848-2 3.162278-1 8.971841-2 3.981072-1 1.253785-1 5.011872-1 1.738139-1 6.309573-1 2.391007-1 7.943282-1 3.264522-1 1.000000+0 4.426474-1 1.258925+0 5.964240-1 1.584893+0 7.980343-1 1.995262+0 1.061317+0 2.511886+0 1.403360+0 3.162278+0 1.846051+0 3.981072+0 2.416871+0 5.011872+0 3.150780+0 6.309573+0 4.092199+0 7.943282+0 5.297500+0 1.000000+1 6.837616+0 1.258925+1 8.802795+0 1.584893+1 1.130733+1 1.995262+1 1.449578+1 2.511886+1 1.855122+1 3.162278+1 2.370526+1 3.981072+1 3.025048+1 5.011872+1 3.855780+1 6.309573+1 4.909520+1 7.943282+1 6.245464+1 1.000000+2 7.938442+1 1.258925+2 1.008298+2 1.584893+2 1.279850+2 1.995262+2 1.623582+2 2.511886+2 2.058556+2 3.162278+2 2.608822+2 3.981072+2 3.304772+2 5.011872+2 4.184740+2 6.309573+2 5.297144+2 7.943282+2 6.703100+2 1.000000+3 8.479731+2 1.258925+3 1.072434+3 1.584893+3 1.355976+3 1.995262+3 1.714086+3 2.511886+3 2.166332+3 3.162278+3 2.737341+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.480000-6 4.462480+6 5.700000-6 3.794740+6 6.309573-6 2.463001+6 6.918310-6 1.653831+6 7.585776-6 1.102474+6 8.317638-6 7.297546+5 9.120108-6 4.794061+5 9.760000-6 3.500462+5 9.760000-6 1.350166+6 9.940000-6 1.282986+6 1.000000-5 1.262859+6 1.023293-5 1.188871+6 1.060000-5 1.089819+6 1.094000-5 1.014580+6 1.094000-5 1.696790+6 1.100000-5 1.676966+6 1.122018-5 1.610212+6 1.135011-5 1.574437+6 1.165000-5 1.500392+6 1.180000-5 1.467226+6 1.216186-5 1.396494+6 1.230269-5 1.373413+6 1.258925-5 1.329152+6 1.303167-5 1.273666+6 1.310000-5 1.266740+6 1.350000-5 1.228560+6 1.365000-5 1.217398+6 1.400000-5 1.192947+6 1.420000-5 1.182580+6 1.445440-5 1.170167+6 1.450000-5 1.168362+6 1.462177-5 1.164362+6 1.500000-5 1.152836+6 1.515000-5 1.150484+6 1.550000-5 1.145622+6 1.554900-5 1.145251+6 1.566751-5 1.145203+6 1.610000-5 1.145599+6 1.655900-5 1.152305+6 1.670000-5 1.154487+6 1.678804-5 1.156324+6 1.698244-5 1.161738+6 1.737801-5 1.172986+6 1.750000-5 1.177111+6 1.785000-5 1.191228+6 1.800000-5 1.197349+6 1.830000-5 1.210931+6 1.870000-5 1.231698+6 1.920000-5 1.260126+6 1.920700-5 1.260565+6 1.950000-5 1.279073+6 1.972423-5 1.294164+6 2.018366-5 1.325295+6 2.020000-5 1.326560+6 2.070000-5 1.365528+6 2.113489-5 1.399723+6 2.130000-5 1.413390+6 2.137962-5 1.420011+6 2.194700-5 1.470317+6 2.213095-5 1.486769+6 2.270000-5 1.539994+6 2.317395-5 1.586921+6 2.353000-5 1.623667+6 2.426610-5 1.700667+6 2.454709-5 1.731446+6 2.600160-5 1.899173+6 2.630268-5 1.934663+6 2.691535-5 2.009259+6 2.900000-5 2.274055+6 2.906000-5 2.281924+6 2.906000-5 2.397624+7 2.940000-5 2.243077+7 2.995000-5 2.036471+7 3.000000-5 2.020304+7 3.054921-5 1.854482+7 3.126079-5 1.680534+7 3.162278-5 1.606712+7 3.198895-5 1.537226+7 3.273407-5 1.416912+7 3.311311-5 1.364371+7 3.350000-5 1.314335+7 3.427678-5 1.227906+7 3.467369-5 1.187984+7 3.473000-5 1.182793+7 3.473000-5 2.125267+7 3.515000-5 2.021230+7 3.570000-5 1.902293+7 3.575000-5 1.892062+7 3.589219-5 1.864817+7 3.630781-5 1.788797+7 3.650000-5 1.755954+7 3.672823-5 1.719835+7 3.715352-5 1.655820+7 3.801894-5 1.542348+7 3.810000-5 1.532491+7 3.845918-5 1.491720+7 3.920000-5 1.415052+7 3.935501-5 1.400547+7 4.070000-5 1.286859+7 4.073803-5 1.284027+7 4.120975-5 1.250163+7 4.220000-5 1.185695+7 4.265795-5 1.158538+7 4.315191-5 1.131680+7 4.365158-5 1.106533+7 4.400000-5 1.090008+7 4.518559-5 1.038960+7 4.677351-5 9.817310+6 4.731513-5 9.649411+6 4.897788-5 9.201512+6 4.954502-5 9.068237+6 5.011872-5 8.945551+6 5.069907-5 8.831336+6 5.308844-5 8.443535+6 5.370318-5 8.361508+6 5.400000-5 8.324582+6 5.432503-5 8.286924+6 5.495409-5 8.219157+6 5.673000-5 8.055924+6 5.673000-5 8.109261+6 5.770000-5 8.038006+6 5.800000-5 8.018535+6 5.850000-5 7.987010+6 5.956621-5 7.929453+6 5.970000-5 7.922586+6 6.070000-5 7.877102+6 6.165950-5 7.842300+6 6.180000-5 7.838119+6 6.237348-5 7.822803+6 6.309573-5 7.803181+6 6.382635-5 7.787233+6 6.400000-5 7.784097+6 6.456542-5 7.772952+6 6.531306-5 7.761299+6 6.606934-5 7.753833+6 6.760830-5 7.747657+6 6.800000-5 7.745625+6 6.900000-5 7.743505+6 7.079458-5 7.744123+6 7.150000-5 7.747709+6 7.161434-5 7.748437+6 7.244360-5 7.749945+6 7.328245-5 7.754254+6 7.413102-5 7.756667+6 7.585776-5 7.766525+6 7.673615-5 7.774677+6 7.800000-5 7.782403+6 7.943282-5 7.788117+6 8.128305-5 7.801230+6 8.150000-5 7.801845+6 8.317638-5 7.808206+6 8.511380-5 7.813077+6 8.609938-5 7.816663+6 8.650000-5 7.816446+6 8.810489-5 7.817736+6 8.900000-5 7.815939+6 8.912509-5 7.815711+6 9.015711-5 7.814499+6 9.300000-5 7.815659+6 9.400000-5 7.811903+6 9.500000-5 7.809075+6 9.660509-5 7.800772+6 9.800000-5 7.794210+6 1.000000-4 7.786781+6 1.011579-4 7.779414+6 1.023293-4 7.769225+6 1.035142-4 7.759756+6 1.047129-4 7.750566+6 1.071519-4 7.733101+6 1.083927-4 7.725093+6 1.100000-4 7.709126+6 1.109175-4 7.700313+6 1.122018-4 7.684824+6 1.150000-4 7.652960+6 1.161449-4 7.640529+6 1.174898-4 7.626116+6 1.190000-4 7.610603+6 1.205000-4 7.587246+6 1.230269-4 7.549266+6 1.244515-4 7.528313+6 1.258925-4 7.507739+6 1.260000-4 7.506219+6 1.273503-4 7.487429+6 1.303167-4 7.431389+6 1.318257-4 7.403531+6 1.364583-4 7.321857+6 1.380384-4 7.286361+6 1.396368-4 7.251197+6 1.412538-4 7.216144+6 1.450000-4 7.137569+6 1.462177-4 7.112760+6 1.496236-4 7.029282+6 1.520000-4 6.972644+6 1.531087-4 6.946746+6 1.566751-4 6.865622+6 1.584893-4 6.821067+6 1.603245-4 6.773587+6 1.659587-4 6.632923+6 1.698244-4 6.540956+6 1.720000-4 6.483154+6 1.722600-4 6.476319+6 1.722600-4 6.888934+6 1.731000-4 6.889522+6 1.737801-4 6.892291+6 1.760000-4 6.908460+6 1.775000-4 6.922910+6 1.786000-4 6.933015+6 1.795000-4 6.939931+6 1.802500-4 6.943846+6 1.802500-4 7.232285+6 1.805000-4 7.236539+6 1.809000-4 7.241771+6 1.815000-4 7.251597+6 1.819701-4 7.257423+6 1.820000-4 7.257816+6 1.825000-4 7.263837+6 1.830000-4 7.267868+6 1.834000-4 7.271765+6 1.845000-4 7.278181+6 1.856000-4 7.280403+6 1.862087-4 7.279565+6 1.865000-4 7.278843+6 1.873000-4 7.274240+6 1.875000-4 7.272793+6 1.885000-4 7.262493+6 1.895000-4 7.247349+6 1.905461-4 7.226255+6 1.908000-4 7.220521+6 1.915000-4 7.202827+6 1.922000-4 7.183338+6 1.926000-4 7.171234+6 1.927525-4 7.166198+6 1.935000-4 7.140322+6 1.940000-4 7.121891+6 1.945000-4 7.102412+6 1.950000-4 7.081694+6 1.957000-4 7.052153+6 1.960000-4 7.038777+6 1.969000-4 6.997304+6 1.980000-4 6.945033+6 1.985000-4 6.920540+6 1.995262-4 6.869490+6 2.010000-4 6.795046+6 2.030000-4 6.691920+6 2.041738-4 6.631673+6 2.050000-4 6.589400+6 2.065380-4 6.511167+6 2.070000-4 6.487597+6 2.080000-4 6.436478+6 2.089296-4 6.388328+6 2.100000-4 6.333635+6 2.137962-4 6.146598+6 2.187762-4 5.920173+6 2.190000-4 5.910481+6 2.213095-4 5.814071+6 2.220000-4 5.785302+6 2.230000-4 5.743163+6 2.264644-4 5.604906+6 2.290868-4 5.507023+6 2.317395-4 5.414284+6 2.330000-4 5.372188+6 2.344229-4 5.326055+6 2.350000-4 5.307932+6 2.365000-4 5.259542+6 2.371374-4 5.239509+6 2.373000-4 5.234303+6 2.400000-4 5.150879+6 2.426610-4 5.073584+6 2.430000-4 5.064080+6 2.454709-4 4.996627+6 2.483133-4 4.923362+6 2.500000-4 4.882151+6 2.511886-4 4.853481+6 2.540973-4 4.784544+6 2.550000-4 4.764152+6 2.570396-4 4.716403+6 2.600160-4 4.650158+6 2.630268-4 4.586747+6 2.635000-4 4.577061+6 2.660725-4 4.525874+6 2.670000-4 4.507934+6 2.691535-4 4.467475+6 2.722701-4 4.408957+6 2.730000-4 4.395111+6 2.770000-4 4.321910+6 2.786121-4 4.293567+6 2.818383-4 4.238798+6 2.851018-4 4.185875+6 2.880000-4 4.138822+6 2.884032-4 4.132450+6 2.951209-4 4.025306+6 3.040000-4 3.896411+6 3.054921-4 3.875137+6 3.090295-4 3.825565+6 3.129700-4 3.770053+6 3.129700-4 4.052152+6 3.162278-4 4.006472+6 3.235937-4 3.907651+6 3.273407-4 3.860019+6 3.280280-4 3.851354+6 3.311311-4 3.811675+6 3.350000-4 3.761898+6 3.427678-4 3.665412+6 3.467369-4 3.619352+6 3.470000-4 3.616305+6 3.507519-4 3.573201+6 3.548134-4 3.526848+6 3.563300-4 3.509335+6 3.570400-4 3.501080+6 3.570400-4 3.570524+6 3.589219-4 3.548839+6 3.600000-4 3.536449+6 3.672823-4 3.455971+6 3.700000-4 3.426744+6 3.758374-4 3.365616+6 3.801894-4 3.320834+6 3.820000-4 3.301675+6 3.845918-4 3.274471+6 3.890451-4 3.229135+6 3.900000-4 3.219649+6 3.935501-4 3.184987+6 4.027170-4 3.097412+6 4.073803-4 3.054278+6 4.168694-4 2.966087+6 4.216965-4 2.923700+6 4.265795-4 2.881073+6 4.315191-4 2.839264+6 4.365158-4 2.797628+6 4.368500-4 2.794730+6 4.368500-4 2.880701+6 4.518559-4 2.756106+6 4.550000-4 2.731360+6 4.623810-4 2.674174+6 4.677351-4 2.633514+6 4.700000-4 2.616368+6 4.731513-4 2.592646+6 4.820000-4 2.527402+6 4.841724-4 2.511861+6 4.897788-4 2.472645+6 4.954502-4 2.433883+6 5.011872-4 2.394677+6 5.069907-4 2.355607+6 5.128614-4 2.317270+6 5.188000-4 2.279391+6 5.248075-4 2.241731+6 5.308844-4 2.204909+6 5.370318-4 2.168471+6 5.415200-4 2.142344+6 5.432503-4 2.132272+6 5.500000-4 2.093214+6 5.623413-4 2.025145+6 5.688529-4 1.990634+6 5.754399-4 1.955819+6 5.821032-4 1.921756+6 5.900000-4 1.882338+6 5.956621-4 1.854728+6 6.025596-4 1.821952+6 6.100000-4 1.787224+6 6.165950-4 1.757448+6 6.200000-4 1.742287+6 6.237348-4 1.725901+6 6.309573-4 1.694687+6 6.382635-4 1.663807+6 6.456542-4 1.633133+6 6.531306-4 1.603020+6 6.606934-4 1.573527+6 6.683439-4 1.544329+6 6.760830-4 1.515553+6 6.839116-4 1.486979+6 7.000000-4 1.430697+6 7.161434-4 1.377351+6 7.244360-4 1.350814+6 7.413102-4 1.299209+6 7.585776-4 1.249041+6 7.673615-4 1.224400+6 7.762471-4 1.200341+6 7.800000-4 1.190432+6 7.852356-4 1.176743+6 8.035261-4 1.130294+6 8.128305-4 1.107702+6 8.222426-4 1.085294+6 8.413951-4 1.041978+6 8.511380-4 1.020809+6 8.609938-4 9.999220+5 8.709636-4 9.795210+5 8.810489-4 9.593107+5 9.015711-4 9.199622+5 9.225714-4 8.820949+5 9.332543-4 8.638418+5 9.440609-4 8.456774+5 9.500000-4 8.359558+5 9.549926-4 8.278859+5 9.660509-4 8.104339+5 9.700000-4 8.043144+5 9.772372-4 7.931892+5 9.885531-4 7.763001+5 1.000000-3 7.598085+5 1.023293-3 7.275722+5 1.035142-3 7.119721+5 1.047129-3 6.966764+5 1.059254-3 6.815702+5 1.083927-3 6.522471+5 1.109175-3 6.239328+5 1.122018-3 6.102924+5 1.135011-3 5.968156+5 1.150000-3 5.818166+5 1.161449-3 5.707132+5 1.174898-3 5.580512+5 1.188502-3 5.455196+5 1.216186-3 5.213773+5 1.230269-3 5.096451+5 1.244515-3 4.981685+5 1.258925-3 4.869534+5 1.273503-3 4.760130+5 1.288250-3 4.651057+5 1.318257-3 4.440968+5 1.350000-3 4.232977+5 1.364583-3 4.142404+5 1.380384-3 4.047180+5 1.412000-3 3.864675+5 1.412000-3 1.213191+6 1.412538-3 1.212251+6 1.428894-3 1.184179+6 1.455000-3 1.141188+6 1.455000-3 1.482113+6 1.462177-3 1.487624+6 1.468000-3 1.492769+6 1.477000-3 1.494065+6 1.480700-3 1.494099+6 1.500000-3 1.498630+6 1.513561-3 1.503786+6 1.519000-3 1.506333+6 1.523000-3 1.506570+6 1.531087-3 1.503865+6 1.531300-3 1.503798+6 1.548817-3 1.492281+6 1.550000-3 1.491535+6 1.555000-3 1.486913+6 1.566751-3 1.473294+6 1.570000-3 1.468780+6 1.580000-3 1.452153+6 1.603245-3 1.406030+6 1.621810-3 1.370691+6 1.659587-3 1.302577+6 1.678804-3 1.269808+6 1.698244-3 1.237871+6 1.717908-3 1.206709+6 1.737801-3 1.176347+6 1.757924-3 1.146754+6 1.778279-3 1.117913+6 1.796200-3 1.093340+6 1.796200-3 1.259266+6 1.798871-3 1.255365+6 1.800000-3 1.253722+6 1.840772-3 1.190472+6 1.850000-3 1.176807+6 1.862087-3 1.159235+6 1.883649-3 1.128831+6 1.920000-3 1.080183+6 1.927525-3 1.070302+6 1.950000-3 1.041556+6 1.972423-3 1.014243+6 1.991800-3 9.912827+5 1.991800-3 1.050915+6 2.000000-3 1.041167+6 2.018366-3 1.019563+6 2.041738-3 9.930035+5 2.065380-3 9.671302+5 2.113489-3 9.174834+5 2.137962-3 8.936441+5 2.162719-3 8.704260+5 2.188900-3 8.463203+5 2.188900-3 8.832964+5 2.220000-3 8.553126+5 2.238721-3 8.389132+5 2.264644-3 8.169527+5 2.290868-3 7.955765+5 2.317395-3 7.747058+5 2.350000-3 7.500860+5 2.371374-3 7.345485+5 2.400000-3 7.144781+5 2.426610-3 6.963969+5 2.454709-3 6.779675+5 2.511886-3 6.423039+5 2.540973-3 6.252187+5 2.570396-3 6.085175+5 2.600160-3 5.922876+5 2.630268-3 5.764754+5 2.660725-3 5.610853+5 2.691535-3 5.459994+5 2.722701-3 5.313277+5 2.754229-3 5.169904+5 2.818383-3 4.894903+5 2.851018-3 4.762433+5 2.884032-3 4.633683+5 2.917427-3 4.508474+5 2.951209-3 4.386295+5 2.985383-3 4.267607+5 3.000000-3 4.218279+5 3.019952-3 4.152294+5 3.090295-3 3.927019+5 3.126079-3 3.818564+5 3.162278-3 3.713268+5 3.198895-3 3.610722+5 3.235937-3 3.511116+5 3.273407-3 3.414260+5 3.300000-3 3.347584+5 3.349654-3 3.227266+5 3.388442-3 3.137200+5 3.450000-3 3.001522+5 3.467369-3 2.964658+5 3.548134-3 2.801669+5 3.589219-3 2.723661+5 3.630781-3 2.647905+5 3.715352-3 2.503001+5 3.758374-3 2.433348+5 3.801894-3 2.365659+5 3.845918-3 2.298976+5 3.900000-3 2.220728+5 4.027170-3 2.050066+5 4.073803-3 1.992165+5 4.168694-3 1.881412+5 4.216965-3 1.828218+5 4.265795-3 1.776125+5 4.300000-3 1.740844+5 4.315191-3 1.725425+5 4.365158-3 1.676082+5 4.570882-3 1.493102+5 4.623810-3 1.450713+5 4.650000-3 1.430370+5 4.731513-3 1.369421+5 4.800000-3 1.321043+5 4.841724-3 1.292433+5 4.897788-3 1.255349+5 4.900000-3 1.253914+5 4.954502-3 1.219071+5 5.011872-3 1.183885+5 5.188000-3 1.084599+5 5.248075-3 1.053453+5 5.308844-3 1.023229+5 5.370318-3 9.938007+4 5.432503-3 9.650855+4 5.500000-3 9.351545+4 5.623413-3 8.834348+4 5.688529-3 8.577943+4 5.821032-3 8.088332+4 5.888437-3 7.853485+4 6.000000-3 7.485823+4 6.095369-3 7.190507+4 6.165950-3 6.981007+4 6.309573-3 6.578515+4 6.382635-3 6.386262+4 6.456542-3 6.199386+4 6.531306-3 6.018083+4 6.606934-3 5.842342+4 6.683439-3 5.671370+4 6.839116-3 5.344743+4 7.000000-3 5.032894+4 7.161434-3 4.743491+4 7.244360-3 4.603880+4 7.300000-3 4.513416+4 7.413102-3 4.336493+4 7.498942-3 4.208778+4 7.585776-3 4.084936+4 7.673615-3 3.964891+4 7.762471-3 3.848247+4 7.852356-3 3.734336+4 8.000000-3 3.557015+4 8.128305-3 3.412005+4 8.222426-3 3.310880+4 8.317638-3 3.212750+4 8.347400-3 3.182929+4 8.347400-3 8.620782+4 8.413951-3 8.453126+4 8.609938-3 7.984773+4 8.810489-3 7.514249+4 8.912509-3 7.288921+4 9.120108-3 6.857865+4 9.274800-3 6.553319+4 9.274800-3 9.006655+4 9.332543-3 8.865204+4 9.340000-3 8.847149+4 9.440609-3 8.608550+4 9.549926-3 8.359362+4 9.550000-3 8.359197+4 9.660509-3 8.108474+4 9.716200-3 7.986056+4 9.716200-3 9.236360+4 9.772372-3 9.100356+4 9.885531-3 8.834788+4 1.000000-2 8.582608+4 1.011579-2 8.337800+4 1.023293-2 8.097656+4 1.040000-2 7.771460+4 1.059254-2 7.419558+4 1.060000-2 7.406371+4 1.071519-2 7.204353+4 1.096478-2 6.788730+4 1.109175-2 6.590241+4 1.122018-2 6.397724+4 1.135011-2 6.210694+4 1.148154-2 6.029257+4 1.161449-2 5.853251+4 1.174898-2 5.683024+4 1.188502-2 5.516487+4 1.190000-2 5.498572+4 1.202264-2 5.353598+4 1.216186-2 5.195260+4 1.230269-2 5.041715+4 1.258925-2 4.748536+4 1.273503-2 4.607556+4 1.288250-2 4.470684+4 1.303167-2 4.337961+4 1.348963-2 3.961438+4 1.350000-2 3.953451+4 1.364583-2 3.843173+4 1.380384-2 3.728457+4 1.396368-2 3.617229+4 1.428894-2 3.404852+4 1.450000-2 3.276228+4 1.462177-2 3.205020+4 1.479108-2 3.109562+4 1.531087-2 2.840354+4 1.540000-2 2.797482+4 1.548817-2 2.755669+4 1.566751-2 2.673265+4 1.579600-2 2.615804+4 1.584893-2 2.592584+4 1.621810-2 2.438337+4 1.650000-2 2.329087+4 1.659587-2 2.293453+4 1.678804-2 2.224288+4 1.698244-2 2.157239+4 1.717908-2 2.091867+4 1.737801-2 2.028527+4 1.757924-2 1.967154+4 1.778279-2 1.907642+4 1.800000-2 1.846857+4 1.840772-2 1.739122+4 1.862087-2 1.686269+4 1.883649-2 1.635008+4 1.927525-2 1.537239+4 1.950000-2 1.490306+4 1.995262-2 1.401081+4 2.000000-2 1.392176+4 2.018366-2 1.358359+4 2.041738-2 1.316928+4 2.065380-2 1.276776+4 2.113489-2 1.199616+4 2.137962-2 1.162800+4 2.162719-2 1.127142+4 2.213095-2 1.058951+4 2.264644-2 9.949805+3 2.290868-2 9.643370+3 2.317395-2 9.346632+3 2.344229-2 9.059037+3 2.371374-2 8.780198+3 2.398833-2 8.510071+3 2.400000-2 8.498849+3 2.426610-2 8.248200+3 2.454709-2 7.994543+3 2.483133-2 7.748886+3 2.511886-2 7.510973+3 2.540973-2 7.278845+3 2.691535-2 6.217608+3 2.722701-2 6.024976+3 2.754229-2 5.838459+3 2.800000-2 5.581170+3 2.818383-2 5.482258+3 2.851018-2 5.311791+3 2.884032-2 5.146757+3 2.917427-2 4.986985+3 2.951209-2 4.832294+3 2.985383-2 4.682498+3 3.090295-2 4.258646+3 3.126079-2 4.125571+3 3.162278-2 3.996664+3 3.235937-2 3.750869+3 3.273407-2 3.633711+3 3.311311-2 3.520301+3 3.349654-2 3.410509+3 3.388442-2 3.303642+3 3.427678-2 3.200186+3 3.507519-2 3.003079+3 3.589219-2 2.817786+3 3.672823-2 2.644149+3 3.715352-2 2.561356+3 3.758374-2 2.481214+3 3.801894-2 2.403321+3 3.845918-2 2.327846+3 3.890451-2 2.254800+3 3.935501-2 2.183607+3 3.981072-2 2.114710+3 4.027170-2 2.048015+3 4.073803-2 1.983459+3 4.168694-2 1.860504+3 4.265795-2 1.745314+3 4.315191-2 1.690435+3 4.365158-2 1.637157+3 4.466836-2 1.535694+3 4.500000-2 1.504484+3 4.570882-2 1.440576+3 4.731513-2 1.307684+3 4.786301-2 1.266212+3 4.897788-2 1.187240+3 5.011872-2 1.113282+3 5.069907-2 1.078060+3 5.128614-2 1.043974+3 5.188000-2 1.010970+3 5.308844-2 9.481222+2 5.370318-2 9.181708+2 5.559043-2 8.332261+2 5.623413-2 8.067201+2 5.688529-2 7.810061+2 5.757400-2 7.550174+2 5.757400-2 4.027127+3 5.821032-2 3.920577+3 5.850000-2 3.873393+3 5.895000-2 3.794363+3 5.956621-2 3.701205+3 5.970000-2 3.681408+3 6.095369-2 3.479458+3 6.100000-2 3.472292+3 6.237348-2 3.282662+3 6.309573-2 3.188732+3 6.350000-2 3.137782+3 6.382635-2 3.095430+3 6.531306-2 2.911912+3 6.683439-2 2.739321+3 6.760830-2 2.656911+3 7.000000-2 2.422870+3 7.079458-2 2.352210+3 7.161434-2 2.282266+3 7.328245-2 2.148541+3 7.413102-2 2.084653+3 7.498942-2 2.022674+3 7.585776-2 1.962531+3 7.852356-2 1.792448+3 7.943282-2 1.737964+3 8.035261-2 1.685140+3 8.128305-2 1.633924+3 8.317638-2 1.536129+3 8.709636-2 1.357808+3 8.810489-2 1.316168+3 9.015711-2 1.236693+3 9.332543-2 1.126259+3 9.440609-2 1.091691+3 9.549926-2 1.058187+3 9.660509-2 1.025715+3 9.772372-2 9.942419+2 9.885531-2 9.637356+2 1.023293-1 8.777299+2 1.035142-1 8.508074+2 1.071519-1 7.749066+2 1.096478-1 7.275548+2 1.135011-1 6.618236+2 1.161449-1 6.213438+2 1.174898-1 6.020443+2 1.188502-1 5.833467+2 1.230269-1 5.306710+2 1.258925-1 4.982292+2 1.288250-1 4.677732+2 1.303167-1 4.532556+2 1.348963-1 4.123556+2 1.364583-1 3.995614+2 1.396368-1 3.750092+2 1.445440-1 3.409851+2 1.479108-1 3.200409+2 1.500000-1 3.079196+2 1.513561-1 3.003849+2 1.548817-1 2.819390+2 1.566751-1 2.731468+2 1.584893-1 2.646289+2 1.621810-1 2.483828+2 1.650000-1 2.368815+2 1.659587-1 2.331369+2 1.698244-1 2.188311+2 1.757924-1 1.990038+2 1.778279-1 1.928046+2 1.840772-1 1.753429+2 1.862087-1 1.698816+2 1.883649-1 1.645910+2 1.927525-1 1.544996+2 1.972423-1 1.450284+2 2.018366-1 1.361413+2 2.065380-1 1.277993+2 2.089296-1 1.238235+2 2.162719-1 1.126236+2 2.213095-1 1.057263+2 2.264644-1 9.931424+1 2.290868-1 9.625560+1 2.317395-1 9.329134+1 2.344229-1 9.041967+1 2.371374-1 8.763646+1 2.398833-1 8.493989+1 2.426610-1 8.232652+1 2.454709-1 7.979414+1 2.511886-1 7.496098+1 2.540973-1 7.265534+1 2.570396-1 7.042091+1 2.600160-1 6.825792+1 2.660725-1 6.412946+1 2.691535-1 6.215994+1 2.722701-1 6.027359+1 2.754229-1 5.844451+1 2.818383-1 5.495140+1 2.884032-1 5.166719+1 2.917427-1 5.009966+1 2.951209-1 4.857971+1 3.000060-1 4.649190+1 3.019952-1 4.567727+1 3.054921-1 4.431057+1 3.090295-1 4.298528+1 3.126079-1 4.170019+1 3.162278-1 4.045536+1 3.198895-1 3.924776+1 3.235937-1 3.807620+1 3.273407-1 3.693975+1 3.311311-1 3.583725+1 3.388442-1 3.373001+1 3.427678-1 3.272340+1 3.467369-1 3.174717+1 3.507519-1 3.080010+1 3.548134-1 2.989747+1 3.630781-1 2.817148+1 3.672823-1 2.734632+1 3.758374-1 2.577056+1 3.801894-1 2.501708+1 3.981072-1 2.221826+1 4.000000-1 2.194854+1 4.027170-1 2.157671+1 4.073803-1 2.095884+1 4.120975-1 2.035901+1 4.168694-1 1.977634+1 4.216965-1 1.921037+1 4.415705-1 1.710878+1 4.466836-1 1.662036+1 4.518559-1 1.614616+1 4.623810-1 1.525521+1 4.677351-1 1.482836+1 4.786301-1 1.401096+1 4.841724-1 1.362019+1 4.897788-1 1.324033+1 4.954502-1 1.287107+1 5.011872-1 1.251214+1 5.069907-1 1.216340+1 5.128614-1 1.183160+1 5.188000-1 1.150899+1 5.308844-1 1.088993+1 5.370318-1 1.059320+1 5.432503-1 1.030455+1 5.495409-1 1.002443+1 5.559043-1 9.751956+0 5.623413-1 9.487022+0 5.688529-1 9.229378+0 5.754399-1 8.984688+0 5.821032-1 8.746487+0 5.956621-1 8.288873+0 6.000000-1 8.149689+0 6.025596-1 8.069126+0 6.095369-1 7.855383+0 6.165950-1 7.647806+0 6.237348-1 7.445893+0 6.309573-1 7.249317+0 6.382635-1 7.057932+0 6.456542-1 6.876118+0 6.531306-1 6.698987+0 6.606935-1 6.526423+0 6.683439-1 6.358322+0 6.760830-1 6.194980+0 6.839117-1 6.036007+0 6.998420-1 5.730328+0 7.079458-1 5.583346+0 7.161434-1 5.440139+0 7.244360-1 5.304101+0 7.328245-1 5.171482+0 7.413102-1 5.042178+0 7.498942-1 4.916156+0 7.585776-1 4.793617+0 7.673615-1 4.674232+0 7.762471-1 4.557823+0 7.852356-1 4.444369+0 8.035261-1 4.225868+0 8.128305-1 4.123331+0 8.413951-1 3.830525+0 8.511380-1 3.737672+0 8.609938-1 3.647303+0 8.709636-1 3.559207+0 8.912509-1 3.389375+0 9.015711-1 3.309882+0 9.120108-1 3.232255+0 9.225714-1 3.156530+0 9.332543-1 3.082591+0 9.440609-1 3.010395+0 9.549926-1 2.939892+0 9.660509-1 2.871107+0 9.772372-1 2.804236+0 9.885531-1 2.738966+0 1.000000+0 2.677122+0 1.011579+0 2.616679+0 1.023293+0 2.557597+0 1.035142+0 2.499879+0 1.047129+0 2.443461+0 1.059254+0 2.388321+0 1.071519+0 2.334454+0 1.083927+0 2.281980+0 1.096478+0 2.230689+0 1.109175+0 2.180550+0 1.122018+0 2.131563+0 1.135011+0 2.083672+0 1.148154+0 2.036859+0 1.161449+0 1.992163+0 1.174898+0 1.948470+0 1.202264+0 1.863961+0 1.216186+0 1.823089+0 1.244515+0 1.744366+0 1.250000+0 1.729722+0 1.258925+0 1.706291+0 1.273503+0 1.669045+0 1.288250+0 1.632631+0 1.318257+0 1.564119+0 1.333521+0 1.530951+0 1.348963+0 1.498497+0 1.364583+0 1.466733+0 1.396368+0 1.405451+0 1.412538+0 1.375775+0 1.428894+0 1.346740+0 1.462177+0 1.290504+0 1.479108+0 1.264062+0 1.513561+0 1.212794+0 1.531087+0 1.187950+0 1.640590+0 1.049761+0 1.678804+0 1.008562+0 1.698244+0 9.885811-1 1.717908+0 9.690008-1 1.737801+0 9.498076-1 1.798871+0 8.947299-1 1.819701+0 8.770897-1 1.840772+0 8.597976-1 1.862087+0 8.428464-1 1.883649+0 8.266996-1 1.905461+0 8.108620-1 1.927525+0 7.953359-1 1.949845+0 7.801099-1 1.972423+0 7.651761-1 2.018366+0 7.362920-1 2.044000+0 7.209258-1 2.089296+0 6.949968-1 2.113489+0 6.817530-1 2.162719+0 6.567321-1 2.187762+0 6.445740-1 2.213095+0 6.326435-1 2.238721+0 6.209343-1 2.290868+0 5.982655-1 2.317395+0 5.872435-1 2.371374+0 5.658050-1 2.398833+0 5.553812-1 2.454709+0 5.356816-1 2.511886+0 5.166900-1 2.540973+0 5.074500-1 2.570396+0 4.983755-1 2.630268+0 4.807923-1 2.660725+0 4.722347-1 2.722701+0 4.555739-1 2.754229+0 4.474650-1 2.818383+0 4.321307-1 2.884032+0 4.173287-1 2.917427+0 4.101207-1 2.951209+0 4.030372-1 3.019952+0 3.892999-1 3.054921+0 3.826080-1 3.126079+0 3.695673-1 3.162278+0 3.632144-1 3.235937+0 3.511851-1 3.311311+0 3.395597-1 3.349654+0 3.338933-1 3.427678+0 3.228426-1 3.507519+0 3.122067-1 3.548134+0 3.070209-1 3.630781+0 2.969063-1 3.672823+0 2.919747-1 3.758374+0 2.826231-1 3.845918+0 2.735752-1 3.890451+0 2.691615-1 4.000000+0 2.588063-1 4.120975+0 2.481829-1 4.168694+0 2.441958-1 4.265795+0 2.364128-1 4.315191+0 2.326148-1 4.415704+0 2.254037-1 4.518559+0 2.184193-1 4.570882+0 2.150094-1 4.677351+0 2.083486-1 4.841724+0 1.987832-1 4.897788+0 1.956935-1 5.011872+0 1.896572-1 5.069907+0 1.867092-1 5.188000+0 1.811123-1 5.308844+0 1.756855-1 5.370318+0 1.730340-1 5.495409+0 1.678505-1 5.688529+0 1.603975-1 5.754399+0 1.579874-1 5.888437+0 1.532754-1 6.025596+0 1.487039-1 6.095369+0 1.465359-1 6.237348+0 1.422964-1 6.309573+0 1.402232-1 6.456542+0 1.361672-1 6.760830+0 1.284348-1 6.839116+0 1.265714-1 7.079458+0 1.211416-1 7.413102+0 1.142625-1 7.498942+0 1.126454-1 7.762471+0 1.079319-1 7.852356+0 1.064053-1 8.000000+0 1.039809-1 8.035261+0 1.034188-1 8.222427+0 1.005265-1 8.317638+0 9.911085-2 8.511380+0 9.633905-2 8.912509+0 9.102581-2 9.015711+0 8.977641-2 9.440609+0 8.494995-2 9.549926+0 8.378467-2 9.772372+0 8.150187-2 9.885531+0 8.038810-2 1.011579+1 7.820680-2 1.023293+1 7.713838-2 1.047129+1 7.504518-2 1.096478+1 7.102777-2 1.109175+1 7.008010-2 1.174898+1 6.552988-2 1.202264+1 6.379400-2 1.230269+1 6.210402-2 1.244515+1 6.127878-2 1.273503+1 5.966158-2 1.288250+1 5.886902-2 1.318257+1 5.731540-2 1.380384+1 5.433011-2 1.400000+1 5.346715-2 1.500000+1 4.944259-2 1.531087+1 4.830571-2 1.566751+1 4.706066-2 1.584893+1 4.645221-2 1.621810+1 4.525914-2 1.640590+1 4.467414-2 1.678804+1 4.352675-2 1.778279+1 4.078554-2 1.819701+1 3.976033-2 1.949845+1 3.683779-2 2.000000+1 3.581830-2 2.041738+1 3.501006-2 2.065380+1 3.456877-2 2.113489+1 3.370304-2 2.137962+1 3.327834-2 2.162719+1 3.285898-2 2.238721+1 3.163238-2 2.371374+1 2.968894-2 2.400000+1 2.930645-2 2.426610+1 2.895932-2 2.600160+1 2.687687-2 2.691535+1 2.589264-2 2.786121+1 2.494445-2 2.800000+1 2.481093-2 2.851018+1 2.433306-2 2.917427+1 2.373716-2 2.951209+1 2.344470-2 3.019952+1 2.287055-2 3.054921+1 2.258878-2 3.235937+1 2.123112-2 3.311311+1 2.071981-2 3.672823+1 1.856761-2 3.845918+1 1.768439-2 4.027170+1 1.684319-2 4.073803+1 1.663923-2 4.168694+1 1.623961-2 4.265795+1 1.584966-2 4.315191+1 1.565821-2 4.365158+1 1.546908-2 4.415704+1 1.528223-2 4.677351+1 1.438129-2 4.786301+1 1.404089-2 4.841724+1 1.387377-2 5.559043+1 1.201685-2 5.888437+1 1.131858-2 6.165950+1 1.078930-2 6.237348+1 1.066089-2 6.309573+1 1.053402-2 6.456542+1 1.028528-2 6.606934+1 1.004246-2 6.683439+1 9.923205-3 6.760830+1 9.805367-3 6.839116+1 9.688930-3 7.161434+1 9.236840-3 7.413102+1 8.915628-3 7.498942+1 8.811079-3 9.120108+1 7.210094-3 1.011579+2 6.483948-3 1.083927+2 6.040946-3 1.096478+2 5.970115-3 1.109175+2 5.900116-3 1.122018+2 5.831023-3 1.135011+2 5.762749-3 1.174898+2 5.562719-3 1.202264+2 5.433244-3 1.230269+2 5.306775-3 1.273503+2 5.122576-3 1.288250+2 5.063152-3 1.333521+2 4.888993-3 1.348963+2 4.832286-3 1.778279+2 3.652205-3 2.018366+2 3.212374-3 2.162719+2 2.995217-3 2.187762+2 2.960480-3 2.213095+2 2.926147-3 2.238721+2 2.892236-3 2.264644+2 2.858723-3 2.344229+2 2.760503-3 2.398833+2 2.696905-3 2.454709+2 2.634773-3 2.540973+2 2.544247-3 2.570396+2 2.514923-3 2.660725+2 2.428963-3 2.691535+2 2.400970-3 3.548134+2 1.817885-3 4.027170+2 1.600267-3 4.315191+2 1.492754-3 4.365158+2 1.475551-3 4.415704+2 1.458547-3 4.466836+2 1.441746-3 4.518559+2 1.425141-3 4.677351+2 1.376465-3 4.786301+2 1.344942-3 4.897788+2 1.314140-3 5.069907+2 1.269256-3 5.128614+2 1.254696-3 5.308844+2 1.212010-3 5.370318+2 1.198107-3 1.412538+3 4.545859-4 1.603245+3 4.004075-4 1.717908+3 3.736285-4 1.737801+3 3.693427-4 1.757924+3 3.651062-4 1.778279+3 3.609194-4 3.589219+3 1.785955-4 3.715352+3 1.725220-4 3.801894+3 1.685881-4 3.890451+3 1.647439-4 4.027170+3 1.591414-4 4.073803+3 1.573194-4 4.216965+3 1.519777-4 4.265795+3 1.502378-4 1.000000+5 6.405987-6 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.480000-6 5.480000-6 9.760000-6 5.480000-6 9.760000-6 8.650360-6 1.094000-5 8.894779-6 1.094000-5 9.717079-6 1.258925-5 9.895380-6 1.445440-5 1.002328-5 1.698244-5 1.010451-5 2.270000-5 1.014984-5 2.906000-5 1.017019-5 2.906000-5 2.726217-5 3.162278-5 2.597119-5 3.427678-5 2.445720-5 3.473000-5 2.418399-5 3.473000-5 2.886074-5 4.677351-5 2.178734-5 4.954502-5 2.025581-5 5.069907-5 1.965866-5 5.370318-5 1.822400-5 5.495409-5 1.768344-5 5.673000-5 1.697268-5 5.673000-5 1.723417-5 5.850000-5 1.658630-5 6.070000-5 1.587913-5 6.309573-5 1.521457-5 6.531306-5 1.469188-5 6.800000-5 1.415642-5 7.079458-5 1.369791-5 7.328245-5 1.336124-5 7.673615-5 1.297923-5 7.943282-5 1.274067-5 8.317638-5 1.247072-5 8.810489-5 1.220435-5 9.500000-5 1.193956-5 1.035142-4 1.172426-5 1.122018-4 1.157678-5 1.260000-4 1.142949-5 1.462177-4 1.131757-5 1.722600-4 1.125471-5 1.722600-4 1.227456-5 1.760000-4 1.255239-5 1.802500-4 1.288571-5 1.802500-4 1.358645-5 1.845000-4 1.395028-5 1.875000-4 1.413783-5 1.908000-4 1.424543-5 1.945000-4 1.424305-5 1.985000-4 1.413034-5 2.050000-4 1.382323-5 2.137962-4 1.337446-5 2.220000-4 1.301023-5 2.290868-4 1.277036-5 2.373000-4 1.258238-5 2.454709-4 1.248731-5 2.550000-4 1.246868-5 2.660725-4 1.254804-5 2.786121-4 1.273052-5 2.951209-4 1.306335-5 3.129700-4 1.349080-5 3.129700-4 1.580941-5 3.570400-4 1.705527-5 3.570400-4 1.772932-5 4.073803-4 1.918342-5 4.368500-4 1.997857-5 4.368500-4 2.139580-5 4.897788-4 2.278960-5 5.500000-4 2.416970-5 6.100000-4 2.537743-5 6.760830-4 2.652155-5 7.585776-4 2.775912-5 8.511380-4 2.894136-5 9.700000-4 3.020764-5 1.083927-3 3.123252-5 1.244515-3 3.244196-5 1.412000-3 3.349260-5 1.412000-3 4.906185-5 1.455000-3 4.914210-5 1.455000-3 5.200890-5 1.523000-3 5.308940-5 1.570000-3 5.345278-5 1.796200-3 5.355949-5 1.796200-3 5.771922-5 1.991800-3 5.817632-5 1.991800-3 6.019262-5 2.188900-3 6.083802-5 2.188900-3 6.295714-5 2.851018-3 6.530875-5 3.715352-3 6.778889-5 4.731513-3 7.010519-5 5.888437-3 7.221693-5 7.413102-3 7.441584-5 8.347400-3 7.552613-5 8.347400-3 9.956145-5 9.274800-3 9.994697-5 9.274800-3 1.057988-4 9.716200-3 1.059629-4 9.716200-3 1.113380-4 1.396368-2 1.137039-4 2.065380-2 1.162358-4 2.951209-2 1.185417-4 4.265795-2 1.208384-4 5.757400-2 1.226003-4 5.757400-2 1.172699-4 1.584893-1 1.178767-4 5.821032-1 1.182503-4 1.000000+5 1.182911-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.480000-6 0.0 1.802500-4 0.0 1.802500-4 7.28008-10 1.809000-4 7.45351-10 1.820000-4 7.82890-10 1.830000-4 8.23863-10 1.845000-4 8.93664-10 1.856000-4 9.48875-10 1.875000-4 1.046521-9 1.885000-4 1.096101-9 1.895000-4 1.141763-9 1.905461-4 1.184661-9 1.915000-4 1.218422-9 1.927525-4 1.253842-9 1.935000-4 1.271065-9 1.945000-4 1.288099-9 1.957000-4 1.300810-9 1.969000-4 1.305946-9 1.980000-4 1.304567-9 1.995262-4 1.294840-9 2.010000-4 1.278411-9 2.030000-4 1.248161-9 2.050000-4 1.211478-9 2.080000-4 1.149099-9 2.100000-4 1.107226-9 2.190000-4 9.12930-10 2.220000-4 8.52625-10 2.264644-4 7.71752-10 2.290868-4 7.28027-10 2.330000-4 6.71085-10 2.365000-4 6.28045-10 2.400000-4 5.92664-10 2.430000-4 5.67745-10 2.454709-4 5.50819-10 2.483133-4 5.35121-10 2.511886-4 5.23092-10 2.540973-4 5.14859-10 2.570396-4 5.10275-10 2.600160-4 5.08886-10 2.635000-4 5.11311-10 2.660725-4 5.15207-10 2.691535-4 5.22600-10 2.730000-4 5.35698-10 2.770000-4 5.53232-10 2.818383-4 5.78666-10 2.884032-4 6.19681-10 2.951209-4 6.68321-10 3.054921-4 7.51956-10 3.129700-4 8.17382-10 3.129700-4 1.658330-9 3.311311-4 1.841914-9 3.570400-4 2.119215-9 3.570400-4 2.573450-9 3.935501-4 2.998404-9 4.265795-4 3.366173-9 4.368500-4 3.475316-9 4.368500-4 4.028576-9 4.731513-4 4.426245-9 4.954502-4 4.652975-9 5.248075-4 4.937118-9 5.688529-4 5.331361-9 6.025596-4 5.609678-9 6.456542-4 5.935957-9 7.000000-4 6.307274-9 7.762471-4 6.765963-9 8.511380-4 7.160681-9 9.225714-4 7.490882-9 1.000000-3 7.811361-9 1.059254-3 8.038931-9 1.161449-3 8.383359-9 1.273503-3 8.716543-9 1.380384-3 9.001399-9 1.412000-3 9.081240-9 1.412000-3 9.678568-9 1.455000-3 9.711462-9 1.455000-3 2.560544-6 1.468000-3 2.774029-6 1.500000-3 3.163405-6 1.519000-3 3.404842-6 1.523000-3 3.447360-6 1.531300-3 3.518070-6 1.550000-3 3.643338-6 1.555000-3 3.669422-6 1.570000-3 3.724371-6 1.580000-3 3.736478-6 1.796200-3 3.589805-6 1.991800-3 3.573593-6 1.991800-3 3.948009-6 2.188900-3 3.976008-6 2.188900-3 4.107126-6 2.691535-3 4.194336-6 3.589219-3 4.315686-6 4.800000-3 4.440691-6 6.309573-3 4.559301-6 8.000000-3 4.661031-6 8.347400-3 4.680157-6 8.347400-3 9.477781-4 8.609938-3 9.501555-4 9.274800-3 9.488867-4 9.274800-3 1.249011-3 9.716200-3 1.251983-3 9.716200-3 1.324583-3 1.303167-2 1.341275-3 1.950000-2 1.356663-3 3.090295-2 1.369119-3 5.559043-2 1.380815-3 5.757400-2 1.381308-3 5.757400-2 4.027625-2 6.683439-2 4.057416-2 8.709636-2 4.095578-2 1.258925-1 4.127442-2 2.065380-1 4.150438-2 6.309573-1 4.175937-2 1.244515+0 4.188564-2 1.000000+5 4.187463-2 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.480000-6 0.0 9.760000-6 4.280000-6 9.760000-6 1.109640-6 1.094000-5 2.045221-6 1.094000-5 1.222921-6 1.165000-5 1.849199-6 1.230269-5 2.433405-6 1.310000-5 3.161753-6 1.420000-5 4.189677-6 1.566751-5 5.595372-6 1.830000-5 8.176307-6 2.906000-5 1.888981-5 2.906000-5 1.797826-6 3.000000-5 3.189871-6 3.054921-5 4.015525-6 3.162278-5 5.651585-6 3.311311-5 7.973174-6 3.473000-5 1.054601-5 3.473000-5 5.869262-6 3.715352-5 9.714091-6 4.677351-5 2.498617-5 5.011872-5 3.016234-5 5.400000-5 3.590761-5 5.673000-5 3.975732-5 5.673000-5 3.949583-5 5.970000-5 4.351150-5 6.400000-5 4.900879-5 6.900000-5 5.501886-5 7.585776-5 6.278954-5 8.650000-5 7.421817-5 1.047129-4 9.301227-5 1.603245-4 1.490469-4 1.722600-4 1.610053-4 1.722600-4 1.599854-4 1.802500-4 1.673643-4 1.802500-4 1.666628-4 1.927525-4 1.784936-4 2.400000-4 2.274577-4 2.951209-4 2.820569-4 3.129700-4 2.994784-4 3.129700-4 2.971589-4 3.570400-4 3.399826-4 3.570400-4 3.393081-4 4.368500-4 4.168679-4 4.368500-4 4.154502-4 7.413102-4 7.137919-4 1.412000-3 1.378498-3 1.412000-3 1.362928-3 1.455000-3 1.405848-3 1.455000-3 1.400431-3 1.717908-3 1.660740-3 1.796200-3 1.739051-3 1.796200-3 1.734889-3 1.991800-3 1.930050-3 1.991800-3 1.927659-3 2.188900-3 2.124086-3 2.188900-3 2.121836-3 8.347400-3 8.267194-3 8.347400-3 7.300060-3 9.274800-3 8.225966-3 9.274800-3 7.919990-3 9.716200-3 8.358254-3 9.716200-3 8.280279-3 3.427678-2 3.278570-2 5.757400-2 5.607009-2 5.757400-2 1.718048-2 5.970000-2 1.919853-2 6.237348-2 2.179941-2 8.317638-2 4.215733-2 1.364583-1 9.501386-2 2.570396+0 2.528398+0 1.000000+5 9.999996+4 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.757400-2 3.272110+3 5.850000-2 3.151480+3 5.895000-2 3.087820+3 5.970000-2 2.999500+3 6.100000-2 2.830380+3 6.350000-2 2.564200+3 7.000000-2 1.986948+3 7.852356-2 1.477134+3 8.709636-2 1.122487+3 1.071519-1 6.438812+2 1.364583-1 3.334030+2 2.213095-1 8.864401+1 2.691535-1 5.218245+1 3.019952-1 3.836847+1 3.507519-1 2.589159+1 4.000000-1 1.846291+1 4.518559-1 1.359127+1 5.069907-1 1.024520+1 5.688529-1 7.778976+0 6.382635-1 5.952972+0 7.161434-1 4.591182+0 8.035261-1 3.568684+0 8.912509-1 2.864198+0 9.885531-1 2.316306+0 1.148154+0 1.723108+0 1.288250+0 1.381088+0 1.462177+0 1.091471+0 1.640590+0 8.877798-1 1.862087+0 7.128092-1 2.113489+0 5.765756-1 2.398833+0 4.696924-1 2.754229+0 3.784331-1 3.162278+0 3.071800-1 3.672823+0 2.469331-1 4.315191+0 1.967316-1 5.069907+0 1.579075-1 6.025596+0 1.257656-1 7.413102+0 9.663631-2 8.912509+0 7.698406-2 1.096478+1 6.007077-2 1.380384+1 4.594885-2 1.778279+1 3.449368-2 2.371374+1 2.510884-2 3.235937+1 1.795587-2 4.677351+1 1.216292-2 7.161434+1 7.812146-3 1.273503+2 4.332566-3 2.540973+2 2.151970-3 5.069907+2 1.073540-3 4.027170+3 1.345970-4 1.000000+5 5.418500-6 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.757400-2 1.160400-4 1.000000+5 1.160400-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.757400-2 4.925100-2 1.000000+5 4.925100-2 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.757400-2 8.206960-3 1.000000+5 9.999995+4 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 9.716200-3 1.250304+4 9.885531-3 1.205539+4 1.040000-2 1.107210+4 1.071519-2 1.055175+4 1.161449-2 9.141671+3 1.258925-2 7.952787+3 1.350000-2 6.991140+3 1.540000-2 5.459780+3 1.950000-2 3.426760+3 2.162719-2 2.769275+3 2.511886-2 2.024886+3 2.985383-2 1.392762+3 3.349654-2 1.078391+3 3.890451-2 7.680297+2 4.570882-2 5.279897+2 5.370318-2 3.598270+2 6.382635-2 2.364413+2 7.585776-2 1.540371+2 9.015711-2 9.956752+1 1.096478-1 6.024223+1 1.364583-1 3.407406+1 2.570396-1 6.438579+0 3.126079-1 3.875212+0 3.672823-1 2.568266+0 4.216965-1 1.817336+0 4.786301-1 1.332648+0 5.432503-1 9.844625-1 6.095369-1 7.526855-1 6.683439-1 6.105567-1 7.498942-1 4.734238-1 8.511380-1 3.606878-1 9.660509-1 2.767747-1 1.071519+0 2.248278-1 1.216186+0 1.755668-1 1.364583+0 1.412557-1 1.531087+0 1.144460-1 1.737801+0 9.149565-2 1.972423+0 7.371240-2 2.238721+0 5.982088-2 2.570396+0 4.800766-2 2.951209+0 3.882293-2 3.427678+0 3.109659-2 4.000000+0 2.492900-2 4.677351+0 2.006861-2 5.495409+0 1.616654-2 6.456542+0 1.311598-2 8.000000+0 1.001600-2 9.772372+0 7.850122-3 1.230269+1 5.981758-3 1.566751+1 4.532824-3 2.041738+1 3.372192-3 2.800000+1 2.389700-3 4.073803+1 1.602786-3 6.309573+1 1.014785-3 1.109175+2 5.684166-4 2.213095+2 2.819477-4 4.415704+2 1.405795-4 1.757924+3 3.517555-5 1.000000+5 6.175300-7 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 9.716200-3 1.456700-4 1.000000+5 1.456700-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.716200-3 1.788300-3 1.000000+5 1.788300-3 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 9.716200-3 7.782230-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 9.274800-3 2.453336+4 9.550000-3 2.303600+4 1.011579-2 1.994300+4 1.174898-2 1.349400+4 1.303167-2 1.020800+4 1.579600-2 6.002400+3 1.800000-2 4.171000+3 2.264644-2 2.155800+3 2.818383-2 1.133100+3 3.507519-2 5.881700+2 4.315191-2 3.129300+2 5.370318-2 1.594000+2 7.000000-2 6.980200+1 1.288250-1 1.031322+1 1.650000-1 4.776180+0 1.972423-1 2.759825+0 2.317395-1 1.693236+0 2.691535-1 1.083346+0 3.090295-1 7.226230-1 3.507519-1 5.021001-1 3.981072-1 3.515442-1 4.466836-1 2.560760-1 5.011872-1 1.879274-1 5.559043-1 1.432522-1 6.165950-1 1.099383-1 6.839117-1 8.496941-2 7.762471-1 6.240888-2 8.413951-1 5.161141-2 9.120108-1 4.299412-2 9.772372-1 3.701261-2 1.059254+0 3.133560-2 1.161449+0 2.608965-2 1.273503+0 2.187259-2 1.412538+0 1.807867-2 1.678804+0 1.329051-2 1.905461+0 1.068168-2 2.162719+0 8.650990-3 2.454709+0 7.056425-3 2.818383+0 5.692807-3 3.235937+0 4.626435-3 3.758374+0 3.723281-3 4.415704+0 2.969533-3 5.188000+0 2.386012-3 6.095369+0 1.930855-3 7.498942+0 1.484325-3 9.015711+0 1.182992-3 1.109175+1 9.234581-4 1.400000+1 7.045200-4 1.819701+1 5.238738-4 2.426610+1 3.815929-4 3.311311+1 2.730323-4 4.786301+1 1.850219-4 7.413102+1 1.174778-4 1.333521+2 6.442477-5 2.660725+2 3.201151-5 5.308844+2 1.597418-5 4.216965+3 2.003119-6 1.000000+5 8.443700-8 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 9.274800-3 1.214300-4 1.000000+5 1.214300-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.274800-3 2.050700-3 1.000000+5 2.050700-3 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.274800-3 7.102670-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.347400-3 5.437853+4 8.609938-3 5.049339+4 9.120108-3 4.333826+4 1.060000-2 2.869620+4 1.190000-2 2.069076+4 1.566751-2 9.335435+3 1.698244-2 7.352242+3 2.065380-2 4.082745+3 2.540973-2 2.160207+3 3.090295-2 1.170822+3 3.758374-2 6.282412+2 4.570882-2 3.341029+2 5.623413-2 1.697725+2 7.161434-2 7.641759+1 1.445440-1 7.376248+0 1.757924-1 3.872332+0 2.065380-1 2.291128+0 2.371374-1 1.470901+0 2.691535-1 9.863169-1 3.054921-1 6.662844-1 3.427678-1 4.698792-1 3.801894-1 3.454818-1 4.216965-1 2.557955-1 4.677351-1 1.907983-1 5.128614-1 1.480260-1 5.623413-1 1.156306-1 6.165950-1 9.091633-2 6.760830-1 7.195408-2 7.413102-1 5.732064-2 8.128305-1 4.597745-2 9.120108-1 3.520590-2 9.660509-1 3.094892-2 1.023293+0 2.738187-2 1.109175+0 2.323592-2 1.216186+0 1.940792-2 1.333521+0 1.633814-2 1.513561+0 1.301330-2 1.737801+0 1.019458-2 1.972423+0 8.208598-3 2.238721+0 6.661209-3 2.570396+0 5.345778-3 2.951209+0 4.323143-3 3.427678+0 3.462796-3 4.000000+0 2.776000-3 4.677351+0 2.234758-3 5.495409+0 1.800195-3 6.456542+0 1.460496-3 8.035261+0 1.109252-3 9.885531+0 8.621805-4 1.244515+1 6.572495-4 1.584893+1 4.982359-4 2.065380+1 3.707691-4 2.851018+1 2.609880-4 4.168694+1 1.741964-4 6.456542+1 1.103405-4 1.135011+2 6.182730-5 2.264644+2 3.067509-5 4.518559+2 1.529564-5 3.589219+3 1.916720-6 1.000000+5 6.876500-8 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.347400-3 1.136300-4 1.000000+5 1.136300-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.347400-3 1.499800-3 1.000000+5 1.499800-3 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.347400-3 6.733970-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.188900-3 3.697618+4 2.317395-3 3.455204+4 2.454709-3 3.199166+4 2.600160-3 2.970014+4 2.754229-3 2.737128+4 3.349654-3 2.049374+4 3.715352-3 1.752513+4 4.027170-3 1.539744+4 4.897788-3 1.113118+4 5.500000-3 9.102940+3 6.382635-3 6.994178+3 7.673615-3 4.987551+3 8.810489-3 3.842218+3 1.023293-2 2.878309+3 1.202264-2 2.092899+3 1.428894-2 1.475193+3 1.698244-2 1.031069+3 2.000000-2 7.288480+2 2.344229-2 5.166867+2 2.754229-2 3.617861+2 3.235937-2 2.514564+2 3.801894-2 1.734756+2 4.500000-2 1.167638+2 5.308844-2 7.858798+1 6.309573-2 5.156800+1 7.498942-2 3.358508+1 9.015711-2 2.109596+1 1.096478-1 1.277136+1 1.445440-1 6.229146+0 2.426610-1 1.598129+0 3.000060-1 9.215589-1 3.548134-1 6.000944-1 4.073803-1 4.242632-1 4.677351-1 3.022111-1 5.308844-1 2.230342-1 6.025596-1 1.658554-1 6.760830-1 1.276453-1 7.585776-1 9.893400-2 8.609938-1 7.534564-2 9.549926-1 6.074267-2 1.071519+0 4.824109-2 1.216186+0 3.767892-2 1.364583+0 3.030734-2 1.531087+0 2.454637-2 1.737801+0 1.962373-2 1.972423+0 1.581027-2 2.238721+0 1.283050-2 2.570396+0 1.029668-2 2.951209+0 8.326713-3 3.427678+0 6.669524-3 4.000000+0 5.346700-3 4.677351+0 4.304318-3 5.495409+0 3.467358-3 6.456542+0 2.813002-3 8.000000+0 2.148200-3 9.772372+0 1.683685-3 1.230269+1 1.282994-3 1.566751+1 9.722118-4 2.041738+1 7.232688-4 2.800000+1 5.125500-4 4.073803+1 3.437568-4 6.309573+1 2.176419-4 1.122018+2 1.204917-4 2.238721+2 5.977344-5 4.466836+2 2.980416-5 1.778279+3 7.457940-6 1.000000+5 1.324500-7 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.188900-3 1.114600-4 1.000000+5 1.114600-4 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.188900-3 7.108200-6 1.000000+5 7.108200-6 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.188900-3 2.070332-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 1.991800-3 5.963247+4 2.137962-3 5.528826+4 2.290868-3 5.119556+4 2.426610-3 4.759975+4 2.660725-3 4.201413+4 2.917427-3 3.680704+4 3.162278-3 3.254232+4 3.450000-3 2.826460+4 3.715352-3 2.488780+4 4.300000-3 1.918020+4 4.650000-3 1.656442+4 5.308844-3 1.278452+4 5.821032-3 1.061341+4 6.606934-3 8.135227+3 7.300000-3 6.559300+3 8.413951-3 4.775732+3 9.332543-3 3.762143+3 1.059254-2 2.790342+3 1.202264-2 2.051863+3 1.350000-2 1.538450+3 1.531087-2 1.117612+3 1.757924-2 7.805963+2 2.018366-2 5.408547+2 2.317395-2 3.719023+2 2.691535-2 2.458690+2 3.126079-2 1.612590+2 3.672823-2 1.015697+2 4.315191-2 6.349212+1 5.128614-2 3.809643+1 6.237348-2 2.117505+1 7.943282-2 1.016425+1 1.548817-1 1.314118+0 1.927525-1 6.766915-1 2.317395-1 3.896841-1 2.691535-1 2.505613-1 3.090295-1 1.677972-1 3.507519-1 1.169589-1 3.981072-1 8.210928-2 4.466836-1 5.993785-2 5.011872-1 4.407398-2 5.559043-1 3.365184-2 6.165950-1 2.586963-2 6.839117-1 2.003039-2 7.585776-1 1.562025-2 8.609938-1 1.160594-2 9.225714-1 9.923806-3 9.885531-1 8.542310-3 1.071519+0 7.235147-3 1.174898+0 6.028165-3 1.288250+0 5.059151-3 1.428894+0 4.186093-3 1.698244+0 3.079955-3 1.927525+0 2.477053-3 2.187762+0 2.007727-3 2.511886+0 1.609315-3 2.884032+0 1.299973-3 3.311311+0 1.057681-3 3.845918+0 8.521548-4 4.518559+0 6.803710-4 5.308844+0 5.472374-4 6.237348+0 4.432989-4 7.762471+0 3.362294-4 9.440609+0 2.646118-4 1.174898+1 2.041121-4 1.500000+1 1.539900-4 1.949845+1 1.147494-4 2.600160+1 8.372342-5 3.672823+1 5.783179-5 5.559043+1 3.742555-5 9.120108+1 2.245518-5 1.778279+2 1.137573-5 3.548134+2 5.665640-6 1.412538+3 1.415903-6 1.000000+5 1.996900-8 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 1.991800-3 9.371000-5 1.000000+5 9.371000-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.991800-3 1.017200-5 1.000000+5 1.017200-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 1.991800-3 1.887918-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.796200-3 1.659262+5 1.920000-3 1.526964+5 1.950000-3 1.489965+5 2.162719-3 1.288646+5 2.540973-3 9.931095+4 2.818383-3 8.334378+4 3.090295-3 7.072878+4 3.349654-3 6.081506+4 3.900000-3 4.535920+4 4.216965-3 3.874884+4 4.900000-3 2.832520+4 5.370318-3 2.323846+4 6.165950-3 1.708267+4 6.839116-3 1.346521+4 7.762471-3 9.991312+3 8.810489-3 7.348784+3 9.885531-3 5.519641+3 1.122018-2 3.998116+3 1.273503-2 2.873451+3 1.450000-2 2.032428+3 1.650000-2 1.429072+3 1.862087-2 1.021095+3 2.113489-2 7.134263+2 2.400000-2 4.944920+2 2.754229-2 3.301492+2 3.162278-2 2.185593+2 3.672823-2 1.387443+2 4.265795-2 8.745391+1 5.011872-2 5.280951+1 5.956621-2 3.053355+1 7.328245-2 1.569014+1 9.885531-2 5.932906+0 1.513561-1 1.473584+0 1.862087-1 7.533781-1 2.213095-1 4.336976-1 2.540973-1 2.806570-1 2.884032-1 1.896002-1 3.235937-1 1.336131-1 3.630781-1 9.483114-2 4.027170-1 7.012681-2 4.466836-1 5.223363-2 4.954502-1 3.918743-2 5.495409-1 2.961812-2 6.025596-1 2.324803-2 6.606935-1 1.837528-2 7.244360-1 1.462318-2 8.035261-1 1.140084-2 8.709636-1 9.426335-3 9.332543-1 8.060076-3 9.885531-1 7.113653-3 1.071519+0 6.023230-3 1.174898+0 5.017686-3 1.288250+0 4.211173-3 1.428894+0 3.484928-3 1.698244+0 2.564166-3 1.927525+0 2.061984-3 2.187762+0 1.671062-3 2.511886+0 1.339265-3 2.884032+0 1.081688-3 3.311311+0 8.800730-4 3.845918+0 7.090905-4 4.518559+0 5.661497-4 5.308844+0 4.553637-4 6.237348+0 3.688736-4 7.762471+0 2.797843-4 9.440609+0 2.201909-4 1.174898+1 1.698466-4 1.500000+1 1.281400-4 1.949845+1 9.548172-5 2.600160+1 6.966836-5 3.672823+1 4.812278-5 5.559043+1 3.114322-5 9.120108+1 1.868529-5 1.778279+2 9.466112-6 3.548134+2 4.714468-6 1.412538+3 1.178222-6 1.000000+5 1.661700-8 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.796200-3 8.512900-5 1.000000+5 8.512900-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.796200-3 3.606800-6 1.000000+5 3.606800-6 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.796200-3 1.707464-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.455000-3 3.409257+5 1.468000-3 3.721138+5 1.477000-3 3.872985+5 1.480700-3 3.929671+5 1.519000-3 4.611793+5 1.523000-3 4.670277+5 1.531300-3 4.757569+5 1.550000-3 4.887249+5 1.555000-3 4.907079+5 1.566751-3 4.923537+5 1.570000-3 4.920008+5 1.580000-3 4.880160+5 1.972423-3 2.786426+5 2.162719-3 2.192887+5 2.400000-3 1.659320+5 2.660725-3 1.248183+5 3.019952-3 8.727074+4 3.273407-3 6.898575+4 3.801894-3 4.420916+4 4.216965-3 3.221272+4 4.800000-3 2.155216+4 5.432503-3 1.454229+4 6.095369-3 1.002694+4 7.000000-3 6.354400+3 7.852356-3 4.320536+3 8.912509-3 2.804946+3 1.023293-2 1.736471+3 1.174898-2 1.066373+3 1.348963-2 6.498539+2 1.548817-2 3.931305+2 1.778279-2 2.361450+2 2.041738-2 1.408959+2 2.371374-2 7.995686+1 2.800000-2 4.229280+1 3.311311-2 2.207308+1 4.073803-2 9.800687+0 5.188000-2 3.768038+0 9.549926-2 3.333181-1 1.174898-1 1.471878-1 1.396368-1 7.499610-2 1.621810-1 4.209120-2 1.883649-1 2.379391-2 2.162719-1 1.415915-2 2.454709-1 8.862994-3 2.754229-1 5.828963-3 3.090295-1 3.860753-3 3.427678-1 2.682071-3 3.801894-1 1.876465-3 4.216965-1 1.322923-3 4.623810-1 9.764322-4 5.011872-1 7.530352-4 5.495409-1 5.640497-4 6.237348-1 3.827914-4 6.839117-1 2.903103-4 7.413102-1 2.292741-4 8.511380-1 1.546597-4 9.015711-1 1.321731-4 9.440609-1 1.172976-4 9.885531-1 1.048012-4 1.035142+0 9.434412-5 1.096478+0 8.339021-5 1.161449+0 7.425699-5 1.244515+0 6.512821-5 1.348963+0 5.634365-5 1.531087+0 4.528117-5 1.819701+0 3.344133-5 2.018366+0 2.804244-5 2.290868+0 2.278856-5 2.630268+0 1.831183-5 3.019952+0 1.482563-5 3.507519+0 1.188962-5 4.120975+0 9.451696-6 4.841724+0 7.570511-6 5.688529+0 6.107648-6 6.760830+0 4.890354-6 8.222427+0 3.828051-6 1.011579+1 2.978006-6 1.273503+1 2.271999-6 1.621810+1 1.723563-6 2.113489+1 1.283371-6 2.917427+1 9.039660-7 4.265795+1 6.036626-7 6.606934+1 3.825246-7 1.174898+2 2.119118-7 2.344229+2 1.051741-7 4.677351+2 5.245208-8 3.715352+3 6.573665-9 1.000000+5 2.44140-10 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.455000-3 6.160500-5 1.000000+5 6.160500-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.455000-3 1.109900-5 1.000000+5 1.109900-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.455000-3 1.382296-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.412000-3 8.267231+5 1.800000-3 5.045544+5 2.000000-3 3.840456+5 2.220000-3 2.907810+5 2.454709-3 2.206491+5 2.722701-3 1.646574+5 3.019952-3 1.222955+5 3.300000-3 9.402660+4 3.801894-3 6.133460+4 4.168694-3 4.612990+4 4.800000-3 2.959794+4 5.500000-3 1.908582+4 6.095369-3 1.362215+4 7.000000-3 8.578980+3 8.000000-3 5.440650+3 8.912509-3 3.741158+3 1.011579-2 2.395854+3 1.174898-2 1.401798+3 1.364583-2 8.124766+2 1.584893-2 4.666588+2 1.840772-2 2.656811+2 2.113489-2 1.567970+2 2.426610-2 9.191958+1 2.818383-2 5.119487+1 3.388442-2 2.468621+1 4.073803-2 1.180652+1 5.069907-2 4.879328+0 9.332543-2 4.069913-1 1.161449-1 1.680948-1 1.364583-1 8.822913-2 1.566751-1 5.112020-2 1.778279-1 3.120685-2 2.018366-1 1.919432-2 2.264644-1 1.242708-2 2.511886-1 8.463471-3 2.754229-1 6.054513-3 3.019952-1 4.360085-3 3.311311-1 3.161352-3 3.630781-1 2.307574-3 4.027170-1 1.631908-3 4.415705-1 1.205811-3 4.786301-1 9.319503-4 5.069907-1 7.792283-4 5.495409-1 6.115367-4 5.956621-1 4.836501-4 6.456542-1 3.853019-4 6.998420-1 3.090505-4 7.673615-1 2.420701-4 8.709636-1 1.740046-4 9.225714-1 1.507184-4 9.772372-1 1.315067-4 1.023293+0 1.186600-4 1.083927+0 1.050268-4 1.161449+0 9.141613-5 1.250000+0 7.947466-5 1.364583+0 6.778448-5 1.819701+0 4.091809-5 2.044000+0 3.360715-5 2.317395+0 2.737730-5 2.660725+0 2.201562-5 3.054921+0 1.783781-5 3.548134+0 1.431344-5 4.168694+0 1.138470-5 4.897788+0 9.123793-6 5.754399+0 7.364494-6 6.839116+0 5.899635-6 8.317638+0 4.620011-6 1.023293+1 3.595734-6 1.288250+1 2.744268-6 1.640590+1 2.082610-6 2.162719+1 1.531595-6 3.019952+1 1.066297-6 4.365158+1 7.212625-7 6.760830+1 4.572389-7 1.202264+2 2.533884-7 2.398833+2 1.257872-7 4.786301+2 6.273678-8 3.801894+3 7.863399-9 1.000000+5 2.98860-10 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.412000-3 5.634000-5 1.000000+5 5.634000-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.412000-3 9.957800-9 1.000000+5 9.957800-9 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.412000-3 1.355650-3 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.368500-4 8.597031+4 4.820000-4 8.165140+4 5.754399-4 7.115865+4 6.200000-4 6.677340+4 6.606934-4 6.274964+4 7.800000-4 5.263000+4 8.413951-4 4.826501+4 9.440609-4 4.188952+4 1.059254-3 3.614418+4 1.174898-3 3.140225+4 1.350000-3 2.580540+4 1.531087-3 2.142305+4 1.757924-3 1.734520+4 2.065380-3 1.342503+4 2.400000-3 1.048960+4 2.754229-3 8.314890+3 3.235937-3 6.289508+3 3.845918-3 4.628237+3 4.570882-3 3.380671+3 5.432503-3 2.453130+3 6.606934-3 1.692822+3 8.000000-3 1.168864+3 9.660509-3 8.052891+2 1.161449-2 5.553426+2 1.396368-2 3.799347+2 1.678804-2 2.578290+2 2.000000-2 1.770360+2 2.371374-2 1.219182+2 2.818383-2 8.290464+1 3.349654-2 5.594081+1 3.981072-2 3.745476+1 4.731513-2 2.488622+1 5.559043-2 1.687012+1 6.683439-2 1.073272+1 8.035261-2 6.775693+0 9.772372-2 4.118811+0 1.230269-1 2.274561+0 1.566751-1 1.210841+0 2.398833-1 3.956427-1 2.951209-1 2.310141-1 3.507519-1 1.485041-1 4.073803-1 1.019883-1 4.677351-1 7.265172-2 5.308844-1 5.361912-2 6.025596-1 3.987500-2 6.760830-1 3.069360-2 7.585776-1 2.379306-2 8.609938-1 1.812200-2 9.549926-1 1.460925-2 1.071519+0 1.160049-2 1.216186+0 9.061034-3 1.364583+0 7.288632-3 1.531087+0 5.903288-3 1.737801+0 4.719467-3 1.972423+0 3.802270-3 2.238721+0 3.085552-3 2.570396+0 2.476195-3 2.951209+0 2.002488-3 3.427678+0 1.604007-3 4.000000+0 1.285900-3 4.677351+0 1.035172-3 5.495409+0 8.338761-4 6.456542+0 6.765243-4 8.000000+0 5.166300-4 9.772372+0 4.049182-4 1.230269+1 3.085442-4 1.566751+1 2.338110-4 2.041738+1 1.739411-4 2.800000+1 1.232700-4 4.027170+1 8.368117-5 6.237348+1 5.296933-5 1.096478+2 2.966649-5 2.187762+2 1.471322-5 4.365158+2 7.335895-6 1.737801+3 1.835404-6 1.000000+5 3.185300-8 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.368500-4 6.746700-5 1.000000+5 6.746700-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.368500-4 2.201400-8 1.000000+5 2.201400-8 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.368500-4 3.693610-4 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.570400-4 6.944442+4 3.890451-4 6.814334+4 4.518559-4 6.647369+4 4.841724-4 6.607260+4 5.248075-4 6.500025+4 5.688529-4 6.355543+4 6.100000-4 6.191800+4 6.531306-4 5.997213+4 7.000000-4 5.762160+4 7.585776-4 5.454905+4 8.222426-4 5.128251+4 8.810489-4 4.833879+4 9.549926-4 4.478590+4 1.047129-3 4.075145+4 1.135011-3 3.727339+4 1.244515-3 3.341076+4 1.364583-3 2.976483+4 1.500000-3 2.623600+4 1.659587-3 2.277241+4 1.840772-3 1.954726+4 2.041738-3 1.666840+4 2.264644-3 1.411278+4 2.511886-3 1.187690+4 2.851018-3 9.538199+3 3.198895-3 7.754279+3 3.589219-3 6.261145+3 4.073803-3 4.910501+3 4.623810-3 3.820883+3 5.248075-3 2.950709+3 6.000000-3 2.227060+3 6.839116-3 1.678052+3 7.762471-3 1.266528+3 8.810489-3 9.490410+2 1.000000-2 7.058940+2 1.135011-2 5.210968+2 1.288250-2 3.819908+2 1.462177-2 2.781095+2 1.678804-2 1.952053+2 1.927525-2 1.359594+2 2.213095-2 9.399382+1 2.540973-2 6.452337+1 2.951209-2 4.260209+1 3.427678-2 2.791078+1 4.027170-2 1.756496+1 4.786301-2 1.061069+1 5.688529-2 6.360279+0 7.079458-2 3.297786+0 9.440609-2 1.376526+0 1.548817-1 3.037978-1 1.927525-1 1.568128-1 2.317395-1 9.044916-2 2.722701-1 5.629910-2 3.126079-1 3.775902-2 3.548134-1 2.635503-2 4.027170-1 1.852811-2 4.518559-1 1.354332-2 5.069907-1 9.972925-3 5.688529-1 7.403527-3 6.382635-1 5.539831-3 7.079458-1 4.297339-3 7.852356-1 3.357570-3 8.709636-1 2.636054-3 9.332543-1 2.257097-3 1.000000+0 1.945976-3 1.096478+0 1.612624-3 1.202264+0 1.346110-3 1.318257+0 1.131663-3 1.479108+0 9.184664-4 1.717908+0 7.045102-4 1.949845+0 5.669538-4 2.213095+0 4.597630-4 2.511886+0 3.754530-4 2.884032+0 3.032539-4 3.311311+0 2.467286-4 3.845918+0 1.987882-4 4.518559+0 1.587145-4 5.308844+0 1.276607-4 6.237348+0 1.034160-4 7.762471+0 7.843551-5 9.440609+0 6.172912-5 1.174898+1 4.761548-5 1.500000+1 3.592300-5 1.949845+1 2.676769-5 2.600160+1 1.953070-5 3.672823+1 1.349116-5 5.559043+1 8.730751-6 9.120108+1 5.238274-6 1.778279+2 2.653746-6 3.548134+2 1.321669-6 1.412538+3 3.303119-7 1.000000+5 4.658400-9 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.570400-4 5.171200-5 1.000000+5 5.171200-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.570400-4 2.547400-8 1.000000+5 2.547400-8 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.570400-4 3.053025-4 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.129700-4 2.820988+5 3.427678-4 2.679138+5 3.900000-4 2.523500+5 4.265795-4 2.413303+5 4.623810-4 2.301249+5 5.069907-4 2.164451+5 5.500000-4 2.035360+5 5.956621-4 1.903474+5 6.456542-4 1.765074+5 7.161434-4 1.588188+5 7.800000-4 1.446012+5 8.511380-4 1.304462+5 9.500000-4 1.136928+5 1.035142-3 1.014748+5 1.150000-3 8.766640+4 1.273503-3 7.555998+4 1.428894-3 6.339113+4 1.603245-3 5.276452+4 1.800000-3 4.354600+4 2.018366-3 3.574826+4 2.264644-3 2.910737+4 2.540973-3 2.354092+4 2.884032-3 1.849360+4 3.300000-3 1.418284+4 3.758374-3 1.088648+4 4.265795-3 8.351185+3 4.841724-3 6.359266+3 5.500000-3 4.799000+3 6.309573-3 3.515060+3 7.161434-3 2.617633+3 8.222426-3 1.882296+3 9.440609-3 1.341761+3 1.071519-2 9.759263+2 1.216186-2 7.048187+2 1.380384-2 5.054463+2 1.566751-2 3.599285+2 1.778279-2 2.545311+2 2.041738-2 1.730959+2 2.344229-2 1.168096+2 2.691535-2 7.824486+1 3.090295-2 5.203957+1 3.589219-2 3.319690+1 4.168694-2 2.101960+1 4.897788-2 1.275084+1 5.821032-2 7.404985+0 7.079458-2 3.966803+0 8.709636-2 2.031660+0 1.621810-1 2.690854-1 1.972423-1 1.433033-1 2.317395-1 8.587934-2 2.660725-1 5.575747-2 3.019952-1 3.779218-2 3.388442-1 2.672118-2 3.801894-1 1.903272-2 4.216965-1 1.412291-2 4.677351-1 1.055534-2 5.128614-1 8.201213-3 5.688529-1 6.221893-3 6.237348-1 4.900524-3 6.839117-1 3.884890-3 7.498942-1 3.100137-3 8.511380-1 2.292631-3 9.120108-1 1.955795-3 9.772372-1 1.680116-3 1.047129+0 1.454656-3 1.148154+0 1.209438-3 1.258925+0 1.013056-3 1.396368+0 8.370965-4 1.678804+0 6.029665-4 1.905461+0 4.845520-4 2.162719+0 3.924233-4 2.454709+0 3.200748-4 2.818383+0 2.581958-4 3.235937+0 2.098152-4 3.758374+0 1.688513-4 4.415704+0 1.346731-4 5.188000+0 1.082114-4 6.095369+0 8.756484-5 7.498942+0 6.731705-5 9.015711+0 5.365028-5 1.109175+1 4.188065-5 1.400000+1 3.195100-5 1.819701+1 2.375796-5 2.400000+1 1.751500-5 3.235937+1 1.269036-5 4.677351+1 8.595519-6 7.161434+1 5.520956-6 1.288250+2 3.026166-6 2.570396+2 1.503244-6 5.128614+2 7.499748-7 4.073803+3 9.403068-8 1.000000+5 3.829300-9 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.129700-4 4.679600-5 1.000000+5 4.679600-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.129700-4 1.289700-8 1.000000+5 1.289700-8 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.129700-4 2.661611-4 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.802500-4 2.884388+5 1.809000-4 2.956976+5 1.819701-4 3.107896+5 1.830000-4 3.280228+5 1.862087-4 3.912190+5 1.873000-4 4.132200+5 1.885000-4 4.360920+5 1.895000-4 4.533120+5 1.905461-4 4.689744+5 1.915000-4 4.807760+5 1.926000-4 4.912280+5 1.935000-4 4.971960+5 1.945000-4 5.011840+5 1.957000-4 5.025480+5 1.969000-4 5.006080+5 1.980000-4 4.963440+5 1.995262-4 4.872846+5 2.010000-4 4.758880+5 2.030000-4 4.575760+5 2.050000-4 4.373240+5 2.070000-4 4.161880+5 2.100000-4 3.841768+5 2.137962-4 3.449134+5 2.187762-4 2.975989+5 2.290868-4 2.196373+5 2.330000-4 1.975016+5 2.365000-4 1.809592+5 2.400000-4 1.672368+5 2.430000-4 1.575056+5 2.454709-4 1.507744+5 2.483133-4 1.443296+5 2.511886-4 1.390827+5 2.540973-4 1.349493+5 2.570396-4 1.318430+5 2.600160-4 1.296374+5 2.630268-4 1.282944+5 2.660725-4 1.277398+5 2.691535-4 1.279009+5 2.730000-4 1.289828+5 2.770000-4 1.309860+5 2.818383-4 1.343732+5 2.880000-4 1.398676+5 2.951209-4 1.473757+5 3.235937-4 1.823676+5 3.350000-4 1.964048+5 3.470000-4 2.102372+5 3.589219-4 2.227062+5 3.700000-4 2.330076+5 3.820000-4 2.427324+5 3.935501-4 2.507615+5 4.073803-4 2.587926+5 4.216965-4 2.654192+5 4.365158-4 2.705811+5 4.518559-4 2.742388+5 4.700000-4 2.766216+5 4.897788-4 2.772625+5 5.128614-4 2.760143+5 5.370318-4 2.728794+5 5.623413-4 2.679608+5 5.900000-4 2.612052+5 6.237348-4 2.516611+5 6.606934-4 2.403677+5 7.000000-4 2.279048+5 7.413102-4 2.146805+5 7.852356-4 2.009414+5 8.413951-4 1.842837+5 9.015711-4 1.676954+5 9.700000-4 1.505852+5 1.047129-3 1.335236+5 1.122018-3 1.189883+5 1.216186-3 1.032639+5 1.318257-3 8.895123+4 1.428894-3 7.607130+4 1.548817-3 6.462697+4 1.698244-3 5.320819+4 1.850000-3 4.410160+4 2.041738-3 3.523758+4 2.238721-3 2.835439+4 2.426610-3 2.331762+4 2.691535-3 1.799808+4 3.019952-3 1.337081+4 3.388442-3 9.840509+3 3.801894-3 7.177287+3 4.265795-3 5.189506+3 4.800000-3 3.689792+3 5.308844-3 2.739028+3 6.000000-3 1.891380+3 6.683439-3 1.354929+3 7.498942-3 9.420891+2 8.413951-3 6.500565+2 9.440609-3 4.452331+2 1.059254-2 3.027977+2 1.188502-2 2.045180+2 1.348963-2 1.318244+2 1.531087-2 8.433671+1 1.737801-2 5.357809+1 2.000000-2 3.213584+1 2.317395-2 1.865232+1 2.691535-2 1.064779+1 3.126079-2 6.034577+0 3.715352-2 3.109083+0 4.466836-2 1.520629+0 5.688529-2 5.895607-1 1.023293-1 5.835045-2 1.258925-1 2.595807-2 1.500000-1 1.318157-2 1.757924-1 7.190465-3 2.018366-1 4.272162-3 2.290868-1 2.668413-3 2.600160-1 1.678828-3 2.917427-1 1.109413-3 3.273407-1 7.384441-4 3.630781-1 5.154530-4 4.027170-1 3.623309-4 4.415705-1 2.664358-4 4.841724-1 1.973156-4 5.188000-1 1.584386-4 5.688529-1 1.191186-4 6.531306-1 7.838228-5 7.161434-1 5.969881-5 7.762471-1 4.734601-5 8.511380-1 3.649061-5 9.015711-1 3.120046-5 9.440609-1 2.768190-5 9.885531-1 2.470806-5 1.035142+0 2.220546-5 1.083927+0 2.009073-5 1.148154+0 1.787086-5 1.216186+0 1.601066-5 1.318257+0 1.382957-5 1.531087+0 1.067177-5 1.819701+0 7.881705-6 2.018366+0 6.608819-6 2.290868+0 5.370207-6 2.630268+0 4.315357-6 3.019952+0 3.494030-6 3.507519+0 2.802051-6 4.120975+0 2.227496-6 4.841724+0 1.784192-6 5.688529+0 1.439418-6 6.760830+0 1.152549-6 8.222427+0 9.021687-7 1.011579+1 7.018412-7 1.273503+1 5.354490-7 1.621810+1 4.061958-7 2.137962+1 2.986424-7 2.951209+1 2.104241-7 4.265795+1 1.422647-7 6.606934+1 9.015075-8 1.174898+2 4.994236-8 2.344229+2 2.478657-8 4.677351+2 1.236180-8 3.715352+3 1.549225-9 1.000000+5 5.75380-11 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.802500-4 3.045600-5 1.000000+5 3.045600-5 1 68000 7 7 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.802500-4 1.825400-8 1.000000+5 1.825400-8 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.802500-4 1.497757-4 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.722600-4 4.126152+5 1.731000-4 4.351644+5 1.760000-4 5.284782+5 1.775000-4 5.805720+5 1.786000-4 6.179400+5 1.795000-4 6.469500+5 1.805000-4 6.766740+5 1.815000-4 7.029660+5 1.825000-4 7.251660+5 1.834000-4 7.412820+5 1.845000-4 7.557900+5 1.856000-4 7.646220+5 1.865000-4 7.678200+5 1.875000-4 7.674720+5 1.885000-4 7.634640+5 1.895000-4 7.562880+5 1.908000-4 7.430700+5 1.922000-4 7.250160+5 1.940000-4 6.977820+5 1.960000-4 6.643380+5 1.985000-4 6.205740+5 2.010000-4 5.767578+5 2.041738-4 5.230977+5 2.089296-4 4.494484+5 2.190000-4 3.266046+5 2.230000-4 2.906214+5 2.264644-4 2.649158+5 2.290868-4 2.485657+5 2.317395-4 2.345249+5 2.344229-4 2.226592+5 2.373000-4 2.123040+5 2.400000-4 2.045970+5 2.426610-4 1.987109+5 2.454709-4 1.941554+5 2.483133-4 1.910926+5 2.511886-4 1.893586+5 2.540973-4 1.888706+5 2.570396-4 1.895154+5 2.600160-4 1.911864+5 2.635000-4 1.942614+5 2.670000-4 1.983768+5 2.722701-4 2.061268+5 2.786121-4 2.172855+5 3.054921-4 2.738499+5 3.162278-4 2.968071+5 3.273407-4 3.193560+5 3.350000-4 3.338268+5 3.467369-4 3.541240+5 3.563300-4 3.688176+5 3.672823-4 3.834986+5 3.801894-4 3.980909+5 3.935501-4 4.103887+5 4.073803-4 4.204041+5 4.216965-4 4.281149+5 4.365158-4 4.334910+5 4.550000-4 4.369056+5 4.731513-4 4.372919+5 4.954502-4 4.346558+5 5.188000-4 4.291160+5 5.432503-4 4.209550+5 5.688529-4 4.103346+5 6.025596-4 3.944330+5 6.382635-4 3.762295+5 6.760830-4 3.563125+5 7.161434-4 3.352292+5 7.585776-4 3.134863+5 8.128305-4 2.870938+5 8.709636-4 2.609623+5 9.332543-4 2.355629+5 1.000000-3 2.112198+5 1.083927-3 1.845698+5 1.174898-3 1.599834+5 1.273503-3 1.376621+5 1.380384-3 1.175994+5 1.500000-3 9.927780+4 1.621810-3 8.412899+4 1.778279-3 6.870939+4 1.950000-3 5.565504+4 2.113489-3 4.603227+4 2.350000-3 3.555486+4 2.630268-3 2.675873+4 2.917427-3 2.042919+4 3.235937-3 1.547749+4 3.548134-3 1.201714+4 3.900000-3 9.213600+3 4.300000-3 6.960840+3 4.731513-3 5.258415+3 5.188000-3 3.991965+3 5.821032-3 2.808143+3 6.456542-3 2.032219+3 7.244360-3 1.408026+3 8.128305-3 9.681729+2 9.120108-3 6.606877+2 1.023293-2 4.475307+2 1.148154-2 3.009681+2 1.288250-2 2.010126+2 1.462177-2 1.279662+2 1.659587-2 8.084853+1 1.883649-2 5.071604+1 2.162719-2 3.026162+1 2.483133-2 1.792296+1 2.884032-2 1.008305+1 3.349654-2 5.629930+0 3.935501-2 2.983715+0 4.731513-2 1.432741+0 5.956621-2 5.678520-1 9.660509-2 8.029258-2 1.188502-1 3.494437-2 1.396368-1 1.842423-2 1.621810-1 1.024463-2 1.840772-1 6.278474-3 2.089296-1 3.877082-3 2.344229-1 2.520357-3 2.600160-1 1.722801-3 2.884032-1 1.186629-3 3.162278-1 8.578235-4 3.467369-1 6.244474-4 3.801894-1 4.578629-4 4.168694-1 3.382435-4 4.518559-1 2.611880-4 4.897788-1 2.029709-4 5.308844-1 1.587993-4 5.754399-1 1.250851-4 6.237348-1 9.922712-5 6.760830-1 7.927557-5 7.328245-1 6.375207-5 8.609938-1 4.176159-5 9.120108-1 3.612381-5 9.660509-1 3.146750-5 1.011579+0 2.835144-5 1.071519+0 2.506064-5 1.135011+0 2.228688-5 1.216186+0 1.949297-5 1.318257+0 1.679879-5 1.798871+0 9.723342-6 2.018366+0 7.994816-6 2.290868+0 6.496443-6 2.630268+0 5.220364-6 3.019952+0 4.226802-6 3.507519+0 3.389782-6 4.120975+0 2.694699-6 4.841724+0 2.158297-6 5.688529+0 1.741262-6 6.760830+0 1.394245-6 8.222427+0 1.091345-6 1.011579+1 8.490362-7 1.273503+1 6.477423-7 1.621810+1 4.913856-7 2.137962+1 3.612721-7 2.951209+1 2.545612-7 4.265795+1 1.721015-7 6.606934+1 1.090573-7 1.174898+2 6.041607-8 2.344229+2 2.998558-8 4.677351+2 1.495406-8 3.715352+3 1.874171-9 1.000000+5 6.96050-11 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.722600-4 2.828200-5 1.000000+5 2.828200-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.722600-4 1.439780-4 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.094000-5 6.822104+5 1.122018-5 6.482822+5 1.165000-5 6.055975+5 1.216186-5 5.650223+5 1.258925-5 5.379748+5 1.303167-5 5.151167+5 1.350000-5 4.960633+5 1.400000-5 4.803375+5 1.450000-5 4.686529+5 1.500000-5 4.605601+5 1.550000-5 4.555756+5 1.610000-5 4.531050+5 1.670000-5 4.539145+5 1.737801-5 4.583492+5 1.800000-5 4.653033+5 1.870000-5 4.760977+5 1.950000-5 4.918888+5 2.018366-5 5.080558+5 2.113489-5 5.343490+5 2.213095-5 5.659559+5 2.317395-5 6.031811+5 2.454709-5 6.579413+5 2.630268-5 7.363520+5 2.900000-5 8.710359+5 3.311311-5 1.098529+6 3.589219-5 1.257356+6 3.845918-5 1.402479+6 4.120975-5 1.553014+6 4.400000-5 1.698116+6 4.731513-5 1.859926+6 5.069907-5 2.013987+6 5.495409-5 2.192403+6 5.956621-5 2.368999+6 6.400000-5 2.521560+6 6.900000-5 2.671685+6 7.328245-5 2.780758+6 7.800000-5 2.877744+6 8.317638-5 2.959666+6 8.810489-5 3.014880+6 9.500000-5 3.063756+6 1.011579-4 3.086276+6 1.109175-4 3.094241+6 1.190000-4 3.079262+6 1.273503-4 3.048640+6 1.364583-4 2.995295+6 1.462177-4 2.923157+6 1.584893-4 2.814703+6 1.698244-4 2.705676+6 1.820000-4 2.585305+6 1.950000-4 2.452095+6 2.065380-4 2.333402+6 2.220000-4 2.174566+6 2.371374-4 2.022995+6 2.511886-4 1.889861+6 2.691535-4 1.729028+6 2.851018-4 1.595473+6 3.040000-4 1.449299+6 3.280280-4 1.281122+6 3.507519-4 1.140627+6 3.758374-4 1.003982+6 4.027170-4 8.769780+5 4.315191-4 7.604453+5 4.623810-4 6.547244+5 4.954502-4 5.598483+5 5.308844-4 4.755183+5 5.688529-4 4.013693+5 6.165950-4 3.269245+5 6.683439-4 2.643109+5 7.244360-4 2.121694+5 7.852356-4 1.691645+5 8.511380-4 1.340071+5 9.332543-4 1.019300+5 1.023293-3 7.696006+4 1.122018-3 5.768678+4 1.230269-3 4.294285+4 1.364583-3 3.056917+4 1.513561-3 2.159213+4 1.678804-3 1.514418+4 1.862087-3 1.054544+4 2.065380-3 7.292348+3 2.290868-3 5.009215+3 2.570396-3 3.275155+3 2.884032-3 2.124798+3 3.235937-3 1.368275+3 3.630781-3 8.747377+2 4.073803-3 5.552802+2 4.570882-3 3.500887+2 5.011872-3 2.406407+2 5.688529-3 1.425296+2 6.531306-3 7.985162+1 7.413102-3 4.658852+1 8.317638-3 2.834395+1 9.440609-3 1.627080+1 1.071519-2 9.271978+0 1.230269-2 4.983418+0 1.428894-2 2.523906+0 1.698244-2 1.142168+0 2.000000-2 5.348101-1 2.371374-2 2.405544-1 2.851018-2 1.005356-1 3.349654-2 4.652560-2 4.315191-2 1.373736-2 6.531306-2 1.857030-3 8.128305-2 6.501168-4 9.660509-2 2.857526-4 1.135011-1 1.335606-4 1.303167-1 7.008965-5 1.479108-1 3.909242-5 1.659587-1 2.315964-5 1.862087-1 1.381885-5 2.089296-1 8.307701-6 2.317395-1 5.291439-6 2.570396-1 3.394497-6 2.818383-1 2.302537-6 3.126079-1 1.498975-6 3.427678-1 1.030361-6 3.758374-1 7.131171-7 4.120975-1 4.971875-7 4.466836-1 3.649627-7 4.841724-1 2.696304-7 5.128614-1 2.182226-7 5.559043-1 1.634570-7 6.025596-1 1.232969-7 6.531306-1 9.362326-8 7.161434-1 6.887421-8 7.852356-1 5.104092-8 8.609938-1 3.804581-8 9.015711-1 3.302691-8 9.332543-1 2.983500-8 9.660509-1 2.708416-8 1.000000+0 2.473200-8 1.035142+0 2.273124-8 1.071519+0 2.100063-8 1.122018+0 1.903101-8 1.174898+0 1.736607-8 1.244515+0 1.560918-8 1.333521+0 1.382827-8 1.513561+0 1.120651-8 1.883649+0 7.642948-9 2.089296+0 6.420144-9 2.371374+0 5.226683-9 2.722701+0 4.208177-9 3.126079+0 3.413565-9 3.630781+0 2.742441-9 4.265795+0 2.183746-9 5.011872+0 1.751902-9 5.888437+0 1.415488-9 7.079458+0 1.118637-9 8.511380+0 8.89567-10 1.047129+1 6.92958-10 1.318257+1 5.29274-10 1.678804+1 4.01935-10 2.238721+1 2.92084-10 3.054921+1 2.08616-10 4.415704+1 1.41138-10 6.839116+1 8.94901-11 1.230269+2 4.90227-11 2.454709+2 2.43416-11 4.897788+2 1.21414-11 3.890451+3 1.52200-12 1.000000+5 5.91920-14 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.094000-5 1.094000-5 1.000000+5 1.094000-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.094000-5 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.760000-6 1.000120+6 9.940000-6 9.613847+5 1.023293-5 9.081750+5 1.060000-5 8.519379+5 1.100000-5 8.023402+5 1.135011-5 7.669886+5 1.180000-5 7.302374+5 1.216186-5 7.067241+5 1.258925-5 6.848993+5 1.303167-5 6.679179+5 1.350000-5 6.551997+5 1.400000-5 6.467174+5 1.445440-5 6.429640+5 1.500000-5 6.427965+5 1.554900-5 6.467735+5 1.610000-5 6.544400+5 1.678804-5 6.685390+5 1.750000-5 6.877574+5 1.830000-5 7.143151+5 1.920000-5 7.497185+5 2.018366-5 7.943702+5 2.137962-5 8.561008+5 2.270000-5 9.324682+5 2.426610-5 1.032754+6 2.691535-5 1.221346+6 3.162278-5 1.591933+6 3.427678-5 1.807080+6 3.672823-5 2.001479+6 3.935501-5 2.202220+6 4.220000-5 2.407597+6 4.518559-5 2.607836+6 4.897788-5 2.842977+6 5.308844-5 3.074059+6 5.800000-5 3.323553+6 6.237348-5 3.520453+6 6.760830-5 3.724247+6 7.161434-5 3.854513+6 7.673615-5 3.986513+6 8.128305-5 4.075190+6 8.609938-5 4.139588+6 9.300000-5 4.195404+6 1.000000-4 4.214803+6 1.083927-4 4.210529+6 1.190000-4 4.167324+6 1.273503-4 4.107754+6 1.364583-4 4.023386+6 1.462177-4 3.909998+6 1.566751-4 3.776468+6 1.698244-4 3.596959+6 1.819701-4 3.425392+6 1.927525-4 3.273511+6 2.080000-4 3.056351+6 2.213095-4 2.868718+6 2.350000-4 2.683898+6 2.550000-4 2.428662+6 2.722701-4 2.224120+6 2.884032-4 2.047087+6 3.090295-4 1.839122+6 3.311311-4 1.639377+6 3.548134-4 1.449894+6 3.801894-4 1.272539+6 4.073803-4 1.108570+6 4.365158-4 9.587199+5 4.677351-4 8.233534+5 5.011872-4 7.023398+5 5.415200-4 5.831411+5 5.821032-4 4.868119+5 6.309573-4 3.951617+5 6.839116-4 3.184350+5 7.413102-4 2.548117+5 8.035261-4 2.025296+5 8.810489-4 1.545481+5 9.660509-4 1.170545+5 1.059254-3 8.801713+4 1.161449-3 6.571673+4 1.273503-3 4.873623+4 1.412538-3 3.455054+4 1.566751-3 2.430735+4 1.737801-3 1.697681+4 1.927525-3 1.177235+4 2.137962-3 8.108434+3 2.371374-3 5.548266+3 2.660725-3 3.612233+3 2.985383-3 2.333589+3 3.349654-3 1.496291+3 3.758374-3 9.524065+2 4.216965-3 6.019081+2 4.623810-3 4.141036+2 5.188000-3 2.575191+2 5.821032-3 1.590159+2 6.683439-3 8.844852+1 7.585776-3 5.131946+1 8.609938-3 2.955585+1 9.660509-3 1.777783+1 1.096478-2 1.008708+1 1.258925-2 5.394991+0 1.479108-2 2.578233+0 1.717908-2 1.289220+0 1.995262-2 6.400743-1 2.290868-2 3.332644-1 2.722701-2 1.461698-1 3.311311-2 5.697202-2 4.073803-2 2.083512-2 7.079458-2 1.408027-3 8.810489-2 4.874500-4 1.035142-1 2.246943-4 1.188502-1 1.165107-4 1.348963-1 6.425892-5 1.513561-1 3.766658-5 1.698244-1 2.224538-5 1.883649-1 1.394676-5 2.089296-1 8.809438-6 2.290868-1 5.896971-6 2.511886-1 3.975650-6 2.722701-1 2.833545-6 2.951209-1 2.032344-6 3.198895-1 1.468045-6 3.467369-1 1.067705-6 3.801894-1 7.477476-7 4.120975-1 5.512076-7 4.415705-1 4.272082-7 4.677351-1 3.475153-7 5.011872-1 2.732417-7 5.370318-1 2.162437-7 5.821032-1 1.657805-7 6.309573-1 1.280263-7 6.839117-1 9.963263-8 7.498942-1 7.543521-8 8.035261-1 6.163805-8 8.609938-1 5.071396-8 9.225714-1 4.196062-8 9.660509-1 3.719940-8 1.000000+0 3.414400-8 1.047129+0 3.067267-8 1.096478+0 2.775909-8 1.148154+0 2.528099-8 1.216186+0 2.265389-8 1.318257+0 1.958922-8 1.513561+0 1.546881-8 1.840772+0 1.097527-8 2.044000+0 9.191100-9 2.317395+0 7.486986-9 2.660725+0 6.020234-9 3.054921+0 4.877431-9 3.548134+0 3.913838-9 4.168694+0 3.113047-9 4.897788+0 2.494797-9 5.754399+0 2.013738-9 6.839116+0 1.613187-9 8.317638+0 1.263270-9 1.023293+1 9.83228-10 1.288250+1 7.50398-10 1.621810+1 5.76898-10 2.137962+1 4.24137-10 2.951209+1 2.98860-10 4.315191+1 1.99616-10 6.683439+1 1.26524-10 1.202264+2 6.92850-11 2.398833+2 3.43946-11 4.786301+2 1.71549-11 3.801894+3 2.15016-12 1.000000+5 8.17180-14 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.760000-6 9.760000-6 1.000000+5 9.760000-6 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.760000-6 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.673000-5 5.333740+4 5.770000-5 5.206140+4 5.850000-5 5.127520+4 5.970000-5 5.053000+4 6.070000-5 5.023340+4 6.180000-5 5.022160+4 6.309573-5 5.053065+4 6.456542-5 5.124481+4 6.606934-5 5.229139+4 6.800000-5 5.397600+4 7.150000-5 5.759920+4 7.800000-5 6.481240+4 8.150000-5 6.843720+4 8.511380-5 7.177732+4 8.900000-5 7.482380+4 9.300000-5 7.733540+4 9.660509-5 7.906518+4 1.000000-4 8.026700+4 1.047129-4 8.133795+4 1.100000-4 8.186520+4 1.161449-4 8.180228+4 1.230269-4 8.112023+4 1.303167-4 7.992335+4 1.396368-4 7.793709+4 1.496236-4 7.543476+4 1.603245-4 7.246534+4 1.720000-4 6.904500+4 1.862087-4 6.485919+4 2.041738-4 5.982470+4 2.264644-4 5.418767+4 2.500000-4 4.894260+4 2.786121-4 4.341028+4 3.162278-4 3.743060+4 3.600000-4 3.193660+4 4.168694-4 2.645176+4 4.841724-4 2.167555+4 5.754399-4 1.707698+4 6.760830-4 1.357644+4 8.128305-4 1.036504+4 9.885531-4 7.713502+3 1.188502-3 5.794114+3 1.428894-3 4.318329+3 1.717908-3 3.192846+3 2.041738-3 2.388160+3 2.454709-3 1.738910+3 2.951209-3 1.256779+3 3.548134-3 9.013814+2 4.315191-3 6.283640+2 5.308844-3 4.254884+2 6.456542-3 2.924017+2 7.852356-3 1.994746+2 9.549926-3 1.350585+2 1.161449-2 9.075143+1 1.396368-2 6.196148+1 1.659587-2 4.301880+1 2.018366-2 2.822879+1 2.454709-2 1.840733+1 2.917427-2 1.253070+1 3.388442-2 8.907924+0 3.981072-2 6.122837+0 4.731513-2 4.065525+0 5.623413-2 2.678741+0 6.760830-2 1.702998+0 8.128305-2 1.074347+0 9.885531-2 6.526698-1 1.258925-1 3.496266-1 1.584893-1 1.916879-1 2.398833-1 6.457912-2 2.951209-1 3.771336-2 3.507519-1 2.424459-2 4.073803-1 1.665092-2 4.677351-1 1.186173-2 5.308844-1 8.754538-3 6.025596-1 6.510630-3 6.760830-1 5.011506-3 7.585776-1 3.884838-3 8.609938-1 2.959007-3 9.549926-1 2.385564-3 1.071519+0 1.894360-3 1.216186+0 1.479654-3 1.364583+0 1.190190-3 1.531087+0 9.639473-4 1.737801+0 7.706403-4 1.972423+0 6.208846-4 2.238721+0 5.038650-4 2.570396+0 4.043631-4 2.951209+0 3.270041-4 3.427678+0 2.619201-4 4.000000+0 2.099700-4 4.677351+0 1.690405-4 5.495409+0 1.361715-4 6.456542+0 1.104732-4 8.000000+0 8.436300-5 9.772372+0 6.612167-5 1.230269+1 5.038410-5 1.566751+1 3.817977-5 2.041738+1 2.840391-5 2.786121+1 2.023718-5 4.027170+1 1.366502-5 6.165950+1 8.753560-6 1.083927+2 4.901628-6 2.162719+2 2.430790-6 4.315191+2 1.211902-6 1.717908+3 3.031919-7 1.000000+5 5.201400-9 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.673000-5 5.673000-5 1.000000+5 5.673000-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.673000-5 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.473000-5 9.424740+6 3.515000-5 8.756000+6 3.575000-5 7.950420+6 3.650000-5 7.126980+6 3.715352-5 6.531556+6 3.810000-5 5.813580+6 3.920000-5 5.135580+6 4.070000-5 4.400320+6 4.265795-5 3.656236+6 5.432503-5 1.455241+6 6.382635-5 7.856156+5 7.079458-5 5.319924+5 7.673615-5 3.954353+5 8.317638-5 2.959299+5 8.912509-5 2.323094+5 9.500000-5 1.870480+5 1.000000-4 1.581044+5 1.047129-4 1.366746+5 1.100000-4 1.176974+5 1.150000-4 1.034756+5 1.205000-4 9.098300+4 1.260000-4 8.099660+4 1.318257-4 7.248518+4 1.380384-4 6.518372+4 1.450000-4 5.864660+4 1.520000-4 5.339900+4 1.584893-4 4.944007+4 1.659587-4 4.570816+4 1.737801-4 4.252184+4 1.820000-4 3.977400+4 1.927525-4 3.686456+4 2.065380-4 3.392644+4 2.220000-4 3.133680+4 2.426610-4 2.864129+4 2.722701-4 2.571540+4 3.845918-4 1.889727+4 4.518559-4 1.624937+4 5.188000-4 1.417161+4 5.956621-4 1.226405+4 6.760830-4 1.066331+4 7.673615-4 9.204939+3 8.609938-4 8.001123+3 9.772372-4 6.810994+3 1.109175-3 5.752040+3 1.258925-3 4.821598+3 1.428894-3 4.011064+3 1.603245-3 3.369987+3 1.798871-3 2.812410+3 2.041738-3 2.286849+3 2.317395-3 1.845391+3 2.630268-3 1.477956+3 3.000000-3 1.164414+3 3.388442-3 9.272375+2 3.845918-3 7.264967+2 4.365158-3 5.652107+2 4.954502-3 4.366557+2 5.623413-3 3.349839+2 6.382635-3 2.552084+2 7.244360-3 1.930902+2 8.222426-3 1.450776+2 9.340000-3 1.080438+2 1.071519-2 7.789984+1 1.230269-2 5.564250+1 1.428894-2 3.836033+1 1.698244-2 2.481597+1 1.927525-2 1.791236+1 2.113489-2 1.405237+1 2.398833-2 9.988664+0 2.754229-2 6.828571+0 3.273407-2 4.205541+0 3.845918-2 2.654068+0 4.570882-2 1.607630+0 5.370318-2 9.997775-1 6.531306-2 5.571521-1 8.317638-2 2.683420-1 1.584893-1 3.757906-2 1.972423-1 1.941366-2 2.344229-1 1.159923-2 2.722701-1 7.471716-3 3.126079-1 5.011875-3 3.548134-1 3.498520-3 4.027170-1 2.459614-3 4.518559-1 1.797778-3 5.069907-1 1.323722-3 5.623413-1 1.011954-3 6.309573-1 7.566084-4 6.998420-1 5.865035-4 7.762471-1 4.578910-4 8.709636-1 3.498534-4 9.332543-1 2.995200-4 1.000000+0 2.582000-4 1.096478+0 2.139426-4 1.202264+0 1.785777-4 1.318257+0 1.501309-4 1.479108+0 1.218527-4 1.717908+0 9.345866-5 1.949845+0 7.520842-5 2.213095+0 6.099225-5 2.540973+0 4.891501-5 2.917427+0 3.953214-5 3.349654+0 3.218200-5 3.890451+0 2.594349-5 4.570882+0 2.072486-5 5.370318+0 1.667819-5 6.309573+0 1.351727-5 7.852356+0 1.025724-5 9.549926+0 8.075881-6 1.202264+1 6.148660-6 1.531087+1 4.655751-6 2.000000+1 3.452500-6 2.691535+1 2.495727-6 3.845918+1 1.704421-6 5.888437+1 1.090858-6 1.011579+2 6.249282-7 2.018366+2 3.096734-7 4.027170+2 1.543539-7 1.603245+3 3.859869-8 1.000000+5 6.17960-10 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.473000-5 3.473000-5 1.000000+5 3.473000-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.473000-5 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.906000-5 2.169432+7 2.940000-5 2.010404+7 2.995000-5 1.796476+7 3.054921-5 1.606405+7 3.126079-5 1.422717+7 3.198895-5 1.269417+7 3.273407-5 1.138859+7 3.350000-5 1.025692+7 3.467369-5 8.831687+6 3.630781-5 7.288373+6 3.845918-5 5.777188+6 4.315191-5 3.669160+6 4.954502-5 2.142320+6 5.400000-5 1.540916+6 5.800000-5 1.180148+6 6.165950-5 9.455745+5 6.531306-5 7.729652+5 6.900000-5 6.424200+5 7.244360-5 5.489178+5 7.585776-5 4.761546+5 7.943282-5 4.159174+5 8.317638-5 3.660295+5 8.650000-5 3.303720+5 9.015711-5 2.983909+5 9.400000-5 2.711272+5 9.800000-5 2.480636+5 1.023293-4 2.277746+5 1.071519-4 2.094924+5 1.122018-4 1.939829+5 1.174898-4 1.806911+5 1.244515-4 1.665393+5 1.318257-4 1.545359+5 1.412538-4 1.422986+5 1.531087-4 1.302521+5 1.698244-4 1.172590+5 2.454709-4 8.232983+4 2.884032-4 7.006532+4 3.350000-4 5.988840+4 3.801894-4 5.212019+4 4.365158-4 4.446804+4 4.954502-4 3.820107+4 5.688529-4 3.213314+4 6.531306-4 2.683391+4 7.585776-4 2.188022+4 8.609938-4 1.828382+4 9.885531-4 1.492139+4 1.135011-3 1.208170+4 1.288250-3 9.885974+3 1.462177-3 8.033770+3 1.659587-3 6.482449+3 1.883649-3 5.193853+3 2.137962-3 4.131875+3 2.426610-3 3.263670+3 2.754229-3 2.559731+3 3.126079-3 1.993505+3 3.548134-3 1.541669+3 4.027170-3 1.184036+3 4.570882-3 9.031954+2 5.188000-3 6.842463+2 5.888437-3 5.148112+2 6.683439-3 3.846518+2 7.585776-3 2.854548+2 8.609938-3 2.103118+2 9.772372-3 1.538284+2 1.109175-2 1.117202+2 1.258925-2 8.056211+1 1.428894-2 5.767981+1 1.621810-2 4.101225+1 1.862087-2 2.805345+1 2.137962-2 1.903983+1 2.454709-2 1.282472+1 2.818383-2 8.575606+0 3.235937-2 5.693742+0 3.758374-2 3.626012+0 4.365158-2 2.292141+0 5.128614-2 1.388281+0 6.095369-2 8.052401-1 7.413102-2 4.304561-1 9.660509-2 1.827806-1 1.621810-1 3.395291-2 1.972423-1 1.808767-2 2.317395-1 1.084257-2 2.660725-1 7.041077-3 3.019952-1 4.773204-3 3.388442-1 3.375260-3 3.801894-1 2.404313-3 4.216965-1 1.784215-3 4.677351-1 1.333622-3 5.128614-1 1.036297-3 5.688529-1 7.863186-4 6.237348-1 6.194245-4 6.839117-1 4.911316-4 7.498942-1 3.919907-4 8.511380-1 2.899760-4 9.120108-1 2.474116-4 9.772372-1 2.125534-4 1.047129+0 1.840261-4 1.148154+0 1.530094-4 1.258925+0 1.281728-4 1.396368+0 1.059063-4 1.678804+0 7.628292-5 1.905461+0 6.130206-5 2.162719+0 4.964473-5 2.454709+0 4.049136-5 2.818383+0 3.266357-5 3.235937+0 2.654399-5 3.758374+0 2.136242-5 4.415704+0 1.703789-5 5.188000+0 1.368970-5 6.095369+0 1.107802-5 7.498942+0 8.516406-6 9.015711+0 6.787413-6 1.109175+1 5.298337-6 1.400000+1 4.042200-6 1.819701+1 3.005715-6 2.426610+1 2.189367-6 3.311311+1 1.566497-6 4.841724+1 1.048796-6 7.498942+1 6.661044-7 1.348963+2 3.653339-7 2.691535+2 1.815539-7 5.370318+2 9.059957-8 4.265795+3 1.136133-8 1.000000+5 4.84460-10 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.906000-5 2.906000-5 1.000000+5 2.906000-5 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.906000-5 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.480000-6 4.462480+6 5.700000-6 3.794740+6 6.309573-6 2.463001+6 6.918310-6 1.653831+6 7.585776-6 1.102474+6 8.317638-6 7.297546+5 9.120108-6 4.794061+5 1.000000-5 3.127500+5 1.230269-5 1.181820+5 1.310000-5 8.847220+4 1.365000-5 7.355620+4 1.420000-5 6.195260+4 1.462177-5 5.480619+4 1.515000-5 4.754760+4 1.566751-5 4.189044+4 1.610000-5 3.805420+4 1.655900-5 3.470025+4 1.698244-5 3.214771+4 1.737801-5 3.015468+4 1.785000-5 2.819020+4 1.830000-5 2.666660+4 1.870000-5 2.555160+4 1.920700-5 2.440762+4 1.972423-5 2.349739+4 2.020000-5 2.284760+4 2.070000-5 2.232360+4 2.130000-5 2.186900+4 2.194700-5 2.154761+4 2.270000-5 2.134120+4 2.353000-5 2.126631+4 2.454709-5 2.132354+4 2.600160-5 2.157307+4 3.000000-5 2.253680+4 3.311311-5 2.317331+4 3.570000-5 2.351380+4 3.801894-5 2.365960+4 4.073803-5 2.365146+4 4.365158-5 2.347179+4 4.677351-5 2.312571+4 5.011872-5 2.261023+4 5.370318-5 2.193713+4 5.800000-5 2.103580+4 6.237348-5 2.007738+4 6.760830-5 1.891903+4 7.413102-5 1.752489+4 8.128305-5 1.612521+4 9.015711-5 1.457897+4 1.035142-4 1.264754+4 1.258925-4 1.023241+4 1.659587-4 7.521394+3 1.905461-4 6.408554+3 2.041738-4 5.893038+3 2.290868-4 5.078886+3 2.630268-4 4.213062+3 3.672823-4 2.641423+3 4.841724-4 1.783665+3 5.688529-4 1.406503+3 7.762471-4 8.839094+2 9.225714-4 6.770781+2 1.161449-3 4.709231+2 1.412538-3 3.435005+2 1.678804-3 2.582751+2 2.371374-3 1.427419+2 2.917427-3 9.929202+1 3.467369-3 7.277011+1 4.216965-3 5.077212+1 5.188000-3 3.440718+1 6.382635-3 2.315123+1 7.762471-3 1.580581+1 9.440609-3 1.071024+1 1.148154-2 7.202177+0 1.380384-2 4.920806+0 1.659587-2 3.336389+0 1.995262-2 2.244312+0 2.371374-2 1.536331+0 2.818383-2 1.044066+0 3.349654-2 7.041401-1 3.981072-2 4.712585-1 4.731513-2 3.130235-1 5.559043-2 2.121474-1 6.683439-2 1.349401-1 8.035261-2 8.517611-2 9.772372-2 5.176658-2 1.230269-1 2.858275-2 1.566751-1 1.521557-2 2.398833-1 4.974585-3 2.951209-1 2.905877-3 3.507519-1 1.868675-3 4.073803-1 1.283875-3 4.677351-1 9.149871-4 5.308844-1 6.756801-4 6.000000-1 5.078300-4 6.760830-1 3.874652-4 7.585776-1 3.007392-4 8.511380-1 2.352052-4 9.440609-1 1.898365-4 1.059254+0 1.507973-4 1.216186+0 1.151688-4 1.364583+0 9.261246-5 1.531087+0 7.497729-5 1.717908+0 6.115029-5 1.949845+0 4.923525-5 2.213095+0 3.993031-5 2.540973+0 3.202350-5 2.917427+0 2.588084-5 3.349654+0 2.106914-5 3.890451+0 1.698504-5 4.570882+0 1.356824-5 5.370318+0 1.091871-5 6.309573+0 8.849393-6 7.852356+0 6.715160-6 9.549926+0 5.287151-6 1.202264+1 4.025434-6 1.531087+1 3.048037-6 2.000000+1 2.260300-6 2.691535+1 1.633877-6 3.845918+1 1.115884-6 5.888437+1 7.141763-7 1.011579+2 4.091341-7 2.018366+2 2.027370-7 4.027170+2 1.010487-7 1.603245+3 2.527000-8 1.000000+5 4.04570-10 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.480000-6 5.480000-6 1.000000+5 5.480000-6 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.480000-6 0.0 1.000000+5 1.000000+5 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.633070-7 1.026600+0 1.158080-6 1.027100+0 1.575590-6 1.027500+0 1.973410-6 1.028100+0 2.686770-6 1.028750+0 3.633070-6 1.029500+0 4.971950-6 1.030100+0 6.252830-6 1.031000+0 8.556010-6 1.032000+0 1.170680-5 1.033200+0 1.639920-5 1.034000+0 2.013150-5 1.035300+0 2.732570-5 1.036640+0 3.633070-5 1.038200+0 4.902940-5 1.039700+0 6.369910-5 1.041500+0 8.475080-5 1.043800+0 1.176370-4 1.046400+0 1.636700-4 1.048300+0 2.037730-4 1.051200+0 2.764140-4 1.054080+0 3.633070-4 1.057700+0 4.952120-4 1.061100+0 6.441490-4 1.065100+0 8.527850-4 1.070400+0 1.189730-3 1.076200+0 1.644210-3 1.080600+0 2.053350-3 1.087100+0 2.766530-3 1.093710+0 3.633070-3 1.102600+0 5.036990-3 1.110700+0 6.568870-3 1.120600+0 8.786540-3 1.133300+0 1.221600-2 1.147500+0 1.686570-2 1.158200+0 2.095970-2 1.174100+0 2.801560-2 1.190110+0 3.633070-2 1.205100+0 4.523800-2 1.227500+0 6.056250-2 1.250000+0 7.822000-2 1.265600+0 9.163580-2 1.294900+0 1.191230-1 1.331800+0 1.573050-1 1.362600+0 1.916050-1 1.397000+0 2.319550-1 1.433800+0 2.770800-1 1.500000+0 3.628000-1 1.562500+0 4.493570-1 1.617200+0 5.292180-1 1.712900+0 6.764310-1 1.838500+0 8.800310-1 1.946200+0 1.059290+0 2.000000+0 1.149000+0 2.044000+0 1.222000+0 2.163500+0 1.418790+0 2.372600+0 1.756260+0 2.647100+0 2.182120+0 3.000000+0 2.700000+0 3.500000+0 3.381850+0 4.000000+0 4.009000+0 4.750000+0 4.857410+0 5.000000+0 5.119000+0 6.000000+0 6.074000+0 7.000000+0 6.917000+0 8.000000+0 7.674000+0 9.000000+0 8.362000+0 1.000000+1 8.993000+0 1.100000+1 9.577000+0 1.200000+1 1.012000+1 1.300000+1 1.063000+1 1.400000+1 1.110000+1 1.500000+1 1.153000+1 1.600000+1 1.194000+1 1.800000+1 1.268000+1 2.000000+1 1.333000+1 2.200000+1 1.393000+1 2.400000+1 1.447000+1 2.600000+1 1.496000+1 2.800000+1 1.542000+1 3.000000+1 1.584000+1 4.000000+1 1.754000+1 5.000000+1 1.881000+1 6.000000+1 1.979000+1 8.000000+1 2.124000+1 1.000000+2 2.227000+1 1.500000+2 2.389000+1 2.000000+2 2.485000+1 3.000000+2 2.597000+1 4.000000+2 2.661000+1 5.000000+2 2.703000+1 6.000000+2 2.733000+1 8.000000+2 2.773000+1 1.000000+3 2.798000+1 1.500000+3 2.836000+1 2.000000+3 2.856000+1 3.000000+3 2.878000+1 4.000000+3 2.890000+1 5.000000+3 2.897000+1 6.000000+3 2.902000+1 8.000000+3 2.909000+1 1.000000+4 2.913000+1 1.500000+4 2.919000+1 2.000000+4 2.922000+1 3.000000+4 2.926000+1 4.000000+4 2.927000+1 5.000000+4 2.928000+1 6.000000+4 2.929000+1 8.000000+4 2.930000+1 1.000000+5 2.931000+1 1 68000 7 8 1.672600+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.811850-7 2.094700+0 1.199250-6 2.099900+0 1.595430-6 2.106600+0 2.219380-6 2.114000+0 3.070790-6 2.119500+0 3.823110-6 2.127900+0 5.184860-6 2.136250+0 6.811850-6 2.147000+0 9.339530-6 2.156900+0 1.213090-5 2.169000+0 1.618950-5 2.184500+0 2.250390-5 2.201800+0 3.113480-5 2.214800+0 3.879150-5 2.234200+0 5.218150-5 2.253680+0 6.811850-5 2.281500+0 9.541200-5 2.307000+0 1.253230-4 2.338200+0 1.685080-4 2.377400+0 2.333630-4 2.410200+0 2.967990-4 2.446800+0 3.775450-4 2.485900+0 4.753500-4 2.532900+0 6.083460-4 2.556430+0 6.811850-4 2.611900+0 8.685890-4 2.660400+0 1.050080-3 2.745300+0 1.405470-3 2.809000+0 1.702110-3 2.904500+0 2.192750-3 3.000000+0 2.737000-3 3.125000+0 3.529170-3 3.234400+0 4.294050-3 3.425800+0 5.781990-3 3.569300+0 7.010620-3 3.784700+0 9.010720-3 4.000000+0 1.116000-2 4.250000+0 1.378640-2 4.625000+0 1.791200-2 5.000000+0 2.220000-2 5.500000+0 2.808640-2 6.000000+0 3.405000-2 6.750000+0 4.291480-2 7.000000+0 4.583000-2 8.000000+0 5.723000-2 9.000000+0 6.812000-2 1.000000+1 7.845000-2 1.100000+1 8.821000-2 1.200000+1 9.740000-2 1.300000+1 1.061000-1 1.400000+1 1.143000-1 1.500000+1 1.221000-1 1.600000+1 1.294000-1 1.800000+1 1.431000-1 2.000000+1 1.555000-1 2.200000+1 1.668000-1 2.400000+1 1.772000-1 2.600000+1 1.868000-1 2.800000+1 1.956000-1 3.000000+1 2.039000-1 4.000000+1 2.378000-1 5.000000+1 2.633000-1 6.000000+1 2.835000-1 8.000000+1 3.137000-1 1.000000+2 3.355000-1 1.500000+2 3.713000-1 2.000000+2 3.936000-1 3.000000+2 4.206000-1 4.000000+2 4.368000-1 5.000000+2 4.478000-1 6.000000+2 4.558000-1 8.000000+2 4.669000-1 1.000000+3 4.743000-1 1.500000+3 4.852000-1 2.000000+3 4.915000-1 3.000000+3 4.982000-1 4.000000+3 5.023000-1 5.000000+3 5.047000-1 6.000000+3 5.064000-1 8.000000+3 5.087000-1 1.000000+4 5.102000-1 1.500000+4 5.121000-1 2.000000+4 5.133000-1 3.000000+4 5.144000-1 4.000000+4 5.151000-1 5.000000+4 5.155000-1 6.000000+4 5.158000-1 8.000000+4 5.161000-1 1.000000+5 5.163000-1 1 68000 7 8 1.672600+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 68000 7 9 1.672600+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.800000+1 1.000000+5 6.800000+1 5.000000+5 6.796600+1 1.000000+6 6.792100+1 1.375000+6 6.787820+1 1.500000+6 6.785800+1 1.875000+6 6.778010+1 2.000000+6 6.775000+1 2.375000+6 6.765030+1 2.500000+6 6.761400+1 2.875000+6 6.749530+1 3.000000+6 6.745200+1 3.437500+6 6.728460+1 3.812500+6 6.713080+1 4.000000+6 6.705700+1 4.437500+6 6.686640+1 4.812500+6 6.668980+1 5.000000+6 6.660400+1 5.500000+6 6.634290+1 5.875000+6 6.613550+1 6.437500+6 6.581300+1 6.500000+6 6.577480+1 7.000000+6 6.548300+1 7.500000+6 6.518190+1 8.250000+6 6.473200+1 9.000000+6 6.427000+1 1.000000+7 6.363800+1 1.250000+7 6.205700+1 1.500000+7 6.042200+1 1.750000+7 5.877900+1 2.000000+7 5.708600+1 2.250000+7 5.534460+1 2.500000+7 5.359500+1 2.875000+7 5.100800+1 3.000000+7 5.016800+1 3.437500+7 4.730550+1 3.500000+7 4.691330+1 3.812500+7 4.500420+1 4.000000+7 4.391600+1 4.500000+7 4.118770+1 5.000000+7 3.869300+1 5.500000+7 3.639600+1 5.750000+7 3.530940+1 6.000000+7 3.426500+1 6.500000+7 3.227620+1 7.000000+7 3.043000+1 7.750000+7 2.790470+1 8.000000+7 2.713100+1 9.000000+7 2.436100+1 1.000000+8 2.208600+1 1.125000+8 1.983500+1 1.187500+8 1.891290+1 1.250000+8 1.810500+1 1.375000+8 1.676800+1 1.437500+8 1.620370+1 1.500000+8 1.568800+1 1.625000+8 1.476280+1 1.671900+8 1.443500+1 1.789100+8 1.362860+1 1.812500+8 1.346660+1 1.894500+8 1.289390+1 1.973600+8 1.233070+1 2.000000+8 1.214100+1 2.062500+8 1.168670+1 2.250000+8 1.040440+1 2.390600+8 9.603650+0 2.500000+8 9.101700+0 2.781300+8 8.131610+0 2.859400+8 7.866760+0 2.953100+8 7.524800+0 3.000000+8 7.340800+0 3.062500+8 7.082600+0 3.335900+8 6.021190+0 3.418000+8 5.776510+0 3.500000+8 5.579800+0 3.589800+8 5.420400+0 3.712900+8 5.265530+0 4.000000+8 4.997900+0 4.125000+8 4.863640+0 4.234400+8 4.734060+0 4.425800+8 4.494960+0 5.000000+8 3.834000+0 5.500000+8 3.403120+0 5.750000+8 3.205200+0 5.937500+8 3.055550+0 6.000000+8 3.004900+0 6.250000+8 2.801270+0 6.718800+8 2.466240+0 6.906300+8 2.361840+0 7.000000+8 2.316800+0 7.125000+8 2.264550+0 7.781300+8 2.050850+0 8.000000+8 1.977200+0 8.125000+8 1.931000+0 1.000000+9 1.297900+0 1.030800+9 1.241330+0 1.060100+9 1.199140+0 1.087600+9 1.167390+0 1.100900+9 1.154290+0 1.500000+9 9.626000-1 1.560500+9 9.272080-1 1.615500+9 8.918700-1 1.686000+9 8.442130-1 1.764500+9 7.904200-1 1.823400+9 7.507780-1 1.911700+9 6.938410-1 2.000000+9 6.409600-1 2.139200+9 5.666630-1 2.272600+9 5.048400-1 2.443000+9 4.371890-1 2.602800+9 3.834570-1 2.825100+9 3.214180-1 2.961100+9 2.894910-1 3.215900+9 2.394960-1 3.438900+9 2.042330-1 3.500000+9 1.956990-1 3.719500+9 1.685000-1 3.954200+9 1.443930-1 4.327700+9 1.142270-1 4.663900+9 9.351080-2 5.000000+9 7.727300-2 5.539100+9 5.791640-2 5.990200+9 4.622080-2 6.708000+9 3.315330-2 8.000000+9 1.958300-2 1.00000+10 9.999400-3 1.27030+10 4.879290-3 1.70630+10 2.026890-3 2.16210+10 1.006720-3 2.93940+10 4.086510-4 3.82190+10 1.900540-4 4.95460+10 8.956810-5 6.75650+10 3.664610-5 1.00000+11 1.193400-5 1.34280+11 5.161440-6 2.20600+11 1.269490-6 4.19930+11 2.092020-7 1.03480+12 1.716400-8 3.24440+12 7.47144-10 1.00000+14 6.82750-14 2.05350+15 1.80359-17 1.00000+17 4.21710-22 1 68000 7 0 1.672600+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.90000-12 1.000000+2 9.90000-10 1.000000+3 9.900000-8 1.000000+4 9.900000-6 1.000000+5 9.900000-4 5.000000+5 2.475000-2 1.000000+6 9.900000-2 1.375000+6 1.857300-1 1.500000+6 2.202000-1 1.875000+6 3.387580-1 2.000000+6 3.831000-1 2.375000+6 5.294560-1 2.500000+6 5.824000-1 2.875000+6 7.520250-1 3.000000+6 8.119000-1 3.437500+6 1.032110+0 3.812500+6 1.231770+0 4.000000+6 1.334600+0 4.437500+6 1.579580+0 4.812500+6 1.793300+0 5.000000+6 1.901000+0 5.500000+6 2.187770+0 5.875000+6 2.401830+0 6.437500+6 2.719210+0 6.500000+6 2.754020+0 7.000000+6 3.030200+0 7.500000+6 3.300080+0 8.250000+6 3.695330+0 9.000000+6 4.081500+0 1.000000+7 4.588000+0 1.250000+7 5.856500+0 1.500000+7 7.164000+0 1.750000+7 8.487500+0 2.000000+7 9.792000+0 2.250000+7 1.105640+1 2.500000+7 1.227900+1 2.875000+7 1.403970+1 3.000000+7 1.460900+1 3.437500+7 1.652770+1 3.500000+7 1.679170+1 3.812500+7 1.807680+1 4.000000+7 1.881700+1 4.500000+7 2.067520+1 5.000000+7 2.238700+1 5.500000+7 2.397590+1 5.750000+7 2.473360+1 6.000000+7 2.547100+1 6.500000+7 2.689290+1 7.000000+7 2.825800+1 7.750000+7 3.020290+1 8.000000+7 3.083000+1 9.000000+7 3.321600+1 1.000000+8 3.544000+1 1.125000+8 3.802100+1 1.187500+8 3.922900+1 1.250000+8 4.038700+1 1.375000+8 4.253620+1 1.437500+8 4.352540+1 1.500000+8 4.446300+1 1.625000+8 4.616530+1 1.671900+8 4.675200+1 1.789100+8 4.811150+1 1.812500+8 4.836400+1 1.894500+8 4.920750+1 1.973600+8 4.996540+1 2.000000+8 5.021000+1 2.062500+8 5.075410+1 2.250000+8 5.223800+1 2.390600+8 5.320890+1 2.500000+8 5.390600+1 2.781300+8 5.547320+1 2.859400+8 5.586770+1 2.953100+8 5.631040+1 3.000000+8 5.652800+1 3.062500+8 5.680300+1 3.335900+8 5.791640+1 3.418000+8 5.822020+1 3.500000+8 5.851800+1 3.589800+8 5.882250+1 3.712900+8 5.923030+1 4.000000+8 6.010100+1 4.125000+8 6.044480+1 4.234400+8 6.073880+1 4.425800+8 6.121900+1 5.000000+8 6.246000+1 5.500000+8 6.332840+1 5.750000+8 6.369930+1 5.937500+8 6.395600+1 6.000000+8 6.403700+1 6.250000+8 6.433580+1 6.718800+8 6.481050+1 6.906300+8 6.497590+1 7.000000+8 6.505700+1 7.125000+8 6.515130+1 7.781300+8 6.559010+1 8.000000+8 6.571900+1 8.125000+8 6.578170+1 1.000000+9 6.650400+1 1.030800+9 6.658710+1 1.060100+9 6.666390+1 1.087600+9 6.673420+1 1.100900+9 6.676760+1 1.500000+9 6.743100+1 1.560500+9 6.748890+1 1.615500+9 6.753970+1 1.686000+9 6.760240+1 1.764500+9 6.765920+1 1.823400+9 6.769470+1 1.911700+9 6.774600+1 2.000000+9 6.779500+1 2.139200+9 6.784850+1 2.272600+9 6.788730+1 2.443000+9 6.792710+1 2.602800+9 6.795650+1 2.825100+9 6.798320+1 2.961100+9 6.799130+1 3.215900+9 6.800310+1 3.438900+9 6.800990+1 3.500000+9 6.800940+1 3.719500+9 6.800770+1 3.954200+9 6.800590+1 4.327700+9 6.800320+1 4.663900+9 6.800100+1 5.000000+9 6.799900+1 5.539100+9 6.799920+1 5.990200+9 6.799940+1 6.708000+9 6.799960+1 8.000000+9 6.800000+1 1.00000+10 6.800000+1 1.27030+10 6.800000+1 1.70630+10 6.800000+1 2.16210+10 6.800000+1 2.93940+10 6.800000+1 3.82190+10 6.800000+1 4.95460+10 6.800000+1 6.75650+10 6.800000+1 1.00000+11 6.800000+1 1.34280+11 6.800000+1 2.20600+11 6.800000+1 4.19930+11 6.800000+1 1.03480+12 6.800000+1 3.24440+12 6.800000+1 1.00000+14 6.800000+1 2.05350+15 6.800000+1 1.00000+17 6.800000+1 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.175106-6 0.0 1.177999-6 4.731446-7 1.180891-6 9.362226-7 1.183783-6 1.710087-6 1.186676-6 2.883442-6 1.189568-6 4.488054-6 1.192461-6 6.448500-6 1.195353-6 8.552899-6 1.198245-6 1.047181-5 1.201138-6 1.183543-5 1.204030-6 1.234811-5 1.206922-6 1.189243-5 1.209815-6 1.057292-5 1.212707-6 8.677070-6 1.218492-6 4.597178-6 1.221384-6 2.967778-6 1.224277-6 1.768584-6 1.227169-6 9.729123-7 1.230061-6 4.940556-7 1.232954-6 0.0 2.145823-6 0.0 2.151105-6 4.380194-7 2.156387-6 8.667196-7 2.161668-6 1.583134-6 2.166950-6 2.669382-6 2.172232-6 4.154871-6 2.177513-6 5.969778-6 2.182795-6 7.917950-6 2.188077-6 9.694407-6 2.193358-6 1.095680-5 2.198640-6 1.143141-5 2.203922-6 1.100957-5 2.209203-6 9.788010-6 2.214485-6 8.032904-6 2.225048-6 4.255894-6 2.230330-6 2.747457-6 2.235612-6 1.637288-6 2.240893-6 9.006855-7 2.246175-6 4.573781-7 2.251457-6 0.0 2.413729-6 0.0 2.425611-6 4.082882+0 2.431552-6 7.457717+0 2.437493-6 1.257474+1 2.443435-6 1.957247+1 2.461629-6 4.603858+1 2.467744-6 5.181933+1 2.473770-6 5.364017+1 2.479849-6 5.112042+1 2.486266-6 4.434032+1 2.503588-6 1.916199+1 2.509158-6 1.261640+1 2.514728-6 7.712822+0 2.520669-6 4.242887+0 2.530203-6 8.526232-1 2.532551-6 3.446521-7 2.534322-6 0.0 2.597281-6 0.0 2.608469-6 7.324921+0 2.610067-6 8.360661+0 2.616460-6 1.527143+1 2.623252-6 2.664329+1 2.630045-6 4.226302+1 2.641441-6 7.464108+1 2.648824-6 9.427483+1 2.655852-6 1.064325+2 2.661672-6 1.099778+2 2.668190-6 1.051226+2 2.675144-6 9.138222+1 2.685208-6 6.333490+1 2.693174-6 4.105375+1 2.699567-6 2.650287+1 2.705960-6 1.579381+1 2.712353-6 8.688307+0 2.721942-6 2.208603+0 2.725139-6 0.0 3.441629-6 0.0 3.450100-6 1.58806-15 3.458571-6 3.14234-15 3.467042-6 5.73974-15 3.475513-6 9.67799-15 3.483984-6 1.50637-14 3.492455-6 2.16437-14 3.500927-6 2.87070-14 3.509398-6 3.51476-14 3.517869-6 3.97245-14 3.526340-6 4.14452-14 3.534811-6 3.99158-14 3.543282-6 3.54870-14 3.551753-6 2.91237-14 3.568696-6 1.54300-14 3.577167-6 9.96105-15 3.585638-6 5.93607-15 3.594109-6 3.26548-15 3.602580-6 1.65825-15 3.611051-6 0.0 4.016792-6 0.0 4.034094-6 1.110230-1 4.036565-6 1.267216-1 4.046452-6 2.314674-1 4.056339-6 3.902859-1 4.066226-6 6.074771-1 4.073116-6 7.979824-1 4.094482-6 1.916776+0 4.107997-6 2.797950+0 4.121113-6 3.807668+0 4.146995-6 5.895388+0 4.155791-6 6.425246+0 4.166338-6 6.734163+0 4.176399-6 6.619173+0 4.186104-6 6.116251+0 4.196329-6 5.229779+0 4.217406-6 2.947416+0 4.224565-6 2.246969+0 4.233279-6 1.520922+0 4.243304-6 9.063630-1 4.253329-6 4.985992-1 4.267700-6 1.435741-1 4.273379-6 4.327272-6 4.287818-6 0.0 4.526096-6 0.0 4.526115-6 1.00543-14 4.537256-6 1.34296-11 4.548396-6 2.65705-11 4.559537-6 4.85281-11 4.570677-6 8.18171-11 4.581818-6 1.27336-10 4.587934-6 1.57830-10 4.610519-6 2.821714-2 4.612343-6 3.197672-2 4.621812-6 1.064813-1 4.635048-6 2.256118-1 4.646401-6 3.839147-1 4.657754-6 6.075324-1 4.673726-6 1.026703+0 4.693222-6 1.586095+0 4.704363-6 1.846438+0 4.715503-6 2.001291+0 4.728036-6 2.002300+0 4.737784-6 1.891777+0 4.751719-6 1.566374+0 4.776957-6 8.423609-1 4.782633-6 6.878321-1 4.793986-6 4.391289-1 4.805339-6 2.574783-1 4.813850-6 1.633017-1 4.816692-6 1.355101-1 4.828044-6 6.881365-2 4.839397-6 1.023273-6 4.847968-6 1.67080-11 4.848692-6 1.72308-11 4.857850-6 2.82045-11 4.870635-6 5.889332-3 4.882624-6 3.962662-2 4.894612-6 7.648609-2 4.906601-6 1.364902-1 4.918589-6 2.251740-1 4.931824-6 3.580198-1 4.955576-6 6.418192-1 4.967452-6 7.662250-1 4.979328-6 8.471438-1 4.991204-6 8.671868-1 5.003080-6 8.217161-1 5.024099-6 6.294622-1 5.039013-6 4.728506-1 5.051355-6 3.651326-1 5.062460-6 3.035879-1 5.074439-6 2.810450-1 5.088381-6 3.038866-1 5.110405-6 3.856552-1 5.125408-6 4.602741-1 5.137750-6 4.917446-1 5.152735-6 4.911860-1 5.200643-6 4.112778-1 5.273079-6 4.023068-1 5.331880-6 3.895219-1 5.428254-6 3.458332-1 5.510156-6 3.524091-1 5.601339-6 3.258526-1 6.071893-6 2.522346-1 6.504129-6 2.012896-1 6.536147-6 1.086526+0 6.552156-6 1.819320+0 6.569166-6 3.026164+0 6.585121-6 4.565883+0 6.632702-6 1.016725+1 6.650687-6 1.149446+1 6.665917-6 1.185871+1 6.681699-6 1.135578+1 6.697656-6 1.005293+1 6.744265-6 4.541307+0 6.760275-6 2.993492+0 6.776284-6 1.854021+0 6.792293-6 1.097543+0 6.824311-6 1.715114-1 7.372403-6 1.320009-1 7.409669-6 1.300646-1 7.446697-6 8.340348-1 7.464935-6 1.411432+0 7.483172-6 2.283436+0 7.501980-6 3.515895+0 7.534739-6 6.195127+0 7.556400-6 7.871213+0 7.575852-6 8.869384+0 7.593704-6 9.172343+0 7.611408-6 8.806348+0 7.631783-6 7.644994+0 7.683220-6 3.501343+0 7.701457-6 2.324371+0 7.719695-6 1.465643+0 7.737933-6 9.185857-1 7.774409-6 3.364167-1 7.830447-6 6.276343-1 7.849349-6 6.944870-1 7.868250-6 7.190575-1 7.887151-6 6.955123-1 7.906053-6 6.291025-1 7.962757-6 3.296629-1 7.981659-6 2.478625-1 8.000560-6 1.874382-1 8.019462-6 1.470643-1 8.057265-6 9.711377-2 8.175364-6 9.232761-2 8.215609-6 1.522211-1 8.235732-6 2.022387-1 8.256007-6 2.792712-1 8.275977-6 3.830780-1 8.336345-6 7.736701-1 8.356467-6 8.624486-1 8.376590-6 8.953676-1 8.396713-6 8.647202-1 8.416835-6 7.773730-1 8.477203-6 3.830214-1 8.497326-6 2.753677-1 8.517448-6 1.959939-1 8.537571-6 1.431128-1 8.577816-6 7.794691-2 8.709224-6 7.384149-2 8.752097-6 9.496358-2 8.773533-6 1.128418-1 8.794970-6 1.402806-1 8.816407-6 1.780549-1 8.880717-6 3.194610-1 8.902153-6 3.514964-1 8.923590-6 3.631781-1 8.945027-6 3.517183-1 8.966463-6 3.201985-1 9.030773-6 1.953145-1 9.052277-6 1.690829-1 9.074341-6 1.581304-1 9.096405-6 1.614394-1 9.137956-6 1.868253-1 9.165629-6 2.107523-1 9.187970-6 2.214842-1 9.210310-6 2.250777-1 9.299670-6 2.040770-1 9.328315-6 2.021437-1 9.374866-6 2.415816-1 9.400567-6 2.771733-1 9.423873-6 3.296686-1 9.450929-6 4.140435-1 9.512845-6 6.377657-1 9.539852-6 6.960365-1 9.562535-6 7.058381-1 9.585673-6 6.746881-1 9.610417-6 5.999867-1 9.678227-6 3.248060-1 9.698252-6 2.603028-1 9.720037-6 2.097225-1 9.742650-6 1.773260-1 9.787606-6 1.479359-1 9.875526-6 1.732842-1 9.924141-6 1.941696-1 9.948449-6 2.075457-1 9.972756-6 2.263847-1 9.997063-6 2.517813-1 1.006999-5 3.458877-1 1.009429-5 3.673960-1 1.011860-5 3.753840-1 1.014291-5 3.690643-1 1.016721-5 3.512705-1 1.024014-5 2.744864-1 1.026444-5 2.604561-1 1.028888-5 2.565757-1 1.041366-5 2.880984-1 1.070250-5 2.689123-1 1.087270-5 2.377086-1 1.094582-5 2.372121-1 1.110166-5 2.572841-1 1.149789-5 2.530444-1 1.259933-5 2.394583-1 1.400000-5 2.390179-1 1.566751-5 2.567572-1 1.755990-5 2.963967-1 1.975978-5 3.667807-1 2.217982-5 4.737160-1 2.495928-5 6.366926-1 2.515602-5 6.500328-1 2.528180-5 2.523391+0 2.534209-5 3.994861+0 2.540369-5 6.265437+0 2.542568-5 7.371646+0 2.546561-5 1.432538+1 2.555084-5 3.006847+1 2.561343-5 4.673853+1 2.568383-5 7.282727+1 2.574641-5 1.016431+2 2.589113-5 1.751660+2 2.593025-5 1.922806+2 2.599905-5 2.102768+2 2.605784-5 2.128421+2 2.611983-5 2.007005+2 2.618537-5 1.738325+2 2.636441-5 7.649633+1 2.642699-5 4.934789+1 2.648992-5 2.971083+1 2.655295-5 1.677257+1 2.667732-5 1.339258+0 2.671225-5 1.504752+0 2.677736-5 1.924253+0 2.697268-5 3.484942+0 2.703779-5 3.842202+0 2.709685-5 3.983295+0 2.716801-5 4.532934+0 2.723312-5 4.808047+0 2.729822-5 5.321242+0 2.736817-5 6.384519+0 2.744395-5 8.324834+0 2.756993-5 1.264354+1 2.763762-5 1.507154+1 2.771340-5 1.702285+1 2.778077-5 1.768964+1 2.784813-5 1.738894+1 2.795194-5 1.548646+1 2.807855-5 1.271295+1 2.817198-5 1.151614+1 2.827453-5 1.117013+1 2.860978-5 1.105931+1 2.907189-5 9.983005+0 2.983771-5 8.874119+0 3.073246-5 7.965243+0 3.088375-5 1.648813+1 3.096412-5 2.425557+1 3.103976-5 3.529446+1 3.111820-5 5.098719+1 3.134927-5 1.062213+2 3.142697-5 1.176694+2 3.149954-5 1.209118+2 3.157467-5 1.156169+2 3.165546-5 1.013788+2 3.187464-5 4.813550+1 3.194276-5 3.452198+1 3.201841-5 2.338809+1 3.209405-5 1.602442+1 3.224534-5 7.044423+0 3.256544-5 7.470853+0 3.269552-5 7.802852+0 3.290148-5 8.618665+0 3.302127-5 9.449696+0 3.326349-5 1.208495+1 3.338619-5 1.328218+1 3.346397-5 1.363054+1 3.358187-5 1.344296+1 3.387544-5 1.178355+1 3.413397-5 1.125294+1 3.482556-5 1.075590+1 3.556706-5 9.821369+0 3.779534-5 8.499326+0 3.994296-5 7.711131+0 4.287570-5 7.038993+0 4.704349-5 6.555148+0 5.269742-5 6.414489+0 5.400000-5 6.545267+0 5.580116-5 6.545540+0 6.461190-5 7.185105+0 9.952143-5 1.108232+1 1.288799-4 1.374188+1 1.574291-4 1.540430+1 1.586042-4 1.579959+1 1.593849-4 2.011693+1 1.597753-4 2.360492+1 1.601657-4 2.870843+1 1.605561-4 3.548687+1 1.617272-4 5.959635+1 1.621176-4 6.476747+1 1.625080-4 6.644252+1 1.628984-4 6.422767+1 1.632888-4 5.860383+1 1.644599-4 3.416403+1 1.648503-4 2.759402+1 1.652444-4 2.271981+1 1.653774-4 2.165238+1 1.656337-4 2.044087+1 1.661917-4 1.954423+1 1.664118-4 1.963926+1 1.666041-4 2.071516+1 1.670057-4 2.405560+1 1.674127-4 2.868087+1 1.687200-4 4.678614+1 1.690968-4 5.012577+1 1.695133-4 5.126664+1 1.699192-4 4.968231+1 1.703324-4 4.567695+1 1.715120-4 2.951723+1 1.719080-4 2.513228+1 1.722974-4 2.193404+1 1.727044-4 1.973285+1 1.735186-4 1.709628+1 1.780623-4 1.842300+1 1.898423-4 1.964458+1 2.015018-4 1.951660+1 2.380313-4 1.775052+1 2.982794-4 1.698035+1 3.046421-4 1.709393+1 3.111320-4 1.862052+1 3.213941-4 1.810136+1 3.521207-4 1.809709+1 3.683427-4 1.814906+1 4.302370-4 1.767626+1 4.394144-4 1.797930+1 8.293732-4 1.267991+1 1.070749-3 1.022818+1 1.347096-3 8.195298+0 1.368477-3 8.078872+0 1.375213-3 9.463833+0 1.378590-3 1.064372+1 1.381950-3 1.244427+1 1.385318-3 1.495120+1 1.395114-3 2.467086+1 1.398866-3 2.792932+1 1.402291-3 2.981985+1 1.405625-3 3.054347+1 1.419784-3 2.797272+1 1.425009-3 2.856455+1 1.432823-3 3.218123+1 1.441327-3 3.661101+1 1.444524-3 3.750066+1 1.448118-3 3.759054+1 1.458047-3 3.481895+1 1.468557-3 3.209732+1 1.482269-3 3.158739+1 1.542006-3 3.297514+1 1.605642-3 3.221254+1 1.761796-3 2.904886+1 1.780776-3 3.036970+1 1.799055-3 3.222582+1 1.825948-3 3.178591+1 1.954403-3 2.910050+1 2.007590-3 2.978594+1 2.168872-3 2.706754+1 2.222211-3 2.712260+1 2.614230-3 2.188258+1 3.053615-3 1.766418+1 3.471234-3 1.469011+1 3.976935-3 1.204001+1 4.456013-3 1.015118+1 5.113874-3 8.234725+0 5.832906-3 6.717609+0 6.564293-3 5.582392+0 7.480876-3 4.535167+0 8.146738-3 3.970785+0 8.204143-3 4.129345+0 8.237682-3 4.470842+0 8.264765-3 4.976210+0 8.295219-3 5.818556+0 8.367312-3 8.316984+0 8.404313-3 9.254822+0 8.457484-3 9.879762+0 8.558766-3 9.910877+0 9.092024-3 9.051762+0 9.167323-3 9.275428+0 9.235437-3 1.004453+1 9.339147-3 1.137097+1 9.431104-3 1.161001+1 9.610570-3 1.148975+1 9.806978-3 1.243653+1 1.004645-2 1.219855+1 1.156305-2 9.799814+0 1.333599-2 7.793728+0 1.520263-2 6.295786+0 1.740304-2 5.034107+0 1.966080-2 4.102503+0 2.205301-2 3.375017+0 2.462014-2 2.794997+0 2.716830-2 2.357239+0 3.064503-2 1.911781+0 3.457403-2 1.546792+0 3.885095-2 1.258759+0 4.365158-2 1.022986+0 4.950938-2 8.165801-1 5.588464-2 6.572710-1 5.635312-2 6.614416-1 5.657030-2 6.919177-1 5.674252-2 7.525104-1 5.688548-2 8.430213-1 5.704720-2 1.004262+0 5.721410-2 1.244336+0 5.745136-2 1.696896+0 5.786639-2 2.544273+0 5.815353-2 2.943288+0 5.849731-2 3.154852+0 5.915988-2 3.181522+0 6.789945-2 2.553569+0 7.768195-2 2.049861+0 8.725473-2 1.687394+0 9.914025-2 1.357170+0 1.122172-1 1.096887+0 1.260642-1 8.958326-1 1.403776-1 7.426992-1 1.560127-1 6.170882-1 1.743769-1 5.079654-1 1.967305-1 4.113121-1 2.199835-1 3.385168-1 2.465202-1 2.782788-1 2.765151-1 2.288662-1 3.091398-1 1.900813-1 3.494529-1 1.556089-1 3.928745-1 1.292899-1 4.394362-1 1.089584-1 4.888546-1 9.305852-2 5.539078-1 7.799865-2 6.291439-1 6.572510-2 7.286182-1 5.462645-2 8.454916-1 4.587330-2 9.947725-1 3.852099-2 1.173413+0 3.217802-2 1.410753+0 2.622409-2 1.696098+0 2.137182-2 2.039158+0 1.741737-2 2.451607+0 1.419462-2 2.947480+0 1.156818-2 3.384160+0 9.922492-3 4.068655+0 8.086524-3 4.891600+0 6.590267-3 5.880996+0 5.370863-3 7.070513+0 4.377088-3 8.500626+0 3.567191-3 9.760024+0 3.059724-3 1.000000+1 6.297123-3 1 68000 7 0 1.672600+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.759723+1 1.946551-6-6.503747+1 2.230330-6-6.120959+1 2.333943-6-5.688311+1 2.382257-6-5.197141+1 2.403136-6-4.753964+1 2.413310-6-4.335311+1 2.439536-6-2.894053+1 2.444391-6-2.758381+1 2.449205-6-2.805157+1 2.453472-6-2.994219+1 2.458794-6-3.428786+1 2.464414-6-4.228978+1 2.473233-6-5.873737+1 2.478337-6-6.778510+1 2.484410-6-5.757328+1 2.489470-6-5.135479+1 2.495567-6-4.731645+1 2.501670-6-4.630187+1 2.509158-6-4.914955+1 2.539919-6-6.798138+1 2.581861-6-5.073659+1 2.593468-6-4.323184+1 2.597281-6-3.911926+1 2.601708-6-3.426856+1 2.609268-6-2.722026+1 2.618358-6-1.692310+1 2.622291-6-1.336373+1 2.623252-6-1.221074+1 2.625312-6-1.066729+1 2.630045-6-8.364789+0 2.631443-6-8.188298+0 2.632492-6-8.275673+0 2.634065-6-8.677409+0 2.636438-6-9.707774+0 2.637836-6-1.077210+1 2.639671-6-1.268074+1 2.641441-6-1.510643+1 2.644828-6-2.123651+1 2.647413-6-2.701940+1 2.653869-6-4.624479+1 2.659191-6-6.558144+1 2.659928-6-6.782529+1 2.661672-6-6.037412+1 2.669551-6-3.164828+1 2.675144-6-1.501857+1 2.676456-6-1.185631+1 2.677439-6-9.723947+0 2.678914-6-6.805360+0 2.680389-6-4.063337+0 2.681188-6-2.671636+0 2.682586-6-6.530853-1 2.683635-6 6.208585-1 2.685208-6 2.179014+0 2.685995-6 2.793582+0 2.686782-6 3.256481+0 2.688380-6 4.003391+0 2.689578-6 4.422173+0 2.691376-6 4.689442+0 2.692275-6 4.611951+0 2.696371-6 2.930158+0 2.697969-6 2.070775+0 2.698768-6 1.492140+0 2.699567-6 6.641824-1 2.700366-6-2.023387-1 2.703163-6-2.559175+0 2.704562-6-3.833121+0 2.705261-6-4.561783+0 2.705960-6-5.473851+0 2.714551-6-1.474919+1 2.723541-6-2.280050+1 2.726537-6-2.662592+1 2.730719-6-3.018307+1 2.739018-6-3.499348+1 2.752634-6-4.018902+1 2.773914-6-4.529318+1 2.809585-6-5.028865+1 2.884402-6-5.548898+1 3.022790-6-5.953135+1 3.388050-6-6.308250+1 4.026679-6-6.657121+1 4.098608-6-6.777830+1 4.143307-6-6.731717+1 4.207348-6-6.074648+1 4.353176-6-6.394942+1 4.702970-6-6.574158+1 4.782633-6-6.401519+1 4.979328-6-6.536275+1 6.349636-6-6.734528+1 6.471441-6-6.748222+1 6.597192-6-6.333482+1 6.640457-6-6.663613+1 6.651718-6-6.789114+1 6.706708-6-6.016485+1 6.744265-6-5.883990+1 6.883483-6-6.351775+1 7.409300-6-6.807064+1 7.523353-6-6.578731+1 7.569592-6-6.768206+1 7.641133-6-6.084719+1 7.696898-6-6.012592+1 7.839898-6-6.351232+1 8.376590-6-6.495144+1 1.708332-5-6.860255+1 2.125224-5-6.451266+1 2.294589-5-5.957582+1 2.378199-5-5.437249+1 2.435605-5-4.771307+1 2.467881-5-4.132088+1 2.485971-5-3.600745+1 2.501045-5-2.983571+1 2.510423-5-2.460633+1 2.515602-5-2.083757+1 2.525165-5-1.264933+1 2.528180-5-9.560272+0 2.531194-5-6.144738+0 2.532702-5-4.321675+0 2.534209-5-2.323820+0 2.537289-5 2.084649+0 2.538829-5 4.521667+0 2.540369-5 7.304388+0 2.542018-5 1.083077+1 2.543067-5 1.381508+1 2.545251-5 1.831980+1 2.548783-5 2.432606+1 2.554285-5 3.299510+1 2.555867-5 3.625001+1 2.563609-5 4.844451+1 2.569752-5 5.448955+1 2.574641-5 5.484691+1 2.578514-5 5.099532+1 2.582506-5 4.290170+1 2.585650-5 3.331350+1 2.589113-5 1.902964+1 2.590653-5 1.195519+1 2.591644-5 6.893929+0 2.592139-5 4.119859+0 2.592386-5 2.626788+0 2.592634-5 9.457862-1 2.593025-5-1.646869+0 2.596804-5-2.387781+1 2.598428-5-3.464925+1 2.599905-5-4.615920+1 2.603723-5-7.186125+1 2.605784-5-5.550373+1 2.611408-5-1.729862+1 2.611983-5-1.296382+1 2.612693-5-8.363966+0 2.613315-5-4.620841+0 2.614403-5 1.539413+0 2.617258-5 1.673611+1 2.617960-5 2.092763+1 2.618537-5 2.388692+1 2.620705-5 3.304554+1 2.622708-5 3.981997+1 2.625852-5 4.810982+1 2.629347-5 5.430129+1 2.633448-5 5.759942+1 2.635738-5 5.712656+1 2.641917-5 4.974692+1 2.643486-5 4.619076+1 2.648304-5 3.718873+1 2.656072-5 1.983409+1 2.657530-5 1.690432+1 2.662631-5 7.858124+0 2.665181-5 3.188183+0 2.666457-5 5.776397-1 2.667094-5-8.917498-1 2.667413-5-1.713449+0 2.668169-5-4.025629+0 2.668933-5-5.809388+0 2.670079-5-8.088875+0 2.671225-5-1.011034+1 2.674074-5-1.442446+1 2.677736-5-1.902679+1 2.684258-5-2.557040+1 2.691725-5-3.135969+1 2.703779-5-3.833680+1 2.729822-5-4.993729+1 2.748079-5-5.655099+1 2.762810-5-5.798022+1 2.793228-5-5.217473+1 2.807855-5-5.257572+1 2.844377-5-5.712169+1 2.962803-5-6.589888+1 3.016008-5-7.268788+1 3.049547-5-6.308788+1 3.065612-5-5.544852+1 3.072944-5-4.956454+1 3.079103-5-4.365638+1 3.088375-5-3.583526+1 3.097298-5-2.700048+1 3.104863-5-2.061888+1 3.111820-5-1.722172+1 3.114462-5-1.702352+1 3.117430-5-1.784829+1 3.119908-5-1.923076+1 3.123095-5-2.194577+1 3.127509-5-2.733231+1 3.131783-5-3.467713+1 3.137764-5-4.964447+1 3.141330-5-6.009125+1 3.144768-5-7.060273+1 3.149147-5-5.612261+1 3.152574-5-4.473315+1 3.156501-5-3.255299+1 3.158338-5-2.634663+1 3.164815-5-9.270708+0 3.165546-5-7.488020+0 3.166917-5-4.575676+0 3.168116-5-2.323901+0 3.169165-5-5.315654-1 3.171001-5 2.264398+0 3.172378-5 4.107192+0 3.174444-5 6.499334+0 3.176510-5 8.465732+0 3.177879-5 9.547444+0 3.180276-5 1.103932+1 3.182073-5 1.180710+1 3.183421-5 1.217272+1 3.185443-5 1.233773+1 3.186454-5 1.220468+1 3.190870-5 1.034155+1 3.193425-5 8.880315+0 3.195222-5 7.162414+0 3.198531-5 4.667744+0 3.200186-5 3.320334+0 3.201013-5 2.550854+0 3.201841-5 1.589788+0 3.209405-5-5.666388+0 3.210211-5-6.563983+0 3.223414-5-1.755123+1 3.226477-5-2.109595+1 3.231404-5-2.480688+1 3.242243-5-3.044178+1 3.256544-5-3.552532+1 3.273991-5-4.007278+1 3.309566-5-4.630183+1 3.330263-5-4.754799+1 3.371094-5-4.601486+1 3.461744-5-4.859890+1 3.779534-5-5.213542+1 4.704349-5-5.559800+1 6.144000-5-5.723392+1 1.109175-4-5.532280+1 1.681801-4-5.162082+1 1.780623-4-5.148846+1 2.059976-4-4.578351+1 2.380313-4-4.322939+1 3.069284-4-4.128936+1 3.157855-4-4.129638+1 3.485256-4-3.909076+1 4.302370-4-3.587261+1 5.128614-4-3.285427+1 6.557469-4-2.998465+1 8.293732-4-2.864672+1 1.014495-3-2.909464+1 1.166400-3-3.114312+1 1.265511-3-3.405647+1 1.322607-3-3.711777+1 1.358892-3-4.046762+1 1.381950-3-4.439705+1 1.409149-3-5.288130+1 1.419784-3-5.261966+1 1.441327-3-4.882817+1 1.462166-3-4.671502+1 1.489164-3-4.126013+1 1.542006-3-3.477353+1 1.590258-3-3.029313+1 1.644373-3-2.709839+1 1.718559-3-2.462576+1 1.761796-3-2.433640+1 1.794041-3-2.508066+1 1.811055-3-2.403412+1 1.845527-3-2.133092+1 1.892908-3-1.940208+1 1.954403-3-1.806415+1 1.996798-3-1.769259+1 2.041871-3-1.590610+1 2.111866-3-1.431342+1 2.192489-3-1.349457+1 2.256909-3-1.179922+1 2.359296-3-1.015837+1 2.490291-3-8.673818+0 2.681869-3-7.173691+0 2.879216-3-6.119233+0 3.141865-3-5.189754+0 3.381653-3-4.660088+0 3.714684-3-4.263789+0 4.153349-3-4.053184+0 4.659296-3-4.101176+0 5.343562-3-4.432392+0 6.083593-3-5.035670+0 6.790082-3-5.876547+0 7.344750-3-6.861000+0 7.712452-3-7.869828+0 7.959754-3-8.950446+0 8.115061-3-1.010294+1 8.204143-3-1.133424+1 8.311973-3-1.350820+1 8.353138-3-1.373929+1 8.404313-3-1.314565+1 8.501607-3-1.117355+1 8.595622-3-1.003691+1 8.722021-3-9.266284+0 8.895291-3-8.800433+0 9.053954-3-8.877916+0 9.167323-3-9.493166+0 9.255022-3-1.000356+1 9.315018-3-9.799667+0 9.463659-3-8.373431+0 9.569118-3-7.941877+0 9.712174-3-7.759278+0 9.806978-3-7.096274+0 9.933136-3-6.112991+0 1.011943-2-5.201148+0 1.039153-2-4.299054+0 1.078413-2-3.382333+0 1.115578-2-2.755573+0 1.156305-2-2.230566+0 1.206924-2-1.732468+0 1.258487-2-1.351812+0 1.300699-2-1.110125+0 1.351373-2-8.853162-1 1.389593-2-7.504837-1 1.450298-2-5.847926-1 1.496795-2-4.895434-1 1.570505-2-3.701262-1 1.622978-2-3.098429-1 1.664786-2-2.742032-1 1.740304-2-2.322876-1 1.826483-2-2.068474-1 1.923368-2-2.028644-1 2.001133-2-2.104109-1 2.111894-2-2.356896-1 2.205301-2-2.658045-1 2.462014-2-3.743159-1 3.885095-2-1.074555+0 4.534417-2-1.439443+0 4.950938-2-1.756082+0 5.226814-2-2.067170+0 5.416484-2-2.401123+0 5.532661-2-2.729922+0 5.610080-2-3.094115+0 5.663170-2-3.543879+0 5.732965-2-4.351057+0 5.761460-2-4.427621+0 5.793851-2-4.190089+0 5.872457-2-3.196572+0 5.915988-2-2.841977+0 5.983922-2-2.477571+0 6.079090-2-2.136602+0 6.210332-2-1.814729+0 6.396046-2-1.495307+0 6.590069-2-1.258365+0 6.789945-2-1.078050+0 7.067814-2-8.939693-1 7.426533-2-7.232039-1 7.768195-2-6.070582-1 8.147725-2-5.115354-1 8.540260-2-4.416081-1 8.941817-2-3.895106-1 9.424457-2-3.471397-1 1.018518-1-3.080852-1 1.122172-1-2.861294-1 1.260642-1-2.875449-1 1.503634-1-3.186926-1 2.121682-1-4.122456-1 2.765151-1-4.796512-1 3.765713-1-5.394269-1 5.348505-1-5.837956-1 8.913100-1-6.164082-1 2.688134+0-6.327624-1 8.118035+0-6.356460-1 1.000000+1-6.352456-1 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.881858-2 1.093285-6 1.501239-1 1.161540-6 2.015014-1 1.194115-6 2.309616-1 1.255195-6 2.974276-1 1.317281-6 3.819136-1 1.355437-6 4.451272-1 1.415693-6 5.653719-1 1.472241-6 7.060252-1 1.525311-6 8.690938-1 1.575115-6 1.056316+0 1.621856-6 1.269399+0 1.644136-6 1.386259+0 1.665720-6 1.511380+0 1.707540-6 1.787325+0 1.746745-6 2.093623+0 1.783501-6 2.432996+0 1.817959-6 2.806771+0 1.850263-6 3.216115+0 1.880549-6 3.662022+0 1.908942-6 4.145290+0 1.935560-6 4.666499+0 1.960514-6 5.226000+0 1.983909-6 5.823909+0 2.005842-6 6.460310+0 2.026403-6 7.135148+0 2.048000-6 7.937078+0 2.063752-6 8.591286+0 2.080695-6 9.371678+0 2.096578-6 1.018597+1 2.111469-6 1.103304+1 2.125429-6 1.191252+1 2.138517-6 1.282211+1 2.163056-6 1.477794+1 2.184528-6 1.681100+1 2.203316-6 1.890261+1 2.219755-6 2.102854+1 2.234140-6 2.316402+1 2.246726-6 2.528586+1 2.257739-6 2.737120+1 2.267376-6 2.939772+1 2.284240-6 3.348019+1 2.296887-6 3.708516+1 2.306373-6 4.016403+1 2.320602-6 4.552418+1 2.327717-6 4.860705+1 2.334831-6 5.201260+1 2.346325-6 5.833041+1 2.352072-6 6.194039+1 2.357819-6 6.590847+1 2.363566-6 7.028877+1 2.369312-6 7.514748+1 2.375059-6 8.056689+1 2.380806-6 8.665115+1 2.386553-6 9.353514+1 2.392300-6 1.013981+2 2.398047-6 1.104850+2 2.403794-6 1.211380+2 2.409541-6 1.338420+2 2.415288-6 1.492828+2 2.421034-6 1.684141+2 2.426781-6 1.925201+2 2.432528-6 2.232526+2 2.435402-6 2.417183+2 2.438275-6 2.626157+2 2.441149-6 2.862344+2 2.444022-6 3.128680+2 2.446895-6 3.428054+2 2.452768-6 4.153797+2 2.463566-6 5.931309+2 2.467826-6 6.793098+2 2.470856-6 7.455729+2 2.473885-6 8.153948+2 2.479945-6 9.626755+2 2.480702-6 9.815100+2 2.486004-6 1.113253+3 2.488087-6 1.163950+3 2.492063-6 1.256680+3 2.494146-6 1.302182+3 2.496134-6 1.343042+3 2.498123-6 1.380946+3 2.500774-6 1.426170+3 2.503330-6 1.463230+3 2.505697-6 1.491149+3 2.507685-6 1.509460+3 2.510241-6 1.525675+3 2.513650-6 1.533840+3 2.516490-6 1.528550+3 2.517545-6 1.523767+3 2.520554-6 1.501821+3 2.523341-6 1.470839+3 2.525685-6 1.437234+3 2.528584-6 1.386872+3 2.530675-6 1.345018+3 2.534668-6 1.254069+3 2.536851-6 1.199238+3 2.538464-6 1.156881+3 2.541295-6 1.079570+3 2.543988-6 1.003621+3 2.546597-6 9.288707+2 2.549248-6 8.528423+2 2.552018-6 7.743897+2 2.555686-6 6.736897+2 2.558337-6 6.042662+2 2.559095-6 5.850536+2 2.562645-6 4.991953+2 2.564775-6 4.513065+2 2.571213-6 3.248553+2 2.573166-6 2.921641+2 2.576894-6 2.371382+2 2.583847-6 1.596088+2 2.586254-6 1.399713+2 2.587872-6 1.287260+2 2.589343-6 1.198237+2 2.590889-6 1.117836+2 2.592220-6 1.059213+2 2.593643-6 1.007005+2 2.594905-6 9.696184+1 2.596050-6 9.427955+1 2.597052-6 9.247778+1 2.598805-6 9.053066+1 2.600120-6 9.006470+1 2.602092-6 9.094662+1 2.604064-6 9.371721+1 2.610474-6 1.159855+2 2.616883-6 1.601943+2 2.620088-6 1.917477+2 2.629703-6 3.339310+2 2.632907-6 4.007535+2 2.637715-6 5.235967+2 2.640118-6 5.964821+2 2.642522-6 6.778200+2 2.646675-6 8.400169+2 2.649761-6 9.798020+2 2.652908-6 1.140349+3 2.655947-6 1.313575+3 2.661750-6 1.695308+3 2.665069-6 1.943679+3 2.672005-6 2.528355+3 2.673535-6 2.667938+3 2.677551-6 3.048932+3 2.680636-6 3.352674+3 2.685224-6 3.813420+3 2.687233-6 4.015571+3 2.690106-6 4.301267+3 2.692875-6 4.569780+3 2.696244-6 4.881728+3 2.698117-6 5.045821+3 2.700794-6 5.266005+3 2.703993-6 5.503036+3 2.707703-6 5.735968+3 2.710864-6 5.894125+3 2.712503-6 5.960243+3 2.715804-6 6.058785+3 2.717762-6 6.094670+3 2.724022-6 6.094355+3 2.726941-6 6.035074+3 2.730345-6 5.920871+3 2.733861-6 5.755646+3 2.736873-6 5.579698+3 2.740188-6 5.354153+3 2.743400-6 5.108770+3 2.746256-6 4.872933+3 2.749010-6 4.633492+3 2.753192-6 4.255071+3 2.756456-6 3.953759+3 2.760127-6 3.615335+3 2.762983-6 3.356412+3 2.769511-6 2.792771+3 2.771755-6 2.611252+3 2.776038-6 2.285744+3 2.781750-6 1.898670+3 2.788781-6 1.498848+3 2.799706-6 1.035441+3 2.805105-6 8.675509+2 2.807788-6 7.966968+2 2.810461-6 7.334939+2 2.815787-6 6.268336+2 2.821070-6 5.422547+2 2.826313-6 4.749831+2 2.831514-6 4.211075+2 2.836675-6 3.775212+2 2.841796-6 3.418179+2 2.846876-6 3.121685+2 2.851917-6 2.872012+2 2.856919-6 2.658941+2 2.861881-6 2.474873+2 2.871728-6 2.171357+2 2.881422-6 1.932037+2 2.890964-6 1.738251+2 2.900357-6 1.578154+2 2.909603-6 1.443793+2 2.918704-6 1.329583+2 2.927664-6 1.231455+2 2.936483-6 1.146357+2 2.945165-6 1.071947+2 2.953711-6 1.006392+2 2.970536-6 8.955487+1 2.986835-6 8.064406+1 3.002624-6 7.334361+1 3.017921-6 6.727195+1 3.032739-6 6.215832+1 3.047094-6 5.780445+1 3.061001-6 5.406128+1 3.074473-6 5.081323+1 3.100575-6 4.538130+1 3.125046-6 4.111042+1 3.147987-6 3.768188+1 3.169494-6 3.488411+1 3.189658-6 3.256880+1 3.208561-6 3.062748+1 3.244004-6 2.746632+1 3.275017-6 2.511070+1 3.302153-6 2.331160+1 3.325897-6 2.190829+1 3.367449-6 1.975730+1 3.398614-6 1.835413+1 3.445360-6 1.652128+1 3.526488-6 1.390521+1 3.664014-6 1.059596+1 3.844132-6 7.201146+0 3.873079-6 6.668911+0 3.898408-6 6.197859+0 3.920571-6 5.773786+0 3.939964-6 5.387913+0 3.956932-6 5.034594+0 3.971780-6 4.709861+0 3.984771-6 4.410821+0 3.996139-6 4.135389+0 4.006085-6 3.882140+0 4.022404-6 3.438803+0 4.035731-6 3.050938+0 4.045726-6 2.748517+0 4.053222-6 2.519622+0 4.059000-6 2.345374+0 4.075712-6 1.887075+0 4.078219-6 1.829368+0 4.085743-6 1.685135+0 4.090759-6 1.619889+0 4.094521-6 1.591575+0 4.095775-6 1.586635+0 4.103299-6 1.612443+0 4.105807-6 1.645190+0 4.107061-6 1.666687+0 4.113644-6 1.841988+0 4.115839-6 1.926135+0 4.118817-6 2.063225+0 4.122344-6 2.262301+0 4.125430-6 2.471791+0 4.129846-6 2.833822+0 4.134773-6 3.331927+0 4.147057-6 5.064113+0 4.156351-6 6.896777+0 4.158960-6 7.497816+0 4.166552-6 9.467610+0 4.171566-6 1.094626+1 4.177465-6 1.285958+1 4.181846-6 1.439243+1 4.186580-6 1.614497+1 4.191288-6 1.797138+1 4.195881-6 1.981621+1 4.200746-6 2.181609+1 4.205758-6 2.389715+1 4.210479-6 2.584854+1 4.215122-6 2.773124+1 4.217120-6 2.852333+1 4.221891-6 3.035291+1 4.226662-6 3.207165+1 4.228491-6 3.269500+1 4.234753-6 3.465325+1 4.238669-6 3.572149+1 4.247018-6 3.753780+1 4.250517-6 3.809708+1 4.258150-6 3.888096+1 4.263072-6 3.906588+1 4.265422-6 3.906675+1 4.268945-6 3.896496+1 4.272469-6 3.874358+1 4.275029-6 3.851106+1 4.280788-6 3.778243+1 4.285219-6 3.704607+1 4.287730-6 3.656844+1 4.294397-6 3.511904+1 4.299163-6 3.395069+1 4.306794-6 3.191964+1 4.316969-6 2.905308+1 4.328441-6 2.583259+1 4.354380-6 1.955279+1 4.364619-6 1.762170+1 4.373531-6 1.619721+1 4.382165-6 1.502451+1 4.390529-6 1.405911+1 4.406734-6 1.257462+1 4.421926-6 1.152465+1 4.436169-6 1.074387+1 4.449522-6 1.013496+1 4.474558-6 9.202734+0 4.496465-6 8.530378+0 4.534801-6 7.533204+0 4.592306-6 6.188499+0 4.621058-6 5.471123+0 4.635435-6 5.087034+0 4.649811-6 4.695970+0 4.666978-6 4.255331+0 4.675089-6 4.076382+0 4.684146-6 3.915716+0 4.695590-6 3.796730+0 4.698103-6 3.786261+0 4.709610-6 3.825202+0 4.712487-6 3.859440+0 4.721117-6 4.026645+0 4.725566-6 4.152028+0 4.729812-6 4.297007+0 4.734058-6 4.466513+0 4.739854-6 4.736314+0 4.746361-6 5.088853+0 4.767438-6 6.503145+0 4.775886-6 7.129537+0 4.780213-6 7.449260+0 4.791751-6 8.262004+0 4.793194-6 8.356982+0 4.803290-6 8.961577+0 4.807783-6 9.190380+0 4.816360-6 9.545936+0 4.819238-6 9.639610+0 4.824276-6 9.771116+0 4.828054-6 9.842310+0 4.833722-6 9.905072+0 4.839389-6 9.916133+0 4.843542-6 9.892739+0 4.847696-6 9.844122+0 4.856326-6 9.669393+0 4.859203-6 9.591236+0 4.870710-6 9.196943+0 4.878709-6 8.862965+0 4.889590-6 8.359581+0 4.901097-6 7.799033+0 4.920840-6 6.858211+0 4.940146-6 6.054057+0 4.946219-6 5.836214+0 4.958363-6 5.460558+0 4.970508-6 5.172979+0 4.982652-6 4.980527+0 4.988725-6 4.921073+0 4.994797-6 4.886028+0 5.000869-6 4.874764+0 5.005424-6 4.881269+0 5.012255-6 4.913440+0 5.019086-6 4.969814+0 5.026860-6 5.058581+0 5.043375-6 5.303363+0 5.058556-6 5.543124+0 5.071446-6 5.714421+0 5.077118-6 5.772643+0 5.082791-6 5.818013+0 5.088118-6 5.848028+0 5.096108-6 5.869419+0 5.104098-6 5.862983+0 5.110171-6 5.840855+0 5.116243-6 5.805615+0 5.128388-6 5.704322+0 5.159062-6 5.380989+0 5.168014-6 5.297415+0 5.177430-6 5.223243+0 5.191868-6 5.139576+0 5.204584-6 5.093179+0 5.228944-6 5.048525+0 5.265585-6 4.994651+0 5.294949-6 4.922388+0 5.411283-6 4.593222+0 5.458423-6 4.439997+0 5.558235-6 4.081999+0 5.669563-6 3.752382+0 5.759701-6 3.473871+0 5.803577-6 3.329258+0 5.855830-6 3.147119+0 5.908082-6 2.957229+0 6.030886-6 2.491012+0 6.069018-6 2.335055+0 6.135751-6 2.042596+0 6.185800-6 1.805529+0 6.223337-6 1.616804+0 6.251490-6 1.468890+0 6.272605-6 1.354381+0 6.304277-6 1.177126+0 6.325871-6 1.052908+0 6.335949-6 9.941855-1 6.351544-6 9.026605-1 6.367139-6 8.108013-1 6.382734-6 7.193533-1 6.398329-6 6.294176-1 6.413924-6 5.426457-1 6.421722-6 5.011940-1 6.437317-6 4.243968-1 6.445115-6 3.903372-1 6.453995-6 3.565656-1 6.462875-6 3.298923-1 6.470828-6 3.140023-1 6.478782-6 3.080311-1 6.485341-6 3.126238-1 6.491900-6 3.279892-1 6.495799-6 3.432243-1 6.501647-6 3.761771-1 6.504571-6 3.978243-1 6.507495-6 4.233457-1 6.512248-6 4.740075-1 6.515812-6 5.203291-1 6.518485-6 5.602700-1 6.520490-6 5.933856-1 6.525001-6 6.786824-1 6.530179-6 7.970679-1 6.537713-6 1.014892+0 6.555727-6 1.820310+0 6.563907-6 2.357995+0 6.569876-6 2.835180+0 6.576699-6 3.481064+0 6.582181-6 4.086827+0 6.587420-6 4.745416+0 6.593390-6 5.599596+0 6.601066-6 6.875510+0 6.606712-6 7.952717+0 6.613200-6 9.346840+0 6.617575-6 1.038649+1 6.621950-6 1.150981+1 6.629904-6 1.377445+1 6.636863-6 1.599871+1 6.640748-6 1.734062+1 6.650646-6 2.108410+1 6.656867-6 2.367092+1 6.660201-6 2.512900+1 6.670203-6 2.978365+1 6.676459-6 3.288808+1 6.687428-6 3.862162+1 6.694349-6 4.237824+1 6.701956-6 4.657431+1 6.708711-6 5.031201+1 6.715767-6 5.417694+1 6.721855-6 5.743778+1 6.729590-6 6.142274+1 6.735742-6 6.442104+1 6.743617-6 6.797537+1 6.751524-6 7.115812+1 6.754992-6 7.241552+1 6.762967-6 7.495171+1 6.770403-6 7.683587+1 6.775121-6 7.777616+1 6.781877-6 7.876453+1 6.787491-6 7.925923+1 6.790744-6 7.940936+1 6.801528-6 7.919735+1 6.809324-6 7.838537+1 6.816880-6 7.710280+1 6.825196-6 7.517366+1 6.833256-6 7.284307+1 6.840420-6 7.044295+1 6.847790-6 6.770477+1 6.857820-6 6.363664+1 6.866007-6 6.011070+1 6.869894-6 5.839540+1 6.881555-6 5.317811+1 6.899978-6 4.505806+1 6.915135-6 3.882462+1 6.933558-6 3.209681+1 6.964262-6 2.329776+1 6.972450-6 2.145228+1 6.980638-6 1.979895+1 6.990750-6 1.800154+1 7.000704-6 1.647007+1 7.010502-6 1.516577+1 7.020147-6 1.405333+1 7.039136-6 1.227115+1 7.057531-6 1.094126+1 7.075352-6 9.919866+0 7.092616-6 9.110352+0 7.109340-6 8.449276+0 7.141743-6 7.405981+0 7.172121-6 6.617937+0 7.200601-6 5.989117+0 7.254000-6 4.993920+0 7.347448-6 3.550382+0 7.382491-6 3.052895+0 7.417533-6 2.565130+0 7.439983-6 2.256068+0 7.463459-6 1.937462+0 7.484001-6 1.667905+0 7.517702-6 1.279269+0 7.531463-6 1.162234+0 7.543504-6 1.095721+0 7.554040-6 1.076368+0 7.563259-6 1.098910+0 7.571325-6 1.156778+0 7.578384-6 1.242801+0 7.584560-6 1.349838+0 7.589964-6 1.471258+0 7.594692-6 1.601238+0 7.598830-6 1.734903+0 7.602450-6 1.868355+0 7.608389-6 2.123488+0 7.616418-6 2.547346+0 7.642760-6 4.719188+0 7.651260-6 5.724961+0 7.659401-6 6.848185+0 7.667065-6 8.056993+0 7.676656-6 9.785290+0 7.684703-6 1.142409+1 7.691701-6 1.298959+1 7.700093-6 1.503546+1 7.708190-6 1.717536+1 7.711559-6 1.811109+1 7.721666-6 2.106302+1 7.726576-6 2.256696+1 7.733172-6 2.464691+1 7.740283-6 2.695070+1 7.748628-6 2.970716+1 7.754717-6 3.173477+1 7.762399-6 3.428527+1 7.768851-6 3.639882+1 7.777448-6 3.913815+1 7.789495-6 4.274518+1 7.797776-6 4.500941+1 7.801423-6 4.593919+1 7.810246-6 4.799416+1 7.817263-6 4.941257+1 7.835488-6 5.208895+1 7.841539-6 5.263301+1 7.854263-6 5.319704+1 7.860314-6 5.319070+1 7.866089-6 5.302352+1 7.875008-6 5.246779+1 7.884636-6 5.148790+1 7.893920-6 5.020531+1 7.903215-6 4.863150+1 7.909414-6 4.744334+1 7.918802-6 4.547045+1 7.928189-6 4.333395+1 7.932883-6 4.222039+1 7.946964-6 3.877275+1 7.965739-6 3.413677+1 7.975523-6 3.179685+1 8.022167-6 2.236900+1 8.035027-6 2.039679+1 8.042742-6 1.934646+1 8.052515-6 1.815234+1 8.062234-6 1.710590+1 8.071953-6 1.618761+1 8.081671-6 1.538357+1 8.091390-6 1.467930+1 8.110827-6 1.351294+1 8.130265-6 1.258304+1 8.149442-6 1.181545+1 8.160949-6 1.140253+1 8.188577-6 1.051197+1 8.208015-6 9.961598+0 8.227452-6 9.484549+0 8.241297-6 9.199529+0 8.256325-6 8.950627+0 8.266327-6 8.823120+0 8.276046-6 8.729758+0 8.285765-6 8.666725+0 8.293454-6 8.637971+0 8.304987-6 8.628135+0 8.316520-6 8.654801+0 8.335260-6 8.761799+0 8.386929-6 9.224933+0 8.401994-6 9.333801+0 8.410636-6 9.379819+0 8.423598-6 9.421508+0 8.436561-6 9.426873+0 8.449408-6 9.394587+0 8.462256-6 9.325276+0 8.482343-6 9.148593+0 8.502430-6 8.902534+0 8.522517-6 8.606835+0 8.542604-6 8.281936+0 8.591501-6 7.472227+0 8.633795-6 6.836571+0 8.689011-6 6.143702+0 8.731785-6 5.717658+0 8.753172-6 5.545826+0 8.774559-6 5.405631+0 8.795946-6 5.299686+0 8.812388-6 5.242096+0 8.828831-6 5.204484+0 8.844469-6 5.185486+0 8.860106-6 5.180141+0 8.937633-6 5.221205+0 8.950998-6 5.216830+0 8.972145-6 5.192699+0 8.993292-6 5.145922+0 9.009814-6 5.094530+0 9.031201-6 5.012340+0 9.119752-6 4.619037+0 9.164317-6 4.458965+0 9.245564-6 4.225186+0 9.275730-6 4.136178+0 9.305684-6 4.039652+0 9.376514-6 3.775941+0 9.429126-6 3.567750+0 9.477600-6 3.415400+0 9.500654-6 3.375702+0 9.524630-6 3.367590+0 9.540608-6 3.383990+0 9.551977-6 3.406939+0 9.567516-6 3.453493+0 9.580528-6 3.505403+0 9.602606-6 3.617199+0 9.663539-6 4.006251+0 9.693800-6 4.182270+0 9.712666-6 4.267086+0 9.720633-6 4.295494+0 9.734574-6 4.333536+0 9.745031-6 4.351922+0 9.760715-6 4.362986+0 9.776400-6 4.354760+0 9.800629-6 4.307567+0 9.822703-6 4.234193+0 9.855484-6 4.088034+0 9.892129-6 3.897940+0 9.971172-6 3.498859+0 1.002026-5 3.302385+0 1.004480-5 3.225645+0 1.006934-5 3.165394+0 1.009389-5 3.122631+0 1.011106-5 3.103159+0 1.012823-5 3.091881+0 1.015008-5 3.088116+0 1.019206-5 3.104758+0 1.024114-5 3.135280+0 1.027957-5 3.143579+0 1.030039-5 3.137771+0 1.033931-5 3.106749+0 1.038840-5 3.040967+0 1.046827-5 2.925790+0 1.051359-5 2.874460+0 1.064333-5 2.762695+0 1.074331-5 2.675429+0 1.080153-5 2.619782+0 1.085905-5 2.558747+0 1.094658-5 2.452320+0 1.108753-5 2.279229+0 1.117681-5 2.192847+0 1.128737-5 2.102992+0 1.156501-5 1.877448+0 1.165000-5 1.809805+0 1.196547-5 1.559416+0 1.220000-5 1.382416+0 1.258925-5 1.102343+0 1.290938-5 8.899533-1 1.327004-5 6.733477-1 1.350000-5 5.490202-1 1.373664-5 4.332979-1 1.400000-5 3.190204-1 1.427365-5 2.188143-1 1.447917-5 1.576542-1 1.470658-5 1.053926-1 1.492663-5 7.108334-2 1.511967-5 5.533158-2 1.518207-5 5.335295-2 1.530705-5 5.435231-2 1.537734-5 5.796553-2 1.543503-5 6.264107-2 1.548273-5 6.768906-2 1.564742-5 9.340048-2 1.580183-5 1.296000-1 1.594658-5 1.750051-1 1.610000-5 2.361005-1 1.624274-5 3.061605-1 1.638400-5 3.894725-1 1.664370-5 5.738454-1 1.686959-5 6.955131-1 1.687935-5 6.972811-1 1.717510-5 6.191405-1 1.739606-5 5.092813-1 1.757924-5 4.231300-1 1.776260-5 3.439704-1 1.794022-5 2.748210-1 1.811785-5 2.139786-1 1.825164-5 1.745913-1 1.840941-5 1.364454-1 1.847461-5 1.235936-1 1.856380-5 1.090286-1 1.860839-5 1.031256-1 1.865299-5 9.818917-2 1.869758-5 9.425809-2 1.874218-5 9.137494-2 1.878677-5 8.958577-2 1.883137-5 8.893849-2 1.887596-5 8.948019-2 1.892056-5 9.125419-2 1.896515-5 9.429809-2 1.900975-5 9.864379-2 1.920975-5 1.349492-1 1.940975-5 2.018683-1 1.950530-5 2.464985-1 1.964863-5 3.311558-1 1.974418-5 4.005987-1 1.988750-5 5.264101-1 2.003082-5 6.809070-1 2.020000-5 9.052002-1 2.031747-5 1.091620+0 2.036525-5 1.175339+0 2.059623-5 1.650081+0 2.081278-5 2.215688+0 2.101579-5 2.876106+0 2.120611-5 3.633247+0 2.138454-5 4.487328+0 2.158060-5 5.615104+0 2.185566-5 7.612086+0 2.283821-5 2.152344+1 2.312479-5 2.908006+1 2.334421-5 3.674725+1 2.346536-5 4.189576+1 2.359060-5 4.806242+1 2.379638-5 6.052865+1 2.392868-5 7.049103+1 2.406097-5 8.241206+1 2.417942-5 9.514766+1 2.429786-5 1.103143+2 2.441169-5 1.277605+2 2.453502-5 1.507236+2 2.459476-5 1.637251+2 2.465357-5 1.779585+2 2.471242-5 1.938422+2 2.477165-5 2.117379+2 2.483087-5 2.318648+2 2.489009-5 2.546069+2 2.496086-5 2.858861+2 2.502680-5 3.199415+2 2.507859-5 3.507552+2 2.512964-5 3.853878+2 2.518621-5 4.298035+2 2.524543-5 4.848207+2 2.529910-5 5.442895+2 2.535277-5 6.155525+2 2.541518-5 7.179469+2 2.547758-5 8.487266+2 2.550878-5 9.279623+2 2.555773-5 1.075956+3 2.560238-5 1.242147+3 2.563359-5 1.379877+3 2.566479-5 1.538638+3 2.570524-5 1.781071+3 2.574570-5 2.071955+3 2.580907-5 2.645199+3 2.593626-5 4.354238+3 2.598402-5 5.229099+3 2.602638-5 6.123247+3 2.605921-5 6.893930+3 2.607891-5 7.388530+3 2.612693-5 8.691108+3 2.615095-5 9.390117+3 2.620697-5 1.112419+4 2.622898-5 1.183623+4 2.627602-5 1.339047+4 2.631420-5 1.465831+4 2.633271-5 1.526530+4 2.635902-5 1.611063+4 2.638644-5 1.695951+4 2.641723-5 1.785814+4 2.645122-5 1.876252+4 2.647602-5 1.935190+4 2.651502-5 2.013633+4 2.654793-5 2.064468+4 2.658099-5 2.099905+4 2.660963-5 2.117152+4 2.664389-5 2.120812+4 2.666168-5 2.115348+4 2.672123-5 2.061151+4 2.674987-5 2.016362+4 2.677909-5 1.959241+4 2.680362-5 1.903172+4 2.683385-5 1.825096+4 2.685154-5 1.775386+4 2.688056-5 1.688426+4 2.690278-5 1.618114+4 2.693454-5 1.513479+4 2.696771-5 1.400872+4 2.700738-5 1.264701+4 2.703939-5 1.155755+4 2.707541-5 1.036264+4 2.710343-5 9.467138+3 2.716779-5 7.560625+3 2.719074-5 6.940066+3 2.721694-5 6.273323+3 2.725623-5 5.358615+3 2.729996-5 4.461759+3 2.733372-5 3.854292+3 2.738300-5 3.093142+3 2.743266-5 2.463592+3 2.758765-5 1.196816+3 2.763854-5 9.499975+2 2.770641-5 7.085524+2 2.777427-5 5.428845+2 2.779123-5 5.108233+2 2.784213-5 4.329412+2 2.785910-5 4.123618+2 2.790999-5 3.641722+2 2.792139-5 3.558540+2 2.794412-5 3.416412+2 2.795630-5 3.352325+2 2.797874-5 3.254392+2 2.800119-5 3.180142+2 2.801524-5 3.144498+2 2.802753-5 3.119540+2 2.804904-5 3.088548+2 2.807727-5 3.069206+2 2.810450-5 3.069429+2 2.814751-5 3.097693+2 2.818992-5 3.146529+2 2.825778-5 3.236979+2 2.831716-5 3.300636+2 2.834049-5 3.316944+2 2.838691-5 3.330452+2 2.842459-5 3.321039+2 2.844190-5 3.310411+2 2.847572-5 3.278428+2 2.850040-5 3.246159+2 2.853634-5 3.186894+2 2.857299-5 3.113520+2 2.863690-5 2.962112+2 2.870320-5 2.787086+2 2.889871-5 2.287873+2 2.897420-5 2.128529+2 2.905634-5 1.978652+2 2.914246-5 1.842783+2 2.952749-5 1.367905+2 2.973914-5 1.155302+2 3.019811-5 7.965940+1 3.029950-5 7.370898+1 3.039427-5 6.886811+1 3.045075-5 6.633530+1 3.050846-5 6.403260+1 3.058378-5 6.147407+1 3.065139-5 5.961744+1 3.072363-5 5.810728+1 3.077700-5 5.733058+1 3.083309-5 5.688085+1 3.086404-5 5.683128+1 3.088619-5 5.690279+1 3.091167-5 5.711669+1 3.093514-5 5.746140+1 3.095869-5 5.797813+1 3.099255-5 5.909053+1 3.102468-5 6.065375+1 3.105087-5 6.239092+1 3.108264-5 6.519823+1 3.110825-5 6.814571+1 3.111979-5 6.970927+1 3.113756-5 7.244349+1 3.115985-5 7.649804+1 3.117147-5 7.892306+1 3.118764-5 8.269068+1 3.120330-5 8.682164+1 3.121847-5 9.132187+1 3.123316-5 9.619512+1 3.126163-5 1.072553+2 3.128833-5 1.198470+2 3.131335-5 1.339222+2 3.133681-5 1.494026+2 3.135881-5 1.661850+2 3.137943-5 1.841461+2 3.141688-5 2.230438+2 3.149273-5 3.321959+2 3.155742-5 4.661941+2 3.160076-5 5.820713+2 3.164029-5 7.089453+2 3.168350-5 8.733635+2 3.172023-5 1.036103+3 3.174348-5 1.150660+3 3.178059-5 1.352914+3 3.180572-5 1.503744+3 3.184472-5 1.760187+3 3.186787-5 1.925272+3 3.189529-5 2.132846+3 3.192792-5 2.396165+3 3.193767-5 2.478156+3 3.201084-5 3.135991+3 3.203623-5 3.378808+3 3.209097-5 3.918718+3 3.212522-5 4.261998+3 3.214527-5 4.462594+3 3.217815-5 4.788194+3 3.221360-5 5.129859+3 3.224508-5 5.420493+3 3.227987-5 5.722604+3 3.231216-5 5.980736+3 3.232349-5 6.065415+3 3.236165-5 6.325302+3 3.239938-5 6.539760+3 3.242612-5 6.663566+3 3.246164-5 6.789509+3 3.248694-5 6.851292+3 3.255983-5 6.895978+3 3.259506-5 6.847102+3 3.263101-5 6.751916+3 3.266063-5 6.640975+3 3.269322-5 6.487561+3 3.273209-5 6.265706+3 3.275542-5 6.114642+3 3.278124-5 5.933776+3 3.281512-5 5.677778+3 3.284780-5 5.414799+3 3.289769-5 4.991956+3 3.293669-5 4.651322+3 3.298056-5 4.265846+3 3.301468-5 3.969193+3 3.309268-5 3.319163+3 3.312071-5 3.099388+3 3.318470-5 2.632539+3 3.325284-5 2.194628+3 3.340868-5 1.431022+3 3.344885-5 1.284073+3 3.348901-5 1.155040+3 3.353525-5 1.026684+3 3.358148-5 9.176493+2 3.365450-5 7.792120+2 3.373630-5 6.641952+2 3.381873-5 5.814683+2 3.385994-5 5.500114+2 3.390116-5 5.240216+2 3.393390-5 5.067854+2 3.398302-5 4.858407+2 3.404040-5 4.676832+2 3.406374-5 4.619420+2 3.411114-5 4.527346+2 3.416235-5 4.458502+2 3.424315-5 4.396888+2 3.432783-5 4.369385+2 3.444666-5 4.349943+2 3.453600-5 4.325558+2 3.459547-5 4.298759+2 3.468372-5 4.241384+2 3.475121-5 4.184570+2 3.486853-5 4.067110+2 3.512684-5 3.792711+2 3.526963-5 3.662543+2 3.540546-5 3.557777+2 3.572683-5 3.354701+2 3.632331-5 3.012398+2 3.657598-5 2.885591+2 3.693720-5 2.732719+2 3.751581-5 2.534554+2 3.806404-5 2.382172+2 3.890451-5 2.193421+2 3.956940-5 2.071219+2 4.029035-5 1.960240+2 4.110000-5 1.853688+2 4.197272-5 1.756428+2 4.294486-5 1.664778+2 4.395956-5 1.582208+2 4.511977-5 1.502520+2 4.669017-5 1.413208+2 4.843533-5 1.331642+2 5.017946-5 1.265388+2 5.215682-5 1.202359+2 5.390783-5 1.154707+2 5.449196-5 1.141997+2 5.484375-5 1.137608+2 5.551050-5 1.133760+2 5.599743-5 1.127902+2 5.723467-5 1.105159+2 5.982732-5 1.076681+2 6.242152-5 1.058590+2 6.573601-5 1.051580+2 6.850000-5 1.056805+2 7.275758-5 1.082970+2 7.800000-5 1.139664+2 8.352824-5 1.221276+2 9.015711-5 1.341374+2 9.549926-5 1.448829+2 1.047129-4 1.648968+2 1.228800-4 2.086520+2 1.312457-4 2.285027+2 1.382400-4 2.435404+2 1.428894-4 2.519681+2 1.462177-4 2.567212+2 1.495526-4 2.598520+2 1.516773-4 2.606922+2 1.533371-4 2.604942+2 1.547363-4 2.595353+2 1.562296-4 2.574975+2 1.571085-4 2.556599+2 1.581203-4 2.527741+2 1.589426-4 2.496765+2 1.597548-4 2.458277+2 1.611466-4 2.378067+2 1.616421-4 2.354553+2 1.620214-4 2.346633+2 1.624366-4 2.357424+2 1.627739-4 2.390056+2 1.630553-4 2.440547+2 1.632605-4 2.494398+2 1.635670-4 2.607466+2 1.638266-4 2.739421+2 1.640204-4 2.862859+2 1.641969-4 2.995705+2 1.643336-4 3.112881+2 1.645695-4 3.346106+2 1.647480-4 3.549973+2 1.652127-4 4.194613+2 1.658406-4 5.317891+2 1.662456-4 6.167625+2 1.666032-4 6.966397+2 1.668599-4 7.548375+2 1.671226-4 8.134379+2 1.673455-4 8.611242+2 1.675651-4 9.052017+2 1.677993-4 9.478572+2 1.680102-4 9.815023+2 1.682425-4 1.012377+3 1.684842-4 1.036687+3 1.686459-4 1.048136+3 1.690304-4 1.058919+3 1.691717-4 1.056975+3 1.694343-4 1.045095+3 1.695720-4 1.034743+3 1.696789-4 1.024873+3 1.698244-4 1.009002+3 1.699757-4 9.897552+2 1.702260-4 9.526172+2 1.703844-4 9.262714+2 1.706281-4 8.826119+2 1.708306-4 8.444801+2 1.710838-4 7.960070+2 1.718229-4 6.655074+2 1.718483-4 6.616468+2 1.726533-4 5.741828+2 1.727759-4 5.677048+2 1.729047-4 5.630252+2 1.730923-4 5.601380+2 1.732436-4 5.611946+2 1.733906-4 5.650648+2 1.735891-4 5.745888+2 1.736846-4 5.808539+2 1.738246-4 5.918963+2 1.740147-4 6.101915+2 1.742992-4 6.437249+2 1.747885-4 7.136795+2 1.751691-4 7.728701+2 1.755433-4 8.293698+2 1.757671-4 8.603074+2 1.760923-4 8.991355+2 1.762078-4 9.108050+2 1.763991-4 9.273374+2 1.765803-4 9.395606+2 1.766695-4 9.443019+2 1.768999-4 9.525485+2 1.771142-4 9.550364+2 1.773701-4 9.516473+2 1.775768-4 9.441617+2 1.777714-4 9.335830+2 1.780780-4 9.108899+2 1.782410-4 8.963096+2 1.786311-4 8.562540+2 1.790391-4 8.097798+2 1.802894-4 6.738648+2 1.805420-4 6.515717+2 1.808118-4 6.303216+2 1.812957-4 5.988368+2 1.818957-4 5.706879+2 1.824786-4 5.528197+2 1.830966-4 5.413601+2 1.837267-4 5.349844+2 1.846810-4 5.310838+2 1.872210-4 5.317125+2 1.894681-4 5.368040+2 1.917140-4 5.454629+2 1.979500-4 5.767086+2 2.018214-4 5.946161+2 2.069236-4 6.131232+2 2.125814-4 6.273039+2 2.193522-4 6.384047+2 2.280000-4 6.479038+2 2.498921-4 6.643019+2 2.891214-4 6.954616+2 3.056219-4 7.042145+2 3.111907-4 7.006306+2 3.137336-4 6.977523+2 3.155828-4 6.981633+2 3.168390-4 7.013296+2 3.180440-4 7.072792+2 3.194077-4 7.173596+2 3.229985-4 7.502078+2 3.246460-4 7.616245+2 3.262813-4 7.689152+2 3.289556-4 7.751602+2 3.408703-4 7.970195+2 3.624442-4 8.305308+2 3.757177-4 8.576560+2 3.850000-4 8.775013+2 4.090135-4 9.173447+2 4.338718-4 9.479662+2 4.474785-4 9.610886+2 4.532284-4 9.697717+2 4.668778-4 9.980358+2 4.926064-4 1.035920+3 5.339493-4 1.080326+3 5.778069-4 1.115957+3 6.271405-4 1.145392+3 6.814516-4 1.166866+3 7.407770-4 1.179206+3 8.042824-4 1.178047+3 8.717804-4 1.166581+3 9.370775-4 1.146973+3 1.004717-3 1.116965+3 1.065561-3 1.080787+3 1.122018-3 1.035506+3 1.172934-3 9.864304+2 1.220182-3 9.321983+2 1.257969-3 8.808207+2 1.289881-3 8.303045+2 1.318270-3 7.779996+2 1.345086-3 7.202550+2 1.363442-3 6.743575+2 1.382124-3 6.200916+2 1.395903-3 5.735501+2 1.405440-3 5.370963+2 1.415163-3 4.965837+2 1.424878-3 4.559304+2 1.431895-3 4.309829+2 1.435400-3 4.215140+2 1.438907-3 4.148131+2 1.442942-3 4.111521+2 1.445814-3 4.114364+2 1.448221-3 4.135916+2 1.450546-3 4.173361+2 1.452768-3 4.224148+2 1.454546-3 4.275139+2 1.456475-3 4.340679+2 1.460030-3 4.488684+2 1.463562-3 4.670797+2 1.466997-3 4.882493+2 1.471734-3 5.234282+2 1.476550-3 5.667497+2 1.483632-3 6.435924+2 1.490612-3 7.292571+2 1.493120-3 7.604428+2 1.495458-3 7.889192+2 1.497851-3 8.170036+2 1.499602-3 8.366272+2 1.502142-3 8.634348+2 1.505050-3 8.914038+2 1.509572-3 9.289063+2 1.513000-3 9.528546+2 1.517082-3 9.774544+2 1.526885-3 1.028438+3 1.549714-3 1.156766+3 1.557560-3 1.200645+3 1.568975-3 1.257481+3 1.580574-3 1.306615+3 1.595625-3 1.360536+3 1.612791-3 1.413105+3 1.636903-3 1.477032+3 1.658918-3 1.527263+3 1.692734-3 1.593660+3 1.728576-3 1.652328+3 1.757824-3 1.686567+3 1.782398-3 1.703304+3 1.803442-3 1.706533+3 1.829377-3 1.704368+3 1.841345-3 1.713483+3 1.849084-3 1.726751+3 1.857191-3 1.747183+3 1.895491-3 1.878291+3 1.905454-3 1.906649+3 1.917015-3 1.933606+3 1.932948-3 1.961710+3 1.950178-3 1.983579+3 1.972352-3 2.003433+3 1.998359-3 2.018334+3 2.047735-3 2.034394+3 2.059505-3 2.043325+3 2.079974-3 2.068563+3 2.112776-3 2.116263+3 2.128940-3 2.135114+3 2.150100-3 2.153450+3 2.172940-3 2.166781+3 2.202990-3 2.176921+3 2.258582-3 2.182977+3 2.282059-3 2.199117+3 2.332524-3 2.253809+3 2.355800-3 2.270413+3 2.423324-3 2.298577+3 2.480324-3 2.311875+3 2.599314-3 2.323566+3 2.733859-3 2.324087+3 2.870130-3 2.310998+3 3.109431-3 2.272548+3 3.320620-3 2.227632+3 3.499950-3 2.182491+3 3.924190-3 2.069828+3 4.140007-3 2.009486+3 4.457204-3 1.921432+3 4.870551-3 1.806297+3 5.117746-3 1.739580+3 5.545060-3 1.627562+3 5.785119-3 1.567540+3 6.042964-3 1.503982+3 6.310039-3 1.439885+3 6.570488-3 1.378977+3 6.821032-3 1.321047+3 7.081704-3 1.261538+3 7.299154-3 1.210736+3 7.486636-3 1.166699+3 7.647079-3 1.128068+3 7.796955-3 1.090106+3 7.924733-3 1.056204+3 8.026519-3 1.027607+3 8.120425-3 9.992713+2 8.199907-3 9.730676+2 8.264157-3 9.495483+2 8.323210-3 9.250501+2 8.372462-3 9.014447+2 8.430486-3 8.686246+2 8.545132-3 7.963492+2 8.578706-3 7.813509+2 8.607055-3 7.741953+2 8.627370-3 7.727058+2 8.650439-3 7.747785+2 8.682995-3 7.838709+2 8.716237-3 7.987529+2 8.801080-3 8.443501+2 8.850666-3 8.662718+2 8.889284-3 8.790429+2 8.916929-3 8.860413+2 8.965074-3 8.947477+2 9.016351-3 9.003317+2 9.075856-3 9.033901+2 9.143105-3 9.034819+2 9.202509-3 9.010304+2 9.271443-3 8.952800+2 9.331536-3 8.874037+2 9.383003-3 8.782150+2 9.541292-3 8.436630+2 9.589368-3 8.387131+2 9.635917-3 8.397179+2 9.681681-3 8.459476+2 9.797098-3 8.703264+2 9.862149-3 8.797830+2 9.935410-3 8.844426+2 1.004824-2 8.899687+2 1.010782-2 8.973339+2 1.029563-2 9.313549+2 1.039621-2 9.431483+2 1.053521-2 9.513232+2 1.071519-2 9.549148+2 1.096478-2 9.535471+2 1.134627-2 9.433333+2 1.164745-2 9.310125+2 1.216186-2 9.055044+2 1.276645-2 8.718946+2 1.343063-2 8.333234+2 1.447312-2 7.732979+2 1.559931-2 7.128073+2 1.730942-2 6.317400+2 1.963793-2 5.409024+2 2.172101-2 4.751638+2 2.384460-2 4.194087+2 2.571314-2 3.774259+2 2.853410-2 3.239539+2 3.235936-2 2.670432+2 3.645411-2 2.211133+2 3.937625-2 1.946286+2 4.257234-2 1.700219+2 4.746185-2 1.398048+2 5.011872-2 1.262263+2 5.241168-2 1.155108+2 5.418811-2 1.075217+2 5.544759-2 1.018015+2 5.639622-2 9.727074+1 5.679110-2 9.525424+1 5.717947-2 9.313248+1 5.749819-2 9.122832+1 5.776284-2 8.948351+1 5.812382-2 8.680268+1 5.889910-2 8.060093+1 5.916116-2 7.910784+1 5.938434-2 7.840912+1 5.962467-2 7.832549+1 5.982714-2 7.875009+1 6.011864-2 7.992414+1 6.076830-2 8.304864+1 6.105000-2 8.405561+1 6.147027-2 8.502714+1 6.195742-2 8.556693+1 6.267559-2 8.571392+1 6.365932-2 8.527561+1 6.515456-2 8.395547+1 6.702824-2 8.176382+1 6.924945-2 7.880864+1 7.278255-2 7.389775+1 7.750054-2 6.758283+1 8.354474-2 6.025019+1 9.209476-2 5.146338+1 1.024399-1 4.303495+1 1.159696-1 3.465392+1 1.397757-1 2.473539+1 1.949845-1 1.344623+1 2.344229-1 9.536147+0 2.932480-1 6.228814+0 4.007297-1 3.408341+0 5.881026-1 1.612026+0 9.360412-1 6.456014-1 1.619761+0 2.175734-1 4.068655+0 3.464053-2 1.228714+1 3.800910-3 3.710658+1 4.167940-4 1.120601+2 4.570094-5 3.384160+2 5.011013-6 1.258925+3 3.620990-7 3.981072+3 3.620990-8 1.258925+4 3.620990-9 3.981072+4 3.62099-10 1.000000+5 5.73888-11 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.113400-6 1.258900-6 3.349500-6 1.584900-6 5.308700-6 1.995300-6 8.413600-6 2.511900-6 1.333500-5 3.162300-6 2.113400-5 3.981100-6 3.349500-5 5.011900-6 5.308600-5 6.309600-6 8.413400-5 7.943300-6 1.333400-4 1.000000-5 2.113300-4 1.258900-5 3.349300-4 1.584900-5 5.305700-4 1.995300-5 8.403700-4 2.511900-5 1.331200-3 3.162300-5 2.109000-3 3.981100-5 3.341500-3 5.011900-5 5.294800-3 6.309600-5 8.390000-3 7.943300-5 1.327300-2 1.000000-4 2.099000-2 1.258900-4 3.319100-2 1.584900-4 5.234600-2 1.995300-4 8.240100-2 2.511900-4 1.291400-1 3.162300-4 2.011200-1 3.981100-4 3.099300-1 5.011900-4 4.691500-1 6.309600-4 6.936300-1 7.943300-4 9.951700-1 1.000000-3 1.380900+0 1.258900-3 1.855900+0 1.584900-3 2.441000+0 1.995300-3 3.178700+0 2.511900-3 4.111100+0 3.162300-3 5.258900+0 3.981100-3 6.634100+0 5.011900-3 8.244300+0 6.309600-3 1.006300+1 7.943300-3 1.205900+1 1.000000-2 1.422000+1 1.258900-2 1.654700+1 1.584900-2 1.898500+1 1.995300-2 2.152500+1 2.511900-2 2.391200+1 3.162300-2 2.598700+1 3.981100-2 2.764800+1 5.011900-2 2.885300+1 6.309600-2 2.958300+1 7.943300-2 2.982800+1 1.000000-1 2.956200+1 1.258900-1 2.885300+1 1.584900-1 2.776300+1 1.995300-1 2.638900+1 2.511900-1 2.481200+1 3.162300-1 2.311100+1 3.981100-1 2.134300+1 5.011900-1 1.956200+1 6.309600-1 1.780700+1 7.943300-1 1.610200+1 1.000000+0 1.446800+1 1.258900+0 1.291300+1 1.584900+0 1.144900+1 1.995300+0 1.008400+1 2.511900+0 8.825600+0 3.162300+0 7.675500+0 3.981100+0 6.635700+0 5.011900+0 5.704500+0 6.309600+0 4.878000+0 7.943300+0 4.151400+0 1.000000+1 3.517400+0 1.258900+1 2.968100+0 1.584900+1 2.495400+0 1.995300+1 2.091000+0 2.511900+1 1.746900+0 3.162300+1 1.455500+0 3.981100+1 1.209700+0 5.011900+1 1.003200+0 6.309600+1 8.303200-1 7.943300+1 6.859600-1 1.000000+2 5.657600-1 1.258900+2 4.659100-1 1.584900+2 3.831600-1 1.995300+2 3.147000-1 2.511900+2 2.581700-1 3.162300+2 2.115700-1 3.981100+2 1.732000-1 5.011900+2 1.416600-1 6.309600+2 1.157600-1 7.943300+2 9.451900-2 1.000000+3 7.711600-2 1.258900+3 6.287200-2 1.584900+3 5.122400-2 1.995300+3 4.170700-2 2.511900+3 3.393800-2 3.162300+3 2.760000-2 3.981100+3 2.243300-2 5.011900+3 1.822400-2 6.309600+3 1.479700-2 7.943300+3 1.200900-2 1.000000+4 9.741800-3 1.258900+4 7.899100-3 1.584900+4 6.402400-3 1.995300+4 5.187100-3 2.511900+4 4.200900-3 3.162300+4 3.400900-3 3.981100+4 2.752300-3 5.011900+4 2.226600-3 6.309600+4 1.800700-3 7.943300+4 1.455900-3 1.000000+5 1.176700-3 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976776-4 5.011872-4 5.005108-4 6.309573-4 6.298951-4 7.943282-4 7.926658-4 1.000000-3 9.974026-4 1.258925-3 1.254883-3 1.584893-3 1.578582-3 1.995262-3 1.985362-3 2.511886-3 2.496316-3 3.162278-3 3.137809-3 3.981072-3 3.942698-3 5.011872-3 4.951818-3 6.309573-3 6.215864-3 7.943282-3 7.797422-3 1.000000-2 9.773250-3 1.258925-2 1.223699-2 1.584893-2 1.530170-2 1.995262-2 1.910778-2 2.511886-2 2.382083-2 3.162278-2 2.964306-2 3.981072-2 3.681221-2 5.011872-2 4.560195-2 6.309573-2 5.633937-2 7.943282-2 6.938488-2 1.000000-1 8.521816-2 1.258925-1 1.042856-1 1.584893-1 1.272363-1 1.995262-1 1.546979-1 2.511886-1 1.874847-1 3.162278-1 2.264806-1 3.981072-1 2.727000-1 5.011872-1 3.273526-1 6.309573-1 3.918310-1 7.943282-1 4.678423-1 1.000000+0 5.571576-1 1.258925+0 6.624670-1 1.584893+0 7.868265-1 1.995262+0 9.339104-1 2.511886+0 1.108484+0 3.162278+0 1.316171+0 3.981072+0 1.564152+0 5.011872+0 1.861012+0 6.309573+0 2.217313+0 7.943282+0 2.645729+0 1.000000+1 3.162335+0 1.258925+1 3.786376+0 1.584893+1 4.541538+0 1.995262+1 5.456792+0 2.511886+1 6.567469+0 3.162278+1 7.917471+0 3.981072+1 9.560109+0 5.011872+1 1.156092+1 6.309573+1 1.400049+1 7.943282+1 1.697815+1 1.000000+2 2.061549+1 1.258925+2 2.506269+1 1.584893+2 3.050434+1 1.995262+2 3.716794+1 2.511886+2 4.533294+1 3.162278+2 5.534551+1 3.981072+2 6.762999+1 5.011872+2 8.271319+1 6.309573+2 1.012429+2 7.943282+2 1.240183+2 1.000000+3 1.520273+2 1.258925+3 1.864907+2 1.584893+3 2.289195+2 1.995262+3 2.811747+2 2.511886+3 3.455538+2 3.162278+3 4.249372+2 3.981072+3 5.228210+2 5.011872+3 6.435819+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88198-10 1.995262-5 1.090631-9 2.511886-5 1.728506-9 3.162278-5 2.739526-9 3.981072-5 4.341900-9 5.011872-5 6.881421-9 6.309573-5 1.090600-8 7.943282-5 1.727670-8 1.000000-4 2.737374-8 1.258925-4 4.337524-8 1.584893-4 6.868864-8 1.995262-4 1.087630-7 2.511886-4 1.721168-7 3.162278-4 2.721285-7 3.981072-4 4.295732-7 5.011872-4 6.764709-7 6.309573-4 1.062199-6 7.943282-4 1.662482-6 1.000000-3 2.597376-6 1.258925-3 4.042007-6 1.584893-3 6.311690-6 1.995262-3 9.900172-6 2.511886-3 1.557014-5 3.162278-3 2.446911-5 3.981072-3 3.837397-5 5.011872-3 6.005473-5 6.309573-3 9.370950-5 7.943282-3 1.458604-4 1.000000-2 2.267498-4 1.258925-2 3.522598-4 1.584893-2 5.472298-4 1.995262-2 8.448446-4 2.511886-2 1.298035-3 3.162278-2 1.979712-3 3.981072-2 2.998504-3 5.011872-2 4.516774-3 6.309573-2 6.756369-3 7.943282-2 1.004795-2 1.000000-1 1.478184-2 1.258925-1 2.160695-2 1.584893-1 3.125304-2 1.995262-1 4.482836-2 2.511886-1 6.370398-2 3.162278-1 8.974720-2 3.981072-1 1.254072-1 5.011872-1 1.738347-1 6.309573-1 2.391263-1 7.943282-1 3.264859-1 1.000000+0 4.428424-1 1.258925+0 5.964584-1 1.584893+0 7.980666-1 1.995262+0 1.061352+0 2.511886+0 1.403403+0 3.162278+0 1.846107+0 3.981072+0 2.416919+0 5.011872+0 3.150860+0 6.309573+0 4.092261+0 7.943282+0 5.297553+0 1.000000+1 6.837665+0 1.258925+1 8.802878+0 1.584893+1 1.130739+1 1.995262+1 1.449583+1 2.511886+1 1.855140+1 3.162278+1 2.370531+1 3.981072+1 3.025061+1 5.011872+1 3.855780+1 6.309573+1 4.909524+1 7.943282+1 6.245467+1 1.000000+2 7.938451+1 1.258925+2 1.008299+2 1.584893+2 1.279850+2 1.995262+2 1.623583+2 2.511886+2 2.058557+2 3.162278+2 2.608823+2 3.981072+2 3.304772+2 5.011872+2 4.184740+2 6.309573+2 5.297145+2 7.943282+2 6.703099+2 1.000000+3 8.479727+2 1.258925+3 1.072435+3 1.584893+3 1.355974+3 1.995262+3 1.714088+3 2.511886+3 2.166333+3 3.162278+3 2.737340+3 3.981072+3 3.458251+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.550000-6 4.669757+6 6.309573-6 2.728356+6 7.000000-6 1.752446+6 7.762471-6 1.118744+6 8.511380-6 7.450219+5 9.440609-6 4.678240+5 9.740000-6 4.056816+5 9.740000-6 1.555884+6 9.940000-6 1.465462+6 1.023293-5 1.353789+6 1.047129-5 1.275916+6 1.060000-5 1.236634+6 1.100000-5 1.132532+6 1.103000-5 1.125777+6 1.103000-5 1.907209+6 1.135011-5 1.792506+6 1.140000-5 1.776305+6 1.180000-5 1.659455+6 1.216186-5 1.572585+6 1.220000-5 1.564342+6 1.258925-5 1.488641+6 1.270000-5 1.469702+6 1.273503-5 1.463848+6 1.310000-5 1.408902+6 1.320000-5 1.395628+6 1.350000-5 1.360034+6 1.370000-5 1.339501+6 1.400000-5 1.312375+6 1.420000-5 1.296911+6 1.445440-5 1.279990+6 1.470000-5 1.266421+6 1.480000-5 1.261688+6 1.500000-5 1.252624+6 1.515000-5 1.247265+6 1.531087-5 1.242628+6 1.554900-5 1.236193+6 1.570000-5 1.233377+6 1.584893-5 1.231601+6 1.610000-5 1.228938+6 1.630000-5 1.228435+6 1.678804-5 1.230614+6 1.690000-5 1.232058+6 1.730000-5 1.239489+6 1.750000-5 1.243354+6 1.757924-5 1.245441+6 1.778279-5 1.251922+6 1.830000-5 1.268683+6 1.870000-5 1.286545+6 1.905461-5 1.302514+6 1.920000-5 1.309736+6 1.920700-5 1.310128+6 1.972423-5 1.339310+6 1.980000-5 1.343612+6 2.018366-5 1.367160+6 2.020000-5 1.368253+6 2.070000-5 1.401896+6 2.113489-5 1.433266+6 2.130000-5 1.446035+6 2.162719-5 1.471489+6 2.190400-5 1.494219+6 2.238721-5 1.534182+6 2.250000-5 1.544072+6 2.270000-5 1.561691+6 2.330000-5 1.617024+6 2.371374-5 1.655568+6 2.420000-5 1.705001+6 2.511886-5 1.799843+6 2.570396-5 1.863190+6 2.630268-5 1.930935+6 2.691535-5 2.001232+6 2.818383-5 2.153237+6 2.917427-5 2.274894+6 2.954000-5 2.320939+6 2.954000-5 2.565694+7 2.967000-5 2.491383+7 3.000000-5 2.330072+7 3.040000-5 2.163457+7 3.090295-5 1.988215+7 3.150000-5 1.817740+7 3.210000-5 1.676650+7 3.273407-5 1.552667+7 3.311311-5 1.488994+7 3.350000-5 1.428440+7 3.427678-5 1.324889+7 3.450000-5 1.297745+7 3.467369-5 1.278385+7 3.558000-5 1.186173+7 3.558000-5 2.185557+7 3.570000-5 2.151709+7 3.589219-5 2.099973+7 3.590000-5 2.097909+7 3.635000-5 1.989991+7 3.680000-5 1.894699+7 3.715352-5 1.827888+7 3.730000-5 1.801383+7 3.740000-5 1.783921+7 3.758374-5 1.753868+7 3.801894-5 1.686075+7 3.890451-5 1.566586+7 3.935501-5 1.513633+7 3.981072-5 1.464230+7 4.000000-5 1.445363+7 4.027170-5 1.419176+7 4.110000-5 1.345142+7 4.168694-5 1.299127+7 4.265795-5 1.230362+7 4.315191-5 1.199546+7 4.365158-5 1.170246+7 4.466836-5 1.116930+7 4.500000-5 1.100910+7 4.623810-5 1.047904+7 4.841724-5 9.730781+6 4.954502-5 9.417081+6 5.011872-5 9.273242+6 5.248075-5 8.794638+6 5.308844-5 8.692638+6 5.500000-5 8.418723+6 5.688529-5 8.220975+6 5.754399-5 8.165209+6 5.830000-5 8.102463+6 5.830000-5 8.157516+6 5.900000-5 8.104903+6 5.920000-5 8.091433+6 6.030000-5 8.025823+6 6.095369-5 7.993197+6 6.150000-5 7.969165+6 6.237348-5 7.936778+6 6.260000-5 7.927496+6 6.300000-5 7.912273+6 6.400000-5 7.881474+6 6.531306-5 7.852115+6 6.606934-5 7.840408+6 6.683439-5 7.832486+6 6.760830-5 7.828921+6 6.850000-5 7.820155+6 7.000000-5 7.813663+6 7.070000-5 7.814521+6 7.079458-5 7.814790+6 7.244360-5 7.824411+6 7.328245-5 7.824219+6 7.673615-5 7.848530+6 7.800000-5 7.860042+6 8.000000-5 7.872142+6 8.035261-5 7.875090+6 8.222426-5 7.895131+6 8.317638-5 7.902958+6 8.413951-5 7.906309+6 8.609938-5 7.917503+6 8.650000-5 7.920225+6 8.709636-5 7.924463+6 8.800000-5 7.928208+6 8.912509-5 7.934401+6 9.015711-5 7.936134+6 9.150000-5 7.939258+6 9.332543-5 7.946112+6 9.400000-5 7.947015+6 9.500000-5 7.948620+6 9.549926-5 7.947264+6 9.800000-5 7.943249+6 9.900000-5 7.942194+6 9.950000-5 7.941906+6 1.000000-4 7.941902+6 1.023293-4 7.935445+6 1.040000-4 7.931581+6 1.047129-4 7.927700+6 1.071519-4 7.915854+6 1.083927-4 7.910228+6 1.096478-4 7.905217+6 1.106700-4 7.898712+6 1.122018-4 7.889597+6 1.135011-4 7.878269+6 1.161449-4 7.856849+6 1.174898-4 7.846609+6 1.190000-4 7.832051+6 1.220000-4 7.804860+6 1.244515-4 7.774606+6 1.260000-4 7.755923+6 1.273503-4 7.740173+6 1.280000-4 7.730962+6 1.318257-4 7.678548+6 1.330000-4 7.662866+6 1.333521-4 7.657075+6 1.364583-4 7.607610+6 1.400000-4 7.545731+6 1.412538-4 7.524470+6 1.428894-4 7.492303+6 1.462177-4 7.428851+6 1.513561-4 7.322999+6 1.531087-4 7.288021+6 1.548817-4 7.247949+6 1.584893-4 7.168799+6 1.603245-4 7.126037+6 1.621810-4 7.083632+6 1.659587-4 6.999451+6 1.678804-4 6.954036+6 1.698244-4 6.909003+6 1.737801-4 6.814558+6 1.760000-4 6.762975+6 1.783300-4 6.705663+6 1.783300-4 7.101128+6 1.793000-4 7.101728+6 1.819701-4 7.116169+6 1.825000-4 7.119885+6 1.840000-4 7.130025+6 1.850000-4 7.136021+6 1.851000-4 7.136716+6 1.862087-4 7.141442+6 1.863000-4 7.141905+6 1.869500-4 7.142888+6 1.869500-4 7.420238+6 1.873000-4 7.424420+6 1.877000-4 7.427717+6 1.883649-4 7.435026+6 1.885000-4 7.435973+6 1.894000-4 7.444318+6 1.897000-4 7.445887+6 1.905461-4 7.451974+6 1.916000-4 7.453442+6 1.927525-4 7.451272+6 1.930000-4 7.449932+6 1.939000-4 7.444318+6 1.945000-4 7.438508+6 1.950000-4 7.432971+6 1.953000-4 7.429389+6 1.955000-4 7.426318+6 1.965000-4 7.409452+6 1.974000-4 7.390082+6 1.981300-4 7.372968+6 1.985000-4 7.363271+6 1.996000-4 7.331862+6 2.000000-4 7.319598+6 2.005000-4 7.303130+6 2.015000-4 7.268341+6 2.018366-4 7.255992+6 2.020000-4 7.250018+6 2.025000-4 7.230878+6 2.037800-4 7.179619+6 2.041738-4 7.163172+6 2.050000-4 7.126419+6 2.065380-4 7.056208+6 2.070000-4 7.034006+6 2.080000-4 6.985397+6 2.100000-4 6.887691+6 2.120000-4 6.789203+6 2.141200-4 6.686847+6 2.142000-4 6.683016+6 2.162719-4 6.584171+6 2.170000-4 6.549309+6 2.205000-4 6.386226+6 2.220000-4 6.318998+6 2.238721-4 6.235671+6 2.240000-4 6.230090+6 2.280000-4 6.060699+6 2.317395-4 5.915161+6 2.350000-4 5.792527+6 2.371374-4 5.716684+6 2.380000-4 5.686288+6 2.404400-4 5.603513+6 2.415000-4 5.568916+6 2.426610-4 5.531982+6 2.430000-4 5.521305+6 2.454709-4 5.446069+6 2.458000-4 5.436339+6 2.483133-4 5.364440+6 2.491600-4 5.341076+6 2.500000-4 5.318393+6 2.511886-4 5.285290+6 2.520000-4 5.262633+6 2.540973-4 5.205594+6 2.550800-4 5.179722+6 2.570396-4 5.129475+6 2.580000-4 5.105575+6 2.600160-4 5.056693+6 2.610000-4 5.033541+6 2.630268-4 4.987054+6 2.635000-4 4.976487+6 2.660725-4 4.920401+6 2.691535-4 4.853995+6 2.710800-4 4.813036+6 2.722701-4 4.788068+6 2.730000-4 4.773069+6 2.758100-4 4.717018+6 2.770000-4 4.693963+6 2.786121-4 4.663512+6 2.818383-4 4.604599+6 2.830000-4 4.582933+6 2.851018-4 4.544769+6 2.865000-4 4.518952+6 2.884032-4 4.484711+6 2.917427-4 4.426690+6 2.980000-4 4.324226+6 3.000000-4 4.293108+6 3.019952-4 4.262684+6 3.040000-4 4.231190+6 3.054921-4 4.207188+6 3.150000-4 4.063731+6 3.232200-4 3.949774+6 3.238700-4 3.940770+6 3.238700-4 4.216269+6 3.273407-4 4.167774+6 3.320000-4 4.102143+6 3.390000-4 4.008867+6 3.427678-4 3.960524+6 3.430000-4 3.957479+6 3.500000-4 3.868237+6 3.507519-4 3.859014+6 3.550000-4 3.805421+6 3.630781-4 3.708422+6 3.672823-4 3.659880+6 3.713700-4 3.612069+6 3.713700-4 3.678332+6 3.740000-4 3.648405+6 3.758374-4 3.627563+6 3.787900-4 3.593791+6 3.850000-4 3.524887+6 3.890451-4 3.481209+6 3.935501-4 3.433779+6 3.981072-4 3.385910+6 4.000000-4 3.366198+6 4.027170-4 3.338463+6 4.120975-4 3.243652+6 4.168694-4 3.197229+6 4.216965-4 3.151462+6 4.280000-4 3.092377+6 4.315191-4 3.060016+6 4.415704-4 2.969029+6 4.430000-4 2.956558+6 4.466836-4 2.924431+6 4.518559-4 2.880163+6 4.537300-4 2.864084+6 4.537300-4 2.945717+6 4.600000-4 2.893064+6 4.628000-4 2.869848+6 4.650000-4 2.851542+6 4.700000-4 2.810404+6 4.731513-4 2.785172+6 4.786301-4 2.742422+6 4.841724-4 2.699726+6 4.850000-4 2.693329+6 4.897788-4 2.656590+6 4.900000-4 2.654916+6 4.954502-4 2.614251+6 5.011872-4 2.572201+6 5.069907-4 2.530423+6 5.188000-4 2.448664+6 5.248075-4 2.408169+6 5.308844-4 2.367952+6 5.432503-4 2.288287+6 5.500000-4 2.247118+6 5.559043-4 2.211756+6 5.580000-4 2.199253+6 5.623413-4 2.173514+6 5.688529-4 2.135855+6 5.754399-4 2.098538+6 5.821032-4 2.061547+6 6.025596-4 1.954659+6 6.095369-4 1.919570+6 6.100000-4 1.917267+6 6.165950-4 1.884606+6 6.237348-4 1.850028+6 6.382635-4 1.783331+6 6.456542-4 1.750619+6 6.500000-4 1.731704+6 6.531306-4 1.718313+6 6.606934-4 1.686155+6 6.683439-4 1.654599+6 6.760830-4 1.623473+6 6.839116-4 1.592595+6 6.850000-4 1.588387+6 7.000000-4 1.531834+6 7.079458-4 1.503254+6 7.161434-4 1.474453+6 7.244360-4 1.445923+6 7.300000-4 1.426976+6 7.500000-4 1.362139+6 7.585776-4 1.335893+6 7.673615-4 1.309599+6 7.852356-4 1.257874+6 7.943282-4 1.232738+6 8.000000-4 1.217507+6 8.035261-4 1.208155+6 8.128305-4 1.183752+6 8.200000-4 1.165459+6 8.317638-4 1.136222+6 8.511380-4 1.090398+6 8.709636-4 1.045872+6 8.810489-4 1.024103+6 8.912509-4 1.002766+6 9.000000-4 9.850592+5 9.015711-4 9.819357+5 9.120108-4 9.614528+5 9.332543-4 9.214494+5 9.500000-4 8.914119+5 9.660509-4 8.640886+5 9.700000-4 8.575836+5 9.772372-4 8.458173+5 1.000000-3 8.097825+5 1.023293-3 7.751588+5 1.035142-3 7.583879+5 1.047129-3 7.419979+5 1.059254-3 7.258005+5 1.071519-3 7.098291+5 1.109175-3 6.638628+5 1.110000-3 6.629110+5 1.122018-3 6.492699+5 1.135011-3 6.349416+5 1.150000-3 6.188479+5 1.161449-3 6.068951+5 1.174898-3 5.933177+5 1.190000-3 5.785908+5 1.216186-3 5.543032+5 1.230269-3 5.417326+5 1.244515-3 5.294182+5 1.318257-3 4.718542+5 1.333521-3 4.610050+5 1.348963-3 4.504266+5 1.350000-3 4.497279+5 1.396368-3 4.198465+5 1.412538-3 4.101304+5 1.428894-3 4.006434+5 1.462177-3 3.821447+5 1.469800-3 3.780658+5 1.469800-3 1.260204+6 1.479108-3 1.241331+6 1.496236-3 1.207583+6 1.500000-3 1.200340+6 1.514000-3 1.173937+6 1.516000-3 1.171022+6 1.516000-3 1.511819+6 1.547300-3 1.485076+6 1.548000-3 1.483236+6 1.548817-3 1.482544+6 1.551800-3 1.480030+6 1.570000-3 1.462668+6 1.572000-3 1.460329+6 1.584893-3 1.441716+6 1.603245-3 1.416200+6 1.640590-3 1.367799+6 1.650000-3 1.355162+6 1.659587-3 1.342534+6 1.664800-3 1.335777+6 1.678804-3 1.318482+6 1.690000-3 1.305033+6 1.698244-3 1.294961+6 1.712300-3 1.278145+6 1.717908-3 1.270315+6 1.730000-3 1.253720+6 1.737801-3 1.243198+6 1.757924-3 1.215253+6 1.761500-3 1.210422+6 1.800000-3 1.156017+6 1.819701-3 1.125391+6 1.840772-3 1.093870+6 1.862087-3 1.063222+6 1.865100-3 1.058984+6 1.865100-3 1.225774+6 1.883649-3 1.196756+6 1.905461-3 1.163764+6 1.927525-3 1.131696+6 1.945000-3 1.107184+6 2.000000-3 1.037671+6 2.018366-3 1.015621+6 2.041738-3 9.885351+5 2.074000-3 9.525443+5 2.075200-3 9.512392+5 2.075200-3 1.008129+6 2.090000-3 9.918703+5 2.113489-3 9.668432+5 2.137962-3 9.417571+5 2.145000-3 9.347237+5 2.162719-3 9.172192+5 2.187762-3 8.934149+5 2.220000-3 8.638216+5 2.238721-3 8.471113+5 2.264644-3 8.245403+5 2.277400-3 8.137417+5 2.277400-3 8.491064+5 2.294000-3 8.350813+5 2.317395-3 8.159005+5 2.371374-3 7.740676+5 2.385000-3 7.639712+5 2.400000-3 7.530420+5 2.426610-3 7.341383+5 2.454709-3 7.149362+5 2.483133-3 6.959282+5 2.500000-3 6.849903+5 2.511886-3 6.774009+5 2.540973-3 6.593456+5 2.570396-3 6.417934+5 2.630268-3 6.081581+5 2.660725-3 5.920326+5 2.691535-3 5.762862+5 2.722701-3 5.607393+5 2.754229-3 5.455599+5 2.800000-3 5.245600+5 2.818383-3 5.164492+5 2.851018-3 5.024940+5 2.884032-3 4.889319+5 2.917427-3 4.757568+5 2.951209-3 4.628813+5 3.000000-3 4.451286+5 3.070000-3 4.213431+5 3.090295-3 4.147917+5 3.126079-3 4.035268+5 3.162278-3 3.924420+5 3.198895-3 3.816803+5 3.235937-3 3.711584+5 3.311311-3 3.509587+5 3.320000-3 3.487204+5 3.388442-3 3.317760+5 3.400000-3 3.290318+5 3.427678-3 3.225472+5 3.467369-3 3.135314+5 3.507519-3 3.047711+5 3.548134-3 2.962436+5 3.589219-3 2.879671+5 3.630781-3 2.799305+5 3.758374-3 2.572129+5 3.801894-3 2.500505+5 3.845918-3 2.430848+5 3.900000-3 2.349095+5 3.935501-3 2.297144+5 4.000000-3 2.206245+5 4.027170-3 2.169521+5 4.120975-3 2.048470+5 4.168694-3 1.990594+5 4.265795-3 1.879866+5 4.300000-3 1.842956+5 4.315191-3 1.826824+5 4.365158-3 1.774918+5 4.400000-3 1.739772+5 4.415704-3 1.724209+5 4.518559-3 1.627103+5 4.570882-3 1.580667+5 4.677351-3 1.491854+5 4.731513-3 1.449417+5 4.786301-3 1.408090+5 4.897788-3 1.329112+5 4.954502-3 1.291342+5 5.011872-3 1.254294+5 5.069907-3 1.218345+5 5.128614-3 1.183144+5 5.188000-3 1.148992+5 5.308844-3 1.083764+5 5.559043-3 9.644224+4 5.623413-3 9.364508+4 5.688529-3 9.092260+4 5.821032-3 8.571771+4 5.888437-3 8.323206+4 6.025596-3 7.846557+4 6.237348-3 7.184578+4 6.300000-3 7.003224+4 6.309573-3 6.975965+4 6.382635-3 6.772698+4 6.456542-3 6.574373+4 6.531306-3 6.382146+4 6.606934-3 6.195307+4 6.683439-3 6.013592+4 6.760830-3 5.837374+4 6.839116-3 5.666569+4 7.000000-3 5.337359+4 7.079458-3 5.184752+4 7.161434-3 5.032062+4 7.244360-3 4.884069+4 7.328245-3 4.740638+4 7.500000-3 4.463267+4 7.585776-3 4.333313+4 7.762471-3 4.082174+4 7.852356-3 3.962362+4 7.943282-3 3.846174+4 8.000000-3 3.775929+4 8.035261-3 3.732986+4 8.128305-3 3.622160+4 8.222426-3 3.514450+4 8.317638-3 3.410085+4 8.413951-3 3.308737+4 8.609938-3 3.115258+4 8.638100-3 3.088792+4 8.638100-3 8.326130+4 8.709636-3 8.152775+4 8.740000-3 8.080729+4 8.810489-3 7.926326+4 8.850000-3 7.841611+4 8.912509-3 7.698070+4 9.015711-3 7.468954+4 9.120108-3 7.246423+4 9.332543-3 6.819547+4 9.400000-3 6.691243+4 9.500000-3 6.502328+4 9.629400-3 6.268614+4 9.629400-3 8.618331+4 9.697000-3 8.467780+4 9.750000-3 8.352333+4 9.772372-3 8.303363+4 9.885531-3 8.061768+4 1.000000-2 7.827316+4 1.008100-2 7.661200+4 1.008100-2 8.863913+4 1.015000-2 8.706534+4 1.022000-2 8.550601+4 1.023293-2 8.523389+4 1.035142-2 8.279441+4 1.047129-2 8.042485+4 1.050000-2 7.987135+4 1.060000-2 7.797344+4 1.071519-2 7.585356+4 1.109175-2 6.951043+4 1.110000-2 6.937838+4 1.122018-2 6.747622+4 1.135011-2 6.550154+4 1.150000-2 6.332360+4 1.161449-2 6.172710+4 1.174898-2 5.992015+4 1.202264-2 5.646537+4 1.216186-2 5.482015+4 1.230269-2 5.322406+4 1.244515-2 5.166453+4 1.258925-2 5.013652+4 1.273503-2 4.865475+4 1.288250-2 4.721814+4 1.318257-2 4.447488+4 1.333521-2 4.315239+4 1.348963-2 4.186234+4 1.350000-2 4.177766+4 1.364583-2 4.061139+4 1.380384-2 3.939880+4 1.396368-2 3.822318+4 1.428894-2 3.597855+4 1.445440-2 3.490735+4 1.450000-2 3.462004+4 1.462177-2 3.386871+4 1.479108-2 3.286170+4 1.500000-2 3.167542+4 1.513561-2 3.093668+4 1.531087-2 3.001632+4 1.566751-2 2.825350+4 1.584893-2 2.741207+4 1.603245-2 2.659627+4 1.640590-2 2.502677+4 1.659587-2 2.427007+4 1.678804-2 2.353669+4 1.698244-2 2.282586+4 1.717908-2 2.213573+4 1.737801-2 2.146678+4 1.757924-2 2.081859+4 1.800000-2 1.954820+4 1.819701-2 1.898873+4 1.840772-2 1.841456+4 1.862087-2 1.785821+4 1.905461-2 1.678894+4 1.927525-2 1.627923+4 1.949845-2 1.578485+4 1.950000-2 1.578149+4 1.972423-2 1.530541+4 2.018366-2 1.439058+4 2.089296-2 1.311391+4 2.113489-2 1.271420+4 2.137962-2 1.232690+4 2.162719-2 1.194875+4 2.187762-2 1.158252+4 2.230000-2 1.099883+4 2.238721-2 1.088309+4 2.264644-2 1.054867+4 2.290868-2 1.022465+4 2.344229-2 9.606898+3 2.398833-2 9.024313+3 2.426610-2 8.746690+3 2.454709-2 8.477782+3 2.483133-2 8.217123+3 2.511886-2 7.964693+3 2.540973-2 7.719933+3 2.600160-2 7.253348+3 2.650000-2 6.887439+3 2.660725-2 6.811607+3 2.754229-2 6.197034+3 2.786121-2 6.005063+3 2.818383-2 5.819099+3 2.851018-2 5.639009+3 2.884032-2 5.464457+3 2.917427-2 5.295275+3 2.951209-2 5.130771+3 3.000000-2 4.905484+3 3.019952-2 4.817297+3 3.054921-2 4.667873+3 3.090295-2 4.522477+3 3.162278-2 4.245441+3 3.198895-2 4.113489+3 3.235937-2 3.985120+3 3.311311-2 3.740569+3 3.349654-2 3.623984+3 3.400000-2 3.478258+3 3.467369-2 3.294692+3 3.507519-2 3.191606+3 3.630781-2 2.901532+3 3.672823-2 2.810660+3 3.715352-2 2.722701+3 3.758374-2 2.637555+3 3.801894-2 2.555121+3 3.845918-2 2.475255+3 3.935501-2 2.322499+3 3.981072-2 2.249676+3 4.000000-2 2.220151+3 4.027170-2 2.178695+3 4.120975-2 2.043489+3 4.168694-2 1.979096+3 4.415704-2 1.686914+3 4.466836-2 1.633935+3 4.500000-2 1.600797+3 4.518559-2 1.582611+3 4.623810-2 1.484693+3 4.677351-2 1.438023+3 4.731513-2 1.392376+3 4.841724-2 1.305456+3 4.954502-2 1.224025+3 5.011872-2 1.185274+3 5.188000-2 1.076368+3 5.248075-2 1.042355+3 5.308844-2 1.009438+3 5.495409-2 9.169145+2 5.500000-2 9.147880+2 5.559043-2 8.878084+2 5.623413-2 8.596178+2 5.754399-2 8.058326+2 5.888437-2 7.553455+2 5.948800-2 7.340146+2 5.948800-2 3.882126+3 6.050000-2 3.725313+3 6.100000-2 3.645999+3 6.165950-2 3.552286+3 6.180000-2 3.532763+3 6.237348-2 3.445026+3 6.309573-2 3.338726+3 6.310000-2 3.338111+3 6.531306-2 3.059496+3 6.606934-2 2.971604+3 6.760830-2 2.795007+3 7.079458-2 2.472789+3 7.161434-2 2.398239+3 7.413102-2 2.190937+3 7.498942-2 2.125879+3 7.585776-2 2.062762+3 7.762471-2 1.942110+3 7.852356-2 1.884378+3 8.000000-2 1.794592+3 8.035261-2 1.774028+3 8.222426-2 1.668061+3 8.413951-2 1.568447+3 8.609938-2 1.474800+3 8.709636-2 1.430103+3 8.810489-2 1.386765+3 8.959900-2 1.325822+3 9.225714-2 1.225107+3 9.332543-2 1.187541+3 9.549926-2 1.115822+3 9.772372-2 1.048443+3 9.885531-2 1.016300+3 1.000000-1 9.851442+2 1.011580-1 9.549451+2 1.035142-1 8.973059+2 1.096478-1 7.680077+2 1.109175-1 7.444812+2 1.122019-1 7.214113+2 1.148154-1 6.773554+2 1.174898-1 6.359876+2 1.188502-1 6.162642+2 1.216186-1 5.786340+2 1.230269-1 5.606914+2 1.244515-1 5.433066+2 1.288250-1 4.943276+2 1.318257-1 4.641646+2 1.333521-1 4.497826+2 1.396368-1 3.965406+2 1.412538-1 3.842470+2 1.428894-1 3.722868+2 1.462177-1 3.494792+2 1.479108-1 3.386059+2 1.496236-1 3.280710+2 1.500000-1 3.258161+2 1.513561-1 3.178652+2 1.531088-1 3.079757+2 1.548817-1 2.983945+2 1.584893-1 2.801197+2 1.603245-1 2.714072+2 1.640590-1 2.547876+2 1.650000-1 2.508201+2 1.659587-1 2.468655+2 1.698244-1 2.317557+2 1.717908-1 2.245521+2 1.737801-1 2.175724+2 1.819701-1 1.917662+2 1.840772-1 1.858087+2 1.862087-1 1.800365+2 1.905461-1 1.690257+2 1.927525-1 1.637760+2 1.972423-1 1.537619+2 1.995262-1 1.489873+2 2.018366-1 1.443627+2 2.041738-1 1.398817+2 2.065380-1 1.355414+2 2.113489-1 1.272612+2 2.137962-1 1.233131+2 2.238721-1 1.087095+2 2.264644-1 1.053715+2 2.317395-1 9.900005+1 2.344229-1 9.596053+1 2.371374-1 9.301542+1 2.398833-1 9.016183+1 2.426610-1 8.739586+1 2.454709-1 8.471553+1 2.483133-1 8.211974+1 2.540973-1 7.716451+1 2.570396-1 7.480031+1 2.600160-1 7.250879+1 2.630268-1 7.028775+1 2.691535-1 6.604782+1 2.722701-1 6.402561+1 2.754229-1 6.209275+1 2.786121-1 6.021838+1 2.818383-1 5.840060+1 2.851018-1 5.663778+1 2.884032-1 5.492816+1 2.917427-1 5.327026+1 3.000000-1 4.945621+1 3.000060-1 4.945358+1 3.019952-1 4.859160+1 3.054921-1 4.712795+1 3.090295-1 4.570897+1 3.126079-1 4.433274+1 3.162278-1 4.299843+1 3.198895-1 4.170438+1 3.235937-1 4.046901+1 3.273407-1 3.927029+1 3.388442-1 3.588339+1 3.427678-1 3.482069+1 3.467369-1 3.378985+1 3.507519-1 3.278966+1 3.548134-1 3.181909+1 3.589219-1 3.087962+1 3.630781-1 2.996792+1 3.672823-1 2.908317+1 3.715352-1 2.823976+1 3.758374-1 2.742081+1 3.801894-1 2.662563+1 3.845918-1 2.585381+1 3.890451-1 2.510440+1 3.935501-1 2.437671+1 4.000000-1 2.338511+1 4.027170-1 2.298418+1 4.073803-1 2.231830+1 4.120975-1 2.167310+1 4.168694-1 2.104692+1 4.216965-1 2.045092+1 4.265795-1 1.987203+1 4.365158-1 1.876299+1 4.415705-1 1.823191+1 4.518559-1 1.721456+1 4.570882-1 1.672762+1 4.623810-1 1.625448+1 4.677351-1 1.579473+1 4.731513-1 1.534910+1 4.786301-1 1.492514+1 4.841724-1 1.451290+1 4.954502-1 1.372228+1 5.011872-1 1.334332+1 5.069907-1 1.297486+1 5.128614-1 1.261673+1 5.188000-1 1.226864+1 5.248075-1 1.193016+1 5.308844-1 1.160103+1 5.370318-1 1.128888+1 5.432503-1 1.098533+1 5.495409-1 1.068995+1 5.559043-1 1.040254+1 5.623413-1 1.012289+1 5.688529-1 9.850967+0 5.754399-1 9.586356+0 5.821032-1 9.328867+0 5.888437-1 9.078295+0 5.956621-1 8.834460+0 6.000000-1 8.687704+0 6.025596-1 8.602978+0 6.095369-1 8.378110+0 6.165950-1 8.159166+0 6.237348-1 7.946025+0 6.309573-1 7.738545+0 6.382635-1 7.536487+0 6.456542-1 7.339710+0 6.531306-1 7.148074+0 6.683439-1 6.779692+0 6.760830-1 6.607036+0 6.839117-1 6.439424+0 6.918310-1 6.276067+0 6.998420-1 6.116903+0 7.079458-1 5.961777+0 7.161434-1 5.810587+0 7.328245-1 5.519624+0 7.413102-1 5.379667+0 7.498942-1 5.243312+0 7.585776-1 5.113694+0 7.673615-1 4.987722+0 7.762471-1 4.864855+0 7.852356-1 4.745077+0 7.943282-1 4.628248+0 8.128305-1 4.403156+0 8.317638-1 4.189099+0 8.413951-1 4.086017+0 8.511380-1 3.988271+0 8.609938-1 3.892863+0 8.709636-1 3.800135+0 9.015711-1 3.535006+0 9.120108-1 3.450818+0 9.225714-1 3.368688+0 9.332543-1 3.288569+0 9.440609-1 3.212687+0 9.549926-1 3.138557+0 9.660509-1 3.066471+0 9.772372-1 2.996053+0 9.885531-1 2.927344+0 1.000000+0 2.860225+0 1.011579+0 2.794651+0 1.023293+0 2.730575+0 1.035142+0 2.667972+0 1.047129+0 2.608169+0 1.059254+0 2.549738+0 1.071519+0 2.492647+0 1.083927+0 2.437022+0 1.096478+0 2.382641+0 1.122018+0 2.277495+0 1.135011+0 2.226673+0 1.148154+0 2.177013+0 1.161449+0 2.128462+0 1.174898+0 2.081018+0 1.188502+0 2.034642+0 1.202264+0 1.990408+0 1.216186+0 1.947136+0 1.230269+0 1.904807+0 1.244515+0 1.863562+0 1.250000+0 1.848053+0 1.273503+0 1.783782+0 1.288250+0 1.745201+0 1.318257+0 1.670539+0 1.333521+0 1.634417+0 1.348963+0 1.599997+0 1.364583+0 1.566304+0 1.380384+0 1.533322+0 1.412538+0 1.469695+0 1.428894+0 1.438893+0 1.479108+0 1.350315+0 1.500000+0 1.315920+0 1.513561+0 1.294935+0 1.531087+0 1.268578+0 1.548817+0 1.242757+0 1.678804+0 1.076811+0 1.698244+0 1.054998+0 1.717908+0 1.034258+0 1.737801+0 1.013924+0 1.757924+0 9.939911-1 1.778279+0 9.745364-1 1.798871+0 9.554613-1 1.819701+0 9.367600-1 1.840772+0 9.184249-1 1.883649+0 8.828242-1 1.905461+0 8.655444-1 1.927525+0 8.486131-1 1.949845+0 8.325005-1 1.972423+0 8.166947-1 2.000000+0 7.980322-1 2.018366+0 7.860315-1 2.044000+0 7.697590-1 2.089296+0 7.422944-1 2.162719+0 7.009908-1 2.187762+0 6.877477-1 2.213095+0 6.751368-1 2.238721+0 6.627578-1 2.264644+0 6.506060-1 2.290868+0 6.386873-1 2.317395+0 6.270272-1 2.371374+0 6.043417-1 2.454709+0 5.718431-1 2.511886+0 5.511656-1 2.540973+0 5.414071-1 2.570396+0 5.318220-1 2.600160+0 5.224067-1 2.630268+0 5.131669-1 2.660725+0 5.041207-1 2.722701+0 4.865040-1 2.818383+0 4.612263-1 2.884032+0 4.451175-1 2.917427+0 4.375058-1 2.951209+0 4.300245-1 3.000000+0 4.195897-1 3.019952+0 4.154474-1 3.054921+0 4.083738-1 3.126079+0 3.945856-1 3.235937+0 3.747712-1 3.273407+0 3.683907-1 3.311311+0 3.621218-1 3.349654+0 3.559626-1 3.388442+0 3.500833-1 3.427678+0 3.443014-1 3.467369+0 3.386150-1 3.507519+0 3.330275-1 3.548134+0 3.275506-1 3.630781+0 3.168654-1 3.758374+0 3.014878-1 3.801894+0 2.965300-1 3.845918+0 2.916560-1 3.890451+0 2.868647-1 3.935501+0 2.822876-1 4.000000+0 2.759489-1 4.027170+0 2.733515-1 4.073803+0 2.689940-1 4.120975+0 2.647201-1 4.216965+0 2.563748-1 4.365158+0 2.443475-1 4.466836+0 2.366451-1 4.518559+0 2.328872-1 4.570882+0 2.291907-1 4.623810+0 2.256535-1 4.677351+0 2.221708-1 4.731513+0 2.187419-1 4.786301+0 2.153688-1 4.841724+0 2.120580-1 5.000000+0 2.030751-1 5.188000+0 1.932354-1 5.308844+0 1.873406-1 5.370318+0 1.844622-1 5.432503+0 1.816294-1 5.495409+0 1.789140-1 5.559043+0 1.762393-1 5.623413+0 1.736047-1 5.688529+0 1.710116-1 5.754399+0 1.684650-1 5.956621+0 1.610506-1 6.165950+0 1.539626-1 6.309573+0 1.494118-1 6.382635+0 1.471881-1 6.456542+0 1.449985-1 6.531306+0 1.429001-1 6.606934+0 1.408322-1 6.683439+0 1.387942-1 6.760830+0 1.367874-1 6.839116+0 1.348159-1 7.079458+0 1.290701-1 7.413102+0 1.217882-1 7.585776+0 1.183030-1 7.673615+0 1.165990-1 7.762471+0 1.149201-1 7.852356+0 1.133099-1 7.943282+0 1.117223-1 8.035261+0 1.101569-1 8.128305+0 1.086147-1 8.222427+0 1.070988-1 8.511380+0 1.026769-1 9.015711+0 9.570908-2 9.332543+0 9.175773-2 9.440609+0 9.047784-2 9.549926+0 8.921624-2 9.660509+0 8.800263-2 9.772372+0 8.680554-2 9.885531+0 8.562476-2 1.000000+1 8.446021-2 1.011579+1 8.331227-2 1.023293+1 8.218310-2 1.059254+1 7.888669-2 1.109175+1 7.469628-2 1.161449+1 7.072873-2 1.174898+1 6.977069-2 1.188502+1 6.882600-2 1.202264+1 6.791692-2 1.216186+1 6.701981-2 1.230269+1 6.613459-2 1.244515+1 6.526119-2 1.258925+1 6.439990-2 1.273503+1 6.355218-2 1.318257+1 6.107542-2 1.400000+1 5.698954-2 1.479108+1 5.349615-2 1.500000+1 5.263997-2 1.513561+1 5.209782-2 1.531087+1 5.141265-2 1.548817+1 5.075240-2 1.566751+1 5.010068-2 1.584893+1 4.945733-2 1.600000+1 4.893348-2 1.603245+1 4.882239-2 1.621810+1 4.819745-2 1.678804+1 4.637025-2 1.798871+1 4.292104-2 1.949845+1 3.922010-2 1.995262+1 3.822299-2 2.000000+1 3.812173-2 2.041738+1 3.725146-2 2.065380+1 3.678543-2 2.089296+1 3.632523-2 2.113489+1 3.587080-2 2.137962+1 3.542347-2 2.213095+1 3.411466-2 2.344229+1 3.203989-2 2.600160+1 2.861831-2 2.691535+1 2.756139-2 2.786121+1 2.654374-2 2.818383+1 2.621875-2 2.851018+1 2.589775-2 2.884032+1 2.558067-2 2.917427+1 2.526749-2 2.951209+1 2.495896-2 3.054921+1 2.405580-2 3.273407+1 2.234633-2 3.589219+1 2.025462-2 3.630781+1 2.000738-2 3.715352+1 1.952196-2 3.758374+1 1.928373-2 3.845918+1 1.881597-2 3.890451+1 1.858998-2 3.981072+1 1.814611-2 4.027170+1 1.792817-2 4.073803+1 1.771285-2 4.120975+1 1.750011-2 4.168694+1 1.729041-2 4.216965+1 1.708321-2 4.415704+1 1.627898-2 4.841724+1 1.478231-2 5.432503+1 1.310354-2 5.559043+1 1.279146-2 5.688529+1 1.248683-2 5.754399+1 1.233728-2 5.888437+1 1.204352-2 6.000000+1 1.181234-2 6.165950+1 1.148418-2 6.237348+1 1.134846-2 6.309573+1 1.121434-2 6.382635+1 1.108180-2 6.456542+1 1.095083-2 6.531306+1 1.082166-2 6.606934+1 1.069401-2 6.998420+1 1.007798-2 7.852356+1 8.950336-3 8.912509+1 7.855145-3 9.120108+1 7.670962-3 9.332543+1 7.491105-3 9.440609+1 7.402778-3 9.549926+1 7.315492-3 9.772372+1 7.143998-3 1.000000+2 6.978414-3 1.023293+2 6.816669-3 1.035142+2 6.737208-3 1.059254+2 6.581052-3 1.071519+2 6.504342-3 1.083927+2 6.428520-3 1.096478+2 6.353697-3 1.109175+2 6.279745-3 1.122018+2 6.206659-3 1.202264+2 5.785647-3 1.412538+2 4.911014-3 1.678804+2 4.120107-3 1.717908+2 4.024773-3 1.778279+2 3.885895-3 1.819701+2 3.795989-3 1.840772+2 3.751819-3 1.905461+2 3.622371-3 1.949845+2 3.539104-3 2.041738+2 3.378269-3 2.065380+2 3.339215-3 2.113489+2 3.262458-3 2.137962+2 3.224743-3 2.162719+2 3.187464-3 2.187762+2 3.150647-3 2.213095+2 3.114257-3 2.238721+2 3.078287-3 2.398833+2 2.871025-3 2.818383+2 2.440068-3 3.349654+2 2.049855-3 3.427678+2 2.002782-3 3.548134+2 1.934192-3 3.630781+2 1.889778-3 3.672823+2 1.867955-3 3.801894+2 1.803988-3 3.890451+2 1.762769-3 4.073803+2 1.683136-3 4.120975+2 1.663796-3 4.216965+2 1.625781-3 4.265795+2 1.607100-3 4.315191+2 1.588634-3 4.365158+2 1.570392-3 4.415704+2 1.552359-3 4.466836+2 1.534533-3 4.786301+2 1.431797-3 1.122018+3 6.091312-4 1.333521+3 5.122409-4 1.364583+3 5.005449-4 1.412538+3 4.834999-4 1.445440+3 4.724609-4 1.462177+3 4.670363-4 1.513561+3 4.511331-4 1.548817+3 4.408571-4 1.717908+3 3.974366-4 1.737801+3 3.928851-4 1.778279+3 3.839383-4 1.905461+3 3.583015-4 3.235937+3 2.109367-4 3.273407+3 2.085211-4 3.349654+3 2.037727-4 3.388442+3 2.014391-4 3.427678+3 1.991323-4 3.507519+3 1.945978-4 7.079458+4 9.630542-6 1.000000+5 6.817028-6 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.550000-6 5.550000-6 9.740000-6 5.550000-6 9.740000-6 8.647498-6 1.103000-5 8.885818-6 1.103000-5 9.764344-6 1.310000-5 9.956730-6 1.515000-5 1.007098-5 1.778279-5 1.013801-5 2.570396-5 1.018203-5 2.954000-5 1.019311-5 2.954000-5 2.778987-5 3.210000-5 2.647976-5 3.467369-5 2.500722-5 3.558000-5 2.445827-5 3.558000-5 2.954388-5 4.027170-5 2.667847-5 4.623810-5 2.309337-5 4.954502-5 2.119352-5 5.308844-5 1.934356-5 5.500000-5 1.844866-5 5.754399-5 1.737121-5 5.830000-5 1.707993-5 5.830000-5 1.735811-5 6.095369-5 1.641682-5 6.300000-5 1.578497-5 6.531306-5 1.517077-5 6.760830-5 1.464380-5 7.079458-5 1.404410-5 7.328245-5 1.365552-5 7.673615-5 1.322075-5 8.035261-5 1.286168-5 8.413951-5 1.256781-5 8.912509-5 1.227469-5 9.549926-5 1.200670-5 1.023293-4 1.180788-5 1.122018-4 1.161240-5 1.260000-4 1.144671-5 1.428894-4 1.133325-5 1.698244-4 1.124786-5 1.783300-4 1.123318-5 1.783300-4 1.217027-5 1.869500-4 1.274572-5 1.869500-4 1.339849-5 1.916000-4 1.372999-5 1.955000-4 1.391494-5 1.985000-4 1.397641-5 2.020000-4 1.395898-5 2.070000-4 1.381303-5 2.240000-4 1.306242-5 2.317395-4 1.277412-5 2.404400-4 1.254162-5 2.491600-4 1.239946-5 2.580000-4 1.234201-5 2.691535-4 1.236393-5 2.830000-4 1.250334-5 3.019952-4 1.282164-5 3.238700-4 1.328272-5 3.238700-4 1.545654-5 3.713700-4 1.668365-5 3.713700-4 1.730954-5 4.415704-4 1.913988-5 4.537300-4 1.943183-5 4.537300-4 2.075159-5 5.011872-4 2.193697-5 5.688529-4 2.341192-5 6.237348-4 2.447687-5 6.850000-4 2.552832-5 7.673615-4 2.675866-5 8.511380-4 2.785139-5 9.660509-4 2.912987-5 1.109175-3 3.046743-5 1.244515-3 3.152276-5 1.428894-3 3.271695-5 1.469800-3 3.295496-5 1.469800-3 4.812601-5 1.516000-3 4.814248-5 1.516000-3 5.081836-5 1.603245-3 5.139085-5 1.737801-3 5.197059-5 1.840772-3 5.209494-5 1.865100-3 5.209779-5 1.865100-3 5.627595-5 2.018366-3 5.650278-5 2.075200-3 5.662476-5 2.075200-3 5.857559-5 2.277400-3 5.920732-5 2.277400-3 6.125949-5 2.917427-3 6.346079-5 3.758374-3 6.579329-5 4.786301-3 6.808376-5 6.025596-3 7.027369-5 7.500000-3 7.233334-5 8.638100-3 7.363674-5 8.638100-3 9.645979-5 9.629400-3 9.683880-5 9.629400-3 1.024583-4 1.008100-2 1.026275-4 1.008100-2 1.083538-4 1.462177-2 1.108813-4 2.113489-2 1.134097-4 3.000000-2 1.158154-4 4.168694-2 1.180215-4 5.888437-2 1.202036-4 5.948800-2 1.202654-4 5.948800-2 1.137412-4 1.603245-1 1.143617-4 5.432503-1 1.147537-4 1.000000+5 1.148061-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.550000-6 0.0 1.869500-4 0.0 1.869500-4 7.25311-10 1.877000-4 7.44063-10 1.885000-4 7.68980-10 1.897000-4 8.13398-10 1.905461-4 8.49176-10 1.916000-4 8.96442-10 1.945000-4 1.035723-9 1.955000-4 1.081899-9 1.965000-4 1.125112-9 1.974000-4 1.160684-9 1.985000-4 1.198485-9 1.996000-4 1.229631-9 2.005000-4 1.249890-9 2.015000-4 1.266926-9 2.025000-4 1.278406-9 2.037800-4 1.285646-9 2.050000-4 1.285894-9 2.065380-4 1.278133-9 2.080000-4 1.264428-9 2.100000-4 1.237569-9 2.120000-4 1.204440-9 2.142000-4 1.162996-9 2.205000-4 1.033278-9 2.240000-4 9.60610-10 2.280000-4 8.79892-10 2.317395-4 8.10861-10 2.350000-4 7.55972-10 2.371374-4 7.22115-10 2.415000-4 6.61822-10 2.458000-4 6.12724-10 2.491600-4 5.80870-10 2.520000-4 5.58957-10 2.550800-4 5.39927-10 2.580000-4 5.25870-10 2.610000-4 5.15159-10 2.635000-4 5.09048-10 2.660725-4 5.05146-10 2.691535-4 5.03554-10 2.722701-4 5.05262-10 2.758100-4 5.10649-10 2.786121-4 5.17280-10 2.830000-4 5.31557-10 2.865000-4 5.46280-10 2.917427-4 5.72755-10 2.980000-4 6.09903-10 3.054921-4 6.61129-10 3.150000-4 7.35047-10 3.238700-4 8.08560-10 3.238700-4 1.646664-9 3.430000-4 1.838381-9 3.713700-4 2.133460-9 3.713700-4 2.582495-9 4.168694-4 3.097222-9 4.518559-4 3.475773-9 4.537300-4 3.495394-9 4.537300-4 4.046639-9 4.850000-4 4.394896-9 5.069907-4 4.624930-9 5.580000-4 5.116300-9 5.821032-4 5.335266-9 6.237348-4 5.687123-9 6.606934-4 5.976299-9 7.079458-4 6.315599-9 7.673615-4 6.705805-9 8.317638-4 7.086543-9 8.912509-4 7.406411-9 9.700000-4 7.783931-9 1.071519-3 8.221466-9 1.190000-3 8.659961-9 1.244515-3 8.844030-9 1.350000-3 9.165203-9 1.469800-3 9.489965-9 1.469800-3 9.958287-9 1.516000-3 9.990674-9 1.516000-3 2.866090-6 1.547300-3 3.066412-6 1.548000-3 3.062672-6 1.572000-3 3.219915-6 1.640590-3 3.581743-6 1.712300-3 3.911958-6 1.737801-3 3.986768-6 1.761500-3 4.043243-6 1.800000-3 4.101031-6 1.865100-3 4.091593-6 1.865100-3 4.076599-6 2.075200-3 4.055438-6 2.075200-3 4.478475-6 2.277400-3 4.510332-6 2.277400-3 4.652151-6 2.851018-3 4.755595-6 3.630781-3 4.867683-6 4.954502-3 5.013039-6 6.531306-3 5.143782-6 8.317638-3 5.256974-6 8.638100-3 5.273787-6 8.638100-3 1.021982-3 9.015711-3 1.023724-3 9.629400-3 1.022615-3 9.629400-3 1.352562-3 1.008100-2 1.356456-3 1.008100-2 1.429665-3 1.350000-2 1.445996-3 2.018366-2 1.460630-3 3.349654-2 1.471963-3 5.948800-2 1.480203-3 5.948800-2 4.167108-2 6.760830-2 4.195296-2 8.959900-2 4.237219-2 1.318257-1 4.271346-2 2.137962-1 4.294248-2 6.531306-1 4.321856-2 1.230269+0 4.334563-2 1.000000+5 4.333318-2 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.550000-6 0.0 9.740000-6 4.190000-6 9.740000-6 1.092502-6 1.023293-5 1.495164-6 1.103000-5 2.144182-6 1.103000-5 1.265656-6 1.180000-5 1.956228-6 1.273503-5 2.806744-6 1.370000-5 3.702374-6 1.500000-5 4.934787-6 1.690000-5 6.777716-6 2.113489-5 1.096839-5 2.954000-5 1.934689-5 2.954000-5 1.750129-6 3.040000-5 3.033296-6 3.150000-5 4.698481-6 3.273407-5 6.604129-6 3.427678-5 9.032723-6 3.558000-5 1.112173-5 3.558000-5 6.036123-6 3.635000-5 7.299234-6 3.890451-5 1.140893-5 4.623810-5 2.314473-5 5.011872-5 2.923897-5 5.308844-5 3.374488-5 5.688529-5 3.924682-5 5.830000-5 4.122007-5 5.830000-5 4.094189-5 6.237348-5 4.640566-5 6.683439-5 5.202282-5 7.244360-5 5.866564-5 8.035261-5 6.749093-5 9.150000-5 7.933633-5 1.161449-4 1.045893-4 1.783300-4 1.670968-4 1.783300-4 1.661597-4 1.869500-4 1.742043-4 1.869500-4 1.735508-4 2.005000-4 1.865215-4 2.511886-4 2.388093-4 3.150000-4 3.019088-4 3.238700-4 3.105865-4 3.238700-4 3.084118-4 3.713700-4 3.546842-4 3.713700-4 3.540579-4 4.537300-4 4.342947-4 4.537300-4 4.329744-4 8.035261-4 7.762645-4 1.469800-3 1.436836-3 1.469800-3 1.421664-3 1.516000-3 1.467848-3 1.516000-3 1.462316-3 1.865100-3 1.808911-3 1.865100-3 1.804748-3 2.075200-3 2.014520-3 2.075200-3 2.012146-3 5.821032-3 5.745994-3 8.638100-3 8.559190-3 8.638100-3 7.519658-3 9.629400-3 8.509946-3 9.629400-3 8.174380-3 1.008100-2 8.621917-3 1.008100-2 8.542981-3 3.507519-2 3.348543-2 5.948800-2 5.788753-2 5.948800-2 1.770318-2 6.237348-2 2.046390-2 6.760830-2 2.554151-2 8.959900-2 4.711277-2 1.531088-1 1.101855-1 1.000000+5 9.999996+4 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 5.948800-2 3.148111+3 6.050000-2 3.025240+3 6.100000-2 2.961900+3 6.180000-2 2.873200+3 6.310000-2 2.715920+3 6.606934-2 2.424663+3 7.161434-2 1.962265+3 8.035261-2 1.458697+3 8.959900-2 1.093878+3 1.109175-1 6.174563+2 1.412538-1 3.200538+2 2.238721-1 9.096313+1 2.722701-1 5.363916+1 3.198895-1 3.497087+1 3.672823-1 2.440633+1 4.168694-1 1.767519+1 4.731513-1 1.289989+1 5.308844-1 9.756588+0 5.956621-1 7.435186+0 6.683439-1 5.709907+0 7.498942-1 4.419279+0 8.413951-1 3.446416+0 9.332543-1 2.775674+0 1.035142+0 2.252818+0 1.188502+0 1.718268+0 1.333521+0 1.380176+0 1.500000+0 1.111059+0 1.698244+0 8.907454-1 1.927525+0 7.165027-1 2.187762+0 5.806802-1 2.511886+0 4.653629-1 2.884032+0 3.758292-1 3.349654+0 3.005514-1 3.890451+0 2.422108-1 4.570882+0 1.935151-1 5.432503+0 1.533578-1 6.456542+0 1.224293-1 7.762471+0 9.703297-2 9.549926+0 7.532921-2 1.188502+1 5.811297-2 1.531087+1 4.341047-2 2.041738+1 3.145408-2 2.786121+1 2.241275-2 3.845918+1 1.588739-2 5.888437+1 1.016897-2 9.772372+1 6.032073-3 1.905461+2 3.058631-3 3.801894+2 1.523254-3 1.513561+3 3.809320-4 1.000000+5 5.756500-6 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 5.948800-2 1.122200-4 1.000000+5 1.122200-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.948800-2 5.104200-2 1.000000+5 5.104200-2 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 5.948800-2 8.333780-3 1.000000+5 9.999995+4 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.008100-2 1.202713+4 1.022000-2 1.163470+4 1.050000-2 1.113362+4 1.071519-2 1.074662+4 1.110000-2 1.015316+4 1.202264-2 8.806108+3 1.318257-2 7.505574+3 1.603245-2 5.203088+3 2.018366-2 3.301900+3 2.230000-2 2.689640+3 2.600160-2 1.950705+3 3.054921-2 1.375802+3 3.400000-2 1.085626+3 3.981072-2 7.596590+2 4.677351-2 5.225590+2 5.500000-2 3.556520+2 6.531306-2 2.343511+2 7.762471-2 1.527835+2 9.225714-2 9.884337+1 1.122019-1 5.987036+1 1.333521-1 3.823696+1 2.454709-1 7.719025+0 3.019952-1 4.506664+0 3.548134-1 2.985369+0 4.073803-1 2.111019+0 4.677351-1 1.504106+0 5.308844-1 1.110286+0 6.000000-1 8.340008-1 6.760830-1 6.358900-1 7.585776-1 4.930803-1 8.609938-1 3.756793-1 9.549926-1 3.029442-1 1.071519+0 2.406326-1 1.230269+0 1.838732-1 1.380384+0 1.480048-1 1.548817+0 1.199368-1 1.757924+0 9.592439-2 2.000000+0 7.701703-2 2.290868+0 6.163244-2 2.630268+0 4.951957-2 3.019952+0 4.008612-2 3.507519+0 3.213531-2 4.073803+0 2.595640-2 4.786301+0 2.078288-2 5.688529+0 1.650302-2 6.760830+0 1.319964-2 8.128305+0 1.048131-2 1.011579+1 8.039299-3 1.258925+1 6.214559-3 1.603245+1 4.712006-3 2.113489+1 3.462336-3 2.917427+1 2.438818-3 4.120975+1 1.688994-3 6.456542+1 1.056872-3 1.083927+2 6.204368-4 2.162719+2 3.077049-4 4.315191+2 1.533676-4 1.717908+3 3.837368-5 1.000000+5 6.582600-7 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.008100-2 1.448300-4 1.000000+5 1.448300-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.008100-2 1.896000-3 1.000000+5 1.896000-3 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.008100-2 8.040170-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 9.629400-3 2.349717+4 9.750000-3 2.291203+4 1.000000-2 2.167053+4 1.060000-2 1.868100+4 1.230269-2 1.266400+4 1.333521-2 1.019600+4 1.531087-2 6.980600+3 1.862087-2 4.051800+3 2.344229-2 2.092900+3 2.917427-2 1.101300+3 3.630781-2 5.724100+2 4.500000-2 2.981800+2 5.623413-2 1.501900+2 7.413102-2 6.362600+1 1.288250-1 1.132103+1 1.650000-1 5.256665+0 1.995262-1 2.938174+0 2.344229-1 1.806288+0 2.722701-1 1.157874+0 3.126079-1 7.736964-1 3.548134-1 5.384586-1 4.027170-1 3.776049-1 4.518559-1 2.754616-1 5.069907-1 2.024567-1 5.623413-1 1.545331-1 6.237348-1 1.187533-1 6.918310-1 9.190389-2 7.762471-1 6.946965-2 8.413951-1 5.747095-2 9.120108-1 4.789046-2 9.772372-1 4.123743-2 1.059254+0 3.492027-2 1.161449+0 2.907926-2 1.273503+0 2.438044-2 1.412538+0 2.014970-2 1.678804+0 1.480865-2 1.905461+0 1.189897-2 2.162719+0 9.635055-3 2.454709+0 7.858210-3 2.818383+0 6.338995-3 3.273407+0 5.063378-3 3.801894+0 4.075897-3 4.466836+0 3.252871-3 5.308844+0 2.575226-3 6.309573+0 2.053827-3 7.585776+0 1.626215-3 9.332543+0 1.261330-3 1.161449+1 9.722889-4 1.479108+1 7.353116-4 1.949845+1 5.390672-4 2.600160+1 3.932939-4 3.589219+1 2.783731-4 5.432503+1 1.800980-4 8.912509+1 1.079593-4 1.678804+2 5.662920-5 3.349654+2 2.818020-5 1.333521+3 7.042765-6 1.000000+5 9.375000-8 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 9.629400-3 1.174500-4 1.000000+5 1.174500-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.629400-3 2.232800-3 1.000000+5 2.232800-3 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.629400-3 7.279150-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.638100-3 5.237338+4 8.740000-3 5.085064+4 8.850000-3 4.942060+4 9.400000-3 4.215760+4 1.109175-2 2.675321+4 1.244515-2 1.930872+4 1.640590-2 8.671672+3 1.800000-2 6.578520+3 2.137962-2 3.922131+3 2.650000-2 2.027648+3 3.198895-2 1.124832+3 3.845918-2 6.264560+2 4.677351-2 3.334702+2 5.754399-2 1.696471+2 7.413102-2 7.360792+1 1.428894-1 8.322425+0 1.737801-1 4.373208+0 2.041738-1 2.588822+0 2.371374-1 1.602684+0 2.691535-1 1.075396+0 3.054921-1 7.268847-1 3.427678-1 5.128541-1 3.801894-1 3.772181-1 4.216965-1 2.793811-1 4.677351-1 2.084429-1 5.128614-1 1.617406-1 5.623413-1 1.263546-1 6.165950-1 9.935195-2 6.760830-1 7.863018-2 7.413102-1 6.263734-2 8.128305-1 5.023854-2 9.225714-1 3.746509-2 9.772372-1 3.297018-2 1.047129+0 2.851996-2 1.135011+0 2.424722-2 1.244515+0 2.029316-2 1.380384+0 1.676208-2 1.698244+0 1.159131-2 1.927525+0 9.318116-3 2.187762+0 7.551134-3 2.511886+0 6.051299-3 2.884032+0 4.886642-3 3.311311+0 3.974440-3 3.845918+0 3.201166-3 4.518559+0 2.556175-3 5.370318+0 2.024701-3 6.382635+0 1.615582-3 7.673615+0 1.279804-3 9.440609+0 9.931393-4 1.174898+1 7.658251-4 1.513561+1 5.718390-4 2.000000+1 4.184200-4 2.691535+1 3.024751-4 3.715352+1 2.142478-4 5.688529+1 1.370463-4 9.332543+1 8.221631-5 1.778279+2 4.264866-5 3.548134+2 2.123030-5 1.412538+3 5.307573-6 1.000000+5 7.484500-8 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.638100-3 1.099200-4 1.000000+5 1.099200-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.638100-3 1.621600-3 1.000000+5 1.621600-3 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.638100-3 6.906580-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.277400-3 3.536471+4 2.385000-3 3.359600+4 2.722701-3 2.823132+4 3.320000-3 2.116000+4 3.900000-3 1.657608+4 4.265795-3 1.433448+4 5.069907-3 1.076636+4 5.688529-3 8.819467+3 6.606934-3 6.767229+3 7.943282-3 4.826515+3 9.120108-3 3.717995+3 1.047129-2 2.848814+3 1.244515-2 2.025433+3 1.479108-2 1.427553+3 1.757924-2 9.976979+2 2.089296-2 6.914776+2 2.454709-2 4.874153+2 2.851018-2 3.499642+2 3.349654-2 2.432271+2 3.935501-2 1.678084+2 4.623810-2 1.149379+2 5.500000-2 7.587100+1 6.531306-2 4.989249+1 7.762471-2 3.250045+1 9.332543-2 2.042116+1 1.148154-1 1.200764+1 1.513561-1 5.863232+0 2.426610-1 1.703662+0 3.000060-1 9.840374-1 3.548134-1 6.415652-1 4.120975-1 4.412509-1 4.731513-1 3.147708-1 5.370318-1 2.326102-1 6.025596-1 1.778491-1 6.760830-1 1.369394-1 7.585776-1 1.061779-1 8.609938-1 8.088622-2 9.549926-1 6.522002-2 1.071519+0 5.180434-2 1.230269+0 3.958294-2 1.380384+0 3.186260-2 1.548817+0 2.582193-2 1.757924+0 2.065353-2 2.000000+0 1.658099-2 2.264644+0 1.351575-2 2.600160+0 1.085266-2 3.000000+0 8.716500-3 3.467369+0 7.034924-3 4.027170+0 5.679045-3 4.731513+0 4.544783-3 5.623413+0 3.607013-3 6.683439+0 2.883708-3 8.035261+0 2.288739-3 1.000000+1 1.754700-3 1.244515+1 1.355887-3 1.600000+1 1.016800-3 2.113489+1 7.453946-4 2.917427+1 5.250475-4 4.120975+1 3.636241-4 6.456542+1 2.275266-4 1.083927+2 1.335711-4 2.162719+2 6.624429-5 4.315191+2 3.301729-5 3.427678+3 4.136720-6 1.000000+5 1.417100-7 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.277400-3 1.084800-4 1.000000+5 1.084800-4 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.277400-3 7.915400-6 1.000000+5 7.915400-6 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.277400-3 2.161005-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.075200-3 5.688960+4 2.145000-3 5.515986+4 2.162719-3 5.459459+4 2.371374-3 4.946550+4 2.500000-3 4.631800+4 2.722701-3 4.129923+4 2.951209-3 3.684111+4 3.235937-3 3.208450+4 3.507519-3 2.820447+4 3.758374-3 2.510959+4 4.400000-3 1.899004+4 4.731513-3 1.660104+4 5.308844-3 1.327927+4 5.888437-3 1.080030+4 6.531306-3 8.708200+3 7.328245-3 6.813065+3 8.128305-3 5.420635+3 9.120108-3 4.179078+3 1.035142-2 3.110987+3 1.150000-2 2.420140+3 1.318257-2 1.732535+3 1.500000-2 1.252648+3 1.698244-2 9.108596+2 1.950000-2 6.338760+2 2.238721-2 4.378815+2 2.600160-2 2.908227+2 3.019952-2 1.915886+2 3.507519-2 1.252668+2 4.120975-2 7.867298+1 4.841724-2 4.905812+1 5.888437-2 2.742437+1 7.413102-2 1.370561+1 9.885531-2 5.706426+0 1.548817-1 1.448246+0 1.927525-1 7.471309-1 2.113489-1 5.679598-1 2.600160-1 3.079553-1 3.019952-1 1.994198-1 3.467369-1 1.345346-1 3.935501-1 9.447412-2 4.415705-1 6.897126-2 4.954502-1 5.071539-2 5.495409-1 3.871964-2 6.095369-1 2.975961-2 6.760830-1 2.303414-2 7.498942-1 1.795503-2 8.609938-1 1.298920-2 9.225714-1 1.110988-2 9.885531-1 9.565514-3 1.071519+0 8.103215-3 1.174898+0 6.752187-3 1.288250+0 5.666801-3 1.428894+0 4.688257-3 1.698244+0 3.447675-3 1.927525+0 2.771891-3 2.187762+0 2.246494-3 2.511886+0 1.800299-3 2.884032+0 1.453729-3 3.311311+0 1.182324-3 3.845918+0 9.522757-4 4.518559+0 7.604037-4 5.370318+0 6.023004-4 6.382635+0 4.805916-4 7.585776+0 3.862138-4 9.332543+0 2.995629-4 1.161449+1 2.309162-4 1.479108+1 1.746298-4 1.949845+1 1.280241-4 2.600160+1 9.340379-5 3.630781+1 6.530929-5 5.559043+1 4.175816-5 9.120108+1 2.504214-5 1.717908+2 1.313888-5 3.427678+2 6.539221-6 1.364583+3 1.634447-6 1.000000+5 2.226500-8 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.075200-3 9.119500-5 1.000000+5 9.119500-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.075200-3 1.155200-5 1.000000+5 1.155200-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.075200-3 1.972453-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.865100-3 1.667899+5 1.945000-3 1.526528+5 2.187762-3 1.293962+5 2.400000-3 1.119804+5 2.660725-3 9.464668+4 2.917427-3 8.091740+4 3.198895-3 6.863990+4 3.427678-3 6.031734+4 4.027170-3 4.419204+4 4.365158-3 3.756232+4 5.069907-3 2.746973+4 5.559043-3 2.251037+4 6.382635-3 1.654207+4 7.079458-3 1.303427+4 8.035261-3 9.669932+3 9.120108-3 7.109879+3 1.015000-2 5.449887+3 1.161449-2 3.866974+3 1.333521-2 2.695347+3 1.513561-2 1.920982+3 1.698244-2 1.403397+3 1.927525-2 9.870788+2 2.187762-2 6.896362+2 2.511886-2 4.629157+2 2.884032-2 3.084343+2 3.311311-2 2.040881+2 3.801894-2 1.341776+2 4.415704-2 8.459253+1 5.188000-2 5.110531+1 6.165950-2 2.956592+1 7.585776-2 1.520787+1 1.011580-1 5.982192+0 1.513561-1 1.607871+0 1.862087-1 8.233955-1 2.238721-1 4.576038-1 2.570396-1 2.965606-1 2.917427-1 2.006160-1 3.273407-1 1.415526-1 3.672823-1 1.005912-1 4.073803-1 7.447181-2 4.518559-1 5.552956-2 5.011872-1 4.170300-2 5.559043-1 3.155046-2 6.095369-1 2.478789-2 6.683439-1 1.961056-2 7.328245-1 1.562029-2 8.317638-1 1.153387-2 9.015711-1 9.566058-3 9.660509-1 8.207760-3 1.035142+0 7.098306-3 1.135011+0 5.896665-3 1.250000+0 4.894293-3 1.380384+0 4.074507-3 1.678804+0 2.873571-3 1.905461+0 2.308671-3 2.162719+0 1.869436-3 2.454709+0 1.524598-3 2.818383+0 1.229678-3 3.235937+0 9.989988-4 3.758374+0 8.037067-4 4.365158+0 6.513122-4 5.188000+0 5.150994-4 6.165950+0 4.104176-4 7.413102+0 3.246415-4 9.015711+0 2.551192-4 1.109175+1 1.990982-4 1.400000+1 1.518900-4 1.798871+1 1.143901-4 2.344229+1 8.538861-5 3.273407+1 5.955592-5 4.841724+1 3.939612-5 7.852356+1 2.385306-5 1.412538+2 1.308868-5 2.818383+2 6.505911-6 1.122018+3 1.624147-6 7.079458+4 2.568496-8 1.000000+5 1.818500-8 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.865100-3 8.280400-5 1.000000+5 8.280400-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.865100-3 3.981400-6 1.000000+5 3.981400-6 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.865100-3 1.778315-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.516000-3 3.407973+5 1.547300-3 3.582469+5 1.548000-3 3.573651+5 1.572000-3 3.699683+5 1.640590-3 3.855841+5 1.664800-3 3.881327+5 1.690000-3 3.916083+5 1.712300-3 3.936193+5 1.737801-3 3.901966+5 1.761500-3 3.853036+5 1.800000-3 3.732564+5 2.041738-3 2.712636+5 2.238721-3 2.134359+5 2.454709-3 1.668038+5 2.691535-3 1.295072+5 3.090295-3 8.771641+4 3.311311-3 7.180625+4 3.900000-3 4.417360+4 4.300000-3 3.280360+4 4.954502-3 2.113967+4 5.623413-3 1.413463+4 6.300000-3 9.794000+3 7.328245-3 5.948607+3 8.317638-3 3.883945+3 9.332543-3 2.620236+3 1.071519-2 1.621392+3 1.244515-2 9.552318+2 1.450000-2 5.514760+2 1.678804-2 3.229682+2 1.950000-2 1.854376+2 2.264644-2 1.057235+2 2.660725-2 5.726759+1 3.162278-2 2.945398+1 3.845918-2 1.374523+1 4.841724-2 5.558840+0 1.011580-1 3.003148-1 1.230269-1 1.392922-1 1.462177-1 7.122695-2 1.698244-1 4.011346-2 1.972423-1 2.275765-2 2.238721-1 1.418383-2 2.540973-1 8.904448-3 2.851018-1 5.872800-3 3.198895-1 3.901963-3 3.548134-1 2.719091-3 3.935501-1 1.907807-3 4.365158-1 1.347217-3 4.786301-1 9.961234-4 5.128614-1 7.989843-4 5.623413-1 6.003848-4 6.531306-1 3.813644-4 7.161434-1 2.903507-4 7.762471-1 2.302601-4 8.511380-1 1.775079-4 9.015711-1 1.518859-4 9.440609-1 1.349166-4 9.885531-1 1.206412-4 1.035142+0 1.086732-4 1.096478+0 9.610282-5 1.161449+0 8.559441-5 1.244515+0 7.506793-5 1.348963+0 6.492363-5 1.531087+0 5.214214-5 1.819701+0 3.849541-5 2.018366+0 3.227586-5 2.290868+0 2.622489-5 2.630268+0 2.107079-5 3.019952+0 1.705699-5 3.507519+0 1.367370-5 4.073803+0 1.104456-5 4.786301+0 8.843409-6 5.688529+0 7.022173-6 6.760830+0 5.616658-6 8.128305+0 4.460021-6 1.011579+1 3.420801-6 1.258925+1 2.644371-6 1.603245+1 2.005008-6 2.137962+1 1.454710-6 2.951209+1 1.024997-6 4.216965+1 7.014810-7 6.606934+1 4.391111-7 1.122018+2 2.548547-7 2.238721+2 1.264386-7 4.466836+2 6.303417-8 1.778279+3 1.577330-8 1.000000+5 2.80100-10 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.516000-3 6.001300-5 1.000000+5 6.001300-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.516000-3 1.268000-5 1.000000+5 1.268000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.516000-3 1.443307-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.469800-3 8.821378+5 1.514000-3 8.183954+5 1.551800-3 7.828511+5 1.570000-3 7.639860+5 1.757924-3 5.696209+5 2.000000-3 4.086756+5 2.220000-3 3.100632+5 2.454709-3 2.358743+5 2.691535-3 1.822970+5 3.126079-3 1.186951+5 3.400000-3 9.253920+4 3.935501-3 5.949475+4 4.315191-3 4.473848+4 4.954502-3 2.895559+4 5.559043-3 1.998878+4 6.237348-3 1.371267+4 7.079458-3 8.987851+3 8.000000-3 5.933538+3 9.015711-3 3.926488+3 1.023293-2 2.517235+3 1.174898-2 1.537282+3 1.350000-2 9.287160+2 1.566751-2 5.364312+2 1.819701-2 3.062720+2 2.113489-2 1.733908+2 2.426610-2 1.018448+2 2.818383-2 5.683736+1 3.349654-2 2.875807+1 4.000000-2 1.417206+1 5.011872-2 5.715607+0 9.772372-2 3.803040-1 1.188502-1 1.728773-1 1.396368-1 9.095491-2 1.603245-1 5.281445-2 1.819701-1 3.230914-2 2.065380-1 1.991491-2 2.317395-1 1.292208-2 2.570396-1 8.819521-3 2.818383-1 6.322323-3 3.090295-1 4.562304-3 3.388442-1 3.314587-3 3.715352-1 2.424104-3 4.216965-1 1.591521-3 4.570882-1 1.225380-3 4.954502-1 9.503748-4 5.308844-1 7.704032-4 5.754399-1 6.076121-4 6.237348-1 4.826959-4 6.760830-1 3.860219-4 7.413102-1 3.013064-4 8.709636-1 1.974104-4 9.225714-1 1.708367-4 9.772372-1 1.489435-4 1.023293+0 1.343295-4 1.083927+0 1.188628-4 1.148154+0 1.058259-4 1.230269+0 9.268226-5 1.333521+0 7.996870-5 1.778279+0 4.820589-5 2.000000+0 3.944325-5 2.264644+0 3.215606-5 2.600160+0 2.582090-5 3.000000+0 2.073800-5 3.467369+0 1.673748-5 4.027170+0 1.351166-5 4.731513+0 1.081273-5 5.623413+0 8.581886-6 6.683439+0 6.860967-6 8.035261+0 5.445552-6 1.000000+1 4.174900-6 1.244515+1 3.225961-6 1.600000+1 2.419100-6 2.113489+1 1.773489-6 2.917427+1 1.249153-6 4.073803+1 8.756893-7 6.309573+1 5.544118-7 1.059254+2 3.253564-7 2.113489+2 1.613259-7 4.216965+2 8.039292-8 3.349654+3 1.007163-8 1.000000+5 3.37160-10 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.469800-3 5.462800-5 1.000000+5 5.462800-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.469800-3 1.015900-8 1.000000+5 1.015900-8 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.469800-3 1.415162-3 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.537300-4 8.163300+4 4.731513-4 8.048125+4 4.900000-4 7.919227+4 5.069907-4 7.744821+4 6.095369-4 6.711839+4 6.531306-4 6.317700+4 7.000000-4 5.894680+4 8.128305-4 5.032923+4 8.810489-4 4.589416+4 1.000000-3 3.926260+4 1.110000-3 3.433700+4 1.230269-3 2.985795+4 1.412538-3 2.456639+4 1.603245-3 2.037180+4 1.819701-3 1.679157+4 2.113489-3 1.324866+4 2.454709-3 1.037201+4 2.818383-3 8.222571+3 3.311311-3 6.225288+3 3.935501-3 4.584514+3 4.677351-3 3.350966+3 5.559043-3 2.432826+3 6.683439-3 1.716963+3 8.035261-3 1.203159+3 9.697000-3 8.309233+2 1.174898-2 5.647161+2 1.396368-2 3.960534+2 1.659587-2 2.758148+2 1.972423-2 1.907077+2 2.344229-2 1.309029+2 2.786121-2 8.918478+1 3.311311-2 6.029894+1 3.935501-2 4.045505+1 4.677351-2 2.693169+1 5.559043-2 1.778964+1 6.606934-2 1.166338+1 7.852356-2 7.591689+0 9.549926-2 4.630291+0 1.188502-1 2.641889+0 1.531088-1 1.369210+0 2.426610-1 4.102845-1 3.000000-1 2.370599-1 3.548134-1 1.545837-1 4.120975-1 1.063349-1 4.731513-1 7.586006-2 5.370318-1 5.606193-2 6.025596-1 4.286627-2 6.760830-1 3.301067-2 7.585776-1 2.559832-2 8.609938-1 1.950069-2 9.549926-1 1.572330-2 1.071519+0 1.248975-2 1.230269+0 9.542836-3 1.380384+0 7.681575-3 1.548817+0 6.225249-3 1.757924+0 4.979033-3 2.000000+0 3.997400-3 2.264644+0 3.258663-3 2.600160+0 2.616554-3 3.000000+0 2.101400-3 3.467369+0 1.695973-3 4.027170+0 1.369098-3 4.731513+0 1.095697-3 5.623413+0 8.696154-4 6.683439+0 6.952158-4 8.035261+0 5.517957-4 9.885531+0 4.289125-4 1.230269+1 3.312934-4 1.584893+1 2.477608-4 2.113489+1 1.797032-4 2.917427+1 1.265828-4 4.120975+1 8.766288-5 6.456542+1 5.485312-5 1.096478+2 3.182556-5 2.187762+2 1.578549-5 4.365158+2 7.868474-6 1.737801+3 1.968834-6 1.000000+5 3.416500-8 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.537300-4 6.705500-5 1.000000+5 6.705500-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.537300-4 2.338700-8 1.000000+5 2.338700-8 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.537300-4 3.866516-4 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.713700-4 6.626275+4 4.000000-4 6.519663+4 5.188000-4 6.287095+4 5.688529-4 6.156598+4 6.100000-4 6.024160+4 6.531306-4 5.859621+4 7.000000-4 5.657980+4 7.500000-4 5.422520+4 8.128305-4 5.122627+4 8.810489-4 4.805363+4 9.500000-4 4.492640+4 1.035142-3 4.130596+4 1.122018-3 3.794890+4 1.216186-3 3.463865+4 1.350000-3 3.052660+4 1.479108-3 2.714468+4 1.650000-3 2.337940+4 1.819701-3 2.031437+4 2.041738-3 1.707475+4 2.264644-3 1.449975+4 2.540973-3 1.199833+4 2.851018-3 9.852654+3 3.198895-3 8.031554+3 3.589219-3 6.500402+3 4.027170-3 5.225484+3 4.518559-3 4.173332+3 5.128614-3 3.234925+3 5.821032-3 2.488768+3 6.606934-3 1.900526+3 7.500000-3 1.440222+3 8.413951-3 1.112882+3 9.500000-3 8.421340+2 1.071519-2 6.345519+2 1.216186-2 4.677983+2 1.380384-2 3.424172+2 1.584893-2 2.417362+2 1.819701-2 1.693255+2 2.089296-2 1.177095+2 2.398833-2 8.123438+1 2.786121-2 5.393453+1 3.198895-2 3.669979+1 3.758374-2 2.323659+1 4.415704-2 1.460226+1 5.188000-2 9.113502+0 6.309573-2 5.097861+0 8.000000-2 2.498278+0 1.584893-1 3.135345-1 1.972423-1 1.623707-1 2.371374-1 9.392470-2 2.754229-1 6.061271-2 3.162278-1 4.072780-2 3.589219-1 2.847599-2 4.073803-1 2.005332-2 4.570882-1 1.468074-2 5.128614-1 1.082718-2 5.754399-1 8.049414-3 6.456542-1 6.031742-3 7.161434-1 4.685190-3 7.943282-1 3.665515-3 8.709636-1 2.957663-3 9.332543-1 2.533133-3 1.000000+0 2.184433-3 1.096478+0 1.810547-3 1.202264+0 1.511381-3 1.318257+0 1.270614-3 1.479108+0 1.031216-3 1.717908+0 7.907131-4 1.949845+0 6.362198-4 2.213095+0 5.159687-4 2.540973+0 4.137591-4 2.917427+0 3.343214-4 3.349654+0 2.720668-4 3.890451+0 2.192574-4 4.570882+0 1.751741-4 5.432503+0 1.388201-4 6.456542+0 1.108245-4 7.762471+0 8.783622-5 9.549926+0 6.818919-5 1.188502+1 5.260433-5 1.531087+1 3.929551-5 2.041738+1 2.847296-5 2.786121+1 2.028841-5 3.845918+1 1.438117-5 5.888437+1 9.205064-6 9.772372+1 5.460264-6 1.905461+2 2.768762-6 3.801894+2 1.378867-6 1.513561+3 3.448290-7 1.000000+5 5.210800-9 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.713700-4 5.142800-5 1.000000+5 5.142800-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.713700-4 2.706000-8 1.000000+5 2.706000-8 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.713700-4 3.199149-4 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.238700-4 2.754993+5 4.415704-4 2.356604+5 4.786301-4 2.246075+5 5.188000-4 2.129011+5 5.623413-4 2.004768+5 6.095369-4 1.875055+5 6.606934-4 1.740111+5 7.300000-4 1.573040+5 8.000000-4 1.423720+5 8.709636-4 1.288574+5 9.700000-4 1.126904+5 1.059254-3 1.003609+5 1.190000-3 8.539120+4 1.318257-3 7.354623+4 1.479108-3 6.169336+4 1.650000-3 5.182400+4 1.862087-3 4.241117+4 2.090000-3 3.474766+4 2.317395-3 2.890480+4 2.630268-3 2.288956+4 3.000000-3 1.780624+4 3.388442-3 1.400519+4 3.801894-3 1.108844+4 4.300000-3 8.579280+3 4.897788-3 6.491434+3 5.559043-3 4.912596+3 6.300000-3 3.703756+3 7.079458-3 2.828621+3 8.000000-3 2.118452+3 9.015711-3 1.586506+3 1.023293-2 1.159596+3 1.161449-2 8.413765+2 1.318257-2 6.059188+2 1.500000-2 4.303240+2 1.717908-2 2.981483+2 1.972423-2 2.035528+2 2.264644-2 1.378884+2 2.600160-2 9.270811+1 3.000000-2 6.099720+1 3.467369-2 3.962427+1 4.027170-2 2.517999+1 4.731513-2 1.533102+1 5.623413-2 8.937178+0 6.760830-2 4.985577+0 8.413951-2 2.471388+0 1.640590-1 2.836098-1 1.995262-1 1.513503-1 2.344229-1 9.084550-2 2.691535-1 5.907222-2 3.054921-1 4.009757-2 3.427678-1 2.838778-2 3.845918-1 2.024556-2 4.265795-1 1.503964-2 4.731513-1 1.125250-2 5.188000-1 8.751183-3 5.754399-1 6.645738-3 6.309573-1 5.239054-3 6.918310-1 4.157065-3 7.585776-1 3.320234-3 8.609938-1 2.456989-3 9.225714-1 2.097852-3 9.885531-1 1.804173-3 1.071519+0 1.527381-3 1.174898+0 1.272420-3 1.288250+0 1.068030-3 1.428894+0 8.839653-4 1.698244+0 6.502620-4 1.927525+0 5.227785-4 2.187762+0 4.236627-4 2.511886+0 3.395123-4 2.884032+0 2.741617-4 3.311311+0 2.229830-4 3.845918+0 1.795999-4 4.518559+0 1.434099-4 5.370318+0 1.135923-4 6.382635+0 9.064085-5 7.673615+0 7.180336-5 9.440609+0 5.571865-5 1.174898+1 4.296689-5 1.500000+1 3.241300-5 1.995262+1 2.353674-5 2.691535+1 1.697003-5 3.758374+1 1.187543-5 5.754399+1 7.597671-6 9.549926+1 4.505151-6 1.840772+2 2.310549-6 3.672823+2 1.150436-6 1.462177+3 2.876622-7 1.000000+5 4.199200-9 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.238700-4 4.655100-5 1.000000+5 4.655100-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.238700-4 1.363500-8 1.000000+5 1.363500-8 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.238700-4 2.773054-4 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.869500-4 2.773500+5 1.877000-4 2.848076+5 1.885000-4 2.946724+5 1.897000-4 3.121088+5 1.930000-4 3.699376+5 1.945000-4 3.970232+5 1.955000-4 4.140440+5 1.965000-4 4.296040+5 1.974000-4 4.420280+5 1.985000-4 4.547680+5 1.996000-4 4.645960+5 2.005000-4 4.704000+5 2.015000-4 4.745400+5 2.025000-4 4.763720+5 2.037800-4 4.756736+5 2.050000-4 4.722400+5 2.065380-4 4.647655+5 2.080000-4 4.551680+5 2.100000-4 4.392680+5 2.120000-4 4.213960+5 2.142000-4 4.005320+5 2.170000-4 3.734028+5 2.205000-4 3.400540+5 2.240000-4 3.084096+5 2.371374-4 2.127340+5 2.415000-4 1.899320+5 2.454709-4 1.728636+5 2.491600-4 1.598799+5 2.520000-4 1.515892+5 2.550800-4 1.441211+5 2.580000-4 1.383596+5 2.610000-4 1.336292+5 2.635000-4 1.305472+5 2.660725-4 1.280867+5 2.691535-4 1.259597+5 2.722701-4 1.246703+5 2.758100-4 1.241300+5 2.786121-4 1.243154+5 2.830000-4 1.255392+5 2.865000-4 1.272152+5 2.917427-4 1.306574+5 2.980000-4 1.359112+5 3.054921-4 1.433391+5 3.320000-4 1.739504+5 3.430000-4 1.868584+5 3.550000-4 2.001892+5 3.672823-4 2.127210+5 3.787900-4 2.232579+5 3.890451-4 2.315865+5 4.027170-4 2.411880+5 4.168694-4 2.494545+5 4.315191-4 2.563654+5 4.466836-4 2.618731+5 4.650000-4 2.664488+5 4.850000-4 2.691536+5 5.069907-4 2.698963+5 5.308844-4 2.686784+5 5.580000-4 2.652996+5 5.821032-4 2.608444+5 6.100000-4 2.544544+5 6.456542-4 2.449863+5 6.850000-4 2.336768+5 7.244360-4 2.219229+5 7.673615-4 2.090111+5 8.200000-4 1.935884+5 8.709636-4 1.794389+5 9.332543-4 1.633013+5 1.000000-3 1.475628+5 1.071519-3 1.324902+5 1.150000-3 1.178788+5 1.244515-3 1.027030+5 1.350000-3 8.844600+4 1.462177-3 7.583205+4 1.584893-3 6.449349+4 1.730000-3 5.367280+4 1.883649-3 4.460178+4 2.074000-3 3.588189+4 2.264644-3 2.920676+4 2.483133-3 2.338936+4 2.754229-3 1.807009+4 3.070000-3 1.367060+4 3.400000-3 1.043364+4 3.758374-3 7.947867+3 4.120975-3 6.152919+3 4.518559-3 4.737856+3 5.011872-3 3.508115+3 5.559043-3 2.580572+3 6.237348-3 1.821098+3 7.000000-3 1.274068+3 7.852356-3 8.856968+2 8.810489-3 6.108650+2 9.885531-3 4.182030+2 1.109175-2 2.842886+2 1.258925-2 1.845732+2 1.428894-2 1.189322+2 1.603245-2 7.922403+1 1.819701-2 5.032019+1 2.089296-2 3.044041+1 2.398833-2 1.828231+1 2.786121-2 1.044505+1 3.235937-2 5.923971+0 3.845918-2 3.054751+0 4.677351-2 1.430657+0 5.888437-2 5.812934-1 1.011580-1 6.935942-2 1.244515-1 3.090696-2 1.479108-1 1.586405-2 1.717908-1 8.959799-3 1.972423-1 5.322955-3 2.264644-1 3.185454-3 2.570396-1 2.004451-3 2.884032-1 1.324706-3 3.235937-1 8.818328-4 3.589219-1 6.155708-4 4.000000-1 4.258767-4 4.415705-1 3.063787-4 4.841724-1 2.270411-4 5.248075-1 1.758538-4 5.754399-1 1.322816-4 6.456542-1 9.337403-5 7.079458-1 7.112907-5 7.673615-1 5.640536-5 8.609938-1 4.074288-5 9.120108-1 3.486874-5 9.549926-1 3.096834-5 1.000000+0 2.767800-5 1.047129+0 2.491322-5 1.096478+0 2.257282-5 1.161449+0 2.011004-5 1.230269+0 1.803980-5 1.333521+0 1.559882-5 1.479108+0 1.304813-5 1.840772+0 8.893495-6 2.044000+0 7.447900-6 2.317395+0 6.066610-6 2.660725+0 4.877517-6 3.054921+0 3.950798-6 3.548134+0 3.169045-6 4.120975+0 2.561120-6 4.841724+0 2.051754-6 5.754399+0 1.629993-6 6.839116+0 1.304375-6 8.222427+0 1.036278-6 1.023293+1 7.951460-7 1.273503+1 6.148991-7 1.621810+1 4.663992-7 2.137962+1 3.428156-7 2.951209+1 2.415413-7 4.168694+1 1.673234-7 6.531306+1 1.047191-7 1.109175+2 6.076818-8 2.213095+2 3.014554-8 4.415704+2 1.502697-8 3.507519+3 1.882880-9 1.000000+5 6.60070-11 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.869500-4 3.021000-5 1.000000+5 3.021000-5 1 69000 7 7 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.869500-4 1.940500-8 1.000000+5 1.940500-8 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.869500-4 1.567206-4 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.783300-4 3.954648+5 1.793000-4 4.195590+5 1.825000-4 5.145756+5 1.840000-4 5.619108+5 1.851000-4 5.955504+5 1.863000-4 6.298020+5 1.873000-4 6.555120+5 1.883649-4 6.792656+5 1.894000-4 6.982620+5 1.905461-4 7.142168+5 1.916000-4 7.240740+5 1.927525-4 7.297410+5 1.939000-4 7.304700+5 1.953000-4 7.255260+5 1.965000-4 7.170120+5 1.981300-4 7.004962+5 2.000000-4 6.764940+5 2.020000-4 6.470820+5 2.041738-4 6.128739+5 2.070000-4 5.674452+5 2.100000-4 5.201826+5 2.141200-4 4.592201+5 2.220000-4 3.600402+5 2.280000-4 3.014352+5 2.317395-4 2.721587+5 2.350000-4 2.508504+5 2.380000-4 2.344440+5 2.404400-4 2.231699+5 2.430000-4 2.131692+5 2.458000-4 2.041980+5 2.483133-4 1.977291+5 2.511886-4 1.919867+5 2.540973-4 1.878018+5 2.570396-4 1.850733+5 2.600160-4 1.835900+5 2.630268-4 1.833024+5 2.660725-4 1.841023+5 2.691535-4 1.858868+5 2.730000-4 1.892928+5 2.770000-4 1.939938+5 2.818383-4 2.009384+5 2.884032-4 2.119896+5 3.150000-4 2.650116+5 3.273407-4 2.899757+5 3.390000-4 3.122634+5 3.507519-4 3.327927+5 3.630781-4 3.519973+5 3.740000-4 3.668412+5 3.850000-4 3.797754+5 3.981072-4 3.927339+5 4.120975-4 4.038979+5 4.280000-4 4.135716+5 4.430000-4 4.200144+5 4.600000-4 4.244736+5 4.786301-4 4.263557+5 5.011872-4 4.252664+5 5.248075-4 4.211450+5 5.500000-4 4.142184+5 5.754399-4 4.050752+5 6.025596-4 3.936967+5 6.382635-4 3.772045+5 6.760830-4 3.587269+5 7.161434-4 3.387372+5 7.585776-4 3.178509+5 8.035261-4 2.965665+5 8.511380-4 2.751439+5 9.120108-4 2.497428+5 9.772372-4 2.252070+5 1.047129-3 2.017062+5 1.135011-3 1.760344+5 1.216186-3 1.556823+5 1.318257-3 1.339255+5 1.428894-3 1.144390+5 1.570000-3 9.438180+4 1.698244-3 7.985196+4 1.883649-3 6.347649+4 2.074000-3 5.082538+4 2.238721-3 4.238067+4 2.500000-3 3.231690+4 2.800000-3 2.422062+4 3.126079-3 1.813185+4 3.467369-3 1.370009+4 3.801894-3 1.061275+4 4.168694-3 8.176192+3 4.570882-3 6.264737+3 5.069907-3 4.612725+3 5.623413-3 3.374924+3 6.309573-3 2.365877+3 7.079458-3 1.645527+3 7.943282-3 1.135576+3 8.912509-3 7.779237+2 1.000000-2 5.288502+2 1.122018-2 3.569200+2 1.258925-2 2.392116+2 1.428894-2 1.529228+2 1.603245-2 1.011305+2 1.819701-2 6.370401+1 2.089296-2 3.817421+1 2.398833-2 2.270120+1 2.786121-2 1.282475+1 3.198895-2 7.518072+0 3.758374-2 4.001466+0 4.518559-2 1.930609+0 5.308844-2 1.013990+0 1.000000-1 7.897619-2 1.216186-1 3.610442-2 1.428894-1 1.908333-2 1.640590-1 1.112227-2 1.862087-1 6.826591-3 2.113489-1 4.222020-3 2.371374-1 2.748696-3 2.630268-1 1.881547-3 2.917427-1 1.297908-3 3.198895-1 9.395216-4 3.507519-1 6.847922-4 3.845918-1 5.027022-4 4.216965-1 3.717014-4 4.570882-1 2.872243-4 4.954502-1 2.233857-4 5.370318-1 1.749833-4 5.821032-1 1.380127-4 6.309573-1 1.096239-4 6.839117-1 8.767436-5 7.413102-1 7.057214-5 8.609938-1 4.765448-5 9.120108-1 4.121558-5 9.660509-1 3.590034-5 1.011579+0 3.234576-5 1.071519+0 2.859294-5 1.135011+0 2.542939-5 1.216186+0 2.224249-5 1.318257+0 1.916913-5 1.798871+0 1.109085-5 2.018366+0 9.117950-6 2.290868+0 7.408785-6 2.630268+0 5.952705-6 3.019952+0 4.818685-6 3.507519+0 3.862845-6 4.073803+0 3.120108-6 4.786301+0 2.498344-6 5.688529+0 1.983772-6 6.760830+0 1.586752-6 8.128305+0 1.260029-6 1.011579+1 9.663980-7 1.258925+1 7.470394-7 1.603245+1 5.664225-7 2.113489+1 4.162036-7 2.917427+1 2.931711-7 4.120975+1 2.030379-7 6.382635+1 1.285652-7 1.071519+2 7.546324-8 2.137962+2 3.742190-8 4.265795+2 1.864987-8 3.388442+3 2.336585-9 1.000000+5 7.91280-11 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.783300-4 2.806000-5 1.000000+5 2.806000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.783300-4 1.502700-4 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.103000-5 7.814321+5 1.140000-5 7.276789+5 1.180000-5 6.799763+5 1.220000-5 6.406643+5 1.273503-5 5.985299+5 1.320000-5 5.694726+5 1.370000-5 5.448563+5 1.420000-5 5.255625+5 1.470000-5 5.108166+5 1.515000-5 5.009529+5 1.570000-5 4.926225+5 1.630000-5 4.875380+5 1.690000-5 4.860187+5 1.757924-5 4.879774+5 1.830000-5 4.938560+5 1.905461-5 5.036712+5 1.980000-5 5.166549+5 2.070000-5 5.362741+5 2.162719-5 5.604598+5 2.270000-5 5.929227+5 2.371374-5 6.275473+5 2.511886-5 6.812661+5 2.691535-5 7.583197+5 2.917427-5 8.658997+5 3.467369-5 1.159364+6 3.758374-5 1.320147+6 4.027170-5 1.466282+6 4.315191-5 1.616990+6 4.623810-5 1.769916+6 4.954502-5 1.924088+6 5.308844-5 2.078378+6 5.754399-5 2.257874+6 6.237348-5 2.436031+6 6.760830-5 2.607672+6 7.244360-5 2.745767+6 7.673615-5 2.848906+6 8.222426-5 2.955614+6 8.709636-5 3.027381+6 9.332543-5 3.091883+6 1.000000-4 3.136091+6 1.096478-4 3.166094+6 1.174898-4 3.168978+6 1.273503-4 3.151687+6 1.364583-4 3.113566+6 1.462177-4 3.055866+6 1.584893-4 2.961676+6 1.698244-4 2.862512+6 1.819701-4 2.750655+6 1.950000-4 2.624177+6 2.065380-4 2.510149+6 2.220000-4 2.354737+6 2.371374-4 2.203441+6 2.511886-4 2.068707+6 2.691535-4 1.904141+6 2.851018-4 1.766235+6 3.040000-4 1.613832+6 3.273407-4 1.440853+6 3.507519-4 1.285679+6 3.758374-4 1.138203+6 4.027170-4 9.998653+5 4.315191-4 8.716177+5 4.628000-4 7.527976+5 4.954502-4 6.480919+5 5.308844-4 5.529947+5 5.688529-4 4.687917+5 6.165950-4 3.836661+5 6.683439-4 3.115717+5 7.244360-4 2.511377+5 7.852356-4 2.009929+5 8.511380-4 1.597825+5 9.332543-4 1.219980+5 1.023293-3 9.244287+4 1.122018-3 6.952173+4 1.230269-3 5.191205+4 1.348963-3 3.850135+4 1.496236-3 2.729886+4 1.659587-3 1.921689+4 1.840772-3 1.342796+4 2.041738-3 9.316272+3 2.264644-3 6.419727+3 2.511886-3 4.394406+3 2.818383-3 2.862306+3 3.162278-3 1.850218+3 3.548134-3 1.187224+3 4.000000-3 7.423206+2 4.518559-3 4.569644+2 4.954502-3 3.149650+2 5.559043-3 1.962512+2 6.456542-3 1.051843+2 7.244360-3 6.466900+1 8.128305-3 3.948564+1 9.015711-3 2.516494+1 1.023293-2 1.439829+1 1.174898-2 7.778194+0 1.364583-2 3.961401+0 1.584893-2 2.002635+0 1.862087-2 9.532549-1 2.187762-2 4.502877-1 2.600160-2 2.000544-1 3.090295-2 8.823764-2 3.845918-2 3.096022-2 6.606934-2 2.289042-3 8.222426-2 8.039248-4 9.772372-2 3.542500-4 1.148154-1 1.659544-4 1.318257-1 8.726436-5 1.500000-1 4.820500-5 1.698244-1 2.747544-5 1.905461-1 1.643221-5 2.137962-1 9.901206-6 2.371374-1 6.319724-6 2.630268-1 4.063128-6 2.917427-1 2.632901-6 3.235937-1 1.719529-6 3.548134-1 1.185591-6 3.890451-1 8.232078-7 4.265795-1 5.758495-7 4.623810-1 4.239974-7 5.011872-1 3.142654-7 5.432503-1 2.350120-7 5.888437-1 1.769997-7 6.382635-1 1.342048-7 6.998420-1 9.856702-8 7.762471-1 7.026424-8 8.609938-1 5.046477-8 9.015711-1 4.379826-8 9.332543-1 3.955880-8 9.660509-1 3.590603-8 1.000000+0 3.278400-8 1.035142+0 3.012990-8 1.071519+0 2.783505-8 1.122018+0 2.522428-8 1.174898+0 2.301817-8 1.244515+0 2.069084-8 1.333521+0 1.833160-8 1.513561+0 1.485749-8 1.883649+0 1.012826-8 2.089296+0 8.507365-9 2.371374+0 6.925503-9 2.722701+0 5.575105-9 3.126079+0 4.521151-9 3.630781+0 3.630864-9 4.216965+0 2.937652-9 5.000000+0 2.327100-9 5.956621+0 1.845454-9 7.079458+0 1.478868-9 8.511380+0 1.176531-9 1.059254+1 9.03912-10 1.318257+1 6.99829-10 1.678804+1 5.31371-10 2.213095+1 3.90950-10 3.054921+1 2.75681-10 4.415704+1 1.86554-10 6.998420+1 1.15489-10 1.202264+2 6.62994-11 2.398833+2 3.29136-11 4.786301+2 1.64160-11 1.905461+3 4.10872-12 1.000000+5 7.81840-14 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.103000-5 1.103000-5 1.000000+5 1.103000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.103000-5 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.740000-6 1.150202+6 9.940000-6 1.095729+6 1.023293-5 1.029967+6 1.060000-5 9.610564+5 1.100000-5 9.001347+5 1.135011-5 8.567025+5 1.180000-5 8.112296+5 1.216186-5 7.819071+5 1.258925-5 7.541815+5 1.310000-5 7.290770+5 1.350000-5 7.144955+5 1.400000-5 7.016099+5 1.445440-5 6.943563+5 1.500000-5 6.904343+5 1.554900-5 6.910600+5 1.610000-5 6.956700+5 1.678804-5 7.062892+5 1.750000-5 7.222249+5 1.830000-5 7.453530+5 1.920000-5 7.771250+5 2.018366-5 8.180000+5 2.113489-5 8.629436+5 2.238721-5 9.291726+5 2.371374-5 1.007005+6 2.570396-5 1.136338+6 3.311311-5 1.694858+6 3.589219-5 1.912576+6 3.890451-5 2.141691+6 4.168694-5 2.343251+6 4.466836-5 2.545296+6 4.841724-5 2.781228+6 5.248075-5 3.014644+6 5.754399-5 3.278577+6 6.237348-5 3.503559+6 6.760830-5 3.717631+6 7.244360-5 3.884486+6 7.800000-5 4.037651+6 8.317638-5 4.145056+6 8.912509-5 4.229330+6 9.500000-5 4.282363+6 1.040000-4 4.318049+6 1.122018-4 4.318159+6 1.220000-4 4.290623+6 1.330000-4 4.222310+6 1.412538-4 4.149893+6 1.531087-4 4.022409+6 1.659587-4 3.862299+6 1.760000-4 3.731103+6 1.905461-4 3.535541+6 2.041738-4 3.346746+6 2.162719-4 3.179224+6 2.317395-4 2.967469+6 2.500000-4 2.726501+6 2.660725-4 2.526743+6 2.818383-4 2.343268+6 3.019952-4 2.123338+6 3.232200-4 1.912624+6 3.427678-4 1.736370+6 3.672823-4 1.538379+6 3.935501-4 1.352458+6 4.216965-4 1.180031+6 4.518559-4 1.022073+6 4.841724-4 8.790054+5 5.188000-4 7.507157+5 5.559043-4 6.369123+5 6.025596-4 5.216945+5 6.531306-4 4.240464+5 7.079458-4 3.420272+5 7.673615-4 2.739302+5 8.317638-4 2.179928+5 9.015711-4 1.723391+5 9.772372-4 1.353699+5 1.059254-3 1.055598+5 1.174898-3 7.602502+4 1.396368-3 4.349183+4 1.548817-3 3.089497+4 1.678804-3 2.353135+4 1.840772-3 1.705595+4 2.018366-3 1.227542+4 2.238721-3 8.418774+3 2.570396-3 5.065085+3 2.884032-3 3.292110+3 3.198895-3 2.218224+3 3.467369-3 1.622193+3 3.845918-3 1.077331+3 4.315191-3 6.786773+2 4.897788-3 4.054084+2 5.559043-3 2.403414+2 6.309573-3 1.413937+2 7.161434-3 8.256999+1 8.128305-3 4.785082+1 9.015711-3 3.043611+1 1.023293-2 1.737331+1 1.161449-2 9.846184+0 1.348963-2 4.992906+0 1.566751-2 2.512768+0 1.819701-2 1.255272+0 2.137962-2 5.899821-1 2.540973-2 2.606561-1 3.019952-2 1.143000-1 3.672823-2 4.443356-2 7.079458-2 1.825406-3 8.609938-2 7.087291-4 1.011580-1 3.273115-4 1.174898-1 1.608561-4 1.333521-1 8.872002-5 1.496236-1 5.200151-5 1.659587-1 3.235785-5 1.840772-1 2.027270-5 2.041738-1 1.279489-5 2.264644-1 8.139408-6 2.483133-1 5.483455-6 2.691535-1 3.905534-6 2.917427-1 2.800249-6 3.162278-1 2.021170-6 3.467369-1 1.403496-6 3.758374-1 1.026876-6 4.073803-1 7.569165-7 4.365158-1 5.865791-7 4.677351-1 4.576371-7 5.011872-1 3.592896-7 5.370318-1 2.839411-7 5.754399-1 2.259246-7 6.165950-1 1.808786-7 6.683439-1 1.405932-7 7.413102-1 1.027078-7 7.943282-1 8.384626-8 8.511380-1 6.892004-8 9.225714-1 5.524423-8 9.660509-1 4.898333-8 1.000000+0 4.496500-8 1.047129+0 4.039884-8 1.096478+0 3.656522-8 1.148154+0 3.330358-8 1.216186+0 2.984455-8 1.318257+0 2.580697-8 1.513561+0 2.037481-8 1.819701+0 1.473833-8 2.018366+0 1.235635-8 2.317395+0 9.857606-9 2.660725+0 7.924942-9 3.054921+0 6.418292-9 3.548134+0 5.148289-9 4.120975+0 4.160720-9 4.841724+0 3.333283-9 5.754399+0 2.648087-9 6.839116+0 2.119040-9 8.222427+0 1.683450-9 1.023293+1 1.291784-9 1.273503+1 9.98939-10 1.621810+1 7.57704-10 2.137962+1 5.56937-10 2.951209+1 3.92408-10 4.168694+1 2.71831-10 6.531306+1 1.70133-10 1.109175+2 9.87225-11 2.213095+2 4.89735-11 4.415704+2 2.44134-11 3.507519+3 3.05891-12 1.000000+5 1.07230-13 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.740000-6 9.740000-6 1.000000+5 9.740000-6 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.740000-6 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.830000-5 5.505280+4 5.920000-5 5.350740+4 6.030000-5 5.201500+4 6.150000-5 5.087960+4 6.260000-5 5.022580+4 6.400000-5 4.985240+4 6.531306-5 4.987849+4 6.683439-5 5.029494+4 6.850000-5 5.112720+4 7.070000-5 5.265760+4 7.328245-5 5.485347+4 8.222426-5 6.338224+4 8.650000-5 6.711120+4 9.015711-5 6.987571+4 9.400000-5 7.230440+4 9.800000-5 7.429800+4 1.023293-4 7.587228+4 1.071519-4 7.699901+4 1.122018-4 7.759760+4 1.174898-4 7.772799+4 1.244515-4 7.732886+4 1.318257-4 7.640943+4 1.412538-4 7.474715+4 1.513561-4 7.256582+4 1.621810-4 6.991344+4 1.737801-4 6.685314+4 1.862087-4 6.349616+4 2.018366-4 5.937900+4 2.220000-4 5.445420+4 2.454709-4 4.933377+4 2.710800-4 4.440709+4 3.054921-4 3.878637+4 3.500000-4 3.299000+4 3.981072-4 2.808361+4 4.700000-4 2.261860+4 5.432503-4 1.859205+4 6.500000-4 1.446978+4 7.852356-4 1.101157+4 9.332543-4 8.516726+3 1.109175-3 6.542820+3 1.333521-3 4.901203+3 1.603245-3 3.642521+3 1.905461-3 2.737686+3 2.294000-3 1.998596+3 2.754229-3 1.454661+3 3.311311-3 1.048462+3 3.935501-3 7.660535+2 4.786301-3 5.327619+2 5.821032-3 3.677587+2 7.161434-3 2.464775+2 8.709636-3 1.676495+2 1.071519-2 1.105944+2 1.288250-2 7.587684+1 1.531087-2 5.293530+1 1.840772-2 3.577037+1 2.290868-2 2.228077+1 2.754229-2 1.484568+1 3.162278-2 1.088033+1 3.715352-2 7.512141+0 4.415704-2 5.011558+0 5.248075-2 3.317380+0 6.237348-2 2.179682+0 7.498942-2 1.382089+0 8.810489-2 9.214900-1 1.096478-1 5.270997-1 1.428894-1 2.657090-1 2.454709-1 6.456198-2 3.019952-1 3.779419-2 3.589219-1 2.435165-2 4.120975-1 1.724515-2 4.731513-1 1.230308-2 5.370318-1 9.092343-3 6.025596-1 6.952306-3 6.760830-1 5.353905-3 7.585776-1 4.151769-3 8.609938-1 3.163086-3 9.549926-1 2.550456-3 1.071519+0 2.025711-3 1.216186+0 1.582492-3 1.364583+0 1.272950-3 1.531087+0 1.030877-3 1.737801+0 8.238859-4 1.972423+0 6.636324-4 2.238721+0 5.385268-4 2.570396+0 4.321272-4 2.951209+0 3.493899-4 3.427678+0 2.797475-4 4.000000+0 2.242000-4 4.677351+0 1.805288-4 5.559043+0 1.432105-4 6.606934+0 1.144375-4 7.943282+0 9.078394-5 9.772372+0 7.053783-5 1.216186+1 5.446129-5 1.566751+1 4.071368-5 2.089296+1 2.952041-5 2.884032+1 2.078767-5 4.027170+1 1.456855-5 6.237348+1 9.221662-6 1.035142+2 5.474857-6 2.065380+2 2.713936-6 4.120975+2 1.352213-6 3.273407+3 1.693926-7 1.000000+5 5.541600-9 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.830000-5 5.830000-5 1.000000+5 5.830000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.830000-5 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.558000-5 9.993840+6 3.590000-5 9.401580+6 3.635000-5 8.692400+6 3.680000-5 8.082420+6 3.740000-5 7.390660+6 3.801894-5 6.788863+6 3.890451-5 6.070570+6 3.981072-5 5.465813+6 4.110000-5 4.767360+6 4.265795-5 4.095643+6 4.500000-5 3.321300+6 6.606934-5 7.645579+5 7.328245-5 5.174837+5 8.000000-5 3.746280+5 8.709636-5 2.759849+5 9.332543-5 2.167165+5 9.900000-5 1.773808+5 1.047129-4 1.476039+5 1.106700-4 1.240446+5 1.161449-4 1.073127+5 1.220000-4 9.325140+4 1.280000-4 8.190780+4 1.333521-4 7.376428+4 1.400000-4 6.560820+4 1.462177-4 5.948221+4 1.531087-4 5.398429+4 1.603245-4 4.934468+4 1.678804-4 4.541958+4 1.760000-4 4.200460+4 1.850000-4 3.894580+4 1.950000-4 3.620660+4 2.080000-4 3.337960+4 2.238721-4 3.068351+4 2.426610-4 2.820133+4 2.691535-4 2.552552+4 4.000000-4 1.793692+4 4.731513-4 1.533642+4 5.432503-4 1.337850+4 6.237348-4 1.158096+4 7.000000-4 1.019932+4 7.943282-4 8.813623+3 9.000000-4 7.573840+3 1.023293-3 6.433425+3 1.161449-3 5.432176+3 1.318257-3 4.553446+3 1.500000-3 3.774100+3 1.698244-3 3.126262+3 1.883649-3 2.655209+3 2.137962-3 2.158343+3 2.426610-3 1.741313+3 2.754229-3 1.394434+3 3.126079-3 1.108348+3 3.548134-3 8.744452+2 4.027170-3 6.849196+2 4.570882-3 5.327029+2 5.188000-3 4.113988+2 5.888437-3 3.154969+2 6.683439-3 2.403266+2 7.585776-3 1.817807+2 8.609938-3 1.365065+2 9.772372-3 1.017469+2 1.109175-2 7.530386+1 1.273503-2 5.383117+1 1.479108-2 3.714534+1 1.717908-2 2.551525+1 1.949845-2 1.844862+1 2.162719-2 1.405020+1 2.454709-2 9.996002+0 2.818383-2 6.841327+0 3.349654-2 4.221071+0 3.935501-2 2.668208+0 4.677351-2 1.619133+0 5.495409-2 1.008584+0 6.760830-2 5.442319-1 8.709636-2 2.538069-1 1.640590-1 3.712286-2 2.018366-1 1.992241-2 2.398833-1 1.193602-2 2.786121-1 7.708152-3 3.198895-1 5.183103-3 3.630781-1 3.626428-3 4.120975-1 2.555513-3 4.623810-1 1.871945-3 5.128614-1 1.423667-3 5.688529-1 1.089920-3 6.382635-1 8.161358-4 7.079458-1 6.334822-4 7.852356-1 4.952057-4 8.709636-1 3.889007-4 9.332543-1 3.330310-4 1.000000+0 2.871500-4 1.096478+0 2.379979-4 1.202264+0 1.987073-4 1.318257+0 1.670530-4 1.479108+0 1.355461-4 1.717908+0 1.039224-4 1.949845+0 8.361323-5 2.213095+0 6.780535-5 2.540973+0 5.437345-5 2.917427+0 4.393575-5 3.388442+0 3.515614-5 3.935501+0 2.834798-5 4.623810+0 2.266157-5 5.495409+0 1.796762-5 6.531306+0 1.435139-5 7.852356+0 1.137934-5 9.660509+0 8.838060-6 1.202264+1 6.820976-6 1.548817+1 5.097175-6 2.065380+1 3.694563-6 2.851018+1 2.600867-6 3.981072+1 1.822293-6 6.165950+1 1.153274-6 1.023293+2 6.845558-7 2.041738+2 3.393051-7 4.073803+2 1.690455-7 3.235937+3 2.117526-8 1.000000+5 6.84800-10 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.558000-5 3.558000-5 1.000000+5 3.558000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.558000-5 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.954000-5 2.333600+7 2.967000-5 2.257644+7 3.000000-5 2.092136+7 3.040000-5 1.920396+7 3.090295-5 1.738650+7 3.150000-5 1.560368+7 3.210000-5 1.411340+7 3.273407-5 1.278866+7 3.350000-5 1.144404+7 3.450000-5 1.000344+7 3.570000-5 8.615680+6 3.730000-5 7.167760+6 3.935501-5 5.763843+6 4.365158-5 3.820560+6 5.011872-5 2.224097+6 5.500000-5 1.554808+6 5.900000-5 1.194088+6 6.300000-5 9.398160+5 6.683439-5 7.630527+5 7.000000-5 6.518360+5 7.328245-5 5.607861+5 7.673615-5 4.850817+5 8.035261-5 4.224495+5 8.413951-5 3.706032+5 8.800000-5 3.286852+5 9.150000-5 2.980064+5 9.549926-5 2.694859+5 9.950000-5 2.463640+5 1.040000-4 2.252848+5 1.083927-4 2.085345+5 1.135011-4 1.926194+5 1.190000-4 1.786896+5 1.260000-4 1.644528+5 1.333521-4 1.525122+5 1.428894-4 1.401958+5 1.548817-4 1.281542+5 1.698244-4 1.165885+5 2.540973-4 7.922197+4 3.000000-4 6.709720+4 3.507519-4 5.693714+4 4.027170-4 4.886949+4 4.628000-4 4.159519+4 5.248075-4 3.572227+4 6.025596-4 3.000724+4 6.839116-4 2.540965+4 7.852356-4 2.103714+4 8.912509-4 1.757476+4 1.023293-3 1.434237+4 1.161449-3 1.182066+4 1.318257-3 9.675959+3 1.500000-3 7.833080+3 1.698244-3 6.349904+3 1.927525-3 5.090205+3 2.187762-3 4.051287+3 2.483133-3 3.201503+3 2.818383-3 2.512158+3 3.198895-3 1.957443+3 3.630781-3 1.514589+3 4.120975-3 1.163802+3 4.677351-3 8.880859+2 5.308844-3 6.729667+2 6.025596-3 5.064384+2 6.839116-3 3.785625+2 7.762471-3 2.810072+2 8.810489-3 2.071307+2 1.000000-2 1.515768+2 1.135011-2 1.101266+2 1.288250-2 7.944409+1 1.462177-2 5.690839+1 1.659587-2 4.048792+1 1.905461-2 2.771062+1 2.187762-2 1.881838+1 2.511886-2 1.268387+1 2.884032-2 8.487261+0 3.311311-2 5.639085+0 3.845918-2 3.594261+0 4.466836-2 2.273989+0 5.248075-2 1.378702+0 6.237348-2 8.005076-1 7.585776-2 4.285405-1 9.885531-2 1.823765-1 1.640590-1 3.534415-2 1.995262-1 1.886699-2 2.344229-1 1.132859-2 2.691535-1 7.367532-3 3.054921-1 5.001403-3 3.427678-1 3.541119-3 3.845918-1 2.525651-3 4.265795-1 1.876359-3 4.731513-1 1.404022-3 5.188000-1 1.092083-3 5.754399-1 8.295207-4 6.382635-1 6.351750-4 6.998420-1 5.044534-4 7.673615-1 4.032788-4 8.609938-1 3.068801-4 9.225714-1 2.620777-4 9.885531-1 2.254246-4 1.071519+0 1.908589-4 1.174898+0 1.590071-4 1.288250+0 1.334642-4 1.428894+0 1.104558-4 1.698244+0 8.125113-5 1.927525+0 6.532174-5 2.187762+0 5.293480-5 2.511886+0 4.242050-5 2.884032+0 3.425615-5 3.311311+0 2.786111-5 3.845918+0 2.244017-5 4.518559+0 1.791945-5 5.370318+0 1.419352-5 6.382635+0 1.132503-5 7.673615+0 8.971634-6 9.440609+0 6.961971-6 1.174898+1 5.368657-6 1.513561+1 4.008777-6 2.000000+1 2.933200-6 2.691535+1 2.120360-6 3.758374+1 1.483827-6 5.754399+1 9.493248-7 9.440609+1 5.695977-7 1.819701+2 2.920902-7 3.630781+2 1.454185-7 1.445440+3 3.635913-8 1.000000+5 5.24680-10 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.954000-5 2.954000-5 1.000000+5 2.954000-5 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.954000-5 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.550000-6 4.669757+6 6.309573-6 2.728356+6 7.000000-6 1.752446+6 7.762471-6 1.118744+6 8.511380-6 7.450219+5 9.440609-6 4.678240+5 1.047129-5 2.915109+5 1.270000-5 1.199736+5 1.350000-5 9.107500+4 1.420000-5 7.296880+4 1.480000-5 6.125320+4 1.531087-5 5.336542+4 1.584893-5 4.667836+4 1.630000-5 4.211040+4 1.678804-5 3.802731+4 1.730000-5 3.452900+4 1.778279-5 3.183243+4 1.830000-5 2.947380+4 1.870000-5 2.796260+4 1.920700-5 2.637307+4 1.972423-5 2.506484+4 2.020000-5 2.409220+4 2.070000-5 2.326760+4 2.130000-5 2.249780+4 2.190400-5 2.191832+4 2.250000-5 2.149980+4 2.330000-5 2.112400+4 2.420000-5 2.089120+4 2.511886-5 2.079994+4 2.630268-5 2.082573+4 2.818383-5 2.104783+4 3.427678-5 2.201247+4 3.715352-5 2.227271+4 4.000000-5 2.234840+4 4.315191-5 2.224658+4 4.623810-5 2.199701+4 4.954502-5 2.158858+4 5.308844-5 2.102793+4 5.688529-5 2.033329+4 6.095369-5 1.953816+4 6.531306-5 1.865595+4 7.079458-5 1.754851+4 7.800000-5 1.617024+4 8.609938-5 1.476293+4 9.800000-5 1.298748+4 1.122018-4 1.127269+4 1.364583-4 9.112804+3 1.737801-4 6.967707+3 2.000000-4 5.920500+3 2.238721-4 5.137903+3 2.540973-4 4.346197+3 3.054921-4 3.373705+3 3.981072-4 2.327930+3 4.897788-4 1.737895+3 5.821032-4 1.348768+3 8.000000-4 8.402220+2 9.660509-4 6.281929+2 1.216186-3 4.371141+2 1.479108-3 3.189611+2 1.717908-3 2.492269+2 2.454709-3 1.353133+2 3.000000-3 9.532606+1 3.630781-3 6.761125+1 4.415704-3 4.715790+1 5.559043-3 3.058616+1 6.760830-3 2.101493+1 8.222426-3 1.433285+1 1.000000-2 9.701891+0 1.202264-2 6.673638+0 1.445440-2 4.557094+0 1.737801-2 3.087831+0 2.089296-2 2.075840+0 2.483133-2 1.420166+0 2.951209-2 9.645540-1 3.507519-2 6.501139-1 4.168694-2 4.348849-1 4.954502-2 2.887317-1 5.888437-2 1.901683-1 7.079458-2 1.208687-1 8.413951-2 7.846652-2 1.035142-1 4.630888-2 1.333521-1 2.409569-2 1.640590-1 1.403876-2 2.426610-1 5.043466-3 3.000000-1 2.915300-3 3.548134-1 1.901701-3 4.120975-1 1.308667-3 4.731513-1 9.340171-4 5.370318-1 6.906440-4 6.025596-1 5.284566-4 6.760830-1 4.073332-4 7.585776-1 3.162637-4 8.511380-1 2.473859-4 9.440609-1 1.996909-4 1.059254+0 1.586745-4 1.216186+0 1.211986-4 1.364583+0 9.745984-5 1.531087+0 7.889309-5 1.717908+0 6.432660-5 1.949845+0 5.178118-5 2.213095+0 4.199308-5 2.540973+0 3.367413-5 2.917427+0 2.720987-5 3.388442+0 2.177324-5 3.935501+0 1.755721-5 4.623810+0 1.403493-5 5.495409+0 1.112805-5 6.531306+0 8.888065-6 7.852356+0 7.047667-6 9.660509+0 5.473617-6 1.202264+1 4.224395-6 1.548817+1 3.156828-6 2.065380+1 2.288175-6 2.818383+1 1.630952-6 3.890451+1 1.156398-6 6.000000+1 7.347500-7 1.000000+2 4.340700-7 1.949845+2 2.201638-7 3.890451+2 1.096597-7 1.548817+3 2.742642-8 1.000000+5 4.24120-10 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.550000-6 5.550000-6 1.000000+5 5.550000-6 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.550000-6 0.0 1.000000+5 1.000000+5 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.780770-7 1.026600+0 1.205160-6 1.027100+0 1.639650-6 1.027500+0 2.053640-6 1.028100+0 2.796000-6 1.028750+0 3.780770-6 1.029500+0 5.174080-6 1.030100+0 6.507040-6 1.031000+0 8.903850-6 1.032000+0 1.218270-5 1.033200+0 1.706590-5 1.034000+0 2.095000-5 1.035300+0 2.843660-5 1.036640+0 3.780770-5 1.038200+0 5.102270-5 1.039700+0 6.628870-5 1.041500+0 8.819630-5 1.043800+0 1.224190-4 1.046400+0 1.703240-4 1.048300+0 2.120570-4 1.051200+0 2.876510-4 1.054080+0 3.780770-4 1.057700+0 5.153440-4 1.061100+0 6.703360-4 1.065100+0 8.874540-4 1.070400+0 1.238100-3 1.076200+0 1.711050-3 1.080600+0 2.136830-3 1.087100+0 2.879000-3 1.093710+0 3.780770-3 1.102600+0 5.241770-3 1.110700+0 6.835940-3 1.120600+0 9.143790-3 1.133300+0 1.271280-2 1.147500+0 1.755150-2 1.158200+0 2.181200-2 1.174100+0 2.915470-2 1.190110+0 3.780770-2 1.205100+0 4.707670-2 1.227500+0 6.302360-2 1.250000+0 8.140000-2 1.265600+0 9.536440-2 1.294900+0 1.239830-1 1.331800+0 1.637530-1 1.362600+0 1.994960-1 1.397000+0 2.415580-1 1.433800+0 2.886110-1 1.500000+0 3.780000-1 1.562500+0 4.682160-1 1.617200+0 5.513840-1 1.712900+0 7.044600-1 1.838500+0 9.155100-1 1.946200+0 1.100620+0 2.000000+0 1.193000+0 2.044000+0 1.268000+0 2.163500+0 1.470150+0 2.372600+0 1.817100+0 2.647100+0 2.255530+0 3.000000+0 2.789000+0 3.500000+0 3.489840+0 4.000000+0 4.133000+0 4.750000+0 5.002330+0 5.000000+0 5.270000+0 6.000000+0 6.248000+0 7.000000+0 7.112000+0 8.000000+0 7.887000+0 9.000000+0 8.592000+0 1.000000+1 9.239000+0 1.100000+1 9.837000+0 1.200000+1 1.039000+1 1.300000+1 1.091000+1 1.400000+1 1.140000+1 1.500000+1 1.184000+1 1.600000+1 1.226000+1 1.800000+1 1.302000+1 2.000000+1 1.369000+1 2.200000+1 1.430000+1 2.400000+1 1.486000+1 2.600000+1 1.536000+1 2.800000+1 1.583000+1 3.000000+1 1.626000+1 4.000000+1 1.801000+1 5.000000+1 1.931000+1 6.000000+1 2.032000+1 8.000000+1 2.181000+1 1.000000+2 2.286000+1 1.500000+2 2.452000+1 2.000000+2 2.550000+1 3.000000+2 2.665000+1 4.000000+2 2.730000+1 5.000000+2 2.773000+1 6.000000+2 2.804000+1 8.000000+2 2.845000+1 1.000000+3 2.871000+1 1.500000+3 2.909000+1 2.000000+3 2.930000+1 3.000000+3 2.952000+1 4.000000+3 2.964000+1 5.000000+3 2.972000+1 6.000000+3 2.977000+1 8.000000+3 2.984000+1 1.000000+4 2.988000+1 1.500000+4 2.995000+1 2.000000+4 2.998000+1 3.000000+4 3.001000+1 4.000000+4 3.003000+1 5.000000+4 3.004000+1 6.000000+4 3.005000+1 8.000000+4 3.006000+1 1.000000+5 3.006000+1 1 69000 7 8 1.689340+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 6.911400-7 2.094700+0 1.216770-6 2.099900+0 1.618750-6 2.106600+0 2.251810-6 2.114000+0 3.115660-6 2.119500+0 3.878980-6 2.127900+0 5.260630-6 2.136250+0 6.911400-6 2.147000+0 9.476020-6 2.156900+0 1.230820-5 2.169000+0 1.642610-5 2.184500+0 2.283280-5 2.201800+0 3.158980-5 2.214800+0 3.935850-5 2.234200+0 5.294410-5 2.253680+0 6.911400-5 2.281500+0 9.680630-5 2.307000+0 1.271550-4 2.338200+0 1.709700-4 2.377400+0 2.367730-4 2.410200+0 3.011350-4 2.446800+0 3.830610-4 2.485900+0 4.822950-4 2.532900+0 6.172360-4 2.556430+0 6.911400-4 2.611900+0 8.812870-4 2.660400+0 1.065440-3 2.745300+0 1.426030-3 2.809000+0 1.727020-3 2.904500+0 2.224830-3 3.000000+0 2.777000-3 3.125000+0 3.580580-3 3.234400+0 4.356380-3 3.425800+0 5.865350-3 3.569300+0 7.111260-3 3.784700+0 9.139660-3 4.000000+0 1.132000-2 4.250000+0 1.398580-2 4.625000+0 1.817560-2 5.000000+0 2.253000-2 5.500000+0 2.850240-2 6.000000+0 3.455000-2 6.750000+0 4.354260-2 7.000000+0 4.650000-2 8.000000+0 5.806000-2 9.000000+0 6.910000-2 1.000000+1 7.958000-2 1.100000+1 8.948000-2 1.200000+1 9.881000-2 1.300000+1 1.076000-1 1.400000+1 1.159000-1 1.500000+1 1.238000-1 1.600000+1 1.313000-1 1.800000+1 1.451000-1 2.000000+1 1.577000-1 2.200000+1 1.692000-1 2.400000+1 1.797000-1 2.600000+1 1.894000-1 2.800000+1 1.984000-1 3.000000+1 2.067000-1 4.000000+1 2.411000-1 5.000000+1 2.670000-1 6.000000+1 2.874000-1 8.000000+1 3.179000-1 1.000000+2 3.399000-1 1.500000+2 3.761000-1 2.000000+2 3.986000-1 3.000000+2 4.259000-1 4.000000+2 4.421000-1 5.000000+2 4.532000-1 6.000000+2 4.613000-1 8.000000+2 4.725000-1 1.000000+3 4.799000-1 1.500000+3 4.909000-1 2.000000+3 4.971000-1 3.000000+3 5.040000-1 4.000000+3 5.080000-1 5.000000+3 5.105000-1 6.000000+3 5.122000-1 8.000000+3 5.145000-1 1.000000+4 5.159000-1 1.500000+4 5.179000-1 2.000000+4 5.191000-1 3.000000+4 5.202000-1 4.000000+4 5.209000-1 5.000000+4 5.213000-1 6.000000+4 5.216000-1 8.000000+4 5.218000-1 1.000000+5 5.221000-1 1 69000 7 8 1.689340+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 69000 7 9 1.689340+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 6.900000+1 1.000000+5 6.900000+1 5.000000+5 6.896700+1 1.000000+6 6.892200+1 1.375000+6 6.887990+1 1.500000+6 6.886000+1 1.875000+6 6.878360+1 2.000000+6 6.875400+1 2.375000+6 6.865580+1 2.500000+6 6.862000+1 2.875000+6 6.850270+1 3.000000+6 6.846000+1 3.437500+6 6.829510+1 3.812500+6 6.814370+1 4.000000+6 6.807100+1 4.437500+6 6.788300+1 4.812500+6 6.770870+1 5.000000+6 6.762400+1 5.500000+6 6.736630+1 5.875000+6 6.716140+1 6.437500+6 6.684260+1 6.500000+6 6.680490+1 7.000000+6 6.651600+1 7.500000+6 6.621750+1 8.250000+6 6.577130+1 9.000000+6 6.531300+1 1.000000+7 6.468600+1 1.250000+7 6.311500+1 1.500000+7 6.148700+1 1.750000+7 5.985100+1 2.000000+7 5.816100+1 2.250000+7 5.642050+1 2.500000+7 5.466800+1 2.875000+7 5.206760+1 3.000000+7 5.122100+1 3.437500+7 4.832730+1 3.500000+7 4.792990+1 3.812500+7 4.599240+1 4.000000+7 4.488600+1 4.500000+7 4.210580+1 5.000000+7 3.955900+1 5.500000+7 3.721200+1 5.750000+7 3.610110+1 6.000000+7 3.503300+1 6.500000+7 3.300050+1 7.000000+7 3.110700+1 7.750000+7 2.851690+1 8.000000+7 2.772200+1 9.000000+7 2.486800+1 1.000000+8 2.251300+1 1.125000+8 2.017240+1 1.187500+8 1.921150+1 1.250000+8 1.837200+1 1.375000+8 1.698830+1 1.437500+8 1.640870+1 1.500000+8 1.588300+1 1.625000+8 1.495060+1 1.671900+8 1.462320+1 1.789100+8 1.382130+1 1.812500+8 1.366120+1 1.894500+8 1.309640+1 1.973600+8 1.254100+1 2.000000+8 1.235400+1 2.062500+8 1.190590+1 2.250000+8 1.063600+1 2.390600+8 9.838120+0 2.500000+8 9.331400+0 2.781300+8 8.335030+0 2.859400+8 8.059560+0 2.875000+8 8.002910+0 2.953100+8 7.704720+0 3.000000+8 7.513800+0 3.062500+8 7.246450+0 3.335900+8 6.150590+0 3.418000+8 5.898410+0 3.500000+8 5.696200+0 3.589800+8 5.532400+0 3.712900+8 5.377000+0 4.000000+8 5.097200+0 4.125000+8 4.957770+0 4.234400+8 4.823160+0 4.425800+8 4.575320+0 5.000000+8 3.899100+0 5.625000+8 3.372980+0 5.875000+8 3.176580+0 6.000000+8 3.076200+0 6.250000+8 2.871640+0 6.718800+8 2.533490+0 6.906300+8 2.426880+0 7.000000+8 2.380800+0 7.250000+8 2.279980+0 7.718800+8 2.125660+0 7.906300+8 2.061970+0 8.000000+8 2.028000+0 8.125000+8 1.979750+0 1.000000+9 1.322300+0 1.030800+9 1.263930+0 1.060100+9 1.220470+0 1.087600+9 1.187850+0 1.125800+9 1.152550+0 1.172600+9 1.120660+0 1.213500+9 1.099620+0 1.392600+9 1.032080+0 1.446300+9 1.009480+0 1.500000+9 9.830000-1 1.560500+9 9.478560-1 1.615500+9 9.126310-1 1.686000+9 8.649780-1 1.764500+9 8.110420-1 1.823400+9 7.711810-1 1.911700+9 7.138240-1 2.000000+9 6.604300-1 2.139200+9 5.852120-1 2.272600+9 5.224360-1 2.443000+9 4.535340-1 2.602800+9 3.986410-1 2.825100+9 3.350560-1 2.961100+9 3.022410-1 3.215900+9 2.507140-1 3.438900+9 2.142590-1 3.500000+9 2.054210-1 3.719500+9 1.771960-1 3.954200+9 1.521350-1 4.327700+9 1.206680-1 4.663900+9 9.899320-2 5.000000+9 8.195700-2 5.539100+9 6.158890-2 5.990200+9 4.924550-2 6.708000+9 3.541340-2 8.000000+9 2.099800-2 1.00000+10 1.076900-2 1.27030+10 5.277520-3 1.55700+10 2.886970-3 2.15420+10 1.109960-3 2.64460+10 6.091190-4 3.56400+10 2.557290-4 5.07250+10 9.227870-5 6.83230+10 3.926600-5 1.00000+11 1.325600-5 1.34280+11 5.750440-6 2.20600+11 1.421330-6 4.19930+11 2.356670-7 1.03480+12 1.949480-8 3.24440+12 8.57034-10 1.00000+14 8.05400-14 2.05350+15 2.18161-17 1.00000+17 5.27270-22 1 69000 7 0 1.689340+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.80000-12 1.000000+2 9.80000-10 1.000000+3 9.800000-8 1.000000+4 9.800000-6 1.000000+5 9.800000-4 5.000000+5 2.450000-2 1.000000+6 9.800000-2 1.375000+6 1.830690-1 1.500000+6 2.169000-1 1.875000+6 3.336390-1 2.000000+6 3.774000-1 2.375000+6 5.218390-1 2.500000+6 5.741000-1 2.875000+6 7.415660-1 3.000000+6 8.007000-1 3.437500+6 1.018330+0 3.812500+6 1.215820+0 4.000000+6 1.317600+0 4.437500+6 1.560240+0 4.812500+6 1.772140+0 5.000000+6 1.879000+0 5.500000+6 2.163830+0 5.875000+6 2.376690+0 6.437500+6 2.692610+0 6.500000+6 2.727290+0 7.000000+6 3.002500+0 7.500000+6 3.271610+0 8.250000+6 3.665800+0 9.000000+6 4.050700+0 1.000000+7 4.555000+0 1.250000+7 5.819200+0 1.500000+7 7.122000+0 1.750000+7 8.445000+0 2.000000+7 9.751000+0 2.250000+7 1.101860+1 2.500000+7 1.224500+1 2.875000+7 1.401020+1 3.000000+7 1.458100+1 3.437500+7 1.650660+1 3.500000+7 1.677190+1 3.812500+7 1.806390+1 4.000000+7 1.880900+1 4.500000+7 2.068260+1 5.000000+7 2.241200+1 5.500000+7 2.401900+1 5.750000+7 2.478570+1 6.000000+7 2.553200+1 6.500000+7 2.697080+1 7.000000+7 2.835200+1 7.750000+7 3.031950+1 8.000000+7 3.095400+1 9.000000+7 3.336900+1 1.000000+8 3.562000+1 1.125000+8 3.823390+1 1.187500+8 3.945970+1 1.250000+8 4.063700+1 1.375000+8 4.283100+1 1.437500+8 4.384480+1 1.500000+8 4.480800+1 1.625000+8 4.656360+1 1.671900+8 4.716980+1 1.789100+8 4.857540+1 1.812500+8 4.884020+1 1.894500+8 4.971350+1 1.973600+8 5.049900+1 2.000000+8 5.075200+1 2.062500+8 5.131500+1 2.250000+8 5.284800+1 2.390600+8 5.384810+1 2.500000+8 5.456500+1 2.781300+8 5.617170+1 2.859400+8 5.657540+1 2.875000+8 5.665150+1 2.953100+8 5.702770+1 3.000000+8 5.725000+1 3.062500+8 5.753060+1 3.335900+8 5.866560+1 3.418000+8 5.897490+1 3.500000+8 5.927800+1 3.589800+8 5.958760+1 3.712900+8 6.000220+1 4.000000+8 6.088700+1 4.125000+8 6.123640+1 4.234400+8 6.153520+1 4.425800+8 6.202350+1 5.000000+8 6.328800+1 5.625000+8 6.437300+1 5.875000+8 6.473740+1 6.000000+8 6.490500+1 6.250000+8 6.521330+1 6.718800+8 6.570450+1 6.906300+8 6.587590+1 7.000000+8 6.596000+1 7.250000+8 6.615410+1 7.718800+8 6.647440+1 7.906300+8 6.659010+1 8.000000+8 6.664700+1 8.125000+8 6.671190+1 1.000000+9 6.745700+1 1.030800+9 6.754210+1 1.060100+9 6.762080+1 1.087600+9 6.769280+1 1.125800+9 6.778970+1 1.172600+9 6.789040+1 1.213500+9 6.797530+1 1.392600+9 6.826750+1 1.446300+9 6.833750+1 1.500000+9 6.840500+1 1.560500+9 6.846480+1 1.615500+9 6.851720+1 1.686000+9 6.858180+1 1.764500+9 6.864060+1 1.823400+9 6.867760+1 1.911700+9 6.873100+1 2.000000+9 6.878200+1 2.139200+9 6.883790+1 2.272600+9 6.887860+1 2.443000+9 6.892040+1 2.602800+9 6.895130+1 2.825100+9 6.897970+1 2.961100+9 6.898840+1 3.215900+9 6.900120+1 3.438900+9 6.900870+1 3.500000+9 6.900820+1 3.719500+9 6.900670+1 3.954200+9 6.900510+1 4.327700+9 6.900270+1 4.663900+9 6.900080+1 5.000000+9 6.899900+1 5.539100+9 6.899920+1 5.990200+9 6.899940+1 6.708000+9 6.899960+1 8.000000+9 6.900000+1 1.00000+10 6.900000+1 1.27030+10 6.900000+1 1.55700+10 6.900000+1 2.15420+10 6.900000+1 2.64460+10 6.900000+1 3.56400+10 6.900000+1 5.07250+10 6.900000+1 6.83230+10 6.900000+1 1.00000+11 6.900000+1 1.34280+11 6.900000+1 2.20600+11 6.900000+1 4.19930+11 6.900000+1 1.03480+12 6.900000+1 3.24440+12 6.900000+1 1.00000+14 6.900000+1 2.05350+15 6.900000+1 1.00000+17 6.900000+1 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.291843-6 0.0 1.295023-6 2.809214-7 1.298202-6 5.558659-7 1.301382-6 1.015335-6 1.304562-6 1.711994-6 1.307741-6 2.664704-6 1.310921-6 3.828685-6 1.314101-6 5.078135-6 1.317281-6 6.217456-6 1.320460-6 7.027083-6 1.323640-6 7.331476-6 1.326820-6 7.060926-6 1.329999-6 6.277488-6 1.333179-6 5.151860-6 1.339539-6 2.729495-6 1.342718-6 1.762067-6 1.345898-6 1.050066-6 1.349078-6 5.776498-7 1.352257-6 2.933370-7 1.355437-6 0.0 2.334831-6 0.0 2.340578-6 5.800066-7 2.346325-6 1.147673-6 2.352072-6 2.096319-6 2.357819-6 3.534681-6 2.363566-6 5.501702-6 2.369312-6 7.904925-6 2.375059-6 1.048461-5 2.380806-6 1.283692-5 2.386553-6 1.450852-5 2.392300-6 1.513699-5 2.398047-6 1.457840-5 2.403794-6 1.296087-5 2.409541-6 1.063683-5 2.421034-6 5.635473-6 2.426781-6 3.638065-6 2.432528-6 2.168027-6 2.438275-6 1.192649-6 2.446895-6 3.031763-7 2.449769-6 0.0 2.461767-6 0.0 2.470856-6 3.052374+0 2.473885-6 4.056925+0 2.479945-6 7.410306+0 2.486004-6 1.249479+1 2.492821-6 2.050770+1 2.503330-6 3.577720+1 2.510999-6 4.611450+1 2.516857-6 5.148990+1 2.523002-6 5.329916+1 2.529203-6 5.079543+1 2.535723-6 4.413200+1 2.545945-6 2.946891+1 2.552657-6 1.992091+1 2.559095-6 1.253619+1 2.564775-6 7.663787+0 2.570835-6 4.215912+0 2.579545-6 1.205488+0 2.582953-6 0.0 2.604064-6 0.0 2.610474-6 1.432134-6 2.616883-6 2.833798-6 2.623293-6 5.176163-6 2.629703-6 8.727722-6 2.636112-6 1.358463-5 2.652014-6 2.867835-5 2.665069-6 8.294409+0 2.671597-6 1.515038+1 2.678532-6 2.643208+1 2.685224-6 4.130889+1 2.704643-6 9.352737+1 2.711819-6 1.055887+2 2.717762-6 1.091058+2 2.724417-6 1.042891+2 2.731518-6 9.065768+1 2.741794-6 6.283274+1 2.749928-6 4.072825+1 2.756456-6 2.629274+1 2.762983-6 1.566859+1 2.769511-6 8.619420+0 2.779302-6 2.191092+0 2.782566-6 0.0 3.492106-6 0.0 3.500702-6 4.09773-15 3.509297-6 8.10828-15 3.517892-6 1.48104-14 3.526488-6 2.49724-14 3.535083-6 3.88694-14 3.543678-6 5.58481-14 3.552274-6 7.40735-14 3.560869-6 9.06925-14 3.569465-6 1.02502-13 3.578060-6 1.06942-13 3.586655-6 1.02996-13 3.595251-6 9.15682-14 3.603846-6 7.51489-14 3.621037-6 3.98145-14 3.629632-6 2.57028-14 3.638228-6 1.53171-14 3.646823-6 8.42604-15 3.655418-6 4.27884-15 3.664014-6 0.0 4.075712-6 0.0 4.090759-6 9.741162-2 4.095775-6 1.294703-1 4.105807-6 2.364881-1 4.116466-6 4.125887-1 4.125871-6 6.206532-1 4.134115-6 8.508424-1 4.156929-6 2.067688+0 4.169227-6 2.860695+0 4.183423-6 3.942125+0 4.215122-6 6.399333+0 4.228491-6 6.868008+0 4.238669-6 6.769908+0 4.248290-6 6.287921+0 4.259940-6 5.256031+0 4.285219-6 2.550284+0 4.287730-6 2.305438+0 4.296619-6 1.557923+0 4.306794-6 9.284169-1 4.316969-6 5.107342-1 4.332880-6 1.132982-1 4.337319-6 8.479000-6 4.338619-6 7.644318-6 4.344141-6 5.302835-6 4.359500-6 1.348002-6 4.364619-6 0.0 4.649811-6 0.0 4.666978-6 2.186905-2 4.672701-6 2.906626-2 4.675089-6 3.406955-2 4.684146-6 1.066414-1 4.695590-6 2.096430-1 4.698103-6 2.351328-1 4.709610-6 3.990398-1 4.721117-6 6.300775-1 4.737149-6 1.056623+0 4.758786-6 1.681657+0 4.768674-6 1.910541+0 4.780213-6 2.065899+0 4.793194-6 2.054041+0 4.804924-6 1.888175+0 4.819238-6 1.531649+0 4.843542-6 8.236775-1 4.847696-6 7.091761-1 4.859203-6 4.528117-1 4.870710-6 2.651871-1 4.878709-6 1.749361-1 4.882217-6 1.399804-1 4.901097-6 2.557868-2 4.905231-6 1.732385-6 4.908478-6 1.113876-6 4.918677-6 0.0 4.920840-6 0.0 4.934074-6 6.220669-3 4.946219-6 4.127205-2 4.958363-6 7.957614-2 4.970508-6 1.418734-1 4.982652-6 2.338715-1 4.994797-6 3.564332-1 5.019086-6 6.540574-1 5.031231-6 7.873800-1 5.043375-6 8.760744-1 5.055520-6 9.008512-1 5.067665-6 8.560295-1 5.082791-6 7.254580-1 5.104098-6 4.984755-1 5.116243-6 3.891834-1 5.128388-6 3.210697-1 5.140595-6 2.996521-1 5.153094-6 3.200124-1 5.177430-6 4.137900-1 5.191868-6 4.820974-1 5.204584-6 5.122618-1 5.217301-6 5.139774-1 5.265585-6 4.334341-1 5.350822-6 4.206755-1 5.411283-6 4.042719-1 5.458423-6 3.808752-1 5.487681-6 3.612326-1 5.535510-6 3.568975-1 5.584103-6 3.620545-1 6.069018-6 2.791688-1 6.573774-6 2.156695-1 6.605172-6 2.123454-1 6.637858-6 1.115498+0 6.653945-6 1.849141+0 6.671219-6 3.070027+0 6.687428-6 4.628221+0 6.735742-6 1.029394+1 6.754156-6 1.164104+1 6.769488-6 1.200405+1 6.785632-6 1.148538+1 6.803447-6 9.987644+0 6.829226-6 6.947108+0 6.849632-6 4.545387+0 6.866007-6 2.986259+0 6.881555-6 1.883775+0 6.897812-6 1.118435+0 6.926530-6 2.928579-1 6.930328-6 1.815079-1 7.463459-6 1.418539-1 7.627792-6 1.318779-1 7.665928-6 8.544433-1 7.684703-6 1.446823+0 7.704064-6 2.379160+0 7.722699-6 3.597181+0 7.778861-6 8.073874+0 7.799407-6 9.108529+0 7.817263-6 9.408663+0 7.835488-6 9.033241+0 7.856463-6 7.841885+0 7.893920-6 4.830960+0 7.909414-6 3.601206+0 7.928189-6 2.393274+0 7.946964-6 1.518776+0 7.965739-6 9.657794-1 8.001017-6 4.177981-1 8.003288-6 3.840104-1 8.052515-6 6.367077-1 8.071953-6 7.043967-1 8.091390-6 7.293301-1 8.110827-6 7.055394-1 8.130265-6 6.382802-1 8.160949-6 4.803437-1 8.188577-6 3.847864-1 8.201123-6 3.536418-1 8.208015-6 3.446277-1 8.221210-6 3.422785-1 8.227452-6 3.506341-1 8.241297-6 3.838680-1 8.256325-6 4.523870-1 8.276046-6 5.691023-1 8.293454-6 6.894186-1 8.316520-6 8.666811-1 8.341733-6 1.008428+0 8.361820-6 1.047116+0 8.381907-6 1.011255+0 8.401994-6 9.088922-1 8.462256-6 4.465432-1 8.482343-6 3.203725-1 8.502430-6 2.273213-1 8.522517-6 1.653352-1 8.562691-6 8.897296-2 8.689011-6 8.453774-2 8.731785-6 1.090670-1 8.753172-6 1.298167-1 8.774559-6 1.616766-1 8.795946-6 2.055288-1 8.860106-6 3.695522-1 8.881493-6 4.067166-1 8.902880-6 4.203075-1 8.924267-6 4.070335-1 8.950998-6 3.590703-1 8.993292-6 2.609949-1 9.009814-6 2.263760-1 9.031201-6 1.962431-1 9.052904-6 1.835977-1 9.075187-6 1.874107-1 9.119752-6 2.202079-1 9.142035-6 2.423512-1 9.164317-6 2.553506-1 9.186600-6 2.599576-1 9.275730-6 2.355859-1 9.429126-6 2.295542-1 9.477600-6 2.737255-1 9.500654-6 3.092285-1 9.524630-6 3.642163-1 9.551977-6 4.536377-1 9.610398-6 6.782135-1 9.640380-6 7.532199-1 9.663539-6 7.677346-1 9.687511-6 7.362062-1 9.720633-6 6.304028-1 9.776400-6 4.093985-1 9.800629-6 3.339754-1 9.822703-6 2.835470-1 9.845854-6 2.490379-1 9.892129-6 2.070085-1 9.971172-6 2.068862-1 1.002026-5 2.224583-1 1.004480-5 2.358116-1 1.006934-5 2.565161-1 1.009389-5 2.851947-1 1.016751-5 3.935450-1 1.019206-5 4.183590-1 1.021660-5 4.275826-1 1.024114-5 4.209180-1 1.027957-5 3.832615-1 1.033931-5 3.131430-1 1.036386-5 2.973583-1 1.038840-5 2.934923-1 1.051359-5 3.270353-1 1.080153-5 3.046244-1 1.098319-5 2.702527-1 1.105693-5 2.732311-1 1.121223-5 2.920875-1 1.258925-5 2.683003-1 1.400000-5 2.629587-1 1.564742-5 2.763896-1 1.757924-5 3.133019-1 1.988750-5 3.840080-1 2.239515-5 4.919263-1 2.507859-5 6.453677-1 2.574570-5 6.887948-1 2.587258-5 2.455838+0 2.593626-5 3.923328+0 2.599994-5 6.147672+0 2.601488-5 6.856226+0 2.611584-5 2.382055+1 2.614294-5 2.849443+1 2.620697-5 4.448302+1 2.627602-5 6.835174+1 2.638644-5 1.182368+2 2.647602-5 1.614540+2 2.654793-5 1.884695+2 2.661532-5 2.021938+2 2.666168-5 2.036966+2 2.672511-5 1.920011+2 2.679218-5 1.662521+2 2.697561-5 7.321250+1 2.703939-5 4.741992+1 2.710343-5 2.887644+1 2.716779-5 1.669884+1 2.729552-5 2.419208+0 2.743266-5 3.496885+0 2.749888-5 3.851521+0 2.757068-5 3.998429+0 2.763854-5 4.532741+0 2.770641-5 4.843655+0 2.777427-5 5.460565+0 2.784213-5 6.615847+0 2.790999-5 8.459720+0 2.806517-5 1.441807+1 2.811358-5 1.636941+1 2.818992-5 1.866346+1 2.825778-5 1.957437+1 2.832634-5 1.938412+1 2.842459-5 1.756614+1 2.857299-5 1.407671+1 2.867323-5 1.277905+1 2.880168-5 1.230699+1 2.908495-5 1.208275+1 2.955643-5 1.077035+1 3.029950-5 9.563090+0 3.165161-5 8.081157+0 3.168872-5 8.049046+0 3.184472-5 1.622594+1 3.192272-5 2.303138+1 3.201084-5 3.523188+1 3.209097-5 5.030104+1 3.232349-5 1.021141+2 3.241188-5 1.135749+2 3.248694-5 1.159553+2 3.256528-5 1.100572+2 3.264709-5 9.622445+1 3.285869-5 4.801200+1 3.293669-5 3.354939+1 3.301468-5 2.290488+1 3.309268-5 1.586643+1 3.324868-5 7.387370+0 3.348901-5 7.778062+0 3.373630-5 8.787618+0 3.385994-5 9.687152+0 3.404040-5 1.170572+1 3.416235-5 1.328842+1 3.424315-5 1.405664+1 3.432783-5 1.447186+1 3.444666-5 1.427868+1 3.475121-5 1.250612+1 3.499745-5 1.193232+1 3.566826-5 1.136387+1 3.632331-5 1.039344+1 3.806404-5 9.164951+0 4.029035-5 8.180209+0 4.395956-5 7.260358+0 4.843533-5 6.741559+0 5.390783-5 6.612245+0 5.599743-5 6.727679+0 6.242152-5 7.083816+0 7.275758-5 8.140355+0 1.047129-4 1.186884+1 1.312457-4 1.442155+1 1.630553-4 1.644519+1 1.645695-4 1.674626+1 1.653628-4 1.887660+1 1.658406-4 2.107369+1 1.663287-4 2.444722+1 1.668599-4 2.936204+1 1.678242-4 3.865047+1 1.683083-4 4.124442+1 1.686459-4 4.173882+1 1.690912-4 4.019973+1 1.695720-4 3.642056+1 1.706281-4 2.592874+1 1.710838-4 2.238604+1 1.715303-4 1.997079+1 1.718483-4 1.880039+1 1.726994-4 1.835176+1 1.732436-4 2.007812+1 1.738246-4 2.296825+1 1.751691-4 3.206886+1 1.757671-4 3.461302+1 1.762078-4 3.493661+1 1.766695-4 3.375134+1 1.772207-4 3.072903+1 1.782410-4 2.414974+1 1.786311-4 2.213284+1 1.790391-4 2.058446+1 1.796095-4 1.932474+1 1.803642-4 1.835465+1 1.846810-4 1.961168+1 1.979500-4 2.086350+1 2.125814-4 2.056488+1 2.498921-4 1.902147+1 3.155828-4 1.846025+1 3.220906-4 1.999195+1 3.325964-4 1.948476+1 3.662532-4 1.939586+1 4.090135-4 1.915852+1 4.474785-4 1.883496+1 4.568191-4 1.909004+1 8.042824-4 1.387530+1 1.004717-3 1.153599+1 1.257969-3 9.326770+0 1.424878-3 8.223683+0 1.431895-3 8.911112+0 1.435400-3 9.510679+0 1.438907-3 1.044864+1 1.442942-3 1.202757+1 1.450546-3 1.609395+1 1.456475-3 1.961221+1 1.463562-3 2.261724+1 1.483632-3 2.671124+1 1.505050-3 3.324928+1 1.517082-3 3.342916+1 1.541922-3 3.265793+1 1.658918-3 3.188791+1 1.829377-3 2.934203+1 1.849084-3 3.053887+1 1.868719-3 3.242397+1 1.895491-3 3.206967+1 2.036071-3 2.910719+1 2.090262-3 2.977333+1 2.258582-3 2.708753+1 2.313998-3 2.709389+1 2.733859-3 2.172910+1 3.176591-3 1.765428+1 3.619414-3 1.461648+1 4.140007-3 1.200010+1 4.665600-3 1.002645+1 5.316173-3 8.218551+0 6.042964-3 6.737384+0 6.821032-3 5.570675+0 7.796955-3 4.504498+0 8.430486-3 3.987168+0 8.489854-3 4.139566+0 8.524562-3 4.470748+0 8.556533-3 5.053465+0 8.590641-3 6.001231+0 8.661285-3 8.352204+0 8.704817-3 9.358199+0 8.761154-3 9.892851+0 8.916929-3 9.807396+0 9.461529-3 9.000939+0 9.541292-3 9.395176+0 9.681681-3 1.116830+1 9.765562-3 1.153605+1 9.976375-3 1.144368+1 1.017080-2 1.237035+1 1.039621-2 1.218850+1 1.196440-2 9.793263+0 1.378655-2 7.801664+0 1.559931-2 6.380891+0 1.794346-2 5.062812+0 2.043196-2 4.072787+0 2.330184-2 3.257039+0 2.642800-2 2.624879+0 2.976426-2 2.135796+0 3.362246-2 1.726375+0 3.784797-2 1.401665+0 4.257234-2 1.137711+0 4.746185-2 9.378052-1 5.334267-2 7.607168-1 5.797769-2 6.577150-1 5.832607-2 6.732921-1 5.852917-2 7.156072-1 5.870609-2 7.962383-1 5.885119-2 9.079356-1 5.900860-2 1.085720+0 5.916116-2 1.317402+0 5.945734-2 1.889734+0 5.982714-2 2.597050+0 6.011864-2 2.961803+0 6.047298-2 3.150777+0 6.122578-2 3.162416+0 7.088765-2 2.500902+0 7.948230-2 2.076364+0 8.971221-2 1.696546+0 1.024399-1 1.353573+0 1.159696-1 1.094125+0 1.307223-1 8.889084-1 1.449316-1 7.431005-1 1.607702-1 6.199447-1 1.810435-1 5.040924-1 2.022001-1 4.157864-1 2.263624-1 3.419341-1 2.547499-1 2.794528-1 2.831914-1 2.337914-1 3.184971-1 1.923743-1 3.568618-1 1.601529-1 4.007297-1 1.335201-1 4.546036-1 1.103372-1 5.143396-1 9.223427-2 5.881026-1 7.665836-2 6.614382-1 6.575852-2 7.549021-1 5.585002-2 8.597556-1 4.806176-2 9.914025-1 4.129521-2 1.173413+0 3.435735-2 1.347258+0 2.946438-2 1.619761+0 2.400679-2 1.947381+0 1.956010-2 2.341267+0 1.593705-2 2.814822+0 1.298508-2 3.384160+0 1.057990-2 4.068655+0 8.620224-3 4.891600+0 7.023530-3 5.616308+0 6.023280-3 6.752287+0 4.907609-3 8.118035+0 3.998590-3 9.760024+0 3.257945-3 1.000000+1 6.709015-3 1 69000 7 0 1.689340+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.861879+1 1.983909-6-6.607647+1 2.267376-6-6.246668+1 2.380806-6-5.798193+1 2.426781-6-5.357161+1 2.449769-6-4.909384+1 2.461292-6-4.463252+1 2.488087-6-3.030338+1 2.494146-6-2.890304+1 2.499638-6-2.978378+1 2.504182-6-3.249316+1 2.508963-6-3.723142+1 2.516052-6-4.795409+1 2.527504-6-6.887003+1 2.530675-6-6.307040+1 2.537773-6-5.341833+1 2.543988-6-4.857503+1 2.551378-6-4.728414+1 2.559095-6-5.001383+1 2.591446-6-6.899894+1 2.636112-6-5.173069+1 2.648009-6-4.435051+1 2.652318-6-3.971948+1 2.655947-6-3.592898+1 2.664240-6-2.842043+1 2.673535-6-1.821424+1 2.678124-6-1.402878+1 2.679297-6-1.288814+1 2.680636-6-1.201262+1 2.685224-6-9.738576+0 2.686295-6-9.511671+0 2.687233-6-9.510658+0 2.688875-6-9.841599+0 2.690106-6-1.033325+1 2.692875-6-1.214744+1 2.695103-6-1.432192+1 2.698117-6-1.820193+1 2.700794-6-2.272549+1 2.703267-6-2.814028+1 2.709794-6-4.726363+1 2.715951-6-6.903586+1 2.717762-6-6.155281+1 2.725806-6-3.303588+1 2.731518-6-1.652929+1 2.732857-6-1.339037+1 2.735367-6-8.376457+0 2.736873-6-5.654500+0 2.737689-6-4.272963+0 2.739117-6-2.268951+0 2.740188-6-1.004053+0 2.741794-6 5.432664-1 2.742597-6 1.153693+0 2.743400-6 1.613636+0 2.745032-6 2.356026+0 2.746256-6 2.772498+0 2.748092-6 3.039104+0 2.749010-6 2.962929+0 2.753192-6 1.297478+0 2.754824-6 4.460042-1 2.755640-6-1.275092-1 2.756456-6-9.483788-1 2.757272-6-1.807515+0 2.760127-6-4.143932+0 2.761555-6-5.406948+0 2.762269-6-6.129427+0 2.762983-6-7.033864+0 2.771755-6-1.623116+1 2.780934-6-2.421461+1 2.784643-6-2.864429+1 2.791528-6-3.360602+1 2.802410-6-3.868566+1 2.821070-6-4.419335+1 2.851917-6-4.952428+1 2.909603-6-5.472225+1 3.032739-6-5.950071+1 3.325897-6-6.333083+1 4.085743-6-6.760702+1 4.158960-6-6.874901+1 4.205758-6-6.833913+1 4.268945-6-6.171857+1 4.332880-6-6.329148+1 4.496465-6-6.547866+1 4.767438-6-6.674224+1 4.847696-6-6.498338+1 5.043375-6-6.637057+1 6.445115-6-6.833199+1 6.569876-6-6.852202+1 6.699750-6-6.429312+1 6.743617-6-6.763536+1 6.754992-6-6.889547+1 6.813102-6-6.089933+1 6.849632-6-5.974281+1 6.990750-6-6.443373+1 7.638953-6-6.861943+1 7.743892-6-6.655175+1 7.794214-6-6.870825+1 7.866089-6-6.186940+1 7.923495-6-6.115094+1 8.062234-6-6.455423+1 8.381907-6-6.534497+1 9.720633-6-6.643045+1 1.757924-5-6.972392+1 2.185566-5-6.571435+1 2.359060-5-6.071828+1 2.453502-5-5.447042+1 2.502680-5-4.819636+1 2.535277-5-4.117498+1 2.555773-5-3.419946+1 2.566479-5-2.905859+1 2.574570-5-2.376426+1 2.584083-5-1.604220+1 2.587258-5-1.295492+1 2.592034-5-7.673740+0 2.593626-5-5.646330+0 2.596810-5-1.228155+0 2.598402-5 1.247260+0 2.599994-5 4.130347+0 2.601114-5 6.576659+0 2.601888-5 8.758601+0 2.602638-5 1.040401+1 2.603951-5 1.285703+1 2.607891-5 1.908648+1 2.613494-5 2.748485+1 2.615095-5 3.061601+1 2.622898-5 4.235089+1 2.628542-5 4.820349+1 2.631420-5 4.875753+1 2.635902-5 4.698016+1 2.639796-5 4.192389+1 2.643193-5 3.464395+1 2.645122-5 2.920895+1 2.646982-5 2.279442+1 2.650722-5 6.847522+0 2.651502-5 3.300317+0 2.652672-5-2.420497+0 2.653257-5-5.554797+0 2.653550-5-7.243087+0 2.654037-5-1.046440+1 2.654793-5-1.488892+1 2.658595-5-3.634076+1 2.660168-5-4.695825+1 2.664192-5-7.316438+1 2.666168-5-5.830827+1 2.671923-5-2.171241+1 2.672511-5-1.756975+1 2.673238-5-1.317471+1 2.673874-5-9.599441+0 2.674987-5-3.718385+0 2.677909-5 1.076753+1 2.678627-5 1.475241+1 2.679218-5 1.756762+1 2.680362-5 2.233911+1 2.682442-5 2.961807+1 2.685154-5 3.715010+1 2.688056-5 4.317417+1 2.692093-5 4.833936+1 2.694474-5 4.956584+1 2.696771-5 4.912354+1 2.703139-5 4.188393+1 2.704740-5 3.844496+1 2.709642-5 2.976675+1 2.716779-5 1.487527+1 2.717577-5 1.303635+1 2.719074-5 1.020577+1 2.721694-5 5.774850+0 2.725623-5-6.668937-1 2.727588-5-4.158053+0 2.728570-5-6.118469+0 2.729061-5-7.219185+0 2.729996-5-9.811232+0 2.730827-5-1.160067+1 2.733372-5-1.593353+1 2.736645-5-2.034186+1 2.743266-5-2.722208+1 2.754058-5-3.539625+1 2.763854-5-4.143859+1 2.790999-5-5.488002+1 2.804904-5-5.819171+1 2.818144-5-5.713470+1 2.840035-5-5.189681+1 2.855578-5-5.174089+1 2.889871-5-5.613375+1 3.058378-5-6.740898+1 3.105087-5-7.289523+1 3.143387-5-6.350495+1 3.160076-5-5.646634+1 3.168611-5-5.029218+1 3.174348-5-4.512770+1 3.184472-5-3.726552+1 3.193767-5-2.867572+1 3.202015-5-2.248103+1 3.209097-5-1.968162+1 3.212522-5-1.973089+1 3.216280-5-2.119976+1 3.220332-5-2.417576+1 3.224508-5-2.882334+1 3.227987-5-3.423655+1 3.231881-5-4.249628+1 3.239302-5-6.119526+1 3.242612-5-7.147298+1 3.247769-5-5.614083+1 3.248694-5-5.276715+1 3.257354-5-2.749713+1 3.261560-5-1.749369+1 3.263614-5-1.268903+1 3.264709-5-1.014649+1 3.266063-5-7.553313+0 3.267248-5-5.542756+0 3.269322-5-2.463144+0 3.270877-5-4.644038-1 3.273209-5 2.093710+0 3.275542-5 4.167067+0 3.278124-5 5.910245+0 3.280060-5 6.829547+0 3.281512-5 7.291833+0 3.283691-5 7.575150+0 3.284780-5 7.487229+0 3.289769-5 5.686280+0 3.291719-5 4.801422+0 3.292694-5 4.211033+0 3.294644-5 2.495716+0 3.298056-5 9.644393-2 3.299762-5-1.200229+0 3.300615-5-1.940589+0 3.301468-5-2.864632+0 3.309268-5-9.863637+0 3.310243-5-1.086483+1 3.312071-5-1.239740+1 3.323268-5-2.094338+1 3.326091-5-2.407592+1 3.332235-5-2.851413+1 3.344885-5-3.447797+1 3.358148-5-3.892734+1 3.390116-5-4.609274+1 3.413483-5-4.836024+1 3.459547-5-4.680997+1 3.553188-5-4.951088+1 3.890451-5-5.324559+1 4.843533-5-5.667644+1 7.275758-5-5.925775+1 1.533371-4-5.734035+1 1.611466-4-5.948936+1 1.638266-4-6.175572+1 1.663287-4-5.320012+1 1.670342-4-5.328659+1 1.676968-4-5.708876+1 1.681567-4-6.195179+1 1.691717-4-4.898373+1 1.696789-4-4.449239+1 1.702260-4-4.250579+1 1.708306-4-4.314873+1 1.718483-4-4.838940+1 1.735334-4-5.749252+1 1.744025-4-5.896097+1 1.751691-4-5.659201+1 1.760923-4-4.970531+1 1.770266-4-4.254345+1 1.777714-4-4.022345+1 1.785336-4-4.060475+1 1.808118-4-4.631366+1 1.837267-4-4.868462+1 1.942633-4-4.882022+1 2.280000-4-4.499245+1 3.056219-4-4.221771+1 3.206638-4-4.256838+1 3.289556-4-4.110003+1 4.435267-4-3.602680+1 5.339493-4-3.275923+1 6.814516-4-2.979060+1 8.717804-4-2.839580+1 1.065561-3-2.896890+1 1.220182-3-3.113020+1 1.318270-3-3.403241+1 1.382124-3-3.754118+1 1.423256-3-4.183151+1 1.442942-3-4.600986+1 1.465250-3-5.355309+1 1.474742-3-5.384442+1 1.499602-3-4.855553+1 1.523779-3-4.562731+1 1.549714-3-4.000642+1 1.580574-3-3.591833+1 1.636903-3-3.133373+1 1.728576-3-2.658210+1 1.803442-3-2.429866+1 1.841345-3-2.453144+1 1.863058-3-2.497280+1 1.879825-3-2.397181+1 1.917015-3-2.109589+1 1.972352-3-1.901189+1 2.036071-3-1.774128+1 2.079974-3-1.741622+1 2.128940-3-1.560713+1 2.202990-3-1.403518+1 2.282059-3-1.329485+1 2.355800-3-1.150374+1 2.480324-3-9.689657+0 2.658811-3-7.970212+0 2.791852-3-7.041379+0 3.006202-3-5.982751+0 3.260018-3-5.128662+0 3.499950-3-4.617635+0 3.757106-3-4.295270+0 4.140007-3-4.050105+0 4.665600-3-4.024578+0 5.316173-3-4.269674+0 6.042964-3-4.776218+0 6.821032-3-5.571185+0 7.486636-3-6.589098+0 7.924733-3-7.643289+0 8.199907-3-8.701928+0 8.372462-3-9.807877+0 8.472649-3-1.097360+1 8.607055-3-1.348807+1 8.661285-3-1.355512+1 8.728610-3-1.242815+1 8.823177-3-1.071804+1 8.916929-3-9.785273+0 9.075856-3-8.987669+0 9.271443-3-8.634191+0 9.425205-3-8.836487+0 9.613634-3-9.905763+0 9.681681-3-9.625404+0 9.827055-3-8.292556+0 9.935410-3-7.898339+0 1.007947-2-7.708975+0 1.020898-2-6.773072+0 1.034058-2-5.880681+0 1.053521-2-5.036327+0 1.083804-2-4.132743+0 1.118909-2-3.370929+0 1.164745-2-2.645251+0 1.216186-2-2.059533+0 1.263316-2-1.648064+0 1.320612-2-1.273228+0 1.364583-2-1.051801+0 1.411521-2-8.645980-1 1.458762-2-7.163695-1 1.514101-2-5.803175-1 1.559931-2-4.910820-1 1.623700-2-3.958510-1 1.678901-2-3.352191-1 1.730942-2-2.926971-1 1.794346-2-2.589778-1 1.875671-2-2.338885-1 1.963793-2-2.251784-1 2.043196-2-2.298881-1 2.172101-2-2.552951-1 2.261030-2-2.815106-1 2.477779-2-3.664507-1 3.362246-2-7.804693-1 4.415704-2-1.300037+0 4.890701-2-1.593092+0 5.241168-2-1.892861+0 5.486369-2-2.208210+0 5.639622-2-2.514529+0 5.749819-2-2.867945+0 5.812382-2-3.206813+0 5.864885-2-3.700752+0 5.923553-2-4.352847+0 5.954324-2-4.424315+0 5.989930-2-4.153265+0 6.063118-2-3.249971+0 6.122578-2-2.790277+0 6.195742-2-2.438748+0 6.306489-2-2.083201+0 6.473217-2-1.725871+0 6.702824-2-1.393295+0 6.924945-2-1.171489+0 7.195681-2-9.777999-1 7.498942-2-8.199055-1 7.750054-2-7.195167-1 8.150948-2-5.974438-1 8.573496-2-5.074497-1 8.971221-2-4.470611-1 9.438367-2-3.969042-1 9.964983-2-3.596204-1 1.079496-1-3.270658-1 1.159696-1-3.127113-1 1.307223-1-3.146282-1 1.607702-1-3.536902-1 2.263624-1-4.467450-1 2.932480-1-5.104061-1 4.007297-1-5.682520-1 5.881026-1-6.129784-1 9.914025-1-6.417165-1 3.086391+0-6.556470-1 9.320751+0-6.581462-1 1.000000+1-6.576028-1 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.003308-2 1.124144-6 1.558685-1 1.159273-6 1.808791-1 1.195500-6 2.103651-1 1.232860-6 2.452429-1 1.271387-6 2.866383-1 1.310099-6 3.345927-1 1.347602-6 3.880479-1 1.383933-6 4.473965-1 1.419129-6 5.130320-1 1.453225-6 5.853614-1 1.486255-6 6.648051-1 1.518253-6 7.517971-1 1.549251-6 8.467859-1 1.579281-6 9.502338-1 1.608372-6 1.062618+0 1.636554-6 1.184430+0 1.663855-6 1.316175+0 1.690303-6 1.458375+0 1.715925-6 1.611566+0 1.764791-6 1.953137+0 1.810651-6 2.345469+0 1.853689-6 2.793379+0 1.894080-6 3.301954+0 1.913333-6 3.581278+0 1.931985-6 3.880010+0 1.968123-6 4.541047+0 2.002003-6 5.278581+0 2.033765-6 6.101651+0 2.063542-6 7.015935+0 2.091458-6 8.027991+0 2.117629-6 9.145058+0 2.142164-6 1.037413+1 2.165166-6 1.172209+1 2.186730-6 1.319587+1 2.206947-6 1.480243+1 2.225900-6 1.654876+1 2.243668-6 1.844183+1 2.260326-6 2.048857+1 2.275943-6 2.269588+1 2.290584-6 2.507054+1 2.304309-6 2.761926+1 2.317177-6 3.034863+1 2.329241-6 3.326513+1 2.340550-6 3.637510+1 2.351153-6 3.968474+1 2.361093-6 4.320014+1 2.370412-6 4.692731+1 2.379149-6 5.087225+1 2.387339-6 5.504112+1 2.395017-6 5.944031+1 2.402216-6 6.407647+1 2.408965-6 6.895644+1 2.415292-6 7.408716+1 2.421223-6 7.947587+1 2.426784-6 8.513069+1 2.431997-6 9.106140+1 2.436884-6 9.728038+1 2.446048-6 1.111335+2 2.454066-6 1.264668+2 2.461082-6 1.434673+2 2.467221-6 1.622509+2 2.472593-6 1.827850+2 2.477293-6 2.048567+2 2.481406-6 2.280955+2 2.485005-6 2.520326+2 2.488153-6 2.761678+2 2.490909-6 3.000278+2 2.495429-6 3.453748+2 2.501889-6 4.252709+2 2.512029-6 5.906666+2 2.516373-6 6.766250+2 2.519463-6 7.427283+2 2.522552-6 8.123934+2 2.528730-6 9.593958+2 2.529503-6 9.782013+2 2.534909-6 1.109801+3 2.537033-6 1.160477+3 2.541087-6 1.253242+3 2.543676-6 1.308432+3 2.546765-6 1.368682+3 2.548618-6 1.401318+3 2.551336-6 1.443640+3 2.553957-6 1.477471+3 2.554830-6 1.487097+3 2.557936-6 1.514166+3 2.560654-6 1.528189+3 2.563422-6 1.532752+3 2.566369-6 1.526580+3 2.570139-6 1.502110+3 2.572980-6 1.471725+3 2.575371-6 1.438623+3 2.578326-6 1.388874+3 2.580943-6 1.337436+3 2.584178-6 1.265577+3 2.587040-6 1.195661+3 2.589611-6 1.128916+3 2.592102-6 1.061600+3 2.594037-6 1.008093+3 2.596954-6 9.264226+2 2.599543-6 8.537971+2 2.602560-6 7.702441+2 2.603645-6 7.407218+2 2.606348-6 6.687801+2 2.609051-6 5.997571+2 2.613058-6 5.040959+2 2.615230-6 4.560152+2 2.621657-6 3.310908+2 2.624626-6 2.825404+2 2.630472-6 2.038944+2 2.635586-6 1.527346+2 2.638384-6 1.312493+2 2.640117-6 1.201138+2 2.641797-6 1.108450+2 2.643355-6 1.035502+2 2.644542-6 9.880378+1 2.645734-6 9.472739+1 2.646303-6 9.302149+1 2.647156-6 9.074860+1 2.648009-6 8.881461+1 2.648933-6 8.709827+1 2.650751-6 8.484462+1 2.652513-6 8.406003+1 2.654219-6 8.459253+1 2.657525-6 8.921192+1 2.669149-6 1.447194+2 2.673895-6 1.876048+2 2.684861-6 3.478613+2 2.690077-6 4.633097+2 2.694071-6 5.734644+2 2.697129-6 6.723768+2 2.699626-6 7.634415+2 2.702904-6 8.980962+2 2.706821-6 1.083210+3 2.709682-6 1.235935+3 2.711731-6 1.354848+3 2.713781-6 1.481796+3 2.717113-6 1.705367+3 2.720444-6 1.950018+3 2.727524-6 2.535116+3 2.729086-6 2.674769+3 2.733185-6 3.055878+3 2.736334-6 3.359616+3 2.740434-6 3.762575+3 2.743818-6 4.095475+3 2.747097-6 4.412423+3 2.750481-6 4.727418+3 2.753760-6 5.015053+3 2.756675-6 5.251373+3 2.759896-6 5.486410+3 2.760840-6 5.549389+3 2.764744-6 5.778316+3 2.767793-6 5.918390+3 2.771345-6 6.034985+3 2.774231-6 6.090945+3 2.780621-6 6.087924+3 2.782443-6 6.055348+3 2.787408-6 5.898805+3 2.790309-6 5.764565+3 2.792845-6 5.623928+3 2.795871-6 5.430747+3 2.798859-6 5.216515+3 2.802450-6 4.933909+3 2.806201-6 4.616677+3 2.810398-6 4.244889+3 2.813729-6 3.944056+3 2.817477-6 3.606277+3 2.820393-6 3.347904+3 2.827056-6 2.785572+3 2.829346-6 2.604493+3 2.833719-6 2.279788+3 2.838716-6 1.945429+3 2.845772-6 1.543041+3 2.856075-6 1.095366+3 2.859510-6 9.791122+2 2.862945-6 8.771840+2 2.866379-6 7.881838+2 2.869814-6 7.107199+2 2.873248-6 6.434454+2 2.876683-6 5.850886+2 2.880118-6 5.344724+2 2.883552-6 4.905276+2 2.886987-6 4.522981+2 2.893856-6 3.897252+2 2.900725-6 3.412861+2 2.907595-6 3.030033+2 2.914464-6 2.720728+2 2.921333-6 2.465536+2 2.928202-6 2.251079+2 2.937795-6 2.002675+2 2.947238-6 1.801800+2 2.956533-6 1.635977+2 2.965683-6 1.496865+2 2.974690-6 1.378630+2 2.983556-6 1.277035+2 2.992283-6 1.188916+2 3.000875-6 1.111848+2 3.009332-6 1.043938+2 3.025981-6 9.290881+1 3.042111-6 8.367365+1 3.057736-6 7.610539+1 3.072874-6 6.980880+1 3.087538-6 6.450381+1 3.101744-6 5.998550+1 3.115505-6 5.609974+1 3.128837-6 5.272711+1 3.154668-6 4.708618+1 3.178884-6 4.265080+1 3.201586-6 3.908940+1 3.222870-6 3.618253+1 3.242824-6 3.377638+1 3.261530-6 3.175829+1 3.296604-6 2.847195+1 3.327294-6 2.602329+1 3.354148-6 2.415284+1 3.377645-6 2.269355+1 3.418765-6 2.045714+1 3.449605-6 1.899851+1 3.495865-6 1.709341+1 3.576999-6 1.435113+1 3.716495-6 1.085519+1 3.899293-6 7.305733+0 3.928671-6 6.752185+0 3.954377-6 6.263623+0 3.976870-6 5.824719+0 3.996551-6 5.426077+0 4.013772-6 5.061698+0 4.028840-6 4.727358+0 4.042025-6 4.419949+0 4.053562-6 4.137216+0 4.063657-6 3.877613+0 4.072489-6 3.640135+0 4.080218-6 3.424097+0 4.093743-6 3.028542+0 4.103887-6 2.721128+0 4.111495-6 2.489179+0 4.117201-6 2.317787+0 4.134319-6 1.853107+0 4.140043-6 1.730464+0 4.144495-6 1.653440+0 4.149583-6 1.590367+0 4.153399-6 1.564171+0 4.154671-6 1.560034+0 4.162303-6 1.591722+0 4.164847-6 1.626854+0 4.166119-6 1.649628+0 4.172797-6 1.832608+0 4.175023-6 1.919704+0 4.178044-6 2.061139+0 4.181622-6 2.265908+0 4.184752-6 2.480916+0 4.187960-6 2.738594+0 4.192429-6 3.165579+0 4.199965-6 4.082523+0 4.208739-6 5.497551+0 4.216140-6 7.010035+0 4.220108-6 7.947573+0 4.227807-6 1.002362+1 4.232485-6 1.144901+1 4.237934-6 1.325854+1 4.242791-6 1.499793+1 4.247868-6 1.692936+1 4.252938-6 1.895541+1 4.257527-6 2.085351+1 4.262312-6 2.287655+1 4.267427-6 2.505878+1 4.271099-6 2.662027+1 4.276241-6 2.877045+1 4.280198-6 3.037518+1 4.284586-6 3.208064+1 4.289621-6 3.391286+1 4.290834-6 3.433088+1 4.297204-6 3.635098+1 4.301187-6 3.744775+1 4.309680-6 3.929686+1 4.313239-6 3.985822+1 4.320033-6 4.056212+1 4.323753-6 4.074101+1 4.329592-6 4.073136+1 4.332379-6 4.060543+1 4.336559-6 4.027649+1 4.340739-6 3.978901+1 4.347206-6 3.875234+1 4.349361-6 3.833840+1 4.357104-6 3.661522+1 4.362266-6 3.529948+1 4.370010-6 3.315495+1 4.380334-6 3.013445+1 4.383376-6 2.923758+1 4.392503-6 2.659750+1 4.417385-6 2.034997+1 4.426772-6 1.848095+1 4.431983-6 1.756297+1 4.442404-6 1.596685+1 4.450805-6 1.489062+1 4.458944-6 1.400275+1 4.474712-6 1.263315+1 4.489495-6 1.166403+1 4.503354-6 1.094741+1 4.711239-6 4.750286+0 4.728633-6 4.284067+0 4.737395-6 4.085269+0 4.746027-6 3.929164+0 4.757623-6 3.806381+0 4.760716-6 3.794488+0 4.772377-6 3.844932+0 4.775292-6 3.883439+0 4.784037-6 4.066924+0 4.788045-6 4.186288+0 4.791871-6 4.321231+0 4.795698-6 4.476581+0 4.801163-6 4.733104+0 4.807301-6 5.067190+0 4.819019-6 5.821985+0 4.830679-6 6.681263+0 4.837967-6 7.243389+0 4.842340-6 7.580439+0 4.854000-6 8.442436+0 4.855458-6 8.543733+0 4.865660-6 9.192221+0 4.869669-6 9.412291+0 4.877321-6 9.767843+0 4.882901-6 9.968879+0 4.886085-6 1.006043+1 4.891657-6 1.017924+1 4.895836-6 1.023369+1 4.902104-6 1.026059+1 4.908373-6 1.022439+1 4.912302-6 1.017143+1 4.921048-6 9.977861+0 4.923963-6 9.892434+0 4.935623-6 9.465332+0 4.943161-6 9.132577+0 4.951944-6 8.708385+0 4.965925-6 7.994875+0 4.983332-6 7.120197+0 5.002444-6 6.268841+0 5.007863-6 6.058357+0 5.021624-6 5.598344+0 5.033923-6 5.287225+0 5.046223-6 5.078354+0 5.052373-6 5.013319+0 5.058522-6 4.974357+0 5.061597-6 4.964447+0 5.066978-6 4.961935+0 5.071014-6 4.971926+0 5.077068-6 5.004690+0 5.083121-6 5.056745+0 5.092346-6 5.166839+0 5.123340-6 5.656805+0 5.136459-6 5.834758+0 5.145935-6 5.926196+0 5.152253-6 5.966047+0 5.156991-6 5.984189+0 5.164098-6 5.992490+0 5.171205-6 5.979033+0 5.181518-6 5.925255+0 5.193817-6 5.820471+0 5.224566-6 5.491421+0 5.233791-6 5.404310+0 5.249302-6 5.289272+0 5.255589-6 5.254643+0 5.268462-6 5.203148+0 5.287464-6 5.161394+0 5.331164-6 5.096934+0 5.366170-6 5.008438+0 5.454766-6 4.744900+0 5.507487-6 4.576646+0 5.597847-6 4.264809+0 5.690984-6 3.997730+0 5.751975-6 3.804338+0 5.843191-6 3.502952+0 5.900000-6 3.304108+0 6.008760-6 2.897080+0 6.086196-6 2.591021+0 6.159922-6 2.274665+0 6.215216-6 2.016861+0 6.256686-6 1.810491+0 6.287789-6 1.647844+0 6.311116-6 1.521305+0 6.346107-6 1.324232+0 6.363602-6 1.222573+0 6.381097-6 1.119047+0 6.394673-6 1.037621+0 6.412510-6 9.296073-1 6.426153-6 8.466506-1 6.441892-6 7.513309-1 6.457632-6 6.575855-1 6.466483-6 6.062062-1 6.475335-6 5.563337-1 6.483188-6 5.138154-1 6.506747-6 4.021906-1 6.514601-6 3.732618-1 6.522454-6 3.506435-1 6.531306-6 3.350891-1 6.538160-6 3.324114-1 6.546013-6 3.423005-1 6.549940-6 3.535630-1 6.553866-6 3.697831-1 6.557793-6 3.916013-1 6.563683-6 4.364046-1 6.566628-6 4.649764-1 6.569573-6 4.981620-1 6.573796-6 5.546416-1 6.578020-6 6.227819-1 6.580891-6 6.764803-1 6.585601-6 7.790014-1 6.592308-6 9.601624-1 6.614197-6 1.933958+0 6.623107-6 2.554239+0 6.628617-6 3.020935+0 6.634815-6 3.632357+0 6.642784-6 4.569585+0 6.649678-6 5.534106+0 6.656360-6 6.620343+0 6.663606-6 7.982557+0 6.670381-6 9.443786+0 6.674948-6 1.053792+1 6.679516-6 1.172363+1 6.683266-6 1.276737+1 6.688890-6 1.445519+1 6.695539-6 1.664358+1 6.697461-6 1.731537+1 6.707548-6 2.113174+1 6.713857-6 2.376144+1 6.717220-6 2.523673+1 6.727308-6 2.995065+1 6.733617-6 3.309803+1 6.744599-6 3.887378+1 6.752420-6 4.315509+1 6.757082-6 4.574653+1 6.763745-6 4.946907+1 6.770706-6 5.333980+1 6.777136-6 5.685581+1 6.783847-6 6.041661+1 6.790987-6 6.403158+1 6.794401-6 6.568023+1 6.803011-6 6.955870+1 6.810855-6 7.268466+1 6.817583-6 7.500768+1 6.825450-6 7.725863+1 6.833068-6 7.892396+1 6.839832-6 7.995668+1 6.845454-6 8.048800+1 6.848711-6 8.065917+1 6.858484-6 8.057513+1 6.866760-6 7.982185+1 6.875024-6 7.848147+1 6.880336-6 7.733137+1 6.885649-6 7.597349+1 6.891155-6 7.436488+1 6.898383-6 7.197693+1 6.905352-6 6.941918+1 6.915873-6 6.518538+1 6.924072-6 6.166466+1 6.938675-6 5.515146+1 6.956866-6 4.707039+1 6.966089-6 4.315282+1 6.981461-6 3.707496+1 7.022218-6 2.446357+1 7.034327-6 2.172401+1 7.046246-6 1.942903+1 7.057979-6 1.751658+1 7.069529-6 1.592627+1 7.080898-6 1.460267+1 7.092090-6 1.349702+1 7.114123-6 1.176899+1 7.139059-6 1.032628+1 7.156146-6 9.550263+0 7.176178-6 8.792135+0 7.195584-6 8.171571+0 7.233183-6 7.187500+0 7.268431-6 6.440900+0 7.301477-6 5.844088+0 7.363438-6 4.898616+0 7.471869-6 3.520940+0 7.512531-6 3.043437+0 7.548110-6 2.631832+0 7.579241-6 2.272880+0 7.606482-6 1.958874+0 7.630317-6 1.686073+0 7.651172-6 1.453412+0 7.669421-6 1.261337+0 7.685389-6 1.110685+0 7.699361-6 1.001684+0 7.711586-6 9.332686-1 7.722283-6 9.028306-1 7.731643-6 9.063642-1 7.739833-6 9.388639-1 7.746999-6 9.948220-1 7.753270-6 1.068696+0 7.758756-6 1.155277+0 7.763557-6 1.249931+0 7.767758-6 1.348728+0 7.771433-6 1.448472+0 7.774650-6 1.546679+0 7.779926-6 1.731627+0 7.787059-6 2.033296+0 7.797587-6 2.601890+0 7.814968-6 3.924323+0 7.824468-6 4.884265+0 7.835546-6 6.245286+0 7.843428-6 7.384832+0 7.850944-6 8.611662+0 7.860765-6 1.042800+1 7.869005-6 1.214099+1 7.876171-6 1.377028+1 7.886197-6 1.626077+1 7.891084-6 1.755938+1 7.895026-6 1.864503+1 7.906854-6 2.208547+1 7.913811-6 2.421884+1 7.922796-6 2.706405+1 7.931505-6 2.988432+1 7.939245-6 3.241017+1 7.947591-6 3.511746+1 7.954601-6 3.734959+1 7.963352-6 4.004355+1 7.968716-6 4.162501+1 7.977529-6 4.407474+1 7.985928-6 4.620187+1 7.990384-6 4.723521+1 7.999658-6 4.914857+1 8.007030-6 5.042069+1 8.024925-6 5.249810+1 8.032507-6 5.292416+1 8.044629-6 5.303607+1 8.053987-6 5.265459+1 8.062168-6 5.200418+1 8.071929-6 5.086999+1 8.077786-6 5.001863+1 8.087466-6 4.836332+1 8.096107-6 4.666129+1 8.108718-6 4.388190+1 8.118331-6 4.159712+1 8.135453-6 3.735756+1 8.159801-6 3.143723+1 8.190850-6 2.496916+1 8.205508-6 2.254390+1 8.214776-6 2.124029+1 8.222213-6 2.032283+1 8.227790-6 1.970819+1 8.236156-6 1.889996+1 8.244523-6 1.822107+1 8.254497-6 1.756693+1 8.264472-6 1.706325+1 8.279434-6 1.654274+1 8.284421-6 1.642066+1 8.304370-6 1.611481+1 8.348261-6 1.583861+1 8.365478-6 1.567080+1 8.376546-6 1.551328+1 8.387614-6 1.531202+1 8.404116-6 1.493069+1 8.415787-6 1.460678+1 8.424065-6 1.435346+1 8.444014-6 1.368028+1 8.463963-6 1.295146+1 8.475434-6 1.252272+1 8.545991-6 1.008477+1 8.566974-6 9.484987+0 8.626148-6 8.116848+0 8.668613-6 7.388315+0 8.689845-6 7.098577+0 8.711077-6 6.860357+0 8.734840-6 6.656489+0 8.747385-6 6.575380+0 8.766202-6 6.486132+0 8.785019-6 6.431485+0 8.797790-6 6.410577+0 8.839756-6 6.394708+0 8.874864-6 6.382150+0 8.899915-6 6.341265+0 8.916304-6 6.294342+0 8.944672-6 6.175352+0 8.965863-6 6.060998+0 9.052748-6 5.543380+0 9.074867-6 5.434116+0 9.119105-6 5.255159+0 9.238803-6 4.871821+0 9.259177-6 4.804713+0 9.342733-6 4.511185+0 9.410666-6 4.233162+0 9.457592-6 4.007985+0 9.516564-6 3.713837+0 9.542412-6 3.606725+0 9.565390-6 3.539312+0 9.581520-6 3.513786+0 9.588368-6 3.509375+0 9.603511-6 3.514627+0 9.614130-6 3.531353+0 9.623510-6 3.555388+0 9.638578-6 3.612231+0 9.651650-6 3.679153+0 9.668501-6 3.787353+0 9.696310-6 4.007950+0 9.730255-6 4.309582+0 9.754324-6 4.512527+0 9.760539-6 4.560254+0 9.779184-6 4.686800+0 9.787237-6 4.732455+0 9.801330-6 4.797504+0 9.811900-6 4.833125+0 9.827755-6 4.864682+0 9.843611-6 4.870210+0 9.866977-6 4.834119+0 9.890343-6 4.752943+0 9.913709-6 4.637593+0 9.942767-6 4.463953+0 1.003139-5 3.905682+0 1.005773-5 3.764987+0 1.008077-5 3.658124+0 1.010546-5 3.562598+0 1.013015-5 3.488400+0 1.015485-5 3.436487+0 1.017269-5 3.412767+0 1.019053-5 3.399981+0 1.021086-5 3.397294+0 1.022892-5 3.403625+0 1.031780-5 3.473229+0 1.034680-5 3.479670+0 1.036808-5 3.473416+0 1.040602-5 3.439915+0 1.045367-5 3.370146+0 1.053048-5 3.250660+0 1.057224-5 3.199674+0 1.061048-5 3.161525+0 1.070426-5 3.081002+0 1.080400-5 2.991792+0 1.086297-5 2.933194+0 1.091936-5 2.870004+0 1.098853-5 2.781035+0 1.114052-5 2.577068+0 1.122260-5 2.490719+0 1.147343-5 2.281297+0 1.157506-5 2.196915+0 1.187968-5 1.942618+0 1.224820-5 1.647491+0 1.244515-5 1.496190+0 1.290000-5 1.165049+0 1.333521-5 8.792136-1 1.370000-5 6.655620-1 1.391895-5 5.502841-1 1.430644-5 3.712289-1 1.470643-5 2.237009-1 1.504548-5 1.330289-1 1.538382-5 7.842351-2 1.539778-5 7.696089-2 1.563401-5 6.360958-2 1.570000-5 6.389313-2 1.573906-5 6.495762-2 1.590437-5 7.697233-2 1.606709-5 1.008126-1 1.622727-5 1.366253-1 1.640590-5 1.920347-1 1.654017-5 2.455334-1 1.669296-5 3.199615-1 1.690000-5 4.445443-1 1.713659-5 6.203558-1 1.735012-5 7.766068-1 1.743743-5 8.103057-1 1.744611-5 8.120745-1 1.773681-5 7.382422-1 1.800238-5 6.008014-1 1.818686-5 5.095743-1 1.838616-5 4.177371-1 1.851010-5 3.647966-1 1.875222-5 2.719042-1 1.887045-5 2.323438-1 1.898683-5 1.978554-1 1.910139-5 1.686837-1 1.926789-5 1.357323-1 1.932693-5 1.270305-1 1.950000-5 1.115968-1 1.954543-5 1.101943-1 1.975710-5 1.196818-1 1.986425-5 1.358601-1 1.996215-5 1.583594-1 2.016079-5 2.289101-1 2.035323-5 3.331699-1 2.044718-5 3.990294-1 2.055000-5 4.838257-1 2.072025-5 6.565198-1 2.089521-5 8.811949-1 2.106470-5 1.151725+0 2.122889-5 1.471634+0 2.138795-5 1.844337+0 2.154203-5 2.272967+0 2.170000-5 2.791635+0 2.183592-5 3.311789+0 2.197601-5 3.930169+0 2.211172-5 4.620010+0 2.224319-5 5.384995+0 2.252077-5 7.371877+0 2.316064-5 1.479643+1 2.354307-5 2.224663+1 2.371656-5 2.679113+1 2.387920-5 3.194049+1 2.403167-5 3.774047+1 2.417462-5 4.423620+1 2.430863-5 5.146770+1 2.445605-5 6.100068+1 2.455205-5 6.829292+1 2.466247-5 7.796822+1 2.478500-5 9.065919+1 2.486304-5 1.000374+2 2.495402-5 1.125024+2 2.503932-5 1.259640+2 2.512910-5 1.423680+2 2.519426-5 1.559846+2 2.526454-5 1.725873+2 2.533043-5 1.902737+2 2.541238-5 2.157104+2 2.545012-5 2.289362+2 2.551493-5 2.542829+2 2.555531-5 2.720125+2 2.561789-5 3.029835+2 2.569250-5 3.466892+2 2.577079-5 4.028493+2 2.583929-5 4.635927+2 2.590786-5 5.392047+2 2.595167-5 5.977623+2 2.600116-5 6.763623+2 2.603772-5 7.449717+2 2.608638-5 8.537294+2 2.610359-5 8.978517+2 2.615740-5 1.059029+3 2.619775-5 1.207697+3 2.622801-5 1.338192+3 2.627340-5 1.570310+3 2.631880-5 1.854331+3 2.639718-5 2.497152+3 2.652680-5 4.117173+3 2.658352-5 5.093036+3 2.662458-5 5.911307+3 2.666486-5 6.805505+3 2.669760-5 7.596786+3 2.673852-5 8.661065+3 2.679580-5 1.026880+4 2.681831-5 1.092878+4 2.686946-5 1.246063+4 2.690526-5 1.353609+4 2.693493-5 1.441179+4 2.696370-5 1.523450+4 2.699601-5 1.611151+4 2.702299-5 1.679362+4 2.705769-5 1.758581+4 2.708633-5 1.815447+4 2.711798-5 1.867947+4 2.712725-5 1.881096+4 2.716561-5 1.923956+4 2.719557-5 1.943803+4 2.723009-5 1.951196+4 2.726073-5 1.943669+4 2.732162-5 1.890161+4 2.735090-5 1.847190+4 2.738077-5 1.792885+4 2.740586-5 1.739894+4 2.743677-5 1.666446+4 2.745485-5 1.619836+4 2.748453-5 1.538528+4 2.750724-5 1.472963+4 2.753971-5 1.375637+4 2.757363-5 1.271183+4 2.761419-5 1.145225+4 2.764693-5 1.044704+4 2.768375-5 9.347005+3 2.772058-5 8.295507+3 2.774922-5 7.519694+3 2.778483-5 6.614168+3 2.779788-5 6.299699+3 2.788926-5 4.377427+3 2.792719-5 3.723686+3 2.797341-5 3.036114+3 2.802390-5 2.411789+3 2.809122-5 1.760689+3 2.818061-5 1.157654+3 2.823336-5 9.115639+2 2.826689-5 7.887738+2 2.831866-5 6.416741+2 2.834699-5 5.797118+2 2.838768-5 5.098329+2 2.840112-5 4.911257+2 2.841287-5 4.763512+2 2.843344-5 4.538162+2 2.844886-5 4.394723+2 2.847200-5 4.216600+2 2.849514-5 4.078145+2 2.851018-5 4.007029+2 2.852038-5 3.966432+2 2.854100-5 3.901513+2 2.856805-5 3.846657+2 2.859414-5 3.820772+2 2.860284-5 3.817072+2 2.863863-5 3.822400+2 2.868324-5 3.861476+2 2.875382-5 3.951163+2 2.882475-5 4.022801+2 2.884342-5 4.033214+2 2.889878-5 4.036581+2 2.892030-5 4.025939+2 2.895798-5 3.990908+2 2.899038-5 3.944725+2 2.903711-5 3.854536+2 2.906626-5 3.786198+2 2.909790-5 3.703548+2 2.916626-5 3.504071+2 2.925403-5 3.231583+2 2.939616-5 2.821534+2 2.945295-5 2.680158+2 2.953382-5 2.502445+2 2.961555-5 2.347068+2 2.973549-5 2.150828+2 3.011875-5 1.646901+2 3.040000-5 1.346692+2 3.080283-5 1.004021+2 3.116376-5 7.724344+1 3.131145-5 6.986438+1 3.139486-5 6.634129+1 3.147287-5 6.350876+1 3.154627-5 6.127178+1 3.161508-5 5.956819+1 3.167959-5 5.834359+1 3.173912-5 5.758342+1 3.179499-5 5.727838+1 3.182193-5 5.731236+1 3.184742-5 5.747980+1 3.187242-5 5.779566+1 3.190836-5 5.857195+1 3.194246-5 5.974853+1 3.196086-5 6.060285+1 3.199505-5 6.269043+1 3.201527-5 6.428795+1 3.203502-5 6.615625+1 3.205415-5 6.829777+1 3.207269-5 7.072566+1 3.209064-5 7.345178+1 3.210892-5 7.665299+1 3.212488-5 7.983849+1 3.214121-5 8.351480+1 3.215702-5 8.752061+1 3.218766-5 9.669110+1 3.221638-5 1.072394+2 3.224331-5 1.191395+2 3.226855-5 1.323373+2 3.229222-5 1.467542+2 3.231441-5 1.622914+2 3.233521-5 1.788346+2 3.237299-5 2.144300+2 3.243633-5 2.932971+2 3.252361-5 4.525886+2 3.257624-5 5.844180+2 3.261728-5 7.094074+2 3.266331-5 8.754477+2 3.269327-5 9.994065+2 3.271723-5 1.107989+3 3.274119-5 1.225261+3 3.278138-5 1.442012+3 3.282158-5 1.684114+3 3.290197-5 2.242566+3 3.291641-5 2.352778+3 3.298738-5 2.931562+3 3.301329-5 3.155723+3 3.306275-5 3.596495+3 3.309669-5 3.904420+3 3.312319-5 4.145031+3 3.316105-5 4.485266+3 3.320060-5 4.830385+3 3.323328-5 5.102746+3 3.326418-5 5.346000+3 3.330113-5 5.613920+3 3.334537-5 5.895293+3 3.338373-5 6.098705+3 3.341157-5 6.220155+3 3.344828-5 6.344152+3 3.348660-5 6.427680+3 3.351950-5 6.460932+3 3.355247-5 6.458391+3 3.356958-5 6.443057+3 3.362975-5 6.315693+3 3.366708-5 6.182517+3 3.369972-5 6.035293+3 3.373866-5 5.826048+3 3.376203-5 5.684999+3 3.378818-5 5.515117+3 3.382251-5 5.275780+3 3.385562-5 5.030868+3 3.390685-5 4.632982+3 3.394704-5 4.312009+3 3.399226-5 3.949439+3 3.402743-5 3.670841+3 3.410782-5 3.061581+3 3.426401-5 2.060094+3 3.444006-5 1.282159+3 3.448279-5 1.146284+3 3.452442-5 1.031253+3 3.456060-5 9.440314+2 3.459678-5 8.676625+2 3.463905-5 7.909111+2 3.468131-5 7.261765+2 3.471609-5 6.809283+2 3.478294-5 6.114566+2 3.481028-5 5.888104+2 3.485127-5 5.601865+2 3.489227-5 5.371725+2 3.492884-5 5.207038+2 3.495626-5 5.105230+2 3.500501-5 4.963155+2 3.503415-5 4.898329+2 3.508540-5 4.813392+2 3.511681-5 4.776014+2 3.520332-5 4.711888+2 3.540774-5 4.634322+2 3.547036-5 4.601587+2 3.556417-5 4.533896+2 3.563957-5 4.463884+2 3.573656-5 4.358632+2 3.606772-5 3.981067+2 3.626124-5 3.805035+2 3.653929-5 3.605005+2 3.687041-5 3.387112+2 3.726666-5 3.136811+2 3.751604-5 3.001546+2 3.786062-5 2.845820+2 3.836531-5 2.659529+2 3.898771-5 2.472832+2 3.969778-5 2.299888+2 4.034347-5 2.170665+2 4.110529-5 2.042665+2 4.199625-5 1.918443+2 4.284566-5 1.818669+2 4.364198-5 1.738860+2 4.474916-5 1.645068+2 4.601033-5 1.554494+2 4.699358-5 1.493605+2 4.845451-5 1.416356+2 5.011872-5 1.343255+2 5.188000-5 1.279655+2 5.500000-5 1.188027+2 5.586044-5 1.167752+2 5.628463-5 1.161719+2 5.710575-5 1.157819+2 5.758907-5 1.152940+2 5.888800-5 1.130791+2 6.144000-5 1.104201+2 6.450000-5 1.086819+2 6.784190-5 1.083453+2 7.150594-5 1.096735+2 7.603319-5 1.135057+2 8.128305-5 1.203451+2 8.627014-5 1.287254+2 9.276075-5 1.416455+2 9.800000-5 1.532786+2 1.065503-4 1.741523+2 1.244515-4 2.241929+2 1.350000-4 2.562529+2 1.461364-4 2.901640+2 1.566751-4 3.208185+2 1.647468-4 3.423856+2 1.708584-4 3.559902+2 1.740013-4 3.611474+2 1.775232-4 3.650697+2 1.787626-4 3.684818+2 1.797067-4 3.731396+2 1.821114-4 3.901156+2 1.830519-4 3.959971+2 1.840608-4 4.009955+2 1.858799-4 4.086506+2 1.875530-4 4.181754+2 1.887192-4 4.273607+2 1.906349-4 4.439365+2 1.916895-4 4.519389+2 1.945000-4 4.709993+2 2.005000-4 5.207737+2 2.045000-4 5.511005+2 2.085000-4 5.766844+2 2.125184-4 5.973100+2 2.171691-4 6.156881+2 2.223733-4 6.311603+2 2.284951-4 6.449677+2 2.360965-4 6.581156+2 2.712126-4 7.033017+2 2.920028-4 7.302335+2 3.082746-4 7.493068+2 3.210481-4 7.598588+2 3.248002-4 7.639162+2 3.280637-4 7.725573+2 3.326172-4 7.888731+2 3.386675-4 8.031682+2 3.455306-4 8.264468+2 3.540688-4 8.493365+2 3.700000-4 8.809310+2 3.820622-4 9.023131+2 4.007526-4 9.436904+2 4.231322-4 9.816831+2 4.475677-4 1.014415+3 4.648092-4 1.032661+3 4.707619-4 1.042554+3 4.859762-4 1.074994+3 5.090721-4 1.109724+3 5.416890-4 1.147133+3 5.832000-4 1.184497+3 6.291439-4 1.215447+3 6.765362-4 1.236280+3 7.332900-4 1.250584+3 7.947570-4 1.256870+3 8.579332-4 1.254152+3 9.265514-4 1.240890+3 9.885530-4 1.220195+3 1.056209-3 1.185245+3 1.109974-3 1.149362+3 1.166400-3 1.104504+3 1.217652-3 1.056269+3 1.260739-3 1.008621+3 1.302230-3 9.547021+2 1.339459-3 8.977180+2 1.361733-3 8.585680+2 1.389398-3 8.025344+2 1.413300-3 7.456332+2 1.431952-3 6.939628+2 1.447261-3 6.451871+2 1.461634-3 5.919865+2 1.473215-3 5.413468+2 1.481771-3 4.976851+2 1.488145-3 4.614228+2 1.493722-3 4.279593+2 1.503078-3 3.744352+2 1.505018-3 3.650374+2 1.506939-3 3.567316+2 1.508410-3 3.511756+2 1.510221-3 3.454337+2 1.511869-3 3.413913+2 1.513369-3 3.387893+2 1.515038-3 3.371927+2 1.516859-3 3.371108+2 1.518687-3 3.388534+2 1.520741-3 3.430600+2 1.522507-3 3.485942+2 1.524048-3 3.548491+2 1.525674-3 3.628585+2 1.527090-3 3.709518+2 1.529245-3 3.851456+2 1.530927-3 3.976494+2 1.535653-3 4.381657+2 1.542368-3 5.036780+2 1.544799-3 5.280409+2 1.547064-3 5.505401+2 1.550399-3 5.828949+2 1.553474-3 6.116831+2 1.556716-3 6.409576+2 1.560116-3 6.707234+2 1.565395-3 7.161677+2 1.581476-3 8.644288+2 1.589534-3 9.449443+2 1.594312-3 9.917864+2 1.599713-3 1.041843+3 1.606038-3 1.094918+3 1.613905-3 1.151613+3 1.621527-3 1.197651+3 1.633522-3 1.257449+3 1.645771-3 1.309052+3 1.665569-3 1.382564+3 1.687192-3 1.454160+3 1.709278-3 1.518366+3 1.741631-3 1.600179+3 1.774876-3 1.671228+3 1.805506-3 1.721441+3 1.827690-3 1.746655+3 1.843833-3 1.757672+3 1.864769-3 1.762332+3 1.899838-3 1.757189+3 1.912057-3 1.766154+3 1.919605-3 1.778904+3 1.927525-3 1.798530+3 1.943777-3 1.852938+3 1.966754-3 1.932994+3 1.977256-3 1.962960+3 1.987980-3 1.988236+3 2.003389-3 2.016352+3 2.020529-3 2.039299+3 2.047005-3 2.064427+3 2.069903-3 2.078844+3 2.127576-3 2.094762+3 2.139310-3 2.100989+3 2.160404-3 2.122443+3 2.200814-3 2.179174+3 2.216928-3 2.197099+3 2.239861-3 2.215766+3 2.269180-3 2.231255+3 2.296965-3 2.238936+3 2.337199-3 2.241773+3 2.354479-3 2.247132+3 2.377141-3 2.265366+3 2.413463-3 2.306260+3 2.434538-3 2.324500+3 2.462831-3 2.341216+3 2.501065-3 2.356126+3 2.587107-3 2.375496+3 2.688631-3 2.384199+3 2.826506-3 2.383063+3 2.987686-3 2.366674+3 3.212736-3 2.330392+3 3.456000-3 2.276475+3 3.713265-3 2.211036+3 3.954546-3 2.145573+3 4.269394-3 2.057343+3 4.613840-3 1.961385+3 4.991327-3 1.856839+3 5.237936-3 1.789691+3 5.712307-3 1.665819+3 5.973791-3 1.599942+3 6.245221-3 1.533324+3 6.517222-3 1.468772+3 6.790666-3 1.405064+3 7.061969-3 1.343195+3 7.304088-3 1.287426+3 7.528678-3 1.236099+3 7.725555-3 1.190302+3 7.886331-3 1.152022+3 8.038981-3 1.114517+3 8.171271-3 1.080575+3 8.281805-3 1.050500+3 8.373388-3 1.023741+3 8.451330-3 9.992150+2 8.517950-3 9.764125+2 8.585192-3 9.507282+2 8.640760-3 9.263207+2 8.685140-3 9.038244+2 8.719123-3 8.844711+2 8.837175-3 8.120371+2 8.872373-3 7.965537+2 8.895884-3 7.901759+2 8.914749-3 7.877679+2 8.939505-3 7.884261+2 8.955071-3 7.909871+2 8.983397-3 7.993899+2 9.018707-3 8.149309+2 9.098876-3 8.566065+2 9.126428-3 8.693336+2 9.155582-3 8.809231+2 9.192581-3 8.927285+2 9.234162-3 9.025053+2 9.289147-3 9.109920+2 9.345274-3 9.158961+2 9.408898-3 9.181684+2 9.478044-3 9.175452+2 9.546921-3 9.141280+2 9.619687-3 9.075147+2 9.683501-3 8.988420+2 9.737106-3 8.891488+2 9.898243-3 8.538336+2 9.950452-3 8.480201+2 9.994820-3 8.482663+2 1.004473-2 8.540182+2 1.017364-2 8.788833+2 1.023746-2 8.869777+2 1.042555-2 8.966890+2 1.051289-2 9.083225+2 1.064593-2 9.320308+2 1.073549-2 9.439081+2 1.079542-2 9.492394+2 1.095797-2 9.569040+2 1.116746-2 9.591145+2 1.139101-2 9.566481+2 1.167095-2 9.491855+2 1.214534-2 9.297548+2 1.270300-2 9.013098+2 1.334328-2 8.656089+2 1.403838-2 8.256760+2 1.503088-2 7.699283+2 1.647910-2 6.949958+2 1.826752-2 6.149724+2 2.043037-2 5.347636+2 2.301129-2 4.578310+2 2.530737-2 4.017829+2 2.803340-2 3.465506+2 3.148057-2 2.906385+2 3.560042-2 2.397947+2 3.845967-2 2.115161+2 4.168694-2 1.844457+2 4.690833-2 1.496744+2 5.021602-2 1.321559+2 5.279322-2 1.200795+2 5.487506-2 1.109358+2 5.650173-2 1.039295+2 5.772244-2 9.853584+1 5.867031-2 9.403312+1 5.907062-2 9.193988+1 5.939389-2 9.009293+1 5.965920-2 8.842488+1 6.003204-2 8.579099+1 6.083276-2 7.970121+1 6.110476-2 7.822614+1 6.132051-2 7.756404+1 6.148276-2 7.740396+1 6.171658-2 7.766369+1 6.200043-2 7.859257+1 6.276856-2 8.203562+1 6.319349-2 8.335424+1 6.365868-2 8.415600+1 6.431842-2 8.455982+1 6.511215-2 8.444646+1 6.611599-2 8.382127+1 6.799477-2 8.199096+1 7.009805-2 7.946650+1 7.335273-2 7.516251+1 7.766437-2 6.945974+1 8.230788-2 6.371553+1 8.886894-2 5.648393+1 9.869902-2 4.753831+1 1.095714-1 3.975562+1 1.207656-1 3.347925+1 1.525561-1 2.191534+1 1.999033-1 1.335327+1 2.428862-1 9.277852+0 3.019952-1 6.125414+0 4.076002-1 3.432155+0 5.901161-1 1.667122+0 9.462712-1 6.580528-1 1.619761+0 2.266351-1 3.885536+0 3.956793-2 1.173413+1 4.341903-3 3.543651+1 4.761216-4 1.070165+2 5.220619-5 3.231848+2 5.724300-6 9.760024+2 6.276571-7 3.162278+3 5.978941-8 1.000000+4 5.978941-9 3.162278+4 5.97894-10 1.000000+5 5.97894-11 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.081800-6 1.258900-6 3.299400-6 1.584900-6 5.229200-6 1.995300-6 8.287800-6 2.511900-6 1.313500-5 3.162300-6 2.081800-5 3.981100-6 3.299400-5 5.011900-6 5.229100-5 6.309600-6 8.287600-5 7.943300-6 1.313500-4 1.000000-5 2.081700-4 1.258900-5 3.299200-4 1.584900-5 5.226400-4 1.995300-5 8.278200-4 2.511900-5 1.311300-3 3.162300-5 2.077500-3 3.981100-5 3.291700-3 5.011900-5 5.215800-3 6.309600-5 8.264800-3 7.943300-5 1.307800-2 1.000000-4 2.068700-2 1.258900-4 3.271200-2 1.584900-4 5.158100-2 1.995300-4 8.119900-2 2.511900-4 1.272800-1 3.162300-4 1.982700-1 3.981100-4 3.056600-1 5.011900-4 4.629700-1 6.309600-4 6.853100-1 7.943300-4 9.845500-1 1.000000-3 1.367500+0 1.258900-3 1.840500+0 1.584900-3 2.423000+0 1.995300-3 3.159100+0 2.511900-3 4.090100+0 3.162300-3 5.238000+0 3.981100-3 6.616400+0 5.011900-3 8.232100+0 6.309600-3 1.006000+1 7.943300-3 1.206900+1 1.000000-2 1.425000+1 1.258900-2 1.660000+1 1.584900-2 1.906200+1 1.995300-2 2.164100+1 2.511900-2 2.408200+1 3.162300-2 2.621500+1 3.981100-2 2.786100+1 5.011900-2 2.916900+1 6.309600-2 2.969700+1 7.943300-2 3.019100+1 1.000000-1 2.994800+1 1.258900-1 2.923500+1 1.584900-1 2.813800+1 1.995300-1 2.675000+1 2.511900-1 2.515600+1 3.162300-1 2.343500+1 3.981100-1 2.164400+1 5.011900-1 1.984100+1 6.309600-1 1.806300+1 7.943300-1 1.633300+1 1.000000+0 1.467600+1 1.258900+0 1.309800+1 1.584900+0 1.161400+1 1.995300+0 1.023000+1 2.511900+0 8.953300+0 3.162300+0 7.786700+0 3.981100+0 6.731800+0 5.011900+0 5.787100+0 6.309600+0 4.948700+0 7.943300+0 4.211600+0 1.000000+1 3.568400+0 1.258900+1 3.011100+0 1.584900+1 2.531600+0 1.995300+1 2.121400+0 2.511900+1 1.772200+0 3.162300+1 1.476600+0 3.981100+1 1.227300+0 5.011900+1 1.017800+0 6.309600+1 8.423600-1 7.943300+1 6.959100-1 1.000000+2 5.739600-1 1.258900+2 4.726700-1 1.584900+2 3.887100-1 1.995300+2 3.192700-1 2.511900+2 2.619200-1 3.162300+2 2.146400-1 3.981100+2 1.757100-1 5.011900+2 1.437100-1 6.309600+2 1.174400-1 7.943300+2 9.589000-2 1.000000+3 7.823500-2 1.258900+3 6.378400-2 1.584900+3 5.196700-2 1.995300+3 4.231200-2 2.511900+3 3.443000-2 3.162300+3 2.800000-2 3.981100+3 2.275800-2 5.011900+3 1.848800-2 6.309600+3 1.501200-2 7.943300+3 1.218300-2 1.000000+4 9.883000-3 1.258900+4 8.013700-3 1.584900+4 6.495200-3 1.995300+4 5.262300-3 2.511900+4 4.261800-3 3.162300+4 3.450300-3 3.981100+4 2.792200-3 5.011900+4 2.258900-3 6.309600+4 1.826900-3 7.943300+4 1.477000-3 1.000000+5 1.193700-3 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976775-4 5.011872-4 5.005106-4 6.309573-4 6.298947-4 7.943282-4 7.926648-4 1.000000-3 9.974012-4 1.258925-3 1.254881-3 1.584893-3 1.578569-3 1.995262-3 1.985356-3 2.511886-3 2.496306-3 3.162278-3 3.137792-3 3.981072-3 3.942667-3 5.011872-3 4.951769-3 6.309573-3 6.215787-3 7.943282-3 7.797288-3 1.000000-2 9.773042-3 1.258925-2 1.223666-2 1.584893-2 1.530120-2 1.995262-2 1.910693-2 2.511886-2 2.381909-2 3.162278-2 2.963996-2 3.981072-2 3.680814-2 5.011872-2 4.559812-2 6.309573-2 5.632639-2 7.943282-2 6.937662-2 1.000000-1 8.518463-2 1.258925-1 1.042637-1 1.584893-1 1.272035-1 1.995262-1 1.546785-1 2.511886-1 1.874618-1 3.162278-1 2.264553-1 3.981072-1 2.726692-1 5.011872-1 3.273183-1 6.309573-1 3.917923-1 7.943282-1 4.677912-1 1.000000+0 5.571053-1 1.258925+0 6.625212-1 1.584893+0 7.867837-1 1.995262+0 9.338661-1 2.511886+0 1.108443+0 3.162278+0 1.316131+0 3.981072+0 1.564089+0 5.011872+0 1.860974+0 6.309573+0 2.217272+0 7.943282+0 2.645693+0 1.000000+1 3.162302+0 1.258925+1 3.786333+0 1.584893+1 4.541529+0 1.995262+1 5.456764+0 2.511886+1 6.567431+0 3.162278+1 7.917449+0 3.981072+1 9.560077+0 5.011872+1 1.156088+1 6.309573+1 1.400047+1 7.943282+1 1.697813+1 1.000000+2 2.061548+1 1.258925+2 2.506264+1 1.584893+2 3.050430+1 1.995262+2 3.716793+1 2.511886+2 4.533291+1 3.162278+2 5.534556+1 3.981072+2 6.762996+1 5.011872+2 8.271315+1 6.309573+2 1.012428+2 7.943282+2 1.240183+2 1.000000+3 1.520272+2 1.258925+3 1.864905+2 1.584893+3 2.289193+2 1.995262+3 2.811743+2 2.511886+3 3.455529+2 3.162278+3 4.249368+2 3.981072+3 5.228209+2 5.011872+3 6.435824+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88200-10 1.995262-5 1.090635-9 2.511886-5 1.728511-9 3.162278-5 2.739533-9 3.981072-5 4.341908-9 5.011872-5 6.881430-9 6.309573-5 1.090602-8 7.943282-5 1.727772-8 1.000000-4 2.737620-8 1.258925-4 4.337558-8 1.584893-4 6.868633-8 1.995262-4 1.087628-7 2.511886-4 1.721227-7 3.162278-4 2.721501-7 3.981072-4 4.296340-7 5.011872-4 6.766225-7 6.309573-4 1.062653-6 7.943282-4 1.663389-6 1.000000-3 2.598761-6 1.258925-3 4.044883-6 1.584893-3 6.324201-6 1.995262-3 9.906706-6 2.511886-3 1.558073-5 3.162278-3 2.448600-5 3.981072-3 3.840470-5 5.011872-3 6.010343-5 6.309573-3 9.378631-5 7.943282-3 1.459939-4 1.000000-2 2.269580-4 1.258925-2 3.525935-4 1.584893-2 5.477307-4 1.995262-2 8.456902-4 2.511886-2 1.299775-3 3.162278-2 1.982812-3 3.981072-2 3.002580-3 5.011872-2 4.520604-3 6.309573-2 6.769345-3 7.943282-2 1.005621-2 1.000000-1 1.481537-2 1.258925-1 2.162887-2 1.584893-1 3.128584-2 1.995262-1 4.484775-2 2.511886-1 6.372683-2 3.162278-1 8.977242-2 3.981072-1 1.254379-1 5.011872-1 1.738690-1 6.309573-1 2.391650-1 7.943282-1 3.265370-1 1.000000+0 4.428947-1 1.258925+0 5.964042-1 1.584893+0 7.981095-1 1.995262+0 1.061396+0 2.511886+0 1.403443+0 3.162278+0 1.846147+0 3.981072+0 2.416983+0 5.011872+0 3.150898+0 6.309573+0 4.092302+0 7.943282+0 5.297589+0 1.000000+1 6.837698+0 1.258925+1 8.802921+0 1.584893+1 1.130740+1 1.995262+1 1.449586+1 2.511886+1 1.855143+1 3.162278+1 2.370533+1 3.981072+1 3.025064+1 5.011872+1 3.855784+1 6.309573+1 4.909527+1 7.943282+1 6.245470+1 1.000000+2 7.938452+1 1.258925+2 1.008299+2 1.584893+2 1.279850+2 1.995262+2 1.623583+2 2.511886+2 2.058557+2 3.162278+2 2.608822+2 3.981072+2 3.304772+2 5.011872+2 4.184741+2 6.309573+2 5.297145+2 7.943282+2 6.703099+2 1.000000+3 8.479728+2 1.258925+3 1.072435+3 1.584893+3 1.355974+3 1.995262+3 1.714088+3 2.511886+3 2.166334+3 3.162278+3 2.737341+3 3.981072+3 3.458251+3 5.011872+3 4.368290+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.610000-6 4.880360+6 5.900000-6 3.980660+6 6.531306-6 2.608388+6 7.244360-6 1.683900+6 8.035261-6 1.079388+6 8.912509-6 6.868192+5 9.670000-6 4.784409+5 9.670000-6 1.795121+6 9.772372-6 1.736552+6 9.885531-6 1.679624+6 1.011579-5 1.571181+6 1.047129-5 1.429891+6 1.085000-5 1.306876+6 1.109000-5 1.241509+6 1.109000-5 2.132760+6 1.122018-5 2.074733+6 1.135011-5 2.021264+6 1.165000-5 1.910431+6 1.180000-5 1.860725+6 1.202264-5 1.794229+6 1.230269-5 1.719720+6 1.244515-5 1.685638+6 1.273503-5 1.623461+6 1.290000-5 1.591564+6 1.303167-5 1.568427+6 1.320000-5 1.540006+6 1.333521-5 1.519276+6 1.370000-5 1.469876+6 1.380384-5 1.457344+6 1.396368-5 1.440099+6 1.420000-5 1.415799+6 1.428894-5 1.407609+6 1.462177-5 1.381139+6 1.470000-5 1.375218+6 1.480000-5 1.368421+6 1.515000-5 1.348458+6 1.531087-5 1.340721+6 1.570000-5 1.326280+6 1.590000-5 1.320552+6 1.630000-5 1.313045+6 1.640590-5 1.311811+6 1.650000-5 1.310801+6 1.690000-5 1.309778+6 1.698244-5 1.310099+6 1.717908-5 1.311019+6 1.750000-5 1.314773+6 1.757924-5 1.315759+6 1.778279-5 1.319486+6 1.800000-5 1.324915+6 1.830000-5 1.332592+6 1.850000-5 1.338811+6 1.862087-5 1.342626+6 1.905461-5 1.359263+6 1.950000-5 1.378738+6 1.980000-5 1.393787+6 2.000000-5 1.404765+6 2.041738-5 1.427814+6 2.055000-5 1.435888+6 2.065380-5 1.442243+6 2.113489-5 1.473999+6 2.150000-5 1.498240+6 2.162719-5 1.507363+6 2.170000-5 1.512919+6 2.238721-5 1.565710+6 2.270000-5 1.589907+6 2.300000-5 1.615854+6 2.371374-5 1.678121+6 2.375200-5 1.681610+6 2.426610-5 1.728765+6 2.454709-5 1.755998+6 2.500000-5 1.800220+6 2.540973-5 1.842000+6 2.630268-5 1.934190+6 2.650000-5 1.955489+6 2.660725-5 1.967111+6 2.786121-5 2.108607+6 2.851018-5 2.183225+6 2.985383-5 2.344429+6 3.001000-5 2.363443+6 3.001000-5 2.757852+7 3.010000-5 2.696571+7 3.040000-5 2.523581+7 3.080000-5 2.327743+7 3.135000-5 2.108390+7 3.190000-5 1.931088+7 3.245000-5 1.784389+7 3.311311-5 1.638376+7 3.388442-5 1.499737+7 3.400000-5 1.481708+7 3.470000-5 1.380092+7 3.589219-5 1.241665+7 3.630781-5 1.201837+7 3.644000-5 1.189744+7 3.644000-5 2.253606+7 3.680000-5 2.147657+7 3.715352-5 2.055745+7 3.720000-5 2.044111+7 3.730000-5 2.020492+7 3.760000-5 1.953272+7 3.830000-5 1.817160+7 3.900000-5 1.702867+7 3.935501-5 1.651890+7 3.981072-5 1.591350+7 4.000000-5 1.568414+7 4.073803-5 1.484544+7 4.168694-5 1.392761+7 4.180000-5 1.382599+7 4.216965-5 1.351448+7 4.315191-5 1.276848+7 4.466836-5 1.181565+7 4.500000-5 1.163093+7 4.518559-5 1.153330+7 4.650000-5 1.090701+7 4.800000-5 1.030695+7 4.841724-5 1.016006+7 5.011872-5 9.643360+6 5.150000-5 9.295979+6 5.188000-5 9.209918+6 5.432503-5 8.751580+6 5.500000-5 8.652414+6 5.559043-5 8.570505+6 5.888437-5 8.216657+6 5.990000-5 8.142599+6 5.990000-5 8.199818+6 6.000000-5 8.193018+6 6.025596-5 8.175009+6 6.110000-5 8.118159+6 6.220300-5 8.055821+6 6.309573-5 8.014403+6 6.330000-5 8.006326+6 6.450000-5 7.966266+6 6.456542-5 7.964430+6 6.531306-5 7.945701+6 6.539900-5 7.943516+6 6.580000-5 7.932089+6 6.683439-5 7.907789+6 6.690000-5 7.906576+6 6.800000-5 7.890165+6 6.839116-5 7.886017+6 6.950000-5 7.879149+6 7.000000-5 7.878058+6 7.079458-5 7.874786+6 7.244360-5 7.871643+6 7.413102-5 7.878527+6 7.500000-5 7.886417+6 7.585776-5 7.892263+6 7.673615-5 7.896631+6 7.800000-5 7.906003+6 7.852356-5 7.911361+6 8.000000-5 7.929324+6 8.128305-5 7.941034+6 8.150000-5 7.942414+6 8.222426-5 7.948083+6 8.413951-5 7.967165+6 8.511380-5 7.978573+6 8.609938-5 7.987445+6 8.650000-5 7.989770+6 8.912509-5 8.008432+6 9.015711-5 8.018255+6 9.225714-5 8.029897+6 9.300000-5 8.032024+6 9.332543-5 8.033224+6 9.440609-5 8.037616+6 9.549926-5 8.042559+6 9.660509-5 8.048403+6 9.800000-5 8.051851+6 9.900000-5 8.054694+6 1.000000-4 8.054475+6 1.020000-4 8.055815+6 1.023293-4 8.056228+6 1.040000-4 8.058601+6 1.071519-4 8.053176+6 1.080000-4 8.052041+6 1.083927-4 8.050555+6 1.122018-4 8.039566+6 1.135011-4 8.036326+6 1.150000-4 8.033515+6 1.161449-4 8.027492+6 1.174898-4 8.017665+6 1.190000-4 8.006880+6 1.194100-4 8.004098+6 1.244515-4 7.972453+6 1.260000-4 7.959444+6 1.303167-4 7.914361+6 1.318257-4 7.899366+6 1.333521-4 7.884620+6 1.350000-4 7.863183+6 1.364583-4 7.841396+6 1.400000-4 7.790221+6 1.430000-4 7.748541+6 1.450000-4 7.721610+6 1.500000-4 7.629318+6 1.548817-4 7.543917+6 1.566751-4 7.506176+6 1.603245-4 7.431524+6 1.621810-4 7.394428+6 1.640590-4 7.357656+6 1.659587-4 7.321175+6 1.720000-4 7.183745+6 1.737801-4 7.144670+6 1.800000-4 7.012875+6 1.844400-4 6.907936+6 1.844400-4 7.287669+6 1.850000-4 7.287195+6 1.852000-4 7.287123+6 1.883649-4 7.300419+6 1.885000-4 7.301381+6 1.900000-4 7.311498+6 1.905461-4 7.314749+6 1.910800-4 7.317456+6 1.920000-4 7.320750+6 1.927525-4 7.322085+6 1.930000-4 7.322369+6 1.937300-4 7.321127+6 1.937300-4 7.588251+6 1.940000-4 7.590230+6 1.944000-4 7.591847+6 1.950000-4 7.595588+6 1.960000-4 7.600229+6 1.970000-4 7.603368+6 1.974000-4 7.603373+6 1.980000-4 7.604031+6 1.990000-4 7.602264+6 2.000000-4 7.598024+6 2.010000-4 7.590301+6 2.015000-4 7.585365+6 2.020000-4 7.579820+6 2.025000-4 7.572968+6 2.035000-4 7.558161+6 2.041738-4 7.545225+6 2.045000-4 7.538598+6 2.050000-4 7.527472+6 2.055000-4 7.514223+6 2.065380-4 7.484901+6 2.075000-4 7.454321+6 2.080000-4 7.437577+6 2.085000-4 7.420115+6 2.089296-4 7.404345+6 2.095000-4 7.383590+6 2.102300-4 7.355596+6 2.110000-4 7.325197+6 2.124000-4 7.267644+6 2.128000-4 7.250668+6 2.137962-4 7.207580+6 2.150000-4 7.154766+6 2.162719-4 7.098331+6 2.170000-4 7.065847+6 2.187762-4 6.986076+6 2.190000-4 6.976209+6 2.205000-4 6.907732+6 2.213095-4 6.870962+6 2.220000-4 6.838248+6 2.238721-4 6.751755+6 2.240000-4 6.745958+6 2.270000-4 6.612012+6 2.300000-4 6.484018+6 2.317395-4 6.412319+6 2.344229-4 6.303215+6 2.350000-4 6.280645+6 2.371374-4 6.195967+6 2.380000-4 6.162673+6 2.400000-4 6.088151+6 2.415000-4 6.033793+6 2.450000-4 5.913506+6 2.454709-4 5.898042+6 2.480000-4 5.817351+6 2.500000-4 5.756471+6 2.511886-4 5.720107+6 2.540000-4 5.633800+6 2.540973-4 5.630894+6 2.570396-4 5.545861+6 2.580000-4 5.519410+6 2.600160-4 5.464727+6 2.628000-4 5.393000+6 2.630268-4 5.387326+6 2.650000-4 5.339036+6 2.660000-4 5.314870+6 2.660725-4 5.313157+6 2.691535-4 5.242199+6 2.722701-4 5.171768+6 2.754229-4 5.100625+6 2.760000-4 5.087945+6 2.786121-4 5.032207+6 2.800000-4 5.003421+6 2.818383-4 4.966343+6 2.840000-4 4.923956+6 2.851018-4 4.902954+6 2.890900-4 4.827105+6 2.900000-4 4.810356+6 2.917427-4 4.779040+6 2.930000-4 4.755655+6 2.951209-4 4.717229+6 2.980000-4 4.666701+6 3.019952-4 4.599511+6 3.030000-4 4.582297+6 3.054921-4 4.540687+6 3.090295-4 4.483456+6 3.100000-4 4.467383+6 3.200000-4 4.311795+6 3.235937-4 4.259811+6 3.240000-4 4.253833+6 3.273407-4 4.205173+6 3.349200-4 4.096128+6 3.349200-4 4.367137+6 3.350000-4 4.365993+6 3.427678-4 4.257795+6 3.430000-4 4.254580+6 3.467369-4 4.203578+6 3.548134-4 4.093605+6 3.550000-4 4.091163+6 3.672823-4 3.936131+6 3.700000-4 3.902180+6 3.715352-4 3.883445+6 3.780000-4 3.804100+6 3.801894-4 3.777850+6 3.860400-4 3.709364+6 3.860400-4 3.772237+6 3.890451-4 3.738314+6 3.935501-4 3.688182+6 3.981072-4 3.637224+6 4.027170-4 3.585711+6 4.073803-4 3.534662+6 4.168694-4 3.435298+6 4.216965-4 3.386676+6 4.265795-4 3.337437+6 4.315191-4 3.287862+6 4.365158-4 3.238772+6 4.466836-4 3.143238+6 4.518559-4 3.096421+6 4.570882-4 3.049128+6 4.650000-4 2.978423+6 4.700000-4 2.934875+6 4.700600-4 2.934355+6 4.710000-4 2.926231+6 4.710000-4 3.005161+6 4.841724-4 2.895284+6 4.850000-4 2.888550+6 4.897788-4 2.849641+6 4.954502-4 2.803339+6 5.011872-4 2.758168+6 5.069907-4 2.713927+6 5.080000-4 2.706257+6 5.188000-4 2.626192+6 5.190000-4 2.624732+6 5.248075-4 2.582898+6 5.308844-4 2.539728+6 5.370318-4 2.496432+6 5.400000-4 2.476063+6 5.432503-4 2.454126+6 5.559043-4 2.372080+6 5.580000-4 2.358687+6 5.623413-4 2.331005+6 5.821032-4 2.210821+6 5.888437-4 2.171649+6 5.956621-4 2.133166+6 6.000000-4 2.109376+6 6.025596-4 2.095395+6 6.100000-4 2.055135+6 6.165950-4 2.019822+6 6.237348-4 1.982881+6 6.309573-4 1.946769+6 6.350000-4 1.927107+6 6.382635-4 1.911485+6 6.456542-4 1.876437+6 6.683439-4 1.771839+6 6.760830-4 1.738574+6 6.850000-4 1.701307+6 6.918310-4 1.673273+6 7.000000-4 1.640695+6 7.079458-4 1.609343+6 7.161434-4 1.578081+6 7.244360-4 1.547265+6 7.328245-4 1.516769+6 7.585776-4 1.429442+6 7.673615-4 1.400853+6 7.852356-4 1.344716+6 8.035261-4 1.291194+6 8.128305-4 1.265138+6 8.200000-4 1.245690+6 8.222426-4 1.239629+6 8.317638-4 1.214031+6 8.413951-4 1.188898+6 8.511380-4 1.164381+6 8.609938-4 1.140419+6 8.709636-4 1.116814+6 8.912509-4 1.070716+6 9.015711-4 1.048165+6 9.120108-4 1.026127+6 9.200000-4 1.009723+6 9.225714-4 1.004485+6 9.332543-4 9.831505+5 9.660509-4 9.214471+5 9.740000-4 9.074744+5 9.772372-4 9.018443+5 9.885531-4 8.825033+5 1.000000-3 8.634802+5 1.011579-3 8.446270+5 1.023293-3 8.261518+5 1.059254-3 7.734386+5 1.071519-3 7.564681+5 1.096478-3 7.232064+5 1.110000-3 7.061480+5 1.122018-3 6.914674+5 1.135011-3 6.761272+5 1.161449-3 6.463232+5 1.174898-3 6.316975+5 1.190000-3 6.158387+5 1.216186-3 5.897733+5 1.230269-3 5.764813+5 1.244515-3 5.633908+5 1.258925-3 5.505671+5 1.273503-3 5.379130+5 1.288250-3 5.255235+5 1.303167-3 5.134083+5 1.318257-3 5.015773+5 1.333521-3 4.900472+5 1.364583-3 4.676604+5 1.380384-3 4.567639+5 1.396368-3 4.460891+5 1.412538-3 4.356457+5 1.428894-3 4.254413+5 1.445440-3 4.154832+5 1.450000-3 4.127966+5 1.462177-3 4.057006+5 1.479108-3 3.961485+5 1.496236-3 3.867374+5 1.500000-3 3.847159+5 1.528500-3 3.699354+5 1.528500-3 1.162261+6 1.548817-3 1.131610+6 1.566751-3 1.105496+6 1.570000-3 1.100858+6 1.575000-3 1.093759+6 1.578100-3 1.090411+6 1.578100-3 1.414552+6 1.589000-3 1.407145+6 1.603245-3 1.397813+6 1.610000-3 1.393524+6 1.620000-3 1.387286+6 1.621810-3 1.385202+6 1.625000-3 1.383146+6 1.660000-3 1.359973+6 1.678804-3 1.346362+6 1.690000-3 1.336590+6 1.698244-3 1.328333+6 1.705000-3 1.321713+6 1.717908-3 1.308766+6 1.730000-3 1.297035+6 1.737801-3 1.289667+6 1.757924-3 1.269386+6 1.778279-3 1.245243+6 1.780700-3 1.242434+6 1.800000-3 1.217789+6 1.819701-3 1.191715+6 1.850000-3 1.146741+6 1.862087-3 1.129480+6 1.883649-3 1.097632+6 1.905461-3 1.066681+6 1.927525-3 1.036617+6 1.935200-3 1.026415+6 1.935200-3 1.187425+6 1.949845-3 1.165764+6 1.950000-3 1.165537+6 2.000000-3 1.095611+6 2.018366-3 1.071865+6 2.020200-3 1.069535+6 2.041738-3 1.043520+6 2.089296-3 9.892264+5 2.090000-3 9.884458+5 2.113489-3 9.627187+5 2.137962-3 9.367341+5 2.150000-3 9.243026+5 2.160700-3 9.134516+5 2.160700-3 9.678064+5 2.162719-3 9.657309+5 2.176000-3 9.522423+5 2.187762-3 9.405309+5 2.209000-3 9.199147+5 2.213095-3 9.160355+5 2.220000-3 9.095437+5 2.238721-3 8.922695+5 2.250000-3 8.820158+5 2.290868-3 8.460710+5 2.317395-3 8.238946+5 2.317700-3 8.236416+5 2.344229-3 8.020709+5 2.368100-3 7.831801+5 2.368100-3 8.171743+5 2.371374-3 8.145804+5 2.398833-3 7.933010+5 2.426610-3 7.726169+5 2.454709-3 7.523781+5 2.483133-3 7.326988+5 2.511886-3 7.134158+5 2.517600-3 7.096402+5 2.540973-3 6.945018+5 2.570396-3 6.760911+5 2.600160-3 6.581987+5 2.630268-3 6.406218+5 2.660725-3 6.235402+5 2.691535-3 6.069610+5 2.720000-3 5.922063+5 2.722701-3 5.908335+5 2.754229-3 5.750752+5 2.786121-3 5.597639+5 2.800000-3 5.532716+5 2.818383-3 5.447447+5 2.851018-3 5.300579+5 2.917427-3 5.016752+5 2.920000-3 5.006210+5 2.951209-3 4.880764+5 3.000000-3 4.693578+5 3.054921-3 4.494192+5 3.126079-3 4.253847+5 3.150000-3 4.177077+5 3.162278-3 4.138408+5 3.198895-3 4.026170+5 3.235937-3 3.917030+5 3.273407-3 3.809760+5 3.311311-3 3.704999+5 3.349654-3 3.602484+5 3.388442-3 3.502933+5 3.427678-3 3.406306+5 3.507519-3 3.220723+5 3.548134-3 3.130679+5 3.589219-3 3.043300+5 3.672823-3 2.875279+5 3.715352-3 2.794880+5 3.758374-3 2.716573+5 3.801894-3 2.640587+5 3.845918-3 2.566840+5 3.900000-3 2.480260+5 3.981072-3 2.358148+5 4.000000-3 2.330901+5 4.027170-3 2.292452+5 4.073803-3 2.228416+5 4.168694-3 2.104976+5 4.216965-3 2.045229+5 4.315191-3 1.930925+5 4.365158-3 1.876262+5 4.415704-3 1.823130+5 4.466836-3 1.771584+5 4.500000-3 1.739254+5 4.518559-3 1.721444+5 4.623810-3 1.624705+5 4.677351-3 1.578164+5 4.731513-3 1.533024+5 4.786301-3 1.489232+5 4.841724-3 1.446717+5 4.897788-3 1.405433+5 4.954502-3 1.365386+5 5.000000-3 1.334407+5 5.069907-3 1.288588+5 5.128614-3 1.251850+5 5.248075-3 1.181229+5 5.300000-3 1.152069+5 5.308844-3 1.147183+5 5.370318-3 1.114003+5 5.495409-3 1.050640+5 5.559043-3 1.020376+5 5.623413-3 9.909903+4 5.688529-3 9.624672+4 5.754399-3 9.348068+4 5.800000-3 9.161463+4 5.888437-3 8.813018+4 5.956621-3 8.556920+4 6.000000-3 8.399397+4 6.025596-3 8.308398+4 6.095369-3 8.066807+4 6.309573-3 7.385001+4 6.382635-3 7.170580+4 6.456542-3 6.962305+4 6.531306-3 6.760368+4 6.606934-3 6.563697+4 6.683439-3 6.371665+4 6.760830-3 6.184866+4 6.839116-3 6.003751+4 7.161434-3 5.331034+4 7.244360-3 5.175086+4 7.300000-3 5.073971+4 7.328245-3 5.023688+4 7.413102-3 4.875899+4 7.498942-3 4.732084+4 7.673615-3 4.457643+4 7.762471-3 4.326667+4 7.852356-3 4.199337+4 8.128305-3 3.839009+4 8.222426-3 3.725971+4 8.317638-3 3.616128+4 8.413951-3 3.508868+4 8.609938-3 3.303518+4 8.709636-3 3.205553+4 8.810489-3 3.110432+4 8.933800-3 2.999520+4 8.933800-3 8.003595+4 9.015711-3 7.843402+4 9.090000-3 7.701992+4 9.120108-3 7.638819+4 9.225714-3 7.422965+4 9.332543-3 7.200077+4 9.440609-3 6.983980+4 9.549926-3 6.773850+4 9.660509-3 6.569922+4 9.800000-3 6.324646+4 9.885531-3 6.177762+4 9.992600-3 6.000437+4 9.992600-3 8.255501+4 1.000000-2 8.240127+4 1.025000-2 7.743338+4 1.035142-2 7.544405+4 1.045400-2 7.350330+4 1.045400-2 8.503223+4 1.059254-2 8.218582+4 1.060000-2 8.203614+4 1.071519-2 7.984149+4 1.080000-2 7.827816+4 1.083927-2 7.756858+4 1.088000-2 7.683379+4 1.096478-2 7.532663+4 1.110000-2 7.300827+4 1.122018-2 7.104981+4 1.135011-2 6.901588+4 1.148154-2 6.701451+4 1.161449-2 6.505338+4 1.188502-2 6.130589+4 1.202264-2 5.951588+4 1.216186-2 5.777693+4 1.230269-2 5.608928+4 1.244515-2 5.445226+4 1.258925-2 5.286359+4 1.273503-2 5.132748+4 1.273700-2 5.130697+4 1.288250-2 4.981242+4 1.303167-2 4.834107+4 1.318257-2 4.691438+4 1.348963-2 4.418900+4 1.350000-2 4.410092+4 1.364583-2 4.287921+4 1.380384-2 4.160694+4 1.413440-2 3.910067+4 1.428894-2 3.800146+4 1.445440-2 3.687176+4 1.450000-2 3.656757+4 1.479108-2 3.470509+4 1.513561-2 3.266854+4 1.531087-2 3.169448+4 1.548817-2 3.074914+4 1.566751-2 2.983180+4 1.584893-2 2.894214+4 1.640590-2 2.643356+4 1.650000-2 2.604029+4 1.659587-2 2.564458+4 1.678804-2 2.487543+4 1.730000-2 2.297752+4 1.737801-2 2.270318+4 1.757924-2 2.201636+4 1.778279-2 2.135009+4 1.798871-2 2.070409+4 1.819701-2 2.007808+4 1.883649-2 1.831280+4 1.905461-2 1.776048+4 1.972423-2 1.619124+4 1.995262-2 1.570049+4 2.000000-2 1.560118+4 2.018366-2 1.522439+4 2.041738-2 1.476310+4 2.065380-2 1.431606+4 2.089296-2 1.388277+4 2.150000-2 1.285545+4 2.162719-2 1.265358+4 2.187762-2 1.226885+4 2.213095-2 1.189270+4 2.238721-2 1.152831+4 2.264644-2 1.117462+4 2.290868-2 1.083169+4 2.300000-2 1.071573+4 2.344229-2 1.017621+4 2.371374-2 9.863616+3 2.400000-2 9.548179+3 2.426610-2 9.267401+3 2.483133-2 8.708085+3 2.500000-2 8.550325+3 2.511886-2 8.441089+3 2.540973-2 8.181410+3 2.570396-2 7.929889+3 2.600160-2 7.686041+3 2.630268-2 7.449891+3 2.691535-2 6.999681+3 2.722701-2 6.783534+3 2.754229-2 6.572924+3 2.818383-2 6.171537+3 2.851018-2 5.980293+3 2.884032-2 5.795114+3 2.900000-2 5.708404+3 2.917427-2 5.615749+3 2.951209-2 5.442006+3 3.000000-2 5.203533+3 3.054921-2 4.952108+3 3.090295-2 4.798432+3 3.162278-2 4.505526+3 3.198895-2 4.365316+3 3.235937-2 4.229571+3 3.273407-2 4.098150+3 3.311311-2 3.970907+3 3.349654-2 3.847123+3 3.388442-2 3.727248+3 3.500000-2 3.409612+3 3.507519-2 3.389553+3 3.548134-2 3.283393+3 3.589219-2 3.180622+3 3.672823-2 2.984792+3 3.758374-2 2.801262+3 3.801894-2 2.713869+3 3.890451-2 2.546828+3 3.935501-2 2.467224+3 3.981072-2 2.390121+3 4.000000-2 2.359069+3 4.073803-2 2.242752+3 4.120975-2 2.172540+3 4.168694-2 2.104001+3 4.265795-2 1.973453+3 4.315191-2 1.911306+3 4.415704-2 1.792931+3 4.518559-2 1.682040+3 4.623810-2 1.578073+3 4.677351-2 1.528548+3 4.731513-2 1.480494+3 4.841724-2 1.388944+3 4.897788-2 1.345226+3 5.069907-2 1.221263+3 5.128614-2 1.182585+3 5.188000-2 1.145151+3 5.308844-2 1.073868+3 5.370318-2 1.039917+3 5.559043-2 9.444912+2 5.623413-2 9.146859+2 5.800000-2 8.393033+2 5.821032-2 8.308922+2 5.888437-2 8.045076+2 5.956621-2 7.789285+2 6.025596-2 7.541164+2 6.144100-2 7.139610+2 6.144100-2 3.743910+3 6.189000-2 3.677912+3 6.237348-2 3.608677+3 6.309573-2 3.508647+3 6.340000-2 3.467683+3 6.382635-2 3.406289+3 6.550000-2 3.179237+3 6.683439-2 3.021858+3 6.760830-2 2.935553+3 6.800000-2 2.893184+3 6.918310-2 2.763769+3 7.000000-2 2.678897+3 7.244360-2 2.445514+3 7.328245-2 2.371874+3 7.413102-2 2.300459+3 7.498942-2 2.232208+3 7.585776-2 2.165990+3 7.673615-2 2.101746+3 7.852356-2 1.978910+3 8.035261-2 1.863257+3 8.222426-2 1.754386+3 8.317638-2 1.702303+3 8.511380-2 1.600649+3 8.609938-2 1.552129+3 8.912509-2 1.415239+3 9.015711-2 1.372356+3 9.120108-2 1.330777+3 9.549926-2 1.175342+3 9.660509-2 1.139416+3 9.772372-2 1.104592+3 9.800000-2 1.096217+3 9.885531-2 1.070805+3 1.023293-1 9.754886+2 1.047129-1 9.167171+2 1.059254-1 8.886775+2 1.122019-1 7.608611+2 1.161449-1 6.924407+2 1.174898-1 6.710329+2 1.202264-1 6.301470+2 1.230269-1 5.917560+2 1.244515-1 5.734482+2 1.288250-1 5.218520+2 1.318257-1 4.900661+2 1.333521-1 4.749126+2 1.348963-1 4.602275+2 1.380384-1 4.322143+2 1.396368-1 4.188551+2 1.412538-1 4.059089+2 1.428894-1 3.933647+2 1.479108-1 3.578734+2 1.513561-1 3.360131+2 1.531088-1 3.255894+2 1.566751-1 3.056957+2 1.584893-1 2.962099+2 1.603245-1 2.870187+2 1.640590-1 2.694849+2 1.659587-1 2.611248+2 1.678804-1 2.530268+2 1.698244-1 2.451828+2 1.737801-1 2.302182+2 1.778279-1 2.161684+2 1.819701-1 2.029770+2 1.862087-1 1.905920+2 1.905461-1 1.789636+2 1.927525-1 1.734187+2 1.972423-1 1.628403+2 1.995262-1 1.577962+2 2.000000-1 1.567769+2 2.018366-1 1.529108+2 2.041738-1 1.481771+2 2.113489-1 1.348427+2 2.137962-1 1.306705+2 2.213095-1 1.189132+2 2.238721-1 1.152344+2 2.264644-1 1.117043+2 2.290868-1 1.082826+2 2.317395-1 1.049659+2 2.344229-1 1.017520+2 2.371374-1 9.863665+1 2.400000-1 9.549138+1 2.426610-1 9.269067+1 2.454709-1 8.985486+1 2.483133-1 8.710595+1 2.511886-1 8.444094+1 2.540973-1 8.185747+1 2.570396-1 7.935319+1 2.600160-1 7.692831+1 2.630268-1 7.457784+1 2.660725-1 7.229923+1 2.722701-1 6.795051+1 2.786121-1 6.389791+1 2.818383-1 6.196400+1 2.884032-1 5.827017+1 2.917427-1 5.650678+1 2.951209-1 5.479679+1 2.985383-1 5.313919+1 3.000000-1 5.246185+1 3.019952-1 5.155640+1 3.090295-1 4.853324+1 3.126079-1 4.708888+1 3.162278-1 4.568964+1 3.198895-1 4.433207+1 3.273407-1 4.173783+1 3.311311-1 4.049826+1 3.388442-1 3.812872+1 3.467369-1 3.589892+1 3.507519-1 3.483347+1 3.548134-1 3.381796+1 3.589219-1 3.283207+1 3.630781-1 3.187538+1 3.672823-1 3.094699+1 3.715352-1 3.004729+1 3.758374-1 2.917384+1 3.845918-1 2.750302+1 3.890451-1 2.670396+1 4.027170-1 2.444348+1 4.073803-1 2.374656+1 4.120975-1 2.306981+1 4.168694-1 2.241279+1 4.216965-1 2.177474+1 4.265795-1 2.115487+1 4.315191-1 2.055388+1 4.365158-1 1.997000+1 4.415705-1 1.940276+1 4.466836-1 1.885166+1 4.518559-1 1.831622+1 4.570882-1 1.779598+1 4.623810-1 1.730106+1 4.731513-1 1.635215+1 4.786301-1 1.589768+1 4.841724-1 1.545585+1 4.897788-1 1.502631+1 4.954502-1 1.460975+1 5.011872-1 1.420475+1 5.069907-1 1.381101+1 5.128614-1 1.342835+1 5.188000-1 1.306466+1 5.248075-1 1.271084+1 5.308844-1 1.236661+1 5.370318-1 1.203171+1 5.432503-1 1.170609+1 5.559043-1 1.108112+1 5.623413-1 1.078204+1 5.688529-1 1.049115+1 5.754399-1 1.020822+1 5.821032-1 9.939085+0 5.956621-1 9.421947+0 6.025596-1 9.173560+0 6.095369-1 8.931788+0 6.165950-1 8.696523+0 6.237348-1 8.467567+0 6.309573-1 8.244639+0 6.382635-1 8.028231+0 6.456542-1 7.817511+0 6.531306-1 7.617217+0 6.606935-1 7.422064+0 6.683439-1 7.231915+0 6.760830-1 7.046657+0 6.839117-1 6.866244+0 6.998420-1 6.519385+0 7.079458-1 6.352666+0 7.161434-1 6.190616+0 7.244360-1 6.032700+0 7.413102-1 5.735854+0 7.498942-1 5.593027+0 7.585776-1 5.453770+0 7.673615-1 5.318004+0 7.762471-1 5.185696+0 7.943282-1 4.930966+0 8.035261-1 4.808682+0 8.128305-1 4.692472+0 8.222427-1 4.579071+0 8.511380-1 4.255065+0 8.609938-1 4.152301+0 8.709636-1 4.052057+0 8.810489-1 3.954362+0 8.912509-1 3.859318+0 9.015711-1 3.769155+0 9.120108-1 3.681099+0 9.225714-1 3.595162+0 9.332543-1 3.511234+0 9.440609-1 3.429338+0 9.549926-1 3.349353+0 9.660509-1 3.271254+0 9.772372-1 3.195036+0 9.885531-1 3.120899+0 1.000000+0 3.050530+0 1.011579+0 2.981817+0 1.023293+0 2.914647+0 1.035142+0 2.848996+0 1.047129+0 2.784820+0 1.059254+0 2.722132+0 1.071519+0 2.660857+0 1.083927+0 2.600967+0 1.096478+0 2.542428+0 1.122018+0 2.429412+0 1.135011+0 2.374943+0 1.148154+0 2.321697+0 1.161449+0 2.270853+0 1.174898+0 2.221122+0 1.188502+0 2.172483+0 1.202264+0 2.124907+0 1.216186+0 2.078403+0 1.230269+0 2.032918+0 1.244515+0 1.988438+0 1.250000+0 1.971706+0 1.258925+0 1.944953+0 1.273503+0 1.902453+0 1.288250+0 1.861015+0 1.318257+0 1.782972+0 1.333521+0 1.745213+0 1.348963+0 1.708250+0 1.364583+0 1.672072+0 1.380384+0 1.636661+0 1.396368+0 1.602006+0 1.412538+0 1.568099+0 1.428894+0 1.534933+0 1.445440+0 1.502468+0 1.462177+0 1.470792+0 1.479108+0 1.440648+0 1.513561+0 1.382222+0 1.531087+0 1.353904+0 1.548817+0 1.326165+0 1.584893+0 1.272393+0 1.621810+0 1.220837+0 1.640590+0 1.195929+0 1.678804+0 1.148982+0 1.698244+0 1.126206+0 1.717908+0 1.103891+0 1.737801+0 1.082029+0 1.757924+0 1.060602+0 1.778279+0 1.039604+0 1.798871+0 1.019020+0 1.819701+0 9.988594-1 1.840772+0 9.790978-1 1.862087+0 9.597930-1 1.883649+0 9.414269-1 1.905461+0 9.234119-1 1.927525+0 9.057439-1 1.949845+0 8.884214-1 1.972423+0 8.714419-1 2.000000+0 8.513958-1 2.018366+0 8.384533-1 2.044000+0 8.209072-1 2.065380+0 8.067274-1 2.089296+0 7.913242-1 2.113489+0 7.762634-1 2.162719+0 7.478336-1 2.187762+0 7.340131-1 2.213095+0 7.204536-1 2.238721+0 7.071528-1 2.290868+0 6.812827-1 2.344229+0 6.563644-1 2.371374+0 6.442582-1 2.426610+0 6.207866-1 2.483133+0 5.988198-1 2.511886+0 5.881307-1 2.540973+0 5.776365-1 2.570396+0 5.673361-1 2.630268+0 5.472831-1 2.691535+0 5.279427-1 2.722701+0 5.185374-1 2.786121+0 5.002855-1 2.851018+0 4.831692-1 2.884032+0 4.748324-1 2.917427+0 4.666432-1 2.951209+0 4.586001-1 3.019952+0 4.429270-1 3.090295+0 4.277930-1 3.126079+0 4.204264-1 3.198895+0 4.061182-1 3.273407+0 3.926837-1 3.311311+0 3.861347-1 3.349654+0 3.796975-1 3.427678+0 3.671506-1 3.507519+0 3.550183-1 3.589219+0 3.432895-1 3.630781+0 3.375752-1 3.715352+0 3.264673-1 3.801894+0 3.160293-1 3.845918+0 3.109366-1 3.890451+0 3.059281-1 4.000000+0 2.941839-1 4.073803+0 2.866990-1 4.168694+0 2.775444-1 4.265795+0 2.686883-1 4.365158+0 2.601425-1 4.466836+0 2.520993-1 4.518559+0 2.481719-1 4.570882+0 2.443072-1 4.677351+0 2.367619-1 4.786301+0 2.294496-1 4.897788+0 2.223647-1 5.011872+0 2.155034-1 5.128614+0 2.088754-1 5.248075+0 2.026299-1 5.308844+0 1.995780-1 5.370318+0 1.965730-1 5.495409+0 1.907017-1 5.688529+0 1.822218-1 5.821032+0 1.767801-1 6.000000+0 1.698748-1 6.165950+0 1.639022-1 6.309573+0 1.591528-1 6.382635+0 1.568301-1 6.456542+0 1.545423-1 6.606934+0 1.500687-1 6.839116+0 1.436001-1 7.000000+0 1.394040-1 7.161434+0 1.354115-1 7.328245+0 1.315083-1 7.498942+0 1.278175-1 7.585776+0 1.260119-1 7.673615+0 1.242318-1 7.943282+0 1.190437-1 8.413951+0 1.108737-1 8.709636+0 1.062442-1 8.912509+0 1.032679-1 9.015711+0 1.018111-1 9.120108+0 1.003798-1 9.225714+0 9.900952-2 9.332543+0 9.765860-2 9.440609+0 9.632691-2 1.000000+1 8.993598-2 1.011579+1 8.870981-2 1.071519+1 8.282515-2 1.122018+1 7.840234-2 1.135011+1 7.733399-2 1.148154+1 7.628309-2 1.161449+1 7.527092-2 1.174898+1 7.427226-2 1.188502+1 7.328734-2 1.244515+1 6.947790-2 1.258925+1 6.855696-2 1.273503+1 6.764828-2 1.348963+1 6.328260-2 1.412538+1 5.999575-2 1.428894+1 5.920109-2 1.445440+1 5.841890-2 1.462177+1 5.766392-2 1.479108+1 5.691868-2 1.500000+1 5.602413-2 1.584893+1 5.264806-2 1.621810+1 5.129705-2 1.640590+1 5.063468-2 1.737801+1 4.744910-2 1.800000+1 4.560349-2 1.819701+1 4.504687-2 1.840772+1 4.446691-2 1.862087+1 4.390586-2 1.883649+1 4.335189-2 1.905461+1 4.280494-2 1.927525+1 4.226506-2 2.089296+1 3.867298-2 2.162719+1 3.722852-2 2.187762+1 3.675913-2 2.200000+1 3.653386-2 2.213095+1 3.629572-2 2.317395+1 3.449980-2 2.371374+1 3.363587-2 2.400000+1 3.319428-2 2.426610+1 3.279448-2 2.454709+1 3.238988-2 2.483133+1 3.199029-2 2.511886+1 3.159565-2 2.540973+1 3.120598-2 2.851018+1 2.756521-2 2.951209+1 2.655818-2 2.985383+1 2.623074-2 3.019952+1 2.590738-2 3.198895+1 2.434941-2 3.273407+1 2.375304-2 3.349654+1 2.317129-2 3.388442+1 2.288633-2 3.467369+1 2.233636-2 3.507519+1 2.206635-2 3.548134+1 2.179962-2 3.589219+1 2.153619-2 4.073803+1 1.884095-2 4.216965+1 1.816631-2 4.265795+1 1.794684-2 4.315191+1 1.773004-2 4.365158+1 1.751587-2 4.623810+1 1.648319-2 4.731513+1 1.608754-2 4.841724+1 1.570138-2 4.897788+1 1.551216-2 5.069907+1 1.496683-2 5.128614+1 1.478936-2 5.188000+1 1.461403-2 5.888437+1 1.281775-2 6.237348+1 1.207596-2 6.382635+1 1.179141-2 6.606934+1 1.137713-2 6.760830+1 1.110907-2 7.852356+1 9.514125-3 7.943282+1 9.401409-3 8.222427+1 9.071211-3 8.413951+1 8.857549-3 8.511380+1 8.752762-3 8.709636+1 8.549457-3 8.810489+1 8.449588-3 8.912509+1 8.350887-3 9.772372+1 7.601930-3 1.011579+2 7.338728-3 1.035142+2 7.168339-3 1.096478+2 6.759502-3 1.135011+2 6.525479-3 1.462177+2 5.039610-3 1.479108+2 4.980768-3 1.500000+2 4.910025-3 1.548817+2 4.752235-3 1.603245+2 4.587747-3 1.621810+2 4.534241-3 1.659587+2 4.429939-3 1.678804+2 4.378692-3 1.698244+2 4.328039-3 1.717908+2 4.277986-3 1.883649+2 3.897835-3 1.972423+2 3.720621-3 2.041738+2 3.593019-3 2.187762+2 3.350803-3 2.264644+2 3.235891-3 2.917427+2 2.505277-3 2.951209+2 2.476304-3 2.985383+2 2.447671-3 3.090295+2 2.363743-3 3.198895+2 2.282692-3 3.235937+2 2.256314-3 3.311311+2 2.204747-3 3.349654+2 2.179407-3 3.388442+2 2.154358-3 3.427678+2 2.129602-3 3.758374+2 1.941523-3 3.935501+2 1.853806-3 4.073803+2 1.790630-3 4.365158+2 1.670666-3 4.518559+2 1.613733-3 1.161449+3 6.255238-4 1.174898+3 6.183359-4 1.188502+3 6.112316-4 1.230269+3 5.904032-4 1.273503+3 5.702849-4 1.288250+3 5.637342-4 1.318257+3 5.508935-4 1.333521+3 5.445836-4 1.348963+3 5.383455-4 1.364583+3 5.321797-4 1.496236+3 4.853278-4 1.566751+3 4.634723-4 1.621810+3 4.477290-4 1.737801+3 4.178288-4 1.798871+3 4.036361-4 3.672823+4 1.973608-5 3.715352+4 1.951003-5 3.758374+4 1.928658-5 3.890451+4 1.863148-5 4.027170+4 1.799862-5 4.073803+4 1.779249-5 8.128305+4 8.917998-6 1.000000+5 7.248976-6 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.610000-6 5.610000-6 9.670000-6 5.610000-6 9.670000-6 8.587917-6 1.109000-5 8.824504-6 1.109000-5 9.771224-6 1.333521-5 9.953005-6 1.570000-5 1.006749-5 1.862087-5 1.012768-5 3.001000-5 1.017344-5 3.001000-5 2.831003-5 3.311311-5 2.667873-5 3.644000-5 2.470998-5 3.644000-5 3.024738-5 3.900000-5 2.856023-5 4.650000-5 2.395723-5 5.011872-5 2.183326-5 5.188000-5 2.086317-5 5.500000-5 1.926845-5 5.559043-5 1.899011-5 5.888437-5 1.756346-5 5.990000-5 1.716775-5 5.990000-5 1.746594-5 6.220300-5 1.663922-5 6.456542-5 1.589717-5 6.690000-5 1.526598-5 6.950000-5 1.466950-5 7.079458-5 1.440815-5 7.413102-5 1.383457-5 7.673615-5 1.347027-5 8.000000-5 1.309201-5 8.413951-5 1.271792-5 8.912509-5 1.237901-5 9.440609-5 1.211794-5 1.000000-4 1.191207-5 1.080000-4 1.170392-5 1.190000-4 1.151609-5 1.333521-4 1.136738-5 1.548817-4 1.125026-5 1.844400-4 1.117839-5 1.844400-4 1.204484-5 1.937300-4 1.258992-5 1.937300-4 1.320692-5 1.990000-4 1.352335-5 2.025000-4 1.365762-5 2.065380-4 1.371591-5 2.110000-4 1.366215-5 2.170000-4 1.346577-5 2.317395-4 1.287112-5 2.415000-4 1.255632-5 2.511886-4 1.234106-5 2.600160-4 1.223520-5 2.691535-4 1.219674-5 2.800000-4 1.223126-5 2.951209-4 1.238135-5 3.100000-4 1.260490-5 3.349200-4 1.307576-5 3.349200-4 1.513549-5 3.860400-4 1.632394-5 3.860400-4 1.690330-5 4.570882-4 1.860712-5 4.710000-4 1.892348-5 4.710000-4 2.017496-5 5.308844-4 2.153468-5 6.025596-4 2.297227-5 6.683439-4 2.415368-5 7.328245-4 2.517086-5 8.317638-4 2.654249-5 9.332543-4 2.774906-5 1.023293-3 2.868133-5 1.135011-3 2.969955-5 1.288250-3 3.089197-5 1.479108-3 3.214327-5 1.528500-3 3.243128-5 1.528500-3 4.637002-5 1.578100-3 4.647604-5 1.578100-3 4.921663-5 1.737801-3 5.029341-5 1.819701-3 5.059168-5 1.935200-3 5.064082-5 1.935200-3 5.469829-5 2.090000-3 5.494154-5 2.160700-3 5.509043-5 2.160700-3 5.698164-5 2.368100-3 5.760838-5 2.368100-3 5.960732-5 3.054921-3 6.184611-5 3.900000-3 6.407765-5 4.954502-3 6.632148-5 6.095369-3 6.827101-5 7.498942-3 7.020016-5 8.933800-3 7.180294-5 8.933800-3 9.334022-5 9.885531-3 9.375924-5 9.992600-3 9.378578-5 9.992600-3 9.918455-5 1.045400-2 9.934804-5 1.045400-2 1.054631-4 1.479108-2 1.079626-4 2.089296-2 1.104881-4 2.951209-2 1.130099-4 4.073803-2 1.153494-4 5.623413-2 1.175683-4 6.144100-2 1.181479-4 6.144100-2 1.103318-4 1.603245-1 1.109660-4 4.954502-1 1.113747-4 1.000000+5 1.114487-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.610000-6 0.0 1.937300-4 0.0 1.937300-4 7.14994-10 1.944000-4 7.30092-10 1.950000-4 7.46546-10 1.960000-4 7.78702-10 1.974000-4 8.31534-10 1.990000-4 8.99205-10 2.020000-4 1.032867-9 2.025000-4 1.054720-9 2.035000-4 1.095158-9 2.045000-4 1.132164-9 2.055000-4 1.164899-9 2.065380-4 1.193918-9 2.075000-4 1.215850-9 2.085000-4 1.233510-9 2.095000-4 1.246049-9 2.110000-4 1.255937-9 2.124000-4 1.256683-9 2.137962-4 1.250529-9 2.150000-4 1.240684-9 2.170000-4 1.216950-9 2.190000-4 1.186725-9 2.220000-4 1.133680-9 2.240000-4 1.096674-9 2.317395-4 9.43439-10 2.350000-4 8.81945-10 2.380000-4 8.27774-10 2.415000-4 7.69007-10 2.454709-4 7.07670-10 2.480000-4 6.73490-10 2.500000-4 6.47687-10 2.540973-4 6.03306-10 2.570396-4 5.76533-10 2.600160-4 5.53690-10 2.630268-4 5.34606-10 2.660725-4 5.19289-10 2.691535-4 5.07556-10 2.722701-4 4.99521-10 2.760000-4 4.94941-10 2.786121-4 4.93763-10 2.818383-4 4.95364-10 2.851018-4 4.99819-10 2.890900-4 5.09027-10 2.930000-4 5.21527-10 2.980000-4 5.42072-10 3.030000-4 5.66772-10 3.100000-4 6.07592-10 3.200000-4 6.75475-10 3.273407-4 7.30359-10 3.349200-4 7.91066-10 3.349200-4 1.634349-9 3.467369-4 1.743412-9 3.715352-4 1.985307-9 3.860400-4 2.132493-9 3.860400-4 2.573705-9 4.216965-4 2.967423-9 4.570882-4 3.347596-9 4.710000-4 3.493456-9 4.710000-4 4.052493-9 5.080000-4 4.448381-9 5.432503-4 4.802396-9 5.888437-4 5.231038-9 6.382635-4 5.662333-9 6.850000-4 6.034338-9 7.328245-4 6.385454-9 8.035261-4 6.858358-9 8.709636-4 7.262380-9 9.332543-4 7.603776-9 1.023293-3 8.046272-9 1.135011-3 8.532876-9 1.244515-3 8.947694-9 1.380384-3 9.399367-9 1.500000-3 9.753831-9 1.528500-3 9.833289-9 1.528500-3 1.011328-8 1.578100-3 1.015597-8 1.578100-3 3.303659-6 1.625000-3 3.569361-6 1.660000-3 3.757962-6 1.678804-3 3.866002-6 1.737801-3 4.275428-6 1.757924-3 4.399801-6 1.780700-3 4.500895-6 1.800000-3 4.564533-6 1.819701-3 4.614407-6 1.862087-3 4.642337-6 1.935200-3 4.632118-6 1.935200-3 4.597240-6 2.160700-3 4.571199-6 2.160700-3 5.046101-6 2.368100-3 5.083491-6 2.368100-3 5.236990-6 2.722701-3 5.307131-6 3.715352-3 5.464307-6 5.000000-3 5.613543-6 6.683439-3 5.762026-6 8.317638-3 5.871138-6 8.933800-3 5.909565-6 8.933800-3 1.097365-3 9.120108-3 1.102106-3 9.992600-3 1.101094-3 9.992600-3 1.463578-3 1.045400-2 1.467774-3 1.045400-2 1.538999-3 1.380384-2 1.554698-3 2.089296-2 1.567850-3 3.589219-2 1.575889-3 6.144100-2 1.579064-3 6.144100-2 4.309047-2 6.918310-2 4.336886-2 9.120108-2 4.380168-2 1.333521-1 4.416111-2 2.137962-1 4.439373-2 5.956621-1 4.467038-2 1.188502+0 4.482710-2 1.000000+5 4.481797-2 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.610000-6 0.0 9.670000-6 4.060000-6 9.670000-6 1.082083-6 9.772372-6 1.169941-6 1.109000-5 2.265496-6 1.109000-5 1.318776-6 1.244515-5 2.557156-6 1.333521-5 3.382205-6 1.470000-5 4.671345-6 1.650000-5 6.408941-6 2.000000-5 9.860337-6 3.001000-5 1.983656-5 3.001000-5 1.699967-6 3.080000-5 2.886519-6 3.190000-5 4.557913-6 3.311311-5 6.434378-6 3.470000-5 8.937433-6 3.644000-5 1.173002-5 3.644000-5 6.192620-6 3.730000-5 7.644924-6 3.900000-5 1.043977-5 4.650000-5 2.254277-5 5.011872-5 2.828546-5 5.188000-5 3.101683-5 5.559043-5 3.660032-5 5.990000-5 4.273225-5 5.990000-5 4.243406-5 6.330000-5 4.701905-5 6.690000-5 5.163402-5 7.244360-5 5.833286-5 7.852356-5 6.526992-5 8.650000-5 7.395468-5 1.023293-4 9.048626-5 1.430000-4 1.316956-4 1.844400-4 1.732616-4 1.844400-4 1.723952-4 1.937300-4 1.811401-4 1.937300-4 1.805224-4 2.095000-4 1.958069-4 2.600160-4 2.477803-4 3.349200-4 3.218435-4 3.349200-4 3.197829-4 3.860400-4 3.697139-4 3.860400-4 3.691341-4 4.710000-4 4.520730-4 4.710000-4 4.508210-4 8.709636-4 8.439272-4 1.528500-3 1.496059-3 1.528500-3 1.482120-3 1.578100-3 1.531614-3 1.578100-3 1.525580-3 1.935200-3 1.879927-3 1.935200-3 1.875905-3 2.160700-3 2.101038-3 2.160700-3 2.098672-3 7.498942-3 7.422922-3 8.933800-3 8.856088-3 8.933800-3 7.743095-3 9.992600-3 8.797720-3 9.992600-3 8.429838-3 1.045400-2 8.886878-3 1.045400-2 8.809538-3 3.672823-2 3.503748-2 6.144100-2 5.974379-2 6.144100-2 1.824019-2 6.382635-2 2.050552-2 7.000000-2 2.650286-2 9.120108-2 4.728878-2 1.479108-1 1.035699-1 5.495409+0 5.450479+0 1.000000+5 9.999996+4 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.144100-2 3.029949+3 6.340000-2 2.813908+3 6.550000-2 2.582520+3 6.800000-2 2.355840+3 7.413102-2 1.878856+3 8.317638-2 1.397169+3 9.120108-2 1.095448+3 1.122019-1 6.296157+2 1.428894-1 3.269371+2 2.238721-1 9.621152+1 2.722701-1 5.680858+1 2.985383-1 4.444987+1 3.507519-1 2.916685+1 4.027170-1 2.048404+1 4.570882-1 1.492453+1 5.128614-1 1.126927+1 5.754399-1 8.573176+0 6.456542-1 6.570365+0 7.244360-1 5.074087+0 8.035261-1 4.047454+0 8.912509-1 3.250988+0 9.885531-1 2.630529+0 1.148154+0 1.957442+0 1.288250+0 1.569000+0 1.462177+0 1.239812+0 1.640590+0 1.008044+0 1.862087+0 8.090159-1 2.113489+0 6.543282-1 2.426610+0 5.232624-1 2.786121+0 4.216959-1 3.198895+0 3.423225-1 3.715352+0 2.751845-1 4.365158+0 2.192780-1 5.128614+0 1.760640-1 6.165950+0 1.381551-1 7.328245+0 1.108518-1 9.120108+0 8.461462-2 1.148154+1 6.430238-2 1.445440+1 4.924412-2 1.840772+1 3.748337-2 2.426610+1 2.764438-2 3.388442+1 1.929214-2 4.897788+1 1.307614-2 8.511380+1 7.378230-3 1.621810+2 3.822230-3 3.235937+2 1.902022-3 1.288250+3 4.752183-4 4.073803+4 1.499866-5 1.000000+5 6.110800-6 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.144100-2 1.084900-4 1.000000+5 1.084900-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.144100-2 5.287200-2 1.000000+5 5.287200-2 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.144100-2 8.460510-3 1.000000+5 9.999995+4 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.045400-2 1.152893+4 1.060000-2 1.117737+4 1.088000-2 1.070638+4 1.110000-2 1.033500+4 1.148154-2 9.791219+3 1.258925-2 8.311429+3 1.350000-2 7.367560+3 1.445440-2 6.496491+3 1.548817-2 5.697610+3 1.650000-2 5.066880+3 2.089296-2 3.179467+3 2.300000-2 2.609520+3 2.691535-2 1.878193+3 3.162278-2 1.324565+3 3.507519-2 1.053194+3 4.120975-2 7.313319+2 4.897788-2 4.896859+2 5.821032-2 3.246507+2 6.918310-2 2.132518+2 8.222426-2 1.389128+2 9.800000-2 8.917000+1 1.174898-1 5.600224+1 1.531088-1 2.814038+1 2.570396-1 7.263191+0 3.126079-1 4.383062+0 3.672823-1 2.912007+0 4.265795-1 2.007040+0 4.897788-1 1.434394+0 5.559043-1 1.062529+0 6.309573-1 7.932491-1 7.079458-1 6.125295-1 7.943282-1 4.761890-1 8.810489-1 3.822107-1 9.772372-1 3.089573-1 1.122018+0 2.349235-1 1.273503+0 1.840000-1 1.445440+0 1.452965-1 1.621810+0 1.180564-1 1.840772+0 9.467918-2 2.089296+0 7.652038-2 2.371374+0 6.228402-2 2.722701+0 5.013047-2 3.126079+0 4.064616-2 3.630781+0 3.263610-2 4.265795+0 2.597648-2 5.011872+0 2.083542-2 6.000000+0 1.642400-2 7.161434+0 1.309146-2 9.015711+0 9.844845-3 1.135011+1 7.478445-3 1.428894+1 5.724979-3 1.819701+1 4.356338-3 2.400000+1 3.210200-3 3.349654+1 2.240881-3 4.841724+1 1.518402-3 8.413951+1 8.566317-4 1.603245+2 4.437017-4 3.198895+2 2.207729-4 1.273503+3 5.515796-5 4.027170+4 1.740796-6 1.000000+5 7.011400-7 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.045400-2 1.444500-4 1.000000+5 1.444500-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.045400-2 1.993100-3 1.000000+5 1.993100-3 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.045400-2 8.316450-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 9.992600-3 2.255064+4 1.025000-2 2.141800+4 1.083927-2 1.863700+4 1.273700-2 1.224700+4 1.380384-2 9.865000+3 1.548817-2 7.199900+3 1.905461-2 4.055800+3 2.238721-2 2.559600+3 2.500000-2 1.862000+3 3.054921-2 1.033900+3 3.801894-2 5.378300+2 4.677351-2 2.868400+2 5.888437-2 1.414500+2 7.852356-2 5.794600+1 1.318257-1 1.154736+1 1.659587-1 5.675181+0 2.041738-1 3.017718+0 2.400000-1 1.856885+0 2.786121-1 1.195031+0 3.198895-1 8.004129-1 3.630781-1 5.582682-1 4.073803-1 4.050429-1 4.570882-1 2.959619-1 5.128614-1 2.179548-1 5.688529-1 1.666140-1 6.309573-1 1.282169-1 6.998420-1 9.935586-2 7.762471-1 7.755278-2 8.709636-1 5.924375-2 9.332543-1 5.071764-2 1.000000+0 4.372158-2 1.096478+0 3.623373-2 1.202264+0 3.025266-2 1.318257+0 2.543483-2 1.479108+0 2.063898-2 1.717908+0 1.582098-2 1.949845+0 1.272887-2 2.213095+0 1.032424-2 2.540973+0 8.278452-3 2.917427+0 6.687757-3 3.349654+0 5.441426-3 3.890451+0 4.384221-3 4.570882+0 3.501307-3 5.370318+0 2.817195-3 6.456542+0 2.214899-3 7.673615+0 1.780662-3 9.332543+0 1.400101-3 1.188502+1 1.050566-3 1.500000+1 8.031900-4 1.927525+1 6.058882-4 2.540973+1 4.473213-4 3.589219+1 3.087166-4 5.188000+1 2.095026-4 8.912509+1 1.197387-4 1.698244+2 6.206536-5 3.388442+2 3.089482-5 1.348963+3 7.720579-6 1.000000+5 1.039700-7 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 9.992600-3 1.135500-4 1.000000+5 1.135500-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.992600-3 2.428100-3 1.000000+5 2.428100-3 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 9.992600-3 7.450950-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 8.933800-3 5.004075+4 9.090000-3 4.835240+4 9.225714-3 4.665061+4 9.800000-3 3.971028+4 1.135011-2 2.653359+4 1.273503-2 1.915712+4 1.513561-2 1.162699+4 1.730000-2 7.881640+3 2.187762-2 3.898146+3 2.722701-2 1.991659+3 3.311311-2 1.079815+3 4.000000-2 5.924640+2 4.841724-2 3.203374+2 5.956621-2 1.630684+2 7.673615-2 7.084120+1 1.348963-1 1.092205+1 1.678804-1 5.314323+0 2.000000-1 3.007659+0 2.317395-1 1.876148+0 2.660725-1 1.213609+0 3.019952-1 8.201726-1 3.388442-1 5.785315-1 3.758374-1 4.253545-1 4.168694-1 3.148482-1 4.570882-1 2.424871-1 5.069907-1 1.821250-1 5.623413-1 1.378740-1 6.165950-1 1.083950-1 6.760830-1 8.578870-2 7.413102-1 6.835003-2 8.511380-1 4.909939-2 9.120108-1 4.186101-2 9.772372-1 3.594472-2 1.047129+0 3.111396-2 1.148154+0 2.586823-2 1.258925+0 2.167096-2 1.396368+0 1.790911-2 1.698244+0 1.263806-2 1.927525+0 1.015895-2 2.187762+0 8.232060-3 2.511886+0 6.595977-3 2.884032+0 5.325375-3 3.311311+0 4.330487-3 3.845918+0 3.487164-3 4.518559+0 2.783356-3 5.308844+0 2.238335-3 6.382635+0 1.758942-3 7.498942+0 1.433892-3 9.225714+0 1.110894-3 1.174898+1 8.332372-4 1.479108+1 6.385997-4 1.905461+1 4.801979-4 2.511886+1 3.544330-4 3.548134+1 2.445459-4 5.128614+1 1.659085-4 8.912509+1 9.369489-5 1.698244+2 4.856454-5 3.388442+2 2.417400-5 1.348963+3 6.041260-6 1.000000+5 8.135400-8 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 8.933800-3 1.062500-4 1.000000+5 1.062500-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.933800-3 1.751600-3 1.000000+5 1.751600-3 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 8.933800-3 7.075950-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.368100-3 3.399425+4 2.483133-3 3.216940+4 2.660725-3 2.934899+4 2.786121-3 2.767563+4 2.920000-3 2.590840+4 3.507519-3 1.980860+4 4.027170-3 1.607533+4 4.365158-3 1.411832+4 5.248075-3 1.040681+4 5.888437-3 8.526516+3 6.839116-3 6.543354+3 8.128305-3 4.767815+3 9.225714-3 3.757056+3 1.080000-2 2.774620+3 1.288250-2 1.958626+3 1.531087-2 1.380374+3 1.819701-2 9.646542+2 2.150000-2 6.770420+2 2.511886-2 4.832309+2 2.951209-2 3.383035+2 3.500000-2 2.301520+2 4.120975-2 1.579162+2 4.897788-2 1.051888+2 5.800000-2 7.012000+1 6.918310-2 4.557643+1 8.317638-2 2.882126+1 9.885531-2 1.862675+1 1.244515-1 1.032193+1 1.584893-1 5.513843+0 2.426610-1 1.814081+0 3.019952-1 1.031921+0 3.589219-1 6.655264-1 4.120975-1 4.716572-1 4.731513-1 3.367422-1 5.370318-1 2.490172-1 6.095369-1 1.855357-1 6.839117-1 1.430221-1 7.673615-1 1.110146-1 8.709636-1 8.466013-2 9.660509-1 6.833066-2 1.096478+0 5.309822-2 1.250000+0 4.118291-2 1.412538+0 3.274875-2 1.584893+0 2.657296-2 1.798871+0 2.127989-2 2.044000+0 1.714398-2 2.344229+0 1.370761-2 2.691535+0 1.102572-2 3.090295+0 8.934171-3 3.589219+0 7.169245-3 4.168694+0 5.795456-3 4.897788+0 4.643508-3 5.821032+0 3.691327-3 7.000000+0 2.911000-3 8.709636+0 2.218596-3 1.071519+1 1.729496-3 1.348963+1 1.321389-3 1.737801+1 9.909229-4 2.317395+1 7.205817-4 3.198895+1 5.085574-4 4.623810+1 3.442769-4 7.852356+1 1.987067-4 1.479108+2 1.040317-4 2.951209+2 5.173288-5 1.174898+3 1.291917-5 3.715352+4 4.076582-7 1.000000+5 1.514900-7 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.368100-3 1.056600-4 1.000000+5 1.056600-4 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.368100-3 8.773400-6 1.000000+5 8.773400-6 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.368100-3 2.253667-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.160700-3 5.435478+4 2.209000-3 5.320687+4 2.250000-3 5.244425+4 2.344229-3 5.025345+4 2.483133-3 4.713199+4 2.600160-3 4.448464+4 2.851018-3 3.929635+4 3.126079-3 3.445146+4 3.427678-3 2.994700+4 3.715352-3 2.628832+4 4.000000-3 2.316720+4 4.623810-3 1.790318+4 5.000000-3 1.547016+4 5.754399-3 1.175874+4 6.309573-3 9.759908+3 7.161434-3 7.481246+3 7.852356-3 6.133671+3 9.015711-3 4.507500+3 1.000000-2 3.553840+3 1.135011-2 2.637801+3 1.288250-2 1.941512+3 1.450000-2 1.448420+3 1.659587-2 1.028635+3 1.905461-2 7.187581+2 2.187762-2 4.982950+2 2.511886-2 3.428802+2 2.900000-2 2.307200+2 3.388442-2 1.489994+2 3.935501-2 9.714844+1 4.623810-2 6.085599+1 5.559043-2 3.537570+1 6.760830-2 1.972628+1 8.609938-2 9.509889+0 1.603245-1 1.437079+0 1.995262-1 7.440586-1 2.483133-1 3.960702-1 2.722701-1 3.019029-1 2.951209-1 2.363289-1 3.388442-1 1.594208-1 3.845918-1 1.119152-1 4.365158-1 7.916191-2 4.897788-1 5.821098-2 5.432503-1 4.443761-2 6.025596-1 3.414774-2 6.683439-1 2.642342-2 7.413102-1 2.059029-2 8.609938-1 1.450449-2 9.332543-1 1.209867-2 1.000000+0 1.043214-2 1.096478+0 8.646311-3 1.202264+0 7.219020-3 1.318257+0 6.068913-3 1.479108+0 4.923901-3 1.717908+0 3.774409-3 1.949845+0 3.036433-3 2.213095+0 2.462230-3 2.540973+0 1.974115-3 2.917427+0 1.594753-3 3.349654+0 1.297565-3 3.890451+0 1.045479-3 4.570882+0 8.349434-4 5.370318+0 6.717932-4 6.456542+0 5.281679-4 7.673615+0 4.246216-4 9.332543+0 3.338803-4 1.174898+1 2.539271-4 1.479108+1 1.946148-4 1.883649+1 1.482309-4 2.483133+1 1.093729-4 3.507519+1 7.544263-5 5.069907+1 5.117163-5 8.709636+1 2.923558-5 1.678804+2 1.497392-5 3.349654+2 7.453004-6 1.333521+3 1.862494-6 1.000000+5 2.479300-8 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.160700-3 8.876400-5 1.000000+5 8.876400-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.160700-3 1.302700-5 1.000000+5 1.302700-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.160700-3 2.058909-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 1.935200-3 1.610104+5 2.000000-3 1.500155+5 2.020200-3 1.472955+5 2.090000-3 1.409840+5 2.238721-3 1.279237+5 2.426610-3 1.129292+5 2.722701-3 9.366265+4 3.000000-3 7.942720+4 3.273407-3 6.798427+4 3.507519-3 5.978373+4 4.168694-3 4.281791+4 4.518559-3 3.638573+4 5.248075-3 2.659553+4 5.754399-3 2.178820+4 6.606934-3 1.600374+4 7.328245-3 1.260839+4 8.317638-3 9.349837+3 9.440609-3 6.873221+3 1.059254-2 5.160255+3 1.202264-2 3.736187+3 1.364583-2 2.684228+3 1.548817-2 1.914187+3 1.757924-2 1.355394+3 1.995262-2 9.531434+2 2.264644-2 6.658716+2 2.570396-2 4.622163+2 2.951209-2 3.081764+2 3.388442-2 2.040658+2 3.890451-2 1.342485+2 4.518559-2 8.470481+1 5.308844-2 5.122484+1 6.382635-2 2.859835+1 7.852356-2 1.472511+1 1.023293-1 6.249096+0 1.584893-1 1.510241+0 1.927525-1 8.045574-1 2.264644-1 4.821464-1 2.600160-1 3.129184-1 2.951209-1 2.119592-1 3.311311-1 1.497394-1 3.715352-1 1.065393-1 4.120975-1 7.895873-2 4.570882-1 5.892997-2 5.011872-1 4.572357-2 5.559043-1 3.464122-2 6.165950-1 2.644566-2 6.839117-1 2.033583-2 7.498942-1 1.621121-2 8.511380-1 1.197924-2 9.120108-1 1.021882-2 9.772372-1 8.778697-3 1.047129+0 7.601156-3 1.148154+0 6.320797-3 1.258925+0 5.295167-3 1.396368+0 4.375070-3 1.678804+0 3.149657-3 1.905461+0 2.530170-3 2.162719+0 2.049010-3 2.483133+0 1.640721-3 2.851018+0 1.323781-3 3.273407+0 1.075823-3 3.801894+0 8.658275-4 4.466836+0 6.907125-4 5.248075+0 5.551817-4 6.309573+0 4.360648-4 7.498942+0 3.502324-4 9.225714+0 2.713393-4 1.161449+1 2.062921-4 1.445440+1 1.601325-4 1.840772+1 1.218872-4 2.400000+1 9.098100-5 3.349654+1 6.350752-5 4.897788+1 4.251872-5 8.511380+1 2.399237-5 1.621810+2 1.242915-5 3.235937+2 6.184800-6 1.288250+3 1.545268-6 8.128305+4 2.444617-8 1.000000+5 1.987100-8 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 1.935200-3 8.056400-5 1.000000+5 8.056400-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.935200-3 4.374900-6 1.000000+5 4.374900-6 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 1.935200-3 1.850261-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.578100-3 3.241412+5 1.625000-3 3.425112+5 1.678804-3 3.611872+5 1.705000-3 3.714383+5 1.737801-3 3.827126+5 1.757924-3 3.876777+5 1.780700-3 3.881845+5 1.800000-3 3.858758+5 1.819701-3 3.817484+5 1.862087-3 3.640056+5 2.113489-3 2.638122+5 2.344229-3 2.012256+5 2.600160-3 1.522829+5 2.851018-3 1.179920+5 3.311311-3 7.713506+4 3.589219-3 6.090122+4 4.168694-3 3.892842+4 4.623810-3 2.832573+4 5.300000-3 1.850328+4 6.025596-3 1.227816+4 6.683439-3 8.773460+3 7.762471-3 5.345734+3 8.709636-3 3.624889+3 9.800000-3 2.420764+3 1.135011-2 1.451741+3 1.318257-2 8.542311+2 1.531087-2 4.982660+2 1.778279-2 2.882344+2 2.065380-2 1.654162+2 2.400000-2 9.405720+1 2.818383-2 5.102268+1 3.349654-2 2.623993+1 4.120975-2 1.171120+1 5.188000-2 4.739487+0 9.772372-2 3.883554-1 1.202264-1 1.723296-1 1.428894-1 8.816341-2 1.659587-1 4.965766-2 1.927525-1 2.817492-2 2.213095-1 1.682196-2 2.511886-1 1.056258-2 2.818383-1 6.966716-3 3.162278-1 4.628300-3 3.507519-1 3.224623-3 3.890451-1 2.261953-3 4.315191-1 1.597181-3 4.731513-1 1.180443-3 5.069907-1 9.460077-4 5.559043-1 7.100533-4 6.456542-1 4.508157-4 7.079458-1 3.432079-4 7.673615-1 2.721567-4 8.511380-1 2.033244-4 9.015711-1 1.740948-4 9.440609-1 1.547144-4 9.885531-1 1.383911-4 1.035142+0 1.246874-4 1.096478+0 1.102820-4 1.161449+0 9.823046-5 1.244515+0 8.614917-5 1.348963+0 7.449619-5 1.531087+0 5.981046-5 1.819701+0 4.414709-5 2.018366+0 3.701399-5 2.290868+0 3.007378-5 2.630268+0 2.415881-5 3.019952+0 1.955181-5 3.507519+0 1.567051-5 4.073803+0 1.265400-5 4.786301+0 1.012801-5 5.688529+0 8.042805-6 6.839116+0 6.338357-6 8.413951+0 4.893697-6 1.011579+1 3.915649-6 1.273503+1 2.985818-6 1.640590+1 2.234953-6 2.213095+1 1.602044-6 3.019952+1 1.143636-6 4.365158+1 7.731994-7 6.760830+1 4.903102-7 1.135011+2 2.880126-7 2.264644+2 1.428798-7 4.518559+2 7.125803-8 1.798871+3 1.782354-8 1.000000+5 3.20250-10 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.578100-3 5.843600-5 1.000000+5 5.843600-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.578100-3 1.438300-5 1.000000+5 1.438300-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.578100-3 1.505281-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.528500-3 7.923254+5 1.575000-3 7.462256+5 1.620000-3 7.192977+5 1.621810-3 7.172742+5 1.660000-3 6.944360+5 1.678804-3 6.815833+5 1.690000-3 6.716820+5 2.089296-3 3.874467+5 2.317395-3 2.941741+5 2.511886-3 2.361000+5 2.800000-3 1.743462+5 3.235937-3 1.150485+5 3.507519-3 9.060458+4 4.073803-3 5.763066+4 4.500000-3 4.233630+4 5.128614-3 2.803230+4 5.800000-3 1.885614+4 6.531306-3 1.277244+4 7.413102-3 8.363802+3 8.413951-3 5.434093+3 9.549926-3 3.503956+3 1.083927-2 2.243123+3 1.244515-2 1.367934+3 1.428894-2 8.276002+2 1.659587-2 4.760301+2 1.905461-2 2.835235+2 2.213095-2 1.604580+2 2.540973-2 9.422066+1 3.000000-2 4.930530+1 3.548134-2 2.541626+1 4.265795-2 1.219116+1 5.370318-2 4.824578+0 9.549926-2 4.688594-1 1.174898-1 2.037233-1 1.380384-1 1.072601-1 1.603245-1 5.956714-2 1.819701-1 3.646940-2 2.041738-1 2.350223-2 2.290868-1 1.525513-2 2.540973-1 1.041101-2 2.818383-1 7.156491-3 3.090295-1 5.162711-3 3.388442-1 3.749906-3 3.715352-1 2.743343-3 4.027170-1 2.099954-3 4.415705-1 1.559306-3 4.841724-1 1.166755-3 5.308844-1 8.792532-4 5.754399-1 6.909644-4 6.095369-1 5.844383-4 6.606935-1 4.660256-4 7.161434-1 3.742435-4 8.222427-1 2.598363-4 8.810489-1 2.169065-4 9.332543-1 1.878476-4 9.772372-1 1.683636-4 1.023293+0 1.517880-4 1.083927+0 1.342715-4 1.148154+0 1.195298-4 1.230269+0 1.046865-4 1.333521+0 9.034107-5 1.778279+0 5.446721-5 2.000000+0 4.456249-5 2.290868+0 3.565996-5 2.630268+0 2.864843-5 3.019952+0 2.318733-5 3.507519+0 1.858417-5 4.073803+0 1.500662-5 4.786301+0 1.201092-5 5.688529+0 9.538098-6 6.839116+0 7.516814-6 8.413951+0 5.803467-6 1.000000+1 4.708000-6 1.258925+1 3.588566-6 1.621810+1 2.685095-6 2.162719+1 1.948584-6 2.951209+1 1.390190-6 4.216965+1 9.508925-7 6.237348+1 6.320952-7 1.011579+2 3.841976-7 1.972423+2 1.948371-7 3.935501+2 9.708552-8 1.566751+3 2.427538-8 1.000000+5 3.79790-10 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.528500-3 5.287800-5 1.000000+5 5.287800-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.528500-3 1.024400-8 1.000000+5 1.024400-8 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.528500-3 1.475612-3 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.710000-4 7.893023+4 5.190000-4 7.487520+4 6.237348-4 6.504604+4 6.683439-4 6.135369+4 7.079458-4 5.805159+4 8.317638-4 4.905978+4 9.015711-4 4.481504+4 1.000000-3 3.951980+4 1.122018-3 3.417235+4 1.230269-3 3.022618+4 1.428894-3 2.453005+4 1.603245-3 2.073683+4 1.850000-3 1.670170+4 2.150000-3 1.318548+4 2.454709-3 1.063373+4 2.851018-3 8.283748+3 3.349654-3 6.280655+3 3.981072-3 4.631645+3 4.731513-3 3.389186+3 5.623413-3 2.463052+3 6.760830-3 1.739845+3 8.222426-3 1.193254+3 9.885531-3 8.305853+2 1.188502-2 5.737900+2 1.413440-2 4.022040+2 1.678804-2 2.807081+2 2.000000-2 1.932488+2 2.371374-2 1.334454+2 2.818383-2 9.100367+1 3.349654-2 6.159095+1 3.981072-2 4.136374+1 4.731513-2 2.756575+1 5.559043-2 1.874148+1 6.683439-2 1.196367+1 8.035261-2 7.578484+0 9.772372-2 4.623364+0 1.230269-1 2.563877+0 1.566751-1 1.370753+0 2.426610-1 4.379005-1 3.019952-1 2.491727-1 3.589219-1 1.607425-1 4.120975-1 1.139353-1 4.731513-1 8.134974-2 5.370318-1 6.015938-2 6.025596-1 4.602375-2 6.760830-1 3.545814-2 7.585776-1 2.750616-2 8.609938-1 2.096117-2 9.549926-1 1.690328-2 1.071519+0 1.342626-2 1.230269+0 1.025917-2 1.380384+0 8.257905-3 1.548817+0 6.691587-3 1.757924+0 5.351096-3 2.000000+0 4.295794-3 2.290868+0 3.437284-3 2.630268+0 2.761255-3 3.019952+0 2.234777-3 3.507519+0 1.791171-3 4.073803+0 1.446373-3 4.786301+0 1.157602-3 5.688529+0 9.192974-4 6.839116+0 7.244919-4 8.413951+0 5.593511-4 1.000000+1 4.537700-4 1.258925+1 3.458727-4 1.621810+1 2.587989-4 2.187762+1 1.854438-4 2.985383+1 1.323430-4 4.265795+1 9.054595-5 6.382635+1 5.948640-5 1.035142+2 3.616835-5 2.041738+2 1.813408-5 4.073803+2 9.038185-6 1.621810+3 2.260175-6 1.000000+5 3.660600-8 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.710000-4 6.657200-5 1.000000+5 6.657200-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.710000-4 2.477800-8 1.000000+5 2.477800-8 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.710000-4 4.044032-4 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 3.860400-4 6.287353+4 5.400000-4 6.008480+4 5.888437-4 5.896837+4 6.350000-4 5.764940+4 6.850000-4 5.591440+4 7.328245-4 5.402210+4 7.852356-4 5.176235+4 8.511380-4 4.889531+4 9.225714-4 4.585900+4 1.000000-3 4.265260+4 1.096478-3 3.894797+4 1.190000-3 3.569360+4 1.303167-3 3.214660+4 1.445440-3 2.830866+4 1.589000-3 2.500646+4 1.778279-3 2.139853+4 1.950000-3 1.870738+4 2.187762-3 1.569890+4 2.426610-3 1.330546+4 2.720000-3 1.101008+4 3.054921-3 9.009807+3 3.427678-3 7.330803+3 3.845918-3 5.923678+3 4.365158-3 4.649198+3 4.954502-3 3.620084+3 5.623413-3 2.797276+3 6.382635-3 2.145465+3 7.300000-3 1.606364+3 8.317638-3 1.202987+3 9.440609-3 9.019802+2 1.071519-2 6.714345+2 1.216186-2 4.961112+2 1.380384-2 3.640039+2 1.566751-2 2.652456+2 1.798871-2 1.863770+2 2.065380-2 1.299640+2 2.371374-2 8.996371+1 2.754229-2 5.992244+1 3.162278-2 4.089367+1 3.672823-2 2.683998+1 4.315191-2 1.692902+1 5.128614-2 1.025255+1 6.237348-2 5.755217+0 7.852356-2 2.892743+0 1.059254-1 1.172496+0 1.584893-1 3.464551-1 1.972423-1 1.798753-1 2.371374-1 1.042517-1 2.786121-1 6.516923-2 3.198895-1 4.387052-2 3.630781-1 3.072557-2 4.120975-1 2.167377-2 4.623810-1 1.589081-2 5.188000-1 1.173737-2 5.821032-1 8.738861-3 6.531306-1 6.557887-3 7.244360-1 5.100750-3 8.222427-1 3.784918-3 8.912509-1 3.144781-3 9.549926-1 2.699733-3 1.023293+0 2.334258-3 1.122018+0 1.938360-3 1.230269+0 1.620963-3 1.364583+0 1.336577-3 1.621810+0 9.804484-4 1.840772+0 7.861123-4 2.065380+0 6.474119-4 2.344229+0 5.266376-4 2.691535+0 4.236043-4 3.090295+0 3.432562-4 3.589219+0 2.754490-4 4.168694+0 2.226657-4 4.897788+0 1.784030-4 5.821032+0 1.418211-4 7.000000+0 1.118400-4 8.709636+0 8.524104-5 1.071519+1 6.644876-5 1.348963+1 5.076850-5 1.737801+1 3.807212-5 2.317395+1 2.768524-5 3.198895+1 1.953887-5 4.623810+1 1.322742-5 7.852356+1 7.634390-6 1.462177+2 4.044170-6 2.917427+2 2.010772-6 1.161449+3 5.021298-7 3.672823+4 1.584350-8 1.000000+5 5.820100-9 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 3.860400-4 5.108400-5 1.000000+5 5.108400-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.860400-4 2.860400-8 1.000000+5 2.860400-8 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 3.860400-4 3.349274-4 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.349200-4 2.710096+5 3.700000-4 2.558352+5 4.570882-4 2.300691+5 5.011872-4 2.175214+5 5.432503-4 2.059509+5 5.888437-4 1.936695+5 6.382635-4 1.808871+5 6.918310-4 1.676447+5 7.673615-4 1.507428+5 8.317638-4 1.379418+5 9.120108-4 1.237024+5 1.011579-3 1.086352+5 1.110000-3 9.604520+4 1.244515-3 8.186490+4 1.380384-3 7.031087+4 1.548817-3 5.892269+4 1.730000-3 4.934440+4 1.949845-3 4.042748+4 2.213095-3 3.244693+4 2.483133-3 2.637079+4 2.800000-3 2.109216+4 3.198895-3 1.632144+4 3.672823-3 1.239534+4 4.216965-3 9.327397+3 4.841724-3 6.957335+3 5.559043-3 5.144492+3 6.382635-3 3.771387+3 7.244360-3 2.816023+3 8.222426-3 2.087895+3 9.440609-3 1.494014+3 1.071519-2 1.090626+3 1.216186-2 7.905445+2 1.380384-2 5.690011+2 1.566751-2 4.066304+2 1.778279-2 2.885414+2 2.041738-2 1.969513+2 2.344229-2 1.334050+2 2.691535-2 8.969566+1 3.090295-2 5.987890+1 3.589219-2 3.835289+1 4.168694-2 2.438061+1 4.897788-2 1.485046+1 5.821032-2 8.660376+0 7.000000-2 4.831360+0 8.511380-2 2.583291+0 1.678804-1 2.876372-1 2.018366-1 1.595963-1 2.371374-1 9.596539-2 2.722701-1 6.249148-2 3.090295-1 4.247481-2 3.467369-1 3.010841-2 3.890451-1 2.149926-2 4.315191-1 1.598837-2 4.786301-1 1.197499-2 5.248075-1 9.321930-3 5.821032-1 7.086312-3 6.382635-1 5.591472-3 6.998420-1 4.440679-3 7.673615-1 3.549740-3 8.609938-1 2.699753-3 9.225714-1 2.304674-3 9.772372-1 2.031112-3 1.047129+0 1.758210-3 1.148154+0 1.461809-3 1.258925+0 1.224616-3 1.396368+0 1.012003-3 1.698244+0 7.141247-4 1.927525+0 5.740479-4 2.187762+0 4.651742-4 2.511886+0 3.727224-4 2.884032+0 3.009193-4 3.311311+0 2.446996-4 3.845918+0 1.970463-4 4.518559+0 1.572775-4 5.308844+0 1.264811-4 6.382635+0 9.939382-5 7.585776+0 7.986928-5 9.225714+0 6.277334-5 1.174898+1 4.708297-5 1.479108+1 3.608489-5 1.905461+1 2.713404-5 2.511886+1 2.002778-5 3.548134+1 1.381831-5 5.128614+1 9.375042-6 8.810489+1 5.357195-6 1.678804+2 2.776470-6 3.349654+2 1.381956-6 1.333521+3 3.453287-7 1.000000+5 4.597000-9 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.349200-4 4.626700-5 1.000000+5 4.626700-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.349200-4 1.438000-8 1.000000+5 1.438000-8 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.349200-4 2.886386-4 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.937300-4 2.671240+5 1.944000-4 2.728940+5 1.950000-4 2.791816+5 1.960000-4 2.913848+5 1.974000-4 3.112828+5 2.000000-4 3.532884+5 2.015000-4 3.777904+5 2.025000-4 3.932528+5 2.035000-4 4.075320+5 2.045000-4 4.202120+5 2.055000-4 4.309640+5 2.065380-4 4.399761+5 2.075000-4 4.462280+5 2.085000-4 4.506320+5 2.095000-4 4.529720+5 2.110000-4 4.529560+5 2.124000-4 4.496640+5 2.137962-4 4.437638+5 2.150000-4 4.370440+5 2.170000-4 4.233560+5 2.190000-4 4.076040+5 2.213095-4 3.879358+5 2.240000-4 3.642420+5 2.270000-4 3.379076+5 2.300000-4 3.123512+5 2.350000-4 2.727184+5 2.454709-4 2.054979+5 2.500000-4 1.835652+5 2.540000-4 1.675944+5 2.570396-4 1.574208+5 2.600160-4 1.489716+5 2.630268-4 1.417999+5 2.660725-4 1.358409+5 2.691535-4 1.309984+5 2.722701-4 1.271926+5 2.754229-4 1.243534+5 2.786121-4 1.223335+5 2.818383-4 1.211239+5 2.851018-4 1.206534+5 2.890900-4 1.209752+5 2.930000-4 1.221112+5 2.980000-4 1.245476+5 3.030000-4 1.278676+5 3.100000-4 1.336392+5 3.200000-4 1.433956+5 3.430000-4 1.686884+5 3.550000-4 1.819368+5 3.672823-4 1.947950+5 3.801894-4 2.071721+5 3.935501-4 2.185879+5 4.073803-4 2.287827+5 4.216965-4 2.376828+5 4.365158-4 2.452750+5 4.518559-4 2.515349+5 4.700000-4 2.569800+5 4.897788-4 2.607039+5 5.080000-4 2.623760+5 5.308844-4 2.625710+5 5.559043-4 2.609075+5 5.821032-4 2.574916+5 6.100000-4 2.523344+5 6.382635-4 2.459795+5 6.760830-4 2.363324+5 7.161434-4 2.254266+5 7.585776-4 2.134850+5 8.035261-4 2.007794+5 8.609938-4 1.851212+5 9.200000-4 1.699956+5 9.885531-4 1.537274+5 1.059254-3 1.386375+5 1.135011-3 1.242120+5 1.230269-3 1.084089+5 1.333521-3 9.391123+4 1.450000-3 8.024080+4 1.570000-3 6.864600+4 1.717908-3 5.706029+4 1.862087-3 4.804482+4 2.041738-3 3.917510+4 2.220000-3 3.233000+4 2.426610-3 2.619287+4 2.691535-3 2.032933+4 2.951209-3 1.611549+4 3.235937-3 1.269697+4 3.589219-3 9.639955+3 4.000000-3 7.170560+3 4.466836-3 5.262023+3 4.954502-3 3.907677+3 5.495409-3 2.882864+3 6.095369-3 2.113188+3 6.839116-3 1.485327+3 7.673615-3 1.035818+3 8.609938-3 7.171122+2 9.660509-3 4.928049+2 1.083927-2 3.362052+2 1.216186-2 2.278073+2 1.380384-2 1.473473+2 1.566751-2 9.458540+1 1.778279-2 6.028191+1 2.041738-2 3.659922+1 2.344229-2 2.205880+1 2.722701-2 1.264874+1 3.162278-2 7.199836+0 3.758374-2 3.727670+0 4.518559-2 1.832824+0 5.623413-2 7.825457-1 1.047129-1 6.866727-2 1.288250-1 3.070079-2 1.531088-1 1.580706-2 1.778279-1 8.953417-3 2.041738-1 5.334216-3 2.317395-1 3.339935-3 2.630268-1 2.106507-3 2.951209-1 1.395256-3 3.311311-1 9.310595-4 3.672823-1 6.514229-4 4.073803-1 4.589463-4 4.466836-1 3.382186-4 4.897788-1 2.509476-4 5.308844-1 1.945620-4 5.821032-1 1.464733-4 6.456542-1 1.071598-4 7.079458-1 8.171328-5 7.762471-1 6.277507-5 8.609938-1 4.684394-5 9.120108-1 4.007693-5 9.549926-1 3.558384-5 1.000000+0 3.179400-5 1.047129+0 2.861115-5 1.096478+0 2.591971-5 1.161449+0 2.309036-5 1.230269+0 2.071398-5 1.333521+0 1.791329-5 1.479108+0 1.498724-5 1.840772+0 1.021341-5 2.044000+0 8.552400-6 2.344229+0 6.837873-6 2.691535+0 5.500137-6 3.090295+0 4.456890-6 3.589219+0 3.576406-6 4.168694+0 2.891087-6 4.897788+0 2.316459-6 5.821032+0 1.841402-6 7.000000+0 1.452200-6 8.709636+0 1.106752-6 1.071519+1 8.627736-7 1.348963+1 6.591817-7 1.737801+1 4.943241-7 2.317395+1 3.594685-7 3.198895+1 2.536939-7 4.623810+1 1.717461-7 7.943282+1 9.795732-8 1.500000+2 5.116500-8 2.985383+2 2.550926-8 1.188502+3 6.370942-9 3.758374+4 2.01038-10 1.000000+5 7.55690-11 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.937300-4 3.011700-5 1.000000+5 3.011700-5 1 70000 7 7 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.937300-4 2.031100-8 1.000000+5 2.031100-8 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.937300-4 1.635927-4 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.844400-4 3.797334+5 1.852000-4 3.967446+5 1.885000-4 4.859688+5 1.900000-4 5.294202+5 1.910800-4 5.600243+5 1.920000-4 5.849184+5 1.930000-4 6.101160+5 1.940000-4 6.328080+5 1.950000-4 6.524760+5 1.960000-4 6.687600+5 1.970000-4 6.814440+5 1.980000-4 6.904620+5 1.990000-4 6.958980+5 2.000000-4 6.979500+5 2.010000-4 6.969000+5 2.020000-4 6.930780+5 2.035000-4 6.829620+5 2.050000-4 6.686520+5 2.065380-4 6.507857+5 2.080000-4 6.317100+5 2.102300-4 6.002525+5 2.128000-4 5.624622+5 2.162719-4 5.116176+5 2.205000-4 4.529070+5 2.344229-4 3.010049+5 2.380000-4 2.732658+5 2.415000-4 2.503548+5 2.450000-4 2.313264+5 2.480000-4 2.178462+5 2.511886-4 2.061009+5 2.540973-4 1.974954+5 2.570396-4 1.906259+5 2.600160-4 1.853648+5 2.628000-4 1.819026+5 2.660000-4 1.792578+5 2.691535-4 1.780141+5 2.722701-4 1.779567+5 2.760000-4 1.792224+5 2.800000-4 1.819596+5 2.840000-4 1.858896+5 2.900000-4 1.935546+5 2.951209-4 2.013736+5 3.054921-4 2.195215+5 3.240000-4 2.551572+5 3.350000-4 2.763624+5 3.467369-4 2.979833+5 3.550000-4 3.122502+5 3.672823-4 3.316906+5 3.780000-4 3.468312+5 3.890451-4 3.605496+5 4.027170-4 3.749876+5 4.168694-4 3.872169+5 4.315191-4 3.972628+5 4.466836-4 4.051262+5 4.650000-4 4.114974+5 4.850000-4 4.149924+5 5.069907-4 4.153824+5 5.308844-4 4.126642+5 5.580000-4 4.066524+5 5.821032-4 3.992978+5 6.100000-4 3.888978+5 6.456542-4 3.738451+5 6.850000-4 3.559530+5 7.244360-4 3.374802+5 7.673615-4 3.174252+5 8.200000-4 2.935890+5 8.709636-4 2.717184+5 9.332543-4 2.469389+5 1.000000-3 2.228706+5 1.071519-3 1.998135+5 1.161449-3 1.745831+5 1.258925-3 1.513144+5 1.364583-3 1.301934+5 1.479108-3 1.112148+5 1.610000-3 9.355380+4 1.757924-3 7.759747+4 1.927525-3 6.331034+4 2.137962-3 4.988395+4 2.317395-3 4.117407+4 2.540973-3 3.286272+4 2.818383-3 2.529062+4 3.150000-3 1.891974+4 3.507519-3 1.417081+4 3.900000-3 1.057218+4 4.315191-3 7.938863+3 4.786301-3 5.880144+3 5.308844-3 4.325937+3 5.956621-3 3.052209+3 6.606934-3 2.214588+3 7.328245-3 1.596405+3 8.222426-3 1.101644+3 9.225714-3 7.546356+2 1.035142-2 5.129693+2 1.161449-2 3.462068+2 1.303167-2 2.320480+2 1.479108-2 1.482907+2 1.678804-2 9.403178+1 1.905461-2 5.919592+1 2.187762-2 3.545711+1 2.511886-2 2.107964+1 2.917427-2 1.190666+1 3.388442-2 6.674030+0 4.000000-2 3.486132+0 4.841724-2 1.637159+0 5.956621-2 7.152307-1 9.885531-2 9.323520-2 1.202264-1 4.268744-2 1.412538-1 2.258374-2 1.640590-1 1.259495-2 1.862087-1 7.737723-3 2.113489-1 4.789771-3 2.371374-1 3.120708-3 2.630268-1 2.137527-3 2.917427-1 1.475290-3 3.198895-1 1.068302-3 3.507519-1 7.788215-4 3.845918-1 5.717819-4 4.216965-1 4.227373-4 4.570882-1 3.266166-4 4.954502-1 2.540200-4 5.370318-1 1.990637-4 5.821032-1 1.570844-4 6.309573-1 1.247843-4 6.839117-1 9.977144-5 7.413102-1 8.028303-5 8.609938-1 5.422541-5 9.120108-1 4.691661-5 9.660509-1 4.087987-5 1.011579+0 3.683932-5 1.071519+0 3.257021-5 1.148154+0 2.831676-5 1.230269+0 2.479608-5 1.333521+0 2.138883-5 1.778279+0 1.288149-5 2.000000+0 1.054000-5 2.290868+0 8.434836-6 2.630268+0 6.775780-6 3.019952+0 5.483378-6 3.507519+0 4.394849-6 4.073803+0 3.548849-6 4.786301+0 2.840423-6 5.688529+0 2.255589-6 6.839116+0 1.777571-6 8.413951+0 1.372450-6 1.000000+1 1.113400-6 1.244515+1 8.600789-7 1.584893+1 6.517489-7 2.089296+1 4.787111-7 2.851018+1 3.412045-7 4.073803+1 2.332219-7 5.888437+1 1.586757-7 9.772372+1 9.412561-8 1.883649+2 4.827452-8 3.758374+2 2.404707-8 1.496236+3 6.011916-9 1.000000+5 8.98160-11 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.844400-4 2.780700-5 1.000000+5 2.780700-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.844400-4 1.566330-4 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.109000-5 8.912519+5 1.135011-5 8.426547+5 1.180000-5 7.735320+5 1.230269-5 7.128058+5 1.273503-5 6.710712+5 1.320000-5 6.344100+5 1.370000-5 6.031260+5 1.420000-5 5.782428+5 1.470000-5 5.587656+5 1.515000-5 5.451498+5 1.570000-5 5.328240+5 1.630000-5 5.239176+5 1.690000-5 5.189892+5 1.757924-5 5.175318+5 1.830000-5 5.201046+5 1.905461-5 5.267393+5 1.980000-5 5.368032+5 2.065380-5 5.521314+5 2.162719-5 5.739866+5 2.270000-5 6.028500+5 2.371374-5 6.341126+5 2.500000-5 6.788280+5 2.660725-5 7.417815+5 2.851018-5 8.245396+5 3.589219-5 1.199025+6 3.900000-5 1.364634+6 4.168694-5 1.505184+6 4.466836-5 1.654736+6 4.800000-5 1.813428+6 5.150000-5 1.970016+6 5.559043-5 2.140282+6 6.025596-5 2.320758+6 6.531306-5 2.498721+6 7.079458-5 2.671144+6 7.585776-5 2.807655+6 8.128305-5 2.929178+6 8.609938-5 3.015213+6 9.225714-5 3.097877+6 9.900000-5 3.160692+6 1.080000-4 3.209658+6 1.161449-4 3.230594+6 1.260000-4 3.232704+6 1.350000-4 3.213018+6 1.450000-4 3.171882+6 1.548817-4 3.111695+6 1.659587-4 3.030930+6 1.800000-4 2.914326+6 1.927525-4 2.799842+6 2.041738-4 2.694237+6 2.190000-4 2.551044+6 2.317395-4 2.426618+6 2.500000-4 2.250870+6 2.691535-4 2.073409+6 2.851018-4 1.932883+6 3.019952-4 1.792561+6 3.235937-4 1.623970+6 3.427678-4 1.486390+6 3.672823-4 1.326864+6 3.935501-4 1.175240+6 4.216965-4 1.032698+6 4.518559-4 9.005111+5 4.841724-4 7.794651+5 5.188000-4 6.698137+5 5.559043-4 5.716137+5 6.000000-4 4.761564+5 6.456542-4 3.967449+5 7.000000-4 3.220092+5 7.585776-4 2.596663+5 8.222426-4 2.077822+5 8.912509-4 1.651622+5 9.772372-4 1.260958+5 1.071519-3 9.551477+4 1.174898-3 7.180481+4 1.288250-3 5.359520+4 1.412538-3 3.973339+4 1.566751-3 2.816519+4 1.737801-3 1.981662+4 1.927525-3 1.383908+4 2.137962-3 9.596262+3 2.371374-3 6.608707+3 2.630268-3 4.520989+3 2.951209-3 2.942740+3 3.311311-3 1.900968+3 3.715352-3 1.218964+3 4.168694-3 7.761146+2 4.677351-3 4.907622+2 5.248075-3 3.082013+2 5.754399-3 2.112716+2 6.456542-3 1.308211+2 7.328245-3 7.661581+1 8.317638-3 4.453293+1 9.440609-3 2.570149+1 1.071519-2 1.472550+1 1.230269-2 7.952824+0 1.428894-2 4.046608+0 1.678804-2 1.939663+0 1.972423-2 9.227998-1 2.344229-2 4.130372-1 2.818383-2 1.738201-1 3.235937-2 9.029223-2 4.073803-2 3.003961-2 6.683439-2 2.791787-3 8.317638-2 9.835043-4 9.885531-2 4.344431-4 1.161449-1 2.039929-4 1.333521-1 1.074869-4 1.513561-1 6.017608-5 1.698244-1 3.577019-5 1.905461-1 2.141168-5 2.137962-1 1.291022-5 2.371374-1 8.244301-6 2.630268-1 5.303116-6 2.884032-1 3.606591-6 3.198895-1 2.355030-6 3.507519-1 1.623472-6 3.845918-1 1.126906-6 4.216965-1 7.877903-7 4.570882-1 5.795796-7 4.954502-1 4.291801-7 5.308844-1 3.341387-7 5.754399-1 2.512800-7 6.237348-1 1.902700-7 6.760830-1 1.449986-7 7.413102-1 1.070651-7 8.128305-1 7.957553-8 8.709636-1 6.394924-8 9.120108-1 5.561356-8 9.440609-1 5.032501-8 9.772372-1 4.577713-8 1.011579+0 4.190327-8 1.047129+0 3.858379-8 1.083927+0 3.570472-8 1.135011+0 3.241582-8 1.188502+0 2.962382-8 1.258925+0 2.665979-8 1.348963+0 2.364551-8 1.513561+0 1.954123-8 1.883649+0 1.331923-8 2.089296+0 1.118480-8 2.371374+0 9.103057-9 2.722701+0 7.327293-9 3.126079+0 5.941574-9 3.630781+0 4.770683-9 4.265795+0 3.797185-9 5.011872+0 3.045667-9 6.000000+0 2.400800-9 7.161434+0 1.913692-9 8.912509+0 1.459462-9 1.122018+1 1.108089-9 1.412538+1 8.47957-10 1.800000+1 6.44580-10 2.371374+1 4.75437-10 3.273407+1 3.35722-10 4.731513+1 2.27373-10 8.222427+1 1.28222-10 1.548817+2 6.71733-11 3.090295+2 3.34148-11 1.230269+3 8.34662-12 3.890451+4 2.63400-13 1.000000+5 1.02490-13 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.109000-5 1.109000-5 1.000000+5 1.109000-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.109000-5 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.670000-6 1.316680+6 9.772372-6 1.279929+6 1.011579-5 1.180012+6 1.047129-5 1.095071+6 1.085000-5 1.021560+6 1.122018-5 9.629768+5 1.165000-5 9.076960+5 1.202264-5 8.687956+5 1.244515-5 8.331893+5 1.290000-5 8.030160+5 1.333521-5 7.806682+5 1.380384-5 7.625977+5 1.428894-5 7.494667+5 1.480000-5 7.408528+5 1.531087-5 7.368066+5 1.590000-5 7.370200+5 1.650000-5 7.418344+5 1.717908-5 7.521412+5 1.778279-5 7.650635+5 1.862087-5 7.881291+5 1.950000-5 8.179280+5 2.041738-5 8.544507+5 2.150000-5 9.037280+5 2.270000-5 9.651440+5 2.426610-5 1.054664+6 2.630268-5 1.184122+6 3.400000-5 1.749016+6 3.715352-5 1.987843+6 4.000000-5 2.197040+6 4.315191-5 2.415805+6 4.650000-5 2.633672+6 5.011872-5 2.851190+6 5.500000-5 3.119696+6 6.000000-5 3.368208+6 6.539900-5 3.608863+6 7.000000-5 3.788528+6 7.500000-5 3.955840+6 8.000000-5 4.092464+6 8.511380-5 4.200275+6 9.015711-5 4.280495+6 9.660509-5 4.347359+6 1.040000-4 4.392784+6 1.150000-4 4.411928+6 1.244515-4 4.394400+6 1.333521-4 4.355498+6 1.450000-4 4.269504+6 1.548817-4 4.173103+6 1.659587-4 4.050217+6 1.800000-4 3.878168+6 1.905461-4 3.743134+6 2.050000-4 3.553944+6 2.213095-4 3.334130+6 2.350000-4 3.149240+6 2.511886-4 2.937982+6 2.722701-4 2.676059+6 2.917427-4 2.449510+6 3.090295-4 2.261799+6 3.273407-4 2.076327+6 3.467369-4 1.895198+6 3.715352-4 1.686084+6 3.981072-4 1.488299+6 4.265795-4 1.303616+6 4.570882-4 1.133411+6 4.897788-4 9.783826+5 5.248075-4 8.387122+5 5.623413-4 7.141802+5 6.025596-4 6.042253+5 6.456542-4 5.080090+5 7.000000-4 4.116448+5 7.585776-4 3.314880+5 8.222426-4 2.649169+5 8.912509-4 2.103201+5 9.740000-4 1.619140+5 1.059254-3 1.256059+5 1.161449-3 9.437414+4 1.273503-3 7.040180+4 1.396368-3 5.216216+4 1.548817-3 3.694456+4 1.698244-3 2.702716+4 1.883649-3 1.887320+4 2.089296-3 1.308211+4 2.344229-3 8.638278+3 2.600160-3 5.904934+3 2.917427-3 3.840058+3 3.273407-3 2.478466+3 3.672823-3 1.587249+3 4.073803-3 1.055328+3 4.518559-3 6.962646+2 5.069907-3 4.353945+2 5.688529-3 2.703408+2 6.683439-3 1.374105+2 7.498942-3 8.431292+1 8.317638-3 5.396829+1 9.120108-3 3.607662+1 1.035142-2 2.051437+1 1.348963-2 6.239926+0 1.584893-2 3.002898+0 1.778279-2 1.766377+0 2.065380-2 8.791985-1 2.426610-2 4.114143-1 2.884032-2 1.808920-1 3.507519-2 7.060249-2 4.623810-2 1.853069-2 7.328245-2 1.985166-3 8.912509-2 7.734638-4 1.047129-1 3.583626-4 1.230269-1 1.673599-4 1.396368-1 9.266690-5 1.566751-1 5.452412-5 1.737801-1 3.405457-5 1.927525-1 2.141766-5 2.137962-1 1.357183-5 2.344229-1 9.107342-6 2.570396-1 6.154576-6 2.786121-1 4.396702-6 3.019952-1 3.162704-6 3.273407-1 2.289949-6 3.589219-1 1.595188-6 3.890451-1 1.170866-6 4.216965-1 8.660434-7 4.518559-1 6.734697-7 4.841724-1 5.271279-7 5.188000-1 4.152246-7 5.559043-1 3.294643-7 5.956621-1 2.631236-7 6.456542-1 2.039608-7 6.998420-1 1.593198-7 7.585776-1 1.250972-7 8.128305-1 1.023254-7 8.709636-1 8.427664-8 9.225714-1 7.192096-8 9.660509-1 6.373609-8 1.000000+0 5.851300-8 1.047129+0 5.260132-8 1.096478+0 4.761272-8 1.148154+0 4.335302-8 1.216186+0 3.882630-8 1.318257+0 3.356602-8 1.513561+0 2.651180-8 1.840772+0 1.879801-8 2.044000+0 1.574000-8 2.344229+0 1.258534-8 2.691535+0 1.012280-8 3.090295+0 8.202303-9 3.589219+0 6.581960-9 4.168694+0 5.320728-9 4.897788+0 4.263157-9 5.821032+0 3.388927-9 7.000000+0 2.672500-9 8.709636+0 2.036866-9 1.071519+1 1.587863-9 1.348963+1 1.213143-9 1.737801+1 9.09746-10 2.317395+1 6.61560-10 3.198895+1 4.66896-10 4.623810+1 3.16071-10 7.852356+1 1.82427-10 1.479108+2 9.55132-11 2.951209+2 4.74954-11 1.174898+3 1.18609-11 3.715352+4 3.74262-13 1.000000+5 1.39070-13 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.670000-6 9.670000-6 1.000000+5 9.670000-6 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.670000-6 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 5.990000-5 5.721960+4 6.110000-5 5.476700+4 6.220300-5 5.298857+4 6.330000-5 5.161600+4 6.450000-5 5.055260+4 6.580000-5 4.982240+4 6.690000-5 4.950000+4 6.800000-5 4.941440+4 6.950000-5 4.962360+4 7.079458-5 5.005036+4 7.244360-5 5.084847+4 7.500000-5 5.248400+4 7.852356-5 5.520960+4 8.650000-5 6.178220+4 9.015711-5 6.450309+4 9.440609-5 6.723793+4 9.800000-5 6.915120+4 1.023293-4 7.095939+4 1.071519-4 7.237739+4 1.122018-4 7.328306+4 1.174898-4 7.371995+4 1.244515-4 7.369266+4 1.318257-4 7.312632+4 1.400000-4 7.205640+4 1.500000-4 7.032340+4 1.603245-4 6.819434+4 1.720000-4 6.550300+4 1.850000-4 6.232580+4 2.000000-4 5.864940+4 2.187762-4 5.427877+4 2.400000-4 4.977240+4 2.650000-4 4.503200+4 2.951209-4 4.005082+4 3.350000-4 3.461060+4 3.801894-4 2.970405+4 4.365158-4 2.493153+4 5.069907-4 2.048192+4 5.956621-4 1.643855+4 7.000000-4 1.310162+4 8.413951-4 1.003523+4 1.011579-3 7.621734+3 1.216186-3 5.744231+3 1.462177-3 4.295174+3 1.757924-3 3.186076+3 2.113489-3 2.344510+3 2.540973-3 1.711480+3 3.054921-3 1.239771+3 3.672823-3 8.914563+2 4.415704-3 6.360848+2 5.370318-3 4.410391+2 6.683439-3 2.904406+2 8.128305-3 1.983796+2 9.885531-3 1.344871+2 1.202264-2 9.047551+1 1.445440-2 6.184407+1 1.737801-2 4.194423+1 2.187762-2 2.557824+1 2.630268-2 1.710036+1 3.054921-2 1.225229+1 3.589219-2 8.484161+0 4.265795-2 5.677608+0 5.069907-2 3.769857+0 6.025596-2 2.484393+0 7.244360-2 1.580194+0 8.511380-2 1.056635+0 1.047129-1 6.245125-1 1.348963-1 3.255651-1 2.454709-1 6.846941-2 3.019952-1 4.014585-2 3.589219-1 2.589900-2 4.120975-1 1.835772-2 4.731513-1 1.310777-2 5.370318-1 9.693643-3 6.025596-1 7.416080-3 6.760830-1 5.713620-3 7.585776-1 4.432314-3 8.609938-1 3.377820-3 9.549926-1 2.724003-3 1.071519+0 2.163662-3 1.230269+0 1.653273-3 1.380384+0 1.330751-3 1.548817+0 1.078339-3 1.757924+0 8.623442-4 2.000000+0 6.922800-4 2.290868+0 5.539185-4 2.630268+0 4.449816-4 3.019952+0 3.601464-4 3.507519+0 2.886552-4 4.073803+0 2.330912-4 4.786301+0 1.865609-4 5.688529+0 1.481493-4 6.839116+0 1.167540-4 8.413951+0 9.014106-5 1.011579+1 7.212657-5 1.273503+1 5.499815-5 1.640590+1 4.116753-5 2.200000+1 2.970300-5 3.019952+1 2.106449-5 4.315191+1 1.441555-5 6.606934+1 9.249372-6 1.096478+2 5.495590-6 2.187762+2 2.725200-6 4.365158+2 1.358906-6 1.737801+3 3.398704-7 1.000000+5 5.899000-9 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 5.990000-5 5.990000-5 1.000000+5 5.990000-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 5.990000-5 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.644000-5 1.063862+7 3.680000-5 9.895100+6 3.720000-5 9.189160+6 3.760000-5 8.580160+6 3.830000-5 7.692340+6 3.900000-5 6.971460+6 3.981072-5 6.282066+6 4.073803-5 5.634150+6 4.180000-5 5.025940+6 4.315191-5 4.394753+6 4.500000-5 3.711300+6 4.800000-5 2.888440+6 6.839116-5 7.437748+5 7.500000-5 5.250840+5 8.222426-5 3.737873+5 8.912509-5 2.793272+5 9.549926-5 2.189305+5 1.020000-4 1.747666+5 1.083927-4 1.430078+5 1.135011-4 1.235485+5 1.194100-4 1.058402+5 1.244515-4 9.382029+4 1.303167-4 8.254533+4 1.364583-4 7.311889+4 1.430000-4 6.509620+4 1.500000-4 5.825080+4 1.566751-4 5.299892+4 1.640590-4 4.829760+4 1.720000-4 4.423140+4 1.800000-4 4.091920+4 1.883649-4 3.809195+4 1.980000-4 3.544000+4 2.089296-4 3.300478+4 2.220000-4 3.065800+4 2.371374-4 2.848039+4 2.580000-4 2.612300+4 2.851018-4 2.376978+4 4.216965-4 1.680660+4 4.897788-4 1.462626+4 5.559043-4 1.291961+4 6.309573-4 1.133932+4 7.079458-4 1.000869+4 8.035261-4 8.664710+3 9.015711-4 7.551294+3 1.023293-3 6.445376+3 1.161449-3 5.459058+3 1.318257-3 4.588473+3 1.496236-3 3.827034+3 1.698244-3 3.166985+3 1.905461-3 2.647754+3 2.162719-3 2.157166+3 2.454709-3 1.743789+3 2.786121-3 1.398678+3 3.162278-3 1.113506+3 3.589219-3 8.799989+2 4.073803-3 6.904304+2 4.623810-3 5.378452+2 5.248075-3 4.160188+2 6.000000-3 3.146719+2 6.839116-3 2.377325+2 7.762471-3 1.799751+2 8.810489-3 1.353088+2 1.000000-2 1.010272+2 1.122018-2 7.696570+1 1.288250-2 5.509970+1 1.548817-2 3.495234+1 1.778279-2 2.473005+1 2.018366-2 1.788627+1 2.290868-2 1.280624+1 2.600160-2 9.101735+0 3.000000-2 6.141197+0 3.507519-2 3.968331+0 4.120975-2 2.509864+0 4.897788-2 1.524265+0 5.888437-2 8.876666-1 7.328245-2 4.630855-1 9.772372-2 1.948662-1 1.584893-1 4.512427-2 1.972423-1 2.342854-2 2.371374-1 1.358171-2 2.786121-1 8.491662-3 3.198895-1 5.717006-3 3.630781-1 4.004200-3 4.120975-1 2.824520-3 4.623810-1 2.070752-3 5.128614-1 1.575986-3 5.754399-1 1.172566-3 6.456542-1 8.792797-4 7.161434-1 6.833666-4 7.943282-1 5.348809-4 8.709636-1 4.317162-4 9.332543-1 3.697993-4 1.000000+0 3.189100-4 1.096478+0 2.643222-4 1.202264+0 2.206439-4 1.318257+0 1.854867-4 1.479108+0 1.505234-4 1.717908+0 1.153932-4 1.949845+0 9.283021-5 2.213095+0 7.527449-5 2.540973+0 6.035317-5 2.917427+0 4.875703-5 3.349654+0 3.967091-5 3.890451+0 3.196348-5 4.570882+0 2.552712-5 5.370318+0 2.053903-5 6.456542+0 1.614778-5 7.673615+0 1.298174-5 9.332543+0 1.020806-5 1.174898+1 7.763459-6 1.479108+1 5.949983-6 1.883649+1 4.531743-6 2.483133+1 3.344001-6 3.507519+1 2.306513-6 5.069907+1 1.564478-6 8.709636+1 8.938314-7 1.659587+2 4.631752-7 3.311311+2 2.305201-7 1.318257+3 5.760197-8 1.000000+5 7.58000-10 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.644000-5 3.644000-5 1.000000+5 3.644000-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.644000-5 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 3.001000-5 2.521508+7 3.010000-5 2.459128+7 3.040000-5 2.282464+7 3.080000-5 2.081696+7 3.135000-5 1.855504+7 3.190000-5 1.671296+7 3.245000-5 1.517624+7 3.311311-5 1.363115+7 3.388442-5 1.214473+7 3.470000-5 1.084392+7 3.589219-5 9.305471+6 3.730000-5 7.879960+6 3.935501-5 6.306699+6 4.216965-5 4.774273+6 4.841724-5 2.764417+6 5.432503-5 1.764216+6 5.888437-5 1.297066+6 6.309573-5 1.003806+6 6.683439-5 8.161801+5 7.079458-5 6.684459+5 7.413102-5 5.731823+5 7.800000-5 4.870400+5 8.150000-5 4.259600+5 8.511380-5 3.755227+5 8.912509-5 3.309749+5 9.300000-5 2.966688+5 9.660509-5 2.706605+5 1.000000-4 2.502680+5 1.040000-4 2.302732+5 1.083927-4 2.122448+5 1.135011-4 1.952056+5 1.190000-4 1.803812+5 1.244515-4 1.683607+5 1.318257-4 1.551986+5 1.400000-4 1.435840+5 1.500000-4 1.323064+5 1.621810-4 1.215271+5 1.800000-4 1.094296+5 2.600160-4 7.706070+4 3.054921-4 6.563688+4 3.548134-4 5.614299+4 4.073803-4 4.824325+4 4.700600-4 4.091184+4 5.370318-4 3.484197+4 6.165950-4 2.927853+4 7.000000-4 2.479424+4 8.035261-4 2.054566+4 9.225714-4 1.688602+4 1.059254-3 1.377568+4 1.216186-3 1.114980+4 1.380384-3 9.120482+3 1.566751-3 7.409132+3 1.778279-3 5.976693+3 2.018366-3 4.787319+3 2.290868-3 3.807137+3 2.600160-3 3.006151+3 2.951209-3 2.356853+3 3.349654-3 1.834607+3 3.801894-3 1.418074+3 4.315191-3 1.088533+3 4.897788-3 8.298340+2 5.559043-3 6.283058+2 6.309573-3 4.724311+2 7.244360-3 3.434360+2 8.222426-3 2.545498+2 9.332543-3 1.873019+2 1.083927-2 1.292763+2 1.230269-2 9.379314+1 1.380384-2 6.953817+1 1.640590-2 4.384446+1 1.883649-2 3.008504+1 2.162719-2 2.048265+1 2.483133-2 1.383989+1 2.851018-2 9.283435+0 3.273407-2 6.182973+0 3.801894-2 3.950961+0 4.415704-2 2.505885+0 5.188000-2 1.523146+0 6.189000-2 8.765069-1 7.498942-2 4.760631-1 9.660509-2 2.109293-1 1.659587-1 3.674043-2 2.018366-1 1.965171-2 2.371374-1 1.181952-2 2.722701-1 7.698041-3 3.090295-1 5.232896-3 3.467369-1 3.709621-3 3.890451-1 2.649129-3 4.315191-1 1.970318-3 4.786301-1 1.475967-3 5.248075-1 1.149180-3 5.821032-1 8.737795-4 6.456542-1 6.697053-4 7.079458-1 5.323100-4 7.762471-1 4.258806-4 8.609938-1 3.330665-4 9.225714-1 2.844095-4 9.885531-1 2.446168-4 1.071519+0 2.071040-4 1.174898+0 1.725351-4 1.288250+0 1.448145-4 1.428894+0 1.198467-4 1.698244+0 8.814884-5 1.927525+0 7.085972-5 2.187762+0 5.741783-5 2.511886+0 4.600619-5 2.884032+0 3.714453-5 3.311311+0 3.020503-5 3.845918+0 2.432262-5 4.518559+0 1.941389-5 5.308844+0 1.561276-5 6.382635+0 1.226888-5 7.498942+0 1.000121-5 9.225714+0 7.748642-6 1.161449+1 5.890853-6 1.462177+1 4.513042-6 1.862087+1 3.436265-6 2.454709+1 2.534970-6 3.467369+1 1.747966-6 5.069907+1 1.171216-6 8.709636+1 6.691317-7 1.659587+2 3.467365-7 3.311311+2 1.725690-7 1.318257+3 4.312146-8 1.000000+5 5.67440-10 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 3.001000-5 3.001000-5 1.000000+5 3.001000-5 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 3.001000-5 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.610000-6 4.880360+6 5.900000-6 3.980660+6 6.531306-6 2.608388+6 7.244360-6 1.683900+6 8.035261-6 1.079388+6 8.912509-6 6.868192+5 9.885531-6 4.339077+5 1.303167-5 1.250225+5 1.396368-5 9.214198+4 1.462177-5 7.560177+4 1.531087-5 6.244494+4 1.590000-5 5.373120+4 1.640590-5 4.769057+4 1.698244-5 4.210492+4 1.750000-5 3.803540+4 1.800000-5 3.479200+4 1.850000-5 3.210480+4 1.905461-5 2.965922+4 1.950000-5 2.803360+4 2.000000-5 2.650740+4 2.055000-5 2.513340+4 2.113489-5 2.396099+4 2.170000-5 2.305940+4 2.238721-5 2.220956+4 2.300000-5 2.163520+4 2.375200-5 2.111614+4 2.454709-5 2.073963+4 2.540973-5 2.048119+4 2.650000-5 2.031340+4 2.786121-5 2.026656+4 2.985383-5 2.037492+4 3.630781-5 2.099658+4 3.935501-5 2.112200+4 4.216965-5 2.109398+4 4.518559-5 2.093473+4 4.841724-5 2.064200+4 5.188000-5 2.020578+4 5.559043-5 1.963312+4 6.000000-5 1.886832+4 6.456542-5 1.803596+4 7.000000-5 1.702690+4 7.673615-5 1.581024+4 8.413951-5 1.457832+4 9.332543-5 1.320852+4 1.071519-4 1.148869+4 1.303167-4 9.326423+3 1.737801-4 6.798088+3 2.000000-4 5.790260+3 2.238721-4 5.037125+3 2.540973-4 4.272379+3 2.951209-4 3.488500+3 3.715352-4 2.533252+3 4.954502-4 1.692426+3 6.025596-4 1.271377+3 8.128305-4 8.156878+2 9.660509-4 6.260259+2 1.230269-3 4.286230+2 1.500000-3 3.119720+2 1.819701-3 2.270346+2 1.949845-3 2.014948+2 2.041738-3 1.868205+2 2.113489-3 1.756807+2 2.176000-3 1.661888+2 2.238721-3 1.556963+2 2.290868-3 1.484864+2 2.317700-3 1.454312+2 2.344229-3 1.441668+2 2.398833-3 1.426437+2 2.483133-3 1.410550+2 2.517600-3 1.400189+2 2.570396-3 1.360436+2 2.630268-3 1.308410+2 2.691535-3 1.250209+2 2.754229-3 1.187193+2 2.851018-3 1.091515+2 3.000000-3 9.612493+1 3.126079-3 8.786354+1 3.235937-3 8.181881+1 3.388442-3 7.500448+1 3.548134-3 6.920517+1 3.758374-3 6.300715+1 4.000000-3 5.721882+1 4.466836-3 4.689878+1 5.069907-3 3.703845+1 7.413102-3 1.782851+1 9.015711-3 1.213396+1 1.096478-2 8.195722+0 1.318257-2 5.624374+0 1.584893-2 3.830978+0 1.905461-2 2.589112+0 2.264644-2 1.780329+0 2.691535-2 1.215475+0 3.198895-2 8.237520-1 3.801894-2 5.540627-1 4.518559-2 3.698918-1 5.308844-2 2.519238-1 6.309573-2 1.657034-1 7.585776-2 1.051956-1 9.015711-2 6.819467-2 1.122019-1 3.905468-2 1.479108-1 1.914286-2 2.426610-1 5.266580-3 3.000000-1 3.049200-3 3.548134-1 1.991393-3 4.120975-1 1.371723-3 4.731513-1 9.798384-4 5.370318-1 7.250195-4 6.025596-1 5.550556-4 6.760830-1 4.280200-4 7.585776-1 3.324357-4 8.511380-1 2.600993-4 9.440609-1 2.099769-4 1.059254+0 1.668422-4 1.216186+0 1.274376-4 1.380384+0 1.003018-4 1.548817+0 8.124756-5 1.737801+0 6.628323-5 1.972423+0 5.338731-5 2.238721+0 4.331954-5 2.570396+0 3.475540-5 2.951209+0 2.809541-5 3.427678+0 2.249057-5 4.000000+0 1.802000-5 4.677351+0 1.450390-5 5.495409+0 1.168166-5 6.606934+0 9.193052-6 7.943282+0 7.292839-6 9.440609+0 5.903193-6 1.188502+1 4.491293-6 1.500000+1 3.433600-6 1.927525+1 2.590163-6 2.540973+1 1.912306-6 3.589219+1 1.319788-6 5.188000+1 8.956242-7 8.912509+1 5.118787-7 1.717908+2 2.622498-7 3.427678+2 1.305552-7 1.364583+3 3.262704-8 1.000000+5 4.44470-10 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.610000-6 5.610000-6 1.000000+5 5.610000-6 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.610000-6 0.0 1.000000+5 1.000000+5 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 3.931720-7 1.026600+0 1.253280-6 1.027100+0 1.705110-6 1.027500+0 2.135640-6 1.028100+0 2.907630-6 1.028750+0 3.931720-6 1.029500+0 5.380660-6 1.030100+0 6.766840-6 1.031000+0 9.259340-6 1.032000+0 1.266910-5 1.033200+0 1.774730-5 1.034000+0 2.178640-5 1.035300+0 2.957190-5 1.036640+0 3.931720-5 1.038200+0 5.305980-5 1.039700+0 6.893530-5 1.041500+0 9.171760-5 1.043800+0 1.273070-4 1.046400+0 1.771240-4 1.048300+0 2.205240-4 1.051200+0 2.991360-4 1.054080+0 3.931720-4 1.057700+0 5.359200-4 1.061100+0 6.970990-4 1.065100+0 9.228860-4 1.070400+0 1.287530-3 1.076200+0 1.779370-3 1.080600+0 2.222140-3 1.087100+0 2.993940-3 1.093710+0 3.931720-3 1.102600+0 5.451060-3 1.110700+0 7.108900-3 1.120600+0 9.508920-3 1.133300+0 1.322040-2 1.147500+0 1.825240-2 1.158200+0 2.268310-2 1.174100+0 3.031900-2 1.190110+0 3.931720-2 1.205100+0 4.895570-2 1.227500+0 6.553850-2 1.250000+0 8.465000-2 1.265600+0 9.917630-2 1.294900+0 1.289570-1 1.331800+0 1.703690-1 1.362600+0 2.075960-1 1.397000+0 2.514360-1 1.433800+0 3.004940-1 1.500000+0 3.937000-1 1.562500+0 4.877110-1 1.617200+0 5.742900-1 1.712900+0 7.333700-1 1.838500+0 9.520020-1 1.946200+0 1.142990+0 2.000000+0 1.238000+0 2.044000+0 1.315000+0 2.163500+0 1.522510+0 2.372600+0 1.878930+0 2.647100+0 2.329910+0 3.000000+0 2.879000+0 3.500000+0 3.598770+0 4.000000+0 4.258000+0 4.750000+0 5.148670+0 5.000000+0 5.423000+0 6.000000+0 6.425000+0 7.000000+0 7.308000+0 8.000000+0 8.102000+0 9.000000+0 8.824000+0 1.000000+1 9.487000+0 1.100000+1 1.010000+1 1.200000+1 1.067000+1 1.300000+1 1.120000+1 1.400000+1 1.170000+1 1.500000+1 1.216000+1 1.600000+1 1.259000+1 1.800000+1 1.336000+1 2.000000+1 1.405000+1 2.200000+1 1.468000+1 2.400000+1 1.524000+1 2.600000+1 1.577000+1 2.800000+1 1.624000+1 3.000000+1 1.668000+1 4.000000+1 1.848000+1 5.000000+1 1.981000+1 6.000000+1 2.085000+1 8.000000+1 2.237000+1 1.000000+2 2.345000+1 1.500000+2 2.515000+1 2.000000+2 2.616000+1 3.000000+2 2.733000+1 4.000000+2 2.800000+1 5.000000+2 2.844000+1 6.000000+2 2.876000+1 8.000000+2 2.917000+1 1.000000+3 2.944000+1 1.500000+3 2.983000+1 2.000000+3 3.005000+1 3.000000+3 3.028000+1 4.000000+3 3.040000+1 5.000000+3 3.048000+1 6.000000+3 3.053000+1 8.000000+3 3.060000+1 1.000000+4 3.065000+1 1.500000+4 3.071000+1 2.000000+4 3.074000+1 3.000000+4 3.078000+1 4.000000+4 3.079000+1 5.000000+4 3.081000+1 6.000000+4 3.081000+1 8.000000+4 3.082000+1 1.000000+5 3.083000+1 1 70000 7 8 1.730400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.013440-7 2.094700+0 1.234740-6 2.099900+0 1.642640-6 2.106600+0 2.285060-6 2.114000+0 3.161660-6 2.119500+0 3.936250-6 2.127900+0 5.338300-6 2.136250+0 7.013440-6 2.147000+0 9.615920-6 2.156900+0 1.248990-5 2.169000+0 1.666860-5 2.184500+0 2.316990-5 2.201800+0 3.205620-5 2.214800+0 3.993950-5 2.234200+0 5.372580-5 2.253680+0 7.013440-5 2.281500+0 9.823560-5 2.307000+0 1.290320-4 2.338200+0 1.734950-4 2.377400+0 2.402690-4 2.410200+0 3.055820-4 2.446800+0 3.887180-4 2.485900+0 4.894170-4 2.532900+0 6.263500-4 2.556430+0 7.013440-4 2.611900+0 8.942930-4 2.660400+0 1.081150-3 2.745300+0 1.447060-3 2.809000+0 1.752480-3 2.904500+0 2.257640-3 3.000000+0 2.818000-3 3.125000+0 3.633630-3 3.234400+0 4.421170-3 3.425800+0 5.953190-3 3.569300+0 7.218190-3 3.784700+0 9.277410-3 4.000000+0 1.149000-2 4.250000+0 1.419340-2 4.625000+0 1.843880-2 5.000000+0 2.285000-2 5.500000+0 2.890420-2 6.000000+0 3.504000-2 6.750000+0 4.416920-2 7.000000+0 4.717000-2 8.000000+0 5.889000-2 9.000000+0 7.009000-2 1.000000+1 8.072000-2 1.100000+1 9.076000-2 1.200000+1 1.002000-1 1.300000+1 1.091000-1 1.400000+1 1.176000-1 1.500000+1 1.256000-1 1.600000+1 1.331000-1 1.800000+1 1.472000-1 2.000000+1 1.599000-1 2.200000+1 1.715000-1 2.400000+1 1.822000-1 2.600000+1 1.920000-1 2.800000+1 2.011000-1 3.000000+1 2.096000-1 4.000000+1 2.444000-1 5.000000+1 2.706000-1 6.000000+1 2.912000-1 8.000000+1 3.221000-1 1.000000+2 3.444000-1 1.500000+2 3.809000-1 2.000000+2 4.036000-1 3.000000+2 4.311000-1 4.000000+2 4.475000-1 5.000000+2 4.586000-1 6.000000+2 4.668000-1 8.000000+2 4.780000-1 1.000000+3 4.855000-1 1.500000+3 4.965000-1 2.000000+3 5.028000-1 3.000000+3 5.097000-1 4.000000+3 5.137000-1 5.000000+3 5.162000-1 6.000000+3 5.179000-1 8.000000+3 5.202000-1 1.000000+4 5.217000-1 1.500000+4 5.237000-1 2.000000+4 5.248000-1 3.000000+4 5.259000-1 4.000000+4 5.266000-1 5.000000+4 5.271000-1 6.000000+4 5.273000-1 8.000000+4 5.276000-1 1.000000+5 5.278000-1 1 70000 7 8 1.730400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 70000 7 9 1.730400+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.000000+1 1.000000+5 7.000000+1 5.000000+5 6.996700+1 8.750000+5 6.993150+1 1.000000+6 6.992300+1 1.375000+6 6.988250+1 1.500000+6 6.986300+1 1.875000+6 6.978730+1 2.000000+6 6.975800+1 2.375000+6 6.965630+1 2.500000+6 6.962600+1 2.875000+6 6.951020+1 3.000000+6 6.946800+1 3.437500+6 6.930520+1 3.812500+6 6.915570+1 4.000000+6 6.908400+1 4.437500+6 6.889860+1 4.812500+6 6.872660+1 5.000000+6 6.864300+1 5.500000+6 6.838830+1 5.875000+6 6.818580+1 6.437500+6 6.787030+1 6.500000+6 6.783300+1 7.000000+6 6.754700+1 7.500000+6 6.725140+1 8.250000+6 6.680630+1 9.000000+6 6.635500+1 1.000000+7 6.573300+1 1.250000+7 6.417100+1 1.500000+7 6.255200+1 1.750000+7 6.092200+1 2.000000+7 5.923700+1 2.250000+7 5.749810+1 2.500000+7 5.574300+1 2.875000+7 5.313050+1 3.000000+7 5.227800+1 3.437500+7 4.935620+1 3.812500+7 4.699200+1 4.000000+7 4.586700+1 4.500000+7 4.303740+1 5.000000+7 4.044000+1 5.500000+7 3.804370+1 5.750000+7 3.690870+1 6.000000+7 3.581700+1 6.500000+7 3.373820+1 7.000000+7 3.180000+1 7.750000+7 2.914420+1 8.000000+7 2.832900+1 9.000000+7 2.539000+1 1.000000+8 2.295400+1 1.125000+8 2.052240+1 1.187500+8 1.952300+1 1.250000+8 1.865000+1 1.375000+8 1.721580+1 1.437500+8 1.661710+1 1.500000+8 1.607900+1 1.625000+8 1.513500+1 1.718800+8 1.448430+1 1.812500+8 1.384860+1 1.841800+8 1.364970+1 1.947300+8 1.292630+1 2.000000+8 1.255800+1 2.125000+8 1.168030+1 2.250000+8 1.086160+1 2.359400+8 1.023000+1 2.500000+8 9.557600+0 2.781300+8 8.536250+0 2.859400+8 8.251730+0 2.875000+8 8.193190+0 2.953100+8 7.884300+0 3.000000+8 7.687500+0 3.062500+8 7.411760+0 3.335900+8 6.284030+0 3.418000+8 6.025080+0 3.500000+8 5.817500+0 3.589800+8 5.649220+0 3.712900+8 5.489060+0 4.000000+8 5.199200+0 4.125000+8 5.053790+0 4.234400+8 4.913480+0 4.425800+8 4.655880+0 5.000000+8 3.962600+0 5.625000+8 3.440230+0 5.875000+8 3.246160+0 6.000000+8 3.146500+0 6.250000+8 2.942590+0 6.718800+8 2.601050+0 6.906300+8 2.492610+0 7.000000+8 2.445700+0 7.250000+8 2.342160+0 7.718800+8 2.181600+0 7.906300+8 2.114960+0 8.000000+8 2.079500+0 8.125000+8 2.029160+0 8.359400+8 1.929190+0 8.564500+8 1.839840+0 9.461700+8 1.493110+0 9.730800+8 1.413600+0 1.000000+9 1.347200+0 1.015600+9 1.314790+0 1.045900+9 1.262660+0 1.074300+9 1.224020+0 1.113400+9 1.183100+0 1.149200+9 1.154900+0 1.193100+9 1.128650+0 1.285100+9 1.089960+0 1.392600+9 1.051620+0 1.446300+9 1.029370+0 1.500000+9 1.003200+0 1.560500+9 9.682950-1 1.615500+9 9.331920-1 1.686000+9 8.855790-1 1.764500+9 8.315140-1 1.823400+9 7.914600-1 1.911700+9 7.337490-1 2.000000+9 6.799200-1 2.139200+9 6.038520-1 2.272600+9 5.401750-1 2.443000+9 4.700730-1 2.602800+9 4.140530-1 2.825100+9 3.489530-1 2.961100+9 3.152620-1 3.215900+9 2.622130-1 3.438900+9 2.245620-1 3.500000+9 2.154170-1 3.719500+9 1.861680-1 3.954200+9 1.601350-1 4.327700+9 1.273500-1 4.663900+9 1.046960-1 5.000000+9 8.684300-2 5.375000+9 7.116700-2 5.703100+9 6.027410-2 6.277300+9 4.582500-2 7.138700+9 3.149880-2 8.000000+9 2.249600-2 1.00000+10 1.158800-2 1.27030+10 5.703480-3 1.55700+10 3.130670-3 2.15420+10 1.209690-3 2.64460+10 6.657810-4 3.56400+10 2.806450-4 5.17300+10 9.613600-5 7.58650+10 3.222540-5 1.00000+11 1.471800-5 1.34280+11 6.404290-6 2.20600+11 1.590920-6 4.19930+11 2.654380-7 1.03480+12 2.214280-8 3.24440+12 9.83264-10 1.00000+14 9.50670-14 2.05350+15 2.64168-17 1.00000+17 6.60410-22 1 70000 7 0 1.730400+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.60000-12 1.000000+2 9.60000-10 1.000000+3 9.600000-8 1.000000+4 9.600000-6 1.000000+5 9.600000-4 5.000000+5 2.400000-2 8.750000+5 7.350000-2 1.000000+6 9.600000-2 1.375000+6 1.802410-1 1.500000+6 2.137000-1 1.875000+6 3.288860-1 2.000000+6 3.720000-1 2.375000+6 5.144230-1 2.500000+6 5.660000-1 2.875000+6 7.314540-1 3.000000+6 7.899000-1 3.437500+6 1.004980+0 3.812500+6 1.200370+0 4.000000+6 1.301200+0 4.437500+6 1.542070+0 4.812500+6 1.752730+0 5.000000+6 1.859000+0 5.500000+6 2.142170+0 5.875000+6 2.353700+0 6.437500+6 2.667580+0 6.500000+6 2.702020+0 7.000000+6 2.975400+0 7.500000+6 3.242790+0 8.250000+6 3.635000+0 9.000000+6 4.020400+0 1.000000+7 4.527000+0 1.250000+7 5.782500+0 1.500000+7 7.088000+0 1.750000+7 8.402700+0 2.000000+7 9.720000+0 2.250000+7 1.098750+1 2.500000+7 1.221100+1 2.875000+7 1.398890+1 3.000000+7 1.456500+1 3.437500+7 1.650060+1 3.812500+7 1.806210+1 4.000000+7 1.881000+1 4.500000+7 2.069660+1 5.000000+7 2.244300+1 5.500000+7 2.406700+1 5.750000+7 2.484180+1 6.000000+7 2.559600+1 6.500000+7 2.705000+1 7.000000+7 2.844600+1 7.750000+7 3.043530+1 8.000000+7 3.107700+1 9.000000+7 3.351900+1 1.000000+8 3.579400+1 1.125000+8 3.843230+1 1.187500+8 3.967530+1 1.250000+8 4.086900+1 1.375000+8 4.310500+1 1.437500+8 4.414290+1 1.500000+8 4.513100+1 1.625000+8 4.693820+1 1.718800+8 4.816400+1 1.812500+8 4.929060+1 1.841800+8 4.962180+1 1.947300+8 5.074480+1 2.000000+8 5.127000+1 2.125000+8 5.240950+1 2.250000+8 5.343840+1 2.359400+8 5.425200+1 2.500000+8 5.521000+1 2.781300+8 5.686140+1 2.859400+8 5.727540+1 2.875000+8 5.735330+1 2.953100+8 5.773840+1 3.000000+8 5.796600+1 3.062500+8 5.825280+1 3.335900+8 5.941110+1 3.418000+8 5.972620+1 3.500000+8 6.003500+1 3.589800+8 6.035010+1 3.712900+8 6.077200+1 4.000000+8 6.167200+1 4.125000+8 6.202720+1 4.234400+8 6.233100+1 4.425800+8 6.282750+1 5.000000+8 6.411500+1 5.625000+8 6.522450+1 5.875000+8 6.559860+1 6.000000+8 6.577100+1 6.250000+8 6.608870+1 6.718800+8 6.659640+1 6.906300+8 6.677390+1 7.000000+8 6.686100+1 7.250000+8 6.706220+1 7.718800+8 6.739410+1 7.906300+8 6.751400+1 8.000000+8 6.757300+1 8.125000+8 6.764020+1 8.359400+8 6.776350+1 8.564500+8 6.786440+1 9.461700+8 6.822780+1 9.730800+8 6.831960+1 1.000000+9 6.840900+1 1.015600+9 6.845340+1 1.045900+9 6.853790+1 1.074300+9 6.861500+1 1.113400+9 6.871800+1 1.149200+9 6.880160+1 1.193100+9 6.889630+1 1.285100+9 6.906720+1 1.392600+9 6.923730+1 1.446300+9 6.930890+1 1.500000+9 6.937800+1 1.560500+9 6.943970+1 1.615500+9 6.949380+1 1.686000+9 6.956060+1 1.764500+9 6.962150+1 1.823400+9 6.966020+1 1.911700+9 6.971580+1 2.000000+9 6.976900+1 2.139200+9 6.982760+1 2.272600+9 6.987020+1 2.443000+9 6.991420+1 2.602800+9 6.994670+1 2.825100+9 6.997660+1 2.961100+9 6.998600+1 3.215900+9 6.999970+1 3.438900+9 7.000780+1 3.500000+9 7.000740+1 3.719500+9 7.000600+1 3.954200+9 7.000450+1 4.327700+9 7.000240+1 4.663900+9 7.000060+1 5.000000+9 6.999900+1 5.375000+9 6.999920+1 5.703100+9 6.999930+1 6.277300+9 6.999950+1 7.138700+9 6.999980+1 8.000000+9 7.000000+1 1.00000+10 7.000000+1 1.27030+10 7.000000+1 1.55700+10 7.000000+1 2.15420+10 7.000000+1 2.64460+10 7.000000+1 3.56400+10 7.000000+1 5.17300+10 7.000000+1 7.58650+10 7.000000+1 1.00000+11 7.000000+1 1.34280+11 7.000000+1 2.20600+11 7.000000+1 4.19930+11 7.000000+1 1.03480+12 7.000000+1 3.24440+12 7.000000+1 1.00000+14 7.000000+1 2.05350+15 7.000000+1 1.00000+17 7.000000+1 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.510195-6 0.0 2.519463-6 3.056119+0 2.522552-6 4.061903+0 2.528730-6 7.419398+0 2.534909-6 1.251012+1 2.541087-6 1.947191+1 2.554830-6 3.897165+1 2.561042-6 4.678965+1 2.566369-6 5.155308+1 2.572635-6 5.336456+1 2.578958-6 5.085777+1 2.585491-6 4.430640+1 2.603645-6 1.906355+1 2.609437-6 1.255158+1 2.615230-6 7.673198+0 2.621408-6 4.221090+0 2.631295-6 8.582372-1 2.633765-6 1.939892-6 2.635586-6 1.564371-6 2.644975-6 3.885015-7 2.648009-6 0.0 2.707118-6 0.0 2.718778-6 7.263224+0 2.720444-6 8.290241+0 2.727107-6 1.514280+1 2.734187-6 2.641888+1 2.741267-6 4.190705+1 2.752940-6 7.343808+1 2.760840-6 9.348077+1 2.768165-6 1.055361+2 2.774231-6 1.090515+2 2.781025-6 1.042372+2 2.788050-6 9.107908+1 2.807066-6 4.070797+1 2.813729-6 2.627965+1 2.820393-6 1.566080+1 2.827056-6 8.615147+0 2.837051-6 2.190031+0 2.840382-6 3.484905-5 2.845772-6 4.070385-5 2.852641-6 4.600424-5 2.859510-6 4.799701-5 2.866379-6 4.622580-5 2.873248-6 4.109686-5 2.883552-6 2.964459-5 2.893856-6 1.786920-5 2.900725-6 1.153573-5 2.907595-6 6.874470-6 2.914464-6 3.781703-6 2.921333-6 1.920390-6 2.928202-6 0.0 3.542125-6 0.0 3.550844-6 3.24624-15 3.559562-6 6.42341-15 3.568281-6 1.17329-14 3.576999-6 1.97833-14 3.585718-6 3.07925-14 3.594436-6 4.42431-14 3.603155-6 5.86813-14 3.611873-6 7.18470-14 3.620592-6 8.12028-14 3.629310-6 8.47202-14 3.638028-6 8.15939-14 3.646747-6 7.25407-14 3.655465-6 5.95333-14 3.672902-6 3.15412-14 3.681621-6 2.03619-14 3.690339-6 1.21342-14 3.699058-6 6.67514-15 3.707776-6 3.38971-15 3.716495-6 0.0 4.134319-6 0.0 4.149583-6 1.003820-1 4.154671-6 1.334182-1 4.164847-6 2.436993-1 4.175659-6 4.251698-1 4.185781-6 6.554972-1 4.194835-6 9.129692-1 4.219144-6 2.231349+0 4.230911-6 2.990306+0 4.243587-6 3.952541+0 4.272980-6 6.290310+0 4.280198-6 6.730350+0 4.290834-6 7.060660+0 4.301187-6 6.953885+0 4.310974-6 6.450325+0 4.321327-6 5.544933+0 4.345050-6 2.939312+0 4.349361-6 2.491417+0 4.359685-6 1.608387+0 4.370010-6 9.584961-1 4.380334-6 5.272858-1 4.396743-6 1.101169-1 4.400982-6 1.629386-5 4.411140-6 8.782027-6 4.413209-6 7.629615-6 4.421561-6 4.607971-6 4.431983-6 2.339979-6 4.442404-6 0.0 4.711239-6 0.0 4.728633-6 2.273223-2 4.734431-6 3.021353-2 4.737395-6 3.658529-2 4.746027-6 1.076229-1 4.757623-6 2.148673-1 4.760716-6 2.470857-1 4.772377-6 4.182028-1 4.784037-6 6.588781-1 4.798613-6 1.053252+0 4.819019-6 1.668044+0 4.830679-6 1.962778+0 4.842340-6 2.143762+0 4.855458-6 2.155519+0 4.867118-6 2.007068+0 4.879262-6 1.717709+0 4.912302-6 7.370630-1 4.923963-6 4.706703-1 4.935623-6 2.753160-1 4.943161-6 1.879566-1 4.947284-6 1.457486-1 4.965925-6 2.974549-2 4.970605-6 2.414811-6 4.978029-6 1.121520-6 4.983332-6 5.961266-7 4.997025-6 6.630566-3 5.007863-6 3.856862-2 5.021624-6 8.348093-2 5.033923-6 1.486937-1 5.046223-6 2.449157-1 5.058522-6 3.730086-1 5.089271-6 7.531882-1 5.095421-6 8.227946-1 5.107720-6 9.151810-1 5.120020-6 9.408177-1 5.133300-6 8.851712-1 5.145935-6 7.776784-1 5.171205-6 5.053993-1 5.181518-6 4.123185-1 5.193817-6 3.435502-1 5.206117-6 3.231049-1 5.218416-6 3.438187-1 5.243015-6 4.417633-1 5.255589-6 5.032411-1 5.268462-6 5.376739-1 5.281334-6 5.420460-1 5.331164-6 4.602569-1 5.454766-6 4.370149-1 5.527052-6 4.026118-1 5.568246-6 3.901875-1 5.638688-6 3.976488-1 5.751975-6 3.624846-1 6.287789-6 2.750443-1 6.661720-6 2.289154-1 6.694514-6 1.129285+0 6.710911-6 1.874668+0 6.728333-6 3.102247+0 6.744599-6 4.659072+0 6.794401-6 1.044580+1 6.811649-6 1.171100+1 6.827428-6 1.208689+1 6.843592-6 1.157516+1 6.860978-6 1.012684+1 6.907675-6 4.642216+0 6.924072-6 3.067536+0 6.940469-6 1.908211+0 6.956866-6 1.138479+0 6.985561-6 3.159397-1 6.989660-6 1.960973-1 7.548110-6 1.526290-1 7.810729-6 1.363469-1 7.849780-6 8.751778-1 7.869005-6 1.480833+0 7.888831-6 2.434075+0 7.908395-6 3.716680+0 7.966567-6 8.319221+0 7.985928-6 9.294940+0 8.007030-6 9.571069+0 8.026157-6 9.087561+0 8.046702-6 7.872893+0 8.099106-6 3.693856+0 8.118331-6 2.487843+0 8.137556-6 1.640360+0 8.157315-6 1.133515+0 8.177198-6 9.234845-1 8.195231-6 7.717410-1 8.244523-6 1.445694+0 8.264472-6 1.671059+0 8.284421-6 1.800390+0 8.304370-6 1.805367+0 8.324319-6 1.684444+0 8.348261-6 1.407592+0 8.387614-6 8.566802-1 8.404116-6 6.483608-1 8.424065-6 4.475203-1 8.435670-6 3.603725-1 8.444014-6 3.043740-1 8.463963-6 2.068217-1 8.475434-6 1.669966-1 8.503861-6 1.026977-1 8.626148-6 9.783811-2 8.668613-6 1.264599-1 8.689845-6 1.506378-1 8.711077-6 1.877077-1 8.734840-6 2.461612-1 8.797790-6 4.332118-1 8.818773-6 4.739828-1 8.839756-6 4.877109-1 8.860739-6 4.711151-1 8.888989-6 4.104329-1 8.944672-6 2.631455-1 8.965863-6 2.281206-1 8.987095-6 2.132523-1 9.008510-6 2.168238-1 9.052748-6 2.541811-1 9.074867-6 2.802585-1 9.096986-6 2.957833-1 9.119105-6 3.012828-1 9.207580-6 2.724207-1 9.410666-6 2.576205-1 9.494105-6 2.305203-1 9.542412-6 2.594482-1 9.565390-6 2.918886-1 9.588368-6 3.497216-1 9.614130-6 4.474734-1 9.685352-6 8.096719-1 9.707267-6 8.900656-1 9.730255-6 9.272354-1 9.754324-6 9.066551-1 9.779184-6 8.295048-1 9.843611-6 5.184848-1 9.866977-6 4.215270-1 9.890343-6 3.484145-1 9.913709-6 2.985297-1 9.960441-6 2.370320-1 1.003139-5 2.310525-1 1.008077-5 2.487590-1 1.010546-5 2.641329-1 1.013015-5 2.880390-1 1.015485-5 3.211972-1 1.022892-5 4.465819-1 1.025361-5 4.753733-1 1.027830-5 4.861283-1 1.030299-5 4.790251-1 1.034680-5 4.283812-1 1.038936-5 3.689977-1 1.042806-5 3.369911-1 1.045367-5 3.340738-1 1.057224-5 3.698442-1 1.086297-5 3.433229-1 1.103645-5 3.041948-1 1.109672-5 3.036770-1 1.125734-5 3.267942-1 1.157506-5 3.209945-1 1.244515-5 3.002814-1 1.391895-5 2.878504-1 1.563401-5 2.972564-1 1.744611-5 3.280728-1 1.975710-5 3.934892-1 2.238721-5 5.018268-1 2.519426-5 6.573894-1 2.633236-5 7.302681-1 2.646199-5 2.439693+0 2.652680-5 3.849679+0 2.659550-5 6.159781+0 2.659939-5 6.334437+0 2.669760-5 2.170474+1 2.673033-5 2.698847+1 2.679580-5 4.236208+1 2.686946-5 6.652083+1 2.693493-5 9.320831+1 2.708633-5 1.610502+2 2.712725-5 1.767593+2 2.719923-5 1.931488+2 2.726073-5 1.953420+2 2.732558-5 1.840436+2 2.739415-5 1.593745+2 2.758146-5 7.070907+1 2.764693-5 4.605992+1 2.771240-5 2.858751+1 2.777787-5 1.720987+1 2.789903-5 4.687992+0 2.790881-5 3.635447+0 2.795658-5 3.887488+0 2.802390-5 4.032054+0 2.804257-5 4.017385+0 2.809122-5 4.465819+0 2.818061-5 4.948142+0 2.824964-5 5.685805+0 2.831866-5 7.056713+0 2.838768-5 9.185887+0 2.859414-5 1.812900+1 2.868324-5 2.094698+1 2.875382-5 2.182275+1 2.882475-5 2.141281+1 2.892030-5 1.945778+1 2.906626-5 1.575160+1 2.916626-5 1.429601+1 2.933515-5 1.369275+1 2.961555-5 1.311581+1 3.011875-5 1.164121+1 3.067807-5 1.045391+1 3.201527-5 8.715657+0 3.266080-5 8.130823+0 3.282158-5 1.599782+1 3.290699-5 2.316939+1 3.298738-5 3.336147+1 3.307193-5 4.811798+1 3.330643-5 9.746565+1 3.339562-5 1.093053+2 3.347378-5 1.125778+2 3.355247-5 1.080428+2 3.363802-5 9.512833+1 3.386665-5 4.666789+1 3.394704-5 3.277799+1 3.402743-5 2.259724+1 3.410782-5 1.589711+1 3.426860-5 7.840180+0 3.436741-5 8.058406+0 3.459678-5 9.033834+0 3.471609-5 9.985981+0 3.485127-5 1.156482+1 3.508540-5 1.465195+1 3.520332-5 1.547437+1 3.532595-5 1.530038+1 3.563957-5 1.339163+1 3.587524-5 1.274378+1 3.653929-5 1.206829+1 3.726666-5 1.083104+1 3.898771-5 9.530055+0 4.110529-5 8.522934+0 4.364198-5 7.773574+0 4.699358-5 7.195732+0 5.188000-5 6.842347+0 5.628463-5 6.872374+0 5.758907-5 6.949134+0 6.450000-5 7.352525+0 7.603319-5 8.581968+0 1.153242-4 1.324272+1 1.461364-4 1.608729+1 1.787626-4 1.810089+1 1.830519-4 1.914045+1 1.875530-4 1.962160+1 1.916895-4 2.082545+1 2.045000-4 2.201822+1 2.223733-4 2.169191+1 2.577837-4 2.038948+1 3.266790-4 1.985383+1 3.334986-4 2.137496+1 3.455306-4 2.086115+1 3.820622-4 2.074339+1 4.648092-4 1.998428+1 4.751349-4 2.019938+1 7.947570-4 1.496791+1 9.885530-4 1.248104+1 1.217652-3 1.025173+1 1.488145-3 8.341186+0 1.500569-3 8.501960+0 1.506939-3 9.013634+0 1.511869-3 9.873792+0 1.516859-3 1.131590+1 1.522507-3 1.366465+1 1.535653-3 2.020391+1 1.542368-3 2.267617+1 1.550399-3 2.434638+1 1.569486-3 2.666895+1 1.589534-3 3.058292+1 1.606038-3 3.192716+1 1.741631-3 3.201827+1 1.864769-3 3.001988+1 1.899838-3 2.951259+1 1.919605-3 3.070710+1 1.938515-3 3.248966+1 1.966754-3 3.220697+1 2.127576-3 2.906948+1 2.170325-3 2.978670+1 2.337199-3 2.712869+1 2.413463-3 2.701874+1 2.826506-3 2.188889+1 3.268700-3 1.788402+1 3.822231-3 1.426020+1 4.439300-3 1.143277+1 4.991327-3 9.574601+0 5.712307-3 7.786597+0 6.517222-3 6.341426+0 7.304088-3 5.297256+0 8.373388-3 4.259334+0 8.719123-3 4.004230+0 8.780479-3 4.149716+0 8.816375-3 4.471190+0 8.849441-3 5.040504+0 8.884716-3 5.970727+0 8.955071-3 8.223586+0 9.004818-3 9.350910+0 9.052531-3 9.828978+0 9.155582-3 9.891163+0 9.815943-3 8.936678+0 9.898243-3 9.300408+0 1.004473-2 1.106879+1 1.013654-2 1.146513+1 1.035142-2 1.139933+1 1.055438-2 1.232356+1 1.087403-2 1.197800+1 1.252826-2 9.599395+0 1.436109-2 7.709373+0 1.625900-2 6.299173+0 1.826752-2 5.196054+0 2.086291-2 4.161283+0 2.357166-2 3.383135+0 2.597912-2 2.865028+0 2.919528-2 2.342599+0 3.274599-2 1.919250+0 3.693259-2 1.554222+0 4.168694-2 1.255556+0 4.690833-2 1.018303+0 5.279322-2 8.243463-1 5.965920-2 6.630507-1 6.015333-2 6.682211-1 6.038656-2 7.008329-1 6.057431-2 7.664180-1 6.072902-2 8.633766-1 6.087882-2 1.005400+0 6.105692-2 1.242617+0 6.132051-2 1.710332+0 6.171658-2 2.467233+0 6.200043-2 2.864104+0 6.224645-2 3.060609+0 6.260618-2 3.164751+0 7.538850-2 2.375896+0 8.661201-2 1.893978+0 9.869902-2 1.519322+0 1.116917-1 1.231479+0 1.255213-1 1.006653+0 1.420393-1 8.129701-1 1.586337-1 6.709928-1 1.769304-1 5.550033-1 1.999033-1 4.492713-1 2.247020-1 3.670208-1 2.525236-1 3.008443-1 2.833634-1 2.477048-1 3.125377-1 2.108212-1 3.509267-1 1.747948-1 3.958599-1 1.447407-1 4.423456-1 1.223207-1 4.958068-1 1.034867-1 5.688529-1 8.543746-2 6.422583-1 7.275368-2 7.344082-1 6.154905-2 8.517507-1 5.179408-2 9.935657-1 4.394185-2 1.173413+0 3.664453-2 1.410753+0 2.984982-2 1.696098+0 2.431501-2 2.039158+0 1.980647-2 2.451607+0 1.613391-2 2.947480+0 1.314233-2 3.543651+0 1.070545-2 4.260405+0 8.720424-3 5.122134+0 7.103465-3 6.158159+0 5.786326-3 7.403736+0 4.713413-3 8.901248+0 3.839442-3 9.760024+0 3.465249-3 1.000000+1 7.140090-3 1 70000 7 0 1.730400+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-6.963611+1 2.033765-6-6.700959+1 2.317177-6-6.336417+1 2.431997-6-5.873297+1 2.481406-6-5.359489+1 2.503965-6-4.830349+1 2.522552-6-3.903128+1 2.535681-6-3.189704+1 2.542029-6-3.005501+1 2.546765-6-3.041338+1 2.551336-6-3.221232+1 2.554830-6-3.486001+1 2.560654-6-4.130457+1 2.565995-6-4.999351+1 2.577148-6-6.987265+1 2.583701-6-5.926398+1 2.588780-6-5.321356+1 2.596108-6-4.868627+1 2.602560-6-4.811902+1 2.609437-6-5.072979+1 2.643051-6-6.994993+1 2.687643-6-5.402564+1 2.701499-6-4.635089+1 2.706821-6-4.150207+1 2.709682-6-3.811668+1 2.719611-6-2.930251+1 2.729086-6-1.912781+1 2.733771-6-1.495409+1 2.734968-6-1.381765+1 2.736334-6-1.294801+1 2.741267-6-1.067926+1 2.742724-6-1.050831+1 2.743818-6-1.059794+1 2.747097-6-1.161874+1 2.747930-6-1.202890+1 2.750481-6-1.410263+1 2.752940-6-1.709377+1 2.756675-6-2.348264+1 2.759369-6-2.922356+1 2.766099-6-4.830461+1 2.772383-6-7.004920+1 2.774231-6-6.254971+1 2.782443-6-3.401182+1 2.788050-6-1.787684+1 2.789255-6-1.501935+1 2.791231-6-1.104218+1 2.792845-6-8.280055+0 2.794056-6-6.449663+0 2.795871-6-4.051513+0 2.797687-6-2.025402+0 2.798859-6-9.163486-1 2.800911-6 6.026272-1 2.802450-6 1.402308+0 2.803604-6 1.801634+0 2.805335-6 2.036174+0 2.806201-6 1.947502+0 2.810398-6 2.201378-1 2.812064-6-6.364782-1 2.812896-6-1.211371+0 2.814562-6-2.892615+0 2.817477-6-5.229287+0 2.819664-6-7.213939+0 2.820393-6-8.117876+0 2.829346-6-1.730840+1 2.838716-6-2.528490+1 2.842456-6-2.966796+1 2.847489-6-3.344579+1 2.859510-6-3.931491+1 2.880118-6-4.534070+1 2.914464-6-5.097525+1 2.974690-6-5.603516+1 3.101744-6-6.066752+1 3.418765-6-6.452248+1 4.144495-6-6.863546+1 4.216827-6-6.973915+1 4.267848-6-6.934337+1 4.332379-6-6.254854+1 4.399922-6-6.435044+1 4.503354-6-6.607264+1 4.829221-6-6.780314+1 4.912302-6-6.591799+1 5.107720-6-6.735514+1 6.506747-6-6.933434+1 6.628617-6-6.952414+1 6.757082-6-6.533391+1 6.800916-6-6.863260+1 6.813337-6-6.977084+1 6.871482-6-6.177987+1 6.915873-6-6.077244+1 7.046246-6-6.527175+1 7.816254-6-6.960102+1 7.928239-6-6.729865+1 7.982997-6-6.972233+1 8.056962-6-6.289251+1 8.115928-6-6.247906+1 8.244523-6-6.586459+1 8.444014-6-6.550125+1 9.052748-6-6.720086+1 9.787237-6-6.731356+1 1.818686-5-7.079452+1 2.252077-5-6.677554+1 2.430863-5-6.145000+1 2.519426-5-5.527183+1 2.569250-5-4.853200+1 2.600116-5-4.133849+1 2.615740-5-3.583779+1 2.627340-5-3.020058+1 2.633236-5-2.633866+1 2.642958-5-1.877249+1 2.646199-5-1.574218+1 2.651060-5-1.055069+1 2.652680-5-8.549310+0 2.655921-5-4.152626+0 2.657541-5-1.650481+0 2.658352-5-2.458722-1 2.659162-5 1.353873+0 2.659550-5 2.228516+0 2.660348-5 4.354006+0 2.661115-5 5.945611+0 2.662458-5 8.320796+0 2.666486-5 1.437469+1 2.672215-5 2.255465+1 2.673852-5 2.560097+1 2.681831-5 3.700500+1 2.686946-5 4.207064+1 2.690526-5 4.324155+1 2.693493-5 4.322027+1 2.696370-5 4.111184+1 2.699601-5 3.650042+1 2.702299-5 3.090779+1 2.705118-5 2.304509+1 2.708633-5 1.019403+1 2.709554-5 6.556882+0 2.710244-5 3.673326+0 2.711280-5-9.905547-1 2.711798-5-3.547360+0 2.712057-5-4.923985+0 2.712725-5-8.866468+0 2.717137-5-3.182905+1 2.718782-5-4.200119+1 2.720609-5-5.391077+1 2.724104-5-7.449348+1 2.726073-5-6.068217+1 2.732162-5-2.436829+1 2.733301-5-1.772073+1 2.735090-5-8.726312+0 2.736797-5-8.387871-1 2.737651-5 3.042002+0 2.738077-5 5.034451+0 2.738811-5 8.811026+0 2.739415-5 1.148108+1 2.740586-5 1.600842+1 2.742712-5 2.291546+1 2.745485-5 3.005883+1 2.748453-5 3.576255+1 2.750724-5 3.888075+1 2.753971-5 4.144582+1 2.757363-5 4.128887+1 2.763156-5 3.526534+1 2.765511-5 3.087818+1 2.770524-5 2.252064+1 2.772058-5 1.898882+1 2.777071-5 9.949449+0 2.778483-5 6.880587+0 2.779788-5 4.542107+0 2.788926-5-9.740681+0 2.790392-5-1.254791+1 2.791180-5-1.462387+1 2.792719-5-1.762414+1 2.795658-5-2.196863+1 2.802390-5-2.952272+1 2.809122-5-3.560169+1 2.826689-5-4.777678+1 2.841287-5-5.553862+1 2.855646-5-5.862150+1 2.868324-5-5.680365+1 2.889878-5-5.142086+1 2.905408-5-5.132437+1 2.939616-5-5.562355+1 3.147287-5-6.807488+1 3.196086-5-7.319778+1 3.237299-5-6.446456+1 3.257624-5-5.668980+1 3.265740-5-5.116724+1 3.271723-5-4.613625+1 3.282158-5-3.859601+1 3.291641-5-3.048524+1 3.299680-5-2.462164+1 3.308055-5-2.128931+1 3.311082-5-2.148179+1 3.314482-5-2.270794+1 3.319147-5-2.595511+1 3.323328-5-3.054011+1 3.328157-5-3.766089+1 3.335511-5-5.359210+1 3.342486-5-7.190026+1 3.346903-5-5.885513+1 3.354509-5-3.766864+1 3.356958-5-3.092711+1 3.363802-5-1.526475+1 3.365352-5-1.237939+1 3.367895-5-8.404138+0 3.369972-5-5.680851+0 3.371530-5-3.900420+0 3.373866-5-1.611047+0 3.376203-5 2.533148-1 3.378818-5 1.837993+0 3.380780-5 2.666449+0 3.382251-5 3.076853+0 3.384458-5 3.310635+0 3.385562-5 3.213213+0 3.390685-5 1.439662+0 3.392694-5 5.672141-1 3.393699-5-1.187009-2 3.394704-5-8.311740-1 3.395709-5-1.687429+0 3.399226-5-4.030861+0 3.400985-5-5.294416+0 3.401864-5-6.014662+0 3.402743-5-6.911978+0 3.410782-5-1.370796+1 3.426401-5-2.557996+1 3.429730-5-2.879937+1 3.436741-5-3.316119+1 3.452442-5-3.950432+1 3.471609-5-4.489849+1 3.495626-5-4.861696+1 3.520332-5-4.833393+1 3.556417-5-4.748232+1 3.639169-5-5.009823+1 3.969778-5-5.398076+1 4.845451-5-5.734050+1 7.150594-5-6.008532+1 1.153242-4-5.902566+1 1.775232-4-5.507065+1 1.967730-4-5.339558+1 2.223733-4-4.822987+1 2.577837-4-4.528912+1 3.280637-4-4.263977+1 3.386675-4-4.246043+1 3.777572-4-3.974764+1 4.648092-4-3.603299+1 5.416890-4-3.300896+1 6.765362-4-2.996656+1 8.579332-4-2.821650+1 1.056209-3-2.830119+1 1.217652-3-2.986826+1 1.339459-3-3.253739+1 1.413300-3-3.555025+1 1.461634-3-3.904082+1 1.488145-3-4.243665+1 1.506939-3-4.711758+1 1.524048-3-5.240805+1 1.535653-3-5.243312+1 1.560116-3-4.784306+1 1.585590-3-4.545719+1 1.613905-3-3.993928+1 1.645771-3-3.625942+1 1.709278-3-3.135806+1 1.805506-3-2.625115+1 1.864769-3-2.438285+1 1.899838-3-2.422945+1 1.933240-3-2.495571+1 1.951207-3-2.387757+1 1.987980-3-2.112007+1 2.047005-3-1.893528+1 2.113793-3-1.757877+1 2.160404-3-1.732867+1 2.216928-3-1.540637+1 2.296965-3-1.382981+1 2.377141-3-1.309044+1 2.434538-3-1.166053+1 2.545506-3-9.992562+0 2.688631-3-8.500364+0 2.870347-3-7.153263+0 3.051626-3-6.209674+0 3.268700-3-5.409428+0 3.540483-3-4.742062+0 3.822231-3-4.333954+0 4.269394-3-4.030528+0 4.774114-3-3.989659+0 5.470258-3-4.230156+0 6.245221-3-4.746747+0 7.061969-3-5.552397+0 7.725555-3-6.524581+0 8.171271-3-7.530767+0 8.451330-3-8.518822+0 8.640760-3-9.605706+0 8.748752-3-1.070368+1 8.895884-3-1.334066+1 8.939505-3-1.356970+1 8.997992-3-1.292501+1 9.098876-3-1.103013+1 9.192581-3-9.946989+0 9.345274-3-9.059402+0 9.546921-3-8.551573+0 9.737106-3-8.604480+0 9.844851-3-9.061797+0 9.971292-3-9.810806+0 1.004473-2-9.555315+0 1.020311-2-8.201696+0 1.030996-2-7.856823+0 1.045331-2-7.669172+0 1.055438-2-7.005035+0 1.068989-2-6.035207+0 1.087403-2-5.200019+0 1.116746-2-4.294569+0 1.153122-2-3.489450+0 1.195364-2-2.805401+0 1.241831-2-2.248962+0 1.282167-2-1.871651+0 1.334328-2-1.487758+0 1.391353-2-1.172394+0 1.448022-2-9.344205-1 1.520873-2-7.108596-1 1.559931-2-6.196581-1 1.625900-2-4.988358-1 1.674883-2-4.268667-1 1.725574-2-3.714262-1 1.785974-2-3.210318-1 1.826752-2-2.968184-1 1.884219-2-2.734222-1 1.953244-2-2.553533-1 2.043037-2-2.513018-1 2.145444-2-2.596457-1 2.251646-2-2.803127-1 2.429210-2-3.372139-1 2.803340-2-4.927804-1 4.506126-2-1.290097+0 5.021602-2-1.590101+0 5.386918-2-1.882812+0 5.650173-2-2.197948+0 5.822078-2-2.521153+0 5.939389-2-2.882734+0 6.003204-2-3.216498+0 6.057431-2-3.707817+0 6.118024-2-4.356786+0 6.148276-2-4.433371+0 6.185741-2-4.168400+0 6.260618-2-3.275282+0 6.319349-2-2.826528+0 6.397039-2-2.459355+0 6.511215-2-2.102133+0 6.669641-2-1.772070+0 6.879861-2-1.464978+0 7.088094-2-1.247523+0 7.335273-2-1.058954+0 7.656903-2-8.839998-1 8.030745-2-7.354232-1 8.427411-2-6.211173-1 8.886894-2-5.272787-1 9.377173-2-4.592306-1 9.869902-2-4.133126-1 1.067504-1-3.684872-1 1.175186-1-3.421997-1 1.276546-1-3.383152-1 1.525561-1-3.610314-1 2.326859-1-4.717312-1 3.125377-1-5.427531-1 4.234048-1-5.963786-1 6.422583-1-6.414182-1 1.173413+0-6.681253-1 3.543651+0-6.789455-1 1.000000+1-6.804489-1 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 4.024261+0 1.001378-6 3.840954+0 1.002241-6 3.709983+0 1.003438-6 3.512018+0 1.004467-6 3.329332+0 1.005269-6 3.180940+0 1.006300-6 2.984625+0 1.007348-6 2.781409+0 1.008442-6 2.567968+0 1.009892-6 2.288170+0 1.011089-6 2.063456+0 1.012436-6 1.821213+0 1.013484-6 1.642488+0 1.016028-6 1.250586+0 1.016799-6 1.144569+0 1.017536-6 1.049160+0 1.018272-6 9.594224-1 1.019320-6 8.414862-1 1.020667-6 7.061701-1 1.022109-6 5.806714-1 1.023424-6 4.824426-1 1.024726-6 3.991812-1 1.025586-6 3.511265-1 1.026439-6 3.084478-1 1.027286-6 2.706399-1 1.028126-6 2.372246-1 1.029786-6 1.818114-1 1.031420-6 1.390081-1 1.033029-6 1.061296-1 1.034613-6 8.097659-2 1.036172-6 6.178475-2 1.038466-6 4.121588-2 1.040706-6 2.754598-2 1.042894-6 1.845841-2 1.047119-6 8.446460-3 1.047804-6 7.456746-3 1.048484-6 6.603200-3 1.049158-6 5.870304-3 1.049827-6 5.244554-3 1.050491-6 4.714188-3 1.051148-6 4.269746-3 1.051475-6 4.076495-3 1.052124-6 3.743052-3 1.052769-6 3.474135-3 1.053089-6 3.361800-3 1.053408-6 3.263284-3 1.054044-6 3.104786-3 1.054675-6 2.994167-3 1.055301-6 2.927078-3 1.055922-6 2.899688-3 1.057155-6 2.951343-3 1.058368-6 3.126950-3 1.059562-6 3.408517-3 1.060738-6 3.781763-3 1.061895-6 4.235230-3 1.066380-6 6.710500-3 1.068518-6 8.253495-3 1.070589-6 9.953973-3 1.074602-6 1.379330-2 1.078365-6 1.801214-2 1.092473-6 3.933662-2 1.097764-6 5.037473-2 1.102393-6 6.226961-2 1.106444-6 7.517214-2 1.109988-6 8.927327-2 1.113089-6 1.047705-1 1.115803-6 1.217906-1 1.118177-6 1.403197-1 1.120255-6 1.601775-1 1.122073-6 1.810416-1 1.123664-6 2.025013-1 1.125055-6 2.241183-1 1.127339-6 2.662214-1 1.131127-6 3.576383-1 1.134973-6 4.825432-1 1.136732-6 5.511038-1 1.138988-6 6.490128-1 1.140385-6 7.146683-1 1.143178-6 8.547790-1 1.143527-6 8.728704-1 1.145971-6 1.000715+0 1.146931-6 1.050613+0 1.148764-6 1.143188+0 1.149724-6 1.189397+0 1.150641-6 1.231472+0 1.151557-6 1.271143+0 1.152779-6 1.319597+0 1.153958-6 1.360729+0 1.155049-6 1.393249+0 1.155965-6 1.416023+0 1.157318-6 1.441452+0 1.158628-6 1.456182+0 1.160024-6 1.460700+0 1.160510-6 1.459512+0 1.161898-6 1.448275+0 1.163273-6 1.425840+0 1.164572-6 1.394738+0 1.165916-6 1.353098+0 1.166594-6 1.328732+0 1.168573-6 1.246094+0 1.169653-6 1.194813+0 1.170563-6 1.148833+0 1.171764-6 1.085075+0 1.172700-6 1.033523+0 1.173903-6 9.656229-1 1.175125-6 8.956789-1 1.176401-6 8.225811-1 1.178092-6 7.273290-1 1.179314-6 6.606492-1 1.179664-6 6.420358-1 1.181627-6 5.417509-1 1.182282-6 5.101945-1 1.185250-6 3.805810-1 1.186150-6 3.458728-1 1.187009-6 3.147894-1 1.187868-6 2.856983-1 1.189483-6 2.363200-1 1.190864-6 1.993787-1 1.192278-6 1.663278-1 1.193481-6 1.417156-1 1.194281-6 1.270492-1 1.195077-6 1.136883-1 1.195870-6 1.015465-1 1.196660-6 9.053878-2 1.197447-6 8.058236-2 1.198231-6 7.159723-2 1.199012-6 6.350658-2 1.199790-6 5.623717-2 1.200565-6 4.971953-2 1.201337-6 4.388817-2 1.202105-6 3.868163-2 1.203634-6 2.991744-2 1.205151-6 2.301557-2 1.206655-6 1.762581-2 1.208148-6 1.345438-2 1.211100-6 7.838567-3 1.212194-6 6.436201-3 1.212920-6 5.666127-3 1.213642-6 5.010649-3 1.214182-6 4.586847-3 1.214542-6 4.333687-3 1.215258-6 3.892513-3 1.215972-6 3.530188-3 1.216327-6 3.375994-3 1.217038-6 3.116604-3 1.217745-6 2.917348-3 1.218450-6 2.772226-3 1.219152-6 2.675999-3 1.219851-6 2.624099-3 1.220547-6 2.612549-3 1.221935-6 2.697392-3 1.223311-6 2.908004-3 1.224677-6 3.226988-3 1.226032-6 3.640883-3 1.227377-6 4.139011-3 1.230034-6 5.354155-3 1.398137-6 1.750976-1 1.405019-6 1.959805-1 1.408461-6 2.060031-1 1.411902-6 2.141791-1 1.412762-6 2.157787-1 1.415343-6 2.191906-1 1.417494-6 2.201825-1 1.418785-6 2.198677-1 1.419645-6 2.192562-1 1.420935-6 2.177184-1 1.422226-6 2.154245-1 1.423947-6 2.111907-1 1.425667-6 2.056487-1 1.427388-6 1.988770-1 1.429109-6 1.909948-1 1.429539-6 1.888683-1 1.432174-6 1.747089-1 1.432980-6 1.700550-1 1.436206-6 1.505631-1 1.437315-6 1.437239-1 1.439863-6 1.282200-1 1.442874-6 1.110238-1 1.446315-6 9.400734-2 1.447821-6 8.769522-2 1.449273-6 8.233504-2 1.449757-6 8.071182-2 1.451477-6 7.561276-2 1.452768-6 7.247728-2 1.453628-6 7.071070-2 1.455887-6 6.726385-2 1.456639-6 6.648146-2 1.460081-6 6.500756-2 1.460941-6 6.512374-2 1.463522-6 6.644220-2 1.465243-6 6.800536-2 1.466963-6 7.000285-2 1.469156-6 7.303411-2 1.476385-6 8.504615-2 1.479238-6 9.001164-2 1.484900-6 9.948420-2 1.490473-6 1.080335-1 1.495960-6 1.157098-1 1.506761-6 1.292892-1 1.517225-6 1.413567-1 1.537498-6 1.641256-1 1.689550-6 3.495729-1 1.784582-6 5.118694-1 1.886930-6 7.524209-1 1.959457-6 9.816946-1 2.005977-6 1.163663+0 2.050313-6 1.366359+0 2.092122-6 1.587807+0 2.135832-6 1.858469+0 2.168614-6 2.092160+0 2.193201-6 2.289254+0 2.230081-6 2.623618+0 2.283701-6 3.202993+0 2.328340-6 3.798530+0 2.367399-6 4.424965+0 2.403662-6 5.116999+0 2.437129-6 5.875989+0 2.470334-6 6.763690+0 2.509701-6 8.028249+0 2.534349-6 8.982073+0 2.552836-6 9.810869+0 2.595449-6 1.213439+1 2.608295-6 1.288284+1 2.619355-6 1.350984+1 2.646182-6 1.504389+1 2.652523-6 1.545415+1 2.663614-6 1.626343+1 2.671548-6 1.692789+1 2.684231-6 1.814866+1 2.703255-6 2.032541+1 2.726296-6 2.346750+1 2.750830-6 2.749388+1 2.767242-6 3.069586+1 2.782175-6 3.406395+1 2.800515-6 3.894927+1 2.816563-6 4.409129+1 2.830605-6 4.945372+1 2.842892-6 5.499411+1 2.853643-6 6.066503+1 2.863050-6 6.641573+1 2.871281-6 7.219441+1 2.878483-6 7.795069+1 2.884785-6 8.363748+1 2.895814-6 9.545745+1 2.904085-6 1.064041+2 2.910288-6 1.162165+2 2.914941-6 1.247408+2 2.921920-6 1.399443+2 2.928899-6 1.589577+2 2.936108-6 1.840206+2 2.939713-6 1.991849+2 2.943317-6 2.164610+2 2.946922-6 2.361440+2 2.950526-6 2.585452+2 2.955337-6 2.932287+2 2.961340-6 3.452419+2 2.978227-6 5.529221+2 2.980314-6 5.852610+2 2.986572-6 6.905945+2 2.991052-6 7.727998+2 2.998378-6 9.160045+2 2.999294-6 9.343832+2 3.005704-6 1.063427+3 3.008222-6 1.113349+3 3.013821-6 1.219649+3 3.016604-6 1.268785+3 3.018876-6 1.306472+3 3.021858-6 1.351978+3 3.023776-6 1.378534+3 3.025693-6 1.402747+3 3.028022-6 1.428746+3 3.031078-6 1.456726+3 3.034640-6 1.479832+3 3.038900-6 1.493127+3 3.042563-6 1.491545+3 3.043838-6 1.488135+3 3.047477-6 1.470334+3 3.050000-6 1.451108+3 3.057362-6 1.364961+3 3.060294-6 1.319465+3 3.060991-6 1.307819+3 3.066238-6 1.211327+3 3.069399-6 1.146859+3 3.072878-6 1.071915+3 3.075810-6 1.006463+3 3.078659-6 9.416780+2 3.081998-6 8.652721+2 3.084681-6 8.041854+2 3.086290-6 7.679067+2 3.089953-6 6.870268+2 3.093158-6 6.188533+2 3.094076-6 5.998697+2 3.098390-6 5.144106+2 3.100978-6 4.664000+2 3.108268-6 3.458457+2 3.111277-6 3.027258+2 3.114188-6 2.647305+2 3.118008-6 2.203380+2 3.121884-6 1.814363+2 3.125752-6 1.484427+2 3.132546-6 1.033198+2 3.136850-6 8.225780+1 3.140023-6 7.002027+1 3.142324-6 6.273254+1 3.143795-6 5.872699+1 3.145775-6 5.409579+1 3.146549-6 5.251129+1 3.148448-6 4.914567+1 3.149872-6 4.708577+1 3.152009-6 4.470578+1 3.153077-6 4.382258+1 3.154145-6 4.313682+1 3.157942-6 4.222923+1 3.159841-6 4.263349+1 3.161740-6 4.358796+1 3.169335-6 5.276186+1 3.173985-6 6.266203+1 3.178635-6 7.608843+1 3.181270-6 8.542592+1 3.185882-6 1.051797+2 3.207312-6 2.812317+2 3.214907-6 3.954167+2 3.218705-6 4.673303+2 3.224401-6 5.973286+2 3.230097-6 7.578310+2 3.235686-6 9.490661+2 3.240605-6 1.147870+3 3.243552-6 1.281508+3 3.246365-6 1.419522+3 3.249178-6 1.567859+3 3.252432-6 1.752290+3 3.255686-6 1.950270+3 3.264374-6 2.540303+3 3.265342-6 2.610967+3 3.272619-6 3.166596+3 3.275217-6 3.372536+3 3.280176-6 3.770403+3 3.282915-6 3.989871+3 3.287042-6 4.315409+3 3.290706-6 4.594647+3 3.294534-6 4.871248+3 3.297446-6 5.068130+3 3.300964-6 5.286880+3 3.304030-6 5.457676+3 3.308702-6 5.677204+3 3.312351-6 5.810578+3 3.316602-6 5.920221+3 3.320056-6 5.971298+3 3.327703-6 5.960167+3 3.331270-6 5.897334+3 3.335927-6 5.763198+3 3.339723-6 5.613469+3 3.343403-6 5.437315+3 3.347452-6 5.212681+3 3.351377-6 4.969235+3 3.354866-6 4.735907+3 3.358230-6 4.499507+3 3.363338-6 4.126688+3 3.367325-6 3.830409+3 3.371811-6 3.498153+3 3.375299-6 3.244279+3 3.383274-6 2.692549+3 3.386729-6 2.470111+3 3.393324-6 2.079285+3 3.400510-6 1.708309+3 3.409988-6 1.307770+3 3.418320-6 1.033367+3 3.422485-6 9.204132+2 3.426651-6 8.217909+2 3.430817-6 7.360624+2 3.434983-6 6.618023+2 3.439054-6 5.989914+2 3.445161-6 5.202363+2 3.451268-6 4.567991+2 3.455623-6 4.191533+2 3.459978-6 3.867035+2 3.468310-6 3.361357+2 3.476642-6 2.968968+2 3.484973-6 2.656365+2 3.493305-6 2.400346+2 3.510112-6 1.997371+2 3.518524-6 1.834818+2 3.528432-6 1.667603+2 3.537074-6 1.539628+2 3.547288-6 1.406941+2 3.556019-6 1.307794+2 3.564750-6 1.220589+2 3.571009-6 1.164836+2 3.580396-6 1.090797+2 3.589783-6 1.026976+2 3.599675-6 9.690709+1 3.608406-6 9.244487+1 3.617788-6 8.817566+1 3.666708-6 7.011244+1 3.705752-6 5.798652+1 3.723345-6 5.343419+1 3.745042-6 4.865482+1 3.781554-6 4.208233+1 3.811225-6 3.760599+1 3.822840-6 3.604575+1 3.838489-6 3.413798+1 3.852400-6 3.265025+1 3.863084-6 3.164832+1 3.874978-6 3.067317+1 3.888903-6 2.969583+1 3.927514-6 2.745031+1 3.947338-6 2.625301+1 3.961440-6 2.531708+1 3.978773-6 2.409276+1 4.021423-6 2.117825+1 4.043599-6 1.996628+1 4.061040-6 1.918701+1 4.130624-6 1.669025+1 4.183450-6 1.498718+1 4.281807-6 1.242500+1 4.366830-6 1.054911+1 4.419433-6 9.489947+0 4.475362-6 8.422248+0 4.517855-6 7.639939+0 4.558660-6 6.891612+0 4.607335-6 5.971613+0 4.638405-6 5.348107+0 4.661193-6 4.861098+0 4.677351-6 4.495262+0 4.686812-6 4.271726+0 4.707734-6 3.750813+0 4.725000-6 3.296622+0 4.735194-6 3.023917+0 4.744021-6 2.790844+0 4.763053-6 2.332677+0 4.770500-6 2.187680+0 4.773436-6 2.138845+0 4.782242-6 2.029048+0 4.788113-6 1.993916+0 4.791049-6 1.990260+0 4.793984-6 1.997096+0 4.802791-6 2.090547+0 4.805726-6 2.149577+0 4.809150-6 2.238521+0 4.813065-6 2.369092+0 4.816367-6 2.505293+0 4.817468-6 2.556338+0 4.829210-6 3.298097+0 4.836741-6 3.990984+0 4.844733-6 4.943515+0 4.860355-6 7.552646+0 4.868369-6 9.319491+0 4.873353-6 1.057400+1 4.880145-6 1.247821+1 4.885417-6 1.410982+1 4.891692-6 1.621962+1 4.896962-6 1.812320+1 4.902163-6 2.010806+1 4.907474-6 2.222862+1 4.913262-6 2.462518+1 4.918688-6 2.692725+1 4.923938-6 2.917972+1 4.928469-6 3.112198+1 4.934211-6 3.354957+1 4.939122-6 3.556797+1 4.942857-6 3.705090+1 4.948723-6 3.925864+1 4.952821-6 4.069386+1 4.957710-6 4.227013+1 4.963345-6 4.387678+1 4.975266-6 4.642156+1 4.979108-6 4.697128+1 4.986443-6 4.763592+1 4.991443-6 4.779766+1 4.996794-6 4.771337+1 5.001164-6 4.745372+1 5.004441-6 4.715129+1 5.009357-6 4.653423+1 5.014273-6 4.573534+1 5.020223-6 4.455114+1 5.022207-6 4.410918+1 5.031148-6 4.187262+1 5.037109-6 4.020496+1 5.046050-6 3.753405+1 5.057971-6 3.384245+1 5.061925-6 3.262377+1 5.077800-6 2.795228+1 5.099516-6 2.253917+1 5.107429-6 2.090596+1 5.115095-6 1.949645+1 5.122521-6 1.828467+1 5.136910-6 1.632307+1 5.150399-6 1.487276+1 5.163046-6 1.377967+1 5.174901-6 1.293414+1 5.200000-6 1.153954+1 5.216582-6 1.081310+1 5.250621-6 9.598595+0 5.352749-6 6.691680+0 5.365924-6 6.318368+0 5.397173-6 5.487342+0 5.403799-6 5.339519+0 5.410425-6 5.209851+0 5.419142-6 5.074685+0 5.423677-6 5.023642+0 5.436929-6 4.968340+0 5.442056-6 4.990599+0 5.454588-6 5.164906+0 5.458120-6 5.247170+0 5.468714-6 5.586562+0 5.474141-6 5.814837+0 5.479320-6 6.066623+0 5.487794-6 6.546531+0 5.502339-6 7.540835+0 5.510850-6 8.197081+0 5.520732-6 8.995521+0 5.524025-6 9.264502+0 5.533944-6 1.006289+1 5.535361-6 1.017395+1 5.548690-6 1.115019+1 5.550548-6 1.127355+1 5.563551-6 1.202080+1 5.566844-6 1.217356+1 5.576726-6 1.253216+1 5.584390-6 1.270224+1 5.590650-6 1.276976+1 5.595344-6 1.277881+1 5.602386-6 1.272784+1 5.609428-6 1.260388+1 5.616251-6 1.242037+1 5.622458-6 1.220533+1 5.628666-6 1.195071+1 5.641172-6 1.134374+1 5.649469-6 1.089301+1 5.661615-6 1.020018+1 5.696637-6 8.320858+0 5.712526-6 7.664792+0 5.726518-6 7.234004+0 5.740509-6 6.952476+0 5.747505-6 6.867974+0 5.754501-6 6.819712+0 5.761497-6 6.805834+0 5.766744-6 6.816473+0 5.774614-6 6.863040+0 5.782485-6 6.941517+0 5.792978-6 7.084951+0 5.824460-6 7.621470+0 5.838638-6 7.829739+0 5.852974-6 7.975457+0 5.865518-6 8.038197+0 5.873581-6 8.046302+0 5.881645-6 8.031271+0 5.894419-6 7.967977+0 5.908411-6 7.860278+0 5.938988-6 7.592509+0 5.957090-6 7.469524+0 5.968555-6 7.414719+0 5.980019-6 7.377089+0 6.004069-6 7.339412+0 6.057586-6 7.306584+0 6.114088-6 7.221673+0 6.190957-6 7.076105+0 6.309105-6 6.790822+0 6.375891-6 6.680756+0 6.578444-6 6.406676+0 7.422443-6 5.388733+0 8.081649-6 4.752497+0 8.616087-6 4.272231+0 9.225647-6 3.754061+0 9.600000-6 3.441414+0 9.871316-6 3.212730+0 1.016840-5 2.956255+0 1.045642-5 2.697676+0 1.070057-5 2.469937+0 1.087705-5 2.299186+0 1.101249-5 2.164529+0 1.115359-5 2.020385+0 1.126951-5 1.899301+0 1.134470-5 1.819443+0 1.141520-5 1.743670+0 1.152000-5 1.629792+0 1.161449-5 1.526476+0 1.168995-5 1.444069+0 1.179956-5 1.326043+0 1.202264-5 1.108356+0 1.207099-5 1.070572+0 1.211962-5 1.039692+0 1.214168-5 1.028923+0 1.216236-5 1.021137+0 1.218145-5 1.016246+0 1.219936-5 1.013924+0 1.221617-5 1.013972+0 1.224483-5 1.019635+0 1.227195-5 1.032307+0 1.229037-5 1.045465+0 1.230176-5 1.055606+0 1.232245-5 1.078252+0 1.234943-5 1.116766+0 1.236482-5 1.143789+0 1.239008-5 1.197062+0 1.241355-5 1.257800+0 1.243779-5 1.333771+0 1.245520-5 1.397920+0 1.247586-5 1.486177+0 1.248795-5 1.544747+0 1.251108-5 1.673408+0 1.253400-5 1.826416+0 1.254935-5 1.946096+0 1.256470-5 2.082246+0 1.258005-5 2.237755+0 1.259540-5 2.416189+0 1.261075-5 2.621955+0 1.262686-5 2.873239+0 1.264317-5 3.172539+0 1.265680-5 3.464285+0 1.267215-5 3.847790+0 1.268750-5 4.301171+0 1.270285-5 4.838940+0 1.271820-5 5.478280+0 1.273355-5 6.239282+0 1.274890-5 7.145135+0 1.276425-5 8.222214+0 1.277960-5 9.500063+0 1.279495-5 1.101121+1 1.283332-5 1.604549+1 1.287170-5 2.335117+1 1.289664-5 2.958978+1 1.291080-5 3.371426+1 1.292195-5 3.727088+1 1.294037-5 4.375890+1 1.295797-5 5.066458+1 1.296153-5 5.214101+1 1.299450-5 6.706168+1 1.299834-5 6.892871+1 1.302520-5 8.259667+1 1.303605-5 8.834528+1 1.305677-5 9.949572+1 1.307289-5 1.081701+2 1.308851-5 1.164114+2 1.310463-5 1.245787+2 1.312026-5 1.320086+2 1.313415-5 1.380848+2 1.314698-5 1.431640+2 1.315399-5 1.456912+2 1.317259-5 1.514597+2 1.318712-5 1.549239+2 1.320404-5 1.577110+2 1.321779-5 1.589395+2 1.324824-5 1.582826+2 1.326244-5 1.564137+2 1.328098-5 1.525668+2 1.329609-5 1.483445+2 1.331074-5 1.434212+2 1.332686-5 1.371840+2 1.334249-5 1.304595+2 1.335420-5 1.250672+2 1.336977-5 1.175584+2 1.339011-5 1.073738+2 1.340598-5 9.931073+1 1.343078-5 8.684660+1 1.343773-5 8.343608+1 1.346947-5 6.858886+1 1.348039-5 6.383559+1 1.350122-5 5.534873+1 1.352503-5 4.666285+1 1.355197-5 3.817800+1 1.359381-5 2.769582+1 1.364096-5 1.928021+1 1.365771-5 1.699798+1 1.367446-5 1.502030+1 1.369120-5 1.330850+1 1.370795-5 1.182675+1 1.372470-5 1.054254+1 1.374144-5 9.427056+0 1.377493-5 7.605765+0 1.382097-5 5.769078+0 1.387079-5 4.417451+0 1.390891-5 3.780534+0 1.392399-5 3.633359+0 1.394236-5 3.547694+0 1.395614-5 3.560062+0 1.397321-5 3.680409+0 1.398632-5 3.862730+0 1.399921-5 4.128808+0 1.400939-5 4.406220+0 1.401724-5 4.664701+0 1.402365-5 4.906531+0 1.403206-5 5.268533+0 1.404136-5 5.731243+0 1.405283-5 6.399751+0 1.406745-5 7.422649+0 1.409058-5 9.473178+0 1.412218-5 1.325180+1 1.414989-5 1.760728+1 1.416779-5 2.097575+1 1.417402-5 2.225325+1 1.419537-5 2.703364+1 1.420873-5 3.033549+1 1.421584-5 3.218934+1 1.423452-5 3.734646+1 1.425054-5 4.207106+1 1.427456-5 4.957054+1 1.428395-5 5.260140+1 1.429737-5 5.699117+1 1.430815-5 6.054182+1 1.432230-5 6.518609+1 1.433488-5 6.926500+1 1.434845-5 7.355510+1 1.436244-5 7.780424+1 1.437708-5 8.200205+1 1.439213-5 8.598286+1 1.440845-5 8.984462+1 1.441796-5 9.184712+1 1.443511-5 9.494525+1 1.445186-5 9.728669+1 1.446611-5 9.871305+1 1.448053-5 9.960989+1 1.449234-5 9.993124+1 1.449912-5 9.994782+1 1.452197-5 9.912161+1 1.454101-5 9.744218+1 1.455024-5 9.632740+1 1.456690-5 9.386099+1 1.458477-5 9.063433+1 1.459971-5 8.754936+1 1.461891-5 8.316635+1 1.463626-5 7.890538+1 1.465795-5 7.333235+1 1.468451-5 6.637774+1 1.469265-5 6.426305+1 1.472301-5 5.659909+1 1.480970-5 3.854546+1 1.483205-5 3.503546+1 1.484545-5 3.315272+1 1.487226-5 2.985550+1 1.489907-5 2.711845+1 1.491695-5 2.556208+1 1.495270-5 2.297371+1 1.498844-5 2.091950+1 1.502419-5 1.923275+1 1.505994-5 1.779047+1 1.513144-5 1.535159+1 1.523868-5 1.241323+1 1.527065-5 1.168216+1 1.531087-5 1.085092+1 1.534564-5 1.020654+1 1.548349-5 8.226382+0 1.551454-5 7.896001+0 1.555971-5 7.494431+0 1.559783-5 7.233682+0 1.563594-5 7.048273+0 1.567405-5 6.938354+0 1.569121-5 6.912303+0 1.571695-5 6.897916+0 1.574269-5 6.909173+0 1.579557-5 6.987286+0 1.586460-5 7.111261+0 1.590806-5 7.143904+0 1.594555-5 7.118839+0 1.596118-5 7.091404+0 1.598461-5 7.030877+0 1.600805-5 6.947696+0 1.604338-5 6.783650+0 1.609326-5 6.491472+0 1.613259-5 6.233611+0 1.621162-5 5.724214+0 1.625694-5 5.474518+0 1.629064-5 5.318291+0 1.631228-5 5.231782+0 1.636097-5 5.073698+0 1.641654-5 4.942437+0 1.659587-5 4.632008+0 1.665375-5 4.519131+0 1.673840-5 4.338371+0 1.685551-5 4.075563+0 1.695701-5 3.842298+0 1.708136-5 3.564169+0 1.710625-5 3.515117+0 1.717127-5 3.410705+0 1.718901-5 3.390080+0 1.722647-5 3.360161+0 1.726518-5 3.350490+0 1.730811-5 3.365566+0 1.735138-5 3.405344+0 1.741908-5 3.499577+0 1.747972-5 3.587140+0 1.751343-5 3.624468+0 1.756188-5 3.652237+0 1.760528-5 3.645064+0 1.764579-5 3.609753+0 1.767207-5 3.573241+0 1.769786-5 3.528561+0 1.773155-5 3.459971+0 1.780770-5 3.284315+0 1.787335-5 3.139789+0 1.793391-5 3.031448+0 1.798784-5 2.959515+0 1.802436-5 2.922583+0 1.807127-5 2.885509+0 1.822638-5 2.790019+0 1.829012-5 2.744822+0 1.835606-5 2.691585+0 1.853450-5 2.529802+0 1.865440-5 2.415830+0 1.891957-5 2.171539+0 1.901195-5 2.101239+0 1.910950-5 2.038373+0 1.922782-5 1.973445+0 1.956872-5 1.808537+0 1.975520-5 1.728335+0 1.988435-5 1.680289+0 2.000920-5 1.641772+0 2.015069-5 1.610946+0 2.025487-5 1.599447+0 2.028928-5 1.597967+0 2.049335-5 1.612184+0 2.062727-5 1.640676+0 2.071334-5 1.666207+0 2.090000-5 1.740732+0 2.101662-5 1.801151+0 2.126614-5 1.968245+0 2.150972-5 2.184495+0 2.175204-5 2.457132+0 2.190000-5 2.655281+0 2.208364-5 2.939301+0 2.230179-5 3.336990+0 2.251312-5 3.791583+0 2.275000-5 4.390718+0 2.291618-5 4.874706+0 2.310831-5 5.510615+0 2.329444-5 6.215595+0 2.350000-5 7.108994+0 2.391029-5 9.316189+0 2.429523-5 1.203077+1 2.458865-5 1.466496+1 2.490709-5 1.823673+1 2.524562-5 2.307119+1 2.548057-5 2.726526+1 2.570456-5 3.207068+1 2.591455-5 3.744584+1 2.611142-5 4.343776+1 2.629598-5 5.009526+1 2.646901-5 5.745464+1 2.666047-5 6.714390+1 2.678329-5 7.440126+1 2.692586-5 8.407345+1 2.705952-5 9.460183+1 2.718483-5 1.060195+2 2.730230-5 1.183529+2 2.741244-5 1.316240+2 2.754229-5 1.498415+2 2.761248-5 1.610669+2 2.770323-5 1.772824+2 2.778830-5 1.945174+2 2.786806-5 2.127808+2 2.794283-5 2.320746+2 2.801293-5 2.523946+2 2.810283-5 2.822126+2 2.819802-5 3.194105+2 2.825217-5 3.437221+2 2.835370-5 3.970491+2 2.844254-5 4.542991+2 2.852027-5 5.152057+2 2.858829-5 5.793635+2 2.864781-5 6.461934+2 2.869988-5 7.149487+2 2.875743-5 8.048301+2 2.882021-5 9.238448+2 2.888126-5 1.066293+3 2.892705-5 1.194777+3 2.896139-5 1.305799+3 2.898715-5 1.398528+3 2.904510-5 1.641726+3 2.906442-5 1.734893+3 2.913595-5 2.143101+3 2.918961-5 2.526473+3 2.927903-5 3.350099+3 2.942211-5 5.287397+3 2.949455-5 6.621912+3 2.954201-5 7.637529+3 2.960095-5 9.054902+3 2.963672-5 9.995139+3 2.970826-5 1.203325+4 2.971725-5 1.230187+4 2.978019-5 1.423513+4 2.980514-5 1.501694+4 2.986185-5 1.678825+4 2.989374-5 1.776049+4 2.991817-5 1.848233+4 2.995307-5 1.946633+4 2.998953-5 2.041619+4 3.002970-5 2.134574+4 3.006766-5 2.208864+4 3.011760-5 2.283242+4 3.015486-5 2.319524+4 3.019376-5 2.338622+4 3.022175-5 2.340143+4 3.029055-5 2.300358+4 3.031040-5 2.277707+4 3.036405-5 2.193245+4 3.039186-5 2.137201+4 3.042281-5 2.066171+4 3.044271-5 2.016203+4 3.047614-5 1.925677+4 3.050873-5 1.830908+4 3.053595-5 1.747933+4 3.057094-5 1.637669+4 3.061108-5 1.508463+4 3.065121-5 1.378835+4 3.069204-5 1.248968+4 3.072380-5 1.150727+4 3.079638-5 9.398913+3 3.081725-5 8.836082+3 3.091248-5 6.551362+3 3.097056-5 5.397717+3 3.103551-5 4.317202+3 3.120276-5 2.410219+3 3.127149-5 1.911300+3 3.132475-5 1.607425+3 3.136616-5 1.411785+3 3.141454-5 1.220268+3 3.146292-5 1.061620+3 3.152057-5 9.068948+2 3.159777-5 7.444115+2 3.167498-5 6.195801+2 3.173176-5 5.455544+2 3.180173-5 4.701389+2 3.183658-5 4.378732+2 3.188722-5 3.962009+2 3.194027-5 3.582069+2 3.199332-5 3.251041+2 3.207531-5 2.819024+2 3.215082-5 2.491410+2 3.222957-5 2.209336+2 3.227086-5 2.082937+2 3.231215-5 1.970260+2 3.239110-5 1.790943+2 3.247005-5 1.656310+2 3.248979-5 1.629241+2 3.254900-5 1.562788+2 3.256813-5 1.545782+2 3.260161-5 1.520852+2 3.262672-5 1.505906+2 3.268322-5 1.482552+2 3.275049-5 1.469385+2 3.279892-5 1.466464+2 3.295959-5 1.464792+2 3.304821-5 1.451304+2 3.307985-5 1.442475+2 3.312998-5 1.423750+2 3.316767-5 1.405886+2 3.323919-5 1.363811+2 3.326214-5 1.348316+2 3.336470-5 1.270508+2 3.341031-5 1.232987+2 3.350420-5 1.154079+2 3.393082-5 8.437520+1 3.418020-5 7.034393+1 3.435183-5 6.175779+1 3.463060-5 4.977443+1 3.469864-5 4.732133+1 3.480758-5 4.387648+1 3.489293-5 4.163849+1 3.494197-5 4.055102+1 3.498132-5 3.978876+1 3.502812-5 3.901705+1 3.508593-5 3.828050+1 3.512838-5 3.790842+1 3.516023-5 3.773559+1 3.519324-5 3.766576+1 3.522589-5 3.772259+1 3.525751-5 3.791734+1 3.528815-5 3.826110+1 3.531782-5 3.876729+1 3.535030-5 3.955580+1 3.538792-5 4.084465+1 3.542709-5 4.272321+1 3.543734-5 4.332235+1 3.547423-5 4.592087+1 3.549976-5 4.818738+1 3.552428-5 5.079419+1 3.554692-5 5.362990+1 3.556513-5 5.625152+1 3.558615-5 5.970108+1 3.560776-5 6.377604+1 3.562625-5 6.774066+1 3.564536-5 7.235323+1 3.566388-5 7.737247+1 3.568181-5 8.280417+1 3.571657-5 9.512913+1 3.574915-5 1.091706+2 3.577969-5 1.248912+2 3.580832-5 1.422186+2 3.583517-5 1.610510+2 3.590605-5 2.252206+2 3.599863-5 3.497839+2 3.605470-5 4.543419+2 3.609763-5 5.525324+2 3.614391-5 6.785744+2 3.618501-5 8.100116+2 3.623414-5 9.936531+2 3.627389-5 1.165070+3 3.630781-5 1.328473+3 3.634286-5 1.514469+3 3.637164-5 1.680545+3 3.641624-5 1.961834+3 3.650544-5 2.609766+3 3.652146-5 2.737557+3 3.660021-5 3.408618+3 3.662895-5 3.668607+3 3.668383-5 4.180204+3 3.672076-5 4.531139+3 3.674959-5 4.805742+3 3.679079-5 5.194958+3 3.683383-5 5.591389+3 3.687068-5 5.917048+3 3.690600-5 6.212866+3 3.694822-5 6.539790+3 3.699745-5 6.876295+3 3.704130-5 7.128393+3 3.707086-5 7.270121+3 3.711279-5 7.429265+3 3.715409-5 7.535406+3 3.719466-5 7.589224+3 3.723731-5 7.591458+3 3.724617-5 7.584986+3 3.731308-5 7.461369+3 3.735587-5 7.316630+3 3.739328-5 7.151840+3 3.743792-5 6.913391+3 3.746471-5 6.750975+3 3.751330-5 6.424974+3 3.756406-5 6.049931+3 3.762037-5 5.605535+3 3.766497-5 5.241526+3 3.771514-5 4.828202+3 3.775416-5 4.509156+3 3.784336-5 3.807144+3 3.787402-5 3.579030+3 3.793255-5 3.167594+3 3.802175-5 2.609388+3 3.820205-5 1.748897+3 3.824732-5 1.585684+3 3.829671-5 1.428897+3 3.833859-5 1.311769+3 3.838459-5 1.198295+3 3.845918-5 1.043664+3 3.853960-5 9.107710+2 3.860007-5 8.293727+2 3.866762-5 7.534440+2 3.874210-5 6.843050+2 3.882418-5 6.217936+2 3.891904-5 5.630063+2 3.902558-5 5.096743+2 3.912882-5 4.675297+2 3.923205-5 4.326126+2 3.930665-5 4.110853+2 3.939613-5 3.887966+2 3.948876-5 3.693457+2 3.953856-5 3.602903+2 3.963517-5 3.453149+2 3.975345-5 3.312798+2 3.986082-5 3.221860+2 3.995835-5 3.164711+2 4.002993-5 3.135232+2 4.013662-5 3.105582+2 4.043234-5 3.056445+2 4.055284-5 3.030754+2 4.067995-5 2.994783+2 4.093463-5 2.903088+2 4.128826-5 2.776692+2 4.212921-5 2.547779+2 4.267675-5 2.408167+2 4.303269-5 2.330905+2 4.374719-5 2.200677+2 4.473304-5 2.054742+2 4.587992-5 1.918891+2 4.704032-5 1.805613+2 4.837360-5 1.698706+2 4.966958-5 1.609499+2 5.110039-5 1.524612+2 5.263885-5 1.447053+2 5.451084-5 1.366362+2 5.650000-5 1.291985+2 5.841985-5 1.231133+2 6.175400-5 1.140513+2 6.225300-5 1.131070+2 6.259636-5 1.127591+2 6.333643-5 1.124769+2 6.383505-5 1.119590+2 6.486559-5 1.099879+2 6.592530-5 1.084364+2 6.802468-5 1.060153+2 7.024729-5 1.042150+2 7.318078-5 1.030228+2 7.561800-5 1.028929+2 7.919329-5 1.040559+2 8.328730-5 1.072766+2 8.709636-5 1.117662+2 9.120108-5 1.179217+2 9.600000-5 1.266235+2 1.023293-4 1.400006+2 1.087673-4 1.553473+2 1.172698-4 1.779684+2 1.354815-4 2.337275+2 1.445440-4 2.636647+2 1.536000-4 2.937917+2 1.644822-4 3.291711+2 1.730422-4 3.555654+2 1.802315-4 3.757558+2 1.852270-4 3.883816+2 1.886544-4 3.954967+2 1.919899-4 4.013068+2 1.932561-4 4.060469+2 1.942843-4 4.123396+2 1.968232-4 4.331218+2 1.977153-4 4.393029+2 1.986164-4 4.441297+2 2.011829-4 4.536640+2 2.030100-4 4.629436+2 2.040901-4 4.713401+2 2.071746-4 5.018810+2 2.084787-4 5.126940+2 2.107141-4 5.268791+2 2.155835-4 5.548736+2 2.213361-4 5.873841+2 2.270000-4 6.146942+2 2.333536-4 6.385424+2 2.400982-4 6.576997+2 2.481746-4 6.757462+2 2.580000-4 6.936421+2 3.080000-4 7.707447+2 3.244394-4 7.917681+2 3.358392-4 7.992990+2 3.431740-4 7.959530+2 3.450511-4 7.981118+2 3.464494-4 8.032730+2 3.477816-4 8.116624+2 3.493941-4 8.258313+2 3.523648-4 8.556509+2 3.533815-4 8.643738+2 3.552418-4 8.763442+2 3.573947-4 8.843525+2 3.820000-4 9.344211+2 4.020835-4 9.673404+2 4.252808-4 1.020211+3 4.457819-4 1.055734+3 4.738327-4 1.093437+3 4.906601-4 1.111678+3 5.011872-4 1.130495+3 5.126370-4 1.154700+3 5.341230-4 1.187440+3 5.688529-4 1.227516+3 6.112938-4 1.265120+3 6.597433-4 1.297283+3 7.120328-4 1.321129+3 7.658812-4 1.335109+3 8.252062-4 1.337456+3 8.853386-4 1.332783+3 9.500774-4 1.320399+3 1.011580-3 1.300990+3 1.080068-3 1.269648+3 1.139102-3 1.232800+3 1.203996-3 1.184000+3 1.261192-3 1.132453+3 1.314468-3 1.075303+3 1.358181-3 1.019713+3 1.396210-3 9.622482+2 1.430460-3 9.010883+2 1.459861-3 8.399096+2 1.482594-3 7.846956+2 1.504873-3 7.212323+2 1.520472-3 6.692154+2 1.532189-3 6.240064+2 1.543087-3 5.750843+2 1.551464-3 5.316438+2 1.558421-3 4.917670+2 1.563518-3 4.613907+2 1.572447-3 4.113988+2 1.574725-3 4.006731+2 1.576799-3 3.920921+2 1.578771-3 3.851883+2 1.580415-3 3.805036+2 1.581983-3 3.770381+2 1.583604-3 3.745641+2 1.585601-3 3.731737+2 1.587670-3 3.737656+2 1.589853-3 3.767101+2 1.592190-3 3.825304+2 1.594657-3 3.916116+2 1.596386-3 3.996906+2 1.598473-3 4.111887+2 1.600871-3 4.265325+2 1.605609-3 4.621803+2 1.613129-3 5.268068+2 1.617171-3 5.622758+2 1.619947-3 5.860725+2 1.624009-3 6.196406+2 1.626795-3 6.417825+2 1.630765-3 6.723943+2 1.653627-3 8.610067+2 1.661913-3 9.406579+2 1.667184-3 9.913530+2 1.672127-3 1.037019+3 1.678804-3 1.093966+3 1.685491-3 1.144459+3 1.695004-3 1.205585+3 1.705989-3 1.264458+3 1.723344-3 1.343554+3 1.746260-3 1.436524+3 1.778279-3 1.555661+3 1.798871-3 1.624940+3 1.820000-3 1.686470+3 1.841459-3 1.736407+3 1.860715-3 1.769893+3 1.883649-3 1.797351+3 1.906714-3 1.813859+3 1.926867-3 1.819823+3 1.948664-3 1.817782+3 1.975786-3 1.812309+3 1.989158-3 1.820632+3 1.997653-3 1.833398+3 2.006365-3 1.852661+3 2.022812-3 1.900960+3 2.043926-3 1.967949+3 2.064573-3 2.022660+3 2.077659-3 2.049348+3 2.097152-3 2.079335+3 2.119292-3 2.103465+3 2.148204-3 2.124898+3 2.175688-3 2.136719+3 2.226889-3 2.148437+3 2.253185-3 2.168992+3 2.312939-3 2.242250+3 2.329008-3 2.256170+3 2.357585-3 2.273399+3 2.387541-3 2.283700+3 2.450591-3 2.289710+3 2.476868-3 2.305950+3 2.514718-3 2.344745+3 2.536064-3 2.362517+3 2.567890-3 2.380626+3 2.647183-3 2.405675+3 2.746313-3 2.420670+3 2.852044-3 2.422873+3 2.985383-3 2.415601+3 3.215400-3 2.386112+3 3.388442-3 2.354028+3 3.672823-3 2.286947+3 3.845918-3 2.243585+3 4.091523-3 2.175122+3 4.518559-3 2.055274+3 4.693765-3 2.007599+3 5.040806-3 1.910918+3 5.257274-3 1.853056+3 5.717254-3 1.732289+3 6.230351-3 1.603458+3 6.518688-3 1.534258+3 6.790082-3 1.471003+3 7.053399-3 1.411515+3 7.330695-3 1.348630+3 7.577854-3 1.293560+3 7.796955-3 1.244340+3 7.997464-3 1.198856+3 8.180310-3 1.156480+3 8.342362-3 1.117342+3 8.476831-3 1.083302+3 8.591372-3 1.052611+3 8.694286-3 1.023027+3 8.778848-3 9.964977+2 8.848449-3 9.722967+2 8.908877-3 9.485325+2 8.960616-3 9.250881+2 9.021042-3 8.929060+2 9.144468-3 8.200610+2 9.179924-3 8.052771+2 9.203971-3 7.991033+2 9.222603-3 7.968236+2 9.249277-3 7.975199+2 9.282596-3 8.045431+2 9.315914-3 8.170250+2 9.401427-3 8.592172+2 9.434260-3 8.743303+2 9.465132-3 8.865755+2 9.502230-3 8.985095+2 9.541216-3 9.080027+2 9.592351-3 9.166004+2 9.653560-3 9.226880+2 9.716280-3 9.255851+2 9.779200-3 9.259559+2 9.860202-3 9.233717+2 9.937188-3 9.179131+2 1.000363-2 9.106516+2 1.006863-2 9.008759+2 1.016313-2 8.816006+2 1.025652-2 8.608507+2 1.030816-2 8.531409+2 1.035088-2 8.508681+2 1.039902-2 8.532933+2 1.045580-2 8.615423+2 1.055642-2 8.797798+2 1.062558-2 8.879226+2 1.082234-2 8.978167+2 1.091157-2 9.094704+2 1.105387-2 9.331533+2 1.114812-2 9.442350+2 1.121451-2 9.492847+2 1.138548-2 9.557903+2 1.160991-2 9.569025+2 1.187674-2 9.527288+2 1.227792-2 9.397572+2 1.273903-2 9.191926+2 1.320928-2 8.952257+2 1.391944-2 8.562965+2 1.483505-2 8.052134+2 1.606306-2 7.395206+2 1.772325-2 6.601932+2 1.984675-2 5.747333+2 2.222670-2 4.970615+2 2.427477-2 4.416929+2 2.662625-2 3.879505+2 3.003926-2 3.246771+2 3.368140-2 2.723614+2 3.650433-2 2.399198+2 3.944903-2 2.112712+2 4.262727-2 1.850454+2 4.799434-2 1.501398+2 5.173404-2 1.309883+2 5.459767-2 1.181036+2 5.680697-2 1.088214+2 5.840495-2 1.022294+2 5.963253-2 9.703818+1 6.060308-2 9.262691+1 6.102295-2 9.052369+1 6.135287-2 8.871539+1 6.162363-2 8.708300+1 6.199849-2 8.455195+1 6.278357-2 7.885338+1 6.304542-2 7.742546+1 6.325186-2 7.670676+1 6.348894-2 7.640547+1 6.371223-2 7.662456+1 6.400108-2 7.748084+1 6.476978-2 8.072191+1 6.516330-2 8.193740+1 6.559616-2 8.274374+1 6.623283-2 8.323278+1 6.705362-2 8.320689+1 6.819781-2 8.256156+1 7.007398-2 8.081981+1 7.223857-2 7.832633+1 7.485701-2 7.502158+1 7.834102-2 7.055743+1 8.386751-2 6.383435+1 9.145082-2 5.574682+1 1.002112-1 4.797347+1 1.111339-1 4.019750+1 1.255213-1 3.239264+1 1.671962-1 1.924729+1 2.087078-1 1.280487+1 2.532922-1 8.904740+0 3.295244-1 5.384626+0 4.601461-1 2.819340+0 7.165760-1 1.184447+0 1.173413+0 4.473059-1 2.235892+0 1.241143-1 6.752287+0 1.364542-2 2.039158+1 1.496588-3 6.158159+1 1.641024-4 1.859734+2 1.799352-5 5.616308+2 1.972951-6 1.995262+3 1.563213-7 6.309573+3 1.563213-8 1.995262+4 1.563213-9 6.309573+4 1.56321-10 1.000000+5 6.22326-11 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.018000-6 1.258900-6 3.198400-6 1.584900-6 5.069100-6 1.995300-6 8.033900-6 2.511900-6 1.273300-5 3.162300-6 2.018000-5 3.981100-6 3.198300-5 5.011900-6 5.069000-5 6.309600-6 8.033700-5 7.943300-6 1.273200-4 1.000000-5 2.017900-4 1.258900-5 3.198200-4 1.584900-5 5.066600-4 1.995300-5 8.025700-4 2.511900-5 1.271400-3 3.162300-5 2.014300-3 3.981100-5 3.191700-3 5.011900-5 5.057500-3 6.309600-5 8.014100-3 7.943300-5 1.268800-2 1.000000-4 2.008000-2 1.258900-4 3.174300-2 1.584900-4 5.007000-2 1.995300-4 7.888500-2 2.511900-4 1.238300-1 3.162300-4 1.933200-1 3.981100-4 2.989500-1 5.011900-4 4.551600-1 6.309600-4 6.782300-1 7.943300-4 9.833700-1 1.000000-3 1.379600+0 1.258900-3 1.870400+0 1.584900-3 2.467400+0 1.995300-3 3.207100+0 2.511900-3 4.131500+0 3.162300-3 5.276400+0 3.981100-3 6.652600+0 5.011900-3 8.275900+0 6.309600-3 1.012300+1 7.943300-3 1.216400+1 1.000000-2 1.436400+1 1.258900-2 1.672900+1 1.584900-2 1.920700+1 1.995300-2 2.180100+1 2.511900-2 2.428100+1 3.162300-2 2.645800+1 3.981100-2 2.815400+1 5.011900-2 2.937000+1 6.309600-2 3.027400+1 7.943300-2 3.055800+1 1.000000-1 3.032300+1 1.258900-1 2.961200+1 1.584900-1 2.850900+1 1.995300-1 2.710900+1 2.511900-1 2.549800+1 3.162300-1 2.375700+1 3.981100-1 2.194400+1 5.011900-1 2.012000+1 6.309600-1 1.831800+1 7.943300-1 1.656700+1 1.000000+0 1.488400+1 1.258900+0 1.328500+1 1.584900+0 1.178000+1 1.995300+0 1.037600+1 2.511900+0 9.081300+0 3.162300+0 7.898100+0 3.981100+0 6.828100+0 5.011900+0 5.870000+0 6.309600+0 5.019500+0 7.943300+0 4.271900+0 1.000000+1 3.619500+0 1.258900+1 3.054200+0 1.584900+1 2.567800+0 1.995300+1 2.151700+0 2.511900+1 1.797600+0 3.162300+1 1.497700+0 3.981100+1 1.244800+0 5.011900+1 1.032400+0 6.309600+1 8.544200-1 7.943300+1 7.058700-1 1.000000+2 5.821800-1 1.258900+2 4.794400-1 1.584900+2 3.942800-1 1.995300+2 3.238400-1 2.511900+2 2.656700-1 3.162300+2 2.177100-1 3.981100+2 1.782300-1 5.011900+2 1.457700-1 6.309600+2 1.191200-1 7.943300+2 9.726300-2 1.000000+3 7.935400-2 1.258900+3 6.469700-2 1.584900+3 5.271100-2 1.995300+3 4.291800-2 2.511900+3 3.492300-2 3.162300+3 2.840100-2 3.981100+3 2.308400-2 5.011900+3 1.875300-2 6.309600+3 1.522700-2 7.943300+3 1.235800-2 1.000000+4 1.002500-2 1.258900+4 8.128400-3 1.584900+4 6.588200-3 1.995300+4 5.337700-3 2.511900+4 4.322800-3 3.162300+4 3.499600-3 3.981100+4 2.832200-3 5.011900+4 2.291300-3 6.309600+4 1.853000-3 7.943300+4 1.498100-3 1.000000+5 1.210800-3 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159548-4 3.981072-4 3.976771-4 5.011872-4 5.005078-4 6.309573-4 6.298900-4 7.943282-4 7.926587-4 1.000000-3 9.973927-4 1.258925-3 1.254864-3 1.584893-3 1.578555-3 1.995262-3 1.985358-3 2.511886-3 2.496307-3 3.162278-3 3.137843-3 3.981072-3 3.942730-3 5.011872-3 4.951812-3 6.309573-3 6.215615-3 7.943282-3 7.797189-3 1.000000-2 9.772937-3 1.258925-2 1.223664-2 1.584893-2 1.530136-2 1.995262-2 1.910705-2 2.511886-2 2.381858-2 3.162278-2 2.963848-2 3.981072-2 3.680544-2 5.011872-2 4.559381-2 6.309573-2 5.632208-2 7.943282-2 6.936891-2 1.000000-1 8.517523-2 1.258925-1 1.042503-1 1.584893-1 1.271867-1 1.995262-1 1.546594-1 2.511886-1 1.874335-1 3.162278-1 2.264315-1 3.981072-1 2.726363-1 5.011872-1 3.272659-1 6.309573-1 3.917419-1 7.943282-1 4.676474-1 1.000000+0 5.570556-1 1.258925+0 6.623700-1 1.584893+0 7.867054-1 1.995262+0 9.338166-1 2.511886+0 1.108389+0 3.162278+0 1.316113+0 3.981072+0 1.564074+0 5.011872+0 1.860969+0 6.309573+0 2.217249+0 7.943282+0 2.645665+0 1.000000+1 3.162283+0 1.258925+1 3.786345+0 1.584893+1 4.541513+0 1.995262+1 5.456765+0 2.511886+1 6.567612+0 3.162278+1 7.917385+0 3.981072+1 9.560091+0 5.011872+1 1.156082+1 6.309573+1 1.400051+1 7.943282+1 1.697816+1 1.000000+2 2.061546+1 1.258925+2 2.506261+1 1.584893+2 3.050423+1 1.995262+2 3.716779+1 2.511886+2 4.533296+1 3.162278+2 5.534553+1 3.981072+2 6.763005+1 5.011872+2 8.271341+1 6.309573+2 1.012429+2 7.943282+2 1.240186+2 1.000000+3 1.520265+2 1.258925+3 1.864908+2 1.584893+3 2.289169+2 1.995262+3 2.811749+2 2.511886+3 3.455527+2 3.162278+3 4.249350+2 3.981072+3 5.228222+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88211-10 1.995262-5 1.090661-9 2.511886-5 1.728552-9 3.162278-5 2.739585-9 3.981072-5 4.341969-9 5.011872-5 6.881498-9 6.309573-5 1.090611-8 7.943282-5 1.728013-8 1.000000-4 2.738018-8 1.258925-4 4.337657-8 1.584893-4 6.869224-8 1.995262-4 1.087918-7 2.511886-4 1.722024-7 3.162278-4 2.730021-7 3.981072-4 4.301169-7 5.011872-4 6.794554-7 6.309573-4 1.067358-6 7.943282-4 1.669527-6 1.000000-3 2.607282-6 1.258925-3 4.061605-6 1.584893-3 6.338322-6 1.995262-3 9.904393-6 2.511886-3 1.557987-5 3.162278-3 2.443434-5 3.981072-3 3.834202-5 5.011872-3 6.006013-5 6.309573-3 9.395860-5 7.943282-3 1.460935-4 1.000000-2 2.270630-4 1.258925-2 3.526146-4 1.584893-2 5.475678-4 1.995262-2 8.455751-4 2.511886-2 1.300282-3 3.162278-2 1.984300-3 3.981072-2 3.005282-3 5.011872-2 4.524918-3 6.309573-2 6.773652-3 7.943282-2 1.006392-2 1.000000-1 1.482477-2 1.258925-1 2.164227-2 1.584893-1 3.130257-2 1.995262-1 4.486680-2 2.511886-1 6.375512-2 3.162278-1 8.979624-2 3.981072-1 1.254708-1 5.011872-1 1.739214-1 6.309573-1 2.392154-1 7.943282-1 3.266808-1 1.000000+0 4.429444-1 1.258925+0 5.965554-1 1.584893+0 7.981878-1 1.995262+0 1.061446+0 2.511886+0 1.403497+0 3.162278+0 1.846164+0 3.981072+0 2.416998+0 5.011872+0 3.150903+0 6.309573+0 4.092324+0 7.943282+0 5.297618+0 1.000000+1 6.837717+0 1.258925+1 8.802909+0 1.584893+1 1.130742+1 1.995262+1 1.449586+1 2.511886+1 1.855125+1 3.162278+1 2.370539+1 3.981072+1 3.025063+1 5.011872+1 3.855791+1 6.309573+1 4.909522+1 7.943282+1 6.245467+1 1.000000+2 7.938454+1 1.258925+2 1.008299+2 1.584893+2 1.279851+2 1.995262+2 1.623584+2 2.511886+2 2.058557+2 3.162278+2 2.608822+2 3.981072+2 3.304771+2 5.011872+2 4.184738+2 6.309573+2 5.297145+2 7.943282+2 6.703096+2 1.000000+3 8.479735+2 1.258925+3 1.072435+3 1.584893+3 1.355976+3 1.995262+3 1.714087+3 2.511886+3 2.166334+3 3.162278+3 2.737343+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.030000-6 4.170871+6 4.160000-6 4.274298+6 4.365158-6 4.402383+6 4.450000-6 4.442505+6 4.450000-6 6.591137+6 4.600000-6 6.742215+6 4.677351-6 6.810611+6 4.850000-6 6.946738+6 4.897788-6 6.978727+6 5.128614-6 7.113756+6 5.200000-6 7.150034+6 5.432503-6 7.244613+6 5.559043-6 7.287272+6 5.754399-6 7.337701+6 6.025596-6 7.391634+6 6.200000-6 7.414317+6 6.330000-6 7.425029+6 6.330000-6 1.272276+7 6.606934-6 1.186888+7 7.200000-6 1.051505+7 7.244360-6 1.043440+7 7.328245-6 1.028607+7 7.852356-6 9.510164+6 8.035261-6 9.291207+6 8.222426-6 9.088025+6 8.609938-6 8.719364+6 8.810489-6 8.552556+6 9.120108-6 8.323760+6 9.440609-6 8.111824+6 9.660509-6 7.978951+6 1.000000-5 7.794674+6 1.023293-5 7.674950+6 1.059254-5 7.501296+6 1.083927-5 7.392966+6 1.109175-5 7.284061+6 1.161449-5 7.072214+6 1.202264-5 6.912814+6 1.258925-5 6.702543+6 1.288250-5 6.593902+6 1.348963-5 6.375704+6 1.364583-5 6.318592+6 1.428894-5 6.086541+6 1.445440-5 6.026348+6 1.513561-5 5.781285+6 1.531087-5 5.717769+6 1.590000-5 5.504548+6 1.603245-5 5.459098+6 1.621810-5 5.392175+6 1.659587-5 5.254827+6 1.690000-5 5.149480+6 1.698244-5 5.119848+6 1.717908-5 5.047670+6 1.732000-5 4.997214+6 1.732000-5 5.909142+6 1.778279-5 5.713203+6 1.800000-5 5.618374+6 1.830000-5 5.493311+6 1.862087-5 5.365074+6 1.883649-5 5.279286+6 1.896000-5 5.229764+6 1.896000-5 5.835224+6 1.935000-5 5.669701+6 1.950000-5 5.608265+6 1.972423-5 5.516140+6 1.990000-5 5.446770+6 1.995262-5 5.426322+6 2.041738-5 5.243927+6 2.070000-5 5.136641+6 2.090000-5 5.063488+6 2.113489-5 4.979904+6 2.137962-5 4.893460+6 2.162719-5 4.808682+6 2.190000-5 4.716497+6 2.238721-5 4.561894+6 2.250000-5 4.526204+6 2.270000-5 4.464159+6 2.290868-5 4.402842+6 2.300000-5 4.375805+6 2.350000-5 4.232996+6 2.371374-5 4.175573+6 2.420000-5 4.047948+6 2.426610-5 4.031177+6 2.470000-5 3.923777+6 2.500000-5 3.853723+6 2.511886-5 3.826670+6 2.570396-5 3.698211+6 2.580000-5 3.678286+6 2.600160-5 3.636318+6 2.660725-5 3.519172+6 2.691535-5 3.463807+6 2.754229-5 3.357197+6 2.770000-5 3.331611+6 2.786121-5 3.305996+6 2.851018-5 3.211150+6 2.884032-5 3.166968+6 2.917427-5 3.124503+6 2.951209-5 3.083498+6 2.985383-5 3.044123+6 3.054921-5 2.972911+6 3.090295-5 2.940650+6 3.126079-5 2.911376+6 3.162278-5 2.882460+6 3.198895-5 2.856227+6 3.273407-5 2.809697+6 3.311311-5 2.789933+6 3.349654-5 2.773180+6 3.400000-5 2.752634+6 3.422000-5 2.745201+6 3.422000-5 1.569052+7 3.427678-5 1.559862+7 3.450000-5 1.524472+7 3.507519-5 1.438949+7 3.589219-5 1.329978+7 3.630781-5 1.281542+7 3.650000-5 1.260149+7 3.715352-5 1.191927+7 3.758374-5 1.150381+7 3.801894-5 1.112331+7 3.845918-5 1.076246+7 3.890451-5 1.042024+7 3.935501-5 1.009463+7 3.981072-5 9.785547+6 4.000000-5 9.662674+6 4.152000-5 8.802354+6 4.152000-5 1.445873+7 4.168694-5 1.429706+7 4.220000-5 1.382005+7 4.265795-5 1.341909+7 4.315191-5 1.301089+7 4.415704-5 1.224578+7 4.466836-5 1.189107+7 4.500000-5 1.167161+7 4.518559-5 1.155262+7 4.623810-5 1.092604+7 4.720000-5 1.041554+7 4.731513-5 1.035831+7 4.786301-5 1.009580+7 4.800000-5 1.003238+7 5.011872-5 9.175635+6 5.069907-5 8.973169+6 5.128614-5 8.780441+6 5.308844-5 8.271054+6 5.400000-5 8.048625+6 5.500000-5 7.829286+6 5.623413-5 7.596301+6 5.650000-5 7.551037+6 5.688529-5 7.487301+6 5.800000-5 7.317699+6 5.888437-5 7.198341+6 5.900000-5 7.184181+6 6.000000-5 7.071741+6 6.025596-5 7.045663+6 6.165950-5 6.917340+6 6.237348-5 6.862756+6 6.309573-5 6.811903+6 6.382635-5 6.768635+6 6.400000-5 6.759253+6 6.456542-5 6.731005+6 6.634000-5 6.659986+6 6.634000-5 6.718703+6 6.683439-5 6.703416+6 6.760830-5 6.682564+6 6.800000-5 6.674078+6 6.839116-5 6.666773+6 6.850000-5 6.664940+6 6.918310-5 6.655727+6 6.970000-5 6.649651+6 7.079458-5 6.643201+6 7.161434-5 6.644735+6 7.190000-5 6.645226+6 7.300000-5 6.651534+6 7.328245-5 6.654122+6 7.413102-5 6.664487+6 7.473600-5 6.672676+6 7.500000-5 6.676810+6 7.650000-5 6.705745+6 7.673615-5 6.709947+6 7.800000-5 6.735752+6 7.852356-5 6.748544+6 7.900000-5 6.761270+6 8.128305-5 6.823451+6 8.150000-5 6.828989+6 8.222426-5 6.848905+6 8.300000-5 6.871465+6 8.317638-5 6.876776+6 8.511380-5 6.932173+6 8.609938-5 6.964195+6 8.709636-5 6.992591+6 8.810489-5 7.022729+6 8.912509-5 7.050521+6 9.120108-5 7.112451+6 9.225714-5 7.139673+6 9.300000-5 7.159571+6 9.440609-5 7.193904+6 9.660509-5 7.250586+6 9.772372-5 7.275718+6 9.800000-5 7.282033+6 9.900000-5 7.301674+6 1.000000-4 7.322078+6 1.011579-4 7.346778+6 1.023293-4 7.372228+6 1.035142-4 7.393643+6 1.040000-4 7.402558+6 1.047129-4 7.413730+6 1.060000-4 7.434199+6 1.083927-4 7.473993+6 1.096478-4 7.490769+6 1.109175-4 7.508076+6 1.122018-4 7.521969+6 1.135011-4 7.536548+6 1.161449-4 7.567547+6 1.174898-4 7.579305+6 1.190000-4 7.592994+6 1.240000-4 7.628188+6 1.244515-4 7.631537+6 1.258925-4 7.637410+6 1.273503-4 7.643425+6 1.303167-4 7.648938+6 1.318257-4 7.652388+6 1.330000-4 7.655177+6 1.333521-4 7.654906+6 1.350000-4 7.653671+6 1.364583-4 7.649018+6 1.380384-4 7.644322+6 1.396368-4 7.639975+6 1.412538-4 7.635761+6 1.428894-4 7.626350+6 1.430000-4 7.625724+6 1.445440-4 7.617201+6 1.462177-4 7.603931+6 1.479108-4 7.590961+6 1.500000-4 7.575308+6 1.531087-4 7.542802+6 1.540000-4 7.533676+6 1.566751-4 7.500062+6 1.603245-4 7.456073+6 1.609700-4 7.446862+6 1.640590-4 7.403527+6 1.650000-4 7.390614+6 1.678804-4 7.346475+6 1.698244-4 7.317306+6 1.717908-4 7.283315+6 1.720000-4 7.279734+6 1.757924-4 7.216067+6 1.760000-4 7.212641+6 1.798871-4 7.142363+6 1.800000-4 7.140356+6 1.819701-4 7.105702+6 1.840772-4 7.069169+6 1.883649-4 6.988645+6 1.900000-4 6.958729+6 1.905461-4 6.948047+6 1.927525-4 6.905412+6 1.949845-4 6.863049+6 1.950000-4 6.862757+6 1.972423-4 6.816248+6 1.980000-4 6.800724+6 1.993200-4 6.773943+6 1.993200-4 7.125549+6 2.000000-4 7.113094+6 2.002000-4 7.109446+6 2.010000-4 7.096880+6 2.018366-4 7.085793+6 2.020000-4 7.083387+6 2.030000-4 7.071159+6 2.041738-4 7.059615+6 2.065380-4 7.042169+6 2.080000-4 7.032936+6 2.089296-4 7.025745+6 2.089600-4 7.025460+6 2.093800-4 7.021578+6 2.093800-4 7.237429+6 2.095000-4 7.237233+6 2.105000-4 7.233643+6 2.113489-4 7.229206+6 2.115000-4 7.228453+6 2.128000-4 7.219005+6 2.137962-4 7.209689+6 2.138000-4 7.209655+6 2.150000-4 7.196045+6 2.151300-4 7.194434+6 2.165000-4 7.174466+6 2.180000-4 7.150247+6 2.187762-4 7.135407+6 2.195000-4 7.121820+6 2.198000-4 7.115848+6 2.208000-4 7.094394+6 2.213095-4 7.082893+6 2.218000-4 7.071916+6 2.220000-4 7.067160+6 2.230000-4 7.040291+6 2.240000-4 7.012312+6 2.255000-4 6.966986+6 2.264644-4 6.936652+6 2.270000-4 6.919964+6 2.285000-4 6.870298+6 2.290868-4 6.850459+6 2.300000-4 6.818577+6 2.306200-4 6.796463+6 2.317395-4 6.756249+6 2.323000-4 6.736345+6 2.344229-4 6.660216+6 2.350000-4 6.639921+6 2.371374-4 6.563773+6 2.380000-4 6.533736+6 2.389200-4 6.501568+6 2.415000-4 6.409776+6 2.426610-4 6.369051+6 2.450000-4 6.289104+6 2.454709-4 6.272891+6 2.465000-4 6.237466+6 2.483133-4 6.176957+6 2.500000-4 6.122032+6 2.530000-4 6.028454+6 2.540973-4 5.995565+6 2.560000-4 5.937227+6 2.570396-4 5.906366+6 2.580000-4 5.878200+6 2.590000-4 5.849391+6 2.600160-4 5.820905+6 2.620000-4 5.764229+6 2.630268-4 5.736097+6 2.650000-4 5.682826+6 2.660725-4 5.654777+6 2.680000-4 5.605621+6 2.691535-4 5.577102+6 2.710000-4 5.532540+6 2.722701-4 5.502797+6 2.730000-4 5.486047+6 2.740000-4 5.462049+6 2.754229-4 5.428771+6 2.770000-4 5.392770+6 2.786121-4 5.356971+6 2.800000-4 5.325829+6 2.818383-4 5.285730+6 2.837800-4 5.244520+6 2.851018-4 5.217225+6 2.880000-4 5.159035+6 2.884032-4 5.151158+6 2.900000-4 5.120562+6 2.917427-4 5.086042+6 2.951209-4 5.021890+6 2.990000-4 4.948723+6 3.000000-4 4.930433+6 3.030000-4 4.877079+6 3.080000-4 4.792115+6 3.090295-4 4.775383+6 3.100000-4 4.758745+6 3.126079-4 4.714742+6 3.130000-4 4.708214+6 3.162278-4 4.655821+6 3.198895-4 4.595931+6 3.200000-4 4.594156+6 3.235937-4 4.537856+6 3.311311-4 4.425904+6 3.350000-4 4.369115+6 3.388442-4 4.312172+6 3.427678-4 4.256193+6 3.470000-4 4.198145+6 3.507519-4 4.147985+6 3.548134-4 4.093190+6 3.550000-4 4.090723+6 3.550500-4 4.090059+6 3.550500-4 4.354013+6 3.589219-4 4.302244+6 3.600000-4 4.287942+6 3.630781-4 4.246360+6 3.672823-4 4.191425+6 3.700000-4 4.156757+6 3.758374-4 4.083942+6 3.780000-4 4.057715+6 3.801894-4 4.030408+6 3.820000-4 4.008011+6 3.845918-4 3.976084+6 3.850000-4 3.971119+6 3.935501-4 3.868054+6 4.000000-4 3.793210+6 4.027170-4 3.762824+6 4.050000-4 3.736941+6 4.073803-4 3.710029+6 4.100000-4 3.680681+6 4.101900-4 3.678507+6 4.101900-4 3.738552+6 4.120975-4 3.716871+6 4.183900-4 3.647572+6 4.216965-4 3.611927+6 4.265795-4 3.560310+6 4.315191-4 3.508147+6 4.365158-4 3.456658+6 4.415704-4 3.405905+6 4.466836-4 3.355017+6 4.518559-4 3.304583+6 4.600000-4 3.227943+6 4.650000-4 3.181445+6 4.677351-4 3.156242+6 4.700000-4 3.135717+6 4.731513-4 3.107355+6 4.786301-4 3.058532+6 4.841724-4 3.010593+6 4.850000-4 3.003586+6 4.897788-4 2.963202+6 4.954502-4 2.916322+6 4.978500-4 2.896479+6 4.978500-4 2.971805+6 5.011872-4 2.944431+6 5.080000-4 2.888325+6 5.128614-4 2.849283+6 5.188000-4 2.803125+6 5.230000-4 2.771338+6 5.248075-4 2.757683+6 5.300000-4 2.718407+6 5.308844-4 2.711767+6 5.370318-4 2.666456+6 5.400000-4 2.645143+6 5.432503-4 2.621746+6 5.495409-4 2.577042+6 5.500000-4 2.573842+6 5.559043-4 2.532849+6 5.623413-4 2.489662+6 5.688529-4 2.446678+6 5.754399-4 2.403864+6 5.821032-4 2.361654+6 5.888437-4 2.319868+6 5.956621-4 2.279088+6 6.000000-4 2.253853+6 6.025596-4 2.238989+6 6.237348-4 2.119935+6 6.309573-4 2.081429+6 6.382635-4 2.042828+6 6.456542-4 2.005129+6 6.500000-4 1.983217+6 6.531306-4 1.967688+6 6.606934-4 1.931115+6 6.683439-4 1.895098+6 6.700000-4 1.887247+6 6.760830-4 1.858779+6 6.839116-4 1.823301+6 6.918310-4 1.788680+6 7.000000-4 1.753910+6 7.079458-4 1.720724+6 7.161434-4 1.687216+6 7.244360-4 1.654431+6 7.300000-4 1.632846+6 7.328245-4 1.622038+6 7.413102-4 1.590022+6 7.500000-4 1.558404+6 7.585776-4 1.527801+6 7.673615-4 1.497193+6 7.800000-4 1.455042+6 7.852356-4 1.438041+6 7.943282-4 1.409069+6 8.035261-4 1.380409+6 8.222426-4 1.324825+6 8.413951-4 1.270899+6 8.511380-4 1.244911+6 8.609938-4 1.219000+6 8.709636-4 1.193731+6 8.912509-4 1.144284+6 9.120108-4 1.096702+6 9.225714-4 1.073460+6 9.332543-4 1.050637+6 9.500000-4 1.016182+6 9.549926-4 1.006259+6 9.660509-4 9.847683+5 9.772372-4 9.635824+5 1.000000-3 9.222806+5 1.011579-3 9.021000+5 1.023293-3 8.824275+5 1.047129-3 8.444697+5 1.059254-3 8.259822+5 1.071519-3 8.077421+5 1.083927-3 7.898149+5 1.096478-3 7.723389+5 1.109175-3 7.552066+5 1.110000-3 7.541148+5 1.122018-3 7.384488+5 1.150000-3 7.035417+5 1.161449-3 6.899262+5 1.174898-3 6.743082+5 1.188502-3 6.590900+5 1.202264-3 6.442587+5 1.216186-3 6.297375+5 1.230269-3 6.153837+5 1.244515-3 6.012499+5 1.273503-3 5.740612+5 1.288250-3 5.609095+5 1.300000-3 5.507764+5 1.303167-3 5.480955+5 1.318257-3 5.355442+5 1.333521-3 5.230791+5 1.380384-3 4.872880+5 1.396368-3 4.759690+5 1.400000-3 4.734431+5 1.428894-3 4.540659+5 1.445440-3 4.434226+5 1.450000-3 4.405477+5 1.513561-3 4.028204+5 1.531087-3 3.933121+5 1.548817-3 3.840494+5 1.570000-3 3.732586+5 1.584893-3 3.658843+5 1.597800-3 3.596749+5 1.597800-3 1.077158+6 1.603245-3 1.069944+6 1.621810-3 1.045851+6 1.640590-3 1.022279+6 1.642000-3 1.020542+6 1.644000-3 1.019803+6 1.650800-3 1.013242+6 1.650800-3 1.333685+6 1.662000-3 1.330303+6 1.678804-3 1.325808+6 1.717908-3 1.317813+6 1.725000-3 1.316719+6 1.750000-3 1.309983+6 1.757924-3 1.307265+6 1.760000-3 1.306505+6 1.778279-3 1.297869+6 1.798871-3 1.285780+6 1.800000-3 1.284670+6 1.819701-3 1.261409+6 1.820000-3 1.261062+6 1.840772-3 1.234089+6 1.850000-3 1.218839+6 1.862087-3 1.199266+6 1.905461-3 1.132492+6 1.949845-3 1.069468+6 1.950000-3 1.069256+6 1.972423-3 1.039291+6 2.000000-3 1.004034+6 2.016100-3 9.842314+5 2.016100-3 1.137196+6 2.030000-3 1.118734+6 2.041738-3 1.103455+6 2.065380-3 1.073514+6 2.090000-3 1.043560+6 2.113489-3 1.016599+6 2.137962-3 9.895695+5 2.162719-3 9.632875+5 2.187762-3 9.374139+5 2.213095-3 9.120181+5 2.238721-3 8.873399+5 2.258000-3 8.693936+5 2.258000-3 9.219272+5 2.300000-3 8.835062+5 2.317395-3 8.682761+5 2.344229-3 8.453685+5 2.398833-3 8.016168+5 2.400000-3 8.007189+5 2.426610-3 7.803742+5 2.454709-3 7.594797+5 2.470500-3 7.480379+5 2.470500-3 7.804386+5 2.570396-3 7.122464+5 2.575000-3 7.093123+5 2.600160-3 6.935296+5 2.630268-3 6.751081+5 2.660725-3 6.572054+5 2.691535-3 6.398082+5 2.700000-3 6.350967+5 2.722701-3 6.226764+5 2.818383-3 5.739134+5 2.917427-3 5.292226+5 2.920000-3 5.281183+5 2.951209-3 5.149552+5 2.985383-3 5.009762+5 3.019952-3 4.873866+5 3.090295-3 4.612358+5 3.162278-3 4.365394+5 3.163750-3 4.360549+5 3.220000-3 4.181247+5 3.235937-3 4.132234+5 3.273407-3 4.019711+5 3.311311-3 3.910310+5 3.349654-3 3.803912+5 3.388442-3 3.698955+5 3.400000-3 3.668499+5 3.507519-3 3.401965+5 3.589219-3 3.216185+5 3.630781-3 3.126530+5 3.650000-3 3.086031+5 3.672823-3 3.038887+5 3.758374-3 2.871239+5 3.801894-3 2.791036+5 3.845918-3 2.712900+5 3.890451-3 2.637077+5 3.935501-3 2.563469+5 4.000000-3 2.462936+5 4.027170-3 2.422267+5 4.073803-3 2.354637+5 4.168694-3 2.224875+5 4.216965-3 2.162671+5 4.265795-3 2.101554+5 4.300000-3 2.060232+5 4.315191-3 2.042249+5 4.365158-3 1.984625+5 4.400000-3 1.945838+5 4.466836-3 1.873936+5 4.518559-3 1.820875+5 4.570882-3 1.769260+5 4.623810-3 1.719179+5 4.677351-3 1.670100+5 4.786301-3 1.576334+5 4.800000-3 1.565048+5 4.897788-3 1.487412+5 4.954502-3 1.444899+5 5.000000-3 1.412016+5 5.011872-3 1.403609+5 5.069907-3 1.363537+5 5.150000-3 1.310857+5 5.188000-3 1.286799+5 5.308844-3 1.214396+5 5.370318-3 1.179605+5 5.495409-3 1.112861+5 5.500000-3 1.110510+5 5.559043-3 1.080722+5 5.623413-3 1.049489+5 5.688529-3 1.019175+5 5.821032-3 9.612109+4 5.888437-3 9.335418+4 5.956621-3 9.066250+4 6.000000-3 8.900313+4 6.025596-3 8.804019+4 6.095369-3 8.547595+4 6.165950-3 8.299016+4 6.237348-3 8.057885+4 6.309573-3 7.823814+4 6.382635-3 7.596666+4 6.456542-3 7.376266+4 6.683439-3 6.751300+4 6.760830-3 6.555527+4 6.800000-3 6.459069+4 6.839116-3 6.364409+4 6.918310-3 6.178775+4 7.079458-3 5.821860+4 7.161434-3 5.651469+4 7.244360-3 5.485869+4 7.300000-3 5.378636+4 7.328245-3 5.325312+4 7.585776-3 4.870492+4 7.673615-3 4.728078+4 7.762471-3 4.588774+4 7.852356-3 4.453691+4 7.943282-3 4.322425+4 8.128305-3 4.071745+4 8.222426-3 3.951682+4 8.300000-3 3.856454+4 8.317638-3 3.835247+4 8.511380-3 3.612626+4 8.609938-3 3.506437+4 8.709636-3 3.402546+4 8.912509-3 3.203035+4 9.225714-3 2.926281+4 9.243200-3 2.911803+4 9.243200-3 7.760790+4 9.332543-3 7.577868+4 9.500000-3 7.251095+4 9.549926-3 7.151343+4 9.660509-3 6.937002+4 9.772372-3 6.729192+4 9.800000-3 6.679198+4 9.885531-3 6.527344+4 1.000000-2 6.331284+4 1.011579-2 6.140841+4 1.023293-2 5.952220+4 1.035142-2 5.769241+4 1.037300-2 5.736756+4 1.037300-2 7.903556+4 1.047129-2 7.716108+4 1.059254-2 7.493396+4 1.065000-2 7.391025+4 1.071519-2 7.272391+4 1.084500-2 7.043925+4 1.084500-2 8.150373+4 1.096478-2 7.921741+4 1.103000-2 7.800795+4 1.122018-2 7.472672+4 1.133000-2 7.291976+4 1.135011-2 7.259384+4 1.150000-2 7.020541+4 1.155000-2 6.943302+4 1.161449-2 6.846205+4 1.174898-2 6.649768+4 1.188502-2 6.458970+4 1.190000-2 6.438434+4 1.202264-2 6.270225+4 1.244515-2 5.736100+4 1.258925-2 5.568331+4 1.273503-2 5.405580+4 1.288250-2 5.247712+4 1.303167-2 5.094511+4 1.318257-2 4.944774+4 1.333521-2 4.799926+4 1.348963-2 4.659326+4 1.350000-2 4.650016+4 1.364583-2 4.521688+4 1.380384-2 4.388231+4 1.412538-2 4.133379+4 1.420000-2 4.076794+4 1.428894-2 4.010756+4 1.445440-2 3.891674+4 1.479108-2 3.664292+4 1.500000-2 3.531858+4 1.513561-2 3.449269+4 1.531087-2 3.346202+4 1.548817-2 3.246275+4 1.566751-2 3.149420+4 1.584893-2 3.055502+4 1.603245-2 2.964458+4 1.621810-2 2.876096+4 1.640590-2 2.790337+4 1.659587-2 2.707206+4 1.698244-2 2.548501+4 1.717908-2 2.472761+4 1.737801-2 2.398699+4 1.757924-2 2.326780+4 1.778279-2 2.257061+4 1.798871-2 2.188734+4 1.819701-2 2.122526+4 1.840772-2 2.058279+4 1.862087-2 1.996012+4 1.905461-2 1.877214+4 1.949845-2 1.765581+4 1.972423-2 1.712347+4 2.000000-2 1.650264+4 2.018366-2 1.610364+4 2.041738-2 1.561500+4 2.065380-2 1.514161+4 2.075770-2 1.493964+4 2.113489-2 1.423738+4 2.137962-2 1.380608+4 2.187762-2 1.298331+4 2.238721-2 1.220055+4 2.264644-2 1.182719+4 2.317395-2 1.111452+4 2.344229-2 1.077481+4 2.371374-2 1.044575+4 2.398833-2 1.012659+4 2.426610-2 9.817366+3 2.454709-2 9.516534+3 2.483133-2 9.225163+3 2.511886-2 8.942132+3 2.570396-2 8.399710+3 2.600160-2 8.141284+3 2.660725-2 7.647766+3 2.691535-2 7.412594+3 2.722701-2 7.184844+3 2.754229-2 6.964017+3 2.786121-2 6.750159+3 2.818383-2 6.542990+3 2.851018-2 6.340905+3 2.884032-2 6.145157+3 2.917427-2 5.954585+3 2.985383-2 5.591361+3 3.000000-2 5.517282+3 3.019952-2 5.418279+3 3.090295-2 5.087944+3 3.126079-2 4.930566+3 3.150000-2 4.829013+3 3.162278-2 4.777804+3 3.198895-2 4.629490+3 3.235937-2 4.485857+3 3.311311-2 4.212145+3 3.349654-2 4.081777+3 3.388442-2 3.954746+3 3.467369-2 3.712631+3 3.507519-2 3.596784+3 3.548134-2 3.484558+3 3.589219-2 3.375802+3 3.672823-2 3.168357+3 3.715352-2 3.069577+3 3.758374-2 2.973929+3 3.801894-2 2.881333+3 3.845918-2 2.791247+3 3.890451-2 2.704037+3 4.027170-2 2.458001+3 4.120975-2 2.306780+3 4.168694-2 2.234728+3 4.216965-2 2.164839+3 4.315191-2 2.031175+3 4.365158-2 1.967531+3 4.415704-2 1.905512+3 4.623810-2 1.676752+3 4.786301-2 1.523754+3 4.841724-2 1.475976+3 4.897788-2 1.429616+3 5.011872-2 1.341077+3 5.069907-2 1.298924+3 5.128614-2 1.258118+3 5.188000-2 1.218229+3 5.308844-2 1.142274+3 5.495409-2 1.037294+3 5.688529-2 9.421442+2 5.754399-2 9.124387+2 5.821032-2 8.836887+2 5.888437-2 8.558089+2 6.025596-2 8.026860+2 6.095369-2 7.771669+2 6.165950-2 7.524736+2 6.344200-2 6.947257+2 6.344200-2 3.616785+3 6.382635-2 3.561482+3 6.456542-2 3.458367+3 6.500000-2 3.399675+3 6.600000-2 3.275379+3 6.683439-2 3.166495+3 6.760830-2 3.069907+3 6.839116-2 2.982511+3 7.000000-2 2.813529+3 7.161434-2 2.649007+3 7.244360-2 2.569527+3 7.328245-2 2.492443+3 7.413102-2 2.417675+3 7.498942-2 2.345159+3 7.673615-2 2.206612+3 7.800000-2 2.113332+3 8.128305-2 1.896826+3 8.317638-2 1.785706+3 8.511380-2 1.681105+3 8.709636-2 1.582535+3 8.810489-2 1.535448+3 9.015711-2 1.443181+3 9.225714-2 1.356474+3 9.660509-2 1.198422+3 9.885531-2 1.126465+3 9.966270-2 1.102087+3 1.000000-1 1.092117+3 1.011580-1 1.058818+3 1.023293-1 1.026504+3 1.035142-1 9.951779+2 1.047129-1 9.648090+2 1.059254-1 9.353715+2 1.071519-1 9.068358+2 1.161449-1 7.300779+2 1.188502-1 6.856832+2 1.216186-1 6.439936+2 1.230269-1 6.241078+2 1.244515-1 6.048178+2 1.258925-1 5.861257+2 1.288250-1 5.504578+2 1.318257-1 5.169732+2 1.333521-1 5.010050+2 1.364583-1 4.705346+2 1.380384-1 4.560032+2 1.396368-1 4.419215+2 1.412538-1 4.282749+2 1.428894-1 4.150552+2 1.445440-1 4.022439+2 1.479108-1 3.777985+2 1.500000-1 3.636431+2 1.513561-1 3.548178+2 1.531088-1 3.438401+2 1.548817-1 3.332032+2 1.566751-1 3.228967+2 1.584893-1 3.129083+2 1.603245-1 3.032292+2 1.659587-1 2.759440+2 1.678804-1 2.674101+2 1.698244-1 2.591403+2 1.717908-1 2.511272+2 1.737801-1 2.433638+2 1.778279-1 2.285513+2 1.819701-1 2.146416+2 1.883649-1 1.953508+2 1.905461-1 1.893142+2 1.927525-1 1.834647+2 1.995262-1 1.669808+2 2.000000-1 1.659048+2 2.041738-1 1.568276+2 2.065380-1 1.519871+2 2.089296-1 1.472963+2 2.113489-1 1.427503+2 2.137962-1 1.383450+2 2.162719-1 1.340756+2 2.187762-1 1.299383+2 2.264644-1 1.182777+2 2.290868-1 1.146636+2 2.317395-1 1.111601+2 2.344229-1 1.077641+2 2.371374-1 1.044722+2 2.398833-1 1.012834+2 2.426610-1 9.819198+1 2.454709-1 9.519582+1 2.483133-1 9.229127+1 2.540973-1 8.674554+1 2.570396-1 8.409908+1 2.600160-1 8.153633+1 2.630268-1 7.905181+1 2.660725-1 7.664308+1 2.691535-1 7.430780+1 2.722701-1 7.204399+1 2.754229-1 6.987541+1 2.786121-1 6.777304+1 2.818383-1 6.573395+1 2.884032-1 6.183830+1 2.951209-1 5.817378+1 2.985383-1 5.642380+1 3.019952-1 5.472654+1 3.054921-1 5.308099+1 3.090295-1 5.148509+1 3.126079-1 4.995930+1 3.162278-1 4.848111+1 3.198895-1 4.704732+1 3.235937-1 4.565597+1 3.273407-1 4.430586+1 3.311311-1 4.299571+1 3.388442-1 4.049054+1 3.427678-1 3.929330+1 3.467369-1 3.813158+1 3.548134-1 3.591107+1 3.589219-1 3.484983+1 3.630781-1 3.383859+1 3.672823-1 3.285674+1 3.715352-1 3.190514+1 3.758374-1 3.098111+1 3.801894-1 3.008389+1 3.845918-1 2.921266+1 3.890451-1 2.836709+1 3.935501-1 2.754600+1 3.981072-1 2.674869+1 4.027170-1 2.597449+1 4.073803-1 2.522271+1 4.120975-1 2.450730+1 4.168694-1 2.381248+1 4.216965-1 2.313747+1 4.265795-1 2.248161+1 4.315191-1 2.184596+1 4.415705-1 2.062813+1 4.466836-1 2.004494+1 4.518559-1 1.947826+1 4.570882-1 1.892760+1 4.623810-1 1.839281+1 4.677351-1 1.788331+1 4.731513-1 1.738794+1 4.786301-1 1.690677+1 4.841724-1 1.643898+1 4.897788-1 1.598413+1 4.954502-1 1.554293+1 5.011872-1 1.511393+1 5.069907-1 1.469677+1 5.128614-1 1.429113+1 5.188000-1 1.389693+1 5.248075-1 1.352159+1 5.308844-1 1.315641+1 5.370318-1 1.280109+1 5.432503-1 1.245556+1 5.495409-1 1.211939+1 5.559043-1 1.179230+1 5.623413-1 1.147483+1 5.688529-1 1.116591+1 5.754399-1 1.086548+1 5.821032-1 1.057974+1 5.888437-1 1.030151+1 5.956621-1 1.003061+1 6.000000-1 9.863545+0 6.025596-1 9.766833+0 6.095369-1 9.510000+0 6.165950-1 9.260101+0 6.309573-1 8.779842+0 6.382635-1 8.549949+0 6.456542-1 8.326102+0 6.531306-1 8.113280+0 6.683439-1 7.703841+0 6.839117-1 7.315080+0 6.918310-1 7.128250+0 6.998420-1 6.946195+0 7.079458-1 6.768928+0 7.161434-1 6.596636+0 7.244360-1 6.428730+0 7.328245-1 6.269087+0 7.413102-1 6.113414+0 7.498942-1 5.961607+0 7.585776-1 5.813572+0 7.673615-1 5.669215+0 7.762471-1 5.528601+0 7.943282-1 5.257936+0 8.000000-1 5.177241+0 8.128305-1 5.001244+0 8.317638-1 4.763094+0 8.413951-1 4.648313+0 8.511380-1 4.536408+0 8.609938-1 4.427200+0 8.709636-1 4.320636+0 8.810489-1 4.216742+0 8.912509-1 4.115654+0 9.015711-1 4.016993+0 9.120108-1 3.923382+0 9.225714-1 3.832019+0 9.332543-1 3.742798+0 9.440609-1 3.655719+0 9.549926-1 3.570666+0 9.660509-1 3.487594+0 9.772372-1 3.406535+0 9.885531-1 3.327676+0 1.000000+0 3.250711+0 1.011579+0 3.177578+0 1.023293+0 3.106085+0 1.035142+0 3.036204+0 1.047129+0 2.967895+0 1.059254+0 2.901128+0 1.071519+0 2.835902+0 1.083927+0 2.772176+0 1.096478+0 2.709885+0 1.109175+0 2.649041+0 1.122018+0 2.589567+0 1.135011+0 2.531573+0 1.148154+0 2.474882+0 1.161449+0 2.419464+0 1.174898+0 2.366606+0 1.202264+0 2.264346+0 1.216186+0 2.214889+0 1.230269+0 2.166513+0 1.244515+0 2.119194+0 1.250000+0 2.101393+0 1.258925+0 2.072937+0 1.273503+0 2.027704+0 1.288250+0 1.983646+0 1.303167+0 1.940553+0 1.318257+0 1.899526+0 1.333521+0 1.859373+0 1.348963+0 1.820067+0 1.380384+0 1.743932+0 1.396368+0 1.707068+0 1.412538+0 1.670983+0 1.428894+0 1.635720+0 1.445440+0 1.601202+0 1.462177+0 1.567524+0 1.479108+0 1.534554+0 1.513561+0 1.472499+0 1.531087+0 1.442419+0 1.584893+0 1.355815+0 1.621810+0 1.301037+0 1.640590+0 1.274570+0 1.659587+0 1.248644+0 1.678804+0 1.223963+0 1.698244+0 1.199783+0 1.717908+0 1.176083+0 1.737801+0 1.152862+0 1.757924+0 1.130099+0 1.798871+0 1.085915+0 1.819701+0 1.064494+0 1.840772+0 1.043495+0 1.862087+0 1.022981+0 1.883649+0 1.002870+0 1.905461+0 9.837240-1 1.927525+0 9.649550-1 1.949845+0 9.465456-1 1.972423+0 9.284979-1 2.018366+0 8.934286-1 2.044000+0 8.747723-1 2.089296+0 8.433194-1 2.113489+0 8.273071-1 2.137962+0 8.115993-1 2.162719+0 7.966280-1 2.187762+0 7.819413-1 2.213095+0 7.675267-1 2.238721+0 7.533853-1 2.290868+0 7.258787-1 2.317395+0 7.125045-1 2.344229+0 6.993862-1 2.371374+0 6.865115-1 2.398833+0 6.738741-1 2.426610+0 6.615103-1 2.454709+0 6.493736-1 2.483133+0 6.378027-1 2.511886+0 6.264442-1 2.540973+0 6.152887-1 2.570396+0 6.043379-1 2.630268+0 5.830175-1 2.660725+0 5.726411-1 2.691535+0 5.624566-1 2.722701+0 5.524552-1 2.754229+0 5.426313-1 2.786121+0 5.330138-1 2.818383+0 5.235668-1 2.851018+0 5.145471-1 2.884032+0 5.056874-1 2.917427+0 4.969815-1 2.951209+0 4.884297-1 3.019952+0 4.717650-1 3.054921+0 4.636472-1 3.090295+0 4.556748-1 3.126079+0 4.478408-1 3.162278+0 4.401414-1 3.198895+0 4.325992-1 3.235937+0 4.251864-1 3.273407+0 4.181044-1 3.311311+0 4.111405-1 3.349654+0 4.042968-1 3.388442+0 3.975695-1 3.427678+0 3.909551-1 3.507519+0 3.780546-1 3.548134+0 3.717649-1 3.589219+0 3.655843-1 3.630781+0 3.595073-1 3.672823+0 3.535315-1 3.715352+0 3.476744-1 3.758374+0 3.419145-1 3.801894+0 3.364109-1 3.845918+0 3.309961-1 3.890451+0 3.256717-1 3.935501+0 3.204349-1 4.000000+0 3.131846-1 4.073803+0 3.052264-1 4.120975+0 3.003190-1 4.168694+0 2.954939-1 4.265795+0 2.860766-1 4.315191+0 2.814811-1 4.365158+0 2.769742-1 4.415704+0 2.725396-1 4.466836+0 2.682989-1 4.518559+0 2.641244-1 4.570882+0 2.600172-1 4.623810+0 2.559756-1 4.677351+0 2.519972-1 4.786301+0 2.442250-1 4.841724+0 2.404293-1 4.897788+0 2.366952-1 5.011872+0 2.294015-1 5.069907+0 2.258393-1 5.128614+0 2.223437-1 5.188000+0 2.189024-1 5.248075+0 2.156085-1 5.308844+0 2.123644-1 5.370318+0 2.091708-1 5.432503+0 2.060266-1 5.495409+0 2.029299-1 5.623413+0 1.968756-1 5.688529+0 1.939165-1 5.754399+0 1.910019-1 5.821032+0 1.881331-1 5.956621+0 1.825252-1 6.025596+0 1.797842-1 6.095369+0 1.770929-1 6.165950+0 1.744420-1 6.237348+0 1.719012-1 6.309573+0 1.693975-1 6.382635+0 1.669316-1 6.456542+0 1.645025-1 6.531306+0 1.621090-1 6.683439+0 1.574261-1 6.839116+0 1.528784-1 6.918310+0 1.506540-1 7.000000+0 1.484207-1 7.244360+0 1.420815-1 7.328245+0 1.400158-1 7.498942+0 1.359851-1 7.585776+0 1.340136-1 7.673615+0 1.321207-1 7.762471+0 1.302546-1 7.852356+0 1.284159-1 7.943282+0 1.266038-1 8.035261+0 1.248175-1 8.128305+0 1.230564-1 8.317638+0 1.196084-1 8.413951+0 1.179208-1 8.709636+0 1.130038-1 8.810489+0 1.114108-1 9.015711+0 1.083018-1 9.120108+0 1.067800-1 9.225714+0 1.053203-1 9.332543+0 1.038806-1 9.440609+0 1.024613-1 9.549926+0 1.010619-1 9.660509+0 9.968175-2 9.772372+0 9.832048-2 1.000000+1 9.565344-2 1.023293+1 9.305875-2 1.083927+1 8.688014-2 1.100000+1 8.536722-2 1.135011+1 8.224246-2 1.148154+1 8.112325-2 1.161449+1 8.004595-2 1.174898+1 7.898297-2 1.188502+1 7.793471-2 1.202264+1 7.690067-2 1.216186+1 7.588042-2 1.244515+1 7.388039-2 1.273503+1 7.193313-2 1.288250+1 7.097892-2 1.364583+1 6.639735-2 1.380384+1 6.551716-2 1.428894+1 6.295239-2 1.445440+1 6.212000-2 1.462177+1 6.131658-2 1.479108+1 6.052356-2 1.513561+1 5.896885-2 1.531087+1 5.820679-2 1.548817+1 5.745460-2 1.566751+1 5.671219-2 1.603245+1 5.525600-2 1.640590+1 5.383717-2 1.659587+1 5.314159-2 1.737801+1 5.044940-2 1.757924+1 4.979794-2 1.819701+1 4.789797-2 1.862087+1 4.667180-2 1.883649+1 4.608258-2 1.905461+1 4.550080-2 1.927525+1 4.492642-2 1.995262+1 4.324705-2 2.000000+1 4.313409-2 2.018366+1 4.270149-2 2.065380+1 4.163103-2 2.089296+1 4.110590-2 2.113489+1 4.058740-2 2.137962+1 4.007545-2 2.162719+1 3.956993-2 2.187762+1 3.907087-2 2.264644+1 3.761186-2 2.290868+1 3.713771-2 2.371374+1 3.575375-2 2.426610+1 3.485990-2 2.511886+1 3.358313-2 2.570396+1 3.275804-2 2.600160+1 3.235315-2 2.754229+1 3.040329-2 2.786121+1 3.002777-2 2.818383+1 2.965688-2 2.851018+1 2.929060-2 2.884032+1 2.892884-2 2.917427+1 2.857157-2 3.000000+1 2.772411-2 3.019952+1 2.752656-2 3.126079+1 2.652175-2 3.198895+1 2.587233-2 3.427678+1 2.404646-2 3.630781+1 2.262374-2 3.715352+1 2.207854-2 4.073803+1 2.002651-2 4.168694+1 1.954412-2 4.216965+1 1.930731-2 4.265795+1 1.907337-2 4.315191+1 1.884227-2 4.365158+1 1.861398-2 4.415704+1 1.838855-2 4.518559+1 1.794587-2 4.677351+1 1.730289-2 4.786301+1 1.688709-2 4.841724+1 1.668622-2 5.069907+1 1.590634-2 5.370318+1 1.498256-2 5.495409+1 1.462826-2 6.000000+1 1.335219-2 6.095369+1 1.313523-2 6.237348+1 1.282477-2 6.309573+1 1.267231-2 6.382635+1 1.252166-2 6.456542+1 1.237280-2 6.531306+1 1.222573-2 6.606934+1 1.208045-2 6.839116+1 1.165489-2 7.161434+1 1.111149-2 7.328245+1 1.084937-2 7.413102+1 1.072064-2 7.498942+1 1.059498-2 8.035261+1 9.871378-3 8.810489+1 8.982863-3 9.015711+1 8.773531-3 1.023293+2 7.706615-3 1.047129+2 7.527082-3 1.083927+2 7.265601-3 1.096478+2 7.180480-3 1.109175+2 7.096352-3 1.122018+2 7.013216-3 1.135011+2 6.931047-3 1.148154+2 6.849867-3 1.161449+2 6.769640-3 1.202264+2 6.534557-3 1.273503+2 6.161143-3 1.318257+2 5.947419-3 1.333521+2 5.877842-3 1.348963+2 5.809683-3 1.479108+2 5.292125-3 1.659587+2 4.709526-3 1.717908+2 4.547596-3 2.041738+2 3.817811-3 2.089296+2 3.729807-3 2.162719+2 3.601589-3 2.187762+2 3.559838-3 2.213095+2 3.518571-3 2.238721+2 3.477783-3 2.264644+2 3.437467-3 2.290868+2 3.397625-3 2.317395+2 3.358245-3 2.398833+2 3.242825-3 2.540973+2 3.059315-3 2.630268+2 2.954234-3 2.660725+2 2.920015-3 2.691535+2 2.886357-3 2.951209+2 2.630695-3 3.311311+2 2.342724-3 3.427678+2 2.262645-3 4.073803+2 1.901520-3 4.168694+2 1.857945-3 4.315191+2 1.794448-3 4.365158+2 1.773769-3 4.415704+2 1.753328-3 4.466836+2 1.733122-3 4.518559+2 1.713150-3 4.570882+2 1.693410-3 4.623810+2 1.673898-3 4.786301+2 1.616700-3 5.069907+2 1.525728-3 5.248075+2 1.473621-3 5.308844+2 1.456650-3 5.370318+2 1.439945-3 5.888437+2 1.313021-3 6.606934+2 1.169982-3 1.364583+3 5.657171-4 3.235937+3 2.381917-4 3.311311+3 2.327604-4 3.427678+3 2.248446-4 3.467369+3 2.222663-4 3.507519+3 2.197176-4 3.548134+3 2.171981-4 3.589219+3 2.147076-4 3.630781+3 2.122456-4 3.672823+3 2.098119-4 3.801894+3 2.026770-4 4.027170+3 1.913226-4 4.168694+3 1.848175-4 4.216965+3 1.826987-4 8.511380+3 9.050666-5 9.332543+3 8.254168-5 2.089296+4 3.686468-5 1.000000+5 7.699990-6 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.030000-6 4.030000-6 4.450000-6 4.030000-6 4.450000-6 4.166915-6 6.330000-6 4.183347-6 6.330000-6 5.077209-6 6.606934-6 4.983857-6 7.328245-6 4.781597-6 8.035261-6 4.632026-6 8.810489-6 4.512643-6 9.440609-6 4.441879-6 1.023293-5 4.377548-6 1.109175-5 4.329585-6 1.258925-5 4.279225-6 1.445440-5 4.248600-6 1.732000-5 4.230481-6 1.732000-5 6.250520-6 1.862087-5 6.222575-6 1.896000-5 6.222728-6 1.896000-5 7.544341-6 1.995262-5 7.578310-6 2.137962-5 7.679599-6 2.270000-5 7.826554-6 2.371374-5 7.977461-6 2.511886-5 8.239289-6 2.660725-5 8.580762-6 2.786121-5 8.917737-6 2.917427-5 9.318165-6 3.090295-5 9.908372-6 3.311311-5 1.074553-5 3.422000-5 1.118596-5 3.422000-5 3.018998-5 3.935501-5 2.850244-5 4.152000-5 2.771789-5 4.152000-5 3.311739-5 4.500000-5 3.192318-5 5.011872-5 2.986682-5 5.800000-5 2.650930-5 6.165950-5 2.510216-5 6.456542-5 2.411071-5 6.634000-5 2.356623-5 6.634000-5 2.394005-5 6.970000-5 2.301338-5 7.300000-5 2.227010-5 7.673615-5 2.159843-5 7.900000-5 2.126537-5 8.317638-5 2.076864-5 8.810489-5 2.033224-5 9.300000-5 2.001451-5 1.000000-4 1.969714-5 1.096478-4 1.941538-5 1.244515-4 1.916329-5 1.462177-4 1.897828-5 1.840772-4 1.885045-5 1.993200-4 1.882603-5 1.993200-4 1.999179-5 2.030000-4 2.006546-5 2.093800-4 2.034629-5 2.093800-4 2.102598-5 2.138000-4 2.125623-5 2.198000-4 2.141054-5 2.255000-4 2.138984-5 2.344229-4 2.112670-5 2.500000-4 2.058187-5 2.620000-4 2.030007-5 2.740000-4 2.017729-5 2.884032-4 2.020829-5 3.030000-4 2.038115-5 3.235937-4 2.077302-5 3.550500-4 2.153610-5 3.550500-4 2.427099-5 4.101900-4 2.588238-5 4.101900-4 2.662431-5 4.897788-4 2.896205-5 4.978500-4 2.918096-5 4.978500-4 3.076421-5 5.623413-4 3.256489-5 6.456542-4 3.461131-5 7.300000-4 3.642099-5 8.222426-4 3.812100-5 9.225714-4 3.973384-5 1.047129-3 4.144933-5 1.188502-3 4.309653-5 1.333521-3 4.453505-5 1.531087-3 4.618756-5 1.597800-3 4.668558-5 1.597800-3 6.745119-5 1.650800-3 6.765711-5 1.650800-3 7.210230-5 1.760000-3 7.359444-5 1.820000-3 7.407986-5 2.016100-3 7.418046-5 2.016100-3 8.005175-5 2.258000-3 8.068279-5 2.258000-3 8.344058-5 2.470500-3 8.428074-5 2.470500-3 8.713119-5 3.163750-3 9.020303-5 4.073803-3 9.346070-5 5.188000-3 9.664049-5 6.456542-3 9.952726-5 8.128305-3 1.025183-4 9.243200-3 1.041513-4 9.243200-3 1.357407-4 1.037300-2 1.362852-4 1.037300-2 1.439711-4 1.084500-2 1.441834-4 1.084500-2 1.530952-4 1.548817-2 1.567730-4 2.238721-2 1.606272-4 3.162278-2 1.642459-4 4.415704-2 1.676923-4 6.165950-2 1.709351-4 6.344200-2 1.711940-4 6.344200-2 1.599365-4 1.659587-1 1.608561-4 5.248075-1 1.614483-4 1.000000+5 1.615378-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.030000-6 0.0 2.093800-4 0.0 2.093800-4 7.80977-10 2.115000-4 8.41198-10 2.138000-4 9.12191-10 2.151300-4 9.56160-10 2.165000-4 1.003982-9 2.180000-4 1.059095-9 2.198000-4 1.117814-9 2.208000-4 1.147720-9 2.220000-4 1.177052-9 2.230000-4 1.197863-9 2.240000-4 1.213487-9 2.255000-4 1.228555-9 2.270000-4 1.234299-9 2.285000-4 1.232418-9 2.300000-4 1.224440-9 2.323000-4 1.203498-9 2.350000-4 1.169369-9 2.380000-4 1.124144-9 2.426610-4 1.046501-9 2.500000-4 9.22197-10 2.540973-4 8.58058-10 2.580000-4 8.02137-10 2.620000-4 7.52206-10 2.660725-4 7.09619-10 2.691535-4 6.82930-10 2.722701-4 6.60684-10 2.754229-4 6.43181-10 2.786121-4 6.30088-10 2.818383-4 6.21399-10 2.851018-4 6.16726-10 2.884032-4 6.15735-10 2.917427-4 6.18506-10 2.951209-4 6.24824-10 2.990000-4 6.36267-10 3.030000-4 6.51855-10 3.080000-4 6.76337-10 3.130000-4 7.06124-10 3.200000-4 7.55080-10 3.311311-4 8.45423-10 3.388442-4 9.15388-10 3.470000-4 9.93652-10 3.550500-4 1.075686-9 3.550500-4 2.011061-9 4.101900-4 2.654518-9 4.101900-4 3.184315-9 4.518559-4 3.720478-9 4.897788-4 4.190118-9 4.978500-4 4.284580-9 4.978500-4 4.921284-9 5.308844-4 5.336160-9 5.623413-4 5.705322-9 6.025596-4 6.152926-9 6.606934-4 6.756042-9 7.079458-4 7.200579-9 7.500000-4 7.569814-9 8.035261-4 8.009508-9 8.709636-4 8.514630-9 9.549926-4 9.076282-9 1.023293-3 9.489851-9 1.122018-3 1.002471-8 1.230269-3 1.055180-8 1.380384-3 1.117763-8 1.513561-3 1.166403-8 1.597800-3 1.194505-8 1.597800-3 1.208623-8 1.650800-3 1.214079-8 1.650800-3 3.971499-6 1.717908-3 4.585188-6 1.725000-3 4.651937-6 1.750000-3 4.855794-6 1.760000-3 4.928907-6 1.778279-3 5.044833-6 1.820000-3 5.253753-6 1.840772-3 5.323073-6 2.016100-3 5.293659-6 2.016100-3 5.239214-6 2.258000-3 5.205147-6 2.258000-3 5.753880-6 2.470500-3 5.788386-6 2.470500-3 5.952109-6 2.818383-3 6.025900-6 3.845918-3 6.194305-6 5.188000-3 6.357902-6 6.918310-3 6.515270-6 8.912509-3 6.653381-6 9.243200-3 6.673716-6 9.243200-3 1.181388-3 9.549926-3 1.183921-3 1.037300-2 1.181629-3 1.037300-2 1.580380-3 1.084500-2 1.584365-3 1.084500-2 1.657229-3 1.445440-2 1.673661-3 2.187762-2 1.686190-3 4.027170-2 1.692480-3 6.344200-2 1.692916-3 6.344200-2 4.455375-2 7.498942-2 4.490797-2 9.225714-2 4.524219-2 1.318257-1 4.560713-2 2.137962-1 4.587496-2 6.309573-1 4.619613-2 1.174898+0 4.633953-2 1.000000+5 4.633285-2 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.030000-6 0.0 4.450000-6 4.200000-7 4.450000-6 2.830850-7 5.128614-6 9.535346-7 6.330000-6 2.146653-6 6.330000-6 1.252791-6 6.606934-6 1.623077-6 7.244360-6 2.441658-6 7.852356-6 3.185917-6 8.222426-6 3.623487-6 8.810489-6 4.297846-6 9.660509-6 5.238724-6 1.083927-5 6.497536-6 1.258925-5 8.310025-6 1.659587-5 1.236271-5 1.732000-5 1.308952-5 1.732000-5 1.106948-5 1.896000-5 1.273727-5 1.896000-5 1.141566-5 2.070000-5 1.307616-5 2.250000-5 1.469805-5 2.426610-5 1.619240-5 2.600160-5 1.756740-5 2.786121-5 1.894347-5 2.985383-5 2.031188-5 3.273407-5 2.213682-5 3.422000-5 2.303404-5 3.422000-5 4.030018-6 3.507519-5 5.147580-6 3.715352-5 7.901513-6 3.935501-5 1.085257-5 4.152000-5 1.380211-5 4.152000-5 8.402606-6 4.315191-5 1.056402-5 4.518559-5 1.333164-5 4.800000-5 1.725438-5 5.308844-5 2.449664-5 5.900000-5 3.289202-5 6.309573-5 3.850055-5 6.634000-5 4.277377-5 6.634000-5 4.239995-5 7.079458-5 4.804691-5 7.650000-5 5.486415-5 8.317638-5 6.240774-5 9.300000-5 7.298549-5 1.122018-4 9.284147-5 1.678804-4 1.489910-4 1.993200-4 1.804940-4 1.993200-4 1.793282-4 2.093800-4 1.890337-4 2.093800-4 1.883532-4 2.270000-4 2.056382-4 2.754229-4 2.552493-4 3.550500-4 3.335128-4 3.550500-4 3.307770-4 4.101900-4 3.843050-4 4.101900-4 3.835625-4 4.978500-4 4.686648-4 4.978500-4 4.670809-4 8.609938-4 8.222102-4 1.597800-3 1.551102-3 1.597800-3 1.530337-3 1.650800-3 1.583131-3 1.650800-3 1.574726-3 2.016100-3 1.936626-3 2.016100-3 1.930809-3 2.258000-3 2.172112-3 2.258000-3 2.168806-3 2.470500-3 2.380431-3 2.470500-3 2.377417-3 9.243200-3 9.132375-3 9.243200-3 7.926072-3 1.037300-2 9.055086-3 1.037300-2 8.648649-3 1.084500-2 9.116452-3 1.084500-2 9.034676-3 3.467369-2 3.281678-2 6.344200-2 6.157789-2 6.344200-2 1.872832-2 6.683439-2 2.198930-2 7.413102-2 2.908164-2 9.225714-2 4.685462-2 1.479108-1 1.020570-1 1.949845+0 1.903352+0 1.000000+5 9.999996+4 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.344200-2 2.922059+3 6.500000-2 2.750620+3 6.600000-2 2.653500+3 6.760830-2 2.488546+3 7.000000-2 2.286040+3 7.800000-2 1.724008+3 8.810489-2 1.258879+3 1.161449-1 6.029449+2 1.500000-1 3.016720+2 2.264644-1 9.854243+1 2.722701-1 6.010471+1 3.090295-1 4.298959+1 3.589219-1 2.912505+1 4.073803-1 2.109430+1 4.623810-1 1.539483+1 5.188000-1 1.164048+1 5.754399-1 9.107507+0 6.456542-1 6.984705+0 7.244360-1 5.397509+0 8.128305-1 4.202661+0 9.015711-1 3.377972+0 1.000000+0 2.735037+0 1.161449+0 2.036185+0 1.303167+0 1.633063+0 1.479108+0 1.291175+0 1.659587+0 1.050563+0 1.883649+0 8.437939-1 2.137962+0 6.828717-1 2.454709+0 5.463793-1 2.818383+0 4.405317-1 3.235937+0 3.577537-1 3.758374+0 2.876897-1 4.415704+0 2.293170-1 5.188000+0 1.841866-1 6.165950+0 1.467782-1 7.585776+0 1.127591-1 9.120108+0 8.984451-2 1.148154+1 6.825687-2 1.445440+1 5.226808-2 1.862087+1 3.926954-2 2.426610+1 2.933135-2 3.198895+1 2.176889-2 4.786301+1 1.420870-2 7.413102+1 9.020326-3 1.333521+2 4.945646-3 2.660725+2 2.457035-3 5.308844+2 1.225660-3 4.216965+3 1.537343-4 1.000000+5 6.479400-6 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.344200-2 1.572600-4 1.000000+5 1.572600-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.344200-2 5.474400-2 1.000000+5 5.474400-2 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.344200-2 8.540740-3 1.000000+5 9.999995+4 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.084500-2 1.106448+4 1.103000-2 1.065782+4 1.133000-2 1.019910+4 1.155000-2 9.863460+3 1.190000-2 9.403100+3 1.318257-2 7.841456+3 1.412538-2 6.955798+3 1.500000-2 6.222740+3 1.717908-2 4.822675+3 2.187762-2 2.989516+3 2.483133-2 2.300407+3 2.818383-2 1.763413+3 3.349654-2 1.211887+3 3.801894-2 9.136363+2 4.365158-2 6.673369+2 5.128614-2 4.585172+2 6.025596-2 3.123574+2 7.161434-2 2.052092+2 8.511380-2 1.337036+2 1.011580-1 8.648334+1 1.230269-1 5.239629+1 1.603245-1 2.636118+1 2.570396-1 7.701264+0 3.126079-1 4.654428+0 3.672823-1 3.095873+0 4.265795-1 2.135890+0 4.897788-1 1.527741+0 5.559043-1 1.132425+0 6.309573-1 8.459101-1 7.079458-1 6.534713-1 7.943282-1 5.082138-1 8.810489-1 4.080122-1 9.772372-1 3.298434-1 1.122018+0 2.507806-1 1.273503+0 1.963884-1 1.445440+0 1.550506-1 1.621810+0 1.259769-1 1.840772+0 1.010369-1 2.089296+0 8.165990-2 2.398833+0 6.524970-2 2.754229+0 5.254011-2 3.162278+0 4.261548-2 3.672823+0 3.422939-2 4.315191+0 2.725342-2 5.069907+0 2.186675-2 6.025596+0 1.740751-2 7.328245+0 1.355615-2 8.810489+0 1.078610-2 1.100000+1 8.264700-3 1.380384+1 6.343005-3 1.757924+1 4.821002-3 2.290868+1 3.595520-3 3.019952+1 2.665205-3 4.518559+1 1.737638-3 6.839116+1 1.128411-3 1.202264+2 6.326685-4 2.398833+2 3.140258-4 4.786301+2 1.565739-4 3.801894+3 1.962990-5 1.000000+5 7.458700-7 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.084500-2 2.098300-4 1.000000+5 2.098300-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.084500-2 2.121100-3 1.000000+5 2.121100-3 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.084500-2 8.514070-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.037300-2 2.166800+4 1.065000-2 2.049700+4 1.135011-2 1.747700+4 1.348963-2 1.113800+4 1.479108-2 8.686500+3 1.737801-2 5.575800+3 2.000000-2 3.777000+3 2.511886-2 1.968600+3 3.150000-2 1.015300+3 3.890451-2 5.412200+2 4.841724-2 2.792500+2 6.025596-2 1.429400+2 8.128305-2 5.667500+1 1.288250-1 1.358721+1 1.659587-1 6.231010+0 2.000000-1 3.533107+0 2.371374-1 2.120302+0 2.754229-1 1.363496+0 3.162278-1 9.137154-1 3.589219-1 6.375508-1 4.073803-1 4.482238-1 4.570882-1 3.277107-1 5.128614-1 2.413915-1 5.688529-1 1.846029-1 6.309573-1 1.421239-1 6.998420-1 1.101889-1 7.762471-1 8.575524-2 8.413951-1 7.099825-2 9.120108-1 5.919744-2 9.772372-1 5.098948-2 1.059254+0 4.318333-2 1.161449+0 3.595870-2 1.273503+0 3.014366-2 1.412538+0 2.490704-2 1.678804+0 1.829922-2 1.905461+0 1.470238-2 2.162719+0 1.190488-2 2.483133+0 9.531760-3 2.851018+0 7.690265-3 3.311311+0 6.143647-3 3.845918+0 4.946104-3 4.518559+0 3.946977-3 5.308844+0 3.173475-3 6.309573+0 2.531472-3 7.762471+0 1.946527-3 9.332543+0 1.552500-3 1.174898+1 1.180367-3 1.479108+1 9.045404-4 1.927525+1 6.713538-4 2.600160+1 4.833278-4 3.715352+1 3.298086-4 5.495409+1 2.185123-4 9.015711+1 1.310593-4 1.717908+2 6.794454-5 3.427678+2 3.381489-5 1.364583+3 8.451650-6 1.000000+5 1.151200-7 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.037300-2 1.643200-4 1.000000+5 1.643200-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.037300-2 2.636100-3 1.000000+5 2.636100-3 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.037300-2 7.572580-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 9.243200-3 4.848987+4 9.500000-3 4.540720+4 1.011579-2 3.841743+4 1.190000-2 2.455896+4 1.303167-2 1.898809+4 1.513561-2 1.232861+4 1.778279-2 7.715535+3 2.187762-2 4.148376+3 2.426610-2 3.026272+3 2.884032-2 1.777877+3 3.467369-2 9.985650+2 4.216965-2 5.360031+2 5.128614-2 2.853148+2 6.382635-2 1.398592+2 8.317638-2 5.850015+1 1.412538-1 1.015041+1 1.717908-1 5.346243+0 2.041738-1 3.054391+0 2.371374-1 1.894080+0 2.722701-1 1.227817+0 3.090295-1 8.314886-1 3.467369-1 5.876418-1 3.845918-1 4.328524-1 4.265795-1 3.210183-1 4.731513-1 2.398155-1 5.188000-1 1.862987-1 5.754399-1 1.413414-1 6.309573-1 1.113285-1 6.998420-1 8.576181-2 7.673615-1 6.848256-2 8.413951-1 5.505765-2 9.332543-1 4.336106-2 9.885531-1 3.819799-2 1.071519+0 3.230663-2 1.161449+0 2.751267-2 1.273503+0 2.307117-2 1.412538+0 1.908726-2 1.717908+0 1.348186-2 1.949845+0 1.084479-2 2.213095+0 8.793878-3 2.540973+0 7.049702-3 2.917427+0 5.693821-3 3.349654+0 4.631722-3 3.890451+0 3.730994-3 4.570882+0 2.979010-3 5.370318+0 2.396471-3 6.382635+0 1.912587-3 7.852356+0 1.471308-3 9.440609+0 1.173998-3 1.188502+1 8.929754-4 1.513561+1 6.756137-4 1.995262+1 4.954113-4 2.754229+1 3.482240-4 4.073803+1 2.293918-4 6.000000+1 1.529300-4 1.023293+2 8.826841-5 2.041738+2 4.374045-5 4.073803+2 2.179055-5 3.235937+3 2.730029-6 1.000000+5 8.827400-8 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 9.243200-3 1.547100-4 1.000000+5 1.547100-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.243200-3 1.886800-3 1.000000+5 1.886800-3 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.243200-3 7.201690-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.470500-3 3.240062+4 2.575000-3 3.094760+4 2.818383-3 2.745907+4 2.920000-3 2.624400+4 3.090295-3 2.422090+4 3.650000-3 1.896144+4 4.168694-3 1.551793+4 4.518559-3 1.363281+4 5.495409-3 9.857271+3 6.237348-3 7.910183+3 7.161434-3 6.191758+3 8.609938-3 4.413877+3 1.000000-2 3.324700+3 1.150000-2 2.536700+3 1.350000-2 1.846460+3 1.603245-2 1.302509+3 1.905461-2 9.096465+2 2.238721-2 6.457752+2 2.600160-2 4.667657+2 3.019952-2 3.352450+2 3.548134-2 2.330970+2 4.168694-2 1.608860+2 4.897788-2 1.102542+2 5.821032-2 7.296841+1 6.839116-2 4.929566+1 8.128305-2 3.215849+1 9.885531-2 1.965718+1 1.216186-1 1.158006+1 1.566751-1 6.019988+0 2.426610-1 1.929084+0 3.019952-1 1.099214+0 3.589219-1 7.098286-1 4.120975-1 5.035208-1 4.731513-1 3.597886-1 5.370318-1 2.662377-1 6.095369-1 1.984808-1 6.839117-1 1.530686-1 7.673615-1 1.188558-1 8.709636-1 9.067156-2 9.660509-1 7.319453-2 1.096478+0 5.687569-2 1.250000+0 4.410563-2 1.412538+0 3.506703-2 1.584893+0 2.845383-2 1.798871+0 2.278912-2 2.044000+0 1.835692-2 2.317395+0 1.494760-2 2.660725+0 1.201404-2 3.054921+0 9.728335-3 3.548134+0 7.800143-3 4.120975+0 6.300653-3 4.841724+0 5.044465-3 5.754399+0 4.007233-3 6.918310+0 3.160884-3 8.413951+0 2.474057-3 1.023293+1 1.952415-3 1.288250+1 1.489081-3 1.659587+1 1.114913-3 2.187762+1 8.197754-4 2.917427+1 5.995547-4 4.365158+1 3.906346-4 6.531306+1 2.565510-4 1.135011+2 1.454474-4 2.264644+2 7.215303-5 4.518559+2 3.596498-5 3.589219+3 4.507752-6 1.000000+5 1.616900-7 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.470500-3 1.529400-4 1.000000+5 1.529400-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.470500-3 9.732000-6 1.000000+5 9.732000-6 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.470500-3 2.307828-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.258000-3 5.253366+4 2.344229-3 5.027710+4 2.400000-3 4.910100+4 2.570396-3 4.548441+4 2.700000-3 4.279460+4 2.951209-3 3.796021+4 3.220000-3 3.352620+4 3.507519-3 2.948100+4 3.801894-3 2.591584+4 4.073803-3 2.306486+4 4.786301-3 1.733217+4 5.150000-3 1.512584+4 5.888437-3 1.165504+4 6.456542-3 9.686500+3 7.328245-3 7.432991+3 8.128305-3 5.949155+3 9.225714-3 4.488706+3 1.023293-2 3.543110+3 1.174898-2 2.561506+3 1.333521-2 1.886177+3 1.500000-2 1.410012+3 1.717908-2 1.000275+3 1.972423-2 6.993382+2 2.264644-2 4.851310+2 2.600160-2 3.340496+2 3.000000-2 2.253420+2 3.507519-2 1.454087+2 4.120975-2 9.181954+1 4.897788-2 5.566829+1 5.888437-2 3.237053+1 7.328245-2 1.686241+1 9.885531-2 6.842855+0 1.548817-1 1.756794+0 1.927525-1 9.113631-1 2.317395-1 5.278604-1 2.722701-1 3.297059-1 3.126079-1 2.217514-1 3.589219-1 1.502448-1 4.073803-1 1.059304-1 4.570882-1 7.762403-2 5.128614-1 5.729962-2 5.688529-1 4.389971-2 6.309573-1 3.385785-2 6.998420-1 2.629337-2 7.762471-1 2.056322-2 8.709636-1 1.573598-2 9.332543-1 1.348165-2 1.000000+0 1.162785-2 1.096478+0 9.637856-3 1.202264+0 8.044347-3 1.318257+0 6.761781-3 1.479108+0 5.486728-3 1.717908+0 4.206661-3 1.949845+0 3.384423-3 2.213095+0 2.744271-3 2.540973+0 2.200154-3 2.917427+0 1.777310-3 3.388442+0 1.421645-3 3.935501+0 1.145848-3 4.623810+0 9.153764-4 5.432503+0 7.367384-4 6.456542+0 5.882840-4 7.943282+0 4.527570-4 9.549926+0 3.614370-4 1.202264+1 2.750229-4 1.531087+1 2.081583-4 2.018366+1 1.526858-4 2.818383+1 1.060403-4 4.216965+1 6.904255-5 6.237348+1 4.585742-5 1.083927+2 2.597998-5 2.162719+2 1.288250-5 4.315191+2 6.419624-6 3.427678+3 8.044807-7 1.000000+5 2.755600-8 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.258000-3 1.290800-4 1.000000+5 1.290800-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.258000-3 1.483500-5 1.000000+5 1.483500-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.258000-3 2.114085-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.016100-3 1.529641+5 2.090000-3 1.437225+5 2.317395-3 1.242205+5 2.454709-3 1.137279+5 2.722701-3 9.615738+4 3.019952-3 8.078283+4 3.235937-3 7.159532+4 3.507519-3 6.182588+4 3.935501-3 4.958706+4 4.400000-3 3.987704+4 4.800000-3 3.337344+4 5.500000-3 2.505624+4 6.025596-3 2.054014+4 6.918310-3 1.507053+4 7.673615-3 1.185920+4 8.609938-3 9.032403+3 9.800000-3 6.591200+3 1.096478-2 4.981958+3 1.244515-2 3.606541+3 1.428894-2 2.512690+3 1.621810-2 1.790227+3 1.819701-2 1.307520+3 2.065380-2 9.194962+2 2.371374-2 6.214623+2 2.722701-2 4.168926+2 3.126079-2 2.776442+2 3.589219-2 1.836573+2 4.168694-2 1.165402+2 4.897788-2 7.086700+1 5.821032-2 4.126307+1 7.000000-2 2.298516+1 8.810489-2 1.097890+1 1.659587-1 1.416179+0 2.000000-1 7.792795-1 2.344229-1 4.717781-1 2.691535-1 3.069887-1 3.054921-1 2.084936-1 3.427678-1 1.476743-1 3.845918-1 1.053596-1 4.265795-1 7.828937-2 4.731513-1 5.858956-2 5.188000-1 4.557918-2 5.754399-1 3.462524-2 6.382635-1 2.649865-2 7.079458-1 2.043357-2 7.762471-1 1.633137-2 8.609938-1 1.276565-2 9.225714-1 1.089966-2 9.885531-1 9.374318-3 1.071519+0 7.936482-3 1.174898+0 6.611141-3 1.288250+0 5.548274-3 1.428894+0 4.591080-3 1.698244+0 3.376744-3 1.927525+0 2.714531-3 2.187762+0 2.199416-3 2.511886+0 1.762016-3 2.884032+0 1.422343-3 3.311311+0 1.156379-3 3.845918+0 9.309662-4 4.518559+0 7.429001-4 5.308844+0 5.973113-4 6.309573+0 4.764804-4 7.762471+0 3.663817-4 9.332543+0 2.922072-4 1.174898+1 2.221745-4 1.479108+1 1.702529-4 1.905461+1 1.279967-4 2.570396+1 9.211939-5 3.630781+1 6.361306-5 5.370318+1 4.212778-5 8.810489+1 2.525709-5 1.659587+2 1.324425-5 3.311311+2 6.590097-6 6.606934+2 3.290690-6 2.089296+4 1.037106-7 1.000000+5 2.166800-8 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.016100-3 1.178300-4 1.000000+5 1.178300-4 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.016100-3 4.888900-6 1.000000+5 4.888900-6 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.016100-3 1.893381-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.650800-3 3.204430+5 1.725000-3 3.707319+5 1.750000-3 3.850398+5 1.760000-3 3.898138+5 1.778279-3 3.963666+5 1.800000-3 4.011433+5 1.820000-3 4.011119+5 1.840772-3 3.977228+5 2.187762-3 2.561499+5 2.426610-3 1.953236+5 2.691535-3 1.477591+5 2.951209-3 1.144601+5 3.349654-3 7.989671+4 3.589219-3 6.540357+4 4.216965-3 4.044667+4 4.623810-3 3.054810+4 5.370318-3 1.917617+4 5.956621-3 1.379405+4 6.800000-3 8.993360+3 7.852356-3 5.591671+3 8.709636-3 3.948281+3 1.000000-2 2.464108+3 1.161449-2 1.464528+3 1.350000-2 8.601240+2 1.566751-2 5.035302+2 1.819701-2 2.915509+2 2.113489-2 1.674935+2 2.483133-2 9.145382+1 2.917427-2 4.955587+1 3.467369-2 2.550893+1 4.216965-2 1.192527+1 5.308844-2 4.837317+0 9.885531-2 4.177157-1 1.216186-1 1.858056-1 1.445440-1 9.525340-2 1.678804-1 5.374513-2 1.927525-1 3.190679-2 2.187762-1 1.989342-2 2.483133-1 1.249341-2 2.786121-1 8.240712-3 3.126079-1 5.474484-3 3.467369-1 3.813775-3 3.845918-1 2.674703-3 4.265795-1 1.888300-3 4.677351-1 1.394949-3 5.069907-1 1.077142-3 5.559043-1 8.084666-4 6.309573-1 5.502946-4 6.918310-1 4.185187-4 7.498942-1 3.314793-4 8.511380-1 2.320984-4 9.015711-1 1.987561-4 9.440609-1 1.766377-4 9.885531-1 1.580006-4 1.035142+0 1.423486-4 1.096478+0 1.258938-4 1.161449+0 1.121273-4 1.244515+0 9.832764-5 1.348963+0 8.502036-5 1.531087+0 6.825524-5 1.819701+0 5.038406-5 2.018366+0 4.224132-5 2.290868+0 3.431615-5 2.630268+0 2.756267-5 3.019952+0 2.230301-5 3.507519+0 1.787186-5 4.073803+0 1.442821-5 4.786301+0 1.154480-5 5.623413+0 9.306261-6 6.683439+0 7.441961-6 8.128305+0 5.817377-6 9.772372+0 4.648308-6 1.216186+1 3.587580-6 1.548817+1 2.716354-6 2.065380+1 1.967986-6 2.851018+1 1.384732-6 4.265795+1 9.018081-7 6.309573+1 5.990996-7 1.096478+2 3.394789-7 2.187762+2 1.683474-7 4.365158+2 8.389895-8 3.467369+3 1.051423-8 1.000000+5 3.64330-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.650800-3 8.615800-5 1.000000+5 8.615800-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.650800-3 1.649100-5 1.000000+5 1.649100-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.650800-3 1.548151-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.597800-3 7.174835+5 1.642000-3 6.810668+5 1.644000-3 6.812038+5 1.757924-3 6.248818+5 1.798871-3 6.054503+5 2.162719-3 3.756656+5 2.400000-3 2.846748+5 2.600160-3 2.287830+5 2.917427-3 1.656526+5 3.349654-3 1.113160+5 3.630781-3 8.765148+4 4.216965-3 5.572357+4 4.623810-3 4.188593+4 5.308844-3 2.708776+4 6.000000-3 1.825266+4 6.760830-3 1.233487+4 7.673615-3 8.075233+3 8.709636-3 5.245480+3 9.885531-3 3.381774+3 1.122018-2 2.164618+3 1.288250-2 1.319914+3 1.479108-2 7.984998+2 1.717908-2 4.592914+2 1.972423-2 2.735817+2 2.264644-2 1.618234+2 2.600160-2 9.510806+1 3.019952-2 5.312120+1 3.589219-2 2.691508+1 4.365158-2 1.234953+1 5.495409-2 4.897217+0 9.660509-2 5.014509-1 1.188502-1 2.183627-1 1.396368-1 1.151749-1 1.603245-1 6.700750-2 1.819701-1 4.105821-2 2.041738-1 2.647710-2 2.290868-1 1.719609-2 2.540973-1 1.174139-2 2.818383-1 8.074895-3 3.090295-1 5.827609-3 3.388442-1 4.234253-3 3.715352-1 3.098525-3 4.027170-1 2.372278-3 4.415705-1 1.761635-3 4.841724-1 1.318425-3 5.308844-1 9.942623-4 5.754399-1 7.819600-4 6.165950-1 6.402596-4 6.683439-1 5.109016-4 7.244360-1 4.104061-4 8.609938-1 2.599302-4 9.120108-1 2.244361-4 9.660509-1 1.952039-4 1.011579+0 1.757135-4 1.071519+0 1.552109-4 1.135011+0 1.379915-4 1.216186+0 1.206963-4 1.318257+0 1.040448-4 1.819701+0 5.904853-5 2.044000+0 4.848353-5 2.344229+0 3.876052-5 2.691535+0 3.117400-5 3.090295+0 2.525739-5 3.589219+0 2.026310-5 4.168694+0 1.637660-5 4.897788+0 1.311881-5 5.821032+0 1.042664-5 7.000000+0 8.226100-6 8.413951+0 6.535195-6 1.023293+1 5.157239-6 1.273503+1 3.986309-6 1.640590+1 2.983487-6 2.162719+1 2.192986-6 2.917427+1 1.583682-6 4.365158+1 1.031878-6 6.456542+1 6.858052-7 1.135011+2 3.841869-7 2.264644+2 1.905929-7 4.518559+2 9.500198-8 3.589219+3 1.190697-8 1.000000+5 4.27110-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.597800-3 7.786100-5 1.000000+5 7.786100-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.597800-3 1.215700-8 1.000000+5 1.215700-8 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.597800-3 1.519927-3 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 4.978500-4 7.532659+4 5.308844-4 7.270790+4 5.500000-4 7.103040+4 6.237348-4 6.448276+4 6.683439-4 6.099412+4 7.161434-4 5.739160+4 7.852356-4 5.223842+4 8.912509-4 4.566107+4 9.660509-4 4.159819+4 1.110000-3 3.503160+4 1.230269-3 3.065464+4 1.400000-3 2.566680+4 1.570000-3 2.179980+4 1.819701-3 1.749704+4 2.065380-3 1.438923+4 2.400000-3 1.132238+4 2.818383-3 8.685054+3 3.311311-3 6.601677+3 3.890451-3 4.980791+3 4.623810-3 3.654822+3 5.559043-3 2.606255+3 6.760830-3 1.804480+3 8.222426-3 1.239267+3 9.885531-3 8.637010+2 1.188502-2 5.974508+2 1.420000-2 4.153940+2 1.698244-2 2.860909+2 2.018366-2 1.981277+2 2.398833-2 1.362305+2 2.851018-2 9.298020+1 3.388442-2 6.298264+1 4.027170-2 4.233887+1 4.786301-2 2.824375+1 5.688529-2 1.869612+1 6.760830-2 1.228395+1 8.128305-2 7.786842+0 9.885531-2 4.759422+0 1.244515-1 2.643784+0 1.584893-1 1.415945+0 2.426610-1 4.678258-1 3.019952-1 2.666594-1 3.589219-1 1.722425-1 4.168694-1 1.187923-1 4.786301-1 8.494145-2 5.432503-1 6.289827-2 6.095369-1 4.817776-2 6.839117-1 3.715945-2 7.673615-1 2.885659-2 8.709636-1 2.201378-2 9.660509-1 1.776959-2 1.096478+0 1.380696-2 1.250000+0 1.070700-2 1.412538+0 8.512956-3 1.584893+0 6.907398-3 1.798871+0 5.532010-3 2.044000+0 4.456501-3 2.344229+0 3.562595-3 2.691535+0 2.865148-3 3.090295+0 2.321265-3 3.589219+0 1.862277-3 4.168694+0 1.505080-3 4.897788+0 1.205660-3 5.821032+0 9.582740-4 7.000000+0 7.560100-4 8.413951+0 6.006159-4 1.023293+1 4.739707-4 1.273503+1 3.663610-4 1.640590+1 2.741901-4 2.162719+1 2.015487-4 2.917427+1 1.455490-4 4.365158+1 9.483424-5 6.456542+1 6.302798-5 1.135011+2 3.530838-5 2.264644+2 1.751590-5 4.518559+2 8.731017-6 3.589219+3 1.094323-6 1.000000+5 3.925400-8 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 4.978500-4 9.164400-5 1.000000+5 9.164400-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.978500-4 2.940400-8 1.000000+5 2.940400-8 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 4.978500-4 4.061766-4 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.101900-4 6.004500+4 4.841724-4 5.877961+4 5.500000-4 5.809880+4 5.956621-4 5.719925+4 6.500000-4 5.581320+4 7.000000-4 5.426580+4 7.500000-4 5.251160+4 8.035261-4 5.042987+4 8.709636-4 4.768954+4 9.500000-4 4.456700+4 1.023293-3 4.175854+4 1.110000-3 3.859420+4 1.216186-3 3.508356+4 1.318257-3 3.203917+4 1.450000-3 2.856280+4 1.603245-3 2.512255+4 1.757924-3 2.217018+4 1.950000-3 1.912888+4 2.162719-3 1.638364+4 2.400000-3 1.392738+4 2.691535-3 1.155296+4 3.019952-3 9.503043+3 3.400000-3 7.711180+3 3.801894-3 6.288483+3 4.300000-3 4.985540+3 4.897788-3 3.868155+3 5.559043-3 2.998218+3 6.382635-3 2.251309+3 7.300000-3 1.689678+3 8.300000-3 1.274418+3 9.332543-3 9.786180+2 1.047129-2 7.505321+2 1.188502-2 5.566633+2 1.348963-2 4.099510+2 1.531087-2 2.997587+2 1.757924-2 2.114220+2 2.018366-2 1.479726+2 2.317395-2 1.028014+2 2.660725-2 7.091811+1 3.090295-2 4.707333+1 3.589219-2 3.100857+1 4.216965-2 1.963197+1 5.011872-2 1.193651+1 6.025596-2 6.959861+0 7.498942-2 3.637461+0 1.000000-1 1.534941+0 1.584893-1 3.832149-1 1.995262-1 1.927591-1 2.398833-1 1.119904-1 2.818383-1 7.015838-2 3.235937-1 4.731669-2 3.672823-1 3.319501-2 4.168694-1 2.345446-2 4.677351-1 1.722198-2 5.248075-1 1.273946-2 5.888437-1 9.498371-3 6.531306-1 7.342658-3 7.244360-1 5.714767-3 8.317638-1 4.130994-3 9.015711-1 3.436710-3 9.660509-1 2.954017-3 1.035142+0 2.557153-3 1.135011+0 2.125231-3 1.250000+0 1.763695-3 1.380384+0 1.467511-3 1.659587+0 1.055430-3 1.883649+0 8.474125-4 2.137962+0 6.857008-4 2.454709+0 5.486170-4 2.818383+0 4.423131-4 3.235937+0 3.591919-4 3.758374+0 2.888474-4 4.415704+0 2.302411-4 5.188000+0 1.849283-4 6.165950+0 1.473664-4 7.585776+0 1.132162-4 9.120108+0 9.020563-5 1.148154+1 6.853114-5 1.445440+1 5.247802-5 1.862087+1 3.942747-5 2.426610+1 2.944993-5 3.198895+1 2.185668-5 4.786301+1 1.426624-5 7.328245+1 9.164679-6 1.318257+2 5.024088-6 2.630268+2 2.495780-6 5.248075+2 1.244901-6 4.168694+3 1.561375-7 1.000000+5 6.505400-9 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.101900-4 7.207700-5 1.000000+5 7.207700-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.101900-4 3.564100-8 1.000000+5 3.564100-8 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.101900-4 3.380774-4 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.550500-4 2.639545+5 3.758374-4 2.572873+5 4.315191-4 2.377037+5 4.786301-4 2.252609+5 5.188000-4 2.140937+5 5.688529-4 2.007142+5 6.237348-4 1.865937+5 6.700000-4 1.752492+5 7.300000-4 1.612564+5 8.035261-4 1.458506+5 8.709636-4 1.332795+5 9.549926-4 1.193379+5 1.059254-3 1.046519+5 1.161449-3 9.250002+4 1.303167-3 7.864644+4 1.450000-3 6.714760+4 1.621810-3 5.646686+4 1.819701-3 4.689086+4 2.041738-3 3.865289+4 2.300000-3 3.140772+4 2.600160-3 2.516241+4 2.917427-3 2.029255+4 3.311311-3 1.589411+4 3.758374-3 1.235161+4 4.315191-3 9.298631+3 4.954502-3 6.938159+3 5.688529-3 5.131768+3 6.456542-3 3.863247+3 7.328245-3 2.887426+3 8.317638-3 2.143047+3 9.549926-3 1.535208+3 1.096478-2 1.090343+3 1.244515-2 7.907634+2 1.412538-2 5.693027+2 1.603245-2 4.069655+2 1.840772-2 2.799809+2 2.113489-2 1.911145+2 2.426610-2 1.294617+2 2.786121-2 8.705326+1 3.198895-2 5.812019+1 3.715352-2 3.723295+1 4.315191-2 2.367224+1 5.069907-2 1.442243+1 6.025596-2 8.417109+0 7.161434-2 4.877097+0 9.015711-2 2.336334+0 1.778279-1 2.618507-1 2.113489-1 1.510941-1 2.454709-1 9.448018-2 2.818383-1 6.169991-2 3.198895-1 4.205529-2 3.589219-1 2.988924-2 4.027170-1 2.140184-2 4.466836-1 1.595715-2 4.954502-1 1.198395-2 5.495409-1 9.071822-3 6.095369-1 6.922155-3 6.683439-1 5.480266-3 7.328245-1 4.366647-3 8.511380-1 3.052443-3 9.120108-1 2.602587-3 9.772372-1 2.234683-3 1.047129+0 1.934199-3 1.148154+0 1.607935-3 1.258925+0 1.346929-3 1.396368+0 1.113058-3 1.678804+0 8.015913-4 1.905461+0 6.439518-4 2.162719+0 5.213764-4 2.483133+0 4.174143-4 2.851018+0 3.367443-4 3.273407+0 2.736214-4 3.801894+0 2.201604-4 4.466836+0 1.755885-4 5.248075+0 1.411070-4 6.237348+0 1.125062-4 7.673615+0 8.647036-5 9.225714+0 6.892983-5 1.161449+1 5.238897-5 1.462177+1 4.013104-5 1.883649+1 3.016070-5 2.511886+1 2.197474-5 3.427678+1 1.573359-5 5.069907+1 1.040777-5 8.035261+1 6.459012-6 1.479108+2 3.462977-6 2.951209+2 1.721834-6 5.888437+2 8.592408-7 9.332543+3 5.402855-8 1.000000+5 5.040800-9 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.550500-4 6.664900-5 1.000000+5 6.664900-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.550500-4 1.650500-8 1.000000+5 1.650500-8 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.550500-4 2.883845-4 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.093800-4 2.158506+5 2.180000-4 2.891924+5 2.195000-4 3.016280+5 2.208000-4 3.109440+5 2.218000-4 3.167940+5 2.230000-4 3.220540+5 2.240000-4 3.249580+5 2.255000-4 3.268664+5 2.270000-4 3.261784+5 2.285000-4 3.233436+5 2.300000-4 3.188320+5 2.323000-4 3.095996+5 2.350000-4 2.965140+5 2.380000-4 2.804880+5 2.415000-4 2.611344+5 2.454709-4 2.393613+5 2.580000-4 1.800628+5 2.620000-4 1.655804+5 2.660725-4 1.532398+5 2.691535-4 1.454507+5 2.722701-4 1.388379+5 2.754229-4 1.333415+5 2.786121-4 1.288996+5 2.818383-4 1.254314+5 2.851018-4 1.228748+5 2.884032-4 1.211239+5 2.917427-4 1.201308+5 2.951209-4 1.198273+5 2.990000-4 1.202440+5 3.030000-4 1.214064+5 3.080000-4 1.237716+5 3.130000-4 1.269604+5 3.200000-4 1.324736+5 3.311311-4 1.428916+5 3.550000-4 1.679628+5 3.672823-4 1.808217+5 3.801894-4 1.935650+5 3.935501-4 2.055972+5 4.073803-4 2.167086+5 4.216965-4 2.266737+5 4.365158-4 2.352736+5 4.518559-4 2.425087+5 4.700000-4 2.491520+5 4.897788-4 2.542998+5 5.080000-4 2.572748+5 5.300000-4 2.588500+5 5.500000-4 2.586844+5 5.754399-4 2.568059+5 6.025596-4 2.532679+5 6.309573-4 2.482247+5 6.606934-4 2.417851+5 6.918310-4 2.342240+5 7.328245-4 2.235291+5 7.800000-4 2.108896+5 8.222426-4 1.995390+5 8.709636-4 1.866960+5 9.332543-4 1.711406+5 1.000000-3 1.557320+5 1.071519-3 1.406794+5 1.150000-3 1.259516+5 1.230269-3 1.126550+5 1.333521-3 9.786581+4 1.450000-3 8.389760+4 1.570000-3 7.196200+4 1.717908-3 6.001060+4 1.862087-3 5.065378+4 2.041738-3 4.142737+4 2.238721-3 3.361486+4 2.426610-3 2.783715+4 2.691535-3 2.166926+4 2.985383-3 1.672379+4 3.273407-3 1.319453+4 3.589219-3 1.034883+4 4.000000-3 7.717280+3 4.466836-3 5.677172+3 5.000000-3 4.115400+3 5.559043-3 3.019747+3 6.165950-3 2.216366+3 6.918310-3 1.560163+3 7.762471-3 1.090026+3 8.709636-3 7.556732+2 9.772372-3 5.201439+2 1.096478-2 3.554770+2 1.244515-2 2.320890+2 1.412538-2 1.503520+2 1.584893-2 1.006383+2 1.798871-2 6.425178+1 2.065380-2 3.907904+1 2.371374-2 2.359438+1 2.754229-2 1.355450+1 3.198895-2 7.729210+0 3.801894-2 4.009632+0 4.623810-2 1.889980+0 5.754399-2 8.087392-1 1.047129-1 7.815067-2 1.288250-1 3.501637-2 1.531088-1 1.805799-2 1.778279-1 1.024085-2 2.041738-1 6.107776-3 2.317395-1 3.828141-3 2.630268-1 2.416804-3 2.951209-1 1.602176-3 3.311311-1 1.070159-3 3.672823-1 7.492894-4 4.120975-1 5.081787-4 4.518559-1 3.747920-4 4.954502-1 2.783214-4 5.432503-1 2.084240-4 5.956621-1 1.572301-4 6.531306-1 1.193241-4 7.161434-1 9.117383-5 8.609938-1 5.407412-5 9.120108-1 4.624133-5 9.549926-1 4.104002-5 1.000000+0 3.665431-5 1.047129+0 3.297376-5 1.096478+0 2.986525-5 1.161449+0 2.660176-5 1.230269+0 2.386384-5 1.333521+0 2.063854-5 1.479108+0 1.727030-5 1.840772+0 1.176980-5 2.044000+0 9.856100-6 2.344229+0 7.879871-6 2.691535+0 6.336938-6 3.090295+0 5.133660-6 3.589219+0 4.118661-6 4.168694+0 3.328696-6 4.897788+0 2.666440-6 5.821032+0 2.119335-6 7.000000+0 1.672000-6 8.413951+0 1.328327-6 1.023293+1 1.048238-6 1.273503+1 8.102302-7 1.640590+1 6.064068-7 2.162719+1 4.457403-7 2.917427+1 3.218961-7 4.365158+1 2.097344-7 6.531306+1 1.377410-7 1.148154+2 7.717700-8 2.290868+2 3.829063-8 4.570882+2 1.908771-8 3.630781+3 2.392435-9 1.000000+5 8.68130-11 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.093800-4 4.313600-5 1.000000+5 4.313600-5 1 71000 7 7 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.093800-4 2.618600-8 1.000000+5 2.618600-8 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.093800-4 1.662178-4 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 1.993200-4 3.516066+5 2.002000-4 3.531984+5 2.010000-4 3.566082+5 2.020000-4 3.632028+5 2.030000-4 3.722322+5 2.041738-4 3.854199+5 2.080000-4 4.377474+5 2.095000-4 4.566594+5 2.105000-4 4.672812+5 2.115000-4 4.759008+5 2.128000-4 4.838142+5 2.138000-4 4.873416+5 2.151300-4 4.887710+5 2.165000-4 4.867962+5 2.180000-4 4.813224+5 2.198000-4 4.712778+5 2.220000-4 4.554978+5 2.240000-4 4.391214+5 2.270000-4 4.128186+5 2.306200-4 3.804332+5 2.350000-4 3.424926+5 2.465000-4 2.591250+5 2.500000-4 2.398212+5 2.530000-4 2.256486+5 2.560000-4 2.135958+5 2.590000-4 2.035392+5 2.620000-4 1.953438+5 2.650000-4 1.888482+5 2.680000-4 1.839066+5 2.710000-4 1.803654+5 2.740000-4 1.780794+5 2.770000-4 1.769364+5 2.800000-4 1.767924+5 2.837800-4 1.778892+5 2.880000-4 1.803888+5 2.917427-4 1.836730+5 2.951209-4 1.873707+5 3.000000-4 1.937190+5 3.080000-4 2.060358+5 3.350000-4 2.550384+5 3.470000-4 2.770992+5 3.589219-4 2.979009+5 3.700000-4 3.157350+5 3.820000-4 3.331698+5 3.935501-4 3.481435+5 4.050000-4 3.611550+5 4.183900-4 3.740067+5 4.315191-4 3.843254+5 4.466836-4 3.937621+5 4.650000-4 4.020774+5 4.850000-4 4.077744+5 5.011872-4 4.100680+5 5.230000-4 4.103112+5 5.432503-4 4.081443+5 5.688529-4 4.029525+5 6.000000-4 3.939978+5 6.309573-4 3.829786+5 6.683439-4 3.676042+5 7.079458-4 3.502581+5 7.500000-4 3.313956+5 7.943282-4 3.115389+5 8.511380-4 2.869646+5 9.120108-4 2.623183+5 9.772372-4 2.379555+5 1.047129-3 2.144214+5 1.122018-3 1.920094+5 1.216186-3 1.674528+5 1.318257-3 1.449770+5 1.428894-3 1.245365+5 1.548817-3 1.062856+5 1.678804-3 9.005964+4 1.840772-3 7.398634+4 2.030000-3 5.949139+4 2.187762-3 5.007237+4 2.426610-3 3.913152+4 2.691535-3 3.030398+4 2.917427-3 2.469610+4 3.220000-3 1.910016+4 3.589219-3 1.427754+4 4.027170-3 1.039274+4 4.518559-3 7.497732+3 5.069907-3 5.363082+3 5.623413-3 3.938523+3 6.309573-3 2.774231+3 7.079458-3 1.937679+3 7.943282-3 1.343528+3 8.912509-3 9.240661+2 1.000000-2 6.310620+2 1.122018-2 4.277602+2 1.258925-2 2.878821+2 1.428894-2 1.848555+2 1.603245-2 1.227278+2 1.819701-2 7.763488+1 2.065380-2 4.876366+1 2.371374-2 2.914319+1 2.722701-2 1.729126+1 3.126079-2 1.018992+1 3.672823-2 5.455181+0 4.365158-2 2.771391+0 5.188000-2 1.398265+0 6.760830-2 4.844724-1 9.966270-2 1.021585-1 1.216186-1 4.625739-2 1.428894-1 2.452266-2 1.659587-1 1.370265-2 1.883649-1 8.432234-3 2.137962-1 5.228300-3 2.398833-1 3.411557-3 2.660725-1 2.339787-3 2.951209-1 1.616846-3 3.235937-1 1.171798-3 3.548134-1 8.548740-4 3.890451-1 6.280743-4 4.265795-1 4.647530-4 4.623810-1 3.594803-4 5.011872-1 2.800115-4 5.432503-1 2.199669-4 5.888437-1 1.739623-4 6.456542-1 1.338417-4 6.998420-1 1.070479-4 7.585776-1 8.617113-5 8.511380-1 6.377463-5 9.015711-1 5.519313-5 9.549926-1 4.808869-5 1.000000+0 4.331500-5 1.059254+0 3.828140-5 1.135011+0 3.326050-5 1.216186+0 2.909957-5 1.333521+0 2.454516-5 1.717908+0 1.567409-5 1.949845+0 1.260371-5 2.213095+0 1.021976-5 2.540973+0 8.192711-6 2.917427+0 6.616945-6 3.349654+0 5.382665-6 3.890451+0 4.335923-6 4.570882+0 3.462011-6 5.370318+0 2.784962-6 6.382635+0 2.222667-6 7.852356+0 1.709884-6 9.440609+0 1.364338-6 1.188502+1 1.037727-6 1.513561+1 7.851462-7 2.000000+1 5.742200-7 2.786121+1 3.996843-7 4.168694+1 2.601775-7 6.095369+1 1.748456-7 1.047129+2 1.001890-7 2.089296+2 4.966251-8 4.168694+2 2.474355-8 3.311311+3 3.100322-9 1.000000+5 1.02590-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 1.993200-4 4.245100-5 1.000000+5 4.245100-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 1.993200-4 1.568690-4 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.896000-5 6.054598+5 2.070000-5 5.463726+5 2.162719-5 5.214587+5 2.270000-5 4.984464+5 2.371374-5 4.821746+5 2.470000-5 4.709028+5 2.570396-5 4.635462+5 2.660725-5 4.602089+5 2.754229-5 4.599205+5 2.851018-5 4.628679+5 2.951209-5 4.692925+5 3.054921-5 4.794212+5 3.162278-5 4.935548+5 3.273407-5 5.119412+5 3.400000-5 5.373780+5 3.507519-5 5.624996+5 3.650000-5 6.005640+5 3.801894-5 6.466564+5 4.000000-5 7.140840+5 4.731513-5 1.008084+6 5.011872-5 1.128082+6 5.308844-5 1.255141+6 5.650000-5 1.399662+6 6.025596-5 1.554872+6 6.456542-5 1.728719+6 6.918310-5 1.909676+6 7.413102-5 2.095484+6 7.900000-5 2.265888+6 8.317638-5 2.399222+6 8.810489-5 2.539018+6 9.300000-5 2.657544+6 9.800000-5 2.757972+6 1.040000-4 2.855022+6 1.109175-4 2.941308+6 1.190000-4 3.013944+6 1.273503-4 3.064988+6 1.350000-4 3.091200+6 1.445440-4 3.098371+6 1.540000-4 3.081714+6 1.650000-4 3.037044+6 1.760000-4 2.976474+6 1.900000-4 2.881482+6 2.018366-4 2.792694+6 2.150000-4 2.683164+6 2.290868-4 2.560099+6 2.450000-4 2.414874+6 2.600160-4 2.280030+6 2.786121-4 2.116179+6 2.951209-4 1.977313+6 3.162278-4 1.807015+6 3.350000-4 1.665126+6 3.600000-4 1.491660+6 3.850000-4 1.335330+6 4.100000-4 1.195986+6 4.415704-4 1.040617+6 4.731513-4 9.067094+5 5.011872-4 8.042945+5 5.400000-4 6.833640+5 5.821032-4 5.749559+5 6.237348-4 4.874590+5 6.683439-4 4.106535+5 7.244360-4 3.336565+5 7.852356-4 2.690269+5 8.511380-4 2.154428+5 9.225714-4 1.713669+5 1.000000-3 1.354008+5 1.096478-3 1.027050+5 1.202264-3 7.732817+4 1.318257-3 5.780857+4 1.445440-3 4.292281+4 1.603245-3 3.047119+4 1.778279-3 2.146349+4 1.972423-3 1.501072+4 2.187762-3 1.042542+4 2.426610-3 7.190379+3 2.691535-3 4.925541+3 3.019952-3 3.210397+3 3.388442-3 2.075988+3 3.801894-3 1.332336+3 4.265795-3 8.489609+2 4.786301-3 5.371934+2 5.370318-3 3.375950+2 6.095369-3 2.009643+2 6.839116-3 1.245647+2 7.673615-3 7.666496+1 8.709636-3 4.460061+1 9.660509-3 2.841797+1 1.059254-2 1.890269+1 1.096478-2 1.618594+1 1.258925-2 8.600405+0 1.303167-2 7.368704+0 1.513561-2 3.822000+0 1.659587-2 2.520284+0 1.840772-2 1.565799+0 2.371374-2 4.829769-1 2.851018-2 2.037270-1 3.311311-2 1.003543-1 4.216965-2 3.167808-2 6.683439-2 3.495824-3 8.317638-2 1.234997-3 1.000000-1 5.178800-4 1.161449-1 2.571215-4 1.333521-1 1.356667-4 1.513561-1 7.604290-5 1.698244-1 4.525042-5 1.905461-1 2.711243-5 2.137962-1 1.635796-5 2.371374-1 1.045024-5 2.630268-1 6.725494-6 2.884032-1 4.577095-6 3.162278-1 3.135213-6 3.467369-1 2.161578-6 3.801894-1 1.500342-6 4.265795-1 9.580786-7 4.623810-1 7.050030-7 4.954502-1 5.458260-7 5.248075-1 4.445858-7 5.688529-1 3.361691-7 6.839117-1 1.791319-7 7.413102-1 1.368930-7 8.609938-1 8.421444-8 9.015711-1 7.307699-8 9.332543-1 6.603547-8 9.660509-1 5.997723-8 1.000000+0 5.479000-8 1.035142+0 5.036141-8 1.071519+0 4.652782-8 1.122018+0 4.216165-8 1.174898+0 3.846878-8 1.244515+0 3.457105-8 1.333521+0 3.062549-8 1.513561+0 2.481761-8 1.883649+0 1.691702-8 2.089296+0 1.420577-8 2.371374+0 1.156049-8 2.722701+0 9.303612-9 3.126079+0 7.542523-9 3.630781+0 6.054768-9 4.265795+0 4.818047-9 5.011872+0 3.863638-9 5.956621+0 3.074079-9 7.244360+0 2.392978-9 8.709636+0 1.903122-9 1.083927+1 1.463089-9 1.364583+1 1.118215-9 1.737801+1 8.49631-10 2.264644+1 6.33460-10 3.000000+1 4.66980-10 4.518559+1 3.02300-10 6.839116+1 1.96313-10 1.202264+2 1.10070-10 2.398833+2 5.46333-11 4.786301+2 2.72407-11 3.801894+3 3.41506-12 1.000000+5 1.29760-13 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.896000-5 1.896000-5 1.000000+5 1.896000-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.896000-5 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.732000-5 9.119280+5 1.800000-5 8.588400+5 1.883649-5 8.039714+5 1.972423-5 7.572821+5 2.041738-5 7.280434+5 2.113489-5 7.034511+5 2.190000-5 6.827136+5 2.270000-5 6.664824+5 2.350000-5 6.552248+5 2.426610-5 6.486567+5 2.511886-5 6.457571+5 2.600160-5 6.473055+5 2.691535-5 6.534693+5 2.786121-5 6.644753+5 2.884032-5 6.805712+5 2.985383-5 7.020739+5 3.090295-5 7.292767+5 3.198895-5 7.624865+5 3.311311-5 8.019567+5 3.450000-5 8.572880+5 3.630781-5 9.392803+5 3.845918-5 1.049092+6 4.466836-5 1.411272+6 4.786301-5 1.606816+6 5.069907-5 1.778612+6 5.400000-5 1.974512+6 5.800000-5 2.204472+6 6.237348-5 2.447647+6 6.683439-5 2.685675+6 7.161434-5 2.929485+6 7.650000-5 3.161416+6 8.128305-5 3.365365+6 8.609938-5 3.545560+6 9.120108-5 3.706304+6 9.660509-5 3.842932+6 1.023293-4 3.957108+6 1.083927-4 4.049740+6 1.161449-4 4.133319+6 1.244515-4 4.192018+6 1.330000-4 4.219200+6 1.412538-4 4.218344+6 1.500000-4 4.190240+6 1.603245-4 4.127094+6 1.698244-4 4.051359+6 1.840772-4 3.913576+6 1.950000-4 3.798008+6 2.089296-4 3.637001+6 2.220000-4 3.478504+6 2.389200-4 3.265267+6 2.540973-4 3.075117+6 2.730000-4 2.846472+6 2.900000-4 2.648408+6 3.090295-4 2.439412+6 3.311311-4 2.210630+6 3.507519-4 2.024509+6 3.780000-4 1.791344+6 4.027170-4 1.602588+6 4.265795-4 1.440395+6 4.600000-4 1.241920+6 4.954502-4 1.064118+6 5.248075-4 9.386278+5 5.623413-4 8.022235+5 6.025596-4 6.813326+5 6.456542-4 5.749227+5 7.000000-4 4.677504+5 7.585776-4 3.780447+5 8.222426-4 3.032047+5 8.912509-4 2.415596+5 9.660509-4 1.911286+5 1.059254-3 1.451466+5 1.161449-3 1.094094+5 1.273503-3 8.187851+4 1.396368-3 6.085388+4 1.548817-3 4.324293+4 1.717908-3 3.048945+4 1.905461-3 2.133286+4 2.113489-3 1.481796+4 2.344229-3 1.022084+4 2.600160-3 7.001703+3 2.917427-3 4.564376+3 3.273407-3 2.951942+3 3.672823-3 1.894508+3 4.168694-3 1.153809+3 4.677351-3 7.300667+2 5.188000-3 4.803456+2 5.688529-3 3.290212+2 6.382635-3 2.033192+2 7.852356-3 8.433995+1 8.709636-3 5.402435+1 9.549926-3 3.612687+1 1.035142-2 2.524768+1 1.096478-2 1.945968+1 1.258925-2 1.027285+1 1.380384-2 6.792451+0 1.621810-2 3.328196+0 1.819701-2 1.965385+0 2.041738-2 1.152203+0 2.317395-2 6.357508-1 2.691535-2 3.123376-1 3.507519-2 8.776960-2 4.623810-2 2.311886-2 7.413102-2 2.355364-3 9.015711-2 9.199035-4 1.059254-1 4.271118-4 1.230269-1 2.110094-4 1.396368-1 1.169989-4 1.566751-1 6.891946-5 1.737801-1 4.308143-5 1.927525-1 2.711281-5 2.137962-1 1.718948-5 2.371374-1 1.098299-5 2.600160-1 7.430596-6 2.818383-1 5.313730-6 3.054921-1 3.825598-6 3.311311-1 2.772288-6 3.630781-1 1.933316-6 3.935501-1 1.420889-6 4.265795-1 1.052460-6 4.570882-1 8.194277-7 4.897788-1 6.421068-7 5.248075-1 5.064707-7 5.623413-1 4.026356-7 6.095369-1 3.104635-7 6.683439-1 2.326557-7 7.244360-1 1.816763-7 7.762471-1 1.478773-7 8.511380-1 1.130932-7 9.015711-1 9.629865-8 9.440609-1 8.519906-8 9.885531-1 7.588016-8 1.035142+0 6.809786-8 1.083927+0 6.156010-8 1.135011+0 5.599764-8 1.202264+0 5.010385-8 1.303167+0 4.325775-8 1.428894+0 3.686421-8 1.513561+0 3.342219-8 1.819701+0 2.417546-8 2.018366+0 2.026532-8 2.290868+0 1.646327-8 2.630268+0 1.322304-8 3.019952+0 1.069955-8 3.507519+0 8.573862-9 4.073803+0 6.921973-9 4.786301+0 5.538876-9 5.688529+0 4.397682-9 6.839116+0 3.467086-9 8.317638+0 2.712589-9 1.000000+1 2.169400-9 1.244515+1 1.675537-9 1.603245+1 1.253125-9 2.113489+1 9.20467-10 2.884032+1 6.56150-10 4.315191+1 4.27419-10 6.382635+1 2.84012-10 1.109175+2 1.60961-10 2.213095+2 7.98310-11 4.415704+2 3.97871-11 3.507519+3 4.98642-12 1.000000+5 1.74790-13 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.732000-5 1.732000-5 1.000000+5 1.732000-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.732000-5 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 6.634000-5 5.871760+4 6.760830-5 5.620509+4 6.850000-5 5.485520+4 6.970000-5 5.350060+4 7.079458-5 5.265858+4 7.190000-5 5.212920+4 7.328245-5 5.181880+4 7.473600-5 5.185166+4 7.650000-5 5.228300+4 7.852356-5 5.316934+4 8.128305-5 5.481879+4 9.225714-5 6.288410+4 9.660509-5 6.576316+4 1.011579-4 6.826440+4 1.047129-4 6.982915+4 1.083927-4 7.109783+4 1.135011-4 7.231920+4 1.190000-4 7.304560+4 1.258925-4 7.331112+4 1.333521-4 7.304017+4 1.412538-4 7.232176+4 1.500000-4 7.114840+4 1.603245-4 6.936943+4 1.698244-4 6.744545+4 1.819701-4 6.471696+4 1.950000-4 6.163860+4 2.113489-4 5.782477+4 2.317395-4 5.337767+4 2.540973-4 4.892733+4 2.786121-4 4.451215+4 3.126079-4 3.920546+4 3.548134-4 3.384511+4 4.000000-4 2.922860+4 4.677351-4 2.392468+4 5.370318-4 1.991514+4 6.456542-4 1.545560+4 7.673615-4 1.208846+4 9.120108-4 9.387930+3 1.083927-3 7.241541+3 1.300000-3 5.469700+3 1.548817-3 4.144492+3 1.850000-3 3.104800+3 2.213095-3 2.303095+3 2.630268-3 1.714559+3 3.162278-3 1.242129+3 3.758374-3 9.118328+2 4.570882-3 6.372178+2 5.559043-3 4.418923+2 6.839116-3 2.975162+2 8.317638-3 2.032312+2 1.011579-2 1.378024+2 1.244515-2 9.061514+1 1.500000-2 6.163659+1 1.798871-2 4.202820+1 2.137962-2 2.899530+1 2.570396-2 1.936533+1 3.235937-2 1.158844+1 3.845918-2 7.833104+0 4.415704-2 5.685389+0 5.188000-2 3.881483+0 6.165950-2 2.558441+0 7.413102-2 1.627624+0 9.015711-2 9.987320-1 1.071519-1 6.448638-1 1.364583-1 3.464563-1 2.630268-1 6.317312-2 3.198895-1 3.828351-2 3.758374-1 2.551787-2 4.315191-1 1.814612-2 4.954502-1 1.300043-2 5.623413-1 9.645759-3 6.309573-1 7.403662-3 7.079458-1 5.721947-3 8.000000-1 4.385300-3 8.912509-1 3.487345-3 9.885531-1 2.819914-3 1.148154+0 2.097567-3 1.288250+0 1.681092-3 1.462177+0 1.328290-3 1.640590+0 1.080040-3 1.862087+0 8.668471-4 2.113489+0 7.010265-4 2.426610+0 5.605023-4 2.786121+0 4.516163-4 3.198895+0 3.665365-4 3.715352+0 2.945866-4 4.365158+0 2.346802-4 5.128614+0 1.883897-4 6.095369+0 1.500497-4 7.498942+0 1.152245-4 9.015711+0 9.176345-5 1.135011+1 6.968612-5 1.428894+1 5.334284-5 1.819701+1 4.058263-5 2.371374+1 3.029508-5 3.126079+1 2.247220-5 4.677351+1 1.466141-5 7.161434+1 9.414695-6 1.273503+2 5.220291-6 2.540973+2 2.592486-6 5.069907+2 1.292925-6 4.027170+3 1.621393-7 1.000000+5 6.526100-9 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 6.634000-5 6.634000-5 1.000000+5 6.634000-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 6.634000-5 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 4.152000-5 5.656379+6 4.315191-5 4.951118+6 5.011872-5 2.921756+6 5.308844-5 2.371957+6 5.688529-5 1.832826+6 6.165950-5 1.344956+6 7.161434-5 7.531101+5 7.852356-5 5.308559+5 8.511380-5 3.934298+5 9.225714-5 2.936134+5 9.900000-5 2.287060+5 1.060000-4 1.808094+5 1.122018-4 1.497214+5 1.174898-4 1.292220+5 1.240000-4 1.095224+5 1.303167-4 9.472802+4 1.364583-4 8.335857+4 1.430000-4 7.370040+4 1.500000-4 6.548360+4 1.566751-4 5.919895+4 1.640590-4 5.359007+4 1.720000-4 4.875880+4 1.800000-4 4.484640+4 1.883649-4 4.152979+4 1.980000-4 3.843920+4 2.089600-4 3.561314+4 2.220000-4 3.292900+4 2.371374-4 3.046041+4 2.570396-4 2.792403+4 2.818383-4 2.549729+4 3.235937-4 2.247165+4 4.315191-4 1.738433+4 5.011872-4 1.511883+4 5.754399-4 1.319732+4 6.531306-4 1.157599+4 7.413102-4 1.008241+4 8.413951-4 8.720408+3 9.660509-4 7.381455+3 1.096478-3 6.285605+3 1.230269-3 5.396476+3 1.396368-3 4.529289+3 1.584893-3 3.772953+3 1.798871-3 3.118530+3 2.041738-3 2.557643+3 2.317395-3 2.081118+3 2.630268-3 1.680394+3 2.985383-3 1.346568+3 3.388442-3 1.071002+3 3.845918-3 8.455675+2 4.365158-3 6.627607+2 4.954502-3 5.157580+2 5.623413-3 3.985074+2 6.382635-3 3.057798+2 7.244360-3 2.330002+2 8.222426-3 1.762972+2 9.332543-3 1.324774+2 1.059254-2 9.885912+1 1.202264-2 7.325704+1 1.364583-2 5.391327+1 1.548817-2 3.940802+1 1.778279-2 2.778346+1 2.075770-2 1.867461+1 2.344229-2 1.355682+1 2.691535-2 9.347699+0 3.162278-2 6.004530+0 3.672823-2 3.953430+0 4.315191-2 2.501924+0 5.128614-2 1.520509+0 6.165950-2 8.863709-1 7.673615-2 4.632215-1 1.023293-1 1.954837-1 1.603245-1 5.055923-2 2.000000-1 2.614407-2 2.398833-1 1.529955-2 2.818383-1 9.586095-3 3.235937-1 6.465636-3 3.672823-1 4.536146-3 4.168694-1 3.205170-3 4.677351-1 2.353516-3 5.188000-1 1.793644-3 5.821032-1 1.336318-3 6.531306-1 1.003482-3 7.244360-1 7.809577-4 8.317638-1 5.644770-4 9.015711-1 4.695928-4 9.660509-1 4.036350-4 1.035142+0 3.494129-4 1.135011+0 2.903860-4 1.250000+0 2.409700-4 1.380384+0 2.004985-4 1.659587+0 1.441950-4 1.883649+0 1.157685-4 2.137962+0 9.366359-5 2.454709+0 7.493599-5 2.818383+0 6.041763-5 3.235937+0 4.906470-5 3.758374+0 3.945586-5 4.415704+0 3.145069-5 5.188000+0 2.526088-5 6.165950+0 2.012979-5 7.585776+0 1.546490-5 9.120108+0 1.232230-5 1.148154+1 9.361307-6 1.445440+1 7.168440-6 1.862087+1 5.385702-6 2.426610+1 4.022809-6 3.198895+1 2.985583-6 4.841724+1 1.925298-6 7.498942+1 1.222535-6 1.348963+2 6.703915-7 2.691535+2 3.330883-7 5.370318+2 1.661624-7 8.511380+3 1.044332-8 1.000000+5 8.88640-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 4.152000-5 4.152000-5 1.000000+5 4.152000-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 4.152000-5 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 3.422000-5 1.294532+7 3.589219-5 1.058893+7 3.758374-5 8.792033+6 4.000000-5 6.899240+6 4.623810-5 3.960568+6 5.888437-5 1.545927+6 6.309573-5 1.190037+6 6.683439-5 9.629085+5 7.079458-5 7.846124+5 7.413102-5 6.698960+5 7.800000-5 5.662960+5 8.150000-5 4.929120+5 8.511380-5 4.323921+5 8.912509-5 3.790450+5 9.300000-5 3.380440+5 9.660509-5 3.070426+5 1.000000-4 2.827860+5 1.040000-4 2.590516+5 1.083927-4 2.377218+5 1.135011-4 2.176370+5 1.190000-4 2.002448+5 1.244515-4 1.862098+5 1.303167-4 1.737638+5 1.380384-4 1.604592+5 1.462177-4 1.491383+5 1.566751-4 1.375934+5 1.698244-4 1.262275+5 1.905461-4 1.126092+5 2.630268-4 8.266834+4 3.100000-4 7.010760+4 3.589219-4 6.009405+4 4.120975-4 5.157781+4 4.786301-4 4.336643+4 5.500000-4 3.663136+4 6.382635-4 3.033137+4 7.328245-4 2.525787+4 8.413951-4 2.088414+4 9.660509-4 1.713750+4 1.109175-3 1.395766+4 1.273503-3 1.128020+4 1.445440-3 9.214698+3 1.640590-3 7.475696+3 1.862087-3 6.022968+3 2.113489-3 4.818759+3 2.398833-3 3.828244+3 2.722701-3 3.019918+3 3.090295-3 2.365330+3 3.507519-3 1.839363+3 4.000000-3 1.406524+3 4.570882-3 1.063058+3 5.188000-3 8.091376+2 5.888437-3 6.115872+2 6.683439-3 4.591883+2 7.585776-3 3.423328+2 8.709636-3 2.465621+2 9.885531-3 1.811787+2 1.122018-2 1.321843+2 1.273503-2 9.575682+1 1.445440-2 6.888016+1 1.640590-2 4.919830+1 1.862087-2 3.489525+1 2.137962-2 2.381136+1 2.454709-2 1.612851+1 2.818383-2 1.084539+1 3.235937-2 7.241037+0 3.758374-2 4.639008+0 4.365158-2 2.949520+0 5.128614-2 1.797153+0 6.095369-2 1.048965+0 7.244360-2 6.077153-1 9.225714-2 2.805236-1 1.717908-1 3.792922-2 2.065380-1 2.110052-2 2.426610-1 1.271940-2 2.786121-1 8.301413-3 3.162278-1 5.654598-3 3.548134-1 4.016298-3 3.981072-1 2.873873-3 4.415705-1 2.141436-3 4.897788-1 1.607186-3 5.432503-1 1.215776-3 6.025596-1 9.269993-4 6.683439-1 7.124412-4 7.328245-1 5.676457-4 8.413951-1 4.078241-4 9.015711-1 3.474682-4 9.660509-1 2.980388-4 1.023293+0 2.638879-4 1.109175+0 2.240230-4 1.216186+0 1.871340-4 1.333521+0 1.574865-4 1.513561+0 1.253464-4 1.737801+0 9.815154-5 1.972423+0 7.901085-5 2.238721+0 6.410219-5 2.570396+0 5.142101-5 2.951209+0 4.155976-5 3.427678+0 3.326245-5 4.000000+0 2.664500-5 4.677351+0 2.144035-5 5.495409+0 1.726500-5 6.531306+0 1.379279-5 8.035261+0 1.061987-5 9.660509+0 8.481990-6 1.216186+1 6.456700-6 1.566751+1 4.825101-6 2.089296+1 3.497101-6 2.851018+1 2.492108-6 4.265795+1 1.622957-6 6.309573+1 1.078173-6 1.109175+2 6.038208-7 2.213095+2 2.994738-7 4.415704+2 1.492554-7 3.507519+3 1.870623-8 1.000000+5 6.55680-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 3.422000-5 3.422000-5 1.000000+5 3.422000-5 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 3.422000-5 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 4.450000-6 2.148632+6 4.677351-6 2.271708+6 4.897788-6 2.371415+6 5.128614-6 2.457284+6 5.432503-6 2.547724+6 5.754399-6 2.621222+6 6.200000-6 2.695824+6 6.606934-6 2.742494+6 7.200000-6 2.784028+6 7.852356-6 2.806849+6 8.609938-6 2.810872+6 9.440609-6 2.794396+6 1.023293-5 2.764288+6 1.109175-5 2.716056+6 1.202264-5 2.650481+6 1.288250-5 2.576365+6 1.364583-5 2.501473+6 1.445440-5 2.413740+6 1.531087-5 2.313451+6 1.621810-5 2.200866+6 1.698244-5 2.102406+6 1.778279-5 1.997503+6 1.862087-5 1.887555+6 1.950000-5 1.773744+6 2.041738-5 1.657962+6 2.162719-5 1.512051+6 2.290868-5 1.368353+6 2.426610-5 1.229407+6 2.580000-5 1.088788+6 2.754229-5 9.497804+5 2.951209-5 8.160915+5 3.198895-5 6.780176+5 3.427678-5 5.746104+5 3.715352-5 4.700117+5 3.981072-5 3.928135+5 4.265795-5 3.259152+5 4.518559-5 2.772382+5 4.800000-5 2.323776+5 5.069907-5 1.969004+5 5.400000-5 1.613992+5 5.688529-5 1.362172+5 6.025596-5 1.121743+5 6.400000-5 9.097440+4 6.839116-5 7.167230+4 7.300000-5 5.630920+4 7.800000-5 4.373600+4 8.222426-5 3.556683+4 8.709636-5 2.821120+4 9.225714-5 2.221656+4 9.772372-5 1.736786+4 1.035142-4 1.346606+4 1.096478-4 1.036359+4 1.174898-4 7.501740+3 1.333521-4 4.111336+3 1.380384-4 3.503431+3 1.428894-4 3.001176+3 1.479108-4 2.590079+3 1.500000-4 2.446056+3 1.531087-4 2.276139+3 1.566751-4 2.112424+3 1.603245-4 1.972948+3 1.640590-4 1.854031+3 1.678804-4 1.752667+3 1.717908-4 1.666394+3 1.757924-4 1.593184+3 1.798871-4 1.531366+3 1.840772-4 1.479555+3 1.883649-4 1.436604+3 1.927525-4 1.401557+3 1.972423-4 1.373622+3 2.000000-4 1.359932+3 2.041738-4 1.349385+3 2.113489-4 1.341809+3 2.187762-4 1.345397+3 2.264644-4 1.358749+3 2.344229-4 1.380644+3 2.454709-4 1.421164+3 2.600160-4 1.486192+3 3.000000-4 1.677536+3 3.198895-4 1.705238+3 3.427678-4 1.723001+3 3.630781-4 1.726953+3 3.845918-4 1.720063+3 4.027170-4 1.705715+3 4.265795-4 1.673753+3 4.518559-4 1.631946+3 4.786301-4 1.581646+3 5.128614-4 1.512270+3 5.495409-4 1.435270+3 5.888437-4 1.352328+3 6.309573-4 1.265504+3 6.760830-4 1.176491+3 7.244360-4 1.086834+3 7.852356-4 9.833096+2 8.511380-4 8.827673+2 9.225714-4 7.868130+2 1.000000-3 6.965320+2 1.083927-3 6.123201+2 1.174898-3 5.346693+2 1.273503-3 4.638176+2 1.380384-3 3.998067+2 1.513561-3 3.348731+2 1.662000-3 2.775379+2 1.819701-3 2.296411+2 2.000000-3 1.870652+2 2.187762-3 1.528831+2 2.398833-3 1.234276+2 2.660725-3 9.626526+1 2.951209-3 7.449711+1 3.273407-3 5.720612+1 3.630781-3 4.359836+1 4.027170-3 3.298476+1 4.466836-3 2.477855+1 4.954502-3 1.848553+1 5.495409-3 1.369860+1 6.165950-3 9.743490+0 6.918310-3 6.875783+0 7.762471-3 4.814228+0 8.709636-3 3.344031+0 9.772372-3 2.305382+0 1.096478-2 1.578177+0 1.244515-2 1.032528+0 1.412538-2 6.702010-1 1.584893-2 4.493375-1 1.798871-2 2.873522-1 2.065380-2 1.750632-1 2.371374-2 1.058605-1 2.754229-2 6.091118-2 3.198895-2 3.478485-2 3.801894-2 1.807385-2 4.623810-2 8.533171-3 5.688529-2 3.824655-3 1.071519-1 3.241590-4 1.318257-1 1.454523-4 1.566751-1 7.511289-5 1.819701-1 4.265355-5 2.089296-1 2.547285-5 2.371374-1 1.598697-5 2.691535-1 1.010744-5 3.019952-1 6.709692-6 3.388442-1 4.487460-6 3.758374-1 3.145984-6 4.216965-1 2.136873-6 4.623810-1 1.578766-6 5.011872-1 1.218727-6 5.495409-1 9.144002-7 6.095369-1 6.673330-7 6.683439-1 5.070866-7 7.328245-1 3.880187-7 8.511380-1 2.543552-7 9.015711-1 2.175579-7 9.440609-1 1.930533-7 9.885531-1 1.723225-7 1.035142+0 1.548649-7 1.083927+0 1.401142-7 1.148154+0 1.246314-7 1.216186+0 1.116571-7 1.318257+0 9.643982-8 1.531087+0 7.439955-8 1.819701+0 5.492195-8 2.018366+0 4.604160-8 2.290868+0 3.740181-8 2.630268+0 3.004096-8 3.019952+0 2.430887-8 3.507519+0 1.947936-8 4.073803+0 1.572645-8 4.786301+0 1.258441-8 5.688529+0 9.991413-9 6.839116+0 7.877077-9 8.317638+0 6.162866-9 1.000000+1 4.928800-9 1.244515+1 3.806778-9 1.603245+1 2.846968-9 2.137962+1 2.064914-9 2.884032+1 1.490756-9 4.365158+1 9.59381-10 6.456542+1 6.37618-10 1.122018+2 3.61419-10 2.238721+2 1.79279-10 4.466836+2 8.93548-11 3.548134+3 1.11991-11 1.000000+5 3.97110-13 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 4.450000-6 4.450000-6 1.000000+5 4.450000-6 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 4.450000-6 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 4.030000-6 4.170871+6 4.160000-6 4.274298+6 4.365158-6 4.402383+6 4.600000-6 4.512462+6 4.850000-6 4.596912+6 5.200000-6 4.671330+6 5.559043-6 4.710399+6 6.025596-6 4.724597+6 6.606934-6 4.704922+6 7.328245-6 4.645347+6 8.222426-6 4.544030+6 9.120108-6 4.423979+6 1.000000-5 4.294728+6 1.083927-5 4.159675+6 1.161449-5 4.027671+6 1.258925-5 3.850363+6 1.348963-5 3.677372+6 1.428894-5 3.516351+6 1.513561-5 3.341251+6 1.603245-5 3.153390+6 1.690000-5 2.970654+6 1.778279-5 2.786356+6 1.883649-5 2.572749+6 1.995262-5 2.356549+6 2.113489-5 2.141098+6 2.238721-5 1.931216+6 2.371374-5 1.729921+6 2.511886-5 1.539295+6 2.691535-5 1.328426+6 2.884032-5 1.137825+6 3.126079-5 9.420566+5 3.349654-5 7.958697+5 3.630781-5 6.489117+5 3.890451-5 5.407304+5 4.168694-5 4.475737+5 4.415704-5 3.798454+5 4.720000-5 3.119184+5 5.011872-5 2.591862+5 5.308844-5 2.156087+5 5.623413-5 1.780853+5 6.000000-5 1.425186+5 6.382635-5 1.143219+5 6.800000-5 9.059940+4 7.300000-5 6.919740+4 7.673615-5 5.695703+4 8.222426-5 4.316805+4 8.709636-5 3.401060+4 9.225714-5 2.661638+4 9.800000-5 2.040702+4 1.035142-4 1.593105+4 1.109175-4 1.155621+4 1.258925-4 6.346234+3 1.318257-4 5.133690+3 1.364583-4 4.406525+3 1.396368-4 3.996045+3 1.428894-4 3.637920+3 1.462177-4 3.326654+3 1.500000-4 3.030240+3 1.531087-4 2.866321+3 1.566751-4 2.708772+3 1.609700-4 2.554167+3 1.640590-4 2.462420+3 1.678804-4 2.367480+3 1.717908-4 2.288151+3 1.757924-4 2.222534+3 1.798871-4 2.169045+3 1.840772-4 2.126357+3 1.883649-4 2.093351+3 1.949845-4 2.059966+3 2.000000-4 2.046420+3 2.065380-4 2.042913+3 2.137962-4 2.052377+3 2.213095-4 2.073904+3 2.317395-4 2.118747+3 2.426610-4 2.178866+3 2.884032-4 2.474104+3 3.000000-4 2.539350+3 3.198895-4 2.564505+3 3.388442-4 2.571066+3 3.589219-4 2.561851+3 3.801894-4 2.536532+3 4.027170-4 2.494584+3 4.265795-4 2.433681+3 4.518559-4 2.359796+3 4.841724-4 2.256928+3 5.188000-4 2.142332+3 5.559043-4 2.019177+3 5.956621-4 1.890121+3 6.382635-4 1.758300+3 6.839116-4 1.625361+3 7.328245-4 1.492880+3 7.943282-4 1.341846+3 8.609938-4 1.197592+3 9.332543-4 1.061534+3 1.011579-3 9.346272+2 1.096478-3 8.172922+2 1.188502-3 7.099841+2 1.288250-3 6.128184+2 1.396368-3 5.256616+2 1.531087-3 4.379133+2 1.678804-3 3.621177+2 1.778279-3 3.199264+2 1.949845-3 2.604785+2 2.137962-3 2.106203+2 2.426610-3 1.558662+2 2.691535-3 1.209244+2 2.985383-3 9.309678+1 3.311311-3 7.108341+1 3.672823-3 5.386195+1 4.073803-3 4.051368+1 4.518559-3 3.025832+1 5.011872-3 2.244191+1 5.559043-3 1.653209+1 6.165950-3 1.209780+1 6.839116-3 8.795569+0 7.673615-3 6.125544+0 8.511380-3 4.392655+0 9.549926-3 3.013265+0 1.071519-2 2.051934+0 1.202264-2 1.387958+0 1.348963-2 9.325068-1 1.513561-2 6.222968-1 1.717908-2 3.956872-1 1.949845-2 2.497317-1 2.238721-2 1.499778-1 2.570396-2 8.938734-2 2.985383-2 5.062413-2 3.467369-2 2.844250-2 4.120975-2 1.450665-2 5.011872-2 6.707211-3 6.456542-2 2.444989-3 1.035142-1 3.704157-4 1.258925-1 1.703604-4 1.479108-1 9.050099-5 1.698244-1 5.298577-5 1.927525-1 3.266384-5 2.162719-1 2.118265-5 2.426610-1 1.383938-5 2.691535-1 9.503493-6 2.985383-1 6.576085-6 3.273407-1 4.773103-6 3.589219-1 3.488413-6 3.935501-1 2.568206-6 4.315191-1 1.904983-6 4.677351-1 1.476850-6 5.069907-1 1.153009-6 5.495409-1 9.071419-7 6.000000-1 7.038900-7 6.531306-1 5.545065-7 7.079458-1 4.450704-7 7.673615-1 3.596932-7 8.511380-1 2.756233-7 9.015711-1 2.390863-7 9.549926-1 2.087125-7 1.011579+0 1.835634-7 1.083927+0 1.587593-7 1.161449+0 1.383156-7 1.258925+0 1.186534-7 1.380384+0 1.003012-7 1.757924+0 6.542216-8 1.972423+0 5.371412-8 2.238721+0 4.357871-8 2.570396+0 3.495734-8 2.951209+0 2.825294-8 3.427678+0 2.261238-8 4.000000+0 1.811400-8 4.677351+0 1.457621-8 5.495409+0 1.173780-8 6.531306+0 9.377057-9 8.035261+0 7.219878-9 9.660509+0 5.766288-9 1.216186+1 4.389414-9 1.548817+1 3.323425-9 2.065380+1 2.407775-9 2.851018+1 1.694162-9 4.265795+1 1.103316-9 6.309573+1 7.33001-10 1.096478+2 4.15350-10 2.187762+2 2.05975-10 4.365158+2 1.02647-10 3.467369+3 1.28646-11 1.000000+5 4.45750-13 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 4.030000-6 4.030000-6 1.000000+5 4.030000-6 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 4.030000-6 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.330000-6 5.297729+6 7.244360-6 2.996833+6 8.035261-6 1.919238+6 8.810489-6 1.282173+6 9.660509-6 8.504425+5 1.059254-5 5.599608+5 1.161449-5 3.661548+5 1.428894-5 1.391534+5 1.513561-5 1.068645+5 1.590000-5 8.577500+4 1.659587-5 7.135865+4 1.717908-5 6.191683+4 1.778279-5 5.410989+4 1.830000-5 4.869260+4 1.883649-5 4.408043+4 1.935000-5 4.045160+4 1.990000-5 3.726460+4 2.041738-5 3.481215+4 2.090000-5 3.292020+4 2.137962-5 3.135731+4 2.190000-5 2.996260+4 2.250000-5 2.867680+4 2.300000-5 2.782380+4 2.350000-5 2.713540+4 2.420000-5 2.639940+4 2.500000-5 2.581560+4 2.580000-5 2.544140+4 2.660725-5 2.522252+4 2.770000-5 2.510800+4 2.917427-5 2.516351+4 3.162278-5 2.549460+4 3.630781-5 2.616489+4 3.935501-5 2.637688+4 4.220000-5 2.636840+4 4.500000-5 2.617100+4 4.800000-5 2.578940+4 5.128614-5 2.522281+4 5.500000-5 2.444860+4 5.900000-5 2.351280+4 6.309573-5 2.249458+4 6.839116-5 2.117503+4 7.500000-5 1.959712+4 8.300000-5 1.784376+4 9.440609-5 1.570786+4 1.109175-4 1.326630+4 1.800000-4 7.866480+3 2.018366-4 6.906814+3 2.213095-4 6.176158+3 2.483133-4 5.326985+3 2.851018-4 4.422265+3 3.630781-4 3.166493+3 4.841724-4 2.112783+3 5.688529-4 1.669654+3 8.035261-4 1.001085+3 9.772372-4 7.416513+2 1.244515-3 5.081336+2 1.513561-3 3.715889+2 1.840772-3 2.695055+2 2.213095-3 1.977495+2 2.660725-3 1.440483+2 3.163750-3 1.062112+2 3.890451-3 7.320634+1 4.786301-3 5.002512+1 5.821032-3 3.465100+1 7.079458-3 2.382437+1 8.609938-3 1.625889+1 1.047129-2 1.101355+1 1.258925-2 7.581153+0 1.513561-2 5.180382+0 1.819701-2 3.512687+0 2.187762-2 2.363294+0 2.600160-2 1.618035+0 3.090295-2 1.099765+0 3.672823-2 7.418796-1 4.365158-2 4.967512-1 5.188000-2 3.301070-1 6.165950-2 2.176665-1 7.413102-2 1.385425-1 8.709636-2 9.268665-2 1.071519-1 5.483916-2 1.380384-1 2.863435-2 2.483133-1 6.236285-3 3.054921-1 3.664564-3 3.589219-1 2.438176-3 4.168694-1 1.682087-3 4.786301-1 1.203222-3 5.432503-1 8.914088-4 6.095369-1 6.831840-4 6.839117-1 5.273158-4 7.673615-1 4.098982-4 8.609938-1 3.209364-4 9.549926-1 2.592490-4 1.083927+0 2.014469-4 1.244515+0 1.540302-4 1.412538+0 1.214040-4 1.584893+0 9.848174-5 1.798871+0 7.886933-5 2.044000+0 6.354100-5 2.344229+0 5.079834-5 2.691535+0 4.085238-5 3.090295+0 3.309613-5 3.589219+0 2.655233-5 4.168694+0 2.145936-5 4.897788+0 1.718981-5 5.821032+0 1.366284-5 7.000000+0 1.077900-5 8.413951+0 8.563477-6 1.023293+1 6.757846-6 1.273503+1 5.223507-6 1.640590+1 3.909408-6 2.162719+1 2.873642-6 2.917427+1 2.075229-6 4.415704+1 1.335823-6 6.606934+1 8.774920-7 1.161449+2 4.917389-7 2.317395+2 2.440027-7 4.623810+2 1.216360-7 3.672823+3 1.524723-8 1.000000+5 5.59670-10 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.330000-6 6.330000-6 1.000000+5 6.330000-6 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.330000-6 0.0 1.000000+5 1.000000+5 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.088250-7 1.026600+0 1.303180-6 1.027100+0 1.773000-6 1.027500+0 2.220660-6 1.028100+0 3.023390-6 1.028750+0 4.088250-6 1.029500+0 5.594880-6 1.030100+0 7.036240-6 1.031000+0 9.627970-6 1.032000+0 1.317350-5 1.033200+0 1.845380-5 1.034000+0 2.265380-5 1.035300+0 3.074930-5 1.036640+0 4.088250-5 1.038200+0 5.517220-5 1.039700+0 7.167980-5 1.041500+0 9.536910-5 1.043800+0 1.323750-4 1.046400+0 1.841760-4 1.048300+0 2.293040-4 1.051200+0 3.110450-4 1.054080+0 4.088250-4 1.057700+0 5.572560-4 1.061100+0 7.248520-4 1.065100+0 9.596280-4 1.070400+0 1.338790-3 1.076200+0 1.850210-3 1.080600+0 2.310610-3 1.087100+0 3.113130-3 1.093710+0 4.088250-3 1.102600+0 5.668080-3 1.110700+0 7.391940-3 1.120600+0 9.887550-3 1.133300+0 1.374690-2 1.147500+0 1.897930-2 1.158200+0 2.358640-2 1.174100+0 3.152630-2 1.190110+0 4.088250-2 1.205100+0 5.090410-2 1.227500+0 6.814630-2 1.250000+0 8.802000-2 1.265600+0 1.031290-1 1.294900+0 1.341150-1 1.331800+0 1.772230-1 1.362600+0 2.159930-1 1.397000+0 2.616610-1 1.433800+0 3.127530-1 1.500000+0 4.098000-1 1.562500+0 5.074660-1 1.617200+0 5.972590-1 1.712900+0 7.620090-1 1.838500+0 9.879150-1 1.946200+0 1.185470+0 2.000000+0 1.284000+0 2.044000+0 1.364000+0 2.163500+0 1.579200+0 2.372600+0 1.947020+0 2.647100+0 2.409670+0 3.000000+0 2.971000+0 3.500000+0 3.708840+0 4.000000+0 4.386000+0 4.750000+0 5.298310+0 5.000000+0 5.579000+0 6.000000+0 6.603000+0 7.000000+0 7.507000+0 8.000000+0 8.320000+0 9.000000+0 9.059000+0 1.000000+1 9.737000+0 1.100000+1 1.036000+1 1.200000+1 1.095000+1 1.300000+1 1.149000+1 1.400000+1 1.200000+1 1.500000+1 1.247000+1 1.600000+1 1.291000+1 1.800000+1 1.371000+1 2.000000+1 1.441000+1 2.200000+1 1.505000+1 2.400000+1 1.564000+1 2.600000+1 1.617000+1 2.800000+1 1.666000+1 3.000000+1 1.711000+1 4.000000+1 1.895000+1 5.000000+1 2.032000+1 6.000000+1 2.138000+1 8.000000+1 2.295000+1 1.000000+2 2.405000+1 1.500000+2 2.579000+1 2.000000+2 2.682000+1 3.000000+2 2.802000+1 4.000000+2 2.871000+1 5.000000+2 2.916000+1 6.000000+2 2.948000+1 8.000000+2 2.991000+1 1.000000+3 3.018000+1 1.500000+3 3.058000+1 2.000000+3 3.080000+1 3.000000+3 3.104000+1 4.000000+3 3.116000+1 5.000000+3 3.124000+1 6.000000+3 3.130000+1 8.000000+3 3.137000+1 1.000000+4 3.141000+1 1.500000+4 3.148000+1 2.000000+4 3.151000+1 3.000000+4 3.155000+1 4.000000+4 3.156000+1 5.000000+4 3.158000+1 6.000000+4 3.158000+1 8.000000+4 3.160000+1 1.000000+5 3.160000+1 1 71000 7 8 1.749700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.112990-7 2.094700+0 1.252260-6 2.099900+0 1.665960-6 2.106600+0 2.317490-6 2.114000+0 3.206540-6 2.119500+0 3.992120-6 2.127900+0 5.414070-6 2.136250+0 7.112990-6 2.147000+0 9.752410-6 2.156900+0 1.266720-5 2.169000+0 1.690520-5 2.184500+0 2.349880-5 2.201800+0 3.251120-5 2.214800+0 4.050650-5 2.234200+0 5.448840-5 2.253680+0 7.112990-5 2.281500+0 9.962990-5 2.307000+0 1.308630-4 2.338200+0 1.759570-4 2.377400+0 2.436790-4 2.410200+0 3.099190-4 2.446800+0 3.942340-4 2.485900+0 4.963630-4 2.532900+0 6.352390-4 2.556430+0 7.112990-4 2.611900+0 9.069910-4 2.660400+0 1.096510-3 2.745300+0 1.467630-3 2.809000+0 1.777390-3 2.904500+0 2.289720-3 3.000000+0 2.858000-3 3.125000+0 3.685050-3 3.234400+0 4.483510-3 3.425800+0 6.036570-3 3.569300+0 7.318870-3 3.784700+0 9.406380-3 4.000000+0 1.165000-2 4.250000+0 1.439270-2 4.625000+0 1.870210-2 5.000000+0 2.318000-2 5.500000+0 2.932120-2 6.000000+0 3.554000-2 6.750000+0 4.478850-2 7.000000+0 4.783000-2 8.000000+0 5.972000-2 9.000000+0 7.108000-2 1.000000+1 8.185000-2 1.100000+1 9.203000-2 1.200000+1 1.016000-1 1.300000+1 1.106000-1 1.400000+1 1.192000-1 1.500000+1 1.273000-1 1.600000+1 1.350000-1 1.800000+1 1.492000-1 2.000000+1 1.621000-1 2.200000+1 1.739000-1 2.400000+1 1.847000-1 2.600000+1 1.947000-1 2.800000+1 2.039000-1 3.000000+1 2.124000-1 4.000000+1 2.477000-1 5.000000+1 2.742000-1 6.000000+1 2.951000-1 8.000000+1 3.263000-1 1.000000+2 3.488000-1 1.500000+2 3.858000-1 2.000000+2 4.087000-1 3.000000+2 4.365000-1 4.000000+2 4.530000-1 5.000000+2 4.643000-1 6.000000+2 4.726000-1 8.000000+2 4.839000-1 1.000000+3 4.914000-1 1.500000+3 5.026000-1 2.000000+3 5.090000-1 3.000000+3 5.159000-1 4.000000+3 5.200000-1 5.000000+3 5.224000-1 6.000000+3 5.242000-1 8.000000+3 5.265000-1 1.000000+4 5.280000-1 1.500000+4 5.300000-1 2.000000+4 5.312000-1 3.000000+4 5.323000-1 4.000000+4 5.330000-1 5.000000+4 5.334000-1 6.000000+4 5.337000-1 8.000000+4 5.340000-1 1.000000+5 5.342000-1 1 71000 7 8 1.749700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 71000 7 9 1.749700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.100000+1 1.000000+5 7.100000+1 5.000000+5 7.096200+1 7.500000+5 7.093680+1 1.000000+6 7.091900+1 1.500000+6 7.086500+1 1.875000+6 7.079010+1 2.000000+6 7.076100+1 2.375000+6 7.066010+1 2.500000+6 7.063000+1 2.875000+6 7.051500+1 3.000000+6 7.047300+1 3.437500+6 7.031040+1 3.812500+6 7.016080+1 4.000000+6 7.008900+1 4.500000+6 6.987780+1 5.000000+6 6.964500+1 5.500000+6 6.938650+1 5.875000+6 6.917970+1 6.437500+6 6.885570+1 6.500000+6 6.881700+1 7.000000+6 6.852100+1 7.500000+6 6.821300+1 8.250000+6 6.774900+1 9.000000+6 6.728000+1 1.000000+7 6.663500+1 1.250000+7 6.498900+1 1.500000+7 6.330100+1 1.750000+7 6.164600+1 2.000000+7 5.995100+1 2.250000+7 5.822500+1 2.375000+7 5.735460+1 2.500000+7 5.649500+1 2.875000+7 5.392130+1 3.000000+7 5.307900+1 3.250000+7 5.140550+1 3.500000+7 4.977790+1 3.625000+7 4.898410+1 4.000000+7 4.669300+1 4.500000+7 4.385320+1 5.000000+7 4.123900+1 5.500000+7 3.882260+1 5.750000+7 3.767720+1 6.000000+7 3.657500+1 6.500000+7 3.447500+1 7.000000+7 3.251300+1 7.750000+7 2.981400+1 8.000000+7 2.898300+1 9.000000+7 2.597200+1 1.000000+8 2.345400+1 1.187500+8 1.987190+1 1.250000+8 1.895600+1 1.375000+8 1.745640+1 1.437500+8 1.683440+1 1.500000+8 1.627900+1 1.718800+8 1.466350+1 1.750000+8 1.445190+1 1.875000+8 1.361120+1 1.906300+8 1.339970+1 1.968800+8 1.297330+1 2.000000+8 1.275900+1 2.250000+8 1.109040+1 2.500000+8 9.789600+0 2.781300+8 8.744140+0 2.859400+8 8.450520+0 2.875000+8 8.389090+0 2.953100+8 8.070630+0 3.000000+8 7.867300+0 3.062500+8 7.583250+0 3.335900+8 6.424120+0 3.418000+8 6.158210+0 3.500000+8 5.945000+0 3.589800+8 5.771970+0 3.712900+8 5.603140+0 4.000000+8 5.304800+0 4.125000+8 5.152500+0 4.234400+8 5.005700+0 4.425800+8 4.731900+0 4.856400+8 4.183070+0 5.000000+8 4.024300+0 5.625000+8 3.505550+0 5.875000+8 3.314530+0 6.000000+8 3.216100+0 6.250000+8 3.013460+0 6.718800+8 2.671000+0 6.906300+8 2.561280+0 7.000000+8 2.513400+0 7.250000+8 2.407160+0 7.718800+8 2.240140+0 7.906300+8 2.170460+0 8.000000+8 2.133400+0 8.125000+8 2.080860+0 8.359400+8 1.976720+0 8.564500+8 1.883800+0 9.461700+8 1.524270+0 9.730800+8 1.442030+0 1.000000+9 1.373400+0 1.015600+9 1.339920+0 1.045900+9 1.286090+0 1.074300+9 1.246230+0 1.113400+9 1.204070+0 1.125800+9 1.193150+0 1.375000+9 1.077470+0 1.500000+9 1.023000+0 1.560500+9 9.883170-1 1.615500+9 9.533560-1 1.686000+9 9.058300-1 1.764500+9 8.517390-1 1.867500+9 7.822390-1 2.000000+9 6.994100-1 2.139200+9 6.225970-1 2.272600+9 5.580930-1 2.443000+9 4.868520-1 2.602800+9 4.297400-1 2.825100+9 3.631520-1 2.961100+9 3.285910-1 3.215900+9 2.740200-1 3.438900+9 2.351670-1 3.500000+9 2.257130-1 3.719500+9 1.954280-1 3.954200+9 1.684080-1 4.327700+9 1.342800-1 4.663900+9 1.106250-1 5.000000+9 9.193400-2 5.375000+9 7.548580-2 5.703100+9 6.402510-2 6.277300+9 4.878740-2 7.138700+9 3.363520-2 8.000000+9 2.408100-2 1.00000+10 1.246000-2 1.41360+10 4.501640-3 1.85560+10 2.033340-3 2.64460+10 7.273210-4 3.56400+10 3.077840-4 5.17300+10 1.059160-4 7.58650+10 3.565600-5 1.00000+11 1.633300-5 1.34280+11 7.128970-6 2.20600+11 1.779920-6 4.19930+11 2.988580-7 1.03480+12 2.514340-8 3.24440+12 1.128020-9 1.00000+14 1.12290-13 2.05350+15 3.20253-17 1.00000+17 8.28670-22 1 71000 7 0 1.749700+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.30000-12 1.000000+2 9.30000-10 1.000000+3 9.300000-8 1.000000+4 9.300000-6 1.000000+5 9.300000-4 5.000000+5 2.325000-2 7.500000+5 5.231250-2 1.000000+6 9.300000-2 1.500000+6 2.074000-1 1.875000+6 3.198230-1 2.000000+6 3.620000-1 2.375000+6 5.018870-1 2.500000+6 5.527000-1 2.875000+6 7.162270-1 3.000000+6 7.742000-1 3.437500+6 9.887040-1 3.812500+6 1.184880+0 4.000000+6 1.286500+0 4.500000+6 1.565820+0 5.000000+6 1.854000+0 5.500000+6 2.146290+0 5.875000+6 2.366160+0 6.437500+6 2.694600+0 6.500000+6 2.730980+0 7.000000+6 3.018600+0 7.500000+6 3.300560+0 8.250000+6 3.713400+0 9.000000+6 4.114500+0 1.000000+7 4.634000+0 1.250000+7 5.900200+0 1.500000+7 7.176000+0 1.750000+7 8.471100+0 2.000000+7 9.762000+0 2.250000+7 1.102520+1 2.375000+7 1.164400+1 2.500000+7 1.225400+1 2.875000+7 1.403050+1 3.000000+7 1.460700+1 3.250000+7 1.573530+1 3.500000+7 1.683320+1 3.625000+7 1.736730+1 4.000000+7 1.891900+1 4.500000+7 2.085300+1 5.000000+7 2.264000+1 5.500000+7 2.429220+1 5.750000+7 2.507670+1 6.000000+7 2.583800+1 6.500000+7 2.729970+1 7.000000+7 2.869900+1 7.750000+7 3.068990+1 8.000000+7 3.133200+1 9.000000+7 3.377800+1 1.000000+8 3.605900+1 1.187500+8 3.995750+1 1.250000+8 4.115900+1 1.375000+8 4.341560+1 1.437500+8 4.446710+1 1.500000+8 4.547100+1 1.718800+8 4.857660+1 1.750000+8 4.897480+1 1.875000+8 5.045820+1 1.906300+8 5.080110+1 1.968800+8 5.146270+1 2.000000+8 5.178200+1 2.250000+8 5.401860+1 2.500000+8 5.584600+1 2.781300+8 5.754090+1 2.859400+8 5.796520+1 2.875000+8 5.804490+1 2.953100+8 5.843910+1 3.000000+8 5.867200+1 3.062500+8 5.896520+1 3.335900+8 6.014860+1 3.418000+8 6.047000+1 3.500000+8 6.078500+1 3.589800+8 6.110700+1 3.712900+8 6.153820+1 4.000000+8 6.245100+1 4.125000+8 6.281200+1 4.234400+8 6.312070+1 4.425800+8 6.362540+1 4.856400+8 6.463010+1 5.000000+8 6.493600+1 5.625000+8 6.606830+1 5.875000+8 6.645220+1 6.000000+8 6.663300+1 6.250000+8 6.696050+1 6.718800+8 6.748510+1 6.906300+8 6.766890+1 7.000000+8 6.775900+1 7.250000+8 6.796750+1 7.718800+8 6.831150+1 7.906300+8 6.843590+1 8.000000+8 6.849700+1 8.125000+8 6.856660+1 8.359400+8 6.869440+1 8.564500+8 6.879880+1 9.461700+8 6.917430+1 9.730800+8 6.926890+1 1.000000+9 6.936100+1 1.015600+9 6.940680+1 1.045900+9 6.949380+1 1.074300+9 6.957320+1 1.113400+9 6.967920+1 1.125800+9 6.970880+1 1.375000+9 7.017770+1 1.500000+9 7.035100+1 1.560500+9 7.041450+1 1.615500+9 7.047020+1 1.686000+9 7.053890+1 1.764500+9 7.060190+1 1.867500+9 7.067120+1 2.000000+9 7.075500+1 2.139200+9 7.081610+1 2.272600+9 7.086060+1 2.443000+9 7.090650+1 2.602800+9 7.094050+1 2.825100+9 7.097200+1 2.961100+9 7.098200+1 3.215900+9 7.099660+1 3.438900+9 7.100540+1 3.500000+9 7.100510+1 3.719500+9 7.100390+1 3.954200+9 7.100270+1 4.327700+9 7.100090+1 4.663900+9 7.099940+1 5.000000+9 7.099800+1 5.375000+9 7.099830+1 5.703100+9 7.099860+1 6.277300+9 7.099900+1 7.138700+9 7.099950+1 8.000000+9 7.100000+1 1.00000+10 7.100000+1 1.41360+10 7.100000+1 1.85560+10 7.100000+1 2.64460+10 7.100000+1 3.56400+10 7.100000+1 5.17300+10 7.100000+1 7.58650+10 7.100000+1 1.00000+11 7.100000+1 1.34280+11 7.100000+1 2.20600+11 7.100000+1 4.19930+11 7.100000+1 1.03480+12 7.100000+1 3.24440+12 7.100000+1 1.00000+14 7.100000+1 2.05350+15 7.100000+1 1.00000+17 7.100000+1 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.680736+0 1.002003-6 2.393435+0 1.006043-6 1.598204+0 1.008695-6 1.080382+0 1.011089-6 6.974569-1 1.013484-6 4.156344-1 1.015878-6 2.286439-1 1.019320-6 6.537788-2 1.020667-6 0.0 1.134798-6 0.0 1.140036-6 1.195735-1 1.140385-6 1.274716-1 1.143178-6 2.328374-1 1.145971-6 3.925958-1 1.149113-6 6.443674-1 1.153958-6 1.124146+0 1.157318-6 1.437371+0 1.160193-6 1.617851+0 1.163123-6 1.672551+0 1.165916-6 1.593994+0 1.168890-6 1.386661+0 1.173602-6 9.259354-1 1.176696-6 6.259301-1 1.179664-6 3.938966-1 1.182282-6 2.408020-1 1.185075-6 1.324671-1 1.189090-6 3.787733-2 1.190662-6 0.0 1.398137-6 0.0 1.403299-6 2.088566-2 1.405019-6 2.775924-2 1.408461-6 5.070452-2 1.411902-6 8.549479-2 1.415343-6 1.330719-1 1.420935-6 2.301620-1 1.425667-6 3.104919-1 1.429539-6 3.528200-1 1.432980-6 3.644395-1 1.436206-6 3.501741-1 1.439863-6 3.064781-1 1.445468-6 2.102859-1 1.449757-6 1.363075-1 1.453198-6 8.799539-2 1.456639-6 5.243895-2 1.460081-6 2.884710-2 1.465243-6 7.333049-3 1.466963-6 0.0 1.841601-6 0.0 1.846134-6 1.230823-7 1.850667-6 2.435460-7 1.855200-6 4.448566-7 1.859733-6 7.500894-7 1.864266-6 1.167508-6 1.877864-6 2.729526-6 1.882397-6 3.100157-6 1.886930-6 3.252360-6 1.891463-6 3.163825-6 1.895996-6 2.864122-6 1.909594-6 1.504221-6 1.914127-6 1.141761-6 1.918660-6 8.710816-7 1.923193-6 6.765209-7 1.927726-6 5.326866-7 1.932259-6 3.573112-7 1.936365-6 2.991756-7 1.945602-6 1.585055-7 1.950220-6 1.023256-7 1.954838-6 6.097876-8 1.959457-6 3.354492-8 1.964075-6 1.703448-8 1.968693-6 0.0 2.266962-6 0.0 2.272541-6 4.095000-7 2.278121-6 8.102876-7 2.283701-6 1.480057-6 2.289281-6 2.495579-6 2.294861-6 3.884348-6 2.311600-6 9.082305-6 2.317180-6 1.027844-5 2.322760-6 1.074659-5 2.328340-6 1.038619-5 2.333920-6 9.286682-6 2.350659-6 4.243090-6 2.356239-6 2.851687-6 2.361819-6 1.811724-6 2.367399-6 1.100593-6 2.375336-6 4.492530-7 2.378558-6 1.742298-7 2.386667-6 1.070542-7 2.392332-6 6.911049-8 2.397997-6 4.118491-8 2.403662-6 2.265615-8 2.409328-6 1.150505-8 2.414993-6 0.0 2.503539-6 0.0 2.509701-6 1.19252-14 2.515863-6 2.35967-14 2.522025-6 4.31013-14 2.528187-6 7.26747-14 2.534349-6 1.13118-13 2.540511-6 1.62529-13 2.546674-6 2.15569-13 2.552836-6 2.63933-13 2.558998-6 2.98302-13 2.565160-6 3.11224-13 2.568773-6 3.04497-13 2.576425-6 1.609375-8 2.589108-6 1.182162-2 2.595449-6 2.159318-2 2.602133-6 3.749959-2 2.608295-6 5.730404-2 2.627157-6 1.322271-1 2.633498-6 1.494455-1 2.639840-6 1.559192-1 2.646182-6 1.501654-1 2.652523-6 1.335041-1 2.671548-6 5.804870-2 2.677889-6 3.747428-2 2.684231-6 2.233203-2 2.690572-6 1.228506-2 2.700061-6 3.145959-3 2.703255-6 7.263850-8 2.712789-6 0.0 2.928899-6 0.0 2.939713-6 4.641674-3 2.943317-6 6.169273-3 2.950526-6 1.126868-2 2.957735-6 1.900054-2 2.964944-6 2.957419-2 2.976400-6 5.065220-2 2.991052-6 4.108354+0 2.998378-6 7.448154+0 3.005704-6 1.250347+1 3.013821-6 2.034692+1 3.035466-6 4.552683+1 3.043006-6 5.123066+1 3.050000-6 5.314255+1 3.057886-6 5.051940+1 3.066946-6 4.258830+1 3.086290-6 1.983541+1 3.094076-6 1.251842+1 3.100978-6 7.680472+0 3.108268-6 4.311018+0 3.122920-6 2.773916-1 3.146549-6 6.604518-1 3.154145-6 7.477126-1 3.161740-6 7.820738-1 3.169335-6 7.565181-1 3.178635-6 6.525835-1 3.199716-6 3.256359-1 3.207312-6 2.316601-1 3.214907-6 1.628585-1 3.222502-6 1.162018-1 3.231888-6 7.747791-2 3.237693-6 4.991286-2 3.239738-6 4.834054-2 3.255686-6 8.242712+0 3.263858-6 1.527539+1 3.272619-6 2.705418+1 3.281129-6 4.271998+1 3.303532-6 9.185885+1 3.312797-6 1.045471+2 3.320056-6 1.080296+2 3.328186-6 1.032604+2 3.336861-6 8.976343+1 3.349414-6 6.221296+1 3.359351-6 4.032650+1 3.367325-6 2.603339+1 3.375299-6 1.551404+1 3.383274-6 8.534398+0 3.396273-6 1.631309+0 3.399222-6 3.286410-2 3.401283-6 3.745700-2 3.409988-6 7.051869-2 3.418320-6 1.183330-1 3.426651-6 1.842050-1 3.451268-6 4.253058-1 3.459978-6 4.844700-1 3.468310-6 5.074904-1 3.476642-6 4.922452-1 3.484973-6 4.425489-1 3.493305-6 3.692689-1 3.510112-6 2.058969-1 3.518524-6 1.501308-1 3.526632-6 1.127832-1 3.528432-6 1.077531-1 3.534964-6 9.670071-2 3.537074-6 9.624692-2 3.545717-6 1.062737-1 3.547288-6 1.108537-1 3.551627-6 1.293231-1 3.556019-6 1.599437-1 3.564750-6 2.290503-1 3.589783-6 4.664554-1 3.599675-6 5.385922-1 3.608406-6 5.786089-1 3.617788-6 5.892322-1 3.627994-6 5.621639-1 3.636773-6 5.118032-1 3.666708-6 2.659208-1 3.675441-6 2.098525-1 3.681824-6 1.764569-1 3.684444-6 1.664257-1 3.689444-6 1.576256-1 3.696956-6 1.557871-1 3.705752-6 1.667172-1 3.731306-6 2.229394-1 3.735913-6 2.295761-1 3.745042-6 2.330811-1 3.781554-6 2.112808-1 3.798293-6 2.143770-1 3.811225-6 2.206632-1 3.822840-6 2.312676-1 3.838489-6 2.566954-1 3.852400-6 2.974181-1 3.888903-6 4.475336-1 3.900624-6 4.746763-1 3.913138-6 4.738903-1 3.927514-6 4.305305-1 3.961440-6 2.830617-1 3.972648-6 2.468286-1 3.990183-6 2.199757-1 3.998871-6 2.121035-1 4.014070-6 2.276836-1 4.025629-6 2.546789-1 4.061040-6 3.677829-1 4.073766-6 3.861624-1 4.081795-6 3.889555-1 4.120605-6 3.450755-1 4.130624-6 3.424088-1 4.160681-6 3.680659-1 4.194940-6 3.819190-1 4.221849-6 3.805062-1 4.399308-6 4.060960-1 4.770500-6 4.694184-1 4.793984-6 6.052641-1 4.805726-6 7.163819-1 4.817468-6 8.839398-1 4.830096-6 1.133666+0 4.843763-6 1.470877+0 4.871074-6 2.750179+0 4.885417-6 3.544939+0 4.899280-6 4.478738+0 4.939122-6 7.367519+0 4.952821-6 7.942869+0 4.963345-6 7.988529+0 4.976664-6 7.446985+0 4.988182-6 6.566712+0 5.022207-6 3.171180+0 5.034128-6 2.228330+0 5.046050-6 1.534872+0 5.057971-6 1.075336+0 5.081814-6 5.147709-1 5.383922-6 5.560902-1 5.414606-6 5.982840-1 5.436929-6 7.841718-1 5.442056-6 8.368969-1 5.454588-6 1.009872+0 5.470687-6 1.337998+0 5.499502-6 2.108870+0 5.510850-6 2.426600+0 5.524025-6 2.716950+0 5.535361-6 2.874550+0 5.550548-6 2.877209+0 5.566844-6 2.648817+0 5.580814-6 2.316178+0 5.609428-6 1.514075+0 5.622458-6 1.213946+0 5.628666-6 1.083460+0 5.641172-6 8.869174-1 5.654499-6 7.495993-1 5.681154-6 5.997753-1 5.690590-6 6.192804-1 5.712526-6 6.878537-1 5.726518-6 7.596414-1 5.740509-6 8.648534-1 5.761497-6 1.088885+0 5.796476-6 1.495437+0 5.810468-6 1.597567+0 5.824460-6 1.627822+0 5.842222-6 1.562489+0 5.865518-6 1.370701+0 5.888032-6 1.173793+0 5.894419-6 1.128077+0 5.908411-6 1.074012+0 5.926549-6 1.079552+0 5.980019-6 1.235277+0 6.004069-6 1.244259+0 6.057586-6 1.192506+0 6.190957-6 1.172857+0 6.302708-6 1.134886+0 6.386006-6 1.145482+0 7.139378-6 1.085309+0 8.081649-6 1.067785+0 1.045642-5 1.130733+0 1.289803-5 1.215346+0 1.296153-5 2.465971+0 1.299450-5 3.559509+0 1.302520-5 5.077348+0 1.306073-5 7.532988+0 1.315201-5 1.519134+1 1.318889-5 1.712174+1 1.321779-5 1.765197+1 1.325016-5 1.692738+1 1.328470-5 1.487553+1 1.337423-5 7.359200+0 1.340598-5 5.186237+0 1.343773-5 3.587114+0 1.346947-5 2.526269+0 1.353297-5 1.229587+0 1.409874-5 1.244840+0 1.416996-5 2.225148+0 1.420466-5 3.024127+0 1.423936-5 4.224439+0 1.427456-5 5.881373+0 1.437918-5 1.183652+1 1.441613-5 1.315525+1 1.444963-5 1.351881+1 1.448846-5 1.280852+1 1.452666-5 1.116325+1 1.461891-5 5.938744+0 1.465361-5 4.377705+0 1.468831-5 3.273278+0 1.472301-5 2.596584+0 1.479241-5 1.888577+0 1.484545-5 2.042914+0 1.488120-5 2.077576+0 1.491695-5 2.047212+0 1.498844-5 1.831752+0 1.505994-5 1.558227+0 1.513144-5 1.368743+0 1.516719-5 1.315567+0 1.525467-5 1.250872+0 1.548349-5 1.251759+0 1.559783-5 1.338067+0 1.567405-5 1.478179+0 1.581103-5 1.820968+0 1.586460-5 1.874712+0 1.592680-5 1.807692+0 1.605515-5 1.483094+0 1.613259-5 1.357335+0 1.621162-5 1.330925+0 1.625694-5 1.347552+0 1.641654-5 1.503896+0 1.654311-5 1.509961+0 1.673840-5 1.469726+0 1.717127-5 1.446057+0 1.726518-5 1.500295+0 1.747972-5 1.817806+0 1.756188-5 1.822928+0 1.776638-5 1.562756+0 1.787335-5 1.524970+0 1.798784-5 1.569216+0 1.815996-5 1.628627+0 1.901195-5 1.554072+0 2.000920-5 1.547076+0 2.646901-5 1.342881+0 2.906442-5 1.305277+0 2.920749-5 3.112940+0 2.927903-5 4.607463+0 2.935057-5 6.873744+0 2.942211-5 9.973152+0 2.948984-5 1.355829+1 2.963672-5 3.749424+1 2.970826-5 5.294583+1 2.978926-5 7.661008+1 2.986185-5 1.031234+2 3.004756-5 1.800326+2 3.010909-5 1.989775+2 3.015486-5 2.087701+2 3.022175-5 2.125237+2 3.029495-5 2.013011+2 3.037021-5 1.755896+2 3.057094-5 8.169822+1 3.065121-5 5.093791+1 3.072380-5 3.088089+1 3.079638-5 1.757301+1 3.093429-5 2.130202+0 3.094156-5 1.301012+0 3.136616-5 1.303282+0 3.152057-5 1.517802+0 3.159777-5 1.694860+0 3.167498-5 1.963213+0 3.175218-5 2.330062+0 3.199332-5 3.736251+0 3.211306-5 4.220127+0 3.215082-5 4.403917+0 3.231215-5 4.715972+0 3.239110-5 5.025260+0 3.248979-5 5.817857+0 3.256813-5 6.727586+0 3.270205-5 8.603678+0 3.279892-5 9.710618+0 3.287638-5 1.016711+1 3.298227-5 1.010206+1 3.316767-5 9.025613+0 3.326214-5 8.398849+0 3.341031-5 8.046511+0 3.377022-5 7.929987+0 3.613247-5 6.736630+0 3.623785-5 6.691554+0 3.641624-5 1.534659+1 3.651101-5 2.320544+1 3.660021-5 3.435859+1 3.669382-5 5.045134+1 3.695420-5 1.044141+2 3.705315-5 1.173646+2 3.714001-5 1.209571+2 3.722718-5 1.160381+2 3.732256-5 1.018641+2 3.757577-5 4.904475+1 3.766497-5 3.382970+1 3.775416-5 2.262481+1 3.784336-5 1.518101+1 3.802175-5 6.056866+0 3.874210-5 5.931282+0 3.902558-5 6.134767+0 3.923205-5 6.418812+0 3.963517-5 7.331180+0 3.995835-5 8.611830+0 4.013662-5 9.304558+0 4.032361-5 9.526555+0 4.093463-5 8.796241+0 4.171734-5 8.700584+0 4.267675-5 8.188390+0 4.704032-5 7.075017+0 5.110039-5 6.467686+0 5.650000-5 6.108183+0 6.225300-5 6.158259+0 6.333643-5 6.312009+0 6.486559-5 6.289885+0 7.318078-5 6.969330+0 9.120108-5 9.274944+0 1.259884-4 1.375747+1 1.536000-4 1.655104+1 1.932561-4 1.919780+1 1.968232-4 2.024705+1 2.030100-4 2.063607+1 2.071746-4 2.170927+1 2.270000-4 2.245967+1 2.884032-4 2.124966+1 3.450511-4 2.103387+1 3.523648-4 2.263136+1 3.600891-4 2.208764+1 4.020835-4 2.177302+1 4.252808-4 2.173812+1 4.906601-4 2.090755+1 5.011872-4 2.113578+1 8.252062-4 1.553919+1 1.080068-3 1.229055+1 1.358181-3 9.790977+0 1.558421-3 8.477331+0 1.569945-3 8.688149+0 1.576799-3 9.304008+0 1.581983-3 1.027155+1 1.587670-3 1.197851+1 1.596386-3 1.570581+1 1.605609-3 1.982607+1 1.613129-3 2.223959+1 1.624009-3 2.397102+1 1.640199-3 2.575693+1 1.667184-3 3.080570+1 1.685491-3 3.189418+1 1.798871-3 3.296956+1 1.926867-3 3.038414+1 1.975786-3 2.951845+1 1.997653-3 3.078818+1 2.018065-3 3.266317+1 2.043926-3 3.235231+1 2.215424-3 2.896489+1 2.274444-3 2.962732+1 2.450591-3 2.702400+1 2.514718-3 2.694917+1 2.918321-3 2.208813+1 3.388442-3 1.794124+1 3.954546-3 1.433981+1 4.518559-3 1.177740+1 5.040806-3 9.982566+0 5.717254-3 8.234310+0 6.518688-3 6.715238+0 7.330695-3 5.583296+0 8.342362-3 4.544868+0 9.021042-3 4.023361+0 9.084711-3 4.186751+0 9.121708-3 4.532668+0 9.155919-3 5.131709+0 9.192416-3 6.094675+0 9.265294-3 8.354399+0 9.315914-3 9.415625+0 9.359095-3 9.830027+0 9.465132-3 9.890054+0 1.016313-2 8.870925+0 1.025652-2 9.123900+0 1.035088-2 1.015535+1 1.042783-2 1.104491+1 1.051923-2 1.140113+1 1.074577-2 1.135816+1 1.095458-2 1.226955+1 1.160991-2 1.138882+1 1.320928-2 9.301627+0 1.519426-2 7.425546+0 1.726156-2 6.031902+0 1.967638-2 4.854496+0 2.222670-2 3.957803+0 2.488320-2 3.267348+0 2.771251-2 2.717256+0 3.135295-2 2.195175+0 3.510044-2 1.803569+0 3.944903-2 1.469464+0 4.439347-2 1.193224+0 4.989334-2 9.699272-1 5.576226-2 7.951355-1 6.185633-2 6.636481-1 6.220284-2 6.791049-1 6.241943-2 7.211033-1 6.260812-2 8.010656-1 6.278357-2 9.299628-1 6.293074-2 1.087941+0 6.311320-2 1.349269+0 6.379146-2 2.564724+0 6.410647-2 2.935125+0 6.445959-2 3.120404+0 6.516330-2 3.147554+0 7.649492-2 2.437108+0 8.653076-2 1.994566+0 9.801965-2 1.617619+0 1.111339-1 1.308279+0 1.255213-1 1.061719+0 1.388389-1 8.922172-1 1.558170-1 7.312229-1 1.725498-1 6.130436-1 1.934335-1 5.031599-1 2.177801-1 4.101895-1 2.426610-1 3.411273-1 2.737045-1 2.783425-1 3.058854-1 2.316658-1 3.443747-1 1.913645-1 3.892801-1 1.578078-1 4.412627-1 1.304997-1 5.013096-1 1.083723-1 5.648452-1 9.182393-2 6.550131-1 7.558642-2 7.466636-1 6.430225-2 8.635648-1 5.436492-2 1.008777+0 4.613602-2 1.173413+0 3.904230-2 1.347258+0 3.347015-2 1.546860+0 2.869326-2 1.776032+0 2.459813-2 2.039158+0 2.108747-2 2.341267+0 1.807784-2 2.688134+0 1.549776-2 3.086391+0 1.328591-2 3.558924+0 1.133761-2 4.068655+0 9.764177-3 4.671441+0 8.370625-3 5.363532+0 7.175962-3 6.158159+0 6.151803-3 7.070513+0 5.273812-3 8.118035+0 4.521129-3 9.320751+0 3.875869-3 9.760024+0 3.681939-3 1.000000+1 7.590990-3 1 71000 7 0 1.749700+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.047605+1 1.013484-6-6.981715+1 1.078365-6-7.084623+1 1.160024-6-7.046902+1 2.193201-6-6.916681+1 2.703255-6-6.555986+1 2.871281-6-6.093076+1 2.936108-6-5.605540+1 2.964944-6-5.119190+1 2.976400-6-4.717139+1 3.008222-6-3.348017+1 3.015305-6-3.207625+1 3.021858-6-3.316141+1 3.028022-6-3.620884+1 3.033534-6-4.063904+1 3.042334-6-5.190155+1 3.050000-6-6.385215+1 3.057227-6-6.735069+1 3.067610-6-5.488858+1 3.075810-6-4.971038+1 3.083071-6-4.807153+1 3.093616-6-5.043955+1 3.132546-6-6.847770+1 3.143795-6-7.085842+1 3.203514-6-5.813039+1 3.224401-6-5.104806+1 3.236689-6-4.434266+1 3.243552-6-3.810266+1 3.254873-6-2.983506+1 3.265342-6-2.048098+1 3.273564-6-1.448212+1 3.275217-6-1.365694+1 3.281129-6-1.151872+1 3.282915-6-1.141624+1 3.285845-6-1.204219+1 3.289135-6-1.368503+1 3.291884-6-1.578353+1 3.294534-6-1.848883+1 3.298967-6-2.457097+1 3.302248-6-3.030441+1 3.310323-6-4.923603+1 3.318012-6-7.123065+1 3.320056-6-6.429784+1 3.329884-6-3.606440+1 3.336861-6-1.971826+1 3.339723-6-1.451330+1 3.343403-6-8.948059+0 3.344399-6-7.579769+0 3.346144-6-5.594895+0 3.347452-6-4.342039+0 3.349414-6-2.809425+0 3.350396-6-2.204779+0 3.351377-6-1.749159+0 3.353370-6-1.013744+0 3.354866-6-6.012031-1 3.357108-6-3.371104-1 3.358230-6-4.125472-1 3.359351-6-7.596589-1 3.363338-6-2.062318+0 3.365332-6-2.906025+0 3.366328-6-3.474278+0 3.368322-6-5.138675+0 3.373555-6-8.706351+0 3.375299-6-1.031891+1 3.386729-6-1.996678+1 3.397748-6-2.783509+1 3.401283-6-3.141381+1 3.409988-6-3.663866+1 3.426651-6-4.273682+1 3.451268-6-4.805381+1 3.493305-6-5.292758+1 3.580396-6-5.867075+1 3.822840-6-6.376000+1 4.517855-6-6.767183+1 4.813065-6-7.026459+1 4.913262-6-7.126450+1 4.963345-6-6.678049+1 5.004441-6-6.320346+1 5.083006-6-6.527547+1 5.495719-6-6.907724+1 5.616251-6-6.666560+1 5.810468-6-6.809167+1 1.216236-5-7.073854+1 1.277960-5-6.849215+1 1.296153-5-6.449343+1 1.307289-5-6.187193+1 1.314196-5-6.431130+1 1.321258-5-7.052599+1 1.329609-5-6.228148+1 1.336531-5-6.017189+1 1.364096-5-6.693703+1 1.407470-5-7.041579+1 1.429737-5-6.626144+1 1.438312-5-6.895049+1 1.441796-5-7.041852+1 1.454101-5-6.236839+1 1.461891-5-6.122657+1 1.488120-5-6.552900+1 1.586460-5-6.824217+1 2.071334-5-7.058804+1 2.512244-5-6.561810+1 2.692586-5-6.008560+1 2.786806-5-5.375572+1 2.835370-5-4.781786+1 2.869988-5-4.093286+1 2.892705-5-3.387049+1 2.904510-5-2.852061+1 2.918961-5-1.965575+1 2.927903-5-1.272609+1 2.933269-5-7.983881+0 2.938634-5-2.608999+0 2.940422-5-7.130164-1 2.942211-5 1.352960+0 2.945598-5 5.646924+0 2.947291-5 8.128441+0 2.948561-5 1.039168+1 2.949455-5 1.255149+1 2.950338-5 1.415488+1 2.951883-5 1.647919+1 2.956518-5 2.197827+1 2.962778-5 2.871809+1 2.971725-5 3.937399+1 2.978926-5 4.525480+1 2.986185-5 4.635572+1 2.989374-5 4.425026+1 2.991817-5 4.128559+1 2.995307-5 3.521875+1 2.998953-5 2.634400+1 3.001609-5 1.785150+1 3.002970-5 1.321777+1 3.003991-5 9.503252+0 3.004756-5 6.547756+0 3.005905-5 1.757432+0 3.006479-5-8.689591-1 3.006766-5-2.280996+0 3.007507-5-6.314789+0 3.011760-5-2.696543+1 3.013773-5-3.808561+1 3.015486-5-4.927249+1 3.019577-5-7.248163+1 3.021627-5-5.902902+1 3.022175-5-5.512611+1 3.028829-5-1.610594+1 3.029055-5-1.446675+1 3.029495-5-1.173315+1 3.030319-5-7.095649+0 3.031040-5-3.319185+0 3.037021-5 2.538401+1 3.039186-5 3.365975+1 3.042281-5 4.299655+1 3.046260-5 5.195286+1 3.050873-5 5.853637+1 3.055344-5 6.079473+1 3.063115-5 5.537708+1 3.071586-5 4.188545+1 3.081725-5 2.283329+1 3.091248-5 8.368103+0 3.092702-5 5.846438+0 3.093429-5 4.414907+0 3.093792-5 3.611040+0 3.094627-5 1.397434+0 3.095510-5-3.779521-1 3.097056-5-2.971661+0 3.098215-5-4.681287+0 3.099954-5-6.996544+0 3.101693-5-9.088168+0 3.103551-5-1.113183+1 3.106339-5-1.390477+1 3.112843-5-1.937695+1 3.120276-5-2.445096+1 3.132475-5-3.105405+1 3.152057-5-3.908175+1 3.180173-5-4.731063+1 3.215082-5-5.338307+1 3.262672-5-5.993749+1 3.295959-5-5.905706+1 3.326214-5-5.930024+1 3.506167-5-7.013922+1 3.543734-5-7.390071+1 3.590605-5-6.429338+1 3.613247-5-5.607361+1 3.623042-5-4.986090+1 3.627389-5-4.587974+1 3.641624-5-3.583590+1 3.652146-5-2.702737+1 3.661066-5-2.066994+1 3.669382-5-1.725087+1 3.672076-5-1.707105+1 3.674959-5-1.764247+1 3.679079-5-1.955513+1 3.683383-5-2.290450+1 3.689086-5-2.954384+1 3.692587-5-3.490918+1 3.695420-5-4.077160+1 3.703035-5-5.793513+1 3.707086-5-6.937081+1 3.708559-5-7.152000+1 3.713188-5-5.812152+1 3.721899-5-3.395859+1 3.724617-5-2.655514+1 3.731308-5-1.122674+1 3.732256-5-9.211587+0 3.734033-5-5.942700+0 3.735587-5-3.434376+0 3.736948-5-1.450743+0 3.739328-5 1.616334+0 3.741114-5 3.614720+0 3.743792-5 6.170564+0 3.746471-5 8.228817+0 3.749247-5 9.845988+0 3.751330-5 1.070344+1 3.752892-5 1.113613+1 3.755235-5 1.140243+1 3.756406-5 1.131982+1 3.762037-5 9.556499+0 3.764267-5 8.665737+0 3.765382-5 8.065234+0 3.767612-5 6.303578+0 3.771514-5 3.855142+0 3.773465-5 2.530725+0 3.774441-5 1.772645+0 3.775416-5 8.230451-1 3.784336-5-6.345642+0 3.785451-5-7.373230+0 3.787402-5-8.837268+0 3.799945-5-1.723921+1 3.802175-5-1.936060+1 3.805518-5-2.226390+1 3.813162-5-2.656790+1 3.824732-5-3.111681+1 3.845918-5-3.673350+1 3.882418-5-4.289852+1 3.939613-5-4.869369+1 4.002993-5-5.187973+1 4.093463-5-5.230395+1 4.587992-5-5.582651+1 6.592530-5-6.002232+1 9.600000-5-6.149634+1 1.536000-4-5.812022+1 1.932561-4-5.574030+1 2.084787-4-5.372610+1 2.481746-4-4.800757+1 3.244394-4-4.371013+1 3.464494-4-4.392857+1 3.523648-4-4.298016+1 3.600891-4-4.195768+1 4.738327-4-3.627763+1 6.112938-4-3.159928+1 7.658812-4-2.887543+1 9.500774-4-2.770120+1 1.139102-3-2.813701+1 1.314468-3-3.017875+1 1.430460-3-3.313637+1 1.504873-3-3.676177+1 1.543087-3-4.014353+1 1.567196-3-4.416874+1 1.594657-3-5.171443+1 1.605609-3-5.154687+1 1.630765-3-4.751098+1 1.657288-3-4.579326+1 1.695004-3-3.931953+1 1.746260-3-3.445034+1 1.841459-3-2.763386+1 1.906714-3-2.483745+1 1.964107-3-2.382681+1 2.012870-3-2.471597+1 2.030670-3-2.383009+1 2.064573-3-2.126640+1 2.119292-3-1.911041+1 2.198850-3-1.735757+1 2.262659-3-1.692242+1 2.329008-3-1.483482+1 2.413401-3-1.343691+1 2.476868-3-1.297190+1 2.536064-3-1.157022+1 2.647183-3-9.935432+0 2.792116-3-8.473761+0 2.985383-3-7.095624+0 3.215400-3-5.990239+0 3.452720-3-5.210132+0 3.760402-3-4.571283+0 4.091523-3-4.198906+0 4.518559-3-3.986827+0 5.040806-3-3.989154+0 5.717254-3-4.236413+0 6.518688-3-4.766413+0 7.330695-3-5.549392+0 7.997464-3-6.495801+0 8.476831-3-7.548997+0 8.778848-3-8.622150+0 8.960616-3-9.705516+0 9.066159-3-1.084262+1 9.203971-3-1.326626+1 9.249277-3-1.349047+1 9.309488-3-1.283983+1 9.434260-3-1.065086+1 9.541216-3-9.628413+0 9.716280-3-8.796932+0 9.937188-3-8.386281+0 1.012059-2-8.518901+0 1.025652-2-9.204948+0 1.035088-2-9.712918+0 1.042783-2-9.460679+0 1.059254-2-8.123867+0 1.070772-2-7.801119+0 1.085070-2-7.596929+0 1.109204-2-5.983755+0 1.129651-2-5.110203+0 1.160991-2-4.212981+0 1.203982-2-3.342645+0 1.244980-2-2.739188+0 1.288860-2-2.243506+0 1.320928-2-1.950284+0 1.370194-2-1.587239+0 1.422896-2-1.281348+0 1.483505-2-1.017374+0 1.537712-2-8.360509-1 1.606306-2-6.633345-1 1.669468-2-5.459609-1 1.747833-2-4.380661-1 1.798871-2-3.850915-1 1.862087-2-3.384361-1 1.938053-2-3.041537-1 2.033342-2-2.810232-1 2.083291-2-2.765586-1 2.222670-2-2.850375-1 2.357763-2-3.145306-1 2.581865-2-3.881223-1 3.135295-2-6.212685-1 4.618825-2-1.292076+0 5.173404-2-1.600171+0 5.576226-2-1.912292+0 5.840495-2-2.221966+0 6.013110-2-2.537398+0 6.135287-2-2.903475+0 6.211239-2-3.313787+0 6.270683-2-3.894061+0 6.317275-2-4.359371+0 6.348894-2-4.432762+0 6.386581-2-4.176961+0 6.461996-2-3.306671+0 6.516330-2-2.890995+0 6.588679-2-2.538786+0 6.705362-2-2.165052+0 6.883633-2-1.796107+0 7.079874-2-1.514449+0 7.320312-2-1.268106+0 7.649492-2-1.037638+0 8.048023-2-8.469276-1 8.520724-2-6.929742-1 8.940418-2-5.944837-1 9.376212-2-5.236018-1 1.002112-1-4.547733-1 1.079645-1-4.061519-1 1.164990-1-3.781603-1 1.289452-1-3.661432-1 1.501125-1-3.802518-1 2.426610-1-5.010896-1 3.295244-1-5.729528-1 4.601461-1-6.286571-1 7.165760-1-6.711697-1 1.477239+0-6.952230-1 4.461192+0-7.030637-1 1.000000+1-7.037592-1 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.318748-2 1.122441-6 5.636639-2 1.186812-6 7.349274-2 1.244678-6 9.258529-2 1.270928-6 1.027636-1 1.320146-6 1.246368-1 1.363213-6 1.472567-1 1.400896-6 1.703449-1 1.462719-6 2.159937-1 1.487964-6 2.383136-1 1.536000-6 2.873801-1 1.565275-6 3.221088-1 1.590126-6 3.558037-1 1.627401-6 4.140008-1 1.646038-6 4.471258-1 1.678069-6 5.125101-1 1.706770-6 5.821902-1 1.731370-6 6.525307-1 1.747771-6 7.062879-1 1.762348-6 7.595721-1 1.776013-6 8.150056-1 1.788825-6 8.726855-1 1.800836-6 9.327060-1 1.812096-6 9.951551-1 1.822653-6 1.060140+0 1.832550-6 1.127789+0 1.841828-6 1.198254+0 1.850526-6 1.271701+0 1.858681-6 1.348252+0 1.866326-6 1.427960+0 1.880660-6 1.603039+0 1.893202-6 1.792519+0 1.904177-6 1.997736+0 1.913780-6 2.220210+0 1.922183-6 2.461820+0 1.929535-6 2.725230+0 1.935968-6 3.014031+0 1.941597-6 3.332053+0 1.946522-6 3.681891+0 1.950832-6 4.063423+0 1.954603-6 4.473135+0 1.957903-6 4.904470+0 1.960790-6 5.348906+0 1.963316-6 5.797233+0 1.965527-6 6.240661+0 1.967461-6 6.671570+0 1.970846-6 7.531085+0 1.975288-6 8.882451+0 1.984162-6 1.240064+1 1.988314-6 1.440532+1 1.990752-6 1.566918+1 1.995628-6 1.832635+1 1.996238-6 1.866530+1 2.000504-6 2.103066+1 2.002180-6 2.193815+1 2.005380-6 2.359357+1 2.007056-6 2.440341+1 2.008656-6 2.512891+1 2.010256-6 2.580019+1 2.012389-6 2.659810+1 2.014446-6 2.724838+1 2.016351-6 2.773456+1 2.017951-6 2.804998+1 2.020008-6 2.832331+1 2.022751-6 2.844559+1 2.025036-6 2.833027+1 2.025885-6 2.823691+1 2.028307-6 2.782194+1 2.030549-6 2.724707+1 2.032436-6 2.662878+1 2.034768-6 2.570719+1 2.036451-6 2.494393+1 2.039960-6 2.312698+1 2.041845-6 2.204719+1 2.043434-6 2.109386+1 2.045531-6 1.979071+1 2.047164-6 1.875054+1 2.049264-6 1.739641+1 2.051397-6 1.601832+1 2.053626-6 1.459468+1 2.056578-6 1.276328+1 2.058711-6 1.149665+1 2.059321-6 1.114532+1 2.062178-6 9.569661+0 2.063892-6 8.685541+0 2.068768-6 6.446167+0 2.070644-6 5.696931+0 2.072144-6 5.142906+0 2.073644-6 4.628246+0 2.075777-6 3.962319+0 2.078134-6 3.312933+0 2.080430-6 2.762444+0 2.082748-6 2.282384+0 2.084465-6 1.972077+0 2.086725-6 1.617284+0 2.088950-6 1.321814+0 2.091141-6 1.077291+0 2.093297-6 8.761968-1 2.096468-6 6.416633-1 2.101834-6 3.762230-1 2.103941-6 3.068922-1 2.105409-6 2.678232-1 2.106380-6 2.456670-1 2.107343-6 2.263306-1 2.108299-6 2.095536-1 2.109247-6 1.950990-1 2.110188-6 1.827513-1 2.111121-6 1.723145-1 2.112974-6 1.564288-1 2.114797-6 1.463010-1 2.116592-6 1.409097-1 2.118359-6 1.394200-1 2.120099-6 1.411500-1 2.121811-6 1.455438-1 2.125182-6 1.607389-1 2.128447-6 1.822145-1 2.131611-6 2.080957-1 2.134675-6 2.370981-1 2.140613-6 3.022056-1 2.185146-6 1.077261+0 2.190713-6 1.241023+0 2.195584-6 1.413956+0 2.199846-6 1.595038+0 2.203575-6 1.781905+0 2.206838-6 1.971407+0 2.209693-6 2.160143+0 2.212191-6 2.344902+0 2.216563-6 2.717364+0 2.230365-6 4.369429+0 2.235167-6 5.118790+0 2.237911-6 5.581462+0 2.240655-6 6.064062+0 2.246143-6 7.065403+0 2.246830-6 7.191759+0 2.251632-6 8.063568+0 2.253518-6 8.392735+0 2.257120-6 8.983423+0 2.259006-6 9.266555+0 2.260807-6 9.515861+0 2.262608-6 9.741782+0 2.265009-6 1.000193+1 2.267324-6 1.020329+1 2.269468-6 1.034231+1 2.271269-6 1.042155+1 2.273584-6 1.047075+1 2.276671-6 1.044114+1 2.279243-6 1.033240+1 2.279908-6 1.029198+1 2.282816-6 1.005709+1 2.285142-6 9.803789+0 2.287407-6 9.505214+0 2.289989-6 9.108129+0 2.292327-6 8.702895+0 2.294615-6 8.270832+0 2.296999-6 7.790243+0 2.299291-6 7.306558+0 2.301367-6 6.855734+0 2.303558-6 6.373045+0 2.305681-6 5.903690+0 2.307884-6 5.420664+0 2.310264-6 4.909233+0 2.312000-6 4.546058+0 2.314744-6 3.994686+0 2.317231-6 3.523549+0 2.319118-6 3.186675+0 2.321047-6 2.861906+0 2.323320-6 2.506260+0 2.325088-6 2.250110+0 2.327620-6 1.915129+0 2.329591-6 1.680134+0 2.330682-6 1.559641+0 2.332317-6 1.391307+0 2.333953-6 1.237451+0 2.336354-6 1.036661+0 2.339441-6 8.194606-1 2.344426-6 5.546993-1 2.347554-6 4.348582-1 2.349870-6 3.654492-1 2.351399-6 3.275727-1 2.352917-6 2.956199-1 2.354425-6 2.689225-1 2.355922-6 2.469762-1 2.357407-6 2.292585-1 2.358880-6 2.152949-1 2.360342-6 2.046565-1 2.361793-6 1.969568-1 2.363232-6 1.918493-1 2.366088-6 1.882065-1 2.368899-6 1.916850-1 2.371666-6 2.006260-1 2.374390-6 2.137411-1 2.377072-6 2.300375-1 2.379711-6 2.487556-1 2.384908-6 2.916366-1 2.389942-6 3.388997-1 2.394819-6 3.886360-1 2.546003-6 2.435719+0 2.552270-6 2.567963+0 2.558537-6 2.699267+0 2.564803-6 2.820070+0 2.571070-6 2.918859+0 2.574203-6 2.956283+0 2.577337-6 2.983907+0 2.580470-6 3.000595+0 2.583603-6 3.005480+0 2.586737-6 2.998021+0 2.589870-6 2.978055+0 2.593003-6 2.945823+0 2.596137-6 2.901989+0 2.600837-6 2.816937+0 2.602403-6 2.784187+0 2.608670-6 2.637480+0 2.622770-6 2.291555+0 2.627470-6 2.197736+0 2.631387-6 2.135202+0 2.633737-6 2.105551+0 2.636870-6 2.075887+0 2.640003-6 2.057890+0 2.644703-6 2.052896+0 2.646270-6 2.056970+0 2.652537-6 2.100007+0 2.658803-6 2.180596+0 2.661937-6 2.232391+0 2.668203-6 2.353467+0 2.685182-6 2.744125+0 2.692787-6 2.927151+0 2.707520-6 3.274534+0 2.735145-6 3.905244+0 2.783488-6 5.068331+0 2.867334-6 7.672333+0 2.897926-6 8.920111+0 2.935726-6 1.076351+1 2.964559-6 1.246707+1 2.993392-6 1.450715+1 3.022225-6 1.697340+1 3.043849-6 1.917849+1 3.065474-6 2.176865+1 3.088793-6 2.510259+1 3.103896-6 2.763331+1 3.118056-6 3.033139+1 3.131331-6 3.320343+1 3.143777-6 3.625593+1 3.155444-6 3.949527+1 3.166382-6 4.292780+1 3.176637-6 4.656006+1 3.186250-6 5.039885+1 3.195263-6 5.445134+1 3.203713-6 5.872501+1 3.211634-6 6.322779+1 3.219060-6 6.796844+1 3.226023-6 7.295721+1 3.232550-6 7.820658+1 3.238669-6 8.373188+1 3.250142-6 9.612174+1 3.260181-6 1.099610+2 3.268965-6 1.254186+2 3.276652-6 1.425660+2 3.283377-6 1.613186+2 3.289262-6 1.814270+2 3.294411-6 2.025134+2 3.298916-6 2.241314+2 3.302859-6 2.458257+2 3.309327-6 2.878412+2 3.316590-6 3.459034+2 3.331928-6 5.124092+2 3.338653-6 6.051295+2 3.342751-6 6.671501+2 3.346850-6 7.328416+2 3.355048-6 8.726275+2 3.356072-6 8.906327+2 3.363245-6 1.017531+3 3.366063-6 1.066876+3 3.371443-6 1.158086+3 3.374260-6 1.203411+3 3.376950-6 1.244534+3 3.379640-6 1.283145+3 3.383226-6 1.330027+3 3.386685-6 1.369479+3 3.389887-6 1.400313+3 3.392577-6 1.421582+3 3.396547-6 1.444666+3 3.401351-6 1.458517+3 3.404985-6 1.458345+3 3.409987-6 1.442929+3 3.413583-6 1.421163+3 3.416739-6 1.394995+3 3.420692-6 1.353455+3 3.423408-6 1.319674+3 3.429081-6 1.237039+3 3.432747-6 1.176299+3 3.435419-6 1.129121+3 3.438944-6 1.063933+3 3.441690-6 1.011391+3 3.445220-6 9.423839+2 3.448806-6 8.715100+2 3.452553-6 7.976533+2 3.457516-6 7.017314+2 3.461103-6 6.348034+2 3.465970-6 5.484125+2 3.469812-6 4.845468+2 3.478010-6 3.630856+2 3.481164-6 3.220789+2 3.483686-6 2.916336+2 3.486207-6 2.632577+2 3.489794-6 2.264102+2 3.493756-6 1.903459+2 3.496755-6 1.661575+2 3.500611-6 1.387704+2 3.505076-6 1.119183+2 3.512869-6 7.613566+1 3.517504-6 6.064164+1 3.520393-6 5.287702+1 3.522876-6 4.725293+1 3.525022-6 4.311877+1 3.526684-6 4.035164+1 3.527917-6 3.853125+1 3.528992-6 3.709919+1 3.529932-6 3.596098+1 3.531578-6 3.421792+1 3.534047-6 3.216884+1 3.536516-6 3.075787+1 3.538665-6 3.001723+1 3.541890-6 2.970518+1 3.545115-6 3.029450+1 3.553713-6 3.594446+1 3.562312-6 4.732440+1 3.570911-6 6.490011+1 3.579510-6 9.008150+1 3.596708-6 1.746791+2 3.612895-6 3.256853+2 3.622504-6 4.688465+2 3.628953-6 5.956566+2 3.633253-6 6.964799+2 3.639702-6 8.753425+2 3.645776-6 1.077217+3 3.649368-6 1.213042+3 3.651883-6 1.315647+3 3.659428-6 1.661448+3 3.664060-6 1.901848+3 3.673698-6 2.465742+3 3.674820-6 2.536397+3 3.683300-6 3.096582+3 3.686532-6 3.319035+3 3.693511-6 3.805744+3 3.697924-6 4.111155+3 3.700505-6 4.286491+3 3.704741-6 4.565328+3 3.709308-6 4.848775+3 3.714016-6 5.115947+3 3.718578-6 5.344792+3 3.724154-6 5.576579+3 3.728655-6 5.720103+3 3.731612-6 5.791442+3 3.736005-6 5.862175+3 3.740478-6 5.889730+3 3.745446-6 5.867415+3 3.749586-6 5.807109+3 3.751155-6 5.774677+3 3.755860-6 5.647313+3 3.759149-6 5.533075+3 3.762809-6 5.383776+3 3.767514-6 5.161383+3 3.770771-6 4.990201+3 3.775426-6 4.725625+3 3.780288-6 4.430166+3 3.785898-6 4.073952+3 3.790386-6 3.783651+3 3.795435-6 3.457800+3 3.799362-6 3.208607+3 3.808338-6 2.666385+3 3.811502-6 2.487520+3 3.818722-6 2.108285+3 3.826291-6 1.758039+3 3.836734-6 1.356682+3 3.849572-6 9.848789+2 3.857671-6 8.095395+2 3.862211-6 7.280510+2 3.866680-6 6.580671+2 3.871079-6 5.979527+2 3.875410-6 5.462570+2 3.879673-6 5.017106+2 3.888065-6 4.293328+2 3.896196-6 3.745570+2 3.904072-6 3.322876+2 3.911702-6 2.989676+2 3.919094-6 2.721395+2 3.926255-6 2.501072+2 3.933191-6 2.316926+2 3.946632-6 2.022255+2 3.959232-6 1.800956+2 3.971045-6 1.628714+2 3.982119-6 1.491053+2 3.992502-6 1.378747+2 4.002235-6 1.285593+2 4.020485-6 1.136371+2 4.036454-6 1.027344+2 4.050427-6 9.448750+1 4.064804-6 8.702281+1 4.084049-6 7.833771+1 4.100096-6 7.201281+1 4.124166-6 6.373314+1 4.168657-6 5.125183+1 4.189078-6 4.658127+1 4.208552-6 4.278844+1 4.224431-6 4.021609+1 4.238999-6 3.828752+1 4.249925-6 3.711338+1 4.266315-6 3.577269+1 4.274509-6 3.527708+1 4.282704-6 3.488385+1 4.292243-6 3.453551+1 4.301781-6 3.427758+1 4.336293-6 3.356137+1 4.350324-6 3.311263+1 4.364293-6 3.246444+1 4.378262-6 3.159459+1 4.386836-6 3.095782+1 4.395011-6 3.028848+1 4.409740-6 2.896653+1 4.423654-6 2.763679+1 4.444606-6 2.560984+1 4.518862-6 1.936931+1 4.532879-6 1.843448+1 4.541053-6 1.794078+1 4.552148-6 1.734169+1 4.563244-6 1.683381+1 4.570375-6 1.655846+1 4.577507-6 1.632334+1 4.587018-6 1.606957+1 4.596529-6 1.587644+1 4.607625-6 1.571028+1 4.640911-6 1.531430+1 4.655607-6 1.504406+1 4.664710-6 1.481860+1 4.673812-6 1.454585+1 4.685292-6 1.413972+1 4.695991-6 1.371151+1 4.716041-6 1.284278+1 4.744864-6 1.164594+1 4.763921-6 1.098323+1 4.774331-6 1.067102+1 4.784740-6 1.039070+1 4.800958-6 1.000936+1 4.812140-6 9.781984+0 4.823323-6 9.583580+0 4.834854-6 9.411740+0 4.847994-6 9.260282+0 4.856337-6 9.189520+0 4.875109-6 9.095803+0 4.909470-6 9.032310+0 4.926437-6 8.955789+0 4.935214-6 8.885434+0 4.948381-6 8.732766+0 4.961547-6 8.522740+0 4.979877-6 8.146758+0 5.006142-6 7.494560+0 5.026063-6 6.960400+0 5.062714-6 5.977065+0 5.081655-6 5.485328+0 5.102882-6 4.954748+0 5.125440-6 4.422199+0 5.147651-6 3.934805+0 5.163185-6 3.613379+0 5.174498-6 3.385720+0 5.188968-6 3.097466+0 5.201060-6 2.856197+0 5.213720-6 2.603704+0 5.229149-6 2.306227+0 5.241950-6 2.087480+0 5.249002-6 1.988350+0 5.258518-6 1.892398+0 5.262550-6 1.868899+0 5.268696-6 1.857776+0 5.271769-6 1.865106+0 5.274842-6 1.882153+0 5.284532-6 2.009705+0 5.287762-6 2.080804+0 5.300681-6 2.540086+0 5.302416-6 2.625920+0 5.308488-6 2.977808+0 5.313042-6 3.298284+0 5.316665-6 3.590796+0 5.325877-6 4.498090+0 5.344461-6 7.149538+0 5.352786-6 8.740260+0 5.360737-6 1.051153+1 5.369489-6 1.275322+1 5.376183-6 1.467237+1 5.379620-6 1.572455+1 5.385919-6 1.776531+1 5.392066-6 1.988595+1 5.398115-6 2.208170+1 5.405152-6 2.474692+1 5.411402-6 2.718489+1 5.417086-6 2.943332+1 5.422471-6 3.156656+1 5.428229-6 3.382380+1 5.433804-6 3.595792+1 5.437797-6 3.743915+1 5.444785-6 3.990136+1 5.451117-6 4.195116+1 5.454001-6 4.281673+1 5.459091-6 4.422607+1 5.465000-6 4.565498+1 5.478202-6 4.793833+1 5.482820-6 4.841782+1 5.491636-6 4.885701+1 5.497687-6 4.879909+1 5.504162-6 4.842434+1 5.509449-6 4.789097+1 5.516389-6 4.690495+1 5.524230-6 4.544374+1 5.533101-6 4.342214+1 5.542402-6 4.098400+1 5.552138-6 3.820521+1 5.554488-6 3.751376+1 5.567943-6 3.351071+1 5.571962-6 3.232620+1 5.593894-6 2.627527+1 5.614611-6 2.154091+1 5.625781-6 1.944433+1 5.636918-6 1.765864+1 5.650639-6 1.583364+1 5.664396-6 1.435522+1 5.680214-6 1.299788+1 5.689436-6 1.233849+1 5.703708-6 1.146389+1 5.718439-6 1.070256+1 5.731334-6 1.012316+1 5.762503-6 8.947192+0 5.786107-6 8.191221+0 5.836522-6 6.754429+0 5.864310-6 6.002893+0 5.887750-6 5.405705+0 5.903249-6 5.061859+0 5.909992-6 4.934452+0 5.916734-6 4.825235+0 5.921812-6 4.757236+0 5.926989-6 4.702420+0 5.932549-6 4.661931+0 5.946625-6 4.659425+0 5.950964-6 4.691543+0 5.965539-6 4.929198+0 5.969432-6 5.028695+0 5.981111-6 5.422354+0 5.984755-6 5.574462+0 5.990222-6 5.828133+0 5.999333-6 6.315690+0 6.024845-6 8.022988+0 6.035779-6 8.841216+0 6.039424-6 9.115527+0 6.052180-6 1.005183+1 6.054002-6 1.018002+1 6.068580-6 1.112022+1 6.070402-6 1.122457+1 6.083158-6 1.185128+1 6.086803-6 1.199355+1 6.097736-6 1.231215+1 6.102343-6 1.239598+1 6.106374-6 1.244442+1 6.113429-6 1.247355+1 6.118719-6 1.244990+1 6.126655-6 1.234461+1 6.134591-6 1.216160+1 6.141471-6 1.194665+1 6.152405-6 1.151435+1 6.156049-6 1.134972+1 6.169601-6 1.067289+1 6.177590-6 1.024296+1 6.184176-6 9.881409+0 6.217289-6 8.171196+0 6.229172-6 7.672334+0 6.244430-6 7.164149+0 6.252058-6 6.971067+0 6.259687-6 6.819817+0 6.267315-6 6.710030+0 6.274944-6 6.640384+0 6.279315-6 6.617743+0 6.286965-6 6.606433+0 6.292703-6 6.619784+0 6.301309-6 6.670679+0 6.310730-6 6.761689+0 6.320716-6 6.887857+0 6.351230-6 7.337557+0 6.366756-6 7.530306+0 6.379704-6 7.643757+0 6.387473-6 7.687473+0 6.393990-6 7.709656+0 6.408652-6 7.713702+0 6.421336-6 7.673276+0 6.444727-6 7.531130+0 6.469421-6 7.356800+0 6.483071-6 7.274400+0 6.496720-6 7.209497+0 6.522698-6 7.134987+0 6.554223-6 7.101785+0 6.602989-6 7.068836+0 6.696407-6 6.926655+0 6.808942-6 6.713754+0 6.871365-6 6.636328+0 6.965963-6 6.552287+0 7.254487-6 6.245583+0 7.599882-6 5.964814+0 7.852356-6 5.805464+0 8.231168-6 5.622415+0 8.595333-6 5.486352+0 8.916951-6 5.412298+0 9.417933-6 5.355218+0 1.000714-5 5.372781+0 1.086009-5 5.516176+0 1.165608-5 5.723273+0 1.347147-5 6.285168+0 1.418307-5 6.463394+0 1.474676-5 6.563900+0 1.518166-5 6.604618+0 1.542144-5 6.611253+0 1.573189-5 6.597191+0 1.610000-5 6.557669+0 1.649288-5 6.473287+0 1.694324-5 6.337582+0 1.731325-5 6.197489+0 1.744719-5 6.179902+0 1.752216-5 6.198746+0 1.764538-5 6.286738+0 1.774307-5 6.400912+0 1.785546-5 6.567843+0 1.796639-5 6.764314+0 1.806240-5 6.961461+0 1.816181-5 7.196508+0 1.827258-5 7.502546+0 1.836994-5 7.818150+0 1.845550-5 8.139589+0 1.850000-5 8.325927+0 1.857684-5 8.683888+0 1.863078-5 8.966666+0 1.872092-5 9.509370+0 1.877792-5 9.907258+0 1.883649-5 1.037027+1 1.888058-5 1.076184+1 1.892957-5 1.124864+1 1.897305-5 1.173454+1 1.902144-5 1.234705+1 1.907655-5 1.315930+1 1.912351-5 1.397430+1 1.917859-5 1.512390+1 1.921742-5 1.610262+1 1.927525-5 1.792636+1 1.931133-5 1.936970+1 1.935828-5 2.174380+1 1.938176-5 2.320184+1 1.940718-5 2.503459+1 1.944000-5 2.786681+1 1.945219-5 2.907392+1 1.947567-5 3.166854+1 1.949915-5 3.465878+1 1.952262-5 3.809375+1 1.954610-5 4.202266+1 1.956958-5 4.649296+1 1.962791-5 6.020950+1 1.968989-5 7.921179+1 1.971407-5 8.786321+1 1.973824-5 9.715967+1 1.978658-5 1.173928+2 1.979263-5 1.200448+2 1.983493-5 1.390611+2 1.985155-5 1.466268+2 1.988861-5 1.632826+2 1.991504-5 1.746566+2 1.993851-5 1.841531+2 1.995737-5 1.912373+2 1.996869-5 1.952097+2 1.998360-5 2.000832+2 2.000601-5 2.065560+2 2.002831-5 2.118610+2 2.005399-5 2.164233+2 2.007817-5 2.190942+2 2.008658-5 2.196404+2 2.011059-5 2.200875+2 2.013446-5 2.188950+2 2.014417-5 2.179474+2 2.016976-5 2.142038+2 2.019067-5 2.098586+2 2.022471-5 2.005239+2 2.024401-5 1.941253+2 2.026028-5 1.881925+2 2.027608-5 1.820148+2 2.029459-5 1.743372+2 2.031838-5 1.639063+2 2.033953-5 1.542534+2 2.036163-5 1.439407+2 2.039090-5 1.301685+2 2.041507-5 1.189077+2 2.044227-5 1.065728+2 2.046342-5 9.734271+1 2.051478-5 7.671827+1 2.054311-5 6.663305+1 2.058126-5 5.465599+1 2.064972-5 3.790928+1 2.066681-5 3.466248+1 2.068310-5 3.190187+1 2.069837-5 2.960396+1 2.071902-5 2.693317+1 2.073871-5 2.483891+1 2.076230-5 2.289344+1 2.081909-5 2.063270+1 2.084413-5 2.068569+1 2.086060-5 2.106314+1 2.087318-5 2.153322+1 2.088572-5 2.215801+1 2.089551-5 2.275349+1 2.090913-5 2.373852+1 2.092362-5 2.498638+1 2.094123-5 2.677827+1 2.095422-5 2.829227+1 2.096661-5 2.988866+1 2.100476-5 3.571207+1 2.103052-5 4.039423+1 2.108525-5 5.217697+1 2.109128-5 5.361380+1 2.113676-5 6.514970+1 2.115336-5 6.961553+1 2.118827-5 7.928258+1 2.121279-5 8.617254+1 2.123656-5 9.281281+1 2.125954-5 9.909864+1 2.127994-5 1.044911+2 2.130126-5 1.098581+2 2.132549-5 1.155345+2 2.134119-5 1.189241+2 2.137238-5 1.248637+2 2.139686-5 1.286895+2 2.142318-5 1.318896+2 2.144842-5 1.340085+2 2.146131-5 1.347195+2 2.149206-5 1.353839+2 2.150980-5 1.351082+2 2.154802-5 1.329277+2 2.156904-5 1.308558+2 2.159242-5 1.278861+2 2.160746-5 1.256389+2 2.163269-5 1.213392+2 2.165724-5 1.166126+2 2.167774-5 1.123312+2 2.170486-5 1.063150+2 2.174572-5 9.679360+1 2.175810-5 9.386030+1 2.179754-5 8.457308+1 2.180961-5 8.178331+1 2.186231-5 7.017184+1 2.197801-5 4.948022+1 2.202150-5 4.362739+1 2.206118-5 3.913452+1 2.207440-5 3.779999+1 2.212730-5 3.317268+1 2.224696-5 2.583028+1 2.228601-5 2.406102+1 2.233891-5 2.198184+1 2.239315-5 2.014337+1 2.244471-5 1.861457+1 2.250000-5 1.717425+1 2.255051-5 1.601696+1 2.258047-5 1.539543+1 2.263369-5 1.439942+1 2.268691-5 1.352753+1 2.274570-5 1.268845+1 2.284215-5 1.153818+1 2.292091-5 1.075717+1 2.300000-5 1.007808+1 2.312004-5 9.198766+0 2.329249-5 8.206764+0 2.333438-5 8.017179+0 2.342853-5 7.676050+0 2.350000-5 7.500200+0 2.355047-5 7.418363+0 2.361060-5 7.361251+0 2.368548-5 7.336501+0 2.388520-5 7.337909+0 2.411541-5 7.265957+0 2.418319-5 7.279232+0 2.423819-5 7.317564+0 2.430469-5 7.398889+0 2.437718-5 7.525758+0 2.459092-5 8.008898+0 2.469303-5 8.236647+0 2.489802-5 8.658602+0 2.506614-5 9.060287+0 2.516759-5 9.390310+0 2.524122-5 9.691364+0 2.529957-5 9.970214+0 2.540973-5 1.058525+1 2.557175-5 1.161021+1 2.568278-5 1.230512+1 2.578514-5 1.290319+1 2.610000-5 1.472002+1 2.652174-5 1.782052+1 2.695450-5 2.143617+1 2.711052-5 2.306929+1 2.721058-5 2.429605+1 2.731814-5 2.579848+1 2.747642-5 2.836166+1 2.831237-5 4.766124+1 2.849295-5 5.336869+1 2.868655-5 6.039860+1 2.886806-5 6.803230+1 2.903822-5 7.630201+1 2.919775-5 8.523680+1 2.934730-5 9.486586+1 2.948751-5 1.052139+2 2.961896-5 1.162978+2 2.978263-5 1.323609+2 2.985771-5 1.407236+2 2.996602-5 1.540896+2 3.008746-5 1.712170+2 3.019952-5 1.894365+2 3.033566-5 2.154146+2 3.041410-5 2.327042+2 3.048763-5 2.507550+2 3.062120-5 2.890624+2 3.068179-5 3.092763+2 3.079539-5 3.532245+2 3.091115-5 4.084395+2 3.098739-5 4.524450+2 3.105789-5 5.001492+2 3.112448-5 5.529599+2 3.118275-5 6.067815+2 3.123374-5 6.609178+2 3.128178-5 7.190567+2 3.131738-5 7.672790+2 3.138570-5 8.742201+2 3.143693-5 9.690579+2 3.150418-5 1.116628+3 3.156902-5 1.288935+3 3.159064-5 1.354024+3 3.166839-5 1.625649+3 3.170727-5 1.786815+3 3.178503-5 2.170909+3 3.182391-5 2.399007+3 3.190166-5 2.942120+3 3.197942-5 3.623466+3 3.216985-5 6.053189+3 3.223478-5 7.175243+3 3.230403-5 8.547060+3 3.239307-5 1.055618+4 3.247222-5 1.252073+4 3.249942-5 1.321958+4 3.255879-5 1.475472+4 3.259927-5 1.578742+4 3.264370-5 1.688062+4 3.267771-5 1.767316+4 3.271438-5 1.846897+4 3.275763-5 1.930916+4 3.279375-5 1.991296+4 3.284013-5 2.053709+4 3.288076-5 2.092870+4 3.292158-5 2.116454+4 3.296274-5 2.123567+4 3.300193-5 2.114561+4 3.304250-5 2.089238+4 3.305036-5 2.082493+4 3.310910-5 2.014191+4 3.314383-5 1.959998+4 3.316793-5 1.916976+4 3.320892-5 1.834779+4 3.324031-5 1.765227+4 3.326594-5 1.704891+4 3.329958-5 1.621815+4 3.334284-5 1.510299+4 3.338241-5 1.405574+4 3.342198-5 1.300110+4 3.346650-5 1.182601+4 3.350113-5 1.093291+4 3.358028-5 9.004791+3 3.363345-5 7.825063+3 3.365942-5 7.287898+3 3.371878-5 6.161976+3 3.379520-5 4.924475+3 3.394522-5 3.141011+3 3.398684-5 2.777567+3 3.402847-5 2.461740+3 3.407009-5 2.188312+3 3.410338-5 1.996731+3 3.415333-5 1.748713+3 3.419496-5 1.573354+3 3.423658-5 1.422147+3 3.428815-5 1.262998+3 3.436144-5 1.079877+3 3.443114-5 9.417578+2 3.448631-5 8.512774+2 3.456956-5 7.384927+2 3.465280-5 6.470126+2 3.473604-5 5.710906+2 3.481929-5 5.068198+2 3.491914-5 4.413901+2 3.508415-5 3.538725+2 3.525686-5 2.827194+2 3.534321-5 2.535170+2 3.542957-5 2.280835+2 3.551592-5 2.061241+2 3.558732-5 1.903730+2 3.564911-5 1.783375+2 3.571204-5 1.674530+2 3.577499-5 1.577930+2 3.586134-5 1.462569+2 3.594770-5 1.363669+2 3.603406-5 1.278214+2 3.611932-5 1.205046+2 3.617398-5 1.163484+2 3.629312-5 1.086778+2 3.639355-5 1.036511+2 3.647578-5 1.004442+2 3.653277-5 9.863580+1 3.663441-5 9.603853+1 3.684537-5 9.151922+1 3.687925-5 9.071051+1 3.698206-5 8.788618+1 3.703954-5 8.602967+1 3.713270-5 8.259817+1 3.721251-5 7.930090+1 3.737025-5 7.217904+1 3.747690-5 6.721638+1 3.761474-5 6.096518+1 3.789904-5 4.940876+1 3.810480-5 4.246308+1 3.822849-5 3.899294+1 3.831440-5 3.697784+1 3.838124-5 3.568783+1 3.841946-5 3.508127+1 3.847540-5 3.439810+1 3.850450-5 3.415441+1 3.856036-5 3.394459+1 3.861673-5 3.415420+1 3.865788-5 3.464356+1 3.870796-5 3.572239+1 3.873979-5 3.674419+1 3.875311-5 3.726222+1 3.879531-5 3.931151+1 3.881404-5 4.044549+1 3.883872-5 4.218295+1 3.885930-5 4.386576+1 3.887486-5 4.529533+1 3.889043-5 4.687165+1 3.892116-5 5.046119+1 3.894511-5 5.374988+1 3.896795-5 5.733988+1 3.899682-5 6.259512+1 3.902406-5 6.838051+1 3.904750-5 7.408573+1 3.908487-5 8.477072+1 3.912247-5 9.780213+1 3.915772-5 1.124520+2 3.919291-5 1.298072+2 3.925079-5 1.654036+2 3.942765-5 3.509715+2 3.948831-5 4.514948+2 3.953475-5 5.450534+2 3.958483-5 6.642746+2 3.962930-5 7.878011+2 3.968245-5 9.593555+2 3.972593-5 1.120521+3 3.975504-5 1.239441+3 3.978415-5 1.367488+3 3.983299-5 1.603286+3 3.988228-5 1.868141+3 3.998562-5 2.508704+3 3.999707-5 2.586328+3 4.008331-5 3.207639+3 4.011479-5 3.448002+3 4.017488-5 3.920614+3 4.021545-5 4.245562+3 4.024711-5 4.499806+3 4.029236-5 4.860211+3 4.033963-5 5.227477+3 4.037988-5 5.527940+3 4.041841-5 5.800794+3 4.046445-5 6.103139+3 4.051830-5 6.416619+3 4.056638-5 6.653581+3 4.061443-5 6.844780+3 4.066231-5 6.986052+3 4.070767-5 7.072139+3 4.074766-5 7.108460+3 4.079074-5 7.105948+3 4.086477-5 7.003088+3 4.091128-5 6.878176+3 4.095635-5 6.716511+3 4.100013-5 6.524996+3 4.104928-5 6.274575+3 4.109034-5 6.041173+3 4.114313-5 5.715303+3 4.119626-5 5.365855+3 4.124940-5 5.003279+3 4.130435-5 4.622945+3 4.134708-5 4.328370+3 4.145698-5 3.599356+3 4.154245-5 3.081123+3 4.164622-5 2.528371+3 4.178711-5 1.924449+3 4.188618-5 1.596690+3 4.193572-5 1.459698+3 4.198525-5 1.338753+3 4.204945-5 1.203434+3 4.213386-5 1.057140+3 4.223808-5 9.165458+2 4.233645-5 8.147510+2 4.244040-5 7.309931+2 4.256369-5 6.540933+2 4.266078-5 6.056230+2 4.280400-5 5.474933+2 4.297743-5 4.916319+2 4.319779-5 4.356075+2 4.342103-5 3.904989+2 4.360856-5 3.595498+2 4.372624-5 3.429424+2 4.391089-5 3.208744+2 4.406240-5 3.061240+2 4.428239-5 2.895663+2 4.452582-5 2.771857+2 4.464412-5 2.731178+2 4.479603-5 2.694001+2 4.504260-5 2.657245+2 4.531584-5 2.625836+2 4.554472-5 2.592868+2 4.628587-5 2.467678+2 4.671479-5 2.405722+2 4.754269-5 2.279983+2 4.824409-5 2.187640+2 4.916270-5 2.085071+2 5.032161-5 1.977143+2 5.196926-5 1.847186+2 5.378378-5 1.729282+2 5.548835-5 1.633986+2 5.896917-5 1.472332+2 6.297567-5 1.324653+2 6.536144-5 1.249582+2 6.755970-5 1.184124+2 6.806361-5 1.171898+2 6.839115-5 1.166453+2 6.948360-5 1.159081+2 6.992525-5 1.153224+2 7.081604-5 1.133335+2 7.200526-5 1.110492+2 7.497275-5 1.066121+2 7.734321-5 1.039254+2 7.980749-5 1.019492+2 8.252451-5 1.007399+2 8.675313-5 1.007374+2 9.151333-5 1.032355+2 9.603814-5 1.078768+2 1.002576-4 1.137807+2 1.047129-4 1.215430+2 1.105987-4 1.337715+2 1.163957-4 1.473574+2 1.230269-4 1.648445+2 1.288400-4 1.815642+2 1.462177-4 2.379731+2 1.557942-4 2.717848+2 1.650144-4 3.047094+2 1.746912-4 3.390589+2 1.851491-4 3.748785+2 1.928817-4 3.995731+2 1.980000-4 4.147169+2 2.025772-4 4.261714+2 2.054343-4 4.317885+2 2.069364-4 4.354637+2 2.082918-4 4.412850+2 2.093697-4 4.485089+2 2.119347-4 4.709857+2 2.128681-4 4.780571+2 2.139330-4 4.842079+2 2.167324-4 4.951118+2 2.180369-4 5.017462+2 2.193416-4 5.108978+2 2.216663-4 5.294863+2 2.226740-4 5.361445+2 2.238424-4 5.421339+2 2.273512-4 5.572445+2 2.310901-4 5.789741+2 2.364781-4 6.087317+2 2.437188-4 6.413135+2 2.507886-4 6.664802+2 2.591216-4 6.903077+2 2.686642-4 7.132077+2 2.815000-4 7.402109+2 3.200000-4 8.142524+2 3.411423-4 8.505900+2 3.579976-4 8.730697+2 3.621735-4 8.810720+2 3.643304-4 8.888438+2 3.695694-4 9.131186+2 3.720996-4 9.180311+2 3.756558-4 9.181622+2 3.780368-4 9.208378+2 3.802998-4 9.273834+2 3.849762-4 9.464157+2 3.930000-4 9.737202+2 4.073803-4 1.009015+3 4.384413-4 1.071812+3 4.507085-4 1.099996+3 4.726455-4 1.138509+3 4.997468-4 1.175872+3 5.180980-4 1.196166+3 5.292210-4 1.215606+3 5.413173-4 1.240395+3 5.668100-4 1.278659+3 6.061472-4 1.321467+3 6.512534-4 1.358355+3 7.038822-4 1.389781+3 7.586712-4 1.410872+3 8.185094-4 1.419036+3 8.812073-4 1.419308+3 9.442307-4 1.412052+3 1.008672-3 1.396705+3 1.080812-3 1.370622+3 1.150000-3 1.333660+3 1.215909-3 1.288447+3 1.275072-3 1.240749+3 1.333522-3 1.185213+3 1.387091-3 1.125062+3 1.428886-3 1.069844+3 1.468948-3 1.007655+3 1.504270-3 9.419109+2 1.533219-3 8.789517+2 1.555906-3 8.214936+2 1.576051-3 7.620695+2 1.592862-3 7.038372+2 1.606426-3 6.481672+2 1.616779-3 5.980214+2 1.624987-3 5.526840+2 1.631613-3 5.133666+2 1.641386-3 4.569644+2 1.645708-3 4.360876+2 1.647560-3 4.285425+2 1.649363-3 4.221927+2 1.651381-3 4.164040+2 1.653432-3 4.121076+2 1.655252-3 4.097450+2 1.657389-3 4.088309+2 1.659532-3 4.100181+2 1.661795-3 4.136133+2 1.664179-3 4.199977+2 1.666124-3 4.271319+2 1.667727-3 4.342491+2 1.669507-3 4.433795+2 1.672073-3 4.586257+2 1.676859-3 4.923775+2 1.686124-3 5.681731+2 1.688659-3 5.893337+2 1.691566-3 6.131377+2 1.694733-3 6.382471+2 1.698574-3 6.673922+2 1.703488-3 7.028987+2 1.713076-3 7.704791+2 1.727480-3 8.842337+2 1.736982-3 9.694921+2 1.741486-3 1.010635+3 1.747307-3 1.062524+3 1.753585-3 1.115268+3 1.760811-3 1.170593+3 1.770459-3 1.235518+3 1.785652-3 1.322463+3 1.809171-3 1.437752+3 1.827574-3 1.517256+3 1.848737-3 1.597330+3 1.875628-3 1.684700+3 1.896517-3 1.741399+3 1.915965-3 1.783656+3 1.935861-3 1.816285+3 1.957034-3 1.840788+3 1.981993-3 1.859169+3 2.006096-3 1.867130+3 2.056532-3 1.862155+3 2.070752-3 1.871463+3 2.079794-3 1.884544+3 2.094968-3 1.918189+3 2.128560-3 2.014634+3 2.140656-3 2.047025+3 2.152046-3 2.073686+3 2.165438-3 2.099761+3 2.186291-3 2.130649+3 2.208632-3 2.154609+3 2.235618-3 2.175154+3 2.262598-3 2.188020+3 2.322103-3 2.199997+3 2.348411-3 2.216770+3 2.407909-3 2.285066+3 2.426610-3 2.301903+3 2.454930-3 2.319289+3 2.486749-3 2.329790+3 2.552430-3 2.333966+3 2.579582-3 2.348299+3 2.630364-3 2.396856+3 2.654406-3 2.413657+3 2.691535-3 2.430888+3 2.768571-3 2.451642+3 2.870476-3 2.461665+3 3.063726-3 2.457193+3 3.281077-3 2.432008+3 3.466244-3 2.396437+3 3.741263-3 2.334431+3 3.918128-3 2.291174+3 4.497482-3 2.129399+3 4.846952-3 2.031861+3 5.175629-3 1.941040+3 5.677738-3 1.807833+3 6.178298-3 1.681378+3 6.437985-3 1.619330+3 7.025776-3 1.482604+3 7.341284-3 1.411665+3 7.646572-3 1.344910+3 7.886135-3 1.292188+3 8.113095-3 1.242517+3 8.312570-3 1.198381+3 8.500972-3 1.155126+3 8.657812-3 1.117949+3 8.784443-3 1.086596+3 8.899070-3 1.056517+3 9.000000-3 1.027999+3 9.092709-3 9.993153+2 9.164132-3 9.746926+2 9.224534-3 9.510914+2 9.276187-3 9.278587+2 9.328569-3 9.006375+2 9.454514-3 8.289071+2 9.492579-3 8.134360+2 9.512144-3 8.082450+2 9.530404-3 8.053883+2 9.560830-3 8.051202+2 9.585426-3 8.088920+2 9.618891-3 8.189192+2 9.675889-3 8.441806+2 9.752279-3 8.799582+2 9.773654-3 8.884798+2 9.814170-3 9.020806+2 9.847392-3 9.107873+2 9.887650-3 9.187639+2 9.939084-3 9.256997+2 1.000549-2 9.307613+2 1.007944-2 9.327829+2 1.015773-2 9.318032+2 1.024525-2 9.275186+2 1.030910-2 9.223440+2 1.038126-2 9.141727+2 1.044719-2 9.041359+2 1.054524-2 8.842955+2 1.063828-2 8.638300+2 1.068900-2 8.558595+2 1.074381-2 8.525834+2 1.078675-2 8.544154+2 1.084144-2 8.612956+2 1.094578-2 8.788298+2 1.102278-2 8.874808+2 1.122228-2 8.971863+2 1.129194-2 9.051934+2 1.146567-2 9.320696+2 1.157426-2 9.435501+2 1.164967-2 9.483192+2 1.184180-2 9.536738+2 1.205839-2 9.536429+2 1.233555-2 9.485989+2 1.278147-2 9.335185+2 1.327061-2 9.114273+2 1.399467-2 8.740346+2 1.474097-2 8.335326+2 1.565660-2 7.841847+2 1.686864-2 7.223360+2 1.865241-2 6.418648+2 2.095514-2 5.552501+2 2.339174-2 4.811664+2 2.601088-2 4.159652+2 2.810978-2 3.719816+2 3.191125-2 3.076293+2 3.599261-2 2.552824+2 3.888531-2 2.252684+2 4.214883-2 1.965732+2 4.938184-2 1.489901+2 5.312200-2 1.304898+2 5.625999-2 1.168625+2 5.845591-2 1.079907+2 6.019952-2 1.011037+2 6.153325-2 9.572026+1 6.253395-2 9.138880+1 6.296311-2 8.934905+1 6.330876-2 8.755617+1 6.383248-2 8.444307+1 6.437985-2 8.065077+1 6.482213-2 7.768416+1 6.512223-2 7.620266+1 6.534814-2 7.556563+1 6.556830-2 7.539796+1 6.578357-2 7.564605+1 6.609921-2 7.657567+1 6.685645-2 7.958432+1 6.717415-2 8.053824+1 6.761227-2 8.138835+1 6.791761-2 8.172405+1 6.867010-2 8.199724+1 6.950000-2 8.178677+1 7.068381-2 8.101802+1 7.276942-2 7.903581+1 7.536033-2 7.607350+1 7.805637-2 7.276924+1 8.282972-2 6.694931+1 8.987944-2 5.913397+1 9.823487-2 5.127583+1 1.087051-1 4.324729+1 1.189043-1 3.697740+1 1.386458-1 2.806122+1 1.889726-1 1.596273+1 2.283032-1 1.124277+1 2.770567-1 7.797618+0 3.631685-1 4.636832+0 5.180975-1 2.324495+0 7.994606-1 9.925745-1 1.287539+0 3.869193-1 2.451607+0 1.074191-1 7.403736+0 1.180528-2 2.235892+1 1.294714-3 6.752287+1 1.419661-4 2.039158+2 1.556631-5 6.158159+2 1.706812-6 1.995262+3 1.625877-7 6.309573+3 1.625877-8 1.995262+4 1.625877-9 6.309573+4 1.62588-10 1.000000+5 6.47273-11 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.938000-6 1.258900-6 3.071500-6 1.584900-6 4.868000-6 1.995300-6 7.715200-6 2.511900-6 1.222800-5 3.162300-6 1.937900-5 3.981100-6 3.071400-5 5.011900-6 4.867900-5 6.309600-6 7.715000-5 7.943300-6 1.222700-4 1.000000-5 1.937900-4 1.258900-5 3.071300-4 1.584900-5 4.865800-4 1.995300-5 7.708100-4 2.511900-5 1.221200-3 3.162300-5 1.934800-3 3.981100-5 3.065700-3 5.011900-5 4.858000-3 6.309600-5 7.698100-3 7.943300-5 1.218400-2 1.000000-4 1.927700-2 1.258900-4 3.049700-2 1.584900-4 4.812900-2 1.995300-4 7.588500-2 2.511900-4 1.192400-1 3.162300-4 1.864400-1 3.981100-4 2.892800-1 5.011900-4 4.423400-1 6.309600-4 6.628500-1 7.943300-4 9.680500-1 1.000000-3 1.369500+0 1.258900-3 1.871300+0 1.584900-3 2.483000+0 1.995300-3 3.231600+0 2.511900-3 4.161100+0 3.162300-3 5.305500+0 3.981100-3 6.685500+0 5.011900-3 8.320400+0 6.309600-3 1.019700+1 7.943300-3 1.226700+1 1.000000-2 1.449200+1 1.258900-2 1.687200+1 1.584900-2 1.936600+1 1.995300-2 2.197600+1 2.511900-2 2.448700+1 3.162300-2 2.670900+1 3.981100-2 2.850400+1 5.011900-2 2.981500+1 6.309600-2 3.061800+1 7.943300-2 3.092000+1 1.000000-1 3.069500+1 1.258900-1 2.996700+1 1.584900-1 2.888100+1 1.995300-1 2.746800+1 2.511900-1 2.584000+1 3.162300-1 2.407700+1 3.981100-1 2.224600+1 5.011900-1 2.039800+1 6.309600-1 1.857300+1 7.943300-1 1.679500+1 1.000000+0 1.509200+1 1.258900+0 1.347000+1 1.584900+0 1.194400+1 1.995300+0 1.052100+1 2.511900+0 9.208000+0 3.162300+0 8.008300+0 3.981100+0 6.923400+0 5.011900+0 5.951800+0 6.309600+0 5.089800+0 7.943300+0 4.331500+0 1.000000+1 3.669900+0 1.258900+1 3.096800+0 1.584900+1 2.603600+0 1.995300+1 2.181700+0 2.511900+1 1.822700+0 3.162300+1 1.518600+0 3.981100+1 1.262200+0 5.011900+1 1.046800+0 6.309600+1 8.663400-1 7.943300+1 7.157100-1 1.000000+2 5.903000-1 1.258900+2 4.861200-1 1.584900+2 3.997800-1 1.995300+2 3.283500-1 2.511900+2 2.693700-1 3.162300+2 2.207400-1 3.981100+2 1.807100-1 5.011900+2 1.478000-1 6.309600+2 1.207800-1 7.943300+2 9.861900-2 1.000000+3 8.046100-2 1.258900+3 6.559900-2 1.584900+3 5.344600-2 1.995300+3 4.351600-2 2.511900+3 3.541000-2 3.162300+3 2.879700-2 3.981100+3 2.340600-2 5.011900+3 1.901400-2 6.309600+3 1.543900-2 7.943300+3 1.253000-2 1.000000+4 1.016400-2 1.258900+4 8.241800-3 1.584900+4 6.680000-3 1.995300+4 5.412100-3 2.511900+4 4.383100-3 3.162300+4 3.548400-3 3.981100+4 2.871700-3 5.011900+4 2.323200-3 6.309600+4 1.878900-3 7.943300+4 1.519000-3 1.000000+5 1.227700-3 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159553-4 3.981072-4 3.976755-4 5.011872-4 5.005067-4 6.309573-4 6.298897-4 7.943282-4 7.926539-4 1.000000-3 9.973831-4 1.258925-3 1.254841-3 1.584893-3 1.578541-3 1.995262-3 1.985339-3 2.511886-3 2.496330-3 3.162278-3 3.137852-3 3.981072-3 3.942747-3 5.011872-3 4.951813-3 6.309573-3 6.215697-3 7.943282-3 7.797048-3 1.000000-2 9.772791-3 1.258925-2 1.223658-2 1.584893-2 1.530148-2 1.995262-2 1.910716-2 2.511886-2 2.381837-2 3.162278-2 2.963729-2 3.981072-2 3.680151-2 5.011872-2 4.558783-2 6.309573-2 5.632190-2 7.943282-2 6.936300-2 1.000000-1 8.516586-2 1.258925-1 1.042907-1 1.584893-1 1.271722-1 1.995262-1 1.546347-1 2.511886-1 1.874172-1 3.162278-1 2.264054-1 3.981072-1 2.726022-1 5.011872-1 3.272265-1 6.309573-1 3.916985-1 7.943282-1 4.677130-1 1.000000+0 5.569963-1 1.258925+0 6.623463-1 1.584893+0 7.867175-1 1.995262+0 9.338100-1 2.511886+0 1.108379+0 3.162278+0 1.316110+0 3.981072+0 1.564085+0 5.011872+0 1.860978+0 6.309573+0 2.217092+0 7.943282+0 2.645678+0 1.000000+1 3.162291+0 1.258925+1 3.786367+0 1.584893+1 4.541504+0 1.995262+1 5.456768+0 2.511886+1 6.567576+0 3.162278+1 7.917341+0 3.981072+1 9.560050+0 5.011872+1 1.156079+1 6.309573+1 1.400051+1 7.943282+1 1.697814+1 1.000000+2 2.061555+1 1.258925+2 2.506254+1 1.584893+2 3.050428+1 1.995262+2 3.716779+1 2.511886+2 4.533296+1 3.162278+2 5.534556+1 3.981072+2 6.763003+1 5.011872+2 8.271338+1 6.309573+2 1.012429+2 7.943282+2 1.240189+2 1.000000+3 1.520278+2 1.258925+3 1.864939+2 1.584893+3 2.289162+2 1.995262+3 2.811735+2 2.511886+3 3.455548+2 3.162278+3 4.249345+2 3.981072+3 5.228237+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88219-10 1.995262-5 1.090682-9 2.511886-5 1.728585-9 3.162278-5 2.739629-9 3.981072-5 4.342020-9 5.011872-5 6.881554-9 6.309573-5 1.090616-8 7.943282-5 1.727866-8 1.000000-4 2.737827-8 1.258925-4 4.338356-8 1.584893-4 6.870419-8 1.995262-4 1.088222-7 2.511886-4 1.722626-7 3.162278-4 2.724879-7 3.981072-4 4.316630-7 5.011872-4 6.804935-7 6.309573-4 1.067671-6 7.943282-4 1.674359-6 1.000000-3 2.616900-6 1.258925-3 4.083952-6 1.584893-3 6.352603-6 1.995262-3 9.923067-6 2.511886-3 1.555685-5 3.162278-3 2.442517-5 3.981072-3 3.832428-5 5.011872-3 6.005969-5 6.309573-3 9.387693-5 7.943282-3 1.462345-4 1.000000-2 2.272094-4 1.258925-2 3.526744-4 1.584893-2 5.474508-4 1.995262-2 8.454591-4 2.511886-2 1.300498-3 3.162278-2 1.985488-3 3.981072-2 3.009203-3 5.011872-2 4.530894-3 6.309573-2 6.773836-3 7.943282-2 1.006983-2 1.000000-1 1.483414-2 1.258925-1 2.160183-2 1.584893-1 3.131714-2 1.995262-1 4.489154-2 2.511886-1 6.377147-2 3.162278-1 8.982238-2 3.981072-1 1.255050-1 5.011872-1 1.739607-1 6.309573-1 2.392588-1 7.943282-1 3.266153-1 1.000000+0 4.430037-1 1.258925+0 5.965791-1 1.584893+0 7.981757-1 1.995262+0 1.061452+0 2.511886+0 1.403507+0 3.162278+0 1.846168+0 3.981072+0 2.416987+0 5.011872+0 3.150895+0 6.309573+0 4.092481+0 7.943282+0 5.297604+0 1.000000+1 6.837709+0 1.258925+1 8.802887+0 1.584893+1 1.130743+1 1.995262+1 1.449586+1 2.511886+1 1.855129+1 3.162278+1 2.370544+1 3.981072+1 3.025067+1 5.011872+1 3.855793+1 6.309573+1 4.909522+1 7.943282+1 6.245468+1 1.000000+2 7.938445+1 1.258925+2 1.008300+2 1.584893+2 1.279850+2 1.995262+2 1.623584+2 2.511886+2 2.058557+2 3.162278+2 2.608822+2 3.981072+2 3.304771+2 5.011872+2 4.184739+2 6.309573+2 5.297144+2 7.943282+2 6.703093+2 1.000000+3 8.479722+2 1.258925+3 1.072431+3 1.584893+3 1.355977+3 1.995262+3 1.714089+3 2.511886+3 2.166332+3 3.162278+3 2.737343+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.180000-6 4.827300+6 5.400000-6 5.150652+6 5.623413-6 5.444293+6 5.750000-6 5.590599+6 5.750000-6 8.093961+6 5.821032-6 8.245512+6 5.900000-6 8.404556+6 6.025596-6 8.639069+6 6.200000-6 8.953574+6 6.237348-6 9.016515+6 6.500000-6 9.439222+6 6.531306-6 9.487433+6 6.760830-6 9.811289+6 6.860000-6 9.943811+6 6.860000-6 1.549971+7 6.918310-6 1.538254+7 7.100000-6 1.505073+7 7.350000-6 1.468784+7 7.500000-6 1.450725+7 7.585776-6 1.441313+7 7.852356-6 1.417305+7 7.943282-6 1.410213+7 8.413951-6 1.383003+7 8.500000-6 1.379743+7 9.120108-6 1.361142+7 9.225714-6 1.359347+7 9.332543-6 1.357223+7 9.772372-6 1.352154+7 1.000000-5 1.350701+7 1.023293-5 1.348897+7 1.050000-5 1.348014+7 1.083927-5 1.347238+7 1.122018-5 1.345792+7 1.161449-5 1.344230+7 1.202264-5 1.341589+7 1.230269-5 1.339324+7 1.244515-5 1.338347+7 1.288400-5 1.333370+7 1.318257-5 1.329258+7 1.364583-5 1.320671+7 1.396368-5 1.313847+7 1.445440-5 1.301342+7 1.462177-5 1.296512+7 1.531087-5 1.273806+7 1.610000-5 1.242159+7 1.621810-5 1.236393+7 1.690000-5 1.204632+7 1.698244-5 1.200101+7 1.770000-5 1.162429+7 1.830000-5 1.127488+7 1.850000-5 1.116357+7 1.883649-5 1.095335+7 1.927525-5 1.069107+7 1.929400-5 1.067864+7 1.990000-5 1.029129+7 2.018366-5 1.011902+7 2.041738-5 9.963529+6 2.090000-5 9.655640+6 2.113489-5 9.511884+6 2.137962-5 9.349667+6 2.190000-5 9.019973+6 2.213095-5 8.879946+6 2.250000-5 8.642878+6 2.300000-5 8.337811+6 2.317395-5 8.235794+6 2.350000-5 8.034296+6 2.420000-5 7.627164+6 2.426610-5 7.590419+6 2.450000-5 7.458721+6 2.483133-5 7.270306+6 2.540000-5 6.963593+6 2.540000-5 7.668432+6 2.540973-5 7.663262+6 2.591000-5 7.397799+6 2.600160-5 7.349007+6 2.610000-5 7.296542+6 2.691535-5 6.883880+6 2.700000-5 6.842114+6 2.726000-5 6.715484+6 2.726000-5 7.182239+6 2.754229-5 7.049987+6 2.786121-5 6.900938+6 2.790000-5 6.883180+6 2.851018-5 6.610275+6 2.860000-5 6.570823+6 2.900000-5 6.398264+6 2.951209-5 6.188012+6 2.960000-5 6.152090+6 3.019952-5 5.914575+6 3.162278-5 5.401727+6 3.198895-5 5.279627+6 3.235937-5 5.160728+6 3.300000-5 4.961975+6 3.388442-5 4.710593+6 3.427678-5 4.606625+6 3.467369-5 4.504609+6 3.548134-5 4.305969+6 3.555800-5 4.288081+6 3.672823-5 4.035077+6 3.690000-5 4.000115+6 3.730000-5 3.921795+6 3.770000-5 3.845214+6 3.801894-5 3.787398+6 3.810000-5 3.773181+6 3.810000-5 1.232198+7 3.880000-5 1.181548+7 3.890451-5 1.173500+7 3.935501-5 1.139920+7 3.970000-5 1.115168+7 4.000000-5 1.092994+7 4.030000-5 1.071530+7 4.073803-5 1.041463+7 4.120975-5 1.009372+7 4.150000-5 9.904996+6 4.220000-5 9.474550+6 4.265795-5 9.200301+6 4.300000-5 9.004987+6 4.350000-5 8.730979+6 4.400000-5 8.473045+6 4.415704-5 8.395253+6 4.466836-5 8.150799+6 4.500000-5 7.994240+6 4.518559-5 7.909699+6 4.570882-5 7.680487+6 4.634000-5 7.419931+6 4.634000-5 1.121137+7 4.650000-5 1.113159+7 4.677351-5 1.099958+7 4.700000-5 1.089292+7 4.731513-5 1.073551+7 4.760000-5 1.059432+7 4.800000-5 1.039154+7 4.841724-5 1.018845+7 4.850000-5 1.014715+7 4.954502-5 9.656927+6 5.011872-5 9.398648+6 5.069907-5 9.148345+6 5.128614-5 8.909152+6 5.150000-5 8.822782+6 5.300000-5 8.271214+6 5.308844-5 8.241371+6 5.400000-5 7.941010+6 5.432503-5 7.839789+6 5.500000-5 7.640332+6 5.650000-5 7.237184+6 5.688529-5 7.144382+6 5.730000-5 7.047809+6 5.754399-5 6.991636+6 6.000000-5 6.508144+6 6.025596-5 6.464268+6 6.095369-5 6.349293+6 6.237348-5 6.144620+6 6.309573-5 6.056318+6 6.382635-5 5.973927+6 6.400000-5 5.955533+6 6.456542-5 5.896132+6 6.500000-5 5.853749+6 6.683439-5 5.703404+6 6.760830-5 5.654555+6 6.800000-5 5.631694+6 6.839116-5 5.609154+6 6.918310-5 5.568257+6 7.079458-5 5.504119+6 7.161434-5 5.482022+6 7.244360-5 5.463733+6 7.256000-5 5.461219+6 7.256000-5 5.522437+6 7.360000-5 5.502479+6 7.413102-5 5.495577+6 7.450000-5 5.492362+6 7.500000-5 5.489650+6 7.550000-5 5.488569+6 7.673615-5 5.492978+6 7.762471-5 5.500172+6 7.800000-5 5.503196+6 7.852356-5 5.509696+6 7.950000-5 5.525237+6 8.080000-5 5.553050+6 8.128305-5 5.565358+6 8.150000-5 5.570681+6 8.222426-5 5.590479+6 8.230000-5 5.592388+6 8.413951-5 5.645384+6 8.511380-5 5.678597+6 8.609938-5 5.716055+6 8.650000-5 5.731005+6 8.709636-5 5.754159+6 8.912509-5 5.830784+6 9.015711-5 5.874215+6 9.120108-5 5.917380+6 9.150000-5 5.930243+6 9.225714-5 5.960253+6 9.300000-5 5.990627+6 9.500000-5 6.078245+6 9.549926-5 6.099378+6 9.660509-5 6.142581+6 9.800000-5 6.200025+6 9.950000-5 6.264602+6 1.000000-4 6.284979+6 1.040000-4 6.438181+6 1.047129-4 6.464749+6 1.052000-4 6.483150+6 1.060000-4 6.509889+6 1.083927-4 6.591915+6 1.100000-4 6.644074+6 1.109175-4 6.670224+6 1.122018-4 6.707601+6 1.135011-4 6.746264+6 1.161449-4 6.818311+6 1.174898-4 6.850342+6 1.202264-4 6.917701+6 1.230269-4 6.979662+6 1.240000-4 6.998191+6 1.273503-4 7.063280+6 1.288250-4 7.088314+6 1.288400-4 7.088568+6 1.303167-4 7.114021+6 1.350000-4 7.180113+6 1.364583-4 7.197508+6 1.380384-4 7.216770+6 1.400000-4 7.234679+6 1.412538-4 7.246217+6 1.430000-4 7.262377+6 1.440000-4 7.269338+6 1.450000-4 7.276340+6 1.462177-4 7.284990+6 1.480000-4 7.291764+6 1.500000-4 7.299508+6 1.513561-4 7.304930+6 1.515000-4 7.305126+6 1.545000-4 7.309391+6 1.548817-4 7.309957+6 1.566751-4 7.306423+6 1.584893-4 7.303124+6 1.603245-4 7.299955+6 1.611900-4 7.296390+6 1.625000-4 7.291081+6 1.640590-4 7.284885+6 1.659587-4 7.272026+6 1.678804-4 7.259326+6 1.698244-4 7.246729+6 1.717908-4 7.229982+6 1.720000-4 7.228219+6 1.735900-4 7.214999+6 1.737801-4 7.213431+6 1.757924-4 7.191509+6 1.760000-4 7.189270+6 1.778279-4 7.169645+6 1.798871-4 7.147883+6 1.800000-4 7.146701+6 1.819701-4 7.122644+6 1.840772-4 7.097421+6 1.844600-4 7.092885+6 1.850000-4 7.086511+6 1.883649-4 7.039308+6 1.905461-4 7.009374+6 1.927525-4 6.976132+6 1.949845-4 6.943087+6 1.972423-4 6.910209+6 1.980000-4 6.899303+6 2.000000-4 6.866859+6 2.018366-4 6.837486+6 2.041738-4 6.800613+6 2.065380-4 6.760377+6 2.089296-4 6.720409+6 2.113489-4 6.680749+6 2.137962-4 6.636394+6 2.147100-4 6.620045+6 2.147100-4 6.916830+6 2.162719-4 6.896987+6 2.187762-4 6.862538+6 2.213095-4 6.828928+6 2.238721-4 6.796297+6 2.251400-4 6.778483+6 2.255900-4 6.771717+6 2.255900-4 6.968828+6 2.267000-4 6.956410+6 2.280000-4 6.940249+6 2.290868-4 6.925186+6 2.295000-4 6.919520+6 2.301000-4 6.910301+6 2.310000-4 6.895434+6 2.325000-4 6.868713+6 2.344229-4 6.832456+6 2.350000-4 6.821059+6 2.363000-4 6.794943+6 2.371374-4 6.777597+6 2.385000-4 6.746173+6 2.398833-4 6.712405+6 2.400000-4 6.709581+6 2.410000-4 6.684385+6 2.415000-4 6.671592+6 2.426610-4 6.641008+6 2.428000-4 6.637195+6 2.442000-4 6.597940+6 2.454709-4 6.561841+6 2.458000-4 6.552449+6 2.480000-4 6.488933+6 2.483133-4 6.479827+6 2.500000-4 6.431371+6 2.511886-4 6.397226+6 2.530000-4 6.343409+6 2.540973-4 6.310879+6 2.570396-4 6.225689+6 2.580000-4 6.198191+6 2.615000-4 6.097910+6 2.630268-4 6.055864+6 2.650000-4 6.002324+6 2.660725-4 5.974107+6 2.685300-4 5.910567+6 2.691535-4 5.894939+6 2.705700-4 5.858046+6 2.715000-4 5.834262+6 2.730000-4 5.796840+6 2.740000-4 5.772186+6 2.754229-4 5.737931+6 2.765000-4 5.711549+6 2.790000-4 5.652003+6 2.818383-4 5.587483+6 2.830000-4 5.561888+6 2.851018-4 5.516736+6 2.865000-4 5.486098+6 2.884032-4 5.445411+6 2.890000-4 5.432767+6 2.900000-4 5.412064+6 2.917427-4 5.376763+6 2.930000-4 5.350592+6 2.965000-4 5.280834+6 3.000000-4 5.214532+6 3.019952-4 5.178385+6 3.040000-4 5.142630+6 3.054921-4 5.116684+6 3.080000-4 5.071855+6 3.126079-4 4.992664+6 3.180000-4 4.901508+6 3.198895-4 4.870856+6 3.200000-4 4.869079+6 3.235937-4 4.812440+6 3.240000-4 4.805772+6 3.311311-4 4.693565+6 3.388442-4 4.576101+6 3.430000-4 4.516177+6 3.442200-4 4.499059+6 3.467369-4 4.464029+6 3.548134-4 4.351132+6 3.550000-4 4.348515+6 3.589219-4 4.293948+6 3.630781-4 4.238201+6 3.672823-4 4.183854+6 3.680000-4 4.174325+6 3.758200-4 4.072942+6 3.758200-4 4.324598+6 3.758374-4 4.324376+6 3.780000-4 4.297025+6 3.801894-4 4.269011+6 3.930000-4 4.111603+6 3.935501-4 4.105110+6 3.981072-4 4.049638+6 4.027170-4 3.995570+6 4.050000-4 3.968696+6 4.073803-4 3.940765+6 4.168694-4 3.833350+6 4.200000-4 3.798349+6 4.216965-4 3.779418+6 4.265795-4 3.725728+6 4.350000-4 3.635424+6 4.352700-4 3.632572+6 4.352700-4 3.689819+6 4.365158-4 3.676721+6 4.466836-4 3.572008+6 4.500000-4 3.538120+6 4.518559-4 3.519187+6 4.677351-4 3.360931+6 4.731513-4 3.309418+6 4.786301-4 3.259118+6 4.841724-4 3.208736+6 4.850000-4 3.201216+6 4.897788-4 3.157606+6 5.011872-4 3.058702+6 5.069907-4 3.009861+6 5.128614-4 2.960575+6 5.150000-4 2.943054+6 5.230000-4 2.878143+6 5.248075-4 2.863538+6 5.256900-4 2.856460+6 5.256900-4 2.927961+6 5.308844-4 2.886686+6 5.432503-4 2.793270+6 5.495409-4 2.747010+6 5.500000-4 2.743697+6 5.559043-4 2.700446+6 5.650000-4 2.635243+6 5.688529-4 2.608234+6 5.754399-4 2.562649+6 5.821032-4 2.518148+6 5.888437-4 2.474566+6 5.900000-4 2.467243+6 5.956621-4 2.431648+6 6.025596-4 2.387562+6 6.165950-4 2.302339+6 6.200000-4 2.282562+6 6.237348-4 2.261016+6 6.382635-4 2.179559+6 6.456542-4 2.139094+6 6.531306-4 2.099600+6 6.600000-4 2.064200+6 6.606934-4 2.060638+6 6.683439-4 2.021912+6 6.700000-4 2.013709+6 6.839116-4 1.947133+6 6.850000-4 1.942099+6 6.918310-4 1.910237+6 7.000000-4 1.872380+6 7.161434-4 1.801428+6 7.244360-4 1.766654+6 7.328245-4 1.732376+6 7.413102-4 1.698429+6 7.500000-4 1.664382+6 7.673615-4 1.599060+6 7.762471-4 1.567075+6 7.800000-4 1.553909+6 7.852356-4 1.535536+6 7.943282-4 1.504525+6 8.000000-4 1.485738+6 8.035261-4 1.474254+6 8.128305-4 1.444692+6 8.222426-4 1.415209+6 8.317638-4 1.386113+6 8.413951-4 1.357367+6 8.609938-4 1.301968+6 8.700000-4 1.277602+6 8.810489-4 1.248644+6 8.912509-4 1.222264+6 9.120108-4 1.171062+6 9.332543-4 1.121963+6 9.440609-4 1.098284+6 9.500000-4 1.085465+6 9.549926-4 1.074834+6 9.660509-4 1.051657+6 9.772372-4 1.028894+6 9.885531-4 1.006517+6 1.011579-3 9.634447+5 1.023293-3 9.424176+5 1.035142-3 9.219190+5 1.047129-3 9.018855+5 1.050000-3 8.971376+5 1.059254-3 8.819765+5 1.071519-3 8.624089+5 1.083927-3 8.433384+5 1.109175-3 8.062172+5 1.110000-3 8.050500+5 1.122018-3 7.883159+5 1.148154-3 7.535627+5 1.150000-3 7.511872+5 1.161449-3 7.367091+5 1.174898-3 7.199064+5 1.202264-3 6.875842+5 1.216186-3 6.720412+5 1.258925-3 6.273024+5 1.273503-3 6.128866+5 1.288250-3 5.987710+5 1.303167-3 5.849393+5 1.318257-3 5.713541+5 1.333521-3 5.581208+5 1.350000-3 5.443438+5 1.364583-3 5.326002+5 1.380384-3 5.201812+5 1.396368-3 5.080238+5 1.412538-3 4.961346+5 1.428894-3 4.844677+5 1.445440-3 4.730509+5 1.450000-3 4.699794+5 1.462177-3 4.619031+5 1.479108-3 4.510291+5 1.513561-3 4.298911+5 1.531087-3 4.196894+5 1.548817-3 4.096698+5 1.566751-3 3.999140+5 1.584893-3 3.903847+5 1.603245-3 3.810632+5 1.610000-3 3.777129+5 1.621810-3 3.718983+5 1.650000-3 3.585706+5 1.659587-3 3.542002+5 1.668700-3 3.500915+5 1.668700-3 1.016868+6 1.678804-3 1.009185+6 1.717908-3 9.805198+5 1.725500-3 9.751463+5 1.725500-3 1.259619+6 1.737801-3 1.262002+6 1.748000-3 1.264355+6 1.757924-3 1.267520+6 1.778279-3 1.275049+6 1.785000-3 1.277861+6 1.794000-3 1.279777+6 1.800000-3 1.280327+6 1.805000-3 1.280473+6 1.813000-3 1.280039+6 1.819701-3 1.278508+6 1.820000-3 1.278441+6 1.840772-3 1.264007+6 1.850000-3 1.257271+6 1.862087-3 1.247700+6 1.875000-3 1.236215+6 1.883649-3 1.227138+6 1.890000-3 1.220564+6 1.900000-3 1.208220+6 1.905461-3 1.201566+6 1.927525-3 1.167648+6 1.950000-3 1.134479+6 1.972423-3 1.102690+6 2.000000-3 1.065251+6 2.018366-3 1.041288+6 2.041738-3 1.011885+6 2.065380-3 9.833278+5 2.089296-3 9.555755+5 2.099000-3 9.446071+5 2.099000-3 1.089654+6 2.137962-3 1.043892+6 2.150000-3 1.030325+6 2.162719-3 1.016248+6 2.200000-3 9.765637+5 2.213095-3 9.630947+5 2.220000-3 9.561021+5 2.238721-3 9.372973+5 2.264644-3 9.119258+5 2.290868-3 8.872265+5 2.317395-3 8.632161+5 2.358100-3 8.281730+5 2.358100-3 8.780375+5 2.371374-3 8.667854+5 2.426610-3 8.218756+5 2.454709-3 8.003404+5 2.483133-3 7.791350+5 2.511886-3 7.583689+5 2.540973-3 7.380072+5 2.570396-3 7.181722+5 2.576000-3 7.144828+5 2.576000-3 7.452746+5 2.600160-3 7.293961+5 2.660725-3 6.917120+5 2.691535-3 6.736576+5 2.700000-3 6.687451+5 2.722701-3 6.557913+5 2.754229-3 6.382856+5 2.786121-3 6.212539+5 2.818383-3 6.046392+5 2.851018-3 5.884470+5 2.884032-3 5.726779+5 2.917427-3 5.573547+5 2.951209-3 5.424666+5 2.985383-3 5.279960+5 3.000000-3 5.219136+5 3.019952-3 5.137671+5 3.054921-3 4.998396+5 3.090295-3 4.863150+5 3.126079-3 4.731190+5 3.162278-3 4.602332+5 3.198895-3 4.477035+5 3.235937-3 4.355214+5 3.273407-3 4.236903+5 3.311311-3 4.121863+5 3.349654-3 4.009501+5 3.388442-3 3.900386+5 3.400000-3 3.868721+5 3.427678-3 3.793792+5 3.507519-3 3.589189+5 3.548134-3 3.490078+5 3.589219-3 3.393861+5 3.630781-3 3.300442+5 3.672823-3 3.209661+5 3.715352-3 3.119884+5 3.758374-3 3.032638+5 3.801894-3 2.947973+5 3.845918-3 2.865275+5 3.850000-3 2.857774+5 3.935501-3 2.706919+5 3.981072-3 2.631236+5 4.000000-3 2.600603+5 4.027170-3 2.557537+5 4.120975-3 2.416541+5 4.168694-3 2.349080+5 4.216965-3 2.283306+5 4.265795-3 2.219430+5 4.300000-3 2.176107+5 4.400000-3 2.056258+5 4.415704-3 2.038218+5 4.518559-3 1.924356+5 4.570882-3 1.869962+5 4.623810-3 1.817186+5 4.677351-3 1.765690+5 4.731513-3 1.715642+5 4.800000-3 1.654763+5 4.841724-3 1.619152+5 4.897788-3 1.573003+5 4.954502-3 1.528034+5 5.011872-3 1.484275+5 5.069907-3 1.441832+5 5.128614-3 1.400666+5 5.188000-3 1.360741+5 5.308844-3 1.284307+5 5.370318-3 1.247537+5 5.432503-3 1.211718+5 5.559043-3 1.143169+5 5.623413-3 1.110235+5 5.688529-3 1.078287+5 5.800000-3 1.026611+5 5.821032-3 1.017259+5 5.888437-3 9.879974+4 5.956621-3 9.594988+4 6.025596-3 9.316647+4 6.095369-3 9.046077+4 6.165950-3 8.783745+4 6.237348-3 8.529246+4 6.309573-3 8.282206+4 6.382635-3 8.042666+4 6.456542-3 7.809359+4 6.531306-3 7.582833+4 6.606934-3 7.362931+4 6.683439-3 7.148836+4 6.760830-3 6.941167+4 6.839116-3 6.738808+4 6.918310-3 6.541985+4 7.000000-3 6.347503+4 7.079458-3 6.166104+4 7.161434-3 5.985711+4 7.244360-3 5.810748+4 7.328245-3 5.641010+4 7.413102-3 5.476486+4 7.500000-3 5.314610+4 7.585776-3 5.160477+4 7.852356-3 4.718110+4 7.943282-3 4.579640+4 8.000000-3 4.496144+4 8.035261-3 4.445331+4 8.128305-3 4.315010+4 8.222426-3 4.187892+4 8.300000-3 4.087125+4 8.511380-3 3.828506+4 8.609938-3 3.715898+4 8.709636-3 3.605774+4 8.912509-3 3.395625+4 9.000000-3 3.310388+4 9.015711-3 3.295395+4 9.120108-3 3.198141+4 9.225714-3 3.103576+4 9.332543-3 3.011822+4 9.549926-3 2.835633+4 9.558300-3 2.829108+4 9.558300-3 7.483190+4 9.642000-3 7.336263+4 9.660509-3 7.300990+4 9.850000-3 6.953246+4 9.885531-3 6.886579+4 1.000000-2 6.677558+4 1.011579-2 6.474995+4 1.023293-2 6.278579+4 1.035142-2 6.088178+4 1.040000-2 6.012434+4 1.047129-2 5.903469+4 1.071519-2 5.550002+4 1.076300-2 5.484178+4 1.076300-2 7.566784+4 1.083927-2 7.432125+4 1.096478-2 7.215797+4 1.107000-2 7.041226+4 1.122018-2 6.794003+4 1.124500-2 6.754289+4 1.124500-2 7.813199+4 1.135011-2 7.627583+4 1.141500-2 7.516060+4 1.148154-2 7.407178+4 1.161449-2 7.196216+4 1.174898-2 6.991420+4 1.175000-2 6.989889+4 1.188502-2 6.789552+4 1.190000-2 6.767824+4 1.200000-2 6.625051+4 1.202264-2 6.593524+4 1.230269-2 6.220408+4 1.244515-2 6.039938+4 1.258925-2 5.862983+4 1.273503-2 5.691341+4 1.288250-2 5.524853+4 1.303167-2 5.363271+4 1.318257-2 5.206543+4 1.333521-2 5.054496+4 1.348963-2 4.906878+4 1.350000-2 4.897181+4 1.364583-2 4.764174+4 1.380384-2 4.624533+4 1.400000-2 4.457836+4 1.412538-2 4.355576+4 1.428894-2 4.227107+4 1.445440-2 4.102450+4 1.450000-2 4.069011+4 1.462177-2 3.980996+4 1.479108-2 3.863001+4 1.496236-2 3.748556+4 1.500000-2 3.724049+4 1.513561-2 3.637590+4 1.531087-2 3.529893+4 1.548817-2 3.424885+4 1.580000-2 3.249701+4 1.584893-2 3.223326+4 1.603245-2 3.126994+4 1.640590-2 2.942726+4 1.659587-2 2.854812+4 1.698244-2 2.687604+4 1.717908-2 2.607755+4 1.737801-2 2.530304+4 1.770000-2 2.411524+4 1.798871-2 2.310704+4 1.819701-2 2.241468+4 1.840772-2 2.174264+4 1.850000-2 2.145711+4 1.862087-2 2.108682+4 1.883649-2 2.044817+4 1.905461-2 1.982926+4 1.972423-2 1.808559+4 1.995262-2 1.753996+4 2.000000-2 1.742953+4 2.018366-2 1.701043+4 2.041738-2 1.649682+4 2.065380-2 1.599915+4 2.080000-2 1.570189+4 2.089296-2 1.551550+4 2.113489-2 1.504416+4 2.137962-2 1.458742+4 2.162719-2 1.414489+4 2.213095-2 1.330077+4 2.264644-2 1.250839+4 2.290868-2 1.212754+4 2.344229-2 1.140034+4 2.371374-2 1.105082+4 2.400000-2 1.069816+4 2.426610-2 1.038362+4 2.454709-2 1.006525+4 2.483133-2 9.756882+3 2.570396-2 8.888667+3 2.576800-2 8.829268+3 2.600160-2 8.616637+3 2.630268-2 8.352944+3 2.660725-2 8.095936+3 2.691535-2 7.847038+3 2.722701-2 7.605989+3 2.754229-2 7.372528+3 2.818383-2 6.926886+3 2.851018-2 6.714237+3 2.884032-2 6.508275+3 2.917427-2 6.308797+3 3.019952-2 5.739937+3 3.054921-2 5.562029+3 3.090295-2 5.389771+3 3.126079-2 5.222972+3 3.162278-2 5.061459+3 3.235937-2 4.753313+3 3.273407-2 4.606525+3 3.311311-2 4.463770+3 3.349654-2 4.325388+3 3.388442-2 4.191368+3 3.507519-2 3.814287+3 3.548134-2 3.695537+3 3.630781-2 3.468232+3 3.672823-2 3.360003+3 3.758374-2 3.153599+3 3.801894-2 3.055316+3 3.845918-2 2.960165+3 3.890451-2 2.868048+3 3.981072-2 2.692328+3 4.000000-2 2.657513+3 4.027170-2 2.608614+3 4.073803-2 2.527148+3 4.120975-2 2.448015+3 4.315191-2 2.155766+3 4.365158-2 2.088137+3 4.415704-2 2.022680+3 4.570882-2 1.838631+3 4.677351-2 1.724711+3 4.731513-2 1.670477+3 4.786301-2 1.617971+3 4.841724-2 1.567140+3 4.897788-2 1.517938+3 4.954502-2 1.470275+3 5.011872-2 1.424138+3 5.069907-2 1.379476+3 5.188000-2 1.294129+3 5.248075-2 1.253498+3 5.308844-2 1.214055+3 5.370318-2 1.175881+3 5.495409-2 1.102592+3 5.623413-2 1.033956+3 5.821032-2 9.390340+2 5.888437-2 9.094050+2 6.025596-2 8.529475+2 6.165950-2 8.000289+2 6.309573-2 7.504563+2 6.382635-2 7.266972+2 6.456542-2 7.036742+2 6.531306-2 6.813504+2 6.548200-2 6.764298+2 6.548200-2 3.492598+3 6.683439-2 3.315363+3 6.740000-2 3.244957+3 6.760830-2 3.220020+3 6.830000-2 3.139120+3 6.918310-2 3.031144+3 6.950000-2 2.993638+3 7.161434-2 2.775084+3 7.244360-2 2.695457+3 7.300000-2 2.643810+3 7.328245-2 2.616875+3 7.413102-2 2.538194+3 7.585776-2 2.387692+3 7.762471-2 2.246117+3 7.852356-2 2.178522+3 7.943282-2 2.112970+3 8.035261-2 2.050204+3 8.222426-2 1.930228+3 8.317638-2 1.872910+3 8.609938-2 1.711010+3 8.810489-2 1.610945+3 9.015711-2 1.516640+3 9.120108-2 1.470683+3 9.225714-2 1.426124+3 9.332543-2 1.382917+3 9.549926-2 1.300402+3 9.772372-2 1.222827+3 9.800000-2 1.213640+3 1.011580-1 1.114346+3 1.047129-1 1.015460+3 1.059254-1 9.844948+2 1.071519-1 9.544425+2 1.073540-1 9.496120+2 1.083927-1 9.253081+2 1.096478-1 8.970670+2 1.109175-1 8.696889+2 1.161449-1 7.682841+2 1.202264-1 7.000894+2 1.230269-1 6.575876+2 1.244515-1 6.373162+2 1.258925-1 6.176725+2 1.273503-1 5.986344+2 1.288250-1 5.801843+2 1.303167-1 5.623051+2 1.318257-1 5.449595+2 1.333521-1 5.281511+2 1.355400-1 5.052779+2 1.412538-1 4.516074+2 1.428894-1 4.376890+2 1.445440-1 4.242000+2 1.500000-1 3.835457+2 1.513561-1 3.742747+2 1.531088-1 3.627413+2 1.548817-1 3.515646+2 1.566751-1 3.407331+2 1.584893-1 3.302140+2 1.603245-1 3.200209+2 1.621810-1 3.101428+2 1.640590-1 3.005702+2 1.659587-1 2.912941+2 1.678804-1 2.823054+2 1.717908-1 2.651635+2 1.737801-1 2.569873+2 1.757924-1 2.490637+2 1.778279-1 2.413853+2 1.798871-1 2.339435+2 1.819701-1 2.267317+2 1.883649-1 2.064050+2 1.949845-1 1.879032+2 1.972423-1 1.821128+2 2.000000-1 1.753672+2 2.018366-1 1.710648+2 2.041738-1 1.657983+2 2.065380-1 1.606944+2 2.089296-1 1.557478+2 2.113489-1 1.509537+2 2.187762-1 1.374397+2 2.213095-1 1.332098+2 2.238721-1 1.291104+2 2.264644-1 1.251372+2 2.317395-1 1.176284+2 2.344229-1 1.140463+2 2.371374-1 1.105733+2 2.398833-1 1.072069+2 2.400000-1 1.070669+2 2.426610-1 1.039442+2 2.454709-1 1.007811+2 2.483133-1 9.771449+1 2.600160-1 8.635652+1 2.630268-1 8.373276+1 2.660725-1 8.118879+1 2.691535-1 7.872310+1 2.722701-1 7.633243+1 2.754229-1 7.401459+1 2.786121-1 7.179663+1 2.818383-1 6.964619+1 2.851018-1 6.756027+1 2.951209-1 6.167031+1 2.985383-1 5.982349+1 3.000000-1 5.905682+1 3.019952-1 5.803205+1 3.054921-1 5.629499+1 3.090295-1 5.461008+1 3.162278-1 5.139138+1 3.198895-1 4.985633+1 3.235937-1 4.839019+1 3.273407-1 4.696724+1 3.311311-1 4.558620+1 3.349654-1 4.424580+1 3.388442-1 4.294482+1 3.467369-1 4.045759+1 3.548134-1 3.811480+1 3.589219-1 3.699482+1 3.630781-1 3.590775+1 3.672823-1 3.485370+1 3.715352-1 3.384829+1 3.758374-1 3.287371+1 3.801894-1 3.192722+1 3.890451-1 3.011600+1 3.935501-1 2.924940+1 4.000000-1 2.806812+1 4.027170-1 2.759039+1 4.120975-1 2.602552+1 4.168694-1 2.527712+1 4.216965-1 2.456486+1 4.265795-1 2.387298+1 4.315191-1 2.320060+1 4.365158-1 2.254862+1 4.466836-1 2.129912+1 4.518559-1 2.070061+1 4.570882-1 2.011892+1 4.623810-1 1.955359+1 4.677351-1 1.900469+1 4.731513-1 1.847120+1 4.786301-1 1.796298+1 4.897788-1 1.698880+1 4.954502-1 1.652172+1 5.011872-1 1.606858+1 5.069907-1 1.562788+1 5.128614-1 1.519927+1 5.188000-1 1.478260+1 5.248075-1 1.437759+1 5.308844-1 1.398375+1 5.370318-1 1.360891+1 5.432503-1 1.324413+1 5.495409-1 1.288934+1 5.559043-1 1.254407+1 5.623413-1 1.220806+1 5.688529-1 1.188185+1 5.754399-1 1.156448+1 5.821032-1 1.125575+1 5.888437-1 1.095532+1 5.956621-1 1.066294+1 6.000000-1 1.048679+1 6.025596-1 1.038481+1 6.095369-1 1.011394+1 6.237348-1 9.593591+0 6.382635-1 9.100226+0 6.456542-1 8.863880+0 6.531306-1 8.633726+0 6.606935-1 8.409559+0 6.683439-1 8.191217+0 6.760830-1 7.983589+0 6.839117-1 7.781227+0 6.918310-1 7.584077+0 7.079458-1 7.204910+0 7.161434-1 7.022504+0 7.244360-1 6.844759+0 7.328245-1 6.671998+0 7.413102-1 6.503667+0 7.498942-1 6.339584+0 7.585776-1 6.183543+0 7.673615-1 6.031345+0 7.762471-1 5.882895+0 7.852356-1 5.738197+0 7.943282-1 5.597070+0 8.000000-1 5.511601+0 8.035261-1 5.459425+0 8.128305-1 5.325251+0 8.317638-1 5.067449+0 8.413951-1 4.946402+0 8.511380-1 4.828248+0 8.609938-1 4.712918+0 8.709636-1 4.600418+0 8.912509-1 4.383778+0 9.015711-1 4.279318+0 9.120108-1 4.177662+0 9.225714-1 4.078423+0 9.332543-1 3.984256+0 9.440609-1 3.892283+0 9.549926-1 3.802503+0 9.660509-1 3.714794+0 9.772372-1 3.629196+0 9.885531-1 3.545635+0 1.000000+0 3.464004+0 1.011579+0 3.384511+0 1.023293+0 3.306886+0 1.035142+0 3.232724+0 1.047129+0 3.160223+0 1.059254+0 3.089397+0 1.071519+0 3.020161+0 1.083927+0 2.952474+0 1.096478+0 2.886307+0 1.109175+0 2.821629+0 1.135011+0 2.696748+0 1.148154+0 2.636397+0 1.161449+0 2.577434+0 1.174898+0 2.519946+0 1.202264+0 2.411322+0 1.216186+0 2.358782+0 1.230269+0 2.307419+0 1.244515+0 2.257174+0 1.250000+0 2.238272+0 1.258925+0 2.208028+0 1.273503+0 2.160021+0 1.288250+0 2.113058+0 1.303167+0 2.067120+0 1.318257+0 2.022319+0 1.333521+0 1.979664+0 1.348963+0 1.937928+0 1.380384+0 1.857082+0 1.396368+0 1.817934+0 1.412538+0 1.779626+0 1.428894+0 1.742129+0 1.462177+0 1.669550+0 1.479108+0 1.634404+0 1.496236+0 1.600114+0 1.513561+0 1.567532+0 1.531087+0 1.535624+0 1.584893+0 1.443744+0 1.603245+0 1.414356+0 1.640590+0 1.357411+0 1.659587+0 1.329807+0 1.678804+0 1.302852+0 1.698244+0 1.277200+0 1.717908+0 1.252055+0 1.737801+0 1.227406+0 1.798871+0 1.156371+0 1.819701+0 1.133619+0 1.840772+0 1.111335+0 1.862087+0 1.089488+0 1.883649+0 1.068073+0 1.905461+0 1.047147+0 1.927525+0 1.027229+0 1.949845+0 1.007690+0 1.972423+0 9.885258-1 2.018366+0 9.513045-1 2.044000+0 9.315013-1 2.065380+0 9.154841-1 2.113489+0 8.810425-1 2.137962+0 8.643118-1 2.162719+0 8.479515-1 2.187762+0 8.323564-1 2.213095+0 8.170484-1 2.238721+0 8.020241-1 2.290868+0 7.728138-1 2.317395+0 7.586102-1 2.344229+0 7.446677-1 2.371374+0 7.309910-1 2.426610+0 7.043914-1 2.454709+0 6.914575-1 2.483133+0 6.788029-1 2.511886+0 6.667388-1 2.540973+0 6.548890-1 2.570396+0 6.432516-1 2.630268+0 6.206057-1 2.660725+0 6.095834-1 2.691535+0 5.987569-1 2.722701+0 5.881305-1 2.786121+0 5.674433-1 2.818383+0 5.573747-1 2.851018+0 5.475169-1 2.884032+0 5.381079-1 2.917427+0 5.288611-1 2.951209+0 5.197743-1 3.019952+0 5.020757-1 3.054921+0 4.934538-1 3.090295+0 4.849800-1 3.126079+0 4.766577-1 3.198895+0 4.604417-1 3.235937+0 4.525422-1 3.273407+0 4.448036-1 3.311311+0 4.374108-1 3.349654+0 4.301440-1 3.388442+0 4.229978-1 3.427678+0 4.159714-1 3.507519+0 4.022742-1 3.548134+0 3.955956-1 3.589219+0 3.890281-1 3.630781+0 3.825740-1 3.715352+0 3.699879-1 3.758374+0 3.638512-1 3.801894+0 3.578359-1 3.845918+0 3.520861-1 3.890451+0 3.464313-1 3.935501+0 3.408671-1 4.000000+0 3.331635-1 4.073803+0 3.247119-1 4.120975+0 3.195002-1 4.168694+0 3.143721-1 4.216965+0 3.093299-1 4.315191+0 2.994884-1 4.365158+0 2.946861-1 4.415704+0 2.899756-1 4.518559+0 2.810263-1 4.570882+0 2.766576-1 4.623810+0 2.723568-1 4.677351+0 2.681234-1 4.786301+0 2.598570-1 4.841724+0 2.558199-1 4.897788+0 2.518455-1 5.000000+0 2.448742-1 5.128614+0 2.365671-1 5.188000+0 2.328951-1 5.248075+0 2.292912-1 5.370318+0 2.224381-1 5.432503+0 2.190902-1 5.495409+0 2.157926-1 5.559043+0 2.125451-1 5.688529+0 2.061992-1 5.754399+0 2.030976-1 5.821032+0 2.000427-1 5.956621+0 1.940743-1 6.095369+0 1.882849-1 6.165950+0 1.854555-1 6.237348+0 1.826778-1 6.382635+0 1.774006-1 6.456542+0 1.748205-1 6.531306+0 1.722779-1 6.606934+0 1.697727-1 6.760830+0 1.648733-1 6.839116+0 1.624769-1 6.918310+0 1.601153-1 7.161434+0 1.532390-1 7.328245+0 1.488203-1 7.498942+0 1.445293-1 7.585776+0 1.424371-1 7.762471+0 1.384570-1 7.852356+0 1.365097-1 7.943282+0 1.345898-1 8.000000+0 1.334170-1 8.128305+0 1.308326-1 8.222427+0 1.289937-1 8.317638+0 1.271808-1 8.511380+0 1.236334-1 8.709636+0 1.201855-1 9.015711+0 1.151933-1 9.225714+0 1.119889-1 9.549926+0 1.074502-1 9.772372+0 1.045281-1 1.000000+1 1.016854-1 1.011579+1 1.002934-1 1.023293+1 9.892090-2 1.047129+1 9.623212-2 1.059254+1 9.491531-2 1.083927+1 9.233708-2 1.100000+1 9.072597-2 1.122018+1 8.860118-2 1.148154+1 8.620194-2 1.174898+1 8.392777-2 1.202264+1 8.171450-2 1.230269+1 7.955948-2 1.244515+1 7.850350-2 1.258925+1 7.746208-2 1.288250+1 7.542031-2 1.300000+1 7.463010-2 1.303167+1 7.441975-2 1.348963+1 7.149860-2 1.380384+1 6.961543-2 1.412538+1 6.778189-2 1.462177+1 6.512859-2 1.500000+1 6.327692-2 1.531087+1 6.182833-2 1.566751+1 6.024173-2 1.584893+1 5.946386-2 1.603245+1 5.869634-2 1.640590+1 5.719086-2 1.659587+1 5.645269-2 1.737801+1 5.359551-2 1.778279+1 5.222182-2 1.819701+1 5.088336-2 1.905461+1 4.831462-2 1.949845+1 4.710552-2 2.000000+1 4.580738-2 2.041738+1 4.477809-2 2.065380+1 4.421448-2 2.089296+1 4.365818-2 2.137962+1 4.256649-2 2.162719+1 4.203092-2 2.290868+1 3.945381-2 2.317395+1 3.895772-2 2.371374+1 3.798422-2 2.540973+1 3.521265-2 2.630268+1 3.392758-2 2.660725+1 3.350985-2 2.754229+1 3.228728-2 2.851018+1 3.110933-2 2.884032+1 3.072648-2 2.917427+1 3.034836-2 2.951209+1 2.997488-2 3.019952+1 2.924200-2 3.054921+1 2.888235-2 3.090295+1 2.852713-2 3.427678+1 2.552553-2 3.467369+1 2.521658-2 3.845918+1 2.259906-2 3.981072+1 2.178857-2 4.168694+1 2.075297-2 4.265795+1 2.025378-2 4.315191+1 2.000872-2 4.365158+1 1.976670-2 4.415704+1 1.952761-2 4.466836+1 1.929152-2 4.518559+1 1.905831-2 4.897788+1 1.750581-2 4.954502+1 1.729794-2 5.011872+1 1.709255-2 5.559043+1 1.535039-2 5.821032+1 1.463434-2 6.237348+1 1.362242-2 6.456542+1 1.314301-2 6.606934+1 1.283282-2 6.683439+1 1.268049-2 6.839116+1 1.238129-2 6.918310+1 1.223434-2 6.998420+1 1.208914-2 7.079458+1 1.194567-2 7.244360+1 1.166389-2 7.328245+1 1.152552-2 7.498942+1 1.125369-2 8.413951+1 9.989622-3 8.511380+1 9.872912-3 9.015711+1 9.309503-3 9.225714+1 9.093283-3 9.660509+1 8.675798-3 9.885531+1 8.474299-3 1.035142+2 8.085251-3 1.047129+2 7.990807-3 1.096478+2 7.624026-3 1.109175+2 7.534989-3 1.122018+2 7.446998-3 1.148154+2 7.274073-3 1.174898+2 7.105168-3 1.230269+2 6.779110-3 1.244515+2 6.699961-3 1.273503+2 6.544436-3 1.348963+2 6.171232-3 1.621810+2 5.115078-3 1.640590+2 5.055421-3 1.659587+2 4.996917-3 1.778279+2 4.659840-3 1.819701+2 4.552621-3 1.905461+2 4.345531-3 1.927525+2 4.295248-3 2.065380+2 4.005543-3 2.089296+2 3.959195-3 2.187762+2 3.779126-3 2.213095+2 3.735403-3 2.238721+2 3.692187-3 2.290868+2 3.607247-3 2.344229+2 3.524263-3 2.454709+2 3.364001-3 2.483133+2 3.325088-3 2.540973+2 3.248609-3 2.691535+2 3.065023-3 3.235937+2 2.544790-3 3.273407+2 2.515378-3 3.311311+2 2.486464-3 3.548134+2 2.319822-3 3.630781+2 2.266799-3 3.801894+2 2.164361-3 3.845918+2 2.139483-3 4.120975+2 1.996109-3 4.168694+2 1.973165-3 4.365158+2 1.884005-3 4.415704+2 1.862351-3 4.466836+2 1.840947-3 4.570882+2 1.798873-3 4.677351+2 1.757761-3 9.772372+2 8.388470-4 9.885531+2 8.292067-4 1.011579+3 8.102581-4 1.071519+3 7.647585-4 1.288250+3 6.356829-4 1.303167+3 6.283809-4 1.318257+3 6.211838-4 1.412538+3 5.796999-4 1.445440+3 5.664976-4 1.513561+3 5.409882-4 1.531087+3 5.347924-4 1.640590+3 4.990795-4 1.659587+3 4.933638-4 1.737801+3 4.711486-4 1.757924+3 4.657529-4 1.778279+3 4.604192-4 1.819701+3 4.499338-4 1.862087+3 4.396874-4 6.165950+4 1.325931-5 6.237348+4 1.310747-5 6.382635+4 1.280899-5 1.000000+5 8.174032-6 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.180000-6 5.180000-6 5.750000-6 5.180000-6 5.750000-6 5.356294-6 6.860000-6 5.371910-6 6.860000-6 5.905319-6 7.500000-6 5.767308-6 7.943282-6 5.693639-6 8.500000-6 5.622449-6 9.332543-6 5.548916-6 1.050000-5 5.488536-6 1.230269-5 5.445494-6 1.531087-5 5.424607-6 2.540000-5 5.427071-6 2.540000-5 7.262870-6 2.726000-5 7.447582-6 2.726000-5 8.735138-6 3.162278-5 9.512728-6 3.388442-5 9.977871-6 3.555800-5 1.037547-5 3.730000-5 1.085423-5 3.810000-5 1.110110-5 3.810000-5 2.983252-5 4.030000-5 2.969581-5 4.634000-5 2.893577-5 4.634000-5 3.482150-5 4.850000-5 3.473265-5 5.150000-5 3.433037-5 5.500000-5 3.367034-5 6.800000-5 3.067125-5 7.256000-5 2.978462-5 7.256000-5 3.025880-5 7.762471-5 2.942101-5 8.230000-5 2.884993-5 8.709636-5 2.841401-5 9.300000-5 2.802978-5 1.000000-4 2.772224-5 1.122018-4 2.740727-5 1.303167-4 2.716471-5 1.640590-4 2.696769-5 2.147100-4 2.686665-5 2.147100-4 2.818565-5 2.255900-4 2.846367-5 2.255900-4 2.931315-5 2.325000-4 2.950088-5 2.410000-4 2.950482-5 2.540973-4 2.915324-5 2.705700-4 2.872603-5 2.851018-4 2.857566-5 3.000000-4 2.864346-5 3.200000-4 2.897758-5 3.467369-4 2.966311-5 3.758200-4 3.054476-5 3.758200-4 3.386491-5 4.352700-4 3.601784-5 4.352700-4 3.689873-5 5.150000-4 3.965886-5 5.256900-4 4.001140-5 5.256900-4 4.189048-5 5.900000-4 4.399882-5 6.700000-4 4.633438-5 7.500000-4 4.838826-5 8.413951-4 5.044163-5 9.549926-4 5.265504-5 1.083927-3 5.479365-5 1.216186-3 5.666873-5 1.396368-3 5.882076-5 1.621810-3 6.104454-5 1.668700-3 6.144906-5 1.668700-3 8.898319-5 1.725500-3 8.956108-5 1.725500-3 9.526557-5 1.813000-3 9.732448-5 1.890000-3 9.822134-5 2.099000-3 9.831245-5 2.099000-3 1.060007-4 2.358100-3 1.069574-4 2.358100-3 1.105581-4 2.576000-3 1.116405-4 2.576000-3 1.153143-4 3.273407-3 1.191841-4 4.265795-3 1.235879-4 5.370318-3 1.274955-4 6.760830-3 1.313979-4 8.511380-3 1.352258-4 9.558300-3 1.371123-4 9.558300-3 1.785631-4 1.076300-2 1.792960-4 1.076300-2 1.893182-4 1.124500-2 1.895816-4 1.124500-2 2.014265-4 1.603245-2 2.062671-4 2.290868-2 2.111868-4 3.235937-2 2.159348-4 4.415704-2 2.201536-4 6.025596-2 2.241555-4 6.548200-2 2.251759-4 6.548200-2 2.100525-4 1.717908-1 2.112583-4 5.370318-1 2.120337-4 1.000000+5 2.121480-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.180000-6 0.0 2.255900-4 0.0 2.255900-4 7.97882-10 2.295000-4 8.63785-10 2.325000-4 9.19020-10 2.350000-4 9.68014-10 2.371374-4 1.006509-9 2.385000-4 1.027066-9 2.400000-4 1.043808-9 2.415000-4 1.053808-9 2.428000-4 1.057317-9 2.442000-4 1.056535-9 2.458000-4 1.050600-9 2.483133-4 1.033048-9 2.500000-4 1.017834-9 2.530000-4 9.86059-10 2.580000-4 9.26102-10 2.650000-4 8.41963-10 2.705700-4 7.79860-10 2.754229-4 7.34244-10 2.790000-4 7.06692-10 2.830000-4 6.81998-10 2.865000-4 6.65934-10 2.900000-4 6.54966-10 2.930000-4 6.49351-10 2.965000-4 6.46959-10 3.000000-4 6.48594-10 3.040000-4 6.54939-10 3.080000-4 6.65923-10 3.126079-4 6.83307-10 3.180000-4 7.10031-10 3.240000-4 7.45962-10 3.311311-4 7.96635-10 3.430000-4 8.95155-10 3.467369-4 9.28441-10 3.550000-4 1.006100-9 3.680000-4 1.138001-9 3.758200-4 1.219804-9 3.758200-4 2.218735-9 4.200000-4 2.760169-9 4.352700-4 2.948683-9 4.352700-4 3.540484-9 4.731513-4 4.037208-9 5.128614-4 4.539362-9 5.256900-4 4.698562-9 5.256900-4 5.403798-9 5.754399-4 6.033099-9 6.237348-4 6.596057-9 6.700000-4 7.101256-9 7.244360-4 7.657326-9 7.852356-4 8.221291-9 8.609938-4 8.862065-9 9.332543-4 9.412703-9 1.011579-3 9.956977-9 1.083927-3 1.041384-8 1.161449-3 1.086138-8 1.216186-3 1.116540-8 1.333521-3 1.174387-8 1.462177-3 1.230704-8 1.621810-3 1.292222-8 1.668700-3 1.309006-8 1.668700-3 1.312346-8 1.725500-3 1.318791-8 1.725500-3 4.295984-6 1.748000-3 4.584387-6 1.785000-3 5.101639-6 1.800000-3 5.271052-6 1.813000-3 5.403225-6 1.820000-3 5.458100-6 1.850000-3 5.752280-6 1.875000-3 5.955306-6 1.890000-3 6.043654-6 1.905461-3 6.099194-6 2.099000-3 6.065538-6 2.099000-3 5.990844-6 2.358100-3 5.948945-6 2.358100-3 6.573420-6 2.576000-3 6.616147-6 2.576000-3 6.766986-6 3.090295-3 6.874089-6 4.027170-3 7.022172-6 5.432503-3 7.186791-6 7.413102-3 7.359095-6 9.558300-3 7.492675-6 9.558300-3 1.263688-3 9.850000-3 1.267840-3 1.076300-2 1.264293-3 1.076300-2 1.701498-3 1.124500-2 1.705565-3 1.124500-2 1.783403-3 1.500000-2 1.801445-3 2.264644-2 1.814805-3 4.073803-2 1.821497-3 6.548200-2 1.821617-3 6.548200-2 4.605448-2 7.762471-2 4.641985-2 1.011580-1 4.684030-2 1.445440-1 4.718662-2 2.400000-1 4.745018-2 7.413102-1 4.779934-2 1.273503+0 4.790829-2 1.000000+5 4.789731-2 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.180000-6 0.0 5.750000-6 5.700000-7 5.750000-6 3.937061-7 6.237348-6 8.728562-7 6.860000-6 1.488090-6 6.860000-6 9.546811-7 7.100000-6 1.251334-6 7.350000-6 1.554257-6 7.585776-6 1.833851-6 7.943282-6 2.249643-6 8.500000-6 2.877551-6 9.332543-6 3.783627-6 1.023293-5 4.733755-6 1.161449-5 6.157325-6 1.462177-5 9.195045-6 2.540000-5 1.997293-5 2.540000-5 1.813713-5 2.726000-5 1.981242-5 2.726000-5 1.852486-5 3.235937-5 2.270057-5 3.555800-5 2.518253-5 3.810000-5 2.699890-5 3.810000-5 8.267482-6 3.890451-5 9.093426-6 4.030000-5 1.060419-5 4.350000-5 1.418700-5 4.634000-5 1.740423-5 4.634000-5 1.151850-5 4.731513-5 1.249906-5 4.850000-5 1.376735-5 5.011872-5 1.557924-5 5.150000-5 1.716963-5 5.432503-5 2.051928-5 5.754399-5 2.443969-5 6.760830-5 3.685363-5 7.256000-5 4.277538-5 7.256000-5 4.230120-5 7.852356-5 4.922447-5 8.650000-5 5.803838-5 9.800000-5 7.020242-5 1.202264-4 9.294663-5 2.147100-4 1.878433-4 2.147100-4 1.865244-4 2.255900-4 1.971263-4 2.255900-4 1.962761-4 2.480000-4 2.186586-4 2.930000-4 2.644117-4 3.758200-4 3.452740-4 3.758200-4 3.419529-4 4.352700-4 3.992492-4 4.352700-4 3.983677-4 5.256900-4 4.856739-4 5.256900-4 4.837941-4 8.700000-4 8.189577-4 1.668700-3 1.607238-3 1.668700-3 1.579704-3 1.725500-3 1.635926-3 1.725500-3 1.625939-3 1.972423-3 1.868035-3 2.099000-3 1.994622-3 2.099000-3 1.987009-3 2.358100-3 2.245194-3 2.358100-3 2.240969-3 2.576000-3 2.457743-3 2.576000-3 2.453919-3 9.558300-3 9.413695-3 9.558300-3 8.116049-3 1.076300-2 9.319411-3 1.076300-2 8.872184-3 1.124500-2 9.349854-3 1.124500-2 9.260170-3 3.162278-2 2.958753-2 6.548200-2 6.343521-2 6.548200-2 1.921747-2 6.918310-2 2.278803-2 7.585776-2 2.926421-2 9.800000-2 5.098469-2 1.640590-1 1.165682-1 1.000000+5 9.999995+4 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.548200-2 2.816168+3 6.740000-2 2.621120+3 6.830000-2 2.538040+3 6.950000-2 2.421160+3 7.300000-2 2.144780+3 7.943282-2 1.719202+3 9.015711-2 1.240489+3 9.800000-2 9.951920+2 1.202264-1 5.770409+2 1.566751-1 2.821636+2 2.264644-1 1.040214+2 2.754229-1 6.161637+1 3.198895-1 4.154843+1 3.672823-1 2.907111+1 4.168694-1 2.110013+1 4.731513-1 1.543196+1 5.308844-1 1.169176+1 5.956621-1 8.922256+0 6.683439-1 6.859583+0 7.498942-1 5.313723+0 8.317638-1 4.250949+0 9.225714-1 3.423900+0 1.023293+0 2.777493+0 1.174898+0 2.116975+0 1.318257+0 1.698809+0 1.496236+0 1.343902+0 1.678804+0 1.094208+0 1.905461+0 8.794752-1 2.162719+0 7.121879-1 2.483133+0 5.701225-1 2.851018+0 4.598578-1 3.273407+0 3.735864-1 3.801894+0 3.005445-1 4.415704+0 2.435492-1 5.248075+0 1.925805-1 6.237348+0 1.534297-1 7.585776+0 1.196326-1 9.225714+0 9.405732-2 1.148154+1 7.239956-2 1.462177+1 5.469979-2 1.905461+1 4.057806-2 2.540973+1 2.957372-2 3.427678+1 2.143757-2 4.897788+1 1.470221-2 8.413951+1 8.389749-3 1.640590+2 4.245883-3 3.273407+2 2.112607-3 1.303167+3 5.277808-4 1.000000+5 6.865800-6 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.548200-2 2.064200-4 1.000000+5 2.064200-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.548200-2 5.667900-2 1.000000+5 5.667900-2 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.548200-2 8.596580-3 1.000000+5 9.999994+4 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.124500-2 1.058910+4 1.141500-2 1.025316+4 1.174898-2 9.785123+3 1.200000-2 9.431780+3 1.244515-2 8.889407+3 1.350000-2 7.684520+3 1.450000-2 6.792620+3 1.548817-2 6.019679+3 1.659587-2 5.274987+3 1.770000-2 4.681200+3 2.264644-2 2.875499+3 2.576800-2 2.201194+3 2.917427-2 1.695924+3 3.507519-2 1.136275+3 4.027170-2 8.341043+2 4.570882-2 6.248690+2 5.370318-2 4.290834+2 6.309573-2 2.921498+2 7.413102-2 1.973563+2 8.810489-2 1.286223+2 1.059254-1 8.083573+1 1.303167-1 4.755278+1 2.600160-1 7.919082+0 3.162278-1 4.795452+0 3.715352-1 3.195024+0 4.315191-1 2.207766+0 4.954502-1 1.581520+0 5.623413-1 1.173893+0 6.382635-1 8.780030-1 7.244360-1 6.618927-1 8.128305-1 5.157429-1 9.015711-1 4.147987-1 1.000000+0 3.359162-1 1.161449+0 2.500512-1 1.303167+0 2.005261-1 1.479108+0 1.585288-1 1.659587+0 1.289817-1 1.883649+0 1.035923-1 2.137962+0 8.382894-2 2.454709+0 6.706082-2 2.818383+0 5.405609-2 3.235937+0 4.388875-2 3.758374+0 3.528717-2 4.365158+0 2.857964-2 5.188000+0 2.258727-2 6.165950+0 1.798625-2 7.498942+0 1.401687-2 9.015711+0 1.117128-2 1.122018+1 8.591801-3 1.412538+1 6.572531-3 1.819701+1 4.933545-3 2.371374+1 3.682792-3 3.090295+1 2.765768-3 4.518559+1 1.847834-3 7.498942+1 1.090922-3 1.348963+2 5.982229-4 2.691535+2 2.971843-4 1.071519+3 7.416066-5 1.000000+5 7.929400-7 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.124500-2 2.769800-4 1.000000+5 2.769800-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.124500-2 2.279900-3 1.000000+5 2.279900-3 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.124500-2 8.688120-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.076300-2 2.082606+4 1.107000-2 1.958500+4 1.175000-2 1.686700+4 1.380384-2 1.109300+4 1.531087-2 8.396800+3 1.798871-2 5.393200+3 2.080000-2 3.607500+3 2.630268-2 1.845000+3 3.273407-2 9.737900+2 4.073803-2 5.079300+2 5.069907-2 2.623700+2 6.456542-2 1.253200+2 1.333521-1 1.335631+1 1.678804-1 6.594278+0 2.018366-1 3.774367+0 2.400000-1 2.250401+0 2.786121-1 1.451946+0 3.198895-1 9.746818-1 3.630781-1 6.811912-1 4.120975-1 4.796822-1 4.623810-1 3.512296-1 5.188000-1 2.591032-1 5.754399-1 1.984063-1 6.382635-1 1.529491-1 7.328245-1 1.091545-1 8.035261-1 8.761973-2 8.709636-1 7.277773-2 9.440609-1 6.090467-2 1.011579+0 5.264420-2 1.109175+0 4.369121-2 1.216186+0 3.650153-2 1.333521+0 3.070124-2 1.513561+0 2.440754-2 1.737801+0 1.911072-2 1.972423+0 1.538627-2 2.238721+0 1.248324-2 2.570396+0 1.001317-2 2.951209+0 8.092244-3 3.427678+0 6.475357-3 4.000000+0 5.186300-3 4.677351+0 4.173566-3 5.559043+0 3.308482-3 6.606934+0 2.642771-3 8.000000+0 2.076700-3 1.011579+1 1.561077-3 1.244515+1 1.221941-3 1.584893+1 9.256287-4 2.065380+1 6.882675-4 2.851018+1 4.842041-4 4.315191+1 3.114846-4 6.683439+1 1.973730-4 1.047129+2 1.243832-4 2.089296+2 6.164859-5 4.168694+2 3.072839-5 1.659587+3 7.684358-6 1.000000+5 1.273400-7 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.076300-2 2.157100-4 1.000000+5 2.157100-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.076300-2 2.852800-3 1.000000+5 2.852800-3 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.076300-2 7.694490-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 9.558300-3 4.654082+4 9.642000-3 4.571216+4 9.850000-3 4.338760+4 1.083927-2 3.347733+4 1.230269-2 2.362582+4 1.364583-2 1.761353+4 1.603245-2 1.104747+4 1.850000-2 7.283920+3 2.344229-2 3.580218+3 2.917427-2 1.829489+3 3.548134-2 9.921089+2 4.315191-2 5.329962+2 5.248075-2 2.839683+2 6.531306-2 1.393571+2 8.609938-2 5.621617+1 1.355400-1 1.257918+1 1.678804-1 6.236205+0 2.000000-1 3.537354+0 2.317395-1 2.210375+0 2.660725-1 1.431895+0 3.019952-1 9.688374-1 3.388442-1 6.840300-1 3.801894-1 4.865990-1 4.216965-1 3.606710-1 4.623810-1 2.781146-1 5.128614-1 2.091381-1 5.688529-1 1.585012-1 6.237348-1 1.247270-1 6.839117-1 9.879485-2 7.498942-1 7.877014-2 8.609938-1 5.661779-2 9.225714-1 4.831246-2 9.772372-1 4.256593-2 1.047129+0 3.683721-2 1.148154+0 3.061975-2 1.258925+0 2.564760-2 1.396368+0 2.119294-2 1.678804+0 1.526137-2 1.905461+0 1.225913-2 2.162719+0 9.923870-3 2.483133+0 7.943807-3 2.851018+0 6.407796-3 3.311311+0 5.118036-3 3.845918+0 4.119742-3 4.518559+0 3.287664-3 5.370318+0 2.602277-3 6.382635+0 2.075423-3 7.762471+0 1.619726-3 9.549926+0 1.257029-3 1.174898+1 9.819086-4 1.500000+1 7.403100-4 1.949845+1 5.511454-4 2.630268+1 3.969034-4 3.845918+1 2.642956-4 5.559043+1 1.795336-4 9.015711+1 1.089103-4 1.778279+2 5.452471-5 3.548134+2 2.714596-5 1.412538+3 6.784356-6 1.000000+5 9.567200-8 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 9.558300-3 2.037600-4 1.000000+5 2.037600-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.558300-3 2.027300-3 1.000000+5 2.027300-3 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.558300-3 7.327240-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.576000-3 3.079175+4 2.691535-3 2.945487+4 3.090295-3 2.454038+4 3.273407-3 2.260663+4 3.850000-3 1.777796+4 4.415704-3 1.443732+4 4.800000-3 1.261454+4 5.821032-3 9.148163+3 6.531306-3 7.484615+3 7.585776-3 5.734556+3 9.120108-3 4.082286+3 1.047129-2 3.140353+3 1.202264-2 2.402646+3 1.428894-2 1.705087+3 1.698244-2 1.199470+3 2.018366-2 8.366850+2 2.400000-2 5.781360+2 2.818383-2 4.071906+2 3.311311-2 2.844153+2 3.890451-2 1.972267+2 4.570882-2 1.357755+2 5.370318-2 9.280603+1 6.382635-2 6.126709+1 7.585776-2 4.014399+1 9.015711-2 2.612091+1 1.109175-1 1.546628+1 1.445440-1 7.846895+0 2.483133-1 1.931149+0 3.090295-1 1.103139+0 3.630781-1 7.348092-1 4.168694-1 5.220093-1 4.786301-1 3.735430-1 5.432503-1 2.767811-1 6.095369-1 2.121075-1 6.918310-1 1.595228-1 7.762471-1 1.240000-1 8.709636-1 9.701065-2 9.660509-1 7.832375-2 1.109175+0 5.950046-2 1.258925+0 4.655867-2 1.428894+0 3.673116-2 1.603245+0 2.982242-2 1.819701+0 2.390055-2 2.065380+0 1.930145-2 2.344229+0 1.569724-2 2.691535+0 1.262228-2 3.090295+0 1.022436-2 3.589219+0 8.200961-3 4.168694+0 6.627379-3 4.897788+0 5.308860-3 5.821032+0 4.216733-3 6.918310+0 3.374973-3 8.317638+0 2.680682-3 1.059254+1 2.000839-3 1.303167+1 1.568673-3 1.659587+1 1.189968-3 2.162719+1 8.859501-4 2.951209+1 6.319004-4 4.415704+1 4.117246-4 7.079458+1 2.518178-4 1.174898+2 1.497682-4 2.344229+2 7.431360-5 4.677351+2 3.706699-5 1.862087+3 9.273482-6 1.000000+5 1.724600-7 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.576000-3 2.005600-4 1.000000+5 2.005600-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.576000-3 1.026700-5 1.000000+5 1.026700-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.576000-3 2.365173-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.358100-3 4.986448+4 2.454709-3 4.793020+4 2.540973-3 4.618940+4 2.700000-3 4.312240+4 2.818383-3 4.087249+4 3.090295-3 3.606873+4 3.400000-3 3.143980+4 3.672823-3 2.797712+4 3.981072-3 2.458255+4 4.265795-3 2.186304+4 4.954502-3 1.676868+4 5.308844-3 1.475586+4 6.025596-3 1.154304+4 6.606934-3 9.605339+3 7.413102-3 7.560867+3 8.300000-3 5.940460+3 9.332543-3 4.583012+3 1.040000-2 3.585460+3 1.190000-2 2.617400+3 1.333521-2 1.991769+3 1.513561-2 1.459551+3 1.737801-2 1.030870+3 1.995262-2 7.220883+2 2.290868-2 5.018487+2 2.630268-2 3.462036+2 3.019952-2 2.371678+2 3.507519-2 1.562822+2 4.120975-2 9.894855+1 4.897788-2 6.015623+1 5.888437-2 3.508039+1 7.328245-2 1.833370+1 9.772372-2 7.734697+0 1.584893-1 1.800193+0 1.972423-1 9.368898-1 2.371374-1 5.441791-1 2.786121-1 3.408018-1 3.198895-1 2.297577-1 3.630781-1 1.611158-1 4.120975-1 1.137844-1 4.623810-1 8.350902-2 5.188000-1 6.173998-2 5.821032-1 4.600894-2 6.456542-1 3.555712-2 7.161434-1 2.766868-2 7.943282-1 2.168284-2 8.709636-1 1.751681-2 9.332543-1 1.501229-2 1.000000+0 1.295046-2 1.096478+0 1.073488-2 1.202264+0 8.960060-3 1.318257+0 7.530850-3 1.479108+0 6.109656-3 1.717908+0 4.683834-3 1.949845+0 3.768341-3 2.213095+0 3.055553-3 2.540973+0 2.449372-3 2.917427+0 1.978205-3 3.388442+0 1.582003-3 3.935501+0 1.274896-3 4.623810+0 1.018515-3 5.495409+0 8.069847-4 6.531306+0 6.442746-4 7.943282+0 5.032893-4 1.000000+1 3.802300-4 1.230269+1 2.974984-4 1.566751+1 2.252766-4 2.041738+1 1.674568-4 2.851018+1 1.163179-4 4.265795+1 7.573830-5 6.456542+1 4.914264-5 9.885531+1 3.169174-5 1.927525+2 1.606800-5 3.845918+2 8.004405-6 1.531087+3 2.001067-6 1.000000+5 3.059100-8 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.358100-3 1.703600-4 1.000000+5 1.703600-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.358100-3 1.694500-5 1.000000+5 1.694500-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.358100-3 2.170795-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.099000-3 1.450465+5 2.200000-3 1.363280+5 2.371374-3 1.226579+5 2.511886-3 1.124300+5 2.786121-3 9.503673+4 3.126079-3 7.828971+4 3.400000-3 6.752040+4 3.672823-3 5.859144+4 4.400000-3 4.130960+4 4.731513-3 3.571108+4 5.370318-3 2.741370+4 5.956621-3 2.196386+4 6.760830-3 1.657818+4 7.500000-3 1.309028+4 8.609938-3 9.467873+3 9.549926-3 7.374904+3 1.083927-2 5.396096+3 1.244515-2 3.801404+3 1.400000-2 2.799948+3 1.580000-2 2.032072+3 1.819701-2 1.385894+3 2.089296-2 9.451994+2 2.400000-2 6.387840+2 2.754229-2 4.295919+2 3.162278-2 2.864522+2 3.672823-2 1.832682+2 4.315191-2 1.123479+2 5.069907-2 6.833127+1 6.025596-2 3.980722+1 7.244360-2 2.220755+1 9.225714-2 1.022777+1 1.659587-1 1.538623+0 2.018366-1 8.235870-1 2.371374-1 4.956597-1 2.722701-1 3.229903-1 3.090295-1 2.196551-1 3.467369-1 1.557692-1 3.890451-1 1.112697-1 4.315191-1 8.277024-2 4.786301-1 6.200869-2 5.248075-1 4.828567-2 5.821032-1 3.671679-2 6.456542-1 2.812488-2 7.161434-1 2.170912-2 7.852356-1 1.736570-2 8.609938-1 1.395021-2 9.225714-1 1.190875-2 9.772372-1 1.049535-2 1.047129+0 9.085036-3 1.148154+0 7.552691-3 1.258925+0 6.326135-3 1.396368+0 5.226643-3 1.678804+0 3.763060-3 1.905461+0 3.022874-3 2.162719+0 2.447371-3 2.483133+0 1.959122-3 2.851018+0 1.580221-3 3.273407+0 1.283757-3 3.801894+0 1.032747-3 4.415704+0 8.368803-4 5.248075+0 6.617482-4 6.237348+0 5.272290-4 7.585776+0 4.110700-4 9.225714+0 3.232064-4 1.148154+1 2.487816-4 1.462177+1 1.879608-4 1.905461+1 1.394304-4 2.540973+1 1.016229-4 3.427678+1 7.366435-5 4.954502+1 4.991686-5 8.413951+1 2.882945-5 1.621810+2 1.476104-5 3.235937+2 7.344084-6 1.288250+3 1.834596-6 1.000000+5 2.359200-8 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.099000-3 1.560700-4 1.000000+5 1.560700-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.099000-3 5.504400-6 1.000000+5 5.504400-6 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.099000-3 1.937426-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.725500-3 2.844730+5 1.748000-3 3.047697+5 1.785000-3 3.428782+5 1.794000-3 3.505995+5 1.805000-3 3.586550+5 1.813000-3 3.638180+5 1.840772-3 3.767878+5 1.850000-3 3.804872+5 1.862087-3 3.843171+5 1.875000-3 3.873487+5 1.890000-3 3.881304+5 1.905461-3 3.856078+5 2.238721-3 2.558637+5 2.483133-3 1.952148+5 2.722701-3 1.524729+5 3.019952-3 1.145709+5 3.311311-3 8.827981+4 3.672823-3 6.551770+4 4.168694-3 4.495253+4 4.623810-3 3.288336+4 5.308844-3 2.143460+4 5.888437-3 1.546778+4 6.839116-3 9.555605+3 7.585776-3 6.802971+3 8.609938-3 4.461888+3 9.885531-3 2.791795+3 1.122018-2 1.803255+3 1.288250-2 1.110965+3 1.479108-2 6.792493+2 1.717908-2 3.953903+2 2.000000-2 2.263332+2 2.344229-2 1.253251+2 2.754229-2 6.824381+1 3.273407-2 3.530321+1 4.000000-2 1.628312+1 5.011872-2 6.758912+0 1.047129-1 3.745288-1 1.273503-1 1.749045-1 1.513561-1 8.997937-2 1.757924-1 5.094178-2 2.041738-1 2.906431-2 2.317395-1 1.819749-2 2.630268-1 1.147741-2 2.951209-1 7.602246-3 3.311311-1 5.072857-3 3.672823-1 3.548909-3 4.120975-1 2.405083-3 4.518559-1 1.773014-3 4.954502-1 1.316418-3 5.370318-1 1.022005-3 5.888437-1 7.706529-4 6.531306-1 5.643066-4 7.161434-1 4.307626-4 7.762471-1 3.424147-4 8.511380-1 2.644459-4 9.015711-1 2.264282-4 9.440609-1 2.012002-4 9.885531-1 1.799401-4 1.035142+0 1.620863-4 1.096478+0 1.433293-4 1.161449+0 1.276476-4 1.244515+0 1.119369-4 1.348963+0 9.679159-5 1.531087+0 7.771290-5 1.819701+0 5.736336-5 2.018366+0 4.809052-5 2.317395+0 3.834536-5 2.660725+0 3.081271-5 3.054921+0 2.494275-5 3.548134+0 1.999549-5 4.120975+0 1.615044-5 4.841724+0 1.293078-5 5.754399+0 1.026524-5 6.839116+0 8.211944-6 8.222427+0 6.519507-6 1.047129+1 4.864087-6 1.288250+1 3.811898-6 1.640590+1 2.890643-6 2.137962+1 2.151431-6 2.917427+1 1.534007-6 4.365158+1 9.992999-7 6.839116+1 6.258162-7 1.096478+2 3.853536-7 2.187762+2 1.910796-7 4.365158+2 9.526835-8 1.737801+3 2.382913-8 1.000000+5 4.13530-10 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.725500-3 1.148200-4 1.000000+5 1.148200-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.725500-3 1.897700-5 1.000000+5 1.897700-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.725500-3 1.591703-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.668700-3 6.667768+5 1.800000-3 6.275496+5 1.820000-3 6.206220+5 1.862087-3 5.866351+5 2.220000-3 3.719352+5 2.454709-3 2.845962+5 2.691535-3 2.212651+5 2.985383-3 1.655620+5 3.507519-3 1.040049+5 3.801894-3 8.179681+4 4.415704-3 5.194142+4 4.897788-3 3.761402+4 5.559043-3 2.519534+4 6.382635-3 1.610894+4 7.079458-3 1.144881+4 8.128305-3 7.202833+3 9.332543-3 4.488899+3 1.047129-2 3.006464+3 1.190000-2 1.913160+3 1.364583-2 1.170180+3 1.584893-2 6.776417+2 1.840772-2 3.889849+2 2.113489-2 2.313003+2 2.426610-2 1.366271+2 2.818383-2 7.669560+1 3.311311-2 4.088235+1 4.027170-2 1.886920+1 4.954502-2 8.251125+0 6.918310-2 2.152175+0 1.011580-1 4.653667-1 1.230269-1 2.128401-1 1.445440-1 1.125522-1 1.659587-1 6.563785-2 1.883649-1 4.031322-2 2.018366-1 3.102184-2 2.398833-1 1.632446-2 2.660725-1 1.118633-2 2.951209-1 7.722794-3 3.235937-1 5.593963-3 3.548134-1 4.079968-3 3.890451-1 2.997412-3 4.216965-1 2.303212-3 4.623810-1 1.717131-3 5.011872-1 1.336859-3 5.432503-1 1.047437-3 5.888437-1 8.259666-4 6.382635-1 6.558816-4 6.918310-1 5.242896-4 7.585776-1 4.090053-4 8.709636-1 2.839814-4 9.225714-1 2.455703-4 9.660509-1 2.198021-4 1.011579+0 1.978758-4 1.071519+0 1.748011-4 1.135011+0 1.554160-4 1.216186+0 1.359381-4 1.318257+0 1.171690-4 1.819701+0 6.646447-5 2.044000+0 5.456843-5 2.344229+0 4.361734-5 2.691535+0 3.507137-5 3.090295+0 2.840751-5 3.589219+0 2.278596-5 4.168694+0 1.841429-5 4.897788+0 1.475112-5 5.821032+0 1.171600-5 6.918310+0 9.377353-6 8.317638+0 7.448386-6 1.059254+1 5.559278-6 1.303167+1 4.358502-6 1.659587+1 3.306283-6 2.162719+1 2.461613-6 2.951209+1 1.755714-6 4.365158+1 1.157910-6 6.918310+1 7.165659-7 1.122018+2 4.361583-7 2.238721+2 2.163216-7 4.466836+2 1.078717-7 1.778279+3 2.698268-8 1.000000+5 4.79170-10 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.668700-3 1.034400-4 1.000000+5 1.034400-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.668700-3 1.314100-8 1.000000+5 1.314100-8 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.668700-3 1.565247-3 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.256900-4 7.150084+4 5.650000-4 6.892984+4 5.821032-4 6.746145+4 6.025596-4 6.559708+4 6.237348-4 6.401766+4 7.000000-4 5.828580+4 7.500000-4 5.485600+4 8.000000-4 5.139500+4 9.332543-4 4.356713+4 1.011579-3 3.969907+4 1.150000-3 3.384760+4 1.288250-3 2.921740+4 1.450000-3 2.483040+4 1.650000-3 2.065100+4 1.900000-3 1.672808+4 2.150000-3 1.382450+4 2.511886-3 1.078235+4 2.951209-3 8.261459+3 3.427678-3 6.404289+3 4.027170-3 4.833050+3 4.731513-3 3.622106+3 5.623413-3 2.640195+3 6.683439-3 1.911481+3 8.035261-3 1.344842+3 9.660509-3 9.393125+2 1.161449-2 6.512862+2 1.400000-2 4.457140+2 1.659587-2 3.132725+2 1.995262-2 2.121908+2 2.371374-2 1.461701+2 2.818383-2 9.995326+1 3.349654-2 6.783943+1 3.981072-2 4.569419+1 4.731513-2 3.053991+1 5.623413-2 2.025676+1 6.683439-2 1.333749+1 8.035261-2 8.472740+0 9.772372-2 5.190233+0 1.230269-1 2.890061+0 1.566751-1 1.551737+0 2.454709-1 4.848233-1 3.054921-1 2.769285-1 3.630781-1 1.791904-1 4.168694-1 1.273169-1 4.786301-1 9.111309-2 5.432503-1 6.751437-2 6.095369-1 5.174131-2 6.918310-1 3.891820-2 7.762471-1 3.025390-2 8.709636-1 2.366858-2 9.660509-1 1.910828-2 1.109175+0 1.451512-2 1.258925+0 1.135801-2 1.428894+0 8.960749-3 1.603245+0 7.275236-3 1.819701+0 5.830481-3 2.065380+0 4.708939-3 2.371374+0 3.759757-3 2.722701+0 3.024990-3 3.126079+0 2.451639-3 3.630781+0 1.967677-3 4.216965+0 1.591029-3 5.000000+0 1.259500-3 5.956621+0 9.981665-4 7.161434+0 7.881030-4 8.511380+0 6.357880-4 1.083927+1 4.749185-4 1.348963+1 3.677117-4 1.737801+1 2.756291-4 2.290868+1 2.029131-4 3.019952+1 1.504084-4 4.466836+1 9.923663-5 7.244360+1 5.998839-5 1.244515+2 3.445528-5 2.483133+2 1.710514-5 9.885531+2 4.266006-6 6.237348+4 6.743845-8 1.000000+5 4.207300-8 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.256900-4 1.169600-4 1.000000+5 1.169600-4 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.256900-4 3.357800-8 1.000000+5 3.357800-8 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.256900-4 4.086964-4 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.352700-4 5.724679+4 5.248075-4 5.646723+4 5.821032-4 5.586895+4 6.200000-4 5.515200+4 6.700000-4 5.394120+4 7.161434-4 5.265043+4 7.673615-4 5.102410+4 8.222426-4 4.911967+4 8.810489-4 4.692174+4 9.549926-4 4.415283+4 1.035142-3 4.128438+4 1.110000-3 3.869960+4 1.216186-3 3.527362+4 1.333521-3 3.190296+4 1.450000-3 2.891260+4 1.603245-3 2.549869+4 1.757924-3 2.257745+4 1.950000-3 1.952890+4 2.162719-3 1.677917+4 2.426610-3 1.405247+4 2.691535-3 1.189675+4 3.019952-3 9.811662+3 3.400000-3 7.982800+3 3.801894-3 6.526275+3 4.300000-3 5.186860+3 4.841724-3 4.126645+3 5.432503-3 3.283883+3 6.165950-3 2.535646+3 7.000000-3 1.942410+3 7.943282-3 1.478428+3 9.000000-3 1.120948+3 1.011579-2 8.596653+2 1.148154-2 6.403843+2 1.318257-2 4.606678+2 1.500000-2 3.359400+2 1.717908-2 2.393309+2 1.972423-2 1.681431+2 2.264644-2 1.172395+2 2.600160-2 8.116701+1 3.019952-2 5.408169+1 3.507519-2 3.575487+1 4.120975-2 2.272199+1 4.897788-2 1.386841+1 5.821032-2 8.396530+0 7.161434-2 4.561500+0 9.332543-2 2.073419+0 1.621810-1 3.953493-1 2.041738-1 1.995351-1 2.426610-1 1.202270-1 2.851018-1 7.547770-2 3.273407-1 5.099652-2 3.715352-1 3.583574-2 4.216965-1 2.536160-2 4.731513-1 1.864997-2 5.248075-1 1.423235-2 5.888437-1 1.061879-2 6.531306-1 8.213852-3 7.244360-1 6.396514-3 8.317638-1 4.626817-3 9.015711-1 3.850316-3 9.660509-1 3.310108-3 1.035142+0 2.865674-3 1.135011+0 2.381681-3 1.250000+0 1.976376-3 1.380384+0 1.644289-3 1.640590+0 1.206652-3 1.862087+0 9.681560-4 2.113489+0 7.828183-4 2.426610+0 6.258332-4 2.786121+0 5.041629-4 3.198895+0 4.091004-4 3.715352+0 3.287323-4 4.315191+0 2.660961-4 5.128614+0 2.101926-4 6.095369+0 1.672932-4 7.328245+0 1.322067-4 8.709636+0 1.067558-4 1.100000+1 8.059700-5 1.380384+1 6.184032-5 1.778279+1 4.638758-5 2.317395+1 3.460521-5 3.054921+1 2.565661-5 4.466836+1 1.713805-5 7.244360+1 1.035991-5 1.230269+2 6.020600-6 2.454709+2 2.988550-6 9.772372+2 7.453045-7 6.165950+4 1.178136-8 1.000000+5 7.265900-9 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.352700-4 9.279500-5 1.000000+5 9.279500-5 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.352700-4 4.109300-8 1.000000+5 4.109300-8 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.352700-4 3.424339-4 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.758200-4 2.516561+5 4.365158-4 2.381251+5 5.069907-4 2.191898+5 5.500000-4 2.074724+5 6.025596-4 1.939394+5 6.606934-4 1.797137+5 7.161434-4 1.669525+5 7.800000-4 1.531356+5 8.700000-4 1.359840+5 9.500000-4 1.227000+5 1.047129-3 1.086430+5 1.161449-3 9.481837+4 1.288250-3 8.208536+4 1.428894-3 7.061241+4 1.584893-3 6.031204+4 1.778279-3 5.026402+4 2.000000-3 4.139360+4 2.238721-3 3.412180+4 2.540973-3 2.724038+4 2.851018-3 2.203219+4 3.198895-3 1.770401+4 3.630781-3 1.381261+4 4.120975-3 1.069158+4 4.731513-3 8.016288+3 5.432503-3 5.957376+3 6.237348-3 4.389049+3 7.079458-3 3.292226+3 8.128305-3 2.386225+3 9.225714-3 1.763333+3 1.047129-2 1.293753+3 1.188502-2 9.421126+2 1.348963-2 6.812638+2 1.531087-2 4.892034+2 1.737801-2 3.488032+2 1.995262-2 2.393135+2 2.290868-2 1.629115+2 2.630268-2 1.100695+2 3.019952-2 7.383001+1 3.507519-2 4.752327+1 4.073803-2 3.035794+1 4.786301-2 1.858755+1 5.623413-2 1.129452+1 6.760830-2 6.341078+0 8.317638-2 3.285154+0 1.096478-1 1.354212+0 1.640590-1 3.705666-1 2.041738-1 1.846092-1 2.371374-1 1.153648-1 2.722701-1 7.525916-2 3.090295-1 5.122753-2 3.467369-1 3.635013-2 3.890451-1 2.597831-2 4.315191-1 1.933041-2 4.786301-1 1.448490-2 5.248075-1 1.128064-2 5.821032-1 8.579245-3 6.456542-1 6.576289-3 7.161434-1 5.081272-3 7.852356-1 4.067748-3 8.709636-1 3.180929-3 9.332543-1 2.717778-3 9.885531-1 2.397442-3 1.071519+0 2.029157-3 1.174898+0 1.690028-3 1.288250+0 1.418327-3 1.428894+0 1.173824-3 1.698244+0 8.634462-4 1.927525+0 6.940854-4 2.187762+0 5.623248-4 2.511886+0 4.504241-4 2.884032+0 3.635249-4 3.311311+0 2.954996-4 3.845918+0 2.378650-4 4.518559+0 1.898171-4 5.370318+0 1.502475-4 6.382635+0 1.198303-4 7.762471+0 9.351756-5 9.549926+0 7.257510-5 1.174898+1 5.669224-5 1.500000+1 4.274300-5 1.949845+1 3.182120-5 2.660725+1 2.263099-5 3.981072+1 1.471070-5 5.821032+1 9.881385-6 9.225714+1 6.141505-6 1.819701+2 3.075477-6 3.630781+2 1.531474-6 1.445440+3 3.827790-7 1.000000+5 5.523800-9 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.758200-4 8.760000-5 1.000000+5 8.760000-5 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.758200-4 1.838600-8 1.000000+5 1.838600-8 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.758200-4 2.882016-4 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.255900-4 1.971109+5 2.350000-4 2.340700+5 2.371374-4 2.418274+5 2.385000-4 2.456224+5 2.400000-4 2.482724+5 2.415000-4 2.492316+5 2.428000-4 2.487724+5 2.442000-4 2.471180+5 2.458000-4 2.440356+5 2.480000-4 2.382900+5 2.500000-4 2.320560+5 2.530000-4 2.217368+5 2.570396-4 2.071008+5 2.630268-4 1.857709+5 2.705700-4 1.619503+5 2.754229-4 1.493509+5 2.790000-4 1.415940+5 2.830000-4 1.344676+5 2.865000-4 1.295112+5 2.900000-4 1.256592+5 2.930000-4 1.231668+5 2.965000-4 1.211132+5 3.000000-4 1.198948+5 3.040000-4 1.193984+5 3.080000-4 1.197300+5 3.126079-4 1.209373+5 3.180000-4 1.233728+5 3.240000-4 1.270844+5 3.311311-4 1.325484+5 3.430000-4 1.433116+5 3.672823-4 1.677003+5 3.801894-4 1.805149+5 3.935501-4 1.930071+5 4.073803-4 2.047578+5 4.216965-4 2.155108+5 4.365158-4 2.251582+5 4.518559-4 2.335440+5 4.677351-4 2.404904+5 4.850000-4 2.462956+5 5.011872-4 2.503321+5 5.230000-4 2.539076+5 5.432503-4 2.554963+5 5.650000-4 2.555500+5 5.900000-4 2.538780+5 6.200000-4 2.501036+5 6.531306-4 2.443917+5 6.850000-4 2.377376+5 7.244360-4 2.283861+5 7.673615-4 2.174708+5 8.128305-4 2.057457+5 8.609938-4 1.934380+5 9.120108-4 1.806932+5 9.772372-4 1.653176+5 1.050000-3 1.496204+5 1.122018-3 1.354810+5 1.216186-3 1.191805+5 1.303167-3 1.060885+5 1.412538-3 9.192640+4 1.531087-3 7.910450+4 1.659587-3 6.756978+4 1.800000-3 5.728120+4 1.972423-3 4.717269+4 2.150000-3 3.901496+4 2.371374-3 3.118478+4 2.600160-3 2.507472+4 2.851018-3 2.002854+4 3.162278-3 1.543044+4 3.507519-3 1.179257+4 3.845918-3 9.226465+3 4.216965-3 7.177927+3 4.677351-3 5.375292+3 5.188000-3 3.997399+3 5.800000-3 2.885060+3 6.456542-3 2.093479+3 7.161434-3 1.525860+3 8.035261-3 1.066000+3 9.015711-3 7.392019+2 1.011579-2 5.087222+2 1.135011-2 3.476585+2 1.288250-2 2.269368+2 1.462177-2 1.469772+2 1.659587-2 9.447060+1 1.883649-2 6.029344+1 2.162719-2 3.666425+1 2.483133-2 2.213371+1 2.884032-2 1.271587+1 3.388442-2 6.945415+0 4.027170-2 3.604713+0 4.897788-2 1.700188+0 6.382635-2 6.092598-1 1.059254-1 8.488379-2 1.303167-1 3.814236-2 1.548817-1 1.971590-2 1.798871-1 1.120229-2 2.065380-1 6.692840-3 2.344229-1 4.201817-3 2.660725-1 2.657060-3 3.000000-1 1.733851-3 3.349654-1 1.179766-3 3.715352-1 8.269354-4 4.168694-1 5.613936-4 4.570882-1 4.144043-4 5.011872-1 3.081309-4 5.495409-1 2.312278-4 6.095369-1 1.687947-4 6.683439-1 1.283063-4 7.328245-1 9.819252-5 8.609938-1 6.225960-5 9.120108-1 5.327346-5 9.549926-1 4.730309-5 1.000000+0 4.226531-5 1.047129+0 3.803290-5 1.096478+0 3.445354-5 1.161449+0 3.069013-5 1.230269+0 2.752884-5 1.333521+0 2.380336-5 1.479108+0 1.991201-5 1.840772+0 1.356965-5 2.044000+0 1.136200-5 2.344229+0 9.081906-6 2.691535+0 7.302532-6 3.090295+0 5.915055-6 3.589219+0 4.744578-6 4.168694+0 3.834283-6 4.897788+0 3.071465-6 5.821032+0 2.439536-6 6.918310+0 1.952551-6 8.317638+0 1.550900-6 1.059254+1 1.157619-6 1.303167+1 9.075489-7 1.659587+1 6.884413-7 2.162719+1 5.125607-7 2.951209+1 3.655842-7 4.365158+1 2.411106-7 6.918310+1 1.492015-7 1.122018+2 9.082113-8 2.238721+2 4.504243-8 4.466836+2 2.246080-8 1.778279+3 5.618403-9 1.000000+5 9.97750-11 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.255900-4 5.849700-5 1.000000+5 5.849700-5 1 72000 7 7 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.255900-4 2.820900-8 1.000000+5 2.820900-8 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.255900-4 1.670648-4 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.147100-4 2.967850+5 2.251400-4 3.520421+5 2.267000-4 3.590586+5 2.280000-4 3.629904+5 2.295000-4 3.650328+5 2.310000-4 3.644496+5 2.325000-4 3.615558+5 2.344229-4 3.551738+5 2.363000-4 3.468852+5 2.385000-4 3.355632+5 2.410000-4 3.216024+5 2.454709-4 2.959441+5 2.580000-4 2.325858+5 2.615000-4 2.188602+5 2.650000-4 2.071890+5 2.685300-4 1.975001+5 2.715000-4 1.909140+5 2.740000-4 1.864182+5 2.765000-4 1.828284+5 2.790000-4 1.800834+5 2.818383-4 1.779152+5 2.851018-4 1.765605+5 2.890000-4 1.763802+5 2.930000-4 1.776132+5 2.965000-4 1.797150+5 3.000000-4 1.826658+5 3.054921-4 1.885725+5 3.126079-4 1.981045+5 3.200000-4 2.096136+5 3.442200-4 2.521450+5 3.550000-4 2.711808+5 3.680000-4 2.931210+5 3.801894-4 3.121578+5 3.930000-4 3.301542+5 4.050000-4 3.449934+5 4.200000-4 3.609750+5 4.350000-4 3.742110+5 4.500000-4 3.846702+5 4.677351-4 3.939058+5 4.850000-4 4.001628+5 5.011872-4 4.039503+5 5.230000-4 4.062618+5 5.432503-4 4.058576+5 5.688529-4 4.024182+5 5.956621-4 3.961958+5 6.237348-4 3.877379+5 6.600000-4 3.748092+5 6.918310-4 3.620734+5 7.328245-4 3.446172+5 7.800000-4 3.241812+5 8.317638-4 3.020575+5 8.810489-4 2.817411+5 9.440609-4 2.573209+5 1.011579-3 2.333200+5 1.083927-3 2.101278+5 1.161449-3 1.880549+5 1.258925-3 1.639517+5 1.364583-3 1.418639+5 1.479108-3 1.218361+5 1.610000-3 1.030566+5 1.757924-3 8.594972+4 1.905461-3 7.231060+4 2.089296-3 5.889626+4 2.264644-3 4.892248+4 2.511886-3 3.822186+4 2.754229-3 3.045770+4 3.000000-3 2.453106+4 3.311311-3 1.897463+4 3.715352-3 1.393624+4 4.168694-3 1.014207+4 4.677351-3 7.314311+3 5.188000-3 5.411184+3 5.821032-3 3.841138+3 6.456542-3 2.801898+3 7.244360-3 1.958890+3 8.128305-3 1.358720+3 9.120108-3 9.354371+2 1.023293-2 6.389834+2 1.148154-2 4.333686+2 1.288250-2 2.918821+2 1.462177-2 1.875093+2 1.659587-2 1.195053+2 1.883649-2 7.560071+1 2.137962-2 4.749369+1 2.454709-2 2.838979+1 2.818383-2 1.684878+1 3.273407-2 9.502711+0 3.845918-2 5.088915+0 4.570882-2 2.586072+0 5.623413-2 1.138397+0 8.222426-2 2.490530-1 1.073540-1 8.588639-2 1.288250-1 4.174545-2 1.513561-1 2.222046-2 1.737801-1 1.303247-2 1.972423-1 8.047948-3 2.213095-1 5.227724-3 2.483133-1 3.421341-3 2.754229-1 2.353051-3 3.054921-1 1.630557-3 3.349654-1 1.184797-3 3.672823-1 8.668161-4 4.027170-1 6.388633-4 4.365158-1 4.922742-4 4.731513-1 3.818142-4 5.069907-1 3.088631-4 5.495409-1 2.429710-4 6.025596-1 1.861111-4 6.606935-1 1.432800-4 7.161434-1 1.146987-4 7.762471-1 9.244632-5 8.511380-1 7.275268-5 9.015711-1 6.301787-5 9.549926-1 5.495226-5 1.000000+0 4.952484-5 1.059254+0 4.378984-5 1.135011+0 3.805519-5 1.230269+0 3.257749-5 1.348963+0 2.749576-5 1.737801+0 1.756038-5 1.972423+0 1.413051-5 2.238721+0 1.146345-5 2.570396+0 9.194056-6 2.951209+0 7.429136-6 3.427678+0 5.944669-6 4.000000+0 4.761300-6 4.677351+0 3.831562-6 5.559043+0 3.037323-6 6.606934+0 2.426194-6 8.000000+0 1.906500-6 1.011579+1 1.433150-6 1.244515+1 1.121794-6 1.584893+1 8.497783-7 2.065380+1 6.318599-7 2.851018+1 4.445211-7 4.315191+1 2.859558-7 6.683439+1 1.811921-7 1.047129+2 1.141944-7 2.089296+2 5.659688-8 4.168694+2 2.821003-8 1.659587+3 7.054654-9 1.000000+5 1.16910-10 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.147100-4 5.760700-5 1.000000+5 5.760700-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.147100-4 1.571030-4 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 2.726000-5 4.667544+5 2.790000-5 4.693224+5 2.860000-5 4.681428+5 2.960000-5 4.628064+5 3.388442-5 4.336255+5 3.548134-5 4.268157+5 3.690000-5 4.239510+5 3.801894-5 4.241154+5 3.935501-5 4.274298+5 4.030000-5 4.319094+5 4.150000-5 4.403058+5 4.265795-5 4.513282+5 4.400000-5 4.677888+5 4.518559-5 4.856145+5 4.650000-5 5.088444+5 4.800000-5 5.397228+5 4.954502-5 5.759555+5 5.150000-5 6.276180+5 6.000000-5 9.013200+5 6.400000-5 1.043190+6 6.760830-5 1.173719+6 7.161434-5 1.319056+6 7.673615-5 1.505540+6 8.128305-5 1.670928+6 8.609938-5 1.842032+6 9.015711-5 1.979850+6 9.500000-5 2.133594+6 9.950000-5 2.263848+6 1.040000-4 2.380086+6 1.083927-4 2.479337+6 1.135011-4 2.578471+6 1.202264-4 2.686864+6 1.273503-4 2.778595+6 1.350000-4 2.854206+6 1.430000-4 2.912016+6 1.513561-4 2.950227+6 1.603245-4 2.966109+6 1.698244-4 2.959441+6 1.800000-4 2.931360+6 1.905461-4 2.885036+6 2.041738-4 2.809472+6 2.162719-4 2.730488+6 2.301000-4 2.629065+6 2.426610-4 2.529626+6 2.580000-4 2.401494+6 2.754229-4 2.255449+6 2.917427-4 2.120458+6 3.126079-4 1.954435+6 3.311311-4 1.812892+6 3.548134-4 1.642848+6 3.780000-4 1.489380+6 4.027170-4 1.341714+6 4.265795-4 1.212510+6 4.518559-4 1.089768+6 4.841724-4 9.511749+5 5.150000-4 8.375640+5 5.559043-4 7.096746+5 5.956621-4 6.061995+5 6.382635-4 5.146208+5 6.918310-4 4.218602+5 7.500000-4 3.428052+5 8.222426-4 2.681708+5 8.912509-4 2.146415+5 9.660509-4 1.706126+5 1.059254-3 1.302322+5 1.161449-3 9.864411+4 1.273503-3 7.416457+4 1.396368-3 5.536628+4 1.566751-3 3.808600+4 1.717908-3 2.805712+4 1.883649-3 2.052326+4 2.089296-3 1.432870+4 2.317395-3 9.930943+3 2.600160-3 6.558549+3 2.884032-3 4.483880+3 3.198895-3 3.045442+3 3.589219-3 1.966713+3 4.027170-3 1.260583+3 4.518559-3 8.022081+2 5.069907-3 5.069583+2 5.688529-3 3.182252+2 6.382635-3 1.984164+2 7.244360-3 1.171015+2 8.222426-3 6.856383+1 9.225714-3 4.186329+1 1.035142-2 2.538894+1 1.148154-2 1.608879+1 1.303167-2 9.131020+0 1.548817-2 4.179335+0 1.840772-2 1.900996+0 2.162719-2 9.048807-1 2.570396-2 4.054671-1 3.054921-2 1.804253-1 3.758374-2 6.757213-2 5.495409-2 1.102848-2 7.328245-2 2.798506-3 9.015711-2 1.049852-3 1.083927-1 4.425736-4 1.258925-1 2.209803-4 1.428894-1 1.236137-4 1.603245-1 7.337931-5 1.798871-1 4.385450-5 2.018366-1 2.639204-5 2.238721-1 1.680886-5 2.483133-1 1.077917-5 2.722701-1 7.309047-6 3.000000-1 4.889800-6 3.311311-1 3.271734-6 3.630781-1 2.264532-6 4.000000-1 1.549400-6 4.365158-1 1.105411-6 4.677351-1 8.515849-7 5.011872-1 6.603722-7 5.370318-1 5.172508-7 5.821032-1 3.916491-7 6.760830-1 2.345630-7 7.328245-1 1.790538-7 8.511380-1 1.100135-7 8.912509-1 9.532110-8 9.225714-1 8.601641-8 9.549926-1 7.799771-8 9.885531-1 7.111804-8 1.023293+0 6.524649-8 1.059254+0 6.018415-8 1.109175+0 5.443409-8 1.161449+0 4.958690-8 1.230269+0 4.449150-8 1.318257+0 3.936799-8 1.513561+0 3.127160-8 1.862087+0 2.173827-8 2.044000+0 1.856300-8 2.344229+0 1.484056-8 2.691535+0 1.193221-8 3.090295+0 9.663970-9 3.589219+0 7.751654-9 4.168694+0 6.264381-9 4.897788+0 5.018056-9 5.821032+0 3.985768-9 6.918310+0 3.190044-9 8.222427+0 2.569934-9 1.047129+1 1.917410-9 1.288250+1 1.502628-9 1.659587+1 1.124726-9 2.162719+1 8.37417-10 2.951209+1 5.97290-10 4.365158+1 3.93915-10 6.918310+1 2.43768-10 1.109175+2 1.50130-10 2.213095+2 7.44513-11 4.415704+2 3.71237-11 1.757924+3 9.28579-12 1.000000+5 1.63010-13 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 2.726000-5 2.726000-5 1.000000+5 2.726000-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.726000-5 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 2.540000-5 7.048392+5 2.600160-5 6.989916+5 2.700000-5 6.835464+5 3.019952-5 6.307936+5 3.162278-5 6.136390+5 3.300000-5 6.020304+5 3.427678-5 5.958439+5 3.555800-5 5.942670+5 3.672823-5 5.970467+5 3.770000-5 6.025240+5 3.890451-5 6.134152+5 4.000000-5 6.273344+5 4.120975-5 6.472003+5 4.220000-5 6.669560+5 4.350000-5 6.975872+5 4.500000-5 7.393168+5 4.650000-5 7.874576+5 4.850000-5 8.605840+5 5.150000-5 9.858960+5 5.688529-5 1.240541+6 6.025596-5 1.408997+6 6.400000-5 1.598464+6 6.800000-5 1.801360+6 7.244360-5 2.025754+6 7.762471-5 2.285180+6 8.222426-5 2.510364+6 8.709636-5 2.739513+6 9.150000-5 2.932616+6 9.549926-5 3.092955+6 1.000000-4 3.255112+6 1.052000-4 3.417930+6 1.100000-4 3.544784+6 1.161449-4 3.677928+6 1.230269-4 3.796997+6 1.303167-4 3.894400+6 1.380384-4 3.968011+6 1.462177-4 4.017837+6 1.548817-4 4.039823+6 1.640590-4 4.030159+6 1.737801-4 3.992679+6 1.850000-4 3.922936+6 1.980000-4 3.818744+6 2.113489-4 3.695859+6 2.238721-4 3.566671+6 2.371374-4 3.420863+6 2.511886-4 3.258145+6 2.691535-4 3.048508+6 2.851018-4 2.866069+6 3.054921-4 2.641641+6 3.235937-4 2.451584+6 3.467369-4 2.222599+6 3.672823-4 2.034521+6 3.935501-4 1.816880+6 4.168694-4 1.642875+6 4.466836-4 1.445674+6 4.786301-4 1.261154+6 5.069907-4 1.119690+6 5.500000-4 9.384080+5 5.956621-4 7.815278+5 6.382635-4 6.622900+5 6.850000-4 5.558184+5 7.413102-4 4.535306+5 8.128305-4 3.544993+5 8.810489-4 2.835350+5 9.549926-4 2.252586+5 1.047129-3 1.718561+5 1.148154-3 1.301030+5 1.258925-3 9.776298+4 1.380384-3 7.294019+4 1.513561-3 5.405236+4 1.678804-3 3.829191+4 1.862087-3 2.691267+4 2.065380-3 1.877293+4 2.290868-3 1.300173+4 2.570396-3 8.575600+3 2.851018-3 5.859392+3 3.162278-3 3.976880+3 3.507519-3 2.679479+3 3.935501-3 1.714620+3 4.415704-3 1.089167+3 5.011872-3 6.564531+2 5.623413-3 4.113775+2 6.309573-3 2.560328+2 7.079458-3 1.582576+2 8.000000-3 9.425386+1 9.015711-3 5.636890+1 1.023293-2 3.244049+1 1.148154-2 1.949126+1 1.303167-2 1.102260+1 1.496236-2 5.870241+0 1.737801-2 2.942863+0 2.264644-2 8.567552-1 2.722701-2 3.604294-1 3.126079-2 1.872139-1 3.801894-2 7.331527-2 7.413102-2 2.924380-3 9.015711-2 1.144691-3 1.059254-1 5.323459-4 1.244515-1 2.495438-4 1.412538-1 1.385861-4 1.584893-1 8.175122-5 1.778279-1 4.858472-5 1.972423-1 3.063583-5 2.187762-1 1.946450-5 2.398833-1 1.309171-5 2.630268-1 8.869307-6 2.851018-1 6.350011-6 3.054921-1 4.796454-6 3.311311-1 3.480402-6 3.589219-1 2.541608-6 3.935501-1 1.785432-6 4.265795-1 1.320342-6 4.570882-1 1.026588-6 4.897788-1 8.045778-7 5.248075-1 6.348309-7 5.623413-1 5.043648-7 6.095369-1 3.886783-7 6.606935-1 3.018689-7 7.413102-1 2.126014-7 7.943282-1 1.732609-7 8.511380-1 1.421093-7 9.225714-1 1.134872-7 9.660509-1 1.004327-7 1.000000+0 9.212300-8 1.047129+0 8.274666-8 1.096478+0 7.485946-8 1.148154+0 6.814340-8 1.216186+0 6.102472-8 1.318257+0 5.277034-8 1.513561+0 4.171475-8 1.840772+0 2.958202-8 2.044000+0 2.476300-8 2.344229+0 1.979219-8 2.691535+0 1.591481-8 3.090295+0 1.289172-8 3.589219+0 1.034091-8 4.168694+0 8.357012-9 4.897788+0 6.694410-9 5.821032+0 5.317170-9 6.918310+0 4.255785-9 8.222427+0 3.428500-9 1.047129+1 2.557875-9 1.300000+1 1.983600-9 1.659587+1 1.500499-9 2.162719+1 1.117181-9 2.951209+1 7.96816-10 4.415704+1 5.19174-10 7.079458+1 3.17540-10 1.174898+2 1.88851-10 2.344229+2 9.37099-11 4.677351+2 4.67411-11 1.862087+3 1.16934-11 1.000000+5 2.17460-13 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 2.540000-5 2.540000-5 1.000000+5 2.540000-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.540000-5 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 7.256000-5 6.121840+4 7.360000-5 5.911680+4 7.450000-5 5.766820+4 7.550000-5 5.645000+4 7.673615-5 5.535923+4 7.800000-5 5.467640+4 7.950000-5 5.427000+4 8.080000-5 5.420680+4 8.230000-5 5.441020+4 8.413951-5 5.496556+4 8.650000-5 5.602560+4 9.015711-5 5.812630+4 1.000000-4 6.434420+4 1.047129-4 6.689918+4 1.083927-4 6.854478+4 1.122018-4 6.991271+4 1.174898-4 7.127515+4 1.230269-4 7.211266+4 1.288250-4 7.247551+4 1.364583-4 7.238115+4 1.450000-4 7.177020+4 1.548817-4 7.062579+4 1.659587-4 6.892654+4 1.760000-4 6.708480+4 1.883649-4 6.453314+4 2.018366-4 6.155968+4 2.187762-4 5.780601+4 2.400000-4 5.337960+4 2.630268-4 4.900313+4 2.884032-4 4.462541+4 3.200000-4 3.982600+4 3.630781-4 3.441903+4 4.073803-4 2.993099+4 4.731513-4 2.472771+4 5.500000-4 2.025960+4 6.606934-4 1.573917+4 7.852356-4 1.231024+4 9.332543-4 9.560599+3 1.122018-3 7.247783+3 1.350000-3 5.446240+3 1.621810-3 4.071063+3 1.927525-3 3.073390+3 2.317395-3 2.259977+3 2.786121-3 1.648720+3 3.349654-3 1.193646+3 3.981072-3 8.756232+2 4.841724-3 6.114422+2 5.888437-3 4.238277+2 7.161434-3 2.915822+2 8.709636-3 1.990900+2 1.071519-2 1.318528+2 1.288250-2 9.077131+1 1.548817-2 6.203402+1 1.862087-2 4.207196+1 2.213095-2 2.902017+1 2.691535-2 1.889438+1 3.388442-2 1.130529+1 4.000000-2 7.755204+0 4.677351-2 5.387144+0 5.495409-2 3.673746+0 6.531306-2 2.419437+0 7.852356-2 1.538080+0 9.549926-2 9.432715-1 1.161449-1 5.738934-1 1.531088-1 2.819806-1 2.600160-1 7.166714-2 3.162278-1 4.347747-2 3.715352-1 2.899803-2 4.265795-1 2.062747-2 4.897788-1 1.478074-2 5.559043-1 1.096673-2 6.237348-1 8.416136-3 7.079458-1 6.339637-3 8.000000-1 4.860400-3 8.912509-1 3.866044-3 9.885531-1 3.126498-3 1.148154+0 2.325654-3 1.288250+0 1.863789-3 1.462177+0 1.472479-3 1.640590+0 1.197188-3 1.862087+0 9.608233-4 2.113489+0 7.770043-4 2.426610+0 6.211814-4 2.786121+0 5.004150-4 3.198895+0 4.060531-4 3.715352+0 3.262774-4 4.315191+0 2.641156-4 5.128614+0 2.086360-4 6.095369+0 1.660491-4 7.328245+0 1.312250-4 8.709636+0 1.059646-4 1.100000+1 7.999700-5 1.380384+1 6.138084-5 1.778279+1 4.604192-5 2.317395+1 3.434742-5 3.054921+1 2.546630-5 4.466836+1 1.701042-5 7.328245+1 1.016109-5 1.273503+2 5.769223-6 2.540973+2 2.864651-6 1.011579+3 7.145621-7 6.382635+4 1.129730-8 1.000000+5 7.211800-9 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 7.256000-5 7.256000-5 1.000000+5 7.256000-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 7.256000-5 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 4.634000-5 3.791440+6 4.700000-5 3.723960+6 4.760000-5 3.640180+6 4.841724-5 3.508505+6 4.954502-5 3.313604+6 5.128614-5 3.009155+6 5.308844-5 2.711410+6 5.500000-5 2.419680+6 5.730000-5 2.105420+6 6.000000-5 1.786572+6 6.309573-5 1.481942+6 6.800000-5 1.111950+6 7.800000-5 6.536360+5 8.413951-5 4.903329+5 9.120108-5 3.635503+5 9.800000-5 2.801120+5 1.047129-4 2.216384+5 1.109175-4 1.818614+5 1.174898-4 1.501917+5 1.240000-4 1.264524+5 1.303167-4 1.086829+5 1.364583-4 9.506478+4 1.430000-4 8.351880+4 1.500000-4 7.371000+4 1.566751-4 6.621158+4 1.640590-4 5.952649+4 1.720000-4 5.378120+4 1.800000-4 4.914320+4 1.883649-4 4.522819+4 1.980000-4 4.160640+4 2.089296-4 3.834280+4 2.213095-4 3.541516+4 2.350000-4 3.283680+4 2.511886-4 3.040557+4 2.730000-4 2.784780+4 3.019952-4 2.525163+4 4.518559-4 1.755772+4 5.308844-4 1.507943+4 6.165950-4 1.298084+4 7.000000-4 1.135564+4 8.035261-4 9.739674+3 9.120108-4 8.397634+3 1.035142-3 7.188810+3 1.174898-3 6.108463+3 1.333521-3 5.152362+3 1.531087-3 4.241942+3 1.737801-3 3.521202+3 1.972423-3 2.900253+3 2.238721-3 2.370456+3 2.511886-3 1.959346+3 2.851018-3 1.577190+3 3.235937-3 1.259993+3 3.672823-3 9.990823+2 4.168694-3 7.864153+2 4.731513-3 6.145777+2 5.370318-3 4.768726+2 6.095369-3 3.674240+2 6.918310-3 2.811346+2 7.852356-3 2.136288+2 9.000000-3 1.577402+2 1.023293-2 1.177085+2 1.161449-2 8.756168+1 1.318257-2 6.466694+1 1.513561-2 4.610392+1 1.737801-2 3.260776+1 2.041738-2 2.158876+1 2.371374-2 1.463609+1 2.754229-2 9.850063+0 3.090295-2 7.219658+0 3.548134-2 4.930355+0 4.120975-2 3.237116+0 4.841724-2 2.042015+0 5.821032-2 1.196581+0 7.161434-2 6.505105-1 9.332543-2 2.959033-1 1.640590-1 5.453642-2 2.041738-1 2.848733-2 2.426610-1 1.716667-2 2.851018-1 1.077907-2 3.273407-1 7.283513-3 3.715352-1 5.118428-3 4.216965-1 3.622578-3 4.731513-1 2.664065-3 5.248075-1 2.033203-3 5.888437-1 1.517133-3 6.606935-1 1.140912-3 7.328245-1 8.890484-4 8.413951-1 6.434776-4 9.120108-1 5.360524-4 9.772372-1 4.613717-4 1.059254+0 3.905985-4 1.161449+0 3.251887-4 1.273503+0 2.725856-4 1.412538+0 2.252459-4 1.678804+0 1.654699-4 1.905461+0 1.329330-4 2.162719+0 1.076549-4 2.483133+0 8.618108-5 2.851018+0 6.950302-5 3.273407+0 5.646018-5 3.801894+0 4.542134-5 4.415704+0 3.680740-5 5.248075+0 2.910463-5 6.237348+0 2.318784-5 7.585776+0 1.807908-5 9.225714+0 1.421479-5 1.148154+1 1.094191-5 1.462177+1 8.266676-6 1.905461+1 6.132501-6 2.540973+1 4.469474-6 3.427678+1 3.239808-6 4.897788+1 2.221984-6 8.413951+1 1.267926-6 1.659587+2 6.342308-7 3.311311+2 3.156017-7 1.318257+3 7.884949-8 1.000000+5 1.037600-9 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 4.634000-5 4.634000-5 1.000000+5 4.634000-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 4.634000-5 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 3.810000-5 8.548800+6 3.880000-5 8.160400+6 3.970000-5 7.634280+6 4.073803-5 7.039469+6 4.220000-5 6.267320+6 4.466836-5 5.155011+6 4.731513-5 4.197103+6 5.011872-5 3.393501+6 5.400000-5 2.555968+6 6.237348-5 1.467448+6 6.683439-5 1.132068+6 7.079458-5 9.180181+5 7.413102-5 7.804616+5 7.800000-5 6.564600+5 8.150000-5 5.687600+5 8.511380-5 4.964886+5 8.912509-5 4.327794+5 9.300000-5 3.838112+5 9.660509-5 3.468163+5 1.000000-4 3.179316+5 1.040000-4 2.897688+5 1.083927-4 2.645676+5 1.122018-4 2.464908+5 1.174898-4 2.258437+5 1.230269-4 2.084372+5 1.288400-4 1.935617+5 1.364583-4 1.778864+5 1.450000-4 1.639768+5 1.548817-4 1.512379+5 1.659587-4 1.399096+5 1.819701-4 1.271600+5 2.660725-4 8.817995+4 3.126079-4 7.499870+4 3.630781-4 6.404497+4 4.168694-4 5.494478+4 4.841724-4 4.615558+4 5.559043-4 3.900616+4 6.456542-4 3.224067+4 7.328245-4 2.726218+4 8.413951-4 2.255067+4 9.660509-4 1.851524+4 1.110000-3 1.507456+4 1.273503-3 1.220593+4 1.462177-3 9.798388+3 1.659587-3 7.955006+3 1.883649-3 6.414429+3 2.137962-3 5.135911+3 2.426610-3 4.083038+3 2.754229-3 3.223267+3 3.126079-3 2.526776+3 3.548134-3 1.966977+3 4.027170-3 1.520478+3 4.570882-3 1.167063+3 5.188000-3 8.895971+2 5.888437-3 6.734609+2 6.683439-3 5.064269+2 7.585776-3 3.781326+2 8.709636-3 2.728020+2 9.885531-3 2.007798+2 1.122018-2 1.467260+2 1.273503-2 1.064710+2 1.445440-2 7.671954+1 1.640590-2 5.488777+1 1.883649-2 3.779308+1 2.162719-2 2.582181+1 2.483133-2 1.751149+1 2.851018-2 1.178960+1 3.273407-2 7.880868+0 3.801894-2 5.055634+0 4.415704-2 3.218681+0 5.188000-2 1.964088+0 6.165950-2 1.148274+0 7.244360-2 6.911707-1 9.120108-2 3.318775-1 1.737801-1 4.192555-2 2.113489-1 2.253383-2 2.454709-1 1.410866-2 2.818383-1 9.221472-3 3.198895-1 6.289943-3 3.589219-1 4.473179-3 4.027170-1 3.204761-3 4.466836-1 2.390516-3 4.954502-1 1.796004-3 5.495409-1 1.360088-3 6.095369-1 1.038058-3 6.760830-1 7.984938-4 7.413102-1 6.366748-4 8.511380-1 4.577216-4 9.120108-1 3.903409-4 9.772372-1 3.352116-4 1.047129+0 2.901551-4 1.148154+0 2.412080-4 1.258925+0 2.020366-4 1.396368+0 1.669302-4 1.678804+0 1.201886-4 1.905461+0 9.654600-5 2.162719+0 7.816670-5 2.483133+0 6.257210-5 2.851018+0 5.046919-5 3.273407+0 4.100077-5 3.801894+0 3.298452-5 4.415704+0 2.672873-5 5.248075+0 2.113499-5 6.237348+0 1.683862-5 7.585776+0 1.312889-5 9.225714+0 1.032269-5 1.148154+1 7.945665-6 1.462177+1 6.003110-6 1.905461+1 4.453283-6 2.540973+1 3.245597-6 3.467369+1 2.323975-6 5.011872+1 1.575193-6 8.511380+1 9.099326-7 1.659587+2 4.605661-7 3.311311+2 2.291838-7 1.318257+3 5.725901-8 1.000000+5 7.53500-10 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 3.810000-5 3.810000-5 1.000000+5 3.810000-5 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 3.810000-5 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 5.750000-6 2.503362+6 5.821032-6 2.572545+6 6.025596-6 2.748453+6 6.237348-6 2.918374+6 6.500000-6 3.112000+6 6.760830-6 3.287949+6 7.100000-6 3.493960+6 7.500000-6 3.711792+6 7.943282-6 3.922747+6 8.500000-6 4.150784+6 9.120108-6 4.367249+6 9.772372-6 4.557803+6 1.050000-5 4.730080+6 1.122018-5 4.863999+6 1.202264-5 4.973552+6 1.288400-5 5.048809+6 1.364583-5 5.078244+6 1.445440-5 5.070089+6 1.531087-5 5.021966+6 1.610000-5 4.945520+6 1.690000-5 4.836976+6 1.770000-5 4.702856+6 1.850000-5 4.546792+6 1.927525-5 4.379389+6 2.018366-5 4.169284+6 2.113489-5 3.939855+6 2.213095-5 3.695826+6 2.317395-5 3.442447+6 2.426610-5 3.185419+6 2.540973-5 2.930129+6 2.691535-5 2.619764+6 2.851018-5 2.324715+6 3.019952-5 2.049903+6 3.235937-5 1.750380+6 3.467369-5 1.484026+6 3.730000-5 1.238040+6 4.000000-5 1.033664+6 4.300000-5 8.511280+5 4.570882-5 7.174905+5 4.841724-5 6.068776+5 5.150000-5 5.036504+5 5.432503-5 4.257532+5 5.754399-5 3.529652+5 6.095369-5 2.906081+5 6.500000-5 2.320944+5 6.918310-5 1.852673+5 7.413102-5 1.431936+5 7.852356-5 1.148300+5 8.413951-5 8.744285+4 8.912509-5 6.921155+4 9.500000-5 5.299816+4 1.000000-4 4.248680+4 1.060000-4 3.282152+4 1.122018-4 2.532676+4 1.202264-4 1.834529+4 1.350000-4 1.061096+4 1.412538-4 8.617231+3 1.462177-4 7.397976+3 1.500000-4 6.640536+3 1.545000-4 5.900008+3 1.584893-4 5.366085+3 1.625000-4 4.925688+3 1.659587-4 4.611795+3 1.698244-4 4.322734+3 1.735900-4 4.095005+3 1.757924-4 3.983915+3 1.778279-4 3.893850+3 1.798871-4 3.813724+3 1.840772-4 3.680191+3 1.883649-4 3.577915+3 1.927525-4 3.502551+3 1.972423-4 3.450566+3 2.065380-4 3.381311+3 2.137962-4 3.360262+3 2.213095-4 3.366625+3 2.290868-4 3.396878+3 2.371374-4 3.447929+3 2.483133-4 3.543379+3 2.630268-4 3.697020+3 2.917427-4 4.023086+3 3.019952-4 4.094459+3 3.198895-4 4.168465+3 3.388442-4 4.217566+3 3.548134-4 4.236056+3 3.758374-4 4.227132+3 3.981072-4 4.188312+3 4.216965-4 4.120926+3 4.466836-4 4.028412+3 4.731513-4 3.914594+3 5.069907-4 3.753864+3 5.432503-4 3.572022+3 5.821032-4 3.374547+3 6.237348-4 3.166880+3 6.683439-4 2.953237+3 7.161434-4 2.736480+3 7.762471-4 2.483713+3 8.413951-4 2.236592+3 9.120108-4 1.999432+3 9.885531-4 1.775209+3 1.071519-3 1.564244+3 1.161449-3 1.368685+3 1.273503-3 1.166174+3 1.396368-3 9.862558+2 1.513561-3 8.462071+2 1.659587-3 7.045934+2 1.819701-3 5.824126+2 2.041738-3 4.550864+2 2.238721-3 3.716734+2 2.454709-3 3.014309+2 2.660725-3 2.492745+2 2.917427-3 1.990499+2 3.235937-3 1.533677+2 3.589219-3 1.172785+2 4.000000-3 8.788451+1 4.415704-3 6.708288+1 4.897788-3 5.020106+1 5.432503-3 3.731359+1 6.025596-3 2.755085+1 6.760830-3 1.951877+1 7.585776-3 1.372081+1 8.511380-3 9.573128+0 9.549926-3 6.630462+0 1.071519-2 4.558872+0 1.202264-2 3.111393+0 1.348963-2 2.108485+0 1.531087-2 1.364079+0 1.737801-2 8.760927-1 1.995262-2 5.362243-1 2.290868-2 3.256451-1 2.660725-2 1.881915-1 3.090295-2 1.079252-1 3.630781-2 5.883735-2 4.365158-2 2.917776-2 5.308844-2 1.374399-2 7.161434-2 4.302261-3 1.071519-1 8.987801-4 1.318257-1 4.041559-4 1.566751-1 2.090629-4 1.819701-1 1.188856-4 2.089296-1 7.108256-5 2.371374-1 4.465393-5 2.691535-1 2.825514-5 3.019952-1 1.876941-5 3.388442-1 1.256009-5 3.758374-1 8.809698-6 4.216965-1 5.987645-6 4.623810-1 4.426146-6 5.011872-1 3.417996-6 5.495409-1 2.564928-6 6.095369-1 1.871927-6 6.683439-1 1.422255-6 7.328245-1 1.088102-6 8.511380-1 7.130665-7 9.015711-1 6.098609-7 9.440609-1 5.411480-7 9.885531-1 4.830307-7 1.035142+0 4.340999-7 1.083927+0 3.927447-7 1.148154+0 3.493265-7 1.216186+0 3.129387-7 1.318257+0 2.702765-7 1.531087+0 2.085058-7 1.819701+0 1.539156-7 2.018366+0 1.290243-7 2.290868+0 1.048025-7 2.630268+0 8.416235-8 3.019952+0 6.808949-8 3.507519+0 5.455027-8 4.073803+0 4.403483-8 4.786301+0 3.523749-8 5.688529+0 2.796111-8 6.760830+0 2.235715-8 8.128305+0 1.774110-8 1.023293+1 1.341433-8 1.258925+1 1.050408-8 1.603245+1 7.959918-9 2.089296+1 5.920602-9 2.884032+1 4.166713-9 4.315191+1 2.713685-9 6.606934+1 1.740229-9 1.035142+2 1.096480-9 2.065380+2 5.43398-10 4.120975+2 2.70825-10 1.640590+3 6.77241-11 1.000000+5 1.10950-12 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 5.750000-6 5.750000-6 1.000000+5 5.750000-6 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 5.750000-6 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 5.180000-6 4.827300+6 5.400000-6 5.150652+6 5.623413-6 5.444293+6 5.900000-6 5.764764+6 6.200000-6 6.065484+6 6.531306-6 6.354461+6 6.918310-6 6.638413+6 7.350000-6 6.906180+6 7.852356-6 7.161627+6 8.500000-6 7.421220+6 9.225714-6 7.641159+6 1.000000-5 7.809528+6 1.083927-5 7.925034+6 1.161449-5 7.974894+6 1.244515-5 7.973957+6 1.318257-5 7.927816+6 1.396368-5 7.831243+6 1.462177-5 7.717564+6 1.531087-5 7.565320+6 1.610000-5 7.356468+6 1.690000-5 7.113216+6 1.770000-5 6.842820+6 1.850000-5 6.551208+6 1.927525-5 6.255721+6 2.018366-5 5.902093+6 2.113489-5 5.530693+6 2.213095-5 5.147453+6 2.317395-5 4.760088+6 2.450000-5 4.297764+6 2.591000-5 3.848051+6 2.754229-5 3.382910+6 2.951209-5 2.900287+6 3.162278-5 2.467203+6 3.427678-5 2.025498+6 3.672823-5 1.699011+6 3.935501-5 1.415680+6 4.220000-5 1.169437+6 4.518559-5 9.619560+5 4.800000-5 8.040768+5 5.069907-5 6.790239+5 5.400000-5 5.547876+5 5.688529-5 4.664350+5 6.025596-5 3.825629+5 6.382635-5 3.116621+5 6.839116-5 2.416513+5 7.244360-5 1.941715+5 7.762471-5 1.482183+5 8.222426-5 1.175473+5 8.709636-5 9.268695+4 9.225714-5 7.257409+4 9.800000-5 5.575848+4 1.040000-4 4.267632+4 1.100000-4 3.296424+4 1.288250-4 1.569491+4 1.350000-4 1.268208+4 1.400000-4 1.082305+4 1.440000-4 9.635160+3 1.480000-4 8.662536+3 1.515000-4 7.959504+3 1.548817-4 7.393143+3 1.566751-4 7.134188+3 1.584893-4 6.900178+3 1.611900-4 6.596846+3 1.640590-4 6.325163+3 1.678804-4 6.030313+3 1.717908-4 5.793409+3 1.757924-4 5.605925+3 1.798871-4 5.460990+3 1.844600-4 5.344936+3 1.883649-4 5.277432+3 1.927525-4 5.230395+3 1.972423-4 5.208674+3 2.000000-4 5.206620+3 2.065380-4 5.181175+3 2.137962-4 5.189747+3 2.213095-4 5.230924+3 2.301000-4 5.311293+3 2.398833-4 5.430905+3 2.540973-4 5.641138+3 2.917427-4 6.240931+3 3.000000-4 6.355596+3 3.198895-4 6.432561+3 3.388442-4 6.458598+3 3.589219-4 6.441158+3 3.801894-4 6.378644+3 4.027170-4 6.270330+3 4.265795-4 6.124450+3 4.518559-4 5.945607+3 4.786301-4 5.738730+3 5.128614-4 5.460739+3 5.495409-4 5.158718+3 5.888437-4 4.840701+3 6.382635-4 4.459353+3 6.839116-4 4.129293+3 7.328245-4 3.799596+3 7.943282-4 3.422069+3 8.609938-4 3.059271+3 9.440609-4 2.669664+3 1.023293-3 2.352563+3 1.109175-3 2.058341+3 1.202264-3 1.789282+3 1.318257-3 1.514355+3 1.445440-3 1.272060+3 1.584893-3 1.060297+3 1.737801-3 8.768587+2 1.883649-3 7.376948+2 2.018366-3 6.328312+2 2.213095-3 5.113447+2 2.454709-3 3.991114+2 2.786121-3 2.923876+2 3.054921-3 2.317652+2 3.388442-3 1.770859+2 3.758374-3 1.342793+2 4.168694-3 1.010729+2 4.623810-3 7.553643+1 5.128614-3 5.605906+1 5.688529-3 4.132217+1 6.309573-3 3.025676+1 7.079458-3 2.123728+1 7.943282-3 1.478975+1 8.912509-3 1.022247+1 1.000000-2 7.012465+0 1.122018-2 4.774554+0 1.258925-2 3.225860+0 1.412538-2 2.164254+0 1.603245-2 1.384716+0 1.819701-2 8.793609-1 2.065380-2 5.544496-1 2.371374-2 3.326440-1 2.722701-2 1.980908-1 3.126079-2 1.171436-1 3.672823-2 6.295191-2 4.365158-2 3.210749-2 5.248075-2 1.554014-2 6.918310-2 5.177483-3 1.047129-1 9.920404-4 1.273503-1 4.572798-4 1.500000-1 2.410100-4 1.717908-1 1.427204-4 1.949845-1 8.811391-5 2.187762-1 5.721906-5 2.426610-1 3.904262-5 2.691535-1 2.682220-5 2.985383-1 1.856662-5 3.273407-1 1.347964-5 3.589219-1 9.853453-6 3.935501-1 7.255026-6 4.315191-1 5.381574-6 4.677351-1 4.171810-6 5.069907-1 3.256500-6 5.495409-1 2.561413-6 6.000000-1 1.986700-6 6.531306-1 1.564287-6 7.079458-1 1.254802-6 7.673615-1 1.013333-6 8.511380-1 7.753533-7 9.015711-1 6.719538-7 9.549926-1 5.861074-7 1.000000+0 5.282500-7 1.059254+0 4.670624-7 1.135011+0 4.058917-7 1.230269+0 3.474707-7 1.348963+0 2.932728-7 1.737801+0 1.872774-7 1.949845+0 1.536587-7 2.213095+0 1.246000-7 2.540973+0 9.987136-8 2.917427+0 8.064182-8 3.349654+0 6.558602-8 3.890451+0 5.282330-8 4.570882+0 4.217789-8 5.432503+0 3.340210-8 6.456542+0 2.665395-8 7.852356+0 2.081158-8 9.772372+0 1.593441-8 1.202264+1 1.245751-8 1.531087+1 9.426359-9 2.000000+1 6.983900-9 2.754229+1 4.921227-9 4.168694+1 3.163213-9 6.237348+1 2.076318-9 9.660509+1 1.322596-9 1.905461+2 6.62658-10 3.801894+2 3.30079-10 1.513561+3 8.25169-11 1.000000+5 1.24700-12 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 5.180000-6 5.180000-6 1.000000+5 5.180000-6 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 5.180000-6 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.860000-6 5.555900+6 7.585776-6 3.633464+6 8.413951-6 2.326954+6 9.332543-6 1.477377+6 1.023293-5 9.790744+5 1.122018-5 6.439948+5 1.230269-5 4.206527+5 1.531087-5 1.507727+5 1.621810-5 1.156435+5 1.698244-5 9.404992+4 1.770000-5 7.861800+4 1.830000-5 6.846060+4 1.883649-5 6.105160+4 1.929400-5 5.575650+4 1.990000-5 4.993400+4 2.041738-5 4.586004+4 2.090000-5 4.267380+4 2.137962-5 4.000158+4 2.190000-5 3.757340+4 2.250000-5 3.528200+4 2.300000-5 3.371960+4 2.350000-5 3.242160+4 2.420000-5 3.097320+4 2.483133-5 2.996939+4 2.540973-5 2.925357+4 2.610000-5 2.860680+4 2.691535-5 2.807371+4 2.786121-5 2.769357+4 2.900000-5 2.747860+4 3.019952-5 2.744507+4 3.198895-5 2.760555+4 3.801894-5 2.847042+4 4.120975-5 2.869403+4 4.415704-5 2.868195+4 4.677351-5 2.850262+4 4.954502-5 2.815667+4 5.300000-5 2.754740+4 5.650000-5 2.679240+4 6.025596-5 2.588228+4 6.456542-5 2.476806+4 6.918310-5 2.354047+4 7.500000-5 2.202760+4 8.222426-5 2.027362+4 9.120108-5 1.832115+4 1.047129-4 1.587418+4 1.303167-4 1.250595+4 1.949845-4 8.031716+3 2.137962-4 7.219373+3 2.371374-4 6.354728+3 2.660725-4 5.472235+3 3.126079-4 4.397773+3 4.897788-4 2.346570+3 5.754399-4 1.854071+3 8.317638-4 1.071387+3 9.885531-4 8.220137+2 1.273503-3 5.530386+2 1.548817-3 4.043969+2 1.883649-3 2.934054+2 2.264644-3 2.153524+2 2.722701-3 1.569214+2 3.273407-3 1.135124+2 4.027170-3 7.818901+1 4.954502-3 5.344465+1 6.025596-3 3.701553+1 7.328245-3 2.544644+1 8.912509-3 1.736304+1 1.096478-2 1.149173+1 1.318257-2 7.905748+0 1.584893-2 5.398777+0 1.905461-2 3.658537+0 2.290868-2 2.459824+0 2.722701-2 1.683053+0 3.235937-2 1.143185+0 3.845918-2 7.707310-1 4.570882-2 5.158009-1 5.370318-2 3.521129-1 6.456542-2 2.257950-1 7.762471-2 1.436859-1 9.332543-2 9.067908-2 1.161449-1 5.207286-2 1.513561-1 2.639279-2 2.426610-1 7.770118-3 3.019952-1 4.437721-3 3.589219-1 2.870642-3 4.168694-1 1.982344-3 4.786301-1 1.419148-3 5.432503-1 1.052046-3 6.095369-1 8.066704-4 6.839117-1 6.228254-4 7.673615-1 4.842399-4 8.609938-1 3.791593-4 9.549926-1 3.062823-4 1.083927+0 2.380109-4 1.250000+0 1.804400-4 1.412538+0 1.434054-4 1.584893+0 1.163237-4 1.798871+0 9.315949-5 2.044000+0 7.504800-5 2.344229+0 5.998828-5 2.691535+0 4.823545-5 3.090295+0 3.907095-5 3.589219+0 3.133966-5 4.168694+0 2.532700-5 4.897788+0 2.028855-5 5.821032+0 1.611477-5 6.918310+0 1.289759-5 8.317638+0 1.024463-5 1.059254+1 7.646184-6 1.303167+1 5.994683-6 1.659587+1 4.547426-6 2.162719+1 3.385706-6 2.951209+1 2.414859-6 4.415704+1 1.573390-6 6.998420+1 9.738925-7 1.148154+2 5.859486-7 2.290868+2 2.906778-7 4.570882+2 1.449684-7 1.819701+3 3.626603-8 1.000000+5 6.59050-10 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.860000-6 6.860000-6 1.000000+5 6.860000-6 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.860000-6 0.0 1.000000+5 1.000000+5 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.247100-7 1.026600+0 1.353810-6 1.027100+0 1.841890-6 1.027500+0 2.306940-6 1.028100+0 3.140860-6 1.028750+0 4.247100-6 1.029500+0 5.812270-6 1.030100+0 7.309630-6 1.031000+0 1.000210-5 1.032000+0 1.368530-5 1.033200+0 1.917080-5 1.034000+0 2.353400-5 1.035300+0 3.194400-5 1.036640+0 4.247100-5 1.038200+0 5.731600-5 1.039700+0 7.446490-5 1.041500+0 9.907470-5 1.043800+0 1.375190-4 1.046400+0 1.913320-4 1.048300+0 2.382130-4 1.051200+0 3.231310-4 1.054080+0 4.247100-4 1.057700+0 5.789080-4 1.061100+0 7.530160-4 1.065100+0 9.969140-4 1.070400+0 1.390810-3 1.076200+0 1.922100-3 1.080600+0 2.400380-3 1.087100+0 3.234090-3 1.093710+0 4.247100-3 1.102600+0 5.888320-3 1.110700+0 7.679180-3 1.120600+0 1.027180-2 1.133300+0 1.428120-2 1.147500+0 1.971700-2 1.158200+0 2.450310-2 1.174100+0 3.275150-2 1.190110+0 4.247100-2 1.205100+0 5.288140-2 1.227500+0 7.079270-2 1.250000+0 9.144000-2 1.265600+0 1.071400-1 1.294900+0 1.393490-1 1.331800+0 1.841830-1 1.362600+0 2.245260-1 1.397000+0 2.720710-1 1.433800+0 3.252880-1 1.500000+0 4.264000-1 1.562500+0 5.281340-1 1.617200+0 6.216070-1 1.712900+0 7.928710-1 1.838500+0 1.026980+0 1.946200+0 1.230770+0 2.000000+0 1.332000+0 2.044000+0 1.414000+0 2.163500+0 1.634550+0 2.372600+0 2.011960+0 2.647100+0 2.487510+0 3.000000+0 3.065000+0 3.500000+0 3.822070+0 4.000000+0 4.515000+0 4.750000+0 5.448100+0 5.000000+0 5.735000+0 6.000000+0 6.783000+0 7.000000+0 7.708000+0 8.000000+0 8.540000+0 9.000000+0 9.296000+0 1.000000+1 9.990000+0 1.100000+1 1.063000+1 1.200000+1 1.123000+1 1.300000+1 1.179000+1 1.400000+1 1.231000+1 1.500000+1 1.279000+1 1.600000+1 1.324000+1 1.800000+1 1.405000+1 2.000000+1 1.478000+1 2.200000+1 1.544000+1 2.400000+1 1.603000+1 2.600000+1 1.658000+1 2.800000+1 1.708000+1 3.000000+1 1.755000+1 4.000000+1 1.943000+1 5.000000+1 2.083000+1 6.000000+1 2.192000+1 8.000000+1 2.352000+1 1.000000+2 2.465000+1 1.500000+2 2.643000+1 2.000000+2 2.749000+1 3.000000+2 2.872000+1 4.000000+2 2.942000+1 5.000000+2 2.988000+1 6.000000+2 3.021000+1 8.000000+2 3.065000+1 1.000000+3 3.093000+1 1.500000+3 3.134000+1 2.000000+3 3.156000+1 3.000000+3 3.180000+1 4.000000+3 3.193000+1 5.000000+3 3.201000+1 6.000000+3 3.207000+1 8.000000+3 3.214000+1 1.000000+4 3.219000+1 1.500000+4 3.225000+1 2.000000+4 3.229000+1 3.000000+4 3.232000+1 4.000000+4 3.234000+1 5.000000+4 3.236000+1 6.000000+4 3.236000+1 8.000000+4 3.237000+1 1.000000+5 3.238000+1 1 72000 7 8 1.784900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.212540-7 2.094700+0 1.269790-6 2.099900+0 1.689280-6 2.106600+0 2.349920-6 2.114000+0 3.251420-6 2.119500+0 4.047990-6 2.127900+0 5.489840-6 2.136250+0 7.212540-6 2.147000+0 9.888900-6 2.156900+0 1.284450-5 2.169000+0 1.714180-5 2.184500+0 2.382770-5 2.201800+0 3.296630-5 2.214800+0 4.107340-5 2.234200+0 5.525100-5 2.253680+0 7.212540-5 2.281500+0 1.010240-4 2.307000+0 1.326950-4 2.338200+0 1.784190-4 2.377400+0 2.470890-4 2.410200+0 3.142560-4 2.446800+0 3.997510-4 2.485900+0 5.033090-4 2.532900+0 6.441290-4 2.556430+0 7.212540-4 2.611900+0 9.196880-4 2.660400+0 1.111860-3 2.745300+0 1.488180-3 2.809000+0 1.802290-3 2.904500+0 2.321790-3 3.000000+0 2.898000-3 3.125000+0 3.736520-3 3.234400+0 4.545980-3 3.425800+0 6.120280-3 3.569300+0 7.420010-3 3.784700+0 9.535830-3 4.000000+0 1.181000-2 4.250000+0 1.459050-2 4.625000+0 1.895990-2 5.000000+0 2.350000-2 5.500000+0 2.972500-2 6.000000+0 3.603000-2 6.750000+0 4.541450-2 7.000000+0 4.850000-2 8.000000+0 6.055000-2 9.000000+0 7.206000-2 1.000000+1 8.298000-2 1.100000+1 9.330000-2 1.200000+1 1.030000-1 1.300000+1 1.122000-1 1.400000+1 1.208000-1 1.500000+1 1.291000-1 1.600000+1 1.368000-1 1.800000+1 1.513000-1 2.000000+1 1.643000-1 2.200000+1 1.763000-1 2.400000+1 1.872000-1 2.600000+1 1.973000-1 2.800000+1 2.066000-1 3.000000+1 2.153000-1 4.000000+1 2.510000-1 5.000000+1 2.778000-1 6.000000+1 2.989000-1 8.000000+1 3.305000-1 1.000000+2 3.533000-1 1.500000+2 3.907000-1 2.000000+2 4.138000-1 3.000000+2 4.419000-1 4.000000+2 4.587000-1 5.000000+2 4.700000-1 6.000000+2 4.784000-1 8.000000+2 4.898000-1 1.000000+3 4.974000-1 1.500000+3 5.087000-1 2.000000+3 5.151000-1 3.000000+3 5.221000-1 4.000000+3 5.262000-1 5.000000+3 5.287000-1 6.000000+3 5.305000-1 8.000000+3 5.328000-1 1.000000+4 5.343000-1 1.500000+4 5.363000-1 2.000000+4 5.375000-1 3.000000+4 5.386000-1 4.000000+4 5.393000-1 5.000000+4 5.397000-1 6.000000+4 5.400000-1 8.000000+4 5.403000-1 1.000000+5 5.405000-1 1 72000 7 8 1.784900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 72000 7 9 1.784900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.200000+1 1.000000+5 7.200000+1 5.000000+5 7.195900+1 1.000000+6 7.191700+1 1.500000+6 7.186700+1 1.875000+6 7.179450+1 2.000000+6 7.176600+1 2.375000+6 7.166660+1 2.500000+6 7.163700+1 2.875000+6 7.151820+1 3.000000+6 7.148200+1 3.437500+6 7.132140+1 3.812500+6 7.117320+1 4.000000+6 7.110200+1 4.500000+6 7.089190+1 5.000000+6 7.066000+1 5.500000+6 7.040190+1 5.875000+6 7.019460+1 6.437500+6 6.986790+1 6.500000+6 6.982860+1 7.000000+6 6.952800+1 7.500000+6 6.921300+1 8.250000+6 6.873810+1 9.000000+6 6.825900+1 1.000000+7 6.760100+1 1.125000+7 6.675250+1 1.250000+7 6.588800+1 1.500000+7 6.413500+1 1.750000+7 6.243400+1 2.000000+7 6.070100+1 2.250000+7 5.895930+1 2.375000+7 5.808770+1 2.500000+7 5.722900+1 2.875000+7 5.466770+1 3.000000+7 5.382800+1 3.437500+7 5.093840+1 3.500000+7 5.053900+1 3.812500+7 4.858430+1 4.000000+7 4.746000+1 4.500000+7 4.462100+1 5.000000+7 4.200300+1 5.500000+7 3.957900+1 5.750000+7 3.842820+1 6.000000+7 3.732000+1 6.500000+7 3.520530+1 7.000000+7 3.322500+1 7.750000+7 3.049140+1 8.000000+7 2.964700+1 9.000000+7 2.657200+1 1.000000+8 2.397800+1 1.187500+8 2.024110+1 1.250000+8 1.928200+1 1.375000+8 1.771190+1 1.437500+8 1.706350+1 1.500000+8 1.648800+1 1.718800+8 1.484060+1 1.750000+8 1.462820+1 1.875000+8 1.379220+1 1.906300+8 1.358330+1 1.968800+8 1.316320+1 2.000000+8 1.295200+1 2.250000+8 1.131040+1 2.500000+8 1.001900+1 2.750000+8 9.068610+0 2.859400+8 8.648080+0 2.875000+8 8.585610+0 2.953100+8 8.257300+0 3.000000+8 8.048500+0 3.062500+8 7.756950+0 3.335900+8 6.569450+0 3.418000+8 6.297050+0 3.500000+8 6.078400+0 3.589800+8 5.900530+0 3.712900+8 5.726080+0 4.000000+8 5.413800+0 4.125000+8 5.253780+0 4.234400+8 5.099540+0 5.000000+8 4.084600+0 5.250000+8 3.857890+0 5.718800+8 3.499230+0 5.906300+8 3.357280+0 6.000000+8 3.284200+0 6.250000+8 3.083130+0 6.718800+8 2.740170+0 6.906300+8 2.629250+0 7.000000+8 2.580600+0 7.250000+8 2.471810+0 7.718800+8 2.298530+0 7.906300+8 2.226030+0 8.000000+8 2.187400+0 8.125000+8 2.132780+0 8.359400+8 2.024690+0 8.564500+8 1.928390+0 9.461700+8 1.556690+0 9.730800+8 1.471810+0 1.000000+9 1.401000+0 1.015600+9 1.366460+0 1.045900+9 1.310900+0 1.074300+9 1.269770+0 1.113400+9 1.226260+0 1.125800+9 1.214990+0 1.375000+9 1.096980+0 1.500000+9 1.042700+0 1.562500+9 1.006970+0 1.617200+9 9.722040-1 1.665000+9 9.402060-1 1.748800+9 8.825740-1 1.811600+9 8.395680-1 1.905800+9 7.772050-1 2.000000+9 7.188900-1 2.139200+9 6.414140-1 2.272600+9 5.761420-1 2.443000+9 5.038210-1 2.602800+9 4.456550-1 2.825100+9 3.776130-1 2.961100+9 3.421950-1 3.215900+9 2.861140-1 3.438900+9 2.460590-1 3.500000+9 2.362950-1 3.719500+9 2.049690-1 3.954200+9 1.769510-1 4.215700+9 1.510990-1 4.495800+9 1.283880-1 4.831900+9 1.064520-1 5.000000+9 9.723600-2 5.375000+9 7.999030-2 5.703100+9 6.794730-2 6.277300+9 5.189730-2 7.138700+9 3.588560-2 8.000000+9 2.575600-2 1.00000+10 1.338700-2 1.41360+10 4.867490-3 1.85560+10 2.208450-3 2.64460+10 7.940470-4 3.56400+10 3.373820-4 4.74390+10 1.491910-4 6.62110+10 5.793030-5 1.00000+11 1.811800-5 1.34280+11 7.932830-6 2.20600+11 1.990820-6 4.19930+11 3.364240-7 1.03480+12 2.854910-8 3.24440+12 1.294240-9 1.00000+14 1.32720-13 3.16230+15 1.20990-17 1.00000+17 1.04180-21 1 72000 7 0 1.784900+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 9.00000-12 1.000000+2 9.00000-10 1.000000+3 9.000000-8 1.000000+4 9.000000-6 1.000000+5 9.000000-4 5.000000+5 2.250000-2 1.000000+6 9.000000-2 1.500000+6 1.998000-1 1.875000+6 3.085490-1 2.000000+6 3.495000-1 2.375000+6 4.853670-1 2.500000+6 5.348000-1 2.875000+6 6.943690-1 3.000000+6 7.511000-1 3.437500+6 9.617250-1 3.812500+6 1.155280+0 4.000000+6 1.256000+0 4.500000+6 1.534090+0 5.000000+6 1.823000+0 5.500000+6 2.118040+0 5.875000+6 2.341200+0 6.437500+6 2.676340+0 6.500000+6 2.713590+0 7.000000+6 3.008900+0 7.500000+6 3.299700+0 8.250000+6 3.726940+0 9.000000+6 4.142400+0 1.000000+7 4.679000+0 1.125000+7 5.329990+0 1.250000+7 5.969500+0 1.500000+7 7.245000+0 1.750000+7 8.531800+0 2.000000+7 9.815000+0 2.250000+7 1.107530+1 2.375000+7 1.169370+1 2.500000+7 1.230500+1 2.875000+7 1.408720+1 3.000000+7 1.466700+1 3.437500+7 1.663970+1 3.500000+7 1.691540+1 3.812500+7 1.825610+1 4.000000+7 1.903700+1 4.500000+7 2.101710+1 5.000000+7 2.285000+1 5.500000+7 2.453920+1 5.750000+7 2.533780+1 6.000000+7 2.611000+1 6.500000+7 2.758500+1 7.000000+7 2.898900+1 7.750000+7 3.098190+1 8.000000+7 3.162400+1 9.000000+7 3.407000+1 1.000000+8 3.635400+1 1.187500+8 4.025920+1 1.250000+8 4.146500+1 1.375000+8 4.373430+1 1.437500+8 4.480040+1 1.500000+8 4.581700+1 1.718800+8 4.898710+1 1.750000+8 4.939560+1 1.875000+8 5.092070+1 1.906300+8 5.127400+1 1.968800+8 5.195580+1 2.000000+8 5.228500+1 2.250000+8 5.459190+1 2.500000+8 5.647500+1 2.750000+8 5.803920+1 2.859400+8 5.865120+1 2.875000+8 5.873280+1 2.953100+8 5.913640+1 3.000000+8 5.937500+1 3.062500+8 5.967490+1 3.335900+8 6.088410+1 3.418000+8 6.121180+1 3.500000+8 6.153300+1 3.589800+8 6.186060+1 3.712900+8 6.229940+1 4.000000+8 6.322700+1 4.125000+8 6.359380+1 4.234400+8 6.390750+1 5.000000+8 6.575500+1 5.250000+8 6.624840+1 5.718800+8 6.706970+1 5.906300+8 6.735320+1 6.000000+8 6.749200+1 6.250000+8 6.782880+1 6.718800+8 6.836980+1 6.906300+8 6.855980+1 7.000000+8 6.865300+1 7.250000+8 6.886920+1 7.718800+8 6.923150+1 7.906300+8 6.935890+1 8.000000+8 6.941900+1 8.125000+8 6.949110+1 8.359400+8 6.962360+1 8.564500+8 6.973190+1 9.461700+8 7.011730+1 9.730800+8 7.021540+1 1.000000+9 7.031100+1 1.015600+9 7.035790+1 1.045900+9 7.044700+1 1.074300+9 7.052830+1 1.113400+9 7.063690+1 1.125800+9 7.066710+1 1.375000+9 7.114580+1 1.500000+9 7.132300+1 1.562500+9 7.139060+1 1.617200+9 7.144760+1 1.665000+9 7.149590+1 1.748800+9 7.157050+1 1.811600+9 7.161530+1 1.905800+9 7.167970+1 2.000000+9 7.174100+1 2.139200+9 7.180470+1 2.272600+9 7.185120+1 2.443000+9 7.189930+1 2.602800+9 7.193510+1 2.825100+9 7.196830+1 2.961100+9 7.197890+1 3.215900+9 7.199460+1 3.438900+9 7.200410+1 3.500000+9 7.200390+1 3.719500+9 7.200290+1 3.954200+9 7.200190+1 4.215700+9 7.200080+1 4.495800+9 7.199970+1 4.831900+9 7.199860+1 5.000000+9 7.199800+1 5.375000+9 7.199830+1 5.703100+9 7.199860+1 6.277300+9 7.199900+1 7.138700+9 7.199950+1 8.000000+9 7.200000+1 1.00000+10 7.200000+1 1.41360+10 7.200000+1 1.85560+10 7.200000+1 2.64460+10 7.200000+1 3.56400+10 7.200000+1 4.74390+10 7.200000+1 6.62110+10 7.200000+1 1.00000+11 7.200000+1 1.34280+11 7.200000+1 2.20600+11 7.200000+1 4.19930+11 7.200000+1 1.03480+12 7.200000+1 3.24440+12 7.200000+1 1.00000+14 7.200000+1 3.16230+15 7.200000+1 1.00000+17 7.200000+1 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.100766-6 0.0 1.103475-6 1.441777-8 1.106185-6 2.852880-8 1.108894-6 5.211018-8 1.111604-6 8.786492-8 1.114313-6 1.367610-7 1.117022-6 1.965002-7 1.119732-6 2.606259-7 1.122441-6 3.190995-7 1.125151-6 3.606521-7 1.127860-6 3.762745-7 1.130569-6 3.623891-7 1.133279-6 3.221805-7 1.135988-6 2.644097-7 1.141407-6 1.400863-7 1.144116-6 9.043484-8 1.146826-6 5.389269-8 1.149535-6 2.964681-8 1.152245-6 1.505498-8 1.154954-6 0.0 1.664676-6 0.0 1.665769-6 8.44408-16 1.669869-6 8.902119-8 1.673969-6 1.761484-7 1.678069-6 3.217494-7 1.682170-6 5.425138-7 1.686270-6 8.444182-7 1.698570-6 1.970250-6 1.702670-6 2.226813-6 1.706770-6 2.323272-6 1.710870-6 2.237537-6 1.714970-6 1.989273-6 1.727270-6 8.649498-7 1.731370-6 5.583815-7 1.735471-6 3.327554-7 1.739571-6 1.830515-7 1.743671-6 9.295556-8 1.747771-6 0.0 1.981000-6 0.0 1.988314-6 4.142522-1 1.990752-6 5.505847-1 1.995628-6 1.005688+0 2.000504-6 1.695728+0 2.005990-6 2.783198+0 2.014446-6 4.855495+0 2.020618-6 6.258419+0 2.025332-6 6.987940+0 2.030277-6 7.233483+0 2.035267-6 6.893690+0 2.040513-6 5.989365+0 2.048739-6 3.999367+0 2.054140-6 2.703562+0 2.059321-6 1.701347+0 2.063892-6 1.040089+0 2.068768-6 5.721616-1 2.075777-6 1.636025-1 2.078520-6 0.0 2.229679-6 0.0 2.237911-6 2.463922-1 2.240655-6 3.274811-1 2.246143-6 5.981711-1 2.251632-6 1.008599+0 2.257806-6 1.655413+0 2.267324-6 2.887989+0 2.274270-6 3.722432+0 2.279908-6 4.167181+0 2.285142-6 4.302388+0 2.290938-6 4.085124+0 2.296424-6 3.591178+0 2.304850-6 2.522559+0 2.312000-6 1.608046+0 2.317831-6 1.011940+0 2.322977-6 6.186325-1 2.328636-6 3.350924-1 2.336354-6 9.730879-2 2.339441-6 0.0 2.546003-6 0.0 2.552270-6 3.149187-2 2.558537-6 6.231372-2 2.564803-6 1.138211-1 2.571070-6 1.919180-1 2.577337-6 2.987188-1 2.586737-6 4.991524-1 2.596137-6 6.969897-1 2.602403-6 7.877506-1 2.608670-6 8.218737-1 2.614937-6 7.915445-1 2.621203-6 7.037194-1 2.631387-6 4.901116-1 2.640003-6 3.059820-1 2.646270-6 1.975313-1 2.652537-6 1.177145-1 2.658803-6 6.475574-2 2.668203-6 1.646117-2 2.671337-6 0.0 2.928518-6 0.0 2.935726-6 3.487880-8 2.942935-6 6.901552-8 2.950143-6 1.260625-7 2.957351-6 2.125587-7 2.964559-6 3.308458-7 2.971767-6 4.753641-7 2.978975-6 6.304940-7 2.986184-6 7.719505-7 2.993392-6 8.724727-7 3.000600-6 9.102656-7 3.007808-6 8.766746-7 3.015016-6 7.794040-7 3.022225-6 6.396476-7 3.036641-6 3.388902-7 3.043849-6 2.187757-7 3.051057-6 1.303747-7 3.058265-6 7.172018-8 3.065474-6 3.642030-8 3.072682-6 0.0 3.330455-6 0.0 3.345825-6 3.758759+0 3.346850-6 4.007036+0 3.355048-6 7.319178+0 3.363245-6 1.234114+1 3.372467-6 2.025551+1 3.386685-6 3.533723+1 3.396547-6 4.518334+1 3.404985-6 5.085670+1 3.413583-6 5.257616+1 3.421781-6 5.010676+1 3.430508-6 4.358930+1 3.444337-6 2.910652+1 3.453417-6 1.967594+1 3.462127-6 1.238203+1 3.469812-6 7.569543+0 3.478010-6 4.164068+0 3.489794-6 1.190663+0 3.494405-6 2.121367-9 3.508603-6 3.595053-8 3.510719-6 4.094351-8 3.519318-6 7.478668-8 3.527917-6 1.261006-7 3.536516-6 1.962746-7 3.545115-6 2.820101-7 3.553713-6 3.740411-7 3.562312-6 4.579602-7 3.570911-6 5.175951-7 3.579510-6 5.400158-7 3.588109-6 5.200879-7 3.596708-6 4.623820-7 3.622504-6 2.010470-7 3.631103-6 1.297891-7 3.639702-6 7.734520-8 3.646769-6 4.875790-8 3.664722-6 8.137690+0 3.673698-6 1.488799+1 3.682674-6 2.511289+1 3.693511-6 4.266165+1 3.719516-6 9.252428+1 3.729749-6 1.043282+2 3.739084-6 1.066510+2 3.747666-6 1.012157+2 3.756588-6 8.868553+1 3.781410-6 4.046625+1 3.790386-6 2.618739+1 3.799362-6 1.565180+1 3.808338-6 8.640871+0 3.826291-6 6.358487-2 3.828040-6 5.486801-2 3.842829-6 1.007130-2 3.846085-6 7.325534-8 3.853059-6 0.0 4.148236-6 0.0 4.158447-6 1.329068-2 4.168657-6 2.629858-2 4.178867-6 4.803651-2 4.189078-6 8.099616-2 4.199288-6 1.260699-1 4.208552-6 1.760217-1 4.282704-6 7.566787-1 4.301781-6 8.751158-1 4.315308-6 9.017102-1 4.325800-6 8.824623-1 4.336293-6 8.247060-1 4.350324-6 6.953603-1 4.378262-6 3.914280-1 4.386836-6 3.053049-1 4.395011-6 2.330645-1 4.409740-6 1.286225-1 4.415728-6 8.999146-2 4.423654-6 6.282160-2 4.434130-6 3.590134-2 4.438902-6 2.717166-2 4.444606-6 1.879384-2 4.456113-6 8.605680-3 4.465557-6 2.707902-8 4.466591-6 2.225568-8 4.472695-6 0.0 4.507386-6 0.0 4.507396-6 7.150928-7 4.529585-6 3.382967-2 4.532879-6 4.211759-2 4.541053-6 6.638985-2 4.552148-6 1.135586-1 4.563244-6 1.782485-1 4.587018-6 3.585919-1 4.596529-6 4.338165-1 4.607625-6 5.008228-1 4.618720-6 5.361434-1 4.629815-6 5.325882-1 4.640911-6 4.912942-1 4.655607-6 3.952107-1 4.673812-6 2.558727-1 4.685292-6 1.874672-1 4.695991-6 1.423298-1 4.704547-6 1.230195-1 4.708009-6 1.193541-1 4.716041-6 1.199970-1 4.727269-6 1.346023-1 4.729997-6 1.419054-1 4.763921-6 2.942315-1 4.784740-6 3.709275-1 4.812140-6 4.008092-1 4.823323-6 4.097695-1 4.834854-6 4.392501-1 4.847994-6 5.013293-1 4.881366-6 6.990201-1 4.895030-6 7.357295-1 4.909470-6 7.245786-1 4.926437-6 6.606188-1 4.961547-6 4.687309-1 4.979877-6 4.006291-1 5.006142-6 3.452824-1 5.026063-6 3.361122-1 5.066773-6 3.324784-1 5.102882-6 3.484624-1 5.125440-6 3.752602-1 5.147651-6 4.337591-1 5.174498-6 5.306017-1 5.188968-6 5.716673-1 5.201060-6 5.906831-1 5.213720-6 5.909784-1 5.241950-6 5.370435-1 5.249002-6 5.180013-1 5.274842-6 5.959869-1 5.287762-6 6.973259-1 5.300681-6 8.690059-1 5.316665-6 1.182633+0 5.331893-6 1.551986+0 5.368268-6 3.186188+0 5.388576-6 4.329407+0 5.437797-6 7.702623+0 5.454001-6 8.243584+0 5.465000-6 8.256587+0 5.479881-6 7.640308+0 5.493741-6 6.601888+0 5.525550-6 3.615659+0 5.540187-6 2.496259+0 5.542402-6 2.335864+0 5.554488-6 1.674061+0 5.567943-6 1.191638+0 5.593894-6 6.189186-1 5.762503-6 6.507901-1 5.887750-6 7.045599-1 5.921812-6 7.534948-1 5.950964-6 9.942597-1 5.965539-6 1.186709+0 5.984755-6 1.566992+0 6.008103-6 2.163061+0 6.032134-6 2.780617+0 6.039424-6 2.944804+0 6.054002-6 3.144448+0 6.070402-6 3.154939+0 6.086803-6 2.951553+0 6.102343-6 2.609165+0 6.141471-6 1.587721+0 6.156049-6 1.297736+0 6.169601-6 1.096233+0 6.184176-6 9.566393-1 6.198752-6 8.847555-1 6.213328-6 8.438416-1 6.229172-6 8.948710-1 6.244430-6 9.721485-1 6.259687-6 1.084336+0 6.279315-6 1.283215+0 6.320716-6 1.753714+0 6.335973-6 1.863475+0 6.351230-6 1.900730+0 6.366756-6 1.872611+0 6.421336-6 1.476811+0 6.429133-6 1.433153+0 6.444727-6 1.396310+0 6.483071-6 1.470412+0 6.522698-6 1.557831+0 6.602989-6 1.523379+0 6.839436-6 1.512993+0 7.852356-6 1.591710+0 9.417933-6 1.825974+0 1.347147-5 2.549504+0 1.610000-5 2.859005+0 1.883649-5 2.949463+0 1.964155-5 2.937505+0 1.973824-5 4.264214+0 1.978658-5 5.361163+0 1.984097-5 7.309146+0 1.988861-5 9.617052+0 2.003133-5 1.791133+1 2.008658-5 1.987330+1 2.013191-5 2.035782+1 2.018117-5 1.949866+1 2.023533-5 1.716767+1 2.036673-5 9.437648+0 2.042111-5 6.910007+0 2.046342-5 5.418202+0 2.051478-5 4.244094+0 2.060970-5 2.901250+0 2.092989-5 2.908215+0 2.103052-5 3.860507+0 2.108525-5 4.744470+0 2.113676-5 5.998286+0 2.119430-5 7.938447+0 2.134119-5 1.387184+1 2.139686-5 1.531191+1 2.145127-5 1.570543+1 2.150469-5 1.502957+1 2.155268-5 1.367833+1 2.170486-5 7.702394+0 2.175810-5 6.107611+0 2.180961-5 5.033959+0 2.186231-5 4.371140+0 2.196148-5 3.637898+0 2.206118-5 3.658668+0 2.212730-5 3.553155+0 2.233891-5 3.002788+0 2.250000-5 2.815018+0 2.274570-5 2.763866+0 2.342853-5 2.740699+0 2.364708-5 2.900587+0 2.384715-5 3.085428+0 2.400323-5 3.031667+0 2.423819-5 2.826063+0 2.469303-5 2.851870+0 2.529957-5 2.766282+0 2.557175-5 2.914833+0 2.578514-5 3.016614+0 2.616960-5 2.853652+0 2.695450-5 2.810716+0 3.159064-5 2.446388+0 3.174615-5 4.139898+0 3.182391-5 5.543532+0 3.190166-5 7.674746+0 3.197942-5 1.059145+1 3.215563-5 1.891048+1 3.223478-5 2.976658+1 3.231392-5 3.925136+1 3.240296-5 5.422507+1 3.248211-5 7.235296+1 3.255879-5 9.505596+1 3.279375-5 1.787300+2 3.288076-5 1.977418+2 3.295850-5 2.018185+2 3.303351-5 1.924969+2 3.311641-5 1.680025+2 3.334284-5 7.608003+1 3.342198-5 4.993173+1 3.350113-5 3.068588+1 3.358028-5 1.791436+1 3.371878-5 4.280305+0 3.373857-5 2.293751+0 3.508415-5 2.210415+0 3.525686-5 2.398283+0 3.534321-5 2.556918+0 3.542957-5 2.800086+0 3.551592-5 3.134544+0 3.577499-5 4.386050+0 3.594770-5 5.000786+0 3.617398-5 5.145067+0 3.629312-5 5.373311+0 3.643128-5 5.976207+0 3.663441-5 7.145558+0 3.672833-5 7.471357+0 3.687925-5 7.476035+0 3.721251-5 6.859803+0 3.768545-5 6.721517+0 3.850450-5 6.608539+0 3.968647-5 6.333177+0 3.988228-5 1.468489+1 3.998562-5 2.219838+1 4.008331-5 3.290215+1 4.018586-5 4.834939+1 4.047099-5 1.001169+2 4.057936-5 1.125413+2 4.067434-5 1.159971+2 4.076995-5 1.112789+2 4.087622-5 9.749930+1 4.114313-5 4.861723+1 4.124940-5 3.247099+1 4.134708-5 2.172890+1 4.144477-5 1.459340+1 4.164013-5 5.853333+0 4.319779-5 5.509163+0 4.360856-5 5.620948+0 4.400183-5 6.088674+0 4.464412-5 7.060508+0 4.490657-5 7.563670+0 4.515425-5 7.746520+0 4.583579-5 7.529868+0 4.671479-5 7.455773+0 5.032161-5 6.708679+0 5.548835-5 5.960033+0 6.090493-5 5.552179+0 6.755970-5 5.477115+0 6.948360-5 5.694354+0 7.081604-5 5.632668+0 7.980749-5 6.315940+0 9.151333-5 7.762356+0 1.288400-4 1.305787+1 1.557942-4 1.627559+1 1.851491-4 1.875178+1 2.082918-4 2.020579+1 2.128681-4 2.133435+1 2.193416-4 2.170474+1 2.238424-4 2.261554+1 2.507886-4 2.297703+1 3.621735-4 2.205592+1 3.671340-4 2.285073+1 3.711818-4 2.380565+1 3.802998-4 2.320171+1 4.507085-4 2.276777+1 5.180980-4 2.179396+1 5.292210-4 2.199550+1 8.185094-4 1.670681+1 1.008672-3 1.397827+1 1.275072-3 1.115329+1 1.555906-3 9.034866+0 1.631613-3 8.634082+0 1.641386-3 8.918539+0 1.647560-3 9.528264+0 1.653432-3 1.065735+1 1.659532-3 1.252052+1 1.679089-3 2.051921+1 1.688659-3 2.292432+1 1.713076-3 2.554139+1 1.741486-3 3.052373+1 1.760811-3 3.189331+1 1.827574-3 3.322575+1 1.915965-3 3.247342+1 2.056532-3 2.953063+1 2.079794-3 3.092223+1 2.099400-3 3.265017+1 2.128560-3 3.226572+1 2.308679-3 2.886272+1 2.369114-3 2.956247+1 2.552430-3 2.691959+1 2.630364-3 2.673843+1 3.063726-3 2.177067+1 3.570318-3 1.756908+1 4.027170-3 1.474380+1 4.677351-3 1.182118+1 5.413942-3 9.471604+0 6.178298-3 7.729033+0 7.025776-3 6.323776+0 7.886135-3 5.267444+0 9.000000-3 4.264958+0 9.328569-3 4.044008+0 9.392300-3 4.202517+0 9.430028-3 4.536595+0 9.468044-3 5.178694+0 9.512144-3 6.333362+0 9.585426-3 8.499017+0 9.636644-3 9.472695+0 9.694021-3 9.878762+0 9.939084-3 9.649710+0 1.054524-2 8.797853+0 1.063828-2 9.036700+0 1.071732-2 9.808429+0 1.081244-2 1.092184+1 1.090721-2 1.132206+1 1.114211-2 1.129495+1 1.136546-2 1.220706+1 1.364761-2 9.302223+0 1.565660-2 7.460722+0 1.764704-2 6.138643+0 1.997777-2 4.998792+0 2.268259-2 4.043309+0 2.496837-2 3.435727+0 2.810978-2 2.807210+0 3.191125-2 2.255577+0 3.599261-2 1.830468+0 4.053335-2 1.486862+0 4.563952-2 1.206280+0 5.126783-2 9.815253-1 5.742013-2 8.018419-1 6.383248-2 6.669450-1 6.421792-2 6.838543-1 6.444298-2 7.287903-1 6.462131-2 8.035359-1 6.476952-2 9.040095-1 6.491971-2 1.049114+0 6.512223-2 1.317426+0 6.545739-2 1.897024+0 6.578357-2 2.467998+0 6.609921-2 2.865862+0 6.646272-2 3.087802+0 6.702599-2 3.145476+0 7.936864-2 2.406549+0 9.122381-2 1.919130+0 1.029919-1 1.565341+0 1.145955-1 1.306590+0 1.310205-1 1.039146+0 1.445569-1 8.777205-1 1.624171-1 7.182029-1 1.812544-1 5.945784-1 2.036440-1 4.868018-1 2.283032-1 4.002463-1 2.560600-1 3.297854-1 2.873544-1 2.722017-1 3.224533-1 2.254479-1 3.631685-1 1.865624-1 4.082744-1 1.557204-1 4.587356-1 1.309378-1 5.180975-1 1.099952-1 5.897411-1 9.216162-2 6.755966-1 7.734092-2 7.629569-1 6.671209-2 8.829528-1 5.649676-2 1.070165+0 4.607690-2 1.228714+0 3.949374-2 1.416293+0 3.370983-2 1.619761+0 2.901471-2 1.859734+0 2.486929-2 2.135261+0 2.131613-2 2.451607+0 1.827062-2 2.814822+0 1.566024-2 3.231848+0 1.342281-2 3.710658+0 1.150505-2 4.260405+0 9.861282-3 4.891600+0 8.452368-3 5.616308+0 7.244750-3 6.507829+0 6.148825-3 7.752663+0 5.055861-3 8.901248+0 4.333513-3 9.760024+0 3.910241-3 1.000000+1 8.066340-3 1 72000 7 0 1.784900+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.177911+1 1.935968-6-6.996297+1 1.990752-6-6.765453+1 2.013761-6-6.684062+1 2.034988-6-7.165723+1 2.052083-6-6.894877+1 2.107343-6-7.197129+1 2.246830-6-6.893615+1 2.274270-6-6.943251+1 2.293694-6-7.173167+1 2.321047-6-7.096174+1 2.360342-6-7.172170+1 2.610237-6-7.018582+1 3.072682-6-6.626166+1 3.232550-6-6.161216+1 3.294411-6-5.678732+1 3.322656-6-5.183667+1 3.355048-6-3.954322+1 3.366063-6-3.553763+1 3.374260-6-3.422597+1 3.381689-6-3.516571+1 3.387838-6-3.790358+1 3.395603-6-4.392217+1 3.404489-6-5.433080+1 3.417711-6-7.212862+1 3.423408-6-6.446962+1 3.432747-6-5.488289+1 3.441690-6-4.954057+1 3.451688-6-4.806703+1 3.462127-6-5.052593+1 3.505076-6-6.763316+1 3.527917-6-7.192789+1 3.604823-6-5.847106+1 3.631103-6-5.086207+1 3.642794-6-4.528981+1 3.651883-6-3.830705+1 3.664060-6-3.052952+1 3.674820-6-2.210307+1 3.684476-6-1.567273+1 3.686532-6-1.479153+1 3.693511-6-1.290637+1 3.696547-6-1.295891+1 3.700505-6-1.412834+1 3.704741-6-1.651361+1 3.709308-6-2.039632+1 3.714016-6-2.603296+1 3.717295-6-3.133181+1 3.727692-6-5.351222+1 3.735038-6-7.230987+1 3.741273-6-5.537016+1 3.747119-6-4.080708+1 3.751155-6-3.169536+1 3.756588-6-2.085653+1 3.759149-6-1.659870+1 3.761241-6-1.370172+1 3.762809-6-1.177808+1 3.765162-6-9.232555+0 3.767514-6-7.028042+0 3.769251-6-5.627344+0 3.770771-6-4.590474+0 3.773431-6-3.155200+0 3.775426-6-2.395825+0 3.776922-6-2.014213+0 3.779166-6-1.784261+0 3.780288-6-1.863439+0 3.785898-6-3.502564+0 3.788142-6-4.323832+0 3.789264-6-4.879131+0 3.791508-6-6.513368+0 3.797399-6-1.001277+1 3.811502-6-2.064752+1 3.825039-6-2.926160+1 3.829481-6-3.306146+1 3.839572-6-3.810989+1 3.857671-6-4.379859+1 3.888065-6-4.950944+1 3.946632-6-5.540935+1 4.064804-6-6.083478+1 4.282704-6-6.499060+1 4.909470-6-6.836533+1 5.287762-6-7.123591+1 5.404145-6-7.265986+1 5.454001-6-6.908582+1 5.504162-6-6.444237+1 5.554488-6-6.490144+1 5.680214-6-6.783629+1 6.032134-6-6.999596+1 6.141471-6-6.784116+1 6.335973-6-6.930405+1 1.806240-5-7.069890+1 1.938176-5-6.750797+1 1.965024-5-6.435918+1 1.990738-5-5.961865+1 2.000945-5-6.200021+1 2.014015-5-7.064852+1 2.026028-5-6.313875+1 2.036163-5-6.153490+1 2.076230-5-6.947142+1 2.088572-5-7.041331+1 2.121279-5-6.514944+1 2.134119-5-6.745222+1 2.141362-5-7.073180+1 2.158240-5-6.306092+1 2.170486-5-6.194541+1 2.207440-5-6.628209+1 2.361060-5-7.046860+1 2.711052-5-6.692507+1 2.934730-5-6.059418+1 3.033566-5-5.473754+1 3.091115-5-4.854726+1 3.128178-5-4.193216+1 3.150418-5-3.573650+1 3.166839-5-2.866692+1 3.178503-5-2.260951+1 3.190166-5-1.530530+1 3.197942-5-9.975574+0 3.205717-5-4.275832+0 3.208179-5-2.294797+0 3.210025-5-7.076195-1 3.212794-5 1.977660+0 3.214178-5 3.571085+0 3.214871-5 4.498653+0 3.216058-5 6.593000+0 3.216985-5 7.853297+0 3.218608-5 9.652725+0 3.221043-5 1.186974+1 3.229414-5 1.799585+1 3.240296-5 2.830779+1 3.248211-5 3.437801+1 3.255879-5 3.663361+1 3.259927-5 3.502495+1 3.264370-5 3.040788+1 3.267771-5 2.511981+1 3.270375-5 2.000505+1 3.273298-5 1.303212+1 3.274694-5 9.174477+0 3.275763-5 5.940895+0 3.276526-5 3.469773+0 3.277703-5-7.035847-1 3.278292-5-3.016605+0 3.278586-5-4.269209+0 3.279375-5-8.008312+0 3.284013-5-2.734668+1 3.286208-5-3.780689+1 3.288076-5-4.837211+1 3.292705-5-7.105070+1 3.294925-5-5.803202+1 3.297762-5-4.273150+1 3.302017-5-2.147329+1 3.302872-5-1.624276+1 3.303351-5-1.359589+1 3.304250-5-9.113567+0 3.305036-5-5.467026+0 3.311641-5 2.259705+1 3.313056-5 2.756107+1 3.315626-5 3.512731+1 3.318979-5 4.298693+1 3.324031-5 5.138557+1 3.328516-5 5.566303+1 3.333202-5 5.654424+1 3.341209-5 5.041901+1 3.349247-5 3.922177+1 3.359017-5 2.313818+1 3.363345-5 1.711051+1 3.369900-5 8.711568+0 3.371878-5 5.830192+0 3.372868-5 4.195755+0 3.373362-5 3.274636+0 3.374368-5 9.720949-1 3.375327-5-7.087078-1 3.377004-5-3.159712+0 3.379520-5-6.253882+0 3.382035-5-8.922320+0 3.384117-5-1.090152+1 3.387238-5-1.357419+1 3.394522-5-1.880604+1 3.402847-5-2.360045+1 3.415333-5-2.926142+1 3.436144-5-3.620495+1 3.465280-5-4.301590+1 3.525686-5-5.257133+1 3.577499-5-5.803355+1 3.663441-5-6.264734+1 3.721251-5-6.348581+1 3.856036-5-7.112890+1 3.885930-5-7.328764+1 3.937620-5-6.287982+1 3.958483-5-5.568200+1 3.968245-5-4.994333+1 3.975504-5-4.469122+1 3.988228-5-3.678184+1 3.999707-5-2.835174+1 4.009475-5-2.224541+1 4.018586-5-1.895591+1 4.021545-5-1.878123+1 4.024711-5-1.933058+1 4.029236-5-2.117342+1 4.033963-5-2.440141+1 4.040190-5-3.076134+1 4.045400-5-3.812442+1 4.055439-5-5.792680+1 4.061117-5-7.164772+1 4.066558-5-5.796461+1 4.076098-5-3.482399+1 4.079074-5-2.774663+1 4.086477-5-1.312788+1 4.087622-5-1.106746+1 4.089625-5-7.902266+0 4.091128-5-5.772006+0 4.093381-5-2.868672+0 4.095635-5-1.901140-1 4.097970-5 2.253360+0 4.100013-5 4.028233+0 4.101800-5 5.360171+0 4.104928-5 7.226379+0 4.107274-5 8.242565+0 4.109034-5 8.780799+0 4.111673-5 9.186099+0 4.112993-5 9.164285+0 4.119626-5 7.576130+0 4.122300-5 6.693560+0 4.123612-5 6.086864+0 4.126161-5 4.290726+0 4.130435-5 1.913304+0 4.132571-5 6.373383-1 4.133640-5-9.146584-2 4.134708-5-1.003609+0 4.144477-5-7.876867+0 4.145698-5-8.860851+0 4.147834-5-1.026221+1 4.161571-5-1.828866+1 4.165764-5-2.183507+1 4.173757-5-2.620747+1 4.188618-5-3.145930+1 4.213386-5-3.700791+1 4.244040-5-4.138981+1 4.297743-5-4.619622+1 4.406240-5-5.196661+1 4.504260-5-5.372344+1 5.378378-5-5.724591+1 7.980749-5-6.144080+1 1.163957-4-6.244948+1 2.082918-4-5.633513+1 2.364781-4-5.236267+1 2.686642-4-4.850785+1 3.579976-4-4.334668+1 3.780368-4-4.319472+1 4.073803-4-4.059202+1 5.135401-4-3.564221+1 6.061472-4-3.223843+1 7.586712-4-2.906732+1 9.442307-4-2.747689+1 1.150000-3-2.756160+1 1.333522-3-2.920137+1 1.468948-3-3.197113+1 1.555906-3-3.541966+1 1.606426-3-3.915884+1 1.635722-3-4.345248+1 1.664179-3-5.096419+1 1.676859-3-5.102130+1 1.703488-3-4.700395+1 1.731706-3-4.547924+1 1.770459-3-3.943460+1 1.848737-3-3.200985+1 1.915965-3-2.747258+1 1.981993-3-2.476775+1 2.045291-3-2.367300+1 2.099400-3-2.448782+1 2.152046-3-2.100874+1 2.208632-3-1.889131+1 2.288908-3-1.715592+1 2.358543-3-1.674275+1 2.426610-3-1.471230+1 2.513110-3-1.329789+1 2.579582-3-1.286911+1 2.654406-3-1.124307+1 2.768571-3-9.704021+0 2.942727-3-8.113561+0 3.128716-3-6.904293+0 3.380409-3-5.807413+0 3.623359-3-5.086537+0 3.918128-3-4.524493+0 4.309249-3-4.138549+0 4.677351-3-3.971448+0 5.175629-3-3.967115+0 5.931114-3-4.228791+0 6.737004-3-4.741170+0 7.646572-3-5.596320+0 8.312570-3-6.534324+0 8.784443-3-7.556787+0 9.092709-3-8.636316+0 9.276187-3-9.723857+0 9.374002-3-1.075582+1 9.512144-3-1.311148+1 9.560830-3-1.340379+1 9.618891-3-1.288034+1 9.752279-3-1.061401+1 9.847392-3-9.678652+0 1.000549-2-8.853927+0 1.024525-2-8.303403+0 1.044719-2-8.309255+0 1.058399-2-8.740916+0 1.071732-2-9.567589+0 1.078675-2-9.568045+0 1.098510-2-8.099524+0 1.110178-2-7.768613+0 1.122228-2-7.655096+0 1.132920-2-7.099581+0 1.151646-2-5.879126+0 1.173740-2-5.010659+0 1.205839-2-4.150416+0 1.248853-2-3.328223+0 1.298794-2-2.640474+0 1.339781-2-2.214745+0 1.399467-2-1.736581+0 1.458704-2-1.379608+0 1.524594-2-1.085264+0 1.591714-2-8.603780-1 1.661958-2-6.915918-1 1.725377-2-5.785819-1 1.796704-2-4.799386-1 1.865241-2-4.085015-1 1.953530-2-3.524794-1 1.997777-2-3.338829-1 2.095514-2-3.106845-1 2.221967-2-3.061071-1 2.339174-2-3.197812-1 2.496837-2-3.568544-1 2.810978-2-4.685736-1 4.563952-2-1.217738+0 5.126783-2-1.495062+0 5.625999-2-1.819040+0 5.937749-2-2.119411+0 6.153325-2-2.441768+0 6.296311-2-2.788905+0 6.383248-2-3.147478+0 6.444298-2-3.604382+0 6.520409-2-4.361950+0 6.556830-2-4.427278+0 6.596593-2-4.131171+0 6.668315-2-3.329101+0 6.717415-2-2.949151+0 6.791761-2-2.586703+0 6.909916-2-2.211410+0 7.068381-2-1.878231+0 7.276942-2-1.574118+0 7.428321-2-1.404624+0 7.701503-2-1.180966+0 8.046833-2-9.833822-1 8.390798-2-8.417757-1 8.810489-2-7.158074-1 9.355401-2-5.999189-1 1.007421-1-5.063176-1 1.087051-1-4.477255-1 1.189043-1-4.101654-1 1.310205-1-3.950498-1 1.498618-1-4.033401-1 2.560600-1-5.340690-1 3.492409-1-6.045413-1 4.972359-1-6.600276-1 7.994606-1-7.004835-1 2.039158+0-7.225817-1 6.158159+0-7.276906-1 1.000000+1-7.275501-1 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.882253-2 1.096765-6 2.801039-2 1.166383-6 3.662917-2 1.240421-6 4.819205-2 1.319159-6 6.380331-2 1.399354-6 8.401074-2 1.474614-6 1.078387-1 1.578913-6 1.504319-1 1.644146-6 1.836650-1 1.705301-6 2.207966-1 1.762635-6 2.618237-1 1.816385-6 3.066778-1 1.866776-6 3.553308-1 1.958306-6 4.621761-1 1.999827-6 5.202441-1 2.075245-6 6.439684-1 2.109457-6 7.094909-1 2.141531-6 7.777502-1 2.201669-6 9.238181-1 2.254290-6 1.074396+0 2.300333-6 1.227708+0 2.340621-6 1.381409+0 2.375873-6 1.533313+0 2.406719-6 1.681513+0 2.433709-6 1.825270+0 2.480941-6 2.110317+0 2.516365-6 2.357294+0 2.542933-6 2.567031+0 2.582785-6 2.926438+0 2.629092-6 3.421767+0 2.661369-6 3.833505+0 2.693645-6 4.316635+0 2.719466-6 4.766182+0 2.745288-6 5.287854+0 2.780947-6 6.159545+0 2.806501-6 6.926504+0 2.828861-6 7.734871+0 2.848426-6 8.585981+0 2.865545-6 9.480998+0 2.880524-6 1.042176+1 2.893631-6 1.141145+1 2.905099-6 1.245558+1 2.915134-6 1.356255+1 2.923915-6 1.474200+1 2.931598-6 1.600075+1 2.938320-6 1.733822+1 2.944203-6 1.874401+1 2.949350-6 2.019867+1 2.953853-6 2.167679+1 2.957794-6 2.315096+1 2.964690-6 2.619649+1 2.969862-6 2.891689+1 2.976651-6 3.310907+1 2.987905-6 4.164512+1 2.992727-6 4.585003+1 2.998238-6 5.095443+1 3.000075-6 5.270509+1 3.007423-6 5.978331+1 3.008342-6 6.066110+1 3.014771-6 6.660340+1 3.017297-6 6.878537+1 3.022119-6 7.258609+1 3.024645-6 7.433848+1 3.027056-6 7.582923+1 3.029467-6 7.712213+1 3.032682-6 7.850685+1 3.035782-6 7.944260+1 3.040030-6 8.003746+1 3.043647-6 7.988453+1 3.047838-6 7.892960+1 3.051053-6 7.763429+1 3.052832-6 7.671237+1 3.055846-6 7.483106+1 3.059090-6 7.238209+1 3.062376-6 6.949178+1 3.065490-6 6.641826+1 3.068679-6 6.298300+1 3.070913-6 6.043256+1 3.074169-6 5.655010+1 3.077187-6 5.282682+1 3.078813-6 5.078797+1 3.082225-6 4.648093+1 3.084791-6 4.324734+1 3.087766-6 3.954699+1 3.090090-6 3.671585+1 3.093276-6 3.295289+1 3.096060-6 2.980424+1 3.099504-6 2.612273+1 3.102707-6 2.293821+1 3.104068-6 2.165860+1 3.107961-6 1.825697+1 3.110971-6 1.589392+1 3.113265-6 1.425105+1 3.117098-6 1.180808+1 3.122341-6 9.054147+0 3.128539-6 6.605545+0 3.131807-6 5.628684+0 3.134269-6 5.020968+0 3.136179-6 4.618967+0 3.138448-6 4.214785+0 3.139948-6 3.988069+0 3.141437-6 3.792955+0 3.142915-6 3.626981+0 3.144380-6 3.487823+0 3.145835-6 3.373295+0 3.147277-6 3.281348+0 3.150141-6 3.157311+0 3.152959-6 3.102731+0 3.155734-6 3.105563+0 3.158465-6 3.155520+0 3.161153-6 3.243887+0 3.166446-6 3.510218+0 3.171573-6 3.857931+0 3.181352-6 4.682322+0 3.190676-6 5.588103+0 3.199416-6 6.501004+0 3.207610-6 7.398406+0 3.222974-6 9.184386+0 3.249862-6 1.275952+1 3.270027-6 1.612107+1 3.285151-6 1.936736+1 3.296494-6 2.244794+1 3.305002-6 2.523948+1 3.316167-6 2.963755+1 3.332573-6 3.761052+1 3.338721-6 4.094513+1 3.344869-6 4.434720+1 3.346919-6 4.547641+1 3.355116-6 4.983214+1 3.357166-6 5.085212+1 3.363314-6 5.364877+1 3.365363-6 5.447236+1 3.371512-6 5.653191+1 3.373561-6 5.706238+1 3.376635-6 5.769408+1 3.379709-6 5.811587+1 3.381759-6 5.827429+1 3.384833-6 5.832070+1 3.387907-6 5.813204+1 3.392006-6 5.751056+1 3.396105-6 5.647124+1 3.400204-6 5.503182+1 3.404302-6 5.322309+1 3.405327-6 5.271798+1 3.410707-6 4.976339+1 3.413012-6 4.836322+1 3.421210-6 4.295271+1 3.423852-6 4.113064+1 3.430368-6 3.665720+1 3.443525-6 2.867765+1 3.447340-6 2.684330+1 3.450030-6 2.571671+1 3.453488-6 2.448688+1 3.457587-6 2.336473+1 3.459637-6 2.294434+1 3.461686-6 2.261901+1 3.462711-6 2.249209+1 3.466297-6 2.223505+1 3.468987-6 2.223142+1 3.469884-6 2.226569+1 3.478081-6 2.336849+1 3.479106-6 2.360194+1 3.482692-6 2.457481+1 3.486279-6 2.577729+1 3.490378-6 2.741047+1 3.565372-6 9.240570+1 3.574234-6 1.078094+2 3.581988-6 1.247547+2 3.588773-6 1.431167+2 3.594710-6 1.626023+2 3.599905-6 1.828150+2 3.604450-6 2.033207+2 3.611908-6 2.435913+2 3.624278-6 3.321070+2 3.636268-6 4.482509+2 3.642465-6 5.208075+2 3.645218-6 5.557287+2 3.649693-6 6.158178+2 3.654168-6 6.796811+2 3.663119-6 8.163671+2 3.664237-6 8.340573+2 3.672069-6 9.593592+2 3.675145-6 1.008419+3 3.681784-6 1.111262+3 3.685731-6 1.168966+3 3.690440-6 1.232821+3 3.695091-6 1.289041+3 3.699483-6 1.334536+3 3.703152-6 1.366029+3 3.707427-6 1.394442+3 3.712624-6 1.415990+3 3.717099-6 1.422482+3 3.718657-6 1.422059+3 3.723103-6 1.413203+3 3.727510-6 1.393383+3 3.731863-6 1.363415+3 3.735979-6 1.326174+3 3.737361-6 1.311855+3 3.744084-6 1.230550+3 3.748275-6 1.171395+3 3.752654-6 1.104131+3 3.756898-6 1.034881+3 3.761395-6 9.585762+2 3.765388-6 8.894462+2 3.769559-6 8.169468+2 3.774996-6 7.236503+2 3.778912-6 6.583452+2 3.780590-6 6.310261+2 3.784506-6 5.691610+2 3.788421-6 5.103011+2 3.797931-6 3.819260+2 3.800815-6 3.474040+2 3.803569-6 3.164320+2 3.806322-6 2.873969+2 3.810238-6 2.494069+2 3.815036-6 2.080105+2 3.819098-6 1.772189+2 3.823579-6 1.475118+2 3.827356-6 1.257129+2 3.831895-6 1.031299+2 3.836156-6 8.520610+1 3.850076-6 4.507379+1 3.851781-6 4.177987+1 3.854337-6 3.739444+1 3.856894-6 3.363295+1 3.859025-6 3.094259+1 3.861417-6 2.837108+1 3.863415-6 2.656580+1 3.865142-6 2.524335+1 3.865985-6 2.467407+1 3.868257-6 2.337918+1 3.875075-6 2.142825+1 3.876412-6 2.135965+1 3.879044-6 2.150428+1 3.884143-6 2.279128+1 3.903266-6 3.884926+1 3.910437-6 4.980781+1 3.931209-6 1.038046+2 3.965508-6 3.491720+2 3.975257-6 4.894294+2 3.982568-6 6.266527+2 3.989880-6 7.966021+2 3.995158-6 9.421526+2 4.000872-6 1.123241+3 4.006188-6 1.314796+3 4.009377-6 1.440715+3 4.014036-6 1.639578+3 4.018696-6 1.855892+3 4.028874-6 2.384999+3 4.030093-6 2.453014+3 4.038623-6 2.951128+3 4.041974-6 3.154869+3 4.048371-6 3.549959+3 4.053322-6 3.855697+3 4.058120-6 4.146511+3 4.063092-6 4.436552+3 4.067911-6 4.701194+3 4.072217-6 4.919586+3 4.076975-6 5.136502+3 4.078369-6 5.194559+3 4.084136-6 5.405238+3 4.088640-6 5.533682+3 4.093887-6 5.639921+3 4.098151-6 5.690149+3 4.107591-6 5.683296+3 4.111993-6 5.625267+3 4.117741-6 5.499886+3 4.122427-6 5.359181+3 4.126969-6 5.193182+3 4.132300-6 4.965996+3 4.136960-6 4.743474+3 4.140853-6 4.543919+3 4.145857-6 4.273542+3 4.151178-6 3.974830+3 4.156498-6 3.670749+3 4.162035-6 3.354910+3 4.166341-6 3.113392+3 4.176184-6 2.587970+3 4.182798-6 2.263901+3 4.186027-6 2.115695+3 4.193534-6 1.798768+3 4.204066-6 1.420963+3 4.220851-6 9.717629+2 4.230635-6 7.842902+2 4.237040-6 6.857267+2 4.243344-6 6.043832+2 4.249550-6 5.372238+2 4.255659-6 4.816400+2 4.261672-6 4.354391+2 4.267592-6 3.968104+2 4.273419-6 3.642803+2 4.284891-6 3.126624+2 4.296004-6 2.742418+2 4.306770-6 2.446406+2 4.317200-6 2.211316+2 4.327304-6 2.019872+2 4.337092-6 1.860801+2 4.346574-6 1.726477+2 4.355760-6 1.611549+2 4.373557-6 1.422677+2 4.390242-6 1.277074+2 4.405885-6 1.161726+2 4.420549-6 1.068374+2 4.434297-6 9.914991+1 4.447186-6 9.272621+1 4.471353-6 8.234712+1 4.492499-6 7.469419+1 4.511001-6 6.886823+1 4.527191-6 6.432293+1 4.555523-6 5.738304+1 4.576772-6 5.286723+1 4.640520-6 4.181143+1 4.668520-6 3.773774+1 4.691502-6 3.458729+1 4.714484-6 3.156484+1 4.748957-6 2.748417+1 4.754740-6 2.690485+1 4.766192-6 2.589847+1 4.777838-6 2.510720+1 4.789483-6 2.458890+1 4.795075-6 2.444363+1 4.803463-6 2.435208+1 4.811850-6 2.440488+1 4.818135-6 2.452956+1 4.830242-6 2.493412+1 4.859355-6 2.624840+1 4.871001-6 2.665203+1 4.880906-6 2.684801+1 4.886849-6 2.688702+1 4.896393-6 2.681696+1 4.905937-6 2.658342+1 4.917582-6 2.609461+1 4.929228-6 2.541990+1 4.940873-6 2.461082+1 4.952518-6 2.372120+1 4.974265-6 2.200485+1 4.998752-6 2.019767+1 5.023239-6 1.863120+1 5.047726-6 1.729052+1 5.084456-6 1.557689+1 5.145674-6 1.316038+1 5.182405-6 1.184779+1 5.206892-6 1.099754+1 5.219135-6 1.057385+1 5.259366-6 9.155253+0 5.279482-6 8.417607+0 5.289539-6 8.042284+0 5.299597-6 7.665584+0 5.325686-6 6.716650+0 5.338730-6 6.287986+0 5.351774-6 5.918119+0 5.364829-6 5.630499+0 5.375599-6 5.470969+0 5.382167-6 5.412788+0 5.388734-6 5.386030+0 5.392613-6 5.385295+0 5.398431-6 5.405207+0 5.404249-6 5.449927+0 5.410819-6 5.528999+0 5.415747-6 5.606896+0 5.423138-6 5.750487+0 5.430530-6 5.921168+0 5.456810-6 6.638275+0 5.469950-6 6.978057+0 5.473235-6 7.053109+0 5.483090-6 7.244235+0 5.486375-6 7.294767+0 5.496230-6 7.400561+0 5.501158-6 7.425656+0 5.509781-6 7.422271+0 5.516249-6 7.379509+0 5.525950-6 7.251559+0 5.530800-6 7.159963+0 5.535651-6 7.050982+0 5.548791-6 6.676576+0 5.554637-6 6.477474+0 5.560483-6 6.261601+0 5.573020-6 5.753373+0 5.588211-6 5.083306+0 5.598884-6 4.597651+0 5.612221-6 3.996531+0 5.618264-6 3.732604+0 5.626571-6 3.384126+0 5.650041-6 2.541638+0 5.657448-6 2.337001+0 5.667341-6 2.124685+0 5.678323-6 1.986647+0 5.681984-6 1.966982+0 5.695901-6 2.033189+0 5.699380-6 2.088760+0 5.709818-6 2.363518+0 5.712010-6 2.443533+0 5.716120-6 2.616219+0 5.723311-6 2.994322+0 5.734099-6 3.762378+0 5.743180-6 4.619639+0 5.762280-6 7.156675+0 5.770133-6 8.524763+0 5.775702-6 9.619020+0 5.790096-6 1.294320+1 5.795088-6 1.426351+1 5.803319-6 1.662277+1 5.810465-6 1.884379+1 5.814216-6 2.006781+1 5.821400-6 2.251005+1 5.827909-6 2.481442+1 5.834942-6 2.737178+1 5.841558-6 2.980945+1 5.848747-6 3.245224+1 5.855171-6 3.477054+1 5.860361-6 3.658808+1 5.869210-6 3.951468+1 5.875390-6 4.138763+1 5.882737-6 4.338420+1 5.889352-6 4.493346+1 5.894002-6 4.586546+1 5.901770-6 4.710937+1 5.908336-6 4.783868+1 5.917060-6 4.833540+1 5.921943-6 4.837718+1 5.926374-6 4.827070+1 5.933642-6 4.780816+1 5.939578-6 4.717886+1 5.947369-6 4.603884+1 5.954882-6 4.464046+1 5.957386-6 4.411694+1 5.968043-6 4.162337+1 5.975156-6 3.976955+1 5.985842-6 3.680604+1 6.000012-6 3.274895+1 6.003472-6 3.176449+1 6.021638-6 2.681981+1 6.051510-6 2.010362+1 6.059075-6 1.874433+1 6.069217-6 1.714042+1 6.073846-6 1.648845+1 6.083213-6 1.531375+1 6.095562-6 1.403560+1 6.108335-6 1.299313+1 6.122405-6 1.211157+1 6.133353-6 1.157623+1 6.149916-6 1.094385+1 6.167967-6 1.040255+1 6.189414-6 9.832575+0 6.201688-6 9.500658+0 6.215961-6 9.087397+0 6.228206-6 8.701881+0 6.236705-6 8.416403+0 6.245955-6 8.089775+0 6.251606-6 7.882833+0 6.265421-6 7.357954+0 6.273288-6 7.050564+0 6.280091-6 6.782430+0 6.291047-6 6.351321+0 6.322716-6 5.195907+0 6.331314-6 4.932079+0 6.339886-6 4.702456+0 6.345661-6 4.570086+0 6.350026-6 4.483517+0 6.355539-6 4.392377+0 6.359409-6 4.341466+0 6.369474-6 4.264328+0 6.374469-6 4.258094+0 6.382318-6 4.294695+0 6.397254-6 4.531628+0 6.403161-6 4.688314+0 6.414437-6 5.087015+0 6.420323-6 5.345608+0 6.425942-6 5.622968+0 6.435442-6 6.154085+0 6.456879-6 7.573682+0 6.462610-6 7.985230+0 6.470372-6 8.549230+0 6.478135-6 9.109327+0 6.482016-6 9.383928+0 6.490749-6 9.978414+0 6.493660-6 1.016709+1 6.508530-6 1.102879+1 6.510552-6 1.113034+1 6.524709-6 1.171542+1 6.528590-6 1.183434+1 6.534412-6 1.197717+1 6.540234-6 1.207654+1 6.544486-6 1.212146+1 6.551928-6 1.214435+1 6.557509-6 1.211605+1 6.565881-6 1.200407+1 6.574253-6 1.181488+1 6.580531-6 1.162758+1 6.586808-6 1.140602+1 6.594029-6 1.111481+1 6.601250-6 1.079176+1 6.609011-6 1.041772+1 6.616772-6 1.002507+1 6.632091-6 9.230591+0 6.662855-6 7.769033+0 6.667357-6 7.588018+0 6.680865-6 7.113545+0 6.689027-6 6.880796+0 6.697189-6 6.690648+0 6.702151-6 6.596014+0 6.717039-6 6.405122+0 6.722363-6 6.369120+0 6.733139-6 6.343365+0 6.739556-6 6.354996+0 6.750178-6 6.411400+0 6.759631-6 6.492587+0 6.798700-6 6.950503+0 6.815032-6 7.112781+0 6.830101-6 7.212811+0 6.839693-6 7.247656+0 6.846230-6 7.258463+0 6.863802-6 7.239960+0 6.883372-6 7.155906+0 6.936164-6 6.833041+0 6.953564-6 6.751020+0 6.984082-6 6.656215+0 7.032898-6 6.581805+0 7.107726-6 6.485199+0 7.184547-6 6.347036+0 7.269200-6 6.186204+0 7.328966-6 6.114008+0 7.441479-6 6.008145+0 7.551640-6 5.882570+0 7.762471-6 5.678949+0 8.035278-6 5.459746+0 8.128305-6 5.402764+0 8.424553-6 5.256228+0 8.713976-6 5.168038+0 8.987542-6 5.134584+0 9.344301-6 5.155536+0 9.602626-6 5.213593+0 9.896037-6 5.321957+0 1.047753-5 5.646851+0 1.100956-5 6.073138+0 1.122688-5 6.278368+0 1.177348-5 6.875605+0 1.207174-5 7.238101+0 1.258820-5 7.930797+0 1.311752-5 8.697770+0 1.480000-5 1.152307+1 1.514985-5 1.214798+1 1.568322-5 1.309653+1 1.640914-5 1.437006+1 1.674972-5 1.494771+1 1.728000-5 1.579389+1 1.790204-5 1.668681+1 1.835550-5 1.726950+1 1.914453-5 1.808862+1 1.958705-5 1.842430+1 1.999380-5 1.865014+1 2.040469-5 1.878861+1 2.085545-5 1.885611+1 2.122419-5 1.881754+1 2.165942-5 1.870841+1 2.190777-5 1.876314+1 2.238721-5 1.952167+1 2.283975-5 2.054765+1 2.320184-5 2.153694+1 2.365699-5 2.304273+1 2.397288-5 2.430132+1 2.430000-5 2.584883+1 2.460522-5 2.756335+1 2.480628-5 2.887578+1 2.498870-5 3.023086+1 2.514831-5 3.157493+1 2.535750-5 3.361074+1 2.554680-5 3.579037+1 2.571077-5 3.801812+1 2.588953-5 4.092959+1 2.605406-5 4.423050+1 2.616947-5 4.705365+1 2.626561-5 4.986089+1 2.634225-5 5.251068+1 2.639490-5 5.461480+1 2.645955-5 5.761839+1 2.652420-5 6.123687+1 2.658885-5 6.569053+1 2.666859-5 7.276980+1 2.671815-5 7.832939+1 2.678280-5 8.727609+1 2.681513-5 9.258595+1 2.684745-5 9.851722+1 2.687978-5 1.051099+2 2.692745-5 1.160998+2 2.707383-5 1.591628+2 2.710627-5 1.702968+2 2.718096-5 1.970497+2 2.724735-5 2.207424+2 2.726187-5 2.257302+2 2.731318-5 2.422959+2 2.734040-5 2.501893+2 2.736262-5 2.560545+2 2.739179-5 2.628379+2 2.741054-5 2.665900+2 2.742930-5 2.698253+2 2.746225-5 2.741695+2 2.750064-5 2.769302+2 2.751292-5 2.772682+2 2.754196-5 2.769947+2 2.757308-5 2.750210+2 2.761630-5 2.694500+2 2.764512-5 2.639855+2 2.767184-5 2.577575+2 2.770508-5 2.485817+2 2.772720-5 2.416914+2 2.777326-5 2.256481+2 2.780862-5 2.121202+2 2.784851-5 1.960180+2 2.788286-5 1.817705+2 2.791957-5 1.665059+2 2.795886-5 1.504844+2 2.801085-5 1.304175+2 2.810214-5 1.003927+2 2.816853-5 8.413784+1 2.818876-5 8.025208+1 2.820270-5 7.787617+1 2.824323-5 7.238007+1 2.826223-5 7.052969+1 2.827214-5 6.974729+1 2.829277-5 6.851764+1 2.831247-5 6.783899+1 2.832836-5 6.763664+1 2.835110-5 6.786857+1 2.836509-5 6.830716+1 2.837995-5 6.901135+1 2.839209-5 6.976293+1 2.841029-5 7.117648+1 2.842849-5 7.291766+1 2.848956-5 8.089694+1 2.864662-5 1.112925+2 2.866189-5 1.145662+2 2.871642-5 1.260705+2 2.874610-5 1.320277+2 2.878622-5 1.394941+2 2.881294-5 1.439855+2 2.884730-5 1.490732+2 2.888765-5 1.539151+2 2.892146-5 1.569239+2 2.895418-5 1.588614+2 2.898939-5 1.598365+2 2.900326-5 1.599009+2 2.904653-5 1.589479+2 2.907784-5 1.571955+2 2.911612-5 1.539039+2 2.915000-5 1.500161+2 2.916398-5 1.481663+2 2.921271-5 1.407257+2 2.924560-5 1.349546+2 2.927864-5 1.286769+2 2.930842-5 1.226979+2 2.934299-5 1.154922+2 2.937821-5 1.079822+2 2.941007-5 1.011507+2 2.944279-5 9.419257+1 2.948805-5 8.482390+1 2.954967-5 7.286736+1 2.969803-5 4.966976+1 2.975165-5 4.352417+1 2.978200-5 4.057409+1 2.980561-5 3.853356+1 2.983290-5 3.644303+1 2.985354-5 3.504444+1 2.989860-5 3.250496+1 2.993010-5 3.111763+1 3.013972-5 2.808962+1 3.021126-5 2.877289+1 3.028281-5 2.998878+1 3.035435-5 3.159547+1 3.049744-5 3.559347+1 3.069630-5 4.218011+1 3.091752-5 5.036344+1 3.128622-5 6.601511+1 3.168921-5 8.791415+1 3.241684-5 1.483472+2 3.257296-5 1.665609+2 3.271514-5 1.861241+2 3.283144-5 2.048841+2 3.295465-5 2.281403+2 3.307478-5 2.549413+2 3.321300-5 2.922326+2 3.334655-5 3.371111+2 3.345179-5 3.809791+2 3.355095-5 4.317644+2 3.363967-5 4.875386+2 3.369801-5 5.309294+2 3.376595-5 5.896625+2 3.383941-5 6.649836+2 3.391110-5 7.525947+2 3.396748-5 8.329652+2 3.404000-5 9.535949+2 3.408267-5 1.034887+3 3.415558-5 1.194207+3 3.422988-5 1.387398+3 3.431507-5 1.655661+3 3.440160-5 1.992320+3 3.448975-5 2.420817+3 3.461016-5 3.191667+3 3.473451-5 4.287270+3 3.487597-5 6.004041+3 3.494542-5 7.048161+3 3.501479-5 8.217098+3 3.504189-5 8.703995+3 3.512526-5 1.028455+4 3.515509-5 1.087044+4 3.522143-5 1.218368+4 3.526883-5 1.310707+4 3.530940-5 1.386962+4 3.535261-5 1.463756+4 3.538982-5 1.524943+4 3.542557-5 1.578414+4 3.546829-5 1.634275+4 3.552522-5 1.692920+4 3.556734-5 1.723342+4 3.561447-5 1.743250+4 3.564199-5 1.747729+4 3.572245-5 1.730273+4 3.576433-5 1.703604+4 3.580706-5 1.664768+4 3.584436-5 1.622000+4 3.587265-5 1.584536+4 3.591430-5 1.522403+4 3.595210-5 1.459825+4 3.598829-5 1.395365+4 3.603178-5 1.313424+4 3.605788-5 1.262553+4 3.610050-5 1.177791+4 3.614312-5 1.092204+4 3.619009-5 9.985178+3 3.622662-5 9.270889+3 3.631945-5 7.556295+3 3.633564-5 7.276151+3 3.644900-5 5.507341+3 3.652539-5 4.518408+3 3.671807-5 2.719234+3 3.679508-5 2.236137+3 3.684010-5 2.003269+3 3.688160-5 1.816413+3 3.692944-5 1.630086+3 3.699346-5 1.422029+3 3.703178-5 1.316599+3 3.707663-5 1.208457+3 3.715512-5 1.051743+3 3.721398-5 9.558506+2 3.730228-5 8.381641+2 3.740000-5 7.349493+2 3.748261-5 6.637191+2 3.757464-5 5.970944+2 3.766667-5 5.406768+2 3.775871-5 4.921429+2 3.788993-5 4.334065+2 3.803480-5 3.793496+2 3.812684-5 3.495242+2 3.855616-5 2.411425+2 3.891920-5 1.763479+2 3.901452-5 1.629839+2 3.910985-5 1.512243+2 3.920517-5 1.410726+2 3.926912-5 1.351338+2 3.933308-5 1.298502+2 3.941211-5 1.241401+2 3.949115-5 1.192096+2 3.960241-5 1.132965+2 3.974501-5 1.068776+2 4.011151-5 9.307245+1 4.035097-5 8.570637+1 4.060934-5 7.882682+1 4.067518-5 7.705488+1 4.080970-5 7.321071+1 4.088319-5 7.094940+1 4.100171-5 6.706064+1 4.113645-5 6.236041+1 4.125588-5 5.808138+1 4.139224-5 5.325318+1 4.161795-5 4.594712+1 4.165985-5 4.475486+1 4.177871-5 4.181053+1 4.181879-5 4.100380+1 4.188456-5 3.994963+1 4.193491-5 3.942055+1 4.197890-5 3.920273+1 4.200688-5 3.920412+1 4.204735-5 3.943107+1 4.208639-5 3.994262+1 4.211469-5 4.052243+1 4.215204-5 4.159847+1 4.217836-5 4.259862+1 4.219152-5 4.318211+1 4.223415-5 4.550041+1 4.226361-5 4.753428+1 4.229633-5 5.027043+1 4.232366-5 5.299257+1 4.234634-5 5.558835+1 4.238230-5 6.041048+1 4.242433-5 6.730464+1 4.246055-5 7.451028+1 4.248561-5 8.028264+1 4.251510-5 8.799825+1 4.255417-5 9.995537+1 4.259380-5 1.143961+2 4.264219-5 1.357117+2 4.270678-5 1.717072+2 4.290634-5 3.599563+2 4.297314-5 4.585414+2 4.303136-5 5.632610+2 4.309662-5 7.043482+2 4.315987-5 8.676533+2 4.320279-5 9.945563+2 4.323445-5 1.096932+3 4.326611-5 1.206963+3 4.331922-5 1.409114+3 4.337234-5 1.633413+3 4.348521-5 2.181302+3 4.349766-5 2.247285+3 4.359144-5 2.774568+3 4.362568-5 2.978233+3 4.369104-5 3.378335+3 4.374091-5 3.689209+3 4.378451-5 3.961224+3 4.382093-5 4.186227+3 4.386775-5 4.469341+3 4.391462-5 4.741912+3 4.395623-5 4.971502+3 4.400597-5 5.226418+3 4.406451-5 5.493227+3 4.411680-5 5.695900+3 4.416461-5 5.848078+3 4.421719-5 5.975716+3 4.427046-5 6.060193+3 4.431394-5 6.094702+3 4.436080-5 6.096986+3 4.444057-5 6.019262+3 4.449222-5 5.916855+3 4.453737-5 5.796462+3 4.459125-5 5.618764+3 4.462358-5 5.496255+3 4.468036-5 5.256326+3 4.473967-5 4.978173+3 4.480648-5 4.640743+3 4.485960-5 4.361120+3 4.491935-5 4.041509+3 4.496583-5 3.793375+3 4.508534-5 3.177169+3 4.517829-5 2.737266+3 4.530315-5 2.220590+3 4.544770-5 1.739339+3 4.555053-5 1.470716+3 4.559535-5 1.371033+3 4.564934-5 1.263659+3 4.570332-5 1.168987+3 4.578916-5 1.041487+3 4.591927-5 8.923161+2 4.602725-5 7.992896+2 4.614710-5 7.195273+2 4.623810-5 6.710891+2 4.639299-5 6.055610+2 4.650504-5 5.676655+2 4.660483-5 5.387646+2 4.672127-5 5.094754+2 4.691633-5 4.684035+2 4.714069-5 4.299579+2 4.742969-5 3.896878+2 4.782837-5 3.451522+2 4.807432-5 3.224436+2 4.830860-5 3.040552+2 4.844861-5 2.946485+2 4.859900-5 2.858906+2 4.875355-5 2.783061+2 4.891055-5 2.719696+2 4.904959-5 2.673910+2 4.937087-5 2.598807+2 4.961351-5 2.563719+2 5.157054-5 2.391747+2 5.297503-5 2.258902+2 5.436912-5 2.146168+2 5.656545-5 1.999009+2 6.404056-5 1.621344+2 7.072428-5 1.371970+2 7.385368-5 1.270255+2 7.426285-5 1.260161+2 7.464278-5 1.253950+2 7.566990-5 1.245065+2 7.619443-5 1.235880+2 7.808889-5 1.187659+2 8.081851-5 1.134198+2 8.293732-5 1.098347+2 8.650000-5 1.051949+2 8.930002-5 1.024443+2 9.350534-5 1.001701+2 9.683500-5 9.977565+1 1.006859-4 1.009650+2 1.050902-4 1.043167+2 1.093905-4 1.093851+2 1.135011-4 1.157397+2 1.181651-4 1.245456+2 1.235477-4 1.363359+2 1.264827-4 1.434041+2 1.318257-4 1.574361+2 1.380651-4 1.752985+2 1.577263-4 2.409878+2 1.664474-4 2.733592+2 1.760000-4 3.099152+2 1.846304-4 3.429919+2 1.950000-4 3.816457+2 2.066605-4 4.227776+2 2.145277-4 4.477549+2 2.193156-4 4.601330+2 2.216444-4 4.654688+2 2.236180-4 4.727815+2 2.248452-4 4.805041+2 2.277190-4 5.057791+2 2.286889-4 5.135153+2 2.297991-4 5.204297+2 2.329592-4 5.331268+2 2.343296-4 5.399624+2 2.358031-4 5.501271+2 2.383551-4 5.702937+2 2.394429-4 5.772928+2 2.406479-4 5.831919+2 2.448988-4 5.996576+2 2.485123-4 6.184587+2 2.540973-4 6.461767+2 2.621440-4 6.794304+2 2.702938-4 7.066893+2 2.808655-4 7.363415+2 2.950000-4 7.711443+2 3.368992-4 8.634915+2 3.562241-4 9.011022+2 3.749607-4 9.305603+2 3.820299-4 9.436774+2 3.842750-4 9.525850+2 3.872716-4 9.684326+2 3.898083-4 9.799591+2 3.916213-4 9.839851+2 3.968122-4 9.823894+2 3.991973-4 9.851787+2 4.013075-4 9.917343+2 4.064714-4 1.014370+3 4.138360-4 1.040840+3 4.293107-4 1.080289+3 4.634537-4 1.150057+3 4.768488-4 1.181301+3 4.997468-4 1.223058+3 5.278372-4 1.261278+3 5.466398-4 1.282194+3 5.580000-4 1.302062+3 5.703381-4 1.326924+3 5.934375-4 1.361681+3 6.285783-4 1.401313+3 6.717023-4 1.437642+3 7.167031-4 1.465364+3 7.740161-4 1.487148+3 8.322128-4 1.499455+3 8.906098-4 1.504228+3 9.549926-4 1.500641+3 1.026243-3 1.486810+3 1.096872-3 1.461174+3 1.164796-3 1.426817+3 1.245256-3 1.377230+3 1.314468-3 1.324968+3 1.374229-3 1.271490+3 1.433101-3 1.208545+3 1.482561-3 1.143495+3 1.525096-3 1.078205+3 1.562248-3 1.012067+3 1.594195-3 9.453306+2 1.621005-3 8.796777+2 1.642583-3 8.177012+2 1.660559-3 7.568464+2 1.675838-3 6.952220+2 1.687411-3 6.394022+2 1.696366-3 5.896005+2 1.702893-3 5.505220+2 1.713085-3 4.909832+2 1.717604-3 4.687955+2 1.719418-3 4.612373+2 1.721418-3 4.540213+2 1.723525-3 4.478559+2 1.725664-3 4.432744+2 1.727565-3 4.407517+2 1.729625-3 4.397696+2 1.732031-3 4.410379+2 1.734446-3 4.449933+2 1.736792-3 4.514131+2 1.738809-3 4.589127+2 1.740765-3 4.678477+2 1.742426-3 4.766503+2 1.744834-3 4.912115+2 1.747476-3 5.093178+2 1.758169-3 5.963750+2 1.763504-3 6.417444+2 1.767508-3 6.744068+2 1.770664-3 6.989015+2 1.774829-3 7.294938+2 1.778280-3 7.535501+2 1.783596-3 7.892403+2 1.799130-3 8.982083+2 1.814966-3 1.030464+3 1.820881-3 1.082092+3 1.827246-3 1.136051+3 1.836162-3 1.206252+3 1.846000-3 1.275126+3 1.864433-3 1.384868+3 1.880105-3 1.465754+3 1.902622-3 1.568449+3 1.930279-3 1.676465+3 1.952621-3 1.748742+3 1.973294-3 1.801276+3 1.990960-3 1.835541+3 2.016220-3 1.871924+3 2.040882-3 1.896911+3 2.067982-3 1.913666+3 2.092125-3 1.919088+3 2.138860-3 1.912317+3 2.154007-3 1.920501+3 2.164116-3 1.933520+3 2.179895-3 1.965775+3 2.219719-3 2.076427+3 2.243289-3 2.133016+3 2.258948-3 2.161435+3 2.280793-3 2.190940+3 2.306579-3 2.215708+3 2.334454-3 2.234078+3 2.364755-3 2.246125+3 2.425006-3 2.255487+3 2.453427-3 2.271058+3 2.520211-3 2.341803+3 2.542801-3 2.359164+3 2.569170-3 2.371967+3 2.599183-3 2.378777+3 2.666392-3 2.382709+3 2.691726-3 2.397554+3 2.754500-3 2.451751+3 2.786645-3 2.468234+3 2.866520-3 2.489780+3 2.989054-3 2.501486+3 3.132732-3 2.500576+3 3.287005-3 2.487743+3 3.467369-3 2.457038+3 3.830879-3 2.378415+3 3.935500-3 2.352911+3 4.414432-3 2.219032+3 4.750994-3 2.126166+3 5.131613-3 2.020537+3 5.567049-3 1.902902+3 5.832033-3 1.835186+3 6.335733-3 1.709466+3 6.616450-3 1.642566+3 6.909939-3 1.573804+3 7.209208-3 1.506404+3 7.519429-3 1.437943+3 7.811960-3 1.374694+3 8.089650-3 1.314842+3 8.344986-3 1.260031+3 8.556220-3 1.213867+3 8.747320-3 1.171620+3 8.910690-3 1.134423+3 9.051600-3 1.100778+3 9.175752-3 1.069442+3 9.284532-3 1.040086+3 9.372922-3 1.014201+3 9.452409-3 9.884921+2 9.520473-3 9.635879+2 9.575396-3 9.404890+2 9.638010-3 9.097152+2 9.768269-3 8.378822+2 9.804485-3 8.228862+2 9.838121-3 8.142421+2 9.869480-3 8.117265+2 9.900537-3 8.146599+2 9.932267-3 8.226352+2 9.977880-3 8.404068+2 1.005265-2 8.748154+2 1.008083-2 8.866988+2 1.011489-2 8.992451+2 1.015956-2 9.123841+2 1.020741-2 9.226271+2 1.026335-2 9.306337+2 1.033127-2 9.362540+2 1.039597-2 9.386498+2 1.046486-2 9.388158+2 1.055217-2 9.361951+2 1.063959-2 9.307965+2 1.072212-2 9.230638+2 1.079540-2 9.136268+2 1.085771-2 9.032823+2 1.098587-2 8.760387+2 1.106714-2 8.603746+2 1.112372-2 8.547695+2 1.117218-2 8.548250+2 1.122833-2 8.600142+2 1.137804-2 8.822469+2 1.144959-2 8.883226+2 1.161813-2 8.952928+2 1.171760-2 9.058634+2 1.187075-2 9.283516+2 1.197914-2 9.398218+2 1.204932-2 9.444615+2 1.213977-2 9.481572+2 1.233915-2 9.511217+2 1.258501-2 9.490797+2 1.297236-2 9.392186+2 1.342626-2 9.214415+2 1.388414-2 8.999876+2 1.449607-2 8.687834+2 1.515468-2 8.338224+2 1.625134-2 7.763569+2 1.768829-2 7.059811+2 1.972423-2 6.196600+2 2.220742-2 5.332520+2 2.477893-2 4.609061+2 2.708254-2 4.070051+2 3.033427-2 3.447634+2 3.416818-2 2.877415+2 3.707507-2 2.531657+2 4.008062-2 2.228138+2 4.526652-2 1.808794+2 5.100093-2 1.467741+2 5.503518-2 1.277313+2 5.823373-2 1.144743+2 6.045118-2 1.059143+2 6.227178-2 9.903232+1 6.351577-2 9.422315+1 6.452939-2 9.003291+1 6.498118-2 8.798306+1 6.534010-2 8.620304+1 6.563978-2 8.456652+1 6.616551-2 8.129361+1 6.689614-2 7.654737+1 6.720296-2 7.512815+1 6.742783-2 7.453280+1 6.760488-2 7.436568+1 6.787960-2 7.461089+1 6.823967-2 7.564016+1 6.893942-2 7.828625+1 6.928273-2 7.928913+1 6.971263-2 8.011263+1 7.032320-2 8.065148+1 7.111048-2 8.072467+1 7.216165-2 8.027849+1 7.328762-2 7.944852+1 7.496317-2 7.787362+1 7.738961-2 7.521202+1 8.100491-2 7.095652+1 8.535914-2 6.587509+1 9.240482-2 5.838586+1 9.931549-2 5.202737+1 1.073313-1 4.571687+1 1.181530-1 3.870986+1 1.393047-1 2.882985+1 1.821969-1 1.769544+1 2.213095-1 1.236138+1 2.703325-1 8.478934+0 3.430724-1 5.372688+0 4.760290-1 2.847609+0 7.120328-1 1.294899+0 1.173413+0 4.832308-1 2.139587+0 1.464449-1 6.448384+0 1.617351-2 1.947381+1 1.773921-3 5.880996+1 1.945130-4 1.776032+2 2.132800-5 5.363532+2 2.338569-6 1.995262+3 1.689865-7 6.309573+3 1.689865-8 1.995262+4 1.689865-9 6.309573+4 1.68987-10 1.000000+5 6.72747-11 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.863900-6 1.258900-6 2.954100-6 1.584900-6 4.681900-6 1.995300-6 7.420200-6 2.511900-6 1.176000-5 3.162300-6 1.863900-5 3.981100-6 2.954000-5 5.011900-6 4.681800-5 6.309600-6 7.420100-5 7.943300-6 1.176000-4 1.000000-5 1.863800-4 1.258900-5 2.953900-4 1.584900-5 4.679900-4 1.995300-5 7.413800-4 2.511900-5 1.174600-3 3.162300-5 1.861000-3 3.981100-5 2.948800-3 5.011900-5 4.672700-3 6.309600-5 7.404500-3 7.943300-5 1.172000-2 1.000000-4 1.854400-2 1.258900-4 2.933800-2 1.584900-4 4.632800-2 1.995300-4 7.305200-2 2.511900-4 1.148100-1 3.162300-4 1.796500-1 3.981100-4 2.790900-1 5.011900-4 4.284900-1 6.309600-4 6.452200-1 7.943300-4 9.476300-1 1.000000-3 1.349300+0 1.258900-3 1.856600+0 1.584900-3 2.475000+0 1.995300-3 3.228200+0 2.511900-3 4.158500+0 3.162300-3 5.302800+0 3.981100-3 6.687800+0 5.011900-3 8.336000+0 6.309600-3 1.024300+1 7.943300-3 1.235400+1 1.000000-2 1.461500+1 1.258900-2 1.701800+1 1.584900-2 1.954900+1 1.995300-2 2.215400+1 2.511900-2 2.465000+1 3.162300-2 2.691200+1 3.981100-2 2.879500+1 5.011900-2 3.013700+1 6.309600-2 3.076200+1 7.943300-2 3.128200+1 1.000000-1 3.106900+1 1.258900-1 3.034100+1 1.584900-1 2.925000+1 1.995300-1 2.782500+1 2.511900-1 2.618100+1 3.162300-1 2.440000+1 3.981100-1 2.254500+1 5.011900-1 2.067400+1 6.309600-1 1.882600+1 7.943300-1 1.702400+1 1.000000+0 1.529200+1 1.258900+0 1.365600+1 1.584900+0 1.210900+1 1.995300+0 1.066700+1 2.511900+0 9.336000+0 3.162300+0 8.119700+0 3.981100+0 7.019800+0 5.011900+0 6.034900+0 6.309600+0 5.160500+0 7.943300+0 4.391900+0 1.000000+1 3.721200+0 1.258900+1 3.140100+0 1.584900+1 2.640000+0 1.995300+1 2.212200+0 2.511900+1 1.848200+0 3.162300+1 1.539800+0 3.981100+1 1.279800+0 5.011900+1 1.061400+0 6.309600+1 8.784400-1 7.943300+1 7.257200-1 1.000000+2 5.985500-1 1.258900+2 4.929200-1 1.584900+2 4.053600-1 1.995300+2 3.329400-1 2.511900+2 2.731300-1 3.162300+2 2.238300-1 3.981100+2 1.832400-1 5.011900+2 1.498700-1 6.309600+2 1.224700-1 7.943300+2 9.999700-2 1.000000+3 8.158600-2 1.258900+3 6.651600-2 1.584900+3 5.419300-2 1.995300+3 4.412400-2 2.511900+3 3.590400-2 3.162300+3 2.919900-2 3.981100+3 2.373300-2 5.011900+3 1.928000-2 6.309600+3 1.565500-2 7.943300+3 1.270500-2 1.000000+4 1.030600-2 1.258900+4 8.356900-3 1.584900+4 6.773400-3 1.995300+4 5.487700-3 2.511900+4 4.444400-3 3.162300+4 3.598000-3 3.981100+4 2.911800-3 5.011900+4 2.355700-3 6.309600+4 1.905100-3 7.943300+4 1.540200-3 1.000000+5 1.244800-3 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510164-4 3.162278-4 3.159552-4 3.981072-4 3.976753-4 5.011872-4 5.005059-4 6.309573-4 6.298877-4 7.943282-4 7.926501-4 1.000000-3 9.973714-4 1.258925-3 1.254834-3 1.584893-3 1.578522-3 1.995262-3 1.985320-3 2.511886-3 2.496315-3 3.162278-3 3.137842-3 3.981072-3 3.942730-3 5.011872-3 4.951764-3 6.309573-3 6.215562-3 7.943282-3 7.796799-3 1.000000-2 9.772476-3 1.258925-2 1.223633-2 1.584893-2 1.530213-2 1.995262-2 1.910726-2 2.511886-2 2.381685-2 3.162278-2 2.963565-2 3.981072-2 3.679927-2 5.011872-2 4.558446-2 6.309573-2 5.631535-2 7.943282-2 6.935650-2 1.000000-1 8.515721-2 1.258925-1 1.042776-1 1.584893-1 1.271562-1 1.995262-1 1.546169-1 2.511886-1 1.873953-1 3.162278-1 2.263745-1 3.981072-1 2.725783-1 5.011872-1 3.271968-1 6.309573-1 3.916610-1 7.943282-1 4.676440-1 1.000000+0 5.571676-1 1.258925+0 6.623805-1 1.584893+0 7.866386-1 1.995262+0 9.337238-1 2.511886+0 1.108312+0 3.162278+0 1.316019+0 3.981072+0 1.563984+0 5.011872+0 1.860886+0 6.309573+0 2.217145+0 7.943282+0 2.645583+0 1.000000+1 3.162200+0 1.258925+1 3.786268+0 1.584893+1 4.541430+0 1.995262+1 5.456679+0 2.511886+1 6.567487+0 3.162278+1 7.917296+0 3.981072+1 9.560037+0 5.011872+1 1.156074+1 6.309573+1 1.400042+1 7.943282+1 1.697806+1 1.000000+2 2.061540+1 1.258925+2 2.506257+1 1.584893+2 3.050416+1 1.995262+2 3.716804+1 2.511886+2 4.533290+1 3.162278+2 5.534545+1 3.981072+2 6.762999+1 5.011872+2 8.271337+1 6.309573+2 1.012427+2 7.943282+2 1.240179+2 1.000000+3 1.520264+2 1.258925+3 1.864904+2 1.584893+3 2.289157+2 1.995262+3 2.811743+2 2.511886+3 3.455504+2 3.162278+3 4.249350+2 3.981072+3 5.228214+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88223-10 1.995262-5 1.090690-9 2.511886-5 1.728598-9 3.162278-5 2.739646-9 3.981072-5 4.342039-9 5.011872-5 6.881575-9 6.309573-5 1.090618-8 7.943282-5 1.727887-8 1.000000-4 2.737876-8 1.258925-4 4.338318-8 1.584893-4 6.871653-8 1.995262-4 1.088215-7 2.511886-4 1.722820-7 3.162278-4 2.725484-7 3.981072-4 4.318686-7 5.011872-4 6.813375-7 6.309573-4 1.069598-6 7.943282-4 1.678131-6 1.000000-3 2.628623-6 1.258925-3 4.091457-6 1.584893-3 6.371434-6 1.995262-3 9.942417-6 2.511886-3 1.557122-5 3.162278-3 2.443517-5 3.981072-3 3.834132-5 5.011872-3 6.010836-5 6.309573-3 9.401128-5 7.943282-3 1.464837-4 1.000000-2 2.275242-4 1.258925-2 3.529207-4 1.584893-2 5.468058-4 1.995262-2 8.453677-4 2.511886-2 1.302018-3 3.162278-2 1.987123-3 3.981072-2 3.011446-3 5.011872-2 4.534261-3 6.309573-2 6.780380-3 7.943282-2 1.007632-2 1.000000-1 1.484279-2 1.258925-1 2.161494-2 1.584893-1 3.133309-2 1.995262-1 4.490935-2 2.511886-1 6.379338-2 3.162278-1 8.985328-2 3.981072-1 1.255289-1 5.011872-1 1.739905-1 6.309573-1 2.392964-1 7.943282-1 3.266843-1 1.000000+0 4.428324-1 1.258925+0 5.965449-1 1.584893+0 7.982546-1 1.995262+0 1.061539+0 2.511886+0 1.403574+0 3.162278+0 1.846258+0 3.981072+0 2.417088+0 5.011872+0 3.150987+0 6.309573+0 4.092428+0 7.943282+0 5.297699+0 1.000000+1 6.837800+0 1.258925+1 8.802986+0 1.584893+1 1.130750+1 1.995262+1 1.449594+1 2.511886+1 1.855138+1 3.162278+1 2.370548+1 3.981072+1 3.025068+1 5.011872+1 3.855799+1 6.309573+1 4.909531+1 7.943282+1 6.245476+1 1.000000+2 7.938460+1 1.258925+2 1.008300+2 1.584893+2 1.279852+2 1.995262+2 1.623582+2 2.511886+2 2.058557+2 3.162278+2 2.608823+2 3.981072+2 3.304772+2 5.011872+2 4.184739+2 6.309573+2 5.297146+2 7.943282+2 6.703103+2 1.000000+3 8.479736+2 1.258925+3 1.072435+3 1.584893+3 1.355977+3 1.995262+3 1.714088+3 2.511886+3 2.166336+3 3.162278+3 2.737343+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.300000-6 5.018130+6 6.600000-6 5.482638+6 6.850000-6 5.847822+6 7.010000-6 6.065448+6 7.010000-6 8.695441+6 7.161434-6 9.038063+6 7.244360-6 9.217731+6 7.310000-6 9.356541+6 7.310000-6 1.516078+7 7.500000-6 1.496936+7 7.762471-6 1.478977+7 7.852356-6 1.475256+7 8.128305-6 1.468775+7 8.222426-6 1.468352+7 8.317638-6 1.468755+7 8.511380-6 1.470737+7 8.810489-6 1.479511+7 8.912509-6 1.483185+7 9.120108-6 1.491766+7 9.332543-6 1.503074+7 9.440609-6 1.509250+7 9.885531-6 1.536379+7 1.011579-5 1.552356+7 1.050000-5 1.579118+7 1.083927-5 1.604022+7 1.109175-5 1.622033+7 1.122018-5 1.631557+7 1.161449-5 1.660261+7 1.188502-5 1.678828+7 1.216186-5 1.697115+7 1.244515-5 1.716406+7 1.273503-5 1.734118+7 1.333521-5 1.768952+7 1.350000-5 1.777168+7 1.420000-5 1.809074+7 1.428894-5 1.812340+7 1.500000-5 1.834940+7 1.584893-5 1.849396+7 1.621810-5 1.849804+7 1.659587-5 1.850458+7 1.730000-5 1.840381+7 1.737801-5 1.839332+7 1.819701-5 1.815349+7 1.883649-5 1.787283+7 1.900000-5 1.780371+7 1.950000-5 1.752094+7 1.980000-5 1.735745+7 2.020000-5 1.708414+7 2.070000-5 1.675665+7 2.130000-5 1.630047+7 2.150000-5 1.615420+7 2.190000-5 1.581961+7 2.238721-5 1.542973+7 2.250000-5 1.532886+7 2.300000-5 1.489572+7 2.330000-5 1.464627+7 2.350000-5 1.446403+7 2.400000-5 1.402499+7 2.426610-5 1.380051+7 2.454709-5 1.354601+7 2.511886-5 1.305126+7 2.520000-5 1.298093+7 2.540973-5 1.280199+7 2.583000-5 1.243691+7 2.610000-5 1.221100+7 2.660725-5 1.178923+7 2.730000-5 1.122400+7 2.800000-5 1.067798+7 2.818383-5 1.053584+7 2.851018-5 1.029045+7 2.917427-5 9.804479+6 2.951209-5 9.570257+6 3.000000-5 9.235948+6 3.019952-5 9.100945+6 3.126079-5 8.429055+6 3.150000-5 8.283551+6 3.162278-5 8.210289+6 3.311311-5 7.374213+6 3.350000-5 7.172234+6 3.404000-5 6.898285+6 3.404000-5 7.459513+6 3.440000-5 7.292577+6 3.495000-5 7.045660+6 3.548134-5 6.816449+6 3.550000-5 6.808437+6 3.589219-5 6.641491+6 3.614000-5 6.537443+6 3.614000-5 6.909193+6 3.630781-5 6.843650+6 3.660000-5 6.730984+6 3.710000-5 6.543191+6 3.740000-5 6.433310+6 3.780000-5 6.290445+6 3.801894-5 6.213537+6 3.845918-5 6.060191+6 3.863700-5 5.998990+6 3.920000-5 5.810144+6 3.950000-5 5.713194+6 4.073803-5 5.336854+6 4.150000-5 5.119322+6 4.189000-5 5.011870+6 4.189000-5 1.125739+7 4.240000-5 1.102324+7 4.273000-5 1.085673+7 4.290000-5 1.077244+7 4.300000-5 1.071724+7 4.365158-5 1.036916+7 4.380000-5 1.029157+7 4.415704-5 1.009222+7 4.466836-5 9.814949+6 4.570882-5 9.258520+6 4.623810-5 8.980080+6 4.650000-5 8.847790+6 4.677351-5 8.711611+6 4.731513-5 8.449637+6 4.800000-5 8.123758+6 4.850000-5 7.898538+6 4.900000-5 7.683944+6 4.954502-5 7.453131+6 5.011872-5 7.220931+6 5.080000-5 6.959818+6 5.115000-5 6.829568+6 5.115000-5 9.610088+6 5.170000-5 9.423081+6 5.190000-5 9.350420+6 5.218000-5 9.251489+6 5.220000-5 9.244554+6 5.248075-5 9.139781+6 5.290000-5 8.985668+6 5.308844-5 8.912992+6 5.350000-5 8.755882+6 5.370318-5 8.680639+6 5.450000-5 8.383036+6 5.559043-5 7.993706+6 5.580000-5 7.919227+6 5.595400-5 7.865770+6 5.623413-5 7.770899+6 5.650000-5 7.681517+6 5.700000-5 7.518806+6 5.730000-5 7.420934+6 5.754399-5 7.343703+6 5.850000-5 7.059265+6 5.888437-5 6.947901+6 5.900000-5 6.915387+6 5.950000-5 6.777092+6 6.025596-5 6.581418+6 6.070000-5 6.469343+6 6.165950-5 6.244268+6 6.237348-5 6.091067+6 6.456542-5 5.670394+6 6.480700-5 5.629575+6 6.500000-5 5.596858+6 6.650000-5 5.366322+6 6.760830-5 5.217575+6 6.918310-5 5.035537+6 7.000000-5 4.954423+6 7.079458-5 4.883095+6 7.161434-5 4.815540+6 7.400000-5 4.661556+6 7.413102-5 4.654603+6 7.500000-5 4.612534+6 7.585776-5 4.575295+6 7.852356-5 4.500629+6 7.881000-5 4.495300+6 7.881000-5 4.559336+6 7.943282-5 4.548396+6 8.000000-5 4.539156+6 8.035261-5 4.535049+6 8.039000-5 4.534658+6 8.110000-5 4.528680+6 8.230000-5 4.525809+6 8.317638-5 4.529117+6 8.350000-5 4.530879+6 8.413951-5 4.536138+6 8.500000-5 4.545176+6 8.511380-5 4.546695+6 8.609938-5 4.562250+6 8.650000-5 4.569712+6 8.810489-5 4.606653+6 8.912509-5 4.634610+6 9.015711-5 4.664036+6 9.120108-5 4.697428+6 9.225714-5 4.734657+6 9.230000-5 4.736295+6 9.300000-5 4.763912+6 9.332543-5 4.776521+6 9.549926-5 4.861537+6 9.660509-5 4.909462+6 9.800000-5 4.974542+6 1.000000-4 5.063656+6 1.023293-4 5.178834+6 1.040000-4 5.256897+6 1.060000-4 5.356753+6 1.071519-4 5.411930+6 1.083927-4 5.469844+6 1.096478-4 5.530472+6 1.109175-4 5.593354+6 1.122018-4 5.649728+6 1.135011-4 5.708604+6 1.150000-4 5.778265+6 1.170000-4 5.859831+6 1.174898-4 5.880329+6 1.190000-4 5.944212+6 1.202264-4 5.993297+6 1.220000-4 6.057724+6 1.230269-4 6.095868+6 1.244515-4 6.149258+6 1.260000-4 6.203326+6 1.280000-4 6.266270+6 1.288250-4 6.292712+6 1.303167-4 6.340757+6 1.318257-4 6.385785+6 1.350000-4 6.470427+6 1.364583-4 6.509916+6 1.380384-4 6.549134+6 1.396368-4 6.589196+6 1.415000-4 6.629511+6 1.430000-4 6.662160+6 1.450000-4 6.701132+6 1.480000-4 6.760204+6 1.490000-4 6.776374+6 1.513561-4 6.814616+6 1.520000-4 6.823523+6 1.531087-4 6.838952+6 1.566751-4 6.888770+6 1.584893-4 6.908094+6 1.603245-4 6.927769+6 1.621810-4 6.943053+6 1.626300-4 6.946792+6 1.640590-4 6.958627+6 1.650000-4 6.966454+6 1.659587-4 6.971420+6 1.678804-4 6.981506+6 1.690000-4 6.987429+6 1.717908-4 6.995158+6 1.737801-4 7.000774+6 1.750000-4 7.000570+6 1.757924-4 7.000467+6 1.760000-4 7.000445+6 1.778279-4 7.000407+6 1.780000-4 7.000033+6 1.790000-4 6.997883+6 1.820000-4 6.991641+6 1.830000-4 6.986737+6 1.850000-4 6.977082+6 1.862087-4 6.971276+6 1.870000-4 6.965952+6 1.905461-4 6.942519+6 1.927525-4 6.928383+6 1.949845-4 6.908794+6 1.950000-4 6.908660+6 1.972423-4 6.889416+6 1.980000-4 6.881533+6 2.000000-4 6.860857+6 2.018366-4 6.842195+6 2.041738-4 6.818794+6 2.050000-4 6.808891+6 2.089296-4 6.762586+6 2.113489-4 6.730933+6 2.162719-4 6.667998+6 2.187762-4 6.631691+6 2.190000-4 6.628478+6 2.220000-4 6.585947+6 2.264644-4 6.518242+6 2.290868-4 6.479448+6 2.302600-4 6.462286+6 2.307200-4 6.454734+6 2.307200-4 6.720303+6 2.317395-4 6.705947+6 2.350000-4 6.660939+6 2.371374-4 6.629169+6 2.400000-4 6.587555+6 2.423000-4 6.552511+6 2.424800-4 6.549627+6 2.424800-4 6.718110+6 2.445000-4 6.691807+6 2.450000-4 6.684923+6 2.454709-4 6.677620+6 2.458000-4 6.672543+6 2.473300-4 6.647930+6 2.483133-4 6.631498+6 2.490000-4 6.619222+6 2.511886-4 6.578840+6 2.515000-4 6.572981+6 2.520000-4 6.563257+6 2.540973-4 6.519620+6 2.553000-4 6.494393+6 2.570396-4 6.457417+6 2.580000-4 6.436587+6 2.583500-4 6.428490+6 2.590000-4 6.413402+6 2.608000-4 6.370843+6 2.630268-4 6.317793+6 2.660000-4 6.243629+6 2.660725-4 6.241815+6 2.670000-4 6.218719+6 2.700000-4 6.146051+6 2.722701-4 6.091745+6 2.730000-4 6.074743+6 2.754229-4 6.016059+6 2.760000-4 6.002260+6 2.786121-4 5.941549+6 2.800000-4 5.908439+6 2.835000-4 5.827898+6 2.851018-4 5.792365+6 2.870000-4 5.751148+6 2.890000-4 5.709014+6 2.900000-4 5.688368+6 2.917427-4 5.651102+6 2.930000-4 5.624516+6 2.951209-4 5.581357+6 2.970000-4 5.542150+6 3.000000-4 5.482301+6 3.015000-4 5.453142+6 3.019952-4 5.443738+6 3.040000-4 5.405985+6 3.056900-4 5.374973+6 3.080000-4 5.333783+6 3.090295-4 5.315857+6 3.100000-4 5.298194+6 3.115000-4 5.271494+6 3.150000-4 5.210965+6 3.162278-4 5.189636+6 3.190000-4 5.142204+6 3.198895-4 5.127363+6 3.212100-4 5.105516+6 3.235937-4 5.067089+6 3.240000-4 5.060611+6 3.280000-4 4.998674+6 3.300000-4 4.966639+6 3.311311-4 4.948907+6 3.320000-4 4.935399+6 3.350000-4 4.889707+6 3.427678-4 4.772372+6 3.430000-4 4.768983+6 3.467369-4 4.715754+6 3.507519-4 4.657149+6 3.550000-4 4.596933+6 3.630781-4 4.484365+6 3.672823-4 4.428229+6 3.715352-4 4.373439+6 3.758374-4 4.317149+6 3.780000-4 4.288173+6 3.801894-4 4.259215+6 3.845918-4 4.202573+6 3.890451-4 4.147367+6 3.930000-4 4.099390+6 3.935501-4 4.092793+6 3.973600-4 4.045886+6 3.973600-4 4.293674+6 4.000000-4 4.261358+6 4.053000-4 4.195724+6 4.073803-4 4.170528+6 4.120975-4 4.114894+6 4.168694-4 4.059766+6 4.200000-4 4.024394+6 4.216965-4 4.005557+6 4.265795-4 3.950624+6 4.280000-4 3.934754+6 4.315191-4 3.894511+6 4.415704-4 3.785069+6 4.430000-4 3.769904+6 4.466836-4 3.731161+6 4.570882-4 3.622985+6 4.614100-4 3.578073+6 4.614100-4 3.633066+6 4.623810-4 3.623150+6 4.731513-4 3.516415+6 4.786301-4 3.463613+6 4.841724-4 3.410343+6 4.850000-4 3.402550+6 4.897788-4 3.357202+6 4.954502-4 3.303843+6 5.069907-4 3.200917+6 5.080000-4 3.192010+6 5.188000-4 3.097769+6 5.248075-4 3.046945+6 5.300000-4 3.004453+6 5.308844-4 2.997279+6 5.370318-4 2.947378+6 5.432503-4 2.898616+6 5.500000-4 2.847583+6 5.546500-4 2.812173+6 5.546500-4 2.879359+6 5.559043-4 2.869924+6 5.623413-4 2.820758+6 5.688529-4 2.772766+6 5.754399-4 2.725916+6 5.800000-4 2.694004+6 5.821032-4 2.679510+6 5.900000-4 2.625627+6 5.956621-4 2.587653+6 6.000000-4 2.559303+6 6.025596-4 2.542606+6 6.100000-4 2.494381+6 6.200000-4 2.431384+6 6.237348-4 2.408648+6 6.309573-4 2.364520+6 6.382635-4 2.321282+6 6.456542-4 2.278546+6 6.531306-4 2.236300+6 6.606934-4 2.194673+6 6.760830-4 2.114270+6 6.839116-4 2.074920+6 6.850000-4 2.069451+6 6.918310-4 2.035436+6 6.998420-4 1.996191+6 7.079458-4 1.957899+6 7.161434-4 1.920487+6 7.244360-4 1.883394+6 7.328245-4 1.846818+6 7.413102-4 1.811118+6 7.500000-4 1.775327+6 7.585776-4 1.740578+6 7.673615-4 1.705748+6 7.943282-4 1.605350+6 8.035261-4 1.573113+6 8.128305-4 1.541203+6 8.200000-4 1.516971+6 8.222426-4 1.509487+6 8.511380-4 1.418520+6 8.609938-4 1.389321+6 8.709636-4 1.360270+6 8.912509-4 1.303829+6 9.015711-4 1.276657+6 9.120108-4 1.249822+6 9.200000-4 1.229847+6 9.332543-4 1.197602+6 9.500000-4 1.158056+6 9.549926-4 1.146689+6 9.660509-4 1.122151+6 9.772372-4 1.097939+6 9.885531-4 1.074139+6 1.011579-3 1.028109+6 1.023293-3 1.005953+6 1.035142-3 9.841478+5 1.047129-3 9.623857+5 1.096478-3 8.801021+5 1.109175-3 8.607314+5 1.110000-3 8.594945+5 1.122018-3 8.415857+5 1.135011-3 8.224915+5 1.148154-3 8.038891+5 1.161449-3 7.857479+5 1.188502-3 7.508382+5 1.202264-3 7.340486+5 1.216186-3 7.173198+5 1.230269-3 7.009386+5 1.258925-3 6.690413+5 1.288250-3 6.387630+5 1.300000-3 6.272523+5 1.303167-3 6.241685+5 1.318257-3 6.096643+5 1.348963-3 5.817139+5 1.355400-3 5.760824+5 1.396368-3 5.419182+5 1.412538-3 5.293220+5 1.428894-3 5.168160+5 1.445440-3 5.045919+5 1.479108-3 4.810821+5 1.496236-3 4.697293+5 1.500000-3 4.672826+5 1.513561-3 4.586320+5 1.531087-3 4.477717+5 1.570000-3 4.246390+5 1.621810-3 3.965910+5 1.640590-3 3.871386+5 1.659587-3 3.778628+5 1.678804-3 3.686533+5 1.698244-3 3.596889+5 1.737801-3 3.423816+5 1.741600-3 3.407841+5 1.741600-3 9.994565+5 1.800000-3 9.525140+5 1.802300-3 9.507428+5 1.802300-3 1.213187+6 1.815000-3 1.216354+6 1.819701-3 1.217687+6 1.840772-3 1.224834+6 1.846000-3 1.226922+6 1.862087-3 1.238466+6 1.863000-3 1.238745+6 1.870000-3 1.242030+6 1.878000-3 1.241480+6 1.883649-3 1.240233+6 1.885000-3 1.239952+6 1.893000-3 1.237545+6 1.905461-3 1.231155+6 1.910000-3 1.228910+6 1.920000-3 1.223129+6 1.927525-3 1.217784+6 1.935000-3 1.212580+6 1.940000-3 1.208566+6 1.950000-3 1.200123+6 1.972423-3 1.167608+6 1.995262-3 1.135670+6 2.018366-3 1.103613+6 2.041738-3 1.072443+6 2.065380-3 1.042169+6 2.113489-3 9.842070+5 2.137962-3 9.564676+5 2.150000-3 9.432204+5 2.162719-3 9.294375+5 2.184100-3 9.069024+5 2.184100-3 1.047948+6 2.213095-3 1.015919+6 2.238721-3 9.887906+5 2.264644-3 9.624028+5 2.290868-3 9.367338+5 2.300000-3 9.279237+5 2.344229-3 8.866494+5 2.371374-3 8.626337+5 2.400000-3 8.382394+5 2.426610-3 8.164372+5 2.454709-3 7.942991+5 2.461400-3 7.891564+5 2.461400-3 8.365198+5 2.483133-3 8.198452+5 2.511886-3 7.985381+5 2.540973-3 7.775257+5 2.570396-3 7.566779+5 2.600160-3 7.363916+5 2.630500-3 7.165103+5 2.660725-3 6.974837+5 2.684700-3 6.829121+5 2.684700-3 7.122338+5 2.691535-3 7.080918+5 2.722701-3 6.895237+5 2.754229-3 6.714772+5 2.770000-3 6.626446+5 2.786121-3 6.537723+5 2.800000-3 6.462077+5 2.818383-3 6.363203+5 2.851018-3 6.192863+5 2.884032-3 6.027215+5 2.917427-3 5.866248+5 2.920000-3 5.854112+5 2.951209-3 5.709296+5 2.985383-3 5.556761+5 3.000000-3 5.493336+5 3.019952-3 5.408486+5 3.054921-3 5.263276+5 3.090295-3 5.120496+5 3.126079-3 4.981801+5 3.150000-3 4.892160+5 3.162278-3 4.847008+5 3.235937-3 4.587814+5 3.311311-3 4.342766+5 3.349654-3 4.224791+5 3.400000-3 4.076113+5 3.427678-3 3.997305+5 3.467369-3 3.888125+5 3.507519-3 3.781737+5 3.548134-3 3.678064+5 3.589219-3 3.577384+5 3.630781-3 3.479620+5 3.672823-3 3.384118+5 3.715352-3 3.290367+5 3.800000-3 3.114715+5 3.801894-3 3.110912+5 3.845918-3 3.024024+5 3.890451-3 2.939681+5 3.900000-3 2.922015+5 3.935501-3 2.857338+5 4.027170-3 2.699675+5 4.120975-3 2.550464+5 4.168694-3 2.478920+5 4.216965-3 2.409457+5 4.265795-3 2.341972+5 4.315191-3 2.276192+5 4.365158-3 2.212354+5 4.415704-3 2.150348+5 4.466836-3 2.089990+5 4.570882-3 1.974591+5 4.623810-3 1.919430+5 4.650000-3 1.892746+5 4.677351-3 1.865189+5 4.731513-3 1.812160+5 4.841724-3 1.710268+5 4.954502-3 1.614402+5 5.011872-3 1.568570+5 5.069907-3 1.523844+5 5.128614-3 1.480460+5 5.188000-3 1.438164+5 5.248075-3 1.396945+5 5.300000-3 1.362646+5 5.308844-3 1.356923+5 5.432503-3 1.280202+5 5.477200-3 1.254016+5 5.495409-3 1.243570+5 5.559043-3 1.208041+5 5.623413-3 1.173440+5 5.800000-3 1.085494+5 5.821032-3 1.075595+5 5.888437-3 1.044557+5 6.000000-3 9.959084+4 6.025596-3 9.851611+4 6.095369-3 9.566102+4 6.165950-3 9.289310+4 6.237348-3 9.020903+4 6.382635-3 8.508344+4 6.456542-3 8.261083+4 6.531306-3 8.021206+4 6.606934-3 7.788454+4 6.683439-3 7.561706+4 6.760830-3 7.341852+4 6.839116-3 7.128430+4 6.918310-3 6.921381+4 6.998420-3 6.720047+4 7.000000-3 6.716161+4 7.161434-3 6.334070+4 7.244360-3 6.149772+4 7.328245-3 5.970749+4 7.413102-3 5.796096+4 7.498942-3 5.626102+4 7.585776-3 5.461334+4 7.673615-3 5.301598+4 7.762471-3 5.146307+4 7.800000-3 5.082678+4 7.852356-3 4.995729+4 7.943282-3 4.849332+4 8.000000-3 4.761117+4 8.035261-3 4.707234+4 8.128305-3 4.569106+4 8.222426-3 4.434397+4 8.413951-3 4.177020+4 8.609938-3 3.934355+4 8.709636-3 3.818590+4 8.810489-3 3.706390+4 9.000000-3 3.506503+4 9.015711-3 3.490631+4 9.120108-3 3.387674+4 9.225714-3 3.287818+4 9.332543-3 3.190392+4 9.440609-3 3.095875+4 9.549926-3 3.004049+4 9.660509-3 2.914779+4 9.772372-3 2.828242+4 9.879200-3 2.748966+4 9.879200-3 7.242262+4 9.885531-3 7.231076+4 9.985000-3 7.058538+4 1.000000-2 7.031538+4 1.011579-2 6.827706+4 1.023293-2 6.623145+4 1.047129-2 6.232445+4 1.059254-2 6.045605+4 1.071519-2 5.864383+4 1.080000-2 5.740604+4 1.083927-2 5.684473+4 1.096478-2 5.509913+4 1.109175-2 5.340793+4 1.116300-2 5.249021+4 1.116300-2 7.242396+4 1.122018-2 7.151300+4 1.132500-2 6.988370+4 1.135011-2 6.948116+4 1.148154-2 6.742442+4 1.155000-2 6.638658+4 1.161449-2 6.539822+4 1.165600-2 6.477167+4 1.165600-2 7.492046+4 1.174898-2 7.338447+4 1.185000-2 7.180361+4 1.188502-2 7.127896+4 1.202264-2 6.926971+4 1.216186-2 6.728104+4 1.230269-2 6.533539+4 1.244515-2 6.344641+4 1.258925-2 6.162708+4 1.273503-2 5.986142+4 1.288250-2 5.812606+4 1.290000-2 5.792290+4 1.303167-2 5.642576+4 1.333521-2 5.317549+4 1.348963-2 5.162064+4 1.364583-2 5.011257+4 1.380384-2 4.864935+4 1.396368-2 4.723005+4 1.400000-2 4.691569+4 1.412538-2 4.585249+4 1.428894-2 4.450760+4 1.445440-2 4.319361+4 1.450000-2 4.284108+4 1.462177-2 4.191861+4 1.479108-2 4.068208+4 1.500000-2 3.922495+4 1.531087-2 3.718954+4 1.540000-2 3.663282+4 1.548817-2 3.608927+4 1.566751-2 3.501793+4 1.584893-2 3.397923+4 1.603245-2 3.296583+4 1.621810-2 3.198303+4 1.640590-2 3.103031+4 1.659587-2 3.010580+4 1.664540-2 2.987114+4 1.670000-2 2.961540+4 1.678804-2 2.920775+4 1.698244-2 2.833512+4 1.717908-2 2.748911+4 1.737801-2 2.667389+4 1.757924-2 2.588006+4 1.778279-2 2.510974+4 1.820000-2 2.362895+4 1.862087-2 2.224567+4 1.883649-2 2.157984+4 1.905461-2 2.093331+4 1.927525-2 2.030666+4 1.949845-2 1.969300+4 1.950000-2 1.968883+4 1.972423-2 1.909760+4 2.000000-2 1.840305+4 2.018366-2 1.795992+4 2.065380-2 1.689109+4 2.089296-2 1.638141+4 2.113489-2 1.588710+4 2.137962-2 1.540809+4 2.150000-2 1.517967+4 2.162719-2 1.494173+4 2.213095-2 1.404876+4 2.238721-2 1.362254+4 2.264644-2 1.320953+4 2.290868-2 1.280937+4 2.317395-2 1.242169+4 2.344229-2 1.204596+4 2.350000-2 1.196723+4 2.371374-2 1.167966+4 2.398833-2 1.132414+4 2.426610-2 1.097971+4 2.454709-2 1.064341+4 2.483133-2 1.031738+4 2.500000-2 1.013031+4 2.540973-2 9.695077+3 2.570396-2 9.398146+3 2.630268-2 8.831886+3 2.660725-2 8.562013+3 2.691535-2 8.300535+3 2.722701-2 8.045228+3 2.754229-2 7.797968+3 2.786121-2 7.558474+3 2.818383-2 7.326513+3 2.851018-2 7.101618+3 2.917427-2 6.672826+3 2.985383-2 6.269693+3 3.019952-2 6.077559+3 3.054921-2 5.889035+3 3.235937-2 5.032256+3 3.273407-2 4.876822+3 3.349654-2 4.580312+3 3.388442-2 4.438869+3 3.427678-2 4.301327+3 3.467369-2 4.168008+3 3.548134-2 3.913848+3 3.589219-2 3.792759+3 3.630781-2 3.675508+3 3.672823-2 3.561195+3 3.758374-2 3.342404+3 3.845918-2 3.137354+3 3.890451-2 3.039635+3 3.935501-2 2.944938+3 3.981072-2 2.853254+3 4.000000-2 2.816336+3 4.027170-2 2.764479+3 4.073803-2 2.678519+3 4.120975-2 2.595181+3 4.168694-2 2.514479+3 4.216965-2 2.435951+3 4.315191-2 2.285881+3 4.415704-2 2.145252+3 4.466836-2 2.078287+3 4.518559-2 2.013214+3 4.570882-2 1.950186+3 4.731513-2 1.772803+3 4.786301-2 1.717064+3 4.800000-2 1.703506+3 4.841724-2 1.663063+3 4.897788-2 1.610762+3 5.069907-2 1.463705+3 5.128614-2 1.417794+3 5.188000-2 1.373350+3 5.248075-2 1.330228+3 5.370318-2 1.248087+3 5.500000-2 1.168320+3 5.559043-2 1.134232+3 5.623413-2 1.098353+3 5.688529-2 1.063631+3 5.754399-2 1.029978+3 5.821032-2 9.974066+2 6.025596-2 9.058557+2 6.237348-2 8.228607+2 6.456542-2 7.476087+2 6.531306-2 7.241009+2 6.606934-2 7.012931+2 6.683439-2 6.790659+2 6.756500-2 6.587282+2 6.756500-2 3.373861+3 6.760830-2 3.368391+3 6.806000-2 3.312047+3 6.839116-2 3.271575+3 6.918310-2 3.177554+3 6.998420-2 3.086213+3 7.000000-2 3.084448+3 7.079458-2 2.991914+3 7.161434-2 2.900399+3 7.500000-2 2.581126+3 7.673615-2 2.429604+3 7.762471-2 2.356787+3 7.852356-2 2.286071+3 8.035261-2 2.150954+3 8.056470-2 2.136006+3 8.128305-2 2.086416+3 8.222426-2 2.023814+3 8.317638-2 1.963097+3 8.413951-2 1.904762+3 8.609938-2 1.793260+3 9.015711-2 1.589535+3 9.120108-2 1.542343+3 9.225714-2 1.496558+3 9.332543-2 1.452083+3 9.440609-2 1.408931+3 9.660509-2 1.324447+3 9.772372-2 1.284121+3 1.000000-1 1.207121+3 1.011580-1 1.170373+3 1.023293-1 1.134750+3 1.035142-1 1.100214+3 1.059254-1 1.034271+3 1.071519-1 1.002804+3 1.083927-1 9.722945+2 1.109175-1 9.140421+2 1.122019-1 8.862099+2 1.188502-1 7.592936+2 1.230269-1 6.920522+2 1.244515-1 6.709914+2 1.258925-1 6.503298+2 1.288250-1 6.108971+2 1.303167-1 5.920896+2 1.318257-1 5.738623+2 1.333521-1 5.562016+2 1.364583-1 5.224961+2 1.380384-1 5.064223+2 1.428894-1 4.610740+2 1.462177-1 4.331259+2 1.479108-1 4.197952+2 1.513561-1 3.943542+2 1.531088-1 3.822186+2 1.548817-1 3.704578+2 1.566751-1 3.590582+2 1.584893-1 3.480095+2 1.611800-1 3.324640+2 1.621810-1 3.269235+2 1.659587-1 3.071174+2 1.678804-1 2.976714+2 1.698244-1 2.885192+2 1.717908-1 2.796523+2 1.737801-1 2.710578+2 1.757924-1 2.627281+2 1.798871-1 2.468303+2 1.819701-1 2.392463+2 1.840772-1 2.318959+2 1.905461-1 2.111738+2 1.972423-1 1.923065+2 1.995262-1 1.864005+2 2.000000-1 1.852065+2 2.018366-1 1.806765+2 2.041738-1 1.751329+2 2.089296-1 1.645518+2 2.113489-1 1.595039+2 2.137962-1 1.546110+2 2.213095-1 1.408157+2 2.213400-1 1.407632+2 2.238721-1 1.364969+2 2.264644-1 1.323107+2 2.317395-1 1.243198+2 2.344229-1 1.205466+2 2.371374-1 1.168893+2 2.398833-1 1.133434+2 2.400000-1 1.131960+2 2.426610-1 1.099066+2 2.454709-1 1.065742+2 2.483133-1 1.033438+2 2.540973-1 9.717423+1 2.570396-1 9.422916+1 2.600160-1 9.137342+1 2.630268-1 8.860465+1 2.660725-1 8.592300+1 2.691535-1 8.332259+1 2.722701-1 8.080200+1 2.754229-1 7.835787+1 2.800000-1 7.498723+1 2.851018-1 7.150946+1 2.884032-1 6.937677+1 2.917427-1 6.730787+1 2.951209-1 6.530071+1 3.019952-1 6.146432+1 3.054921-1 5.963178+1 3.090295-1 5.785529+1 3.126079-1 5.613190+1 3.162278-1 5.445990+1 3.198895-1 5.283781+1 3.235937-1 5.126711+1 3.273407-1 4.974320+1 3.311311-1 4.828790+1 3.349654-1 4.687524+1 3.388442-1 4.550392+1 3.427678-1 4.417279+1 3.467369-1 4.288114+1 3.507519-1 4.162755+1 3.548134-1 4.041066+1 3.589219-1 3.922938+1 3.630781-1 3.808262+1 3.672823-1 3.697045+1 3.715352-1 3.589078+1 3.758374-1 3.484267+1 3.801894-1 3.384436+1 3.845918-1 3.287468+1 3.890451-1 3.193321+1 3.935501-1 3.101879+1 4.000000-1 2.977225+1 4.027170-1 2.926806+1 4.073803-1 2.843012+1 4.120975-1 2.761621+1 4.168694-1 2.682596+1 4.216965-1 2.605875+1 4.265795-1 2.532737+1 4.315191-1 2.461685+1 4.365158-1 2.392636+1 4.415705-1 2.325665+1 4.466836-1 2.260572+1 4.518559-1 2.197309+1 4.623810-1 2.076047+1 4.677351-1 2.017979+1 4.731513-1 1.961535+1 4.786301-1 1.906695+1 4.841724-1 1.854485+1 4.897788-1 1.803707+1 5.011872-1 1.706289+1 5.069907-1 1.659689+1 5.128614-1 1.614363+1 5.188000-1 1.570276+1 5.248075-1 1.527414+1 5.308844-1 1.485742+1 5.370318-1 1.445210+1 5.432503-1 1.406640+1 5.495409-1 1.369124+1 5.559043-1 1.332608+1 5.623413-1 1.297069+1 5.688529-1 1.262482+1 5.754399-1 1.228899+1 5.821032-1 1.196225+1 5.888437-1 1.164435+1 5.956621-1 1.133494+1 6.000000-1 1.114417+1 6.025596-1 1.103375+1 6.095369-1 1.074720+1 6.165950-1 1.046810+1 6.237348-1 1.019645+1 6.309573-1 9.931892+0 6.382635-1 9.674200+0 6.456542-1 9.423434+0 6.531306-1 9.179791+0 6.606935-1 8.942484+0 6.683439-1 8.711317+0 6.760830-1 8.486131+0 6.839117-1 8.271918+0 6.918310-1 8.063117+0 6.998420-1 7.859615+0 7.079458-1 7.661472+0 7.161434-1 7.468333+0 7.244360-1 7.280064+0 7.328245-1 7.096569+0 7.413102-1 6.918268+0 7.498942-1 6.744453+0 7.585776-1 6.575008+0 7.673615-1 6.413770+0 7.762471-1 6.256550+0 7.852356-1 6.103185+0 8.000000-1 5.863123+0 8.035261-1 5.807840+0 8.128305-1 5.665665+0 8.222427-1 5.526972+0 8.317638-1 5.392080+0 8.413951-1 5.260485+0 8.511380-1 5.135332+0 8.609938-1 5.013158+0 8.709636-1 4.893959+0 8.810489-1 4.777700+0 8.912509-1 4.664301+0 9.015711-1 4.553614+0 9.120108-1 4.445557+0 9.225714-1 4.340391+0 9.332543-1 4.237772+0 9.440609-1 4.140296+0 9.549926-1 4.045158+0 9.660509-1 3.952222+0 9.772372-1 3.861425+0 9.885531-1 3.772855+0 1.000000+0 3.686319+0 1.011579+0 3.601777+0 1.023293+0 3.519483+0 1.035142+0 3.439075+0 1.047129+0 3.362156+0 1.059254+0 3.286999+0 1.071519+0 3.213525+0 1.083927+0 3.141689+0 1.096478+0 3.071462+0 1.109175+0 3.002812+0 1.122018+0 2.935753+0 1.135011+0 2.870232+0 1.148154+0 2.806206+0 1.161449+0 2.743611+0 1.174898+0 2.682412+0 1.188502+0 2.622748+0 1.202264+0 2.565808+0 1.216186+0 2.510111+0 1.230269+0 2.455666+0 1.244515+0 2.402404+0 1.258925+0 2.350327+0 1.273503+0 2.299376+0 1.288250+0 2.249573+0 1.303167+0 2.200853+0 1.318257+0 2.153192+0 1.333521+0 2.106712+0 1.348963+0 2.062477+0 1.364583+0 2.019172+0 1.380384+0 1.976776+0 1.412538+0 1.894668+0 1.445440+0 1.815972+0 1.462177+0 1.777893+0 1.479108+0 1.740616+0 1.496236+0 1.704119+0 1.500000+0 1.696284+0 1.513561+0 1.668514+0 1.531087+0 1.634722+0 1.566751+0 1.569175+0 1.621810+0 1.475752+0 1.640590+0 1.445889+0 1.678804+0 1.387966+0 1.698244+0 1.359890+0 1.717908+0 1.332471+0 1.737801+0 1.306336+0 1.757924+0 1.280730+0 1.778279+0 1.255628+0 1.819701+0 1.206888+0 1.840772+0 1.183233+0 1.862087+0 1.160061+0 1.883649+0 1.137343+0 1.905461+0 1.115069+0 1.927525+0 1.093241+0 1.949845+0 1.071906+0 1.972423+0 1.051546+0 2.000000+0 1.027522+0 2.018366+0 1.012006+0 2.041738+0 9.927969-1 2.044000+0 9.909689-1 2.065380+0 9.739531-1 2.089296+0 9.554667-1 2.113489+0 9.373477-1 2.162719+0 9.021349-1 2.187762+0 8.850352-1 2.213095+0 8.683163-1 2.238721+0 8.523979-1 2.264644+0 8.367825-1 2.290868+0 8.214531-1 2.317395+0 8.064048-1 2.344229+0 7.916325-1 2.371374+0 7.771306-1 2.398833+0 7.629080-1 2.454709+0 7.352397-1 2.483133+0 7.217898-1 2.511886+0 7.086303-1 2.540973+0 6.960858-1 2.570396+0 6.837725-1 2.600160+0 6.716772-1 2.630268+0 6.597960-1 2.660725+0 6.481250-1 2.722701+0 6.253986-1 2.754229+0 6.143461-1 2.818383+0 5.928248-1 2.851018+0 5.823529-1 2.884032+0 5.720990-1 2.917427+0 5.623055-1 2.951209+0 5.526860-1 3.000000+0 5.392690-1 3.019952+0 5.339381-1 3.090295+0 5.158265-1 3.162278+0 4.983289-1 3.198895+0 4.898118-1 3.273407+0 4.732119-1 3.311311+0 4.651275-1 3.349654+0 4.572071-1 3.388442+0 4.496405-1 3.427678+0 4.422046-1 3.467369+0 4.348917-1 3.507519+0 4.276998-1 3.589219+0 4.136710-1 3.672823+0 4.001022-1 3.715352+0 3.934915-1 3.801894+0 3.805963-1 3.845918+0 3.743105-1 3.890451+0 3.681490-1 3.935501+0 3.622599-1 4.000000+0 3.541104-1 4.027170+0 3.507711-1 4.073803+0 3.451640-1 4.168694+0 3.342175-1 4.265795+0 3.236182-1 4.315191+0 3.184496-1 4.466836+0 3.034346-1 4.518559+0 2.985906-1 4.570882+0 2.938394-1 4.623810+0 2.892947-1 4.677351+0 2.848233-1 4.731513+0 2.804211-1 4.786301+0 2.760869-1 4.897788+0 2.676187-1 5.011872+0 2.594101-1 5.069907+0 2.554041-1 5.308844+0 2.399899-1 5.370318+0 2.362854-1 5.432503+0 2.326496-1 5.495409+0 2.291678-1 5.559043+0 2.257405-1 5.623413+0 2.223646-1 5.688529+0 2.190392-1 5.821032+0 2.125367-1 5.956621+0 2.062273-1 6.025596+0 2.031458-1 6.309573+0 1.912739-1 6.382635+0 1.884171-1 6.456542+0 1.856118-1 6.531306+0 1.829234-1 6.606934+0 1.802757-1 6.683439+0 1.776664-1 6.760830+0 1.750948-1 6.918310+0 1.700629-1 7.079458+0 1.651756-1 7.244360+0 1.604327-1 7.585776+0 1.513519-1 7.673615+0 1.491640-1 7.762471+0 1.470138-1 7.852356+0 1.449473-1 8.000000+0 1.416669-1 8.128305+0 1.389239-1 8.222427+0 1.369723-1 8.413951+0 1.331510-1 8.709636+0 1.276180-1 8.912509+0 1.240608-1 9.225714+0 1.189103-1 9.332543+0 1.172469-1 9.440609+0 1.156455-1 9.549926+0 1.140670-1 9.660509+0 1.125100-1 9.772372+0 1.109743-1 1.035142+1 1.036044-1 1.122018+1 9.410156-2 1.148154+1 9.155220-2 1.161449+1 9.030362-2 1.174898+1 8.907206-2 1.188502+1 8.789234-2 1.200000+1 8.691776-2 1.202264+1 8.672823-2 1.273503+1 8.113483-2 1.412538+1 7.196011-2 1.445440+1 7.006790-2 1.462177+1 6.914057-2 1.479108+1 6.822551-2 1.496236+1 6.734530-2 1.500000+1 6.715475-2 1.513561+1 6.647662-2 1.531087+1 6.561913-2 1.621810+1 6.149473-2 1.819701+1 5.400735-2 1.862087+1 5.262397-2 1.883649+1 5.194564-2 1.905461+1 5.127605-2 1.927525+1 5.063075-2 1.949845+1 4.999383-2 1.995262+1 4.874411-2 2.000000+1 4.861717-2 2.113489+1 4.575474-2 2.426610+1 3.930699-2 2.454709+1 3.881264-2 2.511886+1 3.784301-2 2.540973+1 3.736731-2 2.570396+1 3.689760-2 2.600160+1 3.644253-2 2.630268+1 3.599426-2 2.660725+1 3.555166-2 2.722701+1 3.468283-2 2.884032+1 3.260249-2 3.311311+1 2.810466-2 3.349654+1 2.775916-2 3.388442+1 2.741789-2 3.467369+1 2.674819-2 3.507519+1 2.641951-2 3.548134+1 2.609487-2 3.589219+1 2.577940-2 3.630781+1 2.546839-2 3.672823+1 2.516125-2 3.715352+1 2.485782-2 3.801894+1 2.426193-2 4.073803+1 2.255861-2 4.120975+1 2.228659-2 5.000000+1 1.817854-2 5.011872+1 1.813317-2 5.069907+1 1.791453-2 5.128614+1 1.769862-2 5.188000+1 1.748531-2 5.248075+1 1.727457-2 5.308844+1 1.706986-2 5.370318+1 1.686769-2 5.432503+1 1.666792-2 5.495409+1 1.647052-2 5.559043+1 1.627546-2 5.821032+1 1.551807-2 5.888437+1 1.533429-2 8.413951+1 1.059916-2 8.511380+1 1.047365-2 8.609938+1 1.034966-2 8.709636+1 1.022714-2 8.810489+1 1.010774-2 8.912509+1 9.989781-3 9.015711+1 9.873209-3 9.225714+1 9.644131-3 9.440609+1 9.420367-3 1.640590+2 5.362680-3 1.659587+2 5.300106-3 1.678804+2 5.238274-3 1.698244+2 5.177163-3 1.717908+2 5.117279-3 1.737801+2 5.058091-3 1.757924+2 4.999602-3 1.819701+2 4.828163-3 1.840772+2 4.772334-3 3.273407+2 2.667914-3 3.311311+2 2.637066-3 3.349654+2 2.606578-3 3.388442+2 2.576441-3 3.427678+2 2.546832-3 3.467369+2 2.517565-3 3.507519+2 2.488639-3 3.630781+2 2.403840-3 3.672823+2 2.376221-3 1.303167+3 6.665304-4 1.318257+3 6.588723-4 1.333521+3 6.513031-4 1.348963+3 6.438202-4 1.364583+3 6.364468-4 1.380384+3 6.291580-4 1.396368+3 6.219533-4 1.445440+3 6.008300-4 1.462177+3 5.939498-4 4.623810+4 1.875655-5 1.000000+5 8.670010-6 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.300000-6 6.300000-6 7.010000-6 6.300000-6 7.010000-6 6.514744-6 7.310000-6 6.519642-6 7.310000-6 6.822227-6 8.222426-6 6.718526-6 9.332543-6 6.646465-6 1.083927-5 6.602245-6 1.350000-5 6.582102-6 3.404000-5 6.606602-6 3.404000-5 8.670593-6 3.550000-5 8.947557-6 3.614000-5 9.052016-6 3.614000-5 1.050949-5 3.740000-5 1.088669-5 4.073803-5 1.174229-5 4.189000-5 1.203082-5 4.189000-5 2.859648-5 4.300000-5 2.885029-5 4.466836-5 2.901869-5 4.900000-5 2.910026-5 5.115000-5 2.910735-5 5.115000-5 3.548503-5 5.290000-5 3.586197-5 5.559043-5 3.609423-5 5.950000-5 3.615591-5 6.760830-5 3.592334-5 7.881000-5 3.554485-5 7.881000-5 3.615250-5 8.810489-5 3.590918-5 1.202264-4 3.569715-5 2.050000-4 3.546159-5 2.307200-4 3.543028-5 2.307200-4 3.692849-5 2.424800-4 3.709826-5 2.424800-4 3.803688-5 2.520000-4 3.817531-5 2.630268-4 3.801973-5 2.835000-4 3.759081-5 3.000000-4 3.750843-5 3.162278-4 3.767960-5 3.350000-4 3.809741-5 3.715352-4 3.924229-5 3.973600-4 4.015875-5 3.973600-4 4.413274-5 4.614100-4 4.674773-5 4.614100-4 4.777388-5 5.432503-4 5.095157-5 5.546500-4 5.136229-5 5.546500-4 5.349470-5 6.200000-4 5.594109-5 7.161434-4 5.907706-5 8.200000-4 6.199208-5 9.500000-4 6.507436-5 1.096478-3 6.799005-5 1.258925-3 7.068427-5 1.445440-3 7.327358-5 1.678804-3 7.593431-5 1.741600-3 7.656793-5 1.741600-3 1.114650-4 1.802300-3 1.120686-4 1.802300-3 1.188962-4 1.885000-3 1.215888-4 1.950000-3 1.226525-4 2.184100-3 1.227006-4 2.184100-3 1.314355-4 2.461400-3 1.324562-4 2.461400-3 1.369368-4 2.684700-3 1.382098-4 2.684700-3 1.425337-4 3.467369-3 1.473506-4 4.466836-3 1.522622-4 5.623413-3 1.568066-4 7.000000-3 1.611244-4 8.810489-3 1.655744-4 9.879200-3 1.677391-4 9.879200-3 2.186953-4 1.116300-2 2.195133-4 1.116300-2 2.319999-4 1.165600-2 2.323237-4 1.165600-2 2.476249-4 1.670000-2 2.538638-4 2.398833-2 2.602006-4 3.349654-2 2.660482-4 4.570882-2 2.714281-4 6.237348-2 2.765358-4 6.756500-2 2.777903-4 6.756500-2 2.575344-4 1.737801-1 2.590493-4 5.308844-1 2.600347-4 1.000000+5 2.601881-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.300000-6 0.0 2.424800-4 0.0 2.424800-4 7.63124-10 2.458000-4 8.12265-10 2.490000-4 8.63276-10 2.515000-4 9.04704-10 2.520000-4 9.11996-10 2.553000-4 9.36585-10 2.570396-4 9.45204-10 2.590000-4 9.48955-10 2.608000-4 9.46892-10 2.630268-4 9.38079-10 2.660725-4 9.18854-10 2.700000-4 8.87294-10 2.760000-4 8.34430-10 2.800000-4 8.01745-10 2.851018-4 7.62588-10 2.890000-4 7.37172-10 2.930000-4 7.16223-10 2.970000-4 7.00847-10 3.000000-4 6.92911-10 3.040000-4 6.87004-10 3.080000-4 6.86153-10 3.115000-4 6.89602-10 3.150000-4 6.96587-10 3.190000-4 7.08796-10 3.240000-4 7.29332-10 3.300000-4 7.60877-10 3.350000-4 7.92185-10 3.430000-4 8.50650-10 3.507519-4 9.15287-10 3.550000-4 9.52338-10 3.672823-4 1.068183-9 3.758374-4 1.154612-9 3.890451-4 1.293700-9 3.973600-4 1.383594-9 3.973600-4 2.492574-9 4.614100-4 3.289871-9 4.614100-4 3.945427-9 5.080000-4 4.565026-9 5.370318-4 4.939315-9 5.546500-4 5.154858-9 5.546500-4 5.929633-9 5.821032-4 6.303173-9 6.100000-4 6.659092-9 6.606934-4 7.265990-9 7.328245-4 8.060949-9 7.673615-4 8.418983-9 8.222426-4 8.947880-9 9.200000-4 9.801050-9 9.885531-4 1.034375-8 1.047129-3 1.077051-8 1.161449-3 1.153079-8 1.288250-3 1.227475-8 1.428894-3 1.300554-8 1.570000-3 1.364750-8 1.741600-3 1.434164-8 1.741600-3 1.425752-8 1.802300-3 1.432977-8 1.802300-3 4.760031-6 1.819701-3 5.061807-6 1.846000-3 5.537348-6 1.863000-3 5.910047-6 1.870000-3 6.021141-6 1.878000-3 6.171403-6 1.893000-3 6.411122-6 1.910000-3 6.623641-6 1.920000-3 6.737145-6 1.940000-3 6.920407-6 1.950000-3 7.004450-6 1.995262-3 7.022288-6 2.184100-3 6.987209-6 2.184100-3 6.878121-6 2.461400-3 6.828399-6 2.461400-3 7.541161-6 2.684700-3 7.590534-6 2.684700-3 7.735879-6 3.235937-3 7.848489-6 4.168694-3 7.998692-6 5.623413-3 8.168068-6 7.328245-3 8.314779-6 9.332543-3 8.445611-6 9.879200-3 8.477624-6 9.879200-3 1.352213-3 1.023293-2 1.354420-3 1.116300-2 1.351074-3 1.116300-2 1.829058-3 1.161449-2 1.834033-3 1.165600-2 1.833973-3 1.165600-2 1.915497-3 1.548817-2 1.935057-3 2.371374-2 1.949119-3 4.466836-2 1.954698-3 6.756500-2 1.953521-3 6.756500-2 4.756503-2 8.056470-2 4.794649-2 1.035142-1 4.835340-2 1.428894-1 4.868710-2 2.264644-1 4.895688-2 6.456542-1 4.932248-2 1.174898+0 4.948179-2 1.000000+5 4.947034-2 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.300000-6 0.0 7.010000-6 7.100000-7 7.010000-6 4.952558-7 7.310000-6 7.903582-7 7.310000-6 4.877730-7 7.500000-6 7.036809-7 7.852356-6 1.097836-6 8.317638-6 1.607502-6 8.912509-6 2.244257-6 9.440609-6 2.799075-6 1.050000-5 3.890934-6 1.273503-5 6.150621-6 3.404000-5 2.743340-5 3.404000-5 2.536941-5 3.614000-5 2.708798-5 3.614000-5 2.563051-5 3.863700-5 2.742284-5 4.189000-5 2.985918-5 4.189000-5 1.329352-5 4.240000-5 1.366235-5 4.300000-5 1.414971-5 4.415704-5 1.517994-5 4.570882-5 1.664517-5 5.115000-5 2.204265-5 5.115000-5 1.566497-5 5.220000-5 1.645799-5 5.350000-5 1.756268-5 5.450000-5 1.846677-5 5.754399-5 2.138938-5 6.165950-5 2.553589-5 7.881000-5 4.326515-5 7.881000-5 4.265750-5 9.015711-5 5.427613-5 2.220000-4 1.865598-4 2.307200-4 1.952897-4 2.307200-4 1.937915-4 2.424800-4 2.053817-4 2.424800-4 2.044424-4 2.700000-4 2.321465-4 3.150000-4 2.773414-4 3.973600-4 3.571999-4 3.973600-4 3.532248-4 4.614100-4 4.146590-4 4.614100-4 4.136322-4 5.546500-4 5.032826-4 5.546500-4 5.011494-4 8.709636-4 8.077007-4 1.531087-3 1.456761-3 1.741600-3 1.665018-3 1.741600-3 1.630121-3 1.802300-3 1.690217-3 1.802300-3 1.678644-3 1.995262-3 1.865552-3 2.184100-3 2.054412-3 2.184100-3 2.045786-3 2.461400-3 2.322115-3 2.461400-3 2.316922-3 2.684700-3 2.538900-3 2.684700-3 2.534430-3 9.879200-3 9.702983-3 9.879200-3 8.308292-3 1.116300-2 9.592413-3 1.116300-2 9.101942-3 1.165600-2 9.589703-3 1.165600-2 9.492878-3 2.917427-2 2.695853-2 6.756500-2 6.533369-2 6.756500-2 1.974244-2 7.079458-2 2.285549-2 7.762471-2 2.948312-2 1.011580-1 5.257429-2 1.621810-1 1.131366-1 3.000000+0 2.950270+0 1.000000+5 9.999995+4 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.756500-2 2.715133+3 7.000000-2 2.487880+3 7.161434-2 2.340724+3 7.500000-2 2.089240+3 8.317638-2 1.594905+3 9.440609-2 1.150621+3 1.244515-1 5.519483+2 2.317395-1 1.031200+2 2.800000-1 6.229320+1 3.273407-1 4.136809+1 3.758374-1 2.900427+1 4.216965-1 2.170842+1 4.786301-1 1.589835+1 5.370318-1 1.206007+1 6.025596-1 9.215147+0 6.760830-1 7.093457+0 7.585776-1 5.501078+0 8.413951-1 4.405093+0 9.332543-1 3.551395+0 1.035142+0 2.883354+0 1.188502+0 2.199336+0 1.333521+0 1.766483+0 1.513561+0 1.398800+0 1.717908+0 1.117062+0 1.949845+0 8.986389-1 2.213095+0 7.279548-1 2.511886+0 5.940829-1 2.884032+0 4.796271-1 3.349654+0 3.833075-1 3.890451+0 3.086453-1 4.570882+0 2.463460-1 5.432503+0 1.950459-1 6.456542+0 1.556115-1 7.762471+0 1.232523-1 9.332543+0 9.829783-2 1.174898+1 7.467851-2 1.479108+1 5.720072-2 1.905461+1 4.299000-2 2.570396+1 3.093456-2 3.548134+1 2.187783-2 5.248075+1 1.448314-2 8.709636+1 8.574578-3 1.698244+2 4.340597-3 3.388442+2 2.160125-3 1.348963+3 5.397901-4 1.000000+5 7.269100-6 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.756500-2 2.526200-4 1.000000+5 2.526200-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.756500-2 5.863100-2 1.000000+5 5.863100-2 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.756500-2 8.681380-3 1.000000+5 9.999994+4 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.165600-2 1.014879+4 1.185000-2 9.814396+3 1.216186-2 9.412812+3 1.244515-2 9.039277+3 1.288250-2 8.549032+3 1.412538-2 7.252366+3 1.540000-2 6.235640+3 1.670000-2 5.357580+3 1.717908-2 5.072306+3 1.820000-2 4.558980+3 1.972423-2 3.893068+3 2.350000-2 2.750740+3 2.691535-2 2.076547+3 3.019952-2 1.630163+3 3.630781-2 1.092126+3 4.168694-2 8.016451+2 4.731513-2 6.005048+2 5.559043-2 4.123779+2 6.606934-2 2.730950+2 7.762471-2 1.844116+2 9.225714-2 1.201556+2 1.109175-1 7.551291+1 1.380384-1 4.314590+1 2.630268-1 8.136304+0 3.198895-1 4.936696+0 3.758374-1 3.294681+0 4.365158-1 2.280226+0 5.011872-1 1.635839+0 5.688529-1 1.215868+0 6.456542-1 9.105678-1 7.328245-1 6.872261-1 8.222427-1 5.360348-1 9.120108-1 4.315298-1 1.011579+0 3.498222-1 1.174898+0 2.606205-1 1.318257+0 2.091786-1 1.496236+0 1.655218-1 1.698244+0 1.320858-1 1.927525+0 1.061901-1 2.187762+0 8.596485-2 2.483133+0 7.010864-2 2.851018+0 5.656254-2 3.311311+0 4.517599-2 3.845918+0 3.635546-2 4.518559+0 2.900151-2 5.370318+0 2.295052-2 6.382635+0 1.830105-2 7.673615+0 1.448867-2 9.225714+0 1.154941-2 1.174898+1 8.653359-3 1.479108+1 6.628100-3 1.905461+1 4.981466-3 2.600160+1 3.539964-3 3.589219+1 2.504185-3 5.248075+1 1.678224-3 8.709636+1 9.935669-4 1.698244+2 5.029745-4 3.388442+2 2.503063-4 1.348963+3 6.254814-5 1.000000+5 8.423100-7 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.165600-2 3.452800-4 1.000000+5 3.452800-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.165600-2 2.435800-3 1.000000+5 2.435800-3 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.165600-2 8.874920-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.116300-2 1.993375+4 1.132500-2 1.940200+4 1.155000-2 1.852600+4 1.174898-2 1.770500+4 1.202264-2 1.675500+4 1.428894-2 1.070500+4 1.584893-2 8.113400+3 1.883649-2 5.050200+3 2.150000-2 3.503400+3 2.691535-2 1.847100+3 3.388442-2 9.442500+2 4.216965-2 4.932000+2 5.188000-2 2.642300+2 6.531306-2 1.310400+2 1.318257-1 1.511559+1 1.678804-1 7.221228+0 2.018366-1 4.140658+0 2.400000-1 2.472691+0 2.800000-1 1.574506+0 3.198895-1 1.073490+0 3.630781-1 7.509802-1 4.120975-1 5.293200-1 4.623810-1 3.878748-1 5.188000-1 2.863277-1 5.754399-1 2.193610-1 6.382635-1 1.691744-1 7.328245-1 1.207907-1 8.035261-1 9.698583-2 8.709636-1 8.057361-2 9.440609-1 6.744089-2 1.011579+0 5.830208-2 1.109175+0 4.839480-2 1.216186+0 4.043666-2 1.333521+0 3.401575-2 1.513561+0 2.704610-2 1.737801+0 2.117842-2 1.972423+0 1.704158-2 2.238721+0 1.381410-2 2.540973+0 1.128180-2 2.917427+0 9.115045-3 3.388442+0 7.288836-3 3.935501+0 5.872344-3 4.623810+0 4.689648-3 5.495409+0 3.714995-3 6.531306+0 2.965350-3 7.852356+0 2.349838-3 9.440609+0 1.874858-3 1.174898+1 1.444261-3 1.479108+1 1.106272-3 1.927525+1 8.208534-4 2.630268+1 5.835045-4 3.630781+1 4.128876-4 5.308844+1 2.767721-4 8.810489+1 1.638861-4 1.737801+2 8.201216-5 3.467369+2 4.081973-5 1.380384+3 1.020165-5 1.000000+5 1.405900-7 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.116300-2 2.648800-4 1.000000+5 2.648800-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.116300-2 3.087700-3 1.000000+5 3.087700-3 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.116300-2 7.810420-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 9.879200-3 4.493296+4 9.985000-3 4.384991+4 1.011579-2 4.243596+4 1.071519-2 3.642453+4 1.273503-2 2.263132+4 1.412538-2 1.687090+4 1.737801-2 9.255453+3 1.927525-2 6.839470+3 2.426610-2 3.426795+3 3.019952-2 1.751084+3 3.672823-2 9.497147+2 4.466836-2 5.103938+2 5.500000-2 2.613908+2 6.918310-2 1.239332+2 9.332543-2 4.637725+1 1.364583-1 1.328074+1 1.698244-1 6.494120+0 2.018366-1 3.717760+0 2.344229-1 2.308636+0 2.691535-1 1.497518+0 3.054921-1 1.014504+0 3.427678-1 7.171543-1 3.845918-1 5.108075-1 4.265795-1 3.790234-1 4.731513-1 2.832938-1 5.248075-1 2.133571-1 5.821032-1 1.619542-1 6.382635-1 1.276714-1 6.998420-1 1.013201-1 7.673615-1 8.093264-2 8.609938-1 6.147703-2 9.225714-1 5.244073-2 9.772372-1 4.619252-2 1.047129+0 3.997006-2 1.135011+0 3.398548-2 1.244515+0 2.844336-2 1.380384+0 2.349043-2 1.678804+0 1.657110-2 1.905461+0 1.330641-2 2.162719+0 1.076436-2 2.454709+0 8.773286-3 2.818383+0 7.073299-3 3.273407+0 5.645932-3 3.801894+0 4.540971-3 4.466836+0 3.620302-3 5.308844+0 2.863416-3 6.309573+0 2.282264-3 7.585776+0 1.805903-3 9.225714+0 1.419084-3 1.174898+1 1.063240-3 1.479108+1 8.143671-4 1.905461+1 6.120507-4 2.600160+1 4.349410-4 3.589219+1 3.076826-4 5.308844+1 2.037430-4 8.810489+1 1.206398-4 1.717908+2 6.108084-5 3.427678+2 3.039996-5 1.364583+3 7.597013-6 1.000000+5 1.034900-7 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 9.879200-3 2.498700-4 1.000000+5 2.498700-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.879200-3 2.174300-3 1.000000+5 2.174300-3 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 9.879200-3 7.455030-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.684700-3 2.932167+4 2.800000-3 2.817580+4 3.235937-3 2.326963+4 3.467369-3 2.107537+4 4.265795-3 1.546491+4 4.650000-3 1.355042+4 5.128614-3 1.154367+4 6.025596-3 8.825221+3 6.760830-3 7.221375+3 7.852356-3 5.533556+3 9.440609-3 3.939476+3 1.080000-2 3.051560+3 1.244515-2 2.318681+3 1.479108-2 1.645368+3 1.757924-2 1.157373+3 2.089296-2 8.071982+2 2.483133-2 5.583084+2 2.917427-2 3.927739+2 3.427678-2 2.743327+2 4.073803-2 1.852495+2 4.800000-2 1.266036+2 5.688529-2 8.472168+1 6.760830-2 5.587809+1 8.056470-2 3.634380+1 9.660509-2 2.311275+1 1.188502-1 1.367770+1 1.548817-1 6.938906+0 2.454709-1 2.110942+0 3.054921-1 1.207414+0 3.630781-1 7.820815-1 4.168694-1 5.561140-1 4.786301-1 3.982750-1 5.432503-1 2.953018-1 6.165950-1 2.205691-1 6.998420-1 1.660900-1 7.852356-1 1.292406-1 8.810489-1 1.012023-1 9.772372-1 8.178945-2 1.122018+0 6.219222-2 1.273503+0 4.870798-2 1.445440+0 3.846081-2 1.621810+0 3.125231-2 1.840772+0 2.505997-2 2.089296+0 2.023444-2 2.371374+0 1.645846-2 2.722701+0 1.324415-2 3.162278+0 1.055312-2 3.672823+0 8.473050-3 4.265795+0 6.852746-3 5.011872+0 5.493071-3 5.956621+0 4.367074-3 7.079458+0 3.497651-3 8.709636+0 2.702487-3 1.122018+1 1.993069-3 1.412538+1 1.524303-3 1.819701+1 1.144086-3 2.454709+1 8.222252-4 3.388442+1 5.808406-4 5.069907+1 3.795651-4 8.511380+1 2.219476-4 1.659587+2 1.123229-4 3.311311+2 5.589047-5 1.318257+3 1.396413-5 1.000000+5 1.837600-7 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.684700-3 2.432400-4 1.000000+5 2.432400-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.684700-3 1.112100-5 1.000000+5 1.112100-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.684700-3 2.430339-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.461400-3 4.736344+4 2.540973-3 4.627809+4 2.770000-3 4.200700+4 2.920000-3 3.939380+4 3.162278-3 3.536751+4 3.507519-3 3.050328+4 3.801894-3 2.702049+4 4.120975-3 2.375212+4 4.415704-3 2.113177+4 5.188000-3 1.587945+4 5.559043-3 1.396438+4 6.382635-3 1.067471+4 7.000000-3 8.866040+3 8.000000-3 6.704520+3 8.810489-3 5.446859+3 1.011579-2 4.004692+3 1.122018-2 3.158282+3 1.273503-2 2.345508+3 1.450000-2 1.714198+3 1.640590-2 1.262817+3 1.862087-2 9.165949+2 2.137962-2 6.411389+2 2.454709-2 4.450219+2 2.818383-2 3.066562+2 3.273407-2 2.032988+2 3.845918-2 1.294959+2 4.518559-2 8.184011+1 5.370318-2 4.967998+1 6.531306-2 2.798636+1 8.128305-2 1.462040+1 1.659587-1 1.718394+0 2.000000-1 9.867340-1 2.600160-1 4.591059-1 3.019952-1 2.989342-1 3.467369-1 2.026221-1 3.935501-1 1.428590-1 4.466836-1 1.014871-1 5.011872-1 7.490749-2 5.623413-1 5.569783-2 6.237348-1 4.296303-2 6.918310-1 3.338140-2 7.673615-1 2.611879-2 8.709636-1 1.947762-2 9.440609-1 1.627871-2 1.011579+0 1.405907-2 1.109175+0 1.166372-2 1.216186+0 9.745097-3 1.333521+0 8.199293-3 1.513561+0 6.521895-3 1.737801+0 5.106573-3 1.972423+0 4.108806-3 2.238721+0 3.330750-3 2.540973+0 2.719931-3 2.917427+0 2.197168-3 3.388442+0 1.756949-3 3.935501+0 1.415539-3 4.623810+0 1.130386-3 5.495409+0 8.954675-4 6.531306+0 7.147947-4 7.852356+0 5.664147-4 9.440609+0 4.519224-4 1.174898+1 3.481430-4 1.496236+1 2.631735-4 1.949845+1 1.953487-4 2.660725+1 1.389079-4 3.715352+1 9.712227-5 5.432503+1 6.513337-5 8.912509+1 3.904079-5 1.737801+2 1.976846-5 3.467369+2 9.839567-6 1.380384+3 2.459076-6 1.000000+5 3.388800-8 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.461400-3 2.115900-4 1.000000+5 2.115900-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.461400-3 1.941700-5 1.000000+5 1.941700-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.461400-3 2.230393-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.184100-3 1.410458+5 2.511886-3 1.150183+5 2.691535-3 1.032379+5 3.054921-3 8.360963+4 3.349654-3 7.138647+4 3.630781-3 6.177324+4 3.900000-3 5.401200+4 4.650000-3 3.833540+4 5.011872-3 3.291779+4 5.821032-3 2.401748+4 6.382635-3 1.965977+4 7.328245-3 1.442104+4 8.128305-3 1.134975+4 9.225714-3 8.408435+3 1.047129-2 6.174525+3 1.161449-2 4.769097+3 1.333521-2 3.351564+3 1.531087-2 2.333801+3 1.737801-2 1.662092+3 1.950000-2 1.213320+3 2.213095-2 8.531788+2 2.540973-2 5.765783+2 2.917427-2 3.867358+2 3.349654-2 2.575876+2 3.890451-2 1.646183+2 4.570882-2 1.008257+2 5.370318-2 6.128456+1 6.456542-2 3.441431+1 7.852356-2 1.849634+1 1.000000-1 8.521880+0 1.659587-1 1.669220+0 2.018366-1 8.947881-1 2.371374-1 5.390858-1 2.722701-1 3.515742-1 3.090295-1 2.392516-1 3.467369-1 1.697548-1 3.890451-1 1.213132-1 4.315191-1 9.027488-2 4.786301-1 6.764693-2 5.308844-1 5.107182-2 5.888437-1 3.885659-2 6.531306-1 2.979249-2 7.244360-1 2.302514-2 8.222427-1 1.697087-2 8.912509-1 1.404484-2 9.549926-1 1.202696-2 1.011579+0 1.063497-2 1.096478+0 9.019929-3 1.202264+0 7.527403-3 1.303167+0 6.466094-3 1.462177+0 5.247476-3 1.717908+0 3.942337-3 1.949845+0 3.169635-3 2.213095+0 2.567506-3 2.511886+0 2.095282-3 2.884032+0 1.691501-3 3.349654+0 1.351770-3 3.890451+0 1.088456-3 4.570882+0 8.687554-4 5.432503+0 6.878524-4 6.456542+0 5.487844-4 7.762471+0 4.346648-4 9.332543+0 3.466467-4 1.174898+1 2.633588-4 1.479108+1 2.017247-4 1.905461+1 1.516097-4 2.600160+1 1.077328-4 3.630781+1 7.528699-5 5.308844+1 5.046742-5 8.810489+1 2.988357-5 1.737801+2 1.495425-5 3.467369+2 7.443358-6 1.380384+3 1.860247-6 1.000000+5 2.563500-8 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.184100-3 1.876000-4 1.000000+5 1.876000-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.184100-3 6.176700-6 1.000000+5 6.176700-6 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.184100-3 1.990323-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.802300-3 2.624447+5 1.846000-3 3.088873+5 1.862087-3 3.319818+5 1.878000-3 3.484329+5 1.885000-3 3.545905+5 1.893000-3 3.608511+5 1.910000-3 3.702373+5 1.920000-3 3.748238+5 1.935000-3 3.794867+5 1.950000-3 3.823956+5 1.995262-3 3.627807+5 2.300000-3 2.527292+5 2.511886-3 2.009202+5 2.754229-3 1.571385+5 3.054921-3 1.182427+5 3.400000-3 8.738920+4 3.800000-3 6.346800+4 4.265795-3 4.499020+4 4.731513-3 3.293138+4 5.308844-3 2.307185+4 6.000000-3 1.571832+4 6.918310-3 9.948679+3 7.673615-3 7.092768+3 8.810489-3 4.480741+3 1.000000-2 2.917980+3 1.135011-2 1.887385+3 1.303167-2 1.164377+3 1.500000-2 7.064880+2 1.737801-2 4.155733+2 2.018366-2 2.403419+2 2.344229-2 1.379649+2 2.754229-2 7.529527+1 3.235937-2 4.080299+1 3.935501-2 1.922666+1 4.897788-2 8.223693+0 1.011580-1 4.805260-1 1.244515-1 2.147661-1 1.479108-1 1.105332-1 1.717908-1 6.258097-2 1.972423-1 3.727076-2 2.264644-1 2.234897-2 2.570396-1 1.408778-2 2.884032-1 9.324800-3 3.235937-1 6.217012-3 3.589219-1 4.345481-3 4.000000-1 3.009789-3 4.415705-1 2.167777-3 4.897788-1 1.548503-3 5.370318-1 1.155734-3 5.888437-1 8.687584-4 6.309573-1 7.057098-4 6.839117-1 5.573037-4 7.498942-1 4.286771-4 8.035261-1 3.535990-4 8.609938-1 2.908765-4 9.120108-1 2.488096-4 9.549926-1 2.208398-4 1.000000+0 1.972344-4 1.047129+0 1.774146-4 1.096478+0 1.606833-4 1.161449+0 1.431241-4 1.230269+0 1.283985-4 1.333521+0 1.110654-4 1.479108+0 9.296469-5 1.862087+0 6.210495-5 2.089296+0 5.110752-5 2.371374+0 4.157044-5 2.722701+0 3.345155-5 3.162278+0 2.665427-5 3.672823+0 2.140034-5 4.265795+0 1.730824-5 5.011872+0 1.387447-5 5.956621+0 1.103000-5 7.079458+0 8.834327-6 8.709636+0 6.825753-6 1.122018+1 5.034141-6 1.412538+1 3.850053-6 1.819701+1 2.889686-6 2.454709+1 2.076738-6 3.388442+1 1.467075-6 5.069907+1 9.586950-7 8.511380+1 5.605758-7 1.659587+2 2.836971-7 3.311311+2 1.411624-7 1.318257+3 3.526949-8 1.000000+5 4.64130-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.802300-3 1.436300-4 1.000000+5 1.436300-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.802300-3 2.195200-5 1.000000+5 2.195200-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.802300-3 1.636718-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.741600-3 6.586724+5 1.863000-3 6.110023+5 1.870000-3 6.095040+5 1.940000-3 5.580768+5 2.290868-3 3.627319+5 2.540973-3 2.751688+5 2.786121-3 2.138398+5 3.019952-3 1.706270+5 3.311311-3 1.311076+5 3.672823-3 9.703389+4 4.027170-3 7.361573+4 4.623810-3 4.834538+4 5.128614-3 3.497042+4 5.800000-3 2.367294+4 6.606934-3 1.551695+4 7.413102-3 1.061152+4 8.413951-3 6.933839+3 9.549926-3 4.495694+3 1.083927-2 2.893336+3 1.230269-2 1.848960+3 1.400000-2 1.162590+3 1.603245-2 7.093928+2 1.862087-2 4.077648+2 2.162719-2 2.324367+2 2.500000-2 1.338696+2 2.917427-2 7.383216+1 3.467369-2 3.762744+1 4.168694-2 1.818568+1 5.128614-2 7.961833+0 1.035142-1 4.735983-1 1.244515-1 2.273015-1 1.462177-1 1.204123-1 1.678804-1 7.033075-2 1.905461-1 4.325877-2 2.018366-1 3.479115-2 2.398833-1 1.832790-2 2.660725-1 1.256524-2 2.951209-1 8.678173-3 3.235937-1 6.287990-3 3.548134-1 4.587504-3 3.890451-1 3.371156-3 4.216965-1 2.591416-3 4.623810-1 1.932573-3 5.069907-1 1.451871-3 5.495409-1 1.136943-3 6.000000-1 8.773388-4 6.531306-1 6.895904-4 7.079458-1 5.525131-4 8.128305-1 3.827227-4 8.709636-1 3.189622-4 9.225714-1 2.757872-4 9.660509-1 2.468253-4 1.011579+0 2.221871-4 1.071519+0 1.962690-4 1.135011+0 1.745054-4 1.216186+0 1.526467-4 1.318257+0 1.315941-4 1.819701+0 7.467051-5 2.044000+0 6.125953-5 2.317395+0 4.984989-5 2.630268+0 4.078384-5 3.019952+0 3.300493-5 3.507519+0 2.643636-5 4.073803+0 2.133425-5 4.786301+0 1.706568-5 5.688529+0 1.354020-5 6.760830+0 1.082327-5 8.222427+0 8.466683-6 9.772372+0 6.861538-6 1.202264+1 5.363142-6 1.531087+1 4.057345-6 1.995262+1 3.013710-6 2.722701+1 2.144316-6 3.801894+1 1.500000-6 5.495409+1 1.018578-6 9.015711+1 6.106370-7 1.757924+2 3.092416-7 3.507519+2 1.539260-7 1.396368+3 3.847283-8 1.000000+5 5.36330-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.741600-3 1.295200-4 1.000000+5 1.295200-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.741600-3 1.421400-8 1.000000+5 1.421400-8 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.741600-3 1.612066-3 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.546500-4 6.718600+4 5.800000-4 6.637808+4 6.000000-4 6.544400+4 6.382635-4 6.227138+4 6.606934-4 6.070668+4 7.500000-4 5.467520+4 8.035261-4 5.128700+4 9.549926-4 4.265707+4 1.035142-3 3.893149+4 1.148154-3 3.427491+4 1.303167-3 2.914933+4 1.428894-3 2.574128+4 1.659587-3 2.084528+4 1.862087-3 1.759488+4 2.150000-3 1.413654+4 2.511886-3 1.104888+4 2.884032-3 8.815042+3 3.349654-3 6.855217+3 3.935501-3 5.188372+3 4.677351-3 3.818928+3 5.559043-3 2.789320+3 6.606934-3 2.023137+3 8.000000-3 1.406648+3 9.660509-3 9.754685+2 1.161449-2 6.772615+2 1.396368-2 4.665825+2 1.664540-2 3.246180+2 2.000000-2 2.204340+2 2.371374-2 1.528195+2 2.818383-2 1.046415+2 3.349654-2 7.111840+1 4.000000-2 4.745050+1 4.731513-2 3.211681+1 5.559043-2 2.192927+1 6.683439-2 1.406817+1 8.035261-2 8.956160+0 9.772372-2 5.492723+0 1.230269-1 3.064778+0 1.566751-1 1.649027+0 2.454709-1 5.171698-1 3.054921-1 2.959044-1 3.630781-1 1.917064-1 4.168694-1 1.363347-1 4.786301-1 9.764881-2 5.432503-1 7.240737-2 6.165950-1 5.408769-2 6.998420-1 4.073303-2 7.852356-1 3.169788-2 8.810489-1 2.482111-2 9.772372-1 2.005845-2 1.122018+0 1.525075-2 1.273503+0 1.194463-2 1.445440+0 9.432096-3 1.621810+0 7.664444-3 1.840772+0 6.145804-3 2.089296+0 4.962321-3 2.371374+0 4.036259-3 2.722701+0 3.247966-3 3.162278+0 2.588020-3 3.672823+0 2.077911-3 4.265795+0 1.680532-3 5.011872+0 1.347078-3 5.956621+0 1.070996-3 7.079458+0 8.577622-4 8.709636+0 6.627472-4 1.122018+1 4.887839-4 1.412538+1 3.738209-4 1.819701+1 2.805716-4 2.426610+1 2.041958-4 3.311311+1 1.459959-4 5.000000+1 9.444400-5 8.413951+1 5.507667-5 1.640590+2 2.786929-5 3.273407+2 1.386617-5 1.303167+3 3.464220-6 1.000000+5 4.506500-8 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.546500-4 1.427500-4 1.000000+5 1.427500-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.546500-4 3.835900-8 1.000000+5 3.835900-8 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.546500-4 4.118616-4 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.614100-4 5.499251+4 5.370318-4 5.457741+4 6.100000-4 5.381180+4 6.531306-4 5.301601+4 7.079458-4 5.172579+4 7.585776-4 5.035776+4 8.200000-4 4.850080+4 8.709636-4 4.682065+4 9.332543-4 4.464529+4 1.023293-3 4.155645+4 1.109175-3 3.875245+4 1.202264-3 3.584310+4 1.318257-3 3.254337+4 1.428894-3 2.972773+4 1.570000-3 2.653300+4 1.737801-3 2.330602+4 1.905461-3 2.056882+4 2.137962-3 1.745208+4 2.371374-3 1.493364+4 2.660725-3 1.246440+4 2.985383-3 1.031449+4 3.311311-3 8.643405+3 3.715352-3 7.052125+3 4.168694-3 5.711705+3 4.677351-3 4.594723+3 5.300000-3 3.601000+3 6.025596-3 2.781800+3 6.839116-3 2.139850+3 7.800000-3 1.616932+3 8.810489-3 1.238417+3 1.000000-2 9.319120+2 1.135011-2 6.962501+2 1.290000-2 5.148220+2 1.479108-2 3.698071+2 1.698244-2 2.626670+2 1.949845-2 1.851114+2 2.238721-2 1.294616+2 2.570396-2 8.989227+1 2.985383-2 6.008370+1 3.467369-2 3.984624+1 4.073803-2 2.540404+1 4.841724-2 1.555734+1 5.754399-2 9.449764+0 7.079458-2 5.152168+0 9.120108-2 2.433698+0 1.659587-1 4.075724-1 2.089296-1 2.063979-1 2.483133-1 1.247041-1 2.884032-1 8.111495-2 3.311311-1 5.490386-2 3.758374-1 3.864444-2 4.265795-1 2.739471-2 4.786301-1 2.017483-2 5.370318-1 1.496448-2 6.000000-1 1.130531-2 6.683439-1 8.672302-3 7.413102-1 6.769774-3 8.609938-1 4.779034-3 9.332543-1 3.989569-3 1.000000+0 3.441407-3 1.096478+0 2.852570-3 1.202264+0 2.381287-3 1.318257+0 2.001840-3 1.479108+0 1.624384-3 1.717908+0 1.245437-3 1.949845+0 1.001500-3 2.213095+0 8.113095-4 2.511886+0 6.621054-4 2.884032+0 5.345099-4 3.349654+0 4.271553-4 3.890451+0 3.439494-4 4.570882+0 2.745275-4 5.432503+0 2.173622-4 6.456542+0 1.734180-4 7.762471+0 1.373516-4 9.332543+0 1.095452-4 1.174898+1 8.322161-5 1.479108+1 6.374371-5 1.905461+1 4.790773-5 2.600160+1 3.404473-5 3.589219+1 2.408342-5 5.308844+1 1.594784-5 8.810489+1 9.443180-6 1.737801+2 4.725591-6 3.467369+2 2.352032-6 1.380384+3 5.878330-7 1.000000+5 8.100700-9 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.614100-4 1.145400-4 1.000000+5 1.145400-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.614100-4 4.659900-8 1.000000+5 4.659900-8 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.614100-4 3.468234-4 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 3.973600-4 2.477883+5 4.623810-4 2.329620+5 5.308844-4 2.146888+5 5.754399-4 2.029449+5 6.309573-4 1.890833+5 6.918310-4 1.748428+5 7.500000-4 1.621128+5 8.200000-4 1.478104+5 9.120108-4 1.313832+5 9.885531-4 1.194232+5 1.096478-3 1.047628+5 1.216186-3 9.129379+4 1.355400-3 7.838137+4 1.513561-3 6.662972+4 1.698244-3 5.578336+4 1.905461-3 4.635343+4 2.150000-3 3.786552+4 2.400000-3 3.127512+4 2.691535-3 2.545211+4 3.054921-3 2.011196+4 3.467369-3 1.576288+4 3.890451-3 1.254465+4 4.365158-3 9.920604+3 4.954502-3 7.608015+3 5.623413-3 5.791642+3 6.382635-3 4.376805+3 7.244360-3 3.283834+3 8.222426-3 2.446595+3 9.332543-3 1.809695+3 1.059254-2 1.329055+3 1.202264-2 9.690774+2 1.364583-2 7.015056+2 1.548817-2 5.041707+2 1.757924-2 3.598549+2 2.018366-2 2.471842+2 2.317395-2 1.684675+2 2.660725-2 1.139581+2 3.054921-2 7.652825+1 3.548134-2 4.932367+1 4.120975-2 3.154911+1 4.841724-2 1.934429+1 5.688529-2 1.177086+1 6.839116-2 6.619349+0 8.413951-2 3.435639+0 1.122019-1 1.368301+0 1.659587-1 3.899813-1 2.041738-1 2.018999-1 2.398833-1 1.218574-1 2.754229-1 7.960734-2 3.126079-1 5.425697-2 3.507519-1 3.854475-2 3.935501-1 2.757947-2 4.365158-1 2.054583-2 4.841724-1 1.541271-2 5.370318-1 1.164899-2 5.956621-1 8.872922-3 6.531306-1 7.014112-3 7.244360-1 5.425384-3 8.317638-1 3.893055-3 9.015711-1 3.225365-3 9.660509-1 2.765124-3 1.023293+0 2.447711-3 1.109175+0 2.077666-3 1.216186+0 1.735588-3 1.333521+0 1.460962-3 1.531087+0 1.139523-3 1.757924+0 8.928500-4 2.000000+0 7.159400-4 2.264644+0 5.830753-4 2.570396+0 4.764434-4 2.951209+0 3.851064-4 3.427678+0 3.081121-4 4.000000+0 2.467100-4 4.677351+0 1.984570-4 5.559043+0 1.572931-4 6.606934+0 1.256193-4 8.000000+0 9.871200-5 9.549926+0 7.949378-5 1.188502+1 6.126017-5 1.500000+1 4.680500-5 1.949845+1 3.484117-5 2.660725+1 2.477459-5 3.672823+1 1.753508-5 5.370318+1 1.175734-5 8.912509+1 6.963083-6 1.737801+2 3.525873-6 3.467369+2 1.754891-6 1.380384+3 4.385843-7 1.000000+5 6.044000-9 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 3.973600-4 1.090200-4 1.000000+5 1.090200-4 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.973600-4 2.060000-8 1.000000+5 2.060000-8 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 3.973600-4 2.883194-4 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.424800-4 1.684823+5 2.511886-4 1.946291+5 2.520000-4 1.967092+5 2.553000-4 1.998932+5 2.570396-4 2.005842+5 2.590000-4 2.000076+5 2.608000-4 1.982484+5 2.630268-4 1.947677+5 2.660000-4 1.886588+5 2.700000-4 1.792156+5 2.851018-4 1.451637+5 2.890000-4 1.383064+5 2.930000-4 1.323872+5 2.970000-4 1.276480+5 3.000000-4 1.248396+5 3.040000-4 1.220524+5 3.080000-4 1.202732+5 3.115000-4 1.194660+5 3.150000-4 1.192904+5 3.190000-4 1.197796+5 3.240000-4 1.212944+5 3.300000-4 1.241908+5 3.350000-4 1.272980+5 3.430000-4 1.333180+5 3.550000-4 1.438704+5 3.780000-4 1.659648+5 3.930000-4 1.801172+5 4.053000-4 1.910712+5 4.168694-4 2.006370+5 4.280000-4 2.090072+5 4.430000-4 2.189408+5 4.570882-4 2.269471+5 4.731513-4 2.345773+5 4.897788-4 2.408296+5 5.080000-4 2.458828+5 5.300000-4 2.499292+5 5.500000-4 2.520120+5 5.754399-4 2.527678+5 6.000000-4 2.517092+5 6.237348-4 2.493044+5 6.531306-4 2.449583+5 6.850000-4 2.391108+5 7.244360-4 2.307384+5 7.673615-4 2.205949+5 8.128305-4 2.093248+5 8.609938-4 1.973515+5 9.200000-4 1.830924+5 9.772372-4 1.698225+5 1.047129-3 1.546983+5 1.122018-3 1.399928+5 1.202264-3 1.258190+5 1.303167-3 1.102257+5 1.412538-3 9.582140+4 1.531087-3 8.266053+4 1.659587-3 7.081718+4 1.800000-3 6.017880+4 1.972423-3 4.971012+4 2.150000-3 4.121400+4 2.371374-3 3.304016+4 2.600160-3 2.663354+4 2.851018-3 2.132411+4 3.162278-3 1.647408+4 3.507519-3 1.262253+4 3.890451-3 9.596441+3 4.265795-3 7.475050+3 4.677351-3 5.790712+3 5.188000-3 4.315871+3 5.800000-3 3.122168+3 6.456542-3 2.270392+3 7.161434-3 1.658125+3 8.035261-3 1.160927+3 9.015711-3 8.069072+2 1.011579-2 5.566806+2 1.135011-2 3.812951+2 1.273503-2 2.593686+2 1.445440-2 1.684725+2 1.640590-2 1.085966+2 1.862087-2 6.950129+1 2.137962-2 4.238944+1 2.454709-2 2.566496+1 2.851018-2 1.478976+1 3.349654-2 8.103236+0 3.981072-2 4.218755+0 4.841724-2 1.996439+0 6.237348-2 7.509520-1 1.071519-1 9.208607-2 1.318257-1 4.148041-2 1.566751-1 2.148634-2 1.819701-1 1.223126-2 2.089296-1 7.320153-3 2.371374-1 4.602646-3 2.691535-1 2.914839-3 3.019952-1 1.937629-3 3.388442-1 1.297365-3 3.758374-1 9.103778-4 4.168694-1 6.432440-4 4.623810-1 4.578873-4 5.069907-1 3.408001-4 5.559043-1 2.554021-4 6.095369-1 1.928080-4 6.683439-1 1.467334-4 7.328245-1 1.125098-4 8.709636-1 6.917522-5 9.225714-1 5.923987-5 9.660509-1 5.264808-5 1.011579+0 4.709805-5 1.059254+0 4.243762-5 1.109175+0 3.849530-5 1.174898+0 3.434485-5 1.258925+0 3.020915-5 1.364583+0 2.617951-5 1.513561+0 2.192777-5 1.840772+0 1.554749-5 2.065380+0 1.278283-5 2.344229+0 1.038923-5 2.660725+0 8.505568-6 3.090295+0 6.769824-6 3.589219+0 5.429125-6 4.168694+0 4.386179-6 4.897788+0 3.512219-6 5.821032+0 2.789456-6 6.918310+0 2.232011-6 8.413951+0 1.747551-6 1.035142+1 1.359804-6 1.273503+1 1.064867-6 1.621810+1 8.070919-7 2.113489+1 6.005136-7 2.884032+1 4.278947-7 4.120975+1 2.925046-7 5.888437+1 2.013119-7 9.440609+1 1.236937-7 1.840772+2 6.267556-8 3.672823+2 3.120571-8 1.462177+3 7.801477-9 4.623810+4 2.46293-10 1.000000+5 1.13890-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.424800-4 7.452500-5 1.000000+5 7.452500-5 1 73000 7 7 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.424800-4 3.042900-8 1.000000+5 3.042900-8 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.424800-4 1.679246-4 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.307200-4 2.655682+5 2.400000-4 2.868190+5 2.423000-4 2.898636+5 2.445000-4 2.907438+5 2.458000-4 2.900526+5 2.473300-4 2.880034+5 2.490000-4 2.844000+5 2.515000-4 2.770038+5 2.540973-4 2.678039+5 2.583500-4 2.516474+5 2.670000-4 2.210568+5 2.722701-4 2.058186+5 2.760000-4 1.969518+5 2.800000-4 1.893000+5 2.835000-4 1.841676+5 2.870000-4 1.804344+5 2.900000-4 1.782804+5 2.930000-4 1.770210+5 2.970000-4 1.766142+5 3.015000-4 1.777104+5 3.056900-4 1.800279+5 3.100000-4 1.835370+5 3.150000-4 1.888188+5 3.212100-4 1.968328+5 3.320000-4 2.132688+5 3.507519-4 2.450569+5 3.630781-4 2.660826+5 3.758374-4 2.869137+5 3.890451-4 3.070095+5 4.000000-4 3.222822+5 4.120975-4 3.374468+5 4.265795-4 3.531046+5 4.415704-4 3.666778+5 4.570882-4 3.781454+5 4.731513-4 3.873347+5 4.897788-4 3.941943+5 5.080000-4 3.991308+5 5.308844-4 4.022505+5 5.559043-4 4.024076+5 5.821032-4 3.994518+5 6.100000-4 3.934548+5 6.382635-4 3.852497+5 6.760830-4 3.722226+5 7.161434-4 3.568348+5 7.585776-4 3.393169+5 8.035261-4 3.204867+5 8.511380-4 3.008828+5 9.015711-4 2.807768+5 9.660509-4 2.565166+5 1.035142-3 2.327450+5 1.110000-3 2.094588+5 1.202264-3 1.841980+5 1.300000-3 1.612284+5 1.412538-3 1.387981+5 1.531087-3 1.191952+5 1.659587-3 1.016031+5 1.815000-3 8.448461+4 1.972423-3 7.064085+4 2.150000-3 5.831772+4 2.371374-3 4.650350+4 2.570396-3 3.836665+4 2.818383-3 3.060627+4 3.150000-3 2.308098+4 3.467369-3 1.795442+4 3.801894-3 1.402475+4 4.216965-3 1.054746+4 4.677351-3 7.874771+3 5.248075-3 5.643915+3 5.888437-3 4.011719+3 6.531306-3 2.930048+3 7.244360-3 2.126667+3 8.128305-3 1.477964+3 9.120108-3 1.019702+3 1.023293-2 6.982397+2 1.148154-2 4.745709+2 1.288250-2 3.202545+2 1.445440-2 2.146425+2 1.640590-2 1.371700+2 1.862087-2 8.700560+1 2.137962-2 5.252890+1 2.454709-2 3.146870+1 2.818383-2 1.871628+1 3.273407-2 1.057935+1 3.845918-2 5.678318+0 4.570882-2 2.892435+0 5.623413-2 1.276658+0 1.083927-1 9.372062-2 1.333521-1 4.129109-2 1.531088-1 2.406384-2 1.757924-1 1.413365-2 2.000000-1 8.664782-3 2.238721-1 5.686365-3 2.483133-1 3.885981-3 2.754229-1 2.673777-3 3.054921-1 1.853629-3 3.349654-1 1.347755-3 3.672823-1 9.867539-4 4.027170-1 7.278310-4 4.415705-1 5.412610-4 4.841724-1 4.056497-4 5.308844-1 3.063368-4 5.754399-1 2.411868-4 6.237348-1 1.912046-4 6.760830-1 1.526686-4 7.328245-1 1.227245-4 8.413951-1 8.539842-5 8.912509-1 7.376553-5 9.440609-1 6.412710-5 9.885531-1 5.764981-5 1.047129+0 5.084694-5 1.109175+0 4.512955-5 1.188502+0 3.938438-5 1.288250+0 3.386484-5 1.412538+0 2.871661-5 1.819701+0 1.840276-5 2.044000+0 1.510000-5 2.317395+0 1.228853-5 2.630268+0 1.005365-5 3.019952+0 8.135849-6 3.507519+0 6.516784-6 4.073803+0 5.259092-6 4.786301+0 4.206715-6 5.688529+0 3.337626-6 6.760830+0 2.668102-6 8.222427+0 2.087125-6 9.772372+0 1.691452-6 1.202264+1 1.322078-6 1.531087+1 1.000149-6 2.000000+1 7.409500-7 2.722701+1 5.285852-7 3.801894+1 3.697671-7 5.559043+1 2.480988-7 9.015711+1 1.505260-7 1.757924+2 7.623058-8 3.507519+2 3.794478-8 1.396368+3 9.483753-9 1.000000+5 1.32210-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.307200-4 7.334300-5 1.000000+5 7.334300-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.307200-4 1.573770-4 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 3.614000-5 3.717504+5 3.660000-5 3.813408+5 3.710000-5 3.891882+5 3.780000-5 3.964140+5 3.863700-5 4.012066+5 3.950000-5 4.034322+5 4.073803-5 4.033691+5 4.273000-5 3.997597+5 4.623810-5 3.916024+5 4.800000-5 3.899232+5 4.954502-5 3.909720+5 5.080000-5 3.939546+5 5.218000-5 3.997368+5 5.350000-5 4.079514+5 5.450000-5 4.160364+5 5.595400-5 4.306931+5 5.730000-5 4.473504+5 5.888437-5 4.707846+5 6.070000-5 5.024274+5 6.237348-5 5.357556+5 6.500000-5 5.951916+5 7.400000-5 8.421900+5 7.852356-5 9.804236+5 8.317638-5 1.127736+6 8.810489-5 1.288661+6 9.300000-5 1.450698+6 9.800000-5 1.615038+6 1.023293-4 1.754178+6 1.071519-4 1.902562+6 1.109175-4 2.010858+6 1.150000-4 2.119326+6 1.190000-4 2.216046+6 1.244515-4 2.332767+6 1.303167-4 2.441000+6 1.364583-4 2.537477+6 1.430000-4 2.623188+6 1.513561-4 2.710244+6 1.603245-4 2.779102+6 1.690000-4 2.821884+6 1.778279-4 2.841796+6 1.862087-4 2.842066+6 1.972423-4 2.821238+6 2.089296-4 2.779056+6 2.220000-4 2.715408+6 2.350000-4 2.640192+6 2.483133-4 2.551845+6 2.630268-4 2.444474+6 2.786121-4 2.324799+6 2.951209-4 2.195531+6 3.150000-4 2.043084+6 3.350000-4 1.894902+6 3.550000-4 1.752690+6 3.758374-4 1.612943+6 4.000000-4 1.462014+6 4.280000-4 1.305000+6 4.570882-4 1.159250+6 4.850000-4 1.035504+6 5.188000-4 9.037623+5 5.559043-4 7.808879+5 6.025596-4 6.525694+5 6.456542-4 5.550712+5 6.918310-4 4.694116+5 7.500000-4 3.829674+5 8.128305-4 3.100868+5 8.709636-4 2.572269+5 9.332543-4 2.123810+5 1.023293-3 1.631832+5 1.122018-3 1.243588+5 1.230269-3 9.405349+4 1.355400-3 6.955766+4 1.496236-3 5.071806+4 1.640590-3 3.753975+4 1.819701-3 2.655790+4 2.018366-3 1.864453+4 2.238721-3 1.299517+4 2.483133-3 8.993090+3 2.754229-3 6.180509+3 3.054921-3 4.219054+3 3.427678-3 2.739396+3 3.845918-3 1.765072+3 4.315191-3 1.129067+3 4.841724-3 7.171296+2 5.432503-3 4.523047+2 6.165950-3 2.703295+2 6.998420-3 1.603090+2 7.943282-3 9.428810+1 9.000000-3 5.543268+1 1.011579-2 3.347652+1 1.148154-2 1.923499+1 1.303167-2 1.097313+1 1.500000-2 5.839050+0 1.678804-2 3.504376+0 1.972423-2 1.672872+0 2.398833-2 6.773573-1 2.917427-2 2.722171-1 3.427678-2 1.274555-1 4.415704-2 3.832698-2 6.998420-2 4.284691-3 8.609938-2 1.608303-3 1.023293-1 7.155025-4 1.188502-1 3.569041-4 1.364583-1 1.891322-4 1.548817-1 1.064195-4 1.757924-1 6.034497-5 1.972423-1 3.629348-5 2.213095-1 2.199268-5 2.454709-1 1.411071-5 2.722701-1 9.119385-6 3.019952-1 5.939489-6 3.311311-1 4.084783-6 3.630781-1 2.827696-6 4.000000-1 1.934700-6 4.365158-1 1.381816-6 4.731513-1 1.019432-6 5.128614-1 7.571880-7 5.559043-1 5.665671-7 6.000000-1 4.335500-7 6.456542-1 3.384256-7 6.998420-1 2.596552-7 8.035261-1 1.669232-7 8.511380-1 1.376143-7 8.912509-1 1.185796-7 9.225714-1 1.065454-7 9.549926-1 9.620886-8 9.885531-1 8.738468-8 1.023293+0 7.990525-8 1.059254+0 7.353167-8 1.096478+0 6.804812-8 1.135011+0 6.328730-8 1.188502+0 5.783424-8 1.258925+0 5.210155-8 1.348963+0 4.629711-8 1.500000+0 3.901200-8 1.905461+0 2.565628-8 2.113489+0 2.154559-8 2.398833+0 1.753736-8 2.754229+0 1.412111-8 3.198895+0 1.125816-8 3.715352+0 9.044366-9 4.315191+0 7.318733-9 5.069907+0 5.869573-9 6.025596+0 4.668717-9 7.244360+0 3.687184-9 8.912509+0 2.851541-9 1.148154+1 2.105083-9 1.445440+1 1.611185-9 1.862087+1 1.210080-9 2.511886+1 8.70224-10 3.467369+1 6.15097-10 5.128614+1 4.07011-10 8.609938+1 2.38035-10 1.678804+2 1.20484-10 3.349654+2 5.99561-11 1.333521+3 1.49811-11 1.000000+5 1.99430-13 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 3.614000-5 3.614000-5 1.000000+5 3.614000-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.614000-5 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 3.404000-5 5.612272+5 3.440000-5 5.687616+5 3.495000-5 5.765544+5 3.550000-5 5.807712+5 3.630781-5 5.828528+5 3.740000-5 5.809472+5 3.920000-5 5.724528+5 4.300000-5 5.526552+5 4.466836-5 5.475995+5 4.623810-5 5.463963+5 4.731513-5 5.479799+5 4.850000-5 5.522824+5 4.954502-5 5.584947+5 5.080000-5 5.691448+5 5.190000-5 5.814712+5 5.308844-5 5.980121+5 5.450000-5 6.220528+5 5.580000-5 6.483552+5 5.754399-5 6.896877+5 5.950000-5 7.436952+5 6.165950-5 8.115938+5 7.079458-5 1.162197+6 7.500000-5 1.341816+6 7.943282-5 1.536883+6 8.413951-5 1.748513+6 8.912509-5 1.975952+6 9.332543-5 2.167421+6 9.800000-5 2.376112+6 1.023293-4 2.561678+6 1.060000-4 2.710920+6 1.109175-4 2.894540+6 1.150000-4 3.032504+6 1.202264-4 3.189267+6 1.260000-4 3.336912+6 1.318257-4 3.461685+6 1.396368-4 3.598542+6 1.480000-4 3.712488+6 1.566751-4 3.796501+6 1.650000-4 3.846768+6 1.737801-4 3.870670+6 1.820000-4 3.867760+6 1.927525-4 3.833568+6 2.041738-4 3.772292+6 2.162719-4 3.687935+6 2.302600-4 3.571123+6 2.450000-4 3.433296+6 2.580000-4 3.300352+6 2.730000-4 3.139008+6 2.900000-4 2.955496+6 3.090295-4 2.752554+6 3.280000-4 2.559240+6 3.467369-4 2.375683+6 3.715352-4 2.147353+6 3.935501-4 1.960522+6 4.216965-4 1.744518+6 4.466836-4 1.573437+6 4.786301-4 1.379313+6 5.069907-4 1.228320+6 5.500000-4 1.033912+6 5.900000-4 8.838800+5 6.237348-4 7.771208+5 6.839116-4 6.217556+5 7.413102-4 5.070606+5 7.943282-4 4.230661+5 8.609938-4 3.402675+5 9.332543-4 2.717981+5 1.035142-3 2.015967+5 1.122018-3 1.587054+5 1.230269-3 1.198349+5 1.348963-3 8.980172+4 1.479108-3 6.682033+4 1.640590-3 4.756348+4 1.819701-3 3.358647+4 2.018366-3 2.353391+4 2.264644-3 1.572250+4 2.511886-3 1.085717+4 2.786121-3 7.444699+3 3.090295-3 5.067184+3 3.427678-3 3.425546+3 3.845918-3 2.200787+3 4.315191-3 1.403985+3 4.841724-3 8.894605+2 5.477200-3 5.412772+2 6.165950-3 3.335174+2 6.918310-3 2.068735+2 7.762471-3 1.274459+2 8.709636-3 7.795085+1 9.885531-3 4.503769+1 1.122018-2 2.582268+1 1.273503-2 1.469712+1 1.462177-2 7.884881+0 1.678804-2 4.197463+0 1.949845-2 2.102498+0 2.290868-2 9.904454-1 2.722701-2 4.386532-1 3.273407-2 1.826433-1 4.216965-2 5.427170-2 7.673615-2 3.048136-3 9.225714-2 1.264733-3 1.083927-1 5.898121-4 1.258925-1 2.925662-4 1.428894-1 1.628010-4 1.611800-1 9.392197-5 1.798871-1 5.729505-5 1.995262-1 3.619505-5 2.213400-1 2.302600-5 2.426610-1 1.552948-5 2.660725-1 1.054048-5 2.917427-1 7.207296-6 3.198895-1 4.965700-6 3.467369-1 3.609155-6 3.758374-1 2.641915-6 4.073803-1 1.948804-6 4.415705-1 1.448645-6 4.786301-1 1.085108-6 5.128614-1 8.526033-7 5.495409-1 6.743626-7 5.821032-1 5.581102-7 6.237348-1 4.477719-7 6.760830-1 3.490130-7 7.413102-1 2.645484-7 8.035261-1 2.090098-7 8.709636-1 1.662590-7 9.660509-1 1.249221-7 1.000000+0 1.141100-7 1.035142+0 1.048854-7 1.071519+0 9.690153-8 1.122018+0 8.781023-8 1.174898+0 8.012232-8 1.244515+0 7.200915-8 1.333521+0 6.379819-8 1.513561+0 5.170778-8 1.883649+0 3.523453-8 2.089296+0 2.956709-8 2.371374+0 2.404901-8 2.722701+0 1.935232-8 3.162278+0 1.542056-8 3.672823+0 1.238148-8 4.265795+0 1.001375-8 5.011872+0 8.026638-9 5.956621+0 6.381263-9 7.079458+0 5.110933-9 8.709636+0 3.948934-9 1.122018+1 2.912448-9 1.412538+1 2.227372-9 1.819701+1 1.671812-9 2.454709+1 1.201477-9 3.349654+1 8.59261-10 5.011872+1 5.61347-10 8.413951+1 3.28174-10 1.640590+2 1.66055-10 3.273407+2 8.26220-11 1.303167+3 2.06416-11 1.000000+5 2.68520-13 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 3.404000-5 3.404000-5 1.000000+5 3.404000-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.404000-5 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 7.881000-5 6.403520+4 8.000000-5 6.157720+4 8.110000-5 5.984740+4 8.230000-5 5.845400+4 8.350000-5 5.748080+4 8.511380-5 5.668676+4 8.650000-5 5.635040+4 8.810489-5 5.628249+4 9.015711-5 5.658646+4 9.230000-5 5.723620+4 9.549926-5 5.860283+4 1.083927-4 6.528706+4 1.135011-4 6.748641+4 1.174898-4 6.885028+4 1.230269-4 7.022056+4 1.288250-4 7.107611+4 1.350000-4 7.145080+4 1.430000-4 7.133420+4 1.513561-4 7.073962+4 1.626300-4 6.947975+4 1.737801-4 6.787703+4 1.850000-4 6.597260+4 1.980000-4 6.348360+4 2.113489-4 6.074447+4 2.290868-4 5.705953+4 2.511886-4 5.270813+4 2.754229-4 4.837296+4 3.019952-4 4.407268+4 3.350000-4 3.934580+4 3.801894-4 3.398182+4 4.265795-4 2.954531+4 4.897788-4 2.476318+4 5.688529-4 2.030778+4 6.760830-4 1.600799+4 7.943282-4 1.273039+4 9.500000-4 9.801480+3 1.161449-3 7.245231+3 1.412538-3 5.351558+3 1.698244-3 3.993125+3 2.041738-3 2.956366+3 2.426610-3 2.214471+3 2.917427-3 1.615055+3 3.507519-3 1.168839+3 4.168694-3 8.572373+2 5.069907-3 5.984279+2 6.165950-3 4.146554+2 7.498942-3 2.851307+2 9.120108-3 1.945831+2 1.122018-2 1.288098+2 1.348963-2 8.862612+1 1.621810-2 6.053117+1 1.949845-2 4.102910+1 2.317395-2 2.828134+1 2.818383-2 1.840548+1 3.467369-2 1.159592+1 4.073803-2 8.041300+0 4.786301-2 5.526404+0 5.688529-2 3.667761+0 6.806000-2 2.376889+0 8.222426-2 1.492919+0 1.000000-1 9.155811-1 1.244515-1 5.252206-1 1.717908-1 2.293279-1 2.600160-1 7.876695-2 3.162278-1 4.785541-2 3.715352-1 3.195418-2 4.265795-1 2.275072-2 4.897788-1 1.631553-2 5.559043-1 1.211357-2 6.237348-1 9.301183-3 7.079458-1 7.009748-3 8.000000-1 5.376100-3 8.912509-1 4.276990-3 9.885531-1 3.459341-3 1.148154+0 2.573778-3 1.288250+0 2.062985-3 1.462177+0 1.630211-3 1.640590+0 1.325590-3 1.862087+0 1.063609-3 2.113489+0 8.593555-4 2.398833+0 6.994634-4 2.754229+0 5.632225-4 3.198895+0 4.490475-4 3.715352+0 3.607508-4 4.315191+0 2.919231-4 5.069907+0 2.341216-4 6.025596+0 1.862236-4 7.244360+0 1.470731-4 8.912509+0 1.137362-4 1.148154+1 8.396418-5 1.445440+1 6.426492-5 1.862087+1 4.826641-5 2.511886+1 3.471021-5 3.467369+1 2.453438-5 5.128614+1 1.623468-5 8.609938+1 9.494523-6 1.678804+2 4.805733-6 3.349654+2 2.391442-6 1.333521+3 5.975410-7 1.000000+5 7.954600-9 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 7.881000-5 7.881000-5 1.000000+5 7.881000-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 7.881000-5 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 5.115000-5 2.780520+6 5.170000-5 2.790200+6 5.220000-5 2.781560+6 5.290000-5 2.748240+6 5.370318-5 2.689655+6 5.450000-5 2.619260+6 5.559043-5 2.510053+6 5.700000-5 2.360780+6 5.850000-5 2.198760+6 6.025596-5 2.012646+6 6.237348-5 1.800801+6 6.480700-5 1.579071+6 6.760830-5 1.355080+6 7.161434-5 1.090949+6 8.500000-5 5.633600+5 9.225714-5 4.136514+5 1.000000-4 3.075840+5 1.071519-4 2.401453+5 1.135011-4 1.964932+5 1.202264-4 1.617765+5 1.260000-4 1.388294+5 1.318257-4 1.204500+5 1.380384-4 1.048624+5 1.450000-4 9.109300+4 1.520000-4 8.018060+4 1.584893-4 7.203670+4 1.659587-4 6.445367+4 1.737801-4 5.808651+4 1.820000-4 5.271920+4 1.905461-4 4.823789+4 2.000000-4 4.426680+4 2.089296-4 4.123101+4 2.190000-4 3.842860+4 2.317395-4 3.557400+4 2.454709-4 3.311122+4 2.630268-4 3.059589+4 2.851018-4 2.811469+4 3.162278-4 2.543916+4 4.623810-4 1.804690+4 5.432503-4 1.549655+4 6.200000-4 1.358136+4 7.079458-4 1.181849+4 8.035261-4 1.027567+4 9.120108-4 8.874440+3 1.035142-3 7.608023+3 1.161449-3 6.574670+3 1.318257-3 5.559702+3 1.500000-3 4.649940+3 1.698244-3 3.886080+3 1.927525-3 3.213026+3 2.162719-3 2.684711+3 2.454709-3 2.186992+3 2.754229-3 1.802645+3 3.126079-3 1.446584+3 3.548134-3 1.152076+3 4.027170-3 9.107651+2 4.570882-3 7.148049+2 5.188000-3 5.569941+2 5.888437-3 4.309572+2 6.683439-3 3.311294+2 7.585776-3 2.526582+2 8.609938-3 1.914406+2 9.772372-3 1.440536+2 1.109175-2 1.076585+2 1.273503-2 7.775820+1 1.462177-2 5.571582+1 1.659587-2 4.074377+1 1.905461-2 2.875213+1 2.264644-2 1.845425+1 2.630268-2 1.247377+1 3.019952-2 8.627691+0 3.467369-2 5.912019+0 4.027170-2 3.895798+0 4.731513-2 2.466867+0 5.688529-2 1.451245+0 6.998420-2 7.921596-1 9.015711-2 3.745914-1 1.717908-1 5.473851-2 2.137962-1 2.870553-2 2.540973-1 1.736043-2 2.951209-1 1.130608-2 3.388442-1 7.662645-3 3.845918-1 5.400667-3 4.365158-1 3.834404-3 4.897788-1 2.828110-3 5.495409-1 2.100900-3 6.095369-1 1.618531-3 6.760830-1 1.255637-3 7.498942-1 9.808351-4 8.609938-1 7.114466-4 9.332543-1 5.939696-4 1.000000+0 5.123900-4 1.096478+0 4.247315-4 1.202264+0 3.545508-4 1.318257+0 2.980423-4 1.479108+0 2.418310-4 1.717908+0 1.853802-4 1.949845+0 1.490685-4 2.213095+0 1.207778-4 2.511886+0 9.856538-5 2.884032+0 7.956135-5 3.349654+0 6.357885-5 3.890451+0 5.119405-5 4.570882+0 4.086104-5 5.432503+0 3.235247-5 6.456542+0 2.581154-5 7.762471+0 2.044384-5 9.332543+0 1.630452-5 1.174898+1 1.238721-5 1.479108+1 9.487880-6 1.905461+1 7.130769-6 2.600160+1 5.067362-6 3.589219+1 3.584623-6 5.308844+1 2.373718-6 8.810489+1 1.405534-6 1.717908+2 7.116240-7 3.427678+2 3.541748-7 1.364583+3 8.850826-8 1.000000+5 1.205700-9 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 5.115000-5 5.115000-5 1.000000+5 5.115000-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 5.115000-5 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 4.189000-5 6.245520+6 4.240000-5 6.146440+6 4.290000-5 6.022480+6 4.380000-5 5.756440+6 4.466836-5 5.477238+6 4.570882-5 5.138180+6 4.731513-5 4.631056+6 4.900000-5 4.139160+6 5.080000-5 3.665368+6 5.308844-5 3.139438+6 5.623413-5 2.543431+6 6.760830-5 1.268601+6 7.161434-5 1.026334+6 7.585776-5 8.359584+5 8.000000-5 6.966680+5 8.413951-5 5.903230+5 8.810489-5 5.109858+5 9.225714-5 4.454842+5 9.660509-5 3.913806+5 1.000000-4 3.570768+5 1.040000-4 3.236488+5 1.083927-4 2.938111+5 1.122018-4 2.725083+5 1.170000-4 2.503608+5 1.220000-4 2.315616+5 1.280000-4 2.132980+5 1.350000-4 1.963160+5 1.430000-4 1.809056+5 1.513561-4 1.680075+5 1.621810-4 1.546712+5 1.760000-4 1.413932+5 1.949845-4 1.274893+5 2.722701-4 9.252193+4 3.162278-4 7.959849+4 3.672823-4 6.795825+4 4.200000-4 5.856360+4 4.786301-4 5.030509+4 5.500000-4 4.250320+4 6.237348-4 3.625135+4 7.161434-4 3.024683+4 8.222426-4 2.505157+4 9.500000-4 2.042220+4 1.096478-3 1.654053+4 1.258925-3 1.339923+4 1.445440-3 1.077280+4 1.659587-3 8.594286+3 1.883649-3 6.938217+3 2.137962-3 5.562604+3 2.426610-3 4.428463+3 2.754229-3 3.501058+3 3.126079-3 2.748560+3 3.548134-3 2.142727+3 4.027170-3 1.658841+3 4.570882-3 1.275353+3 5.188000-3 9.737096+2 5.888437-3 7.382545+2 6.683439-3 5.559073+2 7.585776-3 4.157367+2 8.609938-3 3.087578+2 9.772372-3 2.277372+2 1.109175-2 1.668088+2 1.258925-2 1.213246+2 1.428894-2 8.762875+1 1.640590-2 6.096535+1 1.862087-2 4.341723+1 2.113489-2 3.070542+1 2.426610-2 2.087836+1 2.786121-2 1.409064+1 3.235937-2 9.131675+0 3.758374-2 5.872839+0 4.315191-2 3.881078+0 5.069907-2 2.375492+0 6.025596-2 1.392996+0 7.161434-2 8.110059-1 9.015711-2 3.905249-1 1.737801-1 4.783515-2 2.113489-1 2.574826-2 2.483133-1 1.557275-2 2.851018-1 1.019320-2 3.235937-1 6.961943-3 3.630781-1 4.956911-3 4.073803-1 3.555602-3 4.518559-1 2.655235-3 5.011872-1 1.996904-3 5.559043-1 1.513210-3 6.095369-1 1.190372-3 6.683439-1 9.425900-4 7.413102-1 7.304847-4 8.609938-1 5.110659-4 9.225714-1 4.361334-4 9.772372-1 3.842641-4 1.047129+0 3.325523-4 1.135011+0 2.827840-4 1.244515+0 2.366707-4 1.380384+0 1.954395-4 1.678804+0 1.378753-4 1.927525+0 1.085647-4 2.187762+0 8.786096-5 2.483133+0 7.165239-5 2.851018+0 5.781322-5 3.311311+0 4.617718-5 3.845918+0 3.716125-5 4.518559+0 2.964368-5 5.370318+0 2.345836-5 6.382635+0 1.870671-5 7.673615+0 1.481001-5 9.225714+0 1.180546-5 1.161449+1 8.965624-6 1.462177+1 6.864676-6 1.883649+1 5.157553-6 2.540973+1 3.710141-6 3.507519+1 2.623129-6 5.188000+1 1.736181-6 8.609938+1 1.027630-6 1.698244+2 5.141118-7 3.388442+2 2.558504-7 1.348963+3 6.393376-8 1.000000+5 8.60970-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 4.189000-5 4.189000-5 1.000000+5 4.189000-5 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 4.189000-5 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 7.010000-6 2.629993+6 7.244360-6 2.838927+6 7.500000-6 3.058572+6 7.762471-6 3.277443+6 8.128305-6 3.570509+6 8.511380-6 3.860798+6 8.912509-6 4.151157+6 9.332543-6 4.436704+6 9.885531-6 4.788906+6 1.050000-5 5.152920+6 1.122018-5 5.541367+6 1.188502-5 5.865015+6 1.273503-5 6.231094+6 1.350000-5 6.515016+6 1.428894-5 6.760207+6 1.500000-5 6.936684+6 1.584893-5 7.091732+6 1.659587-5 7.175382+6 1.737801-5 7.207315+6 1.819701-5 7.182736+6 1.900000-5 7.106844+6 1.980000-5 6.984816+6 2.070000-5 6.796680+6 2.150000-5 6.593316+6 2.238721-5 6.336283+6 2.330000-5 6.048312+6 2.426610-5 5.728856+6 2.511886-5 5.441599+6 2.610000-5 5.111628+6 2.730000-5 4.717668+6 2.851018-5 4.339767+6 3.000000-5 3.908772+6 3.162278-5 3.484849+6 3.350000-5 3.052884+6 3.589219-5 2.587017+6 3.845918-5 2.175887+6 4.150000-5 1.783788+6 4.415704-5 1.507469+6 4.677351-5 1.282022+6 4.954502-5 1.083878+6 5.248075-5 9.104051+5 5.559043-5 7.592600+5 5.900000-5 6.246984+5 6.237348-5 5.169367+5 6.650000-5 4.123284+5 7.079458-5 3.280571+5 7.585776-5 2.527446+5 8.039000-5 2.017437+5 8.609938-5 1.533855+5 9.120108-5 1.211156+5 9.660509-5 9.502459+4 1.023293-4 7.406924+4 1.083927-4 5.732521+4 1.150000-4 4.375368+4 1.244515-4 3.024140+4 1.364583-4 1.959923+4 1.430000-4 1.580676+4 1.480000-4 1.357572+4 1.531087-4 1.176730+4 1.566751-4 1.073478+4 1.603245-4 9.842793+3 1.640590-4 9.078700+3 1.678804-4 8.429637+3 1.717908-4 7.883187+3 1.757924-4 7.428572+3 1.780000-4 7.217220+3 1.820000-4 6.896340+3 1.862087-4 6.633069+3 1.905461-4 6.427898+3 1.950000-4 6.275028+3 2.000000-4 6.160872+3 2.050000-4 6.095304+3 2.113489-4 6.064374+3 2.187762-4 6.069998+3 2.264644-4 6.109644+3 2.371374-4 6.207915+3 2.483133-4 6.349182+3 2.660725-4 6.620175+3 3.000000-4 7.157040+3 3.235937-4 7.306289+3 3.467369-4 7.392235+3 3.630781-4 7.414923+3 3.845918-4 7.387799+3 4.073803-4 7.310307+3 4.315191-4 7.185625+3 4.570882-4 7.018679+3 4.841724-4 6.814611+3 5.188000-4 6.528504+3 5.559043-4 6.206633+3 5.956621-4 5.858612+3 6.382635-4 5.494804+3 6.839116-4 5.120790+3 7.328245-4 4.742638+3 7.943282-4 4.303968+3 8.609938-4 3.875643+3 9.332543-4 3.464268+3 1.011579-3 3.074842+3 1.096478-3 2.711088+3 1.188502-3 2.374659+3 1.288250-3 2.066406+3 1.396368-3 1.786786+3 1.531087-3 1.502054+3 1.678804-3 1.253200+3 1.840772-3 1.037816+3 2.018366-3 8.532147+2 2.213095-3 6.963679+2 2.426610-3 5.645515+2 2.691535-3 4.424635+2 3.000000-3 3.404887+2 3.311311-3 2.663593+2 3.672823-3 2.042945+2 4.027170-3 1.602893+2 4.466836-3 1.210006+2 4.954502-3 9.067694+1 5.495409-3 6.749808+1 6.095369-3 4.991080+1 6.839116-3 3.541804+1 7.673615-3 2.493774+1 8.609938-3 1.742670+1 9.660509-3 1.208814+1 1.083927-2 8.323913+0 1.216186-2 5.690201+0 1.364583-2 3.862367+0 1.548817-2 2.503234+0 1.757924-2 1.610491+0 2.000000-2 1.020263+0 2.290868-2 6.263679-1 2.630268-2 3.785632-1 3.054921-2 2.177630-1 3.589219-2 1.190896-1 4.315191-2 5.925510-2 5.248075-2 2.800481-2 6.998420-2 9.206873-3 1.083927-1 1.690851-3 1.333521-1 7.622883-4 1.584893-1 3.951635-4 1.840772-1 2.251270-4 2.113489-1 1.348305-4 2.398833-1 8.483045-5 2.722701-1 5.376108-5 3.054921-1 3.576510-5 3.427678-1 2.397096-5 3.801894-1 1.683675-5 4.216965-1 1.190850-5 4.677351-1 8.485357-6 5.188000-1 6.092774-6 5.688529-1 4.570334-6 6.165950-1 3.577151-6 6.760830-1 2.726588-6 7.413102-1 2.094283-6 8.035261-1 1.671347-6 8.609938-1 1.373774-6 9.120108-1 1.174319-6 9.549926-1 1.041806-6 1.000000+0 9.300700-7 1.047129+0 8.363630-7 1.096478+0 7.573711-7 1.148154+0 6.899321-7 1.216186+0 6.181941-7 1.318257+0 5.343095-7 1.531087+0 4.128874-7 1.840772+0 2.987464-7 2.065380+0 2.456566-7 2.344229+0 1.996794-7 2.660725+0 1.634701-7 3.090295+0 1.300979-7 3.589219+0 1.043308-7 4.168694+0 8.428725-8 4.897788+0 6.749255-8 5.821032+0 5.360323-8 6.918310+0 4.289136-8 8.413951+0 3.358140-8 1.035142+1 2.613074-8 1.273503+1 2.046356-8 1.621810+1 1.550945-8 2.113489+1 1.153977-8 2.884032+1 8.222662-9 4.073803+1 5.689774-9 5.821032+1 3.915195-9 9.225714+1 2.433701-9 1.819701+2 1.218530-9 3.630781+2 6.06659-10 1.445440+3 1.51654-10 1.000000+5 2.18860-12 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 7.010000-6 7.010000-6 1.000000+5 7.010000-6 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 7.010000-6 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 6.300000-6 5.018130+6 6.600000-6 5.482638+6 6.850000-6 5.847822+6 7.161434-6 6.274106+6 7.500000-6 6.704856+6 7.852356-6 7.119048+6 8.317638-6 7.620489+6 8.810489-6 8.102078+6 9.440609-6 8.650811+6 1.011579-5 9.169239+6 1.083927-5 9.655305+6 1.161449-5 1.010176+7 1.244515-5 1.049803+7 1.333521-5 1.082896+7 1.420000-5 1.105479+7 1.500000-5 1.117807+7 1.584893-5 1.122082+7 1.659587-5 1.118261+7 1.737801-5 1.106724+7 1.819701-5 1.087400+7 1.900000-5 1.061638+7 1.980000-5 1.030453+7 2.070000-5 9.902466+6 2.150000-5 9.510426+6 2.238721-5 9.048956+6 2.330000-5 8.558028+6 2.426610-5 8.035262+6 2.540973-5 7.428261+6 2.660725-5 6.818763+6 2.800000-5 6.154740+6 2.951209-5 5.498479+6 3.126079-5 4.826908+6 3.311311-5 4.210128+6 3.548134-5 3.547339+6 3.801894-5 2.969082+6 4.073803-5 2.467580+6 4.365158-5 2.036900+6 4.650000-5 1.697044+6 4.954502-5 1.402646+6 5.248075-5 1.171990+6 5.559043-5 9.719822+5 5.900000-5 7.952832+5 6.237348-5 6.544825+5 6.650000-5 5.187978+5 7.000000-5 4.281300+5 7.500000-5 3.280158+5 7.943282-5 2.611019+5 8.511380-5 1.968683+5 9.015711-5 1.545696+5 9.660509-5 1.146760+5 1.023293-4 8.876883+4 1.096478-4 6.477262+4 1.303167-4 2.886372+4 1.364583-4 2.341591+4 1.415000-4 1.998828+4 1.450000-4 1.805508+4 1.490000-4 1.621804+4 1.531087-4 1.467454+4 1.566751-4 1.357110+4 1.603245-4 1.263632+4 1.640590-4 1.185404+4 1.678804-4 1.120676+4 1.717908-4 1.067838+4 1.750000-4 1.033153+4 1.790000-4 9.993492+3 1.830000-4 9.743310+3 1.870000-4 9.564282+3 1.905461-4 9.455042+3 1.949845-4 9.373513+3 2.018366-4 9.333495+3 2.089296-4 9.334481+3 2.162719-4 9.386012+3 2.264644-4 9.522549+3 2.371374-4 9.723929+3 2.540973-4 1.011730+4 2.917427-4 1.103749+4 3.000000-4 1.121022+4 3.198895-4 1.133186+4 3.427678-4 1.138191+4 3.630781-4 1.135338+4 3.845918-4 1.125676+4 4.053000-4 1.110158+4 4.315191-4 1.082343+4 4.570882-4 1.050775+4 4.897788-4 1.006520+4 5.248075-4 9.568184+3 5.623413-4 9.030613+3 6.025596-4 8.465928+3 6.456542-4 7.887803+3 6.998420-4 7.207285+3 7.585776-4 6.533599+3 8.222426-4 5.877638+3 8.912509-4 5.248736+3 9.660509-4 4.654498+3 1.047129-3 4.100245+3 1.135011-3 3.589092+3 1.230269-3 3.121965+3 1.348963-3 2.642141+3 1.479108-3 2.217939+3 1.621810-3 1.847830+3 1.819701-3 1.456868+3 1.972423-3 1.242404+3 2.113489-3 1.076987+3 2.238721-3 9.496674+2 2.344229-3 8.539131+2 2.454709-3 7.632601+2 2.570396-3 6.775968+2 2.630500-3 6.364839+2 2.722701-3 5.718621+2 2.786121-3 5.351811+2 2.851018-3 5.036495+2 2.951209-3 4.666675+2 3.019952-3 4.443451+2 3.162278-3 3.987927+2 3.311311-3 3.557881+2 3.589219-3 2.885520+2 3.845918-3 2.396431+2 4.168694-3 1.915714+2 4.623810-3 1.424337+2 5.623413-3 8.053038+1 6.237348-3 5.914634+1 6.918310-3 4.314487+1 7.762471-3 3.016011+1 8.709636-3 2.092242+1 9.772372-3 1.440467+1 1.096478-2 9.843185+0 1.230269-2 6.675688+0 1.380384-2 4.494724+0 1.566751-2 2.886437+0 1.778279-2 1.839450+0 2.018366-2 1.163713+0 2.317395-2 7.006475-1 2.660725-2 4.186505-1 3.054921-2 2.483923-1 3.548134-2 1.400358-1 4.216965-2 7.170981-2 5.069907-2 3.484733-2 6.456542-2 1.337905-2 1.059254-1 1.869477-3 1.288250-1 8.637262-4 1.513561-1 4.605688-4 1.737801-1 2.705192-4 1.972423-1 1.672650-4 2.213095-1 1.087768-4 2.483133-1 7.127037-5 2.754229-1 4.906358-5 3.054921-1 3.403083-5 3.349654-1 2.475310-5 3.672823-1 1.812927-5 4.027170-1 1.337527-5 4.415705-1 9.944852-6 4.786301-1 7.723689-6 5.188000-1 6.036741-6 5.623413-1 4.749238-6 6.095369-1 3.762112-6 6.606935-1 3.002450-6 7.161434-1 2.412635-6 7.762471-1 1.951545-6 8.609938-1 1.492329-6 9.120108-1 1.293126-6 9.660509-1 1.128139-6 1.011579+0 1.017354-6 1.071519+0 8.999312-7 1.148154+0 7.825887-7 1.230269+0 6.852296-7 1.333521+0 5.908998-7 1.778279+0 3.556826-7 2.018366+0 2.864093-7 2.290868+0 2.324873-7 2.600160+0 1.900878-7 3.000000+0 1.526100-7 3.467369+0 1.230722-7 4.027170+0 9.926564-8 4.731513+0 7.936076-8 5.623413+0 6.293265-8 6.683439+0 5.028323-8 8.128305+0 3.931625-8 9.660509+0 3.184860-8 1.200000+1 2.460600-8 1.531087+1 1.857444-8 2.000000+1 1.376000-8 2.722701+1 9.816534-9 3.801894+1 6.867039-9 5.495409+1 4.662989-9 9.015711+1 2.795443-9 1.757924+2 1.415720-9 3.507519+2 7.04681-10 1.396368+3 1.76124-10 1.000000+5 2.45530-12 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 6.300000-6 6.300000-6 1.000000+5 6.300000-6 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 6.300000-6 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 7.310000-6 5.804239+6 8.222426-6 3.525097+6 9.120108-6 2.254155+6 1.011579-5 1.429567+6 1.109175-5 9.465305+5 1.216186-5 6.223244+5 1.350000-5 3.839280+5 1.621810-5 1.629047+5 1.730000-5 1.211622+5 1.819701-5 9.675550+4 1.883649-5 8.341413+4 1.950000-5 7.230460+4 2.020000-5 6.296640+4 2.070000-5 5.750180+4 2.130000-5 5.202140+4 2.190000-5 4.752260+4 2.250000-5 4.382620+4 2.300000-5 4.125560+4 2.350000-5 3.907600+4 2.400000-5 3.723040+4 2.454709-5 3.553667+4 2.520000-5 3.388960+4 2.583000-5 3.262022+4 2.660725-5 3.140536+4 2.730000-5 3.058680+4 2.818383-5 2.982617+4 2.917427-5 2.926424+4 3.019952-5 2.892034+4 3.150000-5 2.872640+4 3.311311-5 2.872499+4 3.589219-5 2.900786+4 4.073803-5 2.954714+4 4.415704-5 2.969581+4 4.731513-5 2.961347+4 5.011872-5 2.937259+4 5.308844-5 2.896378+4 5.650000-5 2.833860+4 6.025596-5 2.751952+4 6.456542-5 2.647374+4 6.918310-5 2.528962+4 7.413102-5 2.399843+4 8.035261-5 2.242081+4 8.810489-5 2.059652+4 9.800000-5 1.852604+4 1.122018-4 1.606019+4 1.380384-4 1.276719+4 2.089296-4 8.041952+3 2.290868-4 7.217863+3 2.540973-4 6.344833+3 2.851018-4 5.457630+3 3.311311-4 4.449532+3 4.954502-4 2.530080+3 5.821032-4 2.001297+3 8.912509-4 1.057813+3 1.122018-3 7.408758+2 1.396368-3 5.245700+2 1.698244-3 3.824571+2 2.065380-3 2.767719+2 2.511886-3 1.986673+2 3.054921-3 1.414754+2 3.715352-3 9.996013+1 4.466836-3 7.157011+1 5.432503-3 4.981591+1 6.606934-3 3.442293+1 8.035261-3 2.361210+1 9.772372-3 1.607493+1 1.188502-2 1.086115+1 1.428894-2 7.457474+0 1.717908-2 5.082971+0 2.065380-2 3.437930+0 2.454709-2 2.365394+0 2.917427-2 1.615918+0 3.467369-2 1.095795+0 4.120975-2 7.376369-1 4.897788-2 4.929032-1 5.821032-2 3.268013-1 6.998420-2 2.091901-1 8.317638-2 1.367232-1 1.023293-1 8.132965-2 1.303167-1 4.399268-2 1.621810-1 2.507609-2 2.454709-1 8.601036-3 3.054921-1 4.922491-3 3.630781-1 3.189897-3 4.168694-1 2.269092-3 4.786301-1 1.625687-3 5.432503-1 1.205894-3 6.095369-1 9.250801-4 6.839117-1 7.145566-4 7.673615-1 5.557290-4 8.609938-1 4.351786-4 9.549926-1 3.515232-4 1.083927+0 2.731604-4 1.244515+0 2.088889-4 1.412538+0 1.646627-4 1.566751+0 1.363645-4 1.778279+0 1.091251-4 2.041738+0 8.627359-5 2.317395+0 7.007926-5 2.630268+0 5.733494-5 3.019952+0 4.639920-5 3.507519+0 3.716550-5 4.073803+0 2.999279-5 4.786301+0 2.399117-5 5.688529+0 1.903505-5 6.760830+0 1.521628-5 8.222427+0 1.190244-5 9.772372+0 9.646205-6 1.202264+1 7.539829-6 1.513561+1 5.779282-6 1.949845+1 4.346460-6 2.660725+1 3.090635-6 3.715352+1 2.160954-6 5.432503+1 1.449234-6 8.912509+1 8.686456-7 1.737801+2 4.398489-7 3.467369+2 2.189294-7 1.380384+3 5.471414-8 1.000000+5 7.53990-10 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 7.310000-6 7.310000-6 1.000000+5 7.310000-6 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 7.310000-6 0.0 1.000000+5 1.000000+5 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.409660-7 1.026100+0 9.970640-7 1.026600+0 1.405630-6 1.027100+0 1.912390-6 1.027500+0 2.395240-6 1.028100+0 3.261080-6 1.028750+0 4.409660-6 1.029500+0 6.034740-6 1.030100+0 7.589410-6 1.031000+0 1.038490-5 1.032000+0 1.420920-5 1.033200+0 1.990460-5 1.034000+0 2.443480-5 1.035300+0 3.316670-5 1.036640+0 4.409660-5 1.038200+0 5.950980-5 1.039700+0 7.731510-5 1.041500+0 1.028670-4 1.043800+0 1.427830-4 1.046400+0 1.986550-4 1.048300+0 2.473310-4 1.051200+0 3.354990-4 1.054080+0 4.409660-4 1.057700+0 6.010660-4 1.061100+0 7.818380-4 1.065100+0 1.035070-3 1.070400+0 1.444040-3 1.076200+0 1.995660-3 1.080600+0 2.492260-3 1.087100+0 3.357880-3 1.093710+0 4.409660-3 1.102600+0 6.113720-3 1.110700+0 7.973140-3 1.120600+0 1.066500-2 1.133300+0 1.482790-2 1.147500+0 2.047190-2 1.158200+0 2.544130-2 1.174100+0 3.400550-2 1.190110+0 4.409660-2 1.205100+0 5.490460-2 1.227500+0 7.350010-2 1.250000+0 9.494000-2 1.265600+0 1.112480-1 1.294900+0 1.447200-1 1.331800+0 1.913450-1 1.362600+0 2.333290-1 1.397000+0 2.828320-1 1.433800+0 3.382530-1 1.500000+0 4.435000-1 1.562500+0 5.491940-1 1.617200+0 6.461030-1 1.712900+0 8.232400-1 1.838500+0 1.064890+0 1.946200+0 1.275210+0 2.000000+0 1.380000+0 2.044000+0 1.465000+0 2.163500+0 1.693300+0 2.372600+0 2.082430+0 2.647100+0 2.570390+0 3.000000+0 3.161000+0 3.500000+0 3.936110+0 4.000000+0 4.646000+0 4.750000+0 5.599650+0 5.000000+0 5.893000+0 6.000000+0 6.965000+0 7.000000+0 7.911000+0 8.000000+0 8.761000+0 9.000000+0 9.534000+0 1.000000+1 1.024000+1 1.100000+1 1.090000+1 1.200000+1 1.151000+1 1.300000+1 1.208000+1 1.400000+1 1.262000+1 1.500000+1 1.311000+1 1.600000+1 1.357000+1 1.800000+1 1.441000+1 2.000000+1 1.515000+1 2.200000+1 1.582000+1 2.400000+1 1.643000+1 2.600000+1 1.699000+1 2.800000+1 1.751000+1 3.000000+1 1.798000+1 4.000000+1 1.992000+1 5.000000+1 2.135000+1 6.000000+1 2.247000+1 8.000000+1 2.410000+1 1.000000+2 2.526000+1 1.500000+2 2.708000+1 2.000000+2 2.817000+1 3.000000+2 2.942000+1 4.000000+2 3.014000+1 5.000000+2 3.061000+1 6.000000+2 3.095000+1 8.000000+2 3.140000+1 1.000000+3 3.169000+1 1.500000+3 3.210000+1 2.000000+3 3.233000+1 3.000000+3 3.258000+1 4.000000+3 3.271000+1 5.000000+3 3.279000+1 6.000000+3 3.285000+1 8.000000+3 3.292000+1 1.000000+4 3.297000+1 1.500000+4 3.304000+1 2.000000+4 3.307000+1 3.000000+4 3.311000+1 4.000000+4 3.313000+1 5.000000+4 3.314000+1 6.000000+4 3.315000+1 8.000000+4 3.316000+1 1.000000+5 3.317000+1 1 73000 7 8 1.809480+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.312100-7 2.094700+0 1.287320-6 2.099900+0 1.712590-6 2.106600+0 2.382360-6 2.114000+0 3.296300-6 2.119500+0 4.103870-6 2.127900+0 5.565620-6 2.136250+0 7.312100-6 2.147000+0 1.002540-5 2.156900+0 1.302180-5 2.169000+0 1.737840-5 2.184500+0 2.415660-5 2.201800+0 3.342130-5 2.214800+0 4.164030-5 2.234200+0 5.601360-5 2.253680+0 7.312100-5 2.281500+0 1.024190-4 2.307000+0 1.345270-4 2.338200+0 1.808830-4 2.377400+0 2.505010-4 2.410200+0 3.185960-4 2.446800+0 4.052720-4 2.485900+0 5.102590-4 2.532900+0 6.530220-4 2.556430+0 7.312100-4 2.611900+0 9.323740-4 2.660400+0 1.127190-3 2.745300+0 1.508670-3 2.809000+0 1.827090-3 2.904500+0 2.353760-3 3.000000+0 2.938000-3 3.125000+0 3.788420-3 3.234400+0 4.609580-3 3.425800+0 6.207060-3 3.569300+0 7.526130-3 3.784700+0 9.673260-3 4.000000+0 1.198000-2 4.250000+0 1.479780-2 4.625000+0 1.922220-2 5.000000+0 2.382000-2 5.500000+0 3.013340-2 6.000000+0 3.653000-2 6.750000+0 4.603500-2 7.000000+0 4.916000-2 8.000000+0 6.138000-2 9.000000+0 7.305000-2 1.000000+1 8.411000-2 1.100000+1 9.457000-2 1.200000+1 1.044000-1 1.300000+1 1.137000-1 1.400000+1 1.225000-1 1.500000+1 1.308000-1 1.600000+1 1.387000-1 1.800000+1 1.533000-1 2.000000+1 1.665000-1 2.200000+1 1.786000-1 2.400000+1 1.897000-1 2.600000+1 1.999000-1 2.800000+1 2.094000-1 3.000000+1 2.181000-1 4.000000+1 2.543000-1 5.000000+1 2.814000-1 6.000000+1 3.028000-1 8.000000+1 3.347000-1 1.000000+2 3.578000-1 1.500000+2 3.956000-1 2.000000+2 4.190000-1 3.000000+2 4.473000-1 4.000000+2 4.642000-1 5.000000+2 4.757000-1 6.000000+2 4.841000-1 8.000000+2 4.957000-1 1.000000+3 5.033000-1 1.500000+3 5.147000-1 2.000000+3 5.211000-1 3.000000+3 5.281000-1 4.000000+3 5.323000-1 5.000000+3 5.348000-1 6.000000+3 5.366000-1 8.000000+3 5.389000-1 1.000000+4 5.404000-1 1.500000+4 5.424000-1 2.000000+4 5.436000-1 3.000000+4 5.447000-1 4.000000+4 5.455000-1 5.000000+4 5.459000-1 6.000000+4 5.462000-1 8.000000+4 5.465000-1 1.000000+5 5.467000-1 1 73000 7 8 1.809480+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 73000 7 9 1.809480+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.300000+1 1.000000+5 7.300000+1 5.000000+5 7.295900+1 8.750000+5 7.292510+1 1.000000+6 7.291700+1 1.500000+6 7.287000+1 2.000000+6 7.277000+1 2.375000+6 7.267290+1 2.500000+6 7.264400+1 3.000000+6 7.249200+1 3.500000+6 7.231290+1 4.000000+6 7.211700+1 4.500000+6 7.190850+1 5.000000+6 7.167800+1 5.500000+6 7.142150+1 5.875000+6 7.121510+1 6.437500+6 7.088850+1 6.500000+6 7.084910+1 7.000000+6 7.054700+1 7.500000+6 7.022890+1 8.250000+6 6.974820+1 9.000000+6 6.926300+1 1.000000+7 6.859500+1 1.125000+7 6.772340+1 1.187500+7 6.727980+1 1.250000+7 6.683100+1 1.500000+7 6.502400+1 1.750000+7 6.327100+1 2.000000+7 6.149100+1 2.375000+7 5.884010+1 2.500000+7 5.797100+1 2.875000+7 5.539360+1 3.000000+7 5.455400+1 3.437500+7 5.166040+1 3.500000+7 5.126080+1 3.812500+7 4.930490+1 4.000000+7 4.818300+1 4.500000+7 4.534710+1 5.000000+7 4.273100+1 5.500000+7 4.030590+1 6.000000+7 3.804300+1 6.500000+7 3.592120+1 7.000000+7 3.393000+1 7.750000+7 3.117170+1 8.000000+7 3.031700+1 9.000000+7 2.718800+1 1.000000+8 2.452100+1 1.187500+8 2.063250+1 1.250000+8 1.962800+1 1.375000+8 1.798180+1 1.437500+8 1.730400+1 1.500000+8 1.670500+1 1.718800+8 1.501470+1 1.750000+8 1.480460+1 1.875000+8 1.396870+1 1.906300+8 1.376130+1 1.968800+8 1.334580+1 2.000000+8 1.313800+1 2.250000+8 1.152630+1 2.500000+8 1.024300+1 2.718800+8 9.393950+0 2.815400+8 9.022620+0 2.875000+8 8.780760+0 2.881300+8 8.754600+0 2.960400+8 8.411170+0 3.000000+8 8.230400+0 3.062500+8 7.932300+0 3.335900+8 6.719690+0 3.418000+8 6.441500+0 3.500000+8 6.217400+0 3.562500+8 6.084590+0 3.671900+8 5.907830+0 4.000000+8 5.526300+0 4.125000+8 5.357690+0 4.234400+8 5.195550+0 5.000000+8 4.144100+0 5.250000+8 3.916100+0 5.718800+8 3.562630+0 5.906300+8 3.422810+0 6.000000+8 3.350500+0 6.250000+8 3.150810+0 6.718800+8 2.807170+0 6.906300+8 2.695100+0 7.000000+8 2.645700+0 7.250000+8 2.534900+0 7.718800+8 2.355520+0 7.906300+8 2.280390+0 8.000000+8 2.240400+0 8.125000+8 2.183910+0 8.359400+8 2.072260+0 8.564500+8 1.972920+0 9.461700+8 1.590080+0 9.730800+8 1.502710+0 1.000000+9 1.429800+0 1.015600+9 1.394210+0 1.045900+9 1.336940+0 1.074300+9 1.294480+0 1.113400+9 1.249520+0 1.149200+9 1.221730+0 1.193100+9 1.197890+0 1.249300+9 1.169260+0 1.375000+9 1.111800+0 1.392600+9 1.104390+0 1.446300+9 1.082650+0 1.500000+9 1.062100+0 1.562500+9 1.026460+0 1.617200+9 9.918020-1 1.665000+9 9.598890-1 1.748800+9 9.023540-1 1.811600+9 8.593600-1 1.905800+9 7.968990-1 2.000000+9 7.383500-1 2.139200+9 6.603170-1 2.272600+9 5.943510-1 2.443000+9 5.210110-1 2.602800+9 4.618290-1 2.825100+9 3.923630-1 2.961100+9 3.560960-1 3.215900+9 2.985090-1 3.438900+9 2.572480-1 3.500000+9 2.471720-1 3.719500+9 2.147950-1 3.954200+9 1.857670-1 4.215700+9 1.589190-1 4.495800+9 1.352760-1 4.831900+9 1.123850-1 5.000000+9 1.027500-1 5.375000+9 8.468680-2 5.703100+9 7.204570-2 6.277300+9 5.515790-2 7.138700+9 3.825540-2 8.000000+9 2.752600-2 1.00000+10 1.437200-2 1.27030+10 7.168590-3 1.84370+10 2.441490-3 2.45630+10 1.070510-3 3.39920+10 4.229630-4 5.04940+10 1.374470-4 7.52470+10 4.460750-5 1.00000+11 2.009000-5 1.34280+11 8.824340-6 2.20600+11 2.226180-6 4.19930+11 3.786700-7 1.03480+12 3.241790-8 3.24440+12 1.485280-9 1.00000+14 1.57000-13 3.16230+15 1.47636-17 1.00000+17 1.31230-21 1 73000 7 0 1.809480+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 8.70000-12 1.000000+2 8.70000-10 1.000000+3 8.700000-8 1.000000+4 8.700000-6 1.000000+5 8.700000-4 5.000000+5 2.175000-2 8.750000+5 6.660938-2 1.000000+6 8.700000-2 1.500000+6 1.926000-1 2.000000+6 3.373000-1 2.375000+6 4.690120-1 2.500000+6 5.170000-1 3.000000+6 7.275000-1 3.500000+6 9.640930-1 4.000000+6 1.222100+0 4.500000+6 1.496560+0 5.000000+6 1.783000+0 5.500000+6 2.077080+0 5.875000+6 2.300770+0 6.437500+6 2.638010+0 6.500000+6 2.675520+0 7.000000+6 2.974200+0 7.500000+6 3.269370+0 8.250000+6 3.704460+0 9.000000+6 4.128500+0 1.000000+7 4.676000+0 1.125000+7 5.336940+0 1.187500+7 5.661200+0 1.250000+7 5.982700+0 1.500000+7 7.257000+0 1.750000+7 8.535000+0 2.000000+7 9.811000+0 2.375000+7 1.169030+1 2.500000+7 1.230400+1 2.875000+7 1.409740+1 3.000000+7 1.468300+1 3.437500+7 1.668030+1 3.500000+7 1.696010+1 3.812500+7 1.832580+1 4.000000+7 1.912300+1 4.500000+7 2.115520+1 5.000000+7 2.304200+1 5.500000+7 2.477860+1 6.000000+7 2.638500+1 6.500000+7 2.788190+1 7.000000+7 2.929800+1 7.750000+7 3.129480+1 8.000000+7 3.193800+1 9.000000+7 3.438500+1 1.000000+8 3.666900+1 1.187500+8 4.057720+1 1.250000+8 4.178600+1 1.375000+8 4.406620+1 1.437500+8 4.514020+1 1.500000+8 4.616800+1 1.718800+8 4.939350+1 1.750000+8 4.981110+1 1.875000+8 5.137440+1 1.906300+8 5.173730+1 1.968800+8 5.243830+1 2.000000+8 5.277700+1 2.250000+8 5.515410+1 2.500000+8 5.709500+1 2.718800+8 5.851580+1 2.815400+8 5.908080+1 2.875000+8 5.941580+1 2.881300+8 5.944980+1 2.960400+8 5.986650+1 3.000000+8 6.007200+1 3.062500+8 6.037890+1 3.335900+8 6.161480+1 3.418000+8 6.194920+1 3.500000+8 6.227700+1 3.562500+8 6.251010+1 3.671900+8 6.291040+1 4.000000+8 6.400200+1 4.125000+8 6.437480+1 4.234400+8 6.469370+1 5.000000+8 6.657200+1 5.250000+8 6.707530+1 5.718800+8 6.791480+1 5.906300+8 6.820560+1 6.000000+8 6.834800+1 6.250000+8 6.869430+1 6.718800+8 6.925230+1 6.906300+8 6.944870+1 7.000000+8 6.954500+1 7.250000+8 6.976900+1 7.718800+8 7.014450+1 7.906300+8 7.027670+1 8.000000+8 7.033900+1 8.125000+8 7.041370+1 8.359400+8 7.055100+1 8.564500+8 7.066320+1 9.461700+8 7.106130+1 9.730800+8 7.116250+1 1.000000+9 7.126100+1 1.015600+9 7.130910+1 1.045900+9 7.140050+1 1.074300+9 7.148400+1 1.113400+9 7.159540+1 1.149200+9 7.168080+1 1.193100+9 7.178000+1 1.249300+9 7.190210+1 1.375000+9 7.211520+1 1.392600+9 7.214330+1 1.446300+9 7.222540+1 1.500000+9 7.229600+1 1.562500+9 7.236530+1 1.617200+9 7.242380+1 1.665000+9 7.247330+1 1.748800+9 7.255010+1 1.811600+9 7.259630+1 1.905800+9 7.266270+1 2.000000+9 7.272600+1 2.139200+9 7.279210+1 2.272600+9 7.284040+1 2.443000+9 7.289060+1 2.602800+9 7.292790+1 2.825100+9 7.296290+1 2.961100+9 7.297430+1 3.215900+9 7.299130+1 3.438900+9 7.300170+1 3.500000+9 7.300160+1 3.719500+9 7.300090+1 3.954200+9 7.300030+1 4.215700+9 7.299970+1 4.495800+9 7.299910+1 4.831900+9 7.299830+1 5.000000+9 7.299800+1 5.375000+9 7.299830+1 5.703100+9 7.299860+1 6.277300+9 7.299900+1 7.138700+9 7.299950+1 8.000000+9 7.300000+1 1.00000+10 7.300000+1 1.27030+10 7.300000+1 1.84370+10 7.300000+1 2.45630+10 7.300000+1 3.39920+10 7.300000+1 5.04940+10 7.300000+1 7.52470+10 7.300000+1 1.00000+11 7.300000+1 1.34280+11 7.300000+1 2.20600+11 7.300000+1 4.19930+11 7.300000+1 1.03480+12 7.300000+1 3.24440+12 7.300000+1 1.00000+14 7.300000+1 3.16230+15 7.300000+1 1.00000+17 7.300000+1 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.016126-6 1.204533-8 1.018621-6 2.383438-8 1.021116-6 4.353545-8 1.023610-6 7.340675-8 1.026105-6 1.142570-7 1.028600-6 1.641661-7 1.031095-6 2.177399-7 1.033590-6 2.665917-7 1.036085-6 3.013068-7 1.038580-6 3.143586-7 1.041075-6 3.027580-7 1.043570-6 2.691657-7 1.046065-6 2.209011-7 1.051055-6 1.170351-7 1.053550-6 7.555379-8 1.056044-6 4.502465-8 1.058539-6 2.476843-8 1.061034-6 1.257768-8 1.063529-6 0.0 2.622637-6 0.0 2.629092-6 2.35753-14 2.635548-6 4.66491-14 2.642003-6 8.52084-14 2.648458-6 1.43673-13 2.654914-6 2.23626-13 2.661369-6 3.21309-13 2.667824-6 4.26165-13 2.674279-6 5.21778-13 2.680735-6 5.89723-13 2.687190-6 6.15268-13 2.693645-6 5.92564-13 2.700101-6 5.26816-13 2.706556-6 4.32352-13 2.719466-6 2.29063-13 2.725922-6 1.47875-13 2.732377-6 8.81231-14 2.738832-6 4.84772-14 2.745288-6 2.46173-14 2.751743-6 0.0 2.985379-6 0.0 2.998238-6 7.522202-1 3.000075-6 8.585837-1 3.007423-6 1.568273+0 3.014771-6 2.644324+0 3.023038-6 4.340129+0 3.035782-6 7.571675+0 3.044164-6 9.603407+0 3.051971-6 1.088327+1 3.059535-6 1.128584+1 3.067242-6 1.073633+1 3.074985-6 9.358802+0 3.087279-6 6.284580+0 3.096060-6 4.122761+0 3.103178-6 2.687379+0 3.110527-6 1.599168+0 3.117760-6 8.853851-1 3.128539-6 2.347368-1 3.132304-6 2.320602-3 3.132341-6 0.0 3.330523-6 0.0 3.344869-6 4.649719-1 3.346919-6 5.307187-1 3.355116-6 9.694010-1 3.363314-6 1.634543+0 3.371512-6 2.544153+0 3.386370-6 4.624291+0 3.396105-6 5.936179+0 3.405327-6 6.745435+0 3.413012-6 6.983696+0 3.421210-6 6.694848+0 3.430368-6 5.800767+0 3.443525-6 3.983651+0 3.453488-6 2.606013+0 3.461686-6 1.682351+0 3.469884-6 1.002561+0 3.478081-6 5.515170-1 3.490378-6 1.401979-1 3.494477-6 0.0 3.636268-6 0.0 3.649693-6 2.979443+0 3.654168-6 3.959993+0 3.663119-6 7.233252+0 3.672069-6 1.219626+1 3.681784-6 1.970395+1 3.708429-6 4.473199+1 3.717641-6 5.040755+1 3.727029-6 5.221613+1 3.735979-6 4.992018+1 3.744885-6 4.417946+1 3.770521-6 2.055619+1 3.779471-6 1.375711+1 3.788421-6 8.690034+0 3.797372-6 5.240946+0 3.808559-6 2.490868+0 3.815272-6 7.765154-1 3.829623-6 4.581373-1 3.838713-6 2.957575-1 3.847804-6 1.762503-1 3.856894-6 9.695674-2 3.868257-6 3.694849-2 3.875075-6 0.0 3.960634-6 0.0 3.977694-6 8.154587-8 3.980131-6 9.307641-8 3.989880-6 1.700117-7 3.999009-6 2.792398-7 4.018696-6 8.015615+0 4.028874-6 1.498287+1 4.038623-6 2.502279+1 4.049590-6 4.074915+1 4.066706-6 7.101712+1 4.078369-6 9.038409+1 4.089190-6 1.020400+2 4.098151-6 1.054390+2 4.108187-6 1.007842+2 4.118895-6 8.761085+1 4.145857-6 4.073416+1 4.156498-6 2.540909+1 4.166341-6 1.514200+1 4.176184-6 8.329738+0 4.190949-6 2.117453+0 4.195871-6 0.0 4.640520-6 0.0 4.651942-6 2.23805-14 4.663364-6 4.42848-14 4.668520-6 6.07887-14 4.691502-6 4.977515-8 4.702993-6 9.091832-8 4.714484-6 1.533007-7 4.725975-6 2.386112-7 4.729968-6 2.747699-7 4.731256-6 2.905156-7 4.754740-6 1.055218-1 4.766192-6 1.901442-1 4.777838-6 3.206089-1 4.789483-6 4.990248-1 4.824419-6 1.164356+0 4.836065-6 1.315976+0 4.847710-6 1.372980+0 4.859355-6 1.322314+0 4.871001-6 1.175598+0 4.905937-6 5.111584-1 4.917582-6 3.299862-1 4.929228-6 1.966482-1 4.940873-6 1.081778-1 4.952518-6 5.493391-2 4.964164-6 1.156609-7 4.974107-6 0.0 4.974265-6 0.0 4.986508-6 1.20597-14 4.998752-6 2.38628-14 5.010995-6 4.35874-14 5.023239-6 7.34943-14 5.035482-6 1.14393-13 5.047726-6 1.64362-13 5.059969-6 2.18000-13 5.072213-6 2.66910-13 5.084456-6 3.01666-13 5.096700-6 3.14733-13 5.108944-6 3.03119-13 5.121187-6 2.69487-13 5.133431-6 2.21164-13 5.157918-6 1.17175-13 5.170161-6 7.56439-14 5.182405-6 4.50783-14 5.194648-6 2.47980-14 5.206892-6 1.25927-14 5.219135-6 0.0 5.299597-6 0.0 5.312641-6 1.896229-2 5.325686-6 3.752114-2 5.336196-6 6.249945-2 5.338730-6 7.204755-2 5.348406-6 1.203498-1 5.351774-6 1.438582-1 5.364829-6 2.541567-1 5.375599-6 3.657587-1 5.388734-6 5.393915-1 5.430530-6 1.225001+0 5.443670-6 1.392074+0 5.456810-6 1.490094+0 5.469950-6 1.498388+0 5.483090-6 1.418146+0 5.501158-6 1.191046+0 5.535651-6 6.672988-1 5.548791-6 5.067115-1 5.560483-6 3.864366-1 5.573020-6 3.017885-1 5.598884-6 1.731575-1 5.612221-6 1.343687-1 5.618264-6 1.274985-1 5.626571-6 1.233273-1 5.640125-6 1.268382-1 5.654150-6 1.511148-1 5.667341-6 2.593919-1 5.681984-6 4.039303-1 5.695901-6 5.990423-1 5.712010-6 8.958483-1 5.745781-6 1.645313+0 5.768425-6 2.487335+0 5.789439-6 3.258517+0 5.807820-6 4.171357+0 5.831637-6 5.676508+0 5.860361-6 7.578679+0 5.877023-6 8.157947+0 5.889352-6 8.202340+0 5.905428-6 7.592679+0 5.919581-6 6.597798+0 5.957386-6 3.207283+0 5.971595-6 2.193251+0 5.985842-6 1.453648+0 6.000012-6 9.706799-1 6.027693-6 4.182953-1 6.051510-6 4.629394-1 6.073846-6 5.477435-1 6.133353-6 8.674262-1 6.149916-6 9.125140-1 6.167967-6 9.155057-1 6.189414-6 8.427864-1 6.236705-6 5.709143-1 6.251606-6 4.968623-1 6.265421-6 4.477881-1 6.280091-6 4.156907-1 6.302003-6 3.877089-1 6.314229-6 3.987422-1 6.345661-6 4.821601-1 6.350026-6 4.997085-1 6.359409-6 5.892480-1 6.374469-6 7.501636-1 6.382318-6 8.476812-1 6.399402-6 1.138159+0 6.416577-6 1.524936+0 6.462610-6 2.776508+0 6.478135-6 3.089141+0 6.493660-6 3.246442+0 6.510552-6 3.196751+0 6.528590-6 2.922852+0 6.551928-6 2.362943+0 6.574253-6 1.780460+0 6.586808-6 1.500005+0 6.601250-6 1.241483+0 6.616772-6 1.037450+0 6.632091-6 9.197825-1 6.662855-6 8.529567-1 6.680865-6 9.347614-1 6.702151-6 1.095258+0 6.733139-6 1.418454+0 6.759631-6 1.716397+0 6.780736-6 1.864426+0 6.798700-6 1.904603+0 6.821450-6 1.822830+0 6.868862-6 1.510031+0 6.883372-6 1.454867+0 6.910435-6 1.456744+0 6.984082-6 1.570467+0 7.269200-6 1.563325+0 7.374315-6 1.599456+0 8.128305-6 1.708465+0 9.602626-6 2.086022+0 1.311752-5 3.292697+0 1.611533-5 4.260617+0 1.835550-5 4.744156+0 2.085545-5 4.960434+0 2.397288-5 4.816764+0 2.697773-5 4.475049+0 2.710627-5 5.691692+0 2.718096-5 6.935796+0 2.724735-5 8.599848+0 2.731318-5 1.082688+1 2.751292-5 1.886980+1 2.758112-5 2.059373+1 2.764512-5 2.110445+1 2.771357-5 2.028009+1 2.778789-5 1.804476+1 2.796936-5 1.055344+1 2.803990-5 8.217857+0 2.810214-5 6.674451+0 2.817463-5 5.518101+0 2.830266-5 4.230599+0 2.836509-5 4.264150+0 2.849829-5 5.137502+0 2.857682-5 6.046867+0 2.864662-5 7.265050+0 2.871642-5 8.905789+0 2.892146-5 1.470790+1 2.899421-5 1.601851+1 2.907784-5 1.634499+1 2.914178-5 1.573602+1 2.923025-5 1.381108+1 2.941007-5 8.840928+0 2.948805-5 7.221120+0 2.954967-5 6.294388+0 2.962386-5 5.608175+0 2.976303-5 4.819055+0 2.993010-5 4.674111+0 3.021126-5 4.131276+0 3.049744-5 3.887833+0 3.187041-5 3.701025+0 3.249490-5 3.909297+0 3.307478-5 3.732312+0 3.406005-5 3.614456+0 3.422988-5 5.218662+0 3.431507-5 6.563482+0 3.440160-5 8.628108+0 3.448975-5 1.148936+1 3.473451-5 2.092289+1 3.476793-5 2.186462+1 3.483362-5 2.856216+1 3.494542-5 3.793614+1 3.503080-5 4.799193+1 3.512526-5 6.487017+1 3.522143-5 8.891379+1 3.543706-5 1.538167+2 3.547653-5 1.646002+2 3.556734-5 1.797707+2 3.564199-5 1.827010+2 3.572816-5 1.724476+2 3.582711-5 1.468234+2 3.605788-5 6.872542+1 3.614312-5 4.552974+1 3.622662-5 2.875863+1 3.631081-5 1.749388+1 3.647947-5 3.525884+0 3.872855-5 3.307104+0 3.891920-5 3.474298+0 3.901452-5 3.618738+0 3.910985-5 3.842609+0 3.926912-5 4.411892+0 3.960241-5 5.693477+0 3.974501-5 5.870951+0 4.008498-5 5.902385+0 4.049974-5 6.888383+0 4.080970-5 6.948067+0 4.125588-5 6.701954+0 4.234634-5 6.680235+0 4.315987-5 6.560437+0 4.337234-5 1.414476+1 4.348521-5 2.101883+1 4.359144-5 3.076915+1 4.370208-5 4.469633+1 4.401305-5 9.198798+1 4.413091-5 1.033037+2 4.423420-5 1.064518+2 4.433818-5 1.021556+2 4.445201-5 8.974668+1 4.475336-5 4.367205+1 4.485960-5 3.038725+1 4.496583-5 2.060416+1 4.507206-5 1.410567+1 4.528453-5 6.142231+0 4.782837-5 5.617317+0 4.830860-5 5.715213+0 4.985898-5 7.106879+0 5.157054-5 7.061787+0 5.982587-5 5.730711+0 6.590361-5 5.146358+0 7.072428-5 4.954076+0 7.426285-5 4.990188+0 7.535421-5 5.163067+0 7.700273-5 5.060820+0 8.293732-5 5.375183+0 8.930002-5 5.930332+0 1.006859-4 7.342946+0 1.438605-4 1.373779+1 1.760000-4 1.761214+1 2.066605-4 2.005682+1 2.236180-4 2.108761+1 2.286889-4 2.230096+1 2.358031-4 2.261984+1 2.406479-4 2.352269+1 2.950000-4 2.356895+1 3.842750-4 2.335088+1 3.916213-4 2.495915+1 4.013075-4 2.433386+1 4.997468-4 2.333884+1 5.466398-4 2.263857+1 5.580000-4 2.282346+1 8.322128-4 1.758514+1 1.026243-3 1.469181+1 1.245256-3 1.218808+1 1.525096-3 9.850709+0 1.702893-3 8.776821+0 1.713085-3 9.069270+0 1.719418-3 9.680386+0 1.725664-3 1.085886+1 1.732031-3 1.277601+1 1.750288-3 2.024756+1 1.758169-3 2.260252+1 1.767508-3 2.411859+1 1.788683-3 2.591034+1 1.820881-3 3.100230+1 1.846000-3 3.242513+1 1.902622-3 3.351560+1 1.973294-3 3.292666+1 2.138860-3 2.953198+1 2.164116-3 3.096754+1 2.184438-3 3.261900+1 2.243289-3 3.160276+1 2.411600-3 2.871393+1 2.473012-3 2.937322+1 2.646829-3 2.684642+1 2.732682-3 2.673989+1 3.209653-3 2.149248+1 3.732480-3 1.738356+1 4.290422-3 1.417966+1 4.918094-3 1.157613+1 5.567049-3 9.590984+0 6.335733-3 7.861902+0 7.209208-3 6.425695+0 8.089650-3 5.356570+0 9.284532-3 4.297354+0 9.638010-3 4.058434+0 9.706974-3 4.218740+0 9.748012-3 4.574607+0 9.781400-3 5.108977+0 9.817444-3 5.957764+0 9.900537-3 8.336984+0 9.943558-3 9.228781+0 1.000192-2 9.809281+0 1.011489-2 9.857566+0 1.095252-2 8.737368+0 1.103808-2 9.004996+0 1.115005-2 1.016847+1 1.122833-2 1.095053+1 1.133941-2 1.125213+1 1.153503-2 1.119788+1 1.176608-2 1.210985+1 1.213977-2 1.174357+1 1.388414-2 9.526093+0 1.583465-2 7.720902+0 1.812766-2 6.195357+0 2.078302-2 4.942309+0 2.370574-2 3.966775+0 2.708254-2 3.164234+0 3.033427-2 2.606928+0 3.416818-2 2.122110+0 3.860375-2 1.715896+0 4.346701-2 1.394294+0 4.903234-2 1.127084+0 5.503518-2 9.188303-1 6.227178-2 7.369236-1 6.588944-2 6.700306-1 6.627357-2 6.883929-1 6.649293-2 7.316484-1 6.667693-2 8.060311-1 6.683958-2 9.140483-1 6.698482-2 1.050638+0 6.720296-2 1.331674+0 6.760488-2 2.010830+0 6.797210-2 2.600511+0 6.828860-2 2.931831+0 6.866174-2 3.104772+0 6.952041-2 3.119576+0 8.100491-2 2.443062+0 9.240482-2 1.971110+0 1.045668-1 1.603205+0 1.181530-1 1.304696+0 1.353194-1 1.035704+0 1.500084-1 8.676417-1 1.686730-1 7.097403-1 1.892054-1 5.831633-1 2.118569-1 4.807201-1 2.377464-1 3.951192-1 2.703325-1 3.186283-1 3.042426-1 2.625107-1 3.430724-1 2.163902-1 3.834864-1 1.818208-1 4.365158-1 1.494853-1 4.981628-1 1.234743-1 5.688530-1 1.027935-1 6.526607-1 8.589987-2 7.467263-1 7.278464-2 8.418493-1 6.333102-2 9.914025-1 5.321443-2 1.173413+0 4.423916-2 1.347258+0 3.791182-2 1.546860+0 3.248946-2 1.776032+0 2.784263-2 2.039158+0 2.386042-2 2.353545+0 2.033366-2 2.814822+0 1.664445-2 3.231848+0 1.426387-2 3.710658+0 1.222377-2 4.260405+0 1.047545-2 4.891600+0 8.977195-3 5.616308+0 7.693225-3 6.448384+0 6.592896-3 7.403736+0 5.649942-3 8.500626+0 4.841855-3 9.760024+0 4.149345-3 1.000000+1 8.564522-3 1 73000 7 0 1.809480+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.283351+1 2.706556-6-7.042344+1 2.957794-6-6.761871+1 3.029467-6-6.292781+1 3.049675-6-6.642529+1 3.070913-6-7.318623+1 3.091467-6-7.026481+1 3.133114-6-7.273020+1 3.249862-6-6.875128+1 3.346919-6-6.500146+1 3.386370-6-6.358909+1 3.441760-6-7.022941+1 3.494477-6-6.705485+1 3.594710-6-5.953741+1 3.627275-6-5.435354+1 3.663119-6-4.193625+1 3.675145-6-3.791863+1 3.683219-6-3.656532+1 3.690440-6-3.723659+1 3.699483-6-4.043045+1 3.707427-6-4.586405+1 3.717099-6-5.613861+1 3.730989-6-7.327196+1 3.737361-6-6.553713+1 3.748275-6-5.533826+1 3.758601-6-5.018472+1 3.768596-6-4.853198+1 3.780590-6-5.086430+1 3.827356-6-6.665693+1 3.865142-6-7.310485+1 3.949772-6-6.060796+1 3.980131-6-5.312165+1 3.995158-6-4.680021+1 4.006188-6-3.933829+1 4.018696-6-3.199418+1 4.030093-6-2.417022+1 4.039841-6-1.844264+1 4.041974-6-1.751992+1 4.049590-6-1.531501+1 4.053322-6-1.528414+1 4.058120-6-1.631073+1 4.061486-6-1.775328+1 4.065501-6-2.056264+1 4.070372-6-2.564860+1 4.074639-6-3.106460+1 4.078369-6-3.744964+1 4.086137-6-5.190822+1 4.095599-6-7.334271+1 4.098151-6-6.650027+1 4.110282-6-3.892344+1 4.118895-6-2.297974+1 4.122427-6-1.792049+1 4.126969-6-1.259056+1 4.128150-6-1.135192+1 4.130363-6-9.367425+0 4.132300-6-7.891758+0 4.133995-6-6.781151+0 4.136960-6-5.227094+0 4.139185-6-4.387648+0 4.140853-6-3.950443+0 4.143355-6-3.643173+0 4.144606-6-3.685965+0 4.151178-6-5.236239+0 4.153838-6-6.080856+0 4.155168-6-6.670216+0 4.157729-6-8.389172+0 4.164188-6-1.190056+1 4.179568-6-2.236599+1 4.194640-6-3.092911+1 4.198904-6-3.428585+1 4.210859-6-3.966520+1 4.230635-6-4.514159+1 4.267592-6-5.115395+1 4.337092-6-5.701383+1 4.471353-6-6.213085+1 4.824419-6-6.732996+1 4.940873-6-6.695889+1 5.443670-6-7.037732+1 5.573020-6-7.006490+1 5.821400-6-7.362584+1 5.875390-6-7.033416+1 5.933642-6-6.528529+1 5.985842-6-6.591703+1 6.108335-6-6.900863+1 6.462610-6-7.124414+1 6.580531-6-6.889810+1 6.780736-6-7.040644+1 1.790204-5-7.119736+1 2.283975-5-7.043051+1 2.616947-5-6.609894+1 2.691210-5-6.239969+1 2.732770-5-5.639573+1 2.747284-5-5.839900+1 2.764512-5-6.642353+1 2.771970-5-6.968712+1 2.786723-5-6.493623+1 2.803264-5-6.531414+1 2.828431-5-6.966253+1 2.866189-5-6.259529+1 2.884730-5-6.245032+1 2.906445-5-6.839584+1 2.911612-5-6.954387+1 2.929452-5-6.542256+1 2.948805-5-6.589547+1 2.993010-5-6.969460+1 3.271514-5-5.721983+1 3.345179-5-5.057468+1 3.383941-5-4.445396+1 3.406005-5-3.854976+1 3.427351-5-3.046564+1 3.466497-5-1.238665+1 3.473451-5-8.548392+0 3.475122-5-7.267402+0 3.476375-5-6.016887+0 3.477204-5-4.825948+0 3.478743-5-3.317732+0 3.481053-5-1.622009+0 3.483362-5-3.570947-1 3.487597-5 1.840117+0 3.491832-5 4.357430+0 3.493187-5 5.285464+0 3.496724-5 8.270280+0 3.501479-5 1.181109+1 3.504189-5 1.457728+1 3.513611-5 2.153214+1 3.515509-5 2.233972+1 3.522143-5 2.395939+1 3.523908-5 2.369956+1 3.526883-5 2.213357+1 3.529167-5 2.019518+1 3.532269-5 1.655706+1 3.534264-5 1.358559+1 3.536259-5 9.953824+0 3.538982-5 4.350463+0 3.541025-5-2.172883-1 3.542557-5-3.971093+0 3.543706-5-7.011472+0 3.544575-5-9.467409+0 3.546506-5-1.558166+1 3.547653-5-2.008509+1 3.553055-5-3.962819+1 3.555095-5-4.848481+1 3.557603-5-5.982746+1 3.560136-5-7.027400+1 3.563428-5-5.536459+1 3.564199-5-5.115045+1 3.571953-5-1.798389+1 3.572816-5-1.390738+1 3.573875-5-9.649180+0 3.574805-5-6.193359+0 3.576433-5-5.388632-1 3.580706-5 1.328190+1 3.581791-5 1.721594+1 3.582711-5 2.002866+1 3.584436-5 2.458145+1 3.587265-5 3.077596+1 3.591430-5 3.771666+1 3.595210-5 4.210675+1 3.600569-5 4.530475+1 3.604483-5 4.554075+1 3.612181-5 4.095341+1 3.621749-5 3.007281+1 3.633564-5 1.411827+1 3.644900-5 1.631829+0 3.646423-5-3.274950-1 3.647185-5-1.440815+0 3.647566-5-2.066000+0 3.648361-5-3.653246+0 3.649139-5-4.852483+0 3.650499-5-6.622074+0 3.652539-5-8.888712+0 3.656746-5-1.276488+1 3.662060-5-1.674559+1 3.668254-5-2.056906+1 3.679508-5-2.607447+1 3.692944-5-3.108101+1 3.715512-5-3.726929+1 3.748261-5-4.343365+1 3.803480-5-5.020897+1 3.941211-5-6.096461+1 4.145525-5-6.756705+1 4.233064-5-7.273633+1 4.286363-5-6.250950+1 4.309662-5-5.481306+1 4.326611-5-4.516840+1 4.337234-5-3.949503+1 4.349766-5-3.176703+1 4.360389-5-2.619624+1 4.370208-5-2.323039+1 4.375677-5-2.330226+1 4.382093-5-2.532274+1 4.388550-5-2.929647+1 4.395623-5-3.574122+1 4.400597-5-4.228162+1 4.410681-5-5.922702+1 4.416461-5-7.054431+1 4.422468-5-5.788326+1 4.433175-5-3.590869+1 4.436080-5-3.026211+1 4.445201-5-1.504262+1 4.447345-5-1.214851+1 4.449222-5-9.930233+0 4.450864-5-8.177727+0 4.453737-5-5.471772+0 4.455892-5-3.711855+0 4.459125-5-1.467233+0 4.462358-5 3.280107-1 4.465602-5 1.688556+0 4.468036-5 2.413119+0 4.469861-5 2.779704+0 4.472599-5 3.006904+0 4.473967-5 2.938133+0 4.480648-5 1.435643+0 4.483304-5 6.702452-1 4.484632-5 1.518795-1 4.485960-5-5.941273-1 4.487287-5-1.375301+0 4.491935-5-3.493709+0 4.494259-5-4.640355+0 4.495421-5-5.297353+0 4.496583-5-6.121594+0 4.510858-5-1.449558+1 4.525797-5-2.176285+1 4.532617-5-2.621037+1 4.544770-5-3.087447+1 4.564934-5-3.578786+1 4.602725-5-4.130849+1 4.672127-5-4.673449+1 4.830860-5-5.279726+1 4.985898-5-5.498220+1 7.535421-5-6.039763+1 1.093905-4-6.359069+1 1.577263-4-6.209708+1 2.236180-4-5.696517+1 2.808655-4-4.970109+1 3.749607-4-4.374390+1 4.013075-4-4.314009+1 4.293107-4-4.068651+1 5.278372-4-3.582672+1 6.717023-4-3.104330+1 8.322128-4-2.828275+1 1.026243-3-2.704346+1 1.245256-3-2.747923+1 1.433101-3-2.951613+1 1.562248-3-3.256626+1 1.642583-3-3.623563+1 1.687411-3-4.009972+1 1.710271-3-4.396561+1 1.736792-3-5.088213+1 1.750288-3-5.085889+1 1.778280-3-4.646377+1 1.809111-3-4.485000+1 1.846000-3-3.938169+1 1.902622-3-3.364830+1 1.973294-3-2.827263+1 2.040882-3-2.521984+1 2.111896-3-2.360221+1 2.154007-3-2.384384+1 2.184438-3-2.433597+1 2.243289-3-2.063749+1 2.306579-3-1.846021+1 2.392082-3-1.679779+1 2.463429-3-1.642955+1 2.542801-3-1.424405+1 2.625729-3-1.307075+1 2.691726-3-1.264468+1 2.754500-3-1.127988+1 2.866520-3-9.755956+0 3.064546-3-7.998746+0 3.287005-3-6.682201+0 3.548772-3-5.637424+0 3.830879-3-4.895129+0 4.159704-3-4.378039+0 4.602234-3-4.036642+0 5.131613-3-3.921190+0 5.832033-3-4.072095+0 6.616450-3-4.469061+0 7.519429-3-5.168224+0 8.344986-3-6.110124+0 8.910690-3-7.098629+0 9.284532-3-8.129841+0 9.520473-3-9.201127+0 9.638010-3-1.009533+1 9.733128-3-1.136062+1 9.838121-3-1.310050+1 9.900537-3-1.324842+1 9.977880-3-1.218201+1 1.008083-2-1.051421+1 1.020741-2-9.402219+0 1.039597-2-8.583188+0 1.063959-2-8.140509+0 1.085771-2-8.215681+0 1.098587-2-8.674149+0 1.112372-2-9.482708+0 1.119986-2-9.411306+0 1.137804-2-8.100561+0 1.149158-2-7.732269+0 1.164981-2-7.545926+0 1.176608-2-6.886437+0 1.192035-2-5.919348+0 1.213977-2-5.059071+0 1.242533-2-4.283834+0 1.285472-2-3.449408+0 1.327051-2-2.853941+0 1.375427-2-2.327682+0 1.434520-2-1.844245+0 1.487647-2-1.509250+0 1.567481-2-1.139199+0 1.625134-2-9.427195-1 1.681362-2-7.921430-1 1.747293-2-6.590382-1 1.832177-2-5.309090-1 1.919204-2-4.395172-1 1.972423-2-3.994962-1 2.035488-2-3.663216-1 2.162719-2-3.321398-1 2.269526-2-3.273829-1 2.440002-2-3.455545-1 2.618937-2-3.919847-1 2.899947-2-4.898724-1 4.526652-2-1.158658+0 5.299385-2-1.518948+0 5.823373-2-1.850725+0 6.140776-2-2.152396+0 6.351577-2-2.461316+0 6.498118-2-2.807083+0 6.588944-2-3.173822+0 6.649293-2-3.614333+0 6.727825-2-4.368501+0 6.760488-2-4.444062+0 6.797210-2-4.230406+0 6.876324-2-3.377143+0 6.928273-2-2.980166+0 7.000000-2-2.628781+0 7.111048-2-2.272065+0 7.280271-2-1.916764+0 7.496317-2-1.606636+0 7.738961-2-1.360208+0 8.100491-2-1.109251+0 8.417256-2-9.566637-1 8.801455-2-8.209162-1 9.240482-2-7.072475-1 9.721946-2-6.163708-1 1.045668-1-5.287113-1 1.101922-1-4.869762-1 1.181530-1-4.512464-1 1.306890-1-4.268269-1 1.500084-1-4.286612-1 2.703325-1-5.676370-1 3.715352-1-6.372315-1 5.385798-1-6.916876-1 8.922135-1-7.293825-1 2.688134+0-7.487943-1 8.118035+0-7.524418-1 1.000000+1-7.518342-1 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.223476-2 1.083768-6 1.718004-2 1.152562-6 2.230550-2 1.225723-6 2.912321-2 1.303528-6 3.823595-2 1.386271-6 5.048141-2 1.474267-6 6.706487-2 1.536000-6 8.126089-2 1.616843-6 1.030295-1 1.667370-6 1.191553-1 1.719475-6 1.381221-1 1.773209-6 1.604906-1 1.828621-6 1.869385-1 1.936898-6 2.501893-1 1.988512-6 2.865739-1 2.086951-6 3.694615-1 2.179334-6 4.674410-1 2.266033-6 5.819194-1 2.307362-6 6.456359-1 2.347399-6 7.142611-1 2.423758-6 8.645360-1 2.496557-6 1.035829+0 2.564806-6 1.228109+0 2.628790-6 1.442328+0 2.688774-6 1.679163+0 2.745010-6 1.939138+0 2.797731-6 2.222613+0 2.847156-6 2.529727+0 2.893493-6 2.860263+0 2.936934-6 3.213913+0 2.977659-6 3.590391+0 3.015839-6 3.988818+0 3.051633-6 4.408373+0 3.085190-6 4.848434+0 3.116650-6 5.308141+0 3.146143-6 5.786615+0 3.173793-6 6.283843+0 3.199715-6 6.799656+0 3.248318-6 7.906566+0 3.290846-6 9.052926+0 3.328058-6 1.022870+1 3.360619-6 1.141820+1 3.389109-6 1.260664+1 3.414039-6 1.378214+1 3.435852-6 1.493148+1 3.474024-6 1.725390+1 3.502654-6 1.931170+1 3.524126-6 2.107653+1 3.556334-6 2.415058+1 3.572438-6 2.591683+1 3.597375-6 2.902565+1 3.623874-6 3.293859+1 3.650372-6 3.764771+1 3.668037-6 4.134344+1 3.685703-6 4.559233+1 3.703368-6 5.051868+1 3.721034-6 5.628776+1 3.738699-6 6.312437+1 3.747532-6 6.703616+1 3.756365-6 7.134097+1 3.765197-6 7.609906+1 3.774443-6 8.164567+1 3.783112-6 8.746402+1 3.796875-6 9.822344+1 3.813141-6 1.141809+2 3.825640-6 1.299036+2 3.836577-6 1.473036+2 3.846146-6 1.664863+2 3.854520-6 1.874072+2 3.861846-6 2.098433+2 3.868257-6 2.334172+2 3.873867-6 2.576558+2 3.878775-6 2.820578+2 3.883070-6 3.061509+2 3.886828-6 3.295292+2 3.893404-6 3.760790+2 3.915993-6 5.982503+2 3.922765-6 6.843677+2 3.927581-6 7.505431+2 3.932397-6 8.202470+2 3.942028-6 9.672459+2 3.943232-6 9.860461+2 3.951660-6 1.117615+3 3.954971-6 1.168300+3 3.961292-6 1.261165+3 3.964602-6 1.306851+3 3.967763-6 1.347979+3 3.970923-6 1.386264+3 3.975137-6 1.432199+3 3.979201-6 1.470208+3 3.984769-6 1.510992+3 3.989509-6 1.534428+3 3.995002-6 1.547720+3 3.999818-6 1.546746+3 4.001549-6 1.543501+3 4.006487-6 1.525954+3 4.010471-6 1.503122+3 4.014137-6 1.475632+3 4.019033-6 1.429991+3 4.023492-6 1.380464+3 4.028526-6 1.316813+3 4.033605-6 1.245895+3 4.037891-6 1.182143+3 4.042694-6 1.107853+3 4.047644-6 1.029632+3 4.052442-6 9.536073+2 4.058210-6 8.636507+2 4.064983-6 7.622469+2 4.067240-6 7.298193+2 4.077504-6 5.930513+2 4.085646-6 4.983006+2 4.094678-6 4.076996+2 4.104396-6 3.260757+2 4.112647-6 2.681049+2 4.116948-6 2.415006+2 4.123706-6 2.041030+2 4.131078-6 1.687767+2 4.138450-6 1.384873+2 4.140907-6 1.294153+2 4.149508-6 1.013940+2 4.161180-6 7.197696+1 4.171010-6 5.430157+1 4.174177-6 4.990942+1 4.177201-6 4.628809+1 4.180225-6 4.321256+1 4.182682-6 4.110702+1 4.184525-6 3.975562+1 4.186944-6 3.827352+1 4.189316-6 3.713671+1 4.191422-6 3.638603+1 4.193510-6 3.587896+1 4.194966-6 3.566353+1 4.256511-6 1.490450+2 4.270726-6 2.379451+2 4.286348-6 3.973857+2 4.293780-6 5.047028+2 4.301793-6 6.490925+2 4.308908-6 8.060126+2 4.314197-6 9.420693+2 4.319966-6 1.110761+3 4.325415-6 1.290412+3 4.328685-6 1.407890+3 4.333999-6 1.614386+3 4.339313-6 1.839779+3 4.349942-6 2.342881+3 4.351270-6 2.410127+3 4.360570-6 2.901745+3 4.364223-6 3.102267+3 4.371198-6 3.489845+3 4.376595-6 3.788299+3 4.381827-6 4.070614+3 4.387224-6 4.349006+3 4.392455-6 4.600774+3 4.397105-6 4.805293+3 4.402243-6 5.005742+3 4.403748-6 5.058771+3 4.409975-6 5.247793+3 4.414838-6 5.358572+3 4.420504-6 5.443732+3 4.424889-6 5.475889+3 4.435542-6 5.429677+3 4.439396-6 5.370608+3 4.441378-6 5.331885+3 4.448009-6 5.163609+3 4.453220-6 4.993118+3 4.458271-6 4.800105+3 4.463830-6 4.561341+3 4.469218-6 4.309245+3 4.473350-6 4.105772+3 4.477482-6 3.896362+3 4.482796-6 3.622352+3 4.488110-6 3.347736+3 4.494089-6 3.043761+3 4.500067-6 2.750478+3 4.507623-6 2.402189+3 4.513186-6 2.165436+3 4.537634-6 1.355333+3 4.545843-6 1.166226+3 4.551317-6 1.060419+3 4.556790-6 9.690318+2 4.565000-6 8.553601+2 4.567737-6 8.228761+2 4.578683-6 7.146472+2 4.584156-6 6.710092+2 4.589630-6 6.326396+2 4.595103-6 5.984615+2 4.606049-6 5.392388+2 4.633416-6 4.202933+2 4.649835-6 3.601951+2 4.680426-6 2.685358+2 4.691164-6 2.429598+2 4.701232-6 2.219501+2 4.710671-6 2.046454+2 4.719519-6 1.903048+2 4.736110-6 1.675735+2 4.750628-6 1.512569+2 4.763330-6 1.390818+2 4.785560-6 1.212659+2 4.802232-6 1.100384+2 4.852248-6 8.337922+1 4.864191-6 7.827923+1 4.876134-6 7.369718+1 4.888078-6 6.968958+1 4.900021-6 6.631543+1 4.911964-6 6.361838+1 4.917936-6 6.252873+1 4.923907-6 6.160876+1 4.929879-6 6.085221+1 4.935850-6 6.024939+1 4.941822-6 5.978716+1 4.953765-6 5.921640+1 4.971680-6 5.892867+1 4.991350-6 5.874015+1 5.003621-6 5.837766+1 5.009756-6 5.807717+1 5.020576-6 5.732244+1 5.031396-6 5.627331+1 5.043339-6 5.479954+1 5.055282-6 5.305678+1 5.067226-6 5.112934+1 5.091112-6 4.706714+1 5.132461-6 4.061663+1 5.157002-6 3.746808+1 5.181543-6 3.478002+1 5.218354-6 3.138203+1 5.270215-6 2.744401+1 5.349014-6 2.264869+1 5.466639-6 1.714970+1 5.518916-6 1.510895+1 5.558125-6 1.368664+1 5.571194-6 1.322815+1 5.630049-6 1.122298+1 5.688905-6 9.226866+0 5.702907-6 8.734784+0 5.716910-6 8.230492+0 5.730912-6 7.712780+0 5.744915-6 7.183173+0 5.758917-6 6.647588+0 5.772920-6 6.117904+0 5.792058-6 5.438920+0 5.806058-6 5.010592+0 5.815881-6 4.763726+0 5.830126-6 4.509576+0 5.844370-6 4.403756+0 5.847932-6 4.402821+0 5.858615-6 4.463177+0 5.861906-6 4.500678+0 5.867664-6 4.586969+0 5.871983-6 4.668176+0 5.878462-6 4.814401+0 5.889089-6 5.108201+0 5.912323-6 5.878001+0 5.917717-6 6.057467+0 5.928730-6 6.393870+0 5.932101-6 6.484789+0 5.944687-6 6.753879+0 5.949632-6 6.823501+0 5.959071-6 6.890990+0 5.965278-6 6.885569+0 5.971203-6 6.842464+0 5.977127-6 6.762519+0 5.983124-6 6.645242+0 5.987622-6 6.534508+0 5.994369-6 6.334733+0 6.001116-6 6.099237+0 6.007306-6 5.857156+0 6.013495-6 5.595953+0 6.016609-6 5.459298+0 6.026407-6 5.017349+0 6.043953-6 4.254715+0 6.058232-6 3.761263+0 6.069084-6 3.525854+0 6.072701-6 3.482428+0 6.074680-6 3.467087+0 6.078142-6 3.455488+0 6.088530-6 3.549579+0 6.091461-6 3.614684+0 6.101721-6 3.993464+0 6.104286-6 4.127607+0 6.106210-6 4.239240+0 6.110539-6 4.526196+0 6.115207-6 4.893509+0 6.120719-6 5.408521+0 6.127187-6 6.130917+0 6.136710-6 7.439966+0 6.152312-6 1.025414+1 6.161124-6 1.222175+1 6.168537-6 1.408572+1 6.176441-6 1.627401+1 6.182661-6 1.813164+1 6.187788-6 1.974361+1 6.195352-6 2.223735+1 6.202752-6 2.478395+1 6.209482-6 2.716224+1 6.215858-6 2.944212+1 6.222675-6 3.187684+1 6.229277-6 3.419787+1 6.234624-6 3.602783+1 6.242594-6 3.862966+1 6.248316-6 4.037551+1 6.256250-6 4.258296+1 6.263514-6 4.434761+1 6.265565-6 4.479635+1 6.279922-6 4.725829+1 6.285010-6 4.782596+1 6.294723-6 4.844409+1 6.299831-6 4.852234+1 6.304465-6 4.844795+1 6.312067-6 4.803475+1 6.318276-6 4.744138+1 6.326425-6 4.634030+1 6.334282-6 4.496815+1 6.336902-6 4.445048+1 6.344792-6 4.273277+1 6.352683-6 4.081534+1 6.356444-6 3.984552+1 6.364906-6 3.756601+1 6.367727-6 3.678398+1 6.382771-6 3.253355+1 6.385412-6 3.178705+1 6.403896-6 2.672668+1 6.418984-6 2.297458+1 6.439521-6 1.863791+1 6.451183-6 1.661068+1 6.459065-6 1.541910+1 6.466946-6 1.436592+1 6.472543-6 1.369808+1 6.479378-6 1.296784+1 6.486838-6 1.227073+1 6.494442-6 1.165823+1 6.505849-6 1.090310+1 6.511553-6 1.058959+1 6.517256-6 1.031288+1 6.525706-6 9.961352+0 6.534155-6 9.667451+0 6.549928-6 9.229960+0 6.568621-6 8.818168+0 6.589359-6 8.401189+0 6.607103-6 8.032702+0 6.628790-6 7.555473+0 6.671857-6 6.627032+0 6.687619-6 6.344977+0 6.695500-6 6.224457+0 6.703381-6 6.120617+0 6.712423-6 6.025282+0 6.720455-6 5.965166+0 6.728487-6 5.931596+0 6.737792-6 5.930640+0 6.753006-6 6.031824+0 6.762220-6 6.164517+0 6.765709-6 6.230266+0 6.781541-6 6.643346+0 6.785869-6 6.790251+0 6.798852-6 7.319698+0 6.806304-6 7.682070+0 6.816955-6 8.267739+0 6.845236-6 1.010364+1 6.855880-6 1.083931+1 6.868063-6 1.165937+1 6.877539-6 1.225497+1 6.879967-6 1.239901+1 6.896969-6 1.327543+1 6.903116-6 1.352445+1 6.914851-6 1.388219+1 6.921972-6 1.401867+1 6.928769-6 1.409001+1 6.935566-6 1.410340+1 6.944036-6 1.404023+1 6.950389-6 1.393673+1 6.959918-6 1.369706+1 6.969447-6 1.336574+1 6.981227-6 1.284920+1 6.987917-6 1.251316+1 6.994607-6 1.215308+1 7.011823-6 1.115523+1 7.026591-6 1.027281+1 7.060666-6 8.426931+0 7.073456-6 7.872404+0 7.085579-6 7.436600+0 7.090863-6 7.275230+0 7.098790-6 7.065880+0 7.106717-6 6.895059+0 7.113889-6 6.772382+0 7.124124-6 6.646179+0 7.131023-6 6.590546+0 7.141721-6 6.544704+0 7.153015-6 6.539598+0 7.175117-6 6.609799+0 7.197407-6 6.710438+0 7.218341-6 6.768572+0 7.231379-6 6.772947+0 7.251788-6 6.730660+0 7.291614-6 6.567147+0 7.307343-6 6.521387+0 7.320067-6 6.508010+0 7.328175-6 6.512800+0 7.342265-6 6.547117+0 7.354859-6 6.604398+0 7.378582-6 6.764528+0 7.413900-6 7.039020+0 7.423663-6 7.102193+0 7.441434-6 7.185339+0 7.453286-6 7.212605+0 7.465972-6 7.213924+0 7.484995-6 7.161479+0 7.502973-6 7.057465+0 7.519228-6 6.927569+0 7.542370-6 6.707197+0 7.567854-6 6.455434+0 7.593909-6 6.232343+0 7.607917-6 6.138873+0 7.620086-6 6.075955+0 7.634930-6 6.023269+0 7.642690-6 6.006061+0 7.658867-6 5.991128+0 7.677068-6 6.002527+0 7.743616-6 6.130651+0 7.764672-6 6.147272+0 7.783760-6 6.141270+0 7.815203-6 6.092672+0 7.914153-6 5.855171+0 7.948127-6 5.795590+0 8.067503-6 5.622849+0 8.140946-6 5.500732+0 8.243154-6 5.314910+0 8.307073-6 5.220020+0 8.428385-6 5.100141+0 8.794011-6 4.819673+0 9.070971-6 4.666642+0 9.264705-6 4.601229+0 9.354439-6 4.580103+0 9.700000-6 4.557008+0 9.948227-6 4.598409+0 1.025911-5 4.711513+0 1.057971-5 4.904776+0 1.091032-5 5.166856+0 1.116964-5 5.419084+0 1.159222-5 5.923749+0 1.190214-5 6.371374+0 1.231673-5 7.052128+0 1.273503-5 7.847935+0 1.322057-5 8.883370+0 1.536000-5 1.493890+1 1.621810-5 1.791102+1 1.698244-5 2.072710+1 1.758270-5 2.297880+1 1.793426-5 2.431923+1 1.843471-5 2.621729+1 1.894806-5 2.815081+1 1.939445-5 2.979690+1 1.985124-5 3.139741+1 2.052500-5 3.361910+1 2.077304-5 3.438272+1 2.160000-5 3.664938+1 2.242711-5 3.846147+1 2.325156-5 3.977826+1 2.370318-5 4.023939+1 2.430000-5 4.062502+1 2.463498-5 4.070711+1 2.554653-5 4.055109+1 2.566168-5 4.064375+1 2.661271-5 4.313890+1 2.732934-5 4.569205+1 2.812627-5 4.922724+1 2.866095-5 5.216447+1 2.929907-5 5.645387+1 2.989507-5 6.137673+1 3.037127-5 6.619513+1 3.081209-5 7.158037+1 3.119952-5 7.723080+1 3.154004-5 8.311628+1 3.185672-5 8.957901+1 3.222965-5 9.869034+1 3.256500-5 1.086193+2 3.281781-5 1.175253+2 3.311311-5 1.299658+2 3.327638-5 1.380469+2 3.341177-5 1.455641+2 3.356171-5 1.549255+2 3.367417-5 1.627903+2 3.388793-5 1.802363+2 3.408003-5 1.997203+2 3.417898-5 2.117794+2 3.426269-5 2.234567+2 3.434641-5 2.368585+2 3.443012-5 2.524259+2 3.451384-5 2.706706+2 3.459755-5 2.921297+2 3.468127-5 3.172823+2 3.476498-5 3.464271+2 3.489187-5 3.979952+2 3.504207-5 4.670826+2 3.512790-5 5.069478+2 3.521373-5 5.437265+2 3.523518-5 5.520744+2 3.529955-5 5.743052+2 3.534601-5 5.872107+2 3.540145-5 5.985569+2 3.543471-5 6.030554+2 3.548823-5 6.064747+2 3.553984-5 6.052863+2 3.555704-5 6.039388+2 3.563214-5 5.929633+2 3.565360-5 5.884759+2 3.572870-5 5.692688+2 3.584755-5 5.343405+2 3.591109-5 5.180272+2 3.596507-5 5.079692+2 3.599692-5 5.043501+2 3.602977-5 5.028164+2 3.605089-5 5.031555+2 3.607202-5 5.046255+2 3.610957-5 5.102589+2 3.614578-5 5.196499+2 3.615785-5 5.236967+2 3.620076-5 5.419911+2 3.624367-5 5.666477+2 3.630805-5 6.161107+2 3.632950-5 6.359988+2 3.636405-5 6.716091+2 3.641533-5 7.326119+2 3.650332-5 8.591924+2 3.663256-5 1.090917+3 3.672207-5 1.278897+3 3.677286-5 1.394379+3 3.686271-5 1.613848+3 3.699748-5 1.986757+3 3.710699-5 2.350153+3 3.720024-5 2.730926+3 3.725440-5 2.994927+3 3.732641-5 3.409003+3 3.738465-5 3.806490+3 3.746888-5 4.496453+3 3.763797-5 6.333018+3 3.773568-5 7.647052+3 3.783026-5 9.030839+3 3.788374-5 9.829046+3 3.792882-5 1.049285+4 3.797360-5 1.113093+4 3.801459-5 1.168523+4 3.806268-5 1.228587+4 3.810352-5 1.274301+4 3.815741-5 1.325644+4 3.820205-5 1.359340+4 3.825360-5 1.387177+4 3.828665-5 1.398405+4 3.837654-5 1.401715+4 3.840168-5 1.395503+4 3.846974-5 1.363623+4 3.850571-5 1.338375+4 3.854573-5 1.304056+4 3.857147-5 1.278816+4 3.861541-5 1.230594+4 3.865922-5 1.176966+4 3.869582-5 1.128712+4 3.874287-5 1.063143+4 3.879020-5 9.944523+3 3.883753-5 9.243553+3 3.888698-5 8.509704+3 3.892543-5 7.945903+3 3.902573-5 6.542726+3 3.905700-5 6.133399+3 3.915079-5 5.006761+3 3.924645-5 4.030092+3 3.941126-5 2.756149+3 3.950016-5 2.259610+3 3.956462-5 1.968806+3 3.962908-5 1.727177+3 3.967691-5 1.575108+3 3.973358-5 1.420488+3 3.977257-5 1.327980+3 3.982040-5 1.227805+3 3.991606-5 1.063455+3 4.001172-5 9.358021+2 4.008725-5 8.540294+2 4.016279-5 7.849169+2 4.023074-5 7.312448+2 4.029869-5 6.840183+2 4.040063-5 6.227650+2 4.050420-5 5.697587+2 4.066215-5 5.023167+2 4.081320-5 4.491493+2 4.097194-5 4.022128+2 4.117216-5 3.529620+2 4.137061-5 3.124855+2 4.167184-5 2.622692+2 4.182995-5 2.396274+2 4.227233-5 1.845336+2 4.256404-5 1.545981+2 4.267307-5 1.452336+2 4.277370-5 1.376506+2 4.289014-5 1.302075+2 4.295291-5 1.267766+2 4.304136-5 1.225827+2 4.317042-5 1.176061+2 4.330476-5 1.134548+2 4.363645-5 1.046821+2 4.381916-5 9.962050+1 4.398431-5 9.485937+1 4.424238-5 8.740582+1 4.441169-5 8.248030+1 4.460126-5 7.670401+1 4.471548-5 7.302302+1 4.480939-5 6.988820+1 4.494676-5 6.519726+1 4.523231-5 5.594740+1 4.526990-5 5.491335+1 4.533612-5 5.329414+1 4.542956-5 5.161041+1 4.548005-5 5.109763+1 4.554822-5 5.099643+1 4.558686-5 5.131072+1 4.565259-5 5.261825+1 4.570572-5 5.454492+1 4.574238-5 5.642402+1 4.578300-5 5.912051+1 4.581789-5 6.202872+1 4.584881-5 6.512438+1 4.586518-5 6.698147+1 4.590464-5 7.214235+1 4.593463-5 7.678172+1 4.595343-5 8.003959+1 4.599786-5 8.892611+1 4.602694-5 9.574615+1 4.605602-5 1.034544+2 4.610449-5 1.185171+2 4.613810-5 1.307883+2 4.617411-5 1.458131+2 4.621357-5 1.647589+2 4.629171-5 2.111458+2 4.644831-5 3.495600+2 4.653043-5 4.531565+2 4.661474-5 5.869327+2 4.668613-5 7.248078+2 4.673739-5 8.390017+2 4.677700-5 9.363936+2 4.682499-5 1.065385+3 4.689208-5 1.266329+3 4.692081-5 1.359728+3 4.704292-5 1.803966+3 4.705638-5 1.857371+3 4.715784-5 2.283660+3 4.719488-5 2.448156+3 4.726558-5 2.771200+3 4.732394-5 3.042769+3 4.738050-5 3.305930+3 4.743636-5 3.561558+3 4.748596-5 3.781530+3 4.753777-5 4.000814+3 4.759330-5 4.220041+3 4.761487-5 4.299898+3 4.768353-5 4.531066+3 4.773815-5 4.686526+3 4.779399-5 4.816066+3 4.785318-5 4.918256+3 4.789241-5 4.965048+3 4.795120-5 5.003062+3 4.799014-5 5.006870+3 4.807573-5 4.956349+3 4.812547-5 4.891311+3 4.818970-5 4.771454+3 4.825195-5 4.620490+3 4.830794-5 4.459358+3 4.835470-5 4.309204+3 4.841482-5 4.099293+3 4.847228-5 3.885249+3 4.854411-5 3.605974+3 4.861953-5 3.306941+3 4.864467-5 3.207400+3 4.877396-5 2.709647+3 4.887451-5 2.352104+3 4.901843-5 1.904763+3 4.918175-5 1.499817+3 4.924352-5 1.374538+3 4.930529-5 1.263403+3 4.936381-5 1.170219+3 4.942233-5 1.087816+3 4.948084-5 1.015175+3 4.954502-5 9.455201+2 4.965640-5 8.457526+2 4.977344-5 7.640175+2 4.989048-5 7.000399+2 5.004644-5 6.344295+2 5.018291-5 5.898441+2 5.032161-5 5.529932+2 5.040681-5 5.335204+2 5.061746-5 4.929643+2 5.072679-5 4.752029+2 5.093249-5 4.462889+2 5.126407-5 4.086883+2 5.167000-5 3.725537+2 5.217747-5 3.364273+2 5.253760-5 3.146624+2 5.282860-5 2.992570+2 5.305215-5 2.890528+2 5.322197-5 2.824260+2 5.335093-5 2.780891+2 5.350494-5 2.736915+2 5.362493-5 2.708193+2 5.384605-5 2.666227+2 5.450137-5 2.595327+2 5.583815-5 2.521994+2 5.656055-5 2.486398+2 5.840375-5 2.369603+2 6.465840-5 2.046477+2 6.839116-5 1.877667+2 7.177821-5 1.735495+2 7.575923-5 1.580267+2 7.779699-5 1.505729+2 8.020424-5 1.417581+2 8.061216-5 1.407571+2 8.187451-5 1.392445+2 8.228100-5 1.385334+2 8.304506-5 1.363805+2 8.456389-5 1.318843+2 8.901548-5 1.215828+2 9.300000-5 1.140189+2 9.605058-5 1.093321+2 9.919702-5 1.056155+2 1.032167-4 1.023988+2 1.066984-4 1.008828+2 1.098562-4 1.006615+2 1.138682-4 1.021583+2 1.178284-4 1.053762+2 1.223961-4 1.108072+2 1.262046-4 1.168464+2 1.312200-4 1.265003+2 1.358817-4 1.368802+2 1.403070-4 1.479901+2 1.469246-4 1.664252+2 1.763100-4 2.690381+2 1.850729-4 3.042716+2 1.950000-4 3.447234+2 2.055086-4 3.867673+2 2.172485-4 4.318740+2 2.280400-4 4.698176+2 2.344702-4 4.889844+2 2.374850-4 4.967213+2 2.394150-4 5.035761+2 2.408607-4 5.118450+2 2.428203-4 5.279345+2 2.449159-4 5.462809+2 2.462903-4 5.555320+2 2.479334-4 5.630688+2 2.498990-4 5.698404+2 2.522841-4 5.810446+2 2.538363-4 5.926003+2 2.575000-4 6.268099+2 2.588489-4 6.367940+2 2.605299-4 6.458242+2 2.777500-4 7.113507+2 2.884032-4 7.463295+2 3.020937-4 7.849935+2 3.194683-4 8.294197+2 3.452813-4 8.902812+2 3.676146-4 9.378338+2 3.842079-4 9.658307+2 3.945163-4 9.763713+2 4.028516-4 9.770328+2 4.051382-4 9.824729+2 4.067913-4 9.912063+2 4.083665-4 1.003616+3 4.127496-4 1.047047+3 4.139279-4 1.056652+3 4.154660-4 1.066108+3 4.175937-4 1.074010+3 4.230712-4 1.085512+3 4.427153-4 1.138030+3 4.615303-4 1.176073+3 4.735843-4 1.197972+3 4.903913-4 1.234113+3 5.011872-4 1.260797+3 5.234089-4 1.303037+3 5.523885-4 1.344350+3 5.762558-4 1.370888+3 5.888437-4 1.392765+3 6.008278-4 1.416510+3 6.273357-4 1.455580+3 6.664231-4 1.495947+3 7.136837-4 1.530281+3 7.629569-4 1.556637+3 8.129767-4 1.575536+3 8.640000-4 1.587536+3 9.245651-4 1.593060+3 9.971256-4 1.588887+3 1.074608-3 1.571737+3 1.149304-3 1.539875+3 1.228800-3 1.498542+3 1.302423-3 1.452358+3 1.369917-3 1.401876+3 1.433012-3 1.345673+3 1.491935-3 1.280575+3 1.545180-3 1.212084+3 1.591751-3 1.141895+3 1.629572-3 1.075604+3 1.658630-3 1.016639+3 1.687613-3 9.480128+2 1.711951-3 8.799867+2 1.727826-3 8.281523+2 1.743835-3 7.668815+2 1.756393-3 7.092926+2 1.766238-3 6.564038+2 1.774224-3 6.089890+2 1.788052-3 5.280139+2 1.792328-3 5.078427+2 1.794480-3 4.993924+2 1.796581-3 4.924814+2 1.798871-3 4.866376+2 1.801066-3 4.828601+2 1.802464-3 4.814502+2 1.804847-3 4.809253+2 1.807456-3 4.831624+2 1.810555-3 4.897024+2 1.813260-3 4.988017+2 1.815606-3 5.091282+2 1.817375-3 5.183073+2 1.819578-3 5.312775+2 1.822424-3 5.502333+2 1.835853-3 6.581841+2 1.838508-3 6.802112+2 1.842634-3 7.133066+2 1.846489-3 7.425349+2 1.850580-3 7.715810+2 1.855003-3 8.009731+2 1.864963-3 8.633173+2 1.877343-3 9.459313+2 1.896500-3 1.099914+3 1.901734-3 1.143964+3 1.907818-3 1.193667+3 1.916747-3 1.261511+3 1.929000-3 1.342932+3 1.947310-3 1.443996+3 1.968483-3 1.542162+3 1.995262-3 1.649074+3 2.024183-3 1.748009+3 2.050385-3 1.821672+3 2.070000-3 1.864844+3 2.089296-3 1.897263+3 2.112331-3 1.925481+3 2.140271-3 1.948151+3 2.161989-3 1.957665+3 2.188730-3 1.959585+3 2.221894-3 1.954651+3 2.236000-3 1.959548+3 2.244881-3 1.967644+3 2.258471-3 1.988556+3 2.276911-3 2.031359+3 2.309019-3 2.122611+3 2.320732-3 2.152927+3 2.334483-3 2.183229+3 2.353004-3 2.215121+3 2.378659-3 2.246873+3 2.402478-3 2.267827+3 2.427111-3 2.283255+3 2.460168-3 2.296331+3 2.527056-3 2.304493+3 2.557482-3 2.318030+3 2.598802-3 2.359331+3 2.635234-3 2.395050+3 2.660247-3 2.410874+3 2.689869-3 2.421706+3 2.744591-3 2.425375+3 2.766072-3 2.425663+3 2.798790-3 2.438154+3 2.855100-3 2.485209+3 2.880509-3 2.500926+3 2.917993-3 2.516076+3 3.006371-3 2.535005+3 3.145728-3 2.544279+3 3.311311-3 2.537223+3 3.477322-3 2.512332+3 3.752969-3 2.458029+3 3.857460-3 2.435128+3 4.271939-3 2.324261+3 4.525493-3 2.256431+3 4.919493-3 2.146792+3 5.266279-3 2.050433+3 5.726003-3 1.927433+3 6.222779-3 1.801451+3 6.479522-3 1.739171+3 7.065781-3 1.601888+3 7.365250-3 1.534564+3 7.706816-3 1.460489+3 8.005684-3 1.396696+3 8.296281-3 1.335787+3 8.546533-3 1.283325+3 8.773841-3 1.235342+3 8.976871-3 1.191675+3 9.160803-3 1.150735+3 9.314513-3 1.115435+3 9.450551-3 1.082599+3 9.571649-3 1.051342+3 9.669474-3 1.023982+3 9.747793-3 9.999863+2 9.822133-3 9.744559+2 9.880904-3 9.512759+2 9.930140-3 9.290032+2 1.000665-2 8.889495+2 1.009140-2 8.439637+2 1.013036-2 8.284635+2 1.016200-2 8.205705+2 1.019504-2 8.177565+2 1.022363-2 8.199468+2 1.025422-2 8.266190+2 1.030061-2 8.431505+2 1.038888-2 8.820152+2 1.045076-2 9.051576+2 1.048116-2 9.141050+2 1.052363-2 9.240068+2 1.057718-2 9.328524+2 1.063959-2 9.393405+2 1.071240-2 9.432831+2 1.078344-2 9.444143+2 1.086822-2 9.430517+2 1.096624-2 9.384365+2 1.104071-2 9.329046+2 1.112257-2 9.246441+2 1.120074-2 9.141875+2 1.126263-2 9.037298+2 1.145602-2 8.638519+2 1.151712-2 8.561260+2 1.156770-2 8.545399+2 1.162098-2 8.576576+2 1.180542-2 8.821642+2 1.188537-2 8.876335+2 1.202574-2 8.927466+2 1.213146-2 9.026120+2 1.233926-2 9.304426+2 1.247071-2 9.408014+2 1.265731-2 9.465903+2 1.288676-2 9.469525+2 1.318368-2 9.418953+2 1.355900-2 9.301933+2 1.403202-2 9.106551+2 1.476336-2 8.753451+2 1.562248-2 8.311666+2 1.661958-2 7.801915+2 1.786214-2 7.200484+2 1.984784-2 6.352022+2 2.229565-2 5.484763+2 2.490523-2 4.736201+2 2.748289-2 4.127065+2 3.059188-2 3.529542+2 3.411848-2 2.993596+2 3.712680-2 2.624061+2 4.027407-2 2.297499+2 4.539701-2 1.872966+2 5.109091-2 1.525359+2 5.495409-2 1.338005+2 5.870436-2 1.180814+2 6.136484-2 1.079732+2 6.352679-2 1.001206+2 6.512534-2 9.429733+1 6.621133-2 9.013916+1 6.706786-2 8.651869+1 6.742977-2 8.479479+1 6.797425-2 8.182746+1 6.865859-2 7.751911+1 6.909373-2 7.504219+1 6.938224-2 7.391869+1 6.965645-2 7.341124+1 6.990034-2 7.344662+1 7.021963-2 7.408148+1 7.111752-2 7.717326+1 7.151289-2 7.821673+1 7.201628-2 7.902180+1 7.236809-2 7.931401+1 7.321129-2 7.947377+1 7.413102-2 7.916254+1 7.592773-2 7.788352+1 7.824260-2 7.564831+1 8.134156-2 7.223613+1 8.535914-2 6.766372+1 9.164765-2 6.091162+1 1.001150-1 5.300382+1 1.076542-1 4.700444+1 1.186642-1 3.973698+1 1.376052-1 3.052479+1 1.871939-1 1.745496+1 2.238721-1 1.254266+1 2.703461-1 8.793324+0 3.450568-1 5.513173+0 4.828835-1 2.874577+0 7.307184-1 1.277689+0 1.228714+0 4.581333-1 2.341267+0 1.271299-1 7.070513+0 1.397745-2 2.135261+1 1.532983-3 6.448384+1 1.680928-4 1.947381+2 1.843107-5 5.880996+2 2.020927-6 1.995262+3 1.755709-7 6.309573+3 1.755709-8 1.995262+4 1.755709-9 6.309573+4 1.75571-10 1.000000+5 6.98960-11 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.794600-6 1.258900-6 2.844200-6 1.584900-6 4.507800-6 1.995300-6 7.144300-6 2.511900-6 1.132300-5 3.162300-6 1.794600-5 3.981100-6 2.844200-5 5.011900-6 4.507700-5 6.309600-6 7.144100-5 7.943300-6 1.132300-4 1.000000-5 1.794500-4 1.258900-5 2.844000-4 1.584900-5 4.507400-4 1.995300-5 7.143600-4 2.511900-5 1.132100-3 3.162300-5 1.794100-3 3.981100-5 2.842700-3 5.011900-5 4.504200-3 6.309600-5 7.136800-3 7.943300-5 1.129700-2 1.000000-4 1.787600-2 1.258900-4 2.828500-2 1.584900-4 4.467400-2 1.995300-4 7.047700-2 2.511900-4 1.108700-1 3.162300-4 1.736100-1 3.981100-4 2.701100-1 5.011900-4 4.156700-1 6.309600-4 6.278900-1 7.943300-4 9.261600-1 1.000000-3 1.325900+0 1.258900-3 1.834300+0 1.584900-3 2.456200+0 1.995300-3 3.210900+0 2.511900-3 4.139100+0 3.162300-3 5.281700+0 3.981100-3 6.671600+0 5.011900-3 8.336000+0 6.309600-3 1.027600+1 7.943300-3 1.243300+1 1.000000-2 1.473500+1 1.258900-2 1.716400+1 1.584900-2 1.971000+1 1.995300-2 2.229700+1 2.511900-2 2.490200+1 3.162300-2 2.720600+1 3.981100-2 2.908500+1 5.011900-2 3.045900+1 6.309600-2 3.131100+1 7.943300-2 3.164400+1 1.000000-1 3.144300+1 1.258900-1 3.074100+1 1.584900-1 2.962000+1 1.995300-1 2.818300+1 2.511900-1 2.652200+1 3.162300-1 2.472000+1 3.981100-1 2.284500+1 5.011900-1 2.095200+1 6.309600-1 1.908000+1 7.943300-1 1.725500+1 1.000000+0 1.549800+1 1.258900+0 1.384100+1 1.584900+0 1.227400+1 1.995300+0 1.081200+1 2.511900+0 9.463000+0 3.162300+0 8.230300+0 3.981100+0 7.115300+0 5.011900+0 6.117000+0 6.309600+0 5.230700+0 7.943300+0 4.451700+0 1.000000+1 3.771800+0 1.258900+1 3.182800+0 1.584900+1 2.675900+0 1.995300+1 2.242300+0 2.511900+1 1.873300+0 3.162300+1 1.560800+0 3.981100+1 1.297300+0 5.011900+1 1.075800+0 6.309600+1 8.904000-1 7.943300+1 7.355900-1 1.000000+2 6.067000-1 1.258900+2 4.996300-1 1.584900+2 4.108800-1 1.995300+2 3.374700-1 2.511900+2 2.768500-1 3.162300+2 2.268800-1 3.981100+2 1.857300-1 5.011900+2 1.519100-1 6.309600+2 1.241400-1 7.943300+2 1.013600-1 1.000000+3 8.269600-2 1.258900+3 6.742100-2 1.584900+3 5.493000-2 1.995300+3 4.472500-2 2.511900+3 3.639300-2 3.162300+3 2.959700-2 3.981100+3 2.405600-2 5.011900+3 1.954200-2 6.309600+3 1.586800-2 7.943300+3 1.287800-2 1.000000+4 1.044700-2 1.258900+4 8.470700-3 1.584900+4 6.865600-3 1.995300+4 5.562400-3 2.511900+4 4.504900-3 3.162300+4 3.647000-3 3.981100+4 2.951500-3 5.011900+4 2.387700-3 6.309600+4 1.931000-3 7.943300+4 1.561200-3 1.000000+5 1.261800-3 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159551-4 3.981072-4 3.976751-4 5.011872-4 5.005069-4 6.309573-4 6.298865-4 7.943282-4 7.926473-4 1.000000-3 9.973698-4 1.258925-3 1.254823-3 1.584893-3 1.578506-3 1.995262-3 1.985302-3 2.511886-3 2.496300-3 3.162278-3 3.137827-3 3.981072-3 3.942698-3 5.011872-3 4.951685-3 6.309573-3 6.215384-3 7.943282-3 7.796480-3 1.000000-2 9.772077-3 1.258925-2 1.223600-2 1.584893-2 1.530200-2 1.995262-2 1.910632-2 2.511886-2 2.381821-2 3.162278-2 2.963533-2 3.981072-2 3.679788-2 5.011872-2 4.558095-2 6.309573-2 5.631228-2 7.943282-2 6.934895-2 1.000000-1 8.514822-2 1.258925-1 1.042141-1 1.584893-1 1.271410-1 1.995262-1 1.545976-1 2.511886-1 1.873742-1 3.162278-1 2.263498-1 3.981072-1 2.725460-1 5.011872-1 3.271575-1 6.309573-1 3.916197-1 7.943282-1 4.676111-1 1.000000+0 5.571161-1 1.258925+0 6.623335-1 1.584893+0 7.865812-1 1.995262+0 9.337025-1 2.511886+0 1.108256+0 3.162278+0 1.316004+0 3.981072+0 1.563976+0 5.011872+0 1.860875+0 6.309573+0 2.217133+0 7.943282+0 2.645576+0 1.000000+1 3.162194+0 1.258925+1 3.786278+0 1.584893+1 4.541418+0 1.995262+1 5.456677+0 2.511886+1 6.567476+0 3.162278+1 7.917241+0 3.981072+1 9.559981+0 5.011872+1 1.156072+1 6.309573+1 1.400044+1 7.943282+1 1.697807+1 1.000000+2 2.061548+1 1.258925+2 2.506248+1 1.584893+2 3.050418+1 1.995262+2 3.716772+1 2.511886+2 4.533290+1 3.162278+2 5.534551+1 3.981072+2 6.763002+1 5.011872+2 8.271337+1 6.309573+2 1.012429+2 7.943282+2 1.240188+2 1.000000+3 1.520285+2 1.258925+3 1.864901+2 1.584893+3 2.289163+2 1.995262+3 2.811734+2 2.511886+3 3.455516+2 3.162278+3 4.249341+2 3.981072+3 5.228227+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739885-9 3.981072-5 4.342103-9 5.011872-5 6.881434-9 6.309573-5 1.090585-8 7.943282-5 1.727897-8 1.000000-4 2.737956-8 1.258925-4 4.338482-8 1.584893-4 6.872144-8 1.995262-4 1.088354-7 2.511886-4 1.723242-7 3.162278-4 2.726534-7 3.981072-4 4.320819-7 5.011872-4 6.803015-7 6.309573-4 1.070824-6 7.943282-4 1.680932-6 1.000000-3 2.630238-6 1.258925-3 4.102238-6 1.584893-3 6.387660-6 1.995262-3 9.960577-6 2.511886-3 1.558642-5 3.162278-3 2.445022-5 3.981072-3 3.837341-5 5.011872-3 6.018756-5 6.309573-3 9.418898-5 7.943282-3 1.468027-4 1.000000-2 2.279232-4 1.258925-2 3.532564-4 1.584893-2 5.469317-4 1.995262-2 8.463061-4 2.511886-2 1.300656-3 3.162278-2 1.987444-3 3.981072-2 3.012841-3 5.011872-2 4.537774-3 6.309573-2 6.783452-3 7.943282-2 1.008387-2 1.000000-1 1.485178-2 1.258925-1 2.167845-2 1.584893-1 3.134833-2 1.995262-1 4.492863-2 2.511886-1 6.381440-2 3.162278-1 8.987799-2 3.981072-1 1.255611-1 5.011872-1 1.740297-1 6.309573-1 2.393377-1 7.943282-1 3.267171-1 1.000000+0 4.428839-1 1.258925+0 5.965920-1 1.584893+0 7.983120-1 1.995262+0 1.061560+0 2.511886+0 1.403631+0 3.162278+0 1.846273+0 3.981072+0 2.417096+0 5.011872+0 3.150997+0 6.309573+0 4.092440+0 7.943282+0 5.297706+0 1.000000+1 6.837806+0 1.258925+1 8.802977+0 1.584893+1 1.130751+1 1.995262+1 1.449595+1 2.511886+1 1.855139+1 3.162278+1 2.370554+1 3.981072+1 3.025074+1 5.011872+1 3.855800+1 6.309573+1 4.909529+1 7.943282+1 6.245475+1 1.000000+2 7.938452+1 1.258925+2 1.008301+2 1.584893+2 1.279851+2 1.995262+2 1.623585+2 2.511886+2 2.058557+2 3.162278+2 2.608823+2 3.981072+2 3.304772+2 5.011872+2 4.184739+2 6.309573+2 5.297145+2 7.943282+2 6.703094+2 1.000000+3 8.479715+2 1.258925+3 1.072435+3 1.584893+3 1.355977+3 1.995262+3 1.714089+3 2.511886+3 2.166335+3 3.162278+3 2.737344+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.410000-6 5.202148+6 7.700000-6 5.608584+6 7.700000-6 1.166778+7 8.000000-6 1.118849+7 8.128305-6 1.102811+7 8.270000-6 1.087061+7 8.270000-6 1.363070+7 8.511380-6 1.362062+7 8.609938-6 1.363675+7 8.912509-6 1.373340+7 9.120108-6 1.385465+7 9.660509-6 1.427985+7 9.700000-6 1.431802+7 9.772372-6 1.438352+7 1.023293-5 1.486805+7 1.035142-5 1.500484+7 1.071519-5 1.542932+7 1.083927-5 1.558491+7 1.109175-5 1.590627+7 1.150000-5 1.643067+7 1.174898-5 1.675863+7 1.188502-5 1.694279+7 1.224700-5 1.741891+7 1.273503-5 1.806748+7 1.303167-5 1.844965+7 1.364583-5 1.923480+7 1.380384-5 1.942729+7 1.445440-5 2.020126+7 1.462177-5 2.038763+7 1.531087-5 2.112365+7 1.548817-5 2.129538+7 1.621810-5 2.196313+7 1.698244-5 2.252891+7 1.778279-5 2.296822+7 1.819701-5 2.310999+7 1.862087-5 2.325504+7 1.905461-5 2.331960+7 1.927525-5 2.335273+7 1.980000-5 2.333444+7 2.000000-5 2.332820+7 2.041738-5 2.323495+7 2.070000-5 2.317376+7 2.113489-5 2.299732+7 2.150000-5 2.285373+7 2.170000-5 2.273636+7 2.230000-5 2.239509+7 2.238721-5 2.232989+7 2.300000-5 2.188474+7 2.317395-5 2.176234+7 2.350000-5 2.147964+7 2.400000-5 2.106107+7 2.420000-5 2.086756+7 2.483133-5 2.027883+7 2.540973-5 1.968341+7 2.580000-5 1.929918+7 2.610000-5 1.897083+7 2.670000-5 1.834183+7 2.676700-5 1.827379+7 2.691535-5 1.811675+7 2.730000-5 1.769443+7 2.786121-5 1.710618+7 2.800000-5 1.695921+7 2.884032-5 1.606918+7 2.900000-5 1.590831+7 2.917427-5 1.572917+7 2.980000-5 1.508362+7 3.019952-5 1.469223+7 3.054921-5 1.435141+7 3.080000-5 1.410484+7 3.162278-5 1.333852+7 3.198895-5 1.300805+7 3.311311-5 1.203371+7 3.388442-5 1.141020+7 3.467369-5 1.080243+7 3.507519-5 1.051089+7 3.589219-5 9.939072+6 3.672823-5 9.385475+6 3.730000-5 9.031566+6 3.801894-5 8.604758+6 3.981072-5 7.636118+6 4.073803-5 7.185914+6 4.265795-5 6.347209+6 4.325000-5 6.112048+6 4.325000-5 6.566141+6 4.365158-5 6.426662+6 4.370000-5 6.409811+6 4.400000-5 6.304600+6 4.415704-5 6.250705+6 4.470000-5 6.067104+6 4.530000-5 5.871388+6 4.561000-5 5.772832+6 4.561000-5 6.073782+6 4.565000-5 6.062376+6 4.565000-5 1.090794+7 4.570882-5 1.088879+7 4.590000-5 1.082631+7 4.600000-5 1.079354+7 4.605000-5 1.077708+7 4.635000-5 1.066475+7 4.650000-5 1.060893+7 4.680000-5 1.048368+7 4.700000-5 1.040106+7 4.710000-5 1.035989+7 4.731513-5 1.026313+7 4.786301-5 1.002156+7 4.800000-5 9.958390+6 4.810000-5 9.912392+6 4.841724-5 9.767970+6 4.850000-5 9.730497+6 4.870000-5 9.635750+6 4.954502-5 9.248689+6 5.069907-5 8.721103+6 5.080000-5 8.676946+6 5.150000-5 8.367066+6 5.188000-5 8.204459+6 5.190000-5 8.196023+6 5.230000-5 8.029324+6 5.248075-5 7.952992+6 5.370318-5 7.458688+6 5.400000-5 7.345215+6 5.432503-5 7.220071+6 5.500000-5 6.968031+6 5.559043-5 6.758778+6 5.602000-5 6.610844+6 5.602000-5 8.759564+6 5.623413-5 8.700989+6 5.650000-5 8.627542+6 5.688529-5 8.513309+6 5.700000-5 8.480224+6 5.754399-5 8.311420+6 5.770000-5 8.263908+6 5.800000-5 8.166288+6 5.821032-5 8.099099+6 5.850000-5 8.008478+6 5.855200-5 7.991497+6 5.888437-5 7.885089+6 5.900000-5 7.847962+6 5.920000-5 7.783870+6 6.000000-5 7.524790+6 6.025596-5 7.442382+6 6.095369-5 7.226005+6 6.110000-5 7.181681+6 6.150000-5 7.058227+6 6.165950-5 7.010361+6 6.237348-5 6.803459+6 6.300000-5 6.621211+6 6.309573-5 6.594327+6 6.382635-5 6.396273+6 6.450000-5 6.217300+6 6.456542-5 6.200554+6 6.531306-5 6.014906+6 6.606934-5 5.832245+6 6.730000-5 5.559528+6 6.760830-5 5.493466+6 6.839116-5 5.335922+6 6.918310-5 5.185209+6 7.000000-5 5.039568+6 7.079458-5 4.906011+6 7.117800-5 4.845305+6 7.161434-5 4.779541+6 7.244360-5 4.660095+6 7.300000-5 4.585553+6 7.328245-5 4.548895+6 7.413102-5 4.445918+6 7.585776-5 4.258735+6 7.650000-5 4.198100+6 7.673615-5 4.177031+6 7.762471-5 4.103740+6 7.852356-5 4.036481+6 8.035261-5 3.918402+6 8.222426-5 3.828392+6 8.317638-5 3.792315+6 8.413951-5 3.761278+6 8.500000-5 3.739552+6 8.514000-5 3.736229+6 8.514000-5 3.803017+6 8.620000-5 3.779306+6 8.730000-5 3.761941+6 8.810489-5 3.753764+6 8.850000-5 3.750839+6 8.912509-5 3.748002+6 8.970000-5 3.746875+6 9.015711-5 3.747253+6 9.120108-5 3.749659+6 9.225714-5 3.757719+6 9.300000-5 3.766812+6 9.332543-5 3.771570+6 9.440609-5 3.788841+6 9.500000-5 3.800067+6 9.549926-5 3.810484+6 9.660509-5 3.834488+6 9.721800-5 3.849980+6 9.885531-5 3.897530+6 1.000000-4 3.934368+6 1.011579-4 3.973619+6 1.040000-4 4.084291+6 1.047129-4 4.114464+6 1.060000-4 4.168584+6 1.071519-4 4.219887+6 1.080000-4 4.259630+6 1.083927-4 4.278478+6 1.092100-4 4.319059+6 1.096478-4 4.340516+6 1.122018-4 4.465278+6 1.135011-4 4.533303+6 1.150000-4 4.607560+6 1.161449-4 4.666590+6 1.170000-4 4.711770+6 1.174898-4 4.738231+6 1.202264-4 4.875013+6 1.220000-4 4.967756+6 1.224700-4 4.990124+6 1.230269-4 5.016960+6 1.260000-4 5.164128+6 1.273503-4 5.225184+6 1.288250-4 5.293586+6 1.303167-4 5.364144+6 1.318257-4 5.427732+6 1.338300-4 5.513749+6 1.350000-4 5.565033+6 1.364583-4 5.620659+6 1.396368-4 5.744246+6 1.400000-4 5.758559+6 1.412538-4 5.800672+6 1.450000-4 5.929361+6 1.462177-4 5.968885+6 1.480000-4 6.021134+6 1.500000-4 6.080265+6 1.513561-4 6.120838+6 1.531087-4 6.169290+6 1.540000-4 6.191131+6 1.548817-4 6.212817+6 1.560000-4 6.240469+6 1.566751-4 6.257207+6 1.580000-4 6.290045+6 1.584893-4 6.302209+6 1.603245-4 6.343811+6 1.620000-4 6.376799+6 1.621810-4 6.380372+6 1.640590-4 6.417595+6 1.659587-4 6.455314+6 1.678804-4 6.489462+6 1.690000-4 6.509333+6 1.698244-4 6.521360+6 1.720000-4 6.553287+6 1.737801-4 6.579561+6 1.760000-4 6.607464+6 1.778279-4 6.630426+6 1.800000-4 6.650969+6 1.820000-4 6.669801+6 1.840772-4 6.684626+6 1.862087-4 6.699835+6 1.883649-4 6.708655+6 1.905461-4 6.717728+6 1.927525-4 6.721916+6 1.950000-4 6.726156+6 1.972423-4 6.724375+6 2.000000-4 6.722321+6 2.018366-4 6.717392+6 2.041738-4 6.711253+6 2.060000-4 6.702146+6 2.065380-4 6.699493+6 2.089296-4 6.687843+6 2.113489-4 6.672233+6 2.137962-4 6.656781+6 2.150000-4 6.649302+6 2.180000-4 6.624255+6 2.187762-4 6.617859+6 2.190000-4 6.616014+6 2.200000-4 6.606199+6 2.213095-4 6.593452+6 2.238721-4 6.568803+6 2.240000-4 6.567586+6 2.264644-4 6.544340+6 2.317395-4 6.485324+6 2.350000-4 6.444980+6 2.371374-4 6.418972+6 2.400000-4 6.384689+6 2.426610-4 6.348764+6 2.454709-4 6.311493+6 2.473400-4 6.284553+6 2.473400-4 6.536084+6 2.483133-4 6.522242+6 2.530000-4 6.456850+6 2.540973-4 6.441316+6 2.570396-4 6.395482+6 2.575000-4 6.388381+6 2.600160-4 6.347850+6 2.600500-4 6.347264+6 2.600500-4 6.517820+6 2.605000-4 6.510148+6 2.630268-4 6.466575+6 2.660725-4 6.413208+6 2.700000-4 6.338034+6 2.704500-4 6.329480+6 2.722701-4 6.294145+6 2.730000-4 6.280101+6 2.740000-4 6.259790+6 2.765000-4 6.208845+6 2.786121-4 6.165720+6 2.790000-4 6.157980+6 2.800000-4 6.137776+6 2.818383-4 6.098559+6 2.835000-4 6.063186+6 2.851018-4 6.029960+6 2.870000-4 5.990885+6 2.884032-4 5.962757+6 2.910000-4 5.908753+6 2.917427-4 5.893743+6 2.951209-4 5.826475+6 2.985383-4 5.757391+6 3.000000-4 5.728807+6 3.019952-4 5.690563+6 3.030000-4 5.671497+6 3.050000-4 5.634521+6 3.054921-4 5.625593+6 3.065000-4 5.606533+6 3.090295-4 5.559871+6 3.100000-4 5.542363+6 3.126079-4 5.496545+6 3.130000-4 5.489302+6 3.150000-4 5.453013+6 3.162278-4 5.431300+6 3.165000-4 5.426510+6 3.198895-4 5.368165+6 3.200000-4 5.366285+6 3.235937-4 5.307367+6 3.240000-4 5.300495+6 3.260000-4 5.267292+6 3.280000-4 5.234970+6 3.311311-4 5.185786+6 3.320000-4 5.171629+6 3.370000-4 5.093613+6 3.388442-4 5.065883+6 3.427678-4 5.008179+6 3.430000-4 5.004818+6 3.500000-4 4.903490+6 3.507519-4 4.893030+6 3.548134-4 4.834330+6 3.589219-4 4.776954+6 3.600000-4 4.762214+6 3.630781-4 4.720716+6 3.650000-4 4.695342+6 3.672823-4 4.664376+6 3.715352-4 4.608191+6 3.740000-4 4.574710+6 3.801894-4 4.492747+6 3.850000-4 4.431857+6 3.890451-4 4.379752+6 3.935501-4 4.323345+6 3.981072-4 4.265796+6 4.027170-4 4.208933+6 4.050000-4 4.181513+6 4.100000-4 4.122713+6 4.120975-4 4.097882+6 4.168694-4 4.042038+6 4.196200-4 4.009284+6 4.196200-4 4.250787+6 4.200000-4 4.246236+6 4.216965-4 4.225913+6 4.265795-4 4.168814+6 4.280200-4 4.152115+6 4.350000-4 4.073600+6 4.365158-4 4.056912+6 4.394000-4 4.024601+6 4.415704-4 4.000380+6 4.466836-4 3.944743+6 4.500000-4 3.908533+6 4.518559-4 3.888443+6 4.570882-4 3.832385+6 4.650000-4 3.751265+6 4.677351-4 3.723967+6 4.700000-4 3.700811+6 4.731513-4 3.669152+6 4.786301-4 3.613741+6 4.841724-4 3.559181+6 4.850000-4 3.551196+6 4.886100-4 3.516005+6 4.886100-4 3.568887+6 4.954502-4 3.504329+6 5.011872-4 3.450364+6 5.069907-4 3.395136+6 5.128614-4 3.341230+6 5.150000-4 3.322062+6 5.188000-4 3.288248+6 5.248075-4 3.235541+6 5.350000-4 3.148437+6 5.370318-4 3.131509+6 5.400000-4 3.106387+6 5.495409-4 3.027355+6 5.500000-4 3.023658+6 5.559043-4 2.976922+6 5.580000-4 2.960691+6 5.650000-4 2.907313+6 5.688529-4 2.877703+6 5.754399-4 2.828209+6 5.821032-4 2.778874+6 5.847000-4 2.759947+6 5.847000-4 2.825980+6 5.888437-4 2.795978+6 5.900000-4 2.787719+6 5.956621-4 2.747427+6 6.000000-4 2.717335+6 6.095369-4 2.653464+6 6.100000-4 2.650389+6 6.165950-4 2.606935+6 6.237348-4 2.559725+6 6.309573-4 2.513628+6 6.320000-4 2.507086+6 6.382635-4 2.468427+6 6.456542-4 2.423820+6 6.531306-4 2.379662+6 6.606934-4 2.335722+6 6.700000-4 2.282840+6 6.760830-4 2.249173+6 6.839116-4 2.206694+6 6.918310-4 2.165069+6 7.000000-4 2.123583+6 7.079458-4 2.084584+6 7.161434-4 2.044224+6 7.328245-4 1.965385+6 7.413102-4 1.927393+6 7.498942-4 1.890315+6 7.500000-4 1.889866+6 7.585776-4 1.853583+6 7.673615-4 1.816837+6 7.943282-4 1.710227+6 8.000000-4 1.689006+6 8.035261-4 1.675883+6 8.128305-4 1.641900+6 8.222426-4 1.608715+6 8.317638-4 1.575945+6 8.413951-4 1.543590+6 8.511380-4 1.511685+6 8.609938-4 1.480204+6 8.709636-4 1.449501+6 8.810489-4 1.419507+6 8.912509-4 1.390139+6 9.015711-4 1.360968+6 9.120108-4 1.331898+6 9.225714-4 1.303542+6 9.332543-4 1.275848+6 9.440609-4 1.248844+6 9.549926-4 1.222502+6 9.660509-4 1.196592+6 9.700000-4 1.187447+6 9.772372-4 1.170808+6 9.885531-4 1.145465+6 1.011579-3 1.096187+6 1.035142-3 1.048972+6 1.047129-3 1.025980+6 1.059254-3 1.003533+6 1.070000-3 9.841321+5 1.071519-3 9.814280+5 1.083927-3 9.596707+5 1.096478-3 9.382616+5 1.110000-3 9.160635+5 1.122018-3 8.968416+5 1.135011-3 8.767947+5 1.161449-3 8.381567+5 1.174898-3 8.193236+5 1.188502-3 8.007719+5 1.190000-3 7.987712+5 1.202264-3 7.824510+5 1.224700-3 7.539644+5 1.230269-3 7.471538+5 1.240000-3 7.354897+5 1.244515-3 7.301760+5 1.258925-3 7.134904+5 1.273503-3 6.971462+5 1.288250-3 6.811922+5 1.297180-3 6.717052+5 1.318257-3 6.499967+5 1.333521-3 6.348842+5 1.348963-3 6.201612+5 1.396368-3 5.779238+5 1.400000-3 5.748289+5 1.412538-3 5.643441+5 1.428894-3 5.510875+5 1.462177-3 5.254673+5 1.479108-3 5.130325+5 1.513561-3 4.890337+5 1.531087-3 4.773805+5 1.566751-3 4.548476+5 1.584893-3 4.439746+5 1.590000-3 4.409649+5 1.603245-3 4.333055+5 1.621810-3 4.229161+5 1.640590-3 4.127957+5 1.650000-3 4.078162+5 1.678804-3 3.930758+5 1.717908-3 3.742373+5 1.730000-3 3.686741+5 1.757924-3 3.562187+5 1.778279-3 3.475456+5 1.798871-3 3.390224+5 1.816200-3 3.320978+5 1.816200-3 9.631781+5 1.840772-3 9.438598+5 1.862087-3 9.276653+5 1.881100-3 9.135685+5 1.881100-3 1.160605+6 1.883649-3 1.161174+6 1.905461-3 1.167112+6 1.927525-3 1.175214+6 1.929000-3 1.175829+6 1.940000-3 1.179056+6 1.951000-3 1.178879+6 1.978000-3 1.172042+6 2.000000-3 1.161671+6 2.018366-3 1.149594+6 2.030000-3 1.140335+6 2.041738-3 1.130055+6 2.044000-3 1.128098+6 2.050000-3 1.121977+6 2.065380-3 1.102833+6 2.070000-3 1.097165+6 2.089296-3 1.072277+6 2.113489-3 1.042165+6 2.187762-3 9.566651+5 2.213095-3 9.296001+5 2.238721-3 9.033141+5 2.271200-3 8.714470+5 2.271200-3 1.006714+6 2.290868-3 9.867132+5 2.300000-3 9.776178+5 2.317395-3 9.606015+5 2.344229-3 9.349367+5 2.355000-3 9.249045+5 2.398833-3 8.850686+5 2.415000-3 8.710040+5 2.426610-3 8.611860+5 2.450000-3 8.418931+5 2.454709-3 8.380557+5 2.483133-3 8.152500+5 2.540973-3 7.715431+5 2.567800-3 7.521619+5 2.567800-3 7.977792+5 2.600160-3 7.748244+5 2.609000-3 7.687232+5 2.630268-3 7.542661+5 2.650000-3 7.412116+5 2.660725-3 7.342501+5 2.691535-3 7.147619+5 2.722701-3 6.955368+5 2.740000-3 6.851931+5 2.786121-3 6.586413+5 2.796500-3 6.528759+5 2.796500-3 6.808664+5 2.800000-3 6.789057+5 2.818383-3 6.687304+5 2.851018-3 6.510240+5 2.884032-3 6.338109+5 2.900000-3 6.257275+5 2.917427-3 6.170787+5 2.920000-3 6.158114+5 2.951209-3 6.006416+5 2.985383-3 5.845242+5 3.019952-3 5.688010+5 3.054921-3 5.535264+5 3.090295-3 5.386651+5 3.126079-3 5.242258+5 3.150000-3 5.148633+5 3.198895-3 4.963051+5 3.273407-3 4.698589+5 3.311311-3 4.571024+5 3.388442-3 4.326854+5 3.400000-3 4.291754+5 3.427678-3 4.208728+5 3.467369-3 4.093705+5 3.507519-3 3.981422+5 3.548134-3 3.872370+5 3.589219-3 3.766459+5 3.672823-3 3.563313+5 3.715352-3 3.466131+5 3.720000-3 3.455696+5 3.758374-3 3.370794+5 3.801894-3 3.277885+5 3.845918-3 3.187547+5 3.935501-3 3.012577+5 3.981072-3 2.928852+5 4.000000-3 2.895074+5 4.027170-3 2.847276+5 4.120975-3 2.689641+5 4.216965-3 2.540757+5 4.265795-3 2.469614+5 4.315191-3 2.400485+5 4.365158-3 2.333129+5 4.415704-3 2.267702+5 4.466836-3 2.204088+5 4.518559-3 2.142103+5 4.570882-3 2.081928+5 4.677351-3 1.966872+5 4.800000-3 1.845532+5 4.841724-3 1.806095+5 4.897788-3 1.754478+5 4.954502-3 1.704377+5 5.069907-3 1.608544+5 5.188000-3 1.518334+5 5.248075-3 1.474976+5 5.370318-3 1.391743+5 5.432503-3 1.351954+5 5.495409-3 1.313365+5 5.500000-3 1.310612+5 5.559043-3 1.275768+5 5.623413-3 1.239137+5 5.688529-3 1.203574+5 5.754399-3 1.169085+5 5.888437-3 1.103131+5 6.025596-3 1.041087+5 6.095369-3 1.011147+5 6.165950-3 9.818158+4 6.300000-3 9.293664+4 6.309573-3 9.257670+4 6.382635-3 8.989198+4 6.531306-3 8.476493+4 6.606934-3 8.231622+4 6.683439-3 7.992707+4 6.760830-3 7.761041+4 6.839116-3 7.536230+4 6.918310-3 7.317629+4 7.000000-3 7.100741+4 7.079458-3 6.897609+4 7.161434-3 6.696496+4 7.244360-3 6.501272+4 7.413102-3 6.128558+4 7.498942-3 5.950580+4 7.500000-3 5.948431+4 7.585776-3 5.777238+4 7.673615-3 5.608129+4 7.852356-3 5.283993+4 7.943282-3 5.128832+4 8.000000-3 5.035249+4 8.035261-3 4.978297+4 8.128305-3 4.832385+4 8.222426-3 4.690969+4 8.317638-3 4.553447+4 8.413951-3 4.420049+4 8.511380-3 4.290027+4 8.609938-3 4.163912+4 8.810489-3 3.922185+4 8.912509-3 3.806435+4 9.015711-3 3.693822+4 9.120108-3 3.584699+4 9.332543-3 3.376484+4 9.500000-3 3.224259+4 9.549926-3 3.180608+4 9.660509-3 3.086281+4 9.772372-3 2.994833+4 9.885531-3 2.906128+4 1.000000-2 2.819890+4 1.011579-2 2.736060+4 1.020600-2 2.672990+4 1.020600-2 7.021281+4 1.023293-2 6.972129+4 1.035142-2 6.761461+4 1.040000-2 6.677648+4 1.047129-2 6.566087+4 1.050000-2 6.521898+4 1.059254-2 6.371032+4 1.080000-2 6.050014+4 1.083927-2 5.991671+4 1.096478-2 5.810337+4 1.109175-2 5.634302+4 1.135011-2 5.298220+4 1.150000-2 5.112766+4 1.157300-2 5.025622+4 1.157300-2 6.946046+4 1.161449-2 6.883705+4 1.173500-2 6.707096+4 1.174898-2 6.685725+4 1.180000-2 6.608514+4 1.188502-2 6.486435+4 1.195000-2 6.395238+4 1.202264-2 6.292924+4 1.207700-2 6.217838+4 1.207700-2 7.192513+4 1.216186-2 7.063589+4 1.222000-2 6.976922+4 1.258925-2 6.471363+4 1.260000-2 6.457435+4 1.273503-2 6.285067+4 1.288250-2 6.104090+4 1.290000-2 6.082953+4 1.303167-2 5.928562+4 1.318257-2 5.758366+4 1.333521-2 5.591384+4 1.335000-2 5.575573+4 1.364583-2 5.269029+4 1.380384-2 5.115001+4 1.412538-2 4.819911+4 1.428894-2 4.678995+4 1.445440-2 4.542248+4 1.462177-2 4.410104+4 1.479108-2 4.280757+4 1.496236-2 4.155281+4 1.500000-2 4.128405+4 1.513561-2 4.033596+4 1.531087-2 3.914656+4 1.548817-2 3.799285+4 1.566751-2 3.687345+4 1.580000-2 3.607156+4 1.584893-2 3.578122+4 1.603245-2 3.472016+4 1.621810-2 3.369143+4 1.640590-2 3.269387+4 1.659587-2 3.172669+4 1.678804-2 3.078306+4 1.698244-2 2.986357+4 1.717908-2 2.897187+4 1.737801-2 2.810729+4 1.757924-2 2.726924+4 1.778279-2 2.645691+4 1.800000-2 2.562685+4 1.819701-2 2.490388+4 1.840772-2 2.416206+4 1.862087-2 2.344088+4 1.883649-2 2.274166+4 1.905461-2 2.206382+4 1.927525-2 2.140656+4 1.949845-2 2.076848+4 1.950000-2 2.076414+4 1.972423-2 2.014669+4 2.018366-2 1.894668+4 2.041738-2 1.837399+4 2.065380-2 1.781836+4 2.089296-2 1.727986+4 2.113489-2 1.675794+4 2.137962-2 1.625212+4 2.187762-2 1.528696+4 2.230000-2 1.452939+4 2.238721-2 1.437843+4 2.290868-2 1.352008+4 2.317395-2 1.311074+4 2.344229-2 1.271336+4 2.371374-2 1.232832+4 2.426610-2 1.159384+4 2.454709-2 1.124096+4 2.483133-2 1.089900+4 2.500000-2 1.070292+4 2.511886-2 1.056663+4 2.570396-2 9.929704+3 2.630268-2 9.331631+3 2.660725-2 9.046229+3 2.691535-2 8.769554+3 2.722701-2 8.501567+3 2.786121-2 7.989211+3 2.818383-2 7.744980+3 2.851018-2 7.507176+3 2.884032-2 7.276821+3 2.917427-2 7.053660+3 2.951209-2 6.837472+3 3.000000-2 6.541246+3 3.019952-2 6.425036+3 3.090295-2 6.037511+3 3.126079-2 5.850342+3 3.162278-2 5.669112+3 3.235937-2 5.323714+3 3.273407-2 5.159154+3 3.311311-2 4.999800+3 3.349654-2 4.845451+3 3.427678-2 4.551194+3 3.467369-2 4.410862+3 3.507519-2 4.274933+3 3.548134-2 4.142632+3 3.589219-2 4.014525+3 3.630781-2 3.890359+3 3.672823-2 3.769556+3 3.715352-2 3.652591+3 3.758374-2 3.539334+3 3.801894-2 3.429160+3 3.845918-2 3.322494+3 3.935501-2 3.119206+3 4.000000-2 2.983398+3 4.027170-2 2.928592+3 4.120975-2 2.748788+3 4.168694-2 2.663044+3 4.216965-2 2.580035+3 4.265795-2 2.499614+3 4.315191-2 2.421751+3 4.365158-2 2.346362+3 4.415704-2 2.273146+3 4.466836-2 2.202253+3 4.570882-2 2.067148+3 4.677351-2 1.940059+3 4.731513-2 1.879492+3 4.841724-2 1.763300+3 4.897788-2 1.707916+3 5.011872-2 1.602390+3 5.069907-2 1.552111+3 5.188000-2 1.456333+3 5.248075-2 1.410721+3 5.370318-2 1.323813+3 5.495409-2 1.242183+3 5.500000-2 1.239321+3 5.623413-2 1.165637+3 5.688529-2 1.128821+3 5.754399-2 1.093148+3 5.821032-2 1.058625+3 5.956621-2 9.928568+2 6.025596-2 9.615492+2 6.165950-2 9.018885+2 6.237348-2 8.734877+2 6.531306-2 7.686817+2 6.683439-2 7.211547+2 6.760830-2 6.983639+2 6.968900-2 6.416388+2 6.968900-2 3.262224+3 7.000000-2 3.218511+3 7.040000-2 3.169447+3 7.079458-2 3.129207+3 7.080000-2 3.128659+3 7.135000-2 3.062813+3 7.161434-2 3.035719+3 7.244360-2 2.952910+3 7.413102-2 2.774737+3 7.498942-2 2.695520+3 7.730000-2 2.497449+3 7.762471-2 2.469985+3 7.943282-2 2.324445+3 8.000000-2 2.281236+3 8.035261-2 2.254894+3 8.317638-2 2.058310+3 8.511380-2 1.936902+3 8.609938-2 1.878921+3 8.810489-2 1.768943+3 9.015711-2 1.665429+3 9.440609-2 1.476291+3 9.549926-2 1.432477+3 9.660509-2 1.389915+3 9.772372-2 1.348622+3 1.000000-1 1.267879+3 1.023293-1 1.191985+3 1.035142-1 1.155762+3 1.047129-1 1.120641+3 1.071519-1 1.053583+3 1.083927-1 1.021577+3 1.096478-1 9.905475+2 1.161449-1 8.490147+2 1.202264-1 7.739432+2 1.230269-1 7.276289+2 1.244515-1 7.055204+2 1.258925-1 6.840869+2 1.273503-1 6.630696+2 1.303167-1 6.229577+2 1.318257-1 6.038226+2 1.333521-1 5.852777+2 1.348963-1 5.673024+2 1.364583-1 5.498812+2 1.412538-1 5.007682+2 1.428894-1 4.853992+2 1.462177-1 4.560709+2 1.513561-1 4.153453+2 1.531088-1 4.025961+2 1.548817-1 3.902398+2 1.566751-1 3.782637+2 1.603245-1 3.554017+2 1.621810-1 3.444948+2 1.659587-1 3.236772+2 1.678804-1 3.137467+2 1.717908-1 2.947933+2 1.737801-1 2.857510+2 1.757924-1 2.769868+2 1.819701-1 2.522938+2 1.862087-1 2.370693+2 1.927525-1 2.159401+2 2.000000-1 1.954406+2 2.041738-1 1.848341+2 2.089296-1 1.736890+2 2.098150-1 1.717173+2 2.113489-1 1.683734+2 2.137962-1 1.632208+2 2.238721-1 1.441481+2 2.264644-1 1.397394+2 2.317395-1 1.313227+2 2.371374-1 1.234917+2 2.398833-1 1.197533+2 2.426610-1 1.161286+2 2.454709-1 1.126150+2 2.483133-1 1.092081+2 2.511886-1 1.059053+2 2.600160-1 9.658842+1 2.630268-1 9.367215+1 2.754229-1 8.286124+1 2.786121-1 8.035990+1 2.800000-1 7.930419+1 2.818383-1 7.795001+1 2.851018-1 7.562356+1 2.884032-1 7.336655+1 2.917427-1 7.117710+1 2.951209-1 6.905398+1 3.019952-1 6.499680+1 3.054921-1 6.305862+1 3.090295-1 6.117827+1 3.126079-1 5.937754+1 3.162278-1 5.762999+1 3.198895-1 5.593725+1 3.311311-1 5.115188+1 3.349654-1 4.964962+1 3.388442-1 4.819218+1 3.467369-1 4.540483+1 3.507519-1 4.407226+1 3.548134-1 4.277896+1 3.589219-1 4.152417+1 3.630781-1 4.032670+1 3.672823-1 3.916381+1 3.715352-1 3.803504+1 3.801894-1 3.587802+1 3.845918-1 3.484636+1 3.890451-1 3.384452+1 3.935501-1 3.287148+1 3.981072-1 3.192655+1 4.027170-1 3.100919+1 4.073803-1 3.011821+1 4.120975-1 2.926937+1 4.168694-1 2.844445+1 4.216965-1 2.764282+1 4.265795-1 2.686422+1 4.315191-1 2.610792+1 4.365158-1 2.537446+1 4.415705-1 2.466175+1 4.466836-1 2.396938+1 4.518559-1 2.329649+1 4.570882-1 2.264248+1 4.623810-1 2.200686+1 4.731513-1 2.081285+1 4.786301-1 2.024039+1 4.841724-1 1.968396+1 4.897788-1 1.914325+1 4.954502-1 1.861769+1 5.011872-1 1.810776+1 5.188000-1 1.666030+1 5.248075-1 1.620401+1 5.308844-1 1.576994+1 5.370318-1 1.534750+1 5.432503-1 1.493665+1 5.495409-1 1.453699+1 5.623413-1 1.377008+1 5.688529-1 1.340282+1 5.754399-1 1.304535+1 5.888437-1 1.235878+1 5.956621-1 1.203651+1 6.000000-1 1.183776+1 6.025596-1 1.172281+1 6.095369-1 1.141750+1 6.165950-1 1.112020+1 6.237348-1 1.083084+1 6.382635-1 1.027454+1 6.456542-1 1.000786+1 6.531306-1 9.748108+0 6.606935-1 9.495105+0 6.683439-1 9.254442+0 6.760830-1 9.020016+0 6.839117-1 8.791566+0 6.918310-1 8.568906+0 6.998420-1 8.351887+0 7.079458-1 8.140522+0 7.161434-1 7.934508+0 7.244360-1 7.733710+0 7.328245-1 7.538602+0 7.413102-1 7.348438+0 7.498942-1 7.167361+0 7.673615-1 6.818538+0 7.762471-1 6.650549+0 7.852356-1 6.486700+0 8.035261-1 6.171220+0 8.128305-1 6.019284+0 8.222427-1 5.871518+0 8.317638-1 5.730992+0 8.511380-1 5.460055+0 8.609938-1 5.329445+0 8.709636-1 5.202078+0 8.810489-1 5.077757+0 8.912509-1 4.956519+0 9.015711-1 4.838245+0 9.120108-1 4.723153+0 9.225714-1 4.613952+0 9.332543-1 4.507366+0 9.549926-1 4.301579+0 9.660509-1 4.202304+0 9.772372-1 4.105337+0 9.885531-1 4.010706+0 1.000000+0 3.918339+0 1.011579+0 3.828401+0 1.023293+0 3.742740+0 1.047129+0 3.577150+0 1.059254+0 3.497128+0 1.071519+0 3.418899+0 1.083927+0 3.342464+0 1.096478+0 3.267742+0 1.109175+0 3.194738+0 1.122018+0 3.123379+0 1.135011+0 3.053656+0 1.148154+0 2.985494+0 1.161449+0 2.918854+0 1.174898+0 2.853870+0 1.188502+0 2.791797+0 1.202264+0 2.731072+0 1.216186+0 2.671705+0 1.230269+0 2.613637+0 1.244515+0 2.556831+0 1.250000+0 2.535461+0 1.258925+0 2.501265+0 1.273503+0 2.446903+0 1.288250+0 2.393765+0 1.318257+0 2.290992+0 1.333521+0 2.241442+0 1.348963+0 2.194181+0 1.364583+0 2.147923+0 1.396368+0 2.058313+0 1.445440+0 1.930859+0 1.462177+0 1.890200+0 1.479108+0 1.850397+0 1.500000+0 1.803043+0 1.513561+0 1.773377+0 1.584893+0 1.632372+0 1.640590+0 1.534038+0 1.659587+0 1.502625+0 1.678804+0 1.471856+0 1.698244+0 1.441827+0 1.717908+0 1.413386+0 1.757924+0 1.358197+0 1.778279+0 1.331418+0 1.798871+0 1.305171+0 1.819701+0 1.279441+0 1.840772+0 1.254249+0 1.862087+0 1.229553+0 1.883649+0 1.205448+0 1.905461+0 1.182735+0 1.927525+0 1.160464+0 1.949845+0 1.138611+0 1.972423+0 1.117176+0 2.000000+0 1.091862+0 2.018366+0 1.075527+0 2.041738+0 1.055300+0 2.044000+0 1.053375+0 2.065380+0 1.035507+0 2.089296+0 1.016099+0 2.113489+0 9.974496-1 2.213095+0 9.262328-1 2.344229+0 8.443196-1 2.371374+0 8.288276-1 2.398833+0 8.136220-1 2.454709+0 7.840424-1 2.483133+0 7.696607-1 2.511886+0 7.555874-1 2.540973+0 7.417786-1 2.630268+0 7.027850-1 2.754229+0 6.539631-1 2.786121+0 6.422973-1 2.818383+0 6.308412-1 2.851018+0 6.195897-1 2.884032+0 6.085407-1 2.917427+0 5.977342-1 2.951209+0 5.871282-1 3.019952+0 5.672172-1 3.090295+0 5.479819-1 3.126079+0 5.386120-1 3.162278+0 5.294023-1 3.198895+0 5.203523-1 3.273407+0 5.027838-1 3.311311+0 4.942242-1 3.349654+0 4.858154-1 3.388442+0 4.775495-1 3.507519+0 4.542679-1 3.589219+0 4.393810-1 3.630781+0 4.321227-1 3.672823+0 4.249844-1 3.715352+0 4.179656-1 3.801894+0 4.043286-1 3.845918+0 3.976785-1 3.890451+0 3.911419-1 3.935501+0 3.847125-1 4.073803+0 3.665670-1 4.168694+0 3.549481-1 4.216965+0 3.492785-1 4.265795+0 3.436994-1 4.315191+0 3.382094-1 4.365158+0 3.328084-1 4.466836+0 3.223045-1 4.518559+0 3.171781-1 4.570882+0 3.121362-1 4.623810+0 3.071745-1 4.786301+0 2.931569-1 4.897788+0 2.841691-1 4.954502+0 2.797799-1 5.011872+0 2.754584-1 5.069907+0 2.712037-1 5.128614+0 2.670155-1 5.308844+0 2.548807-1 5.370318+0 2.509599-1 5.432503+0 2.471017-1 5.495409+0 2.433028-1 5.688529+0 2.325513-1 5.821032+0 2.256489-1 5.888437+0 2.222754-1 5.956621+0 2.189525-1 6.025596+0 2.156792-1 6.095369+0 2.124555-1 6.309573+0 2.031057-1 6.382635+0 2.000817-1 6.456542+0 1.971046-1 6.531306+0 1.941716-1 6.760830+0 1.858620-1 6.918310+0 1.805207-1 7.000000+0 1.778575-1 7.079458+0 1.753338-1 7.161434+0 1.727965-1 7.244360+0 1.702964-1 7.585776+0 1.606875-1 7.673615+0 1.583714-1 7.762471+0 1.560900-1 7.852356+0 1.538414-1 8.222427+0 1.453777-1 8.413951+0 1.413222-1 8.511380+0 1.393374-1 8.609938+0 1.373804-1 8.709636+0 1.354509-1 8.810489+0 1.335485-1 8.912509+0 1.316731-1 9.000000+0 1.301078-1 9.440609+0 1.227136-1 9.549926+0 1.209963-1 9.660509+0 1.193041-1 9.772372+0 1.176355-1 1.011579+1 1.128958-1 1.035142+1 1.098425-1 1.047129+1 1.083472-1 1.059254+1 1.068723-1 1.071519+1 1.054175-1 1.083927+1 1.039827-1 1.100000+1 1.021836-1 1.148154+1 9.712189-2 1.161449+1 9.580515-2 1.174898+1 9.450690-2 1.188502+1 9.322632-2 1.244515+1 8.838532-2 1.288250+1 8.492030-2 1.300000+1 8.403231-2 1.318257+1 8.268641-2 1.333521+1 8.159165-2 1.364583+1 7.944529-2 1.380384+1 7.839355-2 1.412538+1 7.633819-2 1.462177+1 7.335586-2 1.479108+1 7.238794-2 1.500000+1 7.122654-2 1.513561+1 7.049113-2 1.584893+1 6.692809-2 1.621810+1 6.521469-2 1.640590+1 6.437450-2 1.659587+1 6.354527-2 1.678804+1 6.272672-2 1.698244+1 6.191870-2 1.737801+1 6.033378-2 1.757924+1 5.955669-2 1.778279+1 5.879157-2 1.819701+1 5.729141-2 1.883649+1 5.511268-2 1.905461+1 5.440505-2 1.949845+1 5.301754-2 1.972423+1 5.233712-2 2.089296+1 4.913027-2 2.137962+1 4.790323-2 2.162719+1 4.730124-2 2.200000+1 4.642163-2 2.213095+1 4.612004-2 2.238721+1 4.554056-2 2.317395+1 4.384539-2 2.344229+1 4.329455-2 2.426610+1 4.168770-2 2.511886+1 4.014049-2 2.540973+1 3.963764-2 2.600160+1 3.865115-2 2.630268+1 3.816717-2 2.660725+1 3.768936-2 2.818383+1 3.542896-2 2.917427+1 3.413832-2 2.951209+1 3.371865-2 3.019952+1 3.289480-2 3.054921+1 3.249046-2 3.090295+1 3.209109-2 3.126079+1 3.169663-2 3.273407+1 3.016666-2 3.311311+1 2.979671-2 3.388442+1 2.907070-2 3.467369+1 2.836238-2 3.507519+1 2.801475-2 3.589219+1 2.733247-2 3.630781+1 2.699758-2 3.672823+1 2.666688-2 3.845918+1 2.540632-2 4.027170+1 2.420535-2 4.073803+1 2.391408-2 4.120975+1 2.362633-2 4.216965+1 2.306121-2 4.265795+1 2.278374-2 4.365158+1 2.223877-2 4.415704+1 2.197120-2 4.677351+1 2.068085-2 4.731513+1 2.043243-2 4.897788+1 1.970519-2 5.188000+1 1.855018-2 5.248075+1 1.832749-2 5.495409+1 1.746319-2 5.623413+1 1.704645-2 5.688529+1 1.684187-2 6.165950+1 1.549461-2 6.531306+1 1.459878-2 6.606934+1 1.442593-2 6.760830+1 1.408637-2 6.839116+1 1.391960-2 6.918310+1 1.375480-2 6.998420+1 1.359196-2 7.328245+1 1.295963-2 7.413102+1 1.280646-2 7.585776+1 1.250562-2 8.035261+1 1.178410-2 8.222427+1 1.150736-2 8.609938+1 1.097324-2 8.810489+1 1.071555-2 8.912509+1 1.058901-2 1.000000+2 9.415925-3 1.096478+2 8.571745-3 1.109175+2 8.471687-3 1.148154+2 8.178489-3 1.174898+2 7.988684-3 1.188502+2 7.895444-3 1.216186+2 7.712207-3 1.318257+2 7.103726-3 1.348963+2 6.939043-3 1.396368+2 6.699203-3 1.531087+2 6.099378-3 1.584893+2 5.888598-3 1.678804+2 5.553364-3 1.737801+2 5.361454-3 1.778279+2 5.237230-3 1.995262+2 4.662275-3 2.187762+2 4.248100-3 2.213095+2 4.198986-3 2.290868+2 4.055028-3 2.344229+2 3.961809-3 2.371374+2 3.916006-3 2.426610+2 3.825984-3 2.630268+2 3.526891-3 2.691535+2 3.445866-3 2.786121+2 3.327821-3 3.054921+2 3.032430-3 3.162278+2 2.928559-3 3.349654+2 2.763288-3 3.467369+2 2.668636-3 3.548134+2 2.607347-3 3.981072+2 2.322679-3 4.365158+2 2.117490-3 4.415704+2 2.093151-3 4.570882+2 2.021799-3 4.677351+2 1.975588-3 4.731513+2 1.952879-3 4.841724+2 1.908243-3 5.248075+2 1.759899-3 5.370318+2 1.719694-3 5.559043+2 1.661108-3 6.095369+2 1.514452-3 6.309573+2 1.462863-3 6.683439+2 1.380757-3 1.380384+3 6.668489-4 1.412538+3 6.516179-4 1.584893+3 5.807130-4 1.737801+3 5.295856-4 1.757924+3 5.235196-4 1.819701+3 5.057358-4 3.715352+3 2.475893-4 3.758374+3 2.447534-4 3.845918+3 2.391787-4 4.168694+3 2.206485-4 4.265795+3 2.156237-4 4.415704+3 2.083006-4 9.660509+3 9.518186-5 1.000000+4 9.194932-5 1.059254+4 8.680385-5 1.000000+5 9.186955-6 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.410000-6 7.410000-6 7.700000-6 7.410000-6 7.700000-6 7.560600-6 8.270000-6 7.529851-6 8.270000-6 7.679724-6 2.170000-5 7.754079-6 4.265795-5 7.781137-6 4.325000-5 7.781185-6 4.325000-5 1.023409-5 4.415704-5 1.050773-5 4.561000-5 1.086960-5 4.561000-5 1.259096-5 4.565000-5 1.260927-5 4.565000-5 2.728674-5 4.650000-5 2.772572-5 4.731513-5 2.802658-5 4.870000-5 2.838077-5 5.080000-5 2.872801-5 5.602000-5 2.923293-5 5.602000-5 3.580379-5 5.754399-5 3.641106-5 5.920000-5 3.685687-5 6.237348-5 3.741636-5 7.585776-5 3.910423-5 8.514000-5 4.053210-5 8.514000-5 4.131549-5 9.660509-5 4.274362-5 1.047129-4 4.347415-5 1.150000-4 4.403883-5 1.288250-4 4.439830-5 1.548817-4 4.458044-5 2.473400-4 4.451666-5 2.473400-4 4.625300-5 2.600500-4 4.626063-5 2.600500-4 4.743617-5 2.800000-4 4.721928-5 3.019952-4 4.695777-5 3.200000-4 4.705900-5 3.430000-4 4.755881-5 3.801894-4 4.882655-5 4.196200-4 5.036592-5 4.196200-4 5.493740-5 4.886100-4 5.804997-5 4.886100-4 5.923938-5 5.847000-4 6.326984-5 5.847000-4 6.574224-5 6.839116-4 6.960749-5 8.000000-4 7.352661-5 9.225714-4 7.700573-5 1.071519-3 8.058115-5 1.240000-3 8.393825-5 1.428894-3 8.706797-5 1.650000-3 9.010705-5 1.816200-3 9.204417-5 1.816200-3 1.342629-4 1.881100-3 1.349938-4 1.881100-3 1.428536-4 1.951000-3 1.454412-4 2.018366-3 1.468995-4 2.070000-3 1.472902-4 2.271200-3 1.473183-4 2.271200-3 1.575397-4 2.567800-3 1.588020-4 2.567800-3 1.642180-4 2.796500-3 1.656410-4 2.796500-3 1.707226-4 3.589219-3 1.762507-4 4.677351-3 1.822910-4 6.025596-3 1.881546-4 7.673615-3 1.937139-4 9.772372-3 1.991589-4 1.020600-2 2.001039-4 1.020600-2 2.603657-4 1.157300-2 2.612408-4 1.157300-2 2.759271-4 1.207700-2 2.762794-4 1.207700-2 2.954125-4 1.737801-2 3.031946-4 2.483133-2 3.109206-4 3.467369-2 3.181881-4 4.731513-2 3.248809-4 6.531306-2 3.314221-4 6.968900-2 3.326636-4 6.968900-2 3.065129-4 1.757924-1 3.083696-4 5.011872-1 3.095542-4 1.000000+5 3.097937-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.410000-6 0.0 2.600500-4 0.0 2.600500-4 8.60001-10 2.704500-4 8.93056-10 2.740000-4 8.94911-10 2.765000-4 8.92149-10 2.790000-4 8.84254-10 2.818383-4 8.70562-10 2.951209-4 7.91308-10 3.000000-4 7.67790-10 3.054921-4 7.47772-10 3.090295-4 7.38925-10 3.130000-4 7.33374-10 3.165000-4 7.32502-10 3.200000-4 7.34927-10 3.240000-4 7.41531-10 3.280000-4 7.52448-10 3.320000-4 7.67098-10 3.370000-4 7.90521-10 3.430000-4 8.24924-10 3.507519-4 8.78976-10 3.600000-4 9.53771-10 3.672823-4 1.018835-9 3.740000-4 1.082213-9 3.850000-4 1.192682-9 3.981072-4 1.330852-9 4.168694-4 1.536424-9 4.196200-4 1.568176-9 4.196200-4 2.758474-9 4.786301-4 3.512952-9 4.886100-4 3.635098-9 4.886100-4 4.349204-9 5.248075-4 4.838465-9 5.688529-4 5.414675-9 5.847000-4 5.614326-9 5.847000-4 6.496517-9 6.456542-4 7.284784-9 7.000000-4 7.944693-9 7.585776-4 8.607072-9 8.035261-4 9.092712-9 8.709636-4 9.760832-9 9.549926-4 1.051912-8 1.035142-3 1.117707-8 1.110000-3 1.174548-8 1.202264-3 1.238588-8 1.318257-3 1.311604-8 1.479108-3 1.401079-8 1.650000-3 1.483225-8 1.816200-3 1.554367-8 1.816200-3 1.536043-8 1.881100-3 1.544589-8 1.881100-3 5.575663-6 1.905461-3 6.083568-6 1.929000-3 6.597519-6 1.940000-3 6.817846-6 1.951000-3 7.064474-6 1.978000-3 7.549517-6 2.000000-3 7.853768-6 2.030000-3 8.153418-6 2.044000-3 8.262003-6 2.050000-3 8.293184-6 2.070000-3 8.318965-6 2.271200-3 8.283044-6 2.271200-3 8.139133-6 2.567800-3 8.074612-6 2.567800-3 8.917816-6 2.796500-3 8.967368-6 2.796500-3 9.116295-6 3.126079-3 9.194628-6 4.216965-3 9.385181-6 5.888437-3 9.589559-6 8.035261-3 9.772006-6 1.020600-2 9.906857-6 1.020600-2 1.449531-3 1.150000-2 1.445930-3 1.157300-2 1.445496-3 1.157300-2 1.967542-3 1.207700-2 1.972096-3 1.207700-2 2.056900-3 1.603245-2 2.076927-3 2.426610-2 2.091044-3 4.570882-2 2.095498-3 6.968900-2 2.092915-3 6.968900-2 4.911327-2 8.609938-2 4.955624-2 1.083927-1 4.993334-2 1.548817-1 5.029569-2 2.630268-1 5.058748-2 7.328245-1 5.095689-2 1.244515+0 5.108607-2 1.000000+5 5.107268-2 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.410000-6 0.0 7.700000-6 2.900000-7 7.700000-6 1.394000-7 8.270000-6 7.401491-7 8.270000-6 5.902761-7 9.772372-6 2.083669-6 1.905461-5 1.131074-5 4.325000-5 3.546882-5 4.325000-5 3.301591-5 4.561000-5 3.474040-5 4.561000-5 3.301904-5 4.565000-5 3.304073-5 4.565000-5 1.836326-5 4.635000-5 1.869373-5 4.731513-5 1.928855-5 4.850000-5 2.015833-5 4.954502-5 2.100377-5 5.190000-5 2.304821-5 5.602000-5 2.678707-5 5.602000-5 2.021621-5 5.700000-5 2.077047-5 5.850000-5 2.181097-5 6.025596-5 2.318875-5 6.382635-5 2.620999-5 7.413102-5 3.526555-5 8.514000-5 4.460790-5 8.514000-5 4.382451-5 9.721800-5 5.440953-5 1.080000-4 6.430777-5 1.230269-4 7.874046-5 1.584893-4 1.139028-4 2.473400-4 2.028233-4 2.473400-4 2.010870-4 2.600500-4 2.137894-4 2.600500-4 2.126130-4 3.200000-4 2.729403-4 4.196200-4 3.692525-4 4.196200-4 3.646798-4 4.886100-4 4.305564-4 4.886100-4 4.293663-4 5.847000-4 5.214245-4 5.847000-4 5.189513-4 9.225714-4 8.455554-4 1.603245-3 1.513724-3 1.816200-3 1.724140-3 1.816200-3 1.681922-3 1.881100-3 1.746091-3 1.881100-3 1.732671-3 2.070000-3 1.914391-3 2.271200-3 2.115599-3 2.271200-3 2.105521-3 2.567800-3 2.400924-3 2.567800-3 2.394664-3 2.796500-3 2.621892-3 2.796500-3 2.616661-3 1.020600-2 9.995989-3 1.020600-2 8.496103-3 1.157300-2 9.866263-3 1.157300-2 9.329531-3 1.207700-2 9.828624-3 1.207700-2 9.724687-3 2.951209-2 2.710352-2 6.968900-2 6.726342-2 6.968900-2 2.026922-2 7.040000-2 2.098604-2 7.244360-2 2.292390-2 7.498942-2 2.540992-2 8.035261-2 3.061416-2 1.047129-1 5.451557-2 1.678804-1 1.172132-1 3.388442+0 3.337066+0 1.000000+5 9.999995+4 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 6.968900-2 2.620585+3 7.000000-2 2.584801+3 7.040000-2 2.545740+3 7.080000-2 2.514740+3 7.135000-2 2.462040+3 7.244360-2 2.377150+3 7.413102-2 2.234839+3 7.730000-2 2.017060+3 8.609938-2 1.523593+3 9.772372-2 1.099196+3 1.258925-1 5.613070+2 2.317395-1 1.086681+2 2.800000-1 6.572700+1 3.090295-1 5.074504+1 3.589219-1 3.447840+1 4.073803-1 2.502918+1 4.623810-1 1.830580+1 5.248075-1 1.349182+1 5.888437-1 1.029937+1 6.606935-1 7.920052+0 7.413102-1 6.135062+0 8.222427-1 4.906113+0 9.120108-1 3.950062+0 1.011579+0 3.203683+0 1.174898+0 2.388775+0 1.333521+0 1.875947+0 1.513561+0 1.483945+0 1.698244+0 1.206462+0 1.883649+0 1.008686+0 2.089296+0 8.502677-1 2.540973+0 6.207182-1 2.951209+0 4.912957-1 3.388442+0 3.995859-1 3.935501+0 3.219046-1 4.623810+0 2.570282-1 5.495409+0 2.035823-1 6.531306+0 1.624732-1 7.852356+0 1.287263-1 9.772372+0 9.843077-2 1.188502+1 7.800685-2 1.513561+1 5.898314-2 1.972423+1 4.379263-2 2.660725+1 3.153623-2 3.672823+1 2.231348-2 5.688529+1 1.409216-2 8.912509+1 8.860216-3 1.778279+2 4.382286-3 3.548134+2 2.181918-3 1.412538+3 5.452438-4 1.000000+5 7.688100-6 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 6.968900-2 3.001100-4 1.000000+5 3.001100-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.968900-2 6.062600-2 1.000000+5 6.062600-2 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 6.968900-2 8.762890-3 1.000000+5 9.999994+4 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.207700-2 9.746744+3 1.222000-2 9.509608+3 1.260000-2 9.037420+3 1.290000-2 8.668940+3 1.335000-2 8.202980+3 1.445440-2 7.109989+3 1.566751-2 6.180849+3 1.659587-2 5.563204+3 1.840772-2 4.576702+3 1.950000-2 4.098900+3 2.426610-2 2.656374+3 2.722701-2 2.093383+3 3.090295-2 1.605114+3 3.630781-2 1.131610+3 4.027170-2 8.996217+2 4.731513-2 6.245802+2 5.623413-2 4.181788+2 6.683439-2 2.772985+2 8.000000-2 1.790996+2 9.549926-2 1.154653+2 1.161449-1 7.051301+1 1.462177-1 3.913451+1 2.600160-1 8.861887+0 3.162278-1 5.382607+0 3.715352-1 3.594601+0 4.315191-1 2.488873+0 4.954502-1 1.785848+0 5.623413-1 1.327284+0 6.382635-1 9.938314-1 7.244360-1 7.497979-1 8.128305-1 5.845168-1 9.015711-1 4.703318-1 1.000000+0 3.811269-1 1.161449+0 2.839912-1 1.318257+0 2.228883-1 1.500000+0 1.754124-1 1.678804+0 1.431700-1 1.862087+0 1.195939-1 2.044000+0 1.024409-1 2.483133+0 7.484477-2 2.884032+0 5.917540-2 3.198895+0 5.058117-2 3.715352+0 4.063200-2 4.365158+0 3.235307-2 5.128614+0 2.595546-2 6.095369+0 2.065303-2 7.244360+0 1.655398-2 8.912509+0 1.279899-2 1.083927+1 1.010761-2 1.380384+1 7.620625-3 1.757924+1 5.789172-3 2.344229+1 4.208338-3 3.273407+1 2.932499-3 4.677351+1 2.010330-3 7.328245+1 1.259788-3 1.318257+2 6.905018-4 2.630268+2 3.429102-4 5.248075+2 1.710562-4 4.168694+3 2.145004-5 1.000000+5 8.937600-7 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.207700-2 4.174700-4 1.000000+5 4.174700-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.207700-2 2.597900-3 1.000000+5 2.597900-3 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.207700-2 9.061630-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.157300-2 1.920424+4 1.173500-2 1.867651+4 1.180000-2 1.841100+4 1.195000-2 1.788500+4 1.288250-2 1.479200+4 1.513561-2 9.721200+3 1.678804-2 7.356400+3 1.927525-2 5.035500+3 2.230000-2 3.368000+3 2.818383-2 1.729400+3 3.507519-2 9.150400+2 4.365158-2 4.786700+2 5.370318-2 2.568300+2 6.760830-2 1.276300+2 1.412538-1 1.334613+1 1.757924-1 6.870008+0 2.137962-1 3.820498+0 2.511886-1 2.373141+0 2.917427-1 1.536505+0 3.349654-1 1.036393+0 3.801894-1 7.275982-1 4.265795-1 5.310158-1 4.786301-1 3.902473-1 5.370318-1 2.889484-1 6.000000-1 2.179732-1 6.683439-1 1.670045-1 7.413102-1 1.302311-1 8.609938-1 9.181766-2 9.225714-1 7.858484-2 9.885531-1 6.770215-2 1.071519+0 5.738853-2 1.174898+0 4.784358-2 1.288250+0 4.015250-2 1.445440+0 3.251327-2 1.698244+0 2.434350-2 1.883649+0 2.034602-2 2.065380+0 1.747463-2 2.511886+0 1.275409-2 2.917427+0 1.008961-2 3.311311+0 8.340391-3 3.845918+0 6.711449-3 4.518559+0 5.353040-3 5.370318+0 4.235364-3 6.382635+0 3.376729-3 7.673615+0 2.672876-3 9.549926+0 2.042086-3 1.161449+1 1.616983-3 1.479108+1 1.221818-3 1.905461+1 9.181835-4 2.540973+1 6.689179-4 3.507519+1 4.727877-4 5.188000+1 3.130421-4 8.035261+1 1.988482-4 1.531087+2 1.029223-4 3.054921+2 5.117949-5 6.095369+2 2.554469-5 9.660509+3 1.606118-6 1.000000+5 1.551200-7 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.157300-2 3.143600-4 1.000000+5 3.143600-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.157300-2 3.333700-3 1.000000+5 3.333700-3 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.157300-2 7.924940-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.020600-2 4.348291+4 1.040000-2 4.133438+4 1.050000-2 4.040640+4 1.135011-2 3.275031+4 1.318257-2 2.165259+4 1.462177-2 1.614576+4 1.659587-2 1.119292+4 1.972423-2 6.768595+3 2.500000-2 3.324784+3 3.090295-2 1.735335+3 3.758374-2 9.419687+2 4.570882-2 5.066120+2 5.623413-2 2.604215+2 7.079458-2 1.232782+2 1.428894-1 1.231028+1 1.757924-1 6.268760+0 2.089296-1 3.598364+0 2.426610-1 2.240120+0 2.786121-1 1.456954+0 3.162278-1 9.896637-1 3.548134-1 7.014514-1 3.981072-1 5.009930-1 4.415705-1 3.727030-1 4.897788-1 2.793376-1 5.432503-1 2.109524-1 6.000000-1 1.623583-1 6.606935-1 1.269152-1 7.244360-1 1.009610-1 8.317638-1 7.235886-2 8.912509-1 6.151660-2 9.549926-1 5.265554-2 1.011579+0 4.655410-2 1.096478+0 3.949256-2 1.202264+0 3.297511-2 1.318257+0 2.772901-2 1.479108+0 2.250315-2 1.717908+0 1.721170-2 1.905461+0 1.439517-2 2.113489+0 1.213932-2 2.540973+0 9.028598-3 2.951209+0 7.146455-3 3.388442+0 5.812520-3 3.935501+0 4.682588-3 4.623810+0 3.738907-3 5.495409+0 2.961348-3 6.531306+0 2.363370-3 7.852356+0 1.872462-3 9.772372+0 1.431799-3 1.188502+1 1.134713-3 1.513561+1 8.579939-4 1.972423+1 6.370222-4 2.630268+1 4.645008-4 3.630781+1 3.285647-4 5.623413+1 2.074693-4 8.810489+1 1.304165-4 1.737801+2 6.525234-5 3.467369+2 3.248225-5 1.380384+3 8.116314-6 1.000000+5 1.118300-7 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.020600-2 2.974100-4 1.000000+5 2.974100-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.020600-2 2.334500-3 1.000000+5 2.334500-3 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.020600-2 7.574090-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.796500-3 2.799057+4 2.920000-3 2.686140+4 3.388442-3 2.205770+4 3.589219-3 2.028886+4 4.415704-3 1.489875+4 4.800000-3 1.311710+4 5.248075-3 1.134233+4 6.300000-3 8.365180+3 7.161434-3 6.686087+3 8.222426-3 5.226175+3 9.885531-3 3.718378+3 1.150000-2 2.787600+3 1.318257-2 2.137068+3 1.548817-2 1.550286+3 1.840772-2 1.089776+3 2.187762-2 7.595795+2 2.570396-2 5.382399+2 3.000000-2 3.841880+2 3.507519-2 2.713565+2 4.120975-2 1.882435+2 4.841724-2 1.296666+2 5.688529-2 8.866765+1 6.760830-2 5.857392+1 8.035261-2 3.842166+1 9.772372-2 2.360787+1 1.230269-1 1.319723+1 1.566751-1 7.113247+0 2.483133-1 2.172788+0 3.090295-1 1.245398+0 3.672823-1 8.081134-1 4.216965-1 5.754764-1 4.841724-1 4.127424-1 5.495409-1 3.064316-1 6.165950-1 2.352372-1 6.998420-1 1.772239-1 7.852356-1 1.379543-1 8.810489-1 1.080378-1 9.772372-1 8.733454-2 1.122018+0 6.645428-2 1.273503+0 5.205862-2 1.445440+0 4.107667-2 1.640590+0 3.263248-2 1.819701+0 2.721318-2 2.000000+0 2.322397-2 2.483133+0 1.638060-2 2.884032+0 1.294904-2 3.198895+0 1.106775-2 3.715352+0 8.890701-3 4.365158+0 7.079275-3 5.128614+0 5.679462-3 6.095369+0 4.519129-3 7.244360+0 3.622197-3 8.912509+0 2.800651-3 1.083927+1 2.211673-3 1.380384+1 1.667479-3 1.778279+1 1.250494-3 2.344229+1 9.208454-4 3.311311+1 6.338018-4 4.731513+1 4.346112-4 7.413102+1 2.723991-4 1.348963+2 1.475882-4 2.691535+2 7.331054-5 5.370318+2 3.657266-5 4.265795+3 4.586580-6 1.000000+5 1.955700-7 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.796500-3 2.892500-4 1.000000+5 2.892500-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.796500-3 1.259000-5 1.000000+5 1.259000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.796500-3 2.494660-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.567800-3 4.561731+4 2.609000-3 4.497532+4 2.740000-3 4.265040+4 2.985383-3 3.856898+4 3.126079-3 3.634650+4 3.400000-3 3.234920+4 3.758374-3 2.796069+4 4.120975-3 2.424689+4 4.466836-3 2.124618+4 4.841724-3 1.845836+4 5.559043-3 1.440113+4 6.025596-3 1.236316+4 6.918310-3 9.418599+3 7.500000-3 7.990780+3 8.609938-3 5.971366+3 9.500000-3 4.821060+3 1.096478-2 3.493819+3 1.216186-2 2.748631+3 1.380384-2 2.036439+3 1.584893-2 1.454535+3 1.800000-2 1.058410+3 2.018366-2 7.905216+2 2.317395-2 5.518636+2 2.660725-2 3.823666+2 3.090295-2 2.548937+2 3.589219-2 1.686245+2 4.216965-2 1.072066+2 5.011872-2 6.545256+1 6.025596-2 3.835997+1 7.413102-2 2.085827+1 9.660509-2 9.492358+0 1.659587-1 1.883278+0 2.000000-1 1.083624+0 2.630268-1 4.927646-1 2.951209-1 3.519318-1 3.388442-1 2.385421-1 3.845918-1 1.681431-1 4.365158-1 1.193897-1 4.897788-1 8.806539-2 5.495409-1 6.542906-2 6.095369-1 5.041830-2 6.760830-1 3.913284-2 7.498942-1 3.058593-2 8.609938-1 2.219945-2 9.332543-1 1.853968-2 1.000000+0 1.599844-2 1.096478+0 1.326850-2 1.202264+0 1.108117-2 1.333521+0 9.117052-3 1.584893+0 6.664239-3 1.778279+0 5.434741-3 1.949845+0 4.646261-3 2.371374+0 3.381855-3 2.786121+0 2.620728-3 3.090295+0 2.235736-3 3.589219+0 1.792826-3 4.168694+0 1.448284-3 4.897788+0 1.159490-3 5.821032+0 9.207234-4 6.918310+0 7.365728-4 8.413951+0 5.766269-4 1.035142+1 4.482121-4 1.288250+1 3.465030-4 1.640590+1 2.626668-4 2.162719+1 1.929978-4 2.951209+1 1.375801-4 4.120975+1 9.639991-5 6.606934+1 5.886103-5 1.109175+2 3.456516-5 2.213095+2 1.713672-5 4.415704+2 8.542966-6 1.757924+3 2.137143-6 1.000000+5 3.751700-8 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.567800-3 2.535200-4 1.000000+5 2.535200-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.567800-3 2.282100-5 1.000000+5 2.282100-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.567800-3 2.291459-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.271200-3 1.352669+5 2.355000-3 1.291791+5 2.415000-3 1.242922+5 2.454709-3 1.214975+5 2.691535-3 1.057709+5 2.917427-3 9.274134+4 3.400000-3 7.149840+4 3.720000-3 6.088720+4 4.000000-3 5.316880+4 4.800000-3 3.724536+4 5.188000-3 3.179552+4 6.025596-3 2.318347+4 6.606934-3 1.897114+4 7.585776-3 1.390788+4 8.413951-3 1.094354+4 9.549926-3 8.103429+3 1.080000-2 6.002400+3 1.216186-2 4.461538+3 1.380384-2 3.226819+3 1.580000-2 2.264976+3 1.800000-2 1.596944+3 2.041738-2 1.131195+3 2.317395-2 7.945904+2 2.630268-2 5.545810+2 3.000000-2 3.792376+2 3.427678-2 2.563680+2 4.000000-2 1.616404+2 4.677351-2 1.004961+2 5.500000-2 6.098000+1 6.531306-2 3.563442+1 7.943282-2 1.918438+1 1.023293-1 8.535962+0 1.678804-1 1.742925+0 2.041738-1 9.360579-1 2.398833-1 5.648596-1 2.754229-1 3.689014-1 3.126079-1 2.513685-1 3.507519-1 1.785580-1 3.935501-1 1.277531-1 4.365158-1 9.517053-2 4.841724-1 7.139135-2 5.370318-1 5.395441-2 5.956621-1 4.108883-2 6.606935-1 3.153445-2 7.328245-1 2.439426-2 8.511380-1 1.703148-2 9.120108-1 1.451413-2 9.660509-1 1.277266-2 1.023293+0 1.130737-2 1.109175+0 9.601787-3 1.216186+0 8.025316-3 1.348963+0 6.612446-3 1.678804+0 4.458798-3 1.862087+0 3.722989-3 2.041738+0 3.194438-3 2.511886+0 2.287739-3 2.917427+0 1.809533-3 3.273407+0 1.521473-3 3.801894+0 1.223630-3 4.466836+0 9.754221-4 5.308844+0 7.713493-4 6.309573+0 6.146746-4 7.585776+0 4.863076-4 9.440609+0 3.713864-4 1.148154+1 2.939455-4 1.462177+1 2.220282-4 1.883649+1 1.667950-4 2.511886+1 1.214797-4 3.467369+1 8.583216-5 5.188000+1 5.614190-5 8.035261+1 3.566127-5 1.531087+2 1.845826-5 3.054921+2 9.178773-6 6.095369+2 4.581257-6 9.660509+3 2.880536-7 1.000000+5 2.782000-8 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.271200-3 2.233900-4 1.000000+5 2.233900-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.271200-3 7.212000-6 1.000000+5 7.212000-6 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.271200-3 2.040598-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.881100-3 2.470361+5 1.929000-3 2.962706+5 1.951000-3 3.181113+5 1.978000-3 3.380279+5 2.000000-3 3.485662+5 2.018366-3 3.533611+5 2.030000-3 3.552438+5 2.044000-3 3.561203+5 2.050000-3 3.555271+5 2.070000-3 3.487468+5 2.187762-3 3.035358+5 2.450000-3 2.271540+5 2.691535-3 1.773884+5 2.951209-3 1.383538+5 3.273407-3 1.037832+5 3.715352-3 7.233578+4 4.027170-3 5.722083+4 4.800000-3 3.381368+4 5.248075-3 2.570728+4 6.095369-3 1.610303+4 6.839116-3 1.114090+4 7.673615-3 7.668713+3 8.912509-3 4.670690+3 1.000000-2 3.166896+3 1.135011-2 2.052632+3 1.318257-2 1.218570+3 1.531087-2 7.169809+2 1.778279-2 4.183323+2 2.089296-2 2.321007+2 2.426610-2 1.332856+2 2.851018-2 7.278949+1 3.349654-2 3.947313+1 4.027170-2 1.946757+1 5.011872-2 8.343299+0 1.035142-1 4.914718-1 1.273503-1 2.202733-1 1.513561-1 1.136520-1 1.757924-1 6.449429-2 2.041738-1 3.687756-2 2.317395-1 2.311556-2 2.600160-1 1.522868-2 2.951209-1 9.694243-3 3.311311-1 6.477723-3 3.672823-1 4.537091-3 4.073803-1 3.199725-3 4.518559-1 2.273118-3 5.011872-1 1.627346-3 5.495409-1 1.216990-3 6.000000-1 9.288541-4 6.531306-1 7.219744-4 7.161434-1 5.535632-4 8.709636-1 3.193673-4 9.225714-1 2.734507-4 9.660509-1 2.429899-4 1.011579+0 2.173565-4 1.059254+0 1.958526-4 1.109175+0 1.776791-4 1.174898+0 1.585535-4 1.258925+0 1.394848-4 1.364583+0 1.208427-4 1.513561+0 1.011470-4 1.778279+0 7.595280-5 1.949845+0 6.487267-5 2.344229+0 4.809312-5 2.754229+0 3.725087-5 3.090295+0 3.121351-5 3.589219+0 2.502932-5 4.168694+0 2.021901-5 4.897788+0 1.618756-5 5.821032+0 1.285470-5 6.918310+0 1.028324-5 8.413951+0 8.050280-6 1.035142+1 6.257618-6 1.300000+1 4.786800-6 1.659587+1 3.619680-6 2.200000+1 2.644300-6 3.054921+1 1.850614-6 4.265795+1 1.297740-6 6.839116+1 7.928983-7 1.174898+2 4.550386-7 2.344229+2 2.257275-7 4.677351+2 1.125579-7 3.715352+3 1.410587-8 1.000000+5 5.23780-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.881100-3 1.719200-4 1.000000+5 1.719200-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.881100-3 2.613800-5 1.000000+5 2.613800-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.881100-3 1.683042-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.816200-3 6.310803+5 1.940000-3 5.841012+5 2.018366-3 5.322067+5 2.317395-3 3.722707+5 2.540973-3 2.916626+5 2.818383-3 2.200389+5 3.150000-3 1.611684+5 3.467369-3 1.223101+5 3.845918-3 9.040168+4 4.315191-3 6.387898+4 4.841724-3 4.493498+4 5.500000-3 3.010974+4 6.095369-3 2.170122+4 7.000000-3 1.383396+4 7.852356-3 9.449422+3 8.810489-3 6.411611+3 1.011579-2 3.990951+3 1.135011-2 2.670146+3 1.273503-2 1.776759+3 1.462177-2 1.081581+3 1.698244-2 6.262050+2 1.972423-2 3.594748+2 2.290868-2 2.046627+2 2.630268-2 1.208671+2 3.019952-2 7.095813+1 3.589219-2 3.619063+1 4.315191-2 1.750432+1 5.370318-2 7.327100+0 8.511380-2 1.155363+0 1.096478-1 4.192960-1 1.318257-1 2.020180-1 1.531088-1 1.123818-1 1.757924-1 6.586474-2 2.000000-1 4.029036-2 2.371374-1 2.141228-2 2.630268-1 1.467545-2 2.917427-1 1.013130-2 3.198895-1 7.337277-3 3.507519-1 5.349970-3 3.845918-1 3.928855-3 4.168694-1 3.017920-3 4.570882-1 2.248865-3 5.011872-1 1.688284-3 5.495409-1 1.276268-3 6.000000-1 9.849150-4 6.531306-1 7.738832-4 7.079458-1 6.198122-4 7.673615-1 4.996038-4 8.709636-1 3.578007-4 9.225714-1 3.094772-4 9.660509-1 2.770686-4 1.011579+0 2.495016-4 1.071519+0 2.204950-4 1.135011+0 1.961164-4 1.216186+0 1.715958-4 1.318257+0 1.478961-4 1.778279+0 8.700926-5 1.949845+0 7.434498-5 2.344229+0 5.512025-5 2.754229+0 4.269303-5 3.090295+0 3.577316-5 3.589219+0 2.868581-5 4.168694+0 2.317305-5 4.897788+0 1.855280-5 5.821032+0 1.473275-5 6.918310+0 1.178548-5 8.413951+0 9.226404-6 1.035142+1 7.171768-6 1.300000+1 5.486100-6 1.659587+1 4.148557-6 2.200000+1 3.030600-6 3.019952+1 2.147421-6 4.216965+1 1.505471-6 6.760830+1 9.196353-7 1.148154+2 5.339134-7 2.290868+2 2.647996-7 4.570882+2 1.320187-7 1.819701+3 3.303324-8 1.000000+5 6.00300-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.816200-3 1.564800-4 1.000000+5 1.564800-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.816200-3 1.526400-8 1.000000+5 1.526400-8 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.816200-3 1.659705-3 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 5.847000-4 6.603300+4 6.320000-4 6.243978+4 6.760830-4 5.911149+4 7.000000-4 5.757520+4 7.943282-4 5.170355+4 8.413951-4 4.903169+4 9.120108-4 4.500551+4 1.047129-3 3.865541+4 1.135011-3 3.513369+4 1.318257-3 2.904763+4 1.462177-3 2.531362+4 1.678804-3 2.084860+4 1.883649-3 1.763464+4 2.187762-3 1.405499+4 2.483133-3 1.152247+4 2.900000-3 8.962400+3 3.427678-3 6.776082+3 4.027170-3 5.132474+3 4.800000-3 3.761480+3 5.754399-3 2.705451+3 6.839116-3 1.962402+3 8.222426-3 1.383159+3 9.885531-3 9.677987+2 1.188502-2 6.721446+2 1.428894-2 4.632493+2 1.717908-2 3.167473+2 2.065380-2 2.148237+2 2.454709-2 1.481624+2 2.917427-2 1.014368+2 3.467369-2 6.893365+1 4.120975-2 4.649306+1 4.897788-2 3.111911+1 5.821032-2 2.067289+1 7.000000-2 1.325046+1 8.317638-2 8.679756+0 1.023293-1 5.173615+0 1.303167-1 2.804852+0 1.603245-1 1.650074+0 2.483133-1 5.351962-1 3.090295-1 3.068629-1 3.672823-1 1.991574-1 4.216965-1 1.418428-1 4.841724-1 1.017417-1 5.495409-1 7.554129-2 6.165950-1 5.799464-2 6.998420-1 4.369654-2 7.852356-1 3.401606-2 8.810489-1 2.663806-2 9.772372-1 2.153261-2 1.122018+0 1.638441-2 1.273503+0 1.283471-2 1.445440+0 1.012744-2 1.640590+0 8.046068-3 1.819701+0 6.710018-3 2.000000+0 5.726002-3 2.454709+0 4.112991-3 2.851018+0 3.249885-3 3.162278+0 2.776012-3 3.672823+0 2.228681-3 4.315191+0 1.773611-3 5.069907+0 1.422177-3 6.025596+0 1.131000-3 7.161434+0 9.061236-4 8.810489+0 7.003017-4 1.071519+1 5.528048-4 1.364583+1 4.166207-4 1.737801+1 3.163847-4 2.317395+1 2.299139-4 3.273407+1 1.581962-4 4.677351+1 1.084564-4 7.328245+1 6.796277-5 1.318257+2 3.725179-5 2.630268+2 1.849974-5 5.248075+2 9.228214-6 4.168694+3 1.157220-6 1.000000+5 4.821700-8 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 5.847000-4 1.690800-4 1.000000+5 1.690800-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.847000-4 4.336900-8 1.000000+5 4.336900-8 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 5.847000-4 4.155766-4 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 4.886100-4 5.288260+4 5.650000-4 5.262125+4 6.531306-4 5.161247+4 6.918310-4 5.087631+4 7.500000-4 4.952240+4 8.035261-4 4.813166+4 8.709636-4 4.619494+4 9.225714-4 4.460684+4 9.885531-4 4.246958+4 1.083927-3 3.944344+4 1.174898-3 3.672705+4 1.273503-3 3.392343+4 1.412538-3 3.035689+4 1.531087-3 2.767304+4 1.678804-3 2.470803+4 1.862087-3 2.159476+4 2.041738-3 1.902284+4 2.290868-3 1.610152+4 2.540973-3 1.375260+4 2.851018-3 1.145364+4 3.198895-3 9.460182+3 3.589219-3 7.755562+3 4.027170-3 6.311346+3 4.518559-3 5.099610+3 5.069907-3 4.092785+3 5.754399-3 3.188908+3 6.531306-3 2.465454+3 7.413102-3 1.891941+3 8.511380-3 1.405522+3 9.772372-3 1.035099+3 1.109175-2 7.760881+2 1.258925-2 5.777449+2 1.428894-2 4.270850+2 1.621810-2 3.134203+2 1.862087-2 2.219922+2 2.113489-2 1.607437+2 2.426610-2 1.122120+2 2.786121-2 7.778333+1 3.235937-2 5.190240+1 3.758374-2 3.437739+1 4.415704-2 2.189332+1 5.188000-2 1.384292+1 6.237348-2 8.132605+0 7.762471-2 4.288769+0 1.000000-1 2.025367+0 1.621810-1 4.806117-1 2.041738-1 2.438844-1 2.454709-1 1.427335-1 2.884032-1 8.997344-2 3.349654-1 5.905301-2 3.801894-1 4.163167-2 4.315191-1 2.956086-2 4.841724-1 2.180347-2 5.432503-1 1.619778-2 6.025596-1 1.247833-2 6.683439-1 9.679201-3 7.413102-1 7.559168-3 8.609938-1 5.339139-3 9.332543-1 4.458620-3 1.000000+0 3.847578-3 1.096478+0 3.191272-3 1.202264+0 2.665102-3 1.333521+0 2.192718-3 1.584893+0 1.602882-3 1.778279+0 1.307185-3 1.949845+0 1.117647-3 2.371374+0 8.137371-4 2.786121+0 6.305623-4 3.090295+0 5.378973-4 3.589219+0 4.313272-4 4.168694+0 3.484359-4 4.897788+0 2.789657-4 5.821032+0 2.215220-4 6.918310+0 1.772133-4 8.413951+0 1.387338-4 1.035142+1 1.078366-4 1.288250+1 8.336522-5 1.640590+1 6.319480-5 2.162719+1 4.643461-5 2.951209+1 3.310107-5 4.073803+1 2.347668-5 6.606934+1 1.416130-5 1.109175+2 8.316144-6 2.213095+2 4.123042-6 4.415704+2 2.055384-6 1.757924+3 5.141768-7 1.000000+5 9.026200-9 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 4.886100-4 1.383200-4 1.000000+5 1.383200-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.886100-4 5.182800-8 1.000000+5 5.182800-8 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 4.886100-4 3.502382-4 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.196200-4 2.415037+5 4.850000-4 2.288320+5 5.011872-4 2.245616+5 5.688529-4 2.070160+5 6.309573-4 1.913237+5 6.839116-4 1.790029+5 7.500000-4 1.646364+5 8.035261-4 1.537953+5 8.810489-4 1.392535+5 9.772372-4 1.236598+5 1.070000-3 1.106572+5 1.190000-3 9.632560+4 1.318257-3 8.374510+4 1.479108-3 7.090827+4 1.650000-3 6.012040+4 1.862087-3 4.966151+4 2.089296-3 4.108803+4 2.344229-3 3.374995+4 2.650000-3 2.715528+4 2.985383-3 2.181950+4 3.388442-3 1.715902+4 3.845918-3 1.338563+4 4.365158-3 1.036079+4 4.954502-3 7.958601+3 5.623413-3 6.067994+3 6.309573-3 4.711893+3 7.079458-3 3.637411+3 7.943282-3 2.791372+3 8.912509-3 2.129643+3 1.000000-2 1.615156+3 1.135011-2 1.183603+3 1.303167-2 8.362853+2 1.479108-2 6.036335+2 1.678804-2 4.326357+2 1.905461-2 3.079602+2 2.187762-2 2.109391+2 2.511886-2 1.433852+2 2.884032-2 9.675088+1 3.311311-2 6.481889+1 3.845918-2 4.168266+1 4.466836-2 2.660662+1 5.248075-2 1.628168+1 6.237348-2 9.544400+0 7.498942-2 5.358253+0 9.440609-2 2.582024+0 1.717908-1 3.809547-1 2.098150-1 2.024847-1 2.454709-1 1.241253-1 2.818383-1 8.124872-2 3.198895-1 5.548186-2 3.589219-1 3.948908-2 4.027170-1 2.831138-2 4.466836-1 2.113106-2 4.954502-1 1.588188-2 5.495409-1 1.202631-2 6.095369-1 9.177125-3 6.760830-1 7.059654-3 7.498942-1 5.474372-3 8.609938-1 3.936073-3 9.225714-1 3.358415-3 9.772372-1 2.959097-3 1.047129+0 2.561645-3 1.135011+0 2.179356-3 1.250000+0 1.809610-3 1.396368+0 1.474745-3 1.698244+0 1.037724-3 1.883649+0 8.671920-4 2.065380+0 7.446538-4 2.511886+0 5.433528-4 2.917427+0 4.298007-4 3.311311+0 3.552822-4 3.845918+0 2.858944-4 4.518559+0 2.280312-4 5.370318+0 1.804185-4 6.382635+0 1.438407-4 7.673615+0 1.138545-4 9.549926+0 8.698890-5 1.161449+1 6.887858-5 1.479108+1 5.204548-5 1.905461+1 3.911278-5 2.540973+1 2.849443-5 3.507519+1 2.013918-5 5.248075+1 1.317532-5 8.222427+1 8.272053-6 1.584893+2 4.233132-6 3.162278+2 2.105610-6 6.309573+2 1.051108-6 1.000000+4 6.609200-8 1.000000+5 6.607800-9 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.196200-4 1.308300-4 1.000000+5 1.308300-4 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.196200-4 2.251900-8 1.000000+5 2.251900-8 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.196200-4 2.887675-4 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.600500-4 1.705563+5 2.704500-4 1.719940+5 2.740000-4 1.704536+5 2.765000-4 1.685444+5 2.790000-4 1.656844+5 2.818383-4 1.615450+5 2.851018-4 1.562071+5 2.951209-4 1.402872+5 3.000000-4 1.338360+5 3.050000-4 1.284228+5 3.090295-4 1.250062+5 3.130000-4 1.224924+5 3.165000-4 1.209472+5 3.200000-4 1.200008+5 3.240000-4 1.195948+5 3.280000-4 1.198552+5 3.320000-4 1.207104+5 3.370000-4 1.225196+5 3.430000-4 1.256228+5 3.500000-4 1.302768+5 3.600000-4 1.382036+5 3.890451-4 1.646755+5 4.050000-4 1.790104+5 4.200000-4 1.916304+5 4.350000-4 2.031524+5 4.500000-4 2.133128+5 4.650000-4 2.219996+5 4.786301-4 2.287056+5 4.954502-4 2.355408+5 5.150000-4 2.416580+5 5.350000-4 2.459380+5 5.580000-4 2.488168+5 5.821032-4 2.500131+5 6.100000-4 2.495032+5 6.382635-4 2.471811+5 6.700000-4 2.428148+5 7.079458-4 2.359763+5 7.500000-4 2.272348+5 7.943282-4 2.171662+5 8.413951-4 2.059357+5 8.912509-4 1.939713+5 9.549926-4 1.791970+5 1.011579-3 1.667204+5 1.083927-3 1.517657+5 1.161449-3 1.372389+5 1.244515-3 1.233117+5 1.348963-3 1.079604+5 1.462177-3 9.381539+4 1.584893-3 8.090423+4 1.730000-3 6.833560+4 1.883649-3 5.756439+4 2.065380-3 4.742653+4 2.238721-3 3.977456+4 2.454709-3 3.229422+4 2.660725-3 2.675403+4 2.951209-3 2.084128+4 3.273407-3 1.609580+4 3.589219-3 1.270634+4 3.935501-3 9.971558+3 4.415704-3 7.303455+3 4.897788-3 5.476490+3 5.500000-3 3.936032+3 6.165950-3 2.818807+3 6.918310-3 1.997954+3 7.673615-3 1.456047+3 8.609938-3 1.017315+3 9.660509-3 7.053673+2 1.083927-2 4.855448+2 1.216186-2 3.319080+2 1.380384-2 2.167298+2 1.566751-2 1.404160+2 1.778279-2 9.029650+1 2.041738-2 5.534477+1 2.344229-2 3.366393+1 2.722701-2 1.949074+1 3.162278-2 1.120060+1 3.715352-2 6.122275+0 4.466836-2 3.044996+0 5.495409-2 1.376562+0 1.096478-1 9.540816-2 1.348963-1 4.311631-2 1.603245-1 2.239001-2 1.862087-1 1.277535-2 2.137962-1 7.662555-3 2.426610-1 4.827862-3 2.754229-1 3.064096-3 3.090295-1 2.041061-3 3.467369-1 1.369652-3 3.845918-1 9.632192-4 4.265795-1 6.823373-4 4.731513-1 4.870730-4 5.248075-1 3.504335-4 5.754399-1 2.633654-4 6.237348-1 2.063888-4 6.839117-1 1.573617-4 7.498942-1 1.208922-4 8.709636-1 7.942599-5 9.225714-1 6.806412-5 9.660509-1 6.052426-5 1.011579+0 5.417418-5 1.059254+0 4.883779-5 1.109175+0 4.431768-5 1.174898+0 3.955090-5 1.258925+0 3.478965-5 1.364583+0 3.013099-5 1.513561+0 2.520792-5 1.778279+0 1.892765-5 1.949845+0 1.616704-5 2.344229+0 1.198541-5 2.754229+0 9.283174-6 3.090295+0 7.778510-6 3.589219+0 6.237393-6 4.168694+0 5.038692-6 4.897788+0 4.034085-6 5.821032+0 3.203437-6 6.918310+0 2.562639-6 8.413951+0 2.006143-6 1.035142+1 1.559430-6 1.288250+1 1.205537-6 1.640590+1 9.138672-7 2.162719+1 6.714787-7 2.951209+1 4.786686-7 4.073803+1 3.394875-7 6.606934+1 2.047868-7 1.109175+2 1.202629-7 2.213095+2 5.962221-8 4.415704+2 2.972245-8 1.757924+3 7.435513-9 1.000000+5 1.30530-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.600500-4 9.118400-5 1.000000+5 9.118400-5 1 74000 7 7 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.600500-4 3.286500-8 1.000000+5 3.286500-8 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.600500-4 1.688331-4 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.473400-4 2.515306+5 2.530000-4 2.518739+5 2.575000-4 2.501076+5 2.605000-4 2.464674+5 2.630268-4 2.425574+5 2.660725-4 2.361439+5 2.700000-4 2.261226+5 2.786121-4 2.045988+5 2.835000-4 1.947984+5 2.870000-4 1.891050+5 2.910000-4 1.839864+5 2.951209-4 1.802467+5 2.985383-4 1.782770+5 3.030000-4 1.771428+5 3.065000-4 1.772940+5 3.100000-4 1.782678+5 3.150000-4 1.809288+5 3.200000-4 1.848906+5 3.260000-4 1.911120+5 3.320000-4 1.986558+5 3.430000-4 2.149896+5 3.600000-4 2.430330+5 3.740000-4 2.660820+5 3.850000-4 2.833596+5 3.981072-4 3.026014+5 4.120975-4 3.213463+5 4.265795-4 3.385733+5 4.394000-4 3.517785+5 4.518559-4 3.626926+5 4.677351-4 3.742055+5 4.850000-4 3.840204+5 5.011872-4 3.908277+5 5.188000-4 3.957465+5 5.400000-4 3.988560+5 5.650000-4 3.994668+5 5.900000-4 3.974442+5 6.165950-4 3.928387+5 6.456542-4 3.854224+5 6.760830-4 3.757587+5 7.161434-4 3.613465+5 7.585776-4 3.449716+5 8.000000-4 3.282876+5 8.511380-4 3.076269+5 9.015711-4 2.878363+5 9.660509-4 2.638206+5 1.035142-3 2.399710+5 1.110000-3 2.165454+5 1.190000-3 1.941834+5 1.288250-3 1.702131+5 1.396368-3 1.477425+5 1.513561-3 1.272934+5 1.640590-3 1.089123+5 1.778279-3 9.255411+4 1.927525-3 7.816026+4 2.113489-3 6.393524+4 2.300000-3 5.280822+4 2.540973-3 4.182580+4 2.800000-3 3.305076+4 3.054921-3 2.658901+4 3.388442-3 2.037347+4 3.801894-3 1.501325+4 4.265795-3 1.095963+4 4.800000-3 7.864560+3 5.370318-3 5.686258+3 6.025596-3 4.044194+3 6.760830-3 2.852443+3 7.498942-3 2.069638+3 8.317638-3 1.492307+3 9.332543-3 1.029821+3 1.047129-2 7.055173+2 1.174898-2 4.798192+2 1.318257-2 3.240316+2 1.496236-2 2.087568+2 1.698244-2 1.334196+2 1.927525-2 8.463820+1 2.187762-2 5.331593+1 2.511886-2 3.196344+1 2.884032-2 1.902493+1 3.349654-2 1.076404+1 3.935501-2 5.784370+0 4.677351-2 2.950628+0 5.754399-2 1.304835+0 1.096478-1 1.009664-1 1.333521-1 4.664596-2 1.531088-1 2.721504-2 1.757924-1 1.599860-2 2.000000-1 9.815566-3 2.238721-1 6.446300-3 2.483133-1 4.408300-3 2.754229-1 3.035217-3 3.019952-1 2.192076-3 3.311311-1 1.593697-3 3.630781-1 1.166480-3 3.981072-1 8.598612-4 4.365158-1 6.387465-4 4.786301-1 4.780715-4 5.248075-1 3.604362-4 5.688529-1 2.833320-4 6.095369-1 2.318493-4 6.606935-1 1.849934-4 7.161434-1 1.486379-4 8.709636-1 8.890921-5 9.225714-1 7.695675-5 9.660509-1 6.892668-5 1.011579+0 6.208569-5 1.071519+0 5.487823-5 1.135011+0 4.881531-5 1.216186+0 4.271225-5 1.318257+0 3.680975-5 1.778279+0 2.164705-5 1.949845+0 1.849743-5 2.371374+0 1.346602-5 2.786121+0 1.043437-5 3.090295+0 8.900821-6 3.589219+0 7.137363-6 4.168694+0 5.765716-6 4.897788+0 4.616144-6 5.821032+0 3.665605-6 6.918310+0 2.932407-6 8.511380+0 2.263310-6 1.047129+1 1.760031-6 1.318257+1 1.343111-6 1.678804+1 1.018900-6 2.213095+1 7.491336-7 3.054921+1 5.277375-7 4.265795+1 3.700752-7 6.839116+1 2.261046-7 1.174898+2 1.297621-7 2.344229+2 6.436923-8 4.677351+2 3.209588-8 3.715352+3 4.022658-9 1.000000+5 1.49360-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.473400-4 8.963600-5 1.000000+5 8.963600-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.473400-4 1.577040-4 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 4.561000-5 3.009498+5 4.590000-5 3.091416+5 4.635000-5 3.197778+5 4.680000-5 3.285456+5 4.731513-5 3.367793+5 4.800000-5 3.450162+5 4.870000-5 3.513726+5 4.954502-5 3.565637+5 5.069907-5 3.607988+5 5.190000-5 3.628014+5 5.370318-5 3.627468+5 5.821032-5 3.579480+5 6.025596-5 3.577301+5 6.165950-5 3.593182+5 6.309573-5 3.627858+5 6.456542-5 3.686360+5 6.606934-5 3.772124+5 6.760830-5 3.889018+5 6.918310-5 4.040101+5 7.079458-5 4.227365+5 7.244360-5 4.453182+5 7.413102-5 4.717198+5 7.673615-5 5.184478+5 8.035261-5 5.934949+5 8.810489-5 7.819092+5 9.332543-5 9.225547+5 9.885531-5 1.080068+6 1.040000-4 1.232610+6 1.092100-4 1.390414+6 1.135011-4 1.520487+6 1.174898-4 1.638700+6 1.220000-4 1.766598+6 1.260000-4 1.873482+6 1.303167-4 1.981122+6 1.350000-4 2.088300+6 1.400000-4 2.191206+6 1.450000-4 2.281872+6 1.513561-4 2.382752+6 1.584893-4 2.478364+6 1.659587-4 2.560974+6 1.737801-4 2.629607+6 1.820000-4 2.682276+6 1.905461-4 2.716244+6 2.000000-4 2.731302+6 2.089296-4 2.727491+6 2.190000-4 2.707032+6 2.317395-4 2.662996+6 2.454709-4 2.599222+6 2.600160-4 2.518397+6 2.730000-4 2.436660+6 2.884032-4 2.330469+6 3.054921-4 2.207220+6 3.235937-4 2.076204+6 3.430000-4 1.938276+6 3.650000-4 1.788480+6 3.850000-4 1.658304+6 4.100000-4 1.505046+6 4.365158-4 1.357057+6 4.677351-4 1.200788+6 4.954502-4 1.078162+6 5.248075-4 9.617719+5 5.650000-4 8.246940+5 6.095369-4 6.979225+5 6.531306-4 5.955491+5 7.079458-4 4.904651+5 7.585776-4 4.126335+5 8.222426-4 3.349939+5 9.015711-4 2.614495+5 9.885531-4 2.022572+5 1.071519-3 1.603890+5 1.161449-3 1.264596+5 1.258925-3 9.911515+4 1.396368-3 7.186685+4 1.531087-3 5.359512+4 1.678804-3 3.970621+4 1.862087-3 2.811811+4 2.065380-3 1.975986+4 2.290868-3 1.378626+4 2.540973-3 9.549948+3 2.818383-3 6.569667+3 3.126079-3 4.489310+3 3.507519-3 2.918385+3 3.935501-3 1.882427+3 4.415704-3 1.205033+3 4.954502-3 7.658517+2 5.559043-3 4.834160+2 6.309573-3 2.891977+2 7.079458-3 1.800328+2 8.000000-3 1.080318+2 9.015711-3 6.509792+1 1.023293-2 3.777073+1 1.161449-2 2.174209+1 1.318257-2 1.242565+1 1.513561-2 6.699571+0 1.757924-2 3.404852+0 2.089296-2 1.546493+0 2.454709-2 7.344477-1 2.951209-2 3.111770-1 3.630781-2 1.173643-1 7.413102-2 3.984217-3 9.015711-2 1.585239-3 1.071519-1 7.079138-4 1.244515-1 3.545189-4 1.428894-1 1.886257-4 1.621810-1 1.065596-4 1.819701-1 6.383954-5 2.041738-1 3.851736-5 2.264644-1 2.460368-5 2.511886-1 1.582231-5 2.786121-1 1.024912-5 3.090295-1 6.689942-6 3.388442-1 4.609087-6 3.715352-1 3.196270-6 4.120975-1 2.134205-6 4.518559-1 1.501456-6 4.897788-1 1.111411-6 5.308844-1 8.287339-7 5.754399-1 6.226134-7 6.095369-1 5.102011-7 6.606935-1 3.893397-7 7.161434-1 2.991962-7 8.035261-1 2.071163-7 8.511380-1 1.707475-7 8.912509-1 1.471364-7 9.225714-1 1.322137-7 9.549926-1 1.193997-7 9.885531-1 1.084642-7 1.023293+0 9.919895-8 1.059254+0 9.130521-8 1.096478+0 8.451376-8 1.135011+0 7.861619-8 1.188502+0 7.185733-8 1.258925+0 6.474088-8 1.348963+0 5.750640-8 1.500000+0 4.841700-8 1.840772+0 3.371378-8 2.000000+0 2.929700-8 2.454709+0 2.104498-8 2.884032+0 1.633499-8 3.198895+0 1.396189-8 3.715352+0 1.121526-8 4.365158+0 8.930273-9 5.128614+0 7.164599-9 6.095369+0 5.700780-9 7.244360+0 4.569309-9 8.912509+0 3.532949-9 1.083927+1 2.789965-9 1.380384+1 2.103501-9 1.757924+1 1.598005-9 2.344229+1 1.161688-9 3.273407+1 8.09429-10 4.677351+1 5.54907-10 7.328245+1 3.47734-10 1.318257+2 1.90602-10 2.630268+2 9.46523-11 5.248075+2 4.72163-11 4.168694+3 5.92083-12 1.000000+5 2.46700-13 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 4.561000-5 4.561000-5 1.000000+5 4.561000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.561000-5 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 4.325000-5 4.540929+5 4.370000-5 4.689888+5 4.415704-5 4.804473+5 4.470000-5 4.909344+5 4.530000-5 4.994896+5 4.600000-5 5.062592+5 4.700000-5 5.120584+5 4.810000-5 5.146216+5 4.954502-5 5.143443+5 5.188000-5 5.096323+5 5.500000-5 5.023736+5 5.688529-5 5.005206+5 5.855200-5 5.018565+5 6.000000-5 5.059208+5 6.150000-5 5.134512+5 6.300000-5 5.247216+5 6.450000-5 5.399792+5 6.606934-5 5.603583+5 6.760830-5 5.847596+5 6.918310-5 6.141587+5 7.117800-5 6.575036+5 7.328245-5 7.099896+5 7.650000-5 8.016480+5 8.500000-5 1.089264+6 9.015711-5 1.283489+6 9.549926-5 1.494833+6 1.000000-4 1.678936+6 1.047129-4 1.875161+6 1.096478-4 2.080892+6 1.135011-4 2.238692+6 1.174898-4 2.396515+6 1.220000-4 2.565096+6 1.260000-4 2.703864+6 1.303167-4 2.841373+6 1.350000-4 2.976384+6 1.400000-4 3.103800+6 1.462177-4 3.241644+6 1.531087-4 3.370463+6 1.603245-4 3.480821+6 1.690000-4 3.584064+6 1.778279-4 3.658896+6 1.862087-4 3.701642+6 1.950000-4 3.718096+6 2.041738-4 3.709804+6 2.150000-4 3.675144+6 2.264644-4 3.615933+6 2.400000-4 3.524984+6 2.540973-4 3.414549+6 2.660725-4 3.309577+6 2.800000-4 3.176744+6 2.951209-4 3.026258+6 3.126079-4 2.850161+6 3.311311-4 2.666176+6 3.507519-4 2.479474+6 3.715352-4 2.290250+6 3.935501-4 2.100686+6 4.168694-4 1.914970+6 4.466836-4 1.699635+6 4.731513-4 1.530414+6 5.011872-4 1.369358+6 5.370318-4 1.189873+6 5.754399-4 1.025777+6 6.165950-4 8.789590+5 6.606934-4 7.474968+5 7.079458-4 6.317718+5 7.673615-4 5.154015+5 8.317638-4 4.170814+5 8.912509-4 3.458503+5 9.700000-4 2.731632+5 1.059254-3 2.120213+5 1.174898-3 1.558752+5 1.297180-3 1.151152+5 1.428894-3 8.492997+4 1.566751-3 6.313393+4 1.717908-3 4.662029+4 1.905461-3 3.289482+4 2.113489-3 2.303504+4 2.344229-3 1.601365+4 2.600160-3 1.105359+4 2.884032-3 7.580386+3 3.198895-3 5.163693+3 3.548134-3 3.494165+3 3.981072-3 2.245708+3 4.466836-3 1.432325+3 5.069907-3 8.662721+2 5.688529-3 5.450180+2 6.382635-3 3.405801+2 7.161434-3 2.113624+2 8.035261-3 1.301779+2 9.120108-3 7.577963+1 1.035142-2 4.378333+1 1.174898-2 2.513092+1 1.333521-2 1.432154+1 1.500000-2 8.431346+0 1.717908-2 4.540956+0 1.972423-2 2.399926+0 2.344229-2 1.072153+0 2.786121-2 4.754286-1 3.427678-2 1.777029-1 4.466836-2 5.008408-2 7.244360-2 4.900576-3 8.810489-2 1.924790-3 1.047129-1 8.497577-4 1.202264-1 4.445627-4 1.364583-1 2.471129-4 1.548817-1 1.383840-4 1.737801-1 8.229349-5 1.927525-1 5.190590-5 2.137962-1 3.298238-5 2.371374-1 2.112413-5 2.600160-1 1.431533-5 2.851018-1 9.761499-6 3.090295-1 7.026277-6 3.349654-1 5.091096-6 3.589219-1 3.886313-6 3.890451-1 2.857143-6 4.216965-1 2.116461-6 4.570882-1 1.579397-6 4.897788-1 1.236605-6 5.248075-1 9.741429-7 5.623413-1 7.725684-7 6.025596-1 6.167946-7 6.456542-1 4.954729-7 6.918310-1 4.005379-7 7.498942-1 3.148794-7 8.128305-1 2.493595-7 8.810489-1 1.988045-7 9.772372-1 1.496274-7 1.011579+0 1.369577-7 1.047129+0 1.261093-7 1.083927+0 1.167086-7 1.135011+0 1.059820-7 1.188502+0 9.688098-8 1.273503+0 8.543623-8 1.364583+0 7.583619-8 1.513561+0 6.384582-8 1.819701+0 4.607178-8 1.972423+0 4.016384-8 2.398833+0 2.925194-8 2.818383+0 2.268025-8 3.126079+0 1.936081-8 3.630781+0 1.553458-8 4.265795+0 1.235540-8 5.011872+0 9.901999-9 5.956621+0 7.870966-9 7.079458+0 6.302733-9 8.709636+0 4.868982-9 1.059254+1 3.841938-9 1.333521+1 2.932994-9 1.698244+1 2.225740-9 2.238721+1 1.637003-9 3.090295+1 1.153520-9 4.365158+1 7.99393-10 6.918310+1 4.94450-10 1.188502+2 2.83803-10 2.371374+2 1.40807-10 4.731513+2 7.02111-11 3.758374+3 8.80022-12 1.000000+5 3.30540-13 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 4.325000-5 4.325000-5 1.000000+5 4.325000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.325000-5 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 8.514000-5 6.678760+4 8.620000-5 6.446680+4 8.730000-5 6.252020+4 8.850000-5 6.094100+4 8.970000-5 5.977080+4 9.120108-5 5.879454+4 9.300000-5 5.811600+4 9.500000-5 5.785440+4 9.721800-5 5.801256+4 1.000000-4 5.865220+4 1.040000-4 6.008180+4 1.170000-4 6.559060+4 1.230269-4 6.760795+4 1.288250-4 6.897634+4 1.350000-4 6.985560+4 1.412538-4 7.023113+4 1.480000-4 7.018620+4 1.566751-4 6.965765+4 1.678804-4 6.850918+4 1.800000-4 6.691920+4 1.927525-4 6.495184+4 2.041738-4 6.297200+4 2.187762-4 6.023500+4 2.350000-4 5.709100+4 2.570396-4 5.294210+4 2.851018-4 4.813715+4 3.126079-4 4.392130+4 3.427678-4 3.977316+4 3.890451-4 3.438744+4 4.415704-4 2.951136+4 5.011872-4 2.511885+4 5.888437-4 2.029245+4 6.918310-4 1.625136+4 8.128305-4 1.292789+4 9.885531-4 9.709061+3 1.202264-3 7.229518+3 1.462177-3 5.338523+3 1.757924-3 3.982718+3 2.113489-3 2.948609+3 2.540973-3 2.166022+3 3.054921-3 1.578998+3 3.672823-3 1.142304+3 4.415704-3 8.202180+2 5.370318-3 5.720947+2 6.531306-3 3.959614+2 8.000000-3 2.682854+2 9.772372-3 1.814242+2 1.188502-2 1.227795+2 1.428894-2 8.437057+1 1.717908-2 5.754534+1 2.065380-2 3.895252+1 2.483133-2 2.616362+1 3.000000-2 1.725294+1 3.589219-2 1.154717+1 4.265795-2 7.788055+0 5.011872-2 5.355813+0 5.956621-2 3.553731+0 7.161434-2 2.276007+0 8.511380-2 1.488025+0 1.047129-1 8.860196-1 1.348963-1 4.660544-1 1.659587-1 2.739107-1 2.483133-1 9.712115-2 3.090295-1 5.569048-2 3.672823-1 3.614552-2 4.216965-1 2.574385-2 4.841724-1 1.846571-2 5.495409-1 1.371041-2 6.165950-1 1.052581-2 6.998420-1 7.930925-3 7.852356-1 6.174000-3 8.810489-1 4.835041-3 9.772372-1 3.908229-3 1.122018+0 2.973593-3 1.273503+0 2.329510-3 1.445440+0 1.838119-3 1.640590+0 1.460382-3 1.819701+0 1.217913-3 2.000000+0 1.039300-3 2.454709+0 7.464999-4 2.851018+0 5.898489-4 3.162278+0 5.038432-4 3.672823+0 4.045037-4 4.315191+0 3.219088-4 5.069907+0 2.581235-4 6.025596+0 2.052767-4 7.244360+0 1.620909-4 8.912509+0 1.253275-4 1.083927+1 9.897178-5 1.380384+1 7.461858-5 1.757924+1 5.668521-5 2.344229+1 4.120703-5 3.273407+1 2.871396-5 4.677351+1 1.968404-5 7.328245+1 1.233523-5 1.318257+2 6.761191-6 2.630268+2 3.357647-6 5.248075+2 1.674923-6 4.168694+3 2.100308-7 1.000000+5 8.751400-9 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 8.514000-5 8.514000-5 1.000000+5 8.514000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 8.514000-5 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 5.602000-5 2.148720+6 5.650000-5 2.178740+6 5.700000-5 2.195720+6 5.770000-5 2.198540+6 5.850000-5 2.180920+6 5.920000-5 2.153680+6 6.000000-5 2.111640+6 6.110000-5 2.042960+6 6.237348-5 1.953630+6 6.382635-5 1.844667+6 6.531306-5 1.730497+6 6.730000-5 1.580304+6 6.918310-5 1.444498+6 7.161434-5 1.282182+6 7.413102-5 1.131526+6 7.852356-5 9.112300+5 9.120108-5 5.126569+5 9.885531-5 3.786441+5 1.071519-4 2.818995+5 1.150000-4 2.191860+5 1.224700-4 1.764487+5 1.288250-4 1.491098+5 1.350000-4 1.283128+5 1.412538-4 1.116123+5 1.480000-4 9.732120+4 1.548817-4 8.574843+4 1.621810-4 7.595918+4 1.698244-4 6.776661+4 1.778279-4 6.089237+4 1.862087-4 5.511365+4 1.950000-4 5.024260+4 2.041738-4 4.615380+4 2.137962-4 4.269358+4 2.238721-4 3.975288+4 2.350000-4 3.710680+4 2.483133-4 3.454358+4 2.660725-4 3.183435+4 2.884032-4 2.918382+4 3.162278-4 2.663802+4 3.630781-4 2.345448+4 4.700000-4 1.859472+4 5.559043-4 1.586918+4 6.382635-4 1.382694+4 7.413102-4 1.180882+4 8.413951-4 1.025693+4 9.660509-4 8.727518+3 1.096478-3 7.470020+3 1.230269-3 6.446158+3 1.400000-3 5.423380+3 1.590000-3 4.541140+3 1.798871-3 3.794500+3 2.041738-3 3.132801+3 2.317395-3 2.566615+3 2.630268-3 2.086818+3 2.985383-3 1.683923+3 3.388442-3 1.348590+3 3.845918-3 1.072023+3 4.365158-3 8.458955+2 4.954502-3 6.626349+2 5.623413-3 5.153958+2 6.382635-3 3.980703+2 7.244360-3 3.053118+2 8.222426-3 2.325348+2 9.332543-3 1.758885+2 1.059254-2 1.321312+2 1.202264-2 9.857044+1 1.364583-2 7.303204+1 1.548817-2 5.374545+1 1.778279-2 3.817381+1 2.041738-2 2.690780+1 2.344229-2 1.882694+1 2.691535-2 1.307885+1 3.090295-2 9.046548+0 3.548134-2 6.206055+0 4.120975-2 4.095261+0 4.841724-2 2.597562+0 5.821032-2 1.531475+0 7.161434-2 8.381603-1 8.810489-2 4.553987-1 1.678804-1 6.712343-2 2.113489-1 3.410652-2 2.511886-1 2.065873-2 2.917427-1 1.346699-2 3.349654-1 9.133104-3 3.801894-1 6.439764-3 4.315191-1 4.573259-3 4.841724-1 3.373407-3 5.432503-1 2.506053-3 6.025596-1 1.930462-3 6.683439-1 1.497315-3 7.413102-1 1.169296-3 8.609938-1 8.259577-4 9.332543-1 6.897982-4 1.000000+0 5.952700-4 1.096478+0 4.937142-4 1.202264+0 4.123114-4 1.333521+0 3.392214-4 1.584893+0 2.479684-4 1.778279+0 2.022325-4 1.949845+0 1.728878-4 2.344229+0 1.281669-4 2.754229+0 9.927575-5 3.090295+0 8.318930-5 3.589219+0 6.670794-5 4.168694+0 5.388796-5 4.897788+0 4.314325-5 5.821032+0 3.425888-5 6.918310+0 2.740668-5 8.413951+0 2.145536-5 1.035142+1 1.667764-5 1.288250+1 1.289315-5 1.621810+1 9.902051-6 2.137962+1 7.273026-6 2.917427+1 5.183224-6 4.027170+1 3.675144-6 6.531306+1 2.216495-6 1.096478+2 1.301317-6 2.187762+2 6.451084-7 4.365158+2 3.215832-7 1.737801+3 8.044362-8 1.000000+5 1.396000-9 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 5.602000-5 5.602000-5 1.000000+5 5.602000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 5.602000-5 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 4.565000-5 4.845560+6 4.605000-5 4.828960+6 4.650000-5 4.788040+6 4.710000-5 4.707480+6 4.786301-5 4.576382+6 4.850000-5 4.451680+6 4.954502-5 4.232025+6 5.080000-5 3.959336+6 5.230000-5 3.638212+6 5.400000-5 3.292604+6 5.623413-5 2.878440+6 5.888437-5 2.450636+6 6.237348-5 1.987526+6 7.161434-5 1.189451+6 7.585776-5 9.655230+5 8.035261-5 7.893089+5 8.413951-5 6.759295+5 8.810489-5 5.823757+5 9.225714-5 5.051431+5 9.660509-5 4.413528+5 1.000000-4 4.008960+5 1.040000-4 3.614560+5 1.083927-4 3.262388+5 1.122018-4 3.011109+5 1.170000-4 2.750604+5 1.220000-4 2.530904+5 1.273503-4 2.340218+5 1.338300-4 2.154702+5 1.412538-4 1.985943+5 1.500000-4 1.828880+5 1.603245-4 1.682718+5 1.720000-4 1.552052+5 1.883649-4 1.409568+5 2.113489-4 1.258685+5 2.722701-4 9.880248+4 3.162278-4 8.509261+4 3.672823-4 7.270475+4 4.216965-4 6.241435+4 4.786301-4 5.388742+4 5.500000-4 4.553680+4 6.237348-4 3.885441+4 7.161434-4 3.241750+4 8.128305-4 2.729293+4 9.440609-4 2.210368+4 1.083927-3 1.805564+4 1.240000-3 1.472940+4 1.412538-3 1.201209+4 1.621810-3 9.606124+3 1.862087-3 7.622268+3 2.113489-3 6.122512+3 2.398833-3 4.884077+3 2.722701-3 3.869369+3 3.090295-3 3.044191+3 3.507519-3 2.378209+3 4.000000-3 1.827252+3 4.570882-3 1.387418+3 5.188000-3 1.060745+3 5.888437-3 8.054781+2 6.683439-3 6.075010+2 7.585776-3 4.550005+2 8.609938-3 3.384256+2 9.772372-3 2.500156+2 1.109175-2 1.834249+2 1.258925-2 1.336309+2 1.428894-2 9.665517+1 1.640590-2 6.736392+1 1.883649-2 4.658659+1 2.137962-2 3.298284+1 2.454709-2 2.245342+1 2.818383-2 1.517200+1 3.273407-2 9.845629+0 3.801894-2 6.340238+0 4.415704-2 4.052066+0 5.188000-2 2.482715+0 6.165950-2 1.457321+0 7.498942-2 7.897596-1 9.549926-2 3.672805-1 1.659587-1 6.284105-2 2.041738-1 3.262992-2 2.398833-1 1.972274-2 2.754229-1 1.289708-2 3.126079-1 8.797135-3 3.507519-1 6.254059-3 3.935501-1 4.477710-3 4.365158-1 3.337458-3 4.841724-1 2.504622-3 5.370318-1 1.893345-3 5.956621-1 1.442211-3 6.531306-1 1.140178-3 7.244360-1 8.820190-4 8.317638-1 6.329486-4 8.912509-1 5.383954-4 9.549926-1 4.610263-4 1.011579+0 4.076872-4 1.096478+0 3.458949-4 1.202264+0 2.888243-4 1.318257+0 2.428620-4 1.479108+0 1.970661-4 1.717908+0 1.507088-4 1.905461+0 1.260496-4 2.113489+0 1.063121-4 2.540973+0 7.907275-5 2.951209+0 6.258193-5 3.349654+0 5.176932-5 3.890451+0 4.168213-5 4.570882+0 3.326363-5 5.432503+0 2.633225-5 6.456542+0 2.100468-5 7.762471+0 1.663418-5 9.660509+0 1.271402-5 1.174898+1 1.007160-5 1.500000+1 7.591000-6 1.949845+1 5.650231-6 2.600160+1 4.118726-6 3.589219+1 2.912686-6 5.495409+1 1.860951-6 8.609938+1 1.169368-6 1.678804+2 5.917858-7 3.349654+2 2.945030-7 6.683439+2 1.470435-7 1.059254+4 9.247303-9 1.000000+5 9.79330-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 4.565000-5 4.565000-5 1.000000+5 4.565000-5 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 4.565000-5 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 8.270000-6 2.760083+6 8.511380-6 2.946936+6 9.120108-6 3.415699+6 9.660509-6 3.835866+6 1.023293-5 4.279026+6 1.083927-5 4.737622+6 1.150000-5 5.226592+6 1.224700-5 5.761254+6 1.303167-5 6.296201+6 1.380384-5 6.793775+6 1.462177-5 7.285561+6 1.548817-5 7.759912+6 1.621810-5 8.116372+6 1.698244-5 8.440652+6 1.778279-5 8.717632+6 1.862087-5 8.937553+6 1.927525-5 9.057361+6 2.000000-5 9.133664+6 2.070000-5 9.150144+6 2.150000-5 9.103392+6 2.230000-5 8.993728+6 2.317395-5 8.811455+6 2.400000-5 8.586128+6 2.483133-5 8.318224+6 2.580000-5 7.966752+6 2.676700-5 7.587450+6 2.786121-5 7.140450+6 2.900000-5 6.671520+6 3.019952-5 6.187710+6 3.162278-5 5.640386+6 3.311311-5 5.107770+6 3.507519-5 4.477252+6 3.730000-5 3.859600+6 3.981072-5 3.274003+6 4.265795-5 2.729118+6 4.570882-5 2.258455+6 4.841724-5 1.917172+6 5.150000-5 1.597318+6 5.432503-5 1.355928+6 5.754399-5 1.128501+6 6.095369-5 9.322149+5 6.456542-5 7.645299+5 6.839116-5 6.222604+5 7.300000-5 4.888016+5 7.762471-5 3.864031+5 8.317638-5 2.942591+5 8.810489-5 2.330367+5 9.440609-5 1.747882+5 1.000000-4 1.366544+5 1.060000-4 1.058152+5 1.122018-4 8.194899+4 1.202264-4 5.959129+4 1.396368-4 2.951824+4 1.462177-4 2.391917+4 1.513561-4 2.055398+4 1.560000-4 1.811232+4 1.603245-4 1.625542+4 1.640590-4 1.492393+4 1.678804-4 1.378363+4 1.720000-4 1.276811+4 1.760000-4 1.196130+4 1.800000-4 1.130402+4 1.840772-4 1.076493+4 1.883649-4 1.031848+4 1.927525-4 9.968239+3 1.972423-4 9.701981+3 2.018366-4 9.509183+3 2.065380-4 9.380603+3 2.113489-4 9.307069+3 2.180000-4 9.279232+3 2.240000-4 9.309408+3 2.317395-4 9.403643+3 2.426610-4 9.598673+3 2.917427-4 1.060048+4 3.019952-4 1.077241+4 3.198895-4 1.097533+4 3.388442-4 1.111782+4 3.589219-4 1.119449+4 3.801894-4 1.120098+4 4.027170-4 1.113204+4 4.280200-4 1.096333+4 4.570882-4 1.069944+4 4.841724-4 1.040620+4 5.128614-4 1.006276+4 5.495409-4 9.595817+3 5.888437-4 9.083014+3 6.309573-4 8.538695+3 6.760830-4 7.975097+3 7.328245-4 7.308930+3 7.943282-4 6.645961+3 8.609938-4 5.995786+3 9.332543-4 5.370212+3 1.011579-3 4.777078+3 1.096478-3 4.221220+3 1.188502-3 3.705770+3 1.288250-3 3.232584+3 1.396368-3 2.802322+3 1.531087-3 2.362684+3 1.678804-3 1.976799+3 1.840772-3 1.641540+3 2.018366-3 1.353192+3 2.213095-3 1.107589+3 2.426610-3 9.002968+2 2.660725-3 7.268806+2 2.917427-3 5.830331+2 3.198895-3 4.646203+2 3.548134-3 3.572742+2 3.935501-3 2.727393+2 4.365158-3 2.067348+2 4.841724-3 1.555131+2 5.432503-3 1.124363+2 6.025596-3 8.338371+1 6.760830-3 5.935652+1 7.585776-3 4.192309+1 8.511380-3 2.939142+1 9.549926-3 2.045579+1 1.059254-2 1.466727+1 1.188502-2 1.006121+1 1.333521-2 6.853242+0 1.513561-2 4.458089+0 1.717908-2 2.878592+0 1.949845-2 1.845527+0 2.238721-2 1.127627+0 2.570396-2 6.839035-1 3.000000-2 3.877765-1 3.507519-2 2.167192-1 4.168694-2 1.130732-1 5.069907-2 5.366838-2 6.531306-2 2.026052-2 1.096478-1 2.740670-3 1.348963-1 1.238821-3 1.603245-1 6.435476-4 1.862087-1 3.672776-4 2.137962-1 2.203291-4 2.426610-1 1.388432-4 2.754229-1 8.813401-5 3.090295-1 5.871908-5 3.467369-1 3.941316-5 3.845918-1 2.772053-5 4.265795-1 1.963472-5 4.731513-1 1.401118-5 5.248075-1 1.007435-5 5.754399-1 7.566506-6 6.165950-1 6.137139-6 6.760830-1 4.678952-6 7.413102-1 3.594604-6 8.035261-1 2.869155-6 8.609938-1 2.358507-6 9.120108-1 2.016339-6 9.549926-1 1.789106-6 1.000000+0 1.597600-6 1.047129+0 1.437066-6 1.096478+0 1.301694-6 1.161449+0 1.159706-6 1.230269+0 1.040612-6 1.333521+0 8.999953-7 1.479108+0 7.529401-7 1.798871+0 5.325065-7 1.972423+0 4.552330-7 2.398833+0 3.315460-7 2.818383+0 2.570683-7 3.126079+0 2.194446-7 3.630781+0 1.760694-7 4.216965+0 1.423060-7 4.954502+0 1.139910-7 5.888437+0 9.056799-8 7.000000+0 7.246700-8 8.609938+0 5.597343-8 1.059254+1 4.354635-8 1.333521+1 3.324411-8 1.698244+1 2.522740-8 2.238721+1 1.855460-8 3.126079+1 1.291370-8 4.415704+1 8.951784-9 6.998420+1 5.537972-9 1.216186+2 3.142218-9 2.426610+2 1.559261-9 4.841724+2 7.77574-10 3.845918+3 9.74726-11 1.000000+5 3.74650-12 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 8.270000-6 8.270000-6 1.000000+5 8.270000-6 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 8.270000-6 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 7.410000-6 5.202148+6 7.700000-6 5.608584+6 8.128305-6 6.193118+6 8.609938-6 6.830706+6 9.120108-6 7.479391+6 9.700000-6 8.184288+6 1.035142-5 8.931283+6 1.109175-5 9.726630+6 1.188502-5 1.051954+7 1.273503-5 1.130002+7 1.364583-5 1.205159+7 1.445440-5 1.263942+7 1.531087-5 1.317190+7 1.621810-5 1.362535+7 1.698244-5 1.390940+7 1.778279-5 1.410557+7 1.862087-5 1.419957+7 1.927525-5 1.419403+7 2.000000-5 1.410792+7 2.070000-5 1.394832+7 2.150000-5 1.368535+7 2.230000-5 1.334443+7 2.317395-5 1.290077+7 2.400000-5 1.242979+7 2.483133-5 1.191938+7 2.580000-5 1.129462+7 2.691535-5 1.055767+7 2.800000-5 9.845736+6 2.917427-5 9.099987+6 3.054921-5 8.274906+6 3.198895-5 7.476057+6 3.388442-5 6.535231+6 3.589219-5 5.674502+6 3.801894-5 4.897383+6 4.073803-5 4.074986+6 4.365158-5 3.367183+6 4.650000-5 2.808312+6 4.954502-5 2.324950+6 5.248075-5 1.945687+6 5.559043-5 1.616757+6 5.900000-5 1.325098+6 6.237348-5 1.092183+6 6.606934-5 8.875319+5 7.000000-5 7.155384+5 7.413102-5 5.736617+5 7.852356-5 4.567607+5 8.317638-5 3.613095+5 8.912509-5 2.706868+5 9.500000-5 2.056481+5 1.011579-4 1.558646+5 1.080000-4 1.158394+5 1.161449-4 8.269396+4 1.303167-4 4.818492+4 1.364583-4 3.900344+4 1.412538-4 3.346946+4 1.462177-4 2.891390+4 1.500000-4 2.609616+4 1.540000-4 2.363042+4 1.580000-4 2.160881+4 1.620000-4 1.995528+4 1.659587-4 1.862254+4 1.698244-4 1.756977+4 1.737801-4 1.670850+4 1.778279-4 1.601507+4 1.820000-4 1.546447+4 1.862087-4 1.505124+4 1.905461-4 1.475138+4 1.950000-4 1.455089+4 2.000000-4 1.442678+4 2.060000-4 1.438992+4 2.113489-4 1.443721+4 2.200000-4 1.461593+4 2.371374-4 1.512294+4 2.818383-4 1.653004+4 3.000000-4 1.699171+4 3.198895-4 1.721183+4 3.388442-4 1.730645+4 3.589219-4 1.729849+4 3.801894-4 1.718453+4 4.027170-4 1.696021+4 4.280200-4 1.658750+4 4.570882-4 1.607221+4 4.841724-4 1.553760+4 5.188000-4 1.481129+4 5.559043-4 1.401383+4 5.956621-4 1.316775+4 6.382635-4 1.229516+4 6.918310-4 1.126304+4 7.498942-4 1.023816+4 8.128305-4 9.235662+3 8.810489-4 8.269262+3 9.549926-4 7.353732+3 1.035142-3 6.496485+3 1.122018-3 5.704074+3 1.224700-3 4.916045+3 1.333521-3 4.222440+3 1.462177-3 3.554465+3 1.603245-3 2.970426+3 1.757924-3 2.464517+3 1.927525-3 2.030014+3 2.113489-3 1.659890+3 2.317395-3 1.347668+3 2.540973-3 1.086860+3 2.786121-3 8.711248+2 3.019952-3 7.136962+2 3.311311-3 5.636730+2 3.672823-3 4.287180+2 4.216965-3 2.946743+2 4.677351-3 2.210324+2 5.188000-3 1.646523+2 5.754399-3 1.217859+2 6.382635-3 8.947355+1 7.161434-3 6.303346+1 8.035261-3 4.406058+1 9.015711-3 3.057160+1 1.011579-2 2.105158+1 1.135011-2 1.438641+1 1.258925-2 1.014570+1 1.412538-2 6.832773+0 1.603245-2 4.389853+0 1.819701-2 2.799868+0 2.065380-2 1.772912+0 2.371374-2 1.068383+0 2.722701-2 6.389614-1 3.126079-2 3.794433-1 3.672823-2 2.048892-1 4.365158-2 1.050184-1 5.188000-2 5.345159-2 6.683439-2 1.965307-2 1.083927-1 2.890676-3 1.303167-1 1.400808-3 1.531088-1 7.483521-4 1.757924-1 4.402762-4 2.000000-1 2.702300-4 2.238721-1 1.775512-4 2.511886-1 1.164920-4 2.786121-1 8.029550-5 3.054921-1 5.804890-5 3.349654-1 4.224148-5 3.672823-1 3.094779-5 4.027170-1 2.283717-5 4.415705-1 1.698127-5 4.786301-1 1.318846-5 5.188000-1 1.030741-5 5.623413-1 8.108358-6 6.095369-1 6.422227-6 6.606935-1 5.124643-6 7.161434-1 4.117100-6 7.762471-1 3.329378-6 8.609938-1 2.544247-6 9.120108-1 2.203804-6 9.660509-1 1.922121-6 1.011579+0 1.733208-6 1.071519+0 1.533435-6 1.148154+0 1.334256-6 1.244515+0 1.144114-6 1.364583+0 9.668166-7 1.757924+0 6.164022-7 1.927525+0 5.263084-7 2.213095+0 4.199871-7 2.630268+0 3.186887-7 3.019952+0 2.571813-7 3.507519+0 2.059859-7 4.073803+0 1.662206-7 4.786301+0 1.329342-7 5.688529+0 1.054525-7 6.760830+0 8.428073-8 8.222427+0 6.591946-8 1.011579+1 5.119582-8 1.244515+1 4.007966-8 1.584893+1 3.034973-8 2.089296+1 2.227803-8 2.818383+1 1.606688-8 3.845918+1 1.152166-8 6.165950+1 7.026197-9 1.000000+2 4.269800-9 1.995262+2 2.114571-9 3.981072+2 1.053616-9 1.584893+3 2.63441-10 1.000000+5 4.16860-12 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 7.410000-6 7.410000-6 1.000000+5 7.410000-6 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 7.410000-6 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 7.700000-6 6.059200+6 8.000000-6 5.173240+6 8.912509-6 3.268873+6 9.772372-6 2.196405+6 1.071519-5 1.466719+6 1.174898-5 9.728379+5 1.303167-5 6.082636+5 1.462177-5 3.579097+5 1.698244-5 1.788551+5 1.819701-5 1.305879+5 1.905461-5 1.064743+5 1.980000-5 9.030060+4 2.041738-5 7.951364+4 2.113489-5 6.932976+4 2.170000-5 6.275380+4 2.238721-5 5.614081+4 2.300000-5 5.130860+4 2.350000-5 4.797980+4 2.420000-5 4.409020+4 2.483133-5 4.122505+4 2.540973-5 3.904322+4 2.610000-5 3.690040+4 2.670000-5 3.537800+4 2.730000-5 3.411980+4 2.800000-5 3.293060+4 2.884032-5 3.182699+4 2.980000-5 3.090780+4 3.080000-5 3.024660+4 3.198895-5 2.975024+4 3.311311-5 2.948820+4 3.467369-5 2.934605+4 3.672823-5 2.938630+4 4.400000-5 2.989760+4 4.731513-5 2.993463+4 5.069907-5 2.977148+4 5.432503-5 2.938533+4 5.800000-5 2.880700+4 6.165950-5 2.809274+4 6.606934-5 2.711625+4 7.079458-5 2.598169+4 7.585776-5 2.472794+4 8.222426-5 2.316572+4 9.015711-5 2.133478+4 1.000000-4 1.928650+4 1.135011-4 1.690245+4 1.318257-4 1.434103+4 2.213095-4 8.001204+3 2.454709-4 7.076374+3 2.722701-4 6.214041+3 3.054921-4 5.340337+3 3.548134-4 4.346462+3 5.069907-4 2.632872+3 6.000000-4 2.063880+3 9.120108-4 1.100384+3 1.135011-3 7.852256+2 1.396368-3 5.661618+2 1.717908-3 4.052525+2 2.089296-3 2.933777+2 2.540973-3 2.107530+2 3.090295-3 1.502230+2 3.758374-3 1.062312+2 4.518559-3 7.611480+1 5.495409-3 5.302906+1 6.683439-3 3.668037+1 8.128305-3 2.518639+1 9.885531-3 1.716378+1 1.202264-2 1.160647+1 1.445440-2 7.972950+0 1.737801-2 5.437502+0 2.089296-2 3.680334+0 2.511886-2 2.471328+0 3.000000-2 1.670652+0 3.589219-2 1.116227+0 4.265795-2 7.513688-1 5.069907-2 5.020446-1 6.025596-2 3.328509-1 7.244360-2 2.130952-1 8.511380-2 1.433138-1 1.047129-1 8.533374-2 1.348963-1 4.488734-2 1.659587-1 2.638204-2 2.483133-1 9.355459-3 3.090295-1 5.365325-3 3.672823-1 3.482925-3 4.216965-1 2.481122-3 4.841724-1 1.780125-3 5.495409-1 1.322150-3 6.165950-1 1.015468-3 6.998420-1 7.655902-4 7.852356-1 5.964384-4 8.810489-1 4.677023-4 9.772372-1 3.784151-4 1.135011+0 2.816129-4 1.288250+0 2.207126-4 1.462177+0 1.742731-4 1.659587+0 1.385434-4 1.840772+0 1.156318-4 2.018366+0 9.914997-5 2.483133+0 7.097762-5 2.884032+0 5.611210-5 3.198895+0 4.796075-5 3.715352+0 3.852655-5 4.365158+0 3.067701-5 5.128614+0 2.461131-5 6.095369+0 1.958315-5 7.244360+0 1.569626-5 9.000000+0 1.199200-5 1.100000+1 9.418400-6 1.412538+1 7.036879-6 1.819701+1 5.280969-6 2.426610+1 3.842548-6 3.388442+1 2.679853-6 4.897788+1 1.816433-6 7.585776+1 1.152729-6 1.396368+2 6.174846-7 2.786121+2 3.068020-7 5.559043+2 1.530780-7 4.415704+3 1.919995-8 1.000000+5 8.47470-10 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 7.700000-6 7.700000-6 1.000000+5 7.700000-6 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 7.700000-6 0.0 1.000000+5 1.000000+5 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.575940-7 1.026100+0 1.034660-6 1.026600+0 1.458630-6 1.027100+0 1.984500-6 1.027500+0 2.485560-6 1.028100+0 3.384050-6 1.028750+0 4.575940-6 1.029500+0 6.262300-6 1.030100+0 7.875600-6 1.031000+0 1.077650-5 1.032000+0 1.474500-5 1.033200+0 2.065520-5 1.034000+0 2.535610-5 1.035300+0 3.441740-5 1.036640+0 4.575940-5 1.038200+0 6.175380-5 1.039700+0 8.023050-5 1.041500+0 1.067460-4 1.043800+0 1.481670-4 1.046400+0 2.061460-4 1.048300+0 2.566570-4 1.051200+0 3.481500-4 1.054080+0 4.575940-4 1.057700+0 6.237310-4 1.061100+0 8.113200-4 1.065100+0 1.074100-3 1.070400+0 1.498490-3 1.076200+0 2.070910-3 1.080600+0 2.586230-3 1.087100+0 3.484500-3 1.093710+0 4.575940-3 1.102600+0 6.344260-3 1.110700+0 8.273820-3 1.120600+0 1.106730-2 1.133300+0 1.538720-2 1.147500+0 2.124420-2 1.158200+0 2.640100-2 1.174100+0 3.528810-2 1.190110+0 4.575940-2 1.205100+0 5.697420-2 1.227500+0 7.626980-2 1.250000+0 9.852000-2 1.265600+0 1.154490-1 1.294900+0 1.502070-1 1.331800+0 1.986570-1 1.362600+0 2.423120-1 1.397000+0 2.938170-1 1.433800+0 3.515080-1 1.500000+0 4.611000-1 1.562500+0 5.711170-1 1.617200+0 6.719060-1 1.712900+0 8.558320-1 1.838500+0 1.105890+0 1.946200+0 1.322580+0 2.000000+0 1.430000+0 2.044000+0 1.517000+0 2.163500+0 1.750690+0 2.372600+0 2.149570+0 2.686300+0 2.720250+0 3.000000+0 3.258000+0 3.500000+0 4.052330+0 4.000000+0 4.778000+0 4.750000+0 5.753220+0 5.000000+0 6.053000+0 6.000000+0 7.149000+0 7.000000+0 8.116000+0 8.000000+0 8.985000+0 9.000000+0 9.776000+0 1.000000+1 1.050000+1 1.100000+1 1.117000+1 1.200000+1 1.180000+1 1.300000+1 1.238000+1 1.400000+1 1.293000+1 1.500000+1 1.343000+1 1.600000+1 1.391000+1 1.800000+1 1.476000+1 2.000000+1 1.552000+1 2.200000+1 1.621000+1 2.400000+1 1.684000+1 2.600000+1 1.741000+1 2.800000+1 1.794000+1 3.000000+1 1.842000+1 4.000000+1 2.040000+1 5.000000+1 2.187000+1 6.000000+1 2.301000+1 8.000000+1 2.469000+1 1.000000+2 2.587000+1 1.500000+2 2.774000+1 2.000000+2 2.885000+1 3.000000+2 3.013000+1 4.000000+2 3.087000+1 5.000000+2 3.135000+1 6.000000+2 3.169000+1 8.000000+2 3.215000+1 1.000000+3 3.245000+1 1.500000+3 3.287000+1 2.000000+3 3.310000+1 3.000000+3 3.336000+1 4.000000+3 3.349000+1 5.000000+3 3.358000+1 6.000000+3 3.363000+1 8.000000+3 3.371000+1 1.000000+4 3.376000+1 1.500000+4 3.383000+1 2.000000+4 3.387000+1 3.000000+4 3.390000+1 4.000000+4 3.392000+1 5.000000+4 3.394000+1 6.000000+4 3.394000+1 8.000000+4 3.396000+1 1.000000+5 3.396000+1 1 74000 7 8 1.838500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.411650-7 2.090400+0 1.006320-6 2.094700+0 1.304840-6 2.099900+0 1.735910-6 2.106600+0 2.414800-6 2.114000+0 3.341180-6 2.119500+0 4.159740-6 2.127900+0 5.641400-6 2.136250+0 7.411650-6 2.147000+0 1.016190-5 2.156900+0 1.319910-5 2.169000+0 1.761500-5 2.184500+0 2.448540-5 2.201800+0 3.387630-5 2.214800+0 4.220720-5 2.234200+0 5.677620-5 2.253680+0 7.411650-5 2.281500+0 1.038130-4 2.307000+0 1.363580-4 2.338200+0 1.833450-4 2.377400+0 2.539110-4 2.410200+0 3.229320-4 2.446800+0 4.107880-4 2.485900+0 5.172040-4 2.532900+0 6.619120-4 2.556430+0 7.411650-4 2.611900+0 9.450730-4 2.660400+0 1.142550-3 2.745300+0 1.529240-3 2.809000+0 1.852010-3 2.904500+0 2.385850-3 3.000000+0 2.978000-3 3.125000+0 3.839810-3 3.234400+0 4.671870-3 3.425800+0 6.290310-3 3.569300+0 7.626620-3 3.784700+0 9.802040-3 4.000000+0 1.214000-2 4.250000+0 1.499770-2 4.625000+0 1.948680-2 5.000000+0 2.415000-2 5.500000+0 3.054370-2 6.000000+0 3.702000-2 6.750000+0 4.666000-2 7.000000+0 4.983000-2 8.000000+0 6.221000-2 9.000000+0 7.403000-2 1.000000+1 8.524000-2 1.100000+1 9.584000-2 1.200000+1 1.058000-1 1.300000+1 1.152000-1 1.400000+1 1.241000-1 1.500000+1 1.325000-1 1.600000+1 1.405000-1 1.800000+1 1.553000-1 2.000000+1 1.687000-1 2.200000+1 1.810000-1 2.400000+1 1.922000-1 2.600000+1 2.025000-1 2.800000+1 2.121000-1 3.000000+1 2.210000-1 4.000000+1 2.575000-1 5.000000+1 2.850000-1 6.000000+1 3.067000-1 8.000000+1 3.390000-1 1.000000+2 3.623000-1 1.500000+2 4.005000-1 2.000000+2 4.241000-1 3.000000+2 4.527000-1 4.000000+2 4.698000-1 5.000000+2 4.814000-1 6.000000+2 4.898000-1 8.000000+2 5.015000-1 1.000000+3 5.092000-1 1.500000+3 5.206000-1 2.000000+3 5.271000-1 3.000000+3 5.341000-1 4.000000+3 5.383000-1 5.000000+3 5.408000-1 6.000000+3 5.426000-1 8.000000+3 5.450000-1 1.000000+4 5.465000-1 1.500000+4 5.485000-1 2.000000+4 5.497000-1 3.000000+4 5.508000-1 4.000000+4 5.515000-1 5.000000+4 5.520000-1 6.000000+4 5.522000-1 8.000000+4 5.525000-1 1.000000+5 5.528000-1 1 74000 7 8 1.838500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 74000 7 9 1.838500+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.400000+1 1.000000+5 7.400000+1 5.000000+5 7.396000+1 8.750000+5 7.392690+1 1.000000+6 7.391900+1 1.375000+6 7.388970+1 1.500000+6 7.387300+1 1.875000+6 7.380260+1 2.000000+6 7.377500+1 2.500000+6 7.365100+1 3.000000+6 7.350200+1 3.500000+6 7.332570+1 4.000000+6 7.313200+1 4.500000+6 7.292540+1 5.000000+6 7.269700+1 5.500000+6 7.244290+1 5.875000+6 7.223820+1 6.437500+6 7.191330+1 6.500000+6 7.187380+1 7.000000+6 7.157200+1 7.500000+6 7.125270+1 8.250000+6 7.076900+1 9.000000+6 7.028000+1 1.000000+7 6.960500+1 1.125000+7 6.871740+1 1.187500+7 6.826410+1 1.250000+7 6.780500+1 1.500000+7 6.595300+1 1.750000+7 6.414900+1 2.000000+7 6.232100+1 2.375000+7 5.961300+1 2.500000+7 5.873300+1 2.875000+7 5.612280+1 3.000000+7 5.527500+1 3.437500+7 5.236310+1 3.500000+7 5.196180+1 3.812500+7 5.000000+1 4.000000+7 4.887600+1 4.500000+7 4.603850+1 5.000000+7 4.342400+1 5.500000+7 4.100160+1 6.000000+7 3.874000+1 6.500000+7 3.661690+1 6.750000+7 3.560090+1 7.000000+7 3.462100+1 7.750000+7 3.184790+1 8.000000+7 3.098600+1 8.750000+7 2.856340+1 9.000000+7 2.781400+1 1.000000+8 2.508300+1 1.250000+8 1.999400+1 1.375000+8 1.826630+1 1.500000+8 1.693200+1 1.718800+8 1.519020+1 1.812500+8 1.455260+1 1.906300+8 1.393000+1 1.937500+8 1.372500+1 2.000000+8 1.331500+1 2.250000+8 1.173120+1 2.500000+8 1.046300+1 2.718800+8 9.602190+0 2.815400+8 9.222370+0 2.875000+8 8.974920+0 2.881300+8 8.948220+0 2.960400+8 8.597380+0 3.000000+8 8.412800+0 3.062500+8 8.109070+0 3.335900+8 6.874790+0 3.418000+8 6.591140+0 3.500000+8 6.362100+0 3.562500+8 6.225850+0 3.671900+8 6.047960+0 4.000000+8 5.642400+0 4.125000+8 5.464450+0 4.234400+8 5.293810+0 5.000000+8 4.203100+0 5.250000+8 3.973590+0 5.718800+8 3.624140+0 5.906300+8 3.486460+0 6.000000+8 3.415000+0 6.250000+8 3.217000+0 6.718800+8 2.873200+0 7.000000+8 2.710000+0 7.250000+8 2.596860+0 7.718800+8 2.412200+0 7.906300+8 2.334580+0 8.000000+8 2.293300+0 8.125000+8 2.235050+0 8.359400+8 2.120090+0 8.564500+8 2.017910+0 9.461700+8 1.624550+0 9.730800+8 1.534770+0 1.000000+9 1.459800+0 1.015600+9 1.423170+0 1.045900+9 1.364130+0 1.074300+9 1.320290+0 1.113400+9 1.273770+0 1.149200+9 1.241670+0 1.193100+9 1.211890+0 1.249300+9 1.183690+0 1.375000+9 1.135930+0 1.392600+9 1.129210+0 1.446300+9 1.106990+0 1.500000+9 1.081200+0 1.562500+9 1.045570+0 1.617200+9 1.011070+0 1.665000+9 9.792260-1 1.748800+9 9.218930-1 1.811600+9 8.789260-1 1.905800+9 8.164640-1 2.000000+9 7.577700-1 2.139200+9 6.792860-1 2.272600+9 6.127020-1 2.443000+9 5.384140-1 2.602800+9 4.782610-1 2.825100+9 4.074070-1 2.961100+9 3.703050-1 3.215900+9 3.112180-1 3.438900+9 2.687400-1 3.500000+9 2.583680-1 3.719500+9 2.249360-1 3.954200+9 1.948720-1 4.215700+9 1.670190-1 4.495800+9 1.424240-1 4.831900+9 1.185550-1 5.000000+9 1.084900-1 5.375000+9 8.958660-2 5.703100+9 7.632890-2 6.277300+9 5.857520-2 7.138700+9 4.074830-2 8.000000+9 2.939400-2 1.00000+10 1.541800-2 1.27030+10 7.724620-3 1.84370+10 2.647880-3 2.45630+10 1.166060-3 3.39920+10 4.628250-4 5.04940+10 1.511550-4 7.52470+10 4.928690-5 1.00000+11 2.226800-5 1.34280+11 9.812550-6 2.20600+11 2.488620-6 4.19930+11 4.261320-7 1.03480+12 3.680880-8 3.24440+12 1.704830-9 1.00000+14 1.85870-13 3.16230+15 1.80404-17 1.00000+17 1.65630-21 1 74000 7 0 1.838500+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 8.30000-12 1.000000+2 8.30000-10 1.000000+3 8.300000-8 1.000000+4 8.300000-6 1.000000+5 8.300000-4 5.000000+5 2.075000-2 8.750000+5 6.354688-2 1.000000+6 8.300000-2 1.375000+6 1.565180-1 1.500000+6 1.859000-1 1.875000+6 2.875950-1 2.000000+6 3.259000-1 2.500000+6 5.001000-1 3.000000+6 7.049000-1 3.500000+6 9.357710-1 4.000000+6 1.188400+0 4.500000+6 1.458220+0 5.000000+6 1.741000+0 5.500000+6 2.032570+0 5.875000+6 2.255080+0 6.437500+6 2.591960+0 6.500000+6 2.629340+0 7.000000+6 2.929100+0 7.500000+6 3.226180+0 8.250000+6 3.665470+0 9.000000+6 4.094600+0 1.000000+7 4.649000+0 1.125000+7 5.317170+0 1.187500+7 5.643700+0 1.250000+7 5.966600+0 1.500000+7 7.238000+0 1.750000+7 8.505700+0 2.000000+7 9.773000+0 2.375000+7 1.165100+1 2.500000+7 1.226800+1 2.875000+7 1.407810+1 3.000000+7 1.467100+1 3.437500+7 1.669920+1 3.500000+7 1.698400+1 3.812500+7 1.837730+1 4.000000+7 1.919300+1 4.500000+7 2.128010+1 5.000000+7 2.322400+1 5.500000+7 2.501320+1 6.000000+7 2.666200+1 6.500000+7 2.818810+1 6.750000+7 2.891520+1 7.000000+7 2.962100+1 7.750000+7 3.163060+1 8.000000+7 3.227300+1 8.750000+7 3.412190+1 9.000000+7 3.471900+1 1.000000+8 3.700300+1 1.250000+8 4.212300+1 1.375000+8 4.441030+1 1.500000+8 4.652600+1 1.718800+8 4.979940+1 1.812500+8 5.104060+1 1.906300+8 5.219310+1 1.937500+8 5.256200+1 2.000000+8 5.326200+1 2.250000+8 5.570780+1 2.500000+8 5.770700+1 2.718800+8 5.917180+1 2.815400+8 5.975200+1 2.875000+8 6.008770+1 2.881300+8 6.012290+1 2.960400+8 6.055580+1 3.000000+8 6.076400+1 3.062500+8 6.107570+1 3.335900+8 6.234180+1 3.418000+8 6.268570+1 3.500000+8 6.301800+1 3.562500+8 6.325560+1 3.671900+8 6.366370+1 4.000000+8 6.477500+1 4.125000+8 6.515410+1 4.234400+8 6.547840+1 5.000000+8 6.738800+1 5.250000+8 6.790510+1 5.718800+8 6.875220+1 5.906300+8 6.905350+1 6.000000+8 6.920100+1 6.250000+8 6.955690+1 6.718800+8 7.013250+1 7.000000+8 7.043500+1 7.250000+8 7.066660+1 7.718800+8 7.105480+1 7.906300+8 7.119150+1 8.000000+8 7.125600+1 8.125000+8 7.133330+1 8.359400+8 7.147550+1 8.564500+8 7.159170+1 9.461700+8 7.200370+1 9.730800+8 7.210820+1 1.000000+9 7.221000+1 1.015600+9 7.226120+1 1.045900+9 7.235870+1 1.074300+9 7.244340+1 1.113400+9 7.254870+1 1.149200+9 7.264210+1 1.193100+9 7.274490+1 1.249300+9 7.286060+1 1.375000+9 7.308370+1 1.392600+9 7.311040+1 1.446300+9 7.319010+1 1.500000+9 7.326700+1 1.562500+9 7.333820+1 1.617200+9 7.339830+1 1.665000+9 7.344930+1 1.748800+9 7.352840+1 1.811600+9 7.357630+1 1.905800+9 7.364530+1 2.000000+9 7.371100+1 2.139200+9 7.377990+1 2.272600+9 7.383040+1 2.443000+9 7.388280+1 2.602800+9 7.392190+1 2.825100+9 7.395870+1 2.961100+9 7.397080+1 3.215900+9 7.398900+1 3.438900+9 7.400020+1 3.500000+9 7.400010+1 3.719500+9 7.399980+1 3.954200+9 7.399940+1 4.215700+9 7.399900+1 4.495800+9 7.399860+1 4.831900+9 7.399820+1 5.000000+9 7.399800+1 5.375000+9 7.399830+1 5.703100+9 7.399860+1 6.277300+9 7.399900+1 7.138700+9 7.399950+1 8.000000+9 7.400000+1 1.00000+10 7.400000+1 1.27030+10 7.400000+1 1.84370+10 7.400000+1 2.45630+10 7.400000+1 3.39920+10 7.400000+1 5.04940+10 7.400000+1 7.52470+10 7.400000+1 1.00000+11 7.400000+1 1.34280+11 7.400000+1 2.20600+11 7.400000+1 4.19930+11 7.400000+1 1.03480+12 7.400000+1 3.24440+12 7.400000+1 1.00000+14 7.400000+1 3.16230+15 7.400000+1 1.00000+17 7.400000+1 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.015839-6 0.0 3.588543-6 0.0 3.597375-6 8.77815-14 3.606208-6 1.73695-13 3.615041-6 3.17269-13 3.623874-6 5.34959-13 3.632706-6 8.32659-13 3.641539-6 1.19638-12 3.650372-6 1.58680-12 3.659205-6 1.94281-12 3.668037-6 2.19580-12 3.676870-6 2.29092-12 3.685703-6 2.20638-12 3.694535-6 1.96157-12 3.703368-6 1.60984-12 3.721034-6 8.52905-13 3.729866-6 5.50606-13 3.738699-6 3.28122-13 3.747532-6 1.80502-13 3.756365-6 9.16611-14 3.765197-6 0.0 3.913133-6 0.0 3.927581-6 2.955461+0 3.932397-6 3.928119+0 3.942028-6 7.175030+0 3.951660-6 1.209809+1 3.962496-6 1.985659+1 3.979201-6 3.464128+1 3.990187-6 4.393668+1 4.000420-6 5.019612+1 4.010471-6 5.261144+1 4.020812-6 5.081814+1 4.031701-6 4.528999+1 4.057608-6 2.842187+1 4.067240-6 2.396562+1 4.077504-6 2.076975+1 4.084789-6 1.916904+1 4.092374-6 1.775369+1 4.103025-6 1.473881+1 4.106120-6 1.364595+1 4.112647-6 1.249890+1 4.127392-6 8.904127+0 4.140907-6 5.558943+0 4.150736-6 3.588660+0 4.160566-6 2.138585+0 4.170395-6 1.176453+0 4.184525-6 3.363921-1 4.190054-6 0.0 4.318057-6 0.0 4.336656-6 6.938043+0 4.339313-6 7.919079+0 4.349942-6 1.446484+1 4.360570-6 2.438972+1 4.372527-6 4.003083+1 4.391147-6 7.015019+1 4.403748-6 8.929555+1 4.415432-6 1.008111+2 4.424889-6 1.042483+2 4.436278-6 9.913763+1 4.449292-6 8.387326+1 4.477482-6 4.006543+1 4.488110-6 2.709128+1 4.498738-6 1.806528+1 4.509367-6 1.272873+1 4.530623-6 7.546570+0 4.537634-6 8.393112+0 4.545843-6 9.187485+0 4.556790-6 9.585460+0 4.567737-6 9.231733+0 4.578683-6 8.207434+0 4.595103-6 5.920307+0 4.611523-6 3.568649+0 4.622469-6 2.303795+0 4.633416-6 1.372897+0 4.644362-6 7.552421-1 4.660782-6 1.919856-1 4.666255-6 0.0 4.852248-6 0.0 4.864191-6 6.072617-2 4.876134-6 1.201603-1 4.888078-6 2.194827-1 4.900021-6 3.700780-1 4.911964-6 5.760233-1 4.929879-6 9.625219-1 4.947794-6 1.344014+0 4.959737-6 1.519030+0 4.971680-6 1.584829+0 4.985215-6 1.503818+0 4.997486-6 1.317967+0 5.031396-6 5.900293-1 5.043339-6 3.809027-1 5.055282-6 2.269911-1 5.067226-6 1.248702-1 5.083379-6 4.109136-2 5.091112-6 1.256022-6 5.095650-6 1.312005-6 5.107920-6 1.368837-6 5.120190-6 1.318324-6 5.132461-6 1.172050-6 5.144731-6 9.618878-7 5.169397-6 5.077854-7 5.181543-6 3.289901-7 5.193813-6 1.960545-7 5.206084-6 1.078512-7 5.218354-6 5.476804-8 5.230625-6 0.0 5.309806-6 0.0 5.322875-6 1.83569-14 5.335945-6 3.63233-14 5.349014-6 6.63474-14 5.362084-6 1.11871-13 5.375153-6 1.74126-13 5.388222-6 2.50187-13 5.401292-6 3.31833-13 5.414361-6 4.06282-13 5.427431-6 4.59187-13 5.440500-6 4.79078-13 5.453569-6 4.61399-13 5.466639-6 4.10205-13 5.479708-6 3.36650-13 5.505847-6 1.78360-13 5.518916-6 1.15143-13 5.531986-6 6.86169-14 5.545055-6 3.77467-14 5.558125-6 1.91682-14 5.571194-6 0.0 5.688905-6 0.0 5.702907-6 1.61306-14 5.716910-6 3.19180-14 5.730912-6 5.83008-14 5.744915-6 9.83032-14 5.758917-6 1.53008-13 5.783773-6 2.75255-13 5.787391-6 2.93771-13 5.815881-6 1.570296-1 5.830126-6 2.868274-1 5.844370-6 4.836305-1 5.858615-6 7.527670-1 5.901534-6 1.759357+0 5.917717-6 1.997245+0 5.932101-6 2.058246+0 5.946485-6 1.956846+0 5.961328-6 1.705232+0 6.001116-6 7.700934-1 6.013495-6 5.326546-1 6.016609-6 4.932348-1 6.029674-6 3.670240-1 6.043953-6 2.981892-1 6.058232-6 3.223110-1 6.072701-6 3.994401-1 6.088530-6 6.405274-1 6.112293-6 1.095644+0 6.134924-6 1.945677+0 6.143854-6 2.258525+0 6.161124-6 2.972686+0 6.175426-6 3.701768+0 6.213504-6 6.125784+0 6.234624-6 7.469664+0 6.250079-6 8.029961+0 6.263514-6 8.114537+0 6.281772-6 7.463314+0 6.297359-6 6.407276+0 6.336902-6 2.993669+0 6.352683-6 1.892621+0 6.367727-6 1.127869+0 6.382771-6 6.267506-1 6.403896-6 2.136634-1 6.412859-6 5.317629-2 6.423748-6 8.947088-2 6.435421-6 1.367371-1 6.439521-6 1.587221-1 6.451183-6 2.294529-1 6.466946-6 3.573706-1 6.517256-6 8.930886-1 6.534155-6 1.020701+0 6.549928-6 1.077251+0 6.564337-6 1.093374+0 6.589359-6 9.906867-1 6.613017-6 8.703685-1 6.628790-6 8.341209-1 6.646173-6 8.567643-1 6.703381-6 1.158593+0 6.728487-6 1.202843+0 6.765709-6 1.399490+0 6.781541-6 1.565284+0 6.798852-6 1.849896+0 6.850558-6 2.964457+0 6.858587-6 3.096581+0 6.879967-6 3.248656+0 6.899204-6 3.120925+0 6.917865-6 2.779936+0 6.969447-6 1.469646+0 6.981227-6 1.227796+0 6.994607-6 9.959761-1 7.011823-6 7.873916-1 7.026591-6 6.972523-1 7.056229-6 6.418291-1 7.060666-6 6.420647-1 7.073456-6 7.122460-1 7.085579-6 7.962926-1 7.113889-6 1.073212+0 7.153015-6 1.496252+0 7.175117-6 1.627703+0 7.192360-6 1.661886+0 7.218341-6 1.568428+0 7.264946-6 1.308503+0 7.283548-6 1.284706+0 7.307343-6 1.345406+0 7.386261-6 1.787447+0 7.413900-6 1.822637+0 7.465972-6 1.666527+0 7.528876-6 1.389385+0 7.567854-6 1.341052+0 7.593909-6 1.348007+0 7.642690-6 1.462045+0 7.690864-6 1.611266+0 7.711420-6 1.658446+0 7.756289-6 1.637633+0 7.815203-6 1.536670+0 8.140946-6 1.580601+0 8.307073-6 1.600862+0 9.354439-6 1.876718+0 1.057971-5 2.313653+0 1.231673-5 3.083779+0 1.758270-5 5.744228+0 1.985124-5 6.620236+0 2.242711-5 7.149099+0 2.506767-5 7.179468+0 2.866095-5 6.667624+0 3.487041-5 5.319190+0 3.504207-5 6.442243+0 3.512790-5 7.382455+0 3.521373-5 8.817353+0 3.531645-5 1.127143+1 3.555704-5 1.814121+1 3.565360-5 1.988850+1 3.573943-5 2.035546+1 3.581989-5 1.974268+1 3.592986-5 1.738204+1 3.615785-5 1.074159+1 3.624367-5 8.706860+0 3.632950-5 7.204860+0 3.636405-5 6.802013+0 3.641533-5 6.448604+0 3.650332-5 6.240314+0 3.654306-5 6.434574+0 3.658699-5 6.787313+0 3.663256-5 7.472312+0 3.668301-5 8.433851+0 3.672207-5 9.370963+0 3.677286-5 1.081207+1 3.686271-5 1.411585+1 3.703118-5 2.219464+1 3.713226-5 2.729094+1 3.723436-5 3.105806+1 3.732641-5 3.272694+1 3.736683-5 3.302025+1 3.744930-5 3.719176+1 3.755750-5 4.089514+1 3.763797-5 4.577902+1 3.773568-5 5.715908+1 3.783026-5 7.443701+1 3.810352-5 1.422375+2 3.820205-5 1.583062+2 3.828665-5 1.629723+2 3.838210-5 1.556537+2 3.847770-5 1.369104+2 3.874287-5 6.314118+1 3.883753-5 4.186693+1 3.892543-5 2.716089+1 3.901740-5 1.694294+1 3.920132-5 4.459371+0 4.097194-5 4.183001+0 4.182995-5 4.278145+0 4.234800-5 4.167095+0 4.267307-5 4.465601+0 4.289014-5 5.005354+0 4.330476-5 6.393532+0 4.344826-5 6.557026+0 4.381916-5 6.480805+0 4.433926-5 7.124061+0 4.669096-5 7.014572+0 4.692081-5 1.372290+1 4.704292-5 1.979623+1 4.715784-5 2.840591+1 4.727995-5 4.095586+1 4.761487-5 8.253002+1 4.774453-5 9.254086+1 4.785318-5 9.522304+1 4.796567-5 9.142996+1 4.808675-5 8.074428+1 4.841482-5 3.979661+1 4.852974-5 2.806730+1 4.864467-5 1.942947+1 4.875959-5 1.369131+1 4.898944-5 6.658733+0 5.253760-5 5.961876+0 5.305215-5 6.034164+0 5.384605-5 6.652692+0 5.495643-5 7.079924+0 5.656055-5 7.016442+0 6.680240-5 5.421647+0 7.177821-5 4.886744+0 7.779699-5 4.562574+0 8.020424-5 4.539826+0 8.159698-5 4.729605+0 8.304506-5 4.582046+0 9.120108-5 4.900583+0 9.919702-5 5.553705+0 1.098562-4 6.831076+0 1.603245-4 1.453963+1 1.850729-4 1.770257+1 2.172485-4 2.059082+1 2.408607-4 2.220838+1 2.449159-4 2.320143+1 2.522841-4 2.341292+1 2.575000-4 2.444576+1 4.051382-4 2.447003+1 4.127496-4 2.603459+1 4.195600-4 2.535219+1 5.234089-4 2.432286+1 5.762558-4 2.344074+1 5.888437-4 2.360086+1 8.640000-4 1.818269+1 1.074608-3 1.500475+1 1.302423-3 1.241454+1 1.591751-3 1.002139+1 1.774224-3 8.912384+0 1.785516-3 9.158803+0 1.792328-3 9.726483+0 1.798871-3 1.083603+1 1.804847-3 1.245614+1 1.815606-3 1.657048+1 1.828072-3 2.128894+1 1.838508-3 2.363138+1 1.870869-3 2.647896+1 1.901734-3 3.108894+1 1.929000-3 3.238859+1 1.995262-3 3.318092+1 2.089296-3 3.205487+1 2.221894-3 2.948777+1 2.244881-3 3.047250+1 2.270140-3 3.244742+1 2.309019-3 3.205678+1 2.512055-3 2.859273+1 2.579039-3 2.918799+1 2.766072-3 2.670781+1 2.835144-3 2.673891+1 3.311311-3 2.166576+1 3.857460-3 1.746881+1 4.398066-3 1.441706+1 5.121638-3 1.149573+1 5.726003-3 9.702548+0 6.479522-3 8.022715+0 7.365250-3 6.569330+0 8.296281-3 5.443949+0 9.450551-3 4.421024+0 9.956831-3 4.078733+0 1.002681-2 4.229579+0 1.006538-2 4.530147+0 1.010497-2 5.116117+0 1.014119-2 5.930398+0 1.023965-2 8.584654+0 1.028692-2 9.409957+0 1.035479-2 9.867710+0 1.086822-2 9.254825+0 1.135818-2 8.676507+0 1.145602-2 9.016875+0 1.165031-2 1.093074+1 1.176797-2 1.117362+1 1.197565-2 1.119071+1 1.218005-2 1.202349+1 1.247071-2 1.183027+1 1.443630-2 9.417708+0 1.661958-2 7.519646+0 1.898521-2 6.054127+0 2.137962-2 4.973908+0 2.384460-2 4.146320+0 2.665211-2 3.435783+0 2.934797-2 2.916141+0 3.274576-2 2.416083+0 3.712680-2 1.945471+0 4.190345-2 1.574749+0 4.716521-2 1.280263+0 5.279322-2 1.048886+0 6.014725-2 8.321469-1 6.772641-2 6.745760-1 6.825582-2 6.822446-1 6.851162-2 7.165498-1 6.872882-2 7.871234-1 6.893074-2 9.077119-1 6.913631-2 1.100730+0 6.938224-2 1.428404+0 6.999916-2 2.437659+0 7.034849-2 2.847964+0 7.072207-2 3.061002+0 7.129377-2 3.121314+0 8.446954-2 2.390108+0 9.455516-2 1.989710+0 1.076542-1 1.603397+0 1.220425-1 1.298933+0 1.376052-1 1.058919+0 1.548817-1 8.654117-1 1.734044-1 7.135809-1 1.953286-1 5.825506-1 2.159608-1 4.912076-1 2.415939-1 4.064244-1 2.703461-1 3.368858-1 3.062792-1 2.746537-1 3.450568-1 2.271031-1 3.903508-1 1.874959-1 4.432965-1 1.549786-1 5.051132-1 1.285007-1 5.698771-1 1.088838-1 6.493816-1 9.183690-2 7.537248-1 7.649589-2 8.709636-1 6.484801-2 1.021086+0 5.492070-2 1.228714+0 4.465836-2 1.410753+0 3.826426-2 1.619761+0 3.278566-2 1.859734+0 2.809147-2 2.135261+0 2.406939-2 2.451607+0 2.062318-2 2.814822+0 1.767039-2 3.231848+0 1.514038-2 3.710658+0 1.297261-2 4.300658+0 1.100334-2 5.122134+0 9.045623-3 5.880996+0 7.750488-3 6.752287+0 6.640788-3 7.752663+0 5.689972-3 8.901248+0 4.875293-3 9.760024+0 4.398059-3 1.000000+1 9.083136-3 1 74000 7 0 1.838500+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.386586+1 3.015839-6-7.158170+1 3.572438-6-6.786441+1 3.774443-6-6.329076+1 3.861846-6-5.802923+1 3.898336-6-5.313536+1 3.913735-6-4.881040+1 3.942028-6-3.929127+1 3.954971-6-3.506410+1 3.964602-6-3.349840+1 3.973331-6-3.410494+1 3.980555-6-3.646207+1 3.990187-6-4.221867+1 3.999818-6-5.071667+1 4.022383-6-7.418385+1 4.034783-6-6.482772+1 4.048844-6-5.966615+1 4.064983-6-5.928120+1 4.092374-6-6.087364+1 4.107942-6-6.134432+1 4.139678-6-6.391965+1 4.193022-6-7.401738+1 4.276642-6-5.982425+1 4.301793-6-5.303892+1 4.316127-6-4.667204+1 4.322146-6-4.243140+1 4.339313-6-3.308218+1 4.351270-6-2.537250+1 4.361898-6-1.946360+1 4.364223-6-1.849919+1 4.372527-6-1.614142+1 4.376595-6-1.603824+1 4.383155-6-1.735743+1 4.387224-6-1.930442+1 4.391147-6-2.212563+1 4.398599-6-2.990689+1 4.403083-6-3.634245+1 4.412661-6-5.273723+1 4.423137-6-7.439465+1 4.424889-6-6.992804+1 4.438263-6-4.222629+1 4.449292-6-2.508707+1 4.453220-6-2.053054+1 4.459640-6-1.472301+1 4.463830-6-1.214541+1 4.467871-6-1.060176+1 4.473350-6-9.959419+0 4.476449-6-1.021676+1 4.485453-6-1.300244+1 4.488110-6-1.446883+1 4.489439-6-1.536123+1 4.497576-6-1.973504+1 4.502392-6-2.306788+1 4.513186-6-2.944899+1 4.529806-6-3.713448+1 4.534897-6-3.994093+1 4.545843-6-4.264939+1 4.567737-6-4.415261+1 4.600576-6-4.565281+1 4.680426-6-5.525219+1 4.763330-6-6.005223+1 4.941822-6-6.509367+1 5.055282-6-6.508942+1 5.505847-6-6.921899+1 5.912323-6-7.177302+1 6.010401-6-7.095614+1 6.187788-6-7.457309+1 6.246778-6-7.153347+1 6.312067-6-6.608307+1 6.367727-6-6.681580+1 6.494442-6-7.037548+1 6.855880-6-7.142763+1 6.969447-6-6.949672+1 7.175117-6-7.129725+1 1.621810-5-7.300457+1 2.661271-5-7.009836+1 3.185672-5-6.419269+1 3.388793-5-5.883145+1 3.468127-5-5.409683+1 3.521373-5-4.638038+1 3.540145-5-4.483664+1 3.555704-5-4.635161+1 3.591109-5-5.539826+1 3.607202-5-5.594670+1 3.624367-5-5.272019+1 3.650332-5-4.330713+1 3.686271-5-2.790705+1 3.699748-5-2.406366+1 3.710699-5-2.253739+1 3.725440-5-2.253138+1 3.732641-5-2.183947+1 3.735762-5-2.064445+1 3.738465-5-1.899460+1 3.743811-5-1.747360+1 3.746888-5-1.677871+1 3.752762-5-1.453927+1 3.754600-5-1.337579+1 3.761785-5-8.610618+0 3.762791-5-7.814713+0 3.763797-5-6.789330+0 3.772993-5 5.039367-1 3.773568-5 1.155479+0 3.774645-5 2.006899+0 3.782189-5 5.928678+0 3.783026-5 6.488134+0 3.784596-5 6.892409+0 3.785970-5 6.931344+0 3.788374-5 6.498156+0 3.790177-5 5.822041+0 3.792882-5 4.311901+0 3.795586-5 2.302729+0 3.797360-5 6.735663-1 3.798912-5-1.040767+0 3.800270-5-2.737933+0 3.801459-5-4.375509+0 3.803539-5-7.601316+0 3.805098-5-1.034853+1 3.807145-5-1.445744+1 3.809120-5-1.917688+1 3.810352-5-2.289660+1 3.816549-5-4.015766+1 3.819117-5-4.926845+1 3.824869-5-6.888446+1 3.828242-5-5.615840+1 3.837654-5-2.222343+1 3.839254-5-1.654385+1 3.840168-5-1.363867+1 3.846562-5 5.056648+0 3.846974-5 6.419407+0 3.847770-5 8.655577+0 3.849264-5 1.233055+1 3.850571-5 1.519695+1 3.852858-5 1.963501+1 3.857147-5 2.640439+1 3.861541-5 3.166834+1 3.865922-5 3.509401+1 3.869582-5 3.656815+1 3.873111-5 3.654708+1 3.882570-5 3.138215+1 3.888698-5 2.549645+1 3.891582-5 2.262472+1 3.901740-5 1.120543+1 3.902573-5 1.012212+1 3.905700-5 6.936656+0 3.915079-5-1.451993+0 3.917606-5-3.937390+0 3.918875-5-5.358530+0 3.919500-5-6.147523+0 3.920696-5-8.024846+0 3.921683-5-9.235532+0 3.924645-5-1.214579+1 3.927036-5-1.410639+1 3.934211-5-1.889183+1 3.945571-5-2.456130+1 3.962908-5-3.078657+1 3.982040-5-3.574646+1 4.016279-5-4.193352+1 4.066215-5-4.782700+1 4.153179-5-5.425357+1 4.320975-5-6.266101+1 4.506858-5-6.762834+1 4.586518-5-7.219531+1 4.637614-5-6.378006+1 4.663818-5-5.620683+1 4.682499-5-4.741593+1 4.705638-5-3.625667+1 4.719488-5-3.061836+1 4.727995-5-2.877940+1 4.735222-5-2.907006+1 4.742017-5-3.086161+1 4.750190-5-3.525926+1 4.757625-5-4.182230+1 4.771207-5-5.969603+1 4.777122-5-6.957845+1 4.783460-5-5.980224+1 4.789241-5-4.957880+1 4.795872-5-3.858625+1 4.799014-5-3.360187+1 4.808675-5-2.044612+1 4.812547-5-1.632219+1 4.816894-5-1.263083+1 4.822082-5-9.168995+0 4.825195-5-7.501239+0 4.827231-5-6.573278+0 4.830794-5-5.298011+0 4.833466-5-4.621283+0 4.835470-5-4.278667+0 4.838476-5-4.065356+0 4.839979-5-4.127928+0 4.847228-5-5.491238+0 4.850101-5-6.170661+0 4.851538-5-6.629370+0 4.854411-5-7.978796+0 4.861953-5-1.086182+1 4.879910-5-1.955445+1 4.897507-5-2.667507+1 4.901843-5-2.919102+1 4.914057-5-3.332644+1 4.936381-5-3.798184+1 4.977344-5-4.297485+1 5.040681-5-4.722795+1 5.167000-5-5.150544+1 5.384605-5-5.537647+1 9.605058-5-6.240853+1 1.312200-4-6.471405+1 1.850729-4-6.205890+1 2.408607-4-5.769845+1 2.884032-4-5.134638+1 3.676146-4-4.563288+1 4.028516-4-4.451571+1 4.108770-4-4.435025+1 4.175937-4-4.286723+1 5.523885-4-3.574708+1 6.008278-4-3.403098+1 7.136837-4-3.053419+1 8.640000-4-2.802935+1 1.074608-3-2.669065+1 1.302423-3-2.714628+1 1.491935-3-2.909648+1 1.629572-3-3.217275+1 1.711951-3-3.573204+1 1.756393-3-3.925450+1 1.782634-3-4.325894+1 1.810555-3-5.023831+1 1.822424-3-5.057245+1 1.855003-3-4.568133+1 1.883195-3-4.463366+1 1.929000-3-3.838087+1 1.995262-3-3.238235+1 2.070000-3-2.744534+1 2.140271-3-2.469633+1 2.207984-3-2.346333+1 2.244881-3-2.393897+1 2.270140-3-2.429931+1 2.285630-3-2.359186+1 2.320732-3-2.114142+1 2.378659-3-1.890079+1 2.460168-3-1.705139+1 2.527056-3-1.633365+1 2.567642-3-1.622979+1 2.635234-3-1.438630+1 2.722087-3-1.304815+1 2.798790-3-1.257828+1 2.880509-3-1.097457+1 3.006371-3-9.441182+0 3.145728-3-8.231162+0 3.398208-3-6.718151+0 3.665315-3-5.674737+0 3.963921-3-4.903227+0 4.271939-3-4.420122+0 4.677351-3-4.080731+0 5.121638-3-3.925209+0 5.726003-3-3.973858+0 6.479522-3-4.258938+0 7.365250-3-4.819522+0 8.296281-3-5.683023+0 8.976871-3-6.630399+0 9.450551-3-7.657617+0 9.747793-3-8.705665+0 9.930140-3-9.805764+0 1.002681-2-1.086701+1 1.016200-2-1.301623+1 1.022363-2-1.319798+1 1.030061-2-1.223181+1 1.042149-2-1.035674+1 1.052363-2-9.466157+0 1.071240-2-8.589266+0 1.096624-2-8.066298+0 1.120074-2-8.041320+0 1.135818-2-8.424105+0 1.154270-2-9.425355+0 1.162098-2-9.285721+0 1.180542-2-7.988962+0 1.192795-2-7.676826+0 1.206201-2-7.534978+0 1.218005-2-6.924802+0 1.233926-2-5.944360+0 1.255759-2-5.097566+0 1.288676-2-4.242291+0 1.335442-2-3.384746+0 1.387768-2-2.707674+0 1.443630-2-2.174391+0 1.497215-2-1.782361+0 1.562248-2-1.420346+0 1.625989-2-1.149232+0 1.705349-2-9.026270-1 1.762438-2-7.686562-1 1.830535-2-6.465825-1 1.898521-2-5.550191-1 1.984784-2-4.676453-1 2.047372-2-4.233241-1 2.137962-2-3.859025-1 2.262876-2-3.597092-1 2.384460-2-3.578699-1 2.505369-2-3.714250-1 2.748289-2-4.325840-1 3.274576-2-6.226155-1 5.109091-2-1.368549+0 5.695322-2-1.664394+0 6.136484-2-1.974370+0 6.438775-2-2.300870+0 6.621133-2-2.614377+0 6.742977-2-2.952945+0 6.825582-2-3.361754+0 6.896573-2-4.000031+0 6.945896-2-4.404077+0 6.974178-2-4.442105+0 7.010100-2-4.239480+0 7.095999-2-3.355890+0 7.151289-2-2.965585+0 7.236809-2-2.585109+0 7.367445-2-2.212998+0 7.539483-2-1.889373+0 7.746445-2-1.614391+0 7.909772-2-1.446204+0 8.253945-2-1.193144+0 8.647190-2-9.974671-1 9.164765-2-8.229729-1 9.685003-2-7.042460-1 1.023293-1-6.166888-1 1.103602-1-5.385474-1 1.186642-1-4.928931-1 1.283346-1-4.647221-1 1.436876-1-4.538147-1 1.734044-1-4.769180-1 2.703461-1-5.883278-1 3.739491-1-6.600637-1 5.462247-1-7.162090-1 9.166353-1-7.546474-1 2.814822+0-7.737399-1 8.500626+0-7.773310-1 1.000000+1-7.766112-1 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.788178-3 1.069950-6 1.166324-2 1.137867-6 1.508058-2 1.210094-6 1.959801-2 1.286907-6 2.560499-2 1.368596-6 3.362846-2 1.455469-6 4.439787-2 1.500953-6 5.114353-2 1.646110-6 7.761544-2 1.697551-6 8.944064-2 1.750600-6 1.032946-1 1.805306-6 1.195636-1 1.861722-6 1.387165-1 1.919900-6 1.613253-1 1.979897-6 1.881272-1 2.105574-6 2.574455-1 2.170084-6 3.014119-1 2.232578-6 3.507122-1 2.351769-6 4.648682-1 2.408585-6 5.304188-1 2.463626-6 6.025363-1 2.516947-6 6.816709-1 2.568601-6 7.682362-1 2.618642-6 8.626553-1 2.667118-6 9.653603-1 2.714080-6 1.076793+0 2.759574-6 1.197404+0 2.846342-6 1.467897+0 2.927771-6 1.778305+0 3.004191-6 2.132773+0 3.075909-6 2.537209+0 3.110096-6 2.761354+0 3.176333-6 3.258786+0 3.238431-6 3.816153+0 3.296647-6 4.440609+0 3.351225-6 5.136961+0 3.402392-6 5.910089+0 3.450361-6 6.764957+0 3.495332-6 7.706600+0 3.537492-6 8.740049+0 3.577017-6 9.869897+0 3.614072-6 1.110029+1 3.648810-6 1.243633+1 3.681378-6 1.388418+1 3.711910-6 1.544975+1 3.740534-6 1.713855+1 3.767369-6 1.895616+1 3.792527-6 2.090819+1 3.816112-6 2.299947+1 3.840000-6 2.542705+1 3.858953-6 2.761857+1 3.878387-6 3.015804+1 3.896606-6 3.285877+1 3.913686-6 3.572625+1 3.929699-6 3.876592+1 3.944711-6 4.198336+1 3.958785-6 4.538440+1 3.971980-6 4.897523+1 3.984349-6 5.276239+1 3.995946-6 5.675266+1 4.006817-6 6.095293+1 4.017010-6 6.537033+1 4.026565-6 7.001254+1 4.035523-6 7.488857+1 4.043921-6 8.000950+1 4.059668-6 9.144589+1 4.073446-6 1.041567+2 4.085502-6 1.183302+2 4.096051-6 1.341122+2 4.105281-6 1.515289+2 4.113358-6 1.704446+2 4.120425-6 1.905694+2 4.126608-6 2.115050+2 4.132019-6 2.328055+2 4.136753-6 2.540333+2 4.144520-6 2.947857+2 4.155621-6 3.676561+2 4.171738-6 5.083364+2 4.180157-6 5.988391+2 4.185289-6 6.593202+2 4.190421-6 7.233344+2 4.200684-6 8.593946+2 4.201967-6 8.769043+2 4.210948-6 1.000203+3 4.214476-6 1.048095+3 4.221212-6 1.136523+3 4.224740-6 1.180414+3 4.228108-6 1.220197+3 4.231475-6 1.257512+3 4.235966-6 1.302752+3 4.240296-6 1.340742+3 4.244305-6 1.370349+3 4.247673-6 1.390698+3 4.252644-6 1.412630+3 4.258658-6 1.425451+3 4.263209-6 1.424789+3 4.269471-6 1.409126+3 4.274525-6 1.384269+3 4.279371-6 1.350679+3 4.284238-6 1.307999+3 4.286275-6 1.287680+3 4.293378-6 1.206800+3 4.297968-6 1.147453+3 4.301314-6 1.101401+3 4.305727-6 1.037817+3 4.309164-6 9.866019+2 4.313585-6 9.193747+2 4.318075-6 8.503661+2 4.322766-6 7.784861+2 4.328980-6 6.851697+2 4.333470-6 6.200775+2 4.339565-6 5.360657+2 4.344376-6 4.739557+2 4.354639-6 3.557774+2 4.358588-6 3.158419+2 4.361746-6 2.861701+2 4.364903-6 2.584920+2 4.369393-6 2.225035+2 4.374355-6 1.872041+2 4.378449-6 1.614431+2 4.382741-6 1.375167+2 4.386933-6 1.169983+2 4.391039-6 9.943913+1 4.396371-6 8.005314+1 4.404061-6 5.809768+1 4.411396-6 4.275618+1 4.416088-6 3.535093+1 4.419505-6 3.098106+1 4.422012-6 2.826944+1 4.424205-6 2.621553+1 4.426365-6 2.446234+1 4.428500-6 2.297748+1 4.430602-6 2.174183+1 4.432671-6 2.073146+1 4.436745-6 1.929419+1 4.440691-6 1.853707+1 4.444513-6 1.833931+1 4.451920-6 1.928019+1 4.458863-6 2.155699+1 4.484902-6 4.044640+1 4.494666-6 5.188238+1 4.510686-6 7.744125+1 4.527959-6 1.189765+2 4.536724-6 1.484763+2 4.543297-6 1.757984+2 4.548227-6 1.998940+2 4.556250-6 2.471630+2 4.568633-6 3.452325+2 4.591095-6 6.366713+2 4.599519-6 7.973411+2 4.607942-6 9.927976+2 4.615242-6 1.193107+3 4.620454-6 1.354705+3 4.630405-6 1.707178+3 4.636422-6 1.947842+3 4.647778-6 2.453483+3 4.649197-6 2.520839+3 4.659134-6 3.011854+3 4.663037-6 3.211475+3 4.671494-6 3.648136+3 4.675026-6 3.829252+3 4.680072-6 4.083381+3 4.683317-6 4.242247+3 4.688811-6 4.499891+3 4.692502-6 4.662810+3 4.697776-6 4.878107+3 4.702651-6 5.055505+3 4.705268-6 5.141115+3 4.711922-6 5.325079+3 4.717118-6 5.432198+3 4.722585-6 5.507775+3 4.728025-6 5.543645+3 4.739153-6 5.493263+3 4.742209-6 5.450939+3 4.750457-6 5.279430+3 4.754612-6 5.163673+3 4.759236-6 5.014211+3 4.762208-6 4.907716+3 4.767539-6 4.698816+3 4.771409-6 4.534796+3 4.776939-6 4.285976+3 4.782717-6 4.012714+3 4.789728-6 3.670515+3 4.795406-6 3.390768+3 4.801794-6 3.079135+3 4.806762-6 2.842377+3 4.818118-6 2.331605+3 4.822022-6 2.168410+3 4.829475-6 1.877337+3 4.837992-6 1.579769+3 4.847858-6 1.282946+3 4.857601-6 1.038579+3 4.879506-6 6.430039+2 4.887464-6 5.422812+2 4.894924-6 4.640487+2 4.901919-6 4.026790+2 4.908476-6 3.539781+2 4.914623-6 3.148447+2 4.926149-6 2.550953+2 4.936235-6 2.140069+2 4.945060-6 1.844090+2 4.960503-6 1.429713+2 4.983668-6 9.803866+1 4.993803-6 8.355198+1 5.000318-6 7.585251+1 5.003576-6 7.249470+1 5.007603-6 6.881483+1 5.011575-6 6.571697+1 5.015366-6 6.327253+1 5.019157-6 6.135050+1 5.025319-6 5.939811+1 5.028400-6 5.899094+1 5.031481-6 5.897823+1 5.043804-6 6.306468+1 5.046335-6 6.475129+1 5.048783-6 6.666366+1 5.054292-6 7.197672+1 5.057959-6 7.628423+1 5.061422-6 8.090864+1 5.070446-6 9.538544+1 5.084453-6 1.239221+2 5.091228-6 1.397413+2 5.098346-6 1.572307+2 5.104443-6 1.725451+2 5.111777-6 1.908700+2 5.117327-6 2.043190+2 5.120277-6 2.112212+2 5.125781-6 2.234833+2 5.130840-6 2.338795+2 5.142394-6 2.536365+2 5.147135-6 2.598737+2 5.154717-6 2.673296+2 5.158954-6 2.700944+2 5.162997-6 2.717830+2 5.167041-6 2.725479+2 5.172433-6 2.721593+2 5.175899-6 2.710868+2 5.179365-6 2.693980+2 5.185527-6 2.649652+2 5.191688-6 2.588664+2 5.197850-6 2.513208+2 5.204012-6 2.425666+2 5.207093-6 2.378135+2 5.214025-6 2.264008+2 5.216336-6 2.224212+2 5.228659-6 2.003522+2 5.231740-6 1.947391+2 5.240983-6 1.780395+2 5.253307-6 1.567734+2 5.281889-6 1.154576+2 5.291292-6 1.047006+2 5.300400-6 9.555856+1 5.309224-6 8.779921+1 5.317772-6 8.119973+1 5.334335-6 7.056153+1 5.349862-6 6.259942+1 5.364418-6 5.642648+1 5.378065-6 5.147485+1 5.403653-6 4.369737+1 5.493210-6 2.348675+1 5.515599-6 1.917736+1 5.523995-6 1.764447+1 5.549708-6 1.351443+1 5.557973-6 1.249257+1 5.564171-6 1.187748+1 5.568820-6 1.151976+1 5.572307-6 1.131839+1 5.574922-6 1.120888+1 5.576883-6 1.115181+1 5.579825-6 1.110912+1 5.582767-6 1.112130+1 5.585236-6 1.117670+1 5.588054-6 1.129347+1 5.592281-6 1.158295+1 5.596509-6 1.202011+1 5.603379-6 1.307554+1 5.606814-6 1.377603+1 5.610679-6 1.471096+1 5.613071-6 1.537058+1 5.615801-6 1.620150+1 5.619896-6 1.760835+1 5.626215-6 2.016929+1 5.643243-6 2.949591+1 5.653196-6 3.654289+1 5.659913-6 4.189375+1 5.666581-6 4.761017+1 5.672814-6 5.324823+1 5.678931-6 5.898296+1 5.685030-6 6.481895+1 5.690801-6 7.036857+1 5.693335-6 7.279267+1 5.699887-6 7.896543+1 5.706093-6 8.459937+1 5.709260-6 8.736140+1 5.714720-6 9.189774+1 5.720609-6 9.640998+1 5.725185-6 9.959914+1 5.732829-6 1.042242+2 5.739208-6 1.073441+2 5.748758-6 1.106552+2 5.754409-6 1.118192+2 5.761151-6 1.124312+2 5.768157-6 1.121929+2 5.773340-6 1.114688+2 5.780141-6 1.098591+2 5.786700-6 1.076605+2 5.788886-6 1.067996+2 5.799192-6 1.019962+2 5.806063-6 9.822708+1 5.816369-6 9.197345+1 5.830110-6 8.301759+1 5.840226-6 7.633450+1 5.852843-6 6.825993+1 5.889542-6 4.859817+1 5.896842-6 4.551059+1 5.910530-6 4.042980+1 5.922506-6 3.666709+1 5.943465-6 3.132846+1 5.959184-6 2.811466+1 6.006342-6 2.087057+1 6.034000-6 1.766516+1 6.041417-6 1.692137+1 6.056251-6 1.560017+1 6.071084-6 1.452978+1 6.085918-6 1.374454+1 6.093335-6 1.346689+1 6.100752-6 1.326783+1 6.106717-6 1.316443+1 6.111191-6 1.311936+1 6.117901-6 1.310198+1 6.124612-6 1.314135+1 6.129772-6 1.320698+1 6.141383-6 1.345032+1 6.160086-6 1.402848+1 6.174920-6 1.453070+1 6.189754-6 1.495416+1 6.193462-6 1.503609+1 6.204587-6 1.520380+1 6.212670-6 1.524068+1 6.220384-6 1.520152+1 6.228099-6 1.508613+1 6.233347-6 1.496352+1 6.241217-6 1.471349+1 6.249088-6 1.438708+1 6.256505-6 1.401427+1 6.263922-6 1.358399+1 6.278756-6 1.257866+1 6.293589-6 1.143164+1 6.308423-6 1.020650+1 6.319548-6 9.273232+0 6.323257-6 8.964208+0 6.339843-6 7.623768+0 6.355448-6 6.471793+0 6.371052-6 5.485349+0 6.386657-6 4.726157+0 6.402262-6 4.264064+0 6.417866-6 4.180845+0 6.421343-6 4.223270+0 6.433510-6 4.573476+0 6.436552-6 4.714172+0 6.441115-6 4.968428+0 6.445678-6 5.277049+0 6.449580-6 5.586204+0 6.454770-6 6.065351+0 6.459106-6 6.527564+0 6.466272-6 7.421470+0 6.477408-6 9.151356+0 6.494978-6 1.277786+1 6.500546-6 1.416250+1 6.513306-6 1.775488+1 6.520496-6 2.002188+1 6.529837-6 2.319939+1 6.536151-6 2.547557+1 6.542567-6 2.787291+1 6.549400-6 3.049575+1 6.557058-6 3.348398+1 6.564791-6 3.650814+1 6.572188-6 3.935937+1 6.574325-6 4.016887+1 6.582862-6 4.330487+1 6.590598-6 4.596743+1 6.595473-6 4.753278+1 6.602711-6 4.966575+1 6.606098-6 5.057659+1 6.620728-6 5.377605+1 6.627809-6 5.485501+1 6.639131-6 5.589700+1 6.647131-6 5.611814+1 6.651697-6 5.605536+1 6.655692-6 5.589047+1 6.662683-6 5.536351+1 6.667926-6 5.477869+1 6.671859-6 5.423974+1 6.680707-6 5.273832+1 6.683656-6 5.215654+1 6.695555-6 4.945908+1 6.699521-6 4.845364+1 6.711420-6 4.520134+1 6.715387-6 4.405794+1 6.731252-6 3.933293+1 6.736065-6 3.788371+1 6.750505-6 3.360134+1 6.762982-6 3.007162+1 6.773468-6 2.728462+1 6.790791-6 2.311042+1 6.815828-6 1.809416+1 6.838802-6 1.452235+1 6.845514-6 1.365425+1 6.865653-6 1.150321+1 6.872467-6 1.092594+1 6.889300-6 9.820807+0 6.893508-6 9.615338+0 6.906133-6 9.166462+0 6.910787-6 9.063350+0 6.917769-6 8.969936+0 6.924751-6 8.947664+0 6.932306-6 8.999664+0 6.936617-6 9.062713+0 6.944163-6 9.226851+0 6.949821-6 9.390864+0 6.954065-6 9.534352+0 6.963615-6 9.911401+0 6.994373-6 1.138851+1 7.007296-6 1.198571+1 7.011262-6 1.215164+1 7.026101-6 1.266701+1 7.032046-6 1.281780+1 7.043395-6 1.300479+1 7.047279-6 1.303721+1 7.054074-6 1.305506+1 7.059171-6 1.303669+1 7.066816-6 1.296083+1 7.074461-6 1.283216+1 7.083997-6 1.260952+1 7.093533-6 1.233539+1 7.124960-6 1.134516+1 7.129168-6 1.123223+1 7.141793-6 1.096182+1 7.148411-6 1.087021+1 7.154728-6 1.081992+1 7.161046-6 1.080834+1 7.165265-6 1.082287+1 7.171595-6 1.087842+1 7.181133-6 1.103727+1 7.190962-6 1.128918+1 7.200440-6 1.160549+1 7.216770-6 1.227267+1 7.228224-6 1.278732+1 7.247806-6 1.363395+1 7.263036-6 1.416258+1 7.267387-6 1.428071+1 7.280442-6 1.452681+1 7.286088-6 1.457805+1 7.291028-6 1.459378+1 7.299674-6 1.455441+1 7.306159-6 1.446872+1 7.315885-6 1.425179+1 7.325612-6 1.393435+1 7.332659-6 1.364683+1 7.345713-6 1.300394+1 7.350065-6 1.276257+1 7.363208-6 1.197132+1 7.367728-6 1.168276+1 7.379351-6 1.091870+1 7.384876-6 1.055036+1 7.397917-6 9.688092+0 7.423193-6 8.148440+0 7.433708-6 7.595439+0 7.443508-6 7.139418+0 7.451826-6 6.801425+0 7.459054-6 6.546037+0 7.466282-6 6.327051+0 7.471410-6 6.193879+0 7.480385-6 6.004856+0 7.487115-6 5.899173+0 7.497212-6 5.796423+0 7.502260-6 5.769014+0 7.507308-6 5.756754+0 7.518924-6 5.782149+0 7.524732-6 5.820545+0 7.530540-6 5.874348+0 7.539766-6 5.988119+0 7.548991-6 6.131652+0 7.571241-6 6.564948+0 7.589731-6 6.971963+0 7.606341-6 7.333529+0 7.614646-6 7.502612+0 7.622951-6 7.659020+0 7.651954-6 8.060240+0 7.657223-6 8.103023+0 7.673033-6 8.166777+0 7.679002-6 8.164696+0 7.696910-6 8.072166+0 7.702333-6 8.019574+0 7.712229-6 7.896754+0 7.718942-6 7.795545+0 7.734958-6 7.507517+0 7.755426-6 7.084855+0 7.781152-6 6.579057+0 7.796653-6 6.351818+0 7.814260-6 6.215306+0 7.833650-6 6.256085+0 7.842145-6 6.344115+0 7.850507-6 6.473457+0 7.858548-6 6.637013+0 7.864758-6 6.788550+0 7.870776-6 6.955202+0 7.879892-6 7.241597+0 7.893052-6 7.716201+0 7.909260-6 8.370550+0 7.930088-6 9.252771+0 7.948949-6 1.001206+1 7.954060-6 1.020167+1 7.968742-6 1.069144+1 7.977367-6 1.093469+1 7.993832-6 1.129474+1 8.000955-6 1.140581+1 8.015014-6 1.154520+1 8.022768-6 1.157798+1 8.036791-6 1.156311+1 8.050813-6 1.146286+1 8.070380-6 1.120724+1 8.085631-6 1.093837+1 8.097911-6 1.069172+1 8.126708-6 1.005899+1 8.197033-6 8.574005+0 8.238353-6 7.874493+0 8.254700-6 7.634639+0 8.281863-6 7.273757+0 8.382363-6 6.144241+0 8.441613-6 5.541367+0 8.453345-6 5.438184+0 8.469497-6 5.313104+0 8.488763-6 5.197555+0 8.500000-6 5.150866+0 8.515638-6 5.115238+0 8.527758-6 5.113071+0 8.548449-6 5.162970+0 8.560403-6 5.222065+0 8.572231-6 5.300666+0 8.583820-6 5.394804+0 8.609897-6 5.651816+0 8.634499-6 5.917448+0 8.653624-6 6.110736+0 8.674627-6 6.284054+0 8.693280-6 6.387601+0 8.706719-6 6.427330+0 8.720158-6 6.436268+0 8.738044-6 6.401547+0 8.755930-6 6.319076+0 8.776814-6 6.175662+0 8.797014-6 6.006796+0 8.839464-6 5.641948+0 8.857466-6 5.512001+0 8.870804-6 5.432057+0 8.887340-6 5.354439+0 8.911336-6 5.283718+0 8.935333-6 5.255379+0 8.969016-6 5.260433+0 9.006963-6 5.281463+0 9.028409-6 5.284337+0 9.049699-6 5.276149+0 9.076455-6 5.250604+0 9.192410-6 5.068529+0 9.479636-6 4.709553+0 9.537536-6 4.650097+0 9.748448-6 4.496349+0 9.978117-6 4.380616+0 1.013403-5 4.327193+0 1.029237-5 4.297567+0 1.043552-5 4.290208+0 1.061401-5 4.300000+0 1.071776-5 4.318889+0 1.094569-5 4.388487+0 1.130532-5 4.575876+0 1.147513-5 4.699941+0 1.165989-5 4.872375+0 1.200425-5 5.269918+0 1.216251-5 5.487358+0 1.276572-5 6.485176+0 1.288250-5 6.709823+0 1.334317-5 7.716193+0 1.403157-5 9.554418+0 1.524554-5 1.372840+1 1.614794-5 1.758720+1 1.661775-5 1.984787+1 1.757924-5 2.495014+1 1.850000-5 3.034668+1 1.927525-5 3.519060+1 2.000000-5 3.986577+1 2.072324-5 4.455818+1 2.130000-5 4.824685+1 2.162719-5 5.032924+1 2.210000-5 5.325666+1 2.256362-5 5.605621+1 2.304000-5 5.881517+1 2.385183-5 6.305589+1 2.460883-5 6.652483+1 2.552613-5 6.989747+1 2.646877-5 7.238984+1 2.717344-5 7.357685+1 2.756958-5 7.395530+1 2.818383-5 7.414285+1 2.933778-5 7.374399+1 2.939393-5 7.381687+1 3.073662-5 7.885177+1 3.147732-5 8.273090+1 3.236663-5 8.872327+1 3.300000-5 9.409703+1 3.350574-5 9.932971+1 3.399891-5 1.055415+2 3.447401-5 1.128563+2 3.487063-5 1.202073+2 3.527341-5 1.291640+2 3.557644-5 1.371861+2 3.578629-5 1.435758+2 3.603460-5 1.521960+2 3.634039-5 1.646940+2 3.662976-5 1.789374+2 3.686400-5 1.927065+2 3.705574-5 2.058801+2 3.728319-5 2.243233+2 3.748666-5 2.441308+2 3.765881-5 2.640591+2 3.781822-5 2.858720+2 3.795770-5 3.083822+2 3.807975-5 3.314699+2 3.818654-5 3.550091+2 3.827999-5 3.788479+2 3.836175-5 4.027905+2 3.849589-5 4.500014+2 3.855067-5 4.727354+2 3.864652-5 5.183534+2 3.871841-5 5.581157+2 3.881277-5 6.184947+2 3.893409-5 7.112354+2 3.912575-5 8.953053+2 3.931741-5 1.129488+3 3.941324-5 1.270195+3 3.950907-5 1.433893+3 3.955699-5 1.527409+3 3.960491-5 1.630910+3 3.966287-5 1.772382+3 3.970074-5 1.876241+3 3.979657-5 2.189067+3 3.985646-5 2.428411+3 3.991930-5 2.722592+3 3.998823-5 3.102248+3 4.016286-5 4.357413+3 4.024891-5 5.126971+3 4.035340-5 6.165377+3 4.038509-5 6.495374+3 4.045294-5 7.211218+3 4.050894-5 7.798387+3 4.056322-5 8.350265+3 4.060480-5 8.753160+3 4.064963-5 9.160664+3 4.070223-5 9.593539+3 4.075072-5 9.940203+3 4.081322-5 1.030008+4 4.085989-5 1.049753+4 4.091497-5 1.064568+4 4.095932-5 1.069540+4 4.100643-5 1.067908+4 4.105025-5 1.060040+4 4.106988-5 1.054572+4 4.114013-5 1.025574+4 4.117938-5 1.003357+4 4.120585-5 9.861509+3 4.124462-5 9.579966+3 4.128226-5 9.276277+3 4.133067-5 8.848403+3 4.137369-5 8.439287+3 4.141518-5 8.025269+3 4.147818-5 7.372643+3 4.152735-5 6.853884+3 4.158267-5 6.271720+3 4.162569-5 5.826479+3 4.172403-5 4.857288+3 4.179010-5 4.258943+3 4.187154-5 3.592796+3 4.195898-5 2.972165+3 4.217488-5 1.847123+3 4.222833-5 1.647381+3 4.228179-5 1.473593+3 4.233382-5 1.326628+3 4.238586-5 1.198962+3 4.243789-5 1.088138+3 4.248993-5 9.918718+2 4.254197-5 9.080829+2 4.264604-5 7.707188+2 4.269807-5 7.140886+2 4.280214-5 6.188610+2 4.293218-5 5.246689+2 4.321843-5 3.777401+2 4.330159-5 3.466879+2 4.338556-5 3.203732+2 4.349270-5 2.945804+2 4.351475-5 2.904171+2 4.362133-5 2.761065+2 4.363465-5 2.750128+2 4.372791-5 2.717584+2 4.377214-5 2.728876+2 4.384286-5 2.781237+2 4.389593-5 2.846425+2 4.393227-5 2.902651+2 4.397309-5 2.975777+2 4.404004-5 3.114864+2 4.421125-5 3.528225+2 4.426748-5 3.663463+2 4.435803-5 3.859423+2 4.437406-5 3.890014+2 4.448064-5 4.051139+2 4.451499-5 4.085076+2 4.459028-5 4.125066+2 4.464038-5 4.124627+2 4.470015-5 4.096018+2 4.473602-5 4.064773+2 4.478025-5 4.012689+2 4.483829-5 3.923861+2 4.490360-5 3.800740+2 4.500689-5 3.571746+2 4.524457-5 3.029842+2 4.535512-5 2.838904+2 4.544133-5 2.736715+2 4.549425-5 2.696331+2 4.553910-5 2.675484+2 4.560065-5 2.666093+2 4.564631-5 2.672461+2 4.571060-5 2.698302+2 4.579121-5 2.752977+2 4.602531-5 2.968596+2 4.614277-5 3.056051+2 4.616695-5 3.069227+2 4.625641-5 3.100111+2 4.631586-5 3.103827+2 4.636441-5 3.096585+2 4.642813-5 3.073363+2 4.651006-5 3.022255+2 4.657114-5 2.970508+2 4.665793-5 2.880816+2 4.668686-5 2.847554+2 4.683361-5 2.662482+2 4.698540-5 2.460188+2 4.757794-5 1.781356+2 4.843322-5 1.137845+2 4.854048-5 1.073043+2 4.888830-5 8.822186+1 4.897663-5 8.431170+1 4.904666-5 8.173894+1 4.915200-5 7.913358+1 4.927082-5 7.886551+1 4.934386-5 8.069826+1 4.941928-5 8.473725+1 4.948457-5 9.044531+1 4.954339-5 9.774108+1 4.957705-5 1.029892+2 4.962961-5 1.129740+2 4.968377-5 1.258705+2 4.971658-5 1.351405+2 4.977303-5 1.540047+2 4.980979-5 1.684935+2 4.986483-5 1.938447+2 4.989785-5 2.113744+2 4.999801-5 2.767460+2 5.013359-5 4.001753+2 5.023253-5 5.208166+2 5.030960-5 6.353038+2 5.054841-5 1.117153+3 5.058432-5 1.206671+3 5.065875-5 1.405658+3 5.069907-5 1.520574+3 5.080093-5 1.830191+3 5.084082-5 1.957704+3 5.092760-5 2.243211+3 5.096948-5 2.383324+3 5.102085-5 2.555417+3 5.105771-5 2.678151+3 5.110864-5 2.845207+3 5.115124-5 2.981474+3 5.120188-5 3.137606+3 5.125695-5 3.298124+3 5.131654-5 3.458247+3 5.139081-5 3.633783+3 5.145516-5 3.760750+3 5.150753-5 3.844867+3 5.156780-5 3.918684+3 5.168374-5 3.987459+3 5.174326-5 3.984526+3 5.182365-5 3.940160+3 5.188486-5 3.876739+3 5.194948-5 3.784170+3 5.199988-5 3.695424+3 5.204104-5 3.613333+3 5.209507-5 3.494069+3 5.216452-5 3.324719+3 5.222497-5 3.166062+3 5.230038-5 2.958352+3 5.237891-5 2.736293+3 5.240509-5 2.662013+3 5.253943-5 2.288275+3 5.259416-5 2.143026+3 5.275431-5 1.754913+3 5.294824-5 1.374356+3 5.306015-5 1.200925+3 5.313016-5 1.108443+3 5.321056-5 1.016035+3 5.332520-5 9.068649+2 5.343604-5 8.225728+2 5.356154-5 7.472158+2 5.371036-5 6.787649+2 5.388663-5 6.183334+2 5.407153-5 5.709063+2 5.430625-5 5.255019+2 5.454576-5 4.898862+2 5.483091-5 4.564045+2 5.519570-5 4.227276+2 5.564000-5 3.907187+2 5.614978-5 3.618395+2 5.686622-5 3.292701+2 5.733842-5 3.106452+2 5.777795-5 2.957337+2 5.802952-5 2.889002+2 5.821032-5 2.849458+2 5.840408-5 2.816078+2 5.865654-5 2.784853+2 5.886376-5 2.767072+2 5.989978-5 2.719706+2 6.131403-5 2.679839+2 6.197058-5 2.654942+2 6.610000-5 2.473118+2 6.986158-5 2.317503+2 7.260463-5 2.205718+2 7.483300-5 2.113261+2 7.690808-5 2.028035+2 7.900000-5 1.942596+2 8.305201-5 1.780782+2 8.471665-5 1.713421+2 8.650000-5 1.640617+2 8.689589-5 1.629644+2 8.825794-5 1.610655+2 8.870406-5 1.601742+2 8.943698-5 1.578682+2 9.098850-5 1.524897+2 9.716280-5 1.354785+2 1.029050-4 1.226661+2 1.057333-4 1.175540+2 1.080000-4 1.140266+2 1.113148-4 1.097704+2 1.139180-4 1.071627+2 1.172507-4 1.049614+2 1.211716-4 1.036786+2 1.260000-4 1.044676+2 1.297463-4 1.067982+2 1.333521-4 1.104051+2 1.380384-4 1.169971+2 1.430000-4 1.259950+2 1.484587-4 1.380326+2 1.552107-4 1.554924+2 1.603245-4 1.703118+2 1.834165-4 2.518816+2 1.918557-4 2.863239+2 2.000000-4 3.209292+2 2.100010-4 3.639201+2 2.220000-4 4.147583+2 2.330000-4 4.594979+2 2.430000-4 4.970149+2 2.499964-4 5.200555+2 2.551202-4 5.348922+2 2.570021-4 5.435450+2 2.585209-4 5.541008+2 2.621579-4 5.861606+2 2.635352-4 5.959171+2 2.653179-4 6.051505+2 2.674300-4 6.142689+2 2.687316-4 6.209887+2 2.706053-4 6.335338+2 2.728250-4 6.508058+2 2.745153-4 6.623568+2 2.757139-4 6.686106+2 2.807709-4 6.865807+2 2.904858-4 7.296991+2 3.001431-4 7.662769+2 3.114618-4 8.041350+2 3.280000-4 8.539997+2 3.489905-4 9.125022+2 3.745468-4 9.777018+2 3.976829-4 1.030518+3 4.161645-4 1.064013+3 4.237802-4 1.080077+3 4.265817-4 1.092055+3 4.323608-4 1.121510+3 4.346283-4 1.125880+3 4.413990-4 1.119794+3 4.440061-4 1.124658+3 4.480528-4 1.142772+3 4.533235-4 1.169371+3 4.612348-4 1.198884+3 4.786099-4 1.245079+3 5.174122-4 1.325537+3 5.282992-4 1.352016+3 5.527134-4 1.399316+3 5.795617-4 1.437736+3 6.062857-4 1.467317+3 6.200845-4 1.490737+3 6.330805-4 1.516011+3 6.601246-4 1.554583+3 6.958250-4 1.592503+3 7.372800-4 1.624204+3 7.852356-4 1.649364+3 8.365656-4 1.668703+3 8.963962-4 1.682823+3 9.584346-4 1.687675+3 1.025873-3 1.684554+3 1.100430-3 1.670707+3 1.180980-3 1.639536+3 1.255844-3 1.602729+3 1.338328-3 1.554317+3 1.410534-3 1.503112+3 1.480706-3 1.443956+3 1.539100-3 1.384085+3 1.594088-3 1.317121+3 1.642952-3 1.247983+3 1.680617-3 1.186892+3 1.714293-3 1.124087+3 1.746157-3 1.055071+3 1.764423-3 1.009550+3 1.786486-3 9.464688+2 1.801461-3 8.968594+2 1.818384-3 8.310687+2 1.832109-3 7.665188+2 1.841941-3 7.122362+2 1.849635-3 6.656559+2 1.861221-3 5.957767+2 1.866622-3 5.682294+2 1.870767-3 5.516927+2 1.873057-3 5.448104+2 1.875382-3 5.397266+2 1.877447-3 5.369719+2 1.879686-3 5.359876+2 1.882301-3 5.376073+2 1.884997-3 5.424927+2 1.887785-3 5.509916+2 1.890495-3 5.625242+2 1.893497-3 5.788323+2 1.895858-3 5.940362+2 1.898634-3 6.142331+2 1.907143-3 6.870408+2 1.913006-3 7.412367+2 1.917032-3 7.778028+2 1.919913-3 8.030011+2 1.923218-3 8.305512+2 1.927525-3 8.640267+2 1.931898-3 8.952491+2 1.937228-3 9.301950+2 1.949549-3 1.005349+3 1.962050-3 1.086866+3 1.980533-3 1.222448+3 1.987431-3 1.272071+3 1.996230-3 1.330256+3 2.007504-3 1.394231+3 2.018911-3 1.447684+3 2.035870-3 1.512557+3 2.060927-3 1.591747+3 2.093266-3 1.679105+3 2.124438-3 1.749885+3 2.148751-3 1.795516+3 2.188396-3 1.856625+3 2.238721-3 1.917116+3 2.260624-3 1.934478+3 2.319989-3 1.958746+3 2.339174-3 1.980906+3 2.354297-3 2.010703+3 2.375068-3 2.066790+3 2.400808-3 2.144267+3 2.413138-3 2.177308+3 2.429210-3 2.213018+3 2.447745-3 2.244563+3 2.473350-3 2.276251+3 2.501830-3 2.301418+3 2.534095-3 2.321488+3 2.563349-3 2.333001+3 2.652118-3 2.346824+3 2.677904-3 2.363367+3 2.730549-3 2.417972+3 2.751257-3 2.434892+3 2.774647-3 2.447994+3 2.808730-3 2.458533+3 2.879920-3 2.461529+3 2.911790-3 2.473322+3 2.970648-3 2.521264+3 2.995085-3 2.536420+3 3.024870-3 2.548976+3 3.123831-3 2.570911+3 3.249026-3 2.578381+3 3.410972-3 2.566849+3 3.572878-3 2.545806+3 3.748920-3 2.513196+3 4.048030-3 2.446058+3 4.355746-3 2.366966+3 4.617444-3 2.295360+3 5.138884-3 2.150310+3 5.516890-3 2.047361+3 5.925403-3 1.940877+3 6.493816-3 1.798717+3 7.053399-3 1.666360+3 7.377848-3 1.593096+3 7.671458-3 1.529022+3 8.005684-3 1.457764+3 8.315300-3 1.393608+3 8.607518-3 1.333440+3 8.877792-3 1.278145+3 9.108637-3 1.230419+3 9.315619-3 1.186918+3 9.488280-3 1.149584+3 9.645865-3 1.114162+3 9.769079-3 1.085015+3 9.880955-3 1.056893+3 9.976641-3 1.031001+3 1.005768-2 1.007052+3 1.013736-2 9.807205+2 1.020051-2 9.567511+2 1.025149-2 9.345397+2 1.031715-2 9.017741+2 1.041595-2 8.505405+2 1.045443-2 8.351439+2 1.049257-2 8.254901+2 1.051281-2 8.231285+2 1.054761-2 8.238184+2 1.058531-2 8.309123+2 1.063202-2 8.466829+2 1.072782-2 8.874319+2 1.078279-2 9.075729+2 1.082293-2 9.191589+2 1.087035-2 9.295552+2 1.092700-2 9.381386+2 1.098911-2 9.440321+2 1.106486-2 9.477702+2 1.114336-2 9.487721+2 1.123866-2 9.469721+2 1.131983-2 9.432707+2 1.141153-2 9.369518+2 1.149363-2 9.293005+2 1.157910-2 9.189010+2 1.164926-2 9.080227+2 1.175459-2 8.873888+2 1.188326-2 8.617015+2 1.194606-2 8.548231+2 1.200351-2 8.541408+2 1.206087-2 8.584406+2 1.221512-2 8.782540+2 1.230131-2 8.845896+2 1.248373-2 8.918329+2 1.260121-2 9.042589+2 1.276475-2 9.251792+2 1.289913-2 9.357676+2 1.307970-2 9.416274+2 1.330364-2 9.422950+2 1.356363-2 9.384531+2 1.395587-2 9.273659+2 1.452829-2 9.043950+2 1.524307-2 8.705659+2 1.605265-2 8.301566+2 1.712055-2 7.770516+2 1.830473-2 7.211266+2 2.044311-2 6.319698+2 2.263015-2 5.557481+2 2.473687-2 4.941740+2 2.728585-2 4.314871+2 3.041872-2 3.687127+2 3.412758-2 3.103116+2 3.710010-2 2.726054+2 4.028676-2 2.384529+2 4.698988-2 1.835162+2 5.293586-2 1.491951+2 5.688529-2 1.309523+2 5.900930-2 1.222222+2 6.221112-2 1.101327+2 6.464414-2 1.015676+2 6.649779-2 9.516857+1 6.785762-2 9.033337+1 6.846276-2 8.805476+1 6.896390-2 8.604455+1 6.936641-2 8.429347+1 6.971015-2 8.265086+1 7.019525-2 8.002699+1 7.117748-2 7.430020+1 7.146121-2 7.313057+1 7.173573-2 7.248406+1 7.194825-2 7.235156+1 7.218076-2 7.255597+1 7.251948-2 7.336139+1 7.331067-2 7.597414+1 7.372292-2 7.700847+1 7.422567-2 7.777787+1 7.492651-2 7.820163+1 7.583734-2 7.814696+1 7.683590-2 7.767693+1 7.845768-2 7.645520+1 8.097529-2 7.405902+1 8.343326-2 7.145144+1 8.736682-2 6.716423+1 9.372161-2 6.056746+1 1.018518-1 5.316047+1 1.092000-1 4.737742+1 1.198254-1 4.038557+1 1.410304-1 3.021651+1 1.830592-1 1.883173+1 2.229565-1 1.309595+1 2.706084-1 9.098054+0 3.551286-1 5.409133+0 4.988024-1 2.799525+0 7.477390-1 1.267270+0 1.228714+0 4.755898-1 2.235892+0 1.446941-1 6.752287+0 1.591478-2 2.039158+1 1.745506-3 6.158159+1 1.913968-4 1.859734+2 2.098631-5 5.616308+2 2.301104-6 1.995262+3 1.823216-7 6.309573+3 1.823216-8 1.995262+4 1.823216-9 6.309573+4 1.82322-10 1.000000+5 7.25835-11 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.736200-6 1.258900-6 2.751700-6 1.584900-6 4.361100-6 1.995300-6 6.911900-6 2.511900-6 1.095500-5 3.162300-6 1.736200-5 3.981100-6 2.751700-5 5.011900-6 4.361100-5 6.309600-6 6.911800-5 7.943300-6 1.095400-4 1.000000-5 1.736100-4 1.258900-5 2.751500-4 1.584900-5 4.360800-4 1.995300-5 6.911200-4 2.511900-5 1.095300-3 3.162300-5 1.735700-3 3.981100-5 2.749400-3 5.011900-5 4.355300-3 6.309600-5 6.899900-3 7.943300-5 1.093100-2 1.000000-4 1.730100-2 1.258900-4 2.737500-2 1.584900-4 4.324300-2 1.995300-4 6.823600-2 2.511900-4 1.073400-1 3.162300-4 1.682100-1 3.981100-4 2.619400-1 5.011900-4 4.036900-1 6.309600-4 6.114000-1 7.943300-4 9.050900-1 1.000000-3 1.301700+0 1.258900-3 1.810200+0 1.584900-3 2.435100+0 1.995300-3 3.191600+0 2.511900-3 4.119100+0 3.162300-3 5.258800+0 3.981100-3 6.648700+0 5.011900-3 8.322100+0 6.309600-3 1.029000+1 7.943300-3 1.249400+1 1.000000-2 1.484500+1 1.258900-2 1.730800+1 1.584900-2 1.987600+1 1.995300-2 2.251700+1 2.511900-2 2.511300+1 3.162300-2 2.745700+1 3.981100-2 2.937400+1 5.011900-2 3.078100+1 6.309600-2 3.165800+1 7.943300-2 3.199600+1 1.000000-1 3.181100+1 1.258900-1 3.111300+1 1.584900-1 2.998800+1 1.995300-1 2.853800+1 2.511900-1 2.686200+1 3.162300-1 2.504300+1 3.981100-1 2.314400+1 5.011900-1 2.122800+1 6.309600-1 1.933300+1 7.943300-1 1.748500+1 1.000000+0 1.570600+1 1.258900+0 1.402700+1 1.584900+0 1.243900+1 1.995300+0 1.095800+1 2.511900+0 9.590800+0 3.162300+0 8.341500+0 3.981100+0 7.211700+0 5.011900+0 6.199800+0 6.309600+0 5.301600+0 7.943300+0 4.512100+0 1.000000+1 3.822900+0 1.258900+1 3.226000+0 1.584900+1 2.712200+0 1.995300+1 2.272700+0 2.511900+1 1.898700+0 3.162300+1 1.582000+0 3.981100+1 1.314900+0 5.011900+1 1.090400+0 6.309600+1 9.024800-1 7.943300+1 7.455700-1 1.000000+2 6.149200-1 1.258900+2 5.064000-1 1.584900+2 4.164500-1 1.995300+2 3.420500-1 2.511900+2 2.806100-1 3.162300+2 2.299500-1 3.981100+2 1.882500-1 5.011900+2 1.539700-1 6.309600+2 1.258200-1 7.943300+2 1.027300-1 1.000000+3 8.381800-2 1.258900+3 6.833600-2 1.584900+3 5.567500-2 1.995300+3 4.533200-2 2.511900+3 3.688700-2 3.162300+3 2.999800-2 3.981100+3 2.438200-2 5.011900+3 1.980700-2 6.309600+3 1.608300-2 7.943300+3 1.305300-2 1.000000+4 1.058800-2 1.258900+4 8.585600-3 1.584900+4 6.958700-3 1.995300+4 5.637900-3 2.511900+4 4.566000-3 3.162300+4 3.696500-3 3.981100+4 2.991500-3 5.011900+4 2.420100-3 6.309600+4 1.957200-3 7.943300+4 1.582400-3 1.000000+5 1.278900-3 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159551-4 3.981072-4 3.976760-4 5.011872-4 5.005050-4 6.309573-4 6.298855-4 7.943282-4 7.926415-4 1.000000-3 9.973649-4 1.258925-3 1.254813-3 1.584893-3 1.578490-3 1.995262-3 1.985270-3 2.511886-3 2.496282-3 3.162278-3 3.137813-3 3.981072-3 3.942675-3 5.011872-3 4.951630-3 6.309573-3 6.215230-3 7.943282-3 7.796152-3 1.000000-2 9.771598-3 1.258925-2 1.223552-2 1.584893-2 1.530169-2 1.995262-2 1.910722-2 2.511886-2 2.381807-2 3.162278-2 2.963453-2 3.981072-2 3.679526-2 5.011872-2 4.557784-2 6.309573-2 5.630712-2 7.943282-2 6.935448-2 1.000000-1 8.514066-2 1.258925-1 1.042030-1 1.584893-1 1.271382-1 1.995262-1 1.545814-1 2.511886-1 1.873435-1 3.162278-1 2.263043-1 3.981072-1 2.725154-1 5.011872-1 3.271232-1 6.309573-1 3.915797-1 7.943282-1 4.675612-1 1.000000+0 5.570594-1 1.258925+0 6.622835-1 1.584893+0 7.865560-1 1.995262+0 9.336402-1 2.511886+0 1.108230+0 3.162278+0 1.315941+0 3.981072+0 1.563904+0 5.011872+0 1.860771+0 6.309573+0 2.217070+0 7.943282+0 2.645487+0 1.000000+1 3.162136+0 1.258925+1 3.786198+0 1.584893+1 4.541380+0 1.995262+1 5.456622+0 2.511886+1 6.567467+0 3.162278+1 7.917218+0 3.981072+1 9.559959+0 5.011872+1 1.156068+1 6.309573+1 1.400039+1 7.943282+1 1.697803+1 1.000000+2 2.061541+1 1.258925+2 2.506249+1 1.584893+2 3.050411+1 1.995262+2 3.716768+1 2.511886+2 4.533286+1 3.162278+2 5.534542+1 3.981072+2 6.762995+1 5.011872+2 8.271333+1 6.309573+2 1.012428+2 7.943282+2 1.240186+2 1.000000+3 1.520265+2 1.258925+3 1.864901+2 1.584893+3 2.289153+2 1.995262+3 2.811737+2 2.511886+3 3.455493+2 3.162278+3 4.249345+2 3.981072+3 5.228218+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739819-9 3.981072-5 4.341804-9 5.011872-5 6.880889-9 6.309573-5 1.090514-8 7.943282-5 1.728258-8 1.000000-4 2.738230-8 1.258925-4 4.338779-8 1.584893-4 6.872426-8 1.995262-4 1.088530-7 2.511886-4 1.723370-7 3.162278-4 2.726965-7 3.981072-4 4.311639-7 5.011872-4 6.822403-7 6.309573-4 1.071797-6 7.943282-4 1.686763-6 1.000000-3 2.635127-6 1.258925-3 4.111942-6 1.584893-3 6.403477-6 1.995262-3 9.992130-6 2.511886-3 1.560486-5 3.162278-3 2.446461-5 3.981072-3 3.839682-5 5.011872-3 6.024263-5 6.309573-3 9.434367-5 7.943282-3 1.471303-4 1.000000-2 2.284020-4 1.258925-2 3.537305-4 1.584893-2 5.472464-4 1.995262-2 8.454033-4 2.511886-2 1.300793-3 3.162278-2 1.988246-3 3.981072-2 3.015461-3 5.011872-2 4.540887-3 6.309573-2 6.788615-3 7.943282-2 1.007834-2 1.000000-1 1.485934-2 1.258925-1 2.168953-2 1.584893-1 3.135113-2 1.995262-1 4.494485-2 2.511886-1 6.384518-2 3.162278-1 8.992342-2 3.981072-1 1.255918-1 5.011872-1 1.740640-1 6.309573-1 2.393776-1 7.943282-1 3.267670-1 1.000000+0 4.429406-1 1.258925+0 5.966419-1 1.584893+0 7.983372-1 1.995262+0 1.061622+0 2.511886+0 1.403656+0 3.162278+0 1.846337+0 3.981072+0 2.417168+0 5.011872+0 3.151102+0 6.309573+0 4.092503+0 7.943282+0 5.297796+0 1.000000+1 6.837864+0 1.258925+1 8.803056+0 1.584893+1 1.130755+1 1.995262+1 1.449600+1 2.511886+1 1.855140+1 3.162278+1 2.370556+1 3.981072+1 3.025076+1 5.011872+1 3.855804+1 6.309573+1 4.909534+1 7.943282+1 6.245479+1 1.000000+2 7.938459+1 1.258925+2 1.008301+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058558+2 3.162278+2 2.608823+2 3.981072+2 3.304772+2 5.011872+2 4.184739+2 6.309573+2 5.297146+2 7.943282+2 6.703096+2 1.000000+3 8.479735+2 1.258925+3 1.072435+3 1.584893+3 1.355978+3 1.995262+3 1.714089+3 2.511886+3 2.166337+3 3.162278+3 2.737343+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.060000-6 6.316560+6 8.500000-6 5.059457+6 8.500000-6 1.050563+7 8.709636-6 1.025034+7 9.520000-6 9.752172+6 9.520000-6 1.267943+7 9.772372-6 1.280347+7 9.900000-6 1.288360+7 1.011579-5 1.305606+7 1.083927-5 1.380778+7 1.100000-5 1.401104+7 1.188502-5 1.525576+7 1.200000-5 1.542895+7 1.288250-5 1.684023+7 1.303167-5 1.708538+7 1.333521-5 1.758393+7 1.380384-5 1.838343+7 1.396368-5 1.865093+7 1.479108-5 2.005098+7 1.500000-5 2.038848+7 1.570000-5 2.154560+7 1.659587-5 2.294225+7 1.757924-5 2.434245+7 1.778279-5 2.459417+7 1.850000-5 2.548620+7 1.905461-5 2.606357+7 1.927525-5 2.629358+7 2.000000-5 2.690100+7 2.070000-5 2.734063+7 2.089296-5 2.741872+7 2.150000-5 2.766337+7 2.162719-5 2.768374+7 2.230000-5 2.779179+7 2.238721-5 2.778559+7 2.300000-5 2.774412+7 2.317395-5 2.769486+7 2.371374-5 2.754582+7 2.426610-5 2.727299+7 2.454709-5 2.713805+7 2.500000-5 2.682137+7 2.540973-5 2.654346+7 2.570396-5 2.628343+7 2.630268-5 2.577168+7 2.638800-5 2.568290+7 2.710000-5 2.496516+7 2.722701-5 2.484131+7 2.730000-5 2.476456+7 2.786121-5 2.413116+7 2.818383-5 2.378024+7 2.830000-5 2.364769+7 2.851018-5 2.339351+7 2.917427-5 2.262024+7 2.920000-5 2.258761+7 3.000000-5 2.160995+7 3.019952-5 2.137681+7 3.090295-5 2.050168+7 3.126079-5 2.007779+7 3.150000-5 1.979041+7 3.190000-5 1.929929+7 3.260000-5 1.848308+7 3.300000-5 1.802360+7 3.402400-5 1.687526+7 3.427678-5 1.659992+7 3.467369-5 1.618063+7 3.570000-5 1.512862+7 3.650000-5 1.435497+7 3.758374-5 1.336550+7 3.850000-5 1.258525+7 3.981072-5 1.155059+7 4.027170-5 1.120859+7 4.120975-5 1.055477+7 4.220000-5 9.905101+6 4.400000-5 8.840616+6 4.500000-5 8.304889+6 4.677351-5 7.444872+6 4.800000-5 6.909003+6 4.940000-5 6.350387+6 4.940000-5 1.027037+7 4.985000-5 1.011258+7 5.000000-5 1.005388+7 5.040000-5 9.897304+6 5.069907-5 9.770210+6 5.110000-5 9.604051+6 5.128614-5 9.521399+6 5.190000-5 9.253000+6 5.289000-5 8.815053+6 5.299000-5 8.769973+6 5.299000-5 9.141689+6 5.308844-5 9.101344+6 5.330000-5 9.014388+6 5.370318-5 8.850222+6 5.400000-5 8.731126+6 5.410000-5 8.689901+6 5.432503-5 8.597090+6 5.470000-5 8.444324+6 5.500000-5 8.323744+6 5.530000-5 8.201572+6 5.564000-5 8.065036+6 5.564000-5 8.311435+6 5.590000-5 8.217055+6 5.600000-5 8.180966+6 5.623413-5 8.096811+6 5.650000-5 8.002139+6 5.665000-5 7.946935+6 5.688529-5 7.860683+6 5.725000-5 7.728926+6 5.754399-5 7.624363+6 5.770000-5 7.569270+6 5.800000-5 7.464422+6 5.821032-5 7.391797+6 5.830000-5 7.360277+6 5.900000-5 7.119591+6 5.956621-5 6.931479+6 5.970000-5 6.887596+6 6.025596-5 6.708610+6 6.070000-5 6.566842+6 6.095369-5 6.487379+6 6.097000-5 6.482269+6 6.097000-5 8.203481+6 6.135000-5 8.116133+6 6.170000-5 8.032102+6 6.180000-5 8.006574+6 6.220000-5 7.905881+6 6.237348-5 7.859836+6 6.280000-5 7.746475+6 6.309573-5 7.664267+6 6.350000-5 7.552723+6 6.420000-5 7.356967+6 6.456542-5 7.253472+6 6.500000-5 7.132072+6 6.531306-5 7.043113+6 6.610000-5 6.824780+6 6.683439-5 6.623090+6 6.730000-5 6.498657+6 6.760830-5 6.415611+6 6.839116-5 6.212829+6 6.850000-5 6.185233+6 6.950000-5 5.933169+6 7.000000-5 5.813647+6 7.079458-5 5.626341+6 7.161434-5 5.443098+6 7.244360-5 5.262993+6 7.300000-5 5.147732+6 7.350000-5 5.048209+6 7.413102-5 4.924335+6 7.483300-5 4.793847+6 7.500000-5 4.763891+6 7.580000-5 4.623816+6 7.585776-5 4.614107+6 7.650000-5 4.506434+6 7.673615-5 4.468313+6 7.730000-5 4.379165+6 7.762471-5 4.330040+6 7.800000-5 4.275191+6 7.852356-5 4.201696+6 7.900000-5 4.135873+6 7.943282-5 4.078904+6 7.950000-5 4.070148+6 8.080000-5 3.910427+6 8.128305-5 3.856385+6 8.222426-5 3.755984+6 8.230000-5 3.748198+6 8.300000-5 3.680598+6 8.413951-5 3.578426+6 8.609938-5 3.429282+6 8.650000-5 3.402311+6 8.810489-5 3.308764+6 9.015711-5 3.213107+6 9.157000-5 3.163791+6 9.157000-5 3.233071+6 9.225714-5 3.211264+6 9.310000-5 3.187477+6 9.400000-5 3.166218+6 9.440609-5 3.158216+6 9.549926-5 3.141329+6 9.550000-5 3.141319+6 9.700000-5 3.126567+6 9.800000-5 3.122150+6 9.850000-5 3.121297+6 9.885531-5 3.121355+6 9.900000-5 3.121516+6 1.000000-4 3.124746+6 1.020000-4 3.142088+6 1.023293-4 3.146293+6 1.035142-4 3.163088+6 1.040000-4 3.171570+6 1.047129-4 3.185425+6 1.071519-4 3.239710+6 1.080000-4 3.262805+6 1.083927-4 3.274358+6 1.096478-4 3.312346+6 1.100000-4 3.323707+6 1.109175-4 3.353136+6 1.122018-4 3.397549+6 1.135011-4 3.446897+6 1.150000-4 3.506477+6 1.170000-4 3.589185+6 1.174898-4 3.610814+6 1.190000-4 3.680184+6 1.205000-4 3.750539+6 1.220000-4 3.820876+6 1.230269-4 3.871452+6 1.244515-4 3.944511+6 1.250400-4 3.974496+6 1.258925-4 4.016358+6 1.260000-4 4.021703+6 1.273503-4 4.090005+6 1.288400-4 4.168512+6 1.300000-4 4.229316+6 1.303167-4 4.245118+6 1.318257-4 4.322076+6 1.333521-4 4.402209+6 1.350000-4 4.487956+6 1.380384-4 4.640893+6 1.400000-4 4.738327+6 1.412538-4 4.797526+6 1.430000-4 4.881535+6 1.450000-4 4.974340+6 1.480000-4 5.106174+6 1.500000-4 5.191342+6 1.513561-4 5.244895+6 1.520000-4 5.270466+6 1.531087-4 5.314933+6 1.560000-4 5.425551+6 1.566751-4 5.449351+6 1.580000-4 5.496476+6 1.584893-4 5.513974+6 1.600000-4 5.564821+6 1.603245-4 5.575803+6 1.621810-4 5.638806+6 1.640590-4 5.697351+6 1.650000-4 5.726871+6 1.659587-4 5.754729+6 1.678804-4 5.810979+6 1.690000-4 5.844035+6 1.698244-4 5.865951+6 1.717908-4 5.918342+6 1.720000-4 5.923936+6 1.737801-4 5.967372+6 1.740000-4 5.972758+6 1.757924-4 6.016758+6 1.760000-4 6.021868+6 1.780000-4 6.065692+6 1.798871-4 6.107136+6 1.800000-4 6.109621+6 1.819701-4 6.148660+6 1.820000-4 6.149253+6 1.840772-4 6.190657+6 1.862087-4 6.226933+6 1.883649-4 6.263639+6 1.905461-4 6.295881+6 1.927525-4 6.328576+6 1.930000-4 6.331535+6 1.950000-4 6.355480+6 1.972423-4 6.382225+6 1.980000-4 6.389740+6 1.995262-4 6.404887+6 2.000000-4 6.409610+6 2.020000-4 6.424100+6 2.041738-4 6.439838+6 2.080000-4 6.460688+6 2.089296-4 6.465752+6 2.120000-4 6.473756+6 2.143800-4 6.475257+6 2.150000-4 6.475662+6 2.190000-4 6.478382+6 2.192000-4 6.478526+6 2.200000-4 6.477031+6 2.220000-4 6.473361+6 2.238721-4 6.466294+6 2.264644-4 6.456568+6 2.300000-4 6.443591+6 2.330000-4 6.426520+6 2.344229-4 6.416071+6 2.350000-4 6.411862+6 2.400000-4 6.376017+6 2.426610-4 6.352077+6 2.454709-4 6.327258+6 2.540973-4 6.240943+6 2.570396-4 6.207137+6 2.600160-4 6.173577+6 2.645400-4 6.117853+6 2.645400-4 6.368015+6 2.691535-4 6.301130+6 2.730000-4 6.240671+6 2.740000-4 6.224143+6 2.760000-4 6.190987+6 2.782600-4 6.154542+6 2.782600-4 6.311466+6 2.838200-4 6.223050+6 2.840000-4 6.219953+6 2.851018-4 6.200678+6 2.900000-4 6.111450+6 2.917427-4 6.080874+6 2.920000-4 6.076386+6 2.940000-4 6.040534+6 2.951209-4 6.020984+6 2.965000-4 5.997144+6 2.980000-4 5.971248+6 2.985383-4 5.962185+6 3.000000-4 5.935621+6 3.019952-4 5.897706+6 3.054921-4 5.833466+6 3.080000-4 5.788933+6 3.090295-4 5.771022+6 3.126079-4 5.710592+6 3.130000-4 5.704050+6 3.162278-4 5.652119+6 3.167000-4 5.643586+6 3.180000-4 5.620551+6 3.220000-4 5.551565+6 3.235937-4 5.525230+6 3.260000-4 5.485986+6 3.273407-4 5.464625+6 3.280000-4 5.454187+6 3.311311-4 5.405945+6 3.350000-4 5.348287+6 3.390000-4 5.284373+6 3.427678-4 5.226389+6 3.430000-4 5.222863+6 3.450000-4 5.193063+6 3.467369-4 5.167800+6 3.507519-4 5.110620+6 3.530000-4 5.079653+6 3.550000-4 5.052716+6 3.580000-4 5.008674+6 3.630781-4 4.937057+6 3.650000-4 4.910683+6 3.672823-4 4.880104+6 3.758374-4 4.770324+6 3.780000-4 4.743834+6 3.801894-4 4.714243+6 3.845918-4 4.656230+6 3.890451-4 4.599577+6 4.000000-4 4.466988+6 4.073803-4 4.373823+6 4.120975-4 4.316964+6 4.150000-4 4.282533+6 4.216965-4 4.205372+6 4.265795-4 4.146988+6 4.280000-4 4.130170+6 4.315191-4 4.088969+6 4.365158-4 4.032187+6 4.415704-4 3.976766+6 4.425900-4 3.965659+6 4.425900-4 4.202071+6 4.430000-4 4.197549+6 4.466836-4 4.157174+6 4.518559-4 4.100418+6 4.570882-4 4.042764+6 4.731513-4 3.873802+6 4.786301-4 3.817225+6 4.841724-4 3.759971+6 4.897788-4 3.704044+6 4.954502-4 3.648078+6 5.011872-4 3.593389+6 5.069907-4 3.539621+6 5.080000-4 3.530216+6 5.128614-4 3.484704+6 5.150000-4 3.465079+6 5.168300-4 3.447959+6 5.168300-4 3.498976+6 5.188000-4 3.480744+6 5.248075-4 3.426004+6 5.308844-4 3.371334+6 5.370318-4 3.317926+6 5.432503-4 3.264497+6 5.450000-4 3.249353+6 5.495409-4 3.209803+6 5.559043-4 3.156005+6 5.650000-4 3.082304+6 5.688529-4 3.051877+6 5.692300-4 3.048930+6 5.754399-4 3.000554+6 5.821032-4 2.949438+6 5.888437-4 2.898374+6 5.900000-4 2.889790+6 5.956621-4 2.848123+6 6.000000-4 2.816605+6 6.095369-4 2.749250+6 6.100000-4 2.746061+6 6.158300-4 2.705830+6 6.158300-4 2.768268+6 6.165950-4 2.763027+6 6.237348-4 2.714649+6 6.309573-4 2.665623+6 6.456542-4 2.570996+6 6.500000-4 2.544024+6 6.531306-4 2.524926+6 6.606934-4 2.479279+6 6.750000-4 2.395925+6 6.760830-4 2.389816+6 6.839116-4 2.345107+6 6.850000-4 2.339014+6 7.000000-4 2.256712+6 7.079458-4 2.214695+6 7.161434-4 2.172551+6 7.244360-4 2.130690+6 7.328245-4 2.089311+6 7.413102-4 2.048881+6 7.500000-4 2.008419+6 7.585776-4 1.969864+6 7.673615-4 1.931295+6 7.852356-4 1.856026+6 7.943282-4 1.818811+6 8.035261-4 1.782458+6 8.128305-4 1.746820+6 8.317638-4 1.676560+6 8.511380-4 1.609009+6 8.609938-4 1.576009+6 8.709636-4 1.543383+6 8.810489-4 1.511416+6 8.912509-4 1.479611+6 9.015711-4 1.448525+6 9.120108-4 1.418210+6 9.225714-4 1.388304+6 9.332543-4 1.358731+6 9.440609-4 1.329669+6 9.700000-4 1.264069+6 9.772372-4 1.246528+6 9.850000-4 1.228164+6 9.885531-4 1.219896+6 1.000000-3 1.193569+6 1.011579-3 1.167398+6 1.023293-3 1.141886+6 1.059254-3 1.069153+6 1.070000-3 1.048408+6 1.083927-3 1.022275+6 1.096478-3 9.996002+5 1.109175-3 9.772726+5 1.122018-3 9.555149+5 1.135011-3 9.342984+5 1.148154-3 9.133895+5 1.161449-3 8.927415+5 1.174898-3 8.725143+5 1.188502-3 8.527751+5 1.202264-3 8.335381+5 1.216186-3 8.147869+5 1.224700-3 8.035642+5 1.244515-3 7.781226+5 1.273503-3 7.426646+5 1.288250-3 7.256213+5 1.303167-3 7.090174+5 1.318257-3 6.927656+5 1.333521-3 6.767512+5 1.350000-3 6.598705+5 1.364583-3 6.454488+5 1.412538-3 6.012082+5 1.428894-3 5.872254+5 1.445440-3 5.733930+5 1.450000-3 5.696710+5 1.479108-3 5.466319+5 1.496236-3 5.336818+5 1.500000-3 5.308959+5 1.513561-3 5.210265+5 1.548817-3 4.965808+5 1.570000-3 4.826084+5 1.584893-3 4.730798+5 1.603245-3 4.617355+5 1.621810-3 4.506415+5 1.678804-3 4.188770+5 1.690000-3 4.130314+5 1.698244-3 4.087621+5 1.737801-3 3.890413+5 1.778279-3 3.703566+5 1.798871-3 3.613284+5 1.819701-3 3.525034+5 1.840772-3 3.439122+5 1.850000-3 3.402027+5 1.862087-3 3.354011+5 1.892700-3 3.236975+5 1.892700-3 9.698629+5 1.905461-3 9.541508+5 1.927525-3 9.278336+5 1.952000-3 8.998295+5 1.961800-3 8.901783+5 1.961800-3 1.107158+6 1.972423-3 1.101064+6 2.000000-3 1.086309+6 2.018366-3 1.077283+6 2.041738-3 1.065450+6 2.065000-3 1.054762+6 2.089296-3 1.042055+6 2.110000-3 1.031993+6 2.162719-3 9.931214+5 2.187762-3 9.759429+5 2.213095-3 9.585560+5 2.238721-3 9.416144+5 2.264644-3 9.199523+5 2.290868-3 8.988426+5 2.300000-3 8.916761+5 2.317395-3 8.757009+5 2.344229-3 8.518515+5 2.350000-3 8.472442+5 2.360500-3 8.378446+5 2.360500-3 9.680755+5 2.371374-3 9.577746+5 2.400000-3 9.311684+5 2.426610-3 9.073952+5 2.445000-3 8.914369+5 2.454709-3 8.830357+5 2.511886-3 8.358024+5 2.540973-3 8.131435+5 2.600160-3 7.697112+5 2.630268-3 7.486809+5 2.660725-3 7.280576+5 2.677400-3 7.170955+5 2.677400-3 7.610165+5 2.691535-3 7.516581+5 2.697000-3 7.480792+5 2.718000-3 7.345594+5 2.722701-3 7.315502+5 2.729000-3 7.275258+5 2.754229-3 7.118752+5 2.786121-3 6.927929+5 2.818383-3 6.742446+5 2.851018-3 6.562213+5 2.884032-3 6.386871+5 2.911600-3 6.243352+5 2.911600-3 6.514316+5 2.951209-3 6.311361+5 2.985383-3 6.141996+5 3.015000-3 6.000490+5 3.019952-3 5.977448+5 3.054921-3 5.818382+5 3.070000-3 5.751350+5 3.090295-3 5.662675+5 3.162278-3 5.363970+5 3.198895-3 5.219535+5 3.220000-3 5.138831+5 3.235937-3 5.078935+5 3.273407-3 4.941345+5 3.311311-3 4.806804+5 3.349654-3 4.676138+5 3.350000-3 4.674982+5 3.388442-3 4.549257+5 3.427678-3 4.426037+5 3.467369-3 4.306344+5 3.507519-3 4.189818+5 3.548134-3 4.076301+5 3.589219-3 3.964991+5 3.650000-3 3.807210+5 3.672823-3 3.749979+5 3.720000-3 3.635603+5 3.758374-3 3.546218+5 3.845918-3 3.353908+5 3.935501-3 3.172189+5 4.000000-3 3.050083+5 4.027170-3 3.000358+5 4.073803-3 2.916769+5 4.120975-3 2.834927+5 4.150000-3 2.786235+5 4.168694-3 2.755431+5 4.216965-3 2.678149+5 4.315191-3 2.530245+5 4.365158-3 2.459344+5 4.400000-3 2.411611+5 4.415704-3 2.390520+5 4.466836-3 2.323382+5 4.500000-3 2.281164+5 4.518559-3 2.257996+5 4.623810-3 2.132587+5 4.650000-3 2.102934+5 4.731513-3 2.014317+5 4.800000-3 1.943968+5 4.841724-3 1.902706+5 4.897788-3 1.849241+5 4.954502-3 1.797320+5 5.000000-3 1.757192+5 5.011872-3 1.746926+5 5.069907-3 1.697476+5 5.128614-3 1.648858+5 5.308844-3 1.511648+5 5.370318-3 1.468560+5 5.432503-3 1.426764+5 5.500000-3 1.383045+5 5.623413-3 1.307861+5 5.688529-3 1.270299+5 5.888437-3 1.163902+5 6.000000-3 1.110072+5 6.025596-3 1.098232+5 6.095369-3 1.066789+5 6.150000-3 1.043040+5 6.309573-3 9.776528+4 6.382635-3 9.495110+4 6.531306-3 8.952038+4 6.683439-3 8.440247+4 6.760830-3 8.195627+4 6.839116-3 7.958463+4 6.918310-3 7.728367+4 6.998420-3 7.503896+4 7.000000-3 7.499564+4 7.079458-3 7.286008+4 7.161434-3 7.074123+4 7.244360-3 6.868692+4 7.328245-3 6.668613+4 7.413102-3 6.474134+4 7.585776-3 6.101899+4 7.673615-3 5.924295+4 7.852356-3 5.583872+4 7.943282-3 5.421273+4 8.000000-3 5.323282+4 8.035261-3 5.263239+4 8.128305-3 5.109215+4 8.222426-3 4.958726+4 8.511380-3 4.534352+4 8.609938-3 4.401169+4 8.709636-3 4.272088+4 8.810489-3 4.146563+4 8.912509-3 4.024903+4 9.000000-3 3.924079+4 9.015711-3 3.906344+4 9.120108-3 3.791367+4 9.225714-3 3.679658+4 9.332543-3 3.571002+4 9.440609-3 3.465700+4 9.549926-3 3.363345+4 9.772372-3 3.167248+4 9.885531-3 3.073732+4 1.000000-2 2.983110+4 1.011579-2 2.894732+4 1.023293-2 2.809070+4 1.047129-2 2.644681+4 1.053800-2 2.600980+4 1.053800-2 6.812371+4 1.059254-2 6.716930+4 1.080000-2 6.370300+4 1.083927-2 6.309118+4 1.096478-2 6.118591+4 1.109175-2 5.933906+4 1.122018-2 5.754904+4 1.135011-2 5.581377+4 1.148154-2 5.412816+4 1.161449-2 5.249352+4 1.174898-2 5.087901+4 1.188502-2 4.931385+4 1.199300-2 4.811743+4 1.199300-2 6.665899+4 1.202264-2 6.623842+4 1.208000-2 6.543417+4 1.210000-2 6.515698+4 1.216186-2 6.427453+4 1.224000-2 6.318285+4 1.240000-2 6.107615+4 1.244515-2 6.048774+4 1.250800-2 5.968169+4 1.250800-2 6.899999+4 1.258925-2 6.787910+4 1.260000-2 6.773274+4 1.273503-2 6.593184+4 1.288250-2 6.403933+4 1.303167-2 6.220237+4 1.305000-2 6.198184+4 1.318257-2 6.041007+4 1.333521-2 5.866924+4 1.335000-2 5.850332+4 1.348963-2 5.698501+4 1.350000-2 5.687451+4 1.380384-2 5.376431+4 1.396368-2 5.218895+4 1.412538-2 5.066096+4 1.428894-2 4.917907+4 1.445440-2 4.774170+4 1.450000-2 4.735600+4 1.462177-2 4.634589+4 1.479108-2 4.498737+4 1.500000-2 4.338745+4 1.513561-2 4.239179+4 1.531087-2 4.115149+4 1.548817-2 3.995158+4 1.566751-2 3.877593+4 1.603245-2 3.653054+4 1.621810-2 3.544995+4 1.640590-2 3.440236+4 1.659587-2 3.338026+4 1.678804-2 3.238788+4 1.717908-2 3.049315+4 1.737801-2 2.958866+4 1.778279-2 2.785254+4 1.798871-2 2.702003+4 1.819701-2 2.621307+4 1.862087-2 2.467236+4 1.883649-2 2.393858+4 1.905461-2 2.322718+4 1.927525-2 2.253604+4 1.949845-2 2.186600+4 1.972423-2 2.121647+4 1.980000-2 2.100453+4 2.000000-2 2.045487+4 2.018366-2 1.996718+4 2.041738-2 1.936984+4 2.065380-2 1.878425+4 2.113489-2 1.766660+4 2.162719-2 1.661709+4 2.187762-2 1.611646+4 2.213095-2 1.563059+4 2.238721-2 1.515975+4 2.264644-2 1.470307+4 2.290868-2 1.425733+4 2.317395-2 1.382540+4 2.344229-2 1.340654+4 2.371374-2 1.300071+4 2.426610-2 1.222630+4 2.483133-2 1.149922+4 2.511886-2 1.115250+4 2.540973-2 1.081303+4 2.570396-2 1.048409+4 2.600160-2 1.016533+4 2.630268-2 9.854049+3 2.650000-2 9.657187+3 2.660725-2 9.552389+3 2.691535-2 9.260016+3 2.722701-2 8.976581+3 2.754229-2 8.702033+3 2.786121-2 8.436055+3 2.818383-2 8.178400+3 2.851018-2 7.928206+3 2.884032-2 7.685852+3 2.917427-2 7.451084+3 2.985383-2 7.000671+3 3.000000-2 6.908765+3 3.019952-2 6.785982+3 3.054921-2 6.578028+3 3.090295-2 6.376531+3 3.126079-2 6.181359+3 3.150000-2 6.055391+3 3.162278-2 5.992072+3 3.198895-2 5.808628+3 3.235937-2 5.629676+3 3.311311-2 5.286627+3 3.349654-2 5.123212+3 3.388442-2 4.964961+3 3.400000-2 4.919121+3 3.467369-2 4.663046+3 3.507519-2 4.519158+3 3.548134-2 4.379819+3 3.589219-2 4.244856+3 3.630781-2 4.114135+3 3.672823-2 3.987011+3 3.715352-2 3.863695+3 3.758374-2 3.744287+3 3.801894-2 3.628049+3 3.845918-2 3.515482+3 3.890451-2 3.406490+3 3.935501-2 3.300948+3 4.027170-2 3.098720+3 4.120975-2 2.909126+3 4.168694-2 2.818827+3 4.216965-2 2.731386+3 4.300000-2 2.588838+3 4.315191-2 2.563865+3 4.415704-2 2.406543+3 4.466836-2 2.331612+3 4.518559-2 2.259067+3 4.570882-2 2.188596+3 4.623810-2 2.120375+3 4.677351-2 2.054263+3 4.841724-2 1.868267+3 4.897788-2 1.809970+3 4.954502-2 1.753139+3 5.069907-2 1.644886+3 5.128614-2 1.593249+3 5.248075-2 1.494858+3 5.308844-2 1.448011+3 5.432503-2 1.358759+3 5.495409-2 1.316227+3 5.623413-2 1.235183+3 5.688529-2 1.196589+3 5.821032-2 1.122887+3 5.888437-2 1.087534+3 6.025596-2 1.020028+3 6.095369-2 9.878546+2 6.165950-2 9.566896+2 6.237348-2 9.265269+2 6.309573-2 8.973312+2 6.500000-2 8.261919+2 6.531306-2 8.152411+2 6.606934-2 7.895960+2 6.918310-2 6.949748+2 7.079458-2 6.517932+2 7.161434-2 6.312345+2 7.185600-2 6.253372+2 7.185600-2 3.147863+3 7.244360-2 3.079949+3 7.270000-2 3.050946+3 7.328245-2 2.989468+3 7.380000-2 2.936265+3 7.413102-2 2.905511+3 7.450000-2 2.871758+3 7.498942-2 2.822209+3 7.585776-2 2.737161+3 7.700000-2 2.630575+3 7.943282-2 2.432895+3 8.000000-2 2.389822+3 8.222426-2 2.222814+3 8.413951-2 2.091502+3 8.609938-2 1.967946+3 8.709636-2 1.908941+3 8.800000-2 1.857552+3 8.912509-2 1.796853+3 9.120108-2 1.691865+3 9.660509-2 1.455561+3 9.772372-2 1.412436+3 9.800000-2 1.402058+3 9.885531-2 1.370555+3 1.000000-1 1.329907+3 1.011580-1 1.289557+3 1.023293-1 1.250438+3 1.035142-1 1.212501+3 1.047129-1 1.175715+3 1.059254-1 1.140051+3 1.071519-1 1.105471+3 1.083927-1 1.071940+3 1.109175-1 1.007911+3 1.122019-1 9.773489+2 1.188502-1 8.379323+2 1.216186-1 7.878634+2 1.230269-1 7.639654+2 1.258925-1 7.183299+2 1.273503-1 6.965468+2 1.288250-1 6.754260+2 1.303167-1 6.549444+2 1.333521-1 6.154181+2 1.348963-1 5.965599+2 1.364583-1 5.782820+2 1.380384-1 5.605644+2 1.396368-1 5.433911+2 1.412538-1 5.267443+2 1.428894-1 5.106145+2 1.445440-1 4.949793+2 1.513561-1 4.371061+2 1.548817-1 4.107456+2 1.566751-1 3.981694+2 1.603245-1 3.741624+2 1.621810-1 3.627069+2 1.640590-1 3.516029+2 1.659587-1 3.408398+2 1.678804-1 3.304076+2 1.717908-1 3.104943+2 1.757924-1 2.917831+2 1.778279-1 2.828592+2 1.798871-1 2.742082+2 1.800000-1 2.737444+2 1.840772-1 2.576991+2 1.883649-1 2.421860+2 1.905461-1 2.347837+2 1.949845-1 2.206524+2 2.018366-1 2.010366+2 2.041738-1 1.948952+2 2.065380-1 1.889418+2 2.089296-1 1.831706+2 2.113489-1 1.775759+2 2.137962-1 1.721545+2 2.162719-1 1.669007+2 2.187762-1 1.618076+2 2.213095-1 1.568701+2 2.264644-1 1.474434+2 2.290868-1 1.429448+2 2.317395-1 1.385837+2 2.371374-1 1.303384+2 2.398833-1 1.264018+2 2.426610-1 1.225843+2 2.454709-1 1.188826+2 2.483133-1 1.152943+2 2.511886-1 1.118154+2 2.540973-1 1.084464+2 2.600160-1 1.020110+2 2.660725-1 9.595806+1 2.691535-1 9.306776+1 2.754229-1 8.754606+1 2.786121-1 8.490949+1 2.800000-1 8.379631+1 2.818383-1 8.237137+1 2.851018-1 7.992415+1 2.917427-1 7.524581+1 2.951209-1 7.301150+1 3.019952-1 6.874051+1 3.054921-1 6.669982+1 3.090295-1 6.471976+1 3.126079-1 6.280195+1 3.162278-1 6.094104+1 3.198895-1 5.913555+1 3.235937-1 5.738433+1 3.311311-1 5.408468+1 3.349654-1 5.250677+1 3.388442-1 5.097562+1 3.467369-1 4.804644+1 3.507519-1 4.664568+1 3.548134-1 4.528580+1 3.589219-1 4.396574+1 3.590900-1 4.391287+1 3.630781-1 4.268472+1 3.672823-1 4.144112+1 3.715352-1 4.023643+1 3.801894-1 3.797054+1 3.845918-1 3.688649+1 3.890451-1 3.583354+1 3.935501-1 3.481066+1 3.981072-1 3.381703+1 4.027170-1 3.285191+1 4.073803-1 3.191475+1 4.216965-1 2.926080+1 4.265795-1 2.844265+1 4.315191-1 2.764902+1 4.365158-1 2.687798+1 4.415705-1 2.612851+1 4.466836-1 2.540006+1 4.518559-1 2.469228+1 4.570882-1 2.400421+1 4.623810-1 2.333534+1 4.677351-1 2.268512+1 4.786301-1 2.143856+1 4.841724-1 2.085291+1 4.897788-1 2.028513+1 4.954502-1 1.973295+1 5.011872-1 1.919609+1 5.069907-1 1.867385+1 5.188000-1 1.767164+1 5.248075-1 1.719089+1 5.308844-1 1.672324+1 5.370318-1 1.626831+1 5.432503-1 1.583515+1 5.495409-1 1.541380+1 5.559043-1 1.500511+1 5.623413-1 1.460728+1 5.688529-1 1.422001+1 5.821032-1 1.347602+1 5.888437-1 1.311876+1 6.000000-1 1.255654+1 6.025596-1 1.243242+1 6.095369-1 1.211035+1 6.165950-1 1.179681+1 6.237348-1 1.149161+1 6.309573-1 1.119507+1 6.382635-1 1.090618+1 6.456542-1 1.062476+1 6.531306-1 1.035059+1 6.606935-1 1.008351+1 6.683439-1 9.823328+0 6.760830-1 9.570130+0 6.918310-1 9.094167+0 6.998420-1 8.865149+0 7.079458-1 8.642064+0 7.161434-1 8.425168+0 7.244360-1 8.213718+0 7.328245-1 8.007580+0 7.413102-1 7.806701+0 7.498942-1 7.610990+0 7.585776-1 7.420213+0 7.673615-1 7.238539+0 7.762471-1 7.061319+0 7.852356-1 6.888441+0 7.943282-1 6.719796+0 8.035261-1 6.555875+0 8.128305-1 6.396028+0 8.222427-1 6.240080+0 8.413951-1 5.939505+0 8.511380-1 5.798303+0 8.609938-1 5.660458+0 8.709636-1 5.526043+0 8.810489-1 5.394826+0 8.912509-1 5.266729+0 9.015711-1 5.142176+0 9.120108-1 5.020626+0 9.225714-1 4.901951+0 9.332543-1 4.786104+0 9.440609-1 4.676175+0 9.549926-1 4.568778+0 9.660509-1 4.463850+0 9.772372-1 4.361403+0 9.885531-1 4.261329+0 1.000000+0 4.163947+0 1.011579+0 4.068902+0 1.023293+0 3.976025+0 1.035142+0 3.885326+0 1.047129+0 3.798549+0 1.059254+0 3.713730+0 1.071519+0 3.630809+0 1.083927+0 3.549732+0 1.096478+0 3.470471+0 1.109175+0 3.393082+0 1.135011+0 3.243454+0 1.148154+0 3.171144+0 1.161449+0 3.100686+0 1.188502+0 2.964439+0 1.202264+0 2.898611+0 1.216186+0 2.835887+0 1.230269+0 2.774523+0 1.250000+0 2.691901+0 1.288250+0 2.542092+0 1.303167+0 2.487097+0 1.318257+0 2.433528+0 1.333521+0 2.381157+0 1.348963+0 2.329909+0 1.364583+0 2.279769+0 1.380384+0 2.232010+0 1.462177+0 2.007834+0 1.479108+0 1.965786+0 1.496236+0 1.924794+0 1.500000+0 1.915963+0 1.513561+0 1.884661+0 1.531087+0 1.845365+0 1.548817+0 1.806885+0 1.584893+0 1.734346+0 1.603245+0 1.699177+0 1.640590+0 1.630962+0 1.659587+0 1.597890+0 1.678804+0 1.565625+0 1.698244+0 1.534011+0 1.717908+0 1.503042+0 1.737801+0 1.472719+0 1.778279+0 1.415679+0 1.798871+0 1.387992+0 1.819701+0 1.360848+0 1.840772+0 1.334235+0 1.862087+0 1.308143+0 1.883649+0 1.282680+0 1.905461+0 1.257714+0 1.927525+0 1.233238+0 1.949845+0 1.209260+0 1.972423+0 1.186531+0 2.000000+0 1.159687+0 2.018366+0 1.142347+0 2.041738+0 1.120877+0 2.044000+0 1.118833+0 2.089296+0 1.079139+0 2.113489+0 1.058935+0 2.137962+0 1.039109+0 2.162719+0 1.019656+0 2.213095+0 9.818380-1 2.238721+0 9.634705-1 2.264644+0 9.454530-1 2.290868+0 9.282205-1 2.317395+0 9.113024-1 2.344229+0 8.946935-1 2.371374+0 8.783872-1 2.398833+0 8.623782-1 2.426610+0 8.466611-1 2.454709+0 8.312918-1 2.483133+0 8.162022-1 2.511886+0 8.013880-1 2.570396+0 7.725615-1 2.600160+0 7.585492-1 2.630268+0 7.447967-1 2.660725+0 7.316527-1 2.691535+0 7.187405-1 2.722701+0 7.060570-1 2.754229+0 6.935970-1 2.786121+0 6.813573-1 2.818383+0 6.693333-1 2.851018+0 6.575718-1 2.884032+0 6.460169-1 2.951209+0 6.235168-1 3.000000+0 6.079849-1 3.019952+0 6.018195-1 3.054921+0 5.915894-1 3.090295+0 5.815332-1 3.126079+0 5.716484-1 3.162278+0 5.619314-1 3.198895+0 5.523799-1 3.235937+0 5.430304-1 3.311311+0 5.248046-1 3.388442+0 5.071925-1 3.467369+0 4.901838-1 3.507519+0 4.818980-1 3.548134+0 4.739798-1 3.589219+0 4.661918-1 3.630781+0 4.585318-1 3.672823+0 4.509979-1 3.715352+0 4.435879-1 3.758374+0 4.363305-1 3.845918+0 4.221705-1 3.935501+0 4.084719-1 4.027170+0 3.952275-1 4.073803+0 3.887697-1 4.120975+0 3.825912-1 4.168694+0 3.765108-1 4.265795+0 3.646391-1 4.315191+0 3.588443-1 4.365158+0 3.531417-1 4.415704+0 3.475532-1 4.518559+0 3.366404-1 4.623810+0 3.260716-1 4.731513+0 3.158419-1 4.786301+0 3.108502-1 4.841724+0 3.060748-1 4.897788+0 3.013729-1 5.011872+0 2.921850-1 5.069907+0 2.876966-1 5.128614+0 2.832772-1 5.188000+0 2.789435-1 5.308844+0 2.704742-1 5.432503+0 2.622631-1 5.623413+0 2.504197-1 5.688529+0 2.465935-1 5.754399+0 2.429292-1 5.821032+0 2.393193-1 5.956621+0 2.322601-1 6.025596+0 2.288089-1 6.095369+0 2.254090-1 6.165950+0 2.220730-1 6.309573+0 2.155487-1 6.456542+0 2.092168-1 6.760830+0 1.971133-1 6.839116+0 1.941995-1 6.918310+0 1.913976-1 7.000000+0 1.885823-1 7.244360+0 1.805887-1 7.328245+0 1.779833-1 7.413102+0 1.754155-1 7.498942+0 1.728944-1 7.585776+0 1.704096-1 7.762471+0 1.655468-1 7.852356+0 1.631680-1 8.128305+0 1.562396-1 8.222427+0 1.539971-1 8.317638+0 1.518462-1 8.413951+0 1.497253-1 8.609938+0 1.455722-1 8.709636+0 1.435391-1 8.810489+0 1.415343-1 8.912509+0 1.395592-1 9.015711+0 1.376175-1 9.120108+0 1.357029-1 9.440609+0 1.301175-1 9.549926+0 1.283074-1 1.000000+1 1.213205-1 1.011579+1 1.196775-1 1.023293+1 1.180566-1 1.047129+1 1.148806-1 1.059254+1 1.133248-1 1.083927+1 1.102782-1 1.109175+1 1.073206-1 1.202264+1 9.758026-2 1.230269+1 9.496353-2 1.288250+1 8.994203-2 1.303167+1 8.875932-2 1.318257+1 8.759219-2 1.333521+1 8.644134-2 1.348963+1 8.530552-2 1.364583+1 8.418777-2 1.513561+1 7.476460-2 1.531087+1 7.378506-2 1.566751+1 7.186432-2 1.640590+1 6.817366-2 1.659587+1 6.730047-2 1.678804+1 6.643849-2 1.698244+1 6.558812-2 1.717908+1 6.474868-2 1.737801+1 6.392199-2 1.972423+1 5.549663-2 2.018366+1 5.408875-2 2.041738+1 5.339826-2 2.065380+1 5.271689-2 2.137962+1 5.072470-2 2.162719+1 5.007750-2 2.187762+1 4.945205-2 2.213095+1 4.883444-2 2.238721+1 4.822495-2 2.264644+1 4.762307-2 2.290868+1 4.703009-2 2.630268+1 4.046511-2 2.722701+1 3.897248-2 2.754229+1 3.848727-2 2.818383+1 3.753528-2 2.951209+1 3.570153-2 2.985383+1 3.525725-2 3.000000+1 3.507392-2 3.019952+1 3.482671-2 3.054921+1 3.440148-2 3.090295+1 3.398170-2 3.126079+1 3.356704-2 3.198895+1 3.275459-2 3.589219+1 2.897806-2 3.758374+1 2.759240-2 3.801894+1 2.725647-2 3.935501+1 2.627335-2 4.168694+1 2.471311-2 4.216965+1 2.441236-2 4.265795+1 2.411963-2 4.315191+1 2.383046-2 4.365158+1 2.354478-2 4.415704+1 2.326264-2 4.518559+1 2.270848-2 4.677351+1 2.190319-2 5.559043+1 1.828542-2 5.821032+1 1.742604-2 6.000000+1 1.688309-2 6.237348+1 1.621234-2 6.531306+1 1.545070-2 6.606934+1 1.526595-2 6.683439+1 1.508611-2 6.760830+1 1.490839-2 6.918310+1 1.455937-2 7.079458+1 1.421908-2 8.709636+1 1.149301-2 9.332543+1 1.070589-2 9.885531+1 1.009130-2 1.059254+2 9.400324-3 1.122018+2 8.860831-3 1.148154+2 8.653796-3 1.161449+2 8.553113-3 1.174898+2 8.453602-3 1.188502+2 8.355254-3 1.230269+2 8.067093-3 1.273503+2 7.789178-3 1.659587+2 5.953380-3 1.778279+2 5.550267-3 1.905461+2 5.174448-3 2.089296+2 4.712707-3 2.238721+2 4.393657-3 2.290868+2 4.292181-3 2.317395+2 4.242627-3 2.344229+2 4.193647-3 2.371374+2 4.145231-3 2.454709+2 4.003339-3 2.540973+2 3.866392-3 3.311311+2 2.960833-3 3.548134+2 2.761733-3 3.801894+2 2.576023-3 4.168694+2 2.347710-3 4.466836+2 2.189859-3 4.570882+2 2.139637-3 4.623810+2 2.115061-3 4.677351+2 2.090767-3 4.731513+2 2.066752-3 4.897788+2 1.996360-3 5.069907+2 1.928401-3 1.318257+3 7.396849-4 1.412538+3 6.901824-4 1.513561+3 6.439932-4 1.659587+3 5.871825-4 1.778279+3 5.478889-4 1.819701+3 5.353841-4 1.840772+3 5.292524-4 1.862087+3 5.231910-4 1.883649+3 5.171990-4 3.672823+3 2.651592-4 3.715352+3 2.621224-4 3.758374+3 2.591203-4 3.890451+3 2.503194-4 4.027170+3 2.418187-4 1.000000+5 9.729013-6 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.060000-6 8.060000-6 8.500000-6 8.060000-6 8.500000-6 8.288098-6 9.520000-6 8.358844-6 9.520000-6 8.626916-6 1.100000-5 8.730901-6 1.303167-5 8.804011-6 1.778279-5 8.866745-6 3.019952-5 8.925004-6 4.940000-5 8.939518-6 4.940000-5 2.438242-5 5.000000-5 2.473246-5 5.069907-5 2.505184-5 5.190000-5 2.544888-5 5.299000-5 2.568177-5 5.299000-5 2.679217-5 5.470000-5 2.727377-5 5.564000-5 2.746741-5 5.564000-5 2.830261-5 5.800000-5 2.895393-5 6.097000-5 2.956565-5 6.097000-5 3.615475-5 6.220000-5 3.686804-5 6.420000-5 3.768149-5 6.730000-5 3.854843-5 7.350000-5 3.979825-5 7.950000-5 4.101703-5 8.413951-5 4.220769-5 9.157000-5 4.453520-5 9.157000-5 4.554307-5 1.023293-4 4.871560-5 1.083927-4 5.018393-5 1.150000-4 5.140849-5 1.220000-4 5.232308-5 1.303167-4 5.303207-5 1.430000-4 5.362020-5 1.621810-4 5.397444-5 2.080000-4 5.412492-5 2.645400-4 5.408012-5 2.645400-4 5.612800-5 2.782600-4 5.590598-5 2.782600-4 5.720792-5 3.090295-4 5.686355-5 3.311311-4 5.702019-5 3.580000-4 5.768861-5 4.073803-4 5.959749-5 4.425900-4 6.109195-5 4.425900-4 6.624478-5 5.168300-4 6.981702-5 5.168300-4 7.116694-5 6.158300-4 7.555724-5 6.158300-4 7.825710-5 7.079458-4 8.211458-5 8.128305-4 8.598726-5 9.332543-4 8.979882-5 1.083927-3 9.383773-5 1.244515-3 9.744605-5 1.450000-3 1.012978-4 1.698244-3 1.050840-4 1.892700-3 1.075680-4 1.892700-3 1.583038-4 1.961800-3 1.583730-4 1.961800-3 1.664977-4 2.110000-3 1.697848-4 2.264644-3 1.715605-4 2.360500-3 1.718533-4 2.360500-3 1.839749-4 2.677400-3 1.855171-4 2.677400-3 1.918755-4 2.911600-3 1.934651-4 2.911600-3 1.994791-4 3.845918-3 2.066215-4 5.011872-3 2.137122-4 6.382635-3 2.202379-4 8.128305-3 2.267077-4 1.023293-2 2.327402-4 1.053800-2 2.334885-4 1.053800-2 3.027585-4 1.199300-2 3.036607-4 1.199300-2 3.203026-4 1.250800-2 3.206505-4 1.250800-2 3.434289-4 1.778279-2 3.524509-4 2.540973-2 3.616450-4 3.548134-2 3.702830-4 4.841724-2 3.782356-4 6.606934-2 3.857554-4 7.185600-2 3.876870-4 7.185600-2 3.558439-4 1.800000-1 3.580316-4 5.069907-1 3.594471-4 1.000000+5 3.597224-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.060000-6 0.0 2.782600-4 0.0 2.782600-4 8.81726-10 2.840000-4 8.87856-10 2.920000-4 8.82583-10 2.980000-4 8.56564-10 3.080000-4 8.12288-10 3.130000-4 7.95864-10 3.180000-4 7.85253-10 3.220000-4 7.81650-10 3.260000-4 7.81695-10 3.311311-4 7.87275-10 3.350000-4 7.95408-10 3.390000-4 8.08148-10 3.450000-4 8.33180-10 3.507519-4 8.63178-10 3.580000-4 9.09317-10 3.650000-4 9.62070-10 3.780000-4 1.074581-9 3.890451-4 1.182723-9 4.073803-4 1.375450-9 4.216965-4 1.532285-9 4.425900-4 1.769064-9 4.425900-4 3.107338-9 5.011872-4 3.879098-9 5.168300-4 4.073791-9 5.168300-4 4.855779-9 5.692300-4 5.572515-9 6.100000-4 6.107311-9 6.158300-4 6.182364-9 6.158300-4 7.155954-9 6.760830-4 7.971818-9 7.500000-4 8.890981-9 8.317638-4 9.830024-9 9.015711-4 1.055697-8 9.772372-4 1.128119-8 1.070000-3 1.210351-8 1.174898-3 1.293996-8 1.303167-3 1.385057-8 1.450000-3 1.478057-8 1.621810-3 1.573733-8 1.798871-3 1.660062-8 1.892700-3 1.702201-8 1.892700-3 1.671420-8 1.961800-3 1.681469-8 1.961800-3 6.045363-6 2.018366-3 6.869475-6 2.065000-3 7.606139-6 2.110000-3 8.237216-6 2.187762-3 8.969808-6 2.238721-3 9.419372-6 2.300000-3 9.678130-6 2.350000-3 9.718861-6 2.360500-3 9.715294-6 2.360500-3 9.497216-6 2.677400-3 9.413439-6 2.677400-3 1.040239-5 2.911600-3 1.044531-5 2.911600-3 1.060481-5 3.507519-3 1.073486-5 4.800000-3 1.094409-5 6.683439-3 1.114945-5 8.810489-3 1.131956-5 1.053800-2 1.142334-5 1.053800-2 1.551092-3 1.199300-2 1.543172-3 1.199300-2 2.114233-3 1.250800-2 2.117438-3 1.250800-2 2.206605-3 1.640590-2 2.227898-3 2.511886-2 2.243303-3 4.677351-2 2.247117-3 7.185600-2 2.243639-3 7.185600-2 5.066202-2 8.609938-2 5.107093-2 1.083927-1 5.147629-2 1.513561-1 5.184991-2 2.511886-1 5.217147-2 7.413102-1 5.258713-2 1.202264+0 5.271618-2 1.000000+5 5.270651-2 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.060000-6 0.0 8.500000-6 4.400000-7 8.500000-6 2.119018-7 8.709636-6 4.058102-7 9.520000-6 1.161156-6 9.520000-6 8.930839-7 9.900000-6 1.240878-6 1.011579-5 1.439919-6 1.100000-5 2.269099-6 1.200000-5 3.225943-6 1.396368-5 5.140601-6 1.927525-5 1.039748-5 4.027170-5 3.133550-5 4.940000-5 4.046048-5 4.940000-5 2.501758-5 5.000000-5 2.526754-5 5.069907-5 2.564723-5 5.190000-5 2.645112-5 5.299000-5 2.730823-5 5.299000-5 2.619783-5 5.470000-5 2.742623-5 5.564000-5 2.817259-5 5.564000-5 2.733739-5 5.800000-5 2.904607-5 6.097000-5 3.140435-5 6.097000-5 2.481525-5 6.180000-5 2.514244-5 6.309573-5 2.583336-5 6.500000-5 2.706034-5 6.760830-5 2.899093-5 7.244360-5 3.285239-5 7.900000-5 3.809435-5 8.413951-5 4.193182-5 9.157000-5 4.703480-5 9.157000-5 4.602693-5 1.023293-4 5.361370-5 1.096478-4 5.920113-5 1.170000-4 6.529506-5 1.260000-4 7.329228-5 1.380384-4 8.459640-5 1.621810-4 1.082066-4 2.645400-4 2.104599-4 2.645400-4 2.084120-4 2.782600-4 2.223540-4 2.782600-4 2.210512-4 3.311311-4 2.741101-4 4.280000-4 3.675269-4 4.425900-4 3.814963-4 4.425900-4 3.763421-4 5.168300-4 4.470089-4 5.168300-4 4.456582-4 6.158300-4 5.402666-4 6.158300-4 5.375657-4 9.440609-4 8.539401-4 1.584893-3 1.481422-3 1.892700-3 1.785115-3 1.892700-3 1.734379-3 1.961800-3 1.803410-3 1.961800-3 1.789257-3 2.317395-3 2.135907-3 2.360500-3 2.178931-3 2.360500-3 2.167028-3 2.677400-3 2.482469-3 2.677400-3 2.475122-3 2.911600-3 2.707690-3 2.911600-3 2.701516-3 1.011579-2 9.871943-3 1.053800-2 1.029309-2 1.053800-2 8.684150-3 1.199300-2 1.014617-2 1.199300-2 9.558464-3 1.250800-2 1.006991-2 1.250800-2 9.957966-3 2.851018-2 2.590012-2 7.185600-2 6.922468-2 7.185600-2 2.083813-2 7.585776-2 2.470519-2 8.222426-2 3.087941-2 1.083927-1 5.655949-2 1.757924-1 1.234608-1 4.841724+0 4.788662+0 1.000000+5 9.999995+4 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.185600-2 2.522526+3 7.270000-2 2.445620+3 7.380000-2 2.355740+3 7.450000-2 2.306320+3 7.700000-2 2.114880+3 8.000000-2 1.926212+3 8.800000-2 1.502312+3 1.000000-1 1.081252+3 1.303167-1 5.362761+2 2.317395-1 1.144090+2 2.800000-1 6.928900+1 3.235937-1 4.750295+1 3.715352-1 3.334397+1 4.216965-1 2.427233+1 4.786301-1 1.780146+1 5.370318-1 1.351995+1 6.025596-1 1.034163+1 6.760830-1 7.967886+0 7.585776-1 6.183516+0 8.413951-1 4.953787+0 9.332543-1 3.995372+0 1.035142+0 3.245198+0 1.202264+0 2.421544+0 1.364583+0 1.904220+0 1.548817+0 1.508964+0 1.737801+0 1.229884+0 1.949845+0 1.009894+0 2.264644+0 7.895941-1 2.630268+0 6.220118-1 3.019952+0 5.026059-1 3.507519+0 4.024529-1 4.073803+0 3.246746-1 4.786301+0 2.596046-1 5.688529+0 2.059412-1 6.839116+0 1.621853-1 8.222427+0 1.286090-1 1.000000+1 1.013200-1 1.288250+1 7.511731-2 1.640590+1 5.693780-2 2.162719+1 4.182403-2 2.985383+1 2.944648-2 4.216965+1 2.038882-2 6.606934+1 1.275023-2 1.148154+2 7.227676-3 2.290868+2 3.584916-3 4.570882+2 1.787093-3 1.819701+3 4.471229-4 1.000000+5 8.126200-6 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.185600-2 3.479500-4 1.000000+5 3.479500-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.185600-2 6.266500-2 1.000000+5 6.266500-2 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.185600-2 8.843050-3 1.000000+5 9.999994+4 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.250800-2 9.318300+3 1.305000-2 8.677320+3 1.335000-2 8.331320+3 1.380384-2 7.896354+3 1.531087-2 6.561820+3 1.640590-2 5.816897+3 1.737801-2 5.231715+3 1.862087-2 4.586561+3 1.980000-2 4.088360+3 2.511886-2 2.551395+3 2.818383-2 2.010348+3 3.198895-2 1.541356+3 3.758374-2 1.086626+3 4.216965-2 8.416744+2 4.897788-2 5.996039+2 5.821032-2 4.014484+2 6.918310-2 2.662068+2 8.222426-2 1.749943+2 9.800000-2 1.133376+2 1.188502-1 6.977115+1 1.513561-1 3.765100+1 2.511886-1 1.022383+1 3.090295-1 6.036047+0 3.672823-1 3.917864+0 4.265795-1 2.713178+0 4.841724-1 2.001646+0 5.495409-1 1.486830+0 6.237348-1 1.112348+0 7.079458-1 8.384741-1 7.943282-1 6.529803-1 8.912509-1 5.124074-1 9.885531-1 4.148833-1 1.148154+0 3.088168-1 1.303167+0 2.421860-1 1.479108+0 1.913955-1 1.659587+0 1.555784-1 1.862087+0 1.273581-1 2.089296+0 1.050409-1 2.426610+0 8.240448-2 2.818383+0 6.515198-2 3.198895+0 5.376841-2 3.715352+0 4.318166-2 4.365158+0 3.437443-2 5.128614+0 2.757304-2 6.095369+0 2.194041-2 7.413102+0 1.707502-2 8.912509+0 1.358499-2 1.083927+1 1.073561-2 1.348963+1 8.306078-3 1.717908+1 6.304589-3 2.264644+1 4.637193-3 3.126079+1 3.268693-3 4.518559+1 2.211188-3 6.918310+1 1.417821-3 1.230269+2 7.856254-4 2.454709+2 3.899303-4 4.897788+2 1.944449-4 3.890451+3 2.438013-5 1.000000+5 9.477800-7 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.250800-2 4.893200-4 1.000000+5 4.893200-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.250800-2 2.777700-3 1.000000+5 2.777700-3 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.250800-2 9.240980-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.199300-2 1.854156+4 1.210000-2 1.818703+4 1.224000-2 1.765900+4 1.240000-2 1.713100+4 1.333521-2 1.425500+4 1.462177-2 1.122900+4 1.603245-2 8.819600+3 1.778279-2 6.668800+3 2.264644-2 3.432600+3 2.511886-2 2.561100+3 2.917427-2 1.673100+3 3.630781-2 8.863400+2 4.518559-2 4.643600+2 5.688529-2 2.328100+2 7.328245-2 1.080000+2 1.412538-1 1.455589+1 1.757924-1 7.509544+0 2.137962-1 4.184024+0 2.511886-1 2.602757+0 2.917427-1 1.687315+0 3.349654-1 1.139352+0 3.801894-1 8.006210-1 4.315191-1 5.668922-1 4.841724-1 4.172236-1 5.432503-1 3.093743-1 6.025596-1 2.379877-1 6.683439-1 1.843887-1 7.413102-1 1.438571-1 8.609938-1 1.015011-1 9.332543-1 8.472708-2 1.000000+0 7.309098-2 1.096478+0 6.059719-2 1.202264+0 5.059114-2 1.318257+0 4.252420-2 1.479108+0 3.449240-2 1.717908+0 2.641187-2 1.927525+0 2.166210-2 2.213095+0 1.724390-2 2.570396+0 1.357018-2 2.951209+0 1.095397-2 3.388442+0 8.909154-3 3.935501+0 7.175286-3 4.623810+0 5.727723-3 5.432503+0 4.606299-3 6.456542+0 3.674444-3 7.852356+0 2.865940-3 9.549926+0 2.253748-3 1.230269+1 1.668048-3 1.566751+1 1.262424-3 2.041738+1 9.379833-4 2.754229+1 6.760165-4 3.801894+1 4.787245-4 6.000000+1 2.965300-4 9.885531+1 1.772462-4 1.905461+2 9.089692-5 3.801894+2 4.526723-5 1.513561+3 1.131552-5 1.000000+5 1.710100-7 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.199300-2 3.634900-4 1.000000+5 3.634900-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.199300-2 3.596200-3 1.000000+5 3.596200-3 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.199300-2 8.033310-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.053800-2 4.211391+4 1.080000-2 3.931352+4 1.161449-2 3.233790+4 1.380384-2 2.005538+4 1.548817-2 1.445369+4 2.041738-2 6.469129+3 2.600160-2 3.131565+3 3.235937-2 1.600197+3 3.935501-2 8.682171+2 4.841724-2 4.499945+2 5.888437-2 2.399774+2 7.413102-2 1.136725+2 1.445440-1 1.277234+1 1.800000-1 6.265539+0 2.113489-1 3.745153+0 2.454709-1 2.334871+0 2.818383-1 1.520737+0 3.198895-1 1.034287+0 3.590900-1 7.327971-1 4.027170-1 5.247587-1 4.466836-1 3.908219-1 4.954502-1 2.931718-1 5.495409-1 2.216800-1 6.095369-1 1.689414-1 6.683439-1 1.335874-1 7.328245-1 1.063184-1 8.035261-1 8.516801-2 9.015711-1 6.509255-2 9.660509-1 5.567033-2 1.023293+0 4.918753-2 1.096478+0 4.267842-2 1.188502+0 3.642234-2 1.303167+0 3.062104-2 1.462177+0 2.486330-2 1.737801+0 1.828773-2 1.949845+0 1.500631-2 2.238721+0 1.195201-2 2.600160+0 9.409422-3 3.000000+0 7.542000-3 3.467369+0 6.080341-3 4.027170+0 4.902570-3 4.731513+0 3.917824-3 5.623413+0 3.106230-3 6.760830+0 2.445048-3 8.128305+0 1.938024-3 1.000000+1 1.505200-3 1.288250+1 1.115906-3 1.640590+1 8.458841-4 2.162719+1 6.213470-4 3.000000+1 4.351700-4 4.265795+1 2.992439-4 6.606934+1 1.894125-4 1.148154+2 1.073724-4 2.290868+2 5.325834-5 4.570882+2 2.654950-5 1.819701+3 6.642512-6 1.000000+5 1.207200-7 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.053800-2 3.455400-4 1.000000+5 3.455400-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.053800-2 2.502000-3 1.000000+5 2.502000-3 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.053800-2 7.690460-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 2.911600-3 2.709640+4 3.015000-3 2.583920+4 3.054921-3 2.549390+4 3.350000-3 2.253140+4 3.507519-3 2.123006+4 3.720000-3 1.950822+4 4.650000-3 1.398188+4 5.011872-3 1.246330+4 5.500000-3 1.070548+4 6.531306-3 8.039956+3 7.413102-3 6.443377+3 8.511380-3 5.037204+3 1.023293-2 3.584045+3 1.174898-2 2.755626+3 1.350000-2 2.103960+3 1.603245-2 1.494187+3 1.905461-2 1.050260+3 2.238721-2 7.499590+2 2.650000-2 5.231380+2 3.126079-2 3.647931+2 3.672823-2 2.547237+2 4.315191-2 1.766028+2 5.069907-2 1.215771+2 6.025596-2 8.084154+1 7.161434-2 5.335977+1 8.413951-2 3.597245+1 1.023293-1 2.210292+1 1.288250-1 1.236236+1 1.603245-1 7.073782+0 2.483133-1 2.301307+0 3.090295-1 1.321304+0 3.672823-1 8.584282-1 4.216965-1 6.118598-1 4.841724-1 4.391965-1 5.495409-1 3.262992-1 6.165950-1 2.506468-1 6.998420-1 1.889684-1 7.943282-1 1.435849-1 8.912509-1 1.125461-1 9.885531-1 9.104720-2 1.148154+0 6.775511-2 1.303167+0 5.313767-2 1.479108+0 4.199843-2 1.659587+0 3.413842-2 1.862087+0 2.794586-2 2.089296+0 2.305150-2 2.426610+0 1.808479-2 2.818383+0 1.429730-2 3.198895+0 1.179881-2 3.715352+0 9.475892-3 4.365158+0 7.543203-3 5.128614+0 6.050644-3 6.095369+0 4.814731-3 7.413102+0 3.747010-3 8.810489+0 3.023375-3 1.059254+1 2.421156-3 1.318257+1 1.871907-3 1.678804+1 1.419854-3 2.213095+1 1.043666-3 3.054921+1 7.352378-4 4.365158+1 5.031834-4 6.760830+1 3.186376-4 1.188502+2 1.785811-4 2.371374+2 8.860391-5 4.731513+2 4.417748-5 3.758374+3 5.538054-6 1.000000+5 2.079800-7 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 2.911600-3 3.380500-4 1.000000+5 3.380500-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.911600-3 1.428000-5 1.000000+5 1.428000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 2.911600-3 2.559270-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.677400-3 4.392098+4 2.718000-3 4.320073+4 2.729000-3 4.293355+4 3.070000-3 3.745260+4 3.220000-3 3.525860+4 3.467369-3 3.185958+4 3.845918-3 2.741931+4 4.150000-3 2.443240+4 4.466836-3 2.172057+4 4.800000-3 1.923586+4 5.688529-3 1.420780+4 6.150000-3 1.227674+4 7.079458-3 9.316234+3 7.673615-3 7.915504+3 8.709636-3 6.066774+3 9.549926-3 4.976059+3 1.083927-2 3.753605+3 1.202264-2 2.963432+3 1.380384-2 2.142718+3 1.548817-2 1.623152+3 1.737801-2 1.222494+3 2.000000-2 8.578280+2 2.317395-2 5.864621+2 2.691535-2 3.950072+2 3.150000-2 2.584320+2 3.672823-2 1.693849+2 4.300000-2 1.089342+2 5.069907-2 6.818176+1 6.095369-2 4.005157+1 7.585776-2 2.111014+1 9.885531-2 9.635514+0 1.678804-1 1.992018+0 2.018366-1 1.157683+0 2.540973-1 5.940373-1 2.951209-1 3.874334-1 3.388442-1 2.629101-1 3.845918-1 1.855034-1 4.365158-1 1.318438-1 4.897788-1 9.733269-2 5.495409-1 7.236782-2 6.095369-1 5.579838-2 6.760830-1 4.333159-2 7.498942-1 3.388403-2 8.609938-1 2.461179-2 9.332543-1 2.056191-2 1.000000+0 1.774544-2 1.096478+0 1.471501-2 1.202264+0 1.228589-2 1.318257+0 1.032556-2 1.479108+0 8.372721-3 1.717908+0 6.409987-3 1.927525+0 5.257033-3 2.213095+0 4.184709-3 2.570396+0 3.292584-3 2.951209+0 2.657164-3 3.388442+0 2.161138-3 3.935501+0 1.740603-3 4.623810+0 1.389438-3 5.432503+0 1.117409-3 6.456542+0 8.913711-4 7.852356+0 6.952232-4 9.549926+0 5.467247-4 1.230269+1 4.046362-4 1.566751+1 3.062371-4 2.065380+1 2.246540-4 2.818383+1 1.599546-4 3.935501+1 1.119583-4 6.237348+1 6.909121-5 1.059254+2 4.006453-5 2.089296+2 2.008806-5 4.168694+2 1.000907-5 1.659587+3 2.503135-6 1.000000+5 4.148400-8 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.677400-3 2.956900-4 1.000000+5 2.956900-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.677400-3 2.654900-5 1.000000+5 2.654900-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.677400-3 2.355161-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.360500-3 1.302309+5 2.445000-3 1.248095+5 2.722701-3 1.062078+5 2.884032-3 9.698834+4 3.235937-3 7.989853+4 3.650000-3 6.486440+4 4.000000-3 5.487520+4 4.315191-3 4.742666+4 5.011872-3 3.534822+4 5.432503-3 2.996387+4 6.309573-3 2.181857+4 6.918310-3 1.783185+4 8.000000-3 1.284584+4 8.912509-3 9.987461+3 1.000000-2 7.590600+3 1.135011-2 5.566179+3 1.273503-2 4.170299+3 1.450000-2 2.988664+3 1.659587-2 2.095643+3 1.905461-2 1.445060+3 2.187762-2 9.883077+2 2.511886-2 6.707013+2 2.917427-2 4.369830+2 3.400000-2 2.794900+2 3.935501-2 1.809622+2 4.623810-2 1.111919+2 5.432503-2 6.780476+1 6.500000-2 3.879036+1 8.000000-2 2.015588+1 1.047129-1 8.542313+0 1.659587-1 1.954272+0 2.018366-1 1.050621+0 2.426610-1 5.911013-1 2.786121-1 3.865906-1 3.162278-1 2.637732-1 3.548134-1 1.875935-1 3.981072-1 1.343773-1 4.415705-1 1.002111-1 4.897788-1 7.524882-2 5.432503-1 5.692620-2 6.025596-1 4.339250-2 6.683439-1 3.333422-2 7.413102-1 2.581003-2 8.609938-1 1.803370-2 9.225714-1 1.538236-2 9.772372-1 1.354940-2 1.047129+0 1.172482-2 1.135011+0 9.971699-3 1.250000+0 8.278602-3 1.380384+0 6.890943-3 1.698244+0 4.755733-3 1.905461+0 3.896917-3 2.137962+0 3.218389-3 2.483133+0 2.527894-3 2.884032+0 2.000861-3 3.311311+0 1.625223-3 3.845918+0 1.307480-3 4.518559+0 1.042571-3 5.308844+0 8.375980-4 6.309573+0 6.675042-4 7.762471+0 5.127048-4 9.440609+0 4.030015-4 1.202264+1 3.021900-4 1.513561+1 2.315392-4 1.972423+1 1.718701-4 2.630268+1 1.253140-4 3.589219+1 8.973521-5 5.559043+1 5.662152-5 8.709636+1 3.558911-5 1.659587+2 1.843678-5 3.311311+2 9.172980-6 1.318257+3 2.291646-6 1.000000+5 3.015600-8 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.360500-3 2.619600-4 1.000000+5 2.619600-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.360500-3 8.094200-6 1.000000+5 8.094200-6 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.360500-3 2.090446-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 1.961800-3 2.169798+5 2.065000-3 2.602246+5 2.110000-3 2.757777+5 2.187762-3 2.840398+5 2.238721-3 2.878089+5 2.300000-3 2.800442+5 2.344229-3 2.682915+5 2.350000-3 2.672104+5 2.630268-3 1.996894+5 2.951209-3 1.468372+5 3.273407-3 1.104264+5 3.589219-3 8.513616+4 4.073803-3 5.909833+4 4.518559-3 4.340207+4 5.069907-3 3.067887+4 5.623413-3 2.226928+4 6.382635-3 1.497189+4 7.328245-3 9.607669+3 8.128305-3 6.853242+3 9.440609-3 4.167763+3 1.083927-2 2.609122+3 1.216186-2 1.755161+3 1.380384-2 1.127888+3 1.603245-2 6.632871+2 1.862087-2 3.868439+2 2.187762-2 2.145759+2 2.540973-2 1.232057+2 2.985383-2 6.729266+1 3.589219-2 3.343377+1 4.415704-2 1.508493+1 5.623413-2 5.909650+0 1.035142-1 5.488041-1 1.273503-1 2.464486-1 1.513561-1 1.273490-1 1.757924-1 7.235016-2 2.041738-1 4.141420-2 2.317395-1 2.598492-2 2.600160-1 1.713163-2 2.951209-1 1.091567-2 3.311311-1 7.298821-3 3.672823-1 5.115134-3 4.073803-1 3.609307-3 4.518559-1 2.565337-3 5.011872-1 1.837370-3 5.495409-1 1.374524-3 6.000000-1 1.049466-3 6.531306-1 8.162944-4 7.161434-1 6.263437-4 8.035261-1 4.539872-4 8.609938-1 3.731122-4 9.120108-1 3.188607-4 9.549926-1 2.828121-4 1.000000+0 2.524231-4 1.047129+0 2.269558-4 1.096478+0 2.055111-4 1.148154+0 1.872168-4 1.216186+0 1.677640-4 1.318257+0 1.449934-4 1.531087+0 1.119885-4 1.819701+0 8.256324-5 2.000000+0 7.029383-5 2.317395+0 5.524447-5 2.691535+0 4.356852-5 3.090295+0 3.524974-5 3.589219+0 2.825988-5 4.168694+0 2.282316-5 4.897788+0 1.826829-5 5.821032+0 1.450691-5 7.000000+0 1.143200-5 8.413951+0 9.076387-6 1.023293+1 7.157046-6 1.303167+1 5.381890-6 1.659587+1 4.080895-6 2.187762+1 2.998657-6 3.019952+1 2.111785-6 4.315191+1 1.444903-6 6.683439+1 9.147887-7 1.174898+2 5.126165-7 2.344229+2 2.543146-7 4.677351+2 1.267948-7 3.715352+3 1.589367-8 1.000000+5 5.90050-10 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 1.961800-3 1.998300-4 1.000000+5 1.998300-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.961800-3 3.077800-5 1.000000+5 3.077800-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 1.961800-3 1.731192-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.892700-3 6.461654+5 1.952000-3 5.970984+5 2.018366-3 5.557422+5 2.110000-3 5.009946+5 2.371374-3 3.703281+5 2.600160-3 2.902097+5 2.884032-3 2.190014+5 3.162278-3 1.694288+5 3.548134-3 1.218713+5 4.027170-3 8.410797+4 4.415704-3 6.368355+4 5.069907-3 4.170535+4 5.623413-3 3.010967+4 6.382635-3 2.010038+4 7.244360-3 1.329905+4 8.128305-3 9.078003+3 9.225714-3 5.919673+3 1.047129-2 3.830871+3 1.188502-2 2.461270+3 1.350000-2 1.566030+3 1.548817-2 9.545044+2 1.778279-2 5.758073+2 2.065380-2 3.303306+2 2.371374-2 1.963693+2 2.754229-2 1.109869+2 3.198895-2 6.230158+1 3.801894-2 3.175462+1 4.623810-2 1.467368+1 5.821032-2 5.867136+0 1.000000-1 6.738648-1 1.216186-1 3.096492-1 1.428894-1 1.643150-1 1.659587-1 9.190315-2 1.883649-1 5.660174-2 2.137962-1 3.512511-2 2.398833-1 2.293695-2 2.660725-1 1.574024-2 2.951209-1 1.088153-2 3.235937-1 7.890173-3 3.548134-1 5.759707-3 3.890451-1 4.234491-3 4.265795-1 3.136858-3 4.677351-1 2.342039-3 5.069907-1 1.825835-3 5.495409-1 1.432772-3 6.025596-1 1.094194-3 6.606935-1 8.415507-4 7.161434-1 6.732588-4 7.762471-1 5.421412-4 8.609938-1 4.126507-4 9.120108-1 3.568911-4 9.660509-1 3.109358-4 1.011579+0 2.802291-4 1.071519+0 2.477961-4 1.148154+0 2.154563-4 1.230269+0 1.886649-4 1.333521+0 1.627064-4 1.798871+0 9.588519-5 2.000000+0 8.005868-5 2.317395+0 6.292276-5 2.691535+0 4.962769-5 3.090295+0 4.015435-5 3.589219+0 3.219172-5 4.168694+0 2.599870-5 4.897788+0 2.081044-5 5.821032+0 1.652539-5 7.000000+0 1.302300-5 8.413951+0 1.033948-5 1.023293+1 8.152873-6 1.303167+1 6.130770-6 1.659587+1 4.648699-6 2.187762+1 3.415812-6 3.019952+1 2.405686-6 4.315191+1 1.645980-6 6.683439+1 1.042100-6 1.174898+2 5.839432-7 2.344229+2 2.896954-7 4.677351+2 1.444307-7 1.862087+3 3.613991-8 1.000000+5 6.72150-10 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.892700-3 1.837200-4 1.000000+5 1.837200-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.892700-3 1.656000-8 1.000000+5 1.656000-8 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.892700-3 1.708963-3 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.158300-4 6.243758+4 6.750000-4 5.889920+4 7.079458-4 5.656007+4 7.413102-4 5.458037+4 8.317638-4 4.944563+4 8.912509-4 4.630672+4 1.083927-3 3.736524+4 1.174898-3 3.397673+4 1.350000-3 2.848440+4 1.500000-3 2.478980+4 1.698244-3 2.084463+4 1.927525-3 1.736052+4 2.238721-3 1.384816+4 2.540973-3 1.136328+4 2.985383-3 8.759766+3 3.548134-3 6.564666+3 4.216965-3 4.874625+3 5.011872-3 3.589715+3 6.025596-3 2.567868+3 7.244360-3 1.821965+3 8.709636-3 1.282962+3 1.047129-2 8.968084+2 1.260000-2 6.211568+2 1.513561-2 4.283743+2 1.819701-2 2.925658+2 2.162719-2 2.031251+2 2.570396-2 1.400081+2 3.054921-2 9.579560+1 3.630781-2 6.505980+1 4.315191-2 4.385351+1 5.128614-2 2.933999+1 6.095369-2 1.947829+1 7.328245-2 1.248760+1 8.609938-2 8.407674+0 1.059254-1 5.014053+0 1.364583-1 2.642648+0 1.678804-1 1.555502+0 2.483133-1 5.699480-1 3.090295-1 3.273481-1 3.672823-1 2.127211-1 4.216965-1 1.516434-1 4.841724-1 1.088624-1 5.495409-1 8.088314-2 6.165950-1 6.212906-2 6.998420-1 4.683486-2 7.943282-1 3.558459-2 8.912509-1 2.789698-2 9.885531-1 2.257061-2 1.148154+0 1.679711-2 1.303167+0 1.317357-2 1.479108+0 1.041192-2 1.659587+0 8.462886-3 1.862087+0 6.927571-3 2.089296+0 5.714646-3 2.426610+0 4.483579-3 2.818383+0 3.544512-3 3.198895+0 2.925027-3 3.715352+0 2.349107-3 4.365158+0 1.869940-3 5.128614+0 1.499942-3 6.095369+0 1.193615-3 7.413102+0 9.288826-4 8.810489+0 7.495082-4 1.059254+1 6.002090-4 1.318257+1 4.640470-4 1.678804+1 3.519908-4 2.213095+1 2.587256-4 3.054921+1 1.822698-4 4.365158+1 1.247360-4 6.760830+1 7.899223-5 1.188502+2 4.427046-5 2.371374+2 2.196536-5 4.731513+2 1.095209-5 3.758374+3 1.372882-6 1.000000+5 5.155900-8 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.158300-4 1.952600-4 1.000000+5 1.952600-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.158300-4 4.934800-8 1.000000+5 4.934800-8 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.158300-4 4.205207-4 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.168300-4 5.101701+4 6.000000-4 5.061622+4 6.850000-4 4.966060+4 7.328245-4 4.876665+4 7.943282-4 4.739414+4 8.511380-4 4.597938+4 9.225714-4 4.404821+4 9.850000-4 4.223340+4 1.059254-3 3.999623+4 1.161449-3 3.705243+4 1.244515-3 3.478781+4 1.350000-3 3.205180+4 1.496236-3 2.866307+4 1.621810-3 2.609215+4 1.778279-3 2.326410+4 1.972423-3 2.030673+4 2.162719-3 1.786398+4 2.400000-3 1.535262+4 2.660725-3 1.311632+4 2.985383-3 1.091943+4 3.349654-3 9.015290+3 3.758374-3 7.387976+3 4.216965-3 6.010041+3 4.731513-3 4.854394+3 5.308844-3 3.894659+3 6.025596-3 3.033394+3 6.839116-3 2.344384+3 7.852356-3 1.754842+3 9.000000-3 1.307184+3 1.023293-2 9.830831+2 1.161449-2 7.368579+2 1.318257-2 5.484112+2 1.513561-2 3.941888+2 1.737801-2 2.808995+2 2.000000-2 1.975374+2 2.290868-2 1.394849+2 2.630268-2 9.719513+1 3.054921-2 6.521019+1 3.548134-2 4.341774+1 4.168694-2 2.779774+1 4.897788-2 1.766413+1 5.821032-2 1.078568+1 7.079458-2 6.117341+0 8.912509-2 3.113714+0 1.380384-1 8.522954-1 1.840772-1 3.640805-1 2.213095-1 2.126975-1 2.600160-1 1.338897-1 3.019952-1 8.755048-2 3.467369-1 5.954275-2 3.935501-1 4.209799-2 4.466836-1 2.998412-2 5.011872-1 2.218007-2 5.623413-1 1.652722-2 6.237348-1 1.276824-2 6.918310-1 9.931259-3 7.673615-1 7.777192-3 8.709636-1 5.806237-3 9.440609-1 4.856091-3 1.011579+0 4.196219-3 1.109175+0 3.482924-3 1.216186+0 2.910301-3 1.348963+0 2.396511-3 1.584893+0 1.790986-3 1.798871+0 1.432979-3 2.000000+0 1.196974-3 2.317395+0 9.406325-4 2.691535+0 7.419061-4 3.090295+0 6.003020-4 3.589219+0 4.812599-4 4.168694+0 3.886727-4 4.897788+0 3.111076-4 5.821032+0 2.470531-4 7.000000+0 1.946900-4 8.413951+0 1.545664-4 1.023293+1 1.218822-4 1.303167+1 9.165292-5 1.659587+1 6.949686-5 2.187762+1 5.106566-5 3.019952+1 3.596364-5 4.315191+1 2.460673-5 6.683439+1 1.557906-5 1.161449+2 8.832893-6 2.317395+2 4.381672-6 4.623810+2 2.184386-6 1.840772+3 5.465523-7 1.000000+5 1.004800-8 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.168300-4 1.624000-4 1.000000+5 1.624000-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.168300-4 5.770600-8 1.000000+5 5.770600-8 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.168300-4 3.543723-4 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.425900-4 2.364122+5 5.011872-4 2.261027+5 5.188000-4 2.222478+5 6.000000-4 2.015220+5 6.760830-4 1.832100+5 7.413102-4 1.689225+5 8.035261-4 1.564276+5 8.709636-4 1.437822+5 9.700000-4 1.273040+5 1.059254-3 1.146022+5 1.161449-3 1.018969+5 1.303167-3 8.729631+4 1.428894-3 7.664616+4 1.603245-3 6.465164+4 1.778279-3 5.510058+4 2.000000-3 4.561960+4 2.238721-3 3.778309+4 2.511886-3 3.095455+4 2.851018-3 2.465664+4 3.198895-3 1.990679+4 3.589219-3 1.596735+4 4.073803-3 1.243353+4 4.623810-3 9.606779+3 5.308844-3 7.188528+3 6.095369-3 5.331545+3 7.000000-3 3.918348+3 8.035261-3 2.858003+3 9.120108-3 2.123369+3 1.023293-2 1.610815+3 1.161449-2 1.180679+3 1.333521-2 8.345407+2 1.513561-2 6.025168+2 1.717908-2 4.320438+2 1.972423-2 2.982770+2 2.264644-2 2.042722+2 2.600160-2 1.388267+2 3.000000-2 9.235520+1 3.467369-2 6.067034+1 4.027170-2 3.899621+1 4.677351-2 2.488162+1 5.495409-2 1.522203+1 6.531306-2 8.923313+0 7.943282-2 4.833105+0 1.011580-1 2.246169+0 1.717908-1 4.151439-1 2.089296-1 2.238933-1 2.454709-1 1.355808-1 2.818383-1 8.881847-2 3.198895-1 6.069058-2 3.589219-1 4.321893-2 4.027170-1 3.099947-2 4.466836-1 2.314558-2 4.954502-1 1.740071-2 5.495409-1 1.317859-2 6.095369-1 1.005709-2 6.760830-1 7.736266-3 7.498942-1 5.998495-3 8.609938-1 4.312741-3 9.225714-1 3.679724-3 9.772372-1 3.241953-3 1.047129+0 2.805990-3 1.135011+0 2.386590-3 1.250000+0 1.981204-3 1.380384+0 1.649035-3 1.698244+0 1.138018-3 1.905461+0 9.325135-4 2.162719+0 7.557569-4 2.511886+0 5.939500-4 2.884032+0 4.787949-4 3.311311+0 3.889122-4 3.845918+0 3.128793-4 4.518559+0 2.494851-4 5.308844+0 2.004343-4 6.309573+0 1.597300-4 7.762471+0 1.226830-4 9.440609+0 9.643779-5 1.202264+1 7.231268-5 1.531087+1 5.468282-5 2.018366+1 4.008921-5 2.722701+1 2.888411-5 3.758374+1 2.044920-5 5.821032+1 1.291387-5 9.332543+1 7.933740-6 1.778279+2 4.113548-6 3.548134+2 2.047694-6 1.412538+3 5.117093-7 1.000000+5 7.216100-9 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.425900-4 1.526800-4 1.000000+5 1.526800-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.425900-4 2.555600-8 1.000000+5 2.555600-8 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.425900-4 2.898844-4 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.782600-4 1.569236+5 2.840000-4 1.557235+5 2.920000-4 1.512257+5 2.965000-4 1.460940+5 3.080000-4 1.325968+5 3.130000-4 1.280108+5 3.180000-4 1.244552+5 3.220000-4 1.223636+5 3.260000-4 1.209252+5 3.311311-4 1.200114+5 3.350000-4 1.199580+5 3.390000-4 1.204228+5 3.450000-4 1.220076+5 3.507519-4 1.243937+5 3.580000-4 1.284288+5 3.650000-4 1.332212+5 3.758374-4 1.418955+5 4.000000-4 1.633228+5 4.150000-4 1.762944+5 4.280000-4 1.868696+5 4.430000-4 1.981376+5 4.570882-4 2.077156+5 4.731513-4 2.172775+5 4.897788-4 2.255559+5 5.080000-4 2.328428+5 5.248075-4 2.381131+5 5.450000-4 2.427872+5 5.650000-4 2.457480+5 5.900000-4 2.474472+5 6.165950-4 2.474208+5 6.456542-4 2.457301+5 6.760830-4 2.423749+5 7.079458-4 2.374195+5 7.413102-4 2.311367+5 7.852356-4 2.219506+5 8.317638-4 2.116159+5 8.810489-4 2.002720+5 9.332543-4 1.882496+5 1.000000-3 1.734996+5 1.070000-3 1.590144+5 1.148154-3 1.440264+5 1.244515-3 1.275817+5 1.333521-3 1.142209+5 1.450000-3 9.905040+4 1.570000-3 8.591640+4 1.698244-3 7.410465+4 1.850000-3 6.263680+4 2.018366-3 5.237098+4 2.213095-3 4.301458+4 2.426610-3 3.504425+4 2.660725-3 2.834886+4 2.951209-3 2.214098+4 3.235937-3 1.764524+4 3.548134-3 1.397460+4 3.935501-3 1.066838+4 4.400000-3 7.909720+3 4.897788-3 5.886880+3 5.432503-3 4.393419+3 6.025596-3 3.256625+3 6.683439-3 2.398458+3 7.413102-3 1.755078+3 8.222426-3 1.276373+3 9.120108-3 9.226029+2 1.023293-2 6.388939+2 1.148154-2 4.392257+2 1.288250-2 2.998657+2 1.462177-2 1.955469+2 1.659587-2 1.265356+2 1.883649-2 8.128914+1 2.162719-2 4.977804+1 2.483133-2 3.025580+1 2.884032-2 1.750739+1 3.388442-2 9.634580+0 4.027170-2 5.039512+0 4.897788-2 2.397303+0 6.309573-2 9.076330-1 1.109175-1 1.031681-1 1.348963-1 4.882487-2 1.621810-1 2.431942-2 1.883649-1 1.390026-2 2.162719-1 8.350622-3 2.454709-1 5.269326-3 2.786121-1 3.349576-3 3.126079-1 2.234682-3 3.507519-1 1.502120-3 3.890451-1 1.058018-3 4.315191-1 7.507185-4 4.786301-1 5.366793-4 5.308844-1 3.864977-4 5.821032-1 2.906695-4 6.309573-1 2.280562-4 6.918310-1 1.741906-4 7.585776-1 1.340618-4 8.035261-1 1.141874-4 8.609938-1 9.395400-5 9.120108-1 8.038576-5 9.549926-1 7.136448-5 1.000000+0 6.375041-5 1.047129+0 5.735634-5 1.096478+0 5.195668-5 1.161449+0 4.628639-5 1.230269+0 4.152685-5 1.333521+0 3.591206-5 1.479108+0 3.004190-5 1.840772+0 2.044122-5 2.018366+0 1.748796-5 2.344229+0 1.369836-5 2.722701+0 1.080974-5 3.090295+0 8.904027-6 3.589219+0 7.138317-6 4.168694+0 5.764985-6 4.897788+0 4.614474-6 5.821032+0 3.664429-6 7.000000+0 2.887800-6 8.413951+0 2.292623-6 1.023293+1 1.807863-6 1.303167+1 1.359459-6 1.659587+1 1.030844-6 2.187762+1 7.574471-7 3.019952+1 5.334425-7 4.315191+1 3.649859-7 6.683439+1 2.310807-7 1.174898+2 1.294878-7 2.344229+2 6.423996-8 4.677351+2 3.202743-8 3.715352+3 4.014668-9 1.000000+5 1.49050-10 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.782600-4 1.082700-4 1.000000+5 1.082700-4 1 75000 7 7 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.782600-4 3.546300-8 1.000000+5 3.546300-8 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.782600-4 1.699545-4 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.645400-4 2.501622+5 2.740000-4 2.272242+5 2.760000-4 2.222970+5 2.900000-4 1.938858+5 2.940000-4 1.876794+5 2.980000-4 1.828956+5 3.019952-4 1.795060+5 3.054921-4 1.776158+5 3.090295-4 1.766616+5 3.130000-4 1.766442+5 3.167000-4 1.775266+5 3.220000-4 1.800966+5 3.280000-4 1.845504+5 3.350000-4 1.914084+5 3.430000-4 2.010096+5 3.530000-4 2.150676+5 3.780000-4 2.551134+5 3.890451-4 2.724157+5 4.000000-4 2.886582+5 4.120975-4 3.052971+5 4.265795-4 3.233799+5 4.415704-4 3.399579+5 4.570882-4 3.547104+5 4.731513-4 3.672449+5 4.897788-4 3.774418+5 5.080000-4 3.858474+5 5.248075-4 3.913963+5 5.450000-4 3.954246+5 5.692300-4 3.970040+5 5.956621-4 3.957187+5 6.237348-4 3.917961+5 6.531306-4 3.853839+5 6.850000-4 3.762396+5 7.244360-4 3.627718+5 7.673615-4 3.467877+5 8.128305-4 3.292841+5 8.609938-4 3.104685+5 9.225714-4 2.868774+5 9.885531-4 2.630286+5 1.059254-3 2.393537+5 1.135011-3 2.162824+5 1.224700-3 1.920265+5 1.318257-3 1.699370+5 1.428894-3 1.475702+5 1.548817-3 1.271944+5 1.690000-3 1.074612+5 1.840772-3 9.039909+4 2.018366-3 7.444709+4 2.213095-3 6.080901+4 2.426610-3 4.930266+4 2.691535-3 3.859705+4 2.951209-3 3.081238+4 3.235937-3 2.444201+4 3.589219-3 1.868749+4 4.027170-3 1.373965+4 4.500000-3 1.012368+4 5.000000-3 7.517820+3 5.500000-3 5.707626+3 6.025596-3 4.361084+3 6.683439-3 3.193053+3 7.413102-3 2.322630+3 8.128305-3 1.740999+3 9.120108-3 1.205984+3 1.023293-2 8.292341+2 1.148154-2 5.659336+2 1.288250-2 3.834704+2 1.445440-2 2.580438+2 1.640590-2 1.656138+2 1.862087-2 1.054835+2 2.113489-2 6.670417+1 2.426610-2 4.015091+1 2.786121-2 2.398953+1 3.235937-2 1.362605+1 3.801894-2 7.350846+0 4.518559-2 3.763969+0 5.495409-2 1.748419+0 7.244360-2 5.868457-1 1.083927-1 1.189277-1 1.333521-1 5.260958-2 1.548817-1 2.939567-2 1.778279-1 1.731070-2 2.018366-1 1.073259-2 2.264644-1 6.996714-3 2.511886-1 4.791341-3 2.786121-1 3.303457-3 3.054921-1 2.388721-3 3.349654-1 1.738663-3 3.672823-1 1.273873-3 4.027170-1 9.397885-4 4.415705-1 6.982748-4 4.841724-1 5.228317-4 5.248075-1 4.085768-4 5.688529-1 3.213843-4 6.095369-1 2.631444-4 6.606935-1 2.100585-4 7.161434-1 1.688214-4 8.222427-1 1.173126-4 8.810489-1 9.795877-5 9.332543-1 8.485295-5 9.772372-1 7.606411-5 1.023293+0 6.858716-5 1.083927+0 6.068168-5 1.148154+0 5.402318-5 1.230269+0 4.731280-5 1.333521+0 4.081880-5 1.496236+0 3.335232-5 1.778279+0 2.456039-5 1.972423+0 2.056944-5 2.290868+0 1.609186-5 2.660725+0 1.268359-5 3.054921+0 1.025514-5 3.548134+0 8.216617-6 4.120975+0 6.632257-6 4.841724+0 5.305797-6 5.754399+0 4.211172-6 6.918310+0 3.318025-6 8.317638+0 2.632281-6 1.011579+1 2.074729-6 1.288250+1 1.559565-6 1.640590+1 1.182091-6 2.162719+1 8.683334-7 2.985383+1 6.113569-7 4.216965+1 4.232941-7 6.606934+1 2.647030-7 1.148154+2 1.500599-7 2.290868+2 7.442784-8 4.570882+2 3.710307-8 1.819701+3 9.282956-9 1.000000+5 1.68710-10 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.645400-4 1.062100-4 1.000000+5 1.062100-4 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.645400-4 1.583300-4 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 5.564000-5 2.463996+5 5.590000-5 2.540976+5 5.623413-5 2.630265+5 5.665000-5 2.727084+5 5.725000-5 2.844084+5 5.770000-5 2.916630+5 5.830000-5 2.999250+5 5.900000-5 3.076884+5 5.970000-5 3.137274+5 6.070000-5 3.201732+5 6.180000-5 3.249888+5 6.309573-5 3.282905+5 6.456542-5 3.297742+5 6.683439-5 3.293861+5 7.079458-5 3.271484+5 7.300000-5 3.278820+5 7.483300-5 3.307457+5 7.650000-5 3.355734+5 7.800000-5 3.420150+5 7.950000-5 3.506100+5 8.080000-5 3.598716+5 8.230000-5 3.727362+5 8.413951-5 3.916120+5 8.609938-5 4.154034+5 8.810489-5 4.434936+5 9.015711-5 4.757637+5 9.400000-5 5.445912+5 1.023293-4 7.217994+5 1.083927-4 8.680715+5 1.135011-4 9.998926+5 1.190000-4 1.148568+6 1.244515-4 1.299962+6 1.288400-4 1.422129+6 1.333521-4 1.545828+6 1.380384-4 1.669545+6 1.430000-4 1.792440+6 1.480000-4 1.906236+6 1.531087-4 2.011894+6 1.584893-4 2.112278+6 1.650000-4 2.219892+6 1.720000-4 2.319474+6 1.800000-4 2.414220+6 1.883649-4 2.494127+6 1.972423-4 2.557769+6 2.041738-4 2.592822+6 2.120000-4 2.617752+6 2.220000-4 2.629134+6 2.330000-4 2.619732+6 2.454709-4 2.588743+6 2.600160-4 2.534061+6 2.730000-4 2.472708+6 2.851018-4 2.406661+6 3.000000-4 2.316258+6 3.162278-4 2.210456+6 3.350000-4 2.083566+6 3.550000-4 1.948824+6 3.780000-4 1.799574+6 4.000000-4 1.662840+6 4.216965-4 1.534744+6 4.466836-4 1.397645+6 4.731513-4 1.264653+6 5.069907-4 1.113681+6 5.370318-4 9.953420+5 5.754399-4 8.631018+5 6.100000-4 7.609380+5 6.606934-4 6.353115+5 7.000000-4 5.544456+5 7.585776-4 4.552682+5 8.128305-4 3.818821+5 8.810489-4 3.090453+5 9.700000-4 2.376864+5 1.059254-3 1.853763+5 1.148154-3 1.466377+5 1.244515-3 1.153522+5 1.364583-3 8.704356+4 1.513561-3 6.287076+4 1.678804-3 4.501864+4 1.840772-3 3.322948+4 2.041738-3 2.343731+4 2.264644-3 1.640908+4 2.511886-3 1.140509+4 2.786121-3 7.871315+3 3.090295-3 5.395543+3 3.427678-3 3.674187+3 3.845918-3 2.379348+3 4.315191-3 1.528872+3 4.841724-3 9.751475+2 5.432503-3 6.176930+2 6.095369-3 3.886293+2 6.918310-3 2.316477+2 7.852356-3 1.370017+2 8.912509-3 8.037619+1 1.011579-2 4.678189+1 1.148154-2 2.701079+1 1.303167-2 1.548092+1 1.500000-2 8.277480+0 1.737801-2 4.266455+0 2.041738-2 2.048436+0 2.371374-2 1.029733+0 2.851018-2 4.379254-1 3.467369-2 1.751197-1 4.570882-2 4.756974-2 7.498942-2 4.578873-3 9.120108-2 1.826481-3 1.083927-1 8.174930-4 1.258925-1 4.102197-4 1.445440-1 2.186696-4 1.640590-1 1.237487-4 1.840772-1 7.425225-5 2.065380-1 4.486035-5 2.290868-1 2.868281-5 2.540973-1 1.846696-5 2.786121-1 1.256672-5 3.054921-1 8.607027-6 3.349654-1 5.934344-6 3.715352-1 3.935959-6 4.216965-1 2.406260-6 4.570882-1 1.769901-6 4.954502-1 1.310355-6 5.370318-1 9.779377-7 5.821032-1 7.354670-7 6.237348-1 5.800037-7 6.760830-1 4.430677-7 7.328245-1 3.408793-7 8.035261-1 2.543446-7 8.511380-1 2.103826-7 8.912509-1 1.818032-7 9.225714-1 1.637024-7 9.549926-1 1.481208-7 9.885531-1 1.347817-7 1.023293+0 1.234357-7 1.059254+0 1.137184-7 1.096478+0 1.053162-7 1.148154+0 9.574796-8 1.202264+0 8.764201-8 1.288250+0 7.743136-8 1.380384+0 6.888523-8 1.500000+0 6.018100-8 1.862087+0 4.112945-8 2.041738+0 3.519828-8 2.371374+0 2.758411-8 2.754229+0 2.178095-8 3.126079+0 1.795266-8 3.630781+0 1.440109-8 4.265795+0 1.145064-8 5.011872+0 9.175136-9 5.956621+0 7.293612-9 7.244360+0 5.671031-9 8.609938+0 4.571734-9 1.047129+1 3.608221-9 1.318257+1 2.751760-9 1.678804+1 2.087273-9 2.213095+1 1.534251-9 3.054921+1 1.080805-9 4.365158+1 7.39690-10 6.760830+1 4.68417-10 1.188502+2 2.62520-10 2.371374+2 1.30252-10 4.731513+2 6.49433-11 1.883649+3 1.62504-11 1.000000+5 3.05740-13 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 5.564000-5 5.564000-5 1.000000+5 5.564000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.564000-5 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 5.299000-5 3.717160+5 5.330000-5 3.835336+5 5.370318-5 3.965630+5 5.410000-5 4.074624+5 5.470000-5 4.209648+5 5.530000-5 4.316448+5 5.600000-5 4.413024+5 5.688529-5 4.503051+5 5.800000-5 4.576896+5 5.900000-5 4.616280+5 6.025596-5 4.640490+5 6.237348-5 4.640329+5 6.760830-5 4.578656+5 6.950000-5 4.579352+5 7.079458-5 4.596541+5 7.244360-5 4.643165+5 7.413102-5 4.724158+5 7.580000-5 4.841184+5 7.730000-5 4.979776+5 7.900000-5 5.176376+5 8.080000-5 5.430480+5 8.230000-5 5.677512+5 8.413951-5 6.022314+5 8.650000-5 6.527056+5 9.015711-5 7.429039+5 9.900000-5 1.004768+6 1.047129-4 1.196552+6 1.100000-4 1.385584+6 1.150000-4 1.572240+6 1.205000-4 1.782720+6 1.250400-4 1.956956+6 1.300000-4 2.143592+6 1.350000-4 2.323776+6 1.400000-4 2.492520+6 1.450000-4 2.647456+6 1.500000-4 2.787488+6 1.560000-4 2.936200+6 1.621810-4 3.069423+6 1.690000-4 3.196200+6 1.760000-4 3.304936+6 1.840772-4 3.407273+6 1.927525-4 3.490011+6 2.000000-4 3.537248+6 2.089296-4 3.569586+6 2.192000-4 3.576681+6 2.300000-4 3.556504+6 2.400000-4 3.517992+6 2.540973-4 3.440418+6 2.691535-4 3.337839+6 2.838200-4 3.222872+6 2.985383-4 3.094730+6 3.162278-4 2.931228+6 3.350000-4 2.755224+6 3.550000-4 2.570104+6 3.780000-4 2.366176+6 4.000000-4 2.181688+6 4.216965-4 2.009184+6 4.518559-4 1.789687+6 4.786301-4 1.614740+6 5.150000-4 1.405272+6 5.432503-4 1.262730+6 5.821032-4 1.091164+6 6.237348-4 9.368252+5 6.760830-4 7.772636+5 7.161434-4 6.764963+5 7.852356-4 5.369466+5 8.511380-4 4.349796+5 9.120108-4 3.610988+5 1.000000-3 2.795208+5 1.096478-3 2.144932+5 1.216186-3 1.577036+5 1.333521-3 1.190090+5 1.479108-3 8.596631+4 1.621810-3 6.388981+4 1.798871-3 4.541138+4 2.000000-3 3.177512+4 2.213095-3 2.241963+4 2.454709-3 1.557536+4 2.722701-3 1.074308+4 3.019952-3 7.358781+3 3.349654-3 5.007271+3 3.758374-3 3.239520+3 4.216965-3 2.079365+3 4.731513-3 1.324608+3 5.308844-3 8.378216+2 6.000000-3 5.110024+2 6.760830-3 3.132164+2 7.585776-3 1.940015+2 8.609938-3 1.136487+2 9.772372-3 6.604817+1 1.096478-2 4.003935+1 1.244515-2 2.291385+1 1.412538-2 1.301907+1 1.621810-2 6.974212+0 1.883649-2 3.519444+0 2.187762-2 1.763637+0 2.570396-2 8.307017-1 3.090295-2 3.485823-1 3.845918-2 1.232535-1 7.328245-2 5.621834-3 9.120108-2 1.984563-3 1.071519-1 9.276764-4 1.230269-1 4.866160-4 1.396368-1 2.710671-4 1.566751-1 1.602817-4 1.757924-1 9.546063-5 1.949845-1 6.029806-5 2.162719-1 3.836553-5 2.371374-1 2.583896-5 2.600160-1 1.751935-5 2.851018-1 1.196403-5 3.126079-1 8.233177-6 3.388442-1 5.975679-6 3.672823-1 4.365884-6 3.981072-1 3.212643-6 4.315191-1 2.381832-6 4.623810-1 1.854989-6 4.954502-1 1.453924-6 5.308844-1 1.147995-6 5.688529-1 9.124306-7 6.095369-1 7.298499-7 6.606935-1 5.670718-7 7.161434-1 4.438895-7 8.035261-1 3.161195-7 8.511380-1 2.656906-7 8.912509-1 2.323207-7 9.332543-1 2.043270-7 9.772372-1 1.810116-7 1.011579+0 1.662292-7 1.059254+0 1.494788-7 1.109175+0 1.354047-7 1.161449+0 1.234207-7 1.230269+0 1.107052-7 1.318257+0 9.782895-8 1.513561+0 7.740010-8 1.819701+0 5.591275-8 2.000000+0 4.759500-8 2.344229+0 3.672180-8 2.722701+0 2.897747-8 3.090295+0 2.386822-8 3.589219+0 1.913488-8 4.168694+0 1.545347-8 4.897788+0 1.236943-8 5.821032+0 9.822796-9 7.000000+0 7.740900-9 8.413951+0 6.145738-9 1.023293+1 4.846115-9 1.303167+1 3.644103-9 1.659587+1 2.763246-9 2.162719+1 2.056349-9 2.951209+1 1.465865-9 4.168694+1 1.014657-9 6.531306+1 6.34378-10 1.122018+2 3.63811-10 2.238721+2 1.80407-10 4.466836+2 8.99240-11 1.778279+3 2.24956-11 1.000000+5 3.99530-13 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 5.299000-5 5.299000-5 1.000000+5 5.299000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.299000-5 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 9.157000-5 6.927920+4 9.310000-5 6.588480+4 9.400000-5 6.430000+4 9.550000-5 6.230700+4 9.700000-5 6.092560+4 9.850000-5 5.998540+4 1.000000-4 5.937780+4 1.020000-4 5.897960+4 1.040000-4 5.894080+4 1.071519-4 5.936566+4 1.109175-4 6.034899+4 1.260000-4 6.545180+4 1.318257-4 6.697340+4 1.380384-4 6.808164+4 1.450000-4 6.873580+4 1.513561-4 6.888374+4 1.603245-4 6.855305+4 1.698244-4 6.775723+4 1.819701-4 6.637412+4 1.950000-4 6.461900+4 2.089296-4 6.249377+4 2.238721-4 5.997666+4 2.400000-4 5.710400+4 2.600160-4 5.353366+4 2.851018-4 4.932909+4 3.126079-4 4.517249+4 3.427678-4 4.108014+4 3.801894-4 3.660486+4 4.315191-4 3.153489+4 4.841724-4 2.735861+4 5.559043-4 2.287346+4 6.456542-4 1.870641+4 7.673615-4 1.469848+4 9.015711-4 1.165531+4 1.083927-3 8.875839+3 1.318257-3 6.590590+3 1.584893-3 4.942731+3 1.905461-3 3.679954+3 2.290868-3 2.719174+3 2.754229-3 1.993665+3 3.311311-3 1.450596+3 4.000000-3 1.038682+3 4.841724-3 7.353701+2 5.888437-3 5.120839+2 7.161434-3 3.538563+2 8.709636-3 2.427040+2 1.059254-2 1.652258+2 1.288250-2 1.116204+2 1.548817-2 7.659775+1 1.862087-2 5.216915+1 2.238721-2 3.525529+1 2.660725-2 2.423918+1 3.162278-2 1.654687+1 3.758374-2 1.121411+1 4.518559-2 7.347252+0 5.248075-2 5.183243+0 6.237348-2 3.437383+0 7.498942-2 2.200711+0 8.912509-2 1.438188+0 1.109175-1 8.319998-1 1.445440-1 4.251858-1 2.511886-1 1.031120-1 3.126079-1 5.924992-2 3.715352-1 3.852372-2 4.265795-1 2.747843-2 4.897788-1 1.973875-2 5.559043-1 1.467496-2 6.237348-1 1.127980-2 7.079458-1 8.509034-3 8.035261-1 6.469453-3 9.015711-1 5.075277-3 1.000000+0 4.109700-3 1.161449+0 3.060541-3 1.318257+0 2.401904-3 1.496236+0 1.899671-3 1.678804+0 1.545130-3 1.883649+0 1.265801-3 2.113489+0 1.044856-3 2.454709+0 8.202119-4 2.851018+0 6.488199-4 3.235937+0 5.357522-4 3.758374+0 4.305167-4 4.415704+0 3.429022-4 5.188000+0 2.751999-4 6.165950+0 2.190988-4 7.585776+0 1.681269-4 9.120108+0 1.338884-4 1.109175+1 1.058909-4 1.364583+1 8.308245-5 1.737801+1 6.308338-5 2.290868+1 4.641439-5 3.198895+1 3.232388-5 4.677351+1 2.161441-5 7.079458+1 1.403450-5 1.273503+2 7.687893-6 2.540973+2 3.816928-6 5.069907+2 1.903760-6 4.027170+3 2.387280-7 1.000000+5 9.607100-9 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 9.157000-5 9.157000-5 1.000000+5 9.157000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 9.157000-5 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 6.097000-5 1.721212+6 6.135000-5 1.751222+6 6.170000-5 1.772444+6 6.220000-5 1.792752+6 6.280000-5 1.805338+6 6.350000-5 1.806342+6 6.420000-5 1.797276+6 6.500000-5 1.776318+6 6.610000-5 1.735772+6 6.730000-5 1.680854+6 6.850000-5 1.618532+6 7.000000-5 1.534672+6 7.161434-5 1.441427+6 7.350000-5 1.333086+6 7.585776-5 1.203033+6 7.852356-5 1.067157+6 8.222426-5 9.017623+5 8.810489-5 6.937443+5 9.900000-5 4.443360+5 1.071519-4 3.307705+5 1.150000-4 2.558940+5 1.230269-4 2.016276+5 1.303167-4 1.655977+5 1.380384-4 1.370351+5 1.450000-4 1.173856+5 1.520000-4 1.019022+5 1.584893-4 9.043716+4 1.659587-4 7.984626+4 1.737801-4 7.101666+4 1.820000-4 6.360300+4 1.905461-4 5.741958+4 1.995262-4 5.219487+4 2.089296-4 4.779199+4 2.190000-4 4.399780+4 2.300000-4 4.067460+4 2.426610-4 3.763015+4 2.570396-4 3.489038+4 2.730000-4 3.246320+4 2.951209-4 2.981092+4 3.235937-4 2.718190+4 3.672823-4 2.416290+4 4.897788-4 1.864843+4 5.688529-4 1.618889+4 6.531306-4 1.411246+4 7.500000-4 1.220356+4 8.609938-4 1.047501+4 9.885531-4 8.914573+3 1.122018-3 7.633958+3 1.273503-3 6.491378+3 1.428894-3 5.566543+3 1.603245-3 4.745116+3 1.819701-3 3.953086+3 2.041738-3 3.326193+3 2.317395-3 2.730899+3 2.630268-3 2.225275+3 2.985383-3 1.799672+3 3.388442-3 1.444563+3 3.845918-3 1.150929+3 4.365158-3 9.102054+2 4.954502-3 7.146134+2 5.623413-3 5.570981+2 6.382635-3 4.311814+2 7.244360-3 3.313727+2 8.222426-3 2.529313+2 9.332543-3 1.917290+2 1.059254-2 1.443430+2 1.208000-2 1.067387+2 1.380384-2 7.798388+1 1.566751-2 5.748492+1 1.798871-2 4.090126+1 2.065380-2 2.888087+1 2.371374-2 2.024307+1 2.722701-2 1.408894+1 3.090295-2 1.006975+1 3.548134-2 6.923893+0 4.120975-2 4.580316+0 4.841724-2 2.912920+0 5.821032-2 1.722454+0 7.161434-2 9.456961-1 8.709636-2 5.331721-1 1.380384-1 1.365551-1 1.840772-1 5.844823-2 2.264644-1 3.193514-2 2.691535-1 1.943672-2 3.126079-1 1.272989-2 3.589219-1 8.674335-3 4.073803-1 6.145526-3 4.623810-1 4.386929-3 5.188000-1 3.252128-3 5.821032-1 2.428706-3 6.456542-1 1.880539-3 7.161434-1 1.466018-3 8.128305-1 1.090716-3 8.810489-1 9.067099-4 9.440609-1 7.783020-4 1.011579+0 6.725311-4 1.109175+0 5.581985-4 1.216186+0 4.664176-4 1.348963+0 3.840671-4 1.603245+0 2.811597-4 1.819701+0 2.250990-4 2.018366+0 1.889128-4 2.344229+0 1.479578-4 2.722701+0 1.167603-4 3.090295+0 9.618081-5 3.589219+0 7.710852-5 4.168694+0 6.227453-5 4.897788+0 4.984693-5 5.821032+0 3.958367-5 7.000000+0 3.119400-5 8.413951+0 2.476586-5 1.023293+1 1.952910-5 1.303167+1 1.468550-5 1.640590+1 1.128132-5 2.137962+1 8.392456-6 2.951209+1 5.907010-6 4.168694+1 4.088884-6 6.531306+1 2.556433-6 1.122018+2 1.466042-6 2.238721+2 7.270101-7 4.466836+2 3.623747-7 1.778279+3 9.065324-8 1.000000+5 1.610000-9 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 6.097000-5 6.097000-5 1.000000+5 6.097000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 6.097000-5 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 4.940000-5 3.919980+6 4.985000-5 3.928796+6 5.040000-5 3.912504+6 5.110000-5 3.861772+6 5.190000-5 3.775452+6 5.289000-5 3.644230+6 5.400000-5 3.478600+6 5.500000-5 3.322060+6 5.650000-5 3.085020+6 5.821032-5 2.821811+6 6.025596-5 2.526623+6 6.237348-5 2.248886+6 6.531306-5 1.912607+6 7.762471-5 1.021407+6 8.222426-5 8.345830+5 8.650000-5 7.032600+5 9.015711-5 6.147676+5 9.440609-5 5.326575+5 9.900000-5 4.628400+5 1.035142-4 4.086745+5 1.080000-4 3.656132+5 1.122018-4 3.328080+5 1.170000-4 3.022716+5 1.220000-4 2.765564+5 1.273503-4 2.543308+5 1.333521-4 2.343139+5 1.400000-4 2.166056+5 1.480000-4 1.996980+5 1.566751-4 1.851303+5 1.678804-4 1.702201+5 1.819701-4 1.555863+5 2.000000-4 1.411460+5 2.851018-4 1.004033+5 3.311311-4 8.638204+4 3.801894-4 7.461786+4 4.365158-4 6.398677+4 4.954502-4 5.519088+4 5.688529-4 4.662046+4 6.500000-4 3.934600+4 7.500000-4 3.254624+4 8.511380-4 2.735734+4 9.772372-4 2.247693+4 1.122018-3 1.834154+4 1.303167-3 1.459899+4 1.500000-3 1.168856+4 1.698244-3 9.547464+3 1.927525-3 7.713561+3 2.213095-3 6.066217+3 2.511886-3 4.833158+3 2.851018-3 3.824472+3 3.235937-3 3.005303+3 3.672823-3 2.345186+3 4.168694-3 1.817364+3 4.731513-3 1.398570+3 5.370318-3 1.068936+3 6.095369-3 8.113672+2 6.918310-3 6.115603+2 7.852356-3 4.579269+2 8.912509-3 3.405099+2 1.011579-2 2.514553+2 1.148154-2 1.844010+2 1.303167-2 1.342917+2 1.479108-2 9.712521+1 1.678804-2 6.975699+1 1.927525-2 4.824366+1 2.213095-2 3.310505+1 2.511886-2 2.328173+1 2.884032-2 1.574148+1 3.349654-2 1.022214+1 3.890451-2 6.586994+0 4.518559-2 4.212642+0 5.308844-2 2.583392+0 6.237348-2 1.573041+0 7.585776-2 8.539421-1 9.660509-2 3.979885-1 1.659587-1 7.098565-2 2.041738-1 3.691785-2 2.398833-1 2.233973-2 2.754229-1 1.462089-2 3.126079-1 9.979773-3 3.548134-1 6.863373-3 3.981072-1 4.919734-3 4.415705-1 3.670663-3 4.897788-1 2.757419-3 5.432503-1 2.086596-3 6.025596-1 1.591042-3 6.683439-1 1.223126-3 7.413102-1 9.478152-4 8.609938-1 6.628384-4 9.225714-1 5.655266-4 9.772372-1 4.982196-4 1.047129+0 4.311897-4 1.135011+0 3.667334-4 1.250000+0 3.044500-4 1.380384+0 2.534104-4 1.678804+0 1.784858-4 1.883649+0 1.461494-4 2.113489+0 1.205975-4 2.454709+0 9.466385-5 2.851018+0 7.489027-5 3.235937+0 6.184213-5 3.758374+0 4.969470-5 4.415704+0 3.958137-5 5.188000+0 3.176650-5 6.165950+0 2.529056-5 7.498942+0 1.969077-5 9.015711+0 1.567359-5 1.083927+1 1.256113-5 1.333521+1 9.848394-6 1.698244+1 7.472882-6 2.238721+1 5.494689-6 3.090295+1 3.872001-6 4.415704+1 2.650583-6 6.760830+1 1.698953-6 1.188502+2 9.521328-7 2.371374+2 4.724325-7 4.731513+2 2.355548-7 3.758374+3 2.952792-8 1.000000+5 1.108900-9 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 4.940000-5 4.940000-5 1.000000+5 4.940000-5 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 4.940000-5 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 9.520000-6 2.927260+6 9.900000-6 3.151140+6 1.200000-5 4.637860+6 1.303167-5 5.432605+6 1.396368-5 6.156526+6 1.479108-5 6.793670+6 1.570000-5 7.479140+6 1.659587-5 8.129404+6 1.757924-5 8.799718+6 1.850000-5 9.370340+6 1.927525-5 9.795465+6 2.000000-5 1.013908+7 2.070000-5 1.041388+7 2.150000-5 1.065802+7 2.230000-5 1.082394+7 2.300000-5 1.090204+7 2.371374-5 1.091649+7 2.454709-5 1.085349+7 2.540973-5 1.070661+7 2.630268-5 1.048008+7 2.722701-5 1.017999+7 2.818383-5 9.811848+6 2.917427-5 9.388741+6 3.019952-5 8.921351+6 3.126079-5 8.422725+6 3.260000-5 7.794480+6 3.402400-5 7.148794+6 3.570000-5 6.436100+6 3.758374-5 5.707613+6 3.981072-5 4.951176+6 4.220000-5 4.259100+6 4.500000-5 3.582340+6 4.800000-5 2.989420+6 5.128614-5 2.464848+6 5.432503-5 2.069902+6 5.754399-5 1.726386+6 6.095369-5 1.429581+6 6.456542-5 1.174574+6 6.839116-5 9.577055+5 7.244360-5 7.751251+5 7.673615-5 6.227956+5 8.128305-5 4.971913+5 8.609938-5 3.944519+5 9.225714-5 2.964831+5 9.800000-5 2.294780+5 1.047129-4 1.719454+5 1.109175-4 1.329851+5 1.190000-4 9.637080+4 1.412538-4 4.312996+4 1.480000-4 3.482500+4 1.531087-4 2.997513+4 1.580000-4 2.624480+4 1.621810-4 2.363500+4 1.659587-4 2.166292+4 1.698244-4 1.996836+4 1.740000-4 1.844994+4 1.780000-4 1.725242+4 1.820000-4 1.626838+4 1.862087-4 1.542935+4 1.905461-4 1.474278+4 1.950000-4 1.419496+4 1.995262-4 1.377346+4 2.041738-4 1.345815+4 2.089296-4 1.323748+4 2.143800-4 1.308697+4 2.200000-4 1.302058+4 2.264644-4 1.302837+4 2.350000-4 1.313896+4 2.454709-4 1.336792+4 2.917427-4 1.462704+4 3.090295-4 1.498874+4 3.273407-4 1.526360+4 3.467369-4 1.544676+4 3.672823-4 1.553293+4 3.890451-4 1.551855+4 4.073803-4 1.542845+4 4.315191-4 1.521776+4 4.570882-4 1.491605+4 4.841724-4 1.453186+4 5.128614-4 1.407342+4 5.495409-4 1.344123+4 5.888437-4 1.274170+4 6.309573-4 1.199610+4 6.760830-4 1.122135+4 7.328245-4 1.030258+4 7.943282-4 9.385134+3 8.609938-4 8.482095+3 9.332543-4 7.610852+3 1.011579-3 6.782805+3 1.096478-3 6.004852+3 1.188502-3 5.281688+3 1.288250-3 4.616219+3 1.412538-3 3.927838+3 1.548817-3 3.316018+3 1.698244-3 2.778269+3 1.862087-3 2.310372+3 2.041738-3 1.907314+3 2.238721-3 1.563430+3 2.454709-3 1.272706+3 2.697000-3 1.024203+3 2.985383-3 8.039687+2 3.311311-3 6.230873+2 3.672823-3 4.791509+2 4.073803-3 3.656910+2 4.518559-3 2.770641+2 5.069907-3 2.021558+2 5.623413-3 1.509509+2 6.309573-3 1.082065+2 7.079458-3 7.696857+1 7.943282-3 5.431776+1 8.912509-3 3.803369+1 1.000000-2 2.643333+1 1.122018-2 1.824092+1 1.258925-2 1.250145+1 1.428894-2 8.186118+0 1.603245-2 5.531670+0 1.819701-2 3.568053+0 2.065380-2 2.285236+0 2.371374-2 1.395020+0 2.722701-2 8.454710-1 3.162278-2 4.877931-1 3.715352-2 2.676627-1 4.466836-2 1.337053-1 5.432503-2 6.346317-2 7.244360-2 2.100810-2 1.122019-1 3.900755-3 1.380384-1 1.768320-3 1.640590-1 9.210139-4 1.905461-1 5.268934-4 2.187762-1 3.168088-4 2.483133-1 2.000815-4 2.818383-1 1.272983-4 3.162278-1 8.499733-5 3.548134-1 5.718027-5 3.935501-1 4.030043-5 4.365158-1 2.860503-5 4.841724-1 2.045601-5 5.370318-1 1.474147-5 5.888437-1 1.109733-5 6.382635-1 8.717934-6 6.998420-1 6.667644-6 7.673615-1 5.137422-6 8.035261-1 4.518898-6 8.609938-1 3.716025-6 9.120108-1 3.177706-6 9.549926-1 2.819951-6 1.000000+0 2.518200-6 1.047129+0 2.265037-6 1.096478+0 2.051476-6 1.161449+0 1.827443-6 1.230269+0 1.639560-6 1.333521+0 1.418022-6 1.479108+0 1.186501-6 1.840772+0 8.073920-7 2.018366+0 6.907203-7 2.344229+0 5.410244-7 2.722701+0 4.269381-7 3.090295+0 3.516743-7 3.589219+0 2.819354-7 4.168694+0 2.276926-7 4.897788+0 1.822505-7 5.821032+0 1.447354-7 7.000000+0 1.140500-7 8.413951+0 9.055137-8 1.023293+1 7.140335-8 1.303167+1 5.369324-8 1.659587+1 4.071305-8 2.187762+1 2.991618-8 3.019952+1 2.106928-8 4.315191+1 1.441547-8 6.683439+1 9.127181-9 1.161449+2 5.174657-9 2.317395+2 2.566973-9 4.623810+2 1.279683-9 3.672823+3 1.60399-10 1.000000+5 5.88670-12 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 9.520000-6 9.520000-6 1.000000+5 9.520000-6 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 9.520000-6 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 8.500000-6 5.446170+6 1.011579-5 7.355673+6 1.100000-5 8.442630+6 1.188502-5 9.515941+6 1.288250-5 1.069562+7 1.380384-5 1.174580+7 1.479108-5 1.281317+7 1.570000-5 1.372842+7 1.659587-5 1.455075+7 1.757924-5 1.534145+7 1.850000-5 1.595610+7 1.927525-5 1.636517+7 2.000000-5 1.664889+7 2.070000-5 1.682910+7 2.150000-5 1.692186+7 2.230000-5 1.689555+7 2.300000-5 1.677765+7 2.371374-5 1.657152+7 2.454709-5 1.623287+7 2.540973-5 1.579021+7 2.630268-5 1.524906+7 2.730000-5 1.457454+7 2.830000-5 1.385082+7 2.917427-5 1.319688+7 3.019952-5 1.242239+7 3.150000-5 1.145382+7 3.300000-5 1.038840+7 3.467369-5 9.291148+6 3.650000-5 8.213910+6 3.850000-5 7.177710+6 4.120975-5 5.996631+6 4.400000-5 5.005050+6 4.677351-5 4.200694+6 5.000000-5 3.445680+6 5.308844-5 2.862938+6 5.650000-5 2.343420+6 5.956621-5 1.964392+6 6.309573-5 1.608668+6 6.683439-5 1.307377+6 7.079458-5 1.054415+6 7.500000-5 8.434770+5 7.943282-5 6.710747+5 8.413951-5 5.299496+5 9.015711-5 3.961185+5 9.549926-5 3.087339+5 1.023293-4 2.272262+5 1.083927-4 1.749041+5 1.174898-4 1.202943+5 1.318257-4 7.002039+4 1.380384-4 5.664703+4 1.430000-4 4.840050+4 1.480000-4 4.181280+4 1.520000-4 3.754380+4 1.560000-4 3.400800+4 1.600000-4 3.109440+4 1.640590-4 2.867351+4 1.678804-4 2.680629+4 1.717908-4 2.524180+4 1.757924-4 2.394874+4 1.798871-4 2.290063+4 1.840772-4 2.206967+4 1.883649-4 2.142640+4 1.930000-4 2.092374+4 1.980000-4 2.056818+4 2.020000-4 2.039874+4 2.080000-4 2.029116+4 2.150000-4 2.033049+4 2.220000-4 2.050080+4 2.344229-4 2.098035+4 2.691535-4 2.255740+4 2.917427-4 2.337018+4 3.054921-4 2.372943+4 3.235937-4 2.401463+4 3.427678-4 2.415034+4 3.630781-4 2.413334+4 3.845918-4 2.396328+4 4.073803-4 2.363688+4 4.315191-4 2.315682+4 4.570882-4 2.255007+4 4.841724-4 2.183193+4 5.128614-4 2.101697+4 5.495409-4 1.993674+4 5.888437-4 1.877834+4 6.309573-4 1.757390+4 6.839116-4 1.614122+4 7.413102-4 1.471197+4 8.035261-4 1.330826+4 8.709636-4 1.194752+4 9.440609-4 1.065030+4 1.023293-3 9.430604+3 1.109175-3 8.298476+3 1.202264-3 7.256993+3 1.318257-3 6.179449+3 1.445440-3 5.220954+3 1.584893-3 4.377626+3 1.737801-3 3.643152+3 1.905461-3 3.009692+3 2.089296-3 2.468429+3 2.290868-3 2.010341+3 2.511886-3 1.626377+3 2.754229-3 1.306948+3 3.019952-3 1.043129+3 3.311311-3 8.257534+2 3.672823-3 6.296351+2 4.168694-3 4.479421+2 4.623810-3 3.369888+2 5.128614-3 2.517724+2 5.688529-3 1.867600+2 6.309573-3 1.375984+2 6.998420-3 1.007077+2 7.852356-3 7.065210+1 8.810489-3 4.917204+1 9.885531-3 3.396050+1 1.109175-2 2.328267+1 1.244515-2 1.584919+1 1.396368-2 1.071360+1 1.566751-2 7.191991+0 1.778279-2 4.603445+0 2.018366-2 2.924520+0 2.290868-2 1.844838+0 2.630268-2 1.107712+0 3.019952-2 6.603412-1 3.507519-2 3.741398-1 4.120975-2 2.014095-1 4.954502-2 9.846903-2 6.165950-2 4.169205-2 1.109175-1 4.095782-3 1.333521-1 1.989914-3 1.566751-1 1.065647-3 1.798871-1 6.283563-4 2.041738-1 3.899590-4 2.290868-1 2.544777-4 2.540973-1 1.744324-4 2.818383-1 1.203870-4 3.090295-1 8.713585-5 3.388442-1 6.348194-5 3.715352-1 4.656351-5 4.073803-1 3.440008-5 4.466836-1 2.560761-5 4.841724-1 1.990720-5 5.248075-1 1.557349-5 5.688529-1 1.226272-5 6.165950-1 9.722746-6 6.683439-1 7.765212-6 7.244360-1 6.243479-6 7.852356-1 5.052448-6 8.609938-1 3.976247-6 9.120108-1 3.443263-6 9.660509-1 3.002410-6 1.011579+0 2.706865-6 1.071519+0 2.394093-6 1.148154+0 2.081909-6 1.230269+0 1.823042-6 1.333521+0 1.571996-6 1.819701+0 9.077130-7 2.018366+0 7.615202-7 2.344229+0 5.964861-7 2.722701+0 4.706983-7 3.090295+0 3.877160-7 3.589219+0 3.108320-7 4.168694+0 2.510339-7 4.897788+0 2.009366-7 5.821032+0 1.595629-7 7.000000+0 1.257400-7 8.413951+0 9.983475-8 1.023293+1 7.872120-8 1.303167+1 5.919667-8 1.659587+1 4.488676-8 2.187762+1 3.298194-8 3.019952+1 2.322882-8 4.315191+1 1.589274-8 6.683439+1 1.006242-8 1.161449+2 5.705055-9 2.317395+2 2.830004-9 4.623810+2 1.410910-9 1.840772+3 3.53006-10 1.000000+5 6.49000-12 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 8.500000-6 8.500000-6 1.000000+5 8.500000-6 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 8.500000-6 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 8.060000-6 6.316560+6 8.709636-6 4.570116+6 9.772372-6 2.798640+6 1.083927-5 1.786545+6 1.200000-5 1.141364+6 1.333521-5 7.115953+5 1.500000-5 4.166880+5 1.778279-5 1.909328+5 1.905461-5 1.398415+5 2.000000-5 1.130336+5 2.089296-5 9.386848+4 2.162719-5 8.150050+4 2.238721-5 7.120213+4 2.317395-5 6.266414+4 2.371374-5 5.781186+4 2.426610-5 5.356103+4 2.500000-5 4.884340+4 2.570396-5 4.514361+4 2.638800-5 4.218315+4 2.710000-5 3.964920+4 2.786121-5 3.744787+4 2.851018-5 3.591367+4 2.920000-5 3.456920+4 3.000000-5 3.331640+4 3.090295-5 3.222272+4 3.190000-5 3.132640+4 3.300000-5 3.062800+4 3.427678-5 3.009948+4 3.570000-5 2.976100+4 3.758374-5 2.957201+4 4.027170-5 2.956767+4 4.677351-5 2.975944+4 5.069907-5 2.968875+4 5.432503-5 2.943438+4 5.821032-5 2.897101+4 6.237348-5 2.829337+4 6.683439-5 2.742031+4 7.161434-5 2.638644+4 7.673615-5 2.521500+4 8.300000-5 2.376400+4 9.015711-5 2.215581+4 9.885531-5 2.034725+4 1.096478-4 1.834799+4 1.258925-4 1.584545+4 1.500000-4 1.302910+4 2.344229-4 7.850639+3 2.600160-4 6.936186+3 2.917427-4 6.002390+3 3.235937-4 5.233469+3 3.801894-4 4.189755+3 5.308844-4 2.617840+3 6.095369-4 2.145987+3 7.328245-4 1.629322+3 1.023293-3 9.821679+2 1.244515-3 7.242080+2 1.548817-3 5.109599+2 1.905461-3 3.646297+2 2.317395-3 2.632214+2 2.818383-3 1.886009+2 3.388442-3 1.367833+2 4.120975-3 9.650099+1 5.011872-3 6.755151+1 6.095369-3 4.694393+1 7.413102-3 3.237404+1 9.015711-3 2.216030+1 1.109175-2 1.471652+1 1.348963-2 9.922939+0 1.621810-2 6.796209+0 1.949845-2 4.619246+0 2.344229-2 3.115258+0 2.786121-2 2.137834+0 3.311311-2 1.456553+0 3.935501-2 9.851883-1 4.677351-2 6.614860-1 5.495409-2 4.529632-1 6.606934-2 2.915703-1 8.000000-2 1.830500-1 9.772372-2 1.114140-1 1.230269-1 6.240759-2 1.566751-1 3.371860-2 2.454709-1 1.065782-2 3.054921-1 6.120146-3 3.630781-1 3.975770-3 4.216965-1 2.755202-3 4.841724-1 1.978406-3 5.495409-1 1.470393-3 6.165950-1 1.129887-3 6.998420-1 8.522031-4 7.852356-1 6.641008-4 8.810489-1 5.209033-4 9.772372-1 4.214917-4 1.135011+0 3.136193-4 1.288250+0 2.457813-4 1.462177+0 1.940655-4 1.640590+0 1.576090-4 1.840772+0 1.289192-4 2.044000+0 1.081300-4 2.398833+0 8.335716-5 2.786121+0 6.585167-5 3.162278+0 5.430485-5 3.672823+0 4.358699-5 4.315191+0 3.467747-5 5.069907+0 2.780187-5 6.025596+0 2.211187-5 7.328245+0 1.720053-5 8.709636+0 1.387225-5 1.047129+1 1.110409-5 1.318257+1 8.468596-6 1.678804+1 6.423620-6 2.213095+1 4.721579-6 3.054921+1 3.326278-6 4.365158+1 2.276407-6 6.760830+1 1.441559-6 1.188502+2 8.079101-7 2.371374+2 4.008597-7 4.731513+2 1.998675-7 3.758374+3 2.505440-8 1.000000+5 9.40930-10 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 8.060000-6 8.060000-6 1.000000+5 8.060000-6 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 8.060000-6 0.0 1.000000+5 1.000000+5 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.746860-7 1.026100+0 1.073310-6 1.026600+0 1.513110-6 1.027100+0 2.058620-6 1.027500+0 2.578400-6 1.028100+0 3.510450-6 1.028750+0 4.746860-6 1.029500+0 6.496200-6 1.030100+0 8.169770-6 1.031000+0 1.117900-5 1.032000+0 1.529570-5 1.033200+0 2.142670-5 1.034000+0 2.630320-5 1.035300+0 3.570290-5 1.036640+0 4.746860-5 1.038200+0 6.406040-5 1.039700+0 8.322730-5 1.041500+0 1.107330-4 1.043800+0 1.537010-4 1.046400+0 2.138460-4 1.048300+0 2.662440-4 1.051200+0 3.611540-4 1.054080+0 4.746860-4 1.057700+0 6.470290-4 1.061100+0 8.416240-4 1.065100+0 1.114220-3 1.070400+0 1.554460-3 1.076200+0 2.148260-3 1.080600+0 2.682830-3 1.087100+0 3.614640-3 1.093710+0 4.746860-3 1.102600+0 6.581250-3 1.110700+0 8.582910-3 1.120600+0 1.148070-2 1.133300+0 1.596220-2 1.147500+0 2.203800-2 1.158200+0 2.738760-2 1.174100+0 3.660660-2 1.190110+0 4.746860-2 1.205100+0 5.910130-2 1.227500+0 7.911610-2 1.250000+0 1.022000-1 1.265600+0 1.197690-1 1.294900+0 1.558610-1 1.331800+0 2.062080-1 1.362600+0 2.516080-1 1.397000+0 3.052030-1 1.433800+0 3.652560-1 1.477900+0 4.403710-1 1.500000+0 4.793000-1 1.562500+0 5.935970-1 1.617200+0 6.981080-1 1.712900+0 8.883820-1 1.838500+0 1.146460+0 1.946200+0 1.369940+0 2.000000+0 1.481000+0 2.044000+0 1.571000+0 2.163500+0 1.812420+0 2.372600+0 2.223030+0 2.647100+0 2.736670+0 3.000000+0 3.357000+0 3.500000+0 4.168720+0 4.000000+0 4.911000+0 4.750000+0 5.908490+0 5.000000+0 6.215000+0 6.000000+0 7.335000+0 7.000000+0 8.323000+0 8.000000+0 9.211000+0 9.000000+0 1.002000+1 1.000000+1 1.076000+1 1.100000+1 1.145000+1 1.200000+1 1.209000+1 1.300000+1 1.268000+1 1.400000+1 1.324000+1 1.500000+1 1.376000+1 1.600000+1 1.424000+1 1.800000+1 1.512000+1 2.000000+1 1.590000+1 2.200000+1 1.660000+1 2.400000+1 1.724000+1 2.600000+1 1.783000+1 2.800000+1 1.837000+1 3.000000+1 1.887000+1 4.000000+1 2.089000+1 5.000000+1 2.240000+1 6.000000+1 2.357000+1 8.000000+1 2.528000+1 1.000000+2 2.649000+1 1.500000+2 2.840000+1 2.000000+2 2.953000+1 3.000000+2 3.085000+1 4.000000+2 3.160000+1 5.000000+2 3.209000+1 6.000000+2 3.244000+1 8.000000+2 3.291000+1 1.000000+3 3.321000+1 1.500000+3 3.365000+1 2.000000+3 3.389000+1 3.000000+3 3.414000+1 4.000000+3 3.428000+1 5.000000+3 3.437000+1 6.000000+3 3.443000+1 8.000000+3 3.451000+1 1.000000+4 3.456000+1 1.500000+4 3.463000+1 2.000000+4 3.466000+1 3.000000+4 3.470000+1 4.000000+4 3.472000+1 5.000000+4 3.474000+1 6.000000+4 3.474000+1 8.000000+4 3.476000+1 1.000000+5 3.476000+1 1 75000 7 8 1.862000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.511200-7 2.090400+0 1.019830-6 2.094700+0 1.322370-6 2.099900+0 1.759230-6 2.106600+0 2.447230-6 2.114000+0 3.386050-6 2.119500+0 4.215610-6 2.127900+0 5.717170-6 2.136250+0 7.511200-6 2.147000+0 1.029840-5 2.156900+0 1.337640-5 2.169000+0 1.785160-5 2.184500+0 2.481430-5 2.201800+0 3.433130-5 2.214800+0 4.277410-5 2.234200+0 5.753880-5 2.253680+0 7.511200-5 2.281500+0 1.052080-4 2.307000+0 1.381900-4 2.338200+0 1.858080-4 2.377400+0 2.573210-4 2.410200+0 3.272690-4 2.446800+0 4.163040-4 2.485900+0 5.241500-4 2.532900+0 6.708020-4 2.556430+0 7.511200-4 2.611900+0 9.577690-4 2.660400+0 1.157900-3 2.745300+0 1.549790-3 2.809000+0 1.876900-3 2.904500+0 2.417920-3 3.000000+0 3.018000-3 3.125000+0 3.891310-3 3.234400+0 4.734390-3 3.425800+0 6.374150-3 3.569300+0 7.727940-3 3.784700+0 9.931680-3 4.000000+0 1.230000-2 4.250000+0 1.519490-2 4.625000+0 1.974330-2 5.000000+0 2.447000-2 5.500000+0 3.095390-2 6.000000+0 3.752000-2 6.750000+0 4.728110-2 7.000000+0 5.049000-2 8.000000+0 6.303000-2 9.000000+0 7.501000-2 1.000000+1 8.637000-2 1.100000+1 9.711000-2 1.200000+1 1.072000-1 1.300000+1 1.167000-1 1.400000+1 1.258000-1 1.500000+1 1.343000-1 1.600000+1 1.424000-1 1.800000+1 1.574000-1 2.000000+1 1.709000-1 2.200000+1 1.833000-1 2.400000+1 1.947000-1 2.600000+1 2.052000-1 2.800000+1 2.148000-1 3.000000+1 2.238000-1 4.000000+1 2.608000-1 5.000000+1 2.886000-1 6.000000+1 3.105000-1 8.000000+1 3.432000-1 1.000000+2 3.668000-1 1.500000+2 4.053000-1 2.000000+2 4.292000-1 3.000000+2 4.581000-1 4.000000+2 4.753000-1 5.000000+2 4.870000-1 6.000000+2 4.955000-1 8.000000+2 5.072000-1 1.000000+3 5.150000-1 1.500000+3 5.265000-1 2.000000+3 5.330000-1 3.000000+3 5.401000-1 4.000000+3 5.443000-1 5.000000+3 5.468000-1 6.000000+3 5.486000-1 8.000000+3 5.510000-1 1.000000+4 5.525000-1 1.500000+4 5.545000-1 2.000000+4 5.557000-1 3.000000+4 5.568000-1 4.000000+4 5.576000-1 5.000000+4 5.580000-1 6.000000+4 5.583000-1 8.000000+4 5.585000-1 1.000000+5 5.588000-1 1 75000 7 8 1.862000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 75000 7 9 1.862000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.500000+1 1.000000+5 7.500000+1 5.000000+5 7.496200+1 7.500000+5 7.493860+1 9.375000+5 7.492570+1 1.000000+6 7.492200+1 1.250000+6 7.490060+1 1.500000+6 7.487500+1 2.000000+6 7.478000+1 2.500000+6 7.465800+1 3.000000+6 7.451100+1 3.500000+6 7.433870+1 4.000000+6 7.414800+1 4.500000+6 7.394230+1 5.000000+6 7.371500+1 5.500000+6 7.346340+1 6.156200+6 7.309630+1 6.500000+6 7.290000+1 6.718700+6 7.276590+1 7.000000+6 7.260000+1 7.500000+6 7.228120+1 8.250000+6 7.180040+1 9.000000+6 7.130600+1 1.000000+7 7.062600+1 1.125000+7 6.972690+1 1.187500+7 6.926660+1 1.250000+7 6.880000+1 1.500000+7 6.691200+1 1.750000+7 6.506000+1 2.000000+7 6.318600+1 2.375000+7 6.041690+1 2.500000+7 5.951900+1 2.875000+7 5.686310+1 3.000000+7 5.600300+1 3.437500+7 5.305950+1 3.500000+7 5.265490+1 4.000000+7 4.955000+1 4.500000+7 4.670350+1 5.000000+7 4.408700+1 5.500000+7 4.166700+1 6.000000+7 3.940900+1 6.500000+7 3.728570+1 6.750000+7 3.627520+1 7.000000+7 3.529400+1 7.750000+7 3.251680+1 8.000000+7 3.165100+1 8.750000+7 2.920600+1 9.000000+7 2.844600+1 1.000000+8 2.565800+1 1.250000+8 2.038200+1 1.375000+8 1.857000+1 1.500000+8 1.717100+1 1.750000+8 1.514740+1 1.812500+8 1.471880+1 1.937500+8 1.389220+1 2.000000+8 1.348600+1 2.125000+8 1.268420+1 2.250000+8 1.193430+1 2.500000+8 1.067800+1 2.718800+8 9.807260+0 2.815400+8 9.419220+0 2.875000+8 9.167200+0 2.881300+8 9.139440+0 2.960400+8 8.782760+0 3.000000+8 8.595100+0 3.062500+8 8.286740+0 3.335900+8 7.034470+0 3.418000+8 6.745960+0 3.500000+8 6.512300+0 3.562500+8 6.372650+0 3.671900+8 6.184390+0 4.000000+8 5.762100+0 4.125000+8 5.574140+0 4.234400+8 5.394490+0 4.425800+8 5.071790+0 4.784700+8 4.522530+0 5.000000+8 4.261800+0 5.125000+8 4.138100+0 5.781300+8 3.639030+0 6.000000+8 3.477800+0 7.000000+8 2.775000+0 7.250000+8 2.659550+0 7.718800+8 2.469780+0 7.906300+8 2.389600+0 8.000000+8 2.347100+0 8.125000+8 2.287120+0 8.359400+8 2.168920+0 8.564500+8 2.064000+0 9.461700+8 1.660420+0 9.730800+8 1.568250+0 1.000000+9 1.491200+0 1.015600+9 1.453500+0 1.045900+9 1.392630+0 1.074300+9 1.347320+0 1.113400+9 1.299080+0 1.149200+9 1.265670+0 1.193100+9 1.234560+0 1.249300+9 1.205020+0 1.375000+9 1.155360+0 1.419400+9 1.137600+0 1.473100+9 1.113480+0 1.500000+9 1.100000+0 1.562500+9 1.064360+0 1.617200+9 1.029910+0 1.665000+9 9.982170-1 1.748800+9 9.410930-1 1.811600+9 8.982700-1 1.905800+9 8.358880-1 2.000000+9 7.771600-1 2.139200+9 6.983290-1 2.272600+9 6.311990-1 2.443000+9 5.560260-1 2.602800+9 4.949400-1 2.825100+9 4.227310-1 2.961100+9 3.848030-1 3.215900+9 3.242280-1 3.438900+9 2.805400-1 3.500000+9 2.698540-1 3.719500+9 2.353540-1 3.954200+9 2.042570-1 4.215700+9 1.753790-1 4.495800+9 1.498190-1 4.831900+9 1.249540-1 5.000000+9 1.144500-1 5.375000+9 9.468730-2 5.703100+9 8.079760-2 6.277300+9 6.215320-2 7.138700+9 4.337020-2 8.000000+9 3.136600-2 1.00000+10 1.652900-2 1.54060+10 4.791160-3 2.13670+10 1.886080-3 3.11960+10 6.450810-4 4.73220+10 1.993650-4 6.61360+10 7.805120-5 1.00000+11 2.467500-5 1.34280+11 1.090880-5 2.20600+11 2.781540-6 4.19930+11 4.795320-7 1.03480+12 4.179690-8 3.24440+12 1.957320-9 1.00000+14 2.20230-13 3.16230+15 2.20774-17 1.00000+17 2.09510-21 1 75000 7 0 1.862000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 8.10000-12 1.000000+2 8.10000-10 1.000000+3 8.100000-8 1.000000+4 8.100000-6 1.000000+5 8.100000-4 5.000000+5 2.025000-2 7.500000+5 4.556250-2 9.375000+5 7.119141-2 1.000000+6 8.100000-2 1.250000+6 1.257280-1 1.500000+6 1.797000-1 2.000000+6 3.153000-1 2.500000+6 4.845000-1 3.000000+6 6.837000-1 3.500000+6 9.089250-1 4.000000+6 1.156200+0 4.500000+6 1.421250+0 5.000000+6 1.700000+0 5.500000+6 1.988440+0 6.156200+6 2.376440+0 6.500000+6 2.581830+0 6.718700+6 2.712750+0 7.000000+6 2.881400+0 7.500000+6 3.179290+0 8.250000+6 3.621280+0 9.000000+6 4.054400+0 1.000000+7 4.615000+0 1.125000+7 5.290220+0 1.187500+7 5.619670+0 1.250000+7 5.945000+0 1.500000+7 7.219000+0 1.750000+7 8.478400+0 2.000000+7 9.739000+0 2.375000+7 1.160680+1 2.500000+7 1.222200+1 2.875000+7 1.403760+1 3.000000+7 1.463500+1 3.437500+7 1.668290+1 3.500000+7 1.697110+1 4.000000+7 1.921700+1 4.500000+7 2.135650+1 5.000000+7 2.336100+1 5.500000+7 2.521110+1 6.000000+7 2.691400+1 6.500000+7 2.848260+1 6.750000+7 2.922480+1 7.000000+7 2.994500+1 7.750000+7 3.197740+1 8.000000+7 3.262400+1 8.750000+7 3.447750+1 9.000000+7 3.507500+1 1.000000+8 3.735700+1 1.250000+8 4.247400+1 1.375000+8 4.476700+1 1.500000+8 4.689500+1 1.750000+8 5.063690+1 1.812500+8 5.147010+1 1.937500+8 5.302260+1 2.000000+8 5.373900+1 2.125000+8 5.505940+1 2.250000+8 5.625150+1 2.500000+8 5.831100+1 2.718800+8 5.981800+1 2.815400+8 6.041410+1 2.875000+8 6.075850+1 2.881300+8 6.079450+1 2.960400+8 6.123860+1 3.000000+8 6.145200+1 3.062500+8 6.177110+1 3.335900+8 6.306570+1 3.418000+8 6.341680+1 3.500000+8 6.375600+1 3.562500+8 6.399820+1 3.671900+8 6.441430+1 4.000000+8 6.554600+1 4.125000+8 6.593130+1 4.234400+8 6.626080+1 4.425800+8 6.679900+1 4.784700+8 6.770610+1 5.000000+8 6.820100+1 5.125000+8 6.846720+1 5.781300+8 6.969730+1 6.000000+8 7.005300+1 7.000000+8 7.132200+1 7.250000+8 7.156150+1 7.718800+8 7.196350+1 7.906300+8 7.210520+1 8.000000+8 7.217200+1 8.125000+8 7.225210+1 8.359400+8 7.239930+1 8.564500+8 7.251960+1 9.461700+8 7.294530+1 9.730800+8 7.305300+1 1.000000+9 7.315800+1 1.015600+9 7.321060+1 1.045900+9 7.331070+1 1.074300+9 7.339770+1 1.113400+9 7.350550+1 1.149200+9 7.360110+1 1.193100+9 7.370620+1 1.249300+9 7.382430+1 1.375000+9 7.405190+1 1.419400+9 7.412020+1 1.473100+9 7.420010+1 1.500000+9 7.423900+1 1.562500+9 7.431210+1 1.617200+9 7.437380+1 1.665000+9 7.442610+1 1.748800+9 7.450740+1 1.811600+9 7.455690+1 1.905800+9 7.462820+1 2.000000+9 7.469600+1 2.139200+9 7.476740+1 2.272600+9 7.481990+1 2.443000+9 7.487440+1 2.602800+9 7.491520+1 2.825100+9 7.495390+1 2.961100+9 7.496670+1 3.215900+9 7.498610+1 3.438900+9 7.499820+1 3.500000+9 7.499820+1 3.719500+9 7.499810+1 3.954200+9 7.499810+1 4.215700+9 7.499810+1 4.495800+9 7.499800+1 4.831900+9 7.499800+1 5.000000+9 7.499800+1 5.375000+9 7.499830+1 5.703100+9 7.499860+1 6.277300+9 7.499900+1 7.138700+9 7.499950+1 8.000000+9 7.500000+1 1.00000+10 7.500000+1 1.54060+10 7.500000+1 2.13670+10 7.500000+1 3.11960+10 7.500000+1 4.73220+10 7.500000+1 6.61360+10 7.500000+1 1.00000+11 7.500000+1 1.34280+11 7.500000+1 2.20600+11 7.500000+1 4.19930+11 7.500000+1 1.03480+12 7.500000+1 3.24440+12 7.500000+1 1.00000+14 7.500000+1 3.16230+15 7.500000+1 1.00000+17 7.500000+1 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.022260-6 5.826758-7 1.024770-6 1.152955-6 1.027280-6 2.105966-6 1.029790-6 3.550948-6 1.032300-6 5.527021-6 1.034810-6 7.941305-6 1.037320-6 1.053286-5 1.039830-6 1.289600-5 1.042340-6 1.457529-5 1.044850-6 1.520665-5 1.047360-6 1.464549-5 1.049870-6 1.302051-5 1.052380-6 1.068578-5 1.057400-6 5.661408-6 1.059910-6 3.654808-6 1.062420-6 2.178004-6 1.064930-6 1.198138-6 1.067440-6 6.084277-7 1.069950-6 0.0 3.238431-6 0.0 4.169893-6 0.0 4.185289-6 2.976524+0 4.190421-6 3.956113+0 4.200684-6 7.226163+0 4.210948-6 1.218430+1 4.222495-6 1.999809+1 4.240296-6 3.488815+1 4.252644-6 4.460913+1 4.263209-6 5.021040+1 4.273974-6 5.190800+1 4.284238-6 4.946998+1 4.295165-6 4.303534+1 4.312480-6 2.873662+1 4.323848-6 1.942589+1 4.334753-6 1.222467+1 4.344376-6 7.473346+0 4.354639-6 4.111149+0 4.369393-6 1.175532+0 4.375167-6 0.0 4.563017-6 0.0 4.579864-6 3.48403-13 4.585480-6 4.63064-13 4.596711-6 8.45825-13 4.607942-6 1.42618-12 4.613709-6 1.83323-12 4.636422-6 7.935556+0 4.647778-6 1.449494+1 4.659134-6 2.444046+1 4.671494-6 3.953742+1 4.705268-6 8.948135+1 4.717752-6 1.010209+2 4.728025-6 1.044081+2 4.739830-6 9.961914+1 4.751377-6 8.759554+1 4.784050-6 3.896634+1 4.795406-6 2.515531+1 4.806762-6 1.499076+1 4.818118-6 8.246543+0 4.835153-6 2.096305+0 4.840831-6 0.0 5.006833-6 0.0 5.028400-6 1.216101+0 5.031481-6 1.388057+0 5.044189-6 2.589635+0 5.056513-6 4.349202+0 5.069758-6 6.961449+0 5.104933-6 1.541232+1 5.118878-6 1.761701+1 5.130840-6 1.826536+1 5.143164-6 1.750990+1 5.156258-6 1.532495+1 5.175899-6 1.062477+1 5.191688-6 6.815841+0 5.204012-6 4.400070+0 5.216336-6 2.622127+0 5.228659-6 1.442453+0 5.247145-6 3.666775-1 5.253307-6 0.0 5.582767-6 0.0 5.606814-6 8.094198-1 5.610679-6 9.476792-1 5.624206-6 1.705575+0 5.638417-6 2.924097+0 5.653196-6 4.673972+0 5.693335-6 1.039594+1 5.707700-6 1.172564+1 5.720609-6 1.217119+1 5.734780-6 1.165435+1 5.748758-6 1.028121+1 5.788886-6 4.536529+0 5.802628-6 2.928625+0 5.816369-6 1.745251+0 5.830110-6 9.600770-1 5.852843-6 1.687736-1 5.857593-6 5.13921-14 5.861910-6 4.09187-14 5.882634-6 1.04017-14 5.889542-6 0.0 6.006342-6 0.0 6.026583-6 7.209349-8 6.041417-6 7.320150-2 6.056251-6 1.448455-1 6.071084-6 2.645722-1 6.085918-6 4.461050-1 6.100752-6 6.943586-1 6.145253-6 1.620121+0 6.160086-6 1.831090+0 6.174920-6 1.910408+0 6.189754-6 1.839909+0 6.204587-6 1.635763+0 6.249088-6 7.112410-1 6.263922-6 4.591524-1 6.278756-6 2.736220-1 6.293589-6 1.505217-1 6.308423-6 7.643656-2 6.323257-6 0.0 6.339843-6 0.0 6.363250-6 9.995214-2 6.371052-6 1.328469-1 6.386657-6 2.426557-1 6.402262-6 4.091509-1 6.417866-6 6.368400-1 6.446272-6 1.170720+0 6.466272-6 1.912696+0 6.478400-6 2.305691+0 6.494978-6 2.962553+0 6.516693-6 4.066328+0 6.540565-6 5.543900+0 6.574325-6 7.717847+0 6.592257-6 8.357592+0 6.606098-6 8.437370+0 6.621878-6 7.960193+0 6.641913-6 6.623347+0 6.683656-6 3.063459+0 6.699521-6 1.977669+0 6.715387-6 1.178553+0 6.731252-6 6.483341-1 6.756743-6 1.296538-1 6.762982-6 7.647042-6 6.773468-6 2.543796-6 6.782326-6 2.42120-14 6.799256-6 4.12284-14 6.815828-6 6.41716-14 6.838802-6 1.03807-13 6.872467-6 2.108880-1 6.889300-6 3.852043-1 6.906133-6 6.495074-1 6.924751-6 1.057677+0 6.975385-6 2.393802+0 6.994373-6 2.690647+0 7.011262-6 2.753251+0 7.028263-6 2.602199+0 7.047279-6 2.231115+0 7.074461-6 1.543489+0 7.093533-6 1.188472+0 7.108127-6 9.933336-1 7.124960-6 9.331739-1 7.141793-6 1.044569+0 7.165265-6 1.433638+0 7.181133-6 1.758500+0 7.203599-6 2.299832+0 7.225361-6 2.647563+0 7.245630-6 2.730992+0 7.263036-6 2.574698+0 7.280442-6 2.248674+0 7.332659-6 9.420109-1 7.350065-6 6.065935-1 7.363208-6 4.265278-1 7.367728-6 3.741090-1 7.384876-6 2.600240-1 7.397917-6 2.277800-1 7.415589-6 2.115478-1 7.419688-6 2.162998-1 7.433708-6 3.115247-1 7.451826-6 4.803673-1 7.466282-6 6.489658-1 7.507308-6 1.213070+0 7.539766-6 1.592278+0 7.548991-6 1.686435+0 7.578657-6 1.902220+0 7.622951-6 2.058931+0 7.657223-6 2.017668+0 7.679002-6 1.894121+0 7.702333-6 1.691890+0 7.740735-6 1.287507+0 7.755426-6 1.170558+0 7.781152-6 1.110815+0 7.796653-6 1.119414+0 7.814260-6 1.206286+0 7.833650-6 1.389134+0 7.870776-6 2.003114+0 7.909260-6 2.700772+0 7.930088-6 2.947512+0 7.948949-6 3.027715+0 7.972303-6 2.922534+0 8.022768-6 2.346275+0 8.050813-6 2.018279+0 8.070380-6 1.850908+0 8.115988-6 1.584596+0 8.136308-6 1.469030+0 8.208650-6 1.325651+0 8.312009-6 1.274854+0 8.382363-6 1.242498+0 8.441613-6 1.197835+0 8.481892-6 1.222382+0 8.515638-6 1.305650+0 8.548449-6 1.449545+0 8.618589-6 1.876605+0 8.653624-6 1.991659+0 8.674627-6 1.987284+0 8.706719-6 1.876624+0 8.776814-6 1.517398+0 8.797014-6 1.451322+0 8.817324-6 1.414487+0 8.857466-6 1.420573+0 8.947048-6 1.663139+0 8.990984-6 1.705563+0 9.076455-6 1.632192+0 9.537536-6 1.723989+0 1.071776-5 2.107070+0 1.200425-5 2.652610+0 1.380384-5 3.629512+0 1.733340-5 5.945009+0 2.072324-5 8.100563+0 2.304000-5 9.132052+0 2.552613-5 9.647171+0 2.818383-5 9.578387+0 3.236663-5 8.686798+0 3.893409-5 6.814388+0 3.912575-5 7.903600+0 3.922158-5 8.820899+0 3.931741-5 1.022544+1 3.941324-5 1.215574+1 3.970074-5 1.937302+1 3.982053-5 2.116016+1 3.990777-5 2.151764+1 3.995818-5 2.143902+1 3.998823-5 2.284335+1 4.012563-5 2.738110+1 4.016286-5 2.880510+1 4.025506-5 3.463699+1 4.035340-5 4.530908+1 4.045294-5 6.131172+1 4.075072-5 1.234794+2 4.086957-5 1.381262+2 4.094881-5 1.414050+2 4.105025-5 1.348070+2 4.115165-5 1.186943+2 4.131857-5 8.128895+1 4.142901-5 5.669079+1 4.152735-5 3.875991+1 4.162569-5 2.555695+1 4.172403-5 1.678879+1 4.192071-5 6.048948+0 4.330159-5 5.724463+0 4.351475-5 6.690749+0 4.363465-5 7.660803+0 4.374857-5 9.089515+0 4.386196-5 1.102077+1 4.416168-5 1.698159+1 4.426748-5 1.836754+1 4.437406-5 1.883423+1 4.449313-5 1.808900+1 4.460850-5 1.633541+1 4.491293-5 1.014041+1 4.500689-5 8.883222+0 4.513402-5 7.815819+0 4.524457-5 7.593268+0 4.535512-5 7.962191+0 4.544133-5 8.548077+0 4.579731-5 1.352286+1 4.592167-5 1.464222+1 4.602531-5 1.501824+1 4.614277-5 1.464268+1 4.628871-5 1.324682+1 4.657114-5 9.966213+0 4.668686-5 9.094663+0 4.683361-5 8.540641+0 4.719007-5 7.962248+0 4.770177-5 7.170144+0 4.854048-5 7.327507+0 5.029798-5 7.142015+0 5.055597-5 1.334481+1 5.067712-5 1.820980+1 5.080093-5 2.567308+1 5.092760-5 3.610823+1 5.123650-5 6.680351+1 5.132370-5 7.457344+1 5.145198-5 8.157219+1 5.156780-5 8.306024+1 5.169250-5 7.878549+1 5.184524-5 6.680871+1 5.216452-5 3.483786+1 5.228542-5 2.507048+1 5.240509-5 1.789375+1 5.252642-5 1.302318+1 5.277402-5 6.929352+0 5.483091-5 6.749870+0 5.761798-5 6.322705+0 5.821032-5 6.569926+0 5.886376-5 6.977748+0 6.041267-5 7.224200+0 6.197058-5 7.067937+0 7.483300-5 5.136488+0 8.102231-5 4.508544+0 8.623761-5 4.241970+0 8.802688-5 4.425086+0 8.943698-5 4.234099+0 9.716280-5 4.349981+0 1.057333-4 4.855727+0 1.139180-4 5.649105+0 1.260000-4 7.249755+0 1.765000-4 1.522276+1 2.000000-4 1.832367+1 2.330000-4 2.140333+1 2.570021-4 2.295005+1 2.621579-4 2.413189+1 2.706053-4 2.445700+1 2.757139-4 2.537888+1 4.161645-4 2.541168+1 4.265817-4 2.555028+1 4.346283-4 2.705063+1 4.413990-4 2.631490+1 4.786099-4 2.613565+1 5.527134-4 2.516582+1 6.062857-4 2.419227+1 6.200845-4 2.435103+1 8.963962-4 1.877764+1 1.100430-3 1.562909+1 1.338328-3 1.286240+1 1.642952-3 1.030814+1 1.849635-3 9.062780+0 1.861221-3 9.349873+0 1.868594-3 1.002539+1 1.875382-3 1.127297+1 1.882301-3 1.329864+1 1.904180-3 2.181464+1 1.913006-3 2.400820+1 1.927525-3 2.540764+1 1.949549-3 2.665306+1 1.980533-3 3.030009+1 2.007504-3 3.107019+1 2.148751-3 3.083522+1 2.311029-3 2.939590+1 2.339174-3 3.085112+1 2.366447-3 3.241375+1 2.634917-3 2.839508+1 2.688892-3 2.896813+1 2.879920-3 2.659467+1 2.970648-3 2.642188+1 3.497340-3 2.112285+1 4.048030-3 1.716536+1 4.617444-3 1.414445+1 5.308844-3 1.148720+1 5.925403-3 9.717472+0 6.741399-3 7.966202+0 7.671458-3 6.509608+0 8.607518-3 5.426705+0 9.880955-3 4.352896+0 1.028073-2 4.097299+0 1.035254-2 4.240193+0 1.039618-2 4.569206+0 1.042863-2 5.022279+0 1.047108-2 5.912905+0 1.056925-2 8.479704+0 1.062100-2 9.385417+0 1.067989-2 9.824423+0 1.082293-2 9.802853+0 1.175459-2 8.602740+0 1.185402-2 8.831385+0 1.194606-2 9.627859+0 1.206087-2 1.076744+1 1.217517-2 1.110072+1 1.239355-2 1.109988+1 1.264827-2 1.200669+1 1.524307-2 9.083051+0 1.747833-2 7.291243+0 1.976499-2 5.969115+0 2.263015-2 4.771743+0 2.585235-2 3.820054+0 2.911901-2 3.121554+0 3.277531-2 2.550735+0 3.710010-2 2.060010+0 4.191252-2 1.666416+0 4.698988-2 1.364493+0 5.293586-2 1.105966+0 5.900930-2 9.133403-1 6.649779-2 7.383095-1 7.019525-2 6.774830-1 7.054296-2 7.019372-1 7.076825-2 7.526593-1 7.096919-2 8.411828-1 7.117748-2 9.935329-1 7.140682-2 1.244102+0 7.162251-2 1.551868+0 7.218076-2 2.437505+0 7.251948-2 2.824376+0 7.292314-2 3.050157+0 7.349193-2 3.109935+0 8.592119-2 2.434034+0 9.679218-2 2.006234+0 1.092000-1 1.642570+0 1.236768-1 1.333516+0 1.410304-1 1.068098+0 1.573117-1 8.869650-1 1.765184-1 7.293086-1 1.975904-1 6.021416-1 2.229565-1 4.907152-1 2.504039-1 4.040905-1 2.808376-1 3.342883-1 3.149221-1 2.777173-1 3.551286-1 2.297183-1 4.027170-1 1.893474-1 4.577464-1 1.567079-1 5.208280-1 1.305074-1 5.971201-1 1.085434-1 6.819460-1 9.165733-2 7.719651-1 7.898077-2 8.918925-1 6.713117-2 1.070165+0 5.537152-2 1.228714+0 4.743509-2 1.412970+0 4.056807-2 1.619761+0 3.481179-2 1.880664+0 2.946428-2 2.235892+0 2.426373-2 2.567148+0 2.078599-2 2.947480+0 1.780673-2 3.384160+0 1.525448-2 3.885536+0 1.306805-2 4.461192+0 1.119500-2 5.122134+0 9.590415-3 5.902328+0 8.184035-3 6.752287+0 7.038240-3 7.752663+0 6.029445-3 8.901248+0 5.165242-3 9.760024+0 4.659074-3 1.000000+1 9.627780-3 1 75000 7 0 1.862000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.488627+1 3.004191-6-7.323110+1 3.767369-6-6.974855+1 4.017010-6-6.540548+1 4.113358-6-6.063201+1 4.155621-6-5.566836+1 4.171738-6-5.135801+1 4.214476-6-3.880330+1 4.224740-6-3.753167+1 4.235966-6-3.897474+1 4.244305-6-4.253885+1 4.252644-6-4.828254+1 4.262587-6-5.748554+1 4.279371-6-7.510295+1 4.286275-6-6.774504+1 4.297968-6-5.823282+1 4.309164-6-5.290816+1 4.321683-6-5.139068+1 4.334753-6-5.374448+1 4.388309-6-7.015791+1 4.424205-6-7.509756+1 4.548227-6-6.142561+1 4.585480-6-5.448105+1 4.605836-6-4.810666+1 4.614231-6-4.342617+1 4.636422-6-3.195028+1 4.649197-6-2.436606+1 4.660553-6-1.856449+1 4.663037-6-1.762211+1 4.671494-6-1.535330+1 4.675026-6-1.516161+1 4.680072-6-1.600325+1 4.683317-6-1.710165+1 4.688811-6-1.993451+1 4.692502-6-2.247132+1 4.697776-6-2.711755+1 4.702651-6-3.282594+1 4.714791-6-5.253479+1 4.726506-6-7.526077+1 4.741099-6-4.576857+1 4.751377-6-2.906032+1 4.754612-6-2.484225+1 4.759236-6-2.000369+1 4.765180-6-1.515362+1 4.769603-6-1.245222+1 4.771409-6-1.159840+1 4.774569-6-1.042590+1 4.778717-6-9.531147+0 4.781384-6-9.399867+0 4.782717-6-9.508113+0 4.792567-6-1.204701+1 4.795406-6-1.339837+1 4.796826-6-1.422814+1 4.805520-6-1.840580+1 4.822022-6-2.815092+1 4.837992-6-3.587961+1 4.845334-6-4.061147+1 4.862264-6-4.676760+1 4.894924-6-5.369894+1 4.960503-6-6.170930+1 5.074259-6-7.431328+1 5.101940-6-7.228596+1 5.158954-6-5.723426+1 5.179365-6-5.502879+1 5.207093-6-5.622381+1 5.281889-6-6.314616+1 5.403653-6-6.716750+1 5.585236-6-7.237960+1 5.643243-6-7.558434+1 5.687561-6-7.460433+1 5.757106-6-6.344150+1 5.788886-6-6.227574+1 5.910530-6-6.783225+1 6.145253-6-7.113756+1 6.263922-6-7.033138+1 6.529837-6-7.509561+1 6.590598-6-7.178349+1 6.655692-6-6.637717+1 6.715387-6-6.708730+1 6.910787-6-7.218107+1 7.011262-6-7.126820+1 7.108127-6-7.098570+1 7.216770-6-7.181164+1 7.332659-6-7.026271+1 7.539766-6-7.269677+1 7.755426-6-7.197136+1 7.909260-6-7.290486+1 8.085631-6-7.135515+1 8.674627-6-7.248240+1 1.708756-5-7.474891+1 3.073662-5-6.909992+1 3.578629-5-6.267063+1 3.748666-5-5.764074+1 3.836175-5-5.238808+1 3.881277-5-4.743507+1 3.922158-5-3.908046+1 3.950907-5-3.252823+1 3.970074-5-3.007659+1 3.985646-5-2.826559+1 3.991930-5-2.666808+1 3.995389-5-2.463110+1 3.998823-5-2.260036+1 4.010069-5-1.802315+1 4.013810-5-1.596332+1 4.016286-5-1.401355+1 4.023815-5-8.899094+0 4.025506-5-7.229095+0 4.034725-5-6.719585-1 4.035340-5-7.260322-2 4.036492-5 7.251998-1 4.038509-5 1.782415+0 4.044559-5 4.274489+0 4.045294-5 4.671686+0 4.046673-5 5.012163+0 4.049085-5 5.080770+0 4.050894-5 4.820508+0 4.053608-5 4.021661+0 4.056322-5 2.834024+0 4.058539-5 1.521572+0 4.060480-5 3.858361-2 4.062177-5-1.487763+0 4.063663-5-2.999909+0 4.064963-5-4.462807+0 4.067238-5-7.357588+0 4.068944-5-9.837438+0 4.071183-5-1.357556+1 4.073342-5-1.793363+1 4.075072-5-2.237401+1 4.082259-5-3.868278+1 4.085473-5-4.778087+1 4.092534-5-6.764200+1 4.096886-5-5.359406+1 4.103382-5-3.522442+1 4.105025-5-2.999301+1 4.106988-5-2.487199+1 4.113398-5-9.759048+0 4.114013-5-8.187694+0 4.115165-5-5.682094+0 4.116174-5-3.692017+0 4.117938-5-5.101293-1 4.120585-5 3.739576+0 4.123232-5 7.638976+0 4.124462-5 9.329297+0 4.126613-5 1.177546+1 4.128226-5 1.331568+1 4.131857-5 1.593013+1 4.137369-5 1.784979+1 4.141518-5 1.802356+1 4.147818-5 1.586838+1 4.151506-5 1.405104+1 4.153964-5 1.193481+1 4.160418-5 7.387714+0 4.161493-5 6.478057+0 4.162569-5 5.342770+0 4.172403-5-3.244731+0 4.173632-5-4.472315+0 4.175784-5-6.225994+0 4.187154-5-1.432180+1 4.191457-5-1.804326+1 4.193746-5-2.063658+1 4.199807-5-2.500449+1 4.209172-5-2.981478+1 4.222833-5-3.493983+1 4.248993-5-4.170561+1 4.293218-5-4.917928+1 4.386196-5-6.208634+1 4.413312-5-6.140663+1 4.464038-5-5.208504+1 4.487561-5-5.196125+1 4.553910-5-6.137063+1 4.579731-5-6.128124+1 4.631586-5-5.561100+1 4.665793-5-5.631538+1 4.934386-5-6.903173+1 4.957705-5-7.021217+1 5.006678-5-6.271650+1 5.029012-5-5.620316+1 5.081543-5-3.625155+1 5.093966-5-3.383258+1 5.102085-5-3.437820+1 5.110864-5-3.701558+1 5.120188-5-4.220021+1 5.130044-5-5.005938+1 5.143252-5-6.556976+1 5.145516-5-6.869740+1 5.156035-5-5.455001+1 5.172261-5-3.372880+1 5.182365-5-2.357726+1 5.188486-5-1.891685+1 5.194948-5-1.537460+1 5.199988-5-1.336501+1 5.204104-5-1.217374+1 5.209507-5-1.123576+1 5.214716-5-1.112679+1 5.225519-5-1.300672+1 5.239200-5-1.747843+1 5.259416-5-2.521873+1 5.276532-5-3.093346+1 5.283277-5-3.372416+1 5.300420-5-3.774618+1 5.332520-5-4.221168+1 5.388663-5-4.653685+1 5.519570-5-5.111132+1 5.865654-5-5.599833+1 1.260000-4-6.486243+1 1.650144-4-6.528119+1 2.621579-4-5.754115+1 3.114618-4-5.147613+1 3.976829-4-4.513641+1 4.355673-4-4.368258+1 4.480528-4-4.313079+1 4.786099-4-4.049814+1 5.795617-4-3.545081+1 7.372800-4-3.033565+1 8.963962-4-2.764034+1 1.100430-3-2.625738+1 1.338328-3-2.652507+1 1.539100-3-2.829838+1 1.680617-3-3.102302+1 1.764423-3-3.399586+1 1.818384-3-3.737236+1 1.849635-3-4.100654+1 1.875382-3-4.710118+1 1.890495-3-4.995604+1 1.904180-3-4.899948+1 1.931898-3-4.393198+1 1.967930-3-4.180469+1 2.007504-3-3.664934+1 2.060927-3-3.265373+1 2.148751-3-2.826485+1 2.260624-3-2.475913+1 2.311029-3-2.411709+1 2.359523-3-2.470994+1 2.375068-3-2.399302+1 2.413138-3-2.137394+1 2.473350-3-1.905892+1 2.563349-3-1.704235+1 2.634917-3-1.627918+1 2.677904-3-1.616244+1 2.751257-3-1.425068+1 2.836513-3-1.302094+1 2.911790-3-1.258651+1 2.995085-3-1.099769+1 3.123831-3-9.478171+0 3.328751-3-7.843064+0 3.572878-3-6.549602+0 3.845918-3-5.571104+0 4.147200-3-4.855636+0 4.485409-3-4.377718+0 4.933286-3-4.053346+0 5.516890-3-3.932034+0 6.201721-3-4.064416+0 7.053399-3-4.453720+0 8.005684-3-5.131490+0 8.877792-3-6.040271+0 9.488280-3-7.010075+0 9.880955-3-7.985269+0 1.013736-2-9.017693+0 1.028073-2-9.999678+0 1.038219-2-1.125354+1 1.049257-2-1.296078+1 1.055489-2-1.314313+1 1.063202-2-1.222410+1 1.075412-2-1.035194+1 1.087035-2-9.365439+0 1.106486-2-8.506328+0 1.131983-2-7.985749+0 1.157910-2-7.912055+0 1.175459-2-8.273685+0 1.194606-2-9.312089+0 1.203246-2-9.262298+0 1.221512-2-8.027702+0 1.234869-2-7.645294+0 1.251773-2-7.421545+0 1.276475-2-5.991945+0 1.298487-2-5.141026+0 1.330364-2-4.320101+0 1.371173-2-3.564737+0 1.416609-2-2.937558+0 1.475454-2-2.343440+0 1.524307-2-1.967477+0 1.588774-2-1.578376+0 1.646947-2-1.308485+0 1.712055-2-1.075287+0 1.787812-2-8.743158-1 1.830473-2-7.829647-1 1.894865-2-6.749013-1 1.976499-2-5.713256-1 2.074108-2-4.829082-1 2.150305-2-4.394405-1 2.263015-2-4.027340-1 2.340083-2-3.906871-1 2.473687-2-3.901986-1 2.647069-2-4.134548-1 2.911901-2-4.852186-1 3.557921-2-7.186493-1 5.293586-2-1.402053+0 5.900930-2-1.701539+0 6.350509-2-2.013157+0 6.649779-2-2.332653+0 6.846276-2-2.671464+0 6.971015-2-3.034618+0 7.045250-2-3.423819+0 7.155104-2-4.375772+0 7.194825-2-4.440315+0 7.235568-2-4.178925+0 7.314033-2-3.389052+0 7.372292-2-2.986716+0 7.455655-2-2.622833+0 7.583734-2-2.259692+0 7.765592-2-1.922712+0 8.014887-2-1.607091+0 8.266774-2-1.380523+0 8.592119-2-1.173423+0 8.975458-2-1.002089+0 9.491384-2-8.402870-1 1.018518-1-6.976648-1 1.092000-1-6.064870-1 1.148317-1-5.616539-1 1.236768-1-5.185801-1 1.371967-1-4.893300-1 1.573117-1-4.878545-1 2.925649-1-6.292448-1 4.193161-1-7.027848-1 6.255327-1-7.537638-1 1.120601+0-7.857849-1 3.384160+0-7.999186-1 1.000000+1-8.018863-1 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.643589-3 1.097373-6 9.725748-3 1.206601-6 1.440616-2 1.250608-6 1.678219-2 1.329992-6 2.191206-2 1.414416-6 2.874787-2 1.649669-6 5.743388-2 1.754384-6 7.629461-2 1.865747-6 1.021342-1 1.924051-6 1.185290-1 2.048000-6 1.613358-1 2.110127-6 1.870892-1 2.176068-6 2.184805-1 2.244070-6 2.558867-1 2.377500-6 3.462636-1 2.441104-6 3.989352-1 2.502721-6 4.573046-1 2.562412-6 5.216595-1 2.620237-6 5.921233-1 2.676256-6 6.693128-1 2.730524-6 7.536824-1 2.783096-6 8.456355-1 2.883363-6 1.053626+0 2.977462-6 1.294957+0 3.022317-6 1.430010+0 3.107866-6 1.729767+0 3.148647-6 1.896512+0 3.200000-6 2.132390+0 3.263499-6 2.467503+0 3.335332-6 2.918030+0 3.402676-6 3.425637+0 3.465811-6 3.995461+0 3.525000-6 4.632061+0 3.580490-6 5.339699+0 3.632511-6 6.122210+0 3.681281-6 6.984734+0 3.727003-6 7.932917+0 3.769868-6 8.972024+0 3.810053-6 1.010709+1 3.847727-6 1.134306+1 3.883046-6 1.268508+1 3.916158-6 1.413869+1 3.947200-6 1.570938+1 3.976302-6 1.740246+1 4.003585-6 1.922307+1 4.029163-6 2.117643+1 4.053143-6 2.326797+1 4.075623-6 2.550336+1 4.096699-6 2.788845+1 4.116458-6 3.042913+1 4.134981-6 3.313129+1 4.152347-6 3.600078+1 4.168627-6 3.904351+1 4.183890-6 4.226551+1 4.198199-6 4.567306+1 4.211614-6 4.927282+1 4.224190-6 5.307177+1 4.235980-6 5.707724+1 4.247034-6 6.129677+1 4.257396-6 6.573839+1 4.267111-6 7.041110+1 4.276219-6 7.532559+1 4.284757-6 8.049504+1 4.300767-6 9.207335+1 4.314775-6 1.049942+2 4.327032-6 1.194454+2 4.337758-6 1.355480+2 4.347142-6 1.532862+2 4.355354-6 1.724779+2 4.362539-6 1.927964+2 4.368825-6 2.138220+2 4.374326-6 2.351044+2 4.379140-6 2.562142+2 4.387037-6 2.964985+2 4.398323-6 3.679165+2 4.414785-6 5.051502+2 4.423695-6 5.963789+2 4.429126-6 6.574451+2 4.434557-6 7.221652+2 4.445419-6 8.600324+2 4.446776-6 8.778069+2 4.456280-6 1.003204+3 4.460014-6 1.052036+3 4.467142-6 1.142429+3 4.470876-6 1.187429+3 4.474440-6 1.228317+3 4.478003-6 1.266776+3 4.482755-6 1.313589+3 4.487338-6 1.353132+3 4.491581-6 1.384193+3 4.495144-6 1.405764+3 4.500406-6 1.429478+3 4.506770-6 1.444379+3 4.511585-6 1.445203+3 4.518213-6 1.431414+3 4.523561-6 1.407888+3 4.528614-6 1.375941+3 4.533840-6 1.333623+3 4.536474-6 1.308991+3 4.544170-6 1.225856+3 4.548370-6 1.174472+3 4.551911-6 1.128489+3 4.556581-6 1.064836+3 4.560219-6 1.013443+3 4.564897-6 9.458372+2 4.569648-6 8.762801+2 4.574613-6 8.036664+2 4.581189-6 7.091570+2 4.585941-6 6.430707+2 4.587299-6 6.246341+2 4.594936-6 5.253942+2 4.597481-6 4.942028+2 4.608343-6 3.732116+2 4.612522-6 3.321836+2 4.615863-6 3.016466+2 4.619205-6 2.731167+2 4.621920-6 2.513935+2 4.625484-6 2.248377+2 4.630837-6 1.889999+2 4.635925-6 1.592236+2 4.641908-6 1.292017+2 4.647752-6 1.046484+2 4.655334-6 7.904768+1 4.666268-6 5.262973+1 4.671546-6 4.356401+1 4.674996-6 3.873113+1 4.678392-6 3.472962+1 4.680070-6 3.300789+1 4.681736-6 3.145622+1 4.683388-6 3.006354+1 4.685840-6 2.825107+1 4.687456-6 2.721390+1 4.790333-6 9.076547+1 4.800000-6 1.116785+2 4.808442-6 1.349471+2 4.813740-6 1.525655+2 4.818707-6 1.716246+2 4.823363-6 1.920767+2 4.832094-6 2.384623+2 4.839734-6 2.894864+2 4.852267-6 4.002859+2 4.872210-6 6.711506+2 4.882874-6 8.784052+2 4.891030-6 1.072182+3 4.897844-6 1.259573+3 4.905254-6 1.490815+3 4.911276-6 1.700045+3 4.917298-6 1.927987+3 4.929342-6 2.435524+3 4.930847-6 2.503259+3 4.941386-6 2.997894+3 4.945526-6 3.199427+3 4.953430-6 3.588740+3 4.959546-6 3.888438+3 4.965474-6 4.171972+3 4.971590-6 4.451732+3 4.977518-6 4.705037+3 4.982787-6 4.911177+3 4.987657-6 5.082606+3 4.990315-6 5.167513+3 4.997372-6 5.359906+3 5.002883-6 5.473825+3 5.009303-6 5.563206+3 5.015310-6 5.602755+3 5.019705-6 5.604225+3 5.025694-6 5.569066+3 5.029887-6 5.519512+3 5.038491-6 5.356951+3 5.043298-6 5.233162+3 5.046540-6 5.137618+3 5.051288-6 4.981787+3 5.055898-6 4.814326+3 5.061826-6 4.579370+3 5.067095-6 4.355700+3 5.072176-6 4.130265+3 5.079892-6 3.776675+3 5.085914-6 3.497092+3 5.092689-6 3.184848+3 5.097958-6 2.947104+3 5.110002-6 2.432754+3 5.118094-6 2.117409+3 5.122046-6 1.973674+3 5.131079-6 1.672106+3 5.141285-6 1.377407+3 5.165941-6 8.542638+2 5.177722-6 6.841120+2 5.183475-6 6.160274+2 5.189139-6 5.572813+2 5.194713-6 5.065685+2 5.200201-6 4.627343+2 5.211004-6 3.913060+2 5.221470-6 3.371877+2 5.231609-6 2.955138+2 5.241431-6 2.628161+2 5.250946-6 2.366541+2 5.260164-6 2.153193+2 5.269094-6 1.976128+2 5.277744-6 1.826864+2 5.294505-6 1.585699+2 5.310218-6 1.402823+2 5.324949-6 1.259501+2 5.338759-6 1.144357+2 5.351707-6 1.050035+2 5.363845-6 9.715453+1 5.386603-6 8.453709+1 5.406517-6 7.528974+1 5.423942-6 6.828497+1 5.439188-6 6.284307+1 5.465870-6 5.458219+1 5.485881-6 4.924948+1 5.600517-6 2.783936+1 5.627818-6 2.425125+1 5.655119-6 2.104155+1 5.682420-6 1.814648+1 5.696071-6 1.680082+1 5.709721-6 1.551594+1 5.723372-6 1.428727+1 5.737022-6 1.311082+1 5.750673-6 1.198312+1 5.764323-6 1.090126+1 5.777974-6 9.862905+0 5.791625-6 8.866348+0 5.805275-6 7.910633+0 5.818926-6 6.995704+0 5.837732-6 5.804216+0 5.851838-6 4.967223+0 5.862416-6 4.375123+0 5.878285-6 3.553673+0 5.894153-6 2.831221+0 5.908661-6 2.287085+0 5.915914-6 2.070509+0 5.923168-6 1.901442+0 5.930422-6 1.790703+0 5.937676-6 1.752185+0 5.944930-6 1.803553+0 5.948557-6 1.869681+0 5.952184-6 1.967000+0 5.955811-6 2.099119+0 5.961251-6 2.371379+0 5.963971-6 2.544931+0 5.966691-6 2.746180+0 5.970318-6 3.061487+0 5.973039-6 3.336315+0 5.976609-6 3.751656+0 5.981199-6 4.386139+0 5.990580-6 6.092292+0 6.001710-6 8.992059+0 6.007823-6 1.107634+1 6.013980-6 1.358806+1 6.020100-6 1.654286+1 6.026513-6 2.018107+1 6.030961-6 2.305919+1 6.037306-6 2.770477+1 6.041114-6 3.081347+1 6.047603-6 3.669602+1 6.053861-6 4.309207+1 6.058612-6 4.843552+1 6.067738-6 5.988991+1 6.073445-6 6.783949+1 6.076487-6 7.231584+1 6.084472-6 8.481456+1 6.088278-6 9.112663+1 6.091320-6 9.632070+1 6.101253-6 1.140682+2 6.105749-6 1.224143+2 6.112525-6 1.352193+2 6.118541-6 1.466899+2 6.124826-6 1.586177+2 6.130652-6 1.694804+2 6.136737-6 1.804763+2 6.143213-6 1.916093+2 6.149674-6 2.019511+2 6.156047-6 2.112343+2 6.162784-6 2.198826+2 6.169153-6 2.268179+2 6.176182-6 2.329374+2 6.181284-6 2.363090+2 6.187403-6 2.391187+2 6.192488-6 2.404122+2 6.195435-6 2.407277+2 6.205203-6 2.395256+2 6.212264-6 2.365788+2 6.219109-6 2.321686+2 6.226641-6 2.257009+2 6.233942-6 2.180048+2 6.240431-6 2.101543+2 6.246689-6 2.018362+2 6.256191-6 1.881265+2 6.263608-6 1.768044+2 6.275196-6 1.585990+2 6.278440-6 1.534796+2 6.293273-6 1.305343+2 6.301617-6 1.182608+2 6.308106-6 1.091639+2 6.319231-6 9.464526+1 6.334055-6 7.763561+1 6.366442-6 4.984383+1 6.375085-6 4.437671+1 6.383457-6 3.973822+1 6.391568-6 3.579522+1 6.407283-6 2.946368+1 6.422015-6 2.478705+1 6.435827-6 2.124226+1 6.448775-6 1.848005+1 6.494297-6 1.150089+1 6.531473-6 7.621056+0 6.559355-6 5.371524+0 6.580266-6 4.007705+0 6.595950-6 3.177489+0 6.607713-6 2.679639+0 6.616535-6 2.388892+0 6.623151-6 2.225011+0 6.628114-6 2.136824+0 6.635557-6 2.068312+0 6.639279-6 2.066370+0 6.641140-6 2.074311+0 6.643001-6 2.088547+0 6.659352-6 2.532664+0 6.663440-6 2.750876+0 6.666505-6 2.948380+0 6.668805-6 3.117038+0 6.670529-6 3.255750+0 6.673116-6 3.484510+0 6.676725-6 3.847798+0 6.683251-6 4.649115+0 6.692054-6 6.069663+0 6.708405-6 1.001252+1 6.715558-6 1.239774+1 6.723031-6 1.540627+1 6.730483-6 1.899998+1 6.737846-6 2.320211+1 6.745168-6 2.808865+1 6.754620-6 3.554331+1 6.761231-6 4.158576+1 6.768763-6 4.935326+1 6.771274-6 5.215828+1 6.789228-6 7.545439+1 6.792216-6 7.988357+1 6.806920-6 1.038694+2 6.812400-6 1.136731+2 6.822861-6 1.334942+2 6.829309-6 1.463028+2 6.834945-6 1.577721+2 6.841671-6 1.716723+2 6.849040-6 1.870014+2 6.856742-6 2.029093+2 6.863397-6 2.163665+2 6.870480-6 2.301893+2 6.872893-6 2.347454+2 6.882835-6 2.524675+2 6.890526-6 2.647675+2 6.897046-6 2.740445+2 6.904952-6 2.836906+2 6.922780-6 2.981626+2 6.928978-6 3.006575+2 6.938889-6 3.018538+2 6.945287-6 3.008217+2 6.950403-6 2.990082+2 6.957597-6 2.950346+2 6.964904-6 2.893982+2 6.973110-6 2.813208+2 6.979964-6 2.733171+2 6.988776-6 2.615964+2 6.997090-6 2.493376+2 7.005405-6 2.362027+2 7.019290-6 2.130696+2 7.021273-6 2.097006+2 7.036365-6 1.840911+2 7.042820-6 1.733462+2 7.055292-6 1.533458+2 7.069534-6 1.321960+2 7.088550-6 1.074255+2 7.121845-6 7.421732+1 7.139662-6 6.126470+1 7.148310-6 5.598985+1 7.165607-6 4.709965+1 7.182903-6 4.001794+1 7.200200-6 3.432537+1 7.218213-6 2.952378+1 7.227096-6 2.749750+1 7.235980-6 2.566540+1 7.253746-6 2.251952+1 7.271513-6 1.999398+1 7.289280-6 1.803596+1 7.298163-6 1.725789+1 7.307046-6 1.660744+1 7.310987-6 1.635832+1 7.317884-6 1.597848+1 7.328228-6 1.553603+1 7.338573-6 1.523450+1 7.344568-6 1.511832+1 7.353560-6 1.501600+1 7.362553-6 1.498966+1 7.376111-6 1.506719+1 7.380630-6 1.511841+1 7.398708-6 1.541409+1 7.422489-6 1.593831+1 7.456803-6 1.683853+1 7.490328-6 1.794358+1 7.516211-6 1.901422+1 7.543327-6 2.025284+1 7.556420-6 2.082142+1 7.574572-6 2.148134+1 7.592725-6 2.189292+1 7.597263-6 2.194561+1 7.610877-6 2.196472+1 7.616536-6 2.190777+1 7.626439-6 2.171301+1 7.633866-6 2.148734+1 7.645007-6 2.102439+1 7.656148-6 2.042172+1 7.665334-6 1.983092+1 7.676845-6 1.898967+1 7.680682-6 1.868838+1 7.698871-6 1.715946+1 7.711487-6 1.604381+1 7.724979-6 1.484835+1 7.753775-6 1.246123+1 7.776726-6 1.085904+1 7.793257-6 9.909915+0 7.801146-6 9.518205+0 7.812980-6 9.001484+0 7.824814-6 8.563899+0 7.836075-6 8.213913+0 7.845719-6 7.960495+0 7.855362-6 7.745993+0 7.871781-6 7.463771+0 7.883743-6 7.322815+0 7.890921-6 7.265802+0 7.913225-6 7.241695+0 7.922372-6 7.311536+0 7.931520-6 7.437249+0 7.944442-6 7.723482+0 7.948749-6 7.850013+0 7.968266-6 8.639000+0 7.974975-6 8.996251+0 7.989955-6 9.956289+0 8.003829-6 1.103723+1 8.033839-6 1.387570+1 8.048367-6 1.538820+1 8.054728-6 1.605430+1 8.065365-6 1.715013+1 8.070212-6 1.763520+1 8.085348-6 1.905517+1 8.089310-6 1.939635+1 8.106790-6 2.070475+1 8.114797-6 2.118068+1 8.127411-6 2.175364+1 8.137974-6 2.205874+1 8.143818-6 2.215811+1 8.155102-6 2.221199+1 8.161890-6 2.215959+1 8.173630-6 2.192827+1 8.184688-6 2.156219+1 8.197601-6 2.097920+1 8.203532-6 2.066412+1 8.222231-6 1.952372+1 8.241423-6 1.820731+1 8.259970-6 1.689053+1 8.317849-6 1.318284+1 8.336721-6 1.221023+1 8.348843-6 1.165015+1 8.364698-6 1.098725+1 8.379493-6 1.043125+1 8.402497-6 9.663840+0 8.509296-6 6.927697+0 8.522930-6 6.653442+0 8.538379-6 6.375364+0 8.551323-6 6.175563+0 8.565620-6 5.997318+0 8.584831-6 5.840344+0 8.599362-6 5.792419+0 8.607042-6 5.793290+0 8.617337-6 5.823344+0 8.627632-6 5.886080+0 8.634332-6 5.943855+0 8.646057-6 6.074951+0 8.654851-6 6.195891+0 8.674637-6 6.523654+0 8.704920-6 7.095911+0 8.711542-6 7.218470+0 8.732520-6 7.565650+0 8.753498-6 7.810837+0 8.758742-6 7.851221+0 8.774475-6 7.915009+0 8.779720-6 7.916281+0 8.788897-6 7.893943+0 8.802664-6 7.802556+0 8.810489-6 7.720953+0 8.816431-6 7.645552+0 8.826919-6 7.486440+0 8.837408-6 7.298065+0 8.848034-6 7.082801+0 8.858659-6 6.848958+0 8.880356-6 6.340482+0 8.923752-6 5.382891+0 8.942297-6 5.068787+0 8.949053-6 4.975260+0 8.969322-6 4.771747+0 8.974841-6 4.737814+0 8.983120-6 4.705136+0 8.991398-6 4.694913+0 9.025419-6 4.897972+0 9.057629-6 5.459149+0 9.064420-6 5.621972+0 9.084794-6 6.196191+0 9.132597-6 7.936172+0 9.149702-6 8.628033+0 9.155404-6 8.858753+0 9.169485-6 9.418675+0 9.174179-6 9.600055+0 9.189975-6 1.018027+1 9.195240-6 1.036072+1 9.217498-6 1.103005+1 9.224166-6 1.119659+1 9.242787-6 1.156715+1 9.248331-6 1.164923+1 9.259161-6 1.177115+1 9.268363-6 1.183477+1 9.283564-6 1.186114+1 9.293908-6 1.182552+1 9.311345-6 1.167580+1 9.328364-6 1.143481+1 9.351941-6 1.097912+1 9.377470-6 1.037687+1 9.399786-6 9.800666+0 9.423500-6 9.173626+0 9.471941-6 7.947772+0 9.522712-6 6.835606+0 9.559296-6 6.161442+0 9.593773-6 5.621755+0 9.625129-6 5.210741+0 9.663623-6 4.815784+0 9.684159-6 4.659635+0 9.701688-6 4.559821+0 9.717088-6 4.499620+0 9.725897-6 4.477389+0 9.743758-6 4.460766+0 9.765749-6 4.494096+0 9.790341-6 4.600884+0 9.806107-6 4.704998+0 9.821872-6 4.832863+0 9.883898-6 5.452608+0 9.907490-6 5.672102+0 9.931290-6 5.845136+0 9.955090-6 5.950974+0 9.963680-6 5.970565+0 9.976565-6 5.980965+0 9.989450-6 5.969085+0 1.001139-5 5.901894+0 1.003334-5 5.786263+0 1.005029-5 5.673992+0 1.010915-5 5.250719+0 1.013309-5 5.109978+0 1.014666-5 5.045531+0 1.015896-5 4.997419+0 1.017742-5 4.943375+0 1.019588-5 4.909133+0 1.021632-5 4.889991+0 1.026240-5 4.888395+0 1.032474-5 4.891027+0 1.035516-5 4.874965+0 1.041433-5 4.816268+0 1.076701-5 4.428406+0 1.084253-5 4.370233+0 1.104511-5 4.283451+0 1.130532-5 4.222986+0 1.149600-5 4.212068+0 1.166138-5 4.233688+0 1.188818-5 4.304676+0 1.202714-5 4.366690+0 1.217479-5 4.457702+0 1.240160-5 4.646762+0 1.278915-5 5.062717+0 1.296203-5 5.291398+0 1.318881-5 5.652217+0 1.365195-5 6.534398+0 1.400393-5 7.332726+0 1.420120-5 7.840506+0 1.502506-5 1.035566+1 1.641569-5 1.622435+1 1.719088-5 2.042098+1 1.800000-5 2.551864+1 1.862087-5 2.990199+1 1.906044-5 3.326833+1 1.952731-5 3.701058+1 2.000000-5 4.102311+1 2.077614-5 4.796551+1 2.126008-5 5.249757+1 2.190000-5 5.865787+1 2.238721-5 6.343552+1 2.300000-5 6.947001+1 2.350000-5 7.438301+1 2.426610-5 8.179402+1 2.490567-5 8.778516+1 2.560000-5 9.398183+1 2.637762-5 1.004944+2 2.730000-5 1.072609+2 2.792456-5 1.110993+2 2.835141-5 1.134544+2 2.909072-5 1.168542+2 2.973801-5 1.190234+2 3.015945-5 1.200974+2 3.079382-5 1.211832+2 3.144384-5 1.216209+2 3.190378-5 1.214640+2 3.248105-5 1.207969+2 3.302307-5 1.198443+2 3.335133-5 1.197768+2 3.468979-5 1.261179+2 3.548520-5 1.318915+2 3.634743-5 1.399879+2 3.694515-5 1.473952+2 3.747159-5 1.557315+2 3.794237-5 1.650665+2 3.840000-5 1.763851+2 3.871980-5 1.861142+2 3.903943-5 1.979104+2 3.932035-5 2.105060+2 3.956725-5 2.238103+2 3.982127-5 2.403416+2 4.006150-5 2.595014+2 4.027965-5 2.810006+2 4.036567-5 2.909024+2 4.048988-5 3.070360+2 4.059855-5 3.233611+2 4.077685-5 3.561665+2 4.091336-5 3.881890+2 4.096910-5 4.034808+2 4.106665-5 4.339303+2 4.116576-5 4.703334+2 4.123583-5 4.997594+2 4.135929-5 5.595532+2 4.166470-5 7.499284+2 4.202100-5 1.044696+3 4.207190-5 1.097932+3 4.214825-5 1.188235+3 4.217370-5 1.221855+3 4.227550-5 1.379759+3 4.230095-5 1.426319+3 4.237730-5 1.587222+3 4.241229-5 1.673072+3 4.247910-5 1.861336+3 4.255496-5 2.118538+3 4.267081-5 2.610812+3 4.281964-5 3.425874+3 4.287200-5 3.757381+3 4.297767-5 4.479941+3 4.301625-5 4.756012+3 4.310263-5 5.382075+3 4.314160-5 5.662273+3 4.319171-5 6.014317+3 4.324340-5 6.361832+3 4.329351-5 6.677135+3 4.333804-5 6.934747+3 4.339128-5 7.208977+3 4.345691-5 7.488031+3 4.351082-5 7.662249+3 4.356966-5 7.790605+3 4.360617-5 7.836299+3 4.370661-5 7.824546+3 4.373524-5 7.784499+3 4.381461-5 7.592149+3 4.385642-5 7.445609+3 4.391280-5 7.203417+3 4.396599-5 6.933390+3 4.401754-5 6.639085+3 4.406336-5 6.355479+3 4.412227-5 5.967751+3 4.417464-5 5.608270+3 4.422701-5 5.241468+3 4.428592-5 4.827497+3 4.433174-5 4.509307+3 4.444957-5 3.729010+3 4.450684-5 3.378554+3 4.459358-5 2.893011+3 4.483685-5 1.849358+3 4.488779-5 1.688042+3 4.493794-5 1.546417+3 4.498730-5 1.422383+3 4.503589-5 1.313922+3 4.508372-5 1.219147+3 4.517716-5 1.063863+3 4.526841-5 9.437897+2 4.535681-5 8.508128+2 4.544244-5 7.777559+2 4.552540-5 7.193538+2 4.560577-5 6.718065+2 4.575905-5 5.991786+2 4.583211-5 5.707609+2 4.597368-5 5.238801+2 4.610639-5 4.873474+2 4.623082-5 4.579675+2 4.645682-5 4.134982+2 4.659967-5 3.898714+2 4.675156-5 3.676606+2 4.691976-5 3.458877+2 4.719571-5 3.151243+2 4.756007-5 2.813052+2 4.845230-5 2.171154+2 4.917536-5 1.734103+2 4.957849-5 1.506236+2 4.982255-5 1.386203+2 4.994458-5 1.335438+2 5.006661-5 1.292306+2 5.018864-5 1.257196+2 5.028127-5 1.235668+2 5.039713-5 1.214087+2 5.057979-5 1.188358+2 5.093689-5 1.143355+2 5.118195-5 1.108769+2 5.128679-5 1.096616+2 5.135121-5 1.091285+2 5.146291-5 1.087846+2 5.156350-5 1.093151+2 5.172181-5 1.122695+2 5.187233-5 1.180382+2 5.203391-5 1.280149+2 5.213397-5 1.363585+2 5.219786-5 1.425936+2 5.229500-5 1.534436+2 5.251872-5 1.843987+2 5.269449-5 2.133582+2 5.282376-5 2.360464+2 5.295125-5 2.586362+2 5.306880-5 2.791964+2 5.326624-5 3.140478+2 5.338090-5 3.368305+2 5.342726-5 3.473417+2 5.354937-5 3.811580+2 5.358877-5 3.946778+2 5.367869-5 4.321016+2 5.371939-5 4.526486+2 5.376655-5 4.797994+2 5.381264-5 5.102089+2 5.386210-5 5.475848+2 5.391909-5 5.973834+2 5.399430-5 6.753170+2 5.420972-5 9.863529+2 5.428524-5 1.128412+3 5.439803-5 1.371914+3 5.444036-5 1.472317+3 5.452947-5 1.697715+3 5.457230-5 1.811834+3 5.466409-5 2.065780+3 5.472817-5 2.247787+3 5.478218-5 2.402089+3 5.485550-5 2.609744+3 5.489928-5 2.731138+3 5.496016-5 2.894659+3 5.502495-5 3.059292+3 5.504675-5 3.112001+3 5.513354-5 3.305571+3 5.519860-5 3.430832+3 5.528014-5 3.559789+3 5.534031-5 3.632882+3 5.537912-5 3.669460+3 5.544859-5 3.713451+3 5.551821-5 3.729371+3 5.559753-5 3.713242+3 5.566219-5 3.673903+3 5.572487-5 3.614567+3 5.578286-5 3.542422+3 5.584799-5 3.443588+3 5.590238-5 3.348300+3 5.597232-5 3.211420+3 5.604711-5 3.050837+3 5.612191-5 2.879869+3 5.622098-5 2.644694+3 5.624872-5 2.578200+3 5.640138-5 2.218042+3 5.653980-5 1.914278+3 5.681144-5 1.423221+3 5.687936-5 1.324810+3 5.694727-5 1.235907+3 5.701252-5 1.159013+3 5.713179-5 1.038324+3 5.720829-5 9.730163+2 5.735538-5 8.697657+2 5.747988-5 8.010739+2 5.761568-5 7.411014+2 5.778870-5 6.813763+2 5.791152-5 6.472875+2 5.807318-5 6.100050+2 5.826908-5 5.732536+2 5.859378-5 5.259803+2 5.888437-5 4.931946+2 5.921110-5 4.633941+2 5.970330-5 4.277927+2 6.017017-5 4.008086+2 6.075756-5 3.732308+2 6.128975-5 3.528307+2 6.229578-5 3.208229+2 6.275070-5 3.084472+2 6.305464-5 3.017983+2 6.327022-5 2.981486+2 6.359503-5 2.943316+2 6.381709-5 2.926893+2 6.417192-5 2.911185+2 6.535418-5 2.890258+2 6.666204-5 2.869817+2 7.088058-5 2.734085+2 7.622895-5 2.554511+2 7.980844-5 2.425617+2 8.201250-5 2.343270+2 8.426069-5 2.257209+2 8.645633-5 2.170960+2 8.900000-5 2.070682+2 9.102810-5 1.985807+2 9.282351-5 1.907347+2 9.330743-5 1.892573+2 9.427866-5 1.877678+2 9.510262-5 1.865183+2 9.593927-5 1.838847+2 9.714866-5 1.791630+2 1.026242-4 1.613912+2 1.126856-4 1.344855+2 1.157815-4 1.278975+2 1.181255-4 1.234626+2 1.216186-4 1.177774+2 1.232193-4 1.155215+2 1.273503-4 1.109496+2 1.296000-4 1.091936+2 1.340386-4 1.071979+2 1.397160-4 1.076343+2 1.443402-4 1.104296+2 1.493363-4 1.159773+2 1.520000-4 1.198955+2 1.560968-4 1.272446+2 1.610224-4 1.378679+2 1.661767-4 1.508121+2 1.720000-4 1.673882+2 1.765000-4 1.815098+2 1.950000-4 2.498890+2 2.018366-4 2.786093+2 2.103165-4 3.158184+2 2.190000-4 3.550961+2 2.272690-4 3.929156+2 2.350000-4 4.280101+2 2.458109-4 4.754265+2 2.571199-4 5.219162+2 2.655326-4 5.529435+2 2.721195-4 5.732237+2 2.743866-4 5.835839+2 2.759420-4 5.944304+2 2.795391-4 6.269950+2 2.811268-4 6.393687+2 2.830104-4 6.500558+2 2.855175-4 6.601432+2 2.884646-4 6.739230+2 2.903994-4 6.879224+2 2.934346-4 7.156622+2 2.949242-4 7.280288+2 2.964894-4 7.382171+2 2.985667-4 7.477655+2 3.141380-4 8.039343+2 3.296704-4 8.576202+2 3.500344-4 9.229155+2 3.734310-4 9.912256+2 4.016661-4 1.063364+3 4.216965-4 1.106402+3 4.355000-4 1.127348+3 4.457875-4 1.132108+3 4.488308-4 1.139628+3 4.507566-4 1.150028+3 4.543001-4 1.179703+3 4.572298-4 1.205258+3 4.585964-4 1.214398+3 4.603125-4 1.222531+3 4.674362-4 1.239388+3 4.791656-4 1.283159+3 4.954502-4 1.327698+3 5.177339-4 1.374132+3 5.442956-4 1.426134+3 5.675518-4 1.479884+3 5.915641-4 1.520581+3 6.188721-4 1.555692+3 6.393090-4 1.577813+3 6.651432-4 1.622691+3 6.917500-4 1.658887+3 7.343651-4 1.700746+3 7.782133-4 1.732602+3 8.320630-4 1.760570+3 8.865329-4 1.779762+3 9.437508-4 1.791379+3 1.001013-3 1.794776+3 1.077705-3 1.787531+3 1.137413-3 1.769893+3 1.216186-3 1.741426+3 1.295221-3 1.705667+3 1.371579-3 1.664133+3 1.449606-3 1.612974+3 1.528525-3 1.546690+3 1.599213-3 1.476041+3 1.654817-3 1.412465+3 1.707433-3 1.342786+3 1.749234-3 1.278844+3 1.788812-3 1.208106+3 1.821011-3 1.140317+3 1.849194-3 1.070508+3 1.872837-3 1.001024+3 1.890438-3 9.392936+2 1.904976-3 8.781650+2 1.916999-3 8.179488+2 1.926056-3 7.668029+2 1.941759-3 6.774728+2 1.946576-3 6.550082+2 1.948769-3 6.463624+2 1.951389-3 6.376220+2 1.953976-3 6.309043+2 1.955994-3 6.271127+2 1.958580-3 6.242466+2 1.961393-3 6.237946+2 1.965113-3 6.275842+2 1.968580-3 6.355777+2 1.972195-3 6.482423+2 1.975509-3 6.633365+2 1.981196-3 6.954818+2 1.995601-3 7.929537+2 1.999485-3 8.187297+2 2.004986-3 8.528028+2 2.010262-3 8.824989+2 2.016796-3 9.158964+2 2.034637-3 1.005029+3 2.041873-3 1.047575+3 2.066499-3 1.221718+3 2.073944-3 1.274098+3 2.083017-3 1.332085+3 2.095573-3 1.399672+3 2.112417-3 1.470666+3 2.134384-3 1.543025+3 2.164315-3 1.624570+3 2.203327-3 1.716951+3 2.244127-3 1.803641+3 2.278288-3 1.864711+3 2.310475-3 1.909076+3 2.344229-3 1.942033+3 2.386971-3 1.964020+3 2.410279-3 1.976020+3 2.430264-3 1.999148+3 2.441343-3 2.019976+3 2.456517-3 2.058103+3 2.494694-3 2.176911+3 2.506470-3 2.209473+3 2.518942-3 2.238704+3 2.535493-3 2.269604+3 2.558811-3 2.302035+3 2.585235-3 2.329176+3 2.614230-3 2.351079+3 2.653078-3 2.371099+3 2.686479-3 2.380262+3 2.754663-3 2.384582+3 2.777799-3 2.392789+3 2.800844-3 2.410451+3 2.860869-3 2.470062+3 2.885633-3 2.485319+3 2.919977-3 2.497083+3 2.998553-3 2.501172+3 3.031229-3 2.513235+3 3.091083-3 2.560301+3 3.119206-3 2.576916+3 3.153837-3 2.590423+3 3.197431-3 2.601129+3 3.320856-3 2.611583+3 3.507519-3 2.603118+3 3.672823-3 2.582101+3 3.981072-3 2.523039+3 4.320724-3 2.440562+3 4.549553-3 2.380085+3 4.848642-3 2.296938+3 5.351392-3 2.158452+3 5.821032-3 2.033224+3 6.339249-3 1.899810+3 6.622403-3 1.830452+3 6.932164-3 1.756685+3 7.253487-3 1.682806+3 7.546957-3 1.617175+3 7.884185-3 1.544181+3 8.244389-3 1.468647+3 8.573069-3 1.401581+3 8.886238-3 1.338594+3 9.160058-3 1.283757+3 9.415645-3 1.232392+3 9.635136-3 1.187477+3 9.811123-3 1.150495+3 9.972808-3 1.115131+3 1.009644-2 1.086539+3 1.020907-2 1.058899+3 1.031476-2 1.030918+3 1.040715-2 1.003898+3 1.048287-2 9.788277+2 1.054447-2 9.553603+2 1.061145-2 9.255805+2 1.075769-2 8.528445+2 1.079914-2 8.377072+2 1.083033-2 8.305352+2 1.086670-2 8.276686+2 1.089726-2 8.299677+2 1.093044-2 8.368762+2 1.097801-2 8.527897+2 1.107554-2 8.927526+2 1.111060-2 9.055515+2 1.114788-2 9.171451+2 1.118737-2 9.270559+2 1.123487-2 9.360504+2 1.129609-2 9.439081+2 1.136128-2 9.489707+2 1.144299-2 9.520270+2 1.153255-2 9.523485+2 1.162819-2 9.499898+2 1.173303-2 9.447407+2 1.183489-2 9.371129+2 1.193331-2 9.271578+2 1.201965-2 9.158304+2 1.208621-2 9.049901+2 1.229384-2 8.636412+2 1.235574-2 8.553579+2 1.241224-2 8.525887+2 1.246861-2 8.546251+2 1.268490-2 8.785044+2 1.281999-2 8.842287+2 1.294482-2 8.901830+2 1.307322-2 9.042002+2 1.323231-2 9.228175+2 1.336683-2 9.320306+2 1.356859-2 9.371143+2 1.380654-2 9.367443+2 1.409081-2 9.316859+2 1.444953-2 9.210399+2 1.484432-2 9.060715+2 1.551991-2 8.758798+2 1.627333-2 8.394886+2 1.737215-2 7.861352+2 1.876209-2 7.217766+2 2.075845-2 6.396549+2 2.285928-2 5.663023+2 2.542239-2 4.919138+2 2.806217-2 4.287284+2 3.129077-2 3.660691+2 3.526479-2 3.058550+2 3.814505-2 2.704205+2 4.128703-2 2.375136+2 5.014370-2 1.706070+2 5.436414-2 1.480919+2 5.886318-2 1.280971+2 6.242453-2 1.144492+2 6.534366-2 1.043085+2 6.756276-2 9.695945+1 6.927514-2 9.127189+1 7.047703-2 8.706512+1 7.098586-2 8.514391+1 7.141830-2 8.338444+1 7.178833-2 8.173498+1 7.232716-2 7.900159+1 7.336662-2 7.324631+1 7.365907-2 7.209885+1 7.392239-2 7.148903+1 7.411739-2 7.132884+1 7.440145-2 7.152096+1 7.476000-2 7.232452+1 7.552824-2 7.471691+1 7.600502-2 7.584603+1 7.654132-2 7.658569+1 7.691948-2 7.684593+1 7.783881-2 7.694878+1 7.896021-2 7.652592+1 8.102552-2 7.502696+1 8.306185-2 7.316801+1 8.616075-2 7.003007+1 9.069423-2 6.529525+1 9.640957-2 5.964590+1 1.033320-1 5.350708+1 1.118408-1 4.695049+1 1.227968-1 3.996215+1 1.449884-1 2.973063+1 1.893161-1 1.833062+1 2.280896-1 1.299679+1 2.755715-1 9.104893+0 3.486687-1 5.807272+0 4.820865-1 3.101491+0 7.130582-1 1.442794+0 1.173413+0 5.405002-1 2.135261+0 1.645769-1 6.448384+0 1.810979-2 1.947381+1 1.986309-3 5.880996+1 2.178018-4 1.776032+2 2.388157-5 5.363532+2 2.618564-6 1.995262+3 1.892191-7 6.309573+3 1.892191-8 1.995262+4 1.892191-9 6.309573+4 1.89219-10 1.000000+5 7.53295-11 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.679500-6 1.258900-6 2.661900-6 1.584900-6 4.218800-6 1.995300-6 6.686300-6 2.511900-6 1.059700-5 3.162300-6 1.679500-5 3.981100-6 2.661800-5 5.011900-6 4.218700-5 6.309600-6 6.686100-5 7.943300-6 1.059700-4 1.000000-5 1.679400-4 1.258900-5 2.661700-4 1.584900-5 4.218400-4 1.995300-5 6.685600-4 2.511900-5 1.059600-3 3.162300-5 1.679100-3 3.981100-5 2.660600-3 5.011900-5 4.215700-3 6.309600-5 6.679900-3 7.943300-5 1.057500-2 1.000000-4 1.673700-2 1.258900-4 2.648800-2 1.584900-4 4.185400-2 1.995300-4 6.606000-2 2.511900-4 1.039900-1 3.162300-4 1.630900-1 3.981100-4 2.542500-1 5.011900-4 3.925000-1 6.309600-4 5.958700-1 7.943300-4 8.852800-1 1.000000-3 1.279000+0 1.258900-3 1.788800+0 1.584900-3 2.420300+0 1.995300-3 3.187400+0 2.511900-3 4.126200+0 3.162300-3 5.277700+0 3.981100-3 6.678300+0 5.011900-3 8.359100+0 6.309600-3 1.034900+1 7.943300-3 1.258700+1 1.000000-2 1.497800+1 1.258900-2 1.746000+1 1.584900-2 2.005600+1 1.995300-2 2.271300+1 2.511900-2 2.533300+1 3.162300-2 2.771100+1 3.981100-2 2.966400+1 5.011900-2 3.110400+1 6.309600-2 3.200000+1 7.943300-2 3.236200+1 1.000000-1 3.218300+1 1.258900-1 3.148700+1 1.584900-1 3.035700+1 1.995300-1 2.889600+1 2.511900-1 2.720200+1 3.162300-1 2.536300+1 3.981100-1 2.344300+1 5.011900-1 2.150500+1 6.309600-1 1.958700+1 7.943300-1 1.771600+1 1.000000+0 1.591300+1 1.258900+0 1.421300+1 1.584900+0 1.260400+1 1.995300+0 1.110300+1 2.511900+0 9.718100+0 3.162300+0 8.452300+0 3.981100+0 7.307400+0 5.011900+0 6.282200+0 6.309600+0 5.372000+0 7.943300+0 4.572000+0 1.000000+1 3.873800+0 1.258900+1 3.268900+0 1.584900+1 2.748300+0 1.995300+1 2.303000+0 2.511900+1 1.924000+0 3.162300+1 1.603000+0 3.981100+1 1.332300+0 5.011900+1 1.104900+0 6.309600+1 9.144800-1 7.943300+1 7.554900-1 1.000000+2 6.231000-1 1.258900+2 5.131400-1 1.584900+2 4.220000-1 1.995300+2 3.466000-1 2.511900+2 2.843400-1 3.162300+2 2.330100-1 3.981100+2 1.907600-1 5.011900+2 1.560200-1 6.309600+2 1.274900-1 7.943300+2 1.041000-1 1.000000+3 8.493300-2 1.258900+3 6.924500-2 1.584900+3 5.641600-2 1.995300+3 4.593500-2 2.511900+3 3.737700-2 3.162300+3 3.039700-2 3.981100+3 2.470700-2 5.011900+3 2.007100-2 6.309600+3 1.629700-2 7.943300+3 1.322600-2 1.000000+4 1.072900-2 1.258900+4 8.699800-3 1.584900+4 7.051300-3 1.995300+4 5.712900-3 2.511900+4 4.626700-3 3.162300+4 3.745700-3 3.981100+4 3.031300-3 5.011900+4 2.452300-3 6.309600+4 1.983300-3 7.943300+4 1.603400-3 1.000000+5 1.295900-3 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159550-4 3.981072-4 3.976748-4 5.011872-4 5.005062-4 6.309573-4 6.298846-4 7.943282-4 7.926427-4 1.000000-3 9.973552-4 1.258925-3 1.254803-3 1.584893-3 1.578471-3 1.995262-3 1.985241-3 2.511886-3 2.496246-3 3.162278-3 3.137773-3 3.981072-3 3.942639-3 5.011872-3 4.951491-3 6.309573-3 6.215176-3 7.943282-3 7.796013-3 1.000000-2 9.771359-3 1.258925-2 1.223499-2 1.584893-2 1.530160-2 1.995262-2 1.910741-2 2.511886-2 2.381823-2 3.162278-2 2.963411-2 3.981072-2 3.679383-2 5.011872-2 4.557510-2 6.309573-2 5.629990-2 7.943282-2 6.933823-2 1.000000-1 8.512980-2 1.258925-1 1.041904-1 1.584893-1 1.271097-1 1.995262-1 1.545638-1 2.511886-1 1.873228-1 3.162278-1 2.262976-1 3.981072-1 2.724828-1 5.011872-1 3.270861-1 6.309573-1 3.915414-1 7.943282-1 4.675322-1 1.000000+0 5.570009-1 1.258925+0 6.622337-1 1.584893+0 7.865033-1 1.995262+0 9.335935-1 2.511886+0 1.108151+0 3.162278+0 1.315900+0 3.981072+0 1.563873+0 5.011872+0 1.860771+0 6.309573+0 2.217020+0 7.943282+0 2.645470+0 1.000000+1 3.162090+0 1.258925+1 3.786171+0 1.584893+1 4.541335+0 1.995262+1 5.456588+0 2.511886+1 6.567436+0 3.162278+1 7.917466+0 3.981072+1 9.559904+0 5.011872+1 1.156063+1 6.309573+1 1.400036+1 7.943282+1 1.697801+1 1.000000+2 2.061541+1 1.258925+2 2.506241+1 1.584893+2 3.050407+1 1.995262+2 3.716766+1 2.511886+2 4.533283+1 3.162278+2 5.534541+1 3.981072+2 6.762986+1 5.011872+2 8.271330+1 6.309573+2 1.012428+2 7.943282+2 1.240186+2 1.000000+3 1.520284+2 1.258925+3 1.864900+2 1.584893+3 2.289157+2 1.995262+3 2.811732+2 2.511886+3 3.455487+2 3.162278+3 4.249336+2 3.981072+3 5.228230+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739893-9 3.981072-5 4.342137-9 5.011872-5 6.881497-9 6.309573-5 1.090595-8 7.943282-5 1.727966-8 1.000000-4 2.738108-8 1.258925-4 4.338806-8 1.584893-4 6.873071-8 1.995262-4 1.088571-7 2.511886-4 1.723698-7 3.162278-4 2.727628-7 3.981072-4 4.323776-7 5.011872-4 6.810692-7 6.309573-4 1.072725-6 7.943282-4 1.685533-6 1.000000-3 2.644774-6 1.258925-3 4.122173-6 1.584893-3 6.422271-6 1.995262-3 1.002099-5 2.511886-3 1.564030-5 3.162278-3 2.450417-5 3.981072-3 3.843238-5 5.011872-3 6.038132-5 6.309573-3 9.439780-5 7.943282-3 1.472691-4 1.000000-2 2.286410-4 1.258925-2 3.542670-4 1.584893-2 5.473351-4 1.995262-2 8.452113-4 2.511886-2 1.300638-3 3.162278-2 1.988662-3 3.981072-2 3.016888-3 5.011872-2 4.543625-3 6.309573-2 6.795830-3 7.943282-2 1.009459-2 1.000000-1 1.487020-2 1.258925-1 2.170218-2 1.584893-1 3.137962-2 1.995262-1 4.496239-2 2.511886-1 6.386587-2 3.162278-1 8.993020-2 3.981072-1 1.256244-1 5.011872-1 1.741012-1 6.309573-1 2.394159-1 7.943282-1 3.267961-1 1.000000+0 4.429991-1 1.258925+0 5.966917-1 1.584893+0 7.983899-1 1.995262+0 1.061669+0 2.511886+0 1.403736+0 3.162278+0 1.846378+0 3.981072+0 2.417199+0 5.011872+0 3.151101+0 6.309573+0 4.092553+0 7.943282+0 5.297813+0 1.000000+1 6.837910+0 1.258925+1 8.803083+0 1.584893+1 1.130760+1 1.995262+1 1.449603+1 2.511886+1 1.855143+1 3.162278+1 2.370531+1 3.981072+1 3.025081+1 5.011872+1 3.855809+1 6.309573+1 4.909537+1 7.943282+1 6.245482+1 1.000000+2 7.938459+1 1.258925+2 1.008301+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058558+2 3.162278+2 2.608824+2 3.981072+2 3.304773+2 5.011872+2 4.184739+2 6.309573+2 5.297145+2 7.943282+2 6.703096+2 1.000000+3 8.479716+2 1.258925+3 1.072435+3 1.584893+3 1.355977+3 1.995262+3 1.714089+3 2.511886+3 2.166338+3 3.162278+3 2.737344+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.390000-6 6.583920+6 8.810489-6 5.381627+6 9.600000-6 3.745602+6 9.600000-6 9.487785+6 1.000000-5 9.240532+6 1.059254-5 9.126647+6 1.079000-5 9.150366+6 1.079000-5 1.227749+7 1.115000-5 1.252507+7 1.122018-5 1.258491+7 1.161449-5 1.295606+7 1.216186-5 1.360120+7 1.244515-5 1.398728+7 1.318257-5 1.509784+7 1.333521-5 1.534800+7 1.388400-5 1.626540+7 1.462177-5 1.759339+7 1.513561-5 1.854086+7 1.570000-5 1.960941+7 1.584893-5 1.989865+7 1.640590-5 2.095955+7 1.698244-5 2.206943+7 1.757924-5 2.319707+7 1.800000-5 2.398794+7 1.862087-5 2.510910+7 1.905461-5 2.588151+7 1.950000-5 2.662698+7 2.000000-5 2.743998+7 2.041738-5 2.806762+7 2.089296-5 2.875385+7 2.113489-5 2.907133+7 2.162719-5 2.968376+7 2.190000-5 2.998599+7 2.213095-5 3.022250+7 2.238721-5 3.048488+7 2.270000-5 3.075750+7 2.300000-5 3.098918+7 2.317395-5 3.112328+7 2.350000-5 3.132124+7 2.371374-5 3.142970+7 2.400000-5 3.157455+7 2.426610-5 3.166429+7 2.454709-5 3.172961+7 2.483133-5 3.179557+7 2.511886-5 3.181335+7 2.528300-5 3.180485+7 2.570396-5 3.178392+7 2.600160-5 3.172167+7 2.650000-5 3.157099+7 2.660725-5 3.152318+7 2.730000-5 3.116272+7 2.800000-5 3.064468+7 2.818383-5 3.051244+7 2.884032-5 2.990465+7 2.900000-5 2.976089+7 2.951209-5 2.920206+7 2.985383-5 2.884056+7 3.000000-5 2.867615+7 3.040000-5 2.819105+7 3.080000-5 2.772064+7 3.090295-5 2.759423+7 3.126079-5 2.712838+7 3.162278-5 2.667062+7 3.198895-5 2.619490+7 3.223700-5 2.585919+7 3.273407-5 2.520710+7 3.311311-5 2.470137+7 3.330000-5 2.444337+7 3.400000-5 2.351325+7 3.427678-5 2.314544+7 3.450000-5 2.285515+7 3.507519-5 2.209527+7 3.548134-5 2.156307+7 3.590900-5 2.102293+7 3.650000-5 2.027852+7 3.690000-5 1.978081+7 3.758374-5 1.897002+7 3.801894-5 1.846113+7 3.850000-5 1.790646+7 3.950000-5 1.682662+7 3.981072-5 1.650045+7 4.073803-5 1.555782+7 4.168694-5 1.466924+7 4.415704-5 1.257525+7 4.677351-5 1.071057+7 5.000000-5 8.829609+6 5.069907-5 8.468325+6 5.308844-5 7.372823+6 5.315000-5 7.346144+6 5.315000-5 1.061762+7 5.370318-5 1.040625+7 5.432503-5 1.015199+7 5.500000-5 9.865536+6 5.570000-5 9.562685+6 5.650000-5 9.216550+6 5.651800-5 9.208734+6 5.754399-5 8.758298+6 5.888437-5 8.192038+6 5.900000-5 8.143871+6 6.000000-5 7.742764+6 6.025596-5 7.641770+6 6.165950-5 7.104298+6 6.309573-5 6.592426+6 6.326000-5 6.535623+6 6.326000-5 6.842603+6 6.350000-5 6.770349+6 6.382635-5 6.672230+6 6.390000-5 6.649909+6 6.430000-5 6.528978+6 6.480000-5 6.380760+6 6.531306-5 6.232418+6 6.600000-5 6.039625+6 6.601000-5 6.036850+6 6.601000-5 7.452302+6 6.607000-5 7.440338+6 6.621000-5 7.411987+6 6.621000-5 7.615396+6 6.650000-5 7.566695+6 6.683439-5 7.503870+6 6.700000-5 7.471974+6 6.720000-5 7.429927+6 6.760830-5 7.345274+6 6.770000-5 7.326731+6 6.815000-5 7.226157+6 6.850000-5 7.149584+6 6.870000-5 7.103979+6 6.880000-5 7.081212+6 6.918310-5 6.994559+6 6.920000-5 6.990730+6 6.998420-5 6.806565+6 7.000000-5 6.802919+6 7.079458-5 6.612431+6 7.110000-5 6.540450+6 7.150000-5 6.444367+6 7.161434-5 6.417142+6 7.230000-5 6.256735+6 7.244360-5 6.222820+6 7.270000-5 6.163006+6 7.328245-5 6.029574+6 7.350000-5 5.980633+6 7.400000-5 5.867053+6 7.413102-5 5.837677+6 7.500000-5 5.645297+6 7.585776-5 5.458790+6 7.673615-5 5.277109+6 7.800000-5 5.024331+6 7.852356-5 4.924949+6 7.900000-5 4.833853+6 8.035261-5 4.588110+6 8.080000-5 4.511480+6 8.128305-5 4.429414+6 8.230000-5 4.265169+6 8.317638-5 4.132224+6 8.413951-5 3.989887+6 8.511380-5 3.855142+6 8.570000-5 3.778149+6 8.609938-5 3.727791+6 8.650000-5 3.678907+6 8.709636-5 3.607182+6 8.730000-5 3.583487+6 8.810489-5 3.493959+6 8.900000-5 3.398029+6 9.015711-5 3.284957+6 9.070000-5 3.235157+6 9.120108-5 3.192157+6 9.230000-5 3.101792+6 9.332543-5 3.026136+6 9.400000-5 2.978893+6 9.440609-5 2.952728+6 9.580000-5 2.869237+6 9.588400-5 2.864620+6 9.800000-5 2.761303+6 9.812000-5 2.756327+6 9.812000-5 2.827807+6 9.900000-5 2.791027+6 9.980000-5 2.760937+6 1.000000-4 2.753865+6 1.000900-4 2.750778+6 1.005000-4 2.737569+6 1.020000-4 2.695198+6 1.023293-4 2.687121+6 1.035142-4 2.662377+6 1.050000-4 2.640858+6 1.059254-4 2.632112+6 1.060000-4 2.631550+6 1.070000-4 2.625464+6 1.071519-4 2.624842+6 1.083927-4 2.622043+6 1.090000-4 2.622675+6 1.096478-4 2.624616+6 1.100000-4 2.626161+6 1.110000-4 2.632626+6 1.122018-4 2.644131+6 1.135011-4 2.661450+6 1.150000-4 2.687006+6 1.170000-4 2.727143+6 1.190000-4 2.777537+6 1.205000-4 2.819897+6 1.216186-4 2.853039+6 1.220000-4 2.864873+6 1.244515-4 2.949279+6 1.260000-4 3.006895+6 1.273503-4 3.058310+6 1.303167-4 3.183060+6 1.318257-4 3.250476+6 1.330000-4 3.302958+6 1.350000-4 3.397520+6 1.364583-4 3.468059+6 1.380384-4 3.544103+6 1.390400-4 3.594040+6 1.400000-4 3.643287+6 1.412538-4 3.707112+6 1.428894-4 3.788518+6 1.450000-4 3.897595+6 1.462177-4 3.960557+6 1.480000-4 4.049513+6 1.500000-4 4.152286+6 1.513561-4 4.220832+6 1.520000-4 4.251751+6 1.531087-4 4.305786+6 1.540000-4 4.349953+6 1.548817-4 4.394206+6 1.560000-4 4.448350+6 1.566751-4 4.479348+6 1.584893-4 4.563860+6 1.600000-4 4.635708+6 1.603245-4 4.650492+6 1.620000-4 4.722138+6 1.621810-4 4.729949+6 1.650000-4 4.853514+6 1.659587-4 4.893771+6 1.670000-4 4.934343+6 1.698244-4 5.045846+6 1.705000-4 5.072845+6 1.720000-4 5.129604+6 1.737801-4 5.191722+6 1.740000-4 5.199483+6 1.760000-4 5.270474+6 1.778279-4 5.331925+6 1.780000-4 5.337742+6 1.820000-4 5.461930+6 1.840772-4 5.523280+6 1.850000-4 5.550594+6 1.862087-4 5.582887+6 1.883649-4 5.640850+6 1.905461-4 5.695968+6 1.930000-4 5.758463+6 1.950000-4 5.803788+6 1.995262-4 5.898915+6 2.000000-4 5.908897+6 2.018366-4 5.947657+6 2.041738-4 5.986029+6 2.050000-4 5.999601+6 2.089296-4 6.064158+6 2.100000-4 6.077392+6 2.137962-4 6.124273+6 2.150000-4 6.139110+6 2.162719-4 6.154721+6 2.178800-4 6.170785+6 2.190000-4 6.179628+6 2.238721-4 6.218132+6 2.250000-4 6.224244+6 2.264644-4 6.232187+6 2.300000-4 6.244714+6 2.317395-4 6.250847+6 2.330000-4 6.255298+6 2.344229-4 6.256763+6 2.350000-4 6.257369+6 2.400000-4 6.253683+6 2.426610-4 6.251890+6 2.454709-4 6.243724+6 2.511886-4 6.217588+6 2.517700-4 6.214987+6 2.540973-4 6.204676+6 2.570396-4 6.186309+6 2.650000-4 6.126473+6 2.660725-4 6.118582+6 2.691535-4 6.091098+6 2.754229-4 6.028931+6 2.786121-4 5.998103+6 2.800000-4 5.984835+6 2.818383-4 5.964343+6 2.822900-4 5.958853+6 2.822900-4 6.215225+6 2.836000-4 6.189847+6 2.855000-4 6.155597+6 2.870000-4 6.130277+6 2.890000-4 6.098399+6 2.900000-4 6.083319+6 2.917427-4 6.057325+6 2.951209-4 6.009731+6 2.970800-4 5.978379+6 2.970800-4 6.136779+6 2.985383-4 6.112834+6 2.995000-4 6.097163+6 3.007000-4 6.078120+6 3.019952-4 6.057201+6 3.022000-4 6.053911+6 3.030000-4 6.040524+6 3.030200-4 6.040197+6 3.035000-4 6.032344+6 3.054921-4 5.998744+6 3.065000-4 5.981941+6 3.090295-4 5.942172+6 3.100000-4 5.927419+6 3.130000-4 5.876332+6 3.140000-4 5.859726+6 3.162278-4 5.823864+6 3.180000-4 5.795657+6 3.200000-4 5.765156+6 3.220000-4 5.735002+6 3.225800-4 5.726482+6 3.235937-4 5.711862+6 3.260000-4 5.675373+6 3.273407-4 5.655618+6 3.311311-4 5.596775+6 3.320000-4 5.583688+6 3.349654-4 5.540118+6 3.370000-4 5.510659+6 3.388442-4 5.484905+6 3.410000-4 5.453350+6 3.430000-4 5.424783+6 3.467369-4 5.369017+6 3.500000-4 5.321983+6 3.507519-4 5.311285+6 3.522600-4 5.289978+6 3.530000-4 5.279706+6 3.548134-4 5.254979+6 3.589219-4 5.200051+6 3.630781-4 5.143647+6 3.650000-4 5.116502+6 3.672823-4 5.085000+6 3.740000-4 4.995732+6 3.758374-4 4.972281+6 3.801894-4 4.917953+6 3.850000-4 4.857126+6 3.935501-4 4.749082+6 4.000000-4 4.671285+6 4.027170-4 4.639599+6 4.050000-4 4.612204+6 4.073803-4 4.583794+6 4.120975-4 4.525713+6 4.168694-4 4.469044+6 4.216965-4 4.412697+6 4.265795-4 4.357664+6 4.280000-4 4.342008+6 4.315191-4 4.301516+6 4.415704-4 4.185457+6 4.430000-4 4.169398+6 4.466836-4 4.128435+6 4.518559-4 4.072614+6 4.570882-4 4.016093+6 4.600000-4 3.984825+6 4.623810-4 3.958526+6 4.662300-4 3.916867+6 4.662300-4 4.150984+6 4.731513-4 4.077169+6 4.755500-4 4.051790+6 4.786301-4 4.019750+6 4.897788-4 3.905395+6 5.069907-4 3.733171+6 5.080000-4 3.723519+6 5.128614-4 3.677145+6 5.248075-4 3.565982+6 5.370318-4 3.454195+6 5.432503-4 3.399819+6 5.450000-4 3.384460+6 5.460700-4 3.374933+6 5.460700-4 3.424018+6 5.500000-4 3.389481+6 5.559043-4 3.338961+6 5.650000-4 3.261662+6 5.800000-4 3.139348+6 5.821032-4 3.122605+6 5.888437-4 3.070130+6 5.900000-4 3.061231+6 5.956621-4 3.016699+6 6.000000-4 2.983447+6 6.025596-4 2.964170+6 6.100000-4 2.909511+6 6.200000-4 2.838565+6 6.237348-4 2.812055+6 6.350000-4 2.734910+6 6.382635-4 2.712643+6 6.456542-4 2.663083+6 6.480300-4 2.647519+6 6.480300-4 2.706809+6 6.531306-4 2.673744+6 6.683439-4 2.578404+6 6.700000-4 2.568267+6 6.839116-4 2.485417+6 6.850000-4 2.479034+6 7.000000-4 2.392861+6 7.079458-4 2.349125+6 7.120000-4 2.327316+6 7.161434-4 2.305360+6 7.244360-4 2.261354+6 7.328245-4 2.218290+6 7.413102-4 2.175053+6 7.500000-4 2.132430+6 7.673615-4 2.050785+6 7.730000-4 2.024994+6 7.762471-4 2.010383+6 7.852356-4 1.970725+6 7.943282-4 1.931444+6 8.128305-4 1.854881+6 8.222426-4 1.817702+6 8.413951-4 1.745171+6 8.511380-4 1.709796+6 8.609938-4 1.674506+6 8.912509-4 1.573004+6 9.015711-4 1.540354+6 9.120108-4 1.508146+6 9.200000-4 1.484073+6 9.225714-4 1.476455+6 9.332543-4 1.445357+6 9.549926-4 1.384517+6 9.700000-4 1.344575+6 9.885531-4 1.297087+6 1.000000-3 1.269145+6 1.011579-3 1.241889+6 1.023293-3 1.215100+6 1.035142-3 1.188669+6 1.047129-3 1.162623+6 1.050000-3 1.156524+6 1.059254-3 1.137188+6 1.083927-3 1.087800+6 1.096478-3 1.063790+6 1.110000-3 1.038622+6 1.135011-3 9.942469+5 1.161449-3 9.503398+5 1.174898-3 9.290652+5 1.188502-3 9.081094+5 1.190000-3 9.058287+5 1.202264-3 8.873342+5 1.230269-3 8.473333+5 1.244515-3 8.280772+5 1.270000-3 7.951973+5 1.273503-3 7.907941+5 1.288250-3 7.725795+5 1.303167-3 7.547155+5 1.318257-3 7.373082+5 1.333521-3 7.202174+5 1.350000-3 7.024417+5 1.364583-3 6.872941+5 1.380384-3 6.713101+5 1.396368-3 6.555463+5 1.400000-3 6.520462+5 1.428894-3 6.251322+5 1.450000-3 6.065527+5 1.479108-3 5.821491+5 1.500000-3 5.652938+5 1.531087-3 5.415129+5 1.566751-3 5.160238+5 1.584893-3 5.037773+5 1.603245-3 4.918311+5 1.610000-3 4.874723+5 1.640590-3 4.683039+5 1.650000-3 4.626454+5 1.678804-3 4.459103+5 1.717908-3 4.246692+5 1.737801-3 4.144635+5 1.757924-3 4.044062+5 1.819701-3 3.753386+5 1.840772-3 3.661174+5 1.883649-3 3.484079+5 1.905461-3 3.399043+5 1.927525-3 3.314843+5 1.949845-3 3.232291+5 1.950000-3 3.231728+5 1.970900-3 3.157131+5 1.970900-3 8.336867+5 2.018366-3 8.024687+5 2.041738-3 7.878198+5 2.043000-3 7.870416+5 2.044500-3 7.861940+5 2.044500-3 1.017769+6 2.065380-3 1.010198+6 2.070000-3 1.008570+6 2.089296-3 1.001913+6 2.106000-3 9.963350+5 2.113489-3 9.937503+5 2.150000-3 9.816898+5 2.163000-3 9.776110+5 2.178000-3 9.721868+5 2.180000-3 9.715362+5 2.187762-3 9.688429+5 2.213095-3 9.602937+5 2.220000-3 9.580334+5 2.230000-3 9.542737+5 2.238721-3 9.502962+5 2.253500-3 9.443875+5 2.260000-3 9.417047+5 2.264644-3 9.385192+5 2.317395-3 9.038061+5 2.320000-3 9.021682+5 2.344229-3 8.860958+5 2.371374-3 8.687571+5 2.398833-3 8.478527+5 2.400000-3 8.469816+5 2.426610-3 8.268741+5 2.451700-3 8.058156+5 2.451700-3 9.332256+5 2.454709-3 9.305083+5 2.469000-3 9.177474+5 2.483133-3 9.053606+5 2.511886-3 8.808889+5 2.580000-3 8.258663+5 2.600160-3 8.105662+5 2.650000-3 7.744508+5 2.660725-3 7.669825+5 2.691535-3 7.461019+5 2.722701-3 7.256678+5 2.754229-3 7.057803+5 2.786121-3 6.864045+5 2.790200-3 6.839822+5 2.790200-3 7.256198+5 2.800000-3 7.197164+5 2.851018-3 6.898043+5 2.884032-3 6.714256+5 2.885000-3 6.708939+5 2.917427-3 6.533248+5 2.951209-3 6.357340+5 2.985383-3 6.185069+5 3.000000-3 6.113401+5 3.030000-3 5.969843+5 3.030000-3 6.228192+5 3.054921-3 6.110063+5 3.090295-3 5.948007+5 3.150000-3 5.684778+5 3.162278-3 5.632749+5 3.198895-3 5.481679+5 3.235937-3 5.334875+5 3.273407-3 5.191501+5 3.300000-3 5.092445+5 3.311311-3 5.051113+5 3.349654-3 4.914637+5 3.388442-3 4.781850+5 3.400000-3 4.743303+5 3.427678-3 4.652559+5 3.450000-3 4.580545+5 3.507519-3 4.402608+5 3.548134-3 4.283062+5 3.589219-3 4.166837+5 3.614600-3 4.097088+5 3.630781-3 4.053236+5 3.672823-3 3.942498+5 3.715352-3 3.834486+5 3.758374-3 3.729253+5 3.801894-3 3.627050+5 3.845918-3 3.527801+5 3.890451-3 3.430974+5 3.900000-3 3.410700+5 3.981072-3 3.244513+5 4.000000-3 3.207386+5 4.027170-3 3.154985+5 4.073803-3 3.067940+5 4.120975-3 2.983022+5 4.168694-3 2.900547+5 4.216965-3 2.820482+5 4.265795-3 2.741343+5 4.400000-3 2.539855+5 4.415704-3 2.517534+5 4.466836-3 2.446814+5 4.500000-3 2.402430+5 4.518559-3 2.377989+5 4.570882-3 2.310936+5 4.623810-3 2.245878+5 4.677351-3 2.182726+5 4.731513-3 2.121213+5 4.786301-3 2.061537+5 4.841724-3 2.003635+5 4.897788-3 1.947215+5 4.954502-3 1.892473+5 5.011872-3 1.839314+5 5.069907-3 1.787541+5 5.188000-3 1.688016+5 5.300000-3 1.600763+5 5.308844-3 1.594118+5 5.370318-3 1.548592+5 5.432503-3 1.504316+5 5.500000-3 1.458310+5 5.559043-3 1.419454+5 5.623413-3 1.378747+5 5.821032-3 1.263714+5 5.888437-3 1.227514+5 5.956621-3 1.192403+5 6.000000-3 1.170713+5 6.025596-3 1.158130+5 6.095369-3 1.124807+5 6.237348-3 1.061157+5 6.309573-3 1.030748+5 6.382635-3 1.001229+5 6.456542-3 9.724422+4 6.531306-3 9.444275+4 6.606934-3 9.172628+4 6.683439-3 8.909026+4 6.760830-3 8.651198+4 6.839116-3 8.400095+4 6.918310-3 8.156344+4 7.000000-3 7.915297+4 7.161434-3 7.464914+4 7.413102-3 6.833313+4 7.498942-3 6.635215+4 7.500000-3 6.632825+4 7.585776-3 6.442315+4 7.673615-3 6.255183+4 7.762471-3 6.072504+4 7.800000-3 5.997599+4 7.852356-3 5.895221+4 7.943282-3 5.723100+4 8.035261-3 5.556268+4 8.128305-3 5.394547+4 8.317638-3 5.082722+4 8.511380-3 4.789777+4 8.609938-3 4.650003+4 8.709636-3 4.513444+4 8.810489-3 4.380511+4 8.912509-3 4.251686+4 9.015711-3 4.126683+4 9.120108-3 4.004889+4 9.332543-3 3.772382+4 9.549926-3 3.553241+4 9.660509-3 3.448714+4 9.772372-3 3.347346+4 9.800000-3 3.322950+4 9.885531-3 3.248695+4 1.000000-2 3.152974+4 1.011579-2 3.059942+4 1.023293-2 2.969663+4 1.040000-2 2.846115+4 1.047129-2 2.795508+4 1.059254-2 2.712341+4 1.071519-2 2.631757+4 1.087700-2 2.530579+4 1.087700-2 6.586931+4 1.095000-2 6.466830+4 1.096478-2 6.442878+4 1.109175-2 6.242022+4 1.110000-2 6.229266+4 1.122018-2 6.059179+4 1.125000-2 6.017937+4 1.135011-2 5.877230+4 1.148154-2 5.699364+4 1.161449-2 5.526765+4 1.174898-2 5.359137+4 1.188502-2 5.196311+4 1.202264-2 5.038508+4 1.230269-2 4.732579+4 1.242400-2 4.607969+4 1.242400-2 6.388384+4 1.252000-2 6.266773+4 1.258925-2 6.174410+4 1.267000-2 6.069050+4 1.273503-2 5.989187+4 1.280000-2 5.910804+4 1.288250-2 5.810504+4 1.295000-2 5.730147+4 1.295000-2 6.625777+4 1.300000-2 6.561170+4 1.303167-2 6.520648+4 1.318257-2 6.332160+4 1.320000-2 6.310888+4 1.333521-2 6.150093+4 1.348963-2 5.973478+4 1.357000-2 5.884409+4 1.364583-2 5.801731+4 1.380384-2 5.634557+4 1.390000-2 5.535460+4 1.396368-2 5.471706+4 1.428894-2 5.161863+4 1.435000-2 5.106494+4 1.445440-2 5.012771+4 1.450000-2 4.972597+4 1.462177-2 4.867473+4 1.479108-2 4.724761+4 1.496236-2 4.586142+4 1.513561-2 4.451454+4 1.531087-2 4.320827+4 1.548817-2 4.194135+4 1.580000-2 3.983729+4 1.584893-2 3.952194+4 1.600000-2 3.857034+4 1.640590-2 3.616904+4 1.650000-2 3.563765+4 1.659587-2 3.510380+4 1.690000-2 3.348267+4 1.698244-2 3.305860+4 1.717908-2 3.207596+4 1.730000-2 3.149186+4 1.737801-2 3.112240+4 1.757924-2 3.019713+4 1.778279-2 2.930011+4 1.798871-2 2.843045+4 1.800000-2 2.838382+4 1.862087-2 2.596989+4 1.883649-2 2.519521+4 1.905461-2 2.444423+4 1.927525-2 2.371588+4 1.949845-2 2.300903+4 1.972423-2 2.232384+4 1.995262-2 2.165906+4 2.000000-2 2.152446+4 2.041738-2 2.038763+4 2.065380-2 1.978091+4 2.089296-2 1.918877+4 2.113489-2 1.861478+4 2.137962-2 1.805235+4 2.187762-2 1.697900+4 2.213095-2 1.646655+4 2.238721-2 1.596984+4 2.264644-2 1.548850+4 2.290868-2 1.502194+4 2.300000-2 1.486410+4 2.317395-2 1.456942+4 2.344229-2 1.413068+4 2.371374-2 1.370502+4 2.398833-2 1.328936+4 2.454709-2 1.249649+4 2.511886-2 1.175202+4 2.540973-2 1.139664+4 2.600160-2 1.071851+4 2.630268-2 1.039275+4 2.650000-2 1.018672+4 2.660725-2 1.007698+4 2.691535-2 9.770789+3 2.722701-2 9.471808+3 2.754229-2 9.182183+3 2.818383-2 8.629327+3 2.851018-2 8.365776+3 2.900000-2 7.990893+3 2.917427-2 7.863075+3 2.951209-2 7.622619+3 3.000000-2 7.293100+3 3.019952-2 7.164073+3 3.054921-2 6.944362+3 3.162278-2 6.325100+3 3.162450-2 6.324171+3 3.198895-2 6.131510+3 3.235937-2 5.943952+3 3.273407-2 5.762091+3 3.311311-2 5.585898+3 3.349654-2 5.414031+3 3.388442-2 5.246483+3 3.427678-2 5.084245+3 3.548134-2 4.627624+3 3.589219-2 4.484785+3 3.715352-2 4.082784+3 3.758374-2 3.957149+3 3.801894-2 3.834865+3 3.890451-2 3.601684+3 3.900000-2 3.577704+3 3.935501-2 3.490028+3 3.981072-2 3.381794+3 4.027170-2 3.276993+3 4.073803-2 3.175500+3 4.120975-2 3.076797+3 4.168694-2 2.981142+3 4.265795-2 2.798867+3 4.365158-2 2.627997+3 4.415704-2 2.546183+3 4.466836-2 2.466876+3 4.518559-2 2.390081+3 4.570882-2 2.315688+3 4.677351-2 2.173831+3 4.786301-2 2.040449+3 4.841724-2 1.976927+3 4.897788-2 1.915368+3 4.954502-2 1.855764+3 5.011872-2 1.798058+3 5.069907-2 1.741991+3 5.188000-2 1.634451+3 5.248075-2 1.583246+3 5.308844-2 1.533611+3 5.370318-2 1.485554+3 5.432503-2 1.438992+3 5.754399-2 1.227575+3 5.821032-2 1.189224+3 6.025596-2 1.081122+3 6.095369-2 1.047125+3 6.165950-2 1.014217+3 6.237348-2 9.822431+2 6.309573-2 9.512942+2 6.382635-2 9.213296+2 6.456542-2 8.923183+2 6.531306-2 8.642374+2 6.839116-2 7.605792+2 7.161434-2 6.695169+2 7.244360-2 6.483997+2 7.328245-2 6.279603+2 7.406600-2 6.096376+2 7.406600-2 3.038303+3 7.498942-2 2.943000+3 7.500000-2 2.941932+3 7.600000-2 2.843383+3 7.673615-2 2.778597+3 7.700000-2 2.755887+3 7.852356-2 2.615626+3 7.930000-2 2.547891+3 8.222426-2 2.325201+3 8.300000-2 2.270720+3 8.413951-2 2.190301+3 8.511380-2 2.124625+3 8.609938-2 2.060842+3 8.810489-2 1.938989+3 8.912509-2 1.880787+3 9.015711-2 1.824338+3 9.120108-2 1.770356+3 9.225714-2 1.717975+3 9.660509-2 1.523561+3 1.000000-1 1.392387+3 1.011580-1 1.351231+3 1.023293-1 1.311253+3 1.035142-1 1.271523+3 1.047129-1 1.232998+3 1.059254-1 1.195647+3 1.071519-1 1.159433+3 1.083927-1 1.124308+3 1.096478-1 1.090252+3 1.109175-1 1.057229+3 1.122019-1 1.025209+3 1.135011-1 9.941629+2 1.148154-1 9.640571+2 1.216186-1 8.267041+2 1.230269-1 8.016839+2 1.258925-1 7.538486+2 1.273503-1 7.310145+2 1.333521-1 6.464086+2 1.348963-1 6.266521+2 1.364583-1 6.075019+2 1.380384-1 5.889348+2 1.396368-1 5.709365+2 1.428894-1 5.365766+2 1.445440-1 5.201869+2 1.479108-1 4.889060+2 1.531088-1 4.454803+2 1.566751-1 4.187002+2 1.640590-1 3.698580+2 1.659587-1 3.585678+2 1.678804-1 3.476238+2 1.717908-1 3.267290+2 1.757924-1 3.070921+2 1.778279-1 2.977224+2 1.798871-1 2.886419+2 1.800000-1 2.881551+2 1.819701-1 2.798420+2 1.862087-1 2.630407+2 1.883649-1 2.550228+2 1.949845-1 2.324081+2 1.995262-1 2.184594+2 2.018366-1 2.118026+2 2.041738-1 2.053489+2 2.065380-1 1.990928+2 2.089296-1 1.930281+2 2.113489-1 1.871485+2 2.162719-1 1.759264+2 2.213095-1 1.653824+2 2.264644-1 1.554713+2 2.344229-1 1.417083+2 2.371374-1 1.374416+2 2.398833-1 1.333037+2 2.426610-1 1.292908+2 2.454709-1 1.253989+2 2.483133-1 1.216258+2 2.511886-1 1.179669+2 2.540973-1 1.144192+2 2.600160-1 1.076441+2 2.630268-1 1.044087+2 2.754229-1 9.242506+1 2.786121-1 8.965111+1 2.818383-1 8.696046+1 2.851018-1 8.438532+1 2.884032-1 8.188650+1 2.917427-1 7.946185+1 2.951209-1 7.710930+1 3.054921-1 7.046490+1 3.090295-1 6.838001+1 3.126079-1 6.635685+1 3.162278-1 6.439454+1 3.198895-1 6.249039+1 3.235937-1 6.064611+1 3.273407-1 5.885639+1 3.349654-1 5.548495+1 3.388442-1 5.387256+1 3.427678-1 5.230787+1 3.507519-1 4.931369+1 3.548134-1 4.788172+1 3.589219-1 4.649137+1 3.590900-1 4.643569+1 3.630781-1 4.514197+1 3.672823-1 4.383187+1 3.715352-1 4.255981+1 3.758374-1 4.132528+1 3.801894-1 4.014884+1 3.845918-1 3.900604+1 3.890451-1 3.789640+1 3.935501-1 3.681836+1 4.000000-1 3.534841+1 4.027170-1 3.475374+1 4.073803-1 3.376571+1 4.120975-1 3.280584+1 4.216965-1 3.096721+1 4.265795-1 3.010309+1 4.315191-1 2.926356+1 4.365158-1 2.844758+1 4.415705-1 2.765647+1 4.466836-1 2.688742+1 4.518559-1 2.614011+1 4.623810-1 2.470728+1 4.677351-1 2.402061+1 4.786301-1 2.270403+1 4.841724-1 2.208531+1 4.897788-1 2.148361+1 4.954502-1 2.089898+1 5.000000-1 2.044637+1 5.011872-1 2.033056+1 5.069907-1 1.977892+1 5.308844-1 1.771813+1 5.370318-1 1.723742+1 5.432503-1 1.677966+1 5.495409-1 1.633412+1 5.559043-1 1.590087+1 5.623413-1 1.547941+1 5.688529-1 1.506914+1 5.754399-1 1.467068+1 5.821032-1 1.428277+1 5.888437-1 1.390511+1 5.956621-1 1.353745+1 6.025596-1 1.317956+1 6.095369-1 1.283882+1 6.165950-1 1.250725+1 6.237348-1 1.218425+1 6.309573-1 1.186984+1 6.382635-1 1.156354+1 6.456542-1 1.126516+1 6.606935-1 1.069270+1 6.683439-1 1.041752+1 6.760830-1 1.014946+1 6.839117-1 9.894489+0 6.918310-1 9.645938+0 6.998420-1 9.403641+0 7.079458-1 9.167434+0 7.161434-1 8.937338+0 7.244360-1 8.713019+0 7.328245-1 8.494336+0 7.413102-1 8.281738+0 7.498942-1 8.074578+0 7.585776-1 7.872708+0 7.673615-1 7.680687+0 7.762471-1 7.493357+0 8.000000-1 7.024292+0 8.035261-1 6.958350+0 8.128305-1 6.788763+0 8.222427-1 6.623384+0 8.511380-1 6.152406+0 8.609938-1 6.006838+0 8.709636-1 5.864858+0 8.912509-1 5.590906+0 9.015711-1 5.458768+0 9.120108-1 5.329875+0 9.225714-1 5.204046+0 9.332543-1 5.081646+0 9.440609-1 4.962257+0 9.549926-1 4.848796+0 9.660509-1 4.737931+0 9.772372-1 4.629619+0 9.885531-1 4.523859+0 1.000000+0 4.420516+0 1.011579+0 4.319743+0 1.023293+0 4.221266+0 1.035142+0 4.125301+0 1.047129+0 4.031568+0 1.059254+0 3.939975+0 1.071519+0 3.852260+0 1.096478+0 3.682635+0 1.109175+0 3.600713+0 1.122018+0 3.520634+0 1.135011+0 3.442374+0 1.148154+0 3.365859+0 1.161449+0 3.291047+0 1.188502+0 3.146485+0 1.202264+0 3.076798+0 1.216186+0 3.008709+0 1.230269+0 2.943860+0 1.244515+0 2.880409+0 1.258925+0 2.818333+0 1.288250+0 2.698154+0 1.303167+0 2.640003+0 1.318257+0 2.583154+0 1.333521+0 2.527578+0 1.348963+0 2.473391+0 1.380384+0 2.368483+0 1.412538+0 2.270620+0 1.479108+0 2.086864+0 1.500000+0 2.033985+0 1.513561+0 2.000762+0 1.531087+0 1.959196+0 1.548817+0 1.918492+0 1.584893+0 1.841815+0 1.603245+0 1.804642+0 1.659587+0 1.697564+0 1.678804+0 1.663304+0 1.698244+0 1.629766+0 1.717908+0 1.596906+0 1.737801+0 1.564837+0 1.757924+0 1.533414+0 1.778279+0 1.503492+0 1.798871+0 1.474155+0 1.819701+0 1.445391+0 1.840772+0 1.417200+0 1.883649+0 1.362458+0 1.905461+0 1.335886+0 1.927525+0 1.309856+0 1.949845+0 1.284334+0 1.972423+0 1.259412+0 1.995262+0 1.234975+0 2.000000+0 1.230000+0 2.018366+0 1.211542+0 2.044000+0 1.186514+0 2.089296+0 1.144287+0 2.137962+0 1.101544+0 2.162719+0 1.080775+0 2.187762+0 1.060417+0 2.213095+0 1.040443+0 2.238721+0 1.020926+0 2.264644+0 1.001775+0 2.290868+0 9.835221-1 2.317395+0 9.656025-1 2.344229+0 9.480171-1 2.371374+0 9.307519-1 2.426610+0 8.971593-1 2.454709+0 8.808208-1 2.511886+0 8.490601-1 2.540973+0 8.336140-1 2.570396+0 8.185093-1 2.600160+0 8.036782-1 2.630268+0 7.895405-1 2.660725+0 7.756513-1 2.691535+0 7.620123-1 2.722701+0 7.486134-1 2.786121+0 7.225179-1 2.818383+0 7.098137-1 2.884032+0 6.850938-1 2.917427+0 6.730609-1 2.951209+0 6.612849-1 3.000000+0 6.448675-1 3.019952+0 6.385235-1 3.054921+0 6.276531-1 3.090295+0 6.169723-1 3.126079+0 6.064731-1 3.162278+0 5.961525-1 3.235937+0 5.760354-1 3.273407+0 5.662334-1 3.349654+0 5.471439-1 3.388442+0 5.378433-1 3.427678+0 5.287366-1 3.467369+0 5.197840-1 3.507519+0 5.112253-1 3.548134+0 5.028075-1 3.589219+0 4.945319-1 3.630781+0 4.863923-1 3.672823+0 4.783869-1 3.758374+0 4.627691-1 3.801894+0 4.551527-1 3.890451+0 4.403075-1 3.935501+0 4.330686-1 4.000000+0 4.230882-1 4.027170+0 4.190002-1 4.073803+0 4.123276-1 4.120975+0 4.057613-1 4.168694+0 3.993023-1 4.216965+0 3.929461-1 4.265795+0 3.866911-1 4.415704+0 3.685173-1 4.466836+0 3.626513-1 4.570882+0 3.512082-1 4.623810+0 3.456238-1 4.677351+0 3.401494-1 4.731513+0 3.347616-1 4.786301+0 3.296056-1 4.841724+0 3.245290-1 4.897788+0 3.195328-1 4.954502+0 3.146134-1 5.011872+0 3.097698-1 5.188000+0 2.956818-1 5.248075+0 2.911298-1 5.308844+0 2.866510-1 5.432503+0 2.779006-1 5.495409+0 2.736267-1 5.559043+0 2.694347-1 5.623413+0 2.653069-1 5.688529+0 2.613540-1 5.754399+0 2.574600-1 5.821032+0 2.536256-1 5.888437+0 2.498483-1 5.956621+0 2.461273-1 6.165950+0 2.352935-1 6.237348+0 2.317894-1 6.309573+0 2.283399-1 6.456542+0 2.215952-1 6.531306+0 2.182985-1 6.606934+0 2.150627-1 6.683439+0 2.118749-1 6.760830+0 2.088158-1 6.839116+0 2.058008-1 7.000000+0 1.998461-1 7.079458+0 1.970179-1 7.161434+0 1.941744-1 7.413102+0 1.858878-1 7.498942+0 1.832050-1 7.673615+0 1.779585-1 7.852356+0 1.728631-1 7.943282+0 1.703709-1 8.035261+0 1.679238-1 8.128305+0 1.655118-1 8.222427+0 1.631985-1 8.413951+0 1.586703-1 8.511380+0 1.564535-1 8.609938+0 1.542677-1 8.912509+0 1.478918-1 9.015711+0 1.458257-1 9.120108+0 1.437884-1 9.332543+0 1.398014-1 9.549926+0 1.359256-1 9.772372+0 1.321579-1 9.885531+0 1.303202-1 1.000000+1 1.285080-1 1.011579+1 1.267691-1 1.023293+1 1.250535-1 1.047129+1 1.216919-1 1.083927+1 1.168182-1 1.100000+1 1.148009-1 1.109175+1 1.136780-1 1.161449+1 1.076520-1 1.202264+1 1.033438-1 1.230269+1 1.005682-1 1.244515+1 9.920913-2 1.258925+1 9.787221-2 1.273503+1 9.655321-2 1.288250+1 9.528314-2 1.303167+1 9.402984-2 1.318257+1 9.279300-2 1.364583+1 8.917930-2 1.380384+1 8.800631-2 1.400000+1 8.658969-2 1.462177+1 8.237128-2 1.513561+1 7.916591-2 1.548817+1 7.709884-2 1.566751+1 7.608616-2 1.600000+1 7.427766-2 1.621810+1 7.313451-2 1.640590+1 7.219793-2 1.678804+1 7.036064-2 1.698244+1 6.945958-2 1.757924+1 6.682509-2 1.778279+1 6.596938-2 1.800000+1 6.507885-2 1.883649+1 6.185402-2 1.949845+1 5.950965-2 2.000000+1 5.784290-2 2.018366+1 5.725475-2 2.089296+1 5.509096-2 2.113489+1 5.438803-2 2.137962+1 5.370823-2 2.162719+1 5.303691-2 2.200000+1 5.205579-2 2.238721+1 5.107294-2 2.317395+1 4.918167-2 2.371374+1 4.795993-2 2.398833+1 4.736050-2 2.511886+1 4.503787-2 2.630268+1 4.282940-2 2.691535+1 4.176624-2 2.722701+1 4.124484-2 2.851018+1 3.922811-2 2.884032+1 3.873957-2 2.917427+1 3.826680-2 2.985383+1 3.733846-2 3.019952+1 3.688277-2 3.090295+1 3.598803-2 3.162278+1 3.511499-2 3.198895+1 3.468645-2 3.388442+1 3.262177-2 3.715352+1 2.957114-2 3.758374+1 2.921044-2 3.890451+1 2.815465-2 3.935501+1 2.781138-2 4.168694+1 2.615980-2 4.216965+1 2.584147-2 4.265795+1 2.552701-2 4.315191+1 2.522142-2 4.365158+1 2.491948-2 4.415704+1 2.462116-2 4.518559+1 2.403518-2 4.623810+1 2.346317-2 4.677351+1 2.318228-2 4.954502+1 2.182804-2 5.432503+1 1.982407-2 5.495409+1 1.958687-2 5.559043+1 1.935253-2 5.754399+1 1.866620-2 5.821032+1 1.844294-2 6.309573+1 1.695532-2 6.382635+1 1.675284-2 6.531306+1 1.635511-2 6.683439+1 1.597187-2 6.760830+1 1.578362-2 6.918310+1 1.541377-2 7.161434+1 1.487518-2 7.328245+1 1.452662-2 7.498942+1 1.418622-2 8.035261+1 1.321251-2 8.609938+1 1.230571-2 8.709636+1 1.216074-2 8.810489+1 1.201750-2 8.912509+1 1.187594-2 9.015711+1 1.173608-2 9.660509+1 1.093186-2 9.772372+1 1.080329-2 9.885531+1 1.067624-2 1.000000+2 1.055069-2 1.011579+2 1.042770-2 1.059254+2 9.949897-3 1.083927+2 9.719273-3 1.148154+2 9.165822-3 1.174898+2 8.953369-3 1.303167+2 8.056650-3 1.396368+2 7.509315-3 1.496236+2 6.999158-3 1.603245+2 6.523775-3 1.717908+2 6.080700-3 1.737801+2 6.009835-3 1.757924+2 5.939800-3 1.778279+2 5.870585-3 1.798871+2 5.802185-3 1.883649+2 5.536707-3 1.905461+2 5.472257-3 1.927525+2 5.408568-3 1.972423+2 5.284321-3 2.018366+2 5.162932-3 2.065380+2 5.044328-3 2.213095+2 4.704616-3 2.264644+2 4.596543-3 2.600160+2 3.998280-3 2.786121+2 3.729018-3 2.985383+2 3.477888-3 3.198895+2 3.243705-3 3.427678+2 3.025297-3 3.467369+2 2.990353-3 3.507519+2 2.955814-3 3.548134+2 2.921674-3 3.589219+2 2.887932-3 3.758374+2 2.756891-3 3.801894+2 2.725070-3 3.845918+2 2.693620-3 3.935501+2 2.632097-3 4.027170+2 2.571980-3 4.120975+2 2.513235-3 4.415704+2 2.344930-3 4.518559+2 2.291371-3 5.188000+2 1.994752-3 5.559043+2 1.861169-3 1.188502+3 8.682639-4 1.273503+3 8.101233-4 1.364583+3 7.558772-4 1.380384+3 7.471961-4 1.396368+3 7.386149-4 1.412538+3 7.301318-4 1.428894+3 7.217472-4 1.496236+3 6.891695-4 1.513561+3 6.812578-4 1.531087+3 6.734372-4 3.054921+3 3.374040-4 3.126079+3 3.297201-4 3.198895+3 3.222111-4 3.273407+3 3.148731-4 3.507519+3 2.938468-4 3.589219+3 2.871548-4 4.120975+3 2.500845-4 4.415704+3 2.333846-4 1.000000+5 1.028994-5 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.390000-6 8.390000-6 9.600000-6 8.390000-6 9.600000-6 9.122314-6 1.079000-5 9.299285-6 1.079000-5 9.678976-6 1.216186-5 9.814780-6 1.388400-5 9.910328-6 1.698244-5 9.986294-6 2.660725-5 1.007096-5 4.168694-5 1.010845-5 5.315000-5 1.011317-5 5.315000-5 2.337359-5 5.370318-5 2.373700-5 5.432503-5 2.406665-5 5.500000-5 2.435578-5 5.570000-5 2.459572-5 5.754399-5 2.505559-5 5.900000-5 2.529243-5 6.165950-5 2.557157-5 6.326000-5 2.566229-5 6.326000-5 2.734904-5 6.480000-5 2.782867-5 6.601000-5 2.813910-5 6.601000-5 3.533210-5 6.621000-5 3.548566-5 6.621000-5 3.630632-5 6.720000-5 3.711298-5 6.870000-5 3.807833-5 7.079458-5 3.907811-5 7.350000-5 4.008453-5 7.673615-5 4.103900-5 8.650000-5 4.350191-5 9.070000-5 4.478086-5 9.440609-5 4.613284-5 9.812000-5 4.770369-5 9.812000-5 4.897809-5 1.050000-4 5.201446-5 1.122018-4 5.517803-5 1.170000-4 5.700942-5 1.220000-4 5.860451-5 1.273503-4 5.996691-5 1.330000-4 6.106642-5 1.412538-4 6.218248-5 1.513561-4 6.300735-5 1.659587-4 6.361899-5 1.905461-4 6.400435-5 2.540973-4 6.412947-5 2.822900-4 6.410023-5 2.822900-4 6.653309-5 2.917427-4 6.613488-5 2.970800-4 6.602339-5 2.970800-4 6.756451-5 3.180000-4 6.720916-5 3.410000-4 6.739969-5 3.740000-4 6.832759-5 4.415704-4 7.120164-5 4.662300-4 7.229160-5 4.662300-4 7.804999-5 5.460700-4 8.201194-5 5.460700-4 8.351471-5 6.480300-4 8.821398-5 6.480300-4 9.113370-5 7.500000-4 9.558630-5 8.609938-4 9.982213-5 9.885531-4 1.039955-4 1.161449-3 1.087678-4 1.333521-3 1.127225-4 1.531087-3 1.165503-4 1.757924-3 1.202094-4 1.970900-3 1.231181-4 1.970900-3 1.778252-4 2.044500-3 1.788666-4 2.044500-3 1.896115-4 2.238721-3 1.939945-4 2.371374-3 1.956014-4 2.451700-3 1.958491-4 2.451700-3 2.102336-4 2.790200-3 2.119035-4 2.790200-3 2.190749-4 3.030000-3 2.209206-4 3.030000-3 2.278279-4 4.000000-3 2.360459-4 5.188000-3 2.440584-4 6.683439-3 2.519353-4 8.511380-3 2.593733-4 1.087700-2 2.667108-4 1.087700-2 3.443280-4 1.242400-2 3.454113-4 1.242400-2 3.635457-4 1.295000-2 3.639333-4 1.295000-2 3.900755-4 1.800000-2 3.997544-4 2.511886-2 4.095215-4 3.427678-2 4.187638-4 4.677351-2 4.278588-4 6.456542-2 4.368823-4 7.406600-2 4.405379-4 7.406600-2 4.037136-4 1.862087-1 4.062250-4 5.308844-1 4.078496-4 1.000000+5 4.081284-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.390000-6 0.0 2.970800-4 0.0 2.970800-4 9.89488-10 3.007000-4 9.85324-10 3.022000-4 9.79766-10 3.035000-4 9.69149-10 3.065000-4 9.33186-10 3.090295-4 9.10230-10 3.130000-4 8.84601-10 3.180000-4 8.60136-10 3.225800-4 8.43495-10 3.273407-4 8.33070-10 3.320000-4 8.29930-10 3.370000-4 8.32667-10 3.410000-4 8.39329-10 3.467369-4 8.55845-10 3.530000-4 8.81769-10 3.589219-4 9.11556-10 3.650000-4 9.48652-10 3.740000-4 1.012961-9 3.850000-4 1.104363-9 3.935501-4 1.185823-9 4.050000-4 1.301128-9 4.265795-4 1.538965-9 4.518559-4 1.825244-9 4.662300-4 1.990559-9 4.662300-4 3.521064-9 5.128614-4 4.145328-9 5.460700-4 4.574575-9 5.460700-4 5.431429-9 6.100000-4 6.325110-9 6.480300-4 6.829941-9 6.480300-4 7.921441-9 7.120000-4 8.821666-9 7.762471-4 9.658821-9 8.609938-4 1.068090-8 9.332543-4 1.148074-8 1.011579-3 1.227506-8 1.110000-3 1.320263-8 1.244515-3 1.433130-8 1.400000-3 1.547958-8 1.566751-3 1.656082-8 1.737801-3 1.754733-8 1.970900-3 1.871862-8 1.970900-3 1.830445-8 2.044500-3 1.842417-8 2.044500-3 8.341903-6 2.113489-3 9.034280-6 2.163000-3 9.513785-6 2.187762-3 9.725869-6 2.230000-3 1.012401-5 2.264644-3 1.037735-5 2.320000-3 1.090380-5 2.371374-3 1.132247-5 2.426610-3 1.151202-5 2.451700-3 1.150252-5 2.451700-3 1.117180-5 2.790200-3 1.105971-5 2.790200-3 1.220891-5 3.030000-3 1.226527-5 3.030000-3 1.243185-5 3.630781-3 1.256957-5 4.897788-3 1.276329-5 6.839116-3 1.297590-5 9.549926-3 1.318199-5 1.087700-2 1.325620-5 1.087700-2 1.650867-3 1.161449-2 1.646786-3 1.242400-2 1.642312-3 1.242400-2 2.263995-3 1.295000-2 2.267569-3 1.295000-2 2.362762-3 1.690000-2 2.385747-3 2.511886-2 2.401899-3 4.365158-2 2.407380-3 7.406600-2 2.403416-3 7.406600-2 5.223532-2 8.810489-2 5.265442-2 1.122019-1 5.309282-2 1.566751-1 5.347715-2 2.630268-1 5.380999-2 7.413102-1 5.424299-2 1.216186+0 5.437927-2 1.000000+5 5.436819-2 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.390000-6 0.0 9.600000-6 1.210000-6 9.600000-6 4.776856-7 1.000000-5 8.128036-7 1.059254-5 1.318932-6 1.079000-5 1.490715-6 1.079000-5 1.111024-6 1.122018-5 1.491470-6 1.161449-5 1.846114-6 1.244515-5 2.609705-6 1.333521-5 3.448785-6 1.462177-5 4.686149-6 1.757924-5 7.583864-6 2.985383-5 1.976742-5 5.315000-5 4.303683-5 5.315000-5 2.977641-5 5.370318-5 2.996618-5 5.432503-5 3.025838-5 5.570000-5 3.110428-5 5.754399-5 3.248840-5 6.025596-5 3.481532-5 6.326000-5 3.759771-5 6.326000-5 3.591096-5 6.531306-5 3.734826-5 6.601000-5 3.787090-5 6.601000-5 3.067790-5 6.621000-5 3.072434-5 6.621000-5 2.990368-5 6.720000-5 3.008702-5 6.815000-5 3.039896-5 6.920000-5 3.084844-5 7.150000-5 3.213039-5 7.413102-5 3.385631-5 7.800000-5 3.664278-5 8.650000-5 4.299809-5 9.070000-5 4.591914-5 9.440609-5 4.827325-5 9.812000-5 5.041631-5 9.812000-5 4.914191-5 1.050000-4 5.298554-5 1.122018-4 5.702377-5 1.170000-4 5.999058-5 1.220000-4 6.339549-5 1.273503-4 6.738339-5 1.350000-4 7.361430-5 1.428894-4 8.054134-5 1.560000-4 9.274347-5 1.780000-4 1.141348-4 2.570396-4 1.929115-4 2.822900-4 2.181898-4 2.822900-4 2.157569-4 2.970800-4 2.310566-4 2.970800-4 2.295145-4 3.370000-4 2.696688-4 4.168694-4 3.467624-4 4.662300-4 3.939364-4 4.662300-4 3.881765-4 5.460700-4 4.640535-4 5.460700-4 4.625499-4 6.480300-4 5.598092-4 6.480300-4 5.568884-4 9.885531-4 8.845455-4 1.640590-3 1.522183-3 1.970900-3 1.847763-3 1.970900-3 1.793057-3 2.044500-3 1.865615-3 2.044500-3 1.846547-3 2.451700-3 2.244348-3 2.451700-3 2.230295-3 2.790200-3 2.567237-3 2.790200-3 2.558916-3 3.030000-3 2.796814-3 3.030000-3 2.789740-3 9.660509-3 9.384131-3 1.087700-2 1.059703-2 1.087700-2 8.881805-3 1.242400-2 1.043628-2 1.242400-2 9.796459-3 1.295000-2 1.031850-2 1.295000-2 1.019716-2 2.754229-2 2.472630-2 7.406600-2 7.122205-2 7.406600-2 2.142697-2 7.700000-2 2.422924-2 8.222426-2 2.929691-2 1.096478-1 5.618164-2 1.757924-1 1.218096-1 2.454709+0 2.399931+0 1.000000+5 9.999994+4 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.406600-2 2.428665+3 7.600000-2 2.275960+3 7.700000-2 2.208740+3 7.930000-2 2.043780+3 8.300000-2 1.826664+3 9.015711-2 1.471751+3 1.023293-1 1.063506+3 1.333521-1 5.280149+2 2.344229-1 1.167068+2 2.818383-1 7.173972+1 3.273407-1 4.861481+1 3.758374-1 3.417233+1 4.216965-1 2.562888+1 4.786301-1 1.880993+1 5.370318-1 1.429429+1 6.025596-1 1.093989+1 6.760830-1 8.432871+0 7.585776-1 6.547425+0 8.511380-1 5.121844+0 9.440609-1 4.134750+0 1.059254+0 3.284663+0 1.216186+0 2.508716+0 1.380384+0 1.974459+0 1.548817+0 1.599110+0 1.757924+0 1.278147+0 2.000000+0 1.025257+0 2.264644+0 8.350120-1 2.600160+0 6.698968-1 3.000000+0 5.375300-1 3.467369+0 4.332718-1 4.027170+0 3.492623-1 4.731513+0 2.790448-1 5.623413+0 2.211499-1 6.683439+0 1.766128-1 8.128305+0 1.379657-1 1.000000+1 1.071200-1 1.273503+1 8.048440-2 1.621810+1 6.096224-2 2.113489+1 4.533568-2 2.884032+1 3.229128-2 4.265795+1 2.127808-2 6.531306+1 1.363272-2 1.000000+2 8.794800-3 1.927525+2 4.508539-3 3.845918+2 2.245367-3 1.531087+3 5.613914-4 1.000000+5 8.578100-6 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.406600-2 3.944700-4 1.000000+5 3.944700-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.406600-2 6.474400-2 1.000000+5 6.474400-2 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.406600-2 8.927530-3 1.000000+5 9.999993+4 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.295000-2 8.956300+3 1.320000-2 8.658840+3 1.357000-2 8.267660+3 1.390000-2 7.926680+3 1.435000-2 7.530380+3 1.580000-2 6.334820+3 1.690000-2 5.636160+3 1.800000-2 5.017180+3 2.065380-2 3.867626+3 2.600160-2 2.449395+3 2.917427-2 1.929772+3 3.311311-2 1.479436+3 3.900000-2 1.037154+3 4.365158-2 8.076874+2 5.069907-2 5.753501+2 6.025596-2 3.851974+2 7.161434-2 2.554419+2 8.511380-2 1.679493+2 1.011580-1 1.095772+2 1.230269-1 6.702512+1 1.566751-1 3.620475+1 2.630268-1 9.594848+0 3.198895-1 5.848200+0 3.758374-1 3.916734+0 4.365158-1 2.718933+0 5.011872-1 1.955442+0 5.688529-1 1.456302+0 6.456542-1 1.092485+0 7.328245-1 8.257159-1 8.222427-1 6.447351-1 9.225714-1 5.072581-1 1.023293+0 4.116639-1 1.188502+0 3.069318-1 1.333521+0 2.464794-1 1.513561+0 1.950967-1 1.717908+0 1.556972-1 1.949845+0 1.252230-1 2.213095+0 1.014640-1 2.540973+0 8.128960-2 2.917427+0 6.562158-2 3.388442+0 5.244153-2 3.935501+0 4.222630-2 4.623810+0 3.370053-2 5.495409+0 2.668061-2 6.531306+0 2.128606-2 7.943282+0 1.661255-2 9.772372+0 1.288733-2 1.244515+1 9.674269-3 1.566751+1 7.418941-3 2.018366+1 5.582296-3 2.722701+1 4.021007-3 3.935501+1 2.711290-3 5.821032+1 1.797923-3 9.015711+1 1.144180-3 1.798871+2 5.658057-4 3.589219+2 2.816726-4 1.428894+3 7.039524-5 1.000000+5 1.003700-6 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.295000-2 5.573300-4 1.000000+5 5.573300-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.295000-2 2.971800-3 1.000000+5 2.971800-3 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.295000-2 9.420870-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.242400-2 1.780415+4 1.252000-2 1.754217+4 1.267000-2 1.700200+4 1.280000-2 1.661500+4 1.380384-2 1.373100+4 1.640590-2 8.766900+3 1.862087-2 6.235200+3 2.371374-2 3.210300+3 3.019952-2 1.617900+3 3.758374-2 8.582600+2 4.677351-2 4.502600+2 5.821032-2 2.341000+2 7.500000-2 1.088500+2 1.428894-1 1.531308+1 1.778279-1 7.920517+0 2.162719-1 4.423550+0 2.540973-1 2.757495+0 2.951209-1 1.791102+0 3.388442-1 1.211542+0 3.845918-1 8.526994-1 4.365158-1 6.047269-1 4.897788-1 4.457248-1 5.495409-1 3.309931-1 6.095369-1 2.549616-1 6.760830-1 1.977882-1 7.498942-1 1.545011-1 8.609938-1 1.120873-1 9.332543-1 9.359625-2 1.000000+0 8.075413-2 1.096478+0 6.695008-2 1.202264+0 5.589090-2 1.318257+0 4.697900-2 1.479108+0 3.810895-2 1.717908+0 2.919972-2 1.949845+0 2.347533-2 2.213095+0 1.902051-2 2.540973+0 1.524036-2 2.917427+0 1.230522-2 3.388442+0 9.834142-3 3.935501+0 7.918530-3 4.623810+0 6.319735-3 5.495409+0 5.003320-3 6.531306+0 3.991689-3 7.943282+0 3.115283-3 9.772372+0 2.416675-3 1.230269+1 1.838823-3 1.548817+1 1.409602-3 2.000000+1 1.057500-3 2.691535+1 7.635187-4 3.890451+1 5.146748-4 5.754399+1 3.412148-4 8.912509+1 2.171108-4 1.778279+2 1.073479-4 3.548134+2 5.343678-5 1.412538+3 1.335382-5 1.000000+5 1.882300-7 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.242400-2 4.104800-4 1.000000+5 4.104800-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.242400-2 3.873000-3 1.000000+5 3.873000-3 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.242400-2 8.140520-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.087700-2 4.056352+4 1.110000-2 3.829344+4 1.125000-2 3.700728+4 1.202264-2 3.092207+4 1.462177-2 1.796034+4 1.650000-2 1.270952+4 2.113489-2 6.178243+3 2.691535-2 2.990316+3 3.349654-2 1.527980+3 4.073803-2 8.291310+2 5.011872-2 4.298758+2 6.165950-2 2.210104+2 7.852356-2 1.008853+2 1.445440-1 1.374084+1 1.800000-1 6.749676+0 2.113489-1 4.038159+0 2.454709-1 2.519514+0 2.818383-1 1.642179+0 3.198895-1 1.117555+0 3.590900-1 7.921659-1 4.027170-1 5.674658-1 4.466836-1 4.227274-1 4.954502-1 3.171589-1 5.495409-1 2.398445-1 6.095369-1 1.827944-1 6.760830-1 1.404248-1 7.413102-1 1.118453-1 8.128305-1 8.966102-2 9.225714-1 6.677742-2 9.772372-1 5.870640-2 1.035142+0 5.192595-2 1.122018+0 4.407064-2 1.216186+0 3.768055-2 1.333521+0 3.173720-2 1.584893+0 2.328801-2 1.819701+0 1.826760-2 2.044000+0 1.499383-2 2.317395+0 1.220268-2 2.660725+0 9.801687-3 3.054921+0 7.931207-3 3.548134+0 6.353226-3 4.120975+0 5.127002-3 4.841724+0 4.100749-3 5.754399+0 3.253321-3 6.839116+0 2.600532-3 8.222427+0 2.062581-3 1.000000+1 1.624500-3 1.273503+1 1.220609-3 1.621810+1 9.244958-4 2.113489+1 6.875213-4 2.884032+1 4.896996-4 4.265795+1 3.226777-4 6.531306+1 2.067372-4 9.885531+1 1.349579-4 1.905461+2 6.917499-5 3.801894+2 3.444842-5 1.513561+3 8.612243-6 1.000000+5 1.300900-7 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.087700-2 3.927500-4 1.000000+5 3.927500-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.087700-2 2.672500-3 1.000000+5 2.672500-3 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.087700-2 7.811750-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.030000-3 2.583491+4 3.235937-3 2.379943+4 3.450000-3 2.181280+4 3.672823-3 2.009843+4 3.890451-3 1.849642+4 5.011872-3 1.266094+4 5.370318-3 1.135173+4 6.683439-3 7.896156+3 7.413102-3 6.596449+3 8.709636-3 4.954439+3 1.040000-2 3.572980+3 1.174898-2 2.836544+3 1.364583-2 2.123901+3 1.640590-2 1.473159+3 1.972423-2 1.011586+3 2.344229-2 7.049095+2 2.754229-2 4.993782+2 3.235937-2 3.511912+2 3.758374-2 2.516388+2 4.415704-2 1.745335+2 5.248075-2 1.169955+2 6.165950-2 7.996989+1 7.328245-2 5.281106+1 8.810489-2 3.365758+1 1.071519-1 2.068414+1 1.364583-1 1.124294+1 1.678804-1 6.627749+0 2.511886-1 2.364648+0 3.126079-1 1.360527+0 3.715352-1 8.854887-1 4.265795-1 6.320842-1 4.897788-1 4.543706-1 5.559043-1 3.380137-1 6.237348-1 2.599591-1 7.079458-1 1.962246-1 8.035261-1 1.492586-1 9.015711-1 1.171123-1 1.000000+0 9.483208-2 1.161449+0 7.061223-2 1.303167+0 5.663205-2 1.479108+0 4.476773-2 1.678804+0 3.567791-2 1.905461+0 2.865445-2 2.162719+0 2.318349-2 2.454709+0 1.889105-2 2.818383+0 1.522329-2 3.273407+0 1.214437-2 3.801894+0 9.762046-3 4.466836+0 7.777994-3 5.248075+0 6.243666-3 6.237348+0 4.971240-3 7.498942+0 3.928780-3 9.120108+0 3.083594-3 1.109175+1 2.437863-3 1.400000+1 1.856900-3 1.800000+1 1.395700-3 2.398833+1 1.015640-3 3.198895+1 7.439788-4 4.677351+1 4.972398-4 7.498942+1 3.042473-4 1.496236+2 1.501031-4 2.985383+2 7.463557-5 1.188502+3 1.863023-5 1.000000+5 2.208700-7 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.030000-3 3.874400-4 1.000000+5 3.874400-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.030000-3 1.628100-5 1.000000+5 1.628100-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.030000-3 2.626279-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.790200-3 4.163756+4 2.885000-3 4.037552+4 3.235937-3 3.526805+4 3.400000-3 3.309020+4 3.715352-3 2.922788+4 4.073803-3 2.553533+4 4.500000-3 2.188960+4 4.841724-3 1.940746+4 5.308844-3 1.651101+4 6.000000-3 1.325374+4 6.456542-3 1.153925+4 7.500000-3 8.594940+3 8.128305-3 7.294336+3 9.332543-3 5.449434+3 1.023293-2 4.460271+3 1.174898-2 3.272732+3 1.303167-2 2.576413+3 1.479108-2 1.910470+3 1.698244-2 1.365849+3 1.927525-2 9.963944+2 2.187762-2 7.220373+2 2.511886-2 5.043153+2 2.900000-2 3.445200+2 3.349654-2 2.333172+2 3.890451-2 1.545239+2 4.570882-2 9.840581+1 5.370318-2 6.221868+1 6.531306-2 3.536083+1 8.222426-2 1.803396+1 1.083927-1 7.972518+0 1.640590-1 2.333882+0 2.065380-1 1.187316+0 2.483133-1 6.962905-1 2.917427-1 4.397605-1 3.349654-1 2.986105-1 3.801894-1 2.107815-1 4.315191-1 1.498528-1 4.841724-1 1.106443-1 5.432503-1 8.226581-2 6.025596-1 6.341963-2 6.683439-1 4.924056-2 7.413102-1 3.849573-2 8.609938-1 2.723913-2 9.332543-1 2.276522-2 1.000000+0 1.964997-2 1.096478+0 1.629454-2 1.202264+0 1.360447-2 1.318257+0 1.143440-2 1.479108+0 9.273086-3 1.717908+0 7.104661-3 1.949845+0 5.711738-3 2.213095+0 4.627517-3 2.511886+0 3.775689-3 2.884032+0 3.046639-3 3.349654+0 2.433388-3 3.890451+0 1.958266-3 4.570882+0 1.562039-3 5.432503+0 1.236047-3 6.456542+0 9.856368-4 7.852356+0 7.688394-4 9.549926+0 6.045136-4 1.202264+1 4.595817-4 1.513561+1 3.520593-4 1.949845+1 2.646338-4 2.630268+1 1.904551-4 3.758374+1 1.298882-4 5.495409+1 8.709066-5 8.709636+1 5.407953-5 1.737801+2 2.673267-5 3.467369+2 1.330587-5 1.380384+3 3.324614-6 1.000000+5 4.579300-8 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.790200-3 3.368800-4 1.000000+5 3.368800-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.790200-3 3.108700-5 1.000000+5 3.108700-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.790200-3 2.422233-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.451700-3 1.274100+5 2.580000-3 1.176818+5 2.884032-3 9.927096+4 3.090295-3 8.865814+4 3.589219-3 6.859284+4 3.900000-3 5.920840+4 4.216965-3 5.121846+4 5.069907-3 3.571458+4 5.500000-3 3.027640+4 6.382635-3 2.209867+4 7.000000-3 1.807864+4 8.128305-3 1.291205+4 9.015711-3 1.015145+4 1.023293-2 7.511511+3 1.161449-2 5.509307+3 1.300000-2 4.155120+3 1.496236-2 2.897086+3 1.730000-2 1.976900+3 1.995262-2 1.345564+3 2.300000-2 9.093360+2 2.650000-2 6.103680+2 3.054921-2 4.058806+2 3.548134-2 2.620708+2 4.120975-2 1.679014+2 4.841724-2 1.031234+2 5.754399-2 6.066893+1 6.839116-2 3.543243+1 8.413951-2 1.843755+1 1.122019-1 7.371333+0 1.659587-1 2.111532+0 2.041738-1 1.096893+0 2.398833-1 6.633527-1 2.754229-1 4.339661-1 3.126079-1 2.961038-1 3.507519-1 2.105476-1 3.935501-1 1.507672-1 4.365158-1 1.123841-1 4.841724-1 8.434388-2 5.370318-1 6.376349-2 5.956621-1 4.856771-2 6.606935-1 3.727926-2 7.328245-1 2.883865-2 8.511380-1 2.012729-2 9.120108-1 1.714668-2 9.660509-1 1.508437-2 1.023293+0 1.334892-2 1.109175+0 1.132876-2 1.216186+0 9.463698-3 1.333521+0 7.966155-3 1.548817+0 6.085303-3 1.778279+0 4.767673-3 2.000000+0 3.899606-3 2.264644+0 3.176222-3 2.600160+0 2.548023-3 3.000000+0 2.044300-3 3.467369+0 1.647789-3 4.027170+0 1.328293-3 4.731513+0 1.061259-3 5.623413+0 8.410831-4 6.683439+0 6.716821-4 8.128305+0 5.246958-4 1.000000+1 4.074000-4 1.273503+1 3.060999-4 1.621810+1 2.318506-4 2.113489+1 1.724196-4 2.851018+1 1.243441-4 4.168694+1 8.291400-5 6.309573+1 5.373907-5 9.660509+1 3.464983-5 1.905461+2 1.734788-5 3.801894+2 8.639044-6 1.513561+3 2.159846-6 1.000000+5 3.262400-8 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.451700-3 3.012100-4 1.000000+5 3.012100-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.451700-3 9.080100-6 1.000000+5 9.080100-6 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.451700-3 2.141410-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.044500-3 2.315750+5 2.106000-3 2.435896+5 2.163000-3 2.537520+5 2.178000-3 2.555913+5 2.230000-3 2.636113+5 2.253500-3 2.652123+5 2.320000-3 2.684466+5 2.371374-3 2.684466+5 2.400000-3 2.642219+5 2.426610-3 2.597882+5 2.691535-3 1.986720+5 2.951209-3 1.555889+5 3.273407-3 1.172869+5 3.614600-3 8.883467+4 4.000000-3 6.638440+4 4.400000-3 5.027160+4 5.300000-3 2.868072+4 5.821032-3 2.146021+4 6.760830-3 1.340228+4 7.673615-3 8.911973+3 8.609938-3 6.116895+3 1.000000-2 3.713304+3 1.148154-2 2.321204+3 1.288250-2 1.559896+3 1.479108-2 9.613881+2 1.717908-2 5.643572+2 2.000000-2 3.258012+2 2.344229-2 1.820078+2 2.754229-2 9.999587+1 3.235937-2 5.454403+1 3.890451-2 2.706823+1 4.841724-2 1.167843+1 6.456542-2 3.827193+0 1.035142-1 6.116890-1 1.273503-1 2.752683-1 1.531088-1 1.363173-1 1.778279-1 7.747729-2 2.089296-1 4.251515-2 2.344229-1 2.785760-2 2.600160-1 1.917301-2 2.851018-1 1.384828-2 3.273407-1 8.542159-3 3.630781-1 5.985281-3 4.027170-1 4.222068-3 4.466836-1 3.000113-3 4.954502-1 2.148109-3 5.432503-1 1.606381-3 5.956621-1 1.210075-3 6.456542-1 9.526774-4 7.079458-1 7.306052-4 8.035261-1 5.126398-4 8.609938-1 4.211476-4 9.120108-1 3.597701-4 9.549926-1 3.189951-4 1.000000+0 2.846344-4 1.047129+0 2.558546-4 1.096478+0 2.316367-4 1.148154+0 2.109910-4 1.216186+0 1.890562-4 1.318257+0 1.634213-4 1.531087+0 1.263028-4 1.840772+0 9.131669-5 2.044000+0 7.640441-5 2.317395+0 6.217604-5 2.660725+0 4.994258-5 3.054921+0 4.041352-5 3.548134+0 3.237313-5 4.120975+0 2.612493-5 4.841724+0 2.089553-5 5.754399+0 1.657723-5 6.839116+0 1.325089-5 8.222427+0 1.051014-5 1.011579+1 8.164318-6 1.288250+1 6.136576-6 1.640590+1 4.649716-6 2.137962+1 3.459052-6 2.884032+1 2.495266-6 4.216965+1 1.664309-6 6.382635+1 1.078913-6 9.772372+1 6.957922-7 1.905461+2 3.524817-7 3.801894+2 1.755317-7 1.513561+3 4.388376-8 1.000000+5 6.62860-10 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.044500-3 2.260900-4 1.000000+5 2.260900-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.044500-3 3.660000-5 1.000000+5 3.660000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.044500-3 1.781810-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 1.970900-3 5.179736+5 2.043000-3 4.951460+5 2.180000-3 4.626294+5 2.220000-3 4.529425+5 2.238721-3 4.475354+5 2.260000-3 4.425624+5 2.511886-3 3.362769+5 2.800000-3 2.514486+5 3.090295-3 1.917317+5 3.427678-3 1.430890+5 3.845918-3 1.024714+5 4.216965-3 7.815774+4 4.677351-3 5.706325+4 5.308844-3 3.866224+4 5.956621-3 2.687772+4 6.683439-3 1.859215+4 7.673615-3 1.183018+4 8.609938-3 8.061250+3 9.800000-3 5.197740+3 1.122018-2 3.257756+3 1.273503-2 2.088437+3 1.450000-2 1.314720+3 1.659587-2 8.065522+2 1.905461-2 4.856078+2 2.187762-2 2.903467+2 2.511886-2 1.724243+2 2.917427-2 9.737526+1 3.427678-2 5.223625+1 4.027170-2 2.782944+1 4.897788-2 1.285994+1 6.382635-2 4.484485+0 1.035142-1 6.507138-1 1.258925-1 2.998874-1 1.479108-1 1.595164-1 1.717908-1 8.934997-2 1.949845-1 5.510961-2 2.041738-1 4.639118-2 2.371374-1 2.667133-2 2.630268-1 1.830934-2 2.917427-1 1.266015-2 3.235937-1 8.820395-3 3.548134-1 6.440638-3 3.890451-1 4.735708-3 4.265795-1 3.508673-3 4.677351-1 2.620010-3 5.069907-1 2.042720-3 5.495409-1 1.603076-3 6.025596-1 1.224233-3 6.606935-1 9.411762-4 7.161434-1 7.527009-4 7.762471-1 6.060132-4 8.511380-1 4.755646-4 9.015711-1 4.110634-4 9.549926-1 3.577959-4 1.000000+0 3.220962-4 1.059254+0 2.845315-4 1.135011+0 2.470958-4 1.216186+0 2.161220-4 1.318257+0 1.861897-4 1.798871+0 1.075038-4 2.018366+0 8.830872-5 2.290868+0 7.168695-5 2.630268+0 5.754600-5 3.019952+0 4.653971-5 3.507519+0 3.725781-5 4.073803+0 3.005017-5 4.786301+0 2.402261-5 5.688529+0 1.904809-5 6.760830+0 1.521914-5 8.128305+0 1.206519-5 1.000000+1 9.368200-6 1.273503+1 7.038637-6 1.621810+1 5.331261-6 2.113489+1 3.964784-6 2.851018+1 2.859165-6 4.216965+1 1.883524-6 6.382635+1 1.221075-6 9.772372+1 7.874529-7 1.905461+2 3.989131-7 3.801894+2 1.986542-7 1.513561+3 4.966445-8 1.000000+5 7.50180-10 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 1.970900-3 2.111700-4 1.000000+5 2.111700-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.970900-3 1.805200-8 1.000000+5 1.805200-8 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 1.970900-3 1.759712-3 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.480300-4 5.929000+4 6.850000-4 5.759210+4 7.120000-4 5.606460+4 7.413102-4 5.411044+4 7.730000-4 5.240300+4 8.912509-4 4.624118+4 9.332543-4 4.420800+4 1.135011-3 3.563807+4 1.230269-3 3.238485+4 1.428894-3 2.675647+4 1.584893-3 2.331055+4 1.819701-3 1.919196+4 2.041738-3 1.623029+4 2.400000-3 1.269640+4 2.722701-3 1.040776+4 3.162278-3 8.164394+3 3.758374-3 6.112828+3 4.466836-3 4.534990+3 5.370318-3 3.268129+3 6.382635-3 2.384507+3 7.585776-3 1.727571+3 9.120108-3 1.215969+3 1.109175-2 8.305101+2 1.333521-2 5.756296+2 1.600000-2 3.974920+2 1.905461-2 2.766330+2 2.264644-2 1.919790+2 2.691535-2 1.322282+2 3.198895-2 9.040601+1 3.801894-2 6.136260+1 4.518559-2 4.133691+1 5.370318-2 2.763733+1 6.382635-2 1.834233+1 7.673615-2 1.175584+1 9.120108-2 7.688812+0 1.135011-1 4.453679+0 1.479108-1 2.280052+0 2.511886-1 5.889097-1 3.126079-1 3.389534-1 3.715352-1 2.206579-1 4.265795-1 1.575346-1 4.897788-1 1.132540-1 5.559043-1 8.425473-2 6.237348-1 6.479570-2 7.079458-1 4.890350-2 8.035261-1 3.719640-2 9.015711-1 2.918953-2 1.000000+0 2.363900-2 1.161449+0 1.760265-2 1.303167+0 1.411752-2 1.479108+0 1.115964-2 1.678804+0 8.893447-3 1.905461+0 7.142673-3 2.162719+0 5.779165-3 2.454709+0 4.709146-3 2.818383+0 3.794723-3 3.273407+0 3.027191-3 3.801894+0 2.433378-3 4.466836+0 1.938853-3 5.308844+0 1.532548-3 6.309573+0 1.220817-3 7.673615+0 9.514136-4 9.332543+0 7.474075-4 1.161449+1 5.754916-4 1.462177+1 4.403490-4 1.883649+1 3.306613-4 2.511886+1 2.407628-4 3.388442+1 1.743876-4 4.954502+1 1.166819-4 8.035261+1 7.062892-5 1.603245+2 3.488057-5 3.198895+2 1.735206-5 1.273503+3 4.333345-6 1.000000+5 5.505800-8 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.480300-4 2.215100-4 1.000000+5 2.215100-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.480300-4 5.666100-8 1.000000+5 5.666100-8 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.480300-4 4.264633-4 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.460700-4 4.908504+4 6.350000-4 4.859384+4 7.244360-4 4.767617+4 7.762471-4 4.673692+4 8.511380-4 4.508686+4 9.200000-4 4.341540+4 9.885531-4 4.165453+4 1.050000-3 3.998640+4 1.135011-3 3.762404+4 1.244515-3 3.474942+4 1.333521-3 3.255535+4 1.450000-3 2.984580+4 1.610000-3 2.655520+4 1.757924-3 2.389893+4 1.950000-3 2.092480+4 2.150000-3 1.834334+4 2.371374-3 1.594890+4 2.650000-3 1.351330+4 2.951209-3 1.141666+4 3.273407-3 9.645199+3 3.672823-3 7.935774+3 4.120975-3 6.481349+3 4.623810-3 5.255666+3 5.188000-3 4.231855+3 5.821032-3 3.384928+3 6.606934-3 2.627954+3 7.500000-3 2.024160+3 8.609938-3 1.510582+3 9.800000-3 1.138904+3 1.109175-2 8.632090+2 1.258925-2 6.456060+2 1.428894-2 4.794272+2 1.640590-2 3.437952+2 1.862087-2 2.516599+2 2.137962-2 1.777179+2 2.454709-2 1.245803+2 2.818383-2 8.671496+1 3.273407-2 5.811877+1 3.801894-2 3.866475+1 4.466836-2 2.474079+1 5.248075-2 1.571624+1 6.309573-2 9.280363+0 7.852356-2 4.923128+0 1.023293-1 2.265872+0 1.678804-1 5.260679-1 2.089296-1 2.777200-1 2.511886-1 1.633176-1 2.951209-1 1.033811-1 3.427678-1 6.811439-2 3.890451-1 4.817864-2 4.415705-1 3.432467-2 5.000000-1 2.480141-2 5.623413-1 1.838167-2 6.237348-1 1.420931-2 6.918310-1 1.105747-2 7.673615-1 8.662981-3 8.709636-1 6.472287-3 9.440609-1 5.415305-3 1.011579+0 4.680202-3 1.109175+0 3.884706-3 1.216186+0 3.245872-3 1.333521+0 2.730220-3 1.531087+0 2.125704-3 1.757924+0 1.664293-3 1.995262+0 1.339983-3 2.264644+0 1.087311-3 2.600160+0 8.723148-4 3.000000+0 6.998100-4 3.467369+0 5.640757-4 4.027170+0 4.547058-4 4.731513+0 3.632941-4 5.623413+0 2.879196-4 6.683439+0 2.299329-4 8.128305+0 1.796138-4 1.000000+1 1.394600-4 1.273503+1 1.047824-4 1.621810+1 7.936626-5 2.113489+1 5.902321-5 2.851018+1 4.256493-5 4.216965+1 2.804063-5 6.382635+1 1.817768-5 9.772372+1 1.172260-5 1.905461+2 5.938571-6 3.801894+2 2.957344-6 1.513561+3 7.393476-7 1.000000+5 1.116800-8 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.460700-4 1.868400-4 1.000000+5 1.868400-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.460700-4 6.434600-8 1.000000+5 6.434600-8 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.460700-4 3.591657-4 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.662300-4 2.341169+5 5.370318-4 2.195784+5 5.559043-4 2.149105+5 6.350000-4 1.954992+5 7.079458-4 1.785325+5 7.762471-4 1.642410+5 8.511380-4 1.500484+5 9.225714-4 1.375901+5 1.035142-3 1.203467+5 1.135011-3 1.074748+5 1.244515-3 9.526046+4 1.400000-3 8.102320+4 1.531087-3 7.120303+4 1.737801-3 5.882325+4 1.927525-3 4.995541+4 2.187762-3 4.058905+4 2.454709-3 3.334188+4 2.754229-3 2.720894+4 3.150000-3 2.127668+4 3.548134-3 1.697611+4 3.981072-3 1.355787+4 4.518559-3 1.050875+4 5.188000-3 7.889003+3 5.956621-3 5.869969+3 6.839116-3 4.329676+3 7.852356-3 3.166218+3 8.912509-3 2.358900+3 1.011579-2 1.745166+3 1.148154-2 1.281944+3 1.303167-2 9.351229+2 1.496236-2 6.574089+2 1.698244-2 4.724822+2 1.927525-2 3.372180+2 2.213095-2 2.316466+2 2.540973-2 1.579147+2 2.917427-2 1.068603+2 3.349654-2 7.179839+1 3.890451-2 4.631391+1 4.518559-2 2.965008+1 5.308844-2 1.820227+1 6.309573-2 1.070730+1 7.673615-2 5.819509+0 9.660509-2 2.815389+0 1.757924-1 4.199661-1 2.113489-1 2.353060-1 2.483133-1 1.427383-1 2.851018-1 9.364785-2 3.235937-1 6.407812-2 3.630781-1 4.568723-2 4.073803-1 3.281011-2 4.518559-1 2.452351-2 5.011872-1 1.845486-2 5.559043-1 1.398877-2 6.165950-1 1.068450-2 6.839117-1 8.226673-3 7.585776-1 6.384747-3 8.609938-1 4.719646-3 9.225714-1 4.026590-3 9.772372-1 3.547134-3 1.047129+0 3.069483-3 1.135011+0 2.610024-3 1.244515+0 2.184388-3 1.380384+0 1.803655-3 1.698244+0 1.245917-3 1.927525+0 1.000772-3 2.187762+0 8.102440-4 2.511886+0 6.487062-4 2.884032+0 5.233643-4 3.349654+0 4.180025-4 3.890451+0 3.363919-4 4.570882+0 2.683241-4 5.432503+0 2.123214-4 6.456542+0 1.693078-4 7.852356+0 1.320716-4 9.549926+0 1.038423-4 1.202264+1 7.894507-5 1.513561+1 6.047653-5 1.949845+1 4.545708-5 2.630268+1 3.271627-5 3.758374+1 2.231093-5 5.559043+1 1.478177-5 8.810489+1 9.180831-6 1.757924+2 4.538708-6 3.507519+2 2.259178-6 1.396368+3 5.645405-7 1.000000+5 7.866100-9 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.662300-4 1.743900-4 1.000000+5 1.743900-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.662300-4 2.912700-8 1.000000+5 2.912700-8 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.662300-4 2.918109-4 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 2.970800-4 1.584001+5 3.007000-4 1.562258+5 3.022000-4 1.547258+5 3.035000-4 1.525040+5 3.065000-4 1.456180+5 3.090295-4 1.410915+5 3.130000-4 1.355996+5 3.180000-4 1.300392+5 3.225800-4 1.260013+5 3.273407-4 1.229040+5 3.320000-4 1.208836+5 3.370000-4 1.196960+5 3.410000-4 1.193988+5 3.467369-4 1.198655+5 3.522600-4 1.211663+5 3.589219-4 1.236504+5 3.650000-4 1.266148+5 3.740000-4 1.320068+5 3.850000-4 1.399252+5 4.168694-4 1.668905+5 4.280000-4 1.761328+5 4.430000-4 1.876980+5 4.570882-4 1.976164+5 4.731513-4 2.077863+5 4.897788-4 2.170447+5 5.069907-4 2.250792+5 5.248075-4 2.317117+5 5.450000-4 2.374064+5 5.650000-4 2.414228+5 5.888437-4 2.443704+5 6.100000-4 2.454248+5 6.382635-4 2.450219+5 6.700000-4 2.428020+5 7.000000-4 2.393852+5 7.328245-4 2.343930+5 7.673615-4 2.280303+5 8.128305-4 2.186560+5 8.609938-4 2.082369+5 9.120108-4 1.969731+5 9.700000-4 1.841812+5 1.035142-3 1.703228+5 1.110000-3 1.555316+5 1.188502-3 1.412375+5 1.288250-3 1.249658+5 1.380384-3 1.118365+5 1.479108-3 9.945169+4 1.610000-3 8.547560+4 1.737801-3 7.408294+4 1.905461-3 6.181853+4 2.070000-3 5.217240+4 2.264644-3 4.306709+4 2.469000-3 3.557461+4 2.722701-3 2.842440+4 2.985383-3 2.284112+4 3.300000-3 1.787172+4 3.672823-3 1.363151+4 4.073803-3 1.040357+4 4.466836-3 8.131158+3 4.954502-3 6.120112+3 5.559043-3 4.426586+3 6.237348-3 3.174707+3 6.918310-3 2.337817+3 7.762471-3 1.651457+3 8.709636-3 1.157820+3 9.660509-3 8.360055+2 1.095000-2 5.592248+2 1.230269-2 3.819764+2 1.396368-2 2.503907+2 1.584893-2 1.628401+2 1.798871-2 1.051098+2 2.041738-2 6.737420+1 2.344229-2 4.116760+1 2.722701-2 2.394939+1 3.162278-2 1.382668+1 3.715352-2 7.594270+0 4.415704-2 3.966464+0 5.432503-2 1.804324+0 7.244360-2 5.985163-1 1.109175-1 1.164179-1 1.364583-1 5.283744-2 1.678804-1 2.417491-2 1.949845-1 1.384200-2 2.213095-1 8.697745-3 2.511886-1 5.504586-3 2.851018-1 3.510392-3 3.198895-1 2.348413-3 3.589219-1 1.582563-3 4.000000-1 1.099586-3 4.415705-1 7.941793-4 4.897788-1 5.687424-4 5.432503-1 4.102051-4 5.956621-1 3.090460-4 6.456542-1 2.432037-4 7.079458-1 1.863898-4 8.035261-1 1.307218-4 8.609938-1 1.074777-4 9.120108-1 9.188224-5 9.549926-1 8.151519-5 1.000000+0 7.277076-5 1.047129+0 6.543687-5 1.096478+0 5.925651-5 1.148154+0 5.398107-5 1.216186+0 4.836968-5 1.318257+0 4.180554-5 1.531087+0 3.229730-5 1.840772+0 2.335062-5 2.044000+0 1.953800-5 2.317395+0 1.590001-5 2.660725+0 1.277220-5 3.054921+0 1.033565-5 3.548134+0 8.279182-6 4.120975+0 6.681108-6 4.841724+0 5.343702-6 5.754399+0 4.239462-6 6.839116+0 3.388853-6 8.222427+0 2.687754-6 1.011579+1 2.087884-6 1.288250+1 1.569388-6 1.640590+1 1.189120-6 2.137962+1 8.846071-7 2.884032+1 6.381358-7 4.265795+1 4.204853-7 6.531306+1 2.694066-7 1.011579+2 1.717644-7 1.972423+2 8.704568-8 3.935501+2 4.335569-8 3.126079+3 5.428822-9 1.000000+5 1.69520-10 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 2.970800-4 1.257300-4 1.000000+5 1.257300-4 1 76000 7 7 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.970800-4 3.833500-8 1.000000+5 3.833500-8 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 2.970800-4 1.713117-4 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.822900-4 2.563716+5 2.836000-4 2.468346+5 2.855000-4 2.353524+5 2.870000-4 2.278368+5 2.890000-4 2.194680+5 2.917427-4 2.102334+5 2.951209-4 2.012197+5 2.995000-4 1.918674+5 3.030000-4 1.858392+5 3.065000-4 1.811304+5 3.100000-4 1.777446+5 3.140000-4 1.753698+5 3.180000-4 1.744092+5 3.220000-4 1.746840+5 3.260000-4 1.760322+5 3.311311-4 1.790772+5 3.370000-4 1.839798+5 3.430000-4 1.901286+5 3.530000-4 2.020776+5 3.672823-4 2.216758+5 3.935501-4 2.621676+5 4.050000-4 2.793444+5 4.168694-4 2.959394+5 4.280000-4 3.101904+5 4.415704-4 3.258709+5 4.570882-4 3.416661+5 4.731513-4 3.557323+5 4.897788-4 3.677499+5 5.080000-4 3.779118+5 5.248075-4 3.848097+5 5.450000-4 3.905490+5 5.650000-4 3.937440+5 5.900000-4 3.946128+5 6.200000-4 3.923004+5 6.531306-4 3.867444+5 6.850000-4 3.790488+5 7.161434-4 3.697144+5 7.500000-4 3.581646+5 7.943282-4 3.419682+5 8.413951-4 3.243370+5 8.912509-4 3.054976+5 9.549926-4 2.819657+5 1.023293-3 2.582929+5 1.096478-3 2.348103+5 1.174898-3 2.119777+5 1.270000-3 1.875372+5 1.364583-3 1.662975+5 1.479108-3 1.443090+5 1.603245-3 1.243120+5 1.757924-3 1.039369+5 1.905461-3 8.824974+4 2.089296-3 7.262720+4 2.264644-3 6.085014+4 2.511886-3 4.806181+4 2.754229-3 3.865364+4 3.000000-3 3.139848+4 3.349654-3 2.380094+4 3.715352-3 1.818726+4 4.073803-3 1.422643+4 4.500000-3 1.084002+4 5.011872-3 8.014041+3 5.623413-3 5.753438+3 6.309573-3 4.096137+3 7.000000-3 2.993898+3 7.800000-3 2.144616+3 8.709636-3 1.515845+3 9.772372-3 1.047361+3 1.096478-2 7.183553+2 1.230269-2 4.890967+2 1.380384-2 3.306653+2 1.548817-2 2.220349+2 1.757924-2 1.421907+2 2.000000-2 8.961600+1 2.290868-2 5.469856+1 2.630268-2 3.284730+1 3.054921-2 1.875348+1 3.548134-2 1.062552+1 4.168694-2 5.719974+0 5.011872-2 2.795810+0 6.309573-2 1.132242+0 1.096478-1 1.276797-1 1.348963-1 5.661087-2 1.566751-1 3.167333-2 1.798871-1 1.866411-2 2.018366-1 1.209117-2 2.264644-1 7.891534-3 2.511886-1 5.410615-3 2.786121-1 3.734673-3 3.090295-1 2.596285-3 3.427678-1 1.818607-3 3.758374-1 1.334572-3 4.120975-1 9.862316-4 4.518559-1 7.342389-4 4.897788-1 5.709098-4 5.308844-1 4.468782-4 5.754399-1 3.521463-4 6.165950-1 2.887301-4 6.683439-1 2.305957-4 7.244360-1 1.853596-4 8.609938-1 1.176570-4 9.120108-1 1.016951-4 9.660509-1 8.852701-5 1.011579+0 7.972961-5 1.071519+0 7.045768-5 1.135011+0 6.265686-5 1.216186+0 5.480839-5 1.318257+0 4.723800-5 1.819701+0 2.676280-5 2.044000+0 2.195700-5 2.317395+0 1.786798-5 2.660725+0 1.435303-5 3.054921+0 1.161509-5 3.548134+0 9.304085-6 4.120975+0 7.508224-6 4.841724+0 6.005284-6 5.754399+0 4.764386-6 6.839116+0 3.808409-6 8.222427+0 3.020536-6 1.011579+1 2.346383-6 1.288250+1 1.763635-6 1.640590+1 1.336302-6 2.162719+1 9.815831-7 2.917427+1 7.083212-7 4.315191+1 4.668473-7 6.683439+1 2.956154-7 1.059254+2 1.841487-7 2.018366+2 9.556919-8 4.027170+2 4.760675-8 3.198895+3 5.961958-9 1.000000+5 1.90510-10 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.822900-4 1.230800-4 1.000000+5 1.230800-4 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.822900-4 1.592100-4 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 6.621000-5 2.034084+5 6.650000-5 2.119920+5 6.683439-5 2.206039+5 6.720000-5 2.291166+5 6.770000-5 2.393694+5 6.815000-5 2.474142+5 6.870000-5 2.559960+5 6.920000-5 2.628240+5 6.998420-5 2.717192+5 7.079458-5 2.790695+5 7.161434-5 2.850454+5 7.270000-5 2.910312+5 7.400000-5 2.958588+5 7.500000-5 2.981958+5 7.673615-5 3.002579+5 7.900000-5 3.005058+5 8.317638-5 2.991597+5 8.511380-5 2.996716+5 8.709636-5 3.018652+5 8.900000-5 3.061344+5 9.070000-5 3.120270+5 9.230000-5 3.195642+5 9.400000-5 3.298164+5 9.588400-5 3.439845+5 9.800000-5 3.633480+5 1.000900-4 3.860387+5 1.023293-4 4.140062+5 1.050000-4 4.519050+5 1.100000-4 5.342406+5 1.190000-4 7.114020+5 1.244515-4 8.327707+5 1.303167-4 9.728119+5 1.350000-4 1.090020+6 1.400000-4 1.218282+6 1.450000-4 1.347168+6 1.500000-4 1.473822+6 1.548817-4 1.592818+6 1.600000-4 1.710936+6 1.650000-4 1.818042+6 1.705000-4 1.925298+6 1.760000-4 2.021556+6 1.820000-4 2.115186+6 1.883649-4 2.203170+6 1.950000-4 2.283552+6 2.018366-4 2.354378+6 2.089296-4 2.414197+6 2.178800-4 2.472027+6 2.264644-4 2.508748+6 2.350000-4 2.528640+6 2.454709-4 2.533659+6 2.570396-4 2.519385+6 2.691535-4 2.487774+6 2.818383-4 2.441412+6 2.951209-4 2.382078+6 3.100000-4 2.305344+6 3.235937-4 2.227600+6 3.388442-4 2.134255+6 3.589219-4 2.007223+6 3.801894-4 1.873950+6 4.027170-4 1.737317+6 4.280000-4 1.591128+6 4.518559-4 1.461532+6 4.786301-4 1.326274+6 5.128614-4 1.171004+6 5.432503-4 1.049406+6 5.800000-4 9.195180+5 6.200000-4 7.980180+5 6.683439-4 6.746018+5 7.161434-4 5.744206+5 7.673615-4 4.855326+5 8.222426-4 4.081296+5 9.015711-4 3.208863+5 9.700000-4 2.632518+5 1.059254-3 2.059954+5 1.161449-3 1.580430+5 1.273503-3 1.202581+5 1.380384-3 9.411931+4 1.500000-3 7.268160+4 1.650000-3 5.366598+4 1.819701-3 3.900315+4 2.018366-3 2.761028+4 2.238721-3 1.938767+4 2.483133-3 1.352052+4 2.754229-3 9.364322+3 3.054921-3 6.440916+3 3.388442-3 4.398938+3 3.801894-3 2.857772+3 4.265795-3 1.842233+3 4.786301-3 1.178731+3 5.370318-3 7.487491+2 6.025596-3 4.723284+2 6.839116-3 2.823835+2 7.762471-3 1.674996+2 8.810489-3 9.856691+1 1.000000-2 5.753802+1 1.135011-2 3.332505+1 1.288250-2 1.916013+1 1.479108-2 1.039443+1 1.698244-2 5.595848+0 1.995262-2 2.695326+0 2.371374-2 1.223420+0 2.851018-2 5.227347-1 3.349654-2 2.464949-1 4.265795-2 7.909538-2 7.328245-2 6.150654-3 9.015711-2 2.328017-3 1.047129-1 1.161047-3 1.230269-1 5.529882-4 1.428894-1 2.796832-4 1.678804-1 1.351619-4 1.883649-1 8.099433-5 2.041738-1 5.690566-5 2.264644-1 3.645192-5 2.511886-1 2.352593-5 2.786121-1 1.529302-5 3.090295-1 1.001048-5 3.427678-1 6.598062-6 3.758374-1 4.585946-6 4.073803-1 3.356523-6 4.466836-1 2.368854-6 4.954502-1 1.612649-6 5.432503-1 1.149694-6 5.821032-1 8.970383-7 6.025596-1 7.946043-7 6.382635-1 6.551019-7 6.839117-1 5.231805-7 7.498942-1 3.909851-7 8.000000-1 3.198600-7 8.511380-1 2.600725-7 8.912509-1 2.241996-7 9.225714-1 2.014747-7 9.549926-1 1.819259-7 9.885531-1 1.652142-7 1.023293+0 1.510308-7 1.059254+0 1.389550-7 1.096478+0 1.285778-7 1.135011+0 1.195776-7 1.188502+0 1.092780-7 1.258925+0 9.845651-8 1.348963+0 8.749101-8 1.500000+0 7.372700-8 1.905461+0 4.844417-8 2.089296+0 4.147102-8 2.371374+0 3.373089-8 2.722701+0 2.712865-8 3.162278+0 2.160119-8 3.672823+0 1.733387-8 4.265795+0 1.401080-8 5.011872+0 1.122389-8 5.956621+0 8.918474-9 7.161434+0 7.035407-9 8.609938+0 5.589995-9 1.047129+1 4.410373-9 1.318257+1 3.363437-9 1.698244+1 2.517467-9 2.238721+1 1.851006-9 3.019952+1 1.336946-9 4.415704+1 8.92542-10 6.918310+1 5.58705-10 1.174898+2 3.24472-10 2.264644+2 1.66638-10 4.518559+2 8.30633-11 3.589219+3 1.04077-11 1.000000+5 3.73170-13 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 6.621000-5 6.621000-5 1.000000+5 6.621000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 6.621000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 6.326000-5 3.069808+5 6.350000-5 3.165696+5 6.390000-5 3.301360+5 6.430000-5 3.420072+5 6.480000-5 3.547400+5 6.531306-5 3.659430+5 6.600000-5 3.782800+5 6.683439-5 3.902345+5 6.770000-5 3.997384+5 6.880000-5 4.085200+5 7.000000-5 4.149520+5 7.150000-5 4.196120+5 7.328245-5 4.217253+5 7.585776-5 4.210262+5 8.035261-5 4.181376+5 8.230000-5 4.190872+5 8.413951-5 4.223715+5 8.570000-5 4.274264+5 8.730000-5 4.350920+5 8.900000-5 4.462504+5 9.070000-5 4.607008+5 9.230000-5 4.773960+5 9.400000-5 4.984352+5 9.580000-5 5.243456+5 9.800000-5 5.608752+5 1.000000-4 5.984136+5 1.035142-4 6.732638+5 1.150000-4 9.775680+5 1.205000-4 1.147048+6 1.260000-4 1.328168+6 1.318257-4 1.529671+6 1.364583-4 1.693910+6 1.412538-4 1.864347+6 1.462177-4 2.037510+6 1.513561-4 2.209368+6 1.560000-4 2.355752+6 1.603245-4 2.483086+6 1.659587-4 2.635066+6 1.720000-4 2.780472+6 1.780000-4 2.907712+6 1.850000-4 3.036328+6 1.930000-4 3.160000+6 2.018366-4 3.270692+6 2.089296-4 3.338701+6 2.162719-4 3.391510+6 2.238721-4 3.427843+6 2.330000-4 3.448136+6 2.426610-4 3.445175+6 2.540973-4 3.416603+6 2.660725-4 3.366415+6 2.800000-4 3.289384+6 2.951209-4 3.187741+6 3.100000-4 3.074056+6 3.273407-4 2.930365+6 3.430000-4 2.794224+6 3.630781-4 2.617371+6 3.850000-4 2.429840+6 4.073803-4 2.247297+6 4.315191-4 2.060187+6 4.600000-4 1.855616+6 4.897788-4 1.661640+6 5.248075-4 1.459694+6 5.559043-4 1.302893+6 5.900000-4 1.150824+6 6.350000-4 9.801120+5 6.839116-4 8.265870+5 7.328245-4 7.011160+5 7.852356-4 5.903503+5 8.511380-4 4.799503+5 9.332543-4 3.753005+5 1.011579-3 3.001983+5 1.083927-3 2.468048+5 1.190000-3 1.879272+5 1.318257-3 1.380906+5 1.450000-3 1.028104+5 1.603245-3 7.471481+4 1.757924-3 5.535930+4 1.927525-3 4.075742+4 2.113489-3 2.983993+4 2.344229-3 2.085407+4 2.600160-3 1.446445+4 2.884032-3 9.960253+3 3.198895-3 6.812099+3 3.548134-3 4.628225+3 3.981072-3 2.989505+3 4.466836-3 1.916279+3 5.011872-3 1.219159+3 5.623413-3 7.699652+2 6.382635-3 4.608373+2 7.161434-3 2.869977+2 8.035261-3 1.775256+2 9.015711-3 1.090818+2 1.011579-2 6.657621+1 1.148154-2 3.837540+1 1.303167-2 2.195251+1 1.531087-2 1.069195+1 1.778279-2 5.434683+0 2.065380-2 2.741836+0 2.398833-2 1.373424+0 2.660725-2 8.467512-1 3.162450-2 3.748674-1 3.890451-2 1.398993-1 7.161434-2 7.546583-3 8.810489-2 2.817916-3 1.047129-1 1.248743-3 1.216186-1 6.211231-4 1.396368-1 3.282539-4 1.640590-1 1.572604-4 1.819701-1 9.862870-5 1.995262-1 6.556114-5 2.162719-1 4.614361-5 2.371374-1 3.113062-5 2.600160-1 2.116179-5 2.818383-1 1.519702-5 3.090295-1 1.048740-5 3.388442-1 7.292244-6 3.758374-1 4.881462-6 4.073803-1 3.595309-6 4.415705-1 2.667669-6 4.677351-1 2.167562-6 5.011872-1 1.700421-6 5.370318-1 1.342202-6 5.821032-1 1.025961-6 6.237348-1 8.200239-7 6.683439-1 6.595877-7 7.161434-1 5.340487-7 7.673615-1 4.353890-7 8.222427-1 3.574731-7 8.912509-1 2.859291-7 9.332543-1 2.529398-7 9.772372-1 2.250588-7 1.023293+0 2.016722-7 1.071519+0 1.820507-7 1.122018+0 1.653909-7 1.188502+0 1.477836-7 1.288250+0 1.274396-7 1.412538+0 1.084644-7 1.513561+0 9.639205-8 1.819701+0 6.966118-8 2.018366+0 5.835453-8 2.290868+0 4.737064-8 2.630268+0 3.802656-8 3.019952+0 3.075388-8 3.507519+0 2.462024-8 4.073803+0 1.985741-8 4.786301+0 1.587454-8 5.688529+0 1.258783-8 6.760830+0 1.005704-8 8.128305+0 7.972938-9 1.000000+1 6.190600-9 1.273503+1 4.651181-9 1.621810+1 3.522959-9 2.113489+1 2.619959-9 2.851018+1 1.889358-9 4.216965+1 1.244709-9 6.382635+1 8.06878-10 9.772372+1 5.20352-10 1.883649+2 2.66700-10 3.758374+2 1.32806-10 1.496236+3 3.31994-11 1.000000+5 4.95730-13 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 6.326000-5 6.326000-5 1.000000+5 6.326000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 6.326000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 9.812000-5 7.148000+4 9.980000-5 6.758600+4 1.005000-4 6.626600+4 1.020000-4 6.404140+4 1.035142-4 6.243030+4 1.050000-4 6.129620+4 1.070000-4 6.028340+4 1.090000-4 5.973200+4 1.110000-4 5.952000+4 1.135011-4 5.959450+4 1.170000-4 6.011280+4 1.220000-4 6.132340+4 1.350000-4 6.485060+4 1.412538-4 6.610915+4 1.480000-4 6.696380+4 1.548817-4 6.734834+4 1.621810-4 6.731810+4 1.720000-4 6.676540+4 1.840772-4 6.560332+4 1.995262-4 6.373693+4 2.150000-4 6.161160+4 2.300000-4 5.933760+4 2.454709-4 5.682934+4 2.650000-4 5.358480+4 2.900000-4 4.957640+4 3.200000-4 4.521260+4 3.507519-4 4.122203+4 3.850000-4 3.725140+4 4.315191-4 3.263976+4 4.897788-4 2.798752+4 5.500000-4 2.413840+4 6.456542-4 1.950159+4 7.500000-4 1.585282+4 8.912509-4 1.239482+4 1.083927-3 9.292012+3 1.318257-3 6.906903+3 1.584893-3 5.186207+3 1.905461-3 3.866003+3 2.317395-3 2.806377+3 2.786121-3 2.059398+3 3.349654-3 1.499990+3 4.027170-3 1.084242+3 4.841724-3 7.780144+2 5.888437-3 5.426302+2 7.161434-3 3.754948+2 8.709636-3 2.578489+2 1.059254-2 1.757565+2 1.288250-2 1.188887+2 1.548817-2 8.168726+1 1.862087-2 5.570689+1 2.238721-2 3.769554+1 2.660725-2 2.594966+1 3.162278-2 1.773739+1 3.758374-2 1.203687+1 4.518559-2 7.896917+0 5.248075-2 5.577562+0 6.237348-2 3.704252+0 7.498942-2 2.375351+0 8.912509-2 1.554658+0 1.109175-1 9.010978-1 1.445440-1 4.615587-1 2.511886-1 1.124536-1 3.126079-1 6.472812-2 3.715352-1 4.213900-2 4.265795-1 3.008530-2 4.897788-1 2.162970-2 5.559043-1 1.609176-2 6.237348-1 1.237548-2 7.079458-1 9.340194-3 8.035261-1 7.104145-3 9.015711-1 5.574814-3 1.000000+0 4.514600-3 1.161449+0 3.361717-3 1.303167+0 2.696175-3 1.479108+0 2.131288-3 1.659587+0 1.733384-3 1.883649+0 1.391187-3 2.137962+0 1.124775-3 2.426610+0 9.159286-4 2.786121+0 7.376416-4 3.235937+0 5.881124-4 3.758374+0 4.724808-4 4.415704+0 3.762416-4 5.188000+0 3.018698-4 6.165950+0 2.402316-4 7.413102+0 1.897690-4 8.912509+0 1.509811-4 1.083927+1 1.192742-4 1.364583+1 9.105533-5 1.757924+1 6.822966-5 2.317395+1 5.021427-5 3.090295+1 3.675372-5 4.518559+1 2.454680-5 7.161434+1 1.519039-5 1.303167+2 8.225485-6 2.600160+2 4.084295-6 5.188000+2 2.037299-6 4.120975+3 2.554073-7 1.000000+5 1.051500-8 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 9.812000-5 9.812000-5 1.000000+5 9.812000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 9.812000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 6.601000-5 1.415452+6 6.650000-5 1.453696+6 6.700000-5 1.483220+6 6.770000-5 1.509692+6 6.850000-5 1.523888+6 6.920000-5 1.526366+6 7.000000-5 1.519302+6 7.110000-5 1.497876+6 7.230000-5 1.463490+6 7.350000-5 1.420774+6 7.500000-5 1.359834+6 7.673615-5 1.283607+6 7.852356-5 1.202947+6 8.080000-5 1.101290+6 8.317638-5 1.000085+6 8.650000-5 8.707080+5 9.120108-5 7.154891+5 1.059254-4 4.051154+5 1.135011-4 3.133489+5 1.220000-4 2.412540+5 1.303167-4 1.913000+5 1.380384-4 1.572641+5 1.450000-4 1.338384+5 1.520000-4 1.153960+5 1.584893-4 1.017627+5 1.659587-4 8.920082+4 1.737801-4 7.877088+4 1.820000-4 7.005920+4 1.905461-4 6.283021+4 1.995262-4 5.673891+4 2.089296-4 5.160711+4 2.190000-4 4.719340+4 2.300000-4 4.333620+4 2.400000-4 4.049440+4 2.511886-4 3.788306+4 2.660725-4 3.509377+4 2.818383-4 3.273828+4 3.019952-4 3.032920+4 3.273407-4 2.793638+4 3.672823-4 2.505551+4 5.069907-4 1.874668+4 5.956621-4 1.609312+4 6.839116-4 1.401841+4 7.852356-4 1.211294+4 9.015711-4 1.038607+4 1.035142-3 8.830398+3 1.188502-3 7.446254+3 1.350000-3 6.316020+3 1.531087-3 5.329728+3 1.717908-3 4.534483+3 1.949845-3 3.769929+3 2.213095-3 3.110646+3 2.511886-3 2.547180+3 2.851018-3 2.070132+3 3.235937-3 1.669876+3 3.672823-3 1.336390+3 4.168694-3 1.061552+3 4.731513-3 8.371167+2 5.370318-3 6.553934+2 6.095369-3 5.094770+2 6.918310-3 3.932722+2 7.852356-3 3.014494+2 8.912509-3 2.294474+2 1.011579-2 1.734472+2 1.161449-2 1.268539+2 1.333521-2 9.205227+1 1.513561-2 6.812648+1 1.737801-2 4.867386+1 2.000000-2 3.430374+1 2.317395-2 2.355896+1 2.722701-2 1.548601+1 3.388442-2 8.677682+0 3.935501-2 5.795903+0 4.466836-2 4.086479+0 5.188000-2 2.683479+0 6.237348-2 1.585345+0 7.673615-2 8.703267-1 1.000000-1 4.009213-1 1.798871-1 7.120596-2 2.213095-1 3.894779-2 2.630268-1 2.371973-2 3.054921-1 1.553752-2 3.507519-1 1.058633-2 4.000000-1 7.402900-3 4.518559-1 5.350045-3 5.069907-1 3.963717-3 5.688529-1 2.957742-3 6.309573-1 2.288031-3 6.998420-1 1.781977-3 7.762471-1 1.397263-3 8.709636-1 1.072106-3 9.440609-1 8.969583-4 1.011579+0 7.751664-4 1.109175+0 6.433797-4 1.216186+0 5.375501-4 1.333521+0 4.521464-4 1.513561+0 3.594107-4 1.737801+0 2.812381-4 1.972423+0 2.262387-4 2.238721+0 1.834033-4 2.570396+0 1.470338-4 2.951209+0 1.187762-4 3.427678+0 9.497698-5 4.000000+0 7.600500-5 4.677351+0 6.110251-5 5.559043+0 4.840024-5 6.606934+0 3.863287-5 8.035261+0 3.016458-5 9.885531+0 2.341094-5 1.258925+1 1.758238-5 1.600000+1 1.334300-5 2.089296+1 9.896569-6 2.851018+1 7.046802-6 4.216965+1 4.642287-6 6.382635+1 3.009419-6 9.772372+1 1.940740-6 1.927525+2 9.717793-7 3.845918+2 4.839563-7 3.054921+3 6.059168-8 1.000000+5 1.848900-9 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 6.601000-5 6.601000-5 1.000000+5 6.601000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 6.601000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 5.315000-5 3.271480+6 5.370318-5 3.294206+6 5.432503-5 3.291459+6 5.500000-5 3.264844+6 5.570000-5 3.217916+6 5.651800-5 3.146888+6 5.754399-5 3.040788+6 5.888437-5 2.886731+6 6.025596-5 2.721491+6 6.165950-5 2.551688+6 6.382635-5 2.298349+6 6.607000-5 2.055079+6 6.918310-5 1.756248+6 8.128305-5 9.893759+5 8.609938-5 8.107805+5 9.015711-5 6.954408+5 9.440609-5 6.001376+5 9.900000-5 5.190720+5 1.035142-4 4.561219+5 1.083927-4 4.021249+5 1.122018-4 3.678198+5 1.170000-4 3.322424+5 1.220000-4 3.022840+5 1.273503-4 2.764203+5 1.330000-4 2.544260+5 1.390400-4 2.354830+5 1.450000-4 2.202696+5 1.531087-4 2.035946+5 1.621810-4 1.887827+5 1.737801-4 1.737933+5 1.883649-4 1.590355+5 2.089296-4 1.430865+5 3.030200-4 1.001052+5 3.500000-4 8.646640+4 4.027170-4 7.437426+4 4.623810-4 6.363516+4 5.248075-4 5.476593+4 6.025596-4 4.614520+4 6.839116-4 3.919480+4 7.852356-4 3.256706+4 9.015711-4 2.687911+4 1.047129-3 2.166260+4 1.202264-3 1.762111+4 1.380384-3 1.423681+4 1.603245-3 1.120934+4 1.819701-3 9.093887+3 2.089296-3 7.182310+3 2.398833-3 5.629494+3 2.722701-3 4.471424+3 3.090295-3 3.527362+3 3.507519-3 2.763308+3 4.000000-3 2.129480+3 4.570882-3 1.622061+3 5.188000-3 1.243841+3 5.888437-3 9.472371+2 6.683439-3 7.165526+2 7.585776-3 5.382407+2 8.709636-3 3.908379+2 9.885531-3 2.894382+2 1.122018-2 2.128736+2 1.273503-2 1.554808+2 1.445440-2 1.127785+2 1.640590-2 8.123282+1 1.883649-2 5.636678+1 2.137962-2 4.003398+1 2.454709-2 2.735099+1 2.818383-2 1.854702+1 3.273407-2 1.208122+1 3.801894-2 7.808632+0 4.415704-2 5.008769+0 5.188000-2 3.080784+0 6.095369-2 1.881321+0 7.328245-2 1.061988+0 9.225714-2 5.151757-1 1.678804-1 7.696612-2 2.065380-1 4.010664-2 2.426610-1 2.431078-2 2.786121-1 1.593442-2 3.162278-1 1.089086-2 3.589219-1 7.499640-3 4.027170-1 5.382166-3 4.466836-1 4.019959-3 4.954502-1 3.022963-3 5.495409-1 2.289893-3 6.095369-1 1.747817-3 6.760830-1 1.344872-3 7.498942-1 1.043021-3 8.609938-1 7.498544-4 9.225714-1 6.396731-4 9.772372-1 5.634692-4 1.047129+0 4.875801-4 1.135011+0 4.145835-4 1.244515+0 3.469649-4 1.380384+0 2.865008-4 1.698244+0 1.979107-4 1.927525+0 1.589700-4 2.187762+0 1.287128-4 2.511886+0 1.030516-4 2.884032+0 8.313673-5 3.349654+0 6.639890-5 3.890451+0 5.343511-5 4.570882+0 4.262267-5 5.432503+0 3.372628-5 6.456542+0 2.689401-5 7.852356+0 2.097959-5 9.549926+0 1.649526-5 1.202264+1 1.254021-5 1.513561+1 9.606556-6 1.949845+1 7.220849-6 2.630268+1 5.196920-6 3.715352+1 3.587750-6 5.432503+1 2.405128-6 8.609938+1 1.493178-6 1.717908+2 7.380023-7 3.427678+2 3.672952-7 1.364583+3 9.176888-8 1.000000+5 1.249500-9 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 5.315000-5 5.315000-5 1.000000+5 5.315000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 5.315000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.079000-5 3.127128+6 1.115000-5 3.281232+6 1.161449-5 3.514373+6 1.216186-5 3.829797+6 1.318257-5 4.501840+6 1.513561-5 5.977025+6 1.640590-5 7.005154+6 1.757924-5 7.970830+6 1.862087-5 8.818654+6 1.950000-5 9.510840+6 2.041738-5 1.019248+7 2.113489-5 1.068523+7 2.190000-5 1.116127+7 2.270000-5 1.159464+7 2.350000-5 1.194972+7 2.426610-5 1.221264+7 2.511886-5 1.241336+7 2.600160-5 1.251660+7 2.660725-5 1.252571+7 2.730000-5 1.247628+7 2.818383-5 1.232701+7 2.900000-5 1.211371+7 2.985383-5 1.182639+7 3.080000-5 1.144740+7 3.162278-5 1.107799+7 3.273407-5 1.053689+7 3.400000-5 9.890328+6 3.507519-5 9.334027+6 3.650000-5 8.608416+6 3.801894-5 7.869404+6 3.981072-5 7.061387+6 4.168694-5 6.297713+6 4.415704-5 5.419013+6 4.677351-5 4.631026+6 5.000000-5 3.831192+6 5.308844-5 3.209031+6 5.650000-5 2.649408+6 6.000000-5 2.185426+6 6.309573-5 1.848742+6 6.650000-5 1.542226+6 7.000000-5 1.283962+6 7.413102-5 1.038614+6 7.852356-5 8.329910+5 8.317638-5 6.634742+5 8.810489-5 5.251003+5 9.332543-5 4.129765+5 1.000000-4 3.073416+5 1.060000-4 2.379686+5 1.135011-4 1.750380+5 1.216186-4 1.273361+5 1.450000-4 5.574624+4 1.520000-4 4.496496+4 1.566751-4 3.935922+4 1.620000-4 3.421104+4 1.670000-4 3.035064+4 1.705000-4 2.811072+4 1.740000-4 2.619456+4 1.780000-4 2.434872+4 1.820000-4 2.281800+4 1.862087-4 2.149613+4 1.905461-4 2.039511+4 1.950000-4 1.949652+4 1.995262-4 1.878574+4 2.041738-4 1.823344+4 2.089296-4 1.782220+4 2.137962-4 1.753263+4 2.190000-4 1.734151+4 2.250000-4 1.724251+4 2.317395-4 1.725008+4 2.400000-4 1.737761+4 2.517700-4 1.769756+4 2.951209-4 1.916697+4 3.162278-4 1.972831+4 3.349654-4 2.007398+4 3.548134-4 2.029071+4 3.758374-4 2.037467+4 4.000000-4 2.031449+4 4.216965-4 2.013383+4 4.466836-4 1.981707+4 4.755500-4 1.934199+4 5.069907-4 1.873025+4 5.432503-4 1.794684+4 5.821032-4 1.706517+4 6.237348-4 1.611279+4 6.683439-4 1.511299+4 7.244360-4 1.391418+4 7.852356-4 1.270821+4 8.511380-4 1.151891+4 9.225714-4 1.036483+4 1.000000-3 9.260856+3 1.083927-3 8.220435+3 1.174898-3 7.249993+3 1.273503-3 6.353933+3 1.396368-3 5.423642+3 1.531087-3 4.593583+3 1.678804-3 3.861308+3 1.840772-3 3.221566+3 2.018366-3 2.668193+3 2.213095-3 2.193990+3 2.426610-3 1.791516+3 2.660725-3 1.452972+3 2.917427-3 1.170648+3 3.235937-3 9.110687+2 3.589219-3 7.034946+2 3.981072-3 5.390858+2 4.415704-3 4.101234+2 4.897788-3 3.097216+2 5.432503-3 2.323078+2 6.025596-3 1.729831+2 6.683439-3 1.280000+2 7.498942-3 9.090155+1 8.317638-3 6.635194+1 9.332543-3 4.642440+1 1.047129-2 3.224329+1 1.174898-2 2.223902+1 1.318257-2 1.523517+1 1.496236-2 9.972095+0 1.698244-2 6.474148+0 1.927525-2 4.172091+0 2.213095-2 2.563036+0 2.540973-2 1.562638+0 2.951209-2 9.071093-1 3.427678-2 5.226162-1 4.073803-2 2.744267-1 4.954502-2 1.311390-1 6.237348-2 5.449376-2 1.122019-1 5.730725-3 1.396368-1 2.492367-3 1.678804-1 1.244631-3 1.949845-1 7.129001-4 2.213095-1 4.480853-4 2.511886-1 2.836455-4 2.851018-1 1.809060-4 3.235937-1 1.162853-4 3.630781-1 7.840428-5 4.027170-1 5.537149-5 4.466836-1 3.938524-5 4.954502-1 2.822707-5 5.432503-1 2.113081-5 5.956621-1 1.592971-5 6.456542-1 1.253175-5 7.079458-1 9.597086-6 8.609938-1 5.531078-6 9.120108-1 4.730294-6 9.549926-1 4.197945-6 1.000000+0 3.748800-6 1.047129+0 3.371860-6 1.096478+0 3.053820-6 1.161449+0 2.720156-6 1.230269+0 2.440368-6 1.333521+0 2.110789-6 1.479108+0 1.766456-6 1.883649+0 1.155745-6 2.089296+0 9.703823-7 2.371374+0 7.892950-7 2.722701+0 6.347754-7 3.126079+0 5.142105-7 3.630781+0 4.123938-7 4.216965+0 3.331618-7 4.954502+0 2.667550-7 5.888437+0 2.118456-7 7.079458+0 1.670347-7 8.511380+0 1.326618-7 1.047129+1 1.031952-7 1.318257+1 7.869621-8 1.698244+1 5.890219-8 2.238721+1 4.330911-8 3.019952+1 3.128256-8 4.415704+1 2.088343-8 6.918310+1 1.307228-8 1.148154+2 7.772675-9 2.213095+2 3.990699-9 4.415704+2 1.988961-9 3.507519+3 2.49195-10 1.000000+5 8.73140-12 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.079000-5 1.079000-5 1.000000+5 1.079000-5 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.079000-5 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 9.600000-6 5.742183+6 1.000000-5 6.088032+6 1.059254-5 6.664777+6 1.333521-5 9.838417+6 1.462177-5 1.142904+7 1.584893-5 1.293952+7 1.698244-5 1.429382+7 1.800000-5 1.544616+7 1.905461-5 1.654362+7 2.000000-5 1.741428+7 2.089296-5 1.811520+7 2.162719-5 1.858875+7 2.238721-5 1.896966+7 2.317395-5 1.923948+7 2.400000-5 1.938402+7 2.483133-5 1.938843+7 2.570396-5 1.924737+7 2.650000-5 1.899727+7 2.730000-5 1.864080+7 2.818383-5 1.814328+7 2.900000-5 1.760764+7 3.000000-5 1.687288+7 3.090295-5 1.615902+7 3.198895-5 1.526670+7 3.311311-5 1.433267+7 3.450000-5 1.319846+7 3.590900-5 1.209362+7 3.758374-5 1.086866+7 3.950000-5 9.604224+6 4.168694-5 8.342046+6 4.415704-5 7.126798+6 4.677351-5 6.050150+6 5.000000-5 4.969080+6 5.308844-5 4.134597+6 5.650000-5 3.389774+6 6.000000-5 2.777465+6 6.309573-5 2.335673+6 6.683439-5 1.901336+6 7.079458-5 1.535947+6 7.413102-5 1.287340+6 7.852356-5 1.025269+6 8.317638-5 8.110462+5 8.810489-5 6.370709+5 9.440609-5 4.731494+5 1.000000-4 3.668220+5 1.071519-4 2.683569+5 1.150000-4 1.934377+5 1.350000-4 9.091404+4 1.412538-4 7.386454+4 1.462177-4 6.337554+4 1.500000-4 5.683176+4 1.540000-4 5.105232+4 1.584893-4 4.573326+4 1.621810-4 4.212855+4 1.659587-4 3.904226+4 1.698244-4 3.642410+4 1.737801-4 3.422800+4 1.778279-4 3.240850+4 1.820000-4 3.091043+4 1.862087-4 2.972154+4 1.905461-4 2.878106+4 1.950000-4 2.806927+4 2.000000-4 2.752106+4 2.050000-4 2.718194+4 2.100000-4 2.700778+4 2.162719-4 2.697566+4 2.238721-4 2.713912+4 2.344229-4 2.758685+4 2.786121-4 3.008095+4 2.985383-4 3.093122+4 3.162278-4 3.143961+4 3.349654-4 3.174399+4 3.548134-4 3.184142+4 3.758374-4 3.173221+4 4.000000-4 3.138624+4 4.265795-4 3.077796+4 4.518559-4 3.004987+4 4.786301-4 2.916779+4 5.069907-4 2.815132+4 5.432503-4 2.678376+4 5.821032-4 2.529797+4 6.237348-4 2.373452+4 6.683439-4 2.212751+4 7.244360-4 2.023749+4 7.852356-4 1.836896+4 8.511380-4 1.655358+4 9.225714-4 1.481075+4 1.000000-3 1.315760+4 1.083927-3 1.161696+4 1.188502-3 9.999998+3 1.303167-3 8.540162+3 1.428894-3 7.236914+3 1.566751-3 6.085854+3 1.717908-3 5.079658+3 1.883649-3 4.208818+3 2.065380-3 3.462253+3 2.264644-3 2.828080+3 2.483133-3 2.294230+3 2.722701-3 1.848695+3 3.000000-3 1.462327+3 3.311311-3 1.143506+3 3.672823-3 8.766261+2 4.073803-3 6.669170+2 4.415704-3 5.361725+2 4.897788-3 4.017760+2 5.432503-3 2.989193+2 6.095369-3 2.135941+2 6.839116-3 1.516178+2 7.673615-3 1.067872+2 8.511380-3 7.735601+1 9.549926-3 5.365805+1 1.071519-2 3.694167+1 1.202264-2 2.525340+1 1.348963-2 1.714233+1 1.513561-2 1.155582+1 1.717908-2 7.428745+0 1.949845-2 4.738917+0 2.213095-2 3.001149+0 2.540973-2 1.809318+0 2.917427-2 1.082736+0 3.388442-2 6.159032-1 3.981072-2 3.328385-1 4.786301-2 1.633693-1 5.821032-2 7.603814-2 1.148154-1 5.237616-3 1.380384-1 2.552414-3 1.640590-1 1.310734-3 1.862087-1 8.092579-4 2.089296-1 5.255039-4 2.344229-1 3.438296-4 2.600160-1 2.363040-4 2.884032-1 1.635364-4 3.198895-1 1.140109-4 3.507519-1 8.329069-5 3.845918-1 6.126569-5 4.216965-1 4.539784-5 4.623810-1 3.389982-5 5.011872-1 2.642700-5 5.432503-1 2.073219-5 5.888437-1 1.637121-5 6.382635-1 1.302183-5 6.918310-1 1.042996-5 7.498942-1 8.408875-6 8.609938-1 5.866581-6 9.120108-1 5.079290-6 9.660509-1 4.428138-6 1.011579+0 3.991657-6 1.071519+0 3.529854-6 1.148154+0 3.069151-6 1.230269+0 2.687379-6 1.333521+0 2.317606-6 1.603245+0 1.673137-6 1.840772+0 1.312853-6 2.044000+0 1.099100-6 2.344229+0 8.781785-7 2.691535+0 7.057988-7 3.090295+0 5.713841-7 3.589219+0 4.579784-7 4.168694+0 3.697856-7 4.897788+0 2.959190-7 5.821032+0 2.348955-7 7.000000+0 1.850600-7 8.413951+0 1.469542-7 1.023293+1 1.158396-7 1.303167+1 8.710521-8 1.678804+1 6.517052-8 2.200000+1 4.821700-8 2.985383+1 3.458959-8 4.365158+1 2.308623-8 6.760830+1 1.462137-8 1.083927+2 9.003159-9 2.065380+2 4.673642-9 4.120975+2 2.328391-9 3.273407+3 2.91629-10 1.000000+5 9.53580-12 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 9.600000-6 9.600000-6 1.000000+5 9.600000-6 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 9.600000-6 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 8.390000-6 6.583920+6 8.810489-6 5.381627+6 1.000000-5 3.152500+6 1.122018-5 1.922547+6 1.244515-5 1.222881+6 1.388400-5 7.527008+5 1.570000-5 4.327800+5 1.862087-5 1.997373+5 2.000000-5 1.453128+5 2.113489-5 1.144081+5 2.213095-5 9.438466+4 2.300000-5 8.090200+4 2.371374-5 7.197686+4 2.454709-5 6.349158+4 2.528300-5 5.740737+4 2.600160-5 5.249494+4 2.660725-5 4.900950+4 2.730000-5 4.563720+4 2.800000-5 4.278960+4 2.884032-5 3.998500+4 2.951209-5 3.814259+4 3.040000-5 3.615280+4 3.126079-5 3.462022+4 3.223700-5 3.325910+4 3.330000-5 3.213600+4 3.427678-5 3.136164+4 3.548134-5 3.066598+4 3.690000-5 3.011900+4 3.850000-5 2.974820+4 4.073803-5 2.949969+4 5.069907-5 2.932619+4 5.500000-5 2.909500+4 5.900000-5 2.870480+4 6.309573-5 2.814037+4 6.760830-5 2.737303+4 7.244360-5 2.643846+4 7.800000-5 2.528040+4 8.413951-5 2.395868+4 9.120108-5 2.245581+4 1.000900-4 2.067575+4 1.096478-4 1.893664+4 1.244515-4 1.661660+4 1.428894-4 1.429169+4 2.454709-4 7.728435+3 2.754229-4 6.735230+3 3.054921-4 5.915284+3 3.467369-4 4.999197+3 4.120975-4 3.935740+3 6.000000-4 2.312740+3 7.000000-4 1.842672+3 1.059254-3 9.822869+2 1.288250-3 7.236629+2 1.640590-3 4.917047+2 2.018366-3 3.505151+2 2.454709-3 2.528072+2 2.985383-3 1.809755+2 3.630781-3 1.284949+2 4.415704-3 9.051682+1 5.370318-3 6.328718+1 6.531306-3 4.392155+1 7.943282-3 3.024947+1 9.660509-3 2.067605+1 1.188502-2 1.370871+1 1.445440-2 9.227903+0 1.737801-2 6.310678+0 2.089296-2 4.282896+0 2.511886-2 2.883631+0 3.000000-2 1.954554+0 3.589219-2 1.309539+0 4.265795-2 8.839538-1 5.069907-2 5.922923-1 6.095369-2 3.831584-1 7.328245-2 2.459612-1 8.609938-2 1.658012-1 1.059254-1 9.903935-2 1.364583-1 5.230812-2 2.483133-1 1.134062-2 3.090295-1 6.525773-3 3.672823-1 4.246772-3 4.265795-1 2.947668-3 4.897788-1 2.119623-3 5.559043-1 1.577370-3 6.237348-1 1.213524-3 7.079458-1 9.163877-4 8.000000-1 7.041100-4 8.912509-1 5.612237-4 9.885531-1 4.544944-4 1.148154+0 3.383481-4 1.303167+0 2.653332-4 1.479108+0 2.096881-4 1.659587+0 1.705372-4 1.883649+0 1.368754-4 2.137962+0 1.106545-4 2.426610+0 9.010531-5 2.786121+0 7.256862-5 3.235937+0 5.785986-5 3.758374+0 4.648394-5 4.415704+0 3.701587-5 5.188000+0 2.969876-5 6.165950+0 2.363431-5 7.498942+0 1.840112-5 9.015711+0 1.464677-5 1.100000+1 1.153100-5 1.380384+1 8.839886-6 1.778279+1 6.626338-6 2.371374+1 4.817139-6 3.162278+1 3.527723-6 4.623810+1 2.357227-6 7.328245+1 1.459311-6 1.396368+2 7.542275-7 2.786121+2 3.747806-7 5.559043+2 1.870087-7 4.415704+3 2.345129-8 1.000000+5 1.034500-9 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 8.390000-6 8.390000-6 1.000000+5 8.390000-6 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 8.390000-6 0.0 1.000000+5 1.000000+5 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 4.918720-7 1.026100+0 1.112170-6 1.026600+0 1.567900-6 1.027100+0 2.133160-6 1.027500+0 2.671760-6 1.028100+0 3.637550-6 1.028750+0 4.918720-6 1.029500+0 6.731400-6 1.030100+0 8.465550-6 1.031000+0 1.158380-5 1.032000+0 1.584950-5 1.033200+0 2.220240-5 1.034000+0 2.725560-5 1.035300+0 3.699550-5 1.036640+0 4.918720-5 1.038200+0 6.637970-5 1.039700+0 8.624050-5 1.041500+0 1.147420-4 1.043800+0 1.592660-4 1.046400+0 2.215880-4 1.048300+0 2.758830-4 1.051200+0 3.742300-4 1.054080+0 4.918720-4 1.057700+0 6.704540-4 1.061100+0 8.720940-4 1.065100+0 1.154560-3 1.070400+0 1.610740-3 1.076200+0 2.226040-3 1.080600+0 2.779960-3 1.087100+0 3.745510-3 1.093710+0 4.918720-3 1.102600+0 6.819540-3 1.110700+0 8.893700-3 1.120600+0 1.189650-2 1.133300+0 1.654030-2 1.147500+0 2.283630-2 1.158200+0 2.837970-2 1.174100+0 3.793250-2 1.190110+0 4.918720-2 1.205100+0 6.123980-2 1.227500+0 8.197740-2 1.250000+0 1.059000-1 1.265600+0 1.241150-1 1.294900+0 1.615550-1 1.331800+0 2.138320-1 1.362600+0 2.610160-1 1.397000+0 3.167580-1 1.433800+0 3.792470-1 1.477900+0 4.574110-1 1.500000+0 4.979000-1 1.562500+0 6.166260-1 1.617200+0 7.249760-1 1.712900+0 9.217640-1 1.838500+0 1.187980+0 1.946200+0 1.418410+0 2.000000+0 1.533000+0 2.044000+0 1.626000+0 2.163500+0 1.875160+0 2.372600+0 2.297600+0 2.647100+0 2.824030+0 3.000000+0 3.458000+0 3.500000+0 4.287990+0 4.000000+0 5.047000+0 4.750000+0 6.065190+0 5.000000+0 6.378000+0 6.000000+0 7.522000+0 7.000000+0 8.531000+0 8.000000+0 9.438000+0 9.000000+0 1.026000+1 1.000000+1 1.102000+1 1.100000+1 1.172000+1 1.200000+1 1.238000+1 1.300000+1 1.299000+1 1.400000+1 1.356000+1 1.500000+1 1.409000+1 1.600000+1 1.458000+1 1.800000+1 1.548000+1 2.000000+1 1.627000+1 2.200000+1 1.699000+1 2.400000+1 1.765000+1 2.600000+1 1.825000+1 2.800000+1 1.880000+1 3.000000+1 1.931000+1 4.000000+1 2.139000+1 5.000000+1 2.292000+1 6.000000+1 2.412000+1 8.000000+1 2.588000+1 1.000000+2 2.711000+1 1.500000+2 2.907000+1 2.000000+2 3.022000+1 3.000000+2 3.157000+1 4.000000+2 3.234000+1 5.000000+2 3.284000+1 6.000000+2 3.320000+1 8.000000+2 3.368000+1 1.000000+3 3.399000+1 1.500000+3 3.443000+1 2.000000+3 3.467000+1 3.000000+3 3.494000+1 4.000000+3 3.508000+1 5.000000+3 3.517000+1 6.000000+3 3.523000+1 8.000000+3 3.531000+1 1.000000+4 3.536000+1 1.500000+4 3.543000+1 2.000000+4 3.547000+1 3.000000+4 3.551000+1 4.000000+4 3.553000+1 5.000000+4 3.554000+1 6.000000+4 3.555000+1 8.000000+4 3.556000+1 1.000000+5 3.557000+1 1 76000 7 8 1.902000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.610750-7 2.090400+0 1.033350-6 2.094700+0 1.339900-6 2.099900+0 1.782540-6 2.106600+0 2.479670-6 2.114000+0 3.430930-6 2.119500+0 4.271490-6 2.127900+0 5.792940-6 2.136250+0 7.610750-6 2.147000+0 1.043490-5 2.156900+0 1.355360-5 2.169000+0 1.808820-5 2.184500+0 2.514320-5 2.201800+0 3.478630-5 2.214800+0 4.334110-5 2.234200+0 5.830140-5 2.253680+0 7.610750-5 2.281500+0 1.066020-4 2.307000+0 1.400210-4 2.338200+0 1.882700-4 2.377400+0 2.607310-4 2.410200+0 3.316060-4 2.446800+0 4.218210-4 2.485900+0 5.310960-4 2.532900+0 6.796920-4 2.556430+0 7.610750-4 2.611900+0 9.704660-4 2.660400+0 1.173250-3 2.745300+0 1.570350-3 2.809000+0 1.901800-3 2.904500+0 2.449990-3 3.000000+0 3.058000-3 3.125000+0 3.942780-3 3.234400+0 4.796880-3 3.425800+0 6.457890-3 3.569300+0 7.829120-3 3.784700+0 1.006120-2 4.000000+0 1.246000-2 4.250000+0 1.539260-2 4.625000+0 2.000090-2 5.000000+0 2.479000-2 5.500000+0 3.135870-2 6.000000+0 3.801000-2 6.750000+0 4.789850-2 7.000000+0 5.115000-2 8.000000+0 6.386000-2 9.000000+0 7.600000-2 1.000000+1 8.750000-2 1.100000+1 9.837000-2 1.200000+1 1.086000-1 1.300000+1 1.182000-1 1.400000+1 1.274000-1 1.500000+1 1.360000-1 1.600000+1 1.442000-1 1.800000+1 1.594000-1 2.000000+1 1.731000-1 2.200000+1 1.857000-1 2.400000+1 1.972000-1 2.600000+1 2.078000-1 2.800000+1 2.176000-1 3.000000+1 2.267000-1 4.000000+1 2.641000-1 5.000000+1 2.922000-1 6.000000+1 3.144000-1 8.000000+1 3.474000-1 1.000000+2 3.713000-1 1.500000+2 4.102000-1 2.000000+2 4.344000-1 3.000000+2 4.636000-1 4.000000+2 4.809000-1 5.000000+2 4.927000-1 6.000000+2 5.013000-1 8.000000+2 5.131000-1 1.000000+3 5.210000-1 1.500000+3 5.326000-1 2.000000+3 5.391000-1 3.000000+3 5.462000-1 4.000000+3 5.505000-1 5.000000+3 5.530000-1 6.000000+3 5.548000-1 8.000000+3 5.572000-1 1.000000+4 5.587000-1 1.500000+4 5.607000-1 2.000000+4 5.619000-1 3.000000+4 5.630000-1 4.000000+4 5.638000-1 5.000000+4 5.642000-1 6.000000+4 5.645000-1 8.000000+4 5.648000-1 1.000000+5 5.650000-1 1 76000 7 8 1.902000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 76000 7 9 1.902000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.600000+1 1.000000+5 7.600000+1 5.000000+5 7.596500+1 8.750000+5 7.593350+1 1.000000+6 7.592600+1 1.500000+6 7.587800+1 1.875000+6 7.580510+1 2.000000+6 7.578400+1 2.500000+6 7.566500+1 3.000000+6 7.552000+1 3.500000+6 7.535080+1 4.000000+6 7.516300+1 4.500000+6 7.495930+1 5.000000+6 7.473400+1 5.500000+6 7.448510+1 6.156200+6 7.412190+1 6.500000+6 7.392750+1 6.718700+6 7.379450+1 7.000000+6 7.363000+1 7.500000+6 7.331300+1 8.250000+6 7.283350+1 9.000000+6 7.233800+1 1.000000+7 7.165300+1 1.125000+7 7.074620+1 1.187500+7 7.028160+1 1.250000+7 6.981000+1 1.437500+7 6.836910+1 1.500000+7 6.789300+1 1.750000+7 6.599900+1 2.000000+7 6.408300+1 2.375000+7 6.124940+1 2.500000+7 6.033100+1 2.875000+7 5.762160+1 3.000000+7 5.674400+1 3.437500+7 5.375740+1 3.750000+7 5.174600+1 4.000000+7 5.021300+1 4.500000+7 4.734950+1 5.000000+7 4.472500+1 5.500000+7 4.230350+1 6.000000+7 4.004900+1 6.750000+7 3.692520+1 7.000000+7 3.594700+1 7.750000+7 3.317320+1 8.000000+7 3.230600+1 8.750000+7 2.984680+1 9.000000+7 2.907900+1 1.000000+8 2.624400+1 1.250000+8 2.079000+1 1.375000+8 1.889050+1 1.500000+8 1.742200+1 1.625000+8 1.627940+1 1.750000+8 1.532320+1 1.859400+8 1.456880+1 2.000000+8 1.365200+1 2.125000+8 1.285430+1 2.250000+8 1.212440+1 2.500000+8 1.088600+1 2.671900+8 1.019300+1 2.789100+8 9.722690+0 2.875000+8 9.356930+0 2.894500+8 9.270160+0 2.973600+8 8.904440+0 3.000000+8 8.776900+0 3.062500+8 8.465010+0 3.335900+8 7.198550+0 3.418000+8 6.905780+0 3.500000+8 6.667800+0 3.562500+8 6.524800+0 3.671900+8 6.337890+0 3.959000+8 5.938030+0 4.000000+8 5.885300+0 4.125000+8 5.686680+0 5.000000+8 4.320300+0 6.000000+8 3.538800+0 7.000000+8 2.839900+0 7.625000+8 2.567120+0 7.875000+8 2.459390+0 8.000000+8 2.401400+0 8.125000+8 2.339800+0 8.359400+8 2.218600+0 8.564500+8 2.111130+0 9.461700+8 1.697990+0 9.730800+8 1.603510+0 1.000000+9 1.524400+0 1.015600+9 1.485620+0 1.045900+9 1.422850+0 1.074300+9 1.375970+0 1.113400+9 1.325860+0 1.149200+9 1.290970+0 1.193100+9 1.258310+0 1.249300+9 1.227210+0 1.375000+9 1.174920+0 1.419400+9 1.156750+0 1.473100+9 1.132210+0 1.500000+9 1.118600+0 1.562500+9 1.082920+0 1.641100+9 1.032820+0 1.706900+9 9.885630-1 1.780200+9 9.386520-1 1.858700+9 8.859290-1 1.952900+9 8.253020-1 2.000000+9 7.965000-1 2.139200+9 7.174240-1 2.272600+9 6.498200-1 2.443000+9 5.737960-1 2.602800+9 5.118570-1 2.750000+9 4.616720-1 2.825100+9 4.383360-1 2.961100+9 3.995910-1 3.215900+9 3.375640-1 3.438900+9 2.926450-1 3.719500+9 2.460570-1 3.954200+9 2.139410-1 4.215700+9 1.840110-1 4.495800+9 1.574710-1 4.831900+9 1.315920-1 5.000000+9 1.206400-1 5.375000+9 9.999850-2 5.703100+9 8.546040-2 6.277300+9 6.589890-2 7.031000+9 4.813290-2 8.000000+9 3.344600-2 1.00000+10 1.770700-2 1.54060+10 5.173540-3 2.13670+10 2.047640-3 3.11960+10 7.043120-4 4.83970+10 2.055530-4 7.41980+10 6.249370-5 1.00000+11 2.733300-5 1.34280+11 1.212440-5 2.20600+11 3.108550-6 4.19930+11 5.396150-7 1.03480+12 4.747280-8 3.24440+12 2.248190-9 1.00000+14 2.61200-13 3.16230+15 2.70596-17 1.00000+17 2.65580-21 1 76000 7 0 1.902000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.80000-12 1.000000+2 7.80000-10 1.000000+3 7.800000-8 1.000000+4 7.800000-6 1.000000+5 7.800000-4 5.000000+5 1.950000-2 8.750000+5 5.971875-2 1.000000+6 7.800000-2 1.500000+6 1.741000-1 1.875000+6 2.695410-1 2.000000+6 3.056000-1 2.500000+6 4.700000-1 3.000000+6 6.640000-1 3.500000+6 8.840570-1 4.000000+6 1.126200+0 4.500000+6 1.386420+0 5.000000+6 1.661000+0 5.500000+6 1.946310+0 6.156200+6 2.331950+0 6.500000+6 2.537110+0 6.718700+6 2.667950+0 7.000000+6 2.836800+0 7.500000+6 3.135980+0 8.250000+6 3.581590+0 9.000000+6 4.020100+0 1.000000+7 4.590000+0 1.125000+7 5.278610+0 1.187500+7 5.614900+0 1.250000+7 5.946900+0 1.437500+7 6.922790+0 1.500000+7 7.244000+0 1.750000+7 8.520700+0 2.000000+7 9.791000+0 2.375000+7 1.167430+1 2.500000+7 1.229400+1 2.875000+7 1.411700+1 3.000000+7 1.471500+1 3.437500+7 1.676860+1 3.750000+7 1.820000+1 4.000000+7 1.932100+1 4.500000+7 2.148910+1 5.000000+7 2.353300+1 5.500000+7 2.542910+1 6.000000+7 2.717700+1 6.750000+7 2.954060+1 7.000000+7 3.027400+1 7.750000+7 3.232910+1 8.000000+7 3.298100+1 8.750000+7 3.483900+1 9.000000+7 3.543700+1 1.000000+8 3.771900+1 1.250000+8 4.283900+1 1.375000+8 4.513240+1 1.500000+8 4.726600+1 1.625000+8 4.923440+1 1.750000+8 5.105070+1 1.859400+8 5.250720+1 2.000000+8 5.421100+1 2.125000+8 5.556350+1 2.250000+8 5.679220+1 2.500000+8 5.890800+1 2.671900+8 6.014610+1 2.789100+8 6.090290+1 2.875000+8 6.142680+1 2.894500+8 6.153910+1 2.973600+8 6.198660+1 3.000000+8 6.213400+1 3.062500+8 6.246350+1 3.335900+8 6.378570+1 3.418000+8 6.414670+1 3.500000+8 6.449100+1 3.562500+8 6.473790+1 3.671900+8 6.516210+1 3.959000+8 6.617860+1 4.000000+8 6.631400+1 4.125000+8 6.670570+1 5.000000+8 6.901300+1 6.000000+8 7.090200+1 7.000000+8 7.220600+1 7.625000+8 7.279150+1 7.875000+8 7.299250+1 8.000000+8 7.308500+1 8.125000+8 7.316800+1 8.359400+8 7.332060+1 8.564500+8 7.344530+1 9.461700+8 7.388610+1 9.730800+8 7.399750+1 1.000000+9 7.410600+1 1.015600+9 7.416020+1 1.045900+9 7.426310+1 1.074300+9 7.435240+1 1.113400+9 7.446270+1 1.149200+9 7.456050+1 1.193100+9 7.466780+1 1.249300+9 7.478810+1 1.375000+9 7.501970+1 1.419400+9 7.508920+1 1.473100+9 7.517040+1 1.500000+9 7.521000+1 1.562500+9 7.528490+1 1.641100+9 7.537510+1 1.706900+9 7.544740+1 1.780200+9 7.551100+1 1.858700+9 7.557360+1 1.952900+9 7.564540+1 2.000000+9 7.568000+1 2.139200+9 7.575400+1 2.272600+9 7.580860+1 2.443000+9 7.586540+1 2.602800+9 7.590800+1 2.750000+9 7.593520+1 2.825100+9 7.594850+1 2.961100+9 7.596220+1 3.215900+9 7.598290+1 3.438900+9 7.599590+1 3.719500+9 7.599630+1 3.954200+9 7.599670+1 4.215700+9 7.599700+1 4.495800+9 7.599740+1 4.831900+9 7.599780+1 5.000000+9 7.599800+1 5.375000+9 7.599830+1 5.703100+9 7.599860+1 6.277300+9 7.599900+1 7.031000+9 7.599950+1 8.000000+9 7.600000+1 1.00000+10 7.600000+1 1.54060+10 7.600000+1 2.13670+10 7.600000+1 3.11960+10 7.600000+1 4.83970+10 7.600000+1 7.41980+10 7.600000+1 1.00000+11 7.600000+1 1.34280+11 7.600000+1 2.20600+11 7.600000+1 4.19930+11 7.600000+1 1.03480+12 7.600000+1 3.24440+12 7.600000+1 1.00000+14 7.600000+1 3.16230+15 7.600000+1 1.00000+17 7.600000+1 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.191932-6 0.0 1.194866-6 6.647788-7 1.197800-6 1.315414-6 1.200733-6 2.402711-6 1.203667-6 4.051301-6 1.206601-6 6.305817-6 1.209535-6 9.060289-6 1.212469-6 1.201702-5 1.215402-6 1.471313-5 1.218336-6 1.662905-5 1.221270-6 1.734937-5 1.224204-6 1.670914-5 1.227138-6 1.485519-5 1.230071-6 1.219148-5 1.235939-6 6.459139-6 1.238873-6 4.169796-6 1.241807-6 2.484900-6 1.244740-6 1.366964-6 1.247674-6 6.941593-7 1.250608-6 0.0 3.769868-6 0.0 4.412834-6 0.0 4.429126-6 3.004770+0 4.434557-6 3.993655+0 4.445419-6 7.294737+0 4.456280-6 1.229993+1 4.468500-6 2.018787+1 4.487338-6 3.521923+1 4.500406-6 4.503246+1 4.511585-6 5.068688+1 4.522978-6 5.240059+1 4.533840-6 4.993944+1 4.545403-6 4.344374+1 4.563727-6 2.900933+1 4.575758-6 1.961023+1 4.587299-6 1.234068+1 4.597481-6 7.544266+0 4.608343-6 4.150163+0 4.621920-6 1.581553+0 4.630066-6 0.0 4.893210-6 0.0 4.914287-6 6.979311+0 4.917298-6 7.966182+0 4.929342-6 1.455088+1 4.941386-6 2.453479+1 4.954935-6 4.026894+1 4.976036-6 7.056745+1 4.990315-6 8.982669+1 5.003555-6 1.014107+2 5.015310-6 1.045351+2 5.027483-6 9.952650+1 5.039902-6 8.707055+1 5.058862-6 6.034659+1 5.073870-6 3.911672+1 5.085914-6 2.525239+1 5.097958-6 1.504862+1 5.110002-6 8.278369+0 5.128068-6 2.104395+0 5.134090-6 0.0 5.545914-6 0.0 5.559565-6 5.07234-13 5.573215-6 1.00368-12 5.586866-6 1.83330-12 5.600517-6 3.09119-12 5.614167-6 4.81142-12 5.627818-6 6.91311-12 5.641468-6 9.16913-12 5.655119-6 1.12263-11 5.668769-6 1.26882-11 5.682420-6 1.32378-11 5.696071-6 1.27493-11 5.709721-6 1.13347-11 5.723372-6 9.30225-12 5.750673-6 4.92840-12 5.764323-6 3.18161-12 5.777974-6 1.89601-12 5.791625-6 1.04301-12 5.805275-6 5.29652-13 5.818926-6 0.0 5.894153-6 0.0 5.915914-6 3.44095-14 5.923168-6 4.57338-14 5.937676-6 8.35365-14 5.952184-6 1.40854-13 5.966691-6 2.19238-13 5.992823-6 3.97329-13 6.012223-6 5.20183-13 6.026281-6 5.80837-13 6.053861-6 1.505757+0 6.055947-6 1.618575+0 6.070780-6 2.956460+0 6.086540-6 5.157987+0 6.101253-6 7.948497+0 6.146306-6 1.831999+1 6.162009-6 2.059465+1 6.176182-6 2.126455+1 6.190805-6 2.035112+1 6.206941-6 1.769107+1 6.230291-6 1.226127+1 6.248775-6 7.947767+0 6.263608-6 5.130802+0 6.278440-6 3.057591+0 6.293273-6 1.682006+0 6.315523-6 4.275727-1 6.322939-6 0.0 6.643001-6 0.0 6.673116-6 1.261860-1 6.675703-6 1.369223-1 6.692054-6 2.500998-1 6.708405-6 4.217027-1 6.724755-6 6.563768-1 6.737846-6 8.858182-1 6.755970-6 1.837612+0 6.771274-6 2.921202+0 6.790268-6 4.676198+0 6.806920-6 6.797236+0 6.824289-6 9.704852+0 6.872893-6 1.965384+1 6.891676-6 2.232469+1 6.905891-6 2.331621+1 6.923786-6 2.264864+1 6.941877-6 2.015897+1 6.961494-6 1.609151+1 6.988776-6 9.807935+0 7.005405-6 6.551452+0 7.021273-6 4.143424+0 7.036365-6 2.508125+0 7.038663-6 2.313451+0 7.055292-6 1.184048+0 7.069534-6 3.925349-1 7.088550-6 1.000445-5 7.104606-6 2.620858-6 7.112676-6 4.592182-7 7.139662-6 7.842603-7 7.165607-6 1.095099-6 7.182903-6 1.237701-6 7.200200-6 1.291315-6 7.218213-6 1.237962-6 7.235980-6 8.419094-2 7.253746-6 1.665894-1 7.271513-6 3.042882-1 7.289280-6 5.130710-1 7.307046-6 7.985904-1 7.362553-6 1.909794+0 7.380630-6 2.151325+0 7.398708-6 2.292076+0 7.416785-6 2.319140+0 7.462418-6 2.121809+0 7.484714-6 2.181761+0 7.538243-6 2.784502+0 7.556420-6 2.922781+0 7.574572-6 2.849938+0 7.592725-6 2.655668+0 7.610877-6 2.294828+0 7.656148-6 1.145286+0 7.665334-6 9.384608-1 7.680682-6 6.432381-1 7.698871-6 4.233300-1 7.717060-6 3.035884-1 7.724979-6 2.924648-1 7.738909-6 2.812093-1 7.753775-6 3.009796-1 7.757818-6 3.295922-1 7.776726-6 5.028598-1 7.824814-6 1.030110+0 7.836075-6 1.135221+0 7.855362-6 1.271352+0 7.871781-6 1.323404+0 7.890921-6 1.307559+0 7.931520-6 1.364296+0 7.948749-6 1.471096+0 7.968266-6 1.740412+0 7.989955-6 2.238745+0 8.042919-6 3.788905+0 8.054728-6 4.050771+0 8.070212-6 4.290608+0 8.089310-6 4.351909+0 8.109364-6 4.129217+0 8.130664-6 3.640118+0 8.184688-6 2.071815+0 8.203532-6 1.645689+0 8.222231-6 1.324020+0 8.241423-6 1.110261+0 8.278631-6 8.462745-1 8.348843-6 8.267190-1 8.418850-6 8.294921-1 8.522930-6 7.687896-1 8.565620-6 8.711732-1 8.584831-6 9.548315-1 8.607042-6 1.104814+0 8.634332-6 1.371663+0 8.690416-6 1.985047+0 8.711542-6 2.146776+0 8.732520-6 2.189860+0 8.758742-6 2.073535+0 8.779720-6 1.881817+0 8.826919-6 1.345518+0 8.848034-6 1.156590+0 8.858659-6 1.072811+0 8.880356-6 9.774941-1 8.900341-6 9.567935-1 8.923752-6 9.975446-1 8.942297-6 1.055421+0 8.969322-6 1.218449+0 8.991398-6 1.416798+0 9.064420-6 1.974208+0 9.101343-6 2.369769+0 9.155404-6 3.025306+0 9.174179-6 3.188506+0 9.195240-6 3.278148+0 9.224166-6 3.191331+0 9.248331-6 2.983086+0 9.328364-6 2.073265+0 9.351941-6 1.858584+0 9.413406-6 1.443114+0 9.490600-6 1.248508+0 9.540048-6 1.180131+0 9.600000-6 1.169428+0 9.669830-6 1.225554+0 9.738587-6 1.377274+0 9.765749-6 1.470757+0 9.806107-6 1.675997+0 9.883898-6 2.110119+0 9.907490-6 2.172955+0 9.931290-6 2.173447+0 9.963680-6 2.069816+0 1.005029-5 1.647978+0 1.008521-5 1.570584+0 1.013309-5 1.593580+0 1.023632-5 1.834013+0 1.032474-5 1.822376+0 1.041433-5 1.809207+0 1.084253-5 1.899884+0 1.217479-5 2.372640+0 1.365195-5 3.101591+0 1.543700-5 4.220498+0 1.829335-5 6.413124+0 2.270000-5 9.978014+0 2.490567-5 1.131757+1 2.730000-5 1.215833+1 3.015945-5 1.227486+1 3.335133-5 1.162759+1 4.135929-5 8.861418+0 4.156289-5 9.727205+0 4.166470-5 1.046459+1 4.179195-5 1.199158+1 4.189375-5 1.364671+1 4.217370-5 1.903435+1 4.230095-5 2.047946+1 4.239804-5 2.073923+1 4.251067-5 1.993245+1 4.255496-5 1.949595+1 4.276072-5 2.390757+1 4.287200-5 2.936301+1 4.297767-5 3.861185+1 4.310263-5 5.522742+1 4.339531-5 1.036059+2 4.351082-5 1.159241+2 4.360617-5 1.194843+2 4.371295-5 1.145344+2 4.382689-5 1.005848+2 4.412227-5 4.952819+1 4.422701-5 3.476076+1 4.433174-5 2.388368+1 4.443648-5 1.665568+1 4.464595-5 7.792164+0 4.957849-5 6.422046+0 4.994458-5 6.643591+0 5.018864-5 7.091007+0 5.068858-5 8.389268+0 5.093689-5 8.488727+0 5.146291-5 7.975990+0 5.225380-5 8.260085+0 5.251872-5 9.133068+0 5.269449-5 1.025924+1 5.282376-5 1.150390+1 5.306880-5 1.467420+1 5.326624-5 1.737471+1 5.342726-5 1.878331+1 5.356124-5 1.901162+1 5.371939-5 1.808108+1 5.391909-5 1.566487+1 5.399430-5 1.468902+1 5.424918-5 1.655299+1 5.438983-5 1.984570+1 5.452947-5 2.628545+1 5.466409-5 3.535041+1 5.504675-5 6.800946+1 5.519860-5 7.671218+1 5.534031-5 7.889287+1 5.546569-5 7.581463+1 5.561345-5 6.655043+1 5.597232-5 3.532104+1 5.612191-5 2.473912+1 5.624872-5 1.817007+1 5.638161-5 1.360086+1 5.664739-5 7.932355+0 5.761568-5 7.236718+0 6.075756-5 6.511688+0 6.275070-5 6.395108+0 6.381709-5 6.983830+0 6.551262-5 7.284800+0 7.088058-5 6.684164+0 8.201250-5 5.061683+0 8.900000-5 4.334902+0 9.282351-5 4.108182+0 9.451509-5 4.261283+0 9.593927-5 4.028722+0 1.026242-4 3.939050+0 1.102731-4 4.149484+0 1.181255-4 4.660968+0 1.273503-4 5.578170+0 1.397160-4 7.252505+0 1.889936-4 1.528525+1 2.190000-4 1.934404+1 2.458109-4 2.193139+1 2.743866-4 2.382431+1 2.811268-4 2.511125+1 2.903994-4 2.562287+1 2.949242-4 2.633154+1 4.216965-4 2.662289+1 4.488308-4 2.659072+1 4.572298-4 2.796441+1 4.642513-4 2.725796+1 4.791656-4 2.751506+1 5.915641-4 2.579482+1 6.393090-4 2.495221+1 6.527408-4 2.505397+1 9.437508-4 1.911553+1 1.137413-3 1.611214+1 1.371579-3 1.334707+1 1.654817-3 1.088982+1 1.926056-3 9.197045+0 1.939133-3 9.475186+0 1.946576-3 1.007468+1 1.953976-3 1.124986+1 1.961393-3 1.310695+1 1.981196-3 1.947231+1 1.992441-3 2.186875+1 2.004986-3 2.300190+1 2.029053-3 2.437940+1 2.061150-3 2.871915+1 2.083017-3 2.983480+1 2.278288-3 3.026484+1 2.401510-3 2.933741+1 2.430264-3 3.075334+1 2.456517-3 3.220693+1 2.585235-3 3.042871+1 2.738408-3 2.820597+1 2.818383-3 2.857597+1 2.998553-3 2.646850+1 3.091083-3 2.629550+1 3.590826-3 2.139829+1 4.196956-3 1.714115+1 4.848642-3 1.385470+1 5.581086-3 1.122587+1 6.339249-3 9.242983+0 7.253487-3 7.501805+0 8.244389-3 6.136906+0 9.415645-3 4.968429+0 1.061145-2 4.115702+0 1.068438-2 4.244194+0 1.073062-2 4.564364+0 1.077169-2 5.127561+0 1.081629-2 6.067934+0 1.091568-2 8.537230+0 1.097801-2 9.490751+0 1.104055-2 9.837320+0 1.153255-2 9.298825+0 1.218974-2 8.536135+0 1.229384-2 8.830515+0 1.249780-2 1.068463+1 1.260541-2 1.101613+1 1.281999-2 1.101110+1 1.307322-2 1.190859+1 1.346489-2 1.157067+1 1.551991-2 9.271454+0 1.778280-2 7.458043+0 2.009581-2 6.113997+0 2.285928-2 4.943405+0 2.614509-2 3.952405+0 2.917889-2 3.282755+0 3.246755-2 2.737497+0 3.666886-2 2.220977+0 4.128703-2 1.809228+0 4.653546-2 1.468760+0 5.235297-2 1.194664+0 5.886318-2 9.717157-1 6.649144-2 7.827990-1 7.232716-2 6.801989-1 7.269118-2 7.020104-1 7.291811-2 7.472068-1 7.312267-2 8.275571-1 7.329731-2 9.380295-1 7.350585-2 1.130488+0 7.375166-2 1.441376+0 7.440145-2 2.429707+0 7.476000-2 2.821634+0 7.518188-2 3.043345+0 7.600502-2 3.090257+0 8.835885-2 2.434547+0 1.003621-1 1.981783+0 1.145317-1 1.591191+0 1.265576-1 1.346557+0 1.449884-1 1.070797+0 1.626565-1 8.813535-1 1.823175-1 7.266719-1 2.041738-1 6.002763-1 2.280896-1 4.979726-1 2.557011-1 4.119693-1 2.860379-1 3.425949-1 3.217964-1 2.834373-1 3.616726-1 2.361000-1 4.076735-1 1.966639-1 4.629636-1 1.632227-1 5.282647-1 1.355837-1 5.971201-1 1.150640-1 6.839117-1 9.687416-2 7.745733-1 8.346144-2 9.016309-1 7.042359-2 1.120601+0 5.583843-2 1.286622+0 4.782658-2 1.477239+0 4.096429-2 1.696098+0 3.508662-2 1.947381+0 3.005229-2 2.235892+0 2.574030-2 2.580236+0 2.192701-2 3.086391+0 1.793348-2 3.543651+0 1.536033-2 4.068655+0 1.315639-2 4.671441+0 1.126867-2 5.363532+0 9.651813-3 6.158159+0 8.266944-3 7.070513+0 7.080779-3 8.118035+0 6.064809-3 9.320751+0 5.194613-3 9.760024+0 4.933236-3 1.000000+1 1.020021-2 1 76000 7 0 1.902000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.590114+1 3.022317-6-7.455184+1 3.947200-6-7.121774+1 4.235980-6-6.701566+1 4.347142-6-6.226136+1 4.393486-6-5.754193+1 4.412834-6-5.324897+1 4.460014-6-3.988830+1 4.470876-6-3.861605+1 4.482755-6-4.008594+1 4.491581-6-4.369404+1 4.500406-6-4.950282+1 4.510928-6-5.880641+1 4.528085-6-7.620947+1 4.536474-6-6.777561+1 4.549787-6-5.775693+1 4.560219-6-5.317506+1 4.573467-6-5.162096+1 4.587299-6-5.397214+1 4.643872-6-7.039447+1 4.687456-6-7.635703+1 4.823363-6-6.284229+1 4.865781-6-5.532893+1 4.887396-6-4.852701+1 4.901549-6-4.086837+1 4.917298-6-3.344927+1 4.930847-6-2.586910+1 4.942891-6-2.008282+1 4.945526-6-1.914770+1 4.954935-6-1.690327+1 4.959546-6-1.686350+1 4.966979-6-1.829664+1 4.971590-6-2.032314+1 4.976036-6-2.322845+1 4.984481-6-3.118957+1 4.989562-6-3.774798+1 5.000415-6-5.443352+1 5.012287-6-7.645963+1 5.019705-6-6.175033+1 5.029887-6-4.311028+1 5.039902-6-2.805759+1 5.043298-6-2.399401+1 5.051288-6-1.624784+1 5.055898-6-1.309369+1 5.060344-6-1.100778+1 5.064837-6-9.839890+0 5.067095-6-9.433502+0 5.070483-6-9.168097+0 5.072176-6-9.236693+0 5.079892-6-1.081635+1 5.084409-6-1.217397+1 5.087420-6-1.378045+1 5.096641-6-1.791105+1 5.114142-6-2.757956+1 5.132585-6-3.607338+1 5.138099-6-3.955117+1 5.153783-6-4.513006+1 5.183475-6-5.134571+1 5.231609-6-5.709150+1 5.324949-6-6.287039+1 5.515898-6-6.822927+1 5.976609-6-7.626911+1 6.018040-6-7.510863+1 6.105749-6-6.820990+1 6.138789-6-7.106011+1 6.162784-6-7.635120+1 6.206941-6-6.371763+1 6.233942-6-6.029771+1 6.265462-6-6.111572+1 6.357521-6-6.844878+1 6.692054-6-7.665904+1 6.826966-6-6.886480+1 6.865641-6-7.173852+1 6.891226-6-7.654955+1 6.945287-6-6.197208+1 6.973110-6-5.825311+1 7.005405-6-5.837030+1 7.112676-6-6.665190+1 7.338573-6-7.204082+1 7.574572-6-7.081449+1 7.680682-6-7.061479+1 7.871781-6-7.292068+1 8.042919-6-7.362819+1 8.173630-6-7.033239+1 8.698297-6-7.356176+1 8.880356-6-7.317126+1 9.155404-6-7.401454+1 9.351941-6-7.235205+1 9.907490-6-7.389121+1 1.906044-5-7.644521+1 2.730000-5-7.234726+1 3.468979-5-6.811321+1 3.903943-5-6.195042+1 4.059855-5-5.655418+1 4.123583-5-5.178426+1 4.197010-5-4.064193+1 4.217370-5-3.938771+1 4.241229-5-3.875815+1 4.251067-5-3.693969+1 4.258090-5-3.344545+1 4.273825-5-2.687119+1 4.285400-5-1.978301+1 4.287200-5-1.825767+1 4.297019-5-1.222117+1 4.297767-5-1.160693+1 4.299170-5-1.080765+1 4.301625-5-9.789924+0 4.310263-5-7.374375+0 4.312490-5-7.240637+0 4.314160-5-7.358440+0 4.316665-5-7.799684+0 4.320443-5-8.871407+0 4.322670-5-9.950329+0 4.324340-5-1.097659+1 4.328098-5-1.398475+1 4.333804-5-2.034625+1 4.337920-5-2.593579+1 4.347308-5-4.268506+1 4.358061-5-6.649807+1 4.360617-5-5.971478+1 4.373524-5-3.081991+1 4.381461-5-1.614662+1 4.383763-5-1.242945+1 4.385642-5-9.796911+0 4.388461-5-6.279013+0 4.391280-5-3.049776+0 4.392590-5-1.649447+0 4.394881-5 3.797320-1 4.396599-5 1.659242+0 4.399176-5 3.222228+0 4.400465-5 3.837530+0 4.401754-5 4.299497+0 4.404372-5 5.042798+0 4.406336-5 5.457691+0 4.409282-5 5.715464+0 4.410754-5 5.630935+0 4.417464-5 3.903143+0 4.420082-5 3.024379+0 4.421392-5 2.434387+0 4.422701-5 1.592058+0 4.424010-5 7.108079-1 4.428592-5-1.688083+0 4.430883-5-2.983748+0 4.432029-5-3.724311+0 4.433174-5-4.650521+0 4.447248-5-1.407043+1 4.461976-5-2.224523+1 4.467954-5-2.679147+1 4.478510-5-3.168157+1 4.493794-5-3.640559+1 4.517716-5-4.136123+1 4.560577-5-4.686040+1 4.623082-5-5.155296+1 4.756007-5-5.697524+1 5.068858-5-6.562259+1 5.172181-5-6.691195+1 5.269449-5-6.236194+1 5.317939-5-6.088791+1 5.375131-5-6.333822+1 5.396040-5-6.055375+1 5.428524-5-4.998664+1 5.457230-5-3.957814+1 5.468290-5-3.749431+1 5.478218-5-3.783870+1 5.489928-5-4.068001+1 5.500763-5-4.626408+1 5.517634-5-6.136465+1 5.521620-5-6.618065+1 5.528014-5-6.121079+1 5.537912-5-4.922173+1 5.549460-5-3.631087+1 5.561345-5-2.555425+1 5.569353-5-2.034182+1 5.575580-5-1.721889+1 5.580654-5-1.537321+1 5.587907-5-1.368065+1 5.593735-5-1.316984+1 5.597232-5-1.343958+1 5.608451-5-1.495174+1 5.623485-5-1.925432+1 5.643599-5-2.599550+1 5.663663-5-3.167553+1 5.671051-5-3.428372+1 5.694727-5-3.874672+1 5.735538-5-4.314838+1 5.807318-5-4.748284+1 5.970330-5-5.191869+1 6.381709-5-5.646512+1 1.050000-4-6.143085+1 1.493363-4-6.622957+1 1.950000-4-6.538705+1 2.759420-4-5.870671+1 3.141380-4-5.336586+1 4.016661-4-4.631868+1 4.457875-4-4.441864+1 4.543001-4-4.435974+1 4.624728-4-4.283306+1 5.675518-4-3.678120+1 7.343651-4-3.074644+1 8.865329-4-2.774949+1 1.077705-3-2.599961+1 1.295221-3-2.567199+1 1.528525-3-2.687013+1 1.707433-3-2.931650+1 1.821011-3-3.238542+1 1.890438-3-3.592384+1 1.926056-3-3.941052+1 1.965113-3-4.704425+1 1.981196-3-4.698094+1 2.010262-3-4.311747+1 2.047242-3-4.212204+1 2.095573-3-3.632566+1 2.164315-3-3.197188+1 2.278288-3-2.717863+1 2.374789-3-2.468112+1 2.417920-3-2.467862+1 2.448930-3-2.502107+1 2.477758-3-2.343490+1 2.518942-3-2.089765+1 2.585235-3-1.869115+1 2.686479-3-1.668706+1 2.754663-3-1.615759+1 2.800844-3-1.585489+1 2.860869-3-1.427778+1 2.952479-3-1.296805+1 3.031229-3-1.252548+1 3.119206-3-1.092085+1 3.258687-3-9.357272+0 3.452234-3-7.889433+0 3.672823-3-6.709013+0 3.981072-3-5.610380+0 4.320724-3-4.841221+0 4.694761-3-4.347557+0 5.182404-3-4.042191+0 5.821032-3-3.951664+0 6.622403-3-4.143111+0 7.546957-3-4.606699+0 8.573069-3-5.388776+0 9.415645-3-6.354351+0 9.972808-3-7.354703+0 1.031476-2-8.331714+0 1.054447-2-9.435785+0 1.066455-2-1.048940+1 1.083033-2-1.288697+1 1.089726-2-1.305287+1 1.097801-2-1.208759+1 1.111060-2-1.017510+1 1.123487-2-9.220457+0 1.144299-2-8.376574+0 1.173303-2-7.844780+0 1.201965-2-7.834080+0 1.218974-2-8.234742+0 1.238558-2-9.256891+0 1.246861-2-9.167471+0 1.268490-2-7.835670+0 1.281999-2-7.591467+0 1.294482-2-7.432094+0 1.307322-2-6.780070+0 1.323231-2-5.883751+0 1.346489-2-5.054236+0 1.380654-2-4.236648+0 1.428411-2-3.429370+0 1.484432-2-2.743141+0 1.551991-2-2.153394+0 1.627333-2-1.683425+0 1.696245-2-1.358915+0 1.778280-2-1.077246+0 1.826752-2-9.498801-1 1.905461-2-7.872397-1 1.987659-2-6.624689-1 2.095318-2-5.476710-1 2.193003-2-4.810295-1 2.320587-2-4.348834-1 2.430105-2-4.176389-1 2.614509-2-4.236600-1 2.806217-2-4.561527-1 3.129077-2-5.499086-1 4.820649-2-1.172178+0 5.651099-2-1.508617+0 6.242453-2-1.815788+0 6.649144-2-2.123185+0 6.927514-2-2.453368+0 7.098586-2-2.783969+0 7.209516-2-3.146040+0 7.277479-2-3.547181+0 7.375166-2-4.380284+0 7.411739-2-4.452483+0 7.449980-2-4.255216+0 7.552824-2-3.291622+0 7.625142-2-2.871202+0 7.734945-2-2.485053+0 7.896021-2-2.119338+0 8.102552-2-1.810297+0 8.405488-2-1.495414+0 8.706537-2-1.281672+0 9.069423-2-1.100560+0 9.468054-2-9.570387-1 1.003621-1-8.121459-1 1.059266-1-7.134208-1 1.118408-1-6.432100-1 1.176462-1-5.967050-1 1.265576-1-5.525526-1 1.404429-1-5.215270-1 1.626565-1-5.193715-1 2.967329-1-6.547491-1 4.244744-1-7.280761-1 6.566648-1-7.825942-1 1.228714+0-8.134812-1 3.710658+0-8.260771-1 1.000000+1-8.276698-1 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.976724-5 1.024000-6 7.027197-5 1.050036-6 7.429794-5 1.090802-6 8.051559-5 1.126473-6 8.838478-5 1.188896-6 1.082187-4 1.235714-6 1.292011-4 1.270827-6 1.494376-4 1.323497-6 1.882940-4 1.386329-6 2.500599-4 1.423589-6 2.971003-4 1.443913-6 3.272055-4 1.489035-6 4.045887-4 1.536000-6 4.960596-4 1.583554-6 5.600082-4 1.633040-6 6.368253-4 1.684072-6 7.367397-4 1.736700-6 8.659349-4 1.790971-6 1.032425-3 1.846939-6 1.246582-3 1.904656-6 1.518647-3 1.920000-6 1.595438-3 1.964177-6 1.809373-3 2.025557-6 2.158472-3 2.088856-6 2.605459-3 2.154132-6 3.181638-3 2.221449-6 3.929416-3 2.304000-6 5.093519-3 2.362459-6 6.039438-3 2.400000-6 6.711170-3 2.433814-6 7.311616-3 2.502939-6 8.709500-3 2.569904-6 1.039451-2 2.634777-6 1.241079-2 2.697622-6 1.480144-2 2.758503-6 1.761261-2 2.817481-6 2.090044-2 2.880000-6 2.505238-2 2.929967-6 2.882337-2 3.000000-6 3.503326-2 3.085854-6 4.411403-2 3.134603-6 5.038940-2 3.181828-6 5.744876-2 3.227578-6 6.535716-2 3.271898-6 7.418163-2 3.314833-6 8.398499-2 3.396720-6 1.064732-1 3.435754-6 1.193302-1 3.511383-6 1.490879-1 3.582285-6 1.843061-1 3.648756-6 2.254978-1 3.711073-6 2.735209-1 3.769494-6 3.289497-1 3.824265-6 3.920101-1 3.875612-6 4.640091-1 3.923750-6 5.460346-1 3.968879-6 6.389377-1 4.011188-6 7.435219-1 4.050852-6 8.603993-1 4.088038-6 9.900604-1 4.122899-6 1.133192+0 4.155582-6 1.290809+0 4.186221-6 1.464146+0 4.214946-6 1.654358+0 4.241876-6 1.862467+0 4.267122-6 2.089439+0 4.290791-6 2.336238+0 4.312980-6 2.603828+0 4.333782-6 2.893171+0 4.353285-6 3.205209+0 4.371568-6 3.540863+0 4.388709-6 3.901053+0 4.404778-6 4.286742+0 4.419843-6 4.698978+0 4.433967-6 5.138897+0 4.447208-6 5.607707+0 4.459621-6 6.106660+0 4.471258-6 6.637038+0 4.482168-6 7.200187+0 4.492396-6 7.797595+0 4.502550-6 8.470823+0 4.510975-6 9.102535+0 4.527830-6 1.062450+1 4.542579-6 1.234912+1 4.555484-6 1.430612+1 4.566776-6 1.651585+1 4.576656-6 1.897867+1 4.585302-6 2.167035+1 4.592866-6 2.454463+1 4.599485-6 2.754072+1 4.605277-6 3.059228+1 4.610345-6 3.363520+1 4.618659-6 3.947989+1 4.637225-6 5.704661+1 4.650219-6 7.357634+1 4.657254-6 8.403924+1 4.662972-6 9.328750+1 4.668689-6 1.031453+2 4.680124-6 1.243341+2 4.681554-6 1.270847+2 4.691559-6 1.466184+2 4.695490-6 1.542893+2 4.702995-6 1.685960+2 4.706925-6 1.757768+2 4.710677-6 1.823412+2 4.714430-6 1.885559+2 4.719432-6 1.961863+2 4.724257-6 2.027077+2 4.728723-6 2.079045+2 4.732476-6 2.115773+2 4.738015-6 2.157409+2 4.744715-6 2.186233+2 4.749785-6 2.191562+2 4.756762-6 2.175162+2 4.761779-6 2.146528+2 4.767156-6 2.100755+2 4.772559-6 2.039961+2 4.775987-6 1.994266+2 4.784090-6 1.866904+2 4.788512-6 1.787597+2 4.792239-6 1.716391+2 4.797155-6 1.617575+2 4.800986-6 1.537653+2 4.805910-6 1.432410+2 4.810913-6 1.324084+2 4.816139-6 1.211029+2 4.823063-6 1.064062+2 4.828066-6 9.614946+1 4.829495-6 9.329196+1 4.834855-6 8.291528+1 4.840216-6 7.314056+1 4.851651-6 5.458630+1 4.856051-6 4.833645+1 4.859568-6 4.370195+1 4.863086-6 3.938713+1 4.868089-6 3.379104+1 4.873315-6 2.860074+1 4.878693-6 2.392359+1 4.883085-6 2.057243+1 4.887410-6 1.765742+1 4.893770-6 1.400492+1 4.899983-6 1.109209+1 4.915852-6 6.034869+0 4.921551-6 4.879240+0 4.925277-6 4.271640+0 4.928944-6 3.773399+0 4.930757-6 3.560393+0 4.934339-6 3.197927+0 4.937862-6 2.910206+0 5.049391-6 9.398013+0 5.056362-6 1.100909+1 5.062897-6 1.283324+1 5.069023-6 1.487824+1 5.074767-6 1.714789+1 5.080151-6 1.964175+1 5.089932-6 2.527897+1 5.098806-6 3.193826+1 5.129061-6 7.163914+1 5.139577-6 9.430570+1 5.148915-6 1.195839+2 5.155856-6 1.419288+2 5.163203-6 1.691804+2 5.169716-6 1.965975+2 5.173623-6 2.145601+2 5.179975-6 2.461946+2 5.186326-6 2.808073+2 5.199029-6 3.583534+2 5.200617-6 3.687467+2 5.211732-6 4.449197+2 5.216099-6 4.760828+2 5.224435-6 5.364671+2 5.230886-6 5.831029+2 5.237138-6 6.273315+2 5.243589-6 6.710637+2 5.249841-6 7.107294+2 5.255399-6 7.430493+2 5.260534-6 7.699471+2 5.263338-6 7.832733+2 5.270781-6 8.134663+2 5.276593-6 8.313242+2 5.283365-6 8.452892+2 5.289437-6 8.512750+2 5.293105-6 8.518443+2 5.298766-6 8.482311+2 5.304523-6 8.390782+2 5.306731-6 8.341469+2 5.314150-6 8.121160+2 5.319220-6 7.925408+2 5.322640-6 7.774600+2 5.327647-6 7.529074+2 5.332510-6 7.265754+2 5.338762-6 6.897148+2 5.344319-6 6.547107+2 5.349678-6 6.195123+2 5.357816-6 5.644678+2 5.364168-6 5.210856+2 5.371313-6 4.727864+2 5.376871-6 4.361213+2 5.389574-6 3.571428+2 5.393940-6 3.319525+2 5.402277-6 2.870888+2 5.411804-6 2.413275+2 5.422937-6 1.954484+2 5.440032-6 1.401093+2 5.456740-6 1.012896+2 5.467662-6 8.248005+1 5.473060-6 7.475279+1 5.483770-6 6.197008+1 5.494313-6 5.210882+1 5.504691-6 4.445268+1 5.514907-6 3.844721+1 5.524963-6 3.367375+1 5.534863-6 2.982201+1 5.548188-6 2.563423+1 5.554200-6 2.403711+1 5.563642-6 2.181861+1 5.572937-6 1.992157+1 5.591236-6 1.682755+1 5.608964-6 1.443644+1 5.626137-6 1.253723+1 5.642774-6 1.099688+1 5.658891-6 9.726737+0 5.674504-6 8.664997+0 5.704282-6 6.999871+0 5.732672-6 5.746091+0 5.807631-6 3.451638+0 5.850121-6 2.581659+0 5.888671-6 1.969656+0 5.923243-6 1.529214+0 5.951916-6 1.226513+0 5.977741-6 9.948615-1 6.022934-6 6.677388-1 6.056830-6 4.773415-1 6.072032-6 4.051932-1 6.107673-6 2.645759-1 6.158516-6 1.249575-1 6.173674-6 9.589499-2 6.183624-6 7.980509-2 6.203991-6 5.409760-2 6.219150-6 4.115421-2 6.234308-6 3.339609-2 6.249466-6 3.075011-2 6.264625-6 3.316009-2 6.267318-6 3.411421-2 6.279783-6 4.059103-2 6.294942-6 5.303283-2 6.310100-6 7.050438-2 6.325258-6 9.305866-2 6.340417-6 1.207884-1 6.355575-6 1.538309-1 6.370734-6 1.923689-1 6.385892-6 2.366264-1 6.392859-6 2.589559-1 6.401050-6 2.868601-1 6.416209-6 3.433490-1 6.431367-6 4.063901-1 6.446526-6 4.763079-1 6.461684-6 5.534814-1 6.519459-6 9.247842-1 6.546083-6 1.147734+0 6.588217-6 1.596100+0 6.645026-6 2.464007+0 6.670813-6 2.981313+0 6.688913-6 3.387432+0 6.704954-6 3.768270+0 6.718482-6 4.095493+0 6.731751-6 4.411657+0 6.743359-6 4.675140+0 6.752731-6 4.872747+0 6.762129-6 5.052134+0 6.767958-6 5.151880+0 6.775535-6 5.266220+0 6.790286-6 5.431707+0 6.803610-6 5.507835+0 6.811144-6 5.517749+0 6.822487-6 5.486609+0 6.830510-6 5.431644+0 6.838052-6 5.356128+0 6.843984-6 5.281389+0 6.852633-6 5.150062+0 6.860998-6 5.000486+0 6.870314-6 4.811860+0 6.879340-6 4.611545+0 6.892765-6 4.292788+0 6.900701-6 4.099167+0 6.929001-6 3.451243+0 6.946056-6 3.166904+0 6.954584-6 3.081572+0 6.963111-6 3.049048+0 6.971639-6 3.082976+0 6.975902-6 3.129751+0 6.980166-6 3.199324+0 6.988693-6 3.416646+0 6.992957-6 3.569726+0 6.997221-6 3.756275+0 7.005748-6 4.242417+0 7.010061-6 4.552590+0 7.014276-6 4.902100+0 7.022803-6 5.764934+0 7.027067-6 6.282382+0 7.035730-6 7.531691+0 7.058663-6 1.235082+1 7.069342-6 1.546997+1 7.078021-6 1.846169+1 7.086699-6 2.187886+1 7.104057-6 2.998641+1 7.106227-6 3.111424+1 7.121415-6 3.963282+1 7.128108-6 4.367960+1 7.138810-6 5.040035+1 7.146078-6 5.505780+1 7.153562-6 5.985189+1 7.157833-6 6.255626+1 7.164840-6 6.689413+1 7.172396-6 7.136249+1 7.179104-6 7.507846+1 7.186517-6 7.883317+1 7.188376-6 7.970834+1 7.198393-6 8.389691+1 7.206033-6 8.642709+1 7.211325-6 8.780883+1 7.217418-6 8.900214+1 7.224921-6 8.986626+1 7.230549-6 9.006801+1 7.233714-6 9.001295+1 7.240836-6 8.945055+1 7.248511-6 8.818336+1 7.261426-6 8.461367+1 7.269059-6 8.174790+1 7.274357-6 7.947358+1 7.279164-6 7.723219+1 7.287050-6 7.324190+1 7.290270-6 7.151811+1 7.295905-6 6.839551+1 7.303301-6 6.414031+1 7.310433-6 5.993056+1 7.312810-6 5.851495+1 7.321510-6 5.332838+1 7.328035-6 4.947507+1 7.332316-6 4.698376+1 7.339905-6 4.267276+1 7.348834-6 3.782270+1 7.361230-6 3.158462+1 7.368107-6 2.840643+1 7.389789-6 1.981306+1 7.400265-6 1.643998+1 7.411650-6 1.331944+1 7.424624-6 1.039836+1 7.456644-6 5.565636+0 7.468194-6 4.464950+0 7.479023-6 3.662278+0 7.489175-6 3.075153+0 7.498693-6 2.644216+0 7.516538-6 2.079195+0 7.532153-6 1.778470+0 7.545816-6 1.621973+0 7.569725-6 1.517871+0 7.587776-6 1.544413+0 7.600000-6 1.603336+0 7.641455-6 2.020031+0 7.660264-6 2.318414+0 7.671647-6 2.533358+0 7.722743-6 3.815401+0 7.727917-6 3.971678+0 7.746017-6 4.548153+0 7.751393-6 4.726868+0 7.764985-6 5.189934+0 7.771488-6 5.415663+0 7.785151-6 5.894796+0 7.794550-6 6.225823+0 7.806414-6 6.642978+0 7.818232-6 7.056675+0 7.827803-6 7.390957+0 7.844282-6 7.970888+0 7.877795-6 9.256547+0 7.885185-6 9.584898+0 7.897593-6 1.020064+1 7.911004-6 1.098873+1 7.919218-6 1.155251+1 7.939740-6 1.330970+1 7.952147-6 1.466338+1 7.965398-6 1.638753+1 7.976960-6 1.813747+1 8.004940-6 2.324635+1 8.018050-6 2.595359+1 8.028325-6 2.813320+1 8.038700-6 3.032174+1 8.048739-6 3.236497+1 8.057286-6 3.399910+1 8.065482-6 3.543729+1 8.070312-6 3.621225+1 8.080318-6 3.761588+1 8.089668-6 3.864668+1 8.094525-6 3.906407+1 8.102840-6 3.957912+1 8.109638-6 3.980614+1 8.119992-6 3.980966+1 8.130839-6 3.937392+1 8.137665-6 3.887778+1 8.150696-6 3.749121+1 8.159190-6 3.630954+1 8.168640-6 3.477639+1 8.174716-6 3.368834+1 8.180791-6 3.253414+1 8.187614-6 3.117397+1 8.196570-6 2.931372+1 8.205205-6 2.747138+1 8.216378-6 2.506900+1 8.224672-6 2.330542+1 8.237120-6 2.074288+1 8.244588-6 1.927625+1 8.264635-6 1.568928+1 8.294665-6 1.144544+1 8.306474-6 1.016160+1 8.317584-6 9.141008+0 8.324251-6 8.610470+0 8.335968-6 7.815208+0 8.344755-6 7.323892+0 8.357936-6 6.736242+0 8.371117-6 6.303758+0 8.384949-6 5.989323+0 8.403022-6 5.752279+0 8.426445-6 5.669565+0 8.438095-6 5.701512+0 8.473045-6 6.009997+0 8.494967-6 6.321320+0 8.534649-6 6.996277+0 8.551137-6 7.276816+0 8.568863-6 7.549420+0 8.583107-6 7.732409+0 8.591653-6 7.822098+0 8.604985-6 7.926648+0 8.618317-6 7.983382+0 8.639108-6 7.969337+0 8.644334-6 7.945957+0 8.660012-6 7.829984+0 8.665797-6 7.770825+0 8.683151-6 7.547019+0 8.690441-6 7.435196+0 8.703198-6 7.219987+0 8.712766-6 7.046474+0 8.734294-6 6.638108+0 8.761742-6 6.132134+0 8.780983-6 5.820929+0 8.801877-6 5.546318+0 8.821459-6 5.360660+0 8.837096-6 5.266699+0 8.850425-6 5.226092+0 8.858966-6 5.219472+0 8.867726-6 5.228565+0 8.876043-6 5.252186+0 8.906343-6 5.463595+0 8.920741-6 5.634371+0 8.933347-6 5.821851+0 8.943990-6 6.007870+0 8.958011-6 6.291454+0 8.983993-6 6.927444+0 9.035566-6 8.506296+0 9.053828-6 9.099050+0 9.065532-6 9.465817+0 9.080579-6 9.905819+0 9.092762-6 1.022424+1 9.102938-6 1.045687+1 9.116021-6 1.070304+1 9.127023-6 1.085812+1 9.140776-6 1.097914+1 9.155216-6 1.101496+1 9.162781-6 1.099611+1 9.182035-6 1.083561+1 9.189599-6 1.073118+1 9.207603-6 1.040115+1 9.223192-6 1.003955+1 9.232545-6 9.797643+0 9.248955-6 9.344433+0 9.270053-6 8.742024+0 9.292058-6 8.136968+0 9.314062-6 7.596766+0 9.336067-6 7.148264+0 9.343209-6 7.024763+0 9.364636-6 6.720634+0 9.380076-6 6.561216+0 9.393376-6 6.460984+0 9.408780-6 6.383540+0 9.425747-6 6.340205+0 9.448947-6 6.339872+0 9.472148-6 6.393546+0 9.495348-6 6.489833+0 9.541749-6 6.788347+0 9.570612-6 7.043406+0 9.599009-6 7.349397+0 9.627455-6 7.709912+0 9.698197-6 8.750672+0 9.729107-6 9.182614+0 9.753449-6 9.466060+0 9.768715-6 9.607727+0 9.787657-6 9.738486+0 9.796952-6 9.783484+0 9.816100-6 9.836718+0 9.843352-6 9.829457+0 9.873729-6 9.737755+0 9.923964-6 9.534684+0 9.957584-6 9.463319+0 9.981165-6 9.472981+0 1.000475-5 9.536185+0 1.001400-5 9.574805+0 1.006080-5 9.864555+0 1.011830-5 1.035350+1 1.016691-5 1.084944+1 1.020251-5 1.129389+1 1.024094-5 1.189037+1 1.027780-5 1.258409+1 1.033744-5 1.383374+1 1.036623-5 1.438587+1 1.038322-5 1.466153+1 1.040507-5 1.493847+1 1.042897-5 1.512015+1 1.045233-5 1.516064+1 1.047787-5 1.504647+1 1.048477-5 1.498842+1 1.051140-5 1.466780+1 1.053731-5 1.423466+1 1.056655-5 1.365283+1 1.063110-5 1.230682+1 1.065380-5 1.188899+1 1.067618-5 1.152985+1 1.069856-5 1.123053+1 1.072615-5 1.094780+1 1.074816-5 1.078946+1 1.077324-5 1.067698+1 1.079143-5 1.063678+1 1.083296-5 1.065834+1 1.085946-5 1.074298+1 1.090645-5 1.100644+1 1.096240-5 1.147951+1 1.107730-5 1.274495+1 1.111820-5 1.314662+1 1.115463-5 1.341696+1 1.118162-5 1.355303+1 1.121628-5 1.365060+1 1.126415-5 1.368271+1 1.133830-5 1.369548+1 1.136563-5 1.373896+1 1.140399-5 1.385277+1 1.145870-5 1.410241+1 1.158015-5 1.473403+1 1.162481-5 1.493207+1 1.177570-5 1.550207+1 1.183943-5 1.569742+1 1.191014-5 1.585178+1 1.201427-5 1.595366+1 1.213634-5 1.604615+1 1.220758-5 1.618895+1 1.227465-5 1.640278+1 1.234654-5 1.669776+1 1.274333-5 1.863374+1 1.318257-5 2.085542+1 1.418695-5 2.639566+1 1.486639-5 3.056954+1 1.659587-5 4.268659+1 1.850000-5 5.883934+1 2.018366-5 7.548761+1 2.162719-5 9.130478+1 2.300000-5 1.074272+2 2.410784-5 1.208780+2 2.512382-5 1.334064+2 2.555942-5 1.387955+2 2.634529-5 1.483078+2 2.693166-5 1.553592+2 2.799261-5 1.677265+2 2.873436-5 1.759309+2 2.916000-5 1.804075+2 3.018540-5 1.906654+2 3.120000-5 1.995893+2 3.235937-5 2.082513+2 3.333385-5 2.140265+2 3.451333-5 2.193736+2 3.543526-5 2.222822+2 3.636075-5 2.237311+2 3.773520-5 2.243867+2 3.966194-5 2.332789+2 4.088304-5 2.415085+2 4.154305-5 2.478976+2 4.216109-5 2.563586+2 4.254528-5 2.635704+2 4.294411-5 2.739064+2 4.326696-5 2.863467+2 4.346086-5 2.970410+2 4.364762-5 3.107276+2 4.378391-5 3.231756+2 4.399945-5 3.469552+2 4.443053-5 4.026096+2 4.464606-5 4.335402+2 4.475383-5 4.525530+2 4.486160-5 4.765591+2 4.489865-5 4.864127+2 4.496937-5 5.080691+2 4.500641-5 5.210973+2 4.507714-5 5.496005+2 4.515567-5 5.873731+2 4.520569-5 6.150048+2 4.529402-5 6.707335+2 4.550046-5 8.321754+2 4.562606-5 9.448915+2 4.573392-5 1.043644+3 4.580568-5 1.107441+3 4.586277-5 1.155804+3 4.593996-5 1.216243+3 4.601470-5 1.267752+3 4.605624-5 1.292824+3 4.613114-5 1.330717+3 4.619008-5 1.353301+3 4.626285-5 1.371677+3 4.627963-5 1.374365+3 4.639296-5 1.376833+3 4.641662-5 1.373877+3 4.650086-5 1.353752+3 4.655378-5 1.333694+3 4.661896-5 1.301639+3 4.666151-5 1.276675+3 4.672541-5 1.233852+3 4.679612-5 1.180117+3 4.682738-5 1.154611+3 4.688296-5 1.107208+3 4.696589-5 1.033111+3 4.704969-5 9.565499+2 4.717474-5 8.445326+2 4.742515-5 6.503962+2 4.752449-5 5.891053+2 4.758943-5 5.541477+2 4.765361-5 5.234079+2 4.771679-5 4.966238+2 4.784020-5 4.531904+2 4.795978-5 4.205074+2 4.813224-5 3.855341+2 4.824582-5 3.681197+2 4.845609-5 3.434710+2 4.875053-5 3.186868+2 4.910462-5 2.965390+2 5.038886-5 2.383745+2 5.070108-5 2.258904+2 5.087798-5 2.196878+2 5.102244-5 2.155144+2 5.114859-5 2.127757+2 5.126930-5 2.111145+2 5.137617-5 2.105144+2 5.152099-5 2.110574+2 5.165767-5 2.129423+2 5.176219-5 2.151709+2 5.197211-5 2.211483+2 5.234058-5 2.331653+2 5.251816-5 2.381811+2 5.276673-5 2.434298+2 5.301353-5 2.465689+2 5.322261-5 2.480334+2 5.373359-5 2.505036+2 5.397330-5 2.524364+2 5.455489-5 2.582748+2 5.471502-5 2.592335+2 5.495030-5 2.596363+2 5.512929-5 2.591888+2 5.533583-5 2.580681+2 5.613560-5 2.510692+2 5.638601-5 2.493942+2 5.664548-5 2.500514+2 5.674490-5 2.514823+2 5.696037-5 2.580515+2 5.712796-5 2.675912+2 5.729163-5 2.818631+2 5.742493-5 2.978743+2 5.754772-5 3.166011+2 5.764434-5 3.342179+2 5.777582-5 3.623724+2 5.823054-5 4.915949+2 5.837021-5 5.369783+2 5.850464-5 5.805337+2 5.863221-5 6.203569+2 5.875815-5 6.570406+2 5.887974-5 6.889696+2 5.900403-5 7.171013+2 5.911788-5 7.380290+2 5.922185-5 7.524181+2 5.932071-5 7.613859+2 5.938343-5 7.644935+2 5.950546-5 7.644475+2 5.958104-5 7.602773+2 5.965545-5 7.530879+2 5.973443-5 7.422232+2 5.983532-5 7.238495+2 5.990894-5 7.076120+2 6.001560-5 6.805988+2 6.005115-5 6.708479+2 6.019335-5 6.293188+2 6.038445-5 5.710334+2 6.071249-5 4.793291+2 6.078999-5 4.607623+2 6.089919-5 4.369564+2 6.104479-5 4.094370+2 6.122106-5 3.820259+2 6.167124-5 3.345659+2 6.182568-5 3.239822+2 6.197907-5 3.159822+2 6.212663-5 3.106589+2 6.227842-5 3.076534+2 6.243022-5 3.071245+2 6.254071-5 3.081953+2 6.266955-5 3.107793+2 6.288561-5 3.173772+2 6.318920-5 3.276179+2 6.334809-5 3.315245+2 6.351537-5 3.336053+2 6.364634-5 3.335979+2 6.377341-5 3.322944+2 6.395439-5 3.287233+2 6.434200-5 3.189992+2 6.454504-5 3.155076+2 6.470716-5 3.142668+2 6.495473-5 3.148871+2 6.543426-5 3.197221+2 6.558623-5 3.207219+2 6.590263-5 3.206401+2 6.622937-5 3.178308+2 6.697774-5 3.080761+2 6.737700-5 3.036775+2 6.763496-5 3.015315+2 6.794478-5 2.998865+2 6.823188-5 2.993632+2 6.866544-5 3.001547+2 6.956970-5 3.039998+2 7.036345-5 3.060967+2 7.098589-5 3.062980+2 7.307699-5 3.025690+2 7.616643-5 2.947374+2 7.791600-5 2.899945+2 7.966178-5 2.844056+2 8.256267-5 2.748255+2 8.473885-5 2.675917+2 8.698675-5 2.599034+2 8.918743-5 2.522459+2 9.158918-5 2.436904+2 9.411198-5 2.345060+2 9.626492-5 2.263362+2 9.866127-5 2.166997+2 9.940705-5 2.141821+2 1.015640-4 2.094533+2 1.030171-4 2.053287+2 1.060000-4 1.954023+2 1.162921-4 1.638580+2 1.259911-4 1.402697+2 1.297786-4 1.328659+2 1.336491-4 1.263846+2 1.380384-4 1.204715+2 1.433013-4 1.154624+2 1.458571-4 1.138804+2 1.505333-4 1.123747+2 1.549913-4 1.128731+2 1.612501-4 1.167045+2 1.669417-4 1.233200+2 1.708133-4 1.295966+2 1.745690-4 1.370128+2 1.790000-4 1.472360+2 1.830522-4 1.579496+2 1.872931-4 1.704122+2 1.980000-4 2.067855+2 2.075941-4 2.438256+2 2.150000-4 2.744062+2 2.238721-4 3.127445+2 2.343543-4 3.599232+2 2.441406-4 4.051253+2 2.520301-4 4.418441+2 2.628276-4 4.914239+2 2.745006-4 5.427140+2 2.837148-4 5.794854+2 2.883211-4 5.961932+2 2.909515-4 6.082850+2 2.927421-4 6.199027+2 2.964831-4 6.513911+2 2.979465-4 6.628086+2 2.998598-4 6.744786+2 3.057075-4 6.988958+2 3.080014-4 7.123343+2 3.127805-4 7.495027+2 3.146088-4 7.617817+2 3.184426-4 7.797535+2 3.311507-4 8.272055+2 3.460000-4 8.809486+2 3.690176-4 9.590485+2 3.954304-4 1.044129+3 4.193019-4 1.111995+3 4.461825-4 1.174904+3 4.745134-4 1.221799+3 4.818878-4 1.240610+3 4.849306-4 1.254252+3 4.912957-4 1.291844+3 4.970238-4 1.321288+3 5.080000-4 1.360238+3 5.252966-4 1.406858+3 5.500408-4 1.459251+3 5.621130-4 1.481550+3 5.791640-4 1.522374+3 5.955785-4 1.557607+3 6.168704-4 1.593267+3 6.456497-4 1.629843+3 6.642630-4 1.645555+3 6.702704-4 1.653044+3 6.953656-4 1.704510+3 7.202778-4 1.739515+3 7.651414-4 1.784456+3 8.099113-4 1.813495+3 8.585192-4 1.837138+3 9.158175-4 1.856439+3 9.848336-4 1.869430+3 1.056209-3 1.871277+3 1.132281-3 1.862386+3 1.214437-3 1.838989+3 1.288738-3 1.807096+3 1.371185-3 1.765707+3 1.453784-3 1.716001+3 1.540060-3 1.654602+3 1.615804-3 1.589533+3 1.684326-3 1.518173+3 1.743794-3 1.443049+3 1.794871-3 1.368428+3 1.834404-3 1.301700+3 1.872164-3 1.227396+3 1.899469-3 1.166150+3 1.924853-3 1.100438+3 1.944462-3 1.041203+3 1.963565-3 9.724843+2 1.978510-3 9.069851+2 1.989962-3 8.471986+2 1.998817-3 7.955187+2 2.014566-3 7.039601+2 2.019564-3 6.805600+2 2.021840-3 6.717118+2 2.024557-3 6.629496+2 2.027241-3 6.564730+2 2.029335-3 6.530664+2 2.032018-3 6.509618+2 2.034926-3 6.516863+2 2.038603-3 6.572035+2 2.042004-3 6.668480+2 2.045726-3 6.821448+2 2.048697-3 6.975916+2 2.051833-3 7.166018+2 2.057459-3 7.560823+2 2.066234-3 8.248108+2 2.073207-3 8.790762+2 2.077332-3 9.091152+2 2.083517-3 9.501242+2 2.089279-3 9.838367+2 2.095756-3 1.017543+3 2.116308-3 1.117730+3 2.131817-3 1.207434+3 2.144051-3 1.284937+3 2.151578-3 1.331457+3 2.161308-3 1.386928+3 2.172110-3 1.440539+3 2.185951-3 1.497713+3 2.206760-3 1.567171+3 2.231878-3 1.637726+3 2.276798-3 1.748608+3 2.323784-3 1.849797+3 2.367312-3 1.930424+3 2.404533-3 1.985840+3 2.431952-3 2.014200+3 2.454405-3 2.026123+3 2.475041-3 2.027109+3 2.501459-3 2.023507+3 2.511374-3 2.027049+3 2.521542-3 2.037350+3 2.530750-3 2.053911+3 2.544823-3 2.092327+3 2.577648-3 2.209552+3 2.590684-3 2.250751+3 2.605441-3 2.288689+3 2.622709-3 2.322723+3 2.643806-3 2.353765+3 2.671756-3 2.384117+3 2.706388-3 2.411086+3 2.741233-3 2.429260+3 2.779751-3 2.440689+3 2.810489-3 2.442509+3 2.875296-3 2.435388+3 2.902310-3 2.450023+3 2.955459-3 2.509795+3 2.976833-3 2.528200+3 3.001189-3 2.542008+3 3.036711-3 2.552624+3 3.117095-3 2.552994+3 3.149137-3 2.564717+3 3.214954-3 2.614164+3 3.242595-3 2.627925+3 3.325252-3 2.647689+3 3.442037-3 2.654967+3 3.562717-3 2.650733+3 3.751627-3 2.628521+3 3.934642-3 2.596495+3 4.216965-3 2.533094+3 4.522603-3 2.456543+3 4.906386-3 2.350269+3 5.270781-3 2.249061+3 5.741991-3 2.120616+3 6.139110-3 2.015511+3 6.679256-3 1.879048+3 7.321320-3 1.728640+3 7.651560-3 1.654917+3 7.978736-3 1.584525+3 8.332090-3 1.510681+3 8.677381-3 1.440918+3 9.011541-3 1.374692+3 9.292338-3 1.319607+3 9.556390-3 1.267908+3 9.806664-3 1.218560+3 1.000901-2 1.177660+3 1.018884-2 1.140166+3 1.034793-2 1.105467+3 1.048537-2 1.073564+3 1.059817-2 1.045355+3 1.069488-2 1.018927+3 1.078010-2 9.928306+2 1.084903-2 9.685709+2 1.090370-2 9.464207+2 1.094866-2 9.259430+2 1.108808-2 8.573880+2 1.112695-2 8.426969+2 1.115899-2 8.344462+2 1.117698-2 8.316609+2 1.119851-2 8.302113+2 1.121886-2 8.307500+2 1.123790-2 8.328819+2 1.127330-2 8.406026+2 1.132427-2 8.581029+2 1.141010-2 8.933068+2 1.147878-2 9.173591+2 1.152594-2 9.298300+2 1.156715-2 9.381386+2 1.161575-2 9.453533+2 1.168041-2 9.516642+2 1.175166-2 9.555289+2 1.183629-2 9.571895+2 1.194296-2 9.560475+2 1.204932-2 9.521497+2 1.222767-2 9.402135+2 1.232193-2 9.310655+2 1.241173-2 9.200598+2 1.249259-2 9.076604+2 1.260187-2 8.866646+2 1.271909-2 8.627946+2 1.277862-2 8.540965+2 1.283158-2 8.502848+2 1.289069-2 8.509358+2 1.295687-2 8.566405+2 1.308150-2 8.714557+2 1.316278-2 8.776748+2 1.335567-2 8.846212+2 1.347295-2 8.946546+2 1.363724-2 9.138323+2 1.377175-2 9.248344+2 1.394521-2 9.312083+2 1.416505-2 9.325721+2 1.446801-2 9.285808+2 1.486715-2 9.178206+2 1.541301-2 8.973249+2 1.610747-2 8.664881+2 1.698497-2 8.251299+2 1.818678-2 7.685905+2 1.976241-2 6.991967+2 2.183633-2 6.193469+2 2.393006-2 5.504770+2 2.626016-2 4.860113+2 2.844093-2 4.347499+2 3.147513-2 3.754974+2 3.499956-2 3.204332+2 3.792659-2 2.828701+2 4.132343-2 2.459857+2 5.048072-2 1.752330+2 5.468765-2 1.524141+2 5.913483-2 1.323106+2 6.357997-2 1.153266+2 6.684451-2 1.043003+2 6.933656-2 9.637564+1 7.102141-2 9.105539+1 7.234385-2 8.671279+1 7.286166-2 8.490600+1 7.337844-2 8.298379+1 7.379115-2 8.131034+1 7.413948-2 7.975673+1 7.473329-2 7.674354+1 7.552198-2 7.254922+1 7.585776-2 7.121351+1 7.617467-2 7.048585+1 7.648983-2 7.035577+1 7.676437-2 7.068536+1 7.720000-2 7.177633+1 7.783771-2 7.365356+1 7.830000-2 7.467762+1 7.882850-2 7.537480+1 7.918370-2 7.561828+1 8.010862-2 7.574009+1 8.122382-2 7.535293+1 8.258753-2 7.448476+1 8.506597-2 7.241241+1 8.804967-2 6.954598+1 9.272881-2 6.486802+1 9.913783-2 5.876433+1 1.062928-1 5.265708+1 1.141106-1 4.680703+1 1.285372-1 3.808476+1 1.531914-1 2.784497+1 1.923022-1 1.843617+1 2.319050-1 1.304618+1 2.883253-1 8.654114+0 3.794549-1 5.112551+0 5.282647-1 2.690535+0 8.006044-1 1.191760+0 1.286622+0 4.672428-1 2.451607+0 1.296746-1 7.403736+0 1.425796-2 2.235892+1 1.563721-3 6.752287+1 1.714630-4 2.039158+2 1.880059-5 6.158159+2 2.061445-6 1.995262+3 1.963693-7 6.309573+3 1.963693-8 1.995262+4 1.963693-9 6.309573+4 1.96369-10 1.000000+5 7.81760-11 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.631600-6 1.258900-6 2.585900-6 1.584900-6 4.098400-6 1.995300-6 6.495500-6 2.511900-6 1.029500-5 3.162300-6 1.631600-5 3.981100-6 2.585900-5 5.011900-6 4.098300-5 6.309600-6 6.495300-5 7.943300-6 1.029400-4 1.000000-5 1.631500-4 1.258900-5 2.585700-4 1.584900-5 4.098000-4 1.995300-5 6.494800-4 2.511900-5 1.029300-3 3.162300-5 1.631100-3 3.981100-5 2.583900-3 5.011900-5 4.093300-3 6.309600-5 6.485000-3 7.943300-5 1.027400-2 1.000000-4 1.626200-2 1.258900-4 2.573500-2 1.584900-4 4.065700-2 1.995300-4 6.418400-2 2.511900-4 1.010500-1 3.162300-4 1.585300-1 3.981100-4 2.472700-1 5.011900-4 3.821100-1 6.309600-4 5.812900-1 7.943300-4 8.661000-1 1.000000-3 1.256500+0 1.258900-3 1.765800+0 1.584900-3 2.402200+0 1.995300-3 3.178500+0 2.511900-3 4.128700+0 3.162300-3 5.292200+0 3.981100-3 6.707300+0 5.011900-3 8.403200+0 6.309600-3 1.040800+1 7.943300-3 1.268100+1 1.000000-2 1.511300+1 1.258900-2 1.762800+1 1.584900-2 2.024500+1 1.995300-2 2.288100+1 2.511900-2 2.554600+1 3.162300-2 2.790100+1 3.981100-2 2.995000+1 5.011900-2 3.142400+1 6.309600-2 3.234300+1 7.943300-2 3.272100+1 1.000000-1 3.254000+1 1.258900-1 3.186000+1 1.584900-1 3.072600+1 1.995300-1 2.925400+1 2.511900-1 2.754400+1 3.162300-1 2.568300+1 3.981100-1 2.374500+1 5.011900-1 2.178100+1 6.309600-1 1.983800+1 7.943300-1 1.794500+1 1.000000+0 1.611700+1 1.258900+0 1.439500+1 1.584900+0 1.276600+1 1.995300+0 1.124600+1 2.511900+0 9.842700+0 3.162300+0 8.560600+0 3.981100+0 7.401100+0 5.011900+0 6.362600+0 6.309600+0 5.440700+0 7.943300+0 4.630500+0 1.000000+1 3.923300+0 1.258900+1 3.310700+0 1.584900+1 2.783400+0 1.995300+1 2.332400+0 2.511900+1 1.948600+0 3.162300+1 1.623500+0 3.981100+1 1.349400+0 5.011900+1 1.119000+0 6.309600+1 9.261700-1 7.943300+1 7.651400-1 1.000000+2 6.310700-1 1.258900+2 5.197000-1 1.584900+2 4.273900-1 1.995300+2 3.510300-1 2.511900+2 2.879700-1 3.162300+2 2.359900-1 3.981100+2 1.931900-1 5.011900+2 1.580100-1 6.309600+2 1.291200-1 7.943300+2 1.054300-1 1.000000+3 8.601800-2 1.258900+3 7.013000-2 1.584900+3 5.713700-2 1.995300+3 4.652100-2 2.511900+3 3.785500-2 3.162300+3 3.078600-2 3.981100+3 2.502200-2 5.011900+3 2.032700-2 6.309600+3 1.650500-2 7.943300+3 1.339500-2 1.000000+4 1.086600-2 1.258900+4 8.811000-3 1.584900+4 7.141400-3 1.995300+4 5.785900-3 2.511900+4 4.685800-3 3.162300+4 3.793500-3 3.981100+4 3.070000-3 5.011900+4 2.483700-3 6.309600+4 2.008600-3 7.943300+4 1.623900-3 1.000000+5 1.312500-3 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994174-4 2.511886-4 2.510163-4 3.162278-4 3.159550-4 3.981072-4 3.976758-4 5.011872-4 5.005060-4 6.309573-4 6.298839-4 7.943282-4 7.926374-4 1.000000-3 9.973510-4 1.258925-3 1.254788-3 1.584893-3 1.578454-3 1.995262-3 1.985227-3 2.511886-3 2.496188-3 3.162278-3 3.137689-3 3.981072-3 3.942592-3 5.011872-3 4.951556-3 6.309573-3 6.215121-3 7.943282-3 7.795873-3 1.000000-2 9.771111-3 1.258925-2 1.223473-2 1.584893-2 1.530148-2 1.995262-2 1.910660-2 2.511886-2 2.381867-2 3.162278-2 2.963278-2 3.981072-2 3.679311-2 5.011872-2 4.557244-2 6.309573-2 5.629588-2 7.943282-2 6.933253-2 1.000000-1 8.514535-2 1.258925-1 1.041787-1 1.584893-1 1.270945-1 1.995262-1 1.545442-1 2.511886-1 1.872988-1 3.162278-1 2.262746-1 3.981072-1 2.724521-1 5.011872-1 3.270602-1 6.309573-1 3.915216-1 7.943282-1 4.675294-1 1.000000+0 5.569880-1 1.258925+0 6.622354-1 1.584893+0 7.865282-1 1.995262+0 9.336242-1 2.511886+0 1.108208+0 3.162278+0 1.315937+0 3.981072+0 1.563935+0 5.011872+0 1.860738+0 6.309573+0 2.217071+0 7.943282+0 2.645504+0 1.000000+1 3.162135+0 1.258925+1 3.786330+0 1.584893+1 4.541378+0 1.995262+1 5.456642+0 2.511886+1 6.567421+0 3.162278+1 7.917421+0 3.981072+1 9.559906+0 5.011872+1 1.156069+1 6.309573+1 1.400041+1 7.943282+1 1.697803+1 1.000000+2 2.061544+1 1.258925+2 2.506275+1 1.584893+2 3.050423+1 1.995262+2 3.716770+1 2.511886+2 4.533286+1 3.162278+2 5.534548+1 3.981072+2 6.762997+1 5.011872+2 8.271336+1 6.309573+2 1.012429+2 7.943282+2 1.240180+2 1.000000+3 1.520281+2 1.258925+3 1.864925+2 1.584893+3 2.289155+2 1.995262+3 2.811725+2 2.511886+3 3.455525+2 3.162278+3 4.249342+2 3.981072+3 5.228241+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739832-9 3.981072-5 4.341862-9 5.011872-5 6.880995-9 6.309573-5 1.090529-8 7.943282-5 1.728277-8 1.000000-4 2.738278-8 1.258925-4 4.339036-8 1.584893-4 6.872666-8 1.995262-4 1.088691-7 2.511886-4 1.723819-7 3.162278-4 2.727900-7 3.981072-4 4.314137-7 5.011872-4 6.812815-7 6.309573-4 1.073470-6 7.943282-4 1.690791-6 1.000000-3 2.649009-6 1.258925-3 4.137475-6 1.584893-3 6.438826-6 1.995262-3 1.003554-5 2.511886-3 1.569819-5 3.162278-3 2.458892-5 3.981072-3 3.847957-5 5.011872-3 6.031608-5 6.309573-3 9.445220-5 7.943282-3 1.474090-4 1.000000-2 2.288886-4 1.258925-2 3.545267-4 1.584893-2 5.474471-4 1.995262-2 8.460233-4 2.511886-2 1.300190-3 3.162278-2 1.989994-3 3.981072-2 3.017604-3 5.011872-2 4.546287-3 6.309573-2 6.799857-3 7.943282-2 1.010029-2 1.000000-1 1.485465-2 1.258925-1 2.171386-2 1.584893-1 3.139485-2 1.995262-1 4.498208-2 2.511886-1 6.388986-2 3.162278-1 8.995312-2 3.981072-1 1.256551-1 5.011872-1 1.741270-1 6.309573-1 2.394357-1 7.943282-1 3.267989-1 1.000000+0 4.430120-1 1.258925+0 5.966900-1 1.584893+0 7.983650-1 1.995262+0 1.061638+0 2.511886+0 1.403678+0 3.162278+0 1.846341+0 3.981072+0 2.417137+0 5.011872+0 3.151135+0 6.309573+0 4.092503+0 7.943282+0 5.297779+0 1.000000+1 6.837865+0 1.258925+1 8.802924+0 1.584893+1 1.130755+1 1.995262+1 1.449598+1 2.511886+1 1.855144+1 3.162278+1 2.370536+1 3.981072+1 3.025081+1 5.011872+1 3.855803+1 6.309573+1 4.909532+1 7.943282+1 6.245479+1 1.000000+2 7.938456+1 1.258925+2 1.008298+2 1.584893+2 1.279851+2 1.995262+2 1.623585+2 2.511886+2 2.058558+2 3.162278+2 2.608823+2 3.981072+2 3.304772+2 5.011872+2 4.184739+2 6.309573+2 5.297145+2 7.943282+2 6.703103+2 1.000000+3 8.479719+2 1.258925+3 1.072433+3 1.584893+3 1.355978+3 1.995262+3 1.714090+3 2.511886+3 2.166334+3 3.162278+3 2.737343+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.790000-6 1.043188+7 7.161434-6 1.124387+7 7.600000-6 1.213061+7 7.990000-6 1.285347+7 7.990000-6 1.844823+7 8.035261-6 1.853849+7 8.128305-6 1.874192+7 8.222426-6 1.898384+7 8.511380-6 1.981834+7 9.120108-6 2.131339+7 9.332543-6 2.180169+7 9.772372-6 2.278682+7 1.011579-5 2.350653+7 1.059254-5 2.447131+7 1.100000-5 2.524178+7 1.161449-5 2.635717+7 1.202264-5 2.704902+7 1.288250-5 2.843513+7 1.318257-5 2.888703+7 1.462177-5 3.094153+7 1.640590-5 3.318088+7 1.659587-5 3.340439+7 1.840772-5 3.535181+7 1.850000-5 3.544404+7 2.000000-5 3.676809+7 2.018366-5 3.691489+7 2.150000-5 3.779822+7 2.162719-5 3.787321+7 2.290868-5 3.846279+7 2.300000-5 3.849645+7 2.426610-5 3.878449+7 2.540973-5 3.877670+7 2.660725-5 3.849641+7 2.770000-5 3.800628+7 2.884032-5 3.726549+7 3.000000-5 3.628760+7 3.090295-5 3.537358+7 3.120000-5 3.505965+7 3.198895-5 3.416016+7 3.235937-5 3.372269+7 3.311311-5 3.278634+7 3.350000-5 3.229408+7 3.427678-5 3.127094+7 3.467369-5 3.074097+7 3.548134-5 2.963888+7 3.589219-5 2.907578+7 3.672823-5 2.791674+7 3.730000-5 2.713218+7 3.801894-5 2.614212+7 3.890451-5 2.495130+7 3.950000-5 2.416213+7 4.027170-5 2.315774+7 4.120975-5 2.197122+7 4.216965-5 2.080900+7 4.300000-5 1.983813+7 4.415704-5 1.855306+7 4.500000-5 1.766218+7 4.650000-5 1.618192+7 4.731513-5 1.542763+7 4.900000-5 1.398302+7 5.011872-5 1.310277+7 5.166000-5 1.198634+7 5.166000-5 1.686878+7 5.188000-5 1.669644+7 5.190000-5 1.668062+7 5.250000-5 1.618751+7 5.308844-5 1.569949+7 5.310000-5 1.568998+7 5.400000-5 1.494303+7 5.500000-5 1.414351+7 5.650000-5 1.300652+7 5.821032-5 1.181967+7 5.900000-5 1.131347+7 6.025596-5 1.055576+7 6.165950-5 9.777209+6 6.309573-5 9.047286+6 6.400000-5 8.620197+6 6.531306-5 8.039639+6 6.568000-5 7.884407+6 6.568000-5 9.805267+6 6.606934-5 9.660050+6 6.650000-5 9.495928+6 6.710000-5 9.262685+6 6.770000-5 9.027382+6 6.800000-5 8.908414+6 6.806000-5 8.884662+6 6.806000-5 9.304089+6 6.839116-5 9.182124+6 6.840000-5 9.178892+6 6.870000-5 9.068868+6 6.918310-5 8.887135+6 6.920000-5 8.880807+6 6.970000-5 8.694096+6 7.000000-5 8.581978+6 7.079458-5 8.291706+6 7.119000-5 8.151391+6 7.133000-5 8.101402+6 7.133000-5 8.357292+6 7.161434-5 8.263298+6 7.190000-5 8.168796+6 7.200000-5 8.135899+6 7.244360-5 7.990856+6 7.300000-5 7.812991+6 7.328245-5 7.722515+6 7.350000-5 7.653048+6 7.370000-5 7.589709+6 7.450000-5 7.342140+6 7.500000-5 7.192278+6 7.550000-5 7.044865+6 7.585776-5 6.941408+6 7.700000-5 6.622022+6 7.762471-5 6.455360+6 7.852356-5 6.220922+6 8.000000-5 5.860094+6 8.035261-5 5.777655+6 8.128305-5 5.564915+6 8.222426-5 5.361862+6 8.317638-5 5.164960+6 8.400000-5 5.003485+6 8.413951-5 4.976559+6 8.609938-5 4.616346+6 8.650000-5 4.547810+6 8.810489-5 4.286844+6 8.912509-5 4.130773+6 9.015711-5 3.981816+6 9.120108-5 3.840348+6 9.150000-5 3.800920+6 9.225714-5 3.704712+6 9.300000-5 3.614553+6 9.332543-5 3.575836+6 9.350000-5 3.555184+6 9.440609-5 3.452160+6 9.500000-5 3.387879+6 9.549926-5 3.335805+6 9.720000-5 3.169069+6 9.885531-5 3.024417+6 9.900000-5 3.012324+6 9.914000-5 3.000950+6 9.914000-5 3.068475+6 9.950000-5 3.039287+6 1.010000-4 2.925109+6 1.011579-4 2.913879+6 1.030000-4 2.790669+6 1.035142-4 2.759896+6 1.047129-4 2.692940+6 1.050000-4 2.677500+6 1.060000-4 2.628498+6 1.071519-4 2.576248+6 1.080000-4 2.542290+6 1.090000-4 2.505678+6 1.094400-4 2.490564+6 1.096478-4 2.483841+6 1.109175-4 2.447211+6 1.114600-4 2.432765+6 1.122018-4 2.414967+6 1.135011-4 2.389672+6 1.150000-4 2.367174+6 1.161449-4 2.354797+6 1.170000-4 2.348551+6 1.174898-4 2.345982+6 1.190000-4 2.341190+6 1.202264-4 2.342097+6 1.220000-4 2.349827+6 1.230269-4 2.357728+6 1.244515-4 2.372303+6 1.273503-4 2.415261+6 1.288250-4 2.443502+6 1.333521-4 2.549166+6 1.350000-4 2.595405+6 1.380384-4 2.687217+6 1.396368-4 2.740926+6 1.400000-4 2.753374+6 1.412538-4 2.795807+6 1.445440-4 2.916802+6 1.450000-4 2.934654+6 1.462177-4 2.982262+6 1.496236-4 3.118856+6 1.500000-4 3.134739+6 1.513561-4 3.193316+6 1.520000-4 3.220883+6 1.531087-4 3.267277+6 1.548817-4 3.344060+6 1.580000-4 3.486069+6 1.584893-4 3.507367+6 1.603245-4 3.589126+6 1.621810-4 3.674528+6 1.640590-4 3.763602+6 1.641700-4 3.768690+6 1.659587-4 3.848797+6 1.690000-4 3.989898+6 1.698244-4 4.029089+6 1.705000-4 4.059839+6 1.737801-4 4.206416+6 1.760000-4 4.308952+6 1.778279-4 4.385867+6 1.780000-4 4.393177+6 1.800000-4 4.478989+6 1.819701-4 4.565045+6 1.820000-4 4.566363+6 1.862087-4 4.732418+6 1.880000-4 4.804557+6 1.900000-4 4.876080+6 1.905461-4 4.895760+6 1.927525-4 4.976046+6 1.930000-4 4.985118+6 1.950000-4 5.048725+6 1.980000-4 5.145254+6 1.995262-4 5.194730+6 2.000000-4 5.209133+6 2.041738-4 5.323953+6 2.065380-4 5.389595+6 2.089296-4 5.444445+6 2.098700-4 5.466078+6 2.120000-4 5.515219+6 2.137962-4 5.556666+6 2.150000-4 5.582008+6 2.162719-4 5.605132+6 2.187762-4 5.650739+6 2.220000-4 5.709510+6 2.238721-4 5.740017+6 2.250000-4 5.755676+6 2.290868-4 5.812385+6 2.300000-4 5.825002+6 2.317395-4 5.845920+6 2.330000-4 5.861116+6 2.350000-4 5.880602+6 2.398833-4 5.928045+6 2.400000-4 5.929179+6 2.426610-4 5.950351+6 2.454709-4 5.966710+6 2.490500-4 5.987492+6 2.500000-4 5.992997+6 2.501000-4 5.993419+6 2.511886-4 5.997991+6 2.580000-4 6.012387+6 2.600160-4 6.016661+6 2.620000-4 6.018049+6 2.660725-4 6.012284+6 2.691535-4 6.008066+6 2.722701-4 5.999391+6 2.730000-4 5.997365+6 2.754229-4 5.985866+6 2.800000-4 5.964555+6 2.851018-4 5.933816+6 2.900000-4 5.896591+6 2.917427-4 5.883588+6 2.945800-4 5.858748+6 2.945800-4 6.069944+6 2.951209-4 6.065902+6 2.955000-4 6.062460+6 2.970000-4 6.047565+6 2.985383-4 6.031350+6 3.000000-4 6.015238+6 3.004800-4 6.009927+6 3.030000-4 5.981091+6 3.054921-4 5.952125+6 3.065000-4 5.939345+6 3.090295-4 5.907241+6 3.100000-4 5.893645+6 3.105200-4 5.886400+6 3.105200-4 6.054063+6 3.162278-4 5.962273+6 3.200000-4 5.905452+6 3.235937-4 5.851109+6 3.250000-4 5.828934+6 3.273407-4 5.792884+6 3.290000-4 5.768180+6 3.311311-4 5.737130+6 3.330000-4 5.710818+6 3.350000-4 5.683336+6 3.370000-4 5.655122+6 3.391100-4 5.626099+6 3.400000-4 5.614192+6 3.427678-4 5.578097+6 3.430000-4 5.574833+6 3.440000-4 5.561082+6 3.467369-4 5.524452+6 3.480000-4 5.507735+6 3.485000-4 5.501243+6 3.507519-4 5.472807+6 3.515000-4 5.462859+6 3.550000-4 5.417471+6 3.600000-4 5.356179+6 3.650000-4 5.292657+6 3.700000-4 5.232282+6 3.715352-4 5.213092+6 3.758374-4 5.160981+6 3.801894-4 5.109852+6 3.820000-4 5.087510+6 3.890451-4 5.002618+6 3.935501-4 4.947597+6 3.981072-4 4.893179+6 4.000000-4 4.871080+6 4.027170-4 4.839828+6 4.073803-4 4.784045+6 4.100000-4 4.753222+6 4.216965-4 4.615943+6 4.265795-4 4.557997+6 4.315191-4 4.501350+6 4.365158-4 4.443796+6 4.430000-4 4.371146+6 4.466836-4 4.331062+6 4.500000-4 4.294181+6 4.518559-4 4.273631+6 4.570882-4 4.216983+6 4.600000-4 4.185203+6 4.623810-4 4.159482+6 4.731513-4 4.046617+6 4.786301-4 3.988727+6 4.841724-4 3.932144+6 4.845500-4 3.928357+6 4.845500-4 4.155795+6 4.850000-4 4.151216+6 4.897788-4 4.101436+6 5.011872-4 3.986534+6 5.080000-4 3.918437+6 5.128614-4 3.870884+6 5.150000-4 3.850348+6 5.188000-4 3.813546+6 5.248075-4 3.756515+6 5.308844-4 3.700092+6 5.370318-4 3.643070+6 5.432503-4 3.586932+6 5.450000-4 3.571087+6 5.495409-4 3.530164+6 5.500000-4 3.526078+6 5.580000-4 3.456497+6 5.650000-4 3.396773+6 5.703500-4 3.350480+6 5.703500-4 3.397477+6 5.754399-4 3.354618+6 5.800000-4 3.316311+6 5.888437-4 3.243936+6 6.025596-4 3.136333+6 6.095369-4 3.082467+6 6.100000-4 3.078958+6 6.165950-4 3.029203+6 6.280000-4 2.945320+6 6.309573-4 2.924139+6 6.382635-4 2.872642+6 6.531306-4 2.771894+6 6.606934-4 2.721629+6 6.700000-4 2.661111+6 6.753200-4 2.627269+6 6.753200-4 2.684320+6 6.760830-4 2.679492+6 6.850000-4 2.624225+6 6.918310-4 2.583040+6 6.998420-4 2.536290+6 7.000000-4 2.535366+6 7.079458-4 2.489149+6 7.150000-4 2.448831+6 7.161434-4 2.442391+6 7.244360-4 2.396272+6 7.328245-4 2.351197+6 7.413102-4 2.306662+6 7.500000-4 2.262610+6 7.585776-4 2.219459+6 7.650000-4 2.187662+6 7.673615-4 2.176146+6 7.762471-4 2.133263+6 7.852356-4 2.091404+6 7.900000-4 2.069715+6 8.000000-4 2.025044+6 8.035261-4 2.009701+6 8.128305-4 1.969662+6 8.222426-4 1.930137+6 8.317638-4 1.891155+6 8.511380-4 1.815483+6 8.609938-4 1.778990+6 8.700000-4 1.746359+6 8.709636-4 1.742916+6 8.810489-4 1.707027+6 8.912509-4 1.671401+6 9.120108-4 1.602769+6 9.225714-4 1.569332+6 9.332543-4 1.536691+6 9.500000-4 1.487069+6 9.549926-4 1.472625+6 9.660509-4 1.441156+6 9.885531-4 1.379888+6 1.000000-3 1.350130+6 1.011579-3 1.321093+6 1.023293-3 1.292739+6 1.030000-3 1.276795+6 1.035142-3 1.264757+6 1.047129-3 1.236920+6 1.050000-3 1.230404+6 1.071519-3 1.183023+6 1.083927-3 1.157031+6 1.110000-3 1.105386+6 1.122018-3 1.082617+6 1.150000-3 1.031263+6 1.174898-3 9.886376+5 1.190000-3 9.641497+5 1.202264-3 9.447710+5 1.216186-3 9.233372+5 1.230269-3 9.024505+5 1.258925-3 8.616064+5 1.273503-3 8.418725+5 1.288250-3 8.226446+5 1.303167-3 8.035509+5 1.364583-3 7.319073+5 1.396368-3 6.982552+5 1.400000-3 6.945278+5 1.412538-3 6.818067+5 1.479108-3 6.198811+5 1.496236-3 6.053710+5 1.500000-3 6.022361+5 1.513561-3 5.911449+5 1.531087-3 5.769580+5 1.548817-3 5.631400+5 1.566751-3 5.496356+5 1.621810-3 5.111952+5 1.640590-3 4.990010+5 1.650000-3 4.929929+5 1.659587-3 4.869475+5 1.678804-3 4.751574+5 1.717908-3 4.524051+5 1.737801-3 4.414766+5 1.757924-3 4.307960+5 1.778279-3 4.203530+5 1.798871-3 4.100003+5 1.800000-3 4.094439+5 1.840772-3 3.901103+5 1.862087-3 3.805606+5 1.883649-3 3.712196+5 1.927525-3 3.532740+5 1.950000-3 3.443828+5 1.972423-3 3.358374+5 2.018366-3 3.193177+5 2.044800-3 3.103726+5 2.044800-3 8.514155+5 2.065380-3 8.354970+5 2.089296-3 8.175749+5 2.113489-3 8.000331+5 2.123200-3 7.931122+5 2.123200-3 9.781736+5 2.136000-3 9.724511+5 2.138000-3 9.716876+5 2.162719-3 9.625712+5 2.163000-3 9.631795+5 2.187762-3 9.569650+5 2.213095-3 9.514145+5 2.235600-3 9.464069+5 2.238721-3 9.453470+5 2.264644-3 9.397304+5 2.294100-3 9.315042+5 2.300000-3 9.295412+5 2.317395-3 9.224432+5 2.344229-3 9.122479+5 2.354000-3 9.080104+5 2.371374-3 8.993734+5 2.400000-3 8.852900+5 2.426610-3 8.677203+5 2.430000-3 8.655263+5 2.454709-3 8.471234+5 2.483133-3 8.253317+5 2.483500-3 8.250557+5 2.511886-3 8.017901+5 2.539000-3 7.803546+5 2.539000-3 9.025834+5 2.540973-3 9.009301+5 2.570396-3 8.767927+5 2.600160-3 8.533227+5 2.630268-3 8.304988+5 2.650000-3 8.160253+5 2.660725-3 8.082181+5 2.691535-3 7.859312+5 2.722701-3 7.642781+5 2.754229-3 7.434618+5 2.818383-3 7.031447+5 2.851018-3 6.837275+5 2.884032-3 6.648596+5 2.900200-3 6.558895+5 2.900200-3 6.959585+5 2.917427-3 6.863378+5 2.951209-3 6.680350+5 2.985383-3 6.500446+5 3.019952-3 6.325668+5 3.030000-3 6.276116+5 3.054921-3 6.154836+5 3.070000-3 6.081892+5 3.090295-3 5.986375+5 3.126079-3 5.823247+5 3.145700-3 5.736568+5 3.145700-3 5.981984+5 3.162278-3 5.908776+5 3.169000-3 5.879367+5 3.235937-3 5.597984+5 3.273407-3 5.449111+5 3.311311-3 5.304452+5 3.355000-3 5.142214+5 3.359000-3 5.127671+5 3.388442-3 5.021808+5 3.427678-3 4.885501+5 3.507519-3 4.623323+5 3.548134-3 4.497869+5 3.589219-3 4.376001+5 3.600000-3 4.344822+5 3.650000-3 4.204589+5 3.672823-3 4.142737+5 3.715352-3 4.030102+5 3.801894-3 3.812150+5 3.890451-3 3.605039+5 3.900000-3 3.583697+5 3.981072-3 3.409608+5 4.000000-3 3.370754+5 4.027170-3 3.316091+5 4.073803-3 3.224782+5 4.120975-3 3.135919+5 4.150000-3 3.082887+5 4.168694-3 3.049409+5 4.216965-3 2.964873+5 4.315191-3 2.803147+5 4.365158-3 2.725018+5 4.415704-3 2.649196+5 4.466836-3 2.575535+5 4.518559-3 2.503605+5 4.570882-3 2.433038+5 4.623810-3 2.364373+5 4.677351-3 2.297756+5 4.786301-3 2.169733+5 4.841724-3 2.108581+5 5.011872-3 1.935326+5 5.069907-3 1.880913+5 5.128614-3 1.828077+5 5.150000-3 1.809343+5 5.188000-3 1.776623+5 5.248075-3 1.726627+5 5.308844-3 1.677831+5 5.400000-3 1.608290+5 5.432503-3 1.584337+5 5.495409-3 1.539070+5 5.623413-3 1.452589+5 5.650000-3 1.435482+5 5.688529-3 1.411159+5 5.754399-3 1.370942+5 5.821032-3 1.331677+5 5.888437-3 1.293388+5 6.000000-3 1.233435+5 6.025596-3 1.220188+5 6.095369-3 1.185107+5 6.165950-3 1.150977+5 6.237348-3 1.117882+5 6.309573-3 1.085767+5 6.500000-3 1.007158+5 6.531306-3 9.950121+4 6.683439-3 9.386837+4 6.760830-3 9.117831+4 6.800000-3 8.985844+4 6.839116-3 8.856280+4 6.918310-3 8.598966+4 6.998420-3 8.349372+4 7.000000-3 8.344555+4 7.079458-3 8.106704+4 7.161434-3 7.871195+4 7.300000-3 7.494973+4 7.413102-3 7.206595+4 7.498942-3 6.997805+4 7.500000-3 6.995286+4 7.585776-3 6.793674+4 7.673615-3 6.595622+4 7.762471-3 6.403518+4 7.852356-3 6.216478+4 8.000000-3 5.925574+4 8.035261-3 5.859003+4 8.128305-3 5.688242+4 8.317638-3 5.360545+4 8.511380-3 5.052642+4 8.609938-3 4.905635+4 8.709636-3 4.762083+4 9.015711-3 4.354208+4 9.120108-3 4.226122+4 9.225714-3 4.101486+4 9.332543-3 3.980639+4 9.440609-3 3.863522+4 9.549926-3 3.749958+4 9.660509-3 3.639333+4 9.800000-3 3.506343+4 9.885531-3 3.428164+4 1.000000-2 3.327364+4 1.011579-2 3.229312+4 1.023293-2 3.133613+4 1.035142-2 3.040713+4 1.047129-2 2.950677+4 1.059254-2 2.863439+4 1.083927-2 2.696897+4 1.096478-2 2.616949+4 1.109175-2 2.539271+4 1.121400-2 2.467466+4 1.121400-2 6.394625+4 1.129000-2 6.278846+4 1.135011-2 6.189317+4 1.148154-2 5.999071+4 1.161449-2 5.814731+4 1.174898-2 5.636074+4 1.188502-2 5.464593+4 1.202264-2 5.298374+4 1.216186-2 5.137285+4 1.230269-2 4.981180+4 1.258925-2 4.682676+4 1.260000-2 4.671956+4 1.273503-2 4.538640+4 1.285900-2 4.420646+4 1.285900-2 6.145954+4 1.288250-2 6.116002+4 1.318257-2 5.750183+4 1.321000-2 5.718259+4 1.333521-2 5.576588+4 1.339600-2 5.509541+4 1.339600-2 6.370521+4 1.364583-2 6.079765+4 1.380384-2 5.905547+4 1.400000-2 5.698726+4 1.420000-2 5.497623+4 1.428894-2 5.410707+4 1.440000-2 5.304867+4 1.445440-2 5.254489+4 1.450000-2 5.212779+4 1.462177-2 5.103610+4 1.479108-2 4.956939+4 1.496236-2 4.813050+4 1.500000-2 4.781898+4 1.513561-2 4.671911+4 1.531087-2 4.534983+4 1.548817-2 4.402170+4 1.566751-2 4.273358+4 1.584893-2 4.147934+4 1.603245-2 4.026274+4 1.621810-2 3.908738+4 1.640590-2 3.794725+4 1.659587-2 3.684027+4 1.678804-2 3.575786+4 1.698244-2 3.470776+4 1.717908-2 3.368954+4 1.737801-2 3.270092+4 1.757924-2 3.173477+4 1.778279-2 3.079232+4 1.800000-2 2.982959+4 1.840772-2 2.813153+4 1.850000-2 2.776618+4 1.862087-2 2.729723+4 1.883649-2 2.648543+4 1.905461-2 2.569826+4 1.927525-2 2.493496+4 1.949845-2 2.419463+4 1.972423-2 2.347685+4 2.018366-2 2.210028+4 2.041738-2 2.144336+4 2.065380-2 2.080449+4 2.089296-2 2.018432+4 2.137962-2 1.900019+4 2.150000-2 1.871945+4 2.162719-2 1.842884+4 2.187762-2 1.787196+4 2.238721-2 1.680940+4 2.264644-2 1.630247+4 2.290868-2 1.581107+4 2.317395-2 1.533480+4 2.371374-2 1.442594+4 2.398833-2 1.399190+4 2.400000-2 1.397386+4 2.426610-2 1.357115+4 2.454709-2 1.316301+4 2.483133-2 1.276452+4 2.500000-2 1.253597+4 2.511886-2 1.237819+4 2.570396-2 1.164071+4 2.600160-2 1.128904+4 2.691535-2 1.029766+4 2.722701-2 9.982869+3 2.754229-2 9.677498+3 2.818383-2 9.095169+3 2.851018-2 8.817571+3 2.884032-2 8.548606+3 2.917427-2 8.287813+3 2.951209-2 8.034953+3 2.985383-2 7.789999+3 3.000000-2 7.688406+3 3.019952-2 7.552630+3 3.126079-2 6.882341+3 3.162278-2 6.671622+3 3.198895-2 6.467285+3 3.235937-2 6.269351+3 3.311311-2 5.891845+3 3.349654-2 5.711865+3 3.388442-2 5.536530+3 3.400000-2 5.485687+3 3.427678-2 5.366457+3 3.467369-2 5.200562+3 3.507519-2 5.039879+3 3.548134-2 4.884272+3 3.589219-2 4.733559+3 3.672823-2 4.446248+3 3.715352-2 4.309216+3 3.758374-2 4.176508+3 3.845918-2 3.923506+3 3.890451-2 3.802901+3 3.935501-2 3.685627+3 3.981072-2 3.572043+3 4.000000-2 3.526263+3 4.027170-2 3.461898+3 4.073803-2 3.354623+3 4.168694-2 3.149285+3 4.265795-2 2.956798+3 4.300000-2 2.892821+3 4.415704-2 2.690109+3 4.466836-2 2.606792+3 4.500000-2 2.554658+3 4.518559-2 2.525964+3 4.570882-2 2.447420+3 4.677351-2 2.297699+3 4.731513-2 2.226319+3 4.841724-2 2.090128+3 5.011872-2 1.901042+3 5.069907-2 1.841717+3 5.128614-2 1.784285+3 5.188000-2 1.728682+3 5.248075-2 1.674850+3 5.308844-2 1.622374+3 5.370318-2 1.571573+3 5.432503-2 1.522388+3 5.495409-2 1.474760+3 5.500000-2 1.471365+3 5.559043-2 1.428618+3 5.888437-2 1.218830+3 5.956621-2 1.180800+3 6.025596-2 1.143952+3 6.095369-2 1.108278+3 6.165950-2 1.073659+3 6.237348-2 1.040054+3 6.382635-2 9.755876+2 6.456542-2 9.448973+2 6.531306-2 9.151777+2 6.606934-2 8.864066+2 6.683439-2 8.585233+2 7.161434-2 7.089284+2 7.328245-2 6.651773+2 7.413102-2 6.443430+2 7.498942-2 6.240382+2 7.585776-2 6.043842+2 7.631400-2 5.943981+2 7.631400-2 2.939181+3 7.673615-2 2.896345+3 7.720000-2 2.850265+3 7.762471-2 2.813845+3 7.830000-2 2.748313+3 7.943282-2 2.655392+3 7.950000-2 2.650020+3 8.000000-2 2.605408+3 8.035261-2 2.574564+3 8.128305-2 2.495526+3 8.413951-2 2.287917+3 8.511380-2 2.222646+3 8.609938-2 2.156137+3 8.810489-2 2.029053+3 8.912509-2 1.968283+3 9.120108-2 1.852159+3 9.225714-2 1.796703+3 9.332543-2 1.742913+3 9.549926-2 1.641440+3 1.000000-1 1.455902+3 1.011580-1 1.412904+3 1.035142-1 1.330702+3 1.047129-1 1.291417+3 1.059254-1 1.252354+3 1.071519-1 1.214478+3 1.096478-1 1.142135+3 1.122019-1 1.074111+3 1.148154-1 1.010154+3 1.161449-1 9.796208+2 1.188502-1 9.213050+2 1.244515-1 8.148860+2 1.258925-1 7.902679+2 1.273503-1 7.663941+2 1.288250-1 7.432189+2 1.364583-1 6.374720+2 1.380384-1 6.182063+2 1.396368-1 5.993606+2 1.428894-1 5.633790+2 1.445440-1 5.462140+2 1.479108-1 5.134417+2 1.513561-1 4.826482+2 1.531088-1 4.679514+2 1.566751-1 4.398870+2 1.584893-1 4.264937+2 1.659587-1 3.768840+2 1.678804-1 3.654094+2 1.698244-1 3.542845+2 1.717908-1 3.434998+2 1.737801-1 3.330434+2 1.778279-1 3.130800+2 1.798871-1 3.035556+2 1.819701-1 2.943254+2 1.840772-1 2.853766+2 1.883649-1 2.682882+2 1.949845-1 2.445579+2 1.972423-1 2.371247+2 2.000000-1 2.284607+2 2.018366-1 2.229305+2 2.041738-1 2.161556+2 2.065380-1 2.095872+2 2.089296-1 2.032192+2 2.113489-1 1.970455+2 2.137962-1 1.910599+2 2.162719-1 1.852585+2 2.187762-1 1.796339+2 2.238721-1 1.688970+2 2.264644-1 1.637720+2 2.290868-1 1.588026+2 2.344229-1 1.493124+2 2.371374-1 1.447824+2 2.426610-1 1.362228+2 2.454709-1 1.321349+2 2.483133-1 1.281699+2 2.511886-1 1.243262+2 2.540973-1 1.205990+2 2.570396-1 1.169839+2 2.600160-1 1.134790+2 2.630268-1 1.100792+2 2.660725-1 1.067852+2 2.691535-1 1.035898+2 2.786121-1 9.456687+1 2.818383-1 9.173755+1 2.833700-1 9.045047+1 2.851018-1 8.902576+1 2.884032-1 8.639490+1 2.917427-1 8.384198+1 2.951209-1 8.136456+1 2.985383-1 7.896069+1 3.000060-1 7.795893+1 3.019952-1 7.662911+1 3.090295-1 7.217082+1 3.126079-1 7.004014+1 3.162278-1 6.797306+1 3.198895-1 6.596711+1 3.235937-1 6.402407+1 3.311311-1 6.036514+1 3.349654-1 5.861493+1 3.388442-1 5.691553+1 3.427678-1 5.526569+1 3.467369-1 5.366450+1 3.548134-1 5.060022+1 3.589219-1 4.913440+1 3.630781-1 4.771166+1 3.672823-1 4.633034+1 3.715352-1 4.498917+1 3.758374-1 4.368735+1 3.801894-1 4.244683+1 3.890451-1 4.007059+1 3.935501-1 3.893360+1 3.981072-1 3.782897+1 4.027170-1 3.675571+1 4.073803-1 3.571338+1 4.120975-1 3.470077+1 4.216965-1 3.276090+1 4.265795-1 3.183208+1 4.365158-1 3.008606+1 4.415705-1 2.925101+1 4.466836-1 2.843974+1 4.518559-1 2.765137+1 4.570882-1 2.688494+1 4.623810-1 2.613978+1 4.677351-1 2.541528+1 4.786301-1 2.402603+1 4.897788-1 2.273903+1 4.954502-1 2.212200+1 5.000000-1 2.164454+1 5.011872-1 2.152238+1 5.069907-1 2.094052+1 5.128614-1 2.037440+1 5.188000-1 1.982360+1 5.308844-1 1.876632+1 5.370318-1 1.825903+1 5.432503-1 1.776546+1 5.495409-1 1.729551+1 5.559043-1 1.683822+1 5.623413-1 1.639365+1 5.688529-1 1.596089+1 5.754399-1 1.554054+1 5.888437-1 1.473281+1 5.956621-1 1.434484+1 6.025596-1 1.396708+1 6.095369-1 1.359929+1 6.165950-1 1.324902+1 6.237348-1 1.290803+1 6.309573-1 1.257612+1 6.456542-1 1.193771+1 6.531306-1 1.163153+1 6.606935-1 1.133321+1 6.683439-1 1.104255+1 6.760830-1 1.076580+1 6.839117-1 1.049611+1 6.918310-1 1.023338+1 6.998420-1 9.977276+0 7.079458-1 9.727590+0 7.161434-1 9.484339+0 7.244360-1 9.247173+0 7.328245-1 9.015943+0 7.413102-1 8.791095+0 7.498942-1 8.571857+0 7.585776-1 8.363056+0 7.673615-1 8.159468+0 7.762471-1 7.960872+0 7.943282-1 7.578075+0 8.035261-1 7.393638+0 8.222427-1 7.038370+0 8.317638-1 6.867767+0 8.511380-1 6.538873+0 8.609938-1 6.383756+0 8.709636-1 6.232486+0 8.810489-1 6.084815+0 8.912509-1 5.940645+0 9.015711-1 5.799892+0 9.120108-1 5.662661+0 9.225714-1 5.528679+0 9.332543-1 5.398305+0 9.440609-1 5.271151+0 9.549926-1 5.147000+0 9.660509-1 5.025775+0 9.772372-1 4.911106+0 9.885531-1 4.799074+0 1.000000+0 4.689688+0 1.011579+0 4.583014+0 1.023293+0 4.478766+0 1.035142+0 4.376894+0 1.047129+0 4.277578+0 1.059254+0 4.180596+0 1.071519+0 4.085815+0 1.083927+0 3.993179+0 1.096478+0 3.902664+0 1.109175+0 3.816202+0 1.122018+0 3.731666+0 1.135011+0 3.649044+0 1.148154+0 3.568265+0 1.161449+0 3.489276+0 1.174898+0 3.412096+0 1.188502+0 3.336630+0 1.202264+0 3.263047+0 1.216186+0 3.191137+0 1.230269+0 3.120854+0 1.244515+0 3.052119+0 1.250000+0 3.026270+0 1.258925+0 2.986077+0 1.273503+0 2.922165+0 1.303167+0 2.798419+0 1.318257+0 2.738581+0 1.333521+0 2.680075+0 1.364583+0 2.567179+0 1.380384+0 2.512528+0 1.412538+0 2.406701+0 1.445440+0 2.308033+0 1.479108+0 2.213411+0 1.500000+0 2.157771+0 1.513561+0 2.122933+0 1.531087+0 2.079189+0 1.566751+0 1.994386+0 1.584893+0 1.953300+0 1.659587+0 1.801365+0 1.678804+0 1.765298+0 1.698244+0 1.729955+0 1.717908+0 1.695428+0 1.737801+0 1.661613+0 1.798871+0 1.564166+0 1.819701+0 1.533744+0 1.862087+0 1.474688+0 1.905461+0 1.417905+0 1.927525+0 1.390362+0 1.949845+0 1.363357+0 1.972423+0 1.336953+0 1.995262+0 1.311082+0 2.000000+0 1.305814+0 2.044000+0 1.258464+0 2.065380+0 1.236434+0 2.089296+0 1.213204+0 2.137962+0 1.168047+0 2.162719+0 1.146102+0 2.187762+0 1.124592+0 2.213095+0 1.103488+0 2.238721+0 1.082857+0 2.264644+0 1.062630+0 2.317395+0 1.023303+0 2.344229+0 1.004189+0 2.371374+0 9.859909-1 2.426610+0 9.505791-1 2.454709+0 9.333528-1 2.483133+0 9.164562-1 2.511886+0 8.998675-1 2.540973+0 8.836370-1 2.570396+0 8.677130-1 2.630268+0 8.367221-1 2.660725+0 8.216442-1 2.691535+0 8.072692-1 2.786121+0 7.656363-1 2.818383+0 7.522413-1 2.851018+0 7.390933-1 2.884032+0 7.261762-1 2.917427+0 7.135257-1 2.951209+0 7.011049-1 3.019952+0 6.769090-1 3.090295+0 6.535485-1 3.126079+0 6.424858-1 3.235937+0 6.104085-1 3.273407+0 6.000762-1 3.311311+0 5.899282-1 3.349654+0 5.799529-1 3.388442+0 5.701781-1 3.427678+0 5.605759-1 3.507519+0 5.418546-1 3.589219+0 5.237586-1 3.630781+0 5.151843-1 3.758374+0 4.902950-1 3.801894+0 4.822687-1 3.845918+0 4.743813-1 3.890451+0 4.666238-1 3.935501+0 4.590181-1 4.000000+0 4.484980-1 4.073803+0 4.369548-1 4.168694+0 4.228386-1 4.216965+0 4.161405-1 4.415704+0 3.903926-1 4.466836+0 3.842085-1 4.518559+0 3.781280-1 4.570882+0 3.721444-1 4.623810+0 3.662751-1 4.677351+0 3.605030-1 4.786301+0 3.492307-1 4.897788+0 3.383109-1 4.954502+0 3.331264-1 5.188000+0 3.131711-1 5.248075+0 3.083719-1 5.308844+0 3.036507-1 5.370318+0 2.990021-1 5.432503+0 2.944249-1 5.495409+0 2.899325-1 5.559043+0 2.855121-1 5.688529+0 2.768730-1 5.821032+0 2.684952-1 5.888437+0 2.645154-1 6.165950+0 2.491774-1 6.237348+0 2.454839-1 6.309573+0 2.418486-1 6.382635+0 2.382675-1 6.456542+0 2.347395-1 6.531306+0 2.312746-1 6.606934+0 2.278636-1 6.760830+0 2.211918-1 6.918310+0 2.147154-1 7.000000+0 2.115709-1 7.413102+0 1.968607-1 7.498942+0 1.940327-1 7.585776+0 1.912477-1 7.673615+0 1.885030-1 7.762471+0 1.857978-1 7.852356+0 1.831391-1 8.035261+0 1.779389-1 8.222427+0 1.728865-1 8.413951+0 1.679776-1 8.511380+0 1.656322-1 8.609938+0 1.633195-1 9.120108+0 1.522315-1 9.225714+0 1.501060-1 9.332543+0 1.480115-1 9.440609+0 1.459466-1 9.549926+0 1.439107-1 9.660509+0 1.419033-1 9.772372+0 1.399305-1 1.000000+1 1.360699-1 1.011579+1 1.341799-1 1.023293+1 1.323160-1 1.035142+1 1.305257-1 1.083927+1 1.236034-1 1.096478+1 1.219310-1 1.100000+1 1.214694-1 1.135011+1 1.170507-1 1.174898+1 1.123664-1 1.202264+1 1.093486-1 1.230269+1 1.064118-1 1.244515+1 1.049775-1 1.258925+1 1.035637-1 1.273503+1 1.021689-1 1.288250+1 1.008256-1 1.303167+1 9.950010-2 1.318257+1 9.819197-2 1.400000+1 9.163456-2 1.500000+1 8.465283-2 1.513561+1 8.378226-2 1.548817+1 8.159551-2 1.584893+1 7.946594-2 1.603245+1 7.842481-2 1.621810+1 7.739795-2 1.640590+1 7.638457-2 1.659587+1 7.540697-2 1.678804+1 7.444188-2 1.698244+1 7.348965-2 1.800000+1 6.886002-2 1.949845+1 6.297104-2 1.972423+1 6.216576-2 2.018366+1 6.058598-2 2.089296+1 5.829127-2 2.113489+1 5.754772-2 2.137962+1 5.681409-2 2.162719+1 5.608983-2 2.200000+1 5.505429-2 2.213095+1 5.469940-2 2.344229+1 5.137364-2 2.570396+1 4.646846-2 2.630268+1 4.531726-2 2.722701+1 4.364370-2 2.851018+1 4.150806-2 2.884032+1 4.099175-2 2.917427+1 4.048213-2 2.951209+1 3.997884-2 3.000000+1 3.927283-2 3.054921+1 3.852037-2 3.090295+1 3.805057-2 3.273407+1 3.578615-2 3.548134+1 3.284089-2 3.630781+1 3.204487-2 3.758374+1 3.088688-2 3.981072+1 2.904915-2 4.000000+1 2.890296-2 4.027170+1 2.869561-2 4.073803+1 2.834650-2 4.168694+1 2.766099-2 4.265795+1 2.699207-2 4.365158+1 2.634964-2 4.466836+1 2.572275-2 4.841724+1 2.364383-2 5.248075+1 2.173313-2 5.308844+1 2.147310-2 5.495409+1 2.071152-2 5.754399+1 1.973795-2 5.821032+1 1.950219-2 5.888437+1 1.926932-2 6.025596+1 1.881190-2 6.237348+1 1.814606-2 6.309573+1 1.793206-2 6.456542+1 1.751160-2 6.683439+1 1.689950-2 8.035261+1 1.397864-2 9.332543+1 1.198153-2 9.772372+1 1.142648-2 1.023293+2 1.089714-2 1.071519+2 1.039233-2 1.083927+2 1.027004-2 1.096478+2 1.014920-2 1.122018+2 9.911764-3 1.135011+2 9.796519-3 1.161449+2 9.570110-3 1.273503+2 8.715625-3 1.659587+2 6.660813-3 1.927525+2 5.721739-3 2.041738+2 5.396892-3 2.137962+2 5.150346-3 2.162719+2 5.090546-3 2.187762+2 5.031442-3 2.238721+2 4.915285-3 2.264644+2 4.858578-3 2.317395+2 4.747134-3 2.540973+2 4.326350-3 3.311311+2 3.313111-3 3.845918+2 2.849290-3 4.073803+2 2.688715-3 4.265795+2 2.566795-3 4.315191+2 2.537206-3 4.365158+2 2.507959-3 4.466836+2 2.450471-3 4.518559+2 2.422332-3 4.623810+2 2.367025-3 1.011579+3 1.079329-3 1.318257+3 8.275646-4 1.531087+3 7.122033-4 1.621810+3 6.722452-4 1.698244+3 6.418989-4 1.717908+3 6.345316-4 1.737801+3 6.272484-4 1.778279+3 6.129324-4 1.798871+3 6.059125-4 1.840772+3 5.921142-4 1.000000+5 1.087996-5 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.790000-6 6.790000-6 7.990000-6 6.790000-6 7.990000-6 7.153922-6 1.659587-5 7.225087-6 3.589219-5 7.300223-6 5.166000-5 7.319336-6 5.166000-5 2.015314-5 5.250000-5 2.037155-5 5.310000-5 2.046300-5 5.400000-5 2.054380-5 5.650000-5 2.058223-5 6.568000-5 2.038010-5 6.568000-5 2.925439-5 6.650000-5 2.964975-5 6.770000-5 3.005582-5 6.806000-5 3.014376-5 6.806000-5 3.185302-5 6.920000-5 3.226230-5 7.133000-5 3.282620-5 7.133000-5 3.400514-5 7.370000-5 3.476476-5 8.650000-5 3.802537-5 9.225714-5 3.971380-5 9.549926-5 4.081193-5 9.914000-5 4.223061-5 9.914000-5 4.348296-5 1.035142-4 4.548173-5 1.080000-4 4.782917-5 1.220000-4 5.586932-5 1.273503-4 5.855115-5 1.333521-4 6.105165-5 1.396368-4 6.308369-5 1.462177-4 6.465855-5 1.531087-4 6.584203-5 1.621810-4 6.688606-5 1.737801-4 6.768040-5 1.905461-4 6.825201-5 2.238721-4 6.861630-5 2.945800-4 6.862921-5 2.945800-4 7.068972-5 3.105200-4 7.054867-5 3.105200-4 7.222616-5 3.290000-4 7.177080-5 3.485000-4 7.180937-5 3.801894-4 7.262804-5 4.430000-4 7.505416-5 4.845500-4 7.679159-5 4.845500-4 8.237703-5 5.703500-4 8.636577-5 5.703500-4 8.784610-5 6.606934-4 9.175675-5 6.753200-4 9.235387-5 6.753200-4 9.521283-5 7.900000-4 9.988856-5 9.332543-4 1.048664-4 1.083927-3 1.092352-4 1.273503-3 1.138732-4 1.500000-3 1.183895-4 1.757924-3 1.226044-4 2.044800-3 1.264332-4 2.044800-3 1.848556-4 2.123200-3 1.855651-4 2.123200-3 1.935782-4 2.317395-3 1.982717-4 2.430000-3 1.998598-4 2.539000-3 2.000446-4 2.539000-3 2.150920-4 2.900200-3 2.170348-4 2.900200-3 2.243631-4 3.145700-3 2.262232-4 3.145700-3 2.333193-4 4.120975-3 2.416866-4 5.432503-3 2.505410-4 7.000000-3 2.587704-4 8.709636-3 2.657756-4 1.109175-2 2.733594-4 1.121400-2 2.736886-4 1.121400-2 3.515801-4 1.285900-2 3.527016-4 1.285900-2 3.701312-4 1.339600-2 3.704511-4 1.339600-2 3.970999-4 1.905461-2 4.076735-4 2.691535-2 4.180990-4 3.758374-2 4.281737-4 5.128614-2 4.374372-4 6.683439-2 4.449314-4 7.631400-2 4.485295-4 7.631400-2 4.106040-4 1.883649-1 4.131478-4 5.308844-1 4.148139-4 1.000000+5 4.151174-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.790000-6 0.0 3.105200-4 0.0 3.105200-4 1.133335-9 3.162278-4 1.056169-9 3.200000-4 1.012670-9 3.250000-4 9.66378-10 3.290000-4 9.36364-10 3.330000-4 9.11313-10 3.370000-4 8.92112-10 3.400000-4 8.81994-10 3.440000-4 8.74345-10 3.485000-4 8.73754-10 3.515000-4 8.76843-10 3.550000-4 8.84606-10 3.600000-4 9.01559-10 3.650000-4 9.25472-10 3.715352-4 9.64569-10 3.801894-4 1.027465-9 3.890451-4 1.102410-9 4.027170-4 1.226757-9 4.100000-4 1.297870-9 4.265795-4 1.471171-9 4.365158-4 1.580950-9 4.570882-4 1.818703-9 4.845500-4 2.142233-9 4.845500-4 4.011122-9 5.580000-4 5.046091-9 5.703500-4 5.203466-9 5.703500-4 6.122057-9 6.309573-4 7.020683-9 6.753200-4 7.631595-9 6.753200-4 8.882124-9 7.413102-4 9.863561-9 7.900000-4 1.055367-8 8.810489-4 1.173445-8 9.332543-4 1.237935-8 1.011579-3 1.326454-8 1.083927-3 1.402651-8 1.190000-3 1.506489-8 1.303167-3 1.607779-8 1.412538-3 1.696596-8 1.566751-3 1.810260-8 1.737801-3 1.923442-8 1.950000-3 2.047631-8 2.044800-3 2.098118-8 2.044800-3 2.041677-8 2.123200-3 2.055826-8 2.123200-3 8.389684-6 2.162719-3 8.992869-6 2.163000-3 9.023132-6 2.235600-3 1.040189-5 2.238721-3 1.044596-5 2.264644-3 1.094654-5 2.294100-3 1.156137-5 2.344229-3 1.255024-5 2.354000-3 1.272190-5 2.400000-3 1.341889-5 2.430000-3 1.367448-5 2.454709-3 1.378707-5 2.483500-3 1.386631-5 2.539000-3 1.384701-5 2.539000-3 1.337127-5 2.900200-3 1.322203-5 2.900200-3 1.458935-5 3.145700-3 1.464520-5 3.145700-3 1.481561-5 4.073803-3 1.499751-5 5.248075-3 1.516963-5 7.673615-3 1.540743-5 1.121400-2 1.563953-5 1.121400-2 1.757116-3 1.285900-2 1.746270-3 1.285900-2 2.425430-3 1.339600-2 2.426447-3 1.339600-2 2.526101-3 1.737801-2 2.550790-3 2.600160-2 2.568261-3 4.518559-2 2.573329-3 7.631400-2 2.568254-3 7.631400-2 5.386290-2 9.120108-2 5.429355-2 1.161449-1 5.473946-2 1.584893-1 5.511882-2 2.660725-1 5.546786-2 7.413102-1 5.594583-2 1.202264+0 5.608302-2 1.000000+5 5.606415-2 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.790000-6 0.0 7.990000-6 1.200000-6 7.990000-6 8.360784-7 8.128305-6 9.767082-7 8.511380-6 1.353356-6 1.318257-5 5.979134-6 4.027170-5 3.296360-5 5.166000-5 4.434066-5 5.166000-5 3.150686-5 5.250000-5 3.212845-5 5.400000-5 3.345620-5 5.650000-5 3.591777-5 6.568000-5 4.529990-5 6.568000-5 3.642561-5 6.650000-5 3.685025-5 6.806000-5 3.791624-5 6.806000-5 3.620698-5 6.970000-5 3.728381-5 7.133000-5 3.850380-5 7.133000-5 3.732486-5 7.370000-5 3.893524-5 8.650000-5 4.847463-5 9.300000-5 5.304230-5 9.720000-5 5.574755-5 9.914000-5 5.690939-5 9.914000-5 5.565704-5 1.035142-4 5.803247-5 1.094400-4 6.080864-5 1.220000-4 6.613068-5 1.273503-4 6.879915-5 1.333521-4 7.230045-5 1.400000-4 7.681632-5 1.462177-4 8.155915-5 1.548817-4 8.879672-5 1.659587-4 9.876169-5 1.820000-4 1.139793-4 2.187762-4 1.501861-4 2.945800-4 2.259508-4 2.945800-4 2.238903-4 3.105200-4 2.399713-4 3.105200-4 2.382927-4 3.485000-4 2.766898-4 4.570882-4 3.814375-4 4.845500-4 4.077563-4 4.845500-4 4.021690-4 5.703500-4 4.839790-4 5.703500-4 4.824978-4 6.753200-4 5.829585-4 6.753200-4 5.800983-4 1.050000-3 9.416701-4 1.800000-3 1.676764-3 2.044800-3 1.918346-3 2.044800-3 1.859924-3 2.123200-3 1.937614-3 2.123200-3 1.921232-3 2.483500-3 2.269586-3 2.539000-3 2.325108-3 2.539000-3 2.310537-3 2.900200-3 2.669943-3 2.900200-3 2.661248-3 3.145700-3 2.904832-3 3.145700-3 2.897565-3 1.000000-2 9.714298-3 1.121400-2 1.092467-2 1.121400-2 9.105304-3 1.285900-2 1.076003-2 1.285900-2 1.006344-2 1.339600-2 1.059910-2 1.339600-2 1.047280-2 2.754229-2 2.455408-2 7.631400-2 7.329722-2 7.631400-2 2.204049-2 7.830000-2 2.397210-2 8.035261-2 2.593990-2 8.810489-2 3.346477-2 1.122019-1 5.709959-2 1.778279-1 1.221923-1 1.972423+0 1.915940+0 1.000000+5 9.999994+4 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.631400-2 2.344783+3 7.720000-2 2.274620+3 7.762471-2 2.246902+3 7.830000-2 2.194840+3 7.950000-2 2.119420+3 8.128305-2 1.996686+3 8.511380-2 1.783752+3 9.332543-2 1.403271+3 1.047129-1 1.044844+3 1.380384-1 5.039535+2 2.371374-1 1.189650+2 2.818383-1 7.550685+1 3.235937-1 5.276237+1 3.758374-1 3.604948+1 4.265795-1 2.629280+1 4.786301-1 1.986390+1 5.432503-1 1.470452+1 6.095369-1 1.126744+1 6.683439-1 9.157019+0 7.498942-1 7.117140+0 8.511380-1 5.435808+0 9.660509-1 4.180816+0 1.096478+0 3.247773+0 1.250000+0 2.518403+0 1.412538+0 2.002521+0 1.584893+0 1.625077+0 1.798871+0 1.301324+0 2.065380+0 1.028695+0 2.344229+0 8.354881-1 2.660725+0 6.835997-1 3.090295+0 5.437394-1 3.589219+0 4.357540-1 4.168694+0 3.517892-1 4.897788+0 2.814658-1 5.821032+0 2.233813-1 6.918310+0 1.786393-1 8.413951+0 1.397530-1 1.023293+1 1.100844-1 1.273503+1 8.500826-2 1.640590+1 6.355463-2 2.162719+1 4.666895-2 3.000000+1 3.267600-2 4.265795+1 2.245801-2 6.237348+1 1.509799-2 1.122018+2 8.247116-3 2.238721+2 4.089878-3 4.466836+2 2.038979-3 1.778279+3 5.100113-4 1.000000+5 9.053100-6 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.631400-2 4.009900-4 1.000000+5 4.009900-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.631400-2 6.686600-2 1.000000+5 6.686600-2 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.631400-2 9.047010-3 1.000000+5 9.999993+4 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.339600-2 8.609793+3 1.400000-2 7.986820+3 1.440000-2 7.598880+3 1.496236-2 7.139236+3 1.603245-2 6.298408+3 1.757924-2 5.361190+3 1.862087-2 4.822466+3 2.041738-2 4.052831+3 2.162719-2 3.629466+3 2.691535-2 2.350401+3 3.019952-2 1.851572+3 3.427678-2 1.419310+3 4.027170-2 1.000237+3 4.500000-2 7.818700+2 5.248075-2 5.518212+2 6.237348-2 3.694366+2 7.413102-2 2.450076+2 8.810489-2 1.611095+2 1.047129-1 1.051529+2 1.273503-1 6.435316+1 1.659587-1 3.281981+1 2.630268-1 1.011919+1 3.198895-1 6.177242+0 3.758374-1 4.141958+0 4.365158-1 2.878165+0 5.011872-1 2.071695+0 5.688529-1 1.543938+0 6.456542-1 1.158914+0 7.328245-1 8.763974-1 8.222427-1 6.845842-1 9.225714-1 5.387350-1 1.035142+0 4.273344-1 1.188502+0 3.259048-1 1.333521+0 2.617068-1 1.500000+0 2.105982-1 1.698244+0 1.688716-1 1.949845+0 1.330891-1 2.213095+0 1.076770-1 2.511886+0 8.781478-2 2.884032+0 7.087048-2 3.349654+0 5.660456-2 3.890451+0 4.554669-2 4.570882+0 3.632312-2 5.432503+0 2.873643-2 6.456542+0 2.291266-2 7.762471+0 1.813528-2 9.660509+0 1.385152-2 1.230269+1 1.038882-2 1.584893+1 7.759124-3 2.089296+1 5.691761-3 2.851018+1 4.052932-3 3.981072+1 2.836199-3 5.754399+1 1.927054-3 1.071519+2 1.014840-3 2.137962+2 5.030076-4 4.265795+2 2.506997-4 1.698244+3 6.269753-5 1.000000+5 1.062800-6 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.339600-2 5.676300-4 1.000000+5 5.676300-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.339600-2 3.163800-3 1.000000+5 3.163800-3 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.339600-2 9.664570-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.285900-2 1.725308+4 1.321000-2 1.610100+4 1.420000-2 1.343900+4 1.566751-2 1.041900+4 1.737801-2 7.947100+3 1.972423-2 5.647200+3 2.454709-2 3.099000+3 3.126079-2 1.563800+3 3.890451-2 8.306400+2 4.841724-2 4.364500+2 6.095369-2 2.195900+2 8.035261-2 9.545300+1 1.428894-1 1.666596+1 1.798871-1 8.348064+0 2.187762-1 4.673314+0 2.570396-1 2.918927+0 2.985383-1 1.899458+0 3.427678-1 1.287055+0 3.890451-1 9.072936-1 4.415705-1 6.444757-1 4.954502-1 4.757127-1 5.559043-1 3.537718-1 6.165950-1 2.728733-1 6.839117-1 2.119568-1 7.585776-1 1.657780-1 8.609938-1 1.236401-1 9.332543-1 1.032766-1 1.000000+0 8.911676-2 1.096478+0 7.387904-2 1.202264+0 6.166783-2 1.318257+0 5.183308-2 1.479108+0 4.205054-2 1.717908+0 3.224266-2 1.972423+0 2.541835-2 2.238721+0 2.058848-2 2.540973+0 1.680402-2 2.917427+0 1.356909-2 3.388442+0 1.084340-2 3.935501+0 8.730091-3 4.623810+0 6.965975-3 5.495409+0 5.513943-3 6.531306+0 4.398695-3 7.852356+0 3.483051-3 9.772372+0 2.661490-3 1.244515+1 1.997216-3 1.603245+1 1.492163-3 2.113489+1 1.095017-3 2.884032+1 7.799369-4 4.027170+1 5.459418-4 5.821032+1 3.710223-4 1.071519+2 1.977329-4 2.137962+2 9.800683-5 4.265795+2 4.884868-5 1.698244+3 1.221617-5 1.000000+5 2.070800-7 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.285900-2 4.147900-4 1.000000+5 4.147900-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.285900-2 4.165600-3 1.000000+5 4.165600-3 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.285900-2 8.278610-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.121400-2 3.927159+4 1.174898-2 3.452783+4 1.260000-2 2.854476+4 1.479108-2 1.830157+4 1.659587-2 1.318361+4 2.137962-2 6.311794+3 2.691535-2 3.168261+3 3.349654-2 1.622299+3 4.073803-2 8.818735+2 5.011872-2 4.580805+2 6.165950-2 2.359378+2 7.943282-2 1.039512+2 1.479108-1 1.369698+1 1.778279-1 7.552651+0 2.137962-1 4.194415+0 2.483133-1 2.620158+0 2.833700-1 1.742234+0 3.198895-1 1.206220+0 3.589219-1 8.565843-1 4.027170-1 6.128672-1 4.466836-1 4.566762-1 4.954502-1 3.427044-1 5.495409-1 2.591155-1 6.095369-1 1.975451-1 6.760830-1 1.517972-1 7.498942-1 1.175432-1 8.222427-1 9.426550-2 9.015711-1 7.610675-2 9.885531-1 6.186176-2 1.047129+0 5.472400-2 1.122018+0 4.755008-2 1.216186+0 4.066071-2 1.333521+0 3.425923-2 1.566751+0 2.568267-2 1.819701+0 1.974816-2 2.065380+0 1.591664-2 2.344229+0 1.292733-2 2.660725+0 1.057737-2 3.090295+0 8.413459-3 3.589219+0 6.742571-3 4.168694+0 5.443290-3 4.897788+0 4.355072-3 5.821032+0 3.456425-3 6.918310+0 2.764095-3 8.413951+0 2.162437-3 1.023293+1 1.703368-3 1.273503+1 1.315355-3 1.640590+1 9.833616-4 2.162719+1 7.221242-4 3.000000+1 5.056100-4 4.265795+1 3.474975-4 6.237348+1 2.336171-4 1.122018+2 1.276110-4 2.238721+2 6.328331-5 4.466836+2 3.154973-5 1.778279+3 7.891503-6 1.000000+5 1.400800-7 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.121400-2 4.005200-4 1.000000+5 4.005200-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.121400-2 2.851300-3 1.000000+5 2.851300-3 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.121400-2 7.962180-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.145700-3 2.454153+4 3.355000-3 2.282380+4 3.600000-3 2.074960+4 3.801894-3 1.932745+4 4.027170-3 1.779512+4 5.248075-3 1.196796+4 5.650000-3 1.063844+4 7.000000-3 7.450680+3 7.852356-3 6.097202+3 9.120108-3 4.671616+3 1.096478-2 3.324259+3 1.258925-2 2.555695+3 1.450000-2 1.942222+3 1.717908-2 1.385644+3 2.041738-2 9.737656+2 2.426610-2 6.784677+2 2.884032-2 4.687471+2 3.388442-2 3.294596+2 4.000000-2 2.274427+2 4.731513-2 1.551275+2 5.559043-2 1.066553+2 6.606934-2 7.085694+1 7.943282-2 4.545084+1 9.549926-2 2.890189+1 1.188502-1 1.674706+1 1.531088-1 8.832283+0 2.511886-1 2.499877+0 3.126079-1 1.440782+0 3.715352-1 9.388978-1 4.265795-1 6.708316-1 4.897788-1 4.826338-1 5.559043-1 3.592865-1 6.237348-1 2.764653-1 7.079458-1 2.087805-1 8.035261-1 1.588707-1 9.015711-1 1.247033-1 1.000000+0 1.009902-1 1.161449+0 7.518325-2 1.303167+0 6.029407-2 1.479108+0 4.766900-2 1.659587+0 3.879241-2 1.905461+0 3.053516-2 2.162719+0 2.468000-2 2.454709+0 2.010057-2 2.818383+0 1.619844-2 3.273407+0 1.292243-2 3.801894+0 1.038621-2 4.466836+0 8.273666-3 5.248075+0 6.640254-3 6.237348+0 5.286418-3 7.498942+0 4.178331-3 9.225714+0 3.232422-3 1.096478+1 2.626468-3 1.318257+1 2.115360-3 1.678804+1 1.603847-3 2.200000+1 1.186200-3 3.054921+1 8.299849-4 4.365158+1 5.677385-4 6.456542+1 3.773147-4 1.135011+2 2.111171-4 2.264644+2 1.047067-4 4.518559+2 5.220565-5 1.798871+3 1.305859-5 1.000000+5 2.344900-7 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.145700-3 3.991900-4 1.000000+5 3.991900-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.145700-3 1.879900-5 1.000000+5 1.879900-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.145700-3 2.727711-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 2.900200-3 4.006907+4 3.030000-3 3.822020+4 3.070000-3 3.754940+4 3.162278-3 3.637353+4 3.427678-3 3.298593+4 3.672823-3 3.005104+4 4.120975-3 2.546487+4 4.518559-3 2.214111+4 4.841724-3 1.982243+4 5.150000-3 1.786370+4 6.095369-3 1.323512+4 6.531306-3 1.164191+4 7.413102-3 9.095910+3 8.128305-3 7.565656+3 9.015711-3 6.096992+3 1.011579-2 4.769360+3 1.135011-2 3.697049+3 1.273503-2 2.848712+3 1.462177-2 2.062943+3 1.640590-2 1.565041+3 1.850000-2 1.165950+3 2.150000-2 7.992580+2 2.500000-2 5.419920+2 2.917427-2 3.608313+2 3.400000-2 2.390189+2 3.981072-2 1.550732+2 4.677351-2 9.891308+1 5.500000-2 6.248686+1 6.683439-2 3.567178+1 8.413951-2 1.823941+1 1.096478-1 8.368614+0 1.659587-1 2.462849+0 2.089296-1 1.256604+0 2.511886-1 7.386812-1 2.951209-1 4.675094-1 3.388442-1 3.180228-1 3.890451-1 2.179518-1 4.415705-1 1.553100-1 5.000000-1 1.122369-1 5.623413-1 8.318799-2 6.237348-1 6.430854-2 6.918310-1 5.004991-2 7.673615-1 3.922264-2 8.609938-1 3.011749-2 9.332543-1 2.519128-2 1.000000+0 2.174367-2 1.083927+0 1.844342-2 1.188502+0 1.539088-2 1.318257+0 1.265469-2 1.479108+0 1.026039-2 1.717908+0 7.866149-3 1.972423+0 6.201199-3 2.238721+0 5.022318-3 2.540973+0 4.099045-3 2.917427+0 3.310003-3 3.388442+0 2.645102-3 3.935501+0 2.129565-3 4.623810+0 1.699218-3 5.495409+0 1.345002-3 6.531306+0 1.072965-3 7.852356+0 8.496318-4 9.772372+0 6.492242-4 1.244515+1 4.871949-4 1.603245+1 3.639916-4 2.113489+1 2.671030-4 2.884032+1 1.902538-4 4.000000+1 1.341300-4 5.754399+1 9.159169-5 1.071519+2 4.823288-5 2.137962+2 2.390760-5 4.265795+2 1.191561-5 1.698244+3 2.979951-6 1.000000+5 5.051300-8 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 2.900200-3 3.443200-4 1.000000+5 3.443200-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.900200-3 3.697100-5 1.000000+5 3.697100-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 2.900200-3 2.518909-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.539000-3 1.222288+5 2.660725-3 1.148993+5 2.722701-3 1.105774+5 2.818383-3 1.051010+5 3.054921-3 9.262237+4 3.311311-3 8.088740+4 3.801894-3 6.369894+4 4.168694-3 5.392553+4 4.466836-3 4.730999+4 5.400000-3 3.253708+4 5.821032-3 2.786843+4 6.839116-3 1.976613+4 7.500000-3 1.612272+4 8.609938-3 1.178824+4 9.549926-3 9.250965+3 1.083927-2 6.832035+3 1.230269-2 5.002320+3 1.380384-2 3.742734+3 1.566751-2 2.700683+3 1.800000-2 1.872628+3 2.065380-2 1.291850+3 2.371374-2 8.825793+2 2.722701-2 5.983347+2 3.162278-2 3.894851+2 3.672823-2 2.514424+2 4.265795-2 1.611065+2 5.011872-2 9.897657+1 5.956621-2 5.825040+1 7.161434-2 3.283059+1 8.912509-2 1.648007+1 1.737801-1 1.967982+0 2.065380-1 1.142469+0 2.483133-1 6.449717-1 2.851018-1 4.230232-1 3.235937-1 2.893816-1 3.630781-1 2.062856-1 4.073803-1 1.481119-1 4.518559-1 1.106794-1 5.011872-1 8.327600-2 5.559043-1 6.312245-2 6.165950-1 4.820524-2 6.839117-1 3.709772-2 7.585776-1 2.877239-2 8.609938-1 2.124763-2 9.225714-1 1.811797-2 9.772372-1 1.595480-2 1.047129+0 1.380200-2 1.135011+0 1.173295-2 1.244515+0 9.818259-3 1.380384+0 8.108710-3 1.678804+0 5.721710-3 1.927525+0 4.503856-3 2.187762+0 3.642017-3 2.483133+0 2.968217-3 2.851018+0 2.393584-3 3.311311+0 1.910592-3 3.845918+0 1.536480-3 4.518559+0 1.224637-3 5.308844+0 9.833792-4 6.309573+0 7.833087-4 7.585776+0 6.194018-4 9.440609+0 4.726902-4 1.174898+1 3.639145-4 1.500000+1 2.741700-4 1.949845+1 2.039350-4 2.570396+1 1.504820-4 3.548134+1 1.063486-4 5.248075+1 7.038406-5 9.332543+1 3.880203-5 1.659587+2 2.157548-5 3.311311+2 1.073417-5 1.318257+3 2.681135-6 1.000000+5 3.526800-8 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.539000-3 3.111600-4 1.000000+5 3.111600-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.539000-3 1.033400-5 1.000000+5 1.033400-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.539000-3 2.217506-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.123200-3 1.850614+5 2.162719-3 1.952335+5 2.163000-3 1.960158+5 2.213095-3 2.142544+5 2.235600-3 2.220982+5 2.238721-3 2.227911+5 2.294100-3 2.430151+5 2.344229-3 2.583830+5 2.354000-3 2.607062+5 2.400000-3 2.681303+5 2.430000-3 2.671446+5 2.454709-3 2.636202+5 2.483500-3 2.582303+5 2.754229-3 1.976554+5 3.054921-3 1.500615+5 3.359000-3 1.158068+5 3.672823-3 9.019240+4 4.027170-3 6.929552+4 4.518559-3 4.956940+4 5.248075-3 3.158759+4 5.754399-3 2.383877+4 6.800000-3 1.412520+4 7.500000-3 1.032480+4 8.709636-3 6.347264+3 1.011579-2 3.857700+3 1.135011-2 2.612513+3 1.288250-2 1.691167+3 1.500000-2 9.939000+2 1.757924-2 5.656485+2 2.041738-2 3.296416+2 2.400000-2 1.824316+2 2.818383-2 1.005155+2 3.311311-2 5.488443+1 3.935501-2 2.850319+1 4.841724-2 1.288306+1 6.382635-2 4.429549+0 1.035142-1 6.805235-1 1.288250-1 2.936189-1 1.566751-1 1.394786-1 1.819701-1 7.945384-2 2.041738-1 5.184632-2 2.344229-1 3.129426-2 2.660725-1 1.984951-2 3.000060-1 1.298783-2 3.349654-1 8.853592-3 3.715352-1 6.215770-3 4.120975-1 4.393796-3 4.570882-1 3.128792-3 5.069907-1 2.245044-3 5.559043-1 1.682475-3 6.025596-1 1.315390-3 6.531306-1 1.036971-3 7.161434-1 7.961314-4 7.943282-1 5.962075-4 8.609938-1 4.743884-4 9.120108-1 4.053355-4 9.549926-1 3.594364-4 1.000000+0 3.207335-4 1.047129+0 2.882965-4 1.096478+0 2.609953-4 1.148154+0 2.377189-4 1.216186+0 2.129905-4 1.318257+0 1.841102-4 1.513561+0 1.452512-4 1.862087+0 1.009466-4 2.089296+0 8.300324-5 2.371374+0 6.746003-5 2.691535+0 5.523144-5 3.126079+0 4.395868-5 3.630781+0 3.524960-5 4.216965+0 2.847269-5 4.954502+0 2.279291-5 5.888437+0 1.809878-5 7.000000+0 1.447600-5 8.511380+0 1.133353-5 1.035142+1 8.931783-6 1.273503+1 6.992528-6 1.640590+1 5.227749-6 2.162719+1 3.838835-6 3.000000+1 2.687900-6 4.265795+1 1.847347-6 6.237348+1 1.241904-6 1.122018+2 6.783853-7 2.238721+2 3.364158-7 4.466836+2 1.677196-7 1.778279+3 4.195194-8 1.000000+5 7.44680-10 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.123200-3 2.279200-4 1.000000+5 2.279200-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.123200-3 4.425700-5 1.000000+5 4.425700-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.123200-3 1.851023-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.044800-3 5.410429+5 2.136000-3 5.020008+5 2.238721-3 4.683752+5 2.264644-3 4.598481+5 2.300000-3 4.453092+5 2.371374-3 4.122929+5 2.650000-3 3.081390+5 2.951209-3 2.304360+5 3.311311-3 1.674157+5 3.715352-3 1.205008+5 4.315191-3 7.770192+4 4.677351-3 6.089656+4 5.432503-3 3.845674+4 6.000000-3 2.812110+4 6.839116-3 1.850487+4 7.762471-3 1.223319+4 8.709636-3 8.345031+3 1.000000-2 5.228622+3 1.135011-2 3.379428+3 1.288250-2 2.168737+3 1.462177-2 1.382320+3 1.678804-2 8.394306+2 1.927525-2 5.059906+2 2.238721-2 2.900793+2 2.600160-2 1.650134+2 3.000000-2 9.560940+1 3.548134-2 5.002461+1 4.300000-2 2.361486+1 5.248075-2 1.076244+1 1.035142-1 7.214961-1 1.258925-1 3.331271-1 1.479108-1 1.774434-1 1.717908-1 9.951658-2 1.949845-1 6.145235-2 2.187762-1 3.994869-2 2.426610-1 2.729432-2 2.691535-1 1.877499-2 2.985383-1 1.300904-2 3.311311-1 9.082364-3 3.630781-1 6.644947-3 3.981072-1 4.895948-3 4.365158-1 3.635293-3 4.786301-1 2.720367-3 5.188000-1 2.125171-3 5.688529-1 1.615131-3 6.309573-1 1.196439-3 6.839117-1 9.533567-4 7.413102-1 7.645899-4 8.317638-1 5.635601-4 8.810489-1 4.861569-4 9.332543-1 4.220726-4 9.772372-1 3.790047-4 1.023293+0 3.422221-4 1.083927+0 3.030714-4 1.161449+0 2.638563-4 1.258925+0 2.263400-4 1.380384+0 1.915521-4 1.819701+0 1.178628-4 2.065380+0 9.496431-5 2.344229+0 7.712369-5 2.660725+0 6.310994-5 3.090295+0 5.020693-5 3.589219+0 4.023613-5 4.168694+0 3.248279-5 4.897788+0 2.598890-5 5.821032+0 2.062638-5 6.918310+0 1.649464-5 8.413951+0 1.290431-5 1.023293+1 1.016484-5 1.273503+1 7.849347-6 1.640590+1 5.868398-6 2.162719+1 4.309313-6 3.000000+1 3.017200-6 4.265795+1 2.073724-6 6.237348+1 1.394155-6 1.122018+2 7.615054-7 2.238721+2 3.776427-7 4.466836+2 1.882739-7 1.778279+3 4.709264-8 1.000000+5 8.35940-10 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.044800-3 2.183700-4 1.000000+5 2.183700-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.044800-3 2.009300-8 1.000000+5 2.009300-8 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.044800-3 1.826410-3 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 6.753200-4 5.705150+4 7.650000-4 5.262300+4 8.609938-4 4.752379+4 9.332543-4 4.421583+4 9.885531-4 4.172847+4 1.202264-3 3.351704+4 1.303167-3 3.042761+4 1.500000-3 2.538480+4 1.659587-3 2.218182+4 1.862087-3 1.886329+4 2.138000-3 1.542779+4 2.483133-3 1.228595+4 2.818383-3 1.006940+4 3.311311-3 7.750992+3 3.890451-3 5.915728+3 4.570882-3 4.479190+3 5.432503-3 3.298159+3 6.500000-3 2.379900+3 7.762471-3 1.709893+3 9.225714-3 1.231001+3 1.109175-2 8.608115+2 1.333521-2 5.974237+2 1.584893-2 4.211968+2 1.905461-2 2.879101+2 2.290868-2 1.951810+2 2.722701-2 1.345583+2 3.235937-2 9.208580+1 3.845918-2 6.255667+1 4.570882-2 4.217921+1 5.432503-2 2.822777+1 6.456542-2 1.875089+1 7.762471-2 1.202686+1 9.332543-2 7.656712+0 1.148154-1 4.570135+0 1.513561-1 2.276148+0 2.483133-1 6.446058-1 3.090295-1 3.714932-1 3.672823-1 2.420180-1 4.265795-1 1.681203-1 4.897788-1 1.209679-1 5.559043-1 9.005688-2 6.237348-1 6.929654-2 7.079458-1 5.232717-2 8.035261-1 3.981630-2 9.015711-1 3.125595-2 1.000000+0 2.531299-2 1.161449+0 1.884454-2 1.303167+0 1.511298-2 1.479108+0 1.194829-2 1.659587+0 9.723255-3 1.905461+0 7.653539-3 2.162719+0 6.185981-3 2.454709+0 5.038173-3 2.818383+0 4.060113-3 3.273407+0 3.238986-3 3.801894+0 2.603278-3 4.466836+0 2.073746-3 5.248075+0 1.664327-3 6.237348+0 1.325000-3 7.498942+0 1.047273-3 9.332543+0 7.988895-4 1.135011+1 6.318120-4 1.400000+1 4.945600-4 1.800000+1 3.716600-4 2.344229+1 2.773116-4 3.273407+1 1.931707-4 4.841724+1 1.276091-4 8.035261+1 7.544775-5 1.273503+2 4.705785-5 2.540973+2 2.336403-5 1.011579+3 5.826037-6 1.000000+5 5.877500-8 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 6.753200-4 2.268700-4 1.000000+5 2.268700-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.753200-4 6.647000-8 1.000000+5 6.647000-8 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 6.753200-4 4.483835-4 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 5.703500-4 4.699746+4 7.000000-4 4.638320+4 7.413102-4 4.600241+4 7.900000-4 4.531780+4 8.609938-4 4.392550+4 9.332543-4 4.235767+4 1.011579-3 4.051788+4 1.071519-3 3.903609+4 1.150000-3 3.701620+4 1.258925-3 3.430278+4 1.364583-3 3.185293+4 1.479108-3 2.934457+4 1.640590-3 2.617801+4 1.778279-3 2.381046+4 1.950000-3 2.120580+4 2.162719-3 1.849196+4 2.371374-3 1.625462+4 2.660725-3 1.372711+4 2.951209-3 1.169956+4 3.311311-3 9.724604+3 3.715352-3 8.015520+3 4.150000-3 6.611360+3 4.677351-3 5.328211+3 5.308844-3 4.204657+3 6.000000-3 3.318560+3 6.760830-3 2.616033+3 7.585776-3 2.066489+3 8.609938-3 1.582986+3 9.800000-3 1.196296+3 1.109175-2 9.087451+2 1.258925-2 6.812138+2 1.428894-2 5.070247+2 1.640590-2 3.644907+2 1.883649-2 2.598745+2 2.162719-2 1.838769+2 2.483133-2 1.291288+2 2.851018-2 9.003965+1 3.311311-2 6.046310+1 3.845918-2 4.030248+1 4.518559-2 2.583953+1 5.370318-2 1.592036+1 6.456542-2 9.420729+0 8.035261-2 5.009005+0 1.047129-1 2.310699+0 1.798871-1 4.717428-1 2.162719-1 2.765057-1 2.570396-1 1.689254-1 3.019952-1 1.072099-1 3.467369-1 7.309195-2 3.935501-1 5.178566-2 4.466836-1 3.695612-2 5.011872-1 2.738155-2 5.623413-1 2.043197-2 6.237348-1 1.580267-2 6.918310-1 1.230370-2 7.673615-1 9.644077-3 8.709636-1 7.210453-3 9.440609-1 6.035150-3 1.011579+0 5.216671-3 1.109175+0 4.329811-3 1.216186+0 3.617205-3 1.333521+0 3.042393-3 1.513561+0 2.418594-3 1.737801+0 1.893624-3 1.995262+0 1.493754-3 2.264644+0 1.210813-3 2.570396+0 9.887799-4 2.951209+0 7.987547-4 3.427678+0 6.386357-4 4.000000+0 5.110000-4 4.677351+0 4.107142-4 5.559043+0 3.252793-4 6.606934+0 2.596153-4 8.035261+0 2.027373-4 1.000000+1 1.550500-4 1.258925+1 1.180476-4 1.621810+1 8.822409-5 2.137962+1 6.476273-5 2.951209+1 4.557137-5 4.168694+1 3.152921-5 6.025596+1 2.144206-5 1.096478+2 1.156863-5 2.187762+2 5.735835-6 4.365158+2 2.859166-6 1.737801+3 7.150952-7 1.000000+5 1.240400-8 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 5.703500-4 1.933800-4 1.000000+5 1.933800-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.703500-4 7.160900-8 1.000000+5 7.160900-8 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 5.703500-4 3.768984-4 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 4.845500-4 2.274378+5 5.580000-4 2.158574+5 6.309573-4 1.990481+5 7.150000-4 1.795596+5 7.852356-4 1.650520+5 8.700000-4 1.492860+5 9.332543-4 1.385465+5 1.030000-3 1.236564+5 1.150000-3 1.081268+5 1.258925-3 9.613311+4 1.412538-3 8.209205+4 1.548817-3 7.194638+4 1.737801-3 6.052775+4 1.927525-3 5.148950+4 2.162719-3 4.270174+4 2.426610-3 3.516441+4 2.722701-3 2.875608+4 3.054921-3 2.335194+4 3.427678-3 1.883734+4 3.900000-3 1.469036+4 4.415704-3 1.147521+4 5.011872-3 8.852392+3 5.623413-3 6.946110+3 6.309573-3 5.417149+3 7.079458-3 4.199713+3 8.035261-3 3.152142+3 9.120108-3 2.349105+3 1.023293-2 1.787089+3 1.161449-2 1.313952+3 1.318257-2 9.594101+2 1.500000-2 6.909640+2 1.717908-2 4.856014+2 1.972423-2 3.364410+2 2.264644-2 2.312253+2 2.600160-2 1.577011+2 3.000000-2 1.052924+2 3.467369-2 6.941601+1 4.027170-2 4.477792+1 4.677351-2 2.866970+1 5.495409-2 1.760530+1 6.531306-2 1.036021+1 8.000000-2 5.511040+0 1.011580-1 2.631799+0 1.778279-1 4.401450-1 2.113489-1 2.562309-1 2.570396-1 1.400257-1 2.951209-1 9.205310-2 3.349654-1 6.314455-2 3.758374-1 4.513748-2 4.216965-1 3.250484-2 4.677351-1 2.435519-2 5.188000-1 1.837453-2 5.754399-1 1.396353-2 6.309573-1 1.101188-2 6.998420-1 8.494279-3 7.762471-1 6.604130-3 8.709636-1 5.021057-3 9.332543-1 4.287824-3 9.885531-1 3.781096-3 1.071519+0 3.199235-3 1.174898+0 2.664148-3 1.273503+0 2.284491-3 1.412538+0 1.889767-3 1.698244+0 1.362117-3 1.949845+0 1.072840-3 2.213095+0 8.681532-4 2.511886+0 7.080207-4 2.884032+0 5.713250-4 3.349654+0 4.562954-4 3.890451+0 3.671539-4 4.570882+0 2.927969-4 5.370318+0 2.352345-4 6.382635+0 1.874692-4 7.673615+0 1.483067-4 9.549926+0 1.132305-4 1.202264+1 8.603259-5 1.548817+1 6.420829-5 2.018366+1 4.767246-5 2.722701+1 3.434125-5 3.758374+1 2.430151-5 5.495409+1 1.629622-5 1.023293+2 8.575096-6 2.041738+2 4.248159-6 4.073803+2 2.116725-6 1.621810+3 5.292598-7 1.000000+5 8.567200-9 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 4.845500-4 1.788500-4 1.000000+5 1.788500-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.845500-4 3.629100-8 1.000000+5 3.629100-8 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 4.845500-4 3.056637-4 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 3.105200-4 1.676632+5 3.162278-4 1.538785+5 3.200000-4 1.461348+5 3.250000-4 1.376476+5 3.290000-4 1.319824+5 3.330000-4 1.271740+5 3.370000-4 1.232804+5 3.400000-4 1.210000+5 3.440000-4 1.188160+5 3.480000-4 1.175264+5 3.515000-4 1.170508+5 3.550000-4 1.171060+5 3.600000-4 1.180000+5 3.650000-4 1.196932+5 3.715352-4 1.228743+5 3.801894-4 1.282944+5 4.216965-4 1.600855+5 4.430000-4 1.768736+5 4.600000-4 1.896244+5 4.731513-4 1.986186+5 4.850000-4 2.059200+5 5.011872-4 2.145345+5 5.188000-4 2.223195+5 5.370318-4 2.288487+5 5.580000-4 2.347852+5 5.800000-4 2.393208+5 6.025596-4 2.421512+5 6.280000-4 2.434744+5 6.531306-4 2.431511+5 6.850000-4 2.410752+5 7.161434-4 2.377297+5 7.500000-4 2.328772+5 7.900000-4 2.258196+5 8.317638-4 2.174948+5 8.810489-4 2.071720+5 9.332543-4 1.960518+5 9.885531-4 1.842576+5 1.050000-3 1.715372+5 1.122018-3 1.575192+5 1.202264-3 1.431570+5 1.288250-3 1.291567+5 1.400000-3 1.131904+5 1.513561-3 9.925576+4 1.650000-3 8.510000+4 1.778279-3 7.399646+4 1.927525-3 6.322520+4 2.113489-3 5.241123+4 2.300000-3 4.380280+4 2.511886-3 3.608125+4 2.754229-3 2.924772+4 3.019952-3 2.354128+4 3.311311-3 1.881589+4 3.650000-3 1.474508+4 4.073803-3 1.110487+4 4.570882-3 8.173807+3 5.069907-3 6.155013+3 5.623413-3 4.602781+3 6.237348-3 3.418485+3 6.918310-3 2.522284+3 7.673615-3 1.849227+3 8.511380-3 1.347294+3 9.440609-3 9.756815+2 1.059254-2 6.771380+2 1.188502-2 4.665277+2 1.333521-2 3.191971+2 1.513561-2 2.086485+2 1.717908-2 1.353335+2 1.949845-2 8.714959+1 2.238721-2 5.350558+1 2.570396-2 3.260665+1 2.985383-2 1.892201+1 3.507519-2 1.044613+1 4.168694-2 5.483259+0 5.069907-2 2.619365+0 6.382635-2 1.089164+0 1.122019-1 1.254869-1 1.396368-1 5.465682-2 1.698244-1 2.617819-2 1.972423-1 1.501669-2 2.238721-1 9.452047-3 2.540973-1 5.991852-3 2.884032-1 3.827315-3 3.235937-1 2.564054-3 3.630781-1 1.730277-3 4.027170-1 1.222752-3 4.466836-1 8.700688-4 4.954502-1 6.237039-4 5.432503-1 4.668615-4 5.956621-1 3.519613-4 6.456542-1 2.771798-4 7.079458-1 2.126033-4 8.035261-1 1.492172-4 8.609938-1 1.226618-4 9.120108-1 1.048370-4 9.549926-1 9.298675-5 1.000000+0 8.299208-5 1.047129+0 7.461202-5 1.096478+0 6.755377-5 1.148154+0 6.153245-5 1.216186+0 5.513224-5 1.318257+0 4.765551-5 1.531087+0 3.683918-5 1.862087+0 2.612901-5 2.089296+0 2.148376-5 2.371374+0 1.746062-5 2.691535+0 1.429623-5 3.126079+0 1.137894-5 3.630781+0 9.124344-6 4.216965+0 7.369971-6 4.954502+0 5.899712-6 5.888437+0 4.684729-6 7.000000+0 3.747000-6 8.511380+0 2.933551-6 1.035142+1 2.311886-6 1.288250+1 1.785916-6 1.640590+1 1.353202-6 2.137962+1 1.006354-6 2.951209+1 7.081522-7 4.168694+1 4.899409-7 6.025596+1 3.331946-7 1.096478+2 1.797742-7 2.187762+2 8.913088-8 4.365158+2 4.442951-8 1.737801+3 1.111197-8 1.000000+5 1.92760-10 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 3.105200-4 1.311200-4 1.000000+5 1.311200-4 1 77000 7 7 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.105200-4 4.092300-8 1.000000+5 4.092300-8 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.105200-4 1.793591-4 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 2.945800-4 2.111964+5 2.955000-4 2.123082+5 2.970000-4 2.127702+5 2.985383-4 2.121774+5 3.004800-4 2.103440+5 3.030000-4 2.068266+5 3.065000-4 2.008950+5 3.162278-4 1.842659+5 3.200000-4 1.793136+5 3.235937-4 1.758631+5 3.273407-4 1.736330+5 3.311311-4 1.727062+5 3.350000-4 1.729950+5 3.391100-4 1.745052+5 3.430000-4 1.769352+5 3.485000-4 1.817922+5 3.550000-4 1.892388+5 3.650000-4 2.030478+5 3.820000-4 2.287740+5 3.935501-4 2.459936+5 4.073803-4 2.658778+5 4.216965-4 2.856789+5 4.365158-4 3.050565+5 4.500000-4 3.211878+5 4.623810-4 3.343722+5 4.731513-4 3.444426+5 4.897788-4 3.575482+5 5.080000-4 3.689214+5 5.248075-4 3.771505+5 5.450000-4 3.845976+5 5.650000-4 3.895488+5 5.888437-4 3.924581+5 6.100000-4 3.926214+5 6.382635-4 3.900742+5 6.700000-4 3.845586+5 7.000000-4 3.775224+5 7.328245-4 3.682156+5 7.673615-4 3.569791+5 8.128305-4 3.408074+5 8.609938-4 3.231283+5 9.120108-4 3.045045+5 9.660509-4 2.850925+5 1.035142-3 2.614276+5 1.110000-3 2.377482+5 1.190000-3 2.147616+5 1.288250-3 1.897207+5 1.396368-3 1.659297+5 1.513561-3 1.440153+5 1.640590-3 1.240928+5 1.778279-3 1.061880+5 1.927525-3 9.027618+4 2.113489-3 7.439958+4 2.300000-3 6.186900+4 2.511886-3 5.069509+4 2.754229-3 4.087648+4 3.054921-3 3.181806+4 3.388442-3 2.455058+4 3.715352-3 1.936355+4 4.073803-3 1.518062+4 4.570882-3 1.110159+4 5.128614-3 8.044170+3 5.754399-3 5.778896+3 6.500000-3 4.034622+3 7.300000-3 2.840568+3 8.128305-3 2.037848+3 9.015711-3 1.470114+3 1.023293-2 9.781873+2 1.148154-2 6.702092+2 1.288250-2 4.559253+2 1.445440-2 3.080109+2 1.621810-2 2.066741+2 1.840772-2 1.322663+2 2.089296-2 8.402553+1 2.398833-2 5.081768+1 2.754229-2 3.050160+1 3.198895-2 1.740847+1 3.758374-2 9.438727+0 4.415704-2 5.079267+0 5.308844-2 2.482699+0 6.683439-2 1.006177+0 1.122019-1 1.307604-1 1.364583-1 6.080077-2 1.584893-1 3.407677-2 1.819701-1 2.011404-2 2.041738-1 1.304930-2 2.290868-1 8.528260-3 2.540973-1 5.854003-3 2.818383-1 4.045354-3 3.126079-1 2.815235-3 3.427678-1 2.052653-3 3.758374-1 1.506643-3 4.120975-1 1.113807-3 4.518559-1 8.297073-4 4.897788-1 6.455174-4 5.308844-1 5.056448-4 5.754399-1 3.986997-4 6.237348-1 3.163696-4 6.760830-1 2.526148-4 7.328245-1 2.029870-4 8.511380-1 1.369167-4 9.015711-1 1.183316-4 9.549926-1 1.029624-4 1.000000+0 9.265593-5 1.059254+0 8.181526-5 1.122018+0 7.268312-5 1.202264+0 6.349462-5 1.303167+0 5.465348-5 1.445440+0 4.546421-5 1.819701+0 3.033655-5 2.065380+0 2.444480-5 2.344229+0 1.985395-5 2.660725+0 1.624462-5 3.090295+0 1.292109-5 3.589219+0 1.035516-5 4.168694+0 8.359830-6 4.897788+0 6.688529-6 5.821032+0 5.308264-6 6.918310+0 4.245056-6 8.413951+0 3.321028-6 1.023293+1 2.616056-6 1.273503+1 2.020101-6 1.640590+1 1.510283-6 2.137962+1 1.123168-6 2.951209+1 7.903631-7 4.168694+1 5.468178-7 6.025596+1 3.718734-7 1.096478+2 2.006415-7 2.187762+2 9.947703-8 4.365158+2 4.958770-8 1.737801+3 1.240181-8 1.000000+5 2.15140-10 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 2.945800-4 1.278500-4 1.000000+5 1.278500-4 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 2.945800-4 1.667300-4 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 7.133000-5 2.558904+5 7.161434-5 2.621073+5 7.200000-5 2.692788+5 7.244360-5 2.759443+5 7.300000-5 2.826702+5 7.370000-5 2.888694+5 7.450000-5 2.940366+5 7.550000-5 2.981208+5 7.700000-5 3.013890+5 7.852356-5 3.024596+5 8.035261-5 3.019067+5 8.413951-5 2.979557+5 8.912509-5 2.921565+5 9.225714-5 2.901757+5 9.500000-5 2.905020+5 9.720000-5 2.926152+5 9.950000-5 2.969856+5 1.011579-4 3.016575+5 1.030000-4 3.085176+5 1.050000-4 3.180840+5 1.071519-4 3.309651+5 1.094400-4 3.476641+5 1.114600-4 3.650490+5 1.135011-4 3.850667+5 1.161449-4 4.145672+5 1.190000-4 4.507014+5 1.244515-4 5.305733+5 1.333521-4 6.848645+5 1.396368-4 8.064222+5 1.450000-4 9.161280+5 1.513561-4 1.051604+6 1.580000-4 1.197426+6 1.641700-4 1.334210+6 1.705000-4 1.473426+6 1.760000-4 1.591038+6 1.820000-4 1.712784+6 1.880000-4 1.825230+6 1.930000-4 1.910826+6 1.995262-4 2.011132+6 2.065380-4 2.104862+6 2.137962-4 2.187232+6 2.220000-4 2.263356+6 2.300000-4 2.321826+6 2.400000-4 2.376306+6 2.500000-4 2.412360+6 2.600160-4 2.432041+6 2.691535-4 2.436568+6 2.800000-4 2.426352+6 2.917427-4 2.398693+6 3.054921-4 2.349707+6 3.200000-4 2.285004+6 3.350000-4 2.209014+6 3.507519-4 2.122989+6 3.700000-4 2.013576+6 3.890451-4 1.903458+6 4.100000-4 1.781748+6 4.315191-4 1.659021+6 4.570882-4 1.520633+6 4.850000-4 1.380750+6 5.150000-4 1.243722+6 5.432503-4 1.126996+6 5.754399-4 1.006969+6 6.165950-4 8.729139+5 6.606934-4 7.514252+5 7.079458-4 6.423035+5 7.585776-4 5.453250+5 8.222426-4 4.467354+5 8.810489-4 3.743702+5 9.549926-4 3.025247+5 1.035142-3 2.425868+5 1.122018-3 1.933797+5 1.230269-3 1.480698+5 1.364583-3 1.086129+5 1.513561-3 7.893961+4 1.678804-3 5.686014+4 1.862087-3 4.062039+4 2.089296-3 2.768945+4 2.317395-3 1.944223+4 2.570396-3 1.355992+4 2.851018-3 9.393191+3 3.169000-3 6.411776+3 3.548134-3 4.229757+3 3.981072-3 2.746438+3 4.466836-3 1.769174+3 5.011872-3 1.131083+3 5.623413-3 7.179442+2 6.309573-3 4.525814+2 7.161434-3 2.703449+2 8.128305-3 1.602154+2 9.225714-3 9.422919+1 1.035142-2 5.777006+1 1.174898-2 3.346859+1 1.333521-2 1.924683+1 1.531087-2 1.044414+1 1.778279-2 5.341568+0 2.089296-2 2.573870+0 2.483133-2 1.168442+0 3.019952-2 4.735035-1 3.715352-2 1.799623-1 7.498942-2 6.612494-3 9.225714-2 2.510434-3 1.059254-1 1.323756-3 1.244515-1 6.319703-4 1.445440-1 3.203017-4 1.678804-1 1.632694-4 1.883649-1 9.791673-5 2.041738-1 6.883316-5 2.264644-1 4.412338-5 2.511886-1 2.850199-5 2.786121-1 1.854752-5 3.090295-1 1.215470-5 3.427678-1 8.024486-6 3.801894-1 5.337472-6 4.265795-1 3.419107-6 4.623810-1 2.518563-6 5.011872-1 1.867618-6 5.432503-1 1.395912-6 5.888437-1 1.051349-6 6.309573-1 8.299763-7 6.839117-1 6.346257-7 7.413102-1 4.890472-7 8.035261-1 3.753896-7 8.511380-1 3.127981-7 8.912509-1 2.720151-7 9.332543-1 2.382126-7 9.660509-1 2.168182-7 1.000000+0 1.983900-7 1.035142+0 1.825542-7 1.083927+0 1.645914-7 1.135011+0 1.494859-7 1.188502+0 1.366049-7 1.273503+0 1.203736-7 1.364583+0 1.067941-7 1.513561+0 8.985555-8 1.905461+0 6.001864-8 2.137962+0 4.941445-8 2.426610+0 4.021761-8 2.786121+0 3.238862-8 3.235937+0 2.582346-8 3.758374+0 2.074337-8 4.415704+0 1.651495-8 5.188000+0 1.324766-8 6.165950+0 1.054120-8 7.413102+0 8.327920-9 9.120108+0 6.440094-9 1.083927+1 5.230445-9 1.303167+1 4.211381-9 1.659587+1 3.191953-9 2.162719+1 2.374607-9 3.000000+1 1.662600-9 4.265795+1 1.142743-9 6.237348+1 7.68233-10 1.122018+2 4.19635-10 2.238721+2 2.08097-10 4.466836+2 1.03746-10 1.778279+3 2.59503-11 1.000000+5 4.60650-13 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 7.133000-5 7.133000-5 1.000000+5 7.133000-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 7.133000-5 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 6.806000-5 4.194272+5 6.840000-5 4.271520+5 6.870000-5 4.325528+5 6.920000-5 4.392704+5 7.000000-5 4.458848+5 7.079458-5 4.490044+5 7.190000-5 4.501464+5 7.350000-5 4.478384+5 7.585776-5 4.409480+5 8.317638-5 4.169054+5 8.650000-5 4.094088+5 8.912509-5 4.062912+5 9.150000-5 4.061992+5 9.350000-5 4.085048+5 9.549926-5 4.132904+5 9.720000-5 4.195112+5 9.900000-5 4.284192+5 1.010000-4 4.412904+5 1.030000-4 4.574352+5 1.050000-4 4.769648+5 1.071519-4 5.017857+5 1.096478-4 5.354780+5 1.122018-4 5.752284+5 1.150000-4 6.245368+5 1.202264-4 7.308968+5 1.288250-4 9.372161+5 1.350000-4 1.102208+6 1.400000-4 1.243056+6 1.462177-4 1.424976+6 1.520000-4 1.598880+6 1.580000-4 1.781488+6 1.640590-4 1.964932+6 1.698244-4 2.135271+6 1.760000-4 2.309448+6 1.820000-4 2.467144+6 1.880000-4 2.610864+6 1.930000-4 2.718784+6 2.000000-4 2.851264+6 2.065380-4 2.956205+6 2.150000-4 3.068072+6 2.238721-4 3.158600+6 2.330000-4 3.228112+6 2.426610-4 3.278285+6 2.511886-4 3.303780+6 2.620000-4 3.312840+6 2.730000-4 3.298728+6 2.851018-4 3.260178+6 2.951209-4 3.212844+6 3.090295-4 3.129355+6 3.235937-4 3.027872+6 3.427678-4 2.883469+6 3.600000-4 2.747712+6 3.801894-4 2.585020+6 4.027170-4 2.404391+6 4.216965-4 2.255414+6 4.466836-4 2.067200+6 4.731513-4 1.882778+6 5.011872-4 1.704622+6 5.308844-4 1.533383+6 5.650000-4 1.358208+6 6.025596-4 1.189107+6 6.531306-4 9.980835+5 6.998420-4 8.525216+5 7.500000-4 7.231104+5 8.035261-4 6.095328+5 8.709636-4 4.959575+5 9.500000-4 3.936328+5 1.023293-3 3.209004+5 1.122018-3 2.473133+5 1.230269-3 1.889921+5 1.364583-3 1.383435+5 1.496236-3 1.040280+5 1.621810-3 8.057942+4 1.757924-3 6.211911+4 1.927525-3 4.584766+4 2.138000-3 3.235670+4 2.344229-3 2.358273+4 2.600160-3 1.639556+4 2.884032-3 1.131360+4 3.235937-3 7.434399+3 3.589219-3 5.059815+3 4.000000-3 3.359704+3 4.466836-3 2.197579+3 5.011872-3 1.400989+3 5.623413-3 8.867515+2 6.309573-3 5.572893+2 7.161434-3 3.317025+2 8.128305-3 1.958755+2 9.225714-3 1.147683+2 1.035142-2 7.011262+1 1.174898-2 4.045189+1 1.333521-2 2.316134+1 1.513561-2 1.316802+1 1.737801-2 7.058988+0 2.018366-2 3.565725+0 2.371374-2 1.697013+0 2.851018-2 7.205152-1 3.162278-2 4.432414-1 3.890451-2 1.658902-1 7.498942-2 7.240317-3 9.120108-2 2.865291-3 1.071519-1 1.344645-3 1.244515-1 6.708570-4 1.428894-1 3.555918-4 1.659587-1 1.800419-4 1.840772-1 1.131408-4 2.018366-1 7.534106-5 2.162719-1 5.582454-5 2.371374-1 3.771232-5 2.600160-1 2.565585-5 2.884032-1 1.676436-5 3.162278-1 1.156420-5 3.467369-1 8.038535-6 3.801894-1 5.630817-6 4.120975-1 4.154610-6 4.415705-1 3.221857-6 4.677351-1 2.620491-6 5.011872-1 2.058501-6 5.370318-1 1.627532-6 5.754399-1 1.295399-6 6.237348-1 1.000745-6 6.760830-1 7.790053-7 7.413102-1 5.887852-7 8.035261-1 4.641115-7 8.709636-1 3.684587-7 9.549926-1 2.848252-7 9.885531-1 2.600111-7 1.023293+0 2.387258-7 1.059254+0 2.203300-7 1.109175+0 1.993833-7 1.161449+0 1.816779-7 1.230269+0 1.630144-7 1.318257+0 1.441877-7 1.513561+0 1.143847-7 1.905461+0 7.640098-8 2.137962+0 6.290252-8 2.426610+0 5.119564-8 2.786121+0 4.122963-8 3.235937+0 3.287251-8 3.758374+0 2.640581-8 4.415704+0 2.102298-8 5.188000+0 1.686389-8 6.165950+0 1.341895-8 7.413102+0 1.060110-8 9.120108+0 8.197801-9 1.083927+1 6.658055-9 1.303167+1 5.360830-9 1.659587+1 4.063205-9 2.162719+1 3.022798-9 3.000000+1 2.116500-9 4.265795+1 1.454615-9 6.309573+1 9.66339-10 1.122018+2 5.34170-10 2.238721+2 2.64906-10 4.466836+2 1.32062-10 1.778279+3 3.30334-11 1.000000+5 5.86380-13 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 6.806000-5 6.806000-5 1.000000+5 6.806000-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 6.806000-5 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 9.914000-5 6.752500+4 1.035142-4 6.355310+4 1.060000-4 6.184800+4 1.090000-4 6.031060+4 1.122018-4 5.925993+4 1.150000-4 5.872700+4 1.190000-4 5.842860+4 1.230269-4 5.853290+4 1.288250-4 5.913624+4 1.513561-4 6.258447+4 1.603245-4 6.345322+4 1.690000-4 6.382460+4 1.778279-4 6.373949+4 1.862087-4 6.329428+4 1.980000-4 6.222900+4 2.120000-4 6.055360+4 2.290868-4 5.822601+4 2.501000-4 5.524478+4 2.722701-4 5.210090+4 2.951209-4 4.889314+4 3.200000-4 4.550680+4 3.507519-4 4.161075+4 3.935501-4 3.687694+4 4.365158-4 3.285713+4 4.841724-4 2.906488+4 5.500000-4 2.478340+4 6.309573-4 2.073129+4 7.244360-4 1.718562+4 8.609938-4 1.348359+4 1.023293-3 1.048895+4 1.216186-3 8.105099+3 1.479108-3 6.003785+3 1.800000-3 4.406380+3 2.187762-3 3.214019+3 2.630268-3 2.367395+3 3.126079-3 1.765201+3 3.801894-3 1.255637+3 4.570882-3 9.044444+2 5.495409-3 6.467516+2 6.683439-3 4.493989+2 8.128305-3 3.098647+2 9.885531-3 2.120303+2 1.202264-2 1.439900+2 1.445440-2 9.932434+1 1.737801-2 6.801187+1 2.089296-2 4.621815+1 2.511886-2 3.116218+1 3.000000-2 2.115040+1 3.589219-2 1.419122+1 4.265795-2 9.591694+0 5.128614-2 6.272250+0 6.095369-2 4.175749+0 7.328245-2 2.684472+0 8.609938-2 1.811865+0 1.059254-1 1.084221+0 1.364583-1 5.738617-1 2.511886-1 1.214320-1 3.126079-1 7.001460-2 3.715352-1 4.563799-2 4.265795-1 3.261356-2 4.897788-1 2.346699-2 5.559043-1 1.747058-2 6.237348-1 1.344312-2 7.079458-1 1.015101-2 8.035261-1 7.723916-3 9.015711-1 6.063248-3 1.000000+0 4.910500-3 1.161449+0 3.655789-3 1.303167+0 2.931837-3 1.479108+0 2.317853-3 1.659587+0 1.886329-3 1.905461+0 1.484813-3 2.162719+0 1.199928-3 2.454709+0 9.772479-4 2.818383+0 7.875864-4 3.273407+0 6.283293-4 3.801894+0 5.050102-4 4.466836+0 4.022916-4 5.248075+0 3.228703-4 6.237348+0 2.570437-4 7.498942+0 2.031615-4 9.225714+0 1.571692-4 1.100000+1 1.272200-4 1.318257+1 1.028517-4 1.698244+1 7.697693-5 2.213095+1 5.730442-5 3.090295+1 3.986000-5 4.466836+1 2.694316-5 6.683439+1 1.770247-5 1.161449+2 1.002706-5 2.317395+2 4.974190-6 4.623810+2 2.480323-6 1.840772+3 6.204850-7 1.000000+5 1.140200-8 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 9.914000-5 9.914000-5 1.000000+5 9.914000-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 9.914000-5 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 6.568000-5 1.920860+6 6.606934-5 1.936156+6 6.650000-5 1.944714+6 6.710000-5 1.943852+6 6.770000-5 1.931802+6 6.870000-5 1.896780+6 6.970000-5 1.848878+6 7.119000-5 1.766987+6 7.300000-5 1.660868+6 7.500000-5 1.543122+6 7.762471-5 1.395661+6 8.035261-5 1.254557+6 8.400000-5 1.085924+6 8.810489-5 9.224804+5 9.300000-5 7.604560+5 9.885531-5 6.068162+5 1.161449-4 3.310093+5 1.244515-4 2.568129+5 1.333521-4 2.006417+5 1.412538-4 1.644243+5 1.496236-4 1.356981+5 1.580000-4 1.139892+5 1.659587-4 9.809280+4 1.737801-4 8.581604+4 1.819701-4 7.565114+4 1.900000-4 6.771860+4 1.980000-4 6.134260+4 2.065380-4 5.582188+4 2.150000-4 5.135980+4 2.238721-4 4.750734+4 2.350000-4 4.357980+4 2.454709-4 4.057817+4 2.580000-4 3.764600+4 2.730000-4 3.483380+4 2.900000-4 3.230800+4 3.100000-4 2.996660+4 3.350000-4 2.768240+4 3.715352-4 2.512115+4 5.248075-4 1.846951+4 6.095369-4 1.606063+4 6.918310-4 1.417286+4 8.000000-4 1.217454+4 9.120108-4 1.053373+4 1.047129-3 8.966777+3 1.190000-3 7.670180+3 1.364583-3 6.435849+3 1.531087-3 5.517954+3 1.737801-3 4.627349+3 1.972423-3 3.852000+3 2.238721-3 3.183003+3 2.540973-3 2.610258+3 2.884032-3 2.124499+3 3.273407-3 1.716314+3 3.715352-3 1.375787+3 4.216965-3 1.094676+3 4.786301-3 8.646148+2 5.432503-3 6.779811+2 6.165950-3 5.278568+2 7.000000-3 4.079061+2 8.000000-3 3.086128+2 9.120108-3 2.329178+2 1.035142-2 1.762253+2 1.188502-2 1.290165+2 1.364583-2 9.372411+1 1.548817-2 6.943186+1 1.778279-2 4.966405+1 2.018366-2 3.628242+1 2.317395-2 2.555955+1 2.722701-2 1.684658+1 3.388442-2 9.475407+0 3.935501-2 6.344985+0 4.466836-2 4.482637+0 5.188000-2 2.950592+0 6.237348-2 1.748510+0 7.673615-2 9.631787-1 1.000000-1 4.455368-1 1.717908-1 9.110474-2 2.162719-1 4.667132-2 2.570396-1 2.844464-2 3.019952-1 1.804756-2 3.467369-1 1.230430-2 3.935501-1 8.718762-3 4.466836-1 6.222501-3 5.011872-1 4.610557-3 5.623413-1 3.440402-3 6.237348-1 2.661035-3 6.918310-1 2.072084-3 7.673615-1 1.624325-3 8.709636-1 1.214309-3 9.440609-1 1.016251-3 1.011579+0 8.783557-4 1.109175+0 7.289874-4 1.216186+0 6.089993-4 1.333521+0 5.122315-4 1.513561+0 4.072282-4 1.737801+0 3.188743-4 2.000000+0 2.505100-4 2.264644+0 2.038379-4 2.570396+0 1.664625-4 2.951209+0 1.344887-4 3.427678+0 1.075295-4 4.000000+0 8.603800-5 4.677351+0 6.915345-5 5.559043+0 5.476849-5 6.606934+0 4.371237-5 8.035261+0 3.413566-5 1.000000+1 2.610700-5 1.258925+1 1.987547-5 1.621810+1 1.485403-5 2.137962+1 1.090467-5 2.917427+1 7.769014-6 4.073803+1 5.439491-6 5.888437+1 3.697537-6 1.083927+2 1.970933-6 2.162719+2 9.770403-7 4.315191+2 4.870113-7 1.717908+3 1.217994-7 1.000000+5 2.088600-9 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 6.568000-5 6.568000-5 1.000000+5 6.568000-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 6.568000-5 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 5.166000-5 4.882440+6 5.190000-5 4.856800+6 5.250000-5 4.764800+6 5.310000-5 4.650560+6 5.400000-5 4.456320+6 5.500000-5 4.228680+6 5.650000-5 3.889728+6 5.900000-5 3.371812+6 6.309573-5 2.675951+6 6.839116-5 2.011584+6 8.128305-5 1.080534+6 8.609938-5 8.825476+5 9.015711-5 7.542817+5 9.440609-5 6.483479+5 9.900000-5 5.585360+5 1.035142-4 4.891229+5 1.080000-4 4.340840+5 1.122018-4 3.921596+5 1.170000-4 3.530472+5 1.220000-4 3.199536+5 1.273503-4 2.911847+5 1.333521-4 2.651651+5 1.396368-4 2.433112+5 1.462177-4 2.248910+5 1.531087-4 2.092839+5 1.603245-4 1.959746+5 1.698244-4 1.819222+5 1.800000-4 1.699480+5 1.927525-4 1.579450+5 2.150000-4 1.418184+5 3.000000-4 1.036520+5 3.467369-4 8.981107+4 3.981072-4 7.772735+4 4.518559-4 6.758525+4 5.128614-4 5.832975+4 5.888437-4 4.930649+4 6.700000-4 4.184400+4 7.762471-4 3.440943+4 8.912509-4 2.843336+4 1.023293-3 2.332539+4 1.174898-3 1.901335+4 1.364583-3 1.511138+4 1.566751-3 1.213694+4 1.798871-3 9.678327+3 2.065380-3 7.658653+3 2.371374-3 6.014057+3 2.722701-3 4.685521+3 3.090295-3 3.700908+3 3.507519-3 2.903099+3 4.000000-3 2.240412+3 4.570882-3 1.709154+3 5.188000-3 1.312532+3 5.888437-3 1.000992+3 6.683439-3 7.583166+2 7.585776-3 5.704347+2 8.709636-3 4.148713+2 9.885531-3 3.076839+2 1.129000-2 2.232249+2 1.288250-2 1.610873+2 1.462177-2 1.169572+2 1.659587-2 8.432394+1 1.905461-2 5.856000+1 2.187762-2 4.034932+1 2.511886-2 2.758247+1 2.884032-2 1.871455+1 3.349654-2 1.219815+1 3.890451-2 7.889154+0 4.518559-2 5.063600+0 5.308844-2 3.117014+0 6.237348-2 1.904967+0 7.585776-2 1.038606+0 9.549926-2 5.044732-1 1.698244-1 8.147723-2 2.089296-1 4.254042-2 2.454709-1 2.582718-2 2.818383-1 1.695186-2 3.198895-1 1.160127-2 3.630781-1 7.999223-3 4.073803-1 5.747443-3 4.518559-1 4.297088-3 5.011872-1 3.234568-3 5.559043-1 2.452634-3 6.165950-1 1.873881-3 6.839117-1 1.443151-3 7.585776-1 1.120156-3 8.609938-1 8.278704-4 9.225714-1 7.061574-4 9.772372-1 6.219692-4 1.047129+0 5.381203-4 1.135011+0 4.574771-4 1.244515+0 3.828131-4 1.380384+0 3.161418-4 1.678804+0 2.230309-4 1.927525+0 1.755634-4 2.187762+0 1.420112-4 2.483133+0 1.157435-4 2.851018+0 9.332279-5 3.311311+0 7.448694-5 3.845918+0 5.990229-5 4.518559+0 4.774500-5 5.308844+0 3.833847-5 6.309573+0 3.053782-5 7.585776+0 2.414766-5 9.440609+0 1.842781-5 1.174898+1 1.418732-5 1.513561+1 1.057863-5 1.972423+1 7.849197-6 2.630268+1 5.721716-6 3.630781+1 4.045839-6 5.308844+1 2.711195-6 9.772372+1 1.442723-6 1.927525+2 7.226988-7 3.845918+2 3.599470-7 1.531087+3 8.997952-8 1.000000+5 1.374900-9 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 5.166000-5 5.166000-5 1.000000+5 5.166000-5 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 5.166000-5 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 7.990000-6 5.594760+6 8.035261-6 5.600761+6 8.128305-6 5.647516+6 8.222426-6 5.730863+6 8.511380-6 6.078025+6 9.332543-6 6.849060+6 1.011579-5 7.554351+6 1.100000-5 8.303076+6 1.202264-5 9.110637+6 1.318257-5 9.952444+6 1.462177-5 1.091513+7 1.640590-5 1.200636+7 1.840772-5 1.310018+7 2.000000-5 1.386500+7 2.150000-5 1.446876+7 2.290868-5 1.492287+7 2.426610-5 1.523505+7 2.540973-5 1.538833+7 2.660725-5 1.543280+7 2.770000-5 1.537034+7 2.884032-5 1.520321+7 3.000000-5 1.493017+7 3.090295-5 1.465025+7 3.198895-5 1.424490+7 3.311311-5 1.376014+7 3.427678-5 1.320482+7 3.548134-5 1.258867+7 3.672823-5 1.192258+7 3.801894-5 1.121980+7 3.950000-5 1.041779+7 4.120975-5 9.521282+6 4.300000-5 8.634204+6 4.500000-5 7.718688+6 4.731513-5 6.768118+6 5.011872-5 5.772731+6 5.308844-5 4.885255+6 5.650000-5 4.047336+6 6.025596-5 3.307570+6 6.400000-5 2.718562+6 6.800000-5 2.216959+6 7.161434-5 1.851231+6 7.585776-5 1.504646+6 8.000000-5 1.234282+6 8.413951-5 1.016035+6 8.912509-5 8.077557+5 9.332543-5 6.682755+5 9.900000-5 5.202288+5 1.047129-4 4.070850+5 1.109175-4 3.142940+5 1.174898-4 2.412181+5 1.273503-4 1.651538+5 1.450000-4 8.909028+4 1.520000-4 7.152120+4 1.584893-4 5.926186+4 1.640590-4 5.109241+4 1.690000-4 4.529160+4 1.737801-4 4.074082+4 1.780000-4 3.743964+4 1.820000-4 3.483061+4 1.862087-4 3.255261+4 1.905461-4 3.063193+4 1.950000-4 2.903882+4 1.995262-4 2.774842+4 2.041738-4 2.671183+4 2.089296-4 2.590458+4 2.137962-4 2.529795+4 2.187762-4 2.486377+4 2.250000-4 2.453375+4 2.317395-4 2.438775+4 2.398833-4 2.442444+4 2.490500-4 2.463013+4 2.600160-4 2.502563+4 2.754229-4 2.575785+4 3.000000-4 2.708932+4 3.273407-4 2.797428+4 3.507519-4 2.851274+4 3.715352-4 2.881032+4 3.935501-4 2.893874+4 4.073803-4 2.889091+4 4.315191-4 2.861232+4 4.570882-4 2.815773+4 4.841724-4 2.754216+4 5.128614-4 2.678313+4 5.495409-4 2.570929+4 5.888437-4 2.448925+4 6.309573-4 2.315801+4 6.760830-4 2.174768+4 7.244360-4 2.028823+4 7.852356-4 1.856234+4 8.511380-4 1.685203+4 9.225714-4 1.518822+4 1.000000-3 1.359432+4 1.083927-3 1.208831+4 1.174898-3 1.068031+4 1.273503-3 9.377282+3 1.396368-3 8.021316+3 1.531087-3 6.808583+3 1.678804-3 5.736309+3 1.840772-3 4.797007+3 2.018366-3 3.982250+3 2.213095-3 3.281996+3 2.426610-3 2.686011+3 2.660725-3 2.183318+3 2.917427-3 1.762971+3 3.235937-3 1.375368+3 3.589219-3 1.064533+3 3.981072-3 8.176709+2 4.365158-3 6.431229+2 4.841724-3 4.870446+2 5.432503-3 3.547411+2 6.025596-3 2.648102+2 6.683439-3 1.963633+2 7.498942-3 1.397717+2 8.317638-3 1.022308+2 9.332543-3 7.168600+1 1.047129-2 4.989704+1 1.188502-2 3.322582+1 1.333521-2 2.279630+1 1.500000-2 1.540508+1 1.698244-2 1.010958+1 1.927525-2 6.529433+0 2.187762-2 4.187712+0 2.511886-2 2.560541+0 2.917427-2 1.490822+0 3.388442-2 8.613862-1 4.027170-2 4.537272-1 4.841724-2 2.272008-1 6.025596-2 9.904574-2 1.148154-1 8.422239-3 1.428894-1 3.673847-3 1.717908-1 1.839560-3 2.000000-1 1.047100-3 2.290868-1 6.382717-4 2.600160-1 4.051809-4 2.951209-1 2.591755-4 3.311311-1 1.738328-4 3.715352-1 1.174675-4 4.120975-1 8.313632-5 4.570882-1 5.926565-5 5.069907-1 4.257093-5 5.559043-1 3.193585-5 6.025596-1 2.498190-5 6.606935-1 1.903015-5 7.244360-1 1.460809-5 8.709636-1 8.718064-6 9.225714-1 7.469356-6 9.660509-1 6.639828-6 1.011579+0 5.940643-6 1.059254+0 5.352994-6 1.109175+0 4.855557-6 1.174898+0 4.331563-6 1.258925+0 3.809342-6 1.364583+0 3.300766-6 1.531087+0 2.708640-6 1.862087+0 1.921292-6 2.089296+0 1.579599-6 2.371374+0 1.283702-6 2.691535+0 1.051076-6 3.126079+0 8.366382-7 3.630781+0 6.708797-7 4.216965+0 5.418961-7 4.954502+0 4.337963-7 5.888437+0 3.444598-7 7.000000+0 2.755100-7 8.609938+0 2.126572-7 1.035142+1 1.699880-7 1.273503+1 1.330823-7 1.640590+1 9.949292-8 2.162719+1 7.306234-8 3.000000+1 5.115600-8 4.265795+1 3.515887-8 6.237348+1 2.363634-8 1.122018+2 1.291135-8 2.238721+2 6.402817-9 4.466836+2 3.192073-9 1.778279+3 7.98436-10 1.000000+5 1.41730-11 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 7.990000-6 7.990000-6 1.000000+5 7.990000-6 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 7.990000-6 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 6.790000-6 1.043188+7 7.161434-6 1.124387+7 7.600000-6 1.213061+7 8.035261-6 1.293773+7 8.511380-6 1.374031+7 9.120108-6 1.466581+7 9.772372-6 1.554322+7 1.059254-5 1.651425+7 1.161449-5 1.756922+7 1.288250-5 1.870016+7 1.462177-5 2.002640+7 1.659587-5 2.129289+7 1.850000-5 2.229898+7 2.018366-5 2.297499+7 2.162719-5 2.336283+7 2.300000-5 2.355221+7 2.426610-5 2.354944+7 2.540973-5 2.338837+7 2.660725-5 2.306361+7 2.770000-5 2.263594+7 2.884032-5 2.206228+7 3.000000-5 2.135743+7 3.120000-5 2.052281+7 3.235937-5 1.964125+7 3.350000-5 1.872326+7 3.467369-5 1.774482+7 3.589219-5 1.671317+7 3.730000-5 1.552921+7 3.890451-5 1.422182+7 4.027170-5 1.315932+7 4.216965-5 1.177879+7 4.415704-5 1.046598+7 4.650000-5 9.098568+6 4.900000-5 7.838694+6 5.188000-5 6.614935+6 5.500000-5 5.524740+6 5.821032-5 4.608561+6 6.165950-5 3.811556+6 6.531306-5 3.132740+6 6.918310-5 2.556996+6 7.328245-5 2.072931+6 7.762471-5 1.666803+6 8.222426-5 1.329981+6 8.650000-5 1.082279+6 9.120108-5 8.669027+5 9.549926-5 7.106600+5 1.011579-4 5.502865+5 1.071519-4 4.231829+5 1.150000-4 3.038958+5 1.380384-4 1.268638+5 1.445440-4 1.024108+5 1.500000-4 8.673048+4 1.548817-4 7.562124+4 1.584893-4 6.887089+4 1.621810-4 6.303064+4 1.659587-4 5.800204+4 1.698244-4 5.370895+4 1.737801-4 5.008330+4 1.778279-4 4.705073+4 1.820000-4 4.452025+4 1.862087-4 4.248226+4 1.905461-4 4.084343+4 1.950000-4 3.956656+4 1.995262-4 3.860779+4 2.041738-4 3.791183+4 2.098700-4 3.733008+4 2.162719-4 3.694846+4 2.238721-4 3.679517+4 2.317395-4 3.690663+4 2.398833-4 3.724617+4 2.511886-4 3.799620+4 2.660725-4 3.930406+4 3.000000-4 4.267134+4 3.273407-4 4.356365+4 3.507519-4 4.401332+4 3.758374-4 4.415188+4 4.000000-4 4.394984+4 4.265795-4 4.319780+4 4.518559-4 4.225617+4 4.786301-4 4.109191+4 5.128614-4 3.945079+4 5.495409-4 3.759534+4 5.888437-4 3.556709+4 6.309573-4 3.341496+4 6.760830-4 3.118570+4 7.244360-4 2.892205+4 7.852356-4 2.629013+4 8.511380-4 2.372077+4 9.225714-4 2.125262+4 1.000000-3 1.891409+4 1.083927-3 1.672809+4 1.174898-3 1.470349+4 1.288250-3 1.259385+4 1.412538-3 1.070318+4 1.566751-3 8.837392+3 1.717908-3 7.402184+3 1.883649-3 6.152960+3 2.065380-3 5.074141+3 2.264644-3 4.152091+3 2.483133-3 3.371183+3 2.691535-3 2.789238+3 2.985383-3 2.168296+3 3.427678-3 1.535430+3 3.801894-3 1.177254+3 4.168694-3 9.237747+2 4.623810-3 6.979916+2 5.128614-3 5.235823+2 5.688529-3 3.900020+2 6.309573-3 2.885082+2 6.998420-3 2.119950+2 7.762471-3 1.547466+2 8.609938-3 1.122177+2 9.660509-3 7.794130+1 1.083927-2 5.373019+1 1.216186-2 3.677903+1 1.364583-2 2.500055+1 1.531087-2 1.687535+1 1.737801-2 1.086366+1 1.972423-2 6.939531+0 2.238721-2 4.400787+0 2.570396-2 2.657059+0 2.951209-2 1.592383+0 3.427678-2 9.072216-1 4.027170-2 4.911091-1 4.841724-2 2.415264-1 5.888437-2 1.126416-1 1.161449-1 7.817312-3 1.396368-1 3.817634-3 1.659587-1 1.964275-3 1.883649-1 1.214609-3 2.113489-1 7.899211-4 2.371374-1 5.176111-4 2.630268-1 3.562253-4 2.917427-1 2.468684-4 3.235937-1 1.723369-4 3.548134-1 1.260560-4 3.890451-1 9.284078-5 4.265795-1 6.889082-5 4.677351-1 5.151463-5 5.128614-1 3.882654-5 5.559043-1 3.052016-5 6.025596-1 2.415059-5 6.531306-1 1.925601-5 7.079458-1 1.545837-5 7.673615-1 1.249117-5 8.609938-1 9.265188-6 9.120108-1 8.025330-6 9.660509-1 6.998853-6 1.011579+0 6.309983-6 1.071519+0 5.580333-6 1.148154+0 4.851760-6 1.230269+0 4.247741-6 1.333521+0 3.663083-6 1.798871+0 2.161716-6 2.044000+0 1.737500-6 2.317395+0 1.412796-6 2.630268+0 1.155242-6 3.019952+0 9.344705-7 3.507519+0 7.479980-7 4.073803+0 6.032088-7 4.786301+0 4.821018-7 5.688529+0 3.822148-7 6.760830+0 3.053638-7 8.222427+0 2.386776-7 1.011579+1 1.852644-7 1.273503+1 1.411025-7 1.640590+1 1.054902-7 2.162719+1 7.746555-8 3.000000+1 5.423900-8 4.265795+1 3.727767-8 6.237348+1 2.506096-8 1.122018+2 1.368934-8 2.238721+2 6.788708-9 4.466836+2 3.384479-9 1.778279+3 8.46541-10 1.000000+5 1.50270-11 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 6.790000-6 6.790000-6 1.000000+5 6.790000-6 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 6.790000-6 0.0 1.000000+5 1.000000+5 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.099860-7 1.026100+0 1.153120-6 1.026600+0 1.625640-6 1.027100+0 2.211710-6 1.027500+0 2.770150-6 1.028100+0 3.771510-6 1.028750+0 5.099860-6 1.029500+0 6.979290-6 1.030100+0 8.777310-6 1.031000+0 1.201030-5 1.032000+0 1.643320-5 1.033200+0 2.302010-5 1.034000+0 2.825930-5 1.035300+0 3.835800-5 1.036640+0 5.099860-5 1.038200+0 6.882420-5 1.039700+0 8.941650-5 1.041500+0 1.189680-4 1.043800+0 1.651310-4 1.046400+0 2.297490-4 1.048300+0 2.860430-4 1.051200+0 3.880120-4 1.054080+0 5.099860-4 1.057700+0 6.951450-4 1.061100+0 9.042100-4 1.065100+0 1.197080-3 1.070400+0 1.670050-3 1.076200+0 2.308010-3 1.080600+0 2.882330-3 1.087100+0 3.883440-3 1.093710+0 5.099860-3 1.102600+0 7.070690-3 1.110700+0 9.221250-3 1.120600+0 1.233470-2 1.133300+0 1.714960-2 1.147500+0 2.367760-2 1.158200+0 2.942520-2 1.174100+0 3.932970-2 1.190110+0 5.099860-2 1.205100+0 6.349440-2 1.227500+0 8.499460-2 1.250000+0 1.098000-1 1.265600+0 1.286970-1 1.294900+0 1.675320-1 1.331800+0 2.218030-1 1.362600+0 2.708070-1 1.397000+0 3.287320-1 1.433800+0 3.937000-1 1.477900+0 4.749890-1 1.500000+0 5.171000-1 1.562500+0 6.405480-1 1.617200+0 7.531930-1 1.712900+0 9.572560-1 1.784700+0 1.114090+0 1.892300+0 1.351150+0 2.000000+0 1.587000+0 2.044000+0 1.682000+0 2.163500+0 1.936580+0 2.372600+0 2.369090+0 2.686300+0 2.984210+0 3.000000+0 3.561000+0 3.500000+0 4.410140+0 4.000000+0 5.184000+0 4.750000+0 6.222560+0 5.000000+0 6.542000+0 6.000000+0 7.711000+0 7.000000+0 8.741000+0 8.000000+0 9.668000+0 9.000000+0 1.051000+1 1.000000+1 1.129000+1 1.100000+1 1.200000+1 1.200000+1 1.267000+1 1.300000+1 1.329000+1 1.400000+1 1.387000+1 1.500000+1 1.442000+1 1.600000+1 1.492000+1 1.800000+1 1.584000+1 2.000000+1 1.665000+1 2.200000+1 1.739000+1 2.400000+1 1.806000+1 2.600000+1 1.868000+1 2.800000+1 1.924000+1 3.000000+1 1.976000+1 4.000000+1 2.188000+1 5.000000+1 2.346000+1 6.000000+1 2.468000+1 8.000000+1 2.647000+1 1.000000+2 2.774000+1 1.500000+2 2.974000+1 2.000000+2 3.092000+1 3.000000+2 3.230000+1 4.000000+2 3.308000+1 5.000000+2 3.359000+1 6.000000+2 3.396000+1 8.000000+2 3.445000+1 1.000000+3 3.477000+1 1.500000+3 3.522000+1 2.000000+3 3.547000+1 3.000000+3 3.574000+1 4.000000+3 3.588000+1 5.000000+3 3.597000+1 6.000000+3 3.604000+1 8.000000+3 3.612000+1 1.000000+4 3.617000+1 1.500000+4 3.624000+1 2.000000+4 3.628000+1 3.000000+4 3.632000+1 4.000000+4 3.634000+1 5.000000+4 3.636000+1 6.000000+4 3.637000+1 8.000000+4 3.638000+1 1.000000+5 3.638000+1 1 77000 7 8 1.922000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.710300-7 2.090400+0 1.046870-6 2.094700+0 1.357420-6 2.099900+0 1.805860-6 2.106600+0 2.512100-6 2.114000+0 3.475810-6 2.119500+0 4.327360-6 2.127900+0 5.868720-6 2.136250+0 7.710300-6 2.147000+0 1.057140-5 2.156900+0 1.373090-5 2.169000+0 1.832480-5 2.184500+0 2.547210-5 2.201800+0 3.524130-5 2.214800+0 4.390800-5 2.234200+0 5.906400-5 2.253680+0 7.710300-5 2.281500+0 1.079960-4 2.307000+0 1.418530-4 2.338200+0 1.907330-4 2.377400+0 2.641420-4 2.410200+0 3.359450-4 2.446800+0 4.273410-4 2.485900+0 5.380450-4 2.532900+0 6.885840-4 2.556430+0 7.710300-4 2.611900+0 9.831530-4 2.660400+0 1.188580-3 2.745300+0 1.590850-3 2.809000+0 1.926620-3 2.904500+0 2.481980-3 3.000000+0 3.098000-3 3.125000+0 3.994600-3 3.234400+0 4.860270-3 3.425800+0 6.544190-3 3.569300+0 7.934560-3 3.784700+0 1.019790-2 4.000000+0 1.263000-2 4.250000+0 1.560210-2 4.625000+0 2.027020-2 5.000000+0 2.512000-2 5.500000+0 3.177270-2 6.000000+0 3.851000-2 6.750000+0 4.852670-2 7.000000+0 5.182000-2 8.000000+0 6.469000-2 9.000000+0 7.698000-2 1.000000+1 8.863000-2 1.100000+1 9.964000-2 1.200000+1 1.100000-1 1.300000+1 1.198000-1 1.400000+1 1.290000-1 1.500000+1 1.378000-1 1.600000+1 1.461000-1 1.800000+1 1.614000-1 2.000000+1 1.753000-1 2.200000+1 1.880000-1 2.400000+1 1.997000-1 2.600000+1 2.104000-1 2.800000+1 2.203000-1 3.000000+1 2.295000-1 4.000000+1 2.674000-1 5.000000+1 2.958000-1 6.000000+1 3.182000-1 8.000000+1 3.516000-1 1.000000+2 3.757000-1 1.500000+2 4.151000-1 2.000000+2 4.395000-1 3.000000+2 4.690000-1 4.000000+2 4.865000-1 5.000000+2 4.984000-1 6.000000+2 5.071000-1 8.000000+2 5.190000-1 1.000000+3 5.269000-1 1.500000+3 5.386000-1 2.000000+3 5.452000-1 3.000000+3 5.524000-1 4.000000+3 5.566000-1 5.000000+3 5.592000-1 6.000000+3 5.610000-1 8.000000+3 5.634000-1 1.000000+4 5.649000-1 1.500000+4 5.669000-1 2.000000+4 5.682000-1 3.000000+4 5.693000-1 4.000000+4 5.700000-1 5.000000+4 5.705000-1 6.000000+4 5.707000-1 8.000000+4 5.710000-1 1.000000+5 5.713000-1 1 77000 7 8 1.922000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 77000 7 9 1.922000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.700000+1 1.000000+5 7.700000+1 5.000000+5 7.696900+1 7.500000+5 7.694620+1 1.000000+6 7.693000+1 1.500000+6 7.688000+1 2.000000+6 7.678800+1 2.500000+6 7.667100+1 3.000000+6 7.652900+1 3.500000+6 7.636240+1 4.000000+6 7.617700+1 4.500000+6 7.597560+1 5.000000+6 7.575300+1 5.500000+6 7.550730+1 6.156200+6 7.514820+1 6.500000+6 7.495590+1 6.718700+6 7.482410+1 7.000000+6 7.466100+1 7.500000+6 7.434600+1 8.250000+6 7.386830+1 9.000000+6 7.337300+1 1.000000+7 7.268600+1 1.109400+7 7.189460+1 1.187500+7 7.130700+1 1.250000+7 7.083200+1 1.437500+7 6.937630+1 1.500000+7 6.889300+1 1.750000+7 6.696100+1 2.000000+7 6.500600+1 2.375000+7 6.211280+1 2.500000+7 6.117000+1 2.875000+7 5.839870+1 3.000000+7 5.750500+1 3.437500+7 5.446560+1 3.750000+7 5.242490+1 4.000000+7 5.087300+1 4.500000+7 4.798180+1 4.750000+7 4.662890+1 5.000000+7 4.534200+1 5.500000+7 4.291180+1 5.750000+7 4.176810+1 6.000000+7 4.066300+1 6.750000+7 3.754880+1 7.000000+7 3.657700+1 7.750000+7 3.381380+1 8.000000+7 3.294800+1 8.750000+7 3.048290+1 9.000000+7 2.971000+1 9.750000+7 2.752110+1 1.000000+8 2.683600+1 1.125000+8 2.373740+1 1.250000+8 2.121900+1 1.375000+8 1.923020+1 1.500000+8 1.768700+1 1.750000+8 1.550040+1 2.000000+8 1.381200+1 2.125000+8 1.303070+1 2.250000+8 1.231110+1 2.500000+8 1.108700+1 2.671900+8 1.038980+1 2.789100+8 9.914020+0 2.875000+8 9.543580+0 2.894500+8 9.456150+0 2.973600+8 9.086520+0 3.000000+8 8.957800+0 3.062500+8 8.643730+0 3.335900+8 7.366590+0 3.418000+8 7.070210+0 3.500000+8 6.828200+0 3.562500+8 6.681910+0 3.671900+8 6.481150+0 3.959000+8 6.073460+0 4.000000+8 6.011700+0 4.125000+8 5.800360+0 5.000000+8 4.378800+0 6.000000+8 3.598100+0 7.000000+8 2.903000+0 7.625000+8 2.624980+0 7.875000+8 2.514490+0 8.000000+8 2.455100+0 8.125000+8 2.392100+0 8.359400+8 2.268370+0 8.564500+8 2.158700+0 9.461700+8 1.737080+0 9.730800+8 1.640480+0 1.000000+9 1.559400+0 1.030800+9 1.485160+0 1.060100+9 1.429290+0 1.087600+9 1.386920+0 1.125800+9 1.340520+0 1.172600+9 1.298120+0 1.375000+9 1.194820+0 1.500000+9 1.137000+0 1.562500+9 1.101120+0 1.641100+9 1.051090+0 1.706900+9 1.007030+0 1.780200+9 9.573940-1 1.858700+9 9.050010-1 1.952900+9 8.445760-1 2.000000+9 8.157900-1 2.139200+9 7.365770-1 2.272600+9 6.685790-1 2.443000+9 5.918090-1 2.602800+9 5.290280-1 2.750000+9 4.780030-1 2.825100+9 4.542280-1 2.961100+9 4.146850-1 3.215900+9 3.511950-1 3.438900+9 3.050660-1 3.719500+9 2.570820-1 3.954200+9 2.239140-1 4.215700+9 1.929310-1 4.495800+9 1.653940-1 4.831900+9 1.384800-1 5.000000+9 1.270700-1 5.375000+9 1.055280-1 5.703100+9 9.032420-2 6.277300+9 6.981830-2 7.031000+9 5.113660-2 8.000000+9 3.563900-2 1.00000+10 1.895700-2 1.54060+10 5.583630-3 2.13670+10 2.222160-3 3.11960+10 7.686270-4 4.83970+10 2.256410-4 7.41980+10 6.896350-5 1.00000+11 3.026800-5 1.34280+11 1.347160-5 2.20600+11 3.473210-6 4.19930+11 6.071390-7 1.03480+12 5.391780-8 3.24440+12 2.582950-9 1.00000+14 3.10090-13 3.16230+15 3.32204-17 1.00000+17 3.37410-21 1 77000 7 0 1.922000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.60000-12 1.000000+2 7.60000-10 1.000000+3 7.600000-8 1.000000+4 7.600000-6 1.000000+5 7.600000-4 5.000000+5 1.900000-2 7.500000+5 4.275000-2 1.000000+6 7.600000-2 1.500000+6 1.688000-1 2.000000+6 2.966000-1 2.500000+6 4.566000-1 3.000000+6 6.457000-1 3.500000+6 8.605980-1 4.000000+6 1.097700+0 4.500000+6 1.353380+0 5.000000+6 1.624000+0 5.500000+6 1.905900+0 6.156200+6 2.288220+0 6.500000+6 2.492030+0 6.718700+6 2.622470+0 7.000000+6 2.790900+0 7.500000+6 3.090220+0 8.250000+6 3.537880+0 9.000000+6 3.980400+0 1.000000+7 4.558000+0 1.109400+7 5.171890+0 1.187500+7 5.600110+0 1.250000+7 5.938100+0 1.437500+7 6.931350+0 1.500000+7 7.258000+0 1.750000+7 8.554200+0 2.000000+7 9.841000+0 2.375000+7 1.174290+1 2.500000+7 1.236700+1 2.875000+7 1.420160+1 3.000000+7 1.480300+1 3.437500+7 1.686420+1 3.750000+7 1.830030+1 4.000000+7 1.942700+1 4.500000+7 2.161570+1 4.750000+7 2.266990+1 5.000000+7 2.369400+1 5.500000+7 2.563440+1 5.750000+7 2.654790+1 6.000000+7 2.742900+1 6.750000+7 2.985480+1 7.000000+7 3.060200+1 7.750000+7 3.269170+1 8.000000+7 3.334900+1 8.750000+7 3.521650+1 9.000000+7 3.581700+1 9.750000+7 3.754210+1 1.000000+8 3.810000+1 1.125000+8 4.075090+1 1.250000+8 4.321700+1 1.375000+8 4.550910+1 1.500000+8 4.765100+1 1.750000+8 5.146770+1 2.000000+8 5.467800+1 2.125000+8 5.606080+1 2.250000+8 5.732070+1 2.500000+8 5.949600+1 2.671900+8 6.076930+1 2.789100+8 6.154700+1 2.875000+8 6.208520+1 2.894500+8 6.220050+1 2.973600+8 6.265970+1 3.000000+8 6.281100+1 3.062500+8 6.314880+1 3.335900+8 6.450230+1 3.418000+8 6.487130+1 3.500000+8 6.522300+1 3.562500+8 6.547490+1 3.671900+8 6.590760+1 3.959000+8 6.694320+1 4.000000+8 6.708100+1 4.125000+8 6.747930+1 5.000000+8 6.982400+1 6.000000+8 7.174900+1 7.000000+8 7.308800+1 7.625000+8 7.369320+1 7.875000+8 7.390120+1 8.000000+8 7.399700+1 8.125000+8 7.408290+1 8.359400+8 7.424090+1 8.564500+8 7.436990+1 9.461700+8 7.482530+1 9.730800+8 7.494010+1 1.000000+9 7.505200+1 1.030800+9 7.516110+1 1.060100+9 7.526210+1 1.087600+9 7.534400+1 1.125800+9 7.545320+1 1.172600+9 7.558190+1 1.375000+9 7.598700+1 1.500000+9 7.618100+1 1.562500+9 7.625770+1 1.641100+9 7.634990+1 1.706900+9 7.642390+1 1.780200+9 7.648930+1 1.858700+9 7.655360+1 1.952900+9 7.662740+1 2.000000+9 7.666300+1 2.139200+9 7.673940+1 2.272600+9 7.679580+1 2.443000+9 7.685470+1 2.602800+9 7.689900+1 2.750000+9 7.692740+1 2.825100+9 7.694130+1 2.961100+9 7.695580+1 3.215900+9 7.697790+1 3.438900+9 7.699200+1 3.719500+9 7.699410+1 3.954200+9 7.699580+1 4.215700+9 7.699750+1 4.495800+9 7.699930+1 4.831900+9 7.699820+1 5.000000+9 7.699700+1 5.375000+9 7.699750+1 5.703100+9 7.699780+1 6.277300+9 7.699850+1 7.031000+9 7.699920+1 8.000000+9 7.700000+1 1.00000+10 7.700000+1 1.54060+10 7.700000+1 2.13670+10 7.700000+1 3.11960+10 7.700000+1 4.83970+10 7.700000+1 7.41980+10 7.700000+1 1.00000+11 7.700000+1 1.34280+11 7.700000+1 2.20600+11 7.700000+1 4.19930+11 7.700000+1 1.03480+12 7.700000+1 3.24440+12 7.700000+1 1.00000+14 7.700000+1 3.16230+15 7.700000+1 1.00000+17 7.700000+1 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.376167-6 0.0 1.379555-6 2.683273-7 1.382942-6 5.309457-7 1.386329-6 9.698157-7 1.389716-6 1.635243-6 1.393104-6 2.545242-6 1.396491-6 3.657040-6 1.399878-6 4.850475-6 1.403265-6 5.938719-6 1.406653-6 6.712050-6 1.410040-6 7.002796-6 1.413427-6 6.744375-6 1.416815-6 5.996059-6 1.420202-6 4.920895-6 1.426976-6 2.607128-6 1.430364-6 1.683071-6 1.433751-6 1.002990-6 1.437138-6 5.517529-7 1.440525-6 2.801863-7 1.443913-6 0.0 4.333782-6 0.0 4.645819-6 0.0 4.662972-6 1.191656+0 4.668689-6 1.583836+0 4.680124-6 2.893005+0 4.691559-6 4.878004+0 4.704424-6 8.006266+0 4.724257-6 1.396752+1 4.738015-6 1.785933+1 4.749785-6 2.010181+1 4.761779-6 2.078145+1 4.773214-6 1.980538+1 4.785388-6 1.722926+1 4.804679-6 1.150475+1 4.817345-6 7.777183+0 4.829495-6 4.894166+0 4.840216-6 2.991965+0 4.851651-6 1.645905+0 4.868089-6 4.706260-1 4.874521-6 0.0 5.160920-6 0.0 5.183151-6 2.750824+0 5.186326-6 3.139789+0 5.199029-6 5.735082+0 5.211732-6 9.670136+0 5.226023-6 1.587159+1 5.248278-6 2.781344+1 5.263338-6 3.540427+1 5.277303-6 3.997001+1 5.289437-6 4.123316+1 5.301819-6 3.947807+1 5.315638-6 3.431797+1 5.335636-6 2.378499+1 5.351465-6 1.541746+1 5.364168-6 9.952973+0 5.376871-6 5.931260+0 5.389574-6 3.262835+0 5.408628-6 8.294258-1 5.414980-6 0.0 6.158516-6 0.0 6.183624-6 1.85468-14 6.188833-6 2.23445-14 6.203991-6 4.08141-14 6.219150-6 6.88182-14 6.234308-6 1.07115-13 6.249466-6 1.53904-13 6.267318-6 2.12266-13 6.279783-6 2.49927-13 6.294942-6 2.82472-13 6.310100-6 2.94708-13 6.325258-6 2.83833-13 6.340417-6 2.52340-13 6.355575-6 2.07093-13 6.385892-6 1.09719-13 6.401050-6 7.08310-14 6.416209-6 4.22102-14 6.431367-6 2.32202-14 6.446526-6 1.17915-14 6.461684-6 0.0 6.518400-6 0.0 6.518665-6 4.579464-7 6.521041-6 5.764515-7 6.523395-6 7.221667-7 6.525729-6 9.006265-7 6.528810-6 1.200909-6 6.531854-6 1.589658-6 6.534365-6 1.997632-6 6.537346-6 2.611548-6 6.540293-6 3.391972-6 6.543205-6 4.377965-6 6.546083-6 5.616208-6 6.548927-6 7.162145-6 6.551738-6 9.081236-6 6.554517-6 1.145031-5 6.557263-6 1.435905-5 6.559977-6 1.791151-5 6.563547-6 2.385959-5 6.567061-6 3.150236-5 6.570521-6 4.123846-5 6.573504-6 5.184265-5 6.577280-6 6.895249-5 6.580990-6 9.081483-5 6.584636-6 1.184853-4 6.588217-6 1.531878-4 6.591737-6 1.963271-4 6.595195-6 2.495008-4 6.598592-6 3.145087-4 6.601931-6 3.933609-4 6.605932-6 5.117995-4 6.610204-6 6.738788-4 6.614377-6 8.764926-4 6.618454-6 1.126818-3 6.622435-6 1.432648-3 6.626324-6 1.802333-3 6.631370-6 2.409892-3 6.636260-6 3.168642-3 6.641581-6 4.231202-3 6.646718-6 5.546386-3 6.651677-6 7.146135-3 6.656465-6 9.060772-3 6.661089-6 1.131914-2 6.667015-6 1.491144-2 6.672668-6 1.920499-2 6.679804-6 2.607280-2 6.686506-6 3.427162-2 6.693559-6 4.505888-2 6.702233-6 6.186459-2 6.710146-6 8.110225-2 6.718482-6 1.058787-1 6.727933-6 1.400536-1 6.738698-6 1.872260-1 6.752731-6 2.616888-1 6.775535-6 4.085721-1 6.822487-6 7.339963-1 6.852633-6 8.921656-1 6.879340-6 9.810458-1 6.925657-6 1.051180+0 6.975902-6 1.169760+0 7.005748-6 1.310823+0 7.048930-6 1.619801+0 7.053069-6 1.703263+0 7.086699-6 2.855967+0 7.104057-6 3.712193+0 7.122502-6 5.033695+0 7.140339-6 6.732248+0 7.188376-6 1.221204+1 7.210360-6 1.383847+1 7.228740-6 1.411439+1 7.244807-6 1.350366+1 7.263031-6 1.189293+1 7.312810-6 5.909635+0 7.330210-6 4.234638+0 7.347063-6 3.037992+0 7.365010-6 2.207870+0 7.395930-6 1.308992+0 7.399136-6 1.240283+0 7.681747-6 1.364362+0 7.696449-6 1.394145+0 7.727917-6 1.504873+0 7.751393-6 1.638585+0 7.785151-6 1.923134+0 7.844282-6 2.507254+0 7.866411-6 2.617311+0 7.885185-6 2.630333+0 7.914751-6 2.532734+0 7.952147-6 2.765848+0 7.973653-6 3.138315+0 7.993794-6 3.771593+0 8.015100-6 4.779213+0 8.070312-6 7.999442+0 8.091444-6 8.857032+0 8.109638-6 9.180310+0 8.130839-6 8.935877+0 8.156104-6 7.949459+0 8.208084-6 5.128856+0 8.224672-6 4.348879+0 8.244588-6 3.650169+0 8.264635-6 3.186747+0 8.303934-6 2.660052+0 8.438095-6 2.777294+0 8.494967-6 2.933175+0 8.568863-6 3.421956+0 8.614984-6 3.706454+0 8.644334-6 3.719582+0 8.683151-6 3.520760+0 8.761742-6 2.874197+0 8.801877-6 2.701924+0 8.858966-6 2.628368+0 8.943990-6 2.682797+0 9.005998-6 2.933505+0 9.050007-6 3.324754+0 9.127023-6 4.246255+0 9.160030-6 4.423418+0 9.189599-6 4.322523+0 9.241922-6 3.798062+0 9.292058-6 3.274672+0 9.336067-6 3.040244+0 9.385396-6 2.943505+0 9.599009-6 3.098547+0 9.674616-6 3.285007+0 9.796952-6 3.849199+0 9.849152-6 3.844865+0 9.957584-6 3.522048+0 1.001400-5 3.547696+0 1.014261-5 3.810633+0 1.024643-5 3.899764+0 1.032262-5 4.214491+0 1.042897-5 4.865230+0 1.048477-5 4.895179+0 1.067618-5 4.027358+0 1.074816-5 3.887551+0 1.090645-5 3.911907+0 1.104295-5 4.128276+0 1.118162-5 4.485004+0 1.139326-5 4.375858+0 1.162481-5 4.614270+0 1.201427-5 4.800328+0 1.234654-5 4.873821+0 1.790727-5 8.912286+0 2.363305-5 1.305278+1 2.693166-5 1.476289+1 3.018540-5 1.557658+1 3.333385-5 1.548419+1 3.773520-5 1.431527+1 4.378391-5 1.187672+1 4.410722-5 1.225479+1 4.443053-5 1.354384+1 4.475383-5 1.502764+1 4.496937-5 1.495581+1 4.516699-5 1.408119+1 4.538930-5 1.534897+1 4.550046-5 1.697098+1 4.561211-5 1.984503+1 4.575363-5 2.542378+1 4.605624-5 3.977451+1 4.617223-5 4.336838+1 4.627963-5 4.448799+1 4.640558-5 4.254458+1 4.651388-5 3.870770+1 4.682738-5 2.319204+1 4.693853-5 1.869877+1 4.704969-5 1.538043+1 4.717474-5 1.299612+1 4.739158-5 1.041959+1 5.070108-5 9.236544+0 5.114859-5 9.461977+0 5.152099-5 1.025146+1 5.209222-5 1.170899+1 5.251816-5 1.204773+1 5.373359-5 1.185956+1 5.455489-5 1.223806+1 5.533583-5 1.174367+1 5.638601-5 1.134010+1 5.777582-5 1.004878+1 5.806378-5 1.140383+1 5.823054-5 1.287496+1 5.837021-5 1.474116+1 5.850464-5 1.712712+1 5.891793-5 2.599733+1 5.906335-5 2.804963+1 5.922185-5 2.863038+1 5.935316-5 2.780279+1 5.950546-5 2.537452+1 5.990894-5 1.640513+1 6.005115-5 1.381123+1 6.019335-5 1.188885+1 6.033556-5 1.059659+1 6.061998-5 8.979762+0 6.167124-5 8.627319+0 6.212663-5 8.944292+0 6.243022-5 9.601306+0 6.288561-5 1.108748+1 6.318920-5 1.150473+1 6.343751-5 1.107625+1 6.403356-5 9.270146+0 6.426109-5 9.071385+0 6.470716-5 9.654602+0 6.510530-5 1.033576+1 6.543426-5 1.019157+1 6.606101-5 9.370065+0 6.737700-5 8.930921+0 6.898799-5 9.154910+0 7.098589-5 8.744146+0 7.791600-5 7.122988+0 8.473885-5 5.899512+0 9.158918-5 4.970262+0 9.770822-5 4.374052+0 9.940705-5 4.320138+0 1.010400-4 4.345521+0 1.045732-4 4.075755+0 1.090000-4 3.911860+0 1.162921-4 3.919120+0 1.242928-4 4.219206+0 1.336491-4 4.893692+0 1.458571-4 6.199277+0 1.612501-4 8.377584+0 2.075941-4 1.606479+1 2.343543-4 1.967784+1 2.628276-4 2.260167+1 2.927421-4 2.485668+1 2.979465-4 2.599780+1 3.080014-4 2.625199+1 3.146088-4 2.721136+1 4.193019-4 2.784913+1 4.745134-4 2.763088+1 4.912957-4 2.876440+1 6.168704-4 2.670691+1 6.702704-4 2.564961+1 6.822072-4 2.583624+1 9.158175-4 2.084005+1 1.132281-3 1.722229+1 1.371185-3 1.421876+1 1.684326-3 1.137309+1 1.989962-3 9.390866+0 2.008589-3 9.541229+0 2.017282-3 1.007537+1 2.024557-3 1.106009+1 2.032018-3 1.274316+1 2.045726-3 1.725187+1 2.057459-3 2.102173+1 2.066234-3 2.291304+1 2.077332-3 2.406975+1 2.108928-3 2.545495+1 2.144051-3 2.906251+1 2.185951-3 2.994918+1 2.367312-3 3.051437+1 2.501459-3 2.934763+1 2.563999-3 3.204934+1 2.856297-3 2.794550+1 2.932239-3 2.837291+1 3.117095-3 2.634386+1 3.214954-3 2.615878+1 3.751627-3 2.113741+1 4.329633-3 1.722947+1 4.906386-3 1.432779+1 5.515618-3 1.203868+1 6.401032-3 9.593338+0 7.321320-3 7.796214+0 8.332090-3 6.365324+0 9.556390-3 5.120461+0 1.090370-2 4.146763+0 1.100584-2 4.182205+0 1.105949-2 4.414860+0 1.110299-2 4.867073+0 1.114279-2 5.548978+0 1.127330-2 8.608387+0 1.133827-2 9.519711+0 1.141010-2 9.848723+0 1.260187-2 8.459060+0 1.271909-2 8.641110+0 1.283158-2 9.510050+0 1.295687-2 1.062743+1 1.308150-2 1.093067+1 1.326339-2 1.094463+1 1.352644-2 1.183550+1 1.394521-2 1.148984+1 1.610747-2 9.174477+0 1.840151-2 7.417557+0 2.078548-2 6.087172+0 2.370441-2 4.900757+0 2.626016-2 4.133467+0 2.953328-2 3.390765+0 3.275174-2 2.845534+0 3.642966-2 2.370807+0 4.132343-2 1.908298+0 4.660972-2 1.547967+0 5.256860-2 1.254578+0 5.913483-2 1.019800+0 6.684451-2 8.212222-1 7.442148-2 6.824853-1 7.485231-2 6.992943-1 7.510311-2 7.410102-1 7.532531-2 8.193034-1 7.552198-2 9.357678-1 7.573685-2 1.125401+0 7.599124-2 1.434139+0 7.668324-2 2.444250+0 7.699053-2 2.774343+0 7.733398-2 2.984937+0 7.783771-2 3.081303+0 9.272881-2 2.354122+0 1.062928-1 1.887767+0 1.193226-1 1.557793+0 1.340023-1 1.283594+0 1.531914-1 1.024895+0 1.708048-1 8.529480-1 1.923022-1 6.988474-1 2.147163-1 5.804534-1 2.400028-1 4.818893-1 2.692540-1 3.989621-1 3.000060-1 3.347931-1 3.370797-1 2.783233-1 3.794549-1 2.317329-1 4.293896-1 1.925617-1 4.824336-1 1.627725-1 5.468290-1 1.369513-1 6.202941-1 1.160702-1 7.040405-1 9.922946-2 8.006044-1 8.538384-2 9.305720-1 7.233961-2 1.127612+0 5.882988-2 1.347258+0 4.816416-2 1.546860+0 4.124609-2 1.776032+0 3.532171-2 2.039158+0 3.024827-2 2.341267+0 2.590356-2 2.688134+0 2.218290-2 3.086391+0 1.899665-2 3.543651+0 1.626807-2 4.068655+0 1.393140-2 4.710316+0 1.182425-2 5.616308+0 9.702094-3 6.448384+0 8.308533-3 7.403736+0 7.115136-3 8.500626+0 6.093152-3 9.760024+0 5.217962-3 1.000000+1 1.079517-2 1 77000 7 0 1.922000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.699065+1 3.000000-6-7.677310+1 4.388709-6-7.464294+1 4.605277-6-7.133880+1 4.662972-6-6.695320+1 4.706925-6-6.293402+1 4.728723-6-6.496112+1 4.755626-6-7.340172+1 4.767156-6-7.765822+1 4.792239-6-6.989265+1 4.814933-6-6.790776+1 4.910017-6-7.661610+1 4.937862-6-7.783922+1 5.113364-6-7.115292+1 5.159654-6-6.614658+1 5.216099-6-5.552435+1 5.234012-6-5.479853+1 5.249841-6-5.765224+1 5.263338-6-6.337151+1 5.285262-6-7.725643+1 5.287181-6-7.749008+1 5.306731-6-6.390934+1 5.322640-6-5.602080+1 5.337199-6-5.222425+1 5.351465-6-5.166077+1 5.375481-6-5.495490+1 5.428672-6-6.489222+1 5.494313-6-6.953890+1 5.689630-6-7.373552+1 6.860998-6-7.967932+1 7.069342-6-7.555934+1 7.153562-6-7.357252+1 7.200897-6-7.739230+1 7.217418-6-7.933729+1 7.274357-6-7.161590+1 7.321510-6-7.072083+1 7.468194-6-7.596326+1 7.955275-6-7.994604+1 8.054035-6-7.904169+1 8.089668-6-7.955496+1 8.180791-6-7.414622+1 8.568863-6-7.754217+1 8.850425-6-7.732781+1 9.140776-6-7.790984+1 9.343209-6-7.712813+1 1.040507-5-7.831191+1 1.079143-5-7.767924+1 1.960193-5-7.741428+1 3.018540-5-7.042036+1 4.254528-5-6.165228+1 4.378391-5-5.908249+1 4.464606-5-5.610838+1 4.507714-5-5.571335+1 4.547397-5-4.957790+1 4.565048-5-4.628946+1 4.580568-5-4.556968+1 4.596729-5-4.844259+1 4.605624-5-5.203331+1 4.624822-5-6.320004+1 4.641662-5-5.210705+1 4.655378-5-4.542214+1 4.666151-5-4.226968+1 4.681175-5-4.106086+1 4.702537-5-4.365500+1 4.752449-5-5.226082+1 4.813224-5-5.607885+1 5.165767-5-6.320785+1 5.512929-5-6.130334+1 5.696037-5-6.135577+1 5.776981-5-5.796193+1 5.850464-5-5.241327+1 5.875815-5-5.356263+1 5.903935-5-5.910378+1 5.912288-5-6.129408+1 5.950546-5-5.077048+1 5.973443-5-4.786754+1 6.001560-5-4.785875+1 6.089919-5-5.445139+1 6.266955-5-5.895933+1 6.377341-5-5.655390+1 6.495473-5-5.823397+1 6.622937-5-5.740271+1 7.036345-5-5.766787+1 9.411198-5-5.899844+1 1.612501-4-6.682985+1 2.024918-4-6.691258+1 3.105248-4-5.746644+1 3.460000-4-5.310723+1 4.461825-4-4.541278+1 4.882141-4-4.396679+1 5.252966-4-4.062848+1 6.456497-4-3.476381+1 7.651414-4-3.076156+1 9.158175-4-2.777542+1 1.132281-3-2.582942+1 1.371185-3-2.557818+1 1.615804-3-2.700843+1 1.794871-3-2.966254+1 1.899469-3-3.269121+1 1.963565-3-3.607222+1 1.998817-3-3.960644+1 2.038603-3-4.748617+1 2.051833-3-4.765801+1 2.089279-3-4.226711+1 2.131817-3-4.043268+1 2.172110-3-3.613411+1 2.231878-3-3.249884+1 2.367312-3-2.695979+1 2.454405-3-2.448156+1 2.501459-3-2.433307+1 2.538064-3-2.473544+1 2.563999-3-2.335528+1 2.605441-3-2.087767+1 2.671756-3-1.866872+1 2.779751-3-1.651765+1 2.856297-3-1.585344+1 2.902310-3-1.574247+1 2.976833-3-1.395503+1 3.068297-3-1.274357+1 3.149137-3-1.231698+1 3.242595-3-1.070858+1 3.384786-3-9.208689+0 3.562717-3-7.905909+0 3.751627-3-6.886521+0 4.027171-3-5.845214+0 4.329633-3-5.081950+0 4.737048-3-4.447877+0 5.270781-3-4.065497+0 5.901137-3-3.936099+0 6.679256-3-4.088729+0 7.651560-3-4.522195+0 8.677381-3-5.238808+0 9.556390-3-6.140969+0 1.018884-2-7.139628+0 1.059817-2-8.183696+0 1.084903-2-9.271465+0 1.098443-2-1.033864+1 1.117698-2-1.293872+1 1.123790-2-1.299424+1 1.132427-2-1.194654+1 1.144307-2-1.025105+1 1.156715-2-9.250443+0 1.175166-2-8.445590+0 1.204932-2-7.817938+0 1.232193-2-7.673467+0 1.255307-2-7.951574+0 1.271909-2-8.708084+0 1.283158-2-9.223144+0 1.292271-2-9.027387+0 1.312497-2-7.810873+0 1.326339-2-7.566928+0 1.339014-2-7.407744+0 1.352644-2-6.738593+0 1.370152-2-5.810175+0 1.394521-2-4.996196+0 1.430766-2-4.178967+0 1.464758-2-3.610729+0 1.504676-2-3.082807+0 1.541301-2-2.694679+0 1.594997-2-2.245960+0 1.653835-2-1.862150+0 1.731559-2-1.476612+0 1.818678-2-1.164182+0 1.911717-2-9.295905-1 2.003918-2-7.649790-1 2.078548-2-6.658054-1 2.183633-2-5.658920-1 2.280998-2-5.074341-1 2.393006-2-4.700164-1 2.551160-2-4.511932-1 2.730805-2-4.598277-1 2.953328-2-5.045616-1 3.411848-2-6.425981-1 5.468765-2-1.386655+0 6.154358-2-1.686838+0 6.684451-2-2.006744+0 7.028267-2-2.327592+0 7.234385-2-2.632196+0 7.379115-2-2.980056+0 7.473329-2-3.390194+0 7.552198-2-4.023646+0 7.606603-2-4.422185+0 7.648983-2-4.425825+0 7.699053-2-4.058494+0 7.783771-2-3.293334+0 7.852356-2-2.906161+0 7.962260-2-2.524808+0 8.122382-2-2.166553+0 8.324935-2-1.864290+0 8.598083-2-1.574601+0 8.896629-2-1.355516+0 9.272881-2-1.158358+0 9.774593-2-9.799279-1 1.034491-1-8.406430-1 1.113859-1-7.154207-1 1.193226-1-6.420815-1 1.285372-1-5.919399-1 1.429021-1-5.560761-1 1.641583-1-5.497864-1 3.245264-1-6.987447-1 4.629636-1-7.659258-1 7.370552-1-8.171648-1 1.619761+0-8.448820-1 4.891600+0-8.533669-1 1.000000+1-8.539629-1 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.036351-3 1.090214-6 1.454967-3 1.150624-6 1.791787-3 1.203482-6 2.147518-3 1.249733-6 2.513547-3 1.290203-6 2.883752-3 1.361025-6 3.651811-3 1.414141-6 4.341698-3 1.453979-6 4.937186-3 1.536000-6 6.383586-3 1.619966-6 8.047354-3 1.702542-6 1.009746-2 1.755746-6 1.165977-2 1.810613-6 1.350465-2 1.867195-6 1.568715-2 1.925545-6 1.827381-2 1.985718-6 2.135971-2 2.177757-6 3.385787-2 2.388368-6 5.440949-2 2.463005-6 6.388458-2 2.538271-6 7.516887-2 2.611185-6 8.798957-2 2.681821-6 1.024817-1 2.750249-6 1.187813-1 2.816539-6 1.370271-1 2.942969-6 1.790953-1 3.003236-6 2.032298-1 3.118179-6 2.581960-1 3.172971-6 2.893476-1 3.226051-6 3.233765-1 3.277472-6 3.604717-1 3.327286-6 4.008094-1 3.375544-6 4.445696-1 3.422293-6 4.919361-1 3.467582-6 5.430977-1 3.511455-6 5.983105-1 3.553957-6 6.582078-1 3.635018-6 7.900868-1 3.712300-6 9.419128-1 3.784751-6 1.114762+0 3.852675-6 1.310090+0 3.916353-6 1.529132+0 3.976051-6 1.774616+0 4.032018-6 2.048501+0 4.084487-6 2.352147+0 4.133677-6 2.687754+0 4.179792-6 3.057961+0 4.223025-6 3.465170+0 4.263557-6 3.911630+0 4.301554-6 4.399591+0 4.337178-6 4.931332+0 4.370574-6 5.509163+0 4.401884-6 6.135422+0 4.431236-6 6.812489+0 4.458754-6 7.542826+0 4.484552-6 8.328957+0 4.508738-6 9.173205+0 4.531412-6 1.007751+1 4.556250-6 1.121953+1 4.572597-6 1.207475+1 4.591280-6 1.317310+1 4.608795-6 1.434183+1 4.625216-6 1.558378+1 4.640610-6 1.690177+1 4.655042-6 1.829872+1 4.668572-6 1.977772+1 4.681257-6 2.134200+1 4.693148-6 2.299493+1 4.704297-6 2.474019+1 4.714749-6 2.658194+1 4.724547-6 2.852516+1 4.733733-6 3.057593+1 4.750957-6 3.519339+1 4.766028-6 4.038166+1 4.779215-6 4.621754+1 4.790753-6 5.274493+1 4.800850-6 5.994792+1 4.809684-6 6.774252+1 4.817414-6 7.598787+1 4.824178-6 8.450896+1 4.830096-6 9.312140+1 4.839805-6 1.099509+2 4.850709-6 1.334744+2 4.873678-6 2.019274+2 4.883514-6 2.396072+2 4.889510-6 2.649125+2 4.895505-6 2.918029+2 4.907496-6 3.493289+2 4.908994-6 3.567702+2 4.919486-6 4.094425+2 4.923608-6 4.300436+2 4.931477-6 4.683348+2 4.935599-6 4.874863+2 4.939533-6 5.049506+2 4.943467-6 5.214430+2 4.948713-6 5.416297+2 4.953772-6 5.588159+2 4.958456-6 5.724523+2 4.962390-6 5.820435+2 4.968198-6 5.928340+2 4.973819-6 5.992048+2 4.979814-6 6.013755+2 4.981901-6 6.009886+2 4.987857-6 5.966303+2 4.993761-6 5.876184+2 4.999136-6 5.755067+2 5.004421-6 5.601852+2 5.008016-6 5.479681+2 5.016512-6 5.139814+2 5.021149-6 4.928371+2 5.025057-6 4.738531+2 5.030212-6 4.474975+2 5.034229-6 4.261656+2 5.039393-6 3.980440+2 5.044638-6 3.690511+2 5.050119-6 3.387291+2 5.057379-6 2.991910+2 5.062624-6 2.715003+2 5.064123-6 2.637693+2 5.072554-6 2.221125+2 5.075364-6 2.090050+2 5.087355-6 1.580933+2 5.091969-6 1.408020+2 5.095657-6 1.279216+2 5.099346-6 1.158784+2 5.102343-6 1.067014+2 5.106278-6 9.547319+1 5.112240-6 8.017273+1 5.118205-6 6.682991+1 5.122899-6 5.762664+1 5.127520-6 4.960654+1 5.134317-6 3.953275+1 5.140956-6 3.147385+1 5.157948-6 1.739326+1 5.162039-6 1.514160+1 5.166051-6 1.328078+1 5.170001-6 1.175065+1 5.171952-6 1.109549+1 5.173889-6 1.050680+1 5.175810-6 9.979875+0 5.177716-6 9.510334+0 5.179607-6 9.094077+0 5.299708-6 3.001318+1 5.307214-6 3.471526+1 5.314251-6 3.997494+1 5.320849-6 4.581574+1 5.327034-6 5.225076+1 5.332832-6 5.928193+1 5.338268-6 6.689951+1 5.348142-6 8.379843+1 5.357100-6 1.033373+2 5.371797-6 1.467678+2 5.391665-6 2.363556+2 5.403648-6 3.131580+2 5.412991-6 3.875292+2 5.422205-6 4.747430+2 5.429045-6 5.489350+2 5.433148-6 5.974242+2 5.439819-6 6.826216+2 5.446489-6 7.755864+2 5.459829-6 9.830730+2 5.461496-6 1.010811+3 5.473169-6 1.213675+3 5.477755-6 1.296480+3 5.486509-6 1.456673+3 5.493283-6 1.580202+3 5.499849-6 1.697239+3 5.506624-6 1.812889+3 5.513189-6 1.917762+3 5.519026-6 2.003237+3 5.524419-6 2.074427+3 5.527363-6 2.109732+3 5.535180-6 2.189887+3 5.541284-6 2.237524+3 5.548395-6 2.275144+3 5.554198-6 2.290960+3 5.566967-6 2.277854+3 5.572933-6 2.249629+3 5.580724-6 2.192934+3 5.586049-6 2.142242+3 5.589640-6 2.103068+3 5.594898-6 2.039124+3 5.600005-6 1.970366+3 5.606571-6 1.873855+3 5.612407-6 1.781960+3 5.618035-6 1.689338+3 5.626581-6 1.544078+3 5.633251-6 1.429248+3 5.640755-6 1.301045+3 5.646591-6 1.203465+3 5.659931-6 9.924732+2 5.668894-6 8.632087+2 5.673272-6 8.043166+2 5.683277-6 6.808161+2 5.694356-6 5.624242+2 5.721877-6 3.465029+2 5.732591-6 2.881858+2 5.743138-6 2.419439+2 5.753562-6 2.052741+2 5.763823-6 1.763141+2 5.773924-6 1.533525+2 5.783866-6 1.350146+2 5.793654-6 1.202232+2 5.803288-6 1.081498+2 5.812772-6 9.816624+1 5.822108-6 8.980051+1 5.831298-6 8.269969+1 5.849390-6 7.122355+1 5.866917-6 6.242783+1 5.883897-6 5.546569+1 5.900346-6 4.981856+1 5.916281-6 4.515065+1 5.931717-6 4.123336+1 5.946672-6 3.790447+1 5.961159-6 3.504511+1 5.989228-6 3.033226+1 6.015542-6 2.669434+1 6.040212-6 2.381351+1 6.070926-6 2.078813+1 6.105350-6 1.797520+1 6.143464-6 1.540779+1 6.176813-6 1.352821+1 6.231527-6 1.101115+1 6.309723-6 8.294304+0 6.410260-6 5.793128+0 6.473372-6 4.606008+0 6.520706-6 3.859436+0 6.552262-6 3.418019+0 6.583818-6 3.015758+0 6.615374-6 2.648753+0 6.646930-6 2.314093+0 6.678486-6 2.009672+0 6.694264-6 1.868176+0 6.710042-6 1.733376+0 6.725820-6 1.604822+0 6.844851-6 7.913610-1 6.889488-6 5.537628-1 6.928545-6 3.809219-1 6.962719-6 2.577978-1 6.992622-6 1.730182-1 7.018788-6 1.184983-1 7.041682-6 8.825873-2 7.061715-6 7.753910-2 7.079243-6 8.222485-2 7.090034-6 9.244973-2 7.094581-6 9.855297-2 7.108001-6 1.230629-1 7.119744-6 1.526927-1 7.130019-6 1.848978-1 7.139009-6 2.177128-1 7.146876-6 2.497352-1 7.153760-6 2.800513-1 7.165805-6 3.374721-1 7.174840-6 3.833697-1 7.181616-6 4.188930-1 7.186698-6 4.459498-1 7.193368-6 4.817890-1 7.200871-6 5.223166-1 7.208764-6 5.650036-1 7.219670-6 6.241734-1 7.229918-6 6.808321-1 7.247252-6 7.851634-1 7.255123-6 8.400696-1 7.258983-6 8.697491-1 7.271117-6 9.796068-1 7.273958-6 1.009907+0 7.290577-6 1.235881+0 7.292792-6 1.273687+0 7.308303-6 1.604682+0 7.317224-6 1.857971+0 7.327081-6 2.202662+0 7.344968-6 3.032700+0 7.360825-6 4.020749+0 7.364771-6 4.306084+0 7.382809-6 5.811738+0 7.385064-6 6.022409+0 7.401976-6 7.742438+0 7.407789-6 8.382187+0 7.418887-6 9.650487+0 7.426926-6 1.059089+1 7.435037-6 1.154011+1 7.439634-6 1.207171+1 7.447455-6 1.295368+1 7.453443-6 1.360090+1 7.459899-6 1.426182+1 7.466419-6 1.488107+1 7.473839-6 1.551534+1 7.482342-6 1.613459+1 7.489773-6 1.656992+1 7.495954-6 1.685012+1 7.504158-6 1.710061+1 7.510736-6 1.719815+1 7.516367-6 1.720763+1 7.524431-6 1.710304+1 7.530360-6 1.693936+1 7.534059-6 1.680121+1 7.545157-6 1.623036+1 7.553197-6 1.568284+1 7.561476-6 1.501696+1 7.566201-6 1.459672+1 7.573952-6 1.385407+1 7.580282-6 1.320728+1 7.588591-6 1.231766+1 7.596603-6 1.143130+1 7.599273-6 1.113232+1 7.608293-6 1.011926+1 7.615057-6 9.364663+0 7.619567-6 8.868210+0 7.627459-6 8.018796+0 7.635351-6 7.201843+0 7.653389-6 5.494580+0 7.662313-6 4.746447+0 7.679349-6 3.512490+0 7.688202-6 2.973329+0 7.694153-6 2.649404+0 7.703513-6 2.200478+0 7.722440-6 1.503291+0 7.730698-6 1.279006+0 7.738956-6 1.097861+0 7.747515-6 9.514500-1 7.752207-6 8.874881-1 7.756830-6 8.348583-1 7.760481-6 8.001540-1 7.764089-6 7.714388-1 7.767656-6 7.481998-1 7.771182-6 7.299722-1 7.774667-6 7.163072-1 7.778111-6 7.067835-1 7.781515-6 7.010060-1 7.785992-6 6.984932-1 7.790399-6 7.011705-1 7.794738-6 7.082927-1 7.800067-6 7.224145-1 7.806326-6 7.454495-1 7.812943-6 7.759199-1 7.824726-6 8.409350-1 7.840051-6 9.344206-1 7.849300-6 9.896105-1 7.856937-6 1.031925+0 7.865115-6 1.072470+0 7.872979-6 1.105884+0 7.882019-6 1.137047+0 7.890644-6 1.159893+0 7.903186-6 1.184050+0 7.917836-6 1.209259+0 7.924831-6 1.226074+0 7.931504-6 1.249036+0 7.935781-6 1.268925+0 7.938932-6 1.286874+0 7.941951-6 1.307167+0 7.944929-6 1.330558+0 7.948684-6 1.365505+0 7.953453-6 1.420011+0 7.956164-6 1.456737+0 7.958811-6 1.497104+0 7.963313-6 1.577057+0 7.967217-6 1.659273+0 7.971811-6 1.773289+0 7.974644-6 1.853904+0 7.979384-6 2.008290+0 7.982817-6 2.136789+0 7.986246-6 2.280419+0 7.990111-6 2.462227+0 7.993965-6 2.666317+0 7.999539-6 3.005583+0 8.005113-6 3.402562+0 8.013901-6 4.161553+0 8.033530-6 6.576229+0 8.043361-6 8.242618+0 8.053159-6 1.026750+1 8.062973-6 1.270772+1 8.072787-6 1.560720+1 8.081917-6 1.875650+1 8.090640-6 2.220316+1 8.094607-6 2.391951+1 8.100509-6 2.665053+1 8.119350-6 3.683788+1 8.125528-6 4.067099+1 8.129873-6 4.351133+1 8.139650-6 5.032374+1 8.145396-6 5.458695+1 8.162805-6 6.852874+1 8.171533-6 7.598566+1 8.175023-6 7.902921+1 8.185490-6 8.829655+1 8.190858-6 9.308525+1 8.199988-6 1.011942+2 8.206979-6 1.072972+2 8.214829-6 1.139525+2 8.223493-6 1.209462+2 8.229816-6 1.257471+2 8.240263-6 1.329823+2 8.248149-6 1.377637+2 8.258146-6 1.428551+2 8.266295-6 1.461199+2 8.276430-6 1.489848+2 8.284720-6 1.502999+2 8.304086-6 1.497079+2 8.311888-6 1.480550+2 8.324867-6 1.436399+2 8.334319-6 1.392375+2 8.339849-6 1.362508+2 8.348922-6 1.307768+2 8.359111-6 1.239153+2 8.367621-6 1.177322+2 8.375827-6 1.114866+2 8.378562-6 1.093594+2 8.390058-6 1.002712+2 8.398681-6 9.339941+1 8.404042-6 8.914800+1 8.419275-6 7.734521+1 8.423938-6 7.385547+1 8.441347-6 6.153822+1 8.454714-6 5.298197+1 8.461242-6 4.911829+1 8.475756-6 4.129605+1 8.488901-6 3.512153+1 8.509085-6 2.723937+1 8.532882-6 2.014750+1 8.548179-6 1.664133+1 8.563477-6 1.380752+1 8.575254-6 1.200853+1 8.587031-6 1.048797+1 8.600593-6 9.025242+0 8.614155-6 7.816268+0 8.627559-6 6.823433+0 8.647664-6 5.628560+0 8.667770-6 4.700226+0 8.695823-6 3.717834+0 8.726773-6 2.919766+0 8.749986-6 2.454635+0 8.784805-6 1.904593+0 8.835899-6 1.321414+0 8.896137-6 9.048576-1 8.914738-6 8.415354-1 8.933338-6 8.168458-1 8.946771-6 8.266376-1 8.956845-6 8.510573-1 8.971957-6 9.183139-1 8.974338-6 9.325449-1 8.987069-6 1.027198+0 8.998313-6 1.139487+0 9.006746-6 1.243958+0 9.013071-6 1.335235+0 9.022558-6 1.495888+0 9.027302-6 1.588283+0 9.032045-6 1.689742+0 9.039594-6 1.872140+0 9.049503-6 2.157016+0 9.055872-6 2.372330+0 9.062242-6 2.617133+0 9.067662-6 2.851769+0 9.074775-6 3.201560+0 9.082206-6 3.624903+0 9.093072-6 4.369375+0 9.109727-6 5.866433+0 9.153284-6 1.266449+1 9.169785-6 1.663597+1 9.178716-6 1.914293+1 9.185912-6 2.134475+1 9.196288-6 2.479580+1 9.203934-6 2.753414+1 9.210758-6 3.010528+1 9.225093-6 3.583075+1 9.233823-6 3.947707+1 9.241165-6 4.259821+1 9.249022-6 4.595694+1 9.257493-6 4.955680+1 9.265015-6 5.269404+1 9.272873-6 5.587034+1 9.282257-6 5.947072+1 9.288821-6 6.182961+1 9.299511-6 6.532454+1 9.308844-6 6.796552+1 9.314630-6 6.938682+1 9.325874-6 7.163307+1 9.334996-6 7.292337+1 9.342009-6 7.357764+1 9.351751-6 7.399155+1 9.359642-6 7.390583+1 9.364096-6 7.369373+1 9.377458-6 7.237492+1 9.386534-6 7.092924+1 9.396080-6 6.897317+1 9.402493-6 6.743233+1 9.408814-6 6.575376+1 9.413192-6 6.450678+1 9.421073-6 6.210855+1 9.431417-6 5.871007+1 9.441391-6 5.522919+1 9.444716-6 5.403630+1 9.458240-6 4.908272+1 9.467135-6 4.578814+1 9.474533-6 4.306031+1 9.485351-6 3.913543+1 9.489555-6 3.764148+1 9.511974-6 3.010380+1 9.524585-6 2.626094+1 9.534393-6 2.350039+1 9.545603-6 2.060295+1 9.561446-6 1.698392+1 9.572983-6 1.469468+1 9.613166-6 8.793501+0 9.621923-6 7.882204+0 9.636783-6 6.591697+0 9.648045-6 5.804992+0 9.656712-6 5.298964+0 9.668597-6 4.730304+0 9.680481-6 4.289724+0 9.694632-6 3.909372+0 9.704250-6 3.728585+0 9.713419-6 3.607485+0 9.728019-6 3.504694+0 9.731051-6 3.495707+0 9.739903-6 3.491074+0 9.751787-6 3.530090+0 9.757730-6 3.566551+0 9.763619-6 3.612429+0 9.775556-6 3.730974+0 9.790412-6 3.915684+0 9.823094-6 4.393682+0 9.840920-6 4.651286+0 9.846862-6 4.731122+0 9.858747-6 4.877259+0 9.870631-6 5.001219+0 9.876573-6 5.053622+0 9.889943-6 5.145978+0 9.900342-6 5.192330+0 9.918169-6 5.220459+0 9.924111-6 5.216367+0 9.941938-6 5.170300+0 9.965706-6 5.057196+0 9.992156-6 4.929626+0 1.001695-5 4.889848+0 1.002761-5 4.915881+0 1.003701-5 4.966384+0 1.004160-5 5.001309+0 1.006078-5 5.226696+0 1.007083-5 5.398391+0 1.008455-5 5.692901+0 1.009399-5 5.934433+0 1.009939-5 6.085696+0 1.011980-5 6.734492+0 1.014619-5 7.697667+0 1.016389-5 8.368040+0 1.017783-5 8.878307+0 1.019248-5 9.373276+0 1.020524-5 9.753018+0 1.021727-5 1.005455+1 1.022806-5 1.027024+1 1.023884-5 1.042872+1 1.024193-5 1.046291+1 1.026350-5 1.055796+1 1.027198-5 1.052526+1 1.028816-5 1.035537+1 1.029298-5 1.027850+1 1.030142-5 1.011670+1 1.030775-5 9.973723+0 1.031725-5 9.727190+0 1.032674-5 9.445924+0 1.033559-5 9.156706+0 1.034885-5 8.682434+0 1.036212-5 8.171780+0 1.037445-5 7.676604+0 1.038678-5 7.172210+0 1.041026-5 6.219825+0 1.043486-5 5.283654+0 1.048404-5 3.753806+0 1.050030-5 3.366957+0 1.051702-5 3.031141+0 1.054596-5 2.589775+0 1.058731-5 2.231471+0 1.061671-5 2.143646+0 1.063279-5 2.147697+0 1.063819-5 2.156864+0 1.064817-5 2.183810+0 1.066414-5 2.253044+0 1.067853-5 2.341827+0 1.069091-5 2.437184+0 1.071685-5 2.688737+0 1.077813-5 3.481149+0 1.080014-5 3.792243+0 1.081933-5 4.054969+0 1.083625-5 4.271375+0 1.084273-5 4.349077+0 1.085794-5 4.518110+0 1.087372-5 4.671151+0 1.090033-5 4.873612+0 1.090645-5 4.910291+0 1.092608-5 5.005198+0 1.095125-5 5.084291+0 1.102000-5 5.210039+0 1.104515-5 5.281862+0 1.107265-5 5.399763+0 1.110387-5 5.585104+0 1.119177-5 6.251936+0 1.122716-5 6.497047+0 1.125598-5 6.667308+0 1.135011-5 7.146886+0 1.135870-5 7.199386+0 1.140019-5 7.521462+0 1.142093-5 7.739268+0 1.144168-5 8.004495+0 1.146258-5 8.324714+0 1.149645-5 8.960677+0 1.153825-5 9.924255+0 1.157267-5 1.080765+1 1.159593-5 1.140561+1 1.161258-5 1.181286+1 1.162618-5 1.212217+1 1.164403-5 1.248365+1 1.166411-5 1.281250+1 1.167489-5 1.294861+1 1.169269-5 1.310355+1 1.169862-5 1.313466+1 1.172610-5 1.313778+1 1.172982-5 1.312014+1 1.175587-5 1.287842+1 1.176374-5 1.276641+1 1.178734-5 1.233279+1 1.180638-5 1.189102+1 1.182192-5 1.148239+1 1.183358-5 1.115443+1 1.185107-5 1.063880+1 1.186856-5 1.010812+1 1.189390-5 9.341464+0 1.194666-5 7.892318+0 1.199648-5 6.853055+0 1.201245-5 6.599323+0 1.202295-5 6.453618+0 1.204957-5 6.156355+0 1.207804-5 5.946182+0 1.211086-5 5.827708+0 1.213497-5 5.815886+0 1.216117-5 5.867586+0 1.221153-5 6.132628+0 1.222103-5 6.204277+0 1.225245-5 6.482071+0 1.229699-5 6.958210+0 1.234615-5 7.527096+0 1.236033-5 7.685853+0 1.239223-5 8.013464+0 1.241964-5 8.246737+0 1.243642-5 8.361896+0 1.246303-5 8.497174+0 1.249661-5 8.585394+0 1.252670-5 8.596386+0 1.256909-5 8.539426+0 1.264010-5 8.412823+0 1.267003-5 8.396199+0 1.270370-5 8.418648+0 1.274354-5 8.498123+0 1.279828-5 8.669756+0 1.288828-5 8.981018+0 1.301124-5 9.299677+0 1.309079-5 9.425447+0 1.313323-5 9.457475+0 1.317567-5 9.457945+0 1.323751-5 9.397659+0 1.331674-5 9.236611+0 1.340018-5 9.048084+0 1.344571-5 8.976735+0 1.349586-5 8.944169+0 1.354607-5 8.966109+0 1.358171-5 9.013438+0 1.361728-5 9.083516+0 1.367060-5 9.222554+0 1.378194-5 9.593107+0 1.410664-5 1.085671+1 1.432705-5 1.176102+1 1.477827-5 1.370859+1 1.571634-5 1.840512+1 1.659587-5 2.364338+1 1.726094-5 2.819867+1 1.802397-5 3.407377+1 1.870043-5 3.991088+1 1.982383-5 5.089448+1 2.075296-5 6.122948+1 2.170233-5 7.300669+1 2.290868-5 8.960020+1 2.400271-5 1.060815+2 2.513602-5 1.244230+2 2.630787-5 1.442926+2 2.715363-5 1.589142+2 2.810509-5 1.755592+2 2.901114-5 1.911094+2 2.985383-5 2.050761+2 3.028993-5 2.120723+2 3.100570-5 2.231779+2 3.172483-5 2.336887+2 3.276800-5 2.476748+2 3.356250-5 2.572709+2 3.460996-5 2.681492+2 3.572024-5 2.774547+2 3.686400-5 2.845039+2 3.789217-5 2.886168+2 3.861370-5 2.901953+2 3.952677-5 2.907423+2 4.032397-5 2.897308+2 4.118814-5 2.872137+2 4.199242-5 2.833294+2 4.256728-5 2.816087+2 4.354507-5 2.873153+2 4.421190-5 2.947900+2 4.476333-5 3.036803+2 4.516268-5 3.128747+2 4.550879-5 3.242899+2 4.579949-5 3.385452+2 4.600860-5 3.531805+2 4.615427-5 3.661986+2 4.621127-5 3.719653+2 4.643875-5 3.983898+2 4.666624-5 4.281691+2 4.677998-5 4.430883+2 4.696482-5 4.662187+2 4.712121-5 4.854428+2 4.723496-5 5.010320+2 4.734870-5 5.204171+2 4.738780-5 5.284762+2 4.746244-5 5.465616+2 4.750154-5 5.577137+2 4.757619-5 5.828268+2 4.761529-5 5.982340+2 4.766194-5 6.188605+2 4.771366-5 6.447813+2 4.779701-5 6.937691+2 4.783840-5 7.215304+2 4.791742-5 7.809134+2 4.802742-5 8.769396+2 4.815942-5 1.009524+3 4.827918-5 1.140569+3 4.838762-5 1.261935+3 4.843265-5 1.311613+3 4.850524-5 1.389274+3 4.856473-5 1.449585+3 4.860815-5 1.491096+3 4.868855-5 1.561092+3 4.873312-5 1.595420+3 4.881237-5 1.647399+3 4.887474-5 1.679304+3 4.894373-5 1.704556+3 4.900607-5 1.717812+3 4.908229-5 1.721266+3 4.911445-5 1.718470+3 4.920358-5 1.697659+3 4.925958-5 1.675059+3 4.932855-5 1.637741+3 4.938319-5 1.601341+3 4.943147-5 1.564654+3 4.948292-5 1.521426+3 4.954908-5 1.460581+3 4.961339-5 1.397014+3 4.968140-5 1.326541+3 4.978431-5 1.217031+3 4.991663-5 1.078354+3 5.018762-5 8.326607+2 5.026749-5 7.742288+2 5.034613-5 7.233612+2 5.042354-5 6.795076+2 5.050004-5 6.418354+2 5.057535-5 6.097630+2 5.072245-5 5.593793+2 5.086500-5 5.228330+2 5.100312-5 4.958021+2 5.113802-5 4.750648+2 5.139529-5 4.455203+2 5.163674-5 4.250372+2 5.192620-5 4.058196+2 5.232873-5 3.848942+2 5.281663-5 3.649204+2 5.340331-5 3.455662+2 5.545955-5 2.895348+2 5.607532-5 2.708254+2 5.686765-5 2.441519+2 5.705085-5 2.395482+2 5.716952-5 2.374804+2 5.727835-5 2.363819+2 5.742339-5 2.362712+2 5.757388-5 2.378933+2 5.769293-5 2.403982+2 5.781473-5 2.439491+2 5.800761-5 2.511002+2 5.826837-5 2.620237+2 5.841753-5 2.679898+2 5.856475-5 2.732064+2 5.875501-5 2.786522+2 5.889716-5 2.817240+2 5.909258-5 2.846964+2 5.956166-5 2.874125+2 5.993438-5 2.858652+2 6.016558-5 2.832182+2 6.041382-5 2.796312+2 6.058223-5 2.777766+2 6.077468-5 2.778951+2 6.094879-5 2.818814+2 6.107813-5 2.883981+2 6.123006-5 3.010852+2 6.136315-5 3.174852+2 6.148320-5 3.369984+2 6.155480-5 3.508736+2 6.166460-5 3.754377+2 6.199749-5 4.725477+2 6.214722-5 5.251425+2 6.233012-5 5.937553+2 6.245077-5 6.401062+2 6.257528-5 6.876010+2 6.271305-5 7.384266+2 6.284282-5 7.832872+2 6.297548-5 8.246506+2 6.306046-5 8.480270+2 6.318004-5 8.758183+2 6.325070-5 8.889979+2 6.334811-5 9.027157+2 6.339550-5 9.073851+2 6.349965-5 9.127664+2 6.356810-5 9.125409+2 6.366081-5 9.074448+2 6.373457-5 8.995391+2 6.378625-5 8.920551+2 6.385408-5 8.799488+2 6.394130-5 8.609163+2 6.405644-5 8.307476+2 6.409308-5 8.201658+2 6.424486-5 7.728311+2 6.442693-5 7.126012+2 6.479460-5 5.999681+2 6.489188-5 5.748676+2 6.503336-5 5.426348+2 6.518373-5 5.138374+2 6.541721-5 4.790430+2 6.572851-5 4.469769+2 6.609906-5 4.220182+2 6.657890-5 4.004481+2 6.714945-5 3.821217+2 6.798379-5 3.617367+2 7.017515-5 3.170684+2 7.087484-5 2.994436+2 7.157211-5 2.788210+2 7.193114-5 2.708026+2 7.209749-5 2.690227+2 7.227365-5 2.690475+2 7.245925-5 2.715232+2 7.256814-5 2.741963+2 7.271084-5 2.790089+2 7.284835-5 2.848926+2 7.316545-5 3.015780+2 7.334000-5 3.113915+2 7.354270-5 3.221535+2 7.375645-5 3.319311+2 7.385000-5 3.355938+2 7.401163-5 3.410717+2 7.426969-5 3.481492+2 7.469971-5 3.591247+2 7.504960-5 3.703385+2 7.542713-5 3.838603+2 7.561197-5 3.896916+2 7.580247-5 3.943104+2 7.595375-5 3.966598+2 7.612207-5 3.977443+2 7.636358-5 3.965307+2 7.650067-5 3.945599+2 7.667665-5 3.909646+2 7.686041-5 3.863043+2 7.755303-5 3.666805+2 7.792033-5 3.577343+2 7.829949-5 3.501833+2 7.908565-5 3.386149+2 8.065114-5 3.226903+2 8.125143-5 3.178659+2 8.175230-5 3.146876+2 8.279598-5 3.106981+2 8.424928-5 3.077784+2 8.604348-5 3.030947+2 8.800458-5 3.001818+2 8.959058-5 2.967941+2 9.441235-5 2.822493+2 9.772371-5 2.716666+2 1.006083-4 2.619972+2 1.030736-4 2.532105+2 1.064585-4 2.401713+2 1.078175-4 2.373347+2 1.091826-4 2.348003+2 1.110887-4 2.294863+2 1.128490-4 2.237117+2 1.186718-4 2.037056+2 1.230269-4 1.895390+2 1.303167-4 1.675285+2 1.421149-4 1.384576+2 1.480000-4 1.275953+2 1.502189-4 1.241724+2 1.537115-4 1.196363+2 1.558045-4 1.174564+2 1.603246-4 1.140297+2 1.634061-4 1.126672+2 1.669168-4 1.123573+2 1.724495-4 1.141910+2 1.778279-4 1.189738+2 1.825483-4 1.254383+2 1.875534-4 1.346627+2 1.915000-4 1.436046+2 1.961397-4 1.556393+2 2.020650-4 1.732863+2 2.200720-4 2.389503+2 2.267768-4 2.668706+2 2.344229-4 3.003381+2 2.430000-4 3.395984+2 2.511886-4 3.783844+2 2.603937-4 4.229047+2 2.697959-4 4.682887+2 2.800000-4 5.166669+2 2.910798-4 5.664416+2 3.007118-4 6.054642+2 3.088129-4 6.331769+2 3.111980-4 6.450741+2 3.131149-4 6.591806+2 3.171949-4 6.974519+2 3.189729-4 7.113841+2 3.206691-4 7.210726+2 3.249677-4 7.378642+2 3.277311-4 7.518963+2 3.328886-4 7.886305+2 3.344945-4 7.992574+2 3.366250-4 8.107734+2 3.470000-4 8.515793+2 3.763507-4 9.630832+2 4.033230-4 1.058236+3 4.278985-4 1.135967+3 4.525075-4 1.202331+3 4.772112-4 1.257637+3 4.930058-4 1.286738+3 5.025355-4 1.307544+3 5.093339-4 1.319415+3 5.125507-4 1.332288+3 5.191743-4 1.371865+3 5.255826-4 1.405343+3 5.372097-4 1.446801+3 5.575000-4 1.500594+3 5.822510-4 1.551549+3 5.969646-4 1.577770+3 6.140848-4 1.618291+3 6.350000-4 1.660968+3 6.657902-4 1.707759+3 7.014287-4 1.744151+3 7.076250-4 1.752718+3 7.336250-4 1.803755+3 7.564915-4 1.834427+3 7.914755-4 1.868853+3 8.365656-4 1.901828+3 8.880502-4 1.929104+3 9.374901-4 1.948579+3 9.968794-4 1.963250+3 1.065369-3 1.970717+3 1.127076-3 1.969005+3 1.206598-3 1.957398+3 1.288249-3 1.930369+3 1.377210-3 1.889975+3 1.462178-3 1.844040+3 1.543639-3 1.792807+3 1.631173-3 1.727038+3 1.703138-3 1.660334+3 1.773169-3 1.583547+3 1.830479-3 1.511042+3 1.880940-3 1.437532+3 1.924049-3 1.364699+3 1.958030-3 1.297816+3 1.985221-3 1.235753+3 2.011118-3 1.166860+3 2.030997-3 1.104793+3 2.050167-3 1.033183+3 2.065047-3 9.652881+2 2.076008-3 9.066211+2 2.083892-3 8.607988+2 2.098968-3 7.760929+2 2.104384-3 7.520027+2 2.106927-3 7.428206+2 2.109520-3 7.351470+2 2.111881-3 7.297990+2 2.114361-3 7.260058+2 2.117303-3 7.240832+2 2.120024-3 7.248967+2 2.123990-3 7.306225+2 2.127545-3 7.402484+2 2.131420-3 7.552744+2 2.135672-3 7.765658+2 2.139475-3 7.990907+2 2.154727-3 9.053220+2 2.161516-3 9.516276+2 2.165936-3 9.792652+2 2.171694-3 1.011698+3 2.179462-3 1.049475+3 2.201727-3 1.143134+3 2.210043-3 1.182819+3 2.226850-3 1.277047+3 2.238994-3 1.349448+3 2.247915-3 1.399741+3 2.261420-3 1.466630+3 2.274443-3 1.519935+3 2.294167-3 1.585092+3 2.320732-3 1.657171+3 2.362153-3 1.756919+3 2.419453-3 1.890297+3 2.452266-3 1.964632+3 2.482774-3 2.025926+3 2.507819-3 2.064174+3 2.530577-3 2.085748+3 2.552906-3 2.094170+3 2.598824-3 2.087854+3 2.609533-3 2.091524+3 2.620825-3 2.103085+3 2.629830-3 2.119164+3 2.646384-3 2.163837+3 2.684371-3 2.292918+3 2.699131-3 2.334034+3 2.716333-3 2.371504+3 2.739383-3 2.408121+3 2.761203-3 2.433658+3 2.798174-3 2.465497+3 2.827228-3 2.483468+3 2.866137-3 2.499517+3 2.906093-3 2.507888+3 2.963663-3 2.504477+3 2.984704-3 2.502138+3 3.005397-3 2.505599+3 3.030998-3 2.522710+3 3.093844-3 2.586420+3 3.116005-3 2.600335+3 3.148026-3 2.611760+3 3.184207-3 2.615827+3 3.239678-3 2.612533+3 3.274421-3 2.621425+3 3.340185-3 2.665433+3 3.365590-3 2.678185+3 3.402871-3 2.690077+3 3.505739-3 2.704251+3 3.630781-3 2.703693+3 3.801894-3 2.686756+3 3.994042-3 2.655765+3 4.302789-3 2.586693+3 4.513685-3 2.534321+3 4.841723-3 2.444667+3 5.292634-3 2.317129+3 5.721369-3 2.198096+3 6.187895-3 2.072882+3 6.673930-3 1.948035+3 7.237624-3 1.812227+3 7.546751-3 1.741580+3 7.888123-3 1.666382+3 8.232787-3 1.593152+3 8.598226-3 1.518290+3 8.977104-3 1.442919+3 9.299027-3 1.380404+3 9.582357-3 1.326080+3 9.857120-3 1.273651+3 1.009652-2 1.227482+3 1.030127-2 1.187291+3 1.049487-2 1.148161+3 1.065369-2 1.114657+3 1.079491-2 1.083145+3 1.091707-2 1.053927+3 1.101743-2 1.027796+3 1.110572-2 1.002233+3 1.117858-2 9.781677+2 1.123741-2 9.557998+2 1.128460-2 9.355274+2 1.138869-2 8.855043+2 1.144811-2 8.591056+2 1.148975-2 8.453476+2 1.153122-2 8.376586+2 1.155284-2 8.364080+2 1.159367-2 8.392807+2 1.162870-2 8.466611+2 1.168821-2 8.664652+2 1.178483-2 9.038320+2 1.185390-2 9.254715+2 1.190000-2 9.362454+2 1.193855-2 9.431908+2 1.200222-2 9.513498+2 1.207531-2 9.570011+2 1.215868-2 9.601520+2 1.224068-2 9.608362+2 1.235147-2 9.589740+2 1.246275-2 9.544816+2 1.256762-2 9.480511+2 1.269234-2 9.377483+2 1.279637-2 9.266906+2 1.288477-2 9.149557+2 1.295875-2 9.029909+2 1.318257-2 8.596480+2 1.324871-2 8.513881+2 1.329689-2 8.489275+2 1.335668-2 8.502312+2 1.346469-2 8.607272+2 1.355392-2 8.701990+2 1.364215-2 8.758146+2 1.384494-2 8.831782+2 1.397644-2 8.952532+2 1.414666-2 9.133686+2 1.429295-2 9.227097+2 1.448741-2 9.272453+2 1.477531-2 9.263550+2 1.514106-2 9.188379+2 1.552305-2 9.069837+2 1.605554-2 8.863161+2 1.665036-2 8.602824+2 1.737801-2 8.268206+2 1.860883-2 7.702476+2 2.014137-2 7.040037+2 2.237768-2 6.190804+2 2.486262-2 5.401277+2 2.757180-2 4.691908+2 3.109466-2 3.953818+2 3.479005-2 3.348363+2 3.779136-2 2.947466+2 4.091647-2 2.592287+2 4.995366-2 1.852807+2 5.403265-2 1.618163+2 5.872233-2 1.394748+2 6.329076-2 1.213345+2 6.701395-2 1.085602+2 6.999987-2 9.921800+1 7.229453-2 9.230868+1 7.388257-2 8.745785+1 7.509741-2 8.350154+1 7.563492-2 8.158318+1 7.605641-2 7.993964+1 7.669570-2 7.708538+1 7.787266-2 7.119982+1 7.818308-2 7.009571+1 7.847204-2 6.949221+1 7.879618-2 6.936130+1 7.911671-2 6.974599+1 7.967535-2 7.115423+1 8.036167-2 7.296525+1 8.087058-2 7.385108+1 8.153965-2 7.442010+1 8.244324-2 7.454014+1 8.356475-2 7.418064+1 8.551204-2 7.294288+1 8.833902-2 7.055763+1 9.134890-2 6.773216+1 9.579627-2 6.347103+1 1.027136-1 5.718821+1 1.109923-1 5.051341+1 1.222942-1 4.287681+1 1.356119-1 3.577741+1 1.643543-1 2.535834+1 2.082624-1 1.647403+1 2.519676-1 1.155652+1 3.180534-1 7.430382+0 4.221519-1 4.309157+0 6.040344-1 2.145811+0 9.751300-1 8.377560-1 1.619761+0 3.067999-1 3.384160+0 7.068557-2 1.022000+1 7.761415-3 3.086391+1 8.511310-4 9.320751+1 9.332594-5 2.814822+2 1.023300-5 8.500626+2 1.122026-6 3.162278+3 8.107835-8 1.000000+4 8.107835-9 3.162278+4 8.10783-10 1.000000+5 8.10783-11 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.354800-6 1.258900-6 2.147200-6 1.584900-6 3.403000-6 1.995300-6 5.393400-6 2.511900-6 8.548000-6 3.162300-6 1.354800-5 3.981100-6 2.147100-5 5.011900-6 3.403000-5 6.309600-6 5.393300-5 7.943300-6 8.547700-5 1.000000-5 1.354700-4 1.258900-5 2.147000-4 1.584900-5 3.402800-4 1.995300-5 5.392900-4 2.511900-5 8.546900-4 3.162300-5 1.354400-3 3.981100-5 2.145800-3 5.011900-5 3.399600-3 6.309600-5 5.386400-3 7.943300-5 8.534200-3 1.000000-4 1.351200-2 1.258900-4 2.138900-2 1.584900-4 3.381500-2 1.995300-4 5.342800-2 2.511900-4 8.424000-2 3.162300-4 1.324500-1 3.981100-4 2.073200-1 5.011900-4 3.223500-1 6.309600-4 4.940500-1 7.943300-4 7.427500-1 1.000000-3 1.091500+0 1.258900-3 1.562900+0 1.584900-3 2.176800+0 1.995300-3 2.954600+0 2.511900-3 3.921800+0 3.162300-3 5.101900+0 3.981100-3 6.529900+0 5.011900-3 8.254700+0 6.309600-3 1.031600+1 7.943300-3 1.265500+1 1.000000-2 1.516900+1 1.258900-2 1.774900+1 1.584900-2 2.039700+1 1.995300-2 2.309600+1 2.511900-2 2.570100+1 3.162300-2 2.820300+1 3.981100-2 3.023600+1 5.011900-2 3.174100+1 6.309600-2 3.268500+1 7.943300-2 3.307800+1 1.000000-1 3.290900+1 1.258900-1 3.222600+1 1.584900-1 3.109100+1 1.995300-1 2.960700+1 2.511900-1 2.788200+1 3.162300-1 2.600300+1 3.981100-1 2.404200+1 5.011900-1 2.205700+1 6.309600-1 2.009000+1 7.943300-1 1.817500+1 1.000000+0 1.633500+1 1.258900+0 1.458100+1 1.584900+0 1.293100+1 1.995300+0 1.139200+1 2.511900+0 9.970800+0 3.162300+0 8.672100+0 3.981100+0 7.497600+0 5.011900+0 6.445700+0 6.309600+0 5.511800+0 7.943300+0 4.691000+0 1.000000+1 3.974600+0 1.258900+1 3.354000+0 1.584900+1 2.819800+0 1.995300+1 2.362900+0 2.511900+1 1.974100+0 3.162300+1 1.644700+0 3.981100+1 1.367000+0 5.011900+1 1.133700+0 6.309600+1 9.382800-1 7.943300+1 7.751500-1 1.000000+2 6.393200-1 1.258900+2 5.264900-1 1.584900+2 4.329800-1 1.995300+2 3.556200-1 2.511900+2 2.917400-1 3.162300+2 2.390800-1 3.981100+2 1.957200-1 5.011900+2 1.600800-1 6.309600+2 1.308100-1 7.943300+2 1.068100-1 1.000000+3 8.714300-2 1.258900+3 7.104700-2 1.584900+3 5.788400-2 1.995300+3 4.713000-2 2.511900+3 3.835000-2 3.162300+3 3.118800-2 3.981100+3 2.535000-2 5.011900+3 2.059300-2 6.309600+3 1.672100-2 7.943300+3 1.357000-2 1.000000+4 1.100800-2 1.258900+4 8.926200-3 1.584900+4 7.234800-3 1.995300+4 5.861600-3 2.511900+4 4.747100-3 3.162300+4 3.843100-3 3.981100+4 3.110200-3 5.011900+4 2.516200-3 6.309600+4 2.034900-3 7.943300+4 1.645200-3 1.000000+5 1.329600-3 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976752-4 5.011872-4 5.005045-4 6.309573-4 6.298784-4 7.943282-4 7.926315-4 1.000000-3 9.973372-4 1.258925-3 1.254762-3 1.584893-3 1.578385-3 1.995262-3 1.985096-3 2.511886-3 2.496007-3 3.162278-3 3.137469-3 3.981072-3 3.942281-3 5.011872-3 4.951048-3 6.309573-3 6.214536-3 7.943282-3 7.794816-3 1.000000-2 9.770064-3 1.258925-2 1.223392-2 1.584893-2 1.530047-2 1.995262-2 1.910678-2 2.511886-2 2.381608-2 3.162278-2 2.963348-2 3.981072-2 3.679073-2 5.011872-2 4.556938-2 6.309573-2 5.629571-2 7.943282-2 6.932803-2 1.000000-1 8.513776-2 1.258925-1 1.041696-1 1.584893-1 1.270803-1 1.995262-1 1.545262-1 2.511886-1 1.872867-1 3.162278-1 2.262472-1 3.981072-1 2.724180-1 5.011872-1 3.270199-1 6.309573-1 3.914773-1 7.943282-1 4.674684-1 1.000000+0 5.567462-1 1.258925+0 6.621696-1 1.584893+0 7.864550-1 1.995262+0 9.335543-1 2.511886+0 1.108134+0 3.162278+0 1.315856+0 3.981072+0 1.563845+0 5.011872+0 1.860744+0 6.309573+0 2.217000+0 7.943282+0 2.645436+0 1.000000+1 3.162066+0 1.258925+1 3.786272+0 1.584893+1 4.541304+0 1.995262+1 5.456570+0 2.511886+1 6.567380+0 3.162278+1 7.917404+0 3.981072+1 9.559857+0 5.011872+1 1.156064+1 6.309573+1 1.400035+1 7.943282+1 1.697798+1 1.000000+2 2.061539+1 1.258925+2 2.506269+1 1.584893+2 3.050413+1 1.995262+2 3.716765+1 2.511886+2 4.533282+1 3.162278+2 5.534543+1 3.981072+2 6.762989+1 5.011872+2 8.271325+1 6.309573+2 1.012428+2 7.943282+2 1.240190+2 1.000000+3 1.520283+2 1.258925+3 1.864898+2 1.584893+3 2.289156+2 1.995262+3 2.811726+2 2.511886+3 3.455495+2 3.162278+3 4.249337+2 3.981072+3 5.228237+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739859-9 3.981072-5 4.341985-9 5.011872-5 6.881220-9 6.309573-5 1.090560-8 7.943282-5 1.728325-8 1.000000-4 2.738502-8 1.258925-4 4.339489-8 1.584893-4 6.874166-8 1.995262-4 1.089017-7 2.511886-4 1.724636-7 3.162278-4 2.729942-7 3.981072-4 4.319241-7 5.011872-4 6.827429-7 6.309573-4 1.078943-6 7.943282-4 1.696720-6 1.000000-3 2.662809-6 1.258925-3 4.163094-6 1.584893-3 6.508218-6 1.995262-3 1.016599-5 2.511886-3 1.587918-5 3.162278-3 2.480897-5 3.981072-3 3.879097-5 5.011872-3 6.082412-5 6.309573-3 9.503773-5 7.943282-3 1.484666-4 1.000000-2 2.299361-4 1.258925-2 3.553310-4 1.584893-2 5.484667-4 1.995262-2 8.458436-4 2.511886-2 1.302788-3 3.162278-2 1.989301-3 3.981072-2 3.019987-3 5.011872-2 4.549345-3 6.309573-2 6.800025-3 7.943282-2 1.010479-2 1.000000-1 1.486224-2 1.258925-1 2.172298-2 1.584893-1 3.140903-2 1.995262-1 4.500003-2 2.511886-1 6.390193-2 3.162278-1 8.998060-2 3.981072-1 1.256892-1 5.011872-1 1.741673-1 6.309573-1 2.394801-1 7.943282-1 3.268598-1 1.000000+0 4.432538-1 1.258925+0 5.967558-1 1.584893+0 7.984382-1 1.995262+0 1.061708+0 2.511886+0 1.403753+0 3.162278+0 1.846421+0 3.981072+0 2.417226+0 5.011872+0 3.151128+0 6.309573+0 4.092573+0 7.943282+0 5.297847+0 1.000000+1 6.837934+0 1.258925+1 8.802982+0 1.584893+1 1.130763+1 1.995262+1 1.449605+1 2.511886+1 1.855148+1 3.162278+1 2.370537+1 3.981072+1 3.025086+1 5.011872+1 3.855809+1 6.309573+1 4.909539+1 7.943282+1 6.245484+1 1.000000+2 7.938461+1 1.258925+2 1.008298+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058558+2 3.162278+2 2.608823+2 3.981072+2 3.304773+2 5.011872+2 4.184740+2 6.309573+2 5.297145+2 7.943282+2 6.703093+2 1.000000+3 8.479717+2 1.258925+3 1.072436+3 1.584893+3 1.355978+3 1.995262+3 1.714090+3 2.511886+3 2.166337+3 3.162278+3 2.737344+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.070000-6 3.877410+6 8.511380-6 3.154111+6 9.540000-6 2.001447+6 9.540000-6 9.966449+6 9.700000-6 9.973510+6 1.000000-5 1.001021+7 1.059254-5 1.023505+7 1.102000-5 1.049349+7 1.102000-5 1.502916+7 1.109175-5 1.509700+7 1.135011-5 1.534794+7 1.150000-5 1.551222+7 1.180000-5 1.586352+7 1.230269-5 1.652625+7 1.258925-5 1.693944+7 1.288250-5 1.737205+7 1.370000-5 1.867579+7 1.428894-5 1.968641+7 1.462177-5 2.027114+7 1.500000-5 2.092806+7 1.659587-5 2.383970+7 1.850000-5 2.739023+7 1.862087-5 2.761234+7 1.972423-5 2.962905+7 2.018366-5 3.048060+7 2.041738-5 3.089500+7 2.137962-5 3.257047+7 2.162719-5 3.300459+7 2.190000-5 3.345381+7 2.270000-5 3.473128+7 2.290868-5 3.506554+7 2.317395-5 3.545855+7 2.388200-5 3.646258+7 2.400000-5 3.662997+7 2.426610-5 3.697255+7 2.500000-5 3.786231+7 2.511886-5 3.800616+7 2.540973-5 3.831658+7 2.610000-5 3.899001+7 2.660725-5 3.941316+7 2.691535-5 3.963761+7 2.770000-5 4.008296+7 2.786121-5 4.015815+7 2.800000-5 4.022272+7 2.851018-5 4.037103+7 2.884032-5 4.043340+7 2.900000-5 4.046347+7 2.951209-5 4.047141+7 2.985383-5 4.043784+7 3.000000-5 4.042371+7 3.054921-5 4.028471+7 3.080000-5 4.019286+7 3.090295-5 4.015547+7 3.162278-5 3.978623+7 3.198895-5 3.956224+7 3.260000-5 3.909733+7 3.311311-5 3.866575+7 3.350000-5 3.828695+7 3.427678-5 3.747763+7 3.450000-5 3.721868+7 3.548134-5 3.603057+7 3.650000-5 3.465566+7 3.672823-5 3.434033+7 3.770000-5 3.294594+7 3.801894-5 3.248228+7 3.900000-5 3.102722+7 3.950000-5 3.029026+7 4.027170-5 2.914658+7 4.073803-5 2.845969+7 4.168694-5 2.707777+7 4.220000-5 2.634579+7 4.315191-5 2.500930+7 4.400000-5 2.386237+7 4.415704-5 2.365039+7 4.500000-5 2.255653+7 4.623810-5 2.103380+7 4.677351-5 2.040036+7 4.841724-5 1.857242+7 4.900000-5 1.796323+7 5.011872-5 1.684498+7 5.069907-5 1.630179+7 5.150000-5 1.557375+7 5.370318-5 1.375109+7 5.432503-5 1.327894+7 5.688529-5 1.151924+7 5.754399-5 1.110885+7 5.774000-5 1.098863+7 5.774000-5 1.410043+7 5.830000-5 1.377766+7 5.890000-5 1.342496+7 5.970000-5 1.295128+7 6.025596-5 1.262097+7 6.070000-5 1.236115+7 6.095369-5 1.221059+7 6.165950-5 1.179950+7 6.180000-5 1.171996+7 6.309573-5 1.099949+7 6.400000-5 1.052097+7 6.456542-5 1.023122+7 6.650000-5 9.288034+6 6.760830-5 8.790435+6 6.800000-5 8.622903+6 6.839116-5 8.457149+6 6.900000-5 8.204340+6 7.161434-5 7.211222+6 7.244360-5 6.921749+6 7.328245-5 6.640476+6 7.334000-5 6.621719+6 7.334000-5 7.871169+6 7.380000-5 7.754256+6 7.420000-5 7.649890+6 7.480000-5 7.490856+6 7.500000-5 7.436193+6 7.550000-5 7.301380+6 7.585776-5 7.203382+6 7.620000-5 7.110294+6 7.673615-5 6.962771+6 7.700000-5 6.891053+6 7.810000-5 6.593327+6 7.852356-5 6.480413+6 7.920000-5 6.305734+6 8.000000-5 6.102674+6 8.035261-5 6.014933+6 8.128305-5 5.786652+6 8.171000-5 5.684886+6 8.187000-5 5.646558+6 8.187000-5 5.908084+6 8.210000-5 5.861167+6 8.250000-5 5.779518+6 8.290000-5 5.698530+6 8.335000-5 5.608275+6 8.350000-5 5.578320+6 8.380000-5 5.518090+6 8.413951-5 5.450244+6 8.430000-5 5.418282+6 8.511380-5 5.258484+6 8.549000-5 5.184124+6 8.549000-5 5.350548+6 8.570000-5 5.315059+6 8.600000-5 5.264232+6 8.610000-5 5.247297+6 8.655000-5 5.171112+6 8.700000-5 5.095994+6 8.709636-5 5.080012+6 8.730000-5 5.046010+6 8.755000-5 5.004109+6 8.810489-5 4.912397+6 8.870000-5 4.815287+6 8.912509-5 4.747153+6 8.950000-5 4.688278+6 9.000000-5 4.609999+6 9.015711-5 4.585230+6 9.040000-5 4.547379+6 9.120108-5 4.424891+6 9.150000-5 4.380183+6 9.270000-5 4.206124+6 9.300000-5 4.163973+6 9.332543-5 4.118373+6 9.400000-5 4.024799+6 9.440609-5 3.969634+6 9.549926-5 3.828030+6 9.660509-5 3.689972+6 9.720000-5 3.618048+6 9.900000-5 3.411869+6 9.950000-5 3.357885+6 1.011579-4 3.187227+6 1.023293-4 3.072937+6 1.030000-4 3.010301+6 1.040000-4 2.921366+6 1.047129-4 2.861104+6 1.059254-4 2.762472+6 1.071519-4 2.669622+6 1.080000-4 2.608166+6 1.083927-4 2.580789+6 1.084400-4 2.577599+6 1.084400-4 2.651084+6 1.100000-4 2.546773+6 1.104000-4 2.521693+6 1.109175-4 2.490106+6 1.122018-4 2.415412+6 1.128000-4 2.383161+6 1.135011-4 2.347092+6 1.140000-4 2.322337+6 1.143000-4 2.307822+6 1.150000-4 2.275721+6 1.161449-4 2.226708+6 1.163000-4 2.220489+6 1.170000-4 2.193222+6 1.180000-4 2.157020+6 1.188502-4 2.129163+6 1.190000-4 2.124490+6 1.202264-4 2.088882+6 1.205000-4 2.081622+6 1.216186-4 2.054478+6 1.220000-4 2.045681+6 1.223100-4 2.039160+6 1.230269-4 2.025409+6 1.244515-4 2.001007+6 1.258925-4 1.983836+6 1.270000-4 1.973179+6 1.273503-4 1.970532+6 1.290000-4 1.962571+6 1.300000-4 1.960680+6 1.303167-4 1.960453+6 1.318257-4 1.963750+6 1.330000-4 1.969651+6 1.350000-4 1.984542+6 1.364583-4 2.000795+6 1.380384-4 2.022575+6 1.396368-4 2.048519+6 1.428894-4 2.113018+6 1.430000-4 2.115503+6 1.450000-4 2.163366+6 1.480000-4 2.242868+6 1.496236-4 2.291026+6 1.500000-4 2.302758+6 1.520000-4 2.367121+6 1.548817-4 2.464546+6 1.560000-4 2.505068+6 1.566751-4 2.530278+6 1.584893-4 2.599555+6 1.600000-4 2.657786+6 1.621810-4 2.746275+6 1.640590-4 2.824764+6 1.650000-4 2.863974+6 1.659587-4 2.905013+6 1.678804-4 2.989718+6 1.698244-4 3.076798+6 1.720000-4 3.173573+6 1.732100-4 3.229253+6 1.737801-4 3.255937+6 1.740000-4 3.266318+6 1.760000-4 3.359478+6 1.778279-4 3.442923+6 1.798871-4 3.539620+6 1.800000-4 3.544826+6 1.820000-4 3.638840+6 1.840772-4 3.733274+6 1.844600-4 3.750976+6 1.850000-4 3.776122+6 1.876900-4 3.899130+6 1.883649-4 3.928704+6 1.890000-4 3.956817+6 1.905461-4 4.026093+6 1.927525-4 4.122794+6 1.930000-4 4.133773+6 1.950000-4 4.217669+6 1.972423-4 4.309573+6 1.990000-4 4.382918+6 2.000000-4 4.422029+6 2.018366-4 4.491026+6 2.041738-4 4.580289+6 2.051300-4 4.617122+6 2.060000-4 4.648282+6 2.065380-4 4.666483+6 2.089296-4 4.748175+6 2.113489-4 4.831781+6 2.120000-4 4.852920+6 2.162719-4 4.983541+6 2.187762-4 5.055013+6 2.213095-4 5.122393+6 2.230000-4 5.167603+6 2.238721-4 5.191023+6 2.260000-4 5.242670+6 2.264644-4 5.253028+6 2.290868-4 5.311691+6 2.300000-4 5.332183+6 2.317395-4 5.371329+6 2.330000-4 5.396643+6 2.344229-4 5.425278+6 2.371374-4 5.474972+6 2.400000-4 5.527323+6 2.430000-4 5.575708+6 2.483133-4 5.652725+6 2.511886-4 5.687974+6 2.570396-4 5.750374+6 2.580000-4 5.760553+6 2.600160-4 5.777584+6 2.630268-4 5.797829+6 2.660725-4 5.818256+6 2.691535-4 5.832321+6 2.730000-4 5.843503+6 2.754229-4 5.850521+6 2.770900-4 5.855332+6 2.800000-4 5.857097+6 2.884032-4 5.848812+6 2.900000-4 5.843962+6 2.917427-4 5.836150+6 2.951209-4 5.821233+6 3.000000-4 5.800009+6 3.019952-4 5.787916+6 3.054921-4 5.762259+6 3.090295-4 5.736669+6 3.100000-4 5.729711+6 3.126079-4 5.711154+6 3.150000-4 5.690672+6 3.159600-4 5.681447+6 3.159600-4 5.896334+6 3.198895-4 5.849223+6 3.200000-4 5.847902+6 3.235937-4 5.805444+6 3.265000-4 5.771835+6 3.280000-4 5.755130+6 3.295000-4 5.735251+6 3.305660-4 5.721550+6 3.311311-4 5.714316+6 3.325000-4 5.696906+6 3.331000-4 5.689539+6 3.331000-4 5.856329+6 3.349654-4 5.824557+6 3.355000-4 5.815935+6 3.365000-4 5.800350+6 3.380000-4 5.777877+6 3.385000-4 5.770675+6 3.400000-4 5.749844+6 3.415000-4 5.729842+6 3.427678-4 5.713583+6 3.430000-4 5.710695+6 3.450000-4 5.681891+6 3.480000-4 5.641273+6 3.490000-4 5.628174+6 3.507519-4 5.605924+6 3.530000-4 5.578256+6 3.540000-4 5.566326+6 3.565000-4 5.537401+6 3.580000-4 5.520595+6 3.589219-4 5.510548+6 3.600000-4 5.498854+6 3.630781-4 5.460631+6 3.640000-4 5.449492+6 3.680000-4 5.402754+6 3.711700-4 5.367098+6 3.715352-4 5.363070+6 3.720000-4 5.357953+6 3.760000-4 5.315114+6 3.780000-4 5.294395+6 3.820000-4 5.246679+6 3.845918-4 5.216799+6 3.890451-4 5.166687+6 3.935501-4 5.117321+6 3.981072-4 5.068934+6 4.000000-4 5.046270+6 4.027170-4 5.013888+6 4.073803-4 4.959751+6 4.120975-4 4.906664+6 4.168694-4 4.854166+6 4.200000-4 4.818781+6 4.265795-4 4.741833+6 4.280000-4 4.725676+6 4.315191-4 4.685978+6 4.365158-4 4.631183+6 4.415704-4 4.575322+6 4.430000-4 4.559802+6 4.570882-4 4.404447+6 4.623810-4 4.348945+6 4.677351-4 4.292295+6 4.700000-4 4.268906+6 4.731513-4 4.236421+6 4.841724-4 4.121693+6 4.850000-4 4.113389+6 4.897788-4 4.065499+6 5.000000-4 3.963207+6 5.011872-4 3.951724+6 5.069907-4 3.893394+6 5.120400-4 3.843790+6 5.120400-4 4.064713+6 5.188000-4 3.999437+6 5.248075-4 3.940842+6 5.308844-4 3.883079+6 5.400000-4 3.796686+6 5.450000-4 3.750506+6 5.500000-4 3.705217+6 5.559043-4 3.651920+6 5.623413-4 3.595682+6 5.650000-4 3.572673+6 5.688529-4 3.538508+6 5.821032-4 3.426130+6 5.850000-4 3.402028+6 5.956621-4 3.314383+6 6.025596-4 3.260116+6 6.041900-4 3.246949+6 6.041900-4 3.291899+6 6.095369-4 3.249472+6 6.100000-4 3.245845+6 6.165950-4 3.194472+6 6.200000-4 3.168470+6 6.280000-4 3.107824+6 6.309573-4 3.085821+6 6.350000-4 3.056242+6 6.382635-4 3.032462+6 6.456542-4 2.979904+6 6.500000-4 2.949693+6 6.531306-4 2.927787+6 6.606934-4 2.875733+6 6.683439-4 2.824257+6 6.760830-4 2.772992+6 6.839116-4 2.722534+6 6.918310-4 2.673218+6 6.930000-4 2.665821+6 7.000000-4 2.622248+6 7.079458-4 2.574343+6 7.122100-4 2.549118+6 7.122100-4 2.604131+6 7.150000-4 2.587711+6 7.244360-4 2.532657+6 7.300000-4 2.501097+6 7.413102-4 2.438450+6 7.498942-4 2.391577+6 7.673615-4 2.301139+6 7.800000-4 2.238011+6 8.035261-4 2.127694+6 8.100000-4 2.098377+6 8.128305-4 2.085608+6 8.222426-4 2.044082+6 8.413951-4 1.962285+6 8.511380-4 1.922885+6 8.609938-4 1.884025+6 8.700000-4 1.849674+6 8.709636-4 1.846035+6 8.810489-4 1.808150+6 8.912509-4 1.771053+6 9.015711-4 1.734465+6 9.225714-4 1.663286+6 9.332543-4 1.628751+6 9.440609-4 1.594550+6 9.500000-4 1.576260+6 9.549926-4 1.561164+6 9.850000-4 1.473148+6 1.011579-3 1.401483+6 1.023293-3 1.371376+6 1.030000-3 1.354590+6 1.035142-3 1.341803+6 1.047129-3 1.312646+6 1.059254-3 1.283753+6 1.071519-3 1.255593+6 1.083927-3 1.228136+6 1.096478-3 1.201097+6 1.110000-3 1.173016+6 1.122018-3 1.148585+6 1.135011-3 1.123083+6 1.161449-3 1.073669+6 1.170000-3 1.058238+6 1.190000-3 1.023483+6 1.202264-3 1.002954+6 1.216186-3 9.802374+5 1.224700-3 9.667511+5 1.230269-3 9.580903+5 1.244515-3 9.363225+5 1.258925-3 9.148841+5 1.273503-3 8.939738+5 1.333521-3 8.146846+5 1.350000-3 7.946658+5 1.364583-3 7.774304+5 1.380384-3 7.591689+5 1.412538-3 7.240150+5 1.428894-3 7.071215+5 1.462177-3 6.745405+5 1.479108-3 6.586913+5 1.496236-3 6.430137+5 1.513561-3 6.277221+5 1.548817-3 5.981802+5 1.584893-3 5.701830+5 1.603245-3 5.565418+5 1.621810-3 5.431457+5 1.650000-3 5.237144+5 1.678804-3 5.048465+5 1.698244-3 4.926525+5 1.730000-3 4.736838+5 1.737801-3 4.691555+5 1.757924-3 4.577073+5 1.778279-3 4.465547+5 1.800000-3 4.350738+5 1.840772-3 4.146939+5 1.862087-3 4.045720+5 1.883649-3 3.945838+5 1.927525-3 3.752624+5 1.972423-3 3.569556+5 1.995262-3 3.481502+5 2.041738-3 3.311694+5 2.065380-3 3.228831+5 2.070000-3 3.212939+5 2.113489-3 3.068596+5 2.129000-3 3.019475+5 2.129000-3 7.921816+5 2.137962-3 7.860873+5 2.187762-3 7.535545+5 2.212400-3 7.382336+5 2.212400-3 9.141348+5 2.220000-3 9.123137+5 2.238721-3 9.081266+5 2.278000-3 9.008202+5 2.290868-3 8.981559+5 2.317395-3 8.932597+5 2.330000-3 8.912093+5 2.345000-3 8.901498+5 2.380000-3 8.871850+5 2.400000-3 8.852527+5 2.430000-3 8.831451+5 2.450000-3 8.783407+5 2.454709-3 8.766617+5 2.480000-3 8.677989+5 2.484500-3 8.655052+5 2.500000-3 8.564821+5 2.511886-3 8.465643+5 2.520000-3 8.398791+5 2.540973-3 8.225387+5 2.600160-3 7.762082+5 2.636900-3 7.492750+5 2.636900-3 8.668446+5 2.660725-3 8.487934+5 2.691535-3 8.262194+5 2.722701-3 8.042496+5 2.730000-3 7.992000+5 2.754229-3 7.825588+5 2.786121-3 7.607999+5 2.800000-3 7.516004+5 2.818383-3 7.398871+5 2.851018-3 7.197281+5 2.870000-3 7.083556+5 2.884032-3 7.000334+5 2.917427-3 6.807806+5 2.951209-3 6.628930+5 3.019952-3 6.258770+5 3.022000-3 6.248309+5 3.022000-3 6.631289+5 3.022500-3 6.628678+5 3.022700-3 6.628451+5 3.054921-3 6.462507+5 3.090295-3 6.287280+5 3.126079-3 6.117055+5 3.150000-3 6.006991+5 3.162278-3 5.951437+5 3.190000-3 5.827908+5 3.198895-3 5.789382+5 3.235937-3 5.632633+5 3.260000-3 5.534053+5 3.273200-3 5.480769+5 3.273200-3 5.714519+5 3.273407-3 5.713674+5 3.311311-3 5.561838+5 3.349654-3 5.414236+5 3.388442-3 5.268207+5 3.400000-3 5.225827+5 3.427678-3 5.126008+5 3.467369-3 4.987743+5 3.507519-3 4.852604+5 3.548134-3 4.721158+5 3.570000-3 4.652549+5 3.630781-3 4.468744+5 3.650000-3 4.412793+5 3.672823-3 4.347627+5 3.715352-3 4.229880+5 3.758374-3 4.114781+5 3.801894-3 4.001987+5 3.845918-3 3.892191+5 3.900000-3 3.763277+5 3.935501-3 3.681935+5 3.981072-3 3.581234+5 4.000000-3 3.540565+5 4.073803-3 3.387044+5 4.120975-3 3.293511+5 4.168694-3 3.202565+5 4.216965-3 3.114281+5 4.265795-3 3.028366+5 4.315191-3 2.944959+5 4.365158-3 2.863969+5 4.400000-3 2.808975+5 4.415704-3 2.784481+5 4.466836-3 2.706767+5 4.570882-3 2.558162+5 4.623810-3 2.486885+5 4.677351-3 2.417668+5 4.731513-3 2.349542+5 4.786301-3 2.282985+5 4.800000-3 2.266774+5 4.841724-3 2.218370+5 4.954502-3 2.094847+5 5.011872-3 2.035587+5 5.128614-3 1.922334+5 5.188000-3 1.868234+5 5.248075-3 1.815712+5 5.308844-3 1.764701+5 5.370318-3 1.714853+5 5.432503-3 1.666437+5 5.559043-3 1.573641+5 5.623413-3 1.529262+5 5.754399-3 1.443156+5 5.821032-3 1.402039+5 5.888437-3 1.362006+5 6.025596-3 1.285095+5 6.095369-3 1.248372+5 6.165950-3 1.212575+5 6.237348-3 1.177666+5 6.309573-3 1.143775+5 6.456542-3 1.078820+5 6.531306-3 1.047814+5 6.800000-3 9.462860+4 6.839116-3 9.326494+4 6.918310-3 9.058065+4 7.000000-3 8.792747+4 7.079458-3 8.545132+4 7.161434-3 8.296828+4 7.244360-3 8.056098+4 7.328245-3 7.822073+4 7.413102-3 7.594987+4 7.498942-3 7.374600+4 7.585776-3 7.160931+4 7.673615-3 6.952982+4 7.762471-3 6.751389+4 7.800000-3 6.668315+4 7.943282-3 6.363523+4 8.000000-3 6.248321+4 8.035261-3 6.178203+4 8.128305-3 5.997844+4 8.413951-3 5.487581+4 8.511380-3 5.327724+4 8.609938-3 5.172100+4 8.810489-3 4.875007+4 8.912509-3 4.733209+4 9.015711-3 4.594149+4 9.120108-3 4.458825+4 9.225714-3 4.327562+4 9.440609-3 4.076800+4 9.549926-3 3.956860+4 9.660509-3 3.840233+4 9.885531-3 3.617663+4 1.000000-2 3.511436+4 1.011579-2 3.407960+4 1.035142-2 3.209906+4 1.047129-2 3.115090+4 1.059254-2 3.023103+4 1.071519-2 2.933575+4 1.083927-2 2.846778+4 1.109175-2 2.681042+4 1.122018-2 2.601955+4 1.135011-2 2.524795+4 1.156700-2 2.402373+4 1.156700-2 6.198414+4 1.172000-2 5.966797+4 1.174898-2 5.927486+4 1.188502-2 5.747476+4 1.202264-2 5.573023+4 1.230269-2 5.239533+4 1.244515-2 5.080434+4 1.273503-2 4.776777+4 1.285000-2 4.663295+4 1.288250-2 4.631443+4 1.300000-2 4.518478+4 1.318257-2 4.350268+4 1.331300-2 4.235265+4 1.331300-2 5.898866+4 1.333521-2 5.872372+4 1.348963-2 5.692308+4 1.365000-2 5.513278+4 1.380384-2 5.351128+4 1.386200-2 5.291529+4 1.386200-2 6.119985+4 1.396368-2 6.006861+4 1.410000-2 5.859765+4 1.412538-2 5.833220+4 1.428894-2 5.666188+4 1.445440-2 5.504059+4 1.447000-2 5.489096+4 1.462177-2 5.345384+4 1.480000-2 5.183340+4 1.485000-2 5.138792+4 1.500000-2 5.009701+4 1.513561-2 4.896865+4 1.531087-2 4.756267+4 1.540000-2 4.686866+4 1.548817-2 4.618890+4 1.566751-2 4.483411+4 1.584893-2 4.351972+4 1.603245-2 4.224456+4 1.621810-2 4.100762+4 1.640590-2 3.980790+4 1.659587-2 3.864247+4 1.678804-2 3.751207+4 1.698244-2 3.641930+4 1.717908-2 3.535167+4 1.737801-2 3.431538+4 1.757924-2 3.330999+4 1.778279-2 3.232784+4 1.798871-2 3.137441+4 1.819701-2 3.044968+4 1.840772-2 2.955280+4 1.900000-2 2.720308+4 1.905461-2 2.699953+4 1.949845-2 2.542205+4 1.950000-2 2.541677+4 1.972423-2 2.466403+4 2.000000-2 2.378061+4 2.018366-2 2.321659+4 2.041738-2 2.252572+4 2.065380-2 2.185573+4 2.089296-2 2.120597+4 2.113489-2 2.057594+4 2.162719-2 1.937200+4 2.187762-2 1.879743+4 2.213095-2 1.824028+4 2.238721-2 1.768944+4 2.317395-2 1.613578+4 2.344229-2 1.564945+4 2.371374-2 1.517797+4 2.398833-2 1.472105+4 2.426610-2 1.427817+4 2.454709-2 1.384885+4 2.483133-2 1.343279+4 2.511886-2 1.302956+4 2.540973-2 1.263839+4 2.570396-2 1.225634+4 2.600160-2 1.188534+4 2.660725-2 1.117745+4 2.691535-2 1.083989+4 2.754229-2 1.019546+4 2.786121-2 9.888095+3 2.800000-2 9.757423+3 2.818383-2 9.586758+3 2.851018-2 9.293901+3 2.884032-2 9.010186+3 2.917427-2 8.735312+3 2.951209-2 8.469037+3 2.985383-2 8.210638+3 3.054921-2 7.717280+3 3.090295-2 7.482118+3 3.126079-2 7.254185+3 3.162278-2 7.033305+3 3.198895-2 6.818691+3 3.235937-2 6.610740+3 3.311311-2 6.212101+3 3.349654-2 6.022107+3 3.388442-2 5.838064+3 3.427678-2 5.659645+3 3.467369-2 5.486611+3 3.500000-2 5.349711+3 3.589219-2 4.996955+3 3.630781-2 4.842545+3 3.672823-2 4.693018+3 3.715352-2 4.548154+3 3.758374-2 4.407840+3 3.845918-2 4.140362+3 3.935501-2 3.889478+3 3.981072-2 3.769725+3 4.027170-2 3.653749+3 4.073803-2 3.540985+3 4.120975-2 3.431670+3 4.168694-2 3.325805+3 4.265795-2 3.123935+3 4.315191-2 3.027749+3 4.365158-2 2.933570+3 4.415704-2 2.842343+3 4.466836-2 2.754007+3 4.570882-2 2.585660+3 4.623810-2 2.505401+3 4.731513-2 2.352334+3 4.786301-2 2.279425+3 4.800000-2 2.261686+3 4.897788-2 2.140320+3 5.000000-2 2.022892+3 5.011872-2 2.009770+3 5.128614-2 1.886422+3 5.188000-2 1.827667+3 5.248075-2 1.770759+3 5.308844-2 1.715480+3 5.370318-2 1.661962+3 5.500000-2 1.556322+3 5.623413-2 1.464182+3 5.688529-2 1.418594+3 5.754399-2 1.374158+3 5.888437-2 1.289481+3 6.095369-2 1.172324+3 6.165950-2 1.135728+3 6.309573-2 1.065972+3 6.382635-2 1.032678+3 6.500000-2 9.821035+2 6.606934-2 9.388533+2 6.683439-2 9.093289+2 6.760830-2 8.807336+2 6.839116-2 8.530226+2 6.918310-2 8.261948+2 6.998420-2 8.002261+2 7.079458-2 7.750888+2 7.161434-2 7.507544+2 7.328245-2 7.043949+2 7.413102-2 6.823132+2 7.498942-2 6.609359+2 7.585776-2 6.402381+2 7.762471-2 6.008020+2 7.861500-2 5.800137+2 7.861500-2 2.842489+3 8.035261-2 2.686648+3 8.128305-2 2.608039+3 8.222426-2 2.531742+3 8.317638-2 2.457672+3 8.413951-2 2.385781+3 8.511380-2 2.315974+3 8.709636-2 2.184882+3 8.800000-2 2.128567+3 8.810489-2 2.121895+3 9.015711-2 1.996963+3 9.225714-2 1.879417+3 9.332543-2 1.823203+3 9.440609-2 1.768677+3 9.660509-2 1.664487+3 9.772372-2 1.615298+3 9.885531-2 1.567557+3 1.011580-1 1.476277+3 1.059254-1 1.309420+3 1.071519-1 1.270753+3 1.083927-1 1.233231+3 1.109175-1 1.160213+3 1.122019-1 1.125304+3 1.135011-1 1.091452+3 1.148154-1 1.058619+3 1.174898-1 9.958968+2 1.216186-1 9.082857+2 1.244515-1 8.542039+2 1.258925-1 8.283883+2 1.273503-1 8.033532+2 1.318257-1 7.327100+2 1.364583-1 6.682979+2 1.380384-1 6.481147+2 1.396368-1 6.285223+2 1.412538-1 6.095218+2 1.428894-1 5.910986+2 1.462177-1 5.557095+2 1.479108-1 5.388196+2 1.548817-1 4.762493+2 1.566751-1 4.617777+2 1.584893-1 4.477468+2 1.603245-1 4.341431+2 1.621810-1 4.209534+2 1.640590-1 4.081653+2 1.678804-1 3.837458+2 1.698244-1 3.720913+2 1.717908-1 3.607923+2 1.737801-1 3.498365+2 1.798871-1 3.189321+2 1.800000-1 3.183968+2 1.819701-1 3.092579+2 1.840772-1 2.998781+2 1.862087-1 2.907834+2 1.905461-1 2.734143+2 1.972423-1 2.492901+2 2.000000-1 2.402041+2 2.018366-1 2.344049+2 2.041738-1 2.272991+2 2.065380-1 2.204101+2 2.089296-1 2.137307+2 2.113489-1 2.072541+2 2.137962-1 2.009741+2 2.187762-1 1.889850+2 2.213095-1 1.832644+2 2.238721-1 1.777174+2 2.264644-1 1.723384+2 2.290868-1 1.671223+2 2.317395-1 1.620644+2 2.344229-1 1.571599+2 2.398833-1 1.478830+2 2.426610-1 1.434524+2 2.454709-1 1.391551+2 2.483133-1 1.349868+2 2.511886-1 1.309452+2 2.540973-1 1.270257+2 2.570396-1 1.232276+2 2.600160-1 1.195450+2 2.630268-1 1.159728+2 2.691535-1 1.091463+2 2.786121-1 9.965354+1 2.800000-1 9.835772+1 2.818383-1 9.669934+1 2.851018-1 9.384940+1 2.884032-1 9.108476+1 2.985383-1 8.327088+1 3.054921-1 7.844049+1 3.090295-1 7.613179+1 3.126079-1 7.389110+1 3.162278-1 7.171708+1 3.198895-1 6.961049+1 3.235937-1 6.756596+1 3.273407-1 6.561381+1 3.311311-1 6.371817+1 3.388442-1 6.008982+1 3.427678-1 5.835400+1 3.467369-1 5.666923+1 3.507519-1 5.503316+1 3.589219-1 5.190190+1 3.630781-1 5.040392+1 3.672823-1 4.894988+1 3.715352-1 4.753786+1 3.758374-1 4.619019+1 3.801894-1 4.488309+1 3.845918-1 4.361320+1 3.890451-1 4.237929+1 4.000000-1 3.954646+1 4.027170-1 3.888520+1 4.073803-1 3.778650+1 4.120975-1 3.671889+1 4.216965-1 3.467342+1 4.265795-1 3.369385+1 4.315191-1 3.275981+1 4.365158-1 3.185175+1 4.415705-1 3.097078+1 4.466836-1 3.011483+1 4.518559-1 2.928302+1 4.570882-1 2.847430+1 4.623810-1 2.768796+1 4.841724-1 2.475397+1 4.897788-1 2.408414+1 4.954502-1 2.343278+1 5.011872-1 2.279983+1 5.069907-1 2.218531+1 5.248075-1 2.043992+1 5.308844-1 1.988922+1 5.432503-1 1.883195+1 5.495409-1 1.832459+1 5.559043-1 1.784255+1 5.623413-1 1.737350+1 5.688529-1 1.691704+1 5.754399-1 1.647366+1 5.821032-1 1.604197+1 5.888437-1 1.562160+1 5.956621-1 1.521225+1 6.025596-1 1.481364+1 6.095369-1 1.442547+1 6.165950-1 1.404771+1 6.237348-1 1.368801+1 6.309573-1 1.333751+1 6.382635-1 1.299624+1 6.456542-1 1.266372+1 6.531306-1 1.234051+1 6.606935-1 1.202560+1 6.760830-1 1.141970+1 6.839117-1 1.112848+1 6.918310-1 1.084489+1 6.998420-1 1.057472+1 7.079458-1 1.031133+1 7.161434-1 1.005451+1 7.244360-1 9.804233+0 7.328245-1 9.560194+0 7.413102-1 9.322865+0 7.498942-1 9.091464+0 7.585776-1 8.865939+0 7.762471-1 8.431789+0 7.943282-1 8.028085+0 8.000000-1 7.907295+0 8.035261-1 7.833544+0 8.128305-1 7.643719+0 8.222427-1 7.458603+0 8.413951-1 7.102884+0 8.511380-1 6.931441+0 8.609938-1 6.764162+0 8.709636-1 6.601087+0 8.912509-1 6.294405+0 9.015711-1 6.146452+0 9.120108-1 6.001979+0 9.225714-1 5.861006+0 9.332543-1 5.723801+0 9.440609-1 5.590026+0 9.549926-1 5.459431+0 9.660509-1 5.331889+0 9.772372-1 5.210735+0 9.885531-1 5.092362+0 1.000000+0 4.976764+0 1.011579+0 4.863909+0 1.022000+0 4.765661+0 1.023293+0 4.753682+0 1.035142+0 4.645979+0 1.047129+0 4.540968+0 1.059254+0 4.438357+0 1.071519+0 4.338145+0 1.096478+0 4.144448+0 1.109175+0 4.050937+0 1.122018+0 3.959543+0 1.135011+0 3.872159+0 1.148154+0 3.786722+0 1.161449+0 3.703221+0 1.174898+0 3.621561+0 1.188502+0 3.541759+0 1.202264+0 3.463932+0 1.216186+0 3.387870+0 1.230269+0 3.313496+0 1.244515+0 3.240768+0 1.250000+0 3.213416+0 1.258925+0 3.169679+0 1.273503+0 3.100158+0 1.303167+0 2.969283+0 1.318257+0 2.905933+0 1.333521+0 2.844029+0 1.364583+0 2.724507+0 1.380384+0 2.666664+0 1.412538+0 2.554698+0 1.445440+0 2.447436+0 1.479108+0 2.347487+0 1.496236+0 2.299074+0 1.500000+0 2.288652+0 1.513561+0 2.251838+0 1.531087+0 2.205610+0 1.566751+0 2.115996+0 1.584893+0 2.072569+0 1.603245+0 2.030035+0 1.678804+0 1.872637+0 1.698244+0 1.835237+0 1.717908+0 1.798724+0 1.737801+0 1.762969+0 1.798871+0 1.659936+0 1.819701+0 1.626953+0 1.840772+0 1.594625+0 1.862087+0 1.563678+0 1.883649+0 1.533333+0 1.949845+0 1.445783+0 1.972423+0 1.417810+0 1.995262+0 1.390397+0 2.000000+0 1.384818+0 2.018366+0 1.363538+0 2.065380+0 1.311385+0 2.089296+0 1.286061+0 2.113489+0 1.261231+0 2.187762+0 1.191627+0 2.213095+0 1.169293+0 2.238721+0 1.147478+0 2.264644+0 1.126097+0 2.317395+0 1.084530+0 2.344229+0 1.064327+0 2.371374+0 1.044503+0 2.483133+0 9.709677-1 2.511886+0 9.534106-1 2.540973+0 9.362459-1 2.570396+0 9.194111-1 2.630268+0 8.866520-1 2.660725+0 8.707128-1 2.691535+0 8.550627-1 2.851018+0 7.829646-1 2.884032+0 7.692931-1 2.917427+0 7.559128-1 2.951209+0 7.427784-1 3.054921+0 7.047358-1 3.090295+0 6.924931-1 3.126079+0 6.804648-1 3.162278+0 6.689597-1 3.349654+0 6.142886-1 3.388442+0 6.039379-1 3.427678+0 5.937805-1 3.548134+0 5.643281-1 3.589219+0 5.548391-1 3.630781+0 5.455109-1 3.672823+0 5.365907-1 3.890451+0 4.941307-1 3.935501+0 4.860787-1 4.000000+0 4.749529-1 4.120975+0 4.552221-1 4.168694+0 4.478195-1 4.216965+0 4.405386-1 4.265795+0 4.335694-1 4.570882+0 3.940095-1 4.623810+0 3.877978-1 4.677351+0 3.816953-1 4.841724+0 3.639617-1 4.897788+0 3.582356-1 4.954502+0 3.526005-1 5.011872+0 3.472047-1 5.370318+0 3.165203-1 5.495409+0 3.069386-1 5.559043+0 3.022655-1 5.754399+0 2.886717-1 5.821032+0 2.842776-1 5.888437+0 2.799511-1 5.956621+0 2.758051-1 6.382635+0 2.521869-1 6.531306+0 2.447966-1 6.606934+0 2.411892-1 6.918310+0 2.272862-1 7.000000+0 2.238724-1 7.079458+0 2.206387-1 7.161434+0 2.174691-1 7.762471+0 1.965208-1 7.943282+0 1.909331-1 8.035261+0 1.882039-1 8.317638+0 1.802498-1 8.413951+0 1.776739-1 8.511380+0 1.751352-1 8.609938+0 1.726971-1 9.332543+0 1.565553-1 9.549926+0 1.522407-1 9.660509+0 1.501295-1 9.772372+0 1.480501-1 1.011579+1 1.419831-1 1.023293+1 1.400165-1 1.035142+1 1.380775-1 1.047129+1 1.362054-1 1.188502+1 1.172153-1 1.200000+1 1.158849-1 1.202264+1 1.156272-1 1.216186+1 1.140651-1 1.230269+1 1.125253-1 1.244515+1 1.110082-1 1.258925+1 1.095117-1 1.548817+1 8.626977-2 1.566751+1 8.513406-2 1.584893+1 8.401633-2 1.600000+1 8.310682-2 1.603245+1 8.291397-2 1.621810+1 8.182717-2 1.640590+1 8.077852-2 2.000000+1 6.470182-2 2.018366+1 6.404262-2 2.041738+1 6.322390-2 2.089296+1 6.161853-2 2.113489+1 6.083199-2 2.137962+1 6.007124-2 2.162719+1 5.931998-2 2.660725+1 4.729584-2 2.691535+1 4.670438-2 2.754229+1 4.554613-2 2.786121+1 4.497783-2 2.818383+1 4.441687-2 2.851018+1 4.386298-2 2.884032+1 4.331642-2 2.917427+1 4.278690-2 2.951209+1 4.226385-2 3.000000+1 4.152991-2 3.672823+1 3.345610-2 3.715352+1 3.304712-2 3.801894+1 3.224562-2 3.890451+1 3.146356-2 3.981072+1 3.070073-2 4.000000+1 3.054592-2 4.027170+1 3.032638-2 4.073803+1 2.995677-2 4.168694+1 2.924183-2 4.216965+1 2.889079-2 4.315191+1 2.820130-2 5.432503+1 2.214960-2 5.495409+1 2.188416-2 5.623413+1 2.136282-2 5.688529+1 2.110682-2 5.821032+1 2.060416-2 5.888437+1 2.035741-2 5.956621+1 2.011371-2 6.000000+1 1.996163-2 6.025596+1 1.987294-2 6.095369+1 1.963819-2 6.237348+1 1.917699-2 6.456542+1 1.850541-2 8.609938+1 1.374943-2 8.709636+1 1.358702-2 8.810489+1 1.342676-2 8.912509+1 1.326838-2 9.120108+1 1.295730-2 9.225714+1 1.280455-2 9.332543+1 1.265363-2 9.549926+1 1.236009-2 9.660509+1 1.221588-2 1.000000+2 1.179327-2 1.717908+2 6.793322-3 1.737801+2 6.714136-3 1.757924+2 6.635876-3 1.778279+2 6.558547-3 1.798871+2 6.482128-3 1.819701+2 6.406617-3 1.862087+2 6.259353-3 1.905461+2 6.115471-3 3.427678+2 3.379836-3 3.467369+2 3.340790-3 3.507519+2 3.302196-3 3.548134+2 3.264053-3 3.589219+2 3.226356-3 3.630781+2 3.189098-3 3.715352+2 3.116244-3 3.801894+2 3.045053-3 1.364583+3 8.444407-4 1.380384+3 8.347426-4 1.396368+3 8.251560-4 1.412538+3 8.156795-4 1.428894+3 8.063131-4 1.445440+3 7.970546-4 1.479108+3 7.789038-4 1.513561+3 7.611658-4 4.315191+4 2.665806-5 4.365158+4 2.635280-5 4.415704+4 2.605102-5 4.466836+4 2.575271-5 4.518559+4 2.545781-5 1.000000+5 1.149998-5 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.070000-6 8.070000-6 9.540000-6 8.070000-6 9.540000-6 9.244797-6 1.102000-5 9.383495-6 1.102000-5 9.877379-6 1.370000-5 9.965403-6 1.972423-5 1.004852-5 3.672823-5 1.015881-5 5.774000-5 1.019167-5 5.774000-5 2.068504-5 5.830000-5 2.097051-5 5.890000-5 2.122099-5 5.970000-5 2.148488-5 6.095369-5 2.178777-5 6.180000-5 2.195786-5 6.400000-5 2.224764-5 6.650000-5 2.248317-5 7.161434-5 2.276034-5 7.334000-5 2.283174-5 7.334000-5 3.084929-5 7.420000-5 3.145011-5 7.550000-5 3.216161-5 7.700000-5 3.280310-5 7.920000-5 3.353835-5 8.187000-5 3.422941-5 8.187000-5 3.633826-5 8.380000-5 3.728787-5 8.549000-5 3.797405-5 8.549000-5 3.945199-5 8.755000-5 4.063524-5 9.150000-5 4.246633-5 9.900000-5 4.541036-5 1.071519-4 4.861305-5 1.084400-4 4.916200-5 1.084400-4 5.080512-5 1.128000-4 5.277535-5 1.180000-4 5.555095-5 1.230269-4 5.862675-5 1.350000-4 6.640413-5 1.396368-4 6.910637-5 1.450000-4 7.180124-5 1.500000-4 7.387481-5 1.566751-4 7.604526-5 1.640590-4 7.779223-5 1.720000-4 7.910025-5 1.820000-4 8.017831-5 1.972423-4 8.109785-5 2.213095-4 8.171724-5 2.691535-4 8.202269-5 3.159600-4 8.199625-5 3.159600-4 8.447022-5 3.331000-4 8.407506-5 3.331000-4 8.607196-5 3.450000-4 8.562843-5 3.640000-4 8.573513-5 4.027170-4 8.702818-5 5.120400-4 9.178439-5 5.120400-4 9.802913-5 6.041900-4 1.026111-4 6.041900-4 1.042834-4 7.122100-4 1.091627-4 7.122100-4 1.123722-4 8.413951-4 1.178532-4 9.850000-4 1.230957-4 1.170000-3 1.286934-4 1.364583-3 1.335750-4 1.603245-3 1.385358-4 1.883649-3 1.432812-4 2.129000-3 1.467438-4 2.129000-3 2.135638-4 2.212400-3 2.145418-4 2.212400-3 2.231524-4 2.454709-3 2.299802-4 2.520000-3 2.306100-4 2.636900-3 2.306085-4 2.636900-3 2.483653-4 3.022000-3 2.507242-4 3.022000-3 2.591317-4 3.273200-3 2.612358-4 3.273200-3 2.694684-4 4.265795-3 2.790015-4 5.623413-3 2.892891-4 7.244360-3 2.988157-4 9.225714-3 3.077860-4 1.156700-2 3.159601-4 1.156700-2 4.045468-4 1.331300-2 4.057954-4 1.331300-2 4.246949-4 1.386200-2 4.250217-4 1.386200-2 4.558300-4 1.972423-2 4.679161-4 2.786121-2 4.799523-4 3.845918-2 4.911252-4 5.248075-2 5.017412-4 7.161434-2 5.118222-4 7.861500-2 5.147143-4 7.861500-2 4.708541-4 1.972423-1 4.738290-4 5.432503-1 4.756861-4 1.000000+5 4.760411-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.070000-6 0.0 3.331000-4 0.0 3.331000-4 1.273386-9 3.349654-4 1.211062-9 3.365000-4 1.169295-9 3.380000-4 1.134387-9 3.400000-4 1.095839-9 3.430000-4 1.049593-9 3.450000-4 1.025272-9 3.480000-4 9.96279-10 3.507519-4 9.76123-10 3.540000-4 9.59413-10 3.565000-4 9.51403-10 3.600000-4 9.46669-10 3.640000-4 9.50390-10 3.680000-4 9.60691-10 3.720000-4 9.76401-10 3.760000-4 9.96562-10 3.820000-4 1.035143-9 3.890451-4 1.089592-9 4.000000-4 1.186515-9 4.120975-4 1.303702-9 4.265795-4 1.451671-9 4.365158-4 1.559103-9 4.430000-4 1.632108-9 4.570882-4 1.796624-9 4.897788-4 2.192025-9 5.120400-4 2.456039-9 5.120400-4 4.633027-9 6.041900-4 5.992707-9 6.041900-4 7.011294-9 6.500000-4 7.723167-9 7.122100-4 8.636231-9 7.122100-4 1.007976-8 8.035261-4 1.147732-8 8.810489-4 1.257992-8 9.850000-4 1.395817-8 1.083927-3 1.513046-8 1.202264-3 1.641927-8 1.273503-3 1.714993-8 1.428894-3 1.857603-8 1.584893-3 1.986420-8 1.778279-3 2.129021-8 1.995262-3 2.270523-8 2.129000-3 2.349121-8 2.129000-3 2.276889-8 2.212400-3 2.293978-8 2.212400-3 1.018100-5 2.238721-3 1.082131-5 2.278000-3 1.181789-5 2.330000-3 1.306454-5 2.345000-3 1.348515-5 2.380000-3 1.441515-5 2.430000-3 1.568520-5 2.450000-3 1.603930-5 2.480000-3 1.641892-5 2.500000-3 1.648007-5 2.636900-3 1.645522-5 2.636900-3 1.581475-5 2.917427-3 1.567764-5 2.951209-3 1.571158-5 3.022000-3 1.562358-5 3.022000-3 1.726161-5 3.273200-3 1.731229-5 3.273200-3 1.749013-5 4.120975-3 1.767046-5 5.432503-3 1.786201-5 7.762471-3 1.810167-5 1.156700-2 1.835480-5 1.156700-2 1.865384-3 1.188502-2 1.860206-3 1.331300-2 1.851307-3 1.331300-2 2.588845-3 1.386200-2 2.588808-3 1.386200-2 2.695397-3 1.840772-2 2.723424-3 2.818383-2 2.742485-3 5.188000-2 2.746792-3 7.861500-2 2.741897-3 7.861500-2 5.550541-2 9.440609-2 5.595418-2 1.216186-1 5.643523-2 1.800000-1 5.689109-2 3.467369-1 5.727547-2 8.511380-1 5.773028-2 1.380384+0 5.780489-2 1.000000+5 5.778217-2 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.070000-6 0.0 9.540000-6 1.470000-6 9.540000-6 2.952032-7 9.700000-6 4.360682-7 1.000000-5 7.031335-7 1.059254-5 1.240881-6 1.102000-5 1.636505-6 1.102000-5 1.142621-6 1.180000-5 1.890783-6 1.288250-5 2.937992-6 1.500000-5 5.008586-6 2.270000-5 1.262695-5 4.677351-5 3.659133-5 5.774000-5 4.754833-5 5.774000-5 3.705496-5 5.890000-5 3.767901-5 6.070000-5 3.896160-5 6.309573-5 4.094514-5 6.800000-5 4.543291-5 7.334000-5 5.050826-5 7.334000-5 4.249071-5 7.480000-5 4.299423-5 7.700000-5 4.419690-5 8.000000-5 4.624495-5 8.187000-5 4.764059-5 8.187000-5 4.553174-5 8.430000-5 4.680201-5 8.549000-5 4.751595-5 8.549000-5 4.603801-5 8.755000-5 4.691476-5 9.150000-5 4.903367-5 9.950000-5 5.389564-5 1.080000-4 5.902852-5 1.084400-4 5.927800-5 1.084400-4 5.763488-5 1.135011-4 6.037679-5 1.190000-4 6.286435-5 1.244515-4 6.490556-5 1.350000-4 6.859587-5 1.396368-4 7.053043-5 1.450000-4 7.319876-5 1.500000-4 7.612519-5 1.566751-4 8.062984-5 1.640590-4 8.626677-5 1.737801-4 9.444781-5 1.850000-4 1.045844-4 2.051300-4 1.237552-4 2.511886-4 1.692156-4 3.159600-4 2.339637-4 3.159600-4 2.314898-4 3.331000-4 2.490249-4 3.331000-4 2.470268-4 3.589219-4 2.732742-4 4.677351-4 3.778955-4 5.120400-4 4.202532-4 5.120400-4 4.140062-4 6.041900-4 5.015729-4 6.041900-4 4.998996-4 7.122100-4 6.030387-4 7.122100-4 5.998277-4 1.096478-3 9.698814-4 1.840772-3 1.698142-3 2.129000-3 1.982233-3 2.129000-3 1.915414-3 2.212400-3 1.997836-3 2.212400-3 1.979067-3 2.520000-3 2.272899-3 2.636900-3 2.389836-3 2.636900-3 2.372720-3 3.022000-3 2.755652-3 3.022000-3 2.745607-3 3.273200-3 2.994652-3 3.273200-3 2.986242-3 9.549926-3 9.222617-3 1.156700-2 1.123269-2 1.156700-2 9.297069-3 1.331300-2 1.105590-2 1.331300-2 1.029946-2 1.386200-2 1.084817-2 1.386200-2 1.071077-2 2.818383-2 2.496101-2 7.861500-2 7.535839-2 7.861500-2 2.263873-2 9.015711-2 3.381705-2 1.174898-1 6.063142-2 1.905461-1 1.331374-1 2.371374+0 2.313121+0 1.000000+5 9.999994+4 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 7.861500-2 2.262475+3 8.511380-2 1.850755+3 8.800000-2 1.704490+3 9.660509-2 1.337227+3 1.083927-1 9.955549+2 1.174898-1 8.059323+2 1.428894-1 4.807679+2 2.344229-1 1.287865+2 2.800000-1 8.073920+1 3.235937-1 5.554370+1 3.715352-1 3.913460+1 4.265795-1 2.777461+1 4.841724-1 2.042824+1 5.495409-1 1.513932+1 6.165950-1 1.161855+1 6.918310-1 8.979035+0 7.762471-1 6.988516+0 8.709636-1 5.476704+0 9.660509-1 4.427152+0 1.122018+0 3.289370+0 1.273503+0 2.575302+0 1.445440+0 2.032610+0 1.603245+0 1.685708+0 1.840772+0 1.324140+0 2.113489+0 1.047257+0 2.371374+0 8.672584-1 2.691535+0 7.099388-1 3.126079+0 5.649643-1 3.630781+0 4.529157-1 4.216965+0 3.657585-1 4.954502+0 2.927501-1 5.888437+0 2.324328-1 7.079458+0 1.831862-1 8.511380+0 1.454087-1 1.035142+1 1.146399-1 1.258925+1 9.093014-2 1.621810+1 6.794385-2 2.113489+1 5.051034-2 2.884032+1 3.596614-2 4.073803+1 2.487370-2 6.025596+1 1.650078-2 9.332543+1 1.050697-2 1.819701+2 5.319834-3 3.630781+2 2.648120-3 1.445440+3 6.618556-4 1.000000+5 9.549400-6 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 7.861500-2 4.596100-4 1.000000+5 4.596100-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.861500-2 6.903200-2 1.000000+5 6.903200-2 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 7.861500-2 9.123390-3 1.000000+5 9.999993+4 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.386200-2 8.284555+3 1.410000-2 8.027705+3 1.447000-2 7.690320+3 1.485000-2 7.339620+3 1.540000-2 6.920720+3 1.678804-2 5.922461+3 1.840772-2 5.040694+3 2.213095-2 3.561407+3 2.786121-2 2.254398+3 3.162278-2 1.733803+3 3.589219-2 1.327870+3 4.315191-2 8.889616+2 5.000000-2 6.389260+2 5.688529-2 4.756485+2 6.606934-2 3.354151+2 7.762471-2 2.284475+2 9.225714-2 1.501736+2 1.109175-1 9.523851+1 1.380384-1 5.498162+1 2.540973-1 1.163685+1 3.162278-1 6.711163+0 3.758374-1 4.377117+0 4.365158-1 3.043825+0 5.011872-1 2.193725+0 5.688529-1 1.635952+0 6.456542-1 1.228553+0 7.328245-1 9.294909-1 8.222427-1 7.263536-1 9.225714-1 5.717379-1 1.035142+0 4.534971-1 1.188502+0 3.458276-1 1.333521+0 2.777026-1 1.500000+0 2.234723-1 1.698244+0 1.791797-1 1.949845+0 1.412030-1 2.213095+0 1.142405-1 2.511886+0 9.316084-2 2.884032+0 7.517405-2 3.349654+0 6.002768-2 3.890451+0 4.828898-2 4.570882+0 3.850257-2 5.370318+0 3.092929-2 6.382635+0 2.464333-2 7.762471+0 1.920445-2 9.332543+0 1.529849-2 1.200000+1 1.132500-2 1.566751+1 8.322696-3 2.018366+1 6.260646-3 2.691535+1 4.565133-3 3.715352+1 3.229958-3 5.432503+1 2.164767-3 8.709636+1 1.328228-3 1.717908+2 6.641873-4 3.427678+2 3.304913-4 1.364583+3 8.257707-5 4.315191+4 2.606294-6 1.000000+5 1.124700-6 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.386200-2 6.526100-4 1.000000+5 6.526100-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.386200-2 3.376200-3 1.000000+5 3.376200-3 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.386200-2 9.833190-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.331300-2 1.663601+4 1.365000-2 1.556974+4 1.480000-2 1.270800+4 1.757924-2 8.135600+3 1.950000-2 6.167700+3 2.540973-2 2.990100+3 3.235937-2 1.510800+3 4.027170-2 8.035900+2 5.011872-2 4.228700+2 6.309573-2 2.131400+2 8.222426-2 9.617600+1 1.428894-1 1.812152+1 1.800000-1 9.085286+0 2.187762-1 5.104432+0 2.570396-1 3.192890+0 2.985383-1 2.080411+0 3.427678-1 1.411177+0 3.890451-1 9.957018-1 4.415705-1 7.078782-1 4.954502-1 5.228938-1 5.559043-1 3.891214-1 6.165950-1 3.003056-1 6.839117-1 2.333809-1 7.585776-1 1.826174-1 8.609938-1 1.362786-1 9.332543-1 1.138695-1 1.000000+0 9.827299-2 1.096478+0 8.147270-2 1.202264+0 6.800129-2 1.318257+0 5.715193-2 1.479108+0 4.636214-2 1.717908+0 3.555820-2 2.000000+0 2.737059-2 2.238721+0 2.268155-2 2.540973+0 1.851048-2 2.917427+0 1.495059-2 3.388442+0 1.194536-2 3.935501+0 9.614654-3 4.623810+0 7.670417-3 5.495409+0 6.070851-3 6.531306+0 4.841735-3 7.943282+0 3.776595-3 9.660509+0 2.969621-3 1.230269+1 2.226524-3 1.584893+1 1.662650-3 2.041738+1 1.251063-3 2.786121+1 8.900097-4 3.890451+1 6.225825-4 5.688529+1 4.176340-4 8.912509+1 2.625670-4 1.757924+2 1.313352-4 3.507519+2 6.536075-5 1.396368+3 1.633346-5 4.415704+4 5.155228-7 1.000000+5 2.276400-7 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.331300-2 4.728100-4 1.000000+5 4.728100-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.331300-2 4.466500-3 1.000000+5 4.466500-3 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.331300-2 8.373690-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.156700-2 3.796041+4 1.172000-2 3.645743+4 1.285000-2 2.839868+4 1.548817-2 1.690640+4 1.698244-2 1.299847+4 2.213095-2 6.019310+3 2.800000-2 2.975712+3 3.500000-2 1.502688+3 4.315191-2 7.822590+2 5.248075-2 4.211988+2 6.500000-2 2.123320+2 8.413951-2 9.215147+1 1.428894-1 1.645096+1 1.800000-1 7.807516+0 2.137962-1 4.512473+0 2.483133-1 2.821633+0 2.851018-1 1.842737+0 3.235937-1 1.256261+0 3.630781-1 8.930883-1 4.027170-1 6.612257-1 4.466836-1 4.928114-1 4.954502-1 3.698743-1 5.495409-1 2.797648-1 6.095369-1 2.132407-1 6.760830-1 1.638118-1 7.498942-1 1.268515-1 8.222427-1 1.017512-1 9.332543-1 7.582592-2 9.885531-1 6.672280-2 1.059254+0 5.767833-2 1.148154+0 4.904881-2 1.250000+0 4.166238-2 1.380384+0 3.471765-2 1.717908+0 2.355157-2 1.995262+0 1.819615-2 2.238721+0 1.501844-2 2.540973+0 1.225551-2 2.917427+0 9.897013-3 3.388442+0 7.907432-3 3.935501+0 6.364694-3 4.623810+0 5.077694-3 5.495409+0 4.018816-3 6.531306+0 3.205194-3 7.943282+0 2.500010-3 9.660509+0 1.965795-3 1.230269+1 1.473883-3 1.603245+1 1.086295-3 2.089296+1 8.073077-4 2.851018+1 5.746711-4 4.000000+1 4.001900-4 5.821032+1 2.699159-4 9.120108+1 1.697601-4 1.778279+2 8.593119-5 3.548134+2 4.276905-5 1.412538+3 1.068832-5 1.000000+5 1.506900-7 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.156700-2 4.606100-4 1.000000+5 4.606100-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.156700-2 3.034300-3 1.000000+5 3.034300-3 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.156700-2 8.072090-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.273200-3 2.337494+4 3.467369-3 2.200942+4 3.758374-3 1.970541+4 4.000000-3 1.816090+4 4.216965-3 1.681285+4 5.432503-3 1.150881+4 5.821032-3 1.031215+4 7.244360-3 7.170754+3 8.128305-3 5.866726+3 9.440609-3 4.495365+3 1.135011-2 3.198908+3 1.300000-2 2.470800+3 1.500000-2 1.871284+3 1.778279-2 1.333244+3 2.113489-2 9.368126+2 2.511886-2 6.526621+2 2.951209-2 4.622478+2 3.467369-2 3.249923+2 4.073803-2 2.268705+2 4.800000-2 1.562307+2 5.688529-2 1.053410+2 6.760830-2 7.002466+1 8.035261-2 4.622013+1 9.772372-2 2.860011+1 1.216186-1 1.659122+1 1.548817-1 9.022061+0 2.511886-1 2.640176+0 3.126079-1 1.524258+0 3.715352-1 9.945899-1 4.265795-1 7.113016-1 4.897788-1 5.121891-1 5.623413-1 3.715999-1 6.309573-1 2.862793-1 7.161434-1 2.164445-1 8.128305-1 1.648685-1 9.120108-1 1.295526-1 1.011579+0 1.050099-1 1.174898+0 7.821595-2 1.318257+0 6.276701-2 1.496236+0 4.965835-2 1.698244+0 3.964219-2 1.972423+0 3.063240-2 2.213095+0 2.526422-2 2.511886+0 2.060228-2 2.884032+0 1.662809-2 3.388442+0 1.305458-2 3.935501+0 1.050738-2 4.623810+0 8.382785-3 5.495409+0 6.634715-3 6.531306+0 5.291451-3 7.943282+0 4.127398-3 9.549926+0 3.290977-3 1.216186+1 2.466131-3 1.600000+1 1.797500-3 2.089296+1 1.332754-3 2.851018+1 9.487297-4 4.027170+1 6.559680-4 5.888437+1 4.403065-4 9.225714+1 2.769816-4 1.798871+2 1.402200-4 3.589219+2 6.979466-5 1.428894+3 1.744324-5 4.518559+4 5.505715-7 1.000000+5 2.487800-7 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.273200-3 4.625000-4 1.000000+5 4.625000-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.273200-3 2.166000-5 1.000000+5 2.166000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.273200-3 2.789040-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.022000-3 3.829800+4 3.022500-3 3.829185+4 3.022700-3 3.837116+4 3.150000-3 3.654280+4 3.190000-3 3.593820+4 3.260000-3 3.516000+4 3.570000-3 3.149280+4 3.801894-3 2.893364+4 4.216965-3 2.492578+4 4.570882-3 2.210763+4 4.954502-3 1.946387+4 5.308844-3 1.734551+4 6.309573-3 1.276483+4 6.800000-3 1.110908+4 7.800000-3 8.500360+3 8.511380-3 7.134293+3 9.549926-3 5.608350+3 1.059254-2 4.493558+3 1.202264-2 3.393455+3 1.333521-2 2.681891+3 1.531087-2 1.941528+3 1.717908-2 1.472653+3 1.950000-2 1.078986+3 2.238721-2 7.625491+2 2.570396-2 5.345572+2 2.951209-2 3.719774+2 3.388442-2 2.570566+2 3.935501-2 1.710061+2 4.623810-2 1.093980+2 5.500000-2 6.708860+1 6.683439-2 3.842095+1 8.413951-2 1.970444+1 1.135011-1 8.193817+0 1.737801-1 2.343554+0 2.041738-1 1.466128+0 2.630268-1 7.101619-1 3.054921-1 4.658808-1 3.507519-1 3.178446-1 4.000000-1 2.225155-1 4.518559-1 1.609670-1 5.069907-1 1.193593-1 5.688529-1 8.913847-2 6.309573-1 6.899839-2 6.998420-1 5.376781-2 7.762471-1 4.218877-2 8.709636-1 3.243632-2 9.440609-1 2.716595-2 1.022000+0 2.298465-2 1.122018+0 1.904086-2 1.230269+0 1.592839-2 1.364583+0 1.312670-2 1.566751+0 1.023170-2 1.798871+0 8.027708-3 2.089296+0 6.219640-3 2.344229+0 5.147957-3 2.660725+0 4.212378-3 3.090295+0 3.351118-3 3.589219+0 2.684936-3 4.168694+0 2.167091-3 4.897788+0 1.733587-3 5.821032+0 1.375634-3 7.000000+0 1.083400-3 8.413951+0 8.598128-4 1.023293+1 6.776075-4 1.258925+1 5.300916-4 1.621810+1 3.960911-4 2.113489+1 2.944593-4 2.884032+1 2.096769-4 4.073803+1 1.450047-4 5.956621+1 9.735537-5 9.332543+1 6.125299-5 1.819701+2 3.101332-5 3.630781+2 1.543813-5 1.445440+3 3.858383-6 1.000000+5 5.567000-8 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.022000-3 3.963000-4 1.000000+5 3.963000-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.022000-3 4.398600-5 1.000000+5 4.398600-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.022000-3 2.581714-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.636900-3 1.175696+5 2.730000-3 1.126757+5 2.754229-3 1.112507+5 2.800000-3 1.081196+5 2.870000-3 1.044240+5 3.162278-3 8.963990+4 3.400000-3 7.933760+4 4.000000-3 5.975440+4 4.365158-3 5.095490+4 4.677351-3 4.463485+4 5.623413-3 3.098427+4 6.095369-3 2.620828+4 7.079458-3 1.903122+4 7.762471-3 1.552224+4 8.912509-3 1.133975+4 1.000000-2 8.654640+3 1.122018-2 6.566442+3 1.288250-2 4.669679+3 1.445440-2 3.489809+3 1.640590-2 2.515912+3 1.900000-2 1.705700+3 2.213095-2 1.127615+3 2.570396-2 7.442330+2 2.985383-2 4.869078+2 3.427678-2 3.266711+2 3.935501-2 2.176895+2 4.570882-2 1.392540+2 5.370318-2 8.542834+1 6.382635-2 5.021815+1 7.762471-2 2.728059+1 9.885531-2 1.272455+1 1.678804-1 2.366695+0 2.065380-1 1.233630+0 2.426610-1 7.479835-1 2.786121-1 4.903829-1 3.162278-1 3.352334-1 3.589219-1 2.308843-1 4.027170-1 1.657123-1 4.466836-1 1.237773-1 4.954502-1 9.307840-2 5.495409-1 7.050375-2 6.095369-1 5.380026-2 6.760830-1 4.136845-2 7.498942-1 3.205493-2 8.609938-1 2.301693-2 9.225714-1 1.962375-2 9.772372-1 1.727830-2 1.047129+0 1.494419-2 1.135011+0 1.270232-2 1.244515+0 1.062904-2 1.380384+0 8.778862-3 1.678804+0 6.196458-3 1.949845+0 4.782064-3 2.187762+0 3.941395-3 2.483133+0 3.211776-3 2.851018+0 2.590459-3 3.349654+0 2.032642-3 3.890451+0 1.635156-3 4.570882+0 1.303777-3 5.370318+0 1.047304-3 6.382635+0 8.344485-4 7.762471+0 6.502707-4 9.332543+0 5.180257-4 1.200000+1 3.834800-4 1.566751+1 2.818176-4 2.018366+1 2.119943-4 2.691535+1 1.545788-4 3.715352+1 1.093635-4 5.495409+1 7.242720-5 8.709636+1 4.497500-5 1.737801+2 2.222906-5 3.467369+2 1.106174-5 1.380384+3 2.764100-6 4.365158+4 8.724117-8 1.000000+5 3.808300-8 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.636900-3 3.615300-4 1.000000+5 3.615300-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.636900-3 1.173300-5 1.000000+5 1.173300-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.636900-3 2.263637-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.212400-3 1.759012+5 2.278000-3 2.012698+5 2.330000-3 2.201673+5 2.345000-3 2.269977+5 2.380000-3 2.418704+5 2.430000-3 2.620153+5 2.450000-3 2.664813+5 2.480000-3 2.695230+5 2.484500-3 2.692263+5 2.500000-3 2.669999+5 2.520000-3 2.619953+5 2.722701-3 2.148318+5 2.917427-3 1.793000+5 2.951209-3 1.748270+5 3.019952-3 1.635849+5 3.349654-3 1.236307+5 3.715352-3 9.269923+4 4.073803-3 7.130332+4 4.677351-3 4.769384+4 5.308844-3 3.256848+4 5.888437-3 2.375368+4 6.839116-3 1.486939+4 7.585776-3 1.069324+4 8.912509-3 6.333771+3 1.011579-2 4.159831+3 1.135011-2 2.823142+3 1.318257-2 1.690591+3 1.531087-2 1.003042+3 1.778279-2 5.900806+2 2.065380-2 3.443636+2 2.426610-2 1.912230+2 2.884032-2 1.009182+2 3.427678-2 5.282662+1 4.168694-2 2.515278+1 5.188000-2 1.088358+1 1.071519-1 6.616784-1 1.318257-1 2.992690-1 1.603245-1 1.425378-1 1.862087-1 8.138220-2 2.187762-1 4.485658-2 2.454709-1 2.951795-2 2.691535-1 2.125555-2 3.235937-1 1.117451-2 3.630781-1 7.532567-3 4.027170-1 5.319071-3 4.466836-1 3.783344-3 4.954502-1 2.711466-3 5.432503-1 2.029385-3 5.956621-1 1.529892-3 6.456542-1 1.204987-3 7.079458-1 9.244289-4 8.035261-1 6.489135-4 8.609938-1 5.333332-4 9.120108-1 4.557473-4 9.549926-1 4.041696-4 1.000000+0 3.606737-4 1.047129+0 3.242116-4 1.096478+0 2.935089-4 1.148154+0 2.673239-4 1.216186+0 2.395001-4 1.318257+0 2.070151-4 1.531087+0 1.600438-4 1.883649+0 1.112980-4 2.113489+0 9.151699-5 2.371374+0 7.579495-5 2.691535+0 6.206339-5 3.162278+0 4.855882-5 3.672823+0 3.895065-5 4.265795+0 3.147231-5 5.011872+0 2.520381-5 5.956621+0 2.002048-5 7.161434+0 1.578612-5 8.609938+0 1.253662-5 1.047129+1 9.887859-6 1.258925+1 7.951604-6 1.621810+1 5.941507-6 2.113489+1 4.417022-6 2.884032+1 3.145200-6 4.073803+1 2.175160-6 5.888437+1 1.477949-6 9.225714+1 9.297344-7 1.798871+2 4.706681-7 3.589219+2 2.342764-7 1.428894+3 5.854940-8 1.000000+5 8.35080-10 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.212400-3 2.592900-4 1.000000+5 2.592900-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.212400-3 5.281300-5 1.000000+5 5.281300-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.212400-3 1.900297-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.129000-3 4.902341+5 2.500000-3 3.782994+5 2.754229-3 2.933324+5 3.019952-3 2.286822+5 3.349654-3 1.716810+5 3.758374-3 1.237213+5 4.400000-3 7.798020+4 4.731513-3 6.268211+4 5.623413-3 3.686956+4 6.165950-3 2.758093+4 7.079458-3 1.772627+4 8.035261-3 1.171313+4 9.015711-3 7.987691+3 1.035142-2 5.002793+3 1.174898-2 3.232467+3 1.333521-2 2.073916+3 1.513561-2 1.321622+3 1.737801-2 8.024325+2 2.000000-2 4.794228+2 2.317395-2 2.772623+2 2.691535-2 1.577365+2 3.126079-2 8.912365+1 3.672823-2 4.784136+1 4.415704-2 2.332285+1 5.370318-2 1.079142+1 1.083927-1 6.648416-1 1.318257-1 3.080004-1 1.566751-1 1.574032-1 1.798871-1 9.262931-2 2.018366-1 5.993743-2 2.264644-1 3.908088-2 2.511886-1 2.677383-2 2.786121-1 1.846846-2 3.090295-1 1.283240-2 3.388442-1 9.344628-3 3.715352-1 6.850566-3 4.073803-1 5.058354-3 4.466836-1 3.763777-3 4.897788-1 2.822473-3 5.308844-1 2.209201-3 5.821032-1 1.682374-3 6.382635-1 1.290131-3 6.918310-1 1.029004-3 7.498942-1 8.261816-4 8.413951-1 6.098836-4 8.912509-1 5.269557-4 9.440609-1 4.583175-4 9.885531-1 4.121927-4 1.047129+0 3.636998-4 1.122018+0 3.154514-4 1.202264+0 2.755758-4 1.303167+0 2.371413-4 1.445440+0 1.971644-4 1.819701+0 1.315843-4 2.089296+0 1.039390-4 2.344229+0 8.602658-5 2.660725+0 7.040036-5 3.090295+0 5.601610-5 3.589219+0 4.488029-5 4.168694+0 3.622413-5 4.897788+0 2.897807-5 5.821032+0 2.299549-5 7.000000+0 1.811000-5 8.413951+0 1.437237-5 1.023293+1 1.132658-5 1.258925+1 8.860832-6 1.621810+1 6.620874-6 2.113489+1 4.922050-6 2.884032+1 3.504800-6 4.073803+1 2.423813-6 6.000000+1 1.615100-6 9.332543+1 1.023881-6 1.819701+2 5.184044-7 3.630781+2 2.580563-7 1.445440+3 6.449510-8 1.000000+5 9.30560-10 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.129000-3 2.547200-4 1.000000+5 2.547200-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.129000-3 2.232400-8 1.000000+5 2.232400-8 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.129000-3 1.874258-3 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.122100-4 5.501223+4 8.035261-4 5.011551+4 9.549926-4 4.310366+4 1.023293-3 4.029829+4 1.230269-3 3.278764+4 1.333521-3 2.981123+4 1.479108-3 2.612332+4 1.698244-3 2.176921+4 1.883649-3 1.883794+4 2.187762-3 1.516811+4 2.511886-3 1.230512+4 2.851018-3 1.010004+4 3.349654-3 7.785151+3 3.935501-3 5.949906+3 4.570882-3 4.602310+3 5.308844-3 3.537092+3 6.237348-3 2.646198+3 7.413102-3 1.924735+3 8.912509-3 1.360081+3 1.071519-2 9.536041+2 1.288250-2 6.637128+2 1.548817-2 4.583488+2 1.840772-2 3.216176+2 2.187762-2 2.240753+2 2.600160-2 1.549887+2 3.090295-2 1.064052+2 3.672823-2 7.252389+1 4.365158-2 4.906498+1 5.188000-2 3.294765+1 6.165950-2 2.196230+1 7.328245-2 1.453562+1 8.810489-2 9.288800+0 1.083927-1 5.564984+0 1.396368-1 2.950220+0 2.570396-1 6.273794-1 3.198895-1 3.626230-1 3.801894-1 2.369063-1 4.415705-1 1.650278-1 5.069907-1 1.190548-1 5.754399-1 8.885483-2 6.531306-1 6.680713-2 7.413102-1 5.061098-2 8.511380-1 3.769831-2 9.440609-1 3.042027-2 1.059254+0 2.415476-2 1.216186+0 1.844129-2 1.364583+0 1.482953-2 1.531087+0 1.200652-2 1.737801+0 9.597658-3 2.018366+0 7.424988-3 2.264644+0 6.132495-3 2.570396+0 5.007800-3 2.951209+0 4.046757-3 3.427678+0 3.234971-3 4.000000+0 2.587800-3 4.677351+0 2.079639-3 5.559043+0 1.646828-3 6.606934+0 1.314046-3 8.035261+0 1.025460-3 9.660509+0 8.179804-4 1.230269+1 6.132880-4 1.603245+1 4.520076-4 2.089296+1 3.359231-4 2.818383+1 2.421189-4 3.981072+1 1.673583-4 5.821032+1 1.123103-4 9.120108+1 7.063911-5 1.778279+2 3.575639-5 3.548134+2 1.779600-5 1.412538+3 4.447370-6 4.466836+4 1.403742-7 1.000000+5 6.270400-8 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.122100-4 2.610900-4 1.000000+5 2.610900-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.122100-4 7.696900-8 1.000000+5 7.696900-8 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.122100-4 4.510430-4 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 6.041900-4 4.495036+4 6.930000-4 4.498580+4 8.100000-4 4.380200+4 8.609938-4 4.293698+4 9.440609-4 4.129438+4 1.011579-3 3.985781+4 1.096478-3 3.796638+4 1.170000-3 3.625420+4 1.258925-3 3.415280+4 1.380384-3 3.145982+4 1.496236-3 2.907963+4 1.621810-3 2.667254+4 1.800000-3 2.367120+4 1.972423-3 2.115629+4 2.187762-3 1.847176+4 2.400000-3 1.626670+4 2.660725-3 1.400691+4 2.951209-3 1.197513+4 3.311311-3 9.976896+3 3.672823-3 8.410343+3 4.120975-3 6.903845+3 4.623810-3 5.626113+3 5.188000-3 4.552421+3 5.821032-3 3.658052+3 6.531306-3 2.920046+3 7.413102-3 2.262192+3 8.413951-3 1.739249+3 9.549926-3 1.327421+3 1.083927-2 1.005741+3 1.230269-2 7.565498+2 1.396368-2 5.650844+2 1.584893-2 4.191683+2 1.819701-2 3.002698+2 2.089296-2 2.133688+2 2.398833-2 1.504763+2 2.754229-2 1.053590+2 3.198895-2 7.105679+1 3.715352-2 4.755987+1 4.365158-2 3.062275+1 5.128614-2 1.957074+1 6.095369-2 1.202444+1 7.498942-2 6.645263+0 9.440609-2 3.410441+0 1.798871-1 5.184472-1 2.000000-1 3.811440-1 2.018366-1 3.720635-1 2.426610-1 2.193245-1 2.851018-1 1.390441-1 3.311311-1 9.170005-2 3.801894-1 6.289631-2 4.315191-1 4.483715-2 4.897788-1 3.220846-2 5.495409-1 2.401591-2 6.165950-1 1.804209-2 6.839117-1 1.404486-2 7.585776-1 1.100636-2 8.609938-1 8.228721-3 9.332543-1 6.882585-3 1.000000+0 5.943267-3 1.096478+0 4.928877-3 1.216186+0 4.024104-3 1.333521+0 3.384478-3 1.513561+0 2.690529-3 1.737801+0 2.107508-3 2.018366+0 1.629591-3 2.264644+0 1.345779-3 2.570396+0 1.099014-3 2.951209+0 8.882286-4 3.427678+0 7.100569-4 4.000000+0 5.680000-4 4.677351+0 4.564576-4 5.559043+0 3.614594-4 6.606934+0 2.884169-4 8.035261+0 2.250726-4 9.772372+0 1.770645-4 1.230269+1 1.346122-4 1.600000+1 9.944200-5 2.089296+1 7.373310-5 2.851018+1 5.248547-5 4.027170+1 3.628880-5 5.888437+1 2.435864-5 9.120108+1 1.550432-5 1.798871+2 7.757170-6 3.589219+2 3.861096-6 1.428894+3 9.649626-7 4.518559+4 3.045835-8 1.000000+5 1.376300-8 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 6.041900-4 2.250800-4 1.000000+5 2.250800-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.041900-4 8.058800-8 1.000000+5 8.058800-8 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.041900-4 3.790294-4 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.120400-4 2.209228+5 6.025596-4 2.072915+5 6.165950-4 2.044556+5 6.456542-4 1.978959+5 7.244360-4 1.800960+5 8.035261-4 1.639388+5 8.810489-4 1.498144+5 9.549926-4 1.376281+5 1.035142-3 1.254946+5 1.161449-3 1.091425+5 1.273503-3 9.695939+4 1.428894-3 8.283743+4 1.584893-3 7.144788+4 1.778279-3 6.010083+4 1.995262-3 5.019819+4 2.238721-3 4.160190+4 2.511886-3 3.423742+4 2.851018-3 2.741229+4 3.235937-3 2.176506+4 3.650000-3 1.734832+4 4.120975-3 1.370532+4 4.677351-3 1.063470+4 5.370318-3 7.994247+3 6.165950-3 5.955535+3 7.079458-3 4.398237+3 8.128305-3 3.220231+3 9.225714-3 2.401763+3 1.047129-2 1.778917+3 1.202264-2 1.271857+3 1.380384-2 9.016766+2 1.566751-2 6.529586+2 1.798871-2 4.555218+2 2.041738-2 3.252486+2 2.344229-2 2.234635+2 2.691535-2 1.523752+2 3.090295-2 1.031533+2 3.589219-2 6.706460+1 4.168694-2 4.326449+1 4.897788-2 2.676511+1 5.754399-2 1.643398+1 6.839116-2 9.669323+0 8.413951-2 5.074366+0 1.059254-1 2.460159+0 1.698244-1 5.530094-1 2.137962-1 2.689238-1 2.511886-1 1.634324-1 2.884032-1 1.073955-1 3.273407-1 7.361324-2 3.672823-1 5.257392-2 4.120975-1 3.781621-2 4.570882-1 2.830059-2 5.069907-1 2.132146-2 5.623413-1 1.617792-2 6.165950-1 1.273880-2 6.839117-1 9.810646-3 7.585776-1 7.614915-3 8.609938-1 5.626824-3 9.225714-1 4.798775-3 9.772372-1 4.226168-3 1.047129+0 3.656065-3 1.135011+0 3.107850-3 1.244515+0 2.600450-3 1.380384+0 2.147770-3 1.678804+0 1.515925-3 1.949845+0 1.169980-3 2.187762+0 9.644356-4 2.483133+0 7.859685-4 2.851018+0 6.339070-4 3.349654+0 4.973866-4 3.890451+0 4.001175-4 4.570882+0 3.190365-4 5.370318+0 2.562832-4 6.382635+0 2.041965-4 7.762471+0 1.591280-4 9.332543+0 1.267615-4 1.202264+1 9.363194-5 1.566751+1 6.896110-5 2.018366+1 5.187506-5 2.691535+1 3.782677-5 3.715352+1 2.676289-5 5.495409+1 1.772344-5 8.709636+1 1.100539-5 1.737801+2 5.439580-6 3.467369+2 2.706841-6 1.380384+3 6.763848-7 4.365158+4 2.134846-8 1.000000+5 9.319000-9 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.120400-4 2.066800-4 1.000000+5 2.066800-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.120400-4 4.251000-8 1.000000+5 4.251000-8 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.120400-4 3.053175-4 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 3.331000-4 1.667904+5 3.349654-4 1.577666+5 3.365000-4 1.516924+5 3.380000-4 1.465936+5 3.400000-4 1.409252+5 3.427678-4 1.345047+5 3.450000-4 1.302920+5 3.480000-4 1.257024+5 3.507519-4 1.223876+5 3.540000-4 1.194428+5 3.565000-4 1.178300+5 3.600000-4 1.164276+5 3.640000-4 1.158360+5 3.680000-4 1.160872+5 3.720000-4 1.170072+5 3.760000-4 1.184684+5 3.820000-4 1.214704+5 3.890451-4 1.259104+5 4.168694-4 1.467736+5 4.415704-4 1.653974+5 4.623810-4 1.810240+5 4.731513-4 1.886593+5 4.897788-4 1.993173+5 5.069907-4 2.088182+5 5.248075-4 2.170401+5 5.450000-4 2.246992+5 5.650000-4 2.307872+5 5.850000-4 2.353956+5 6.025596-4 2.382715+5 6.280000-4 2.406536+5 6.531306-4 2.414348+5 6.760830-4 2.408811+5 7.079458-4 2.385385+5 7.413102-4 2.347514+5 7.800000-4 2.291464+5 8.222426-4 2.218037+5 8.700000-4 2.124296+5 9.225714-4 2.016104+5 9.850000-4 1.887724+5 1.047129-3 1.761843+5 1.110000-3 1.639336+5 1.190000-3 1.493936+5 1.273503-3 1.356014+5 1.364583-3 1.220024+5 1.479108-3 1.070327+5 1.603245-3 9.320049+4 1.737801-3 8.052948+4 1.883649-3 6.912182+4 2.041738-3 5.892361+4 2.238721-3 4.872040+4 2.450000-3 4.013400+4 2.691535-3 3.253425+4 2.951209-3 2.629287+4 3.273407-3 2.052049+4 3.630781-3 1.587763+4 3.981072-3 1.255616+4 4.415704-3 9.572999+3 4.954502-3 7.018955+3 5.559043-3 5.100630+3 6.237348-3 3.675387+3 7.000000-3 2.624924+3 7.943282-3 1.798550+3 8.912509-3 1.264386+3 9.885531-3 9.149140+2 1.109175-2 6.342094+2 1.244515-2 4.366413+2 1.412538-2 2.873775+2 1.584893-2 1.950977+2 1.798871-2 1.264816+2 2.041738-2 8.141676+1 2.344229-2 4.996879+1 2.691535-2 3.044555+1 3.126079-2 1.766754+1 3.672823-2 9.756180+0 4.365158-2 5.123864+0 5.308844-2 2.449846+0 6.839116-2 9.343581-1 1.148154-1 1.292028-1 1.412538-1 5.894014-2 1.698244-1 2.955798-2 1.972423-1 1.697708-2 2.238721-1 1.069688-2 2.540973-1 6.787182-3 2.884032-1 4.338681-3 3.273407-1 2.794970-3 3.672823-1 1.888179-3 4.073803-1 1.335704-3 4.518559-1 9.514806-4 5.011872-1 6.830108-4 5.495409-1 5.121857-4 6.025596-1 3.869132-4 6.531306-1 3.050789-4 7.161434-1 2.341999-4 8.709636-1 1.352671-4 9.225714-1 1.158169-4 9.660509-1 1.029008-4 1.011579+0 9.202191-5 1.059254+0 8.288986-5 1.109175+0 7.517154-5 1.174898+0 6.705310-5 1.258925+0 5.897365-5 1.364583+0 5.111337-5 1.513561+0 4.282317-5 1.862087+0 2.976819-5 2.089296+0 2.446458-5 2.344229+0 2.024901-5 2.660725+0 1.656908-5 3.090295+0 1.318148-5 3.589219+0 1.056099-5 4.168694+0 8.524041-6 4.897788+0 6.818939-6 5.821032+0 5.411165-6 7.000000+0 4.261400-6 8.413951+0 3.381979-6 1.023293+1 2.665302-6 1.258925+1 2.085044-6 1.621810+1 1.557961-6 2.137962+1 1.143563-6 2.951209+1 8.044849-7 4.216965+1 5.499014-7 6.237348+1 3.650393-7 9.660509+1 2.325700-7 1.862087+2 1.191767-7 3.715352+2 5.933225-8 1.479108+3 1.483090-8 1.000000+5 2.18970-10 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 3.331000-4 1.541900-4 1.000000+5 1.541900-4 1 78000 7 7 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.331000-4 4.471100-8 1.000000+5 4.471100-8 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.331000-4 1.788653-4 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 3.159600-4 2.148870+5 3.198895-4 2.050811+5 3.265000-4 1.889868+5 3.295000-4 1.829448+5 3.325000-4 1.780020+5 3.355000-4 1.743066+5 3.385000-4 1.719162+5 3.415000-4 1.707534+5 3.450000-4 1.707156+5 3.490000-4 1.720548+5 3.530000-4 1.745580+5 3.580000-4 1.790136+5 3.630781-4 1.847707+5 3.711700-4 1.958161+5 3.890451-4 2.233840+5 4.000000-4 2.398128+5 4.120975-4 2.569499+5 4.280000-4 2.784594+5 4.430000-4 2.979948+5 4.570882-4 3.148288+5 4.700000-4 3.285732+5 4.850000-4 3.423564+5 5.011872-4 3.546972+5 5.188000-4 3.656123+5 5.400000-4 3.758598+5 5.623413-4 3.836091+5 5.850000-4 3.883746+5 6.100000-4 3.903486+5 6.350000-4 3.899274+5 6.606934-4 3.870734+5 6.918310-4 3.812604+5 7.300000-4 3.718692+5 7.673615-4 3.609955+5 8.100000-4 3.470112+5 8.511380-4 3.325161+5 9.015711-4 3.144063+5 9.549926-4 2.955709+5 1.011579-3 2.762033+5 1.083927-3 2.526380+5 1.161449-3 2.295188+5 1.244515-3 2.070881+5 1.350000-3 1.819428+5 1.462177-3 1.590438+5 1.584893-3 1.377515+5 1.730000-3 1.169292+5 1.862087-3 1.012416+5 2.041738-3 8.390524+4 2.220000-3 7.023780+4 2.454709-3 5.626310+4 2.660725-3 4.677880+4 2.917427-3 3.764116+4 3.198895-3 3.006450+4 3.507519-3 2.386277+4 3.900000-3 1.814136+4 4.365158-3 1.343346+4 4.800000-3 1.035474+4 5.248075-3 8.064963+3 5.821032-3 5.993772+3 6.531306-3 4.274782+3 7.328245-3 3.023685+3 8.128305-3 2.199127+3 9.120108-3 1.532342+3 1.011579-2 1.099961+3 1.135011-2 7.556538+2 1.273503-2 5.154364+2 1.428894-2 3.491430+2 1.603245-2 2.348670+2 1.819701-2 1.507027+2 2.065380-2 9.598215+1 2.344229-2 6.070266+1 2.691535-2 3.655263+1 3.126079-2 2.093070+1 3.630781-2 1.189491+1 4.265795-2 6.424297+0 5.128614-2 3.152057+0 6.382635-2 1.341716+0 1.148154-1 1.337085-1 1.380384-1 6.515251-2 1.603245-1 3.657733-2 1.840772-1 2.162560-2 2.065380-1 1.404975-2 2.317395-1 9.193952-3 2.570396-1 6.318259-3 2.851018-1 4.371335-3 3.162278-1 3.045634-3 3.467369-1 2.223208-3 3.801894-1 1.633964-3 4.120975-1 1.255684-3 4.518559-1 9.362682-4 4.897788-1 7.288899-4 5.308844-1 5.710419-4 5.754399-1 4.501810-4 6.309573-1 3.455626-4 6.839117-1 2.759573-4 7.413102-1 2.218071-4 8.413951-1 1.590585-4 8.912509-1 1.374514-4 9.440609-1 1.195459-4 9.885531-1 1.075049-4 1.047129+0 9.484321-5 1.122018+0 8.225346-5 1.202264+0 7.185454-5 1.303167+0 6.183495-5 1.445440+0 5.141502-5 1.819701+0 3.431127-5 2.089296+0 2.710435-5 2.344229+0 2.243326-5 2.660725+0 1.835619-5 3.090295+0 1.460329-5 3.589219+0 1.170029-5 4.168694+0 9.443722-6 4.897788+0 7.554701-6 5.821032+0 5.995030-6 7.000000+0 4.721200-6 8.413951+0 3.746929-6 1.023293+1 2.952927-6 1.258925+1 2.310051-6 1.621810+1 1.726145-6 2.113489+1 1.283245-6 2.884032+1 9.137202-7 4.073803+1 6.319129-7 5.956621+1 4.242569-7 9.332543+1 2.669312-7 1.819701+2 1.351497-7 3.630781+2 6.727531-8 1.445440+3 1.681463-8 1.000000+5 2.42600-10 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 3.159600-4 1.498800-4 1.000000+5 1.498800-4 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.159600-4 1.660800-4 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 8.549000-5 1.664238+5 8.570000-5 1.717266+5 8.610000-5 1.805388+5 8.655000-5 1.892856+5 8.709636-5 1.986031+5 8.755000-5 2.053206+5 8.810489-5 2.126148+5 8.870000-5 2.194320+5 8.950000-5 2.270988+5 9.040000-5 2.341758+5 9.150000-5 2.411088+5 9.270000-5 2.468688+5 9.400000-5 2.514378+5 9.549926-5 2.550530+5 9.720000-5 2.575806+5 9.950000-5 2.591142+5 1.023293-4 2.592690+5 1.080000-4 2.587740+5 1.109175-4 2.603620+5 1.128000-4 2.626800+5 1.150000-4 2.670228+5 1.170000-4 2.727372+5 1.190000-4 2.803338+5 1.205000-4 2.873190+5 1.223100-4 2.973068+5 1.244515-4 3.113687+5 1.270000-4 3.312816+5 1.290000-4 3.492882+5 1.318257-4 3.781559+5 1.350000-4 4.150854+5 1.500000-4 6.414960+5 1.566751-4 7.635476+5 1.621810-4 8.716873+5 1.678804-4 9.893581+5 1.740000-4 1.119954+6 1.798871-4 1.247293+6 1.850000-4 1.357020+6 1.905461-4 1.472642+6 1.950000-4 1.561668+6 2.000000-4 1.656480+6 2.060000-4 1.762236+6 2.120000-4 1.858236+6 2.187762-4 1.954422+6 2.260000-4 2.043156+6 2.344229-4 2.130535+6 2.430000-4 2.204010+6 2.511886-4 2.260763+6 2.600160-4 2.307466+6 2.691535-4 2.339657+6 2.800000-4 2.359416+6 2.900000-4 2.361102+6 3.019952-4 2.345757+6 3.150000-4 2.312694+6 3.280000-4 2.267394+6 3.430000-4 2.204628+6 3.600000-4 2.124204+6 3.780000-4 2.031852+6 3.981072-4 1.923315+6 4.168694-4 1.819748+6 4.365158-4 1.711860+6 4.623810-4 1.575067+6 4.897788-4 1.439694+6 5.188000-4 1.306977+6 5.500000-4 1.176270+6 5.821032-4 1.055176+6 6.200000-4 9.288120+5 6.683439-4 7.916633+5 7.150000-4 6.806880+5 7.673615-4 5.766260+5 8.222426-4 4.873822+5 8.912509-4 3.975590+5 9.549926-4 3.317834+5 1.047129-3 2.585907+5 1.135011-3 2.064117+5 1.230269-3 1.637440+5 1.364583-3 1.205212+5 1.513561-3 8.784592+4 1.678804-3 6.346456+4 1.862087-3 4.545841+4 2.070000-3 3.206046+4 2.317395-3 2.189478+4 2.600160-3 1.470544+4 2.884032-3 1.019987+4 3.198895-3 7.025189+3 3.548134-3 4.806583+3 3.935501-3 3.267035+3 4.415704-3 2.111342+3 4.954502-3 1.353979+3 5.559043-3 8.617439+2 6.309573-3 5.200753+2 7.161434-3 3.113896+2 8.128305-3 1.849507+2 9.225714-3 1.089936+2 1.047129-2 6.374209+1 1.188502-2 3.698970+1 1.348963-2 2.130948+1 1.531087-2 1.219186+1 1.757924-2 6.580952+0 2.065380-2 3.179886+0 2.454709-2 1.447596+0 2.951209-2 6.204909-1 3.467369-2 2.936095-1 4.466836-2 8.977710-2 7.585776-2 7.472630-3 9.332543-2 2.844377-3 1.083927-1 1.425063-3 1.273503-1 6.820014-4 1.479108-1 3.464956-4 1.698244-1 1.864052-4 1.905461-1 1.120098-4 2.065380-1 7.886634-5 2.290868-1 5.063561-5 2.540973-1 3.275072-5 2.818383-1 2.133309-5 3.126079-1 1.399209-5 3.467369-1 9.242124-6 3.801894-1 6.436179-6 4.073803-1 4.931069-6 4.466836-1 3.482812-6 4.954502-1 2.372718-6 5.432503-1 1.692165-6 5.821032-1 1.320759-6 6.025596-1 1.170288-6 6.382635-1 9.660170-7 6.839117-1 7.727782-7 7.498942-1 5.787375-7 8.000000-1 4.739700-7 8.511380-1 3.852241-7 8.912509-1 3.319316-7 9.332543-1 2.879837-7 9.660509-1 2.603991-7 1.000000+0 2.368800-7 1.035142+0 2.169516-7 1.071519+0 1.999414-7 1.109175+0 1.852917-7 1.161449+0 1.686726-7 1.216186+0 1.546373-7 1.303167+0 1.369396-7 1.412538+0 1.199108-7 1.500000+0 1.089800-7 1.949845+0 6.888451-8 2.187762+0 5.676501-8 2.483133+0 4.625694-8 2.851018+0 3.730709-8 3.349654+0 2.927322-8 3.890451+0 2.354888-8 4.570882+0 1.877600-8 5.370318+0 1.508290-8 6.382635+0 1.201742-8 7.762471+0 9.364991-9 9.332543+0 7.460494-9 1.202264+1 5.510514-9 1.566751+1 4.058589-9 2.018366+1 3.053015-9 2.691535+1 2.226217-9 3.715352+1 1.575075-9 5.495409+1 1.043080-9 8.709636+1 6.47723-10 1.737801+2 3.20134-10 3.467369+2 1.59308-10 1.380384+3 3.98080-11 4.365158+4 1.25644-12 1.000000+5 5.48460-13 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 8.549000-5 8.549000-5 1.000000+5 8.549000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 8.549000-5 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 8.187000-5 2.615256+5 8.210000-5 2.691040+5 8.250000-5 2.805680+5 8.290000-5 2.906344+5 8.335000-5 3.004248+5 8.380000-5 3.090200+5 8.430000-5 3.171768+5 8.511380-5 3.281670+5 8.600000-5 3.375784+5 8.700000-5 3.456720+5 8.810489-5 3.523201+5 8.950000-5 3.581608+5 9.120108-5 3.624870+5 9.332543-5 3.649072+5 9.549926-5 3.651830+5 1.030000-4 3.613872+5 1.059254-4 3.621552+5 1.083927-4 3.653667+5 1.100000-4 3.690768+5 1.122018-4 3.765780+5 1.143000-4 3.866160+5 1.161449-4 3.979645+5 1.180000-4 4.118672+5 1.202264-4 4.319554+5 1.220000-4 4.506240+5 1.244515-4 4.802890+5 1.273503-4 5.209216+5 1.303167-4 5.683623+5 1.350000-4 6.540760+5 1.450000-4 8.731760+5 1.520000-4 1.049456+6 1.584893-4 1.226058+6 1.640590-4 1.385458+6 1.698244-4 1.555361+6 1.760000-4 1.739200+6 1.820000-4 1.915392+6 1.876900-4 2.076429+6 1.930000-4 2.218664+6 1.990000-4 2.367880+6 2.051300-4 2.506315+6 2.113489-4 2.631851+6 2.162719-4 2.720808+6 2.238721-4 2.840983+6 2.317395-4 2.944991+6 2.400000-4 3.033832+6 2.483133-4 3.104035+6 2.580000-4 3.163344+6 2.660725-4 3.194626+6 2.770900-4 3.213279+6 2.884032-4 3.206475+6 3.000000-4 3.176336+6 3.126079-4 3.123378+6 3.280000-4 3.040072+6 3.430000-4 2.946376+6 3.600000-4 2.829536+6 3.780000-4 2.697320+6 3.981072-4 2.544789+6 4.200000-4 2.377848+6 4.430000-4 2.206040+6 4.731513-4 1.994477+6 5.011872-4 1.813946+6 5.308844-4 1.638039+6 5.650000-4 1.456072+6 6.025596-4 1.279785+6 6.500000-4 1.090032+6 6.918310-4 9.492405+5 7.413102-4 8.083375+5 8.035261-4 6.649527+5 8.709636-4 5.424861+5 9.332543-4 4.529701+5 1.030000-3 3.467672+5 1.110000-3 2.812736+5 1.202264-3 2.236524+5 1.333521-3 1.646043+5 1.479108-3 1.199781+5 1.650000-3 8.511120+4 1.840772-3 5.977736+4 2.065380-3 4.080963+4 2.290868-3 2.870491+4 2.540973-3 2.004847+4 2.818383-3 1.389736+4 3.126079-3 9.564404+3 3.467369-3 6.537490+3 3.845918-3 4.438615+3 4.315191-3 2.864678+3 4.841724-3 1.834593+3 5.432503-3 1.166294+3 6.095369-3 7.360671+2 6.839116-3 4.612149+2 7.762471-3 2.737224+2 8.810489-3 1.611827+2 1.000000-2 9.418800+1 1.122018-2 5.738183+1 1.273503-2 3.301973+1 1.445440-2 1.886128+1 1.640590-2 1.069791+1 1.905461-2 5.430205+0 2.238721-2 2.596260+0 2.660725-2 1.168561+0 3.054921-2 6.134463-1 3.758374-2 2.300226-1 7.161434-2 1.073314-2 9.015711-2 3.616379-3 1.071519-1 1.609920-3 1.258925-1 7.618992-4 1.462177-1 3.827013-4 1.640590-1 2.268828-4 1.819701-1 1.426584-4 2.018366-1 9.035052-5 2.213095-1 6.062227-5 2.398833-1 4.303193-5 2.630268-1 2.931091-5 2.884032-1 2.011944-5 3.162278-1 1.391356-5 3.467369-1 9.694906-6 3.801894-1 6.808852-6 4.216965-1 4.616057-6 4.570882-1 3.436829-6 4.897788-1 2.685906-6 5.248075-1 2.113873-6 5.623413-1 1.674871-6 6.095369-1 1.286653-6 6.531306-1 1.033018-6 6.998420-1 8.348917-7 7.413102-1 7.029680-7 7.943282-1 5.759477-7 8.511380-1 4.751656-7 9.440609-1 3.598606-7 9.885531-1 3.201096-7 1.023293+0 2.948244-7 1.071519+0 2.659266-7 1.122018+0 2.414054-7 1.188502+0 2.155382-7 1.273503+0 1.897270-7 1.380384+0 1.647414-7 1.513561+0 1.409523-7 1.883649+0 9.605057-8 2.113489+0 7.898420-8 2.371374+0 6.541826-8 2.691535+0 5.356522-8 3.126079+0 4.263824-8 3.630781+0 3.418181-8 4.216965+0 2.760423-8 4.954502+0 2.209447-8 5.888437+0 1.754168-8 7.079458+0 1.382472-8 8.511380+0 1.097426-8 1.035142+1 8.652069-9 1.258925+1 6.862459-9 1.621810+1 5.127723-9 2.113489+1 3.811997-9 2.884032+1 2.714388-9 4.073803+1 1.877189-9 5.888437+1 1.275537-9 9.225714+1 8.02373-10 1.798871+2 4.06201-10 3.589219+2 2.02184-10 1.428894+3 5.05295-11 1.000000+5 7.20700-13 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 8.187000-5 8.187000-5 1.000000+5 8.187000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 8.187000-5 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.084400-4 7.348500+4 1.104000-4 6.963620+4 1.122018-4 6.683659+4 1.140000-4 6.468300+4 1.163000-4 6.261220+4 1.180000-4 6.146500+4 1.205000-4 6.025340+4 1.230269-4 5.946770+4 1.258925-4 5.896344+4 1.300000-4 5.874800+4 1.350000-4 5.900660+4 1.430000-4 6.002260+4 1.566751-4 6.195565+4 1.659587-4 6.277894+4 1.737801-4 6.307040+4 1.820000-4 6.300040+4 1.927525-4 6.243067+4 2.041738-4 6.141555+4 2.187762-4 5.978827+4 2.371374-4 5.752440+4 2.570396-4 5.495034+4 2.754229-4 5.249998+4 2.951209-4 4.983655+4 3.200000-4 4.651640+4 3.507519-4 4.267286+4 3.890451-4 3.844260+4 4.265795-4 3.482508+4 4.700000-4 3.116360+4 5.308844-4 2.688016+4 6.095369-4 2.256237+4 6.918310-4 1.906386+4 8.128305-4 1.526487+4 9.500000-4 1.221704+4 1.135011-3 9.405953+3 1.380384-3 6.995661+3 1.678804-3 5.160779+3 2.041738-3 3.776483+3 2.454709-3 2.793474+3 2.951209-3 2.050817+3 3.548134-3 1.494278+3 4.265795-3 1.080739+3 5.128614-3 7.759953+2 6.165950-3 5.529983+2 7.498942-3 3.828157+2 9.120108-3 2.630164+2 1.109175-2 1.793333+2 1.348963-2 1.213161+2 1.640590-2 8.141798+1 1.972423-2 5.551895+1 2.371374-2 3.756668+1 2.851018-2 2.522115+1 3.388442-2 1.723211+1 4.073803-2 1.138984+1 4.897788-2 7.469887+0 5.888437-2 4.861965+0 7.079458-2 3.140682+0 8.317638-2 2.128547+0 1.011580-1 1.315033+0 1.273503-1 7.400487-1 1.603245-1 4.136874-1 2.511886-1 1.322579-1 3.126079-1 7.638406-2 3.715352-1 4.985139-2 4.315191-1 3.468524-2 4.954502-1 2.499279-2 5.623413-1 1.863023-2 6.309573-1 1.435248-2 7.161434-1 1.085062-2 8.128305-1 8.264671-3 9.120108-1 6.494399-3 1.011579+0 5.264430-3 1.174898+0 3.921299-3 1.318257+0 3.146720-3 1.496236+0 2.489547-3 1.698244+0 1.987262-3 1.972423+0 1.535641-3 2.213095+0 1.266665-3 2.511886+0 1.032924-3 2.884032+0 8.336021-4 3.349654+0 6.656766-4 3.890451+0 5.355015-4 4.570882+0 4.269739-4 5.370318+0 3.429897-4 6.382635+0 2.732848-4 7.762471+0 2.129693-4 9.332543+0 1.696507-4 1.188502+1 1.270228-4 1.548817+1 9.351375-5 2.000000+1 7.013700-5 2.660725+1 5.126252-5 3.672823+1 3.625848-5 5.432503+1 2.400633-5 8.609938+1 1.490466-5 1.717908+2 7.365436-6 3.427678+2 3.665016-6 1.364583+3 9.157453-7 4.315191+4 2.890199-8 1.000000+5 1.247200-8 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.084400-4 1.084400-4 1.000000+5 1.084400-4 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.084400-4 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 7.334000-5 1.249450+6 7.380000-5 1.280046+6 7.420000-5 1.300544+6 7.480000-5 1.323082+6 7.550000-5 1.338424+6 7.620000-5 1.345438+6 7.700000-5 1.344902+6 7.810000-5 1.333252+6 7.920000-5 1.313240+6 8.035261-5 1.285653+6 8.171000-5 1.247137+6 8.350000-5 1.190300+6 8.511380-5 1.136106+6 8.730000-5 1.061306+6 9.000000-5 9.702340+5 9.300000-5 8.739960+5 9.660509-5 7.680664+5 1.011579-4 6.513696+5 1.083927-4 5.038000+5 1.220000-4 3.231340+5 1.303167-4 2.536914+5 1.396368-4 1.982636+5 1.480000-4 1.621138+5 1.566751-4 1.340231+5 1.650000-4 1.135446+5 1.732100-4 9.789346+4 1.800000-4 8.753140+4 1.883649-4 7.722739+4 1.950000-4 7.057140+4 2.018366-4 6.481841+4 2.089296-4 5.980091+4 2.187762-4 5.408811+4 2.290868-4 4.929364+4 2.400000-4 4.520540+4 2.511886-4 4.180907+4 2.630268-4 3.887779+4 2.754229-4 3.636588+4 2.917427-4 3.370752+4 3.100000-4 3.136000+4 3.311311-4 2.920335+4 3.600000-4 2.688500+4 4.120975-4 2.375255+4 5.500000-4 1.836244+4 6.309573-4 1.614499+4 7.244360-4 1.407445+4 8.222426-4 1.232839+4 9.332543-4 1.071893+4 1.059254-3 9.258417+3 1.202264-3 7.938459+3 1.364583-3 6.760889+3 1.548817-3 5.716477+3 1.737801-3 4.878291+3 1.972423-3 4.069406+3 2.238721-3 3.369553+3 2.540973-3 2.769449+3 2.884032-3 2.259065+3 3.273407-3 1.829024+3 3.715352-3 1.469906+3 4.216965-3 1.172623+3 4.786301-3 9.286537+2 5.432503-3 7.301506+2 6.165950-3 5.699818+2 7.000000-3 4.416000+2 8.000000-3 3.350360+2 9.120108-3 2.535764+2 1.035142-2 1.923958+2 1.174898-2 1.449742+2 1.333521-2 1.085011+2 1.531087-2 7.848889+1 1.757924-2 5.633114+1 2.018366-2 4.011936+1 2.317395-2 2.835662+1 2.660725-2 1.989861+1 3.090295-2 1.345219+1 3.589219-2 9.024327+0 4.120975-2 6.222437+0 4.786301-2 4.122556+0 5.623413-2 2.624898+0 6.918310-2 1.456272+0 8.709636-2 7.501835-1 1.135011-1 3.470401-1 1.737801-1 1.000438-1 2.187762-1 5.141231-2 2.600160-1 3.141002-2 3.054921-1 1.997464-2 3.507519-1 1.364413-2 4.000000-1 9.561700-3 4.518559-1 6.922355-3 5.069907-1 5.136568-3 5.688529-1 3.838716-3 6.309573-1 2.973143-3 6.998420-1 2.318014-3 7.762471-1 1.819329-3 8.709636-1 1.397715-3 9.440609-1 1.170182-3 1.011579+0 1.011563-3 1.109175+0 8.395718-4 1.230269+0 6.860629-4 1.364583+0 5.654205-4 1.584893+0 4.319212-4 1.840772+0 3.323984-4 2.113489+0 2.628550-4 2.371374+0 2.177084-4 2.691535+0 1.782628-4 3.126079+0 1.418989-4 3.630781+0 1.137564-4 4.216965+0 9.186572-5 4.954502+0 7.352874-5 5.888437+0 5.837884-5 7.079458+0 4.600934-5 8.511380+0 3.652046-5 1.035142+1 2.879364-5 1.258925+1 2.283818-5 1.621810+1 1.706550-5 2.113489+1 1.268629-5 2.917427+1 8.921785-6 4.168694+1 6.096961-6 6.095369+1 4.095198-6 9.549926+1 2.577491-6 1.819701+2 1.336179-6 3.630781+2 6.651132-7 1.445440+3 1.662368-7 1.000000+5 2.398500-9 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 7.334000-5 7.334000-5 1.000000+5 7.334000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 7.334000-5 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 5.774000-5 3.111804+6 5.830000-5 3.123224+6 5.890000-5 3.113928+6 5.970000-5 3.075856+6 6.070000-5 3.001452+6 6.180000-5 2.899728+6 6.309573-5 2.765953+6 6.456542-5 2.607665+6 6.650000-5 2.400284+6 6.900000-5 2.146528+6 7.161434-5 1.905359+6 7.500000-5 1.632460+6 8.912509-5 8.971169+5 9.440609-5 7.394918+5 9.900000-5 6.346360+5 1.040000-4 5.456600+5 1.083927-4 4.837479+5 1.135011-4 4.261132+5 1.188502-4 3.782916+5 1.244515-4 3.385146+5 1.303167-4 3.053494+5 1.364583-4 2.776359+5 1.428894-4 2.544347+5 1.496236-4 2.349730+5 1.566751-4 2.185842+5 1.650000-4 2.030996+5 1.737801-4 1.900133+5 1.850000-4 1.766328+5 2.000000-4 1.625468+5 2.238721-4 1.454118+5 3.100000-4 1.068268+5 3.589219-4 9.230256+4 4.073803-4 8.079056+4 4.623810-4 7.019666+4 5.308844-4 5.973026+4 6.095369-4 5.043302+4 7.000000-4 4.220800+4 8.128305-4 3.454530+4 9.332543-4 2.848033+4 1.071519-3 2.332837+4 1.230269-3 1.897435+4 1.412538-3 1.533187+4 1.621810-3 1.229985+4 1.862087-3 9.799770+3 2.137962-3 7.747582+3 2.454709-3 6.078993+3 2.818383-3 4.732720+3 3.198895-3 3.735842+3 3.630781-3 2.928895+3 4.120975-3 2.280625+3 4.677351-3 1.763673+3 5.308844-3 1.354578+3 6.025596-3 1.033301+3 6.839116-3 7.829284+2 7.762471-3 5.891046+2 8.810489-3 4.402271+2 1.000000-2 3.267552+2 1.135011-2 2.408632+2 1.288250-2 1.763318+2 1.462177-2 1.282098+2 1.659587-2 9.258598+1 1.905461-2 6.442268+1 2.162719-2 4.587492+1 2.483133-2 3.143191+1 2.851018-2 2.137594+1 3.311311-2 1.396662+1 3.845918-2 9.054225+0 4.466836-2 5.824907+0 5.248075-2 3.594242+0 6.165950-2 2.201752+0 7.413102-2 1.247347+0 9.332543-2 6.077831-1 1.717908-1 8.853123-2 2.113489-1 4.631339-2 2.483133-1 2.816242-2 2.851018-1 1.851000-2 3.235937-1 1.268350-2 3.672823-1 8.756395-3 4.120975-1 6.298925-3 4.570882-1 4.714503-3 5.069907-1 3.552398-3 5.623413-1 2.695948-3 6.165950-1 2.123110-3 6.839117-1 1.635131-3 7.585776-1 1.269160-3 8.609938-1 9.378945-4 9.225714-1 7.999239-4 9.772372-1 7.044851-4 1.047129+0 6.094321-4 1.135011+0 5.180511-4 1.244515+0 4.334832-4 1.380384+0 3.579995-4 1.678804+0 2.526585-4 1.949845+0 1.949912-4 2.187762+0 1.607212-4 2.483133+0 1.309691-4 2.851018+0 1.056288-4 3.349654+0 8.288122-5 3.890451+0 6.667342-5 4.570882+0 5.316161-5 5.370318+0 4.270450-5 6.382635+0 3.402536-5 7.762471+0 2.651505-5 9.332543+0 2.112319-5 1.200000+1 1.563700-5 1.566751+1 1.149128-5 2.018366+1 8.644195-6 2.691535+1 6.303179-6 3.715352+1 4.459589-6 5.495409+1 2.953264-6 8.709636+1 1.833919-6 1.717908+2 9.170336-7 3.427678+2 4.563125-7 1.364583+3 1.140110-7 4.315191+4 3.598533-9 1.000000+5 1.552900-9 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 5.774000-5 5.774000-5 1.000000+5 5.774000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 5.774000-5 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.102000-5 4.535676+6 1.135011-5 4.629273+6 1.180000-5 4.795272+6 1.230269-5 5.024144+6 1.288250-5 5.331032+6 1.370000-5 5.818932+6 1.500000-5 6.691068+6 1.862087-5 9.416366+6 2.041738-5 1.083034+7 2.190000-5 1.197626+7 2.317395-5 1.291403+7 2.426610-5 1.365886+7 2.540973-5 1.436092+7 2.660725-5 1.499190+7 2.770000-5 1.545314+7 2.851018-5 1.571291+7 2.951209-5 1.592939+7 3.054921-5 1.602968+7 3.162278-5 1.600461+7 3.260000-5 1.587352+7 3.350000-5 1.566522+7 3.450000-5 1.534860+7 3.548134-5 1.496123+7 3.650000-5 1.449299+7 3.770000-5 1.387616+7 3.900000-5 1.315613+7 4.027170-5 1.242542+7 4.168694-5 1.160625+7 4.315191-5 1.077233+7 4.500000-5 9.765036+6 4.677351-5 8.863624+6 4.900000-5 7.836336+6 5.150000-5 6.821784+6 5.432503-5 5.838059+6 5.754399-5 4.902073+6 6.095369-5 4.089840+6 6.456542-5 3.389351+6 6.839116-5 2.789473+6 7.244360-5 2.279466+6 7.673615-5 1.848019+6 8.128305-5 1.486191+6 8.511380-5 1.241264+6 9.000000-5 9.907884+5 9.549926-5 7.736009+5 1.011579-4 6.040015+5 1.071519-4 4.682998+5 1.135011-4 3.609860+5 1.216186-4 2.622150+5 1.330000-4 1.718608+5 1.480000-4 1.034003+5 1.560000-4 8.097480+4 1.621810-4 6.805736+4 1.678804-4 5.874026+4 1.720000-4 5.325084+4 1.760000-4 4.875588+4 1.800000-4 4.496652+4 1.844600-4 4.144774+4 1.890000-4 3.851028+4 1.930000-4 3.637692+4 1.972423-4 3.450933+4 2.018366-4 3.287733+4 2.065380-4 3.156058+4 2.113489-4 3.052003+4 2.162719-4 2.972042+4 2.213095-4 2.913159+4 2.264644-4 2.872731+4 2.330000-4 2.844479+4 2.400000-4 2.835860+4 2.483133-4 2.846893+4 2.580000-4 2.879867+4 2.730000-4 2.952724+4 3.090295-4 3.141584+4 3.305660-4 3.226734+4 3.507519-4 3.280873+4 3.715352-4 3.312713+4 3.935501-4 3.323151+4 4.168694-4 3.309834+4 4.415704-4 3.274421+4 4.677351-4 3.219125+4 5.000000-4 3.132594+4 5.308844-4 3.037191+4 5.688529-4 2.909105+4 6.095369-4 2.765056+4 6.531306-4 2.608772+4 7.000000-4 2.444170+4 7.498942-4 2.276906+4 8.128305-4 2.079764+4 8.810489-4 1.885046+4 9.549926-4 1.696919+4 1.035142-3 1.517414+4 1.122018-3 1.347911+4 1.224700-3 1.176521+4 1.333521-3 1.023571+4 1.462177-3 8.737463+3 1.603245-3 7.403351+3 1.757924-3 6.226643+3 1.927525-3 5.198624+3 2.113489-3 4.309042+3 2.317395-3 3.546503+3 2.540973-3 2.898862+3 2.786121-3 2.353609+3 3.054921-3 1.898414+3 3.388442-3 1.479309+3 3.758374-3 1.143733+3 4.168694-3 8.776356+2 4.623810-3 6.685255+2 5.188000-3 4.900379+2 5.754399-3 3.677112+2 6.456542-3 2.650726+2 7.161434-3 1.961010+2 8.035261-3 1.392463+2 9.015711-3 9.814159+1 1.011579-2 6.865194+1 1.135011-2 4.766789+1 1.273503-2 3.284936+1 1.428894-2 2.247967+1 1.621810-2 1.470038+1 1.840772-2 9.541835+0 2.089296-2 6.149195+0 2.398833-2 3.778163+0 2.754229-2 2.304339+0 3.198895-2 1.338456+0 3.758374-2 7.397367-1 4.466836-2 3.889118-1 5.370318-2 1.944579-1 6.998420-2 7.111270-2 1.135011-1 1.125345-2 1.412538-1 4.917837-3 1.698244-1 2.465381-3 1.972423-1 1.416542-3 2.238721-1 8.926903-4 2.540973-1 5.664783-4 2.884032-1 3.621539-4 3.273407-1 2.333241-4 3.672823-1 1.576497-4 4.073803-1 1.115508-4 4.518559-1 7.949859-5 5.011872-1 5.708420-5 5.495409-1 4.280291-5 6.025596-1 3.232402-5 6.606935-1 2.463073-5 7.244360-1 1.891249-5 8.709636-1 1.129212-5 9.225714-1 9.675701-6 9.660509-1 8.601589-6 1.011579+0 7.695990-6 1.059254+0 6.934642-6 1.109175+0 6.290041-6 1.174898+0 5.610945-6 1.258925+0 4.934187-6 1.364583+0 4.275458-6 1.531087+0 3.508639-6 1.862087+0 2.488898-6 2.089296+0 2.045493-6 2.344229+0 1.693039-6 2.660725+0 1.385381-6 3.090295+0 1.102152-6 3.589219+0 8.830317-7 4.168694+0 7.127091-7 4.897788+0 5.701406-7 5.821032+0 4.524382-7 7.000000+0 3.563100-7 8.413951+0 2.827720-7 1.023293+1 2.228531-7 1.258925+1 1.743329-7 1.640590+1 1.285721-7 2.162719+1 9.440738-8 3.000000+1 6.608700-8 4.315191+1 4.487369-8 6.456542+1 2.944676-8 1.000000+2 1.877100-8 1.905461+2 9.734824-9 3.801894+2 4.847331-9 1.513561+3 1.211729-9 1.000000+5 1.83090-11 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.102000-5 1.102000-5 1.000000+5 1.102000-5 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.102000-5 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 9.540000-6 7.965002+6 1.000000-5 8.354556+6 1.059254-5 8.923701+6 1.150000-5 9.889776+6 1.462177-5 1.349286+7 1.659587-5 1.578771+7 1.850000-5 1.794290+7 2.018366-5 1.974984+7 2.162719-5 2.117561+7 2.290868-5 2.229578+7 2.400000-5 2.310957+7 2.511886-5 2.378726+7 2.610000-5 2.423309+7 2.691535-5 2.448636+7 2.800000-5 2.464765+7 2.900000-5 2.462135+7 3.000000-5 2.442604+7 3.090295-5 2.411494+7 3.198895-5 2.358962+7 3.311311-5 2.289554+7 3.427678-5 2.204425+7 3.548134-5 2.105472+7 3.672823-5 1.995435+7 3.801894-5 1.877523+7 3.950000-5 1.741630+7 4.073803-5 1.630092+7 4.220000-5 1.502966+7 4.400000-5 1.355773+7 4.623810-5 1.189885+7 4.841724-5 1.047197+7 5.069907-5 9.163796+6 5.370318-5 7.702131+6 5.688529-5 6.431326+6 6.025596-5 5.334723+6 6.400000-5 4.354614+6 6.800000-5 3.524105+6 7.161434-5 2.921512+6 7.585776-5 2.354112+6 8.000000-5 1.914781+6 8.413951-5 1.563220+6 8.912509-5 1.230861+6 9.332543-5 1.010875+6 9.900000-5 7.795710+5 1.047129-4 6.051412+5 1.109175-4 4.636491+5 1.202264-4 3.168025+5 1.380384-4 1.634118+5 1.450000-4 1.297172+5 1.500000-4 1.111984+5 1.548817-4 9.667272+4 1.600000-4 8.446734+4 1.640590-4 7.660337+4 1.678804-4 7.042748+4 1.720000-4 6.489396+4 1.760000-4 6.045894+4 1.800000-4 5.680260+4 1.840772-4 5.375957+4 1.883649-4 5.119270+4 1.927525-4 4.912570+4 1.972423-4 4.749055+4 2.018366-4 4.623215+4 2.065380-4 4.530870+4 2.113489-4 4.467853+4 2.162719-4 4.429410+4 2.230000-4 4.409451+4 2.300000-4 4.419830+4 2.400000-4 4.471913+4 2.511886-4 4.559358+4 2.884032-4 4.892068+4 3.054921-4 5.011260+4 3.235937-4 5.100175+4 3.427678-4 5.157326+4 3.630781-4 5.181416+4 3.845918-4 5.171776+4 4.073803-4 5.126795+4 4.315191-4 5.046342+4 4.570882-4 4.936872+4 4.841724-4 4.801638+4 5.188000-4 4.610776+4 5.559043-4 4.394141+4 5.956621-4 4.157110+4 6.382635-4 3.905150+4 6.839116-4 3.644422+4 7.413102-4 3.336561+4 8.035261-4 3.030867+4 8.709636-4 2.732631+4 9.549926-4 2.408227+4 1.035142-3 2.141447+4 1.122018-3 1.891843+4 1.216186-3 1.660852+4 1.333521-3 1.420526+4 1.462177-3 1.205619+4 1.603245-3 1.015798+4 1.757924-3 8.496582+3 1.927525-3 7.055741+3 2.113489-3 5.817787+3 2.317395-3 4.763741+3 2.540973-3 3.874124+3 2.786121-3 3.129629+3 3.090295-3 2.443041+3 3.427678-3 1.892278+3 3.758374-3 1.497921+3 4.073803-3 1.213464+3 4.466836-3 9.463360+2 5.011872-3 6.880171+2 5.623413-3 4.976186+2 6.237348-3 3.692582+2 6.918310-3 2.720619+2 7.673615-3 1.991287+2 8.609938-3 1.397443+2 9.660509-3 9.731993+1 1.083927-2 6.725699+1 1.202264-2 4.791389+1 1.348963-2 3.263558+1 1.513561-2 2.207458+1 1.717908-2 1.425051+1 1.949845-2 9.129390+0 2.213095-2 5.805155+0 2.540973-2 3.514704+0 2.917427-2 2.111949+0 3.388442-2 1.206576+0 3.981072-2 6.549843-1 4.731513-2 3.377460-1 5.623413-2 1.729020-1 7.413102-2 5.867447-2 1.122019-1 1.155971-2 1.364583-1 5.401164-3 1.621810-1 2.779842-3 1.862087-1 1.645445-3 2.089296-1 1.070112-3 2.344229-1 7.011209-4 2.600160-1 4.823964-4 2.884032-1 3.341787-4 3.198895-1 2.331778-4 3.507519-1 1.704617-4 3.845918-1 1.254573-4 4.216965-1 9.300805-5 4.623810-1 6.947831-5 5.011872-1 5.417675-5 5.432503-1 4.251018-5 5.888437-1 3.357244-5 6.382635-1 2.670557-5 6.918310-1 2.139018-5 7.498942-1 1.724438-5 8.609938-1 1.202834-5 9.120108-1 1.041282-5 9.660509-1 9.076545-6 1.011579+0 8.180739-6 1.071519+0 7.232908-6 1.148154+0 6.287487-6 1.230269+0 5.504486-6 1.333521+0 4.747389-6 1.798871+0 2.803363-6 2.065380+0 2.212896-6 2.317395+0 1.830255-6 2.630268+0 1.496677-6 3.054921+0 1.190055-6 3.548134+0 9.528946-7 4.120975+0 7.686739-7 4.841724+0 6.145773-7 5.754399+0 4.874489-7 6.918310+0 3.838060-7 8.317638+0 3.043724-7 1.011579+1 2.397699-7 1.244515+1 1.874962-7 1.603245+1 1.400571-7 2.089296+1 1.040856-7 2.851018+1 7.409033-8 4.027170+1 5.122723-8 5.888437+1 3.438531-8 9.120108+1 2.188707-8 1.798871+2 1.095049-8 3.589219+2 5.450552-9 1.428894+3 1.362182-9 1.000000+5 1.94290-11 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 9.540000-6 9.540000-6 1.000000+5 9.540000-6 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 9.540000-6 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 8.070000-6 3.877410+6 8.511380-6 3.154111+6 9.700000-6 1.873040+6 1.109175-5 1.088214+6 1.258925-5 6.461788+5 1.428894-5 3.807619+5 1.972423-5 9.706282+4 2.137962-5 6.935376+4 2.270000-5 5.436990+4 2.388200-5 4.452480+4 2.500000-5 3.744690+4 2.610000-5 3.205370+4 2.691535-5 2.883483+4 2.786121-5 2.575876+4 2.884032-5 2.317427+4 2.985383-5 2.101045+4 3.080000-5 1.936610+4 3.162278-5 1.817595+4 3.260000-5 1.700000+4 3.350000-5 1.610550+4 3.450000-5 1.528480+4 3.548134-5 1.462487+4 3.672823-5 1.395291+4 3.801894-5 1.341202+4 3.950000-5 1.293910+4 4.073803-5 1.263635+4 4.220000-5 1.236110+4 4.415704-5 1.209628+4 4.677351-5 1.186797+4 5.011872-5 1.169665+4 6.165950-5 1.136014+4 6.760830-5 1.114113+4 7.328245-5 1.087519+4 7.852356-5 1.058386+4 8.413951-5 1.023222+4 9.015711-5 9.830981+3 9.660509-5 9.386855+3 1.040000-4 8.875530+3 1.135011-4 8.237462+3 1.244515-4 7.556129+3 1.364583-4 6.883175+3 1.548817-4 6.004947+3 1.778279-4 5.132426+3 3.126079-4 2.645328+3 3.589219-4 2.229754+3 4.027170-4 1.920521+3 4.623810-4 1.587326+3 5.821032-4 1.142607+3 7.413102-4 8.072375+2 8.413951-4 6.688261+2 1.059254-3 4.696490+2 1.380384-3 3.109919+2 1.678804-3 2.277843+2 2.065380-3 1.625801+2 2.511886-3 1.173804+2 3.054921-3 8.412601+1 4.466836-3 4.335812+1 5.011872-3 3.521969+1 5.754399-3 2.723377+1 7.413102-3 1.692078+1 9.015711-3 1.162740+1 1.109175-2 7.752434+0 1.348963-2 5.245356+0 1.621810-2 3.605217+0 1.949845-2 2.459843+0 2.344229-2 1.665421+0 2.818383-2 1.118726+0 3.349654-2 7.647967-1 3.981072-2 5.191221-1 4.731513-2 3.498183-1 5.623413-2 2.339592-1 6.760830-2 1.511494-1 8.128305-2 9.691812-2 9.885531-2 5.990799-2 1.244515-1 3.374495-2 1.584893-1 1.833902-2 2.483133-1 5.862606-3 3.090295-1 3.385116-3 3.672823-1 2.208627-3 4.265795-1 1.536152-3 4.897788-1 1.106511-3 5.559043-1 8.245855-4 6.237348-1 6.350873-4 7.079458-1 4.800823-4 8.035261-1 3.657359-4 9.015711-1 2.874631-4 1.000000+0 2.330900-4 1.188502+0 1.659597-4 1.318257+0 1.361344-4 1.496236+0 1.077206-4 1.698244+0 8.599548-5 1.972423+0 6.645049-5 2.213095+0 5.480578-5 2.511886+0 4.469225-5 2.884032+0 3.607060-5 3.388442+0 2.831949-5 3.935501+0 2.279443-5 4.623810+0 1.818515-5 5.495409+0 1.439238-5 6.531306+0 1.147865-5 7.943282+0 8.953486-6 9.549926+0 7.138957-6 1.216186+1 5.349858-6 1.584893+1 3.941610-6 2.041738+1 2.966028-6 2.754229+1 2.136530-6 3.801894+1 1.512438-6 5.623413+1 1.002056-6 8.810489+1 6.298769-7 1.757924+2 3.113612-7 3.507519+2 1.549570-7 1.396368+3 3.872181-8 4.415704+4 1.222179-9 1.000000+5 5.39680-10 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 8.070000-6 8.070000-6 1.000000+5 8.070000-6 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 8.070000-6 0.0 1.000000+5 1.000000+5 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.281000-7 1.026100+0 1.194080-6 1.026600+0 1.683380-6 1.027100+0 2.290270-6 1.027500+0 2.868540-6 1.028100+0 3.905470-6 1.028750+0 5.281000-6 1.029500+0 7.227190-6 1.030100+0 9.089070-6 1.031000+0 1.243690-5 1.032000+0 1.701690-5 1.033200+0 2.383770-5 1.034000+0 2.926300-5 1.035300+0 3.972040-5 1.036640+0 5.281000-5 1.038200+0 7.126880-5 1.039700+0 9.259240-5 1.041500+0 1.231930-4 1.043800+0 1.709960-4 1.046400+0 2.379090-4 1.048300+0 2.962030-4 1.051200+0 4.017930-4 1.054080+0 5.281000-4 1.057700+0 7.198350-4 1.061100+0 9.363260-4 1.065100+0 1.239600-3 1.070400+0 1.729370-3 1.076200+0 2.389990-3 1.080600+0 2.984710-3 1.087100+0 4.021370-3 1.093710+0 5.281000-3 1.102600+0 7.321850-3 1.110700+0 9.548840-3 1.120600+0 1.277290-2 1.133300+0 1.775900-2 1.147500+0 2.451910-2 1.158200+0 3.047100-2 1.174100+0 4.072730-2 1.190110+0 5.281000-2 1.205100+0 6.574810-2 1.227500+0 8.800970-2 1.250000+0 1.137000-1 1.265600+0 1.332800-1 1.294900+0 1.735450-1 1.331800+0 2.298730-1 1.362600+0 2.807830-1 1.397000+0 3.410020-1 1.433800+0 4.085640-1 1.477900+0 4.930960-1 1.500000+0 5.368000-1 1.562500+0 6.647420-1 1.617200+0 7.811560-1 1.712900+0 9.914120-1 1.838500+0 1.274620+0 1.946200+0 1.519260+0 2.000000+0 1.641000+0 2.044000+0 1.740000+0 2.163500+0 2.004700+0 2.372600+0 2.451200+0 2.647100+0 3.003950+0 3.000000+0 3.666000+0 3.500000+0 4.531030+0 4.000000+0 5.322000+0 5.000000+0 6.709000+0 6.000000+0 7.902000+0 7.000000+0 8.953000+0 8.000000+0 9.899000+0 9.000000+0 1.076000+1 1.000000+1 1.155000+1 1.100000+1 1.228000+1 1.200000+1 1.296000+1 1.300000+1 1.360000+1 1.400000+1 1.420000+1 1.500000+1 1.475000+1 1.600000+1 1.527000+1 1.800000+1 1.620000+1 2.000000+1 1.703000+1 2.200000+1 1.779000+1 2.400000+1 1.848000+1 2.600000+1 1.910000+1 2.800000+1 1.968000+1 3.000000+1 2.021000+1 4.000000+1 2.238000+1 5.000000+1 2.399000+1 6.000000+1 2.524000+1 8.000000+1 2.708000+1 1.000000+2 2.837000+1 1.500000+2 3.041000+1 2.000000+2 3.162000+1 3.000000+2 3.303000+1 4.000000+2 3.383000+1 5.000000+2 3.436000+1 6.000000+2 3.473000+1 8.000000+2 3.523000+1 1.000000+3 3.555000+1 1.500000+3 3.602000+1 2.000000+3 3.627000+1 3.000000+3 3.655000+1 4.000000+3 3.669000+1 5.000000+3 3.679000+1 6.000000+3 3.685000+1 8.000000+3 3.694000+1 1.000000+4 3.699000+1 1.500000+4 3.706000+1 2.000000+4 3.710000+1 3.000000+4 3.715000+1 4.000000+4 3.717000+1 5.000000+4 3.718000+1 6.000000+4 3.719000+1 8.000000+4 3.720000+1 1.000000+5 3.721000+1 1 78000 7 8 1.950900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.809860-7 2.090400+0 1.060390-6 2.094700+0 1.374950-6 2.099900+0 1.829180-6 2.106600+0 2.544540-6 2.114000+0 3.520690-6 2.119500+0 4.383240-6 2.127900+0 5.944500-6 2.136250+0 7.809860-6 2.147000+0 1.070790-5 2.156900+0 1.390820-5 2.169000+0 1.856140-5 2.184500+0 2.580100-5 2.201800+0 3.569640-5 2.214800+0 4.447490-5 2.234200+0 5.982670-5 2.253680+0 7.809860-5 2.281500+0 1.093910-4 2.307000+0 1.436840-4 2.338200+0 1.931960-4 2.377400+0 2.675530-4 2.410200+0 3.402820-4 2.446800+0 4.328580-4 2.485900+0 5.449920-4 2.532900+0 6.974750-4 2.556430+0 7.809860-4 2.611900+0 9.958510-4 2.660400+0 1.203940-3 2.745300+0 1.611410-3 2.809000+0 1.951520-3 2.904500+0 2.514050-3 3.000000+0 3.138000-3 3.125000+0 4.046070-3 3.234400+0 4.922760-3 3.425800+0 6.627920-3 3.569300+0 8.035720-3 3.784700+0 1.032740-2 4.000000+0 1.279000-2 4.250000+0 1.579980-2 4.625000+0 2.052780-2 5.000000+0 2.544000-2 5.500000+0 3.217730-2 6.000000+0 3.900000-2 6.750000+0 4.914500-2 7.000000+0 5.248000-2 8.000000+0 6.551000-2 9.000000+0 7.796000-2 1.000000+1 8.976000-2 1.100000+1 1.009000-1 1.200000+1 1.114000-1 1.300000+1 1.213000-1 1.400000+1 1.306000-1 1.500000+1 1.395000-1 1.600000+1 1.479000-1 1.800000+1 1.634000-1 2.000000+1 1.775000-1 2.200000+1 1.904000-1 2.400000+1 2.022000-1 2.600000+1 2.130000-1 2.800000+1 2.230000-1 3.000000+1 2.323000-1 4.000000+1 2.706000-1 5.000000+1 2.994000-1 6.000000+1 3.221000-1 8.000000+1 3.559000-1 1.000000+2 3.802000-1 1.500000+2 4.200000-1 2.000000+2 4.446000-1 3.000000+2 4.743000-1 4.000000+2 4.919000-1 5.000000+2 5.038000-1 6.000000+2 5.125000-1 8.000000+2 5.244000-1 1.000000+3 5.322000-1 1.500000+3 5.438000-1 2.000000+3 5.504000-1 3.000000+3 5.575000-1 4.000000+3 5.617000-1 5.000000+3 5.642000-1 6.000000+3 5.660000-1 8.000000+3 5.683000-1 1.000000+4 5.698000-1 1.500000+4 5.718000-1 2.000000+4 5.730000-1 3.000000+4 5.741000-1 4.000000+4 5.748000-1 5.000000+4 5.753000-1 6.000000+4 5.755000-1 8.000000+4 5.758000-1 1.000000+5 5.761000-1 1 78000 7 8 1.950900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 78000 7 9 1.950900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.800000+1 1.000000+5 7.800000+1 5.000000+5 7.797200+1 7.500000+5 7.795150+1 1.000000+6 7.793700+1 1.500000+6 7.789200+1 2.000000+6 7.780900+1 2.500000+6 7.770200+1 3.000000+6 7.757400+1 3.500000+6 7.742240+1 4.000000+6 7.725300+1 4.500000+6 7.706890+1 5.000000+6 7.686500+1 5.500000+6 7.663900+1 6.250000+6 7.625860+1 6.500000+6 7.612850+1 7.000000+6 7.585400+1 7.875000+6 7.533820+1 8.625000+6 7.487490+1 9.000000+6 7.463800+1 1.000000+7 7.397600+1 1.125000+7 7.308960+1 1.187500+7 7.263100+1 1.250000+7 7.216200+1 1.437500+7 7.070070+1 1.500000+7 7.021200+1 1.687500+7 6.872140+1 1.750000+7 6.822000+1 2.000000+7 6.618000+1 2.250000+7 6.414180+1 2.375000+7 6.312970+1 2.500000+7 6.213800+1 2.875000+7 5.922500+1 3.000000+7 5.829100+1 3.437500+7 5.514200+1 3.750000+7 5.304400+1 4.000000+7 5.146600+1 4.500000+7 4.854160+1 5.000000+7 4.589300+1 5.500000+7 4.347030+1 5.750000+7 4.233220+1 6.000000+7 4.123700+1 6.750000+7 3.815510+1 7.000000+7 3.719200+1 7.750000+7 3.445070+1 8.000000+7 3.358900+1 8.750000+7 3.112370+1 9.000000+7 3.034700+1 9.750000+7 2.813490+1 1.000000+8 2.743900+1 1.062500+8 2.578520+1 1.250000+8 2.166400+1 1.375000+8 1.958640+1 1.500000+8 1.796500+1 1.625000+8 1.671080+1 1.750000+8 1.568370+1 1.906300+8 1.457790+1 2.000000+8 1.397000+1 2.250000+8 1.248960+1 2.500000+8 1.128200+1 2.671900+8 1.058170+1 2.789100+8 1.010210+1 2.875000+8 9.728110+0 2.894500+8 9.639660+0 2.973600+8 9.267260+0 3.000000+8 9.137800+0 3.062500+8 8.822360+0 3.335900+8 7.538680+0 3.418000+8 7.238970+0 3.500000+8 6.993400+0 3.562500+8 6.843900+0 4.000000+8 6.141400+0 4.125000+8 5.919420+0 5.000000+8 4.437400+0 5.125000+8 4.306660+0 5.343800+8 4.118870+0 5.835900+8 3.772090+0 6.000000+8 3.655200+0 7.000000+8 2.963500+0 7.625000+8 2.681010+0 7.875000+8 2.568220+0 8.000000+8 2.507700+0 8.125000+8 2.443590+0 1.000000+9 1.596200+0 1.031300+9 1.518850+0 1.060500+9 1.461510+0 1.088000+9 1.417670+0 1.125800+9 1.369800+0 1.160500+9 1.335470+0 1.183200+9 1.318190+0 1.375000+9 1.212360+0 1.500000+9 1.155000+0 1.562500+9 1.118830+0 1.641100+9 1.068880+0 1.706900+9 1.025080+0 1.780200+9 9.758530-1 1.858700+9 9.237680-1 1.952900+9 8.636670-1 2.000000+9 8.350100-1 2.139200+9 7.557980-1 2.272600+9 6.874990-1 2.443000+9 6.100620-1 2.602800+9 5.464870-1 2.750000+9 4.946500-1 2.825100+9 4.704450-1 3.024800+9 4.126530-1 3.208000+9 3.669810-1 3.432000+9 3.191660-1 3.719500+9 2.684270-1 4.039600+9 2.230740-1 4.279700+9 1.951240-1 4.639800+9 1.608600-1 5.000000+9 1.337400-1 5.375000+9 1.112770-1 5.703100+9 9.539090-2 6.277300+9 7.391430-2 7.031000+9 5.428740-2 8.000000+9 3.794900-2 1.00000+10 2.028200-2 1.54060+10 6.022940-3 2.62810+10 1.352030-3 3.97960+10 4.260550-4 6.12980+10 1.288270-4 8.70990+10 4.895770-5 1.00000+11 3.351100-5 1.34280+11 1.496620-5 2.20600+11 3.880350-6 4.19930+11 6.831390-7 1.03480+12 6.125100-8 3.24440+12 2.968640-9 1.00000+14 3.68510-13 3.16230+15 4.08537-17 1.00000+17 4.29680-21 1 78000 7 0 1.950900+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.40000-12 1.000000+2 6.40000-10 1.000000+3 6.400000-8 1.000000+4 6.400000-6 1.000000+5 6.400000-4 5.000000+5 1.600000-2 7.500000+5 3.600000-2 1.000000+6 6.400000-2 1.500000+6 1.420000-1 2.000000+6 2.498000-1 2.500000+6 3.852000-1 3.000000+6 5.459000-1 3.500000+6 7.293890-1 4.000000+6 9.330000-1 4.500000+6 1.154080+0 5.000000+6 1.390000+0 5.500000+6 1.638110+0 6.250000+6 2.028550+0 6.500000+6 2.162410+0 7.000000+6 2.434700+0 7.875000+6 2.920520+0 8.625000+6 3.343110+0 9.000000+6 3.555700+0 1.000000+7 4.123000+0 1.125000+7 4.829730+0 1.187500+7 5.181550+0 1.250000+7 5.532200+0 1.437500+7 6.573570+0 1.500000+7 6.917000+0 1.687500+7 7.934570+0 1.750000+7 8.269900+0 2.000000+7 9.589000+0 2.250000+7 1.087300+1 2.375000+7 1.150470+1 2.500000+7 1.213000+1 2.875000+7 1.397430+1 3.000000+7 1.458300+1 3.437500+7 1.668900+1 3.750000+7 1.816960+1 4.000000+7 1.933700+1 4.500000+7 2.160680+1 5.000000+7 2.376600+1 5.500000+7 2.577920+1 5.750000+7 2.672660+1 6.000000+7 2.763800+1 6.750000+7 3.014210+1 7.000000+7 3.091000+1 7.750000+7 3.304620+1 8.000000+7 3.371300+1 8.750000+7 3.560200+1 9.000000+7 3.620400+1 9.750000+7 3.793280+1 1.000000+8 3.849100+1 1.062500+8 3.984060+1 1.250000+8 4.361000+1 1.375000+8 4.590340+1 1.500000+8 4.804900+1 1.625000+8 5.003950+1 1.750000+8 5.188870+1 1.906300+8 5.398850+1 2.000000+8 5.514200+1 2.250000+8 5.784270+1 2.500000+8 6.007700+1 2.671900+8 6.138590+1 2.789100+8 6.218510+1 2.875000+8 6.273800+1 2.894500+8 6.285620+1 2.973600+8 6.332770+1 3.000000+8 6.348300+1 3.062500+8 6.382940+1 3.335900+8 6.521610+1 3.418000+8 6.559350+1 3.500000+8 6.595300+1 3.562500+8 6.621350+1 4.000000+8 6.784700+1 4.125000+8 6.825190+1 5.000000+8 7.063300+1 5.125000+8 7.091300+1 5.343800+8 7.137860+1 5.835900+8 7.230980+1 6.000000+8 7.259300+1 7.000000+8 7.396800+1 7.625000+8 7.459220+1 7.875000+8 7.480700+1 8.000000+8 7.490600+1 8.125000+8 7.499490+1 1.000000+9 7.599700+1 1.031300+9 7.611110+1 1.060500+9 7.621470+1 1.088000+9 7.629850+1 1.125800+9 7.640920+1 1.160500+9 7.650770+1 1.183200+9 7.656560+1 1.375000+9 7.695430+1 1.500000+9 7.715200+1 1.562500+9 7.722950+1 1.641100+9 7.732290+1 1.706900+9 7.739770+1 1.780200+9 7.747110+1 1.858700+9 7.753620+1 1.952900+9 7.761100+1 2.000000+9 7.764700+1 2.139200+9 7.772600+1 2.272600+9 7.778440+1 2.443000+9 7.784560+1 2.602800+9 7.789160+1 2.750000+9 7.792130+1 2.825100+9 7.793580+1 3.024800+9 7.795710+1 3.208000+9 7.797380+1 3.432000+9 7.798960+1 3.719500+9 7.799230+1 4.039600+9 7.799520+1 4.279700+9 7.799720+1 4.639800+9 7.799930+1 5.000000+9 7.799700+1 5.375000+9 7.799750+1 5.703100+9 7.799780+1 6.277300+9 7.799850+1 7.031000+9 7.799920+1 8.000000+9 7.800000+1 1.00000+10 7.800000+1 1.54060+10 7.800000+1 2.62810+10 7.800000+1 3.97960+10 7.800000+1 6.12980+10 7.800000+1 8.70990+10 7.800000+1 1.00000+11 7.800000+1 1.34280+11 7.800000+1 2.20600+11 7.800000+1 4.19930+11 7.800000+1 1.03480+12 7.800000+1 3.24440+12 7.800000+1 1.00000+14 7.800000+1 3.16230+15 7.800000+1 1.00000+17 7.800000+1 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.573491-6 0.0 1.577363-6 3.856829-7 1.581236-6 7.631601-7 1.585109-6 1.393974-6 1.588982-6 2.350432-6 1.592855-6 3.658428-6 1.596728-6 5.256483-6 1.600601-6 6.971879-6 1.604474-6 8.536076-6 1.608347-6 9.647631-6 1.612220-6 1.006554-5 1.616093-6 9.694095-6 1.619966-6 8.618495-6 1.623839-6 7.073097-6 1.631585-6 3.747381-6 1.635458-6 2.419179-6 1.639331-6 1.441657-6 1.643204-6 7.930676-7 1.647077-6 4.027285-7 1.650949-6 0.0 4.871524-6 0.0 4.889510-6 1.951396+0 4.895505-6 2.593610+0 4.907496-6 4.737441+0 4.919486-6 7.987976+0 4.932976-6 1.311066+1 4.953772-6 2.287252+1 4.968198-6 2.924555+1 4.980540-6 3.291772+1 4.993117-6 3.403066+1 5.005108-6 3.243231+1 5.017873-6 2.821378+1 5.038102-6 1.883960+1 5.051383-6 1.273553+1 5.064123-6 8.014443+0 5.075364-6 4.899493+0 5.087355-6 2.695251+0 5.102343-6 1.027112+0 5.111336-6 0.0 5.419808-6 0.0 5.443154-6 4.474261+0 5.446489-6 5.106919+0 5.459829-6 9.328205+0 5.473169-6 1.572863+1 5.488177-6 2.581540+1 5.511548-6 4.523901+1 5.527363-6 5.758563+1 5.542029-6 6.501187+1 5.554198-6 6.717295+1 5.567775-6 6.421174+1 5.582287-6 5.581874+1 5.603288-6 3.868668+1 5.619911-6 2.507674+1 5.633251-6 1.618867+1 5.646591-6 9.647291+0 5.659931-6 5.307054+0 5.679942-6 1.349075+0 5.686612-6 0.0 6.410260-6 0.0 6.426038-6 2.04485-14 6.441816-6 4.04619-14 6.457594-6 7.39070-14 6.473372-6 1.24617-13 6.489150-6 1.93966-13 6.504928-6 2.78693-13 6.520706-6 3.69641-13 6.536484-6 4.52573-13 6.552262-6 5.11507-13 6.568040-6 5.33664-13 6.583818-6 5.13970-13 6.599596-6 4.56943-13 6.615374-6 3.75008-13 6.646930-6 1.98682-13 6.662708-6 1.28262-13 6.678486-6 7.64351-14 6.694264-6 4.20476-14 6.710042-6 2.13522-14 6.725820-6 0.0 7.201943-6 0.0 7.229918-6 7.379556-2 7.237397-6 9.328978-2 7.255123-6 1.704014-1 7.273958-6 2.972907-1 7.292792-6 4.715785-1 7.328694-6 8.809244-1 7.348987-6 1.338678+0 7.364771-6 1.642293+0 7.385064-6 2.112342+0 7.404089-6 2.665722+0 7.423854-6 3.392418+0 7.475922-6 5.565541+0 7.494079-6 6.015434+0 7.510736-6 6.105166+0 7.528246-6 5.798306+0 7.546848-6 5.062167+0 7.599273-6 2.226893+0 7.617312-6 1.437612+0 7.635351-6 8.567194-1 7.653389-6 4.712919-1 7.684408-6 6.723877-2 7.689466-6 8.304593-6 7.715548-6 1.133006-6 7.722440-6 2.70814-11 7.738956-6 2.61876-11 7.747200-6 2.48976-11 7.747515-6 2.008718-7 7.750339-6 2.528043-7 7.753137-6 3.166539-7 7.755911-6 3.948435-7 7.759572-6 5.263920-7 7.763191-6 6.966734-7 7.766472-6 8.953499-7 7.770011-6 1.169694-6 7.773510-6 1.518223-6 7.776967-6 1.958279-6 7.780385-6 2.510577-6 7.783762-6 3.199701-6 7.787100-6 4.054659-6 7.790399-6 5.109478-6 7.793660-6 6.403843-6 7.796882-6 7.983781-6 7.801121-6 1.062747-5 7.805293-6 1.402198-5 7.809401-6 1.834324-5 7.812943-6 2.304684-5 7.817427-6 3.063105-5 7.821832-6 4.031487-5 7.826160-6 5.256278-5 7.830413-6 6.791272-5 7.834592-6 8.698176-5 7.838698-6 1.104710-4 7.842732-6 1.391696-4 7.846696-6 1.739582-4 7.851875-6 2.315240-4 7.856937-6 3.042994-4 7.861882-6 3.951143-4 7.866713-6 5.071233-4 7.871431-6 6.437445-4 7.876040-6 8.086316-4 7.882019-6 1.079134-3 7.886382-6 1.325226-3 7.892737-6 1.773744-3 7.898873-6 2.330053-3 7.904796-6 3.008010-3 7.910514-6 3.820806-3 7.917836-6 5.135979-3 7.924303-6 6.609104-3 7.931504-6 1.283384-2 7.941951-6 2.280831-2 7.953453-6 3.522484-2 7.963313-6 4.745237-2 7.974644-6 6.794421-2 7.982817-6 1.130275-1 8.005113-6 2.551867-1 8.013901-6 3.181209-1 8.033530-6 5.148744-1 8.053159-6 7.818312-1 8.078004-6 1.213573+0 8.083222-6 1.314025+0 8.123044-6 3.315456+0 8.145396-6 4.837027+0 8.164223-6 6.495297+0 8.190858-6 9.514529+0 8.238174-6 1.527184+1 8.258146-6 1.697792+1 8.269052-6 1.749064+1 8.285892-6 1.765185+1 8.305276-6 1.670218+1 8.328223-6 1.428061+1 8.378562-6 7.487537+0 8.401555-6 5.010048+0 8.421451-6 3.515594+0 8.441347-6 2.553890+0 8.461242-6 1.984471+0 8.481138-6 1.335925+0 8.509085-6 1.282631+0 8.563477-6 1.100696+0 8.587031-6 1.054370+0 8.647664-6 1.053668+0 8.726773-6 1.044793+0 8.835899-6 9.898123-1 8.896137-6 9.296993-1 8.946771-6 8.189928-1 9.006746-6 6.427845-1 9.062242-6 4.726197-1 9.101822-6 3.879900-1 9.108428-6 3.771548-1 9.153284-6 1.269469+0 9.177321-6 2.120259+0 9.201139-6 3.425128+0 9.225093-6 5.215649+0 9.288821-6 1.088126+1 9.313828-6 1.227010+1 9.334996-6 1.265446+1 9.357097-6 1.212783+1 9.379410-6 1.076325+1 9.444716-6 5.027387+0 9.467135-6 3.459054+0 9.489555-6 2.343459+0 9.511974-6 1.650606+0 9.556812-6 9.100498-1 9.608633-6 1.151342+0 9.656712-6 1.291381+0 9.713419-6 1.535634+0 9.739903-6 1.695462+0 9.763619-6 1.894736+0 9.805267-6 2.355654+0 9.846862-6 2.842796+0 9.876573-6 3.052645+0 9.900342-6 3.094006+0 9.924111-6 3.006100+0 9.956793-6 2.713765+0 9.992156-6 2.303526+0 1.003701-5 2.056419+0 1.006626-5 2.084942+0 1.009399-5 2.318106+0 1.011980-5 2.678538+0 1.015817-5 3.411621+0 1.019628-5 4.128850+0 1.021727-5 4.384600+0 1.024193-5 4.478300+0 1.026658-5 4.338547+0 1.029298-5 3.962304+0 1.036212-5 2.609775+0 1.038678-5 2.220361+0 1.041026-5 1.945288+0 1.043486-5 1.755945+0 1.048404-5 1.528487+0 1.063819-5 1.563239+0 1.069091-5 1.669781+0 1.071685-5 1.752758+0 1.074934-5 1.916100+0 1.081064-5 2.369038+0 1.086583-5 2.773705+0 1.090645-5 2.908206+0 1.095125-5 2.850366+0 1.103082-5 2.619326+0 1.107265-5 2.644400+0 1.120543-5 3.127008+0 1.128736-5 3.189073+0 1.144168-5 3.232361+0 1.149645-5 3.376948+0 1.156048-5 3.715980+0 1.167489-5 4.697240+0 1.169862-5 4.819958+0 1.172982-5 4.832050+0 1.176374-5 4.676516+0 1.183358-5 4.023805+0 1.189390-5 3.436599+0 1.194666-5 3.097888+0 1.201245-5 2.873593+0 1.216117-5 2.852132+0 1.225245-5 2.986822+0 1.234615-5 3.310574+0 1.243642-5 3.674003+0 1.249661-5 3.727828+0 1.264010-5 3.434622+0 1.274354-5 3.513631+0 1.288828-5 3.664183+0 1.323751-5 3.776451+0 1.349586-5 3.592066+0 1.388961-5 3.777846+0 1.620748-5 5.365209+0 1.870043-5 7.423567+0 2.671151-5 1.507541+1 2.985383-5 1.725238+1 3.276800-5 1.824293+1 3.572024-5 1.823341+1 4.032397-5 1.676293+1 4.621127-5 1.393318+1 4.655250-5 1.432821+1 4.689373-5 1.572738+1 4.723496-5 1.734279+1 4.746244-5 1.725054+1 4.779701-5 1.552188+1 4.802742-5 1.702934+1 4.814525-5 1.898056+1 4.827918-5 2.291588+1 4.841335-5 2.856367+1 4.873312-5 4.460492+1 4.885585-5 4.857205+1 4.898386-5 4.962908+1 4.910277-5 4.764813+1 4.921737-5 4.339988+1 4.954908-5 2.622600+1 4.968140-5 2.079284+1 4.978431-5 1.757645+1 4.991663-5 1.493324+1 5.013716-5 1.207580+1 5.675871-5 9.476749+0 5.716952-5 9.712534+0 5.757388-5 1.061900+1 5.813554-5 1.239068+1 5.841753-5 1.271425+1 6.016558-5 1.207855+1 6.148320-5 1.055860+1 6.167880-5 1.051862+1 6.199749-5 1.218614+1 6.214722-5 1.358197+1 6.229900-5 1.570209+1 6.245077-5 1.854745+1 6.288358-5 2.825244+1 6.306046-5 3.066102+1 6.320697-5 3.119919+1 6.336534-5 3.001493+1 6.352532-5 2.726317+1 6.394130-5 1.763587+1 6.409308-5 1.475841+1 6.424486-5 1.262753+1 6.442693-5 1.101991+1 6.470020-5 9.409501+0 7.157211-5 7.409420+0 7.209749-5 7.809227+0 7.227365-5 8.141960+0 7.256814-5 9.063494+0 7.316545-5 1.121938+1 7.334000-5 1.152708+1 7.368387-5 1.138715+1 7.426969-5 1.035891+1 7.457806-5 1.031241+1 7.525287-5 1.120141+1 7.561197-5 1.107600+1 7.650067-5 8.817999+0 7.686041-5 8.213200+0 7.720694-5 7.825212+0 7.829949-5 7.354633+0 8.125143-5 6.798257+0 8.424928-5 6.673820+0 8.800458-5 6.288196+0 9.441235-5 5.364797+0 1.030736-4 4.432647+0 1.060014-4 4.212268+0 1.082051-4 4.257038+0 1.141232-4 3.786536+0 1.209848-4 3.585753+0 1.280000-4 3.605413+0 1.364583-4 3.910040+0 1.460573-4 4.581100+0 1.558045-4 5.577207+0 1.669168-4 7.046356+0 1.875534-4 1.043755+1 2.200720-4 1.601508+1 2.511886-4 2.042098+1 2.800000-4 2.343808+1 3.111980-4 2.559045+1 3.189729-4 2.700816+1 3.277311-4 2.710648+1 3.344945-4 2.817364+1 4.278985-4 2.893402+1 4.968383-4 2.860187+1 5.191743-4 2.970828+1 6.657902-4 2.705969+1 7.076250-4 2.635246+1 7.336250-4 2.603759+1 9.968794-4 2.055106+1 1.206598-3 1.719384+1 1.462178-3 1.410996+1 1.773169-3 1.140178+1 2.076008-3 9.504110+0 2.093031-3 9.710699+0 2.101884-3 1.029866+1 2.109520-3 1.135613+1 2.117303-3 1.308355+1 2.139475-3 1.978841+1 2.151121-3 2.222529+1 2.165936-3 2.347862+1 2.194588-3 2.449178+1 2.232846-3 2.831308+1 2.261420-3 2.922472+1 2.452266-3 3.073604+1 2.552906-3 2.969799+1 2.598824-3 2.937267+1 2.656182-3 3.186269+1 2.739383-3 3.107495+1 2.984704-3 2.777411+1 3.071622-3 2.802402+1 3.239678-3 2.620826+1 3.340185-3 2.604993+1 3.915862-3 2.088962+1 4.513685-3 1.704525+1 5.128614-3 1.411128+1 5.950196-3 1.129816+1 6.673930-3 9.478274+0 7.546751-3 7.837725+0 8.598226-3 6.388176+0 9.857120-3 5.142840+0 1.123741-2 4.169983+0 1.134890-2 4.199086+0 1.140513-2 4.429262+0 1.144811-2 4.849346+0 1.148975-2 5.520440+0 1.162870-2 8.634149+0 1.168821-2 9.450955+0 1.175246-2 9.795327+0 1.207531-2 9.521575+0 1.306973-2 8.391544+0 1.318257-2 8.650523+0 1.329689-2 9.582143+0 1.342815-2 1.063804+1 1.355392-2 1.086056+1 1.374297-2 1.091906+1 1.402485-2 1.179794+1 1.665036-2 9.133592+0 1.916806-2 7.296354+0 2.166134-2 5.982029+0 2.441684-2 4.909576+0 2.757180-2 4.012265+0 3.109466-2 3.276047+0 3.479005-2 2.707998+0 3.926522-2 2.199671+0 4.434853-2 1.783376+0 4.995366-2 1.450120+0 5.628476-2 1.176673+0 6.329076-2 9.576879-1 7.123877-2 7.769524-1 7.669570-2 6.858525-1 7.713267-2 7.051327-1 7.739660-2 7.518779-1 7.762471-2 8.360242-1 7.779910-2 9.390940-1 7.802044-2 1.128323+0 7.828135-2 1.434514+0 7.903893-2 2.493467+0 7.939176-2 2.829682+0 7.979748-2 3.019895+0 8.064737-2 3.067111+0 9.392291-2 2.410424+0 1.075002-1 1.939060+0 1.222942-1 1.566904+0 1.356119-1 1.318975+0 1.516937-1 1.093343+0 1.709492-1 8.945021-1 1.924753-1 7.334844-1 2.170221-1 6.000347-1 2.429210-1 4.974200-1 2.724802-1 4.121454-1 3.053942-1 3.432407-1 3.428295-1 2.862415-1 3.876044-1 2.373369-1 4.394309-1 1.970961-1 4.962547-1 1.658459-1 5.758542-1 1.355627-1 6.512534-1 1.157770-1 7.367901-1 9.965090-2 8.548206-1 8.404961-2 9.751300-1 7.302587-2 1.173413+0 5.970075-2 1.347258+0 5.111653-2 1.546860+0 4.376662-2 1.776032+0 3.747353-2 2.057881+0 3.177008-2 2.451607+0 2.608646-2 2.814822+0 2.233555-2 3.231848+0 1.912398-2 3.710658+0 1.637420-2 4.260405+0 1.401979-2 4.891600+0 1.200392-2 5.616308+0 1.027791-2 6.458512+0 8.785288-3 7.403736+0 7.534737-3 8.596279+0 6.373658-3 9.760024+0 5.523716-3 1.000000+1 1.143431-2 1 78000 7 0 1.950900+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.796097+1 3.003236-6-7.745440+1 4.431236-6-7.485763+1 4.750957-6-7.111825+1 4.843770-6-6.706376+1 4.876137-6-6.285778+1 4.923608-6-5.511293+1 4.943467-6-5.463437+1 4.958456-6-5.761159+1 4.976278-6-6.527314+1 4.997708-6-7.837609+1 5.022712-6-6.613387+1 5.039393-6-6.249888+1 5.060376-6-6.302247+1 5.132069-6-7.481879+1 5.179607-6-7.835219+1 5.348142-6-6.951492+1 5.403648-6-6.293693+1 5.422205-6-5.789942+1 5.459829-6-4.700319+1 5.477755-6-4.208108+1 5.491095-6-4.056092+1 5.504435-6-4.221978+1 5.513189-6-4.552906+1 5.524419-6-5.225020+1 5.539705-6-6.607687+1 5.551798-6-7.840635+1 5.570614-6-5.767295+1 5.583655-6-4.647924+1 5.594898-6-3.990661+1 5.604929-6-3.654424+1 5.616159-6-3.536136+1 5.631583-6-3.728357+1 5.699938-6-5.687704+1 5.743138-6-6.252894+1 5.831298-6-6.764990+1 6.040212-6-7.219409+1 6.725820-6-7.648834+1 7.292792-6-7.880549+1 7.458027-6-7.840794+1 7.493079-6-7.885176+1 7.580282-6-7.481064+1 7.912375-6-7.964874+1 8.086538-6-7.534462+1 8.190858-6-7.246969+1 8.241831-6-7.617616+1 8.268068-6-7.970842+1 8.331369-6-6.981127+1 8.378562-6-6.791659+1 8.548179-6-7.423342+1 9.097308-6-8.030978+1 9.241165-6-7.685227+1 9.309819-6-8.029240+1 9.396080-6-7.162755+1 9.458240-6-7.099743+1 9.636783-6-7.618290+1 9.876573-6-7.745169+1 1.004160-5-7.744581+1 1.019628-5-7.805693+1 1.036212-5-7.567654+1 1.087372-5-7.859281+1 1.169862-5-7.824237+1 1.194666-5-7.719578+1 1.253713-5-7.820825+1 2.126631-5-8.008263+1 2.875000-5-7.582470+1 3.952677-5-6.608424+1 4.354507-5-6.405958+1 4.600860-5-6.032591+1 4.706434-5-5.654440+1 4.761529-5-5.669724+1 4.783840-5-5.365748+1 4.830261-5-4.479726+1 4.843265-5-4.383089+1 4.856473-5-4.508652+1 4.870716-5-4.980463+1 4.885585-5-5.839652+1 4.892641-5-6.288807+1 4.911445-5-4.991760+1 4.925958-5-4.249525+1 4.938319-5-3.881046+1 4.953254-5-3.761940+1 4.968140-5-3.922967+1 5.026749-5-4.964492+1 5.072245-5-5.305829+1 5.192620-5-5.640696+1 5.705085-5-6.207433+1 5.800761-5-6.313396+1 5.909258-5-6.152397+1 6.094879-5-6.192490+1 6.136315-5-6.109781+1 6.245077-5-5.286936+1 6.271305-5-5.415506+1 6.297548-5-5.930432+1 6.306046-5-6.181237+1 6.349965-5-4.912231+1 6.373457-5-4.570677+1 6.394130-5-4.503356+1 6.503336-5-5.261253+1 6.657890-5-5.546739+1 7.157211-5-5.916072+1 7.284835-5-6.093680+1 7.413147-5-5.768901+1 7.525287-5-5.728758+1 7.628437-5-5.517283+1 8.175230-5-5.759635+1 1.230269-4-6.166164+1 1.778279-4-6.798275+1 2.200720-4-6.792584+1 3.171949-4-5.981082+1 3.763507-4-5.295491+1 4.772112-4-4.530630+1 5.160770-4-4.401111+1 5.575000-4-4.037793+1 6.657902-4-3.505630+1 7.914755-4-3.083165+1 9.374901-4-2.779694+1 1.127076-3-2.581374+1 1.377210-3-2.515066+1 1.631173-3-2.616424+1 1.830479-3-2.847636+1 1.958030-3-3.144706+1 2.030997-3-3.456130+1 2.076008-3-3.814047+1 2.104384-3-4.295354+1 2.123990-3-4.643627+1 2.139475-3-4.619832+1 2.171694-3-4.175258+1 2.217715-3-4.027656+1 2.274443-3-3.510115+1 2.362153-3-3.101361+1 2.530577-3-2.469694+1 2.586862-3-2.406627+1 2.629830-3-2.471937+1 2.656182-3-2.371696+1 2.699131-3-2.109374+1 2.761203-3-1.892629+1 2.866137-3-1.672547+1 2.963663-3-1.563948+1 3.018639-3-1.556466+1 3.116005-3-1.351797+1 3.212463-3-1.248988+1 3.274421-3-1.222273+1 3.365590-3-1.070576+1 3.505739-3-9.247698+0 3.706220-3-7.827619+0 3.994042-3-6.454800+0 4.302789-3-5.498244+0 4.631172-3-4.824971+0 5.009056-3-4.354871+0 5.514006-3-4.050733+0 6.187895-3-3.947897+0 6.973757-3-4.114278+0 7.888123-3-4.513461+0 8.977104-3-5.245790+0 9.857120-3-6.118458+0 1.049487-2-7.079400+0 1.091707-2-8.096050+0 1.117858-2-9.154892+0 1.132458-2-1.022265+1 1.153122-2-1.287496+1 1.159367-2-1.290203+1 1.168821-2-1.175352+1 1.181804-2-1.003390+1 1.193855-2-9.150315+0 1.215868-2-8.275090+0 1.246275-2-7.700436+0 1.279637-2-7.589035+0 1.301712-2-7.924214+0 1.327443-2-9.131635+0 1.335668-2-9.059018+0 1.359649-2-7.729286+0 1.388244-2-7.282075+0 1.414666-2-5.911240+0 1.439425-2-5.069002+0 1.477531-2-4.220197+0 1.534599-2-3.348397+0 1.588969-2-2.750273+0 1.665036-2-2.150365+0 1.737801-2-1.731764+0 1.813166-2-1.409316+0 1.888662-2-1.164807+0 1.976150-2-9.531987-1 2.077678-2-7.831201-1 2.166134-2-6.770957-1 2.257469-2-5.935885-1 2.373418-2-5.302018-1 2.486262-2-4.972515-1 2.616465-2-4.807095-1 2.830577-2-4.910347-1 2.997760-2-5.205796-1 3.479005-2-6.574158-1 5.628476-2-1.408512+0 6.329076-2-1.704051+0 6.861297-2-2.010060+0 7.229453-2-2.334420+0 7.449630-2-2.644203+0 7.605641-2-3.008351+0 7.700564-2-3.415115+0 7.787266-2-4.098449+0 7.835955-2-4.430211+0 7.879618-2-4.433102+0 7.929107-2-4.087624+0 8.014422-2-3.333812+0 8.087058-2-2.929804+0 8.194089-2-2.565289+0 8.356475-2-2.207484+0 8.551204-2-1.915256+0 8.833902-2-1.620594+0 9.134890-2-1.399836+0 9.579627-2-1.175272+0 1.014335-1-9.889608-1 1.075002-1-8.547429-1 1.139021-1-7.572248-1 1.222942-1-6.783474-1 1.356119-1-6.128355-1 1.516937-1-5.844352-1 1.780170-1-5.872614-1 3.288753-1-7.258503-1 4.784633-1-7.957716-1 7.745733-1-8.464639-1 1.947381+0-8.740553-1 5.880996+0-8.809022-1 1.000000+1-8.808302-1 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.127381-3 1.074428-6 1.485249-3 1.135936-6 1.819175-3 1.193600-6 2.201675-3 1.247660-6 2.632764-3 1.298342-6 3.110576-3 1.345855-6 3.632452-3 1.390399-6 4.195075-3 1.432160-6 4.794627-3 1.471310-6 5.431780-3 1.544716-6 6.830575-3 1.608947-6 8.305223-3 1.665149-6 9.822080-3 1.714325-6 1.134644-2 1.832656-6 1.592974-2 1.889132-6 1.864428-2 2.048000-6 2.849065-2 2.139631-6 3.500140-2 2.209513-6 4.098234-2 2.257577-6 4.566336-2 2.304138-6 5.076419-2 2.394351-6 6.227447-2 2.478926-6 7.537492-2 2.558215-6 9.015566-2 2.632548-6 1.066425-1 2.702236-6 1.248419-1 2.767568-6 1.447409-1 2.828817-6 1.663085-1 2.886238-6 1.894962-1 2.940070-6 2.142391-1 2.990537-6 2.404613-1 3.123790-6 3.255823-1 3.201760-6 3.877850-1 3.269984-6 4.529994-1 3.329679-6 5.202742-1 3.381913-6 5.885080-1 3.427618-6 6.566641-1 3.467609-6 7.239264-1 3.502601-6 7.898159-1 3.563838-6 9.217881-1 3.609766-6 1.037186+0 3.644212-6 1.135682+0 3.695880-6 1.305185+0 3.756773-6 1.543270+0 3.802894-6 1.759749+0 3.858238-6 2.070937+0 3.904359-6 2.383389+0 3.932031-6 2.600594+0 3.967039-6 2.913419+0 3.999858-6 3.252163+0 4.030627-6 3.618522+0 4.059472-6 4.014060+0 4.086514-6 4.440100+0 4.111867-6 4.897926+0 4.135634-6 5.388843+0 4.157917-6 5.914164+0 4.178806-6 6.475198+0 4.198390-6 7.073243+0 4.216751-6 7.709592+0 4.233963-6 8.385542+0 4.250100-6 9.102411+0 4.265228-6 9.861557+0 4.279411-6 1.066441+1 4.292707-6 1.151248+1 4.305172-6 1.240732+1 4.316859-6 1.335052+1 4.327814-6 1.434370+1 4.338085-6 1.538863+1 4.347715-6 1.648734+1 4.356742-6 1.764236+1 4.373668-6 2.022529+1 4.388478-6 2.310036+1 4.401438-6 2.630998+1 4.412777-6 2.988654+1 4.422699-6 3.383524+1 4.431380-6 3.812455+1 4.438977-6 4.268808+1 4.445623-6 4.743506+1 4.451439-6 5.226418+1 4.456528-6 5.707617+1 4.464878-6 6.631220+1 4.476810-6 8.282222+1 4.494138-6 1.146910+2 4.503208-6 1.352289+2 4.508737-6 1.489533+2 4.514265-6 1.634779+2 4.525322-6 1.943389+2 4.526704-6 1.983089+2 4.536379-6 2.262481+2 4.540180-6 2.370899+2 4.547436-6 2.570848+2 4.551236-6 2.669931+2 4.554865-6 2.759610+2 4.558493-6 2.843572+2 4.563330-6 2.945079+2 4.567995-6 3.029938+2 4.572314-6 3.095649+2 4.575942-6 3.140413+2 4.581297-6 3.187795+2 4.587776-6 3.213527+2 4.592678-6 3.209153+2 4.599425-6 3.169253+2 4.604799-6 3.109985+2 4.609548-6 3.038307+2 4.614699-6 2.941506+2 4.619879-6 2.826065+2 4.625179-6 2.691553+2 4.630124-6 2.553551+2 4.633728-6 2.446787+2 4.638482-6 2.299793+2 4.642186-6 2.181718+2 4.646947-6 2.027150+2 4.651785-6 1.868981+2 4.656838-6 1.704774+2 4.663533-6 1.492471+2 4.668370-6 1.345013+2 4.669752-6 1.304030+2 4.674935-6 1.155560+2 4.680118-6 1.016208+2 4.691175-6 7.531079+1 4.695429-6 6.649514+1 4.698830-6 5.997576+1 4.702232-6 5.392144+1 4.707069-6 4.609501+1 4.712414-6 3.847939+1 4.717979-6 3.163733+1 4.722769-6 2.657559+1 4.728982-6 2.105265+1 4.743689-6 1.197670+1 4.747881-6 1.024869+1 4.750618-6 9.293278+0 4.752473-6 8.718251+0 4.755469-6 7.905511+0 4.758091-6 7.304677+0 4.760683-6 6.805596+0 4.763234-6 6.400621+0 4.765745-6 6.080605+0 4.768217-6 5.837396+0 4.773083-6 5.551919+0 4.777797-6 5.500112+0 4.786932-6 5.962963+0 4.804058-6 8.634749+0 4.819044-6 1.296238+1 4.847975-6 2.906176+1 4.884805-6 8.133895+1 4.897724-6 1.158391+2 4.903869-6 1.365539+2 4.912651-6 1.717845+2 4.919180-6 2.027009+2 4.926121-6 2.403634+2 4.932335-6 2.784691+2 4.936063-6 3.033713+2 4.942123-6 3.471205+2 4.948183-6 3.948504+2 4.960302-6 5.013426+2 4.961817-6 5.155746+2 4.972422-6 6.196284+2 4.976588-6 6.620807+2 4.984542-6 7.441704+2 4.990696-6 8.074318+2 4.996661-6 8.673300+2 5.002816-6 9.264738+2 5.008781-6 9.800585+2 5.014083-6 1.023687+3 5.018983-6 1.059983+3 5.021658-6 1.077965+3 5.028760-6 1.118718+3 5.034305-6 1.142855+3 5.040765-6 1.161795+3 5.046558-6 1.170012+3 5.050059-6 1.170889+3 5.055459-6 1.166215+3 5.060952-6 1.154103+3 5.063059-6 1.147547+3 5.070137-6 1.118162+3 5.074975-6 1.091978+3 5.078237-6 1.071775+3 5.083014-6 1.038837+3 5.087653-6 1.003456+3 5.093619-6 9.538441+2 5.098921-6 9.066454+2 5.104034-6 8.591045+2 5.111798-6 7.845999+2 5.117858-6 7.257445+2 5.124675-6 6.600736+2 5.129978-6 6.101160+2 5.142097-6 5.021769+2 5.150240-6 4.361057+2 5.154217-6 4.060202+2 5.163307-6 3.429656+2 5.172875-6 2.853255+2 5.202913-6 1.579987+2 5.211853-6 1.331757+2 5.220688-6 1.131507+2 5.229385-6 9.709234+1 5.237947-6 8.419742+1 5.246374-6 7.379960+1 5.254670-6 6.535939+1 5.262836-6 5.844842+1 5.270875-6 5.273171+1 5.278788-6 4.795030+1 5.286577-6 4.390557+1 5.301913-6 3.741050+1 5.316769-6 3.247736+1 5.331161-6 2.860255+1 5.345103-6 2.547808+1 5.358609-6 2.290673+1 5.371694-6 2.075608+1 5.384369-6 1.893339+1 5.400000-6 1.697562+1 5.408544-6 1.601996+1 5.431592-6 1.377290+1 5.453199-6 1.202239+1 5.473456-6 1.062753+1 5.510251-6 8.563039+0 5.558238-6 6.530882+0 5.630548-6 4.385680+0 5.667238-6 3.582296+0 5.694756-6 3.071516+0 5.736032-6 2.423561+0 5.777309-6 1.890592+0 5.791529-6 1.729567+0 5.805749-6 1.578970+0 5.819969-6 1.438188+0 5.834189-6 1.306641+0 5.848409-6 1.183781+0 5.862630-6 1.069091+0 5.876850-6 9.620947-1 5.891070-6 8.623600-1 5.905290-6 7.695009-1 5.919510-6 6.831766-1 5.933730-6 6.030890-1 5.947950-6 5.289807-1 5.962170-6 4.606339-1 5.976390-6 3.978681-1 5.990611-6 3.405353-1 6.004831-6 2.885126-1 6.019051-6 2.416908-1 6.033271-6 1.999627-1 6.047491-6 1.632160-1 6.061711-6 1.313341-1 6.122836-6 4.755882-2 6.176321-6 4.566638-2 6.199720-6 6.728140-2 6.221657-6 1.001491-1 6.242223-6 1.408760-1 6.261504-6 1.851609-1 6.279579-6 2.281730-1 6.304469-6 2.804115-1 6.326840-6 3.099000-1 6.342202-6 3.162366-1 6.343017-6 3.162240-1 6.369170-6 2.975576-1 6.385835-6 2.697303-1 6.405801-6 2.263902-1 6.414858-6 2.052489-1 6.423349-6 1.856216-1 6.431309-6 1.680008-1 6.446234-6 1.389020-1 6.459294-6 1.199338-1 6.470722-6 1.102163-1 6.480720-6 1.083099-1 6.489469-6 1.126499-1 6.504780-6 1.364474-1 6.516263-6 1.705134-1 6.524876-6 2.068976-1 6.537794-6 2.818292-1 6.550713-6 3.853364-1 6.558774-6 4.666890-1 6.566836-6 5.625440-1 6.574898-6 6.743321-1 6.582960-6 8.035384-1 6.590652-6 9.444585-1 6.602811-6 1.205660+0 6.610917-6 1.408227+0 6.619023-6 1.635349+0 6.627129-6 1.888529+0 6.635235-6 2.169198+0 6.651448-6 2.818207+0 6.667660-6 3.591274+0 6.695826-6 5.242312+0 6.703895-6 5.785843+0 6.712916-6 6.427550+0 6.718329-6 6.828274+0 6.741852-6 8.671100+0 6.751320-6 9.435743+0 6.767816-6 1.074256+1 6.775878-6 1.134695+1 6.783574-6 1.188850+1 6.791270-6 1.238503+1 6.796586-6 1.269653+1 6.805308-6 1.314305+1 6.812430-6 1.344164+1 6.817772-6 1.362370+1 6.821779-6 1.373596+1 6.830794-6 1.391215+1 6.835861-6 1.396611+1 6.846686-6 1.398439+1 6.860991-6 1.386407+1 6.873137-6 1.373591+1 6.883286-6 1.371470+1 6.888311-6 1.376698+1 6.891179-6 1.382317+1 6.900555-6 1.418288+1 6.904980-6 1.446987+1 6.907748-6 1.469574+1 6.910343-6 1.494347+1 6.915057-6 1.549198+1 6.919200-6 1.609085+1 6.922841-6 1.671774+1 6.926144-6 1.737554+1 6.929035-6 1.802601+1 6.933777-6 1.925704+1 6.939102-6 2.090429+1 6.943550-6 2.251532+1 6.949269-6 2.493059+1 6.956485-6 2.858382+1 6.965764-6 3.438116+1 6.989438-6 5.568231+1 6.999681-6 6.814046+1 7.008275-6 8.019478+1 7.016868-6 9.371534+1 7.021970-6 1.024228+2 7.028012-6 1.133642+2 7.035128-6 1.270775+2 7.037143-6 1.311108+2 7.052315-6 1.633430+2 7.057854-6 1.757640+2 7.068427-6 2.000579+2 7.074335-6 2.137783+2 7.081384-6 2.300828+2 7.087762-6 2.446036+2 7.094341-6 2.591729+2 7.101214-6 2.737508+2 7.107097-6 2.855521+2 7.114549-6 2.993969+2 7.121061-6 3.103068+2 7.131131-6 3.246359+2 7.138995-6 3.334149+2 7.147123-6 3.400619+2 7.154826-6 3.439654+2 7.160987-6 3.453645+2 7.168907-6 3.449026+2 7.176783-6 3.419603+2 7.189807-6 3.319332+2 7.197989-6 3.226199+2 7.205920-6 3.116385+2 7.214647-6 2.976337+2 7.223106-6 2.824764+2 7.230625-6 2.679799+2 7.237876-6 2.533299+2 7.240293-6 2.483385+2 7.248886-6 2.303125+2 7.257479-6 2.121039+2 7.267147-6 1.917802+2 7.274666-6 1.763249+2 7.291943-6 1.428158+2 7.293783-6 1.394535+2 7.321383-6 9.484326+1 7.329989-6 8.331226+1 7.341249-6 6.994206+1 7.357425-6 5.398012+1 7.387172-6 3.331630+1 7.397971-6 2.810636+1 7.404729-6 2.535219+1 7.411487-6 2.294393+1 7.416686-6 2.130472+1 7.425784-6 1.883450+1 7.432608-6 1.727629+1 7.437726-6 1.625316+1 7.445403-6 1.492456+1 7.453080-6 1.381110+1 7.462032-6 1.274053+1 7.466508-6 1.228328+1 7.470984-6 1.187084+1 7.480423-6 1.112615+1 7.483569-6 1.091000+1 7.501590-6 9.897353+0 7.524116-6 8.947710+0 7.542729-6 8.248258+0 7.551649-6 7.910615+0 7.558339-6 7.651581+0 7.568374-6 7.250978+0 7.578409-6 6.835000+0 7.585051-6 6.551779+0 7.591693-6 6.263272+0 7.605209-6 5.665158+0 7.609714-6 5.464212+0 7.628281-6 4.642801+0 7.645755-6 3.904220+0 7.650842-6 3.699700+0 7.665740-6 3.136007+0 7.684470-6 2.514210+0 7.722223-6 1.583336+0 7.731442-6 1.418280+0 7.740660-6 1.274545+0 7.750025-6 1.148220+0 7.759390-6 1.039440+0 7.768755-6 9.458621-1 7.778120-6 8.652170-1 7.796850-6 7.345276-1 7.801532-6 7.069389-1 7.815580-6 6.335788-1 7.828255-6 5.774123-1 7.835860-6 5.476001-1 7.843775-6 5.194642-1 7.855646-6 4.827590-1 7.861582-6 4.669751-1 7.867518-6 4.530109-1 7.880619-6 4.291801-1 7.887170-6 4.212057-1 7.893721-6 4.160976-1 7.901100-6 4.139966-1 7.913008-6 4.193329-1 7.922652-6 4.320197-1 7.932295-6 4.524920-1 7.950832-6 5.138459-1 7.970263-6 6.072234-1 7.984446-6 6.908139-1 7.996250-6 7.672817-1 8.007897-6 8.460178-1 8.017998-6 9.146410-1 8.030924-6 9.997393-1 8.044759-6 1.083905+0 8.057883-6 1.155185+0 8.071675-6 1.222431+0 8.090633-6 1.315821+0 8.103611-6 1.400114+0 8.116120-6 1.522122+0 8.126050-6 1.668157+0 8.134031-6 1.831987+0 8.141025-6 2.020571+0 8.147839-6 2.254888+0 8.155305-6 2.581652+0 8.160256-6 2.846280+0 8.166220-6 3.223967+0 8.169763-6 3.482628+0 8.173645-6 3.798363+0 8.180439-6 4.441191+0 8.189355-6 5.484424+0 8.209792-6 8.948843+0 8.219467-6 1.123490+1 8.228057-6 1.368290+1 8.237549-6 1.690057+1 8.243875-6 1.937130+1 8.248141-6 2.119495+1 8.255607-6 2.470639+1 8.266807-6 3.077748+1 8.275207-6 3.599275+1 8.283671-6 4.183752+1 8.297005-6 5.224323+1 8.305198-6 5.934100+1 8.322310-6 7.572079+1 8.330704-6 8.440416+1 8.344127-6 9.891013+1 8.352725-6 1.084352+2 8.358693-6 1.150708+2 8.364107-6 1.210636+2 8.372990-6 1.307393+2 8.379790-6 1.379263+2 8.384997-6 1.432468+2 8.392439-6 1.505030+2 8.401502-6 1.586614+2 8.404157-6 1.608884+2 8.414798-6 1.689593+2 8.423545-6 1.744578+2 8.430602-6 1.780697+2 8.439926-6 1.816354+2 8.447696-6 1.835142+2 8.466691-6 1.838295+2 8.472638-6 1.826967+2 8.487416-6 1.774904+2 8.497242-6 1.722940+2 8.505832-6 1.667528+2 8.509932-6 1.638152+2 8.516082-6 1.590921+2 8.522443-6 1.538519+2 8.531714-6 1.456756+2 8.540857-6 1.371308+2 8.543905-6 1.342034+2 8.554045-6 1.242774+2 8.564186-6 1.142144+2 8.575594-6 1.029521+2 8.584467-6 9.437268+1 8.604748-6 7.584009+1 8.611719-6 6.992275+1 8.625029-6 5.938967+1 8.635169-6 5.208470+1 8.646945-6 4.441432+1 8.655380-6 3.946100+1 8.663431-6 3.514891+1 8.676818-6 2.885368+1 8.692826-6 2.268677+1 8.714170-6 1.656440+1 8.735514-6 1.255373+1 8.740850-6 1.184532+1 8.748854-6 1.098543+1 8.752856-6 1.064292+1 8.756857-6 1.035643+1 8.761732-6 1.008083+1 8.764259-6 9.968768+0 8.768681-6 9.821830+0 8.775314-6 9.714825+0 8.781947-6 9.737916+0 8.784642-6 9.782957+0 8.789359-6 9.909536+0 8.796434-6 1.020890+1 8.801741-6 1.051551+1 8.808258-6 1.098298+1 8.815711-6 1.163269+1 8.819268-6 1.198346+1 8.831808-6 1.341083+1 8.857484-6 1.708524+1 8.870840-6 1.927141+1 8.881778-6 2.113511+1 8.889760-6 2.251095+1 8.903236-6 2.481370+1 8.912670-6 2.637441+1 8.922777-6 2.796545+1 8.932885-6 2.944230+1 8.939286-6 3.030547+1 8.950657-6 3.167702+1 8.954447-6 3.208358+1 8.976010-6 3.385406+1 8.986054-6 3.433963+1 9.002114-6 3.464587+1 9.011075-6 3.456562+1 9.019628-6 3.432577+1 9.028182-6 3.393291+1 9.032994-6 3.364773+1 9.041415-6 3.304398+1 9.047731-6 3.250922+1 9.057205-6 3.158749+1 9.066679-6 3.053871+1 9.079537-6 2.894731+1 9.091261-6 2.736653+1 9.098358-6 2.636615+1 9.105385-6 2.535311+1 9.126948-6 2.218448+1 9.148511-6 1.907010+1 9.156829-6 1.791594+1 9.181785-6 1.469263+1 9.196800-6 1.295750+1 9.216186-6 1.096365+1 9.249164-6 8.194159+0 9.276096-6 6.447251+0 9.356892-6 3.174636+0 9.374181-6 2.756110+0 9.385716-6 2.523845+0 9.403032-6 2.245033+0 9.414576-6 2.105906+0 9.426120-6 2.004429+0 9.449207-6 1.914410+0 9.454979-6 1.915113+0 9.472295-6 1.970587+0 9.478067-6 2.006038+0 9.495382-6 2.158340+0 9.504890-6 2.267889+0 9.519809-6 2.469239+0 9.544287-6 2.848558+0 9.560557-6 3.108943+0 9.564645-6 3.172713+0 9.576189-6 3.345093+0 9.587732-6 3.501253+0 9.590618-6 3.537079+0 9.605770-6 3.699608+0 9.613706-6 3.765398+0 9.633908-6 3.864519+0 9.641844-6 3.875115+0 9.656995-6 3.850562+0 9.664333-6 3.818202+0 9.670848-6 3.778896+0 9.681989-6 3.690328+0 9.690415-6 3.607228+0 9.697775-6 3.524801+0 9.710956-6 3.358472+0 9.715696-6 3.294002+0 9.727104-6 3.131916+0 9.743785-6 2.886297+0 9.774637-6 2.450849+0 9.795520-6 2.200737+0 9.802981-6 2.123564+0 9.814171-6 2.020913+0 9.825361-6 1.934236+0 9.842305-6 1.832478+0 9.852412-6 1.787414+0 9.858476-6 1.765417+0 9.870375-6 1.731975+0 9.882273-6 1.709443+0 9.900121-6 1.690800+0 9.938593-6 1.679901+0 9.964770-6 1.672310+0 9.980726-6 1.662597+0 1.000466-5 1.639514+0 1.002859-5 1.607875+0 1.008461-5 1.521639+0 1.011149-5 1.484773+0 1.013644-5 1.457900+0 1.015487-5 1.444401+0 1.017056-5 1.438533+0 1.018759-5 1.439834+0 1.019805-5 1.445673+0 1.020612-5 1.453399+0 1.021395-5 1.464003+0 1.022707-5 1.489922+0 1.023776-5 1.520034+0 1.024795-5 1.557800+0 1.025768-5 1.603448+0 1.026316-5 1.633796+0 1.026924-5 1.671849+0 1.027513-5 1.713437+0 1.028548-5 1.798873+0 1.029435-5 1.885879+0 1.029820-5 1.927985+0 1.030747-5 2.040744+0 1.032160-5 2.247014+0 1.032866-5 2.366996+0 1.033573-5 2.498996+0 1.035165-5 2.843236+0 1.036448-5 3.170138+0 1.040826-5 4.632284+0 1.042608-5 5.370902+0 1.044247-5 6.108832+0 1.045767-5 6.828907+0 1.046844-5 7.351718+0 1.047759-5 7.798615+0 1.048975-5 8.388149+0 1.049781-5 8.771878+0 1.051066-5 9.362715+0 1.051903-5 9.728936+0 1.053002-5 1.018020+1 1.054061-5 1.057730+1 1.054414-5 1.070025+1 1.055616-5 1.107921+1 1.056817-5 1.139195+1 1.058218-5 1.166495+1 1.059308-5 1.180475+1 1.060679-5 1.188741+1 1.062144-5 1.186037+1 1.062791-5 1.181109+1 1.064559-5 1.156548+1 1.065071-5 1.146542+1 1.065969-5 1.126142+1 1.066641-5 1.108577+1 1.067650-5 1.078907+1 1.068660-5 1.045686+1 1.069560-5 1.013477+1 1.070910-5 9.614564+0 1.072260-5 9.061265+0 1.073186-5 8.669129+0 1.074112-5 8.271224+0 1.076026-5 7.446021+0 1.076664-5 7.174046+0 1.079232-5 6.119795+0 1.081376-5 5.313612+0 1.086092-5 3.860386+0 1.088664-5 3.268747+0 1.091236-5 2.813660+0 1.094676-5 2.398669+0 1.096380-5 2.266859+0 1.102162-5 2.136634+0 1.103518-5 2.170759+0 1.104875-5 2.227673+0 1.106895-5 2.352839+0 1.107587-5 2.406302+0 1.110300-5 2.663389+0 1.116404-5 3.444200+0 1.118439-5 3.729512+0 1.120304-5 3.982941+0 1.121194-5 4.097824+0 1.122529-5 4.259434+0 1.123864-5 4.404929+0 1.125221-5 4.532878+0 1.126577-5 4.638020+0 1.127934-5 4.718299+0 1.129290-5 4.772512+0 1.132003-5 4.802558+0 1.132681-5 4.794468+0 1.134716-5 4.736924+0 1.135662-5 4.695192+0 1.137082-5 4.618248+0 1.139590-5 4.453093+0 1.144948-5 4.081463+0 1.145646-5 4.039870+0 1.148280-5 3.909905+0 1.150812-5 3.831114+0 1.152875-5 3.801135+0 1.154845-5 3.798442+0 1.156815-5 3.816612+0 1.159608-5 3.867517+0 1.166528-5 4.032400+0 1.170533-5 4.109118+0 1.174361-5 4.160679+0 1.191349-5 4.309316+0 1.201486-5 4.426579+0 1.217102-5 4.651717+0 1.250672-5 5.186541+0 1.280214-5 5.748614+0 1.362122-5 7.659007+0 1.390000-5 8.432532+0 1.471219-5 1.114191+1 1.543212-5 1.408586+1 1.639266-5 1.883615+1 1.783520-5 2.797840+1 1.888399-5 3.625130+1 1.981602-5 4.487796+1 2.089296-5 5.642456+1 2.264644-5 7.913912+1 2.398833-5 9.990488+1 2.540973-5 1.248739+2 2.661837-5 1.483190+2 2.786121-5 1.740686+2 2.900000-5 1.987864+2 3.000000-5 2.208795+2 3.090295-5 2.408330+2 3.171745-5 2.583953+2 3.224171-5 2.696064+2 3.281043-5 2.814166+2 3.354420-5 2.960749+2 3.409870-5 3.068731+2 3.505093-5 3.241034+2 3.625000-5 3.435473+2 3.730000-5 3.584144+2 3.837500-5 3.710634+2 3.961056-5 3.832022+2 4.035360-5 3.887340+2 4.160826-5 3.959495+2 4.280092-5 4.000113+2 4.380227-5 4.014964+2 4.483713-5 4.016318+2 4.611209-5 3.990543+2 4.702635-5 3.951269+2 4.786608-5 3.899719+2 4.855800-5 3.842593+2 4.929493-5 3.763132+2 4.997931-5 3.669003+2 5.045205-5 3.625535+2 5.058743-5 3.627215+2 5.096315-5 3.690957+2 5.123025-5 3.815325+2 5.141217-5 3.959066+2 5.157138-5 4.138128+2 5.169774-5 4.321959+2 5.182306-5 4.543053+2 5.193970-5 4.782485+2 5.232976-5 5.746632+2 5.247817-5 6.130130+2 5.257777-5 6.375974+2 5.267756-5 6.606263+2 5.278656-5 6.833266+2 5.293881-5 7.095212+2 5.304963-5 7.236182+2 5.312917-5 7.307138+2 5.323813-5 7.358568+2 5.334969-5 7.352176+2 5.339545-5 7.331702+2 5.347021-5 7.276003+2 5.357458-5 7.153964+2 5.363754-5 7.057409+2 5.370926-5 6.929041+2 5.383675-5 6.662202+2 5.396424-5 6.363552+2 5.436942-5 5.427186+2 5.445800-5 5.255596+2 5.457065-5 5.061854+2 5.472676-5 4.838382+2 5.491594-5 4.629977+2 5.523306-5 4.392353+2 5.568267-5 4.183140+2 5.759190-5 3.599842+2 5.785761-5 3.545391+2 5.801703-5 3.528874+2 5.816649-5 3.527655+2 5.829668-5 3.538764+2 5.842699-5 3.560912+2 5.857249-5 3.596873+2 5.915073-5 3.778893+2 5.933323-5 3.821481+2 5.952651-5 3.851270+2 5.978422-5 3.870561+2 6.061408-5 3.891403+2 6.156863-5 3.927547+2 6.249895-5 3.933573+2 6.442557-5 3.902812+2 6.579838-5 3.850364+2 6.703119-5 3.768614+2 6.780410-5 3.682542+2 6.868142-5 3.549701+2 6.901947-5 3.534769+2 6.918849-5 3.550604+2 6.936247-5 3.588494+2 6.953149-5 3.648261+2 6.969557-5 3.727385+2 6.983443-5 3.808290+2 7.018465-5 4.042894+2 7.036110-5 4.158367+2 7.053012-5 4.254051+2 7.069915-5 4.327392+2 7.081271-5 4.361597+2 7.091043-5 4.380696+2 7.103720-5 4.391289+2 7.120622-5 4.382157+2 7.137525-5 4.350493+2 7.154427-5 4.302075+2 7.171748-5 4.241582+2 7.221649-5 4.056199+2 7.261949-5 3.932902+2 7.359476-5 3.737558+2 7.481464-5 3.557513+2 7.510179-5 3.525290+2 7.537270-5 3.502510+2 7.581515-5 3.483881+2 7.638705-5 3.487453+2 7.900038-5 3.545797+2 8.011175-5 3.542709+2 8.374690-5 3.476357+2 8.670000-5 3.392596+2 8.953120-5 3.279051+2 9.110774-5 3.211042+2 9.501825-5 3.092990+2 1.001413-4 2.988389+2 1.053423-4 2.855664+2 1.101363-4 2.701708+2 1.106790-4 2.690282+2 1.121154-4 2.674752+2 1.130573-4 2.658361+2 1.176766-4 2.523041+2 1.203875-4 2.439689+2 1.230269-4 2.357370+2 1.258926-4 2.267055+2 1.282235-4 2.192814+2 1.333522-4 2.029674+2 1.375335-4 1.900092+2 1.453765-4 1.673150+2 1.557816-4 1.418873+2 1.589351-4 1.355365+2 1.625324-4 1.291262+2 1.655554-4 1.244960+2 1.698244-4 1.192091+2 1.745000-4 1.151421+2 1.810131-4 1.127570+2 1.873995-4 1.143625+2 1.905461-4 1.165688+2 1.959539-4 1.227778+2 2.006781-4 1.305559+2 2.038797-4 1.369402+2 2.077407-4 1.460004+2 2.125000-4 1.589584+2 2.187000-4 1.782739+2 2.324127-4 2.290490+2 2.438905-4 2.780059+2 2.511886-4 3.114650+2 2.600160-4 3.535634+2 2.706064-4 4.056182+2 2.799961-4 4.526736+2 2.897583-4 5.014478+2 3.002844-4 5.526159+2 3.115211-4 6.038024+2 3.195301-4 6.362618+2 3.233961-4 6.505466+2 3.265436-4 6.649002+2 3.288308-4 6.794442+2 3.344314-4 7.225380+2 3.372699-4 7.395396+2 3.438695-4 7.705278+2 3.465758-4 7.877833+2 3.507856-4 8.210428+2 3.532969-4 8.387910+2 3.560313-4 8.536647+2 3.612266-4 8.750668+2 3.760000-4 9.329779+2 4.062094-4 1.049284+3 4.308025-4 1.136480+3 4.539901-4 1.209070+3 4.792599-4 1.276961+3 4.986636-4 1.318555+3 5.119390-4 1.337032+3 5.179528-4 1.342485+3 5.217139-4 1.350222+3 5.252748-4 1.363954+3 5.432503-4 1.459680+3 5.511192-4 1.494718+3 5.688529-4 1.550224+3 5.931619-4 1.606146+3 6.158931-4 1.646157+3 6.238521-4 1.663105+3 6.319051-4 1.684483+3 6.538816-4 1.733993+3 6.829599-4 1.781194+3 7.120328-4 1.814786+3 7.366061-4 1.834454+3 7.432937-4 1.847357+3 7.586809-4 1.883509+3 7.899466-4 1.923899+3 8.323625-4 1.963049+3 8.815244-4 1.997463+3 9.406705-4 2.026961+3 1.005952-3 2.048230+3 1.073063-3 2.059146+3 1.139123-3 2.060426+3 1.221524-3 2.051019+3 1.303167-3 2.024556+3 1.383833-3 1.990740+3 1.473692-3 1.946599+3 1.568489-3 1.891269+3 1.654817-3 1.830865+3 1.737916-3 1.759523+3 1.807118-3 1.687964+3 1.872099-3 1.610981+3 1.927525-3 1.535655+3 1.976982-3 1.457876+3 2.016829-3 1.384605+3 2.051453-3 1.310688+3 2.077304-3 1.246665+3 2.101605-3 1.176484+3 2.122252-3 1.105596+3 2.138781-3 1.037003+3 2.152406-3 9.692192+2 2.162453-3 9.127100+2 2.180251-3 8.119681+2 2.185745-3 7.866798+2 2.190300-3 7.701357+2 2.193204-3 7.621953+2 2.195647-3 7.572892+2 2.198371-3 7.538748+2 2.201518-3 7.527734+2 2.205012-3 7.552307+2 2.209420-3 7.638490+2 2.214420-3 7.806758+2 2.218374-3 7.986898+2 2.223064-3 8.244184+2 2.240254-3 9.371767+2 2.245241-3 9.689933+2 2.250410-3 9.994290+2 2.258040-3 1.038857+3 2.265632-3 1.072322+3 2.286332-3 1.156216+3 2.293754-3 1.192150+3 2.300700-3 1.230790+3 2.327964-3 1.412525+3 2.336769-3 1.470125+3 2.346761-3 1.529137+3 2.361216-3 1.601075+3 2.378209-3 1.668951+3 2.404155-3 1.752626+3 2.440029-3 1.850401+3 2.477015-3 1.937712+3 2.515015-3 2.013164+3 2.553654-3 2.074569+3 2.593092-3 2.122052+3 2.626651-3 2.147474+3 2.651391-3 2.153259+3 2.698135-3 2.138786+3 2.709194-3 2.141837+3 2.720725-3 2.154266+3 2.728782-3 2.169546+3 2.744521-3 2.213926+3 2.779037-3 2.337330+3 2.791137-3 2.374529+3 2.807344-3 2.414681+3 2.827928-3 2.452209+3 2.855124-3 2.487254+3 2.876764-3 2.508161+3 2.909019-3 2.531854+3 2.951210-3 2.553404+3 2.994230-3 2.566398+3 3.034933-3 2.569525+3 3.111667-3 2.553400+3 3.130955-3 2.556240+3 3.154076-3 2.571416+3 3.212338-3 2.630990+3 3.235937-3 2.646547+3 3.266667-3 2.657899+3 3.301595-3 2.662443+3 3.380137-3 2.659404+3 3.413498-3 2.672087+3 3.466785-3 2.706473+3 3.495839-3 2.720660+3 3.567334-3 2.738396+3 3.706422-3 2.746302+3 3.797988-3 2.742778+3 3.902119-3 2.731924+3 4.086454-3 2.700588+3 4.401221-3 2.630364+3 4.632718-3 2.572283+3 5.023607-3 2.464835+3 5.506413-3 2.326605+3 5.939774-3 2.207103+3 6.413278-3 2.080552+3 6.948243-3 1.944946+3 7.563973-3 1.799986+3 8.198794-3 1.661114+3 8.550247-3 1.588308+3 8.925344-3 1.513053+3 9.311148-3 1.437964+3 9.602531-3 1.382626+3 9.926519-3 1.321988+3 1.020163-2 1.270346+3 1.046220-2 1.221155+3 1.066350-2 1.182439+3 1.084008-2 1.147436+3 1.100826-2 1.112693+3 1.115027-2 1.081649+3 1.127229-2 1.052908+3 1.137529-2 1.026287+3 1.146608-2 1.000013+3 1.153851-2 9.759777+2 1.159595-2 9.540839+2 1.168079-2 9.165586+2 1.178385-2 8.689091+2 1.182745-2 8.530346+2 1.187060-2 8.428679+2 1.189296-2 8.402762+2 1.191553-2 8.396497+2 1.195771-2 8.437189+2 1.200346-2 8.547642+2 1.209478-2 8.879180+2 1.215071-2 9.085601+2 1.218213-2 9.187903+2 1.223016-2 9.319372+2 1.227892-2 9.421992+2 1.233555-2 9.507773+2 1.240505-2 9.576007+2 1.247886-2 9.617327+2 1.258273-2 9.639342+2 1.268186-2 9.632709+2 1.278064-2 9.605059+2 1.288767-2 9.554969+2 1.301585-2 9.471055+2 1.313523-2 9.369327+2 1.324918-2 9.246797+2 1.333975-2 9.125666+2 1.341794-2 8.998755+2 1.364592-2 8.563634+2 1.371753-2 8.479124+2 1.377842-2 8.456868+2 1.384701-2 8.485077+2 1.405926-2 8.685876+2 1.430954-2 8.782285+2 1.442271-2 8.872760+2 1.464422-2 9.091841+2 1.480438-2 9.178150+2 1.491550-2 9.204252+2 1.518544-2 9.209254+2 1.546057-2 9.167678+2 1.584893-2 9.065575+2 1.649027-2 8.833408+2 1.731482-2 8.480032+2 1.840772-2 7.990152+2 1.954852-2 7.488348+2 2.108932-2 6.855517+2 2.330577-2 6.057633+2 2.603436-2 5.236698+2 2.882897-2 4.549836+2 3.249611-2 3.831281+2 3.532849-2 3.383294+2 3.812608-2 3.007873+2 4.122703-2 2.651275+2 5.025358-2 1.902699+2 5.430055-2 1.665421+2 5.877944-2 1.446822+2 6.358137-2 1.252076+2 6.805553-2 1.098906+2 7.126579-2 1.000911+2 7.373853-2 9.293241+1 7.555249-2 8.769629+1 7.686449-2 8.374165+1 7.787299-2 8.040807+1 7.831477-2 7.877152+1 7.868000-2 7.728363+1 7.931421-2 7.435246+1 8.011976-2 7.048430+1 8.045391-2 6.926619+1 8.069693-2 6.867540+1 8.101395-2 6.834758+1 8.133790-2 6.851943+1 8.179067-2 6.939936+1 8.263249-2 7.155650+1 8.307252-2 7.238844+1 8.361219-2 7.300647+1 8.438858-2 7.333205+1 8.548206-2 7.318856+1 8.662839-2 7.265371+1 8.832890-2 7.151260+1 9.126564-2 6.909136+1 9.411738-2 6.650990+1 9.894152-2 6.208339+1 1.046401-1 5.707954+1 1.111328-1 5.187395+1 1.194807-1 4.598903+1 1.347508-1 3.732842+1 1.593789-1 2.768783+1 2.006033-1 1.824238+1 2.443914-1 1.265549+1 3.088317-1 8.132873+0 4.058990-1 4.812892+0 5.905409-1 2.322610+0 9.262562-1 9.604216-1 1.477239+0 3.817342-1 2.947480+0 9.653163-2 8.901248+0 1.060571-2 2.688134+1 1.163089-3 8.118035+1 1.275325-4 2.451607+2 1.398369-5 7.403736+2 1.533281-6 2.511886+3 1.332060-7 7.943282+3 1.332060-8 2.511886+4 1.332060-9 7.943282+4 1.33206-10 1.000000+5 8.40473-11 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.315100-6 1.258900-6 2.084400-6 1.584900-6 3.303500-6 1.995300-6 5.235600-6 2.511900-6 8.297900-6 3.162300-6 1.315100-5 3.981100-6 2.084300-5 5.011900-6 3.303400-5 6.309600-6 5.235500-5 7.943300-6 8.297600-5 1.000000-5 1.315100-4 1.258900-5 2.084200-4 1.584900-5 3.303200-4 1.995300-5 5.235100-4 2.511900-5 8.296900-4 3.162300-5 1.314700-3 3.981100-5 2.082800-3 5.011900-5 3.299500-3 6.309600-5 5.227400-3 7.943300-5 8.282400-3 1.000000-4 1.311700-2 1.258900-4 2.076700-2 1.584900-4 3.283600-2 1.995300-4 5.188900-2 2.511900-4 8.183700-2 3.162300-4 1.287300-1 3.981100-4 2.016300-1 5.011900-4 3.138200-1 6.309600-4 4.816400-1 7.943300-4 7.255900-1 1.000000-3 1.069400+0 1.258900-3 1.536200+0 1.584900-3 2.147900+0 1.995300-3 2.926300+0 2.511900-3 3.896000+0 3.162300-3 5.078600+0 3.981100-3 6.505900+0 5.011900-3 8.236600+0 6.309600-3 1.031300+1 7.943300-3 1.269200+1 1.000000-2 1.526100+1 1.258900-2 1.788900+1 1.584900-2 2.057000+1 1.995300-2 2.329100+1 2.511900-2 2.597400+1 3.162300-2 2.845000+1 3.981100-2 3.052100+1 5.011900-2 3.205800+1 6.309600-2 3.303400+1 7.943300-2 3.344000+1 1.000000-1 3.329100+1 1.258900-1 3.260100+1 1.584900-1 3.145900+1 1.995300-1 2.996300+1 2.511900-1 2.822200+1 3.162300-1 2.632400+1 3.981100-1 2.434100+1 5.011900-1 2.233300+1 6.309600-1 2.034400+1 7.943300-1 1.840600+1 1.000000+0 1.654100+1 1.258900+0 1.476600+1 1.584900+0 1.309600+1 1.995300+0 1.153700+1 2.511900+0 1.009800+1 3.162300+0 8.782700+0 3.981100+0 7.593200+0 5.011900+0 6.527900+0 6.309600+0 5.582200+0 7.943300+0 4.750900+0 1.000000+1 4.025300+0 1.258900+1 3.396800+0 1.584900+1 2.855800+0 1.995300+1 2.393100+0 2.511900+1 1.999300+0 3.162300+1 1.665700+0 3.981100+1 1.384500+0 5.011900+1 1.148200+0 6.309600+1 9.502700-1 7.943300+1 7.850500-1 1.000000+2 6.474900-1 1.258900+2 5.332200-1 1.584900+2 4.385100-1 1.995300+2 3.601600-1 2.511900+2 2.954700-1 3.162300+2 2.421300-1 3.981100+2 1.982200-1 5.011900+2 1.621200-1 6.309600+2 1.324800-1 7.943300+2 1.081700-1 1.000000+3 8.825600-2 1.258900+3 7.195500-2 1.584900+3 5.862400-2 1.995300+3 4.773200-2 2.511900+3 3.884000-2 3.162300+3 3.158700-2 3.981100+3 2.567400-2 5.011900+3 2.085600-2 6.309600+3 1.693500-2 7.943300+3 1.374400-2 1.000000+4 1.114900-2 1.258900+4 9.040200-3 1.584900+4 7.327200-3 1.995300+4 5.936400-3 2.511900+4 4.807800-3 3.162300+4 3.892200-3 3.981100+4 3.149900-3 5.011900+4 2.548300-3 6.309600+4 2.060900-3 7.943300+4 1.666200-3 1.000000+5 1.346600-3 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159547-4 3.981072-4 3.976752-4 5.011872-4 5.005043-4 6.309573-4 6.298779-4 7.943282-4 7.926336-4 1.000000-3 9.973390-4 1.258925-3 1.254756-3 1.584893-3 1.578374-3 1.995262-3 1.985077-3 2.511886-3 2.495979-3 3.162278-3 3.137433-3 3.981072-3 3.942188-3 5.011872-3 4.951100-3 6.309573-3 6.214423-3 7.943282-3 7.794547-3 1.000000-2 9.769567-3 1.258925-2 1.223328-2 1.584893-2 1.529987-2 1.995262-2 1.910643-2 2.511886-2 2.381794-2 3.162278-2 2.963270-2 3.981072-2 3.678930-2 5.011872-2 4.556674-2 6.309573-2 5.629133-2 7.943282-2 6.933190-2 1.000000-1 8.510877-2 1.258925-1 1.041651-1 1.584893-1 1.270652-1 1.995262-1 1.545403-1 2.511886-1 1.872670-1 3.162278-1 2.262238-1 3.981072-1 2.723913-1 5.011872-1 3.269885-1 6.309573-1 3.914415-1 7.943282-1 4.673276-1 1.000000+0 5.567081-1 1.258925+0 6.621277-1 1.584893+0 7.864160-1 1.995262+0 9.335147-1 2.511886+0 1.108093+0 3.162278+0 1.315817+0 3.981072+0 1.563807+0 5.011872+0 1.860707+0 6.309573+0 2.216958+0 7.943282+0 2.645397+0 1.000000+1 3.162031+0 1.258925+1 3.786238+0 1.584893+1 4.541271+0 1.995262+1 5.456538+0 2.511886+1 6.567347+0 3.162278+1 7.917368+0 3.981072+1 9.559823+0 5.011872+1 1.156061+1 6.309573+1 1.400032+1 7.943282+1 1.697796+1 1.000000+2 2.061536+1 1.258925+2 2.506267+1 1.584893+2 3.050408+1 1.995262+2 3.716762+1 2.511886+2 4.533280+1 3.162278+2 5.534540+1 3.981072+2 6.762987+1 5.011872+2 8.271323+1 6.309573+2 1.012428+2 7.943282+2 1.240190+2 1.000000+3 1.520283+2 1.258925+3 1.864939+2 1.584893+3 2.289154+2 1.995262+3 2.811723+2 2.511886+3 3.455489+2 3.162278+3 4.249335+2 3.981072+3 5.228237+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739835-9 3.981072-5 4.341878-9 5.011872-5 6.881025-9 6.309573-5 1.090533-8 7.943282-5 1.728321-8 1.000000-4 2.738694-8 1.258925-4 4.339688-8 1.584893-4 6.874535-8 1.995262-4 1.089085-7 2.511886-4 1.724795-7 3.162278-4 2.730334-7 3.981072-4 4.320189-7 5.011872-4 6.829788-7 6.309573-4 1.079475-6 7.943282-4 1.694663-6 1.000000-3 2.661030-6 1.258925-3 4.169091-6 1.584893-3 6.519625-6 1.995262-3 1.018532-5 2.511886-3 1.590775-5 3.162278-3 2.484441-5 3.981072-3 3.888419-5 5.011872-3 6.077267-5 6.309573-3 9.515051-5 7.943282-3 1.487351-4 1.000000-2 2.304334-4 1.258925-2 3.559732-4 1.584893-2 5.490591-4 1.995262-2 8.461926-4 2.511886-2 1.300926-3 3.162278-2 1.990077-3 3.981072-2 3.021419-3 5.011872-2 4.551986-3 6.309573-2 6.804408-3 7.943282-2 1.010093-2 1.000000-1 1.489123-2 1.258925-1 2.172743-2 1.584893-1 3.142410-2 1.995262-1 4.498591-2 2.511886-1 6.392162-2 3.162278-1 9.000395-2 3.981072-1 1.257159-1 5.011872-1 1.741987-1 6.309573-1 2.395159-1 7.943282-1 3.270006-1 1.000000+0 4.432919-1 1.258925+0 5.967977-1 1.584893+0 7.984772-1 1.995262+0 1.061748+0 2.511886+0 1.403793+0 3.162278+0 1.846461+0 3.981072+0 2.417265+0 5.011872+0 3.151165+0 6.309573+0 4.092615+0 7.943282+0 5.297885+0 1.000000+1 6.837969+0 1.258925+1 8.803016+0 1.584893+1 1.130766+1 1.995262+1 1.449609+1 2.511886+1 1.855152+1 3.162278+1 2.370541+1 3.981072+1 3.025089+1 5.011872+1 3.855812+1 6.309573+1 4.909541+1 7.943282+1 6.245487+1 1.000000+2 7.938464+1 1.258925+2 1.008299+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058558+2 3.162278+2 2.608824+2 3.981072+2 3.304773+2 5.011872+2 4.184740+2 6.309573+2 5.297145+2 7.943282+2 6.703093+2 1.000000+3 8.479717+2 1.258925+3 1.072432+3 1.584893+3 1.355978+3 1.995262+3 1.714090+3 2.511886+3 2.166338+3 3.162278+3 2.737344+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.300000-6 4.029050+6 8.609938-6 3.505512+6 9.549926-6 2.330811+6 1.046000-5 1.620516+6 1.046000-5 9.761136+6 1.083927-5 9.754319+6 1.135011-5 9.866667+6 1.188502-5 1.009898+7 1.216000-5 1.026131+7 1.216000-5 1.499967+7 1.230269-5 1.510572+7 1.250000-5 1.525562+7 1.260000-5 1.534234+7 1.290000-5 1.563339+7 1.340000-5 1.618392+7 1.380384-5 1.667894+7 1.390000-5 1.680367+7 1.396368-5 1.689077+7 1.445440-5 1.757244+7 1.513561-5 1.859247+7 1.603245-5 2.003533+7 1.737801-5 2.236181+7 1.883649-5 2.505510+7 2.041738-5 2.803148+7 2.089296-5 2.895084+7 2.213095-5 3.130231+7 2.264644-5 3.227836+7 2.350000-5 3.383582+7 2.398833-5 3.473614+7 2.400000-5 3.475710+7 2.483133-5 3.616032+7 2.540973-5 3.714352+7 2.610000-5 3.818431+7 2.660725-5 3.895132+7 2.730000-5 3.984887+7 2.770000-5 4.036699+7 2.786121-5 4.055046+7 2.830000-5 4.101030+7 2.884032-5 4.157501+7 2.900000-5 4.171445+7 2.917427-5 4.185048+7 2.985383-5 4.237869+7 3.000000-5 4.246659+7 3.019952-5 4.256781+7 3.090295-5 4.292267+7 3.126079-5 4.299920+7 3.198895-5 4.315432+7 3.235937-5 4.312118+7 3.300000-5 4.306603+7 3.330000-5 4.295551+7 3.400000-5 4.270370+7 3.427678-5 4.252835+7 3.507519-5 4.203553+7 3.548134-5 4.168325+7 3.610000-5 4.116067+7 3.650000-5 4.072784+7 3.715352-5 4.004110+7 3.730000-5 3.987477+7 3.770000-5 3.937009+7 3.830000-5 3.863531+7 3.850000-5 3.837519+7 3.900000-5 3.767374+7 3.950000-5 3.699421+7 3.981072-5 3.655284+7 4.027170-5 3.586060+7 4.073803-5 3.518173+7 4.120975-5 3.447984+7 4.168694-5 3.374600+7 4.180000-5 3.357569+7 4.265795-5 3.226900+7 4.315191-5 3.151291+7 4.350000-5 3.097339+7 4.415704-5 2.999136+7 4.466836-5 2.922631+7 4.518559-5 2.845314+7 4.570882-5 2.770046+7 4.623810-5 2.694106+7 4.731513-5 2.543791+7 4.800000-5 2.451200+7 4.954502-5 2.253275+7 5.011872-5 2.183319+7 5.188000-5 1.981304+7 5.248075-5 1.916513+7 5.432503-5 1.730952+7 5.495409-5 1.673184+7 5.500000-5 1.668962+7 5.821032-5 1.401132+7 6.137000-5 1.182496+7 6.137000-5 1.455611+7 6.165950-5 1.438822+7 6.185000-5 1.427548+7 6.237348-5 1.395917+7 6.309573-5 1.352291+7 6.400000-5 1.298304+7 6.500000-5 1.240234+7 6.531306-5 1.222316+7 6.606934-5 1.179158+7 6.760830-5 1.095657+7 6.918310-5 1.016551+7 6.950000-5 1.001096+7 7.161434-5 9.039268+6 7.244360-5 8.687167+6 7.328245-5 8.348850+6 7.413102-5 8.014970+6 7.673615-5 7.081565+6 7.762471-5 6.791448+6 7.852356-5 6.507427+6 7.855000-5 6.499303+6 7.855000-5 7.570791+6 7.910000-5 7.438155+6 7.950000-5 7.340752+6 8.020000-5 7.167573+6 8.035261-5 7.128926+6 8.080000-5 7.016040+6 8.150000-5 6.839692+6 8.222426-5 6.656115+6 8.230000-5 6.637302+6 8.345000-5 6.351654+6 8.413951-5 6.184258+6 8.450000-5 6.099275+6 8.511380-5 5.954929+6 8.570000-5 5.819692+6 8.609938-5 5.727796+6 8.730000-5 5.460357+6 8.912509-5 5.076879+6 9.000000-5 4.902368+6 9.120108-5 4.672624+6 9.300000-5 4.345873+6 9.332543-5 4.290294+6 9.339000-5 4.279208+6 9.339000-5 4.497455+6 9.360000-5 4.468299+6 9.390000-5 4.426224+6 9.420000-5 4.384195+6 9.460000-5 4.328394+6 9.500000-5 4.272857+6 9.550000-5 4.203359+6 9.580000-5 4.161873+6 9.600000-5 4.134198+6 9.660509-5 4.050978+6 9.670000-5 4.038066+6 9.737000-5 3.947289+6 9.737000-5 4.085735+6 9.740000-5 4.082467+6 9.750000-5 4.071445+6 9.785000-5 4.032350+6 9.800000-5 4.015605+6 9.810000-5 4.004651+6 9.815000-5 3.999109+6 9.850000-5 3.960215+6 9.885531-5 3.920960+6 9.900000-5 3.905016+6 9.920000-5 3.882766+6 9.945000-5 3.854886+6 1.000000-4 3.794153+6 1.005000-4 3.739198+6 1.007000-4 3.717351+6 1.015000-4 3.630905+6 1.020000-4 3.578061+6 1.023293-4 3.543618+6 1.030000-4 3.473729+6 1.035142-4 3.421260+6 1.040000-4 3.372465+6 1.050000-4 3.274692+6 1.053400-4 3.242186+6 1.059254-4 3.186912+6 1.060000-4 3.179983+6 1.065000-4 3.133335+6 1.071519-4 3.073539+6 1.080000-4 2.999248+6 1.083927-4 2.965199+6 1.096478-4 2.859819+6 1.120000-4 2.676579+6 1.122018-4 2.661633+6 1.135011-4 2.569057+6 1.150000-4 2.468052+6 1.152300-4 2.452976+6 1.152300-4 2.527812+6 1.170000-4 2.413252+6 1.175000-4 2.382785+6 1.175400-4 2.380389+6 1.195000-4 2.269086+6 1.198000-4 2.252943+6 1.210000-4 2.191356+6 1.220000-4 2.142589+6 1.230269-4 2.095959+6 1.244515-4 2.035297+6 1.250000-4 2.013450+6 1.253000-4 2.001918+6 1.260000-4 1.975743+6 1.273503-4 1.928780+6 1.280000-4 1.907608+6 1.288250-4 1.882668+6 1.290000-4 1.877588+6 1.300000-4 1.849991+6 1.303167-4 1.841912+6 1.307700-4 1.830742+6 1.322000-4 1.798355+6 1.330000-4 1.782271+6 1.333521-4 1.775737+6 1.340000-4 1.764150+6 1.348963-4 1.749979+6 1.350000-4 1.748444+6 1.365000-4 1.728954+6 1.373000-4 1.720668+6 1.380384-4 1.714343+6 1.390000-4 1.707063+6 1.396368-4 1.703479+6 1.400000-4 1.701967+6 1.412538-4 1.698156+6 1.415000-4 1.697759+6 1.423000-4 1.697700+6 1.450000-4 1.705105+6 1.462177-4 1.713089+6 1.480000-4 1.727959+6 1.500000-4 1.751107+6 1.513561-4 1.770014+6 1.520000-4 1.779769+6 1.540000-4 1.813994+6 1.548817-4 1.830635+6 1.584893-4 1.908442+6 1.621810-4 2.004003+6 1.635000-4 2.040780+6 1.650000-4 2.085015+6 1.659587-4 2.114587+6 1.678804-4 2.175783+6 1.690000-4 2.213420+6 1.698244-4 2.240976+6 1.705000-4 2.264122+6 1.720000-4 2.317213+6 1.757924-4 2.458898+6 1.760000-4 2.466766+6 1.780000-4 2.544931+6 1.800000-4 2.624818+6 1.820000-4 2.708692+6 1.840772-4 2.795894+6 1.850000-4 2.834891+6 1.880000-4 2.966412+6 1.883649-4 2.982226+6 1.890000-4 3.010050+6 1.900000-4 3.054516+6 1.905461-4 3.079078+6 1.927525-4 3.177904+6 1.930000-4 3.189239+6 1.950000-4 3.278226+6 1.972423-4 3.378265+6 1.990000-4 3.459059+6 2.000000-4 3.503466+6 2.018366-4 3.583422+6 2.020000-4 3.590627+6 2.041738-4 3.687923+6 2.060000-4 3.766794+6 2.065380-4 3.789350+6 2.089296-4 3.891497+6 2.100000-4 3.938004+6 2.113489-4 3.993784+6 2.120000-4 4.019804+6 2.150000-4 4.141304+6 2.162719-4 4.190265+6 2.170000-4 4.218555+6 2.213095-4 4.381043+6 2.220000-4 4.405508+6 2.260000-4 4.541394+6 2.264644-4 4.557358+6 2.280000-4 4.610418+6 2.286400-4 4.630853+6 2.290868-4 4.644272+6 2.317395-4 4.724518+6 2.350000-4 4.824364+6 2.371374-4 4.880398+6 2.380000-4 4.903127+6 2.426610-4 5.026886+6 2.430000-4 5.035282+6 2.454709-4 5.090238+6 2.483133-4 5.153787+6 2.500000-4 5.191660+6 2.511886-4 5.216292+6 2.540973-4 5.269677+6 2.580000-4 5.341502+6 2.600160-4 5.375415+6 2.650000-4 5.447723+6 2.660725-4 5.463286+6 2.691535-4 5.503167+6 2.754229-4 5.570339+6 2.786121-4 5.599416+6 2.818383-4 5.621908+6 2.851018-4 5.644622+6 2.884032-4 5.662374+6 2.951209-4 5.684537+6 2.985383-4 5.690379+6 3.054921-4 5.688209+6 3.100000-4 5.680345+6 3.126079-4 5.671224+6 3.162278-4 5.658779+6 3.210500-4 5.636192+6 3.280000-4 5.593168+6 3.311311-4 5.570376+6 3.349654-4 5.542929+6 3.350000-4 5.542683+6 3.350500-4 5.542248+6 3.350500-4 5.743581+6 3.370000-4 5.722861+6 3.388442-4 5.702866+6 3.427678-4 5.661086+6 3.450000-4 5.635384+6 3.485000-4 5.596817+6 3.507519-4 5.573325+6 3.515000-4 5.564635+6 3.534800-4 5.542664+6 3.534800-4 5.701267+6 3.540000-4 5.693057+6 3.548134-4 5.680678+6 3.550000-4 5.677855+6 3.565000-4 5.656212+6 3.585000-4 5.629656+6 3.589219-4 5.624332+6 3.590000-4 5.623278+6 3.610000-4 5.597195+6 3.615000-4 5.590919+6 3.630781-4 5.571738+6 3.650000-4 5.549238+6 3.655000-4 5.543568+6 3.672823-4 5.524049+6 3.680000-4 5.515506+6 3.700000-4 5.492532+6 3.710000-4 5.481363+6 3.733000-4 5.456614+6 3.758374-4 5.430359+6 3.760000-4 5.428599+6 3.785000-4 5.402224+6 3.801894-4 5.385016+6 3.815000-4 5.371779+6 3.845918-4 5.341576+6 3.850000-4 5.337670+6 3.890451-4 5.296163+6 3.900000-4 5.286539+6 3.935501-4 5.251807+6 3.950000-4 5.236816+6 4.000000-4 5.186924+6 4.027170-4 5.160524+6 4.050000-4 5.138555+6 4.100000-4 5.087222+6 4.120975-4 5.066231+6 4.216965-4 4.966120+6 4.265795-4 4.913259+6 4.315191-4 4.861044+6 4.320000-4 4.855786+6 4.390000-4 4.780213+6 4.430000-4 4.738249+6 4.466836-4 4.698042+6 4.518559-4 4.642622+6 4.550000-4 4.608207+6 4.650000-4 4.502730+6 4.677351-4 4.474689+6 4.700000-4 4.451811+6 4.786301-4 4.362891+6 4.930000-4 4.216330+6 4.954502-4 4.192248+6 5.011872-4 4.134248+6 5.069907-4 4.077554+6 5.080000-4 4.067541+6 5.128614-4 4.019025+6 5.248075-4 3.905315+6 5.308844-4 3.846770+6 5.370318-4 3.789503+6 5.373900-4 3.786223+6 5.373900-4 4.002835+6 5.400000-4 3.978718+6 5.432503-4 3.948266+6 5.450000-4 3.931950+6 5.495409-4 3.889738+6 5.559043-4 3.832212+6 5.650000-4 3.750206+6 5.688529-4 3.716360+6 5.754399-4 3.657742+6 5.888437-4 3.544370+6 5.900000-4 3.534864+6 6.025596-4 3.430264+6 6.100000-4 3.369836+6 6.165950-4 3.316984+6 6.309573-4 3.207516+6 6.362800-4 3.166881+6 6.362800-4 3.210353+6 6.382635-4 3.195466+6 6.456542-4 3.140460+6 6.500000-4 3.108361+6 6.531306-4 3.085633+6 6.606934-4 3.031647+6 6.683439-4 2.978863+6 6.760830-4 2.926548+6 6.839116-4 2.873769+6 6.918310-4 2.821776+6 7.000000-4 2.769012+6 7.079458-4 2.718826+6 7.150000-4 2.675669+6 7.244360-4 2.619431+6 7.350000-4 2.557649+6 7.400000-4 2.529319+6 7.413102-4 2.521905+6 7.474000-4 2.487411+6 7.474000-4 2.539352+6 7.500000-4 2.524769+6 7.585776-4 2.477359+6 7.623500-4 2.456944+6 7.762471-4 2.384314+6 7.800000-4 2.365371+6 7.852356-4 2.338547+6 7.943282-4 2.293225+6 8.222426-4 2.160868+6 8.350000-4 2.104167+6 8.413951-4 2.076447+6 8.511380-4 2.034764+6 8.709636-4 1.953205+6 8.810489-4 1.913436+6 8.912509-4 1.874238+6 9.015711-4 1.835973+6 9.120108-4 1.798639+6 9.225714-4 1.761624+6 9.332543-4 1.724673+6 9.500000-4 1.668814+6 9.549926-4 1.652745+6 9.660509-4 1.618084+6 9.700000-4 1.606003+6 9.850000-4 1.561479+6 9.885531-4 1.551118+6 1.000000-3 1.517666+6 1.011579-3 1.485041+6 1.023293-3 1.453103+6 1.030000-3 1.435330+6 1.047129-3 1.391530+6 1.050000-3 1.384393+6 1.071519-3 1.331843+6 1.083927-3 1.302436+6 1.096478-3 1.273765+6 1.110000-3 1.243941+6 1.122018-3 1.218168+6 1.135011-3 1.191021+6 1.174898-3 1.113624+6 1.188502-3 1.088489+6 1.190000-3 1.085777+6 1.202264-3 1.063947+6 1.216186-3 1.039793+6 1.230269-3 1.016261+6 1.244515-3 9.933250+5 1.270000-3 9.542091+5 1.273503-3 9.489587+5 1.288250-3 9.271624+5 1.303167-3 9.057258+5 1.333521-3 8.644902+5 1.348963-3 8.446437+5 1.364583-3 8.253029+5 1.380384-3 8.062259+5 1.396368-3 7.874557+5 1.400000-3 7.832527+5 1.412538-3 7.689015+5 1.428894-3 7.508037+5 1.445440-3 7.331711+5 1.462177-3 7.159821+5 1.479108-3 6.991343+5 1.500000-3 6.791929+5 1.513561-3 6.666034+5 1.531087-3 6.508467+5 1.548817-3 6.354521+5 1.566751-3 6.202595+5 1.584893-3 6.054543+5 1.603245-3 5.909526+5 1.621810-3 5.768347+5 1.640590-3 5.629523+5 1.698244-3 5.234149+5 1.717908-3 5.107850+5 1.737801-3 4.984051+5 1.757924-3 4.862743+5 1.778279-3 4.743588+5 1.798871-3 4.627585+5 1.800000-3 4.621351+5 1.819701-3 4.514635+5 1.850000-3 4.357605+5 1.883649-3 4.191980+5 1.900000-3 4.114718+5 1.905461-3 4.089376+5 1.949845-3 3.889613+5 1.950000-3 3.888942+5 1.972423-3 3.793208+5 2.018366-3 3.607804+5 2.041738-3 3.518210+5 2.065380-3 3.430733+5 2.089296-3 3.345546+5 2.113489-3 3.261883+5 2.137962-3 3.180141+5 2.162719-3 3.100583+5 2.187762-3 3.022712+5 2.212200-3 2.949132+5 2.212200-3 7.632469+5 2.213095-3 7.627347+5 2.238721-3 7.483059+5 2.264644-3 7.341635+5 2.280000-3 7.259639+5 2.287300-3 7.230406+5 2.300700-3 7.165704+5 2.300700-3 9.239796+5 2.344229-3 9.122840+5 2.356720-3 9.091537+5 2.371374-3 9.056064+5 2.380000-3 9.035809+5 2.389000-3 9.012736+5 2.393000-3 8.999359+5 2.398833-3 8.988645+5 2.400000-3 8.985661+5 2.426610-3 8.919099+5 2.430000-3 8.910904+5 2.450000-3 8.851714+5 2.483133-3 8.741620+5 2.490000-3 8.713433+5 2.500000-3 8.665444+5 2.550000-3 8.402163+5 2.570396-3 8.296286+5 2.581700-3 8.233108+5 2.600160-3 8.123864+5 2.630268-3 7.937150+5 2.634000-3 7.914446+5 2.650000-3 7.810007+5 2.660725-3 7.730970+5 2.691535-3 7.509965+5 2.722701-3 7.295152+5 2.731000-3 7.239309+5 2.734000-3 7.219268+5 2.734000-3 8.351975+5 2.741000-3 8.301842+5 2.741500-3 8.312364+5 2.754229-3 8.221013+5 2.818383-3 7.781985+5 2.851018-3 7.568901+5 2.884032-3 7.360223+5 2.900000-3 7.262140+5 2.917427-3 7.157205+5 2.920000-3 7.142101+5 2.951209-3 6.961077+5 2.985383-3 6.770253+5 3.000000-3 6.690184+5 3.019952-3 6.582893+5 3.054921-3 6.400735+5 3.090295-3 6.223562+5 3.126079-3 6.051454+5 3.144300-3 5.965584+5 3.144300-3 6.330019+5 3.162278-3 6.244964+5 3.198895-3 6.076699+5 3.273407-3 5.752381+5 3.311311-3 5.596239+5 3.349654-3 5.443258+5 3.388442-3 5.294659+5 3.401400-3 5.246315+5 3.401400-3 5.469761+5 3.427678-3 5.371871+5 3.467369-3 5.228774+5 3.507519-3 5.088279+5 3.548134-3 4.951801+5 3.590000-3 4.815418+5 3.630781-3 4.687204+5 3.672823-3 4.559690+5 3.715352-3 4.435794+5 3.758374-3 4.315457+5 3.801894-3 4.198641+5 3.845918-3 4.084337+5 3.890451-3 3.972713+5 3.900000-3 3.949365+5 3.935501-3 3.863816+5 4.000000-3 3.715216+5 4.027170-3 3.655042+5 4.120975-3 3.457782+5 4.216965-3 3.269787+5 4.230000-3 3.245354+5 4.265795-3 3.179468+5 4.315191-3 3.091730+5 4.365158-3 3.006114+5 4.415704-3 2.922925+5 4.466836-3 2.842165+5 4.518559-3 2.763658+5 4.570882-3 2.686845+5 4.623810-3 2.612253+5 4.650000-3 2.576365+5 4.677351-3 2.539617+5 4.731513-3 2.468344+5 4.841724-3 2.332063+5 4.897788-3 2.266638+5 4.900000-3 2.264112+5 4.954502-3 2.202679+5 5.000000-3 2.153110+5 5.011872-3 2.140430+5 5.069907-3 2.079904+5 5.128614-3 2.021180+5 5.188000-3 1.963997+5 5.248075-3 1.908440+5 5.308844-3 1.854545+5 5.370318-3 1.802061+5 5.432503-3 1.751135+5 5.495409-3 1.701734+5 5.559043-3 1.653807+5 5.650000-3 1.588588+5 5.688529-3 1.562018+5 5.821032-3 1.475090+5 5.888437-3 1.433174+5 6.000000-3 1.366682+5 6.095369-3 1.313326+5 6.165950-3 1.275668+5 6.309573-3 1.203735+5 6.382635-3 1.169199+5 6.456542-3 1.135671+5 6.531306-3 1.103042+5 6.606934-3 1.071267+5 6.683439-3 1.040437+5 6.760830-3 1.010392+5 6.839116-3 9.812606+4 7.161434-3 8.732944+4 7.244360-3 8.481953+4 7.328245-3 8.238522+4 7.413102-3 8.000936+4 7.498942-3 7.768736+4 7.500000-3 7.765935+4 7.585776-3 7.541833+4 7.673615-3 7.321871+4 7.762471-3 7.108650+4 8.035261-3 6.507297+4 8.128305-3 6.318964+4 8.222426-3 6.135256+4 8.300000-3 5.989442+4 8.317638-3 5.956963+4 8.413951-3 5.782496+4 8.511380-3 5.613008+4 8.709636-3 5.289286+4 8.810489-3 5.134850+4 8.912509-3 4.985132+4 9.015711-3 4.839942+4 9.120108-3 4.698639+4 9.225714-3 4.561659+4 9.332543-3 4.428592+4 9.440609-3 4.298072+4 9.500000-3 4.228676+4 9.549926-3 4.171383+4 9.772372-3 3.929199+4 9.885531-3 3.813260+4 1.000000-2 3.700906+4 1.023293-2 3.486466+4 1.035142-2 3.384100+4 1.040000-2 3.343354+4 1.047129-2 3.284626+4 1.059254-2 3.187963+4 1.071519-2 3.093833+4 1.080000-2 3.030828+4 1.083927-2 3.002260+4 1.109175-2 2.827470+4 1.122018-2 2.743887+4 1.135011-2 2.662823+4 1.148154-2 2.583970+4 1.161449-2 2.507495+4 1.174898-2 2.433352+4 1.188502-2 2.360881+4 1.192200-2 2.341711+4 1.192200-2 6.001946+4 1.202264-2 5.866277+4 1.216186-2 5.685414+4 1.244515-2 5.340164+4 1.250000-2 5.276691+4 1.258925-2 5.176960+4 1.273503-2 5.019510+4 1.288250-2 4.866885+4 1.303167-2 4.718955+4 1.333521-2 4.436119+4 1.348963-2 4.299516+4 1.350000-2 4.290552+4 1.377600-2 4.060665+4 1.377600-2 5.657344+4 1.380384-2 5.626860+4 1.412538-2 5.290385+4 1.428894-2 5.130897+4 1.433600-2 5.086248+4 1.433600-2 5.879729+4 1.445440-2 5.758969+4 1.450000-2 5.713387+4 1.462177-2 5.594056+4 1.479108-2 5.433971+4 1.500000-2 5.245281+4 1.513561-2 5.126718+4 1.531087-2 4.978871+4 1.566751-2 4.696713+4 1.584893-2 4.561744+4 1.603245-2 4.429287+4 1.621810-2 4.299476+4 1.640590-2 4.173555+4 1.650000-2 4.112378+4 1.659587-2 4.051282+4 1.678804-2 3.932627+4 1.698244-2 3.817524+4 1.737801-2 3.597297+4 1.757924-2 3.492533+4 1.798871-2 3.292348+4 1.800000-2 3.287060+4 1.819701-2 3.195965+4 1.840772-2 3.101646+4 1.862087-2 3.010190+4 1.883649-2 2.921481+4 1.905461-2 2.834962+4 1.927525-2 2.750963+4 1.950000-2 2.668964+4 1.972423-2 2.590443+4 2.000000-2 2.498277+4 2.041738-2 2.366879+4 2.065380-2 2.296316+4 2.089296-2 2.227888+4 2.137962-2 2.097233+4 2.162719-2 2.034871+4 2.213095-2 1.915597+4 2.238721-2 1.858662+4 2.264644-2 1.803381+4 2.290868-2 1.749788+4 2.300000-2 1.731531+4 2.344229-2 1.645933+4 2.371374-2 1.596298+4 2.398833-2 1.548197+4 2.454709-2 1.456380+4 2.483133-2 1.412541+4 2.511886-2 1.370054+4 2.540973-2 1.328876+4 2.570396-2 1.288968+4 2.600160-2 1.250206+4 2.630268-2 1.212633+4 2.660725-2 1.175942+4 2.691535-2 1.140384+4 2.722701-2 1.105922+4 2.786121-2 1.040167+4 2.818383-2 1.008803+4 2.851018-2 9.783779+3 2.884032-2 9.488945+3 2.917427-2 9.201084+3 2.951209-2 8.920111+3 2.985383-2 8.647929+3 3.019952-2 8.383944+3 3.054921-2 8.128215+3 3.090295-2 7.880208+3 3.126079-2 7.639893+3 3.162278-2 7.407078+3 3.198895-2 7.181498+3 3.273407-2 6.751162+3 3.349654-2 6.345725+3 3.388442-2 6.151429+3 3.427678-2 5.963228+3 3.467369-2 5.780925+3 3.589219-2 5.267025+3 3.630781-2 5.106141+3 3.715352-2 4.797630+3 3.758374-2 4.649574+3 3.801894-2 4.506161+3 3.845918-2 4.367118+3 3.935501-2 4.102062+3 4.000000-2 3.924892+3 4.027170-2 3.853443+3 4.073803-2 3.734855+3 4.168694-2 3.508761+3 4.216965-2 3.400582+3 4.315191-2 3.194145+3 4.365158-2 3.095785+3 4.415704-2 3.000521+3 4.466836-2 2.908180+3 4.570882-2 2.730159+3 4.623810-2 2.645365+3 4.677351-2 2.563255+3 4.731513-2 2.483674+3 4.786301-2 2.406620+3 4.841724-2 2.332009+3 5.000000-2 2.135803+3 5.188000-2 1.931105+3 5.248075-2 1.870980+3 5.308844-2 1.812715+3 5.370318-2 1.756286+3 5.432503-2 1.701648+3 5.495409-2 1.648578+3 5.500000-2 1.644795+3 5.559043-2 1.597158+3 5.623413-2 1.547372+3 5.688529-2 1.499169+3 5.754399-2 1.452491+3 5.821032-2 1.407299+3 5.956621-2 1.320703+3 6.237348-2 1.163284+3 6.309573-2 1.126988+3 6.500000-2 1.038451+3 6.531306-2 1.024797+3 6.760830-2 9.318191+2 6.839116-2 9.027018+2 7.079458-2 8.202730+2 7.328245-2 7.454167+2 7.498942-2 6.994142+2 7.585776-2 6.775081+2 7.673615-2 6.562995+2 7.943282-2 5.965868+2 8.035261-2 5.779371+2 8.096000-2 5.660535+2 8.096000-2 2.748034+3 8.128305-2 2.719696+3 8.222426-2 2.639296+3 8.320000-2 2.559388+3 8.413951-2 2.491839+3 8.430000-2 2.480552+3 8.511380-2 2.417346+3 8.650000-2 2.314666+3 8.709636-2 2.275160+3 8.810489-2 2.210476+3 9.015711-2 2.086582+3 9.120108-2 2.024345+3 9.660509-2 1.740029+3 9.772372-2 1.688106+3 1.000000-1 1.588876+3 1.011580-1 1.541963+3 1.023293-1 1.496445+3 1.035142-1 1.452264+3 1.047129-1 1.409389+3 1.071519-1 1.327419+3 1.083927-1 1.288245+3 1.122019-1 1.177553+3 1.148154-1 1.107647+3 1.161449-1 1.074271+3 1.230269-1 9.217684+2 1.273503-1 8.408970+2 1.288250-1 8.155525+2 1.318257-1 7.671313+2 1.364583-1 6.998520+2 1.396368-1 6.583190+2 1.445440-1 6.006066+2 1.462177-1 5.825105+2 1.479108-1 5.649650+2 1.513561-1 5.312322+2 1.584893-1 4.697023+2 1.603245-1 4.554702+2 1.621810-1 4.416684+2 1.659587-1 4.153101+2 1.698244-1 3.905282+2 1.737801-1 3.672303+2 1.757924-1 3.561090+2 1.778279-1 3.453257+2 1.798871-1 3.348691+2 1.800000-1 3.343085+2 1.819701-1 3.247348+2 1.862087-1 3.053872+2 1.905461-1 2.871943+2 1.927525-1 2.785093+2 1.972423-1 2.619205+2 1.995262-1 2.540014+2 2.000000-1 2.524000+2 2.018366-1 2.463228+2 2.089296-1 2.246523+2 2.137962-1 2.112782+2 2.162719-1 2.048932+2 2.187762-1 1.987042+2 2.213095-1 1.927025+2 2.317395-1 1.704686+2 2.344229-1 1.653237+2 2.398833-1 1.555956+2 2.426610-1 1.509487+2 2.454709-1 1.464407+2 2.483133-1 1.420682+2 2.511886-1 1.378264+2 2.540973-1 1.337141+2 2.600160-1 1.258550+2 2.630268-1 1.221027+2 2.660725-1 1.184627+2 2.691535-1 1.149352+2 2.722701-1 1.115131+2 2.754229-1 1.081928+2 2.818383-1 1.018465+2 2.851018-1 9.881482+1 2.884032-1 9.591485+1 2.917427-1 9.310155+1 2.951209-1 9.037085+1 2.985383-1 8.772028+1 3.000000-1 8.661950+1 3.019952-1 8.514767+1 3.054921-1 8.265193+1 3.090295-1 8.022969+1 3.126079-1 7.787851+1 3.162278-1 7.559696+1 3.198895-1 7.338260+1 3.235937-1 7.123335+1 3.273407-1 6.915032+1 3.311311-1 6.712917+1 3.349654-1 6.519756+1 3.388442-1 6.332161+1 3.467369-1 5.973042+1 3.507519-1 5.801297+1 3.548134-1 5.634516+1 3.589219-1 5.472535+1 3.630781-1 5.315212+1 3.672823-1 5.162438+1 3.715352-1 5.014123+1 3.758374-1 4.870127+1 3.801894-1 4.730288+1 3.845918-1 4.594707+1 3.935501-1 4.339512+1 3.981072-1 4.217355+1 4.000000-1 4.168034+1 4.027170-1 4.098652+1 4.073803-1 3.983297+1 4.120975-1 3.871257+1 4.168694-1 3.762369+1 4.265795-1 3.553705+1 4.315191-1 3.453758+1 4.365158-1 3.356668+1 4.415705-1 3.264202+1 4.466836-1 3.174469+1 4.518559-1 3.087258+1 4.570882-1 3.002503+1 4.623810-1 2.920079+1 4.731513-1 2.761959+1 4.786301-1 2.686145+1 4.841724-1 2.612413+1 4.954502-1 2.470970+1 5.011872-1 2.404604+1 5.069907-1 2.340109+1 5.128614-1 2.277501+1 5.188000-1 2.216571+1 5.248075-1 2.157270+1 5.432503-1 1.988734+1 5.559043-1 1.883760+1 5.623413-1 1.833406+1 5.688529-1 1.785481+1 5.754399-1 1.738842+1 5.821032-1 1.693535+1 5.956621-1 1.606436+1 6.025596-1 1.564582+1 6.095369-1 1.523820+1 6.165950-1 1.484120+1 6.237348-1 1.445480+1 6.309573-1 1.407872+1 6.382635-1 1.372130+1 6.456542-1 1.337316+1 6.531306-1 1.303385+1 6.606935-1 1.270406+1 6.683439-1 1.238262+1 6.839117-1 1.176394+1 6.918310-1 1.146667+1 6.998420-1 1.117692+1 7.079458-1 1.090090+1 7.161434-1 1.063171+1 7.244360-1 1.036917+1 7.328245-1 1.011328+1 7.413102-1 9.863698+0 7.498942-1 9.620952+0 7.585776-1 9.384184+0 7.673615-1 9.153423+0 7.762471-1 8.928339+0 7.852356-1 8.708823+0 7.943282-1 8.494709+0 8.035261-1 8.290644+0 8.317638-1 7.707741+0 8.413951-1 7.522815+0 8.511380-1 7.342879+0 8.609938-1 7.167366+0 8.709636-1 6.996086+0 8.912509-1 6.666001+0 9.015711-1 6.506848+0 9.120108-1 6.351495+0 9.225714-1 6.203121+0 9.332543-1 6.058238+0 9.440609-1 5.916947+0 9.549926-1 5.779462+0 9.660509-1 5.645313+0 9.772372-1 5.514279+0 9.885531-1 5.386310+0 1.000000+0 5.261406+0 1.011579+0 5.142807+0 1.022000+0 5.039583+0 1.035142+0 4.913823+0 1.047129+0 4.803252+0 1.059254+0 4.695193+0 1.071519+0 4.589829+0 1.083927+0 4.486884+0 1.096478+0 4.386254+0 1.109175+0 4.287881+0 1.122018+0 4.191804+0 1.135011+0 4.097891+0 1.148154+0 4.006097+0 1.161449+0 3.916361+0 1.174898+0 3.830599+0 1.188502+0 3.746766+0 1.202264+0 3.664815+0 1.216186+0 3.584657+0 1.230269+0 3.506560+0 1.244515+0 3.430164+0 1.273503+0 3.282383+0 1.288250+0 3.210896+0 1.303167+0 3.141006+0 1.318257+0 3.074374+0 1.333521+0 3.009159+0 1.348963+0 2.945372+0 1.364583+0 2.882984+0 1.380384+0 2.821918+0 1.396368+0 2.762354+0 1.412538+0 2.704052+0 1.445440+0 2.591125+0 1.479108+0 2.482949+0 1.513561+0 2.382064+0 1.531087+0 2.333171+0 1.548817+0 2.285314+0 1.566751+0 2.238460+0 1.659587+0 2.018960+0 1.678804+0 1.977720+0 1.698244+0 1.938484+0 1.717908+0 1.900033+0 1.737801+0 1.862388+0 1.757924+0 1.825491+0 1.778279+0 1.789487+0 1.819701+0 1.719593+0 1.840772+0 1.685677+0 1.862087+0 1.652430+0 1.883649+0 1.619845+0 1.905461+0 1.588878+0 1.927525+0 1.558508+0 1.949845+0 1.528759+0 1.972423+0 1.499579+0 2.000000+0 1.465291+0 2.018366+0 1.443146+0 2.065380+0 1.388835+0 2.089296+0 1.362451+0 2.137962+0 1.311186+0 2.162719+0 1.286906+0 2.213095+0 1.239693+0 2.238721+0 1.216766+0 2.264644+0 1.194264+0 2.290868+0 1.172177+0 2.317395+0 1.150584+0 2.344229+0 1.129389+0 2.398833+0 1.088162+0 2.426610+0 1.068117+0 2.483133+0 1.029134+0 2.511886+0 1.010665+0 2.570396+0 9.747190-1 2.600160+0 9.572488-1 2.630268+0 9.400928-1 2.660725+0 9.232440-1 2.691535+0 9.067652-1 2.722701+0 8.905811-1 2.786121+0 8.590738-1 2.818383+0 8.437405-1 2.851018+0 8.286838-1 2.884032+0 8.142959-1 2.951209+0 7.862695-1 3.000000+0 7.669258-1 3.019952+0 7.592423-1 3.054921+0 7.460798-1 3.090295+0 7.332053-1 3.126079+0 7.205530-1 3.162278+0 7.081188-1 3.198895+0 6.958996-1 3.235937+0 6.838930-1 3.311311+0 6.611314-1 3.388442+0 6.391296-1 3.467369+0 6.178854-1 3.507519+0 6.075301-1 3.548134+0 5.973484-1 3.589219+0 5.873789-1 3.630781+0 5.775757-1 3.672823+0 5.679364-1 3.715352+0 5.584579-1 3.758374+0 5.491391-1 3.845918+0 5.314632-1 3.935501+0 5.143583-1 4.027170+0 4.978236-1 4.073803+0 4.897569-1 4.120975+0 4.818211-1 4.168694+0 4.740454-1 4.216965+0 4.663953-1 4.265795+0 4.588688-1 4.315191+0 4.514637-1 4.365158+0 4.441782-1 4.415704+0 4.370114-1 4.518559+0 4.234024-1 4.623810+0 4.102187-1 4.731513+0 3.974606-1 4.786301+0 3.912315-1 4.841724+0 3.851000-1 4.897788+0 3.790901-1 4.954502+0 3.731739-1 5.011872+0 3.673502-1 5.069907+0 3.616174-1 5.128614+0 3.559740-1 5.188000+0 3.504196-1 5.308844+0 3.398571-1 5.432503+0 3.296140-1 5.559043+0 3.196913-1 5.688529+0 3.100678-1 5.754399+0 3.053652-1 5.821032+0 3.007524-1 5.888437+0 2.962092-1 5.956621+0 2.917347-1 6.025596+0 2.873278-1 6.095369+0 2.829875-1 6.165950+0 2.787134-1 6.309573+0 2.705724-1 6.456542+0 2.626700-1 6.531306+0 2.588058-1 6.683439+0 2.512561-1 6.760830+0 2.475643-1 6.839116+0 2.439269-1 6.918310+0 2.403575-1 7.000000+0 2.367722-1 7.079458+0 2.333752-1 7.161434+0 2.299606-1 7.244360+0 2.265958-1 7.328245+0 2.232809-1 7.498942+0 2.169635-1 7.673615+0 2.108254-1 7.762471+0 2.078219-1 8.035261+0 1.990746-1 8.128305+0 1.962415-1 8.317638+0 1.906957-1 8.413951+0 1.879917-1 8.511380+0 1.853261-1 8.609938+0 1.826983-1 8.709636+0 1.801077-1 8.810489+0 1.775539-1 8.912509+0 1.750364-1 9.015711+0 1.725549-1 9.225714+0 1.678132-1 9.440609+0 1.632024-1 9.549926+0 1.609447-1 9.885531+0 1.543646-1 1.000000+1 1.522316-1 1.023293+1 1.480537-1 1.035142+1 1.460157-1 1.047129+1 1.440056-1 1.059254+1 1.420233-1 1.071519+1 1.400684-1 1.083927+1 1.381402-1 1.100000+1 1.357140-1 1.135011+1 1.308028-1 1.174898+1 1.255951-1 1.200000+1 1.225105-1 1.202264+1 1.222393-1 1.230269+1 1.189766-1 1.244515+1 1.173781-1 1.258925+1 1.158012-1 1.273503+1 1.142506-1 1.288250+1 1.127208-1 1.303167+1 1.112115-1 1.333521+1 1.082536-1 1.445440+1 9.869843-2 1.500000+1 9.459353-2 1.531087+1 9.239486-2 1.548817+1 9.118437-2 1.566751+1 8.998988-2 1.584893+1 8.881100-2 1.603245+1 8.765135-2 1.640590+1 8.537722-2 1.698244+1 8.207668-2 1.862087+1 7.406057-2 1.927525+1 7.126087-2 1.949845+1 7.035136-2 1.972423+1 6.945349-2 2.000000+1 6.838678-2 2.018366+1 6.769348-2 2.041738+1 6.683026-2 2.065380+1 6.598018-2 2.089296+1 6.514137-2 2.162719+1 6.268839-2 2.264644+1 5.956126-2 2.454709+1 5.455552-2 2.540973+1 5.254128-2 2.600160+1 5.123996-2 2.630268+1 5.060144-2 2.691535+1 4.934915-2 2.722701+1 4.873471-2 2.786121+1 4.752865-2 2.818383+1 4.693830-2 2.851018+1 4.635531-2 2.884032+1 4.577982-2 2.951209+1 4.465024-2 3.054921+1 4.300807-2 3.311311+1 3.947127-2 3.467369+1 3.758253-2 3.548134+1 3.667236-2 3.589219+1 3.622557-2 3.630781+1 3.578440-2 3.715352+1 3.491837-2 3.801894+1 3.407331-2 3.890451+1 3.324870-2 3.981072+1 3.244557-2 4.027170+1 3.205133-2 4.073803+1 3.166201-2 4.120975+1 3.127743-2 4.265795+1 3.015148-2 4.466836+1 2.871315-2 4.897788+1 2.607784-2 5.188000+1 2.455514-2 5.308844+1 2.397126-2 5.370318+1 2.368455-2 5.432503+1 2.340138-2 5.559043+1 2.284527-2 5.688529+1 2.230239-2 5.821032+1 2.177242-2 5.956621+1 2.125591-2 6.025596+1 2.100228-2 6.095369+1 2.075176-2 6.165950+1 2.050422-2 6.531306+1 1.931015-2 6.918310+1 1.818570-2 7.762471+1 1.615644-2 8.128305+1 1.540966-2 8.317638+1 1.504932-2 8.413951+1 1.487233-2 8.511380+1 1.469747-2 8.609938+1 1.452470-2 8.912509+1 1.401850-2 9.015711+1 1.385371-2 9.225714+1 1.353038-2 9.332543+1 1.337155-2 9.440609+1 1.321464-2 9.549926+1 1.305956-2 1.035142+2 1.202380-2 1.174898+2 1.055969-2 1.548817+2 7.974807-3 1.621810+2 7.610255-3 1.659587+2 7.434277-3 1.678804+2 7.347820-3 1.698244+2 7.262386-3 1.717908+2 7.177960-3 1.778279+2 6.930521-3 1.798871+2 6.849949-3 1.819701+2 6.770394-3 1.840772+2 6.691764-3 1.862087+2 6.614048-3 1.883649+2 6.537248-3 2.000000+2 6.151602-3 2.344229+2 5.236285-3 3.090295+2 3.963305-3 3.235937+2 3.783526-3 3.311311+2 3.696720-3 3.349654+2 3.654067-3 3.388442+2 3.611910-3 3.427678+2 3.570245-3 3.548134+2 3.448110-3 3.589219+2 3.408334-3 3.630781+2 3.369040-3 3.672823+2 3.330201-3 3.715352+2 3.291810-3 3.758374+2 3.253865-3 3.981072+2 3.070602-3 4.677351+2 2.610555-3 6.165950+2 1.978640-3 1.288250+3 9.449198-4 1.318257+3 9.233464-4 1.333521+3 9.127456-4 1.348963+3 9.022664-4 1.364583+3 8.919086-4 1.412538+3 8.615425-4 1.428894+3 8.516524-4 1.445440+3 8.418788-4 1.462177+3 8.322178-4 1.479108+3 8.226675-4 1.496236+3 8.132269-4 1.584893+3 7.676266-4 1.862087+3 6.530972-4 2.454709+3 4.953630-4 1.000000+5 1.213964-5 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.300000-6 8.300000-6 1.046000-5 8.300000-6 1.046000-5 1.010140-5 1.188502-5 1.025299-5 1.216000-5 1.027430-5 1.216000-5 1.086999-5 1.603245-5 1.096674-5 2.660725-5 1.108170-5 4.180000-5 1.118185-5 6.137000-5 1.121201-5 6.137000-5 2.062311-5 6.237348-5 2.109030-5 6.309573-5 2.135307-5 6.400000-5 2.161596-5 6.606934-5 2.205052-5 6.760830-5 2.228398-5 7.161434-5 2.269363-5 7.855000-5 2.313105-5 7.855000-5 3.097445-5 7.950000-5 3.166659-5 8.080000-5 3.243506-5 8.230000-5 3.316204-5 8.450000-5 3.399839-5 8.730000-5 3.485155-5 9.120108-5 3.578174-5 9.339000-5 3.623741-5 9.339000-5 3.901084-5 9.550000-5 4.024566-5 9.737000-5 4.114749-5 9.737000-5 4.305260-5 9.945000-5 4.456447-5 1.030000-4 4.668972-5 1.080000-4 4.923976-5 1.152300-4 5.260565-5 1.152300-4 5.445966-5 1.220000-4 5.761670-5 1.273503-4 6.049739-5 1.330000-4 6.397511-5 1.415000-4 6.988782-5 1.480000-4 7.443439-5 1.540000-4 7.821712-5 1.584893-4 8.067017-5 1.635000-4 8.299891-5 1.698244-4 8.536285-5 1.780000-4 8.762203-5 1.850000-4 8.901233-5 1.950000-4 9.038700-5 2.089296-4 9.153684-5 2.290868-4 9.236965-5 2.660725-4 9.290775-5 3.350500-4 9.299179-5 3.350500-4 9.555273-5 3.534800-4 9.517405-5 3.534800-4 9.729652-5 3.655000-4 9.693486-5 3.850000-4 9.724148-5 4.786301-4 1.012026-4 5.373900-4 1.037935-4 5.373900-4 1.103920-4 6.362800-4 1.152719-4 6.362800-4 1.170757-4 7.474000-4 1.220336-4 7.474000-4 1.253623-4 8.810489-4 1.310416-4 1.050000-3 1.371281-4 1.244515-3 1.428873-4 1.462177-3 1.482365-4 1.737801-3 1.537453-4 2.041738-3 1.586941-4 2.212200-3 1.610832-4 2.212200-3 2.348736-4 2.300700-3 2.364119-4 2.300700-3 2.470246-4 2.490000-3 2.516190-4 2.650000-3 2.530688-4 2.734000-3 2.530613-4 2.734000-3 2.721038-4 3.144300-3 2.746999-4 3.144300-3 2.839420-4 3.401400-3 2.862086-4 3.401400-3 2.951942-4 4.466836-3 3.058084-4 5.821032-3 3.164892-4 7.500000-3 3.268086-4 9.549926-3 3.365301-4 1.192200-2 3.452399-4 1.192200-2 4.404911-4 1.377600-2 4.419494-4 1.377600-2 4.619288-4 1.433600-2 4.623094-4 1.433600-2 4.959179-4 2.000000-2 5.085281-4 2.786121-2 5.210025-4 3.845918-2 5.332737-4 5.248075-2 5.448714-4 7.079458-2 5.555079-4 8.096000-2 5.600403-4 8.096000-2 5.117957-4 2.018366-1 5.150442-4 5.623413-1 5.171001-4 1.000000+5 5.174356-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.300000-6 0.0 3.534800-4 0.0 3.534800-4 1.356201-9 3.550000-4 1.300660-9 3.565000-4 1.254929-9 3.585000-4 1.204315-9 3.610000-4 1.154643-9 3.630781-4 1.121138-9 3.655000-4 1.089638-9 3.680000-4 1.064582-9 3.710000-4 1.043823-9 3.733000-4 1.034023-9 3.760000-4 1.029076-9 3.785000-4 1.029930-9 3.815000-4 1.036900-9 3.850000-4 1.050920-9 3.900000-4 1.079724-9 3.950000-4 1.115364-9 4.027170-4 1.181243-9 4.120975-4 1.274903-9 4.216965-4 1.378078-9 4.518559-4 1.717268-9 4.700000-4 1.929027-9 5.248075-4 2.612878-9 5.373900-4 2.764167-9 5.373900-4 5.323232-9 6.309573-4 6.782202-9 6.362800-4 6.855186-9 6.362800-4 7.987229-9 6.918310-4 8.876419-9 7.474000-4 9.732831-9 7.474000-4 1.135377-8 8.413951-4 1.289494-8 9.015711-4 1.380726-8 9.700000-4 1.480160-8 1.050000-3 1.589831-8 1.135011-3 1.697032-8 1.273503-3 1.857112-8 1.380384-3 1.970139-8 1.500000-3 2.086455-8 1.640590-3 2.212567-8 1.819701-3 2.357753-8 2.041738-3 2.518043-8 2.212200-3 2.629715-8 2.212200-3 2.538217-8 2.300700-3 2.557239-8 2.300700-3 1.326109-5 2.393000-3 1.480331-5 2.400000-3 1.494436-5 2.450000-3 1.583209-5 2.490000-3 1.648387-5 2.570396-3 1.769650-5 2.600160-3 1.801057-5 2.634000-3 1.825685-5 2.650000-3 1.832999-5 2.734000-3 1.829475-5 2.734000-3 1.766346-5 3.144300-3 1.745585-5 3.144300-3 1.927498-5 3.401400-3 1.934327-5 3.401400-3 1.954821-5 4.027170-3 1.971588-5 5.308844-3 1.996265-5 7.762471-3 2.027335-5 1.148154-2 2.058771-5 1.192200-2 2.061048-5 1.192200-2 1.976853-3 1.377600-2 1.962562-3 1.377600-2 2.759820-3 1.433600-2 2.760934-3 1.433600-2 2.874545-3 1.840772-2 2.903313-3 2.722701-2 2.925100-3 4.466836-2 2.932888-3 8.096000-2 2.927566-3 8.096000-2 5.717344-2 9.660509-2 5.762541-2 1.230269-1 5.809942-2 1.800000-1 5.857444-2 3.273407-1 5.895641-2 8.709636-1 5.949738-2 1.603245+1 5.953998-2 1.000000+5 5.953605-2 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.300000-6 0.0 1.046000-5 2.160000-6 1.046000-5 3.585971-7 1.083927-5 6.905445-7 1.135011-5 1.145458-6 1.188502-5 1.632029-6 1.216000-5 1.885701-6 1.216000-5 1.290012-6 1.390000-5 2.978808-6 1.603245-5 5.065710-6 2.350000-5 1.244519-5 4.623810-5 3.504400-5 6.137000-5 5.015799-5 6.137000-5 4.074689-5 6.237348-5 4.128318-5 6.400000-5 4.238404-5 6.606934-5 4.401882-5 6.950000-5 4.700252-5 7.855000-5 5.541895-5 7.855000-5 4.757555-5 8.020000-5 4.809894-5 8.230000-5 4.913796-5 8.511380-5 5.092248-5 8.912509-5 5.381015-5 9.339000-5 5.715259-5 9.339000-5 5.437916-5 9.600000-5 5.549926-5 9.737000-5 5.622251-5 9.737000-5 5.431740-5 9.945000-5 5.488553-5 1.030000-4 5.631028-5 1.083927-4 5.896926-5 1.152300-4 6.262435-5 1.152300-4 6.077034-5 1.220000-4 6.438330-5 1.280000-4 6.712946-5 1.340000-4 6.936196-5 1.480000-4 7.356561-5 1.540000-4 7.578288-5 1.584893-4 7.781913-5 1.635000-4 8.050109-5 1.698244-4 8.446155-5 1.780000-4 9.037797-5 1.850000-4 9.598767-5 1.950000-4 1.046130-4 2.113489-4 1.196697-4 2.380000-4 1.454289-4 3.126079-4 2.195846-4 3.350500-4 2.420582-4 3.350500-4 2.394973-4 3.534800-4 2.583060-4 3.534800-4 2.561821-4 3.785000-4 2.814322-4 5.373900-4 4.335938-4 5.373900-4 4.269927-4 6.362800-4 5.210012-4 6.362800-4 5.191963-4 7.474000-4 6.253566-4 7.474000-4 6.220263-4 1.135011-3 9.952199-4 1.900000-3 1.743449-3 2.212200-3 2.051091-3 2.212200-3 1.977301-3 2.300700-3 2.064262-3 2.300700-3 2.040414-3 2.660725-3 2.389333-3 2.734000-3 2.462644-3 2.734000-3 2.444233-3 3.144300-3 2.852144-3 3.144300-3 2.841083-3 3.401400-3 3.095848-3 3.401400-3 3.086657-3 9.549926-3 9.192953-3 1.192200-2 1.155615-2 1.192200-2 9.504656-3 1.377600-2 1.137149-2 1.377600-2 1.055425-2 1.433600-2 1.111276-2 1.433600-2 1.096554-2 2.722701-2 2.378181-2 8.096000-2 7.747239-2 8.096000-2 2.327477-2 8.413951-2 2.632927-2 8.810489-2 3.018405-2 9.120108-2 3.317241-2 1.161449-1 5.762176-2 1.862087-1 1.270908-1 1.566751+0 1.506690+0 1.000000+5 9.999994+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.096000-2 2.181981+3 8.320000-2 2.034580+3 8.430000-2 1.974514+3 8.650000-2 1.843544+3 9.015711-2 1.666577+3 1.000000-1 1.273728+3 1.122019-1 9.485671+2 1.479108-1 4.584594+2 2.344229-1 1.351135+2 2.851018-1 8.092625+1 3.311311-1 5.506018+1 3.845918-1 3.773944+1 4.365158-1 2.760193+1 4.954502-1 2.034358+1 5.623413-1 1.511268+1 6.309573-1 1.161716+1 6.998420-1 9.232636+0 7.943282-1 7.026799+0 9.120108-1 5.260715+0 1.000000+0 4.359594+0 1.161449+0 3.246002+0 1.303167+0 2.603130+0 1.479108+0 2.057391+0 1.678804+0 1.638706+0 1.883649+0 1.342183+0 2.137962+0 1.086416+0 2.483133+0 8.527058-1 2.851018+0 6.866254-1 3.235937+0 5.666533-1 3.758374+0 4.550048-1 4.415704+0 3.620943-1 5.188000+0 2.903474-1 6.165950+0 2.309359-1 7.328245+0 1.850040-1 9.015711+0 1.429739-1 1.100000+1 1.124500-1 1.333521+1 8.969919-2 1.698244+1 6.800700-2 2.264644+1 4.935010-2 3.054921+1 3.563564-2 4.466836+1 2.379094-2 6.918310+1 1.506807-2 1.174898+2 8.749394-3 2.344229+2 4.338863-3 4.677351+2 2.163130-3 1.862087+3 5.412068-4 1.000000+5 1.006000-5 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.096000-2 4.992800-4 1.000000+5 4.992800-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.096000-2 7.124600-2 1.000000+5 7.124600-2 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.096000-2 9.214720-3 1.000000+5 9.999993+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.433600-2 7.934815+3 1.500000-2 7.358860+3 1.531087-2 7.088152+3 1.603245-2 6.574418+3 1.737801-2 5.680690+3 1.883649-2 4.933875+3 2.000000-2 4.418660+3 2.290868-2 3.415303+3 2.884032-2 2.161370+3 3.273407-2 1.661763+3 3.715352-2 1.272720+3 4.466836-2 8.519118+2 5.188000-2 6.089542+2 5.821032-2 4.680451+2 6.839116-2 3.213866+2 8.128305-2 2.129278+2 9.660509-2 1.399226+2 1.161449-1 8.873221+1 1.445440-1 5.125479+1 2.660725-1 1.090571+1 3.235937-1 6.680750+0 3.801894-1 4.492742+0 4.415705-1 3.130198+0 5.069907-1 2.258407+0 5.754399-1 1.686668+0 6.531306-1 1.268541+0 7.413102-1 9.611914-1 8.413951-1 7.336973-1 9.440609-1 5.784002-1 1.059254+0 4.595733-1 1.216186+0 3.510182-1 1.380384+0 2.761877-1 1.566751+0 2.189867-1 1.757924+0 1.786015-1 1.972423+0 1.467163-1 2.290868+0 1.146895-1 2.660725+0 9.033885-2 3.054921+0 7.300074-2 3.548134+0 5.844688-2 4.120975+0 4.714027-2 4.841724+0 3.767853-2 5.754399+0 2.987777-2 6.839116+0 2.386648-2 8.317638+0 1.865849-2 1.023293+1 1.448636-2 1.258925+1 1.133292-2 1.584893+1 8.690612-3 2.041738+1 6.538870-3 2.786121+1 4.650659-3 3.890451+1 3.253093-3 5.821032+1 2.130196-3 9.015711+1 1.355461-3 1.798871+2 6.702253-4 3.589219+2 3.336180-4 1.428894+3 8.335534-5 1.000000+5 1.188700-6 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.433600-2 7.113500-4 1.000000+5 7.113500-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.433600-2 3.602800-3 1.000000+5 3.602800-3 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.433600-2 1.002185-2 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.377600-2 1.596679+4 1.412538-2 1.497300+4 1.531087-2 1.224100+4 1.819701-2 7.833000+3 2.041738-2 5.760700+3 2.630268-2 2.883900+3 3.349654-2 1.459200+3 4.168694-2 7.771600+2 5.188000-2 4.095900+2 6.500000-2 2.098100+2 8.511380-2 9.355200+1 1.445440-1 1.901276+1 1.819701-1 9.572677+0 2.213095-1 5.381527+0 2.600160-1 3.372778+0 3.019952-1 2.201624+0 3.467369-1 1.496026+0 3.935501-1 1.057273+0 4.466836-1 7.528494-1 5.011872-1 5.568727-1 5.623413-1 4.149765-1 6.237348-1 3.206407-1 6.839117-1 2.566224-1 7.585776-1 2.011159-1 8.511380-1 1.545469-1 9.549926-1 1.194372-1 1.011579+0 1.056311-1 1.109175+0 8.759152-2 1.216186+0 7.318666-2 1.333521+0 6.158137-2 1.548817+0 4.699018-2 1.757924+0 3.754502-2 1.972423+0 3.082947-2 2.290868+0 2.410188-2 2.660725+0 1.898741-2 3.054921+0 1.534539-2 3.548134+0 1.228604-2 4.120975+0 9.909283-3 4.841724+0 7.920313-3 5.754399+0 6.280399-3 6.839116+0 5.016721-3 8.317638+0 3.922079-3 1.023293+1 3.045165-3 1.258925+1 2.382228-3 1.584893+1 1.826815-3 2.065380+1 1.356996-3 2.851018+1 9.535272-4 4.027170+1 6.592557-4 6.025596+1 4.319720-4 9.332543+1 2.750222-4 1.862087+2 1.360361-4 3.715352+2 6.773141-5 1.479108+3 1.692684-5 1.000000+5 2.498700-7 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.377600-2 5.127400-4 1.000000+5 5.127400-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.377600-2 4.787400-3 1.000000+5 4.787400-3 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.377600-2 8.475860-3 1.000000+5 9.999999+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.192200-2 3.660235+4 1.250000-2 3.208516+4 1.333521-2 2.690470+4 1.584893-2 1.665785+4 1.800000-2 1.158032+4 2.300000-2 5.669320+3 2.917427-2 2.779490+3 3.630781-2 1.422100+3 4.466836-2 7.453929+2 5.432503-2 4.014693+2 6.760830-2 1.994066+2 8.810489-2 8.475582+1 1.462177-1 1.636512+1 1.800000-1 8.380550+0 2.162719-1 4.677265+0 2.511886-1 2.928094+0 2.884032-1 1.914680+0 3.273407-1 1.306920+0 3.672823-1 9.301520-1 4.073803-1 6.893077-1 4.518559-1 5.142673-1 5.011872-1 3.863678-1 5.559043-1 2.924534-1 6.165950-1 2.231756-1 6.839117-1 1.716412-1 8.035261-1 1.153894-1 8.709636-1 9.529897-2 9.332543-1 8.144203-2 9.885531-1 7.185840-2 1.071519+0 6.083022-2 1.174898+0 5.068047-2 1.288250+0 4.253697-2 1.445440+0 3.446816-2 1.717908+0 2.533199-2 1.927525+0 2.076736-2 2.213095+0 1.651405-2 2.570396+0 1.298487-2 2.951209+0 1.047493-2 3.388442+0 8.513890-3 3.935501+0 6.851771-3 4.623810+0 5.464727-3 5.432503+0 4.390935-3 6.531306+0 3.447420-3 7.762471+0 2.768404-3 9.549926+0 2.144008-3 1.200000+1 1.631700-3 1.531087+1 1.230703-3 1.972423+1 9.250917-4 2.630268+1 6.740007-4 3.630781+1 4.766077-4 5.432503+1 3.116805-4 8.511380+1 1.957600-4 1.698244+2 9.673408-5 3.388442+2 4.813288-5 1.348963+3 1.202099-5 1.000000+5 1.618400-7 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.192200-2 5.014300-4 1.000000+5 5.014300-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.192200-2 3.228400-3 1.000000+5 3.228400-3 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.192200-2 8.192170-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.401400-3 2.234461+4 3.590000-3 2.109620+4 3.758374-3 1.982363+4 4.027170-3 1.809559+4 4.230000-3 1.692668+4 4.518559-3 1.535913+4 5.688529-3 1.086718+4 6.095369-3 9.728358+3 7.500000-3 6.893620+3 8.317638-3 5.757574+3 9.772372-3 4.323479+3 1.174898-2 3.076436+3 1.333521-2 2.418297+3 1.531087-2 1.850053+3 1.819701-2 1.312214+3 2.162719-2 9.225029+2 2.570396-2 6.429407+2 3.054921-2 4.443593+2 3.589219-2 3.123896+2 4.216965-2 2.180507+2 5.000000-2 1.479905+2 5.956621-2 9.852493+1 7.079458-2 6.546506+1 8.413951-2 4.318954+1 1.023293-1 2.672303+1 1.288250-1 1.506800+1 1.603245-1 8.687698+0 2.511886-1 2.786049+0 3.126079-1 1.611210+0 3.715352-1 1.052658+0 4.315191-1 7.330577-1 4.954502-1 5.286238-1 5.688529-1 3.840699-1 6.382635-1 2.962332-1 7.244360-1 2.242282-1 8.317638-1 1.668528-1 9.332543-1 1.313430-1 1.035142+0 1.066514-1 1.188502+0 8.136165-2 1.348963+0 6.393325-2 1.531087+0 5.062446-2 1.717908+0 4.123215-2 1.927525+0 3.382088-2 2.213095+0 2.690178-2 2.570396+0 2.115200-2 2.951209+0 1.706100-2 3.388442+0 1.386726-2 3.935501+0 1.116049-2 4.623810+0 8.901000-3 5.432503+0 7.151988-3 6.531306+0 5.615273-3 7.762471+0 4.509286-3 9.549926+0 3.492099-3 1.202264+1 2.651935-3 1.531087+1 2.004626-3 1.972423+1 1.506785-3 2.630268+1 1.097875-3 3.589219+1 7.858590-4 5.370318+1 5.138123-4 8.413951+1 3.226499-4 1.678804+2 1.594144-4 3.349654+2 7.931322-5 1.333521+3 1.980733-5 1.000000+5 2.636100-7 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.401400-3 5.061700-4 1.000000+5 5.061700-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.401400-3 2.436000-5 1.000000+5 2.436000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.401400-3 2.870870-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.144300-3 3.644345+4 3.273407-3 3.502177+4 3.630781-3 3.095499+4 3.845918-3 2.873738+4 4.216965-3 2.522961+4 4.623810-3 2.202803+4 4.954502-3 1.980847+4 5.308844-3 1.771687+4 5.650000-3 1.592424+4 6.683439-3 1.180081+4 7.161434-3 1.036512+4 8.317638-3 7.731736+3 9.015711-3 6.566062+3 1.040000-2 4.861740+3 1.135011-2 4.023278+3 1.303167-2 2.955415+3 1.450000-2 2.312220+3 1.650000-2 1.705784+3 1.905461-2 1.203615+3 2.162719-2 8.787985+2 2.454709-2 6.373887+2 2.818383-2 4.457230+2 3.273407-2 3.001039+2 3.801894-2 2.005073+2 4.415704-2 1.330014+2 5.248075-2 8.216737+1 6.237348-2 5.038742+1 7.673615-2 2.778210+1 1.000000-1 1.286868+1 1.798871-1 2.313681+0 2.213095-1 1.270910+0 2.630268-1 7.766567-1 3.054921-1 5.102156-1 3.507519-1 3.485062-1 4.000000-1 2.442376-1 4.518559-1 1.768410-1 5.069907-1 1.312352-1 5.688529-1 9.808106-2 6.309573-1 7.596799-2 6.998420-1 5.923302-2 7.762471-1 4.650129-2 8.709636-1 3.576719-2 9.440609-1 2.996512-2 1.022000+0 2.536359-2 1.122018+0 2.102082-2 1.244515+0 1.720807-2 1.396368+0 1.389260-2 1.659587+0 1.018320-2 1.862087+0 8.332596-3 2.089296+0 6.869081-3 2.426610+0 5.385756-3 2.818383+0 4.255558-3 3.198895+0 3.510041-3 3.715352+0 2.816878-3 4.365158+0 2.240389-3 5.128614+0 1.795481-3 6.095369+0 1.427406-3 7.244360+0 1.142920-3 8.912509+0 8.829240-4 1.083927+1 6.968088-4 1.303167+1 5.610069-4 1.640590+1 4.305849-4 2.162719+1 3.161195-4 2.951209+1 2.252007-4 4.265795+1 1.520721-4 6.531306+1 9.738310-5 1.035142+2 6.063717-5 2.000000+2 3.102100-5 3.981072+2 1.548876-5 1.584893+3 3.872222-6 1.000000+5 6.125500-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.144300-3 4.352300-4 1.000000+5 4.352300-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.144300-3 4.905300-5 1.000000+5 4.905300-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.144300-3 2.660017-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.734000-3 1.132707+5 2.741000-3 1.129033+5 2.741500-3 1.142857+5 2.851018-3 1.076936+5 2.917427-3 1.036709+5 2.985383-3 1.003097+5 3.311311-3 8.505945+4 3.548134-3 7.561590+4 4.120975-3 5.817080+4 4.518559-3 4.916375+4 4.841724-3 4.304550+4 5.821032-3 2.984946+4 6.309573-3 2.523772+4 7.413102-3 1.785928+4 8.128305-3 1.454734+4 9.332543-3 1.061418+4 1.059254-2 7.872210+3 1.174898-2 6.131943+3 1.350000-2 4.347240+3 1.513561-2 3.251614+3 1.698244-2 2.413512+3 1.950000-2 1.673668+3 2.238721-2 1.151370+3 2.570396-2 7.856700+2 2.985383-2 5.149800+2 3.467369-2 3.346923+2 4.027170-2 2.158079+2 4.677351-2 1.381361+2 5.500000-2 8.458520+1 6.531306-2 4.989079+1 8.035261-2 2.617288+1 1.035142-1 1.178525+1 1.698244-1 2.456263+0 2.089296-1 1.282714+0 2.454709-1 7.789479-1 2.818383-1 5.113729-1 3.198895-1 3.500211-1 3.630781-1 2.413722-1 4.073803-1 1.734385-1 4.518559-1 1.296765-1 5.011872-1 9.760943-2 5.559043-1 7.400644-2 6.165950-1 5.652424-2 6.839117-1 4.349971-2 7.585776-1 3.373314-2 8.609938-1 2.489886-2 9.225714-1 2.122493-2 9.772372-1 1.868764-2 1.047129+0 1.616532-2 1.135011+0 1.374337-2 1.244515+0 1.150227-2 1.380384+0 9.497574-3 1.698244+0 6.557523-3 1.905461+0 5.371831-3 2.162719+0 4.350321-3 2.511886+0 3.416490-3 2.884032+0 2.752668-3 3.311311+0 2.234518-3 3.845918+0 1.796303-3 4.518559+0 1.431101-3 5.308844+0 1.148718-3 6.309573+0 9.145343-4 7.498942+0 7.333612-4 9.225714+0 5.672290-4 1.135011+1 4.420894-4 1.445440+1 3.334617-4 1.862087+1 2.502306-4 2.454709+1 1.843629-4 3.311311+1 1.333834-4 4.897788+1 8.812121-5 7.762471+1 5.459235-5 1.548817+2 2.694367-5 3.090295+2 1.339733-5 6.165950+2 6.686070-6 2.454709+3 1.674689-6 1.000000+5 4.105400-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.734000-3 3.934700-4 1.000000+5 3.934700-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.734000-3 1.364000-5 1.000000+5 1.364000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.734000-3 2.326890-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.300700-3 2.074092+5 2.389000-3 2.250596+5 2.393000-3 2.255486+5 2.398833-3 2.271254+5 2.450000-3 2.372917+5 2.490000-3 2.432159+5 2.550000-3 2.475868+5 2.570396-3 2.486329+5 2.581700-3 2.486236+5 2.600160-3 2.477923+5 2.634000-3 2.447098+5 2.650000-3 2.424492+5 2.920000-3 1.887152+5 3.198895-3 1.480836+5 3.548134-3 1.116799+5 3.900000-3 8.573160+4 4.315191-3 6.417315+4 4.900000-3 4.424360+4 5.888437-3 2.537305+4 6.456542-3 1.907267+4 7.500000-3 1.189416+4 8.413951-3 8.208553+3 9.500000-3 5.520080+3 1.109175-2 3.291834+3 1.258925-2 2.140078+3 1.412538-2 1.439126+3 1.640590-2 8.522649+2 1.905461-2 5.005169+2 2.213095-2 2.916398+2 2.600160-2 1.617115+2 3.054921-2 8.898997+1 3.630781-2 4.656842+1 4.415704-2 2.217652+1 5.559043-2 9.187732+0 1.071519-1 7.338458-1 1.318257-1 3.325288-1 1.603245-1 1.586320-1 1.862087-1 9.067484-2 2.187762-1 5.005900-2 2.454709-1 3.297972-2 2.722701-1 2.281507-2 3.235937-1 1.249731-2 3.630781-1 8.429766-3 4.027170-1 5.955888-3 4.466836-1 4.238351-3 4.954502-1 3.038990-3 5.432503-1 2.275577-3 5.956621-1 1.716192-3 6.456542-1 1.351879-3 7.079458-1 1.037136-3 8.035261-1 7.280555-4 8.609938-1 5.985057-4 9.120108-1 5.115437-4 9.549926-1 4.537314-4 1.000000+0 4.049754-4 1.047129+0 3.641038-4 1.096478+0 3.296889-4 1.148154+0 3.003307-4 1.216186+0 2.691144-4 1.318257+0 2.325764-4 1.531087+0 1.796262-4 1.819701+0 1.324359-4 2.018366+0 1.109910-4 2.344229+0 8.684193-5 2.691535+0 6.973451-5 3.090295+0 5.639615-5 3.589219+0 4.517952-5 4.216965+0 3.587260-5 4.954502+0 2.870341-5 5.888437+0 2.278467-5 7.000000+0 1.821200-5 8.511380+0 1.425509-5 1.047129+1 1.107720-5 1.273503+1 8.790294-6 1.603245+1 6.742648-6 2.089296+1 5.010404-6 2.851018+1 3.565858-6 4.027170+1 2.465359-6 6.025596+1 1.615427-6 9.332543+1 1.028473-6 1.840772+2 5.147069-7 3.672823+2 2.562420-7 1.462177+3 6.403227-8 1.000000+5 9.34450-10 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.300700-3 2.836900-4 1.000000+5 2.836900-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.300700-3 5.898800-5 1.000000+5 5.898800-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.300700-3 1.958022-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.212200-3 4.683337+5 2.280000-3 4.501765+5 2.287300-3 4.492146+5 2.380000-3 4.296917+5 2.430000-3 4.185048+5 2.483133-3 4.040062+5 2.500000-3 3.981126+5 2.818383-3 2.908080+5 3.126079-3 2.197229+5 3.467369-3 1.648309+5 3.801894-3 1.268416+5 4.120975-3 1.003700+5 4.677351-3 6.906980+4 5.128614-3 5.216773+4 5.888437-3 3.406612+4 6.531306-3 2.453557+4 7.328245-3 1.696208+4 8.317638-3 1.120323+4 9.332543-3 7.637087+3 1.071519-2 4.781330+3 1.216186-2 3.088442+3 1.380384-2 1.980968+3 1.566751-2 1.262111+3 1.800000-2 7.644300+2 2.065380-2 4.617259+2 2.398833-2 2.647002+2 2.786121-2 1.505973+2 3.198895-2 8.894977+1 3.801894-2 4.571381+1 4.623810-2 2.131800+1 5.623413-2 9.868303+0 1.035142-1 8.803031-1 1.273503-1 3.897885-1 1.513561-1 1.991515-1 1.737801-1 1.170900-1 1.972423-1 7.246380-2 2.213095-1 4.720425-2 2.483133-1 3.098799-2 2.754229-1 2.136807-2 3.054921-1 1.484082-2 3.349654-1 1.080172-2 3.672823-1 7.913974-3 4.027170-1 5.839297-3 4.415705-1 4.341387-3 4.841724-1 3.252793-3 5.248075-1 2.543859-3 5.754399-1 1.935468-3 6.382635-1 1.435198-3 6.918310-1 1.144745-3 7.498942-1 9.191992-4 8.413951-1 6.788651-4 8.912509-1 5.867812-4 9.440609-1 5.105456-4 9.885531-1 4.592959-4 1.047129+0 4.054057-4 1.122018+0 3.518336-4 1.202264+0 3.075291-4 1.318257+0 2.591179-4 1.757924+0 1.554012-4 1.972423+0 1.275422-4 2.290868+0 9.968578-5 2.660725+0 7.852854-5 3.054921+0 6.346638-5 3.548134+0 5.081301-5 4.120975+0 4.098313-5 4.841724+0 3.275753-5 5.754399+0 2.597503-5 6.839116+0 2.074920-5 8.317638+0 1.622150-5 1.023293+1 1.259427-5 1.258925+1 9.852822-6 1.584893+1 7.555526-6 2.041738+1 5.684839-6 2.786121+1 4.043200-6 3.890451+1 2.828277-6 5.821032+1 1.851965-6 9.015711+1 1.178462-6 1.798871+2 5.826911-7 3.589219+2 2.900463-7 1.428894+3 7.246744-8 1.000000+5 1.033500-9 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.212200-3 2.813400-4 1.000000+5 2.813400-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.212200-3 2.480600-8 1.000000+5 2.480600-8 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.212200-3 1.930835-3 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.474000-4 5.194054+4 8.350000-4 4.820340+4 9.700000-4 4.224520+4 1.047129-3 3.934383+4 1.110000-3 3.695520+4 1.333521-3 2.999987+4 1.445440-3 2.716886+4 1.717908-3 2.168313+4 1.900000-3 1.887584+4 2.213095-3 1.515635+4 2.483133-3 1.275700+4 2.900000-3 1.003422+4 3.388442-3 7.813065+3 3.935501-3 6.096449+3 4.570882-3 4.724548+3 5.370318-3 3.563572+3 6.309573-3 2.668927+3 7.500000-3 1.942808+3 8.912509-3 1.405015+3 1.080000-2 9.716400+2 1.303167-2 6.720149+2 1.566751-2 4.644977+2 1.862087-2 3.262144+2 2.238721-2 2.220061+2 2.660725-2 1.536066+2 3.162278-2 1.054979+2 3.758374-2 7.193432+1 4.466836-2 4.868546+1 5.308844-2 3.270622+1 6.309573-2 2.181025+1 7.673615-2 1.366500+1 9.015711-2 9.235333+0 1.122019-1 5.381792+0 1.462177-1 2.774785+0 2.540973-1 6.854295-1 3.162278-1 3.966743-1 3.758374-1 2.593371-1 4.365158-1 1.807268-1 5.011872-1 1.304139-1 5.754399-1 9.481865-2 6.531306-1 7.133222-2 7.413102-1 5.406403-2 8.511380-1 4.028305-2 9.440609-1 3.251206-2 1.059254+0 2.582548-2 1.216186+0 1.972460-2 1.380384+0 1.552066-2 1.566751+0 1.230705-2 1.757924+0 1.003750-2 1.972423+0 8.245401-3 2.290868+0 6.445344-3 2.660725+0 5.076902-3 3.054921+0 4.102578-3 3.548134+0 3.284672-3 4.120975+0 2.649250-3 4.841724+0 2.117497-3 5.754399+0 1.679053-3 6.839116+0 1.341249-3 8.317638+0 1.048587-3 1.023293+1 8.141232-4 1.258925+1 6.368943-4 1.584893+1 4.883949-4 2.041738+1 3.674738-4 2.786121+1 2.613629-4 3.890451+1 1.828191-4 5.821032+1 1.197140-4 9.015711+1 7.617517-5 1.798871+2 3.766592-5 3.589219+2 1.874870-5 1.428894+3 4.684446-6 1.000000+5 6.680500-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.474000-4 2.847700-4 1.000000+5 2.847700-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.474000-4 8.898000-8 1.000000+5 8.898000-8 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.474000-4 4.625410-4 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 6.362800-4 4.347209+4 7.350000-4 4.312675+4 8.413951-4 4.211045+4 8.810489-4 4.152401+4 9.500000-4 4.030500+4 1.030000-3 3.876780+4 1.110000-3 3.714060+4 1.190000-3 3.545360+4 1.273503-3 3.362680+4 1.400000-3 3.096540+4 1.513561-3 2.876457+4 1.640590-3 2.645027+4 1.819701-3 2.353881+4 1.972423-3 2.137620+4 2.162719-3 1.900594+4 2.400000-3 1.652744+4 2.630268-3 1.451646+4 2.951209-3 1.223457+4 3.273407-3 1.041221+4 3.672823-3 8.639023+3 4.120975-3 7.109985+3 4.623810-3 5.809052+3 5.188000-3 4.711850+3 5.821032-3 3.795253+3 6.606934-3 2.968512+3 7.500000-3 2.303040+3 8.511380-3 1.774141+3 9.772372-3 1.323068+3 1.122018-2 9.781524+2 1.273503-2 7.360219+2 1.445440-2 5.499606+2 1.640590-2 4.081211+2 1.862087-2 3.007800+2 2.137962-2 2.139865+2 2.454709-2 1.510852+2 2.818383-2 1.059087+2 3.273407-2 7.152229+1 3.801894-2 4.793848+1 4.466836-2 3.091321+1 5.248075-2 1.978674+1 6.309573-2 1.178852+1 7.673615-2 6.746088+0 9.772372-2 3.356989+0 1.819701-1 5.501296-1 2.000000-1 4.186620-1 2.018366-1 4.086022-1 2.454709-1 2.335793-1 2.884032-1 1.483909-1 3.349654-1 9.805318-2 3.845918-1 6.737428-2 4.365158-1 4.810780-2 4.954502-1 3.461304-2 5.559043-1 2.584518-2 6.165950-1 1.999859-2 6.839117-1 1.557770-2 7.585776-1 1.221484-2 8.609938-1 9.140677-3 9.332543-1 7.648123-3 1.000000+0 6.603211-3 1.096478+0 5.475345-3 1.202264+0 4.573773-3 1.333521+0 3.762942-3 1.531087+0 2.927309-3 1.737801+0 2.337318-3 1.949845+0 1.917978-3 2.238721+0 1.526577-3 2.600160+0 1.201102-3 3.000000+0 9.622500-4 3.467369+0 7.752187-4 4.027170+0 6.245799-4 4.731513+0 4.986831-4 5.559043+0 4.011015-4 6.683439+0 3.152354-4 8.035261+0 2.497673-4 9.885531+0 1.936641-4 1.230269+1 1.492863-4 1.548817+1 1.144127-4 2.000000+1 8.580200-5 2.691535+1 6.191695-5 3.715352+1 4.380771-5 5.559043+1 2.866127-5 8.609938+1 1.822327-5 1.717908+2 9.005982-6 3.427678+2 4.481489-6 1.364583+3 1.119301-6 1.000000+5 1.524400-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 6.362800-4 2.484800-4 1.000000+5 2.484800-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.362800-4 9.045500-8 1.000000+5 9.045500-8 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.362800-4 3.877095-4 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.373900-4 2.166114+5 6.309573-4 2.031875+5 6.760830-4 1.933437+5 7.585776-4 1.755005+5 8.511380-4 1.575375+5 9.332543-4 1.435195+5 1.011579-3 1.315285+5 1.096478-3 1.196576+5 1.244515-3 1.022105+5 1.364583-3 9.051668+4 1.531087-3 7.705662+4 1.698244-3 6.625713+4 1.905461-3 5.555887+4 2.113489-3 4.714055+4 2.400000-3 3.820172+4 2.691535-3 3.137888+4 3.054921-3 2.505199+4 3.427678-3 2.026411+4 3.845918-3 1.628891+4 4.365158-3 1.271434+4 5.000000-3 9.663520+3 5.688529-3 7.385910+3 6.382635-3 5.772678+3 7.161434-3 4.485105+3 8.128305-3 3.374534+3 9.225714-3 2.520641+3 1.047129-2 1.869788+3 1.202264-2 1.338983+3 1.380384-2 9.508823+2 1.566751-2 6.897097+2 1.798871-2 4.819586+2 2.041738-2 3.446705+2 2.344229-2 2.372216+2 2.691535-2 1.620254+2 3.090295-2 1.098568+2 3.589219-2 7.154388+1 4.168694-2 4.623035+1 4.841724-2 2.965499+1 5.688529-2 1.824804+1 6.760830-2 1.076416+1 8.222426-2 5.870345+0 1.047129-1 2.752019+0 1.798871-1 4.998033-1 2.137962-1 2.917937-1 2.600160-1 1.599477-1 2.985383-1 1.053830-1 3.388442-1 7.242738-2 3.801894-1 5.185576-2 4.265795-1 3.739664-2 4.731513-1 2.805296-2 5.248075-1 2.118765-2 5.821032-1 1.611850-2 6.382635-1 1.272431-2 7.079458-1 9.825594-3 7.852356-1 7.645790-3 8.709636-1 5.971232-3 9.332543-1 5.096925-3 9.885531-1 4.493350-3 1.071519+0 3.801432-3 1.161449+0 3.237847-3 1.273503+0 2.715127-3 1.412538+0 2.245537-3 1.717908+0 1.583959-3 1.927525+0 1.298430-3 2.213095+0 1.032434-3 2.570396+0 8.117766-4 2.951209+0 6.548665-4 3.388442+0 5.322727-4 3.935501+0 4.283667-4 4.623810+0 3.416566-4 5.432503+0 2.745210-4 6.456542+0 2.187675-4 7.673615+0 1.755942-4 9.440609+0 1.359336-4 1.174898+1 1.045939-4 1.500000+1 7.877100-5 1.927525+1 5.933968-5 2.540973+1 4.375537-5 3.467369+1 3.129500-5 5.188000+1 2.044711-5 8.128305+1 1.283232-5 1.621810+2 6.337074-6 3.235937+2 3.152172-6 1.288250+3 7.869985-7 1.000000+5 1.011800-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.373900-4 2.257300-4 1.000000+5 2.257300-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.373900-4 5.005400-8 1.000000+5 5.005400-8 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.373900-4 3.116099-4 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 3.534800-4 1.586032+5 3.550000-4 1.514832+5 3.565000-4 1.456000+5 3.585000-4 1.390716+5 3.610000-4 1.325668+5 3.630781-4 1.281345+5 3.655000-4 1.239048+5 3.680000-4 1.204428+5 3.710000-4 1.173632+5 3.733000-4 1.157364+5 3.758374-4 1.146216+5 3.785000-4 1.141292+5 3.815000-4 1.142540+5 3.850000-4 1.150636+5 3.900000-4 1.170848+5 3.950000-4 1.198120+5 4.027170-4 1.250402+5 4.265795-4 1.445013+5 4.390000-4 1.542384+5 4.550000-4 1.658540+5 4.786301-4 1.822090+5 4.954502-4 1.932585+5 5.080000-4 2.006500+5 5.248075-4 2.093108+5 5.432503-4 2.171803+5 5.650000-4 2.246000+5 5.888437-4 2.308613+5 6.100000-4 2.349496+5 6.309573-4 2.376090+5 6.531306-4 2.390266+5 6.839116-4 2.391967+5 7.150000-4 2.376212+5 7.500000-4 2.341036+5 7.943282-4 2.280271+5 8.350000-4 2.214208+5 8.810489-4 2.129974+5 9.332543-4 2.026723+5 9.885531-4 1.915521+5 1.050000-3 1.794628+5 1.110000-3 1.680024+5 1.174898-3 1.561522+5 1.270000-3 1.401732+5 1.364583-3 1.260005+5 1.462177-3 1.129185+5 1.584893-3 9.866144+4 1.698244-3 8.738146+4 1.850000-3 7.458480+4 2.018366-3 6.302867+4 2.187762-3 5.354609+4 2.400000-3 4.408160+4 2.630268-3 3.607031+4 2.884032-3 2.927736+4 3.162278-3 2.358634+4 3.467369-3 1.887679+4 3.845918-3 1.457713+4 4.216965-3 1.150520+4 4.650000-3 8.892760+3 5.188000-3 6.611730+3 5.821032-3 4.799878+3 6.531306-3 3.454933+3 7.328245-3 2.466636+3 8.300000-3 1.698096+3 9.332543-3 1.185017+3 1.035142-2 8.568576+2 1.161449-2 5.936095+2 1.303167-2 4.083746+2 1.479108-2 2.685360+2 1.678804-2 1.751970+2 1.905461-2 1.134598+2 2.162719-2 7.296463+1 2.483133-2 4.474265+1 2.884032-2 2.613124+1 3.349654-2 1.514677+1 3.935501-2 8.356889+0 4.731513-2 4.201355+0 5.821032-2 1.922803+0 1.161449-1 1.387851-1 1.445440-1 6.078019-2 1.737801-1 3.054887-2 2.018366-1 1.759483-2 2.317395-1 1.066002-2 2.630268-1 6.782586-3 2.985383-1 4.347923-3 3.349654-1 2.921425-3 3.758374-1 1.977710-3 4.168694-1 1.401924-3 4.623810-1 1.001010-3 5.069907-1 7.469529-4 5.559043-1 5.611334-4 6.025596-1 4.394708-4 6.606935-1 3.350375-4 7.244360-1 2.573183-4 8.035261-1 1.927042-4 8.609938-1 1.585923-4 9.120108-1 1.356936-4 9.549926-1 1.204611-4 1.000000+0 1.076024-4 1.047129+0 9.680407-5 1.096478+0 8.768492-5 1.161449+0 7.810917-5 1.230269+0 7.007252-5 1.333521+0 6.059681-5 1.479108+0 5.069337-5 1.862087+0 3.381558-5 2.065380+0 2.839223-5 2.398833+0 2.224547-5 2.786121+0 1.756543-5 3.162278+0 1.447911-5 3.672823+0 1.161286-5 4.315191+0 9.231037-6 5.069907+0 7.394000-6 6.025596+0 5.875210-6 7.161434+0 4.702023-6 8.810489+0 3.630732-6 1.071519+1 2.864261-6 1.288250+1 2.305180-6 1.603245+1 1.792068-6 2.089296+1 1.331650-6 2.851018+1 9.477197-7 4.027170+1 6.552347-7 6.025596+1 4.293338-7 9.332543+1 2.733409-7 1.862087+2 1.352087-7 3.715352+2 6.731799-8 1.479108+3 1.682342-8 1.000000+5 2.48350-10 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 3.534800-4 1.714700-4 1.000000+5 1.714700-4 1 79000 7 7 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.534800-4 4.875100-8 1.000000+5 4.875100-8 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.534800-4 1.819612-4 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 3.350500-4 2.013324+5 3.370000-4 1.974846+5 3.450000-4 1.801362+5 3.485000-4 1.741494+5 3.515000-4 1.704210+5 3.540000-4 1.684770+5 3.565000-4 1.676340+5 3.590000-4 1.678122+5 3.615000-4 1.688448+5 3.650000-4 1.713486+5 3.700000-4 1.763148+5 3.760000-4 1.836690+5 3.845918-4 1.961681+5 4.027170-4 2.261648+5 4.120975-4 2.411836+5 4.216965-4 2.553170+5 4.320000-4 2.692362+5 4.466836-4 2.876225+5 4.650000-4 3.091380+5 4.786301-4 3.237180+5 4.930000-4 3.372696+5 5.080000-4 3.492732+5 5.248075-4 3.601997+5 5.450000-4 3.704046+5 5.688529-4 3.792388+5 5.900000-4 3.845334+5 6.100000-4 3.874368+5 6.382635-4 3.883104+5 6.683439-4 3.861970+5 7.000000-4 3.810852+5 7.400000-4 3.718692+5 7.800000-4 3.607926+5 8.222426-4 3.476347+5 8.709636-4 3.311347+5 9.225714-4 3.131037+5 9.885531-4 2.905161+5 1.050000-3 2.703126+5 1.122018-3 2.478223+5 1.202264-3 2.248697+5 1.288250-3 2.027080+5 1.380384-3 1.815637+5 1.500000-3 1.578156+5 1.621810-3 1.373366+5 1.757924-3 1.181624+5 1.905461-3 1.009728+5 2.089296-3 8.371124+4 2.264644-3 7.056628+4 2.483133-3 5.763948+4 2.722701-3 4.671886+4 3.000000-3 3.716640+4 3.311311-3 2.920905+4 3.630781-3 2.316728+4 4.000000-3 1.803768+4 4.466836-3 1.344534+4 5.011872-3 9.805498+3 5.559043-3 7.323201+3 6.095369-3 5.616616+3 6.683439-3 4.284711+3 7.413102-3 3.140016+3 8.222426-3 2.286211+3 9.225714-3 1.595236+3 1.023293-2 1.146040+3 1.148154-2 7.880325+2 1.288250-2 5.382071+2 1.445440-2 3.650938+2 1.621810-2 2.459066+2 1.840772-2 1.580552+2 2.089296-2 1.008368+2 2.371374-2 6.386158+1 2.722701-2 3.850903+1 3.126079-2 2.305392+1 3.630781-2 1.312610+1 4.315191-2 6.797866+0 5.188000-2 3.342498+0 6.531306-2 1.363581+0 1.230269-1 1.140439-1 1.462177-1 5.835890-2 1.698244-1 3.289550-2 1.927525-1 2.039323-2 2.162719-1 1.329478-2 2.426610-1 8.730709-3 2.691535-1 6.020447-3 3.000000-1 4.110140-3 3.311311-1 2.924434-3 3.630781-1 2.143299-3 3.981072-1 1.581857-3 4.365158-1 1.176720-3 4.786301-1 8.819423-4 5.248075-1 6.659343-4 5.688529-1 5.241013-4 6.165950-1 4.151215-4 6.683439-1 3.310299-4 7.244360-1 2.657277-4 7.852356-1 2.147354-4 8.609938-1 1.689279-4 9.120108-1 1.462972-4 9.660509-1 1.275916-4 1.011579+0 1.150554-4 1.071519+0 1.017891-4 1.148154+0 8.854259-5 1.244515+0 7.589356-5 1.364583+0 6.413639-5 1.819701+0 3.856546-5 2.018366+0 3.234220-5 2.344229+0 2.531237-5 2.722701+0 1.996168-5 3.090295+0 1.643399-5 3.589219+0 1.316585-5 4.216965+0 1.045381-5 4.954502+0 8.364391-6 5.888437+0 6.639534-6 7.000000+0 5.307100-6 8.609938+0 4.095373-6 1.047129+1 3.228115-6 1.273503+1 2.561555-6 1.603245+1 1.964868-6 2.089296+1 1.460077-6 2.851018+1 1.039111-6 4.073803+1 7.097357-7 6.095369+1 4.651447-7 9.440609+1 2.961971-7 1.883649+2 1.465296-7 3.758374+2 7.296020-8 1.496236+3 1.823478-8 1.000000+5 2.72310-10 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 3.350500-4 1.660500-4 1.000000+5 1.660500-4 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.350500-4 1.690000-4 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 9.737000-5 1.384458+5 9.750000-5 1.415682+5 9.785000-5 1.488888+5 9.815000-5 1.546794+5 9.850000-5 1.609458+5 9.900000-5 1.690542+5 9.945000-5 1.755240+5 1.000000-4 1.826532+5 1.007000-4 1.906008+5 1.015000-4 1.982952+5 1.023293-4 2.050709+5 1.030000-4 2.098134+5 1.040000-4 2.158104+5 1.050000-4 2.206992+5 1.065000-4 2.263404+5 1.080000-4 2.303808+5 1.096478-4 2.334282+5 1.120000-4 2.359074+5 1.150000-4 2.370114+5 1.220000-4 2.373354+5 1.250000-4 2.390328+5 1.273503-4 2.418608+5 1.290000-4 2.448366+5 1.307700-4 2.490848+5 1.330000-4 2.561178+5 1.350000-4 2.641494+5 1.373000-4 2.755368+5 1.396368-4 2.895256+5 1.423000-4 3.084810+5 1.450000-4 3.309096+5 1.480000-4 3.594936+5 1.520000-4 4.032378+5 1.659587-4 5.981086+5 1.720000-4 6.990360+5 1.780000-4 8.074020+5 1.840772-4 9.237885+5 1.905461-4 1.053010+6 1.950000-4 1.143510+6 2.000000-4 1.245348+6 2.060000-4 1.365276+6 2.113489-4 1.468490+6 2.170000-4 1.571796+6 2.220000-4 1.657350+6 2.286400-4 1.761657+6 2.350000-4 1.851666+6 2.426610-4 1.947097+6 2.500000-4 2.025528+6 2.580000-4 2.097444+6 2.660725-4 2.156974+6 2.754229-4 2.211176+6 2.851018-4 2.251720+6 2.951209-4 2.277515+6 3.054921-4 2.287544+6 3.162278-4 2.282152+6 3.280000-4 2.261874+6 3.427678-4 2.220109+6 3.589219-4 2.160517+6 3.758374-4 2.088188+6 3.935501-4 2.005111+6 4.120975-4 1.912611+6 4.315191-4 1.812460+6 4.518559-4 1.707095+6 4.786301-4 1.572016+6 5.069907-4 1.436988+6 5.400000-4 1.292388+6 5.688529-4 1.176912+6 6.025596-4 1.054067+6 6.456542-4 9.160587+5 6.918310-4 7.904181+5 7.413102-4 6.768443+5 7.943282-4 5.755561+5 8.511380-4 4.860790+5 9.225714-4 3.964690+5 9.885531-4 3.307180+5 1.071519-3 2.659965+5 1.174898-3 2.056673+5 1.270000-3 1.644174+5 1.400000-3 1.232898+5 1.548817-3 9.065543+4 1.717908-3 6.554943+4 1.883649-3 4.877499+4 2.041738-3 3.746975+4 2.238721-3 2.755853+4 2.483133-3 1.936312+4 2.754229-3 1.350537+4 3.054921-3 9.354276+3 3.388442-3 6.433367+3 3.758374-3 4.394834+3 4.216965-3 2.856007+3 4.731513-3 1.841581+3 5.308844-3 1.178256+3 6.000000-3 7.270140+2 6.760830-3 4.506151+2 7.673615-3 2.691679+2 8.709636-3 1.595366+2 9.885531-3 9.385629+1 1.122018-2 5.478202+1 1.273503-2 3.173202+1 1.445440-2 1.824989+1 1.659587-2 9.903983+0 1.927525-2 5.067472+0 2.264644-2 2.443984+0 2.691535-2 1.110565+0 3.198895-2 5.012443-1 4.000000-2 1.772650-1 7.943282-2 7.152081-3 9.660509-2 2.882567-3 1.122019-1 1.449126-3 1.318257-1 6.960443-4 1.584893-1 3.037496-4 1.778279-1 1.819005-4 1.972423-1 1.154123-4 2.162719-1 7.763773-5 2.398833-1 5.007657-5 2.660725-1 3.253572-5 2.985383-1 2.029023-5 3.311311-1 1.336194-5 3.672823-1 8.865522-6 4.120975-1 5.669436-6 4.466836-1 4.169360-6 4.841724-1 3.086650-6 5.188000-1 2.400888-6 5.623413-1 1.804505-6 6.095369-1 1.365968-6 6.606935-1 1.040813-6 7.161434-1 7.989267-7 7.498942-1 6.885514-7 8.035261-1 5.492329-7 8.511380-1 4.580192-7 8.912509-1 3.985828-7 9.332543-1 3.493043-7 9.660509-1 3.181009-7 1.000000+0 2.912100-7 1.035142+0 2.680845-7 1.083927+0 2.418100-7 1.135011+0 2.196745-7 1.202264+0 1.964554-7 1.288250+0 1.733006-7 1.396368+0 1.508693-7 1.513561+0 1.318514-7 1.840772+0 9.336559-8 2.018366+0 7.981681-8 2.344229+0 6.246456-8 2.722701+0 4.926235-8 3.126079+0 3.986100-8 3.630781+0 3.195192-8 4.265795+0 2.538406-8 5.011872+0 2.032149-8 5.956621+0 1.613988-8 7.079458+0 1.291034-8 8.709636+0 9.964502-9 1.059254+1 7.857647-9 1.273503+1 6.321638-9 1.603245+1 4.849015-9 2.089296+1 3.603334-9 2.851018+1 2.564413-9 4.027170+1 1.773042-9 6.025596+1 1.161742-9 9.332543+1 7.39644-10 1.840772+2 3.70158-10 3.672823+2 1.84279-10 1.462177+3 4.60496-11 1.000000+5 6.72020-13 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 9.737000-5 9.737000-5 1.000000+5 9.737000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 9.737000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 9.339000-5 2.182464+5 9.360000-5 2.248872+5 9.390000-5 2.332808+5 9.420000-5 2.409472+5 9.460000-5 2.502264+5 9.500000-5 2.584520+5 9.550000-5 2.676080+5 9.600000-5 2.755640+5 9.670000-5 2.851944+5 9.740000-5 2.933064+5 9.810000-5 3.001392+5 9.920000-5 3.088152+5 1.005000-4 3.165744+5 1.020000-4 3.229840+5 1.035142-4 3.273667+5 1.053400-4 3.305845+5 1.080000-4 3.324872+5 1.170000-4 3.309592+5 1.198000-4 3.322624+5 1.220000-4 3.350296+5 1.244515-4 3.404455+5 1.260000-4 3.453360+5 1.280000-4 3.535384+5 1.300000-4 3.640184+5 1.322000-4 3.783352+5 1.340000-4 3.923008+5 1.365000-4 4.151152+5 1.390000-4 4.418864+5 1.415000-4 4.725384+5 1.450000-4 5.216400+5 1.500000-4 6.032640+5 1.621810-4 8.488789+5 1.690000-4 1.009696+6 1.757924-4 1.183054+6 1.820000-4 1.350368+6 1.880000-4 1.517144+6 1.930000-4 1.657416+6 1.990000-4 1.823928+6 2.041738-4 1.963392+6 2.100000-4 2.112976+6 2.150000-4 2.233456+6 2.213095-4 2.373475+6 2.280000-4 2.506640+6 2.350000-4 2.629232+6 2.430000-4 2.749576+6 2.511886-4 2.852611+6 2.600160-4 2.942614+6 2.691535-4 3.014213+6 2.786121-4 3.066660+6 2.884032-4 3.099429+6 2.985383-4 3.112206+6 3.100000-4 3.103344+6 3.210500-4 3.075956+6 3.350000-4 3.020808+6 3.507519-4 2.938842+6 3.672823-4 2.839066+6 3.850000-4 2.723208+6 4.050000-4 2.584912+6 4.216965-4 2.465353+6 4.430000-4 2.311936+6 4.700000-4 2.123472+6 4.954502-4 1.955594+6 5.248075-4 1.775750+6 5.559043-4 1.602287+6 5.900000-4 1.430344+6 6.309573-4 1.248120+6 6.760830-4 1.077239+6 7.244360-4 9.228083+5 7.800000-4 7.759880+5 8.413951-4 6.444000+5 9.120108-4 5.251324+5 9.850000-4 4.285560+5 1.071519-3 3.407565+5 1.174898-3 2.629652+5 1.273503-3 2.081456+5 1.396368-3 1.582690+5 1.548817-3 1.152366+5 1.737801-3 8.014953+4 1.950000-3 5.514080+4 2.162719-3 3.906379+4 2.426610-3 2.638876+4 2.660725-3 1.915244+4 2.951209-3 1.326310+4 3.273407-3 9.120969+3 3.630781-3 6.230850+3 4.027170-3 4.228155+3 4.518559-3 2.726402+3 5.069907-3 1.744547+3 5.688529-3 1.108177+3 6.382635-3 6.987648+2 7.244360-3 4.173673+2 8.222426-3 2.473434+2 9.225714-3 1.526746+2 1.047129-2 8.909985+1 1.188502-2 5.159661+1 1.348963-2 2.965779+1 1.531087-2 1.692542+1 1.757924-2 9.106476+0 2.041738-2 4.617142+0 2.398833-2 2.205225+0 2.851018-2 9.915476-1 3.467369-2 3.977350-1 4.073803-2 1.863489-1 7.498942-2 1.023506-2 9.120108-2 4.060678-3 1.083927-1 1.809018-3 1.273503-1 8.567482-4 1.445440-1 4.794222-4 1.621810-1 2.847365-4 1.798871-1 1.793116-4 1.995262-1 1.137563-4 2.213095-1 7.271676-5 2.426610-1 4.917980-5 2.660725-1 3.348275-5 2.917427-1 2.295781-5 3.198895-1 1.585980-5 3.507519-1 1.103728-5 3.801894-1 8.095495-6 4.073803-1 6.248955-6 4.365158-1 4.859597-6 4.731513-1 3.651026-6 5.248075-1 2.551421-6 5.688529-1 1.944689-6 6.095369-1 1.551030-6 6.382635-1 1.340593-6 6.839117-1 1.084787-6 7.413102-1 8.532638-7 8.035261-1 6.744217-7 8.609938-1 5.471336-7 9.015711-1 4.783452-7 9.440609-1 4.207209-7 9.772372-1 3.839949-7 1.011579+0 3.522614-7 1.047129+0 3.247813-7 1.096478+0 2.934947-7 1.148154+0 2.670519-7 1.216186+0 2.392083-7 1.303167+0 2.112599-7 1.412538+0 1.841030-7 1.513561+0 1.640385-7 1.840772+0 1.161751-7 2.018366+0 9.930477-8 2.344229+0 7.770200-8 2.691535+0 6.239480-8 3.090295+0 5.045942-8 3.589219+0 4.042299-8 4.216965+0 3.209560-8 4.954502+0 2.568111-8 5.888437+0 2.038524-8 7.000000+0 1.629500-8 8.609938+0 1.257393-8 1.047129+1 9.911446-9 1.273503+1 7.864814-9 1.603245+1 6.032786-9 2.089296+1 4.482925-9 2.851018+1 3.190469-9 4.027170+1 2.205828-9 6.025596+1 1.445382-9 9.332543+1 9.20201-10 1.840772+2 4.60520-10 3.672823+2 2.29271-10 1.462177+3 5.72912-11 1.000000+5 8.36070-13 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 9.339000-5 9.339000-5 1.000000+5 9.339000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 9.339000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.152300-4 7.483640+4 1.175000-4 7.031040+4 1.195000-4 6.720460+4 1.210000-4 6.537820+4 1.230269-4 6.339769+4 1.253000-4 6.171660+4 1.280000-4 6.030600+4 1.303167-4 5.947141+4 1.333521-4 5.877181+4 1.365000-4 5.839100+4 1.412538-4 5.827948+4 1.462177-4 5.854619+4 1.698244-4 6.089183+4 1.800000-4 6.134540+4 1.900000-4 6.130280+4 2.000000-4 6.083880+4 2.120000-4 5.988160+4 2.264644-4 5.839655+4 2.454709-4 5.621815+4 2.660725-4 5.374952+4 2.884032-4 5.100228+4 3.100000-4 4.831000+4 3.350000-4 4.523120+4 3.672823-4 4.149385+4 4.100000-4 3.713480+4 4.518559-4 3.344201+4 5.011872-4 2.967090+4 5.688529-4 2.541265+4 6.500000-4 2.143300+4 7.413102-4 1.797048+4 8.709636-4 1.436867+4 1.023293-3 1.139490+4 1.216186-3 8.826223+3 1.479108-3 6.553617+3 1.800000-3 4.822060+3 2.187762-3 3.526642+3 2.650000-3 2.572640+3 3.162278-3 1.909664+3 3.801894-3 1.389547+3 4.570882-3 1.003579+3 5.495409-3 7.196051+2 6.606934-3 5.121655+2 8.035261-3 3.540787+2 9.772372-3 2.429489+2 1.188502-2 1.653989+2 1.445440-2 1.117159+2 1.737801-2 7.666334+1 2.089296-2 5.221954+1 2.511886-2 3.529424+1 3.019952-2 2.366831+1 3.630781-2 1.574270+1 4.365158-2 1.038915+1 5.248075-2 6.803516+0 6.309573-2 4.421836+0 7.585776-2 2.852417+0 8.709636-2 2.041593+0 1.071519-1 1.225736+0 1.364583-1 6.702446-1 2.540973-1 1.391532-1 3.162278-1 8.053374-2 3.758374-1 5.265275-2 4.365158-1 3.669306-2 5.011872-1 2.647781-2 5.754399-1 1.925049-2 6.531306-1 1.448199-2 7.413102-1 1.097596-2 8.511380-1 8.178089-3 9.440609-1 6.600461-3 1.059254+0 5.242957-3 1.216186+0 4.004280-3 1.380384+0 3.150842-3 1.566751+0 2.498492-3 1.757924+0 2.037778-3 1.972423+0 1.673920-3 2.290868+0 1.308426-3 2.660725+0 1.030648-3 3.054921+0 8.328800-4 3.548134+0 6.668264-4 4.120975+0 5.378265-4 4.841724+0 4.298812-4 5.754399+0 3.408816-4 6.918310+0 2.683096-4 8.413951+0 2.098605-4 1.035142+1 1.630109-4 1.258925+1 1.293029-4 1.584893+1 9.915183-5 2.065380+1 7.365524-5 2.818383+1 5.240260-5 3.981072+1 3.622144-5 5.956621+1 2.372846-5 9.225714+1 1.510448-5 1.819701+2 7.558047-6 3.630781+2 3.762499-6 1.445440+3 9.401187-7 1.000000+5 1.356200-8 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.152300-4 1.152300-4 1.000000+5 1.152300-4 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.152300-4 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 7.855000-5 1.071488+6 7.910000-5 1.104946+6 7.950000-5 1.124954+6 8.020000-5 1.150654+6 8.080000-5 1.164952+6 8.150000-5 1.175476+6 8.230000-5 1.179958+6 8.345000-5 1.176140+6 8.450000-5 1.165166+6 8.570000-5 1.146120+6 8.730000-5 1.112914+6 8.912509-5 1.068148+6 9.120108-5 1.012532+6 9.332543-5 9.534923+5 9.580000-5 8.846300+5 9.885531-5 8.023901+5 1.023293-4 7.152645+5 1.060000-4 6.321340+5 1.122018-4 5.135444+5 1.303167-4 2.936939+5 1.400000-4 2.262880+5 1.500000-4 1.774134+5 1.584893-4 1.470138+5 1.678804-4 1.216609+5 1.760000-4 1.048582+5 1.840772-4 9.164132+4 1.927525-4 8.039148+4 2.000000-4 7.279800+4 2.089296-4 6.518273+4 2.162719-4 6.005169+4 2.260000-4 5.446280+4 2.350000-4 5.024280+4 2.454709-4 4.620689+4 2.580000-4 4.231220+4 2.691535-4 3.949487+4 2.818383-4 3.685489+4 2.951209-4 3.458645+4 3.126079-4 3.217497+4 3.311311-4 3.013090+4 3.548134-4 2.803758+4 3.890451-4 2.567154+4 5.754399-4 1.809582+4 6.606934-4 1.589618+4 7.500000-4 1.401274+4 8.511380-4 1.227704+4 9.549926-4 1.081566+4 1.096478-3 9.219708+3 1.244515-3 7.905378+3 1.412538-3 6.731925+3 1.603245-3 5.691800+3 1.819701-3 4.779276+3 2.065380-3 3.984246+3 2.356720-3 3.270400+3 2.660725-3 2.708232+3 3.019952-3 2.208215+3 3.427678-3 1.786913+3 3.890451-3 1.435319+3 4.415704-3 1.144508+3 5.011872-3 9.060200+2 5.688529-3 7.120786+2 6.456542-3 5.556946+2 7.328245-3 4.305943+2 8.317638-3 3.313185+2 9.440609-3 2.531604+2 1.083927-2 1.872831+2 1.244515-2 1.374469+2 1.428894-2 1.000714+2 1.621810-2 7.428640+1 1.862087-2 5.326966+1 2.137962-2 3.790619+1 2.454709-2 2.677277+1 2.818383-2 1.877620+1 3.273407-2 1.268785+1 4.073803-2 7.077304+0 4.677351-2 4.854747+0 5.495409-2 3.102548+0 6.760830-2 1.728450+0 8.413951-2 9.243019-1 1.083927-1 4.442176-1 1.757924-1 1.089363-1 2.213095-1 5.615352-2 2.630268-1 3.438593-2 3.090295-1 2.191377-2 3.548134-1 1.499565-2 4.027170-1 1.066068-2 4.570882-1 7.633145-3 5.128614-1 5.672447-3 5.754399-1 4.245341-3 6.382635-1 3.292446-3 7.079458-1 2.570273-3 7.852356-1 2.019858-3 8.709636-1 1.594731-3 9.440609-1 1.335535-3 1.011579+0 1.154229-3 1.109175+0 9.580021-4 1.216186+0 8.008965-4 1.348963+0 6.593994-4 1.566751+0 5.027239-4 1.778279+0 4.019142-4 2.000000+0 3.289700-4 2.317395+0 2.583096-4 2.691535+0 2.035929-4 3.090295+0 1.646358-4 3.589219+0 1.318933-4 4.216965+0 1.047241-4 4.954502+0 8.379371-5 5.888437+0 6.651431-5 7.000000+0 5.316500-5 8.609938+0 4.102665-5 1.047129+1 3.233863-5 1.273503+1 2.566073-5 1.603245+1 1.968360-5 2.089296+1 1.462679-5 2.884032+1 1.028103-5 4.120975+1 7.023919-6 6.165950+1 4.604243-6 9.549926+1 2.932504-6 1.862087+2 1.485147-6 3.715352+2 7.394226-7 1.479108+3 1.847846-7 1.000000+5 2.727900-9 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 7.855000-5 7.855000-5 1.000000+5 7.855000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 7.855000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 6.137000-5 2.731152+6 6.185000-5 2.746664+6 6.237348-5 2.749007+6 6.309573-5 2.733832+6 6.400000-5 2.692612+6 6.500000-5 2.628984+6 6.606934-5 2.547417+6 6.760830-5 2.417849+6 6.950000-5 2.251604+6 7.161434-5 2.068234+6 7.413102-5 1.862341+6 7.762471-5 1.606087+6 8.222426-5 1.323623+6 9.300000-5 8.686640+5 9.800000-5 7.302680+5 1.023293-4 6.361921+5 1.071519-4 5.528191+5 1.122018-4 4.838829+5 1.175400-4 4.263029+5 1.230269-4 3.793727+5 1.288250-4 3.399029+5 1.348963-4 3.069601+5 1.412538-4 2.793954+5 1.480000-4 2.559968+5 1.548817-4 2.368309+5 1.621810-4 2.204273+5 1.698244-4 2.065022+5 1.800000-4 1.916792+5 1.905461-4 1.794254+5 2.065380-4 1.647410+5 2.317395-4 1.471762+5 3.162278-4 1.097516+5 3.630781-4 9.569230+4 4.120975-4 8.382946+4 4.677351-4 7.290319+4 5.308844-4 6.291598+4 6.025596-4 5.394014+4 6.760830-4 4.661616+4 7.762471-4 3.883388+4 8.810489-4 3.264530+4 1.023293-3 2.637751+4 1.174898-3 2.151819+4 1.364583-3 1.712608+4 1.566751-3 1.377175+4 1.798871-3 1.100030+4 2.041738-3 8.896004+3 2.344229-3 7.005570+3 2.691535-3 5.474861+3 3.090295-3 4.245166+3 3.507519-3 3.338524+3 4.000000-3 2.583460+3 4.570882-3 1.976258+3 5.248075-3 1.485633+3 6.000000-3 1.118032+3 6.839116-3 8.404455+2 7.762471-3 6.333241+2 8.810489-3 4.739683+2 1.000000-2 3.522512+2 1.148154-2 2.528769+2 1.303167-2 1.853097+2 1.479108-2 1.348766+2 1.678804-2 9.748762+1 1.927525-2 6.789133+1 2.213095-2 4.690662+1 2.540973-2 3.215272+1 2.917427-2 2.187682+1 3.388442-2 1.430199+1 3.935501-2 9.277076+0 4.570882-2 5.971910+0 5.370318-2 3.687842+0 6.309573-2 2.260838+0 7.673615-2 1.237291+0 9.660509-2 6.036053-1 1.737801-1 9.500456-2 2.162719-1 4.805160-2 2.540973-1 2.928170-2 2.917427-1 1.928355-2 3.311311-1 1.323894-2 3.715352-1 9.466953-3 4.168694-1 6.817749-3 4.623810-1 5.107667-3 5.128614-1 3.852368-3 5.688529-1 2.926501-3 6.237348-1 2.306700-3 6.918310-1 1.778034-3 7.673615-1 1.381147-3 8.709636-1 1.021081-3 9.332543-1 8.717414-4 9.885531-1 7.686121-4 1.071519+0 6.503286-4 1.161449+0 5.539352-4 1.273503+0 4.644982-4 1.412538+0 3.841337-4 1.717908+0 2.709089-4 1.927525+0 2.220898-4 2.213095+0 1.766500-4 2.570396+0 1.388977-4 2.951209+0 1.120315-4 3.388442+0 9.105597-5 3.935501+0 7.327973-5 4.623810+0 5.844490-5 5.432503+0 4.696103-5 6.531306+0 3.687021-5 7.762471+0 2.960813-5 9.549926+0 2.292951-5 1.202264+1 1.741249-5 1.531087+1 1.316255-5 1.949845+1 1.002135-5 2.600160+1 7.299412-6 3.548134+1 5.223819-6 5.308844+1 3.414613-6 8.317638+1 2.143762-6 1.659587+2 1.058987-6 3.311311+2 5.268606-7 1.318257+3 1.315689-7 1.000000+5 1.730900-9 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 6.137000-5 6.137000-5 1.000000+5 6.137000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 6.137000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.216000-5 4.738360+6 1.250000-5 4.780320+6 1.290000-5 4.864880+6 1.340000-5 5.014600+6 1.390000-5 5.206040+6 1.445440-5 5.454834+6 1.513561-5 5.806870+6 1.603245-5 6.329572+6 1.737801-5 7.206205+6 2.213095-5 1.082105+7 2.398833-5 1.231042+7 2.540973-5 1.341533+7 2.660725-5 1.429050+7 2.786121-5 1.512058+7 2.900000-5 1.577832+7 3.000000-5 1.626420+7 3.090295-5 1.661663+7 3.198895-5 1.691908+7 3.300000-5 1.707488+7 3.400000-5 1.710996+7 3.507519-5 1.702169+7 3.610000-5 1.682472+7 3.715352-5 1.651600+7 3.830000-5 1.607676+7 3.950000-5 1.552212+7 4.073803-5 1.487287+7 4.180000-5 1.427320+7 4.315191-5 1.347786+7 4.466836-5 1.257283+7 4.623810-5 1.164909+7 4.800000-5 1.065212+7 5.011872-5 9.532316+6 5.248075-5 8.403732+6 5.500000-5 7.343840+6 5.821032-5 6.191895+6 6.165950-5 5.168049+6 6.531306-5 4.284059+6 6.918310-5 3.527222+6 7.328245-5 2.882627+6 7.762471-5 2.338054+6 8.150000-5 1.946332+6 8.609938-5 1.571515+6 9.120108-5 1.245713+6 9.660509-5 9.796105+5 1.023293-4 7.643375+5 1.083927-4 5.922648+5 1.150000-4 4.526280+5 1.230269-4 3.307269+5 1.333521-4 2.256351+5 1.513561-4 1.231527+5 1.584893-4 9.932387+4 1.650000-4 8.283800+4 1.705000-4 7.191880+4 1.757924-4 6.348757+4 1.800000-4 5.798320+4 1.850000-4 5.258640+4 1.890000-4 4.902120+4 1.930000-4 4.602240+4 1.972423-4 4.337305+4 2.018366-4 4.102919+4 2.065380-4 3.910715+4 2.113489-4 3.755546+4 2.162719-4 3.632827+4 2.213095-4 3.538545+4 2.264644-4 3.469188+4 2.317395-4 3.421481+4 2.380000-4 3.389080+4 2.454709-4 3.376752+4 2.540973-4 3.388963+4 2.650000-4 3.431012+4 2.818383-4 3.525244+4 3.162278-4 3.728293+4 3.388442-4 3.828222+4 3.589219-4 3.888026+4 3.801894-4 3.921939+4 4.027170-4 3.930655+4 4.265795-4 3.912242+4 4.518559-4 3.868602+4 4.786301-4 3.801436+4 5.069907-4 3.712755+4 5.370318-4 3.604856+4 5.754399-4 3.454114+4 6.165950-4 3.284846+4 6.606934-4 3.101758+4 7.079458-4 2.909033+4 7.623500-4 2.696423+4 8.222426-4 2.477905+4 8.912509-4 2.248091+4 9.660509-4 2.024568+4 1.047129-3 1.810944+4 1.135011-3 1.609651+4 1.230269-3 1.421793+4 1.348963-3 1.224585+4 1.479108-3 1.046552+4 1.621810-3 8.877670+3 1.778279-3 7.475036+3 1.949845-3 6.248182+3 2.137962-3 5.185194+3 2.344229-3 4.272890+3 2.570396-3 3.497038+3 2.818383-3 2.842967+3 3.126079-3 2.234720+3 3.467369-3 1.742567+3 3.845918-3 1.348173+3 4.265795-3 1.035089+3 4.731513-3 7.888235+2 5.188000-3 6.156770+2 5.888437-3 4.342732+2 6.531306-3 3.240060+2 7.244360-3 2.400192+2 8.128305-3 1.706547+2 9.120108-3 1.204195+2 1.023293-2 8.432602+1 1.148154-2 5.860659+1 1.288250-2 4.044314+1 1.462177-2 2.668431+1 1.659587-2 1.747332+1 1.883649-2 1.135663+1 2.137962-2 7.326921+0 2.454709-2 4.506595+0 2.818383-2 2.751445+0 3.273407-2 1.599979+0 3.845918-2 8.854870-1 4.623810-2 4.466400-1 5.559043-2 2.236014-1 7.328245-2 7.846853-2 1.161449-1 1.363405-2 1.445440-1 5.975818-3 1.737801-1 3.003749-3 2.018366-1 1.730202-3 2.317395-1 1.048420-3 2.630268-1 6.671824-4 2.985383-1 4.277835-4 3.349654-1 2.875247-4 3.758374-1 1.947076-4 4.168694-1 1.380628-4 4.623810-1 9.860418-5 5.128614-1 7.095905-5 5.623413-1 5.332535-5 6.095369-1 4.178498-5 6.683439-1 3.188350-5 7.328245-1 2.451204-5 8.035261-1 1.896764-5 8.609938-1 1.561473-5 9.120108-1 1.336293-5 9.549926-1 1.186412-5 1.000000+0 1.059800-5 1.047129+0 9.534181-6 1.096478+0 8.636108-6 1.161449+0 7.693282-6 1.230269+0 6.902025-6 1.333521+0 5.968420-6 1.479108+0 4.992396-6 1.840772+0 3.396631-6 2.018366+0 2.904780-6 2.344229+0 2.273500-6 2.722701+0 1.792940-6 3.090295+0 1.476058-6 3.589219+0 1.182449-6 4.168694+0 9.542038-7 4.897788+0 7.631073-7 5.821032+0 6.054370-7 6.918310+0 4.838343-7 8.413951+0 3.784386-7 1.035142+1 2.939534-7 1.258925+1 2.331591-7 1.584893+1 1.788003-7 2.065380+1 1.328150-7 2.818383+1 9.449626-8 3.981072+1 6.531716-8 5.956621+1 4.278879-8 9.225714+1 2.723684-8 1.819701+2 1.362960-8 3.630781+2 6.784717-9 1.445440+3 1.695290-9 1.000000+5 2.44570-11 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.216000-5 1.216000-5 1.000000+5 1.216000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.216000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.046000-5 8.140620+6 1.083927-5 8.348638+6 1.135011-5 8.700262+6 1.188502-5 9.131115+6 1.260000-5 9.777960+6 1.380384-5 1.098547+7 1.883649-5 1.665997+7 2.089296-5 1.903532+7 2.264644-5 2.098444+7 2.400000-5 2.238474+7 2.540973-5 2.368562+7 2.660725-5 2.462488+7 2.770000-5 2.532240+7 2.884032-5 2.586172+7 2.985383-5 2.616088+7 3.090295-5 2.628386+7 3.198895-5 2.621503+7 3.300000-5 2.597244+7 3.400000-5 2.557626+7 3.507519-5 2.499743+7 3.610000-5 2.432040+7 3.730000-5 2.340156+7 3.850000-5 2.237934+7 3.981072-5 2.118468+7 4.120975-5 1.986526+7 4.265795-5 1.849606+7 4.415704-5 1.711147+7 4.570882-5 1.573917+7 4.731513-5 1.440131+7 4.954502-5 1.270233+7 5.188000-5 1.112881+7 5.495409-5 9.358970+6 5.821032-5 7.808174+6 6.165950-5 6.468536+6 6.531306-5 5.323408+6 6.918310-5 4.349125+6 7.328245-5 3.526973+6 7.673615-5 2.966392+6 8.035261-5 2.481216+6 8.511380-5 1.969777+6 9.000000-5 1.562514+6 9.500000-5 1.238748+6 1.000000-4 9.878100+5 1.060000-4 7.584300+5 1.135011-4 5.515085+5 1.220000-4 3.909546+5 1.412538-4 1.927662+5 1.480000-4 1.547346+5 1.540000-4 1.291470+5 1.584893-4 1.139174+5 1.635000-4 1.001226+5 1.678804-4 9.035223+4 1.720000-4 8.276940+4 1.760000-4 7.665120+4 1.800000-4 7.157340+4 1.840772-4 6.731249+4 1.883649-4 6.367728+4 1.927525-4 6.070815+4 1.972423-4 5.831704+4 2.020000-4 5.637354+4 2.065380-4 5.499391+4 2.113489-4 5.395092+4 2.170000-4 5.316426+4 2.220000-4 5.277576+4 2.290868-4 5.261178+4 2.371374-4 5.284096+4 2.483133-4 5.360594+4 2.660725-4 5.535888+4 2.951209-4 5.829016+4 3.162278-4 5.992269+4 3.349654-4 6.088209+4 3.548134-4 6.143177+4 3.758374-4 6.156675+4 4.000000-4 6.124980+4 4.265795-4 6.040456+4 4.518559-4 5.926401+4 4.786301-4 5.779879+4 5.128614-4 5.567288+4 5.495409-4 5.321482+4 5.888437-4 5.048906+4 6.309573-4 4.756621+4 6.760830-4 4.451304+4 7.244360-4 4.139146+4 7.852356-4 3.773883+4 8.511380-4 3.415085+4 9.225714-4 3.068487+4 1.000000-3 2.738454+4 1.083927-3 2.428818+4 1.188502-3 2.101743+4 1.303167-3 1.804514+4 1.428894-3 1.537494+4 1.566751-3 1.300286+4 1.717908-3 1.091688+4 1.883649-3 9.099524+3 2.065380-3 7.531054+3 2.264644-3 6.189639+3 2.483133-3 5.052396+3 2.731000-3 4.067666+3 3.019952-3 3.209903+3 3.349654-3 2.494536+3 3.715352-3 1.924610+3 4.027170-3 1.563677+3 4.415704-3 1.223178+3 4.897788-3 9.210671+2 5.559043-3 6.471030+2 6.165950-3 4.815257+2 6.839116-3 3.557492+2 7.585776-3 2.610733+2 8.511380-3 1.837113+2 9.549926-3 1.282610+2 1.071519-2 8.884933+1 1.202264-2 6.108282+1 1.348963-2 4.169241+1 1.531087-2 2.717738+1 1.737801-2 1.757685+1 1.972423-2 1.128032+1 2.238721-2 7.183144+0 2.570396-2 4.355183+0 2.951209-2 2.620497+0 3.427678-2 1.499399+0 4.027170-2 8.153279-1 4.786301-2 4.211986-1 5.754399-2 2.065507-1 1.148154-1 1.391116-2 1.396368-1 6.516984-3 1.659587-1 3.362309-3 1.905461-1 1.994765-3 2.137962-1 1.300154-3 2.398833-1 8.537079-4 2.660725-1 5.885685-4 2.951209-1 4.085676-4 3.273407-1 2.856541-4 3.589219-1 2.092180-4 3.935501-1 1.542859-4 4.315191-1 1.146302-4 4.731513-1 8.581698-5 5.188000-1 6.474821-5 5.623413-1 5.093941-5 6.095369-1 4.034345-5 6.606935-1 3.218801-5 7.161434-1 2.585228-5 7.762471-1 2.089628-5 8.609938-1 1.595007-5 9.120108-1 1.380555-5 9.660509-1 1.203271-5 1.011579+0 1.084506-5 1.071519+0 9.589413-6 1.148154+0 8.337628-6 1.230269+0 7.300675-6 1.333521+0 6.295747-6 1.819701+0 3.636071-6 2.018366+0 3.048927-6 2.344229+0 2.386036-6 2.722701+0 1.881780-6 3.126079+0 1.522669-6 3.630781+0 1.220506-6 4.265795+0 9.696367-7 5.011872+0 7.762872-7 5.956621+0 6.165205-7 7.079458+0 4.931701-7 8.709636+0 3.806424-7 1.059254+1 3.001516-7 1.273503+1 2.414783-7 1.603245+1 1.852327-7 2.065380+1 1.394137-7 2.818383+1 9.918625-8 3.981072+1 6.855842-8 5.956621+1 4.491277-8 9.225714+1 2.858885-8 1.840772+2 1.413953-8 3.672823+2 7.039441-9 1.462177+3 1.759070-9 1.000000+5 2.56710-11 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.046000-5 1.046000-5 1.000000+5 1.046000-5 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.046000-5 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 8.300000-6 4.029050+6 8.609938-6 3.505512+6 9.549926-6 2.330811+6 1.083927-5 1.405681+6 1.230269-5 8.414611+5 1.396368-5 5.000344+5 1.603245-5 2.812848+5 2.041738-5 1.020658+5 2.213095-5 7.322546+4 2.350000-5 5.752820+4 2.483133-5 4.640627+4 2.610000-5 3.850350+4 2.730000-5 3.278860+4 2.830000-5 2.901730+4 2.917427-5 2.630217+4 3.019952-5 2.367440+4 3.126079-5 2.146350+4 3.235937-5 1.960923+4 3.330000-5 1.830440+4 3.427678-5 1.717425+4 3.548134-5 1.603693+4 3.650000-5 1.525430+4 3.770000-5 1.450100+4 3.900000-5 1.384930+4 4.027170-5 1.334192+4 4.168694-5 1.289516+4 4.350000-5 1.246060+4 4.518559-5 1.216023+4 4.731513-5 1.188325+4 5.011872-5 1.163545+4 5.432503-5 1.140208+4 6.606934-5 1.096998+4 7.244360-5 1.070535+4 7.852356-5 1.040687+4 8.413951-5 1.009313+4 9.120108-5 9.664419+3 9.800000-5 9.234180+3 1.059254-4 8.726973+3 1.150000-4 8.156540+3 1.260000-4 7.508350+3 1.380384-4 6.863218+3 1.548817-4 6.078836+3 1.757924-4 5.279521+3 2.113489-4 4.262412+3 2.818383-4 3.040876+3 3.349654-4 2.478648+3 3.801894-4 2.120198+3 4.120975-4 1.910119+3 4.677351-4 1.607456+3 5.495409-4 1.279946+3 7.852356-4 7.659382+2 9.015711-4 6.231166+2 1.230269-3 3.859127+2 1.531087-3 2.736541+2 1.905461-3 1.923478+2 2.371374-3 1.341655+2 2.884032-3 9.650590+1 3.507519-3 6.888429+1 4.000000-3 5.473439+1 4.365158-3 4.717508+1 4.841724-3 3.923858+1 5.432503-3 3.172586+1 7.498942-3 1.731830+1 9.120108-3 1.191073+1 1.109175-2 8.130488+0 1.348963-2 5.507723+0 1.640590-2 3.701520+0 1.972423-2 2.527418+0 2.371374-2 1.712526+0 2.851018-2 1.151328+0 3.388442-2 7.876858-1 4.027170-2 5.350710-1 4.786301-2 3.608699-1 5.688529-2 2.415516-1 6.839116-2 1.562080-1 8.222426-2 1.002728-1 1.011580-1 6.031725-2 1.288250-1 3.305018-2 1.603245-1 1.905856-2 2.511886-1 6.116452-3 3.126079-1 3.538995-3 3.715352-1 2.313058-3 4.315191-1 1.611334-3 4.954502-1 1.162341-3 5.688529-1 8.448152-4 6.456542-1 6.353704-4 7.328245-1 4.815034-4 8.317638-1 3.676839-4 9.332543-1 2.897636-4 1.047129+0 2.301316-4 1.216186+0 1.717819-4 1.364583+0 1.380986-4 1.548817+0 1.094339-4 1.737801+0 8.919328-5 1.949845+0 7.321486-5 2.264644+0 5.719306-5 2.630268+0 4.502342-5 3.019952+0 3.635949-5 3.507519+0 2.909290-5 4.073803+0 2.345229-5 4.786301+0 1.873558-5 5.688529+0 1.484805-5 6.760830+0 1.185543-5 8.128305+0 9.397350-6 1.000000+1 7.289700-6 1.244515+1 5.621912-6 1.566751+1 4.309835-6 2.018366+1 3.241766-6 2.722701+1 2.333873-6 3.801894+1 1.631619-6 5.688529+1 1.067957-6 8.912509+1 6.713175-7 1.778279+2 3.319032-7 3.548134+2 1.652005-7 1.412538+3 4.127139-8 1.000000+5 5.81830-10 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 8.300000-6 8.300000-6 1.000000+5 8.300000-6 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 8.300000-6 0.0 1.000000+5 1.000000+5 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.462150-7 1.026100+0 1.235040-6 1.026600+0 1.741120-6 1.027100+0 2.368830-6 1.027500+0 2.966940-6 1.028100+0 4.039430-6 1.028750+0 5.462150-6 1.029500+0 7.475100-6 1.030100+0 9.400840-6 1.031000+0 1.286360-5 1.032000+0 1.760060-5 1.033200+0 2.465540-5 1.034000+0 3.026680-5 1.035300+0 4.108290-5 1.036640+0 5.462150-5 1.038200+0 7.371350-5 1.039700+0 9.576860-5 1.041500+0 1.274190-4 1.043800+0 1.768620-4 1.046400+0 2.460700-4 1.048300+0 3.063640-4 1.051200+0 4.155760-4 1.054080+0 5.462150-4 1.057700+0 7.445270-4 1.061100+0 9.684440-4 1.065100+0 1.282120-3 1.070400+0 1.788690-3 1.076200+0 2.471970-3 1.080600+0 3.087080-3 1.087100+0 4.159310-3 1.093710+0 5.462150-3 1.102600+0 7.573030-3 1.110700+0 9.876450-3 1.120600+0 1.321120-2 1.133300+0 1.836850-2 1.147500+0 2.536070-2 1.158200+0 3.151690-2 1.174100+0 4.212500-2 1.190110+0 5.462150-2 1.205100+0 6.800180-2 1.227500+0 9.102490-2 1.250000+0 1.176000-1 1.265600+0 1.378630-1 1.294900+0 1.795750-1 1.331800+0 2.379430-1 1.362600+0 2.908090-1 1.397000+0 3.533780-1 1.433800+0 4.236480-1 1.477900+0 5.116150-1 1.500000+0 5.571000-1 1.562500+0 6.902370-1 1.617200+0 8.112690-1 1.712900+0 1.029440+0 1.784700+0 1.196330+0 1.892300+0 1.447770+0 2.000000+0 1.698000+0 2.044000+0 1.799000+0 2.163500+0 2.069110+0 2.372600+0 2.525640+0 2.686300+0 3.170460+0 3.000000+0 3.772000+0 3.500000+0 4.656170+0 4.000000+0 5.462000+0 5.000000+0 6.876000+0 6.000000+0 8.094000+0 7.000000+0 9.167000+0 8.000000+0 1.013000+1 9.000000+0 1.101000+1 1.000000+1 1.182000+1 1.100000+1 1.256000+1 1.200000+1 1.326000+1 1.300000+1 1.391000+1 1.400000+1 1.452000+1 1.500000+1 1.508000+1 1.600000+1 1.561000+1 1.800000+1 1.657000+1 2.000000+1 1.742000+1 2.200000+1 1.819000+1 2.400000+1 1.889000+1 2.600000+1 1.954000+1 2.800000+1 2.012000+1 3.000000+1 2.067000+1 4.000000+1 2.289000+1 5.000000+1 2.453000+1 6.000000+1 2.581000+1 8.000000+1 2.768000+1 1.000000+2 2.901000+1 1.500000+2 3.109000+1 2.000000+2 3.233000+1 3.000000+2 3.377000+1 4.000000+2 3.459000+1 5.000000+2 3.512000+1 6.000000+2 3.551000+1 8.000000+2 3.602000+1 1.000000+3 3.635000+1 1.500000+3 3.682000+1 2.000000+3 3.708000+1 3.000000+3 3.736000+1 4.000000+3 3.751000+1 5.000000+3 3.761000+1 6.000000+3 3.768000+1 8.000000+3 3.776000+1 1.000000+4 3.782000+1 1.500000+4 3.789000+1 2.000000+4 3.793000+1 3.000000+4 3.797000+1 4.000000+4 3.800000+1 5.000000+4 3.801000+1 6.000000+4 3.802000+1 8.000000+4 3.803000+1 1.000000+5 3.804000+1 1 79000 7 8 1.969670+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 7.909410-7 2.090400+0 1.073900-6 2.094700+0 1.392480-6 2.099900+0 1.852490-6 2.106600+0 2.576970-6 2.114000+0 3.565570-6 2.119500+0 4.439110-6 2.127900+0 6.020270-6 2.136250+0 7.909410-6 2.147000+0 1.084440-5 2.156900+0 1.408550-5 2.169000+0 1.879800-5 2.184500+0 2.612990-5 2.201800+0 3.615140-5 2.214800+0 4.504180-5 2.234200+0 6.058930-5 2.253680+0 7.909410-5 2.281500+0 1.107850-4 2.307000+0 1.455160-4 2.338200+0 1.956580-4 2.377400+0 2.709630-4 2.410200+0 3.446190-4 2.446800+0 4.383750-4 2.485900+0 5.519380-4 2.532900+0 7.063640-4 2.556430+0 7.909410-4 2.611900+0 1.008550-3 2.660400+0 1.219290-3 2.745300+0 1.631970-3 2.809000+0 1.976420-3 2.904500+0 2.546120-3 3.000000+0 3.178000-3 3.125000+0 4.097550-3 3.234400+0 4.985230-3 3.425800+0 6.711630-3 3.569300+0 8.136860-3 3.784700+0 1.045680-2 4.000000+0 1.295000-2 4.250000+0 1.599760-2 4.625000+0 2.078560-2 5.000000+0 2.576000-2 5.500000+0 3.258100-2 6.000000+0 3.949000-2 6.750000+0 4.977110-2 7.000000+0 5.315000-2 8.000000+0 6.634000-2 9.000000+0 7.894000-2 1.000000+1 9.089000-2 1.100000+1 1.022000-1 1.200000+1 1.128000-1 1.300000+1 1.228000-1 1.400000+1 1.323000-1 1.500000+1 1.412000-1 1.600000+1 1.497000-1 1.800000+1 1.655000-1 2.000000+1 1.797000-1 2.200000+1 1.927000-1 2.400000+1 2.046000-1 2.600000+1 2.156000-1 2.800000+1 2.258000-1 3.000000+1 2.352000-1 4.000000+1 2.739000-1 5.000000+1 3.030000-1 6.000000+1 3.259000-1 8.000000+1 3.601000-1 1.000000+2 3.847000-1 1.500000+2 4.248000-1 2.000000+2 4.497000-1 3.000000+2 4.796000-1 4.000000+2 4.974000-1 5.000000+2 5.094000-1 6.000000+2 5.181000-1 8.000000+2 5.301000-1 1.000000+3 5.380000-1 1.500000+3 5.497000-1 2.000000+3 5.563000-1 3.000000+3 5.634000-1 4.000000+3 5.676000-1 5.000000+3 5.701000-1 6.000000+3 5.719000-1 8.000000+3 5.743000-1 1.000000+4 5.758000-1 1.500000+4 5.778000-1 2.000000+4 5.790000-1 3.000000+4 5.801000-1 4.000000+4 5.808000-1 5.000000+4 5.812000-1 6.000000+4 5.815000-1 8.000000+4 5.818000-1 1.000000+5 5.820000-1 1 79000 7 8 1.969670+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 79000 7 9 1.969670+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 7.900000+1 1.000000+5 7.900000+1 5.000000+5 7.897600+1 8.750000+5 7.894770+1 1.000000+6 7.894100+1 1.500000+6 7.889400+1 2.000000+6 7.881200+1 2.500000+6 7.870800+1 3.000000+6 7.858100+1 3.500000+6 7.843230+1 4.000000+6 7.826600+1 4.500000+6 7.808390+1 5.000000+6 7.788200+1 5.500000+6 7.765880+1 6.250000+6 7.728360+1 7.000000+6 7.688400+1 7.875000+6 7.637340+1 8.625000+6 7.591300+1 9.000000+6 7.567700+1 1.000000+7 7.501600+1 1.125000+7 7.413150+1 1.187500+7 7.367370+1 1.250000+7 7.320500+1 1.375000+7 7.223160+1 1.500000+7 7.124700+1 1.687500+7 6.973970+1 1.750000+7 6.923200+1 2.000000+7 6.716400+1 2.250000+7 6.508970+1 2.500000+7 6.304400+1 2.875000+7 6.006380+1 3.000000+7 5.910800+1 3.437500+7 5.588860+1 3.750000+7 5.374690+1 4.000000+7 5.213800+1 4.500000+7 4.915910+1 4.750000+7 4.778410+1 5.000000+7 4.648000+1 5.500000+7 4.404110+1 5.750000+7 4.289650+1 6.000000+7 4.180100+1 6.500000+7 3.972170+1 6.750000+7 3.873130+1 7.000000+7 3.777500+1 7.750000+7 3.505380+1 8.000000+7 3.419600+1 8.750000+7 3.173840+1 9.000000+7 3.096100+1 9.750000+7 2.873590+1 1.000000+8 2.803300+1 1.109400+8 2.518280+1 1.250000+8 2.212900+1 1.375000+8 1.996300+1 1.500000+8 1.826000+1 1.625000+8 1.694260+1 1.750000+8 1.587150+1 2.000000+8 1.412500+1 2.250000+8 1.266280+1 2.500000+8 1.146900+1 2.671900+8 1.076730+1 2.789100+8 1.028450+1 2.875000+8 9.907760+0 2.894500+8 9.819000+0 2.973600+8 9.445600+0 3.000000+8 9.315800+0 3.062500+8 8.999940+0 3.335900+8 7.713230+0 3.445300+8 7.322270+0 3.500000+8 7.162300+0 3.562500+8 7.009690+0 4.000000+8 6.273800+0 4.125000+8 6.039640+0 4.234400+8 5.819780+0 4.425800+8 5.429600+0 4.784700+8 4.789380+0 4.928200+8 4.585710+0 5.000000+8 4.496800+0 5.125000+8 4.363030+0 6.000000+8 3.711000+0 7.000000+8 3.023600+0 7.625000+8 2.737110+0 7.875000+8 2.622300+0 8.000000+8 2.560700+0 8.125000+8 2.495610+0 1.000000+9 1.635000+0 1.031300+9 1.555540+0 1.060500+9 1.496290+0 1.100900+9 1.432200+0 1.137900+9 1.387010+0 1.183200+9 1.344320+0 1.375000+9 1.232960+0 1.500000+9 1.172800+0 1.562500+9 1.136260+0 1.641100+9 1.086360+0 1.706900+9 1.042860+0 1.811600+9 9.731720-1 1.905800+9 9.121550-1 2.000000+9 8.541500-1 2.139200+9 7.750430-1 2.272600+9 7.065190-1 2.443000+9 6.284880-1 2.602800+9 5.641660-1 2.750000+9 5.115460-1 2.825100+9 4.869230-1 3.024800+9 4.279960-1 3.208000+9 3.812890-1 3.432000+9 3.322550-1 3.719500+9 2.800670-1 4.039600+9 2.332740-1 4.279700+9 2.043640-1 4.639800+9 1.688390-1 5.000000+9 1.406500-1 5.375000+9 1.172490-1 5.703100+9 1.006640-1 6.277300+9 7.819230-2 7.031000+9 5.759160-2 8.000000+9 4.038200-2 1.00000+10 2.168700-2 1.54060+10 6.494390-3 2.73280+10 1.319600-3 4.54960+10 3.221500-4 7.27480+10 8.858240-5 1.00000+11 3.709400-5 1.34280+11 1.662370-5 2.20600+11 4.334750-6 4.19930+11 7.686390-7 1.03480+12 6.959210-8 3.24440+12 3.413130-9 1.00000+14 4.38410-13 3.16230+15 5.03292-17 1.00000+17 5.48510-21 1 79000 7 0 1.969670+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.20000-12 1.000000+2 6.20000-10 1.000000+3 6.200000-8 1.000000+4 6.200000-6 1.000000+5 6.200000-4 5.000000+5 1.550000-2 8.750000+5 4.746875-2 1.000000+6 6.200000-2 1.500000+6 1.380000-1 2.000000+6 2.428000-1 2.500000+6 3.746000-1 3.000000+6 5.312000-1 3.500000+6 7.102830-1 4.000000+6 9.093000-1 4.500000+6 1.125670+0 5.000000+6 1.357000+0 5.500000+6 1.600880+0 6.250000+6 1.985820+0 7.000000+6 2.387600+0 7.875000+6 2.869730+0 8.625000+6 3.290140+0 9.000000+6 3.501900+0 1.000000+7 4.068000+0 1.125000+7 4.776520+0 1.187500+7 5.130100+0 1.250000+7 5.482700+0 1.375000+7 6.182400+0 1.500000+7 6.875000+0 1.687500+7 7.899130+0 1.750000+7 8.236400+0 2.000000+7 9.560000+0 2.250000+7 1.084640+1 2.500000+7 1.210200+1 2.875000+7 1.394330+1 3.000000+7 1.455100+1 3.437500+7 1.665880+1 3.750000+7 1.814460+1 4.000000+7 1.932100+1 4.500000+7 2.162380+1 4.750000+7 2.274010+1 5.000000+7 2.382800+1 5.500000+7 2.589670+1 5.750000+7 2.687370+1 6.000000+7 2.781500+1 6.500000+7 2.957560+1 6.750000+7 3.040210+1 7.000000+7 3.119700+1 7.750000+7 3.339100+1 8.000000+7 3.407200+1 8.750000+7 3.598880+1 9.000000+7 3.659700+1 9.750000+7 3.833580+1 1.000000+8 3.889600+1 1.109400+8 4.122690+1 1.250000+8 4.401100+1 1.375000+8 4.630560+1 1.500000+8 4.845600+1 1.625000+8 5.045470+1 1.750000+8 5.231510+1 2.000000+8 5.560500+1 2.250000+8 5.835940+1 2.500000+8 6.065100+1 2.671900+8 6.199560+1 2.789100+8 6.281640+1 2.875000+8 6.338430+1 2.894500+8 6.350570+1 2.973600+8 6.398960+1 3.000000+8 6.414900+1 3.062500+8 6.450420+1 3.335900+8 6.592440+1 3.445300+8 6.643490+1 3.500000+8 6.667800+1 3.562500+8 6.694400+1 4.000000+8 6.861000+1 4.125000+8 6.902180+1 4.234400+8 6.937400+1 4.425800+8 6.994740+1 4.784700+8 7.091280+1 4.928200+8 7.126630+1 5.000000+8 7.144000+1 5.125000+8 7.172460+1 6.000000+8 7.343600+1 7.000000+8 7.484500+1 7.625000+8 7.548860+1 7.875000+8 7.571060+1 8.000000+8 7.581300+1 8.125000+8 7.590500+1 1.000000+9 7.694200+1 1.031300+9 7.705950+1 1.060500+9 7.716620+1 1.100900+9 7.729120+1 1.137900+9 7.740110+1 1.183200+9 7.752570+1 1.375000+9 7.792190+1 1.500000+9 7.812300+1 1.562500+9 7.820230+1 1.641100+9 7.829760+1 1.706900+9 7.837410+1 1.811600+9 7.847630+1 1.905800+9 7.855500+1 2.000000+9 7.863000+1 2.139200+9 7.871140+1 2.272600+9 7.877190+1 2.443000+9 7.883520+1 2.602800+9 7.888300+1 2.750000+9 7.891400+1 2.825100+9 7.892920+1 3.024800+9 7.895180+1 3.208000+9 7.896960+1 3.432000+9 7.898640+1 3.719500+9 7.899000+1 4.039600+9 7.899360+1 4.279700+9 7.899610+1 4.639800+9 7.899900+1 5.000000+9 7.899700+1 5.375000+9 7.899750+1 5.703100+9 7.899780+1 6.277300+9 7.899850+1 7.031000+9 7.899920+1 8.000000+9 7.900000+1 1.00000+10 7.900000+1 1.54060+10 7.900000+1 2.73280+10 7.900000+1 4.54960+10 7.900000+1 7.27480+10 7.900000+1 1.00000+11 7.900000+1 1.34280+11 7.900000+1 2.20600+11 7.900000+1 4.19930+11 7.900000+1 1.03480+12 7.900000+1 3.24440+12 7.900000+1 1.00000+14 7.900000+1 3.16230+15 7.900000+1 1.00000+17 7.900000+1 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.058561-6 0.0 2.063628-6 2.276436-8 2.068695-6 4.504438-8 2.073762-6 8.227725-8 2.078829-6 1.387307-7 2.083896-6 2.159333-7 2.088962-6 3.102560-7 2.094029-6 4.115047-7 2.099096-6 5.038292-7 2.104163-6 5.694370-7 2.109230-6 5.941034-7 2.114297-6 5.721795-7 2.119364-6 5.086938-7 2.124431-6 4.174790-7 2.134564-6 2.211836-7 2.139631-6 1.427884-7 2.144698-6 8.509168-8 2.149765-6 4.680963-8 2.154832-6 2.377045-8 2.159899-6 0.0 3.747549-6 0.0 3.756773-6 7.191464-8 3.765997-6 1.422992-7 3.775221-6 2.599212-7 3.784445-6 4.382629-7 3.793669-6 6.821525-7 3.802894-6 9.801266-7 3.812118-6 1.299980-6 3.821342-6 1.591641-6 3.830566-6 1.798903-6 3.839790-6 1.876826-6 3.849014-6 1.807566-6 3.858238-6 1.607009-6 3.867462-6 1.318854-6 3.885911-6 6.987387-7 3.895135-6 4.510814-7 3.904359-6 2.688122-7 3.913583-6 1.478758-7 3.922807-6 7.509297-8 3.932031-6 0.0 4.492151-6 0.0 4.508737-6 1.416617+0 4.514265-6 1.882833+0 4.525322-6 3.439148+0 4.536379-6 5.798876+0 4.548818-6 9.517693+0 4.567995-6 1.660432+1 4.581297-6 2.123083+1 4.592678-6 2.389663+1 4.604201-6 2.471076+1 4.615016-6 2.362012+1 4.627104-6 2.048181+1 4.645757-6 1.367662+1 4.658004-6 9.245363+0 4.669752-6 5.818089+0 4.680118-6 3.556790+0 4.691175-6 1.956619+0 4.707069-6 5.594709-1 4.713289-6 0.0 4.923943-6 0.0 4.945153-6 3.201296+0 4.948183-6 3.653958+0 4.960302-6 6.674253+0 4.972422-6 1.125371+1 4.986057-6 1.847071+1 5.007290-6 3.236814+1 5.021658-6 4.120204+1 5.034982-6 4.651546+1 5.046558-6 4.798546+1 5.058372-6 4.594297+1 5.071557-6 3.993785+1 5.090636-6 2.768000+1 5.105738-6 1.794220+1 5.117858-6 1.158286+1 5.129978-6 6.902557+0 5.142097-6 3.797153+0 5.160277-6 9.652517-1 5.166337-6 0.0 5.777309-6 0.0 5.791529-6 1.28221-14 5.805749-6 2.53715-14 5.819969-6 4.63431-14 5.834189-6 7.81408-14 5.848409-6 1.21626-13 5.862630-6 1.74753-13 5.876850-6 2.31782-13 5.891070-6 2.83784-13 5.905290-6 3.20738-13 5.919510-6 3.34632-13 5.933730-6 3.22283-13 5.947950-6 2.86524-13 5.962170-6 2.35147-13 5.990611-6 1.24583-13 6.004831-6 8.04263-14 6.019051-6 4.79283-14 6.033271-6 2.63658-14 6.047491-6 1.33888-14 6.061711-6 0.0 6.550713-6 0.0 6.574898-6 1.69868-12 6.582960-6 2.25772-12 6.586599-6 2.67813-12 6.610917-6 6.539186-2 6.619023-6 8.691265-2 6.635235-6 1.587531-1 6.651448-6 2.676795-1 6.667660-6 4.166409-1 6.701833-6 8.131752-1 6.718329-6 1.167319+0 6.751320-6 1.787755+0 6.770747-6 2.263805+0 6.801237-6 3.229458+0 6.835861-6 4.405255+0 6.851325-6 4.737917+0 6.867821-6 4.808924+0 6.884800-6 4.534770+0 6.903552-6 3.865136+0 6.949269-6 1.742534+0 6.965764-6 1.124918+0 6.982495-6 6.660878-1 6.999681-6 1.380205+0 7.016868-6 2.190403+0 7.034054-6 3.692340+0 7.052315-6 6.441838+0 7.070576-6 1.021839+1 7.101214-6 1.804678+1 7.121061-6 2.279385+1 7.139955-6 2.573334+1 7.156836-6 2.652004+1 7.173124-6 2.541663+1 7.191821-6 2.209447+1 7.218877-6 1.531317+1 7.240293-6 9.926010+0 7.257479-6 6.407887+0 7.274666-6 3.819025+0 7.291943-6 2.106184+0 7.321383-6 3.342615-1 7.326225-6 5.286790-2 7.329989-6 6.923248-2 7.345655-6 1.405997-1 7.357425-6 2.002777-1 7.375445-6 3.333103-1 7.393466-6 5.179432-1 7.416686-6 8.256833-1 7.453080-6 1.351162+0 7.470984-6 1.543222+0 7.483569-6 1.632767+0 7.501590-6 1.652256+0 7.519611-6 1.551526+0 7.537631-6 1.350890+0 7.585051-6 6.554025-1 7.591693-6 5.643045-1 7.609714-6 3.659225-1 7.628281-6 2.412565-1 7.645755-6 1.790804-1 7.665740-6 1.719967-1 7.681797-6 1.866012-1 7.684470-6 1.979859-1 7.703200-6 3.005000-1 7.750025-6 6.035754-1 7.759390-6 6.591897-1 7.778120-6 7.422396-1 7.796850-6 7.775438-1 7.815580-6 7.613276-1 7.843775-6 6.717610-1 7.867518-6 5.840618-1 7.893721-6 5.264319-1 7.913008-6 5.119924-1 7.984446-6 5.466826-1 8.084586-6 5.290727-1 8.189355-6 5.106121-1 8.239103-6 5.167813-1 8.239828-6 5.217987-1 8.278006-6 1.918418+0 8.281131-6 2.052480+0 8.301450-6 3.301647+0 8.323674-6 5.420767+0 8.345935-6 8.315244+0 8.404157-6 1.716241+1 8.428582-6 1.929402+1 8.447696-6 1.966705+1 8.467916-6 1.861207+1 8.489592-6 1.608544+1 8.543905-6 7.666721+0 8.564186-6 5.102901+0 8.584467-6 3.215248+0 8.604748-6 1.961831+0 8.645310-6 4.269871-1 8.671482-6 4.232965-1 8.714170-6 6.176538-1 8.735514-6 7.802613-1 8.756857-6 1.028542+0 8.761732-6 1.119525+0 8.789359-6 1.856716+0 8.805161-6 2.326950+0 8.838826-6 3.613653+0 8.889760-6 5.748786+0 8.912670-6 6.526639+0 8.934233-6 7.000450+0 8.954447-6 7.144886+0 8.977641-6 6.862413+0 9.005372-6 5.974559+0 9.057205-6 3.594778+0 9.083823-6 2.390370+0 9.098358-6 1.851256+0 9.105385-6 1.624930+0 9.126948-6 1.114030+0 9.148511-6 7.742054-1 9.191636-6 3.567439-1 9.356892-6 3.384659-1 9.379945-6 3.446359-1 9.426120-6 5.123399-1 9.449207-6 6.553362-1 9.472295-6 8.701389-1 9.498689-6 1.211076+0 9.564645-6 2.208708+0 9.590618-6 2.442440+0 9.613706-6 2.492182+0 9.636793-6 2.374110+0 9.664333-6 2.055884+0 9.715696-6 1.342121+0 9.727104-6 1.206903+0 9.749345-6 1.018157+0 9.766708-6 9.497113-1 9.774637-6 9.345089-1 9.795520-6 9.542115-1 9.825361-6 1.081038+0 9.846348-6 1.206656+0 9.870375-6 1.380230+0 9.882273-6 1.454970+0 9.906070-6 1.542769+0 9.929867-6 1.570091+0 1.002859-5 1.413544+0 1.025043-5 1.423930+0 1.033573-5 1.368584+0 1.037860-5 1.535124+0 1.041200-5 1.753973+0 1.044247-5 2.146308+0 1.046844-5 2.611808+0 1.054414-5 4.253374+0 1.057128-5 4.649289+0 1.059308-5 4.810333+0 1.062144-5 4.733114+0 1.065071-5 4.393326+0 1.074112-5 2.767148+0 1.076664-5 2.397757+0 1.079232-5 2.110259+0 1.084286-5 1.698607+0 1.088664-5 1.600468+0 1.096380-5 1.533942+0 1.102162-5 1.543944+0 1.107587-5 1.644743+0 1.110300-5 1.731858+0 1.113691-5 1.902823+0 1.118439-5 2.252613+0 1.125221-5 2.813221+0 1.129290-5 2.995405+0 1.132681-5 2.956618+0 1.137082-5 2.728364+0 1.142854-5 2.348387+0 1.145646-5 2.225056+0 1.148280-5 2.172692+0 1.151562-5 2.201471+0 1.162775-5 2.491869+0 1.174361-5 2.502444+0 1.220060-5 2.624248+0 1.383405-5 3.309639+0 1.543212-5 4.215314+0 1.737801-5 5.564855+0 2.010178-5 7.888654+0 2.398833-5 1.191236+1 2.960045-5 1.784418+1 3.281043-5 2.020004+1 3.625000-5 2.124219+1 4.035360-5 2.061781+1 4.702635-5 1.738209+1 5.182306-5 1.484364+1 5.205187-5 1.560706+1 5.220227-5 1.656368+1 5.232976-5 1.781096+1 5.257777-5 2.140116+1 5.281682-5 2.523090+1 5.299494-5 2.678605+1 5.312917-5 2.682668+1 5.323813-5 2.608564+1 5.339545-5 2.396796+1 5.370926-5 1.859779+1 5.383675-5 1.682068+1 5.396424-5 1.549698+1 5.413556-5 1.440324+1 5.436942-5 1.343808+1 5.759190-5 1.194828+1 5.816649-5 1.227537+1 5.884959-5 1.367106+1 5.915073-5 1.373843+1 5.993065-5 1.302535+1 6.156863-5 1.275465+1 6.868142-5 1.024297+1 6.918849-5 1.056359+1 6.953149-5 1.125943+1 7.018465-5 1.303796+1 7.036110-5 1.314217+1 7.069915-5 1.253411+1 7.137525-5 1.017855+1 7.171748-5 9.504699+0 7.221649-5 9.082969+0 7.481464-5 8.358615+0 7.581515-5 8.558068+0 7.664164-5 8.717075+0 7.900038-5 8.507203+0 9.042972-5 6.266376+0 1.001413-4 5.414839+0 1.095995-4 4.510556+0 1.118290-4 4.547613+0 1.135659-4 4.294781+0 1.230269-4 3.692820+0 1.307767-4 3.428938+0 1.375335-4 3.385252+0 1.453765-4 3.555291+0 1.536000-4 3.974717+0 1.625324-4 4.686358+0 1.745000-4 6.019245+0 1.873995-4 7.888784+0 2.438905-4 1.762176+1 2.799961-4 2.244523+1 3.115211-4 2.526712+1 3.288308-4 2.660959+1 3.372699-4 2.756656+1 3.485000-4 2.846988+1 4.062094-4 2.975846+1 4.986636-4 2.967337+1 5.217139-4 2.956309+1 5.432503-4 3.061879+1 6.829599-4 2.813287+1 7.366061-4 2.698328+1 7.586809-4 2.689637+1 1.005952-3 2.160311+1 1.221524-3 1.802088+1 1.473692-3 1.485496+1 1.737916-3 1.239324+1 2.077304-3 1.007135+1 2.162453-3 9.648620+0 2.177098-3 9.947129+0 2.185745-3 1.061357+1 2.193204-3 1.170749+1 2.201518-3 1.358233+1 2.226332-3 2.066082+1 2.236223-3 2.244434+1 2.250410-3 2.357245+1 2.279669-3 2.466416+1 2.320813-3 2.946013+1 2.346761-3 3.052173+1 2.515015-3 3.086758+1 2.698135-3 2.916454+1 2.766234-3 3.188308+1 3.111667-3 2.746601+1 3.190107-3 2.787169+1 3.380137-3 2.609996+1 3.466785-3 2.594538+1 4.000734-3 2.126507+1 4.632718-3 1.724339+1 5.321274-3 1.404468+1 6.174884-3 1.123447+1 6.948243-3 9.376075+0 7.850944-3 7.760402+0 8.925344-3 6.345337+0 1.020163-2 5.132493+0 1.159595-2 4.182545+0 1.170754-2 4.213511+0 1.176731-2 4.464044+0 1.181465-2 4.944551+0 1.187060-2 5.921059+0 1.198917-2 8.546581+0 1.204690-2 9.366530+0 1.212207-2 9.788472+0 1.240505-2 9.565892+0 1.352819-2 8.309410+0 1.364592-2 8.550614+0 1.377842-2 9.587757+0 1.388468-2 1.044452+1 1.401362-2 1.077470+1 1.420483-2 1.083836+1 1.447355-2 1.169574+1 1.491550-2 1.135870+1 1.731482-2 8.999746+0 1.994567-2 7.185040+0 2.278128-2 5.788991+0 2.603436-2 4.643448+0 2.942355-2 3.787725+0 3.249611-2 3.202493+0 3.678350-2 2.595488+0 4.122703-2 2.133830+0 4.654747-2 1.730826+0 5.237489-2 1.410656+0 5.877944-2 1.152806+0 6.596598-2 9.415781-1 7.468648-2 7.562872-1 7.898345-2 6.891276-1 7.943346-2 7.082184-1 7.970526-2 7.546468-1 7.992886-2 8.329066-1 8.011976-2 9.406468-1 8.034399-2 1.125120+0 8.061711-2 1.433770+0 8.133790-2 2.414858+0 8.171378-2 2.783851+0 8.211105-2 2.986669+0 8.286005-2 3.059092+0 9.671115-2 2.402647+0 1.082767-1 2.001904+0 1.223532-1 1.638395+0 1.378287-1 1.344659+0 1.537461-1 1.121474+0 1.725574-1 9.245206-1 1.934761-1 7.638378-1 2.177381-1 6.274056-1 2.443914-1 5.183583-1 2.753300-1 4.267397-1 3.088317-1 3.553511-1 3.467369-1 2.965208-1 3.893334-1 2.483757-1 4.403013-1 2.072164-1 4.972594-1 1.743799-1 5.631985-1 1.473043-1 6.386081-1 1.252831-1 7.370552-1 1.053734-1 8.389769-1 9.090191-2 9.773999-1 7.711475-2 1.173413+0 6.312083-2 1.347258+0 5.403524-2 1.546860+0 4.625743-2 1.776032+0 3.959915-2 2.039158+0 3.389926-2 2.341267+0 2.901981-2 2.688134+0 2.484271-2 3.102775+0 2.114592-2 3.710658+0 1.728659-2 4.260405+0 1.479836-2 4.891600+0 1.266829-2 5.616308+0 1.084482-2 6.448384+0 9.283823-3 7.403736+0 7.947513-3 8.500626+0 6.803551-3 9.760024+0 5.824250-3 1.000000+1 1.206340-2 1 79000 7 0 1.969670+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.895927+1 3.037850-6-7.837341+1 4.198390-6-7.580857+1 4.431380-6-7.222396+1 4.491342-6-6.829880+1 4.548818-6-6.122727+1 4.569549-6-6.291803+1 4.589720-6-6.949055+1 4.611109-6-7.915277+1 4.633728-6-7.070082+1 4.653340-6-6.838665+1 4.680118-6-7.092743+1 4.740839-6-7.864304+1 4.763234-6-7.878471+1 4.889697-6-7.081418+1 4.923348-6-6.566928+1 4.976588-6-5.334416+1 4.990696-6-5.227723+1 5.002816-6-5.384924+1 5.017066-6-5.947296+1 5.033583-6-7.115125+1 5.044088-6-7.918103+1 5.063059-6-6.308459+1 5.074975-6-5.544507+1 5.087653-6-5.045707+1 5.102330-6-4.866918+1 5.119373-6-5.079844+1 5.179940-6-6.436430+1 5.237947-6-6.948207+1 5.384369-6-7.390548+1 5.947950-6-7.814920+1 6.446234-6-7.934728+1 6.827789-6-7.589332+1 6.929035-6-7.819366+1 6.984072-6-7.452276+1 7.068427-6-6.638369+1 7.099628-6-6.755144+1 7.131131-6-7.415855+1 7.151218-6-7.980059+1 7.191821-6-6.728600+1 7.220991-6-6.308753+1 7.255331-6-6.354159+1 7.361930-6-7.298413+1 7.470984-6-7.565561+1 7.650842-6-7.694551+1 8.126050-6-8.033123+1 8.248141-6-7.690071+1 8.352725-6-7.215406+1 8.397970-6-7.513054+1 8.430602-6-8.086312+1 8.493672-6-6.955271+1 8.537809-6-6.719413+1 8.714170-6-7.617458+1 8.857484-6-7.934930+1 8.954447-6-7.597336+1 9.047731-6-7.261694+1 9.504890-6-7.861423+1 9.749345-6-7.746413+1 1.054414-5-8.018470+1 1.073186-5-7.698459+1 1.126577-5-7.939365+1 1.214143-5-7.939718+1 2.264644-5-8.206577+1 2.960045-5-7.855289+1 4.280092-5-6.442884+1 4.929493-5-6.167355+1 5.096315-5-6.147943+1 5.182306-5-5.889931+1 5.247817-5-5.548436+1 5.274510-5-5.701208+1 5.299494-5-6.141913+1 5.339545-5-5.341859+1 5.369133-5-5.167302+1 5.472676-5-5.648352+1 5.870074-5-6.026812+1 5.993065-5-5.898484+1 6.780410-5-5.812340+1 6.983443-5-5.930624+1 7.103720-5-5.538758+1 7.617424-5-5.810177+1 9.292537-5-5.828061+1 1.375335-4-6.260079+1 1.959539-4-6.919380+1 2.404408-4-6.887801+1 3.372699-4-6.021054+1 4.062094-4-5.277026+1 4.986636-4-4.581730+1 5.324729-4-4.444183+1 5.931619-4-3.986936+1 7.120328-4-3.441567+1 7.586809-4-3.281791+1 8.815244-4-2.931991+1 1.073063-3-2.642706+1 1.303167-3-2.507354+1 1.568489-3-2.529364+1 1.807118-3-2.704509+1 1.976982-3-2.982834+1 2.077304-3-3.293246+1 2.138781-3-3.643564+1 2.173025-3-4.039512+1 2.205012-3-4.634633+1 2.218374-3-4.671012+1 2.258040-3-4.200225+1 2.306213-3-4.096964+1 2.361216-3-3.516788+1 2.440029-3-3.070924+1 2.553654-3-2.623269+1 2.651391-3-2.389000+1 2.698135-3-2.400372+1 2.728782-3-2.442345+1 2.755105-3-2.336972+1 2.807344-3-2.041835+1 2.876764-3-1.830024+1 2.994230-3-1.612472+1 3.089485-3-1.527555+1 3.143135-3-1.522882+1 3.235937-3-1.333458+1 3.330114-3-1.232177+1 3.413498-3-1.187970+1 3.495839-3-1.054734+1 3.629530-3-9.201187+0 3.797988-3-8.008532+0 4.086454-3-6.599135+0 4.401221-3-5.594607+0 4.751883-3-4.862973+0 5.163896-3-4.356321+0 5.698643-3-4.046255+0 6.174884-3-3.944399+0 6.948243-3-4.038755+0 7.850944-3-4.366143+0 8.925344-3-4.991208+0 9.926519-3-5.841142+0 1.066350-2-6.789919+0 1.115027-2-7.777871+0 1.146608-2-8.844540+0 1.164211-2-9.904879+0 1.176731-2-1.134464+1 1.187060-2-1.271010+1 1.193645-2-1.289799+1 1.201983-2-1.209518+1 1.215071-2-1.028639+1 1.227892-2-9.235204+0 1.247886-2-8.370435+0 1.278064-2-7.704196+0 1.313523-2-7.460084+0 1.341794-2-7.708842+0 1.357563-2-8.276016+0 1.374662-2-9.074026+0 1.384701-2-8.881342+0 1.405926-2-7.721705+0 1.434400-2-7.297198+0 1.464422-2-5.829601+0 1.491550-2-4.982690+0 1.531087-2-4.161214+0 1.584893-2-3.372048+0 1.649027-2-2.706069+0 1.712971-2-2.221136+0 1.784482-2-1.816627+0 1.860778-2-1.481486+0 1.912301-2-1.303729+0 1.994567-2-1.084686+0 2.078548-2-9.153471-1 2.189333-2-7.578082-1 2.330577-2-6.259472-1 2.444134-2-5.667377-1 2.603436-2-5.239326-1 2.786121-2-5.146122-1 3.014946-2-5.377473-1 3.394910-2-6.304696-1 4.654747-2-1.039706+0 6.113479-2-1.553656+0 6.805553-2-1.872534+0 7.255229-2-2.173833+0 7.555249-2-2.486004+0 7.731373-2-2.773798+0 7.868000-2-3.141622+0 7.943346-2-3.506818+0 8.061711-2-4.401256+0 8.101395-2-4.472644+0 8.150707-2-4.222033+0 8.241064-2-3.438572+0 8.307252-2-3.043127+0 8.402018-2-2.688669+0 8.548206-2-2.333508+0 8.748094-2-2.014623+0 9.024026-2-1.711616+0 9.311484-2-1.487589+0 9.671115-2-1.287833+0 1.018854-1-1.092143+0 1.082767-1-9.315022-1 1.166354-1-7.972124-1 1.251308-1-7.167879-1 1.378287-1-6.525061-1 1.537461-1-6.199253-1 1.790155-1-6.178480-1 3.324442-1-7.524935-1 4.972594-1-8.268573-1 7.989139-1-8.750999-1 2.135261+0-9.022815-1 6.448384+0-9.085835-1 1.000000+1-9.081846-1 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.259814-3 1.073292-6 2.986961-3 1.106832-6 3.357684-3 1.141421-6 3.784178-3 1.177090-6 4.273849-3 1.251808-6 5.483743-3 1.331268-6 7.087122-3 1.415772-6 9.219374-3 1.505641-6 1.206503-2 1.601214-6 1.587684-2 1.702853-6 2.100302-2 1.810944-6 2.792654-2 1.925897-6 3.732255-2 2.048146-6 5.005937-2 2.178155-6 6.606281-2 2.246223-6 7.617046-2 2.316417-6 8.808184-2 2.388805-6 1.021567-1 2.463455-6 1.188357-1 2.540438-6 1.386616-1 2.619827-6 1.623062-1 2.701697-6 1.905961-1 2.783146-6 2.232765-1 2.862050-6 2.599271-1 2.938489-6 3.008410-1 3.153768-6 4.496334-1 3.221090-6 5.082972-1 3.286308-6 5.725712-1 3.349489-6 6.427883-1 3.410695-6 7.192888-1 3.469988-6 8.024208-1 3.527428-6 8.925407-1 3.583074-6 9.900125-1 3.636980-6 1.095208+0 3.689202-6 1.208509+0 3.739792-6 1.330399+0 3.882272-6 1.749084+0 3.926828-6 1.905038+0 3.969992-6 2.073823+0 4.053623-6 2.449687+0 4.132026-6 2.871944+0 4.205529-6 3.346314+0 4.274439-6 3.876909+0 4.339041-6 4.467858+0 4.399606-6 5.123365+0 4.456386-6 5.847735+0 4.509616-6 6.645372+0 4.559520-6 7.520773+0 4.606305-6 8.478527+0 4.650166-6 9.523308+0 4.691286-6 1.065987+1 4.729835-6 1.189293+1 4.765975-6 1.322668+1 4.800000-6 1.467133+1 4.831621-6 1.621187+1 4.861399-6 1.787378+1 4.889317-6 1.965665+1 4.915489-6 2.156622+1 4.940026-6 2.360793+1 4.963029-6 2.578721+1 4.984595-6 2.810949+1 5.004813-6 3.058030+1 5.023767-6 3.320528+1 5.041536-6 3.599025+1 5.058195-6 3.894130+1 5.073813-6 4.206488+1 5.088454-6 4.536781+1 5.102181-6 4.885720+1 5.115049-6 5.254056+1 5.127114-6 5.642605+1 5.138424-6 6.052300+1 5.149027-6 6.484260+1 5.158968-6 6.939849+1 5.177607-6 7.964841+1 5.193916-6 9.115453+1 5.208186-6 1.040830+2 5.220673-6 1.185236+2 5.231598-6 1.344331+2 5.241158-6 1.516191+2 5.249523-6 1.697670+2 5.256843-6 1.884907+2 5.263247-6 2.073865+2 5.273755-6 2.442399+2 5.285553-6 2.956250+2 5.310426-6 4.447158+2 5.321144-6 5.271142+2 5.327676-6 5.824260+2 5.334209-6 6.411826+2 5.347274-6 7.668233+2 5.348907-6 7.830713+2 5.360339-6 8.980602+2 5.364830-6 9.430302+2 5.373404-6 1.026622+3 5.377895-6 1.068441+3 5.382182-6 1.106587+3 5.388103-6 1.155726+3 5.393104-6 1.193403+3 5.399535-6 1.235756+3 5.405251-6 1.266861+3 5.411911-6 1.294443+3 5.419541-6 1.313599+3 5.426073-6 1.318846+3 5.428347-6 1.318201+3 5.434837-6 1.309319+3 5.440919-6 1.291646+3 5.444411-6 1.277531+3 5.450627-6 1.245580+3 5.456802-6 1.205760+3 5.466060-6 1.132799+3 5.471112-6 1.087297+3 5.475370-6 1.046385+3 5.480988-6 9.895057+2 5.485364-6 9.434020+2 5.490991-6 8.825370+2 5.496707-6 8.196823+2 5.502678-6 7.538297+2 5.510588-6 6.677724+2 5.516304-6 6.073624+2 5.518754-6 5.820999+2 5.524470-6 5.249122+2 5.530186-6 4.705291+2 5.544068-6 3.520138+2 5.548278-6 3.201663+2 5.552297-6 2.916016+2 5.556316-6 2.648290+2 5.563870-6 2.192960+2 5.570405-6 1.847812+2 5.577161-6 1.535993+2 5.582478-6 1.320793+2 5.587713-6 1.133104+2 5.592865-6 9.700691+1 5.597938-6 8.289889+1 5.605399-6 6.530961+1 5.612706-6 5.130642+1 5.617489-6 4.365238+1 5.626831-6 3.165550+1 5.638093-6 2.147312+1 5.642462-6 1.855122+1 5.646763-6 1.614914+1 5.648888-6 1.512073+1 5.650996-6 1.419679+1 5.653088-6 1.337009+1 5.655932-6 1.238198+1 5.657470-6 1.190914+1 5.659512-6 1.134496+1 5.661537-6 1.085344+1 5.663547-6 1.042973+1 5.667535-6 9.766025+0 5.671461-6 9.325760+0 5.675325-6 9.081543+0 5.682934-6 9.094248+0 5.690304-6 9.662989+0 5.704584-6 1.212241+1 5.731359-6 2.111610+1 5.743074-6 2.693688+1 5.754056-6 3.362943+1 5.764351-6 4.119513+1 5.799489-6 8.102141+1 5.813935-6 1.074413+2 5.823750-6 1.307278+2 5.832392-6 1.559229+2 5.837791-6 1.743722+2 5.847916-6 2.157628+2 5.864526-6 3.082141+2 5.890956-6 5.456435+2 5.905089-6 7.349001+2 5.915897-6 9.158810+2 5.924392-6 1.082365+3 5.933355-6 1.282283+3 5.940639-6 1.463331+3 5.947923-6 1.660733+3 5.962492-6 2.100834+3 5.964313-6 2.159625+3 5.977060-6 2.589354+3 5.982068-6 2.764648+3 5.991628-6 3.103624+3 5.999026-6 3.364913+3 6.006197-6 3.612415+3 6.013595-6 3.856961+3 6.020765-6 4.078737+3 6.027139-6 4.259536+3 6.033029-6 4.410186+3 6.036244-6 4.484935+3 6.044780-6 4.654814+3 6.051446-6 4.755997+3 6.059211-6 4.836254+3 6.065549-6 4.870421+3 6.079494-6 4.844694+3 6.086009-6 4.786079+3 6.094517-6 4.667654+3 6.100332-6 4.561464+3 6.104254-6 4.479290+3 6.109996-6 4.345009+3 6.115573-6 4.200453+3 6.122743-6 3.997325+3 6.129117-6 3.803705+3 6.135263-6 3.608367+3 6.144596-6 3.301677+3 6.151880-6 3.058956+3 6.160075-6 2.787680+3 6.166448-6 2.580999+3 6.181017-6 2.133490+3 6.190805-6 1.858880+3 6.195585-6 1.733649+3 6.206511-6 1.470767+3 6.219982-6 1.192328+3 6.250548-6 7.349560+2 6.255503-6 6.806272+2 6.265338-6 5.863684+2 6.275018-6 5.091314+2 6.284548-6 4.459061+2 6.293928-6 3.940866+2 6.303162-6 3.514723+2 6.312252-6 3.162431+2 6.321199-6 2.869179+2 6.330007-6 2.623084+2 6.338677-6 2.414707+2 6.355747-6 2.080669+2 6.372282-6 1.828189+2 6.388302-6 1.630852+2 6.403820-6 1.472263+2 6.418854-6 1.341944+2 6.433418-6 1.232943+2 6.447527-6 1.140457+2 6.461194-6 1.061052+2 6.487676-6 9.301173+1 6.512502-6 8.289021+1 6.535777-6 7.486153+1 6.557597-6 6.836121+1 6.578053-6 6.300913+1 6.597231-6 5.853947+1 6.633189-6 5.132771+1 6.664653-6 4.602404+1 6.692183-6 4.199919+1 6.716272-6 3.886990+1 6.758429-6 3.411812+1 6.790046-6 3.105094+1 6.837471-6 2.708268+1 6.918790-6 2.162308+1 7.105199-6 1.319177+1 7.206877-6 1.006351+1 7.223823-6 9.616901+0 7.452704-6 4.512247+0 7.474827-6 4.083492+0 7.505238-6 3.520343+0 7.531846-6 3.051076+0 7.555129-6 2.656890+0 7.581450-6 2.229197+0 7.593750-6 2.036356+0 7.608925-6 1.805653+0 7.622573-6 1.606290+0 7.646457-6 1.281710+0 7.664370-6 1.065809+0 7.677805-6 9.246859-1 7.687881-6 8.333071-1 7.695438-6 7.742411-1 7.701105-6 7.358850-1 7.709607-6 6.889077-1 7.713858-6 6.705805-1 7.718109-6 6.559639-1 7.720483-6 6.494936-1 7.728794-6 6.370723-1 7.737106-6 6.419658-1 7.746604-6 6.714097-1 7.751354-6 6.967115-1 7.753728-6 7.122208-1 7.756103-6 7.297243-1 7.758477-6 7.492923-1 7.766789-6 8.351313-1 7.770944-6 8.889594-1 7.776287-6 9.698736-1 7.778514-6 1.007720+0 7.790201-6 1.250642+0 7.795841-6 1.397413+0 7.813243-6 1.997002+0 7.838643-6 3.390867+0 7.852079-6 4.457476+0 7.864323-6 5.677406+0 7.870086-6 6.343808+0 7.880500-6 7.712064+0 7.890915-6 9.306719+0 7.899382-6 1.078001+1 7.909311-6 1.271680+1 7.918100-6 1.462163+1 7.924139-6 1.603241+1 7.932785-6 1.819187+1 7.941126-6 2.042097+1 7.949803-6 2.287572+1 7.957710-6 2.521492+1 7.965911-6 2.772092+1 7.974243-6 3.032277+1 7.983117-6 3.311959+1 7.991426-6 3.572530+1 8.000225-6 3.842800+1 8.008701-6 4.093443+1 8.014290-6 4.251473+1 8.023485-6 4.495419+1 8.032680-6 4.715198+1 8.036671-6 4.801921+1 8.044394-6 4.953218+1 8.052724-6 5.089981+1 8.071553-6 5.288119+1 8.079032-6 5.321867+1 8.092812-6 5.316418+1 8.099652-6 5.281931+1 8.105858-6 5.233209+1 8.111289-6 5.177583+1 8.120197-6 5.061715+1 8.127473-6 4.946267+1 8.137022-6 4.769706+1 8.146230-6 4.576525+1 8.149300-6 4.507888+1 8.159018-6 4.279144+1 8.168736-6 4.036997+1 8.173331-6 3.919283+1 8.183669-6 3.650140+1 8.187115-6 3.559818+1 8.206458-6 3.057876+1 8.218038-6 2.768997+1 8.227046-6 2.554030+1 8.242880-6 2.201686+1 8.258630-6 1.887801+1 8.285355-6 1.443049+1 8.308969-6 1.136934+1 8.325156-6 9.678614+0 8.341722-6 8.235477+0 8.356218-6 7.171472+0 8.381584-6 5.659733+0 8.457685-6 2.776143+0 8.478502-6 2.280844+0 8.488911-6 2.077967+0 8.499320-6 1.907171+0 8.506215-6 1.812771+0 8.513111-6 1.734140+0 8.516624-6 1.700378+0 8.520137-6 1.671002+0 8.530546-6 1.610659+0 8.540955-6 1.592082+0 8.547987-6 1.604241+0 8.551503-6 1.617993+0 8.555018-6 1.636932+0 8.575972-6 1.858807+0 8.580044-6 1.923559+0 8.584691-6 2.005899+0 8.599941-6 2.336946+0 8.627734-6 3.147142+0 8.640319-6 3.577507+0 8.651194-6 3.966269+0 8.657610-6 4.198509+0 8.665860-6 4.495787+0 8.676269-6 4.861555+0 8.685376-6 5.165784+0 8.688771-6 5.273974+0 8.696096-6 5.495725+0 8.703422-6 5.698864+0 8.724380-6 6.152973+0 8.728146-6 6.211776+0 8.745338-6 6.382117+0 8.754807-6 6.404805+0 8.762377-6 6.386401+0 8.772676-6 6.310561+0 8.782266-6 6.189917+0 8.790098-6 6.058319+0 8.795972-6 5.941782+0 8.800378-6 5.845183+0 8.810290-6 5.602239+0 8.813595-6 5.514301+0 8.825277-6 5.181002+0 8.829170-6 5.063630+0 8.839650-6 4.737335+0 8.850129-6 4.402870+0 8.864528-6 3.945511+0 8.878675-6 3.516001+0 8.906636-6 2.781858+0 8.925436-6 2.402190+0 8.935624-6 2.238263+0 8.942064-6 2.149590+0 8.947699-6 2.081182+0 8.952629-6 2.028094+0 8.961258-6 1.949571+0 8.967729-6 1.901858+0 8.972582-6 1.871841+0 8.979863-6 1.835243+0 8.987143-6 1.807643+0 8.997990-6 1.780432+0 9.008836-6 1.766066+0 9.026462-6 1.759643+0 9.057201-6 1.759549+0 9.074700-6 1.748439+0 9.088990-6 1.728770+0 9.099708-6 1.707328+0 9.115785-6 1.665121+0 9.131862-6 1.612917+0 9.160691-6 1.504136+0 9.212589-6 1.306490+0 9.228055-6 1.254617+0 9.258037-6 1.166212+0 9.291871-6 1.083896+0 9.311307-6 1.043590+0 9.340228-6 9.917997-1 9.367083-6 9.523409-1 9.388655-6 9.271021-1 9.405434-6 9.118052-1 9.424476-6 8.993474-1 9.446091-6 8.917933-1 9.464005-6 8.909328-1 9.485378-6 8.962811-1 9.504280-6 9.067179-1 9.527294-6 9.266570-1 9.547491-6 9.509533-1 9.565110-6 9.778110-1 9.585124-6 1.015581+0 9.602691-6 1.056066+0 9.622635-6 1.111626+0 9.636518-6 1.157001+0 9.658527-6 1.241005+0 9.684603-6 1.359306+0 9.723199-6 1.560829+0 9.736808-6 1.633462+0 9.763532-6 1.764568+0 9.785150-6 1.846985+0 9.808656-6 1.899065+0 9.835194-6 1.900866+0 9.844228-6 1.887678+0 9.872564-6 1.811460+0 9.885052-6 1.769353+0 9.902682-6 1.716467+0 9.914435-6 1.695623+0 9.926188-6 1.696375+0 9.937941-6 1.729420+0 9.949694-6 1.807661+0 9.961447-6 1.946624+0 9.973201-6 2.164977+0 9.984954-6 2.485133+0 9.992061-6 2.739227+0 9.996707-6 2.933936+0 1.000846-5 3.543410+0 1.002021-5 4.351524+0 1.002900-5 5.111925+0 1.003724-5 5.967142+0 1.006535-5 1.020835+1 1.007728-5 1.279338+1 1.008772-5 1.553708+1 1.009686-5 1.835942+1 1.010485-5 2.118935+1 1.011797-5 2.664830+1 1.012801-5 3.159134+1 1.013621-5 3.617317+1 1.014697-5 4.298466+1 1.015886-5 5.166074+1 1.017091-5 6.177565+1 1.017836-5 6.873616+1 1.018581-5 7.625467+1 1.019832-5 9.015412+1 1.020926-5 1.036535+2 1.021082-5 1.056838+2 1.023583-5 1.415170+2 1.024033-5 1.485890+2 1.026241-5 1.857145+2 1.027047-5 2.000812+2 1.028585-5 2.282961+2 1.029445-5 2.443053+2 1.030471-5 2.634070+2 1.031399-5 2.804962+2 1.032356-5 2.977243+2 1.033356-5 3.150561+2 1.034212-5 3.291672+2 1.035297-5 3.458349+2 1.036244-5 3.590811+2 1.037710-5 3.767046+2 1.038780-5 3.870858+2 1.039924-5 3.956363+2 1.041110-5 4.015406+2 1.042269-5 4.043052+2 1.043426-5 4.040701+2 1.044353-5 4.017495+2 1.046248-5 3.913689+2 1.047439-5 3.812694+2 1.048593-5 3.691456+2 1.049863-5 3.534957+2 1.051094-5 3.364089+2 1.052188-5 3.199669+2 1.053243-5 3.032764+2 1.054845-5 2.769365+2 1.056096-5 2.560185+2 1.057503-5 2.326005+2 1.058597-5 2.147478+2 1.061098-5 1.761125+2 1.061957-5 1.637456+2 1.063599-5 1.416747+2 1.065474-5 1.191071+2 1.067004-5 1.028648+2 1.069112-5 8.359470+1 1.074909-5 4.689709+1 1.077234-5 3.747701+1 1.079450-5 3.053083+1 1.081762-5 2.492635+1 1.083476-5 2.161344+1 1.085302-5 1.869699+1 1.087014-5 1.642046+1 1.090223-5 1.304287+1 1.093032-5 1.077271+1 1.099790-5 6.910662+0 1.103016-5 5.581736+0 1.107854-5 3.997930+0 1.118170-5 1.797731+0 1.120909-5 1.438553+0 1.123647-5 1.169854+0 1.126386-5 9.910764-1 1.129125-5 9.009521-1 1.130494-5 8.888851-1 1.131864-5 8.992268-1 1.133233-5 9.331317-1 1.134602-5 9.929624-1 1.135972-5 1.082882+0 1.137341-5 1.209576+0 1.138026-5 1.289694+0 1.139053-5 1.435348+0 1.140080-5 1.617736+0 1.141278-5 1.888466+0 1.142241-5 2.162129+0 1.143461-5 2.598626+0 1.144581-5 3.108928+0 1.145558-5 3.658734+0 1.146462-5 4.271265+0 1.148296-5 5.891373+0 1.151377-5 1.014147+1 1.152763-5 1.287637+1 1.154317-5 1.670798+1 1.155690-5 2.086262+1 1.156990-5 2.554916+1 1.157555-5 2.783274+1 1.158403-5 3.155375+1 1.159251-5 3.564365+1 1.159848-5 3.875070+1 1.160743-5 4.377511+1 1.161816-5 5.038466+1 1.162150-5 5.257033+1 1.163900-5 6.506843+1 1.165020-5 7.394601+1 1.167468-5 9.555796+1 1.168509-5 1.055488+2 1.170352-5 1.241067+2 1.171269-5 1.336314+2 1.172363-5 1.451217+2 1.173375-5 1.557643+2 1.174464-5 1.671007+2 1.175602-5 1.786595+2 1.176576-5 1.881964+2 1.177809-5 1.996307+2 1.178798-5 2.081454+2 1.180177-5 2.188323+2 1.181371-5 2.268103+2 1.182218-5 2.316660+2 1.183582-5 2.379578+2 1.184861-5 2.420495+2 1.185680-5 2.437166+2 1.186854-5 2.447816+2 1.188112-5 2.441976+2 1.190268-5 2.391728+2 1.191623-5 2.335853+2 1.192936-5 2.265589+2 1.193993-5 2.198697+2 1.195255-5 2.108421+2 1.196012-5 2.049531+2 1.197300-5 1.942614+2 1.198542-5 1.833201+2 1.198956-5 1.795684+2 1.200213-5 1.679457+2 1.201471-5 1.561308+2 1.203072-5 1.410929+2 1.204317-5 1.295829+2 1.207162-5 1.046207+2 1.207520-5 1.016586+2 1.210027-5 8.233995+1 1.212146-5 6.817630+1 1.215983-5 4.807424+1 1.217015-5 4.390919+1 1.217988-5 4.044930+1 1.218962-5 3.743737+1 1.219986-5 3.473965+1 1.221940-5 3.086517+1 1.222312-5 3.030813+1 1.222964-5 2.946600+1 1.224918-5 2.789683+1 1.225543-5 2.767787+1 1.226256-5 2.758222+1 1.226790-5 2.761305+1 1.227592-5 2.781443+1 1.228394-5 2.818960+1 1.229452-5 2.892625+1 1.230584-5 2.998381+1 1.231450-5 3.095614+1 1.233087-5 3.310420+1 1.237041-5 3.927566+1 1.238884-5 4.224789+1 1.240360-5 4.451695+1 1.241060-5 4.553333+1 1.242635-5 4.763382+1 1.243801-5 4.898918+1 1.246728-5 5.147808+1 1.247841-5 5.204239+1 1.249966-5 5.249756+1 1.251370-5 5.234858+1 1.252516-5 5.196830+1 1.253376-5 5.153639+1 1.254667-5 5.066528+1 1.255957-5 4.954549+1 1.257024-5 4.844833+1 1.258092-5 4.721341+1 1.260017-5 4.469211+1 1.260658-5 4.378142+1 1.261948-5 4.186784+1 1.263637-5 3.923477+1 1.264943-5 3.713708+1 1.267939-5 3.228467+1 1.269593-5 2.965993+1 1.270934-5 2.759747+1 1.272079-5 2.589618+1 1.275515-5 2.120844+1 1.279968-5 1.623536+1 1.281794-5 1.458370+1 1.284933-5 1.226509+1 1.286587-5 1.129835+1 1.288250-5 1.049234+1 1.289025-5 1.017064+1 1.291380-5 9.389400+0 1.292544-5 9.103651+0 1.294290-5 8.785554+0 1.296036-5 8.584085+0 1.297227-5 8.503843+0 1.299013-5 8.455045+0 1.300800-5 8.473094+0 1.303940-5 8.602818+0 1.307080-5 8.766895+0 1.310220-5 8.877747+0 1.311072-5 8.890167+0 1.313627-5 8.870060+0 1.315243-5 8.809657+0 1.316456-5 8.739927+0 1.318275-5 8.598119+0 1.320093-5 8.416328+0 1.321437-5 8.260526+0 1.322780-5 8.090132+0 1.325920-5 7.655086+0 1.334183-5 6.527271+0 1.335339-5 6.392382+0 1.338479-5 6.064809+0 1.341507-5 5.799812+0 1.346096-5 5.472844+0 1.358045-5 4.783604+0 1.364237-5 4.407509+0 1.367755-5 4.176185+0 1.371279-5 3.932986+0 1.374364-5 3.713901+0 1.381948-5 3.197186+0 1.384116-5 3.073876+0 1.385442-5 3.008901+0 1.387368-5 2.933088+0 1.389259-5 2.885375+0 1.390620-5 2.871034+0 1.391464-5 2.871822+0 1.392201-5 2.879172+0 1.393023-5 2.895216+0 1.394574-5 2.950072+0 1.396006-5 3.032141+0 1.396946-5 3.103926+0 1.398074-5 3.210129+0 1.398988-5 3.313188+0 1.400828-5 3.569266+0 1.401458-5 3.672453+0 1.402720-5 3.904314+0 1.404175-5 4.213800+0 1.405696-5 4.586205+0 1.407418-5 5.068104+0 1.412138-5 6.697495+0 1.415163-5 7.937005+0 1.416877-5 8.684126+0 1.417979-5 9.174368+0 1.419852-5 1.001343+1 1.421200-5 1.061328+1 1.422970-5 1.138135+1 1.424676-5 1.208671+1 1.425245-5 1.231150+1 1.426785-5 1.288834+1 1.428325-5 1.341058+1 1.430279-5 1.398014+1 1.431798-5 1.434210+1 1.433054-5 1.458313+1 1.435271-5 1.487259+1 1.435705-5 1.490839+1 1.438744-5 1.496584+1 1.439722-5 1.491353+1 1.441189-5 1.477311+1 1.442655-5 1.456203+1 1.443469-5 1.441634+1 1.445063-5 1.407628+1 1.445960-5 1.385572+1 1.447561-5 1.341587+1 1.449163-5 1.292532+1 1.450562-5 1.246337+1 1.451960-5 1.197736+1 1.453680-5 1.135702+1 1.455399-5 1.072263+1 1.458837-5 9.456074+0 1.464632-5 7.502914+0 1.466527-5 6.949631+0 1.470000-5 6.075099+0 1.470906-5 5.878719+0 1.473473-5 5.395362+0 1.476615-5 4.952842+0 1.478146-5 4.795517+0 1.480419-5 4.629763+0 1.481767-5 4.567969+0 1.485387-5 4.525050+0 1.487205-5 4.563848+0 1.489023-5 4.636937+0 1.490422-5 4.713334+0 1.492521-5 4.854810+0 1.495949-5 5.134029+0 1.499937-5 5.487514+0 1.501828-5 5.649428+0 1.503718-5 5.799909+0 1.506494-5 5.990514+0 1.507419-5 6.044303+0 1.511120-5 6.203702+0 1.512971-5 6.248603+0 1.514822-5 6.270842+0 1.516801-5 6.271343+0 1.519770-5 6.233421+0 1.522740-5 6.160550+0 1.532681-5 5.839698+0 1.537424-5 5.724852+0 1.540201-5 5.679729+0 1.544129-5 5.641961+0 1.547488-5 5.628882+0 1.568799-5 5.646519+0 1.588011-5 5.635188+0 1.597977-5 5.661811+0 1.611487-5 5.743287+0 1.630332-5 5.907675+0 1.661796-5 6.240340+0 1.678804-5 6.452063+0 1.700947-5 6.779779+0 1.730000-5 7.290763+0 1.754517-5 7.810503+0 1.781932-5 8.478847+0 1.798871-5 8.937448+0 1.837617-5 1.014286+1 1.895043-5 1.227713+1 1.920232-5 1.337833+1 1.954263-5 1.503595+1 2.018366-5 1.856409+1 2.078313-5 2.253548+1 2.133352-5 2.669579+1 2.237111-5 3.607035+1 2.325593-5 4.588420+1 2.393151-5 5.446619+1 2.472363-5 6.597507+1 2.537860-5 7.667867+1 2.620886-5 9.175631+1 2.710000-5 1.098761+2 2.768508-5 1.228090+2 2.827016-5 1.366014+2 2.934708-5 1.639765+2 2.985383-5 1.776596+2 3.073016-5 2.022946+2 3.178040-5 2.333601+2 3.273407-5 2.623694+2 3.345852-5 2.844119+2 3.443027-5 3.139156+2 3.511334-5 3.342437+2 3.589219-5 3.564652+2 3.651922-5 3.736720+2 3.745706-5 3.978503+2 3.833297-5 4.187652+2 3.952481-5 4.439358+2 4.041372-5 4.601163+2 4.148648-5 4.762779+2 4.240562-5 4.881075+2 4.329040-5 4.970626+2 4.390162-5 5.021589+2 4.500000-5 5.094093+2 4.608000-5 5.140171+2 4.739168-5 5.170436+2 4.866531-5 5.175398+2 5.070173-5 5.142453+2 5.219284-5 5.094015+2 5.352292-5 5.035261+2 5.624520-5 4.885690+2 5.804296-5 4.770965+2 5.969494-5 4.643551+2 6.138397-5 4.490063+2 6.264536-5 4.346600+2 6.357053-5 4.200663+2 6.422225-5 4.074339+2 6.453840-5 4.029639+2 6.471623-5 4.018795+2 6.487431-5 4.020913+2 6.502850-5 4.034727+2 6.521537-5 4.066609+2 6.553600-5 4.150084+2 6.582720-5 4.235014+2 6.599525-5 4.277810+2 6.622211-5 4.321326+2 6.657443-5 4.353688+2 6.771408-5 4.356614+2 6.867172-5 4.375022+2 7.110000-5 4.368463+2 7.376087-5 4.312924+2 7.621641-5 4.230281+2 7.897983-5 4.101431+2 8.154072-5 3.946273+2 8.374302-5 3.758522+2 8.403888-5 3.743250+2 8.455520-5 3.732707+2 8.681107-5 3.754692+2 8.789066-5 3.758301+2 8.900158-5 3.749777+2 9.280972-5 3.679240+2 9.760394-5 3.554328+2 1.010340-4 3.440527+2 1.038877-4 3.329974+2 1.062119-4 3.233692+2 1.096248-4 3.080959+2 1.143522-4 2.944164+2 1.216540-4 2.797591+2 1.237035-4 2.736968+2 1.260000-4 2.671387+2 1.280832-4 2.625854+2 1.315000-4 2.545081+2 1.340000-4 2.478860+2 1.368516-4 2.398664+2 1.396368-4 2.317729+2 1.442400-4 2.180070+2 1.486375-4 2.046651+2 1.526930-4 1.924512+2 1.594043-4 1.731461+2 1.729101-4 1.402217+2 1.760000-4 1.341736+2 1.793324-4 1.283937+2 1.830846-4 1.228975+2 1.872931-4 1.180564+2 1.905461-4 1.155348+2 1.958513-4 1.139908+2 2.020917-4 1.158613+2 2.071462-4 1.204143+2 2.129116-4 1.288252+2 2.170486-4 1.370200+2 2.215000-4 1.476087+2 2.251533-4 1.574874+2 2.300000-4 1.723429+2 2.400000-4 2.080261+2 2.520000-4 2.585392+2 2.605924-4 2.986684+2 2.660725-4 3.257367+2 2.754229-4 3.739997+2 2.859211-4 4.304387+2 2.949120-4 4.796360+2 3.040056-4 5.291012+2 3.126079-4 5.750171+2 3.251607-4 6.387035+2 3.368962-4 6.938769+2 3.463371-4 7.358983+2 3.495315-4 7.539423+2 3.550000-4 7.898488+2 3.591343-4 8.121249+2 3.625105-4 8.289463+2 3.661627-4 8.494340+2 3.732780-4 8.979760+2 3.752814-4 9.097965+2 3.932160-4 9.925575+2 4.169272-4 1.097615+3 4.387845-4 1.186956+3 4.637137-4 1.276989+3 4.856219-4 1.345126+3 5.108859-4 1.413578+3 5.341627-4 1.464079+3 5.488875-4 1.483992+3 5.564872-4 1.491159+3 5.603478-4 1.498472+3 5.647230-4 1.514443+3 5.680316-4 1.532522+3 5.773066-4 1.592286+3 5.850859-4 1.630268+3 6.003222-4 1.679437+3 6.219458-4 1.732509+3 6.509158-4 1.788286+3 6.652622-4 1.811787+3 6.855553-4 1.857942+3 7.059111-4 1.895701+3 7.399658-4 1.938329+3 7.740161-4 1.968488+3 7.946338-4 1.998062+3 8.087721-4 2.021005+3 8.409794-4 2.058615+3 8.850000-4 2.094505+3 9.372922-4 2.125746+3 9.915824-4 2.147073+3 1.050147-3 2.160823+3 1.110805-3 2.167278+3 1.184234-3 2.163331+3 1.266193-3 2.141625+3 1.351019-3 2.112770+3 1.431448-3 2.080237+3 1.516988-3 2.038696+3 1.602395-3 1.989667+3 1.696158-3 1.922850+3 1.785231-3 1.844772+3 1.861244-3 1.770044+3 1.929954-3 1.693438+3 1.989647-3 1.617289+3 2.043673-3 1.537414+3 2.088020-3 1.460948+3 2.127112-3 1.380767+3 2.158690-3 1.304653+3 2.182348-3 1.238020+3 2.205006-3 1.162027+3 2.222321-3 1.091555+3 2.236384-3 1.023172+3 2.247472-3 9.617357+2 2.267071-3 8.504144+2 2.272405-3 8.254228+2 2.278023-3 8.047923+2 2.281043-3 7.967540+2 2.283685-3 7.917282+2 2.286417-3 7.886515+2 2.289690-3 7.879590+2 2.293324-3 7.911358+2 2.295894-3 7.959023+2 2.299661-3 8.065685+2 2.303486-3 8.216133+2 2.308435-3 8.466305+2 2.312715-3 8.723864+2 2.329880-3 9.929027+2 2.335236-3 1.029544+3 2.341209-3 1.067063+3 2.349334-3 1.111299+3 2.357429-3 1.148157+3 2.379844-3 1.235847+3 2.388499-3 1.274388+3 2.397352-3 1.319814+3 2.420248-3 1.456495+3 2.429267-3 1.510442+3 2.441153-3 1.575656+3 2.455736-3 1.644136+3 2.475997-3 1.721126+3 2.501104-3 1.798322+3 2.529123-3 1.870860+3 2.563351-3 1.946594+3 2.609901-3 2.034060+3 2.652883-3 2.101234+3 2.695381-3 2.153281+3 2.730615-3 2.179694+3 2.755589-3 2.183749+3 2.800768-3 2.167524+3 2.811542-3 2.170205+3 2.822419-3 2.180989+3 2.831070-3 2.196333+3 2.846664-3 2.238208+3 2.876887-3 2.344048+3 2.891338-3 2.390360+3 2.907412-3 2.432489+3 2.926934-3 2.471149+3 2.950898-3 2.505501+3 2.985383-3 2.540823+3 3.015459-3 2.563455+3 3.064044-3 2.589287+3 3.103666-3 2.602455+3 3.148332-3 2.608848+3 3.180064-3 2.606567+3 3.249140-3 2.590386+3 3.276800-3 2.600831+3 3.336499-3 2.656667+3 3.360052-3 2.672989+3 3.393321-3 2.686043+3 3.430559-3 2.690967+3 3.512482-3 2.687248+3 3.547339-3 2.699010+3 3.627383-3 2.743834+3 3.666917-3 2.755556+3 3.775491-3 2.767020+3 3.904916-3 2.764716+3 4.097321-3 2.742080+3 4.384293-3 2.688248+3 4.598097-3 2.638287+3 4.945911-3 2.546886+3 5.204592-3 2.475988+3 5.641651-3 2.352756+3 6.038617-3 2.243057+3 6.437985-3 2.136535+3 6.937315-3 2.008502+3 7.593967-3 1.851764+3 8.282363-3 1.700151+3 8.614973-3 1.631181+3 8.993438-3 1.555152+3 9.372922-3 1.481909+3 9.774335-3 1.406789+3 1.009035-2 1.349088+3 1.037346-2 1.297142+3 1.065369-2 1.245974+3 1.090020-2 1.200392+3 1.111187-2 1.160279+3 1.129476-2 1.124212+3 1.144175-2 1.093525+3 1.157147-2 1.064722+3 1.166679-2 1.041992+3 1.175931-2 1.017931+3 1.184432-2 9.930903+2 1.191356-2 9.698265+2 1.196764-2 9.490920+2 1.204701-2 9.145216+2 1.215948-2 8.653604+2 1.220897-2 8.500785+2 1.224644-2 8.435064+2 1.226906-2 8.419642+2 1.229510-2 8.425149+2 1.234064-2 8.490931+2 1.239180-2 8.632403+2 1.252866-2 9.119065+2 1.259714-2 9.312418+2 1.263918-2 9.402401+2 1.269997-2 9.498465+2 1.276858-2 9.569578+2 1.284439-2 9.616231+2 1.293184-2 9.641600+2 1.303538-2 9.643527+2 1.313430-2 9.623903+2 1.325974-2 9.575535+2 1.339078-2 9.500514+2 1.352427-2 9.399174+2 1.363663-2 9.293287+2 1.374245-2 9.171587+2 1.382833-2 9.051386+2 1.396220-2 8.817026+2 1.409891-2 8.557296+2 1.416736-2 8.462141+2 1.423354-2 8.417019+2 1.429600-2 8.421267+2 1.441091-2 8.511643+2 1.454719-2 8.628004+2 1.481062-2 8.728038+2 1.495159-2 8.843945+2 1.515592-2 9.029241+2 1.523969-2 9.077747+2 1.533292-2 9.111870+2 1.556364-2 9.138379+2 1.585583-2 9.110252+2 1.635874-2 8.987995+2 1.702600-2 8.753350+2 1.774445-2 8.457946+2 1.862671-2 8.073384+2 1.956612-2 7.668341+2 2.095318-2 7.095681+2 2.307391-2 6.309610+2 2.559207-2 5.518824+2 2.886684-2 4.681841+2 3.170426-2 4.099038+2 3.440562-2 3.636420+2 3.744076-2 3.198928+2 4.067612-2 2.803636+2 4.779418-2 2.145220+2 5.351512-2 1.770877+2 5.790402-2 1.542124+2 6.256980-2 1.340114+2 6.760830-2 1.159057+2 7.156604-2 1.036733+2 7.456753-2 9.516693+1 7.684038-2 8.892222+1 7.861863-2 8.393558+1 7.980819-2 8.034547+1 8.032634-2 7.862374+1 8.075949-2 7.704885+1 8.140160-2 7.438740+1 8.256592-2 6.912113+1 8.289505-2 6.806005+1 8.320504-2 6.747031+1 8.354707-2 6.733636+1 8.383699-2 6.761147+1 8.436220-2 6.870567+1 8.520864-2 7.068527+1 8.568438-2 7.142524+1 8.600549-2 7.174795+1 8.642489-2 7.199777+1 8.740601-2 7.209350+1 8.867350-2 7.168043+1 9.016180-2 7.081171+1 9.291920-2 6.873665+1 9.626127-2 6.588321+1 1.004284-1 6.220007+1 1.056448-1 5.770562+1 1.125708-1 5.221031+1 1.223647-1 4.546826+1 1.360887-1 3.782673+1 1.639944-1 2.715191+1 1.994336-1 1.904544+1 2.351206-1 1.405618+1 2.876327-1 9.624929+0 3.630781-1 6.170960+0 4.958960-1 3.377830+0 7.212827-1 1.625366+0 1.173413+0 6.237237-1 2.039158+0 2.083722-1 5.145044+0 3.287445-2 1.546860+1 3.638867-3 4.671441+1 3.990161-4 1.410753+2 4.375151-5 4.260405+2 4.797260-6 1.584893+3 3.466531-7 5.011872+3 3.466531-8 1.584893+4 3.466531-9 5.011872+4 3.46653-10 1.000000+5 8.70753-11 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.491600-6 1.258900-6 2.364000-6 1.584900-6 3.746700-6 1.995300-6 5.938100-6 2.511900-6 9.411200-6 3.162300-6 1.491600-5 3.981100-6 2.364000-5 5.011900-6 3.746600-5 6.309600-6 5.938000-5 7.943300-6 9.411000-5 1.000000-5 1.491500-4 1.258900-5 2.363900-4 1.584900-5 3.746400-4 1.995300-5 5.937500-4 2.511900-5 9.410100-4 3.162300-5 1.491300-3 3.981100-5 2.363000-3 5.011900-5 3.744300-3 6.309600-5 5.933100-3 7.943300-5 9.393300-3 1.000000-4 1.486800-2 1.258900-4 2.353900-2 1.584900-4 3.720800-2 1.995300-4 5.877300-2 2.511900-4 9.262500-2 3.162300-4 1.455300-1 3.981100-4 2.275300-1 5.011900-4 3.531500-1 6.309600-4 5.405300-1 7.943300-4 8.113100-1 1.000000-3 1.187700+0 1.258900-3 1.687300+0 1.584900-3 2.321400+0 1.995300-3 3.103200+0 2.511900-3 4.060900+0 3.162300-3 5.233900+0 3.981100-3 6.660800+0 5.011900-3 8.377600+0 6.309600-3 1.043600+1 7.943300-3 1.281200+1 1.000000-2 1.541000+1 1.258900-2 1.807300+1 1.584900-2 2.076000+1 1.995300-2 2.350600+1 2.511900-2 2.620400+1 3.162300-2 2.870600+1 3.981100-2 3.072700+1 5.011900-2 3.237600+1 6.309600-2 3.337600+1 7.943300-2 3.379500+1 1.000000-1 3.364900+1 1.258900-1 3.296900+1 1.584900-1 3.182500+1 1.995300-1 3.031900+1 2.511900-1 2.856200+1 3.162300-1 2.664400+1 3.981100-1 2.464000+1 5.011900-1 2.260900+1 6.309600-1 2.059600+1 7.943300-1 1.863400+1 1.000000+0 1.674600+1 1.258900+0 1.494900+1 1.584900+0 1.325800+1 1.995300+0 1.168000+1 2.511900+0 1.022300+1 3.162300+0 8.891400+0 3.981100+0 7.687200+0 5.011900+0 6.608700+0 6.309600+0 5.651200+0 7.943300+0 4.809700+0 1.000000+1 4.075100+0 1.258900+1 3.438800+0 1.584900+1 2.891100+0 1.995300+1 2.422600+0 2.511900+1 2.024000+0 3.162300+1 1.686300+0 3.981100+1 1.401600+0 5.011900+1 1.162400+0 6.309600+1 9.620100-1 7.943300+1 7.947500-1 1.000000+2 6.554900-1 1.258900+2 5.398100-1 1.584900+2 4.439300-1 1.995300+2 3.646100-1 2.511900+2 2.991200-1 3.162300+2 2.451200-1 3.981100+2 2.006700-1 5.011900+2 1.641300-1 6.309600+2 1.341200-1 7.943300+2 1.095100-1 1.000000+3 8.934700-2 1.258900+3 7.284400-2 1.584900+3 5.934800-2 1.995300+3 4.832200-2 2.511900+3 3.932000-2 3.162300+3 3.197700-2 3.981100+3 2.599100-2 5.011900+3 2.111400-2 6.309600+3 1.714400-2 7.943300+3 1.391400-2 1.000000+4 1.128700-2 1.258900+4 9.152000-3 1.584900+4 7.417800-3 1.995300+4 6.009800-3 2.511900+4 4.867200-3 3.162300+4 3.940300-3 3.981100+4 3.188800-3 5.011900+4 2.579800-3 6.309600+4 2.086400-3 7.943300+4 1.686800-3 1.000000+5 1.363300-3 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976754-4 5.011872-4 5.005049-4 6.309573-4 6.298790-4 7.943282-4 7.926361-4 1.000000-3 9.973458-4 1.258925-3 1.254768-3 1.584893-3 1.578409-3 1.995262-3 1.985170-3 2.511886-3 2.496110-3 3.162278-3 3.137597-3 3.981072-3 3.942469-3 5.011872-3 4.951287-3 6.309573-3 6.214797-3 7.943282-3 7.794919-3 1.000000-2 9.769764-3 1.258925-2 1.223332-2 1.584893-2 1.529951-2 1.995262-2 1.910669-2 2.511886-2 2.381840-2 3.162278-2 2.963292-2 3.981072-2 3.678844-2 5.011872-2 4.556643-2 6.309573-2 5.628783-2 7.943282-2 6.932719-2 1.000000-1 8.512270-2 1.258925-1 1.041481-1 1.584893-1 1.270520-1 1.995262-1 1.544917-1 2.511886-1 1.872437-1 3.162278-1 2.261834-1 3.981072-1 2.723574-1 5.011872-1 3.269628-1 6.309573-1 3.914209-1 7.943282-1 4.673167-1 1.000000+0 5.567005-1 1.258925+0 6.621158-1 1.584893+0 7.864222-1 1.995262+0 9.335207-1 2.511886+0 1.108107+0 3.162278+0 1.315837+0 3.981072+0 1.563837+0 5.011872+0 1.860727+0 6.309573+0 2.216968+0 7.943282+0 2.645423+0 1.000000+1 3.162043+0 1.258925+1 3.786240+0 1.584893+1 4.541303+0 1.995262+1 5.456574+0 2.511886+1 6.567334+0 3.162278+1 7.917321+0 3.981072+1 9.559823+0 5.011872+1 1.156063+1 6.309573+1 1.400035+1 7.943282+1 1.697797+1 1.000000+2 2.061537+1 1.258925+2 2.506269+1 1.584893+2 3.050421+1 1.995262+2 3.716765+1 2.511886+2 4.533282+1 3.162278+2 5.534543+1 3.981072+2 6.762992+1 5.011872+2 8.271331+1 6.309573+2 1.012426+2 7.943282+2 1.240190+2 1.000000+3 1.520282+2 1.258925+3 1.864927+2 1.584893+3 2.289151+2 1.995262+3 2.811721+2 2.511886+3 3.455512+2 3.162278+3 4.249341+2 3.981072+3 5.228241+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739903-9 3.981072-5 4.342184-9 5.011872-5 6.881581-9 6.309573-5 1.090607-8 7.943282-5 1.728011-8 1.000000-4 2.738198-8 1.258925-4 4.339371-8 1.584893-4 6.873846-8 1.995262-4 1.088930-7 2.511886-4 1.724384-7 3.162278-4 2.729282-7 3.981072-4 4.317560-7 5.011872-4 6.823294-7 6.309573-4 1.078341-6 7.943282-4 1.692178-6 1.000000-3 2.654227-6 1.258925-3 4.157144-6 1.584893-3 6.484182-6 1.995262-3 1.009266-5 2.511886-3 1.577594-5 3.162278-3 2.468107-5 3.981072-3 3.860273-5 5.011872-3 6.058490-5 6.309573-3 9.477694-5 7.943282-3 1.483635-4 1.000000-2 2.302355-4 1.258925-2 3.559339-4 1.584893-2 5.494257-4 1.995262-2 8.459345-4 2.511886-2 1.300464-3 3.162278-2 1.989857-3 3.981072-2 3.022281-3 5.011872-2 4.552295-3 6.309573-2 6.807904-3 7.943282-2 1.010563-2 1.000000-1 1.487730-2 1.258925-1 2.174443-2 1.584893-1 3.143729-2 1.995262-1 4.503453-2 2.511886-1 6.394494-2 3.162278-1 9.004434-2 3.981072-1 1.257497-1 5.011872-1 1.742244-1 6.309573-1 2.395364-1 7.943282-1 3.270116-1 1.000000+0 4.432995-1 1.258925+0 5.968096-1 1.584893+0 7.984710-1 1.995262+0 1.061742+0 2.511886+0 1.403779+0 3.162278+0 1.846441+0 3.981072+0 2.417235+0 5.011872+0 3.151146+0 6.309573+0 4.092606+0 7.943282+0 5.297859+0 1.000000+1 6.837957+0 1.258925+1 8.803014+0 1.584893+1 1.130763+1 1.995262+1 1.449605+1 2.511886+1 1.855153+1 3.162278+1 2.370546+1 3.981072+1 3.025089+1 5.011872+1 3.855809+1 6.309573+1 4.909538+1 7.943282+1 6.245486+1 1.000000+2 7.938463+1 1.258925+2 1.008299+2 1.584893+2 1.279851+2 1.995262+2 1.623586+2 2.511886+2 2.058558+2 3.162278+2 2.608823+2 3.981072+2 3.304773+2 5.011872+2 4.184739+2 6.309573+2 5.297147+2 7.943282+2 6.703093+2 1.000000+3 8.479718+2 1.258925+3 1.072433+3 1.584893+3 1.355978+3 1.995262+3 1.714090+3 2.511886+3 2.166335+3 3.162278+3 2.737344+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 9.550000-6 7.701020+6 9.885531-6 6.710241+6 1.122018-5 3.989338+6 1.288250-5 2.244899+6 1.396000-5 1.599210+6 1.396000-5 8.666970+6 1.428894-5 8.528994+6 1.462177-5 8.444443+6 1.500000-5 8.406810+6 1.531087-5 8.418865+6 1.570000-5 8.482986+6 1.598000-5 8.566275+6 1.598000-5 1.261480+7 1.621810-5 1.267612+7 1.635000-5 1.272592+7 1.670000-5 1.289267+7 1.678804-5 1.294258+7 1.710000-5 1.315191+7 1.737801-5 1.336459+7 1.750000-5 1.346943+7 1.798871-5 1.393586+7 1.805600-5 1.400623+7 1.850000-5 1.451432+7 1.900000-5 1.514000+7 1.905461-5 1.521345+7 1.972423-5 1.617922+7 2.018366-5 1.689336+7 2.041738-5 1.727792+7 2.113489-5 1.852939+7 2.150000-5 1.920413+7 2.213400-5 2.041368+7 2.290868-5 2.198709+7 2.344229-5 2.310495+7 2.371374-5 2.368692+7 2.483133-5 2.619245+7 2.500000-5 2.658391+7 2.610000-5 2.912431+7 2.650000-5 3.008186+7 2.660725-5 3.032984+7 2.730000-5 3.192740+7 2.770000-5 3.287056+7 2.818383-5 3.396677+7 2.851018-5 3.469794+7 2.884032-5 3.544582+7 2.917427-5 3.615951+7 2.951209-5 3.686699+7 2.985383-5 3.758930+7 3.019952-5 3.826716+7 3.054921-5 3.892884+7 3.090295-5 3.960294+7 3.126079-5 4.022043+7 3.162278-5 4.081153+7 3.190000-5 4.126611+7 3.230000-5 4.184908+7 3.273407-5 4.243408+7 3.330000-5 4.308770+7 3.350000-5 4.329365+7 3.370000-5 4.349962+7 3.427678-5 4.396820+7 3.450000-5 4.412163+7 3.467369-5 4.424091+7 3.507519-5 4.443662+7 3.548134-5 4.458676+7 3.589219-5 4.465744+7 3.650000-5 4.468950+7 3.672823-5 4.465925+7 3.730000-5 4.451113+7 3.770000-5 4.434091+7 3.830000-5 4.401711+7 3.850000-5 4.387472+7 3.900000-5 4.346362+7 3.935501-5 4.317779+7 3.950000-5 4.303937+7 4.030000-5 4.220213+7 4.120975-5 4.106768+7 4.150000-5 4.068613+7 4.168694-5 4.041847+7 4.229500-5 3.956863+7 4.265795-5 3.903678+7 4.315191-5 3.827298+7 4.350000-5 3.774915+7 4.400000-5 3.697067+7 4.466836-5 3.590574+7 4.500000-5 3.536760+7 4.518559-5 3.507171+7 4.610000-5 3.359507+7 4.677351-5 3.252181+7 4.731513-5 3.165618+7 4.850000-5 2.980921+7 4.900000-5 2.904919+7 5.011872-5 2.739107+7 5.080000-5 2.641427+7 5.188000-5 2.491907+7 5.248075-5 2.413703+7 5.300000-5 2.346828+7 5.500000-5 2.105584+7 5.559043-5 2.039133+7 5.623413-5 1.968440+7 5.821032-5 1.770751+7 6.150000-5 1.485570+7 6.165950-5 1.473107+7 6.500000-5 1.235967+7 6.531306-5 1.216054+7 6.683439-5 1.123124+7 6.830000-5 1.042094+7 6.830000-5 1.236927+7 6.839116-5 1.232538+7 6.890000-5 1.208145+7 6.918310-5 1.194410+7 6.950000-5 1.179026+7 7.030000-5 1.140230+7 7.110000-5 1.102131+7 7.190000-5 1.064965+7 7.244360-5 1.040113+7 7.300000-5 1.015126+7 7.413102-5 9.648796+6 7.500000-5 9.279616+6 7.650000-5 8.675937+6 7.668800-5 8.602988+6 7.673615-5 8.584094+6 7.852356-5 7.909785+6 7.943282-5 7.588372+6 8.035261-5 7.280233+6 8.080000-5 7.132193+6 8.317638-5 6.398840+6 8.500000-5 5.895448+6 8.609938-5 5.608691+6 8.650000-5 5.508610+6 8.734000-5 5.304256+6 8.734000-5 6.073094+6 8.800000-5 5.956048+6 8.850000-5 5.866314+6 8.912509-5 5.753591+6 8.980000-5 5.629249+6 9.000000-5 5.592161+6 9.040000-5 5.518436+6 9.120108-5 5.370710+6 9.225714-5 5.178876+6 9.332543-5 4.989480+6 9.440609-5 4.802775+6 9.450000-5 4.786854+6 9.500000-5 4.700910+6 9.580000-5 4.566632+6 9.720000-5 4.338661+6 9.900000-5 4.061404+6 1.000000-4 3.914210+6 1.010000-4 3.773520+6 1.011579-4 3.751479+6 1.030000-4 3.504455+6 1.050000-4 3.255987+6 1.059254-4 3.147069+6 1.060000-4 3.138561+6 1.071519-4 3.009799+6 1.080000-4 2.918684+6 1.091300-4 2.801108+6 1.091300-4 2.953994+6 1.092100-4 2.948605+6 1.095000-4 2.927372+6 1.098000-4 2.905397+6 1.102000-4 2.875949+6 1.106000-4 2.846453+6 1.109175-4 2.822962+6 1.110000-4 2.817021+6 1.111000-4 2.809771+6 1.117000-4 2.765667+6 1.122018-4 2.729067+6 1.128000-4 2.685845+6 1.135000-4 2.635893+6 1.135000-4 2.736469+6 1.135011-4 2.736416+6 1.136400-4 2.729476+6 1.139500-4 2.713360+6 1.142500-4 2.697780+6 1.143000-4 2.695169+6 1.145500-4 2.681917+6 1.148154-4 2.667737+6 1.150000-4 2.658021+6 1.154000-4 2.635878+6 1.158500-4 2.611200+6 1.161000-4 2.597561+6 1.161449-4 2.595060+6 1.163000-4 2.586597+6 1.167000-4 2.564725+6 1.172000-4 2.537680+6 1.173000-4 2.532260+6 1.178000-4 2.504953+6 1.185000-4 2.467289+6 1.193400-4 2.421957+6 1.200000-4 2.387019+6 1.202264-4 2.375043+6 1.210000-4 2.334367+6 1.216186-4 2.302382+6 1.220000-4 2.282960+6 1.230269-4 2.230996+6 1.235000-4 2.207276+6 1.245000-4 2.157873+6 1.257300-4 2.098935+6 1.257300-4 2.176444+6 1.260000-4 2.163187+6 1.273503-4 2.097135+6 1.275000-4 2.090119+6 1.280000-4 2.066700+6 1.290000-4 2.021739+6 1.294000-4 2.004039+6 1.305000-4 1.957102+6 1.315000-4 1.916428+6 1.320000-4 1.896468+6 1.333521-4 1.844664+6 1.335000-4 1.839201+6 1.340000-4 1.821048+6 1.350000-4 1.786328+6 1.364583-4 1.738277+6 1.365000-4 1.736949+6 1.373000-4 1.712491+6 1.380384-4 1.690704+6 1.390000-4 1.663570+6 1.396368-4 1.647026+6 1.412538-4 1.607089+6 1.415000-4 1.601482+6 1.425000-4 1.579866+6 1.430000-4 1.569467+6 1.435000-4 1.559372+6 1.440000-4 1.549948+6 1.442400-4 1.545664+6 1.450000-4 1.532665+6 1.462177-4 1.513954+6 1.472000-4 1.500681+6 1.485000-4 1.485716+6 1.495000-4 1.475754+6 1.500000-4 1.471620+6 1.520000-4 1.459315+6 1.540000-4 1.453369+6 1.548817-4 1.453117+6 1.560000-4 1.453939+6 1.566751-4 1.455519+6 1.570000-4 1.456489+6 1.584893-4 1.463403+6 1.603245-4 1.475635+6 1.610000-4 1.481494+6 1.621810-4 1.493402+6 1.640590-4 1.514987+6 1.650000-4 1.527670+6 1.655900-4 1.536373+6 1.678804-4 1.573475+6 1.698244-4 1.609846+6 1.720000-4 1.654966+6 1.737801-4 1.695416+6 1.740000-4 1.700648+6 1.780000-4 1.804166+6 1.800000-4 1.861942+6 1.820000-4 1.921986+6 1.850000-4 2.020174+6 1.862087-4 2.061576+6 1.865000-4 2.071503+6 1.905461-4 2.217559+6 1.927525-4 2.302489+6 1.950000-4 2.390380+6 1.972423-4 2.482824+6 1.990000-4 2.556739+6 1.995262-4 2.578489+6 2.018366-4 2.677169+6 2.020000-4 2.684303+6 2.041738-4 2.778869+6 2.080000-4 2.947847+6 2.089296-4 2.989244+6 2.135000-4 3.193076+6 2.137962-4 3.206278+6 2.150000-4 3.257959+6 2.162719-4 3.313381+6 2.190000-4 3.435375+6 2.240000-4 3.648985+6 2.264644-4 3.747963+6 2.290868-4 3.855844+6 2.300000-4 3.892440+6 2.317395-4 3.958572+6 2.344229-4 4.062237+6 2.350000-4 4.083798+6 2.371374-4 4.159817+6 2.380000-4 4.190816+6 2.400000-4 4.263425+6 2.454709-4 4.444753+6 2.480000-4 4.520207+6 2.483133-4 4.529619+6 2.511886-4 4.616624+6 2.520000-4 4.641335+6 2.540000-4 4.694444+6 2.580000-4 4.801702+6 2.600160-4 4.852937+6 2.630268-4 4.923621+6 2.660725-4 4.995616+6 2.722701-4 5.118613+6 2.730000-4 5.133137+6 2.754229-4 5.181477+6 2.830000-4 5.301849+6 2.846200-4 5.325011+6 2.851018-4 5.330842+6 2.917427-4 5.411188+6 2.930000-4 5.424353+6 2.951209-4 5.442147+6 3.000000-4 5.482917+6 3.019952-4 5.496434+6 3.100000-4 5.533180+6 3.126079-4 5.541187+6 3.162278-4 5.544671+6 3.200000-4 5.548353+6 3.235937-4 5.546773+6 3.240000-4 5.546592+6 3.273407-4 5.539387+6 3.311311-4 5.531276+6 3.320000-4 5.529434+6 3.350000-4 5.519413+6 3.388442-4 5.501317+6 3.430000-4 5.481934+6 3.467369-4 5.460913+6 3.470000-4 5.459441+6 3.550000-4 5.404623+6 3.584200-4 5.378340+6 3.584200-4 5.580708+6 3.600000-4 5.560807+6 3.604000-4 5.555830+6 3.625000-4 5.531439+6 3.630781-4 5.525168+6 3.648000-4 5.504484+6 3.670000-4 5.479694+6 3.690000-4 5.458491+6 3.713000-4 5.435688+6 3.715352-4 5.433518+6 3.734100-4 5.414491+6 3.750000-4 5.399348+6 3.758374-4 5.391792+6 3.765000-4 5.385824+6 3.782100-4 5.371297+6 3.782100-4 5.522886+6 3.785000-4 5.518606+6 3.792000-4 5.508666+6 3.801894-4 5.495660+6 3.803000-4 5.494123+6 3.814000-4 5.479639+6 3.825000-4 5.465955+6 3.830000-4 5.460031+6 3.840000-4 5.448497+6 3.850000-4 5.437565+6 3.855000-4 5.432131+6 3.875000-4 5.411476+6 3.890451-4 5.396338+6 3.912000-4 5.374470+6 3.935000-4 5.352467+6 3.935501-4 5.352012+6 3.958000-4 5.331749+6 3.981072-4 5.312155+6 4.000000-4 5.294588+6 4.030000-4 5.267929+6 4.073803-4 5.230978+6 4.090000-4 5.216377+6 4.100000-4 5.207439+6 4.100200-4 5.207262+6 4.120975-4 5.188743+6 4.168694-4 5.147299+6 4.180000-4 5.136650+6 4.240000-4 5.080573+6 4.265795-4 5.056715+6 4.315191-4 5.008861+6 4.320000-4 5.004285+6 4.350000-4 4.975441+6 4.365158-4 4.960963+6 4.415704-4 4.909779+6 4.430000-4 4.895348+6 4.466836-4 4.858394+6 4.518559-4 4.805029+6 4.530000-4 4.793459+6 4.550000-4 4.773231+6 4.570882-4 4.752135+6 4.600000-4 4.723128+6 4.650000-4 4.671182+6 4.677351-4 4.643256+6 4.700000-4 4.620463+6 4.731513-4 4.587845+6 4.786301-4 4.532068+6 4.841724-4 4.477516+6 4.850000-4 4.469509+6 4.897788-4 4.421483+6 4.954502-4 4.365231+6 5.011872-4 4.308108+6 5.040000-4 4.280777+6 5.101000-4 4.222027+6 5.150000-4 4.175930+6 5.188000-4 4.139412+6 5.248075-4 4.082315+6 5.308844-4 4.023880+6 5.370318-4 3.966699+6 5.400000-4 3.939379+6 5.432503-4 3.909694+6 5.559043-4 3.793885+6 5.580000-4 3.774757+6 5.671300-4 3.692159+6 5.671300-4 3.904174+6 5.688529-4 3.888788+6 5.754399-4 3.831141+6 5.821032-4 3.772530+6 5.888437-4 3.714107+6 5.900000-4 3.704281+6 5.956621-4 3.655601+6 6.025596-4 3.598084+6 6.095369-4 3.540759+6 6.100000-4 3.537020+6 6.237348-4 3.426689+6 6.309573-4 3.370327+6 6.382635-4 3.313894+6 6.456542-4 3.258680+6 6.500000-4 3.226437+6 6.531306-4 3.203320+6 6.683439-4 3.092607+6 6.700000-4 3.080934+6 6.731700-4 3.058653+6 6.731700-4 3.100178+6 6.760830-4 3.079978+6 6.839116-4 3.025160+6 6.918310-4 2.971548+6 7.000000-4 2.916834+6 7.079458-4 2.865005+6 7.244360-4 2.761555+6 7.328245-4 2.710641+6 7.413102-4 2.660476+6 7.498942-4 2.609727+6 7.673615-4 2.511762+6 7.762471-4 2.463809+6 7.800000-4 2.443732+6 7.874400-4 2.404394+6 7.874400-4 2.454186+6 7.943282-4 2.418463+6 8.035261-4 2.371304+6 8.100000-4 2.339080+6 8.128305-4 2.325144+6 8.222426-4 2.279846+6 8.317638-4 2.235138+6 8.413951-4 2.190909+6 8.430000-4 2.183675+6 8.511380-4 2.147607+6 8.609938-4 2.105017+6 8.709636-4 2.062810+6 8.810489-4 2.021029+6 8.850000-4 2.005054+6 9.000000-4 1.946315+6 9.015711-4 1.940287+6 9.120108-4 1.900542+6 9.225714-4 1.861800+6 9.332543-4 1.822810+6 9.440609-4 1.784747+6 9.500000-4 1.764397+6 9.549926-4 1.747465+6 9.660509-4 1.710888+6 9.700000-4 1.698139+6 9.772372-4 1.674946+6 1.000000-3 1.604730+6 1.011579-3 1.570487+6 1.023293-3 1.536856+6 1.035142-3 1.503906+6 1.050000-3 1.464237+6 1.059254-3 1.440160+6 1.083927-3 1.378556+6 1.109175-3 1.318705+6 1.110000-3 1.316821+6 1.122018-3 1.289779+6 1.135011-3 1.261217+6 1.150000-3 1.229488+6 1.174898-3 1.178887+6 1.188502-3 1.152645+6 1.190000-3 1.149814+6 1.202264-3 1.126827+6 1.224700-3 1.086267+6 1.230269-3 1.076566+6 1.244515-3 1.052207+6 1.258925-3 1.028221+6 1.273503-3 1.004814+6 1.288250-3 9.820082+5 1.300000-3 9.642910+5 1.318257-3 9.374986+5 1.333521-3 9.160013+5 1.350000-3 8.935160+5 1.364583-3 8.743265+5 1.380384-3 8.541978+5 1.400000-3 8.300710+5 1.412538-3 8.150694+5 1.428894-3 7.959462+5 1.445440-3 7.771928+5 1.462177-3 7.589172+5 1.479108-3 7.411136+5 1.500000-3 7.200173+5 1.513561-3 7.067260+5 1.531087-3 6.899671+5 1.570000-3 6.546766+5 1.584893-3 6.418307+5 1.603245-3 6.265344+5 1.610000-3 6.210470+5 1.640590-3 5.970863+5 1.650000-3 5.898982+5 1.659587-3 5.827136+5 1.698244-3 5.549235+5 1.730000-3 5.335367+5 1.737801-3 5.284525+5 1.757924-3 5.156487+5 1.778279-3 5.031816+5 1.800000-3 4.902834+5 1.819701-3 4.789494+5 1.862087-3 4.557768+5 1.883649-3 4.446143+5 1.905461-3 4.337034+5 1.927525-3 4.230794+5 1.950000-3 4.125494+5 1.972423-3 4.023849+5 2.000000-3 3.904017+5 2.041738-3 3.732704+5 2.065380-3 3.640396+5 2.089296-3 3.550169+5 2.113489-3 3.461474+5 2.264644-3 2.971473+5 2.290868-3 2.897380+5 2.300000-3 2.872122+5 2.300800-3 2.869883+5 2.300800-3 7.559396+5 2.317395-3 7.465352+5 2.344229-3 7.317220+5 2.371374-3 7.172239+5 2.394800-3 7.050708+5 2.394800-3 8.787677+5 2.470000-3 8.656418+5 2.475000-3 8.643197+5 2.483133-3 8.626943+5 2.500000-3 8.578215+5 2.511886-3 8.553647+5 2.540973-3 8.460480+5 2.570396-3 8.354546+5 2.590000-3 8.281967+5 2.600160-3 8.240879+5 2.630268-3 8.124122+5 2.660725-3 7.987244+5 2.680000-3 7.897937+5 2.691535-3 7.841639+5 2.700000-3 7.800881+5 2.740000-3 7.571175+5 2.754229-3 7.473294+5 2.786121-3 7.259532+5 2.818383-3 7.051966+5 2.836900-3 6.936475+5 2.836900-3 8.030014+5 2.851018-3 7.937462+5 2.940000-3 7.382406+5 2.985383-3 7.114280+5 3.019952-3 6.917890+5 3.030000-3 6.862059+5 3.054921-3 6.727095+5 3.090295-3 6.542014+5 3.126079-3 6.361319+5 3.162278-3 6.185715+5 3.273407-3 5.682887+5 3.273900-3 5.680775+5 3.273900-3 6.028449+5 3.311311-3 5.867763+5 3.349654-3 5.709124+5 3.355000-3 5.687510+5 3.388442-3 5.554274+5 3.400000-3 5.509293+5 3.427678-3 5.403639+5 3.467369-3 5.256122+5 3.507519-3 5.112774+5 3.536800-3 5.010847+5 3.536800-3 5.224647+5 3.548134-3 5.185199+5 3.600000-3 5.010166+5 3.630781-3 4.910303+5 3.650000-3 4.849431+5 3.672823-3 4.778090+5 3.715352-3 4.648898+5 3.758374-3 4.523024+5 3.801894-3 4.400773+5 3.845918-3 4.281584+5 3.890451-3 4.164220+5 3.935501-3 4.050254+5 4.027170-3 3.831970+5 4.073803-3 3.726903+5 4.120975-3 3.624805+5 4.168694-3 3.525349+5 4.216965-3 3.428787+5 4.265795-3 3.335014+5 4.315191-3 3.243943+5 4.365158-3 3.154623+5 4.415704-3 3.067339+5 4.466836-3 2.982411+5 4.518559-3 2.899479+5 4.570882-3 2.818879+5 4.623810-3 2.740650+5 4.677351-3 2.664554+5 4.786301-3 2.518228+5 4.897788-3 2.380364+5 4.900000-3 2.377740+5 4.954502-3 2.313713+5 5.011872-3 2.248776+5 5.069907-3 2.185453+5 5.128614-3 2.123348+5 5.308844-3 1.948016+5 5.370318-3 1.893043+5 5.432503-3 1.839708+5 5.559043-3 1.737442+5 5.623413-3 1.688390+5 5.688529-3 1.640800+5 5.754399-3 1.594438+5 5.900000-3 1.498123+5 5.956621-3 1.462858+5 6.025596-3 1.421515+5 6.095369-3 1.381096+5 6.165950-3 1.341693+5 6.237348-3 1.303435+5 6.309573-3 1.265974+5 6.382635-3 1.229564+5 6.531306-3 1.160028+5 6.683439-3 1.094293+5 6.760830-3 1.062803+5 6.839116-3 1.032253+5 7.000000-3 9.730851+4 7.079458-3 9.456365+4 7.328245-3 8.664780+4 7.413102-3 8.414432+4 7.498942-3 8.171690+4 7.500000-3 8.168761+4 7.673615-3 7.707618+4 7.762471-3 7.484529+4 7.800000-3 7.393099+4 7.852356-3 7.267314+4 7.943282-3 7.056087+4 8.000000-3 6.928681+4 8.035261-3 6.851092+4 8.128305-3 6.651966+4 8.300000-3 6.304453+4 8.413951-3 6.087960+4 8.511380-3 5.909882+4 8.609938-3 5.737248+4 8.709636-3 5.569891+4 8.810489-3 5.407446+4 8.912509-3 5.249623+4 9.015711-3 5.096539+4 9.120108-3 4.948039+4 9.225714-3 4.803970+4 9.332543-3 4.663527+4 9.440609-3 4.526786+4 9.549926-3 4.394252+4 9.660509-3 4.265743+4 9.772372-3 4.140312+4 9.885531-3 4.018711+4 1.000000-2 3.900471+4 1.011579-2 3.785825+4 1.023293-2 3.674393+4 1.047129-2 3.461422+4 1.071519-2 3.260602+4 1.083927-2 3.164476+4 1.096478-2 3.070879+4 1.109175-2 2.980163+4 1.148154-2 2.724319+4 1.150000-2 2.712986+4 1.161449-2 2.643846+4 1.202264-2 2.416099+4 1.216186-2 2.344532+4 1.228700-2 2.282212+4 1.228700-2 5.811564+4 1.230269-2 5.792371+4 1.242000-2 5.651649+4 1.244515-2 5.619189+4 1.256000-2 5.474128+4 1.258925-2 5.440017+4 1.288250-2 5.113771+4 1.318257-2 4.807359+4 1.333521-2 4.660988+4 1.348963-2 4.519032+4 1.364583-2 4.381479+4 1.380384-2 4.248046+4 1.396368-2 4.117058+4 1.400000-2 4.088075+4 1.412538-2 3.989934+4 1.425400-2 3.892597+4 1.425400-2 5.423154+4 1.428894-2 5.388291+4 1.445440-2 5.227356+4 1.462177-2 5.071284+4 1.480000-2 4.911975+4 1.482600-2 4.889021+4 1.482600-2 5.650578+4 1.500000-2 5.486314+4 1.513561-2 5.362904+4 1.548817-2 5.060046+4 1.550000-2 5.050283+4 1.566751-2 4.913487+4 1.584893-2 4.771056+4 1.620000-2 4.513711+4 1.621810-2 4.500916+4 1.640590-2 4.371160+4 1.659587-2 4.245248+4 1.678804-2 4.121825+4 1.698244-2 4.001946+4 1.701200-2 3.984148+4 1.717908-2 3.884605+4 1.757924-2 3.659977+4 1.778279-2 3.552725+4 1.798871-2 3.448561+4 1.800000-2 3.442974+4 1.862087-2 3.155483+4 1.883649-2 3.063602+4 1.900000-2 2.996440+4 1.905461-2 2.974301+4 1.927525-2 2.886638+4 1.949845-2 2.801166+4 1.972423-2 2.718282+4 2.000000-2 2.621659+4 2.018366-2 2.559962+4 2.041738-2 2.484272+4 2.089296-2 2.338963+4 2.113489-2 2.269585+4 2.137962-2 2.201974+4 2.162719-2 2.136429+4 2.187762-2 2.072836+4 2.213095-2 2.011188+4 2.238721-2 1.951425+4 2.264644-2 1.893475+4 2.290868-2 1.837130+4 2.317395-2 1.782508+4 2.344229-2 1.729483+4 2.363700-2 1.692365+4 2.371374-2 1.678041+4 2.398833-2 1.627672+4 2.400000-2 1.625579+4 2.426610-2 1.578615+4 2.454709-2 1.531045+4 2.483133-2 1.484905+4 2.540973-2 1.396855+4 2.570396-2 1.354859+4 2.630268-2 1.274699+4 2.660725-2 1.236463+4 2.691535-2 1.199356+4 2.754229-2 1.127968+4 2.818383-2 1.060921+4 2.851018-2 1.028911+4 2.917427-2 9.678165+3 2.951209-2 9.386791+3 3.000000-2 8.987205+3 3.019952-2 8.828322+3 3.054921-2 8.558781+3 3.090295-2 8.297674+3 3.126079-2 8.044358+3 3.162278-2 7.798955+3 3.235937-2 7.330489+3 3.273407-2 7.107137+3 3.311311-2 6.890571+3 3.349654-2 6.680770+3 3.388442-2 6.477428+3 3.427678-2 6.280437+3 3.467369-2 6.089550+3 3.500000-2 5.938637+3 3.507519-2 5.904439+3 3.548134-2 5.723774+3 3.589219-2 5.548772+3 3.672823-2 5.214584+3 3.715352-2 5.055289+3 3.758374-2 4.900048+3 3.801894-2 4.749689+3 3.890451-2 4.462785+3 3.900000-2 4.433302+3 3.935501-2 4.325347+3 4.000000-2 4.138348+3 4.027170-2 4.062902+3 4.168694-2 3.699319+3 4.216965-2 3.585528+3 4.315191-2 3.368574+3 4.365158-2 3.265183+3 4.415704-2 3.164561+3 4.518559-2 2.972587+3 4.623810-2 2.791797+3 4.677351-2 2.705668+3 4.731513-2 2.621673+3 4.786301-2 2.540337+3 4.841724-2 2.461548+3 5.011872-2 2.239611+3 5.069907-2 2.170265+3 5.128614-2 2.103114+3 5.188000-2 2.038015+3 5.248075-2 1.974926+3 5.308844-2 1.913832+3 5.370318-2 1.854667+3 5.500000-2 1.737606+3 5.559043-2 1.687406+3 5.688529-2 1.583787+3 6.025596-2 1.351969+3 6.095369-2 1.309931+3 6.165950-2 1.269176+3 6.237348-2 1.229688+3 6.382635-2 1.154075+3 6.683439-2 1.016752+3 6.760830-2 9.850930+2 6.839116-2 9.543455+2 6.918310-2 9.245757+2 7.161434-2 8.406364+2 7.244360-2 8.142647+2 7.328245-2 7.887045+2 7.585776-2 7.168163+2 7.852356-2 6.515557+2 8.128305-2 5.923362+2 8.222426-2 5.738310+2 8.317638-2 5.559118+2 8.335300-2 5.526711+2 8.335300-2 2.656024+3 8.413951-2 2.592879+3 8.500000-2 2.526079+3 8.550000-2 2.486055+3 8.609938-2 2.445975+3 8.650000-2 2.419696+3 8.810489-2 2.304342+3 8.920000-2 2.229946+3 9.015711-2 2.171316+3 9.120108-2 2.109800+3 9.225714-2 2.050027+3 9.549926-2 1.872416+3 9.660509-2 1.816715+3 9.822090-2 1.739376+3 9.885531-2 1.710254+3 1.000000-1 1.659390+3 1.011580-1 1.609983+3 1.023293-1 1.562058+3 1.035142-1 1.515956+3 1.047129-1 1.471207+3 1.071519-1 1.385655+3 1.083927-1 1.344768+3 1.109175-1 1.266593+3 1.135011-1 1.192981+3 1.148154-1 1.157801+3 1.161449-1 1.123663+3 1.174898-1 1.090536+3 1.188502-1 1.057744+3 1.202264-1 1.025939+3 1.216186-1 9.950588+2 1.230269-1 9.651110+2 1.288250-1 8.540872+2 1.303167-1 8.283941+2 1.333521-1 7.793014+2 1.380384-1 7.110767+2 1.396368-1 6.895803+2 1.445440-1 6.289217+2 1.462177-1 6.099160+2 1.479108-1 5.914924+2 1.513561-1 5.563117+2 1.531088-1 5.395030+2 1.548817-1 5.232043+2 1.603245-1 4.772107+2 1.621810-1 4.627976+2 1.640590-1 4.488210+2 1.659587-1 4.352678+2 1.698244-1 4.093793+2 1.717908-1 3.970212+2 1.737801-1 3.850362+2 1.757924-1 3.734152+2 1.778279-1 3.621463+2 1.798871-1 3.512215+2 1.840772-1 3.303532+2 1.862087-1 3.203941+2 1.883649-1 3.107352+2 1.905461-1 3.013680+2 1.949845-1 2.834741+2 2.000000-1 2.649692+2 2.018366-1 2.586100+2 2.041738-1 2.508179+2 2.065380-1 2.432605+2 2.089296-1 2.359312+2 2.113489-1 2.288237+2 2.137962-1 2.219308+2 2.150000-1 2.186450+2 2.187762-1 2.087667+2 2.213095-1 2.024824+2 2.238721-1 1.963876+2 2.264644-1 1.904794+2 2.317395-1 1.791914+2 2.344229-1 1.738012+2 2.371374-1 1.685734+2 2.398833-1 1.635551+2 2.426610-1 1.586864+2 2.454709-1 1.539628+2 2.483133-1 1.493806+2 2.500000-1 1.467503+2 2.511886-1 1.449358+2 2.570396-1 1.364417+2 2.600160-1 1.323835+2 2.630268-1 1.284510+2 2.660725-1 1.246374+2 2.691535-1 1.209381+2 2.818383-1 1.072093+2 2.851018-1 1.040285+2 2.884032-1 1.009436+2 2.917427-1 9.799332+1 2.951209-1 9.512948+1 2.985383-1 9.234945+1 3.019952-1 8.965082+1 3.054921-1 8.703118+1 3.162278-1 7.962787+1 3.198895-1 7.730300+1 3.235937-1 7.504959+1 3.273407-1 7.286298+1 3.349654-1 6.868105+1 3.388442-1 6.671086+1 3.427678-1 6.479738+1 3.507519-1 6.113366+1 3.548134-1 5.938154+1 3.589219-1 5.767970+1 3.630781-1 5.602664+1 3.672823-1 5.442198+1 3.715352-1 5.286332+1 3.758374-1 5.134932+1 3.801894-1 4.987877+1 3.845918-1 4.845287+1 3.890451-1 4.709056+1 3.935501-1 4.576735+1 3.981072-1 4.448137+1 4.000000-1 4.396245+1 4.027170-1 4.323243+1 4.073803-1 4.201864+1 4.120975-1 4.083968+1 4.168694-1 3.969381+1 4.216965-1 3.858014+1 4.315191-1 3.644579+1 4.365158-1 3.542335+1 4.415705-1 3.444929+1 4.518559-1 3.258498+1 4.570882-1 3.169266+1 4.623810-1 3.082491+1 4.677351-1 2.998094+1 4.731513-1 2.916011+1 4.841724-1 2.758534+1 4.954502-1 2.609567+1 5.011872-1 2.539615+1 5.069907-1 2.471575+1 5.128614-1 2.405567+1 5.188000-1 2.341325+1 5.248075-1 2.278840+1 5.370318-1 2.158834+1 5.495409-1 2.045152+1 5.559043-1 1.990577+1 5.623413-1 1.937488+1 5.688529-1 1.886923+1 5.754399-1 1.837718+1 5.821032-1 1.789799+1 5.888437-1 1.743241+1 5.956621-1 1.697927+1 6.000000-1 1.669976+1 6.095369-1 1.610807+1 6.165950-1 1.568939+1 6.237348-1 1.528180+1 6.309573-1 1.488487+1 6.382635-1 1.450823+1 6.531306-1 1.378333+1 6.606935-1 1.343458+1 6.683439-1 1.309550+1 6.760830-1 1.276521+1 6.839117-1 1.244327+1 6.918310-1 1.212959+1 6.998420-1 1.182388+1 7.079458-1 1.152614+1 7.161434-1 1.124263+1 7.244360-1 1.096609+1 7.328245-1 1.069637+1 7.498942-1 1.017667+1 7.585776-1 9.927048+0 7.673615-1 9.683729+0 7.762471-1 9.446415+0 7.852356-1 9.214955+0 7.943282-1 8.989322+0 8.035261-1 8.769216+0 8.317638-1 8.154690+0 8.413951-1 7.959580+0 8.609938-1 7.584340+0 8.709636-1 7.403414+0 8.810489-1 7.227153+0 8.912509-1 7.055150+0 9.120108-1 6.723332+0 9.225714-1 6.563326+0 9.332543-1 6.410743+0 9.440609-1 6.261841+0 9.549926-1 6.116907+0 9.660509-1 5.975474+0 9.772372-1 5.837444+0 9.885531-1 5.702602+0 1.000000+0 5.571005+0 1.011579+0 5.442451+0 1.022000+0 5.333445+0 1.023293+0 5.320153+0 1.035142+0 5.200642+0 1.047129+0 5.083807+0 1.059254+0 4.969607+0 1.071519+0 4.857976+0 1.083927+0 4.749181+0 1.096478+0 4.642829+0 1.109175+0 4.538940+0 1.122018+0 4.437459+0 1.135011+0 4.338265+0 1.148154+0 4.241291+0 1.161449+0 4.146487+0 1.174898+0 4.053818+0 1.202264+0 3.878778+0 1.216186+0 3.794179+0 1.230269+0 3.711426+0 1.244515+0 3.630717+0 1.250000+0 3.600362+0 1.258925+0 3.551788+0 1.273503+0 3.474569+0 1.288250+0 3.399109+0 1.303167+0 3.325331+0 1.318257+0 3.253154+0 1.333521+0 3.184389+0 1.364583+0 3.051184+0 1.396368+0 2.923553+0 1.412538+0 2.861952+0 1.445440+0 2.742636+0 1.462177+0 2.684930+0 1.479108+0 2.628437+0 1.500000+0 2.561241+0 1.513561+0 2.520187+0 1.531087+0 2.468627+0 1.566751+0 2.368650+0 1.621810+0 2.226674+0 1.640590+0 2.181273+0 1.659587+0 2.136835+0 1.698244+0 2.050673+0 1.717908+0 2.010115+0 1.757924+0 1.931489+0 1.798871+0 1.856198+0 1.819701+0 1.819660+0 1.840772+0 1.783849+0 1.862087+0 1.748772+0 1.905461+0 1.680691+0 1.927525+0 1.648654+0 1.972423+0 1.586499+0 2.000000+0 1.550289+0 2.018366+0 1.526902+0 2.044000+0 1.495192+0 2.065380+0 1.469547+0 2.089296+0 1.441706+0 2.162719+0 1.361323+0 2.213095+0 1.311468+0 2.290868+0 1.240172+0 2.317395+0 1.217351+0 2.344229+0 1.194950+0 2.371374+0 1.172961+0 2.398833+0 1.151381+0 2.426610+0 1.130213+0 2.511886+0 1.069027+0 2.570396+0 1.031073+0 2.660725+0 9.767216-1 2.691535+0 9.593055-1 2.722701+0 9.422004-1 2.754229+0 9.253997-1 2.786121+0 9.089022-1 2.818383+0 8.927109-1 2.884032+0 8.611953-1 2.917427+0 8.462959-1 2.951209+0 8.316542-1 2.985383+0 8.172854-1 3.054921+0 7.892899-1 3.090295+0 7.757029-1 3.126079+0 7.623497-1 3.162278+0 7.492287-1 3.198895+0 7.363441-1 3.311311+0 6.990125-1 3.349654+0 6.873274-1 3.388442+0 6.758375-1 3.467369+0 6.534598-1 3.548134+0 6.318237-1 3.589219+0 6.213103-1 3.630781+0 6.109716-1 3.672823+0 6.008071-1 3.715352+0 5.908195-1 3.845918+0 5.618479-1 3.890451+0 5.527630-1 3.935501+0 5.438249-1 4.027170+0 5.264024-1 4.120975+0 5.095385-1 4.168694+0 5.013365-1 4.216965+0 4.932665-1 4.265795+0 4.853265-1 4.315191+0 4.775157-1 4.365158+0 4.698366-1 4.518559+0 4.475370-1 4.570882+0 4.405372-1 4.623810+0 4.336470-1 4.731513+0 4.202053-1 4.841724+0 4.071807-1 4.897788+0 4.008419-1 4.954502+0 3.946016-1 5.011872+0 3.884586-1 5.069907+0 3.824123-1 5.128614+0 3.764646-1 5.308844+0 3.591747-1 5.370318+0 3.537379-1 5.432503+0 3.483835-1 5.559043+0 3.379296-1 5.754399+0 3.228344-1 5.821032+0 3.179699-1 5.888437+0 3.131787-1 5.956621+0 3.084598-1 6.025596+0 3.038127-1 6.095369+0 2.992391-1 6.309573+0 2.859299-1 6.382635+0 2.817369-1 6.456542+0 2.776055-1 6.606934+0 2.695331-1 6.918310+0 2.540861-1 7.000000+0 2.503041-1 7.079458+0 2.467206-1 7.161434+0 2.431183-1 7.244360+0 2.395691-1 7.328245+0 2.360744-1 7.585776+0 2.258952-1 7.673615+0 2.226870-1 7.762471+0 2.195245-1 8.000000+0 2.114659-1 8.317638+0 2.014923-1 8.413951+0 1.986431-1 8.511380+0 1.958340-1 8.609938+0 1.930647-1 8.709636+0 1.903351-1 8.810489+0 1.876457-1 9.225714+0 1.772649-1 9.440609+0 1.724086-1 9.549926+0 1.700306-1 9.885531+0 1.631000-1 1.023293+1 1.564521-1 1.035142+1 1.543031-1 1.047129+1 1.521835-1 1.059254+1 1.500934-1 1.135011+1 1.381507-1 1.200000+1 1.294180-1 1.216186+1 1.274004-1 1.244515+1 1.240105-1 1.258925+1 1.223498-1 1.273503+1 1.207170-1 1.364583+1 1.113687-1 1.600000+1 9.278681-2 1.603245+1 9.257145-2 1.621810+1 9.135843-2 1.698244+1 8.668030-2 2.089296+1 6.877615-2 2.113489+1 6.789828-2 2.238721+1 6.368842-2 2.754229+1 5.081726-2 2.786121+1 5.018423-2 2.800000+1 4.991357-2 3.054921+1 4.540993-2 3.845918+1 3.552559-2 3.890451+1 3.509222-2 3.935501+1 3.466417-2 3.981072+1 3.424171-2 4.000000+1 3.406923-2 4.315191+1 3.143178-2 5.888437+1 2.270629-2 6.000000+1 2.226483-2 6.025596+1 2.216591-2 6.095369+1 2.190057-2 6.165950+1 2.163860-2 6.237348+1 2.137985-2 6.683439+1 1.989373-2 9.225714+1 1.428194-2 9.440609+1 1.394783-2 9.660509+1 1.362155-2 9.772372+1 1.346136-2 9.885531+1 1.330310-2 1.000000+2 1.314687-2 1.148154+2 1.140935-2 1.778279+2 7.313056-3 1.798871+2 7.227957-3 1.819701+2 7.143853-3 1.840772+2 7.060745-3 1.862087+2 6.978620-3 1.883649+2 6.897536-3 2.213095+2 5.856539-3 3.548134+2 3.638638-3 3.589219+2 3.596644-3 3.630781+2 3.555133-3 3.672823+2 3.514109-3 3.715352+2 3.473563-3 3.758374+2 3.433513-3 4.415704+2 2.918977-3 1.412538+3 9.091511-4 1.428894+3 8.987117-4 1.445440+3 8.883920-4 1.462177+3 8.781918-4 1.479108+3 8.681094-4 1.496236+3 8.581460-4 1.757924+3 7.300963-4 1.000000+5 1.281990-5 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 9.550000-6 9.550000-6 1.396000-5 9.550000-6 1.396000-5 1.314628-5 1.570000-5 1.345566-5 1.598000-5 1.349692-5 1.598000-5 1.429383-5 1.972423-5 1.447393-5 2.500000-5 1.459401-5 4.120975-5 1.479336-5 5.821032-5 1.484279-5 6.830000-5 1.484922-5 6.830000-5 1.707785-5 7.030000-5 1.732447-5 7.300000-5 1.754558-5 7.673615-5 1.774777-5 8.317638-5 1.796950-5 8.734000-5 1.807445-5 8.734000-5 2.011071-5 8.980000-5 2.061651-5 9.225714-5 2.099772-5 9.580000-5 2.140955-5 1.011579-4 2.185197-5 1.091300-4 2.231746-5 1.091300-4 2.294312-5 1.128000-4 2.350067-5 1.135000-4 2.359037-5 1.135000-4 2.407315-5 1.167000-4 2.471465-5 1.210000-4 2.538838-5 1.257300-4 2.599289-5 1.257300-4 2.664304-5 1.396368-4 2.809052-5 1.495000-4 2.930822-5 1.655900-4 3.148410-5 1.740000-4 3.241470-5 1.820000-4 3.309037-5 1.905461-4 3.361673-5 2.020000-4 3.408580-5 2.190000-4 3.447737-5 2.454709-4 3.473907-5 3.019952-4 3.488157-5 3.584200-4 3.488017-5 3.584200-4 3.595809-5 3.715352-4 3.576706-5 3.782100-4 3.577162-5 3.782100-4 3.664061-5 3.875000-4 3.654822-5 4.030000-4 3.670805-5 5.671300-4 3.962442-5 5.671300-4 4.234358-5 6.700000-4 4.435731-5 6.731700-4 4.441064-5 6.731700-4 4.512078-5 7.874400-4 4.712394-5 7.874400-4 4.844911-5 9.332543-4 5.086555-5 1.083927-3 5.301416-5 1.273503-3 5.528618-5 1.479108-3 5.736062-5 1.757924-3 5.966367-5 2.065380-3 6.172731-5 2.300800-3 6.306028-5 2.300800-3 9.112499-5 2.394800-3 9.164974-5 2.394800-3 9.523336-5 2.540973-3 9.671592-5 2.700000-3 9.762689-5 2.836900-3 9.772515-5 2.836900-3 1.044396-4 3.273900-3 1.053946-4 3.273900-3 1.089786-4 3.536800-3 1.098093-4 3.536800-3 1.131780-4 4.623810-3 1.170715-4 6.095369-3 1.212158-4 7.852356-3 1.250672-4 1.011579-2 1.288726-4 1.228700-2 1.317133-4 1.228700-2 1.674143-4 1.425400-2 1.679918-4 1.425400-2 1.757469-4 1.482600-2 1.759169-4 1.482600-2 1.887627-4 2.041738-2 1.933978-4 2.818383-2 1.980032-4 3.935501-2 2.028692-4 5.370318-2 2.072698-4 7.328245-2 2.114681-4 8.335300-2 2.131115-4 8.335300-2 1.945319-4 2.113489-1 1.957900-4 5.821032-1 1.965428-4 1.000000+5 1.966678-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.550000-6 0.0 6.830000-5 0.0 6.830000-5 8.42810-11 6.890000-5 8.74496-11 6.950000-5 9.02768-11 7.030000-5 9.35975-11 7.110000-5 9.64577-11 7.190000-5 9.89613-11 7.300000-5 1.01939-10 7.413102-5 1.04663-10 7.500000-5 1.06485-10 7.673615-5 1.09560-10 7.852356-5 1.12349-10 8.080000-5 1.15257-10 8.317638-5 1.17951-10 8.734000-5 1.21958-10 8.734000-5 2.95503-10 8.800000-5 3.07890-10 8.850000-5 3.16493-10 8.912509-5 3.26450-10 9.040000-5 3.44523-10 9.120108-5 3.54561-10 9.225714-5 3.66417-10 9.332543-5 3.77135-10 9.500000-5 3.91597-10 9.580000-5 3.98120-10 9.720000-5 4.08106-10 9.900000-5 4.19162-10 1.011579-4 4.30388-10 1.030000-4 4.38927-10 1.060000-4 4.50109-10 1.091300-4 4.60364-10 1.091300-4 6.39668-10 1.098000-4 6.66254-10 1.111000-4 7.11475-10 1.122018-4 7.45342-10 1.135000-4 7.81729-10 1.135000-4 7.66569-10 1.154000-4 8.06335-10 1.173000-4 8.42008-10 1.200000-4 8.86361-10 1.235000-4 9.36570-10 1.257300-4 9.65810-10 1.257300-4 9.68370-10 1.350000-4 1.081623-9 1.380384-4 1.123323-9 1.415000-4 1.176522-9 1.450000-4 1.238211-9 1.472000-4 1.281407-9 1.500000-4 1.341804-9 1.540000-4 1.433343-9 1.640590-4 1.675897-9 1.678804-4 1.761620-9 1.720000-4 1.845686-9 1.740000-4 1.883578-9 1.800000-4 1.985558-9 1.862087-4 2.069977-9 1.927525-4 2.139716-9 1.995262-4 2.193423-9 2.041738-4 2.222358-9 2.089296-4 2.245292-9 2.190000-4 2.278330-9 2.317395-4 2.301065-9 2.520000-4 2.315816-9 2.851018-4 2.319887-9 3.584200-4 2.304066-9 3.584200-4 2.387873-9 3.715352-4 2.370061-9 3.782100-4 2.370487-9 3.782100-4 3.850276-9 3.792000-4 3.794400-9 3.803000-4 3.743200-9 3.825000-4 3.663665-9 3.850000-4 3.600133-9 3.875000-4 3.554367-9 3.890451-4 3.533692-9 3.912000-4 3.514155-9 3.935501-4 3.503072-9 3.958000-4 3.501571-9 4.000000-4 3.519381-9 4.030000-4 3.543629-9 4.120975-4 3.641947-9 4.265795-4 3.819866-9 4.550000-4 4.194363-9 4.850000-4 4.577917-9 5.432503-4 5.373255-9 5.671300-4 5.687207-9 5.671300-4 8.864605-9 6.456542-4 1.026178-8 6.731700-4 1.069164-8 6.731700-4 1.197585-8 7.673615-4 1.363125-8 7.874400-4 1.395501-8 7.874400-4 1.587787-8 8.709636-4 1.739082-8 9.700000-4 1.905968-8 1.050000-3 2.032336-8 1.135011-3 2.158906-8 1.273503-3 2.344579-8 1.380384-3 2.476739-8 1.531087-3 2.647624-8 1.737801-3 2.855403-8 1.950000-3 3.045161-8 2.113489-3 3.177896-8 2.300800-3 3.315628-8 2.300800-3 3.423056-8 2.394800-3 3.449090-8 2.394800-3 1.288563-5 2.470000-3 1.485633-5 2.483133-3 1.514393-5 2.511886-3 1.585710-5 2.540973-3 1.664408-5 2.600160-3 1.804812-5 2.630268-3 1.871767-5 2.660725-3 1.925262-5 2.691535-3 1.971859-5 2.700000-3 1.983597-5 2.740000-3 2.013504-5 2.836900-3 2.009262-5 2.836900-3 1.959248-5 3.273900-3 1.939727-5 3.273900-3 2.140621-5 3.536800-3 2.148494-5 3.536800-3 2.173722-5 4.216965-3 2.196666-5 5.432503-3 2.227098-5 7.800000-3 2.267966-5 1.150000-2 2.309778-5 1.228700-2 2.315353-5 1.228700-2 2.091943-3 1.425400-2 2.077108-3 1.425400-2 2.936033-3 1.482600-2 2.940368-3 1.482600-2 3.062061-3 1.949845-2 3.094988-3 2.917427-2 3.118555-3 4.841724-2 3.126221-3 8.335300-2 3.121543-3 8.335300-2 5.885867-2 9.885531-2 5.931555-2 1.288250-1 5.985684-2 1.949845-1 6.034988-2 3.630781-1 6.075563-2 9.120108-1 6.128743-2 1.000000+5 6.131550-2 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.550000-6 0.0 1.396000-5 4.410000-6 1.396000-5 8.137233-7 1.428894-5 1.078387-6 1.500000-5 1.658521-6 1.531087-5 1.916633-6 1.598000-5 2.483077-6 1.598000-5 1.686172-6 1.737801-5 3.003351-6 1.905461-5 4.604686-6 2.150000-5 6.974336-6 2.851018-5 1.386426-5 4.500000-5 3.018515-5 6.830000-5 5.345078-5 6.830000-5 5.122206-5 7.300000-5 5.545432-5 8.500000-5 6.698634-5 8.734000-5 6.926543-5 8.734000-5 6.722899-5 9.225714-5 7.125905-5 1.011579-4 7.930550-5 1.091300-4 8.681208-5 1.091300-4 8.618624-5 1.135000-4 8.990885-5 1.135000-4 8.942608-5 1.216186-4 9.614422-5 1.257300-4 9.973614-5 1.257300-4 9.908599-5 1.485000-4 1.193236-4 1.720000-4 1.397850-4 1.905461-4 1.569273-4 2.240000-4 1.894482-4 3.584200-4 3.235375-4 3.584200-4 3.224595-4 3.782100-4 3.424360-4 3.782100-4 3.415655-4 5.671300-4 5.274999-4 5.671300-4 5.247776-4 6.731700-4 6.287487-4 6.731700-4 6.280372-4 7.874400-4 7.403021-4 7.874400-4 7.389750-4 1.659587-3 1.600654-3 2.300800-3 2.237707-3 2.300800-3 2.209641-3 2.394800-3 2.303116-3 2.394800-3 2.286681-3 2.786121-3 2.668288-3 2.836900-3 2.719082-3 2.836900-3 2.712868-3 3.273900-3 3.149108-3 3.273900-3 3.143515-3 3.536800-3 3.405506-3 3.536800-3 3.401885-3 1.228700-2 1.213213-2 1.228700-2 1.002764-2 1.425400-2 1.200890-2 1.425400-2 1.114222-2 1.482600-2 1.170972-2 1.482600-2 1.157518-2 2.951209-2 2.619435-2 8.335300-2 8.001835-2 8.335300-2 2.429980-2 8.609938-2 2.693999-2 9.549926-2 3.605729-2 1.230269-1 6.304869-2 2.065380-1 1.459443-1 2.660725+0 2.599207+0 1.000000+5 9.999994+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.335300-2 2.103353+3 8.500000-2 2.002500+3 8.550000-2 1.970914+3 8.650000-2 1.920886+3 8.920000-2 1.771850+3 9.225714-2 1.632733+3 1.023293-1 1.248755+3 1.174898-1 8.768368+2 1.380384-1 5.743020+2 2.371374-1 1.374117+2 2.884032-1 8.245924+1 3.349654-1 5.619214+1 3.845918-1 3.969798+1 4.365158-1 2.905737+1 4.954502-1 2.143250+1 5.623413-1 1.593266+1 6.309573-1 1.225429+1 7.079458-1 9.501353+0 8.035261-1 7.239356+0 9.225714-1 5.424929+0 1.011579+0 4.500153+0 1.174898+0 3.352762+0 1.318257+0 2.690320+0 1.500000+0 2.117735+0 1.698244+0 1.695524+0 1.905461+0 1.389633+0 2.162719+0 1.125565+0 2.511886+0 8.838850-1 2.884032+0 7.120462-1 3.311311+0 5.779445-1 3.845918+0 4.645416-1 4.518559+0 3.700259-1 5.308844+0 2.969661-1 6.309573+0 2.364077-1 7.585776+0 1.867716-1 9.225714+0 1.465645-1 1.135011+1 1.142234-1 1.364583+1 9.208234-2 1.698244+1 7.167016-2 2.238721+1 5.265955-2 3.054921+1 3.754535-2 4.315191+1 2.598867-2 6.683439+1 1.644892-2 1.148154+2 9.433511-3 2.213095+2 4.842466-3 4.415704+2 2.413579-3 1.757924+3 6.037067-4 1.000000+5 1.060100-5 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.335300-2 1.896500-4 1.000000+5 1.896500-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.335300-2 7.350400-2 1.000000+5 7.350400-2 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.335300-2 9.659350-3 1.000000+5 9.999993+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.482600-2 7.615570+3 1.550000-2 7.080660+3 1.584893-2 6.798725+3 1.659587-2 6.304434+3 1.800000-2 5.441140+3 1.927525-2 4.828785+3 2.041738-2 4.349187+3 2.264644-2 3.574738+3 2.400000-2 3.197580+3 3.000000-2 2.050820+3 3.507519-2 1.481349+3 3.900000-2 1.183238+3 4.677351-2 7.954451+2 5.500000-2 5.525520+2 6.237348-2 4.137667+2 7.161434-2 2.995257+2 8.413951-2 2.039367+2 1.000000-1 1.340504+2 1.202264-1 8.505430+1 1.513561-1 4.776300+1 2.600160-1 1.215548+1 3.198895-1 7.244465+0 3.801894-1 4.739976+0 4.415705-1 3.305000+0 5.069907-1 2.387566+0 5.821032-1 1.738043+0 6.606935-1 1.308557+0 7.498942-1 9.922450-1 8.413951-1 7.769502-1 9.440609-1 6.128305-1 1.071519+0 4.760847-1 1.230269+0 3.638172-1 1.396368+0 2.864278-1 1.566751+0 2.320086-1 1.757924+0 1.892215-1 1.972423+0 1.554204-1 2.290868+0 1.214607-1 2.660725+0 9.566728-2 3.054921+0 7.730663-2 3.548134+0 6.188645-2 4.120975+0 4.990721-2 4.841724+0 3.988331-2 5.754399+0 3.162100-2 6.918310+0 2.488751-2 8.317638+0 1.973526-2 1.023293+1 1.532343-2 1.258925+1 1.198597-2 1.621810+1 8.951383-3 2.113489+1 6.652559-3 2.800000+1 4.889600-3 4.000000+1 3.337900-3 6.237348+1 2.094840-3 9.885531+1 1.303362-3 1.862087+2 6.837290-4 3.715352+2 3.404054-4 1.479108+3 8.508061-5 1.000000+5 1.256700-6 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.482600-2 2.712300-4 1.000000+5 2.712300-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.482600-2 3.843300-3 1.000000+5 3.843300-3 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.482600-2 1.071147-2 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.425400-2 1.530557+4 1.480000-2 1.398200+4 1.620000-2 1.112500+4 1.900000-2 7.367500+3 2.113489-2 5.545100+3 2.691535-2 2.870200+3 3.019952-2 2.078900+3 3.500000-2 1.371600+3 4.365158-2 7.266300+2 5.370318-2 3.965700+2 6.760830-2 2.006500+2 9.015711-2 8.492600+1 1.462177-1 1.993469+1 1.840772-1 1.006452+1 2.238721-1 5.671362+0 2.630268-1 3.561499+0 3.054921-1 2.329110+0 3.507519-1 1.585329+0 3.981072-1 1.122126+0 4.518559-1 8.002808-1 5.069907-1 5.928151-1 5.688529-1 4.424033-1 6.309573-1 3.422809-1 6.998420-1 2.669133-1 7.852356-1 2.041010-1 8.810489-1 1.572698-1 9.549926-1 1.313975-1 1.011579+0 1.162226-1 1.096478+0 9.861792-2 1.202264+0 8.232998-2 1.318257+0 6.921312-2 1.479108+0 5.615086-2 1.717908+0 4.299354-2 1.927525+0 3.524891-2 2.213095+0 2.803789-2 2.570396+0 2.204646-2 2.951209+0 1.778282-2 3.388442+0 1.445218-2 3.935501+0 1.162941-2 4.623810+0 9.273685-3 5.432503+0 7.450367-3 6.456542+0 5.936845-3 7.762471+0 4.694649-3 9.549926+0 3.635675-3 1.216186+1 2.723447-3 1.603245+1 1.979433-3 2.089296+1 1.470626-3 2.754229+1 1.086425-3 3.935501+1 7.411923-4 6.095369+1 4.683120-4 9.660509+1 2.912560-4 1.819701+2 1.527560-4 3.630781+2 7.603962-5 1.445440+3 1.900370-5 1.000000+5 2.742900-7 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.425400-2 1.954700-4 1.000000+5 1.954700-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.425400-2 5.120500-3 1.000000+5 5.120500-3 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.425400-2 8.938030-3 1.000000+5 9.999999+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.228700-2 3.529352+4 1.242000-2 3.433113+4 1.256000-2 3.319949+4 1.380384-2 2.565983+4 1.548817-2 1.863083+4 1.701200-2 1.432481+4 1.905461-2 1.033883+4 2.371374-2 5.463094+3 3.000000-2 2.700168+3 3.715352-2 1.402890+3 4.518559-2 7.629694+2 5.559043-2 3.966768+2 6.918310-2 1.972120+2 9.120108-2 8.087747+1 1.479108-1 1.688730+1 1.778279-1 9.344895+0 2.150000-1 5.115341+0 2.500000-1 3.192389+0 2.851018-1 2.131777+0 3.235937-1 1.454828+0 3.630781-1 1.035082+0 4.073803-1 7.418898-1 4.518559-1 5.536130-1 5.011872-1 4.159905-1 5.559043-1 3.149041-1 6.165950-1 2.403151-1 6.839117-1 1.848186-1 8.035261-1 1.242280-1 8.709636-1 1.025863-1 9.332543-1 8.766062-2 9.885531-1 7.733904-2 1.071519+0 6.546417-2 1.174898+0 5.453875-2 1.288250+0 4.577405-2 1.445440+0 3.708948-2 1.717908+0 2.725330-2 1.927525+0 2.234147-2 2.213095+0 1.776780-2 2.570396+0 1.396936-2 2.951209+0 1.126680-2 3.388442+0 9.156351-3 3.935501+0 7.367800-3 4.623810+0 5.875239-3 5.432503+0 4.720058-3 6.456542+0 3.761181-3 7.762471+0 2.974268-3 9.549926+0 2.303337-3 1.216186+1 1.725341-3 1.603245+1 1.254008-3 2.113489+1 9.198848-4 2.800000+1 6.761200-4 3.981072+1 4.638655-4 6.165950+1 2.931603-4 9.772372+1 1.823570-4 1.862087+2 9.454305-5 3.715352+2 4.707011-5 1.479108+3 1.176420-5 1.000000+5 1.737700-7 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.228700-2 1.905000-4 1.000000+5 1.905000-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.228700-2 3.429700-3 1.000000+5 3.429700-3 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.228700-2 8.666800-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.536800-3 2.138006+4 3.801894-3 1.965418+4 4.027170-3 1.816001+4 4.315191-3 1.659289+4 4.518559-3 1.553354+4 5.900000-3 1.040862+4 6.309573-3 9.348002+3 7.800000-3 6.572860+3 8.709636-3 5.422956+3 1.011579-2 4.155979+3 1.216186-2 2.957536+3 1.380384-2 2.324609+3 1.584893-2 1.778450+3 1.905461-2 1.232354+3 2.264644-2 8.657198+2 2.691535-2 6.029554+2 3.162278-2 4.269339+2 3.715352-2 3.000809+2 4.365158-2 2.094235+2 5.128614-2 1.451250+2 6.095369-2 9.721314+1 7.244360-2 6.462127+1 8.609938-2 4.265153+1 1.035142-1 2.716687+1 1.303167-1 1.533122+1 1.862087-1 6.252467+0 2.660725-1 2.542976+0 3.273407-1 1.518485+0 3.890451-1 9.953785-1 4.518559-1 6.955166-1 5.188000-1 5.031751-1 5.888437-1 3.764982-1 6.683439-1 2.838013-1 7.585776-1 2.154971-1 8.709636-1 1.608638-1 9.660509-1 1.300453-1 1.109175+0 9.885910-2 1.273503+0 7.569481-2 1.445440+0 5.972211-2 1.640590+0 4.748695-2 1.840772+0 3.883539-2 2.065380+0 3.199693-2 2.398833+0 2.507007-2 2.786121+0 1.979198-2 3.162278+0 1.631171-2 3.672823+0 1.308100-2 4.315191+0 1.039656-2 5.069907+0 8.326376-3 6.025596+0 6.615172-3 7.244360+0 5.216425-3 8.709636+0 4.144363-3 1.059254+1 3.268213-3 1.258925+1 2.664150-3 1.621810+1 1.989640-3 2.113489+1 1.478740-3 2.786121+1 1.092667-3 3.935501+1 7.548130-4 6.095369+1 4.769196-4 9.660509+1 2.966120-4 1.840772+2 1.537596-4 3.672823+2 7.654508-5 1.462177+3 1.913041-5 1.000000+5 2.793400-7 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.536800-3 1.921300-4 1.000000+5 1.921300-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.536800-3 2.765000-5 1.000000+5 2.765000-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.536800-3 3.317020-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.273900-3 3.476732+4 3.355000-3 3.397957+4 3.600000-3 3.131020+4 3.845918-3 2.890872+4 4.120975-3 2.635653+4 4.623810-3 2.230972+4 5.069907-3 1.940515+4 5.432503-3 1.738179+4 5.754399-3 1.577907+4 6.839116-3 1.161246+4 7.328245-3 1.021383+4 8.413951-3 7.803388+3 9.225714-3 6.485787+3 1.047129-2 4.975719+3 1.150000-2 4.070260+3 1.318257-2 3.005970+3 1.462177-2 2.373544+3 1.678804-2 1.717638+3 1.927525-2 1.231198+3 2.162719-2 9.267720+2 2.454709-2 6.738043+2 2.818383-2 4.723532+2 3.273407-2 3.188545+2 3.801894-2 2.135821+2 4.415704-2 1.420308+2 5.188000-2 9.086589+1 6.165950-2 5.589692+1 7.585776-2 3.093692+1 9.822090-2 1.466520+1 1.737801-1 2.784234+0 2.187762-1 1.433603+0 2.600160-1 8.771708-1 3.054921-1 5.586010-1 3.507519-1 3.820083-1 4.000000-1 2.679969-1 4.518559-1 1.942205-1 5.069907-1 1.442466-1 5.688529-1 1.078829-1 6.309573-1 8.360910-2 6.998420-1 6.522571-2 7.762471-1 5.123051-2 8.709636-1 3.942585-2 9.440609-1 3.303990-2 1.022000+0 2.797046-2 1.122018+0 2.318293-2 1.244515+0 1.897772-2 1.396368+0 1.531853-2 1.659587+0 1.122589-2 1.862087+0 9.185231-3 2.089296+0 7.571547-3 2.426610+0 5.936032-3 2.818383+0 4.689879-3 3.198895+0 3.867849-3 3.715352+0 3.103569-3 4.365158+0 2.468051-3 5.128614+0 1.977653-3 6.095369+0 1.571985-3 7.328245+0 1.240173-3 8.810489+0 9.857446-4 1.059254+1 7.884445-4 1.258925+1 6.427006-4 1.621810+1 4.799866-4 2.113489+1 3.567222-4 2.800000+1 2.621900-4 3.981072+1 1.798818-4 6.165950+1 1.136871-4 9.772372+1 7.071679-5 1.862087+2 3.666295-5 3.715352+2 1.825332-5 1.479108+3 4.562176-6 1.000000+5 6.738800-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.273900-3 1.675400-4 1.000000+5 1.675400-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.273900-3 5.423100-5 1.000000+5 5.423100-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.273900-3 3.052129-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.836900-3 1.093539+5 2.940000-3 1.049117+5 3.030000-3 9.994753+4 3.090295-3 9.700220+4 3.427678-3 8.221873+4 3.715352-3 7.158658+4 4.365158-3 5.384377+4 4.677351-3 4.738987+4 5.011872-3 4.149179+4 6.025596-3 2.874100+4 6.531306-3 2.429023+4 7.673615-3 1.717484+4 8.413951-3 1.398400+4 9.660509-3 1.019638+4 1.083927-2 7.769772+3 1.216186-2 5.885381+3 1.400000-2 4.151200+3 1.584893-2 3.027587+3 1.778279-2 2.244769+3 2.018366-2 1.604144+3 2.317395-2 1.103041+3 2.660725-2 7.525458+2 3.090295-2 4.931182+2 3.589219-2 3.204577+2 4.168694-2 2.066203+2 4.841724-2 1.322625+2 5.688529-2 8.120573+1 6.760830-2 4.779501+1 8.317638-2 2.509235+1 1.083927-1 1.090984+1 1.698244-1 2.640452+0 2.089296-1 1.380935+0 2.454709-1 8.394406-1 2.818383-1 5.515044-1 3.198895-1 3.777167-1 3.630781-1 2.606030-1 4.073803-1 1.873297-1 4.570882-1 1.357089-1 5.069907-1 1.022517-1 5.623413-1 7.759618-2 6.237348-1 5.931670-2 6.918310-1 4.568517-2 7.673615-1 3.545479-2 8.709636-1 2.618346-2 9.332543-1 2.234308-2 9.885531-1 1.969363-2 1.071519+0 1.665841-2 1.161449+0 1.418765-2 1.273503+0 1.189694-2 1.412538+0 9.839358-3 1.717908+0 6.938902-3 1.927525+0 5.687955-3 2.213095+0 4.523943-3 2.570396+0 3.556727-3 2.951209+0 2.868403-3 3.388442+0 2.331171-3 3.935501+0 1.875875-3 4.623810+0 1.495801-3 5.432503+0 1.201691-3 6.456542+0 9.575948-4 7.762471+0 7.572357-4 9.549926+0 5.864237-4 1.216186+1 4.392865-4 1.603245+1 3.192832-4 2.089296+1 2.372095-4 2.754229+1 1.752435-4 3.890451+1 1.210204-4 6.000000+1 7.678700-5 9.440609+1 4.809962-5 1.798871+2 2.492820-5 3.589219+2 1.240770-5 1.428894+3 3.100701-6 1.000000+5 4.424300-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.836900-3 1.470300-4 1.000000+5 1.470300-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.836900-3 1.642000-5 1.000000+5 1.642000-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.836900-3 2.673450-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.394800-3 1.736969+5 2.470000-3 1.973388+5 2.475000-3 1.983468+5 2.540973-3 2.161341+5 2.590000-3 2.266001+5 2.630268-3 2.334501+5 2.660725-3 2.360882+5 2.680000-3 2.371657+5 2.700000-3 2.375782+5 2.740000-3 2.340644+5 2.985383-3 1.875952+5 3.273407-3 1.469357+5 3.650000-3 1.092532+5 4.027170-3 8.298503+4 4.466836-3 6.165080+4 5.069907-3 4.254684+4 6.095369-3 2.435313+4 6.683439-3 1.830263+4 7.800000-3 1.124080+4 8.810489-3 7.583567+3 9.885531-3 5.202213+3 1.161449-2 3.035920+3 1.333521-2 1.896004+3 1.500000-2 1.262240+3 1.717908-2 7.844877+2 2.000000-2 4.565960+2 2.344229-2 2.572387+2 2.754229-2 1.425236+2 3.235937-2 7.839713+1 3.890451-2 3.927623+1 4.731513-2 1.870014+1 6.165950-2 6.789380+0 1.071519-1 8.124765-1 1.333521-1 3.530937-1 1.621810-1 1.687964-1 1.883649-1 9.664989-2 2.065380-1 6.891128-2 2.371374-1 4.174068-2 2.691535-1 2.655690-2 3.054921-1 1.702860-2 3.427678-1 1.144950-2 3.801894-1 8.063464-3 4.216965-1 5.717988-3 4.677351-1 4.084603-3 5.188000-1 2.939955-3 5.688529-1 2.209916-3 6.095369-1 1.793423-3 6.606935-1 1.415704-3 7.244360-1 1.088213-3 8.035261-1 8.154331-4 8.609938-1 6.705118-4 9.120108-1 5.732154-4 9.549926-1 5.085194-4 1.000000+0 4.539449-4 1.047129+0 4.081781-4 1.096478+0 3.696168-4 1.148154+0 3.367039-4 1.216186+0 3.016923-4 1.318257+0 2.607055-4 1.531087+0 2.012988-4 1.819701+0 1.483608-4 2.018366+0 1.243670-4 2.344229+0 9.734076-5 2.722701+0 7.675338-5 3.090295+0 6.317839-5 3.589219+0 5.060651-5 4.216965+0 4.017508-5 4.954502+0 3.214015-5 5.888437+0 2.550929-5 7.079458+0 2.009648-5 8.511380+0 1.595155-5 1.035142+1 1.256849-5 1.258925+1 9.967035-6 1.621810+1 7.443860-6 2.113489+1 5.532185-6 2.800000+1 4.066200-6 3.981072+1 2.789684-6 6.165950+1 1.763042-6 9.772372+1 1.096737-6 1.862087+2 5.685732-7 3.715352+2 2.830812-7 1.479108+3 7.075145-8 1.000000+5 1.045100-9 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.394800-3 1.097800-4 1.000000+5 1.097800-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.394800-3 6.505100-5 1.000000+5 6.505100-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.394800-3 2.219969-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.300800-3 4.689513+5 2.483133-3 4.202690+5 2.500000-3 4.145346+5 2.511886-3 4.114011+5 2.570396-3 3.892193+5 2.851018-3 2.968641+5 3.162278-3 2.246398+5 3.507519-3 1.686990+5 3.845918-3 1.299648+5 4.315191-3 9.304127+4 4.900000-3 6.381180+4 5.688529-3 4.037551+4 6.237348-3 3.031906+4 7.328245-3 1.812838+4 8.128305-3 1.293956+4 9.332543-3 8.190354+3 1.071519-2 5.136207+3 1.202264-2 3.458520+3 1.364583-2 2.223550+3 1.566751-2 1.362566+3 1.800000-2 8.266440+2 2.089296-2 4.793587+2 2.426610-2 2.751480+2 2.851018-2 1.500492+2 3.349654-2 8.119122+1 3.935501-2 4.362390+1 4.786301-2 2.035352+1 6.095369-2 7.863715+0 1.071519-1 8.455097-1 1.303167-1 3.926526-1 1.548817-1 2.010166-1 1.778279-1 1.184010-1 2.000000-1 7.596180-2 2.264644-1 4.817457-2 2.818383-1 2.186399-2 3.019952-1 1.714198-2 3.349654-1 1.198943-2 3.672823-1 8.786262-3 4.027170-1 6.484189-3 4.415705-1 4.821628-3 4.841724-1 3.613022-3 5.248075-1 2.825669-3 5.754399-1 2.149887-3 6.382635-1 1.594437-3 6.918310-1 1.272039-3 7.498942-1 1.021631-3 8.413951-1 7.545873-4 8.912509-1 6.521901-4 9.440609-1 5.674116-4 9.885531-1 5.104212-4 1.047129+0 4.505014-4 1.122018+0 3.909450-4 1.202264+0 3.416986-4 1.318257+0 2.878922-4 1.757924+0 1.726186-4 1.972423+0 1.416598-4 2.290868+0 1.107078-4 2.660725+0 8.719602-5 3.054921+0 7.045851-5 3.548134+0 5.640416-5 4.120975+0 4.548627-5 4.841724+0 3.635069-5 5.754399+0 2.882011-5 6.918310+0 2.268267-5 8.317638+0 1.798737-5 1.023293+1 1.396648-5 1.244515+1 1.107122-5 1.621810+1 8.158482-6 2.113489+1 6.063329-6 2.800000+1 4.456500-6 4.000000+1 3.042200-6 6.237348+1 1.909285-6 1.000000+2 1.174000-6 1.883649+2 6.159378-7 3.758374+2 3.066836-7 1.496236+3 7.665478-8 1.000000+5 1.145400-9 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.300800-3 1.083000-4 1.000000+5 1.083000-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.300800-3 3.488800-8 1.000000+5 3.488800-8 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.300800-3 2.192465-3 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 7.874400-4 4.979206+4 8.430000-4 4.738332+4 8.709636-4 4.613958+4 9.120108-4 4.427054+4 9.549926-4 4.257645+4 1.083927-3 3.788620+4 1.135011-3 3.617882+4 1.412538-3 2.814617+4 1.531087-3 2.546925+4 1.819701-3 2.028116+4 2.000000-3 1.779964+4 2.344229-3 1.414330+4 2.630268-3 1.189482+4 3.090295-3 9.256341+3 3.630781-3 7.132476+3 4.216965-3 5.557221+3 4.897788-3 4.300768+3 5.754399-3 3.239387+3 6.760830-3 2.422917+3 8.035261-3 1.761784+3 9.549926-3 1.272006+3 1.150000-2 8.891820+2 1.380384-2 6.206218+2 1.659587-2 4.285487+2 1.972423-2 3.006338+2 2.363700-2 2.057480+2 2.818383-2 1.412160+2 3.349654-2 9.689002+1 4.000000-2 6.529320+1 4.786301-2 4.345330+1 5.688529-2 2.914497+1 6.760830-2 1.940799+1 8.128305-2 1.248181+1 9.885531-2 7.747603+0 1.230269-1 4.508351+0 1.603245-1 2.320532+0 2.691535-1 6.291021-1 3.273407-1 3.867522-1 3.890451-1 2.536023-1 4.518559-1 1.772507-1 5.188000-1 1.282406-1 5.888437-1 9.595100-2 6.683439-1 7.232461-2 7.585776-1 5.491570-2 8.709636-1 4.099072-2 9.660509-1 3.313796-2 1.109175+0 2.519348-2 1.273503+0 1.928927-2 1.445440+0 1.521897-2 1.621810+0 1.235197-2 1.819701+0 1.009440-2 2.044000+0 8.295301-3 2.371374+0 6.507547-3 2.754229+0 5.134554-3 3.126079+0 4.229240-3 3.630781+0 3.389629-3 4.265795+0 2.692460-3 5.011872+0 2.155147-3 5.956621+0 1.711419-3 7.161434+0 1.348912-3 8.609938+0 1.071125-3 1.047129+1 8.443622-4 1.258925+1 6.788847-4 1.621810+1 5.070171-4 2.113489+1 3.768073-4 2.800000+1 2.769500-4 4.000000+1 1.890600-4 6.237348+1 1.186544-4 1.000000+2 7.295900-5 1.883649+2 3.827787-5 3.758374+2 1.905894-5 1.496236+3 4.763680-6 1.000000+5 7.118200-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 7.874400-4 1.124400-4 1.000000+5 1.124400-4 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.874400-4 1.087300-7 1.000000+5 1.087300-7 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 7.874400-4 6.748913-4 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 6.731700-4 4.152450+4 7.673615-4 4.147776+4 8.850000-4 4.034246+4 9.332543-4 3.966424+4 1.000000-3 3.852880+4 1.083927-3 3.700460+4 1.174898-3 3.527882+4 1.258925-3 3.364648+4 1.350000-3 3.182160+4 1.479108-3 2.933146+4 1.610000-3 2.702940+4 1.737801-3 2.493108+4 1.927525-3 2.214579+4 2.113489-3 1.980103+4 2.317395-3 1.756772+4 2.570396-3 1.525450+4 2.818383-3 1.336344+4 3.162278-3 1.123846+4 3.507519-3 9.545468+3 3.935501-3 7.904797+3 4.415704-3 6.492448+3 4.897788-3 5.405895+3 5.559043-3 4.287447+3 6.309573-3 3.371644+3 7.079458-3 2.691163+3 8.000000-3 2.103640+3 9.015711-3 1.642161+3 1.023293-2 1.254086+3 1.161449-2 9.508051+2 1.318257-2 7.157257+2 1.500000-2 5.318620+2 1.698244-2 3.971588+2 1.949845-2 2.847353+2 2.238721-2 2.025080+2 2.570396-2 1.429852+2 2.951209-2 1.002522+2 3.427678-2 6.771112+1 4.000000-2 4.481720+1 4.677351-2 2.928473+1 5.559043-2 1.816379+1 6.683439-2 1.082477+1 8.222426-2 5.999156+0 1.071519-1 2.796903+0 1.840772-1 5.831970-1 2.000000-1 4.593080-1 2.041738-1 4.342714-1 2.483133-1 2.488801-1 2.917427-1 1.584366-1 3.388442-1 1.048883-1 3.890451-1 7.219595-2 4.415705-1 5.163184-2 5.011872-1 3.720606-2 5.623413-1 2.782027-2 6.237348-1 2.155545-2 6.918310-1 1.681277-2 7.673615-1 1.320030-2 8.709636-1 9.890815-3 9.440609-1 8.285750-3 1.022000+0 7.012119-3 1.122018+0 5.810672-3 1.244515+0 4.756477-3 1.396368+0 3.839575-3 1.659587+0 2.813649-3 1.862087+0 2.301921-3 2.089296+0 1.897460-3 2.426610+0 1.487416-3 2.818383+0 1.174885-3 3.198895+0 9.688569-4 3.715352+0 7.774350-4 4.365158+0 6.182428-4 5.128614+0 4.953936-4 6.095369+0 3.937822-4 7.328245+0 3.106714-4 8.810489+0 2.469309-4 1.059254+1 1.975044-4 1.258925+1 1.609930-4 1.621810+1 1.202351-4 2.113489+1 8.935933-5 2.800000+1 6.567900-5 4.000000+1 4.483500-5 6.237348+1 2.813827-5 9.885531+1 1.750700-5 1.862087+2 9.183950-6 3.715352+2 4.572475-6 1.479108+3 1.142851-6 1.000000+5 1.688100-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 6.731700-4 9.742900-5 1.000000+5 9.742900-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.731700-4 1.065700-7 1.000000+5 1.065700-7 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 6.731700-4 5.756344-4 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 5.671300-4 2.120141+5 6.456542-4 2.020849+5 6.683439-4 1.974902+5 7.673615-4 1.762885+5 8.413951-4 1.617820+5 9.225714-4 1.476767+5 1.023293-3 1.322606+5 1.110000-3 1.203804+5 1.244515-3 1.044580+5 1.364583-3 9.268407+4 1.500000-3 8.135800+4 1.698244-3 6.804111+4 1.862087-3 5.921520+4 2.113489-3 4.854362+4 2.371374-3 4.020316+4 2.660725-3 3.306763+4 3.019952-3 2.645610+4 3.400000-3 2.131468+4 3.845918-3 1.690023+4 4.365158-3 1.321118+4 4.954502-3 1.024730+4 5.559043-3 8.080370+3 6.237348-3 6.333073+3 7.079458-3 4.809889+3 8.035261-3 3.626501+3 9.225714-3 2.643067+3 1.047129-2 1.963442+3 1.202264-2 1.408354+3 1.380384-2 1.001795+3 1.566751-2 7.277519+2 1.798871-2 5.095629+2 2.041738-2 3.648666+2 2.344229-2 2.515380+2 2.691535-2 1.720894+2 3.090295-2 1.168779+2 3.589219-2 7.625394+1 4.168694-2 4.936295+1 4.841724-2 3.172011+1 5.688529-2 1.955679+1 6.683439-2 1.197115+1 8.128305-2 6.544752+0 1.023293-1 3.191158+0 1.737801-1 6.037135-1 2.187762-1 2.948168-1 2.570396-1 1.797454-1 2.951209-1 1.184442-1 3.349654-1 8.139388-2 3.758374-1 5.826047-2 4.216965-1 4.199798-2 4.677351-1 3.148949-2 5.188000-1 2.376993-2 5.754399-1 1.807183-2 6.309573-1 1.425636-2 6.998420-1 1.099955-2 7.762471-1 8.551544-3 8.709636-1 6.495785-3 9.332543-1 5.543703-3 9.885531-1 4.886673-3 1.071519+0 4.133825-3 1.161449+0 3.520773-3 1.273503+0 2.952303-3 1.412538+0 2.441718-3 1.717908+0 1.722018-3 1.927525+0 1.411668-3 2.213095+0 1.122908-3 2.570396+0 8.828972-4 2.985383+0 6.996178-4 3.467369+0 5.593796-4 4.027170+0 4.506189-4 4.731513+0 3.597243-4 5.559043+0 2.892882-4 6.606934+0 2.307364-4 8.000000+0 1.810200-4 9.885531+0 1.395978-4 1.244515+1 1.061591-4 1.621810+1 7.822583-5 2.113489+1 5.813701-5 2.800000+1 4.273100-5 3.981072+1 2.931697-5 6.237348+1 1.830711-5 9.885531+1 1.139037-5 1.883649+2 5.905853-6 3.758374+2 2.940563-6 1.496236+3 7.349883-7 1.000000+5 1.098300-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 5.671300-4 8.969700-5 1.000000+5 8.969700-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.671300-4 6.419800-8 1.000000+5 6.419800-8 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 5.671300-4 4.773688-4 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 3.782100-4 1.515892+5 3.792000-4 1.454412+5 3.803000-4 1.397824+5 3.814000-4 1.349892+5 3.825000-4 1.309276+5 3.840000-4 1.262732+5 3.855000-4 1.224864+5 3.875000-4 1.184296+5 3.890451-4 1.159540+5 3.912000-4 1.133604+5 3.935000-4 1.116084+5 3.958000-4 1.108292+5 3.981072-4 1.109107+5 4.000000-4 1.115088+5 4.030000-4 1.131552+5 4.100000-4 1.184948+5 4.350000-4 1.407200+5 4.430000-4 1.476544+5 4.530000-4 1.555100+5 4.650000-4 1.639432+5 4.897788-4 1.801563+5 5.101000-4 1.928472+5 5.248075-4 2.010605+5 5.400000-4 2.083432+5 5.580000-4 2.155320+5 5.821032-4 2.233136+5 6.025596-4 2.285355+5 6.237348-4 2.326461+5 6.456542-4 2.354031+5 6.700000-4 2.369580+5 7.000000-4 2.371596+5 7.328245-4 2.356416+5 7.673615-4 2.323746+5 8.100000-4 2.267464+5 8.511380-4 2.203546+5 9.000000-4 2.118704+5 9.500000-4 2.024212+5 1.011579-3 1.904227+5 1.083927-3 1.766632+5 1.150000-3 1.645708+5 1.230269-3 1.506547+5 1.333521-3 1.343891+5 1.428894-3 1.210509+5 1.531087-3 1.083070+5 1.659587-3 9.445439+4 1.800000-3 8.169480+4 1.950000-3 7.029000+4 2.113489-3 6.004757+4 2.300000-3 5.053080+4 2.511886-3 4.191879+4 2.754229-3 3.422336+4 3.019952-3 2.773644+4 3.311311-3 2.232054+4 3.672823-3 1.734230+4 4.073803-3 1.336165+4 4.466836-3 1.052816+4 4.954502-3 7.995627+3 5.559043-3 5.838618+3 6.237348-3 4.226507+3 7.000000-3 3.032064+3 7.943282-3 2.087429+3 8.912509-3 1.473645+3 1.000000-2 1.032628+3 1.109175-2 7.451567+2 1.244515-2 5.150481+2 1.412538-2 3.404503+2 1.584893-2 2.320483+2 1.798871-2 1.510922+2 2.041738-2 9.767236+1 2.344229-2 6.021611+1 2.691535-2 3.684916+1 3.126079-2 2.148000+1 3.672823-2 1.191607+1 4.365158-2 6.288589+0 5.308844-2 3.023054+0 6.760830-2 1.212407+0 1.161449-1 1.554524-1 1.445440-1 6.822699-2 1.737801-1 3.435168-2 2.018366-1 1.980647-2 2.317395-1 1.201075-2 2.630268-1 7.647937-3 2.985383-1 4.906327-3 3.349654-1 3.298723-3 3.758374-1 2.234671-3 4.168694-1 1.585291-3 4.623810-1 1.132947-3 5.069907-1 8.460137-4 5.559043-1 6.359093-4 6.095369-1 4.813683-4 6.683439-1 3.672291-4 7.328245-1 2.822174-4 8.709636-1 1.742908-4 9.225714-1 1.494749-4 9.660509-1 1.329787-4 1.011579+0 1.190638-4 1.059254+0 1.073481-4 1.109175+0 9.740604-5 1.174898+0 8.690709-5 1.258925+0 7.641666-5 1.364583+0 6.617717-5 1.513561+0 5.536535-5 1.798871+0 4.078872-5 2.000000+0 3.402900-5 2.317395+0 2.672284-5 2.691535+0 2.105941-5 3.090295+0 1.702614-5 3.589219+0 1.363751-5 4.168694+0 1.100353-5 4.897788+0 8.798587-6 5.821032+0 6.979519-6 7.000000+0 5.494400-6 8.413951+0 4.360286-6 1.035142+1 3.387116-6 1.258925+1 2.686059-6 1.621810+1 2.006091-6 2.113489+1 1.490860-6 2.786121+1 1.101711-6 4.000000+1 7.480300-7 6.237348+1 4.694685-7 9.885531+1 2.920905-7 1.883649+2 1.514481-7 3.758374+2 7.540869-8 1.496236+3 1.884840-8 1.000000+5 2.81640-10 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 3.782100-4 6.743200-5 1.000000+5 6.743200-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.782100-4 5.628400-8 1.000000+5 5.628400-8 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 3.782100-4 3.107217-4 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 3.584200-4 2.023680+5 3.604000-4 1.925370+5 3.625000-4 1.839960+5 3.648000-4 1.764432+5 3.670000-4 1.707324+5 3.690000-4 1.667130+5 3.713000-4 1.634838+5 3.734100-4 1.618844+5 3.750000-4 1.615578+5 3.765000-4 1.619238+5 3.785000-4 1.633368+5 3.801894-4 1.652186+5 3.830000-4 1.693182+5 3.981072-4 1.960939+5 4.100200-4 2.180253+5 4.180000-4 2.323944+5 4.240000-4 2.424846+5 4.320000-4 2.547120+5 4.415704-4 2.676762+5 4.550000-4 2.839386+5 4.731513-4 3.043902+5 4.897788-4 3.218661+5 5.040000-4 3.351456+5 5.188000-4 3.465850+5 5.370318-4 3.579916+5 5.580000-4 3.682224+5 5.821032-4 3.770668+5 6.025596-4 3.822676+5 6.237348-4 3.853574+5 6.500000-4 3.863328+5 6.760830-4 3.849294+5 7.079458-4 3.808071+5 7.413102-4 3.739999+5 7.800000-4 3.640038+5 8.222426-4 3.516927+5 8.709636-4 3.363240+5 9.225714-4 3.190760+5 9.772372-4 3.005385+5 1.050000-3 2.767428+5 1.122018-3 2.545626+5 1.202264-3 2.314571+5 1.300000-3 2.062626+5 1.400000-3 1.835100+5 1.513561-3 1.610512+5 1.640590-3 1.397459+5 1.778279-3 1.203431+5 1.927525-3 1.029778+5 2.089296-3 8.752448+4 2.300000-3 7.153020+4 2.500000-3 5.961552+4 2.754229-3 4.788714+4 3.019952-3 3.857788+4 3.311311-3 3.087803+4 3.672823-3 2.383482+4 4.027170-3 1.880443+4 4.415704-3 1.474972+4 4.954502-3 1.079212+4 5.559043-3 7.823938+3 6.165950-3 5.813839+3 6.839116-3 4.290337+3 7.500000-3 3.255270+3 8.300000-3 2.389392+3 9.120108-3 1.782727+3 1.023293-2 1.237643+3 1.148154-2 8.532520+2 1.288250-2 5.837586+2 1.445440-2 3.964675+2 1.640590-2 2.570574+2 1.862087-2 1.653812+2 2.113489-2 1.056073+2 2.398833-2 6.696166+1 2.754229-2 4.043262+1 3.162278-2 2.423832+1 3.672823-2 1.382137+1 4.315191-2 7.491844+0 5.188000-2 3.691099+0 6.382635-2 1.651266+0 1.135011-1 1.742660-1 1.380384-1 8.164000-2 1.640590-1 4.211832-2 1.883649-1 2.491587-2 2.065380-1 1.765106-2 2.317395-1 1.156073-2 2.570396-1 7.954522-3 2.851018-1 5.511919-3 3.162278-1 3.846902-3 3.507519-1 2.704901-3 3.845918-1 1.991498-3 4.168694-1 1.532541-3 4.570882-1 1.144021-3 5.011872-1 8.602722-4 5.495409-1 6.515376-4 6.000000-1 5.037115-4 6.531306-1 3.964825-4 7.079458-1 3.180828-4 7.673615-1 2.568258-4 8.709636-1 1.844926-4 9.225714-1 1.597741-4 9.772372-1 1.393910-4 1.023293+0 1.257667-4 1.083927+0 1.113156-4 1.161449+0 9.689261-5 1.250000+0 8.423463-5 1.364583+0 7.182033-5 1.798871+0 4.410025-5 2.000000+0 3.680300-5 2.317395+0 2.889944-5 2.691535+0 2.277480-5 3.090295+0 1.841350-5 3.589219+0 1.474899-5 4.216965+0 1.170889-5 4.954502+0 9.367538-6 5.888437+0 7.434792-6 7.079458+0 5.857237-6 8.511380+0 4.649061-6 1.035142+1 3.663119-6 1.258925+1 2.905000-6 1.621810+1 2.169554-6 2.113489+1 1.612352-6 2.786121+1 1.191497-6 3.935501+1 8.230559-7 6.095369+1 5.200360-7 9.660509+1 3.234323-7 1.840772+2 1.676596-7 3.672823+2 8.346562-8 1.462177+3 2.086009-8 1.000000+5 3.04590-10 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 3.584200-4 6.460600-5 1.000000+5 6.460600-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.584200-4 4.615200-9 1.000000+5 4.615200-9 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.584200-4 2.938094-4 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.135000-4 1.005762+5 1.136400-4 1.036854+5 1.139500-4 1.096530+5 1.142500-4 1.150650+5 1.145500-4 1.202628+5 1.150000-4 1.275276+5 1.154000-4 1.335312+5 1.158500-4 1.398072+5 1.163000-4 1.456830+5 1.167000-4 1.505466+5 1.172000-4 1.561662+5 1.178000-4 1.623348+5 1.185000-4 1.688130+5 1.193400-4 1.757067+5 1.202264-4 1.820222+5 1.210000-4 1.868052+5 1.220000-4 1.920774+5 1.230269-4 1.965676+5 1.245000-4 2.015928+5 1.260000-4 2.053158+5 1.275000-4 2.079024+5 1.290000-4 2.095866+5 1.315000-4 2.109864+5 1.390000-4 2.119338+5 1.415000-4 2.133648+5 1.440000-4 2.162028+5 1.462177-4 2.202245+5 1.485000-4 2.260536+5 1.500000-4 2.309208+5 1.520000-4 2.387424+5 1.540000-4 2.481600+5 1.560000-4 2.591832+5 1.584893-4 2.751852+5 1.610000-4 2.938452+5 1.640590-4 3.198939+5 1.678804-4 3.572907+5 1.850000-4 5.829630+5 1.905461-4 6.738676+5 1.972423-4 7.931623+5 2.020000-4 8.829540+5 2.080000-4 1.000170+6 2.135000-4 1.109280+6 2.190000-4 1.217574+6 2.240000-4 1.313742+6 2.290868-4 1.407760+6 2.344229-4 1.501315+6 2.400000-4 1.592922+6 2.454709-4 1.676054+6 2.520000-4 1.766652+6 2.580000-4 1.841928+6 2.660725-4 1.931857+6 2.754229-4 2.020451+6 2.830000-4 2.079786+6 2.917427-4 2.134214+6 3.000000-4 2.172234+6 3.100000-4 2.202306+6 3.200000-4 2.217054+6 3.320000-4 2.217750+6 3.430000-4 2.204928+6 3.550000-4 2.179278+6 3.715352-4 2.129828+6 3.890451-4 2.065126+6 4.073803-4 1.987463+6 4.265795-4 1.898598+6 4.466836-4 1.800847+6 4.700000-4 1.686270+6 4.954502-4 1.564580+6 5.248075-4 1.431828+6 5.559043-4 1.300656+6 5.900000-4 1.168170+6 6.309573-4 1.026218+6 6.760830-4 8.911570+5 7.244360-4 7.676762+5 7.762471-4 6.562862+5 8.317638-4 5.570950+5 9.015711-4 4.567968+5 9.700000-4 3.786870+5 1.059254-3 2.997777+5 1.150000-3 2.392236+5 1.244515-3 1.914083+5 1.380384-3 1.415609+5 1.500000-3 1.103370+5 1.640590-3 8.383354+4 1.819701-3 6.049596+4 2.041738-3 4.168785+4 2.300000-3 2.806440+4 2.570396-3 1.922267+4 2.851018-3 1.340663+4 3.162278-3 9.284724+3 3.548134-3 6.124383+3 3.935501-3 4.179934+3 4.415704-3 2.713855+3 4.954502-3 1.748399+3 5.559043-3 1.117769+3 6.237348-3 7.094527+2 7.000000-3 4.467966+2 7.943282-3 2.671153+2 9.015711-3 1.583533+2 1.023293-2 9.313259+1 1.161449-2 5.436030+1 1.318257-2 3.149895+1 1.500000-2 1.792590+1 1.717908-2 9.838896+0 2.000000-2 4.983252+0 2.344229-2 2.430763+0 2.818383-2 1.048607+0 3.311311-2 4.993925-1 4.168694-2 1.714340-1 7.852356-2 8.920076-3 9.549926-2 3.600855-3 1.109175-1 1.811324-3 1.303167-1 8.704824-4 1.531088-1 4.215862-4 1.737801-1 2.397778-4 1.949845-1 1.445819-4 2.113489-1 1.020881-4 2.344229-1 6.573787-5 2.600160-1 4.264189-5 2.884032-1 2.786029-5 3.235937-1 1.748619-5 3.548134-1 1.212566-5 3.890451-1 8.467524-6 4.168694-1 6.506639-6 4.623810-1 4.418684-6 5.370318-1 2.553537-6 5.888437-1 1.834837-6 6.606935-1 1.218712-6 7.079458-1 9.595359-7 7.498942-1 7.909862-7 7.943282-1 6.565699-7 8.317638-1 5.690024-7 8.709636-1 4.960460-7 9.120108-1 4.353057-7 9.549926-1 3.847875-7 9.885531-1 3.526023-7 1.035142+0 3.161488-7 1.083927+0 2.856498-7 1.135011+0 2.597861-7 1.202264+0 2.324582-7 1.318257+0 1.967049-7 1.513561+0 1.551822-7 1.819701+0 1.120656-7 2.018366+0 9.393022-8 2.344229+0 7.351232-8 2.722701+0 5.796715-8 3.090295+0 4.771708-8 3.589219+0 3.822127-8 4.216965+0 3.034292-8 4.954502+0 2.427495-8 5.888437+0 1.926630-8 7.079458+0 1.517780-8 8.511380+0 1.204750-8 1.035142+1 9.492570-9 1.258925+1 7.527962-9 1.621810+1 5.622105-9 2.113489+1 4.178334-9 2.800000+1 3.071100-9 3.981072+1 2.106962-9 6.165950+1 1.331564-9 9.772372+1 8.28307-10 1.862087+2 4.29432-10 3.715352+2 2.13803-10 1.479108+3 5.34368-11 1.000000+5 7.89310-13 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.135000-4 3.672600-5 1.000000+5 3.672600-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.135000-4 3.69240-10 1.000000+5 3.69240-10 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.135000-4 7.677363-5 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.091300-4 1.528864+5 1.092100-4 1.555880+5 1.095000-4 1.634304+5 1.098000-4 1.711248+5 1.102000-4 1.805992+5 1.106000-4 1.893136+5 1.111000-4 1.993872+5 1.117000-4 2.102136+5 1.122018-4 2.184129+5 1.128000-4 2.272792+5 1.135011-4 2.365342+5 1.143000-4 2.457496+5 1.150000-4 2.528144+5 1.161000-4 2.622840+5 1.173000-4 2.706616+5 1.185000-4 2.773280+5 1.200000-4 2.836440+5 1.216186-4 2.884254+5 1.235000-4 2.919160+5 1.260000-4 2.941200+5 1.340000-4 2.950392+5 1.365000-4 2.967296+5 1.390000-4 3.003456+5 1.412538-4 3.057149+5 1.435000-4 3.133928+5 1.450000-4 3.199352+5 1.472000-4 3.317288+5 1.495000-4 3.469496+5 1.520000-4 3.669208+5 1.540000-4 3.854832+5 1.570000-4 4.175376+5 1.603245-4 4.587505+5 1.650000-4 5.262216+5 1.800000-4 8.078960+5 1.862087-4 9.496726+5 1.927525-4 1.112144+6 1.990000-4 1.276712+6 2.041738-4 1.417168+6 2.089296-4 1.547355+6 2.137962-4 1.679388+6 2.190000-4 1.817080+6 2.240000-4 1.944032+6 2.300000-4 2.087648+6 2.350000-4 2.199152+6 2.400000-4 2.302928+6 2.454709-4 2.407393+6 2.520000-4 2.519976+6 2.600160-4 2.641272+6 2.660725-4 2.721102+6 2.754229-4 2.825119+6 2.846200-4 2.905154+6 2.930000-4 2.959248+6 3.019952-4 2.998095+6 3.126079-4 3.020448+6 3.240000-4 3.020360+6 3.350000-4 3.001640+6 3.470000-4 2.965272+6 3.630781-4 2.897855+6 3.801894-4 2.809931+6 3.981072-4 2.704243+6 4.168694-4 2.583105+6 4.365158-4 2.450467+6 4.600000-4 2.290608+6 4.850000-4 2.124288+6 5.150000-4 1.935632+6 5.432503-4 1.770815+6 5.754399-4 1.597091+6 6.100000-4 1.428048+6 6.531306-4 1.243841+6 6.918310-4 1.100635+6 7.413102-4 9.435328+5 7.943282-4 8.030464+5 8.609938-4 6.598853+5 9.225714-4 5.543303+5 1.000000-3 4.487016+5 1.083927-3 3.608587+5 1.190000-3 2.779368+5 1.288250-3 2.211063+5 1.412538-3 1.684194+5 1.570000-3 1.220408+5 1.730000-3 9.004720+4 1.883649-3 6.854235+4 2.065380-3 5.071078+4 2.290868-3 3.585147+4 2.540973-3 2.515190+4 2.818383-3 1.751605+4 3.126079-3 1.211003+4 3.467369-3 8.317270+3 3.845918-3 5.672359+3 4.265795-3 3.842300+3 4.786301-3 2.473481+3 5.370318-3 1.580262+3 6.025596-3 1.002164+3 6.760830-3 6.309178+2 7.673615-3 3.762881+2 8.609938-3 2.335720+2 9.772372-3 1.371942+2 1.109175-2 7.996206+1 1.258925-2 4.625311+1 1.428894-2 2.655908+1 1.621810-2 1.513786+1 1.862087-2 8.136722+0 2.187762-2 3.911294+0 2.570396-2 1.865947+0 3.090295-2 7.946689-1 3.758374-2 3.185542-1 4.731513-2 1.077714-1 5.559043-2 5.023456-2 7.585776-2 1.143610-2 8.810489-2 5.642416-3 1.047129-1 2.516131-3 1.216186-1 1.258366-3 1.479108-1 5.133390-4 1.659587-1 3.050445-4 1.840772-1 1.922458-4 2.018366-1 1.283480-4 2.213095-1 8.631562-5 2.426610-1 5.844984-5 2.660725-1 3.986928-5 2.917427-1 2.742669-5 3.198895-1 1.901002-5 3.507519-1 1.327184-5 3.845918-1 9.316320-6 4.168694-1 6.880152-6 4.518559-1 5.117368-6 4.841724-1 3.996801-6 5.188000-1 3.141003-6 5.559043-1 2.484526-6 5.956621-1 1.979992-6 6.382635-1 1.588706-6 6.839117-1 1.283127-6 7.328245-1 1.042627-6 7.852356-1 8.525704-7 8.413951-1 7.017029-7 9.120108-1 5.620108-7 9.549926-1 4.978430-7 1.000000+0 4.439300-7 1.047129+0 3.989434-7 1.096478+0 3.611353-7 1.148154+0 3.289353-7 1.216186+0 2.947486-7 1.318257+0 2.547791-7 1.513561+0 2.009334-7 1.819701+0 1.450941-7 2.000000+0 1.234900-7 2.344229+0 9.520073-8 2.722701+0 7.506491-8 3.090295+0 6.178711-8 3.589219+0 4.949157-8 4.216965+0 3.928995-8 4.954502+0 3.143238-8 5.888437+0 2.494761-8 7.079458+0 1.965397-8 8.511380+0 1.559969-8 1.035142+1 1.229180-8 1.258925+1 9.747593-9 1.621810+1 7.279796-9 2.113489+1 5.410288-9 2.800000+1 3.976600-9 4.000000+1 2.714600-9 6.237348+1 1.703642-9 9.885531+1 1.060011-9 1.883649+2 5.49603-10 3.758374+2 2.73657-10 1.496236+3 6.83990-11 1.000000+5 1.02210-12 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.091300-4 3.440600-5 1.000000+5 3.440600-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.091300-4 3.924800-9 1.000000+5 3.924800-9 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.091300-4 7.472008-5 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.257300-4 7.750920+4 1.280000-4 7.151880+4 1.294000-4 6.872700+4 1.305000-4 6.693340+4 1.320000-4 6.497000+4 1.335000-4 6.340040+4 1.350000-4 6.215000+4 1.373000-4 6.071840+4 1.396368-4 5.972541+4 1.425000-4 5.895740+4 1.462177-4 5.846807+4 1.500000-4 5.835700+4 1.560000-4 5.864280+4 1.737801-4 6.023323+4 1.820000-4 6.063820+4 1.905461-4 6.068552+4 2.018366-4 6.028034+4 2.150000-4 5.934620+4 2.317395-4 5.778398+4 2.511886-4 5.576801+4 2.722701-4 5.346145+4 2.917427-4 5.121032+4 3.126079-4 4.870682+4 3.388442-4 4.557512+4 3.715352-4 4.191938+4 4.120975-4 3.788277+4 4.518559-4 3.438179+4 5.011872-4 3.057419+4 5.688529-4 2.626744+4 6.382635-4 2.273065+4 7.328245-4 1.894209+4 8.511380-4 1.543106+4 1.011579-3 1.206623+4 1.188502-3 9.523895+3 1.428894-3 7.214011+3 1.737801-3 5.326911+3 2.089296-3 3.975747+3 2.540973-3 2.890676+3 3.054921-3 2.125162+3 3.672823-3 1.550700+3 4.415704-3 1.123047+3 5.308844-3 8.075422+2 6.382635-3 5.764891+2 7.762471-3 3.996759+2 9.440609-3 2.749330+2 1.148154-2 1.876906+2 1.396368-2 1.271350+2 1.678804-2 8.747043+1 2.018366-2 5.974013+1 2.426610-2 4.048805+1 2.917427-2 2.722749+1 3.467369-2 1.863184+1 4.168694-2 1.233649+1 5.011872-2 8.105169+0 6.025596-2 5.283629+0 7.244360-2 3.419257+0 8.609938-2 2.258434+0 1.047129-1 1.397356+0 1.333521-1 7.657107-1 2.691535-1 1.307490-1 3.273407-1 8.038834-2 3.890451-1 5.271152-2 4.518559-1 3.682709-2 5.188000-1 2.664090-2 5.956621-1 1.942467-2 6.760830-1 1.465084-2 7.673615-1 1.113196-2 8.709636-1 8.516893-3 9.660509-1 6.885276-3 1.109175+0 5.234548-3 1.273503+0 4.007827-3 1.445440+0 3.162070-3 1.640590+0 2.514191-3 1.840772+0 2.056126-3 2.065380+0 1.694171-3 2.398833+0 1.327463-3 2.786121+0 1.047953-3 3.162278+0 8.636596-4 3.672823+0 6.926078-4 4.315191+0 5.504664-4 5.069907+0 4.408474-4 6.025596+0 3.502496-4 7.244360+0 2.761958-4 8.709636+0 2.194267-4 1.059254+1 1.730384-4 1.273503+1 1.391837-4 1.621810+1 1.053461-4 2.113489+1 7.829119-5 2.800000+1 5.754400-5 4.000000+1 3.928200-5 6.237348+1 2.465381-5 9.885531+1 1.533861-5 1.883649+2 7.953268-6 3.758374+2 3.960001-6 1.496236+3 9.897895-7 1.000000+5 1.479000-8 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.257300-4 4.424900-5 1.000000+5 4.424900-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.257300-4 1.037700-9 1.000000+5 1.037700-9 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.257300-4 8.147996-5 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 8.734000-5 7.688380+5 8.800000-5 8.056560+5 8.850000-5 8.287360+5 8.912509-5 8.526826+5 8.980000-5 8.726020+5 9.040000-5 8.865220+5 9.120108-5 8.995773+5 9.225714-5 9.090787+5 9.332543-5 9.118252+5 9.450000-5 9.082340+5 9.580000-5 8.978680+5 9.720000-5 8.809600+5 9.900000-5 8.530600+5 1.010000-4 8.167280+5 1.030000-4 7.772140+5 1.050000-4 7.363200+5 1.080000-4 6.750480+5 1.110000-4 6.161920+5 1.150000-4 5.440220+5 1.220000-4 4.378680+5 1.364583-4 2.887121+5 1.462177-4 2.246304+5 1.548817-4 1.832431+5 1.650000-4 1.474944+5 1.737801-4 1.242639+5 1.820000-4 1.073074+5 1.905461-4 9.338763+4 1.995262-4 8.184786+4 2.080000-4 7.315680+4 2.162719-4 6.624497+4 2.264644-4 5.935659+4 2.371374-4 5.360140+4 2.483133-4 4.877033+4 2.600160-4 4.469771+4 2.730000-4 4.106760+4 2.851018-4 3.832368+4 3.000000-4 3.558960+4 3.162278-4 3.320778+4 3.350000-4 3.100440+4 3.600000-4 2.868880+4 3.935501-4 2.627339+4 4.466836-4 2.339075+4 5.888437-4 1.829611+4 6.760830-4 1.607418+4 7.762471-4 1.401905+4 8.810489-4 1.227762+4 1.000000-3 1.067570+4 1.122018-3 9.345729+3 1.273503-3 8.017926+3 1.445440-3 6.831379+3 1.650000-3 5.735760+3 1.862087-3 4.855991+3 2.089296-3 4.119754+3 2.371374-3 3.414457+3 2.691535-3 2.808809+3 3.054921-3 2.293629+3 3.467369-3 1.858888+3 3.935501-3 1.495428+3 4.466836-3 1.194308+3 5.069907-3 9.469146+2 5.754399-3 7.453518+2 6.531306-3 5.825640+2 7.413102-3 4.521204+2 8.413951-3 3.484025+2 9.660509-3 2.601339+2 1.096478-2 1.976079+2 1.244515-2 1.490928+2 1.428894-2 1.088042+2 1.621810-2 8.094110+1 1.862087-2 5.817671+1 2.137962-2 4.149584+1 2.454709-2 2.937857+1 2.818383-2 2.065286+1 3.273407-2 1.399045+1 3.801894-2 9.406311+0 4.623810-2 5.544467+0 5.248075-2 3.918823+0 6.237348-2 2.420937+0 7.585776-2 1.391287+0 9.660509-2 6.958092-1 1.798871-1 1.152223-1 2.264644-1 5.959443-2 2.691535-1 3.659137-2 3.162278-1 2.338072-2 3.630781-1 1.603746-2 4.120975-1 1.142727-2 4.677351-1 8.201289-3 5.248075-1 6.107697-3 5.888437-1 4.580849-3 6.531306-1 3.560022-3 7.244360-1 2.784866-3 8.317638-1 2.025795-3 9.120108-1 1.648576-3 9.885531-1 1.386838-3 1.071519+0 1.175701-3 1.174898+0 9.803730-4 1.303167+0 8.051931-4 1.462177+0 6.519442-4 1.698244+0 4.987220-4 1.905461+0 4.086102-4 2.162719+0 3.309657-4 2.511886+0 2.599073-4 2.917427+0 2.056933-4 3.349654+0 1.670568-4 3.890451+0 1.343513-4 4.570882+0 1.070769-4 5.370318+0 8.598030-5 6.382635+0 6.847987-5 7.673615+0 5.412706-5 9.440609+0 4.189934-5 1.200000+1 3.143800-5 1.600000+1 2.254600-5 2.089296+1 1.671260-5 2.754229+1 1.234653-5 3.845918+1 8.630998-6 5.888437+1 5.516703-6 9.225714+1 3.469724-6 1.778279+2 1.776870-6 3.548134+2 8.843609-7 1.412538+3 2.209926-7 1.000000+5 3.117100-9 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 8.734000-5 3.415900-5 1.000000+5 3.415900-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 8.734000-5 1.492800-9 1.000000+5 1.492800-9 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 8.734000-5 5.317951-5 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 6.830000-5 1.948332+6 6.890000-5 1.974540+6 6.950000-5 1.989248+6 7.030000-5 1.994556+6 7.110000-5 1.986824+6 7.190000-5 1.969656+6 7.300000-5 1.933976+6 7.413102-5 1.887367+6 7.500000-5 1.846756+6 7.668800-5 1.760386+6 7.852356-5 1.660816+6 8.080000-5 1.536308+6 8.317638-5 1.410563+6 8.650000-5 1.247916+6 1.000000-4 7.756640+5 1.059254-4 6.464927+5 1.109175-4 5.625495+5 1.161449-4 4.928529+5 1.216186-4 4.349220+5 1.273503-4 3.866886+5 1.333521-4 3.464801+5 1.380384-4 3.207741+5 1.442400-4 2.927514+5 1.500000-4 2.715608+5 1.566751-4 2.515011+5 1.640590-4 2.336031+5 1.720000-4 2.180996+5 1.820000-4 2.025380+5 1.927525-4 1.892106+5 2.089296-4 1.733879+5 2.344229-4 1.545172+5 3.273407-4 1.124789+5 3.758374-4 9.796771+4 4.265795-4 8.571407+4 4.841724-4 7.443005+4 5.559043-4 6.330070+4 6.309573-4 5.416493+4 7.244360-4 4.532359+4 8.317638-4 3.765088+4 9.660509-4 3.053452+4 1.109175-3 2.499001+4 1.288250-3 1.995932+4 1.479108-3 1.610524+4 1.698244-3 1.291113+4 1.972423-3 1.008110+4 2.264644-3 7.960441+3 2.600160-3 6.240575+3 2.985383-3 4.855266+3 3.427678-3 3.746892+3 3.890451-3 2.934013+3 4.415704-3 2.281920+3 5.069907-3 1.721376+3 5.754399-3 1.320129+3 6.531306-3 1.005356+3 7.498942-3 7.410877+2 8.511380-3 5.564135+2 9.772372-3 4.039218+2 1.109175-2 2.990061+2 1.258925-2 2.198182+2 1.428894-2 1.605030+2 1.640590-2 1.130161+2 1.883649-2 7.894810+1 2.162719-2 5.472724+1 2.483133-2 3.764847+1 2.851018-2 2.570209+1 3.235937-2 1.798862+1 3.758374-2 1.170685+1 4.415704-2 7.310764+0 5.188000-2 4.530266+0 6.095369-2 2.787079+0 7.328245-2 1.585977+0 9.120108-2 8.051443-1 1.135011-1 4.058464-1 1.717908-1 1.103565-1 2.137962-1 5.588205-2 2.511886-1 3.407038-2 2.884032-1 2.244125-2 3.273407-1 1.540597-2 3.715352-1 1.065462-2 4.168694-1 7.675970-3 4.677351-1 5.573085-3 5.188000-1 4.207612-3 5.754399-1 3.199422-3 6.382635-1 2.451270-3 7.079458-1 1.892638-3 7.852356-1 1.472526-3 8.709636-1 1.150040-3 9.332543-1 9.816998-4 9.885531-1 8.654833-4 1.071519+0 7.322353-4 1.161449+0 6.236651-4 1.273503+0 5.229459-4 1.412538+0 4.324583-4 1.717908+0 3.049497-4 1.927525+0 2.499787-4 2.213095+0 1.988298-4 2.570396+0 1.563237-4 2.951209+0 1.260709-4 3.388442+0 1.024548-4 3.935501+0 8.244180-5 4.623810+0 6.574053-5 5.432503+0 5.281456-5 6.456542+0 4.208526-5 7.762471+0 3.327967-5 9.549926+0 2.577284-5 1.216186+1 1.930587-5 1.603245+1 1.403262-5 2.089296+1 1.042505-5 2.754229+1 7.701745-6 3.890451+1 5.318715-6 6.025596+1 3.359780-6 9.440609+1 2.113961-6 1.798871+2 1.095555-6 3.589219+2 5.453149-7 1.428894+3 1.362740-7 1.000000+5 1.944400-9 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 6.830000-5 2.899800-5 1.000000+5 2.899800-5 1 80000 7 7 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 6.830000-5 5.35070-10 1.000000+5 5.35070-10 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 6.830000-5 3.930146-5 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.598000-5 4.048520+6 1.635000-5 4.025720+6 1.670000-5 4.032080+6 1.710000-5 4.068600+6 1.750000-5 4.133440+6 1.798871-5 4.247191+6 1.850000-5 4.402800+6 1.905461-5 4.611028+6 1.972423-5 4.910094+6 2.041738-5 5.269307+6 2.113489-5 5.689096+6 2.213400-5 6.348275+6 2.371374-5 7.546394+6 2.660725-5 1.012243+7 2.818383-5 1.164572+7 2.917427-5 1.260709+7 3.019952-5 1.357943+7 3.126079-5 1.453363+7 3.230000-5 1.538852+7 3.330000-5 1.611244+7 3.427678-5 1.670346+7 3.507519-5 1.708867+7 3.589219-5 1.738613+7 3.672823-5 1.758718+7 3.770000-5 1.769064+7 3.850000-5 1.767416+7 3.950000-5 1.753216+7 4.030000-5 1.732948+7 4.120975-5 1.701412+7 4.229500-5 1.653889+7 4.350000-5 1.591444+7 4.466836-5 1.524255+7 4.610000-5 1.436884+7 4.731513-5 1.360952+7 4.900000-5 1.256108+7 5.080000-5 1.148192+7 5.300000-5 1.025048+7 5.559043-5 8.948043+6 5.821032-5 7.797555+6 6.150000-5 6.569560+6 6.500000-5 5.487960+6 6.839116-5 4.622914+6 7.244360-5 3.780060+6 7.650000-5 3.100976+6 8.035261-5 2.576743+6 8.500000-5 2.069168+6 9.000000-5 1.642280+6 9.500000-5 1.310200+6 1.011579-4 9.998089+5 1.071519-4 7.750837+5 1.148154-4 5.665619+5 1.230269-4 4.111790+5 1.333521-4 2.806779+5 1.548817-4 1.370806+5 1.621810-4 1.105857+5 1.678804-4 9.462725+4 1.737801-4 8.150507+4 1.780000-4 7.385000+4 1.820000-4 6.770720+4 1.865000-4 6.189600+4 1.905461-4 5.751715+4 1.950000-4 5.348280+4 1.995262-4 5.010055+4 2.041738-4 4.726387+4 2.089296-4 4.492241+4 2.137962-4 4.301829+4 2.190000-4 4.143800+4 2.240000-4 4.028720+4 2.290868-4 3.942091+4 2.350000-4 3.873124+4 2.400000-4 3.836476+4 2.454709-4 3.814527+4 2.540000-4 3.809160+4 2.630268-4 3.831111+4 2.754229-4 3.889966+4 3.235937-4 4.178536+4 3.467369-4 4.280751+4 3.715352-4 4.349196+4 3.935501-4 4.375958+4 4.168694-4 4.375082+4 4.415704-4 4.343483+4 4.677351-4 4.284206+4 5.011872-4 4.179852+4 5.308844-4 4.069116+4 5.688529-4 3.910956+4 6.095369-4 3.729757+4 6.531306-4 3.530517+4 7.000000-4 3.318340+4 7.498942-4 3.100702+4 8.128305-4 2.842116+4 8.810489-4 2.584842+4 9.549926-4 2.334467+4 1.035142-3 2.094133+4 1.122018-3 1.866102+4 1.224700-3 1.634438+4 1.333521-3 1.426762+4 1.462177-3 1.222442+4 1.603245-3 1.039767+4 1.757924-3 8.779516+3 1.927525-3 7.359519+3 2.113489-3 6.125479+3 2.317395-3 5.062939+3 2.540973-3 4.156178+3 2.786121-3 3.389016+3 3.054921-3 2.745373+3 3.388442-3 2.149618+3 3.758374-3 1.669813+3 4.168694-3 1.287024+3 4.623810-3 9.845039+2 5.128614-3 7.477084+2 5.688529-3 5.639620+2 6.309573-3 4.223883+2 7.000000-3 3.139968+2 7.852356-3 2.244743+2 8.709636-3 1.648339+2 9.772372-3 1.160176+2 1.096478-2 8.106959+1 1.230269-2 5.624894+1 1.380384-2 3.875504+1 1.548817-2 2.651799+1 1.757924-2 1.733442+1 2.000000-2 1.115570+1 2.290868-2 6.960530+0 2.630268-2 4.274757+0 3.054921-2 2.500868+0 3.548134-2 1.451973+0 4.216965-2 7.691949-1 5.069907-2 3.875332-1 6.382635-2 1.629505-1 1.188502-1 1.547156-2 1.479108-1 6.801495-3 1.757924-1 3.576800-3 2.018366-1 2.152612-3 2.317395-1 1.305796-3 2.630268-1 8.317400-4 2.985383-1 5.337514-4 3.349654-1 3.589911-4 3.758374-1 2.432604-4 4.168694-1 1.725956-4 4.623810-1 1.233446-4 5.128614-1 8.880697-5 5.623413-1 6.675631-5 6.095369-1 5.232088-5 6.683439-1 3.993601-5 7.328245-1 3.071329-5 8.035261-1 2.377408-5 8.609938-1 1.957574-5 9.120108-1 1.675555-5 9.549926-1 1.487814-5 1.000000+0 1.329200-5 1.047129+0 1.195896-5 1.096478+0 1.083289-5 1.161449+0 9.650047-6 1.230269+0 8.656930-6 1.333521+0 7.485220-6 1.479108+0 6.260277-6 1.862087+0 4.174664-6 2.044000+0 3.566200-6 2.371374+0 2.797605-6 2.754229+0 2.207345-6 3.126079+0 1.818170-6 3.630781+0 1.457261-6 4.265795+0 1.157549-6 5.011872+0 9.265306-7 5.956621+0 7.357432-7 7.161434+0 5.798996-7 8.609938+0 4.604980-7 1.047129+1 3.629994-7 1.258925+1 2.918605-7 1.621810+1 2.179697-7 2.113489+1 1.619940-7 2.786121+1 1.197123-7 3.935501+1 8.269138-8 6.095369+1 5.224756-8 9.660509+1 3.249453-8 1.840772+2 1.684441-8 3.672823+2 8.385689-9 1.462177+3 2.095762-9 1.000000+5 3.06020-11 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.598000-5 1.598000-5 1.000000+5 1.598000-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.598000-5 0.0 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.396000-5 7.067760+6 1.428894-5 7.079555+6 1.462177-5 7.129283+6 1.500000-5 7.227720+6 1.531087-5 7.338800+6 1.570000-5 7.512840+6 1.621810-5 7.797969+6 1.678804-5 8.173983+6 1.737801-5 8.623214+6 1.805600-5 9.206446+6 1.900000-5 1.012242+7 2.018366-5 1.141740+7 2.290868-5 1.487522+7 2.500000-5 1.781568+7 2.650000-5 1.995738+7 2.770000-5 2.161632+7 2.884032-5 2.309050+7 2.985383-5 2.427352+7 3.090295-5 2.533338+7 3.190000-5 2.615358+7 3.273407-5 2.668118+7 3.370000-5 2.709798+7 3.467369-5 2.730152+7 3.548134-5 2.730789+7 3.650000-5 2.711730+7 3.730000-5 2.682474+7 3.830000-5 2.630250+7 3.935501-5 2.559051+7 4.030000-5 2.483898+7 4.150000-5 2.376918+7 4.265795-5 2.265884+7 4.400000-5 2.131884+7 4.518559-5 2.012400+7 4.677351-5 1.855205+7 4.850000-5 1.692072+7 5.011872-5 1.548825+7 5.248075-5 1.358507+7 5.500000-5 1.180410+7 5.821032-5 9.882965+6 6.165950-5 8.190003+6 6.531306-5 6.734626+6 6.918310-5 5.496413+6 7.300000-5 4.515666+6 7.673615-5 3.736572+6 8.035261-5 3.119566+6 8.500000-5 2.484732+6 8.912509-5 2.038269+6 9.440609-5 1.590494+6 1.000000-4 1.232244+6 1.060000-4 9.451620+5 1.135011-4 6.870483+5 1.220000-4 4.871010+5 1.430000-4 2.260986+5 1.500000-4 1.803690+5 1.560000-4 1.507944+5 1.603245-4 1.337473+5 1.655900-4 1.168545+5 1.698244-4 1.058177+5 1.740000-4 9.678480+4 1.780000-4 8.958900+4 1.820000-4 8.359740+4 1.862087-4 7.839058+4 1.905461-4 7.401440+4 1.950000-4 7.040160+4 1.995262-4 6.749865+4 2.041738-4 6.518941+4 2.089296-4 6.340519+4 2.137962-4 6.207082+4 2.190000-4 6.109260+4 2.240000-4 6.051060+4 2.300000-4 6.018420+4 2.380000-4 6.021600+4 2.480000-4 6.075720+4 2.600160-4 6.186014+4 3.000000-4 6.610380+4 3.200000-4 6.771060+4 3.388442-4 6.872049+4 3.600000-4 6.933480+4 3.850000-4 6.942360+4 4.090000-4 6.895260+4 4.315191-4 6.814692+4 4.570882-4 6.685944+4 4.841724-4 6.518947+4 5.188000-4 6.278372+4 5.559043-4 6.001663+4 5.956621-4 5.694615+4 6.382635-4 5.364092+4 6.839116-4 5.019100+4 7.413102-4 4.609038+4 8.035261-4 4.199171+4 8.709636-4 3.796756+4 9.440609-4 3.410267+4 1.023293-3 3.043680+4 1.109175-3 2.698797+4 1.202264-3 2.377998+4 1.318257-3 2.042524+4 1.445440-3 1.740983+4 1.584893-3 1.473396+4 1.737801-3 1.238121+4 1.905461-3 1.032995+4 2.089296-3 8.557941+3 2.290868-3 7.040833+3 2.511886-3 5.753296+3 2.754229-3 4.669798+3 3.019952-3 3.765446+3 3.349654-3 2.932690+3 3.715352-3 2.266019+3 4.120975-3 1.737431+3 4.570882-3 1.322181+3 5.069907-3 9.988023+2 5.623413-3 7.491202+2 6.237348-3 5.579068+2 6.760830-3 4.408597+2 7.498942-3 3.234462+2 8.609938-3 2.122796+2 9.660509-3 1.484230+2 1.071519-2 1.068564+2 1.202264-2 7.363785+1 1.348963-2 5.037845+1 1.513561-2 3.422139+1 1.717908-2 2.218485+1 1.949845-2 1.426931+1 2.213095-2 9.109308+0 2.540973-2 5.538457+0 2.917427-2 3.341667+0 3.349654-2 2.001632+0 3.935501-2 1.092069+0 4.677351-2 5.660126-1 5.559043-2 2.911706-1 7.161434-2 1.088368-1 1.148154-1 1.728549-2 1.396368-1 8.111687-3 1.659587-1 4.190676-3 1.905461-1 2.488582-3 2.137962-1 1.623179-3 2.398833-1 1.066502-3 2.660725-1 7.356559-4 2.951209-1 5.109056-4 3.273407-1 3.573523-4 3.589219-1 2.618107-4 3.935501-1 1.931147-4 4.315191-1 1.434965-4 4.731513-1 1.074335-4 5.188000-1 8.106038-5 5.623413-1 6.377360-5 6.095369-1 5.050578-5 6.606935-1 4.029030-5 7.161434-1 3.235301-5 7.762471-1 2.614384-5 8.609938-1 1.994503-5 9.120108-1 1.725841-5 9.660509-1 1.503889-5 1.011579+0 1.355317-5 1.071519+0 1.198310-5 1.148154+0 1.041804-5 1.230269+0 9.121833-6 1.333521+0 7.866161-6 1.798871+0 4.633804-6 2.000000+0 3.867200-6 2.317395+0 3.036816-6 2.691535+0 2.393187-6 3.090295+0 1.934860-6 3.589219+0 1.549816-6 4.216965+0 1.230369-6 4.954502+0 9.843320-7 5.888437+0 7.812389-7 7.079458+0 6.154723-7 8.511380+0 4.885218-7 1.035142+1 3.849182-7 1.258925+1 3.052569-7 1.621810+1 2.279746-7 2.113489+1 1.694299-7 2.786121+1 1.252024-7 3.935501+1 8.648622-8 6.095369+1 5.464493-8 9.660509+1 3.398543-8 1.840772+2 1.761752-8 3.672823+2 8.770584-9 1.462177+3 2.191989-9 1.000000+5 3.20060-11 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.396000-5 1.396000-5 1.000000+5 1.396000-5 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.396000-5 0.0 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 9.550000-6 7.701020+6 9.885531-6 6.710241+6 1.122018-5 3.989338+6 1.288250-5 2.244899+6 1.462177-5 1.315160+6 1.678804-5 7.284350+5 2.150000-5 2.507240+5 2.344229-5 1.737928+5 2.483133-5 1.369998+5 2.610000-5 1.122030+5 2.730000-5 9.433120+4 2.851018-5 8.037548+4 2.951209-5 7.119842+4 3.054921-5 6.346567+4 3.162278-5 5.696860+4 3.273407-5 5.152859+4 3.350000-5 4.839860+4 3.450000-5 4.493700+4 3.548134-5 4.211287+4 3.650000-5 3.967340+4 3.770000-5 3.732240+4 3.900000-5 3.528560+4 4.030000-5 3.366680+4 4.168694-5 3.229966+4 4.315191-5 3.116849+4 4.500000-5 3.008560+4 4.677351-5 2.930983+4 4.900000-5 2.858820+4 5.188000-5 2.792507+4 5.623413-5 2.724218+4 6.683439-5 2.601152+4 7.300000-5 2.523360+4 7.943282-5 2.432608+4 8.609938-5 2.331200+4 9.332543-5 2.216716+4 1.011579-4 2.091488+4 1.109175-4 1.941308+4 1.220000-4 1.783230+4 1.364583-4 1.599728+4 1.548817-4 1.403457+4 1.800000-4 1.190862+4 2.951209-4 6.789178+3 3.311311-4 5.923135+3 3.715352-4 5.132234+3 4.120975-4 4.483450+3 4.786301-4 3.653676+3 6.683439-4 2.280723+3 7.762471-4 1.837066+3 9.015711-4 1.467665+3 1.230269-3 9.097342+2 1.531087-3 6.455621+2 1.905461-3 4.543551+2 2.344229-3 3.233548+2 3.672823-3 1.483496+2 4.623810-3 9.994785+1 5.128614-3 8.332596+1 5.956621-3 6.349771+1 7.079458-3 4.603338+1 9.120108-3 2.840696+1 1.109175-2 1.941448+1 1.348963-2 1.316584+1 1.640590-2 8.858657+0 1.972423-2 6.055900+0 2.371374-2 4.108167+0 2.851018-2 2.765181+0 3.388442-2 1.893971+0 4.027170-2 1.288081+0 4.786301-2 8.698394-1 5.688529-2 5.829910-1 6.839116-2 3.775624-1 8.317638-2 2.361241-1 1.011580-1 1.462385-1 1.288250-1 8.022210-2 1.862087-1 3.179895-2 2.660725-1 1.294135-2 3.273407-1 7.730894-3 3.890451-1 5.069434-3 4.518559-1 3.543277-3 5.188000-1 2.564134-3 5.888437-1 1.919176-3 6.683439-1 1.447099-3 7.585776-1 1.099301-3 8.609938-1 8.412592-4 9.660509-1 6.645047-4 1.122018+0 4.940676-4 1.273503+0 3.868102-4 1.445440+0 3.052146-4 1.640590+0 2.426899-4 1.840772+0 1.984702-4 2.065380+0 1.635292-4 2.398833+0 1.281335-4 2.786121+0 1.011556-4 3.162278+0 8.336708-5 3.672823+0 6.685546-5 4.315191+0 5.313488-5 5.069907+0 4.255386-5 6.025596+0 3.380877-5 7.244360+0 2.666026-5 8.709636+0 2.118051-5 1.047129+1 1.693432-5 1.258925+1 1.361577-5 1.621810+1 1.016829-5 2.113489+1 7.557207-6 2.800000+1 5.554600-6 3.981072+1 3.810904-6 6.165950+1 2.408368-6 9.885531+1 1.480640-6 1.862087+2 7.767081-7 3.715352+2 3.866976-7 1.479108+3 9.665011-8 1.000000+5 1.427600-9 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 9.550000-6 9.550000-6 1.000000+5 9.550000-6 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 9.550000-6 0.0 1.000000+5 1.000000+5 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.657220-7 1.026100+0 1.279150-6 1.026600+0 1.803300-6 1.027100+0 2.453430-6 1.027500+0 3.072890-6 1.028100+0 4.183690-6 1.028750+0 5.657220-6 1.029500+0 7.742060-6 1.030100+0 9.736570-6 1.031000+0 1.332290-5 1.032000+0 1.822910-5 1.033200+0 2.553590-5 1.034000+0 3.134770-5 1.035300+0 4.255010-5 1.036640+0 5.657220-5 1.038200+0 7.634600-5 1.039700+0 9.918880-5 1.041500+0 1.319690-4 1.043800+0 1.831780-4 1.046400+0 2.548580-4 1.048300+0 3.173050-4 1.051200+0 4.304170-4 1.054080+0 5.657220-4 1.057700+0 7.711160-4 1.061100+0 1.003030-3 1.065100+0 1.327900-3 1.070400+0 1.852570-3 1.076200+0 2.560250-3 1.080600+0 3.197330-3 1.087100+0 4.307850-3 1.093710+0 5.657220-3 1.102600+0 7.843500-3 1.110700+0 1.022920-2 1.120600+0 1.368320-2 1.133300+0 1.902480-2 1.147500+0 2.626690-2 1.158200+0 3.264310-2 1.174100+0 4.363000-2 1.190110+0 5.657220-2 1.205100+0 7.042890-2 1.227500+0 9.427210-2 1.250000+0 1.218000-1 1.265600+0 1.427980-1 1.294900+0 1.860490-1 1.331800+0 2.466290-1 1.362600+0 3.015500-1 1.397000+0 3.666020-1 1.433800+0 4.396980-1 1.477900+0 5.312060-1 1.500000+0 5.785000-1 1.562500+0 7.167580-1 1.617200+0 8.421970-1 1.712900+0 1.067710+0 1.784700+0 1.239780+0 1.892300+0 1.498560+0 2.000000+0 1.756000+0 2.044000+0 1.860000+0 2.163500+0 2.137940+0 2.372600+0 2.606850+0 2.686300+0 3.267410+0 3.000000+0 3.882000+0 3.500000+0 4.783280+0 4.000000+0 5.604000+0 5.000000+0 7.046000+0 6.000000+0 8.288000+0 7.000000+0 9.382000+0 8.000000+0 1.037000+1 9.000000+0 1.126000+1 1.000000+1 1.209000+1 1.100000+1 1.285000+1 1.200000+1 1.356000+1 1.300000+1 1.422000+1 1.400000+1 1.484000+1 1.500000+1 1.542000+1 1.600000+1 1.596000+1 1.800000+1 1.694000+1 2.000000+1 1.781000+1 2.200000+1 1.859000+1 2.400000+1 1.931000+1 2.600000+1 1.997000+1 2.800000+1 2.057000+1 3.000000+1 2.113000+1 4.000000+1 2.339000+1 5.000000+1 2.507000+1 6.000000+1 2.638000+1 8.000000+1 2.830000+1 1.000000+2 2.965000+1 1.500000+2 3.178000+1 2.000000+2 3.304000+1 3.000000+2 3.451000+1 4.000000+2 3.535000+1 5.000000+2 3.590000+1 6.000000+2 3.629000+1 8.000000+2 3.681000+1 1.000000+3 3.715000+1 1.500000+3 3.764000+1 2.000000+3 3.790000+1 3.000000+3 3.819000+1 4.000000+3 3.834000+1 5.000000+3 3.844000+1 6.000000+3 3.851000+1 8.000000+3 3.859000+1 1.000000+4 3.865000+1 1.500000+4 3.873000+1 2.000000+4 3.877000+1 3.000000+4 3.881000+1 4.000000+4 3.883000+1 5.000000+4 3.885000+1 6.000000+4 3.886000+1 8.000000+4 3.887000+1 1.000000+5 3.888000+1 1 80000 7 8 2.005900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.008960-7 2.090400+0 1.087420-6 2.094700+0 1.410000-6 2.099900+0 1.875810-6 2.106600+0 2.609410-6 2.114000+0 3.610440-6 2.119500+0 4.494980-6 2.127900+0 6.096040-6 2.136250+0 8.008960-6 2.147000+0 1.098080-5 2.156900+0 1.426280-5 2.169000+0 1.903460-5 2.184500+0 2.645870-5 2.201800+0 3.660640-5 2.214800+0 4.560870-5 2.234200+0 6.135180-5 2.253680+0 8.008960-5 2.281500+0 1.121800-4 2.307000+0 1.473470-4 2.338200+0 1.981210-4 2.377400+0 2.743740-4 2.410200+0 3.489580-4 2.446800+0 4.438940-4 2.485900+0 5.588870-4 2.532900+0 7.152560-4 2.556430+0 8.008960-4 2.611900+0 1.021230-3 2.660400+0 1.234620-3 2.745300+0 1.652470-3 2.809000+0 2.001240-3 2.904500+0 2.578110-3 3.000000+0 3.218000-3 3.125000+0 4.149370-3 3.234400+0 5.048640-3 3.425800+0 6.797950-3 3.569300+0 8.242340-3 3.784700+0 1.059360-2 4.000000+0 1.312000-2 4.250000+0 1.620700-2 4.625000+0 2.105460-2 5.000000+0 2.609000-2 5.500000+0 3.299610-2 6.000000+0 3.999000-2 6.750000+0 5.039020-2 7.000000+0 5.381000-2 8.000000+0 6.717000-2 9.000000+0 7.992000-2 1.000000+1 9.202000-2 1.100000+1 1.034000-1 1.200000+1 1.142000-1 1.300000+1 1.243000-1 1.400000+1 1.339000-1 1.500000+1 1.430000-1 1.600000+1 1.516000-1 1.800000+1 1.675000-1 2.000000+1 1.819000-1 2.200000+1 1.951000-1 2.400000+1 2.071000-1 2.600000+1 2.182000-1 2.800000+1 2.285000-1 3.000000+1 2.380000-1 4.000000+1 2.772000-1 5.000000+1 3.066000-1 6.000000+1 3.297000-1 8.000000+1 3.643000-1 1.000000+2 3.891000-1 1.500000+2 4.297000-1 2.000000+2 4.548000-1 3.000000+2 4.851000-1 4.000000+2 5.031000-1 5.000000+2 5.153000-1 6.000000+2 5.241000-1 8.000000+2 5.363000-1 1.000000+3 5.443000-1 1.500000+3 5.562000-1 2.000000+3 5.629000-1 3.000000+3 5.702000-1 4.000000+3 5.745000-1 5.000000+3 5.771000-1 6.000000+3 5.789000-1 8.000000+3 5.814000-1 1.000000+4 5.829000-1 1.500000+4 5.849000-1 2.000000+4 5.862000-1 3.000000+4 5.873000-1 4.000000+4 5.881000-1 5.000000+4 5.885000-1 6.000000+4 5.888000-1 8.000000+4 5.891000-1 1.000000+5 5.893000-1 1 80000 7 8 2.005900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 80000 7 9 2.005900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.000000+1 1.000000+5 8.000000+1 5.000000+5 7.997700+1 8.750000+5 7.994710+1 1.000000+6 7.994000+1 1.375000+6 7.989840+1 1.500000+6 7.988700+1 2.000000+6 7.979900+1 2.500000+6 7.968800+1 3.000000+6 7.955400+1 3.500000+6 7.939590+1 4.000000+6 7.921800+1 4.500000+6 7.902310+1 5.000000+6 7.880800+1 5.687500+6 7.847470+1 6.156200+6 7.822580+1 6.500000+6 7.804030+1 6.718700+6 7.791280+1 7.000000+6 7.775500+1 7.500000+6 7.744860+1 8.250000+6 7.698070+1 9.000000+6 7.649000+1 1.000000+7 7.580200+1 1.109400+7 7.500950+1 1.187500+7 7.442000+1 1.250000+7 7.394200+1 1.437500+7 7.246000+1 1.500000+7 7.196500+1 1.750000+7 6.995100+1 2.000000+7 6.790300+1 2.250000+7 6.585540+1 2.375000+7 6.483510+1 2.500000+7 6.383300+1 2.875000+7 6.087190+1 3.000000+7 5.991800+1 3.437500+7 5.668590+1 3.750000+7 5.452640+1 4.000000+7 5.289000+1 4.500000+7 4.985870+1 4.750000+7 4.845250+1 5.000000+7 4.712200+1 5.750000+7 4.348050+1 6.000000+7 4.237300+1 6.750000+7 3.928890+1 7.000000+7 3.833300+1 7.750000+7 3.562260+1 8.000000+7 3.476900+1 8.750000+7 3.232080+1 9.000000+7 3.154500+1 9.750000+7 2.931840+1 1.000000+8 2.861300+1 1.062500+8 2.692280+1 1.203100+8 2.358130+1 1.250000+8 2.261000+1 1.437500+8 1.941130+1 1.500000+8 1.857400+1 1.625000+8 1.718910+1 1.750000+8 1.606920+1 2.000000+8 1.427900+1 2.250000+8 1.282940+1 2.500000+8 1.164800+1 2.671900+8 1.094590+1 2.789100+8 1.046130+1 2.875000+8 1.008350+1 2.894500+8 9.994550+0 2.973600+8 9.620380+0 3.000000+8 9.491300+0 3.062500+8 9.176020+0 3.335900+8 7.889950+0 3.445300+8 7.496560+0 3.500000+8 7.334400+0 3.562500+8 7.178480+0 4.000000+8 6.408700+0 4.125000+8 6.162140+0 4.234400+8 5.931490+0 4.425800+8 5.524040+0 4.750000+8 4.914910+0 4.784700+8 4.859030+0 4.928200+8 4.648860+0 5.000000+8 4.557400+0 5.125000+8 4.420290+0 6.000000+8 3.765800+0 6.250000+8 3.581080+0 6.812500+8 3.190710+0 7.000000+8 3.083300+0 7.625000+8 2.793040+0 7.875000+8 2.676120+0 8.000000+8 2.613700+0 8.125000+8 2.547540+0 1.000000+9 1.674600+0 1.031300+9 1.593090+0 1.060500+9 1.531840+0 1.100900+9 1.465050+0 1.137900+9 1.417640+0 1.183200+9 1.372450+0 1.375000+9 1.253490+0 1.500000+9 1.190300+0 1.562500+9 1.153360+0 1.641100+9 1.103500+0 1.706900+9 1.060290+0 1.811600+9 9.912860-1 1.905800+9 9.308250-1 2.000000+9 8.732200-1 2.139200+9 7.943090-1 2.272600+9 7.256280-1 2.443000+9 6.470670-1 2.602800+9 5.820430-1 2.750000+9 5.286800-1 2.822900+9 5.043570-1 3.024800+9 4.436020-1 3.271700+9 3.807500-1 3.487700+9 3.343620-1 3.759500+9 2.853670-1 3.986900+9 2.509670-1 4.348700+9 2.061370-1 4.674400+9 1.739680-1 5.000000+9 1.478000-1 5.375000+9 1.234440-1 5.703100+9 1.061480-1 6.277300+9 8.265670-2 7.031000+9 6.105390-2 8.000000+9 4.294200-2 1.00000+10 2.317400-2 2.08110+10 3.045730-3 3.07100+10 1.040570-3 4.80320+10 3.041660-4 7.40160+10 9.315620-5 1.00000+11 4.105200-5 1.34280+11 1.846260-5 2.20600+11 4.842380-6 4.19930+11 8.649560-7 1.03480+12 7.909920-8 3.24440+12 3.926350-9 1.00000+14 5.22170-13 3.16230+15 6.21137-17 1.00000+17 7.01940-21 1 80000 7 0 2.005900+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.90000-12 1.000000+2 6.90000-10 1.000000+3 6.900000-8 1.000000+4 6.900000-6 1.000000+5 6.900000-4 5.000000+5 1.725000-2 8.750000+5 5.282813-2 1.000000+6 6.900000-2 1.375000+6 1.305770-1 1.500000+6 1.552000-1 2.000000+6 2.731000-1 2.500000+6 4.212000-1 3.000000+6 5.969000-1 3.500000+6 7.975480-1 4.000000+6 1.020200+0 4.500000+6 1.261760+0 5.000000+6 1.519000+0 5.687500+6 1.892510+0 6.156200+6 2.157240+0 6.500000+6 2.355040+0 6.718700+6 2.482060+0 7.000000+6 2.646800+0 7.500000+6 2.941340+0 8.250000+6 3.385140+0 9.000000+6 3.827500+0 1.000000+7 4.409000+0 1.109400+7 5.032510+0 1.187500+7 5.469350+0 1.250000+7 5.814700+0 1.437500+7 6.827040+0 1.500000+7 7.159000+0 1.750000+7 8.470800+0 2.000000+7 9.766000+0 2.250000+7 1.104650+1 2.375000+7 1.168080+1 2.500000+7 1.231000+1 2.875000+7 1.416340+1 3.000000+7 1.477200+1 3.437500+7 1.686420+1 3.750000+7 1.833080+1 4.000000+7 1.948900+1 4.500000+7 2.176420+1 4.750000+7 2.287250+1 5.000000+7 2.396000+1 5.750000+7 2.704360+1 6.000000+7 2.800500+1 6.750000+7 3.066380+1 7.000000+7 3.148000+1 7.750000+7 3.373250+1 8.000000+7 3.442900+1 8.750000+7 3.637830+1 9.000000+7 3.699400+1 9.750000+7 3.874450+1 1.000000+8 3.930700+1 1.062500+8 4.066350+1 1.203100+8 4.351900+1 1.250000+8 4.442200+1 1.437500+8 4.780660+1 1.500000+8 4.886600+1 1.625000+8 5.087040+1 1.750000+8 5.274100+1 2.000000+8 5.606600+1 2.250000+8 5.887150+1 2.500000+8 6.121800+1 2.671900+8 6.259750+1 2.789100+8 6.344020+1 2.875000+8 6.402320+1 2.894500+8 6.414770+1 2.973600+8 6.464440+1 3.000000+8 6.480800+1 3.062500+8 6.517230+1 3.335900+8 6.662790+1 3.445300+8 6.715040+1 3.500000+8 6.739900+1 3.562500+8 6.767080+1 4.000000+8 6.937000+1 4.125000+8 6.978920+1 4.234400+8 7.014770+1 4.425800+8 7.073100+1 4.750000+8 7.162410+1 4.784700+8 7.171230+1 4.928200+8 7.207150+1 5.000000+8 7.224800+1 5.125000+8 7.253710+1 6.000000+8 7.427800+1 6.250000+8 7.468730+1 6.812500+8 7.548210+1 7.000000+8 7.572000+1 7.625000+8 7.638310+1 7.875000+8 7.661220+1 8.000000+8 7.671800+1 8.125000+8 7.681310+1 1.000000+9 7.788400+1 1.031300+9 7.800500+1 1.060500+9 7.811470+1 1.100900+9 7.824300+1 1.137900+9 7.835570+1 1.183200+9 7.848330+1 1.375000+9 7.888790+1 1.500000+9 7.909300+1 1.562500+9 7.917400+1 1.641100+9 7.927150+1 1.706900+9 7.934970+1 1.811600+9 7.945440+1 1.905800+9 7.953510+1 2.000000+9 7.961200+1 2.139200+9 7.969580+1 2.272600+9 7.975830+1 2.443000+9 7.982380+1 2.602800+9 7.987340+1 2.750000+9 7.990580+1 2.822900+9 7.992130+1 3.024800+9 7.994570+1 3.271700+9 7.997100+1 3.487700+9 7.998440+1 3.759500+9 7.999070+1 3.986900+9 7.999570+1 4.348700+9 7.999930+1 4.674400+9 7.999810+1 5.000000+9 7.999700+1 5.375000+9 7.999750+1 5.703100+9 7.999780+1 6.277300+9 7.999850+1 7.031000+9 7.999920+1 8.000000+9 8.000000+1 1.00000+10 8.000000+1 2.08110+10 8.000000+1 3.07100+10 8.000000+1 4.80320+10 8.000000+1 7.40160+10 8.000000+1 1.00000+11 8.000000+1 1.34280+11 8.000000+1 2.20600+11 8.000000+1 4.19930+11 8.000000+1 1.03480+12 8.000000+1 3.24440+12 8.000000+1 1.00000+14 8.000000+1 3.16230+15 8.000000+1 1.00000+17 8.000000+1 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.012538-6 0.0 5.308078-6 0.0 5.327676-6 2.881821+0 5.334209-6 3.830243+0 5.347274-6 6.996252+0 5.360339-6 1.179664+1 5.375037-6 1.936182+1 5.397927-6 3.392974+1 5.413416-6 4.318983+1 5.426864-6 4.861288+1 5.440194-6 5.030977+1 5.453633-6 4.789602+1 5.467543-6 4.166611+1 5.489584-6 2.782232+1 5.504056-6 1.880782+1 5.517121-6 1.214168+1 5.530186-6 7.235570+0 5.543251-6 3.980346+0 5.562032-6 1.138131+0 5.569382-6 0.0 5.918787-6 0.0 5.944281-6 6.506556+0 5.947923-6 7.426579+0 5.962492-6 1.356525+1 5.977060-6 2.287288+1 5.993449-6 3.754125+1 6.018972-6 6.578744+1 6.036244-6 8.374212+1 6.052260-6 9.454151+1 6.065549-6 9.768419+1 6.080376-6 9.337794+1 6.096224-6 8.117268+1 6.119158-6 5.625891+1 6.137312-6 3.646708+1 6.151880-6 2.354188+1 6.166448-6 1.402928+1 6.181017-6 7.717620+0 6.202869-6 1.961850+0 6.210153-6 0.0 6.884897-6 0.0 6.901843-6 3.58006-14 6.918790-6 7.08396-14 6.935736-6 1.29394-13 6.952682-6 2.18176-13 6.969629-6 3.39590-13 6.986575-6 4.87928-13 7.003521-6 6.47158-13 7.020467-6 7.92353-13 7.037414-6 8.95532-13 7.054360-6 9.34323-13 7.071306-6 8.99844-13 7.088253-6 8.00003-13 7.105199-6 6.56553-13 7.139091-6 3.47847-13 7.156038-6 2.24558-13 7.172984-6 1.33820-13 7.189930-6 7.36157-14 7.206877-6 3.73829-14 7.223823-6 0.0 7.718109-6 0.0 7.751354-6 1.275181-1 7.756103-6 1.455491-1 7.775100-6 2.658573-1 7.794691-6 4.560492-1 7.813243-6 7.001069-1 7.858298-6 1.442714+0 7.870086-6 1.847411+0 7.894992-6 2.541460+0 7.920296-6 3.347485+0 7.939142-6 4.126683+0 7.959446-6 5.199463+0 8.014290-6 8.610196+0 8.034465-6 9.398811+0 8.053901-6 9.559099+0 8.072768-6 9.070579+0 8.092812-6 7.895875+0 8.149300-6 3.446112+0 8.168736-6 2.215230+0 8.187115-6 1.347167+0 8.206458-6 7.410940-1 8.236094-6 1.762763-1 8.245142-6 1.409009-5 8.246482-6 1.341444-5 8.272642-6 3.836144-6 8.279365-6 1.322006-6 8.285355-6 0.0 8.457685-6 0.0 8.488911-6 2.675559-2 8.499320-6 3.556098-2 8.513111-6 5.501730-2 8.520137-6 1.019521-1 8.540955-6 2.555374-1 8.555018-6 3.693301-1 8.575972-6 6.206354-1 8.599941-6 1.038857+0 8.627734-6 1.664915+0 8.665860-6 2.596303+0 8.688771-6 3.012302+0 8.703422-6 3.185573+0 8.725690-6 3.205906+0 8.746876-6 2.986155+0 8.772676-6 2.463317+0 8.813595-6 1.452422+0 8.829170-6 1.133779+0 8.850129-6 7.997720-1 8.869328-6 6.030241-1 8.878675-6 5.607682-1 8.890282-6 5.362966-1 8.900369-6 5.528518-1 8.925436-6 6.517120-1 8.932189-6 6.881033-1 8.987143-6 1.294152+0 9.008836-6 1.468786+0 9.030530-6 1.550489+0 9.057201-6 1.520983+0 9.131862-6 1.210430+0 9.160691-6 1.160473+0 9.228055-6 1.184496+0 9.405434-6 1.123821+0 9.455459-6 1.118605+0 9.592071-6 1.123156+0 9.736808-6 1.000326+0 1.016080-5 8.730606-1 1.021082-5 2.984597+0 1.023583-5 4.734371+0 1.026241-5 7.618098+0 1.028898-5 1.158180+1 1.036088-5 2.459136+1 1.038924-5 2.783505+1 1.041442-5 2.869168+1 1.043821-5 2.752270+1 1.046541-5 2.402392+1 1.050786-5 1.629670+1 1.053595-5 1.121507+1 1.056096-5 7.510641+0 1.058597-5 4.782731+0 1.061098-5 2.970778+0 1.066100-5 7.515842-1 1.155948-5 5.834471-1 1.161638-5 2.244766+0 1.164483-5 3.620918+0 1.167637-5 6.018623+0 1.170352-5 8.786294+0 1.175602-5 1.546527+1 1.178798-5 1.930716+1 1.182000-5 2.180232+1 1.184702-5 2.248412+1 1.187506-5 2.153736+1 1.190602-5 1.878798+1 1.195633-5 1.246513+1 1.198956-5 8.385951+0 1.201471-5 5.811374+0 1.204317-5 3.668001+0 1.207162-5 2.244550+0 1.210027-5 1.380192+0 1.212852-5 6.970837-1 1.215983-5 9.058482-1 1.217015-5 1.021318+0 1.218962-5 1.308583+0 1.221940-5 1.920750+0 1.225136-5 2.844301+0 1.229452-5 4.475874+0 1.234281-5 6.469640+0 1.237594-5 7.535338+0 1.240360-5 8.065585+0 1.243383-5 8.111199+0 1.247132-5 7.432295+0 1.250714-5 6.225418+0 1.258092-5 3.275672+0 1.260658-5 2.434634+0 1.263637-5 1.688088+0 1.264943-5 1.435844+0 1.267939-5 9.510361-1 1.269593-5 7.310671-1 1.270934-5 6.498659-1 1.275515-5 4.794930-1 1.276925-5 4.621221-1 1.281794-5 5.812803-1 1.284933-5 7.106776-1 1.288250-5 9.237397-1 1.291380-5 1.198363+0 1.300800-5 2.211088+0 1.303940-5 2.434607+0 1.307080-5 2.530424+0 1.310220-5 2.481010+0 1.315243-5 2.148108+0 1.320093-5 1.766458+0 1.322780-5 1.610465+0 1.325920-5 1.523531+0 1.329059-5 1.516265+0 1.335339-5 1.654096+0 1.339958-5 1.722692+0 1.341507-5 1.757109+0 1.346096-5 1.784519+0 1.367755-5 1.716434+0 1.381948-5 1.594509+0 1.387368-5 1.524535+0 1.396946-5 1.517901+0 1.404175-5 1.839887+0 1.407418-5 2.063064+0 1.411316-5 2.462271+0 1.416143-5 3.153767+0 1.425245-5 4.588420+0 1.428760-5 4.964792+0 1.431798-5 5.132167+0 1.435705-5 5.049230+0 1.439722-5 4.690597+0 1.451960-5 2.996464+0 1.455399-5 2.617372+0 1.458837-5 2.327644+0 1.465714-5 1.922423+0 1.470906-5 1.846211+0 1.478146-5 1.883738+0 1.481767-5 1.950530+0 1.487205-5 2.153638+0 1.501828-5 2.971159+0 1.507419-5 3.155291+0 1.512971-5 3.113312+0 1.526488-5 2.704017+0 1.532681-5 2.656207+0 1.551385-5 2.811751+0 1.603431-5 2.878170+0 1.754517-5 3.394546+0 1.920232-5 4.244059+0 2.078313-5 5.336817+0 2.291026-5 7.213990+0 2.537860-5 9.963551+0 3.321704-5 2.040550+1 3.589219-5 2.290187+1 3.833297-5 2.409718+1 4.148648-5 2.412432+1 4.608000-5 2.215692+1 5.804296-5 1.483921+1 6.422225-5 1.183008+1 6.487431-5 1.205545+1 6.567271-5 1.323718+1 6.599525-5 1.320181+1 6.672914-5 1.242604+1 7.110000-5 1.121572+1 8.154072-5 8.048492+0 8.346494-5 7.615586+0 8.509857-5 7.864195+0 8.900158-5 7.355841+0 1.038877-4 5.043280+0 1.062119-4 4.772195+0 1.105815-4 4.522702+0 1.195853-4 4.152709+0 1.219310-4 4.329344+0 1.241783-4 4.002200+0 1.340000-4 3.493810+0 1.419912-4 3.234917+0 1.505353-4 3.165443+0 1.570737-4 3.278248+0 1.640250-4 3.559563+0 1.729101-4 4.147526+0 1.830846-4 5.129835+0 1.958513-4 6.797553+0 2.129116-4 9.638143+0 2.520000-4 1.671564+1 2.859211-4 2.182510+1 3.126079-4 2.475434+1 3.495315-4 2.733134+1 3.569513-4 2.853915+1 3.689764-4 2.898136+1 3.778687-4 2.996590+1 4.637137-4 3.108367+1 5.603478-4 3.039422+1 5.719475-4 3.145287+1 7.399658-4 2.824319+1 7.740161-4 2.750951+1 7.946338-4 2.752405+1 1.050147-3 2.199513+1 1.266193-3 1.841690+1 1.516988-3 1.526676+1 1.785231-3 1.274605+1 2.158690-3 1.020359+1 2.254249-3 9.801088+0 2.267071-3 1.023549+1 2.274981-3 1.097715+1 2.283685-3 1.244186+1 2.293324-3 1.487697+1 2.312715-3 2.056450+1 2.326093-3 2.312137+1 2.341209-3 2.426380+1 2.372909-3 2.518362+1 2.420248-3 2.963969+1 2.455736-3 3.046010+1 2.652883-3 3.043243+1 2.800768-3 2.903404+1 2.846664-3 3.099707+1 2.876887-3 3.178272+1 3.230868-3 2.724640+1 3.336499-3 2.750234+1 3.512482-3 2.593267+1 3.603561-3 2.577733+1 4.179817-3 2.095766+1 4.806907-3 1.714683+1 5.471539-3 1.415340+1 6.258985-3 1.157540+1 7.255583-3 9.228001+0 8.282363-3 7.515419+0 9.372922-3 6.187086+0 1.065369-2 5.047170+0 1.196764-2 4.193765+0 1.207280-2 4.242977+0 1.213127-2 4.500402+0 1.217636-2 4.948830+0 1.222673-2 5.770928+0 1.235592-2 8.520869+0 1.241019-2 9.289455+0 1.249675-2 9.778293+0 1.293184-2 9.373294+0 1.401693-2 8.250789+0 1.413160-2 8.537831+0 1.437274-2 1.039501+1 1.450414-2 1.069398+1 1.470652-2 1.081162+1 1.495159-2 1.160394+1 1.523969-2 1.149935+1 1.750869-2 9.271541+0 2.005571-2 7.470948+0 2.307391-2 5.954241+0 2.637590-2 4.777811+0 2.944200-2 3.981071+0 3.305627-2 3.275698+0 3.744076-2 2.653554+0 4.220894-2 2.160980+0 4.779418-2 1.744929+0 5.351512-2 1.434607+0 6.007445-2 1.172445+0 6.760830-2 9.534266-1 7.684038-2 7.610210-1 8.140160-2 6.932903-1 8.182988-2 7.169134-1 8.210020-2 7.681743-1 8.232430-2 8.509799-1 8.256592-2 9.980053-1 8.280432-2 1.211426+0 8.308215-2 1.537558+0 8.372539-2 2.389588+0 8.412344-2 2.770085+0 8.446665-2 2.951679+0 8.497628-2 3.041554+0 1.015613-1 2.317333+0 1.151800-1 1.893204+0 1.325315-1 1.502845+0 1.517487-1 1.200044+0 1.706491-1 9.872220-1 1.923601-1 8.093637-1 2.158865-1 6.685244-1 2.436819-1 5.475122-1 2.763894-1 4.463815-1 3.105132-1 3.710275-1 3.486308-1 3.098051-1 3.890451-1 2.623258-1 4.389248-1 2.196477-1 4.958960-1 1.848343-1 5.633538-1 1.556079-1 6.386081-1 1.324775-1 7.212827-1 1.143052-1 8.459482-1 9.530813-2 9.830255-1 8.115975-2 1.173413+0 6.677439-2 1.354851+0 5.680733-2 1.619761+0 4.644511-2 1.859734+0 3.975275-2 2.135261+0 3.402470-2 2.451607+0 2.912202-2 2.814822+0 2.492577-2 3.231848+0 2.133417-2 3.710658+0 1.826009-2 4.260405+0 1.562896-2 4.891600+0 1.337695-2 5.659549+0 1.135491-2 6.752287+0 9.304377-3 7.752663+0 7.963692-3 8.901248+0 6.816189-3 9.760024+0 6.144592-3 1.000000+1 1.273423-2 1 80000 7 0 2.005900+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-7.994238+1 3.012538-6-7.928787+1 4.650166-6-7.627700+1 5.088454-6-7.199666+1 5.231598-6-6.725099+1 5.291185-6-6.209157+1 5.334209-6-5.305733+1 5.364830-6-4.608028+1 5.377895-6-4.487790+1 5.393104-6-4.651770+1 5.407088-6-5.166688+1 5.425234-6-6.347378+1 5.444411-6-7.957420+1 5.450627-6-7.644351+1 5.468841-6-6.371085+1 5.485364-6-5.737659+1 5.502678-6-5.591409+1 5.524470-6-5.938931+1 5.587713-6-7.387120+1 5.657470-6-8.036177+1 5.832392-6-6.807175+1 5.886980-6-6.071899+1 5.913008-6-5.424286+1 5.928873-6-4.755623+1 5.947923-6-4.066373+1 5.964313-6-3.361630+1 5.982068-6-2.736982+1 5.993449-6-2.528941+1 5.999026-6-2.525807+1 6.008018-6-2.660344+1 6.013595-6-2.849836+1 6.020765-6-3.238681+1 6.030724-6-3.997753+1 6.044780-6-5.556715+1 6.062786-6-8.028432+1 6.082030-6-5.175763+1 6.096224-6-3.507940+1 6.104254-6-2.816749+1 6.109996-6-2.405927+1 6.115573-6-2.111463+1 6.120951-6-1.916604+1 6.129117-6-1.769236+1 6.135263-6-1.750435+1 6.148238-6-1.972301+1 6.164855-6-2.556953+1 6.186025-6-3.456782+1 6.209243-6-4.291836+1 6.219982-6-4.736645+1 6.250548-6-5.395178+1 6.303162-6-6.006716+1 6.403820-6-6.592392+1 6.633189-6-7.144523+1 7.223823-6-7.627572+1 7.778514-6-8.036137+1 7.897817-6-7.987420+1 7.997443-6-8.053102+1 8.023485-6-7.989453+1 8.111289-6-7.267934+1 8.183669-6-7.309612+1 8.356218-6-7.709517+1 8.665860-6-7.985376+1 8.813595-6-7.728532+1 9.030530-6-7.913703+1 9.902682-6-8.124309+1 1.012801-5-7.684096+1 1.028898-5-6.736898+1 1.033356-5-6.910564+1 1.037930-5-7.640796+1 1.040307-5-8.133503+1 1.046248-5-6.777889+1 1.050478-5-6.290280+1 1.054845-5-6.274050+1 1.071134-5-7.243888+1 1.099790-5-7.714132+1 1.147264-5-8.137945+1 1.162150-5-7.587169+1 1.171706-5-7.251787+1 1.177509-5-7.539451+1 1.182218-5-8.180689+1 1.191185-5-6.883476+1 1.196012-5-6.597846+1 1.203072-5-6.759516+1 1.221940-5-7.723399+1 1.233684-5-7.846531+1 1.253376-5-7.172699+1 1.272079-5-7.447601+1 1.299907-5-7.754217+1 1.325920-5-7.712060+1 1.410846-5-8.041739+1 1.431798-5-7.894207+1 1.451960-5-7.698800+1 1.503718-5-7.929972+1 2.665443-5-8.400864+1 3.273407-5-8.069740+1 4.500000-5-6.441543+1 5.219284-5-5.948674+1 6.138397-5-5.781974+1 6.553600-5-5.907892+1 6.672914-5-5.786403+1 7.897983-5-5.701187+1 8.789066-5-5.768852+1 1.368516-4-6.149899+1 2.071462-4-6.976343+1 2.520000-4-6.959453+1 3.808586-4-5.753441+1 4.637137-4-4.913864+1 5.488875-4-4.371325+1 5.719475-4-4.315647+1 6.003222-4-4.043550+1 7.059111-4-3.506050+1 8.850000-4-2.944378+1 1.050147-3-2.660809+1 1.266193-3-2.489971+1 1.516988-3-2.460211+1 1.785231-3-2.582583+1 1.989647-3-2.820870+1 2.127112-3-3.139185+1 2.205006-3-3.480349+1 2.247472-3-3.834806+1 2.278023-3-4.363092+1 2.295894-3-4.647076+1 2.312715-3-4.608759+1 2.349334-3-4.124837+1 2.397352-3-4.005543+1 2.455736-3-3.464217+1 2.529123-3-3.058566+1 2.652883-3-2.609671+1 2.755589-3-2.370472+1 2.800768-3-2.388452+1 2.831070-3-2.426927+1 2.854654-3-2.344952+1 2.907412-3-2.051317+1 2.985383-3-1.815784+1 3.103666-3-1.601494+1 3.206879-3-1.502883+1 3.276800-3-1.492651+1 3.360052-3-1.325766+1 3.461801-3-1.217484+1 3.547339-3-1.176326+1 3.627383-3-1.050488+1 3.775491-3-9.077905+0 3.995856-3-7.652532+0 4.275013-3-6.439101+0 4.598097-3-5.483736+0 4.945911-3-4.823980+0 5.351970-3-4.356435+0 5.846218-3-4.069014+0 6.437985-3-3.953339+0 7.255583-3-4.068193+0 8.282363-3-4.454856+0 9.372922-3-5.106256+0 1.037346-2-5.977426+0 1.111187-2-6.968424+0 1.157147-2-7.960090+0 1.184432-2-8.929457+0 1.201392-2-9.988742+0 1.214462-2-1.153046+1 1.224644-2-1.273873+1 1.231591-2-1.277319+1 1.241019-2-1.171585+1 1.252866-2-1.016652+1 1.263918-2-9.278150+0 1.284439-2-8.372842+0 1.313430-2-7.703555+0 1.352427-2-7.372286+0 1.382833-2-7.536328+0 1.401693-2-8.057880+0 1.420181-2-8.958249+0 1.429600-2-8.943409+0 1.454719-2-7.686964+0 1.484932-2-7.218501+0 1.515592-2-5.769448+0 1.544972-2-4.905640+0 1.585583-2-4.115109+0 1.635874-2-3.415289+0 1.702600-2-2.738649+0 1.774445-2-2.213968+0 1.862671-2-1.753487+0 1.956612-2-1.393528+0 2.046790-2-1.146861+0 2.135285-2-9.700227-1 2.241120-2-8.153742-1 2.365421-2-6.929664-1 2.515588-2-6.050827-1 2.691535-2-5.598493-1 2.886684-2-5.507258-1 3.059188-2-5.642375-1 3.440562-2-6.476455-1 4.220894-2-8.834988-1 6.256980-2-1.564373+0 6.966949-2-1.875014+0 7.456753-2-2.185091+0 7.780325-2-2.507812+0 7.980819-2-2.834164+0 8.111760-2-3.197969+0 8.192251-2-3.610939+0 8.299924-2-4.407710+0 8.340540-2-4.479049+0 8.393704-2-4.214329+0 8.497628-2-3.361977+0 8.568438-2-2.989894+0 8.689708-2-2.601079+0 8.867350-2-2.237574+0 9.105299-2-1.920430+0 9.394990-2-1.650137+0 9.741409-2-1.424621+0 1.015613-1-1.235199+0 1.072741-1-1.058051+0 1.151800-1-8.999311-1 1.223647-1-8.054259-1 1.325315-1-7.264071-1 1.466255-1-6.723516-1 1.639944-1-6.499098-1 1.994336-1-6.619041-1 3.486308-1-7.882690-1 5.189267-1-8.589680-1 8.459482-1-9.057186-1 2.567148+0-9.318144-1 7.752663+0-9.370067-1 1.000000+1-9.360420-1 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.744507-2 1.067871-6 2.497922-2 1.084326-6 2.725315-2 1.112207-6 3.164707-2 1.148507-6 3.849177-2 1.173762-6 4.428043-2 1.196212-6 5.033646-2 1.219269-6 5.756353-2 1.240885-6 6.544712-2 1.261150-6 7.408884-2 1.280149-6 8.354487-2 1.297960-6 9.387410-2 1.314658-6 1.051436-1 1.330312-6 1.174239-1 1.344988-6 1.307845-1 1.358747-6 1.452982-1 1.371645-6 1.610539-1 1.383738-6 1.781521-1 1.395075-6 1.966956-1 1.405703-6 2.167903-1 1.415667-6 2.385470-1 1.425008-6 2.620825-1 1.433765-6 2.875189-1 1.441976-6 3.149842-1 1.449672-6 3.446125-1 1.456888-6 3.765441-1 1.463653-6 4.109245-1 1.469995-6 4.479047-1 1.475941-6 4.876406-1 1.481515-6 5.302937-1 1.486741-6 5.760318-1 1.491640-6 6.250301-1 1.496233-6 6.774725-1 1.500539-6 7.335534-1 1.504575-6 7.934798-1 1.508360-6 8.574742-1 1.511908-6 9.257806-1 1.515234-6 9.986745-1 1.518750-6 1.087159+0 1.521276-6 1.159557+0 1.524016-6 1.248359+0 1.526586-6 1.343376+0 1.531042-6 1.543385+0 1.535487-6 1.805006+0 1.539192-6 2.091993+0 1.542434-6 2.415135+0 1.545270-6 2.770942+0 1.547752-6 3.152908+0 1.549924-6 3.552595+0 1.551824-6 3.960856+0 1.553487-6 4.368888+0 1.556215-6 5.154723+0 1.565367-6 9.097026+0 1.567794-6 1.052961+1 1.568979-6 1.129070+1 1.570905-6 1.261157+1 1.572831-6 1.403092+1 1.576683-6 1.712383+1 1.577165-6 1.752988+1 1.580536-6 2.044820+1 1.581860-6 2.161328+1 1.584388-6 2.382246+1 1.586344-6 2.548270+1 1.588241-6 2.701641+1 1.590197-6 2.848789+1 1.592093-6 2.977543+1 1.593778-6 3.078178+1 1.595742-6 3.176503+1 1.597992-6 3.261058+1 1.599918-6 3.307521+1 1.600589-6 3.317823+1 1.602502-6 3.330139+1 1.604387-6 3.317367+1 1.605254-6 3.303255+1 1.607186-6 3.253587+1 1.608883-6 3.190088+1 1.611595-6 3.053127+1 1.613133-6 2.958246+1 1.614429-6 2.869860+1 1.615689-6 2.777533+1 1.617163-6 2.662488+1 1.619059-6 2.505805+1 1.620745-6 2.360527+1 1.622370-6 2.217136+1 1.624838-6 1.997243+1 1.626764-6 1.827060+1 1.628931-6 1.640378+1 1.630617-6 1.500450+1 1.634469-6 1.203902+1 1.635793-6 1.110673+1 1.637057-6 1.026202+1 1.638321-6 9.462640+0 1.640247-6 8.332879+0 1.642903-6 6.949276+0 1.645814-6 5.656102+0 1.648716-6 4.582933+0 1.657352-6 2.429619+0 1.660208-6 1.979378+0 1.661632-6 1.790911+0 1.664474-6 1.474427+0 1.667305-6 1.224586+0 1.670125-6 1.026748+0 1.672935-6 8.691531-1 1.675733-6 7.425519-1 1.678520-6 6.397993-1 1.681296-6 5.554495-1 1.684062-6 4.853916-1 1.686816-6 4.265381-1 1.689560-6 3.765713-1 1.692294-6 3.337443-1 1.697728-6 2.645087-1 1.705800-6 1.894589-1 1.716417-6 1.231046-1 1.721674-6 9.932506-2 1.726889-6 8.002543-2 1.732064-6 6.427720-2 1.737198-6 5.138203-2 1.742292-6 4.080590-2 1.747347-6 3.213397-2 1.752362-6 2.503947-2 1.757338-6 1.926176-2 1.762275-6 1.459076-2 1.767173-6 1.085564-2 1.772033-6 7.916285-3 1.776855-6 5.656449-3 1.781639-6 3.978055-3 1.786387-6 2.795768-3 1.791096-6 2.031635-3 1.795770-6 1.609920-3 1.800406-6 1.453050-3 1.802707-6 1.448717-3 1.804998-6 1.479946-3 1.807280-6 1.536547-3 1.814074-6 1.762823-3 1.818558-6 1.879799-3 1.821896-6 1.917220-3 1.822450-6 1.918421-3 1.827417-6 1.861796-3 1.831797-6 1.718568-3 1.833975-6 1.622003-3 1.838313-6 1.399955-3 1.842617-6 1.171030-3 1.846888-6 9.699641-4 1.851125-6 8.243689-4 1.855330-6 7.530379-4 1.863672-6 8.701395-4 1.871885-6 1.342301-3 1.879969-6 2.143736-3 1.887926-6 3.237590-3 1.895760-6 4.587767-3 1.911182-6 7.964292-3 1.926122-6 1.207061-2 1.940595-6 1.680533-2 1.968636-6 2.828375-2 2.048000-6 7.260347-2 2.078877-6 9.498669-2 2.113226-6 1.250055-1 2.147731-6 1.610343-1 2.177922-6 1.983587-1 2.204339-6 2.364104-1 2.281005-6 3.864958-1 2.328288-6 5.216559-1 2.343531-6 5.752829-1 2.366396-6 6.674055-1 2.395142-6 8.071080-1 2.418666-6 9.475676-1 2.436308-6 1.072894+0 2.453951-6 1.219451+0 2.471593-6 1.392224+0 2.489236-6 1.597888+0 2.506879-6 1.845335+0 2.518002-6 2.027998+0 2.526344-6 2.181179+0 2.538858-6 2.441691+0 2.551371-6 2.746751+0 2.563931-6 3.109151+0 2.576491-6 3.543270+0 2.582771-6 3.793502+0 2.589050-6 4.070115+0 2.595330-6 4.377088+0 2.601610-6 4.719228+0 2.607890-6 5.102401+0 2.614170-6 5.533855+0 2.620450-6 6.022667+0 2.626730-6 6.580405+0 2.633010-6 7.222112+0 2.639290-6 7.967813+0 2.645569-6 8.844832+0 2.651849-6 9.891308+0 2.658129-6 1.116135+1 2.664409-6 1.273223+1 2.670689-6 1.471377+1 2.676969-6 1.725933+1 2.680499-6 1.901377+1 2.683589-6 2.078395+1 2.688995-6 2.452029+1 2.693050-6 2.796628+1 2.696091-6 3.098186+1 2.698372-6 3.351761+1 2.703504-6 4.019826+1 2.711873-6 5.452191+1 2.719825-6 7.283933+1 2.725841-6 9.012543+1 2.728375-6 9.832343+1 2.733214-6 1.154493+2 2.738071-6 1.344582+2 2.739604-6 1.407932+2 2.745473-6 1.662676+2 2.747779-6 1.766712+2 2.752181-6 1.968356+2 2.756148-6 2.149855+2 2.758070-6 2.236457+2 2.760829-6 2.357885+2 2.763771-6 2.482054+2 2.766023-6 2.572255+2 2.769242-6 2.692015+2 2.772993-6 2.815115+2 2.776728-6 2.916853+2 2.779840-6 2.983574+2 2.783730-6 3.041700+2 2.787130-6 3.068122+2 2.790561-6 3.070983+2 2.794023-6 3.049564+2 2.797062-6 3.011052+2 2.800368-6 2.949169+2 2.803362-6 2.876316+2 2.807272-6 2.759488+2 2.810268-6 2.655411+2 2.812605-6 2.566701+2 2.815947-6 2.430502+2 2.819437-6 2.279083+2 2.823171-6 2.110255+2 2.825996-6 1.980110+2 2.829808-6 1.804013+2 2.833517-6 1.635125+2 2.836452-6 1.505032+2 2.840225-6 1.344313+2 2.846095-6 1.112989+2 2.848714-6 1.018205+2 2.853715-6 8.529398+1 2.858062-6 7.263850+1 2.863342-6 5.937103+1 2.871196-6 4.360204+1 2.880595-6 3.004155+1 2.884934-6 2.536457+1 2.889001-6 2.171407+1 2.892814-6 1.884065+1 2.896389-6 1.655694+1 2.899740-6 1.472294+1 2.902882-6 1.323421+1 2.908773-6 1.093640+1 2.913927-6 9.343907+0 2.918438-6 8.196189+0 2.922384-6 7.341110+0 2.929290-6 6.104613+0 2.934470-6 5.345178+0 2.942240-6 4.406606+0 2.953640-6 3.349077+0 2.957270-6 3.074570+0 2.964531-6 2.600492+0 2.971792-6 2.215770+0 2.975423-6 2.053903+0 2.979054-6 1.911026+0 2.980869-6 1.846410+0 2.986315-6 1.678381+0 2.988130-6 1.630546+0 2.990853-6 1.565979+0 2.993576-6 1.509582+0 2.995391-6 1.476255+0 2.998114-6 1.432242+0 3.000837-6 1.394856+0 3.004467-6 1.354195+0 3.008098-6 1.322551+0 3.011728-6 1.298242+0 3.015359-6 1.279562+0 3.022620-6 1.252390+0 3.031696-6 1.221840+0 3.037142-6 1.197881+0 3.041680-6 1.172096+0 3.044403-6 1.153640+0 3.048034-6 1.125332+0 3.051664-6 1.092772+0 3.055295-6 1.056117+0 3.058925-6 1.015694+0 3.064371-6 9.490327-1 3.066186-6 9.254913-1 3.073448-6 8.268505-1 3.080709-6 7.249684-1 3.084339-6 6.743500-1 3.087970-6 6.246611-1 3.093415-6 5.528282-1 3.097309-6 5.040316-1 3.101433-6 4.550731-1 3.105492-6 4.098542-1 3.113484-6 3.299013-1 3.121226-6 2.639328-1 3.128726-6 2.102354-1 3.135991-6 1.669553-1 3.143030-6 1.323701-1 3.156667-6 8.294870-2 3.169452-6 5.386002-2 3.217396-6 2.835096-2 3.226245-6 2.827656-2 3.234260-6 2.775878-2 3.242972-6 2.686020-2 3.250248-6 2.642661-2 3.253716-6 2.657945-2 3.257076-6 2.710231-2 3.260330-6 2.808246-2 3.266636-6 3.180968-2 3.272548-6 3.832828-2 3.278091-6 4.809008-2 3.283287-6 6.144271-2 3.288158-6 7.865452-2 3.292725-6 9.993256-2 3.304783-6 1.894473-1 3.311618-6 2.708274-1 3.314719-6 3.177902-1 3.320532-6 4.271080-1 3.325619-6 5.505441-1 3.330070-6 6.847479-1 3.333965-6 8.260303-1 3.337373-6 9.707393-1 3.342964-6 1.257615+0 3.345247-6 1.394690+0 3.349242-6 1.665830+0 3.354486-6 2.088615+0 3.358699-6 2.489519+0 3.363570-6 3.027507+0 3.367313-6 3.499006+0 3.370912-6 4.002163+0 3.377784-6 5.101597+0 3.380486-6 5.583638+0 3.383188-6 6.092850+0 3.391475-6 7.809496+0 3.392510-6 8.038570+0 3.399761-6 9.708460+0 3.402610-6 1.038630+1 3.408727-6 1.185073+1 3.411279-6 1.245419+1 3.413595-6 1.299222+1 3.417393-6 1.384566+1 3.420302-6 1.446584+1 3.422677-6 1.494531+1 3.425794-6 1.553084+1 3.429802-6 1.619813+1 3.432749-6 1.661863+1 3.435697-6 1.697308+1 3.439132-6 1.729630+1 3.442998-6 1.753695+1 3.447049-6 1.764319+1 3.450142-6 1.762183+1 3.458151-6 1.716015+1 3.460736-6 1.689186+1 3.466472-6 1.610920+1 3.469476-6 1.560730+1 3.471820-6 1.517735+1 3.475169-6 1.451222+1 3.477323-6 1.405758+1 3.480987-6 1.324486+1 3.484622-6 1.240215+1 3.487659-6 1.168066+1 3.491563-6 1.074268+1 3.495381-6 9.827747+0 3.499199-6 8.928309+0 3.503860-6 7.867648+0 3.508003-6 6.972108+0 3.515772-6 5.443918+0 3.518212-6 5.009419+0 3.529350-6 3.318839+0 3.533300-6 2.833297+0 3.537323-6 2.396744+0 3.540714-6 2.071618+0 3.544882-6 1.721943+0 3.549680-6 1.381422+0 3.551280-6 1.281429+0 3.555546-6 1.044683+0 3.559811-6 8.471985-1 3.564077-6 6.838513-1 3.568342-6 5.498670-1 3.581472-6 2.779754-1 3.587704-6 2.025266-1 3.590819-6 1.739841-1 3.593935-6 1.504977-1 3.602466-6 1.070420-1 3.610997-6 8.693298-2 3.619528-6 8.508504-2 3.622811-6 8.894589-2 3.625435-6 9.393863-2 3.628059-6 1.007240-1 3.631792-6 1.137105-1 3.634191-6 1.243132-1 3.636590-6 1.368456-1 3.642454-6 1.765949-1 3.644652-6 1.952359-1 3.655173-6 3.183709-1 3.660043-6 3.974059-1 3.664430-6 4.822159-1 3.668761-6 5.794150-1 3.677029-6 8.036187-1 3.680149-6 9.013634-1 3.681189-6 9.354981-1 3.690205-6 1.261430+0 3.691332-6 1.305555+0 3.699222-6 1.629923+0 3.702321-6 1.762418+0 3.708269-6 2.018521+0 3.711164-6 2.141688+0 3.712834-6 2.211613+0 3.715757-6 2.331157+0 3.719592-6 2.480678+0 3.723291-6 2.614363+0 3.724524-6 2.656174+0 3.727615-6 2.754081+0 3.729934-6 2.820343+0 3.732977-6 2.896976+0 3.736401-6 2.967898+0 3.740597-6 3.030886+0 3.744304-6 3.063260+0 3.746155-6 3.070991+0 3.750633-6 3.066181+0 3.754276-6 3.037949+0 3.756551-6 3.009567+0 3.760167-6 2.948256+0 3.763894-6 2.865726+0 3.767387-6 2.772524+0 3.770283-6 2.685178+0 3.774299-6 2.551799+0 3.778159-6 2.413804+0 3.782243-6 2.261846+0 3.788163-6 2.041242+0 3.796740-6 1.751376+0 3.798402-6 1.703007+0 3.802910-6 1.590053+0 3.805516-6 1.539110+0 3.807837-6 1.504047+0 3.808374-6 1.497419+0 3.811806-6 1.469456+0 3.813401-6 1.465503+0 3.815596-6 1.470225+0 3.817214-6 1.481676+0 3.820767-6 1.532278+0 3.822321-6 1.566104+0 3.824319-6 1.620692+0 3.825913-6 1.673539+0 3.826807-6 1.706940+0 3.828483-6 1.777055+0 3.834350-6 2.104023+0 3.837284-6 2.318405+0 3.840217-6 2.569134+0 3.843484-6 2.893214+0 3.856285-6 4.658726+0 3.861972-6 5.714724+0 3.866157-6 6.603074+0 3.874148-6 8.559255+0 3.878915-6 9.882418+0 3.880205-6 1.025944+1 3.889237-6 1.309789+1 3.892445-6 1.417713+1 3.898569-6 1.630858+1 3.902167-6 1.758728+1 3.906461-6 1.911814+1 3.909037-6 2.003061+1 3.913449-6 2.156555+1 3.916828-6 2.270270+1 3.919586-6 2.359744+1 3.923207-6 2.471358+1 3.927863-6 2.602958+1 3.932570-6 2.719591+1 3.936945-6 2.810815+1 3.941079-6 2.880010+1 3.945358-6 2.932873+1 3.949215-6 2.963340+1 3.953708-6 2.977703+1 3.957626-6 2.971563+1 3.965810-6 2.904125+1 3.970019-6 2.842385+1 3.975748-6 2.732027+1 3.980222-6 2.627324+1 3.982840-6 2.559586+1 3.987135-6 2.439716+1 3.991958-6 2.294719+1 3.995986-6 2.167511+1 3.999871-6 2.041484+1 4.001165-6 1.999030+1 4.006873-6 1.811141+1 4.011867-6 1.648325+1 4.021425-6 1.350521+1 4.030925-6 1.083422+1 4.032679-6 1.038004+1 4.044950-6 7.571475+0 4.051682-6 6.309710+0 4.065304-6 4.320498+0 4.071674-6 3.620079+0 4.076280-6 3.192131+0 4.079734-6 2.910091+0 4.084916-6 2.543358+0 4.090290-6 2.226398+0 4.093873-6 2.046684+0 4.100479-6 1.772381+0 4.105434-6 1.608475+0 4.120299-6 1.280681+0 4.123362-6 1.236883+0 4.129172-6 1.170609+0 4.133131-6 1.136255+0 4.138900-6 1.099024+0 4.145077-6 1.072655+0 4.148670-6 1.062343+0 4.155041-6 1.050786+0 4.163091-6 1.044234+0 4.176326-6 1.039409+0 4.185580-6 1.031557+0 4.191828-6 1.021335+0 4.195839-6 1.012157+0 4.204432-6 9.849314-1 4.210092-6 9.612931-1 4.214068-6 9.421029-1 4.220183-6 9.088315-1 4.226204-6 8.722942-1 4.231289-6 8.391943-1 4.240754-6 7.743647-1 4.247496-6 7.275339-1 4.268334-6 5.950942-1 4.275638-6 5.570587-1 4.281750-6 5.295282-1 4.286028-6 5.126999-1 4.290831-6 4.962088-1 4.297549-6 4.773275-1 4.303060-6 4.653222-1 4.307845-6 4.572750-1 4.313367-6 4.505163-1 4.318635-6 4.463568-1 4.323659-6 4.442434-1 4.328452-6 4.437181-1 4.336134-6 4.454706-1 4.344292-6 4.501944-1 4.355530-6 4.603678-1 4.369979-6 4.779690-1 4.383502-6 4.979543-1 4.404024-6 5.339962-1 4.434681-6 5.988555-1 4.455279-6 6.486813-1 4.464677-6 6.758588-1 4.472143-6 7.023372-1 4.478781-6 7.319386-1 4.485214-6 7.686353-1 4.490261-6 8.048328-1 4.493858-6 8.355510-1 4.498907-6 8.868641-1 4.503879-6 9.482762-1 4.508110-6 1.010274+0 4.510992-6 1.058152+0 4.519804-6 1.236106+0 4.526521-6 1.406496+0 4.538906-6 1.803372+0 4.549991-6 2.242763+0 4.552264-6 2.340886+0 4.559703-6 2.675237+0 4.565116-6 2.926076+0 4.568342-6 3.076087+0 4.572953-6 3.288120+0 4.576658-6 3.454153+0 4.578882-6 3.550979+0 4.582246-6 3.692344+0 4.586662-6 3.866164+0 4.591541-6 4.039086+0 4.598055-6 4.231815+0 4.602788-6 4.340191+0 4.605580-6 4.390455+0 4.609998-6 4.448131+0 4.614768-6 4.479314+0 4.619735-6 4.476965+0 4.624130-6 4.445535+0 4.628972-6 4.380080+0 4.637200-6 4.200422+0 4.642063-6 4.058430+0 4.645438-6 3.946532+0 4.648501-6 3.836785+0 4.653525-6 3.642501+0 4.659166-6 3.408202+0 4.663878-6 3.203894+0 4.668421-6 3.003052+0 4.675479-6 2.690732+0 4.681021-6 2.450769+0 4.687257-6 2.191917+0 4.693492-6 1.949177+0 4.703191-6 1.610967+0 4.719430-6 1.164917+0 4.726038-6 1.026342+0 4.730767-6 9.413460-1 4.733602-6 8.957637-1 4.737853-6 8.344865-1 4.742104-6 7.812128-1 4.747773-6 7.216187-1 4.753442-6 6.738428-1 4.764779-6 6.086724-1 4.770448-6 5.890632-1 4.773282-6 5.820962-1 4.776116-6 5.768953-1 4.781785-6 5.714828-1 4.784619-6 5.711450-1 4.787453-6 5.723202-1 4.794008-6 5.806515-1 4.798791-6 5.915716-1 4.802919-6 6.042570-1 4.808223-6 6.250224-1 4.813215-6 6.492288-1 4.820683-6 6.940817-1 4.825814-6 7.310241-1 4.836982-6 8.286806-1 4.861796-6 1.118037+0 4.867630-6 1.194729+0 4.872810-6 1.263054+0 4.879469-6 1.349010+0 4.884950-6 1.416221+0 4.891381-6 1.488614+0 4.896812-6 1.542502+0 4.903737-6 1.599242+0 4.908977-6 1.631916+0 4.915014-6 1.657522+0 4.921034-6 1.669602+0 4.925652-6 1.669675+0 4.931804-6 1.657698+0 4.936513-6 1.639727+0 4.943716-6 1.599017+0 4.950116-6 1.551525+0 4.957096-6 1.490546+0 4.964898-6 1.415190+0 4.977867-6 1.285827+0 4.990989-6 1.167194+0 4.999797-6 1.102173+0 5.006131-6 1.064571+0 5.013638-6 1.030668+0 5.019634-6 1.011915+0 5.028199-6 9.973121-1 5.034258-6 9.948132-1 5.041651-6 9.992185-1 5.050415-6 1.012755+0 5.064189-6 1.044916+0 5.080785-6 1.086501+0 5.087038-6 1.099729+0 5.099858-6 1.119213+0 5.104312-6 1.123235+0 5.114866-6 1.127020+0 5.126140-6 1.123039+0 5.138912-6 1.111123+0 5.177753-6 1.061791+0 5.199564-6 1.042038+0 5.226651-6 1.027284+0 5.278082-6 1.010066+0 5.314713-6 1.003119+0 5.344219-6 1.004798+0 5.367755-6 1.012008+0 5.413115-6 1.030710+0 5.430475-6 1.032199+0 5.448596-6 1.026019+0 5.466595-6 1.011043+0 5.485723-6 9.872125-1 5.511789-6 9.503532-1 5.522636-6 9.368777-1 5.538677-6 9.221247-1 5.552831-6 9.159656-1 5.560334-6 9.156830-1 5.573980-6 9.206984-1 5.579489-6 9.247356-1 5.592402-6 9.385716-1 5.605616-6 9.586886-1 5.620947-6 9.888320-1 5.636278-6 1.025450+0 5.646433-6 1.052908+0 5.668137-6 1.119351+0 5.703913-6 1.250215+0 5.746599-6 1.439526+0 5.846026-6 2.009444+0 5.903122-6 2.435075+0 5.956365-6 2.918527+0 6.006417-6 3.463569+0 6.053342-6 4.071042+0 6.101445-6 4.811068+0 6.144000-6 5.585597+0 6.185195-6 6.467212+0 6.213489-6 7.163722+0 6.252049-6 8.258097+0 6.279330-6 9.153386+0 6.310457-6 1.032392+1 6.337198-6 1.148172+1 6.363449-6 1.278347+1 6.391801-6 1.441236+1 6.412625-6 1.578678+1 6.439399-6 1.782559+1 6.461926-6 1.983109+1 6.473616-6 2.099765+1 6.495210-6 2.342433+1 6.514802-6 2.599466+1 6.536930-6 2.943623+1 6.550698-6 3.194127+1 6.563605-6 3.460693+1 6.575705-6 3.744550+1 6.592881-6 4.218945+1 6.607655-6 4.714757+1 6.626349-6 5.504280+1 6.642707-6 6.404372+1 6.657019-6 7.416780+1 6.669543-6 8.532537+1 6.680502-6 9.732844+1 6.690090-6 1.099216+2 6.698480-6 1.228204+2 6.705821-6 1.357459+2 6.718534-6 1.622598+2 6.758249-6 2.870090+2 6.770566-6 3.405252+2 6.782158-6 3.974376+2 6.790474-6 4.419256+2 6.807106-6 5.386212+2 6.809185-6 5.512882+2 6.823738-6 6.421066+2 6.829455-6 6.782431+2 6.840370-6 7.465359+2 6.848816-6 7.976209+2 6.857002-6 8.445794+2 6.865448-6 8.893543+2 6.873634-6 9.282171+2 6.880910-6 9.582860+2 6.889389-6 9.872291+2 6.899102-6 1.011407+3 6.907418-6 1.023864+3 6.910313-6 1.026343+3 6.918574-6 1.028031+3 6.924728-6 1.024087+3 6.940934-6 9.929960+2 6.946121-6 9.770388+2 6.957834-6 9.314321+2 6.964473-6 9.003269+2 6.970068-6 8.715732+2 6.975505-6 8.417103+2 6.981872-6 8.046978+2 6.990058-6 7.545779+2 6.997335-6 7.083560+2 7.004351-6 6.629402+2 7.006690-6 6.477172+2 7.015006-6 5.936541+2 7.023322-6 5.403130+2 7.032678-6 4.820763+2 7.039954-6 4.386165+2 7.056586-6 3.470868+2 7.062303-6 3.184869+2 7.067761-6 2.926536+2 7.077376-6 2.507008+2 7.086732-6 2.142551+2 7.096925-6 1.793372+2 7.106268-6 1.515121+2 7.115514-6 1.276398+2 7.127681-6 1.012607+2 7.139660-6 8.021217+1 7.157279-6 5.659958+1 7.196856-6 2.576316+1 7.218573-6 1.686125+1 7.239618-6 1.126853+1 7.260010-6 7.679312+0 7.269967-6 6.387383+0 7.281882-6 5.145871+0 7.289418-6 4.505160+0 7.298916-6 3.834468+0 7.308266-6 3.305235+0 7.317470-6 2.895977+0 7.326530-6 2.589410+0 7.335448-6 2.371375+0 7.344227-6 2.230081+0 7.348548-6 2.185187+0 7.352835-6 2.155748+0 7.357088-6 2.140760+0 7.492141-6 7.266935+0 7.521335-6 9.978476+0 7.541203-6 1.232123+1 7.563459-6 1.552299+1 7.584324-6 1.918185+1 7.622223-6 2.791015+1 7.655533-6 3.866097+1 7.670643-6 4.487975+1 7.684809-6 5.172370+1 7.698090-6 5.925072+1 7.712661-6 6.907249+1 7.722213-6 7.661617+1 7.733155-6 8.659048+1 7.745224-6 9.961780+1 7.753032-6 1.094248+2 7.762049-6 1.223692+2 7.776436-6 1.474177+2 7.785856-6 1.674127+2 7.799786-6 2.035310+2 7.811975-6 2.430140+2 7.822641-6 2.849312+2 7.840138-6 3.719829+2 7.872169-6 6.082660+2 7.889347-6 7.868183+2 7.900791-6 9.291949+2 7.912387-6 1.093802+3 7.916736-6 1.160924+3 7.926455-6 1.321568+3 7.936174-6 1.496630+3 7.955613-6 1.886617+3 7.958042-6 1.938684+3 7.975051-6 2.319083+3 7.981733-6 2.474169+3 7.994489-6 2.773947+3 8.004360-6 3.004927+3 8.013927-6 3.223656+3 8.023798-6 3.439727+3 8.033365-6 3.635654+3 8.041870-6 3.795379+3 8.049728-6 3.928480+3 8.054018-6 3.994532+3 8.065408-6 4.144698+3 8.074302-6 4.234215+3 8.084664-6 4.305341+3 8.093120-6 4.335770+3 8.111726-6 4.313739+3 8.120419-6 4.262331+3 8.131771-6 4.158206+3 8.139530-6 4.064717+3 8.144763-6 3.992323+3 8.152424-6 3.873955+3 8.159866-6 3.746451+3 8.169433-6 3.567170+3 8.177937-6 3.396171+3 8.186137-6 3.223557+3 8.198590-6 2.952356+3 8.208309-6 2.737566+3 8.219243-6 2.497349+3 8.227747-6 2.314220+3 8.247186-6 1.917373+3 8.260246-6 1.673621+3 8.266624-6 1.562402+3 8.281202-6 1.328804+3 8.303198-6 1.031809+3 8.334578-6 7.165851+2 8.352132-6 5.879728+2 8.360806-6 5.349494+2 8.369413-6 4.883663+2 8.377952-6 4.474745+2 8.394897-6 3.798317+2 8.413951-6 3.211077+2 8.427996-6 2.868947+2 8.447950-6 2.482206+2 8.460070-6 2.291308+2 8.475731-6 2.082287+2 8.491148-6 1.909300+2 8.506325-6 1.763852+2 8.521264-6 1.639794+2 8.550675-6 1.437692+2 8.579167-6 1.281214+2 8.606769-6 1.156332+2 8.633508-6 1.054370+2 8.661201-6 9.642115+1 8.684506-6 8.981697+1 8.708816-6 8.371766+1 8.732366-6 7.845643+1 8.777995-6 6.973095+1 8.820772-6 6.293702+1 8.873715-6 5.593466+1 8.898472-6 5.308984+1 8.933719-6 4.943162+1 8.966763-6 4.636354+1 9.028721-6 4.138218+1 9.092260-6 3.709937+1 9.130370-6 3.485033+1 9.213384-6 3.060990+1 9.293685-6 2.718472+1 9.384046-6 2.392397+1 9.602168-6 1.780552+1 9.765202-6 1.426506+1 9.928236-6 1.118208+1 1.002161-5 9.513795+0 1.008498-5 8.381271+0 1.013536-5 7.458371+0 1.017315-5 6.743185+0 1.020149-5 6.191683+0 1.022275-5 5.770601+0 1.025463-5 5.133518+0 1.027057-5 4.817416+0 1.028651-5 4.507751+0 1.032449-5 3.830356+0 1.033715-5 3.637854+0 1.035142-5 3.452085+0 1.036247-5 3.337146+0 1.037513-5 3.244023+0 1.038779-5 3.201007+0 1.040678-5 3.253525+0 1.041311-5 3.308073+0 1.042201-5 3.420942+0 1.042869-5 3.535805+0 1.043369-5 3.640294+0 1.043745-5 3.729556+0 1.044308-5 3.881838+0 1.045059-5 4.120907+0 1.045525-5 4.291273+0 1.046317-5 4.622042+0 1.046965-5 4.932431+0 1.047450-5 5.190133+0 1.048542-5 5.851983+0 1.050096-5 7.001129+0 1.053391-5 1.030849+1 1.054998-5 1.236340+1 1.056369-5 1.433509+1 1.057684-5 1.640185+1 1.058816-5 1.830179+1 1.059978-5 2.035028+1 1.061077-5 2.235772+1 1.062297-5 2.463849+1 1.063359-5 2.664000+1 1.064388-5 2.857201+1 1.064976-5 2.966519+1 1.066497-5 3.240761+1 1.067697-5 3.444965+1 1.068546-5 3.580679+1 1.069568-5 3.732461+1 1.070751-5 3.889829+1 1.073323-5 4.152379+1 1.074151-5 4.211200+1 1.075975-5 4.293470+1 1.076880-5 4.309956+1 1.077701-5 4.311073+1 1.079048-5 4.285194+1 1.080148-5 4.239738+1 1.080974-5 4.192242+1 1.081592-5 4.149574+1 1.082985-5 4.033447+1 1.083449-5 3.989111+1 1.085378-5 3.779669+1 1.086021-5 3.702294+1 1.087950-5 3.454012+1 1.088593-5 3.367374+1 1.091165-5 3.012610+1 1.091808-5 2.923737+1 1.093736-5 2.661801+1 1.096596-5 2.297459+1 1.102223-5 1.704716+1 1.104098-5 1.546483+1 1.106712-5 1.355462+1 1.110186-5 1.147228+1 1.113825-5 9.731899+0 1.117937-5 8.191043+0 1.119807-5 7.623833+0 1.120496-5 7.435856+0 1.122564-5 6.942093+0 1.123942-5 6.674054+0 1.125320-5 6.457838+0 1.128076-5 6.190920+0 1.128765-5 6.160206+0 1.130832-5 6.156882+0 1.131521-5 6.185384+0 1.133109-5 6.306171+0 1.134422-5 6.461918+0 1.135790-5 6.673611+0 1.136907-5 6.880125+0 1.138373-5 7.190168+0 1.142475-5 8.203992+0 1.144614-5 8.748584+0 1.147370-5 9.382368+0 1.147715-5 9.452588+0 1.150126-5 9.868504+0 1.151389-5 1.002597+1 1.152595-5 1.013349+1 1.153800-5 1.019775+1 1.154493-5 1.021501+1 1.155706-5 1.021118+1 1.156615-5 1.018083+1 1.157979-5 1.009393+1 1.159343-5 9.962147+0 1.161422-5 9.689881+0 1.164185-5 9.236451+0 1.170405-5 8.144002+0 1.173235-5 7.733654+0 1.174933-5 7.531480+0 1.177316-5 7.305699+0 1.178745-5 7.200815+0 1.181517-5 7.052558+0 1.184180-5 6.960958+0 1.193176-5 6.765146+0 1.195773-5 6.695228+0 1.202198-5 6.471717+0 1.222552-5 5.677510+0 1.241518-5 5.079390+0 1.248896-5 4.830888+0 1.254444-5 4.627011+0 1.262998-5 4.298492+0 1.277938-5 3.745666+0 1.290011-5 3.334030+0 1.293821-5 3.208910+0 1.305044-5 2.849623+0 1.314939-5 2.542196+0 1.332803-5 2.014378+0 1.343236-5 1.730206+0 1.352628-5 1.493122+0 1.360455-5 1.309901+0 1.374153-5 1.024990+0 1.384426-5 8.488245-1 1.392131-5 7.438343-1 1.397910-5 6.835413-1 1.402244-5 6.503681-1 1.406895-5 6.278266-1 1.408745-5 6.229935-1 1.415286-5 6.269843-1 1.418729-5 6.435456-1 1.422212-5 6.712386-1 1.425696-5 7.100543-1 1.429179-5 7.592825-1 1.436146-5 8.794185-1 1.439630-5 9.413865-1 1.443113-5 9.962018-1 1.446597-5 1.036843+0 1.450951-5 1.058706+0 1.452720-5 1.056905+0 1.455904-5 1.037813+0 1.459224-5 9.983518-1 1.462272-5 9.490115-1 1.464014-5 9.175208-1 1.469239-5 8.246897-1 1.470981-5 7.995849-1 1.472722-5 7.802867-1 1.474464-5 7.686790-1 1.476206-5 7.667753-1 1.477948-5 7.767591-1 1.479689-5 8.010394-1 1.481431-5 8.423266-1 1.482421-5 8.745558-1 1.483173-5 9.037292-1 1.484914-5 9.888767-1 1.487686-5 1.184257+0 1.490284-5 1.451853+0 1.492720-5 1.799270+0 1.495004-5 2.234552+0 1.497145-5 2.765877+0 1.499152-5 3.401091+0 1.501034-5 4.147165+0 1.502798-5 5.009664+0 1.506002-5 7.096562+0 1.513539-5 1.619518+1 1.515504-5 2.002160+1 1.517224-5 2.404969+1 1.520045-5 3.229502+1 1.522204-5 4.022686+1 1.523858-5 4.739658+1 1.525208-5 5.403215+1 1.526980-5 6.389741+1 1.529099-5 7.755008+1 1.530708-5 8.936196+1 1.531865-5 9.867286+1 1.533023-5 1.086773+2 1.534905-5 1.264386+2 1.536787-5 1.460538+2 1.540551-5 1.905679+2 1.541022-5 1.965857+2 1.544316-5 2.410070+2 1.545609-5 2.593253+2 1.548080-5 2.950306+2 1.549991-5 3.227782+2 1.550917-5 3.360869+2 1.552314-5 3.557994+2 1.553755-5 3.754708+2 1.555145-5 3.935659+2 1.556549-5 4.107472+2 1.558181-5 4.290217+2 1.559607-5 4.432482+2 1.561813-5 4.615591+2 1.563535-5 4.723880+2 1.565347-5 4.802197+2 1.567059-5 4.841050+2 1.570782-5 4.805569+2 1.572465-5 4.736845+2 1.574663-5 4.601227+2 1.576166-5 4.481148+2 1.577179-5 4.388842+2 1.578663-5 4.238895+2 1.580104-5 4.078513+2 1.581956-5 3.854734+2 1.583603-5 3.643024+2 1.585191-5 3.430950+2 1.585720-5 3.359080+2 1.587602-5 3.101036+2 1.589484-5 2.842643+2 1.591602-5 2.556837+2 1.593249-5 2.341343+2 1.597013-5 1.882202+2 1.598307-5 1.737443+2 1.600777-5 1.482033+2 1.603600-5 1.225205+2 1.606595-5 9.934796+1 1.607321-5 9.433937+1 1.638983-5 1.188665+1 1.653062-5 2.355410+1 1.658148-5 3.954674+1 1.660341-5 4.913515+1 1.661931-5 5.718232+1 1.662765-5 6.178510+1 1.664643-5 7.309847+1 1.665999-5 8.209319+1 1.666834-5 8.795761+1 1.669024-5 1.045052+2 1.670068-5 1.129441+2 1.670903-5 1.199234+2 1.673660-5 1.442696+2 1.675284-5 1.593337+2 1.676653-5 1.723031+2 1.677983-5 1.850329+2 1.679791-5 2.023476+2 1.681544-5 2.188958+2 1.682599-5 2.286421+2 1.683985-5 2.410580+2 1.685673-5 2.554245+2 1.687403-5 2.690644+2 1.689053-5 2.808271+2 1.690820-5 2.918761+2 1.692848-5 3.023376+2 1.694505-5 3.089675+2 1.698345-5 3.172600+2 1.699891-5 3.177476+2 1.702624-5 3.146859+2 1.704599-5 3.095092+2 1.706513-5 3.023156+2 1.708290-5 2.939135+2 1.710285-5 2.827487+2 1.711952-5 2.722324+2 1.714094-5 2.574339+2 1.716128-5 2.423854+2 1.718163-5 2.267041+2 1.718671-5 2.227222+2 1.721787-5 1.981666+2 1.722232-5 1.946699+2 1.726300-5 1.634819+2 1.728057-5 1.506986+2 1.731409-5 1.278802+2 1.734438-5 1.093331+2 1.738152-5 8.947294+1 1.741783-5 7.310767+1 1.752156-5 4.067824+1 1.756305-5 3.229258+1 1.765420-5 1.980573+1 1.768439-5 1.700066+1 1.774153-5 1.311107+1 1.775775-5 1.232223+1 1.780124-5 1.087922+1 1.783386-5 1.044607+1 1.784473-5 1.042732+1 1.785017-5 1.044172+1 1.785969-5 1.050515+1 1.787396-5 1.069177+1 1.788823-5 1.098816+1 1.789911-5 1.128749+1 1.793174-5 1.256067+1 1.795054-5 1.354194+1 1.797297-5 1.493557+1 1.803585-5 1.994471+1 1.805244-5 2.147598+1 1.807614-5 2.376085+1 1.810090-5 2.621727+1 1.811335-5 2.745977+1 1.813694-5 2.978837+1 1.815462-5 3.148450+1 1.816596-5 3.253612+1 1.818500-5 3.422036+1 1.820404-5 3.577746+1 1.824756-5 3.872337+1 1.825300-5 3.902204+1 1.829109-5 4.062112+1 1.830605-5 4.100121+1 1.833461-5 4.132275+1 1.834549-5 4.130525+1 1.836181-5 4.113614+1 1.837813-5 4.079968+1 1.838901-5 4.048556+1 1.841039-5 3.966977+1 1.842233-5 3.910630+1 1.844375-5 3.791936+1 1.846517-5 3.653135+1 1.848693-5 3.494844+1 1.850869-5 3.322662+1 1.853545-5 3.097250+1 1.854437-5 3.019821+1 1.859054-5 2.612209+1 1.860152-5 2.515743+1 1.863446-5 2.233413+1 1.864707-5 2.129468+1 1.868488-5 1.836375+1 1.874209-5 1.459499+1 1.877641-5 1.276937+1 1.879929-5 1.173813+1 1.882217-5 1.085167+1 1.884438-5 1.012354+1 1.885836-5 9.728217+0 1.888162-5 9.170767+0 1.890489-5 8.727607+0 1.892122-5 8.477403+0 1.894571-5 8.183814+0 1.895795-5 8.069091+0 1.897020-5 7.972857+0 1.898772-5 7.863083+0 1.900523-5 7.780685+0 1.905100-5 7.653578+0 1.911381-5 7.560263+0 1.915881-5 7.472113+0 1.918658-5 7.392332+0 1.923120-5 7.216327+0 1.926990-5 7.018787+0 1.933543-5 6.615789+0 1.939465-5 6.217304+0 1.950594-5 5.488203+0 1.961916-5 4.815894+0 1.967194-5 4.515630+0 1.972886-5 4.196128+0 1.984640-5 3.583296+0 1.987242-5 3.469418+0 1.989565-5 3.379533+0 1.992508-5 3.286019+0 1.994498-5 3.238344+0 1.997021-5 3.199453+0 2.000818-5 3.194865+0 2.002717-5 3.220733+0 2.004615-5 3.267719+0 2.006221-5 3.325202+0 2.007598-5 3.388200+0 2.010311-5 3.551527+0 2.013047-5 3.771923+0 2.014791-5 3.942706+0 2.015880-5 4.061673+0 2.017468-5 4.251894+0 2.018985-5 4.452401+0 2.021567-5 4.834584+0 2.031287-5 6.673281+0 2.033619-5 7.180702+0 2.035845-5 7.675267+0 2.038071-5 8.171898+0 2.039927-5 8.581579+0 2.041319-5 8.882968+0 2.043407-5 9.320483+0 2.045743-5 9.781278+0 2.047964-5 1.018288+1 2.050517-5 1.059020+1 2.054136-5 1.104875+1 2.055370-5 1.116953+1 2.058016-5 1.136253+1 2.060308-5 1.145435+1 2.061542-5 1.147432+1 2.065245-5 1.141123+1 2.067560-5 1.128120+1 2.071980-5 1.085772+1 2.073999-5 1.059731+1 2.077028-5 1.014292+1 2.080058-5 9.629322+0 2.082526-5 9.181138+0 2.084995-5 8.718392+0 2.087464-5 8.251936+0 2.091890-5 7.438170+0 2.097151-5 6.566876+0 2.101844-5 5.925421+0 2.104745-5 5.605397+0 2.106822-5 5.414196+0 2.111799-5 5.084570+0 2.114799-5 4.969425+0 2.117799-5 4.910905+0 2.122051-5 4.911108+0 2.124860-5 4.954545+0 2.130074-5 5.098460+0 2.138446-5 5.403635+0 2.143608-5 5.580647+0 2.149327-5 5.733874+0 2.152419-5 5.793575+0 2.155510-5 5.836983+0 2.159000-5 5.868137+0 2.164234-5 5.886365+0 2.184341-5 5.858615+0 2.194054-5 5.887630+0 2.205352-5 5.972288+0 2.217868-5 6.109950+0 2.233058-5 6.324980+0 2.247137-5 6.573401+0 2.260695-5 6.856707+0 2.270420-5 7.084148+0 2.293503-5 7.697701+0 2.320172-5 8.532195+0 2.340344-5 9.259705+0 2.373507-5 1.065612+1 2.405897-5 1.228053+1 2.559763-5 2.392660+1 2.598290-5 2.800555+1 2.635847-5 3.244429+1 2.661720-5 3.572966+1 2.701226-5 4.122066+1 2.771542-5 5.250620+1 2.836319-5 6.476980+1 2.887769-5 7.590803+1 2.925945-5 8.503155+1 2.986994-5 1.011440+2 3.046760-5 1.186014+2 3.083386-5 1.302611+2 3.141247-5 1.500611+2 3.203664-5 1.731805+2 3.257573-5 1.945330+2 3.311482-5 2.171302+2 3.358612-5 2.377004+2 3.393959-5 2.536339+2 3.450000-5 2.795716+2 3.507519-5 3.066306+2 3.575293-5 3.387662+2 3.630781-5 3.651550+2 3.690000-5 3.929960+2 3.758374-5 4.242049+2 3.830000-5 4.555411+2 3.900000-5 4.844410+2 3.970000-5 5.111207+2 4.040725-5 5.355939+2 4.096000-5 5.531377+2 4.177328-5 5.762026+2 4.251032-5 5.940910+2 4.340424-5 6.123184+2 4.421425-5 6.257091+2 4.506875-5 6.368151+2 4.581726-5 6.441535+2 4.658195-5 6.498621+2 4.725511-5 6.535534+2 4.819377-5 6.568801+2 4.943272-5 6.581302+2 5.033821-5 6.571070+2 5.153326-5 6.541801+2 5.465924-5 6.419670+2 5.664513-5 6.318419+2 5.861171-5 6.199617+2 6.247818-5 5.938607+2 6.460028-5 5.782694+2 6.669113-5 5.623651+2 6.922194-5 5.418718+2 7.137920-5 5.229508+2 7.348516-5 5.046072+2 7.402778-5 5.029298+2 7.496112-5 5.026145+2 7.530863-5 5.004999+2 7.548882-5 4.985802+2 7.587944-5 4.926262+2 7.729121-5 4.648150+2 7.762945-5 4.600408+2 7.804138-5 4.565972+2 7.847688-5 4.559323+2 7.962317-5 4.620670+2 8.057500-5 4.660278+2 8.230000-5 4.664129+2 8.511791-5 4.599695+2 8.745015-5 4.512971+2 9.035195-5 4.380755+2 9.294169-5 4.243237+2 9.547254-5 4.102157+2 9.656691-5 4.031614+2 9.834975-5 3.874373+2 9.909013-5 3.828757+2 9.965084-5 3.813051+2 1.032250-4 3.817756+2 1.070000-4 3.759664+2 1.120382-4 3.629173+2 1.152000-4 3.530452+2 1.184275-4 3.417894+2 1.215560-4 3.298049+2 1.246959-4 3.166015+2 1.272133-4 3.044212+2 1.289106-4 2.972077+2 1.315033-4 2.891626+2 1.359937-4 2.787369+2 1.388585-4 2.722529+2 1.440274-4 2.630190+2 1.488864-4 2.518580+2 1.515741-4 2.449251+2 1.550000-4 2.354233+2 1.594069-4 2.225741+2 1.621810-4 2.143211+2 1.668324-4 2.004139+2 1.712875-4 1.873204+2 1.781653-4 1.681066+2 1.920000-4 1.355832+2 1.942830-4 1.313090+2 1.974151-4 1.260981+2 2.006881-4 1.215352+2 2.044160-4 1.175481+2 2.081883-4 1.149235+2 2.139055-4 1.138260+2 2.220000-4 1.179825+2 2.272429-4 1.241976+2 2.331491-4 1.345507+2 2.380000-4 1.455579+2 2.405000-4 1.520453+2 2.457600-4 1.673597+2 2.520000-4 1.882252+2 2.700000-4 2.637175+2 2.746313-4 2.860903+2 2.800000-4 3.131203+2 2.861295-4 3.451256+2 2.934318-4 3.844573+2 3.030000-4 4.367587+2 3.150000-4 5.019582+2 3.257022-4 5.592196+2 3.367250-4 6.164833+2 3.488682-4 6.767991+2 3.621050-4 7.381341+2 3.724849-4 7.859407+2 3.750904-4 8.024496+2 3.778181-4 8.220440+2 3.803829-4 8.388446+2 3.820926-4 8.474761+2 3.880436-4 8.675777+2 3.914208-4 8.830991+2 3.948390-4 9.058317+2 3.975284-4 9.267892+2 4.004815-4 9.479259+2 4.024214-4 9.586220+2 4.100000-4 9.876271+2 4.264561-4 1.066302+3 4.433418-4 1.143673+3 4.650233-4 1.232053+3 4.915200-4 1.327310+3 5.211309-4 1.419492+3 5.451735-4 1.480729+3 5.666635-4 1.523104+3 5.815313-4 1.540987+3 5.893220-4 1.547813+3 5.935792-4 1.555975+3 5.987165-4 1.575972+3 6.120966-4 1.658873+3 6.211605-4 1.699639+3 6.383144-4 1.751866+3 6.651686-4 1.813927+3 6.920140-4 1.861951+3 7.056965-4 1.881877+3 7.280264-4 1.927571+3 7.500000-4 1.964497+3 7.873054-4 2.009312+3 8.191366-4 2.038181+3 8.517382-4 2.085000+3 8.762982-4 2.114783+3 9.225714-4 2.154626+3 9.688354-4 2.183771+3 1.020352-3 2.206602+3 1.080192-3 2.223360+3 1.142622-3 2.228201+3 1.209385-3 2.222977+3 1.273733-3 2.212258+3 1.349674-3 2.194140+3 1.436626-3 2.166063+3 1.529567-3 2.122841+3 1.627243-3 2.067997+3 1.716673-3 2.010689+3 1.814243-3 1.938672+3 1.902023-3 1.860404+3 1.975773-3 1.783063+3 2.044357-3 1.700941+3 2.102971-3 1.620599+3 2.150625-3 1.545325+3 2.194068-3 1.466088+3 2.223240-3 1.404760+3 2.256548-3 1.323074+3 2.280999-3 1.251911+3 2.303185-3 1.174481+3 2.320283-3 1.101659+3 2.333597-3 1.034461+3 2.342537-3 9.848619+2 2.361158-3 8.838729+2 2.367020-3 8.586276+2 2.370201-3 8.474276+2 2.373344-3 8.384451+2 2.375795-3 8.330218+2 2.378935-3 8.282657+2 2.382610-3 8.260036+2 2.386121-3 8.272866+2 2.390966-3 8.345914+2 2.395787-3 8.479389+2 2.399907-3 8.636695+2 2.405250-3 8.889822+2 2.423059-3 9.932388+2 2.427733-3 1.020488+3 2.432220-3 1.045087+3 2.437513-3 1.071592+3 2.445467-3 1.105949+3 2.453151-3 1.133750+3 2.475000-3 1.205803+3 2.481682-3 1.232882+3 2.488393-3 1.264699+3 2.496645-3 1.310419+3 2.518596-3 1.455598+3 2.526641-3 1.510219+3 2.536049-3 1.570503+3 2.549201-3 1.645270+3 2.560474-3 1.700172+3 2.581774-3 1.786117+3 2.608739-3 1.875506+3 2.641725-3 1.968706+3 2.674877-3 2.048053+3 2.718193-3 2.133486+3 2.755181-3 2.190431+3 2.780040-3 2.218305+3 2.806488-3 2.237382+3 2.837678-3 2.245719+3 2.861846-3 2.240537+3 2.895626-3 2.219841+3 2.909042-3 2.214908+3 2.919315-3 2.216824+3 2.930381-3 2.226873+3 2.938495-3 2.240216+3 2.948437-3 2.263246+3 2.970383-3 2.332416+3 2.995624-3 2.416477+3 3.009561-3 2.455132+3 3.025788-3 2.491072+3 3.046995-3 2.525945+3 3.076498-3 2.560270+3 3.111050-3 2.589222+3 3.149575-3 2.612467+3 3.192647-3 2.629800+3 3.239867-3 2.640370+3 3.283445-3 2.642438+3 3.321076-3 2.636425+3 3.372601-3 2.620515+3 3.393321-3 2.620691+3 3.418938-3 2.633063+3 3.479735-3 2.686127+3 3.507122-3 2.701980+3 3.541951-3 2.712296+3 3.604271-3 2.712880+3 3.660936-3 2.712507+3 3.714295-3 2.736418+3 3.777387-3 2.768607+3 3.812951-3 2.778507+3 3.917930-3 2.788263+3 4.083443-3 2.779853+3 4.295055-3 2.750454+3 4.507194-3 2.710028+3 4.838241-3 2.631487+3 5.166527-3 2.545620+3 5.588747-3 2.428297+3 6.095369-3 2.288986+3 6.568819-3 2.163129+3 7.110484-3 2.025575+3 7.729030-3 1.878910+3 8.438962-3 1.723412+3 8.782574-3 1.653199+3 9.515629-3 1.509754+3 9.951868-3 1.429504+3 1.028929-2 1.368488+3 1.064052-2 1.306098+3 1.092540-2 1.255630+3 1.118789-2 1.208764+3 1.140997-2 1.168028+3 1.159205-2 1.133465+3 1.176319-2 1.099347+3 1.190214-2 1.069877+3 1.202219-2 1.042423+3 1.211818-2 1.018334+3 1.220388-2 9.941787+2 1.227522-2 9.710797+2 1.233095-2 9.504896+2 1.241272-2 9.161692+2 1.251330-2 8.730286+2 1.255798-2 8.577714+2 1.260738-2 8.468713+2 1.263300-2 8.442780+2 1.267617-2 8.449624+2 1.272242-2 8.522487+2 1.277921-2 8.681259+2 1.289341-2 9.074115+2 1.297110-2 9.294092+2 1.300813-2 9.374803+2 1.306544-2 9.471073+2 1.314026-2 9.554946+2 1.321996-2 9.607823+2 1.330683-2 9.636762+2 1.349786-2 9.632111+2 1.363207-2 9.589953+2 1.375751-2 9.528366+2 1.390635-2 9.430203+2 1.402732-2 9.330436+2 1.412988-2 9.229537+2 1.424105-2 9.098242+2 1.432335-2 8.981129+2 1.445458-2 8.752991+2 1.459180-2 8.501405+2 1.466498-2 8.406075+2 1.473160-2 8.365453+2 1.479886-2 8.372251+2 1.492279-2 8.465913+2 1.506950-2 8.573146+2 1.532377-2 8.664453+2 1.547737-2 8.788515+2 1.566437-2 8.947495+2 1.583007-2 9.023850+2 1.607495-2 9.053052+2 1.634651-2 9.030192+2 1.670167-2 8.954759+2 1.712971-2 8.827441+2 1.784431-2 8.563829+2 1.873016-2 8.198218+2 2.003614-2 7.650085+2 2.165833-2 7.001769+2 2.370404-2 6.268240+2 2.629085-2 5.478960+2 2.964137-2 4.648680+2 3.343730-2 3.912676+2 3.595591-2 3.513463+2 3.916458-2 3.078766+2 4.251750-2 2.695656+2 5.027791-2 2.039843+2 5.666693-2 1.660352+2 6.133048-2 1.441795+2 6.646473-2 1.243757+2 7.142377-2 1.084397+2 7.512528-2 9.797506+1 7.797788-2 9.040317+1 8.009042-2 8.483365+1 8.161438-2 8.062691+1 8.218729-2 7.892797+1 8.270683-2 7.727569+1 8.314403-2 7.575612+1 8.379138-2 7.319864+1 8.498783-2 6.805523+1 8.532661-2 6.701581+1 8.565493-2 6.642555+1 8.597012-2 6.629150+1 8.635626-2 6.664982+1 8.697173-2 6.793664+1 8.767572-2 6.947346+1 8.820081-2 7.024838+1 8.893769-2 7.078461+1 8.992005-2 7.088021+1 9.115690-2 7.050264+1 9.274053-2 6.962252+1 9.576652-2 6.742562+1 9.811150-2 6.551233+1 1.027132-1 6.160491+1 1.081760-1 5.705475+1 1.152993-1 5.159042+1 1.248468-1 4.520825+1 1.388414-1 3.762377+1 1.654329-1 2.757023+1 2.011315-1 1.935542+1 2.432842-1 1.361947+1 2.952395-1 9.463687+0 3.755786-1 5.976755+0 5.203493-1 3.181077+0 8.054847-1 1.354033+0 1.286622+0 5.380330-1 2.341267+0 1.638380-1 7.070513+0 1.802908-2 2.135261+1 1.977372-3 6.448384+1 2.168209-4 1.947381+2 2.377401-5 5.880996+2 2.606769-6 1.995262+3 2.264667-7 6.309573+3 2.264667-8 1.995262+4 2.264667-9 6.309573+4 2.26467-10 1.000000+5 9.01580-11 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.554700-6 1.258900-6 2.464000-6 1.584900-6 3.905200-6 1.995300-6 6.189300-6 2.511900-6 9.809400-6 3.162300-6 1.554700-5 3.981100-6 2.464000-5 5.011900-6 3.905200-5 6.309600-6 6.189200-5 7.943300-6 9.809100-5 1.000000-5 1.554600-4 1.258900-5 2.463900-4 1.584900-5 3.904900-4 1.995300-5 6.188700-4 2.511900-5 9.808200-4 3.162300-5 1.554300-3 3.981100-5 2.462300-3 5.011900-5 3.901000-3 6.309600-5 6.180600-3 7.943300-5 9.792500-3 1.000000-4 1.550200-2 1.258900-4 2.453800-2 1.584900-4 3.878400-2 1.995300-4 6.126200-2 2.511900-4 9.654500-2 3.162300-4 1.516800-1 3.981100-4 2.371500-1 5.011900-4 3.675600-1 6.309600-4 5.610500-1 7.943300-4 8.402300-1 1.000000-3 1.229300+0 1.258900-3 1.748200+0 1.584900-3 2.410500+0 1.995300-3 3.227600+0 2.511900-3 4.215000+0 3.162300-3 5.402200+0 3.981100-3 6.829800+0 5.011900-3 8.537900+0 6.309600-3 1.057800+1 7.943300-3 1.295200+1 1.000000-2 1.557100+1 1.258900-2 1.825900+1 1.584900-2 2.098500+1 1.995300-2 2.372900+1 2.511900-2 2.644100+1 3.162300-2 2.896300+1 3.981100-2 3.109800+1 5.011900-2 3.269600+1 6.309600-2 3.371400+1 7.943300-2 3.415400+1 1.000000-1 3.402400+1 1.258900-1 3.334600+1 1.584900-1 3.219400+1 1.995300-1 3.067500+1 2.511900-1 2.890100+1 3.162300-1 2.696400+1 3.981100-1 2.493900+1 5.011900-1 2.288500+1 6.309600-1 2.084900+1 7.943300-1 1.886200+1 1.000000+0 1.694600+1 1.258900+0 1.513500+1 1.584900+0 1.342400+1 1.995300+0 1.182600+1 2.511900+0 1.035100+1 3.162300+0 9.003000+0 3.981100+0 7.783700+0 5.011900+0 6.691700+0 6.309600+0 5.722200+0 7.943300+0 4.870200+0 1.000000+1 4.126400+0 1.258900+1 3.482000+0 1.584900+1 2.927500+0 1.995300+1 2.453100+0 2.511900+1 2.049500+0 3.162300+1 1.707600+0 3.981100+1 1.419200+0 5.011900+1 1.177000+0 6.309600+1 9.741300-1 7.943300+1 8.047600-1 1.000000+2 6.637400-1 1.258900+2 5.466100-1 1.584900+2 4.495200-1 1.995300+2 3.692100-1 2.511900+2 3.028900-1 3.162300+2 2.482100-1 3.981100+2 2.032000-1 5.011900+2 1.661900-1 6.309600+2 1.358100-1 7.943300+2 1.108900-1 1.000000+3 9.047200-2 1.258900+3 7.376100-2 1.584900+3 6.009600-2 1.995300+3 4.893000-2 2.511900+3 3.981500-2 3.162300+3 3.238000-2 3.981100+3 2.631800-2 5.011900+3 2.138000-2 6.309600+3 1.736000-2 7.943300+3 1.408900-2 1.000000+4 1.142900-2 1.258900+4 9.267200-3 1.584900+4 7.511200-3 1.995300+4 6.085500-3 2.511900+4 4.928500-3 3.162300+4 3.990000-3 3.981100+4 3.229000-3 5.011900+4 2.612300-3 6.309600+4 2.112600-3 7.943300+4 1.708000-3 1.000000+5 1.380400-3 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976754-4 5.011872-4 5.005052-4 6.309573-4 6.298825-4 7.943282-4 7.926342-4 1.000000-3 9.973471-4 1.258925-3 1.254774-3 1.584893-3 1.578404-3 1.995262-3 1.985161-3 2.511886-3 2.496139-3 3.162278-3 3.137689-3 3.981072-3 3.942606-3 5.011872-3 4.951517-3 6.309573-3 6.215001-3 7.943282-3 7.795319-3 1.000000-2 9.770068-3 1.258925-2 1.223312-2 1.584893-2 1.530009-2 1.995262-2 1.910712-2 2.511886-2 2.381893-2 3.162278-2 2.963368-2 3.981072-2 3.678818-2 5.011872-2 4.556468-2 6.309573-2 5.628448-2 7.943282-2 6.932208-2 1.000000-1 8.509467-2 1.258925-1 1.041426-1 1.584893-1 1.270385-1 1.995262-1 1.544756-1 2.511886-1 1.872246-1 3.162278-1 2.261740-1 3.981072-1 2.723310-1 5.011872-1 3.269297-1 6.309573-1 3.913798-1 7.943282-1 4.673568-1 1.000000+0 5.568611-1 1.258925+0 6.620548-1 1.584893+0 7.863560-1 1.995262+0 9.334552-1 2.511886+0 1.108041+0 3.162278+0 1.315778+0 3.981072+0 1.563762+0 5.011872+0 1.860651+0 6.309573+0 2.216873+0 7.943282+0 2.645355+0 1.000000+1 3.161991+0 1.258925+1 3.786182+0 1.584893+1 4.541231+0 1.995262+1 5.456500+0 2.511886+1 6.567300+0 3.162278+1 7.917325+0 3.981072+1 9.559782+0 5.011872+1 1.156056+1 6.309573+1 1.400029+1 7.943282+1 1.697793+1 1.000000+2 2.061533+1 1.258925+2 2.506264+1 1.584893+2 3.050409+1 1.995262+2 3.716759+1 2.511886+2 4.533277+1 3.162278+2 5.534538+1 3.981072+2 6.762989+1 5.011872+2 8.271327+1 6.309573+2 1.012428+2 7.943282+2 1.240189+2 1.000000+3 1.520284+2 1.258925+3 1.864938+2 1.584893+3 2.289152+2 1.995262+3 2.811721+2 2.511886+3 3.455484+2 3.162278+3 4.249335+2 3.981072+3 5.228241+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739850-9 3.981072-5 4.341945-9 5.011872-5 6.881146-9 6.309573-5 1.090550-8 7.943282-5 1.728309-8 1.000000-4 2.738428-8 1.258925-4 4.339339-8 1.584893-4 6.873670-8 1.995262-4 1.088909-7 2.511886-4 1.724365-7 3.162278-4 2.729262-7 3.981072-4 4.317533-7 5.011872-4 6.820159-7 6.309573-4 1.074862-6 7.943282-4 1.694048-6 1.000000-3 2.652854-6 1.258925-3 4.151168-6 1.584893-3 6.489690-6 1.995262-3 1.010088-5 2.511886-3 1.574787-5 3.162278-3 2.458889-5 3.981072-3 3.846550-5 5.011872-3 6.035489-5 6.309573-3 9.457254-5 7.943282-3 1.479629-4 1.000000-2 2.299319-4 1.258925-2 3.561320-4 1.584893-2 5.488429-4 1.995262-2 8.455005-4 2.511886-2 1.299938-3 3.162278-2 1.989092-3 3.981072-2 3.022535-3 5.011872-2 4.554041-3 6.309573-2 6.811256-3 7.943282-2 1.011074-2 1.000000-1 1.490533-2 1.258925-1 2.174998-2 1.584893-1 3.145081-2 1.995262-1 4.505062-2 2.511886-1 6.396404-2 3.162278-1 9.005373-2 3.981072-1 1.257762-1 5.011872-1 1.742575-1 6.309573-1 2.395775-1 7.943282-1 3.269715-1 1.000000+0 4.431389-1 1.258925+0 5.968706-1 1.584893+0 7.985372-1 1.995262+0 1.061807+0 2.511886+0 1.403846+0 3.162278+0 1.846500+0 3.981072+0 2.417309+0 5.011872+0 3.151221+0 6.309573+0 4.092700+0 7.943282+0 5.297927+0 1.000000+1 6.838009+0 1.258925+1 8.803072+0 1.584893+1 1.130770+1 1.995262+1 1.449612+1 2.511886+1 1.855156+1 3.162278+1 2.370545+1 3.981072+1 3.025093+1 5.011872+1 3.855817+1 6.309573+1 4.909545+1 7.943282+1 6.245490+1 1.000000+2 7.938467+1 1.258925+2 1.008299+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058559+2 3.162278+2 2.608824+2 3.981072+2 3.304773+2 5.011872+2 4.184740+2 6.309573+2 5.297146+2 7.943282+2 6.703093+2 1.000000+3 8.479716+2 1.258925+3 1.072432+3 1.584893+3 1.355978+3 1.995262+3 1.714090+3 2.511886+3 2.166338+3 3.162278+3 2.737344+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.300000-6 1.376881+7 5.432503-6 8.145926+6 5.460000-6 8.052601+6 5.460000-6 1.482159+7 6.200000-6 1.145753+7 6.683439-6 9.821875+6 6.760830-6 9.590732+6 7.413102-6 7.909036+6 8.222426-6 6.348624+6 8.317638-6 6.194228+6 9.225714-6 4.948087+6 9.885531-6 4.250683+6 1.035142-5 3.837550+6 1.150000-5 3.028185+6 1.174898-5 2.883472+6 1.236000-5 2.564905+6 1.236000-5 7.384585+6 1.288250-5 6.342309+6 1.350000-5 5.348067+6 1.380384-5 4.934607+6 1.428894-5 4.355176+6 1.548817-5 3.266099+6 1.603245-5 2.892124+6 1.698244-5 2.365459+6 1.778279-5 2.018270+6 1.798871-5 1.940122+6 2.000000-5 1.354069+6 2.001000-5 1.351795+6 2.001000-5 6.620197+6 2.018366-5 6.576401+6 2.030000-5 6.547833+6 2.065380-5 6.499362+6 2.095000-5 6.491984+6 2.130000-5 6.521392+6 2.150000-5 6.559644+6 2.162719-5 6.585007+6 2.190000-5 6.663866+6 2.230000-5 6.819745+6 2.238721-5 6.863021+6 2.240000-5 6.869398+6 2.240000-5 9.621310+6 2.270000-5 9.785143+6 2.300000-5 9.995175+6 2.317395-5 1.012838+7 2.330000-5 1.023838+7 2.344229-5 1.037237+7 2.350000-5 1.042727+7 2.371374-5 1.063383+7 2.410000-5 1.107819+7 2.426610-5 1.128375+7 2.450000-5 1.159952+7 2.485000-5 1.210555+7 2.500000-5 1.233526+7 2.511886-5 1.252934+7 2.520000-5 1.266339+7 2.570396-5 1.355048+7 2.580000-5 1.372950+7 2.600160-5 1.412480+7 2.630268-5 1.474553+7 2.660725-5 1.539764+7 2.722701-5 1.683094+7 2.754229-5 1.761525+7 2.800000-5 1.880855+7 2.851018-5 2.023646+7 2.884032-5 2.120762+7 2.900000-5 2.169086+7 2.917427-5 2.221263+7 2.951209-5 2.325697+7 3.000000-5 2.483571+7 3.054921-5 2.664438+7 3.090295-5 2.786439+7 3.162278-5 3.034262+7 3.198895-5 3.160702+7 3.235937-5 3.290446+7 3.260000-5 3.372062+7 3.273407-5 3.418217+7 3.311311-5 3.548529+7 3.349654-5 3.674982+7 3.350000-5 3.676138+7 3.388442-5 3.802679+7 3.427678-5 3.925636+7 3.450000-5 3.994333+7 3.500000-5 4.140204+7 3.507519-5 4.161518+7 3.548134-5 4.268486+7 3.570000-5 4.326874+7 3.630781-5 4.468759+7 3.650000-5 4.507112+7 3.690000-5 4.587638+7 3.758374-5 4.699560+7 3.770000-5 4.713620+7 3.830000-5 4.786632+7 3.900000-5 4.841750+7 3.935501-5 4.854516+7 3.970000-5 4.867045+7 3.981072-5 4.869261+7 4.030000-5 4.866593+7 4.070000-5 4.858828+7 4.090000-5 4.850527+7 4.150000-5 4.816683+7 4.168694-5 4.802906+7 4.229500-5 4.749938+7 4.315191-5 4.651176+7 4.330000-5 4.632221+7 4.410200-5 4.518391+7 4.450000-5 4.458407+7 4.472100-5 4.422391+7 4.500000-5 4.377620+7 4.570882-5 4.258826+7 4.610000-5 4.190599+7 4.623810-5 4.165362+7 4.677351-5 4.069657+7 4.720000-5 3.995785+7 4.731513-5 3.974942+7 4.850000-5 3.759158+7 4.897788-5 3.673216+7 4.900000-5 3.669127+7 5.011872-5 3.470450+7 5.080000-5 3.352524+7 5.188000-5 3.170551+7 5.308844-5 2.977160+7 5.400000-5 2.837476+7 5.432503-5 2.788557+7 5.559043-5 2.608563+7 5.580000-5 2.580276+7 5.650000-5 2.486240+7 5.688529-5 2.435278+7 5.821032-5 2.270268+7 5.900000-5 2.176629+7 6.150000-5 1.906899+7 6.165950-5 1.890798+7 6.382635-5 1.684971+7 6.456542-5 1.621477+7 6.500000-5 1.584705+7 6.606934-5 1.497113+7 6.683439-5 1.438245+7 6.800000-5 1.354169+7 7.150000-5 1.128565+7 7.161434-5 1.121916+7 7.300000-5 1.043610+7 7.500000-5 9.423873+6 7.673615-5 8.616604+6 7.796000-5 8.099383+6 7.796000-5 9.455875+6 7.852356-5 9.261160+6 7.900000-5 9.096657+6 7.920000-5 9.026801+6 8.000000-5 8.745706+6 8.035261-5 8.621957+6 8.080000-5 8.468976+6 8.150000-5 8.231378+6 8.222426-5 7.989886+6 8.230000-5 7.965242+6 8.317638-5 7.680632+6 8.330000-5 7.640597+6 8.450000-5 7.257077+6 8.570000-5 6.891079+6 8.709636-5 6.487129+6 8.730000-5 6.430855+6 8.810489-5 6.210244+6 8.912509-5 5.938650+6 9.150000-5 5.354003+6 9.332543-5 4.948778+6 9.440609-5 4.722891+6 9.549926-5 4.505611+6 9.660509-5 4.298515+6 9.900000-5 3.889648+6 9.903000-5 3.884846+6 9.903000-5 4.454466+6 9.965000-5 4.391624+6 1.000000-4 4.354859+6 1.002000-4 4.333924+6 1.007000-4 4.279653+6 1.012000-4 4.224221+6 1.018000-4 4.156880+6 1.025000-4 4.077273+6 1.032000-4 3.996569+6 1.040000-4 3.903623+6 1.047129-4 3.820657+6 1.055000-4 3.729167+6 1.059254-4 3.679314+6 1.065000-4 3.613603+6 1.071519-4 3.538454+6 1.075000-4 3.498577+6 1.080000-4 3.440718+6 1.083927-4 3.396213+6 1.085000-4 3.384278+6 1.100000-4 3.218445+6 1.115000-4 3.059127+6 1.135011-4 2.857680+6 1.140000-4 2.809479+6 1.150000-4 2.716013+6 1.160000-4 2.625247+6 1.161449-4 2.612208+6 1.190000-4 2.371548+6 1.216186-4 2.174685+6 1.230269-4 2.077523+6 1.244515-4 1.984313+6 1.260000-4 1.889013+6 1.281600-4 1.765842+6 1.281600-4 1.890539+6 1.282200-4 1.889347+6 1.285000-4 1.881896+6 1.289000-4 1.870978+6 1.292000-4 1.862595+6 1.296000-4 1.851177+6 1.300000-4 1.839570+6 1.305000-4 1.824983+6 1.310000-4 1.810047+6 1.316000-4 1.791766+6 1.318257-4 1.784676+6 1.321000-4 1.776181+6 1.328000-4 1.753870+6 1.329500-4 1.748933+6 1.329500-4 1.836265+6 1.330000-4 1.836003+6 1.333521-4 1.831725+6 1.334000-4 1.831106+6 1.336000-4 1.828325+6 1.340000-4 1.822626+6 1.344000-4 1.816076+6 1.348000-4 1.809464+6 1.348963-4 1.807768+6 1.353000-4 1.800188+6 1.356100-4 1.794209+6 1.357000-4 1.792573+6 1.359000-4 1.788712+6 1.362000-4 1.782564+6 1.364583-4 1.776984+6 1.368000-4 1.769853+6 1.370000-4 1.765435+6 1.375000-4 1.753970+6 1.380384-4 1.741255+6 1.382000-4 1.737347+6 1.390000-4 1.717385+6 1.391600-4 1.713107+6 1.391600-4 1.780671+6 1.397000-4 1.765614+6 1.400000-4 1.757065+6 1.405000-4 1.743202+6 1.409000-4 1.731448+6 1.412538-4 1.721301+6 1.414000-4 1.717212+6 1.420000-4 1.699995+6 1.425000-4 1.685656+6 1.428894-4 1.674255+6 1.435000-4 1.656716+6 1.437000-4 1.651109+6 1.445440-4 1.627130+6 1.450000-4 1.614267+6 1.462177-4 1.580251+6 1.465000-4 1.572716+6 1.472000-4 1.553944+6 1.480000-4 1.533174+6 1.496236-4 1.491908+6 1.500000-4 1.482705+6 1.513561-4 1.451163+6 1.520000-4 1.436758+6 1.520200-4 1.436321+6 1.522600-4 1.431255+6 1.531087-4 1.413758+6 1.540000-4 1.396071+6 1.550000-4 1.377587+6 1.560000-4 1.360098+6 1.570000-4 1.344154+6 1.580000-4 1.329219+6 1.584893-4 1.322565+6 1.590000-4 1.316059+6 1.600000-4 1.304250+6 1.603245-4 1.300832+6 1.610000-4 1.293878+6 1.620000-4 1.284563+6 1.621810-4 1.283109+6 1.627000-4 1.279092+6 1.640590-4 1.269926+6 1.643000-4 1.268442+6 1.659587-4 1.261359+6 1.660000-4 1.261213+6 1.678804-4 1.258020+6 1.680000-4 1.257875+6 1.690000-4 1.258391+6 1.698244-4 1.259376+6 1.705000-4 1.260845+6 1.720000-4 1.266307+6 1.736500-4 1.275052+6 1.737801-4 1.275911+6 1.740000-4 1.277464+6 1.770000-4 1.303385+6 1.778279-4 1.312586+6 1.780000-4 1.314558+6 1.800000-4 1.339505+6 1.810000-4 1.353496+6 1.819701-4 1.368347+6 1.820000-4 1.368818+6 1.835000-4 1.393575+6 1.840772-4 1.403612+6 1.865000-4 1.449996+6 1.880000-4 1.481250+6 1.883649-4 1.489190+6 1.905461-4 1.539886+6 1.930000-4 1.602294+6 1.950000-4 1.657241+6 1.972423-4 1.723418+6 1.980000-4 1.746897+6 1.990000-4 1.778793+6 1.995262-4 1.795511+6 2.000000-4 1.810841+6 2.020000-4 1.877895+6 2.041738-4 1.955206+6 2.051300-4 1.990252+6 2.065380-4 2.041710+6 2.089296-4 2.133477+6 2.100000-4 2.176459+6 2.113489-4 2.229006+6 2.137962-4 2.328758+6 2.150000-4 2.379888+6 2.162719-4 2.431901+6 2.187762-4 2.538330+6 2.190000-4 2.548092+6 2.193300-4 2.562228+6 2.213095-4 2.645106+6 2.220000-4 2.674737+6 2.240000-4 2.762530+6 2.264644-4 2.866355+6 2.280000-4 2.933145+6 2.290868-4 2.979851+6 2.300000-4 3.017612+6 2.317395-4 3.091052+6 2.330000-4 3.145407+6 2.344229-4 3.205589+6 2.371374-4 3.316850+6 2.380000-4 3.352992+6 2.398833-4 3.430288+6 2.400000-4 3.435134+6 2.426610-4 3.541132+6 2.430000-4 3.554829+6 2.450000-4 3.633436+6 2.454709-4 3.652175+6 2.483133-4 3.760516+6 2.500000-4 3.823383+6 2.511886-4 3.868225+6 2.519300-4 3.896403+6 2.520000-4 3.899074+6 2.540973-4 3.974910+6 2.570396-4 4.078510+6 2.580000-4 4.112794+6 2.600160-4 4.180793+6 2.630268-4 4.278959+6 2.650000-4 4.344143+6 2.670000-4 4.405930+6 2.691535-4 4.469553+6 2.722701-4 4.562784+6 2.730000-4 4.582918+6 2.754229-4 4.646137+6 2.800000-4 4.766738+6 2.818383-4 4.807410+6 2.851018-4 4.880099+6 2.880000-4 4.945037+6 2.951209-4 5.075706+6 3.000000-4 5.147092+6 3.030000-4 5.191020+6 3.100000-4 5.267857+6 3.126079-4 5.292498+6 3.162278-4 5.318798+6 3.200000-4 5.346093+6 3.235937-4 5.366163+6 3.280000-4 5.382130+6 3.311311-4 5.393456+6 3.350000-4 5.401709+6 3.388442-4 5.403420+6 3.427678-4 5.405127+6 3.430000-4 5.405229+6 3.470000-4 5.402133+6 3.500000-4 5.395149+6 3.507519-4 5.393419+6 3.550000-4 5.383586+6 3.589219-4 5.370593+6 3.600000-4 5.367054+6 3.672823-4 5.333509+6 3.715352-4 5.310245+6 3.758374-4 5.281664+6 3.801894-4 5.253288+6 3.850000-4 5.217904+6 3.851300-4 5.216802+6 3.851300-4 5.347960+6 3.935501-4 5.291804+6 3.992000-4 5.250764+6 4.000000-4 5.245707+6 4.015000-4 5.234555+6 4.027170-4 5.226056+6 4.063500-4 5.201460+6 4.063500-4 5.324276+6 4.070000-4 5.317232+6 4.073803-4 5.313433+6 4.084000-4 5.302987+6 4.097000-4 5.290728+6 4.100000-4 5.288111+6 4.113000-4 5.275398+6 4.128000-4 5.261704+6 4.130000-4 5.259989+6 4.143000-4 5.248537+6 4.144800-4 5.247042+6 4.158000-4 5.236142+6 4.168694-4 5.227864+6 4.173000-4 5.224441+6 4.188000-4 5.213252+6 4.200000-4 5.204890+6 4.203000-4 5.202512+6 4.220000-4 5.189854+6 4.225000-4 5.186036+6 4.265795-4 5.156871+6 4.280000-4 5.147021+6 4.285000-4 5.143088+6 4.315191-4 5.119291+6 4.335000-4 5.103709+6 4.350000-4 5.091649+6 4.390000-4 5.059616+6 4.400000-4 5.051509+6 4.415704-4 5.038681+6 4.450000-4 5.008426+6 4.466836-4 4.993465+6 4.500000-4 4.963940+6 4.518559-4 4.946607+6 4.530000-4 4.936016+6 4.550000-4 4.917379+6 4.600000-4 4.871120+6 4.623810-4 4.849257+6 4.677351-4 4.797603+6 4.680000-4 4.795092+6 4.731513-4 4.746534+6 4.786301-4 4.693789+6 4.841724-4 4.641493+6 4.850000-4 4.633823+6 4.930000-4 4.557036+6 4.954502-4 4.533830+6 5.011872-4 4.478301+6 5.069907-4 4.423752+6 5.080000-4 4.414426+6 5.150000-4 4.346375+6 5.188000-4 4.310187+6 5.248075-4 4.252149+6 5.300000-4 4.202817+6 5.370318-4 4.137630+6 5.400000-4 4.109481+6 5.432503-4 4.079129+6 5.450000-4 4.062994+6 5.500000-4 4.016832+6 5.623413-4 3.904137+6 5.650000-4 3.880803+6 5.688529-4 3.846907+6 5.821032-4 3.730981+6 5.850000-4 3.705879+6 5.900000-4 3.662872+6 6.003200-4 3.576755+6 6.003200-4 3.782150+6 6.025596-4 3.763813+6 6.095369-4 3.705253+6 6.100000-4 3.701436+6 6.165950-4 3.647538+6 6.200000-4 3.620368+6 6.237348-4 3.590241+6 6.280000-4 3.556451+6 6.309573-4 3.533131+6 6.312300-4 3.530996+6 6.382635-4 3.476416+6 6.531306-4 3.363053+6 6.683439-4 3.250072+6 6.700000-4 3.238212+6 6.760830-4 3.194802+6 6.839116-4 3.138711+6 6.850000-4 3.130964+6 6.918310-4 3.082749+6 7.000000-4 3.025889+6 7.079458-4 2.972475+6 7.080000-4 2.972117+6 7.139700-4 2.932823+6 7.139700-4 2.972636+6 7.161434-4 2.958574+6 7.244360-4 2.905322+6 7.350000-4 2.838588+6 7.413102-4 2.800221+6 7.500000-4 2.747640+6 7.585776-4 2.696925+6 7.673615-4 2.646775+6 7.762471-4 2.597533+6 7.852356-4 2.547788+6 7.943282-4 2.498625+6 8.000000-4 2.468317+6 8.128305-4 2.402050+6 8.222426-4 2.355112+6 8.314300-4 2.310698+6 8.314300-4 2.357491+6 8.317638-4 2.355895+6 8.413951-4 2.309329+6 8.511380-4 2.263841+6 8.609938-4 2.218546+6 8.810489-4 2.131221+6 8.820000-4 2.127190+6 9.015711-4 2.046758+6 9.120108-4 2.005009+6 9.200000-4 1.974120+6 9.225714-4 1.964325+6 9.332543-4 1.923940+6 9.549926-4 1.845166+6 9.600000-4 1.827669+6 9.700000-4 1.793491+6 9.772372-4 1.769111+6 9.885531-4 1.732056+6 1.000000-3 1.695474+6 1.011579-3 1.659407+6 1.023293-3 1.623969+6 1.035142-3 1.589326+6 1.047129-3 1.555546+6 1.050000-3 1.547525+6 1.059254-3 1.521903+6 1.071519-3 1.489017+6 1.083927-3 1.456727+6 1.110000-3 1.391913+6 1.122018-3 1.363529+6 1.135011-3 1.333625+6 1.148154-3 1.304143+6 1.150000-3 1.300087+6 1.188502-3 1.219512+6 1.190000-3 1.216518+6 1.202264-3 1.192393+6 1.216186-3 1.165562+6 1.226800-3 1.145760+6 1.230269-3 1.139358+6 1.244515-3 1.113394+6 1.288250-3 1.039320+6 1.303167-3 1.015494+6 1.318257-3 9.922674+5 1.333521-3 9.694771+5 1.350000-3 9.457735+5 1.364583-3 9.254161+5 1.396368-3 8.832667+5 1.412538-3 8.627964+5 1.428894-3 8.427207+5 1.462177-3 8.037863+5 1.479108-3 7.849308+5 1.500000-3 7.625985+5 1.513561-3 7.484404+5 1.531087-3 7.307574+5 1.548817-3 7.134171+5 1.566751-3 6.964499+5 1.570000-3 6.934424+5 1.584893-3 6.799150+5 1.603245-3 6.637930+5 1.621810-3 6.480768+5 1.640590-3 6.325021+5 1.650000-3 6.249159+5 1.678804-3 6.024244+5 1.690000-3 5.940002+5 1.717908-3 5.736881+5 1.730000-3 5.652025+5 1.757924-3 5.463463+5 1.798871-3 5.202013+5 1.800000-3 5.195081+5 1.819701-3 5.074852+5 1.862087-3 4.830571+5 1.883649-3 4.713146+5 1.905461-3 4.597608+5 1.927525-3 4.484054+5 1.950000-3 4.372826+5 1.972423-3 4.265341+5 2.041738-3 3.956358+5 2.065380-3 3.858884+5 2.070000-3 3.840257+5 2.089296-3 3.763092+5 2.137962-3 3.577808+5 2.150000-3 3.533729+5 2.162719-3 3.487870+5 2.238721-3 3.231780+5 2.264644-3 3.151050+5 2.317395-3 2.994244+5 2.344229-3 2.918526+5 2.371374-3 2.844618+5 2.393900-3 2.784911+5 2.393900-3 6.986964+5 2.398833-3 6.965877+5 2.454709-3 6.735415+5 2.483133-3 6.623673+5 2.493700-3 6.582802+5 2.493700-3 8.687199+5 2.511886-3 8.632619+5 2.517000-3 8.617506+5 2.517400-3 8.623436+5 2.540973-3 8.582956+5 2.570396-3 8.535995+5 2.585000-3 8.514286+5 2.600160-3 8.483686+5 2.630268-3 8.425637+5 2.650000-3 8.345378+5 2.670000-3 8.266888+5 2.691535-3 8.169171+5 2.700000-3 8.131549+5 2.722701-3 8.025576+5 2.740000-3 7.944047+5 2.754229-3 7.855975+5 2.770000-3 7.753416+5 2.786121-3 7.642946+5 2.818383-3 7.428188+5 2.839300-3 7.293495+5 2.851018-3 7.217942+5 2.884032-3 7.010916+5 2.944600-3 6.652391+5 2.944600-3 7.715776+5 2.951209-3 7.674969+5 2.985383-3 7.468705+5 3.000000-3 7.382799+5 3.030000-3 7.208714+5 3.054921-3 7.066790+5 3.090295-3 6.871868+5 3.126079-3 6.680956+5 3.198895-3 6.315444+5 3.273407-3 5.970510+5 3.311311-3 5.805369+5 3.349654-3 5.644588+5 3.388442-3 5.486557+5 3.400000-3 5.440702+5 3.409700-3 5.402624+5 3.409700-3 5.729447+5 3.427678-3 5.659459+5 3.467369-3 5.509310+5 3.484000-3 5.447707+5 3.507519-3 5.360362+5 3.600000-3 5.034431+5 3.630781-3 4.932364+5 3.672823-3 4.797610+5 3.678700-3 4.779178+5 3.678700-3 4.982551+5 3.700000-3 4.915275+5 3.715352-3 4.867608+5 3.720000-3 4.853173+5 3.758374-3 4.735749+5 3.801894-3 4.607588+5 3.845918-3 4.483071+5 3.850000-3 4.471700+5 3.890451-3 4.361092+5 3.981072-3 4.127391+5 4.000000-3 4.080714+5 4.027170-3 4.014962+5 4.073803-3 3.905592+5 4.080000-3 3.891389+5 4.120975-3 3.799041+5 4.150000-3 3.735554+5 4.216965-3 3.593702+5 4.230000-3 3.566999+5 4.265795-3 3.495238+5 4.315191-3 3.399069+5 4.350000-3 3.333619+5 4.365158-3 3.305618+5 4.415704-3 3.214622+5 4.466836-3 3.125964+5 4.500000-3 3.070271+5 4.518559-3 3.039707+5 4.580000-3 2.941211+5 4.623810-3 2.873636+5 4.677351-3 2.794098+5 4.731513-3 2.716900+5 4.841724-3 2.567847+5 4.897788-3 2.496527+5 4.954502-3 2.427176+5 5.000000-3 2.373436+5 5.011872-3 2.359688+5 5.069907-3 2.294089+5 5.128614-3 2.229251+5 5.188000-3 2.166357+5 5.248075-3 2.105332+5 5.308844-3 2.045575+5 5.432503-3 1.931335+5 5.495409-3 1.876710+5 5.500000-3 1.872812+5 5.559043-3 1.823674+5 5.623413-3 1.772079+5 5.688529-3 1.722015+5 5.821032-3 1.626230+5 5.888437-3 1.580463+5 5.956621-3 1.535886+5 6.000000-3 1.508341+5 6.025596-3 1.492416+5 6.095369-3 1.450179+5 6.165950-3 1.409171+5 6.237348-3 1.369002+5 6.309573-3 1.330028+5 6.382635-3 1.292032+5 6.456542-3 1.255180+5 6.531306-3 1.219171+5 6.606934-3 1.184209+5 6.683439-3 1.150261+5 6.760830-3 1.117151+5 6.800000-3 1.100899+5 6.839116-3 1.084999+5 6.918310-3 1.053786+5 7.079458-3 9.939591+4 7.161434-3 9.653847+4 7.244360-3 9.375613+4 7.328245-3 9.105816+4 7.500000-3 8.587436+4 7.585776-3 8.344184+4 7.673615-3 8.103879+4 7.762471-3 7.869607+4 7.852356-3 7.642487+4 8.000000-3 7.287264+4 8.035261-3 7.205958+4 8.128305-3 6.996996+4 8.222426-3 6.793489+4 8.317638-3 6.596192+4 8.413951-3 6.404897+4 8.511380-3 6.218596+4 8.609938-3 6.037839+4 8.709636-3 5.861365+4 8.810489-3 5.690204+4 8.912509-3 5.524311+4 9.015711-3 5.362740+4 9.120108-3 5.206110+4 9.332543-3 4.907058+4 9.500000-3 4.687897+4 9.549926-3 4.625236+4 9.660509-3 4.490671+4 9.772372-3 4.359052+4 9.885531-3 4.231493+4 1.000000-2 4.106814+4 1.011579-2 3.985944+4 1.023293-2 3.868793+4 1.035142-2 3.755255+4 1.047129-2 3.644889+4 1.059254-2 3.537607+4 1.071519-2 3.433557+4 1.083927-2 3.332699+4 1.096478-2 3.234889+4 1.109175-2 3.139338+4 1.122018-2 3.046450+4 1.135011-2 2.956367+4 1.148154-2 2.868971+4 1.161449-2 2.784278+4 1.174898-2 2.702198+4 1.188502-2 2.622596+4 1.202264-2 2.545410+4 1.216186-2 2.470377+4 1.230269-2 2.397326+4 1.244515-2 2.326319+4 1.258925-2 2.256905+4 1.266000-2 2.223904+4 1.266000-2 5.608507+4 1.273503-2 5.542013+4 1.274300-2 5.535020+4 1.288250-2 5.362697+4 1.290000-2 5.341589+4 1.303167-2 5.201648+4 1.318257-2 5.047507+4 1.333521-2 4.893511+4 1.364583-2 4.599624+4 1.380384-2 4.459485+4 1.396368-2 4.323548+4 1.400000-2 4.293463+4 1.412538-2 4.191624+4 1.428894-2 4.063526+4 1.445440-2 3.939097+4 1.462177-2 3.817331+4 1.474600-2 3.730255+4 1.474600-2 5.190255+4 1.487000-2 5.085494+4 1.496236-2 5.003663+4 1.500000-2 4.970843+4 1.533000-2 4.695532+4 1.533000-2 5.426730+4 1.548817-2 5.290089+4 1.566751-2 5.138210+4 1.584893-2 4.990822+4 1.603245-2 4.847684+4 1.610000-2 4.796370+4 1.621810-2 4.707603+4 1.640590-2 4.571175+4 1.647000-2 4.525846+4 1.659587-2 4.439656+4 1.678804-2 4.312489+4 1.698244-2 4.189080+4 1.717908-2 4.067686+4 1.737801-2 3.948637+4 1.757924-2 3.833168+4 1.778279-2 3.721164+4 1.798871-2 3.612357+4 1.819701-2 3.506815+4 1.840772-2 3.404293+4 1.862087-2 3.304848+4 1.883649-2 3.208319+4 1.900000-2 3.138015+4 1.927525-2 3.023639+4 1.972423-2 2.849401+4 2.000000-2 2.748506+4 2.018366-2 2.684096+4 2.041738-2 2.604682+4 2.065380-2 2.527669+4 2.089296-2 2.452893+4 2.113489-2 2.380286+4 2.137962-2 2.309888+4 2.142010-2 2.298524+4 2.162719-2 2.241596+4 2.187762-2 2.175105+4 2.264644-2 1.986591+4 2.290868-2 1.927553+4 2.344229-2 1.814824+4 2.371374-2 1.760973+4 2.398833-2 1.708717+4 2.400000-2 1.706545+4 2.426610-2 1.658041+4 2.454709-2 1.608336+4 2.483133-2 1.559832+4 2.511886-2 1.512829+4 2.600160-2 1.380301+4 2.630268-2 1.338826+4 2.691535-2 1.259666+4 2.722701-2 1.221874+4 2.786121-2 1.149743+4 2.800000-2 1.134653+4 2.818383-2 1.115072+4 2.851018-2 1.081393+4 2.884032-2 1.048758+4 2.917427-2 1.017133+4 2.951209-2 9.864784+3 3.019952-2 9.279711+3 3.054921-2 9.000679+3 3.090295-2 8.730033+3 3.198895-2 7.956194+3 3.235937-2 7.714183+3 3.273407-2 7.479167+3 3.300000-2 7.318405+3 3.311311-2 7.251408+3 3.349654-2 7.030328+3 3.388442-2 6.816141+3 3.427678-2 6.608650+3 3.467369-2 6.407632+3 3.507519-2 6.212796+3 3.548134-2 6.023360+3 3.589219-2 5.839833+3 3.650000-2 5.582350+3 3.715352-2 5.321752+3 3.758374-2 5.159391+3 3.845918-2 4.849586+3 3.890451-2 4.700970+3 3.935501-2 4.556882+3 3.981072-2 4.417322+3 4.073803-2 4.149314+3 4.120975-2 4.021509+3 4.168694-2 3.897693+3 4.265795-2 3.661592+3 4.315191-2 3.549080+3 4.365158-2 3.440106+3 4.415704-2 3.334531+3 4.466836-2 3.232251+3 4.518559-2 3.133086+3 4.570882-2 3.036671+3 4.677351-2 2.852668+3 4.731513-2 2.764983+3 4.786301-2 2.679718+3 4.800000-2 2.658972+3 4.841724-2 2.596669+3 4.897788-2 2.516095+3 5.011872-2 2.362471+3 5.069907-2 2.289286+3 5.128614-2 2.218394+3 5.188000-2 2.149741+3 5.248075-2 2.083247+3 5.432503-2 1.895948+3 5.623413-2 1.725643+3 5.688529-2 1.671982+3 5.754399-2 1.619984+3 5.821032-2 1.569636+3 5.888437-2 1.520721+3 6.000000-2 1.444292+3 6.025596-2 1.427507+3 6.095369-2 1.383100+3 6.165950-2 1.340102+3 6.237348-2 1.298463+3 6.382635-2 1.219044+3 6.456542-2 1.181017+3 6.683439-2 1.073916+3 6.760830-2 1.040458+3 6.839116-2 1.008063+3 6.918310-2 9.766761+2 7.000000-2 9.456993+2 7.161434-2 8.882399+2 7.328245-2 8.338109+2 7.413102-2 8.078235+2 7.498942-2 7.825106+2 7.500000-2 7.822055+2 7.673615-2 7.342449+2 8.128305-2 6.262980+2 8.222426-2 6.067264+2 8.317638-2 5.877770+2 8.413951-2 5.694303+2 8.511380-2 5.516661+2 8.579800-2 5.396356+2 8.579800-2 2.568498+3 8.709636-2 2.471354+3 8.810489-2 2.399302+3 8.830000-2 2.385702+3 8.950000-2 2.309932+3 9.015711-2 2.264767+3 9.150000-2 2.176146+3 9.332543-2 2.070999+3 9.440609-2 2.012085+3 9.549926-2 1.954850+3 9.885531-2 1.785169+3 1.000000-1 1.731961+3 1.011580-1 1.680338+3 1.023293-1 1.630264+3 1.035142-1 1.581687+3 1.047129-1 1.534501+3 1.059254-1 1.489341+3 1.071519-1 1.445516+3 1.083927-1 1.402984+3 1.109175-1 1.321655+3 1.135011-1 1.245040+3 1.148154-1 1.208420+3 1.161449-1 1.172883+3 1.174898-1 1.138395+3 1.190000-1 1.101326+3 1.202264-1 1.071824+3 1.244515-1 9.781540+2 1.288250-1 8.926076+2 1.303167-1 8.657941+2 1.333521-1 8.145670+2 1.364583-1 7.663764+2 1.380384-1 7.433647+2 1.396368-1 7.210461+2 1.412538-1 6.993981+2 1.428894-1 6.784037+2 1.445440-1 6.580373+2 1.479108-1 6.191371+2 1.500000-1 5.965884+2 1.531088-1 5.650844+2 1.548817-1 5.481400+2 1.603245-1 5.000733+2 1.621810-1 4.849994+2 1.640590-1 4.703811+2 1.678804-1 4.424567+2 1.717908-1 4.161940+2 1.737801-1 4.036541+2 1.757924-1 3.914941+2 1.778279-1 3.797020+2 1.798871-1 3.682661+2 1.819701-1 3.571758+2 1.840772-1 3.464246+2 1.862087-1 3.359977+2 1.883649-1 3.258897+2 1.927525-1 3.065786+2 2.000000-1 2.779873+2 2.018366-1 2.713286+2 2.041738-1 2.631689+2 2.065380-1 2.552553+2 2.137962-1 2.329163+2 2.162719-1 2.259139+2 2.187762-1 2.191255+2 2.238721-1 2.061582+2 2.264644-1 1.999658+2 2.317395-1 1.881402+2 2.344229-1 1.825447+2 2.426610-1 1.667385+2 2.454709-1 1.617808+2 2.483133-1 1.569708+2 2.511886-1 1.523040+2 2.540973-1 1.477781+2 2.570396-1 1.433871+2 2.630268-1 1.350034+2 2.660725-1 1.309979+2 2.691535-1 1.271134+2 2.722701-1 1.233447+2 2.754229-1 1.196880+2 2.786121-1 1.161399+2 2.818383-1 1.126971+2 2.851018-1 1.094036+2 2.884032-1 1.062064+2 2.917427-1 1.031043+2 2.951209-1 1.000930+2 2.985383-1 9.717012+1 3.000000-1 9.595609+1 3.000060-1 9.595115+1 3.019952-1 9.433243+1 3.090295-1 8.890314+1 3.162278-1 8.379010+1 3.198895-1 8.134513+1 3.235937-1 7.897500+1 3.273407-1 7.667409+1 3.311311-1 7.447491+1 3.349654-1 7.233908+1 3.388442-1 7.026475+1 3.427678-1 6.825008+1 3.467369-1 6.629395+1 3.507519-1 6.439404+1 3.548134-1 6.254865+1 3.630781-1 5.901764+1 3.672823-1 5.732770+1 3.715352-1 5.568698+1 3.758374-1 5.409324+1 3.801894-1 5.254536+1 3.845918-1 5.107064+1 3.890451-1 4.963738+1 3.935501-1 4.824435+1 3.981072-1 4.689063+1 4.000000-1 4.634406+1 4.027170-1 4.557501+1 4.120975-1 4.305650+1 4.168694-1 4.185055+1 4.216965-1 4.067841+1 4.265795-1 3.953928+1 4.365158-1 3.735594+1 4.415705-1 3.633129+1 4.518559-1 3.436992+1 4.570882-1 3.342937+1 4.623810-1 3.251587+1 4.677351-1 3.162736+1 4.731513-1 3.076364+1 4.786301-1 2.992357+1 4.841724-1 2.910645+1 4.897788-1 2.831168+1 4.954502-1 2.753862+1 5.011872-1 2.680217+1 5.069907-1 2.608542+1 5.128614-1 2.538976+1 5.188000-1 2.471326+1 5.248075-1 2.405486+1 5.308844-1 2.341413+1 5.370318-1 2.279079+1 5.432503-1 2.218407+1 5.495409-1 2.159350+1 5.559043-1 2.101867+1 5.623413-1 2.045916+1 5.688529-1 1.992627+1 5.754399-1 1.940727+1 5.821032-1 1.890232+1 5.888437-1 1.841167+1 5.956621-1 1.793379+1 6.000000-1 1.763899+1 6.025596-1 1.746833+1 6.095369-1 1.701527+1 6.165950-1 1.657397+1 6.237348-1 1.614412+1 6.309573-1 1.572563+1 6.382635-1 1.532806+1 6.456542-1 1.494095+1 6.531306-1 1.456363+1 6.606935-1 1.419585+1 6.623700-1 1.411635+1 6.683439-1 1.383825+1 6.760830-1 1.348965+1 6.839117-1 1.314985+1 6.918310-1 1.281885+1 6.998420-1 1.249636+1 7.079458-1 1.218202+1 7.161434-1 1.188289+1 7.244360-1 1.159111+1 7.328245-1 1.130650+1 7.413102-1 1.102888+1 7.498942-1 1.075809+1 7.585776-1 1.049464+1 7.673615-1 1.023766+1 7.762471-1 9.987096+0 7.852356-1 9.742860+0 7.943282-1 9.504637+0 8.035261-1 9.272407+0 8.128305-1 9.050839+0 8.413951-1 8.417419+0 8.511380-1 8.216856+0 8.609938-1 8.021155+0 8.709636-1 7.830122+0 8.810489-1 7.643727+0 8.912509-1 7.461930+0 9.015711-1 7.284457+0 9.120108-1 7.111208+0 9.225714-1 6.942184+0 9.332543-1 6.781152+0 9.440609-1 6.623896+0 9.549926-1 6.470915+0 9.660509-1 6.321470+0 9.772372-1 6.175479+0 9.885531-1 6.033063+0 1.000000+0 5.894066+0 1.011579+0 5.758382+0 1.022000+0 5.640221+0 1.023293+0 5.626150+0 1.047129+0 5.376020+0 1.059254+0 5.255270+0 1.071519+0 5.137237+0 1.083927+0 5.022213+0 1.096478+0 4.909772+0 1.109175+0 4.799842+0 1.122018+0 4.692384+0 1.135011+0 4.587350+0 1.148154+0 4.484689+0 1.161449+0 4.384475+0 1.174898+0 4.286577+0 1.188502+0 4.193045+0 1.216186+0 4.012049+0 1.230269+0 3.924503+0 1.244515+0 3.839139+0 1.258925+0 3.755654+0 1.273503+0 3.674114+0 1.288250+0 3.594345+0 1.303167+0 3.516328+0 1.318257+0 3.440058+0 1.333521+0 3.367394+0 1.348963+0 3.296261+0 1.364583+0 3.226634+0 1.380384+0 3.158481+0 1.396368+0 3.091779+0 1.412538+0 3.026776+0 1.428894+0 2.963144+0 1.445440+0 2.900848+0 1.462177+0 2.839864+0 1.479108+0 2.780176+0 1.496236+0 2.721784+0 1.513561+0 2.666348+0 1.531087+0 2.612039+0 1.548817+0 2.558834+0 1.566751+0 2.506716+0 1.584893+0 2.455835+0 1.621810+0 2.357153+0 1.640590+0 2.309317+0 1.659587+0 2.262462+0 1.678804+0 2.216591+0 1.698244+0 2.171679+0 1.717908+0 2.128859+0 1.737801+0 2.086886+0 1.778279+0 2.005444+0 1.798871+0 1.966044+0 1.819701+0 1.927419+0 1.840772+0 1.889555+0 1.862087+0 1.852435+0 1.883649+0 1.816058+0 1.905461+0 1.780394+0 1.927525+0 1.745455+0 1.949845+0 1.711226+0 1.972423+0 1.678516+0 1.995262+0 1.646436+0 2.044000+0 1.581196+0 2.065380+0 1.553961+0 2.089296+0 1.524373+0 2.113489+0 1.495349+0 2.137962+0 1.466884+0 2.162719+0 1.438967+0 2.187762+0 1.411603+0 2.213095+0 1.384779+0 2.238721+0 1.359216+0 2.264644+0 1.334127+0 2.317395+0 1.285352+0 2.344229+0 1.261719+0 2.371374+0 1.238519+0 2.398833+0 1.215748+0 2.426610+0 1.193399+0 2.454709+0 1.171467+0 2.483133+0 1.149953+0 2.511886+0 1.128852+0 2.540973+0 1.108718+0 2.570396+0 1.088946+0 2.630268+0 1.050472+0 2.660725+0 1.031810+0 2.691535+0 1.013479+0 2.722701+0 9.954735-1 2.754229+0 9.777886-1 2.786121+0 9.604217-1 2.818383+0 9.433669-1 2.851018+0 9.266274-1 2.884032+0 9.101962-1 2.917427+0 8.944886-1 2.951209+0 8.790538-1 3.019952+0 8.489914-1 3.090295+0 8.200478-1 3.126079+0 8.059480-1 3.162278+0 7.920904-1 3.198895+0 7.784721-1 3.235937+0 7.650901-1 3.273407+0 7.519414-1 3.311311+0 7.390280-1 3.349654+0 7.263456-1 3.388442+0 7.142204-1 3.427678+0 7.022995-1 3.507519+0 6.790619-1 3.589219+0 6.566674-1 3.630781+0 6.457484-1 3.672823+0 6.350112-1 3.715352+0 6.244531-1 3.758374+0 6.140723-1 3.801894+0 6.038665-1 3.845918+0 5.938378-1 3.890451+0 5.839831-1 3.935501+0 5.745577-1 4.000000+0 5.615093-1 4.073803+0 5.471947-1 4.168694+0 5.297414-1 4.216965+0 5.212247-1 4.265795+0 5.128449-1 4.315191+0 5.045997-1 4.365158+0 4.964876-1 4.415704+0 4.885074-1 4.466836+0 4.806572-1 4.518559+0 4.729389-1 4.570882+0 4.653499-1 4.623810+0 4.580869-1 4.677351+0 4.509382-1 4.786301+0 4.369798-1 4.897788+0 4.234988-1 4.954502+0 4.169150-1 5.011872+0 4.104337-1 5.069907+0 4.040530-1 5.128614+0 3.977719-1 5.188000+0 3.915896-1 5.248075+0 3.855046-1 5.308844+0 3.795185-1 5.370318+0 3.736295-1 5.432503+0 3.679865-1 5.495409+0 3.624293-1 5.623413+0 3.515704-1 5.688529+0 3.462636-1 5.821032+0 3.359219-1 5.888437+0 3.308675-1 5.956621+0 3.258892-1 6.025596+0 3.209858-1 6.095369+0 3.161564-1 6.165950+0 3.114004-1 6.237348+0 3.067170-1 6.382635+0 2.975666-1 6.456542+0 2.930974-1 6.531306+0 2.888105-1 6.606934+0 2.845869-1 6.760830+0 2.763276-1 6.839116+0 2.722884-1 7.000000+0 2.643349-1 7.079458+0 2.605581-1 7.161434+0 2.567615-1 7.244360+0 2.530201-1 7.328245+0 2.493335-1 7.413102+0 2.457012-1 7.498942+0 2.421226-1 7.673615+0 2.351260-1 7.762471+0 2.317064-1 7.852356+0 2.284279-1 7.943282+0 2.251962-1 8.128305+0 2.188723-1 8.222427+0 2.157772-1 8.413951+0 2.097372-1 8.511380+0 2.067809-1 8.609938+0 2.038663-1 8.709636+0 2.009927-1 8.810489+0 1.981602-1 8.912509+0 1.953677-1 9.015711+0 1.926150-1 9.332543+0 1.845924-1 9.440609+0 1.819947-1 9.660509+0 1.770154-1 9.772372+0 1.745773-1 1.011579+1 1.674652-1 1.023293+1 1.651594-1 1.071519+1 1.562725-1 1.083927+1 1.541264-1 1.100000+1 1.514256-1 1.109175+1 1.499224-1 1.122018+1 1.478642-1 1.135011+1 1.458345-1 1.148154+1 1.438342-1 1.161449+1 1.418628-1 1.174898+1 1.399702-1 1.216186+1 1.344458-1 1.230269+1 1.326531-1 1.318257+1 1.224154-1 1.333521+1 1.207878-1 1.348963+1 1.191816-1 1.364583+1 1.175969-1 1.380384+1 1.160334-1 1.462177+1 1.085231-1 1.479108+1 1.070804-1 1.500000+1 1.053499-1 1.513561+1 1.042550-1 1.531087+1 1.028711-1 1.548817+1 1.015418-1 1.566751+1 1.002299-1 1.584893+1 9.893863-2 1.600000+1 9.788718-2 1.603245+1 9.766410-2 1.905461+1 8.040634-2 1.949845+1 7.834856-2 1.995262+1 7.634457-2 2.000000+1 7.614119-2 2.018366+1 7.536243-2 2.041738+1 7.441280-2 2.065380+1 7.347753-2 2.089296+1 7.255434-2 2.540973+1 5.852119-2 2.600000+1 5.706373-2 2.660725+1 5.563572-2 2.691535+1 5.493735-2 2.722701+1 5.424778-2 2.754229+1 5.357960-2 2.786121+1 5.291967-2 2.800000+1 5.263803-2 2.818383+1 5.226941-2 2.851018+1 5.162737-2 3.427678+1 4.236395-2 3.548134+1 4.082191-2 3.630781+1 3.982562-2 3.715352+1 3.885409-2 3.758374+1 3.837725-2 3.845918+1 3.745599-2 3.890451+1 3.700370-2 3.935501+1 3.655773-2 3.981072+1 3.611722-2 4.000000+1 3.593730-2 4.027170+1 3.568206-2 5.069907+1 2.800008-2 5.248075+1 2.700011-2 5.370318+1 2.635366-2 5.495409+1 2.572293-2 5.559043+1 2.541326-2 5.688529+1 2.481418-2 5.754399+1 2.451996-2 5.821032+1 2.422979-2 5.888437+1 2.394308-2 5.956621+1 2.365978-2 7.852356+1 1.778059-2 8.317638+1 1.675326-2 8.609938+1 1.616575-2 8.912509+1 1.559900-2 9.015711+1 1.541454-2 9.332543+1 1.487985-2 9.440609+1 1.470577-2 9.549926+1 1.453393-2 9.660509+1 1.436413-2 9.772372+1 1.419632-2 9.885531+1 1.403047-2 1.000000+2 1.386656-2 1.500000+2 9.167166-3 1.584893+2 8.666264-3 1.640590+2 8.366141-3 1.698244+2 8.076480-3 1.717908+2 7.982177-3 1.778279+2 7.708131-3 1.798871+2 7.618887-3 1.819701+2 7.530765-3 1.840772+2 7.443670-3 1.862087+2 7.357587-3 1.905461+2 7.188397-3 2.985383+2 4.566878-3 3.162278+2 4.308850-3 3.273407+2 4.161107-3 3.388442+2 4.018449-3 3.427678+2 3.971993-3 3.548134+2 3.836530-3 3.589219+2 3.792410-3 3.630781+2 3.748823-3 3.672823+2 3.705740-3 3.715352+2 3.663153-3 3.801894+2 3.579443-3 5.956621+2 2.280573-3 1.258925+3 1.075866-3 1.303167+3 1.039202-3 1.348963+3 1.003791-3 1.364583+3 9.922572-4 1.412538+3 9.585411-4 1.428894+3 9.475593-4 1.445440+3 9.367065-4 1.462177+3 9.259787-4 1.479108+3 9.153737-4 1.513561+3 8.945267-4 4.731513+3 2.859835-4 1.000000+5 1.351034-5 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.300000-6 4.300000-6 5.460000-6 4.300000-6 5.460000-6 4.829769-6 7.413102-6 4.874584-6 1.035142-5 4.910248-6 1.236000-5 4.924667-6 1.236000-5 9.777469-6 1.428894-5 9.246333-6 1.603245-5 8.811008-6 1.798871-5 8.382262-6 2.001000-5 8.001897-6 2.001000-5 1.755803-5 2.162719-5 1.806690-5 2.240000-5 1.833424-5 2.240000-5 1.949714-5 2.520000-5 2.000951-5 2.754229-5 2.031033-5 3.090295-5 2.056025-5 3.770000-5 2.083023-5 4.500000-5 2.096870-5 6.683439-5 2.102126-5 7.796000-5 2.101664-5 7.796000-5 2.389368-5 8.035261-5 2.436704-5 8.330000-5 2.477268-5 8.730000-5 2.512622-5 9.440609-5 2.549738-5 9.903000-5 2.568257-5 9.903000-5 2.840000-5 1.012000-4 2.913205-5 1.032000-4 2.965093-5 1.059254-4 3.016680-5 1.100000-4 3.069114-5 1.161449-4 3.118353-5 1.281600-4 3.190013-5 1.281600-4 3.302307-5 1.310000-4 3.383659-5 1.329500-4 3.428619-5 1.329500-4 3.511791-5 1.353000-4 3.595543-5 1.382000-4 3.673812-5 1.391600-4 3.694932-5 1.391600-4 3.790084-5 1.450000-4 3.883499-5 1.600000-4 4.084025-5 1.720000-4 4.281906-5 1.840772-4 4.480551-5 1.930000-4 4.600466-5 2.020000-4 4.693209-5 2.137962-4 4.777528-5 2.280000-4 4.838914-5 2.483133-4 4.884475-5 2.851018-4 4.917475-5 3.600000-4 4.928932-5 3.851300-4 4.927939-5 3.851300-4 5.028852-5 4.063500-4 5.065565-5 4.063500-4 5.166250-5 4.188000-4 5.180488-5 4.550000-4 5.282197-5 6.003200-4 5.614614-5 6.003200-4 5.986308-5 6.918310-4 6.220688-5 7.139700-4 6.269675-5 7.139700-4 6.367997-5 8.314300-4 6.632127-5 8.314300-4 6.809948-5 9.772372-4 7.122762-5 1.150000-3 7.439107-5 1.364583-3 7.765177-5 1.584893-3 8.044804-5 1.883649-3 8.356407-5 2.238721-3 8.654904-5 2.393900-3 8.766834-5 2.393900-3 1.256546-4 2.493700-3 1.267031-4 2.493700-3 1.330224-4 2.650000-3 1.350495-4 2.770000-3 1.357157-4 2.944600-3 1.357496-4 2.944600-3 1.453074-4 3.409700-3 1.466000-4 3.409700-3 1.515496-4 3.678700-3 1.527562-4 3.678700-3 1.574434-4 4.731513-3 1.625591-4 6.237348-3 1.683513-4 8.035261-3 1.737222-4 1.023293-2 1.787888-4 1.266000-2 1.831346-4 1.266000-2 2.315307-4 1.474600-2 2.324855-4 1.474600-2 2.427963-4 1.533000-2 2.430826-4 1.533000-2 2.608545-4 2.089296-2 2.670482-4 2.851018-2 2.731921-4 3.981072-2 2.799239-4 5.432503-2 2.859856-4 7.413102-2 2.917916-4 8.579800-2 2.943541-4 8.579800-2 2.686474-4 2.187762-1 2.704103-4 6.165950-1 2.714500-4 1.000000+5 2.715887-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.300000-6 0.0 7.796000-5 0.0 7.796000-5 8.25139-11 7.852356-5 8.61306-11 7.920000-5 9.01445-11 8.000000-5 9.44688-11 8.080000-5 9.83130-11 8.150000-5 1.01343-10 8.230000-5 1.04447-10 8.330000-5 1.07876-10 8.450000-5 1.11541-10 8.570000-5 1.14671-10 8.730000-5 1.18169-10 8.912509-5 1.21555-10 9.150000-5 1.25278-10 9.549926-5 1.30499-10 9.903000-5 1.34759-10 9.903000-5 3.48355-10 9.965000-5 3.65265-10 1.002000-4 3.79236-10 1.007000-4 3.91193-10 1.012000-4 4.02281-10 1.018000-4 4.14676-10 1.025000-4 4.27913-10 1.032000-4 4.39838-10 1.040000-4 4.52069-10 1.047129-4 4.61880-10 1.059254-4 4.76222-10 1.071519-4 4.88576-10 1.085000-4 5.00303-10 1.100000-4 5.10872-10 1.115000-4 5.19546-10 1.140000-4 5.30655-10 1.161449-4 5.38603-10 1.190000-4 5.47361-10 1.281600-4 5.69144-10 1.281600-4 9.79844-10 1.282200-4 9.87072-10 1.289000-4 1.052914-9 1.296000-4 1.115785-9 1.305000-4 1.190278-9 1.316000-4 1.272055-9 1.328000-4 1.351471-9 1.329500-4 1.360390-9 1.329500-4 1.318515-9 1.340000-4 1.365777-9 1.353000-4 1.415328-9 1.364583-4 1.453747-9 1.380384-4 1.499288-9 1.391600-4 1.526668-9 1.391600-4 1.513321-9 1.414000-4 1.559490-9 1.462177-4 1.642274-9 1.500000-4 1.703947-9 1.540000-4 1.779450-9 1.560000-4 1.823690-9 1.584893-4 1.887185-9 1.603245-4 1.937928-9 1.627000-4 2.012044-9 1.660000-4 2.125527-9 1.705000-4 2.297691-9 1.820000-4 2.767785-9 1.865000-4 2.940628-9 1.905461-4 3.082533-9 1.950000-4 3.224231-9 2.000000-4 3.364002-9 2.051300-4 3.483048-9 2.113489-4 3.596105-9 2.162719-4 3.665765-9 2.220000-4 3.728550-9 2.300000-4 3.791791-9 2.400000-4 3.843111-9 2.520000-4 3.880557-9 2.691535-4 3.906925-9 2.951209-4 3.918383-9 3.715352-4 3.899057-9 3.851300-4 3.893002-9 3.851300-4 3.983486-9 4.027170-4 4.001351-9 4.063500-4 4.007459-9 4.063500-4 5.382902-9 4.084000-4 5.306786-9 4.100000-4 5.266794-9 4.130000-4 5.222741-9 4.158000-4 5.210237-9 4.188000-4 5.225248-9 4.225000-4 5.278951-9 4.350000-4 5.529506-9 4.530000-4 5.828442-9 4.680000-4 6.039348-9 4.954502-4 6.410004-9 5.450000-4 7.132376-9 6.003200-4 7.915770-9 6.003200-4 1.172212-8 6.760830-4 1.321180-8 7.139700-4 1.383989-8 7.139700-4 1.529236-8 8.000000-4 1.692320-8 8.314300-4 1.748471-8 8.314300-4 1.968880-8 9.015711-4 2.108616-8 9.772372-4 2.250727-8 1.083927-3 2.437105-8 1.190000-3 2.609243-8 1.333521-3 2.820149-8 1.500000-3 3.040911-8 1.678804-3 3.252619-8 1.883649-3 3.470139-8 2.150000-3 3.720460-8 2.393900-3 3.923196-8 2.393900-3 4.141812-8 2.493700-3 4.176064-8 2.493700-3 1.711376-5 2.517000-3 1.740504-5 2.517400-3 1.745382-5 2.585000-3 1.879788-5 2.630268-3 1.954325-5 2.670000-3 2.041309-5 2.700000-3 2.093629-5 2.740000-3 2.156456-5 2.770000-3 2.170845-5 2.851018-3 2.173781-5 2.944600-3 2.169583-5 2.944600-3 2.116911-5 3.409700-3 2.094475-5 3.409700-3 2.310691-5 3.507519-3 2.318393-5 3.678700-3 2.322820-5 3.678700-3 2.350578-5 4.365158-3 2.376482-5 5.688529-3 2.410913-5 8.035261-3 2.455124-5 1.122018-2 2.495210-5 1.266000-2 2.508913-5 1.266000-2 2.205819-3 1.274300-2 2.211507-3 1.290000-2 2.206625-3 1.474600-2 2.194956-3 1.474600-2 3.116636-3 1.533000-2 3.126345-3 1.533000-2 3.256444-3 1.972423-2 3.291211-3 2.917427-2 3.317635-3 4.677351-2 3.328439-3 8.579800-2 3.323868-3 8.579800-2 6.058162-2 1.011580-1 6.104049-2 1.303167-1 6.157469-2 1.883649-1 6.206122-2 3.311311-1 6.246743-2 8.413951-1 6.306235-2 1.462177+0 6.313176-2 1.000000+5 6.312953-2 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.300000-6 0.0 5.460000-6 1.160000-6 5.460000-6 6.302306-7 6.200000-6 1.349992-6 7.413102-6 2.538518-6 1.035142-5 5.441172-6 1.236000-5 7.435333-6 1.236000-5 2.582531-6 1.350000-5 4.041835-6 1.428894-5 5.042607-6 1.603245-5 7.221442-6 1.798871-5 9.606448-6 2.001000-5 1.200810-5 2.001000-5 2.451965-6 2.030000-5 2.661736-6 2.065380-5 2.909561-6 2.130000-5 3.345020-6 2.240000-5 4.065765-6 2.240000-5 2.902864-6 2.426610-5 4.413778-6 2.520000-5 5.190494-6 2.630268-5 6.134220-6 2.754229-5 7.231957-6 2.917427-5 8.723713-6 3.198895-5 1.137257-5 3.770000-5 1.686977-5 4.500000-5 2.403130-5 7.796000-5 5.694336-5 7.796000-5 5.406623-5 8.150000-5 5.695303-5 8.730000-5 6.217366-5 9.903000-5 7.334729-5 9.903000-5 7.062965-5 1.025000-4 7.301448-5 1.075000-4 7.710274-5 1.161449-4 8.496083-5 1.281600-4 9.625929-5 1.281600-4 9.513595-5 1.329500-4 9.866244-5 1.329500-4 9.783077-5 1.375000-4 1.009288-4 1.391600-4 1.022091-4 1.391600-4 1.012576-4 1.531087-4 1.132211-4 1.705000-4 1.279398-4 1.905461-4 1.448396-4 2.100000-4 1.624514-4 2.400000-4 1.912989-4 3.430000-4 2.937067-4 3.851300-4 3.358467-4 3.851300-4 3.348375-4 4.063500-4 3.556903-4 4.063500-4 3.546821-4 6.003200-4 5.441659-4 6.003200-4 5.404452-4 7.139700-4 6.512594-4 7.139700-4 6.502747-4 8.314300-4 7.650912-4 8.314300-4 7.633108-4 1.570000-3 1.489695-3 2.393900-3 2.306192-3 2.393900-3 2.268204-3 2.493700-3 2.366955-3 2.493700-3 2.343564-3 2.884032-3 2.726562-3 2.944600-3 2.787155-3 2.944600-3 2.778123-3 3.409700-3 3.242155-3 3.409700-3 3.235043-3 3.678700-3 3.502716-3 3.678700-3 3.497751-3 1.266000-2 1.245178-2 1.266000-2 1.022265-2 1.474600-2 1.231856-2 1.474600-2 1.138657-2 1.533000-2 1.196057-2 1.533000-2 1.181270-2 2.884032-2 2.524977-2 8.579800-2 8.217978-2 8.579800-2 2.494774-2 9.015711-2 2.913997-2 1.000000-1 3.871273-2 1.288250-1 6.699985-2 2.065380-1 1.441245-1 1.927525+0 1.864127+0 1.000000+5 9.999993+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.579800-2 2.028862+3 8.830000-2 1.887214+3 8.950000-2 1.829712+3 9.150000-2 1.724402+3 9.549926-2 1.553492+3 1.047129-1 1.223259+3 1.190000-1 8.828020+2 1.548817-1 4.424943+2 2.317395-1 1.528959+2 2.818383-1 9.179350+1 3.273407-1 6.255504+1 3.801894-1 4.293739+1 4.365158-1 3.056689+1 4.954502-1 2.256306+1 5.623413-1 1.678465+1 6.309573-1 1.291669+1 7.079458-1 1.001948+1 8.035261-1 7.637210+0 9.225714-1 5.725217+0 1.022000+0 4.653966+0 1.174898+0 3.537898+0 1.318257+0 2.838858+0 1.496236+0 2.245604+0 1.698244+0 1.791715+0 1.949845+0 1.411860+0 2.213095+0 1.142505+0 2.511886+0 9.313556-1 2.884032+0 7.509568-1 3.349654+0 5.992683-1 3.890451+0 4.818153-1 4.570882+0 3.839370-1 5.370318+0 3.082606-1 6.456542+0 2.418182-1 7.762471+0 1.911678-1 9.440609+0 1.501541-1 1.161449+1 1.170449-1 1.531087+1 8.487588-2 2.018366+1 6.218250-2 2.722701+1 4.475984-2 3.758374+1 3.166480-2 5.559043+1 2.096842-2 9.015711+1 1.271842-2 1.717908+2 6.586132-3 3.427678+2 3.277375-3 1.364583+3 8.187414-4 1.000000+5 1.114800-5 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.579800-2 2.618100-4 1.000000+5 2.618100-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.579800-2 7.581100-2 1.000000+5 7.581100-2 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.579800-2 9.725190-3 1.000000+5 9.999992+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.533000-2 7.311979+3 1.610000-2 6.746920+3 1.647000-2 6.472660+3 1.717908-2 6.044287+3 1.883649-2 5.115826+3 2.018366-2 4.533872+3 2.162719-2 3.991073+3 2.454709-2 3.136827+3 3.090295-2 1.984120+3 3.507519-2 1.525016+3 3.981072-2 1.167644+3 4.800000-2 7.763980+2 5.623413-2 5.439898+2 6.382635-2 4.068169+2 7.413102-2 2.867344+2 8.709636-2 1.952505+2 1.035142-1 1.283804+2 1.244515-1 8.148966+1 1.603245-1 4.323769+1 2.570396-1 1.315282+1 3.198895-1 7.628391+0 3.801894-1 4.997145+0 4.415705-1 3.487667+0 5.069907-1 2.521868+0 5.821032-1 1.837247+0 6.606935-1 1.384058+0 7.498942-1 1.050160+0 8.413951-1 8.226523-1 9.440609-1 6.489693-1 1.071519+0 5.040395-1 1.230269+0 3.850978-1 1.396368+0 3.032511-1 1.566751+0 2.457833-1 1.778279+0 1.966368-1 2.044000+0 1.550499-1 2.317395+0 1.260476-1 2.630268+0 1.030118-1 3.019952+0 8.325903-2 3.507519+0 6.659272-2 4.073803+0 5.366062-2 4.786301+0 4.285451-2 5.688529+0 3.395474-2 6.839116+0 2.670159-2 8.222427+0 2.115958-2 1.023293+1 1.619629-2 1.230269+1 1.300882-2 1.566751+1 9.834318-3 2.041738+1 7.301500-3 2.786121+1 5.191826-3 3.890451+1 3.630309-3 5.754399+1 2.405598-3 9.440609+1 1.442873-3 1.798871+2 7.475521-4 3.589219+2 3.721146-4 1.428894+3 9.298298-5 1.000000+5 1.325800-6 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.533000-2 3.749800-4 1.000000+5 3.749800-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.533000-2 4.091900-3 1.000000+5 4.091900-3 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.533000-2 1.086312-2 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.474600-2 1.460000+4 1.487000-2 1.439436+4 1.548817-2 1.307900+4 1.698244-2 1.034900+4 1.972423-2 7.034500+3 2.187762-2 5.337700+3 2.786121-2 2.766100+3 3.235937-2 1.819900+3 3.650000-2 1.296100+3 4.518559-2 7.023900+2 5.623413-2 3.711500+2 7.000000-2 1.944700+2 9.440609-2 7.980700+1 1.479108-1 2.088631+1 1.862087-1 1.057434+1 2.264644-1 5.972632+0 2.660725-1 3.758079+0 3.090295-1 2.462203+0 3.548134-1 1.678817+0 4.027170-1 1.190191+0 4.570882-1 8.501768-1 5.128614-1 6.306812-1 5.754399-1 4.713376-1 6.382635-1 3.651378-1 7.079458-1 2.851347-1 7.943282-1 2.183156-1 9.120108-1 1.599204-1 9.772372-1 1.374135-1 1.047129+0 1.189884-1 1.148154+0 9.893791-2 1.258925+0 8.286568-2 1.396368+0 6.845106-2 1.678804+0 4.927227-2 1.927525+0 3.878486-2 2.187762+0 3.136768-2 2.483133+0 2.555750-2 2.851018+0 2.059703-2 3.311311+0 1.642790-2 3.845918+0 1.320050-2 4.518559+0 1.051305-2 5.308844+0 8.436463-3 6.382635+0 6.614721-3 7.673615+0 5.226699-3 9.332543+0 4.103484-3 1.148154+1 3.197533-3 1.500000+1 2.341500-3 1.995262+1 1.697372-3 2.660725+1 1.236871-3 3.630781+1 8.852360-4 5.370318+1 5.858126-4 8.609938+1 3.593607-4 1.640590+2 1.859816-4 3.273407+2 9.251593-5 1.303167+3 2.310527-5 1.000000+5 3.004100-7 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.474600-2 2.691400-4 1.000000+5 2.691400-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.474600-2 5.471500-3 1.000000+5 5.471500-3 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.474600-2 9.005360-3 1.000000+5 9.999999+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.266000-2 3.384603+4 1.274300-2 3.348963+4 1.290000-2 3.224704+4 1.318257-2 3.047592+4 1.445440-2 2.367927+4 1.698244-2 1.511701+4 1.900000-2 1.097168+4 2.426610-2 5.379168+3 3.090295-2 2.607423+3 3.845918-2 1.334911+3 4.731513-2 7.002641+2 5.821032-2 3.640153+2 7.328245-2 1.744684+2 1.000000-1 6.403120+1 1.445440-1 1.946499+1 1.819701-1 9.300667+0 2.162719-1 5.383493+0 2.511886-1 3.376049+0 2.884032-1 2.210447+0 3.273407-1 1.510258+0 3.672823-1 1.075668+0 4.120975-1 7.718984-1 4.570882-1 5.765472-1 5.069907-1 4.336486-1 5.623413-1 3.286573-1 6.237348-1 2.509645-1 6.918310-1 1.931217-1 7.673615-1 1.497851-1 8.511380-1 1.171010-1 9.440609-1 9.213226-2 1.000000+0 8.114203-2 1.071519+0 7.021481-2 1.161449+0 5.977230-2 1.258925+0 5.124249-2 1.396368+0 4.238632-2 1.737801+0 2.875486-2 1.995262+0 2.267059-2 2.264644+0 1.837014-2 2.570396+0 1.499441-2 2.951209+0 1.210507-2 3.427678+0 9.670653-3 4.000000+0 7.731400-3 4.677351+0 6.209556-3 5.495409+0 4.990739-3 6.606934+0 3.918868-3 7.943282+0 3.101037-3 9.772372+0 2.403979-3 1.174898+1 1.927877-3 1.531087+1 1.417123-3 2.018366+1 1.038191-3 2.722701+1 7.473173-4 3.758374+1 5.286811-4 5.559043+1 3.500914-4 9.015711+1 2.123530-4 1.717908+2 1.099642-4 3.427678+2 5.471872-5 1.364583+3 1.366919-5 1.000000+5 1.861200-7 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.266000-2 2.633300-4 1.000000+5 2.633300-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.266000-2 3.638700-3 1.000000+5 3.638700-3 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.266000-2 8.757970-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.678700-3 2.033724+4 3.981072-3 1.857633+4 4.230000-3 1.708622+4 4.580000-3 1.537530+4 4.841724-3 1.417430+4 6.165950-3 9.847461+3 6.606934-3 8.809373+3 8.035261-3 6.365848+3 8.912509-3 5.316754+3 1.047129-2 3.993029+3 1.244515-2 2.903274+3 1.400000-2 2.322920+3 1.640590-2 1.708661+3 1.972423-2 1.183883+3 2.344229-2 8.315862+2 2.800000-2 5.730200+2 3.311311-2 3.998612+2 3.890451-2 2.808860+2 4.570882-2 1.958986+2 5.432503-2 1.321276+2 6.456542-2 8.840624+1 7.673615-2 5.871683+1 9.015711-2 3.982294+1 1.109175-1 2.395638+1 1.428894-1 1.276272+1 2.818383-1 2.321595+0 3.427678-1 1.431690+0 4.027170-1 9.682297-1 4.677351-1 6.782432-1 5.308844-1 5.051719-1 6.025596-1 3.787705-1 6.839117-1 2.860492-1 7.762471-1 2.176010-1 8.810489-1 1.666780-1 9.885531-1 1.317820-1 1.148154+0 9.805855-2 1.303167+0 7.688943-2 1.479108+0 6.076589-2 1.659587+0 4.943510-2 1.905461+0 3.890518-2 2.162719+0 3.144523-2 2.454709+0 2.560088-2 2.818383+0 2.061553-2 3.273407+0 1.643198-2 3.801894+0 1.319620-2 4.466836+0 1.050391-2 5.248075+0 8.424864-3 6.237348+0 6.702074-3 7.498942+0 5.290666-3 9.015711+0 4.208705-3 1.135011+1 3.187169-3 1.479108+1 2.339970-3 1.949845+1 1.712362-3 2.600000+1 1.247200-3 3.548134+1 8.921074-4 5.248075+1 5.900444-4 8.317638+1 3.661271-4 1.584893+2 1.893998-4 3.162278+2 9.419095-5 1.258925+3 2.351954-5 1.000000+5 2.953900-7 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.678700-3 2.675900-4 1.000000+5 2.675900-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.678700-3 3.002900-5 1.000000+5 3.002900-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.678700-3 3.381081-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.409700-3 3.268232+4 3.484000-3 3.250681+4 3.850000-3 2.892120+4 4.080000-3 2.691360+4 4.350000-3 2.465640+4 4.897788-3 2.072606+4 5.248075-3 1.865937+4 5.559043-3 1.703337+4 5.956621-3 1.519038+4 7.161434-3 1.095330+4 7.673615-3 9.626732+3 8.912509-3 7.186898+3 9.660509-3 6.107063+3 1.109175-2 4.570918+3 1.216186-2 3.747168+3 1.412538-2 2.684352+3 1.584893-2 2.059350+3 1.778279-2 1.570774+3 2.065380-2 1.093730+3 2.371374-2 7.760860+2 2.691535-2 5.627489+2 3.054921-2 4.055540+2 3.507519-2 2.818214+2 4.073803-2 1.886022+2 4.800000-2 1.204698+2 5.688529-2 7.515674+1 6.839116-2 4.469967+1 8.511380-2 2.391994+1 1.109175-1 1.113075+1 1.737801-1 3.027174+0 2.187762-1 1.562659+0 2.630268-1 9.272945-1 3.090295-1 5.917402-1 3.548134-1 4.053914-1 4.027170-1 2.884949-1 4.570882-1 2.067711-1 5.128614-1 1.537883-1 5.754399-1 1.151857-1 6.382635-1 8.938717-2 7.079458-1 6.982385-2 7.852356-1 5.491186-2 8.709636-1 4.341438-2 9.440609-1 3.639327-2 1.023293+0 3.073098-2 1.122018+0 2.553360-2 1.244515+0 2.089877-2 1.380384+0 1.723122-2 1.621810+0 1.289283-2 1.862087+0 1.013076-2 2.113489+0 8.177447-3 2.398833+0 6.649337-3 2.754229+0 5.348130-3 3.198895+0 4.258217-3 3.715352+0 3.415831-3 4.365158+0 2.715771-3 5.128614+0 2.175892-3 6.095369+0 1.729352-3 7.328245+0 1.363827-3 8.709636+0 1.099344-3 1.109175+1 8.201063-4 1.364583+1 6.433800-4 1.600000+1 5.357100-4 2.065380+1 4.021274-4 2.818383+1 2.860241-4 3.935501+1 2.000564-4 5.821032+1 1.325930-4 9.660509+1 7.860791-5 1.840772+2 4.073863-5 3.672823+2 2.028227-5 1.462177+3 5.068528-6 1.000000+5 7.395800-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.409700-3 2.333700-4 1.000000+5 2.333700-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.409700-3 5.884900-5 1.000000+5 5.884900-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.409700-3 3.117481-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 2.944600-3 1.063385+5 3.030000-3 1.022465+5 3.507519-3 8.094214+4 3.720000-3 7.330400+4 4.415704-3 5.408109+4 4.731513-3 4.766596+4 5.069907-3 4.183330+4 6.165950-3 2.831465+4 6.683439-3 2.394527+4 7.852356-3 1.692886+4 8.609938-3 1.379009+4 9.885531-3 1.005589+4 1.096478-2 7.877212+3 1.244515-2 5.807114+3 1.428894-2 4.123495+3 1.603245-2 3.078293+3 1.819701-2 2.216763+3 2.089296-2 1.536394+3 2.426610-2 1.023244+3 2.818383-2 6.753225+2 3.300000-2 4.317200+2 3.845918-2 2.772498+2 4.466836-2 1.784479+2 5.248075-2 1.101780+2 6.237348-2 6.518881+1 7.500000-2 3.693860+1 9.332543-2 1.868080+1 1.778279-1 2.454244+0 2.187762-1 1.287536+0 2.570396-1 7.851110-1 2.951209-1 5.173919-1 3.349654-1 3.554611-1 3.758374-1 2.543614-1 4.216965-1 1.833197-1 4.677351-1 1.374322-1 5.188000-1 1.037285-1 5.754399-1 7.885265-2 6.309573-1 6.219926-2 6.998420-1 4.798384-2 7.762471-1 3.729127-2 8.709636-1 2.829182-2 9.332543-1 2.412414-2 9.885531-1 2.125137-2 1.071519+0 1.796551-2 1.161449+0 1.529555-2 1.258925+0 1.310477-2 1.396368+0 1.083506-2 1.717908+0 7.496838-3 1.972423+0 5.907229-3 2.238721+0 4.783509-3 2.540973+0 3.901935-3 2.917427+0 3.147992-3 3.388442+0 2.513551-3 3.935501+0 2.022073-3 4.623810+0 1.612194-3 5.432503+0 1.295042-3 6.531306+0 1.016416-3 7.852356+0 8.039195-4 9.660509+0 6.229426-4 1.174898+1 4.926453-4 1.548817+1 3.574138-4 2.041738+1 2.619260-4 2.786121+1 1.862512-4 3.890451+1 1.302281-4 5.754399+1 8.629696-5 9.549926+1 5.115144-5 1.819701+2 2.650625-5 3.630781+2 1.319454-5 1.445440+3 3.297347-6 1.000000+5 4.756100-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 2.944600-3 2.051000-4 1.000000+5 2.051000-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.944600-3 1.787400-5 1.000000+5 1.787400-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 2.944600-3 2.721626-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.493700-3 2.104397+5 2.517000-3 2.123124+5 2.517400-3 2.130553+5 2.585000-3 2.265947+5 2.670000-3 2.389554+5 2.700000-3 2.410796+5 2.740000-3 2.426018+5 2.754229-3 2.408932+5 2.770000-3 2.383627+5 2.839300-3 2.245797+5 3.090295-3 1.803909+5 3.467369-3 1.327390+5 3.845918-3 9.992617+4 4.265795-3 7.465156+4 4.731513-3 5.536017+4 5.248075-3 4.082360+4 6.309573-3 2.335370+4 6.918310-3 1.754760+4 8.128305-3 1.054511+4 9.332543-3 6.741519+3 1.035142-2 4.796970+3 1.202264-2 2.907863+3 1.380384-2 1.815877+3 1.548817-2 1.219543+3 1.778279-2 7.513656+2 2.065380-2 4.411146+2 2.400000-2 2.565692+2 2.818383-2 1.425403+2 3.311311-2 7.848337+1 3.981072-2 3.937300+1 4.897788-2 1.797074+1 6.382635-2 6.538023+0 1.071519-1 8.981265-1 1.333521-1 3.910741-1 1.621810-1 1.872500-1 1.883649-1 1.073382-1 2.162719-1 6.469569-2 2.454709-1 4.098009-2 2.754229-1 2.725165-2 3.162278-1 1.683268-2 3.548134-1 1.135055-2 3.935501-1 8.015874-3 4.365158-1 5.700971-3 4.841724-1 4.084785-3 5.370318-1 2.949025-3 5.888437-1 2.223618-3 6.382635-1 1.750052-3 6.998420-1 1.341505-3 7.673615-1 1.035716-3 8.035261-1 9.117369-4 8.609938-1 7.501449-4 9.120108-1 6.416001-4 9.549926-1 5.693715-4 1.000000+0 5.083884-4 1.047129+0 4.571884-4 1.096478+0 4.140008-4 1.161449+0 3.687083-4 1.230269+0 3.307474-4 1.333521+0 2.860721-4 1.479108+0 2.394247-4 1.883649+0 1.567247-4 2.113489+0 1.289728-4 2.398833+0 1.048666-4 2.754229+0 8.433329-5 3.198895+0 6.713904-5 3.715352+0 5.385686-5 4.315191+0 4.351586-5 5.069907+0 3.484710-5 6.025596+0 2.768080-5 7.244360+0 2.181972-5 8.709636+0 1.733366-5 1.109175+1 1.293049-5 1.364583+1 1.014429-5 1.600000+1 8.446700-6 2.065380+1 6.340377-6 2.818383+1 4.509710-6 3.981072+1 3.116023-6 5.821032+1 2.090625-6 9.772372+1 1.224869-6 1.840772+2 6.423333-7 3.672823+2 3.197894-7 1.462177+3 7.991688-8 1.000000+5 1.166100-9 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.493700-3 1.527900-4 1.000000+5 1.527900-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.493700-3 7.051700-5 1.000000+5 7.051700-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.493700-3 2.270393-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.393900-3 4.202053+5 2.630268-3 3.840024+5 2.722701-3 3.521077+5 3.000000-3 2.727552+5 3.349654-3 2.022967+5 3.715352-3 1.515828+5 4.150000-3 1.104780+5 4.518559-3 8.608127+4 5.069907-3 6.113661+4 5.888437-3 3.860180+4 6.456542-3 2.897684+4 7.585776-3 1.731262+4 8.413951-3 1.235360+4 9.660509-3 7.815763+3 1.096478-2 5.095027+3 1.230269-2 3.431943+3 1.400000-2 2.187132+3 1.603245-2 1.353040+3 1.862087-2 7.894128+2 2.162719-2 4.566810+2 2.511886-2 2.621154+2 2.951209-2 1.429621+2 3.467369-2 7.737266+1 4.168694-2 3.804263+1 5.069907-2 1.775447+1 6.683439-2 5.988707+0 1.047129-1 1.019618+0 1.288250-1 4.531709-1 1.531088-1 2.322279-1 1.757924-1 1.368689-1 2.000000-1 8.414202-2 2.238721-1 5.541245-2 2.511886-1 3.644563-2 2.786121-1 2.517301-2 3.090295-1 1.751099-2 3.427678-1 1.227370-2 3.758374-1 9.012314-3 4.120975-1 6.664839-3 4.518559-1 4.966163-3 4.954502-1 3.729094-3 5.370318-1 2.921886-3 5.888437-1 2.227592-3 6.456542-1 1.710625-3 6.998420-1 1.366596-3 7.585776-1 1.099081-3 8.511380-1 8.126001-4 9.015711-1 7.029708-4 9.549926-1 6.122756-4 1.000000+0 5.513682-4 1.059254+0 4.871825-4 1.135011+0 4.232157-4 1.216186+0 3.702459-4 1.333521+0 3.123095-4 1.737801+0 1.954478-4 1.972423+0 1.571016-4 2.238721+0 1.272373-4 2.540973+0 1.037945-4 2.917427+0 8.373869-5 3.388442+0 6.686063-5 3.935501+0 5.378651-5 4.623810+0 4.288509-5 5.432503+0 3.444933-5 6.531306+0 2.703753-5 7.852356+0 2.138440-5 9.660509+0 1.657006-5 1.174898+1 1.310487-5 1.531087+1 9.632553-6 2.018366+1 7.057080-6 2.722701+1 5.079775-6 3.758374+1 3.593598-6 5.559043+1 2.379735-6 9.015711+1 1.443423-6 1.717908+2 7.474588-7 3.427678+2 3.719460-7 1.364583+3 9.291827-8 1.000000+5 1.265100-9 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.393900-3 1.508300-4 1.000000+5 1.508300-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.393900-3 4.286700-8 1.000000+5 4.286700-8 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.393900-3 2.243027-3 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.314300-4 4.679285+4 8.820000-4 4.527140+4 9.120108-4 4.380579+4 9.600000-4 4.218580+4 1.110000-3 3.683460+4 1.190000-3 3.440120+4 1.479108-3 2.676752+4 1.603245-3 2.420535+4 1.905461-3 1.926181+4 2.089296-3 1.695239+4 2.454709-3 1.341813+4 2.754229-3 1.127916+4 3.198895-3 8.935631+3 3.758374-3 6.886557+3 4.315191-3 5.471596+3 5.011872-3 4.237876+3 5.956621-3 3.129431+3 7.079458-3 2.292335+3 8.413951-3 1.666137+3 1.000000-2 1.202412+3 1.188502-2 8.618479+2 1.428894-2 5.996883+2 1.717908-2 4.140000+2 2.041738-2 2.904000+2 2.426610-2 2.022338+2 2.917427-2 1.363722+2 3.467369-2 9.355489+1 4.120975-2 6.371147+1 4.897788-2 4.307003+1 5.821032-2 2.889054+1 7.000000-2 1.871722+1 8.511380-2 1.172270+1 1.035142-1 7.266286+0 1.333521-1 3.878020+0 2.722701-1 6.478504-1 3.311311-1 3.990514-1 3.935501-1 2.621284-1 4.570882-1 1.835025-1 5.248075-1 1.329527-1 6.000000-1 9.798910-2 6.839117-1 7.329822-2 7.762471-1 5.575401-2 8.810489-1 4.270240-2 9.772372-1 3.455248-2 1.135011+0 2.569505-2 1.288250+0 2.013274-2 1.462177+0 1.589980-2 1.640590+0 1.292555-2 1.862087+0 1.036798-2 2.137962+0 8.211359-3 2.426610+0 6.680821-3 2.786121+0 5.376379-3 3.235937+0 4.282900-3 3.758374+0 3.437605-3 4.415704+0 2.734701-3 5.188000+0 2.192257-3 6.165950+0 1.743129-3 7.413102+0 1.375368-3 8.912509+0 1.093609-3 1.122018+1 8.277974-4 1.380384+1 6.496657-4 1.603245+1 5.469307-4 2.065380+1 4.114869-4 2.818383+1 2.926867-4 3.935501+1 2.047165-4 5.754399+1 1.373138-4 9.549926+1 8.139380-5 1.819701+2 4.217654-5 3.630781+2 2.099621-5 1.445440+3 5.246772-6 1.000000+5 7.568000-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.314300-4 1.559100-4 1.000000+5 1.559100-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.314300-4 1.285300-7 1.000000+5 1.285300-7 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.314300-4 6.753915-4 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 7.139700-4 3.981242+4 8.000000-4 3.975266+4 9.225714-4 3.870901+4 9.772372-4 3.799914+4 1.047129-3 3.689529+4 1.135011-3 3.540829+4 1.244515-3 3.347693+4 1.333521-3 3.187326+4 1.428894-3 3.011106+4 1.584893-3 2.739947+4 1.717908-3 2.529464+4 1.862087-3 2.316896+4 2.070000-3 2.048280+4 2.264644-3 1.831853+4 2.511886-3 1.596800+4 2.754229-3 1.405456+4 3.054921-3 1.207746+4 3.400000-3 1.025778+4 3.801894-3 8.579753+3 4.216965-3 7.224623+3 4.731513-3 5.923265+3 5.308844-3 4.821418+3 6.000000-3 3.844220+3 6.800000-3 3.024880+3 7.673615-3 2.382208+3 8.709636-3 1.840928+3 9.885531-3 1.411974+3 1.122018-2 1.075091+3 1.273503-2 8.126919+2 1.445440-2 6.100151+2 1.640590-2 4.547373+2 1.862087-2 3.366739+2 2.142010-2 2.395700+2 2.454709-2 1.707335+2 2.818383-2 1.202678+2 3.235937-2 8.413147+1 3.758374-2 5.670165+1 4.415704-2 3.677796+1 5.188000-2 2.367486+1 6.165950-2 1.465707+1 7.498942-2 8.444340+0 9.440609-2 4.377128+0 1.927525-1 5.594701-1 2.540973-1 2.560539-1 3.000060-1 1.612293-1 3.467369-1 1.084609-1 3.981072-1 7.483415-2 4.518559-1 5.363988-2 5.128614-1 3.874316-2 5.754399-1 2.903413-2 6.382635-1 2.254391-2 7.079458-1 1.761984-2 7.852356-1 1.386169-2 8.709636-1 1.095599-2 9.440609-1 9.180695-3 1.023293+0 7.749908-3 1.122018+0 6.438033-3 1.230269+0 5.385732-3 1.364583+0 4.437604-3 1.584893+0 3.387026-3 1.819701+0 2.657892-3 2.089296+0 2.101918-3 2.371374+0 1.707926-3 2.722701+0 1.372649-3 3.162278+0 1.092181-3 3.672823+0 8.756333-4 4.315191+0 6.957975-4 5.069907+0 5.571803-4 6.025596+0 4.425989-4 7.244360+0 3.488904-4 8.709636+0 2.771492-4 1.109175+1 2.067551-4 1.364583+1 1.622012-4 1.584893+1 1.365129-4 2.065380+1 1.013799-4 2.818383+1 7.210781-5 3.981072+1 4.982276-5 5.888437+1 3.302954-5 9.885531+1 1.935499-5 1.862087+2 1.015135-5 3.715352+2 5.054308-6 1.479108+3 1.263222-6 1.000000+5 1.864500-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 7.139700-4 1.361100-4 1.000000+5 1.361100-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.139700-4 1.222900-7 1.000000+5 1.222900-7 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.139700-4 5.777377-4 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 6.003200-4 2.053951+5 6.700000-4 1.989800+5 6.850000-4 1.962568+5 7.350000-4 1.849076+5 7.673615-4 1.788856+5 8.222426-4 1.681246+5 9.200000-4 1.505856+5 1.023293-3 1.345402+5 1.110000-3 1.228216+5 1.202264-3 1.115064+5 1.364583-3 9.478232+4 1.500000-3 8.341400+4 1.678804-3 7.099295+4 1.883649-3 5.980946+4 2.137962-3 4.904176+4 2.371374-3 4.144482+4 2.691535-3 3.345771+4 3.000000-3 2.767228+4 3.427678-3 2.174056+4 3.890451-3 1.713936+4 4.365158-3 1.371640+4 4.954502-3 1.065780+4 5.688529-3 8.021859+3 6.531306-3 5.984486+3 7.500000-3 4.424000+3 8.609938-3 3.244338+3 9.885531-3 2.358676+3 1.135011-2 1.700290+3 1.288250-2 1.250354+3 1.462177-2 9.131636+2 1.659587-2 6.623191+2 1.883649-2 4.770222+2 2.137962-2 3.413062+2 2.454709-2 2.350767+2 2.818383-2 1.606871+2 3.235937-2 1.090423+2 3.758374-2 7.108678+1 4.365158-2 4.598821+1 5.069907-2 2.953848+1 6.000000-2 1.780748+1 7.161434-2 1.038336+1 8.810489-2 5.473981+0 1.148154-1 2.393729+0 1.798871-1 5.856622-1 2.000000-1 4.211360-1 2.264644-1 2.792476-1 2.426610-1 2.237260-1 2.570396-1 1.873435-1 2.691535-1 1.635840-1 2.818383-1 1.438274-1 2.917427-1 1.312763-1 3.000060-1 1.223776-1 3.388442-1 8.543990-2 3.801894-1 6.122332-2 4.265795-1 4.418290-2 4.731513-1 3.316106-2 5.248075-1 2.505750-2 5.821032-1 1.906994-2 6.456542-1 1.462440-2 7.161434-1 1.130150-2 7.943282-1 8.799491-3 8.709636-1 7.060732-3 9.332543-1 6.025190-3 9.885531-1 5.310451-3 1.071519+0 4.491327-3 1.161449+0 3.824456-3 1.258925+0 3.276563-3 1.396368+0 2.708542-3 1.698244+0 1.911849-3 1.949845+0 1.505631-3 2.213095+0 1.218543-3 2.511886+0 9.934111-4 2.884032+0 8.009962-4 3.349654+0 6.392001-4 3.890451+0 5.139236-4 4.570882+0 4.095304-4 5.370318+0 3.288061-4 6.456542+0 2.579293-4 7.762471+0 2.039086-4 9.440609+0 1.601609-4 1.161449+1 1.248488-4 1.513561+1 9.172899-5 2.000000+1 6.700500-5 2.691535+1 4.834514-5 3.715352+1 3.419084-5 5.495409+1 2.263624-5 8.912509+1 1.372812-5 1.698244+2 7.107641-6 3.388442+2 3.536587-6 1.348963+3 8.834363-7 1.000000+5 1.189100-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 6.003200-4 1.245900-4 1.000000+5 1.245900-4 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.003200-4 7.800600-8 1.000000+5 7.800600-8 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.003200-4 4.756520-4 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 4.063500-4 1.228164+5 4.070000-4 1.200412+5 4.084000-4 1.152588+5 4.097000-4 1.117776+5 4.113000-4 1.085640+5 4.128000-4 1.063696+5 4.143000-4 1.049192+5 4.158000-4 1.041488+5 4.173000-4 1.040256+5 4.188000-4 1.045436+5 4.203000-4 1.056660+5 4.225000-4 1.082216+5 4.285000-4 1.173588+5 4.315191-4 1.217033+5 4.350000-4 1.262424+5 4.400000-4 1.321920+5 4.466836-4 1.394862+5 4.530000-4 1.456604+5 4.600000-4 1.515664+5 4.680000-4 1.573224+5 5.011872-4 1.787247+5 5.150000-4 1.874144+5 5.300000-4 1.956284+5 5.450000-4 2.027104+5 5.650000-4 2.108796+5 5.900000-4 2.195016+5 6.100000-4 2.250160+5 6.312300-4 2.293501+5 6.531306-4 2.324099+5 6.760830-4 2.343994+5 7.080000-4 2.352640+5 7.413102-4 2.342047+5 7.762471-4 2.316065+5 8.128305-4 2.273853+5 8.511380-4 2.218365+5 9.015711-4 2.136443+5 9.549926-4 2.042829+5 1.011579-3 1.937761+5 1.071519-3 1.824939+5 1.150000-3 1.682896+5 1.226800-3 1.551632+5 1.318257-3 1.405888+5 1.428894-3 1.247982+5 1.531087-3 1.119818+5 1.650000-3 9.885760+4 1.800000-3 8.484760+4 1.950000-3 7.319240+4 2.137962-3 6.123531+4 2.317395-3 5.203706+4 2.540973-3 4.286612+4 2.786121-3 3.504896+4 3.054921-3 2.844242+4 3.349654-3 2.292124+4 3.672823-3 1.834354+4 4.027170-3 1.458750+4 4.500000-3 1.097404+4 5.000000-3 8.307160+3 5.500000-3 6.416200+3 6.095369-3 4.824257+3 6.839116-3 3.476699+3 7.673615-3 2.485024+3 8.609938-3 1.762243+3 9.660509-3 1.240126+3 1.083927-2 8.663500+2 1.216186-2 6.008983+2 1.380384-2 3.986202+2 1.548817-2 2.726139+2 1.757924-2 1.781207+2 2.000000-2 1.145864+2 2.290868-2 7.147400+1 2.630268-2 4.388539+1 3.054921-2 2.567032+1 3.589219-2 1.429007+1 4.265795-2 7.567587+0 5.128614-2 3.811742+0 6.456542-2 1.603407+0 1.174898-1 1.664308-1 1.717908-1 4.005732-2 1.883649-1 2.855155-2 2.317395-1 1.350728-2 2.630268-1 8.608065-3 2.985383-1 5.527006-3 3.349654-1 3.719145-3 3.715352-1 2.620614-3 4.120975-1 1.859193-3 4.570882-1 1.328785-3 5.069907-1 9.567957-4 5.559043-1 7.191404-4 6.095369-1 5.443041-4 6.683439-1 4.152869-4 7.328245-1 3.192458-4 8.709636-1 1.974936-4 9.225714-1 1.694978-4 9.660509-1 1.508617-4 1.011579+0 1.351159-4 1.059254+0 1.218375-4 1.109175+0 1.105561-4 1.174898+0 9.863230-5 1.258925+0 8.671396-5 1.364583+0 7.509360-5 1.531087+0 6.156273-5 1.840772+0 4.452497-5 2.065380+0 3.659011-5 2.344229+0 2.971145-5 2.691535+0 2.386337-5 3.126079+0 1.897590-5 3.630781+0 1.520411-5 4.216965+0 1.227146-5 4.954502+0 9.816252-6 5.888437+0 7.789826-6 7.079458+0 6.134617-6 8.511380+0 4.868570-6 1.083927+1 3.628848-6 1.333521+1 2.844240-6 1.600000+1 2.306100-6 2.065380+1 1.731114-6 2.818383+1 1.231235-6 3.935501+1 8.611869-7 5.821032+1 5.707914-7 9.660509+1 3.383888-7 1.840772+2 1.753758-7 3.672823+2 8.730913-8 1.462177+3 2.181913-8 1.000000+5 3.18370-10 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 4.063500-4 9.430400-5 1.000000+5 9.430400-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.063500-4 6.363500-8 1.000000+5 6.363500-8 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.063500-4 3.119824-4 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 3.851300-4 1.311577+5 3.992000-4 1.550497+5 4.015000-4 1.610526+5 4.073803-4 1.794512+5 4.100000-4 1.871478+5 4.130000-4 1.952340+5 4.168694-4 2.048791+5 4.220000-4 2.168430+5 4.280000-4 2.297514+5 4.335000-4 2.402910+5 4.390000-4 2.494686+5 4.450000-4 2.581188+5 4.550000-4 2.705520+5 4.786301-4 2.975936+5 4.930000-4 3.132066+5 5.080000-4 3.272358+5 5.248075-4 3.402764+5 5.450000-4 3.531834+5 5.650000-4 3.637188+5 5.850000-4 3.720642+5 6.025596-4 3.773746+5 6.280000-4 3.821088+5 6.531306-4 3.842104+5 6.839116-4 3.836360+5 7.161434-4 3.801394+5 7.500000-4 3.741414+5 7.852356-4 3.658187+5 8.317638-4 3.527100+5 8.810489-4 3.376775+5 9.332543-4 3.210696+5 9.885531-4 3.029824+5 1.050000-3 2.830662+5 1.122018-3 2.609564+5 1.202264-3 2.380789+5 1.288250-3 2.154997+5 1.396368-3 1.903660+5 1.500000-3 1.693500+5 1.621810-3 1.480026+5 1.757924-3 1.278899+5 1.905461-3 1.097403+5 2.070000-3 9.313740+4 2.264644-3 7.735725+4 2.483133-3 6.346622+4 2.722701-3 5.166519+4 2.985383-3 4.176030+4 3.311311-3 3.258761+4 3.630781-3 2.595093+4 4.000000-3 2.028708+4 4.466836-3 1.518935+4 4.954502-3 1.148330+4 5.432503-3 8.901102+3 6.025596-3 6.638783+3 6.760830-3 4.752876+3 7.585776-3 3.374430+3 8.511380-3 2.376373+3 9.500000-3 1.688070+3 1.059254-2 1.194858+3 1.174898-2 8.546132+2 1.333521-2 5.628717+2 1.500000-2 3.791676+2 1.698244-2 2.479289+2 1.927525-2 1.594903+2 2.187762-2 1.018284+2 2.511886-2 6.191847+1 2.884032-2 3.736465+1 3.349654-2 2.145042+1 3.935501-2 1.170379+1 4.677351-2 6.064780+0 5.688529-2 2.855054+0 7.498942-2 9.755792-1 1.135011-1 1.939129-1 1.380384-1 9.099244-2 1.621810-1 4.912465-2 1.883649-1 2.784941-2 2.065380-1 1.974166-2 2.317395-1 1.294105-2 2.570396-1 8.909881-3 2.851018-1 6.176550-3 3.162278-1 4.311967-3 3.507519-1 3.032980-3 3.845918-1 2.233677-3 4.216965-1 1.656380-3 4.623810-1 1.237123-3 5.069907-1 9.307974-4 5.495409-1 7.301298-4 5.956621-1 5.764751-4 6.456542-1 4.591290-4 6.998420-1 3.682882-4 7.673615-1 2.884441-4 8.709636-1 2.069192-4 9.225714-1 1.789976-4 9.772372-1 1.559971-4 1.023293+0 1.406485-4 1.083927+0 1.244140-4 1.148154+0 1.107398-4 1.230269+0 9.696427-5 1.333521+0 8.365714-5 1.798871+0 4.940141-5 2.044000+0 3.970200-5 2.317395+0 3.227665-5 2.660725+0 2.590604-5 3.090295+0 2.058762-5 3.589219+0 1.648631-5 4.168694+0 1.329954-5 4.897788+0 1.063304-5 5.821032+0 8.433338-6 7.000000+0 6.636200-6 8.413951+0 5.265626-6 1.071519+1 3.923156-6 1.318257+1 3.073400-6 1.584893+1 2.485485-6 2.065380+1 1.845847-6 2.818383+1 1.312854-6 3.935501+1 9.182725-7 5.821032+1 6.086254-7 9.660509+1 3.608195-7 1.840772+2 1.869939-7 3.672823+2 9.309734-8 1.462177+3 2.326567-8 1.000000+5 3.39480-10 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 3.851300-4 9.042700-5 1.000000+5 9.042700-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.851300-4 7.582500-9 1.000000+5 7.582500-9 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 3.851300-4 2.946954-4 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.329500-4 8.733241+4 1.330000-4 8.870400+4 1.333521-4 9.576729+4 1.336000-4 1.005264+5 1.340000-4 1.078488+5 1.344000-4 1.147428+5 1.348000-4 1.212678+5 1.353000-4 1.288170+5 1.357000-4 1.344624+5 1.362000-4 1.410246+5 1.368000-4 1.481310+5 1.375000-4 1.554696+5 1.382000-4 1.618788+5 1.390000-4 1.681680+5 1.397000-4 1.728450+5 1.405000-4 1.772970+5 1.414000-4 1.813140+5 1.425000-4 1.849854+5 1.437000-4 1.876926+5 1.450000-4 1.894350+5 1.465000-4 1.902672+5 1.480000-4 1.902456+5 1.550000-4 1.869690+5 1.570000-4 1.868538+5 1.590000-4 1.876410+5 1.610000-4 1.895364+5 1.627000-4 1.921242+5 1.643000-4 1.954422+5 1.660000-4 1.999350+5 1.680000-4 2.065452+5 1.698244-4 2.138480+5 1.720000-4 2.241222+5 1.740000-4 2.350698+5 1.770000-4 2.541492+5 1.800000-4 2.763486+5 1.840772-4 3.114437+5 1.883649-4 3.544241+5 2.041738-4 5.658717+5 2.100000-4 6.627480+5 2.150000-4 7.517940+5 2.190000-4 8.257740+5 2.240000-4 9.200640+5 2.280000-4 9.959520+5 2.330000-4 1.090152+6 2.380000-4 1.182582+6 2.430000-4 1.272516+6 2.483133-4 1.364687+6 2.540973-4 1.460648+6 2.600160-4 1.553649+6 2.670000-4 1.655886+6 2.730000-4 1.736634+6 2.800000-4 1.821624+6 2.880000-4 1.905906+6 2.951209-4 1.968989+6 3.030000-4 2.026128+6 3.100000-4 2.066670+6 3.200000-4 2.109336+6 3.311311-4 2.138330+6 3.430000-4 2.151564+6 3.550000-4 2.150142+6 3.672823-4 2.136194+6 3.801894-4 2.109901+6 3.935501-4 2.071755+6 4.100000-4 2.012634+6 4.280000-4 1.938486+6 4.500000-4 1.841430+6 4.731513-4 1.736461+6 4.954502-4 1.634944+6 5.188000-4 1.529952+6 5.500000-4 1.395258+6 5.821032-4 1.266817+6 6.200000-4 1.129458+6 6.531306-4 1.021024+6 6.918310-4 9.075516+5 7.413102-4 7.824704+5 7.943282-4 6.696956+5 8.511380-4 5.688949+5 9.225714-4 4.667146+5 1.000000-3 3.797388+5 1.083927-3 3.067101+5 1.188502-3 2.382369+5 1.288250-3 1.896685+5 1.412538-3 1.451061+5 1.548817-3 1.101216+5 1.690000-3 8.427600+4 1.883649-3 5.989459+4 2.089296-3 4.285010+4 2.344229-3 2.925913+4 2.630268-3 1.979251+4 2.951209-3 1.326679+4 3.311311-3 8.815802+3 3.700000-3 5.896812+3 4.120975-3 3.962150+3 4.623810-3 2.570055+3 5.188000-3 1.654375+3 5.821032-3 1.056982+3 6.531306-3 6.703873+2 7.328245-3 4.222377+2 8.317638-3 2.520390+2 9.332543-3 1.566210+2 1.059254-2 9.209794+1 1.202264-2 5.376443+1 1.364583-2 3.116355+1 1.548817-2 1.793572+1 1.778279-2 9.740054+0 2.065380-2 4.989025+0 2.426610-2 2.409252+0 2.917427-2 1.040232+0 3.388442-2 5.227587-1 4.466836-2 1.453978-1 8.222426-2 8.488779-3 9.885531-2 3.623171-3 1.161449-1 1.735344-3 1.364583-1 8.375082-4 1.640590-1 3.674469-4 1.840772-1 2.209930-4 2.018366-1 1.479810-4 2.238721-1 9.514112-5 2.483133-1 6.161917-5 2.754229-1 4.018656-5 3.162278-1 2.293742-5 3.507519-1 1.516548-5 3.845918-1 1.056769-5 4.265795-1 7.091540-6 4.623810-1 5.234538-6 5.011872-1 3.891362-6 5.432503-1 2.918849-6 5.888437-1 2.205242-6 6.456542-1 1.611069-6 6.918310-1 1.281036-6 7.413102-1 1.025546-6 7.943282-1 8.275059-7 8.609938-1 6.464898-7 9.015711-1 5.641618-7 9.440609-1 4.953973-7 9.772372-1 4.517806-7 1.011579+0 4.143294-7 1.047129+0 3.820026-7 1.096478+0 3.451799-7 1.148154+0 3.140502-7 1.216186+0 2.812715-7 1.303167+0 2.484031-7 1.412538+0 2.164935-7 1.513561+0 1.929303-7 1.883649+0 1.313958-7 2.089296+0 1.101906-7 2.371374+0 8.953187-8 2.722701+0 7.195984-8 3.162278+0 5.725886-8 3.672823+0 4.590451-8 4.265795+0 3.707014-8 5.011872+0 2.966924-8 5.956621+0 2.355649-8 7.161434+0 1.856001-8 8.609938+0 1.473621-8 1.100000+1 1.094700-8 1.348963+1 8.616934-9 1.600000+1 7.080300-9 2.065380+1 5.314683-9 2.818383+1 3.780196-9 3.981072+1 2.611894-9 5.821032+1 1.752438-9 9.660509+1 1.038934-9 1.840772+2 5.38419-10 3.672823+2 2.68052-10 1.462177+3 6.69890-11 1.000000+5 9.77460-13 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.329500-4 5.177400-5 1.000000+5 5.177400-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.329500-4 4.79910-10 1.000000+5 4.79910-10 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.329500-4 8.117552-5 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.281600-4 1.246968+5 1.282200-4 1.267736+5 1.285000-4 1.344744+5 1.289000-4 1.449064+5 1.292000-4 1.523112+5 1.296000-4 1.616512+5 1.300000-4 1.704736+5 1.305000-4 1.806912+5 1.310000-4 1.900752+5 1.316000-4 2.003512+5 1.321000-4 2.081328+5 1.328000-4 2.178616+5 1.334000-4 2.252024+5 1.340000-4 2.317008+5 1.348963-4 2.399663+5 1.359000-4 2.473976+5 1.370000-4 2.536216+5 1.380384-4 2.579265+5 1.390000-4 2.607728+5 1.405000-4 2.634480+5 1.420000-4 2.644928+5 1.445440-4 2.639367+5 1.500000-4 2.603400+5 1.520200-4 2.601115+5 1.540000-4 2.611264+5 1.560000-4 2.636832+5 1.580000-4 2.679912+5 1.600000-4 2.742032+5 1.620000-4 2.824152+5 1.643000-4 2.943944+5 1.660000-4 3.050056+5 1.680000-4 3.193848+5 1.705000-4 3.402128+5 1.736500-4 3.708707+5 1.770000-4 4.087472+5 1.810000-4 4.609776+5 1.880000-4 5.705176+5 1.990000-4 7.879744+5 2.051300-4 9.301871+5 2.100000-4 1.051048+6 2.150000-4 1.179856+6 2.193300-4 1.293273+6 2.240000-4 1.415752+6 2.290868-4 1.547469+6 2.344229-4 1.682245+6 2.400000-4 1.818088+6 2.454709-4 1.945592+6 2.520000-4 2.089624+6 2.580000-4 2.213400+6 2.650000-4 2.346584+6 2.722701-4 2.470765+6 2.800000-4 2.585672+6 2.880000-4 2.685208+6 2.951209-4 2.757340+6 3.030000-4 2.820224+6 3.126079-4 2.875360+6 3.235937-4 2.913900+6 3.350000-4 2.931336+6 3.470000-4 2.929248+6 3.600000-4 2.907032+6 3.715352-4 2.872575+6 3.850000-4 2.818072+6 4.000000-4 2.743536+6 4.200000-4 2.628616+6 4.415704-4 2.495825+6 4.623810-4 2.363950+6 4.850000-4 2.220248+6 5.080000-4 2.076848+6 5.370318-4 1.903082+6 5.688529-4 1.725338+6 6.025596-4 1.554235+6 6.382635-4 1.391289+6 6.760830-4 1.236961+6 7.244360-4 1.066423+6 7.762471-4 9.131065+5 8.317638-4 7.758058+5 9.015711-4 6.365364+5 9.700000-4 5.281024+5 1.047129-3 4.315583+5 1.135011-3 3.464269+5 1.230269-3 2.763800+5 1.350000-3 2.112496+5 1.462177-3 1.667151+5 1.621810-3 1.215666+5 1.800000-3 8.766240+4 1.972423-3 6.532186+4 2.150000-3 4.922672+4 2.371374-3 3.545439+4 2.650000-3 2.423400+4 2.951209-3 1.662500+4 3.273407-3 1.148402+4 3.600000-3 8.128480+3 3.981072-3 5.603641+3 4.466836-3 3.632790+3 5.011872-3 2.337820+3 5.623413-3 1.492163+3 6.309573-3 9.453368+2 7.079458-3 5.946745+2 8.000000-3 3.608312+2 9.015711-3 2.197396+2 1.023293-2 1.290151+2 1.174898-2 7.155993+1 1.380384-2 3.565971+1 1.584893-2 1.948182+1 1.798871-2 1.111587+1 2.041738-2 6.278963+0 2.344229-2 3.341498+0 2.722701-2 1.674583+0 3.273407-2 7.097060-1 4.365158-2 1.842593-1 5.888437-2 4.493248-2 8.317638-2 8.726370-3 9.885531-2 3.870933-3 1.135011-1 2.037452-3 1.303167-1 1.079659-3 1.500000-1 5.697557-4 1.678804-1 3.430066-4 1.862087-1 2.164447-4 2.041738-1 1.447046-4 2.238721-1 9.748102-5 2.454709-1 6.610107-5 2.754229-1 4.100175-5 3.019952-1 2.818163-5 3.273407-1 2.043367-5 3.548134-1 1.491846-5 3.845918-1 1.098088-5 4.168694-1 8.142196-6 4.518559-1 6.082461-6 4.897788-1 4.578315-6 5.308844-1 3.472765-6 5.688529-1 2.757716-6 6.165950-1 2.122849-6 6.623700-1 1.693300-6 7.161434-1 1.334030-6 7.762471-1 1.050346-6 8.511380-1 8.055820-7 9.772372-1 5.475534-7 1.011579+0 5.002408-7 1.047129+0 4.599534-7 1.083927+0 4.252127-7 1.135011+0 3.857885-7 1.188502+0 3.525357-7 1.258925+0 3.174118-7 1.348963+0 2.817506-7 1.513561+0 2.332342-7 1.905461+0 1.557213-7 2.113489+0 1.306712-7 2.398833+0 1.062457-7 2.754229+0 8.544744-8 3.198895+0 6.802991-8 3.715352+0 5.457190-8 4.365158+0 4.338779-8 5.128614+0 3.476229-8 6.095369+0 2.762752-8 7.328245+0 2.178866-8 8.810489+0 1.731685-8 1.122018+1 1.292369-8 1.380384+1 1.014301-8 1.603245+1 8.539040-9 2.065380+1 6.424425-9 2.818383+1 4.569485-9 4.000000+1 3.141500-9 5.888437+1 2.093064-9 9.885531+1 1.226584-9 1.862087+2 6.43298-10 3.715352+2 3.20294-10 1.479108+3 8.00479-11 1.000000+5 1.18160-12 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.281600-4 4.892500-5 1.000000+5 4.892500-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.281600-4 6.795800-9 1.000000+5 6.795800-9 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.281600-4 7.922820-5 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.391600-4 6.756400+4 1.409000-4 6.470920+4 1.420000-4 6.321160+4 1.435000-4 6.165140+4 1.450000-4 6.051500+4 1.472000-4 5.941320+4 1.496236-4 5.871521+4 1.522600-4 5.839016+4 1.560000-4 5.840300+4 1.720000-4 5.990840+4 1.800000-4 6.029960+4 1.883649-4 6.028973+4 2.000000-4 5.981280+4 2.220000-4 5.836260+4 2.426610-4 5.679343+4 2.580000-4 5.539200+4 2.754229-4 5.354168+4 2.951209-4 5.126075+4 3.200000-4 4.835580+4 3.507519-4 4.494714+4 3.801894-4 4.187855+4 4.144800-4 3.852331+4 4.623810-4 3.435044+4 5.150000-4 3.046960+4 5.688529-4 2.708682+4 6.531306-4 2.279565+4 7.413102-4 1.931769+4 8.609938-4 1.575401+4 1.000000-3 1.274968+4 1.188502-3 9.912941+3 1.428894-3 7.517200+3 1.730000-3 5.597340+3 2.089296-3 4.153292+3 2.540973-3 3.023849+3 3.054921-3 2.226176+3 3.672823-3 1.626836+3 4.466836-3 1.156202+3 5.432503-3 8.148901+2 6.531306-3 5.820083+2 7.852356-3 4.126526+2 9.549926-3 2.841375+2 1.161449-2 1.941876+2 1.396368-2 1.347429+2 1.678804-2 9.280854+1 2.018366-2 6.344772+1 2.426610-2 4.305508+1 2.917427-2 2.899385+1 3.467369-2 1.986586+1 4.168694-2 1.317124+1 5.011872-2 8.665075+0 6.025596-2 5.655379+0 7.328245-2 3.565326+0 8.810489-2 2.292410+0 1.083927-1 1.379737+0 1.396368-1 7.353589-1 2.818383-1 1.263435-1 3.427678-1 7.793342-2 4.027170-1 5.271277-2 4.677351-1 3.692800-2 5.308844-1 2.750500-2 6.025596-1 2.062196-2 6.839117-1 1.557251-2 7.762471-1 1.184554-2 8.810489-1 9.072631-3 9.772372-1 7.341094-3 1.135011+0 5.459268-3 1.288250+0 4.277465-3 1.462177+0 3.378182-3 1.640590+0 2.746211-3 1.862087+0 2.202790-3 2.137962+0 1.744669-3 2.426610+0 1.419502-3 2.786121+0 1.142329-3 3.235937+0 9.099770-4 3.758374+0 7.303679-4 4.415704+0 5.810215-4 5.188000+0 4.657698-4 6.165950+0 3.703467-4 7.413102+0 2.922135-4 8.912509+0 2.323438-4 1.122018+1 1.758745-4 1.380384+1 1.380325-4 1.584893+1 1.177232-4 2.065380+1 8.742663-5 2.818383+1 6.218445-5 3.981072+1 4.296639-5 5.888437+1 2.848369-5 9.885531+1 1.669176-5 1.862087+2 8.754312-6 3.715352+2 4.358691-6 1.479108+3 1.089299-6 1.000000+5 1.607900-8 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.391600-4 6.202700-5 1.000000+5 6.202700-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.391600-4 1.174900-9 1.000000+5 1.174900-9 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.391600-4 7.713183-5 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 9.903000-5 5.696200+5 9.965000-5 6.043640+5 1.002000-4 6.311940+5 1.007000-4 6.525520+5 1.012000-4 6.708080+5 1.018000-4 6.894120+5 1.025000-4 7.067800+5 1.032000-4 7.196460+5 1.040000-4 7.296500+5 1.047129-4 7.349973+5 1.055000-4 7.374320+5 1.065000-4 7.360340+5 1.075000-4 7.303920+5 1.085000-4 7.214100+5 1.100000-4 7.032440+5 1.115000-4 6.813240+5 1.135011-4 6.486417+5 1.160000-4 6.058040+5 1.190000-4 5.550660+5 1.244515-4 4.714797+5 1.400000-4 3.042180+5 1.513561-4 2.292396+5 1.621810-4 1.796548+5 1.720000-4 1.469936+5 1.819701-4 1.222019+5 1.905461-4 1.057598+5 2.000000-4 9.148240+4 2.089296-4 8.078390+4 2.190000-4 7.115560+4 2.290868-4 6.347613+4 2.398833-4 5.691117+4 2.500000-4 5.195800+4 2.600160-4 4.794447+4 2.691535-4 4.489533+4 2.818383-4 4.141554+4 2.951209-4 3.848094+4 3.100000-4 3.581880+4 3.280000-4 3.322900+4 3.500000-4 3.072480+4 3.758374-4 2.842207+4 4.100000-4 2.607120+4 4.677351-4 2.311236+4 6.095369-4 1.825277+4 7.000000-4 1.603500+4 8.000000-4 1.405040+4 9.120108-4 1.225278+4 1.047129-3 1.051682+4 1.190000-3 9.061820+3 1.364583-3 7.665752+3 1.570000-3 6.403660+3 1.800000-3 5.329720+3 2.041738-3 4.467564+3 2.317395-3 3.715052+3 2.630268-3 3.066969+3 3.000000-3 2.493960+3 3.388442-3 2.044699+3 3.845918-3 1.650726+3 4.365158-3 1.322907+3 4.954502-3 1.052520+3 5.623413-3 8.313967+2 6.382635-3 6.520393+2 7.244360-3 5.077737+2 8.222426-3 3.926894+2 9.332543-3 3.015608+2 1.071519-2 2.242886+2 1.230269-2 1.654982+2 1.412538-2 1.211505+2 1.603245-2 9.038200+1 1.840772-2 6.516109+1 2.113489-2 4.661938+1 2.426610-2 3.310522+1 2.786121-2 2.334153+1 3.235937-2 1.586169+1 3.758374-2 1.069689+1 4.466836-2 6.732692+0 5.128614-2 4.627536+0 6.095369-2 2.869322+0 7.413102-2 1.655387+0 9.332543-2 8.593392-1 1.862087-1 1.177013-1 2.317395-1 6.313093-2 2.754229-1 3.886927-2 3.235937-1 2.490248-2 3.715352-1 1.712186-2 4.216965-1 1.222714-2 4.786301-1 8.795150-3 5.370318-1 6.564197-3 6.025596-1 4.934462-3 6.760830-1 3.738807-3 7.498942-1 2.932529-3 8.609938-1 2.139525-3 9.332543-1 1.791285-3 1.011579+0 1.510557-3 1.109175+0 1.253738-3 1.216186+0 1.047939-3 1.348963+0 8.627569-4 1.548817+0 6.717430-4 1.778279+0 5.264811-4 2.044000+0 4.149900-4 2.317395+0 3.373560-4 2.630268+0 2.756999-4 3.019952+0 2.228339-4 3.507519+0 1.782291-4 4.073803+0 1.436166-4 4.786301+0 1.146916-4 5.623413+0 9.227470-5 6.760830+0 7.252936-5 8.128305+0 5.744852-5 1.011579+1 4.395480-5 1.216186+1 3.529188-5 1.566751+1 2.632010-5 2.041738+1 1.954214-5 2.754229+1 1.407062-5 3.845918+1 9.835793-6 5.688529+1 6.516197-6 9.332543+1 3.907548-6 1.778279+2 2.024309-6 3.548134+2 1.007543-6 1.412538+3 2.517440-7 1.000000+5 3.548400-9 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 9.903000-5 4.693300-5 1.000000+5 4.693300-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 9.903000-5 1.805100-9 1.000000+5 1.805100-9 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 9.903000-5 5.209519-5 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 7.796000-5 1.356492+6 7.852356-5 1.386792+6 7.920000-5 1.414692+6 8.000000-5 1.436388+6 8.080000-5 1.447540+6 8.150000-5 1.450296+6 8.230000-5 1.446380+6 8.330000-5 1.432976+6 8.450000-5 1.407300+6 8.570000-5 1.373820+6 8.730000-5 1.321176+6 8.912509-5 1.255020+6 9.150000-5 1.166120+6 9.440609-5 1.060579+6 1.083927-4 6.817542+5 1.135011-4 5.917430+5 1.190000-4 5.148600+5 1.244515-4 4.544441+5 1.300000-4 4.054080+5 1.356100-4 3.657284+5 1.412538-4 3.335871+5 1.462177-4 3.103623+5 1.520000-4 2.879620+5 1.584893-4 2.674322+5 1.659587-4 2.483025+5 1.737801-4 2.320236+5 1.840772-4 2.146953+5 1.972423-4 1.971726+5 2.113489-4 1.823355+5 2.300000-4 1.669296+5 2.600160-4 1.482363+5 3.235937-4 1.204300+5 3.715352-4 1.049819+5 4.265795-4 9.082037+4 4.841724-4 7.895387+4 5.500000-4 6.805680+4 6.309573-4 5.752868+4 7.161434-4 4.891420+4 8.222426-4 4.067588+4 9.332543-4 3.412689+4 1.071519-3 2.798964+4 1.216186-3 2.319791+4 1.396368-3 1.878355+4 1.621810-3 1.483307+4 1.883649-3 1.161944+4 2.162719-3 9.207781+3 2.454709-3 7.391528+3 2.818383-3 5.775659+3 3.198895-3 4.575587+3 3.672823-3 3.521315+3 4.216965-3 2.688528+3 4.841724-3 2.036405+3 5.495409-3 1.567495+3 6.237348-3 1.198422+3 7.079458-3 9.100408+2 8.035261-3 6.863407+2 9.120108-3 5.141128+2 1.047129-2 3.721583+2 1.202264-2 2.672744+2 1.380384-2 1.904261+2 1.566751-2 1.385787+2 1.798871-2 9.722274+1 2.041738-2 6.976535+1 2.344229-2 4.820449+1 2.691535-2 3.305495+1 3.090295-2 2.250091+1 3.548134-2 1.520867+1 4.120975-2 9.870603+0 4.841724-2 6.147768+0 5.688529-2 3.800476+0 6.683439-2 2.332278+0 8.128305-2 1.278770+0 1.023293-1 6.254888-1 1.737801-1 1.190399-1 2.162719-1 6.039869-2 2.540973-1 3.688065-2 2.917427-1 2.432503-2 3.311311-1 1.672052-2 3.758374-1 1.157854-2 4.216965-1 8.351163-3 4.731513-1 6.069832-3 5.248075-1 4.586865-3 5.821032-1 3.490802-3 6.456542-1 2.676946-3 7.161434-1 2.068674-3 7.943282-1 1.610795-3 8.709636-1 1.292873-3 9.332543-1 1.103497-3 9.885531-1 9.727337-4 1.071519+0 8.227842-4 1.161449+0 7.006412-4 1.258925+0 6.002490-4 1.396368+0 4.961323-4 1.698244+0 3.501751-4 1.949845+0 2.757625-4 2.213095+0 2.231459-4 2.511886+0 1.819045-4 2.884032+0 1.466667-4 3.349654+0 1.170404-4 3.890451+0 9.410192-5 4.570882+0 7.498659-5 5.370318+0 6.020591-5 6.456542+0 4.722915-5 7.762471+0 3.733648-5 9.440609+0 2.932557-5 1.161449+1 2.286053-5 1.513561+1 1.679622-5 2.000000+1 1.226900-5 2.691535+1 8.852204-6 3.715352+1 6.260603-6 5.495409+1 4.144784-6 8.912509+1 2.513626-6 1.698244+2 1.301447-6 3.388442+2 6.475661-7 1.348963+3 1.617573-7 1.000000+5 2.177200-9 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 7.796000-5 4.107200-5 1.000000+5 4.107200-5 1 81000 7 7 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 7.796000-5 5.75190-10 1.000000+5 5.75190-10 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 7.796000-5 3.688742-5 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 2.240000-5 2.751912+6 2.270000-5 2.763036+6 2.300000-5 2.786452+6 2.330000-5 2.823844+6 2.371374-5 2.898689+6 2.410000-5 2.993248+6 2.450000-5 3.113780+6 2.485000-5 3.238924+6 2.520000-5 3.382848+6 2.570396-5 3.622661+6 2.600160-5 3.781989+6 2.660725-5 4.146660+6 2.722701-5 4.576624+6 2.800000-5 5.193680+6 2.917427-5 6.302253+6 3.090295-5 8.288165+6 3.198895-5 9.718742+6 3.273407-5 1.075789+7 3.350000-5 1.185400+7 3.427678-5 1.297266+7 3.500000-5 1.399604+7 3.570000-5 1.494776+7 3.630781-5 1.572606+7 3.690000-5 1.642876+7 3.758374-5 1.715791+7 3.830000-5 1.781276+7 3.900000-5 1.833396+7 3.970000-5 1.873324+7 4.030000-5 1.897680+7 4.090000-5 1.913124+7 4.168694-5 1.920603+7 4.229500-5 1.917133+7 4.315191-5 1.900228+7 4.410200-5 1.867314+7 4.500000-5 1.825364+7 4.610000-5 1.763480+7 4.731513-5 1.686071+7 4.850000-5 1.605232+7 5.011872-5 1.492031+7 5.188000-5 1.371041+7 5.400000-5 1.233676+7 5.650000-5 1.086356+7 5.900000-5 9.552840+6 6.165950-5 8.327886+6 6.500000-5 7.013000+6 6.800000-5 6.014280+6 7.150000-5 5.032440+6 7.500000-5 4.216200+6 7.900000-5 3.452192+6 8.317638-5 2.812513+6 8.810489-5 2.221488+6 9.332543-5 1.743423+6 1.000000-4 1.294576+6 1.071519-4 9.549987+5 1.150000-4 6.944760+5 1.230269-4 5.088355+5 1.318257-4 3.673892+5 1.584893-4 1.512756+5 1.659587-4 1.219054+5 1.720000-4 1.037308+5 1.780000-4 8.949920+4 1.835000-4 7.911680+4 1.883649-4 7.165708+4 1.930000-4 6.579720+4 1.980000-4 6.061640+4 2.020000-4 5.719080+4 2.065380-4 5.395900+4 2.113489-4 5.117747+4 2.162719-4 4.890658+4 2.213095-4 4.708462+4 2.264644-4 4.565645+4 2.317395-4 4.457112+4 2.380000-4 4.368160+4 2.450000-4 4.308640+4 2.519300-4 4.281132+4 2.600160-4 4.277977+4 2.691535-4 4.300881+4 2.818383-4 4.360839+4 3.388442-4 4.697139+4 3.600000-4 4.782920+4 3.801894-4 4.832592+4 4.027170-4 4.855744+4 4.280000-4 4.844320+4 4.518559-4 4.806479+4 4.786301-4 4.736485+4 5.069907-4 4.638861+4 5.432503-4 4.488329+4 5.821032-4 4.306808+4 6.200000-4 4.121680+4 6.683439-4 3.881896+4 7.161434-4 3.646358+4 7.762471-4 3.364172+4 8.317638-4 3.119571+4 9.015711-4 2.836123+4 9.772372-4 2.560103+4 1.059254-3 2.295370+4 1.148154-3 2.044696+4 1.244515-3 1.809912+4 1.364583-3 1.562650+4 1.500000-3 1.333012+4 1.640590-3 1.138785+4 1.798871-3 9.615874+3 1.972423-3 8.061503+3 2.162719-3 6.711644+3 2.371374-3 5.549493+3 2.600160-3 4.557532+3 2.851018-3 3.717963+3 3.126079-3 3.013051+3 3.467369-3 2.360125+3 3.845918-3 1.834129+3 4.265795-3 1.414471+3 4.731513-3 1.082707+3 5.248075-3 8.227181+2 5.821032-3 6.207400+2 6.456542-3 4.651727+2 7.161434-3 3.462729+2 8.035261-3 2.475344+2 9.015711-3 1.755664+2 1.011579-2 1.235828+2 1.148154-2 8.328131+1 1.288250-2 5.783460+1 1.445440-2 3.988244+1 1.621810-2 2.731518+1 1.819701-2 1.858158+1 2.018366-2 1.305077+1 2.290868-2 8.411296+0 2.630268-2 5.168036+0 3.054921-2 3.024984+0 3.589219-2 1.687352+0 4.265795-2 8.957278-1 5.128614-2 4.523480-1 6.456542-2 1.906973-1 1.202264-1 1.823238-2 1.500000-1 7.961000-3 1.778279-1 4.234481-3 2.041738-1 2.552926-3 2.344229-1 1.551339-3 2.660725-1 9.897092-4 3.019952-1 6.360992-4 3.388442-1 4.284113-4 3.801894-1 2.907151-4 4.216965-1 2.065496-4 4.677351-1 1.478187-4 5.188000-1 1.065728-4 5.688529-1 8.021205-5 6.165950-1 6.295063-5 6.760830-1 4.811505-5 7.413102-1 3.705104-5 8.035261-1 2.963166-5 8.609938-1 2.440760-5 9.120108-1 2.089628-5 9.549926-1 1.855734-5 1.000000+0 1.658000-5 1.047129+0 1.491700-5 1.096478+0 1.351157-5 1.161449+0 1.203492-5 1.230269+0 1.079526-5 1.333521+0 9.334793-6 1.479108+0 7.808996-6 1.862087+0 5.213996-6 2.089296+0 4.287447-6 2.371374+0 3.483634-6 2.722701+0 2.799800-6 3.162278+0 2.227762-6 3.672823+0 1.786051-6 4.265795+0 1.442342-6 5.011872+0 1.154374-6 5.956621+0 9.165258-7 7.161434+0 7.221221-7 8.609938+0 5.733679-7 1.100000+1 4.259100-7 1.348963+1 3.352627-7 1.600000+1 2.754700-7 2.065380+1 2.067858-7 2.800000+1 1.481300-7 3.890451+1 1.041300-7 5.754399+1 6.900477-8 9.440609+1 4.138756-8 1.798871+2 2.144321-8 3.589219+2 1.067418-8 1.428894+3 2.667156-9 1.000000+5 3.80310-11 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 2.240000-5 2.240000-5 1.000000+5 2.240000-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 2.240000-5 0.0 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 2.001000-5 5.268402+6 2.030000-5 5.259864+6 2.065380-5 5.283945+6 2.095000-5 5.333046+6 2.130000-5 5.424630+6 2.162719-5 5.542115+6 2.190000-5 5.662932+6 2.230000-5 5.876226+6 2.270000-5 6.131820+6 2.317395-5 6.487906+6 2.371374-5 6.962537+6 2.426610-5 7.523166+6 2.500000-5 8.382600+6 2.580000-5 9.465060+6 2.900000-5 1.515102+7 3.000000-5 1.726506+7 3.090295-5 1.923400+7 3.162278-5 2.080607+7 3.235937-5 2.237937+7 3.311311-5 2.391384+7 3.388442-5 2.536467+7 3.450000-5 2.640966+7 3.507519-5 2.727881+7 3.570000-5 2.809188+7 3.630781-5 2.874241+7 3.690000-5 2.923752+7 3.758374-5 2.963730+7 3.830000-5 2.986248+7 3.900000-5 2.990094+7 3.981072-5 2.974076+7 4.070000-5 2.934384+7 4.150000-5 2.882136+7 4.229500-5 2.817774+7 4.330000-5 2.722968+7 4.450000-5 2.596512+7 4.570882-5 2.461115+7 4.720000-5 2.290812+7 4.897788-5 2.091733+7 5.080000-5 1.898844+7 5.308844-5 1.677512+7 5.580000-5 1.446660+7 5.821032-5 1.268067+7 6.150000-5 1.060158+7 6.456542-5 8.980167+6 6.800000-5 7.465920+6 7.161434-5 6.159533+6 7.500000-5 5.154492+6 7.900000-5 4.188630+6 8.317638-5 3.387463+6 8.810489-5 2.654688+6 9.332543-5 2.067530+6 1.000000-4 1.520526+6 1.071519-4 1.110537+6 1.150000-4 7.992360+5 1.244515-4 5.487202+5 1.462177-4 2.513055+5 1.531087-4 2.021219+5 1.584893-4 1.725707+5 1.640590-4 1.483226+5 1.690000-4 1.311480+5 1.737801-4 1.176835+5 1.780000-4 1.079250+5 1.820000-4 1.002174+5 1.865000-4 9.305640+4 1.905461-4 8.776722+4 1.950000-4 8.300820+4 1.995262-4 7.913638+4 2.041738-4 7.600980+4 2.089296-4 7.355040+4 2.137962-4 7.166878+4 2.190000-4 7.023240+4 2.240000-4 6.930660+4 2.300000-4 6.866520+4 2.371374-4 6.841910+4 2.454709-4 6.863346+4 2.570396-4 6.947093+4 3.100000-4 7.503660+4 3.311311-4 7.661959+4 3.507519-4 7.756696+4 3.715352-4 7.798902+4 3.935501-4 7.790843+4 4.200000-4 7.718460+4 4.466836-4 7.595304+4 4.786301-4 7.399032+4 5.069907-4 7.189889+4 5.400000-4 6.923700+4 5.821032-4 6.564747+4 6.237348-4 6.203979+4 6.683439-4 5.826190+4 7.161434-4 5.436937+4 7.762471-4 4.976414+4 8.413951-4 4.521880+4 9.120108-4 4.079662+4 9.885531-4 3.654115+4 1.083927-3 3.196952+4 1.188502-3 2.774718+4 1.303167-3 2.389518+4 1.428894-3 2.042248+4 1.566751-3 1.732853+4 1.717908-3 1.459938+4 1.883649-3 1.221271+4 2.065380-3 1.014479+4 2.264644-3 8.369049+3 2.483133-3 6.857355+3 2.722701-3 5.581253+3 3.000000-3 4.461444+3 3.311311-3 3.525741+3 3.672823-3 2.732620+3 4.073803-3 2.101455+3 4.518559-3 1.603828+3 5.011872-3 1.214953+3 5.559043-3 9.139087+2 6.237348-3 6.607074+2 6.918310-3 4.899731+2 7.673615-3 3.606940+2 8.317638-3 2.825181+2 9.332543-3 1.976220+2 1.083927-2 1.230467+2 1.230269-2 8.181584+1 1.380384-2 5.606951+1 1.548817-2 3.816687+1 1.737801-2 2.580483+1 1.927525-2 1.802906+1 2.187762-2 1.152788+1 2.483133-2 7.314951+0 2.851018-2 4.419453+0 3.349654-2 2.435264+0 3.935501-2 1.331459+0 4.677351-2 6.918375-1 5.432503-2 3.898325-1 6.918310-2 1.529513-1 1.161449-1 2.041540-2 1.412538-1 9.601264-3 1.678804-1 4.969631-3 1.927525-1 2.955955-3 2.162719-1 1.930846-3 2.426610-1 1.270433-3 2.691535-1 8.774177-4 3.000000-1 5.998500-4 3.311311-1 4.272351-4 3.630781-1 3.133422-4 4.000000-1 2.278300-4 4.365158-1 1.721127-4 4.786301-1 1.289945-4 5.248075-1 9.742979-5 5.688529-1 7.672228-5 6.165950-1 6.082232-5 6.683439-1 4.856306-5 7.244360-1 3.902736-5 8.609938-1 2.480263-5 9.120108-1 2.145774-5 9.660509-1 1.869442-5 1.011579+0 1.684470-5 1.071519+0 1.489022-5 1.148154+0 1.294287-5 1.230269+0 1.133129-5 1.333521+0 9.772996-6 1.819701+0 5.653342-6 2.065380+0 4.555019-6 2.344229+0 3.698562-6 2.691535+0 2.970577-6 3.126079+0 2.362236-6 3.630781+0 1.892758-6 4.216965+0 1.527684-6 4.954502+0 1.222008-6 5.888437+0 9.697529-7 7.079458+0 7.636902-7 8.511380+0 6.060821-7 1.083927+1 4.517462-7 1.333521+1 3.540709-7 1.584893+1 2.901819-7 2.065380+1 2.154999-7 2.818383+1 1.532790-7 3.935501+1 1.072112-7 5.821032+1 7.105668-8 9.660509+1 4.212609-8 1.840772+2 2.183161-8 3.672823+2 1.086914-8 1.462177+3 2.716208-9 1.000000+5 3.96340-11 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 2.001000-5 2.001000-5 1.000000+5 2.001000-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 2.001000-5 0.0 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 1.236000-5 4.819680+6 1.380384-5 2.952782+6 1.698244-5 1.165009+6 2.150000-5 4.026200+5 2.350000-5 2.714280+5 2.500000-5 2.076100+5 2.630268-5 1.676581+5 2.754229-5 1.390741+5 2.851018-5 1.215331+5 2.951209-5 1.067865+5 3.054921-5 9.441967+4 3.162278-5 8.407856+4 3.260000-5 7.640240+4 3.350000-5 7.051840+4 3.450000-5 6.506980+4 3.548134-5 6.063620+4 3.650000-5 5.681160+4 3.770000-5 5.313040+4 3.900000-5 4.993900+4 4.030000-5 4.739340+4 4.168694-5 4.522734+4 4.315191-5 4.341234+4 4.472100-5 4.187588+4 4.677351-5 4.032924+4 4.900000-5 3.906320+4 5.188000-5 3.782614+4 5.688529-5 3.623191+4 6.606934-5 3.388359+4 7.300000-5 3.217420+4 8.035261-5 3.037806+4 8.810489-5 2.854029+4 9.660509-5 2.662976+4 1.080000-4 2.429640+4 1.216186-4 2.185589+4 1.380384-4 1.935563+4 1.603245-4 1.662769+4 2.187762-4 1.197703+4 2.511886-4 1.029686+4 2.818383-4 9.012771+3 3.162278-4 7.832473+3 3.672823-4 6.470729+3 4.415704-4 5.067457+3 5.623413-4 3.644011+3 6.382635-4 3.047945+3 7.585776-4 2.368886+3 1.000000-3 1.566640+3 1.216186-3 1.159783+3 1.513561-3 8.220125+2 1.883649-3 5.788529+2 2.344229-3 4.047043+2 2.884032-3 2.862090+2 3.507519-3 2.047693+2 4.265795-3 1.454005+2 5.188000-3 1.024625+2 6.382635-3 7.020122+1 7.673615-3 4.978176+1 9.332543-3 3.428717+1 1.148154-2 2.292133+1 1.380384-2 1.590975+1 1.659587-2 1.096246+1 2.000000-2 7.460219+0 2.398833-2 5.089640+0 2.884032-2 3.428909+0 3.427678-2 2.350512+0 4.073803-2 1.599909+0 4.841724-2 1.081360+0 5.754399-2 7.253194-1 6.918310-2 4.701691-1 8.413951-2 2.943473-1 1.011580-1 1.877965-1 1.288250-1 1.032274-1 1.862087-1 4.104289-2 2.660725-1 1.675148-2 3.273407-1 1.002359-2 3.890451-1 6.581494-3 4.518559-1 4.603366-3 5.188000-1 3.333403-3 5.956621-1 2.432778-3 6.760830-1 1.836309-3 7.673615-1 1.396302-3 8.709636-1 1.069101-3 9.660509-1 8.649425-4 1.161449+0 6.011830-4 1.288250+0 4.924158-4 1.462177+0 3.889879-4 1.640590+0 3.162387-4 1.862087+0 2.536539-4 2.137962+0 2.009138-4 2.426610+0 1.634727-4 2.786121+0 1.315498-4 3.235937+0 1.047900-4 3.758374+0 8.410651-5 4.415704+0 6.690748-5 5.188000+0 5.363531-5 6.165950+0 4.264746-5 7.413102+0 3.364998-5 8.912509+0 2.675623-5 1.122018+1 2.025283-5 1.380384+1 1.589504-5 1.603245+1 1.338119-5 2.089296+1 9.939877-6 2.851018+1 7.072142-6 4.027170+1 4.887800-6 5.956621+1 3.241062-6 1.000000+2 1.899600-6 1.905461+2 9.848659-7 3.801894+2 4.904291-7 1.513561+3 1.225799-7 1.000000+5 1.851600-9 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 1.236000-5 1.236000-5 1.000000+5 1.236000-5 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 1.236000-5 0.0 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 5.460000-6 6.768986+6 6.200000-6 5.432528+6 6.760830-6 4.648359+6 7.413102-6 3.917588+6 8.317638-6 3.139845+6 9.225714-6 2.556342+6 1.035142-5 2.018841+6 1.150000-5 1.616445+6 1.288250-5 1.261972+6 1.428894-5 1.000034+6 1.603245-5 7.659104+5 1.798871-5 5.817768+5 2.000000-5 4.484262+5 2.238721-5 3.375736+5 2.511886-5 2.508741+5 2.884032-5 1.743447+5 3.349654-5 1.165983+5 3.935501-5 7.501412+4 4.623810-5 4.790558+4 5.432503-5 3.035691+4 6.382635-5 1.907910+4 8.222426-5 9.094630+3 9.549926-5 5.884661+3 1.059254-4 4.380474+3 1.161449-4 3.391456+3 1.260000-4 2.722181+3 1.364583-4 2.210181+3 1.462177-4 1.856859+3 1.570000-4 1.563062+3 1.678804-4 1.339240+3 1.778279-4 1.180273+3 1.883649-4 1.046283+3 2.000000-4 9.285724+2 2.137962-4 8.201478+2 2.290868-4 7.268719+2 2.454709-4 6.489493+2 2.630268-4 5.832686+2 2.851018-4 5.189170+2 3.126079-4 4.579115+2 3.427678-4 4.072248+2 3.801894-4 3.597257+2 4.315191-4 3.117887+2 5.011872-4 2.655430+2 6.165950-4 2.139237+2 7.079458-4 1.838735+2 8.810489-4 1.430492+2 1.035142-3 1.182893+2 1.188502-3 9.969727+1 1.364583-3 8.341105+1 1.584893-3 6.823328+1 1.819701-3 5.629888+1 2.089296-3 4.611761+1 2.398833-3 3.749677+1 2.786121-3 2.984750+1 3.054921-3 2.575259+1 3.388442-3 2.166168+1 4.120975-3 1.544172+1 4.677351-3 1.231472+1 5.308844-3 9.752580+0 6.025596-3 7.669853+0 6.839116-3 5.989807+0 7.762471-3 4.645366+0 8.810489-3 3.577867+0 1.000000-2 2.736864+0 1.135011-2 2.079387+0 1.303167-2 1.529112+0 1.496236-2 1.115579+0 1.717908-2 8.074724-1 1.972423-2 5.799907-1 2.264644-2 4.134144-1 2.600160-2 2.925405-1 3.019952-2 1.995542-1 3.507519-2 1.350375-1 4.073803-2 9.072139-2 4.786301-2 5.867511-2 5.623413-2 3.766204-2 6.760830-2 2.251631-2 8.413951-2 1.212335-2 1.059254-1 6.272278-3 1.798871-1 1.364161-3 2.264644-1 7.074028-4 2.691535-1 4.351470-4 3.162278-1 2.784915-4 3.630781-1 1.912728-4 4.120975-1 1.364459-4 4.677351-1 9.803792-5 5.248075-1 7.309498-5 5.888437-1 5.489293-5 6.531306-1 4.271037-5 7.244360-1 3.345384-5 8.128305-1 2.569881-5 8.912509-1 2.091921-5 9.660509-1 1.758678-5 1.047129+0 1.489082-5 1.148154+0 1.239733-5 1.273503+0 1.016319-5 1.428894+0 8.215123-6 1.659587+0 6.283457-6 1.905461+0 4.943468-6 2.162719+0 3.995231-6 2.454709+0 3.252664-6 2.818383+0 2.619244-6 3.273407+0 2.087745-6 3.801894+0 1.676670-6 4.466836+0 1.334611-6 5.248075+0 1.070439-6 6.237348+0 8.515271-7 7.498942+0 6.722009-7 9.015711+0 5.347272-7 1.135011+1 4.049437-7 1.462177+1 3.013112-7 1.905461+1 2.232224-7 2.540973+1 1.624763-7 3.427678+1 1.176005-7 5.069907+1 7.772783-8 7.852356+1 4.935785-8 1.500000+2 2.544900-8 2.985383+2 1.268230-8 5.956621+2 6.329784-9 4.731513+3 7.93838-10 1.000000+5 3.75300-11 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 5.460000-6 5.460000-6 1.000000+5 5.460000-6 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 5.460000-6 0.0 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 4.300000-6 1.376881+7 5.432503-6 8.145926+6 6.683439-6 5.076171+6 8.222426-6 3.138518+6 9.885531-6 2.031931+6 1.174898-5 1.340792+6 1.350000-5 9.529138+5 1.548817-5 6.750537+5 1.778279-5 4.735127+5 2.018366-5 3.397360+5 2.344229-5 2.276411+5 2.754229-5 1.466529+5 3.388442-5 8.257057+4 4.897788-5 2.951740+4 5.559043-5 2.084230+4 6.165950-5 1.578259+4 6.683439-5 1.279691+4 7.161434-5 1.075843+4 7.673615-5 9.103148+3 8.222426-5 7.762238+3 8.709636-5 6.839928+3 9.332543-5 5.920615+3 9.900000-5 5.267916+3 1.059254-4 4.640787+3 1.140000-4 4.075155+3 1.230269-4 3.590021+3 1.318257-4 3.221547+3 1.428894-4 2.859833+3 1.531087-4 2.597903+3 1.659587-4 2.338757+3 1.819701-4 2.089021+3 2.041738-4 1.828736+3 2.426610-4 1.512019+3 3.000000-4 1.199974+3 3.589219-4 9.717408+2 4.315191-4 7.764751+2 5.688529-4 5.491987+2 6.382635-4 4.724042+2 7.244360-4 3.972461+2 9.015711-4 2.908985+2 1.047129-3 2.338851+2 1.202264-3 1.898050+2 1.396368-3 1.502470+2 1.640590-3 1.159034+2 1.927525-3 8.872064+1 2.238721-3 6.872324+1 2.570396-3 5.388414+1 2.951209-3 4.193592+1 3.388442-3 3.239047+1 3.890451-3 2.482634+1 4.466836-3 1.888029+1 5.128614-3 1.424561+1 5.888437-3 1.066367+1 6.683439-3 8.119949+0 7.585776-3 6.141434+0 8.609938-3 4.613651+0 9.772372-3 3.442502+0 1.109175-2 2.551250+0 1.258925-2 1.877951+0 1.428894-2 1.373003+0 1.621810-2 9.970159-1 1.862087-2 6.978470-1 2.113489-2 4.996622-1 2.426610-2 3.446122-1 2.786121-2 2.359140-1 3.198895-2 1.603288-1 3.715352-2 1.046839-1 4.315191-2 6.782321-2 5.069907-2 4.215706-2 6.000000-2 2.544500-2 7.161434-2 1.484610-2 8.810489-2 7.836198-3 1.083927-1 4.108603-3 1.717908-1 9.709818-4 2.137962-1 4.926289-4 2.511886-1 3.007508-4 2.884032-1 1.983244-4 3.273407-1 1.362959-4 3.715352-1 9.436490-5 4.168694-1 6.805407-5 4.623810-1 5.104880-5 5.128614-1 3.855291-5 5.688529-1 2.932763-5 6.237348-1 2.314702-5 6.918310-1 1.787170-5 7.585776-1 1.429718-5 8.609938-1 1.060253-5 9.225714-1 9.061471-6 9.885531-1 7.797847-6 1.071519+0 6.603241-6 1.174898+0 5.500567-6 1.288250+0 4.615543-6 1.445440+0 3.739991-6 1.717908+0 2.751200-6 1.972423+0 2.168235-6 2.238721+0 1.755913-6 2.540973+0 1.432303-6 2.917427+0 1.155494-6 3.388442+0 9.226005-7 3.935501+0 7.422009-7 4.623810+0 5.917631-7 5.432503+0 4.753620-7 6.531306+0 3.730861-7 7.852356+0 2.950841-7 9.660509+0 2.286481-7 1.174898+1 1.808245-7 1.548817+1 1.311900-7 2.041738+1 9.614163-8 2.786121+1 6.836269-8 3.890451+1 4.780282-8 5.688529+1 3.205815-8 9.332543+1 1.922438-8 1.778279+2 9.959060-9 3.548134+2 4.956962-9 1.412538+3 1.238539-9 1.000000+5 1.74580-11 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 4.300000-6 4.300000-6 1.000000+5 4.300000-6 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 4.300000-6 0.0 1.000000+5 1.000000+5 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 5.847650-7 1.025800+0 1.053870-6 1.026100+0 1.322210-6 1.026600+0 1.864000-6 1.027100+0 2.536020-6 1.027500+0 3.176330-6 1.028100+0 4.324520-6 1.028750+0 5.847650-6 1.029500+0 8.002660-6 1.030100+0 1.006430-5 1.031000+0 1.377140-5 1.032000+0 1.884280-5 1.033200+0 2.639550-5 1.034000+0 3.240290-5 1.035300+0 4.398240-5 1.036640+0 5.847650-5 1.038200+0 7.891590-5 1.039700+0 1.025280-4 1.041500+0 1.364120-4 1.043800+0 1.893440-4 1.046400+0 2.634370-4 1.048300+0 3.279860-4 1.051200+0 4.449060-4 1.054080+0 5.847650-4 1.057700+0 7.970730-4 1.061100+0 1.036790-3 1.065100+0 1.372600-3 1.070400+0 1.914920-3 1.076200+0 2.646420-3 1.080600+0 3.304950-3 1.087100+0 4.452850-3 1.093710+0 5.847650-3 1.102600+0 8.107550-3 1.110700+0 1.057360-2 1.120600+0 1.414390-2 1.133300+0 1.966560-2 1.147500+0 2.715160-2 1.158200+0 3.374260-2 1.174100+0 4.509940-2 1.190110+0 5.847650-2 1.205100+0 7.279800-2 1.227500+0 9.744130-2 1.250000+0 1.259000-1 1.265600+0 1.476180-1 1.294900+0 1.923800-1 1.331800+0 2.551450-1 1.362600+0 3.121080-1 1.397000+0 3.796390-1 1.433800+0 4.555760-1 1.477900+0 5.506670-1 1.500000+0 5.998000-1 1.562500+0 7.432910-1 1.617200+0 8.732650-1 1.712900+0 1.106390+0 1.784700+0 1.283900+0 1.892300+0 1.550210+0 2.000000+0 1.815000+0 2.044000+0 1.922000+0 2.163500+0 2.207710+0 2.372600+0 2.688770+0 2.686300+0 3.364620+0 3.000000+0 3.992000+0 3.500000+0 4.910770+0 4.000000+0 5.747000+0 5.000000+0 7.217000+0 6.000000+0 8.484000+0 7.000000+0 9.598000+0 8.000000+0 1.060000+1 9.000000+0 1.152000+1 1.000000+1 1.236000+1 1.100000+1 1.313000+1 1.200000+1 1.386000+1 1.300000+1 1.454000+1 1.400000+1 1.517000+1 1.500000+1 1.576000+1 1.600000+1 1.631000+1 1.800000+1 1.731000+1 2.000000+1 1.819000+1 2.200000+1 1.900000+1 2.400000+1 1.973000+1 2.600000+1 2.041000+1 2.800000+1 2.102000+1 3.000000+1 2.159000+1 4.000000+1 2.390000+1 5.000000+1 2.562000+1 6.000000+1 2.695000+1 8.000000+1 2.891000+1 1.000000+2 3.029000+1 1.500000+2 3.247000+1 2.000000+2 3.376000+1 3.000000+2 3.526000+1 4.000000+2 3.611000+1 5.000000+2 3.668000+1 6.000000+2 3.708000+1 8.000000+2 3.761000+1 1.000000+3 3.795000+1 1.500000+3 3.845000+1 2.000000+3 3.872000+1 3.000000+3 3.902000+1 4.000000+3 3.917000+1 5.000000+3 3.927000+1 6.000000+3 3.934000+1 8.000000+3 3.943000+1 1.000000+4 3.949000+1 1.500000+4 3.957000+1 2.000000+4 3.961000+1 3.000000+4 3.966000+1 4.000000+4 3.968000+1 5.000000+4 3.969000+1 6.000000+4 3.970000+1 8.000000+4 3.972000+1 1.000000+5 3.973000+1 1 81000 7 8 2.043700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.108510-7 2.090400+0 1.100930-6 2.094700+0 1.427530-6 2.099900+0 1.899120-6 2.106600+0 2.641840-6 2.114000+0 3.655320-6 2.119500+0 4.550850-6 2.127900+0 6.171810-6 2.136250+0 8.108510-6 2.147000+0 1.111730-5 2.156900+0 1.444010-5 2.169000+0 1.927120-5 2.184500+0 2.678760-5 2.201800+0 3.706140-5 2.214800+0 4.617570-5 2.234200+0 6.211440-5 2.253680+0 8.108510-5 2.281500+0 1.135740-4 2.307000+0 1.491790-4 2.338200+0 2.005840-4 2.377400+0 2.777840-4 2.410200+0 3.532950-4 2.446800+0 4.494110-4 2.485900+0 5.658330-4 2.532900+0 7.241460-4 2.556430+0 8.108510-4 2.611900+0 1.033930-3 2.660400+0 1.249970-3 2.745300+0 1.673020-3 2.809000+0 2.026140-3 2.904500+0 2.610180-3 3.000000+0 3.258000-3 3.125000+0 4.200840-3 3.234400+0 5.111120-3 3.425800+0 6.881680-3 3.569300+0 8.343510-3 3.784700+0 1.072310-2 4.000000+0 1.328000-2 4.250000+0 1.640470-2 4.625000+0 2.131230-2 5.000000+0 2.641000-2 5.500000+0 3.340070-2 6.000000+0 4.048000-2 6.750000+0 5.100870-2 7.000000+0 5.447000-2 8.000000+0 6.799000-2 9.000000+0 8.090000-2 1.000000+1 9.314000-2 1.100000+1 1.047000-1 1.200000+1 1.156000-1 1.300000+1 1.258000-1 1.400000+1 1.355000-1 1.500000+1 1.447000-1 1.600000+1 1.534000-1 1.800000+1 1.695000-1 2.000000+1 1.841000-1 2.200000+1 1.974000-1 2.400000+1 2.096000-1 2.600000+1 2.208000-1 2.800000+1 2.312000-1 3.000000+1 2.408000-1 4.000000+1 2.804000-1 5.000000+1 3.102000-1 6.000000+1 3.336000-1 8.000000+1 3.685000-1 1.000000+2 3.936000-1 1.500000+2 4.347000-1 2.000000+2 4.600000-1 3.000000+2 4.907000-1 4.000000+2 5.089000-1 5.000000+2 5.212000-1 6.000000+2 5.302000-1 8.000000+2 5.425000-1 1.000000+3 5.507000-1 1.500000+3 5.628000-1 2.000000+3 5.696000-1 3.000000+3 5.770000-1 4.000000+3 5.813000-1 5.000000+3 5.840000-1 6.000000+3 5.858000-1 8.000000+3 5.883000-1 1.000000+4 5.898000-1 1.500000+4 5.919000-1 2.000000+4 5.932000-1 3.000000+4 5.943000-1 4.000000+4 5.951000-1 5.000000+4 5.956000-1 6.000000+4 5.958000-1 8.000000+4 5.961000-1 1.000000+5 5.964000-1 1 81000 7 8 2.043700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 81000 7 9 2.043700+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.100000+1 1.000000+5 8.100000+1 5.000000+5 8.097300+1 7.500000+5 8.094900+1 9.375000+5 8.093580+1 1.000000+6 8.093200+1 1.500000+6 8.087300+1 2.000000+6 8.077600+1 2.500000+6 8.065200+1 3.000000+6 8.050300+1 3.500000+6 8.032810+1 4.000000+6 8.013300+1 4.500000+6 7.992100+1 5.000000+6 7.968700+1 5.687500+6 7.932410+1 6.437500+6 7.889440+1 6.500000+6 7.885450+1 7.000000+6 7.854900+1 7.500000+6 7.822390+1 8.250000+6 7.772980+1 9.000000+6 7.721400+1 1.000000+7 7.649500+1 1.109400+7 7.567900+1 1.250000+7 7.459300+1 1.375000+7 7.359470+1 1.500000+7 7.260400+1 1.687500+7 7.110240+1 1.750000+7 7.060800+1 2.000000+7 6.859600+1 2.250000+7 6.658320+1 2.500000+7 6.459000+1 2.875000+7 6.165960+1 3.000000+7 6.071200+1 3.437500+7 5.748390+1 3.750000+7 5.531180+1 4.000000+7 5.365700+1 4.500000+7 5.057360+1 4.750000+7 4.913850+1 5.000000+7 4.778000+1 5.750000+7 4.406800+1 6.000000+7 4.294400+1 6.750000+7 3.983470+1 7.000000+7 3.887600+1 7.750000+7 3.617160+1 8.000000+7 3.532200+1 8.750000+7 3.288660+1 9.000000+7 3.211400+1 9.750000+7 2.989120+1 1.000000+8 2.918500+1 1.062500+8 2.748710+1 1.156300+8 2.515890+1 1.250000+8 2.310300+1 1.437500+8 1.978590+1 1.500000+8 1.890900+1 1.625000+8 1.745330+1 1.750000+8 1.627790+1 1.812500+8 1.576580+1 2.000000+8 1.443400+1 2.250000+8 1.298880+1 2.500000+8 1.181900+1 2.671900+8 1.111770+1 2.789100+8 1.063250+1 2.875000+8 1.025490+1 2.894500+8 1.016610+1 2.973600+8 9.793550+0 3.000000+8 9.664400+0 3.062500+8 9.350620+0 3.335900+8 8.068620+0 3.445300+8 7.673500+0 3.500000+8 7.509400+0 3.562500+8 7.350620+0 4.000000+8 6.546000+0 4.125000+8 6.266250+0 4.234400+8 6.011550+0 4.425800+8 5.604670+0 4.750000+8 5.010490+0 4.784700+8 4.953010+0 4.928200+8 4.726340+0 5.000000+8 4.619200+0 5.125000+8 4.478360+0 5.343800+8 4.280110+0 5.835900+8 3.932640+0 6.000000+8 3.819200+0 6.250000+8 3.636650+0 6.812500+8 3.249860+0 7.000000+8 3.142500+0 7.625000+8 2.848640+0 7.875000+8 2.729760+0 8.000000+8 2.666400+0 8.250000+8 2.530240+0 8.468800+8 2.406990+0 8.851600+8 2.196780+0 9.569300+8 1.863230+0 9.856400+8 1.759520+0 1.000000+9 1.714200+0 1.031300+9 1.630560+0 1.060500+9 1.567340+0 1.100900+9 1.497910+0 1.137900+9 1.448230+0 1.183200+9 1.400440+0 1.222800+9 1.367020+0 1.375000+9 1.274650+0 1.500000+9 1.207600+0 1.562500+9 1.170260+0 1.617200+9 1.135820+0 1.712900+9 1.073590+0 1.784700+9 1.026640+0 1.892300+9 9.578090-1 2.000000+9 8.922100-1 2.139200+9 8.135550-1 2.272600+9 7.447720-1 2.443000+9 6.657450-1 2.602800+9 6.000690-1 2.750000+9 5.459910-1 2.822900+9 5.212900-1 3.024800+9 4.594460-1 3.271700+9 3.952520-1 3.487700+9 3.477260-1 3.759500+9 2.973920-1 3.986900+9 2.619610-1 4.348700+9 2.156700-1 4.674400+9 1.823640-1 5.000000+9 1.552100-1 5.375000+9 1.298810-1 5.703100+9 1.118580-1 6.277300+9 8.732090-2 7.031000+9 6.468440-2 8.000000+9 4.563700-2 1.00000+10 2.474900-2 2.57610+10 1.835380-3 4.80320+10 3.334340-4 7.40160+10 1.026940-4 1.00000+11 4.542500-5 1.34280+11 2.050280-5 2.20600+11 5.409450-6 4.19930+11 9.734600-7 1.03480+12 8.992400-8 3.24440+12 4.519030-9 1.00000+14 6.22680-13 3.16230+15 7.68022-17 1.00000+17 9.00600-21 1 81000 7 0 2.043700+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.30000-12 1.000000+2 7.30000-10 1.000000+3 7.300000-8 1.000000+4 7.300000-6 1.000000+5 7.300000-4 5.000000+5 1.825000-2 7.500000+5 4.106250-2 9.375000+5 6.416016-2 1.000000+6 7.300000-2 1.500000+6 1.620000-1 2.000000+6 2.848000-1 2.500000+6 4.387000-1 3.000000+6 6.210000-1 3.500000+6 8.288190-1 4.000000+6 1.058900+0 4.500000+6 1.307990+0 5.000000+6 1.573000+0 5.687500+6 1.957950+0 6.437500+6 2.397800+0 6.500000+6 2.435220+0 7.000000+6 2.737000+0 7.500000+6 3.042050+0 8.250000+6 3.503240+0 9.000000+6 3.964700+0 1.000000+7 4.575000+0 1.109400+7 5.232000+0 1.250000+7 6.056300+0 1.375000+7 6.767420+0 1.500000+7 7.460000+0 1.687500+7 8.469540+0 1.750000+7 8.799900+0 2.000000+7 1.009600+1 2.250000+7 1.136260+1 2.500000+7 1.260800+1 2.875000+7 1.443880+1 3.000000+7 1.504100+1 3.437500+7 1.710900+1 3.750000+7 1.855850+1 4.000000+7 1.970200+1 4.500000+7 2.194750+1 4.750000+7 2.304540+1 5.000000+7 2.412700+1 5.750000+7 2.722160+1 6.000000+7 2.819700+1 6.750000+7 3.091080+1 7.000000+7 3.175000+1 7.750000+7 3.406280+1 8.000000+7 3.477700+1 8.750000+7 3.676590+1 9.000000+7 3.739000+1 9.750000+7 3.915670+1 1.000000+8 3.972400+1 1.062500+8 4.108580+1 1.156300+8 4.301800+1 1.250000+8 4.484400+1 1.437500+8 4.822510+1 1.500000+8 4.928300+1 1.625000+8 5.129150+1 1.750000+8 5.317080+1 1.812500+8 5.405590+1 2.000000+8 5.652800+1 2.250000+8 5.938060+1 2.500000+8 6.177900+1 2.671900+8 6.319290+1 2.789100+8 6.405740+1 2.875000+8 6.465560+1 2.894500+8 6.478350+1 2.973600+8 6.529310+1 3.000000+8 6.546100+1 3.062500+8 6.583460+1 3.335900+8 6.732790+1 3.445300+8 6.785840+1 3.500000+8 6.811600+1 3.562500+8 6.839400+1 4.000000+8 7.012900+1 4.125000+8 7.055560+1 4.234400+8 7.092050+1 4.425800+8 7.151330+1 4.750000+8 7.241990+1 4.784700+8 7.250940+1 4.928200+8 7.287390+1 5.000000+8 7.305300+1 5.125000+8 7.334650+1 5.343800+8 7.383540+1 5.835900+8 7.481730+1 6.000000+8 7.511700+1 6.250000+8 7.553470+1 6.812500+8 7.634800+1 7.000000+8 7.659200+1 7.625000+8 7.727440+1 7.875000+8 7.751080+1 8.000000+8 7.762000+1 8.250000+8 7.781520+1 8.468800+8 7.798160+1 8.851600+8 7.823550+1 9.569300+8 7.862670+1 9.856400+8 7.876050+1 1.000000+9 7.882600+1 1.031300+9 7.895060+1 1.060500+9 7.906370+1 1.100900+9 7.919530+1 1.137900+9 7.931090+1 1.183200+9 7.944290+1 1.222800+9 7.954190+1 1.375000+9 7.986040+1 1.500000+9 8.006300+1 1.562500+9 8.014570+1 1.617200+9 8.021550+1 1.712900+9 8.033230+1 1.784700+9 8.040790+1 1.892300+9 8.050350+1 2.000000+9 8.059400+1 2.139200+9 8.068020+1 2.272600+9 8.074460+1 2.443000+9 8.081230+1 2.602800+9 8.086360+1 2.750000+9 8.089740+1 2.822900+9 8.091340+1 3.024800+9 8.093910+1 3.271700+9 8.096580+1 3.487700+9 8.098020+1 3.759500+9 8.098730+1 3.986900+9 8.099290+1 4.348700+9 8.099740+1 4.674400+9 8.099670+1 5.000000+9 8.099600+1 5.375000+9 8.099660+1 5.703100+9 8.099710+1 6.277300+9 8.099790+1 7.031000+9 8.099890+1 8.000000+9 8.100000+1 1.00000+10 8.100000+1 2.57610+10 8.100000+1 4.80320+10 8.100000+1 7.40160+10 8.100000+1 1.00000+11 8.100000+1 1.34280+11 8.100000+1 2.20600+11 8.100000+1 4.19930+11 8.100000+1 1.03480+12 8.100000+1 3.24440+12 8.100000+1 1.00000+14 8.100000+1 3.16230+15 8.100000+1 1.00000+17 8.100000+1 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.140088-6 0.0 1.142894-6 2.014843-7 1.145701-6 3.986818-7 1.148507-6 7.282249-7 1.151313-6 1.227887-6 1.154119-6 1.911196-6 1.156925-6 2.746034-6 1.159731-6 3.642173-6 1.162538-6 4.459324-6 1.165344-6 5.040010-6 1.168150-6 5.258329-6 1.170956-6 5.064283-6 1.173762-6 4.502381-6 1.176569-6 3.695050-6 1.182181-6 1.957666-6 1.184987-6 1.263801-6 1.187793-6 7.531350-7 1.190599-6 4.143057-7 1.193406-6 2.103890-7 1.196212-6 0.0 1.565126-6 0.0 1.570905-6 4.620465-1 1.572831-6 6.141083-1 1.576683-6 1.121719+0 1.580536-6 1.891372+0 1.584870-6 3.104309+0 1.591619-6 5.440003+0 1.596186-6 6.924687+0 1.600151-6 7.794172+0 1.604172-6 8.059245+0 1.608126-6 7.660944+0 1.612047-6 6.712218+0 1.618111-6 4.652083+0 1.622912-6 3.015485+0 1.626764-6 1.946692+0 1.630617-6 1.160089+0 1.634469-6 6.381746-1 1.640247-6 1.622266-1 1.642174-6 0.0 2.389261-6 0.0 2.395142-6 2.143774-7 2.401023-6 4.241937-7 2.406904-6 7.748244-7 2.412785-6 1.306460-6 2.418666-6 2.033495-6 2.424547-6 2.921755-6 2.430427-6 3.875238-6 2.436308-6 4.744679-6 2.442189-6 5.362524-6 2.448070-6 5.594813-6 2.453951-6 5.388350-6 2.459832-6 4.790491-6 2.465713-6 3.931499-6 2.477474-6 2.082938-6 2.483355-6 1.344672-6 2.489236-6 8.013286-7 2.495117-6 4.408174-7 2.500998-6 2.238520-7 2.506879-6 0.0 2.551371-6 0.0 2.557651-6 1.552953-7 2.563931-6 3.072865-7 2.570211-6 5.612839-7 2.576491-6 9.464018-7 2.582771-6 1.473067-6 2.589050-6 2.116523-6 2.595330-6 2.807228-6 2.601610-6 3.437052-6 2.607890-6 3.884620-6 2.614170-6 4.052890-6 2.620450-6 3.903328-6 2.626730-6 3.470238-6 2.633010-6 2.847983-6 2.645569-6 1.508883-6 2.651849-6 9.740826-7 2.658129-6 5.804835-7 2.664409-6 3.193288-7 2.670689-6 1.621587-7 2.676969-6 0.0 2.705215-6 0.0 2.716867-6 1.896464-1 2.718532-6 2.164623-1 2.719825-6 2.511467-1 2.725349-6 4.745837-1 2.733214-6 1.825662+0 2.738765-6 2.887868+0 2.745473-6 4.824235+0 2.752181-6 7.526532+0 2.762398-6 1.298465+1 2.773381-6 1.934241+1 2.780690-6 2.260783+1 2.787712-6 2.422770+1 2.794406-6 2.404034+1 2.801534-6 2.195255+1 2.808843-6 1.831420+1 2.820243-6 1.154486+1 2.826937-6 7.917151+0 2.832679-6 5.336769+0 2.839387-6 3.108717+0 2.846095-6 1.703357+0 2.853715-6 7.017584-1 2.859511-6 0.0 2.950009-6 0.0 2.957270-6 2.414327-2 2.964531-6 4.777287-2 2.971792-6 8.726106-2 2.979054-6 1.471341-1 2.986315-6 2.290131-1 2.998114-6 3.961024-1 3.008098-6 5.343478-1 3.015359-6 6.039297-1 3.022620-6 6.300902-1 3.029881-6 6.068383-1 3.037142-6 5.395071-1 3.048034-6 3.891652-1 3.058925-6 2.345814-1 3.066186-6 1.514376-1 3.073448-6 9.024596-2 3.080709-6 4.964505-2 3.087970-6 2.521030-2 3.095231-6 0.0 3.361228-6 0.0 3.361237-6 9.77192-11 3.363570-6 1.636878-7 3.366615-6 8.725185-3 3.383188-6 4.785343-1 3.391475-6 8.696845-1 3.399761-6 1.459536+0 3.408727-6 2.342886+0 3.429802-6 4.871201+0 3.441065-6 5.867689+0 3.450142-6 6.094459+0 3.459108-6 5.764008+0 3.467285-6 5.061979+0 3.491563-6 2.213611+0 3.499199-6 1.494790+0 3.507485-6 9.332979-1 3.515772-6 5.760062-1 3.529350-6 2.370013-1 3.532345-6 1.686112-1 3.542749-6 1.985710-1 3.551280-6 2.071725-1 3.559811-6 1.995274-1 3.568342-6 1.773890-1 3.593935-6 7.712995-2 3.602466-6 4.979241-2 3.610997-6 2.967271-2 3.619528-6 1.632320-2 3.631792-6 4.667417-3 3.636590-6 2.62678-14 3.660043-6 1.19811-14 3.661438-6 5.535287-8 3.663156-6 1.921419-3 3.681189-6 2.011933-1 3.690205-6 3.665276-1 3.699222-6 6.165027-1 3.709256-6 1.005808+0 3.729934-6 1.973647+0 3.736948-6 2.283208+0 3.745131-6 2.530922+0 3.754276-6 2.625247+0 3.763282-6 2.517300+0 3.774676-6 2.135924+0 3.798402-6 1.058938+0 3.807837-6 7.078106-1 3.816741-6 4.578759-1 3.824319-6 3.088642-1 3.825913-6 2.900143-1 3.843180-6 1.622275-1 3.843484-6 1.601652-1 3.852656-6 2.295765-1 3.859913-6 3.212310-1 3.861972-6 4.052564-1 3.877723-6 1.155384+0 3.878915-6 1.215241+0 3.889237-6 1.958965+0 3.899877-6 2.986650+0 3.927863-6 6.333597+0 3.939209-6 7.349827+0 3.948266-6 7.777288+0 3.957626-6 7.747211+0 3.967448-6 7.208521+0 3.978826-6 6.105956+0 4.001165-6 3.572236+0 4.012581-6 2.519266+0 4.021425-6 1.947572+0 4.030925-6 1.521575+0 4.049927-6 9.438562-1 4.071674-6 9.025105-1 4.093873-6 9.061114-1 4.123362-6 9.604009-1 4.176326-6 1.227576+0 4.195839-6 1.242458+0 4.210092-6 1.174022+0 4.247496-6 8.938751-1 4.268334-6 7.965015-1 4.290831-6 7.628914-1 4.375778-6 8.169855-1 4.504314-6 8.053388-1 4.527820-6 1.001368+0 4.537607-6 1.135300+0 4.549991-6 1.399548+0 4.560901-6 1.714081+0 4.592686-6 2.802725+0 4.605580-6 3.073969+0 4.616665-6 3.138360+0 4.627871-6 3.019167+0 4.640292-6 2.702202+0 4.669936-6 1.714203+0 4.682407-6 1.395120+0 4.693492-6 1.193590+0 4.704577-6 1.062980+0 4.726038-6 8.916588-1 4.753442-6 8.474492-1 4.798791-6 7.595064-1 4.808223-6 7.739892-1 4.825814-6 8.251198-1 4.839105-6 9.034616-1 4.850924-6 1.013464+0 4.865938-6 1.211481+0 4.896812-6 1.678060+0 4.910318-6 1.808108+0 4.922593-6 1.842538+0 4.935537-6 1.781356+0 4.948991-6 1.628222+0 4.978802-6 1.213872+0 4.993047-6 1.072276+0 5.003691-6 1.009596+0 5.017663-6 9.959464-1 5.038970-6 1.061967+0 5.074216-6 1.316236+0 5.087038-6 1.353804+0 5.104312-6 1.339493+0 5.151334-6 1.204912+0 5.189462-6 1.213774+0 5.357049-6 1.174125+0 5.430475-6 1.139424+0 5.552831-6 1.136636+0 6.757210-6 9.285191-1 6.790474-6 4.263436+0 6.807106-6 7.021626+0 6.823738-6 1.120489+1 6.842449-6 1.779861+1 6.890266-6 3.826506+1 6.908425-6 4.329433+1 6.924728-6 4.483648+1 6.942854-6 4.256488+1 6.959783-6 3.740300+1 6.988012-6 2.527057+1 7.006690-6 1.729221+1 7.023322-6 1.147739+1 7.039954-6 7.197247+0 7.056586-6 4.356542+0 7.089071-6 9.641656-1 7.089850-6 8.812577-1 7.897298-6 7.815690-1 7.936174-6 7.709135+0 7.955613-6 1.343682+1 7.975051-6 2.212235+1 7.996919-6 3.581125+1 8.030974-6 6.217217+1 8.054018-6 7.892834+1 8.075388-6 8.900598+1 8.093120-6 9.193738+1 8.112903-6 8.791586+1 8.134049-6 7.652144+1 8.167041-6 5.134464+1 8.188871-6 3.478824+1 8.208309-6 2.272213+1 8.227747-6 1.384127+1 8.247186-6 7.948129+0 8.276343-6 2.572866+0 8.286062-6 7.407325-1 9.928236-6 5.982721-1 1.028651-5 5.729557-1 1.033715-5 6.295899-1 1.036247-5 6.775408-1 1.038779-5 7.511445-1 1.042201-5 8.968833-1 1.044935-5 1.040354+0 1.050096-5 1.818072+0 1.053004-5 2.414121+0 1.055662-5 3.143919+0 1.058573-5 4.163336+0 1.064976-5 6.682797+0 1.068254-5 7.545527+0 1.070751-5 7.706731+0 1.073624-5 7.260293+0 1.075975-5 6.502247+0 1.083449-5 3.156208+0 1.086021-5 2.226382+0 1.088593-5 1.541632+0 1.091165-5 1.086754+0 1.096308-5 5.292870-1 1.113825-5 5.187314-1 1.119807-5 5.310797-1 1.125320-5 7.149054-1 1.128076-5 8.669403-1 1.130832-5 1.090172+0 1.134422-5 1.492667+0 1.141367-5 2.358358+0 1.144614-5 2.643020+0 1.147715-5 2.692245+0 1.150585-5 2.555660+0 1.154493-5 2.167727+0 1.159343-5 1.605145+0 1.161422-5 1.397333+0 1.164185-5 1.213490+0 1.166928-5 1.136756+0 1.169759-5 1.155643+0 1.175886-5 1.362526+0 1.178745-5 1.493581+0 1.181517-5 1.567467+0 1.184180-5 1.595541+0 1.195773-5 1.450238+0 1.222552-5 1.370835+0 1.242931-5 1.340237+0 1.262998-5 1.233658+0 1.374153-5 9.871511-1 1.501034-5 7.844470-1 1.529259-5 7.480475-1 1.536787-5 3.090145+0 1.540551-5 5.029083+0 1.544316-5 7.971326+0 1.548550-5 1.261042+1 1.559372-5 2.701170+1 1.563745-5 3.063933+1 1.567172-5 3.163243+1 1.571010-5 3.026256+1 1.575105-5 2.639378+1 1.581493-5 1.784800+1 1.585720-5 1.222823+1 1.589484-5 8.131955+0 1.593249-5 5.116127+0 1.597013-5 3.113874+0 1.604306-5 7.406106-1 1.604541-5 6.626459-1 1.653062-5 6.150624-1 1.661200-5 2.461672+0 1.665268-5 3.990530+0 1.669591-5 6.508562+0 1.673660-5 9.726847+0 1.681215-5 1.719115+1 1.686566-5 2.193693+1 1.690373-5 2.417733+1 1.694505-5 2.484846+1 1.698596-5 2.361709+1 1.703110-5 2.037476+1 1.714094-5 9.666663+0 1.718163-5 6.436431+0 1.722232-5 4.058199+0 1.726300-5 2.479230+0 1.734438-5 5.461557-1 1.767076-5 5.219920-1 1.775775-5 7.485716-1 1.780124-5 9.379043-1 1.784473-5 1.230330+0 1.789911-5 1.980785+0 1.793857-5 2.615460+0 1.801419-5 4.142039+0 1.811335-5 6.229506+0 1.816596-5 6.988515+0 1.820404-5 7.293398+0 1.825300-5 7.233344+0 1.829653-5 6.807549+0 1.834549-5 5.949140+0 1.846517-5 3.196263+0 1.850869-5 2.308290+0 1.854437-5 1.685822+0 1.859054-5 1.169405+0 1.863446-5 9.078967-1 1.868488-5 7.572605-1 1.872230-5 6.771049-1 1.874209-5 7.380928-1 1.877641-5 8.621105-1 1.882217-5 1.089639+0 1.897020-5 2.025277+0 1.900523-5 2.201265+0 1.905100-5 2.325135+0 1.911381-5 2.301690+0 1.926990-5 1.932204+0 1.933543-5 1.865149+0 1.961916-5 1.898392+0 1.981357-5 1.778166+0 1.989565-5 1.710409+0 2.006221-5 1.722704+0 2.015880-5 1.957473+0 2.021567-5 2.180664+0 2.027394-5 2.524577+0 2.033619-5 3.008677+0 2.047964-5 4.233678+0 2.050517-5 4.407509+0 2.055370-5 4.591532+0 2.061542-5 4.544260+0 2.066087-5 4.348504+0 2.073999-5 3.775727+0 2.084995-5 2.891667+0 2.091890-5 2.496512+0 2.097151-5 2.313715+0 2.104745-5 2.154166+0 2.111799-5 2.217558+0 2.122051-5 2.459085+0 2.138446-5 2.973131+0 2.143608-5 3.055800+0 2.155510-5 3.047693+0 2.173887-5 2.919406+0 2.266920-5 3.161348+0 2.373507-5 3.623524+0 2.485000-5 4.307404+0 2.598290-5 5.241631+0 2.701226-5 6.312107+0 2.836319-5 8.046471+0 2.986994-5 1.043962+1 3.257573-5 1.566533+1 3.649925-5 2.349857+1 3.900000-5 2.697132+1 4.177328-5 2.862174+1 4.506875-5 2.812709+1 5.153326-5 2.380769+1 6.053113-5 1.738284+1 6.669113-5 1.383723+1 7.348516-5 1.071116+1 7.425816-5 1.084077+1 7.512640-5 1.167889+1 7.548882-5 1.163558+1 7.635308-5 1.088713+1 9.035195-5 7.280553+0 9.476601-5 6.363374+0 9.691560-5 6.488932+0 1.032250-4 5.897449+0 1.184275-4 4.100237+0 1.246959-4 3.534805+0 1.299012-4 3.442591+0 1.315033-4 3.519127+0 1.326120-4 3.723100+0 1.337120-4 3.966304+0 1.347532-4 3.884282+0 1.359937-4 3.614379+0 1.372461-4 3.551638+0 1.401481-4 3.523550+0 1.550000-4 3.057226+0 1.621810-4 2.980866+0 1.690000-4 3.046616+0 1.758750-4 3.256861+0 1.845281-4 3.732485+0 1.942830-4 4.555555+0 2.044160-4 5.750361+0 2.139055-4 7.143227+0 2.380000-4 1.141407+1 2.800000-4 1.906688+1 3.030000-4 2.247098+1 3.367250-4 2.599836+1 3.750904-4 2.853459+1 3.820926-4 2.974427+1 3.948390-4 2.998236+1 4.024214-4 3.113661+1 4.915200-4 3.212857+1 5.935792-4 3.118053+1 6.060708-4 3.224839+1 8.191366-4 2.799507+1 8.363377-4 2.800616+1 1.080192-3 2.266432+1 1.349674-3 1.827609+1 1.627243-3 1.498299+1 1.975773-3 1.201523+1 2.333597-3 9.863092+0 2.353679-3 1.006798+1 2.364356-3 1.071675+1 2.373344-3 1.187322+1 2.382610-3 1.376507+1 2.408642-3 2.046866+1 2.423059-3 2.266661+1 2.445467-3 2.368443+1 2.469062-3 2.452063+1 2.488393-3 2.659563+1 2.518596-3 3.018755+1 2.549201-3 3.121078+1 2.674877-3 3.152751+1 2.837678-3 2.966371+1 2.909042-3 2.893174+1 2.981808-3 3.166116+1 3.372601-3 2.695821+1 3.459130-3 2.735729+1 3.633299-3 2.574872+1 3.746267-3 2.558796+1 4.395848-3 2.044816+1 4.983848-3 1.706634+1 5.704926-3 1.396263+1 6.568819-3 1.129854+1 7.371878-3 9.464753+0 8.438962-3 7.678780+0 9.515629-3 6.358309+0 1.092540-2 5.106752+0 1.233095-2 4.211280+0 1.244074-2 4.262321+0 1.249876-2 4.507151+0 1.254416-2 4.933825+0 1.259044-2 5.634414+0 1.273612-2 8.586590+0 1.279319-2 9.325240+0 1.286372-2 9.723751+0 1.306544-2 9.656889+0 1.445458-2 8.178111+0 1.459180-2 8.344793+0 1.469859-2 8.992710+0 1.483882-2 1.013546+1 1.497291-2 1.059157+1 1.523456-2 1.081756+1 1.547737-2 1.155753+1 1.607495-2 1.107976+1 1.855003-2 8.863749+0 2.140464-2 7.055759+0 2.449967-2 5.668761+0 2.760117-2 4.656298+0 3.148272-2 3.742605+0 3.595591-2 2.991851+0 4.084369-2 2.409089+0 4.613840-2 1.955365+0 5.231074-2 1.574155+0 5.908168-2 1.274517+0 6.646473-2 1.037497+0 7.512528-2 8.373376-1 8.349703-2 6.965991-1 8.412218-2 7.101435-1 8.443703-2 7.542060-1 8.470524-2 8.393216-1 8.490755-2 9.464194-1 8.514912-2 1.133027+0 8.543386-2 1.434389+0 8.618240-2 2.385541+0 8.653414-2 2.720575+0 8.697173-2 2.950409+0 8.767572-2 3.034620+0 1.027132-1 2.374500+0 1.152993-1 1.972598+0 1.319133-1 1.583076+0 1.462177-1 1.336051+0 1.654329-1 1.089522+0 1.864398-1 8.939555-1 2.089296-1 7.404013-1 2.344229-1 6.126584-1 2.639082-1 5.056381-1 2.952395-1 4.225382-1 3.318658-1 3.518729-1 3.755786-1 2.913374-1 4.222278-1 2.450742-1 4.817831-1 2.031540-1 5.433830-1 1.724409-1 6.170388-1 1.461773-1 6.998420-1 1.252120-1 8.054847-1 1.063758-1 9.265631-1 9.128002-2 1.120601+0 7.436273-2 1.286622+0 6.363551-2 1.477239+0 5.445574-2 1.696098+0 4.660021-2 1.947381+0 3.987788-2 2.246089+0 3.395819-2 2.567148+0 2.920252-2 2.947480+0 2.498990-2 3.384160+0 2.138497-2 3.885536+0 1.830008-2 4.461192+0 1.566019-2 5.122134+0 1.340112-2 5.880996+0 1.146794-2 6.752287+0 9.813628-3 7.754107+0 8.396280-3 8.901248+0 7.186508-3 9.760024+0 6.477599-3 1.000000+1 1.343268-2 1 81000 7 0 2.043700+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.084017+1 1.545270-6-7.924287+1 1.590197-6-7.616554+1 1.605254-6-8.061426+1 1.619059-6-7.651102+1 1.675733-6-8.010678+1 2.078877-6-8.062865+1 2.620450-6-7.812236+1 2.705215-6-7.462782+1 2.745473-6-6.748121+1 2.760829-6-6.629248+1 2.773381-6-6.963433+1 2.789593-6-8.044586+1 2.791698-6-8.042644+1 2.807272-6-6.995512+1 2.820243-6-6.668062+1 2.837919-6-6.869663+1 2.873659-6-7.537520+1 2.971792-6-7.939888+1 3.297006-6-8.078676+1 3.424458-6-7.810490+1 3.450142-6-8.134160+1 3.484622-6-7.798484+1 3.628059-6-8.135853+1 3.736948-6-8.001878+1 3.782243-6-8.105348+1 3.840217-6-8.043272+1 3.913449-6-7.760644+1 3.953708-6-8.114629+1 3.991958-6-7.721811+1 4.163091-6-8.058431+1 4.532367-6-8.102062+1 4.628972-6-8.079307+1 4.776116-6-8.122384+1 5.610602-6-8.062808+1 6.461926-6-7.581886+1 6.669543-6-7.125505+1 6.746317-6-6.612075+1 6.829455-6-5.345720+1 6.852909-6-5.265703+1 6.871587-6-5.513628+1 6.891305-6-6.171424+1 6.916921-6-7.472375+1 6.924728-6-7.950441+1 6.944597-6-7.152969+1 6.966711-6-6.216691+1 6.988012-6-5.748898+1 7.006690-6-5.692842+1 7.038135-6-6.050710+1 7.109358-6-7.144982+1 7.207800-6-7.710865+1 7.357088-6-8.104819+1 7.698090-6-7.269051+1 7.811975-6-6.636006+1 7.872169-6-5.952481+1 7.896304-6-5.418819+1 7.916736-6-4.855698+1 7.936174-6-4.358597+1 7.958042-6-3.707129+1 7.981733-6-3.130400+1 7.996919-6-2.939990+1 8.009144-6-2.976039+1 8.020609-6-3.158670+1 8.030974-6-3.500537+1 8.046653-6-4.321926+1 8.067116-6-5.928051+1 8.089512-6-8.070188+1 8.117753-6-5.177752+1 8.136042-6-3.714899+1 8.149995-6-2.936087+1 8.159866-6-2.543647+1 8.169433-6-2.321330+1 8.177937-6-2.221427+1 8.186137-6-2.202655+1 8.203450-6-2.407248+1 8.227747-6-3.024871+1 8.260246-6-3.940730+1 8.284847-6-4.561858+1 8.298652-6-4.964264+1 8.334578-6-5.523977+1 8.413951-6-6.171080+1 8.550675-6-6.702517+1 8.873715-6-7.206221+1 9.928236-6-7.699941+1 1.046317-5-8.035712+1 1.062894-5-8.087229+1 1.079048-5-7.372995+1 1.095022-5-7.539232+1 1.140258-5-7.882031+1 1.163494-5-7.747490+1 1.467497-5-8.168643+1 1.517224-5-7.753483+1 1.530708-5-7.310953+1 1.548550-5-6.549652+1 1.555145-5-6.732757+1 1.561372-5-7.434642+1 1.566448-5-8.229703+1 1.574663-5-6.870329+1 1.580104-5-6.383005+1 1.585720-5-6.293255+1 1.602659-5-7.061205+1 1.607321-5-7.314022+1 1.654263-5-8.122356+1 1.674554-5-7.446701+1 1.682599-5-7.676433+1 1.689851-5-8.269052+1 1.702624-5-6.754245+1 1.710285-5-6.357471+1 1.718671-5-6.458901+1 1.743857-5-7.315739+1 1.801419-5-8.046889+1 1.820404-5-7.769289+1 1.842233-5-7.378516+1 1.895795-5-7.860012+1 2.007598-5-8.042756+1 2.050517-5-8.085507+1 2.087464-5-7.905100+1 2.152419-5-8.068193+1 3.083386-5-8.777527+1 3.507519-5-8.603901+1 4.177328-5-7.415077+1 4.725511-5-6.511485+1 5.310167-5-5.971577+1 6.247818-5-5.616571+1 7.512640-5-5.624818+1 7.847688-5-5.736384+1 8.745015-5-5.648061+1 1.010680-4-5.807126+1 1.272133-4-6.012390+1 1.871416-4-6.684110+1 2.331491-4-7.147380+1 2.800000-4-7.065478+1 4.264561-4-5.619543+1 5.211309-4-4.758687+1 5.815313-4-4.412126+1 6.022052-4-4.391307+1 6.383144-4-4.050229+1 7.500000-4-3.500101+1 9.225714-4-2.964912+1 1.080192-3-2.681091+1 1.273733-3-2.503957+1 1.529567-3-2.437723+1 1.814243-3-2.527938+1 2.044357-3-2.754875+1 2.194068-3-3.054715+1 2.280999-3-3.376322+1 2.333597-3-3.740951+1 2.364356-3-4.188233+1 2.386121-3-4.552160+1 2.405250-3-4.562112+1 2.445467-3-4.131352+1 2.496645-3-4.095901+1 2.560474-3-3.457872+1 2.641725-3-2.986603+1 2.755181-3-2.531551+1 2.837678-3-2.339298+1 2.895626-3-2.324464+1 2.938495-3-2.388690+1 2.970383-3-2.267425+1 3.025788-3-1.986413+1 3.111050-3-1.758185+1 3.239867-3-1.551153+1 3.347394-3-1.466215+1 3.405934-3-1.466918+1 3.507122-3-1.287436+1 3.604271-3-1.195249+1 3.677374-3-1.170012+1 3.812951-3-9.888918+0 3.994055-3-8.462019+0 4.193196-3-7.352982+0 4.507194-3-6.142201+0 4.838241-3-5.306856+0 5.166527-3-4.744512+0 5.588747-3-4.315214+0 6.095369-3-4.054881+0 6.815750-3-3.960559+0 7.729030-3-4.140367+0 8.782574-3-4.573898+0 9.951868-3-5.310042+0 1.092540-2-6.220591+0 1.159205-2-7.191417+0 1.202219-2-8.213443+0 1.227522-2-9.238493+0 1.241272-2-1.024595+1 1.260738-2-1.258637+1 1.267617-2-1.275495+1 1.275971-2-1.201910+1 1.292328-2-9.974812+0 1.306544-2-8.998840+0 1.330683-2-8.112080+0 1.363207-2-7.504037+0 1.402732-2-7.270602+0 1.432335-2-7.483380+0 1.450832-2-8.014762+0 1.469859-2-8.903955+0 1.479886-2-8.850779+0 1.502043-2-7.742877+0 1.518096-2-7.456445+0 1.532377-2-7.284401+0 1.553484-2-6.346364+0 1.574037-2-5.514081+0 1.607495-2-4.682524+0 1.651546-2-3.930890+0 1.712971-2-3.184603+0 1.767625-2-2.692675+0 1.827574-2-2.275058+0 1.910354-2-1.841297+0 2.003614-2-1.481179+0 2.099728-2-1.213408+0 2.204354-2-1.004719+0 2.313399-2-8.517494-1 2.449967-2-7.238077-1 2.575024-2-6.508113-1 2.760117-2-5.993145-1 2.964137-2-5.859031-1 3.249870-2-6.153260-1 3.748705-2-7.351748-1 6.133048-2-1.481574+0 6.909373-2-1.776895+0 7.512528-2-2.092730+0 7.910841-2-2.416909+0 8.161438-2-2.751573+0 8.314403-2-3.096789+0 8.412218-2-3.499651+0 8.543386-2-4.415723+0 8.585718-2-4.486783+0 8.635626-2-4.256021+0 8.742273-2-3.406606+0 8.820081-2-3.008163+0 8.941416-2-2.628126+0 9.115690-2-2.278645+0 9.362734-2-1.956150+0 9.703459-2-1.653138+0 1.011579-1-1.409061+0 1.060531-1-1.214722+0 1.126224-1-1.039117+0 1.220672-1-8.821371-1 1.319133-1-7.896364-1 1.462177-1-7.207251-1 1.654329-1-6.872940-1 2.011315-1-6.931342-1 3.595682-1-8.208330-1 5.433830-1-8.920167-1 9.265631-1-9.383066-1 2.814822+0-9.608788-1 8.529517+0-9.656984-1 1.000000+1-9.644204-1 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.273607-3 1.084530-6 9.030119-3 1.156442-6 1.211391-2 1.189064-6 1.378393-2 1.219647-6 1.554393-2 1.302077-6 2.137225-2 1.349116-6 2.549972-2 1.390275-6 2.975036-2 1.457802-6 3.812298-2 1.485375-6 4.218178-2 1.533628-6 5.031740-2 1.569818-6 5.742814-2 1.637675-6 7.366032-2 1.694913-6 9.082168-2 1.740356-6 1.075960-1 1.761011-6 1.164442-1 1.800785-6 1.357422-1 1.838072-6 1.569823-1 1.873029-6 1.804655-1 1.905801-6 2.064268-1 1.938593-6 2.370117-1 1.965328-6 2.661007-1 1.992331-6 3.003297-1 2.017647-6 3.377850-1 2.041389-6 3.786110-1 2.063631-6 4.228766-1 2.084490-6 4.709745-1 2.104046-6 5.232895-1 2.122379-6 5.801720-1 2.139567-6 6.419739-1 2.155680-6 7.090824-1 2.170787-6 7.817984-1 2.188489-6 8.817763-1 2.198226-6 9.450725-1 2.210673-6 1.036613+0 2.222342-6 1.135468+0 2.233282-6 1.242087+0 2.243538-6 1.356925+0 2.253154-6 1.480467+0 2.262168-6 1.613222+0 2.270619-6 1.755719+0 2.278541-6 1.908505+0 2.285969-6 2.072152+0 2.292932-6 2.247260+0 2.299460-6 2.434466+0 2.305580-6 2.634459+0 2.311318-6 2.847983+0 2.316697-6 3.075868+0 2.321740-6 3.319053+0 2.326467-6 3.578630+0 2.330899-6 3.855873+0 2.335055-6 4.152262+0 2.338950-6 4.469452+0 2.342602-6 4.809204+0 2.349449-6 5.591169+0 2.355441-6 6.489397+0 2.360683-6 7.508118+0 2.365271-6 8.640407+0 2.369285-6 9.868481+0 2.372797-6 1.116661+1 2.376554-6 1.283182+1 2.380912-6 1.518679+1 2.384772-6 1.771612+1 2.397750-6 2.998296+1 2.401467-6 3.470266+1 2.403282-6 3.720968+1 2.406233-6 4.155990+1 2.409183-6 4.623329+1 2.415084-6 5.641211+1 2.415822-6 5.774785+1 2.420985-6 6.734250+1 2.423013-6 7.116983+1 2.426886-6 7.842057+1 2.429882-6 8.386227+1 2.432787-6 8.888145+1 2.435783-6 9.368707+1 2.438687-6 9.788012+1 2.441269-6 1.011454+2 2.444277-6 1.043181+2 2.447723-6 1.070167+2 2.450674-6 1.084645+2 2.451701-6 1.087734+2 2.454632-6 1.090881+2 2.457603-6 1.085458+2 2.458960-6 1.080123+2 2.461823-6 1.063157+2 2.464405-6 1.041476+2 2.468561-6 9.949975+1 2.470916-6 9.630160+1 2.472901-6 9.333252+1 2.474830-6 9.023909+1 2.477089-6 8.639394+1 2.479993-6 8.117126+1 2.482575-6 7.634132+1 2.485064-6 7.158476+1 2.488845-6 6.430959+1 2.491795-6 5.869437+1 2.495114-6 5.254992+1 2.497696-6 4.795493+1 2.503597-6 3.824855+1 2.505625-6 3.520665+1 2.507561-6 3.245486+1 2.509498-6 2.985475+1 2.512448-6 2.618729+1 2.516101-6 2.213538+1 2.520304-6 1.811864+1 2.524483-6 1.476188+1 2.531399-6 1.043150+1 2.542327-6 6.013002+0 2.547727-6 4.615123+0 2.550411-6 4.060060+0 2.553085-6 3.582974+0 2.555748-6 3.172437+0 2.558401-6 2.818520+0 2.561044-6 2.512663+0 2.563676-6 2.247541+0 2.568920-6 1.814808+0 2.574123-6 1.482336+0 2.579285-6 1.222454+0 2.584407-6 1.015843+0 2.589489-6 8.490211-1 2.609423-6 4.260449-1 2.614309-6 3.590689-1 2.619158-6 3.022394-1 2.625012-6 2.443305-1 2.628741-6 2.126652-1 2.633477-6 1.775046-1 2.638175-6 1.475190-1 2.642837-6 1.219798-1 2.647463-6 1.002804-1 2.652052-6 8.191147-2 2.656605-6 6.644146-2 2.661123-6 5.350132-2 2.665606-6 4.277178-2 2.670054-6 3.397296-2 2.674466-6 2.685587-2 2.683189-6 1.678516-2 2.687499-6 1.343352-2 2.691776-6 1.096173-2 2.696019-6 9.203271-3 2.700229-6 8.004624-3 2.704406-6 7.226928-3 2.708550-6 6.748137-3 2.712662-6 6.465090-3 2.716742-6 6.295027-3 2.758477-6 5.402157-3 2.830975-6 3.262026-2 2.969244-6 2.277410-1 3.129935-6 6.868059-1 3.234897-6 1.149310+0 3.250822-6 1.256278+0 3.266746-6 1.381965+0 3.290633-6 1.605257+0 3.322482-6 1.970712+0 3.354331-6 2.431497+0 3.378218-6 2.859541+0 3.401132-6 3.357372+0 3.417834-6 3.788334+0 3.434536-6 4.290960+0 3.451237-6 4.882099+0 3.467939-6 5.584073+0 3.484641-6 6.427025+0 3.492992-6 6.913797+0 3.501343-6 7.452626+0 3.509694-6 8.051501+0 3.518044-6 8.720095+0 3.526395-6 9.470227+0 3.534746-6 1.031652+1 3.543097-6 1.127736+1 3.551448-6 1.237626+1 3.559799-6 1.364409+1 3.569328-6 1.535093+1 3.578815-6 1.741063+1 3.584379-6 1.883531+1 3.594810-6 2.208934+1 3.603938-6 2.579214+1 3.611925-6 2.996293+1 3.618913-6 3.458211+1 3.625028-6 3.958915+1 3.630378-6 4.489089+1 3.635060-6 5.037531+1 3.639156-6 5.592591+1 3.645877-6 6.680325+1 3.651365-6 7.757464+1 3.670998-6 1.335847+2 3.678675-6 1.641498+2 3.685887-6 1.975641+2 3.691456-6 2.263459+2 3.701296-6 2.825936+2 3.702426-6 2.894107+2 3.710339-6 3.383854+2 3.713448-6 3.579245+2 3.719383-6 3.949443+2 3.724157-6 4.238062+2 3.727883-6 4.453183+2 3.732067-6 4.680001+2 3.735561-6 4.854490+2 3.740054-6 5.054720+2 3.745697-6 5.261049+2 3.749891-6 5.377468+2 3.754494-6 5.465474+2 3.757413-6 5.498646+2 3.761905-6 5.514359+2 3.765331-6 5.497320+2 3.774063-6 5.342803+2 3.776884-6 5.260516+2 3.783047-6 5.031221+2 3.786201-6 4.890270+2 3.789710-6 4.717154+2 3.794222-6 4.473105+2 3.797877-6 4.261028+2 3.801981-6 4.011431+2 3.805410-6 3.796502+2 3.809817-6 3.515435+2 3.814339-6 3.226022+2 3.818861-6 2.939995+2 3.823948-6 2.627183+2 3.827904-6 2.393365+2 3.837663-6 1.863470+2 3.840344-6 1.731245+2 3.848389-6 1.372191+2 3.853373-6 1.178445+2 3.857885-6 1.021689+2 3.861714-6 9.020478+1 3.867186-6 7.512451+1 3.870703-6 6.660589+1 3.876605-6 5.420360+1 3.883757-6 4.199815+1 3.905213-6 1.935278+1 3.912365-6 1.508012+1 3.914749-6 1.391076+1 3.918325-6 1.236123+1 3.921900-6 1.103050+1 3.924284-6 1.025138+1 3.927860-6 9.226410+0 3.931436-6 8.353985+0 3.933820-6 7.847045+0 3.937396-6 7.185015+0 3.940972-6 6.626278+0 3.943822-6 6.244903+0 3.946932-6 5.884569+0 3.950508-6 5.532172+0 3.955276-6 5.147051+0 3.958852-6 4.909132+0 3.961236-6 4.769957+0 3.965408-6 4.556117+0 3.969580-6 4.370994+0 3.982394-6 3.893233+0 3.988652-6 3.671407+0 3.994612-6 3.451536+0 3.998188-6 3.313407+0 4.000572-6 3.218471+0 4.004148-6 3.071848+0 4.007724-6 2.920563+0 4.012492-6 2.712964+0 4.017260-6 2.501072+0 4.022743-6 2.256350+0 4.026795-6 2.078004+0 4.033947-6 1.776667+0 4.045867-6 1.345668+0 4.048251-6 1.274652+0 4.055403-6 1.100542+0 4.057787-6 1.057001+0 4.059575-6 1.029564+0 4.062257-6 9.972337-1 4.064269-6 9.802579-1 4.065616-6 9.725148-1 4.070693-6 9.708919-1 4.071962-6 9.776001-1 4.073628-6 9.909140-1 4.075770-6 1.015748+0 4.077114-6 1.035868+0 4.079134-6 1.072874+0 4.080686-6 1.106945+0 4.082803-6 1.161464+0 4.083856-6 1.192093+0 4.085802-6 1.254987+0 4.090191-6 1.427288+0 4.093453-6 1.583270+0 4.095834-6 1.712321+0 4.106787-6 2.470629+0 4.109919-6 2.735295+0 4.115151-6 3.220279+0 4.117701-6 3.474252+0 4.119758-6 3.686574+0 4.126557-6 4.426394+0 4.129790-6 4.792773+0 4.133648-6 5.235663+0 4.137216-6 5.645488+0 4.140233-6 5.987872+0 4.144374-6 6.444733+0 4.148502-6 6.877025+0 4.151794-6 7.199091+0 4.155728-6 7.551078+0 4.161199-6 7.968419+0 4.165193-6 8.211822+0 4.168008-6 8.349005+0 4.171497-6 8.477179+0 4.175435-6 8.564005+0 4.179050-6 8.588400+0 4.180818-6 8.580950+0 4.184796-6 8.518099+0 4.188182-6 8.415485+0 4.190922-6 8.300665+0 4.196154-6 8.007728+0 4.199224-6 7.794609+0 4.202136-6 7.567354+0 4.206186-6 7.215590+0 4.209634-6 6.888503+0 4.213749-6 6.472174+0 4.216218-6 6.212064+0 4.218726-6 5.942200+0 4.222018-6 5.582550+0 4.226250-6 5.117225+0 4.231266-6 4.572161+0 4.235655-6 4.110491+0 4.237536-6 3.919053+0 4.241925-6 3.491428+0 4.246314-6 3.095587+0 4.256973-6 2.299375+0 4.260206-6 2.111402+0 4.266378-6 1.830774+0 4.268886-6 1.747999+0 4.270767-6 1.698432+0 4.272178-6 1.668509+0 4.274029-6 1.638924+0 4.275964-6 1.620093+0 4.277259-6 1.614572+0 4.279238-6 1.617442+0 4.281127-6 1.633295+0 4.283721-6 1.676778+0 4.286760-6 1.761108+0 4.295109-6 2.195659+0 4.298240-6 2.442968+0 4.300979-6 2.700837+0 4.303376-6 2.960032+0 4.307309-6 3.457316+0 4.319139-6 5.558790+0 4.324232-6 6.778177+0 4.326934-6 7.509619+0 4.330018-6 8.418949+0 4.339271-6 1.164350+1 4.343591-6 1.341045+1 4.345031-6 1.403648+1 4.355674-6 1.921736+1 4.357586-6 2.024580+1 4.366316-6 2.526036+1 4.370411-6 2.776021+1 4.376958-6 3.188149+1 4.381157-6 3.456161+1 4.385482-6 3.731187+1 4.390108-6 4.020074+1 4.393651-6 4.234531+1 4.397629-6 4.465365+1 4.402019-6 4.704245+1 4.406348-6 4.919579+1 4.410284-6 5.094896+1 4.413728-6 5.230230+1 4.418532-6 5.387954+1 4.422365-6 5.485804+1 4.427229-6 5.572073+1 4.431845-6 5.613356+1 4.434376-6 5.618973+1 4.439203-6 5.596410+1 4.444055-6 5.530706+1 4.451954-6 5.337109+1 4.456623-6 5.177015+1 4.459863-6 5.048335+1 4.462803-6 4.920446+1 4.467626-6 4.690613+1 4.469595-6 4.590578+1 4.473042-6 4.408329+1 4.477566-6 4.157957+1 4.481928-6 3.908079+1 4.483382-6 3.823577+1 4.488703-6 3.511923+1 4.494024-6 3.200842+1 4.495354-6 3.123784+1 4.502338-6 2.727955+1 4.505997-6 2.528513+1 4.514145-6 2.110166+1 4.518967-6 1.882006+1 4.522459-6 1.726625+1 4.525951-6 1.579792+1 4.528612-6 1.473738+1 4.534598-6 1.253558+1 4.539674-6 1.086590+1 4.544600-6 9.413020+0 4.550033-6 7.992753+0 4.555465-6 6.751525+0 4.560898-6 5.675749+0 4.566330-6 4.751254+0 4.588060-6 2.294220+0 4.598925-6 1.648096+0 4.604358-6 1.439853+0 4.607074-6 1.361872+0 4.609790-6 1.300604+0 4.613029-6 1.248817+0 4.615459-6 1.224859+0 4.617307-6 1.215058+0 4.618647-6 1.212469+0 4.620697-6 1.215824+0 4.622747-6 1.227996+0 4.624787-6 1.248850+0 4.626838-6 1.278625+0 4.628009-6 1.299579+0 4.631520-6 1.379803+0 4.633902-6 1.449138+0 4.637667-6 1.583597+0 4.641992-6 1.776106+0 4.646125-6 1.998533+0 4.661274-6 3.136753+0 4.666928-6 3.686719+0 4.671032-6 4.124282+0 4.675575-6 4.642227+0 4.680171-6 5.196419+0 4.684777-6 5.775400+0 4.688906-6 6.307745+0 4.692068-6 6.719476+0 4.696586-6 7.307067+0 4.701306-6 7.909875+0 4.705549-6 8.432431+0 4.709091-6 8.847864+0 4.713714-6 9.352743+0 4.716209-6 9.604286+0 4.721723-6 1.009848+1 4.726255-6 1.043260+1 4.729583-6 1.063204+1 4.732849-6 1.078755+1 4.737550-6 1.093841+1 4.741720-6 1.099829+1 4.743791-6 1.100198+1 4.748450-6 1.094769+1 4.752290-6 1.083944+1 4.755065-6 1.072696+1 4.757331-6 1.061476+1 4.762430-6 1.029998+1 4.765774-6 1.005087+1 4.769587-6 9.730811+0 4.773869-6 9.332520+0 4.778978-6 8.815127+0 4.782043-6 8.488635+0 4.787021-6 7.942928+0 4.793422-6 7.233008+0 4.800171-6 6.502913+0 4.814502-6 5.140036+0 4.819167-6 4.777211+0 4.825213-6 4.377751+0 4.829687-6 4.135929+0 4.832201-6 4.020298+0 4.837739-6 3.816474+0 4.848792-6 3.605249+0 4.852701-6 3.585862+0 4.855999-6 3.588678+0 4.859358-6 3.607513+0 4.863660-6 3.651839+0 4.867779-6 3.711658+0 4.875569-6 3.856863+0 4.890056-6 4.162495+0 4.897200-6 4.296000+0 4.904282-6 4.401303+0 4.908822-6 4.451415+0 4.920266-6 4.511916+0 4.925879-6 4.508004+0 4.932793-6 4.476552+0 4.940089-6 4.417461+0 4.951775-6 4.287371+0 4.966688-6 4.104634+0 4.979951-6 3.967251+0 4.991565-6 3.883609+0 5.002647-6 3.838005+0 5.012074-6 3.821978+0 5.027734-6 3.827465+0 5.065640-6 3.890507+0 5.098663-6 3.925487+0 5.131094-6 3.951615+0 5.165807-6 4.008316+0 5.179244-6 4.054294+0 5.193335-6 4.130477+0 5.202018-6 4.196883+0 5.211783-6 4.293631+0 5.221650-6 4.418680+0 5.230600-6 4.558156+0 5.237631-6 4.685847+0 5.248438-6 4.913090+0 5.260936-6 5.220479+0 5.270197-6 5.477149+0 5.278605-6 5.731718+0 5.290693-6 6.141799+0 5.295721-6 6.333501+0 5.303160-6 6.650730+0 5.306071-6 6.788984+0 5.313731-6 7.203920+0 5.318718-6 7.524999+0 5.326206-6 8.108079+0 5.331230-6 8.584913+0 5.333916-6 8.873539+0 5.338081-6 9.374176+0 5.341151-6 9.788839+0 5.346699-6 1.064857+1 5.351241-6 1.147071+1 5.355870-6 1.243020+1 5.358399-6 1.301045+1 5.365620-6 1.490180+1 5.374847-6 1.786211+1 5.388643-6 2.348789+1 5.396335-6 2.722674+1 5.401708-6 3.006414+1 5.404311-6 3.149752+1 5.413340-6 3.670052+1 5.419368-6 4.030768+1 5.424720-6 4.353988+1 5.429021-6 4.612190+1 5.434088-6 4.910624+1 5.439833-6 5.235936+1 5.445753-6 5.549919+1 5.451088-6 5.808522+1 5.455688-6 6.009102+1 5.460870-6 6.206632+1 5.465983-6 6.368759+1 5.467719-6 6.415884+1 5.474026-6 6.551495+1 5.479940-6 6.626030+1 5.483731-6 6.646377+1 5.489160-6 6.638139+1 5.494978-6 6.581312+1 5.504744-6 6.380529+1 5.510129-6 6.218339+1 5.516120-6 6.000326+1 5.519972-6 5.841819+1 5.523824-6 5.670860+1 5.526846-6 5.529101+1 5.530624-6 5.343817+1 5.536303-6 5.051735+1 5.541780-6 4.759182+1 5.543605-6 4.660115+1 5.550185-6 4.300124+1 5.556764-6 3.941025+1 5.564166-6 3.546182+1 5.569923-6 3.250603+1 5.584727-6 2.557549+1 5.613842-6 1.550868+1 5.620945-6 1.378697+1 5.624362-6 1.305232+1 5.629487-6 1.205724+1 5.634612-6 1.118220+1 5.638029-6 1.066070+1 5.643154-6 9.963748+0 5.648279-6 9.360045+0 5.655112-6 8.682563+0 5.659239-6 8.335020+0 5.661946-6 8.129271+0 5.668779-6 7.678023+0 5.675613-6 7.308488+0 5.685863-6 6.868243+0 5.689280-6 6.744138+0 5.706364-6 6.224643+0 5.730281-6 5.603993+0 5.744352-6 5.238549+0 5.757615-6 4.888906+0 5.771282-6 4.532705+0 5.798616-6 3.883840+0 5.805450-6 3.742848+0 5.819603-6 3.483992+0 5.831344-6 3.304481+0 5.841794-6 3.171181+0 5.851591-6 3.067716+0 5.869960-6 2.924855+0 5.886289-6 2.847712+0 5.902106-6 2.813567+0 5.914160-6 2.814284+0 5.924708-6 2.835700+0 5.933938-6 2.872885+0 5.942013-6 2.922226+0 5.949080-6 2.980748+0 5.955263-6 3.045830+0 5.960873-6 3.117920+0 5.965407-6 3.186492+0 5.973173-6 3.328697+0 5.976344-6 3.396872+0 5.981547-6 3.523016+0 5.985531-6 3.632691+0 5.989826-6 3.764868+0 5.996695-6 4.009211+0 6.003456-6 4.293590+0 6.006751-6 4.449286+0 6.021791-6 5.317680+0 6.033451-6 6.183105+0 6.056467-6 8.384701+0 6.063283-6 9.144533+0 6.074510-6 1.046646+1 6.081511-6 1.131417+1 6.087726-6 1.206662+1 6.095718-6 1.301309+1 6.102631-6 1.379321+1 6.108604-6 1.442400+1 6.115811-6 1.511470+1 6.121368-6 1.558396+1 6.128243-6 1.607583+1 6.134685-6 1.643783+1 6.141876-6 1.671937+1 6.148580-6 1.685960+1 6.152834-6 1.688611+1 6.159940-6 1.682245+1 6.165453-6 1.668196+1 6.176454-6 1.617793+1 6.182878-6 1.575831+1 6.188494-6 1.532537+1 6.195196-6 1.473916+1 6.201816-6 1.409852+1 6.209777-6 1.326700+1 6.218094-6 1.235212+1 6.227396-6 1.130566+1 6.234778-6 1.048000+1 6.246774-6 9.189955+0 6.266623-6 7.319537+0 6.283430-6 6.092963+0 6.291773-6 5.622580+0 6.294749-6 5.477675+0 6.302400-6 5.160271+0 6.304948-6 5.072040+0 6.308918-6 4.951783+0 6.312028-6 4.871972+0 6.321361-6 4.706464+0 6.326954-6 4.658312+0 6.332547-6 4.646291+0 6.348149-6 4.785883+0 6.355085-6 4.919590+0 6.363893-6 5.141470+0 6.373740-6 5.444733+0 6.398966-6 6.362242+0 6.410039-6 6.766830+0 6.418467-6 7.051718+0 6.425868-6 7.276539+0 6.434923-6 7.510470+0 6.442903-6 7.672878+0 6.452950-6 7.813186+0 6.459607-6 7.865288+0 6.469465-6 7.883454+0 6.478005-6 7.845748+0 6.488370-6 7.741810+0 6.499741-6 7.569771+0 6.515578-6 7.268185+0 6.542501-6 6.740854+0 6.549287-6 6.627777+0 6.566711-6 6.400138+0 6.577495-6 6.308455+0 6.591037-6 6.243706+0 6.604916-6 6.225216+0 6.625960-6 6.255295+0 6.663816-6 6.342167+0 6.689765-6 6.359037+0 6.729149-6 6.320610+0 6.827759-6 6.194489+0 6.888574-6 6.141059+0 6.926134-6 6.137278+0 6.969035-6 6.172567+0 7.038438-6 6.252709+0 7.065379-6 6.256211+0 7.100417-6 6.209660+0 7.132232-6 6.109186+0 7.171844-6 5.929686+0 7.200494-6 5.798683+0 7.222058-6 5.719626+0 7.232237-6 5.691363+0 7.249607-6 5.659183+0 7.266434-6 5.649107+0 7.299036-6 5.692677+0 7.305619-6 5.711846+0 7.329601-6 5.811796+0 7.342176-6 5.883434+0 7.358255-6 5.994879+0 7.376449-6 6.148869+0 7.410303-6 6.520061+0 7.438703-6 6.926266+0 7.466943-6 7.429925+0 7.493418-6 8.008427+0 7.518239-6 8.662082+0 7.541508-6 9.392062+0 7.566630-6 1.033471+1 7.585775-6 1.118376+1 7.602947-6 1.206143+1 7.621990-6 1.318933+1 7.637773-6 1.427280+1 7.653571-6 1.552185+1 7.668382-6 1.687523+1 7.682267-6 1.834134+1 7.695285-6 1.993008+1 7.707488-6 2.165252+1 7.718929-6 2.352037+1 7.729655-6 2.554519+1 7.739711-6 2.773735+1 7.749138-6 3.010515+1 7.757976-6 3.265389+1 7.774547-6 3.850451+1 7.789047-6 4.509346+1 7.801734-6 5.231404+1 7.812835-6 6.000956+1 7.822549-6 6.799770+1 7.831048-6 7.609360+1 7.841194-6 8.729173+1 7.870927-6 1.317144+2 7.891758-6 1.751804+2 7.903991-6 2.060402+2 7.909966-6 2.225873+2 7.919677-6 2.515325+2 7.929387-6 2.829331+2 7.948809-6 3.523333+2 7.951237-6 3.615390+2 7.968231-6 4.283347+2 7.974907-6 4.553182+2 7.987652-6 5.070172+2 7.997515-6 5.463826+2 8.007074-6 5.832134+2 8.016936-6 6.190768+2 8.026495-6 6.510271+2 8.034992-6 6.765387+2 8.042844-6 6.972872+2 8.047131-6 7.073473+2 8.058511-6 7.293072+2 8.067397-6 7.413060+2 8.079063-6 7.497650+2 8.088393-6 7.504014+2 8.092039-6 7.491635+2 8.101905-6 7.416856+2 8.111140-6 7.293881+2 8.124817-6 7.024339+2 8.132570-6 6.829680+2 8.143025-6 6.525682+2 8.153003-6 6.198101+2 8.162446-6 5.861530+2 8.170943-6 5.542256+2 8.179137-6 5.224385+2 8.192000-6 4.715723+2 8.201289-6 4.348466+2 8.213059-6 3.892121+2 8.220711-6 3.604682+2 8.240133-6 2.922375+2 8.246809-6 2.706597+2 8.259554-6 2.324640+2 8.274120-6 1.938403+2 8.290279-6 1.572825+2 8.334573-6 8.744974+1 8.344217-6 7.714574+1 8.353785-6 6.829275+1 8.363278-6 6.070132+1 8.372698-6 5.419821+1 8.385701-6 4.666026+1 8.400516-6 3.974872+1 8.413951-6 3.471033+1 8.418701-6 3.316017+1 8.436673-6 2.817816+1 8.454365-6 2.435180+1 8.471780-6 2.134640+1 8.488923-6 1.893234+1 8.505798-6 1.695278+1 8.522410-6 1.530005+1 8.540980-6 1.372397+1 8.554858-6 1.269731+1 8.572845-6 1.152430+1 8.592201-6 1.042780+1 8.616768-6 9.239213+0 8.646290-6 8.056494+0 8.676785-6 7.066960+0 8.703147-6 6.374633+0 8.730113-6 5.807113+0 8.756326-6 5.383190+0 8.857902-6 4.907399+0 8.885428-6 5.117976+0 8.901647-6 5.315157+0 8.924695-6 5.691275+0 8.944328-6 6.102738+0 8.963962-6 6.600752+0 8.981229-6 7.113192+0 9.000000-6 7.753566+0 9.017386-6 8.429175+0 9.034622-6 9.183358+0 9.051319-6 1.000107+1 9.083165-6 1.182869+1 9.113051-6 1.391895+1 9.127297-6 1.506589+1 9.154899-6 1.761513+1 9.180777-6 2.046949+1 9.208196-6 2.410202+1 9.227780-6 2.716767+1 9.249102-6 3.105510+1 9.269091-6 3.533631+1 9.287831-6 4.004328+1 9.305400-6 4.521387+1 9.321871-6 5.089220+1 9.341864-6 5.916609+1 9.351789-6 6.397535+1 9.365360-6 7.148876+1 9.378084-6 7.972022+1 9.390012-6 8.871452+1 9.401194-6 9.850533+1 9.411678-6 1.091118+2 9.421506-6 1.205365+2 9.439359-6 1.457624+2 9.455555-6 1.748745+2 9.469728-6 2.064523+2 9.482128-6 2.397350+2 9.502473-6 3.082111+2 9.547019-6 5.375471+2 9.567777-6 6.914723+2 9.585240-6 8.478748+2 9.592486-6 9.202805+2 9.604262-6 1.047425+3 9.616038-6 1.186061+3 9.639591-6 1.495164+3 9.642535-6 1.536458+3 9.663144-6 1.838337+3 9.671240-6 1.961514+3 9.686696-6 2.199813+3 9.698657-6 2.383642+3 9.710249-6 2.557946+3 9.722210-6 2.730416+3 9.733802-6 2.887142+3 9.744106-6 3.015241+3 9.753628-6 3.122322+3 9.758827-6 3.175620+3 9.772627-6 3.297423+3 9.783404-6 3.370805+3 9.795959-6 3.430263+3 9.806162-6 3.456991+3 9.828749-6 3.445814+3 9.839283-6 3.408011+3 9.853037-6 3.329239+3 9.864250-6 3.242244+3 9.875118-6 3.140429+3 9.887079-6 3.011040+3 9.898671-6 2.871147+3 9.908975-6 2.737272+3 9.918911-6 2.601772+3 9.934000-6 2.388270+3 9.945776-6 2.218713+3 9.959025-6 2.028646+3 9.969329-6 1.883460+3 9.992882-6 1.568025+3 1.000098-5 1.466611+3 1.001643-5 1.284961+3 1.003410-5 1.098210+3 1.006433-5 8.322159+2 1.009387-5 6.342639+2 1.010850-5 5.563473+2 1.012500-5 4.822527+2 1.013742-5 4.349774+2 1.015170-5 3.883885+2 1.016588-5 3.492986+2 1.017995-5 3.164706+2 1.019390-5 2.888289+2 1.020775-5 2.654558+2 1.022149-5 2.455816+2 1.024875-5 2.137893+2 1.027559-5 1.898022+2 1.030683-5 1.681215+2 1.032802-5 1.561375+2 1.035362-5 1.438273+2 1.037881-5 1.335109+2 1.040362-5 1.247288+2 1.043186-5 1.160544+2 1.045207-5 1.105594+2 1.049940-5 9.953917+1 1.055373-5 8.932812+1 1.058965-5 8.365789+1 1.064100-5 7.670561+1 1.067559-5 7.264780+1 1.071472-5 6.855631+1 1.075384-5 6.491409+1 1.082962-5 5.887738+1 1.090067-5 5.417042+1 1.096727-5 5.040562+1 1.103563-5 4.706323+1 1.110372-5 4.415523+1 1.119802-5 4.067382+1 1.129406-5 3.764711+1 1.141563-5 3.439459+1 1.158032-5 3.070783+1 1.171520-5 2.814607+1 1.208418-5 2.250879+1 1.240817-5 1.824823+1 1.255544-5 1.625875+1 1.264372-5 1.494982+1 1.269905-5 1.404366+1 1.275145-5 1.310501+1 1.277765-5 1.260668+1 1.280385-5 1.209450+1 1.286688-5 1.087952+1 1.289839-5 1.035811+1 1.292192-5 1.005765+1 1.292991-5 9.979915+0 1.294584-5 9.871249+0 1.295977-5 9.835409+0 1.296762-5 9.843310+0 1.302557-5 1.070897+1 1.305747-5 1.194493+1 1.306321-5 1.223302+1 1.309137-5 1.395264+1 1.310165-5 1.470612+1 1.313416-5 1.750538+1 1.316550-5 2.071501+1 1.318509-5 2.289935+1 1.319905-5 2.450182+1 1.321899-5 2.680686+1 1.323394-5 2.850931+1 1.325089-5 3.036821+1 1.325837-5 3.115353+1 1.326958-5 3.228064+1 1.328279-5 3.351570+1 1.331270-5 3.585816+1 1.332367-5 3.653530+1 1.334461-5 3.752841+1 1.336197-5 3.804186+1 1.337301-5 3.822066+1 1.338128-5 3.828030+1 1.339370-5 3.825293+1 1.340612-5 3.809051+1 1.341467-5 3.790405+1 1.343391-5 3.727904+1 1.344032-5 3.701257+1 1.346425-5 3.579784+1 1.347222-5 3.532607+1 1.349615-5 3.375681+1 1.350413-5 3.319339+1 1.353650-5 3.078510+1 1.358447-5 2.715438+1 1.363429-5 2.369368+1 1.366875-5 2.160874+1 1.369292-5 2.031135+1 1.376314-5 1.727855+1 1.379164-5 1.633365+1 1.380225-5 1.602120+1 1.385953-5 1.470040+1 1.389506-5 1.419659+1 1.392742-5 1.395448+1 1.393983-5 1.391644+1 1.396594-5 1.393247+1 1.399102-5 1.406257+1 1.400299-5 1.416023+1 1.402992-5 1.445045+1 1.406856-5 1.498671+1 1.410277-5 1.550458+1 1.414181-5 1.604584+1 1.417974-5 1.643476+1 1.420539-5 1.659112+1 1.422293-5 1.664338+1 1.423608-5 1.665343+1 1.426567-5 1.658981+1 1.430299-5 1.636540+1 1.433625-5 1.607192+1 1.443251-5 1.511835+1 1.447782-5 1.476134+1 1.450351-5 1.459950+1 1.454065-5 1.441123+1 1.458718-5 1.422981+1 1.474550-5 1.371173+1 1.495443-5 1.299764+1 1.513451-5 1.246426+1 1.518450-5 1.229623+1 1.525405-5 1.203711+1 1.533704-5 1.169974+1 1.580027-5 9.874437+0 1.606936-5 8.898358+0 1.638400-5 7.763897+0 1.664912-5 6.821533+0 1.691238-5 5.913910+0 1.718449-5 4.999135+0 1.733432-5 4.504295+0 1.751275-5 3.928390+0 1.761069-5 3.620413+0 1.772354-5 3.273614+0 1.785242-5 2.889034+0 1.799510-5 2.480228+0 1.812470-5 2.128643+0 1.822190-5 1.880663+0 1.829496-5 1.704994+0 1.840416-5 1.462972+0 1.855908-5 1.172775+0 1.860465-5 1.102097+0 1.865022-5 1.039297+0 1.869579-5 9.850966-1 1.874447-5 9.374633-1 1.878693-5 9.050628-1 1.883249-5 8.799345-1 1.887806-5 8.644115-1 1.892363-5 8.573389-1 1.896920-5 8.566936-1 1.909451-5 8.646010-1 1.915027-5 8.620646-1 1.920844-5 8.531563-1 1.926540-5 8.428091-1 1.928818-5 8.402353-1 1.931096-5 8.397279-1 1.933375-5 8.422113-1 1.935653-5 8.487034-1 1.937932-5 8.603118-1 1.940210-5 8.782355-1 1.942489-5 9.037723-1 1.944940-5 9.413691-1 1.947208-5 9.871253-1 1.949457-5 1.044666+0 1.951636-5 1.113716+0 1.953747-5 1.194934+0 1.955792-5 1.288969+0 1.957774-5 1.396476+0 1.961612-5 1.659360+0 1.965211-5 1.986767+0 1.968584-5 2.385366+0 1.971747-5 2.862428+0 1.974712-5 3.425598+0 1.977492-5 4.082503+0 1.980098-5 4.840264+0 1.982542-5 5.704956+0 1.984832-5 6.681114+0 1.986980-5 7.771340+0 1.988993-5 8.976036+0 1.992649-5 1.171898+1 1.998779-5 1.848074+1 2.005516-5 3.047947+1 2.008721-5 3.848856+1 2.012177-5 4.920617+1 2.015245-5 6.080164+1 2.018081-5 7.345717+1 2.020083-5 8.360333+1 2.022631-5 9.803278+1 2.024160-5 1.075287+2 2.026645-5 1.243190+2 2.029130-5 1.427693+2 2.034100-5 1.843190+2 2.034721-5 1.899040+2 2.039070-5 2.309046+2 2.040779-5 2.476959+2 2.044040-5 2.802216+2 2.046616-5 3.058116+2 2.049010-5 3.290063+2 2.051534-5 3.523327+2 2.053369-5 3.682584+2 2.055223-5 3.832334+2 2.057378-5 3.989540+2 2.059261-5 4.109837+2 2.062173-5 4.260169+2 2.064447-5 4.344332+2 2.067402-5 4.406750+2 2.069243-5 4.417808+2 2.074091-5 4.344115+2 2.075428-5 4.298288+2 2.079141-5 4.117833+2 2.081124-5 3.992156+2 2.082797-5 3.872341+2 2.084421-5 3.745160+2 2.086324-5 3.584529+2 2.088158-5 3.419694+2 2.090012-5 3.245322+2 2.092342-5 3.018363+2 2.093740-5 2.879572+2 2.096225-5 2.631117+2 2.098089-5 2.445618+2 2.099331-5 2.323342+2 2.101505-5 2.113662+2 2.103680-5 1.911430+2 2.108650-5 1.487392+2 2.110358-5 1.356375+2 2.113620-5 1.130085+2 2.119629-5 8.016199+1 2.128392-5 5.392449+1 2.129171-5 5.285145+1 2.130216-5 5.173170+1 2.131070-5 5.109019+1 2.131710-5 5.076973+1 2.132671-5 5.054660+1 2.133631-5 5.063156+1 2.136250-5 5.241833+1 2.137115-5 5.350348+1 2.138201-5 5.521084+1 2.138931-5 5.657313+1 2.144190-5 7.133139+1 2.146658-5 8.110916+1 2.151854-5 1.069874+2 2.154914-5 1.250617+2 2.157005-5 1.383532+2 2.158767-5 1.500103+2 2.160766-5 1.635888+2 2.162596-5 1.762154+2 2.164717-5 1.909010+2 2.166865-5 2.056177+2 2.169007-5 2.199104+2 2.171185-5 2.338087+2 2.173177-5 2.457711+2 2.175496-5 2.585618+2 2.176968-5 2.659424+2 2.179351-5 2.765153+2 2.181261-5 2.836510+2 2.182896-5 2.887425+2 2.185238-5 2.943188+2 2.186960-5 2.970938+2 2.188034-5 2.982487+2 2.191585-5 2.989251+2 2.193417-5 2.974286+2 2.194885-5 2.953601+2 2.197151-5 2.907232+2 2.198297-5 2.877488+2 2.200876-5 2.796393+2 2.203045-5 2.714501+2 2.205009-5 2.631033+2 2.206974-5 2.540064+2 2.209593-5 2.409389+2 2.212213-5 2.270838+2 2.213522-5 2.199554+2 2.216469-5 2.036543+2 2.217451-5 1.981898+2 2.222690-5 1.694394+2 2.225871-5 1.527613+2 2.227929-5 1.424516+2 2.231858-5 1.240233+2 2.237338-5 1.014235+2 2.248081-5 6.786058+1 2.250793-5 6.143602+1 2.254861-5 5.310574+1 2.258929-5 4.613883+1 2.264489-5 3.841683+1 2.270049-5 3.230962+1 2.275610-5 2.739885+1 2.286730-5 2.001009+1 2.293856-5 1.646923+1 2.298026-5 1.474441+1 2.307535-5 1.171579+1 2.313187-5 1.051414+1 2.318839-5 9.758744+0 2.320252-5 9.637665+0 2.324491-5 9.427462+0 2.326170-5 9.403784+0 2.328690-5 9.425727+0 2.331210-5 9.509636+0 2.332600-5 9.579239+0 2.335728-5 9.786404+0 2.341201-5 1.026613+1 2.347890-5 1.091840+1 2.354113-5 1.145096+1 2.357530-5 1.167969+1 2.364054-5 1.197605+1 2.369063-5 1.210663+1 2.375884-5 1.225332+1 2.380964-5 1.243170+1 2.387495-5 1.286094+1 2.389490-5 1.304879+1 2.393300-5 1.348447+1 2.396301-5 1.389406+1 2.406106-5 1.548610+1 2.410431-5 1.619197+1 2.414196-5 1.673371+1 2.416520-5 1.701390+1 2.422325-5 1.746595+1 2.424678-5 1.752942+1 2.429171-5 1.743557+1 2.430378-5 1.736095+1 2.432490-5 1.718020+1 2.434075-5 1.700354+1 2.436451-5 1.667511+1 2.438827-5 1.627518+1 2.442186-5 1.560102+1 2.443866-5 1.522241+1 2.445545-5 1.482036+1 2.448557-5 1.405168+1 2.451568-5 1.323901+1 2.457240-5 1.166051+1 2.459485-5 1.104160+1 2.465494-5 9.471220+0 2.471503-5 8.105124+0 2.476117-5 7.233664+0 2.477513-5 7.002489+0 2.480517-5 6.555782+0 2.482771-5 6.265381+0 2.486151-5 5.897506+0 2.487841-5 5.741970+0 2.489531-5 5.603861+0 2.492536-5 5.397422+0 2.495541-5 5.234559+0 2.498880-5 5.095238+0 2.501690-5 5.004575+0 2.508111-5 4.856424+0 2.517284-5 4.697429+0 2.521532-5 4.618560+0 2.528829-5 4.456694+0 2.536264-5 4.255267+0 2.543657-5 4.027772+0 2.552653-5 3.734540+0 2.572283-5 3.130110+0 2.577782-5 2.988890+0 2.583352-5 2.867329+0 2.586240-5 2.814973+0 2.590680-5 2.751757+0 2.595120-5 2.713362+0 2.598012-5 2.703982+0 2.600903-5 2.708600+0 2.603000-5 2.721546+0 2.604984-5 2.741810+0 2.607480-5 2.779144+0 2.609997-5 2.831049+0 2.612511-5 2.898160+0 2.615958-5 3.016560+0 2.618771-5 3.137185+0 2.620595-5 3.227355+0 2.624011-5 3.422393+0 2.626884-5 3.613302+0 2.630275-5 3.870322+0 2.632925-5 4.094546+0 2.645961-5 5.454410+0 2.651074-5 6.065574+0 2.654873-5 6.526118+0 2.658165-5 6.919195+0 2.661458-5 7.297523+0 2.663920-5 7.565448+0 2.665766-5 7.755578+0 2.668535-5 8.019866+0 2.671304-5 8.254935+0 2.674528-5 8.486290+0 2.677752-5 8.666906+0 2.682588-5 8.834306+0 2.685000-5 8.869498+0 2.690648-5 8.826770+0 2.692260-5 8.783691+0 2.697096-5 8.580123+0 2.700455-5 8.381311+0 2.703661-5 8.156391+0 2.706867-5 7.905543+0 2.709260-5 7.706625+0 2.716441-5 7.089908+0 2.722889-5 6.570759+0 2.729337-5 6.144184+0 2.732830-5 5.966204+0 2.736554-5 5.822984+0 2.739507-5 5.744856+0 2.746184-5 5.681705+0 2.748879-5 5.697999+0 2.752861-5 5.760858+0 2.755365-5 5.821273+0 2.759747-5 5.959000+0 2.763033-5 6.083459+0 2.781474-5 6.912612+0 2.788600-5 7.219152+0 2.797369-5 7.557592+0 2.804113-5 7.792816+0 2.833505-5 8.799028+0 2.842569-5 9.165174+0 2.859233-5 9.935496+0 2.880169-5 1.106465+1 2.976913-5 1.839800+1 3.013078-5 2.209857+1 3.050000-5 2.650502+1 3.081529-5 3.082590+1 3.120868-5 3.698750+1 3.165289-5 4.497202+1 3.192104-5 5.030527+1 3.219357-5 5.613676+1 3.253714-5 6.416753+1 3.291778-5 7.408717+1 3.330660-5 8.544055+1 3.389824-5 1.049772+2 3.429824-5 1.198954+2 3.492441-5 1.460627+2 3.531179-5 1.639394+2 3.574120-5 1.853013+2 3.610000-5 2.044045+2 3.662390-5 2.342359+2 3.688871-5 2.501127+2 3.725145-5 2.726777+2 3.760000-5 2.952104+2 3.800000-5 3.219603+2 3.833984-5 3.452080+2 3.892271-5 3.859614+2 3.920226-5 4.058665+2 3.975000-5 4.450558+2 4.025000-5 4.805692+2 4.067500-5 5.102488+2 4.110000-5 5.394501+2 4.168694-5 5.783724+2 4.227040-5 6.148361+2 4.280000-5 6.458455+2 4.330000-5 6.730124+2 4.370000-5 6.930789+2 4.420000-5 7.161067+2 4.485000-5 7.428486+2 4.542601-5 7.631946+2 4.570882-5 7.719521+2 4.653614-5 7.943217+2 4.700509-5 8.046057+2 4.777772-5 8.183475+2 4.833189-5 8.261024+2 4.884375-5 8.315223+2 4.971541-5 8.377994+2 5.035915-5 8.403323+2 5.191554-5 8.412714+2 5.264183-5 8.396100+2 5.384768-5 8.345931+2 5.595427-5 8.213969+2 5.864093-5 7.984004+2 6.192737-5 7.672876+2 6.800000-5 7.068390+2 7.198422-5 6.668492+2 7.413102-5 6.451655+2 7.782479-5 6.071660+2 7.968525-5 5.875367+2 8.279227-5 5.550296+2 8.360740-5 5.500502+2 8.447937-5 5.457583+2 8.509594-5 5.391398+2 8.583648-5 5.260661+2 8.664127-5 5.100229+2 8.721721-5 5.008169+2 8.768621-5 4.961937+2 8.820982-5 4.944013+2 8.861352-5 4.949272+2 8.971717-5 4.990428+2 9.130779-5 5.005770+2 9.398643-5 4.944880+2 9.676186-5 4.839545+2 9.931877-5 4.720778+2 1.020533-4 4.578674+2 1.061491-4 4.345979+2 1.079501-4 4.236215+2 1.087030-4 4.177847+2 1.101511-4 4.054479+2 1.107169-4 4.018017+2 1.115031-4 3.989733+2 1.152000-4 3.992826+2 1.174898-4 3.965318+2 1.225334-4 3.850795+2 1.262147-4 3.742364+2 1.288481-4 3.656117+2 1.338588-4 3.479745+2 1.364657-4 3.385214+2 1.395431-4 3.268675+2 1.440426-4 3.089238+2 1.461649-4 2.994189+2 1.486504-4 2.873970+2 1.496519-4 2.835649+2 1.521847-4 2.756915+2 1.531087-4 2.735394+2 1.544409-4 2.714519+2 1.575000-4 2.683787+2 1.596928-4 2.653239+2 1.630000-4 2.592041+2 1.683901-4 2.466805+2 1.718092-4 2.376778+2 1.740549-4 2.314333+2 1.770000-4 2.229889+2 1.820000-4 2.083053+2 1.871250-4 1.932076+2 1.930000-4 1.763013+2 2.005000-4 1.561887+2 2.080000-4 1.387075+2 2.125797-4 1.298612+2 2.163620-4 1.238658+2 2.200447-4 1.192778+2 2.232287-4 1.164254+2 2.269934-4 1.145315+2 2.328970-4 1.146031+2 2.371374-4 1.169651+2 2.433386-4 1.237956+2 2.469781-4 1.296347+2 2.510156-4 1.376362+2 2.552901-4 1.478124+2 2.592000-4 1.587061+2 2.645000-4 1.756981+2 2.687500-4 1.910380+2 2.820490-4 2.483647+2 2.873674-4 2.742654+2 2.922697-4 2.993179+2 2.985383-4 3.326567+2 3.054921-4 3.707175+2 3.143699-4 4.202822+2 3.247089-4 4.786824+2 3.390000-4 5.590893+2 3.519742-4 6.304666+2 3.650903-4 6.999953+2 3.772884-4 7.605491+2 3.981849-4 8.547137+2 4.062144-4 9.061022+2 4.081946-4 9.152242+2 4.144766-4 9.329569+2 4.181521-4 9.491581+2 4.216965-4 9.731515+2 4.245208-4 9.956478+2 4.276426-4 1.018472+3 4.296867-4 1.029984+3 4.390000-4 1.067492+3 4.570882-4 1.166447+3 4.715164-4 1.235914+3 4.905563-4 1.315597+3 5.157989-4 1.408111+3 5.379422-4 1.478022+3 5.641507-4 1.549594+3 5.919187-4 1.610685+3 6.105359-4 1.637390+3 6.206906-4 1.644805+3 6.257638-4 1.651534+3 6.299387-4 1.663664+3 6.341090-4 1.683717+3 6.421998-4 1.735621+3 6.500000-4 1.779562+3 6.631979-4 1.828958+3 6.850253-4 1.885270+3 7.130582-4 1.941968+3 7.503522-4 1.997741+3 7.774760-4 2.052920+3 8.068877-4 2.094069+3 8.732034-4 2.154436+3 8.986012-4 2.188482+3 9.231217-4 2.215735+3 9.616377-4 2.245752+3 1.012626-3 2.275219+3 1.059254-3 2.294490+3 1.122018-3 2.310826+3 1.192744-3 2.315824+3 1.260229-3 2.308454+3 1.335352-3 2.293437+3 1.417736-3 2.271305+3 1.513561-3 2.236823+3 1.603245-3 2.192391+3 1.695003-3 2.138252+3 1.787902-3 2.076334+3 1.884214-3 2.002633+3 1.972339-3 1.923191+3 2.046616-3 1.847552+3 2.115010-3 1.768729+3 2.175528-3 1.689087+3 2.229156-3 1.607831+3 2.272423-3 1.531303+3 2.303703-3 1.467922+3 2.334311-3 1.397045+3 2.361747-3 1.323417+3 2.386002-3 1.246255+3 2.404763-3 1.174174+3 2.420127-3 1.103284+3 2.432367-3 1.038604+3 2.453473-3 9.242746+2 2.459235-3 8.984631+2 2.465497-3 8.764020+2 2.468942-3 8.676116+2 2.472436-3 8.614763+2 2.475325-3 8.586699+2 2.479228-3 8.582872+2 2.483692-3 8.627314+2 2.487146-3 8.696828+2 2.492222-3 8.851084+2 2.497489-3 9.068808+2 2.501945-3 9.289835+2 2.518565-3 1.025522+3 2.522902-3 1.050546+3 2.528434-3 1.080470+3 2.535198-3 1.113055+3 2.543050-3 1.144894+3 2.552878-3 1.177307+3 2.572419-3 1.237004+3 2.578480-3 1.260118+3 2.586269-3 1.295885+3 2.592686-3 1.330970+3 2.599205-3 1.371528+3 2.626111-3 1.566364+3 2.633064-3 1.615678+3 2.644274-3 1.688273+3 2.656918-3 1.758015+3 2.672624-3 1.828051+3 2.693579-3 1.901016+3 2.715749-3 1.963116+3 2.750744-3 2.044494+3 2.790210-3 2.121336+3 2.819862-3 2.169575+3 2.859236-3 2.219325+3 2.894931-3 2.250681+3 2.932416-3 2.269274+3 2.962477-3 2.270096+3 3.014451-3 2.245099+3 3.025756-3 2.245350+3 3.037914-3 2.253925+3 3.048086-3 2.269059+3 3.057300-3 2.289025+3 3.079504-3 2.355081+3 3.108215-3 2.447602+3 3.122628-3 2.486280+3 3.141156-3 2.525742+3 3.164766-3 2.562580+3 3.196453-3 2.597685+3 3.234095-3 2.627728+3 3.275365-3 2.649848+3 3.322443-3 2.663624+3 3.366961-3 2.671036+3 3.406778-3 2.672156+3 3.447570-3 2.665920+3 3.518822-3 2.644483+3 3.537767-3 2.646896+3 3.567317-3 2.664870+3 3.615392-3 2.707694+3 3.638499-3 2.722345+3 3.675019-3 2.735011+3 3.743204-3 2.736887+3 3.800394-3 2.734590+3 3.836379-3 2.745232+3 3.922688-3 2.785721+3 4.005136-3 2.800221+3 4.159343-3 2.799513+3 4.393914-3 2.772106+3 4.612505-3 2.733832+3 4.931944-3 2.660080+3 5.225465-3 2.586367+3 5.682393-3 2.461565+3 6.036173-3 2.364642+3 6.550131-3 2.227615+3 7.046424-3 2.100126+3 7.363429-3 2.022561+3 8.026593-3 1.868202+3 8.412968-3 1.784609+3 9.167139-3 1.631130+3 9.600457-3 1.548229+3 1.000000-2 1.474652+3 1.040524-2 1.402654+3 1.078141-2 1.337082+3 1.108662-2 1.284548+3 1.138738-2 1.232290+3 1.163697-2 1.188285+3 1.186144-2 1.147643+3 1.204263-2 1.113428+3 1.218900-2 1.084310+3 1.232041-2 1.056413+3 1.242739-2 1.031768+3 1.252649-2 1.006424+3 1.260722-2 9.829012+2 1.267277-2 9.610010+2 1.272659-2 9.407353+2 1.289812-2 8.703289+2 1.294295-2 8.563597+2 1.297641-2 8.491474+2 1.302213-2 8.447217+2 1.304742-2 8.451260+2 1.307052-2 8.472179+2 1.311475-2 8.552922+2 1.318930-2 8.771914+2 1.330646-2 9.151773+2 1.335243-2 9.272492+2 1.343668-2 9.435859+2 1.350662-2 9.523011+2 1.357099-2 9.575165+2 1.366548-2 9.618550+2 1.376975-2 9.635127+2 1.387976-2 9.627320+2 1.402064-2 9.589267+2 1.416389-2 9.525012+2 1.441869-2 9.356123+2 1.454528-2 9.245904+2 1.466948-2 9.115854+2 1.477087-2 8.987311+2 1.491600-2 8.755732+2 1.510837-2 8.416997+2 1.518627-2 8.330133+2 1.526251-2 8.301800+2 1.534222-2 8.328952+2 1.555742-2 8.490048+2 1.582908-2 8.586374+2 1.597487-2 8.691898+2 1.617977-2 8.859446+2 1.633533-2 8.932054+2 1.657588-2 8.964586+2 1.684563-2 8.945038+2 1.721931-2 8.870464+2 1.761246-2 8.758905+2 1.802941-2 8.618144+2 1.883594-2 8.309774+2 1.979302-2 7.919540+2 2.108932-2 7.397772+2 2.267071-2 6.799177+2 2.503662-2 6.005964+2 2.795000-2 5.189346+2 3.148654-2 4.396403+2 3.475810-2 3.811083+2 3.738974-2 3.415359+2 4.058305-2 3.003208+2 4.759684-2 2.312256+2 5.389627-2 1.875951+2 5.851160-2 1.625166+2 6.604664-2 1.305495+2 7.148735-2 1.125545+2 7.592663-2 9.999918+1 7.915467-2 9.164919+1 8.166965-2 8.533307+1 8.347027-2 8.069685+1 8.471251-2 7.723220+1 8.523102-2 7.562867+1 8.566880-2 7.414408+1 8.626533-2 7.186383+1 8.745630-2 6.699712+1 8.780492-2 6.597910+1 8.818564-2 6.535661+1 8.843735-2 6.525744+1 8.883985-2 6.556843+1 8.942965-2 6.669411+1 9.015711-2 6.822032+1 9.074126-2 6.906150+1 9.144961-2 6.956887+1 9.194561-2 6.968782+1 9.317544-2 6.952245+1 9.458213-2 6.890080+1 9.628659-2 6.784799+1 9.872462-2 6.607432+1 1.024186-1 6.312962+1 1.067352-1 5.960327+1 1.135011-1 5.429865+1 1.221212-1 4.822147+1 1.321657-1 4.219481+1 1.481300-1 3.459187+1 1.769982-1 2.517807+1 2.143453-1 1.777303+1 2.601947-1 1.240105+1 3.290297-1 7.955319+0 4.257446-1 4.851493+0 6.058202-1 2.445533+0 9.360412-1 1.042373+0 1.477239+0 4.234315-1 2.814822+0 1.174598-1 8.500626+0 1.291178-2 2.567148+1 1.416006-3 7.752663+1 1.552651-4 2.341267+2 1.702451-5 7.070513+2 1.866701-6 2.511886+3 1.479028-7 7.943282+3 1.479028-8 2.511886+4 1.479028-9 7.943282+4 1.47903-10 1.000000+5 9.33204-11 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.534600-6 1.258900-6 2.432100-6 1.584900-6 3.854600-6 1.995300-6 6.109200-6 2.511900-6 9.682400-6 3.162300-6 1.534500-5 3.981100-6 2.432100-5 5.011900-6 3.854600-5 6.309600-6 6.109000-5 7.943300-6 9.682100-5 1.000000-5 1.534500-4 1.258900-5 2.432000-4 1.584900-5 3.854300-4 1.995300-5 6.108600-4 2.511900-5 9.681200-4 3.162300-5 1.534200-3 3.981100-5 2.430500-3 5.011900-5 3.850800-3 6.309600-5 6.101200-3 7.943300-5 9.666800-3 1.000000-4 1.530500-2 1.258900-4 2.422800-2 1.584900-4 3.830300-2 1.995300-4 6.051900-2 2.511900-4 9.542000-2 3.162300-4 1.500300-1 3.981100-4 2.348300-1 5.011900-4 3.646600-1 6.309600-4 5.584200-1 7.943300-4 8.398800-1 1.000000-3 1.235100+0 1.258900-3 1.767400+0 1.584900-3 2.453600+0 1.995300-3 3.307000+0 2.511900-3 4.337800+0 3.162300-3 5.559200+0 3.981100-3 7.000400+0 5.011900-3 8.715100+0 6.309600-3 1.074500+1 7.943300-3 1.311500+1 1.000000-2 1.573400+1 1.258900-2 1.846600+1 1.584900-2 2.120500+1 1.995300-2 2.396000+1 2.511900-2 2.668200+1 3.162300-2 2.922500+1 3.981100-2 3.139300+1 5.011900-2 3.301900+1 6.309600-2 3.405900+1 7.943300-2 3.450900+1 1.000000-1 3.439100+1 1.258900-1 3.371400+1 1.584900-1 3.255600+1 1.995300-1 3.103000+1 2.511900-1 2.924100+1 3.162300-1 2.728300+1 3.981100-1 2.523700+1 5.011900-1 2.316000+1 6.309600-1 2.110100+1 7.943300-1 1.909100+1 1.000000+0 1.715900+1 1.258900+0 1.532000+1 1.584900+0 1.358600+1 1.995300+0 1.196900+1 2.511900+0 1.047600+1 3.162300+0 9.112100+0 3.981100+0 7.878100+0 5.011900+0 6.772800+0 6.309600+0 5.791500+0 7.943300+0 4.929200+0 1.000000+1 4.176400+0 1.258900+1 3.524200+0 1.584900+1 2.963000+0 1.995300+1 2.482900+0 2.511900+1 2.074300+0 3.162300+1 1.728300+0 3.981100+1 1.436400+0 5.011900+1 1.191200+0 6.309600+1 9.859300-1 7.943300+1 8.145100-1 1.000000+2 6.717800-1 1.258900+2 5.532300-1 1.584900+2 4.549600-1 1.995300+2 3.736800-1 2.511900+2 3.065500-1 3.162300+2 2.512200-1 3.981100+2 2.056600-1 5.011900+2 1.682100-1 6.309600+2 1.374500-1 7.943300+2 1.122300-1 1.000000+3 9.156800-2 1.258900+3 7.465500-2 1.584900+3 6.082400-2 1.995300+3 4.952300-2 2.511900+3 4.029800-2 3.162300+3 3.277200-2 3.981100+3 2.663700-2 5.011900+3 2.163900-2 6.309600+3 1.757000-2 7.943300+3 1.426000-2 1.000000+4 1.156700-2 1.258900+4 9.379500-3 1.584900+4 7.602200-3 1.995300+4 6.159200-3 2.511900+4 4.988200-3 3.162300+4 4.038300-3 3.981100+4 3.268100-3 5.011900+4 2.643900-3 6.309600+4 2.138200-3 7.943300+4 1.728700-3 1.000000+5 1.397200-3 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159548-4 3.981072-4 3.976752-4 5.011872-4 5.005048-4 6.309573-4 6.298787-4 7.943282-4 7.926349-4 1.000000-3 9.973416-4 1.258925-3 1.254763-3 1.584893-3 1.578383-3 1.995262-3 1.985126-3 2.511886-3 2.496093-3 3.162278-3 3.137661-3 3.981072-3 3.942586-3 5.011872-3 4.951767-3 6.309573-3 6.215446-3 7.943282-3 7.795978-3 1.000000-2 9.770079-3 1.258925-2 1.223371-2 1.584893-2 1.530034-2 1.995262-2 1.910756-2 2.511886-2 2.381960-2 3.162278-2 2.963427-2 3.981072-2 3.678771-2 5.011872-2 4.556310-2 6.309573-2 5.628153-2 7.943282-2 6.931759-2 1.000000-1 8.508824-2 1.258925-1 1.041269-1 1.584893-1 1.270368-1 1.995262-1 1.544580-1 2.511886-1 1.872030-1 3.162278-1 2.261516-1 3.981072-1 2.723051-1 5.011872-1 3.269035-1 6.309573-1 3.913551-1 7.943282-1 4.673397-1 1.000000+0 5.566304-1 1.258925+0 6.619713-1 1.584893+0 7.863500-1 1.995262+0 9.334451-1 2.511886+0 1.108036+0 3.162278+0 1.315771+0 3.981072+0 1.563769+0 5.011872+0 1.860655+0 6.309573+0 2.216875+0 7.943282+0 2.645360+0 1.000000+1 3.161986+0 1.258925+1 3.786177+0 1.584893+1 4.541244+0 1.995262+1 5.456504+0 2.511886+1 6.567275+0 3.162278+1 7.917260+0 3.981072+1 9.559762+0 5.011872+1 1.156058+1 6.309573+1 1.400030+1 7.943282+1 1.697792+1 1.000000+2 2.061533+1 1.258925+2 2.506264+1 1.584893+2 3.050416+1 1.995262+2 3.716761+1 2.511886+2 4.533278+1 3.162278+2 5.534539+1 3.981072+2 6.762988+1 5.011872+2 8.271327+1 6.309573+2 1.012426+2 7.943282+2 1.240189+2 1.000000+3 1.520282+2 1.258925+3 1.864926+2 1.584893+3 2.289148+2 1.995262+3 2.811716+2 2.511886+3 3.455503+2 3.162278+3 4.249337+2 3.981072+3 5.228241+2 5.011872+3 6.435842+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739859-9 3.981072-5 4.341986-9 5.011872-5 6.881221-9 6.309573-5 1.090561-8 7.943282-5 1.728325-8 1.000000-4 2.738503-8 1.258925-4 4.339490-8 1.584893-4 6.874170-8 1.995262-4 1.089018-7 2.511886-4 1.724637-7 3.162278-4 2.729942-7 3.981072-4 4.319229-7 5.011872-4 6.824596-7 6.309573-4 1.078633-6 7.943282-4 1.693308-6 1.000000-3 2.658393-6 1.258925-3 4.162471-6 1.584893-3 6.510606-6 1.995262-3 1.013612-5 2.511886-3 1.579390-5 3.162278-3 2.461697-5 3.981072-3 3.848578-5 5.011872-3 6.010498-5 6.309573-3 9.412709-5 7.943282-3 1.473044-4 1.000000-2 2.299212-4 1.258925-2 3.555417-4 1.584893-2 5.485896-4 1.995262-2 8.450661-4 2.511886-2 1.299263-3 3.162278-2 1.988503-3 3.981072-2 3.023002-3 5.011872-2 4.555620-3 6.309573-2 6.814200-3 7.943282-2 1.011524-2 1.000000-1 1.491176-2 1.258925-1 2.176562-2 1.584893-1 3.145248-2 1.995262-1 4.506822-2 2.511886-1 6.398561-2 3.162278-1 9.007612-2 3.981072-1 1.258020-1 5.011872-1 1.742837-1 6.309573-1 2.396023-1 7.943282-1 3.269886-1 1.000000+0 4.433696-1 1.258925+0 5.969541-1 1.584893+0 7.985432-1 1.995262+0 1.061817+0 2.511886+0 1.403851+0 3.162278+0 1.846507+0 3.981072+0 2.417302+0 5.011872+0 3.151217+0 6.309573+0 4.092698+0 7.943282+0 5.297923+0 1.000000+1 6.838014+0 1.258925+1 8.803077+0 1.584893+1 1.130769+1 1.995262+1 1.449612+1 2.511886+1 1.855159+1 3.162278+1 2.370552+1 3.981072+1 3.025095+1 5.011872+1 3.855814+1 6.309573+1 4.909543+1 7.943282+1 6.245491+1 1.000000+2 7.938467+1 1.258925+2 1.008299+2 1.584893+2 1.279852+2 1.995262+2 1.623586+2 2.511886+2 2.058559+2 3.162278+2 2.608824+2 3.981072+2 3.304773+2 5.011872+2 4.184740+2 6.309573+2 5.297147+2 7.943282+2 6.703093+2 1.000000+3 8.479718+2 1.258925+3 1.072433+3 1.584893+3 1.355978+3 1.995262+3 1.714091+3 2.511886+3 2.166336+3 3.162278+3 2.737344+3 3.981072+3 3.458248+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 2.928470+7 5.821032-6 2.437205+7 6.309573-6 2.073865+7 6.839116-6 1.753890+7 7.000000-6 1.668358+7 7.000000-6 2.949159+7 7.244360-6 2.776427+7 7.413102-6 2.663475+7 7.673615-6 2.499192+7 8.128305-6 2.240643+7 8.709636-6 1.952945+7 8.912509-6 1.863155+7 9.225714-6 1.733856+7 9.772372-6 1.533736+7 9.885531-6 1.495934+7 1.050000-5 1.308766+7 1.071519-5 1.249947+7 1.122018-5 1.124201+7 1.188502-5 9.819487+6 1.202264-5 9.553392+6 1.303167-5 7.850583+6 1.310000-5 7.749150+6 1.420000-5 6.325005+6 1.462177-5 5.867707+6 1.505000-5 5.444247+6 1.505000-5 8.356927+6 1.531087-5 7.905999+6 1.650000-5 6.212488+6 1.659587-5 6.097862+6 1.678804-5 5.875608+6 1.862087-5 4.211715+6 1.905461-5 3.912442+6 2.113489-5 2.813579+6 2.213095-5 2.431851+6 2.264644-5 2.262493+6 2.426610-5 1.823046+6 2.500000-5 1.662769+6 2.580000-5 1.508250+6 2.603000-5 1.467725+6 2.603000-5 5.318243+6 2.640000-5 5.303303+6 2.670000-5 5.318307+6 2.700000-5 5.357334+6 2.730000-5 5.424414+6 2.735600-5 5.437409+6 2.765000-5 5.531348+6 2.800000-5 5.676639+6 2.840000-5 5.887410+6 2.851018-5 5.957747+6 2.881000-5 6.156176+6 2.881000-5 8.146032+6 2.884032-5 8.170492+6 2.917427-5 8.474216+6 2.920000-5 8.499255+6 2.951209-5 8.834074+6 2.965000-5 8.991906+6 2.970000-5 9.053903+6 3.010000-5 9.584121+6 3.020000-5 9.726513+6 3.040000-5 1.003387+7 3.054921-5 1.027629+7 3.080000-5 1.069803+7 3.120000-5 1.145609+7 3.162278-5 1.233702+7 3.210000-5 1.345790+7 3.260000-5 1.476147+7 3.273407-5 1.513635+7 3.315000-5 1.635768+7 3.370000-5 1.813830+7 3.388442-5 1.875837+7 3.450000-5 2.099749+7 3.507519-5 2.322699+7 3.526900-5 2.402536+7 3.590000-5 2.668221+7 3.610000-5 2.753824+7 3.630781-5 2.845389+7 3.650000-5 2.931583+7 3.715352-5 3.225348+7 3.730000-5 3.289684+7 3.770000-5 3.471249+7 3.830000-5 3.736716+7 3.850000-5 3.819916+7 3.890451-5 3.993266+7 3.900000-5 4.031747+7 3.935501-5 4.172892+7 3.950000-5 4.231798+7 3.981072-5 4.345691+7 4.000000-5 4.416432+7 4.050000-5 4.584262+7 4.110000-5 4.760402+7 4.113100-5 4.769000+7 4.120975-5 4.788067+7 4.168694-5 4.905268+7 4.220000-5 5.007254+7 4.265795-5 5.075934+7 4.280000-5 5.097490+7 4.330000-5 5.146872+7 4.350000-5 5.163236+7 4.370000-5 5.173620+7 4.415704-5 5.189548+7 4.420000-5 5.191075+7 4.485000-5 5.182300+7 4.500000-5 5.177181+7 4.540000-5 5.154454+7 4.570882-5 5.130977+7 4.610000-5 5.094304+7 4.650000-5 5.049432+7 4.677351-5 5.014006+7 4.680000-5 5.010605+7 4.731513-5 4.935728+7 4.760000-5 4.895239+7 4.850000-5 4.741935+7 4.950000-5 4.552193+7 4.954502-5 4.543366+7 5.000000-5 4.455574+7 5.040000-5 4.375825+7 5.128614-5 4.198002+7 5.150000-5 4.156638+7 5.188000-5 4.077717+7 5.248075-5 3.957149+7 5.300000-5 3.856904+7 5.350000-5 3.760127+7 5.450000-5 3.569588+7 5.500000-5 3.476530+7 5.580000-5 3.334323+7 5.650000-5 3.212648+7 5.800000-5 2.964845+7 5.821032-5 2.932154+7 5.900000-5 2.810272+7 6.025596-5 2.625537+7 6.095369-5 2.529762+7 6.165950-5 2.434955+7 6.309573-5 2.251945+7 6.382635-5 2.165678+7 6.456542-5 2.080611+7 6.683439-5 1.840376+7 6.760830-5 1.764913+7 6.800000-5 1.727513+7 7.000000-5 1.551515+7 7.079458-5 1.486597+7 7.300000-5 1.320697+7 7.328245-5 1.301175+7 7.413102-5 1.243637+7 7.500000-5 1.187048+7 7.673615-5 1.083325+7 7.800000-5 1.013826+7 8.128305-5 8.555263+6 8.300000-5 7.839755+6 8.317638-5 7.769677+6 8.413951-5 7.400457+6 8.609938-5 6.713977+6 8.709636-5 6.395118+6 8.764000-5 6.227231+6 8.764000-5 7.328475+6 8.820000-5 7.188356+6 8.880000-5 7.038328+6 8.912509-5 6.956089+6 8.940000-5 6.887184+6 9.015711-5 6.695865+6 9.076600-5 6.543078+6 9.150000-5 6.360638+6 9.230000-5 6.164467+6 9.332543-5 5.917928+6 9.350000-5 5.876886+6 9.440609-5 5.664334+6 9.450000-5 5.642899+6 9.549926-5 5.416556+6 9.580000-5 5.350794+6 9.660509-5 5.176073+6 9.772372-5 4.943628+6 9.800000-5 4.887313+6 1.000000-4 4.503187+6 1.011579-4 4.295716+6 1.023293-4 4.096201+6 1.040000-4 3.831572+6 1.047129-4 3.724718+6 1.083927-4 3.225907+6 1.096478-4 3.073881+6 1.109100-4 2.930064+6 1.109100-4 3.417832+6 1.113500-4 3.393410+6 1.117000-4 3.372922+6 1.121000-4 3.348485+6 1.122018-4 3.341711+6 1.126500-4 3.312405+6 1.130000-4 3.288157+6 1.135011-4 3.251946+6 1.142000-4 3.199643+6 1.148154-4 3.151380+6 1.154000-4 3.103994+6 1.161449-4 3.042147+6 1.169000-4 2.977638+6 1.174898-4 2.926546+6 1.177000-4 2.908661+6 1.188502-4 2.809308+6 1.190000-4 2.796175+6 1.202264-4 2.691856+6 1.216186-4 2.576040+6 1.235000-4 2.426072+6 1.244515-4 2.353135+6 1.260000-4 2.240704+6 1.300000-4 1.975996+6 1.303167-4 1.957014+6 1.350000-4 1.701362+6 1.364583-4 1.631205+6 1.400000-4 1.476196+6 1.412538-4 1.426607+6 1.428894-4 1.365256+6 1.450000-4 1.291730+6 1.478100-4 1.203057+6 1.478100-4 1.323474+6 1.479108-4 1.323763+6 1.480000-4 1.323535+6 1.482200-4 1.323257+6 1.484500-4 1.322715+6 1.487500-4 1.321672+6 1.490500-4 1.320374+6 1.495000-4 1.317786+6 1.499200-4 1.314802+6 1.502000-4 1.312468+6 1.507000-4 1.307683+6 1.507700-4 1.306880+6 1.512000-4 1.302323+6 1.513561-4 1.300413+6 1.516500-4 1.296934+6 1.520000-4 1.292380+6 1.525000-4 1.285354+6 1.528300-4 1.280216+6 1.528300-4 1.338996+6 1.530400-4 1.335755+6 1.530400-4 1.423861+6 1.531087-4 1.424648+6 1.532000-4 1.425126+6 1.534000-4 1.425897+6 1.537000-4 1.426867+6 1.540000-4 1.427481+6 1.541000-4 1.427567+6 1.545000-4 1.427229+6 1.548817-4 1.426586+6 1.552000-4 1.425366+6 1.555000-4 1.423869+6 1.557000-4 1.422715+6 1.561500-4 1.419500+6 1.565000-4 1.416568+6 1.566751-4 1.414942+6 1.568000-4 1.413616+6 1.572000-4 1.409546+6 1.575000-4 1.406103+6 1.578000-4 1.402399+6 1.584893-4 1.393090+6 1.585000-4 1.392950+6 1.590000-4 1.385714+6 1.593000-4 1.381187+6 1.600000-4 1.369952+6 1.603245-4 1.364452+6 1.610000-4 1.353367+6 1.621810-4 1.332466+6 1.630000-4 1.317607+6 1.635000-4 1.308740+6 1.640590-4 1.298586+6 1.648000-4 1.285539+6 1.659587-4 1.265058+6 1.660000-4 1.264355+6 1.672800-4 1.243392+6 1.678804-4 1.233704+6 1.680000-4 1.231806+6 1.698244-4 1.204521+6 1.705000-4 1.195213+6 1.710000-4 1.188523+6 1.720000-4 1.175734+6 1.733000-4 1.161107+6 1.737801-4 1.156064+6 1.740000-4 1.153764+6 1.755000-4 1.140000+6 1.760000-4 1.135842+6 1.777000-4 1.123727+6 1.778279-4 1.122916+6 1.780000-4 1.121851+6 1.792000-4 1.116065+6 1.800000-4 1.112823+6 1.810000-4 1.109814+6 1.820000-4 1.107651+6 1.821700-4 1.107371+6 1.828000-4 1.106910+6 1.835000-4 1.106966+6 1.842000-4 1.107264+6 1.850000-4 1.108391+6 1.862087-4 1.111300+6 1.865000-4 1.112064+6 1.873000-4 1.115045+6 1.883649-4 1.119977+6 1.890000-4 1.123258+6 1.905461-4 1.133762+6 1.915000-4 1.140927+6 1.927525-4 1.152493+6 1.930000-4 1.154902+6 1.940000-4 1.165060+6 1.950000-4 1.176272+6 1.972423-4 1.205321+6 1.980000-4 1.216167+6 1.995262-4 1.239349+6 2.000000-4 1.247217+6 2.020000-4 1.283023+6 2.041738-4 1.325358+6 2.060000-4 1.364945+6 2.065380-4 1.377207+6 2.080000-4 1.411843+6 2.089296-4 1.434835+6 2.100000-4 1.462337+6 2.113489-4 1.498705+6 2.137962-4 1.569043+6 2.150000-4 1.605797+6 2.162719-4 1.645135+6 2.187762-4 1.727211+6 2.190000-4 1.734869+6 2.205000-4 1.787612+6 2.213095-4 1.816179+6 2.240000-4 1.914258+6 2.264644-4 2.007631+6 2.280000-4 2.067733+6 2.290868-4 2.110108+6 2.300000-4 2.146579+6 2.317395-4 2.216753+6 2.344229-4 2.325883+6 2.365000-4 2.412116+6 2.371374-4 2.438193+6 2.390000-4 2.516554+6 2.400000-4 2.558516+6 2.430000-4 2.683385+6 2.450000-4 2.767561+6 2.454709-4 2.786809+6 2.480000-4 2.892757+6 2.500000-4 2.976604+6 2.511886-4 3.024989+6 2.520000-4 3.058433+6 2.540973-4 3.143757+6 2.560000-4 3.223245+6 2.570396-4 3.265067+6 2.580000-4 3.302788+6 2.620000-4 3.464300+6 2.630268-4 3.503305+6 2.650000-4 3.579328+6 2.660725-4 3.621274+6 2.670000-4 3.657923+6 2.691535-4 3.736456+6 2.730000-4 3.880150+6 2.770000-4 4.018659+6 2.786121-4 4.075634+6 2.818383-4 4.178251+6 2.851018-4 4.283931+6 2.900000-4 4.424298+6 2.917427-4 4.474993+6 2.985383-4 4.646267+6 2.985500-4 4.646544+6 3.019952-4 4.720498+6 3.054921-4 4.796120+6 3.126079-4 4.923791+6 3.130000-4 4.930854+6 3.150000-4 4.960053+6 3.200000-4 5.033055+6 3.280000-4 5.125965+6 3.311311-4 5.151900+6 3.350000-4 5.183861+6 3.388442-4 5.215425+6 3.390000-4 5.216700+6 3.507519-4 5.272770+6 3.550000-4 5.279105+6 3.600000-4 5.286394+6 3.630781-4 5.290896+6 3.650000-4 5.287907+6 3.740000-4 5.274063+6 3.758374-4 5.269267+6 3.780000-4 5.260327+6 3.845918-4 5.233345+6 3.850000-4 5.231695+6 3.890451-4 5.211122+6 3.935501-4 5.182245+6 4.000000-4 5.141717+6 4.027170-4 5.122203+6 4.050000-4 5.105936+6 4.120975-4 5.048060+6 4.124900-4 5.044903+6 4.124900-4 5.156013+6 4.168694-4 5.139139+6 4.171000-4 5.138153+6 4.210000-4 5.121910+6 4.216965-4 5.119061+6 4.245000-4 5.105640+6 4.275000-4 5.091572+6 4.280000-4 5.089154+6 4.303000-4 5.078430+6 4.330000-4 5.065457+6 4.343600-4 5.058949+6 4.352300-4 5.054187+6 4.352300-4 5.152633+6 4.365158-4 5.144465+6 4.370000-4 5.140823+6 4.385000-4 5.130234+6 4.390000-4 5.126547+6 4.405000-4 5.116267+6 4.415704-4 5.109506+6 4.420000-4 5.106264+6 4.430000-4 5.099237+6 4.440000-4 5.092709+6 4.450000-4 5.086711+6 4.465000-4 5.078111+6 4.478000-4 5.071469+6 4.490000-4 5.065789+6 4.507000-4 5.057425+6 4.518559-4 5.051618+6 4.519970-4 5.050918+6 4.523000-4 5.049423+6 4.530000-4 5.045706+6 4.540000-4 5.040130+6 4.558000-4 5.029499+6 4.570882-4 5.021512+6 4.580000-4 5.014970+6 4.600000-4 5.000178+6 4.623810-4 4.982328+6 4.630000-4 4.977195+6 4.665000-4 4.946900+6 4.700000-4 4.916718+6 4.731513-4 4.889550+6 4.746500-4 4.876744+6 4.786301-4 4.842476+6 4.800000-4 4.830074+6 4.841724-4 4.792249+6 4.850000-4 4.784837+6 4.897788-4 4.739016+6 5.011872-4 4.634387+6 5.040000-4 4.608314+6 5.080000-4 4.571426+6 5.150000-4 4.504729+6 5.188000-4 4.468926+6 5.248075-4 4.413769+6 5.308844-4 4.357431+6 5.370318-4 4.300856+6 5.450000-4 4.226412+6 5.495409-4 4.185013+6 5.500000-4 4.180881+6 5.559043-4 4.128524+6 5.623413-4 4.070328+6 5.700100-4 4.003013+6 5.800000-4 3.915252+6 5.888437-4 3.840037+6 5.900000-4 3.830013+6 5.956621-4 3.781678+6 6.000000-4 3.745496+6 6.025596-4 3.724172+6 6.100000-4 3.661074+6 6.165950-4 3.606545+6 6.237348-4 3.549408+6 6.309573-4 3.491222+6 6.343000-4 3.464694+6 6.343000-4 3.668674+6 6.382635-4 3.637213+6 6.500000-4 3.544061+6 6.606934-4 3.462461+6 6.650000-4 3.429683+6 6.683439-4 3.404542+6 6.700000-4 3.392225+6 6.760830-4 3.347724+6 6.839116-4 3.291354+6 6.850000-4 3.283442+6 7.000000-4 3.177280+6 7.079458-4 3.123243+6 7.161434-4 3.067514+6 7.300000-4 2.976756+6 7.328245-4 2.958369+6 7.413102-4 2.904339+6 7.498942-4 2.850834+6 7.500000-4 2.850186+6 7.560200-4 2.812795+6 7.560200-4 2.851050+6 7.673615-4 2.782981+6 7.800000-4 2.710335+6 8.000000-4 2.597821+6 8.035261-4 2.578849+6 8.128305-4 2.529191+6 8.222426-4 2.480401+6 8.317638-4 2.432130+6 8.413951-4 2.384797+6 8.511380-4 2.337710+6 8.609938-4 2.291380+6 8.700000-4 2.249836+6 8.709636-4 2.245424+6 8.767200-4 2.219352+6 8.767200-4 2.263722+6 8.810489-4 2.244315+6 8.912509-4 2.199656+6 9.000000-4 2.162340+6 9.015711-4 2.155758+6 9.120108-4 2.112096+6 9.225714-4 2.069395+6 9.332543-4 2.026765+6 9.440609-4 1.985148+6 9.500000-4 1.962896+6 9.660509-4 1.904524+6 9.772372-4 1.865611+6 9.885531-4 1.826668+6 9.930000-4 1.811717+6 1.000000-3 1.788573+6 1.011579-3 1.750577+6 1.023293-3 1.713495+6 1.035142-3 1.677317+6 1.047129-3 1.641584+6 1.050000-3 1.633218+6 1.059254-3 1.606710+6 1.083927-3 1.538027+6 1.096478-3 1.504631+6 1.109175-3 1.471728+6 1.122018-3 1.439642+6 1.135011-3 1.408036+6 1.148154-3 1.377197+6 1.150000-3 1.372956+6 1.174898-3 1.317232+6 1.202264-3 1.259257+6 1.216186-3 1.231145+6 1.230269-3 1.203594+6 1.244515-3 1.176748+6 1.258925-3 1.150299+6 1.273503-3 1.124266+6 1.276100-3 1.119693+6 1.288250-3 1.098653+6 1.318257-3 1.049012+6 1.333521-3 1.025072+6 1.364583-3 9.786001+5 1.380384-3 9.560092+5 1.400000-3 9.289423+5 1.412538-3 9.121760+5 1.428894-3 8.909893+5 1.445440-3 8.703579+5 1.462177-3 8.500329+5 1.479108-3 8.302410+5 1.500000-3 8.064966+5 1.513561-3 7.916619+5 1.566751-3 7.369006+5 1.570000-3 7.337215+5 1.584893-3 7.194060+5 1.603245-3 7.023425+5 1.640590-3 6.693028+5 1.659587-3 6.533081+5 1.678804-3 6.375960+5 1.698244-3 6.222843+5 1.730000-3 5.982427+5 1.737801-3 5.925215+5 1.757924-3 5.781315+5 1.798871-3 5.504844+5 1.819701-3 5.372129+5 1.850000-3 5.186372+5 1.883649-3 4.988860+5 1.900000-3 4.896761+5 1.905461-3 4.866405+5 1.949845-3 4.629866+5 1.972423-3 4.516377+5 2.018366-3 4.297157+5 2.041738-3 4.190587+5 2.070000-3 4.066058+5 2.089296-3 3.984286+5 2.162719-3 3.693892+5 2.187762-3 3.601841+5 2.213095-3 3.512158+5 2.238721-3 3.423791+5 2.264644-3 3.337248+5 2.290868-3 3.253089+5 2.344229-3 3.091394+5 2.371374-3 3.013809+5 2.400000-3 2.934669+5 2.426610-3 2.863337+5 2.454709-3 2.790038+5 2.489000-3 2.704139+5 2.489000-3 6.826965+5 2.511886-3 6.712651+5 2.570396-3 6.433922+5 2.594700-3 6.323632+5 2.594700-3 8.669703+5 2.613000-3 8.585357+5 2.630268-3 8.507265+5 2.660725-3 8.372559+5 2.691535-3 8.240115+5 2.722701-3 8.110506+5 2.740000-3 8.040201+5 2.754229-3 7.978394+5 2.786121-3 7.843012+5 2.806600-3 7.758363+5 2.810000-3 7.743457+5 2.851018-3 7.517705+5 2.884032-3 7.332713+5 2.900000-3 7.245549+5 2.917427-3 7.149815+5 2.951209-3 6.969172+5 3.000000-3 6.686127+5 3.019952-3 6.574904+5 3.051000-3 6.404854+5 3.054600-3 6.385541+5 3.054600-3 7.398942+5 3.054921-3 7.397132+5 3.090295-3 7.201500+5 3.124000-3 7.022271+5 3.126079-3 7.010948+5 3.162278-3 6.817968+5 3.198895-3 6.630157+5 3.235937-3 6.447402+5 3.311311-3 6.094806+5 3.349654-3 5.926083+5 3.388442-3 5.760517+5 3.400000-3 5.712476+5 3.427678-3 5.599706+5 3.467369-3 5.443302+5 3.500000-3 5.319371+5 3.507519-3 5.291345+5 3.548134-3 5.143400+5 3.549300-3 5.139241+5 3.549300-3 5.449989+5 3.549900-3 5.447806+5 3.550000-3 5.449831+5 3.589219-3 5.310271+5 3.630781-3 5.167129+5 3.650000-3 5.102881+5 3.672823-3 5.027639+5 3.685000-3 4.987817+5 3.715352-3 4.889488+5 3.758374-3 4.754878+5 3.801894-3 4.624126+5 3.824300-3 4.558862+5 3.824300-3 4.753841+5 3.845918-3 4.690817+5 3.890451-3 4.564490+5 3.900000-3 4.538060+5 3.935501-3 4.441116+5 4.000000-3 4.271683+5 4.027170-3 4.203040+5 4.073803-3 4.088984+5 4.120975-3 3.977164+5 4.150000-3 3.910581+5 4.168694-3 3.868440+5 4.265795-3 3.659938+5 4.300000-3 3.590074+5 4.365158-3 3.462172+5 4.415704-3 3.366813+5 4.466836-3 3.274357+5 4.518559-3 3.184558+5 4.570882-3 3.096412+5 4.623810-3 3.010842+5 4.677351-3 2.927759+5 4.731513-3 2.846695+5 4.786301-3 2.767707+5 4.841724-3 2.690908+5 4.954502-3 2.543353+5 5.011872-3 2.472832+5 5.069907-3 2.404161+5 5.128614-3 2.337498+5 5.150000-3 2.313705+5 5.188000-3 2.272209+5 5.308844-3 2.146047+5 5.370318-3 2.085630+5 5.432503-3 2.027007+5 5.495409-3 1.969719+5 5.500000-3 1.965629+5 5.559043-3 1.913993+5 5.623413-3 1.859771+5 5.688529-3 1.807132+5 5.821032-3 1.706079+5 5.888437-3 1.657755+5 6.025596-3 1.565342+5 6.095369-3 1.520995+5 6.237348-3 1.436237+5 6.309573-3 1.395742+5 6.382635-3 1.356434+5 6.400000-3 1.347321+5 6.456542-3 1.318173+5 6.531306-3 1.280617+5 6.683439-3 1.207919+5 6.760830-3 1.173219+5 6.918310-3 1.106942+5 6.998420-3 1.075249+5 7.000000-3 1.074638+5 7.079458-3 1.044363+5 7.161434-3 1.014390+5 7.244360-3 9.851931+4 7.328245-3 9.567302+4 7.413102-3 9.291304+4 7.585776-3 8.762216+4 7.673615-3 8.509588+4 7.852356-3 8.027068+4 8.000000-3 7.657833+4 8.035261-3 7.572970+4 8.128305-3 7.355163+4 8.222426-3 7.143469+4 8.317638-3 6.935605+4 8.413951-3 6.733312+4 8.609938-3 6.346074+4 9.000000-3 5.665396+4 9.015711-3 5.640227+4 9.120108-3 5.476043+4 9.225714-3 5.316619+4 9.332543-3 5.161540+4 9.440609-3 5.010666+4 9.500000-3 4.930119+4 9.549926-3 4.863767+4 9.660509-3 4.721295+4 9.772372-3 4.583206+4 1.000000-2 4.319596+4 1.011579-2 4.193827+4 1.023293-2 4.071349+4 1.035142-2 3.952507+4 1.040000-2 3.904898+4 1.047129-2 3.836460+4 1.059254-2 3.723456+4 1.071519-2 3.613572+4 1.083927-2 3.507041+4 1.096478-2 3.403513+4 1.109175-2 3.303174+4 1.122018-2 3.205947+4 1.135011-2 3.111664+4 1.148154-2 3.020290+4 1.161449-2 2.931664+4 1.174898-2 2.845351+4 1.188502-2 2.761352+4 1.190000-2 2.752320+4 1.202264-2 2.679794+4 1.216186-2 2.600471+4 1.219600-2 2.581487+4 1.230269-2 2.523420+4 1.244515-2 2.448747+4 1.273503-2 2.306211+4 1.288250-2 2.238237+4 1.303167-2 2.171902+4 1.304000-2 2.168258+4 1.304000-2 5.460587+4 1.327000-2 5.197526+4 1.333521-2 5.130536+4 1.348963-2 4.976631+4 1.350000-2 4.966527+4 1.364583-2 4.827310+4 1.365000-2 4.823406+4 1.380384-2 4.680352+4 1.396368-2 4.537730+4 1.412538-2 4.399498+4 1.445440-2 4.135760+4 1.450000-2 4.100945+4 1.462177-2 4.009875+4 1.479108-2 3.886192+4 1.500000-2 3.740499+4 1.513561-2 3.649738+4 1.525100-2 3.574892+4 1.525100-2 4.992691+4 1.531087-2 4.942886+4 1.536000-2 4.902514+4 1.543000-2 4.845791+4 1.548817-2 4.797374+4 1.566751-2 4.652235+4 1.580000-2 4.548843+4 1.584700-2 4.512908+4 1.584700-2 5.218546+4 1.584893-2 5.216923+4 1.603245-2 5.065823+4 1.621810-2 4.919206+4 1.640590-2 4.778168+4 1.659587-2 4.641288+4 1.660000-2 4.638372+4 1.678804-2 4.507197+4 1.698244-2 4.377054+4 1.710000-2 4.300769+4 1.737801-2 4.129417+4 1.757924-2 4.010693+4 1.778279-2 3.895492+4 1.785000-2 3.858492+4 1.798871-2 3.782885+4 1.800000-2 3.776755+4 1.819701-2 3.671963+4 1.840772-2 3.564339+4 1.862087-2 3.459936+4 1.905461-2 3.260232+4 1.927525-2 3.164737+4 1.949845-2 3.072453+4 1.972423-2 2.982945+4 1.995262-2 2.896081+4 2.018366-2 2.811352+4 2.041738-2 2.729106+4 2.065380-2 2.648705+4 2.089296-2 2.570715+4 2.113489-2 2.495092+4 2.137962-2 2.421260+4 2.162719-2 2.349673+4 2.187762-2 2.280188+4 2.264644-2 2.083856+4 2.268170-2 2.075359+4 2.290868-2 2.021806+4 2.317395-2 1.961652+4 2.344229-2 1.903333+4 2.371374-2 1.846790+4 2.398833-2 1.791955+4 2.400000-2 1.789675+4 2.426610-2 1.738743+4 2.454709-2 1.687149+4 2.483133-2 1.637115+4 2.511886-2 1.588148+4 2.540973-2 1.540574+4 2.600160-2 1.449225+4 2.630268-2 1.405624+4 2.660725-2 1.363368+4 2.691535-2 1.322412+4 2.722701-2 1.282717+4 2.754229-2 1.244234+4 2.786121-2 1.206933+4 2.818383-2 1.170778+4 2.851018-2 1.135735+4 2.884032-2 1.101737+4 2.900000-2 1.085801+4 2.917427-2 1.068755+4 3.000000-2 9.922572+3 3.019952-2 9.749220+3 3.054921-2 9.455481+3 3.090295-2 9.170815+3 3.126079-2 8.894887+3 3.150000-2 8.715627+3 3.198895-2 8.364596+3 3.235937-2 8.109810+3 3.349654-2 7.392182+3 3.388442-2 7.167459+3 3.467369-2 6.737967+3 3.507519-2 6.533117+3 3.548134-2 6.334639+3 3.589219-2 6.142344+3 3.672823-2 5.775493+3 3.715352-2 5.600007+3 3.758374-2 5.429054+3 3.890451-2 4.947592+3 3.935501-2 4.796069+3 3.981072-2 4.649186+3 4.027170-2 4.506784+3 4.120975-2 4.235083+3 4.168694-2 4.104717+3 4.265795-2 3.856167+3 4.365158-2 3.622987+3 4.415704-2 3.511820+3 4.466836-2 3.404140+3 4.500000-2 3.336744+3 4.518559-2 3.299834+3 4.570882-2 3.198691+3 4.623810-2 3.100722+3 4.677351-2 3.005383+3 4.731513-2 2.912924+3 4.786301-2 2.823359+3 4.841724-2 2.736268+3 4.954502-2 2.570252+3 5.011872-2 2.490606+3 5.069907-2 2.413481+3 5.188000-2 2.266464+3 5.248075-2 2.196398+3 5.308844-2 2.128544+3 5.370318-2 2.062769+3 5.432503-2 1.999066+3 5.495409-2 1.937261+3 5.623413-2 1.819416+3 5.688529-2 1.763257+3 5.754399-2 1.708869+3 5.800000-2 1.672574+3 5.821032-2 1.656110+3 6.000000-2 1.523943+3 6.095369-2 1.459432+3 6.165950-2 1.414099+3 6.237348-2 1.370204+3 6.309573-2 1.327687+3 6.382635-2 1.286484+3 6.456542-2 1.246587+3 6.500000-2 1.223921+3 6.531306-2 1.207927+3 6.683439-2 1.133774+3 6.760830-2 1.098453+3 6.918310-2 1.031129+3 7.244360-2 9.088190+2 7.328245-2 8.805584+2 7.413102-2 8.531920+2 7.498942-2 8.266393+2 7.585776-2 8.009221+2 7.673615-2 7.758525+2 7.762471-2 7.515808+2 7.852356-2 7.280552+2 7.943282-2 7.052751+2 8.035261-2 6.832197+2 8.128305-2 6.618545+2 8.222426-2 6.411691+2 8.317638-2 6.211414+2 8.413951-2 6.017479+2 8.829000-2 5.270897+2 8.829000-2 2.482912+3 9.015711-2 2.355871+3 9.120108-2 2.288692+3 9.225714-2 2.223440+3 9.440609-2 2.092962+3 9.500000-2 2.058773+3 9.660509-2 1.974026+3 9.772372-2 1.917827+3 9.885531-2 1.863236+3 9.900000-2 1.856414+3 1.000000-1 1.808348+3 1.023293-1 1.702883+3 1.047129-1 1.603594+3 1.071519-1 1.510118+3 1.083927-1 1.465397+3 1.109175-1 1.379906+3 1.122019-1 1.339054+3 1.135011-1 1.299417+3 1.161449-1 1.223624+3 1.188502-1 1.152270+3 1.230269-1 1.052990+3 1.273503-1 9.622965+2 1.303167-1 9.054724+2 1.348963-1 8.264044+2 1.364583-1 8.016188+2 1.412538-1 7.316449+2 1.445440-1 6.884337+2 1.462177-1 6.677978+2 1.479108-1 6.477215+2 1.500000-1 6.240754+2 1.531088-1 5.910522+2 1.548817-1 5.732990+2 1.640590-1 4.922369+2 1.678804-1 4.631259+2 1.698244-1 4.492182+2 1.757924-1 4.099576+2 1.778279-1 3.976510+2 1.819701-1 3.741366+2 1.840772-1 3.629085+2 1.883649-1 3.414659+2 1.905461-1 3.312256+2 1.949845-1 3.116676+2 2.000000-1 2.914346+2 2.018366-1 2.844784+2 2.041738-1 2.759540+2 2.065380-1 2.676868+2 2.089296-1 2.596677+2 2.162719-1 2.370258+2 2.187762-1 2.299270+2 2.213095-1 2.230413+2 2.238721-1 2.163651+2 2.264644-1 2.098898+2 2.290868-1 2.036087+2 2.300000-1 2.014824+2 2.317395-1 1.975181+2 2.344229-1 1.916110+2 2.398833-1 1.803223+2 2.400000-1 1.800912+2 2.426610-1 1.749855+2 2.454709-1 1.698095+2 2.483133-1 1.647867+2 2.540973-1 1.551830+2 2.570396-1 1.505935+2 2.630268-1 1.418229+2 2.660725-1 1.376318+2 2.691535-1 1.335693+2 2.722701-1 1.296290+2 2.754229-1 1.258062+2 2.818383-1 1.184961+2 2.851018-1 1.150021+2 2.884032-1 1.116115+2 2.917427-1 1.083214+2 2.951209-1 1.051722+2 3.000060-1 1.008422+2 3.019952-1 9.914976+1 3.090295-1 9.347274+1 3.126079-1 9.075743+1 3.198895-1 8.556446+1 3.235937-1 8.308062+1 3.273407-1 8.066902+1 3.311311-1 7.833117+1 3.349654-1 7.606193+1 3.388442-1 7.385949+1 3.427678-1 7.175614+1 3.467369-1 6.971330+1 3.548134-1 6.580108+1 3.589219-1 6.392819+1 3.672823-1 6.034313+1 3.715352-1 5.862682+1 3.758374-1 5.695936+1 3.801894-1 5.534012+1 3.845918-1 5.376698+1 3.890451-1 5.224147+1 3.935501-1 5.078506+1 4.000000-1 4.879871+1 4.027170-1 4.799465+1 4.073803-1 4.665753+1 4.168694-1 4.409606+1 4.216965-1 4.286919+1 4.265795-1 4.167649+1 4.315191-1 4.051699+1 4.415705-1 3.829429+1 4.466836-1 3.722919+1 4.518559-1 3.621571+1 4.570882-1 3.522986+1 4.623810-1 3.427134+1 4.677351-1 3.334001+1 4.731513-1 3.243398+1 4.786301-1 3.155273+1 4.841724-1 3.069556+1 4.897788-1 2.986171+1 4.954502-1 2.905052+1 5.011872-1 2.826139+1 5.069907-1 2.749374+1 5.128614-1 2.676349+1 5.188000-1 2.605469+1 5.248075-1 2.536517+1 5.308844-1 2.469428+1 5.370318-1 2.404125+1 5.432503-1 2.340550+1 5.495409-1 2.278665+1 5.623413-1 2.159767+1 5.688529-1 2.102697+1 5.754399-1 2.047146+1 5.821032-1 1.994186+1 5.888437-1 1.942634+1 5.956621-1 1.892545+1 6.000000-1 1.861643+1 6.025596-1 1.843749+1 6.165950-1 1.749955+1 6.237348-1 1.704871+1 6.309573-1 1.660973+1 6.382635-1 1.618212+1 6.456542-1 1.576554+1 6.531306-1 1.536884+1 6.683439-1 1.460530+1 6.760830-1 1.423879+1 6.839117-1 1.388150+1 6.918310-1 1.353338+1 6.998420-1 1.319413+1 7.079458-1 1.286351+1 7.161434-1 1.254119+1 7.244360-1 1.222716+1 7.328245-1 1.192106+1 7.413102-1 1.162923+1 7.498942-1 1.134455+1 7.585776-1 1.106685+1 7.673615-1 1.079657+1 7.762471-1 1.053290+1 7.943282-1 1.002510+1 8.000000-1 9.873214+0 8.035261-1 9.780487+0 8.222427-1 9.309637+0 8.317638-1 9.088497+0 8.511380-1 8.661862+0 8.609938-1 8.456723+0 8.709636-1 8.256479+0 8.810489-1 8.061172+0 8.912509-1 7.870611+0 9.015711-1 7.684585+0 9.120108-1 7.502959+0 9.225714-1 7.325636+0 9.332543-1 7.157127+0 9.440609-1 6.992773+0 9.549926-1 6.832771+0 9.660509-1 6.676432+0 9.772372-1 6.523682+0 9.885531-1 6.374568+0 1.000000+0 6.228996+0 1.011579+0 6.086943+0 1.023293+0 5.948120+0 1.035142+0 5.814886+0 1.047129+0 5.684629+0 1.059254+0 5.557319+0 1.071519+0 5.432865+0 1.083927+0 5.311263+0 1.096478+0 5.192617+0 1.109175+0 5.076726+0 1.122018+0 4.963436+0 1.135011+0 4.852694+0 1.148154+0 4.744508+0 1.161449+0 4.638751+0 1.174898+0 4.535352+0 1.188502+0 4.434322+0 1.202264+0 4.335540+0 1.216186+0 4.239039+0 1.230269+0 4.147174+0 1.244515+0 4.057302+0 1.250000+0 4.023504+0 1.258925+0 3.969613+0 1.273503+0 3.883930+0 1.288250+0 3.800095+0 1.303167+0 3.718181+0 1.318257+0 3.638045+0 1.333521+0 3.559705+0 1.348963+0 3.483050+0 1.364583+0 3.408050+0 1.380384+0 3.336534+0 1.396368+0 3.266528+0 1.412538+0 3.198003+0 1.428894+0 3.131132+0 1.462177+0 3.001596+0 1.479108+0 2.938903+0 1.500000+0 2.864340+0 1.513561+0 2.817495+0 1.531087+0 2.758686+0 1.548817+0 2.702687+0 1.584893+0 2.594085+0 1.640590+0 2.439809+0 1.659587+0 2.390501+0 1.678804+0 2.342198+0 1.698244+0 2.294870+0 1.717908+0 2.248506+0 1.737801+0 2.203128+0 1.757924+0 2.159919+0 1.778279+0 2.117559+0 1.798871+0 2.076029+0 1.819701+0 2.035452+0 1.840772+0 1.995668+0 1.862087+0 1.956662+0 1.883649+0 1.918458+0 1.927525+0 1.844286+0 1.949845+0 1.808286+0 1.972423+0 1.773036+0 2.000000+0 1.732594+0 2.018366+0 1.706475+0 2.044000+0 1.671060+0 2.065380+0 1.642507+0 2.089296+0 1.611484+0 2.113489+0 1.581047+0 2.137962+0 1.551215+0 2.162719+0 1.521950+0 2.187762+0 1.493237+0 2.213095+0 1.465070+0 2.264644+0 1.410385+0 2.290868+0 1.384514+0 2.317395+0 1.359119+0 2.344229+0 1.334191+0 2.371374+0 1.309798+0 2.398833+0 1.285852+0 2.426610+0 1.262343+0 2.454709+0 1.239288+0 2.483133+0 1.216657+0 2.511886+0 1.194441+0 2.540973+0 1.172631+0 2.600160+0 1.130252+0 2.630268+0 1.110196+0 2.660725+0 1.090495+0 2.691535+0 1.071145+0 2.722701+0 1.052199+0 2.754229+0 1.033589+0 2.786121+0 1.015308+0 2.818383+0 9.973679-1 2.851018+0 9.797486-1 2.884032+0 9.624400-1 2.917427+0 9.454399-1 3.000000+0 9.055118-1 3.019952+0 8.965399-1 3.054921+0 8.811686-1 3.090295+0 8.660609-1 3.126079+0 8.512621-1 3.162278+0 8.367159-1 3.198895+0 8.224187-1 3.235937+0 8.083799-1 3.311311+0 7.810228-1 3.388442+0 7.545942-1 3.467369+0 7.290918-1 3.507519+0 7.170010-1 3.548134+0 7.051113-1 3.589219+0 6.934188-1 3.630781+0 6.819579-1 3.672823+0 6.706868-1 3.715352+0 6.596019-1 3.758374+0 6.487111-1 3.845918+0 6.274699-1 3.935501+0 6.069269-1 4.027170+0 5.870809-1 4.073803+0 5.776659-1 4.120975+0 5.684024-1 4.168694+0 5.592874-1 4.216965+0 5.503479-1 4.265795+0 5.415513-1 4.315191+0 5.328951-1 4.365158+0 5.243860-1 4.518559+0 4.996693-1 4.623810+0 4.838441-1 4.731513+0 4.685389-1 4.786301+0 4.612707-1 4.841724+0 4.541154-1 4.897788+0 4.470713-1 4.954502+0 4.401588-1 5.011872+0 4.333534-1 5.069907+0 4.266531-1 5.128614+0 4.200629-1 5.370318+0 3.947093-1 5.495409+0 3.826136-1 5.623413+0 3.709030-1 5.688529+0 3.653368-1 5.754399+0 3.598544-1 5.821032+0 3.544543-1 5.888437+0 3.491524-1 5.956621+0 3.439301-1 6.025596+0 3.387857-1 6.095369+0 3.337235-1 6.382635+0 3.142235-1 6.531306+0 3.049061-1 6.683439+0 2.958757-1 6.760830+0 2.915764-1 6.839116+0 2.873398-1 6.918310+0 2.831647-1 7.079458+0 2.750203-1 7.161434+0 2.710364-1 7.244360+0 2.671102-1 7.328245+0 2.632445-1 7.673615+0 2.483356-1 7.943282+0 2.377119-1 8.128305+0 2.308907-1 8.222427+0 2.276359-1 8.317638+0 2.244272-1 8.413951+0 2.212637-1 8.609938+0 2.150887-1 8.709636+0 2.120662-1 8.810489+0 2.090861-1 8.912509+0 2.061506-1 9.332543+0 1.948172-1 9.660509+0 1.867289-1 9.885531+0 1.815304-1 1.000000+1 1.790508-1 1.011579+1 1.766053-1 1.023293+1 1.741931-1 1.035142+1 1.718208-1 1.047129+1 1.694806-1 1.059254+1 1.671725-1 1.071519+1 1.648975-1 1.083927+1 1.626534-1 1.174898+1 1.477793-1 1.244515+1 1.379963-1 1.258925+1 1.361211-1 1.273503+1 1.343173-1 1.288250+1 1.325374-1 1.303167+1 1.307863-1 1.318257+1 1.290597-1 1.462177+1 1.145142-1 1.479108+1 1.130029-1 1.584893+1 1.043451-1 1.603245+1 1.029686-1 1.621810+1 1.016421-1 1.640590+1 1.003327-1 1.659587+1 9.904368-2 1.678804+1 9.777230-2 1.862087+1 8.704161-2 1.883649+1 8.592450-2 1.905461+1 8.482181-2 2.065380+1 7.748934-2 2.089296+1 7.649526-2 2.113489+1 7.551448-2 2.137962+1 7.456594-2 2.162719+1 7.362932-2 2.200000+1 7.226390-2 2.213095+1 7.179580-2 2.238721+1 7.089690-2 2.454709+1 6.410004-2 2.483133+1 6.329759-2 2.511886+1 6.250526-2 2.786121+1 5.580598-2 2.818383+1 5.510763-2 2.851018+1 5.441839-2 2.884032+1 5.374997-2 2.917427+1 5.308981-2 3.000000+1 5.152620-2 3.019952+1 5.116189-2 3.054921+1 5.053529-2 3.388442+1 4.523077-2 3.427678+1 4.467688-2 3.467369+1 4.412980-2 3.890451+1 3.901435-2 3.935501+1 3.853674-2 3.981072+1 3.806519-2 4.000000+1 3.787260-2 4.027170+1 3.760366-2 4.073803+1 3.715065-2 4.120975+1 3.670312-2 4.265795+1 3.539501-2 4.315191+1 3.496964-2 4.365158+1 3.454941-2 5.000000+1 2.995861-2 5.069907+1 2.952502-2 5.128614+1 2.917027-2 5.754399+1 2.584900-2 5.821032+1 2.553850-2 5.888437+1 2.523172-2 5.956621+1 2.492877-2 6.025596+1 2.463378-2 6.095369+1 2.434229-2 6.165950+1 2.405425-2 6.382635+1 2.321182-2 6.456542+1 2.293775-2 6.606934+1 2.239929-2 7.673615+1 1.919477-2 7.852356+1 1.874422-2 8.128305+1 1.808817-2 1.000000+2 1.460692-2 1.023293+2 1.426414-2 1.035142+2 1.409579-2 1.047129+2 1.392940-2 1.059254+2 1.376506-2 1.071519+2 1.360460-2 1.083927+2 1.344601-2 1.096478+2 1.328949-2 1.122018+2 1.298189-2 1.135011+2 1.283083-2 1.148154+2 1.268153-2 1.273503+2 1.141375-2 1.348963+2 1.076506-2 1.949845+2 7.402529-3 2.041738+2 7.064037-3 2.065380+2 6.981861-3 2.089296+2 6.900640-3 2.113489+2 6.820378-3 2.137962+2 6.741548-3 2.162719+2 6.663627-3 2.187762+2 6.586665-3 2.238721+2 6.435400-3 2.264644+2 6.361091-3 2.290868+2 6.287638-3 2.540973+2 5.663615-3 2.691535+2 5.344113-3 3.890451+2 3.685356-3 4.073803+2 3.518087-3 4.120975+2 3.477470-3 4.168694+2 3.437322-3 4.216965+2 3.397642-3 4.265795+2 3.358600-3 4.315191+2 3.320006-3 4.365158+2 3.281876-3 4.466836+2 3.206925-3 4.518559+2 3.170100-3 4.570882+2 3.133697-3 5.069907+2 2.824329-3 5.370318+2 2.665859-3 1.548817+3 9.212928-4 1.621810+3 8.797030-4 1.640590+3 8.696020-4 1.659587+3 8.596173-4 1.678804+3 8.497478-4 1.698244+3 8.400129-4 1.717908+3 8.303901-4 1.737801+3 8.208794-4 1.778279+3 8.021842-4 1.798871+3 7.929973-4 1.819701+3 7.839157-4 4.027170+3 3.540916-4 4.265795+3 3.342755-4 1.000000+5 1.423976-5 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 5.290000-6 7.000000-6 5.290000-6 7.000000-6 6.032642-6 8.709636-6 6.103407-6 1.122018-5 6.159488-6 1.505000-5 6.200737-6 1.505000-5 9.285013-6 1.678804-5 8.909832-6 1.905461-5 8.515828-6 2.113489-5 8.232648-6 2.264644-5 8.063003-6 2.500000-5 7.852455-6 2.603000-5 7.777801-6 2.603000-5 2.099277-5 2.700000-5 2.154468-5 2.881000-5 2.280672-5 2.881000-5 2.427316-5 3.080000-5 2.514213-5 3.210000-5 2.559219-5 3.388442-5 2.603452-5 3.630781-5 2.640735-5 4.050000-5 2.678177-5 4.540000-5 2.702601-5 5.350000-5 2.713449-5 8.413951-5 2.710844-5 8.764000-5 2.709319-5 8.764000-5 3.098694-5 8.940000-5 3.148148-5 9.150000-5 3.191222-5 9.450000-5 3.231696-5 1.000000-4 3.274482-5 1.109100-4 3.332344-5 1.109100-4 3.649774-5 1.130000-4 3.732790-5 1.154000-4 3.797816-5 1.177000-4 3.839193-5 1.216186-4 3.884751-5 1.478100-4 4.077155-5 1.478100-4 4.278712-5 1.499200-4 4.380889-5 1.525000-4 4.469086-5 1.528300-4 4.477820-5 1.528300-4 4.624937-5 1.530400-4 4.630544-5 1.530400-4 4.751333-5 1.552000-4 4.849986-5 1.578000-4 4.930744-5 1.610000-4 4.997366-5 1.780000-4 5.232990-5 1.890000-4 5.430459-5 2.041738-4 5.720383-5 2.150000-4 5.890560-5 2.240000-4 5.998397-5 2.365000-4 6.101685-5 2.520000-4 6.178051-5 2.770000-4 6.240805-5 3.150000-4 6.277645-5 4.050000-4 6.289268-5 4.124900-4 6.288631-5 4.124900-4 6.399103-5 4.352300-4 6.500270-5 4.352300-4 6.601928-5 4.478000-4 6.649427-5 4.630000-4 6.718596-5 6.343000-4 7.171616-5 6.343000-4 7.638626-5 7.328245-4 7.917128-5 7.560200-4 7.977294-5 7.560200-4 8.099609-5 8.767200-4 8.411339-5 8.767200-4 8.628503-5 1.047129-3 9.046586-5 1.244515-3 9.451633-5 1.462177-3 9.823719-5 1.698244-3 1.016256-4 2.018366-3 1.053855-4 2.400000-3 1.090091-4 2.489000-3 1.097416-4 2.489000-3 1.580529-4 2.594700-3 1.589101-4 2.594700-3 1.677399-4 2.810000-3 1.696713-4 3.051000-3 1.700746-4 3.054600-3 1.700740-4 3.054600-3 1.821319-4 3.549300-3 1.839025-4 3.549300-3 1.901082-4 3.824300-3 1.916212-4 3.824300-3 1.975392-4 5.069907-3 2.047182-4 6.531306-3 2.113944-4 8.413951-3 2.181380-4 1.083927-2 2.247773-4 1.304000-2 2.295069-4 1.304000-2 2.890658-4 1.525100-2 2.901121-4 1.525100-2 3.025297-4 1.584700-2 3.028092-4 1.584700-2 3.250431-4 2.268170-2 3.338905-4 3.235937-2 3.426930-4 4.500000-2 3.508009-4 6.165950-2 3.583848-4 8.413951-2 3.653823-4 8.829000-2 3.664302-4 8.829000-2 3.339448-4 2.264644-1 3.361412-4 6.382635-1 3.374141-4 1.000000+5 3.375694-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 0.0 8.764000-5 0.0 8.764000-5 9.24396-11 8.820000-5 9.65647-11 8.880000-5 1.00638-10 8.940000-5 1.04329-10 9.015711-5 1.08512-10 9.076600-5 1.11522-10 9.150000-5 1.14768-10 9.230000-5 1.17869-10 9.350000-5 1.21840-10 9.450000-5 1.24676-10 9.580000-5 1.27812-10 9.800000-5 1.32124-10 1.000000-4 1.35442-10 1.047129-4 1.42101-10 1.109100-4 1.50630-10 1.109100-4 4.79550-10 1.113500-4 4.98533-10 1.121000-4 5.28017-10 1.126500-4 5.47343-10 1.135011-4 5.73425-10 1.142000-4 5.91920-10 1.148154-4 6.06076-10 1.154000-4 6.17879-10 1.161449-4 6.30985-10 1.169000-4 6.42489-10 1.177000-4 6.52878-10 1.190000-4 6.66341-10 1.202264-4 6.76634-10 1.216186-4 6.85675-10 1.235000-4 6.95013-10 1.260000-4 7.04532-10 1.303167-4 7.17662-10 1.412538-4 7.44931-10 1.478100-4 7.59943-10 1.478100-4 1.717120-9 1.479108-4 1.743426-9 1.484500-4 1.863202-9 1.490500-4 1.985504-9 1.495000-4 2.069841-9 1.502000-4 2.189644-9 1.507700-4 2.276529-9 1.513561-4 2.357556-9 1.520000-4 2.438331-9 1.528300-4 2.527289-9 1.528300-4 2.479282-9 1.530400-4 2.499431-9 1.530400-4 2.387343-9 1.541000-4 2.442730-9 1.555000-4 2.498674-9 1.572000-4 2.546665-9 1.593000-4 2.591382-9 1.672800-4 2.731148-9 1.698244-4 2.787020-9 1.720000-4 2.846182-9 1.740000-4 2.909589-9 1.760000-4 2.983211-9 1.780000-4 3.068074-9 1.800000-4 3.161681-9 1.828000-4 3.310834-9 1.850000-4 3.437277-9 1.883649-4 3.645233-9 1.950000-4 4.083902-9 2.020000-4 4.554040-9 2.065380-4 4.837840-9 2.113489-4 5.114091-9 2.162719-4 5.363968-9 2.213095-4 5.577904-9 2.240000-4 5.677694-9 2.290868-4 5.832165-9 2.317395-4 5.902436-9 2.371374-4 6.017443-9 2.454709-4 6.147394-9 2.560000-4 6.256545-9 2.691535-4 6.338476-9 2.851018-4 6.389910-9 3.130000-4 6.414145-9 3.650000-4 6.401907-9 4.124900-4 6.372522-9 4.124900-4 6.495947-9 4.352300-4 6.595198-9 4.352300-4 7.887197-9 4.390000-4 7.869369-9 4.430000-4 7.902795-9 4.450000-4 7.949343-9 4.478000-4 8.052198-9 4.540000-4 8.321527-9 4.600000-4 8.506189-9 4.700000-4 8.729487-9 4.850000-4 8.977319-9 5.080000-4 9.309029-9 6.165950-4 1.099803-8 6.343000-4 1.126671-8 6.343000-4 1.591659-8 7.000000-4 1.727866-8 7.560200-4 1.831231-8 7.560200-4 1.997008-8 8.511380-4 2.193316-8 8.767200-4 2.243411-8 8.767200-4 2.498343-8 1.000000-3 2.763846-8 1.135011-3 3.025115-8 1.244515-3 3.219376-8 1.380384-3 3.441338-8 1.513561-3 3.640505-8 1.698244-3 3.890270-8 1.905461-3 4.141307-8 2.089296-3 4.342930-8 2.371374-3 4.620075-8 2.489000-3 4.724736-8 2.489000-3 5.139958-8 2.594700-3 5.180162-8 2.594700-3 2.072396-5 2.740000-3 2.209977-5 2.810000-3 2.258324-5 2.851018-3 2.293184-5 2.917427-3 2.331326-5 2.951209-3 2.348116-5 3.054600-3 2.342936-5 3.054600-3 2.287514-5 3.549300-3 2.261881-5 3.549300-3 2.504887-5 3.824300-3 2.520041-5 3.824300-3 2.550723-5 4.570882-3 2.581014-5 6.025596-3 2.625275-5 8.413951-3 2.675914-5 1.148154-2 2.721000-5 1.304000-2 2.739043-5 1.304000-2 2.335035-3 1.350000-2 2.329071-3 1.525100-2 2.315653-3 1.525100-2 3.314775-3 1.584700-2 3.319891-3 1.584700-2 3.456326-3 2.089296-2 3.494853-3 3.150000-2 3.522546-3 5.188000-2 3.531214-3 8.829000-2 3.525822-3 8.829000-2 6.233819-2 1.047129-1 6.285608-2 1.412538-1 6.346562-2 2.089296-1 6.394227-2 4.073803-1 6.442282-2 9.549926-1 6.497169-2 1.000000+5 6.498962-2 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.290000-6 0.0 7.000000-6 1.710000-6 7.000000-6 9.673578-7 7.673615-6 1.607911-6 8.912509-6 2.803672-6 1.071519-5 4.564933-6 1.505000-5 8.849263-6 1.505000-5 5.764987-6 1.678804-5 7.878208-6 1.905461-5 1.053878-5 2.113489-5 1.290224-5 2.426610-5 1.635510-5 2.603000-5 1.825220-5 2.603000-5 5.037228-6 2.640000-5 5.213800-6 2.670000-5 5.340656-6 2.700000-5 5.455323-6 2.765000-5 5.668929-6 2.881000-5 6.003283-6 2.881000-5 4.536843-6 2.970000-5 5.020590-6 3.054921-5 5.505481-6 3.120000-5 5.906941-6 3.162278-5 6.182538-6 3.210000-5 6.507806-6 3.273407-5 6.962923-6 3.370000-5 7.702661-6 3.450000-5 8.350698-6 3.590000-5 9.543489-6 3.770000-5 1.114504-5 4.050000-5 1.371823-5 4.420000-5 1.721683-5 4.954502-5 2.243700-5 7.500000-5 4.786288-5 8.764000-5 6.054681-5 8.764000-5 5.665297-5 9.076600-5 5.898725-5 9.549926-5 6.308472-5 1.109100-4 7.758640-5 1.109100-4 7.441178-5 1.135011-4 7.601407-5 1.174898-4 7.913054-5 1.260000-4 8.680334-5 1.478100-4 1.070377-4 1.478100-4 1.050212-4 1.513561-4 1.070142-4 1.528300-4 1.080493-4 1.528300-4 1.065781-4 1.530400-4 1.067321-4 1.530400-4 1.055243-4 1.565000-4 1.075544-4 1.621810-4 1.120165-4 1.810000-4 1.281721-4 2.100000-4 1.518240-4 2.280000-4 1.676270-4 2.540973-4 1.922369-4 3.150000-4 2.522171-4 4.124900-4 3.495973-4 4.124900-4 3.484925-4 4.352300-4 3.702207-4 4.352300-4 3.692028-4 6.343000-4 5.625726-4 6.343000-4 5.578978-4 7.560200-4 6.762288-4 7.560200-4 6.750039-4 8.767200-4 7.925842-4 8.767200-4 7.904100-4 1.584893-3 1.484778-3 2.489000-3 2.379211-3 2.489000-3 2.330896-3 2.594700-3 2.435738-3 2.594700-3 2.406236-3 3.054600-3 2.861097-3 3.054600-3 2.849593-3 3.549300-3 3.342779-3 3.549300-3 3.334143-3 3.824300-3 3.607478-3 3.824300-3 3.601254-3 1.304000-2 1.278310-2 1.304000-2 1.041590-2 1.525100-2 1.264524-2 1.525100-2 1.163370-2 1.584700-2 1.222430-2 1.584700-2 1.206563-2 2.917427-2 2.531492-2 8.829000-2 8.439775-2 8.829000-2 2.561786-2 9.440609-2 3.151648-2 1.023293-1 3.918996-2 1.364583-1 7.271435-2 2.400000-1 1.756172-1 3.388442+0 3.323117+0 1.000000+5 9.999993+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 8.829000-2 1.955822+3 9.225714-2 1.756450+3 9.500000-2 1.628090+3 9.900000-2 1.472076+3 1.273503-1 7.703575+2 1.462177-1 5.366294+2 2.400000-1 1.459910+2 2.917427-1 8.802067+1 3.388442-1 6.011739+1 3.890451-1 4.258787+1 4.466836-1 3.039548+1 5.069907-1 2.247690+1 5.754399-1 1.675896+1 6.456542-1 1.292222+1 7.328245-1 9.783221+0 8.222427-1 7.649348+0 9.225714-1 6.026827+0 1.023293+0 4.897249+0 1.216186+0 3.490992+0 1.364583+0 2.806104+0 1.531087+0 2.270998+0 1.737801+0 1.813615+0 1.972423+0 1.459614+0 2.264644+0 1.161091+0 2.600160+0 9.304754-1 3.000000+0 7.454500-1 3.467369+0 6.002117-1 4.027170+0 4.833069-1 4.731513+0 3.857197-1 5.623413+0 3.053414-1 6.683439+0 2.435770-1 8.128305+0 1.900818-1 9.885531+0 1.494438-1 1.258925+1 1.120650-1 1.603245+1 8.477226-2 2.113489+1 6.216985-2 2.851018+1 4.480216-2 4.000000+1 3.118000-2 5.956621+1 2.052338-2 1.059254+2 1.133272-2 2.113489+2 5.615296-3 4.216965+2 2.797342-3 1.678804+3 6.996159-4 1.000000+5 1.172400-5 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 8.829000-2 3.251900-4 1.000000+5 3.251900-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.829000-2 7.818800-2 1.000000+5 7.818800-2 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 8.829000-2 9.776810-3 1.000000+5 9.999992+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.584700-2 7.056375+3 1.621810-2 6.766959+3 1.660000-2 6.512140+3 1.710000-2 6.171680+3 1.785000-2 5.753660+3 1.927525-2 5.002913+3 2.113489-2 4.254074+3 2.264644-2 3.741528+3 2.540973-2 3.004366+3 3.198895-2 1.899822+3 3.672823-2 1.425366+3 4.120975-2 1.117669+3 4.954502-2 7.477174+2 5.800000-2 5.248400+2 6.531306-2 3.998018+2 7.585776-2 2.819417+2 9.015711-2 1.868559+2 1.071519-1 1.228885+2 1.303167-1 7.585564+1 1.678804-1 4.027994+1 2.660725-1 1.267086+1 3.273407-1 7.580878+0 3.845918-1 5.119236+0 4.466836-1 3.579810+0 5.128614-1 2.591197+0 5.888437-1 1.890713+0 6.683439-1 1.426399+0 7.585776-1 1.083883+0 8.511380-1 8.493774-1 9.440609-1 6.864485-1 1.083927+0 5.216306-1 1.250000+0 3.951268-1 1.412538+0 3.140391-1 1.584893+0 2.546877-1 1.798871+0 2.038366-1 2.044000+0 1.640693-1 2.344229+0 1.309887-1 2.691535+0 1.051627-1 3.090295+0 8.503658-2 3.589219+0 6.808314-2 4.168694+0 5.491346-2 4.897788+0 4.389617-2 5.821032+0 3.480352-2 6.918310+0 2.780430-2 8.413951+0 2.172561-2 1.023293+1 1.710555-2 1.288250+1 1.301710-2 1.640590+1 9.854308-3 2.162719+1 7.231496-3 2.917427+1 5.214377-3 4.120975+1 3.604875-3 6.165950+1 2.362540-3 1.083927+2 1.320796-3 2.162719+2 6.546106-4 4.315191+2 3.261457-4 1.717908+3 8.157788-5 1.000000+5 1.399000-6 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.584700-2 4.672400-4 1.000000+5 4.672400-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.584700-2 4.328900-3 1.000000+5 4.328900-3 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.584700-2 1.105086-2 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.525100-2 1.417799+4 1.543000-2 1.382925+4 1.737801-2 1.025000+4 2.041738-2 6.765900+3 2.264644-2 5.135600+3 2.917427-2 2.581800+3 3.715352-2 1.311800+3 4.623810-2 7.016300+2 5.821032-2 3.592300+2 7.413102-2 1.762900+2 1.531088-1 2.042855+1 1.905461-1 1.073526+1 2.300000-1 6.214321+0 2.691535-1 3.963130+0 3.126079-1 2.601348+0 3.589219-1 1.776722+0 4.073803-1 1.261575+0 4.623810-1 9.025804-1 5.188000-1 6.705048-1 5.821032-1 5.018131-1 6.456542-1 3.892558-1 7.161434-1 3.043945-1 8.035261-1 2.333692-1 9.332543-1 1.668208-1 1.000000+0 1.437391-1 1.096478+0 1.190980-1 1.202264+0 9.941543-2 1.318257+0 8.356493-2 1.479108+0 6.778857-2 1.717908+0 5.194093-2 1.949845+0 4.175491-2 2.213095+0 3.381972-2 2.540973+0 2.707248-2 2.917427+0 2.183077-2 3.388442+0 1.742653-2 3.935501+0 1.401669-2 4.623810+0 1.117385-2 5.495409+0 8.836067-3 6.531306+0 7.041893-3 7.943282+0 5.489965-3 9.660509+0 4.312464-3 1.244515+1 3.187611-3 1.603245+1 2.379007-3 2.089296+1 1.767122-3 2.818383+1 1.273039-3 3.935501+1 8.902084-4 5.888437+1 5.829075-4 1.047129+2 3.217958-4 2.089296+2 1.594330-4 4.168694+2 7.941710-5 1.659587+3 1.986154-5 1.000000+5 3.290200-7 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.525100-2 3.338400-4 1.000000+5 3.338400-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.525100-2 5.834000-3 1.000000+5 5.834000-3 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.525100-2 9.083160-3 1.000000+5 9.999999+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.304000-2 3.292329+4 1.327000-2 3.126531+4 1.365000-2 2.900084+4 1.462177-2 2.403895+4 1.798871-2 1.348162+4 1.995262-2 1.001222+4 2.483133-2 5.293441+3 3.126079-2 2.658328+3 3.890451-2 1.362643+3 4.786301-2 7.157426+2 5.821032-2 3.863637+2 7.244360-2 1.924863+2 9.660509-2 7.629712+1 1.500000-1 1.846096+1 1.840772-1 9.594813+0 2.213095-1 5.366346+0 2.570396-1 3.371116+0 2.951209-1 2.211361+0 3.349654-1 1.513750+0 3.758374-1 1.080092+0 4.168694-1 8.022359-1 4.623810-1 5.997992-1 5.128614-1 4.515516-1 5.623413-1 3.530379-1 6.237348-1 2.696655-1 6.918310-1 2.075594-1 8.035261-1 1.435246-1 8.709636-1 1.184875-1 9.332543-1 1.012226-1 9.885531-1 8.928586-2 1.071519+0 7.555432-2 1.174898+0 6.292179-2 1.288250+0 5.280478-2 1.428894+0 4.369801-2 1.717908+0 3.148120-2 1.949845+0 2.530278-2 2.213095+0 2.049204-2 2.540973+0 1.640172-2 2.917427+0 1.322412-2 3.388442+0 1.055569-2 3.935501+0 8.490158-3 4.623810+0 6.768351-3 5.495409+0 5.352365-3 6.531306+0 4.265515-3 7.943282+0 3.325478-3 9.660509+0 2.612228-3 1.244515+1 1.930888-3 1.584893+1 1.460081-3 2.065380+1 1.084180-3 2.786121+1 7.808223-4 3.890451+1 5.458594-4 5.754399+1 3.616616-4 1.000000+2 2.043400-4 1.949845+2 1.035694-4 3.890451+2 5.156849-5 1.548817+3 1.289269-5 1.000000+5 1.993000-7 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.304000-2 3.282900-4 1.000000+5 3.282900-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.304000-2 3.854800-3 1.000000+5 3.854800-3 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.304000-2 8.856910-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.824300-3 1.949790+4 4.150000-3 1.765130+4 4.415704-3 1.619906+4 4.731513-3 1.478830+4 5.011872-3 1.361224+4 6.400000-3 9.411700+3 6.918310-3 8.297267+3 8.413951-3 5.993694+3 9.500000-3 4.848000+3 1.083927-2 3.834565+3 1.288250-2 2.788105+3 1.450000-2 2.228460+3 1.698244-2 1.640729+3 2.018366-2 1.163444+3 2.400000-2 8.168000+2 2.851018-2 5.696086+2 3.388442-2 3.934738+2 3.981072-2 2.764924+2 4.677351-2 1.929293+2 5.432503-2 1.372312+2 6.500000-2 9.050931+1 7.762471-2 5.951202+1 9.225714-2 3.930376+1 1.135011-1 2.366561+1 1.479108-1 1.226811+1 2.722701-1 2.664762+0 3.311311-1 1.643615+0 3.935501-1 1.080849+0 4.570882-1 7.570140-1 5.248075-1 5.488681-1 6.025596-1 4.010544-1 6.839117-1 3.030493-1 7.762471-1 2.306392-1 8.810489-1 1.767076-1 9.772372-1 1.430132-1 1.135011+0 1.063767-1 1.288250+0 8.334356-2 1.462177+0 6.580570-2 1.640590+0 5.347325-2 1.862087+0 4.288710-2 2.113489+0 3.465087-2 2.426610+0 2.766522-2 2.786121+0 2.225154-2 3.198895+0 1.802551-2 3.715352+0 1.445737-2 4.315191+0 1.167965-2 5.069907+0 9.350897-3 6.025596+0 7.425485-3 7.244360+0 5.854193-3 8.810489+0 4.582440-3 1.059254+1 3.664583-3 1.303167+1 2.867660-3 1.659587+1 2.171697-3 2.213095+1 1.574156-3 3.000000+1 1.129700-3 4.265795+1 7.760287-4 6.382635+1 5.089470-4 1.122018+2 2.846777-4 2.238721+2 1.411436-4 4.466836+2 7.033819-5 1.778279+3 1.759616-5 1.000000+5 3.123700-7 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.824300-3 3.359100-4 1.000000+5 3.359100-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.824300-3 3.268100-5 1.000000+5 3.268100-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.824300-3 3.455709-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.549300-3 3.107474+4 3.549900-3 3.107035+4 3.550000-3 3.130843+4 3.685000-3 3.045087+4 4.000000-3 2.763360+4 4.265795-3 2.551624+4 4.518559-3 2.358452+4 5.150000-3 1.945914+4 5.559043-3 1.730835+4 6.025596-3 1.519754+4 6.456542-3 1.348261+4 7.413102-3 1.054568+4 8.000000-3 9.145940+3 9.332543-3 6.768239+3 1.011579-2 5.747852+3 1.174898-2 4.196601+3 1.288250-2 3.435436+3 1.479108-2 2.523551+3 1.659587-2 1.935321+3 1.862087-2 1.475753+3 2.162719-2 1.027382+3 2.511886-2 7.081625+2 2.917427-2 4.837031+2 3.388442-2 3.275981+2 3.935501-2 2.201486+2 4.623810-2 1.423321+2 5.432503-2 9.133488+1 6.531306-2 5.457804+1 8.035261-2 3.032603+1 1.047129-1 1.418205+1 1.840772-1 2.782009+0 2.041738-1 2.069006+0 2.951209-1 7.347715-1 3.427678-1 4.873639-1 3.935501-1 3.360943-1 4.466836-1 2.407855-1 5.069907-1 1.738198-1 5.688529-1 1.301871-1 6.309573-1 1.010147-1 6.998420-1 7.888975-2 7.762471-1 6.202317-2 8.709636-1 4.778308-2 9.440609-1 4.006638-2 1.023293+0 3.384040-2 1.122018+0 2.812070-2 1.244515+0 2.301501-2 1.396368+0 1.857550-2 1.640590+0 1.389923-2 1.862087+0 1.114452-2 2.113489+0 9.002863-3 2.426610+0 7.187793-3 2.786121+0 5.781081-3 3.198895+0 4.682980-3 3.715352+0 3.755902-3 4.315191+0 3.034327-3 5.069907+0 2.429394-3 6.025596+0 1.929090-3 7.244360+0 1.520926-3 8.810489+0 1.190472-3 1.059254+1 9.520470-4 1.303167+1 7.450252-4 1.659587+1 5.642104-4 2.200000+1 4.116400-4 3.000000+1 2.935000-4 4.265795+1 2.016110-4 6.382635+1 1.322211-4 1.122018+2 7.395891-5 2.238721+2 3.666968-5 4.466836+2 1.827400-5 1.778279+3 4.571412-6 1.000000+5 8.115400-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.549300-3 2.927400-4 1.000000+5 2.927400-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.549300-3 6.523800-5 1.000000+5 6.523800-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.549300-3 3.191322-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.054600-3 1.013401+5 3.124000-3 9.940455+4 3.650000-3 7.749520+4 3.900000-3 6.923240+4 4.677351-3 5.000133+4 5.128614-3 4.211561+4 5.500000-3 3.669864+4 6.456542-3 2.660442+4 7.000000-3 2.245380+4 8.222426-3 1.585759+4 9.015711-3 1.290013+4 1.035142-2 9.394257+3 1.161449-2 7.151518+3 1.303167-2 5.412143+3 1.500000-2 3.814240+3 1.698244-2 2.778960+3 1.905461-2 2.058988+3 2.187762-2 1.425517+3 2.511886-2 9.789526+2 2.900000-2 6.568560+2 3.349654-2 4.366551+2 3.890451-2 2.834975+2 4.518559-2 1.826668+2 5.308844-2 1.129225+2 6.309573-2 6.689890+1 7.585776-2 3.797613+1 9.440609-2 1.923126+1 1.819701-1 2.450422+0 2.238721-1 1.288484+0 2.630268-1 7.873200-1 3.019952-1 5.198454-1 3.427678-1 3.578171-1 3.845918-1 2.565040-1 4.315191-1 1.852092-1 4.786301-1 1.390827-1 5.308844-1 1.051544-1 5.888437-1 8.007250-2 6.531306-1 6.145489-2 7.244360-1 4.752522-2 8.609938-1 3.133619-2 9.225714-1 2.668650-2 9.772372-1 2.347924-2 1.047129+0 2.029739-2 1.135011+0 1.724868-2 1.244515+0 1.443355-2 1.380384+0 1.192149-2 1.698244+0 8.238777-3 1.927525+0 6.616986-3 2.187762+0 5.355713-3 2.511886+0 4.283998-3 2.884032+0 3.451811-3 3.311311+0 2.801096-3 3.845918+0 2.250482-3 4.518559+0 1.792074-3 5.370318+0 1.415633-3 6.382635+0 1.127048-3 7.673615+0 8.906279-4 9.332543+0 6.986704-4 1.174898+1 5.299540-4 1.479108+1 4.052514-4 1.883649+1 3.081192-4 2.483133+1 2.269755-4 3.427678+1 1.602050-4 5.069907+1 1.058772-4 7.852356+1 6.721351-5 1.273503+2 4.093500-5 2.540973+2 2.032060-5 5.069907+2 1.013367-5 4.027170+3 1.270261-6 1.000000+5 5.111100-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.054600-3 2.581100-4 1.000000+5 2.581100-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.054600-3 1.938300-5 1.000000+5 1.938300-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.054600-3 2.777107-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.594700-3 2.346071+5 2.740000-3 2.320488+5 2.806600-3 2.286554+5 2.851018-3 2.251551+5 2.900000-3 2.198002+5 2.951209-3 2.137362+5 3.235937-3 1.681507+5 3.589219-3 1.274277+5 3.935501-3 9.899564+4 4.365158-3 7.401377+4 4.841724-3 5.490297+4 5.432503-3 3.913759+4 6.531306-3 2.237543+4 7.161434-3 1.680897+4 8.317638-3 1.047504+4 9.225714-3 7.497640+3 1.047129-2 4.955152+3 1.216186-2 3.006835+3 1.364583-2 2.034459+3 1.566751-2 1.264319+3 1.819701-2 7.487975+2 2.113489-2 4.399154+2 2.454709-2 2.565237+2 2.884032-2 1.424067+2 3.388442-2 7.849395+1 4.027170-2 4.116721+1 4.954502-2 1.882926+1 6.531306-2 6.573139+0 1.083927-1 9.486840-1 1.348963-1 4.140739-1 1.640590-1 1.986714-1 1.905461-1 1.140740-1 2.162719-1 7.183309-2 2.454709-1 4.556232-2 2.818383-1 2.795191-2 3.198895-1 1.800010-2 3.589219-1 1.215449-2 4.000000-1 8.460654-3 4.415705-1 6.120532-3 4.897788-1 4.391244-3 5.432503-1 3.174663-3 5.956621-1 2.396943-3 6.456542-1 1.888805-3 7.079458-1 1.449310-3 8.035261-1 1.017898-3 8.609938-1 8.377704-4 9.120108-1 7.167578-4 9.549926-1 6.362146-4 1.000000+0 5.681928-4 1.047129+0 5.110596-4 1.096478+0 4.628373-4 1.161449+0 4.122308-4 1.230269+0 3.697863-4 1.333521+0 3.197886-4 1.479108+0 2.675620-4 1.678804+0 2.140445-4 1.927525+0 1.682829-4 2.187762+0 1.361736-4 2.511886+0 1.089237-4 2.884032+0 8.776802-5 3.311311+0 7.122272-5 3.845918+0 5.722165-5 4.518559+0 4.556604-5 5.370318+0 3.599459-5 6.382635+0 2.865658-5 7.673615+0 2.264607-5 9.332543+0 1.776484-5 1.174898+1 1.347517-5 1.479108+1 1.030383-5 1.905461+1 7.734320-6 2.511886+1 5.699071-6 3.467369+1 4.023648-6 5.128614+1 2.659752-6 8.128305+1 1.649203-6 1.348963+2 9.816297-7 2.691535+2 4.875197-7 5.370318+2 2.431936-7 4.265795+3 3.048933-8 1.000000+5 1.299600-9 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.594700-3 1.915400-4 1.000000+5 1.915400-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.594700-3 7.644400-5 1.000000+5 7.644400-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.594700-3 2.326716-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.489000-3 4.122826+5 2.810000-3 3.403452+5 3.019952-3 2.817427+5 3.349654-3 2.130865+5 3.672823-3 1.651924+5 4.073803-3 1.232204+5 4.518559-3 9.121628+4 5.188000-3 6.050756+4 5.688529-3 4.563889+4 6.531306-3 2.974814+4 7.244360-3 2.139752+4 8.222426-3 1.422915+4 9.440609-3 9.027127+3 1.059254-2 6.138038+3 1.202264-2 3.987403+3 1.380384-2 2.470134+3 1.580000-2 1.534494+3 1.800000-2 9.623820+2 2.065380-2 5.841722+2 2.371374-2 3.513139+2 2.722701-2 2.099219+2 3.150000-2 1.211346+2 3.715352-2 6.452472+1 4.500000-2 3.080145+1 5.370318-2 1.546465+1 1.071519-1 1.023279+0 1.303167-1 4.767846-1 1.548817-1 2.447505-1 1.778279-1 1.444652-1 2.018366-1 8.973595-2 2.264644-1 5.865370-2 2.540973-1 3.862920-2 2.818383-1 2.671336-2 3.126079-1 1.860432-2 3.467369-1 1.305581-2 3.801894-1 9.597031-3 4.168694-1 7.105227-3 4.570882-1 5.300122-3 5.011872-1 3.984215-3 5.495409-1 3.019485-3 6.025596-1 2.306623-3 6.531306-1 1.833599-3 7.079458-1 1.466848-3 7.673615-1 1.181316-3 8.511380-1 9.003804-4 9.015711-1 7.786956-4 9.549926-1 6.780508-4 1.000000+0 6.104954-4 1.059254+0 5.393198-4 1.135011+0 4.683511-4 1.216186+0 4.096068-4 1.318257+0 3.528185-4 1.798871+0 2.036408-4 2.018366+0 1.672800-4 2.317395+0 1.332287-4 2.660725+0 1.069023-4 3.054921+0 8.639611-5 3.548134+0 6.913002-5 4.120975+0 5.572704-5 4.841724+0 4.452302-5 5.754399+0 3.528180-5 6.839116+0 2.817315-5 8.317638+0 2.200456-5 1.011579+1 1.731641-5 1.288250+1 1.299595-5 1.640590+1 9.838751-6 2.162719+1 7.220089-6 2.917427+1 5.206194-6 4.120975+1 3.599167-6 6.165950+1 2.358851-6 1.096478+2 1.303244-6 2.187762+2 6.460177-7 4.365158+2 3.218888-7 1.737801+3 8.051593-8 1.000000+5 1.396800-9 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.489000-3 1.897400-4 1.000000+5 1.897400-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.489000-3 5.412300-8 1.000000+5 5.412300-8 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.489000-3 2.299206-3 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 8.767200-4 4.436947+4 9.885531-4 4.082767+4 1.035142-3 3.921042+4 1.216186-3 3.349758+4 1.276100-3 3.189733+4 1.570000-3 2.501520+4 1.698244-3 2.265963+4 2.041738-3 1.771185+4 2.238721-3 1.556534+4 2.660725-3 1.208348+4 3.000000-3 1.005892+4 3.467369-3 8.011307+3 4.073803-3 6.159841+3 4.731513-3 4.790494+3 5.495409-3 3.701004+3 6.456542-3 2.782801+3 7.585776-3 2.077964+3 9.015711-3 1.508237+3 1.071519-2 1.087052+3 1.288250-2 7.607357+2 1.548817-2 5.282325+2 1.840772-2 3.725910+2 2.187762-2 2.609317+2 2.600160-2 1.814297+2 3.090295-2 1.252313+2 3.672823-2 8.580740+1 4.365158-2 5.836755+1 5.188000-2 3.941300+1 6.237348-2 2.570852+1 7.498942-2 1.664374+1 9.015711-2 1.069907+1 1.109175-1 6.442439+0 1.462177-1 3.246567+0 2.238721-1 1.118475+0 2.884032-1 5.947237-1 3.467369-1 3.781757-1 4.073803-1 2.562399-1 4.731513-1 1.798765-1 5.432503-1 1.306681-1 6.165950-1 9.814632-2 6.998420-1 7.425494-2 7.943282-1 5.658042-2 8.912509-1 4.445058-2 9.885531-1 3.599923-2 1.148154+0 2.679199-2 1.303167+0 2.100632-2 1.479108+0 1.659765-2 1.659587+0 1.349703-2 1.883649+0 1.083254-2 2.137962+0 8.757467-3 2.454709+0 6.996250-3 2.818383+0 5.630609-3 3.235937+0 4.563898-3 3.758374+0 3.662555-3 4.365158+0 2.960481-3 5.128614+0 2.371474-3 6.095369+0 1.884128-3 7.328245+0 1.486118-3 8.912509+0 1.163789-3 1.083927+1 9.183864-4 1.318257+1 7.288715-4 1.678804+1 5.521772-4 2.238721+1 4.003710-4 3.054921+1 2.853731-4 4.365158+1 1.951013-4 6.606934+1 1.264911-4 1.148154+2 7.162715-5 2.290868+2 3.552231-5 4.570882+2 1.770438-5 1.819701+3 4.429294-6 1.000000+5 8.046600-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 8.767200-4 1.949100-4 1.000000+5 1.949100-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.767200-4 1.525000-7 1.000000+5 1.525000-7 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 8.767200-4 6.816575-4 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 7.560200-4 3.825555+4 8.810489-4 3.780982+4 9.930000-4 3.676000+4 1.050000-3 3.600580+4 1.135011-3 3.470961+4 1.216186-3 3.339972+4 1.318257-3 3.171751+4 1.412538-3 3.016158+4 1.513561-3 2.845786+4 1.678804-3 2.583791+4 1.819701-3 2.382342+4 1.972423-3 2.179610+4 2.187762-3 1.928614+4 2.371374-3 1.744006+4 2.613000-3 1.533115+4 2.917427-3 1.314904+4 3.198895-3 1.148353+4 3.589219-3 9.624731+3 4.000000-3 8.087040+3 4.466836-3 6.727564+3 5.011872-3 5.509203+3 5.623413-3 4.479660+3 6.309573-3 3.616978+3 7.079458-3 2.900416+3 8.035261-3 2.257911+3 9.120108-3 1.744267+3 1.040000-2 1.324154+3 1.190000-2 9.899480+2 1.350000-2 7.484180+2 1.531087-2 5.622314+2 1.737801-2 4.187098+2 1.972423-2 3.097648+2 2.268170-2 2.204420+2 2.600160-2 1.568977+2 3.000000-2 1.090562+2 3.467369-2 7.492010+1 4.027170-2 5.045055+1 4.731513-2 3.269966+1 5.623413-2 2.038131+1 6.760830-2 1.221101+1 8.317638-2 6.805647+0 1.083927-1 3.195795+0 1.883649-1 6.537374-1 2.018366-1 5.372854-1 2.454709-1 3.137910-1 2.691535-1 2.420686-1 2.917427-1 1.914516-1 3.388442-1 1.270819-1 3.890451-1 8.766888-2 4.415705-1 6.281646-2 5.011872-1 4.534640-2 5.623413-1 3.396044-2 6.237348-1 2.634734-2 6.998420-1 2.002465-2 7.762471-1 1.574968-2 8.709636-1 1.213052-2 9.440609-1 1.016765-2 1.023293+0 8.584724-3 1.122018+0 7.132452-3 1.244515+0 5.837662-3 1.396368+0 4.712321-3 1.640590+0 3.526398-3 1.862087+0 2.827389-3 2.113489+0 2.284161-3 2.426610+0 1.823688-3 2.786121+0 1.466729-3 3.198895+0 1.188113-3 3.715352+0 9.529246-4 4.315191+0 7.698484-4 5.069907+0 6.163637-4 6.025596+0 4.894470-4 7.244360+0 3.858749-4 8.810489+0 3.020464-4 1.071519+1 2.382485-4 1.318257+1 1.865066-4 1.678804+1 1.412942-4 2.213095+1 1.037582-4 3.019952+1 7.393456-5 4.315191+1 5.053328-5 6.456542+1 3.314880-5 1.122018+2 1.876406-5 2.238721+2 9.303698-6 4.466836+2 4.636358-6 1.778279+3 1.159851-6 1.000000+5 2.059000-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 7.560200-4 1.709300-4 1.000000+5 1.709300-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.560200-4 1.418600-7 1.000000+5 1.418600-7 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.560200-4 5.849481-4 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 6.343000-4 2.039800+5 6.650000-4 1.999604+5 7.000000-4 1.944584+5 7.673615-4 1.810793+5 8.317638-4 1.688671+5 9.120108-4 1.544033+5 1.000000-3 1.403876+5 1.122018-3 1.235834+5 1.216186-3 1.122719+5 1.364583-3 9.689183+4 1.513561-3 8.437100+4 1.659587-3 7.405251+4 1.883649-3 6.142330+4 2.089296-3 5.232933+4 2.371374-3 4.268979+4 2.660725-3 3.519634+4 3.000000-3 2.858716+4 3.427678-3 2.248858+4 3.845918-3 1.814928+4 4.365158-3 1.423287+4 5.011872-3 1.082055+4 5.688529-3 8.348324+3 6.382635-3 6.552052+3 7.161434-3 5.111881+3 8.128305-3 3.863239+3 9.225714-3 2.898455+3 1.047129-2 2.159222+3 1.190000-2 1.592544+3 1.350000-2 1.171224+3 1.531087-2 8.561370+2 1.737801-2 6.203124+2 1.972423-2 4.463859+2 2.264644-2 3.093708+2 2.600160-2 2.127586+2 3.000000-2 1.432632+2 3.467369-2 9.524904+1 4.027170-2 6.197452+1 4.677351-2 4.002267+1 5.495409-2 2.479999+1 6.456542-2 1.525527+1 7.852356-2 8.386918+0 9.772372-2 4.260766+0 1.500000-1 1.115980+0 2.000000-1 4.553600-1 2.264644-1 3.040108-1 2.426610-1 2.442137-1 2.570396-1 2.046695-1 2.722701-1 1.727724-1 2.851018-1 1.518407-1 3.000060-1 1.326536-1 3.427678-1 8.960520-2 3.845918-1 6.427956-2 4.315191-1 4.644065-2 4.786301-1 3.489048-2 5.308844-1 2.639082-2 5.888437-1 2.010380-2 6.531306-1 1.543016-2 7.244360-1 1.193236-2 8.511380-1 8.093650-3 9.120108-1 6.890895-3 9.660509-1 6.059391-3 1.023293+0 5.360626-3 1.109175+0 4.547974-3 1.216186+0 3.798295-3 1.333521+0 3.197090-3 1.548817+0 2.442497-3 1.778279+0 1.913603-3 2.000000+0 1.565188-3 2.290868+0 1.250824-3 2.630268+0 1.003029-3 3.019952+0 8.101108-4 3.507519+0 6.478259-4 4.073803+0 5.219360-4 4.786301+0 4.167746-4 5.688529+0 3.301021-4 6.760830+0 2.634590-4 8.222427+0 2.056852-4 1.000000+1 1.617800-4 1.273503+1 1.213728-4 1.621810+1 9.184885-5 2.137962+1 6.738244-5 2.884032+1 4.857267-5 4.073803+1 3.357107-5 6.025596+1 2.226223-5 1.071519+2 1.229482-5 2.137962+2 6.092879-6 4.265795+2 3.035447-6 1.698244+3 7.592011-7 1.000000+5 1.287000-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 6.343000-4 1.557100-4 1.000000+5 1.557100-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.343000-4 9.489700-8 1.000000+5 9.489700-8 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.343000-4 4.784951-4 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 4.352300-4 9.844600+4 4.370000-4 9.672160+4 4.390000-4 9.555400+4 4.405000-4 9.536080+4 4.420000-4 9.583560+4 4.430000-4 9.662320+4 4.440000-4 9.784200+4 4.450000-4 9.952160+4 4.465000-4 1.028852+5 4.478000-4 1.064992+5 4.507000-4 1.156344+5 4.523000-4 1.204892+5 4.540000-4 1.250892+5 4.558000-4 1.292740+5 4.580000-4 1.336012+5 4.600000-4 1.369820+5 4.630000-4 1.414364+5 4.665000-4 1.459940+5 4.700000-4 1.500288+5 4.746500-4 1.546207+5 4.800000-4 1.588880+5 4.850000-4 1.621384+5 5.308844-4 1.885285+5 5.450000-4 1.955976+5 5.623413-4 2.029857+5 5.888437-4 2.128207+5 6.100000-4 2.194024+5 6.309573-4 2.243686+5 6.606934-4 2.292820+5 6.850000-4 2.317904+5 7.161434-4 2.331404+5 7.500000-4 2.326292+5 7.800000-4 2.309116+5 8.128305-4 2.278534+5 8.511380-4 2.232183+5 8.912509-4 2.171926+5 9.500000-4 2.074412+5 1.000000-3 1.987804+5 1.059254-3 1.881781+5 1.122018-3 1.768315+5 1.202264-3 1.629144+5 1.288250-3 1.490504+5 1.380384-3 1.352813+5 1.479108-3 1.219542+5 1.603245-3 1.073182+5 1.730000-3 9.437040+4 1.900000-3 7.983040+4 2.041738-3 6.978793+4 2.238721-3 5.826346+4 2.426610-3 4.944908+4 2.660725-3 4.066431+4 2.917427-3 3.320597+4 3.198895-3 2.690596+4 3.507519-3 2.165741+4 3.900000-3 1.672416+4 4.300000-3 1.308304+4 4.731513-3 1.021999+4 5.308844-3 7.525134+3 5.888437-3 5.668945+3 6.531306-3 4.241058+3 7.244360-3 3.151581+3 8.035261-3 2.326729+3 9.015711-3 1.648339+3 1.011579-2 1.158910+3 1.122018-2 8.387644+2 1.244515-2 6.036019+2 1.396368-2 4.160814+2 1.584893-2 2.741465+2 1.798871-2 1.792795+2 2.041738-2 1.163890+2 2.344229-2 7.206500+1 2.691535-2 4.428395+1 3.126079-2 2.592903+1 3.672823-2 1.445316+1 4.365158-2 7.664373+0 5.308844-2 3.703682+0 6.683439-2 1.560872+0 1.188502-1 1.779043-1 1.479108-1 7.847093-2 1.778279-1 3.967273-2 2.041738-1 2.393268-2 2.344229-1 1.455060-2 2.660725-1 9.287605-3 3.019952-1 5.972951-3 3.388442-1 4.025936-3 3.801894-1 2.734184-3 4.216965-1 1.944056-3 4.677351-1 1.392202-3 5.188000-1 1.004094-3 5.688529-1 7.557549-4 6.165950-1 5.931354-4 6.760830-1 4.534318-4 7.413102-1 3.492975-4 8.709636-1 2.233483-4 9.225714-1 1.916494-4 9.660509-1 1.705407-4 1.011579+0 1.527026-4 1.059254+0 1.376700-4 1.109175+0 1.249148-4 1.174898+0 1.114468-4 1.258925+0 9.799185-5 1.364583+0 8.486089-5 1.531087+0 6.956569-5 1.819701+0 5.130766-5 2.018366+0 4.298129-5 2.317395+0 3.423098-5 2.660725+0 2.746542-5 3.054921+0 2.219587-5 3.548134+0 1.776015-5 4.120975+0 1.431686-5 4.841724+0 1.143847-5 5.754399+0 9.064374-6 6.839116+0 7.238060-6 8.317638+0 5.653184-6 1.011579+1 4.448722-6 1.273503+1 3.384076-6 1.621810+1 2.560855-6 2.137962+1 1.878734-6 2.884032+1 1.354252-6 4.073803+1 9.360070-7 6.095369+1 6.133112-7 1.083927+2 3.387812-7 2.162719+2 1.679101-7 4.315191+2 8.365967-8 1.717908+3 2.092506-8 1.000000+5 3.58850-10 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 4.352300-4 1.182100-4 1.000000+5 1.182100-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.352300-4 7.421800-8 1.000000+5 7.421800-8 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.352300-4 3.169458-4 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.124900-4 1.111100+5 4.171000-4 1.301415+5 4.210000-4 1.475288+5 4.245000-4 1.637201+5 4.275000-4 1.776694+5 4.303000-4 1.904091+5 4.330000-4 2.021144+5 4.343600-4 2.079296+5 4.365158-4 2.156475+5 4.385000-4 2.219694+5 4.415704-4 2.307844+5 4.450000-4 2.396088+5 4.490000-4 2.486718+5 4.530000-4 2.563914+5 4.570882-4 2.629689+5 4.630000-4 2.706312+5 4.731513-4 2.812094+5 5.040000-4 3.127986+5 5.150000-4 3.229278+5 5.308844-4 3.350647+5 5.559043-4 3.507213+5 5.800000-4 3.632076+5 6.000000-4 3.708990+5 6.237348-4 3.768246+5 6.500000-4 3.808284+5 6.760830-4 3.822920+5 7.079458-4 3.809910+5 7.413102-4 3.769496+5 7.800000-4 3.695886+5 8.222426-4 3.592691+5 8.700000-4 3.454746+5 9.225714-4 3.293309+5 9.772372-4 3.122866+5 1.035142-3 2.940626+5 1.096478-3 2.749875+5 1.174898-3 2.519557+5 1.258925-3 2.293448+5 1.333521-3 2.108169+5 1.445440-3 1.859700+5 1.566751-3 1.627938+5 1.698244-3 1.413863+5 1.850000-3 1.207938+5 2.018366-3 1.021077+5 2.213095-3 8.479391+4 2.400000-3 7.151580+4 2.630268-3 5.857832+4 2.884032-3 4.756600+4 3.162278-3 3.835555+4 3.500000-3 3.000948+4 3.845918-3 2.372234+4 4.265795-3 1.817990+4 4.786301-3 1.339951+4 5.308844-3 1.009977+4 5.821032-3 7.809127+3 6.456542-3 5.807974+3 7.244360-3 4.145737+3 8.128305-3 2.934866+3 9.120108-3 2.061086+3 1.023293-2 1.436415+3 1.148154-2 9.935365+2 1.288250-2 6.822002+2 1.445440-2 4.651286+2 1.640590-2 3.028253+2 1.862087-2 1.956057+2 2.113489-2 1.253842+2 2.398833-2 7.978622+1 2.754229-2 4.835863+1 3.198895-2 2.788489+1 3.715352-2 1.595701+1 4.365158-2 8.680617+0 5.248075-2 4.293846+0 6.456542-2 1.929552+0 1.161449-1 1.970377-1 1.412538-1 9.268881-2 1.548817-1 6.525900-2 2.065380-1 2.203899-2 2.317395-1 1.445893-2 2.570396-1 9.961005-3 2.851018-1 6.908277-3 3.198895-1 4.636720-3 3.548134-1 3.263918-3 3.890451-1 2.405401-3 4.265795-1 1.784883-3 4.677351-1 1.334180-3 5.069907-1 1.040868-3 5.495409-1 8.171730-4 6.000000-1 6.324496-4 6.531306-1 4.983606-4 7.079458-1 4.001177-4 8.709636-1 2.315242-4 9.225714-1 2.001565-4 9.660509-1 1.791021-4 1.011579+0 1.611879-4 1.071519+0 1.423517-4 1.135011+0 1.265468-4 1.216186+0 1.106819-4 1.318257+0 9.540516-5 1.862087+0 5.196443-5 2.089296+0 4.277006-5 2.398833+0 3.412610-5 2.754229+0 2.743175-5 3.162278+0 2.220856-5 3.672823+0 1.780141-5 4.265795+0 1.437336-5 5.011872+0 1.150181-5 5.956621+0 9.128978-6 7.161434+0 7.193670-6 8.709636+0 5.628515-6 1.047129+1 4.499143-6 1.303167+1 3.472642-6 1.659587+1 2.629865-6 2.213095+1 1.906173-6 3.000000+1 1.368000-6 4.265795+1 9.397589-7 6.382635+1 6.163139-7 1.122018+2 3.447281-7 2.238721+2 1.709255-7 4.466836+2 8.517685-8 1.778279+3 2.130789-8 1.000000+5 3.78270-10 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.124900-4 1.141500-4 1.000000+5 1.141500-4 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.124900-4 1.210000-8 1.000000+5 1.210000-8 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.124900-4 2.983279-4 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.530400-4 8.810521+4 1.531087-4 8.994118+4 1.534000-4 9.601860+4 1.537000-4 1.020756+5 1.541000-4 1.096242+5 1.545000-4 1.165974+5 1.548817-4 1.228021+5 1.552000-4 1.275546+5 1.557000-4 1.343922+5 1.561500-4 1.399134+5 1.566751-4 1.455923+5 1.572000-4 1.504890+5 1.578000-4 1.552176+5 1.585000-4 1.597410+5 1.593000-4 1.637478+5 1.600000-4 1.663956+5 1.610000-4 1.689858+5 1.621810-4 1.706365+5 1.635000-4 1.711794+5 1.648000-4 1.708026+5 1.672800-4 1.688032+5 1.710000-4 1.653306+5 1.733000-4 1.640040+5 1.755000-4 1.637814+5 1.777000-4 1.648140+5 1.792000-4 1.663128+5 1.810000-4 1.690140+5 1.828000-4 1.727394+5 1.850000-4 1.787106+5 1.873000-4 1.866372+5 1.890000-4 1.936044+5 1.915000-4 2.055348+5 1.940000-4 2.194704+5 1.972423-4 2.405518+5 2.000000-4 2.611800+5 2.041738-4 2.972776+5 2.100000-4 3.578670+5 2.213095-4 5.093208+5 2.264644-4 5.912878+5 2.300000-4 6.510300+5 2.344229-4 7.286121+5 2.390000-4 8.111040+5 2.430000-4 8.841000+5 2.480000-4 9.755820+5 2.520000-4 1.048320+6 2.570396-4 1.138923+6 2.620000-4 1.226400+6 2.670000-4 1.312278+6 2.730000-4 1.411536+6 2.786121-4 1.499673+6 2.851018-4 1.594581+6 2.917427-4 1.682856+6 2.985383-4 1.763047+6 3.054921-4 1.834265+6 3.130000-4 1.899300+6 3.200000-4 1.949568+6 3.280000-4 1.996350+6 3.390000-4 2.044272+6 3.507519-4 2.077754+6 3.630781-4 2.095212+6 3.740000-4 2.096460+6 3.850000-4 2.085696+6 4.000000-4 2.055672+6 4.168694-4 2.007677+6 4.365158-4 1.940380+6 4.570882-4 1.860870+6 4.786301-4 1.770338+6 5.011872-4 1.672181+6 5.248075-4 1.569360+6 5.559043-4 1.439137+6 5.888437-4 1.309672+6 6.237348-4 1.182426+6 6.606934-4 1.059970+6 7.079458-4 9.225568+5 7.500000-4 8.162700+5 8.035261-4 6.998513+5 8.609938-4 5.958363+5 9.225714-4 5.039227+5 1.000000-3 4.111140+5 1.083927-3 3.329841+5 1.174898-3 2.676828+5 1.273503-3 2.138398+5 1.400000-3 1.628970+5 1.513561-3 1.293946+5 1.659587-3 9.794872+4 1.850000-3 6.987660+4 2.018366-3 5.292711+4 2.213095-3 3.922222+4 2.454709-3 2.778485+4 2.722701-3 1.953097+4 3.054921-3 1.309039+4 3.427678-3 8.698111+3 3.845918-3 5.730247+3 4.300000-3 3.793554+3 4.786301-3 2.535912+3 5.370318-3 1.632118+3 6.025596-3 1.042657+3 6.760830-3 6.612116+2 7.585776-3 4.163853+2 8.609938-3 2.485442+2 9.660509-3 1.544169+2 1.096478-2 9.080461+1 1.244515-2 5.301548+1 1.412538-2 3.073533+1 1.603245-2 1.769208+1 1.840772-2 9.613263+0 2.137962-2 4.927128+0 2.511886-2 2.380543+0 3.054921-2 9.758743-1 3.758374-2 3.767667-1 5.011872-2 9.940793-2 8.222426-2 9.960875-3 9.885531-2 4.258843-3 1.161449-1 2.041723-3 1.364583-1 9.862001-4 1.640590-1 4.332455-4 1.840772-1 2.608080-4 2.018366-1 1.747391-4 2.238721-1 1.123195-4 2.483133-1 7.272510-5 2.754229-1 4.742822-5 3.126079-1 2.838009-5 3.427678-1 1.965383-5 3.758374-1 1.370354-5 4.027170-1 1.050899-5 4.415705-1 7.440588-6 4.954502-1 4.872185-6 5.495409-1 3.336333-6 5.888437-1 2.607688-6 6.025596-1 2.406922-6 6.382635-1 1.989310-6 6.839117-1 1.593943-6 7.498942-1 1.195876-6 8.000000-1 9.800600-7 8.511380-1 7.955139-7 8.912509-1 6.846759-7 9.225714-1 6.144848-7 9.549926-1 5.541600-7 9.885531-1 5.026676-7 1.023293+0 4.590588-7 1.059254+0 4.220394-7 1.096478+0 3.903195-7 1.135011+0 3.628833-7 1.188502+0 3.315768-7 1.258925+0 2.987857-7 1.333521+0 2.707517-7 1.500000+0 2.240900-7 1.927525+0 1.443695-7 2.162719+0 1.190097-7 2.483133+0 9.513163-8 2.851018+0 7.661623-8 3.311311+0 6.108336-8 3.845918+0 4.907515-8 4.518559+0 3.907903-8 5.370318+0 3.087006-8 6.382635+0 2.457692-8 7.673615+0 1.942204-8 9.332543+0 1.523561-8 1.174898+1 1.155679-8 1.462177+1 8.955169-9 1.862087+1 6.806297-9 2.454709+1 5.012363-9 3.388442+1 3.536784-9 5.000000+1 2.342700-9 7.673615+1 1.500903-9 1.273503+2 8.92697-10 2.540973+2 4.43132-10 5.069907+2 2.20986-10 4.027170+3 2.76997-11 1.000000+5 1.11460-12 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.530400-4 6.582600-5 1.000000+5 6.582600-5 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.530400-4 6.88000-10 1.000000+5 6.88000-10 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.530400-4 8.721331-5 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.478100-4 1.204176+5 1.479108-4 1.237290+5 1.482200-4 1.323776+5 1.484500-4 1.385672+5 1.487500-4 1.462256+5 1.490500-4 1.535416+5 1.495000-4 1.637104+5 1.499200-4 1.724592+5 1.502000-4 1.778544+5 1.507000-4 1.866928+5 1.512000-4 1.945840+5 1.516500-4 2.009128+5 1.520000-4 2.053520+5 1.525000-4 2.109944+5 1.532000-4 2.176352+5 1.540000-4 2.236384+5 1.548817-4 2.285762+5 1.555000-4 2.311496+5 1.565000-4 2.340280+5 1.575000-4 2.356272+5 1.590000-4 2.362688+5 1.610000-4 2.350664+5 1.660000-4 2.292416+5 1.680000-4 2.277224+5 1.698244-4 2.273170+5 1.720000-4 2.283552+5 1.740000-4 2.309728+5 1.760000-4 2.353216+5 1.780000-4 2.414816+5 1.800000-4 2.494944+5 1.821700-4 2.602957+5 1.842000-4 2.723776+5 1.865000-4 2.883600+5 1.890000-4 3.084720+5 1.915000-4 3.314464+5 1.950000-4 3.684640+5 1.995262-4 4.249553+5 2.060000-4 5.232192+5 2.150000-4 6.935656+5 2.205000-4 8.144320+5 2.240000-4 8.964000+5 2.280000-4 9.936000+5 2.317395-4 1.086709+6 2.365000-4 1.206920+6 2.400000-4 1.295600+6 2.450000-4 1.421648+6 2.500000-4 1.546096+6 2.560000-4 1.692032+6 2.620000-4 1.833208+6 2.670000-4 1.946136+6 2.730000-4 2.074728+6 2.786121-4 2.186981+6 2.851018-4 2.305506+6 2.917427-4 2.413328+6 2.985500-4 2.509245+6 3.054921-4 2.592225+6 3.130000-4 2.666392+6 3.200000-4 2.722464+6 3.280000-4 2.773000+6 3.390000-4 2.821576+6 3.507519-4 2.850211+6 3.630781-4 2.857157+6 3.758374-4 2.842477+6 3.890451-4 2.807942+6 4.050000-4 2.746728+6 4.216965-4 2.667704+6 4.415704-4 2.561943+6 4.623810-4 2.442826+6 4.850000-4 2.306736+6 5.080000-4 2.167376+6 5.370318-4 1.995673+6 5.700100-4 1.812446+6 6.025596-4 1.645316+6 6.382635-4 1.477190+6 6.839116-4 1.287124+6 7.300000-4 1.122312+6 7.800000-4 9.688080+5 8.413951-4 8.122671+5 9.015711-4 6.871921+5 9.772372-4 5.605970+5 1.059254-3 4.540975+5 1.150000-3 3.634104+5 1.244515-3 2.915762+5 1.364583-3 2.237574+5 1.479108-3 1.763841+5 1.640590-3 1.288368+5 1.819701-3 9.324076+4 1.972423-3 7.206972+4 2.162719-3 5.338633+4 2.426610-3 3.635204+4 2.722701-3 2.451998+4 3.054921-3 1.638767+4 3.400000-3 1.118064+4 3.758374-3 7.763266+3 4.168694-3 5.288970+3 4.623810-3 3.580109+3 5.188000-3 2.302212+3 5.821032-3 1.469144+3 6.531306-3 9.306780+2 7.328245-3 5.854367+2 8.222426-3 3.657035+2 1.000000-2 1.623633+2 1.135011-2 9.538773+1 1.230269-2 6.765383+1 1.380384-2 4.105416+1 1.548817-2 2.473369+1 1.757924-2 1.406236+1 2.065380-2 6.803135+0 2.426610-2 3.265117+0 2.884032-2 1.475297+0 3.548134-2 5.637946-1 4.466836-2 1.921754-1 6.000000-2 4.796141-2 8.222426-2 1.079131-2 9.772372-2 4.794149-3 1.122019-1 2.525066-3 1.303167-1 1.270451-3 1.500000-1 6.712964-4 1.698244-1 3.840683-4 1.883649-1 2.426330-4 2.065380-1 1.623440-4 2.238721-1 1.149607-4 2.454709-1 7.803035-5 2.691535-1 5.335123-5 2.951209-1 3.676942-5 3.235937-1 2.552527-5 3.589219-1 1.706537-5 3.935501-1 1.199829-5 4.265795-1 8.875442-6 4.623810-1 6.613070-6 4.954502-1 5.171638-6 5.308844-1 4.071232-6 5.623413-1 3.354048-6 6.025596-1 2.680968-6 6.456542-1 2.157905-6 7.079458-1 1.629919-6 7.673615-1 1.284030-6 8.317638-1 1.018810-6 9.015711-1 8.141087-7 9.660509-1 6.737673-7 1.000000+0 6.164400-7 1.035142+0 5.672177-7 1.083927+0 5.113948-7 1.135011+0 4.644574-7 1.188502+0 4.244322-7 1.273503+0 3.739795-7 1.380384+0 3.253502-7 1.513561+0 2.790340-7 1.862087+0 1.937810-7 2.065380+0 1.625034-7 2.371374+0 1.295769-7 2.722701+0 1.040961-7 3.126079+0 8.422710-8 3.630781+0 6.747405-8 4.216965+0 5.445189-8 4.954502+0 4.355092-8 5.888437+0 3.454711-8 7.079458+0 2.721014-8 8.609938+0 2.128034-8 1.035142+1 1.700298-8 1.288250+1 1.311919-8 1.640590+1 9.931178-9 2.162719+1 7.288258-9 2.917427+1 5.255302-9 4.120975+1 3.633171-9 6.165950+1 2.381111-9 1.096478+2 1.315532-9 2.187762+2 6.52108-10 4.365158+2 3.24928-10 1.737801+3 8.12756-11 1.000000+5 1.41000-12 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.478100-4 6.292400-5 1.000000+5 6.292400-5 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.478100-4 1.128000-8 1.000000+5 1.128000-8 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.478100-4 8.487472-5 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.528300-4 5.878040+4 1.568000-4 5.808260+4 1.590000-4 5.798760+4 1.630000-4 5.828960+4 1.737801-4 5.979437+4 1.800000-4 6.024420+4 1.862087-4 6.028371+4 1.950000-4 5.989900+4 2.371374-4 5.723739+4 2.511886-4 5.619258+4 2.660725-4 5.480926+4 2.851018-4 5.276247+4 3.126079-4 4.971724+4 3.388442-4 4.692002+4 3.630781-4 4.438873+4 3.935501-4 4.130300+4 4.365158-4 3.733966+4 4.786301-4 3.392793+4 5.248075-4 3.062039+4 5.956621-4 2.636844+4 6.683439-4 2.284977+4 7.673615-4 1.907607+4 8.810489-4 1.581011+4 1.035142-3 1.259463+4 1.244515-3 9.624924+3 1.500000-3 7.266660+3 1.819701-3 5.390425+3 2.213095-3 3.951882+3 2.660725-3 2.929228+3 3.198895-3 2.155751+3 3.845918-3 1.574525+3 4.623810-3 1.141507+3 5.559043-3 8.215038+2 6.683439-3 5.869954+2 8.128305-3 4.075645+2 9.772372-3 2.870469+2 1.188502-2 1.962792+2 1.445440-2 1.331593+2 1.737801-2 9.174556+1 2.089296-2 6.274463+1 2.511886-2 4.258213+1 3.019952-2 2.867253+1 3.589219-2 1.964520+1 4.265795-2 1.336515+1 5.069907-2 9.028001+0 6.095369-2 5.894057+0 7.328245-2 3.818141+0 9.015711-2 2.325069+0 1.109175-1 1.400554+0 1.445440-1 7.263230-1 2.691535-1 1.533412-1 3.273407-1 9.456414-2 3.890451-1 6.216492-2 4.518559-1 4.352011-2 5.188000-1 3.153584-2 5.956621-1 2.302766-2 6.760830-1 1.738793-2 7.673615-1 1.322342-2 8.709636-1 1.012479-2 9.772372-1 8.000404-3 1.135011+0 5.950501-3 1.288250+0 4.662265-3 1.462177+0 3.681177-3 1.640590+0 2.991372-3 1.862087+0 2.399218-3 2.113489+0 1.938394-3 2.426610+0 1.547566-3 2.786121+0 1.244722-3 3.198895+0 1.008320-3 3.715352+0 8.087189-4 4.315191+0 6.533476-4 5.069907+0 5.230914-4 6.025596+0 4.153821-4 7.244360+0 3.274863-4 8.810489+0 2.563461-4 1.059254+1 2.049952-4 1.318257+1 1.582795-4 1.659587+1 1.214892-4 2.213095+1 8.805641-5 3.019952+1 6.274683-5 4.315191+1 4.288674-5 6.456542+1 2.813274-5 1.122018+2 1.592484-5 2.238721+2 7.895806-6 4.466836+2 3.934818-6 1.778279+3 9.843059-7 1.000000+5 1.747400-8 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.528300-4 7.829100-5 1.000000+5 7.829100-5 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.528300-4 1.433700-9 1.000000+5 1.433700-9 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.528300-4 7.453757-5 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.109100-4 4.877680+5 1.113500-4 5.114680+5 1.117000-4 5.285440+5 1.121000-4 5.462800+5 1.126500-4 5.672600+5 1.130000-4 5.786080+5 1.135011-4 5.923471+5 1.142000-4 6.073340+5 1.148154-4 6.165338+5 1.154000-4 6.222380+5 1.161449-4 6.259997+5 1.169000-4 6.264220+5 1.177000-4 6.238240+5 1.188502-4 6.157628+5 1.202264-4 6.013947+5 1.216186-4 5.835848+5 1.235000-4 5.568580+5 1.260000-4 5.201660+5 1.303167-4 4.599970+5 1.428894-4 3.265567+5 1.548817-4 2.439871+5 1.678804-4 1.836931+5 1.778279-4 1.508898+5 1.883649-4 1.248174+5 1.980000-4 1.066118+5 2.080000-4 9.184320+4 2.187762-4 7.941334+4 2.290868-4 7.007382+4 2.371374-4 6.413250+4 2.454709-4 5.897922+4 2.540973-4 5.451107+4 2.650000-4 4.985960+4 2.770000-4 4.572440+4 2.900000-4 4.210840+4 3.054921-4 3.865745+4 3.200000-4 3.605140+4 3.388442-4 3.333082+4 3.600000-4 3.092660+4 3.850000-4 2.869840+4 4.168694-4 2.647663+4 4.700000-4 2.366480+4 6.382635-4 1.799310+4 7.413102-4 1.562316+4 8.413951-4 1.377143+4 9.660509-4 1.190612+4 1.096478-3 1.034013+4 1.244515-3 8.918142+3 1.412538-3 7.636372+3 1.603245-3 6.494503+3 1.819701-3 5.484951+3 2.070000-3 4.585840+3 2.371374-3 3.766636+3 2.691535-3 3.111997+3 3.054921-3 2.552241+3 3.427678-3 2.117672+3 3.890451-3 1.712454+3 4.415704-3 1.374650+3 5.011872-3 1.095432+3 5.688529-3 8.665589+2 6.456542-3 6.804917+2 7.328245-3 5.306165+2 8.317638-3 4.108563+2 9.440609-3 3.159208+2 1.083927-2 2.353494+2 1.230269-2 1.784176+2 1.412538-2 1.308860+2 1.603245-2 9.783603+1 1.840772-2 7.068309+1 2.113489-2 5.067767+1 2.426610-2 3.606563+1 2.786121-2 2.548568+1 3.198895-2 1.788362+1 3.715352-2 1.209323+1 4.365158-2 7.875276+0 5.188000-2 4.935877+0 6.237348-2 2.976674+0 7.673615-2 1.671510+0 9.120108-2 1.025586+0 1.230269-1 4.355036-1 1.840772-1 1.371148-1 2.290868-1 7.367484-2 2.722701-1 4.541356-2 3.198895-1 2.911845-2 3.672823-1 2.002965-2 4.168694-1 1.430759-2 4.731513-1 1.029314-2 5.308844-1 7.681760-3 5.956621-1 5.773836-3 6.683439-1 4.374125-3 7.413102-1 3.430188-3 8.511380-1 2.502367-3 9.225714-1 2.093888-3 1.000000+0 1.764100-3 1.096478+0 1.462953-3 1.202264+0 1.221907-3 1.333521+0 1.005082-3 1.513561+0 7.981629-4 1.737801+0 6.244843-4 1.972423+0 5.023821-4 2.264644+0 3.995602-4 2.600160+0 3.202011-4 3.000000+0 2.565500-4 3.467369+0 2.065626-4 4.027170+0 1.663284-4 4.731513+0 1.327460-4 5.623413+0 1.050855-4 6.683439+0 8.383014-5 8.128305+0 6.541595-5 9.885531+0 5.143032-5 1.258925+1 3.856777-5 1.603245+1 2.917462-5 2.089296+1 2.167134-5 2.818383+1 1.561194-5 3.981072+1 1.078509-5 5.888437+1 7.148494-6 1.035142+2 3.993168-6 2.065380+2 1.978033-6 4.120975+2 9.853115-7 1.640590+3 2.463963-7 1.000000+5 4.035000-9 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.109100-4 5.556600-5 1.000000+5 5.556600-5 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.109100-4 2.455400-9 1.000000+5 2.455400-9 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.109100-4 5.534154-5 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 8.764000-5 1.101244+6 8.820000-5 1.128392+6 8.880000-5 1.151444+6 8.940000-5 1.168048+6 9.015711-5 1.181122+6 9.076600-5 1.186189+6 9.150000-5 1.186676+6 9.230000-5 1.181160+6 9.350000-5 1.163988+6 9.450000-5 1.143660+6 9.580000-5 1.111736+6 9.772372-5 1.058096+6 1.000000-4 9.914840+5 1.040000-4 8.791800+5 1.135011-4 6.669762+5 1.190000-4 5.773520+5 1.244515-4 5.068753+5 1.300000-4 4.498280+5 1.350000-4 4.083920+5 1.400000-4 3.744152+5 1.450000-4 3.463584+5 1.507700-4 3.197204+5 1.566751-4 2.973391+5 1.640590-4 2.744958+5 1.720000-4 2.545700+5 1.820000-4 2.343440+5 1.927525-4 2.169471+5 2.041738-4 2.020530+5 2.187762-4 1.868683+5 2.371374-4 1.719163+5 3.507519-4 1.177398+5 4.027170-4 1.022484+5 4.570882-4 8.922668+4 5.188000-4 7.728142+4 5.888437-4 6.647413+4 6.700000-4 5.658400+4 7.673615-4 4.741828+4 8.709636-4 3.993498+4 1.000000-3 3.288840+4 1.150000-3 2.682868+4 1.318257-3 2.184509+4 1.513561-3 1.762877+4 1.757924-3 1.387152+4 2.041738-3 1.082867+4 2.344229-3 8.552216+3 2.691535-3 6.706106+3 3.090295-3 5.218986+3 3.548134-3 4.029572+3 4.073803-3 3.086736+3 4.677351-3 2.345883+3 5.308844-3 1.811322+3 6.095369-3 1.355624+3 6.918310-3 1.032090+3 7.852356-3 7.804206+2 9.000000-3 5.731040+2 1.023293-2 4.254883+2 1.174898-2 3.064594+2 1.348963-2 2.189748+2 1.536000-2 1.584990+2 1.757924-2 1.124217+2 2.018366-2 7.847800+1 2.317395-2 5.435757+1 2.660725-2 3.736861+1 3.054921-2 2.550302+1 3.507519-2 1.728304+1 4.027170-2 1.163187+1 4.677351-2 7.513602+0 5.495409-2 4.656045+0 6.531306-2 2.766462+0 7.943282-2 1.521174+0 1.000000-1 7.465462-1 1.757924-1 1.281795-1 2.187762-1 6.516712-2 2.570396-1 3.985448-2 2.951209-1 2.632165-2 3.349654-1 1.811482-2 3.801894-1 1.255901-2 4.265795-1 9.068005-3 4.786301-1 6.597702-3 5.308844-1 4.990708-3 5.888437-1 3.801921-3 6.531306-1 2.918144-3 7.244360-1 2.256750-3 8.511380-1 1.531101-3 9.120108-1 1.303792-3 9.660509-1 1.146627-3 1.023293+0 1.014527-3 1.109175+0 8.607929-4 1.216186+0 7.188740-4 1.333521+0 6.050535-4 1.548817+0 4.622097-4 1.778279+0 3.621211-4 2.000000+0 2.961700-4 2.290868+0 2.366597-4 2.630268+0 1.897683-4 3.019952+0 1.532669-4 3.507519+0 1.225648-4 4.073803+0 9.874785-5 4.786301+0 7.885193-5 5.688529+0 6.245388-5 6.760830+0 4.984577-5 8.222427+0 3.891420-5 1.000000+1 3.060900-5 1.273503+1 2.296346-5 1.621810+1 1.737728-5 2.137962+1 1.274814-5 2.884032+1 9.189679-6 4.027170+1 6.429392-6 6.025596+1 4.211813-6 1.071519+2 2.326115-6 2.137962+2 1.152698-6 4.265795+2 5.742958-7 1.698244+3 1.436366-7 1.000000+5 2.435000-9 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 8.764000-5 5.300500-5 1.000000+5 5.300500-5 1 82000 7 7 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 8.764000-5 6.15160-10 1.000000+5 6.15160-10 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 8.764000-5 3.463438-5 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 2.881000-5 1.989856+6 2.917427-5 2.036178+6 2.951209-5 2.092774+6 2.970000-5 2.130724+6 3.010000-5 2.228424+6 3.040000-5 2.317060+6 3.080000-5 2.456456+6 3.120000-5 2.620648+6 3.162278-5 2.823816+6 3.210000-5 3.091756+6 3.260000-5 3.418456+6 3.315000-5 3.834776+6 3.388442-5 4.490404+6 3.630781-5 7.526153+6 3.715352-5 8.894776+6 3.770000-5 9.850560+6 3.830000-5 1.094924+7 3.900000-5 1.227292+7 3.950000-5 1.322728+7 4.000000-5 1.417536+7 4.050000-5 1.509832+7 4.110000-5 1.615500+7 4.168694-5 1.710927+7 4.220000-5 1.786432+7 4.280000-5 1.863752+7 4.330000-5 1.918344+7 4.370000-5 1.955276+7 4.420000-5 1.992784+7 4.485000-5 2.027496+7 4.540000-5 2.044852+7 4.610000-5 2.052364+7 4.680000-5 2.045388+7 4.760000-5 2.022460+7 4.850000-5 1.981568+7 4.950000-5 1.922352+7 5.040000-5 1.860700+7 5.150000-5 1.779016+7 5.300000-5 1.662940+7 5.450000-5 1.547268+7 5.650000-5 1.399800+7 5.900000-5 1.231020+7 6.165950-5 1.071633+7 6.456542-5 9.197989+6 6.760830-5 7.835492+6 7.079458-5 6.625642+6 7.413102-5 5.561415+6 7.800000-5 4.547840+6 8.300000-5 3.527132+6 8.912509-5 2.614133+6 9.660509-5 1.848112+6 1.047129-4 1.297439+6 1.122018-4 9.521270+5 1.190000-4 7.274120+5 1.260000-4 5.567760+5 1.350000-4 4.003320+5 1.584893-4 1.833915+5 1.659587-4 1.473292+5 1.720000-4 1.249644+5 1.780000-4 1.073964+5 1.835000-4 9.453160+4 1.883649-4 8.525036+4 1.930000-4 7.792600+4 1.980000-4 7.141200+4 2.020000-4 6.707640+4 2.065380-4 6.295458+4 2.113489-4 5.937055+4 2.162719-4 5.640581+4 2.213095-4 5.398609+4 2.264644-4 5.204425+4 2.317395-4 5.051885+4 2.371374-4 4.935504+4 2.430000-4 4.846000+4 2.500000-4 4.778880+4 2.580000-4 4.742440+4 2.660725-4 4.737719+4 2.770000-4 4.766720+4 2.917427-4 4.843041+4 3.388442-4 5.132862+4 3.650000-4 5.243000+4 3.890451-4 5.299278+4 4.120975-4 5.316561+4 4.365158-4 5.299837+4 4.623810-4 5.248302+4 4.897788-4 5.164344+4 5.248075-4 5.024768+4 5.559043-4 4.880884+4 5.956621-4 4.681068+4 6.382635-4 4.453983+4 6.839116-4 4.209397+4 7.413102-4 3.909555+4 8.035261-4 3.599895+4 8.709636-4 3.287952+4 9.440609-4 2.982178+4 1.023293-3 2.685177+4 1.109175-3 2.402119+4 1.202264-3 2.135181+4 1.318257-3 1.852136+4 1.445440-3 1.594129+4 1.584893-3 1.362077+4 1.737801-3 1.155442+4 1.905461-3 9.731111+3 2.089296-3 8.138168+3 2.290868-3 6.759324+3 2.511886-3 5.575955+3 2.754229-3 4.568994+3 3.019952-3 3.719210+3 3.349654-3 2.927566+3 3.715352-3 2.286084+3 4.120975-3 1.771304+3 4.570882-3 1.362076+3 5.069907-3 1.039781+3 5.623413-3 7.881942+2 6.237348-3 5.932924+2 6.918310-3 4.435082+2 7.673615-3 3.293210+2 8.609938-3 2.348135+2 9.772372-3 1.607726+2 1.096478-2 1.130557+2 1.219600-2 8.105345+1 1.364583-2 5.650912+1 1.548817-2 3.732890+1 1.778279-2 2.356645+1 2.018366-2 1.535014+1 2.290868-2 9.926296+0 2.630268-2 6.123837+0 3.019952-2 3.751046+0 3.507519-2 2.189003+0 4.120975-2 1.216480+0 4.954502-2 6.166854-1 6.165950-2 2.726671-1 1.230269-1 2.027375-2 1.531088-1 8.960878-3 1.819701-1 4.734239-3 2.089296-1 2.861013-3 2.398833-1 1.742511-3 2.722701-1 1.114047-3 3.090295-1 7.175634-4 3.467369-1 4.843815-4 3.890451-1 3.294698-4 4.315191-1 2.345715-4 4.786301-1 1.682179-4 5.308844-1 1.215453-4 5.821032-1 9.168945-5 6.309573-1 7.213161-5 6.918310-1 5.525702-5 7.585776-1 4.263928-5 8.035261-1 3.636902-5 8.609938-1 2.996330-5 9.120108-1 2.565728-5 9.549926-1 2.278889-5 1.000000+0 2.036400-5 1.047129+0 1.832433-5 1.096478+0 1.659934-5 1.161449+0 1.478571-5 1.230269+0 1.326220-5 1.333521+0 1.146642-5 1.479108+0 9.589884-6 1.862087+0 6.399666-6 2.065380+0 5.368376-6 2.371374+0 4.280694-6 2.722701+0 3.438870-6 3.126079+0 2.782462-6 3.630781+0 2.229046-6 4.216965+0 1.798848-6 4.954502+0 1.438705-6 5.888437+0 1.141252-6 7.079458+0 8.988846-7 8.609938+0 7.029975-7 1.035142+1 5.616900-7 1.288250+1 4.333851-7 1.640590+1 3.280822-7 2.162719+1 2.407679-7 2.917427+1 1.736058-7 4.120975+1 1.200205-7 6.165950+1 7.865950-8 1.096478+2 4.345826-8 2.187762+2 2.154233-8 4.365158+2 1.073402-8 1.737801+3 2.684936-9 1.000000+5 4.65780-11 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 2.881000-5 2.881000-5 1.000000+5 2.881000-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 2.881000-5 0.0 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 2.603000-5 3.850518+6 2.640000-5 3.897732+6 2.670000-5 3.960540+6 2.700000-5 4.045194+6 2.735600-5 4.176698+6 2.765000-5 4.310820+6 2.800000-5 4.501722+6 2.840000-5 4.761840+6 2.884032-5 5.102099+6 2.920000-5 5.423304+6 2.965000-5 5.882106+6 3.020000-5 6.532200+6 3.080000-5 7.357920+6 3.162278-5 8.695530+6 3.370000-5 1.314132+7 3.450000-5 1.522470+7 3.526900-5 1.737085+7 3.590000-5 1.919814+7 3.650000-5 2.095422+7 3.715352-5 2.284343+7 3.770000-5 2.436714+7 3.830000-5 2.594430+7 3.890451-5 2.739418+7 3.950000-5 2.865546+7 4.000000-5 2.956830+7 4.050000-5 3.033744+7 4.113100-5 3.109530+7 4.168694-5 3.156675+7 4.220000-5 3.184356+7 4.280000-5 3.198606+7 4.350000-5 3.192804+7 4.420000-5 3.166002+7 4.500000-5 3.114120+7 4.570882-5 3.053194+7 4.650000-5 2.972730+7 4.760000-5 2.846058+7 4.850000-5 2.734860+7 5.000000-5 2.544192+7 5.150000-5 2.355594+7 5.350000-5 2.116926+7 5.580000-5 1.866942+7 5.821032-5 1.634356+7 6.095369-5 1.403665+7 6.382635-5 1.196534+7 6.683439-5 1.012496+7 7.000000-5 8.499600+6 7.328245-5 7.099250+6 7.673615-5 5.888240+6 8.128305-5 4.629005+6 8.709636-5 3.440467+6 9.332543-5 2.540772+6 1.011579-4 1.770329+6 1.083927-4 1.290436+6 1.161449-4 9.339737+5 1.244515-4 6.707780+5 1.480000-4 2.876478+5 1.548817-4 2.315981+5 1.603245-4 1.974938+5 1.659587-4 1.695427+5 1.705000-4 1.513866+5 1.740000-4 1.395996+5 1.780000-4 1.281276+5 1.820000-4 1.184844+5 1.865000-4 1.094874+5 1.905461-4 1.028156+5 1.950000-4 9.677640+4 1.995262-4 9.181803+4 2.041738-4 8.775758+4 2.089296-4 8.450118+4 2.137962-4 8.194730+4 2.190000-4 7.993020+4 2.240000-4 7.855740+4 2.300000-4 7.748940+4 2.371374-4 7.684886+4 2.454709-4 7.672373+4 2.540973-4 7.708639+4 2.660725-4 7.809769+4 3.150000-4 8.338800+4 3.350000-4 8.492340+4 3.550000-4 8.587200+4 3.780000-4 8.628660+4 4.000000-4 8.610420+4 4.280000-4 8.519640+4 4.518559-4 8.392908+4 4.841724-4 8.169726+4 5.150000-4 7.916880+4 5.500000-4 7.608060+4 5.900000-4 7.235940+4 6.309573-4 6.848822+4 6.760830-4 6.431845+4 7.328245-4 5.931214+4 8.000000-4 5.380986+4 8.609938-4 4.925176+4 9.332543-4 4.438378+4 1.011579-3 3.973611+4 1.096478-3 3.535167+4 1.202264-3 3.069769+4 1.318257-3 2.644928+4 1.445440-3 2.261751+4 1.584893-3 1.920361+4 1.737801-3 1.619051+4 1.905461-3 1.355421+4 2.089296-3 1.126926+4 2.290868-3 9.306269+3 2.511886-3 7.633599+3 2.754229-3 6.220010+3 3.019952-3 5.034905+3 3.349654-3 3.938216+3 3.715352-3 3.055862+3 4.120975-3 2.352768+3 4.570882-3 1.797707+3 5.069907-3 1.363413+3 5.623413-3 1.026552+3 6.237348-3 7.676662+2 6.918310-3 5.701074+2 7.673615-3 4.205400+2 8.609938-3 2.976743+2 9.549926-3 2.165834+2 1.035142-2 1.682085+2 1.161449-2 1.162702+2 1.333521-2 7.398018+1 1.513561-2 4.858723+1 1.678804-2 3.422973+1 1.905461-2 2.213266+1 2.162719-2 1.420200+1 2.454709-2 9.048940+0 2.818383-2 5.492437+0 3.235937-2 3.308867+0 3.758374-2 1.896470+0 4.415704-2 1.033600+0 5.248075-2 5.353745-1 6.531306-2 2.305625-1 1.188502-1 2.265427-2 1.445440-1 1.068145-2 1.698244-1 5.788692-3 1.949845-1 3.448949-3 2.187762-1 2.256071-3 2.454709-1 1.486368-3 2.722701-1 1.027759-3 3.019952-1 7.154860-4 3.349654-1 5.016716-4 3.672823-1 3.683665-4 4.027170-1 2.723275-4 4.415705-1 2.028197-4 4.841724-1 1.521789-4 5.308844-1 1.150558-4 5.754399-1 9.067652-5 6.165950-1 7.433420-5 6.683439-1 5.934380-5 7.244360-1 4.768402-5 8.609938-1 3.029143-5 9.120108-1 2.620243-5 9.660509-1 2.282533-5 1.011579+0 2.056548-5 1.071519+0 1.817866-5 1.148154+0 1.580155-5 1.230269+0 1.383460-5 1.333521+0 1.193144-5 1.840772+0 6.761015-6 2.065380+0 5.561431-6 2.371374+0 4.434779-6 2.722701+0 3.562541-6 3.126079+0 2.882437-6 3.630781+0 2.309164-6 4.216965+0 1.863531-6 4.954502+0 1.490446-6 5.888437+0 1.182255-6 7.079458+0 9.311960-7 8.609938+0 7.282698-7 1.035142+1 5.818845-7 1.288250+1 4.489595-7 1.640590+1 3.398720-7 2.162719+1 2.494200-7 2.917427+1 1.798521-7 4.120975+1 1.243330-7 6.165950+1 8.148691-8 1.096478+2 4.502073-8 2.187762+2 2.231679-8 4.365158+2 1.111969-8 1.737801+3 2.781402-9 1.000000+5 4.82520-11 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 2.603000-5 2.603000-5 1.000000+5 2.603000-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 2.603000-5 0.0 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 1.505000-5 2.912680+6 1.659587-5 1.888686+6 2.213095-5 5.195958+5 2.426610-5 3.459867+5 2.580000-5 2.655180+5 2.730000-5 2.094420+5 2.851018-5 1.756405+5 2.951209-5 1.533921+5 3.054921-5 1.346277+5 3.162278-5 1.188360+5 3.273407-5 1.055778+5 3.388442-5 9.447328+4 3.507519-5 8.519324+4 3.610000-5 7.864440+4 3.730000-5 7.232500+4 3.850000-5 6.717280+4 3.981072-5 6.259959+4 4.120975-5 5.867103+4 4.265795-5 5.540860+4 4.415704-5 5.269484+4 4.570882-5 5.042982+4 4.731513-5 4.852579+4 4.954502-5 4.642778+4 5.188000-5 4.470578+4 5.500000-5 4.289260+4 6.025596-5 4.055519+4 7.500000-5 3.575700+4 8.413951-5 3.324446+4 9.440609-5 3.067023+4 1.047129-4 2.832865+4 1.161449-4 2.598863+4 1.303167-4 2.343329+4 1.513561-4 2.031255+4 1.883649-4 1.633416+4 2.150000-4 1.423360+4 2.400000-4 1.261144+4 2.691535-4 1.103971+4 3.126079-4 9.202486+3 3.630781-4 7.611596+3 4.519970-4 5.708880+3 5.248075-4 4.665198+3 6.165950-4 3.719755+3 7.498942-4 2.800639+3 9.225714-4 2.059886+3 1.148154-3 1.475472+3 1.428894-3 1.048842+3 1.798871-3 7.268336+2 2.264644-3 4.997164+2 2.786121-3 3.540920+2 3.388442-3 2.539491+2 3.801894-3 2.079548+2 4.954502-3 1.294016+2 6.382635-3 8.192883+1 7.852356-3 5.596146+1 9.225714-3 4.125636+1 1.109175-2 2.890105+1 1.333521-2 2.009705+1 1.621810-2 1.355742+1 1.949845-2 9.293799+0 2.344229-2 6.323521+0 2.818383-2 4.269645+0 3.349654-2 2.933160+0 4.027170-2 1.949983+0 4.841724-2 1.286080+0 5.754399-2 8.637718-1 6.918310-2 5.607236-1 8.413951-2 3.515916-1 9.772372-2 2.445517-1 1.230269-1 1.387402-1 1.698244-1 6.214474-2 2.660725-1 2.020047-2 3.273407-1 1.210641-2 3.890451-1 7.958887-3 4.518559-1 5.572212-3 5.188000-1 4.038232-3 5.956621-1 2.949241-3 6.760830-1 2.227335-3 7.673615-1 1.694289-3 8.709636-1 1.297805-3 9.772372-1 1.025871-3 1.135011+0 7.631525-4 1.288250+0 5.979277-4 1.462177+0 4.720691-4 1.640590+0 3.835744-4 1.862087+0 3.076345-4 2.113489+0 2.485778-4 2.426610+0 1.984702-4 2.786121+0 1.596244-4 3.198895+0 1.293024-4 3.715352+0 1.037058-4 4.315191+0 8.378115-5 5.069907+0 6.707774-5 6.025596+0 5.326650-5 7.244360+0 4.199522-5 8.810489+0 3.287164-5 1.059254+1 2.628754-5 1.303167+1 2.057158-5 1.659587+1 1.557822-5 2.213095+1 1.129181-5 3.019952+1 8.046275-6 4.315191+1 5.499528-6 6.456542+1 3.607554-6 1.135011+2 2.018172-6 2.264644+2 1.000820-6 4.518559+2 4.987656-7 1.798871+3 1.247746-7 1.000000+5 2.240800-9 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 1.505000-5 1.505000-5 1.000000+5 1.505000-5 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 1.505000-5 0.0 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 7.000000-6 1.280801+7 7.244360-6 1.226731+7 7.673615-6 1.133703+7 8.128305-6 1.039685+7 8.709636-6 9.289698+6 9.225714-6 8.396975+6 9.885531-6 7.383446+6 1.050000-5 6.557937+6 1.122018-5 5.716253+6 1.202264-5 4.920843+6 1.303167-5 4.098739+6 1.420000-5 3.344642+6 1.531087-5 2.779734+6 1.678804-5 2.200348+6 1.862087-5 1.679124+6 2.113489-5 1.195890+6 2.500000-5 7.553670+5 3.273407-5 3.574373+5 4.265795-5 1.702501+5 5.128614-5 1.009908+5 6.095369-5 6.145546+4 8.609938-5 2.252573+4 9.800000-5 1.555761+4 1.096478-4 1.136356+4 1.202264-4 8.839302+3 1.303167-4 7.136274+3 1.412538-4 5.801161+3 1.513561-4 4.888778+3 1.621810-4 4.146645+3 1.737801-4 3.542425+3 1.862087-4 3.048502+3 1.995262-4 2.642694+3 2.137962-4 2.308000+3 2.290868-4 2.031757+3 2.454709-4 1.802330+3 2.630268-4 1.610249+3 2.818383-4 1.448163+3 3.054921-4 1.289412+3 3.311311-4 1.156713+3 3.630781-4 1.029790+3 4.000000-4 9.183338+2 4.518559-4 8.027736+2 6.165950-4 5.751155+2 8.035261-4 4.280134+2 9.332543-4 3.604714+2 1.083927-3 3.010836+2 1.258925-3 2.496278+2 1.462177-3 2.053988+2 1.698244-3 1.677238+2 1.949845-3 1.381129+2 2.238721-3 1.129040+2 2.570396-3 9.160177+1 3.051000-3 6.990471+1 3.090295-3 6.984741+1 3.126079-3 6.963102+1 3.162278-3 6.926593+1 3.235937-3 6.812251+1 3.311311-3 6.648917+1 3.388442-3 6.444485+1 3.467369-3 6.207120+1 3.548134-3 5.944898+1 3.630781-3 5.665506+1 3.758374-3 5.229493+1 3.890451-3 4.791139+1 4.000000-3 4.448129+1 4.570882-3 3.517837+1 5.188000-3 2.795157+1 5.888437-3 2.205468+1 6.683439-3 1.728165+1 7.585776-3 1.344831+1 8.609938-3 1.039340+1 9.772372-3 7.977672+0 1.109175-2 6.082188+0 1.273503-2 4.489528+0 1.462177-2 3.287599+0 1.659587-2 2.453435+0 1.905461-2 1.769562+0 2.187762-2 1.266638+0 2.511886-2 9.000093-1 2.884032-2 6.350235-1 3.349654-2 4.318373-1 3.890451-2 2.914692-1 4.570882-2 1.894119-1 5.308844-2 1.260764-1 6.382635-2 7.576919-2 7.852356-2 4.237345-2 1.000000-1 2.133300-2 1.840772-1 3.710240-3 2.317395-1 1.930407-3 2.754229-1 1.190625-3 3.235937-1 7.639709-4 3.715352-1 5.259272-4 4.216965-1 3.759886-4 4.786301-1 2.707426-4 5.370318-1 2.022655-4 6.025596-1 1.522032-4 6.760830-1 1.154480-4 7.498942-1 9.064772-5 8.511380-1 6.798392-5 9.225714-1 5.693189-5 1.000000+0 4.799500-5 1.096478+0 3.981615-5 1.216186+0 3.253154-5 1.348963+0 2.677502-5 1.548817+0 2.083339-5 1.757924+0 1.665161-5 2.000000+0 1.335200-5 2.290868+0 1.066880-5 2.630268+0 8.555065-6 3.019952+0 6.909785-6 3.507519+0 5.525652-6 4.073803+0 4.451875-6 4.786301+0 3.554832-6 5.688529+0 2.815601-6 6.760830+0 2.247211-6 8.222427+0 1.754378-6 1.000000+1 1.379900-6 1.273503+1 1.035282-6 1.621810+1 7.834211-7 2.137962+1 5.747276-7 2.884032+1 4.143004-7 4.027170+1 2.898522-7 6.025596+1 1.898775-7 1.071519+2 1.048642-7 2.137962+2 5.196852-8 4.265795+2 2.589098-8 1.698244+3 6.475585-9 1.000000+5 1.09780-10 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 7.000000-6 7.000000-6 1.000000+5 7.000000-6 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 7.000000-6 0.0 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 5.290000-6 2.928470+7 5.821032-6 2.437205+7 6.309573-6 2.073865+7 6.839116-6 1.753890+7 7.413102-6 1.474838+7 8.128305-6 1.200958+7 8.912509-6 9.709796+6 9.772372-6 7.793912+6 1.071519-5 6.211306+6 1.188502-5 4.774214+6 1.310000-5 3.700857+6 1.462177-5 2.755079+6 1.650000-5 1.975555+6 1.905461-5 1.317263+6 2.264644-5 8.031490+5 3.935501-5 1.621179+5 4.677351-5 9.892997+4 5.248075-5 7.162137+4 5.800000-5 5.449386+4 6.309573-5 4.360231+4 6.800000-5 3.602524+4 7.300000-5 3.028339+4 7.800000-5 2.592767+4 8.317638-5 2.245646+4 8.912509-5 1.938403+4 9.549926-5 1.686006+4 1.023293-4 1.477095+4 1.096478-4 1.303512+4 1.174898-4 1.158283+4 1.260000-4 1.034819+4 1.364583-4 9.176341+3 1.479108-4 8.193877+3 1.603245-4 7.371212+3 1.778279-4 6.485955+3 2.089296-4 5.375157+3 3.019952-4 3.531313+3 3.845918-4 2.642225+3 4.786301-4 2.024097+3 5.495409-4 1.699219+3 6.165950-4 1.459917+3 7.413102-4 1.133252+3 9.000000-4 8.618725+2 1.047129-3 6.898437+2 1.230269-3 5.400801+2 1.445440-3 4.194933+2 1.698244-3 3.233507+2 1.972423-3 2.520589+2 2.290868-3 1.950093+2 2.660725-3 1.496888+2 3.054921-3 1.164311+2 3.507519-3 8.984847+1 4.027170-3 6.879577+1 4.623810-3 5.228117+1 5.308844-3 3.942196+1 6.095369-3 2.949242+1 6.998420-3 2.188924+1 8.000000-3 1.627660+1 9.120108-3 1.208703+1 1.047129-2 8.763461+0 1.202264-2 6.303461+0 1.364583-2 4.627444+0 1.548817-2 3.374008+0 1.778279-2 2.371627+0 2.041738-2 1.653881+0 2.344229-2 1.144350+0 2.691535-2 7.858616-1 3.090295-2 5.359211-1 3.589219-2 3.511668-1 4.168694-2 2.283080-1 4.841724-2 1.473326-1 5.688529-2 9.124474-2 6.683439-2 5.609626-2 8.128305-2 3.082424-2 1.023293-1 1.511409-2 1.757924-1 2.789494-3 2.187762-1 1.418565-3 2.570396-1 8.677645-4 2.951209-1 5.732718-4 3.349654-1 3.946624-4 3.801894-1 2.737382-4 4.265795-1 1.977473-4 4.731513-1 1.485560-4 5.248075-1 1.123599-4 5.821032-1 8.559695-5 6.456542-1 6.571340-5 7.161434-1 5.084689-5 7.943282-1 3.965485-5 8.709636-1 3.190177-5 9.332543-1 2.727174-5 9.885531-1 2.406371-5 1.071519+0 2.036961-5 1.174898+0 1.696635-5 1.288250+0 1.423753-5 1.428894+0 1.177941-5 1.717908+0 8.484646-6 1.949845+0 6.819665-6 2.213095+0 5.523230-6 2.540973+0 4.420757-6 2.917427+0 3.564225-6 3.388442+0 2.845030-6 3.935501+0 2.288321-6 4.623810+0 1.824188-6 5.495409+0 1.442590-6 6.531306+0 1.149687-6 7.943282+0 8.962952-7 9.660509+0 7.040485-7 1.244515+1 5.204155-7 1.603245+1 3.883931-7 2.089296+1 2.885061-7 2.818383+1 2.078412-7 3.935501+1 1.453335-7 5.821032+1 9.631286-8 1.023293+2 5.378971-8 2.041738+2 2.664206-8 4.073803+2 1.326967-8 1.621810+3 3.318208-9 1.000000+5 5.37160-11 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 5.290000-6 5.290000-6 1.000000+5 5.290000-6 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 5.290000-6 0.0 1.000000+5 1.000000+5 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.042730-7 1.025800+0 1.089020-6 1.026100+0 1.366320-6 1.026600+0 1.926190-6 1.027100+0 2.620620-6 1.027500+0 3.282300-6 1.028100+0 4.468790-6 1.028750+0 6.042730-6 1.029500+0 8.269640-6 1.030100+0 1.040010-5 1.031000+0 1.423080-5 1.032000+0 1.947140-5 1.033200+0 2.727610-5 1.034000+0 3.348390-5 1.035300+0 4.544960-5 1.036640+0 6.042730-5 1.038200+0 8.154860-5 1.039700+0 1.059480-4 1.041500+0 1.409630-4 1.043800+0 1.956610-4 1.046400+0 2.722250-4 1.048300+0 3.389280-4 1.051200+0 4.597480-4 1.054080+0 6.042730-4 1.057700+0 8.236630-4 1.061100+0 1.071380-3 1.065100+0 1.418390-3 1.070400+0 1.978800-3 1.076200+0 2.734700-3 1.080600+0 3.415200-3 1.087100+0 4.601390-3 1.093710+0 6.042730-3 1.102600+0 8.378040-3 1.110700+0 1.092640-2 1.120600+0 1.461590-2 1.133300+0 2.032190-2 1.147500+0 2.805800-2 1.158200+0 3.486890-2 1.174100+0 4.660460-2 1.190110+0 6.042730-2 1.205100+0 7.522510-2 1.227500+0 1.006880-1 1.250000+0 1.301000-1 1.265600+0 1.525540-1 1.294900+0 1.988610-1 1.331800+0 2.638540-1 1.362600+0 3.228960-1 1.397000+0 3.929490-1 1.433800+0 4.717710-1 1.477900+0 5.705000-1 1.500000+0 6.215000-1 1.562500+0 7.703650-1 1.617200+0 9.048230-1 1.712900+0 1.145770+0 1.784700+0 1.328680+0 1.892300+0 1.602870+0 2.000000+0 1.875000+0 2.044000+0 1.985000+0 2.163500+0 2.278420+0 2.372600+0 2.771400+0 2.686300+0 3.462090+0 3.000000+0 4.102000+0 3.500000+0 5.038630+0 4.000000+0 5.891000+0 5.000000+0 7.389000+0 6.000000+0 8.680000+0 7.000000+0 9.816000+0 8.000000+0 1.084000+1 9.000000+0 1.177000+1 1.000000+1 1.263000+1 1.100000+1 1.342000+1 1.200000+1 1.416000+1 1.300000+1 1.485000+1 1.400000+1 1.550000+1 1.500000+1 1.610000+1 1.600000+1 1.666000+1 1.800000+1 1.768000+1 2.000000+1 1.859000+1 2.200000+1 1.941000+1 2.400000+1 2.016000+1 2.600000+1 2.084000+1 2.800000+1 2.147000+1 3.000000+1 2.205000+1 4.000000+1 2.442000+1 5.000000+1 2.617000+1 6.000000+1 2.753000+1 8.000000+1 2.953000+1 1.000000+2 3.094000+1 1.500000+2 3.316000+1 2.000000+2 3.448000+1 3.000000+2 3.601000+1 4.000000+2 3.689000+1 5.000000+2 3.746000+1 6.000000+2 3.787000+1 8.000000+2 3.842000+1 1.000000+3 3.877000+1 1.500000+3 3.928000+1 2.000000+3 3.956000+1 3.000000+3 3.986000+1 4.000000+3 4.002000+1 5.000000+3 4.012000+1 6.000000+3 4.019000+1 8.000000+3 4.028000+1 1.000000+4 4.034000+1 1.500000+4 4.042000+1 2.000000+4 4.047000+1 3.000000+4 4.051000+1 4.000000+4 4.053000+1 5.000000+4 4.055000+1 6.000000+4 4.056000+1 8.000000+4 4.057000+1 1.000000+5 4.058000+1 1 82000 7 8 2.071900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.208060-7 2.090400+0 1.114450-6 2.094700+0 1.445050-6 2.099900+0 1.922440-6 2.106600+0 2.674280-6 2.114000+0 3.700200-6 2.119500+0 4.606720-6 2.127900+0 6.247590-6 2.136250+0 8.208060-6 2.147000+0 1.125380-5 2.156900+0 1.461740-5 2.169000+0 1.950780-5 2.184500+0 2.711650-5 2.201800+0 3.751650-5 2.214800+0 4.674260-5 2.234200+0 6.287700-5 2.253680+0 8.208060-5 2.281500+0 1.149680-4 2.307000+0 1.510100-4 2.338200+0 2.030460-4 2.377400+0 2.811940-4 2.410200+0 3.576320-4 2.446800+0 4.549280-4 2.485900+0 5.727790-4 2.532900+0 7.330360-4 2.556430+0 8.208060-4 2.611900+0 1.046630-3 2.660400+0 1.265330-3 2.745300+0 1.693580-3 2.809000+0 2.051030-3 2.904500+0 2.642240-3 3.000000+0 3.298000-3 3.125000+0 4.252340-3 3.234400+0 5.173650-3 3.425800+0 6.965530-3 3.569300+0 8.444840-3 3.784700+0 1.085270-2 4.000000+0 1.344000-2 4.250000+0 1.660190-2 4.625000+0 2.156870-2 5.000000+0 2.673000-2 5.500000+0 3.381120-2 6.000000+0 4.098000-2 6.750000+0 5.162870-2 7.000000+0 5.513000-2 8.000000+0 6.882000-2 9.000000+0 8.188000-2 1.000000+1 9.427000-2 1.100000+1 1.060000-1 1.200000+1 1.170000-1 1.300000+1 1.273000-1 1.400000+1 1.372000-1 1.500000+1 1.464000-1 1.600000+1 1.552000-1 1.800000+1 1.715000-1 2.000000+1 1.863000-1 2.200000+1 1.997000-1 2.400000+1 2.121000-1 2.600000+1 2.234000-1 2.800000+1 2.339000-1 3.000000+1 2.437000-1 4.000000+1 2.837000-1 5.000000+1 3.138000-1 6.000000+1 3.374000-1 8.000000+1 3.727000-1 1.000000+2 3.981000-1 1.500000+2 4.396000-1 2.000000+2 4.652000-1 3.000000+2 4.963000-1 4.000000+2 5.147000-1 5.000000+2 5.272000-1 6.000000+2 5.363000-1 8.000000+2 5.488000-1 1.000000+3 5.570000-1 1.500000+3 5.693000-1 2.000000+3 5.762000-1 3.000000+3 5.836000-1 4.000000+3 5.881000-1 5.000000+3 5.908000-1 6.000000+3 5.926000-1 8.000000+3 5.951000-1 1.000000+4 5.967000-1 1.500000+4 5.988000-1 2.000000+4 6.001000-1 3.000000+4 6.013000-1 4.000000+4 6.020000-1 5.000000+4 6.025000-1 6.000000+4 6.028000-1 8.000000+4 6.031000-1 1.000000+5 6.033000-1 1 82000 7 8 2.071900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 82000 7 9 2.071900+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.200000+1 1.000000+5 8.200000+1 5.000000+5 8.197500+1 7.500000+5 8.194980+1 1.000000+6 8.193200+1 1.500000+6 8.186800+1 2.000000+6 8.176700+1 2.500000+6 8.163800+1 3.000000+6 8.148200+1 3.500000+6 8.130000+1 4.000000+6 8.109600+1 4.500000+6 8.087240+1 5.000000+6 8.062600+1 5.687500+6 8.024610+1 6.437500+6 7.979690+1 6.500000+6 7.975500+1 7.000000+6 7.943500+1 7.500000+6 7.909360+1 8.250000+6 7.857480+1 9.000000+6 7.803400+1 1.000000+7 7.728200+1 1.109400+7 7.643000+1 1.250000+7 7.530200+1 1.375000+7 7.427350+1 1.500000+7 7.325900+1 1.687500+7 7.173500+1 1.750000+7 7.123600+1 2.000000+7 6.922300+1 2.375000+7 6.624480+1 2.500000+7 6.527000+1 2.875000+7 6.238820+1 3.000000+7 6.145400+1 3.437500+7 5.825480+1 3.812500+7 5.565930+1 4.000000+7 5.442300+1 4.500000+7 5.130270+1 5.000000+7 4.845900+1 5.750000+7 4.467290+1 6.000000+7 4.352900+1 6.750000+7 4.038080+1 7.000000+7 3.941500+1 7.750000+7 3.670490+1 8.000000+7 3.585600+1 8.750000+7 3.343100+1 9.000000+7 3.266200+1 9.750000+7 3.044630+1 1.000000+8 2.974100+1 1.062500+8 2.804130+1 1.156300+8 2.569620+1 1.187500+8 2.497160+1 1.250000+8 2.360400+1 1.437500+8 2.017540+1 1.500000+8 1.926000+1 1.625000+8 1.773200+1 1.750000+8 1.649800+1 1.812500+8 1.596250+1 2.000000+8 1.459200+1 2.250000+8 1.314440+1 2.500000+8 1.198300+1 2.671900+8 1.128310+1 2.789100+8 1.079860+1 2.875000+8 1.042220+1 2.894500+8 1.033380+1 3.000000+8 9.835100+0 3.125000+8 9.210240+0 3.359400+8 8.157000+0 3.453100+8 7.827670+0 3.500000+8 7.686700+0 4.000000+8 6.685300+0 4.125000+8 6.413590+0 4.234400+8 6.161240+0 4.425800+8 5.719000+0 4.750000+8 5.063350+0 4.784700+8 5.003180+0 4.928200+8 4.779700+0 5.000000+8 4.682500+0 5.125000+8 4.537590+0 5.343800+8 4.334500+0 5.918000+8 3.928180+0 6.000000+8 3.871400+0 6.250000+8 3.687580+0 7.000000+8 3.200900+0 7.625000+8 2.903470+0 7.875000+8 2.782810+0 8.000000+8 2.718400+0 8.250000+8 2.580450+0 8.468800+8 2.455950+0 8.851600+8 2.243220+0 9.569300+8 1.905380+0 9.856400+8 1.799570+0 1.000000+9 1.753400+0 1.031300+9 1.667670+0 1.060500+9 1.602400+0 1.100900+9 1.530480+0 1.137900+9 1.478470+0 1.183200+9 1.428090+0 1.204300+9 1.408350+0 1.375000+9 1.294130+0 1.500000+9 1.224600+0 1.589800+9 1.169770+0 1.665000+9 1.121640+0 1.748800+9 1.067340+0 1.838500+9 1.009860+0 1.946200+9 9.431000-1 2.000000+9 9.111000-1 2.139200+9 8.327660-1 2.272600+9 7.639410-1 2.443000+9 6.845310-1 2.602800+9 6.182130-1 2.750000+9 5.634890-1 2.822900+9 5.384030-1 3.024800+9 4.755220-1 3.271700+9 4.099890-1 3.487700+9 3.613790-1 3.759500+9 3.096960-1 3.986900+9 2.732530-1 4.348700+9 2.254870-1 4.674400+9 1.910330-1 5.000000+9 1.628800-1 5.375000+9 1.365620-1 5.703100+9 1.177960-1 6.277300+9 9.218710-2 7.031000+9 6.848190-2 8.000000+9 4.847000-2 1.00000+10 2.641500-2 3.16230+10 1.139520-3 4.87170+10 3.516230-4 7.43590+10 1.117810-4 1.00000+11 5.025700-5 1.34280+11 2.276670-5 2.20600+11 6.043070-6 4.19930+11 1.095770-6 1.03480+12 1.022680-7 3.24440+12 5.204240-9 1.00000+14 7.43470-13 3.16230+15 9.51509-17 1.00000+17 1.15860-20 1 82000 7 0 2.071900+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.20000-12 1.000000+2 7.20000-10 1.000000+3 7.200000-8 1.000000+4 7.200000-6 1.000000+5 7.200000-4 5.000000+5 1.800000-2 7.500000+5 4.050000-2 1.000000+6 7.200000-2 1.500000+6 1.598000-1 2.000000+6 2.813000-1 2.500000+6 4.339000-1 3.000000+6 6.152000-1 3.500000+6 8.224520-1 4.000000+6 1.052800+0 4.500000+6 1.303370+0 5.000000+6 1.571000+0 5.687500+6 1.961070+0 6.437500+6 2.408690+0 6.500000+6 2.446860+0 7.000000+6 2.755400+0 7.500000+6 3.068450+0 8.250000+6 3.543880+0 9.000000+6 4.022100+0 1.000000+7 4.658000+0 1.109400+7 5.345410+0 1.250000+7 6.211900+0 1.375000+7 6.962670+0 1.500000+7 7.694000+0 1.687500+7 8.753890+0 1.750000+7 9.099000+0 2.000000+7 1.043700+1 2.375000+7 1.234580+1 2.500000+7 1.296300+1 2.875000+7 1.477420+1 3.000000+7 1.536800+1 3.437500+7 1.740670+1 3.812500+7 1.911760+1 4.000000+7 1.996400+1 4.500000+7 2.217810+1 5.000000+7 2.433700+1 5.750000+7 2.742650+1 6.000000+7 2.840800+1 6.750000+7 3.116340+1 7.000000+7 3.202000+1 7.750000+7 3.438900+1 8.000000+7 3.512100+1 8.750000+7 3.715430+1 9.000000+7 3.779000+1 9.750000+7 3.958130+1 1.000000+8 4.015100+1 1.062500+8 4.151940+1 1.156300+8 4.345310+1 1.187500+8 4.407260+1 1.250000+8 4.527700+1 1.437500+8 4.865510+1 1.500000+8 4.971300+1 1.625000+8 5.172180+1 1.750000+8 5.360960+1 1.812500+8 5.450300+1 2.000000+8 5.699300+1 2.250000+8 5.988770+1 2.500000+8 6.233500+1 2.671900+8 6.378220+1 2.789100+8 6.466830+1 2.875000+8 6.528190+1 2.894500+8 6.541300+1 3.000000+8 6.610800+1 3.125000+8 6.686880+1 3.359400+8 6.814460+1 3.453100+8 6.860310+1 3.500000+8 6.882900+1 4.000000+8 7.088500+1 4.125000+8 7.131940+1 4.234400+8 7.169100+1 4.425800+8 7.229400+1 4.750000+8 7.321510+1 4.784700+8 7.330600+1 4.928200+8 7.367610+1 5.000000+8 7.385800+1 5.125000+8 7.415610+1 5.343800+8 7.465270+1 5.918000+8 7.580450+1 6.000000+8 7.595600+1 6.250000+8 7.637430+1 7.000000+8 7.746300+1 7.625000+8 7.816470+1 7.875000+8 7.840830+1 8.000000+8 7.852100+1 8.250000+8 7.872260+1 8.468800+8 7.889440+1 8.851600+8 7.915690+1 9.569300+8 7.956120+1 9.856400+8 7.969930+1 1.000000+9 7.976700+1 1.031300+9 7.989230+1 1.060500+9 8.000590+1 1.100900+9 8.015260+1 1.137900+9 8.026890+1 1.183200+9 8.039870+1 1.204300+9 8.045220+1 1.375000+9 8.082210+1 1.500000+9 8.103300+1 1.589800+9 8.115330+1 1.665000+9 8.124910+1 1.748800+9 8.135100+1 1.838500+9 8.143490+1 1.946200+9 8.153030+1 2.000000+9 8.157600+1 2.139200+9 8.166470+1 2.272600+9 8.173100+1 2.443000+9 8.180100+1 2.602800+9 8.185410+1 2.750000+9 8.188920+1 2.822900+9 8.190600+1 3.024800+9 8.193310+1 3.271700+9 8.196130+1 3.487700+9 8.197670+1 3.759500+9 8.198480+1 3.986900+9 8.199120+1 4.348700+9 8.199650+1 4.674400+9 8.199620+1 5.000000+9 8.199600+1 5.375000+9 8.199660+1 5.703100+9 8.199710+1 6.277300+9 8.199790+1 7.031000+9 8.199890+1 8.000000+9 8.200000+1 1.00000+10 8.200000+1 3.16230+10 8.200000+1 4.87170+10 8.200000+1 7.43590+10 8.200000+1 1.00000+11 8.200000+1 1.34280+11 8.200000+1 2.20600+11 8.200000+1 4.19930+11 8.200000+1 1.03480+12 8.200000+1 3.24440+12 8.200000+1 1.00000+14 8.200000+1 3.16230+15 8.200000+1 1.00000+17 8.200000+1 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.678389-6 0.0 1.682520-6 4.817415-7 1.686651-6 9.532336-7 1.690782-6 1.741159-6 1.694913-6 2.935833-6 1.699044-6 4.569600-6 1.703175-6 6.565668-6 1.707307-6 8.708302-6 1.711438-6 1.066208-5 1.715569-6 1.205048-5 1.719700-6 1.257247-5 1.723831-6 1.210852-5 1.727962-6 1.076503-5 1.732093-6 8.834730-6 1.740356-6 4.680708-6 1.744487-6 3.021702-6 1.748618-6 1.800718-6 1.752749-6 9.905899-7 1.756880-6 5.030325-7 1.761011-6 0.0 2.397381-6 0.0 2.406233-6 8.382877-1 2.409183-6 1.114172+0 2.415084-6 2.035127+0 2.420985-6 3.431504+0 2.427623-6 5.632126+0 2.437961-6 9.869760+0 2.444957-6 1.256341+1 2.451031-6 1.414091+1 2.457269-6 1.461452+1 2.463246-6 1.389920+1 2.469252-6 1.217793+1 2.478541-6 8.440243+0 2.485894-6 5.470974+0 2.491795-6 3.531870+0 2.497696-6 2.104742+0 2.503597-6 1.157836+0 2.512448-6 2.943266-1 2.515399-6 0.0 3.234897-6 0.0 3.242859-6 4.877846-7 3.250822-6 9.651911-7 3.258784-6 1.763001-6 3.266746-6 2.972661-6 3.274709-6 4.626922-6 3.282671-6 6.648029-6 3.290633-6 8.817541-6 3.298595-6 1.079583-5 3.306558-6 1.220164-5 3.314520-6 1.273018-5 3.322482-6 1.226041-5 3.330445-6 1.090007-5 3.338407-6 8.945555-6 3.354331-6 4.739424-6 3.362294-6 3.059607-6 3.370256-6 1.823307-6 3.378218-6 1.003016-6 3.386181-6 5.093427-7 3.392781-6 8.728851-8 3.394143-6 5.416452-8 3.409483-6 6.585482-7 3.417834-6 1.202892-6 3.426185-6 2.028241-6 3.434536-6 3.156941-6 3.442886-6 4.535939-6 3.451237-6 6.016193-6 3.459588-6 7.365975-6 3.467939-6 8.325161-6 3.476290-6 8.685782-6 3.484641-6 8.365255-6 3.492992-6 7.437096-6 3.501343-6 6.103537-6 3.518044-6 3.233700-6 3.526395-6 2.087564-6 3.534746-6 1.244039-6 3.543097-6 6.843561-7 3.551448-6 3.475236-7 3.559799-6 0.0 3.667831-6 0.0 3.674165-6 9.177457-2 3.685887-6 1.731903+0 3.692252-6 2.670255+0 3.701296-6 4.831185+0 3.710339-6 8.073764+0 3.719383-6 1.246247+1 3.740054-6 2.486892+1 3.749891-6 2.979807+1 3.756387-6 3.206002+1 3.765331-6 3.302587+1 3.775107-6 3.114782+1 3.783746-6 2.746003+1 3.809817-6 1.204343+1 3.818861-6 7.744614+0 3.827904-6 4.598516+0 3.836948-6 2.521135+0 3.848389-6 8.771409-1 3.855035-6 0.0 3.874221-6 0.0 3.888525-6 9.785453-2 3.893293-6 1.300590-1 3.902829-6 2.375633-1 3.912365-6 4.005644-1 3.921900-6 6.234752-1 3.939184-6 1.133238+0 3.950508-6 1.454732+0 3.961236-6 1.653050+0 3.969580-6 1.715385+0 3.980308-6 1.629219+0 3.988652-6 1.468778+0 4.004148-6 1.022943+0 4.017260-6 6.386346-1 4.026795-6 4.122803-1 4.036331-6 2.456896-1 4.045867-6 1.351558-1 4.059575-6 3.864613-2 4.064939-6 0.0 4.075770-6 0.0 4.093453-6 3.044475-1 4.095834-6 3.450203-1 4.106180-6 6.436887-1 4.116525-6 1.099492+0 4.126557-6 1.699007+0 4.144374-6 3.026448+0 4.156340-6 3.874779+0 4.167469-6 4.388168+0 4.177501-6 4.526998+0 4.187043-6 4.338105+0 4.197957-6 3.771079+0 4.213749-6 2.613648+0 4.226250-6 1.694169+0 4.236282-6 1.093697+0 4.246314-6 6.517650-1 4.256346-6 3.585413-1 4.270767-6 1.025204-1 4.276410-6 0.0 4.320155-6 0.0 4.323746-6 1.458349-2 4.345031-6 8.591136-1 4.355674-6 1.561891+0 4.366981-6 2.712035+0 4.377842-6 4.212101+0 4.406348-6 8.959130+0 4.420021-6 1.060567+1 4.431248-6 1.099281+1 4.441789-6 1.052301+1 4.452936-6 9.243568+0 4.483382-6 4.396150+0 4.494024-6 3.052474+0 4.504666-6 2.077434+0 4.515309-6 1.429666+0 4.528612-6 8.988659-1 4.536594-6 5.557792-1 4.544600-6 5.089427-1 4.560898-6 3.671180-1 4.577195-6 2.212918-1 4.588060-6 1.428583-1 4.598925-6 8.513331-2 4.609790-6 4.683253-2 4.622747-6 1.921258-2 4.624787-6 1.827698-2 4.631520-6 1.175057-1 4.647553-6 3.873974-1 4.659292-6 7.208488-1 4.671032-6 1.228840+0 4.682350-6 1.899977+0 4.716209-6 4.356131+0 4.728349-6 4.945000+0 4.739906-6 5.148741+0 4.751501-6 4.948531+0 4.765774-6 4.232699+0 4.793422-6 2.333607+0 4.806920-6 1.618963+0 4.818303-6 1.233270+0 4.825213-6 1.126342+0 4.830601-6 1.086379+0 4.837739-6 1.115218+0 4.849707-6 1.249390+0 4.853193-6 1.325222+0 4.884161-6 2.460036+0 4.897200-6 2.815801+0 4.908822-6 2.959925+0 4.921648-6 2.918463+0 4.943792-6 2.559572+0 4.956372-6 2.338510+0 4.966688-6 2.230059+0 4.982530-6 2.191578+0 5.015989-6 2.329469+0 5.065640-6 2.337014+0 5.179244-6 2.227664+0 5.217114-6 2.113993+0 5.253627-6 2.030875+0 5.346699-6 2.147077+0 5.372651-6 2.912310+0 5.387103-6 3.630061+0 5.400220-6 4.602356+0 5.413340-6 5.918813+0 5.453865-6 1.073924+1 5.467394-6 1.171656+1 5.479940-6 1.197911+1 5.493671-6 1.145210+1 5.505936-6 1.039218+1 5.543605-6 5.807612+0 5.558409-6 4.390274+0 5.569923-6 3.571013+0 5.583082-6 2.962430+0 5.609400-6 2.303989+0 5.672196-6 2.820466+0 5.689280-6 2.869362+0 5.716614-6 2.745266+0 5.771282-6 2.238419+0 5.805450-6 2.083481+0 5.831344-6 2.027611+0 5.999239-6 1.978644+0 6.030322-6 2.299977+0 6.045490-6 2.573361+0 6.060255-6 2.970211+0 6.077161-6 3.597362+0 6.118016-6 5.355443+0 6.134685-6 5.803709+0 6.150127-6 5.916045+0 6.165453-6 5.712678+0 6.180544-6 5.252157+0 6.220013-6 3.645279+0 6.238469-6 3.042681+0 6.249543-6 2.751046+0 6.266623-6 2.439636+0 6.294749-6 2.061162+0 6.308918-6 2.048347+0 6.332547-6 2.086979+0 6.352389-6 2.223051+0 6.368955-6 2.428422+0 6.391703-6 2.840655+0 6.430972-6 3.624317+0 6.444569-6 3.795246+0 6.462640-6 3.855423+0 6.482627-6 3.725282+0 6.535716-6 2.949834+0 6.549287-6 2.837933+0 6.569078-6 2.822730+0 6.644000-6 3.159575+0 6.752683-6 3.041564+0 6.989034-6 2.957069+0 7.890544-6 2.677348+0 7.929387-6 5.387568+0 7.948809-6 7.631535+0 7.968231-6 1.103695+1 7.990080-6 1.640637+1 8.045917-6 3.307527+1 8.067397-6 3.719108+1 8.087883-6 3.830529+1 8.107325-6 3.656765+1 8.127093-6 3.235676+1 8.181868-6 1.595531+1 8.201289-6 1.121200+1 8.220711-6 7.719486+0 8.240133-6 5.400226+0 8.278976-6 2.559638+0 9.568933-6 2.197364+0 9.616038-6 8.237100+0 9.639591-6 1.323347+1 9.663144-6 2.081238+1 9.689641-6 3.275921+1 9.757355-6 6.984288+1 9.784720-6 7.918654+1 9.806162-6 8.174759+1 9.830175-6 7.822698+1 9.855798-6 6.827414+1 9.895773-6 4.628548+1 9.922224-6 3.182556+1 9.945776-6 2.128653+1 9.969329-6 1.352841+1 9.992882-6 8.378805+0 1.003999-5 2.077742+0 1.208418-5 1.632412+0 1.284192-5 1.509725+0 1.294584-5 1.569558+0 1.296376-5 1.600795+0 1.302557-5 2.028501+0 1.306321-5 2.443826+0 1.309511-5 2.935430+0 1.313416-5 3.726788+0 1.321699-5 5.559777+0 1.325089-5 6.020938+0 1.328279-5 6.137106+0 1.331669-5 5.869937+0 1.334845-5 5.316524+0 1.344032-5 3.117408+0 1.347222-5 2.502978+0 1.350413-5 2.049471+0 1.353650-5 1.744175+0 1.359984-5 1.373061+0 1.379164-5 1.348380+0 1.385953-5 1.448353+0 1.389506-5 1.540773+0 1.393983-5 1.733120+0 1.400299-5 2.116098+0 1.406856-5 2.521003+0 1.410277-5 2.647153+0 1.414181-5 2.664421+0 1.417974-5 2.572929+0 1.430299-5 1.950888+0 1.433625-5 1.857995+0 1.438870-5 1.842491+0 1.454065-5 1.993427+0 1.486426-5 1.874031+0 1.510614-5 1.848336+0 1.544328-5 1.698713+0 1.718449-5 1.340294+0 1.906034-5 1.066649+0 2.019190-5 9.398829-1 2.029130-5 3.165066+0 2.034100-5 5.007640+0 2.039070-5 7.804052+0 2.044661-5 1.221346+1 2.058950-5 2.590225+1 2.064447-5 2.928215+1 2.069243-5 3.029509+1 2.074387-5 2.894636+1 2.079723-5 2.531257+1 2.088158-5 1.718746+1 2.093740-5 1.184440+1 2.098710-5 7.949820+0 2.103680-5 5.082431+0 2.108650-5 3.178458+0 2.118590-5 8.470058-1 2.128392-5 8.386070-1 2.138931-5 2.562102+0 2.144352-5 4.058818+0 2.149511-5 6.197113+0 2.154914-5 9.265824+0 2.170425-5 2.005448+1 2.176424-5 2.264875+1 2.181261-5 2.335011+1 2.186346-5 2.243660+1 2.192199-5 1.954125+1 2.200876-5 1.346167+1 2.206974-5 9.200884+0 2.212213-5 6.210574+0 2.217451-5 4.008761+0 2.222690-5 2.546590+0 2.233168-5 7.558410-1 2.296231-5 7.122449-1 2.307535-5 9.255698-1 2.313187-5 1.104439+0 2.318839-5 1.377524+0 2.324491-5 1.752350+0 2.339724-5 3.001382+0 2.342678-5 3.222060+0 2.347890-5 3.487389+0 2.354113-5 3.558024+0 2.364986-5 3.257827+0 2.375884-5 2.712107+0 2.381690-5 2.612301+0 2.388220-5 2.781587+0 2.394901-5 3.212943+0 2.406106-5 4.123189+0 2.414196-5 4.494646+0 2.416520-5 4.558570+0 2.423181-5 4.344584+0 2.430378-5 3.748139+0 2.445545-5 2.117409+0 2.451568-5 1.633608+0 2.457240-5 1.330453+0 2.463273-5 1.183467+0 2.465494-5 1.172179+0 2.471503-5 1.186498+0 2.474722-5 1.217805+0 2.489531-5 1.812470+0 2.495541-5 2.006104+0 2.501690-5 2.141324+0 2.508111-5 2.189903+0 2.528829-5 2.054705+0 2.543657-5 1.975127+0 2.583352-5 1.861357+0 2.600903-5 1.814897+0 2.620595-5 1.891082+0 2.636475-5 2.152047+0 2.647640-5 2.500072+0 2.658165-5 2.991009+0 2.674528-5 3.818539+0 2.682588-5 4.060767+0 2.692260-5 4.058011+0 2.700455-5 3.806825+0 2.722889-5 2.814255+0 2.732830-5 2.557080+0 2.739507-5 2.491039+0 2.748879-5 2.498026+0 2.773379-5 2.963379+0 2.788600-5 3.121117+0 2.842569-5 3.201592+0 2.914521-5 3.522207+0 3.013078-5 4.158516+0 3.120868-5 5.131845+0 3.219357-5 6.319775+0 3.330660-5 8.041261+0 3.429824-5 9.940068+0 3.610000-5 1.422863+1 4.067500-5 2.692452+1 4.280000-5 3.113413+1 4.485000-5 3.318978+1 4.700509-5 3.344727+1 5.035915-5 3.156162+1 6.192737-5 2.127525+1 6.958250-5 1.580414+1 7.579951-5 1.235047+1 8.181650-5 9.753204+0 8.323625-5 9.359929+0 8.383599-5 9.586324+0 8.468263-5 1.021066+1 8.509594-5 1.013704+1 8.614914-5 9.439241+0 1.020533-4 6.052934+0 1.061491-4 5.381954+0 1.069876-4 5.383974+0 1.087030-4 5.517707+0 1.115031-4 5.431695+0 1.174898-4 4.919474+0 1.288481-4 3.780056+0 1.364657-4 3.187762+0 1.426098-4 2.809765+0 1.437120-4 2.845702+0 1.444336-4 2.965008+0 1.458363-4 3.293653+0 1.465194-4 3.297154+0 1.482968-4 2.923080+0 1.496519-4 2.869515+0 1.521847-4 3.078852+0 1.562566-4 3.163250+0 1.630000-4 3.072456+0 1.740549-4 2.875817+0 1.820000-4 2.888279+0 1.905625-4 3.094498+0 1.980000-4 3.449698+0 2.053628-4 3.975078+0 2.125797-4 4.670395+0 2.232287-4 6.027956+0 2.371374-4 8.273871+0 2.985383-4 1.981325+1 3.247089-4 2.361415+1 3.650903-4 2.758744+1 4.011760-4 2.965030+1 4.081946-4 3.075459+1 4.216965-4 3.102879+1 4.296867-4 3.219371+1 4.905563-4 3.320142+1 6.105359-4 3.193343+1 6.299387-4 3.216550+1 6.421998-4 3.303898+1 8.634483-4 2.840992+1 8.986012-4 2.787264+1 1.192744-3 2.182775+1 1.417736-3 1.836809+1 1.695003-3 1.515298+1 2.046616-3 1.220887+1 2.420127-3 9.981595+0 2.444923-3 1.010474+1 2.456285-3 1.066240+1 2.465497-3 1.168112+1 2.475325-3 1.349017+1 2.501945-3 2.021546+1 2.514908-3 2.244167+1 2.528434-3 2.351712+1 2.566606-3 2.457387+1 2.586269-3 2.664992+1 2.613219-3 3.036918+1 2.633064-3 3.164454+1 2.790210-3 3.121364+1 3.014451-3 2.877276+1 3.057300-3 3.033807+1 3.091675-3 3.150492+1 3.518822-3 2.669700+1 3.615392-3 2.699061+1 3.772930-3 2.555540+1 3.893830-3 2.538517+1 4.480114-3 2.084596+1 5.225465-3 1.669447+1 6.036173-3 1.346539+1 6.768740-3 1.133421+1 7.700962-3 9.296359+0 8.760867-3 7.611522+0 1.000000-2 6.183000+0 1.138738-2 5.029278+0 1.272659-2 4.219544+0 1.282674-2 4.309142+0 1.288299-2 4.587218+0 1.292980-2 5.061608+0 1.297641-2 5.789902+0 1.311475-2 8.519020+0 1.318930-2 9.410859+0 1.328169-2 9.758606+0 1.497665-2 8.102006+0 1.510837-2 8.343764+0 1.526251-2 9.437074+0 1.538201-2 1.025845+1 1.555742-2 1.055382+1 1.577569-2 1.084033+1 1.597487-2 1.145526+1 1.633533-2 1.129548+1 1.896058-2 8.962331+0 2.162719-2 7.274935+0 2.432842-2 6.015136+0 2.730805-2 4.975490+0 3.082956-2 4.073413+0 3.475810-2 3.330623+0 3.894620-2 2.750441+0 4.390524-2 2.241382+0 4.967833-2 1.814491+0 5.607499-2 1.472010+0 6.318660-2 1.196264+0 7.148735-2 9.645188-1 8.166965-2 7.637621-1 8.626533-2 7.008451-1 8.670177-2 7.266342-1 8.698456-2 7.803016-1 8.726689-2 8.884353-1 8.745630-2 1.002550+0 8.773809-2 1.242248+0 8.804152-2 1.583869+0 8.871197-2 2.407066+0 8.907818-2 2.732634+0 8.955599-2 2.955719+0 9.040761-2 3.020767+0 1.053764-1 2.379770+0 1.195724-1 1.941394+0 1.357239-1 1.579986+0 1.535708-1 1.289298+0 1.702100-1 1.087968+0 1.910608-1 8.996215-1 2.143453-1 7.445399-1 2.403276-1 6.175364-1 2.713993-1 5.079573-1 3.046141-1 4.229586-1 3.417827-1 3.535560-1 3.890452-1 2.908945-1 4.450795-1 2.393143-1 5.074469-1 1.992759-1 5.775140-1 1.678598-1 6.536007-1 1.435885-1 7.391797-1 1.238288-1 8.505519-1 1.055815-1 9.864214-1 9.038040-2 1.186142+0 7.379147-2 1.410753+0 6.064319-2 1.619761+0 5.188517-2 1.859734+0 4.439197-2 2.135261+0 3.798093-2 2.451607+0 3.249577-2 2.814822+0 2.780276-2 3.231848+0 2.378752-2 3.722622+0 2.028161-2 4.260405+0 1.741292-2 4.891600+0 1.489816-2 5.616308+0 1.274659-2 6.448384+0 1.090574-2 7.403736+0 9.330744-3 8.500626+0 7.983208-3 9.760024+0 6.830282-3 1.000000+1 1.417279-2 1 82000 7 0 2.071900+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.190419+1 2.299460-6-8.015333+1 2.392062-6-7.733599+1 2.429882-6-7.272648+1 2.444588-6-7.567460+1 2.458231-6-8.179154+1 2.474830-6-7.483755+1 2.491057-6-7.425354+1 2.536884-6-7.957641+1 2.716742-6-8.213278+1 3.492992-6-7.888662+1 3.630378-6-7.512042+1 3.672582-6-7.061371+1 3.713448-6-6.208446+1 3.727883-6-6.188888+1 3.740054-6-6.527837+1 3.754494-6-7.372081+1 3.765331-6-8.250129+1 3.785055-6-6.879043+1 3.799369-6-6.421507+1 3.809817-6-6.370884+1 3.855035-6-7.273398+1 3.895677-6-7.778551+1 3.961236-6-8.010156+1 4.048251-6-8.119623+1 4.095834-6-8.220434+1 4.154836-6-8.151417+1 4.178040-6-8.213949+1 4.226250-6-8.028666+1 4.286760-6-8.267068+1 4.387949-6-7.737758+1 4.420021-6-8.131943+1 4.430212-6-8.232548+1 4.465375-6-7.665480+1 4.505997-6-7.735592+1 4.647553-6-8.269778+1 4.712050-6-8.185552+1 4.738885-6-8.255062+1 4.792221-6-8.027700+1 4.890056-6-8.311538+1 5.021861-6-8.260658+1 5.326206-6-8.483273+1 5.426440-6-8.018580+1 5.467719-6-8.385861+1 5.519972-6-7.699318+1 5.568484-6-7.732920+1 5.668779-6-8.057186+1 6.028534-6-8.230362+1 6.118016-6-8.208893+1 6.150127-6-8.204573+1 6.232932-6-8.018918+1 6.430972-6-8.279463+1 6.571150-6-8.218702+1 7.214307-6-8.227543+1 7.739711-6-7.686350+1 7.870927-6-7.196192+1 7.974907-6-6.106665+1 8.007074-6-6.061464+1 8.034992-6-6.452698+1 8.067397-6-7.477838+1 8.085975-6-8.149426+1 8.124817-6-6.727534+1 8.153003-6-6.148440+1 8.181868-6-6.030303+1 8.220711-6-6.347058+1 8.310141-6-7.251563+1 8.454365-6-7.716908+1 8.857902-6-8.126473+1 9.305400-6-7.485994+1 9.469728-6-6.861594+1 9.539715-6-6.278734+1 9.568933-6-5.791950+1 9.639591-6-4.410549+1 9.671240-6-3.834585+1 9.694793-6-3.659458+1 9.713193-6-3.780683+1 9.730904-6-4.159572+1 9.749902-6-4.877244+1 9.779161-6-6.583336+1 9.800696-6-8.126989+1 9.835188-6-5.564782+1 9.855798-6-4.352903+1 9.875118-6-3.552746+1 9.887079-6-3.209458+1 9.898671-6-3.014731+1 9.915599-6-2.905483+1 9.942832-6-3.128594+1 9.969329-6-3.625336+1 1.000098-5-4.288472+1 1.003999-5-5.009059+1 1.006433-5-5.442642+1 1.012500-5-5.997987+1 1.024875-5-6.553366+1 1.049940-5-7.028253+1 1.119802-5-7.451490+1 1.296762-5-7.900464+1 1.319905-5-7.951735+1 1.341467-5-7.478991+1 1.406856-5-7.812524+1 1.474550-5-7.792302+1 1.901477-5-8.230154+1 1.982542-5-8.011302+1 2.016231-5-7.571027+1 2.044661-5-6.652140+1 2.053369-5-6.819572+1 2.062173-5-7.538387+1 2.068924-5-8.281560+1 2.079723-5-7.051947+1 2.088158-5-6.609144+1 2.097467-5-6.675415+1 2.138201-5-8.345604+1 2.156065-5-7.832767+1 2.166865-5-8.029467+1 2.173177-5-8.347854+1 2.192199-5-6.757996+1 2.201735-5-6.413087+1 2.213522-5-6.532073+1 2.244465-5-7.309992+1 2.336770-5-7.988283+1 2.381690-5-7.921199+1 2.411872-5-7.926437+1 2.443866-5-7.746315+1 2.501690-5-8.029766+1 2.677752-5-8.284943+1 2.729337-5-8.199589+1 3.574120-5-9.192636+1 3.920226-5-9.080180+1 4.370000-5-8.108653+1 4.884375-5-6.855614+1 5.384768-5-6.115062+1 6.031509-5-5.648788+1 6.958250-5-5.423981+1 8.447937-5-5.540667+1 8.861352-5-5.657113+1 1.020533-4-5.675586+1 1.137195-4-5.831252+1 1.465194-4-6.130512+1 2.031345-4-6.760714+1 2.510156-4-7.259206+1 2.922697-4-7.205539+1 4.457590-4-5.726812+1 5.157989-4-5.004699+1 5.919187-4-4.471062+1 6.380445-4-4.331432+1 6.631979-4-4.075063+1 7.386830-4-3.671083+1 8.556483-4-3.240021+1 1.012626-3-2.830638+1 1.192744-3-2.575631+1 1.417736-3-2.432973+1 1.695003-3-2.420487+1 1.972339-3-2.559569+1 2.175528-3-2.802683+1 2.303703-3-3.090313+1 2.386002-3-3.423966+1 2.432367-3-3.779900+1 2.483692-3-4.558382+1 2.501945-3-4.530436+1 2.535198-3-4.145655+1 2.560595-3-4.075508+1 2.592686-3-4.110951+1 2.619521-3-3.849861+1 2.656918-3-3.419361+1 2.715749-3-3.045034+1 2.819862-3-2.621741+1 2.932416-3-2.343421+1 2.999840-3-2.302076+1 3.048086-3-2.370606+1 3.079504-3-2.260538+1 3.122628-3-2.032772+1 3.196453-3-1.809333+1 3.322443-3-1.582726+1 3.447570-3-1.452916+1 3.552605-3-1.435002+1 3.638499-3-1.281102+1 3.743204-3-1.181711+1 3.836379-3-1.141381+1 3.922688-3-1.018417+1 4.078202-3-8.835460+0 4.300000-3-7.538575+0 4.612505-3-6.301200+0 4.931944-3-5.466607+0 5.225465-3-4.920703+0 5.682393-3-4.398800+0 6.248298-3-4.087535+0 6.768740-3-3.977985+0 7.700962-3-4.078359+0 8.760867-3-4.443392+0 1.000000-2-5.132865+0 1.108662-2-6.029917+0 1.186144-2-7.036222+0 1.232041-2-8.004520+0 1.260722-2-9.021155+0 1.276990-2-1.006426+1 1.299696-2-1.260725+1 1.307052-2-1.264056+1 1.316846-2-1.162527+1 1.330646-2-9.969812+0 1.343668-2-9.057523+0 1.366548-2-8.173380+0 1.402064-2-7.473202+0 1.441869-2-7.190390+0 1.477087-2-7.354761+0 1.497665-2-7.841258+0 1.518627-2-8.813431+0 1.530009-2-8.813913+0 1.555742-2-7.633887+0 1.586983-2-7.170607+0 1.617977-2-5.799046+0 1.644603-2-5.033073+0 1.684563-2-4.267463+0 1.746180-2-3.448329+0 1.802941-2-2.896022+0 1.883594-2-2.321794+0 1.979302-2-1.843945+0 2.077304-2-1.488220+0 2.162719-2-1.260631+0 2.267071-2-1.055020+0 2.366792-2-9.138106-1 2.503662-2-7.784917-1 2.620688-2-7.041171-1 2.795000-2-6.460898-1 2.993291-2-6.233429-1 3.230382-2-6.352721-1 3.623929-2-7.102908-1 4.572799-2-9.756630-1 6.604664-2-1.609142+0 7.388436-2-1.929132+0 7.915467-2-2.244046+0 8.266920-2-2.581730+0 8.471251-2-2.908778+0 8.601309-2-3.264718+0 8.688908-2-3.714071+0 8.791529-2-4.425764+0 8.835421-2-4.495358+0 8.883985-2-4.285093+0 8.994008-2-3.439408+0 9.074126-2-3.034129+0 9.194561-2-2.666214+0 9.388108-2-2.291514+0 9.628659-2-1.989278+0 1.000588-1-1.671019+0 1.039636-1-1.446162+0 1.097218-1-1.226818+0 1.164008-1-1.060993+0 1.249150-1-9.261958-1 1.357239-1-8.243675-1 1.481300-1-7.624210-1 1.702100-1-7.224020-1 2.062943-1-7.277933-1 3.732770-1-8.554977-1 5.775140-1-9.273367-1 9.864214-1-9.696586-1 3.086391+0-9.904344-1 9.320751+0-9.949137-1 1.000000+1-9.933322-1 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.063353-3 1.110907-6 3.219974-3 1.145260-6 3.667797-3 1.276440-6 5.918795-3 1.331806-6 7.154683-3 1.386707-6 8.610196-3 1.486429-6 1.193399-2 1.574075-6 1.570449-2 1.688382-6 2.225361-2 1.753612-6 2.696745-2 1.810687-6 3.182832-2 1.860629-6 3.674622-2 1.904328-6 4.162314-2 1.942564-6 4.641452-2 2.097302-6 7.130273-2 2.153760-6 8.305401-2 2.231979-6 1.025670-1 2.291821-6 1.209327-1 2.319022-6 1.305928-1 2.380838-6 1.556322-1 2.446236-6 1.876454-1 2.494351-6 2.157107-1 2.544057-6 2.500961-1 2.591809-6 2.893483-1 2.636576-6 3.329950-1 2.678546-6 3.813559-1 2.717892-6 4.347352-1 2.754779-6 4.935163-1 2.789361-6 5.582345-1 2.824078-6 6.346413-1 2.852175-6 7.068398-1 2.880669-6 7.920286-1 2.913020-6 9.062575-1 2.932427-6 9.857228-1 2.958536-6 1.108934+0 2.977917-6 1.214994+0 2.998552-6 1.344751+0 3.017898-6 1.485536+0 3.036035-6 1.638040+0 3.053038-6 1.803016+0 3.068979-6 1.981257+0 3.083923-6 2.173568+0 3.099280-6 2.402293+0 3.111067-6 2.603853+0 3.123381-6 2.843707+0 3.134925-6 3.101346+0 3.146104-6 3.387526+0 3.155894-6 3.674049+0 3.165406-6 3.991239+0 3.174323-6 4.330504+0 3.182683-6 4.693088+0 3.192196-6 5.169945+0 3.197869-6 5.493808+0 3.204757-6 5.935181+0 3.211215-6 6.406480+0 3.217270-6 6.910056+0 3.222946-6 7.448629+0 3.228267-6 8.025226+0 3.238244-6 9.352664+0 3.246975-6 1.088223+1 3.254613-6 1.262860+1 3.261297-6 1.458788+1 3.267146-6 1.673560+1 3.272263-6 1.903040+1 3.276741-6 2.142077+1 3.280659-6 2.385227+1 3.287087-6 2.863962+1 3.297751-6 3.920357+1 3.308595-6 5.395170+1 3.313723-6 6.247347+1 3.316228-6 6.700043+1 3.320299-6 7.485605+1 3.324371-6 8.329541+1 3.332513-6 1.016749+2 3.333531-6 1.040864+2 3.340655-6 1.214029+2 3.343454-6 1.283067+2 3.348798-6 1.413761+2 3.352933-6 1.511729+2 3.356940-6 1.601953+2 3.361075-6 1.688151+2 3.365083-6 1.763129+2 3.368645-6 1.821270+2 3.372796-6 1.877388+2 3.377551-6 1.924479+2 3.381622-6 1.948966+2 3.383039-6 1.953914+2 3.387084-6 1.957660+2 3.390096-6 1.950422+2 3.398030-6 1.891394+2 3.400570-6 1.860908+2 3.406304-6 1.773603+2 3.409554-6 1.713995+2 3.412294-6 1.658880+2 3.414955-6 1.601636+2 3.418072-6 1.530698+2 3.422080-6 1.434674+2 3.425642-6 1.346171+2 3.429077-6 1.259271+2 3.430222-6 1.230158+2 3.434293-6 1.126830+2 3.438365-6 1.024993+2 3.442945-6 9.139463+1 3.446507-6 8.311769+1 3.454649-6 6.571670+1 3.457448-6 6.028870+1 3.460120-6 5.538985+1 3.462792-6 5.077179+1 3.466863-6 4.427728+1 3.471627-6 3.749919+1 3.476456-6 3.149701+1 3.480573-6 2.703266+1 3.486026-6 2.196775+1 3.494126-6 1.601440+1 3.515287-6 6.919872+0 3.520479-6 5.652699+0 3.525631-6 4.639928+0 3.530743-6 3.828563+0 3.535815-6 3.175938+0 3.540847-6 2.648156+0 3.545840-6 2.218574+0 3.555709-6 1.575631+0 3.574988-6 8.160198-1 3.579714-6 6.931067-1 3.584403-6 5.882395-1 3.589056-6 4.985764-1 3.593672-6 4.218292-1 3.598252-6 3.561362-1 3.602796-6 2.999670-1 3.607305-6 2.520518-1 3.611779-6 2.113274-1 3.616217-6 1.768961-1 3.625025-6 1.237947-1 3.633696-6 8.812555-2 3.642231-6 6.613279-2 3.650632-6 5.487513-2 3.658902-6 5.194332-2 3.667043-6 5.525931-2 3.675057-6 6.294378-2 3.686798-6 7.880580-2 3.694473-6 9.001658-2 3.702028-6 1.001652-1 3.713142-6 1.112124-1 3.721290-6 1.151411-1 3.732823-6 1.138505-1 3.739782-6 1.093948-1 3.746659-6 1.027324-1 3.760093-6 8.531366-2 3.770859-6 6.953062-2 3.785823-6 4.860701-2 3.798139-6 3.427904-2 3.810070-6 2.375360-2 3.821628-6 1.691516-2 3.844022-6 1.286302-2 3.865016-6 1.942843-2 3.904380-6 5.660481-2 3.982100-6 2.063385-1 4.024931-6 3.342896-1 4.063680-6 4.859650-1 4.096000-6 6.416785-1 4.136334-6 8.788375-1 4.158130-6 1.030607+0 4.190215-6 1.291388+0 4.231368-6 1.706745+0 4.313675-6 2.935815+0 4.354829-6 3.856727+0 4.385694-6 4.755507+0 4.407833-6 5.549333+0 4.429164-6 6.467092+0 4.450496-6 7.576703+0 4.461161-6 8.220529+0 4.471827-6 8.935438+0 4.482492-6 9.732455+0 4.493158-6 1.062495+1 4.503823-6 1.162933+1 4.514489-6 1.276590+1 4.525154-6 1.406028+1 4.535820-6 1.554530+1 4.546486-6 1.726401+1 4.555128-6 1.886737+1 4.563231-6 2.058050+1 4.570827-6 2.241114+1 4.577949-6 2.436767+1 4.591301-6 2.885181+1 4.602985-6 3.397523+1 4.613208-6 3.976637+1 4.622153-6 4.619882+1 4.631358-6 5.457401+1 4.636829-6 6.060305+1 4.642822-6 6.828551+1 4.648065-6 7.607047+1 4.656668-6 9.134817+1 4.668963-6 1.196559+2 4.684770-6 1.697731+2 4.695167-6 2.124642+2 4.698333-6 2.270904+2 4.707832-6 2.755036+2 4.713577-6 3.079511+2 4.715492-6 3.192609+2 4.727042-6 3.919869+2 4.728486-6 4.015338+2 4.738592-6 4.701064+2 4.742562-6 4.974487+2 4.750141-6 5.492033+2 4.753396-6 5.709189+2 4.758932-6 6.066300+2 4.763171-6 6.325560+2 4.766633-6 6.525770+2 4.771176-6 6.769839+2 4.777018-6 7.047054+2 4.782847-6 7.276145+2 4.785512-6 7.363355+2 4.792280-6 7.531179+2 4.797401-6 7.604097+2 4.804448-6 7.624940+2 4.808909-6 7.589989+2 4.819975-6 7.346381+2 4.823578-6 7.221503+2 4.831465-6 6.878350+2 4.836947-6 6.590068+2 4.840997-6 6.354977+2 4.846204-6 6.029790+2 4.850759-6 5.728386+2 4.855874-6 5.376210+2 4.860146-6 5.074765+2 4.865639-6 4.682699+2 4.872135-6 4.220243+2 4.877188-6 3.867070+2 4.883685-6 3.427925+2 4.888738-6 3.101899+2 4.900288-6 2.421103+2 4.903001-6 2.275720+2 4.915390-6 1.687738+2 4.922764-6 1.397026+2 4.930390-6 1.141117+2 4.942378-6 8.228999+1 4.954366-6 5.928595+1 4.959611-6 5.152740+1 4.966354-6 4.326975+1 4.972348-6 3.731901+1 4.976844-6 3.358455+1 4.978342-6 3.246243+1 4.987333-6 2.682503+1 4.990330-6 2.530260+1 5.002318-6 2.053050+1 5.005315-6 1.959379+1 5.014306-6 1.720820+1 5.021798-6 1.557248+1 5.038282-6 1.259897+1 5.047273-6 1.117021+1 5.050270-6 1.071204+1 5.059261-6 9.382116+0 5.062258-6 8.953112+0 5.074246-6 7.314173+0 5.086234-6 5.820854+0 5.089231-6 5.474205+0 5.098222-6 4.505786+0 5.104216-6 3.923304+0 5.110210-6 3.393531+0 5.115692-6 2.955871+0 5.119280-6 2.693625+0 5.126343-6 2.232509+0 5.139816-6 1.546426+0 5.146238-6 1.301493+0 5.152459-6 1.109316+0 5.158486-6 9.612534-1 5.170163-6 7.648511-1 5.181111-6 6.651161-1 5.225982-6 6.343557-1 5.227847-6 6.384855-1 5.238519-6 6.739588-1 5.248324-6 7.379346-1 5.254386-6 8.035682-1 5.260069-6 8.916331-1 5.265398-6 1.004757+0 5.270393-6 1.144612+0 5.275076-6 1.311930+0 5.279466-6 1.506583+0 5.283582-6 1.727699+0 5.287441-6 1.973794+0 5.294676-6 2.553393+0 5.306546-6 3.918809+0 5.311393-6 4.657436+0 5.315634-6 5.404676+0 5.322592-6 6.858814+0 5.328275-6 8.280556+0 5.332536-6 9.499119+0 5.338130-6 1.131291+1 5.343524-6 1.330874+1 5.349733-6 1.592653+1 5.355486-6 1.867387+1 5.360086-6 2.110101+1 5.370377-6 2.728795+1 5.376068-6 3.115431+1 5.389236-6 4.121921+1 5.390882-6 4.257536+1 5.402404-6 5.253350+1 5.408214-6 5.776980+1 5.417503-6 6.622030+1 5.423124-6 7.125884+1 5.426698-6 7.438713+1 5.431389-6 7.836145+1 5.434404-6 8.081637+1 5.437420-6 8.317731+1 5.442344-6 8.679670+1 5.446037-6 8.929060+1 5.450884-6 9.223615+1 5.456532-6 9.514302+1 5.464131-6 9.805828+1 5.469886-6 9.944115+1 5.475656-6 1.000775+2 5.481035-6 9.998184+1 5.486441-6 9.921994+1 5.490121-6 9.832845+1 5.495801-6 9.638551+1 5.501461-6 9.380861+1 5.503580-6 9.269234+1 5.510518-6 8.851870+1 5.516952-6 8.404018+1 5.522285-6 7.998062+1 5.528135-6 7.526406+1 5.534444-6 6.998748+1 5.540046-6 6.523712+1 5.547248-6 5.918064+1 5.554244-6 5.349436+1 5.562782-6 4.699711+1 5.574793-6 3.898053+1 5.587987-6 3.195296+1 5.595073-6 2.897064+1 5.613623-6 2.353374+1 5.618192-6 2.264462+1 5.623458-6 2.179895+1 5.628775-6 2.111445+1 5.636133-6 2.040104+1 5.641889-6 1.999623+1 5.656035-6 1.941091+1 5.664191-6 1.926038+1 5.674116-6 1.921126+1 5.683807-6 1.929205+1 5.692116-6 1.946752+1 5.700170-6 1.974132+1 5.709509-6 2.019815+1 5.715913-6 2.060038+1 5.727621-6 2.151002+1 5.755277-6 2.413917+1 5.764997-6 2.497987+1 5.772519-6 2.550454+1 5.780441-6 2.588970+1 5.783299-6 2.597883+1 5.788829-6 2.606788+1 5.795230-6 2.602442+1 5.802570-6 2.577164+1 5.808831-6 2.538325+1 5.813660-6 2.497812+1 5.816731-6 2.467493+1 5.825942-6 2.357162+1 5.832170-6 2.268346+1 5.839101-6 2.159164+1 5.845783-6 2.046680+1 5.854988-6 1.886301+1 5.865738-6 1.701323+1 5.878206-6 1.505227+1 5.893428-6 1.312202+1 5.895107-6 1.294679+1 5.907715-6 1.188475+1 5.913836-6 1.152786+1 5.918612-6 1.131690+1 5.922513-6 1.118559+1 5.925439-6 1.110963+1 5.935336-6 1.097844+1 5.942491-6 1.098275+1 5.952141-6 1.108023+1 5.982874-6 1.160908+1 5.990683-6 1.171006+1 6.003523-6 1.180630+1 6.016117-6 1.181513+1 6.032442-6 1.172607+1 6.078661-6 1.128300+1 6.105018-6 1.110641+1 6.165320-6 1.082863+1 6.194971-6 1.061987+1 6.234642-6 1.024701+1 6.269124-6 9.936484+0 6.291898-6 9.803003+0 6.310117-6 9.758781+0 6.329366-6 9.776619+0 6.353867-6 9.882167+0 6.433526-6 1.044034+1 6.470390-6 1.062853+1 6.515963-6 1.077993+1 6.591710-6 1.098609+1 6.626063-6 1.112233+1 6.641304-6 1.120000+1 6.673248-6 1.140321+1 6.722921-6 1.178775+1 6.743628-6 1.192405+1 6.772899-6 1.203832+1 6.801584-6 1.213141+1 6.814329-6 1.225245+1 6.824236-6 1.243409+1 6.833296-6 1.270460+1 6.840342-6 1.300865+1 6.844872-6 1.325770+1 6.849402-6 1.355558+1 6.853428-6 1.386636+1 6.857997-6 1.427750+1 6.860978-6 1.458226+1 6.865507-6 1.510594+1 6.869191-6 1.558990+1 6.875235-6 1.650752+1 6.879863-6 1.732306+1 6.886476-6 1.867522+1 6.893783-6 2.044810+1 6.900338-6 2.230931+1 6.905151-6 2.385000+1 6.919591-6 2.941657+1 6.928921-6 3.380057+1 6.946953-6 4.402253+1 6.962863-6 5.475639+1 6.969393-6 5.952701+1 6.981379-6 6.863944+1 6.986807-6 7.284593+1 6.994565-6 7.885004+1 7.000800-6 8.360139+1 7.007816-6 8.879026+1 7.015386-6 9.410319+1 7.022107-6 9.848845+1 7.029533-6 1.028799+2 7.036930-6 1.066943+2 7.044305-6 1.098639+2 7.051873-6 1.123915+2 7.059871-6 1.142095+2 7.066105-6 1.149944+2 7.082191-6 1.144341+2 7.086831-6 1.135971+2 7.099428-6 1.099170+2 7.106873-6 1.068653+2 7.112041-6 1.044135+2 7.116729-6 1.019793+2 7.124420-6 9.761370+1 7.133057-6 9.227078+1 7.140271-6 8.755212+1 7.149546-6 8.128375+1 7.159819-6 7.426043+1 7.169769-6 6.755954+1 7.183488-6 5.876206+1 7.202913-6 4.767010+1 7.227247-6 3.654933+1 7.239775-6 3.203831+1 7.251812-6 2.840672+1 7.263664-6 2.542266+1 7.272378-6 2.355181+1 7.289806-6 2.048095+1 7.298608-6 1.920523+1 7.307234-6 1.809713+1 7.315949-6 1.709752+1 7.325476-6 1.611936+1 7.342091-6 1.464349+1 7.359519-6 1.334201+1 7.377855-6 1.219210+1 7.394375-6 1.132484+1 7.403089-6 1.092791+1 7.420518-6 1.025491+1 7.433179-6 9.864864+0 7.440826-6 9.669083+0 7.498183-6 9.205624+0 7.505353-6 9.291223+0 7.511626-6 9.398611+0 7.517115-6 9.519419+0 7.526121-6 9.776795+0 7.533016-6 1.002820+1 7.542337-6 1.045116+1 7.549970-6 1.087562+1 7.557789-6 1.139013+1 7.564806-6 1.192575+1 7.570990-6 1.245926+1 7.582096-6 1.356997+1 7.594441-6 1.504518+1 7.613121-6 1.776320+1 7.634178-6 2.145903+1 7.650444-6 2.463954+1 7.660299-6 2.662916+1 7.668931-6 2.836708+1 7.677299-6 3.001357+1 7.686393-6 3.172211+1 7.695853-6 3.336562+1 7.705406-6 3.484085+1 7.714526-6 3.603668+1 7.723872-6 3.701241+1 7.727350-6 3.730519+1 7.737251-6 3.791670+1 7.743560-6 3.812909+1 7.762024-6 3.794436+1 7.768011-6 3.763272+1 7.771817-6 3.737385+1 7.781808-6 3.648361+1 7.789195-6 3.564624+1 7.797123-6 3.460029+1 7.807284-6 3.307571+1 7.815215-6 3.177568+1 7.827184-6 2.969783+1 7.835919-6 2.814199+1 7.854563-6 2.488741+1 7.875343-6 2.166936+1 7.888418-6 2.000349+1 7.893397-6 1.945631+1 7.901563-6 1.866981+1 7.906401-6 1.827042+1 7.913659-6 1.776529+1 7.920916-6 1.737226+1 7.928279-6 1.708544+1 7.936264-6 1.689647+1 7.943747-6 1.682752+1 7.950507-6 1.684808+1 7.960062-6 1.699673+1 7.970096-6 1.728082+1 7.980302-6 1.767508+1 8.003116-6 1.877981+1 8.021083-6 1.969041+1 8.036720-6 2.039222+1 8.051494-6 2.091476+1 8.059316-6 2.112391+1 8.079148-6 2.142993+1 8.091250-6 2.146440+1 8.106321-6 2.136922+1 8.126972-6 2.105685+1 8.177730-6 2.003898+1 8.202476-6 1.968104+1 8.227114-6 1.947618+1 8.267419-6 1.937944+1 8.356382-6 1.936924+1 8.433984-6 1.933716+1 8.483460-6 1.946226+1 8.534959-6 1.975070+1 8.598139-6 2.014291+1 8.635209-6 2.022931+1 8.690375-6 2.015367+1 8.700304-6 2.016736+1 8.713265-6 2.024004+1 8.724392-6 2.037854+1 8.738313-6 2.069943+1 8.748377-6 2.107216+1 8.757192-6 2.152553+1 8.765713-6 2.210265+1 8.773461-6 2.276947+1 8.780509-6 2.351379+1 8.788243-6 2.450570+1 8.795639-6 2.565167+1 8.805477-6 2.752347+1 8.815983-6 3.003675+1 8.818165-6 3.063377+1 8.828871-6 3.398831+1 8.838239-6 3.756964+1 8.846436-6 4.126810+1 8.853608-6 4.498624+1 8.865375-6 5.217495+1 8.874384-6 5.869368+1 8.896830-6 7.933863+1 8.919199-6 1.070638+2 8.936687-6 1.342224+2 8.947645-6 1.537495+2 8.970930-6 2.013494+2 8.973499-6 2.070644+2 8.992846-6 2.525278+2 9.000904-6 2.724515+2 9.013392-6 3.039821+2 9.024521-6 3.322686+2 9.035308-6 3.593357+2 9.046437-6 3.863519+2 9.057223-6 4.111119+2 9.066811-6 4.315135+2 9.075672-6 4.487013+2 9.080509-6 4.573117+2 9.090781-6 4.735759+2 9.101397-6 4.872055+2 9.106898-6 4.928989+2 9.117116-6 5.008559+2 9.127230-6 5.052658+2 9.138127-6 5.060878+2 9.146897-6 5.038054+2 9.151562-6 5.015431+2 9.168171-6 4.878577+2 9.178604-6 4.750963+2 9.188717-6 4.600224+2 9.199846-6 4.407715+2 9.210632-6 4.199124+2 9.220221-6 3.999453+2 9.229466-6 3.797536+2 9.243506-6 3.480101+2 9.254464-6 3.228884+2 9.271585-6 2.841136+2 9.276379-6 2.735225+2 9.301034-6 2.221431+2 9.320210-6 1.868037+2 9.371347-6 1.157765+2 9.384936-6 1.023536+2 9.391690-6 9.643194+1 9.405146-6 8.599187+1 9.418496-6 7.724392+1 9.431743-6 6.994365+1 9.444886-6 6.386452+1 9.457926-6 5.880298+1 9.470865-6 5.458080+1 9.483702-6 5.104530+1 9.496439-6 4.806813+1 9.511399-6 4.511913+1 9.536192-6 4.122403+1 9.558840-6 3.844617+1 9.583140-6 3.603783+1 9.607060-6 3.407799+1 9.630607-6 3.243864+1 9.653785-6 3.103710+1 9.699062-6 2.874289+1 9.721171-6 2.778386+1 9.764698-6 2.612447+1 9.806865-6 2.474153+1 9.847714-6 2.356327+1 9.887287-6 2.254180+1 9.925623-6 2.164190+1 1.011120-5 1.802116+1 1.022273-5 1.627456+1 1.025058-5 1.591285+1 1.027756-5 1.560971+1 1.031637-5 1.528578+1 1.035318-5 1.513985+1 1.037086-5 1.513666+1 1.040227-5 1.524950+1 1.043512-5 1.553750+1 1.045617-5 1.581526+1 1.047673-5 1.615732+1 1.050496-5 1.674265+1 1.053463-5 1.750804+1 1.057027-5 1.864996+1 1.060373-5 1.997541+1 1.063513-5 2.148640+1 1.066459-5 2.318945+1 1.069593-5 2.537314+1 1.071735-5 2.713501+1 1.073162-5 2.845297+1 1.075699-5 3.113321+1 1.077735-5 3.365790+1 1.080000-5 3.695290+1 1.081812-5 4.004605+1 1.083662-5 4.372629+1 1.085856-5 4.896344+1 1.087281-5 5.300473+1 1.088545-5 5.711242+1 1.089974-5 6.247166+1 1.091313-5 6.832907+1 1.092569-5 7.470401+1 1.093746-5 8.160592+1 1.094901-5 8.940704+1 1.096854-5 1.054003+2 1.097764-5 1.142817+2 1.099469-5 1.339052+2 1.100961-5 1.548193+2 1.102266-5 1.765078+2 1.104472-5 2.216957+2 1.109674-5 3.832443+2 1.111896-5 4.813626+2 1.113298-5 5.534995+2 1.114140-5 6.006890+2 1.115508-5 6.836709+2 1.116875-5 7.743028+2 1.119611-5 9.768634+2 1.119953-5 1.003972+3 1.122517-5 1.217142+3 1.123399-5 1.293426+3 1.125082-5 1.441032+3 1.126471-5 1.562772+3 1.127818-5 1.678541+3 1.129207-5 1.793501+3 1.130553-5 1.898432+3 1.131750-5 1.984653+3 1.132856-5 2.057173+3 1.133460-5 2.093480+3 1.135063-5 2.177279+3 1.136467-5 2.234159+3 1.138036-5 2.277755+3 1.138958-5 2.293056+3 1.141581-5 2.293899+3 1.142329-5 2.282642+3 1.144402-5 2.226033+3 1.145704-5 2.172654+3 1.146967-5 2.109173+3 1.148356-5 2.027566+3 1.149702-5 1.938547+3 1.150899-5 1.852791+3 1.152438-5 1.735691+3 1.153806-5 1.627325+3 1.155173-5 1.516994+3 1.157311-5 1.344973+3 1.157909-5 1.297599+3 1.160987-5 1.065159+3 1.163380-5 9.023844+2 1.166116-5 7.401414+2 1.171199-5 5.090525+2 1.173312-5 4.378967+2 1.175409-5 3.796409+2 1.177494-5 3.322366+2 1.179562-5 2.939184+2 1.181711-5 2.616613+2 1.183650-5 2.379208+2 1.185670-5 2.175173+2 1.188716-5 1.931649+2 1.191635-5 1.751355+2 1.193593-5 1.651761+2 1.197478-5 1.490577+2 1.201302-5 1.365815+2 1.205066-5 1.265851+2 1.208771-5 1.183654+2 1.212419-5 1.114726+2 1.216009-5 1.056018+2 1.219544-5 1.005370+2 1.226448-5 9.222930+1 1.233190-5 8.564303+1 1.239722-5 8.032799+1 1.248263-5 7.456446+1 1.252180-5 7.227616+1 1.262482-5 6.707963+1 1.269445-5 6.410772+1 1.280243-5 6.015475+1 1.290366-5 5.701759+1 1.299856-5 5.447056+1 1.317094-5 5.055680+1 1.332734-5 4.758920+1 1.348645-5 4.501014+1 1.368516-5 4.222558+1 1.456411-5 3.270897+1 1.488359-5 2.953859+1 1.506109-5 2.756051+1 1.513208-5 2.664404+1 1.523532-5 2.509274+1 1.529396-5 2.408740+1 1.538240-5 2.255655+1 1.540689-5 2.219379+1 1.544215-5 2.178807+1 1.545537-5 2.168493+1 1.552323-5 2.178154+1 1.556125-5 2.244432+1 1.556600-5 2.256394+1 1.559927-5 2.364590+1 1.561234-5 2.419018+1 1.564205-5 2.567369+1 1.567752-5 2.785765+1 1.575136-5 3.336920+1 1.578700-5 3.613760+1 1.579413-5 3.667323+1 1.582740-5 3.901644+1 1.586542-5 4.123629+1 1.587849-5 4.185464+1 1.590344-5 4.280038+1 1.592686-5 4.339132+1 1.593803-5 4.356977+1 1.595479-5 4.371264+1 1.597155-5 4.370932+1 1.598304-5 4.362590+1 1.600889-5 4.321358+1 1.601751-5 4.301230+1 1.604602-5 4.214848+1 1.605553-5 4.180131+1 1.609355-5 4.018669+1 1.613157-5 3.833450+1 1.623441-5 3.320648+1 1.628370-5 3.106950+1 1.633874-5 2.907888+1 1.638400-5 2.777856+1 1.641917-5 2.698068+1 1.645991-5 2.628861+1 1.650000-5 2.584679+1 1.652277-5 2.569809+1 1.654565-5 2.561931+1 1.657034-5 2.560826+1 1.661664-5 2.576528+1 1.666638-5 2.611898+1 1.675421-5 2.686684+1 1.678795-5 2.709027+1 1.682848-5 2.725882+1 1.687913-5 2.729305+1 1.690952-5 2.722295+1 1.695005-5 2.704312+1 1.702983-5 2.651968+1 1.716481-5 2.563897+1 1.728750-5 2.508269+1 1.780970-5 2.328310+1 1.792937-5 2.283346+1 1.807512-5 2.222816+1 1.874522-5 1.948670+1 1.931641-5 1.729142+1 1.982600-5 1.530607+1 2.046616-5 1.282518+1 2.093554-5 1.106295+1 2.118309-5 1.012958+1 2.152301-5 8.838221+0 2.187746-5 7.506154+0 2.212171-5 6.604198+0 2.232356-5 5.866190+0 2.251823-5 5.160212+0 2.269734-5 4.520951+0 2.284397-5 4.009676+0 2.298557-5 3.530102+0 2.309844-5 3.160643+0 2.321131-5 2.805449+0 2.332419-5 2.467853+0 2.338975-5 2.281541+0 2.349350-5 2.004662+0 2.366281-5 1.613471+0 2.371925-5 1.504001+0 2.377569-5 1.406925+0 2.383212-5 1.323389+0 2.386034-5 1.287049+0 2.388856-5 1.254513+0 2.391678-5 1.225925+0 2.394500-5 1.201433+0 2.398732-5 1.172742+0 2.402613-5 1.155413+0 2.405893-5 1.147921+0 2.409228-5 1.147527+0 2.412474-5 1.154706+0 2.415620-5 1.169431+0 2.418669-5 1.191721+0 2.420157-5 1.205727+0 2.423088-5 1.239843+0 2.425926-5 1.281967+0 2.428765-5 1.334107+0 2.431341-5 1.391175+0 2.433922-5 1.458841+0 2.436422-5 1.535675+0 2.438844-5 1.622071+0 2.441191-5 1.718461+0 2.443464-5 1.825320+0 2.445666-5 1.943155+0 2.447800-5 2.072510+0 2.449866-5 2.213963+0 2.453870-5 2.541319+0 2.457624-5 2.926481+0 2.461144-5 3.374838+0 2.464443-5 3.891529+0 2.467536-5 4.481067+0 2.470436-5 5.146975+0 2.473154-5 5.891489+0 2.475703-5 6.715347+0 2.478092-5 7.617684+0 2.480332-5 8.596035+0 2.484401-5 1.076357+1 2.489708-5 1.453680+1 2.499732-5 2.577730+1 2.504420-5 3.351409+1 2.508582-5 4.204752+1 2.511675-5 4.952735+1 2.515045-5 5.886768+1 2.518217-5 6.885875+1 2.520120-5 7.542547+1 2.523214-5 8.701993+1 2.526308-5 9.973587+1 2.532496-5 1.282711+2 2.533269-5 1.320954+2 2.538684-5 1.600800+2 2.540811-5 1.714902+2 2.544871-5 1.934942+2 2.548014-5 2.103539+2 2.549748-5 2.194548+2 2.551833-5 2.300901+2 2.554201-5 2.416400+2 2.556485-5 2.520919+2 2.558794-5 2.618228+2 2.561477-5 2.718955+2 2.563821-5 2.794548+2 2.566722-5 2.870123+2 2.569469-5 2.921788+2 2.570970-5 2.941348+2 2.573995-5 2.961512+2 2.576769-5 2.956949+2 2.579076-5 2.936381+2 2.581906-5 2.890845+2 2.584215-5 2.837859+2 2.588572-5 2.702428+2 2.591042-5 2.607579+2 2.593124-5 2.519089+2 2.595147-5 2.426813+2 2.597515-5 2.312403+2 2.600561-5 2.158223+2 2.603268-5 2.017635+2 2.606749-5 1.836949+2 2.611223-5 1.613928+2 2.618807-5 1.290379+2 2.620785-5 1.222038+2 2.622753-5 1.161949+2 2.624720-5 1.110182+2 2.626424-5 1.072368+2 2.631500-5 9.998890+1 2.632770-5 9.913040+1 2.635229-5 9.854869+1 2.637104-5 9.904419+1 2.639004-5 1.003490+2 2.640713-5 1.021845+2 2.642839-5 1.052981+2 2.645251-5 1.098617+2 2.648087-5 1.164849+2 2.652053-5 1.276250+2 2.659282-5 1.515529+2 2.663238-5 1.653400+2 2.667367-5 1.792739+2 2.670217-5 1.882308+2 2.674203-5 1.993669+2 2.676740-5 2.053975+2 2.678747-5 2.094974+2 2.681621-5 2.142425+2 2.683734-5 2.168376+2 2.685052-5 2.180596+2 2.689008-5 2.198610+2 2.691217-5 2.196501+2 2.693327-5 2.186512+2 2.695436-5 2.168978+2 2.698249-5 2.134450+2 2.700057-5 2.105941+2 2.701865-5 2.072856+2 2.703974-5 2.028928+2 2.707088-5 1.954764+2 2.708294-5 1.923439+2 2.711508-5 1.833966+2 2.714723-5 1.737631+2 2.716330-5 1.687584+2 2.719946-5 1.572093+2 2.721151-5 1.533086+2 2.727580-5 1.325754+2 2.732023-5 1.187603+2 2.737223-5 1.036038+2 2.744004-5 8.596425+1 2.757129-5 5.943093+1 2.761863-5 5.219276+1 2.766302-5 4.637647+1 2.770463-5 4.167407+1 2.778266-5 3.448538+1 2.785093-5 2.956532+1 2.791066-5 2.604216+1 2.801520-5 2.112077+1 2.828962-5 1.251841+1 2.836369-5 1.093495+1 2.846828-5 9.230714+0 2.853801-5 8.470272+0 2.860773-5 8.024461+0 2.862517-5 7.961682+0 2.867746-5 7.884385+0 2.869247-5 7.891309+0 2.871872-5 7.932093+0 2.873842-5 7.984901+0 2.876796-5 8.095879+0 2.879750-5 8.239351+0 2.885322-5 8.573098+0 2.893906-5 9.141436+0 2.897380-5 9.350675+0 2.902610-5 9.603386+0 2.909583-5 9.769561+0 2.911326-5 9.774095+0 2.916556-5 9.690065+0 2.918082-5 9.637463+0 2.920752-5 9.515228+0 2.924758-5 9.262840+0 2.928764-5 8.935282+0 2.933119-5 8.508332+0 2.935296-5 8.273174+0 2.937474-5 8.027316+0 2.940960-5 7.619011+0 2.944447-5 7.204072+0 2.951419-5 6.407069+0 2.958392-5 5.736768+0 2.961756-5 5.484179+0 2.969010-5 5.137311+0 2.972338-5 5.077293+0 2.976264-5 5.088853+0 2.978078-5 5.123719+0 2.981912-5 5.255696+0 2.983519-5 5.333098+0 2.986700-5 5.521017+0 2.989299-5 5.704694+0 2.994170-5 6.106164+0 3.000676-5 6.708808+0 3.005281-5 7.139304+0 3.008913-5 7.458044+0 3.012544-5 7.743336+0 3.016674-5 8.011477+0 3.019886-5 8.169264+0 3.020804-5 8.205277+0 3.027229-5 8.334736+0 3.029753-5 8.324511+0 3.034572-5 8.209061+0 3.038172-5 8.044288+0 3.040226-5 7.922450+0 3.043821-5 7.665509+0 3.046517-5 7.440689+0 3.050562-5 7.061720+0 3.054606-5 6.646034+0 3.058824-5 6.190066+0 3.063943-5 5.630113+0 3.080269-5 4.069664+0 3.083400-5 3.840085+0 3.090316-5 3.427413+0 3.094154-5 3.252941+0 3.096532-5 3.162992+0 3.100099-5 3.051949+0 3.103673-5 2.966431+0 3.106733-5 2.910911+0 3.108176-5 2.889666+0 3.112685-5 2.840350+0 3.118553-5 2.805589+0 3.125244-5 2.790315+0 3.149115-5 2.774509+0 3.163965-5 2.763115+0 3.170251-5 2.769727+0 3.177113-5 2.792621+0 3.180430-5 2.811294+0 3.184989-5 2.846641+0 3.189403-5 2.892942+0 3.192694-5 2.936088+0 3.198668-5 3.035280+0 3.203360-5 3.133978+0 3.206557-5 3.212636+0 3.210619-5 3.326905+0 3.218303-5 3.590608+0 3.224508-5 3.853481+0 3.228995-5 4.073883+0 3.234131-5 4.359545+0 3.242099-5 4.877863+0 3.250592-5 5.535422+0 3.266877-5 7.087234+0 3.274879-5 7.957006+0 3.282880-5 8.854401+0 3.286881-5 9.298993+0 3.290882-5 9.731973+0 3.293692-5 1.002536+1 3.297907-5 1.044287+1 3.302122-5 1.082621+1 3.305314-5 1.108922+1 3.310100-5 1.143327+1 3.314887-5 1.171049+1 3.318888-5 1.188772+1 3.322888-5 1.201453+1 3.328890-5 1.211313+1 3.330890-5 1.212314+1 3.338892-5 1.206638+1 3.349924-5 1.182077+1 3.362230-5 1.152838+1 3.369460-5 1.144643+1 3.375385-5 1.146421+1 3.378900-5 1.151721+1 3.386901-5 1.176406+1 3.392723-5 1.205310+1 3.398529-5 1.242591+1 3.411422-5 1.349544+1 3.430851-5 1.544774+1 3.444072-5 1.682599+1 3.456285-5 1.808507+1 3.472935-5 1.981311+1 3.522003-5 2.570870+1 3.556538-5 3.085234+1 3.584475-5 3.558381+1 3.607668-5 3.985092+1 3.623397-5 4.289508+1 3.671771-5 5.316435+1 3.770016-5 8.075564+1 3.836875-5 1.060259+2 3.862457-5 1.172531+2 3.901665-5 1.362367+2 3.939899-5 1.568942+2 3.979899-5 1.808905+2 4.018721-5 2.065690+2 4.066179-5 2.410901+2 4.095305-5 2.639662+2 4.132272-5 2.948598+2 4.159771-5 3.191730+2 4.188797-5 3.460462+2 4.226036-5 3.822196+2 4.265795-5 4.225699+2 4.298808-5 4.571442+2 4.337663-5 4.989656+2 4.365158-5 5.291437+2 4.410000-5 5.788473+2 4.450000-5 6.232356+2 4.500000-5 6.781284+2 4.522584-5 7.025397+2 4.560650-5 7.431111+2 4.600419-5 7.844585+2 4.650000-5 8.334943+2 4.700000-5 8.795406+2 4.740000-5 9.136736+2 4.786301-5 9.497330+2 4.840000-5 9.870643+2 4.882500-5 1.013065+3 4.930052-5 1.037988+3 4.954502-5 1.049209+3 5.015000-5 1.072913+3 5.043086-5 1.081941+3 5.098670-5 1.096276+3 5.132324-5 1.102909+3 5.190000-5 1.111209+3 5.239856-5 1.115519+3 5.340179-5 1.117279+3 5.412109-5 1.114102+3 5.556012-5 1.100272+3 5.713942-5 1.079183+3 6.003545-5 1.032527+3 6.346313-5 9.754381+2 6.683439-5 9.207643+2 7.018592-5 8.679879+2 7.740161-5 7.666115+2 8.293732-5 6.964680+2 8.758996-5 6.418335+2 9.225428-5 5.894931+2 9.435253-5 5.731421+2 9.481799-5 5.672576+2 9.569474-5 5.520756+2 9.662393-5 5.351953+2 9.719800-5 5.275902+2 9.779063-5 5.234039+2 9.859985-5 5.229386+2 9.982773-5 5.260903+2 1.018120-4 5.257030+2 1.052708-4 5.148605+2 1.073984-4 5.057224+2 1.101619-4 4.924012+2 1.126134-4 4.798696+2 1.152387-4 4.656475+2 1.188334-4 4.451577+2 1.204550-4 4.342695+2 1.223526-4 4.191485+2 1.230487-4 4.152239+2 1.238146-4 4.129538+2 1.247041-4 4.125123+2 1.268425-4 4.138581+2 1.289000-4 4.125087+2 1.333521-4 4.034701+2 1.370980-4 3.931678+2 1.406705-4 3.820156+2 1.440000-4 3.711464+2 1.502388-4 3.499442+2 1.581891-4 3.230547+2 1.605286-4 3.136047+2 1.639311-4 2.984639+2 1.675070-4 2.819462+2 1.692974-4 2.761317+2 1.730159-4 2.679282+2 1.744150-4 2.655913+2 1.785000-4 2.611263+2 1.800000-4 2.590899+2 1.835500-4 2.527062+2 1.873538-4 2.440750+2 1.905963-4 2.357630+2 1.930000-4 2.291947+2 1.957000-4 2.215364+2 2.005000-4 2.075054+2 2.031345-4 1.997344+2 2.083150-4 1.845622+2 2.125797-4 1.723881+2 2.200392-4 1.523709+2 2.277718-4 1.344950+2 2.294618-4 1.311404+2 2.330000-4 1.248799+2 2.357335-4 1.208256+2 2.385722-4 1.174834+2 2.430000-4 1.140338+2 2.457533-4 1.130281+2 2.500000-4 1.131598+2 2.540973-4 1.153788+2 2.608864-4 1.230650+2 2.672150-4 1.346228+2 2.722701-4 1.467947+2 2.770542-4 1.609314+2 2.820270-4 1.779609+2 2.985383-4 2.501068+2 3.050000-4 2.832667+2 3.100000-4 3.102341+2 3.162278-4 3.449502+2 3.240823-4 3.899130+2 3.350656-4 4.540358+2 3.470000-4 5.242938+2 3.589219-4 5.940133+2 3.704187-4 6.599953+2 3.818348-4 7.231417+2 3.981072-4 8.066642+2 4.147200-4 8.808128+2 4.247820-4 9.240006+2 4.333319-4 9.723060+2 4.355390-4 9.812568+2 4.399744-4 9.944751+2 4.433623-4 1.007373+3 4.475135-4 1.031485+3 4.556151-4 1.090030+3 4.579323-4 1.102627+3 4.638327-4 1.126223+3 4.682402-4 1.147030+3 4.791355-4 1.210954+3 4.954502-4 1.295272+3 5.201608-4 1.405033+3 5.399325-4 1.480970+3 5.650000-4 1.563084+3 5.865330-4 1.623552+3 6.120159-4 1.684425+3 6.361583-4 1.726544+3 6.582861-4 1.745484+3 6.628413-4 1.755044+3 6.680093-4 1.776080+3 6.770634-4 1.831768+3 6.853086-4 1.878182+3 6.988105-4 1.928952+3 7.193250-4 1.981759+3 7.470395-4 2.036367+3 7.911331-4 2.095516+3 8.157563-4 2.141040+3 8.413951-4 2.179005+3 8.684603-4 2.208106+3 9.189709-4 2.250188+3 9.494499-4 2.290335+3 9.839855-4 2.324216+3 1.030582-3 2.355502+3 1.089156-3 2.382684+3 1.152474-3 2.399116+3 1.220518-3 2.399801+3 1.297195-3 2.391033+3 1.377408-3 2.374529+3 1.462966-3 2.350686+3 1.560001-3 2.313909+3 1.665578-3 2.257736+3 1.759189-3 2.202033+3 1.855683-3 2.137393+3 1.961936-3 2.052299+3 2.051898-3 1.970858+3 2.131870-3 1.888956+3 2.202356-3 1.805656+3 2.263817-3 1.722106+3 2.316225-3 1.640955+3 2.362221-3 1.559418+3 2.400280-3 1.481799+3 2.433092-3 1.404119+3 2.461784-3 1.324052+3 2.485351-3 1.245078+3 2.504109-3 1.168639+3 2.518257-3 1.100268+3 2.529197-3 1.041512+3 2.549522-3 9.327023+2 2.556033-3 9.044037+2 2.562338-3 8.833796+2 2.565671-3 8.754140+2 2.569312-3 8.695297+2 2.573078-3 8.667473+2 2.577597-3 8.680213+2 2.582999-3 8.761588+2 2.588656-3 8.919778+2 2.594823-3 9.166058+2 2.603420-3 9.603153+2 2.617900-3 1.043082+3 2.623500-3 1.073385+3 2.629502-3 1.102884+3 2.636612-3 1.133024+3 2.643427-3 1.157075+3 2.651697-3 1.181363+3 2.665744-3 1.219350+3 2.671291-3 1.236845+3 2.677072-3 1.258473+3 2.682941-3 1.284997+3 2.690750-3 1.328438+3 2.696940-3 1.369608+3 2.703870-3 1.422025+3 2.724337-3 1.599087+3 2.730720-3 1.654844+3 2.737340-3 1.710142+3 2.745703-3 1.774617+3 2.756249-3 1.845763+3 2.767935-3 1.911326+3 2.781864-3 1.974004+3 2.800000-3 2.037629+3 2.823758-3 2.102345+3 2.848968-3 2.157464+3 2.878798-3 2.210827+3 2.912910-3 2.259622+3 2.946803-3 2.296514+3 2.984262-3 2.324656+3 3.017335-3 2.338447+3 3.052354-3 2.340357+3 3.077714-3 2.331557+3 3.129028-3 2.299278+3 3.141379-3 2.300246+3 3.153459-3 2.309968+3 3.163223-3 2.325006+3 3.182086-3 2.370397+3 3.218669-3 2.482340+3 3.235937-3 2.527531+3 3.254618-3 2.565805+3 3.276346-3 2.598610+3 3.308385-3 2.632476+3 3.343795-3 2.658897+3 3.392711-3 2.684676+3 3.429163-3 2.698043+3 3.473663-3 2.708186+3 3.524340-3 2.712138+3 3.572518-3 2.707627+3 3.656144-3 2.680531+3 3.690854-3 2.684024+3 3.767174-3 2.737808+3 3.793750-3 2.750973+3 3.831842-3 2.760063+3 3.900207-3 2.757902+3 3.959011-3 2.756885+3 4.025360-3 2.783191+3 4.088137-3 2.806848+3 4.137328-3 2.815105+3 4.262918-3 2.818368+3 4.479711-3 2.800367+3 4.786618-3 2.744830+3 5.026319-3 2.691768+3 5.436414-3 2.587505+3 5.737861-3 2.508119+3 6.025596-3 2.430161+3 6.428895-3 2.321599+3 6.910846-3 2.195489+3 7.490852-3 2.051576+3 8.151734-3 1.897692+3 8.871720-3 1.744675+3 9.258550-3 1.667197+3 9.678766-3 1.586931+3 1.009795-2 1.510570+3 1.053477-2 1.433364+3 1.094899-2 1.362251+3 1.128864-2 1.304872+3 1.159205-2 1.253695+3 1.186205-2 1.207827+3 1.211306-2 1.164462+3 1.230748-2 1.129731+3 1.247839-2 1.097633+3 1.262396-2 1.068608+3 1.275534-2 1.040316+3 1.286068-2 1.015324+3 1.294882-2 9.918153+2 1.302173-2 9.695805+2 1.308148-2 9.488500+2 1.316786-2 9.149342+2 1.327425-2 8.727624+2 1.332347-2 8.576241+2 1.336017-2 8.498894+2 1.338379-2 8.468628+2 1.340883-2 8.454490+2 1.345705-2 8.479266+2 1.350345-2 8.560890+2 1.356364-2 8.725815+2 1.367473-2 9.078097+2 1.375816-2 9.293451+2 1.381773-2 9.405483+2 1.388171-2 9.491493+2 1.396246-2 9.561715+2 1.405684-2 9.606712+2 1.416209-2 9.625493+2 1.427200-2 9.620470+2 1.439875-2 9.592024+2 1.453785-2 9.539016+2 1.467163-2 9.469608+2 1.494209-2 9.278738+2 1.508640-2 9.146470+2 1.520872-2 9.011614+2 1.530804-2 8.880033+2 1.544897-2 8.651568+2 1.559644-2 8.396204+2 1.567029-2 8.299955+2 1.574422-2 8.248157+2 1.581524-2 8.245204+2 1.594524-2 8.322290+2 1.609933-2 8.423205+2 1.634108-2 8.499999+2 1.648016-2 8.587333+2 1.673979-2 8.783934+2 1.691914-2 8.852029+2 1.718006-2 8.872086+2 1.748880-2 8.838881+2 1.786214-2 8.756427+2 1.841460-2 8.591776+2 1.922947-2 8.297444+2 2.031831-2 7.870303+2 2.146427-2 7.422611+2 2.300052-2 6.850557+2 2.486262-2 6.222118+2 2.756087-2 5.438103+2 3.117968-2 4.588933+2 3.494975-2 3.895539+2 3.799758-2 3.435912+2 4.122447-2 3.022537+2 4.851447-2 2.315567+2 5.471488-2 1.890841+2 5.937844-2 1.638741+2 6.656772-2 1.333384+2 7.203569-2 1.151684+2 7.707986-2 1.010201+2 8.064614-2 9.204105+1 8.341612-2 8.537285+1 8.540968-2 8.053205+1 8.683097-2 7.685707+1 8.743358-2 7.515338+1 8.792168-2 7.364945+1 8.866590-2 7.103142+1 8.997430-2 6.595361+1 9.034975-2 6.491990+1 9.068383-2 6.438353+1 9.103559-2 6.425396+1 9.144751-2 6.460991+1 9.211719-2 6.586470+1 9.291070-2 6.735064+1 9.352711-2 6.806380+1 9.391029-2 6.831322+1 9.439369-2 6.846976+1 9.558482-2 6.839368+1 9.702197-2 6.783683+1 9.916236-2 6.657544+1 1.023945-1 6.426133+1 1.065564-1 6.102266+1 1.118844-1 5.685793+1 1.193512-1 5.139076+1 1.299334-1 4.465904+1 1.483656-1 3.550865+1 1.756659-1 2.630142+1 2.127774-1 1.857424+1 2.561770-1 1.317067+1 3.216368-1 8.574904+0 4.114728-1 5.350463+0 5.827842-1 2.725002+0 8.697111-1 1.244926+0 1.347258+0 5.254416-1 2.451607+0 1.599961-1 7.463583+0 1.732462-2 2.341267+1 1.760996-3 7.070513+1 1.930939-4 2.135261+2 2.117238-5 6.448384+2 2.321506-6 1.995262+3 2.424776-7 6.309573+3 2.424776-8 1.995262+4 2.424776-9 6.309573+4 2.42478-10 1.000000+5 9.65321-11 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.489800-6 1.258900-6 2.361200-6 1.584900-6 3.742200-6 1.995300-6 5.931000-6 2.511900-6 9.399900-6 3.162300-6 1.489800-5 3.981100-6 2.361100-5 5.011900-6 3.742100-5 6.309600-6 5.930800-5 7.943300-6 9.399600-5 1.000000-5 1.489700-4 1.258900-5 2.361000-4 1.584900-5 3.741900-4 1.995300-5 5.930400-4 2.511900-5 9.398700-4 3.162300-5 1.489400-3 3.981100-5 2.359400-3 5.011900-5 3.737700-3 6.309600-5 5.921700-3 7.943300-5 9.382400-3 1.000000-4 1.486200-2 1.258900-4 2.352000-2 1.584900-4 3.720600-2 1.995300-4 5.878900-2 2.511900-4 9.271500-2 3.162300-4 1.458400-1 3.981100-4 2.284500-1 5.011900-4 3.555900-1 6.309600-4 5.461200-1 7.943300-4 8.236900-1 1.000000-3 1.215200+0 1.258900-3 1.745700+0 1.584900-3 2.437600+0 1.995300-3 3.310300+0 2.511900-3 4.384200+0 3.162300-3 5.661600+0 3.981100-3 7.146300+0 5.011900-3 8.877900+0 6.309600-3 1.090900+1 7.943300-3 1.327600+1 1.000000-2 1.591700+1 1.258900-2 1.866900+1 1.584900-2 2.141700+1 1.995300-2 2.419500+1 2.511900-2 2.692600+1 3.162300-2 2.948800+1 3.981100-2 3.168500+1 5.011900-2 3.333900+1 6.309600-2 3.439900+1 7.943300-2 3.486500+1 1.000000-1 3.475600+1 1.258900-1 3.408200+1 1.584900-1 3.291900+1 1.995300-1 3.137900+1 2.511900-1 2.957900+1 3.162300-1 2.760300+1 3.981100-1 2.553400+1 5.011900-1 2.343400+1 6.309600-1 2.135400+1 7.943300-1 1.932500+1 1.000000+0 1.737200+1 1.258900+0 1.551100+1 1.584900+0 1.375700+1 1.995300+0 1.212100+1 2.511900+0 1.061000+1 3.162300+0 9.228500+0 3.981100+0 7.979100+0 5.011900+0 6.859800+0 6.309600+0 5.866600+0 7.943300+0 4.992900+0 1.000000+1 4.230300+0 1.258900+1 3.569800+0 1.584900+1 3.001300+0 1.995300+1 2.515000+0 2.511900+1 2.101200+0 3.162300+1 1.750700+0 3.981100+1 1.455000+0 5.011900+1 1.206700+0 6.309600+1 9.987100-1 7.943300+1 8.250700-1 1.000000+2 6.804900-1 1.258900+2 5.604000-1 1.584900+2 4.608600-1 1.995300+2 3.785200-1 2.511900+2 3.105300-1 3.162300+2 2.544700-1 3.981100+2 2.083300-1 5.011900+2 1.703900-1 6.309600+2 1.392400-1 7.943300+2 1.136900-1 1.000000+3 9.275600-2 1.258900+3 7.562300-2 1.584900+3 6.161300-2 1.995300+3 5.016500-2 2.511900+3 4.082000-2 3.162300+3 3.319700-2 3.981100+3 2.698200-2 5.011900+3 2.192000-2 6.309600+3 1.779800-2 7.943300+3 1.444400-2 1.000000+4 1.171700-2 1.258900+4 9.501100-3 1.584900+4 7.700800-3 1.995300+4 6.239100-3 2.511900+4 5.052900-3 3.162300+4 4.090700-3 3.981100+4 3.310500-3 5.011900+4 2.678200-3 6.309600+4 2.166000-3 7.943300+4 1.751100-3 1.000000+5 1.415300-3 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510162-4 3.162278-4 3.159547-4 3.981072-4 3.976751-4 5.011872-4 5.005042-4 6.309573-4 6.298801-4 7.943282-4 7.926329-4 1.000000-3 9.973379-4 1.258925-3 1.254749-3 1.584893-3 1.578376-3 1.995262-3 1.985076-3 2.511886-3 2.496017-3 3.162278-3 3.137510-3 3.981072-3 3.942487-3 5.011872-3 4.951752-3 6.309573-3 6.215581-3 7.943282-3 7.796267-3 1.000000-2 9.770770-3 1.258925-2 1.223394-2 1.584893-2 1.530013-2 1.995262-2 1.910793-2 2.511886-2 2.382019-2 3.162278-2 2.963498-2 3.981072-2 3.678853-2 5.011872-2 4.556191-2 6.309573-2 5.627898-2 7.943282-2 6.931318-2 1.000000-1 8.508150-2 1.258925-1 1.041173-1 1.584893-1 1.270252-1 1.995262-1 1.544713-1 2.511886-1 1.871820-1 3.162278-1 2.261083-1 3.981072-1 2.722857-1 5.011872-1 3.268783-1 6.309573-1 3.912854-1 7.943282-1 4.671512-1 1.000000+0 5.565274-1 1.258925+0 6.619192-1 1.584893+0 7.861247-1 1.995262+0 9.332427-1 2.511886+0 1.107809+0 3.162278+0 1.315497+0 3.981072+0 1.563483+0 5.011872+0 1.860329+0 6.309573+0 2.216530+0 7.943282+0 2.645159+0 1.000000+1 3.161695+0 1.258925+1 3.785772+0 1.584893+1 4.540971+0 1.995262+1 5.456288+0 2.511886+1 6.566990+0 3.162278+1 7.917174+0 3.981072+1 9.559501+0 5.011872+1 1.156036+1 6.309573+1 1.399997+1 7.943282+1 1.697761+1 1.000000+2 2.061508+1 1.258925+2 2.506229+1 1.584893+2 3.050379+1 1.995262+2 3.716740+1 2.511886+2 4.533252+1 3.162278+2 5.534516+1 3.981072+2 6.762967+1 5.011872+2 8.271291+1 6.309573+2 1.012420+2 7.943282+2 1.240177+2 1.000000+3 1.520277+2 1.258925+3 1.864922+2 1.584893+3 2.289176+2 1.995262+3 2.811677+2 2.511886+3 3.455658+2 3.162278+3 4.249339+2 3.981072+3 5.228176+2 5.011872+3 6.435815+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739836-9 3.981072-5 4.341880-9 5.011872-5 6.881028-9 6.309573-5 1.090533-8 7.943282-5 1.728321-8 1.000000-4 2.738787-8 1.258925-4 4.339324-8 1.584893-4 6.875068-8 1.995262-4 1.089083-7 2.511886-4 1.724788-7 3.162278-4 2.730339-7 3.981072-4 4.320247-7 5.011872-4 6.829954-7 6.309573-4 1.077210-6 7.943282-4 1.695320-6 1.000000-3 2.662066-6 1.258925-3 4.176159-6 1.584893-3 6.517149-6 1.995262-3 1.018635-5 2.511886-3 1.586961-5 3.162278-3 2.476747-5 3.981072-3 3.858502-5 5.011872-3 6.012066-5 6.309573-3 9.399211-5 7.943282-3 1.470149-4 1.000000-2 2.292297-4 1.258925-2 3.553137-4 1.584893-2 5.488050-4 1.995262-2 8.446909-4 2.511886-2 1.298677-3 3.162278-2 1.987793-3 3.981072-2 3.022191-3 5.011872-2 4.556815-3 6.309573-2 6.816753-3 7.943282-2 1.011964-2 1.000000-1 1.491850-2 1.258925-1 2.177528-2 1.584893-1 3.146415-2 1.995262-1 4.505492-2 2.511886-1 6.400667-2 3.162278-1 9.011945-2 3.981072-1 1.258214-1 5.011872-1 1.743089-1 6.309573-1 2.396719-1 7.943282-1 3.271771-1 1.000000+0 4.434726-1 1.258925+0 5.970062-1 1.584893+0 7.987685-1 1.995262+0 1.062020+0 2.511886+0 1.404078+0 3.162278+0 1.846781+0 3.981072+0 2.417589+0 5.011872+0 3.151544+0 6.309573+0 4.093044+0 7.943282+0 5.298123+0 1.000000+1 6.838305+0 1.258925+1 8.803482+0 1.584893+1 1.130796+1 1.995262+1 1.449633+1 2.511886+1 1.855187+1 3.162278+1 2.370560+1 3.981072+1 3.025122+1 5.011872+1 3.855836+1 6.309573+1 4.909577+1 7.943282+1 6.245521+1 1.000000+2 7.938492+1 1.258925+2 1.008303+2 1.584893+2 1.279855+2 1.995262+2 1.623588+2 2.511886+2 2.058561+2 3.162278+2 2.608826+2 3.981072+2 3.304775+2 5.011872+2 4.184743+2 6.309573+2 5.297153+2 7.943282+2 6.703106+2 1.000000+3 8.479723+2 1.258925+3 1.072433+3 1.584893+3 1.355976+3 1.995262+3 1.714095+3 2.511886+3 2.166321+3 3.162278+3 2.737344+3 3.981072+3 3.458254+3 5.011872+3 4.368291+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 6.350000-6 4.408500+7 6.683439-6 4.051456+7 7.100000-6 3.636480+7 7.585776-6 3.202449+7 8.035261-6 2.846859+7 8.511380-6 2.515738+7 8.600000-6 2.457671+7 8.600000-6 4.292821+7 8.912509-6 4.041369+7 9.015711-6 3.960206+7 9.225714-6 3.798132+7 9.660509-6 3.482669+7 1.011579-5 3.173217+7 1.035142-5 3.024618+7 1.050000-5 2.934124+7 1.100000-5 2.648314+7 1.109175-5 2.598922+7 1.150000-5 2.390441+7 1.202264-5 2.151210+7 1.270000-5 1.877449+7 1.310000-5 1.734682+7 1.348963-5 1.607884+7 1.428894-5 1.380601+7 1.445440-5 1.338337+7 1.531087-5 1.143419+7 1.603245-5 1.005813+7 1.650000-5 9.277173+6 1.769000-5 7.604364+6 1.769000-5 9.550950+6 1.819701-5 8.746723+6 1.862087-5 8.129816+6 1.972423-5 6.771304+6 2.065380-5 5.853215+6 2.400000-5 3.646050+6 2.600160-5 2.841198+6 2.754229-5 2.378485+6 2.851018-5 2.139474+6 2.917427-5 1.994426+6 3.054921-5 1.734783+6 3.126079-5 1.618689+6 3.190000-5 1.523458+6 3.217000-5 1.485712+6 3.217000-5 4.465936+6 3.250000-5 4.493432+6 3.280000-5 4.537287+6 3.311311-5 4.607512+6 3.340000-5 4.695391+6 3.365000-5 4.789744+6 3.400000-5 4.953268+6 3.427678-5 5.110163+6 3.430000-5 5.123737+6 3.467369-5 5.378487+6 3.470000-5 5.397188+6 3.510000-5 5.727417+6 3.537000-5 5.987601+6 3.537000-5 7.554533+6 3.548134-5 7.684726+6 3.550000-5 7.706845+6 3.570000-5 7.964699+6 3.600000-5 8.381124+6 3.630781-5 8.871086+6 3.650000-5 9.201658+6 3.670000-5 9.575092+6 3.672823-5 9.630265+6 3.700000-5 1.017992+7 3.720000-5 1.061417+7 3.740000-5 1.108063+7 3.770000-5 1.183254+7 3.801894-5 1.270380+7 3.815000-5 1.308073+7 3.850000-5 1.415910+7 3.900000-5 1.587654+7 3.920000-5 1.662816+7 3.935501-5 1.721886+7 3.950000-5 1.778996+7 4.000000-5 1.992234+7 4.050000-5 2.224032+7 4.073803-5 2.338738+7 4.110000-5 2.524077+7 4.120975-5 2.580010+7 4.168694-5 2.837230+7 4.220000-5 3.123294+7 4.265795-5 3.382831+7 4.300000-5 3.576667+7 4.315191-5 3.664713+7 4.365158-5 3.946074+7 4.410000-5 4.189603+7 4.420000-5 4.241680+7 4.450000-5 4.397307+7 4.472100-5 4.505422+7 4.500000-5 4.641096+7 4.518559-5 4.725091+7 4.520000-5 4.731687+7 4.540000-5 4.820000+7 4.570882-5 4.945885+7 4.590000-5 5.021561+7 4.610000-5 5.093438+7 4.630000-5 5.162447+7 4.650000-5 5.224482+7 4.677351-5 5.303517+7 4.680000-5 5.311265+7 4.700000-5 5.361129+7 4.740000-5 5.451821+7 4.786301-5 5.526143+7 4.800000-5 5.545019+7 4.820000-5 5.564764+7 4.850000-5 5.587624+7 4.860000-5 5.595416+7 4.870000-5 5.600636+7 4.897788-5 5.606722+7 4.900000-5 5.607233+7 4.920000-5 5.605938+7 4.954502-5 5.594738+7 5.000000-5 5.567687+7 5.011872-5 5.554244+7 5.060000-5 5.500937+7 5.080000-5 5.473989+7 5.110000-5 5.427372+7 5.170000-5 5.323031+7 5.188000-5 5.288618+7 5.190000-5 5.284817+7 5.230000-5 5.202519+7 5.248075-5 5.162398+7 5.308844-5 5.030905+7 5.400000-5 4.815254+7 5.450000-5 4.695128+7 5.500000-5 4.574421+7 5.623413-5 4.280390+7 5.650000-5 4.217965+7 5.688529-5 4.127080+7 5.800000-5 3.878253+7 5.821032-5 3.832193+7 5.888437-5 3.689304+7 5.900000-5 3.665493+7 6.025596-5 3.413928+7 6.165950-5 3.153510+7 6.300000-5 2.923554+7 6.309573-5 2.907970+7 6.456542-5 2.677682+7 6.606934-5 2.460999+7 6.650000-5 2.402068+7 6.760830-5 2.258453+7 6.918310-5 2.068541+7 7.079458-5 1.891570+7 7.161434-5 1.807149+7 7.244360-5 1.726515+7 7.413102-5 1.573311+7 7.585776-5 1.431267+7 7.673615-5 1.364086+7 7.800000-5 1.274163+7 8.000000-5 1.144498+7 8.222426-5 1.017437+7 8.317638-5 9.684153+6 8.511380-5 8.763083+6 8.609938-5 8.331858+6 8.810489-5 7.532295+6 9.015711-5 6.809940+6 9.300000-5 5.937139+6 9.500000-5 5.401218+6 9.660509-5 5.013774+6 9.746000-5 4.821375+6 9.746000-5 5.767639+6 9.795000-5 5.680620+6 9.800000-5 5.671371+6 9.870000-5 5.545109+6 9.930000-5 5.435247+6 1.000000-4 5.305944+6 1.007000-4 5.175139+6 1.015900-4 5.009560+6 1.020000-4 4.933231+6 1.025000-4 4.842341+6 1.035142-4 4.660066+6 1.047129-4 4.451152+6 1.050000-4 4.402633+6 1.071519-4 4.052212+6 1.083927-4 3.863369+6 1.096478-4 3.682091+6 1.100000-4 3.633197+6 1.135011-4 3.185626+6 1.161449-4 2.890994+6 1.174898-4 2.753114+6 1.190000-4 2.608150+6 1.216186-4 2.379072+6 1.220000-4 2.347603+6 1.231200-4 2.258967+6 1.231200-4 2.698355+6 1.236000-4 2.685105+6 1.239500-4 2.673576+6 1.243000-4 2.660872+6 1.244515-4 2.654588+6 1.247000-4 2.644357+6 1.252000-4 2.621430+6 1.257000-4 2.596042+6 1.260000-4 2.579637+6 1.262000-4 2.568866+6 1.267000-4 2.540030+6 1.274000-4 2.497314+6 1.280000-4 2.458774+6 1.282000-4 2.446284+6 1.289000-4 2.400794+6 1.300000-4 2.328238+6 1.303167-4 2.306892+6 1.315000-4 2.228919+6 1.333521-4 2.109515+6 1.350000-4 2.008702+6 1.364583-4 1.924739+6 1.380384-4 1.838061+6 1.400000-4 1.738462+6 1.430000-4 1.599131+6 1.445440-4 1.533914+6 1.462177-4 1.467222+6 1.470000-4 1.437401+6 1.480000-4 1.400790+6 1.496236-4 1.344689+6 1.540000-4 1.209089+6 1.548817-4 1.184411+6 1.566751-4 1.136707+6 1.584893-4 1.091617+6 1.600000-4 1.056168+6 1.603245-4 1.048770+6 1.621810-4 1.008375+6 1.659587-4 9.337470+5 1.668600-4 9.173446+5 1.668600-4 9.711760+5 1.678804-4 9.537273+5 1.681700-4 9.490061+5 1.681700-4 1.071273+6 1.682300-4 1.072447+6 1.685000-4 1.075885+6 1.688000-4 1.079175+6 1.690000-4 1.081067+6 1.690500-4 1.081563+6 1.694000-4 1.084355+6 1.697500-4 1.086436+6 1.701000-4 1.087941+6 1.704500-4 1.088830+6 1.708200-4 1.089113+6 1.712000-4 1.088779+6 1.716000-4 1.087794+6 1.718000-4 1.086898+6 1.720000-4 1.086020+6 1.722000-4 1.085247+6 1.727000-4 1.082318+6 1.733000-4 1.077858+6 1.738700-4 1.072721+6 1.738700-4 1.165419+6 1.739300-4 1.166547+6 1.740000-4 1.167418+6 1.742000-4 1.169696+6 1.745000-4 1.172687+6 1.748000-4 1.175273+6 1.748300-4 1.175479+6 1.751000-4 1.177034+6 1.755000-4 1.178752+6 1.757924-4 1.179569+6 1.758000-4 1.179592+6 1.760000-4 1.179533+6 1.762000-4 1.179616+6 1.766000-4 1.179143+6 1.770000-4 1.178148+6 1.775000-4 1.175637+6 1.778279-4 1.173460+6 1.780000-4 1.172357+6 1.781000-4 1.171739+6 1.785000-4 1.168628+6 1.787000-4 1.166936+6 1.793000-4 1.161123+6 1.800000-4 1.153677+6 1.810000-4 1.142024+6 1.819701-4 1.130230+6 1.820000-4 1.129870+6 1.835000-4 1.110947+6 1.840772-4 1.103432+6 1.842000-4 1.101851+6 1.850000-4 1.091979+6 1.862087-4 1.077591+6 1.865000-4 1.074221+6 1.883649-4 1.054242+6 1.885000-4 1.052841+6 1.890000-4 1.048042+6 1.905461-4 1.034150+6 1.910000-4 1.030480+6 1.922000-4 1.021447+6 1.930000-4 1.016124+6 1.933000-4 1.014223+6 1.940000-4 1.010219+6 1.950000-4 1.005359+6 1.955000-4 1.002988+6 1.957000-4 1.002157+6 1.972423-4 9.970122+5 1.973000-4 9.968680+5 1.980000-4 9.956262+5 1.990000-4 9.942361+5 1.992000-4 9.941172+5 2.000000-4 9.941558+5 2.010000-4 9.944171+5 2.018366-4 9.958338+5 2.020000-4 9.961562+5 2.030000-4 9.983567+5 2.050000-4 1.005898+6 2.051300-4 1.006505+6 2.065380-4 1.014152+6 2.070000-4 1.016914+6 2.075000-4 1.020210+6 2.089296-4 1.030986+6 2.090000-4 1.031543+6 2.100000-4 1.040136+6 2.113489-4 1.053198+6 2.135000-4 1.077391+6 2.142000-4 1.086150+6 2.162719-4 1.114556+6 2.170000-4 1.125248+6 2.205000-4 1.184625+6 2.213095-4 1.199834+6 2.220000-4 1.213297+6 2.238721-4 1.252312+6 2.242500-4 1.260542+6 2.264644-4 1.311918+6 2.300000-4 1.402996+6 2.317395-4 1.452119+6 2.330000-4 1.489563+6 2.344229-4 1.532861+6 2.371374-4 1.620818+6 2.380000-4 1.650356+6 2.400000-4 1.719465+6 2.426610-4 1.816228+6 2.430000-4 1.828624+6 2.449500-4 1.902217+6 2.450000-4 1.904155+6 2.465000-4 1.962256+6 2.483133-4 2.032881+6 2.490000-4 2.060480+6 2.500000-4 2.100677+6 2.511886-4 2.147859+6 2.520000-4 2.180816+6 2.540973-4 2.266774+6 2.560000-4 2.344770+6 2.570396-4 2.387428+6 2.580000-4 2.427644+6 2.600160-4 2.511124+6 2.620000-4 2.594023+6 2.635000-4 2.655840+6 2.650000-4 2.717592+6 2.660725-4 2.762665+6 2.670000-4 2.802257+6 2.722701-4 3.019195+6 2.730000-4 3.048044+6 2.754229-4 3.145785+6 2.770000-4 3.211054+6 2.818383-4 3.401840+6 2.830000-4 3.447805+6 2.851018-4 3.527571+6 2.884032-4 3.652393+6 2.900000-4 3.710922+6 2.917427-4 3.773192+6 2.930000-4 3.818655+6 2.951209-4 3.891966+6 2.985383-4 4.007302+6 3.000000-4 4.053932+6 3.050000-4 4.208875+6 3.054921-4 4.223250+6 3.090295-4 4.322300+6 3.100000-4 4.349748+6 3.126079-4 4.414750+6 3.162278-4 4.506039+6 3.200000-4 4.586661+6 3.235937-4 4.664071+6 3.240000-4 4.672158+6 3.280000-4 4.743004+6 3.311311-4 4.798809+6 3.320000-4 4.812996+6 3.350000-4 4.856588+6 3.390000-4 4.914812+6 3.427678-4 4.958610+6 3.430000-4 4.961306+6 3.464100-4 5.000807+6 3.470000-4 5.007651+6 3.548134-4 5.077315+6 3.550000-4 5.078973+6 3.589219-4 5.103075+6 3.600000-4 5.109685+6 3.630781-4 5.128484+6 3.650000-4 5.140145+6 3.672823-4 5.147243+6 3.758374-4 5.173540+6 3.850000-4 5.177841+6 3.890451-4 5.169382+6 3.930000-4 5.161224+6 3.981072-4 5.150770+6 4.073803-4 5.108996+6 4.120975-4 5.088072+6 4.168694-4 5.056794+6 4.216965-4 5.025647+6 4.265795-4 4.994731+6 4.280000-4 4.985841+6 4.315191-4 4.957201+6 4.350000-4 4.929245+6 4.406100-4 4.884846+6 4.406100-4 5.001820+6 4.430000-4 4.996284+6 4.450000-4 4.992809+6 4.466836-4 4.986853+6 4.535000-4 4.955750+6 4.620000-4 4.916365+6 4.623810-4 4.914567+6 4.649500-4 4.899429+6 4.649500-4 4.982606+6 4.650000-4 4.982442+6 4.665000-4 4.975465+6 4.677351-4 4.969560+6 4.700000-4 4.959269+6 4.731513-4 4.946066+6 4.755000-4 4.934749+6 4.760000-4 4.932077+6 4.841724-4 4.883992+6 4.850000-4 4.878849+6 4.930000-4 4.820553+6 4.940000-4 4.813310+6 4.954502-4 4.802479+6 5.011872-4 4.757961+6 5.080000-4 4.707313+6 5.100000-4 4.690667+6 5.120000-4 4.673745+6 5.128614-4 4.666263+6 5.188000-4 4.616505+6 5.190000-4 4.614862+6 5.230000-4 4.581627+6 5.260000-4 4.556001+6 5.300000-4 4.521920+6 5.308844-4 4.514459+6 5.350000-4 4.475624+6 5.370318-4 4.457158+6 5.432503-4 4.400292+6 5.559043-4 4.288176+6 5.623413-4 4.233218+6 5.650000-4 4.209012+6 5.688529-4 4.174175+6 5.720000-4 4.146127+6 5.754399-4 4.115700+6 5.888437-4 4.001857+6 5.900000-4 3.992372+6 5.956621-4 3.942782+6 6.025596-4 3.883424+6 6.100000-4 3.821093+6 6.165950-4 3.767571+6 6.237348-4 3.710581+6 6.280000-4 3.674930+6 6.382635-4 3.591305+6 6.456542-4 3.532803+6 6.500000-4 3.499308+6 6.531306-4 3.475344+6 6.606934-4 3.418707+6 6.683439-4 3.360217+6 6.691600-4 3.354096+6 6.691600-4 3.551590+6 6.700000-4 3.545211+6 6.760830-4 3.499143+6 6.780000-4 3.484876+6 6.839116-4 3.441352+6 7.000000-4 3.328253+6 7.079458-4 3.271372+6 7.190000-4 3.195241+6 7.300000-4 3.122597+6 7.328245-4 3.104090+6 7.413102-4 3.049044+6 7.500000-4 2.992076+6 7.585776-4 2.937719+6 7.650000-4 2.898379+6 7.673615-4 2.884041+6 7.852356-4 2.778295+6 7.943282-4 2.725120+6 7.994300-4 2.695903+6 7.994300-4 2.732262+6 8.035261-4 2.709218+6 8.100000-4 2.673250+6 8.128305-4 2.657615+6 8.222426-4 2.606761+6 8.317638-4 2.557096+6 8.413951-4 2.508544+6 8.500000-4 2.465607+6 8.511380-4 2.459909+6 8.709636-4 2.363086+6 8.810489-4 2.316212+6 8.912509-4 2.270166+6 9.000000-4 2.231886+6 9.015711-4 2.225060+6 9.120108-4 2.179978+6 9.225714-4 2.135097+6 9.234300-4 2.131484+6 9.234300-4 2.173365+6 9.332543-4 2.132509+6 9.549926-4 2.046761+6 9.660509-4 2.004955+6 9.700000-4 1.990368+6 9.772372-4 1.963756+6 9.885531-4 1.923094+6 1.000000-3 1.882851+6 1.011579-3 1.843605+6 1.015000-3 1.832280+6 1.035142-3 1.767118+6 1.047129-3 1.729975+6 1.059254-3 1.693362+6 1.060990-3 1.688202+6 1.071519-3 1.657451+6 1.083927-3 1.621512+6 1.096478-3 1.586367+6 1.109175-3 1.551844+6 1.122018-3 1.518193+6 1.135011-3 1.485385+6 1.148154-3 1.452766+6 1.150000-3 1.448278+6 1.161449-3 1.420948+6 1.188502-3 1.358449+6 1.202264-3 1.328390+6 1.216186-3 1.298973+6 1.230269-3 1.270051+6 1.244515-3 1.241632+6 1.270000-3 1.193021+6 1.273503-3 1.186506+6 1.303167-3 1.133488+6 1.318257-3 1.107671+6 1.333521-3 1.082481+6 1.364583-3 1.033322+6 1.380384-3 1.009657+6 1.396368-3 9.863755+5 1.400000-3 9.811581+5 1.412538-3 9.634617+5 1.428894-3 9.411441+5 1.462177-3 8.979039+5 1.496236-3 8.566274+5 1.500000-3 8.522473+5 1.513561-3 8.365507+5 1.531087-3 8.167702+5 1.603245-3 7.422210+5 1.610000-3 7.357629+5 1.621810-3 7.246721+5 1.640590-3 7.074097+5 1.650000-3 6.989654+5 1.659587-3 6.905139+5 1.678804-3 6.739474+5 1.717908-3 6.418515+5 1.737801-3 6.264435+5 1.757924-3 6.114437+5 1.778279-3 5.967104+5 1.798871-3 5.821517+5 1.840772-3 5.541819+5 1.862087-3 5.406708+5 1.905461-3 5.146517+5 1.927525-3 5.020470+5 1.950000-3 4.895964+5 1.972423-3 4.775982+5 2.000000-3 4.634520+5 2.018366-3 4.543885+5 2.065380-3 4.322605+5 2.070000-3 4.301775+5 2.089296-3 4.215299+5 2.113489-3 4.110467+5 2.150000-3 3.958731+5 2.162719-3 3.907615+5 2.213095-3 3.714644+5 2.238721-3 3.622008+5 2.264644-3 3.531895+5 2.290868-3 3.442987+5 2.300000-3 3.412829+5 2.317395-3 3.356152+5 2.371374-3 3.188943+5 2.398833-3 3.108318+5 2.400000-3 3.104961+5 2.426610-3 3.029618+5 2.454709-3 2.953001+5 2.500000-3 2.834666+5 2.511886-3 2.804796+5 2.540973-3 2.733128+5 2.586000-3 2.627118+5 2.586000-3 6.727644+5 2.600160-3 6.647998+5 2.623500-3 6.519709+5 2.625000-3 6.502253+5 2.630268-3 6.476046+5 2.660725-3 6.327416+5 2.691535-3 6.182299+5 2.698000-3 6.152345+5 2.698000-3 9.045485+5 2.722701-3 8.852440+5 2.738000-3 8.735761+5 2.745000-3 8.679050+5 2.786121-3 8.373969+5 2.800000-3 8.274611+5 2.820000-3 8.145794+5 2.851018-3 7.945627+5 2.855000-3 7.920447+5 2.900000-3 7.643606+5 2.917427-3 7.546388+5 2.951209-3 7.329104+5 3.000000-3 7.033192+5 3.019952-3 6.916888+5 3.054921-3 6.719183+5 3.090295-3 6.527232+5 3.126079-3 6.338303+5 3.166900-3 6.132039+5 3.166900-3 7.097916+5 3.198895-3 6.940542+5 3.228000-3 6.802010+5 3.235937-3 6.761845+5 3.300000-3 6.446023+5 3.349654-3 6.215446+5 3.388442-3 6.043549+5 3.400000-3 5.993637+5 3.427678-3 5.876421+5 3.467369-3 5.712785+5 3.507519-3 5.553868+5 3.548134-3 5.399023+5 3.589219-3 5.248388+5 3.650000-3 5.034146+5 3.672823-3 4.956859+5 3.692700-3 4.890898+5 3.692700-3 5.189906+5 3.800000-3 4.848440+5 3.801894-3 4.842679+5 3.820000-3 4.788002+5 3.845918-3 4.710525+5 3.900000-3 4.553628+5 3.935501-3 4.454612+5 3.973900-3 4.351014+5 3.973900-3 4.536923+5 4.000000-3 4.467044+5 4.005000-3 4.453726+5 4.027170-3 4.395384+5 4.073803-3 4.276128+5 4.168694-3 4.046585+5 4.216965-3 3.936776+5 4.265795-3 3.829452+5 4.300000-3 3.756796+5 4.315191-3 3.725172+5 4.365158-3 3.623227+5 4.415704-3 3.524087+5 4.466836-3 3.426932+5 4.518559-3 3.332531+5 4.650000-3 3.108464+5 4.677351-3 3.064444+5 4.731513-3 2.979953+5 4.800000-3 2.877772+5 4.841724-3 2.817879+5 4.897788-3 2.740214+5 4.900000-3 2.737212+5 4.954502-3 2.664223+5 5.000000-3 2.605408+5 5.044660-3 2.549160+5 5.128614-3 2.448126+5 5.188000-3 2.379770+5 5.248075-3 2.313325+5 5.308844-3 2.248846+5 5.370318-3 2.185879+5 5.432503-3 2.124718+5 5.495409-3 2.065194+5 5.500000-3 2.060946+5 5.559043-3 2.006922+5 5.623413-3 1.950295+5 5.650000-3 1.927439+5 5.688529-3 1.894893+5 5.821032-3 1.788881+5 6.000000-3 1.658508+5 6.025596-3 1.641004+5 6.095369-3 1.594607+5 6.165950-3 1.549542+5 6.237348-3 1.505668+5 6.309573-3 1.463102+5 6.382635-3 1.421751+5 6.456542-3 1.381639+5 6.531306-3 1.342721+5 6.606934-3 1.304801+5 6.683439-3 1.267911+5 6.760830-3 1.231444+5 6.800000-3 1.213563+5 6.839116-3 1.196070+5 6.918310-3 1.161727+5 7.079458-3 1.096138+5 7.161434-3 1.064772+5 7.244360-3 1.034330+5 7.300000-3 1.014485+5 7.328245-3 1.004580+5 7.413102-3 9.754974+4 7.673615-3 8.934700+4 7.762471-3 8.676382+4 7.943282-3 8.183159+4 8.000000-3 8.036810+4 8.035261-3 7.947727+4 8.128305-3 7.719410+4 8.222426-3 7.497999+4 8.317638-3 7.282344+4 8.413951-3 7.072731+4 8.500000-3 6.892778+4 8.511380-3 6.869339+4 8.609938-3 6.669636+4 8.709636-3 6.475080+4 8.810489-3 6.285832+4 8.912509-3 6.102415+4 9.015711-3 5.924622+4 9.225714-3 5.585205+4 9.332543-3 5.423215+4 9.549926-3 5.112111+4 9.660509-3 4.962980+4 9.772372-3 4.817970+4 9.800000-3 4.783095+4 9.885531-3 4.677207+4 1.000000-2 4.540165+4 1.023293-2 4.278606+4 1.035142-2 4.153764+4 1.040000-2 4.104092+4 1.047129-2 4.032436+4 1.050000-2 4.004083+4 1.071519-2 3.800260+4 1.083927-2 3.688708+4 1.096478-2 3.580463+4 1.109175-2 3.474786+4 1.122018-2 3.372318+4 1.135011-2 3.272729+4 1.161449-2 3.082726+4 1.174898-2 2.992095+4 1.188502-2 2.904193+4 1.202264-2 2.818988+4 1.216186-2 2.735707+4 1.230269-2 2.654967+4 1.244515-2 2.576658+4 1.258925-2 2.500677+4 1.288250-2 2.355026+4 1.303167-2 2.285383+4 1.318257-2 2.217847+4 1.333521-2 2.152159+4 1.342500-2 2.114728+4 1.342500-2 5.277842+4 1.350000-2 5.205538+4 1.360000-2 5.111067+4 1.364583-2 5.064048+4 1.380384-2 4.906439+4 1.412538-2 4.612684+4 1.428894-2 4.472515+4 1.445440-2 4.336625+4 1.462177-2 4.204913+4 1.479108-2 4.077118+4 1.496236-2 3.953149+4 1.500000-2 3.926611+4 1.513561-2 3.832945+4 1.548817-2 3.599837+4 1.566751-2 3.488505+4 1.576800-2 3.428183+4 1.576800-2 4.781542+4 1.584893-2 4.724624+4 1.591000-2 4.682334+4 1.603245-2 4.588040+4 1.621810-2 4.450039+4 1.637600-2 4.337143+4 1.637600-2 5.012761+4 1.659587-2 4.847294+4 1.678804-2 4.708919+4 1.710000-2 4.495752+4 1.717908-2 4.443599+4 1.720000-2 4.429946+4 1.737801-2 4.315041+4 1.757924-2 4.189984+4 1.760000-2 4.177367+4 1.778279-2 4.069742+4 1.798871-2 3.953173+4 1.800000-2 3.946894+4 1.819701-2 3.839543+4 1.840772-2 3.728247+4 1.850000-2 3.680937+4 1.862087-2 3.619625+4 1.883649-2 3.513787+4 1.905461-2 3.411114+4 1.972423-2 3.120677+4 1.995262-2 3.029494+4 2.018366-2 2.941420+4 2.065380-2 2.771923+4 2.089296-2 2.690948+4 2.113489-2 2.612341+4 2.137962-2 2.535567+4 2.162719-2 2.461112+4 2.213095-2 2.317905+4 2.264644-2 2.183076+4 2.290868-2 2.118624+4 2.317395-2 2.056130+4 2.344229-2 1.995529+4 2.371374-2 1.936187+4 2.398833-2 1.878655+4 2.426610-2 1.822864+4 2.454709-2 1.768768+4 2.483133-2 1.716312+4 2.500000-2 1.686207+4 2.511886-2 1.665420+4 2.540973-2 1.616048+4 2.600160-2 1.520799+4 2.660725-2 1.430681+4 2.691535-2 1.387694+4 2.722701-2 1.346020+4 2.754229-2 1.305627+4 2.786121-2 1.266477+4 2.818383-2 1.228521+4 2.851018-2 1.191732+4 2.900000-2 1.139349+4 2.917427-2 1.121477+4 2.951209-2 1.087933+4 2.985383-2 1.055388+4 3.000000-2 1.041787+4 3.019952-2 1.023616+4 3.090295-2 9.629070+3 3.126079-2 9.339362+3 3.162278-2 9.058591+3 3.198895-2 8.786485+3 3.235937-2 8.522692+3 3.273407-2 8.263348+3 3.311311-2 8.012093+3 3.349654-2 7.768469+3 3.467369-2 7.082048+3 3.507519-2 6.867097+3 3.548134-2 6.658602+3 3.589219-2 6.456544+3 3.630781-2 6.260748+3 3.672823-2 6.071027+3 3.715352-2 5.887172+3 3.758374-2 5.708448+3 3.801894-2 5.534397+3 3.845918-2 5.365648+3 4.000000-2 4.828547+3 4.027170-2 4.741695+3 4.073803-2 4.596755+3 4.120975-2 4.456228+3 4.168694-2 4.320040+3 4.216965-2 4.187233+3 4.265795-2 4.058601+3 4.315191-2 3.933994+3 4.365158-2 3.813279+3 4.415704-2 3.696346+3 4.466836-2 3.582991+3 4.570882-2 3.366810+3 4.677351-2 3.163966+3 4.731513-2 3.066816+3 4.786301-2 2.972721+3 4.800000-2 2.949818+3 4.841724-2 2.881486+3 4.872880-2 2.831886+3 4.897788-2 2.793082+3 4.954502-2 2.707427+3 5.011872-2 2.624141+3 5.069907-2 2.542927+3 5.128614-2 2.464258+3 5.188000-2 2.388075+3 5.248075-2 2.314240+3 5.500000-2 2.036852+3 5.559043-2 1.978529+3 5.623413-2 1.917556+3 5.754399-2 1.801154+3 5.821032-2 1.745685+3 5.888437-2 1.691792+3 6.000000-2 1.607098+3 6.025596-2 1.588499+3 6.095369-2 1.539277+3 6.165950-2 1.491466+3 6.309573-2 1.400280+3 6.382635-2 1.356842+3 6.456542-2 1.314778+3 6.531306-2 1.274045+3 6.683439-2 1.196346+3 6.839116-2 1.123021+3 7.000000-2 1.053617+3 7.161434-2 9.897857+2 7.328245-2 9.293178+2 7.413102-2 9.004404+2 7.500000-2 8.721392+2 7.673615-2 8.191445+2 7.762471-2 7.936799+2 7.943282-2 7.448702+2 8.035261-2 7.216079+2 8.222426-2 6.772217+2 8.413951-2 6.356121+2 8.511380-2 6.157924+2 8.810489-2 5.600088+2 9.083200-2 5.150580+2 9.083200-2 2.404742+3 9.120108-2 2.379515+3 9.154000-2 2.356642+3 9.200000-2 2.326083+3 9.225714-2 2.311326+3 9.250000-2 2.297514+3 9.332543-2 2.242610+3 9.440609-2 2.182318+3 9.450000-2 2.177189+3 9.500000-2 2.146901+3 9.549926-2 2.117227+3 9.730000-2 2.014771+3 9.772372-2 1.993069+3 9.885531-2 1.936697+3 1.000000-1 1.881930+3 1.011580-1 1.828715+3 1.035142-1 1.721991+3 1.047129-1 1.670994+3 1.083927-1 1.526932+3 1.096478-1 1.481685+3 1.109175-1 1.437783+3 1.135011-1 1.353859+3 1.148154-1 1.313759+3 1.150000-1 1.308259+3 1.161449-1 1.275083+3 1.174898-1 1.237586+3 1.202264-1 1.165869+3 1.230269-1 1.098320+3 1.244515-1 1.066032+3 1.273503-1 1.004289+3 1.288250-1 9.742036+2 1.318257-1 9.167204+2 1.364583-1 8.367306+2 1.380384-1 8.116544+2 1.462177-1 6.971357+2 1.479108-1 6.762550+2 1.496236-1 6.560005+2 1.531088-1 6.172996+2 1.566751-1 5.809132+2 1.584893-1 5.635325+2 1.621810-1 5.303193+2 1.659587-1 4.990686+2 1.678804-1 4.841428+2 1.698244-1 4.696643+2 1.717908-1 4.556153+2 1.737801-1 4.419868+2 1.757924-1 4.287669+2 1.778279-1 4.159451+2 1.798871-1 4.035069+2 1.819701-1 3.914419+2 1.840772-1 3.797396+2 1.862087-1 3.683882+2 1.883649-1 3.573812+2 1.895000-1 3.517687+2 1.905461-1 3.467036+2 1.927525-1 3.363510+2 1.949845-1 3.263081+2 1.972423-1 3.165658+2 2.000000-1 3.052036+2 2.018366-1 2.979466+2 2.113489-1 2.639338+2 2.137962-1 2.560568+2 2.187762-1 2.410022+2 2.213095-1 2.338117+2 2.238721-1 2.268362+2 2.264644-1 2.200722+2 2.290868-1 2.135101+2 2.317395-1 2.071452+2 2.344229-1 2.009737+2 2.371374-1 1.949863+2 2.426610-1 1.835424+2 2.454709-1 1.780752+2 2.483133-1 1.728277+2 2.511886-1 1.677355+2 2.540973-1 1.627935+2 2.570396-1 1.579974+2 2.600160-1 1.533433+2 2.630268-1 1.488289+2 2.660725-1 1.444478+2 2.691535-1 1.402005+2 2.722701-1 1.360785+2 2.786121-1 1.282028+2 2.851018-1 1.207841+2 2.884032-1 1.172375+2 2.917427-1 1.137953+2 2.951209-1 1.104545+2 2.985383-1 1.072561+2 3.000000-1 1.059274+2 3.000060-1 1.059220+2 3.019952-1 1.041503+2 3.054921-1 1.011345+2 3.090295-1 9.820615+1 3.126079-1 9.536271+1 3.162278-1 9.260335+1 3.235937-1 8.732292+1 3.273407-1 8.479689+1 3.311311-1 8.234779+1 3.349654-1 7.997057+1 3.427678-1 7.542290+1 3.467369-1 7.328423+1 3.507519-1 7.120632+1 3.548134-1 6.918740+1 3.589219-1 6.722589+1 3.630781-1 6.532120+1 3.672823-1 6.347087+1 3.715352-1 6.167300+1 3.758374-1 5.992610+1 3.801894-1 5.822958+1 3.845918-1 5.658133+1 3.890451-1 5.498255+1 3.935501-1 5.342900+1 3.981072-1 5.194651+1 4.027170-1 5.050523+1 4.073803-1 4.910396+1 4.120975-1 4.774258+1 4.168694-1 4.641897+1 4.216965-1 4.513232+1 4.265795-1 4.388197+1 4.365158-1 4.148464+1 4.415705-1 4.033561+1 4.466836-1 3.921846+1 4.518559-1 3.813440+1 4.570882-1 3.710073+1 4.623810-1 3.609571+1 4.677351-1 3.511866+1 4.731513-1 3.416852+1 4.786301-1 3.324428+1 4.841724-1 3.234517+1 4.897788-1 3.147041+1 4.954502-1 3.061935+1 5.011872-1 2.979134+1 5.128614-1 2.820193+1 5.188000-1 2.745745+1 5.248075-1 2.673356+1 5.308844-1 2.602925+1 5.370318-1 2.534370+1 5.432503-1 2.467623+1 5.495409-1 2.402637+1 5.559043-1 2.339365+1 5.688529-1 2.217780+1 5.754399-1 2.159379+1 5.821032-1 2.102547+1 5.888437-1 2.048452+1 5.956621-1 1.995882+1 6.025596-1 1.944669+1 6.095369-1 1.894812+1 6.237348-1 1.798904+1 6.309573-1 1.752787+1 6.382635-1 1.707853+1 6.456542-1 1.664095+1 6.531306-1 1.621493+1 6.606935-1 1.579991+1 6.683439-1 1.540451+1 6.760830-1 1.502003+1 6.839117-1 1.464516+1 7.079458-1 1.357657+1 7.161434-1 1.323812+1 7.244360-1 1.290836+1 7.328245-1 1.258686+1 7.413102-1 1.227339+1 7.498942-1 1.196780+1 7.585776-1 1.167686+1 7.673615-1 1.139364+1 7.762471-1 1.111731+1 7.852356-1 1.084787+1 8.035261-1 1.032844+1 8.222427-1 9.834564+0 8.226300-1 9.824714+0 8.317638-1 9.596558+0 8.413951-1 9.364326+0 8.511380-1 9.143423+0 8.609938-1 8.928384+0 8.709636-1 8.718457+0 8.810489-1 8.513609+0 9.015711-1 8.118592+0 9.120108-1 7.928014+0 9.225714-1 7.741926+0 9.332543-1 7.560450+0 9.440609-1 7.383353+0 9.549926-1 7.215107+0 9.660509-1 7.051266+0 9.772372-1 6.891147+0 9.885531-1 6.734708+0 1.000000+0 6.582295+0 1.011579+0 6.433379+0 1.023293+0 6.287823+0 1.047129+0 6.006523+0 1.059254+0 5.870661+0 1.071519+0 5.737878+0 1.083927+0 5.608166+0 1.096478+0 5.481518+0 1.109175+0 5.359808+0 1.122018+0 5.240812+0 1.135011+0 5.124446+0 1.148154+0 5.010944+0 1.161449+0 4.900026+0 1.174898+0 4.791580+0 1.188502+0 4.685600+0 1.202264+0 4.582062+0 1.216186+0 4.480807+0 1.230269+0 4.381813+0 1.244515+0 4.285008+0 1.258925+0 4.190368+0 1.273503+0 4.100563+0 1.288250+0 4.013032+0 1.303167+0 3.927374+0 1.318257+0 3.843699+0 1.333521+0 3.761815+0 1.348963+0 3.681669+0 1.364583+0 3.603250+0 1.380384+0 3.526502+0 1.412538+0 3.377895+0 1.428894+0 3.305989+0 1.445440+0 3.237503+0 1.462177+0 3.170663+0 1.479108+0 3.105240+0 1.513561+0 2.978550+0 1.531087+0 2.917157+0 1.548817+0 2.857027+0 1.584893+0 2.740484+0 1.603245+0 2.684008+0 1.621810+0 2.630145+0 1.659587+0 2.525969+0 1.678804+0 2.475486+0 1.698244+0 2.426012+0 1.717908+0 2.377537+0 1.737801+0 2.330082+0 1.778279+0 2.237999+0 1.819701+0 2.149569+0 1.840772+0 2.107724+0 1.862087+0 2.066816+0 1.905461+0 1.987365+0 1.927525+0 1.948826+0 1.949845+0 1.911034+0 1.972423+0 1.873984+0 2.000000+0 1.830311+0 2.044000+0 1.763900+0 2.065380+0 1.733009+0 2.089296+0 1.699460+0 2.113489+0 1.667499+0 2.137962+0 1.636251+0 2.162719+0 1.605588+0 2.187762+0 1.575532+0 2.213095+0 1.546039+0 2.238721+0 1.517105+0 2.264644+0 1.488751+0 2.317395+0 1.433623+0 2.344229+0 1.406835+0 2.371374+0 1.380548+0 2.398833+0 1.355508+0 2.426610+0 1.331011+0 2.454709+0 1.306956+0 2.483133+0 1.283361+0 2.511886+0 1.260192+0 2.540973+0 1.237445+0 2.570396+0 1.215140+0 2.630268+0 1.171728+0 2.660725+0 1.150611+0 2.691535+0 1.129875+0 2.722701+0 1.109513+0 2.754229+0 1.090077+0 2.786121+0 1.071049+0 2.818383+0 1.052352+0 2.851018+0 1.034000+0 2.884032+0 1.015968+0 2.917427+0 9.982545-1 2.951209+0 9.808703-1 3.019952+0 9.470044-1 3.054921+0 9.305129-1 3.090295+0 9.143115-1 3.126079+0 8.983921-1 3.162278+0 8.827498-1 3.235937+0 8.530692-1 3.273407+0 8.386539-1 3.311311+0 8.244931-1 3.349654+0 8.105741-1 3.388442+0 7.968926-1 3.427678+0 7.834594-1 3.507519+0 7.572684-1 3.548134+0 7.445032-1 3.589219+0 7.319557-1 3.630781+0 7.196193-1 3.672823+0 7.074914-1 3.758374+0 6.844733-1 3.801894+0 6.732832-1 3.845918+0 6.622849-1 3.890451+0 6.514687-1 3.935501+0 6.408310-1 4.000000+0 6.261250-1 4.073803+0 6.099886-1 4.120975+0 6.000413-1 4.168694+0 5.902581-1 4.216965+0 5.806345-1 4.265795+0 5.711678-1 4.365158+0 5.531781-1 4.466836+0 5.358100-1 4.518559+0 5.273385-1 4.570882+0 5.190024-1 4.623810+0 5.107999-1 4.677351+0 5.027374-1 4.786301+0 4.869920-1 4.841724+0 4.793053-1 4.897788+0 4.717414-1 4.954502+0 4.642968-1 5.011872+0 4.569699-1 5.128614+0 4.430325-1 5.308844+0 4.229823-1 5.370318+0 4.165076-1 5.432503+0 4.101332-1 5.495409+0 4.038576-1 5.559043+0 3.976858-1 5.688529+0 3.856238-1 5.754399+0 3.797307-1 5.821032+0 3.739287-1 5.888437+0 3.682153-1 5.956621+0 3.625894-1 6.095369+0 3.518854-1 6.309573+0 3.364683-1 6.382635+0 3.314845-1 6.456542+0 3.265756-1 6.531306+0 3.217403-1 6.606934+0 3.169825-1 6.760830+0 3.076768-1 6.839116+0 3.031270-1 6.918310+0 2.986452-1 7.079458+0 2.898795-1 7.161434+0 2.855936-1 7.328245+0 2.774258-1 7.585776+0 2.656467-1 7.673615+0 2.618354-1 7.762471+0 2.580795-1 7.852356+0 2.543782-1 8.000000+0 2.485086-1 8.128305+0 2.436025-1 8.222427+0 2.401130-1 8.317638+0 2.366741-1 8.511380+0 2.299435-1 8.609938+0 2.266504-1 8.810489+0 2.203730-1 8.912509+0 2.173096-1 9.120108+0 2.113100-1 9.225714+0 2.083746-1 9.332543+0 2.054804-1 9.440609+0 2.026270-1 9.660509+0 1.970441-1 9.885531+0 1.916151-1 1.011579+1 1.863357-1 1.023293+1 1.837511-1 1.071519+1 1.737666-1 1.100000+1 1.683235-1 1.122018+1 1.644282-1 1.135011+1 1.622069-1 1.148154+1 1.600228-1 1.161449+1 1.578698-1 1.174898+1 1.557466-1 1.202264+1 1.515905-1 1.216186+1 1.495542-1 1.230269+1 1.475456-1 1.244515+1 1.455639-1 1.318257+1 1.360480-1 1.364583+1 1.306398-1 1.412538+1 1.255560-1 1.428894+1 1.239058-1 1.445440+1 1.222820-1 1.462177+1 1.206807-1 1.479108+1 1.191003-1 1.500000+1 1.172036-1 1.531087+1 1.144869-1 1.548817+1 1.129898-1 1.566751+1 1.115127-1 1.621810+1 1.071959-1 1.640590+1 1.057944-1 1.698244+1 1.016990-1 1.840772+1 9.291698-2 1.883649+1 9.055010-2 1.905461+1 8.939235-2 1.927525+1 8.825014-2 1.949845+1 8.712253-2 1.972423+1 8.600967-2 2.000000+1 8.468771-2 2.018366+1 8.382849-2 2.041738+1 8.275886-2 2.089296+1 8.066042-2 2.113489+1 7.963122-2 2.213095+1 7.564415-2 2.454709+1 6.754181-2 2.511886+1 6.586260-2 2.540973+1 6.504059-2 2.570396+1 6.422930-2 2.600160+1 6.342814-2 2.630268+1 6.263744-2 2.660725+1 6.185702-2 2.691535+1 6.108632-2 2.722701+1 6.032534-2 2.786121+1 5.883169-2 2.818383+1 5.809878-2 3.000000+1 5.427957-2 3.349654+1 4.824374-2 3.467369+1 4.649453-2 3.507519+1 4.592707-2 3.548134+1 4.536655-2 3.589219+1 4.481288-2 3.630781+1 4.426614-2 3.672823+1 4.372619-2 3.715352+1 4.319308-2 3.758374+1 4.266647-2 3.801894+1 4.214628-2 3.845918+1 4.163250-2 3.935501+1 4.062365-2 4.027170+1 3.963926-2 4.265795+1 3.728137-2 4.786301+1 3.304304-2 4.954502+1 3.186813-2 5.000000+1 3.156473-2 5.011872+1 3.148653-2 5.069907+1 3.110961-2 5.128614+1 3.073721-2 5.248075+1 3.000575-2 5.308844+1 2.964668-2 5.370318+1 2.929195-2 5.495409+1 2.859546-2 5.559043+1 2.825345-2 5.623413+1 2.791553-2 5.821032+1 2.692592-2 5.956621+1 2.628576-2 6.165950+1 2.535392-2 6.606934+1 2.358820-2 7.585776+1 2.045700-2 7.852356+1 1.974144-2 7.943282+1 1.950889-2 8.035261+1 1.927917-2 8.128305+1 1.905216-2 8.317638+1 1.860613-2 8.413951+1 1.838712-2 8.609938+1 1.795697-2 8.709636+1 1.774569-2 8.810489+1 1.753689-2 9.015711+1 1.712667-2 9.332543+1 1.652926-2 9.549926+1 1.614262-2 1.071519+2 1.434089-2 1.513561+2 1.008582-2 1.548817+2 9.851899-3 1.584893+2 9.623663-3 1.603245+2 9.511563-3 1.621810+2 9.400768-3 1.640590+2 9.291264-3 1.659587+2 9.183091-3 1.678804+2 9.076182-3 1.698244+2 8.970515-3 1.717908+2 8.866090-3 1.757924+2 8.660862-3 1.778279+2 8.560043-3 1.905461+2 7.979275-3 3.019952+2 5.012100-3 3.090295+2 4.896916-3 3.162278+2 4.784438-3 3.198895+2 4.729180-3 3.235937+2 4.674559-3 3.273407+2 4.620570-3 3.311311+2 4.567217-3 3.349654+2 4.514481-3 3.388442+2 4.462353-3 3.427678+2 4.410830-3 3.507519+2 4.309560-3 3.548134+2 4.259801-3 3.801894+2 3.973080-3 6.025596+2 2.500705-3 6.165950+2 2.443483-3 6.309573+2 2.387592-3 6.382635+2 2.360130-3 6.456542+2 2.332985-3 6.531306+2 2.306152-3 6.606934+2 2.279632-3 6.683439+2 2.253418-3 6.760830+2 2.227505-3 6.839116+2 2.201891-3 6.998420+2 2.151542-3 7.079458+2 2.126802-3 7.585776+2 1.984219-3 4.786301+3 3.137945-4 4.897788+3 3.066434-4 5.011872+3 2.996562-4 5.069907+3 2.962226-4 5.128614+3 2.928284-4 5.188000+3 2.894732-4 5.248075+3 2.861565-4 5.308844+3 2.828779-4 5.370318+3 2.796368-4 5.432503+3 2.764329-4 5.559043+3 2.701348-4 5.623413+3 2.670398-4 1.202264+4 1.248165-4 1.000000+5 1.499959-5 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 6.350000-6 6.350000-6 8.600000-6 6.350000-6 8.600000-6 7.311859-6 1.011579-5 7.411855-6 1.202264-5 7.480927-6 1.531087-5 7.537536-6 1.769000-5 7.557433-6 1.769000-5 9.622559-6 2.065380-5 9.298810-6 2.400000-5 9.022440-6 2.600160-5 8.898174-6 2.917427-5 8.753699-6 3.217000-5 8.668178-6 3.217000-5 2.435150-5 3.311311-5 2.521081-5 3.430000-5 2.652694-5 3.537000-5 2.775461-5 3.537000-5 2.933417-5 3.700000-5 3.050925-5 3.815000-5 3.115916-5 3.950000-5 3.172116-5 4.120975-5 3.219801-5 4.420000-5 3.271074-5 4.820000-5 3.315420-5 5.248075-5 3.335594-5 6.760830-5 3.339001-5 9.746000-5 3.319012-5 9.746000-5 3.842096-5 9.930000-5 3.902759-5 1.015900-4 3.952927-5 1.050000-4 3.996848-5 1.135011-4 4.058278-5 1.231200-4 4.121121-5 1.231200-4 4.539491-5 1.247000-4 4.619401-5 1.267000-4 4.686135-5 1.289000-4 4.730419-5 1.333521-4 4.780943-5 1.668600-4 5.041733-5 1.668600-4 5.290652-5 1.681700-4 5.308676-5 1.681700-4 5.585347-5 1.697500-4 5.689396-5 1.718000-4 5.781105-5 1.738700-4 5.840069-5 1.738700-4 6.013906-5 1.758000-4 6.111094-5 1.781000-4 6.179782-5 1.820000-4 6.240945-5 1.940000-4 6.362679-5 2.020000-4 6.486218-5 2.142000-4 6.738126-5 2.300000-4 7.073395-5 2.400000-4 7.243845-5 2.511886-4 7.382071-5 2.650000-4 7.491814-5 2.851018-4 7.582436-5 3.126079-4 7.642335-5 3.672823-4 7.679582-5 4.406100-4 7.681774-5 4.406100-4 7.825020-5 4.649500-4 7.961118-5 4.649500-4 8.066952-5 4.760000-4 8.145546-5 5.100000-4 8.300766-5 5.650000-4 8.477018-5 6.691600-4 8.773965-5 6.691600-4 9.325147-5 7.673615-4 9.636983-5 7.994300-4 9.729776-5 7.994300-4 9.875509-5 9.234300-4 1.023077-4 9.234300-4 1.048575-4 1.083927-3 1.093032-4 1.303167-3 1.143711-4 1.531087-3 1.187262-4 1.798871-3 1.229872-4 2.150000-3 1.275400-4 2.540973-3 1.316312-4 2.586000-3 1.320533-4 2.586000-3 1.912585-4 2.698000-3 1.918748-4 2.698000-3 2.043823-4 3.166900-3 2.047721-4 3.166900-3 2.193037-4 3.349654-3 2.203402-4 3.692700-3 2.216198-4 3.692700-3 2.291983-4 3.973900-3 2.309321-4 3.973900-3 2.380636-4 5.248075-3 2.465919-4 6.839116-3 2.550201-4 8.810489-3 2.631371-4 1.135011-2 2.711270-4 1.342500-2 2.762954-4 1.342500-2 3.462507-4 1.576800-2 3.477203-4 1.576800-2 3.619938-4 1.637600-2 3.623989-4 1.637600-2 3.890032-4 2.213095-2 3.979726-4 3.019952-2 4.071247-4 4.168694-2 4.167715-4 5.623413-2 4.254302-4 7.673615-2 4.340492-4 9.083200-2 4.384523-4 9.083200-2 3.994583-4 2.290868-1 4.020727-4 6.309573-1 4.035910-4 1.000000+5 4.037967-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.350000-6 0.0 9.746000-5 0.0 9.746000-5 1.09331-10 9.800000-5 1.13605-10 9.870000-5 1.18600-10 9.930000-5 1.22358-10 1.000000-4 1.26200-10 1.007000-4 1.29584-10 1.015900-4 1.33266-10 1.025000-4 1.36436-10 1.035142-4 1.39436-10 1.050000-4 1.43104-10 1.071519-4 1.47470-10 1.100000-4 1.52376-10 1.220000-4 1.71466-10 1.231200-4 1.73470-10 1.231200-4 6.29333-10 1.236000-4 6.56707-10 1.243000-4 6.91440-10 1.247000-4 7.08711-10 1.252000-4 7.28014-10 1.257000-4 7.44688-10 1.262000-4 7.59300-10 1.267000-4 7.71948-10 1.274000-4 7.86710-10 1.282000-4 8.00170-10 1.289000-4 8.09644-10 1.303167-4 8.23572-10 1.315000-4 8.32540-10 1.333521-4 8.42013-10 1.380384-4 8.56237-10 1.496236-4 8.82659-10 1.603245-4 9.02791-10 1.668600-4 9.10349-10 1.668600-4 9.51486-10 1.681700-4 9.54246-10 1.681700-4 2.928712-9 1.682300-4 2.961285-9 1.685000-4 3.080666-9 1.690500-4 3.301635-9 1.694000-4 3.429386-9 1.697500-4 3.545983-9 1.701000-4 3.653536-9 1.704500-4 3.751732-9 1.708200-4 3.845748-9 1.712000-4 3.933067-9 1.718000-4 4.051397-9 1.722000-4 4.123432-9 1.727000-4 4.199718-9 1.733000-4 4.277518-9 1.738700-4 4.338334-9 1.738700-4 4.056692-9 1.751000-4 4.077331-9 1.775000-4 4.092493-9 1.810000-4 4.110918-9 1.842000-4 4.148537-9 1.865000-4 4.190422-9 1.890000-4 4.258286-9 1.910000-4 4.328285-9 1.922000-4 4.377641-9 1.940000-4 4.466876-9 1.957000-4 4.565539-9 1.980000-4 4.722049-9 2.000000-4 4.874307-9 2.030000-4 5.129293-9 2.051300-4 5.329750-9 2.090000-4 5.723054-9 2.142000-4 6.282521-9 2.220000-4 7.136500-9 2.264644-4 7.600374-9 2.317395-4 8.100595-9 2.344229-4 8.328806-9 2.380000-4 8.606085-9 2.430000-4 8.930559-9 2.465000-4 9.119888-9 2.511886-4 9.326148-9 2.560000-4 9.497865-9 2.620000-4 9.671239-9 2.670000-4 9.780592-9 2.770000-4 9.944542-9 2.884032-4 1.006510-8 3.050000-4 1.015044-8 3.350000-4 1.019103-8 3.890451-4 1.017180-8 4.406100-4 1.011936-8 4.406100-4 1.032057-8 4.649500-4 1.049242-8 4.649500-4 1.173896-8 4.760000-4 1.222815-8 4.954502-4 1.280809-8 5.230000-4 1.351927-8 5.754399-4 1.440362-8 6.691600-4 1.592231-8 6.691600-4 2.187662-8 7.328245-4 2.338072-8 7.994300-4 2.476312-8 7.994300-4 2.662545-8 9.000000-4 2.890090-8 9.234300-4 2.942528-8 9.234300-4 3.241180-8 1.047129-3 3.537130-8 1.150000-3 3.762123-8 1.273503-3 4.013331-8 1.428894-3 4.301400-8 1.610000-3 4.603593-8 1.798871-3 4.886948-8 2.018366-3 5.181821-8 2.238721-3 5.449317-8 2.511886-3 5.748415-8 2.586000-3 5.823302-8 2.586000-3 6.538797-8 2.698000-3 6.583795-8 2.698000-3 2.654414-5 2.800000-3 2.575356-5 2.917427-3 2.537293-5 3.126079-3 2.533183-5 3.166900-3 2.530692-5 3.166900-3 2.495503-5 3.692700-3 2.469037-5 3.692700-3 2.735750-5 3.935501-3 2.749708-5 3.973900-3 2.751202-5 3.973900-3 2.787782-5 4.800000-3 2.828976-5 6.531306-3 2.889439-5 8.810489-3 2.946674-5 1.188502-2 3.001412-5 1.342500-2 3.022826-5 1.342500-2 2.455778-3 1.364583-2 2.458086-3 1.576800-2 2.440155-3 1.576800-2 3.508297-3 1.591000-2 3.516760-3 1.637600-2 3.519358-3 1.637600-2 3.664171-3 2.089296-2 3.703136-3 2.754229-2 3.727935-3 4.073803-2 3.745169-3 7.762471-2 3.746056-3 9.083200-2 3.743029-3 9.083200-2 6.413294-2 1.083927-1 6.465727-2 1.380384-1 6.518008-2 2.113489-1 6.575217-2 3.845918-1 6.622015-2 8.810489-1 6.679815-2 1.479108+0 6.687319-2 1.000000+5 6.686647-2 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 6.350000-6 0.0 8.600000-6 2.250000-6 8.600000-6 1.288141-6 9.225714-6 1.865426-6 1.011579-5 2.703935-6 1.150000-5 4.033594-6 1.348963-5 5.976946-6 1.769000-5 1.013257-5 1.769000-5 8.067441-6 2.065380-5 1.135499-5 2.400000-5 1.497756-5 2.851018-5 1.972969-5 3.217000-5 2.350182-5 3.217000-5 7.818503-6 3.250000-5 7.870222-6 3.280000-5 7.897699-6 3.311311-5 7.902303-6 3.365000-5 7.865467-6 3.537000-5 7.615387-6 3.537000-5 6.035833-6 3.600000-5 6.185399-6 3.650000-5 6.324139-6 3.700000-5 6.490750-6 3.740000-5 6.645684-6 3.801894-5 6.924620-6 3.850000-5 7.175729-6 3.920000-5 7.586116-6 4.000000-5 8.116827-6 4.073803-5 8.650951-6 4.168694-5 9.388557-6 4.315191-5 1.059576-5 4.540000-5 1.253372-5 4.800000-5 1.486302-5 5.060000-5 1.730182-5 5.500000-5 2.160964-5 8.222426-5 4.890013-5 9.746000-5 6.426988-5 9.746000-5 5.903893-5 1.000000-4 6.079477-5 1.035142-4 6.370705-5 1.135011-4 7.291816-5 1.231200-4 8.190861-5 1.231200-4 7.772446-5 1.252000-4 7.880589-5 1.282000-4 8.101480-5 1.350000-4 8.705413-5 1.668600-4 1.164418-4 1.668600-4 1.139525-4 1.681700-4 1.150823-4 1.681700-4 1.123136-4 1.708200-4 1.133921-4 1.738700-4 1.154650-4 1.738700-4 1.137269-4 1.766000-4 1.152041-4 1.810000-4 1.187062-4 1.973000-4 1.332167-4 2.113489-4 1.445834-4 2.344229-4 1.628743-4 2.520000-4 1.780892-4 2.770000-4 2.014617-4 3.320000-4 2.553630-4 4.406100-4 3.637821-4 4.406100-4 3.623495-4 4.649500-4 3.853283-4 4.649500-4 3.842687-4 5.432503-4 4.590986-4 6.691600-4 5.814044-4 6.691600-4 5.758867-4 7.994300-4 7.021075-4 7.994300-4 7.006483-4 9.234300-4 8.210929-4 9.234300-4 8.185401-4 1.531087-3 1.412316-3 2.586000-3 2.453888-3 2.586000-3 2.394676-3 2.698000-3 2.506059-3 2.698000-3 2.467074-3 3.166900-3 2.936821-3 3.166900-3 2.922641-3 3.692700-3 3.446390-3 3.692700-3 3.436144-3 3.973900-3 3.715456-3 3.973900-3 3.707959-3 1.342500-2 1.311848-2 1.342500-2 1.062297-2 1.576800-2 1.298012-2 1.576800-2 1.189771-2 1.637600-2 1.249424-2 1.637600-2 1.232283-2 2.917427-2 2.503607-2 9.083200-2 8.665052-2 9.083200-2 2.629960-2 9.549926-2 3.079145-2 1.047129-1 3.973115-2 1.380384-1 7.245758-2 2.426610-1 1.763873-1 2.754229+0 2.686959+0 1.000000+5 9.999993+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 9.083200-2 1.889684+3 9.200000-2 1.828828+3 9.250000-2 1.807636+3 9.332543-2 1.764583+3 9.450000-2 1.715354+3 9.730000-2 1.588652+3 1.011580-1 1.445881+3 1.150000-1 1.039298+3 1.273503-1 8.011343+2 2.454709-1 1.439910+2 2.951209-1 8.952121+1 3.427678-1 6.123126+1 3.935501-1 4.344661+1 4.518559-1 3.105825+1 5.128614-1 2.300252+1 5.821032-1 1.717368+1 6.606935-1 1.292325+1 7.498942-1 9.801406+0 8.413951-1 7.679263+0 9.440609-1 6.062187+0 1.096478+0 4.504157+0 1.258925+0 3.443137+0 1.428894+0 2.715919+0 1.603245+0 2.204639+0 1.819701+0 1.765669+0 2.089296+0 1.395971+0 2.371374+0 1.134018+0 2.722701+0 9.113773-1 3.162278+0 7.250939-1 3.672823+0 5.811379-1 4.265795+0 4.691587-1 5.011872+0 3.753552-1 5.956621+0 2.978323-1 7.161434+0 2.345881-1 8.609938+0 1.861721-1 1.100000+1 1.382600-1 1.364583+1 1.073077-1 1.698244+1 8.353139-2 2.213095+1 6.213100-2 3.000000+1 4.458300-2 4.265795+1 3.062147-2 6.606934+1 1.937433-2 1.071519+2 1.177914-2 1.905461+2 6.554390-3 3.801894+2 3.263794-3 7.585776+2 1.629890-3 1.202264+4 1.025348-4 1.000000+5 1.232200-5 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 9.083200-2 3.888300-4 1.000000+5 3.888300-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.083200-2 8.059300-2 1.000000+5 8.059300-2 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.083200-2 9.850170-3 1.000000+5 9.999992+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.637600-2 6.756177+3 1.720000-2 6.227140+3 1.760000-2 5.969300+3 1.850000-2 5.499500+3 1.995262-2 4.791920+3 2.162719-2 4.160481+3 2.344229-2 3.582452+3 2.600160-2 2.940543+3 3.235937-2 1.905599+3 3.715352-2 1.431375+3 4.168694-2 1.123437+3 5.011872-2 7.527051+2 5.888437-2 5.246545+2 6.683439-2 3.926934+2 7.762471-2 2.770587+2 9.120108-2 1.889043+2 1.083927-1 1.243935+2 1.318257-1 7.689721+1 1.698244-1 4.091529+1 2.660725-1 1.330017+1 3.273407-1 7.970706+0 3.845918-1 5.389078+0 4.466836-1 3.772484+0 5.128614-1 2.733070+0 5.888437-1 1.995782+0 6.683439-1 1.506585+0 7.585776-1 1.145390+0 8.511380-1 8.979425-1 9.549926-1 7.091831-1 1.135011+0 5.039043-1 1.273503+0 4.032959-1 1.445440+0 3.183390-1 1.621810+0 2.585940-1 1.840772+0 2.072334-1 2.113489+0 1.639398-1 2.398833+0 1.332650-1 2.754229+0 1.071725-1 3.235937+0 8.385649-2 3.758374+0 6.728509-2 4.365158+0 5.437839-2 5.128614+0 4.355127-2 6.095369+0 3.459164-2 7.328245+0 2.727239-2 8.810489+0 2.166397-2 1.135011+1 1.594491-2 1.428894+1 1.217859-2 1.883649+1 8.897940-3 2.511886+1 6.471860-3 3.467369+1 4.568788-3 4.954502+1 3.131670-3 7.852356+1 1.939900-3 1.548817+2 9.681709-4 3.090295+2 4.813501-4 6.165950+2 2.402628-4 4.897788+3 3.013919-5 1.000000+5 1.475200-6 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.637600-2 5.597900-4 1.000000+5 5.597900-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.637600-2 4.593800-3 1.000000+5 4.593800-3 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.637600-2 1.122241-2 1.000000+5 9.999999+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.576800-2 1.353359+4 1.591000-2 1.336972+4 1.710000-2 1.118900+4 1.798871-2 9.842700+3 2.113489-2 6.501100+3 2.344229-2 4.942700+3 2.985383-2 2.566900+3 3.758374-2 1.350300+3 4.677351-2 7.241200+2 5.821032-2 3.844500+2 7.328245-2 1.957900+2 1.531088-1 2.212000+1 1.905461-1 1.164840+1 2.317395-1 6.608584+0 2.722701-1 4.173811+0 3.126079-1 2.833734+0 3.589219-1 1.937890+0 4.073803-1 1.377546+0 4.623810-1 9.865117-1 5.188000-1 7.333572-1 5.821032-1 5.491690-1 6.456542-1 4.261735-1 7.161434-1 3.332993-1 8.035261-1 2.555972-1 9.225714-1 1.876156-1 9.885531-1 1.615604-1 1.083927+0 1.337557-1 1.188502+0 1.115407-1 1.303167+0 9.367079-2 1.462177+0 7.594075-2 1.717908+0 5.701758-2 1.972423+0 4.492350-2 2.238721+0 3.636815-2 2.540973+0 2.966630-2 2.917427+0 2.393827-2 3.388442+0 1.910966-2 3.935501+0 1.536798-2 4.623810+0 1.224919-2 5.495409+0 9.684475-3 6.531306+0 7.715085-3 7.852356+0 6.100298-3 9.440609+0 4.858966-3 1.174898+1 3.735436-3 1.500000+1 2.810600-3 1.972423+1 2.062670-3 2.630268+1 1.502128-3 3.672823+1 1.048599-3 5.370318+1 7.024478-4 8.413951+1 4.409404-4 1.640590+2 2.228697-4 3.273407+2 1.108592-4 6.531306+2 5.534341-5 5.188000+3 6.944355-6 1.000000+5 3.600200-7 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.576800-2 3.981500-4 1.000000+5 3.981500-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.576800-2 6.214000-3 1.000000+5 6.214000-3 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.576800-2 9.155850-3 1.000000+5 9.999999+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.342500-2 3.163114+4 1.360000-2 3.066907+4 1.380384-2 2.940520+4 1.513561-2 2.288236+4 1.819701-2 1.368582+4 2.018366-2 1.017760+4 2.540973-2 5.205606+3 3.235937-2 2.526127+3 4.027170-2 1.294926+3 4.954502-2 6.801953+2 6.095369-2 3.541618+2 7.673615-2 1.701022+2 1.531088-1 1.845777+1 1.862087-1 9.891374+0 2.238721-1 5.538892+0 2.600160-1 3.483154+0 2.951209-1 2.368312+0 3.349654-1 1.622329+0 3.758374-1 1.158305+0 4.216965-1 8.331051-1 4.677351-1 6.234999-1 5.188000-1 4.698118-1 5.754399-1 3.566132-1 6.382635-1 2.727626-1 7.079458-1 2.102283-1 8.035261-1 1.539097-1 8.709636-1 1.270757-1 9.332543-1 1.085706-1 9.885531-1 9.577381-2 1.071519+0 8.104817-2 1.174898+0 6.749826-2 1.273503+0 5.787690-2 1.412538+0 4.786350-2 1.717908+0 3.378556-2 1.972423+0 2.661346-2 2.238721+0 2.154210-2 2.540973+0 1.756975-2 2.917427+0 1.417485-2 3.388442+0 1.131539-2 3.935501+0 9.100001-3 4.623810+0 7.253247-3 5.495409+0 5.734453-3 6.531306+0 4.568304-3 7.852356+0 3.612113-3 9.440609+0 2.877130-3 1.174898+1 2.211891-3 1.500000+1 1.664200-3 1.972423+1 1.221351-3 2.600160+1 9.006897-4 3.589219+1 6.363318-4 5.248075+1 4.260709-4 8.317638+1 2.642005-4 1.640590+2 1.319623-4 3.273407+2 6.564261-5 6.531306+2 3.277018-5 5.188000+3 4.111889-6 1.000000+5 2.131800-7 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.342500-2 3.930200-4 1.000000+5 3.930200-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.342500-2 4.077400-3 1.000000+5 4.077400-3 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.342500-2 8.954580-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 3.973900-3 1.859086+4 4.315191-3 1.682095+4 4.650000-3 1.517058+4 4.900000-3 1.416166+4 5.128614-3 1.328120+4 6.606934-3 9.067525+3 7.079458-3 8.114325+3 8.709636-3 5.752116+3 9.800000-3 4.681460+3 1.122018-2 3.680586+3 1.333521-2 2.676181+3 1.500000-2 2.141620+3 1.757924-2 1.574795+3 2.089296-2 1.116526+3 2.500000-2 7.736640+2 2.951209-2 5.465161+2 3.467369-2 3.869928+2 4.073803-2 2.720641+2 4.800000-2 1.886964+2 5.623413-2 1.315965+2 6.683439-2 8.816762+1 8.035261-2 5.707701+1 9.500000-2 3.818280+1 1.174898-1 2.270501+1 1.566751-1 1.112632+1 2.722701-1 2.803979+0 3.311311-1 1.731987+0 3.935501-1 1.140329+0 4.570882-1 7.998173-1 5.248075-1 5.804312-1 6.025596-1 4.243329-1 6.839117-1 3.208252-1 7.762471-1 2.442655-1 8.810489-1 1.872361-1 9.885531-1 1.481000-1 1.148154+0 1.102241-1 1.303167+0 8.642854-2 1.479108+0 6.829655-2 1.659587+0 5.555181-2 1.905461+0 4.370427-2 2.162719+0 3.530988-2 2.454709+0 2.874207-2 2.818383+0 2.314407-2 3.273407+0 1.844425-2 3.801894+0 1.480777-2 4.466836+0 1.178318-2 5.308844+0 9.301173-3 6.309573+0 7.398613-3 7.585776+0 5.841671-3 9.120108+0 4.646639-3 1.148154+1 3.519603-3 1.445440+1 2.689229-3 1.905461+1 1.965582-3 2.540973+1 1.430149-3 3.467369+1 1.022367-3 5.000000+1 6.940900-4 7.943282+1 4.289645-4 1.584893+2 2.116348-4 3.162278+2 1.052432-4 6.309573+2 5.253509-5 5.011872+3 6.590759-6 1.000000+5 3.301000-7 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 3.973900-3 4.049700-4 1.000000+5 4.049700-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.973900-3 3.643900-5 1.000000+5 3.643900-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 3.973900-3 3.532491-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.692700-3 2.990079+4 3.820000-3 2.914437+4 4.073803-3 2.704268+4 4.315191-3 2.521287+4 4.518559-3 2.376435+4 4.800000-3 2.184000+4 5.432503-3 1.816828+4 5.821032-3 1.633238+4 6.165950-3 1.489384+4 6.531306-3 1.350668+4 7.673615-3 1.014877+4 8.222426-3 8.925227+3 9.549926-3 6.668932+3 1.040000-2 5.616080+3 1.202264-2 4.145090+3 1.318257-2 3.397340+3 1.513561-2 2.498294+3 1.678804-2 1.970109+3 1.905461-2 1.464263+3 2.213095-2 1.020684+3 2.540973-2 7.250445+2 2.900000-2 5.189520+2 3.311311-2 3.685421+2 3.801894-2 2.562992+2 4.415704-2 1.717190+2 5.188000-2 1.107203+2 6.165950-2 6.866406+1 7.500000-2 3.961220+1 9.549926-2 1.992307+1 1.819701-1 3.126836+0 2.290868-1 1.624418+0 2.722701-1 1.000807+0 3.162278-1 6.621850-1 3.630781-1 4.553532-1 4.168694-1 3.154463-1 4.731513-1 2.269686-1 5.308844-1 1.694212-1 5.956621-1 1.273580-1 6.683439-1 9.644706-2 7.413102-1 7.561246-2 8.413951-1 5.664187-2 9.225714-1 4.623208-2 1.000000+0 3.898125-2 1.096478+0 3.234211-2 1.216186+0 2.642636-2 1.348963+0 2.175258-2 1.548817+0 1.692871-2 1.778279+0 1.326411-2 2.044000+0 1.045296-2 2.317395+0 8.496738-3 2.630268+0 6.943868-3 3.054921+0 5.515148-3 3.548134+0 4.412425-3 4.120975+0 3.556393-3 4.841724+0 2.840872-3 5.754399+0 2.250706-3 6.839116+0 1.796478-3 8.222427+0 1.423079-3 1.011579+1 1.104186-3 1.216186+1 8.862054-4 1.548817+1 6.695636-4 2.018366+1 4.967879-4 2.691535+1 3.619919-4 3.801894+1 2.497551-4 5.623413+1 1.654273-4 8.810489+1 1.039226-4 1.698244+2 5.317413-5 3.388442+2 2.645731-5 6.760830+2 1.320905-5 5.370318+3 1.657727-6 1.000000+5 8.896200-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.692700-3 3.531600-4 1.000000+5 3.531600-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.692700-3 7.098400-5 1.000000+5 7.098400-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.692700-3 3.268556-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.166900-3 9.658770+4 3.228000-3 9.615560+4 3.507519-3 8.437691+4 3.845918-3 7.261985+4 4.073803-3 6.571574+4 4.900000-3 4.710840+4 5.308844-3 4.052867+4 5.650000-3 3.586180+4 6.683439-3 2.557720+4 7.244360-3 2.158725+4 8.511380-3 1.522524+4 9.332543-3 1.237993+4 1.071519-2 9.009583+3 1.202264-2 6.855388+3 1.350000-2 5.175680+3 1.548817-2 3.675678+3 1.737801-2 2.740133+3 1.972423-2 1.970116+3 2.264644-2 1.363458+3 2.600160-2 9.359990+2 3.019952-2 6.173878+2 3.507519-2 4.037580+2 4.027170-2 2.708928+2 4.677351-2 1.745525+2 5.500000-2 1.076364+2 6.531306-2 6.394119+1 7.943282-2 3.505018+1 1.000000-1 1.712828+1 1.757924-1 2.924789+0 2.187762-1 1.484065+0 2.570396-1 9.064294-1 2.951209-1 5.981385-1 3.349654-1 4.114996-1 3.801894-1 2.852278-1 4.265795-1 2.058847-1 4.786301-1 1.497424-1 5.308844-1 1.132326-1 5.888437-1 8.623132-2 6.531306-1 6.616369-2 7.244360-1 5.114547-2 8.609938-1 3.371850-2 9.225714-1 2.872138-2 9.772372-1 2.527434-2 1.047129+0 2.185341-2 1.135011+0 1.857218-2 1.244515+0 1.554032-2 1.380384+0 1.283631-2 1.698244+0 8.874089-3 1.949845+0 6.985408-3 2.213095+0 5.650055-3 2.511886+0 4.605210-3 2.884032+0 3.713204-3 3.349654+0 2.962549-3 3.890451+0 2.381174-3 4.570882+0 1.896894-3 5.432503+0 1.498934-3 6.456542+0 1.193498-3 7.762471+0 9.432473-4 9.332543+0 7.509755-4 1.161449+1 5.770994-4 1.479108+1 4.352979-4 1.949845+1 3.184197-4 2.600160+1 2.318245-4 3.630781+1 1.617837-4 5.308844+1 1.083515-4 8.413951+1 6.720137-5 1.659587+2 3.357106-5 3.311311+2 1.670088-5 6.606934+2 8.337632-6 5.248075+3 1.046230-6 1.000000+5 5.486900-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.166900-3 3.115600-4 1.000000+5 3.115600-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.166900-3 2.272100-5 1.000000+5 2.272100-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.166900-3 2.832619-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.698000-3 2.893140+5 2.738000-3 2.764041+5 2.745000-3 2.738148+5 2.800000-3 2.567532+5 2.951209-3 2.238662+5 3.090295-3 1.993750+5 3.427678-3 1.518746+5 3.800000-3 1.149984+5 4.216965-3 8.624010+4 4.650000-3 6.537480+4 5.128614-3 4.919292+4 5.623413-3 3.748524+4 6.683439-3 2.218815+4 7.300000-3 1.688380+4 8.609938-3 1.002219+4 9.660509-3 6.907275+3 1.096478-2 4.561656+3 1.288250-2 2.660547+3 1.479108-2 1.661134+3 1.659587-2 1.115590+3 1.905461-2 6.873921+2 2.213095-2 4.036588+2 2.600160-2 2.256737+2 3.090295-2 1.200160+2 3.672823-2 6.331779+1 4.466836-2 3.042549+1 5.623413-2 1.273711+1 1.109175-1 9.580265-1 1.380384-1 4.192921-1 1.659587-1 2.105414-1 1.927525-1 1.210904-1 2.238721-1 7.014908-2 2.540973-1 4.452664-2 2.851018-1 2.967134-2 3.126079-1 2.155860-2 3.507519-1 1.457416-2 3.935501-1 9.928433-3 4.415705-1 6.811906-3 4.897788-1 4.888853-3 5.370318-1 3.664844-3 5.888437-1 2.765343-3 6.456542-1 2.100154-3 7.079458-1 1.606442-3 7.673615-1 1.278897-3 8.609938-1 9.279223-4 9.120108-1 7.958430-4 9.549926-1 7.082236-4 1.000000+0 6.344424-4 1.047129+0 5.723195-4 1.109175+0 5.068067-4 1.174898+0 4.519114-4 1.258925+0 3.967651-4 1.364583+0 3.434519-4 1.531087+0 2.813907-4 1.840772+0 2.034330-4 2.065380+0 1.671335-4 2.344229+0 1.356844-4 2.660725+0 1.109436-4 3.090295+0 8.815827-5 3.589219+0 7.057355-5 4.168694+0 5.691334-5 4.897788+0 4.548656-5 5.821032+0 3.605456-5 6.918310+0 2.879170-5 8.317638+0 2.281870-5 1.023293+1 1.771291-5 1.230269+1 1.422093-5 1.548817+1 1.089133-5 2.018366+1 8.080652-6 2.691535+1 5.888058-6 3.758374+1 4.112563-6 5.559043+1 2.723331-6 8.709636+1 1.710520-6 1.678804+2 8.750883-7 3.349654+2 4.353659-7 6.683439+2 2.173601-7 5.308844+3 2.727648-8 1.000000+5 1.447100-9 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.698000-3 2.309800-4 1.000000+5 2.309800-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.698000-3 8.285100-5 1.000000+5 8.285100-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.698000-3 2.384169-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.586000-3 4.100526+5 2.623500-3 3.976198+5 2.625000-3 3.962003+5 2.820000-3 3.465711+5 2.900000-3 3.273845+5 2.917427-3 3.240327+5 3.235937-3 2.461216+5 3.589219-3 1.855521+5 4.000000-3 1.369890+5 4.415704-3 1.031773+5 5.000000-3 7.156260+4 5.500000-3 5.375742+4 6.683439-3 2.942361+4 7.328245-3 2.196846+4 8.500000-3 1.362162+4 9.885531-3 8.276691+3 1.096478-2 5.844285+3 1.258925-2 3.648337+3 1.462177-2 2.168364+3 1.678804-2 1.330014+3 1.905461-2 8.440359+2 2.162719-2 5.325071+2 2.483133-2 3.200524+2 2.851018-2 1.911403+2 3.349654-2 1.039939+2 4.000000-2 5.277780+1 4.841724-2 2.522074+1 6.025596-2 1.074117+1 1.083927-1 1.071686+0 1.318257-1 5.001931-1 1.566751-1 2.571612-1 1.798871-1 1.519914-1 2.018366-1 9.866204-2 2.290868-1 6.202016-2 2.691535-1 3.464477-2 2.851018-1 2.820229-2 3.126079-1 2.046937-2 3.427678-1 1.495897-2 3.758374-1 1.100591-2 4.168694-1 7.853316-3 4.570882-1 5.859042-3 5.011872-1 4.404202-3 5.495409-1 3.338281-3 6.025596-1 2.549859-3 6.606935-1 1.960211-3 7.161434-1 1.567765-3 7.762471-1 1.262670-3 8.511380-1 9.925501-4 9.015711-1 8.590895-4 9.549926-1 7.486426-4 1.000000+0 6.744142-4 1.059254+0 5.960956-4 1.135011+0 5.179252-4 1.216186+0 4.531073-4 1.333521+0 3.821405-4 1.737801+0 2.390079-4 2.000000+0 1.875534-4 2.264644+0 1.525261-4 2.570396+0 1.244826-4 2.951209+0 1.004956-4 3.427678+0 8.026632-5 4.000000+0 6.415100-5 4.677351+0 5.150860-5 5.559043+0 4.074392-5 6.606934+0 3.247435-5 8.000000+0 2.546100-5 9.660509+0 2.018687-5 1.174898+1 1.595919-5 1.479108+1 1.220289-5 1.949845+1 8.926390-6 2.600160+1 6.498765-6 3.589219+1 4.591305-6 5.248075+1 3.074250-6 8.317638+1 1.906271-6 1.640590+2 9.521907-7 3.273407+2 4.736259-7 6.531306+2 2.364406-7 5.188000+3 2.966820-8 1.000000+5 1.538100-9 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.586000-3 2.291900-4 1.000000+5 2.291900-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.586000-3 6.997200-8 1.000000+5 6.997200-8 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.586000-3 2.356740-3 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 9.234300-4 4.188032+4 1.015000-3 3.955500+4 1.083927-3 3.738186+4 1.318257-3 3.074560+4 1.364583-3 2.959338+4 1.650000-3 2.365440+4 1.778279-3 2.150795+4 2.150000-3 1.667136+4 2.371374-3 1.451244+4 2.800000-3 1.136452+4 3.198895-3 9.261250+3 3.672823-3 7.445124+3 4.365158-3 5.610711+3 5.188000-3 4.188752+3 6.095369-3 3.163018+3 7.161434-3 2.371461+3 8.511380-3 1.728607+3 1.023293-2 1.223634+3 1.216186-2 8.785295+2 1.445440-2 6.265166+2 1.737801-2 4.335260+2 2.065380-2 3.047544+2 2.454709-2 2.126689+2 2.917427-2 1.473539+2 3.467369-2 1.013450+2 4.120975-2 6.919752+1 4.897788-2 4.690547+1 5.821032-2 3.154938+1 7.000000-2 2.050018+1 8.511380-2 1.288012+1 9.772372-2 9.224808+0 1.230269-1 5.242831+0 1.737801-1 2.223564+0 2.722701-1 7.258351-1 3.311311-1 4.484455-1 3.935501-1 2.953079-1 4.570882-1 2.071492-1 5.248075-1 1.503384-1 6.025596-1 1.099088-1 6.839117-1 8.309392-2 7.762471-1 6.326082-2 8.810489-1 4.848603-2 9.885531-1 3.835302-2 1.161449+0 2.791478-2 1.303167+0 2.238295-2 1.479108+0 1.768712-2 1.659587+0 1.438889-2 1.905461+0 1.132016-2 2.162719+0 9.142133-3 2.454709+0 7.441040-3 2.818383+0 5.992990-3 3.311311+0 4.695412-3 3.845918+0 3.771847-3 4.518559+0 3.003061-3 5.370318+0 2.371681-3 6.382635+0 1.887471-3 7.673615+0 1.491044-3 9.225714+0 1.186543-3 1.161449+1 8.991310-4 1.479108+1 6.781980-4 1.949845+1 4.961098-4 2.600160+1 3.611858-4 3.630781+1 2.520543-4 5.308844+1 1.688126-4 8.317638+1 1.059490-4 1.640590+2 5.291912-5 3.273407+2 2.632347-5 6.531306+2 1.314081-5 5.188000+3 1.648932-6 1.000000+5 8.548600-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 9.234300-4 2.346300-4 1.000000+5 2.346300-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.234300-4 1.844100-7 1.000000+5 1.844100-7 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.234300-4 6.886156-4 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 7.994300-4 3.635938+4 8.709636-4 3.635684+4 9.225714-4 3.622118+4 9.772372-4 3.573448+4 1.083927-3 3.463157+4 1.161449-3 3.355117+4 1.273503-3 3.190945+4 1.400000-3 2.998120+4 1.496236-3 2.851142+4 1.610000-3 2.675300+4 1.778279-3 2.435084+4 1.927525-3 2.241889+4 2.089296-3 2.047943+4 2.317395-3 1.810049+4 2.511886-3 1.634635+4 2.800000-3 1.412516+4 3.090295-3 1.229318+4 3.427678-3 1.053742+4 3.801894-3 8.977060+3 4.265795-3 7.450171+3 4.731513-3 6.259972+3 5.370318-3 5.017192+3 6.025596-3 4.071947+3 6.800000-3 3.246260+3 7.673615-3 2.568871+3 8.709636-3 1.994780+3 9.800000-3 1.565356+3 1.109175-2 1.205283+3 1.258925-2 9.159411+2 1.428894-2 6.910991+2 1.621810-2 5.178346+2 1.840772-2 3.853566+2 2.113489-2 2.770578+2 2.398833-2 2.033217+2 2.786121-2 1.399339+2 3.198895-2 9.840412+1 3.715352-2 6.668549+1 4.315191-2 4.486432+1 5.069907-2 2.906073+1 6.025596-2 1.810884+1 7.328245-2 1.050540+1 9.120108-2 5.668935+0 1.244515-1 2.336106+0 1.905461-1 6.913137-1 2.600160-1 2.885916-1 3.054921-1 1.849192-1 3.548134-1 1.232882-1 4.073803-1 8.541555-2 4.623810-1 6.142314-2 5.188000-1 4.581537-2 5.821032-1 3.441241-2 6.531306-1 2.603781-2 7.328245-1 1.985480-2 8.317638-1 1.486258-2 9.120108-1 1.211449-2 9.885531-1 1.020087-2 1.083927+0 8.453662-3 1.188502+0 7.055152-3 1.318257+0 5.798461-3 1.479108+0 4.697795-3 1.698244+0 3.672292-3 1.949845+0 2.891645-3 2.213095+0 2.339165-3 2.511886+0 1.906601-3 2.884032+0 1.537205-3 3.349654+0 1.226399-3 3.890451+0 9.857077-4 4.570882+0 7.852314-4 5.432503+0 6.204812-4 6.456542+0 4.940637-4 7.762471+0 3.904640-4 9.332543+0 3.108713-4 1.161449+1 2.388977-4 1.479108+1 1.802002-4 1.949845+1 1.318103-4 2.600160+1 9.596558-5 3.589219+1 6.779853-5 5.248075+1 4.539699-5 8.317638+1 2.814939-5 1.640590+2 1.406075-5 3.273407+2 6.993982-6 6.531306+2 3.491534-6 5.188000+3 4.381078-7 1.000000+5 2.271400-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 7.994300-4 2.068100-4 1.000000+5 2.068100-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.994300-4 1.647100-7 1.000000+5 1.647100-7 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 7.994300-4 5.924553-4 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 6.691600-4 1.974945+5 7.190000-4 1.917188+5 7.300000-4 1.902316+5 7.585776-4 1.843217+5 7.943282-4 1.782840+5 8.709636-4 1.641299+5 9.549926-4 1.497791+5 1.059254-3 1.342548+5 1.202264-3 1.161579+5 1.303167-3 1.051162+5 1.500000-3 8.738400+4 1.640590-3 7.718693+4 1.862087-3 6.412701+4 2.070000-3 5.458760+4 2.371374-3 4.393598+4 2.630268-3 3.699938+4 3.019952-3 2.916640+4 3.400000-3 2.359108+4 3.801894-3 1.920237+4 4.365158-3 1.475567+4 4.954502-3 1.149616+4 5.559043-3 9.103612+3 6.309573-3 6.992718+3 7.244360-3 5.199380+3 8.317638-3 3.832047+3 9.549926-3 2.800579+3 1.083927-2 2.085350+3 1.244515-2 1.499631+3 1.412538-2 1.100435+3 1.584893-2 8.256264+2 1.800000-2 5.970640+2 2.065380-2 4.174064+2 2.344229-2 2.981029+2 2.691535-2 2.049132+2 3.090295-2 1.398098+2 3.548134-2 9.473036+1 4.120975-2 6.166871+1 4.786301-2 3.984844+1 5.623413-2 2.470748+1 6.683439-2 1.468997+1 8.035261-2 8.370834+0 1.000000-1 4.258320+0 1.840772-1 6.357486-1 2.000000-1 4.917680-1 2.290868-1 3.181927-1 2.483133-1 2.474272-1 2.630268-1 2.079432-1 2.786121-1 1.758919-1 2.917427-1 1.547101-1 3.000060-1 1.435224-1 3.427678-1 9.702963-2 3.890451-1 6.740584-2 4.365158-1 4.875755-2 4.897788-1 3.553863-2 5.432503-1 2.692811-2 6.025596-1 2.054703-2 6.683439-1 1.579128-2 7.413102-1 1.222660-2 8.609938-1 8.535862-3 9.225714-1 7.276916-3 9.772372-1 6.407141-3 1.047129+0 5.542097-3 1.135011+0 4.711027-3 1.244515+0 3.942105-3 1.380384+0 3.255565-3 1.698244+0 2.249998-3 1.949845+0 1.771261-3 2.213095+0 1.432870-3 2.511886+0 1.167939-3 2.884032+0 9.416909-4 3.349654+0 7.513085-4 3.890451+0 6.038678-4 4.570882+0 4.810570-4 5.432503+0 3.801246-4 6.456542+0 3.026716-4 7.762471+0 2.392113-4 9.332543+0 1.904514-4 1.161449+1 1.463539-4 1.462177+1 1.118678-4 1.927525+1 8.179807-5 2.570396+1 5.953318-5 3.548134+1 4.204916-5 5.128614+1 2.848958-5 8.128305+1 1.765845-5 1.621810+2 8.715009-6 3.235937+2 4.334672-6 6.456542+2 2.163847-6 5.128614+3 2.715007-7 1.000000+5 1.391500-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 6.691600-4 1.868600-4 1.000000+5 1.868600-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.691600-4 1.230000-7 1.000000+5 1.230000-7 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 6.691600-4 4.821770-4 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 4.649500-4 8.317680+4 4.665000-4 8.716556+4 4.755000-4 1.103795+5 4.760000-4 1.114715+5 4.930000-4 1.389732+5 4.940000-4 1.404803+5 5.100000-4 1.609524+5 5.128614-4 1.641019+5 5.190000-4 1.717825+5 5.230000-4 1.761071+5 5.260000-4 1.781695+5 5.350000-4 1.831562+5 5.370318-4 1.846845+5 5.559043-4 1.941558+5 5.720000-4 2.008328+5 6.025596-4 2.111838+5 6.280000-4 2.185384+5 6.500000-4 2.232916+5 6.780000-4 2.273440+5 7.000000-4 2.294712+5 7.300000-4 2.309604+5 7.650000-4 2.307856+5 8.035261-4 2.286189+5 8.413951-4 2.250278+5 8.810489-4 2.200941+5 9.225714-4 2.140968+5 9.772372-4 2.050812+5 1.035142-3 1.952235+5 1.096478-3 1.846947+5 1.161449-3 1.734700+5 1.244515-3 1.595637+5 1.333521-3 1.458080+5 1.428894-3 1.322884+5 1.531087-3 1.191485+5 1.659587-3 1.046961+5 1.778279-3 9.317163+4 1.927525-3 8.069807+4 2.113489-3 6.794096+4 2.300000-3 5.755960+4 2.511886-3 4.807437+4 2.722701-3 4.052303+4 3.000000-3 3.273088+4 3.300000-3 2.633204+4 3.650000-3 2.074896+4 4.027170-3 1.632007+4 4.466836-3 1.257200+4 4.897788-3 9.903678+3 5.432503-3 7.520331+3 6.095369-3 5.491284+3 6.839116-3 3.975085+3 7.673615-3 2.853562+3 8.609938-3 2.032063+3 9.660509-3 1.436086+3 1.096478-2 9.718106+2 1.230269-2 6.762183+2 1.380384-2 4.672977+2 1.566751-2 3.088363+2 1.778279-2 2.025103+2 2.018366-2 1.318044+2 2.317395-2 8.184936+1 2.660725-2 5.043998+1 3.090295-2 2.961903+1 3.589219-2 1.726320+1 4.265795-2 9.185873+0 5.128614-2 4.649513+0 6.382635-2 2.054343+0 1.244515-1 1.668219-1 1.621810-1 6.220193-2 1.840772-1 3.901814-2 2.264644-1 1.842398-2 2.570396-1 1.172747-2 2.884032-1 7.831316-3 3.162278-1 5.703800-3 3.548134-1 3.866390-3 3.981072-1 2.640487-3 4.466836-1 1.815713-3 4.954502-1 1.305533-3 5.495409-1 9.457393-4 6.025596-1 7.150295-4 6.606935-1 5.444706-4 7.244360-1 4.177685-4 8.609938-1 2.583161-4 9.120108-1 2.216872-4 9.549926-1 1.973572-4 1.000000+0 1.768431-4 1.047129+0 1.595496-4 1.109175+0 1.413040-4 1.174898+0 1.260075-4 1.258925+0 1.106320-4 1.364583+0 9.575507-5 1.531087+0 7.843813-5 1.840772+0 5.671309-5 2.065380+0 4.658818-5 2.344229+0 3.781838-5 2.660725+0 3.092365-5 3.090295+0 2.457496-5 3.589219+0 1.967336-5 4.168694+0 1.586528-5 4.897788+0 1.267952-5 5.821032+0 1.005061-5 6.918310+0 8.026092-6 8.317638+0 6.360915-6 1.023293+1 4.937525-6 1.230269+1 3.964278-6 1.548817+1 3.036047-6 2.018366+1 2.252561-6 2.660725+1 1.662058-6 3.715352+1 1.160535-6 5.495409+1 7.683358-7 8.609938+1 4.824925-7 1.678804+2 2.439399-7 3.349654+2 1.213667-7 6.683439+2 6.059066-8 5.308844+3 7.603643-9 1.000000+5 4.03380-10 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 4.649500-4 1.430100-4 1.000000+5 1.430100-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.649500-4 8.516500-8 1.000000+5 8.516500-8 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.649500-4 3.218548-4 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.406100-4 1.169736+5 4.450000-4 1.420628+5 4.535000-4 1.806672+5 4.620000-4 2.170611+5 4.623810-4 2.185984+5 4.731513-4 2.506025+5 4.760000-4 2.568071+5 4.841724-4 2.741511+5 4.954502-4 2.917842+5 5.120000-4 3.106608+5 5.308844-4 3.268792+5 5.432503-4 3.357296+5 5.650000-4 3.480606+5 5.956621-4 3.627073+5 6.165950-4 3.701985+5 6.382635-4 3.751653+5 6.700000-4 3.792774+5 7.000000-4 3.802386+5 7.328245-4 3.782417+5 7.673615-4 3.734832+5 8.100000-4 3.650274+5 8.511380-4 3.548842+5 9.000000-4 3.408600+5 9.549926-4 3.241878+5 1.015000-3 3.059454+5 1.071519-3 2.887598+5 1.135011-3 2.697285+5 1.216186-3 2.467904+5 1.303167-3 2.243862+5 1.380384-3 2.061214+5 1.500000-3 1.808376+5 1.621810-3 1.587789+5 1.757924-3 1.377626+5 1.905461-3 1.186989+5 2.070000-3 1.011444+5 2.264644-3 8.437282+4 2.454709-3 7.124823+4 2.691535-3 5.830745+4 2.951209-3 4.735825+4 3.235937-3 3.819592+4 3.548134-3 3.058667+4 3.900000-3 2.418552+4 4.315191-3 1.866933+4 4.731513-3 1.465047+4 5.188000-3 1.143179+4 5.821032-3 8.313532+3 6.531306-3 5.992192+3 7.328245-3 4.282240+3 8.317638-3 2.931151+3 9.332543-3 2.059078+3 1.050000-2 1.423080+3 1.174898-2 9.932259+2 1.303167-2 7.086235+2 1.479108-2 4.654406+2 1.659587-2 3.153335+2 1.883649-2 2.038829+2 2.137962-2 1.308303+2 2.426610-2 8.336187+1 2.786121-2 5.059945+1 3.198895-2 3.048663+1 3.715352-2 1.747685+1 4.365158-2 9.527086+0 5.188000-2 4.936361+0 6.382635-2 2.224341+0 1.202264-1 1.912711-1 1.462177-1 9.024601-2 1.698244-1 5.101549-2 1.949845-1 3.039113-2 2.187762-1 1.984272-2 2.426610-1 1.360698-2 2.691535-1 9.395402-3 2.985383-1 6.537734-3 3.311311-1 4.585434-3 3.630781-1 3.368106-3 4.027170-1 2.398655-3 4.415705-1 1.785360-3 4.841724-1 1.338802-3 5.248075-1 1.048002-3 5.688529-1 8.257279-4 6.237348-1 6.335279-4 6.760830-1 5.056718-4 7.328245-1 4.061131-4 8.511380-1 2.735723-4 9.015711-1 2.363134-4 9.549926-1 2.055277-4 1.000000+0 1.849027-4 1.059254+0 1.632336-4 1.122018+0 1.450002-4 1.202264+0 1.266694-4 1.303167+0 1.090355-4 1.603245+0 7.555666-5 1.862087+0 5.811754-5 2.113489+0 4.687124-5 2.398833+0 3.810093-5 2.754229+0 3.064148-5 3.235937+0 2.397538-5 3.758374+0 1.923719-5 4.365158+0 1.554710-5 5.128614+0 1.245161-5 6.095369+0 9.889934-6 7.328245+0 7.797506-6 8.810489+0 6.193829-6 1.122018+1 4.621692-6 1.412538+1 3.528680-6 1.840772+1 2.610548-6 2.454709+1 1.897503-6 3.349654+1 1.355414-6 4.786301+1 9.284200-7 7.585776+1 5.747584-7 1.513561+2 2.833560-7 3.019952+2 1.408557-7 6.025596+2 7.030164-8 4.786301+3 8.817765-9 1.000000+5 4.21760-10 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.406100-4 1.380700-4 1.000000+5 1.380700-4 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.406100-4 1.872300-8 1.000000+5 1.872300-8 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.406100-4 3.025213-4 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.738700-4 9.269760+4 1.739300-4 9.435720+4 1.742000-4 1.002336+5 1.745000-4 1.063566+5 1.748000-4 1.120404+5 1.751000-4 1.172886+5 1.755000-4 1.236702+5 1.758000-4 1.279704+5 1.762000-4 1.330524+5 1.766000-4 1.375026+5 1.770000-4 1.413804+5 1.775000-4 1.454208+5 1.781000-4 1.492368+5 1.787000-4 1.520934+5 1.793000-4 1.541562+5 1.800000-4 1.557606+5 1.810000-4 1.568682+5 1.820000-4 1.569726+5 1.835000-4 1.559286+5 1.890000-4 1.486416+5 1.910000-4 1.466052+5 1.933000-4 1.452702+5 1.955000-4 1.452018+5 1.972423-4 1.460770+5 1.992000-4 1.481076+5 2.010000-4 1.509762+5 2.030000-4 1.553178+5 2.051300-4 1.612907+5 2.070000-4 1.676760+5 2.090000-4 1.756788+5 2.113489-4 1.866276+5 2.142000-4 2.021454+5 2.170000-4 2.198298+5 2.205000-4 2.454594+5 2.242500-4 2.775044+5 2.300000-4 3.363984+5 2.400000-4 4.671072+5 2.450000-4 5.442960+5 2.490000-4 6.102720+5 2.520000-4 6.616140+5 2.560000-4 7.318140+5 2.600160-4 8.034526+5 2.635000-4 8.661120+5 2.670000-4 9.291600+5 2.722701-4 1.023691+6 2.770000-4 1.107600+6 2.818383-4 1.191987+6 2.851018-4 1.247768+6 2.900000-4 1.329312+6 2.951209-4 1.410998+6 3.000000-4 1.484544+6 3.054921-4 1.561866+6 3.100000-4 1.620438+6 3.162278-4 1.693833+6 3.235937-4 1.769209+6 3.311311-4 1.834451+6 3.390000-4 1.891056+6 3.470000-4 1.937700+6 3.550000-4 1.974978+6 3.650000-4 2.009466+6 3.758374-4 2.032351+6 3.850000-4 2.041194+6 3.981072-4 2.039009+6 4.120975-4 2.021308+6 4.280000-4 1.986300+6 4.466836-4 1.931435+6 4.650000-4 1.868508+6 4.850000-4 1.793070+6 5.080000-4 1.700610+6 5.308844-4 1.605945+6 5.623413-4 1.478023+6 5.900000-4 1.370592+6 6.237348-4 1.247113+6 6.606934-4 1.122489+6 7.000000-4 1.003200+6 7.413102-4 8.921011+5 7.852356-4 7.882619+5 8.413951-4 6.745677+5 9.015711-4 5.733779+5 9.700000-4 4.792200+5 1.047129-3 3.943392+5 1.135011-3 3.188687+5 1.230269-3 2.559649+5 1.333521-3 2.042011+5 1.462177-3 1.564965+5 1.603245-3 1.190640+5 1.778279-3 8.677228+4 1.950000-3 6.499620+4 2.150000-3 4.752924+4 2.400000-3 3.311334+4 2.691535-3 2.250831+4 3.019952-3 1.513558+4 3.388442-3 1.008965+4 3.801894-3 6.668976+3 4.300000-3 4.243722+3 4.841724-3 2.720887+3 5.370318-3 1.833472+3 6.025596-3 1.173614+3 6.760830-3 7.457960+2 7.673615-3 4.494067+2 8.609938-3 2.814991+2 9.772372-3 1.670673+2 1.109175-2 9.841578+1 1.258925-2 5.753890+1 1.428894-2 3.339894+1 1.621810-2 1.924981+1 1.862087-2 1.047569+1 2.162719-2 5.377751+0 2.540973-2 2.602601+0 3.090295-2 1.069040+0 3.845918-2 3.923157-1 5.128614-2 1.038334-1 8.222426-2 1.164203-2 9.885531-2 4.987911-3 1.161449-1 2.395781-3 1.364583-1 1.159302-3 1.621810-1 5.371890-4 1.840772-1 3.076418-4 2.137962-1 1.605360-4 2.371374-1 1.030311-4 2.600160-1 6.997422-5 2.786121-1 5.264629-5 3.019952-1 3.801509-5 3.273407-1 2.765319-5 3.630781-1 1.851810-5 4.466836-1 8.403400-6 4.841724-1 6.216908-6 5.128614-1 5.038377-6 5.559043-1 3.782309-6 6.309573-1 2.435577-6 6.839117-1 1.852047-6 7.328245-1 1.474253-6 7.852356-1 1.182527-6 8.609938-1 8.868208-7 9.015711-1 7.720368-7 9.440609-1 6.765714-7 9.772372-1 6.162542-7 1.011579+0 5.646472-7 1.047129+0 5.202611-7 1.096478+0 4.698954-7 1.148154+0 4.274732-7 1.216186+0 3.829406-7 1.303167+0 3.383249-7 1.412538+0 2.950132-7 1.513561+0 2.630086-7 1.905461+0 1.755195-7 2.137962+0 1.444473-7 2.426610+0 1.174985-7 2.786121+0 9.455559-8 3.273407+0 7.403053-8 3.801894+0 5.943545-8 4.466836+0 4.729399-8 5.308844+0 3.733100-8 6.309573+0 2.969527-8 7.585776+0 2.344691-8 9.120108+0 1.865008-8 1.148154+1 1.412676-8 1.462177+1 1.065128-8 1.927525+1 7.788457-9 2.570396+1 5.668486-9 3.548134+1 4.003702-9 5.128614+1 2.712638-9 8.128305+1 1.681342-9 1.621810+2 8.29802-10 3.235937+2 4.12731-10 6.456542+2 2.06035-10 5.128614+3 2.58514-11 1.000000+5 1.32490-12 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.738700-4 8.025600-5 1.000000+5 8.025600-5 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.738700-4 7.97450-10 1.000000+5 7.97450-10 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.738700-4 9.361320-5 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.681700-4 1.222672+5 1.682300-4 1.244144+5 1.685000-4 1.322104+5 1.688000-4 1.403024+5 1.690500-4 1.466688+5 1.694000-4 1.550232+5 1.697500-4 1.626120+5 1.701000-4 1.695704+5 1.704500-4 1.758592+5 1.708200-4 1.817922+5 1.712000-4 1.872000+5 1.716000-4 1.921928+5 1.722000-4 1.984576+5 1.727000-4 2.026656+5 1.733000-4 2.066432+5 1.740000-4 2.100288+5 1.748300-4 2.126204+5 1.758000-4 2.141408+5 1.770000-4 2.144096+5 1.785000-4 2.131584+5 1.842000-4 2.041400+5 1.865000-4 2.016320+5 1.885000-4 2.007216+5 1.905461-4 2.012474+5 1.922000-4 2.028608+5 1.940000-4 2.058976+5 1.957000-4 2.100384+5 1.973000-4 2.150840+5 1.990000-4 2.216792+5 2.010000-4 2.310592+5 2.030000-4 2.421816+5 2.050000-4 2.550328+5 2.075000-4 2.735226+5 2.100000-4 2.947304+5 2.135000-4 3.290944+5 2.170000-4 3.691512+5 2.220000-4 4.367968+5 2.330000-4 6.298472+5 2.380000-4 7.357048+5 2.426610-4 8.420305+5 2.465000-4 9.335680+5 2.500000-4 1.019088+6 2.540973-4 1.120677+6 2.580000-4 1.217992+6 2.620000-4 1.317640+6 2.670000-4 1.441312+6 2.722701-4 1.569644+6 2.770000-4 1.682336+6 2.830000-4 1.820648+6 2.884032-4 1.939327+6 2.930000-4 2.034888+6 2.985383-4 2.142342+6 3.050000-4 2.255968+6 3.100000-4 2.334720+6 3.162278-4 2.421692+6 3.240000-4 2.513808+6 3.320000-4 2.591432+6 3.390000-4 2.646816+6 3.470000-4 2.697496+6 3.550000-4 2.735872+6 3.650000-4 2.767952+6 3.758374-4 2.784269+6 3.850000-4 2.784392+6 3.981072-4 2.766234+6 4.120975-4 2.728275+6 4.280000-4 2.669032+6 4.466836-4 2.585002+6 4.650000-4 2.491992+6 4.850000-4 2.382008+6 5.080000-4 2.250056+6 5.308844-4 2.118612+6 5.623413-4 1.943428+6 5.900000-4 1.797896+6 6.237348-4 1.630737+6 6.606934-4 1.463373+6 7.000000-4 1.305176+6 7.413102-4 1.158161+6 7.852356-4 1.020761+6 8.500000-4 8.511760+5 9.120108-4 7.189111+5 9.885531-4 5.874569+5 1.071519-3 4.766347+5 1.161449-3 3.836194+5 1.270000-3 2.994168+5 1.396368-3 2.280485+5 1.513561-3 1.798823+5 1.678804-3 1.314451+5 1.840772-3 9.868099+4 2.018366-3 7.362382+4 2.264644-3 5.056640+4 2.540973-3 3.438759+4 2.855000-3 2.305334+4 3.198895-3 1.546473+4 3.589219-3 1.023535+4 4.027170-3 6.717306+3 4.518559-3 4.371613+3 5.044660-3 2.876496+3 5.688529-3 1.807327+3 6.309573-3 1.202974+3 7.079458-3 7.597206+2 8.035261-3 4.544163+2 9.015711-3 2.829545+2 1.023293-2 1.666857+2 1.161449-2 9.746853+1 1.318257-2 5.657873+1 1.500000-2 3.224968+1 1.717908-2 1.772027+1 1.972423-2 9.557811+0 2.290868-2 4.858912+0 2.691535-2 2.327095+0 3.273407-2 9.439556-1 4.073803-2 3.414614-1 4.570882-2 1.991569-1 7.762471-2 1.642654-2 9.440609-2 6.573531-3 1.109175-1 3.112419-3 1.288250-1 1.565737-3 1.479108-1 8.367972-4 1.678804-1 4.746647-4 1.895000-1 2.780201-4 2.113489-1 1.726884-4 2.317395-1 1.162777-4 2.540973-1 7.883365-5 2.786121-1 5.387957-5 3.019952-1 3.888068-5 3.273407-1 2.824854-5 3.548134-1 2.067486-5 3.845918-1 1.524032-5 4.120975-1 1.180473-5 4.466836-1 8.823773-6 4.841724-1 6.641371-6 5.370318-1 4.645225-6 5.821032-1 3.541999-6 6.309573-1 2.720569-6 6.760830-1 2.183702-6 7.413102-1 1.642983-6 7.852356-1 1.384670-6 8.226300-1 1.212399-6 8.609938-1 1.070516-6 9.015711-1 9.494030-7 9.440609-1 8.471059-7 9.885531-1 7.606815-7 1.047129+0 6.707952-7 1.109175+0 5.953079-7 1.188502+0 5.194572-7 1.288250+0 4.465946-7 1.412538+0 3.786387-7 1.840772+0 2.376578-7 2.089296+0 1.915349-7 2.371374+0 1.555854-7 2.691535+0 1.273000-7 3.126079+0 1.012238-7 3.630781+0 8.108034-8 4.216965+0 6.542229-8 4.954502+0 5.231502-8 5.888437+0 4.148802-8 7.079458+0 3.266218-8 8.511380+0 2.590973-8 1.071519+1 1.957576-8 1.318257+1 1.532588-8 1.621810+1 1.207565-8 2.089296+1 9.085579-9 2.786121+1 6.625826-9 3.935501+1 4.575426-9 5.956621+1 2.960683-9 9.332543+1 1.861765-9 1.757924+2 9.75780-10 3.507519+2 4.85617-10 6.998420+2 2.42474-10 5.559043+3 3.04354-11 1.000000+5 1.69070-12 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.681700-4 7.732800-5 1.000000+5 7.732800-5 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.681700-4 1.825400-8 1.000000+5 1.825400-8 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.681700-4 9.082375-5 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.668600-4 5.383140+4 1.690000-4 5.513420+4 1.718000-4 5.642220+4 1.757924-4 5.788284+4 1.800000-4 5.903820+4 1.840772-4 5.981021+4 1.883649-4 6.023882+4 1.930000-4 6.031760+4 2.000000-4 5.994160+4 2.238721-4 5.789355+4 2.500000-4 5.626200+4 2.650000-4 5.506260+4 2.818383-4 5.341056+4 3.054921-4 5.089621+4 3.350000-4 4.785440+4 3.600000-4 4.533880+4 3.890451-4 4.245041+4 4.315191-4 3.852999+4 4.731513-4 3.513448+4 5.188000-4 3.180171+4 5.888437-4 2.748153+4 6.531306-4 2.423244+4 7.500000-4 2.029920+4 8.511380-4 1.714410+4 1.000000-3 1.370908+4 1.188502-3 1.068912+4 1.428894-3 8.129445+3 1.717908-3 6.134313+3 2.089296-3 4.513723+3 2.511886-3 3.357536+3 3.054921-3 2.432846+3 3.672823-3 1.782808+3 4.415704-3 1.296718+3 5.370318-3 9.171738+2 6.531306-3 6.433691+2 7.943282-3 4.477949+2 9.660509-3 3.091693+2 1.174898-2 2.117930+2 1.428894-2 1.439305+2 1.737801-2 9.703985+1 2.089296-2 6.645318+1 2.511886-2 4.515664+1 3.019952-2 3.044536+1 3.589219-2 2.088636+1 4.265795-2 1.422722+1 5.069907-2 9.622372+0 6.095369-2 6.291423+0 7.328245-2 4.081204+0 9.154000-2 2.399434+0 1.135011-1 1.419042+0 1.496236-1 7.160583-1 2.722701-1 1.609788-1 3.311311-1 9.946275-2 3.935501-1 6.550004-2 4.570882-1 4.594584-2 5.248075-1 3.334486-2 6.025596-1 2.437765-2 6.839117-1 1.843067-2 7.762471-1 1.403186-2 8.810489-1 1.075465-2 9.885531-1 8.506673-3 1.148154+0 6.331479-3 1.303167+0 4.964350-3 1.479108+0 3.922866-3 1.659587+0 3.190816-3 1.905461+0 2.510306-3 2.162719+0 2.028149-3 2.454709+0 1.650912-3 2.818383+0 1.329380-3 3.273407+0 1.059443-3 3.801894+0 8.505727-4 4.466836+0 6.768221-4 5.308844+0 5.342470-4 6.309573+0 4.249731-4 7.585776+0 3.355432-4 9.120108+0 2.668973-4 1.148154+1 2.021635-4 1.445440+1 1.544674-4 1.905461+1 1.129008-4 2.540973+1 8.214553-5 3.507519+1 5.800524-5 5.069907+1 3.929201-5 8.035261+1 2.434851-5 1.603245+2 1.201456-5 3.198895+2 5.975398-6 6.382635+2 2.982858-6 5.069907+3 3.742400-7 1.000000+5 1.896100-8 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.668600-4 9.532500-5 1.000000+5 9.532500-5 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.668600-4 1.652500-9 1.000000+5 1.652500-9 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.668600-4 7.153335-5 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.231200-4 4.393880+5 1.236000-4 4.628060+5 1.239500-4 4.775320+5 1.243000-4 4.906860+5 1.247000-4 5.034120+5 1.252000-4 5.164520+5 1.257000-4 5.262560+5 1.262000-4 5.335140+5 1.267000-4 5.383720+5 1.274000-4 5.416280+5 1.282000-4 5.413420+5 1.289000-4 5.385000+5 1.300000-4 5.304800+5 1.315000-4 5.150600+5 1.333521-4 4.924874+5 1.364583-4 4.528587+5 1.470000-4 3.409580+5 1.548817-4 2.814833+5 1.659587-4 2.201486+5 1.778279-4 1.731680+5 1.883649-4 1.425455+5 2.000000-4 1.172504+5 2.113489-4 9.870048+4 2.220000-4 8.525840+4 2.330000-4 7.437560+4 2.426610-4 6.675550+4 2.511886-4 6.121749+4 2.620000-4 5.545960+4 2.730000-4 5.072580+4 2.851018-4 4.649997+4 2.985383-4 4.270177+4 3.126079-4 3.947310+4 3.280000-4 3.660320+4 3.464100-4 3.385953+4 3.650000-4 3.165440+4 3.890451-4 2.938642+4 4.216965-4 2.698963+4 4.677351-4 2.441295+4 6.760830-4 1.750686+4 7.852356-4 1.518580+4 9.015711-4 1.320761+4 1.011579-3 1.168711+4 1.150000-3 1.012638+4 1.318257-3 8.623919+3 1.513561-3 7.270246+3 1.737801-3 6.078716+3 2.000000-3 5.023680+3 2.290868-3 4.144503+3 2.600160-3 3.438433+3 2.951209-3 2.831958+3 3.349654-3 2.315418+3 3.801894-3 1.879168+3 4.315191-3 1.513713+3 4.897788-3 1.210571+3 5.559043-3 9.610446+2 6.309573-3 7.574780+2 7.161434-3 5.927150+2 8.128305-3 4.605461+2 9.225714-3 3.553652+2 1.047129-2 2.723218+2 1.188502-2 2.072642+2 1.364583-2 1.527022+2 1.566751-2 1.116120+2 1.798871-2 8.094091+1 2.065380-2 5.824933+1 2.371374-2 4.160266+1 2.722701-2 2.950083+1 3.126079-2 2.077318+1 3.630781-2 1.409731+1 4.265795-2 9.214040+0 5.069907-2 5.796241+0 6.095369-2 3.508720+0 7.413102-2 2.042561+0 8.511380-2 1.387177+0 1.096478-1 6.760197-1 1.862087-1 1.490292-1 2.344229-1 7.772875-2 2.786121-1 4.803582-2 3.235937-1 3.186721-2 3.715352-1 2.196560-2 4.265795-1 1.525193-2 4.841724-1 1.099714-2 5.432503-1 8.224641-3 6.095369-1 6.194487-3 6.839117-1 4.701382-3 7.585776-1 3.692971-3 8.609938-1 2.770794-3 9.332543-1 2.322120-3 1.011579+0 1.959698-3 1.109175+0 1.627232-3 1.230269+0 1.330620-3 1.364583+0 1.096104-3 1.584893+0 8.362404-4 1.819701+0 6.560464-4 2.089296+0 5.185367-4 2.371374+0 4.212143-4 2.691535+0 3.446357-4 3.126079+0 2.740403-4 3.630781+0 2.195102-4 4.216965+0 1.771202-4 4.954502+0 1.416344-4 5.888437+0 1.123253-4 7.079458+0 8.842548-5 8.511380+0 7.014455-5 1.071519+1 5.299728-5 1.318257+1 4.149015-5 1.640590+1 3.226677-5 2.113489+1 2.428494-5 2.818383+1 1.771496-5 4.027170+1 1.208799-5 6.165950+1 7.732233-6 9.549926+1 4.922798-6 1.778279+2 2.611016-6 3.548134+2 1.299553-6 7.079458+2 6.488936-7 5.623413+3 8.145488-8 1.000000+5 4.577100-9 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.231200-4 6.690400-5 1.000000+5 6.690400-5 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.231200-4 2.973000-9 1.000000+5 2.973000-9 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.231200-4 5.621303-5 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 9.746000-5 9.462640+5 9.795000-5 9.654200+5 9.870000-5 9.868840+5 9.930000-5 9.979800+5 1.000000-4 1.004832+6 1.007000-4 1.006340+6 1.015900-4 1.001825+6 1.025000-4 9.914160+5 1.035142-4 9.750766+5 1.050000-4 9.454440+5 1.071519-4 8.967399+5 1.100000-4 8.307640+5 1.220000-4 6.040520+5 1.280000-4 5.245280+5 1.333521-4 4.683047+5 1.380384-4 4.281403+5 1.430000-4 3.929972+5 1.480000-4 3.637244+5 1.540000-4 3.349296+5 1.603245-4 3.102362+5 1.678804-4 2.862638+5 1.760000-4 2.652964+5 1.862087-4 2.439281+5 1.980000-4 2.242820+5 2.089296-4 2.096804+5 2.238721-4 1.937835+5 2.449500-4 1.765202+5 3.548134-4 1.230238+5 4.073803-4 1.068035+5 4.623810-4 9.317827+4 5.300000-4 7.978000+4 6.025596-4 6.843704+4 6.839116-4 5.839199+4 7.852356-4 4.875241+4 9.120108-4 3.974149+4 1.059254-3 3.212664+4 1.230269-3 2.576429+4 1.428894-3 2.050086+4 1.659587-3 1.618661+4 1.905461-3 1.292656+4 2.162719-3 1.045690+4 2.500000-3 8.146080+3 2.851018-3 6.449486+3 3.235937-3 5.118774+3 3.672823-3 4.034337+3 4.216965-3 3.087820+3 4.841724-3 2.345087+3 5.495409-3 1.809513+3 6.237348-3 1.386875+3 7.161434-3 1.029648+3 8.222426-3 7.584110+2 9.332543-3 5.689933+2 1.071519-2 4.125857+2 1.230269-2 2.968164+2 1.412538-2 2.118385+2 1.603245-2 1.544052+2 1.840772-2 1.085224+2 2.089296-2 7.801818+1 2.398833-2 5.402343+1 2.754229-2 3.712858+1 3.162278-2 2.533275+1 3.630781-2 1.716343+1 4.168694-2 1.154778+1 4.872880-2 7.319686+0 5.754399-2 4.466918+0 6.839116-2 2.653876+0 8.413951-2 1.408946+0 1.047129-1 7.166821-1 1.778279-1 1.376802-1 2.238721-1 6.768463-2 2.630268-1 4.146745-2 3.019952-1 2.743684-2 3.427678-1 1.892201-2 3.890451-1 1.314758-2 4.365158-1 9.511712-3 4.897788-1 6.933637-3 5.432503-1 5.253591-3 6.025596-1 4.008492-3 6.683439-1 3.081031-3 7.413102-1 2.385900-3 8.609938-1 1.666003-3 9.225714-1 1.420369-3 9.772372-1 1.250657-3 1.047129+0 1.081856-3 1.135011+0 9.196346-4 1.244515+0 7.695092-4 1.380384+0 6.354685-4 1.698244+0 4.391748-4 1.949845+0 3.457130-4 2.213095+0 2.796325-4 2.511886+0 2.279215-4 2.884032+0 1.837712-4 3.349654+0 1.466161-4 3.890451+0 1.178414-4 4.570882+0 9.387741-5 5.432503+0 7.418194-5 6.456542+0 5.906713-5 7.762471+0 4.668239-5 9.332543+0 3.716638-5 1.161449+1 2.856131-5 1.479108+1 2.154324-5 1.949845+1 1.575891-5 2.600160+1 1.147323-5 3.589219+1 8.105709-6 5.248075+1 5.427429-6 8.317638+1 3.365431-6 1.640590+2 1.680977-6 3.273407+2 8.361673-7 6.531306+2 4.174364-7 5.188000+3 5.237797-8 1.000000+5 2.715500-9 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 9.746000-5 6.507300-5 1.000000+5 6.507300-5 1 83000 7 7 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 9.746000-5 6.66390-10 1.000000+5 6.66390-10 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 9.746000-5 3.238633-5 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 3.537000-5 1.566932+6 3.570000-5 1.621400+6 3.600000-5 1.680644+6 3.630781-5 1.753716+6 3.670000-5 1.866248+6 3.700000-5 1.968416+6 3.740000-5 2.128216+6 3.770000-5 2.266304+6 3.815000-5 2.507492+6 3.850000-5 2.725684+6 3.900000-5 3.087480+6 3.950000-5 3.514092+6 4.000000-5 4.011640+6 4.220000-5 7.191520+6 4.300000-5 8.780200+6 4.365158-5 1.023157+7 4.420000-5 1.154260+7 4.472100-5 1.283923+7 4.520000-5 1.405472+7 4.570882-5 1.533957+7 4.610000-5 1.630500+7 4.650000-5 1.725772+7 4.700000-5 1.836972+7 4.740000-5 1.918296+7 4.786301-5 2.002230+7 4.820000-5 2.055900+7 4.860000-5 2.110732+7 4.900000-5 2.155768+7 4.954502-5 2.201291+7 5.000000-5 2.225948+7 5.060000-5 2.241096+7 5.110000-5 2.240324+7 5.170000-5 2.225544+7 5.230000-5 2.198312+7 5.308844-5 2.148002+7 5.400000-5 2.075620+7 5.500000-5 1.985900+7 5.623413-5 1.868811+7 5.800000-5 1.702372+7 6.025596-5 1.504543+7 6.309573-5 1.286561+7 6.606934-5 1.092931+7 6.918310-5 9.220882+6 7.244360-5 7.723153+6 7.585776-5 6.421112+6 8.000000-5 5.147120+6 8.511380-5 3.948126+6 9.300000-5 2.678500+6 1.047129-4 1.580113+6 1.135011-4 1.097326+6 1.216186-4 7.970931+5 1.303167-4 5.744588+5 1.400000-4 4.058760+5 1.584893-4 2.209044+5 1.659587-4 1.770067+5 1.720000-4 1.497104+5 1.780000-4 1.282016+5 1.840772-4 1.109197+5 1.883649-4 1.009416+5 1.930000-4 9.186320+4 1.980000-4 8.374480+4 2.020000-4 7.830800+4 2.065380-4 7.310442+4 2.113489-4 6.854098+4 2.162719-4 6.472535+4 2.213095-4 6.156966+4 2.264644-4 5.899351+4 2.317395-4 5.692506+4 2.371374-4 5.529846+4 2.430000-4 5.399120+4 2.500000-4 5.292960+4 2.570396-4 5.229031+4 2.650000-4 5.195800+4 2.754229-4 5.197342+4 2.884032-4 5.244887+4 3.100000-4 5.374160+4 3.427678-4 5.573252+4 3.672823-4 5.679146+4 3.930000-4 5.744000+4 4.168694-4 5.761288+4 4.430000-4 5.739840+4 4.700000-4 5.678280+4 5.011872-4 5.571021+4 5.308844-4 5.442708+4 5.688529-4 5.254495+4 6.025596-4 5.071067+4 6.500000-4 4.802400+4 7.000000-4 4.516840+4 7.500000-4 4.238640+4 8.128305-4 3.904953+4 8.912509-4 3.521429+4 9.700000-4 3.175152+4 1.060990-3 2.821556+4 1.148154-3 2.526996+4 1.244515-3 2.243564+4 1.364583-3 1.943503+4 1.500000-3 1.663520+4 1.640590-3 1.425999+4 1.798871-3 1.208446+4 1.972423-3 1.016838+4 2.162719-3 8.498006+3 2.371374-3 7.053885+3 2.600160-3 5.815853+3 2.851018-3 4.763315+3 3.126079-3 3.875509+3 3.467369-3 3.049148+3 3.845918-3 2.380033+3 4.265795-3 1.843453+3 4.731513-3 1.417144+3 5.248075-3 1.081477+3 5.821032-3 8.194641+2 6.456542-3 6.166573+2 7.161434-3 4.609309+2 8.000000-3 3.352672+2 8.912509-3 2.440236+2 1.000000-2 1.726208+2 1.122018-2 1.211935+2 1.258925-2 8.447161+1 1.412538-2 5.846640+1 1.603245-2 3.871420+1 1.819701-2 2.543739+1 2.065380-2 1.658745+1 2.344229-2 1.073701+1 2.691535-2 6.630225+0 3.090295-2 4.064781+0 3.589219-2 2.374864+0 4.216965-2 1.321536+0 5.069907-2 6.710032-1 6.309573-2 2.973038-1 1.273503-1 2.134663-2 1.584893-1 9.466841-3 1.883649-1 5.017402-3 2.187762-1 2.914236-3 2.483133-1 1.852141-3 2.786121-1 1.234557-3 3.090295-1 8.624876-4 3.467369-1 5.837247-4 3.890451-1 3.980342-4 4.365158-1 2.733453-4 4.841724-1 1.962815-4 5.370318-1 1.420245-4 5.888437-1 1.072530-4 6.456542-1 8.150754-5 7.079458-1 6.238408-5 7.673615-1 4.969247-5 8.222427-1 4.099761-5 8.709636-1 3.499479-5 9.225714-1 3.008252-5 9.660509-1 2.682511-5 1.011579+0 2.408464-5 1.071519+0 2.123287-5 1.135011+0 1.885979-5 1.202264+0 1.685820-5 1.288250+0 1.483279-5 1.412538+0 1.260640-5 1.531087+0 1.096570-5 1.840772+0 7.928517-6 2.065380+0 6.512772-6 2.344229+0 5.286602-6 2.660725+0 4.322877-6 3.090295+0 3.435479-6 3.589219+0 2.750229-6 4.168694+0 2.217891-6 4.897788+0 1.772579-6 5.821032+0 1.405049-6 6.918310+0 1.121948-6 8.317638+0 8.892254-7 1.023293+1 6.902441-7 1.230269+1 5.541820-7 1.548817+1 4.244160-7 2.018366+1 3.148989-7 2.660725+1 2.323483-7 3.715352+1 1.622395-7 5.495409+1 1.074080-7 8.609938+1 6.744990-8 1.678804+2 3.410187-8 3.349654+2 1.696594-8 6.683439+2 8.470184-9 5.308844+3 1.062975-9 1.000000+5 5.63900-11 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 3.537000-5 3.537000-5 1.000000+5 3.537000-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 3.537000-5 0.0 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 3.217000-5 2.980224+6 3.250000-5 3.052170+6 3.280000-5 3.134898+6 3.311311-5 3.244209+6 3.340000-5 3.366426+6 3.365000-5 3.489762+6 3.400000-5 3.692454+6 3.430000-5 3.895230+6 3.470000-5 4.209804+6 3.510000-5 4.579134+6 3.550000-5 5.007714+6 3.600000-5 5.633754+6 3.650000-5 6.368640+6 3.720000-5 7.597020+6 3.920000-5 1.254108+7 4.000000-5 1.512234+7 4.050000-5 1.688580+7 4.110000-5 1.911840+7 4.168694-5 2.137686+7 4.220000-5 2.336322+7 4.265795-5 2.510440+7 4.315191-5 2.690866+7 4.365158-5 2.861157+7 4.410000-5 3.000264+7 4.450000-5 3.111306+7 4.500000-5 3.230742+7 4.540000-5 3.309732+7 4.590000-5 3.387222+7 4.630000-5 3.432306+7 4.680000-5 3.468396+7 4.740000-5 3.484164+7 4.800000-5 3.473364+7 4.870000-5 3.432768+7 4.920000-5 3.388812+7 5.000000-5 3.298908+7 5.080000-5 3.192126+7 5.190000-5 3.029592+7 5.308844-5 2.846275+7 5.450000-5 2.630820+7 5.650000-5 2.344296+7 5.900000-5 2.026686+7 6.165950-5 1.737003+7 6.456542-5 1.469272+7 6.760830-5 1.234251+7 7.079458-5 1.029371+7 7.413102-5 8.525474+6 7.800000-5 6.874380+6 8.317638-5 5.196997+6 9.015711-5 3.630226+6 1.000000-4 2.269782+6 1.083927-4 1.564734+6 1.161449-4 1.130467+6 1.244515-4 8.108020+5 1.496236-4 3.278069+5 1.566751-4 2.628101+5 1.621810-4 2.238618+5 1.678804-4 1.919628+5 1.720000-4 1.732092+5 1.760000-4 1.578552+5 1.810000-4 1.419756+5 1.850000-4 1.314996+5 1.890000-4 1.226898+5 1.930000-4 1.153032+5 1.972423-4 1.087949+5 2.018366-4 1.030492+5 2.065380-4 9.834487+4 2.113489-4 9.455230+4 2.162719-4 9.155290+4 2.213095-4 8.923736+4 2.264644-4 8.750747+4 2.330000-4 8.605380+4 2.400000-4 8.520480+4 2.483133-4 8.489703+4 2.580000-4 8.519520+4 2.722701-4 8.637727+4 3.200000-4 9.158220+4 3.430000-4 9.327960+4 3.630781-4 9.409178+4 3.850000-4 9.437520+4 4.073803-4 9.405172+4 4.350000-4 9.297180+4 4.623810-4 9.127689+4 4.954502-4 8.868856+4 5.300000-4 8.555400+4 5.688529-4 8.178196+4 6.100000-4 7.759320+4 6.531306-4 7.321750+4 7.079458-4 6.785328+4 7.673615-4 6.235100+4 8.317638-4 5.683856+4 8.912509-4 5.221674+4 9.660509-4 4.699590+4 1.059254-3 4.130124+4 1.161449-3 3.601677+4 1.273503-3 3.117058+4 1.396368-3 2.677601+4 1.531087-3 2.283369+4 1.678804-3 1.933328+4 1.840772-3 1.625418+4 2.018366-3 1.357095+4 2.213095-3 1.125449+4 2.426610-3 9.270717+3 2.660725-3 7.585888+3 2.917427-3 6.166497+3 3.198895-3 4.979731+3 3.548134-3 3.885495+3 3.935501-3 3.007960+3 4.365158-3 2.310942+3 4.841724-3 1.762102+3 5.370318-3 1.333577+3 6.000000-3 9.820345+2 6.683439-3 7.237048+2 7.413102-3 5.360358+2 8.222426-3 3.943825+2 9.225714-3 2.782926+2 1.035142-2 1.948665+2 1.161449-2 1.354565+2 1.303167-2 9.343834+1 1.462177-2 6.395104+1 1.621810-2 4.511232+1 1.840772-2 2.920966+1 2.137962-2 1.732188+1 2.454709-2 1.061691+1 2.818383-2 6.460082+0 3.198895-2 4.069403+0 3.715352-2 2.338454+0 4.365158-2 1.277842+0 5.188000-2 6.636755-1 6.456542-2 2.866919-1 1.202264-1 2.593978-2 1.462177-1 1.225629-2 1.717908-1 6.654930-3 1.972423-1 3.970797-3 2.238721-1 2.490320-3 2.511886-1 1.641615-3 2.786121-1 1.136436-3 3.054921-1 8.249010-4 3.349654-1 6.028030-4 3.672823-1 4.434226-4 4.073803-1 3.163348-4 4.466836-1 2.358613-4 4.897788-1 1.771339-4 5.308844-1 1.387645-4 5.821032-1 1.057652-4 6.309573-1 8.394504-5 6.839117-1 6.704590-5 7.413102-1 5.389685-5 8.511380-1 3.750810-5 9.015711-1 3.243996-5 9.549926-1 2.824589-5 1.000000+0 2.543000-5 1.059254+0 2.246325-5 1.135011+0 1.950596-5 1.216186+0 1.705898-5 1.318257+0 1.469532-5 1.819701+0 8.317419-6 2.065380+0 6.698824-6 2.344229+0 5.437791-6 2.660725+0 4.446441-6 3.090295+0 3.533554-6 3.589219+0 2.828705-6 4.168694+0 2.281178-6 4.897788+0 1.823186-6 5.821032+0 1.445119-6 6.918310+0 1.154023-6 8.317638+0 9.146100-7 1.023293+1 7.099491-7 1.244515+1 5.623587-7 1.566751+1 4.308540-7 2.041738+1 3.197655-7 2.722701+1 2.330681-7 3.845918+1 1.608498-7 5.821032+1 1.040317-7 9.015711+1 6.617340-8 1.717908+2 3.426533-8 3.427678+2 1.705073-8 6.839116+2 8.512950-9 5.432503+3 1.068440-9 1.000000+5 5.80000-11 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 3.217000-5 3.217000-5 1.000000+5 3.217000-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 3.217000-5 0.0 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 1.769000-5 1.946586+6 1.819701-5 1.731678+6 1.972423-5 1.220400+6 2.400000-5 5.184140+5 2.600160-5 3.674344+5 2.754229-5 2.883707+5 2.917427-5 2.278255+5 3.054921-5 1.899018+5 3.190000-5 1.611220+5 3.311311-5 1.407030+5 3.427678-5 1.248563+5 3.548134-5 1.114940+5 3.672823-5 1.002442+5 3.801894-5 9.078697+4 3.935501-5 8.284762+4 4.073803-5 7.618979+4 4.220000-5 7.050300+4 4.365158-5 6.593034+4 4.518559-5 6.200252+4 4.677351-5 5.869635+4 4.850000-5 5.577560+4 5.011872-5 5.352750+4 5.248075-5 5.088264+4 5.500000-5 4.866580+4 5.821032-5 4.644013+4 6.300000-5 4.389160+4 8.609938-5 3.606496+4 9.660509-5 3.333773+4 1.071519-4 3.083912+4 1.190000-4 2.829580+4 1.333521-4 2.558644+4 1.566751-4 2.199718+4 1.862087-4 1.858968+4 2.089296-4 1.651845+4 2.344229-4 1.457556+4 2.660725-4 1.259765+4 3.090295-4 1.052277+4 3.589219-4 8.719071+3 4.466836-4 6.558834+3 5.128614-4 5.445508+3 6.025596-4 4.346832+3 7.413102-4 3.223493+3 9.015711-4 2.413897+3 1.122018-3 1.730782+3 1.412538-3 1.209827+3 1.778279-3 8.392819+2 2.238721-3 5.777119+2 2.786121-3 4.020425+2 3.427678-3 2.830076+2 4.168694-3 2.016396+2 5.559043-3 1.202705+2 6.918310-3 8.067870+1 8.511380-3 5.485398+1 1.023293-2 3.864639+1 1.230269-2 2.700035+1 1.479108-2 1.872866+1 1.798871-2 1.259937+1 2.162719-2 8.612439+0 2.600160-2 5.843022+0 3.090295-2 4.032747+0 3.715352-2 2.693941+0 4.466836-2 1.785440+0 5.248075-2 1.237420+0 6.309573-2 8.074391-1 7.673615-2 5.089280-1 9.225714-2 3.273034-1 1.148154-1 1.916949-1 1.531088-1 9.397082-2 2.722701-1 2.237683-2 3.311311-1 1.382605-2 3.935501-1 9.105264-3 4.570882-1 6.387165-3 5.248075-1 4.635658-3 6.025596-1 3.389295-3 6.839117-1 2.562728-3 7.762471-1 1.951404-3 8.810489-1 1.495591-3 9.772372-1 1.211123-3 1.174898+0 8.425108-4 1.303167+0 6.905336-4 1.479108+0 5.458552-4 1.678804+0 4.351212-4 1.927525+0 3.425296-4 2.187762+0 2.768960-4 2.483133+0 2.255422-4 2.851018+0 1.817382-4 3.311311+0 1.449174-4 3.845918+0 1.164118-4 4.518559+0 9.268370-5 5.370318+0 7.319878-5 6.382635+0 5.825574-5 7.673615+0 4.601911-5 9.225714+0 3.662159-5 1.161449+1 2.775055-5 1.479108+1 2.093147-5 1.949845+1 1.531150-5 2.600160+1 1.114725-5 3.630781+1 7.779301-6 5.308844+1 5.210210-6 8.413951+1 3.231450-6 1.640590+2 1.633318-6 3.273407+2 8.124277-7 6.531306+2 4.055808-7 5.188000+3 5.089167-8 1.000000+5 2.638400-9 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 1.769000-5 1.769000-5 1.000000+5 1.769000-5 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 1.769000-5 0.0 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 8.600000-6 1.835150+7 8.912509-6 1.773718+7 9.225714-6 1.705425+7 9.660509-6 1.605439+7 1.011579-5 1.497554+7 1.050000-5 1.407820+7 1.100000-5 1.293730+7 1.150000-5 1.186090+7 1.202264-5 1.081272+7 1.270000-5 9.575810+6 1.348963-5 8.308720+6 1.428894-5 7.208223+6 1.531087-5 6.034894+6 1.650000-5 4.942800+6 1.819701-5 3.775471+6 2.065380-5 2.640036+6 3.126079-5 8.061909+5 4.897788-5 2.252287+5 5.888437-5 1.326019+5 8.511380-5 4.549286+4 9.800000-5 3.041750+4 1.096478-4 2.221541+4 1.220000-4 1.659970+4 1.333521-4 1.311220+4 1.445440-4 1.066299+4 1.566751-4 8.737040+3 1.690000-4 7.301730+3 1.819701-4 6.174106+3 1.950000-4 5.313390+3 2.089296-4 4.607067+3 2.220000-4 4.089110+3 2.371374-4 3.616236+3 2.540973-4 3.205010+3 2.722701-4 2.861631+3 2.917427-4 2.572915+3 3.162278-4 2.290532+3 3.427678-4 2.054406+3 3.758374-4 1.828618+3 4.120975-4 1.639631+3 4.731513-4 1.406041+3 6.456542-4 1.000740+3 8.413951-4 7.442722+2 9.549926-4 6.424728+2 1.122018-3 5.286318+2 1.303167-3 4.380539+2 1.513561-3 3.603838+2 1.757924-3 2.941909+2 2.018366-3 2.421951+2 2.317395-3 1.979573+2 2.660725-3 1.605960+2 3.054921-3 1.292814+2 3.467369-3 1.052292+2 4.005000-3 8.259400+1 4.216965-3 7.666830+1 4.415704-3 7.128660+1 4.677351-3 6.462059+1 4.954502-3 5.818888+1 5.308844-3 5.096346+1 6.025596-3 3.953958+1 6.839116-3 3.100758+1 7.762471-3 2.414976+1 8.810489-3 1.868041+1 1.000000-2 1.435141+1 1.135011-2 1.094920+1 1.303167-2 8.088100+0 1.496236-2 5.927890+0 1.717908-2 4.311654+0 1.972423-2 3.112377+0 2.264644-2 2.229225+0 2.600160-2 1.584901+0 3.000000-2 1.105082+0 3.467369-2 7.614205-1 4.027170-2 5.143596-1 4.731513-2 3.345964-1 5.559043-2 2.159920-1 6.683439-2 1.299331-1 8.222426-2 7.277082-2 1.035142-1 3.792852-2 1.862087-1 7.100150-3 2.344229-1 3.704213-3 2.786121-1 2.289423-3 3.235937-1 1.518951-3 3.715352-1 1.047098-3 4.265795-1 7.271529-4 4.841724-1 5.244014-4 5.432503-1 3.923290-4 6.095369-1 2.956132-4 6.839117-1 2.243981-4 7.585776-1 1.763069-4 8.511380-1 1.358245-4 9.332543-1 1.110200-4 1.011579+0 9.373319-5 1.109175+0 7.784859-5 1.230269+0 6.366112-5 1.380384+0 5.133575-5 1.603245+0 3.918276-5 1.840772+0 3.075868-5 2.113489+0 2.432925-5 2.398833+0 1.977716-5 2.754229+0 1.590479-5 3.235937+0 1.244446-5 3.758374+0 9.985174-6 4.365158+0 8.069770-6 5.128614+0 6.462969-6 6.095369+0 5.133316-6 7.328245+0 4.047250-6 8.912509+0 3.169677-6 1.135011+1 2.366222-6 1.428894+1 1.807350-6 1.883649+1 1.320451-6 2.511886+1 9.604253-7 3.467369+1 6.780006-7 5.011872+1 4.591569-7 7.943282+1 2.844787-7 1.584893+2 1.403468-7 3.162278+2 6.979472-8 6.309573+2 3.483966-8 5.011872+3 4.370827-9 1.000000+5 2.18910-10 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 8.600000-6 8.600000-6 1.000000+5 8.600000-6 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 8.600000-6 0.0 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 6.350000-6 4.408500+7 6.683439-6 4.051456+7 7.100000-6 3.636480+7 7.585776-6 3.202449+7 8.035261-6 2.846859+7 8.511380-6 2.515738+7 9.015711-6 2.209551+7 9.660509-6 1.877230+7 1.035142-5 1.583145+7 1.109175-5 1.326022+7 1.202264-5 1.069938+7 1.310000-5 8.444860+6 1.445440-5 6.385463+6 1.603245-5 4.721201+6 1.862087-5 3.025166+6 2.851018-5 8.397765+5 3.467369-5 4.691173+5 4.120975-5 2.825918+5 4.677351-5 1.960600+5 5.188000-5 1.463011+5 5.688529-5 1.135455+5 6.165950-5 9.160512+4 6.650000-5 7.544880+4 7.161434-5 6.287034+4 7.673615-5 5.342914+4 8.222426-5 4.574636+4 8.810489-5 3.946167+4 9.500000-5 3.386460+4 1.020000-4 2.954320+4 1.096478-4 2.591186+4 1.174898-4 2.302805+4 1.260000-4 2.057780+4 1.350000-4 1.854024+4 1.462177-4 1.655935+4 1.600000-4 1.469464+4 1.778279-4 1.287834+4 2.065380-4 1.077844+4 3.090295-4 6.736046+3 4.265795-4 4.564393+3 5.011872-4 3.738835+3 5.754399-4 3.124590+3 6.683439-4 2.552043+3 8.222426-4 1.912436+3 9.332543-4 1.594435+3 1.109175-3 1.232735+3 1.303167-3 9.625074+2 1.531087-3 7.458762+2 1.778279-3 5.845083+2 2.065380-3 4.547818+2 2.398833-3 3.511929+2 2.786121-3 2.691099+2 3.235937-3 2.045936+2 3.672823-3 1.611208+2 4.216965-3 1.232103+2 4.841724-3 9.350810+1 5.559043-3 7.041447+1 6.382635-3 5.260903+1 7.328245-3 3.899630+1 8.413951-3 2.867687+1 9.660509-3 2.092041+1 1.096478-2 1.555838+1 1.244515-2 1.149301+1 1.428894-2 8.196240+0 1.621810-2 5.969843+0 1.862087-2 4.192605+0 2.113489-2 3.011406+0 2.426610-2 2.083175+0 2.786121-2 1.430231+0 3.198895-2 9.747565-1 3.715352-2 6.386376-1 4.315191-2 4.151674-1 5.069907-2 2.589834-1 6.000000-2 1.568900-1 7.161434-2 9.188343-2 8.810489-2 4.870408-2 1.083927-1 2.563876-2 1.757924-1 5.685718-3 2.213095-1 2.794641-3 2.600160-1 1.711612-3 3.000000-1 1.115800-3 3.427678-1 7.547698-4 3.890451-1 5.246150-4 4.365158-1 3.796756-4 4.841724-1 2.856747-4 5.370318-1 2.164082-4 5.956621-1 1.651048-4 6.606935-1 1.269055-4 7.328245-1 9.829476-5 8.413951-1 7.063470-5 9.015711-1 6.017681-5 9.660509-1 5.161075-5 1.023293+0 4.569308-5 1.109175+0 3.878622-5 1.216186+0 3.239590-5 1.333521+0 2.726254-5 1.531087+0 2.125266-5 1.778279+0 1.631317-5 2.044000+0 1.285100-5 2.317395+0 1.044410-5 2.630268+0 8.534649-6 3.019952+0 6.897879-6 3.507519+0 5.515497-6 4.073803+0 4.443033-6 4.786301+0 3.547175-6 5.688529+0 2.808819-6 6.760830+0 2.240812-6 8.128305+0 1.774294-6 9.885531+0 1.395500-6 1.202264+1 1.104045-6 1.531087+1 8.337944-7 2.000000+1 6.168200-7 2.660725+1 4.505080-7 3.715352+1 3.145750-7 5.495409+1 2.082587-7 8.609938+1 1.307841-7 1.659587+2 6.689840-8 3.311311+2 3.328005-8 6.606934+2 1.661423-8 5.248075+3 2.084843-9 1.000000+5 1.09340-10 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 6.350000-6 6.350000-6 1.000000+5 6.350000-6 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 6.350000-6 0.0 1.000000+5 1.000000+5 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.242450-7 1.025800+0 1.125020-6 1.026100+0 1.411470-6 1.026600+0 1.989850-6 1.027100+0 2.707230-6 1.027500+0 3.390780-6 1.028100+0 4.616490-6 1.028750+0 6.242450-6 1.029500+0 8.542960-6 1.030100+0 1.074380-5 1.031000+0 1.470120-5 1.032000+0 2.011490-5 1.033200+0 2.817760-5 1.034000+0 3.459060-5 1.035300+0 4.695180-5 1.036640+0 6.242450-5 1.038200+0 8.424390-5 1.039700+0 1.094500-4 1.041500+0 1.456220-4 1.043800+0 2.021270-4 1.046400+0 2.812220-4 1.048300+0 3.501300-4 1.051200+0 4.749430-4 1.054080+0 6.242450-4 1.057700+0 8.508860-4 1.061100+0 1.106790-3 1.065100+0 1.465270-3 1.070400+0 2.044200-3 1.076200+0 2.825090-3 1.080600+0 3.528070-3 1.087100+0 4.753470-3 1.093710+0 6.242450-3 1.102600+0 8.654970-3 1.110700+0 1.128760-2 1.120600+0 1.509920-2 1.133300+0 2.099390-2 1.147500+0 2.898590-2 1.158200+0 3.602210-2 1.174100+0 4.814560-2 1.190110+0 6.242450-2 1.205100+0 7.770980-2 1.227500+0 1.040120-1 1.250000+0 1.344000-1 1.265600+0 1.576080-1 1.294900+0 2.055000-1 1.331800+0 2.727820-1 1.362600+0 3.339620-1 1.397000+0 4.066120-1 1.433800+0 4.884050-1 1.477900+0 5.908760-1 1.500000+0 6.438000-1 1.562500+0 7.981240-1 1.617200+0 9.372890-1 1.712900+0 1.186110+0 1.784700+0 1.374550+0 1.892300+0 1.656480+0 2.000000+0 1.936000+0 2.044000+0 2.049000+0 2.163500+0 2.350210+0 2.372600+0 2.855500+0 2.686300+0 3.561900+0 3.000000+0 4.215000+0 3.500000+0 5.169180+0 4.000000+0 6.037000+0 5.000000+0 7.563000+0 6.000000+0 8.878000+0 7.000000+0 1.004000+1 8.000000+0 1.108000+1 9.000000+0 1.203000+1 1.000000+1 1.290000+1 1.100000+1 1.371000+1 1.200000+1 1.446000+1 1.300000+1 1.517000+1 1.400000+1 1.583000+1 1.500000+1 1.644000+1 1.600000+1 1.702000+1 1.800000+1 1.806000+1 2.000000+1 1.898000+1 2.200000+1 1.982000+1 2.400000+1 2.059000+1 2.600000+1 2.129000+1 2.800000+1 2.193000+1 3.000000+1 2.252000+1 4.000000+1 2.493000+1 5.000000+1 2.672000+1 6.000000+1 2.811000+1 8.000000+1 3.015000+1 1.000000+2 3.159000+1 1.500000+2 3.386000+1 2.000000+2 3.521000+1 3.000000+2 3.677000+1 4.000000+2 3.767000+1 5.000000+2 3.825000+1 6.000000+2 3.867000+1 8.000000+2 3.923000+1 1.000000+3 3.959000+1 1.500000+3 4.011000+1 2.000000+3 4.039000+1 3.000000+3 4.070000+1 4.000000+3 4.086000+1 5.000000+3 4.097000+1 6.000000+3 4.104000+1 8.000000+3 4.114000+1 1.000000+4 4.120000+1 1.500000+4 4.128000+1 2.000000+4 4.132000+1 3.000000+4 4.137000+1 4.000000+4 4.139000+1 5.000000+4 4.141000+1 6.000000+4 4.142000+1 8.000000+4 4.143000+1 1.000000+5 4.144000+1 1 83000 7 8 2.089800+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.307620-7 2.090400+0 1.127970-6 2.094700+0 1.462580-6 2.099900+0 1.945760-6 2.106600+0 2.706710-6 2.114000+0 3.745080-6 2.119500+0 4.662600-6 2.127900+0 6.323370-6 2.136250+0 8.307620-6 2.147000+0 1.139030-5 2.156900+0 1.479470-5 2.169000+0 1.974440-5 2.184500+0 2.744540-5 2.201800+0 3.797150-5 2.214800+0 4.730950-5 2.234200+0 6.363970-5 2.253680+0 8.307620-5 2.281500+0 1.163630-4 2.307000+0 1.528420-4 2.338200+0 2.055090-4 2.377400+0 2.846050-4 2.410200+0 3.619690-4 2.446800+0 4.604450-4 2.485900+0 5.797260-4 2.532900+0 7.419270-4 2.556430+0 8.307620-4 2.611900+0 1.059320-3 2.660400+0 1.280680-3 2.745300+0 1.714140-3 2.809000+0 2.075930-3 2.904500+0 2.674310-3 3.000000+0 3.338000-3 3.125000+0 4.303810-3 3.234400+0 5.236120-3 3.425800+0 7.049230-3 3.569300+0 8.545970-3 3.784700+0 1.098210-2 4.000000+0 1.360000-2 4.250000+0 1.679970-2 4.625000+0 2.182660-2 5.000000+0 2.705000-2 5.500000+0 3.421460-2 6.000000+0 4.147000-2 6.750000+0 5.225590-2 7.000000+0 5.580000-2 8.000000+0 6.964000-2 9.000000+0 8.286000-2 1.000000+1 9.539000-2 1.100000+1 1.072000-1 1.200000+1 1.184000-1 1.300000+1 1.288000-1 1.400000+1 1.388000-1 1.500000+1 1.482000-1 1.600000+1 1.571000-1 1.800000+1 1.735000-1 2.000000+1 1.885000-1 2.200000+1 2.021000-1 2.400000+1 2.145000-1 2.600000+1 2.260000-1 2.800000+1 2.366000-1 3.000000+1 2.465000-1 4.000000+1 2.870000-1 5.000000+1 3.174000-1 6.000000+1 3.413000-1 8.000000+1 3.769000-1 1.000000+2 4.026000-1 1.500000+2 4.445000-1 2.000000+2 4.705000-1 3.000000+2 5.019000-1 4.000000+2 5.205000-1 5.000000+2 5.331000-1 6.000000+2 5.423000-1 8.000000+2 5.550000-1 1.000000+3 5.633000-1 1.500000+3 5.757000-1 2.000000+3 5.827000-1 3.000000+3 5.902000-1 4.000000+3 5.947000-1 5.000000+3 5.974000-1 6.000000+3 5.993000-1 8.000000+3 6.018000-1 1.000000+4 6.034000-1 1.500000+4 6.055000-1 2.000000+4 6.068000-1 3.000000+4 6.079000-1 4.000000+4 6.087000-1 5.000000+4 6.092000-1 6.000000+4 6.095000-1 8.000000+4 6.098000-1 1.000000+5 6.100000-1 1 83000 7 8 2.089800+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 83000 7 9 2.089800+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.300000+1 1.000000+5 8.300000+1 5.000000+5 8.297700+1 7.187500+5 8.295400+1 9.062500+5 8.293920+1 1.000000+6 8.293300+1 1.250000+6 8.289610+1 1.500000+6 8.286600+1 2.000000+6 8.276300+1 2.500000+6 8.263200+1 3.000000+6 8.247300+1 3.500000+6 8.228690+1 4.000000+6 8.207700+1 4.500000+6 8.184600+1 5.000000+6 8.159200+1 5.500000+6 8.131500+1 6.250000+6 8.085480+1 6.500000+6 8.069790+1 7.000000+6 8.036800+1 7.875000+6 7.974610+1 8.625000+6 7.919640+1 9.000000+6 7.891400+1 1.000000+7 7.813100+1 1.125000+7 7.711020+1 1.187500+7 7.659260+1 1.250000+7 7.607000+1 1.375000+7 7.500450+1 1.500000+7 7.395600+1 1.687500+7 7.238810+1 1.750000+7 7.187700+1 1.937500+7 7.033710+1 2.000000+7 6.983500+1 2.250000+7 6.783670+1 2.375000+7 6.685580+1 2.500000+7 6.589500+1 2.875000+7 6.305630+1 3.000000+7 6.213500+1 3.437500+7 5.898150+1 3.812500+7 5.640850+1 4.000000+7 5.517300+1 4.500000+7 5.203580+1 5.000000+7 4.915400+1 5.750000+7 4.529570+1 6.000000+7 4.413100+1 6.750000+7 4.093120+1 7.000000+7 3.995400+1 7.750000+7 3.722690+1 8.000000+7 3.637700+1 8.750000+7 3.395620+1 9.000000+7 3.319000+1 9.750000+7 3.098380+1 1.000000+8 3.028100+1 1.062500+8 2.858420+1 1.156300+8 2.622970+1 1.187500+8 2.549770+1 1.250000+8 2.410900+1 1.500000+8 1.962800+1 1.625000+8 1.802690+1 1.750000+8 1.673100+1 1.789100+8 1.637440+1 2.000000+8 1.475400+1 2.250000+8 1.329550+1 2.375000+8 1.268860+1 2.500000+8 1.214000+1 2.671900+8 1.144240+1 2.789100+8 1.095830+1 2.875000+8 1.058490+1 2.894500+8 1.049740+1 3.000000+8 1.000300+1 3.125000+8 9.384470+0 3.359400+8 8.337500+0 3.453100+8 8.007230+0 3.500000+8 7.865500+0 4.000000+8 6.826100+0 4.125000+8 6.541860+0 4.234400+8 6.278770+0 4.425800+8 5.819780+0 4.712900+8 5.209360+0 4.750000+8 5.140440+0 4.856400+8 4.958040+0 5.000000+8 4.747400+0 5.179700+8 4.540550+0 5.234400+8 4.486960+0 6.000000+8 3.922600+0 6.250000+8 3.740530+0 7.000000+8 3.257900+0 7.625000+8 2.957250+0 7.875000+8 2.834770+0 8.000000+8 2.769500+0 8.250000+8 2.630000+0 8.468800+8 2.504270+0 8.851600+8 2.289290+0 9.569300+8 1.947410+0 9.856400+8 1.839860+0 1.000000+9 1.792700+0 1.031300+9 1.704890+0 1.060500+9 1.637670+0 1.100900+9 1.563110+0 1.137900+9 1.508790+0 1.183200+9 1.455760+0 1.241300+9 1.402630+0 1.333700+9 1.338270+0 1.375000+9 1.313500+0 1.472300+9 1.257630+0 1.500000+9 1.241400+0 1.589800+9 1.186140+0 1.665000+9 1.138220+0 1.748800+9 1.084460+0 1.838500+9 1.027670+0 1.946200+9 9.616220-1 2.000000+9 9.298900-1 2.139200+9 8.519400-1 2.272600+9 7.831270-1 2.443000+9 7.033790-1 2.602800+9 6.365080-1 2.750000+9 5.811480-1 2.822900+9 5.557150-1 3.024800+9 4.918190-1 3.271700+9 4.250030-1 3.487700+9 3.752910-1 3.759500+9 3.222880-1 3.986900+9 2.848200-1 4.348700+9 2.355850-1 4.674400+9 1.999740-1 5.000000+9 1.708100-1 5.375000+9 1.434870-1 5.703100+9 1.239640-1 6.277300+9 9.725940-2 7.031000+9 7.246000-2 8.000000+9 5.144800-2 1.00000+10 2.817900-2 4.01700+10 6.492660-4 6.15380+10 2.051110-4 1.00000+11 5.559700-5 1.34280+11 2.527850-5 2.20600+11 6.751140-6 4.19930+11 1.233520-6 1.03480+12 1.163230-7 3.24440+12 5.996230-9 1.00000+14 8.88850-13 3.16230+15 1.18124-16 1.00000+17 1.49450-20 1 83000 7 0 2.089800+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 7.00000-12 1.000000+2 7.00000-10 1.000000+3 7.000000-8 1.000000+4 7.000000-6 1.000000+5 7.000000-4 5.000000+5 1.750000-2 7.187500+5 3.616211-2 9.062500+5 5.749023-2 1.000000+6 7.000000-2 1.250000+6 1.088610-1 1.500000+6 1.558000-1 2.000000+6 2.744000-1 2.500000+6 4.235000-1 3.000000+6 6.010000-1 3.500000+6 8.042630-1 4.000000+6 1.030400+0 4.500000+6 1.276560+0 5.000000+6 1.540000+0 5.500000+6 1.817940+0 6.250000+6 2.256780+0 6.500000+6 2.407560+0 7.000000+6 2.714600+0 7.875000+6 3.263210+0 8.625000+6 3.740780+0 9.000000+6 3.981100+0 1.000000+7 4.622000+0 1.125000+7 5.419330+0 1.187500+7 5.815570+0 1.250000+7 6.209600+0 1.375000+7 6.989280+0 1.500000+7 7.757000+0 1.687500+7 8.882320+0 1.750000+7 9.250200+0 1.937500+7 1.032610+1 2.000000+7 1.067600+1 2.250000+7 1.202750+1 2.375000+7 1.267820+1 2.500000+7 1.331400+1 2.875000+7 1.514330+1 3.000000+7 1.573400+1 3.437500+7 1.775150+1 3.812500+7 1.943540+1 4.000000+7 2.026800+1 4.500000+7 2.245290+1 5.000000+7 2.458600+1 5.750000+7 2.765830+1 6.000000+7 2.864200+1 6.750000+7 3.142360+1 7.000000+7 3.229400+1 7.750000+7 3.471280+1 8.000000+7 3.546200+1 8.750000+7 3.754280+1 9.000000+7 3.819000+1 9.750000+7 4.000880+1 1.000000+8 4.058500+1 1.062500+8 4.195950+1 1.156300+8 4.390230+1 1.187500+8 4.451620+1 1.250000+8 4.572200+1 1.500000+8 5.015600+1 1.625000+8 5.216610+1 1.750000+8 5.405280+1 1.789100+8 5.462150+1 2.000000+8 5.746000+1 2.250000+8 6.039260+1 2.375000+8 6.168730+1 2.500000+8 6.288700+1 2.671900+8 6.436730+1 2.789100+8 6.527510+1 2.875000+8 6.590400+1 2.894500+8 6.603840+1 3.000000+8 6.675100+1 3.125000+8 6.753080+1 3.359400+8 6.883760+1 3.453100+8 6.930680+1 3.500000+8 6.953800+1 4.000000+8 7.163800+1 4.125000+8 7.208060+1 4.234400+8 7.245920+1 4.425800+8 7.307290+1 4.712900+8 7.390890+1 4.750000+8 7.400910+1 4.856400+8 7.429040+1 5.000000+8 7.466200+1 5.179700+8 7.509510+1 5.234400+8 7.522440+1 6.000000+8 7.679300+1 6.250000+8 7.721940+1 7.000000+8 7.833200+1 7.625000+8 7.905240+1 7.875000+8 7.930290+1 8.000000+8 7.941900+1 8.250000+8 7.962690+1 8.468800+8 7.980420+1 8.851600+8 8.007540+1 9.569300+8 8.049340+1 9.856400+8 8.063610+1 1.000000+9 8.070600+1 1.031300+9 8.083500+1 1.060500+9 8.095200+1 1.100900+9 8.110290+1 1.137900+9 8.122210+1 1.183200+9 8.135510+1 1.241300+9 8.150330+1 1.333700+9 8.170740+1 1.375000+9 8.178710+1 1.472300+9 8.195800+1 1.500000+9 8.200200+1 1.589800+9 8.212500+1 1.665000+9 8.222290+1 1.748800+9 8.232700+1 1.838500+9 8.241320+1 1.946200+9 8.251110+1 2.000000+9 8.255800+1 2.139200+9 8.264930+1 2.272600+9 8.271770+1 2.443000+9 8.279000+1 2.602800+9 8.284510+1 2.750000+9 8.288160+1 2.822900+9 8.289900+1 3.024800+9 8.292750+1 3.271700+9 8.295720+1 3.487700+9 8.297370+1 3.759500+9 8.298260+1 3.986900+9 8.298960+1 4.348700+9 8.299570+1 4.674400+9 8.299590+1 5.000000+9 8.299600+1 5.375000+9 8.299660+1 5.703100+9 8.299710+1 6.277300+9 8.299790+1 7.031000+9 8.299890+1 8.000000+9 8.300000+1 1.00000+10 8.300000+1 4.01700+10 8.300000+1 6.15380+10 8.300000+1 1.00000+11 8.300000+1 1.34280+11 8.300000+1 2.20600+11 8.300000+1 4.19930+11 8.300000+1 1.03480+12 8.300000+1 3.24440+12 8.300000+1 1.00000+14 8.300000+1 3.16230+15 8.300000+1 1.00000+17 8.300000+1 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.210218-6 0.0 2.215658-6 7.130899-7 2.221099-6 1.411008-6 2.226539-6 2.577322-6 2.231979-6 4.345719-6 2.237419-6 6.764076-6 2.242859-6 9.718722-6 2.248299-6 1.289032-5 2.253740-6 1.578237-5 2.259180-6 1.783753-5 2.264620-6 1.861020-5 2.270060-6 1.792343-5 2.275500-6 1.593475-5 2.281005-6 1.303986-5 2.291821-6 6.928541-6 2.297261-6 4.472825-6 2.302701-6 2.665484-6 2.308141-6 1.466304-6 2.313582-6 7.446056-7 2.319022-6 0.0 3.308086-6 0.0 3.320299-6 1.126892+0 3.324371-6 1.497758+0 3.332513-6 2.735778+0 3.340655-6 4.612897+0 3.349816-6 7.571147+0 3.364081-6 1.326771+1 3.373734-6 1.688873+1 3.382115-6 1.900933+1 3.390096-6 1.970199+1 3.398970-6 1.868440+1 3.407258-6 1.637053+1 3.420076-6 1.134604+1 3.430222-6 7.354513+0 3.438365-6 4.747818+0 3.446507-6 2.829360+0 3.454649-6 1.556454+0 3.466863-6 3.956569-1 3.470934-6 0.0 4.179926-6 0.0 4.190215-6 8.100827-7 4.200503-6 1.602930-6 4.210791-6 2.927883-6 4.221080-6 4.936813-6 4.231368-6 7.684109-6 4.241657-6 1.104064-5 4.251945-6 1.464363-5 4.262233-6 1.792905-5 4.272522-6 2.026374-5 4.282810-6 2.114151-5 4.293098-6 2.036134-5 4.303387-6 1.810216-5 4.313675-6 1.485623-5 4.333174-6 8.226062-6 4.344540-6 5.644204-6 4.354829-6 4.101082-6 4.365171-6 3.573691-6 4.375837-6 4.034818-6 4.385694-6 4.882291-6 4.397168-6 7.210845-6 4.407833-6 9.564026-6 4.418499-6 1.170979-5 4.429164-6 1.323462-5 4.439830-6 1.380791-5 4.450496-6 1.329836-5 4.461161-6 1.182286-5 4.471827-6 9.702877-6 4.493158-6 5.140659-6 4.503823-6 3.318630-6 4.514489-6 1.977666-6 4.525154-6 1.087930-6 4.535820-6 5.524631-7 4.546486-6 0.0 4.684770-6 0.0 4.692393-6 1.034206-1 4.707832-6 2.103680+0 4.715492-6 3.150468+0 4.727042-6 5.702463+0 4.738592-6 9.533686+0 4.750141-6 1.472160+1 4.784791-6 3.364113+1 4.797401-6 3.792253+1 4.808909-6 3.906353+1 4.821309-6 3.686390+1 4.832386-6 3.248133+1 4.865639-6 1.426586+1 4.877188-6 9.236601+0 4.888738-6 5.613822+0 4.900288-6 3.290199+0 4.915390-6 1.571813+0 4.920895-6 1.044452+0 4.923387-6 8.163959-1 4.931889-6 1.088424+0 4.950994-6 1.830682+0 4.966354-6 2.408357+0 4.978342-6 2.721970+0 4.990330-6 2.839877+0 5.002318-6 2.735079+0 5.014306-6 2.431611+0 5.033786-6 1.693517+0 5.050270-6 1.057281+0 5.062258-6 6.825438-1 5.074246-6 4.067473-1 5.086234-6 2.237550-1 5.104216-6 5.687943-2 5.110210-6 0.0 5.345322-6 0.0 5.349733-6 1.970579-2 5.376068-6 1.155196+0 5.389236-6 2.100129+0 5.402404-6 3.525586+0 5.418748-6 6.039224+0 5.452442-6 1.212133+1 5.457942-6 1.303379+1 5.471533-6 1.448536+1 5.485413-6 1.482973+1 5.498867-6 1.403468+1 5.512777-6 1.227099+1 5.548071-6 6.752025+0 5.561239-6 5.290820+0 5.573995-6 4.452911+0 5.587987-6 4.188869+0 5.614096-6 4.600713+0 5.628775-6 5.339823+0 5.641889-6 5.765872+0 5.659298-6 5.838538+0 5.670527-6 5.745706+0 5.700170-6 4.768030+0 5.712964-6 4.557094+0 5.726040-6 4.630001+0 5.741215-6 5.153764+0 5.780876-6 7.183273+0 5.796861-6 7.346933+0 5.809901-6 7.103745+0 5.829907-6 5.979359+0 5.863957-6 3.608753+0 5.878206-6 2.978340+0 5.893428-6 2.742513+0 5.907715-6 2.877166+0 5.937437-6 3.709569+0 5.953054-6 4.261820+0 5.967658-6 4.544639+0 5.985713-6 4.563701+0 6.038030-6 4.074206+0 6.196180-6 4.023482+0 6.256110-6 3.859773+0 6.301976-6 3.740794+0 6.352089-6 3.774012+0 6.462135-6 3.933211+0 6.896121-6 3.810407+0 6.928921-6 4.673408+0 6.946953-6 5.486262+0 6.965913-6 6.822529+0 6.984274-6 8.596371+0 7.033333-6 1.406437+1 7.051018-6 1.527273+1 7.066105-6 1.562965+1 7.085146-6 1.496555+1 7.104028-6 1.338703+1 7.151829-6 8.187573+0 7.169769-6 6.738059+0 7.185609-6 5.857554+0 7.202913-6 5.293089+0 7.235401-6 4.681588+0 7.268021-6 4.700860+0 7.307234-6 4.383242+0 7.359519-6 3.844500+0 7.403089-6 3.622832+0 7.440826-6 3.538877+0 7.557789-6 3.512742+0 7.596552-6 3.938522+0 7.615334-6 4.301937+0 7.634178-6 4.843088+0 7.657403-6 5.780044+0 7.711351-6 8.184353+0 7.727350-6 8.634031+0 7.743560-6 8.826418+0 7.765836-6 8.540727+0 7.792077-6 7.638652+0 7.845241-6 5.334485+0 7.862856-6 4.726186+0 7.888418-6 4.217815+0 7.920916-6 3.948137+0 7.932401-6 3.986915+0 7.964906-6 4.483741+0 8.037356-6 5.988162+0 8.059316-6 6.175164+0 8.085340-6 6.084932+0 8.154488-6 5.327341+0 8.196322-6 5.254666+0 8.267419-6 5.418763+0 8.563501-6 5.332729+0 8.700304-6 5.277516+0 8.904499-6 5.189162+0 8.947645-6 7.162472+0 8.970930-6 8.982853+0 8.992846-6 1.156727+1 9.016131-6 1.533727+1 9.080509-6 2.789606+1 9.104602-6 3.082765+1 9.126053-6 3.160894+1 9.149385-6 3.016740+1 9.170739-6 2.715536+1 9.232548-6 1.494586+1 9.257203-6 1.108896+1 9.276379-6 8.811186+0 9.298295-6 7.081036+0 9.342126-6 4.958028+0 1.111404-5 4.114914+0 1.116875-5 8.808570+0 1.119611-5 1.269662+1 1.122517-5 1.910199+1 1.125424-5 2.790521+1 1.133289-5 5.679887+1 1.136467-5 6.407545+1 1.138958-5 6.606534+1 1.141747-5 6.331204+1 1.144723-5 5.554237+1 1.152438-5 2.709772+1 1.155173-5 1.887143+1 1.157909-5 1.281380+1 1.160645-5 8.790263+0 1.166116-5 3.861115+0 1.395064-5 2.938765+0 1.540689-5 2.495114+0 1.545537-5 2.523164+0 1.552323-5 2.748300+0 1.556600-5 2.993101+0 1.561234-5 3.400844+0 1.566558-5 4.042677+0 1.575136-5 5.137644+0 1.579413-5 5.465458+0 1.583215-5 5.533602+0 1.587849-5 5.283371+0 1.591196-5 4.930450+0 1.601751-5 3.480539+0 1.605553-5 3.054242+0 1.609355-5 2.740930+0 1.614560-5 2.481176+0 1.621431-5 2.262451+0 1.633874-5 2.232171+0 1.645991-5 2.334770+0 1.654565-5 2.545674+0 1.666638-5 2.958664+0 1.674296-5 3.072347+0 1.682848-5 2.932170+0 1.695005-5 2.613234+0 1.702983-5 2.549026+0 1.728750-5 2.563362+0 1.780970-5 2.423048+0 1.807512-5 2.311700+0 1.982600-5 1.890995+0 2.187746-5 1.528102+0 2.431341-5 1.218908+0 2.513933-5 1.135686+0 2.526308-5 2.939766+0 2.532496-5 4.434880+0 2.538684-5 6.704793+0 2.545645-5 1.028470+1 2.563435-5 2.139971+1 2.570278-5 2.414347+1 2.576769-5 2.489007+1 2.582999-5 2.372424+1 2.589297-5 2.091368+1 2.599800-5 1.431062+1 2.606749-5 9.968364+0 2.611862-5 7.353419+0 2.613323-5 6.815649+0 2.619474-5 5.207905+0 2.625312-5 4.409437+0 2.632068-5 4.671780+0 2.637859-5 5.382718+0 2.644905-5 8.043771+0 2.663442-5 1.649825+1 2.670217-5 1.851562+1 2.676740-5 1.914693+1 2.682981-5 1.841023+1 2.689811-5 1.623135+1 2.700057-5 1.154768+1 2.708294-5 7.752182+0 2.714723-5 5.344051+0 2.721151-5 3.570542+0 2.727580-5 2.392215+0 2.740438-5 9.478115-1 2.832882-5 8.849945-1 2.846828-5 1.054657+0 2.853801-5 1.197824+0 2.860773-5 1.417154+0 2.869247-5 1.800339+0 2.888664-5 2.846412+0 2.895637-5 3.102249+0 2.902610-5 3.195936+0 2.909583-5 3.105017+0 2.918082-5 2.766042+0 2.937474-5 1.698076+0 2.944447-5 1.383451+0 2.947247-5 1.290154+0 2.951419-5 1.218511+0 2.958392-5 1.174774+0 2.961756-5 1.182433+0 2.969010-5 1.274537+0 2.972338-5 1.361535+0 2.976264-5 1.517684+0 2.983519-5 1.913242+0 3.005281-5 3.391165+0 3.013462-5 3.742104+0 3.020804-5 3.833528+0 3.028147-5 3.682323+0 3.035824-5 3.304357+0 3.054606-5 2.111200+0 3.061718-5 1.774702+0 3.063943-5 1.683056+0 3.070570-5 1.517810+0 3.073771-5 1.488759+0 3.080269-5 1.500904+0 3.092889-5 1.627446+0 3.103673-5 1.894745+0 3.112685-5 2.037785+0 3.120347-5 2.101402+0 3.134905-5 2.094687+0 3.196910-5 1.914290+0 3.228995-5 1.942502+0 3.250592-5 2.028694+0 3.266877-5 2.189468+0 3.282880-5 2.469452+0 3.297907-5 2.921924+0 3.320888-5 3.679692+0 3.330890-5 3.855657+0 3.340892-5 3.827077+0 3.354470-5 3.551659+0 3.378900-5 2.945405+0 3.386901-5 2.847334+0 3.398529-5 2.850606+0 3.414334-5 2.981287+0 3.444072-5 3.338402+0 3.522003-5 3.716887+0 3.623397-5 4.547836+0 3.710000-5 5.537830+0 3.801894-5 6.932375+0 3.901665-5 8.924920+0 4.018721-5 1.196329+1 4.159771-5 1.659953+1 4.560650-5 3.191499+1 4.740000-5 3.686700+1 4.930052-5 3.943418+1 5.132324-5 3.950789+1 5.469006-5 3.636172+1 6.346313-5 2.588293+1 7.018592-5 1.965587+1 7.574867-5 1.561950+1 8.140141-5 1.238614+1 8.758996-5 9.697165+0 9.225428-5 8.129578+0 9.316257-5 8.183626+0 9.435253-5 8.919434+0 9.481799-5 8.864729+0 9.569474-5 8.330485+0 1.101619-4 5.695888+0 1.174238-4 4.641536+0 1.188334-4 4.599758+0 1.204550-4 4.772176+0 1.247041-4 4.717427+0 1.333521-4 4.027704+0 1.440000-4 3.210508+0 1.547608-4 2.632637+0 1.562845-4 2.689671+0 1.581891-4 2.993938+0 1.589509-4 2.966904+0 1.609126-4 2.506336+0 1.624114-4 2.344813+0 1.648594-4 2.392851+0 1.757570-4 2.946180+0 1.800000-4 2.966574+0 1.930000-4 2.809892+0 2.005000-4 2.856295+0 2.083150-4 3.062931+0 2.172076-4 3.513290+0 2.247003-4 4.091902+0 2.330000-4 4.971286+0 2.430000-4 6.363948+0 2.540973-4 8.244399+0 2.860779-4 1.457992+1 3.162278-4 2.035511+1 3.470000-4 2.482744+1 3.818348-4 2.824776+1 4.280182-4 3.071271+1 4.355390-4 3.161759+1 4.511058-4 3.231434+1 4.579323-4 3.310837+1 5.201608-4 3.425473+1 6.361583-4 3.283561+1 6.628413-4 3.271630+1 6.770634-4 3.373119+1 9.087777-4 2.874623+1 1.220518-3 2.252851+1 1.462966-3 1.877600+1 1.759189-3 1.536597+1 2.131870-3 1.230453+1 2.518257-3 1.006173+1 2.541619-3 1.024298+1 2.553064-3 1.086415+1 2.562338-3 1.193909+1 2.573078-3 1.397790+1 2.599263-3 2.055047+1 2.613559-3 2.293297+1 2.629502-3 2.401521+1 2.665744-3 2.490539+1 2.682941-3 2.672418+1 2.717801-3 3.238552+1 2.737340-3 3.373249+1 2.878798-3 3.203042+1 3.115101-3 2.865100+1 3.153459-3 2.939499+1 3.205331-3 3.137604+1 3.656144-3 2.643855+1 3.746771-3 2.682610+1 3.930662-3 2.532419+1 4.025360-3 2.532754+1 4.671017-3 2.055840+1 5.436414-3 1.650365+1 6.228865-3 1.347132+1 7.192419-3 1.084255+1 8.151734-3 8.941829+0 9.258550-3 7.335293+0 1.053477-2 5.986748+0 1.211306-2 4.793489+0 1.313088-2 4.236849+0 1.321778-2 4.363483+0 1.327425-2 4.685350+0 1.332347-2 5.227817+0 1.338379-2 6.242925+0 1.350345-2 8.532785+0 1.356364-2 9.280470+0 1.364311-2 9.699800+0 1.388171-2 9.604619+0 1.544897-2 8.041440+0 1.559644-2 8.183891+0 1.570671-2 8.770020+0 1.590144-2 1.016573+1 1.605236-2 1.046348+1 1.628603-2 1.070747+1 1.653523-2 1.140599+1 1.718006-2 1.092489+1 1.992763-2 8.670684+0 2.300052-2 6.901919+0 2.628376-2 5.559995+0 2.963680-2 4.564611+0 3.368140-2 3.690813+0 3.799758-2 3.015342+0 4.290422-2 2.454292+0 4.851447-2 1.990260+0 5.471488-2 1.618306+0 6.194800-2 1.305813+0 6.928273-2 1.074895+0 7.894775-2 8.562234-1 8.833330-2 7.042552-1 8.903053-2 7.150616-1 8.937361-2 7.567447-1 8.963811-2 8.297947-1 8.988930-2 9.494619-1 9.014505-2 1.133237+0 9.044650-2 1.430095+0 9.121553-2 2.343021+0 9.164324-2 2.719436+0 9.211719-2 2.936183+0 9.291070-2 3.006479+0 1.099045-1 2.317342+0 1.257973-1 1.866798+0 1.444347-1 1.489673+0 1.619339-1 1.235024+0 1.822756-1 1.017698+0 2.047401-1 8.412046-1 2.290868-1 7.004503-1 2.561770-1 5.845604-1 2.877327-1 4.857309-1 3.216368-1 4.083624-1 3.637318-1 3.386622-1 4.114728-1 2.822600-1 4.693998-1 2.339721-1 5.370318-1 1.948576-1 6.098659-1 1.652338-1 6.955746-1 1.405144-1 7.894360-1 1.211618-1 9.226325-1 1.022349-1 1.120601+0 8.312422-2 1.286622+0 7.110592-2 1.477239+0 6.082526-2 1.696098+0 5.203100-2 1.965395+0 4.406512-2 2.341267+0 3.614193-2 2.688134+0 3.091644-2 3.086391+0 2.644647-2 3.543651+0 2.262278-2 4.068655+0 1.935192-2 4.671441+0 1.655398-2 5.363532+0 1.416056-2 6.168251+0 1.209183-2 7.070513+0 1.036184-2 8.118035+0 8.863702-3 9.320751+0 7.582167-3 9.760024+0 7.197573-3 1.000000+1 1.494417-2 1 83000 7 0 2.089800+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.294502+1 3.017898-6-8.153456+1 3.267146-6-7.870573+1 3.313723-6-7.498002+1 3.352933-6-7.055353+1 3.369790-6-7.327555+1 3.390096-6-8.276843+1 3.414955-6-7.371788+1 3.434293-6-7.268779+1 3.494126-6-7.978507+1 3.667043-6-8.316253+1 4.461161-6-7.961729+1 4.631358-6-7.536407+1 4.684770-6-7.074334+1 4.742562-6-5.957719+1 4.758932-6-5.906841+1 4.775558-6-6.277908+1 4.793295-6-7.213101+1 4.808909-6-8.367967+1 4.835625-6-6.762322+1 4.852619-6-6.297889+1 4.867082-6-6.273936+1 4.900288-6-6.906505+1 4.942378-6-7.683700+1 4.990330-6-7.863677+1 5.086234-6-8.058051+1 5.238519-6-8.416731+1 5.355486-6-7.971914+1 5.423124-6-7.546608+1 5.457942-6-7.848802+1 5.488674-6-8.447036+1 5.525405-6-7.909679+1 5.562782-6-7.988227+1 5.628775-6-8.356060+1 5.711278-6-8.300846+1 5.774500-6-8.368517+1 5.848011-6-8.012638+1 5.953054-6-8.352948+1 6.332334-6-8.348992+1 6.840342-6-8.455220+1 6.997456-6-7.924210+1 7.046759-6-8.318129+1 7.061000-6-8.417444+1 7.116729-6-7.738933+1 7.169769-6-7.725511+1 7.289806-6-8.040650+1 7.590490-6-8.357786+1 7.695853-6-8.267978+1 7.738612-6-8.345965+1 7.827184-6-8.040031+1 8.021083-6-8.384817+1 8.182378-6-8.299153+1 8.713265-6-8.437502+1 8.896830-6-7.798279+1 9.016131-6-6.967788+1 9.057223-6-7.145809+1 9.099429-6-7.906371+1 9.117848-6-8.283951+1 9.170739-6-6.979240+1 9.207936-6-6.543794+1 9.251724-6-6.570995+1 9.384936-6-7.429809+1 9.630607-6-7.817464+1 1.043512-5-8.137186+1 1.088545-5-7.583562+1 1.104472-5-7.023627+1 1.110918-5-6.488390+1 1.123399-5-4.867535+1 1.126471-5-4.745198+1 1.129207-5-4.953827+1 1.132135-5-5.601254+1 1.135822-5-7.015790+1 1.138148-5-8.119902+1 1.142329-5-6.033479+1 1.145284-5-4.907594+1 1.147907-5-4.267994+1 1.150386-5-3.998730+1 1.152438-5-3.979326+1 1.155173-5-4.175814+1 1.169070-5-5.941215+1 1.179562-5-6.503225+1 1.201302-5-6.969959+1 1.262482-5-7.372557+1 1.556600-5-7.872602+1 1.579413-5-7.772020+1 1.601751-5-7.542131+1 1.670691-5-7.751826+1 2.321131-5-8.147913+1 2.433922-5-8.247801+1 2.504420-5-7.861414+1 2.546998-5-7.005813+1 2.558794-5-7.225150+1 2.573390-5-8.170408+1 2.576427-5-8.336044+1 2.591042-5-7.346266+1 2.602108-5-7.108237+1 2.614048-5-7.378503+1 2.642228-5-8.402833+1 2.656964-5-8.357158+1 2.662857-5-8.344873+1 2.691217-5-6.924759+1 2.703974-5-6.696709+1 2.721151-5-6.907240+1 2.757129-5-7.501868+1 2.885322-5-8.095162+1 2.942703-5-8.003768+1 3.004130-5-8.246552+1 3.054606-5-8.062612+1 3.146681-5-8.286931+1 3.330890-5-8.550709+1 3.489818-5-8.736792+1 4.188797-5-9.720458+1 4.450000-5-9.534492+1 4.817500-5-8.430253+1 5.239856-5-7.000240+1 5.625267-5-6.188646+1 6.099865-5-5.665781+1 6.853440-5-5.334643+1 8.140141-5-5.299743+1 9.648083-5-5.614466+1 1.188334-4-5.782635+1 1.268425-4-5.872720+1 1.665051-4-6.263489+1 2.172076-4-6.802589+1 2.672150-4-7.370883+1 3.100000-4-7.321729+1 4.355390-4-6.092211+1 5.650000-4-4.832671+1 6.361583-4-4.383209+1 6.724102-4-4.305506+1 6.988105-4-4.042362+1 7.765168-4-3.633417+1 8.998013-4-3.200588+1 1.030582-3-2.860158+1 1.220518-3-2.577058+1 1.462966-3-2.417984+1 1.759189-3-2.403760+1 2.051898-3-2.549049+1 2.263817-3-2.802094+1 2.400280-3-3.112430+1 2.485351-3-3.470234+1 2.529197-3-3.824944+1 2.577597-3-4.578405+1 2.594823-3-4.609848+1 2.636612-3-4.168172+1 2.665744-3-4.155159+1 2.696940-3-4.207788+1 2.724337-3-3.877093+1 2.756249-3-3.420479+1 2.800000-3-3.058082+1 2.878798-3-2.674623+1 2.984262-3-2.362215+1 3.077714-3-2.233599+1 3.129028-3-2.274673+1 3.163223-3-2.315854+1 3.194780-3-2.202678+1 3.254618-3-1.926545+1 3.343795-3-1.709294+1 3.473663-3-1.512868+1 3.603250-3-1.404336+1 3.690854-3-1.402580+1 3.793750-3-1.238625+1 3.900207-3-1.152164+1 3.976723-3-1.127507+1 4.088137-3-9.852022+0 4.262918-3-8.499465+0 4.479711-3-7.345333+0 4.786618-3-6.221014+0 5.151676-3-5.328838+0 5.590023-3-4.656447+0 6.025596-3-4.283132+0 6.707728-3-4.017940+0 7.490852-3-3.996253+0 8.522533-3-4.249267+0 9.678766-3-4.756940+0 1.094899-2-5.595434+0 1.186205-2-6.516098+0 1.247839-2-7.496208+0 1.286068-2-8.508379+0 1.308148-2-9.531333+0 1.321778-2-1.072617+1 1.336017-2-1.239804+1 1.343218-2-1.265958+1 1.352001-2-1.203218+1 1.367473-2-1.015372+1 1.381773-2-9.089439+0 1.405684-2-8.152701+0 1.439875-2-7.461162+0 1.482225-2-7.110984+0 1.520872-2-7.206516+0 1.544897-2-7.648670+0 1.570671-2-8.756846+0 1.581524-2-8.766255+0 1.609933-2-7.561928+0 1.638750-2-7.184471+0 1.673979-2-5.717633+0 1.704621-2-4.915185+0 1.748880-2-4.139894+0 1.810485-2-3.386309+0 1.867454-2-2.868236+0 1.922947-2-2.478060+0 1.992763-2-2.096265+0 2.057523-2-1.815984+0 2.146427-2-1.514038+0 2.248711-2-1.259929+0 2.359296-2-1.060872+0 2.486262-2-9.030312-1 2.628376-2-7.853363-1 2.756087-2-7.210557-1 2.963680-2-6.723972-1 3.217363-2-6.639497-1 3.494975-2-6.963592-1 4.122447-2-8.421881-1 6.656772-2-1.590180+0 7.485580-2-1.901496+0 8.064614-2-2.212219+0 8.451304-2-2.540677+0 8.683097-2-2.866052+0 8.833330-2-3.226934+0 8.927315-2-3.652512+0 9.044650-2-4.433135+0 9.091036-2-4.499664+0 9.144751-2-4.258767+0 9.267129-2-3.369990+0 9.352711-2-2.990975+0 9.494583-2-2.608675+0 9.702197-2-2.253719+0 1.000911-1-1.917525+0 1.036295-1-1.654731+0 1.080447-1-1.427766+0 1.140996-1-1.224890+0 1.224060-1-1.048849+0 1.332562-1-9.098508-1 1.444347-1-8.329102-1 1.619339-1-7.753710-1 1.896570-1-7.552695-1 2.761586-1-8.153787-1 4.299500-1-9.107142-1 6.955746-1-9.756236-1 1.410753+0-1.008878+0 4.260405+0-1.021808+0 1.000000+1-1.022770+0 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.429172-4 1.074278-6 8.701456-4 1.158093-6 1.196354-3 1.214990-6 1.458937-3 1.252958-6 1.662198-3 1.332492-6 2.173946-3 1.499790-6 3.706558-3 1.578650-6 4.689105-3 1.652581-6 5.814372-3 1.721892-6 7.083868-3 1.800000-6 8.812914-3 1.847788-6 1.000541-2 1.904898-6 1.163601-2 2.055690-6 1.713752-2 2.143922-6 2.109798-2 2.221125-6 2.526109-2 2.288678-6 2.955142-2 2.347787-6 3.384663-2 2.399507-6 3.817623-2 2.490017-6 4.701116-2 2.562891-6 5.560694-2 2.608812-6 6.176512-2 2.685180-6 7.360951-2 2.788737-6 9.330424-2 2.863506-6 1.110638-1 2.981965-6 1.470427-1 3.063399-6 1.785834-1 3.135403-6 2.126323-1 3.205007-6 2.526539-1 3.270261-6 2.979895-1 3.331436-6 3.489971-1 3.388788-6 4.064394-1 3.446387-6 4.756543-1 3.492962-6 5.419042-1 3.540218-6 6.212906-1 3.584521-6 7.093220-1 3.626055-6 8.066166-1 3.664993-6 9.138942-1 3.701498-6 1.031812+0 3.735721-6 1.161235+0 3.767805-6 1.303121+0 3.797883-6 1.458328+0 3.826082-6 1.627776+0 3.852519-6 1.812507+0 3.877303-6 2.013548+0 3.900538-6 2.231933+0 3.922321-6 2.468824+0 3.942742-6 2.725502+0 3.961887-6 3.003243+0 3.979836-6 3.303276+0 3.998623-6 3.667630+0 4.012438-6 3.975425+0 4.027227-6 4.350422+0 4.041092-6 4.753401+0 4.054090-6 5.185930+0 4.066276-6 5.649635+0 4.077700-6 6.146234+0 4.088411-6 6.677579+0 4.098452-6 7.245695+0 4.107865-6 7.852840+0 4.116690-6 8.501596+0 4.124963-6 9.194980+0 4.133813-6 1.004935+1 4.139991-6 1.073034+1 4.146808-6 1.158096+1 4.159590-6 1.354181+1 4.170775-6 1.580463+1 4.180561-6 1.839119+1 4.189124-6 2.129541+1 4.196616-6 2.448070+1 4.203172-6 2.788536+1 4.208909-6 3.143268+1 4.213928-6 3.504166+1 4.222164-6 4.214866+1 4.235824-6 5.783566+1 4.249718-6 7.974736+1 4.256306-6 9.244601+1 4.259523-6 9.919428+1 4.267367-6 1.170969+2 4.269982-6 1.234954+2 4.280440-6 1.509170+2 4.281748-6 1.545151+2 4.290899-6 1.803507+2 4.294494-6 1.906477+2 4.301357-6 2.101308+2 4.306668-6 2.247210+2 4.311816-6 2.381405+2 4.317127-6 2.509371+2 4.322274-6 2.620371+2 4.326850-6 2.706118+2 4.332181-6 2.788382+2 4.338289-6 2.856549+2 4.343518-6 2.890938+2 4.345339-6 2.897500+2 4.350533-6 2.900552+2 4.355696-6 2.880536+2 4.358618-6 2.859169+2 4.363722-6 2.805008+2 4.367856-6 2.746226+2 4.375221-6 2.611482+2 4.379395-6 2.520082+2 4.382914-6 2.435855+2 4.386333-6 2.348610+2 4.390337-6 2.240775+2 4.395484-6 2.095238+2 4.400060-6 1.961495+2 4.404472-6 1.830521+2 4.405943-6 1.786717+2 4.411172-6 1.631550+2 4.416401-6 1.479081+2 4.422284-6 1.313362+2 4.426860-6 1.190229+2 4.437318-6 9.325470+1 4.440913-6 8.525353+1 4.444345-6 7.804937+1 4.447777-6 7.127415+1 4.453006-6 6.177508+1 4.458926-6 5.220299+1 4.463056-6 4.624064+1 4.468532-6 3.919773+1 4.473964-6 3.311620+1 4.482034-6 2.558622+1 4.490019-6 1.967472+1 4.495294-6 1.648663+1 4.505722-6 1.156198+1 4.526092-6 5.729089+0 4.564964-6 1.509394+0 4.574307-6 1.092667+0 4.583540-6 7.910404-1 4.601577-6 4.187259-1 4.610384-6 3.104096-1 4.619054-6 2.378705-1 4.627589-6 1.930615-1 4.635990-6 1.698871-1 4.644259-6 1.635614-1 4.652400-6 1.701786-1 4.660413-6 1.864290-1 4.668301-6 2.094163-1 4.676066-6 2.365545-1 4.683710-6 2.655232-1 4.691234-6 2.942675-1 4.702286-6 3.331492-1 4.716585-6 3.705682-1 4.727004-6 3.848934-1 4.741362-6 3.845817-1 4.754505-6 3.654181-1 4.767241-6 3.336712-1 4.785703-6 2.749147-1 4.797564-6 2.350899-1 4.858566-6 8.508849-2 4.958356-6 8.245447-2 5.001306-6 1.857795-1 5.165254-6 1.063180+0 5.241536-6 1.880471+0 5.279676-6 2.477159+0 5.330531-6 3.535837+0 5.382573-6 5.064883+0 5.419526-6 6.555234+0 5.448010-6 8.032737+0 5.474185-6 9.734808+0 5.487272-6 1.074414+1 5.500360-6 1.188292+1 5.513447-6 1.317435+1 5.526535-6 1.464742+1 5.539622-6 1.633904+1 5.552710-6 1.829715+1 5.565797-6 2.058558+1 5.578885-6 2.329188+1 5.591827-6 2.649974+1 5.596942-6 2.794867+1 5.613324-6 3.349009+1 5.627659-6 3.984992+1 5.640202-6 4.706666+1 5.651177-6 5.510946+1 5.660780-6 6.387338+1 5.669183-6 7.319344+1 5.676535-6 8.286919+1 5.682969-6 9.269061+1 5.693524-6 1.120035+2 5.708608-6 1.478872+2 5.728002-6 2.116177+2 5.740643-6 2.654872+2 5.744532-6 2.841367+2 5.756200-6 3.459189+2 5.763159-6 3.867586+2 5.765478-6 4.009882+2 5.779600-6 4.933284+2 5.781365-6 5.054458+2 5.793721-6 5.924185+2 5.798575-6 6.270529+2 5.807843-6 6.925003+2 5.811833-6 7.199769+2 5.818620-6 7.650530+2 5.823817-6 7.976636+2 5.828061-6 8.227568+2 5.833631-6 8.532017+2 5.839002-6 8.794766+2 5.845500-6 9.066491+2 5.851090-6 9.255418+2 5.859364-6 9.451749+2 5.865625-6 9.530042+2 5.874242-6 9.534998+2 5.880530-6 9.463049+2 5.894474-6 9.084938+2 5.898999-6 8.902192+2 5.908796-6 8.418935+2 5.914988-6 8.060105+2 5.920729-6 7.697357+2 5.925125-6 7.403669+2 5.931407-6 6.965458+2 5.936455-6 6.602079+2 5.939484-6 6.380971+2 5.946664-6 5.852873+2 5.949057-6 5.676904+2 5.956118-6 5.162608+2 5.963179-6 4.661666+2 5.967371-6 4.373403+2 5.974818-6 3.882628+2 5.978183-6 3.671015+2 5.991422-6 2.908153+2 5.996497-6 2.647157+2 6.002289-6 2.371233+2 6.010977-6 2.000930+2 6.022821-6 1.576863+2 6.053377-6 8.454411+1 6.067884-6 6.345999+1 6.071510-6 5.916853+1 6.082391-6 4.816411+1 6.096897-6 3.692760+1 6.125911-6 2.192627+1 6.140418-6 1.674501+1 6.144045-6 1.562129+1 6.154925-6 1.260377+1 6.163992-6 1.045626+1 6.169432-6 9.313724+0 6.176685-6 7.949122+0 6.185594-6 6.505535+0 6.207686-6 3.906280+0 6.213568-6 3.420370+0 6.224962-6 2.685989+0 6.235645-6 2.210654+0 6.245660-6 1.917205+0 6.255049-6 1.748237+0 6.290257-6 1.700423+0 6.304038-6 1.872518+0 6.304755-6 1.885056+0 6.314329-6 2.097471+0 6.324205-6 2.432036+0 6.332884-6 2.864441+0 6.336822-6 3.116138+0 6.340513-6 3.389755+0 6.343974-6 3.683430+0 6.350463-6 4.345101+0 6.356140-6 5.061488+0 6.361108-6 5.810275+0 6.372587-6 8.058747+0 6.384417-6 1.129740+1 6.393734-6 1.464423+1 6.401329-6 1.796914+1 6.406301-6 2.046135+1 6.411112-6 2.312446+1 6.425543-6 3.268302+1 6.431017-6 3.694397+1 6.432842-6 3.844252+1 6.448598-6 5.296228+1 6.450567-6 5.496603+1 6.464354-6 6.999173+1 6.469770-6 7.628946+1 6.480110-6 8.869671+1 6.487132-6 9.724347+1 6.494364-6 1.059746+2 6.498490-6 1.108609+2 6.505261-6 1.186225+2 6.510445-6 1.242719+2 6.514678-6 1.286462+2 6.520234-6 1.339980+2 6.526708-6 1.395834+2 6.528363-6 1.408858+2 6.535748-6 1.460137+2 6.542355-6 1.495726+2 6.546369-6 1.512256+2 6.554195-6 1.532849+2 6.561049-6 1.537882+2 6.565542-6 1.534529+2 6.572086-6 1.520324+2 6.578847-6 1.494381+2 6.591211-6 1.419582+2 6.597001-6 1.373731+2 6.601520-6 1.333809+2 6.607978-6 1.271292+2 6.612129-6 1.228204+2 6.618954-6 1.153442+2 6.625388-6 1.079660+2 6.630761-6 1.016484+2 6.637670-6 9.343661+1 6.645548-6 8.411458+1 6.651457-6 7.726032+1 6.655396-6 7.279582+1 6.662289-6 6.524830+1 6.669182-6 5.811158+1 6.678045-6 4.965075+1 6.686552-6 4.237903+1 6.709619-6 2.723292+1 6.716451-6 2.404877+1 6.721275-6 2.214830+1 6.726093-6 2.053020+1 6.729190-6 1.963366+1 6.732287-6 1.884664+1 6.735162-6 1.821168+1 6.741632-6 1.710840+1 6.745250-6 1.668004+1 6.746917-6 1.652636+1 6.751920-6 1.622488+1 6.759145-6 1.618926+1 6.762119-6 1.630304+1 6.763886-6 1.640420+1 6.776824-6 1.783738+1 6.782574-6 1.881888+1 6.794125-6 2.129605+1 6.810860-6 2.569538+1 6.818396-6 2.782451+1 6.826482-6 3.010623+1 6.831900-6 3.159435+1 6.839416-6 3.355627+1 6.843411-6 3.453316+1 6.851412-6 3.631457+1 6.857988-6 3.757401+1 6.865427-6 3.874514+1 6.870979-6 3.943118+1 6.878254-6 4.007858+1 6.882657-6 4.033161+1 6.890519-6 4.053112+1 6.898616-6 4.042194+1 6.903363-6 4.022557+1 6.913482-6 3.953841+1 6.925592-6 3.838324+1 6.946286-6 3.622992+1 6.956867-6 3.536520+1 6.964155-6 3.496319+1 6.972072-6 3.475531+1 6.979453-6 3.480849+1 6.992149-6 3.552049+1 6.998188-6 3.614986+1 7.010799-6 3.807787+1 7.015845-6 3.907781+1 7.020077-6 4.001335+1 7.025984-6 4.146201+1 7.038067-6 4.490540+1 7.073405-6 5.774366+1 7.081848-6 6.115506+1 7.090545-6 6.468929+1 7.102462-6 6.944524+1 7.108106-6 7.161696+1 7.114052-6 7.381999+1 7.120245-6 7.599831+1 7.126530-6 7.806257+1 7.136090-6 8.086309+1 7.145294-6 8.310590+1 7.155485-6 8.499369+1 7.165874-6 8.620607+1 7.174818-6 8.663779+1 7.183233-6 8.651342+1 7.191140-6 8.592912+1 7.195958-6 8.535576+1 7.206439-6 8.356551+1 7.213179-6 8.204603+1 7.217024-6 8.105990+1 7.223755-6 7.914318+1 7.229242-6 7.741714+1 7.236529-6 7.492738+1 7.243946-6 7.220066+1 7.248328-6 7.051560+1 7.255996-6 6.746673+1 7.261748-6 6.512086+1 7.274688-6 5.976544+1 7.291587-6 5.288721+1 7.329994-6 3.940004+1 7.342209-6 3.601526+1 7.348179-6 3.453598+1 7.359049-6 3.213503+1 7.369746-6 3.012832+1 7.379131-6 2.864232+1 7.388844-6 2.735418+1 7.399123-6 2.624270+1 7.408424-6 2.543662+1 7.418406-6 2.475687+1 7.424135-6 2.444352+1 7.432430-6 2.407709+1 7.442702-6 2.374773+1 7.453843-6 2.351954+1 7.466401-6 2.338913+1 7.482922-6 2.336631+1 7.506068-6 2.350790+1 7.577623-6 2.420479+1 7.620754-6 2.444215+1 7.667968-6 2.451026+1 7.748728-6 2.437442+1 7.990095-6 2.376503+1 8.066257-6 2.366099+1 8.147748-6 2.368177+1 8.219454-6 2.387775+1 8.277986-6 2.406997+1 8.327968-6 2.406820+1 8.350439-6 2.405038+1 8.365525-6 2.409336+1 8.376943-6 2.419343+1 8.385643-6 2.433105+1 8.396828-6 2.461786+1 8.405527-6 2.495330+1 8.416712-6 2.557281+1 8.421684-6 2.593035+1 8.429140-6 2.657858+1 8.436597-6 2.737971+1 8.445297-6 2.853714+1 8.450889-6 2.942404+1 8.456482-6 3.043465+1 8.465181-6 3.227666+1 8.473570-6 3.439579+1 8.482134-6 3.694201+1 8.492318-6 4.051952+1 8.501731-6 4.439908+1 8.519702-6 5.344779+1 8.552238-6 7.550064+1 8.555993-6 7.849190+1 8.574440-6 9.429962+1 8.581182-6 1.004553+2 8.595922-6 1.143508+2 8.602572-6 1.207136+2 8.612076-6 1.297725+2 8.619713-6 1.369263+2 8.628348-6 1.447638+2 8.637712-6 1.528215+2 8.646027-6 1.594673+2 8.655966-6 1.666302+2 8.667819-6 1.738457+2 8.677941-6 1.786978+2 8.683186-6 1.806960+2 8.693174-6 1.834742+2 8.702638-6 1.848261+2 8.712987-6 1.848627+2 8.721347-6 1.838080+2 8.725849-6 1.828502+2 8.741555-6 1.775005+2 8.751809-6 1.724762+2 8.757388-6 1.692975+2 8.768422-6 1.622131+2 8.777481-6 1.557341+2 8.788944-6 1.468889+2 8.801557-6 1.366035+2 8.808958-6 1.304237+2 8.821112-6 1.202306+2 8.830524-6 1.124268+2 8.844782-6 1.009803+2 8.868678-6 8.339344+1 8.917020-6 5.585938+1 8.932292-6 4.943148+1 8.953596-6 4.205250+1 8.974900-6 3.626029+1 8.996690-6 3.168112+1 9.018064-6 2.826077+1 9.038812-6 2.577441+1 9.049464-6 2.477621+1 9.073211-6 2.316724+1 9.081420-6 2.280126+1 9.086170-6 2.263368+1 9.114572-6 2.232411+1 9.121796-6 2.244318+1 9.130702-6 2.270787+1 9.137382-6 2.299526+1 9.146149-6 2.349317+1 9.156530-6 2.426808+1 9.167330-6 2.529835+1 9.171962-6 2.581287+1 9.180576-6 2.688921+1 9.190703-6 2.835739+1 9.204240-6 3.066655+1 9.221629-6 3.420578+1 9.257987-6 4.340823+1 9.275595-6 4.844547+1 9.285951-6 5.146355+1 9.298103-6 5.496704+1 9.310816-6 5.848932+1 9.321958-6 6.136783+1 9.332747-6 6.389601+1 9.338445-6 6.510632+1 9.349362-6 6.714591+1 9.360806-6 6.884235+1 9.370391-6 6.988195+1 9.381934-6 7.064467+1 9.384033-6 7.072467+1 9.406064-6 7.047660+1 9.412227-6 7.006288+1 9.428854-6 6.826645+1 9.439861-6 6.659676+1 9.453219-6 6.416059+1 9.468339-6 6.101490+1 9.481059-6 5.818976+1 9.524750-6 4.886939+1 9.540599-6 4.615649+1 9.563844-6 4.318927+1 9.570016-6 4.261949+1 9.587171-6 4.151455+1 9.594682-6 4.124258+1 9.606753-6 4.105174+1 9.617608-6 4.111124+1 9.630226-6 4.141011+1 9.646379-6 4.206654+1 9.703386-6 4.528496+1 9.745496-6 4.741834+1 9.772555-6 4.891736+1 9.788188-6 5.010499+1 9.799141-6 5.119274+1 9.809255-6 5.245365+1 9.820250-6 5.417659+1 9.829185-6 5.590294+1 9.838443-6 5.805412+1 9.848719-6 6.093798+1 9.858019-6 6.405760+1 9.868838-6 6.837021+1 9.879522-6 7.342674+1 9.892081-6 8.048208+1 9.901744-6 8.679009+1 9.914059-6 9.599978+1 9.927448-6 1.075541+2 9.956274-6 1.378625+2 9.978086-6 1.652564+2 9.993811-6 1.868311+2 1.000669-5 2.052332+2 1.001815-5 2.218484+2 1.002759-5 2.355063+2 1.003794-5 2.502427+2 1.004911-5 2.655833+2 1.005849-5 2.778187+2 1.007020-5 2.919893+2 1.007952-5 3.022016+2 1.009114-5 3.133624+2 1.010297-5 3.227092+2 1.011585-5 3.303340+2 1.012707-5 3.346676+2 1.015110-5 3.364841+2 1.015970-5 3.346855+2 1.017830-5 3.266630+2 1.018644-5 3.215105+2 1.019382-5 3.160573+2 1.020650-5 3.051494+2 1.021953-5 2.922113+2 1.023089-5 2.798147+2 1.024550-5 2.627857+2 1.025705-5 2.487784+2 1.026861-5 2.345761+2 1.028886-5 2.099048+2 1.031930-5 1.752625+2 1.036361-5 1.339234+2 1.037878-5 1.226534+2 1.039766-5 1.106412+2 1.041005-5 1.038908+2 1.042134-5 9.846170+1 1.043924-5 9.113538+1 1.045779-5 8.497898+1 1.048366-5 7.837647+1 1.050985-5 7.348888+1 1.052648-5 7.108126+1 1.055936-5 6.744658+1 1.059575-5 6.458490+1 1.062619-5 6.277073+1 1.065532-5 6.135293+1 1.068631-5 6.008021+1 1.073440-5 5.843615+1 1.077641-5 5.722880+1 1.083927-5 5.569058+1 1.089099-5 5.459049+1 1.104978-5 5.174199+1 1.126809-5 4.841100+1 1.141900-5 4.618788+1 1.157465-5 4.379382+1 1.170805-5 4.156560+1 1.178238-5 4.024005+1 1.190432-5 3.795885+1 1.195609-5 3.701131+1 1.200000-5 3.629950+1 1.204126-5 3.579279+1 1.207422-5 3.556435+1 1.211275-5 3.556494+1 1.214480-5 3.583119+1 1.217496-5 3.633328+1 1.220350-5 3.705598+1 1.223028-5 3.797554+1 1.225541-5 3.907690+1 1.227900-5 4.035219+1 1.231169-5 4.259159+1 1.233182-5 4.431232+1 1.235100-5 4.626258+1 1.236899-5 4.843192+1 1.238586-5 5.083762+1 1.240938-5 5.496118+1 1.243038-5 5.962402+1 1.244692-5 6.413612+1 1.246707-5 7.091128+1 1.248787-5 7.975239+1 1.250621-5 8.950750+1 1.251444-5 9.458927+1 1.253311-5 1.080180+2 1.254359-5 1.168551+2 1.255833-5 1.310902+2 1.257502-5 1.500778+2 1.259608-5 1.789759+2 1.265138-5 2.864839+2 1.266065-5 3.095470+2 1.268547-5 3.788804+2 1.270103-5 4.279089+2 1.273408-5 5.454086+2 1.273773-5 5.593669+2 1.276519-5 6.695856+2 1.277522-5 7.115613+2 1.279436-5 7.931024+2 1.281015-5 8.607163+2 1.282546-5 9.253792+2 1.284126-5 9.900279+2 1.285657-5 1.049532+3 1.287018-5 1.098904+3 1.288645-5 1.152471+3 1.290785-5 1.212007+3 1.292296-5 1.245371+3 1.293895-5 1.272048+3 1.295428-5 1.288763+3 1.296456-5 1.294952+3 1.297998-5 1.296577+3 1.299049-5 1.292452+3 1.301406-5 1.268242+3 1.302887-5 1.243057+3 1.304323-5 1.211970+3 1.305902-5 1.170977+3 1.307434-5 1.125406+3 1.308795-5 1.080902+3 1.310544-5 1.019402+3 1.312100-5 9.618846+2 1.314044-5 8.879421+2 1.316426-5 7.969775+2 1.320266-5 6.567960+2 1.322988-5 5.667727+2 1.329979-5 3.838024+2 1.332777-5 3.305211+2 1.334168-5 3.078856+2 1.335553-5 2.876633+2 1.337133-5 2.672026+2 1.338307-5 2.536412+2 1.341045-5 2.267941+2 1.343762-5 2.056966+2 1.346458-5 1.890537+2 1.350000-5 1.720703+2 1.353421-5 1.594856+2 1.357031-5 1.490374+2 1.362194-5 1.374909+2 1.367297-5 1.286743+2 1.372321-5 1.216814+2 1.377266-5 1.159667+2 1.382133-5 1.111932+2 1.386925-5 1.071358+2 1.396284-5 1.005798+2 1.405425-5 9.544371+1 1.414281-5 9.132288+1 1.422859-5 8.793207+1 1.439220-5 8.262926+1 1.447019-5 8.050972+1 1.462935-5 7.680001+1 1.483372-5 7.288232+1 1.513701-5 6.816121+1 1.545060-5 6.420832+1 1.573516-5 6.110165+1 1.668882-5 5.249196+1 1.722047-5 4.794155+1 1.746987-5 4.552088+1 1.767771-5 4.300816+1 1.780408-5 4.107206+1 1.789172-5 3.966254+1 1.795603-5 3.882081+1 1.796708-5 3.871249+1 1.804443-5 3.844674+1 1.808862-5 3.881668+1 1.809967-5 3.898191+1 1.813282-5 3.966657+1 1.814801-5 4.007760+1 1.817702-5 4.103218+1 1.821760-5 4.272234+1 1.827890-5 4.590239+1 1.835933-5 5.053313+1 1.840352-5 5.287202+1 1.844220-5 5.458407+1 1.845739-5 5.514434+1 1.849522-5 5.622017+1 1.851067-5 5.651998+1 1.853384-5 5.681313+1 1.855702-5 5.691934+1 1.857251-5 5.688890+1 1.859575-5 5.669844+1 1.861898-5 5.634689+1 1.866530-5 5.523678+1 1.870738-5 5.387047+1 1.875157-5 5.221299+1 1.889707-5 4.668212+1 1.892033-5 4.592846+1 1.899010-5 4.402434+1 1.903661-5 4.307653+1 1.908806-5 4.233227+1 1.913535-5 4.191584+1 1.918985-5 4.171687+1 1.925992-5 4.179941+1 1.941507-5 4.244696+1 1.946685-5 4.255631+1 1.953176-5 4.252593+1 1.962010-5 4.221003+1 1.995263-5 4.037347+1 2.043458-5 3.854440+1 2.064051-5 3.768918+1 2.158707-5 3.346254+1 2.217793-5 3.092043+1 2.296130-5 2.759738+1 2.375725-5 2.424136+1 2.454611-5 2.094386+1 2.536478-5 1.753737+1 2.595305-5 1.510512+1 2.628469-5 1.371569+1 2.658725-5 1.244668+1 2.698437-5 1.078721+1 2.729973-5 9.465894+0 2.756262-5 8.357846+0 2.776565-5 7.500965+0 2.796867-5 6.647809+0 2.817170-5 5.803184+0 2.837473-5 4.971753+0 2.851008-5 4.427969+0 2.864543-5 3.896864+0 2.877273-5 3.414760+0 2.884845-5 3.139446+0 2.893509-5 2.838983+0 2.909269-5 2.350874+0 2.916429-5 2.165391+0 2.923150-5 2.020072+0 2.926353-5 1.962567+0 2.930667-5 1.899018+0 2.935352-5 1.850468+0 2.939519-5 1.827709+0 2.942837-5 1.825172+0 2.944125-5 1.828271+0 2.946487-5 1.840366+0 2.950140-5 1.876891+0 2.952482-5 1.912910+0 2.954768-5 1.958674+0 2.959130-5 2.078870+0 2.961209-5 2.153451+0 2.963223-5 2.237819+0 2.967064-5 2.436366+0 2.970669-5 2.675409+0 2.972388-5 2.810405+0 2.975717-5 3.116709+0 2.978838-5 3.466052+0 2.981764-5 3.857931+0 2.984507-5 4.291206+0 2.987079-5 4.764050+0 2.989490-5 5.273978+0 2.991751-5 5.817934+0 2.995857-5 6.993448+0 2.999465-5 8.258826+0 3.008111-5 1.240333+1 3.015372-5 1.742752+1 3.020595-5 2.212090+1 3.025301-5 2.723602+1 3.028666-5 3.144901+1 3.030885-5 3.449248+1 3.033105-5 3.775016+1 3.036828-5 4.369970+1 3.040552-5 5.024715+1 3.041483-5 5.197470+1 3.046370-5 6.160237+1 3.048571-5 6.622067+1 3.055912-5 8.260623+1 3.058312-5 8.819101+1 3.062894-5 9.896049+1 3.066675-5 1.077790+2 3.068508-5 1.119709+2 3.071272-5 1.181288+2 3.074123-5 1.242045+2 3.076872-5 1.297208+2 3.079650-5 1.348805+2 3.082879-5 1.402619+2 3.085701-5 1.443495+2 3.089192-5 1.485259+2 3.092499-5 1.515147+2 3.094304-5 1.527316+2 3.097945-5 1.542745+2 3.101485-5 1.546088+2 3.103606-5 1.542721+2 3.107329-5 1.527588+2 3.110246-5 1.508154+2 3.112336-5 1.490551+2 3.116363-5 1.449276+2 3.120968-5 1.392934+2 3.126712-5 1.315198+2 3.137017-5 1.180408+2 3.141759-5 1.130494+2 3.145497-5 1.099716+2 3.147822-5 1.084938+2 3.151151-5 1.070006+2 3.154530-5 1.062547+2 3.157766-5 1.062615+2 3.161237-5 1.070157+2 3.165244-5 1.087560+2 3.169031-5 1.111242+2 3.175425-5 1.162495+2 3.183534-5 1.235205+2 3.189034-5 1.280365+2 3.192768-5 1.305780+2 3.197483-5 1.329259+2 3.200984-5 1.339259+2 3.206109-5 1.341061+2 3.210294-5 1.330648+2 3.212808-5 1.319237+2 3.216161-5 1.298178+2 3.218316-5 1.281265+2 3.220471-5 1.261861+2 3.224302-5 1.221696+2 3.228134-5 1.175140+2 3.231965-5 1.123316+2 3.235796-5 1.067415+2 3.237712-5 1.038313+2 3.242022-5 9.709794+1 3.243459-5 9.481774+1 3.251122-5 8.264460+1 3.253143-5 7.949072+1 3.258785-5 7.096142+1 3.265489-5 6.155475+1 3.274881-5 5.005268+1 3.281923-5 4.280639+1 3.288637-5 3.696256+1 3.294931-5 3.234375+1 3.300832-5 2.867784+1 3.306364-5 2.574337+1 3.317228-5 2.111701+1 3.325813-5 1.827007+1 3.333754-5 1.609431+1 3.347652-5 1.302399+1 3.389346-5 6.993660+0 3.393517-5 6.590823+0 3.406030-5 5.618865+0 3.414373-5 5.181052+0 3.422715-5 4.915813+0 3.426887-5 4.845613+0 3.431058-5 4.813972+0 3.433143-5 4.811545+0 3.436272-5 4.823157+0 3.439400-5 4.851218+0 3.442190-5 4.888212+0 3.446374-5 4.960687+0 3.462342-5 5.306605+0 3.464428-5 5.346053+0 3.472770-5 5.455305+0 3.481112-5 5.456391+0 3.483361-5 5.434422+0 3.489455-5 5.324114+0 3.492471-5 5.242084+0 3.496994-5 5.086319+0 3.501518-5 4.894262+0 3.504759-5 4.736917+0 3.509620-5 4.475268+0 3.512051-5 4.335172+0 3.514482-5 4.190405+0 3.518653-5 3.934572+0 3.522825-5 3.674726+0 3.531167-5 3.168079+0 3.539510-5 2.718832+0 3.552476-5 2.231769+0 3.554335-5 2.188995+0 3.556194-5 2.153813+0 3.558881-5 2.116766+0 3.561527-5 2.096623+0 3.569462-5 2.135673+0 3.574882-5 2.247680+0 3.576810-5 2.303652+0 3.583638-5 2.564882+0 3.585827-5 2.667723+0 3.601150-5 3.572368+0 3.606631-5 3.935993+0 3.609247-5 4.108741+0 3.613171-5 4.361486+0 3.617095-5 4.601026+0 3.619676-5 4.748477+0 3.621611-5 4.852661+0 3.625966-5 5.063565+0 3.627418-5 5.125802+0 3.631796-5 5.286265+0 3.635079-5 5.377846+0 3.637268-5 5.424471+0 3.641099-5 5.477564+0 3.644930-5 5.494229+0 3.646025-5 5.492385+0 3.653686-5 5.401700+0 3.657312-5 5.315566+0 3.664234-5 5.089352+0 3.666616-5 4.996838+0 3.670784-5 4.822580+0 3.673910-5 4.685154+0 3.688710-5 4.048475+0 3.693403-5 3.879984+0 3.698096-5 3.738931+0 3.706222-5 3.570609+0 3.708822-5 3.538389+0 3.716396-5 3.504113+0 3.719002-5 3.511960+0 3.726521-5 3.585052+0 3.735207-5 3.747288+0 3.739249-5 3.844640+0 3.749028-5 4.119356+0 3.765829-5 4.662235+0 3.793668-5 5.678804+0 3.804261-5 6.135312+0 3.815798-5 6.706670+0 3.824642-5 7.208929+0 3.832422-5 7.702940+0 3.842796-5 8.444014+0 3.860111-5 9.908084+0 3.885484-5 1.262844+1 3.905872-5 1.536783+1 3.925953-5 1.850360+1 3.935052-5 2.000425+1 3.944327-5 2.152738+1 3.950000-5 2.243295+1 3.953941-5 2.304209+1 3.960515-5 2.400927+1 3.964460-5 2.455413+1 3.972674-5 2.558829+1 3.977955-5 2.617486+1 3.983236-5 2.669821+1 3.992625-5 2.748018+1 4.002083-5 2.810907+1 4.027712-5 2.957925+1 4.033555-5 2.999528+1 4.039398-5 3.048142+1 4.047525-5 3.129884+1 4.051429-5 3.175617+1 4.060953-5 3.305588+1 4.070365-5 3.459070+1 4.080784-5 3.654785+1 4.120541-5 4.553902+1 4.140825-5 5.058387+1 4.175597-5 5.996296+1 4.220960-5 7.439023+1 4.278402-5 9.690899+1 4.328407-5 1.208717+2 4.388750-5 1.560954+2 4.440400-5 1.926134+2 4.493287-5 2.368446+2 4.522844-5 2.647705+2 4.554881-5 2.977133+2 4.592466-5 3.399848+2 4.617804-5 3.707182+2 4.660514-5 4.264746+2 4.693998-5 4.734849+2 4.720513-5 5.126848+2 4.745601-5 5.513134+2 4.776289-5 6.004678+2 4.812413-5 6.607047+2 4.833475-5 6.967804+2 4.857804-5 7.390789+2 4.890000-5 7.957123+2 4.935000-5 8.754035+2 4.970000-5 9.371574+2 5.000000-5 9.894503+2 5.040000-5 1.057688+3 5.081220-5 1.125593+3 5.120000-5 1.186653+3 5.146691-5 1.226856+3 5.196187-5 1.297054+3 5.242500-5 1.356820+3 5.290050-5 1.411166+3 5.321915-5 1.443244+3 5.355159-5 1.472880+3 5.400000-5 1.506526+3 5.451552-5 1.536108+3 5.507806-5 1.557745+3 5.561504-5 1.568753+3 5.590625-5 1.571284+3 5.640000-5 1.570915+3 5.711323-5 1.560913+3 5.773922-5 1.544598+3 5.879895-5 1.507573+3 6.058133-5 1.432919+3 6.483488-5 1.265964+3 6.734732-5 1.186659+3 7.171432-5 1.074950+3 8.063036-5 9.000073+2 8.715789-5 7.958833+2 9.238897-5 7.230945+2 9.586761-5 6.781937+2 9.750327-5 6.573083+2 9.958724-5 6.293824+2 1.013013-4 6.020859+2 1.024456-4 5.818811+2 1.029475-4 5.756792+2 1.032360-4 5.737283+2 1.037323-4 5.734728+2 1.051972-4 5.824357+2 1.057475-4 5.826524+2 1.081356-4 5.721757+2 1.114000-4 5.603335+2 1.156279-4 5.413493+2 1.186718-4 5.260779+2 1.216705-4 5.101982+2 1.270655-4 4.814152+2 1.313082-4 4.577943+2 1.329919-4 4.466336+2 1.349001-4 4.325422+2 1.356285-4 4.287762+2 1.365440-4 4.264020+2 1.374000-4 4.261403+2 1.395000-4 4.276309+2 1.415000-4 4.265299+2 1.462177-4 4.170678+2 1.497060-4 4.077251+2 1.548817-4 3.920721+2 1.606132-4 3.739683+2 1.693591-4 3.461605+2 1.722416-4 3.369794+2 1.777737-4 3.165721+2 1.841140-4 2.936736+2 1.867723-4 2.833502+2 1.880237-4 2.783780+2 1.900158-4 2.716617+2 1.925636-4 2.655966+2 1.948509-4 2.612074+2 1.973962-4 2.578963+2 2.005000-4 2.547948+2 2.025000-4 2.518790+2 2.066686-4 2.434857+2 2.100000-4 2.353095+2 2.128981-4 2.274762+2 2.155000-4 2.200971+2 2.182500-4 2.120678+2 2.230950-4 1.976412+2 2.281034-4 1.827736+2 2.332652-4 1.678828+2 2.467085-4 1.338840+2 2.512336-4 1.250993+2 2.540973-4 1.205254+2 2.570396-4 1.167171+2 2.592687-4 1.145070+2 2.626246-4 1.123834+2 2.680575-4 1.118653+2 2.731174-4 1.147816+2 2.800000-4 1.235854+2 2.823860-4 1.279296+2 2.886930-4 1.425677+2 2.918846-4 1.516420+2 2.962152-4 1.657769+2 3.000000-4 1.796664+2 3.179650-4 2.637317+2 3.240000-4 2.970192+2 3.294632-4 3.285315+2 3.355450-4 3.646820+2 3.430000-4 4.098323+2 3.525550-4 4.682412+2 3.637318-4 5.368681+2 3.765411-4 6.148384+2 3.884966-4 6.861202+2 4.000000-4 7.520226+2 4.123285-4 8.182806+2 4.245197-4 8.780031+2 4.394575-4 9.429673+2 4.512116-4 9.891132+2 4.610022-4 1.034499+3 4.684205-4 1.062260+3 4.713166-4 1.076980+3 4.760612-4 1.109127+3 4.809906-4 1.147032+3 4.850259-4 1.174281+3 4.882898-4 1.191097+3 4.933135-4 1.212599+3 4.980667-4 1.237015+3 5.080000-4 1.300344+3 5.195695-4 1.367021+3 5.378076-4 1.454052+3 5.585680-4 1.539997+3 5.824846-4 1.623347+3 6.121631-4 1.711098+3 6.409052-4 1.779820+3 6.614206-4 1.816782+3 6.811016-4 1.839185+3 6.910280-4 1.843743+3 6.960832-4 1.849898+3 7.010868-4 1.864678+3 7.053353-4 1.885554+3 7.160907-4 1.953838+3 7.244190-4 1.996469+3 7.396208-4 2.046721+3 7.670738-4 2.108743+3 7.924253-4 2.151298+3 8.360983-4 2.204808+3 8.613255-4 2.249616+3 8.895920-4 2.289172+3 9.225714-4 2.320530+3 9.723670-4 2.357570+3 9.988448-4 2.393347+3 1.033085-3 2.425038+3 1.082271-3 2.454863+3 1.139123-3 2.478069+3 1.197849-3 2.488398+3 1.264729-3 2.486007+3 1.341461-3 2.476708+3 1.426153-3 2.460081+3 1.508296-3 2.436289+3 1.598638-3 2.398571+3 1.693781-3 2.349448+3 1.799842-3 2.288380+3 1.909235-3 2.214096+3 2.008571-3 2.136153+3 2.104384-3 2.052525+3 2.192989-3 1.963669+3 2.268328-3 1.876542+3 2.333807-3 1.790773+3 2.392886-3 1.702414+3 2.443668-3 1.615206+3 2.488209-3 1.525792+3 2.520940-3 1.448867+3 2.548695-3 1.373035+3 2.567164-3 1.314663+3 2.588360-3 1.235960+3 2.605383-3 1.159784+3 2.618512-3 1.091656+3 2.627489-3 1.041435+3 2.643486-3 9.535324+2 2.650902-3 9.192846+2 2.656341-3 8.993852+2 2.661677-3 8.855087+2 2.665074-3 8.800571+2 2.668049-3 8.776409+2 2.671928-3 8.779624+2 2.676567-3 8.836403+2 2.681764-3 8.967844+2 2.687408-3 9.186649+2 2.693099-3 9.476688+2 2.702494-3 1.006527+3 2.713322-3 1.081574+3 2.720755-3 1.131304+3 2.725468-3 1.160335+3 2.732323-3 1.197822+3 2.739835-3 1.231781+3 2.748095-3 1.261058+3 2.756136-3 1.283539+3 2.771013-3 1.320900+3 2.777027-3 1.338852+3 2.782634-3 1.358964+3 2.789747-3 1.390498+3 2.797427-3 1.433039+3 2.804226-3 1.478028+3 2.817626-3 1.582880+3 2.828324-3 1.674760+3 2.835830-3 1.739075+3 2.844138-3 1.806945+3 2.853587-3 1.877240+3 2.864088-3 1.944886+3 2.875889-3 2.007641+3 2.889602-3 2.065383+3 2.902901-3 2.109537+3 2.920000-3 2.154705+3 2.944845-3 2.206429+3 2.971029-3 2.250532+3 3.002618-3 2.293873+3 3.037254-3 2.331230+3 3.071519-3 2.358299+3 3.106307-3 2.375918+3 3.138449-3 2.383074+3 3.173862-3 2.378777+3 3.198837-3 2.365700+3 3.234109-3 2.339770+3 3.247443-3 2.335565+3 3.259297-3 2.338830+3 3.270837-3 2.350141+3 3.280381-3 2.365897+3 3.301590-3 2.418135+3 3.325971-3 2.490985+3 3.342892-3 2.537779+3 3.359674-3 2.576415+3 3.379919-3 2.612388+3 3.406778-3 2.646584+3 3.438646-3 2.675228+3 3.478294-3 2.700753+3 3.526136-3 2.722059+3 3.574022-3 2.735796+3 3.630699-3 2.743460+3 3.678671-3 2.742688+3 3.724166-3 2.734400+3 3.809253-3 2.705651+3 3.843151-3 2.711240+3 3.935927-3 2.769902+3 3.968358-3 2.779461+3 4.007899-3 2.781994+3 4.102564-3 2.772739+3 4.141154-3 2.781063+3 4.230472-3 2.817953+3 4.315191-3 2.831513+3 4.466836-3 2.830700+3 4.648831-3 2.810065+3 4.919596-3 2.763049+3 5.156366-3 2.712425+3 5.591135-3 2.602682+3 5.971883-3 2.502341+3 6.321028-3 2.408221+3 6.785955-3 2.285460+3 7.314088-3 2.152251+3 7.832133-3 2.027667+3 8.545809-3 1.867372+3 8.928355-3 1.787357+3 9.312419-3 1.710267+3 1.013378-2 1.556429+3 1.059254-2 1.475423+3 1.102808-2 1.401277+3 1.139200-2 1.341108+3 1.174053-2 1.283610+3 1.203996-2 1.234453+3 1.230803-2 1.190028+3 1.254405-2 1.149793+3 1.274191-2 1.114793+3 1.290765-2 1.083970+3 1.305174-2 1.055392+3 1.316361-2 1.031369+3 1.327061-2 1.005932+3 1.335844-2 9.821384+2 1.342788-2 9.605585+2 1.348491-2 9.406092+2 1.366666-2 8.712858+2 1.372627-2 8.546628+2 1.375836-2 8.489732+2 1.378576-2 8.462654+2 1.381201-2 8.456214+2 1.383562-2 8.466590+2 1.388515-2 8.533973+2 1.395395-2 8.704548+2 1.408920-2 9.109812+2 1.413300-2 9.220502+2 1.417761-2 9.315121+2 1.423663-2 9.412823+2 1.429970-2 9.487758+2 1.438307-2 9.551902+2 1.448022-2 9.592421+2 1.459173-2 9.608581+2 1.470224-2 9.601751+2 1.482811-2 9.573196+2 1.497192-2 9.519414+2 1.514457-2 9.430510+2 1.527786-2 9.345517+2 1.554323-2 9.132652+2 1.568164-2 8.991859+2 1.578694-2 8.863672+2 1.594733-2 8.620987+2 1.614788-2 8.291384+2 1.622866-2 8.206045+2 1.630368-2 8.174451+2 1.637593-2 8.186345+2 1.662941-2 8.340421+2 1.693050-2 8.441843+2 1.727771-2 8.685070+2 1.742207-2 8.744751+2 1.767778-2 8.776139+2 1.802271-2 8.745890+2 1.862143-2 8.608506+2 1.937405-2 8.368978+2 2.027208-2 8.039063+2 2.165444-2 7.512074+2 2.331121-2 6.905531+2 2.520271-2 6.273527+2 2.748290-2 5.606626+2 3.015363-2 4.944072+2 3.412911-2 4.151526+2 3.672786-2 3.726892+2 3.983221-2 3.291074+2 4.512061-2 2.693398+2 5.110646-2 2.193983+2 5.511476-2 1.930167+2 6.229775-2 1.555927+2 7.017533-2 1.253354+2 7.609922-2 1.076270+2 8.081954-2 9.554035+1 8.421412-2 8.756287+1 8.676569-2 8.170970+1 8.860191-2 7.736011+1 8.930408-2 7.558922+1 8.992386-2 7.392048+1 9.043063-2 7.243397+1 9.120108-2 6.985355+1 9.254182-2 6.490693+1 9.291071-2 6.393157+1 9.328524-2 6.335536+1 9.368762-2 6.325354+1 9.411487-2 6.365706+1 9.533801-2 6.588261+1 9.600000-2 6.673928+1 9.636894-2 6.702661+1 9.683588-2 6.723339+1 9.801062-2 6.726048+1 9.939090-2 6.681805+1 1.009918-1 6.598368+1 1.035419-1 6.432824+1 1.066781-1 6.205665+1 1.118035-1 5.817441+1 1.175060-1 5.396733+1 1.260406-1 4.822393+1 1.374592-1 4.169196+1 1.582078-1 3.263301+1 1.865855-1 2.430387+1 2.257684-1 1.716692+1 2.748289-1 1.190597+1 3.521428-1 7.443556+0 4.786301-1 4.124203+0 7.045790-1 1.942947+0 1.173413+0 7.133801-1 1.947381+0 2.615005-1 4.260405+0 5.492144-2 1.286622+1 6.028307-3 3.885536+1 6.610417-4 1.173413+2 7.248238-5 3.543651+2 7.947541-6 1.258925+3 6.297013-7 3.981072+3 6.297013-8 1.258925+4 6.297013-9 3.981072+4 6.29701-10 1.000000+5 9.98009-11 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.453100-6 1.258900-6 2.303000-6 1.584900-6 3.650000-6 1.995300-6 5.784800-6 2.511900-6 9.168300-6 3.162300-6 1.453100-5 3.981100-6 2.303000-5 5.011900-6 3.649900-5 6.309600-6 5.784700-5 7.943300-6 9.168000-5 1.000000-5 1.453000-4 1.258900-5 2.302800-4 1.584900-5 3.649700-4 1.995300-5 5.784200-4 2.511900-5 9.167100-4 3.162300-5 1.452800-3 3.981100-5 2.302500-3 5.011900-5 3.649000-3 6.309600-5 5.782800-3 7.943300-5 9.158000-3 1.000000-4 1.450000-2 1.258900-4 2.296200-2 1.584900-4 3.631700-2 1.995300-4 5.740900-2 2.511900-4 9.059000-2 3.162300-4 1.426100-1 3.981100-4 2.236600-1 5.011900-4 3.487700-1 6.309600-4 5.375000-1 7.943300-4 8.151100-1 1.000000-3 1.211000+0 1.258900-3 1.753500+0 1.584900-3 2.467000+0 1.995300-3 3.370800+0 2.511900-3 4.483800+0 3.162300-3 5.807000+0 3.981100-3 7.328800+0 5.011900-3 9.071700+0 6.309600-3 1.110200+1 7.943300-3 1.345800+1 1.000000-2 1.610400+1 1.258900-2 1.887000+1 1.584900-2 2.166400+1 1.995300-2 2.443800+1 2.511900-2 2.717900+1 3.162300-2 2.975500+1 3.981100-2 3.197900+1 5.011900-2 3.366000+1 6.309600-2 3.456700+1 7.943300-2 3.522400+1 1.000000-1 3.511000+1 1.258900-1 3.445200+1 1.584900-1 3.328500+1 1.995300-1 3.173200+1 2.511900-1 2.991700+1 3.162300-1 2.792200+1 3.981100-1 2.583100+1 5.011900-1 2.371200+1 6.309600-1 2.160700+1 7.943300-1 1.955500+1 1.000000+0 1.757700+1 1.258900+0 1.569500+1 1.584900+0 1.392000+1 1.995300+0 1.226400+1 2.511900+0 1.073500+1 3.162300+0 9.337300+0 3.981100+0 8.073000+0 5.011900+0 6.940500+0 6.309600+0 5.935100+0 7.943300+0 5.051500+0 1.000000+1 4.280000+0 1.258900+1 3.611700+0 1.584900+1 3.036500+0 1.995300+1 2.544500+0 2.511900+1 2.125800+0 3.162300+1 1.771200+0 3.981100+1 1.472100+0 5.011900+1 1.220800+0 6.309600+1 1.010400+0 7.943300+1 8.347400-1 1.000000+2 6.884700-1 1.258900+2 5.669700-1 1.584900+2 4.662600-1 1.995300+2 3.829600-1 2.511900+2 3.141700-1 3.162300+2 2.574600-1 3.981100+2 2.107700-1 5.011900+2 1.723900-1 6.309600+2 1.408700-1 7.943300+2 1.150200-1 1.000000+3 9.384300-2 1.258900+3 7.650900-2 1.584900+3 6.233500-2 1.995300+3 5.075300-2 2.511900+3 4.129900-2 3.162300+3 3.358600-2 3.981100+3 2.729900-2 5.011900+3 2.217700-2 6.309600+3 1.800700-2 7.943300+3 1.461400-2 1.000000+4 1.185500-2 1.258900+4 9.612500-3 1.584900+4 7.791000-3 1.995300+4 6.312200-3 2.511900+4 5.112100-3 3.162300+4 4.138600-3 3.981100+4 3.349300-3 5.011900+4 2.709600-3 6.309600+4 2.191300-3 7.943300+4 1.771600-3 1.000000+5 1.431900-3 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159547-4 3.981072-4 3.976750-4 5.011872-4 5.005038-4 6.309573-4 6.298788-4 7.943282-4 7.926297-4 1.000000-3 9.973308-4 1.258925-3 1.254742-3 1.584893-3 1.578353-3 1.995262-3 1.985055-3 2.511886-3 2.495971-3 3.162278-3 3.137492-3 3.981072-3 3.942511-3 5.011872-3 4.951743-3 6.309573-3 6.215800-3 7.943282-3 7.796666-3 1.000000-2 9.771241-3 1.258925-2 1.223386-2 1.584893-2 1.530093-2 1.995262-2 1.910855-2 2.511886-2 2.382111-2 3.162278-2 2.963583-2 3.981072-2 3.678793-2 5.011872-2 4.556094-2 6.309573-2 5.628083-2 7.943282-2 6.930042-2 1.000000-1 8.509548-2 1.258925-1 1.041136-1 1.584893-1 1.270098-1 1.995262-1 1.544549-1 2.511886-1 1.871633-1 3.162278-1 2.260843-1 3.981072-1 2.722574-1 5.011872-1 3.268324-1 6.309573-1 3.912533-1 7.943282-1 4.671367-1 1.000000+0 5.565166-1 1.258925+0 6.618242-1 1.584893+0 7.861736-1 1.995262+0 9.332743-1 2.511886+0 1.107863+0 3.162278+0 1.315572+0 3.981072+0 1.563565+0 5.011872+0 1.860416+0 6.309573+0 2.216692+0 7.943282+0 2.645173+0 1.000000+1 3.161800+0 1.258925+1 3.785885+0 1.584893+1 4.541071+0 1.995262+1 5.456324+0 2.511886+1 6.567164+0 3.162278+1 7.917177+0 3.981072+1 9.559647+0 5.011872+1 1.156037+1 6.309573+1 1.400013+1 7.943282+1 1.697778+1 1.000000+2 2.061518+1 1.258925+2 2.506241+1 1.584893+2 3.050380+1 1.995262+2 3.716746+1 2.511886+2 4.533264+1 3.162278+2 5.534522+1 3.981072+2 6.762975+1 5.011872+2 8.271313+1 6.309573+2 1.012427+2 7.943282+2 1.240185+2 1.000000+3 1.520283+2 1.258925+3 1.864937+2 1.584893+3 2.289212+2 1.995262+3 2.811707+2 2.511886+3 3.455657+2 3.162278+3 4.249319+2 3.981072+3 5.228214+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090662-8 7.943282-5 1.728165-8 1.000000-4 2.738484-8 1.258925-4 4.339787-8 1.584893-4 6.875140-8 1.995262-4 1.089213-7 2.511886-4 1.725098-7 3.162278-4 2.731074-7 3.981072-4 4.322022-7 5.011872-4 6.834244-7 6.309573-4 1.078500-6 7.943282-4 1.698564-6 1.000000-3 2.669216-6 1.258925-3 4.183727-6 1.584893-3 6.540617-6 1.995262-3 1.020720-5 2.511886-3 1.591514-5 3.162278-3 2.478597-5 3.981072-3 3.856090-5 5.011872-3 6.012966-5 6.309573-3 9.377380-5 7.943282-3 1.466162-4 1.000000-2 2.287594-4 1.258925-2 3.553986-4 1.584893-2 5.479991-4 1.995262-2 8.440696-4 2.511886-2 1.297750-3 3.162278-2 1.986949-3 3.981072-2 3.022789-3 5.011872-2 4.557786-3 6.309573-2 6.814907-3 7.943282-2 1.013241-2 1.000000-1 1.490452-2 1.258925-1 2.177892-2 1.584893-1 3.147956-2 1.995262-1 4.507136-2 2.511886-1 6.402537-2 3.162278-1 9.014343-2 3.981072-1 1.258498-1 5.011872-1 1.743549-1 6.309573-1 2.397040-1 7.943282-1 3.271916-1 1.000000+0 4.434834-1 1.258925+0 5.971012-1 1.584893+0 7.987196-1 1.995262+0 1.061988+0 2.511886+0 1.404023+0 3.162278+0 1.846705+0 3.981072+0 2.417507+0 5.011872+0 3.151457+0 6.309573+0 4.092881+0 7.943282+0 5.298109+0 1.000000+1 6.838200+0 1.258925+1 8.803370+0 1.584893+1 1.130786+1 1.995262+1 1.449630+1 2.511886+1 1.855170+1 3.162278+1 2.370560+1 3.981072+1 3.025107+1 5.011872+1 3.855835+1 6.309573+1 4.909560+1 7.943282+1 6.245505+1 1.000000+2 7.938482+1 1.258925+2 1.008301+2 1.584893+2 1.279855+2 1.995262+2 1.623588+2 2.511886+2 2.058560+2 3.162278+2 2.608825+2 3.981072+2 3.304774+2 5.011872+2 4.184741+2 6.309573+2 5.297147+2 7.943282+2 6.703097+2 1.000000+3 8.479717+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714092+3 2.511886+3 2.166321+3 3.162278+3 2.737346+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 7.440000-6 5.801792+7 7.762471-6 5.447922+7 8.128305-6 5.048093+7 8.511380-6 4.641676+7 8.912509-6 4.236753+7 9.350000-6 3.826458+7 9.850000-6 3.399018+7 1.025000-5 3.087841+7 1.025000-5 5.453462+7 1.035142-5 5.365249+7 1.050000-5 5.235475+7 1.083927-5 4.941634+7 1.096478-5 4.833402+7 1.122018-5 4.617898+7 1.150000-5 4.388470+7 1.161449-5 4.295927+7 1.190000-5 4.072238+7 1.230269-5 3.773288+7 1.280000-5 3.426422+7 1.318257-5 3.181662+7 1.333521-5 3.089262+7 1.396368-5 2.734800+7 1.428894-5 2.568429+7 1.462177-5 2.410084+7 1.548817-5 2.047041+7 1.570000-5 1.967955+7 1.650000-5 1.701288+7 1.778279-5 1.360881+7 1.819701-5 1.269311+7 1.972423-5 9.938640+6 2.033000-5 9.061485+6 2.033000-5 1.048358+7 2.089296-5 9.614219+6 2.213095-5 7.998740+6 2.400000-5 6.175041+6 2.630268-5 4.621018+6 2.691535-5 4.299433+6 2.818383-5 3.723929+6 2.900000-5 3.408830+6 3.080000-5 2.831340+6 3.090295-5 2.802502+6 3.235937-5 2.436200+6 3.311311-5 2.272212+6 3.395400-5 2.107253+6 3.548134-5 1.847509+6 3.672823-5 1.667170+6 3.690000-5 1.644302+6 3.801894-5 1.505765+6 3.845918-5 1.455790+6 3.851000-5 1.450204+6 3.851000-5 3.877288+6 3.890451-5 3.941838+6 3.920000-5 4.012000+6 3.945000-5 4.087012+6 3.950000-5 4.105612+6 3.980000-5 4.221542+6 4.000000-5 4.313882+6 4.030000-5 4.476565+6 4.060000-5 4.670084+6 4.073803-5 4.772318+6 4.090000-5 4.896922+6 4.120975-5 5.169316+6 4.165000-5 5.630154+6 4.208000-5 6.173574+6 4.216000-5 6.288436+6 4.216000-5 7.592680+6 4.220000-5 7.658426+6 4.250000-5 8.174965+6 4.260000-5 8.359344+6 4.280000-5 8.759406+6 4.310000-5 9.412168+6 4.315191-5 9.532524+6 4.345000-5 1.028086+7 4.365158-5 1.083047+7 4.370000-5 1.096726+7 4.400000-5 1.186753+7 4.430000-5 1.286431+7 4.466836-5 1.422320+7 4.500000-5 1.558665+7 4.518559-5 1.641373+7 4.535000-5 1.716711+7 4.570882-5 1.894893+7 4.580000-5 1.941588+7 4.630000-5 2.220940+7 4.677351-5 2.510897+7 4.680000-5 2.528171+7 4.700000-5 2.656379+7 4.720000-5 2.791668+7 4.760000-5 3.068316+7 4.800000-5 3.354307+7 4.835000-5 3.609247+7 4.850000-5 3.717043+7 4.870000-5 3.865869+7 4.897788-5 4.064934+7 4.910000-5 4.155758+7 4.920000-5 4.226317+7 4.935000-5 4.333379+7 4.970000-5 4.576005+7 5.000000-5 4.774292+7 5.011872-5 4.848042+7 5.020000-5 4.899385+7 5.040000-5 5.025298+7 5.060000-5 5.140850+7 5.080000-5 5.256541+7 5.095000-5 5.335885+7 5.115300-5 5.442171+7 5.130000-5 5.512709+7 5.150000-5 5.605939+7 5.170000-5 5.690541+7 5.188000-5 5.763858+7 5.190000-5 5.772129+7 5.200000-5 5.808281+7 5.230000-5 5.911942+7 5.270000-5 6.023270+7 5.308844-5 6.103161+7 5.310100-5 6.105843+7 5.315000-5 6.114368+7 5.340000-5 6.147787+7 5.370318-5 6.179891+7 5.400000-5 6.188449+7 5.410000-5 6.191807+7 5.432503-5 6.189363+7 5.450000-5 6.182077+7 5.490000-5 6.149126+7 5.500000-5 6.137406+7 5.520000-5 6.108949+7 5.560000-5 6.040407+7 5.580000-5 6.000294+7 5.595000-5 5.967387+7 5.630000-5 5.882288+7 5.650000-5 5.829328+7 5.670000-5 5.777149+7 5.690000-5 5.719719+7 5.730000-5 5.601116+7 5.800000-5 5.381495+7 5.821032-5 5.313045+7 5.870000-5 5.158016+7 5.888437-5 5.097925+7 5.956621-5 4.879686+7 6.095369-5 4.453693+7 6.309573-5 3.868787+7 6.531306-5 3.360869+7 6.800000-5 2.851842+7 6.918310-5 2.658403+7 7.300000-5 2.129205+7 7.328245-5 2.095503+7 7.413102-5 1.996511+7 7.585776-5 1.810200+7 7.673615-5 1.723691+7 7.800000-5 1.606197+7 8.128305-5 1.340939+7 8.222426-5 1.274145+7 8.317638-5 1.209901+7 8.413951-5 1.148921+7 8.709636-5 9.839037+6 8.810489-5 9.339089+6 8.912509-5 8.860513+6 9.332543-5 7.180801+6 9.549926-5 6.465175+6 9.660509-5 6.134835+6 1.000000-4 5.242530+6 1.023293-4 4.718916+6 1.047129-4 4.248200+6 1.075200-4 3.765605+6 1.075200-4 4.596081+6 1.082000-4 4.508271+6 1.083927-4 4.482165+6 1.088000-4 4.427979+6 1.096478-4 4.311786+6 1.096700-4 4.308631+6 1.104000-4 4.206899+6 1.109175-4 4.134223+6 1.111000-4 4.108808+6 1.120000-4 3.981719+6 1.123000-4 3.940301+6 1.137000-4 3.747969+6 1.152000-4 3.551010+6 1.161449-4 3.431910+6 1.174898-4 3.271111+6 1.175000-4 3.269930+6 1.202264-4 2.969285+6 1.220000-4 2.790972+6 1.260000-4 2.433081+6 1.303167-4 2.110466+6 1.318257-4 2.010224+6 1.350000-4 1.818777+6 1.357300-4 1.778565+6 1.357300-4 2.181061+6 1.361000-4 2.176944+6 1.364583-4 2.171406+6 1.368500-4 2.163257+6 1.373000-4 2.151238+6 1.377000-4 2.138707+6 1.382000-4 2.120466+6 1.388000-4 2.095931+6 1.395000-4 2.064348+6 1.400000-4 2.040010+6 1.402000-4 2.030468+6 1.410000-4 1.990213+6 1.420000-4 1.938741+6 1.428894-4 1.892465+6 1.435000-4 1.861558+6 1.450000-4 1.785944+6 1.462177-4 1.728159+6 1.500000-4 1.562154+6 1.513561-4 1.508514+6 1.540000-4 1.411619+6 1.548817-4 1.381550+6 1.560000-4 1.344672+6 1.584893-4 1.268345+6 1.603245-4 1.217019+6 1.621810-4 1.168038+6 1.650000-4 1.100210+6 1.678804-4 1.037988+6 1.698244-4 9.988411+5 1.705000-4 9.860194+5 1.737801-4 9.279667+5 1.760000-4 8.917487+5 1.778279-4 8.642375+5 1.800000-4 8.335795+5 1.809700-4 8.204182+5 1.810000-4 8.200163+5 1.813400-4 8.155624+5 1.813400-4 8.662940+5 1.820000-4 8.584410+5 1.834000-4 8.424673+5 1.850000-4 8.246065+5 1.862087-4 8.116132+5 1.868000-4 8.054489+5 1.880000-4 7.930484+5 1.883649-4 7.894022+5 1.890000-4 7.832298+5 1.893000-4 7.803685+5 1.893000-4 9.059157+5 1.893600-4 9.075561+5 1.896000-4 9.122329+5 1.898200-4 9.161249+5 1.901200-4 9.208752+5 1.904000-4 9.247498+5 1.906000-4 9.271713+5 1.909000-4 9.302648+5 1.910000-4 9.310521+5 1.913000-4 9.334918+5 1.916000-4 9.352514+5 1.920000-4 9.367711+5 1.924000-4 9.374642+5 1.929000-4 9.373107+5 1.930000-4 9.370577+5 1.930900-4 9.368506+5 1.935000-4 9.359998+5 1.940000-4 9.339628+5 1.941000-4 9.335511+5 1.947000-4 9.301081+5 1.950000-4 9.280132+5 1.953000-4 9.259352+5 1.955000-4 9.243235+5 1.955000-4 1.022572+6 1.955600-4 1.023831+6 1.958000-4 1.027200+6 1.960200-4 1.029910+6 1.961000-4 1.030782+6 1.962500-4 1.032301+6 1.965500-4 1.034813+6 1.968500-4 1.036715+6 1.972423-4 1.038511+6 1.973000-4 1.038660+6 1.975500-4 1.039117+6 1.980000-4 1.039060+6 1.985000-4 1.038112+6 1.990000-4 1.036268+6 1.995262-4 1.033269+6 2.000000-4 1.029859+6 2.002000-4 1.028441+6 2.010000-4 1.021667+6 2.020000-4 1.012152+6 2.030000-4 1.002269+6 2.041738-4 9.905714+5 2.050000-4 9.823962+5 2.065380-4 9.680183+5 2.070000-4 9.639019+5 2.089296-4 9.482596+5 2.090000-4 9.476985+5 2.100000-4 9.408402+5 2.100100-4 9.407715+5 2.105000-4 9.374555+5 2.113489-4 9.322627+5 2.120000-4 9.288175+5 2.135000-4 9.221958+5 2.137962-4 9.210643+5 2.155000-4 9.159692+5 2.156300-4 9.156517+5 2.162719-4 9.145905+5 2.170000-4 9.136163+5 2.175000-4 9.132061+5 2.187762-4 9.131269+5 2.190000-4 9.132449+5 2.205000-4 9.150438+5 2.213095-4 9.169763+5 2.220000-4 9.188651+5 2.221900-4 9.195000+5 2.238721-4 9.263550+5 2.240000-4 9.269528+5 2.250000-4 9.323583+5 2.264644-4 9.413210+5 2.270000-4 9.452324+5 2.290868-4 9.623580+5 2.315000-4 9.865083+5 2.317395-4 9.891408+5 2.326900-4 1.000387+6 2.330000-4 1.004180+6 2.340000-4 1.016768+6 2.350000-4 1.030270+6 2.371374-4 1.062103+6 2.398833-4 1.108195+6 2.400000-4 1.110312+6 2.426610-4 1.162436+6 2.430000-4 1.169457+6 2.440000-4 1.190727+6 2.449500-4 1.212019+6 2.483133-4 1.293545+6 2.500000-4 1.338331+6 2.511886-4 1.371649+6 2.520000-4 1.395196+6 2.540973-4 1.457760+6 2.570396-4 1.553018+6 2.580000-4 1.585214+6 2.600160-4 1.656042+6 2.620000-4 1.726888+6 2.635000-4 1.783207+6 2.650000-4 1.840014+6 2.660725-4 1.881145+6 2.670000-4 1.917692+6 2.691535-4 2.002559+6 2.710000-4 2.077215+6 2.730000-4 2.158206+6 2.750000-4 2.240716+6 2.754229-4 2.257874+6 2.770000-4 2.323258+6 2.787700-4 2.396767+6 2.800000-4 2.447118+6 2.815000-4 2.510062+6 2.830000-4 2.572780+6 2.851018-4 2.659157+6 2.880000-4 2.779475+6 2.900000-4 2.861437+6 2.930000-4 2.984059+6 2.951209-4 3.069249+6 2.985383-4 3.206303+6 3.000000-4 3.263431+6 3.040300-4 3.419586+6 3.054921-4 3.474491+6 3.090295-4 3.605401+6 3.100000-4 3.642072+6 3.126079-4 3.732389+6 3.150000-4 3.816954+6 3.153500-4 3.828896+6 3.162278-4 3.857151+6 3.200000-4 3.980516+6 3.209300-4 4.009396+6 3.235937-4 4.088538+6 3.260000-4 4.160985+6 3.280000-4 4.213971+6 3.311311-4 4.297932+6 3.320000-4 4.321430+6 3.390000-4 4.484019+6 3.390900-4 4.485923+6 3.427678-4 4.557656+6 3.430000-4 4.562206+6 3.450000-4 4.601516+6 3.467369-4 4.633124+6 3.470000-4 4.637912+6 3.507519-4 4.698452+6 3.530000-4 4.734848+6 3.550000-4 4.764379+6 3.600000-4 4.828592+6 3.630781-4 4.863915+6 3.650000-4 4.885952+6 3.700000-4 4.933726+6 3.715352-4 4.946226+6 3.758374-4 4.981218+6 3.801894-4 5.009330+6 3.850000-4 5.034748+6 3.890451-4 5.049537+6 3.935501-4 5.061005+6 3.970000-4 5.069651+6 4.000000-4 5.072022+6 4.027170-4 5.070845+6 4.073803-4 5.068825+6 4.100000-4 5.067714+6 4.120975-4 5.063820+6 4.168694-4 5.050383+6 4.200000-4 5.041592+6 4.216965-4 5.036828+6 4.280000-4 5.006053+6 4.365158-4 4.965383+6 4.430000-4 4.922763+6 4.518559-4 4.865942+6 4.550000-4 4.843834+6 4.570882-4 4.827316+6 4.695400-4 4.731524+6 4.695400-4 4.885417+6 4.700000-4 4.884558+6 4.725000-4 4.878862+6 4.731513-4 4.877435+6 4.768000-4 4.868174+6 4.786301-4 4.860171+6 4.789300-4 4.858892+6 4.841724-4 4.838426+6 4.897788-4 4.809334+6 4.910000-4 4.802552+6 4.930000-4 4.789890+6 4.954502-4 4.771233+6 4.955600-4 4.770404+6 4.955600-4 4.836998+6 4.968000-4 4.834866+6 4.997000-4 4.828512+6 5.011872-4 4.826299+6 5.018000-4 4.825640+6 5.020000-4 4.825260+6 5.040000-4 4.818260+6 5.055000-4 4.812959+6 5.069907-4 4.808671+6 5.080000-4 4.806069+6 5.082100-4 4.805449+6 5.085000-4 4.804450+6 5.135000-4 4.776308+6 5.143000-4 4.771320+6 5.150000-4 4.766511+6 5.248075-4 4.691490+6 5.308844-4 4.645616+6 5.350000-4 4.613710+6 5.370318-4 4.597531+6 5.400000-4 4.574168+6 5.432503-4 4.547017+6 5.500000-4 4.492102+6 5.559043-4 4.441638+6 5.650000-4 4.362596+6 5.688529-4 4.329522+6 5.717600-4 4.304958+6 5.754399-4 4.272656+6 5.800000-4 4.233322+6 5.821032-4 4.215441+6 5.850000-4 4.190187+6 5.900000-4 4.147019+6 6.025596-4 4.041808+6 6.100000-4 3.979171+6 6.165950-4 3.923281+6 6.200000-4 3.895038+6 6.237348-4 3.864541+6 6.382635-4 3.749117+6 6.456542-4 3.690667+6 6.515100-4 3.643523+6 6.531306-4 3.630584+6 6.683439-4 3.513532+6 6.700000-4 3.501244+6 6.760830-4 3.456302+6 6.850000-4 3.389667+6 6.918310-4 3.339088+6 7.000000-4 3.280515+6 7.049600-4 3.245321+6 7.049600-4 3.441367+6 7.079458-4 3.419960+6 7.190600-4 3.342492+6 7.244360-4 3.306176+6 7.300000-4 3.268338+6 7.328245-4 3.248827+6 7.413102-4 3.191178+6 7.585776-4 3.079754+6 7.673615-4 3.024814+6 7.690000-4 3.014472+6 7.762471-4 2.969284+6 7.852356-4 2.913755+6 7.943282-4 2.859520+6 8.000000-4 2.826375+6 8.035261-4 2.805900+6 8.128305-4 2.753115+6 8.200000-4 2.713750+6 8.222426-4 2.701370+6 8.317638-4 2.649933+6 8.350000-4 2.632433+6 8.413951-4 2.598107+6 8.443000-4 2.582654+6 8.443000-4 2.617556+6 8.709636-4 2.482961+6 8.810489-4 2.434950+6 8.912509-4 2.386653+6 9.000000-4 2.345966+6 9.015711-4 2.338790+6 9.120108-4 2.292046+6 9.225714-4 2.246086+6 9.332543-4 2.200613+6 9.440609-4 2.156069+6 9.549926-4 2.111782+6 9.660509-4 2.067946+6 9.716400-4 2.046201+6 9.716400-4 2.085798+6 9.772372-4 2.064297+6 9.850000-4 2.034779+6 1.000000-3 1.979730+6 1.011579-3 1.938939+6 1.023293-3 1.898590+6 1.030000-3 1.875999+6 1.035142-3 1.858952+6 1.048300-3 1.816034+6 1.050000-3 1.810612+6 1.059254-3 1.781247+6 1.071519-3 1.743565+6 1.083927-3 1.706679+6 1.096478-3 1.670671+6 1.110000-3 1.632529+6 1.122018-3 1.599514+6 1.158600-3 1.504204+6 1.161449-3 1.497176+6 1.174898-3 1.464461+6 1.188502-3 1.431856+6 1.190000-3 1.428336+6 1.216186-3 1.368973+6 1.230269-3 1.338466+6 1.244515-3 1.308540+6 1.258925-3 1.279366+6 1.264650-3 1.267970+6 1.273503-3 1.250662+6 1.288250-3 1.222568+6 1.294000-3 1.211774+6 1.303167-3 1.194869+6 1.318257-3 1.167845+6 1.330000-3 1.147386+6 1.364583-3 1.089954+6 1.380384-3 1.065016+6 1.400000-3 1.035139+6 1.412538-3 1.016575+6 1.428894-3 9.929964+5 1.445440-3 9.699846+5 1.450000-3 9.637946+5 1.462177-3 9.474707+5 1.513561-3 8.825763+5 1.531087-3 8.618836+5 1.548817-3 8.417326+5 1.566751-3 8.219232+5 1.584893-3 8.026178+5 1.610000-3 7.766099+5 1.621810-3 7.648197+5 1.659587-3 7.287536+5 1.678804-3 7.114242+5 1.698244-3 6.945541+5 1.717908-3 6.780119+5 1.730000-3 6.680388+5 1.737801-3 6.617184+5 1.757924-3 6.456788+5 1.770000-3 6.363446+5 1.819701-3 5.998472+5 1.862087-3 5.712444+5 1.864800-3 5.694578+5 1.883649-3 5.572720+5 1.900000-3 5.470197+5 1.905461-3 5.436443+5 1.927525-3 5.302435+5 1.949845-3 5.171874+5 1.950000-3 5.170985+5 1.972423-3 5.044793+5 2.000000-3 4.895675+5 2.041738-3 4.682568+5 2.065380-3 4.567157+5 2.070000-3 4.545100+5 2.089296-3 4.454573+5 2.113489-3 4.343634+5 2.187762-3 4.027235+5 2.220000-3 3.900333+5 2.238721-3 3.828817+5 2.264644-3 3.732951+5 2.317395-3 3.547183+5 2.344229-3 3.457715+5 2.398833-3 3.285501+5 2.426610-3 3.202877+5 2.450000-3 3.135769+5 2.454709-3 3.122405+5 2.483133-3 3.043027+5 2.511886-3 2.965491+5 2.521000-3 2.941497+5 2.570396-3 2.816013+5 2.630268-3 2.674144+5 2.660725-3 2.606048+5 2.685100-3 2.552986+5 2.685100-3 7.238860+5 2.691535-3 7.147068+5 2.722701-3 6.724064+5 2.725000-3 6.694238+5 2.733000-3 6.604414+5 2.748000-3 6.464436+5 2.754229-3 6.413662+5 2.760000-3 6.367084+5 2.786121-3 6.191386+5 2.800000-3 6.100652+5 2.803500-3 6.078036+5 2.803500-3 8.913724+5 2.810000-3 8.852624+5 2.824000-3 8.736352+5 2.830000-3 8.679736+5 2.851018-3 8.492668+5 2.860000-3 8.414447+5 2.884032-3 8.203449+5 2.917427-3 7.922439+5 2.920000-3 7.901349+5 2.951209-3 7.694135+5 3.000000-3 7.389310+5 3.019952-3 7.269577+5 3.054921-3 7.062180+5 3.090295-3 6.860822+5 3.150000-3 6.538863+5 3.162278-3 6.475269+5 3.198895-3 6.290521+5 3.220000-3 6.187353+5 3.235937-3 6.109930+5 3.273407-3 5.932958+5 3.281500-3 5.895684+5 3.281500-3 6.842257+5 3.311311-3 6.698215+5 3.349654-3 6.520339+5 3.400000-3 6.285697+5 3.427678-3 6.161815+5 3.507519-3 5.823610+5 3.548134-3 5.661692+5 3.589219-3 5.503832+5 3.630781-3 5.350477+5 3.672823-3 5.200925+5 3.715352-3 5.054384+5 3.718330-3 5.044347+5 3.758374-3 4.912133+5 3.801894-3 4.774035+5 3.840200-3 4.657037+5 3.840200-3 4.942592+5 3.845918-3 4.925204+5 3.890451-3 4.791981+5 3.900000-3 4.764110+5 3.910000-3 4.735103+5 3.935501-3 4.661731+5 3.990000-3 4.510364+5 4.027170-3 4.410770+5 4.073803-3 4.288228+5 4.127600-3 4.152935+5 4.127600-3 4.330476+5 4.168694-3 4.229139+5 4.265795-3 4.003257+5 4.300000-3 3.927899+5 4.315191-3 3.894746+5 4.365158-3 3.788438+5 4.415704-3 3.684875+5 4.466836-3 3.584284+5 4.518559-3 3.485745+5 4.570882-3 3.389730+5 4.650000-3 3.251678+5 4.677351-3 3.205736+5 4.731513-3 3.117538+5 4.786301-3 3.031920+5 4.800000-3 3.011053+5 4.841724-3 2.948717+5 4.897788-3 2.867060+5 4.900000-3 2.863907+5 4.954502-3 2.787782+5 5.011872-3 2.710282+5 5.128614-3 2.561499+5 5.150000-3 2.535548+5 5.188000-3 2.490274+5 5.308844-3 2.353824+5 5.370318-3 2.288598+5 5.432503-3 2.224848+5 5.495409-3 2.162711+5 5.559043-3 2.102056+5 5.600000-3 2.064320+5 5.623413-3 2.043189+5 5.754399-3 1.929570+5 5.821032-3 1.875046+5 5.888437-3 1.822102+5 5.900000-3 1.813227+5 5.956621-3 1.770278+5 6.025596-3 1.719894+5 6.095369-3 1.671023+5 6.165950-3 1.623595+5 6.237348-3 1.577590+5 6.309573-3 1.532975+5 6.382635-3 1.489686+5 6.456542-3 1.447572+5 6.500000-3 1.423620+5 6.531306-3 1.406640+5 6.606934-3 1.366731+5 6.683439-3 1.327979+5 6.760830-3 1.290391+5 6.839116-3 1.253918+5 6.918310-3 1.218425+5 7.000000-3 1.182976+5 7.079458-3 1.149912+5 7.161434-3 1.116944+5 7.244360-3 1.084798+5 7.300000-3 1.063976+5 7.328245-3 1.053619+5 7.413102-3 1.023285+5 7.500000-3 9.935206+4 7.585776-3 9.652096+4 7.762471-3 9.103843+4 7.800000-3 8.993215+4 7.852356-3 8.842014+4 7.943282-3 8.588040+4 8.035261-3 8.341145+4 8.128305-3 8.099944+4 8.222426-3 7.866083+4 8.317638-3 7.639162+4 8.413951-3 7.418888+4 8.511380-3 7.205299+4 8.609938-3 6.998209+4 8.709636-3 6.796653+4 8.810489-3 6.600978+4 8.912509-3 6.409766+4 9.015711-3 6.223317+4 9.120108-3 6.042058+4 9.225714-3 5.865540+4 9.332543-3 5.694330+4 9.440609-3 5.528227+4 9.660509-3 5.211152+4 9.772372-3 5.059154+4 1.000000-2 4.769023+4 1.011579-2 4.629773+4 1.023293-2 4.494609+4 1.035142-2 4.363585+4 1.040000-2 4.311411+4 1.050000-2 4.206350+4 1.059254-2 4.112301+4 1.071519-2 3.992246+4 1.083927-2 3.875475+4 1.096478-2 3.761871+4 1.109175-2 3.651758+4 1.122018-2 3.544302+4 1.135011-2 3.440156+4 1.148154-2 3.339107+4 1.161449-2 3.241055+4 1.174898-2 3.145695+4 1.188502-2 3.052931+4 1.190000-2 3.042956+4 1.216186-2 2.875536+4 1.230269-2 2.790920+4 1.244515-2 2.708920+4 1.258925-2 2.629177+4 1.288250-2 2.476292+4 1.303167-2 2.403249+4 1.318257-2 2.332367+4 1.333521-2 2.263381+4 1.348963-2 2.196524+4 1.364583-2 2.131733+4 1.380384-2 2.068524+4 1.381700-2 2.063370+4 1.381700-2 5.104533+4 1.393000-2 5.014091+4 1.400000-2 4.947558+4 1.412538-2 4.831146+4 1.462177-2 4.405904+4 1.479108-2 4.272683+4 1.496236-2 4.143527+4 1.500000-2 4.115874+4 1.513561-2 4.017380+4 1.531087-2 3.894836+4 1.548817-2 3.775927+4 1.566751-2 3.660614+4 1.584893-2 3.547665+4 1.603245-2 3.438072+4 1.621810-2 3.331828+4 1.629700-2 3.287942+4 1.629700-2 4.592142+4 1.642000-2 4.512893+4 1.659587-2 4.387710+4 1.678804-2 4.256304+4 1.691800-2 4.170530+4 1.691800-2 4.819691+4 1.698244-2 4.773961+4 1.705000-2 4.726681+4 1.717908-2 4.637455+4 1.737801-2 4.504552+4 1.757924-2 4.375582+4 1.778279-2 4.250426+4 1.780000-2 4.240063+4 1.819701-2 4.008450+4 1.820000-2 4.006773+4 1.840772-2 3.893955+4 1.850000-2 3.845220+4 1.883649-2 3.673596+4 1.900000-2 3.594074+4 1.905461-2 3.568053+4 1.910000-2 3.546400+4 1.949845-2 3.362283+4 1.972423-2 3.263896+4 2.000000-2 3.149163+4 2.041738-2 2.985943+4 2.065380-2 2.898764+4 2.089296-2 2.814265+4 2.113489-2 2.732304+4 2.137962-2 2.652341+4 2.162719-2 2.574780+4 2.187762-2 2.499492+4 2.213095-2 2.425908+4 2.238721-2 2.354560+4 2.264644-2 2.285360+4 2.290868-2 2.218252+4 2.317395-2 2.152676+4 2.344229-2 2.089025+4 2.371374-2 2.027303+4 2.400000-2 1.964879+4 2.426610-2 1.909236+4 2.432200-2 1.897829+4 2.483133-2 1.797619+4 2.511886-2 1.744316+4 2.540973-2 1.692619+4 2.570396-2 1.642496+4 2.600160-2 1.593830+4 2.630268-2 1.546636+4 2.650000-2 1.516770+4 2.660725-2 1.500728+4 2.691535-2 1.455610+4 2.754229-2 1.369501+4 2.786121-2 1.328371+4 2.818383-2 1.288504+4 2.851018-2 1.249853+4 2.884032-2 1.212389+4 2.917427-2 1.176068+4 2.951209-2 1.140864+4 3.000000-2 1.092572+4 3.019952-2 1.073650+4 3.054921-2 1.041582+4 3.090295-2 1.010425+4 3.198895-2 9.219514+3 3.311311-2 8.413200+3 3.349654-2 8.160756+3 3.388442-2 7.912503+3 3.427678-2 7.671998+3 3.467369-2 7.438932+3 3.507519-2 7.213116+3 3.589219-2 6.781978+3 3.630781-2 6.576401+3 3.672823-2 6.376995+3 3.715352-2 6.183532+3 3.845918-2 5.638444+3 3.890451-2 5.467375+3 3.900000-2 5.431638+3 3.935501-2 5.300947+3 4.000000-2 5.074511+3 4.027170-2 4.983129+3 4.073803-2 4.831562+3 4.168694-2 4.542204+3 4.216965-2 4.403563+3 4.265795-2 4.269132+3 4.315191-2 4.138786+3 4.365158-2 4.011672+3 4.415704-2 3.888514+3 4.466836-2 3.769199+3 4.570882-2 3.541625+3 4.623810-2 3.433161+3 4.677351-2 3.328090+3 4.786301-2 3.127661+3 4.841724-2 3.032045+3 4.897788-2 2.939062+3 5.011872-2 2.761565+3 5.128614-2 2.594855+3 5.188000-2 2.515099+3 5.248075-2 2.437314+3 5.370318-2 2.288995+3 5.495409-2 2.149886+3 5.500000-2 2.145007+3 5.559043-2 2.083596+3 5.623413-2 2.019381+3 5.688529-2 1.957186+3 5.754399-2 1.896903+3 5.821032-2 1.838466+3 5.888437-2 1.781866+3 6.095369-2 1.622360+3 6.165950-2 1.572081+3 6.309573-2 1.476189+3 6.382635-2 1.430370+3 6.531306-2 1.343038+3 6.606934-2 1.301433+3 6.760830-2 1.222110+3 6.839116-2 1.184318+3 6.918310-2 1.147666+3 7.000000-2 1.111312+3 7.079458-2 1.077426+3 7.328245-2 9.801302+2 7.413102-2 9.497274+2 7.444800-2 9.387003+2 7.585776-2 8.917460+2 7.673615-2 8.641194+2 7.943282-2 7.862178+2 8.000000-2 7.710802+2 8.128305-2 7.380407+2 8.317638-2 6.927532+2 8.413951-2 6.711810+2 8.511380-2 6.502563+2 8.810489-2 5.913489+2 9.015711-2 5.551218+2 9.120108-2 5.378581+2 9.342400-2 5.034884+2 9.342400-2 2.327588+3 9.415000-2 2.282502+3 9.440609-2 2.266890+3 9.530000-2 2.213484+3 9.600000-2 2.169291+3 9.660509-2 2.136851+3 9.772372-2 2.078677+3 9.885531-2 2.015463+3 1.000000-1 1.954178+3 1.035142-1 1.792201+3 1.047129-1 1.741264+3 1.059254-1 1.689679+3 1.071519-1 1.639631+3 1.096478-1 1.543944+3 1.122019-1 1.453853+3 1.148154-1 1.368944+3 1.161449-1 1.328375+3 1.174898-1 1.289348+3 1.202264-1 1.214719+3 1.216186-1 1.179044+3 1.244515-1 1.110806+3 1.258925-1 1.078195+3 1.318257-1 9.570721+2 1.364583-1 8.738412+2 1.380384-1 8.477435+2 1.396368-1 8.223977+2 1.445440-1 7.508295+2 1.462177-1 7.283902+2 1.500000-1 6.809848+2 1.531088-1 6.451578+2 1.566751-1 6.071902+2 1.584893-1 5.890551+2 1.603245-1 5.714708+2 1.650000-1 5.298293+2 1.659587-1 5.218155+2 1.678804-1 5.062478+2 1.717908-1 4.764957+2 1.737801-1 4.622831+2 1.798871-1 4.221488+2 1.819701-1 4.095625+2 1.840772-1 3.973536+2 1.862087-1 3.855095+2 1.883649-1 3.740193+2 1.927525-1 3.520583+2 1.949845-1 3.415676+2 1.972423-1 3.313906+2 2.000000-1 3.195261+2 2.018366-1 3.119482+2 2.065380-1 2.936562+2 2.089296-1 2.849173+2 2.137962-1 2.682136+2 2.162719-1 2.602333+2 2.187762-1 2.524912+2 2.238721-1 2.376939+2 2.290868-1 2.237653+2 2.317395-1 2.171116+2 2.344229-1 2.106588+2 2.371374-1 2.043982+2 2.398833-1 1.983275+2 2.477750-1 1.822101+2 2.483133-1 1.811776+2 2.500000-1 1.779945+2 2.511886-1 1.758242+2 2.540973-1 1.706657+2 2.570396-1 1.656589+2 2.600160-1 1.608001+2 2.630268-1 1.560841+2 2.660725-1 1.515111+2 2.722701-1 1.427677+2 2.754229-1 1.385890+2 2.786121-1 1.345329+2 2.818383-1 1.305981+2 2.851018-1 1.267787+2 2.884032-1 1.230713+2 2.951209-1 1.159797+2 3.019952-1 1.092979+2 3.054921-1 1.061500+2 3.090295-1 1.030929+2 3.126079-1 1.001239+2 3.162278-1 9.724054+1 3.198895-1 9.444079+1 3.235937-1 9.172338+1 3.273407-1 8.908815+1 3.311311-1 8.652872+1 3.349654-1 8.404382+1 3.388442-1 8.163068+1 3.427678-1 7.928699+1 3.467369-1 7.701185+1 3.507519-1 7.480230+1 3.630781-1 6.864213+1 3.672823-1 6.670407+1 3.715352-1 6.482203+1 3.758374-1 6.299313+1 3.801894-1 6.121590+1 3.845918-1 5.948910+1 3.890451-1 5.781489+1 3.935501-1 5.618786+1 4.027170-1 5.307148+1 4.073803-1 5.160769+1 4.120975-1 5.018451+1 4.168694-1 4.880060+1 4.265795-1 4.614863+1 4.315191-1 4.487740+1 4.365158-1 4.364185+1 4.415705-1 4.244038+1 4.472100-1 4.115441+1 4.518559-1 4.013827+1 4.570882-1 3.903587+1 4.623810-1 3.798392+1 4.731513-1 3.596438+1 4.786301-1 3.499628+1 4.841724-1 3.405484+1 4.897788-1 3.313877+1 4.954502-1 3.224739+1 5.011872-1 3.138002+1 5.188000-1 2.891561+1 5.248075-1 2.815527+1 5.308844-1 2.741531+1 5.370318-1 2.669597+1 5.432503-1 2.599553+1 5.495409-1 2.531359+1 5.559043-1 2.464956+1 5.623413-1 2.400297+1 5.688529-1 2.337339+1 5.754399-1 2.276032+1 5.888437-1 2.158205+1 5.956621-1 2.102879+1 6.025596-1 2.049154+1 6.095369-1 1.996835+1 6.165950-1 1.945854+1 6.237348-1 1.896183+1 6.309573-1 1.847782+1 6.382635-1 1.800618+1 6.456542-1 1.754660+1 6.531306-1 1.709875+1 6.606935-1 1.666263+1 6.683439-1 1.624727+1 6.804800-1 1.561883+1 6.839117-1 1.544795+1 6.918310-1 1.506407+1 6.998420-1 1.468975+1 7.079458-1 1.432480+1 7.161434-1 1.396894+1 7.244360-1 1.362193+1 7.328245-1 1.328377+1 7.413102-1 1.295426+1 7.498942-1 1.263301+1 7.585776-1 1.232670+1 7.673615-1 1.202783+1 7.762471-1 1.173698+1 7.852356-1 1.145331+1 8.000000-1 1.100883+1 8.035261-1 1.090645+1 8.128305-1 1.064306+1 8.222427-1 1.038604+1 8.413951-1 9.890857+0 8.511380-1 9.652245+0 8.609938-1 9.425046+0 8.709636-1 9.203895+0 8.810489-1 8.987952+0 8.912509-1 8.777220+0 9.015711-1 8.571440+0 9.120108-1 8.370626+0 9.225714-1 8.174518+0 9.332543-1 7.983104+0 9.440609-1 7.796173+0 9.549926-1 7.613850+0 9.660509-1 7.440825+0 9.772372-1 7.272403+0 9.885531-1 7.107954+0 1.000000+0 6.947233+0 1.011579+0 6.790222+0 1.022000+0 6.653597+0 1.023293+0 6.636934+0 1.047129+0 6.340896+0 1.059254+0 6.197901+0 1.071519+0 6.058137+0 1.096478+0 5.787981+0 1.109175+0 5.657568+0 1.122018+0 5.530221+0 1.135011+0 5.405737+0 1.148154+0 5.286261+0 1.161449+0 5.169428+0 1.174898+0 5.055452+0 1.188502+0 4.944060+0 1.202264+0 4.835189+0 1.216186+0 4.728731+0 1.230269+0 4.624743+0 1.244515+0 4.523043+0 1.258925+0 4.423614+0 1.273503+0 4.326364+0 1.288250+0 4.233943+0 1.303167+0 4.143857+0 1.318257+0 4.055752+0 1.333521+0 3.969529+0 1.348963+0 3.885223+0 1.364583+0 3.802729+0 1.380384+0 3.721997+0 1.396368+0 3.642982+0 1.412538+0 3.565645+0 1.428894+0 3.489956+0 1.445440+0 3.415897+0 1.462177+0 3.345479+0 1.479108+0 3.276756+0 1.496236+0 3.209494+0 1.500000+0 3.195002+0 1.513561+0 3.143633+0 1.531087+0 3.079161+0 1.566751+0 2.954173+0 1.621810+0 2.776142+0 1.640590+0 2.720718+0 1.659587+0 2.666571+0 1.678804+0 2.613538+0 1.698244+0 2.561564+0 1.757924+0 2.411800+0 1.798871+0 2.316977+0 1.819701+0 2.270973+0 1.840772+0 2.225882+0 1.862087+0 2.181687+0 1.883649+0 2.139313+0 1.905461+0 2.097872+0 1.949845+0 2.017431+0 1.972423+0 1.978381+0 2.044000+0 1.862226+0 2.089296+0 1.794321+0 2.113489+0 1.759652+0 2.137962+0 1.725652+0 2.162719+0 1.693419+0 2.187762+0 1.661816+0 2.213095+0 1.630808+0 2.290868+0 1.541238+0 2.344229+0 1.484368+0 2.371374+0 1.456725+0 2.398833+0 1.429597+0 2.454709+0 1.378526+0 2.483133+0 1.353701+0 2.511886+0 1.329326+0 2.600160+0 1.258822+0 2.660725+0 1.213983+0 2.691535+0 1.192165+0 2.722701+0 1.170740+0 2.818383+0 1.110657+0 2.851018+0 1.091337+0 2.884032+0 1.072356+0 3.000000+0 1.009839+0 3.126079+0 9.485163-1 3.162278+0 9.320428-1 3.198895+0 9.158559-1 3.235937+0 8.999505-1 3.311311+0 8.698779-1 3.349654+0 8.552312-1 3.388442+0 8.408331-1 3.467369+0 8.127674-1 3.630781+0 7.594934-1 3.672823+0 7.467299-1 3.715352+0 7.341809-1 3.758374+0 7.218433-1 3.845918+0 6.985059-1 3.890451+0 6.871303-1 3.935501+0 6.759415-1 4.027170+0 6.541135-1 4.216965+0 6.126121-1 4.265795+0 6.026550-1 4.315191+0 5.928597-1 4.365158+0 5.832243-1 4.466836+0 5.649692-1 4.570882+0 5.472985-1 4.623810+0 5.386730-1 4.731513+0 5.218315-1 4.954502+0 4.897588-1 5.011872+0 4.820536-1 5.069907+0 4.744695-1 5.128614+0 4.670052-1 5.308844+0 4.459325-1 5.432503+0 4.324250-1 5.495409+0 4.258265-1 5.623413+0 4.129333-1 5.888437+0 3.883427-1 5.956621+0 3.824275-1 6.025596+0 3.766023-1 6.095369+0 3.708662-1 6.309573+0 3.546805-1 6.456542+0 3.442919-1 6.531306+0 3.392131-1 6.683439+0 3.292816-1 7.000000+0 3.102193-1 7.161434+0 3.012376-1 7.244360+0 2.968016-1 7.328245+0 2.924311-1 7.585776+0 2.800539-1 7.762471+0 2.721002-1 7.852356+0 2.682090-1 7.943282+0 2.643735-1 8.128305+0 2.568679-1 8.511380+0 2.425096-1 8.709636+0 2.356343-1 8.810489+0 2.322702-1 8.912509+0 2.289542-1 9.225714+0 2.195442-1 9.549926+0 2.105269-1 9.660509+0 2.076047-1 9.772372+0 2.047230-1 1.000000+1 1.990805-1 1.035142+1 1.909188-1 1.059254+1 1.856643-1 1.071519+1 1.830917-1 1.083927+1 1.805547-1 1.122018+1 1.733418-1 1.174898+1 1.641757-1 1.202264+1 1.597767-1 1.216186+1 1.576216-1 1.230269+1 1.554956-1 1.273503+1 1.492892-1 1.318257+1 1.433388-1 1.348963+1 1.395043-1 1.364583+1 1.376258-1 1.380384+1 1.358223-1 1.428894+1 1.305556-1 1.462177+1 1.271588-1 1.496236+1 1.238504-1 1.513561+1 1.222288-1 1.640590+1 1.114575-1 1.717908+1 1.057414-1 1.737801+1 1.043587-1 1.757924+1 1.030225-1 1.800000+1 1.003393-1 1.819701+1 9.912807-2 1.840772+1 9.786303-2 1.862087+1 9.661413-2 1.905461+1 9.416391-2 1.927525+1 9.296227-2 2.162719+1 8.175908-2 2.264644+1 7.766989-2 2.290868+1 7.667993-2 2.317395+1 7.572236-2 2.344229+1 7.477912-2 2.371374+1 7.384814-2 2.400000+1 7.289027-2 2.426610+1 7.202103-2 2.454709+1 7.112450-2 2.511886+1 6.936481-2 2.540973+1 6.850136-2 2.884032+1 5.968543-2 2.917427+1 5.894283-2 3.090295+1 5.536850-2 3.126079+1 5.468008-2 3.162278+1 5.400020-2 3.198895+1 5.334093-2 3.235937+1 5.269116-2 3.273407+1 5.204962-2 3.311311+1 5.141595-2 3.388442+1 5.017168-2 3.467369+1 4.895752-2 3.507519+1 4.836153-2 4.027170+1 4.175175-2 4.073803+1 4.124367-2 4.120975+1 4.074184-2 4.415704+1 3.785784-2 4.466836+1 3.739742-2 4.518559+1 3.694261-2 4.570882+1 3.650012-2 4.623810+1 3.606294-2 4.677351+1 3.563181-2 4.731513+1 3.520600-2 4.786301+1 3.478532-2 4.841724+1 3.436966-2 4.954502+1 3.355320-2 5.069907+1 3.275614-2 5.128614+1 3.236475-2 6.025596+1 2.735223-2 6.095369+1 2.702551-2 6.237348+1 2.638380-2 6.918310+1 2.368049-2 6.998420+1 2.339777-2 7.161434+1 2.284241-2 7.244360+1 2.257340-2 7.413102+1 2.204486-2 7.498942+1 2.178570-2 7.673615+1 2.127667-2 7.762471+1 2.102665-2 7.943282+1 2.053540-2 8.128305+1 2.005562-2 8.222427+1 1.981996-2 9.332543+1 1.740368-2 9.440609+1 1.719924-2 9.549926+1 1.699722-2 1.122018+2 1.440660-2 1.135011+2 1.423743-2 1.161449+2 1.390504-2 1.216186+2 1.326335-2 1.244515+2 1.295645-2 1.258925+2 1.280568-2 1.318257+2 1.221991-2 1.333521+2 1.207772-2 1.364583+2 1.179855-2 1.428894+2 1.125955-2 1.445440+2 1.112870-2 1.462177+2 1.099937-2 1.513561+2 1.062034-2 1.584893+2 1.013519-2 1.603245+2 1.001741-2 1.862087+2 8.605273-3 1.905461+2 8.406476-3 2.238721+2 7.137994-3 2.264644+2 7.055083-3 2.317395+2 6.892134-3 2.426610+2 6.577446-3 2.483133+2 6.426476-3 2.511886+2 6.352297-3 2.630268+2 6.064040-3 2.660725+2 5.994044-3 2.722701+2 5.856562-3 2.851018+2 5.591024-3 2.884032+2 5.526542-3 2.917427+2 5.462807-3 3.019952+2 5.275976-3 3.162278+2 5.036769-3 3.198895+2 4.978683-3 3.715352+2 4.281808-3 3.801894+2 4.183630-3 4.466836+2 3.556677-3 4.518559+2 3.515670-3 4.623810+2 3.435069-3 4.841724+2 3.279367-3 4.954502+2 3.204464-3 5.011872+2 3.167657-3 5.248075+2 3.024606-3 5.308844+2 2.989865-3 5.432503+2 2.921603-3 5.688529+2 2.789730-3 5.754399+2 2.757703-3 5.821032+2 2.726044-3 6.025596+2 2.633231-3 6.309573+2 2.514378-3 6.382635+2 2.485512-3 7.413102+2 2.139084-3 7.585776+2 2.090257-3 8.912509+2 1.778319-3 9.015711+2 1.757908-3 1.840772+3 8.593204-4 1.927525+3 8.205420-4 1.972423+3 8.018509-4 1.995262+3 7.926659-4 2.089296+3 7.569651-4 2.113489+3 7.482941-4 2.162719+3 7.312524-4 4.518559+3 3.498853-4 4.570882+3 3.458784-4 4.623810+3 3.419175-4 4.786301+3 3.303047-4 5.011872+3 3.154322-4 5.069907+3 3.118200-4 1.174898+4 1.345082-4 1.202264+4 1.314453-4 5.623413+4 2.808567-5 1.000000+5 1.579020-5 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 7.440000-6 7.440000-6 1.025000-5 7.440000-6 1.025000-5 8.658931-6 1.150000-5 8.780533-6 1.333521-5 8.875823-6 1.570000-5 8.930330-6 2.033000-5 8.969955-6 2.033000-5 1.051094-5 2.400000-5 1.030240-5 2.818383-5 1.011503-5 3.235937-5 9.993056-6 3.690000-5 9.930939-6 3.851000-5 9.926137-6 3.851000-5 2.781891-5 3.920000-5 2.869817-5 4.000000-5 2.990463-5 4.165000-5 3.264443-5 4.216000-5 3.343992-5 4.216000-5 3.493782-5 4.315191-5 3.596703-5 4.430000-5 3.692112-5 4.535000-5 3.756595-5 4.680000-5 3.817652-5 4.920000-5 3.879740-5 5.340000-5 3.957837-5 5.630000-5 3.984316-5 6.095369-5 3.989804-5 9.332543-5 3.958022-5 1.075200-4 3.932850-5 1.075200-4 4.622199-5 1.096700-4 4.697474-5 1.123000-4 4.750191-5 1.175000-4 4.806132-5 1.357300-4 4.946692-5 1.357300-4 5.498527-5 1.373000-4 5.590294-5 1.388000-4 5.643808-5 1.410000-4 5.687536-5 1.462177-4 5.736680-5 1.760000-4 5.956237-5 1.813400-4 5.987045-5 1.813400-4 6.297770-5 1.893000-4 6.406876-5 1.893000-4 6.804122-5 1.906000-4 6.910342-5 1.924000-4 7.001647-5 1.947000-4 7.060918-5 1.955000-4 7.072697-5 1.955000-4 7.309110-5 1.973000-4 7.397348-5 2.000000-4 7.453309-5 2.137962-4 7.525540-5 2.205000-4 7.613703-5 2.270000-4 7.744880-5 2.430000-4 8.159465-5 2.540973-4 8.435387-5 2.635000-4 8.624903-5 2.750000-4 8.791630-5 2.880000-4 8.914127-5 3.054921-4 9.014151-5 3.320000-4 9.092673-5 3.801894-4 9.141950-5 4.695400-4 9.149300-5 4.695400-4 9.373070-5 4.841724-4 9.489771-5 4.955600-4 9.543023-5 4.955600-4 9.643623-5 5.085000-4 9.785652-5 5.308844-4 9.899385-5 5.688529-4 1.003878-4 7.049600-4 1.045506-4 7.049600-4 1.110528-4 8.443000-4 1.155910-4 8.443000-4 1.173026-4 9.716400-4 1.212389-4 9.716400-4 1.241353-4 1.122018-3 1.286965-4 1.330000-3 1.340102-4 1.566751-3 1.390822-4 1.819701-3 1.436245-4 2.113489-3 1.480247-4 2.521000-3 1.530388-4 2.685100-3 1.547801-4 2.685100-3 2.290603-4 2.733000-3 2.270926-4 2.803500-3 2.262638-4 2.803500-3 2.406228-4 2.951209-3 2.400548-4 3.281500-3 2.401354-4 3.281500-3 2.575782-4 3.840200-3 2.600994-4 3.840200-3 2.690504-4 4.127600-3 2.710468-4 4.127600-3 2.794228-4 5.495409-3 2.897272-4 7.161434-3 2.996022-4 9.225714-3 3.091120-4 1.174898-2 3.180364-4 1.381700-2 3.238973-4 1.381700-2 4.039773-4 1.629700-2 4.059106-4 1.629700-2 4.220193-4 1.691800-2 4.224916-4 1.691800-2 4.535494-4 2.317395-2 4.644863-4 3.198895-2 4.755487-4 4.415704-2 4.867130-4 5.888437-2 4.963906-4 8.000000-2 5.062207-4 9.342400-2 5.108841-4 9.342400-2 4.654584-4 2.371374-1 4.685283-4 6.382635-1 4.702708-4 1.000000+5 4.705041-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.440000-6 0.0 1.075200-4 0.0 1.075200-4 1.31193-10 1.082000-4 1.36771-10 1.088000-4 1.41001-10 1.096700-4 1.46194-10 1.104000-4 1.49819-10 1.111000-4 1.52809-10 1.123000-4 1.57073-10 1.137000-4 1.61108-10 1.152000-4 1.64728-10 1.175000-4 1.69509-10 1.303167-4 1.92906-10 1.357300-4 2.03822-10 1.357300-4 8.15517-10 1.361000-4 8.41396-10 1.364583-4 8.64215-10 1.368500-4 8.86260-10 1.373000-4 9.07950-10 1.377000-4 9.24646-10 1.382000-4 9.41947-10 1.388000-4 9.58837-10 1.395000-4 9.73994-10 1.402000-4 9.85183-10 1.410000-4 9.94460-10 1.420000-4 1.002424-9 1.435000-4 1.009693-9 1.462177-4 1.015993-9 1.678804-4 1.041306-9 1.760000-4 1.045451-9 1.813400-4 1.044249-9 1.813400-4 1.092759-9 1.893000-4 1.097689-9 1.893000-4 4.848700-9 1.893600-4 4.907834-9 1.896000-4 5.094448-9 1.898200-4 5.253647-9 1.901200-4 5.454357-9 1.906000-4 5.738579-9 1.910000-4 5.938881-9 1.913000-4 6.077247-9 1.916000-4 6.198404-9 1.920000-4 6.339196-9 1.924000-4 6.459496-9 1.930000-4 6.604707-9 1.935000-4 6.703246-9 1.941000-4 6.793031-9 1.950000-4 6.885018-9 1.955000-4 6.920713-9 1.955000-4 6.348094-9 1.968500-4 6.256141-9 1.985000-4 6.175809-9 2.002000-4 6.126540-9 2.030000-4 6.091970-9 2.050000-4 6.096688-9 2.070000-4 6.126016-9 2.090000-4 6.181592-9 2.105000-4 6.241645-9 2.120000-4 6.319282-9 2.137962-4 6.434009-9 2.156300-4 6.579415-9 2.175000-4 6.754163-9 2.190000-4 6.914678-9 2.213095-4 7.197219-9 2.240000-4 7.560895-9 2.270000-4 8.016429-9 2.290868-4 8.346815-9 2.350000-4 9.349235-9 2.440000-4 1.091581-8 2.500000-4 1.187357-8 2.540973-4 1.245911-8 2.580000-4 1.295623-8 2.620000-4 1.338966-8 2.670000-4 1.384197-8 2.710000-4 1.413233-8 2.754229-4 1.439356-8 2.800000-4 1.461140-8 2.880000-4 1.490967-8 2.985383-4 1.517173-8 3.100000-4 1.534707-8 3.260000-4 1.546961-8 3.550000-4 1.553127-8 3.970000-4 1.552444-8 4.695400-4 1.540926-8 4.695400-4 1.579431-8 4.841724-4 1.597839-8 4.955600-4 1.605815-8 4.955600-4 1.718676-8 5.020000-4 1.782596-8 5.069907-4 1.823404-8 5.085000-4 1.837701-8 5.143000-4 1.867426-8 5.370318-4 1.929666-8 5.500000-4 1.961552-8 7.049600-4 2.223979-8 7.049600-4 2.945586-8 8.128305-4 3.193582-8 8.443000-4 3.263806-8 8.443000-4 3.475736-8 9.716400-4 3.783460-8 9.716400-4 4.127256-8 1.096478-3 4.454237-8 1.230269-3 4.769112-8 1.400000-3 5.133297-8 1.584893-3 5.487125-8 1.770000-3 5.809644-8 2.000000-3 6.165426-8 2.264644-3 6.532596-8 2.570396-3 6.905353-8 2.685100-3 7.035506-8 2.685100-3 8.261401-8 2.760000-3 8.247095-8 2.803500-3 8.257056-8 2.803500-3 2.854958-5 2.824000-3 2.850682-5 2.920000-3 2.735915-5 3.054921-3 2.729206-5 3.281500-3 2.726808-5 3.281500-3 2.708394-5 3.427678-3 2.703449-5 3.840200-3 2.682287-5 3.840200-3 2.971662-5 4.127600-3 2.988687-5 4.127600-3 3.030961-5 5.011872-3 3.079387-5 6.237348-3 3.131305-5 8.511380-3 3.203459-5 1.135011-2 3.266639-5 1.381700-2 3.308599-5 1.381700-2 2.580339-3 1.400000-2 2.585842-3 1.629700-2 2.567951-3 1.629700-2 3.715097-3 1.642000-2 3.723284-3 1.691800-2 3.727622-3 1.691800-2 3.882014-3 2.162719-2 3.924176-3 2.884032-2 3.952327-3 4.315191-2 3.971696-3 8.128305-2 3.973173-3 9.342400-2 3.970797-3 9.342400-2 6.594020-2 1.096478-1 6.643794-2 1.445440-1 6.705119-2 2.162719-1 6.761100-2 4.315191-1 6.816620-2 9.225714-1 6.872827-2 2.691535+0 6.876979-2 1.000000+5 6.877364-2 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 7.440000-6 0.0 1.025000-5 2.810000-6 1.025000-5 1.591069-6 1.050000-5 1.810898-6 1.096478-5 2.229431-6 1.150000-5 2.719467-6 1.230269-5 3.471955-6 1.333521-5 4.459387-6 1.548817-5 6.560429-6 2.033000-5 1.136005-5 2.033000-5 9.819055-6 2.630268-5 1.611289-5 3.235937-5 2.236631-5 3.851000-5 2.858386-5 3.851000-5 1.069109-5 3.890451-5 1.060327-5 3.920000-5 1.050183-5 3.950000-5 1.036778-5 4.000000-5 1.009537-5 4.165000-5 9.005575-6 4.216000-5 8.720081-6 4.216000-5 7.222176-6 4.260000-5 7.185105-6 4.315191-5 7.184885-6 4.365158-5 7.234109-6 4.400000-5 7.301579-6 4.430000-5 7.378875-6 4.466836-5 7.498239-6 4.518559-5 7.706836-6 4.580000-5 8.014975-6 4.630000-5 8.304629-6 4.700000-5 8.758833-6 4.800000-5 9.477658-6 4.970000-5 1.079820-5 5.230000-5 1.289663-5 5.410000-5 1.443118-5 5.595000-5 1.612496-5 5.870000-5 1.880065-5 8.912509-5 4.948306-5 1.075200-4 6.819150-5 1.075200-4 6.129787-5 1.096700-4 6.269511-5 1.123000-4 6.479794-5 1.175000-4 6.943851-5 1.357300-4 8.626288-5 1.357300-4 8.074391-5 1.377000-4 8.162498-5 1.402000-4 8.345241-5 1.462177-4 8.884989-5 1.813400-4 1.214685-4 1.813400-4 1.183612-4 1.893000-4 1.252301-4 1.893000-4 1.212539-4 1.913000-4 1.217716-4 1.941000-4 1.235956-4 1.955000-4 1.247661-4 1.955000-4 1.224025-4 1.975500-4 1.234899-4 2.010000-4 1.263650-4 2.137962-4 1.385344-4 2.238721-4 1.470983-4 2.426610-4 1.611458-4 2.600160-4 1.743943-4 2.770000-4 1.888422-4 3.000000-4 2.100999-4 3.470000-4 2.558300-4 4.695400-4 3.780316-4 4.695400-4 3.757935-4 4.955600-4 4.001137-4 4.955600-4 3.991066-4 5.248075-4 4.260579-4 7.049600-4 6.003872-4 7.049600-4 5.938777-4 8.443000-4 7.286764-4 8.443000-4 7.269626-4 9.716400-4 8.503633-4 9.716400-4 8.474634-4 1.621810-3 1.481601-3 2.685100-3 2.530250-3 2.685100-3 2.455957-3 2.803500-3 2.577154-3 2.803500-3 2.534328-3 3.281500-3 3.014097-3 3.281500-3 2.996838-3 3.840200-3 3.553278-3 3.840200-3 3.541433-3 4.127600-3 3.826666-3 4.127600-3 3.817868-3 1.381700-2 1.346002-2 1.381700-2 1.083268-2 1.629700-2 1.332314-2 1.629700-2 1.215988-2 1.691800-2 1.276789-2 1.691800-2 1.258244-2 2.951209-2 2.508513-2 9.342400-2 8.894232-2 9.342400-2 2.701835-2 9.660509-2 3.008783-2 9.885531-2 3.225514-2 1.096478-1 4.274381-2 1.445440-1 7.702580-2 2.483133-1 1.801164-1 2.371374+0 2.302134+0 1.000000+5 9.999993+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 9.342400-2 1.824100+3 9.530000-2 1.736752+3 9.600000-2 1.702068+3 9.772372-2 1.633782+3 1.000000-1 1.536608+3 1.047129-1 1.373345+3 1.161449-1 1.051578+3 1.318257-1 7.615808+2 2.500000-1 1.435370+2 3.019952-1 8.835202+1 3.507519-1 6.057287+1 4.027170-1 4.304465+1 4.570882-1 3.171212+1 5.188000-1 2.352733+1 5.888437-1 1.758631+1 6.606935-1 1.359615+1 7.498942-1 1.032339+1 8.511380-1 7.898404+0 9.549926-1 6.237526+0 1.135011+0 4.431998+0 1.273503+0 3.546811+0 1.445440+0 2.799666+0 1.621810+0 2.275044+0 1.862087+0 1.787958+0 2.137962+0 1.414271+0 2.398833+0 1.171624+0 2.722701+0 9.594861-1 3.235937+0 7.375723-1 3.758374+0 5.916006-1 4.365158+0 4.779907-1 5.128614+0 3.827396-1 6.095369+0 3.039479-1 7.328245+0 2.396661-1 8.912509+0 1.876430-1 1.083927+1 1.479763-1 1.364583+1 1.127947-1 1.737801+1 8.552915-2 2.290868+1 6.284453-2 3.162278+1 4.425675-2 4.518559+1 3.027674-2 7.161434+1 1.872059-2 1.216186+2 1.086971-2 2.426610+2 5.390592-3 4.841724+2 2.687777-3 1.927525+3 6.724964-4 1.000000+5 1.294200-5 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 9.342400-2 4.529200-4 1.000000+5 4.529200-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.342400-2 8.304500-2 1.000000+5 8.304500-2 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.342400-2 9.926080-3 1.000000+5 9.999992+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.691800-2 6.491617+3 1.780000-2 5.965440+3 1.820000-2 5.726140+3 1.910000-2 5.290040+3 2.065380-2 4.589756+3 2.290868-2 3.819352+3 2.660725-2 2.878246+3 3.349654-2 1.823180+3 3.845918-2 1.369155+3 4.315191-2 1.074483+3 5.188000-2 7.196940+2 6.095369-2 5.016318+2 6.918310-2 3.754286+2 8.000000-2 2.676480+2 9.440609-2 1.806295+2 1.122019-1 1.189931+2 1.380384-1 7.154060+1 2.630268-1 1.435411+1 3.235937-1 8.615811+0 3.845918-1 5.669366+0 4.472100-1 3.960559+0 5.188000-1 2.806007+0 5.956621-1 2.051568+0 6.804800-1 1.528486+0 7.673615-1 1.179295+0 8.609938-1 9.259651-1 9.660509-1 7.322588-1 1.161449+0 5.089769-1 1.288250+0 4.168766-1 1.462177+0 3.293203-1 1.640590+0 2.677988-1 1.883649+0 2.105709-1 2.137962+0 1.698946-1 2.398833+0 1.407441-1 2.722701+0 1.152512-1 3.235937+0 8.858820-2 3.758374+0 7.105609-2 4.365158+0 5.741070-2 5.128614+0 4.597033-2 6.095369+0 3.650685-2 7.328245+0 2.878542-2 8.912509+0 2.253735-2 1.083927+1 1.777342-2 1.364583+1 1.354742-2 1.757924+1 1.014041-2 2.317395+1 7.453075-3 3.198895+1 5.250259-3 4.623810+1 3.549348-3 7.413102+1 2.169502-3 1.333521+2 1.188464-3 2.660725+2 5.899351-4 5.308844+2 2.942739-4 2.113489+3 7.365267-5 1.000000+5 1.554400-6 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.691800-2 6.530800-4 1.000000+5 6.530800-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.691800-2 4.873900-3 1.000000+5 4.873900-3 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.691800-2 1.139102-2 1.000000+5 9.999999+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.629700-2 1.304200+4 1.642000-2 1.291786+4 1.705000-2 1.179400+4 1.850000-2 9.615200+3 2.187762-2 6.248300+3 2.432200-2 4.722900+3 3.090295-2 2.471400+3 3.900000-2 1.292900+3 4.841724-2 6.992100+2 6.095369-2 3.596000+2 7.673615-2 1.834400+2 1.584893-1 2.162400+1 1.972423-1 1.142550+1 2.371374-1 6.721047+0 2.786121-1 4.255649+0 3.198895-1 2.895948+0 3.672823-1 1.985079+0 4.168694-1 1.414210+0 4.731513-1 1.015048+0 5.308844-1 7.561745-1 5.956621-1 5.674956-1 6.606935-1 4.413960-1 7.328245-1 3.458925-1 8.222427-1 2.658157-1 9.440609-1 1.955291-1 1.011579+0 1.688308-1 1.109175+0 1.400545-1 1.216186+0 1.169871-1 1.333521+0 9.841247-2 1.513561+0 7.826561-2 1.757924+0 6.007223-2 2.044000+0 4.637059-2 2.290868+0 3.838337-2 2.600160+0 3.135335-2 3.000000+0 2.515300-2 3.467369+0 2.024289-2 4.027170+0 1.629189-2 4.731513+0 1.299801-2 5.623413+0 1.028450-2 6.683439+0 8.201092-3 8.128305+0 6.397819-3 1.000000+1 4.958300-3 1.273503+1 3.718343-3 1.640590+1 2.776504-3 2.162719+1 2.036956-3 2.917427+1 1.468301-3 4.120975+1 1.014947-3 6.237348+1 6.571955-4 9.549926+1 4.233472-4 1.905461+2 2.094071-4 3.801894+2 1.042371-4 7.585776+2 5.206334-5 1.202264+4 3.275659-6 1.000000+5 3.936200-7 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.629700-2 4.626300-4 1.000000+5 4.626300-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.629700-2 6.607100-3 1.000000+5 6.607100-3 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.629700-2 9.227270-3 1.000000+5 9.999999+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.381700-2 3.041163+4 1.393000-2 2.994234+4 1.500000-2 2.452120+4 1.566751-2 2.176027+4 1.905461-2 1.259477+4 2.113489-2 9.353831+3 2.650000-2 4.837040+3 3.349654-2 2.399071+3 4.168694-2 1.229553+3 5.128614-2 6.460238+2 6.309573-2 3.364793+2 8.000000-2 1.580984+2 1.244515-1 3.826857+1 1.650000-1 1.550896+1 2.018366-1 8.188669+0 2.317395-1 5.316636+0 2.660725-1 3.473281+0 3.019952-1 2.366364+0 3.427678-1 1.623856+0 3.845918-1 1.161285+0 4.315191-1 8.367261-1 4.786301-1 6.272099-1 5.308844-1 4.734773-1 5.888437-1 3.600452-1 6.531306-1 2.758201-1 7.244360-1 2.128942-1 8.035261-1 1.656196-1 9.015711-1 1.263955-1 9.660509-1 1.080022-1 1.023293+0 9.536346-2 1.096478+0 8.269330-2 1.188502+0 7.054024-2 1.288250+0 6.058028-2 1.428894+0 5.019620-2 1.757924+0 3.479006-2 2.044000+0 2.684391-2 2.290868+0 2.221672-2 2.600160+0 1.814482-2 3.000000+0 1.455400-2 3.467369+0 1.171333-2 4.027170+0 9.427294-3 4.731513+0 7.520932-3 5.623413+0 5.950937-3 6.683439+0 4.745426-3 8.128305+0 3.701986-3 1.000000+1 2.869100-3 1.273503+1 2.151546-3 1.640590+1 1.606629-3 2.162719+1 1.178685-3 2.884032+1 8.602589-4 4.027170+1 6.017853-4 6.025596+1 3.942076-4 9.332543+1 2.508104-4 1.862087+2 1.240338-4 3.715352+2 6.172941-5 7.413102+2 3.082986-5 1.174898+4 1.939602-6 1.000000+5 2.277700-7 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.381700-2 4.583100-4 1.000000+5 4.583100-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.381700-2 4.308600-3 1.000000+5 4.308600-3 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.381700-2 9.050090-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.127600-3 1.775411+4 4.518559-3 1.587112+4 4.841724-3 1.442051+4 5.150000-3 1.329210+4 5.432503-3 1.231096+4 6.237348-3 9.982507+3 6.839116-3 8.694947+3 7.328245-3 7.782051+3 9.015711-3 5.517662+3 1.011579-2 4.513608+3 1.161449-2 3.531069+3 1.380384-2 2.567510+3 1.548817-2 2.064614+3 1.819701-2 1.510776+3 2.162719-2 1.071061+3 2.570396-2 7.524903+2 3.054921-2 5.240966+2 3.630781-2 3.619228+2 4.265795-2 2.542480+2 5.011872-2 1.773584+2 5.888437-2 1.228218+2 7.000000-2 8.220968+1 8.413951-2 5.323304+1 9.772372-2 3.716495+1 1.216186-1 2.177988+1 1.659587-1 1.009498+1 2.722701-1 2.948482+0 3.311311-1 1.824064+0 3.935501-1 1.202470+0 4.570882-1 8.442491-1 5.248075-1 6.131876-1 6.025596-1 4.486097-1 6.839117-1 3.393685-1 7.762471-1 2.585100-1 8.810489-1 1.981907-1 9.772372-1 1.605036-1 1.174898+0 1.116265-1 1.303167+0 9.148890-2 1.479108+0 7.232548-2 1.659587+0 5.885637-2 1.905461+0 4.630633-2 2.162719+0 3.738526-2 2.454709+0 3.042670-2 2.818383+0 2.450776-2 3.311311+0 1.919785-2 3.845918+0 1.541610-2 4.466836+0 1.246869-2 5.308844+0 9.839710-3 6.309573+0 7.826601-3 7.585776+0 6.180135-3 9.225714+0 4.844809-3 1.122018+1 3.825646-3 1.380384+1 2.998389-3 1.757924+1 2.274346-3 2.344229+1 1.650601-3 3.235937+1 1.163152-3 4.677351+1 7.864957-4 7.498942+1 4.808379-4 1.364583+2 2.603775-4 2.722701+2 1.292740-4 5.432503+2 6.449037-5 2.162719+3 1.614263-5 1.000000+5 3.486400-7 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.127600-3 4.753500-4 1.000000+5 4.753500-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.127600-3 4.019800-5 1.000000+5 4.019800-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.127600-3 3.612052-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.840200-3 2.855546+4 3.910000-3 2.821855+4 3.990000-3 2.766479+4 4.300000-3 2.533500+4 4.650000-3 2.298320+4 4.841724-3 2.175644+4 5.432503-3 1.838084+4 5.900000-3 1.621460+4 6.500000-3 1.388916+4 6.918310-3 1.247135+4 8.035261-3 9.561020+3 8.609938-3 8.401790+3 1.000000-2 6.275820+3 1.083927-2 5.332888+3 1.244515-2 3.993289+3 1.364583-2 3.274301+3 1.584893-2 2.346941+3 1.778279-2 1.801445+3 2.000000-2 1.367018+3 2.317395-2 9.580965+2 2.660725-2 6.805648+2 3.054921-2 4.797279+2 3.507519-2 3.357479+2 4.073803-2 2.263979+2 4.786301-2 1.469196+2 5.688529-2 9.169093+1 6.839116-2 5.499779+1 8.511380-2 2.971573+1 1.096478-1 1.444906+1 1.819701-1 3.391336+0 2.290868-1 1.766273+0 2.722701-1 1.090093+0 3.162278-1 7.222654-1 3.630781-1 4.972570-1 4.168694-1 3.448466-1 4.731513-1 2.483441-1 5.308844-1 1.855183-1 5.956621-1 1.395583-1 6.683439-1 1.057546-1 7.413102-1 8.295269-2 8.413951-1 6.217806-2 9.225714-1 5.077011-2 1.000000+0 4.281562-2 1.096478+0 3.552403-2 1.216186+0 2.902268-2 1.348963+0 2.388794-2 1.531087+0 1.897965-2 1.757924+0 1.486730-2 2.044000+0 1.148000-2 2.290868+0 9.504089-3 2.600160+0 7.762504-3 3.000000+0 6.225600-3 3.467369+0 5.010457-3 4.027170+0 4.032554-3 4.731513+0 3.217032-3 5.623413+0 2.545474-3 6.683439+0 2.029832-3 8.128305+0 1.583486-3 1.000000+1 1.227200-3 1.273503+1 9.203338-4 1.640590+1 6.872223-4 2.162719+1 5.041649-4 2.917427+1 3.634196-4 4.073803+1 2.542944-4 6.095369+1 1.666106-4 9.440609+1 1.060263-4 1.862087+2 5.305479-5 3.715352+2 2.640482-5 7.413102+2 1.318763-5 1.174898+4 8.296637-7 1.000000+5 9.742600-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.840200-3 4.150300-4 1.000000+5 4.150300-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.840200-3 7.691000-5 1.000000+5 7.691000-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.840200-3 3.348260-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.281500-3 9.465730+4 3.349654-3 9.249826+4 3.630781-3 8.148253+4 4.027170-3 6.871811+4 4.365158-3 5.959094+4 5.011872-3 4.634069+4 5.495409-3 3.899793+4 5.754399-3 3.564220+4 6.918310-3 2.457814+4 7.500000-3 2.072744+4 8.810489-3 1.461051+4 9.660509-3 1.187442+4 1.109175-2 8.636489+3 1.258925-2 6.387892+3 1.400000-2 4.933960+3 1.621810-2 3.417157+3 1.840772-2 2.469743+3 2.065380-2 1.827576+3 2.371374-2 1.263482+3 2.754229-2 8.394017+2 3.198895-2 5.527592+2 3.672823-2 3.730691+2 4.216965-2 2.501419+2 4.897788-2 1.610850+2 5.754399-2 9.954182+1 6.839116-2 5.897453+1 8.413951-2 3.119841+1 1.096478-1 1.369362+1 1.737801-1 3.245069+0 2.187762-1 1.590976+0 2.570396-1 9.726422-1 2.951209-1 6.422802-1 3.349654-1 4.421077-1 3.801894-1 3.065830-1 4.265795-1 2.213755-1 4.786301-1 1.610522-1 5.308844-1 1.218038-1 5.888437-1 9.276568-2 6.531306-1 7.117684-2 7.244360-1 5.501702-2 8.609938-1 3.626603-2 9.225714-1 3.088946-2 9.772372-1 2.718001-2 1.047129+0 2.349800-2 1.135011+0 1.996730-2 1.244515+0 1.670642-2 1.364583+0 1.409127-2 1.678804+0 9.740447-3 1.949845+0 7.513108-3 2.187762+0 6.189313-3 2.483133+0 5.040896-3 2.851018+0 4.063063-3 3.349654+0 3.184438-3 3.890451+0 2.558540-3 4.570882+0 2.037716-3 5.432503+0 1.609803-3 6.456542+0 1.281724-3 7.762471+0 1.013049-3 9.549926+0 7.837342-4 1.174898+1 6.112414-4 1.428894+1 4.861870-4 1.800000+1 3.737100-4 2.371374+1 2.750295-4 3.273407+1 1.938673-4 4.731513+1 1.311229-4 7.673615+1 7.923190-5 1.428894+2 4.192654-5 2.851018+2 2.082410-5 5.688529+2 1.039006-5 4.518559+3 1.302987-6 1.000000+5 5.883200-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.281500-3 3.662200-4 1.000000+5 3.662200-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.281500-3 2.593700-5 1.000000+5 2.593700-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.281500-3 2.889343-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.803500-3 2.835688+5 2.824000-3 2.775082+5 2.920000-3 2.408486+5 2.951209-3 2.341702+5 3.220000-3 1.881816+5 3.311311-3 1.749243+5 3.349654-3 1.700273+5 3.845918-3 1.172164+5 4.300000-3 8.619560+4 4.841724-3 6.157331+4 5.370318-3 4.554370+4 5.900000-3 3.445972+4 7.161434-3 1.908740+4 7.943282-3 1.379694+4 9.120108-3 8.899352+3 1.071519-2 5.268848+3 1.190000-2 3.723356+3 1.364583-2 2.351122+3 1.603245-2 1.354252+3 1.883649-2 7.722745+2 2.187762-2 4.546068+2 2.570396-2 2.548339+2 3.054921-2 1.358841+2 3.630781-2 7.187645+1 4.415704-2 3.463535+1 5.500000-2 1.514396+1 1.122019-1 1.009576+0 1.396368-1 4.428705-1 1.678804-1 2.228057-1 1.949845-1 1.283531-1 2.238721-1 7.774435-2 2.540973-1 4.936853-2 2.851018-1 3.289697-2 3.126079-1 2.391512-2 3.507519-1 1.617741-2 3.935501-1 1.102712-2 4.415705-1 7.569874-3 4.897788-1 5.435371-3 5.370318-1 4.076198-3 5.888437-1 3.076882-3 6.456542-1 2.337211-3 7.079458-1 1.788007-3 7.673615-1 1.423684-3 8.222427-1 1.174192-3 8.709636-1 1.002007-3 9.225714-1 8.611490-4 9.660509-1 7.677714-4 1.011579+0 6.892331-4 1.071519+0 6.075275-4 1.135011+0 5.395598-4 1.202264+0 4.822562-4 1.288250+0 4.243128-4 1.412538+0 3.606709-4 1.531087+0 3.137946-4 1.862087+0 2.225032-4 2.113489+0 1.792731-4 2.371374+0 1.484005-4 2.691535+0 1.214467-4 3.162278+0 9.492989-5 3.672823+0 7.605565-5 4.265795+0 6.138365-5 5.011872+0 4.910189-5 5.956621+0 3.895159-5 7.161434+0 3.068334-5 8.709636+0 2.400199-5 1.059254+1 1.891225-5 1.348963+1 1.421190-5 1.737801+1 1.063385-5 2.290868+1 7.813563-6 3.162278+1 5.502487-6 4.570882+1 3.718903-6 7.244360+1 2.299933-6 1.258925+2 1.304666-6 2.511886+2 6.472261-7 5.011872+2 3.227790-7 1.995262+3 8.076778-8 1.000000+5 1.609100-9 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.803500-3 2.714000-4 1.000000+5 2.714000-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.803500-3 8.956600-5 1.000000+5 8.956600-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.803500-3 2.442534-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.685100-3 4.685874+5 2.725000-3 4.225070+5 2.733000-3 4.151581+5 2.748000-3 4.041792+5 2.760000-3 3.968208+5 2.810000-3 3.733140+5 2.830000-3 3.663150+5 2.860000-3 3.571728+5 2.920000-3 3.382098+5 3.019952-3 3.104951+5 3.311311-3 2.430700+5 3.672823-3 1.832026+5 4.027170-3 1.416578+5 4.466836-3 1.053872+5 4.954502-3 7.779894+4 5.623413-3 5.325231+4 6.382635-3 3.602957+4 7.079458-3 2.608789+4 8.035261-3 1.739626+4 8.912509-3 1.243665+4 1.040000-2 7.462620+3 1.174898-2 4.944636+3 1.318257-2 3.334012+3 1.531087-2 1.979374+3 1.778279-2 1.164166+3 2.065380-2 6.787014+2 2.400000-2 3.917604+2 2.818383-2 2.157514+2 3.349654-2 1.126279+2 4.000000-2 5.726025+1 4.897788-2 2.623611+1 6.165950-2 1.069767+1 1.071519-1 1.229171+0 1.318257-1 5.494538-1 1.566751-1 2.829064-1 1.798871-1 1.674067-1 2.065380-1 9.980644-2 2.317395-1 6.529898-2 2.570396-1 4.487037-2 2.851018-1 3.105955-2 3.126079-1 2.254969-2 3.427678-1 1.648364-2 3.758374-1 1.213054-2 4.168694-1 8.657776-3 4.570882-1 6.460288-3 5.011872-1 4.856729-3 5.495409-1 3.681391-3 6.025596-1 2.812120-3 6.606935-1 2.162797-3 7.161434-1 1.730420-3 7.762471-1 1.393909-3 8.511380-1 1.094971-3 9.015711-1 9.470955-4 9.549926-1 8.247949-4 1.000000+0 7.426840-4 1.059254+0 6.561261-4 1.135011+0 5.697648-4 1.216186+0 4.982598-4 1.318257+0 4.291849-4 1.462177+0 3.570987-4 1.819701+0 2.430311-4 2.089296+0 1.918919-4 2.344229+0 1.587549-4 2.660725+0 1.298389-4 3.126079+0 1.014307-4 3.630781+0 8.121616-5 4.216965+0 6.551171-5 4.954502+0 5.237629-5 5.888437+0 4.152838-5 7.000000+0 3.317200-5 8.511380+0 2.593292-5 1.035142+1 2.041578-5 1.318257+1 1.532863-5 1.717908+1 1.131258-5 2.264644+1 8.309657-6 3.090295+1 5.923079-6 4.415704+1 4.049954-6 6.918310+1 2.533082-6 1.122018+2 1.540887-6 2.238721+2 7.635200-7 4.466836+2 3.805038-7 8.912509+2 1.901136-7 1.000000+5 1.689600-9 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.685100-3 2.695300-4 1.000000+5 2.695300-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.685100-3 8.929300-8 1.000000+5 8.929300-8 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.685100-3 2.415481-3 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 9.716400-4 3.959727+4 1.050000-3 3.801160+4 1.071519-3 3.748043+4 1.158600-3 3.490995+4 1.380384-3 2.920266+4 1.428894-3 2.811173+4 1.730000-3 2.241700+4 1.864800-3 2.036258+4 2.238721-3 1.592621+4 2.454709-3 1.398023+4 2.917427-3 1.084232+4 3.311311-3 8.924420+3 3.801894-3 7.175780+3 4.518559-3 5.408810+3 5.370318-3 4.038677+3 6.309573-3 3.050282+3 7.500000-3 2.239520+3 8.912509-3 1.632207+3 1.071519-2 1.154812+3 1.288250-2 8.104392+2 1.531087-2 5.774001+2 1.840772-2 3.991094+2 2.187762-2 2.802558+2 2.600160-2 1.953572+2 3.054921-2 1.385828+2 3.672823-2 9.287636+1 4.365158-2 6.334822+1 5.188000-2 4.289015+1 6.165950-2 2.883083+1 7.413102-2 1.872669+1 9.015711-2 1.174478+1 1.071519-1 7.726045+0 1.380384-1 4.144373+0 2.851018-1 6.849149-1 3.467369-1 4.245551-1 4.073803-1 2.883221-1 4.731513-1 2.027917-1 5.432503-1 1.475512-1 6.165950-1 1.109705-1 6.998420-1 8.404930-2 8.000000-1 6.314597-2 9.015711-1 4.919913-2 1.000000+0 3.989998-2 1.202264+0 2.778027-2 1.333521+0 2.280205-2 1.500000+0 1.834999-2 1.698244+0 1.471110-2 1.972423+0 1.136208-2 2.213095+0 9.367416-3 2.511886+0 7.634721-3 2.884032+0 6.157309-3 3.388442+0 4.828343-3 3.935501+0 3.881585-3 4.623810+0 3.093194-3 5.495409+0 2.444904-3 6.531306+0 1.947669-3 7.943282+0 1.517971-3 9.772372+0 1.175365-3 1.230269+1 8.927977-4 1.513561+1 7.018628-4 1.927525+1 5.337717-4 2.540973+1 3.933234-4 3.507519+1 2.777023-4 5.128614+1 1.858369-4 8.222427+1 1.138007-4 1.603245+2 5.752098-5 3.198895+2 2.859686-5 6.382635+2 1.427435-5 5.069907+3 1.790932-6 1.000000+5 9.074200-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 9.716400-4 2.738100-4 1.000000+5 2.738100-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.716400-4 2.189300-7 1.000000+5 2.189300-7 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 9.716400-4 6.976111-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 8.443000-4 3.490197+4 9.772372-4 3.453748+4 1.048300-3 3.393284+4 1.122018-3 3.324262+4 1.190000-3 3.240200+4 1.294000-3 3.099314+4 1.380384-3 2.978556+4 1.513561-3 2.792171+4 1.610000-3 2.657020+4 1.737801-3 2.478787+4 1.927525-3 2.239265+4 2.070000-3 2.076140+4 2.264644-3 1.871401+4 2.511886-3 1.648748+4 2.754229-3 1.462280+4 3.090295-3 1.247124+4 3.400000-3 1.085928+4 3.845918-3 8.995286+3 4.265795-3 7.624743+3 4.841724-3 6.175545+3 5.432503-3 5.057048+3 6.095369-3 4.112136+3 6.918310-3 3.248581+3 7.800000-3 2.578880+3 8.810489-3 2.025171+3 1.000000-2 1.563440+3 1.148154-2 1.168906+3 1.318257-2 8.664098+2 1.513561-2 6.368020+2 1.717908-2 4.766928+2 1.949845-2 3.544585+2 2.238721-2 2.546158+2 2.570396-2 1.815133+2 2.951209-2 1.284573+2 3.427678-2 8.763401+1 4.000000-2 5.859480+1 4.677351-2 3.867739+1 5.559043-2 2.425618+1 6.606934-2 1.509568+1 8.128305-2 8.473957+0 1.035142-1 4.282672+0 1.927525-1 7.303887-1 2.137962-1 5.463080-1 2.884032-1 2.374299-1 3.349654-1 1.580332-1 3.845918-1 1.092916-1 4.415705-1 7.612780-2 5.011872-1 5.505432-2 5.623413-1 4.129691-2 6.309573-1 3.119780-2 7.079458-1 2.374651-2 7.852356-1 1.870220-2 8.709636-1 1.480818-2 9.440609-1 1.242487-2 1.023293+0 1.049789-2 1.122018+0 8.724083-3 1.244515+0 7.139175-3 1.396368+0 5.762319-3 1.621810+0 4.402918-3 1.883649+0 3.391285-3 2.137962+0 2.736046-3 2.398833+0 2.266612-3 2.722701+0 1.855984-3 3.198895+0 1.451399-3 3.715352+0 1.163490-3 4.315191+0 9.395363-4 5.069907+0 7.519198-4 6.025596+0 5.968098-4 7.244360+0 4.703596-4 8.810489+0 3.680944-4 1.071519+1 2.901616-4 1.348963+1 2.210795-4 1.737801+1 1.654135-4 2.317395+1 1.200126-4 3.198895+1 8.454361-5 4.623810+1 5.715353-5 7.413102+1 3.493419-5 1.318257+2 1.936415-5 2.630268+2 9.610342-6 5.248075+2 4.793735-6 2.089296+3 1.199745-6 1.000000+5 2.503000-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 8.443000-4 2.439600-4 1.000000+5 2.439600-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 8.443000-4 1.915800-7 1.000000+5 1.915800-7 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 8.443000-4 6.001484-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 7.049600-4 1.960457+5 7.690000-4 1.846585+5 8.128305-4 1.764468+5 8.413951-4 1.718339+5 9.332543-4 1.558328+5 1.030000-3 1.407184+5 1.122018-3 1.281454+5 1.273503-3 1.104575+5 1.380384-3 9.974881+4 1.584893-3 8.289516+4 1.737801-3 7.283197+4 1.972423-3 6.033117+4 2.187762-3 5.143049+4 2.483133-3 4.192016+4 2.786121-3 3.457842+4 3.162278-3 2.774540+4 3.548134-3 2.255557+4 4.027170-3 1.782868+4 4.570882-3 1.397977+4 5.188000-3 1.087828+4 5.821032-3 8.604339+3 6.606934-3 6.600538+3 7.585776-3 4.901344+3 8.709636-3 3.607838+3 1.000000-2 2.633336+3 1.135011-2 1.958583+3 1.288250-2 1.446494+3 1.462177-2 1.061000+3 1.659587-2 7.729161+2 1.900000-2 5.469640+2 2.187762-2 3.782369+2 2.511886-2 2.614499+2 2.884032-2 1.793472+2 3.311311-2 1.221362+2 3.845918-2 7.992879+1 4.466836-2 5.190529+1 5.248075-2 3.234684+1 6.165950-2 2.000601+1 7.413102-2 1.145890+1 9.120108-2 6.071130+0 1.202264-1 2.577930+0 1.840772-1 6.853472-1 2.344229-1 3.233586-1 2.570396-1 2.441462-1 2.786121-1 1.921136-1 3.019952-1 1.521911-1 3.427678-1 1.049887-1 3.890451-1 7.297168-2 4.365158-1 5.280370-2 4.897788-1 3.849863-2 5.432503-1 2.917490-2 6.025596-1 2.226214-2 6.683439-1 1.710777-2 7.413102-1 1.324401-2 8.609938-1 9.245386-3 9.225714-1 7.881813-3 9.772372-1 6.939563-3 1.047129+0 6.002175-3 1.135011+0 5.101584-3 1.244515+0 4.268510-3 1.380384+0 3.525152-3 1.678804+0 2.487355-3 1.949845+0 1.918747-3 2.187762+0 1.580740-3 2.483133+0 1.287457-3 2.851018+0 1.037719-3 3.349654+0 8.133282-4 3.890451+0 6.534795-4 4.570882+0 5.204473-4 5.432503+0 4.111541-4 6.456542+0 3.273666-4 7.762471+0 2.587343-4 9.549926+0 2.001729-4 1.174898+1 1.561145-4 1.428894+1 1.241774-4 1.819701+1 9.428578-5 2.400000+1 6.932600-5 3.311311+1 4.890599-5 4.841724+1 3.268825-5 7.762471+1 1.999745-5 1.445440+2 1.058353-5 2.884032+2 5.257183-6 5.754399+2 2.623085-6 4.570882+3 3.289757-7 1.000000+5 1.502600-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 7.049600-4 2.186900-4 1.000000+5 2.186900-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.049600-4 1.489100-7 1.000000+5 1.489100-7 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.049600-4 4.861211-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 4.955600-4 6.659420+4 4.968000-4 7.377467+4 4.997000-4 8.888263+4 5.018000-4 1.012877+5 5.020000-4 1.023531+5 5.055000-4 1.175047+5 5.082100-4 1.316331+5 5.085000-4 1.330750+5 5.135000-4 1.464316+5 5.143000-4 1.479825+5 5.248075-4 1.617823+5 5.350000-4 1.728044+5 5.400000-4 1.765750+5 5.500000-4 1.862377+5 5.559043-4 1.890848+5 5.900000-4 2.022724+5 6.100000-4 2.082456+5 6.515100-4 2.188153+5 6.760830-4 2.233127+5 7.000000-4 2.260796+5 7.328245-4 2.283889+5 7.585776-4 2.290384+5 7.943282-4 2.283210+5 8.317638-4 2.259195+5 8.709636-4 2.220719+5 9.120108-4 2.169785+5 9.660509-4 2.091320+5 1.023293-3 1.997305+5 1.096478-3 1.875642+5 1.161449-3 1.767888+5 1.230269-3 1.654375+5 1.318257-3 1.516270+5 1.412538-3 1.381128+5 1.513561-3 1.248819+5 1.621810-3 1.121426+5 1.770000-3 9.712600+4 1.905461-3 8.543213+4 2.089296-3 7.214496+4 2.264644-3 6.182107+4 2.454709-3 5.260630+4 2.691535-3 4.343940+4 2.951209-3 3.558428+4 3.235937-3 2.894090+4 3.548134-3 2.336912+4 3.900000-3 1.863176+4 4.315191-3 1.450888+4 4.800000-3 1.106164+4 5.370318-3 8.236624+3 5.956621-3 6.225618+3 6.531306-3 4.826218+3 7.300000-3 3.522740+3 8.222426-3 2.494257+3 9.225714-3 1.771674+3 1.035142-2 1.248798+3 1.161449-2 8.738492+2 1.303167-2 6.071616+2 1.479108-2 4.035694+2 1.659587-2 2.765713+2 1.883649-2 1.810865+2 2.162719-2 1.131397+2 2.483133-2 7.012852+1 2.851018-2 4.314796+1 3.311311-2 2.530115+1 3.890451-2 1.412810+1 4.623810-2 7.509135+0 5.623413-2 3.639279+0 7.328245-2 1.353159+0 1.202264-1 2.112239-1 1.500000-1 9.271920-2 1.862087-1 4.186791-2 2.162719-1 2.431794-2 2.477750-1 1.495321-2 2.786121-1 9.898015-3 3.090295-1 6.919479-3 3.467369-1 4.686136-3 3.890451-1 3.196981-3 4.365158-1 2.195755-3 4.841724-1 1.576666-3 5.370318-1 1.140802-3 5.888437-1 8.616285-4 6.456542-1 6.554589-4 7.079458-1 5.023632-4 8.128305-1 3.414602-4 8.609938-1 2.910177-4 9.120108-1 2.496515-4 9.549926-1 2.221789-4 1.000000+0 1.990244-4 1.047129+0 1.795174-4 1.109175+0 1.589519-4 1.174898+0 1.417253-4 1.258925+0 1.244269-4 1.364583+0 1.077135-4 1.531087+0 8.826848-5 1.862087+0 6.258618-5 2.113489+0 5.043195-5 2.371374+0 4.174946-5 2.691535+0 3.416564-5 3.162278+0 2.670447-5 3.672823+0 2.139500-5 4.265795+0 1.726741-5 5.011872+0 1.381224-5 5.956621+0 1.095723-5 7.161434+0 8.631563-6 8.709636+0 6.751865-6 1.059254+1 5.320069-6 1.348963+1 3.997994-6 1.737801+1 2.991388-6 2.290868+1 2.198001-6 3.162278+1 1.547920-6 4.570882+1 1.046178-6 7.244360+1 6.469781-7 1.258925+2 3.670095-7 2.511886+2 1.820682-7 5.011872+2 9.079915-8 1.995262+3 2.271995-8 1.000000+5 4.52640-10 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 4.955600-4 1.685000-4 1.000000+5 1.685000-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.955600-4 9.803400-8 1.000000+5 9.803400-8 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 4.955600-4 3.269620-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.695400-4 1.538931+5 4.725000-4 1.713163+5 4.768000-4 1.985655+5 4.841724-4 2.334091+5 4.910000-4 2.564750+5 4.930000-4 2.617828+5 5.020000-4 2.812473+5 5.040000-4 2.846423+5 5.150000-4 2.992483+5 5.400000-4 3.251722+5 5.500000-4 3.333036+5 5.650000-4 3.426834+5 5.850000-4 3.519240+5 6.237348-4 3.665532+5 6.456542-4 3.724386+5 6.700000-4 3.760578+5 7.000000-4 3.780210+5 7.300000-4 3.775200+5 7.585776-4 3.752230+5 8.000000-4 3.688212+5 8.350000-4 3.615804+5 8.810489-4 3.502638+5 9.225714-4 3.388026+5 9.772372-4 3.224137+5 1.050000-3 3.006306+5 1.110000-3 2.831010+5 1.174898-3 2.644974+5 1.258925-3 2.416008+5 1.364583-3 2.157027+5 1.462177-3 1.943363+5 1.584893-3 1.705690+5 1.717908-3 1.486908+5 1.862087-3 1.286007+5 2.041738-3 1.080691+5 2.220000-3 9.157920+4 2.450000-3 7.471080+4 2.660725-3 6.257939+4 2.951209-3 4.966515+4 3.220000-3 4.059666+4 3.548134-3 3.220492+4 3.900000-3 2.550480+4 4.300000-3 1.991274+4 4.841724-3 1.459661+4 5.370318-3 1.103545+4 5.888437-3 8.555255+3 6.531306-3 6.382346+3 7.328245-3 4.570446+3 8.317638-3 3.135006+3 9.332543-3 2.206478+3 1.050000-2 1.527906+3 1.174898-2 1.068271+3 1.303167-2 7.633798+2 1.462177-2 5.220535+2 1.659587-2 3.409223+2 1.883649-2 2.208885+2 2.137962-2 1.420180+2 2.426610-2 9.064330+1 2.786121-2 5.511660+1 3.198895-2 3.326883+1 3.715352-2 1.911035+1 4.365158-2 1.043854+1 5.188000-2 5.419645+0 6.382635-2 2.448018+0 1.202264-1 2.118621-1 1.462177-1 1.001175-1 1.717908-1 5.439305-2 2.000000-1 3.080502-2 2.317395-1 1.788918-2 2.570396-1 1.231887-2 2.851018-1 8.544650-3 3.126079-1 6.212819-3 3.427678-1 4.546158-3 3.758374-1 3.348296-3 4.168694-1 2.392176-3 4.570882-1 1.787061-3 5.011872-1 1.345182-3 5.495409-1 1.021141-3 6.025596-1 7.811373-4 6.606935-1 6.014888-4 7.161434-1 4.816426-4 7.762471-1 3.882062-4 8.511380-1 3.049930-4 9.015711-1 2.637749-4 9.549926-1 2.296753-4 1.000000+0 2.067804-4 1.059254+0 1.826542-4 1.135011+0 1.586025-4 1.216186+0 1.387002-4 1.318257+0 1.194769-4 1.462177+0 9.941556-5 1.819701+0 6.765718-5 2.089296+0 5.341613-5 2.344229+0 4.418947-5 2.660725+0 3.613912-5 3.126079+0 2.823101-5 3.630781+0 2.260488-5 4.216965+0 1.823382-5 4.954502+0 1.457772-5 5.888437+0 1.155861-5 7.000000+0 9.232600-6 8.511380+0 7.217677-6 1.035142+1 5.682094-6 1.318257+1 4.266356-6 1.717908+1 3.148545-6 2.264644+1 2.312813-6 3.090295+1 1.648553-6 4.415704+1 1.127220-6 6.918310+1 7.050264-7 1.122018+2 4.288623-7 2.238721+2 2.125078-7 4.466836+2 1.059044-7 8.912509+2 5.291380-8 5.623413+4 8.36438-10 1.000000+5 4.70270-10 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.695400-4 1.625300-4 1.000000+5 1.625300-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.695400-4 2.763300-8 1.000000+5 2.763300-8 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.695400-4 3.069824-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 1.955000-4 9.824821+4 1.955600-4 9.999000+4 1.958000-4 1.052814+5 1.960200-4 1.097454+5 1.962500-4 1.141344+5 1.965500-4 1.193580+5 1.968500-4 1.239570+5 1.972423-4 1.292557+5 1.975500-4 1.327908+5 1.980000-4 1.370670+5 1.985000-4 1.407906+5 1.990000-4 1.435770+5 1.995262-4 1.456209+5 2.002000-4 1.471716+5 2.010000-4 1.478484+5 2.020000-4 1.474986+5 2.030000-4 1.463232+5 2.050000-4 1.427808+5 2.090000-4 1.354176+5 2.113489-4 1.322915+5 2.135000-4 1.305342+5 2.155000-4 1.299582+5 2.170000-4 1.302300+5 2.187762-4 1.313676+5 2.205000-4 1.333476+5 2.220000-4 1.357878+5 2.238721-4 1.397782+5 2.250000-4 1.426974+5 2.270000-4 1.488186+5 2.290868-4 1.564970+5 2.315000-4 1.669746+5 2.340000-4 1.796766+5 2.371374-4 1.982553+5 2.400000-4 2.178576+5 2.440000-4 2.497674+5 2.500000-4 3.081924+5 2.600160-4 4.352658+5 2.650000-4 5.108814+5 2.691535-4 5.787566+5 2.730000-4 6.444000+5 2.770000-4 7.146240+5 2.815000-4 7.948260+5 2.851018-4 8.594032+5 2.900000-4 9.470760+5 2.951209-4 1.037725+6 3.000000-4 1.122822+6 3.054921-4 1.216144+6 3.100000-4 1.290342+6 3.150000-4 1.369332+6 3.209300-4 1.457404+6 3.260000-4 1.527042+6 3.320000-4 1.602228+6 3.390900-4 1.680477+6 3.450000-4 1.736796+6 3.530000-4 1.801830+6 3.600000-4 1.849026+6 3.700000-4 1.902762+6 3.801894-4 1.943391+6 3.890451-4 1.968140+6 4.000000-4 1.986402+6 4.120975-4 1.991452+6 4.216965-4 1.985983+6 4.365158-4 1.964483+6 4.518559-4 1.930992+6 4.700000-4 1.880580+6 4.897788-4 1.815683+6 5.080000-4 1.749378+6 5.308844-4 1.661322+6 5.559043-4 1.563686+6 5.821032-4 1.463112+6 6.100000-4 1.359402+6 6.456542-4 1.234198+6 6.850000-4 1.107000+6 7.300000-4 9.776640+5 7.762471-4 8.608840+5 8.317638-4 7.399277+5 8.912509-4 6.315699+5 9.549926-4 5.353183+5 1.035142-3 4.377126+5 1.122018-3 3.552856+5 1.216186-3 2.861274+5 1.330000-3 2.233698+5 1.450000-3 1.744926+5 1.584893-3 1.344286+5 1.737801-3 1.018210+5 1.900000-3 7.730340+4 2.113489-3 5.517822+4 2.344229-3 3.940331+4 2.570396-3 2.902253+4 2.851018-3 2.042853+4 3.198895-3 1.371071+4 3.589219-3 9.121380+3 4.027170-3 6.017578+3 4.518559-3 3.937287+3 5.011872-3 2.669375+3 5.600000-3 1.748154+3 6.237348-3 1.151346+3 7.000000-3 7.308660+2 7.852356-3 4.615822+2 8.912509-3 2.760146+2 1.011579-2 1.638145+2 1.148154-2 9.648302+1 1.303167-2 5.640914+1 1.479108-2 3.274760+1 1.698244-2 1.795172+1 1.949845-2 9.768923+0 2.264644-2 5.014380+0 2.691535-2 2.303754+0 3.311311-2 8.979669-1 4.168694-2 3.126238-1 5.754399-2 7.065165-2 8.128305-2 1.429106-2 9.885531-2 5.816689-3 1.161449-1 2.798033-3 1.364583-1 1.356029-3 1.603245-1 6.623729-4 1.840772-1 3.610456-4 2.137962-1 1.887258-4 2.371374-1 1.212406-4 2.600160-1 8.236447-5 2.818383-1 5.910045-5 3.054921-1 4.267488-5 3.349654-1 2.965430-5 3.672823-1 2.075876-5 4.168694-1 1.283092-5 4.623810-1 8.714562-6 5.248075-1 5.483198-6 5.754399-1 3.940415-6 6.237348-1 2.971881-6 6.683439-1 2.348097-6 7.161434-1 1.867444-6 7.673615-1 1.495446-6 8.035261-1 1.296565-6 8.413951-1 1.131190-6 8.810489-1 9.933893-7 9.225714-1 8.784972-7 9.660509-1 7.826945-7 1.000000+0 7.214700-7 1.059254+0 6.354267-7 1.122018+0 5.638295-7 1.188502+0 5.034657-7 1.273503+0 4.424354-7 1.396368+0 3.754368-7 1.531087+0 3.199556-7 1.862087+0 2.268710-7 2.113489+0 1.828057-7 2.371374+0 1.513276-7 2.691535+0 1.238438-7 3.162278+0 9.680375-8 3.672823+0 7.755590-8 4.265795+0 6.259379-8 5.011872+0 5.006976-8 5.956621+0 3.971988-8 7.161434+0 3.128869-8 8.709636+0 2.447511-8 1.059254+1 1.928463-8 1.348963+1 1.449272-8 1.737801+1 1.084338-8 2.290868+1 7.967638-9 3.162278+1 5.611087-9 4.570882+1 3.792319-9 7.244360+1 2.345238-9 1.258925+2 1.330354-9 2.511886+2 6.59991-10 5.011872+2 3.29134-10 1.995262+3 8.23596-11 1.000000+5 1.64080-12 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 1.955000-4 9.533300-5 1.000000+5 9.533300-5 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.955000-4 9.60870-10 1.000000+5 9.60870-10 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 1.955000-4 1.001660-4 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 1.893000-4 1.255472+5 1.893600-4 1.277576+5 1.896000-4 1.347064+5 1.898200-4 1.406704+5 1.901200-4 1.482296+5 1.904000-4 1.547088+5 1.906000-4 1.589808+5 1.909000-4 1.648344+5 1.913000-4 1.717480+5 1.916000-4 1.762600+5 1.920000-4 1.814216+5 1.924000-4 1.857248+5 1.929000-4 1.900400+5 1.935000-4 1.938760+5 1.941000-4 1.964768+5 1.947000-4 1.980792+5 1.953000-4 1.988888+5 1.961000-4 1.990296+5 1.973000-4 1.978672+5 1.990000-4 1.946856+5 2.030000-4 1.859392+5 2.050000-4 1.824984+5 2.070000-4 1.801840+5 2.090000-4 1.791896+5 2.105000-4 1.793960+5 2.120000-4 1.804704+5 2.137962-4 1.829545+5 2.156300-4 1.868836+5 2.175000-4 1.923760+5 2.190000-4 1.978784+5 2.205000-4 2.043552+5 2.221900-4 2.128182+5 2.240000-4 2.232336+5 2.264644-4 2.396544+5 2.290868-4 2.599530+5 2.317395-4 2.834960+5 2.350000-4 3.167232+5 2.398833-4 3.758713+5 2.520000-4 5.749064+5 2.570396-4 6.785612+5 2.600160-4 7.444306+5 2.635000-4 8.249600+5 2.670000-4 9.086720+5 2.710000-4 1.006544+6 2.750000-4 1.105672+6 2.787700-4 1.199361+6 2.830000-4 1.304088+6 2.880000-4 1.426600+6 2.930000-4 1.546904+6 2.985383-4 1.676671+6 3.040300-4 1.800535+6 3.100000-4 1.928096+6 3.153500-4 2.034795+6 3.200000-4 2.120760+6 3.260000-4 2.221624+6 3.320000-4 2.310848+6 3.390000-4 2.400632+6 3.470000-4 2.485792+6 3.550000-4 2.554720+6 3.650000-4 2.621424+6 3.758374-4 2.672646+6 3.850000-4 2.700512+6 3.970000-4 2.717360+6 4.100000-4 2.713200+6 4.216965-4 2.693008+6 4.365158-4 2.650962+6 4.550000-4 2.581384+6 4.731513-4 2.500975+6 4.930000-4 2.403136+6 5.150000-4 2.286176+6 5.400000-4 2.148888+6 5.717600-4 1.977938+6 6.025596-4 1.820185+6 6.382635-4 1.648082+6 6.760830-4 1.480544+6 7.244360-4 1.291157+6 7.673615-4 1.144776+6 8.200000-4 9.888320+5 8.810489-4 8.376253+5 9.440609-4 7.093672+5 1.011579-3 5.965338+5 1.096478-3 4.841407+5 1.174898-3 4.023284+5 1.288250-3 3.119384+5 1.400000-3 2.461056+5 1.548817-3 1.830115+5 1.698244-3 1.385673+5 1.862087-3 1.042254+5 2.089296-3 7.228592+4 2.317395-3 5.153826+4 2.521000-3 3.892700+4 2.800000-3 2.724584+4 3.150000-3 1.808920+4 3.507519-3 1.234712+4 3.935501-3 8.134543+3 4.415704-3 5.314474+3 4.900000-3 3.591824+3 5.432503-3 2.420125+3 6.025596-3 1.617619+3 6.760830-3 1.026792+3 7.585776-3 6.469092+2 8.609938-3 3.861118+2 9.660509-3 2.398223+2 1.096478-2 1.409806+2 1.244515-2 8.227316+1 1.412538-2 4.766456+1 1.584893-2 2.883104+1 1.819701-2 1.564991+1 2.089296-2 8.432596+0 2.426610-2 4.283298+0 2.884032-2 1.944816+0 3.507519-2 7.886019-1 4.415704-2 2.703853-1 5.888437-2 7.030844-2 7.444800-2 2.340783-2 8.317638-2 1.393868-2 9.772372-2 6.526084-3 1.096478-1 3.823213-3 1.258925-1 2.028374-3 1.445440-1 1.084608-3 1.678804-1 5.540034-4 1.883649-1 3.327395-4 2.089296-1 2.117521-4 2.344229-1 1.292110-4 2.540973-1 9.200705-5 2.754229-1 6.594428-5 2.951209-1 4.988082-5 3.198895-1 3.633643-5 3.467369-1 2.665637-5 3.801894-1 1.885168-5 4.168694-1 1.342790-5 4.570882-1 9.632529-6 5.370318-1 5.452282-6 5.688529-1 4.474763-6 6.025596-1 3.695784-6 6.382635-1 3.082722-6 6.839117-1 2.498390-6 7.079458-1 2.254218-6 7.852356-1 1.637438-6 8.413951-1 1.332283-6 8.912509-1 1.130151-6 9.332543-1 9.970473-7 9.772372-1 8.856303-7 1.022000+0 7.952200-7 1.071519+0 7.151982-7 1.122018+0 6.492535-7 1.188502+0 5.796697-7 1.273503+0 5.102153-7 1.380384+0 4.429627-7 1.513561+0 3.789210-7 1.883649+0 2.580719-7 2.113489+0 2.121180-7 2.371374+0 1.755990-7 2.691535+0 1.436985-7 3.162278+0 1.123151-7 3.672823+0 8.998477-8 4.265795+0 7.262538-8 5.011872+0 5.809376-8 5.956621+0 4.608543-8 7.161434+0 3.630350-8 8.709636+0 2.839752-8 1.059254+1 2.237599-8 1.348963+1 1.681551-8 1.737801+1 1.258155-8 2.290868+1 9.244619-9 3.162278+1 6.510367-9 4.570882+1 4.400108-9 7.244360+1 2.721172-9 1.244515+2 1.561830-9 2.483133+2 7.74719-10 4.954502+2 3.86333-10 1.972423+3 9.66691-11 1.000000+5 1.90380-12 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 1.893000-4 9.273300-5 1.000000+5 9.273300-5 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.893000-4 2.816400-8 1.000000+5 2.816400-8 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 1.893000-4 9.653884-5 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.813400-4 5.073160+4 1.834000-4 5.290400+4 1.850000-4 5.430240+4 1.868000-4 5.556240+4 1.890000-4 5.682560+4 1.910000-4 5.773920+4 1.940000-4 5.876400+4 1.972423-4 5.949060+4 2.000000-4 5.984780+4 2.041738-4 6.000960+4 2.100000-4 5.971020+4 2.350000-4 5.707720+4 2.650000-4 5.505520+4 2.800000-4 5.379760+4 2.985383-4 5.195807+4 3.311311-4 4.864052+4 3.600000-4 4.585140+4 3.850000-4 4.346100+4 4.200000-4 4.021940+4 4.700000-4 3.608460+4 5.150000-4 3.279840+4 5.754399-4 2.894738+4 6.456542-4 2.525877+4 7.244360-4 2.186564+4 8.222426-4 1.853445+4 9.549926-4 1.511266+4 1.096478-3 1.243749+4 1.288250-3 9.837522+3 1.548817-3 7.466298+3 1.862087-3 5.623100+3 2.238721-3 4.206336+3 2.722701-3 3.066497+3 3.273407-3 2.260672+3 3.890451-3 1.687476+3 4.677351-3 1.226330+3 5.623413-3 8.845872+2 6.839116-3 6.203112+2 8.317638-3 4.314985+2 1.000000-2 3.044300+2 1.216186-2 2.085348+2 1.462177-2 1.450047+2 1.757924-2 1.001087+2 2.113489-2 6.860373+1 2.540973-2 4.665687+1 3.054921-2 3.148329+1 3.672823-2 2.107365+1 4.415704-2 1.399436+1 5.248075-2 9.464330+0 6.309573-2 6.187377+0 7.585776-2 4.014035+0 9.660509-2 2.251586+0 1.148154-1 1.478113+0 1.531088-1 7.261626-1 2.722701-1 1.736744-1 3.311311-1 1.074668-1 3.935501-1 7.085690-2 4.570882-1 4.975371-2 5.308844-1 3.519976-2 6.095369-1 2.577010-2 6.918310-1 1.950603-2 7.852356-1 1.486669-2 8.912509-1 1.140316-2 9.885531-1 9.240454-3 1.188502+0 6.429793-3 1.318257+0 5.273740-3 1.496236+0 4.172220-3 1.698244+0 3.329683-3 1.972423+0 2.571704-3 2.213095+0 2.120187-3 2.511886+0 1.727996-3 2.884032+0 1.393608-3 3.388442+0 1.092838-3 3.935501+0 8.785675-4 4.623810+0 7.001218-4 5.495409+0 5.533905-4 6.531306+0 4.408440-4 7.943282+0 3.435788-4 9.772372+0 2.660464-4 1.216186+1 2.048467-4 1.496236+1 1.609738-4 1.905461+1 1.223781-4 2.511886+1 9.015124-5 3.467369+1 6.363343-5 5.069907+1 4.257370-5 8.128305+1 2.606534-5 1.584893+2 1.317261-5 3.162278+2 6.548187-6 6.309573+2 3.268446-6 5.011872+3 4.100554-7 1.000000+5 2.053900-8 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.813400-4 1.129300-4 1.000000+5 1.129300-4 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.813400-4 1.872600-9 1.000000+5 1.872600-9 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.813400-4 6.840813-5 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.357300-4 4.024960+5 1.361000-4 4.183140+5 1.364583-4 4.318008+5 1.368500-4 4.441420+5 1.373000-4 4.552720+5 1.377000-4 4.629740+5 1.382000-4 4.695800+5 1.388000-4 4.742220+5 1.395000-4 4.758260+5 1.402000-4 4.741740+5 1.410000-4 4.695060+5 1.420000-4 4.610040+5 1.435000-4 4.452700+5 1.462177-4 4.140992+5 1.540000-4 3.355000+5 1.584893-4 3.001964+5 1.650000-4 2.587200+5 1.737801-4 2.151845+5 1.862087-4 1.694696+5 1.980000-4 1.378782+5 2.100100-4 1.139227+5 2.220000-4 9.586620+4 2.330000-4 8.304100+4 2.426610-4 7.402519+4 2.511886-4 6.745559+4 2.620000-4 6.062320+4 2.730000-4 5.502560+4 2.851018-4 5.006558+4 2.985383-4 4.564934+4 3.126079-4 4.192635+4 3.280000-4 3.863320+4 3.430000-4 3.601980+4 3.600000-4 3.360480+4 3.801894-4 3.130439+4 4.027170-4 2.925428+4 4.365158-4 2.683481+4 4.789300-4 2.449392+4 6.918310-4 1.754675+4 8.035261-4 1.522844+4 9.120108-4 1.341284+4 1.035142-3 1.173566+4 1.190000-3 1.004834+4 1.364583-3 8.554005+3 1.548817-3 7.318020+3 1.757924-3 6.216752+3 2.000000-3 5.228160+3 2.264644-3 4.394455+3 2.570396-3 3.656168+3 2.917427-3 3.019980+3 3.311311-3 2.476479+3 3.758374-3 2.015572+3 4.265795-3 1.628554+3 4.841724-3 1.306032+3 5.495409-3 1.039794+3 6.237348-3 8.219367+2 7.079458-3 6.451216+2 8.035261-3 5.027082+2 9.120108-3 3.890128+2 1.035142-2 2.989581+2 1.174898-2 2.281804+2 1.348963-2 1.686284+2 1.548817-2 1.236315+2 1.778279-2 8.993321+1 2.041738-2 6.491983+1 2.344229-2 4.650845+1 2.691535-2 3.307833+1 3.090295-2 2.336281+1 3.589219-2 1.590900+1 4.168694-2 1.075409+1 4.897788-2 6.999706+0 5.821032-2 4.385194+0 7.079458-2 2.561540+0 8.810489-2 1.393356+0 1.071519-1 8.029696-1 1.927525-1 1.514346-1 2.398833-1 8.187450-2 2.851018-1 5.073583-2 3.311311-1 3.374093-2 3.801894-1 2.331085-2 4.365158-1 1.622455-2 4.954502-1 1.172541-2 5.559043-1 8.789024-3 6.237348-1 6.634399-3 6.998420-1 5.045515-3 7.762471-1 3.970944-3 8.709636-1 3.063221-3 9.440609-1 2.570466-3 1.023293+0 2.171970-3 1.122018+0 1.805022-3 1.244515+0 1.477074-3 1.396368+0 1.192211-3 1.621810+0 9.109890-4 1.883649+0 7.016946-4 2.137962+0 5.660748-4 2.398833+0 4.689411-4 2.722701+0 3.840003-4 3.235937+0 2.951633-4 3.758374+0 2.367503-4 4.365158+0 1.912901-4 5.128614+0 1.531720-4 6.095369+0 1.216342-4 7.328245+0 9.591071-5 8.912509+0 7.509148-5 1.083927+1 5.921814-5 1.364583+1 4.513895-5 1.737801+1 3.422728-5 2.290868+1 2.514966-5 3.162278+1 1.771096-5 4.570882+1 1.197045-5 7.244360+1 7.402787-6 1.244515+2 4.248882-6 2.483133+2 2.107633-6 4.954502+2 1.051009-6 1.972423+3 2.629847-7 1.000000+5 5.179100-9 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.357300-4 7.937000-5 1.000000+5 7.937000-5 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.357300-4 3.518500-9 1.000000+5 3.518500-9 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.357300-4 5.635648-5 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.075200-4 8.304760+5 1.082000-4 8.492440+5 1.088000-4 8.599120+5 1.096478-4 8.675379+5 1.104000-4 8.680720+5 1.111000-4 8.647560+5 1.123000-4 8.524280+5 1.137000-4 8.316480+5 1.152000-4 8.056520+5 1.175000-4 7.634120+5 1.220000-4 6.833800+5 1.303167-4 5.607279+5 1.350000-4 5.066640+5 1.400000-4 4.589280+5 1.450000-4 4.197280+5 1.500000-4 3.874368+5 1.560000-4 3.558548+5 1.621810-4 3.295503+5 1.698244-4 3.033477+5 1.778279-4 2.811828+5 1.883649-4 2.576154+5 2.000000-4 2.368100+5 2.120000-4 2.196016+5 2.264644-4 2.031579+5 2.449500-4 1.868255+5 3.630781-4 1.268250+5 4.200000-4 1.091448+5 4.786301-4 9.467398+4 5.432503-4 8.187481+4 6.200000-4 6.984960+4 7.079458-4 5.907460+4 8.035261-4 5.001592+4 9.225714-4 4.140425+4 1.071519-3 3.346672+4 1.244515-3 2.683767+4 1.462177-3 2.097432+4 1.698244-3 1.655161+4 1.950000-3 1.321008+4 2.264644-3 1.027416+4 2.630268-3 7.923230+3 3.019952-3 6.186529+3 3.427678-3 4.899469+3 3.935501-3 3.769836+3 4.518559-3 2.878414+3 5.128614-3 2.232101+3 5.888437-3 1.678224+3 6.760830-3 1.251852+3 7.762471-3 9.264911+2 8.810489-3 6.981408+2 1.000000-2 5.224440+2 1.148154-2 3.779228+2 1.318257-2 2.712261+2 1.500000-2 1.974788+2 1.717908-2 1.404364+2 1.972423-2 9.846927+1 2.264644-2 6.851087+1 2.600160-2 4.730524+1 3.000000-2 3.198887+1 3.467369-2 2.136165+1 4.027170-2 1.396000+1 4.677351-2 9.047929+0 5.495409-2 5.627239+0 6.531306-2 3.356146+0 7.943282-2 1.852918+0 1.000000-1 9.134669-1 1.798871-1 1.474907-1 2.238721-1 7.525585-2 2.630268-1 4.615099-2 3.019952-1 3.055801-2 3.427678-1 2.108699-2 3.890451-1 1.465885-2 4.365158-1 1.060812-2 4.897788-1 7.734421-3 5.432503-1 5.861293-3 6.025596-1 4.472683-3 6.683439-1 3.437867-3 7.413102-1 2.662085-3 8.609938-1 1.858636-3 9.225714-1 1.584461-3 9.772372-1 1.394972-3 1.047129+0 1.206452-3 1.135011+0 1.025400-3 1.244515+0 8.579721-4 1.380384+0 7.085706-4 1.678804+0 4.999794-4 1.949845+0 3.856656-4 2.187762+0 3.177039-4 2.483133+0 2.587519-4 2.851018+0 2.085611-4 3.349654+0 1.634622-4 3.890451+0 1.313349-4 4.570882+0 1.045999-4 5.432503+0 8.263489-5 6.456542+0 6.579506-5 7.762471+0 5.200135-5 9.549926+0 4.023044-5 1.174898+1 3.137567-5 1.428894+1 2.495679-5 1.800000+1 1.918300-5 2.371374+1 1.411774-5 3.311311+1 9.828646-6 4.841724+1 6.569824-6 7.762471+1 4.018985-6 1.462177+2 2.102320-6 2.917427+2 1.044396-6 5.821032+2 5.211217-7 4.623810+3 6.536073-8 1.000000+5 3.020000-9 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.075200-4 7.747900-5 1.000000+5 7.747900-5 1 84000 7 7 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.075200-4 7.26060-10 1.000000+5 7.26060-10 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.075200-4 3.004027-5 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 4.216000-5 1.304244+6 4.250000-5 1.367416+6 4.280000-5 1.433680+6 4.310000-5 1.512160+6 4.345000-5 1.621336+6 4.370000-5 1.711776+6 4.400000-5 1.836240+6 4.430000-5 1.978620+6 4.466836-5 2.181066+6 4.500000-5 2.393028+6 4.535000-5 2.650524+6 4.580000-5 3.038748+6 4.630000-5 3.555084+6 4.700000-5 4.452280+6 4.870000-5 7.686080+6 4.920000-5 8.963160+6 4.970000-5 1.039144+7 5.020000-5 1.195784+7 5.060000-5 1.329328+7 5.095000-5 1.450608+7 5.130000-5 1.574436+7 5.170000-5 1.716220+7 5.200000-5 1.821056+7 5.230000-5 1.922968+7 5.270000-5 2.051716+7 5.310100-5 2.169733+7 5.340000-5 2.248940+7 5.370318-5 2.320454+7 5.410000-5 2.399412+7 5.450000-5 2.461576+7 5.490000-5 2.506164+7 5.520000-5 2.528160+7 5.560000-5 2.543888+7 5.595000-5 2.545728+7 5.630000-5 2.537636+7 5.670000-5 2.517816+7 5.730000-5 2.470840+7 5.800000-5 2.397176+7 5.870000-5 2.311192+7 5.956621-5 2.195766+7 6.095369-5 2.008547+7 7.413102-5 8.977541+6 7.800000-5 7.239080+6 8.222426-5 5.751385+6 8.810489-5 4.218283+6 1.120000-4 1.405868+6 1.220000-4 9.444600+5 1.303167-4 6.906299+5 1.400000-4 4.877080+5 1.621810-4 2.364403+5 1.698244-4 1.894281+5 1.760000-4 1.602928+5 1.820000-4 1.378208+5 1.880000-4 1.199072+5 1.930900-4 1.075935+5 1.980000-4 9.777280+4 2.020000-4 9.103040+4 2.065380-4 8.454352+4 2.113489-4 7.881611+4 2.162719-4 7.398826+4 2.213095-4 6.995482+4 2.264644-4 6.662036+4 2.317395-4 6.389903+4 2.371374-4 6.171288+4 2.430000-4 5.990240+4 2.483133-4 5.867651+4 2.540973-4 5.770806+4 2.600160-4 5.703777+4 2.660725-4 5.662107+4 2.754229-4 5.638500+4 2.851018-4 5.651405+4 3.000000-4 5.716360+4 3.507519-4 6.019504+4 3.758374-4 6.122259+4 4.027170-4 6.179670+4 4.280000-4 6.189040+4 4.518559-4 6.158765+4 4.786301-4 6.089633+4 5.069907-4 5.983990+4 5.432503-4 5.815376+4 5.800000-4 5.619280+4 6.237348-4 5.364396+4 6.683439-4 5.094400+4 7.190600-4 4.790606+4 7.762471-4 4.456172+4 8.317638-4 4.148174+4 9.015711-4 3.789369+4 9.850000-4 3.401632+4 1.071519-3 3.045752+4 1.161449-3 2.722490+4 1.264650-3 2.401664+4 1.380384-3 2.096207+4 1.513561-3 1.804110+4 1.659587-3 1.541132+4 1.819701-3 1.307067+4 2.000000-3 1.095828+4 2.187762-3 9.208628+3 2.398833-3 7.651563+3 2.630268-3 6.315393+3 2.884032-3 5.178205+3 3.162278-3 4.217909+3 3.507519-3 3.323013+3 3.890451-3 2.597268+3 4.315191-3 2.014228+3 4.786301-3 1.550315+3 5.308844-3 1.184607+3 5.888437-3 8.987728+2 6.531306-3 6.771866+2 7.244360-3 5.067871+2 8.128305-3 3.644206+2 9.120108-3 2.599810+2 1.023293-2 1.840200+2 1.148154-2 1.292813+2 1.288250-2 9.016963+1 1.462177-2 6.018939+1 1.659587-2 3.985664+1 1.883649-2 2.618787+1 2.137962-2 1.707665+1 2.426610-2 1.105563+1 2.786121-2 6.829213+0 3.198895-2 4.188518+0 3.715352-2 2.448634+0 4.415704-2 1.307529+0 5.248075-2 6.931228-1 6.606934-2 2.947054-1 1.258925-1 2.643582-2 1.566751-1 1.174388-2 1.862087-1 6.230643-3 2.187762-1 3.474386-3 2.483133-1 2.210211-3 2.818383-1 1.416408-3 3.090295-1 1.030674-3 3.467369-1 6.979727-4 3.890451-1 4.762260-4 4.365158-1 3.272752-4 4.841724-1 2.351577-4 5.370318-1 1.702433-4 5.888437-1 1.286150-4 6.456542-1 9.778751-5 7.079458-1 7.488070-5 7.673615-1 5.966995-5 8.609938-1 4.336648-5 9.120108-1 3.722506-5 9.549926-1 3.314641-5 1.000000+0 2.970800-5 1.047129+0 2.680915-5 1.109175+0 2.374776-5 1.174898+0 2.117860-5 1.258925+0 1.859340-5 1.364583+0 1.608862-5 1.531087+0 1.317460-5 1.862087+0 9.341615-6 2.113489+0 7.527666-6 2.371374+0 6.231659-6 2.691535+0 5.099737-6 3.162278+0 3.986070-6 3.672823+0 3.193488-6 4.265795+0 2.577401-6 5.011872+0 2.061720-6 5.956621+0 1.635561-6 7.161434+0 1.288340-6 8.709636+0 1.007819-6 1.059254+1 7.940967-7 1.348963+1 5.967562-7 1.737801+1 4.465102-7 2.290868+1 3.280822-7 3.126079+1 2.339299-7 4.466836+1 1.599913-7 6.998420+1 1.000869-7 1.161449+2 5.947715-8 2.317395+2 2.948234-8 4.623810+2 1.469583-8 1.840772+3 3.676696-9 1.000000+5 6.75630-11 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 4.216000-5 4.216000-5 1.000000+5 4.216000-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 4.216000-5 0.0 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 3.851000-5 2.427084+6 3.890451-5 2.534034+6 3.920000-5 2.634870+6 3.945000-5 2.735136+6 3.980000-5 2.903832+6 4.000000-5 3.015162+6 4.030000-5 3.205644+6 4.060000-5 3.426168+6 4.090000-5 3.679170+6 4.120975-5 3.977743+6 4.165000-5 4.474500+6 4.208000-5 5.051608+6 4.260000-5 5.886996+6 4.315191-5 6.960652+6 4.400000-5 9.043620+6 4.518559-5 1.297094+7 4.570882-5 1.510573+7 4.630000-5 1.779858+7 4.680000-5 2.027490+7 4.720000-5 2.235330+7 4.760000-5 2.448060+7 4.800000-5 2.661630+7 4.835000-5 2.845446+7 4.870000-5 3.022932+7 4.910000-5 3.213798+7 4.935000-5 3.324594+7 4.970000-5 3.466566+7 5.000000-5 3.574476+7 5.040000-5 3.696714+7 5.080000-5 3.792882+7 5.115300-5 3.855887+7 5.150000-5 3.898194+7 5.190000-5 3.924162+7 5.230000-5 3.927774+7 5.270000-5 3.911598+7 5.315000-5 3.873222+7 5.370318-5 3.802463+7 5.432503-5 3.699878+7 5.500000-5 3.570462+7 5.580000-5 3.403908+7 5.690000-5 3.168858+7 5.888437-5 2.767273+7 6.918310-5 1.435690+7 7.328245-5 1.128156+7 7.673615-5 9.245589+6 8.128305-5 7.155854+6 8.709636-5 5.219512+6 1.000000-4 2.745900+6 1.109175-4 1.687885+6 1.202264-4 1.148427+6 1.303167-4 7.748419+5 1.513561-4 3.694978+5 1.584893-4 2.958466+5 1.650000-4 2.452440+5 1.705000-4 2.119206+5 1.760000-4 1.853640+5 1.810000-4 1.659462+5 1.850000-4 1.530786+5 1.890000-4 1.422078+5 1.930000-4 1.330452+5 1.972423-4 1.249204+5 2.020000-4 1.174590+5 2.065380-4 1.117074+5 2.113489-4 1.068222+5 2.162719-4 1.028931+5 2.213095-4 9.979346+4 2.264644-4 9.740704+4 2.326900-4 9.537330+4 2.400000-4 9.390480+4 2.483133-4 9.312912+4 2.580000-4 9.306060+4 2.691535-4 9.368591+4 2.851018-4 9.525960+4 3.235937-4 9.946438+4 3.467369-4 1.011812+5 3.700000-4 1.020744+5 3.935501-4 1.022105+5 4.168694-4 1.016989+5 4.430000-4 1.004430+5 4.700000-4 9.859800+4 5.011872-4 9.591019+4 5.370318-4 9.244439+4 5.754399-4 8.840114+4 6.165950-4 8.394331+4 6.700000-4 7.815900+4 7.190600-4 7.303156+4 7.673615-4 6.825813+4 8.413951-4 6.146309+4 9.225714-4 5.483607+4 1.000000-3 4.925430+4 1.083927-3 4.396368+4 1.188502-3 3.833492+4 1.303167-3 3.316008+4 1.428894-3 2.846314+4 1.566751-3 2.425632+4 1.717908-3 2.052894+4 1.883649-3 1.725394+4 2.065380-3 1.440380+4 2.264644-3 1.194571+4 2.483133-3 9.841503+3 2.722701-3 8.054623+3 3.000000-3 6.476460+3 3.311311-3 5.147841+3 3.672823-3 4.014117+3 4.073803-3 3.105808+3 4.518559-3 2.384918+3 5.011872-3 1.817639+3 5.559043-3 1.375030+3 6.165950-3 1.032777+3 6.839116-3 7.703318+2 7.585776-3 5.707717+2 8.413951-3 4.200977+2 9.440609-3 2.965634+2 1.059254-2 2.077626+2 1.188502-2 1.444704+2 1.333521-2 9.968533+1 1.496236-2 6.824545+1 1.678804-2 4.630208+1 1.905461-2 2.998090+1 2.213095-2 1.778991+1 2.540973-2 1.090630+1 2.917427-2 6.637378+0 3.349654-2 4.007372+0 3.890451-2 2.302267+0 4.570882-2 1.258084+0 5.370318-2 6.827748-1 6.760830-2 2.825572-1 1.202264-1 3.071558-2 1.462177-1 1.453782-2 1.717908-1 7.903423-3 1.972423-1 4.720542-3 2.238721-1 2.963862-3 2.511886-1 1.955398-3 2.786121-1 1.354136-3 3.054921-1 9.830609-4 3.388442-1 6.913563-4 3.715352-1 5.090158-4 4.120975-1 3.634811-4 4.518559-1 2.713517-4 4.954502-1 2.040326-4 5.432503-1 1.545843-4 5.956621-1 1.180421-4 6.456542-1 9.385734-5 6.998420-1 7.510646-5 7.585776-1 6.049555-5 8.511380-1 4.475697-5 9.015711-1 3.870782-5 9.549926-1 3.370068-5 1.000000+0 3.033800-5 1.059254+0 2.679492-5 1.135011+0 2.326481-5 1.216186+0 2.034520-5 1.318257+0 1.752635-5 1.462177+0 1.458527-5 1.840772+0 9.730195-6 2.089296+0 7.837064-6 2.344229+0 6.483337-6 2.660725+0 5.302167-6 3.126079+0 4.141871-6 3.630781+0 3.316424-6 4.216965+0 2.675171-6 4.954502+0 2.138814-6 5.888437+0 1.695765-6 7.000000+0 1.354600-6 8.511380+0 1.058968-6 1.035142+1 8.336599-7 1.318257+1 6.259466-7 1.717908+1 4.619385-7 2.264644+1 3.393172-7 3.126079+1 2.388827-7 4.518559+1 1.614083-7 7.161434+1 9.980371-8 1.216186+2 5.794848-8 2.426610+2 2.873838-8 4.841724+2 1.432871-8 1.927525+3 3.585224-9 1.000000+5 6.89960-11 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 3.851000-5 3.851000-5 1.000000+5 3.851000-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 3.851000-5 0.0 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 2.033000-5 1.422098+6 2.089296-5 1.278037+6 2.213095-5 1.006536+6 2.691535-5 4.428829+5 2.900000-5 3.257400+5 3.080000-5 2.558320+5 3.235937-5 2.111871+5 3.395400-5 1.764638+5 3.548134-5 1.508632+5 3.690000-5 1.321416+5 3.801894-5 1.200590+5 3.950000-5 1.069376+5 4.073803-5 9.798207+4 4.220000-5 8.927100+4 4.365158-5 8.221305+4 4.518559-5 7.611238+4 4.677351-5 7.095597+4 4.850000-5 6.639440+4 5.011872-5 6.289151+4 5.188000-5 5.974259+4 5.400000-5 5.665720+4 5.650000-5 5.375320+4 5.956621-5 5.096094+4 6.309573-5 4.846303+4 6.800000-5 4.578620+4 7.585776-5 4.254874+4 9.332543-5 3.720469+4 1.047129-4 3.429461+4 1.161449-4 3.163624+4 1.303167-4 2.868053+4 1.513561-4 2.501938+4 1.800000-4 2.120060+4 2.041738-4 1.868686+4 2.264644-4 1.674038+4 2.570396-4 1.451639+4 2.985383-4 1.216652+4 3.427678-4 1.026425+4 4.073803-4 8.226028+3 4.786301-4 6.654285+3 5.500000-4 5.502940+3 6.531306-4 4.315909+3 8.128305-4 3.138595+3 9.660509-4 2.424889+3 1.216186-3 1.704502+3 1.531087-3 1.188796+3 1.927525-3 8.229098+2 2.426610-3 5.653068+2 3.019952-3 3.926403+2 3.715352-3 2.758641+2 4.518559-3 1.961766+2 5.495409-3 1.384439+2 6.683439-3 9.696171+1 8.128305-3 6.740537+1 1.011579-2 4.453439+1 1.230269-2 3.047227+1 1.479108-2 2.116594+1 1.778279-2 1.459668+1 2.137962-2 9.993537+0 2.570396-2 6.790794+0 3.090295-2 4.578884+0 3.715352-2 3.062712+0 4.466836-2 2.032554+0 5.248075-2 1.410344+0 6.309573-2 9.214757-1 7.673615-2 5.816245-1 9.415000-2 3.567396-1 1.174898-1 2.077735-1 1.603245-1 9.636773-2 2.722701-1 2.584720-2 3.311311-1 1.599433-2 3.935501-1 1.054621-2 4.570882-1 7.405511-3 5.308844-1 5.239536-3 6.095369-1 3.836201-3 6.918310-1 2.903973-3 7.852356-1 2.213571-3 8.912509-1 1.698264-3 9.885531-1 1.376384-3 1.188502+0 9.578071-4 1.318257+0 7.855855-4 1.496236+0 6.214738-4 1.698244+0 4.959834-4 1.972423+0 3.830706-4 2.213095+0 3.157983-4 2.511886+0 2.573831-4 2.884032+0 2.075842-4 3.388442+0 1.627798-4 3.935501+0 1.308601-4 4.623810+0 1.042831-4 5.495409+0 8.242950-5 6.531306+0 6.566496-5 7.852356+0 5.192265-5 9.660509+0 4.018690-5 1.202264+1 3.093088-5 1.462177+1 2.462088-5 1.840772+1 1.894955-5 2.426610+1 1.394550-5 3.311311+1 9.957559-6 4.786301+1 6.736344-6 7.673615+1 4.120095-6 1.428894+2 2.180216-6 2.851018+2 1.082840-6 5.688529+2 5.402835-7 4.518559+3 6.775565-8 1.000000+5 3.059300-9 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 2.033000-5 2.033000-5 1.000000+5 2.033000-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 2.033000-5 0.0 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 1.025000-5 2.365621+7 1.050000-5 2.327274+7 1.083927-5 2.259039+7 1.122018-5 2.167470+7 1.150000-5 2.093555+7 1.190000-5 1.982435+7 1.230269-5 1.867489+7 1.280000-5 1.725436+7 1.333521-5 1.578517+7 1.396368-5 1.416748+7 1.462177-5 1.262312+7 1.548817-5 1.083796+7 1.650000-5 9.093884+6 1.778279-5 7.334304+6 1.972423-5 5.400625+6 2.630268-5 2.284404+6 3.090295-5 1.422037+6 3.672823-5 8.629075+5 5.308844-5 3.000927+5 6.531306-5 1.644254+5 8.413951-5 7.861012+4 9.660509-5 5.287004+4 1.083927-4 3.821638+4 1.202264-4 2.871178+4 1.318257-4 2.241416+4 1.428894-4 1.816326+4 1.548817-4 1.481998+4 1.678804-4 1.218877+4 1.809700-4 1.023466+4 1.950000-4 8.664992+3 2.089296-4 7.482891+3 2.238721-4 6.507659+3 2.400000-4 5.699239+3 2.570396-4 5.041425+3 2.754229-4 4.489216+3 2.951209-4 4.025409+3 3.162278-4 3.632682+3 3.427678-4 3.246398+3 3.715352-4 2.921453+3 4.073803-4 2.608865+3 4.570882-4 2.285056+3 7.413102-4 1.336485+3 9.000000-4 1.072484+3 1.059254-3 8.836547+2 1.244515-3 7.243281+2 1.445440-3 5.979937+2 1.678804-3 4.900427+2 1.949845-3 3.984628+2 2.187762-3 3.379538+2 2.511886-3 2.736886+2 2.884032-3 2.200344+2 3.054921-3 2.002560+2 4.027170-3 1.254250+2 4.168694-3 1.184605+2 4.731513-3 9.707519+1 5.011872-3 8.831149+1 5.432503-3 7.646185+1 6.095369-3 6.162282+1 6.918310-3 4.839858+1 7.852356-3 3.775113+1 8.912509-3 2.924432+1 1.011579-2 2.250045+1 1.148154-2 1.719478+1 1.318257-2 1.272513+1 1.513561-2 9.343194+0 1.737801-2 6.806416+0 2.000000-2 4.892919+0 2.290868-2 3.530113+0 2.630268-2 2.514185+0 3.019952-2 1.778116+0 3.507519-2 1.212445+0 4.073803-2 8.206433-1 4.786301-2 5.348333-1 5.688529-2 3.353845-1 6.760830-2 2.087262-1 8.317638-2 1.171938-1 1.059254-1 5.927884-2 1.883649-1 1.155300-2 2.371374-1 6.044832-3 2.818383-1 3.744409-3 3.273407-1 2.489158-3 3.758374-1 1.718999-3 4.315191-1 1.195858-3 4.897788-1 8.637913-4 5.495409-1 6.471336-4 6.165950-1 4.882553-4 6.918310-1 3.711571-4 7.673615-1 2.919732-4 8.609938-1 2.251661-4 9.332543-1 1.888377-4 1.011579+0 1.594344-4 1.109175+0 1.324034-4 1.230269+0 1.082565-4 1.364583+0 8.916566-5 1.566751+0 6.944292-5 1.798871+0 5.446581-5 2.089296+0 4.217405-5 2.344229+0 3.488949-5 2.660725+0 2.853315-5 3.126079+0 2.228897-5 3.630781+0 1.784677-5 4.216965+0 1.439592-5 4.954502+0 1.150968-5 5.888437+0 9.125638-6 7.000000+0 7.289500-6 8.511380+0 5.698652-6 1.035142+1 4.486216-6 1.318257+1 3.368456-6 1.717908+1 2.485857-6 2.264644+1 1.826018-6 3.090295+1 1.301628-6 4.415704+1 8.899601-7 6.918310+1 5.566466-7 1.135011+2 3.346374-7 2.264644+2 1.658415-7 4.518559+2 8.265224-8 9.015711+2 4.129748-8 1.000000+5 3.71290-10 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 1.025000-5 1.025000-5 1.000000+5 1.025000-5 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 1.025000-5 0.0 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 7.440000-6 5.801792+7 7.762471-6 5.447922+7 8.128305-6 5.048093+7 8.511380-6 4.641676+7 8.912509-6 4.236753+7 9.350000-6 3.826458+7 9.850000-6 3.399018+7 1.035142-5 3.015372+7 1.096478-5 2.605308+7 1.161449-5 2.235193+7 1.230269-5 1.905799+7 1.318257-5 1.563166+7 1.428894-5 1.231127+7 1.570000-5 9.242172+6 1.819701-5 5.841038+6 2.400000-5 2.454566+6 2.818383-5 1.493122+6 3.311311-5 9.139444+5 3.845918-5 5.836643+5 4.365158-5 4.019275+5 4.897788-5 2.882593+5 5.400000-5 2.190189+5 5.821032-5 1.783615+5 6.309573-5 1.441258+5 6.800000-5 1.191404+5 7.300000-5 1.002276+5 7.800000-5 8.587717+4 8.317638-5 7.441552+4 8.912509-5 6.423510+4 9.549926-5 5.584583+4 1.023293-4 4.889394+4 1.096700-4 4.309992+4 1.174898-4 3.827807+4 1.260000-4 3.417738+4 1.350000-4 3.076591+4 1.462177-4 2.744361+4 1.603245-4 2.425295+4 1.800000-4 2.095160+4 2.089296-4 1.751048+4 3.090295-4 1.103575+4 4.168694-4 7.673685+3 4.954502-4 6.193599+3 5.688529-4 5.176944+3 6.531306-4 4.296568+3 7.852356-4 3.325349+3 9.120108-4 2.681599+3 1.059254-3 2.147028+3 1.244515-3 1.676410+3 1.462177-3 1.298850+3 1.717908-3 9.987542+2 2.089296-3 7.195376+2 2.454709-3 5.461375+2 2.851018-3 4.197920+2 3.273407-3 3.268760+2 3.718330-3 2.572159+2 4.265795-3 1.971421+2 4.897788-3 1.496945+2 5.623413-3 1.127974+2 6.456542-3 8.433336+1 7.413102-3 6.255749+1 8.511380-3 4.603853+1 9.772372-3 3.361345+1 1.122018-2 2.434663+1 1.288250-2 1.749445+1 1.479108-2 1.247097+1 1.698244-2 8.818990+0 1.949845-2 6.187469+0 2.238721-2 4.306928+0 2.570396-2 2.975005+0 2.951209-2 2.039754+0 3.388442-2 1.388332+0 3.935501-2 9.081963-1 4.570882-2 5.896674-1 5.370318-2 3.674617-1 6.309573-2 2.272817-1 7.585776-2 1.301753-1 9.440609-2 6.660020-2 1.216186-1 3.038081-2 1.798871-1 9.008799-3 2.238721-1 4.597694-3 2.630268-1 2.820106-3 3.019952-1 1.867644-3 3.427678-1 1.289032-3 3.890451-1 8.963140-4 4.365158-1 6.488526-4 4.897788-1 4.732839-4 5.432503-1 3.588201-4 6.025596-1 2.739559-4 6.683439-1 2.107107-4 7.413102-1 1.632976-4 8.609938-1 1.142271-4 9.225714-1 9.747396-5 9.772372-1 8.587532-5 1.047129+0 7.430971-5 1.148154+0 6.175656-5 1.258925+0 5.172117-5 1.396368+0 4.274054-5 1.698244+0 3.016606-5 1.972423+0 2.328387-5 2.213095+0 1.919522-5 2.511886+0 1.564500-5 2.884032+0 1.261814-5 3.388442+0 9.894651-6 3.935501+0 7.954280-6 4.623810+0 6.338680-6 5.495409+0 5.010253-6 6.531306+0 3.991253-6 7.852356+0 3.155960-6 9.660509+0 2.442580-6 1.202264+1 1.880001-6 1.462177+1 1.496462-6 1.862087+1 1.136994-6 2.454709+1 8.370028-7 3.388442+1 5.904838-7 4.954502+1 3.948688-7 7.943282+1 2.416570-7 1.513561+2 1.249806-7 3.019952+2 6.210424-8 6.025596+2 3.099214-8 4.786301+3 3.887727-9 1.000000+5 1.85950-10 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 7.440000-6 7.440000-6 1.000000+5 7.440000-6 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 7.440000-6 0.0 1.000000+5 1.000000+5 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.446820-7 1.025800+0 1.161850-6 1.026100+0 1.457680-6 1.026600+0 2.055000-6 1.027100+0 2.795870-6 1.027500+0 3.501790-6 1.028100+0 4.767630-6 1.028750+0 6.446820-6 1.029500+0 8.822640-6 1.030100+0 1.109550-5 1.031000+0 1.518250-5 1.032000+0 2.077340-5 1.033200+0 2.910010-5 1.034000+0 3.572300-5 1.035300+0 4.848900-5 1.036640+0 6.446820-5 1.038200+0 8.700190-5 1.039700+0 1.130330-4 1.041500+0 1.503890-4 1.043800+0 2.087450-4 1.046400+0 2.904290-4 1.048300+0 3.615920-4 1.051200+0 4.904920-4 1.054080+0 6.446820-4 1.057700+0 8.787430-4 1.061100+0 1.143020-3 1.065100+0 1.513240-3 1.070400+0 2.111130-3 1.076200+0 2.917570-3 1.080600+0 3.643570-3 1.087100+0 4.909090-3 1.093710+0 6.446820-3 1.102600+0 8.938350-3 1.110700+0 1.165720-2 1.120600+0 1.559360-2 1.133300+0 2.168150-2 1.147500+0 2.993540-2 1.158200+0 3.720210-2 1.174100+0 4.972250-2 1.190110+0 6.446820-2 1.205100+0 8.025220-2 1.227500+0 1.074130-1 1.250000+0 1.388000-1 1.265600+0 1.627810-1 1.294900+0 2.122970-1 1.331800+0 2.819470-1 1.362600+0 3.452920-1 1.397000+0 4.205880-1 1.433800+0 5.054660-1 1.477900+0 6.117900-1 1.500000+0 6.667000-1 1.562500+0 8.266220-1 1.617200+0 9.705930-1 1.712900+0 1.227400+0 1.784700+0 1.421420+0 1.892300+0 1.711180+0 2.000000+0 1.998000+0 2.044000+0 2.114000+0 2.163500+0 2.422990+0 2.372600+0 2.940510+0 2.686300+0 3.662560+0 3.000000+0 4.329000+0 3.500000+0 5.301470+0 4.000000+0 6.185000+0 5.000000+0 7.738000+0 6.000000+0 9.078000+0 7.000000+0 1.026000+1 8.000000+0 1.132000+1 9.000000+0 1.229000+1 1.000000+1 1.318000+1 1.100000+1 1.400000+1 1.200000+1 1.477000+1 1.300000+1 1.549000+1 1.400000+1 1.616000+1 1.500000+1 1.679000+1 1.600000+1 1.737000+1 1.800000+1 1.843000+1 2.000000+1 1.937000+1 2.200000+1 2.023000+1 2.400000+1 2.101000+1 2.600000+1 2.173000+1 2.800000+1 2.238000+1 3.000000+1 2.299000+1 4.000000+1 2.545000+1 5.000000+1 2.728000+1 6.000000+1 2.870000+1 8.000000+1 3.078000+1 1.000000+2 3.224000+1 1.500000+2 3.456000+1 2.000000+2 3.594000+1 3.000000+2 3.754000+1 4.000000+2 3.845000+1 5.000000+2 3.905000+1 6.000000+2 3.948000+1 8.000000+2 4.005000+1 1.000000+3 4.042000+1 1.500000+3 4.095000+1 2.000000+3 4.124000+1 3.000000+3 4.155000+1 4.000000+3 4.172000+1 5.000000+3 4.183000+1 6.000000+3 4.190000+1 8.000000+3 4.200000+1 1.000000+4 4.206000+1 1.500000+4 4.214000+1 2.000000+4 4.219000+1 3.000000+4 4.224000+1 4.000000+4 4.226000+1 5.000000+4 4.228000+1 6.000000+4 4.229000+1 8.000000+4 4.230000+1 1.000000+5 4.231000+1 1 84000 7 8 2.090000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.407170-7 2.090400+0 1.141490-6 2.094700+0 1.480110-6 2.099900+0 1.969070-6 2.106600+0 2.739150-6 2.114000+0 3.789960-6 2.119500+0 4.718470-6 2.127900+0 6.399140-6 2.136250+0 8.407170-6 2.147000+0 1.152680-5 2.156900+0 1.497200-5 2.169000+0 1.998100-5 2.184500+0 2.777430-5 2.201800+0 3.842650-5 2.214800+0 4.787640-5 2.234200+0 6.440230-5 2.253680+0 8.407170-5 2.281500+0 1.177570-4 2.307000+0 1.546740-4 2.338200+0 2.079720-4 2.377400+0 2.880160-4 2.410200+0 3.663080-4 2.446800+0 4.659640-4 2.485900+0 5.866750-4 2.532900+0 7.508190-4 2.556430+0 8.407170-4 2.611900+0 1.072010-3 2.660400+0 1.296010-3 2.745300+0 1.734640-3 2.809000+0 2.100750-3 2.904500+0 2.706310-3 3.000000+0 3.378000-3 3.125000+0 4.355610-3 3.234400+0 5.299490-3 3.425800+0 7.135450-3 3.569300+0 8.651290-3 3.784700+0 1.111870-2 4.000000+0 1.377000-2 4.250000+0 1.700950-2 4.625000+0 2.209670-2 5.000000+0 2.738000-2 5.500000+0 3.462400-2 6.000000+0 4.196000-2 6.750000+0 5.287240-2 7.000000+0 5.646000-2 8.000000+0 7.047000-2 9.000000+0 8.384000-2 1.000000+1 9.652000-2 1.100000+1 1.085000-1 1.200000+1 1.197000-1 1.300000+1 1.303000-1 1.400000+1 1.404000-1 1.500000+1 1.499000-1 1.600000+1 1.589000-1 1.800000+1 1.756000-1 2.000000+1 1.906000-1 2.200000+1 2.044000-1 2.400000+1 2.170000-1 2.600000+1 2.286000-1 2.800000+1 2.393000-1 3.000000+1 2.493000-1 4.000000+1 2.902000-1 5.000000+1 3.209000-1 6.000000+1 3.451000-1 8.000000+1 3.811000-1 1.000000+2 4.071000-1 1.500000+2 4.495000-1 2.000000+2 4.757000-1 3.000000+2 5.075000-1 4.000000+2 5.263000-1 5.000000+2 5.391000-1 6.000000+2 5.485000-1 8.000000+2 5.613000-1 1.000000+3 5.697000-1 1.500000+3 5.822000-1 2.000000+3 5.893000-1 3.000000+3 5.969000-1 4.000000+3 6.015000-1 5.000000+3 6.042000-1 6.000000+3 6.061000-1 8.000000+3 6.086000-1 1.000000+4 6.103000-1 1.500000+4 6.124000-1 2.000000+4 6.137000-1 3.000000+4 6.149000-1 4.000000+4 6.157000-1 5.000000+4 6.162000-1 6.000000+4 6.164000-1 8.000000+4 6.167000-1 1.000000+5 6.170000-1 1 84000 7 8 2.090000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 84000 7 9 2.090000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.400000+1 1.000000+5 8.400000+1 5.000000+5 8.398000+1 8.750000+5 8.394450+1 1.000000+6 8.393600+1 1.500000+6 8.386500+1 2.000000+6 8.376100+1 2.500000+6 8.362900+1 3.000000+6 8.346900+1 3.500000+6 8.328160+1 4.000000+6 8.306900+1 4.750000+6 8.270090+1 5.000000+6 8.257500+1 5.500000+6 8.229330+1 6.250000+6 8.182480+1 6.500000+6 8.166490+1 7.000000+6 8.132800+1 7.875000+6 8.069040+1 8.625000+6 8.012500+1 9.000000+6 7.983400+1 1.000000+7 7.902500+1 1.109400+7 7.810550+1 1.187500+7 7.743140+1 1.250000+7 7.689000+1 1.375000+7 7.578640+1 1.500000+7 7.470000+1 1.687500+7 7.307590+1 1.750000+7 7.254800+1 1.937500+7 7.096980+1 2.000000+7 7.045600+1 2.250000+7 6.843340+1 2.375000+7 6.744860+1 2.500000+7 6.648800+1 2.875000+7 6.367380+1 3.000000+7 6.276500+1 3.437500+7 5.966030+1 3.812500+7 5.711890+1 4.000000+7 5.589300+1 4.500000+7 5.275910+1 5.000000+7 4.985500+1 5.750000+7 4.593930+1 6.000000+7 4.475000+1 6.750000+7 4.149320+1 7.000000+7 4.050100+1 7.750000+7 3.774240+1 8.000000+7 3.688900+1 8.750000+7 3.446580+1 9.000000+7 3.370100+1 9.750000+7 3.150390+1 1.000000+8 3.080400+1 1.062500+8 2.911310+1 1.156300+8 2.675610+1 1.187500+8 2.601920+1 1.250000+8 2.461500+1 1.500000+8 2.001300+1 1.671900+8 1.779660+1 1.859400+8 1.598860+1 1.875000+8 1.586000+1 2.000000+8 1.492300+1 2.250000+8 1.344530+1 2.500000+8 1.229100+1 2.671900+8 1.159510+1 2.789100+8 1.111490+1 2.875000+8 1.074390+1 2.894500+8 1.065690+1 3.000000+8 1.016800+1 3.125000+8 9.557070+0 3.359400+8 8.518950+0 3.375000+8 8.459760+0 3.453100+8 8.188270+0 3.500000+8 8.045200+0 4.000000+8 6.968300+0 4.125000+8 6.671730+0 4.234400+8 6.398110+0 4.425800+8 5.922170+0 4.712900+8 5.291040+0 4.750000+8 5.219880+0 4.856400+8 5.031660+0 5.000000+8 4.814400+0 5.179700+8 4.601150+0 5.330100+8 4.457860+0 6.000000+8 3.973100+0 6.250000+8 3.795750+0 7.000000+8 3.313600+0 7.625000+8 3.009890+0 7.875000+8 2.885770+0 8.000000+8 2.819600+0 8.250000+8 2.674040+0 8.468800+8 2.539860+0 8.851600+8 2.328350+0 9.569300+8 1.997370+0 9.856400+8 1.884550+0 1.000000+9 1.831700+0 1.031300+9 1.741720+0 1.060500+9 1.672710+0 1.100900+9 1.595430+0 1.137900+9 1.538840+0 1.183200+9 1.483150+0 1.241300+9 1.427080+0 1.250000+9 1.419720+0 1.278200+9 1.397390+0 1.500000+9 1.257900+0 1.589800+9 1.202240+0 1.665000+9 1.154600+0 1.748800+9 1.101420+0 1.838500+9 1.045240+0 1.946200+9 9.799920-1 2.000000+9 9.485900-1 2.139200+9 8.710900-1 2.272600+9 8.023480-1 2.443000+9 7.223270-1 2.602800+9 6.549520-1 2.750000+9 5.989910-1 2.822900+9 5.732270-1 3.024800+9 5.083520-1 3.271700+9 4.402820-1 3.487700+9 3.894820-1 3.759500+9 3.351710-1 3.986900+9 2.966800-1 4.348700+9 2.459710-1 4.674400+9 2.091960-1 5.000000+9 1.790100-1 5.375000+9 1.506670-1 5.703100+9 1.303740-1 6.277300+9 1.025490-1 7.031000+9 7.662440-2 8.000000+9 5.457800-2 1.00000+10 3.004400-2 4.87170+10 4.222230-4 7.43590+10 1.357520-4 1.00000+11 6.150100-5 1.34280+11 2.806720-5 2.20600+11 7.542420-6 4.19930+11 1.389000-6 1.64960+12 3.956510-8 1.28440+13 2.02694-10 1.00000+14 1.06410-12 3.16230+15 1.46948-16 1.00000+17 1.93330-20 1 84000 7 0 2.090000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.80000-12 1.000000+2 6.80000-10 1.000000+3 6.800000-8 1.000000+4 6.800000-6 1.000000+5 6.800000-4 5.000000+5 1.700000-2 8.750000+5 5.206250-2 1.000000+6 6.800000-2 1.500000+6 1.517000-1 2.000000+6 2.674000-1 2.500000+6 4.135000-1 3.000000+6 5.879000-1 3.500000+6 7.883940-1 4.000000+6 1.012600+0 4.750000+6 1.387830+0 5.000000+6 1.522000+0 5.500000+6 1.801670+0 6.250000+6 2.245560+0 6.500000+6 2.398830+0 7.000000+6 2.712000+0 7.875000+6 3.275160+0 8.625000+6 3.768240+0 9.000000+6 4.017000+0 1.000000+7 4.682000+0 1.109400+7 5.408560+0 1.187500+7 5.924240+0 1.250000+7 6.335000+0 1.375000+7 7.146660+0 1.500000+7 7.945000+0 1.687500+7 9.113690+0 1.750000+7 9.496000+0 1.937500+7 1.061300+1 2.000000+7 1.097600+1 2.250000+7 1.237410+1 2.375000+7 1.304340+1 2.500000+7 1.369400+1 2.875000+7 1.554260+1 3.000000+7 1.613300+1 3.437500+7 1.813090+1 3.812500+7 1.978930+1 4.000000+7 2.060600+1 4.500000+7 2.275550+1 5.000000+7 2.486300+1 5.750000+7 2.791200+1 6.000000+7 2.889300+1 6.750000+7 3.168820+1 7.000000+7 3.256800+1 7.750000+7 3.503020+1 8.000000+7 3.579500+1 8.750000+7 3.792060+1 9.000000+7 3.858100+1 9.750000+7 4.043150+1 1.000000+8 4.101600+1 1.062500+8 4.240390+1 1.156300+8 4.435400+1 1.187500+8 4.497490+1 1.250000+8 4.617700+1 1.500000+8 5.060200+1 1.671900+8 5.333660+1 1.859400+8 5.605900+1 1.875000+8 5.627370+1 2.000000+8 5.793000+1 2.250000+8 6.089250+1 2.500000+8 6.343500+1 2.671900+8 6.494660+1 2.789100+8 6.587540+1 2.875000+8 6.651930+1 2.894500+8 6.665700+1 3.000000+8 6.738700+1 3.125000+8 6.818600+1 3.359400+8 6.952480+1 3.375000+8 6.960550+1 3.453100+8 7.000520+1 3.500000+8 7.024200+1 4.000000+8 7.238900+1 4.125000+8 7.284020+1 4.234400+8 7.322620+1 4.425800+8 7.385080+1 4.712900+8 7.470060+1 4.750000+8 7.480220+1 4.856400+8 7.508780+1 5.000000+8 7.546500+1 5.179700+8 7.590430+1 5.330100+8 7.625280+1 6.000000+8 7.762800+1 6.250000+8 7.806250+1 7.000000+8 7.919900+1 7.625000+8 7.993800+1 7.875000+8 8.019550+1 8.000000+8 8.031500+1 8.250000+8 8.052940+1 8.468800+8 8.071220+1 8.851600+8 8.099220+1 9.569300+8 8.142430+1 9.856400+8 8.157180+1 1.000000+9 8.164400+1 1.031300+9 8.177690+1 1.060500+9 8.189750+1 1.100900+9 8.205290+1 1.137900+9 8.217540+1 1.183200+9 8.231170+1 1.241300+9 8.246340+1 1.250000+9 8.248550+1 1.278200+9 8.255620+1 1.500000+9 8.297200+1 1.589800+9 8.309730+1 1.665000+9 8.319710+1 1.748800+9 8.330320+1 1.838500+9 8.339120+1 1.946200+9 8.349110+1 2.000000+9 8.353900+1 2.139200+9 8.363250+1 2.272600+9 8.370280+1 2.443000+9 8.377710+1 2.602800+9 8.383390+1 2.750000+9 8.387170+1 2.822900+9 8.388980+1 3.024800+9 8.391970+1 3.271700+9 8.395100+1 3.487700+9 8.396850+1 3.759500+9 8.397850+1 3.986900+9 8.398640+1 4.348700+9 8.399350+1 4.674400+9 8.399430+1 5.000000+9 8.399500+1 5.375000+9 8.399580+1 5.703100+9 8.399640+1 6.277300+9 8.399740+1 7.031000+9 8.399860+1 8.000000+9 8.400000+1 1.00000+10 8.400000+1 4.87170+10 8.400000+1 7.43590+10 8.400000+1 1.00000+11 8.400000+1 1.34280+11 8.400000+1 2.20600+11 8.400000+1 4.19930+11 8.400000+1 1.64960+12 8.400000+1 1.28440+13 8.400000+1 1.00000+14 8.400000+1 3.16230+15 8.400000+1 1.00000+17 8.400000+1 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.761548-6 0.0 2.768345-6 7.953971-7 2.775142-6 1.573872-6 2.781940-6 2.874805-6 2.788737-6 4.847316-6 2.795534-6 7.544808-6 2.802331-6 1.084049-5 2.809128-6 1.437817-5 2.815926-6 1.760402-5 2.822723-6 1.989639-5 2.829520-6 2.075825-5 2.836317-6 1.999221-5 2.843114-6 1.777400-5 2.849912-6 1.458691-5 2.863506-6 7.728256-6 2.870303-6 4.989093-6 2.877100-6 2.973143-6 2.883898-6 1.635550-6 2.890695-6 8.305504-7 2.897492-6 0.0 4.249065-6 0.0 4.267367-6 1.605015+0 4.269982-6 1.831964+0 4.280440-6 3.346231+0 4.290899-6 5.642206+0 4.302665-6 9.260551+0 4.320988-6 1.622823+1 4.333387-6 2.065723+1 4.344152-6 2.325101+1 4.355145-6 2.403512+1 4.365801-6 2.285358+1 4.376446-6 2.002341+1 4.392910-6 1.387776+1 4.405943-6 8.995578+0 4.416401-6 5.807232+0 4.426860-6 3.460695+0 4.437318-6 1.903757+0 4.453006-6 4.839426-1 4.458235-6 0.0 5.165254-6 0.0 5.177967-6 1.187419-6 5.190681-6 2.349575-6 5.203395-6 4.291690-6 5.216108-6 7.236379-6 5.228822-6 1.126336-5 5.241536-6 1.618336-5 5.254249-6 2.146463-5 5.266963-6 2.628039-5 5.279676-6 2.970259-5 5.292390-6 3.098922-5 5.305104-6 2.984564-5 5.317817-6 2.657300-5 5.330531-6 2.254103-5 5.343310-6 1.795103-5 5.356398-6 1.409816-5 5.369485-6 1.181189-5 5.382573-6 1.134379-5 5.395660-6 1.248341-5 5.408748-6 1.456566-5 5.419526-6 1.601014-5 5.434923-6 1.870071-5 5.448010-6 1.951077-5 5.461097-6 1.879077-5 5.474185-6 1.670586-5 5.487272-6 1.371030-5 5.513447-6 7.263823-6 5.526535-6 4.689271-6 5.539622-6 2.794470-6 5.552710-6 1.537261-6 5.565797-6 7.806382-7 5.578885-6 0.0 5.728002-6 0.0 5.737235-6 1.169361-1 5.756200-6 2.380972+0 5.765478-6 3.550430+0 5.779600-6 6.426216+0 5.793721-6 1.074339+1 5.807843-6 1.658913+1 5.850207-6 3.790603+1 5.865625-6 4.272923+1 5.880105-6 4.393355+1 5.896150-6 4.108846+1 5.911613-6 3.518833+1 5.949057-6 1.691314+1 5.964061-6 1.142006+1 5.977300-6 8.026286+0 5.991422-6 5.890055+0 6.019665-6 3.602309+0 6.024363-6 3.742172+0 6.038870-6 3.904272+0 6.053377-6 3.760194+0 6.067884-6 3.342986+0 6.089663-6 2.410535+0 6.111404-6 1.453553+0 6.125911-6 9.383633-1 6.140418-6 5.591974-1 6.154925-6 3.076191-1 6.176685-6 7.819801-2 6.183938-6 0.0 6.395883-6 0.0 6.401329-6 2.536088-2 6.431017-6 1.339794+0 6.432842-6 1.423278+0 6.448598-6 2.586952+0 6.464354-6 4.341982+0 6.481587-6 7.018828+0 6.528363-6 1.587619+1 6.544580-6 1.793273+1 6.561049-6 1.867468+1 6.577196-6 1.796611+1 6.592778-6 1.609511+1 6.637670-6 8.113177+0 6.653426-6 5.675188+0 6.669182-6 3.774839+0 6.684938-6 2.401636+0 6.710753-6 8.528490-1 6.716451-6 6.535693-1 6.735162-6 8.285289-1 6.744297-6 9.463081-1 6.751920-6 1.149150+0 6.760403-6 1.410153+0 6.777340-6 2.258582+0 6.794125-6 3.439198+0 6.843411-6 7.953663+0 6.861010-6 9.045350+0 6.880261-6 9.433439+0 6.895591-6 9.243657+0 6.919257-6 7.981832+0 6.946286-6 6.207380+0 6.964155-6 5.380898+0 6.979453-6 5.041017+0 6.994385-6 5.104268+0 7.012600-6 5.493620+0 7.052196-6 6.955057+0 7.108106-6 9.513693+0 7.157970-6 1.219405+1 7.176663-6 1.269435+1 7.195958-6 1.261237+1 7.208783-6 1.220251+1 7.279002-6 8.165389+0 7.304172-6 7.033461+0 7.329994-6 6.329144+0 7.359049-6 5.867970+0 7.393492-6 5.698137+0 7.448272-6 5.772737+0 7.586214-6 6.068410+0 8.490493-6 5.685830+0 8.532648-6 6.747448+0 8.555993-6 7.788909+0 8.576889-6 9.186426+0 8.599468-6 1.124364+1 8.658024-6 1.746952+1 8.680996-6 1.904690+1 8.702638-6 1.947675+1 8.723749-6 1.883589+1 8.747330-6 1.706767+1 8.808958-6 1.113518+1 8.830524-6 9.574723+0 8.847394-6 8.640245+0 8.868678-6 7.817689+0 8.909376-6 6.594283+0 8.996690-6 5.679307+0 9.076094-6 5.312782+0 9.161395-6 5.285667+0 9.211391-6 5.865381+0 9.227110-6 6.160797+0 9.253942-6 6.960736+0 9.285951-6 8.334556+0 9.345667-6 1.110150+1 9.370391-6 1.176289+1 9.384033-6 1.194337+1 9.412227-6 1.158910+1 9.439861-6 1.061008+1 9.501166-6 7.900443+0 9.524750-6 7.142301+0 9.540599-6 6.781685+0 9.567774-6 6.600260+0 9.610048-6 6.918411+0 9.680887-6 8.504291+0 9.703386-6 8.749870+0 9.741499-6 8.706049+0 9.834475-6 8.095171+0 9.879522-6 8.150923+0 9.927448-6 9.519156+0 9.956274-6 1.099427+1 9.981491-6 1.293308+1 1.001815-5 1.678034+1 1.007656-5 2.341462+1 1.010434-5 2.519256+1 1.012707-5 2.550823+1 1.015423-5 2.428946+1 1.018250-5 2.165758+1 1.024550-5 1.433927+1 1.026861-5 1.218468+1 1.029175-5 1.055877+1 1.031930-5 9.336384+0 1.036551-5 7.995160+0 1.263978-5 6.443836+0 1.270103-5 9.585671+0 1.273408-5 1.249127+1 1.276519-5 1.661969+1 1.279824-5 2.264471+1 1.288963-5 4.272028+1 1.292464-5 4.744917+1 1.295428-5 4.864669+1 1.298386-5 4.685287+1 1.301771-5 4.150764+1 1.310544-5 2.195628+1 1.313655-5 1.629950+1 1.316766-5 1.213039+1 1.319877-5 9.356697+0 1.326099-5 5.947748+0 1.545060-5 4.560344+0 1.746987-5 3.588162+0 1.796708-5 3.425875+0 1.804443-5 3.559757+0 1.813282-5 3.903520+0 1.823473-5 4.655627+0 1.830961-5 5.250745+0 1.835933-5 5.489788+0 1.840352-5 5.538464+0 1.845739-5 5.351889+0 1.853384-5 4.762272+0 1.865213-5 3.771418+0 1.870738-5 3.453479+0 1.875157-5 3.291143+0 1.883997-5 3.081795+0 1.903661-5 3.111867+0 1.918985-5 3.358333+0 1.932134-5 3.591495+0 1.941507-5 3.578810+0 1.962010-5 3.275066+0 2.043458-5 3.054730+0 2.084541-5 2.889477+0 2.296130-5 2.337567+0 2.536478-5 1.881905+0 2.817170-5 1.504414+0 3.025657-5 1.295631+0 3.040552-5 2.553589+0 3.047999-5 3.597760+0 3.055912-5 5.319990+0 3.063825-5 7.688143+0 3.085235-5 1.546253+1 3.093472-5 1.738076+1 3.101288-5 1.790084+1 3.108783-5 1.710158+1 3.119465-5 1.443778+1 3.130130-5 1.119670+1 3.137832-5 9.340623+0 3.145497-5 8.421921+0 3.152945-5 8.518960+0 3.161237-5 9.631285+0 3.182636-5 1.345127+1 3.190299-5 1.391379+1 3.198860-5 1.322033+1 3.206109-5 1.184785+1 3.228134-5 5.892781+0 3.235796-5 4.200661+0 3.243459-5 2.953835+0 3.251122-5 2.124940+0 3.266447-5 1.107513+0 3.389346-5 1.028212+0 3.406030-5 1.142210+0 3.414373-5 1.240048+0 3.422715-5 1.390949+0 3.433143-5 1.662795+0 3.456085-5 2.378706+0 3.464428-5 2.554855+0 3.472770-5 2.618085+0 3.483361-5 2.504484+0 3.492471-5 2.277693+0 3.514482-5 1.566599+0 3.522825-5 1.345902+0 3.531167-5 1.182292+0 3.539510-5 1.072229+0 3.557370-5 9.335958-1 3.574882-5 1.115141+0 3.583638-5 1.268186+0 3.592394-5 1.502498+0 3.603143-5 1.916947+0 3.627418-5 3.028695+0 3.637268-5 3.314278+0 3.646025-5 3.390813+0 3.655005-5 3.273953+0 3.666616-5 2.902386+0 3.688710-5 2.023582+0 3.698096-5 1.807007+0 3.706222-5 1.717795+0 3.719002-5 1.755873+0 3.739249-5 1.945855+0 3.753706-5 2.084553+0 3.765829-5 2.115809+0 3.840053-5 1.990811+0 3.885484-5 2.119632+0 3.905872-5 2.194460+0 3.935052-5 2.457430+0 3.953941-5 2.793855+0 3.990277-5 3.686813+0 4.002083-5 3.846522+0 4.014276-5 3.844810+0 4.033555-5 3.614642+0 4.051429-5 3.364517+0 4.070365-5 3.281635+0 4.099908-5 3.516351+0 4.140825-5 3.937077+0 4.198124-5 4.409355+0 4.278402-5 5.370456+0 4.350760-5 6.537103+0 4.414648-5 7.845012+0 4.493287-5 9.893613+0 4.592466-5 1.325968+1 4.693998-5 1.763976+1 4.857804-5 2.622187+1 5.081220-5 3.813971+1 5.242500-5 4.442826+1 5.412099-5 4.776137+1 5.590625-5 4.766884+1 5.879895-5 4.311927+1 6.370248-5 3.394113+1 6.861988-5 2.700601+1 7.316109-5 2.210618+1 7.843174-5 1.761133+1 8.348760-5 1.422817+1 8.912509-5 1.131305+1 9.421823-5 9.279682+0 9.958724-5 7.620158+0 1.019438-4 7.013446+0 1.029475-4 7.082410+0 1.042297-4 7.824778+0 1.047607-4 7.801579+0 1.057475-4 7.301557+0 1.216705-4 4.919848+0 1.296254-4 4.006971+0 1.313082-4 3.997738+0 1.333707-4 4.186343+0 1.374000-4 4.221361+0 1.548817-4 3.064694+0 1.640250-4 2.638691+0 1.673001-4 2.515658+0 1.689473-4 2.557094+0 1.710062-4 2.795938+0 1.718385-4 2.771339+0 1.743848-4 2.347070+0 1.755919-4 2.260706+0 1.777737-4 2.238350+0 1.810979-4 2.261608+0 1.850597-4 2.208804+0 1.880237-4 2.339213+0 1.961000-4 2.856235+0 2.005000-4 2.935004+0 2.128981-4 2.820633+0 2.206734-4 2.895418+0 2.281034-4 3.118976+0 2.354682-4 3.500269+0 2.430000-4 4.073372+0 2.512336-4 4.942417+0 2.592687-4 6.051483+0 2.731174-4 8.455398+0 3.294632-4 2.003114+1 3.525550-4 2.381385+1 3.884966-4 2.802182+1 4.245197-4 3.047579+1 4.558029-4 3.170354+1 4.882898-4 3.415825+1 5.378076-4 3.531598+1 6.614206-4 3.373953+1 6.960832-4 3.323241+1 7.160907-4 3.441446+1 9.607297-4 2.902481+1 1.264729-3 2.294793+1 1.508296-3 1.918697+1 1.799842-3 1.581590+1 2.104384-3 1.320452+1 2.520940-3 1.061304+1 2.627489-3 1.016930+1 2.643486-3 1.057174+1 2.653985-3 1.143271+1 2.661677-3 1.255416+1 2.671928-3 1.477054+1 2.697642-3 2.184656+1 2.709726-3 2.414957+1 2.725468-3 2.545772+1 2.771013-3 2.596146+1 2.789747-3 2.782673+1 2.822514-3 3.287716+1 2.844138-3 3.426951+1 3.234109-3 2.853156+1 3.270837-3 2.946423+1 3.313454-3 3.117446+1 3.379919-3 3.085843+1 3.784740-3 2.622644+1 3.910000-3 2.647421+1 4.102564-3 2.510733+1 4.201231-3 2.496104+1 4.919596-3 1.997105+1 5.591135-3 1.658591+1 6.321028-3 1.380748+1 7.314088-3 1.108527+1 8.201744-3 9.295043+0 9.312419-3 7.633159+0 1.059254-2 6.235013+0 1.203996-2 5.087271+0 1.348491-2 4.254932+0 1.359078-2 4.341206+0 1.365177-2 4.622918+0 1.370565-2 5.148693+0 1.375836-2 5.949664+0 1.389890-2 8.535852+0 1.396657-2 9.316307+0 1.404883-2 9.694813+0 1.438307-2 9.484792+0 1.600840-2 7.963161+0 1.614788-2 8.213026+0 1.630368-2 9.236844+0 1.642449-2 1.003987+1 1.657970-2 1.038536+1 1.682505-2 1.062592+1 1.711662-2 1.134909+1 2.050780-2 8.667412+0 2.331121-2 7.073802+0 2.630368-2 5.821891+0 2.926724-2 4.885906+0 3.296898-2 4.016639+0 3.672786-2 3.353158+0 4.151638-2 2.729088+0 4.694934-2 2.214154+0 5.315850-2 1.791333+0 5.965200-2 1.468892+0 6.744772-2 1.187678+0 7.609922-2 9.630782-1 8.676569-2 7.660521-1 9.120108-2 7.070443-1 9.171685-2 7.300959-1 9.204265-2 7.854275-1 9.230718-2 8.758113-1 9.254182-2 1.003315+0 9.278164-2 1.186191+0 9.312043-2 1.527976+0 9.388108-2 2.395941+0 9.426603-2 2.711329+0 9.473215-2 2.917383+0 9.533801-2 2.991445+0 1.136817-1 2.287175+0 1.292718-1 1.862989+0 1.456948-1 1.533696+0 1.650012-1 1.251655+0 1.865855-1 1.024390+0 2.093800-1 8.491225-1 2.347961-1 7.050741-1 2.646157-1 5.821211-1 3.002904-1 4.767812-1 3.382625-1 3.968875-1 3.845918-1 3.274956-1 4.374844-1 2.718209-1 4.984225-1 2.267820-1 5.684437-1 1.904786-1 6.491480-1 1.611147-1 7.449194-1 1.366246-1 8.578245-1 1.166138-1 1.011011+0 9.834241-2 1.173413+0 8.326005-2 1.347258+0 7.120851-2 1.546860+0 6.090138-2 1.776032+0 5.208616-2 2.039158+0 4.454691-2 2.341267+0 3.809893-2 2.690748+0 3.255013-2 3.086391+0 2.786783-2 3.581385+0 2.356060-2 4.260405+0 1.934901-2 4.891600+0 1.654832-2 5.616308+0 1.415302-2 6.448384+0 1.210443-2 7.403736+0 1.035236-2 8.500626+0 8.853903-3 9.760024+0 7.572338-3 1.000000+1 1.573200-2 1 84000 7 0 2.090000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.396932+1 3.063399-6-8.348965+1 4.077700-6-8.107319+1 4.225526-6-7.749066+1 4.304952-6-6.882478+1 4.324889-6-7.126215+1 4.345339-6-7.921811+1 4.356969-6-8.446563+1 4.380803-6-7.446836+1 4.400060-6-7.151584+1 4.426860-6-7.366829+1 4.484702-6-8.036512+1 4.652400-6-8.428268+1 5.001306-6-8.356999+1 5.539622-6-7.933297+1 5.682969-6-7.458469+1 5.732619-6-6.966858+1 5.798575-6-5.774564+1 5.818620-6-5.713338+1 5.837212-6-6.070758+1 5.851090-6-6.662681+1 5.876083-6-8.185797+1 5.880530-6-8.529786+1 5.913355-6-6.806943+1 5.933426-6-6.342101+1 5.949057-6-6.321963+1 5.978183-6-6.763488+1 6.034790-6-7.571844+1 6.304755-6-8.633820+1 6.411112-6-8.129641+1 6.489647-6-7.621319+1 6.527378-6-7.931481+1 6.562426-6-8.647295+1 6.605210-6-7.835160+1 6.637670-6-7.691451+1 6.715382-6-8.304025+1 6.763886-6-8.695938+1 6.826482-6-8.477050+1 6.876914-6-8.713244+1 6.937374-6-8.419762+1 7.052196-6-8.807318+1 7.145294-6-8.749493+1 7.243946-6-8.092499+1 7.379131-6-8.263282+1 7.931697-6-8.450988+1 8.396828-6-8.549195+1 8.553544-6-8.026652+1 8.624295-6-7.910025+1 8.678583-6-8.368386+1 8.696513-6-8.509912+1 8.763273-6-7.759377+1 8.825772-6-7.696704+1 9.190703-6-8.487802+1 9.317127-6-8.297487+1 9.381047-6-8.448204+1 9.471519-6-8.119510+1 9.650024-6-8.481397+1 9.848719-6-8.425248+1 1.000669-5-7.957342+1 1.006757-5-8.330527+1 1.009114-5-8.592858+1 1.017830-5-7.326935+1 1.023820-5-7.045189+1 1.043924-5-7.680947+1 1.104978-5-7.946882+1 1.217496-5-8.137935+1 1.251444-5-7.656770+1 1.263374-5-7.143566+1 1.277522-5-6.026647+1 1.281781-5-5.957505+1 1.285657-5-6.251417+1 1.288963-5-6.840678+1 1.293895-5-8.083451+1 1.299049-5-6.534906+1 1.302887-5-5.677805+1 1.306668-5-5.209497+1 1.310544-5-5.121949+1 1.316426-5-5.453608+1 1.329979-5-6.488008+1 1.346458-5-6.937623+1 1.396284-5-7.319585+1 1.611304-5-7.581951+1 1.830961-5-7.761215+1 1.865213-5-7.554259+1 1.946685-5-7.676510+1 2.837473-5-8.173261+1 2.970669-5-8.306968+1 3.027186-5-7.967099+1 3.068508-5-7.510238+1 3.085701-5-7.822622+1 3.101485-5-8.399956+1 3.120968-5-7.791006+1 3.137832-5-7.802087+1 3.166678-5-8.161625+1 3.188249-5-7.798685+1 3.212808-5-7.186918+1 3.235796-5-7.208000+1 3.294931-5-7.795877+1 3.462342-5-8.244778+1 3.539510-5-8.273588+1 3.631796-5-8.489555+1 3.697110-5-8.418387+1 4.011837-5-8.930660+1 4.745601-5-1.042250+2 4.970000-5-1.026391+2 5.242500-5-9.226198+1 5.677500-5-7.070668+1 5.922435-5-6.292977+1 6.207206-5-5.773974+1 6.734732-5-5.331916+1 7.502237-5-5.132718+1 9.070269-5-5.263407+1 1.029475-4-5.598346+1 1.186718-4-5.670451+1 1.395000-4-5.922870+1 2.281034-4-6.784327+1 2.823860-4-7.473125+1 3.240000-4-7.470411+1 4.610022-4-6.103973+1 4.980667-4-5.796303+1 5.585680-4-5.115018+1 6.409052-4-4.496427+1 6.910280-4-4.286073+1 7.102352-4-4.246800+1 7.396208-4-3.971515+1 8.206618-4-3.572636+1 9.473548-4-3.151839+1 1.082271-3-2.820058+1 1.264729-3-2.557685+1 1.508296-3-2.399076+1 1.799842-3-2.376651+1 2.104384-3-2.510000+1 2.333807-3-2.761492+1 2.488209-3-3.094713+1 2.567164-3-3.405169+1 2.618512-3-3.772656+1 2.650902-3-4.248535+1 2.676567-3-4.668811+1 2.693099-3-4.677028+1 2.739835-3-4.076267+1 2.763953-3-4.035035+1 2.797427-3-4.125333+1 2.822514-3-3.898603+1 2.864088-3-3.306565+1 2.902901-3-2.987996+1 2.971029-3-2.664153+1 3.071519-3-2.367438+1 3.173862-3-2.211890+1 3.234109-3-2.232433+1 3.280381-3-2.285970+1 3.313454-3-2.158582+1 3.359674-3-1.943459+1 3.438646-3-1.735033+1 3.574022-3-1.520187+1 3.724166-3-1.382973+1 3.843151-3-1.370088+1 3.968358-3-1.189895+1 4.072052-3-1.127956+1 4.141154-3-1.099483+1 4.265795-3-9.517268+0 4.466836-3-8.138721+0 4.731512-3-6.925304+0 5.038087-3-5.954166+0 5.448162-3-5.110864+0 5.754399-3-4.681680+0 6.115138-3-4.352664+0 6.785955-3-4.060487+0 7.550389-3-3.991388+0 8.545809-3-4.184127+0 9.725896-3-4.640631+0 1.102808-2-5.408785+0 1.203996-2-6.306041+0 1.274191-2-7.283222+0 1.316361-2-8.246376+0 1.342788-2-9.285492+0 1.356452-2-1.027173+1 1.375836-2-1.239707+1 1.383562-2-1.257342+1 1.393357-2-1.175912+1 1.408920-2-9.969218+0 1.423663-2-8.973801+0 1.448022-2-8.078333+0 1.482811-2-7.398563+0 1.527786-2-7.032255+0 1.568164-2-7.104701+0 1.594733-2-7.527533+0 1.622866-2-8.691320+0 1.633641-2-8.732111+0 1.662941-2-7.554215+0 1.693050-2-7.157002+0 1.727771-2-5.755896+0 1.754300-2-5.047643+0 1.802271-2-4.202692+0 1.862143-2-3.478684+0 1.937405-2-2.821251+0 2.000000-2-2.418313+0 2.075932-2-2.039853+0 2.165444-2-1.700759+0 2.268884-2-1.410450+0 2.378463-2-1.187679+0 2.456034-2-1.067031+0 2.571314-2-9.349279-1 2.693297-2-8.361178-1 2.852557-2-7.567820-1 3.015363-2-7.177110-1 3.216549-2-7.011892-1 3.526875-2-7.226306-1 4.151638-2-8.542637-1 6.744772-2-1.586344+0 7.609922-2-1.890688+0 8.262423-2-2.216061+0 8.676569-2-2.546477+0 8.930408-2-2.885442+0 9.085399-2-3.244578+0 9.171685-2-3.607903+0 9.302750-2-4.442118+0 9.354459-2-4.503302+0 9.411487-2-4.229063+0 9.507400-2-3.528950+0 9.600000-2-3.080106+0 9.738153-2-2.690656+0 9.939090-2-2.334024+0 1.020785-1-2.024680+0 1.056292-1-1.744109+0 1.102402-1-1.498359+0 1.159265-1-1.297636+0 1.228058-1-1.138013+0 1.332949-1-9.840334-1 1.456948-1-8.840772-1 1.582078-1-8.323113-1 1.783572-1-7.980144-1 2.170221-1-7.998222-1 3.999625-1-9.255714-1 6.183723-1-9.928268-1 1.120601+0-1.032172+0 3.384160+0-1.050497+0 1.000000+1-1.052751+0 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.544906-4 1.071321-6 7.375937-4 1.152000-6 1.003414-3 1.174929-6 1.083971-3 1.211646-6 1.227229-3 1.249510-6 1.396568-3 1.288557-6 1.592716-3 1.328824-6 1.811251-3 1.370350-6 2.068892-3 1.441626-6 2.596597-3 1.502877-6 3.093450-3 1.549842-6 3.539438-3 1.621829-6 4.351494-3 1.699727-6 5.365797-3 1.751212-6 6.164717-3 1.824558-6 7.502936-3 1.897721-6 8.971372-3 1.938593-6 9.927270-3 1.988316-6 1.116368-2 2.073248-6 1.360738-2 2.152872-6 1.620409-2 2.297502-6 2.209548-2 2.363110-6 2.532284-2 2.424617-6 2.875965-2 2.590400-6 4.035611-2 2.685004-6 4.869728-2 2.767782-6 5.740669-2 2.903591-6 7.485996-2 3.014501-6 9.279863-2 3.097684-6 1.089390-1 3.253652-6 1.472083-1 3.396665-6 1.933229-1 3.470814-6 2.231347-1 3.617855-6 2.983483-1 3.717087-6 3.627577-1 3.810116-6 4.372699-1 3.897332-6 5.225353-1 3.979096-6 6.194451-1 4.055750-6 7.290669-1 4.127613-6 8.516269-1 4.194985-6 9.883688-1 4.258146-6 1.141240+0 4.317360-6 1.311314+0 4.372872-6 1.499996+0 4.424915-6 1.708819+0 4.473706-6 1.939508+0 4.519447-6 2.193640+0 4.562329-6 2.472735+0 4.602531-6 2.778596+0 4.640220-6 3.113138+0 4.675554-6 3.478483+0 4.708680-6 3.876875+0 4.739735-6 4.310494+0 4.768849-6 4.781620+0 4.796144-6 5.292690+0 4.821732-6 5.846137+0 4.845722-6 6.444422+0 4.868212-6 7.090229+0 4.889296-6 7.786513+0 4.909063-6 8.536405+0 4.927594-6 9.343126+0 4.944967-6 1.020997+1 4.961254-6 1.114036+1 4.976523-6 1.213784+1 4.990838-6 1.320607+1 5.004258-6 1.434884+1 5.016840-6 1.557014+1 5.028635-6 1.687436+1 5.039693-6 1.826648+1 5.055027-6 2.053758+1 5.068890-6 2.303551+1 5.085974-6 2.693381+1 5.100922-6 3.143101+1 5.114002-6 3.660083+1 5.125447-6 4.247065+1 5.135462-6 4.900325+1 5.144224-6 5.609785+1 5.151891-6 6.360665+1 5.158600-6 7.135798+1 5.164470-6 7.917847+1 5.174101-6 9.441818+1 5.193948-6 1.371766+2 5.207864-6 1.778568+2 5.218375-6 2.149084+2 5.224781-6 2.401213+2 5.231187-6 2.671971+2 5.244000-6 3.261149+2 5.245602-6 3.338391+2 5.256813-6 3.892503+2 5.261217-6 4.113084+2 5.269626-6 4.529952+2 5.276132-6 4.841620+2 5.282439-6 5.127779+2 5.288945-6 5.400047+2 5.295252-6 5.635517+2 5.300857-6 5.816717+2 5.307389-6 5.989540+2 5.314871-6 6.131028+2 5.321278-6 6.200311+2 5.323508-6 6.212745+2 5.329872-6 6.214417+2 5.334616-6 6.183026+2 5.347097-6 5.971206+2 5.351094-6 5.866118+2 5.360116-6 5.569964+2 5.365231-6 5.370110+2 5.369542-6 5.186425+2 5.373730-6 4.996547+2 5.378635-6 4.762305+2 5.384941-6 4.446837+2 5.390547-6 4.157528+2 5.396403-6 3.851087+2 5.404161-6 3.445954+2 5.410567-6 3.118113+2 5.417774-6 2.762486+2 5.423380-6 2.498737+2 5.436193-6 1.948259+2 5.440597-6 1.777779+2 5.444801-6 1.624485+2 5.449005-6 1.480508+2 5.452209-6 1.377065+2 5.459416-6 1.163843+2 5.465273-6 1.009920+2 5.473505-6 8.213434+1 5.481641-6 6.643931+1 5.487022-6 5.751831+1 5.492362-6 4.971058+1 5.497659-6 4.290157+1 5.502916-6 3.698253+1 5.513305-6 2.741526+1 5.523534-6 2.029008+1 5.533603-6 1.501753+1 5.548413-6 9.589715+0 5.558095-6 7.132689+0 5.567663-6 5.313833+0 5.577082-6 3.970028+0 5.604465-6 1.690149+0 5.613308-6 1.288125+0 5.622014-6 9.962147-1 5.630584-6 7.892113-1 5.639020-6 6.482664-1 5.647323-6 5.589791-1 5.655498-6 5.100690-1 5.663544-6 4.924641-1 5.671465-6 4.986798-1 5.679262-6 5.224066-1 5.686937-6 5.582440-1 5.701929-6 6.482941-1 5.709250-6 6.951224-1 5.716457-6 7.392245-1 5.730507-6 8.108026-1 5.746584-6 8.559527-1 5.766878-6 8.445938-1 5.785503-6 7.724974-1 5.797533-6 7.033818-1 5.809187-6 6.267380-1 5.820477-6 5.489012-1 5.833360-6 4.616289-1 5.852606-6 3.447928-1 5.921980-6 1.574911-1 6.064257-6 7.552448-1 6.170472-6 2.069640+0 6.185660-6 2.339476+0 6.200847-6 2.636154+0 6.216035-6 2.962217+0 6.231223-6 3.320118+0 6.261599-6 4.141461+0 6.291974-6 5.122889+0 6.323407-6 6.338810+0 6.354536-6 7.786946+0 6.428665-6 1.260075+1 6.463486-6 1.582512+1 6.494614-6 1.948292+1 6.510179-6 2.166683+1 6.525743-6 2.414307+1 6.541307-6 2.696629+1 6.556871-6 3.020567+1 6.572436-6 3.395061+1 6.588000-6 3.831939+1 6.603564-6 4.347292+1 6.619128-6 4.963616+1 6.634693-6 5.713065+1 6.653327-6 6.851952+1 6.669632-6 8.153452+1 6.683899-6 9.620805+1 6.696382-6 1.124312+2 6.707305-6 1.299573+2 6.716863-6 1.484370+2 6.725226-6 1.674691+2 6.732543-6 1.866485+2 6.744549-6 2.240194+2 6.783766-6 4.122449+2 6.796248-6 4.979940+2 6.803437-6 5.536357+2 6.817161-6 6.725037+2 6.828303-6 7.805631+2 6.845027-6 9.591117+2 6.847118-6 9.825197+2 6.861752-6 1.150406+3 6.867501-6 1.217209+3 6.878477-6 1.343387+3 6.883183-6 1.396137+3 6.891190-6 1.482689+3 6.897320-6 1.545341+3 6.902326-6 1.593590+3 6.908897-6 1.652209+3 6.915233-6 1.702916+3 6.917345-6 1.718418+3 6.925694-6 1.772191+3 6.934043-6 1.812965+3 6.942673-6 1.840293+3 6.950390-6 1.851313+3 6.958226-6 1.849249+3 6.966147-6 1.833630+3 6.971738-6 1.814604+3 6.979699-6 1.776587+3 6.987113-6 1.730371+3 6.989850-6 1.710868+3 6.998803-6 1.638712+3 7.007022-6 1.562613+3 7.011709-6 1.515687+3 7.019681-6 1.431128+3 7.028277-6 1.334964+3 7.035910-6 1.246891+3 7.043883-6 1.153769+3 7.047814-6 1.107893+3 7.055131-6 1.023254+3 7.064539-6 9.171772+2 7.077343-6 7.805233+2 7.081263-6 7.409177+2 7.095897-6 6.037887+2 7.101646-6 5.548512+2 7.112622-6 4.694246+2 7.123075-6 3.977511+2 7.134514-6 3.296950+2 7.145174-6 2.753498+2 7.151571-6 2.466095+2 7.168628-6 1.825140+2 7.185684-6 1.338338+2 7.202741-6 9.725780+1 7.219798-6 6.998505+1 7.224063-6 6.434730+1 7.236855-6 4.978845+1 7.247516-6 3.998357+1 7.253912-6 3.496570+1 7.266705-6 2.659383+1 7.279637-6 2.004025+1 7.301051-6 1.249823+1 7.310849-6 1.013718+1 7.320035-6 8.423036+0 7.328647-6 7.195451+0 7.344794-6 5.733826+0 7.358923-6 5.232225+0 7.376695-6 5.571406+0 7.387279-6 6.336499+0 7.398636-6 7.724840+0 7.405804-6 8.964055+0 7.412103-6 1.032707+1 7.417818-6 1.181603+1 7.427195-6 1.485800+1 7.449168-6 2.565529+1 7.457825-6 3.165479+1 7.466158-6 3.853545+1 7.471894-6 4.395522+1 7.477369-6 4.967981+1 7.492031-6 6.781692+1 7.500069-6 7.956329+1 7.503514-6 8.499328+1 7.515571-6 1.058361+2 7.520738-6 1.156111+2 7.537963-6 1.514042+2 7.545032-6 1.672662+2 7.556336-6 1.935415+2 7.562228-6 2.074738+2 7.568532-6 2.223866+2 7.573681-6 2.344629+2 7.580439-6 2.500124+2 7.584783-6 2.597394+2 7.589127-6 2.691888+2 7.594709-6 2.808317+2 7.602035-6 2.950769+2 7.608805-6 3.069898+2 7.612603-6 3.130715+2 7.621215-6 3.250722+2 7.628919-6 3.334919+2 7.633828-6 3.376261+2 7.642810-6 3.425747+2 7.649079-6 3.439614+2 7.667425-6 3.381826+2 7.671472-6 3.349901+2 7.685879-6 3.184888+2 7.692562-6 3.083819+2 7.697778-6 2.995625+2 7.705232-6 2.857300+2 7.710024-6 2.761878+2 7.717972-6 2.594747+2 7.725566-6 2.427541+2 7.731909-6 2.284521+2 7.740064-6 2.099115+2 7.749251-6 1.892280+2 7.758437-6 1.692011+2 7.769081-6 1.473470+2 7.778507-6 1.296026+2 7.795709-6 1.020127+2 7.815646-6 7.880232+1 7.817429-6 7.720171+1 7.823671-6 7.220814+1 7.828352-6 6.907483+1 7.833538-6 6.620041+1 7.837633-6 6.436023+1 7.841453-6 6.297457+1 7.845743-6 6.178549+1 7.852908-6 6.061981+1 7.857123-6 6.038413+1 7.859931-6 6.040029+1 7.862561-6 6.053490+1 7.873075-6 6.212435+1 7.879512-6 6.382313+1 7.887444-6 6.653148+1 7.897812-6 7.085095+1 7.919441-6 8.129146+1 7.930344-6 8.655532+1 7.940749-6 9.117917+1 7.950362-6 9.490437+1 7.961428-6 9.836145+1 7.970684-6 1.004765+2 7.990004-6 1.024830+2 7.998777-6 1.023582+2 8.009007-6 1.014911+2 8.019184-6 9.997655+1 8.028998-6 9.803691+1 8.044715-6 9.430895+1 8.074609-6 8.688328+1 8.090182-6 8.363486+1 8.098656-6 8.216902+1 8.116810-6 7.981562+1 8.129431-6 7.878913+1 8.146452-6 7.807286+1 8.163171-6 7.792134+1 8.200728-6 7.847395+1 8.234713-6 7.888607+1 8.264224-6 7.873191+1 8.291994-6 7.811502+1 8.324181-6 7.685600+1 8.354603-6 7.511630+1 8.383947-6 7.291983+1 8.419534-6 6.972721+1 8.455458-6 6.652769+1 8.475413-6 6.520183+1 8.486615-6 6.473941+1 8.498762-6 6.455385+1 8.512250-6 6.482888+1 8.521789-6 6.538832+1 8.530486-6 6.619993+1 8.535557-6 6.681769+1 8.545207-6 6.830984+1 8.556577-6 7.063827+1 8.568295-6 7.372688+1 8.582610-6 7.849437+1 8.593230-6 8.274675+1 8.601565-6 8.650303+1 8.618580-6 9.524305+1 8.645594-6 1.115138+2 8.664501-6 1.238947+2 8.675927-6 1.314099+2 8.687162-6 1.385997+2 8.699211-6 1.458738+2 8.711631-6 1.526582+2 8.723668-6 1.583203+2 8.732963-6 1.619535+2 8.744326-6 1.654012+2 8.755909-6 1.676912+2 8.764626-6 1.685566+2 8.781083-6 1.681420+2 8.791598-6 1.664997+2 8.805413-6 1.628117+2 8.812650-6 1.602432+2 8.819557-6 1.574236+2 8.831728-6 1.516869+2 8.839622-6 1.475215+2 8.847516-6 1.430754+2 8.858042-6 1.368140+2 8.868568-6 1.303006+2 8.884357-6 1.203507+2 8.910671-6 1.042610+2 8.936986-6 8.997371+1 8.963300-6 7.825633+1 8.978075-6 7.288694+1 8.986507-6 7.020112+1 8.994807-6 6.781275+1 9.011147-6 6.379859+1 9.026977-6 6.068542+1 9.042312-6 5.828612+1 9.057168-6 5.644009+1 9.085952-6 5.387639+1 9.095533-6 5.324529+1 9.112936-6 5.230244+1 9.138668-6 5.125564+1 9.161951-6 5.054004+1 9.206420-6 4.950817+1 9.279377-6 4.824812+1 9.440609-6 4.609746+1 9.634837-6 4.392394+1 9.742049-6 4.301230+1 9.823793-6 4.259437+1 9.923547-6 4.233753+1 9.953766-6 4.244021+1 9.970768-6 4.265656+1 9.981886-6 4.290573+1 9.991417-6 4.321322+1 1.000686-5 4.395707+1 1.001988-5 4.489556+1 1.002769-5 4.563249+1 1.003364-5 4.629721+1 1.004256-5 4.748537+1 1.005149-5 4.893510+1 1.005744-5 5.006599+1 1.006637-5 5.203939+1 1.007529-5 5.438367+1 1.008571-5 5.764740+1 1.009240-5 6.007848+1 1.010309-5 6.455622+1 1.011007-5 6.791323+1 1.012219-5 7.461356+1 1.013434-5 8.253813+1 1.014558-5 9.102662+1 1.017744-5 1.215929+2 1.020585-5 1.570203+2 1.021118-5 1.644639+2 1.023234-5 1.960686+2 1.024038-5 2.087694+2 1.025798-5 2.374040+2 1.026591-5 2.504853+2 1.027726-5 2.690931+2 1.028820-5 2.866767+2 1.030091-5 3.062768+2 1.031352-5 3.244027+2 1.032335-5 3.373442+2 1.033209-5 3.477913+2 1.034670-5 3.627165+2 1.035811-5 3.718751+2 1.037011-5 3.789262+2 1.038225-5 3.832109+2 1.039284-5 3.845557+2 1.040456-5 3.834402+2 1.041293-5 3.809972+2 1.043141-5 3.710101+2 1.044134-5 3.632238+2 1.045416-5 3.509563+2 1.046659-5 3.370018+2 1.047561-5 3.258058+2 1.048298-5 3.161083+2 1.049265-5 3.027649+2 1.050508-5 2.848447+2 1.051755-5 2.663456+2 1.053002-5 2.476593+2 1.054582-5 2.241920+2 1.055530-5 2.104333+2 1.058059-5 1.757210+2 1.061637-5 1.334964+2 1.064826-5 1.038569+2 1.066280-5 9.290266+1 1.068177-5 8.095928+1 1.070707-5 6.902367+1 1.073237-5 6.150460+1 1.075766-5 5.840210+1 1.076398-5 5.833707+1 1.076873-5 5.848098+1 1.077584-5 5.901286+1 1.078118-5 5.966589+1 1.078848-5 6.092152+1 1.079573-5 6.259316+1 1.080394-5 6.501559+1 1.081202-5 6.796263+1 1.082454-5 7.368219+1 1.083508-5 7.962308+1 1.083900-5 8.210606+1 1.085990-5 9.786758+1 1.088650-5 1.242170+2 1.091143-5 1.550291+2 1.092694-5 1.768291+2 1.094376-5 2.022641+2 1.095329-5 2.173019+2 1.096390-5 2.343633+2 1.097754-5 2.564977+2 1.099082-5 2.778442+2 1.100196-5 2.952869+2 1.101504-5 3.148093+2 1.102458-5 3.281753+2 1.103788-5 3.452355+2 1.105079-5 3.596845+2 1.106316-5 3.712794+2 1.107581-5 3.806183+2 1.108565-5 3.860030+2 1.109503-5 3.895484+2 1.110685-5 3.917754+2 1.110988-5 3.919435+2 1.113207-5 3.882962+2 1.114119-5 3.844178+2 1.115133-5 3.786064+2 1.116729-5 3.666087+2 1.118167-5 3.532470+2 1.119444-5 3.397865+2 1.121086-5 3.209056+2 1.122920-5 2.986333+2 1.125468-5 2.675369+2 1.130371-5 2.145966+2 1.132453-5 1.967503+2 1.134158-5 1.844774+2 1.135514-5 1.761815+2 1.136653-5 1.701711+2 1.138359-5 1.626563+2 1.139636-5 1.580777+2 1.140199-5 1.563111+2 1.142150-5 1.512239+2 1.143395-5 1.486910+2 1.146240-5 1.444293+2 1.148739-5 1.418805+2 1.153274-5 1.387373+2 1.155593-5 1.375190+2 1.160177-5 1.355806+2 1.163923-5 1.344188+2 1.168681-5 1.334673+2 1.184970-5 1.319886+2 1.190294-5 1.308421+2 1.196016-5 1.287012+2 1.201468-5 1.257819+2 1.213127-5 1.183160+2 1.218842-5 1.151240+2 1.224854-5 1.125264+2 1.230856-5 1.106532+2 1.245146-5 1.078397+2 1.280735-5 1.028139+2 1.296314-5 1.004139+2 1.316888-5 9.671929+1 1.330493-5 9.384041+1 1.341485-5 9.114534+1 1.350802-5 8.852040+1 1.358991-5 8.589275+1 1.366188-5 8.328408+1 1.372810-5 8.060610+1 1.382960-5 7.616604+1 1.387255-5 7.447899+1 1.391030-5 7.344925+1 1.394348-5 7.323635+1 1.397219-5 7.391026+1 1.399749-5 7.546813+1 1.401976-5 7.784896+1 1.403310-5 7.983679+1 1.404943-5 8.295383+1 1.406552-5 8.687031+1 1.407979-5 9.115409+1 1.409244-5 9.566647+1 1.410860-5 1.025224+2 1.412192-5 1.091873+2 1.412972-5 1.135487+2 1.414250-5 1.214941+2 1.415979-5 1.339066+2 1.418330-5 1.541524+2 1.421008-5 1.823305+2 1.426037-5 2.510108+2 1.429119-5 3.031485+2 1.432611-5 3.701762+2 1.433736-5 3.932213+2 1.436102-5 4.432665+2 1.437764-5 4.791792+2 1.439375-5 5.140787+2 1.440861-5 5.459552+2 1.442302-5 5.761795+2 1.443739-5 6.052906+2 1.445529-5 6.395851+2 1.446467-5 6.564620+2 1.448158-5 6.846370+2 1.449923-5 7.104664+2 1.451339-5 7.281829+2 1.453289-5 7.477528+2 1.454911-5 7.594746+2 1.456591-5 7.670409+2 1.458242-5 7.698501+2 1.460541-5 7.661674+2 1.462203-5 7.581777+2 1.464250-5 7.425982+2 1.465587-5 7.292941+2 1.467305-5 7.089545+2 1.468833-5 6.882092+2 1.470796-5 6.585109+2 1.472542-5 6.299090+2 1.474724-5 5.922174+2 1.477779-5 5.378895+2 1.481707-5 4.694259+2 1.490450-5 3.414498+2 1.493075-5 3.119292+2 1.494817-5 2.946584+2 1.496552-5 2.792088+2 1.498280-5 2.654575+2 1.501716-5 2.424931+2 1.505282-5 2.238962+2 1.508522-5 2.106732+2 1.511885-5 1.997980+2 1.515222-5 1.911806+2 1.521817-5 1.784906+2 1.527500-5 1.705091+2 1.531543-5 1.658865+2 1.537910-5 1.598259+2 1.545353-5 1.540696+2 1.556418-5 1.472868+2 1.562395-5 1.442555+2 1.574164-5 1.392190+2 1.592697-5 1.329559+2 1.607308-5 1.289407+2 1.617673-5 1.264867+2 1.656582-5 1.189675+2 1.700690-5 1.123157+2 1.767185-5 1.041621+2 1.879807-5 9.264590+1 1.938984-5 8.686885+1 1.981937-5 8.230751+1 2.010573-5 7.862791+1 2.029663-5 7.538004+1 2.050773-5 7.133917+1 2.060868-5 7.047569+1 2.065916-5 7.072613+1 2.070964-5 7.158261+1 2.076011-5 7.310404+1 2.078378-5 7.404545+1 2.081759-5 7.562500+1 2.088631-5 7.951441+1 2.096810-5 8.467266+1 2.102616-5 8.807813+1 2.108422-5 9.080565+1 2.112293-5 9.209316+1 2.114844-5 9.267626+1 2.117755-5 9.307375+1 2.121576-5 9.316506+1 2.126489-5 9.261148+1 2.131536-5 9.137408+1 2.136584-5 8.963150+1 2.141632-5 8.757603+1 2.153704-5 8.244160+1 2.159633-5 8.024064+1 2.165041-5 7.857766+1 2.170212-5 7.733970+1 2.176251-5 7.633823+1 2.181935-5 7.580170+1 2.191688-5 7.560123+1 2.215798-5 7.631562+1 2.227274-5 7.615783+1 2.238072-5 7.565425+1 2.268542-5 7.393098+1 2.291079-5 7.288405+1 2.322760-5 7.114572+1 2.361539-5 6.851171+1 2.499439-5 6.060742+1 2.574902-5 5.660402+1 2.656283-5 5.234105+1 2.745365-5 4.774001+1 2.813677-5 4.424740+1 2.885700-5 4.060644+1 2.975704-5 3.603944+1 3.070577-5 3.116254+1 3.143144-5 2.734328+1 3.193554-5 2.462783+1 3.254624-5 2.126522+1 3.287509-5 1.939235+1 3.326018-5 1.710575+1 3.357749-5 1.514792+1 3.381547-5 1.362955+1 3.402868-5 1.222262+1 3.421607-5 1.094159+1 3.438076-5 9.777315+0 3.452552-5 8.725337+0 3.465274-5 7.785722+0 3.476456-5 6.963907+0 3.494921-5 5.716819+0 3.502513-5 5.312492+0 3.509185-5 5.059326+0 3.515050-5 4.951083+0 3.520204-5 4.974117+0 3.524734-5 5.109584+0 3.528716-5 5.336009+0 3.532215-5 5.631565+0 3.535267-5 5.972833+0 3.537932-5 6.341147+0 3.539640-5 6.614319+0 3.542149-5 7.072048+0 3.544446-5 7.553673+0 3.548078-5 8.445871+0 3.552024-5 9.611599+0 3.557751-5 1.170108+1 3.564123-5 1.462990+1 3.570201-5 1.805829+1 3.575674-5 2.169208+1 3.582088-5 2.660278+1 3.585457-5 2.945124+1 3.587253-5 3.104023+1 3.592640-5 3.607620+1 3.596010-5 3.940583+1 3.601944-5 4.552855+1 3.606165-5 5.001575+1 3.610590-5 5.476719+1 3.614600-5 5.905526+1 3.618102-5 6.274077+1 3.622741-5 6.747494+1 3.627320-5 7.191146+1 3.633345-5 7.727725+1 3.637351-5 8.049485+1 3.642545-5 8.420200+1 3.647236-5 8.708102+1 3.653696-5 9.032336+1 3.659268-5 9.249465+1 3.664814-5 9.416055+1 3.672473-5 9.583516+1 3.681301-5 9.720523+1 3.712581-5 1.011150+2 3.721800-5 1.017535+2 3.727612-5 1.017242+2 3.731116-5 1.014865+2 3.740316-5 9.990238+1 3.744706-5 9.859976+1 3.750576-5 9.627513+1 3.756167-5 9.345081+1 3.759521-5 9.148606+1 3.763994-5 8.857886+1 3.768467-5 8.538098+1 3.775176-5 8.014652+1 3.777412-5 7.831199+1 3.784121-5 7.263788+1 3.786357-5 7.071305+1 3.795303-5 6.302296+1 3.804248-5 5.562229+1 3.816826-5 4.622739+1 3.830652-5 3.767341+1 3.839299-5 3.329878+1 3.847406-5 2.982126+1 3.855006-5 2.704252+1 3.862131-5 2.479932+1 3.875491-5 2.134631+1 3.887181-5 1.892801+1 3.900000-5 1.672466+1 3.918043-5 1.415435+1 3.962296-5 9.361594+0 3.969008-5 8.783026+0 3.988546-5 7.361448+0 3.998316-5 6.818641+0 4.008085-5 6.398138+0 4.012969-5 6.233653+0 4.017854-5 6.098347+0 4.022739-5 5.990327+0 4.027623-5 5.906967+0 4.032508-5 5.844952+0 4.037392-5 5.800344+0 4.047162-5 5.745235+0 4.056931-5 5.702903+0 4.066700-5 5.634798+0 4.076469-5 5.508556+0 4.079404-5 5.455738+0 4.088209-5 5.250908+0 4.093228-5 5.102403+0 4.098247-5 4.931679+0 4.102572-5 4.768060+0 4.109059-5 4.497688+0 4.115546-5 4.203599+0 4.125315-5 3.734270+0 4.135084-5 3.260861+0 4.158474-5 2.296856+0 4.164392-5 2.125626+0 4.168512-5 2.030008+0 4.175255-5 1.920046+0 4.178550-5 1.888944+0 4.184250-5 1.872635+0 4.187100-5 1.883015+0 4.189950-5 1.906122+0 4.191891-5 1.929261+0 4.198687-5 2.058070+0 4.205482-5 2.261276+0 4.210576-5 2.461072+0 4.212881-5 2.564296+0 4.223467-5 3.130367+0 4.231202-5 3.622224+0 4.233780-5 3.796651+0 4.241515-5 4.337904+0 4.243682-5 4.491634+0 4.247475-5 4.759470+0 4.250319-5 4.957486+0 4.254586-5 5.246182+0 4.258853-5 5.520287+0 4.262253-5 5.724952+0 4.264804-5 5.868886+0 4.268629-5 6.067234+0 4.272454-5 6.242101+0 4.277610-5 6.436694+0 4.281478-5 6.549416+0 4.284056-5 6.608126+0 4.288568-5 6.678777+0 4.293080-5 6.708889+0 4.294453-5 6.710195+0 4.304061-5 6.624202+0 4.307703-5 6.552750+0 4.314655-5 6.369638+0 4.321938-5 6.130948+0 4.341140-5 5.455521+0 4.346437-5 5.298149+0 4.354958-5 5.100265+0 4.365271-5 4.970448+0 4.368526-5 4.955995+0 4.378289-5 4.986723+0 4.383957-5 5.051587+0 4.390362-5 5.160752+0 4.399068-5 5.359424+0 4.409792-5 5.663052+0 4.435684-5 6.550727+0 4.451312-5 7.168881+0 4.467375-5 7.903412+0 4.475048-5 8.305280+0 4.488089-5 9.086479+0 4.495376-5 9.585530+0 4.507299-5 1.051228+1 4.521301-5 1.179424+1 4.533498-5 1.309921+1 4.554972-5 1.587145+1 4.586060-5 2.107577+1 4.602000-5 2.427758+1 4.608636-5 2.569452+1 4.619924-5 2.817814+1 4.631212-5 3.069587+1 4.642500-5 3.317088+1 4.646859-5 3.409854+1 4.653397-5 3.544773+1 4.664307-5 3.755968+1 4.674144-5 3.929353+1 4.688474-5 4.153714+1 4.699634-5 4.311106+1 4.728511-5 4.719584+1 4.736211-5 4.847072+1 4.746681-5 5.043571+1 4.752674-5 5.169925+1 4.762205-5 5.393348+1 4.769438-5 5.581569+1 4.779671-5 5.874454+1 4.794721-5 6.356264+1 4.833638-5 7.808298+1 4.856405-5 8.759539+1 4.904536-5 1.105760+2 4.971593-5 1.519793+2 5.014187-5 1.848743+2 5.049970-5 2.164866+2 5.069970-5 2.357185+2 5.095000-5 2.613274+2 5.118505-5 2.868432+2 5.142658-5 3.143489+2 5.173113-5 3.504000+2 5.200000-5 3.828949+2 5.227231-5 4.158940+2 5.250000-5 4.433683+2 5.292452-5 4.946706+2 5.330082-5 5.413350+2 5.370318-5 5.934830+2 5.412245-5 6.502264+2 5.450000-5 7.028377+2 5.542086-5 8.394552+2 5.591198-5 9.232470+2 5.669965-5 1.082607+3 5.732712-5 1.226809+3 5.783609-5 1.347401+3 5.808441-5 1.405888+3 5.851637-5 1.505800+3 5.900000-5 1.613090+3 5.927000-5 1.669567+3 5.956621-5 1.727355+3 5.995195-5 1.793952+3 6.030000-5 1.843585+3 6.073966-5 1.890005+3 6.109429-5 1.914114+3 6.141378-5 1.926790+3 6.174463-5 1.932492+3 6.210000-5 1.931871+3 6.245000-5 1.925669+3 6.305391-5 1.904415+3 6.378782-5 1.865065+3 6.572826-5 1.738511+3 6.854058-5 1.569279+3 7.161434-5 1.420815+3 7.438458-5 1.310423+3 7.849421-5 1.178724+3 8.524468-5 1.012531+3 9.382989-5 8.543487+2 1.039247-4 7.130565+2 1.058710-4 6.890616+2 1.080000-4 6.625191+2 1.100887-4 6.336713+2 1.114015-4 6.111727+2 1.124310-4 5.926198+2 1.129987-4 5.857498+2 1.133143-4 5.840100+2 1.137339-4 5.843472+2 1.141072-4 5.869370+2 1.153628-4 6.007796+2 1.161466-4 6.044482+2 1.170842-4 6.028607+2 1.191997-4 5.936816+2 1.254582-4 5.640118+2 1.310720-4 5.363123+2 1.373900-4 5.043546+2 1.422585-4 4.799114+2 1.448481-4 4.659831+2 1.467992-4 4.529166+2 1.480637-4 4.447701+2 1.491178-4 4.405839+2 1.498941-4 4.394095+2 1.535000-4 4.404419+2 1.578274-4 4.342977+2 1.610956-4 4.267521+2 1.647160-4 4.168721+2 1.706850-4 3.994543+2 1.760000-4 3.836626+2 1.846910-4 3.581222+2 1.917559-4 3.348596+2 1.978864-4 3.150447+2 1.995436-4 3.103026+2 2.037089-4 2.976593+2 2.061831-4 2.889367+2 2.105256-4 2.721600+2 2.120280-4 2.676208+2 2.141008-4 2.629383+2 2.179593-4 2.562791+2 2.221250-4 2.519083+2 2.240000-4 2.495085+2 2.280000-4 2.419090+2 2.308000-4 2.351796+2 2.327000-4 2.301522+2 2.355000-4 2.223082+2 2.385000-4 2.135365+2 2.412375-4 2.053272+2 2.442000-4 1.963423+2 2.490500-4 1.816869+2 2.541205-4 1.667486+2 2.661100-4 1.354577+2 2.684586-4 1.303834+2 2.710444-4 1.253465+2 2.742415-4 1.200103+2 2.770000-4 1.163228+2 2.800468-4 1.133833+2 2.842824-4 1.114131+2 2.900077-4 1.126346+2 2.951209-4 1.175182+2 2.976502-4 1.212905+2 3.040000-4 1.343375+2 3.085000-4 1.464631+2 3.131472-4 1.615670+2 3.170000-4 1.759216+2 3.325000-4 2.488931+2 3.370184-4 2.740608+2 3.427843-4 3.080805+2 3.481186-4 3.409794+2 3.556726-4 3.890840+2 3.640000-4 4.429784+2 3.732160-4 5.026692+2 3.833993-4 5.681645+2 3.941168-4 6.361382+2 4.061498-4 7.108446+2 4.172683-4 7.773856+2 4.302923-4 8.507040+2 4.433813-4 9.184612+2 4.587002-4 9.888120+2 4.725136-4 1.043240+3 4.887236-4 1.104035+3 4.933633-4 1.120057+3 4.976076-4 1.137236+3 5.006389-4 1.153982+3 5.119581-4 1.236656+3 5.159576-4 1.261294+3 5.222808-4 1.293496+3 5.266737-4 1.318945+3 5.375534-4 1.392820+3 5.480118-4 1.453790+3 5.662645-4 1.543095+3 5.902257-4 1.644122+3 6.111039-4 1.717954+3 6.411574-4 1.807169+3 6.724645-4 1.882131+3 7.018160-4 1.933352+3 7.183596-4 1.948091+3 7.275035-4 1.951977+3 7.322633-4 1.958043+3 7.373294-4 1.972628+3 7.421295-4 1.995474+3 7.524564-4 2.058299+3 7.610723-4 2.101497+3 7.765578-4 2.152512+3 7.999481-4 2.206566+3 8.335151-4 2.263891+3 8.806491-4 2.319054+3 9.087355-4 2.365638+3 9.350000-4 2.400455+3 9.719576-4 2.433272+3 1.022268-3 2.466809+3 1.062440-3 2.516624+3 1.104396-3 2.546568+3 1.159150-3 2.570910+3 1.225510-3 2.582347+3 1.293944-3 2.582531+3 1.355101-3 2.577078+3 1.443361-3 2.562442+3 1.517924-3 2.543269+3 1.603246-3 2.510308+3 1.701145-3 2.463610+3 1.801138-3 2.409617+3 1.916416-3 2.336707+3 2.029074-3 2.254561+3 2.119295-3 2.181519+3 2.207154-3 2.101234+3 2.291019-3 2.014599+3 2.358114-3 1.937618+3 2.428535-3 1.846939+3 2.483298-3 1.766739+3 2.530026-3 1.688481+3 2.573195-3 1.606129+3 2.605628-3 1.535419+3 2.635870-3 1.459657+3 2.660725-3 1.387175+3 2.684235-3 1.305491+3 2.702506-3 1.228614+3 2.716741-3 1.158586+3 2.727118-3 1.102945+3 2.747118-3 9.983411+2 2.753913-3 9.697140+2 2.760730-3 9.479749+2 2.763747-3 9.411044+2 2.767043-3 9.357673+2 2.770892-3 9.325904+2 2.774375-3 9.326801+2 2.778330-3 9.362659+2 2.783635-3 9.468357+2 2.787377-3 9.580788+2 2.792121-3 9.764391+2 2.797086-3 9.999043+2 2.806916-3 1.055551+3 2.821342-3 1.144758+3 2.827050-3 1.178030+3 2.833930-3 1.214383+3 2.841425-3 1.248306+3 2.849663-3 1.278575+3 2.860188-3 1.308552+3 2.876583-3 1.348066+3 2.883908-3 1.368699+3 2.889381-3 1.387203+3 2.895404-3 1.411515+3 2.901940-3 1.443194+3 2.908030-3 1.477849+3 2.915718-3 1.528224+3 2.938693-3 1.706575+3 2.946586-3 1.769668+3 2.953171-3 1.820203+3 2.959422-3 1.865496+3 2.969020-3 1.928802+3 2.981144-3 1.997168+3 2.995000-3 2.060544+3 3.007891-3 2.108020+3 3.029274-3 2.169545+3 3.050000-3 2.215747+3 3.082739-3 2.272849+3 3.113914-3 2.315331+3 3.148007-3 2.351100+3 3.189701-3 2.382076+3 3.223989-3 2.397445+3 3.265840-3 2.403042+3 3.294601-3 2.396240+3 3.353830-3 2.359223+3 3.366409-3 2.357369+3 3.379828-3 2.363739+3 3.391253-3 2.377360+3 3.409707-3 2.414802+3 3.446571-3 2.518440+3 3.462895-3 2.561283+3 3.480947-3 2.600471+3 3.500594-3 2.633390+3 3.526212-3 2.664879+3 3.561119-3 2.695328+3 3.602245-3 2.720894+3 3.650668-3 2.741944+3 3.701864-3 2.756586+3 3.758466-3 2.765056+3 3.811200-3 2.765815+3 3.860864-3 2.758981+3 3.952687-3 2.727868+3 3.990513-3 2.729645+3 4.087437-3 2.783983+3 4.121614-3 2.793120+3 4.192465-3 2.791912+3 4.256034-3 2.784850+3 4.298006-3 2.792687+3 4.393238-3 2.830113+3 4.440138-3 2.839165+3 4.569481-3 2.842475+3 4.739046-3 2.827353+3 5.038087-3 2.780122+3 5.270781-3 2.730422+3 5.664413-3 2.634586+3 5.998499-3 2.549309+3 6.338337-3 2.459996+3 6.925781-3 2.306153+3 7.445176-3 2.177170+3 7.784846-3 2.095699+3 8.485392-3 1.935104+3 9.306279-3 1.764650+3 9.706889-3 1.687022+3 1.015492-2 1.603897+3 1.062307-2 1.521045+3 1.109175-2 1.441773+3 1.153122-2 1.369692+3 1.192035-2 1.307266+3 1.224256-2 1.255823+3 1.252938-2 1.209863+3 1.279748-2 1.165956+3 1.301767-2 1.128812+3 1.320800-2 1.095270+3 1.337106-2 1.064834+3 1.350905-2 1.036979+3 1.361947-2 1.012403+3 1.371277-2 9.890833+2 1.379049-2 9.668873+2 1.385127-2 9.472085+2 1.394273-2 9.138129+2 1.406747-2 8.684704+2 1.411726-2 8.551687+2 1.415467-2 8.485864+2 1.420000-2 8.452762+2 1.422555-2 8.457567+2 1.425364-2 8.481601+2 1.430707-2 8.574375+2 1.440262-2 8.834482+2 1.448161-2 9.062831+2 1.453385-2 9.193465+2 1.457975-2 9.289243+2 1.464393-2 9.393423+2 1.471571-2 9.475000+2 1.478593-2 9.527772+2 1.488453-2 9.570386+2 1.498414-2 9.587754+2 1.510685-2 9.584723+2 1.524491-2 9.557537+2 1.539446-2 9.505896+2 1.568095-2 9.356954+2 1.584739-2 9.243790+2 1.600940-2 9.113757+2 1.613941-2 8.991973+2 1.626335-2 8.856076+2 1.635874-2 8.732942+2 1.650719-2 8.503342+2 1.666014-2 8.255122+2 1.673979-2 8.158557+2 1.682093-2 8.106360+2 1.689762-2 8.103633+2 1.703628-2 8.174836+2 1.719575-2 8.262206+2 1.745205-2 8.338319+2 1.762198-2 8.441782+2 1.785208-2 8.595596+2 1.803591-2 8.658467+2 1.831688-2 8.674684+2 1.865788-2 8.635003+2 1.911641-2 8.533038+2 1.987672-2 8.305495+2 2.074316-2 8.001178+2 2.200392-2 7.536238+2 2.314897-2 7.121535+2 2.485794-2 6.540743+2 2.750474-2 5.748197+2 3.049478-2 5.001601+2 3.382023-2 4.326161+2 3.646982-2 3.876812+2 3.902563-2 3.499327+2 4.339031-2 2.959580+2 5.100093-2 2.273077+2 5.514562-2 1.991949+2 6.216941-2 1.614291+2 6.992872-2 1.305645+2 7.577040-2 1.125253+2 8.142233-2 9.788646+1 8.521332-2 8.913317+1 8.824868-2 8.245359+1 9.039470-2 7.769934+1 9.181884-2 7.434799+1 9.246880-2 7.268104+1 9.298991-2 7.122463+1 9.377704-2 6.871626+1 9.511697-2 6.399180+1 9.556647-2 6.285394+1 9.592242-2 6.234384+1 9.621719-2 6.221562+1 9.660509-2 6.242196+1 9.715600-2 6.322558+1 9.812527-2 6.490977+1 9.878420-2 6.565873+1 9.957420-2 6.606861+1 1.007327-1 6.608542+1 1.022190-1 6.561523+1 1.040766-1 6.465091+1 1.066627-1 6.300299+1 1.107962-1 6.008328+1 1.166064-1 5.585766+1 1.249530-1 5.013957+1 1.348963-1 4.419483+1 1.510306-1 3.640870+1 1.768184-1 2.755658+1 2.080043-1 2.054855+1 2.452943-1 1.517091+1 3.030087-1 1.021162+1 3.871574-1 6.403641+0 5.236758-1 3.575340+0 7.815013-1 1.637738+0 1.228714+0 6.728772-1 2.039158+0 2.465663-1 4.671441+0 4.722256-2 1.410753+1 5.182318-3 4.260405+1 5.682655-4 1.286622+2 6.230948-5 3.885536+2 6.832103-6 1.258925+3 6.508130-7 3.981072+3 6.508130-8 1.258925+4 6.508130-9 3.981072+4 6.50813-10 1.000000+5 1.03147-10 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.417100-6 1.258900-6 2.246000-6 1.584900-6 3.559600-6 1.995300-6 5.641600-6 2.511900-6 8.941300-6 3.162300-6 1.417100-5 3.981100-6 2.245900-5 5.011900-6 3.559500-5 6.309600-6 5.641400-5 7.943300-6 8.941000-5 1.000000-5 1.417000-4 1.258900-5 2.245800-4 1.584900-5 3.559300-4 1.995300-5 5.641000-4 2.511900-5 8.940200-4 3.162300-5 1.416900-3 3.981100-5 2.245500-3 5.011900-5 3.558700-3 6.309600-5 5.639700-3 7.943300-5 8.931900-3 1.000000-4 1.414300-2 1.258900-4 2.239800-2 1.584900-4 3.543200-2 1.995300-4 5.602400-2 2.511900-4 8.844200-2 3.162300-4 1.393200-1 3.981100-4 2.186800-1 5.011900-4 3.414300-1 6.309600-4 5.273400-1 7.943300-4 8.028200-1 1.000000-3 1.199300+0 1.258900-3 1.748000+0 1.584900-3 2.476800+0 1.995300-3 3.406000+0 2.511900-3 4.555500+0 3.162300-3 5.926800+0 3.981100-3 7.496700+0 5.011900-3 9.265700+0 6.309600-3 1.129700+1 7.943300-3 1.364800+1 1.000000-2 1.629700+1 1.258900-2 1.909600+1 1.584900-2 2.190100+1 1.995300-2 2.468600+1 2.511900-2 2.743400+1 3.162300-2 3.002300+1 3.981100-2 3.227200+1 5.011900-2 3.385000+1 6.309600-2 3.491800+1 7.943300-2 3.558000+1 1.000000-1 3.548600+1 1.258900-1 3.479200+1 1.584900-1 3.360800+1 1.995300-1 3.208600+1 2.511900-1 3.025500+1 3.162300-1 2.824100+1 3.981100-1 2.612900+1 5.011900-1 2.398800+1 6.309600-1 2.186000+1 7.943300-1 1.978400+1 1.000000+0 1.777700+1 1.258900+0 1.588000+1 1.584900+0 1.408400+1 1.995300+0 1.240900+1 2.511900+0 1.086200+1 3.162300+0 9.447900+0 3.981100+0 8.168700+0 5.011900+0 7.022800+0 6.309600+0 6.005500+0 7.943300+0 5.111400+0 1.000000+1 4.330800+0 1.258900+1 3.654500+0 1.584900+1 3.072600+0 1.995300+1 2.574700+0 2.511900+1 2.151000+0 3.162300+1 1.792200+0 3.981100+1 1.489600+0 5.011900+1 1.235300+0 6.309600+1 1.022400+0 7.943300+1 8.446500-1 1.000000+2 6.966400-1 1.258900+2 5.737000-1 1.584900+2 4.718000-1 1.995300+2 3.875100-1 2.511900+2 3.179000-1 3.162300+2 2.605100-1 3.981100+2 2.132700-1 5.011900+2 1.744300-1 6.309600+2 1.425400-1 7.943300+2 1.163900-1 1.000000+3 9.495700-2 1.258900+3 7.741800-2 1.584900+3 6.307500-2 1.995300+3 5.135600-2 2.511900+3 4.178900-2 3.162300+3 3.398500-2 3.981100+3 2.762300-2 5.011900+3 2.244000-2 6.309600+3 1.822000-2 7.943300+3 1.478700-2 1.000000+4 1.199600-2 1.258900+4 9.726600-3 1.584900+4 7.883500-3 1.995300+4 6.387100-3 2.511900+4 5.172800-3 3.162300+4 4.187700-3 3.981100+4 3.389100-3 5.011900+4 2.741800-3 6.309600+4 2.217400-3 7.943300+4 1.792700-3 1.000000+5 1.448900-3 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159546-4 3.981072-4 3.976748-4 5.011872-4 5.005035-4 6.309573-4 6.298754-4 7.943282-4 7.926274-4 1.000000-3 9.973200-4 1.258925-3 1.254723-3 1.584893-3 1.578332-3 1.995262-3 1.985021-3 2.511886-3 2.495899-3 3.162278-3 3.137387-3 3.981072-3 3.942436-3 5.011872-3 4.951811-3 6.309573-3 6.215942-3 7.943282-3 7.796996-3 1.000000-2 9.771685-3 1.258925-2 1.223473-2 1.584893-2 1.530129-2 1.995262-2 1.910908-2 2.511886-2 2.382176-2 3.162278-2 2.963681-2 3.981072-2 3.678920-2 5.011872-2 4.555955-2 6.309573-2 5.627983-2 7.943282-2 6.929679-2 1.000000-1 8.506994-2 1.258925-1 1.041454-1 1.584893-1 1.270804-1 1.995262-1 1.544387-1 2.511886-1 1.871437-1 3.162278-1 2.260613-1 3.981072-1 2.722304-1 5.011872-1 3.268015-1 6.309573-1 3.912192-1 7.943282-1 4.671000-1 1.000000+0 5.566832-1 1.258925+0 6.617840-1 1.584893+0 7.861070-1 1.995262+0 9.332324-1 2.511886+0 1.107822+0 3.162278+0 1.315531+0 3.981072+0 1.563525+0 5.011872+0 1.860375+0 6.309573+0 2.216651+0 7.943282+0 2.645135+0 1.000000+1 3.161763+0 1.258925+1 3.785848+0 1.584893+1 4.541035+0 1.995262+1 5.456291+0 2.511886+1 6.567130+0 3.162278+1 7.917140+0 3.981072+1 9.559612+0 5.011872+1 1.156033+1 6.309573+1 1.400011+1 7.943282+1 1.697775+1 1.000000+2 2.061515+1 1.258925+2 2.506239+1 1.584893+2 3.050376+1 1.995262+2 3.716743+1 2.511886+2 4.533262+1 3.162278+2 5.534519+1 3.981072+2 6.762972+1 5.011872+2 8.271311+1 6.309573+2 1.012426+2 7.943282+2 1.240185+2 1.000000+3 1.520283+2 1.258925+3 1.864937+2 1.584893+3 2.289212+2 1.995262+3 2.811704+2 2.511886+3 3.455654+2 3.162278+3 4.249315+2 3.981072+3 5.228212+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090842-9 2.511886-5 1.728834-9 3.162278-5 2.739951-9 3.981072-5 4.342396-9 5.011872-5 6.881968-9 6.309573-5 1.090663-8 7.943282-5 1.728197-8 1.000000-4 2.738561-8 1.258925-4 4.339909-8 1.584893-4 6.875546-8 1.995262-4 1.089303-7 2.511886-4 1.725326-7 3.162278-4 2.731650-7 3.981072-4 4.323263-7 5.011872-4 6.837348-7 6.309573-4 1.081940-6 7.943282-4 1.700881-6 1.000000-3 2.679980-6 1.258925-3 4.202696-6 1.584893-3 6.561437-6 1.995262-3 1.024097-5 2.511886-3 1.598734-5 3.162278-3 2.489085-5 3.981072-3 3.863522-5 5.011872-3 6.006088-5 6.309573-3 9.363136-5 7.943282-3 1.462862-4 1.000000-2 2.283151-4 1.258925-2 3.545248-4 1.584893-2 5.476377-4 1.995262-2 8.435448-4 2.511886-2 1.297104-3 3.162278-2 1.985968-3 3.981072-2 3.021520-3 5.011872-2 4.559173-3 6.309573-2 6.815905-3 7.943282-2 1.013604-2 1.000000-1 1.493006-2 1.258925-1 2.174716-2 1.584893-1 3.140893-2 1.995262-1 4.508751-2 2.511886-1 6.404493-2 3.162278-1 9.016650-2 3.981072-1 1.258768-1 5.011872-1 1.743857-1 6.309573-1 2.397381-1 7.943282-1 3.272282-1 1.000000+0 4.433168-1 1.258925+0 5.971414-1 1.584893+0 7.987862-1 1.995262+0 1.062030+0 2.511886+0 1.404064+0 3.162278+0 1.846746+0 3.981072+0 2.417547+0 5.011872+0 3.151497+0 6.309573+0 4.092923+0 7.943282+0 5.298147+0 1.000000+1 6.838237+0 1.258925+1 8.803406+0 1.584893+1 1.130790+1 1.995262+1 1.449633+1 2.511886+1 1.855173+1 3.162278+1 2.370564+1 3.981072+1 3.025110+1 5.011872+1 3.855839+1 6.309573+1 4.909563+1 7.943282+1 6.245508+1 1.000000+2 7.938485+1 1.258925+2 1.008302+2 1.584893+2 1.279856+2 1.995262+2 1.623588+2 2.511886+2 2.058560+2 3.162278+2 2.608826+2 3.981072+2 3.304774+2 5.011872+2 4.184741+2 6.309573+2 5.297147+2 7.943282+2 6.703097+2 1.000000+3 8.479717+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714092+3 2.511886+3 2.166321+3 3.162278+3 2.737346+3 3.981072+3 3.458250+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 8.540000-6 7.126758+7 8.810489-6 6.838075+7 9.120108-6 6.487661+7 9.440609-6 6.114589+7 9.772372-6 5.727454+7 1.011579-5 5.331677+7 1.050000-5 4.907128+7 1.096478-5 4.423798+7 1.150000-5 3.915363+7 1.194000-5 3.537139+7 1.194000-5 6.423528+7 1.202264-5 6.349213+7 1.216186-5 6.222636+7 1.244515-5 5.960454+7 1.273503-5 5.693705+7 1.310000-5 5.355313+7 1.350000-5 4.996393+7 1.380384-5 4.730552+7 1.420000-5 4.400088+7 1.445440-5 4.197251+7 1.462177-5 4.068758+7 1.515000-5 3.684876+7 1.570000-5 3.325224+7 1.584893-5 3.233464+7 1.640590-5 2.915547+7 1.737801-5 2.442460+7 1.819701-5 2.113701+7 1.862087-5 1.966081+7 2.264644-5 1.052641+7 2.301000-5 1.000826+7 2.301000-5 1.111688+7 2.350000-5 1.038788+7 2.454709-5 9.017178+6 2.540973-5 8.068816+6 2.600160-5 7.492113+6 2.786121-5 6.008358+6 2.951209-5 5.009114+6 3.019952-5 4.660244+6 3.090295-5 4.336547+6 3.235937-5 3.760822+6 3.349654-5 3.381071+6 3.427678-5 3.151235+6 3.507519-5 2.937748+6 3.589219-5 2.740524+6 3.758374-5 2.386185+6 3.845918-5 2.227183+6 3.900000-5 2.136677+6 4.027170-5 1.943045+6 4.120975-5 1.815455+6 4.168694-5 1.755071+6 4.315191-5 1.586354+6 4.365158-5 1.534021+6 4.466836-5 1.435294+6 4.506000-5 1.399707+6 4.506000-5 3.451671+6 4.540000-5 3.522487+6 4.570882-5 3.607839+6 4.602000-5 3.718741+6 4.623810-5 3.814927+6 4.630000-5 3.843182+6 4.657000-5 3.986192+6 4.680000-5 4.128776+6 4.710000-5 4.346353+6 4.740000-5 4.603231+6 4.770000-5 4.903882+6 4.800000-5 5.253912+6 4.835000-5 5.732681+6 4.841724-5 5.835916+6 4.870000-5 6.297068+6 4.920000-5 7.274776+6 4.920000-5 8.401352+6 4.954502-5 9.285204+6 4.970000-5 9.721488+6 4.980000-5 1.002354+7 5.011872-5 1.106925+7 5.040000-5 1.210290+7 5.070000-5 1.334689+7 5.080000-5 1.379476+7 5.095000-5 1.445101+7 5.130000-5 1.612433+7 5.150000-5 1.717660+7 5.160000-5 1.772881+7 5.190000-5 1.950791+7 5.230000-5 2.218201+7 5.232700-5 2.237643+7 5.250000-5 2.328049+7 5.270000-5 2.422392+7 5.308844-5 2.619292+7 5.315000-5 2.652028+7 5.340000-5 2.790801+7 5.350000-5 2.835873+7 5.360000-5 2.881854+7 5.370318-5 2.932596+7 5.450000-5 3.368364+7 5.465000-5 3.459423+7 5.474400-5 3.513711+7 5.560000-5 3.879830+7 5.580000-5 3.976705+7 5.610000-5 4.132260+7 5.650000-5 4.355097+7 5.688529-5 4.586024+7 5.690000-5 4.595307+7 5.730000-5 4.850017+7 5.760000-5 5.047946+7 5.780000-5 5.167383+7 5.790000-5 5.221750+7 5.800000-5 5.273240+7 5.821032-5 5.385712+7 5.850000-5 5.534930+7 5.870000-5 5.634152+7 5.900000-5 5.774290+7 5.920000-5 5.858896+7 5.927000-5 5.888035+7 5.956621-5 5.994372+7 5.985000-5 6.079507+7 6.015000-5 6.150562+7 6.030000-5 6.176791+7 6.040000-5 6.186311+7 6.070000-5 6.196521+7 6.095369-5 6.174933+7 6.100000-5 6.171064+7 6.130000-5 6.129100+7 6.165950-5 6.059355+7 6.200000-5 5.976978+7 6.237348-5 5.871646+7 6.240000-5 5.864263+7 6.280000-5 5.739076+7 6.326500-5 5.582993+7 6.330000-5 5.570840+7 6.350000-5 5.496211+7 6.400000-5 5.305355+7 6.456542-5 5.089713+7 6.500000-5 4.943879+7 6.606934-5 4.579024+7 6.683439-5 4.334504+7 6.760830-5 4.103101+7 7.161434-5 3.119232+7 7.244360-5 2.951188+7 7.673615-5 2.252144+7 7.943282-5 1.915341+7 8.035261-5 1.814727+7 8.222426-5 1.627048+7 8.511380-5 1.381507+7 8.709636-5 1.237333+7 8.810489-5 1.171032+7 9.300000-5 9.044555+6 9.440609-5 8.416963+6 1.000000-4 6.391008+6 1.011579-4 6.049118+6 1.083927-4 4.378895+6 1.120000-4 3.759211+6 1.135011-4 3.533366+6 1.161449-4 3.174869+6 1.178200-4 2.970895+6 1.178200-4 3.707839+6 1.184000-4 3.652402+6 1.190000-4 3.592657+6 1.197000-4 3.520406+6 1.202264-4 3.464448+6 1.205000-4 3.435676+6 1.216186-4 3.315711+6 1.230269-4 3.166413+6 1.244515-4 3.020421+6 1.247000-4 2.995880+6 1.260000-4 2.869570+6 1.273503-4 2.744872+6 1.303167-4 2.491437+6 1.318257-4 2.373410+6 1.333521-4 2.260881+6 1.350000-4 2.147101+6 1.380384-4 1.954876+6 1.400000-4 1.842620+6 1.428894-4 1.693595+6 1.450000-4 1.594723+6 1.462177-4 1.541764+6 1.487800-4 1.437459+6 1.487800-4 1.808709+6 1.492500-4 1.807641+6 1.496236-4 1.804366+6 1.500000-4 1.798980+6 1.505000-4 1.788969+6 1.510000-4 1.776070+6 1.515000-4 1.760720+6 1.520000-4 1.743688+6 1.528000-4 1.713829+6 1.531087-4 1.701468+6 1.535000-4 1.686097+6 1.548817-4 1.629751+6 1.570000-4 1.545653+6 1.603245-4 1.423964+6 1.621810-4 1.363012+6 1.640590-4 1.304987+6 1.659587-4 1.250690+6 1.670000-4 1.222805+6 1.678804-4 1.200187+6 1.720000-4 1.103394+6 1.724100-4 1.094635+6 1.740000-4 1.062080+6 1.760000-4 1.023428+6 1.780000-4 9.868217+5 1.800000-4 9.530157+5 1.820000-4 9.216912+5 1.862087-4 8.615516+5 1.865000-4 8.576872+5 1.900000-4 8.139986+5 1.905461-4 8.074915+5 1.949845-4 7.595904+5 1.950000-4 7.594311+5 1.962700-4 7.469923+5 1.962700-4 7.954219+5 1.968000-4 7.908499+5 1.980000-4 7.811943+5 1.990000-4 7.732263+5 1.995262-4 7.690059+5 2.002000-4 7.638231+5 2.005000-4 7.615801+5 2.023900-4 7.473620+5 2.041738-4 7.341746+5 2.065380-4 7.181173+5 2.089296-4 7.022389+5 2.090000-4 7.018093+5 2.112000-4 6.883649+5 2.112000-4 8.171929+5 2.112900-4 8.197543+5 2.115000-4 8.244908+5 2.117000-4 8.286609+5 2.119500-4 8.333211+5 2.120000-4 8.340940+5 2.123000-4 8.388604+5 2.126000-4 8.427870+5 2.129000-4 8.459656+5 2.133000-4 8.492118+5 2.137000-4 8.513502+5 2.137962-4 8.515951+5 2.142000-4 8.527897+5 2.147000-4 8.530189+5 2.150000-4 8.524927+5 2.153000-4 8.519491+5 2.160000-4 8.492524+5 2.168300-4 8.446378+5 2.175000-4 8.401556+5 2.179300-4 8.368671+5 2.179300-4 9.407313+5 2.179900-4 9.420766+5 2.182700-4 9.459858+5 2.185000-4 9.486697+5 2.187000-4 9.507204+5 2.187762-4 9.513248+5 2.190000-4 9.531945+5 2.192000-4 9.543657+5 2.195000-4 9.555841+5 2.198000-4 9.562819+5 2.202000-4 9.563373+5 2.206000-4 9.555719+5 2.211000-4 9.537039+5 2.213095-4 9.525611+5 2.216500-4 9.507374+5 2.222000-4 9.469842+5 2.230000-4 9.405492+5 2.238721-4 9.326420+5 2.240000-4 9.315571+5 2.241000-4 9.307354+5 2.260000-4 9.139430+5 2.264644-4 9.101344+5 2.280000-4 8.976836+5 2.290868-4 8.896714+5 2.295000-4 8.868587+5 2.300000-4 8.837237+5 2.308000-4 8.788524+5 2.313000-4 8.760975+5 2.317395-4 8.738603+5 2.323000-4 8.710808+5 2.327000-4 8.693598+5 2.340000-4 8.643082+5 2.344229-4 8.629594+5 2.350000-4 8.614473+5 2.355000-4 8.601982+5 2.358000-4 8.596477+5 2.371374-4 8.577487+5 2.373000-4 8.576240+5 2.385000-4 8.572845+5 2.390000-4 8.574592+5 2.400000-4 8.583185+5 2.405000-4 8.591916+5 2.419800-4 8.625752+5 2.420000-4 8.626372+5 2.435000-4 8.681128+5 2.442000-4 8.710908+5 2.450000-4 8.751544+5 2.454709-4 8.778074+5 2.465000-4 8.839892+5 2.483133-4 8.974858+5 2.485000-4 8.989405+5 2.490000-4 9.031456+5 2.507000-4 9.189487+5 2.515000-4 9.271342+5 2.520000-4 9.326176+5 2.530000-4 9.439664+5 2.540973-4 9.573706+5 2.550000-4 9.688922+5 2.570396-4 9.982692+5 2.580000-4 1.012941+6 2.600160-4 1.046431+6 2.615000-4 1.073306+6 2.643600-4 1.130592+6 2.650000-4 1.144299+6 2.660725-4 1.168052+6 2.661100-4 1.168901+6 2.730000-4 1.348472+6 2.770000-4 1.471376+6 2.780000-4 1.504820+6 2.800000-4 1.572911+6 2.818383-4 1.638580+6 2.830000-4 1.680665+6 2.851018-4 1.760656+6 2.884032-4 1.888907+6 2.890000-4 1.913365+6 2.900000-4 1.952500+6 2.930000-4 2.075858+6 2.951209-4 2.162384+6 2.965000-4 2.220983+6 3.000000-4 2.367409+6 3.019952-4 2.449290+6 3.040000-4 2.534742+6 3.080000-4 2.700971+6 3.090295-4 2.742114+6 3.115000-4 2.843537+6 3.126079-4 2.888725+6 3.130000-4 2.904907+6 3.162278-4 3.034398+6 3.180000-4 3.105488+6 3.200000-4 3.183025+6 3.235937-4 3.322358+6 3.240000-4 3.338473+6 3.280000-4 3.486051+6 3.300000-4 3.559299+6 3.311311-4 3.598751+6 3.335000-4 3.682545+6 3.350000-4 3.734036+6 3.390000-4 3.865057+6 3.410000-4 3.928476+6 3.430000-4 3.987793+6 3.450000-4 4.047866+6 3.470000-4 4.105198+6 3.507519-4 4.205396+6 3.510000-4 4.211715+6 3.530000-4 4.262911+6 3.548134-4 4.305412+6 3.550000-4 4.309796+6 3.589219-4 4.397523+6 3.600000-4 4.421824+6 3.672823-4 4.558746+6 3.680000-4 4.571032+6 3.700000-4 4.601102+6 3.758374-4 4.689180+6 3.780000-4 4.714446+6 3.801894-4 4.740010+6 3.845918-4 4.791513+6 3.850000-4 4.795752+6 3.890451-4 4.831237+6 3.935501-4 4.870741+6 3.981072-4 4.898398+6 4.000000-4 4.909845+6 4.027170-4 4.926282+6 4.030000-4 4.927984+6 4.050000-4 4.937568+6 4.120975-4 4.959849+6 4.150000-4 4.968867+6 4.168694-4 4.972313+6 4.265795-4 4.975797+6 4.280000-4 4.976304+6 4.315191-4 4.968628+6 4.365158-4 4.957847+6 4.390000-4 4.952512+6 4.415704-4 4.944718+6 4.518559-4 4.900724+6 4.570882-4 4.873986+6 4.623810-4 4.841879+6 4.677351-4 4.809938+6 4.731513-4 4.774271+6 4.786301-4 4.734207+6 4.841724-4 4.694354+6 4.850000-4 4.688462+6 4.897788-4 4.651648+6 4.930000-4 4.627153+6 4.954502-4 4.606680+6 4.992800-4 4.575062+6 4.992800-4 4.738840+6 5.007000-4 4.737922+6 5.052000-4 4.733019+6 5.069907-4 4.729031+6 5.092600-4 4.723528+6 5.100000-4 4.721925+6 5.150000-4 4.700372+6 5.155000-4 4.697947+6 5.188000-4 4.676742+6 5.220000-4 4.656726+6 5.230000-4 4.649889+6 5.248075-4 4.636421+6 5.270800-4 4.618566+6 5.270800-4 4.735651+6 5.302000-4 4.719519+6 5.308844-4 4.715872+6 5.370318-4 4.684759+6 5.400000-4 4.665009+6 5.432503-4 4.645688+6 5.435000-4 4.644110+6 5.495409-4 4.600973+6 5.500000-4 4.597760+6 5.559043-4 4.557313+6 5.580000-4 4.542781+6 5.623413-4 4.511250+6 5.688529-4 4.461989+6 5.700000-4 4.453024+6 5.754399-4 4.409589+6 5.800000-4 4.374143+6 5.821032-4 4.357405+6 5.888437-4 4.304821+6 5.900000-4 4.295972+6 5.950000-4 4.256245+6 5.956621-4 4.250966+6 6.000000-4 4.214727+6 6.050000-4 4.172233+6 6.200000-4 4.048544+6 6.237348-4 4.018672+6 6.350000-4 3.926906+6 6.382635-4 3.900178+6 6.456542-4 3.840980+6 6.531306-4 3.782854+6 6.600000-4 3.731072+6 6.606934-4 3.725681+6 6.683439-4 3.666406+6 6.700000-4 3.653810+6 6.850000-4 3.540178+6 7.000000-4 3.431124+6 7.079458-4 3.374211+6 7.080000-4 3.373819+6 7.161434-4 3.315397+6 7.244360-4 3.257318+6 7.328245-4 3.200432+6 7.400000-4 3.153223+6 7.413102-4 3.144694+6 7.417100-4 3.142027+6 7.417100-4 3.334037+6 7.500000-4 3.278010+6 7.700000-4 3.146216+6 7.720000-4 3.133180+6 7.762471-4 3.106659+6 7.800000-4 3.083407+6 7.852356-4 3.051171+6 7.943282-4 2.995265+6 8.000000-4 2.961592+6 8.035261-4 2.940577+6 8.050000-4 2.931876+6 8.128305-4 2.885780+6 8.200000-4 2.844412+6 8.280000-4 2.799013+6 8.317638-4 2.778287+6 8.413951-4 2.725333+6 8.500000-4 2.679506+6 8.511380-4 2.673505+6 8.609938-4 2.621276+6 8.906500-4 2.473069+6 8.906500-4 2.506471+6 8.912509-4 2.503621+6 9.015711-4 2.454266+6 9.120108-4 2.405577+6 9.225714-4 2.357352+6 9.332543-4 2.310185+6 9.350000-4 2.302636+6 9.440609-4 2.263863+6 9.549926-4 2.218572+6 9.850000-4 2.098819+6 9.885531-4 2.085187+6 9.930000-4 2.068243+6 1.000000-3 2.041864+6 1.011579-3 1.998971+6 1.021400-3 1.963741+6 1.021400-3 2.001434+6 1.030000-3 1.971276+6 1.035142-3 1.953338+6 1.040000-3 1.936526+6 1.059254-3 1.872187+6 1.071519-3 1.832638+6 1.083927-3 1.793726+6 1.096478-3 1.755760+6 1.109175-3 1.718390+6 1.110000-3 1.716006+6 1.122018-3 1.681330+6 1.130000-3 1.658952+6 1.150000-3 1.605005+6 1.161449-3 1.574840+6 1.174898-3 1.540564+6 1.188502-3 1.506923+6 1.190000-3 1.503291+6 1.202264-3 1.474015+6 1.210000-3 1.455802+6 1.216186-3 1.441487+6 1.230269-3 1.409415+6 1.244515-3 1.378127+6 1.250000-3 1.366270+6 1.258925-3 1.347184+6 1.288250-3 1.287444+6 1.300000-3 1.264711+6 1.303167-3 1.258637+6 1.318257-3 1.229997+6 1.333521-3 1.202078+6 1.348963-3 1.174693+6 1.350000-3 1.172883+6 1.364583-3 1.147898+6 1.412538-3 1.071020+6 1.428894-3 1.046445+6 1.445440-3 1.022261+6 1.462177-3 9.985666+5 1.470000-3 9.877601+5 1.479108-3 9.754036+5 1.500000-3 9.477945+5 1.513561-3 9.305459+5 1.515000-3 9.287267+5 1.531087-3 9.087502+5 1.548817-3 8.875046+5 1.566751-3 8.664800+5 1.603245-3 8.260473+5 1.621810-3 8.066261+5 1.659587-3 7.686993+5 1.678804-3 7.503727+5 1.698244-3 7.324685+5 1.717908-3 7.148873+5 1.737801-3 6.977575+5 1.757924-3 6.810593+5 1.778279-3 6.646628+5 1.800000-3 6.477500+5 1.819701-3 6.329096+5 1.840772-3 6.176209+5 1.862087-3 6.026596+5 1.883649-3 5.879885+5 1.905461-3 5.736979+5 1.927525-3 5.596581+5 1.949845-3 5.459811+5 1.950000-3 5.458879+5 1.972423-3 5.325133+5 2.000000-3 5.167470+5 2.041738-3 4.942176+5 2.065380-3 4.821231+5 2.070000-3 4.798113+5 2.089296-3 4.701989+5 2.113489-3 4.585418+5 2.137962-3 4.470993+5 2.238721-3 4.041947+5 2.264644-3 3.941655+5 2.290868-3 3.843070+5 2.317395-3 3.747121+5 2.371374-3 3.560142+5 2.400000-3 3.466352+5 2.426610-3 3.382406+5 2.454709-3 3.297122+5 2.483133-3 3.213483+5 2.511886-3 3.132069+5 2.540973-3 3.052251+5 2.630268-3 2.824993+5 2.650000-3 2.778256+5 2.660725-3 2.753265+5 2.691535-3 2.683029+5 2.722701-3 2.614105+5 2.754229-3 2.547005+5 2.786121-3 2.481633+5 2.786200-3 2.481473+5 2.786200-3 6.524603+5 2.818383-3 6.341586+5 2.857000-3 6.131552+5 2.875000-3 6.044561+5 2.884032-3 5.992175+5 2.890000-3 5.957907+5 2.910000-3 5.827897+5 2.911400-3 5.820588+5 2.911400-3 8.402615+5 2.917427-3 8.358415+5 2.933000-3 8.245448+5 2.951209-3 8.123498+5 2.970000-3 8.000204+5 2.995000-3 7.834547+5 3.000000-3 7.796095+5 3.019952-3 7.645202+5 3.030000-3 7.572277+5 3.050000-3 7.441810+5 3.090295-3 7.207387+5 3.126079-3 7.003456+5 3.150000-3 6.868710+5 3.198895-3 6.608395+5 3.235937-3 6.420312+5 3.311311-3 6.059539+5 3.349654-3 5.883447+5 3.398500-3 5.668760+5 3.398500-3 6.582171+5 3.427678-3 6.448450+5 3.500000-3 6.130264+5 3.507519-3 6.098487+5 3.548134-3 5.930918+5 3.589219-3 5.767845+5 3.590000-3 5.764808+5 3.630781-3 5.607075+5 3.650000-3 5.534898+5 3.672823-3 5.450819+5 3.715352-3 5.298854+5 3.758374-3 5.150203+5 3.801894-3 5.005761+5 3.845918-3 4.865527+5 3.900000-3 4.699277+5 3.935501-3 4.594377+5 3.981072-3 4.464513+5 3.991800-3 4.434705+5 3.991800-3 4.707940+5 4.000000-3 4.684844+5 4.027170-3 4.609475+5 4.073803-3 4.483610+5 4.135000-3 4.325988+5 4.150000-3 4.288293+5 4.168694-3 4.241959+5 4.190000-3 4.189687+5 4.216965-3 4.125132+5 4.285500-3 3.967350+5 4.285500-3 4.136986+5 4.300000-3 4.104026+5 4.315191-3 4.069509+5 4.319000-3 4.060847+5 4.415704-3 3.849455+5 4.518559-3 3.641677+5 4.623810-3 3.445653+5 4.677351-3 3.351847+5 4.731513-3 3.260164+5 4.800000-3 3.148132+5 4.897788-3 2.997121+5 4.900000-3 2.993829+5 4.954502-3 2.914284+5 5.011872-3 2.833827+5 5.069907-3 2.755594+5 5.128614-3 2.679349+5 5.188000-3 2.605321+5 5.248075-3 2.532982+5 5.300000-3 2.472406+5 5.432503-3 2.326952+5 5.495409-3 2.262022+5 5.500000-3 2.257383+5 5.559043-3 2.198934+5 5.623413-3 2.137380+5 5.688529-3 2.077642+5 5.800000-3 1.980741+5 5.821032-3 1.963183+5 5.888437-3 1.908422+5 5.900000-3 1.899189+5 5.956621-3 1.854493+5 6.025596-3 1.801696+5 6.095369-3 1.750486+5 6.100000-3 1.747156+5 6.165950-3 1.700712+5 6.237348-3 1.652432+5 6.309573-3 1.605488+5 6.382635-3 1.559959+5 6.500000-3 1.490463+5 6.531306-3 1.472703+5 6.606934-3 1.431036+5 6.683439-3 1.390502+5 6.760830-3 1.351134+5 6.918310-3 1.275813+5 7.000000-3 1.239093+5 7.079458-3 1.204695+5 7.161434-3 1.170552+5 7.328245-3 1.104371+5 7.413102-3 1.072726+5 7.498942-3 1.042033+5 7.500000-3 1.041663+5 7.585776-3 1.012069+5 7.673615-3 9.829646+4 7.762471-3 9.547415+4 7.852356-3 9.272352+4 8.000000-3 8.842615+4 8.035261-3 8.744269+4 8.222426-3 8.247439+4 8.317638-3 8.010305+4 8.413951-3 7.779128+4 8.511380-3 7.554798+4 8.609938-3 7.337259+4 8.810489-3 6.920715+4 8.912509-3 6.721840+4 9.000000-3 6.557217+4 9.015711-3 6.528273+4 9.120108-3 6.340131+4 9.225714-3 6.155447+4 9.332543-3 5.976420+4 9.440609-3 5.802381+4 9.500000-3 5.709771+4 9.549926-3 5.633501+4 9.660509-3 5.469047+4 9.772372-3 5.309657+4 1.000000-2 5.005340+4 1.011579-2 4.859388+4 1.035142-2 4.580447+4 1.040000-2 4.525757+4 1.047129-2 4.446884+4 1.059254-2 4.316574+4 1.071519-2 4.190201+4 1.083927-2 4.067625+4 1.096478-2 3.948817+4 1.109175-2 3.833639+4 1.135011-2 3.613727+4 1.150000-2 3.493427+4 1.161449-2 3.404789+4 1.174898-2 3.304717+4 1.188502-2 3.207277+4 1.190000-2 3.196796+4 1.202264-2 3.112750+4 1.230269-2 2.931754+4 1.258925-2 2.761775+4 1.273503-2 2.680690+4 1.288250-2 2.602031+4 1.300800-2 2.537548+4 1.303167-2 2.525586+4 1.318257-2 2.451178+4 1.333521-2 2.378766+4 1.350000-2 2.303865+4 1.412538-2 2.047293+4 1.420000-2 2.019380+4 1.421500-2 2.013831+4 1.421500-2 4.965655+4 1.428894-2 4.903277+4 1.438000-2 4.827989+4 1.445440-2 4.761850+4 1.450000-2 4.721933+4 1.462177-2 4.617365+4 1.479108-2 4.476910+4 1.513561-2 4.208900+4 1.531087-2 4.081000+4 1.548817-2 3.956997+4 1.566751-2 3.836710+4 1.584893-2 3.718364+4 1.603245-2 3.603624+4 1.621810-2 3.492457+4 1.659587-2 3.280480+4 1.678804-2 3.179262+4 1.684000-2 3.152573+4 1.684000-2 4.418868+4 1.698244-2 4.322103+4 1.717908-2 4.193195+4 1.737801-2 4.068145+4 1.747300-2 4.010253+4 1.747300-2 4.635607+4 1.757924-2 4.565684+4 1.760000-2 4.552196+4 1.778279-2 4.434510+4 1.798871-2 4.306983+4 1.840772-2 4.063113+4 1.862087-2 3.946559+4 1.900000-2 3.750571+4 1.905461-2 3.723466+4 1.910000-2 3.701117+4 1.920000-2 3.652808+4 1.927525-2 3.616840+4 1.949845-2 3.513069+4 1.972423-2 3.412343+4 2.000000-2 3.292272+4 2.018366-2 3.215569+4 2.041738-2 3.121549+4 2.113489-2 2.855961+4 2.137962-2 2.772616+4 2.150000-2 2.732755+4 2.162719-2 2.691461+4 2.187762-2 2.612887+4 2.213095-2 2.536669+4 2.213400-2 2.535770+4 2.238721-2 2.462256+4 2.264644-2 2.390066+4 2.290868-2 2.320039+4 2.317395-2 2.252128+4 2.344229-2 2.186256+4 2.371374-2 2.122326+4 2.398833-2 2.059854+4 2.400000-2 2.057257+4 2.426610-2 1.998812+4 2.454709-2 1.939544+4 2.483133-2 1.882006+4 2.511886-2 1.826221+4 2.540973-2 1.772128+4 2.570396-2 1.719680+4 2.600160-2 1.668811+4 2.650000-2 1.588257+4 2.660725-2 1.571628+4 2.691535-2 1.525195+4 2.722701-2 1.480159+4 2.730000-2 1.469852+4 2.754229-2 1.436055+4 2.818383-2 1.351146+4 2.851018-2 1.310551+4 2.884032-2 1.271198+4 2.917427-2 1.233056+4 2.951209-2 1.196087+4 2.985383-2 1.160243+4 3.054921-2 1.091816+4 3.126079-2 1.027519+4 3.162278-2 9.968335+3 3.198895-2 9.670635+3 3.235937-2 9.380113+3 3.273407-2 9.098164+3 3.349654-2 8.559567+3 3.388442-2 8.302647+3 3.427678-2 8.053515+3 3.467369-2 7.810425+3 3.507519-2 7.573228+3 3.548134-2 7.343403+3 3.589219-2 7.120716+3 3.672823-2 6.695888+3 3.715352-2 6.493279+3 3.758374-2 6.296767+3 3.801894-2 6.106140+3 3.845918-2 5.920710+3 3.890451-2 5.741020+3 3.935501-2 5.566909+3 4.027170-2 5.234613+3 4.073803-2 5.075273+3 4.168694-2 4.771342+3 4.315191-2 4.349996+3 4.365158-2 4.217540+3 4.415704-2 4.089091+3 4.466836-2 3.963626+3 4.518559-2 3.841999+3 4.570882-2 3.724186+3 4.623810-2 3.610040+3 4.677351-2 3.499467+3 4.731513-2 3.392330+3 4.841724-2 3.187975+3 4.897788-2 3.090541+3 4.954502-2 2.996150+3 5.011872-2 2.904706+3 5.069907-2 2.815784+3 5.128614-2 2.729566+3 5.188000-2 2.646051+3 5.248075-2 2.565067+3 5.308844-2 2.486560+3 5.370318-2 2.409730+3 5.432503-2 2.335309+3 5.495409-2 2.263231+3 5.559043-2 2.193423+3 5.688529-2 2.060303+3 5.754399-2 1.996867+3 5.821032-2 1.935410+3 5.888437-2 1.875884+3 6.025596-2 1.762377+3 6.095369-2 1.708235+3 6.165950-2 1.655734+3 6.237348-2 1.604630+3 6.309573-2 1.554960+3 6.382635-2 1.506858+3 6.456542-2 1.460264+3 6.531306-2 1.415135+3 6.606934-2 1.371309+3 6.683439-2 1.328860+3 6.839116-2 1.247937+3 6.918310-2 1.209381+3 6.998420-2 1.172030+3 7.000000-2 1.171310+3 7.079458-2 1.135667+3 7.161434-2 1.100450+3 7.328245-2 1.033271+3 7.498942-2 9.701970+2 7.585776-2 9.401452+2 7.673615-2 9.110240+2 7.852356-2 8.554989+2 7.943282-2 8.290411+2 8.035261-2 8.033679+2 8.222426-2 7.544152+2 8.413951-2 7.082350+2 8.511380-2 6.861917+2 8.609938-2 6.648461+2 8.709636-2 6.441523+2 8.810489-2 6.241021+2 9.440609-2 5.164382+2 9.549926-2 5.004227+2 9.606800-2 4.923572+2 9.606800-2 2.258230+3 9.660509-2 2.223656+3 9.730000-2 2.179934+3 9.772372-2 2.158610+3 9.780000-2 2.154803+3 9.885531-2 2.092792+3 1.000000-1 2.037469+3 1.011580-1 1.976290+3 1.023293-1 1.916960+3 1.030000-1 1.884091+3 1.047129-1 1.807743+3 1.083927-1 1.657763+3 1.109175-1 1.560958+3 1.122019-1 1.514704+3 1.135011-1 1.469829+3 1.148154-1 1.426287+3 1.150000-1 1.420315+3 1.174898-1 1.342960+3 1.188502-1 1.303146+3 1.190000-1 1.298863+3 1.202264-1 1.264869+3 1.216186-1 1.227761+3 1.230269-1 1.191747+3 1.258925-1 1.122873+3 1.288250-1 1.057995+3 1.318257-1 9.968826+2 1.333521-1 9.676634+2 1.364583-1 9.117766+2 1.380384-1 8.846066+2 1.396368-1 8.582489+2 1.412538-1 8.326778+2 1.428894-1 8.078467+2 1.500000-1 7.110168+2 1.548817-1 6.536204+2 1.584893-1 6.152613+2 1.621810-1 5.791593+2 1.659587-1 5.451779+2 1.678804-1 5.289446+2 1.698244-1 5.131957+2 1.757924-1 4.687363+2 1.798871-1 4.412655+2 1.819701-1 4.281412+2 1.840772-1 4.154083+2 1.883649-1 3.910701+2 1.905461-1 3.794422+2 1.927525-1 3.681611+2 1.949845-1 3.572216+2 1.972423-1 3.466082+2 2.018366-1 3.263210+2 2.089296-1 2.980981+2 2.113489-1 2.892450+2 2.137962-1 2.806599+2 2.187762-1 2.642479+2 2.213095-1 2.564062+2 2.238721-1 2.487986+2 2.264644-1 2.414204+2 2.290868-1 2.342612+2 2.299100-1 2.320745+2 2.317395-1 2.273149+2 2.344229-1 2.205752+2 2.371374-1 2.140358+2 2.398833-1 2.076906+2 2.426610-1 2.015346+2 2.454709-1 1.955614+2 2.483133-1 1.898270+2 2.511886-1 1.842611+2 2.540973-1 1.788619+2 2.570396-1 1.736226+2 2.600160-1 1.685371+2 2.660725-1 1.588152+2 2.691535-1 1.541719+2 2.722701-1 1.496649+2 2.754229-1 1.452901+2 2.818383-1 1.369211+2 2.851018-1 1.329195+2 2.884032-1 1.290356+2 2.917427-1 1.252656+2 2.985383-1 1.181410+2 3.000000-1 1.166835+2 3.000060-1 1.166775+2 3.019952-1 1.147344+2 3.054921-1 1.114263+2 3.090295-1 1.082136+2 3.126079-1 1.050937+2 3.162278-1 1.020638+2 3.273407-1 9.349167+1 3.311311-1 9.080152+1 3.349654-1 8.818933+1 3.388442-1 8.565425+1 3.427678-1 8.323464+1 3.467369-1 8.088379+1 3.507519-1 7.859957+1 3.548134-1 7.637995+1 3.589219-1 7.422311+1 3.630781-1 7.212720+1 3.758374-1 6.618847+1 3.801894-1 6.432044+1 3.845918-1 6.250642+1 3.890451-1 6.074488+1 3.935501-1 5.906545+1 3.981072-1 5.743257+1 4.000000-1 5.677315+1 4.216965-1 4.992277+1 4.265795-1 4.854317+1 4.315191-1 4.720238+1 4.365158-1 4.589869+1 4.415705-1 4.463236+1 4.466836-1 4.340158+1 4.518559-1 4.222714+1 4.570882-1 4.108708+1 4.623810-1 3.997793+1 4.677351-1 3.889889+1 4.731513-1 3.784899+1 4.841724-1 3.583456+1 4.897788-1 3.486796+1 4.954502-1 3.392761+1 5.011872-1 3.301352+1 5.069907-1 3.212407+1 5.128614-1 3.127731+1 5.188000-1 3.045291+1 5.248075-1 2.965028+1 5.308844-1 2.887100+1 5.370318-1 2.811223+1 5.432503-1 2.737353+1 5.495409-1 2.665436+1 5.559043-1 2.595411+1 5.623413-1 2.527295+1 5.754399-1 2.396384+1 5.821032-1 2.334819+1 5.888437-1 2.274902+1 6.025596-1 2.159647+1 6.095369-1 2.104372+1 6.165950-1 2.050522+1 6.237348-1 1.998052+1 6.309573-1 1.946979+1 6.456542-1 1.848720+1 6.531306-1 1.801491+1 6.606935-1 1.756466+1 6.683439-1 1.712591+1 6.760830-1 1.669820+1 6.839117-1 1.628118+1 6.918310-1 1.587492+1 6.998420-1 1.547975+1 7.079458-1 1.509458+1 7.161434-1 1.471901+1 7.244360-1 1.435298+1 7.328245-1 1.399606+1 7.413102-1 1.364804+1 7.498942-1 1.331640+1 7.585776-1 1.299300+1 7.673615-1 1.267747+1 7.762471-1 1.236986+1 7.852356-1 1.206978+1 7.943282-1 1.177779+1 8.000000-1 1.160097+1 8.128305-1 1.121519+1 8.222427-1 1.094407+1 8.317638-1 1.067950+1 8.609938-1 9.941324+0 8.709636-1 9.707139+0 8.810489-1 9.478608+0 9.015711-1 9.038861+0 9.120108-1 8.826751+0 9.225714-1 8.619638+0 9.332543-1 8.417437+0 9.440609-1 8.225090+0 9.549926-1 8.037340+0 9.660509-1 7.854256+0 9.772372-1 7.675346+0 9.885531-1 7.500561+0 1.000000+0 7.330249+0 1.011579+0 7.163985+0 1.022000+0 7.019145+0 1.023293+0 7.001501+0 1.047129+0 6.687906+0 1.059254+0 6.536455+0 1.071519+0 6.390785+0 1.083927+0 6.248454+0 1.096478+0 6.109309+0 1.109175+0 5.973256+0 1.122018+0 5.840244+0 1.135011+0 5.710401+0 1.148154+0 5.583475+0 1.161449+0 5.459373+0 1.174898+0 5.338107+0 1.188502+0 5.219542+0 1.202264+0 5.103909+0 1.216186+0 4.990862+0 1.230269+0 4.880322+0 1.244515+0 4.772340+0 1.250000+0 4.732922+0 1.258925+0 4.669853+0 1.273503+0 4.569629+0 1.288250+0 4.471630+0 1.303167+0 4.375737+0 1.318257+0 4.281900+0 1.333521+0 4.190364+0 1.364583+0 4.013163+0 1.380384+0 3.927472+0 1.396368+0 3.843624+0 1.412538+0 3.761613+0 1.445440+0 3.606896+0 1.496236+0 3.386824+0 1.513561+0 3.316737+0 1.531087+0 3.248119+0 1.584893+0 3.050662+0 1.621810+0 2.929086+0 1.640590+0 2.870213+0 1.698244+0 2.700635+0 1.717908+0 2.646552+0 1.737801+0 2.593569+0 1.778279+0 2.490820+0 1.798871+0 2.440980+0 1.819701+0 2.393476+0 1.840772+0 2.346898+0 1.862087+0 2.301301+0 1.883649+0 2.256599+0 1.927525+0 2.169785+0 1.949845+0 2.127783+0 1.972423+0 2.086612+0 2.000000+0 2.038047+0 2.018366+0 2.006692+0 2.041738+0 1.967887+0 2.044000+0 1.964194+0 2.065380+0 1.930754+0 2.089296+0 1.894419+0 2.113489+0 1.858825+0 2.187762+0 1.756028+0 2.213095+0 1.723043+0 2.238721+0 1.690788+0 2.264644+0 1.659144+0 2.290868+0 1.628107+0 2.317395+0 1.597652+0 2.344229+0 1.567767+0 2.371374+0 1.539220+0 2.398833+0 1.511194+0 2.426610+0 1.483721+0 2.511886+0 1.404281+0 2.540973+0 1.378758+0 2.570396+0 1.353783+0 2.600160+0 1.329265+0 2.630268+0 1.305205+0 2.660725+0 1.281580+0 2.691535+0 1.258383+0 2.722701+0 1.236225+0 2.754229+0 1.214457+0 2.786121+0 1.193107+0 2.884032+0 1.131294+0 2.917427+0 1.111411+0 2.951209+0 1.091943+0 3.000000+0 1.064810+0 3.019952+0 1.054040+0 3.054921+0 1.035592+0 3.090295+0 1.017467+0 3.126079+0 9.996586-1 3.162278+0 9.826433-1 3.198895+0 9.659304-1 3.235937+0 9.495157-1 3.349654+0 9.019383-1 3.388442+0 8.866151-1 3.427678+0 8.716045-1 3.467369+0 8.568515-1 3.507519+0 8.423562-1 3.548134+0 8.281061-1 3.589219+0 8.140972-1 3.630781+0 8.003250-1 3.672823+0 7.871507-1 3.715352+0 7.742028-1 3.758374+0 7.614789-1 3.890451+0 7.245566-1 3.935501+0 7.126517-1 4.000000+0 6.962319-1 4.027170+0 6.895080-1 4.073803+0 6.782275-1 4.120975+0 6.671318-1 4.168694+0 6.562175-1 4.216965+0 6.454819-1 4.265795+0 6.352044-1 4.315191+0 6.250978-1 4.365158+0 6.151607-1 4.570882+0 5.769751-1 4.623810+0 5.678054-1 4.677351+0 5.588124-1 4.731513+0 5.499639-1 4.786301+0 5.412603-1 4.841724+0 5.326945-1 4.897788+0 5.242643-1 4.954502+0 5.159675-1 5.011872+0 5.080177-1 5.069907+0 5.001960-1 5.128614+0 4.925012-1 5.432503+0 4.557751-1 5.495409+0 4.487655-1 5.559043+0 4.418869-1 5.623413+0 4.351154-1 5.688529+0 4.284512-1 5.754399+0 4.218891-1 5.821032+0 4.154275-1 5.888437+0 4.090648-1 5.956621+0 4.029628-1 6.025596+0 3.969561-1 6.095369+0 3.910441-1 6.456542+0 3.627848-1 6.531306+0 3.573831-1 6.606934+0 3.520794-1 6.683439+0 3.468556-1 6.760830+0 3.417120-1 6.839116+0 3.366448-1 6.918310+0 3.316527-1 7.000000+0 3.266389-1 7.079458+0 3.220125-1 7.161434+0 3.173644-1 7.244360+0 3.127870-1 7.762471+0 2.866816-1 7.852356+0 2.825478-1 8.000000+0 2.760039-1 8.128305+0 2.705357-1 8.222427+0 2.666484-1 8.413951+0 2.590408-1 8.511380+0 2.553187-1 8.609938+0 2.516501-1 8.709636+0 2.481274-1 8.810489+0 2.446565-1 8.912509+0 2.412372-1 9.000000+0 2.383739-1 9.332543+0 2.280339-1 9.440609+0 2.248477-1 9.549926+0 2.217159-1 9.660509+0 2.186285-1 9.772372+0 2.155855-1 1.011579+1 2.067084-1 1.035142+1 2.009942-1 1.047129+1 1.981965-1 1.071519+1 1.928476-1 1.083927+1 1.902292-1 1.096478+1 1.876486-1 1.109175+1 1.851028-1 1.122018+1 1.825924-1 1.148154+1 1.776727-1 1.161449+1 1.752630-1 1.174898+1 1.728931-1 1.188502+1 1.705560-1 1.230269+1 1.637349-1 1.273503+1 1.571867-1 1.288250+1 1.550626-1 1.348963+1 1.469977-1 1.380384+1 1.431261-1 1.412538+1 1.393589-1 1.445440+1 1.356910-1 1.462177+1 1.338938-1 1.500000+1 1.299916-1 1.513561+1 1.286437-1 1.531087+1 1.269460-1 1.548817+1 1.252713-1 1.566751+1 1.236188-1 1.603245+1 1.204460-1 1.621810+1 1.188903-1 1.678804+1 1.143449-1 1.778279+1 1.071563-1 1.927525+1 9.784493-2 1.949845+1 9.658270-2 2.000000+1 9.385558-2 2.018366+1 9.289302-2 2.041738+1 9.169859-2 2.065380+1 9.054385-2 2.089296+1 8.940365-2 2.113489+1 8.827780-2 2.187762+1 8.498648-2 2.317395+1 7.977483-2 2.511886+1 7.301105-2 2.540973+1 7.209276-2 2.570396+1 7.118618-2 2.630268+1 6.940709-2 2.660725+1 6.853432-2 2.691535+1 6.767283-2 2.722701+1 6.682417-2 2.754229+1 6.600073-2 2.800000+1 6.483956-2 2.818383+1 6.438421-2 3.019952+1 5.977037-2 3.198895+1 5.618118-2 3.467369+1 5.151546-2 3.507519+1 5.088135-2 3.548134+1 5.025512-2 3.589219+1 4.963662-2 3.630781+1 4.902572-2 3.672823+1 4.842259-2 3.715352+1 4.782821-2 3.758374+1 4.725098-2 3.801894+1 4.668072-2 4.216965+1 4.185040-2 4.570882+1 3.844334-2 5.069907+1 3.446719-2 5.188000+1 3.364102-2 5.308844+1 3.283474-2 5.370318+1 3.243888-2 5.432503+1 3.204780-2 5.495409+1 3.166146-2 5.559043+1 3.127987-2 5.623413+1 3.090360-2 5.688529+1 3.053721-2 5.754399+1 3.017516-2 5.821032+1 2.981740-2 5.888437+1 2.946402-2 6.456542+1 2.678372-2 6.918310+1 2.493554-2 7.585776+1 2.266814-2 7.943282+1 2.161298-2 8.222427+1 2.085402-2 8.413951+1 2.036292-2 8.609938+1 1.988339-2 8.810489+1 1.941518-2 8.912509+1 1.918527-2 9.015711+1 1.895810-2 9.225714+1 1.851244-2 9.332543+1 1.829616-2 9.660509+1 1.766235-2 9.885531+1 1.725205-2 1.011579+2 1.685143-2 1.109175+2 1.533980-2 1.174898+2 1.446498-2 1.244515+2 1.364006-2 1.303167+2 1.301412-2 1.348963+2 1.256363-2 1.380384+2 1.227200-2 1.428894+2 1.184719-2 1.445440+2 1.170888-2 1.500000+2 1.127466-2 1.548817+2 1.091236-2 1.584893+2 1.065911-2 1.603245+2 1.053481-2 1.698244+2 9.934713-3 1.778279+2 9.482585-3 1.927525+2 8.740300-3 1.972423+2 8.539097-3 2.018366+2 8.342567-3 2.213095+2 7.600639-3 2.344229+2 7.170911-3 2.483133+2 6.765480-3 2.600160+2 6.457701-3 2.691535+2 6.236102-3 2.754229+2 6.092610-3 2.851018+2 5.883542-3 2.884032+2 5.815458-3 2.985383+2 5.615903-3 3.090295+2 5.423215-3 3.162278+2 5.298444-3 3.198895+2 5.237177-3 3.388442+2 4.941307-3 3.548134+2 4.717678-3 3.845918+2 4.350402-3 3.935501+2 4.250819-3 4.027170+2 4.153528-3 4.415704+2 3.786127-3 4.677351+2 3.573221-3 4.954502+2 3.372286-3 5.188000+2 3.219706-3 5.370318+2 3.109822-3 5.495409+2 3.038657-3 5.688529+2 2.934953-3 5.754399+2 2.901178-3 5.956621+2 2.802167-3 6.165950+2 2.706541-3 6.309573+2 2.644611-3 6.382635+2 2.614192-3 6.760830+2 2.467269-3 7.079458+2 2.356036-3 1.531087+3 1.087934-3 1.566751+3 1.063127-3 1.603245+3 1.038887-3 1.757924+3 9.473306-4 1.862087+3 8.942557-4 3.935501+3 4.226125-4 4.120975+3 4.035622-4 4.265795+3 3.898402-4 4.365158+3 3.809525-4 4.518559+3 3.679994-4 4.570882+3 3.637802-4 4.731513+3 3.514110-4 4.897788+3 3.394628-4 5.011872+3 3.317238-4 5.069907+3 3.279214-4 5.370318+3 3.095531-4 5.623413+3 2.956196-4 4.841724+4 3.432768-5 4.954502+4 3.354622-5 5.069907+4 3.278256-5 1.000000+5 1.661964-5 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 8.540000-6 8.540000-6 1.194000-5 8.540000-6 1.194000-5 1.006778-5 1.273503-5 1.017971-5 1.380384-5 1.027620-5 1.570000-5 1.035969-5 1.862087-5 1.040304-5 2.301000-5 1.042343-5 2.301000-5 1.167861-5 3.090295-5 1.144266-5 3.589219-5 1.135215-5 4.168694-5 1.132022-5 4.506000-5 1.133398-5 4.506000-5 3.138357-5 4.570882-5 3.250442-5 4.630000-5 3.370225-5 4.841724-5 3.848269-5 4.920000-5 4.001825-5 4.920000-5 4.124947-5 5.011872-5 4.241968-5 5.095000-5 4.323980-5 5.190000-5 4.392136-5 5.270000-5 4.432401-5 5.850000-5 4.636546-5 6.040000-5 4.671566-5 6.280000-5 4.679644-5 1.011579-4 4.594656-5 1.178200-4 4.544044-5 1.178200-4 5.433733-5 1.197000-4 5.504490-5 1.216186-4 5.548098-5 1.273503-4 5.618026-5 1.487800-4 5.800307-5 1.487800-4 6.499205-5 1.500000-4 6.580850-5 1.515000-4 6.638449-5 1.535000-4 6.673889-5 1.865000-4 6.869276-5 1.962700-4 6.906056-5 1.962700-4 7.274958-5 2.041738-4 7.383303-5 2.112000-4 7.440546-5 2.112000-4 7.980401-5 2.123000-4 8.087400-5 2.137962-4 8.171291-5 2.160000-4 8.219696-5 2.179300-4 8.228423-5 2.179300-4 8.544474-5 2.195000-4 8.618971-5 2.216500-4 8.650158-5 2.327000-4 8.622590-5 2.390000-4 8.670663-5 2.450000-4 8.778784-5 2.520000-4 8.967208-5 2.730000-4 9.654745-5 2.830000-4 9.929727-5 2.930000-4 1.013664-4 3.040000-4 1.029398-4 3.200000-4 1.043789-4 3.430000-4 1.055152-4 3.780000-4 1.062493-4 4.518559-4 1.066062-4 4.992800-4 1.065663-4 4.992800-4 1.093347-4 5.100000-4 1.105290-4 5.248075-4 1.113297-4 5.270800-4 1.113954-4 5.270800-4 1.134367-4 5.559043-4 1.152922-4 6.050000-4 1.173761-4 7.417100-4 1.217047-4 7.417100-4 1.291123-4 8.906500-4 1.341194-4 8.906500-4 1.360764-4 1.021400-3 1.403762-4 1.021400-3 1.436192-4 1.216186-3 1.497580-4 1.462177-3 1.561449-4 1.757924-3 1.624382-4 2.089296-3 1.681692-4 2.511886-3 1.740686-4 2.786200-3 1.772784-4 2.786200-3 2.594482-4 2.911400-3 2.592306-4 2.911400-3 2.754368-4 3.398500-3 2.753358-4 3.398500-3 2.955011-4 3.991800-3 2.984286-4 3.991800-3 3.087708-4 4.285500-3 3.110144-4 4.285500-3 3.206262-4 5.688529-3 3.322650-4 7.413102-3 3.435757-4 9.549926-3 3.544614-4 1.202264-2 3.641895-4 1.421500-2 3.710716-4 1.421500-2 4.610760-4 1.684000-2 4.631729-4 1.684000-2 4.810050-4 1.747300-2 4.814381-4 1.747300-2 5.169703-4 2.454709-2 5.303476-4 3.467369-2 5.439207-4 4.731513-2 5.560289-4 6.456542-2 5.678470-4 8.810489-2 5.789298-4 9.606800-2 5.818893-4 9.606800-2 5.299747-4 2.398833-1 5.334802-4 6.606935-1 5.354986-4 1.000000+5 5.357359-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.540000-6 0.0 1.178200-4 0.0 1.178200-4 1.58203-10 1.184000-4 1.63088-10 1.190000-4 1.67450-10 1.197000-4 1.71731-10 1.205000-4 1.75800-10 1.216186-4 1.80450-10 1.230269-4 1.85069-10 1.247000-4 1.89601-10 1.273503-4 1.95904-10 1.380384-4 2.18139-10 1.450000-4 2.33004-10 1.487800-4 2.41803-10 1.487800-4 1.053532-9 1.492500-4 1.092114-9 1.496236-4 1.118188-9 1.500000-4 1.140576-9 1.505000-4 1.164518-9 1.510000-4 1.183096-9 1.515000-4 1.197043-9 1.520000-4 1.207632-9 1.528000-4 1.218994-9 1.535000-4 1.224662-9 1.548817-4 1.229042-9 1.603245-4 1.224186-9 1.640590-4 1.217600-9 1.724100-4 1.212612-9 1.820000-4 1.208513-9 1.905461-4 1.198602-9 1.962700-4 1.186809-9 1.962700-4 1.224168-9 2.041738-4 1.215168-9 2.112000-4 1.199564-9 2.112000-4 7.549023-9 2.112900-4 7.681355-9 2.115000-4 7.936415-9 2.117000-4 8.162721-9 2.120000-4 8.465089-9 2.123000-4 8.738713-9 2.126000-4 8.976477-9 2.129000-4 9.183094-9 2.133000-4 9.418140-9 2.137962-4 9.644915-9 2.142000-4 9.794201-9 2.147000-4 9.931413-9 2.153000-4 1.004653-8 2.160000-4 1.012766-8 2.168300-4 1.016961-8 2.179300-4 1.015999-8 2.179300-4 9.168000-9 2.187762-4 8.995022-9 2.198000-4 8.833178-9 2.211000-4 8.695347-9 2.230000-4 8.573450-9 2.241000-4 8.527601-9 2.264644-4 8.482934-9 2.280000-4 8.481475-9 2.300000-4 8.526230-9 2.317395-4 8.599671-9 2.327000-4 8.655073-9 2.344229-4 8.783343-9 2.358000-4 8.911992-9 2.373000-4 9.080168-9 2.390000-4 9.312081-9 2.405000-4 9.547530-9 2.420000-4 9.803572-9 2.442000-4 1.023209-8 2.465000-4 1.073152-8 2.490000-4 1.131686-8 2.520000-4 1.207073-8 2.570396-4 1.340170-8 2.661100-4 1.580386-8 2.730000-4 1.747404-8 2.780000-4 1.852396-8 2.818383-4 1.921282-8 2.851018-4 1.971195-8 2.900000-4 2.033421-8 2.951209-4 2.084740-8 3.019952-4 2.135831-8 3.090295-4 2.173474-8 3.180000-4 2.208465-8 3.311311-4 2.239846-8 3.430000-4 2.254701-8 3.600000-4 2.263251-8 4.120975-4 2.265289-8 4.992800-4 2.247583-8 4.992800-4 2.304319-8 5.150000-4 2.333502-8 5.270800-4 2.340468-8 5.270800-4 2.563469-8 5.370318-4 2.618773-8 5.435000-4 2.648223-8 5.623413-4 2.709079-8 5.821032-4 2.761905-8 6.237348-4 2.838844-8 7.417100-4 3.045337-8 7.417100-4 3.895013-8 8.906500-4 4.246842-8 8.906500-4 4.487943-8 1.021400-3 4.830353-8 1.021400-3 5.225808-8 1.130000-3 5.534450-8 1.258925-3 5.865685-8 1.412538-3 6.228568-8 1.603245-3 6.636098-8 1.819701-3 7.052558-8 2.089296-3 7.508735-8 2.400000-3 7.971258-8 2.754229-3 8.434814-8 2.786200-3 8.473521-8 2.786200-3 1.024733-7 2.911400-3 1.028822-7 2.911400-3 2.976794-5 2.995000-3 2.981332-5 3.030000-3 2.948219-5 3.050000-3 2.939377-5 3.198895-3 2.935305-5 3.311311-3 2.938269-5 3.398500-3 2.931714-5 3.398500-3 2.909259-5 3.991800-3 2.878438-5 3.991800-3 3.206078-5 4.285500-3 3.225087-5 4.285500-3 3.270668-5 5.248075-3 3.329213-5 6.760830-3 3.398538-5 9.000000-3 3.475032-5 1.174898-2 3.542753-5 1.421500-2 3.589962-5 1.421500-2 2.717990-3 1.450000-2 2.720462-3 1.684000-2 2.698530-3 1.684000-2 3.936886-3 1.747300-2 3.943760-3 1.747300-2 4.108266-3 2.187762-2 4.150156-3 2.754229-2 4.178834-3 4.073803-2 4.204479-3 8.035261-2 4.210412-3 9.606800-2 4.207552-3 9.606800-2 6.784479-2 1.174898-1 6.841172-2 1.500000-1 6.896795-2 2.238721-1 6.953342-2 4.570882-1 7.014693-2 9.549926-1 7.072144-2 1.000000+5 7.074463-2 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 8.540000-6 0.0 1.194000-5 3.400000-6 1.194000-5 1.872222-6 1.216186-5 2.057731-6 1.244515-5 2.300374-6 1.310000-5 2.880920-6 1.380384-5 3.527641-6 1.462177-5 4.300353-6 1.584893-5 5.486128-6 1.862087-5 8.217830-6 2.301000-5 1.258657-5 2.301000-5 1.133139-5 3.235937-5 2.094936-5 4.168694-5 3.036672-5 4.506000-5 3.372602-5 4.506000-5 1.367643-5 4.540000-5 1.345388-5 4.570882-5 1.320440-5 4.602000-5 1.290495-5 4.657000-5 1.227863-5 4.800000-5 1.042950-5 4.841724-5 9.934554-6 4.870000-5 9.635778-6 4.920000-5 9.181751-6 4.920000-5 7.950528-6 4.954502-5 7.824083-6 4.980000-5 7.756196-6 5.011872-5 7.699045-6 5.040000-5 7.677446-6 5.080000-5 7.687547-6 5.130000-5 7.784688-6 5.160000-5 7.871905-6 5.190000-5 7.978642-6 5.232700-5 8.160784-6 5.315000-5 8.649871-6 5.610000-5 1.055084-5 5.760000-5 1.151759-5 5.870000-5 1.228046-5 5.956621-5 1.295934-5 6.070000-5 1.395619-5 6.200000-5 1.519497-5 6.760830-5 2.093118-5 9.440609-5 4.828014-5 1.178200-4 7.237956-5 1.178200-4 6.348252-5 1.197000-4 6.465492-5 1.230269-4 6.732627-5 1.333521-4 7.665579-5 1.487800-4 9.077669-5 1.487800-4 8.378689-5 1.500000-4 8.419036-5 1.520000-4 8.549365-5 1.548817-4 8.802606-5 1.905461-4 1.216773-4 1.962700-4 1.272082-4 1.962700-4 1.235192-4 2.065380-4 1.324816-4 2.112000-4 1.367933-4 2.112000-4 1.313884-4 2.126000-4 1.315010-4 2.147000-4 1.327010-4 2.179300-4 1.356356-4 2.179300-4 1.324761-4 2.198000-4 1.335218-4 2.230000-4 1.364838-4 2.340000-4 1.477192-4 2.420000-4 1.548213-4 2.520000-4 1.623158-4 2.780000-4 1.799757-4 2.900000-4 1.891662-4 3.040000-4 2.010387-4 3.300000-4 2.250076-4 3.801894-4 2.738924-4 4.992800-4 3.926912-4 4.992800-4 3.899222-4 5.248075-4 4.134544-4 5.270800-4 4.156612-4 5.270800-4 4.136176-4 6.050000-4 4.875958-4 7.417100-4 6.199748-4 7.417100-4 6.125587-4 8.906500-4 7.564881-4 8.906500-4 7.545288-4 1.021400-3 8.809755-4 1.021400-3 8.777286-4 1.678804-3 1.517859-3 2.786200-3 2.608837-3 2.786200-3 2.526650-3 2.911400-3 2.652067-3 2.911400-3 2.606195-3 3.398500-3 3.093847-3 3.398500-3 3.073906-3 3.991800-3 3.664587-3 3.991800-3 3.650969-3 4.285500-3 3.942235-3 4.285500-3 3.932167-3 1.318257-2 1.277886-2 1.421500-2 1.380803-2 1.421500-2 1.103593-2 1.684000-2 1.367830-2 1.684000-2 1.242211-2 1.747300-2 1.304780-2 1.747300-2 1.284776-2 3.054921-2 2.582280-2 9.606800-2 9.127856-2 9.606800-2 2.769323-2 9.730000-2 2.893092-2 1.011580-1 3.263396-2 1.122019-1 4.336107-2 1.500000-1 8.050023-2 2.660725-1 1.958338-1 2.691535+0 2.620264+0 1.000000+5 9.999993+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 9.606800-2 1.765873+3 9.730000-2 1.704494+3 9.780000-2 1.686016+3 9.885531-2 1.637631+3 1.000000-1 1.596478+3 1.030000-1 1.477482+3 1.083927-1 1.304276+3 1.190000-1 1.025196+3 1.364583-1 7.236668+2 2.454709-1 1.571880+2 2.917427-1 1.009264+2 3.388442-1 6.913897+1 3.890451-1 4.912207+1 4.466836-1 3.515739+1 5.069907-1 2.606069+1 5.754399-1 1.947143+1 6.531306-1 1.466032+1 7.413102-1 1.112272+1 8.317638-1 8.714740+0 9.332543-1 6.877926+0 1.059254+0 5.345794+0 1.244515+0 3.903460+0 1.412538+0 3.075945+0 1.584893+0 2.494140+0 1.798871+0 1.995709+0 2.044000+0 1.605914+0 2.344229+0 1.281796+0 2.691535+0 1.028849+0 3.126079+0 8.173108-1 3.630781+0 6.543427-1 4.216965+0 5.277420-1 4.954502+0 4.218530-1 5.888437+0 3.344535-1 7.000000+0 2.670600-1 8.609938+0 2.057496-1 1.047129+1 1.620441-1 1.288250+1 1.267782-1 1.566751+1 1.010770-1 2.041738+1 7.497882-2 2.722701+1 5.463998-2 3.715352+1 3.910766-2 5.623413+1 2.526901-2 9.225714+1 1.513685-2 1.698244+2 8.123125-3 3.388442+2 4.040419-3 6.760830+2 2.017400-3 5.370318+3 2.531110-4 1.000000+5 1.359000-5 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 9.606800-2 5.155000-4 1.000000+5 5.155000-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.606800-2 8.558800-2 1.000000+5 8.558800-2 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.606800-2 9.964500-3 1.000000+5 9.999991+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.747300-2 6.253534+3 1.910000-2 5.360040+3 1.972423-2 5.084837+3 2.162719-2 4.301550+3 2.400000-2 3.574800+3 2.754229-2 2.753533+3 3.427678-2 1.784764+3 3.801894-2 1.441186+3 4.415704-2 1.052870+3 5.308844-2 7.056297+2 6.165950-2 5.049956+2 7.000000-2 3.781740+2 8.222426-2 2.601169+2 9.660509-2 1.774891+2 1.150000-1 1.165532+2 1.412538-1 7.043367+1 2.660725-1 1.462104+1 3.273407-1 8.794973+0 3.890451-1 5.797765+0 4.518559-1 4.068260+0 5.248075-1 2.879036+0 6.025596-1 2.108013+0 6.918310-1 1.555396+0 7.852356-1 1.185228+0 8.810489-1 9.321828-1 9.885531-1 7.385107-1 1.188502+0 5.141852-1 1.318257+0 4.217196-1 1.496236+0 3.335021-1 1.698244+0 2.658945-1 1.927525+0 2.136366-1 2.213095+0 1.696634-1 2.540973+0 1.357679-1 2.917427+0 1.094276-1 3.388442+0 8.729613-2 3.935501+0 7.016907-2 4.623810+0 5.590672-2 5.495409+0 4.418459-2 6.531306+0 3.518977-2 7.852356+0 2.781989-2 9.440609+0 2.213826-2 1.161449+1 1.725636-2 1.513561+1 1.266891-2 2.018366+1 9.152060-3 2.691535+1 6.667413-3 3.672823+1 4.770856-3 5.559043+1 3.081874-3 9.015711+1 1.867791-3 1.584893+2 1.050043-3 3.162278+2 5.219780-4 6.309573+2 2.605502-4 5.011872+3 3.268625-5 1.000000+5 1.637700-6 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.747300-2 7.448300-4 1.000000+5 7.448300-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.747300-2 5.163200-3 1.000000+5 5.163200-3 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.747300-2 1.156497-2 1.000000+5 9.999999+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.684000-2 1.266295+4 1.760000-2 1.139800+4 1.920000-2 9.168500+3 2.137962-2 6.962100+3 2.371374-2 5.321700+3 2.722701-2 3.678800+3 3.198895-2 2.379000+3 4.027170-2 1.255000+3 5.011872-2 6.750300+2 6.237348-2 3.595900+2 7.943282-2 1.777800+2 1.258925-1 4.594400+1 1.698244-1 1.911129+1 2.113489-1 1.014500+1 2.511886-1 6.195133+0 2.917427-1 4.067754+0 3.349654-1 2.777723+0 3.845918-1 1.910998+0 4.365158-1 1.366259+0 4.954502-1 9.842573-1 5.559043-1 7.358635-1 6.237348-1 5.543277-1 6.839117-1 4.447667-1 7.673615-1 3.403563-1 8.609938-1 2.625069-1 9.549926-1 2.088708-1 1.022000+0 1.811025-1 1.122018+0 1.500234-1 1.230269+0 1.254384-1 1.364583+0 1.033875-1 1.621810+0 7.576740-2 1.840772+0 6.069948-2 2.089296+0 4.899117-2 2.398833+0 3.908640-2 2.754229+0 3.141677-2 3.198895+0 2.499103-2 3.715352+0 2.003107-2 4.315191+0 1.617331-2 5.069907+0 1.294170-2 6.025596+0 1.027027-2 7.161434+0 8.211638-3 8.810489+0 6.330099-3 1.083927+1 4.921371-3 1.380384+1 3.702359-3 1.678804+1 2.958195-3 2.187762+1 2.198326-3 3.019952+1 1.545890-3 4.216965+1 1.082448-3 6.456542+1 6.927136-4 1.109175+2 3.967238-4 2.213095+2 1.966077-4 4.415704+2 9.797450-5 1.757924+3 2.450726-5 1.000000+5 4.302200-7 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.684000-2 5.254000-4 1.000000+5 5.254000-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.684000-2 7.019900-3 1.000000+5 7.019900-3 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.684000-2 9.294700-3 1.000000+5 9.999999+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.421500-2 2.951824+4 1.438000-2 2.873779+4 1.566751-2 2.275596+4 1.972423-2 1.196478+4 2.213400-2 8.590983+3 2.730000-2 4.657800+3 3.467369-2 2.276994+3 4.315191-2 1.167086+3 5.308844-2 6.132129+2 6.531306-2 3.195162+2 8.413951-2 1.427946+2 1.548817-1 2.023132+1 1.927525-1 1.010575+1 2.238721-1 6.322643+0 2.600160-1 3.983432+0 2.985383-1 2.619800+0 3.388442-1 1.797327+0 3.801894-1 1.284859+0 4.265795-1 9.253177-1 4.731513-1 6.932406-1 5.248075-1 5.229643-1 5.821032-1 3.973788-1 6.456542-1 3.041679-1 7.161434-1 2.345634-1 7.943282-1 1.822968-1 8.709636-1 1.466901-1 9.440609-1 1.217365-1 1.000000+0 1.072052-1 1.071519+0 9.276822-2 1.161449+0 7.897759-2 1.258925+0 6.771208-2 1.396368+0 5.600477-2 1.737801+0 3.795918-2 1.972423+0 3.051873-2 2.264644+0 2.426790-2 2.600160+0 1.944280-2 3.000000+0 1.557200-2 3.467369+0 1.253089-2 4.027170+0 1.008404-2 4.731513+0 8.043400-3 5.623413+0 6.363707-3 6.683439+0 5.073162-3 8.128305+0 3.956733-3 9.660509+0 3.197264-3 1.188502+1 2.494249-3 1.531087+1 1.857147-3 2.018366+1 1.359367-3 2.660725+1 1.002767-3 3.630781+1 7.173464-4 5.495409+1 4.632920-4 8.810489+1 2.840696-4 1.500000+2 1.649500-4 2.985383+2 8.215863-5 5.956621+2 4.099955-5 4.731513+3 5.142857-6 1.000000+5 2.432500-7 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.421500-2 5.224800-4 1.000000+5 5.224800-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.421500-2 4.547800-3 1.000000+5 4.547800-3 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.421500-2 9.144720-3 1.000000+5 9.999999+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.285500-3 1.696361+4 4.731513-3 1.497157+4 5.011872-3 1.380624+4 5.432503-3 1.240036+4 5.800000-3 1.126348+4 6.500000-3 9.470460+3 7.079458-3 8.333571+3 7.585776-3 7.459860+3 9.332543-3 5.290250+3 1.047129-2 4.328098+3 1.202264-2 3.386036+3 1.412538-2 2.515398+3 1.584893-2 2.024051+3 1.862087-2 1.481815+3 2.213095-2 1.051011+3 2.650000-2 7.274780+2 3.162278-2 5.023144+2 3.715352-2 3.556149+2 4.415704-2 2.436408+2 5.188000-2 1.699293+2 6.095369-2 1.177045+2 7.328245-2 7.674436+1 8.609938-2 5.242448+1 1.047129-1 3.274187+1 1.318257-1 1.866966+1 1.621810-1 1.119400+1 2.540973-1 3.672198+0 3.162278-1 2.147023+0 3.758374-1 1.414566+0 4.415705-1 9.652027-1 5.069907-1 7.003342-1 5.821032-1 5.119318-1 6.606935-1 3.867591-1 7.498942-1 2.941999-1 8.609938-1 2.199087-1 9.549926-1 1.778720-1 1.122018+0 1.292914-1 1.273503+0 1.011768-1 1.445440+0 7.984352-2 1.621810+0 6.482910-2 1.840772+0 5.194427-2 2.089296+0 4.193299-2 2.398833+0 3.345111-2 2.754229+0 2.688135-2 3.162278+0 2.175371-2 3.672823+0 1.742641-2 4.265795+0 1.406240-2 5.011872+0 1.124655-2 5.956621+0 8.920935-3 7.079458+0 7.129066-3 8.709636+0 5.493122-3 1.071519+1 4.268762-3 1.348963+1 3.253544-3 1.621810+1 2.632043-3 2.113489+1 1.954068-3 2.818383+1 1.425335-3 3.801894+1 1.033487-3 5.821032+1 6.600831-4 9.885531+1 3.818457-4 1.972423+2 1.889914-4 3.935501+2 9.411719-5 1.566751+3 2.353131-5 4.954502+4 7.426499-7 1.000000+5 3.680600-7 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.285500-3 5.454200-4 1.000000+5 5.454200-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.285500-3 4.336700-5 1.000000+5 4.336700-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.285500-3 3.696713-3 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 3.991800-3 2.732348+4 4.135000-3 2.646820+4 4.190000-3 2.604040+4 4.300000-3 2.532280+4 4.800000-3 2.212480+4 5.069907-3 2.055136+4 5.688529-3 1.734748+4 6.237348-3 1.506507+4 6.606934-3 1.374130+4 7.000000-3 1.247612+4 8.317638-3 9.194157+3 8.912509-3 8.081871+3 1.040000-2 5.983940+3 1.135011-2 5.013336+3 1.318257-2 3.662527+3 1.450000-2 2.977840+3 1.659587-2 2.204106+3 1.900000-2 1.613786+3 2.113489-2 1.255287+3 2.426610-2 8.991710+2 2.818383-2 6.205300+2 3.273407-2 4.244329+2 3.801894-2 2.879398+2 4.466836-2 1.879962+2 5.248075-2 1.217944+2 6.237348-2 7.590793+1 7.585776-2 4.404974+1 9.549926-2 2.303073+1 1.927525-1 3.121489+0 2.398833-1 1.686515+0 2.851018-1 1.044726+0 3.311311-1 6.946688-1 3.801894-1 4.799181-1 4.365158-1 3.340569-1 4.954502-1 2.414540-1 5.559043-1 1.810033-1 6.237348-1 1.366469-1 6.998420-1 1.039374-1 7.762471-1 8.181523-2 8.709636-1 6.314831-2 9.440609-1 5.301471-2 1.023293+0 4.481338-2 1.122018+0 3.725674-2 1.250000+0 3.024288-2 1.396368+0 2.460734-2 1.640590+0 1.840674-2 1.862087+0 1.475680-2 2.113489+0 1.191691-2 2.426610+0 9.512280-3 2.786121+0 7.650114-3 3.235937+0 6.089024-3 3.758374+0 4.883373-3 4.365158+0 3.945006-3 5.128614+0 3.158383-3 6.095369+0 2.507829-3 7.244360+0 2.006001-3 8.912509+0 1.547117-3 1.109175+1 1.186893-3 1.445440+1 8.700115-4 1.927525+1 6.274839-4 2.540973+1 4.623148-4 3.507519+1 3.263348-4 5.188000+1 2.157596-4 7.943282+1 1.385931-4 1.303167+2 8.344313-5 2.600160+2 4.141158-5 5.188000+2 2.065238-5 4.120975+3 2.589250-6 1.000000+5 1.066500-7 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 3.991800-3 4.766300-4 1.000000+5 4.766300-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.991800-3 8.523800-5 1.000000+5 8.523800-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 3.991800-3 3.429932-3 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.398500-3 9.134105+4 3.590000-3 8.468373+4 4.027170-3 7.019149+4 4.300000-3 6.281000+4 5.011872-3 4.753409+4 5.559043-3 3.918405+4 5.956621-3 3.427308+4 7.161434-3 2.360634+4 7.762471-3 1.990398+4 9.120108-3 1.401333+4 1.000000-2 1.138356+4 1.150000-2 8.242360+3 1.300800-2 6.143086+3 1.462177-2 4.618848+3 1.678804-2 3.268184+3 1.905461-2 2.361255+3 2.150000-2 1.720688+3 2.454709-2 1.206906+3 2.818383-2 8.274521+2 3.235937-2 5.630382+2 3.758374-2 3.680436+2 4.365158-2 2.387262+2 5.069907-2 1.537281+2 6.025596-2 9.176541+1 7.161434-2 5.435718+1 8.709636-2 2.980286+1 1.148154-1 1.263739+1 1.757924-1 3.347682+0 2.213095-1 1.644531+0 2.600160-1 1.006880+0 3.000060-1 6.561312-1 3.427678-1 4.436963-1 3.890451-1 3.082612-1 4.365158-1 2.229817-1 4.897788-1 1.625155-1 5.432503-1 1.231165-1 6.025596-1 9.391994-2 6.683439-1 7.218216-2 7.413102-1 5.588112-2 8.609938-1 3.895825-2 9.225714-1 3.317965-2 9.772372-1 2.919479-2 1.047129+0 2.524184-2 1.135011+0 2.145243-2 1.244515+0 1.795167-2 1.380384+0 1.482722-2 1.717908+0 1.003886-2 1.949845+0 8.065899-3 2.213095+0 6.531088-3 2.540973+0 5.226175-3 2.917427+0 4.212290-3 3.388442+0 3.360420-3 3.935501+0 2.701168-3 4.623810+0 2.152153-3 5.495409+0 1.700886-3 6.531306+0 1.354635-3 7.852356+0 1.070948-3 9.440609+0 8.522232-4 1.161449+1 6.642977-4 1.513561+1 4.877031-4 2.018366+1 3.523179-4 2.691535+1 2.566640-4 3.672823+1 1.836583-4 5.559043+1 1.186403-4 8.912509+1 7.275860-5 1.548817+2 4.138088-5 3.090295+2 2.056599-5 6.165950+2 1.026409-5 4.897788+3 1.287651-6 1.000000+5 6.304500-8 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.398500-3 4.206500-4 1.000000+5 4.206500-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.398500-3 2.769900-5 1.000000+5 2.769900-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.398500-3 2.950151-3 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 2.911400-3 2.582027+5 2.995000-3 2.411132+5 3.030000-3 2.304436+5 3.050000-3 2.257912+5 3.090295-3 2.186864+5 3.150000-3 2.080240+5 3.311311-3 1.837782+5 3.715352-3 1.354316+5 4.168694-3 9.898375+4 4.677351-3 7.177682+4 5.188000-3 5.333342+4 5.888437-3 3.675463+4 6.382635-3 2.882533+4 7.500000-3 1.759568+4 8.609938-3 1.139631+4 9.549926-3 8.190485+3 1.135011-2 4.664353+3 1.288250-2 3.059775+3 1.450000-2 2.053028+3 1.698244-2 1.193558+3 2.000000-2 6.740880+2 2.344229-2 3.836183+2 2.754229-2 2.147097+2 3.235937-2 1.192768+2 3.845918-2 6.307063+1 4.677351-2 3.039376+1 5.888437-2 1.277152+1 1.122019-1 1.109683+0 1.396368-1 4.877305-1 1.678804-1 2.457406-1 1.949845-1 1.417208-1 2.238721-1 8.590582-2 2.570396-1 5.242410-2 2.884032-1 3.498165-2 3.162278-1 2.546234-2 3.548134-1 1.724690-2 3.981072-1 1.177161-2 4.415705-1 8.397688-3 4.897788-1 6.032934-3 5.370318-1 4.526282-3 5.888437-1 3.417942-3 6.456542-1 2.596903-3 7.079458-1 1.987066-3 7.673615-1 1.582545-3 8.609938-1 1.149913-3 9.120108-1 9.871647-4 9.549926-1 8.791118-4 1.000000+0 7.880353-4 1.047129+0 7.112534-4 1.109175+0 6.301474-4 1.174898+0 5.620527-4 1.258925+0 4.934795-4 1.364583+0 4.269313-4 1.531087+0 3.494389-4 1.819701+0 2.576277-4 2.041738+0 2.116796-4 2.344229+0 1.686535-4 2.691535+0 1.353697-4 3.090295+0 1.094222-4 3.589219+0 8.755101-5 4.168694+0 7.057179-5 4.897788+0 5.638170-5 5.821032+0 4.467729-5 6.918310+0 3.566884-5 8.511380+0 2.745957-5 1.035142+1 2.161655-5 1.273503+1 1.690520-5 1.566751+1 1.329809-5 2.065380+1 9.738538-6 2.754229+1 7.099289-6 3.758374+1 5.082525-6 5.754399+1 3.245372-6 9.660509+1 1.899370-6 1.927525+2 9.398037-7 3.845918+2 4.679300-7 1.531087+3 1.169798-7 4.841724+4 3.691800-9 1.000000+5 1.788000-9 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 2.911400-3 3.119700-4 1.000000+5 3.119700-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.911400-3 9.664100-5 1.000000+5 9.664100-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 2.911400-3 2.502789-3 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.786200-3 4.043130+5 2.857000-3 3.787650+5 2.875000-3 3.733782+5 2.890000-3 3.674190+5 2.910000-3 3.579522+5 2.933000-3 3.500700+5 2.970000-3 3.393516+5 3.019952-3 3.244785+5 3.126079-3 2.972906+5 3.427678-3 2.325328+5 3.845918-3 1.696055+5 4.315191-3 1.226938+5 4.731513-3 9.409481+4 5.248075-3 6.932613+4 5.900000-3 4.873116+4 7.161434-3 2.671221+4 7.852356-3 1.992701+4 9.120108-3 1.228594+4 1.047129-2 7.781377+3 1.174898-2 5.284647+3 1.350000-2 3.286836+3 1.548817-2 2.037773+3 1.778279-2 1.250086+3 2.041738-2 7.611206+2 2.344229-2 4.601658+2 2.691535-2 2.763763+2 3.126079-2 1.580193+2 3.672823-2 8.590305+1 4.415704-2 4.246999+1 5.308844-2 2.084749+1 7.079458-2 6.787605+0 1.083927-1 1.285389+0 1.333521-1 5.757276-1 1.584893-1 2.969378-1 1.819701-1 1.759664-1 2.089296-1 1.050626-1 2.344229-1 6.882748-2 2.600160-1 4.735358-2 2.884032-1 3.282133-2 3.162278-1 2.385725-2 3.467369-1 1.745907-2 3.801894-1 1.286206-2 4.216965-1 9.189673-3 4.623810-1 6.864249-3 5.069907-1 5.166108-3 5.559043-1 3.919867-3 6.095369-1 2.997033-3 6.683439-1 2.307824-3 7.244360-1 1.848459-3 7.852356-1 1.490486-3 8.609938-1 1.170919-3 9.120108-1 1.013511-3 9.660509-1 8.835638-4 1.011579+0 7.965526-4 1.071519+0 7.044819-4 1.148154+0 6.125485-4 1.230269+0 5.363104-4 1.333521+0 4.624322-4 1.798871+0 2.724955-4 2.018366+0 2.237668-4 2.317395+0 1.781546-4 2.660725+0 1.429209-4 3.090295+0 1.134756-4 3.589219+0 9.079591-5 4.168694+0 7.318872-5 4.897788+0 5.847295-5 5.821032+0 4.633336-5 6.918310+0 3.699156-5 8.511380+0 2.847750-5 1.035142+1 2.241823-5 1.273503+1 1.753209-5 1.566751+1 1.379079-5 2.065380+1 1.010015-5 2.754229+1 7.362473-6 3.758374+1 5.270978-6 5.754399+1 3.365727-6 9.660509+1 1.969727-6 1.927525+2 9.746585-7 3.845918+2 4.852826-7 1.531087+3 1.213196-7 4.841724+4 3.828730-9 1.000000+5 1.854300-9 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.786200-3 3.098800-4 1.000000+5 3.098800-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.786200-3 1.133600-7 1.000000+5 1.133600-7 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.786200-3 2.476207-3 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.021400-3 3.769361+4 1.110000-3 3.600620+4 1.130000-3 3.547320+4 1.210000-3 3.331560+4 1.470000-3 2.721460+4 1.515000-3 2.631780+4 1.840772-3 2.083717+4 2.000000-3 1.870748+4 2.400000-3 1.459884+4 2.660725-3 1.259119+4 3.150000-3 9.794700+3 3.672823-3 7.713214+3 4.168694-3 6.297562+3 4.954502-3 4.732825+3 5.888437-3 3.524144+3 7.000000-3 2.600120+3 8.317638-3 1.904376+3 1.000000-2 1.353904+3 1.188502-2 9.758111+2 1.412538-2 6.983643+2 1.698244-2 4.851021+2 2.018366-2 3.421961+2 2.400000-2 2.394420+2 2.851018-2 1.666661+2 3.388442-2 1.150627+2 4.027170-2 7.883306+1 4.841724-2 5.225629+1 5.754399-2 3.525907+1 6.918310-2 2.299788+1 8.413951-2 1.449204+1 1.000000-1 9.579447+0 1.258925-1 5.460600+0 1.819701-1 2.198581+0 2.722701-1 8.103783-1 3.349654-1 4.883938-1 3.981072-1 3.225883-1 4.623810-1 2.268729-1 5.370318-1 1.607534-1 6.095369-1 1.209050-1 6.998420-1 8.931489-2 8.000000-1 6.713414-2 9.015711-1 5.232134-2 1.000000+0 4.244208-2 1.202264+0 2.956405-2 1.333521+0 2.426450-2 1.513561+0 1.920355-2 1.717908+0 1.532223-2 1.949845+0 1.231892-2 2.238721+0 9.788856-3 2.570396+0 7.837966-3 2.951209+0 6.321274-3 3.427678+0 5.045980-3 4.000000+0 4.030900-3 4.677351+0 3.235231-3 5.559043+0 2.558264-3 6.606934+0 2.038468-3 8.000000+0 1.598000-3 9.549926+0 1.283536-3 1.174898+1 1.000928-3 1.513561+1 7.449294-4 2.018366+1 5.381324-4 2.691535+1 3.920340-4 3.672823+1 2.805213-4 5.559043+1 1.812121-4 9.015711+1 1.098218-4 1.603245+2 6.102428-5 3.198895+2 3.033774-5 6.382635+2 1.514396-5 5.069907+3 1.899887-6 1.000000+5 9.629600-8 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.021400-3 3.125700-4 1.000000+5 3.125700-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.021400-3 2.582800-7 1.000000+5 2.582800-7 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.021400-3 7.085717-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 8.906500-4 3.340191+4 9.930000-4 3.307763+4 1.040000-3 3.289181+4 1.161449-3 3.186267+4 1.230269-3 3.110582+4 1.318257-3 3.002146+4 1.412538-3 2.882501+4 1.531087-3 2.728195+4 1.621810-3 2.613301+4 1.737801-3 2.463170+4 1.927525-3 2.231542+4 2.089296-3 2.055441+4 2.238721-3 1.903787+4 2.511886-3 1.659364+4 2.754229-3 1.476822+4 3.019952-3 1.304213+4 3.349654-3 1.127322+4 3.672823-3 9.834416+3 4.150000-3 8.141360+3 4.623810-3 6.831520+3 5.188000-3 5.628530+3 5.888437-3 4.507095+3 6.531306-3 3.733708+3 7.328245-3 3.009909+3 8.317638-3 2.355743+3 9.440609-3 1.829283+3 1.059254-2 1.443952+3 1.190000-2 1.129828+3 1.350000-2 8.600800+2 1.531087-2 6.505672+2 1.737801-2 4.878222+2 1.972423-2 3.633385+2 2.264644-2 2.614772+2 2.600160-2 1.867102+2 2.985383-2 1.323844+2 3.467369-2 9.048733+1 4.027170-2 6.137926+1 4.731513-2 4.009624+1 5.559043-2 2.600025+1 6.606934-2 1.622472+1 8.035261-2 9.434307+0 1.011580-1 4.944551+0 1.972423-1 7.464281-1 2.540973-1 3.684657-1 3.000060-1 2.334290-1 3.467369-1 1.579568-1 4.000000-1 1.082018-1 4.570882-1 7.654087-2 5.188000-1 5.552206-2 5.821032-1 4.176530-2 6.531306-1 3.164209-2 7.328245-1 2.415557-2 8.317638-1 1.810352-2 9.120108-1 1.476889-2 9.885531-1 1.244385-2 1.083927+0 1.031741-2 1.202264+0 8.422933-3 1.333521+0 6.926685-3 1.513561+0 5.498055-3 1.737801+0 4.300512-3 1.972423+0 3.458932-3 2.264644+0 2.750341-3 2.600160+0 2.203516-3 3.000000+0 1.764900-3 3.467369+0 1.420220-3 4.027170+0 1.142898-3 4.731513+0 9.116213-4 5.623413+0 7.212495-4 6.683439+0 5.749856-4 8.128305+0 4.484492-4 9.660509+0 3.623748-4 1.174898+1 2.865659-4 1.513561+1 2.132729-4 2.018366+1 1.540605-4 2.660725+1 1.136539-4 3.630781+1 8.130401-5 5.432503+1 5.314533-5 8.609938+1 3.296941-5 1.428894+2 1.964076-5 2.851018+2 9.754460-6 5.688529+2 4.866756-6 4.518559+3 6.103779-7 1.000000+5 2.756900-8 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 8.906500-4 2.809700-4 1.000000+5 2.809700-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 8.906500-4 2.233900-7 1.000000+5 2.233900-7 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 8.906500-4 6.094566-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 7.417100-4 1.920100+5 7.700000-4 1.864294+5 7.720000-4 1.856369+5 7.943282-4 1.813398+5 8.050000-4 1.798768+5 8.280000-4 1.749152+5 8.511380-4 1.712651+5 9.885531-4 1.493353+5 1.096478-3 1.337724+5 1.190000-3 1.219716+5 1.348963-3 1.049164+5 1.462177-3 9.448973+4 1.678804-3 7.830741+4 1.840772-3 6.862721+4 2.113489-3 5.571510+4 2.317395-3 4.822980+4 2.660725-3 3.847746+4 2.951209-3 3.227755+4 3.349654-3 2.584373+4 3.758374-3 2.096587+4 4.216965-3 1.690313+4 4.800000-3 1.316256+4 5.432503-3 1.028597+4 6.095369-3 8.126130+3 6.918310-3 6.225873+3 7.852356-3 4.735161+3 9.015711-3 3.483639+3 1.035142-2 2.541009+3 1.174898-2 1.889022+3 1.333521-2 1.394466+3 1.513561-2 1.022348+3 1.717908-2 7.444360+2 1.949845-2 5.384213+2 2.238721-2 3.751920+2 2.570396-2 2.594196+2 2.951209-2 1.780218+2 3.388442-2 1.212745+2 3.935501-2 7.939602+1 4.570882-2 5.158472+1 5.370318-2 3.216612+1 6.382635-2 1.923307+1 7.673615-2 1.102190+1 9.440609-2 5.843321+0 1.258925-1 2.397885+0 2.018366-1 5.551996-1 2.317395-1 3.595281-1 2.511886-1 2.806421-1 2.691535-1 2.283054-1 2.851018-1 1.932841-1 3.019952-1 1.643859-1 3.427678-1 1.134706-1 3.890451-1 7.890742-2 4.365158-1 5.711954-2 4.897788-1 4.165539-2 5.432503-1 3.156986-2 6.025596-1 2.408963-2 6.683439-1 1.851142-2 7.413102-1 1.432974-2 8.609938-1 1.000160-2 9.225714-1 8.526050-3 9.772372-1 7.507018-3 1.047129+0 6.493920-3 1.135011+0 5.520510-3 1.244515+0 4.619577-3 1.380384+0 3.814495-3 1.698244+0 2.634524-3 1.927525+0 2.115466-3 2.187762+0 1.711896-3 2.511886+0 1.369030-3 2.884032+0 1.102775-3 3.349654+0 8.792300-4 3.890451+0 7.063472-4 4.570882+0 5.624587-4 5.432503+0 4.442921-4 6.456542+0 3.536692-4 7.762471+0 2.794726-4 9.332543+0 2.222955-4 1.148154+1 1.732023-4 1.500000+1 1.267400-4 2.000000+1 9.154600-5 2.630268+1 6.769080-5 3.589219+1 4.841150-5 5.370318+1 3.163750-5 8.413951+1 1.985709-5 1.380384+2 1.196511-5 2.754229+2 5.940751-6 5.495409+2 2.963537-6 4.365158+3 3.716352-7 1.000000+5 1.621500-8 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 7.417100-4 2.503300-4 1.000000+5 2.503300-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.417100-4 1.779900-7 1.000000+5 1.779900-7 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.417100-4 4.912020-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.270800-4 1.170855+5 5.302000-4 1.251259+5 5.370318-4 1.419740+5 5.435000-4 1.554315+5 5.559043-4 1.705918+5 5.700000-4 1.851606+5 5.800000-4 1.927462+5 5.950000-4 1.994588+5 6.200000-4 2.071836+5 6.456542-4 2.128400+5 6.850000-4 2.205456+5 7.080000-4 2.237272+5 7.400000-4 2.259572+5 7.762471-4 2.269432+5 8.128305-4 2.262391+5 8.500000-4 2.240284+5 8.912509-4 2.201511+5 9.350000-4 2.149296+5 9.930000-4 2.067948+5 1.035142-3 2.003083+5 1.096478-3 1.902127+5 1.174898-3 1.775496+5 1.250000-3 1.657088+5 1.333521-3 1.528920+5 1.445440-3 1.370980+5 1.548817-3 1.240621+5 1.659587-3 1.114428+5 1.800000-3 9.749480+4 1.950000-3 8.490720+4 2.113489-3 7.328419+4 2.317395-3 6.146283+4 2.511886-3 5.232807+4 2.786121-3 4.216704+4 3.019952-3 3.541645+4 3.349654-3 2.806202+4 3.650000-3 2.298392+4 4.027170-3 1.815726+4 4.415704-3 1.445872+4 4.900000-3 1.109752+4 5.495409-3 8.216016+3 6.095369-3 6.212716+3 6.760830-3 4.665417+3 7.500000-3 3.478404+3 8.413951-3 2.492592+3 9.500000-3 1.738336+3 1.071519-2 1.205880+3 1.202264-2 8.436238+2 1.350000-2 5.845760+2 1.513561-2 4.043428+2 1.698244-2 2.772357+2 1.927525-2 1.816501+2 2.187762-2 1.181641+2 2.511886-2 7.335768+1 2.884032-2 4.520517+1 3.349654-2 2.655009+1 3.935501-2 1.485025+1 4.677351-2 7.906344+0 5.688529-2 3.839848+0 7.498942-2 1.371610+0 1.216186-1 2.247406-1 1.584893-1 8.413802-2 1.819701-1 5.065801-2 2.187762-1 2.604905-2 2.483133-1 1.658319-2 2.818383-1 1.063539-2 3.126079-1 7.444680-3 3.507519-1 5.047487-3 3.935501-1 3.447347-3 4.415705-1 2.370335-3 4.897788-1 1.704340-3 5.370318-1 1.279958-3 5.888437-1 9.676711-4 6.456542-1 7.365296-4 7.079458-1 5.646236-4 8.128305-1 3.837810-4 8.609938-1 3.270589-4 9.120108-1 2.805519-4 9.549926-1 2.496757-4 1.000000+0 2.236646-4 1.047129+0 2.017615-4 1.109175+0 1.786702-4 1.174898+0 1.593241-4 1.258925+0 1.398868-4 1.364583+0 1.210802-4 1.531087+0 9.918219-5 1.819701+0 7.312962-5 2.041738+0 6.008167-5 2.344229+0 4.786752-5 2.691535+0 3.842125-5 3.090295+0 3.105745-5 3.589219+0 2.485039-5 4.168694+0 2.003137-5 4.897788+0 1.600356-5 5.821032+0 1.268139-5 6.918310+0 1.012416-5 8.511380+0 7.794016-6 1.035142+1 6.135669-6 1.273503+1 4.798400-6 1.566751+1 3.774537-6 2.041738+1 2.799941-6 2.722701+1 2.040389-6 3.715352+1 1.460411-6 5.623413+1 9.435957-7 9.225714+1 5.652445-7 1.698244+2 3.033446-7 3.388442+2 1.508788-7 6.760830+2 7.533433-8 5.370318+3 9.451722-9 1.000000+5 5.07500-10 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.270800-4 1.939600-4 1.000000+5 1.939600-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.270800-4 1.136000-7 1.000000+5 1.136000-7 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.270800-4 3.330064-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 4.992800-4 1.637776+5 5.007000-4 1.744659+5 5.052000-4 2.059282+5 5.100000-4 2.346541+5 5.155000-4 2.570467+5 5.220000-4 2.740071+5 5.230000-4 2.759950+5 5.370318-4 2.949054+5 5.400000-4 2.971237+5 5.580000-4 3.201693+5 5.956621-4 3.522699+5 6.050000-4 3.559992+5 6.606934-4 3.710969+5 6.850000-4 3.747816+5 7.161434-4 3.761521+5 7.500000-4 3.753066+5 7.800000-4 3.725250+5 8.200000-4 3.664668+5 8.609938-4 3.581368+5 9.015711-4 3.482397+5 9.549926-4 3.337643+5 1.000000-3 3.208008+5 1.071519-3 2.995511+5 1.150000-3 2.772426+5 1.216186-3 2.591547+5 1.300000-3 2.372430+5 1.412538-3 2.106662+5 1.513561-3 1.896564+5 1.621810-3 1.695144+5 1.757924-3 1.477141+5 1.905461-3 1.278193+5 2.070000-3 1.093086+5 2.264644-3 9.159319+4 2.454709-3 7.760652+4 2.691535-3 6.378468+4 2.917427-3 5.337410+4 3.235937-3 4.211589+4 3.548134-3 3.385033+4 3.900000-3 2.687460+4 4.319000-3 2.077573+4 4.731513-3 1.640265+4 5.300000-3 1.212426+4 5.956621-3 8.797747+3 6.683439-3 6.355710+3 7.328245-3 4.869447+3 8.035261-3 3.712043+3 9.015711-3 2.624176+3 1.011579-2 1.840485+3 1.135011-2 1.280888+3 1.273503-2 8.848897+2 1.420000-2 6.196380+2 1.603245-2 4.136867+2 1.798871-2 2.799171+2 2.041738-2 1.807404+2 2.317395-2 1.158661+2 2.660725-2 7.077503+1 3.054921-2 4.290337+1 3.548134-2 2.474870+1 4.168694-2 1.357516+1 4.954502-2 7.077051+0 6.025596-2 3.354794+0 8.222426-2 1.013963+0 1.174898-1 2.559134-1 1.428894-1 1.210367-1 1.698244-1 6.285442-2 1.905461-1 4.087554-2 2.113489-1 2.794564-2 2.426610-1 1.688000-2 2.691535-1 1.164522-2 2.985383-1 8.096269-3 3.273407-1 5.905445-3 3.589219-1 4.337905-3 3.935501-1 3.208345-3 4.315191-1 2.387571-3 4.731513-1 1.789239-3 5.128614-1 1.398872-3 5.623413-1 1.063832-3 6.237348-1 7.884263-4 6.839117-1 6.084444-4 7.413102-1 4.883228-4 8.222427-1 3.713904-4 8.709636-1 3.203079-4 9.225714-1 2.779312-4 9.772372-1 2.429197-4 1.023293+0 2.194329-4 1.083927+0 1.944196-4 1.161449+0 1.693412-4 1.258925+0 1.452875-4 1.380384+0 1.228515-4 1.778279+0 7.848063-5 2.000000+0 6.415113-5 2.290868+0 5.124574-5 2.630268+0 4.108178-5 3.019952+0 3.317002-5 3.507519+0 2.650876-5 4.073803+0 2.134415-5 4.786301+0 1.703455-5 5.688529+0 1.348412-5 6.760830+0 1.075480-5 8.222427+0 8.391835-6 9.772372+0 6.783961-6 1.188502+1 5.366856-6 1.531087+1 3.995941-6 2.018366+1 2.924817-6 2.691535+1 2.130806-6 3.672823+1 1.524637-6 5.559043+1 9.849120-7 9.015711+1 5.969066-7 1.603245+2 3.316814-7 3.198895+2 1.648925-7 6.382635+2 8.230972-8 5.069907+3 1.032637-8 1.000000+5 5.23380-10 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 4.992800-4 1.866700-4 1.000000+5 1.866700-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.992800-4 3.889200-8 1.000000+5 3.889200-8 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 4.992800-4 3.125711-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 2.179300-4 1.038642+5 2.179900-4 1.056666+5 2.182700-4 1.117032+5 2.185000-4 1.161276+5 2.187000-4 1.196868+5 2.190000-4 1.243890+5 2.192000-4 1.271268+5 2.195000-4 1.306854+5 2.198000-4 1.337118+5 2.202000-4 1.368540+5 2.206000-4 1.391550+5 2.211000-4 1.410918+5 2.216500-4 1.422546+5 2.222000-4 1.425816+5 2.230000-4 1.420170+5 2.241000-4 1.400112+5 2.260000-4 1.352226+5 2.290868-4 1.275090+5 2.313000-4 1.231224+5 2.327000-4 1.209696+5 2.344229-4 1.190011+5 2.358000-4 1.180008+5 2.373000-4 1.174728+5 2.390000-4 1.176198+5 2.405000-4 1.184166+5 2.420000-4 1.198602+5 2.435000-4 1.219716+5 2.450000-4 1.247610+5 2.465000-4 1.282422+5 2.485000-4 1.339632+5 2.507000-4 1.416858+5 2.530000-4 1.513488+5 2.550000-4 1.610622+5 2.580000-4 1.779168+5 2.615000-4 2.010624+5 2.661100-4 2.376260+5 2.800000-4 3.942918+5 2.851018-4 4.693934+5 2.890000-4 5.319066+5 2.930000-4 5.995938+5 2.965000-4 6.609060+5 3.000000-4 7.233840+5 3.040000-4 7.953180+5 3.080000-4 8.673180+5 3.115000-4 9.298860+5 3.162278-4 1.013315+6 3.200000-4 1.078830+6 3.240000-4 1.146684+6 3.280000-4 1.213038+6 3.335000-4 1.301052+6 3.390000-4 1.384434+6 3.450000-4 1.468764+6 3.507519-4 1.542675+6 3.550000-4 1.592304+6 3.600000-4 1.645386+6 3.672823-4 1.712682+6 3.758374-4 1.777108+6 3.845918-4 1.829391+6 3.935501-4 1.871132+6 4.030000-4 1.904244+6 4.150000-4 1.931340+6 4.280000-4 1.943964+6 4.390000-4 1.942266+6 4.518559-4 1.928911+6 4.677351-4 1.898783+6 4.850000-4 1.855398+6 5.069907-4 1.789957+6 5.248075-4 1.730920+6 5.432503-4 1.665310+6 5.688529-4 1.570065+6 6.000000-4 1.454718+6 6.350000-4 1.331220+6 6.700000-4 1.214586+6 7.079458-4 1.097246+6 7.500000-4 9.797880+5 8.000000-4 8.575980+5 8.511380-4 7.491750+5 9.120108-4 6.394843+5 9.850000-4 5.320698+5 1.059254-3 4.438204+5 1.150000-3 3.587664+5 1.244515-3 2.903828+5 1.364583-3 2.250183+5 1.479108-3 1.788468+5 1.621810-3 1.365413+5 1.778279-3 1.035031+5 1.950000-3 7.787340+4 2.137962-3 5.823498+4 2.371374-3 4.166015+4 2.650000-3 2.882856+4 2.917427-3 2.081345+4 3.198895-3 1.514843+4 3.548134-3 1.052426+4 4.000000-3 6.846000+3 4.518559-3 4.380253+3 5.069907-3 2.849491+3 5.623413-3 1.922060+3 6.237348-3 1.288428+3 6.918310-3 8.585603+2 7.852356-3 5.187870+2 8.810489-3 3.257387+2 1.000000-2 1.938030+2 1.135011-2 1.144548+2 1.288250-2 6.710500+1 1.462177-2 3.906640+1 1.659587-2 2.258071+1 1.905461-2 1.232738+1 2.213095-2 6.348798+0 2.600160-2 3.082781+0 3.162278-2 1.271264+0 3.935501-2 4.684984-1 5.128614-2 1.387929-1 8.222426-2 1.576594-2 1.011580-1 6.108252-3 1.202264-1 2.792480-3 1.396368-1 1.426616-3 1.621810-1 7.341994-4 1.840772-1 4.213524-4 2.137962-1 2.204200-4 2.371374-1 1.416723-4 2.600160-1 9.629531-5 2.818383-1 6.913153-5 3.054921-1 4.996001-5 3.311311-1 3.637915-5 3.630781-1 2.551244-5 4.365158-1 1.273011-5 4.841724-1 8.667757-6 5.308844-1 6.203026-6 5.754399-1 4.657977-6 6.309573-1 3.381735-6 6.760830-1 2.676851-6 7.244360-1 2.133982-6 7.673615-1 1.777896-6 8.709636-1 1.201069-6 9.120108-1 1.046968-6 9.440609-1 9.486450-7 9.772372-1 8.637334-7 1.011579+0 7.911257-7 1.047129+0 7.287328-7 1.096478+0 6.580014-7 1.148154+0 5.984884-7 1.202264+0 5.476736-7 1.288250+0 4.833408-7 1.396368+0 4.211937-7 1.513561+0 3.684927-7 1.883649+0 2.507617-7 2.089296+0 2.104061-7 2.398833+0 1.678438-7 2.754229+0 1.348796-7 3.198895+0 1.072758-7 3.715352+0 8.598559-8 4.315191+0 6.942603-8 5.069907+0 5.555467-8 6.025596+0 4.408914-8 7.161434+0 3.525026-8 8.810489+0 2.717341-8 1.096478+1 2.083669-8 1.412538+1 1.547358-8 1.778279+1 1.189614-8 2.317395+1 8.856095-9 3.198895+1 6.237056-9 4.570882+1 4.267827-9 6.918310+1 2.768081-9 1.174898+2 1.605799-9 2.344229+2 7.96245-10 4.677351+2 3.96897-10 1.862087+3 9.93040-11 1.000000+5 1.84680-12 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 2.179300-4 1.109100-4 1.000000+5 1.109100-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.179300-4 1.175200-9 1.000000+5 1.175200-9 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.179300-4 1.070188-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 2.112000-4 1.288280+5 2.112900-4 1.319288+5 2.115000-4 1.379208+5 2.117000-4 1.432824+5 2.119500-4 1.494264+5 2.123000-4 1.570664+5 2.126000-4 1.627888+5 2.129000-4 1.677544+5 2.133000-4 1.733696+5 2.137000-4 1.778616+5 2.142000-4 1.821008+5 2.147000-4 1.850792+5 2.153000-4 1.873104+5 2.160000-4 1.884616+5 2.168300-4 1.883563+5 2.175000-4 1.874728+5 2.190000-4 1.840224+5 2.238721-4 1.704913+5 2.260000-4 1.660368+5 2.280000-4 1.631416+5 2.295000-4 1.618632+5 2.308000-4 1.614064+5 2.323000-4 1.616640+5 2.340000-4 1.630144+5 2.355000-4 1.651792+5 2.371374-4 1.686228+5 2.385000-4 1.723680+5 2.400000-4 1.774360+5 2.419800-4 1.856481+5 2.442000-4 1.969176+5 2.465000-4 2.108704+5 2.490000-4 2.286352+5 2.515000-4 2.490944+5 2.550000-4 2.823296+5 2.600160-4 3.397627+5 2.730000-4 5.475944+5 2.780000-4 6.501824+5 2.818383-4 7.358792+5 2.851018-4 8.124137+5 2.890000-4 9.069760+5 2.930000-4 1.006112+6 2.965000-4 1.093576+6 3.000000-4 1.181000+6 3.040000-4 1.280144+6 3.080000-4 1.377992+6 3.130000-4 1.497880+6 3.180000-4 1.614520+6 3.240000-4 1.749120+6 3.300000-4 1.876496+6 3.350000-4 1.975912+6 3.410000-4 2.085824+6 3.470000-4 2.184488+6 3.530000-4 2.271360+6 3.600000-4 2.358120+6 3.680000-4 2.439552+6 3.758374-4 2.503373+6 3.850000-4 2.561224+6 3.935501-4 2.601421+6 4.050000-4 2.637096+6 4.168694-4 2.654157+6 4.280000-4 2.653424+6 4.415704-4 2.633838+6 4.570882-4 2.592286+6 4.731513-4 2.535022+6 4.930000-4 2.452224+6 5.150000-4 2.349912+6 5.370318-4 2.239397+6 5.623413-4 2.107534+6 5.900000-4 1.964712+6 6.237348-4 1.798855+6 6.600000-4 1.631976+6 7.000000-4 1.462136+6 7.413102-4 1.305198+6 7.852356-4 1.157652+6 8.317638-4 1.020777+6 8.912509-4 8.715556+5 9.549926-4 7.390101+5 1.030000-3 6.123744+5 1.110000-3 5.049096+5 1.202264-3 4.080144+5 1.303167-3 3.268459+5 1.428894-3 2.516351+5 1.548817-3 1.989162+5 1.698244-3 1.509636+5 1.862087-3 1.137632+5 2.070000-3 8.150640+4 2.317395-3 5.655209+4 2.540973-3 4.166686+4 2.786121-3 3.052462+4 3.090295-3 2.135328+4 3.500000-3 1.376760+4 3.935501-3 9.021322+3 4.415704-3 5.907059+3 4.954502-3 3.836084+3 5.500000-3 2.575168+3 6.100000-3 1.723728+3 6.760830-3 1.150285+3 7.585776-3 7.259895+2 8.609938-3 4.341702+2 9.772372-3 2.576049+2 1.109175-2 1.516450+2 1.258925-2 8.859240+1 1.428894-2 5.137744+1 1.621810-2 2.958083+1 1.862087-2 1.607394+1 2.137962-2 8.669106+0 2.483133-2 4.407208+0 2.951209-2 2.003063+0 3.589219-2 8.132433-1 4.518559-2 2.793200-1 7.498942-2 2.618787-2 9.772372-2 7.629723-3 1.109175-1 4.086508-3 1.135011-1 3.662245-3 1.188502-1 2.962777-3 1.258925-1 2.290075-3 1.380384-1 1.534485-3 1.659587-1 6.761840-4 1.883649-1 3.873025-4 2.089296-1 2.470020-4 2.299100-1 1.640890-4 2.511886-1 1.132481-4 2.754229-1 7.754217-5 3.000000-1 5.494938-5 3.273407-1 3.905200-5 3.589219-1 2.743482-5 3.981072-1 1.859043-5 4.365158-1 1.318158-5 4.677351-1 1.024547-5 5.011872-1 8.017619-6 5.370318-1 6.338698-6 5.754399-1 5.045705-6 6.237348-1 3.894803-6 6.760830-1 3.027890-6 7.328245-1 2.371226-6 7.943282-1 1.868965-6 8.609938-1 1.484133-6 9.440609-1 1.148938-6 9.772372-1 1.047989-6 1.011579+0 9.610086-7 1.047129+0 8.859799-7 1.096478+0 8.005338-7 1.148154+0 7.283416-7 1.216186+0 6.523606-7 1.303167+0 5.761617-7 1.412538+0 5.021641-7 1.513561+0 4.474898-7 1.862087+0 3.106432-7 2.065380+0 2.604634-7 2.371374+0 2.076430-7 2.722701+0 1.667642-7 3.162278+0 1.325544-7 3.672823+0 1.061850-7 4.265795+0 8.568796-8 5.011872+0 6.853187-8 5.956621+0 5.436057-8 7.079458+0 4.344143-8 8.709636+0 3.347206-8 1.071519+1 2.601125-8 1.348963+1 1.982552-8 1.603245+1 1.625049-8 2.065380+1 1.221585-8 2.754229+1 8.904914-9 3.758374+1 6.375242-9 5.754399+1 4.070897-9 9.660509+1 2.382413-9 1.927525+2 1.178893-9 3.845918+2 5.86953-10 1.531087+3 1.46741-10 4.841724+4 4.63082-12 1.000000+5 2.24280-12 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 2.112000-4 1.086500-4 1.000000+5 1.086500-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.112000-4 4.147600-8 1.000000+5 4.147600-8 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.112000-4 1.025085-4 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 1.962700-4 4.842960+4 1.968000-4 4.895480+4 1.980000-4 5.064140+4 1.990000-4 5.184200+4 2.005000-4 5.336900+4 2.023900-4 5.489645+4 2.041738-4 5.607015+4 2.065380-4 5.727119+4 2.090000-4 5.816400+4 2.120000-4 5.887200+4 2.150000-4 5.924020+4 2.190000-4 5.932480+4 2.264644-4 5.880495+4 2.900000-4 5.302229+4 3.311311-4 4.896552+4 3.700000-4 4.532060+4 3.981072-4 4.277621+4 4.315191-4 3.982417+4 4.850000-4 3.558800+4 5.308844-4 3.239899+4 5.888437-4 2.884696+4 6.606934-4 2.518890+4 7.413102-4 2.182134+4 8.500000-4 1.826038+4 9.885531-4 1.486144+4 1.150000-3 1.200122+4 1.350000-3 9.498500+3 1.621810-3 7.212861+3 1.949845-3 5.429817+3 2.371374-3 3.985874+3 2.884032-3 2.902941+3 3.507519-3 2.097359+3 4.216965-3 1.532835+3 5.069907-3 1.111885+3 6.095369-3 8.006542+2 7.413102-3 5.603674+2 9.000000-3 3.903660+2 1.083927-2 2.740463+2 1.303167-2 1.916382+2 1.584893-2 1.300274+2 1.905461-2 8.959441+1 2.290868-2 6.127409+1 2.754229-2 4.158469+1 3.273407-2 2.870657+1 3.935501-2 1.918353+1 4.677351-2 1.305201+1 5.559043-2 8.817339+0 6.683439-2 5.758595+0 8.035261-2 3.732241+0 1.000000-1 2.212617+0 1.258925-1 1.261091+0 1.798871-1 5.221896-1 2.691535-1 1.924086-1 3.311311-1 1.159083-1 3.935501-1 7.651938-2 4.570882-1 5.378524-2 5.308844-1 3.808748-2 6.095369-1 2.790510-2 6.998420-1 2.061370-2 8.000000-1 1.549402-2 9.015711-1 1.207484-2 1.000000+0 9.794700-3 1.202264+0 6.822562-3 1.333521+0 5.599586-3 1.513561+0 4.431763-3 1.717908+0 3.536029-3 1.949845+0 2.842973-3 2.238721+0 2.259157-3 2.570396+0 1.808895-3 2.951209+0 1.458817-3 3.427678+0 1.164489-3 4.000000+0 9.302300-4 4.677351+0 7.466204-4 5.559043+0 5.903907-4 6.606934+0 4.704320-4 8.000000+0 3.687800-4 9.549926+0 2.962217-4 1.174898+1 2.309885-4 1.513561+1 1.719109-4 2.018366+1 1.241866-4 2.660725+1 9.161311-5 3.630781+1 6.553679-5 5.432503+1 4.283911-5 8.609938+1 2.657597-5 1.445440+2 1.564721-5 2.884032+2 7.772150-6 5.754399+2 3.877871-6 4.570882+3 4.863744-7 1.000000+5 2.222300-8 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 1.962700-4 1.296500-4 1.000000+5 1.296500-4 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.962700-4 1.800400-9 1.000000+5 1.800400-9 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 1.962700-4 6.661820-5 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.487800-4 3.712500+5 1.492500-4 3.882760+5 1.496236-4 3.991654+5 1.500000-4 4.078580+5 1.505000-4 4.159920+5 1.510000-4 4.209160+5 1.515000-4 4.230740+5 1.520000-4 4.232420+5 1.528000-4 4.202780+5 1.535000-4 4.153500+5 1.548817-4 4.022476+5 1.570000-4 3.795620+5 1.640590-4 3.122848+5 1.678804-4 2.838037+5 1.720000-4 2.581420+5 1.780000-4 2.273820+5 1.862087-4 1.938595+5 1.980000-4 1.571042+5 2.089296-4 1.314084+5 2.213095-4 1.092459+5 2.344229-4 9.151027+4 2.454709-4 7.990724+4 2.570396-4 7.024162+4 2.660725-4 6.410203+4 2.770000-4 5.798800+4 2.884032-4 5.281953+4 3.000000-4 4.853540+4 3.126079-4 4.471598+4 3.280000-4 4.093100+4 3.430000-4 3.793800+4 3.600000-4 3.517660+4 3.780000-4 3.281440+4 4.000000-4 3.050780+4 4.265795-4 2.831121+4 4.623810-4 2.599980+4 5.069907-4 2.376110+4 7.161434-4 1.736000+4 8.317638-4 1.506408+4 9.549926-4 1.311469+4 1.083927-3 1.146679+4 1.244515-3 9.826588+3 1.412538-3 8.465988+3 1.603245-3 7.243893+3 1.819701-3 6.155730+3 2.089296-3 5.112997+3 2.400000-3 4.209100+3 2.722701-3 3.500221+3 3.090295-3 2.887958+3 3.507519-3 2.365384+3 3.981072-3 1.923260+3 4.518559-3 1.552286+3 5.128614-3 1.243654+3 5.821032-3 9.891378+2 6.606934-3 7.811139+2 7.498942-3 6.124374+2 8.609938-3 4.660047+2 9.772372-3 3.600989+2 1.109175-2 2.763355+2 1.273503-2 2.054283+2 1.462177-2 1.515047+2 1.678804-2 1.108545+2 1.927525-2 8.048438+1 2.213095-2 5.798401+1 2.540973-2 4.146385+1 2.917427-2 2.944047+1 3.388442-2 2.015983+1 3.935501-2 1.370055+1 4.623810-2 8.965790+0 5.432503-2 5.823541+0 6.456542-2 3.640792+0 8.222426-2 1.867975+0 1.023293-1 1.014279+0 1.972423-1 1.586610-1 2.426610-1 8.885644-2 2.884032-1 5.518656-2 3.349654-1 3.677184-2 3.845918-1 2.545019-2 4.365158-1 1.828306-2 4.954502-1 1.322721-2 5.559043-1 9.921495-3 6.237348-1 7.493916-3 6.998420-1 5.702843-3 7.762471-1 4.490379-3 8.709636-1 3.465715-3 9.440609-1 2.909107-3 1.023293+0 2.458736-3 1.122018+0 2.043949-3 1.244515+0 1.672994-3 1.396368+0 1.349985-3 1.640590+0 1.009735-3 1.862087+0 8.094222-4 2.113489+0 6.537124-4 2.426610+0 5.217964-4 2.786121+0 4.195748-4 3.235937+0 3.339139-4 3.758374+0 2.677955-4 4.365158+0 2.163407-4 5.128614+0 1.732061-4 6.095369+0 1.375267-4 7.244360+0 1.100068-4 9.000000+0 8.382400-5 1.122018+1 6.420261-5 1.462177+1 4.707874-5 1.949845+1 3.396935-5 2.570396+1 2.503589-5 3.548134+1 1.767651-5 5.308844+1 1.154961-5 8.222427+1 7.334375-6 1.348963+2 4.417829-6 2.691535+2 2.193188-6 5.370318+2 1.093948-6 4.265795+3 1.371700-7 1.000000+5 5.848700-9 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.487800-4 9.205300-5 1.000000+5 9.205300-5 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.487800-4 4.196500-9 1.000000+5 4.196500-9 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.487800-4 5.672280-5 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.178200-4 7.369440+5 1.184000-4 7.483400+5 1.190000-4 7.557880+5 1.197000-4 7.595200+5 1.205000-4 7.588040+5 1.216186-4 7.516774+5 1.230269-4 7.362052+5 1.247000-4 7.136120+5 1.273503-4 6.755579+5 1.318257-4 6.124188+5 1.400000-4 5.142200+5 1.450000-4 4.668160+5 1.500000-4 4.275200+5 1.548817-4 3.957389+5 1.603245-4 3.665332+5 1.659587-4 3.417502+5 1.720000-4 3.198532+5 1.800000-4 2.962264+5 1.905461-4 2.713695+5 2.041738-4 2.460828+5 2.187762-4 2.248925+5 2.317395-4 2.099279+5 2.483133-4 1.946352+5 2.800000-4 1.725008+5 3.700000-4 1.310132+5 4.265795-4 1.130717+5 4.841724-4 9.849586+4 5.500000-4 8.508800+4 6.237348-4 7.314434+4 7.079458-4 6.235880+4 8.128305-4 5.201526+4 9.440609-4 4.236285+4 1.083927-3 3.479168+4 1.258925-3 2.789773+4 1.462177-3 2.219588+4 1.698244-3 1.752800+4 1.972423-3 1.373711+4 2.290868-3 1.068211+4 2.630268-3 8.408985+3 3.000000-3 6.652400+3 3.427678-3 5.211056+3 3.935501-3 4.014178+3 4.518559-3 3.068869+3 5.128614-3 2.382562+3 5.888437-3 1.793710+3 6.760830-3 1.339825+3 7.762471-3 9.930057+2 8.810489-3 7.492014+2 1.011579-2 5.467328+2 1.161449-2 3.958077+2 1.333521-2 2.842702+2 1.531087-2 2.025440+2 1.757924-2 1.431684+2 2.018366-2 1.004204+2 2.317395-2 6.988649+1 2.660725-2 4.827106+1 3.054921-2 3.309722+1 3.507519-2 2.253170+1 4.027170-2 1.523327+1 4.677351-2 9.889616+0 5.495409-2 6.161607+0 6.456542-2 3.811066+0 7.852356-2 2.109189+0 9.885531-2 1.042484+0 1.840772-1 1.520953-1 2.290868-1 7.779015-2 2.691535-1 4.780389-2 3.090295-1 3.171350-2 3.507519-1 2.192301-2 3.981072-1 1.526814-2 4.466836-1 1.106863-2 5.011872-1 8.085103-3 5.559043-1 6.137613-3 6.165950-1 4.691401-3 6.839117-1 3.611668-3 7.585776-1 2.800990-3 8.609938-1 2.067323-3 9.225714-1 1.762156-3 9.772372-1 1.551373-3 1.047129+0 1.341822-3 1.135011+0 1.140637-3 1.244515+0 9.545384-4 1.380384+0 7.882144-4 1.698244+0 5.444293-4 1.927525+0 4.371559-4 2.187762+0 3.537281-4 2.511886+0 2.828778-4 2.884032+0 2.278713-4 3.349654+0 1.816822-4 3.890451+0 1.459585-4 4.570882+0 1.162260-4 5.432503+0 9.180653-5 6.456542+0 7.307980-5 7.762471+0 5.774842-5 9.332543+0 4.593391-5 1.148154+1 3.579029-5 1.500000+1 2.618800-5 2.000000+1 1.891700-5 2.630268+1 1.398746-5 3.589219+1 1.000304-5 5.432503+1 6.459147-6 8.609938+1 4.006972-6 1.445440+2 2.359281-6 2.884032+2 1.171875-6 5.754399+2 5.846886-7 4.570882+3 7.333381-8 1.000000+5 3.350700-9 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.178200-4 9.020400-5 1.000000+5 9.020400-5 1 85000 7 7 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.178200-4 7.95980-10 1.000000+5 7.95980-10 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.178200-4 2.761520-5 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 4.920000-5 1.126576+6 4.954502-5 1.196604+6 4.980000-5 1.257680+6 5.011872-5 1.347803+6 5.040000-5 1.442060+6 5.070000-5 1.558844+6 5.095000-5 1.671808+6 5.130000-5 1.855380+6 5.160000-5 2.039440+6 5.190000-5 2.252364+6 5.230000-5 2.587672+6 5.270000-5 2.990224+6 5.315000-5 3.537900+6 5.370318-5 4.374307+6 5.450000-5 5.970480+6 5.560000-5 9.141480+6 5.610000-5 1.101756+7 5.650000-5 1.272020+7 5.690000-5 1.459024+7 5.730000-5 1.659900+7 5.760000-5 1.817036+7 5.790000-5 1.976888+7 5.821032-5 2.141847+7 5.850000-5 2.291968+7 5.870000-5 2.391804+7 5.900000-5 2.532848+7 5.927000-5 2.648472+7 5.956621-5 2.760213+7 5.985000-5 2.850484+7 6.015000-5 2.926924+7 6.040000-5 2.975216+7 6.070000-5 3.014752+7 6.100000-5 3.034820+7 6.130000-5 3.037508+7 6.165950-5 3.020153+7 6.200000-5 2.986304+7 6.240000-5 2.929276+7 6.280000-5 2.858380+7 6.330000-5 2.756760+7 6.400000-5 2.602228+7 6.456542-5 2.475208+7 1.011579-4 2.729310+6 1.260000-4 9.678840+5 1.350000-4 6.948760+5 1.462177-4 4.701410+5 1.659587-4 2.514949+5 1.740000-4 2.002216+5 1.800000-4 1.709088+5 1.862087-4 1.467628+5 1.905461-4 1.329154+5 1.950000-4 1.208388+5 2.002000-4 1.090546+5 2.041738-4 1.014757+5 2.089296-4 9.378081+4 2.137962-4 8.722898+4 2.190000-4 8.146600+4 2.240000-4 7.694200+4 2.290868-4 7.319117+4 2.344229-4 7.002608+4 2.400000-4 6.741520+4 2.454709-4 6.542413+4 2.520000-4 6.364760+4 2.580000-4 6.248040+4 2.650000-4 6.156400+4 2.730000-4 6.097400+4 2.830000-4 6.074000+4 2.951209-4 6.095933+4 3.126079-4 6.180654+4 3.589219-4 6.450457+4 3.850000-4 6.548600+4 4.120975-4 6.597858+4 4.365158-4 6.597604+4 4.623810-4 6.557223+4 4.897788-4 6.475666+4 5.188000-4 6.355107+4 5.559043-4 6.169064+4 5.956621-4 5.940451+4 6.382635-4 5.678075+4 6.850000-4 5.379880+4 7.328245-4 5.078969+4 7.943282-4 4.704120+4 8.511380-4 4.375218+4 9.225714-4 3.994076+4 1.000000-3 3.619732+4 1.096478-3 3.206960+4 1.188502-3 2.865259+4 1.288250-3 2.544183+4 1.412538-3 2.205226+4 1.548817-3 1.897582+4 1.698244-3 1.621002+4 1.862087-3 1.374605+4 2.041738-3 1.157519+4 2.238721-3 9.683414+3 2.454709-3 8.046491+3 2.691535-3 6.642006+3 2.951209-3 5.446833+3 3.235937-3 4.437655+3 3.589219-3 3.497372+3 3.981072-3 2.734750+3 4.415704-3 2.122062+3 4.897788-3 1.634292+3 5.432503-3 1.249384+3 6.025596-3 9.483025+2 6.683439-3 7.147714+2 7.413102-3 5.351729+2 8.222426-3 3.980982+2 9.225714-3 2.843836+2 1.047129-2 1.947560+2 1.174898-2 1.373093+2 1.303167-2 9.963022+1 1.445440-2 7.167370+1 1.621810-2 4.933754+1 1.840772-2 3.245181+1 2.162719-2 1.885519+1 2.483133-2 1.174815+1 2.851018-2 7.266438+0 3.273407-2 4.461884+0 3.845918-2 2.505336+0 4.570882-2 1.338993+0 5.432503-2 7.104865-1 6.839116-2 3.026476-1 1.288250-1 2.852778-2 1.584893-1 1.325869-2 1.883649-1 7.051958-3 2.213095-1 3.939938-3 2.511886-1 2.510363-3 2.818383-1 1.677281-3 3.126079-1 1.174374-3 3.507519-1 7.964768-4 3.935501-1 5.441868-4 4.415705-1 3.743745-4 4.897788-1 2.693062-4 5.370318-1 2.023034-4 5.888437-1 1.529561-4 6.531306-1 1.124904-4 7.161434-1 8.624166-5 7.762471-1 6.879422-5 8.609938-1 5.163197-5 9.120108-1 4.432582-5 9.549926-1 3.947212-5 1.000000+0 3.537900-5 1.059254+0 3.114340-5 1.122018+0 2.762653-5 1.188502+0 2.466689-5 1.273503+0 2.167958-5 1.396368+0 1.840476-5 1.531087+0 1.568897-5 1.819701+0 1.156710-5 2.041738+0 9.503185-6 2.344229+0 7.571077-6 2.691535+0 6.076968-6 3.126079+0 4.827456-6 3.630781+0 3.864884-6 4.216965+0 3.117130-6 4.954502+0 2.491709-6 5.888437+0 1.975438-6 7.000000+0 1.577400-6 8.709636+0 1.197994-6 1.071519+1 9.309715-7 1.348963+1 7.095695-7 1.621810+1 5.740376-7 2.089296+1 4.316528-7 2.800000+1 3.130700-7 3.801894+1 2.253982-7 5.888437+1 1.422372-7 1.011579+2 8.133373-8 2.018366+2 4.026735-8 4.027170+2 2.005579-8 1.603245+3 5.014950-9 5.069907+4 1.58277-10 1.000000+5 8.02710-11 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 4.920000-5 4.920000-5 1.000000+5 4.920000-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 4.920000-5 0.0 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 4.506000-5 2.051964+6 4.540000-5 2.152716+6 4.570882-5 2.264515+6 4.602000-5 2.401374+6 4.630000-5 2.548572+6 4.657000-5 2.712948+6 4.680000-5 2.873358+6 4.710000-5 3.113682+6 4.740000-5 3.392754+6 4.770000-5 3.715062+6 4.800000-5 4.086228+6 4.835000-5 4.588908+6 4.870000-5 5.176362+6 4.920000-5 6.185880+6 4.970000-5 7.429740+6 5.040000-5 9.643200+6 5.080000-5 1.119628+7 5.232700-5 1.884702+7 5.250000-5 1.959055+7 5.340000-5 2.314688+7 5.360000-5 2.375608+7 5.465000-5 2.745056+7 5.474400-5 2.776101+7 5.760000-5 3.160475+7 5.780000-5 3.175418+7 5.920000-5 3.175418+7 6.030000-5 3.158673+7 6.070000-5 3.120569+7 6.326500-5 2.764392+7 6.350000-5 2.730347+7 6.500000-5 2.497725+7 6.606934-5 2.319400+7 7.161434-5 1.591085+7 7.244360-5 1.505950+7 8.035261-5 9.388510+6 8.511380-5 7.175724+6 9.300000-5 4.700664+6 1.202264-4 1.365168+6 1.303167-4 9.204389+5 1.531087-4 4.135421+5 1.603245-4 3.307366+5 1.670000-4 2.731464+5 1.724100-4 2.366926+5 1.780000-4 2.065656+5 1.820000-4 1.888500+5 1.865000-4 1.720992+5 1.905461-4 1.594792+5 1.950000-4 1.478454+5 1.995262-4 1.380767+5 2.041738-4 1.298560+5 2.089296-4 1.230329+5 2.137962-4 1.174364+5 2.190000-4 1.127322+5 2.240000-4 1.092348+5 2.300000-4 1.061076+5 2.350000-4 1.042206+5 2.400000-4 1.028610+5 2.454709-4 1.018619+5 2.540973-4 1.010830+5 2.643600-4 1.010470+5 2.770000-4 1.018128+5 3.311311-4 1.074748+5 3.548134-4 1.090990+5 3.780000-4 1.098330+5 4.027170-4 1.097737+5 4.280000-4 1.089864+5 4.518559-4 1.076319+5 4.786301-4 1.055942+5 5.092600-4 1.027435+5 5.495409-4 9.851170+4 5.821032-4 9.486774+4 6.237348-4 9.006464+4 6.683439-4 8.491322+4 7.244360-4 7.868233+4 7.852356-4 7.230600+4 8.413951-4 6.684723+4 9.225714-4 5.972318+4 1.011579-3 5.288183+4 1.109175-3 4.642385+4 1.202264-3 4.115937+4 1.303167-3 3.627662+4 1.428894-3 3.119440+4 1.566751-3 2.662593+4 1.717908-3 2.256952+4 1.883649-3 1.899915+4 2.065380-3 1.588563+4 2.264644-3 1.319451+4 2.483133-3 1.088690+4 2.722701-3 8.924152+3 3.000000-3 7.187940+3 3.311311-3 5.724597+3 3.672823-3 4.473206+3 4.073803-3 3.468173+3 4.518559-3 2.668442+3 5.011872-3 2.037681+3 5.559043-3 1.544497+3 6.165950-3 1.162171+3 6.918310-3 8.404584+2 7.673615-3 6.233966+2 8.511380-3 4.592101+2 9.549926-3 3.245457+2 1.096478-2 2.122490+2 1.230269-2 1.479040+2 1.333521-2 1.142807+2 1.479108-2 8.142072+1 1.659587-2 5.543505+1 1.862087-2 3.746196+1 2.113489-2 2.415812+1 2.398833-2 1.546729+1 2.754229-2 9.436787+0 3.198895-2 5.481879+0 3.715352-2 3.161791+0 4.365158-2 1.735337+0 5.128614-2 9.459708-1 6.309573-2 4.294655-1 1.230269-1 3.300348-2 1.500000-1 1.551300-2 1.757924-1 8.533188-3 2.018366-1 5.107689-3 2.290868-1 3.214074-3 2.570396-1 2.125184-3 2.851018-1 1.474822-3 3.126079-1 1.072974-3 3.467369-1 7.561447-4 3.801894-1 5.577204-4 4.216965-1 3.990154-4 4.623810-1 2.984156-4 5.069907-1 2.248394-4 5.559043-1 1.707553-4 6.095369-1 1.307049-4 6.606935-1 1.041229-4 7.161434-1 8.346929-5 7.762471-1 6.734381-5 8.609938-1 5.135796-5 9.120108-1 4.445184-5 9.660509-1 3.874760-5 1.011579+0 3.492799-5 1.071519+0 3.088750-5 1.148154+0 2.685477-5 1.230269+0 2.351189-5 1.333521+0 2.027398-5 1.798871+0 1.194669-5 2.018366+0 9.810402-6 2.317395+0 7.810942-6 2.660725+0 6.265623-6 3.054921+0 5.061819-6 3.548134+0 4.047765-6 4.120975+0 3.261012-6 4.841724+0 2.603947-6 5.754399+0 2.062320-6 6.839116+0 1.645692-6 8.413951+0 1.266276-6 1.011579+1 1.010420-6 1.230269+1 8.002738-7 1.548817+1 6.124969-7 2.041738+1 4.484400-7 2.722701+1 3.267972-7 3.715352+1 2.338961-7 5.688529+1 1.493213-7 9.332543+1 8.946372-8 1.778279+2 4.636408-8 3.548134+2 2.307025-8 7.079458+2 1.152111-8 5.623413+3 1.445548-9 1.000000+5 8.12820-11 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 4.506000-5 4.506000-5 1.000000+5 4.506000-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 4.506000-5 0.0 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 2.301000-5 1.108620+6 2.350000-5 1.026174+6 2.540973-5 7.531512+5 3.019952-5 3.766568+5 3.235937-5 2.872540+5 3.427678-5 2.307332+5 3.589219-5 1.948341+5 3.758374-5 1.656623+5 3.900000-5 1.462778+5 4.027170-5 1.319370+5 4.168694-5 1.187104+5 4.315191-5 1.074563+5 4.466836-5 9.788801+4 4.623810-5 8.975594+4 4.800000-5 8.231960+4 4.954502-5 7.696286+4 5.150000-5 7.140460+4 5.350000-5 6.681840+4 5.580000-5 6.258980+4 5.821032-5 5.905980+4 6.095369-5 5.586395+4 6.400000-5 5.304980+4 6.760830-5 5.041198+4 7.244360-5 4.766265+4 7.943282-5 4.462258+4 1.000000-4 3.824680+4 1.120000-4 3.521780+4 1.244515-4 3.236785+4 1.400000-4 2.921180+4 1.659587-4 2.494552+4 1.950000-4 2.133280+4 2.213095-4 1.872768+4 2.483133-4 1.650493+4 2.884032-4 1.387678+4 3.350000-4 1.157956+4 3.890451-4 9.584490+3 4.786301-4 7.312214+3 5.500000-4 6.054040+3 6.531306-4 4.753834+3 7.943282-4 3.577723+3 9.549926-4 2.720520+3 1.188502-3 1.948175+3 1.500000-3 1.354736+3 1.883649-3 9.427582+2 2.371374-3 6.486254+2 2.951209-3 4.512998+2 3.630781-3 3.177059+2 4.415704-3 2.264033+2 5.128614-3 1.737744+2 6.309573-3 1.188452+2 8.000000-3 7.627413+1 1.230269-2 3.376082+1 1.445440-2 2.471692+1 1.659587-2 1.877721+1 1.972423-2 1.321096+1 2.371374-2 9.017992+0 2.851018-2 6.109593+0 3.388442-2 4.210636+0 4.073803-2 2.809090+0 4.897788-2 1.859401+0 5.821032-2 1.252996+0 6.998420-2 8.163997-1 8.511380-2 5.139901-1 1.011580-1 3.394876-1 1.288250-1 1.880032-1 2.722701-1 2.951804-2 3.349654-1 1.778995-2 3.981072-1 1.175076-2 4.623810-1 8.264436-3 5.370318-1 5.856133-3 6.095369-1 4.404720-3 6.998420-1 3.254083-3 8.000000-1 2.446200-3 9.015711-1 1.906745-3 1.000000+0 1.546900-3 1.202264+0 1.077579-3 1.333521+0 8.843934-4 1.513561+0 6.999134-4 1.717908+0 5.584375-4 1.949845+0 4.489928-4 2.238721+0 3.568061-4 2.570396+0 2.856919-4 2.951209+0 2.303949-4 3.427678+0 1.839083-4 4.000000+0 1.469100-4 4.677351+0 1.179120-4 5.559043+0 9.324106-5 6.606934+0 7.429747-5 8.000000+0 5.824200-5 9.549926+0 4.678281-5 1.174898+1 3.648132-5 1.513561+1 2.715099-5 2.000000+1 1.981500-5 2.630268+1 1.465100-5 3.589219+1 1.047821-5 5.370318+1 6.847782-6 8.413951+1 4.297976-6 1.380384+2 2.589669-6 2.754229+2 1.285815-6 5.495409+2 6.414383-7 4.365158+3 8.043793-8 1.000000+5 3.509700-9 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 2.301000-5 2.301000-5 1.000000+5 2.301000-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 2.301000-5 0.0 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 1.194000-5 2.886389+7 1.216186-5 2.862648+7 1.244515-5 2.813293+7 1.273503-5 2.745884+7 1.310000-5 2.644705+7 1.350000-5 2.517355+7 1.380384-5 2.415642+7 1.420000-5 2.278238+7 1.462177-5 2.131810+7 1.515000-5 1.954187+7 1.570000-5 1.779670+7 1.640590-5 1.574650+7 1.737801-5 1.330056+7 1.862087-5 1.077320+7 2.454709-5 4.525617+6 2.786121-5 3.061555+6 3.090295-5 2.237644+6 3.507519-5 1.537186+6 4.120975-5 9.613852+5 5.688529-5 3.786917+5 8.709636-5 1.090210+5 1.011579-4 7.089683+4 1.135011-4 5.125206+4 1.260000-4 3.842874+4 1.380384-4 3.008270+4 1.500000-4 2.423955+4 1.621810-4 1.992435+4 1.760000-4 1.635575+4 1.900000-4 1.370208+4 2.041738-4 1.168201+4 2.187762-4 1.009411+4 2.317395-4 8.987107+3 2.483133-4 7.875671+3 2.650000-4 7.006581+3 2.818383-4 6.310994+3 3.019952-4 5.650813+3 3.235937-4 5.090600+3 3.510000-4 4.535159+3 3.801894-4 4.078823+3 4.168694-4 3.637274+3 4.677351-4 3.179777+3 8.128305-4 1.712703+3 9.549926-4 1.422607+3 1.122018-3 1.172648+3 1.318257-3 9.594049+2 1.531087-3 7.906399+2 1.778279-3 6.469038+2 2.065380-3 5.252550+2 2.371374-3 4.302686+2 2.511886-3 3.947031+2 2.884032-3 3.180324+2 3.311311-3 2.543254+2 3.801894-3 2.018166+2 4.319000-3 1.618908+2 4.954502-3 1.266465+2 6.025596-3 9.156709+1 6.531306-3 7.899219+1 7.161434-3 6.620370+1 8.511380-3 4.695597+1 9.660509-3 3.629557+1 1.096478-2 2.786097+1 1.258925-2 2.071672+1 1.445440-2 1.528399+1 1.659587-2 1.119149+1 1.905461-2 8.132494+0 2.187762-2 5.863730+0 2.511886-2 4.196136+0 2.884032-2 2.981431+0 3.349654-2 2.042966+0 3.890451-2 1.389333+0 4.518559-2 9.380456-1 5.308844-2 6.100314-1 6.309573-2 3.818025-1 7.673615-2 2.226259-1 9.660509-2 1.170436-1 1.949845-1 1.609142-2 2.426610-1 8.725651-3 2.884032-1 5.419689-3 3.349654-1 3.611660-3 3.845918-1 2.499933-3 4.415705-1 1.743247-3 5.011872-1 1.262035-3 5.623413-1 9.474928-4 6.309573-1 7.163839-4 7.079458-1 5.457344-4 7.852356-1 4.301336-4 8.709636-1 3.408805-4 9.440609-1 2.862013-4 1.023293+0 2.419343-4 1.122018+0 2.011355-4 1.250000+0 1.632600-4 1.396368+0 1.328316-4 1.640590+0 9.934549-5 1.862087+0 7.963909-5 2.113489+0 6.432221-5 2.426610+0 5.134339-5 2.786121+0 4.128453-5 3.235937+0 3.285544-5 3.758374+0 2.634971-5 4.365158+0 2.128663-5 5.128614+0 1.704247-5 6.095369+0 1.353234-5 7.244360+0 1.082441-5 8.912509+0 8.347730-6 1.109175+1 6.404373-6 1.445440+1 4.694409-6 1.927525+1 3.385777-6 2.511886+1 2.526133-6 3.467369+1 1.782584-6 5.069907+1 1.192687-6 7.585776+1 7.842249-7 1.244515+2 4.718566-7 2.483133+2 2.340879-7 4.954502+2 1.167181-7 3.935501+3 1.462998-8 1.000000+5 5.75480-10 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 1.194000-5 1.194000-5 1.000000+5 1.194000-5 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 1.194000-5 0.0 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 8.540000-6 7.126758+7 8.810489-6 6.838075+7 9.120108-6 6.487661+7 9.440609-6 6.114589+7 9.772372-6 5.727454+7 1.011579-5 5.331677+7 1.050000-5 4.907128+7 1.096478-5 4.423798+7 1.150000-5 3.915363+7 1.202264-5 3.471741+7 1.273503-5 2.947821+7 1.350000-5 2.479038+7 1.445440-5 2.009004+7 1.584893-5 1.499945+7 1.819701-5 9.579800+6 2.264644-5 4.698142+6 2.600160-5 3.016425+6 2.951209-5 2.023812+6 3.349654-5 1.367135+6 3.845918-5 8.982881+5 4.365158-5 6.158144+5 4.841724-5 4.550547+5 5.308844-5 3.500287+5 5.800000-5 2.740137+5 6.237348-5 2.255849+5 6.683439-5 1.887505+5 7.161434-5 1.590315+5 7.673615-5 1.349905+5 8.222426-5 1.154166+5 8.810489-5 9.942195+4 9.440609-5 8.625141+4 1.011579-4 7.535757+4 1.083927-4 6.628098+4 1.161449-4 5.870745+4 1.244515-4 5.235103+4 1.333521-4 4.699815+4 1.428894-4 4.244533+4 1.548817-4 3.795080+4 1.720000-4 3.308523+4 1.949845-4 2.831150+4 3.090295-4 1.635553+4 4.120975-4 1.150496+4 4.954502-4 9.144169+3 5.754399-4 7.527346+3 6.606934-4 6.242847+3 8.035261-4 4.747855+3 9.332543-4 3.829625+3 1.096478-3 3.012604+3 1.288250-3 2.352744+3 1.513561-3 1.823986+3 1.778279-3 1.403902+3 2.089296-3 1.072131+3 2.426610-3 8.285852+2 2.818383-3 6.355439+2 3.235937-3 4.940150+2 3.715352-3 3.812730+2 4.319000-3 2.851640+2 4.897788-3 2.222684+2 5.559043-3 1.716907+2 6.382635-3 1.285686+2 7.328245-3 9.555672+1 8.511380-3 6.871963+1 9.772372-3 5.031697+1 1.109175-2 3.755101+1 1.258925-2 2.782859+1 1.412538-2 2.103784+1 1.603245-2 1.535417+1 1.840772-2 1.080651+1 2.137962-2 7.326317+0 2.454709-2 5.080904+0 2.818383-2 3.498109+0 3.235937-2 2.390517+0 3.758374-2 1.569906+0 4.365158-2 1.022986+0 5.128614-2 6.400405-1 6.025596-2 3.974240-1 7.161434-2 2.365971-1 8.810489-2 1.259325-1 1.083927-1 6.655460-2 1.798871-1 1.385949-2 2.264644-1 6.839700-3 2.660725-1 4.201567-3 3.054921-1 2.786183-3 3.467369-1 1.925268-3 3.935501-1 1.340243-3 4.415705-1 9.711713-4 4.954502-1 7.090537-4 5.495409-1 5.380132-4 6.095369-1 4.110865-4 6.760830-1 3.164093-4 7.498942-1 2.453717-4 8.609938-1 1.763903-4 9.225714-1 1.504737-4 9.772372-1 1.325426-4 1.047129+0 1.146793-4 1.135011+0 9.750396-5 1.244515+0 8.159734-5 1.380384+0 6.736574-5 1.698244+0 4.651919-5 1.927525+0 3.735423-5 2.187762+0 3.022480-5 2.511886+0 2.417059-5 2.884032+0 1.947061-5 3.349654+0 1.552421-5 3.890451+0 1.247191-5 4.570882+0 9.931197-6 5.432503+0 7.844656-6 6.456542+0 6.244594-6 7.762471+0 4.934528-6 9.332543+0 3.924976-6 1.148154+1 3.058186-6 1.500000+1 2.237800-6 2.000000+1 1.616400-6 2.630268+1 1.195218-6 3.589219+1 8.547940-7 5.370318+1 5.586158-7 8.413951+1 3.506079-7 1.380384+2 2.112615-7 2.754229+2 1.048933-7 5.495409+2 5.232640-8 4.365158+3 6.561801-9 1.000000+5 2.86310-10 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 8.540000-6 8.540000-6 1.000000+5 8.540000-6 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 8.540000-6 0.0 1.000000+5 1.000000+5 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.651180-7 1.025800+0 1.198680-6 1.026100+0 1.503890-6 1.026600+0 2.120140-6 1.027100+0 2.884490-6 1.027500+0 3.612790-6 1.028100+0 4.918760-6 1.028750+0 6.651180-6 1.029500+0 9.102320-6 1.030100+0 1.144730-5 1.031000+0 1.566380-5 1.032000+0 2.143200-5 1.033200+0 3.002250-5 1.034000+0 3.685540-5 1.035300+0 5.002600-5 1.036640+0 6.651180-5 1.038200+0 8.975980-5 1.039700+0 1.166160-4 1.041500+0 1.551560-4 1.043800+0 2.153620-4 1.046400+0 2.996360-4 1.048300+0 3.730550-4 1.051200+0 5.060410-4 1.054080+0 6.651180-4 1.057700+0 9.065990-4 1.061100+0 1.179260-3 1.065100+0 1.561210-3 1.070400+0 2.178050-3 1.076200+0 3.010050-3 1.080600+0 3.759060-3 1.087100+0 5.064700-3 1.093710+0 6.651180-3 1.102600+0 9.221710-3 1.110700+0 1.202680-2 1.120600+0 1.608810-2 1.133300+0 2.236920-2 1.147500+0 3.088500-2 1.158200+0 3.838220-2 1.174100+0 5.129950-2 1.190110+0 6.651180-2 1.205100+0 8.279430-2 1.227500+0 1.108140-1 1.250000+0 1.432000-1 1.265600+0 1.679550-1 1.294900+0 2.191050-1 1.331800+0 2.911290-1 1.362600+0 3.567050-1 1.397000+0 4.347260-1 1.433800+0 5.227450-1 1.477900+0 6.330440-1 1.500000+0 6.900000-1 1.562500+0 8.557440-1 1.617200+0 1.004740+0 1.712900+0 1.269940+0 1.784700+0 1.469800+0 1.892300+0 1.767650+0 2.000000+0 2.062000+0 2.044000+0 2.181000+0 2.163500+0 2.497710+0 2.372600+0 3.027270+0 2.686300+0 3.764590+0 3.000000+0 4.444000+0 3.500000+0 5.434470+0 4.000000+0 6.334000+0 5.000000+0 7.915000+0 6.000000+0 9.278000+0 7.000000+0 1.048000+1 8.000000+0 1.156000+1 9.000000+0 1.254000+1 1.000000+1 1.345000+1 1.100000+1 1.429000+1 1.200000+1 1.508000+1 1.300000+1 1.581000+1 1.400000+1 1.649000+1 1.500000+1 1.713000+1 1.600000+1 1.773000+1 1.800000+1 1.881000+1 2.000000+1 1.977000+1 2.200000+1 2.065000+1 2.400000+1 2.144000+1 2.600000+1 2.217000+1 2.800000+1 2.284000+1 3.000000+1 2.346000+1 4.000000+1 2.597000+1 5.000000+1 2.784000+1 6.000000+1 2.928000+1 8.000000+1 3.141000+1 1.000000+2 3.290000+1 1.500000+2 3.527000+1 2.000000+2 3.667000+1 3.000000+2 3.831000+1 4.000000+2 3.924000+1 5.000000+2 3.985000+1 6.000000+2 4.029000+1 8.000000+2 4.087000+1 1.000000+3 4.125000+1 1.500000+3 4.179000+1 2.000000+3 4.209000+1 3.000000+3 4.241000+1 4.000000+3 4.258000+1 5.000000+3 4.269000+1 6.000000+3 4.277000+1 8.000000+3 4.287000+1 1.000000+4 4.293000+1 1.500000+4 4.302000+1 2.000000+4 4.306000+1 3.000000+4 4.311000+1 4.000000+4 4.314000+1 5.000000+4 4.315000+1 6.000000+4 4.316000+1 8.000000+4 4.318000+1 1.000000+5 4.319000+1 1 85000 7 8 2.100000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.506720-7 2.090400+0 1.155000-6 2.094700+0 1.497630-6 2.099900+0 1.992390-6 2.106600+0 2.771580-6 2.114000+0 3.834830-6 2.119500+0 4.774340-6 2.127900+0 6.474910-6 2.136250+0 8.506720-6 2.147000+0 1.166330-5 2.156900+0 1.514920-5 2.169000+0 2.021760-5 2.184500+0 2.810320-5 2.201800+0 3.888150-5 2.214800+0 4.844330-5 2.234200+0 6.516490-5 2.253680+0 8.506720-5 2.281500+0 1.191520-4 2.307000+0 1.565050-4 2.338200+0 2.104340-4 2.377400+0 2.914260-4 2.410200+0 3.706450-4 2.446800+0 4.714810-4 2.485900+0 5.936210-4 2.532900+0 7.597090-4 2.556430+0 8.506720-4 2.611900+0 1.084710-3 2.660400+0 1.311360-3 2.745300+0 1.755190-3 2.809000+0 2.125650-3 2.904500+0 2.738370-3 3.000000+0 3.418000-3 3.125000+0 4.407100-3 3.234400+0 5.362010-3 3.425800+0 7.219290-3 3.569300+0 8.752610-3 3.784700+0 1.124840-2 4.000000+0 1.393000-2 4.250000+0 1.720680-2 4.625000+0 2.235320-2 5.000000+0 2.770000-2 5.500000+0 3.503430-2 6.000000+0 4.246000-2 6.750000+0 5.349350-2 7.000000+0 5.712000-2 8.000000+0 7.129000-2 9.000000+0 8.482000-2 1.000000+1 9.764000-2 1.100000+1 1.097000-1 1.200000+1 1.211000-1 1.300000+1 1.319000-1 1.400000+1 1.420000-1 1.500000+1 1.516000-1 1.600000+1 1.607000-1 1.800000+1 1.776000-1 2.000000+1 1.928000-1 2.200000+1 2.067000-1 2.400000+1 2.195000-1 2.600000+1 2.312000-1 2.800000+1 2.421000-1 3.000000+1 2.521000-1 4.000000+1 2.935000-1 5.000000+1 3.245000-1 6.000000+1 3.489000-1 8.000000+1 3.853000-1 1.000000+2 4.116000-1 1.500000+2 4.544000-1 2.000000+2 4.810000-1 3.000000+2 5.131000-1 4.000000+2 5.322000-1 5.000000+2 5.451000-1 6.000000+2 5.546000-1 8.000000+2 5.675000-1 1.000000+3 5.761000-1 1.500000+3 5.888000-1 2.000000+3 5.959000-1 3.000000+3 6.036000-1 4.000000+3 6.082000-1 5.000000+3 6.110000-1 6.000000+3 6.129000-1 8.000000+3 6.155000-1 1.000000+4 6.171000-1 1.500000+4 6.193000-1 2.000000+4 6.206000-1 3.000000+4 6.218000-1 4.000000+4 6.226000-1 5.000000+4 6.231000-1 6.000000+4 6.233000-1 8.000000+4 6.237000-1 1.000000+5 6.239000-1 1 85000 7 8 2.100000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 85000 7 9 2.100000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.500000+1 1.000000+5 8.500000+1 5.000000+5 8.498300+1 6.718700+5 8.496380+1 8.593700+5 8.494780+1 1.000000+6 8.493800+1 1.250000+6 8.489780+1 1.500000+6 8.486500+1 2.000000+6 8.476100+1 2.500000+6 8.462900+1 3.000000+6 8.446800+1 3.750000+6 8.417020+1 4.000000+6 8.406700+1 4.750000+6 8.369440+1 5.000000+6 8.356700+1 5.500000+6 8.328270+1 6.250000+6 8.280980+1 6.500000+6 8.264820+1 7.000000+6 8.230700+1 7.875000+6 8.166670+1 8.625000+6 8.107910+1 9.000000+6 8.078300+1 1.000000+7 7.995200+1 1.109400+7 7.900550+1 1.187500+7 7.831060+1 1.250000+7 7.775200+1 1.375000+7 7.661690+1 1.500000+7 7.548700+1 1.687500+7 7.380270+1 1.750000+7 7.325600+1 1.937500+7 7.162880+1 2.000000+7 7.110100+1 2.250000+7 6.903870+1 2.375000+7 6.803950+1 2.500000+7 6.706800+1 2.750000+7 6.517380+1 2.875000+7 6.425660+1 3.000000+7 6.335500+1 3.437500+7 6.029390+1 3.500000+7 5.986710+1 3.812500+7 5.778630+1 4.000000+7 5.657700+1 4.500000+7 5.345990+1 5.000000+7 5.055300+1 5.750000+7 4.659360+1 6.000000+7 4.538500+1 7.000000+7 4.105900+1 7.750000+7 3.826120+1 8.000000+7 3.739900+1 8.750000+7 3.496340+1 9.000000+7 3.419800+1 9.750000+7 3.200680+1 1.000000+8 3.131000+1 1.062500+8 2.962690+1 1.156300+8 2.727320+1 1.187500+8 2.653380+1 1.250000+8 2.511900+1 1.500000+8 2.041100+1 1.671900+8 1.809800+1 1.859400+8 1.620520+1 1.875000+8 1.607100+1 2.000000+8 1.509900+1 2.218800+8 1.375720+1 2.375000+8 1.298200+1 2.500000+8 1.243500+1 2.671900+8 1.174150+1 2.789100+8 1.126410+1 2.875000+8 1.089820+1 2.894500+8 1.081230+1 3.000000+8 1.033000+1 3.125000+8 9.727940+0 3.359400+8 8.699710+0 3.375000+8 8.640800+0 3.453100+8 8.369400+0 3.500000+8 8.225200+0 3.625000+8 7.907090+0 3.859400+8 7.418350+0 4.000000+8 7.111500+0 4.125000+8 6.802990+0 4.234400+8 6.519230+0 4.425800+8 6.026950+0 4.712900+8 5.375650+0 4.750000+8 5.302290+0 4.856400+8 5.108240+0 5.000000+8 4.884200+0 5.179700+8 4.664120+0 5.330100+8 4.516350+0 6.000000+8 4.023300+0 6.250000+8 3.846880+0 7.000000+8 3.368100+0 7.500000+8 3.121850+0 7.750000+8 2.999840+0 8.000000+8 2.868800+0 8.250000+8 2.726520+0 8.468800+8 2.598590+0 8.851600+8 2.379980+0 9.569300+8 2.030180+0 9.856400+8 1.919110+0 1.000000+9 1.870200+0 1.031300+9 1.778280+0 1.060500+9 1.707300+0 1.100900+9 1.627350+0 1.137900+9 1.568490+0 1.183200+9 1.510070+0 1.241300+9 1.450980+0 1.250000+9 1.443270+0 1.278200+9 1.419670+0 1.500000+9 1.274100+0 1.562500+9 1.235260+0 1.671900+9 1.166300+0 1.753900+9 1.114850+0 1.877000+9 1.039360+0 2.000000+9 9.671700-1 2.139200+9 8.901830-1 2.272600+9 8.215690-1 2.443000+9 7.413420-1 2.602800+9 6.735170-1 2.750000+9 6.169990-1 2.822900+9 5.909220-1 3.024800+9 5.251100-1 3.271700+9 4.558210-1 3.487700+9 4.039560-1 3.759500+9 3.483500-1 3.986900+9 3.088420-1 4.348700+9 2.566580-1 4.674400+9 2.187100-1 5.000000+9 1.874900-1 5.375000+9 1.581110-1 5.703100+9 1.370330-1 6.277300+9 1.080630-1 7.031000+9 8.098380-2 8.000000+9 5.786500-2 9.500000+9 3.670360-2 1.00000+10 3.201600-2 1.54060+10 1.009260-2 5.44380+10 3.437380-4 8.48130+10 1.053860-4 1.00000+11 6.802800-5 1.68570+11 1.710120-5 3.34410+11 2.834290-6 8.62510+11 2.413790-7 2.83020+12 1.132010-8 1.00000+14 1.27580-12 3.16230+15 1.83219-16 1.00000+17 2.50840-20 1 85000 7 0 2.100000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.60000-12 1.000000+2 6.60000-10 1.000000+3 6.600000-8 1.000000+4 6.600000-6 1.000000+5 6.600000-4 5.000000+5 1.650000-2 6.718700+5 2.979301-2 8.593700+5 4.874211-2 1.000000+6 6.600000-2 1.250000+6 1.026580-1 1.500000+6 1.476000-1 2.000000+6 2.605000-1 2.500000+6 4.032000-1 3.000000+6 5.740000-1 3.750000+6 8.786720-1 4.000000+6 9.921000-1 4.750000+6 1.363620+0 5.000000+6 1.497000+0 5.500000+6 1.775880+0 6.250000+6 2.220700+0 6.500000+6 2.374910+0 7.000000+6 2.690900+0 7.875000+6 3.262050+0 8.625000+6 3.764810+0 9.000000+6 4.019300+0 1.000000+7 4.702000+0 1.109400+7 5.450730+0 1.187500+7 5.983400+0 1.250000+7 6.408200+0 1.375000+7 7.248470+0 1.500000+7 8.076000+0 1.687500+7 9.289420+0 1.750000+7 9.687000+0 1.937500+7 1.085050+1 2.000000+7 1.122900+1 2.250000+7 1.268650+1 2.375000+7 1.338190+1 2.500000+7 1.405600+1 2.750000+7 1.533670+1 2.875000+7 1.594810+1 3.000000+7 1.654600+1 3.437500+7 1.854080+1 3.500000+7 1.881570+1 3.812500+7 2.017510+1 4.000000+7 2.097800+1 4.500000+7 2.309590+1 5.000000+7 2.517100+1 5.750000+7 2.819180+1 6.000000+7 2.916900+1 7.000000+7 3.285400+1 7.750000+7 3.534860+1 8.000000+7 3.612700+1 8.750000+7 3.829660+1 9.000000+7 3.897100+1 9.750000+7 4.085620+1 1.000000+8 4.145000+1 1.062500+8 4.285610+1 1.156300+8 4.481680+1 1.187500+8 4.543500+1 1.250000+8 4.664300+1 1.500000+8 5.106200+1 1.671900+8 5.379520+1 1.859400+8 5.652260+1 1.875000+8 5.673920+1 2.000000+8 5.840400+1 2.218800+8 6.104530+1 2.375000+8 6.273970+1 2.500000+8 6.397900+1 2.671900+8 6.552090+1 2.789100+8 6.647040+1 2.875000+8 6.712930+1 2.894500+8 6.727030+1 3.000000+8 6.801800+1 3.125000+8 6.883670+1 3.359400+8 7.020850+1 3.375000+8 7.029120+1 3.453100+8 7.070050+1 3.500000+8 7.094300+1 3.625000+8 7.154780+1 3.859400+8 7.257260+1 4.000000+8 7.313700+1 4.125000+8 7.359770+1 4.234400+8 7.399180+1 4.425800+8 7.462060+1 4.712900+8 7.548760+1 4.750000+8 7.559460+1 4.856400+8 7.588410+1 5.000000+8 7.626600+1 5.179700+8 7.671210+1 5.330100+8 7.706590+1 6.000000+8 7.846300+1 6.250000+8 7.890520+1 7.000000+8 8.006400+1 7.500000+8 8.068420+1 7.750000+8 8.095750+1 8.000000+8 8.121000+1 8.250000+8 8.143170+1 8.468800+8 8.162080+1 8.851600+8 8.191130+1 9.569300+8 8.236010+1 9.856400+8 8.251310+1 1.000000+9 8.258800+1 1.031300+9 8.272490+1 1.060500+9 8.284920+1 1.100900+9 8.300900+1 1.137900+9 8.313420+1 1.183200+9 8.327310+1 1.241300+9 8.342700+1 1.250000+9 8.344950+1 1.278200+9 8.352120+1 1.500000+9 8.394100+1 1.562500+9 8.403050+1 1.671900+9 8.417910+1 1.753900+9 8.428350+1 1.877000+9 8.440560+1 2.000000+9 8.452000+1 2.139200+9 8.461630+1 2.272600+9 8.468880+1 2.443000+9 8.476560+1 2.602800+9 8.482440+1 2.750000+9 8.486370+1 2.822900+9 8.488250+1 3.024800+9 8.491380+1 3.271700+9 8.494670+1 3.487700+9 8.496530+1 3.759500+9 8.497620+1 3.986900+9 8.498480+1 4.348700+9 8.499270+1 4.674400+9 8.499390+1 5.000000+9 8.499500+1 5.375000+9 8.499580+1 5.703100+9 8.499640+1 6.277300+9 8.499740+1 7.031000+9 8.499860+1 8.000000+9 8.500000+1 9.500000+9 8.500000+1 1.00000+10 8.500000+1 1.54060+10 8.500000+1 5.44380+10 8.500000+1 8.48130+10 8.500000+1 1.00000+11 8.500000+1 1.68570+11 8.500000+1 3.34410+11 8.500000+1 8.62510+11 8.500000+1 2.83020+12 8.500000+1 1.00000+14 8.500000+1 3.16230+15 8.500000+1 1.00000+17 8.500000+1 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.014501-6 0.0 3.347232-6 0.0 3.355471-6 7.606040-7 3.363710-6 1.505026-6 3.371948-6 2.749052-6 3.380187-6 4.635280-6 3.388426-6 7.214775-6 3.396665-6 1.036629-5 3.404904-6 1.374922-5 3.413142-6 1.683397-5 3.421381-6 1.902606-5 3.429620-6 1.985022-5 3.437859-6 1.911769-5 3.446098-6 1.699651-5 3.454336-6 1.394883-5 3.470814-6 7.390198-6 3.479053-6 4.770855-6 3.487292-6 2.843088-6 3.495530-6 1.564006-6 3.503769-6 7.942196-7 3.512008-6 0.0 5.205562-6 0.0 5.224781-6 2.018039+0 5.231187-6 2.682186+0 5.244000-6 4.899232+0 5.256813-6 8.260779+0 5.271227-6 1.355841+1 5.293675-6 2.375982+1 5.308865-6 3.024434+1 5.322053-6 3.404191+1 5.334616-6 3.528202+1 5.348577-6 3.346002+1 5.361618-6 2.931636+1 5.381788-6 2.031849+1 5.397754-6 1.317047+1 5.410567-6 8.502395+0 5.423380-6 5.066819+0 5.436193-6 2.787299+0 5.452209-6 1.062190+0 5.461818-6 0.0 6.170472-6 0.0 6.185660-6 2.027855-6 6.200847-6 4.012566-6 6.216035-6 7.329280-6 6.231223-6 1.235817-5 6.246411-6 1.923540-5 6.261599-6 2.763770-5 6.276787-6 3.665696-5 6.291974-6 4.488124-5 6.307162-6 5.072561-5 6.323407-6 5.278725-5 6.338972-6 5.167214-5 6.354536-6 4.679179-5 6.385664-6 3.427327-5 6.401229-6 3.006820-5 6.413477-6 2.845843-5 6.428665-6 2.859820-5 6.463486-6 3.239003-5 6.474228-6 3.181421-5 6.479050-6 3.222939-5 6.494614-6 3.104005-5 6.510179-6 2.759603-5 6.525743-6 2.264773-5 6.556871-6 1.199894-5 6.572436-6 7.746100-6 6.588000-6 4.616121-6 6.603564-6 2.539366-6 6.619128-6 1.289518-6 6.634693-6 0.0 6.783766-6 0.0 6.794853-6 1.661689-1 6.817161-6 3.272563+0 6.828303-6 4.912080+0 6.845027-6 8.888568+0 6.861752-6 1.485648+1 6.878477-6 2.293518+1 6.917345-6 4.614246+1 6.935648-6 5.519426+1 6.948454-6 5.947093+1 6.966147-6 6.087822+1 6.983763-6 5.736500+1 7.001690-6 4.979757+1 7.047814-6 2.535175+1 7.062448-6 1.925643+1 7.079173-6 1.418772+1 7.095897-6 1.071410+1 7.116803-6 7.544974+0 7.129347-6 5.453161+0 7.138778-6 5.019074+0 7.151571-6 4.312044+0 7.185684-6 2.284554+0 7.202741-6 1.474829+0 7.219798-6 8.788923-1 7.236855-6 4.834859-1 7.253912-6 2.455195-1 7.270969-6 0.0 7.457825-6 0.0 7.464472-6 3.975165-2 7.501217-6 2.103937+0 7.519590-6 3.822980+0 7.539111-6 6.661917+0 7.558385-6 1.054970+1 7.612603-6 2.371076+1 7.631774-6 2.685990+1 7.649079-6 2.807363+1 7.669547-6 2.699630+1 7.687688-6 2.420596+1 7.731909-6 1.397770+1 7.740064-6 1.200943+1 7.758437-6 8.243891+0 7.777360-6 5.266233+0 7.795709-6 3.701697+0 7.815646-6 2.726839+0 7.831928-6 2.321160+0 7.836546-6 2.530801+0 7.854963-6 3.649032+0 7.874271-6 5.398116+0 7.931577-6 1.215717+1 7.952543-6 1.390754+1 7.971853-6 1.474055+1 7.993418-6 1.442008+1 8.019184-6 1.294441+1 8.050154-6 1.081702+1 8.069966-6 1.004642+1 8.093264-6 9.798461+0 8.129431-6 1.033776+1 8.171531-6 1.099836+1 8.397729-6 1.064118+1 8.535557-6 9.034390+0 8.556577-6 8.912778+0 8.601565-6 9.537925+0 8.623185-6 1.020633+1 8.645594-6 1.127286+1 8.672182-6 1.299658+1 8.732963-6 1.706777+1 8.755909-6 1.777766+1 8.764626-6 1.789564+1 8.791598-6 1.723407+1 8.819557-6 1.560932+1 8.868568-6 1.204268+1 8.889620-6 1.080486+1 8.910671-6 9.891035+0 8.936986-6 9.188500+0 8.978075-6 8.524749+0 1.013216-5 7.735630+0 1.018403-5 9.320573+0 1.020740-5 1.050927+1 1.023526-5 1.272099+1 1.026221-5 1.566510+1 1.033209-5 2.470947+1 1.036211-5 2.713662+1 1.038629-5 2.775191+1 1.041046-5 2.699830+1 1.043773-5 2.469203+1 1.051755-5 1.542788+1 1.053634-5 1.363263+1 1.055530-5 1.209636+1 1.058059-5 1.057175+1 1.063143-5 8.323812+0 1.070707-5 7.469995+0 1.080530-5 7.090327+0 1.083900-5 7.563246+0 1.087393-5 8.712148+0 1.089152-5 9.478649+0 1.091813-5 1.120849+1 1.094983-5 1.423232+1 1.102458-5 2.351145+1 1.105828-5 2.662236+1 1.108297-5 2.772560+1 1.110988-5 2.740723+1 1.113787-5 2.554265+1 1.118897-5 1.996911+1 1.123057-5 1.538479+1 1.126134-5 1.324092+1 1.129281-5 1.213893+1 1.133029-5 1.199153+1 1.142885-5 1.294553+1 1.155593-5 1.235915+1 1.189040-5 1.211579+1 1.213127-5 1.094448+1 1.418536-5 8.983802+0 1.425628-5 1.106535+1 1.429119-5 1.280299+1 1.433020-5 1.584366+1 1.436511-5 1.951062+1 1.446467-5 3.200133+1 1.450534-5 3.511430+1 1.453905-5 3.583123+1 1.457548-5 3.434633+1 1.460950-5 3.122936+1 1.470796-5 1.862599+1 1.474724-5 1.463927+1 1.477779-5 1.227952+1 1.481707-5 1.034181+1 1.488253-5 8.249003+0 1.700690-5 6.354663+0 1.879807-5 5.132810+0 2.050773-5 4.245806+0 2.065916-5 4.496527+0 2.076011-5 4.962150+0 2.091155-5 5.979580+0 2.096810-5 6.210134+0 2.102616-5 6.237604+0 2.108422-5 6.047063+0 2.121576-5 5.126865+0 2.131536-5 4.436469+0 2.141632-5 4.035801+0 2.153704-5 3.835323+0 2.170212-5 3.904814+0 2.197069-5 4.304915+0 2.207832-5 4.296962+0 2.238072-5 3.977517+0 2.313424-5 3.682757+0 2.361539-5 3.455869+0 2.574902-5 2.850389+0 2.813677-5 2.346009+0 3.070577-5 1.945536+0 3.402868-5 1.569585+0 3.557751-5 1.439889+0 3.575674-5 2.284872+0 3.584431-5 2.980339+0 3.593188-5 4.028860+0 3.602970-5 5.653338+0 3.628214-5 1.066645+1 3.638330-5 1.202056+1 3.646789-5 1.260137+1 3.656604-5 1.236809+1 3.681301-5 1.027680+1 3.691973-5 9.875261+0 3.705805-5 9.999276+0 3.719611-5 1.013613+1 3.725609-5 9.933268+0 3.742749-5 8.283882+0 3.768467-5 4.385465+0 3.777412-5 3.277689+0 3.786357-5 2.460853+0 3.795303-5 1.916887+0 3.813193-5 1.247446+0 3.969008-5 1.152569+0 3.988546-5 1.221580+0 3.998316-5 1.282206+0 4.012969-5 1.442719+0 4.047162-5 2.004054+0 4.056931-5 2.115416+0 4.066700-5 2.154081+0 4.079404-5 2.072222+0 4.093228-5 1.870746+0 4.115546-5 1.466496+0 4.125315-5 1.322369+0 4.135084-5 1.215102+0 4.144854-5 1.142339+0 4.164392-5 1.049647+0 4.189950-5 1.037123+0 4.210576-5 1.229247+0 4.220889-5 1.391361+0 4.231202-5 1.639597+0 4.243682-5 2.070920+0 4.272454-5 3.256646+0 4.284056-5 3.561196+0 4.294453-5 3.657297+0 4.305385-5 3.549911+0 4.317303-5 3.233112+0 4.339639-5 2.516053+0 4.346437-5 2.338060+0 4.354958-5 2.192100+0 4.365271-5 2.127250+0 4.399068-5 2.303143+0 4.409792-5 2.394367+0 4.424384-5 2.452167+0 4.462818-5 2.375520+0 4.507299-5 2.245916+0 4.541661-5 2.264197+0 4.586060-5 2.399774+0 4.608636-5 2.580041+0 4.631212-5 2.885376+0 4.653397-5 3.385022+0 4.688474-5 4.228030+0 4.699634-5 4.373908+0 4.714094-5 4.413346+0 4.762205-5 4.089580+0 4.779671-5 4.148773+0 4.904536-5 5.818275+0 4.971593-5 7.042458+0 5.035311-5 8.684172+0 5.118505-5 1.149971+1 5.619973-5 3.375011+1 5.900000-5 4.852573+1 6.040000-5 5.301518+1 6.174463-5 5.313926+1 6.414056-5 4.819014+1 6.854058-5 3.773726+1 7.275742-5 3.014935+1 7.740161-5 2.398317+1 8.282084-5 1.865341+1 8.810489-5 1.478524+1 9.382989-5 1.165320+1 9.859466-5 9.657072+0 1.039247-4 7.936834+0 1.100887-4 6.423604+0 1.118802-4 6.055328+0 1.127063-4 6.122358+0 1.133143-4 6.431980+0 1.143999-4 7.249512+0 1.149799-4 7.266647+0 1.161466-4 6.698165+0 1.207447-4 5.885772+0 1.310720-4 4.564348+0 1.401237-4 3.685883+0 1.430736-4 3.495515+0 1.440640-4 3.557125+0 1.458938-4 3.852027+0 1.491178-4 3.933252+0 1.647160-4 3.033818+0 1.760000-4 2.579421+0 1.811416-4 2.448414+0 1.824726-4 2.501953+0 1.842473-4 2.640052+0 1.855783-4 2.576182+0 1.877967-4 2.305754+0 1.891996-4 2.231176+0 1.927703-4 2.214993+0 1.962700-4 2.261811+0 2.052055-4 2.140797+0 2.077690-4 2.201255+0 2.179593-4 2.909971+0 2.221250-4 2.996397+0 2.327000-4 2.899023+0 2.412375-4 2.976582+0 2.490500-4 3.226555+0 2.565210-4 3.643814+0 2.642062-4 4.270991+0 2.710444-4 5.023956+0 2.800468-4 6.316922+0 2.900077-4 8.106960+0 3.211818-4 1.482755+1 3.481186-4 2.057056+1 3.732160-4 2.479676+1 4.061498-4 2.867589+1 4.433813-4 3.128313+1 4.976076-4 3.343985+1 5.305197-4 3.569881+1 5.902257-4 3.625771+1 7.322633-4 3.389769+1 7.524564-4 3.506847+1 9.968509-4 2.932516+1 1.104396-3 2.737675+1 1.355101-3 2.257530+1 1.603246-3 1.895136+1 1.916416-3 1.553848+1 2.291019-3 1.259716+1 2.702506-3 1.028377+1 2.733665-3 1.032625+1 2.747118-3 1.082756+1 2.757284-3 1.176241+1 2.767043-3 1.329585+1 2.778330-3 1.582155+1 2.802080-3 2.168228+1 2.816646-3 2.393687+1 2.833930-3 2.498405+1 2.876583-3 2.562324+1 2.895404-3 2.728894+1 2.931068-3 3.233806+1 2.953171-3 3.376132+1 3.029274-3 3.290143+1 3.337365-3 2.846145+1 3.379828-3 2.904099+1 3.432002-3 3.107621+1 3.526212-3 3.039288+1 3.952687-3 2.592458+1 4.060715-3 2.623106+1 4.256034-3 2.486959+1 4.362150-3 2.474154+1 5.038087-3 2.017861+1 5.866578-3 1.617183+1 6.735944-3 1.314938+1 7.784846-3 1.056055+1 8.849540-3 8.669353+0 1.015492-2 6.993364+0 1.153122-2 5.725288+0 1.320800-2 4.610907+0 1.390276-2 4.271051+0 1.399469-2 4.394442+0 1.405028-2 4.678971+0 1.410045-2 5.167572+0 1.415467-2 5.967909+0 1.428269-2 8.292064+0 1.435095-2 9.159246+0 1.444845-2 9.676280+0 1.471571-2 9.557922+0 1.650719-2 7.897224+0 1.666014-2 8.056795+0 1.678290-2 8.692986+0 1.694504-2 9.837017+0 1.708919-2 1.027808+1 1.733219-2 1.045169+1 1.762198-2 1.122042+1 1.793292-2 1.114364+1 2.074316-2 8.899088+0 2.372556-2 7.197511+0 2.676321-2 5.929423+0 3.049478-2 4.789098+0 3.382023-2 4.039614+0 3.782268-2 3.352073+0 4.166090-2 2.850203+0 4.710917-2 2.315066+0 5.308844-2 1.889489+0 5.962248-2 1.547894+0 6.730427-2 1.256009+0 7.577040-2 1.023017+0 8.521332-2 8.343629-1 9.377704-2 7.108235-1 9.431253-2 7.336101-1 9.464756-2 7.883363-1 9.492678-2 8.810143-1 9.520294-2 1.031362+0 9.546045-2 1.231477+0 9.575088-2 1.519364+0 9.647899-2 2.328697+0 9.691786-2 2.690824+0 9.746504-2 2.919244+0 9.845126-2 2.975347+0 1.147827-1 2.346258+0 1.278501-1 1.974600+0 1.470522-1 1.576885+0 1.639091-1 1.321766+0 1.850990-1 1.085053+0 2.080043-1 8.980045-1 2.358187-1 7.330607-1 2.674958-1 5.997900-1 3.030087-1 4.934442-1 3.408616-1 4.117878-1 3.871574-1 3.407397-1 4.393519-1 2.841570-1 5.000404-1 2.375783-1 5.754399-1 1.974129-1 6.563105-1 1.674588-1 7.449194-1 1.440423-1 8.609938-1 1.224910-1 9.900596-1 1.059539-1 1.173502+0 8.778116-2 1.347258+0 7.506702-2 1.561932+0 6.351438-2 1.859734+0 5.209680-2 2.135261+0 4.454749-2 2.451607+0 3.809215-2 2.814822+0 3.257225-2 3.231848+0 2.785223-2 3.710658+0 2.381619-2 4.260405+0 2.036500-2 4.902010+0 1.737394-2 5.616308+0 1.489049-2 6.448384+0 1.273272-2 7.403736+0 1.088763-2 8.500626+0 9.309912-3 9.760024+0 7.960820-3 1.000000+1 1.654930-2 1 85000 7 0 2.100000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.497149+1 3.014501-6-8.463193+1 4.821732-6-8.210220+1 5.114002-6-7.832352+1 5.193948-6-7.383997+1 5.261217-6-6.344125+1 5.282439-6-6.305677+1 5.300857-6-6.696462+1 5.322053-6-7.701813+1 5.334616-6-8.455571+1 5.349919-6-7.890281+1 5.369542-6-7.054815+1 5.388145-6-6.717726+1 5.412169-6-6.851672+1 5.481641-6-7.903204+1 5.586354-6-8.384358+1 5.785503-6-8.612115+1 6.510179-6-7.958704+1 6.696382-6-7.396019+1 6.771358-6-6.788454+1 6.828303-6-5.657624+1 6.867501-6-4.825746+1 6.883183-6-4.690911+1 6.897320-6-4.812380+1 6.915233-6-5.293968+1 6.934043-6-6.243508+1 6.963818-6-8.432738+1 6.967860-6-8.773453+1 6.989850-6-7.251657+1 7.007022-6-6.379957+1 7.028277-6-5.824451+1 7.045723-6-5.730700+1 7.079173-6-6.138308+1 7.151571-6-7.165893+1 7.301051-6-8.382866+1 7.387279-6-8.846422+1 7.471894-6-8.225246+1 7.562228-6-7.385700+1 7.598895-6-7.611921+1 7.633828-6-8.420507+1 7.649079-6-8.884119+1 7.697778-6-7.683195+1 7.731909-6-7.414044+1 7.775290-6-7.745876+1 7.862561-6-8.974506+1 7.919441-6-8.792936+1 7.952543-6-8.991319+1 8.026152-6-8.401894+1 8.171531-6-8.610556+1 8.512250-6-8.536897+1 8.681544-6-8.930042+1 8.755909-6-8.481897+1 8.831728-6-7.894229+1 8.910671-6-7.931596+1 9.112936-6-8.267626+1 1.000010-5-8.617314+1 1.014558-5-8.155908+1 1.026591-5-7.602096+1 1.032335-5-7.851371+1 1.037989-5-8.564433+1 1.045002-5-7.564234+1 1.050508-5-7.331867+1 1.064004-5-7.850692+1 1.081202-5-8.578747+1 1.096390-5-7.814028+1 1.102458-5-8.046708+1 1.107077-5-8.537228+1 1.115133-5-7.408513+1 1.120778-5-7.154640+1 1.137791-5-7.783875+1 1.366188-5-7.907914+1 1.406552-5-8.089731+1 1.421008-5-7.620364+1 1.436511-5-6.987213+1 1.442866-5-7.181124+1 1.449381-5-7.935967+1 1.450534-5-8.034731+1 1.460541-5-6.421800+1 1.466446-5-5.934859+1 1.472542-5-5.908107+1 1.494817-5-6.802714+1 1.527500-5-7.141511+1 1.700690-5-7.382119+1 2.070964-5-7.633315+1 2.131536-5-7.407726+1 2.215798-5-7.516489+1 3.357749-5-8.055664+1 3.553334-5-8.335776+1 3.613164-5-7.989766+1 3.645813-5-8.401216+1 3.678031-5-7.951252+1 3.721800-5-7.714716+1 3.759521-5-7.395399+1 3.862131-5-7.941378+1 4.066700-5-8.279211+1 4.220889-5-8.571301+1 4.294453-5-8.562961+1 4.368526-5-8.596462+1 4.723392-5-9.183155+1 5.227231-5-1.037697+2 5.639973-5-1.024530+2 5.851637-5-9.615443+1 6.280000-5-6.966753+1 6.452621-5-6.280353+1 6.699648-5-5.705422+1 7.038494-5-5.296735+1 7.602033-5-5.039711+1 8.660663-5-5.036040+1 1.118802-4-5.587089+1 1.143999-4-5.654692+1 1.182595-4-5.602065+1 1.517086-4-5.982151+1 2.085933-4-6.482544+1 2.541205-4-6.965554+1 3.040000-4-7.605121+1 3.427843-4-7.586334+1 4.821665-4-6.118318+1 5.041728-4-6.019085+1 6.111039-4-4.894550+1 7.018160-4-4.312348+1 7.465815-4-4.204035+1 7.765578-4-3.927364+1 8.657141-4-3.504340+1 9.968509-4-3.096052+1 1.159150-3-2.729384+1 1.355101-3-2.487540+1 1.603246-3-2.354619+1 1.916416-3-2.351802+1 2.207154-3-2.490966+1 2.428535-3-2.730495+1 2.573195-3-3.021382+1 2.660725-3-3.331702+1 2.716741-3-3.695821+1 2.750714-3-4.150398+1 2.778330-3-4.565343+1 2.797086-3-4.566175+1 2.841425-3-4.057506+1 2.869354-3-3.990710+1 2.908030-3-4.061207+1 2.931068-3-3.854002+1 2.969020-3-3.343577+1 3.007891-3-3.014023+1 3.082739-3-2.651974+1 3.189701-3-2.348891+1 3.294601-3-2.201647+1 3.353830-3-2.232328+1 3.391253-3-2.283888+1 3.421187-3-2.201188+1 3.480947-3-1.930132+1 3.561119-3-1.728340+1 3.701864-3-1.510825+1 3.860864-3-1.366951+1 3.952687-3-1.356236+1 4.007750-3-1.336704+1 4.087437-3-1.213030+1 4.192465-3-1.128220+1 4.298006-3-1.090621+1 4.393238-3-9.746456+0 4.569481-3-8.456741+0 4.837524-3-7.156636+0 5.143396-3-6.154212+0 5.529600-3-5.299202+0 5.998499-3-4.651904+0 6.531306-3-4.260065+0 7.161434-3-4.053139+0 8.133058-3-4.057394+0 9.306279-3-4.364849+0 1.062307-2-4.964372+0 1.192035-2-5.854677+0 1.279748-2-6.795482+0 1.337106-2-7.789110+0 1.371277-2-8.796154+0 1.390276-2-9.804620+0 1.405028-2-1.126801+1 1.415467-2-1.235433+1 1.422555-2-1.254527+1 1.430707-2-1.201836+1 1.448161-2-1.004797+1 1.464393-2-8.945648+0 1.488453-2-8.072701+0 1.524491-2-7.367157+0 1.568095-2-6.982978+0 1.613941-2-6.998410+0 1.643722-2-7.370715+0 1.666014-2-8.191523+0 1.682093-2-8.732819+0 1.694504-2-8.487665+0 1.714504-2-7.630616+0 1.750098-2-7.098130+0 1.785208-2-5.717687+0 1.817162-2-4.932912+0 1.865788-2-4.147118+0 1.934438-2-3.380390+0 1.987672-2-2.932816+0 2.074316-2-2.390974+0 2.167884-2-1.967201+0 2.276292-2-1.612788+0 2.372556-2-1.379356+0 2.485794-2-1.174504+0 2.624596-2-1.005224+0 2.803581-2-8.607492-1 2.958535-2-7.924708-1 3.214304-2-7.460718-1 3.526875-2-7.502929-1 4.067369-2-8.435231-1 5.734249-2-1.277190+0 7.269111-2-1.720513+0 8.142233-2-2.054701+0 8.684949-2-2.368243+0 9.039470-2-2.700366+0 9.246880-2-3.025942+0 9.377704-2-3.383882+0 9.464756-2-3.822390+0 9.565381-2-4.451322+0 9.621719-2-4.508585+0 9.691786-2-4.143945+0 9.786183-2-3.487559+0 9.878420-2-3.077227+0 1.000771-1-2.726663+0 1.022190-1-2.357527+0 1.051604-1-2.035806+0 1.092306-1-1.737933+0 1.123030-1-1.576031+0 1.182106-1-1.360629+0 1.249530-1-1.199011+0 1.348963-1-1.046470+0 1.470522-1-9.381158-1 1.639091-1-8.664230-1 1.919967-1-8.310148-1 2.561770-1-8.596073-1 4.208818-1-9.644106-1 6.871179-1-1.033481+0 1.419938+0-1.068796+0 4.260405+0-1.082476+0 1.000000+1-1.083305+0 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.585154-4 1.069355-6 1.116214-3 1.102772-6 1.260613-3 1.137234-6 1.429806-3 1.200000-6 1.796136-3 1.247216-6 2.098641-3 1.286191-6 2.384825-3 1.350000-6 2.936140-3 1.410579-6 3.532526-3 1.454660-6 4.037397-3 1.536000-6 5.134088-3 1.595340-6 6.012096-3 1.749626-6 8.979467-3 1.804302-6 1.027072-2 1.860686-6 1.180047-2 1.922168-6 1.369445-2 1.978796-6 1.552507-2 2.237984-6 2.677698-2 2.307921-6 3.078029-2 2.531120-6 4.743717-2 2.610217-6 5.495247-2 2.775905-6 7.407264-2 2.862652-6 8.625372-2 2.952110-6 1.007817-1 3.139500-6 1.385013-1 3.234291-6 1.621344-1 3.326120-6 1.887339-1 3.417188-6 2.190774-1 3.584744-6 2.868966-1 3.665621-6 3.267170-1 3.819873-6 4.182272-1 3.964634-6 5.268688-1 4.033639-6 5.878117-1 4.165249-6 7.252943-1 4.227985-6 8.027083-1 4.349537-6 9.770070-1 4.463492-6 1.177568+0 4.570324-6 1.405919+0 4.670480-6 1.665024+0 4.764376-6 1.958294+0 4.852403-6 2.288126+0 4.934929-6 2.658361+0 5.021178-6 3.122526+0 5.084829-6 3.526754+0 5.153466-6 4.038564+0 5.216577-6 4.591304+0 5.276342-6 5.206276+0 5.332372-6 5.883608+0 5.384899-6 6.626609+0 5.434144-6 7.438106+0 5.480311-6 8.322742+0 5.523592-6 9.286507+0 5.564169-6 1.033523+1 5.602209-6 1.147414+1 5.637872-6 1.270810+1 5.671306-6 1.404248+1 5.702650-6 1.548377+1 5.732035-6 1.703918+1 5.759584-6 1.871602+1 5.785411-6 2.052134+1 5.809623-6 2.246183+1 5.832323-6 2.454397+1 5.856236-6 2.707201+1 5.875334-6 2.939050+1 5.892258-6 3.171345+1 5.909793-6 3.443942+1 5.926232-6 3.734937+1 5.941643-6 4.045369+1 5.956091-6 4.376339+1 5.969636-6 4.729059+1 5.982335-6 5.104908+1 5.994240-6 5.505501+1 6.005401-6 5.932745+1 6.015864-6 6.388843+1 6.035483-6 7.434773+1 6.052649-6 8.636532+1 6.067670-6 1.000998+2 6.080813-6 1.155783+2 6.092313-6 1.326614+2 6.102376-6 1.510578+2 6.111180-6 1.703722+2 6.118885-6 1.901649+2 6.125626-6 2.100050+2 6.136686-6 2.483568+2 6.173764-6 4.422780+2 6.183334-6 5.110834+2 6.188008-6 5.475804+2 6.195604-6 6.108270+2 6.203201-6 6.786522+2 6.218395-6 8.259186+2 6.220294-6 8.451930+2 6.233588-6 9.832380+2 6.238811-6 1.038077+3 6.248782-6 1.141521+3 6.256498-6 1.218672+3 6.263976-6 1.289338+3 6.271691-6 1.356381+3 6.279169-6 1.414155+3 6.284518-6 1.450344+3 6.291158-6 1.488523+3 6.295312-6 1.508291+3 6.304215-6 1.539119+3 6.310951-6 1.551419+3 6.320222-6 1.552211+3 6.325793-6 1.543633+3 6.340648-6 1.488579+3 6.345387-6 1.461765+3 6.356532-6 1.383168+3 6.362407-6 1.334023+3 6.367359-6 1.289114+3 6.372230-6 1.242282+3 6.378046-6 1.183488+3 6.385524-6 1.104429+3 6.392172-6 1.032023+3 6.399116-6 9.554154+2 6.408315-6 8.542508+2 6.415912-6 7.724711+2 6.424458-6 6.838385+2 6.431105-6 6.181545+2 6.446299-6 4.811994+2 6.451522-6 4.388237+2 6.456507-6 4.007364+2 6.461492-6 3.649792+2 6.465291-6 3.392986+2 6.473837-6 2.863922+2 6.481540-6 2.443197+2 6.489787-6 2.048490+2 6.497950-6 1.710718+2 6.503341-6 1.514220+2 6.508691-6 1.338612+2 6.513999-6 1.182080+2 6.524491-6 9.193580+1 6.534819-6 7.132335+1 6.544987-6 5.525541+1 6.554996-6 4.279018+1 6.569758-6 2.916109+1 6.579419-6 2.261078+1 6.588930-6 1.756253+1 6.598292-6 1.366899+1 6.616580-6 8.339075+0 6.634300-6 5.155133+0 6.642953-6 4.086840+0 6.651471-6 3.269176+0 6.659856-6 2.649429+0 6.668110-6 2.186653+0 6.676235-6 1.848640+0 6.684233-6 1.609689+0 6.692106-6 1.448987+0 6.699856-6 1.349446+0 6.707485-6 1.296874+0 6.714994-6 1.279385+0 6.722387-6 1.286996+0 6.729664-6 1.311333+0 6.736827-6 1.345429+0 6.743878-6 1.383567+0 6.757652-6 1.454627+0 6.774199-6 1.504804+0 6.776621-6 1.507278+0 6.789324-6 1.496418+0 6.807726-6 1.408873+0 6.825371-6 1.257370+0 6.836706-6 1.136898+0 6.847687-6 1.011997+0 6.858325-6 8.904140-1 6.878936-6 6.760575-1 6.898259-6 5.261990-1 6.916375-6 4.475919-1 6.960237-6 5.361805-1 7.103622-6 3.038437+0 7.188104-6 6.190045+0 7.205797-6 7.068671+0 7.223489-6 8.036349+0 7.241182-6 9.100218+0 7.258874-6 1.026811+1 7.276567-6 1.154870+1 7.294260-6 1.295183+1 7.329645-6 1.617247+1 7.365030-6 2.004271+1 7.435800-6 3.038592+1 7.471186-6 3.733955+1 7.506571-6 4.596633+1 7.542415-6 5.699368+1 7.560491-6 6.369103+1 7.578566-6 7.134602+1 7.596641-6 8.015685+1 7.614717-6 9.038275+1 7.632792-6 1.023721+2 7.650867-6 1.166064+2 7.668942-6 1.337676+2 7.687018-6 1.548375+2 7.705093-6 1.812324+2 7.722883-6 2.143715+2 7.738450-6 2.512853+2 7.752071-6 2.915570+2 7.763989-6 3.344814+2 7.774417-6 3.791678+2 7.783542-6 4.246594+2 7.798512-6 5.144825+2 7.819908-6 6.824810+2 7.847416-6 9.833968+2 7.865149-6 1.236338+3 7.870374-6 1.320210+3 7.886047-6 1.597299+3 7.895962-6 1.791549+3 7.899268-6 1.859338+3 7.918615-6 2.282417+3 7.921034-6 2.337945+3 7.937963-6 2.736788+3 7.944614-6 2.895844+3 7.958893-6 3.233940+3 7.967050-6 3.420866+3 7.976784-6 3.633381+3 7.986715-6 3.833868+3 7.993427-6 3.957592+3 8.003020-6 4.114715+3 8.011885-6 4.236370+3 8.016564-6 4.290521+3 8.027900-6 4.390592+3 8.036478-6 4.435331+3 8.048284-6 4.451404+3 8.057292-6 4.427883+3 8.062463-6 4.400568+3 8.071668-6 4.327801+3 8.078667-6 4.252696+3 8.093339-6 4.044892+3 8.100877-6 3.914696+3 8.110720-6 3.724736+3 8.119460-6 3.540486+3 8.127888-6 3.352137+3 8.137139-6 3.136873+3 8.145593-6 2.935442+3 8.153745-6 2.739585+3 8.163300-6 2.511073+3 8.172567-6 2.293406+3 8.181071-6 2.099291+3 8.189576-6 1.912273+3 8.209202-6 1.514501+3 8.233724-6 1.094714+3 8.244077-6 9.445539+2 8.255436-6 7.978815+2 8.262996-6 7.103513+2 8.272988-6 6.063642+2 8.287707-6 4.756991+2 8.292614-6 4.376418+2 8.307334-6 3.382851+2 8.312240-6 3.097051+2 8.326960-6 2.359488+2 8.339226-6 1.865774+2 8.346586-6 1.615111+2 8.361306-6 1.201729+2 8.373647-6 9.322034+1 8.396353-6 5.814347+1 8.404487-6 4.930052+1 8.412486-6 4.220463+1 8.426410-6 3.320868+1 8.451430-6 2.636408+1 8.464918-6 2.728303+1 8.476297-6 3.063076+1 8.485736-6 3.532602+1 8.490671-6 3.852548+1 8.495356-6 4.206526+1 8.502495-6 4.845683+1 8.512712-6 5.986782+1 8.532501-6 9.057330+1 8.538671-6 1.027424+2 8.573816-6 1.991338+2 8.579143-6 2.180007+2 8.592929-6 2.720351+2 8.601298-6 3.083443+2 8.618530-6 3.904049+2 8.626613-6 4.316635+2 8.639537-6 5.000569+2 8.645622-6 5.328247+2 8.652132-6 5.679400+2 8.657449-6 5.964558+2 8.661437-6 6.176365+2 8.670409-6 6.642308+2 8.677044-6 6.973380+2 8.685814-6 7.386703+2 8.693139-6 7.705454+2 8.701674-6 8.040159+2 8.703870-6 8.119125+2 8.713717-6 8.433305+2 8.722525-6 8.654156+2 8.728137-6 8.762870+2 8.738408-6 8.893746+2 8.745672-6 8.931535+2 8.766551-6 8.785761+2 8.773103-6 8.664820+2 8.787896-6 8.272170+2 8.796281-6 7.984100+2 8.799108-6 7.877659+2 8.807590-6 7.533684+2 8.812761-6 7.308142+2 8.821557-6 6.902648+2 8.828292-6 6.578236+2 8.837916-6 6.102094+2 8.846811-6 5.657791+2 8.851690-6 5.415512+2 8.862180-6 4.905536+2 8.875112-6 4.312114+2 8.896004-6 3.479666+2 8.904682-6 3.190985+2 8.914136-6 2.918958+2 8.918457-6 2.809783+2 8.923390-6 2.696927+2 8.930789-6 2.551045+2 8.937262-6 2.446096+2 8.941143-6 2.393104+2 8.947889-6 2.318084+2 8.954399-6 2.265421+2 8.960709-6 2.231754+2 8.966033-6 2.215767+2 8.971788-6 2.210303+2 8.978937-6 2.219039+2 8.986575-6 2.245079+2 8.993586-6 2.281884+2 9.003629-6 2.351720+2 9.019283-6 2.487232+2 9.039357-6 2.677282+2 9.051696-6 2.787507+2 9.064292-6 2.885961+2 9.070234-6 2.925953+2 9.092654-6 3.033008+2 9.103374-6 3.058653+2 9.113023-6 3.068214+2 9.125429-6 3.063557+2 9.141493-6 3.034274+2 9.160341-6 2.977141+2 9.205681-6 2.816645+2 9.228538-6 2.755956+2 9.247803-6 2.723125+2 9.260381-6 2.710679+2 9.284441-6 2.703672+2 9.316289-6 2.717266+2 9.373253-6 2.755418+2 9.400936-6 2.762269+2 9.420659-6 2.758237+2 9.444962-6 2.740697+2 9.461902-6 2.719119+2 9.477135-6 2.692498+2 9.494071-6 2.654350+2 9.517454-6 2.586201+2 9.539952-6 2.503488+2 9.563003-6 2.402100+2 9.575223-6 2.342168+2 9.593554-6 2.245437+2 9.617761-6 2.108071+2 9.642269-6 1.962722+2 9.670948-6 1.792375+2 9.733118-6 1.460595+2 9.757540-6 1.354422+2 9.769755-6 1.307327+2 9.783425-6 1.259406+2 9.805834-6 1.191415+2 9.820522-6 1.153533+2 9.836599-6 1.117568+2 9.858971-6 1.075930+2 9.884390-6 1.038460+2 9.900867-6 1.018647+2 9.931761-6 9.887178+1 9.958793-6 9.685188+1 9.971733-6 9.605462+1 1.000000-5 9.471478+1 1.002196-5 9.415124+1 1.005341-5 9.445898+1 1.006315-5 9.493132+1 1.007706-5 9.601961+1 1.009480-5 9.827476+1 1.010810-5 1.007482+2 1.011808-5 1.031226+2 1.012557-5 1.052301+2 1.013679-5 1.089684+2 1.014958-5 1.141507+2 1.015830-5 1.182961+2 1.016531-5 1.220139+2 1.018549-5 1.347137+2 1.019798-5 1.441277+2 1.020658-5 1.513119+2 1.023256-5 1.763478+2 1.025988-5 2.073331+2 1.027928-5 2.312845+2 1.029438-5 2.503908+2 1.031000-5 2.699594+2 1.032151-5 2.839004+2 1.033555-5 2.999297+2 1.034941-5 3.142713+2 1.036404-5 3.273688+2 1.037731-5 3.370692+2 1.038756-5 3.429718+2 1.039936-5 3.479302+2 1.042434-5 3.515884+2 1.043239-5 3.507743+2 1.045088-5 3.453701+2 1.046454-5 3.384329+2 1.047898-5 3.287015+2 1.049303-5 3.172248+2 1.051020-5 3.010896+2 1.052269-5 2.883024+2 1.054142-5 2.681605+2 1.054767-5 2.613280+2 1.057265-5 2.342272+2 1.063509-5 1.757218+2 1.065161-5 1.636049+2 1.066748-5 1.533942+2 1.068297-5 1.447196+2 1.069798-5 1.374558+2 1.071252-5 1.313930+2 1.074186-5 1.216601+2 1.076711-5 1.154203+2 1.079380-5 1.104063+2 1.081679-5 1.070255+2 1.085862-5 1.023373+2 1.089671-5 9.907419+1 1.093093-5 9.661581+1 1.098836-5 9.307437+1 1.143024-5 7.256065+1 1.149305-5 7.028546+1 1.154168-5 6.885953+1 1.156954-5 6.829647+1 1.159740-5 6.807106+1 1.161829-5 6.826042+1 1.163955-5 6.894194+1 1.165103-5 6.959408+1 1.166436-5 7.067828+1 1.167591-5 7.196753+1 1.168947-5 7.399043+1 1.169971-5 7.595566+1 1.171192-5 7.888646+1 1.172276-5 8.211402+1 1.172973-5 8.454318+1 1.173708-5 8.744001+1 1.174889-5 9.288727+1 1.175672-5 9.710308+1 1.176456-5 1.018470+2 1.177675-5 1.103788+2 1.178850-5 1.200717+2 1.179938-5 1.304615+2 1.181146-5 1.437321+2 1.182709-5 1.638420+2 1.184009-5 1.833044+2 1.188289-5 2.663311+2 1.190479-5 3.202282+2 1.191172-5 3.388299+2 1.194082-5 4.239000+2 1.195020-5 4.533194+2 1.197076-5 5.200497+2 1.198009-5 5.509194+2 1.199342-5 5.950810+2 1.200414-5 6.301867+2 1.201617-5 6.686981+2 1.202912-5 7.084581+2 1.204062-5 7.417719+2 1.205436-5 7.784635+2 1.207086-5 8.170255+2 1.208495-5 8.444157+2 1.209226-5 8.563808+2 1.210648-5 8.749978+2 1.211926-5 8.861910+2 1.212732-5 8.904772+2 1.214174-5 8.927252+2 1.215157-5 8.902881+2 1.217313-5 8.740150+2 1.218481-5 8.592892+2 1.219780-5 8.384382+2 1.220615-5 8.227546+2 1.222007-5 7.930603+2 1.223349-5 7.608262+2 1.224469-5 7.316514+2 1.225910-5 6.917892+2 1.227365-5 6.496165+2 1.228820-5 6.063336+2 1.231002-5 5.409840+2 1.232094-5 5.087425+2 1.234322-5 4.451018+2 1.234640-5 4.363291+2 1.239005-5 3.269386+2 1.243785-5 2.355285+2 1.244887-5 2.190396+2 1.248102-5 1.809097+2 1.248999-5 1.728798+2 1.250169-5 1.640729+2 1.250805-5 1.600680+2 1.251532-5 1.561642+2 1.253711-5 1.486283+2 1.255670-5 1.470154+2 1.256515-5 1.477656+2 1.257507-5 1.497130+2 1.258454-5 1.526100+2 1.259496-5 1.569254+2 1.259857-5 1.586832+2 1.262654-5 1.765172+2 1.264196-5 1.891761+2 1.269068-5 2.380244+2 1.271128-5 2.605738+2 1.272987-5 2.806499+2 1.274685-5 2.980760+2 1.276350-5 3.138024+2 1.278006-5 3.276242+2 1.279736-5 3.397553+2 1.281222-5 3.480413+2 1.282183-5 3.522863+2 1.283559-5 3.568075+2 1.285201-5 3.598152+2 1.287332-5 3.600202+2 1.289038-5 3.574761+2 1.290912-5 3.523589+2 1.293111-5 3.440134+2 1.294716-5 3.368835+2 1.299975-5 3.125214+2 1.302985-5 3.010877+2 1.305784-5 2.936063+2 1.307933-5 2.901621+2 1.309409-5 2.889283+2 1.312182-5 2.888439+2 1.314772-5 2.909036+2 1.318506-5 2.962191+2 1.327392-5 3.114508+2 1.330896-5 3.165165+2 1.337359-5 3.239580+2 1.343984-5 3.297105+2 1.351006-5 3.336079+2 1.356073-5 3.340673+2 1.359587-5 3.327310+2 1.361478-5 3.313636+2 1.366081-5 3.260447+2 1.369633-5 3.200748+2 1.374407-5 3.099172+2 1.380384-5 2.950670+2 1.390132-5 2.709919+2 1.393910-5 2.630626+2 1.398618-5 2.547752+2 1.403320-5 2.482820+2 1.409913-5 2.417564+2 1.416609-5 2.373723+2 1.428151-5 2.327421+2 1.440073-5 2.297525+2 1.463455-5 2.259556+2 1.508065-5 2.212012+2 1.564431-5 2.160854+2 1.634904-5 2.093042+2 1.694831-5 2.029523+2 1.778280-5 1.936019+2 1.843596-5 1.861446+2 1.944240-5 1.747262+2 2.042303-5 1.636224+2 2.113930-5 1.554942+2 2.173875-5 1.486492+2 2.226567-5 1.420304+2 2.264372-5 1.361165+2 2.285975-5 1.314629+2 2.311242-5 1.248821+2 2.322619-5 1.232890+2 2.328308-5 1.234551+2 2.333997-5 1.245017+2 2.339686-5 1.265343+2 2.343976-5 1.287252+2 2.347962-5 1.312271+2 2.356683-5 1.378713+2 2.362939-5 1.430750+2 2.370209-5 1.487589+2 2.376042-5 1.524947+2 2.380453-5 1.546018+2 2.384047-5 1.557868+2 2.388796-5 1.565801+2 2.393657-5 1.564966+2 2.396574-5 1.560427+2 2.402312-5 1.543920+2 2.408124-5 1.519293+2 2.413641-5 1.491411+2 2.425018-5 1.431171+2 2.430992-5 1.402979+2 2.437240-5 1.378527+2 2.443166-5 1.360944+2 2.449997-5 1.347586+2 2.458004-5 1.340304+2 2.467629-5 1.340168+2 2.491502-5 1.350286+2 2.503023-5 1.350361+2 2.543120-5 1.333688+2 2.566428-5 1.322298+2 2.592228-5 1.302829+2 2.640442-5 1.255259+2 2.755876-5 1.188462+2 2.851018-5 1.130680+2 2.922680-5 1.086028+2 3.006806-5 1.032908+2 3.084325-5 9.839051+1 3.173247-5 9.277624+1 3.276800-5 8.626473+1 3.364940-5 8.072680+1 3.465671-5 7.439012+1 3.589219-5 6.667905+1 3.659880-5 6.229573+1 3.771447-5 5.542100+1 3.889140-5 4.823918+1 3.981072-5 4.267282+1 4.039142-5 3.922218+1 4.138864-5 3.338604+1 4.243586-5 2.737736+1 4.350000-5 2.146803+1 4.424231-5 1.755160+1 4.485551-5 1.446678+1 4.546937-5 1.154936+1 4.600650-5 9.166030+0 4.650892-5 7.122450+0 4.727743-5 4.284332+0 4.739379-5 3.878222+0 4.751016-5 3.484308+0 4.762653-5 3.108457+0 4.785926-5 2.446939+0 4.791582-5 2.313272+0 4.797563-5 2.187787+0 4.809200-5 2.001170+0 4.820837-5 1.911269+0 4.826655-5 1.911074+0 4.832473-5 1.945417+0 4.837847-5 2.010776+0 4.841734-5 2.079660+0 4.844821-5 2.147928+0 4.847802-5 2.225641+0 4.856746-5 2.530833+0 4.862708-5 2.795812+0 4.868671-5 3.109964+0 4.883577-5 4.095805+0 4.894011-5 4.924857+0 4.896620-5 5.144595+0 4.904445-5 5.820951+0 4.910407-5 6.341837+0 4.914197-5 6.669635+0 4.917312-5 6.934474+0 4.921303-5 7.264756+0 4.925567-5 7.602668+0 4.929230-5 7.877511+0 4.934038-5 8.212130+0 4.938675-5 8.502297+0 4.940220-5 8.591204+0 4.946183-5 8.894462+0 4.950654-5 9.077949+0 4.953636-5 9.178364+0 4.958853-5 9.311020+0 4.964070-5 9.388823+0 4.970904-5 9.410242+0 4.978149-5 9.340772+0 4.981686-5 9.276107+0 4.988829-5 9.093711+0 4.995222-5 8.883717+0 5.004177-5 8.542527+0 5.026348-5 7.682375+0 5.031740-5 7.508703+0 5.037596-5 7.346954+0 5.040763-5 7.272305+0 5.050264-5 7.105788+0 5.054157-5 7.062708+0 5.060012-5 7.024667+0 5.065837-5 7.016949+0 5.076504-5 7.071712+0 5.088244-5 7.215202+0 5.100851-5 7.439478+0 5.116194-5 7.782664+0 5.130461-5 8.166118+0 5.139702-5 8.456497+0 5.151752-5 8.903864+0 5.161275-5 9.329489+0 5.171010-5 9.847448+0 5.181094-5 1.048947+1 5.184811-5 1.075650+1 5.193091-5 1.141606+1 5.198051-5 1.185652+1 5.209394-5 1.300169+1 5.220698-5 1.434782+1 5.231503-5 1.584026+1 5.244406-5 1.790431+1 5.291477-5 2.829572+1 5.307034-5 3.273577+1 5.317700-5 3.602957+1 5.330550-5 4.020826+1 5.343574-5 4.459294+1 5.357414-5 4.929715+1 5.361147-5 5.055738+1 5.372347-5 5.428017+1 5.382551-5 5.756587+1 5.395671-5 6.161138+1 5.411535-5 6.626270+1 5.437979-5 7.390001+1 5.454614-5 7.914482+1 5.463524-5 8.225324+1 5.475791-5 8.698630+1 5.493145-5 9.472962+1 5.503744-5 1.001067+2 5.517798-5 1.079913+2 5.573200-5 1.465092+2 5.620895-5 1.887095+2 5.703926-5 2.899982+2 5.740096-5 3.468918+2 5.765646-5 3.910893+2 5.784981-5 4.262628+2 5.806539-5 4.667429+2 5.815767-5 4.843426+2 5.834319-5 5.199478+2 5.851902-5 5.536370+2 5.873322-5 5.940086+2 5.889975-5 6.244503+2 5.904987-5 6.508968+2 5.920000-5 6.762045+2 5.940998-5 7.094699+2 5.957461-5 7.337663+2 5.977500-5 7.613688+2 6.004160-5 7.954142+2 6.089512-5 9.006103+2 6.136436-5 9.681600+2 6.167059-5 1.018742+3 6.273466-5 1.225703+3 6.309573-5 1.296865+3 6.347174-5 1.364960+3 6.374362-5 1.409122+3 6.409993-5 1.460380+3 6.453070-5 1.513442+3 6.478085-5 1.540432+3 6.548203-5 1.603334+3 6.605625-5 1.641732+3 6.626171-5 1.652569+3 6.674127-5 1.671667+3 6.721662-5 1.681963+3 6.788013-5 1.683961+3 6.853989-5 1.677061+3 6.982365-5 1.653013+3 7.027500-5 1.640549+3 7.138066-5 1.600293+3 7.286134-5 1.545004+3 7.456067-5 1.489827+3 7.588440-5 1.445291+3 7.680671-5 1.410329+3 7.952895-5 1.299643+3 8.070027-5 1.257596+3 8.326397-5 1.179135+3 8.615494-5 1.106012+3 9.216000-5 9.842022+2 1.107323-4 7.257231+2 1.150743-4 6.783250+2 1.176189-4 6.500414+2 1.199258-4 6.210479+2 1.213674-4 5.971794+2 1.226684-4 5.730979+2 1.229916-4 5.687837+2 1.232851-4 5.662068+2 1.235934-4 5.651950+2 1.239180-4 5.661981+2 1.243953-4 5.713847+2 1.251037-4 5.846280+2 1.258454-4 5.991644+2 1.263668-4 6.065352+2 1.268350-4 6.104908+2 1.272688-4 6.121687+2 1.280965-4 6.116752+2 1.291638-4 6.068396+2 1.308079-4 5.955555+2 1.335176-4 5.797145+2 1.431645-4 5.348246+2 1.460564-4 5.213662+2 1.490000-4 5.071577+2 1.523931-4 4.891954+2 1.553385-4 4.696351+2 1.569406-4 4.584874+2 1.579248-4 4.541702+2 1.589839-4 4.529717+2 1.602573-4 4.550147+2 1.621810-4 4.592256+2 1.630875-4 4.600566+2 1.648748-4 4.587332+2 1.682374-4 4.518268+2 1.721083-4 4.425325+2 1.785963-4 4.252915+2 1.859323-4 4.045155+2 1.907600-4 3.907433+2 1.950000-4 3.783852+2 2.000000-4 3.637384+2 2.062574-4 3.440392+2 2.079154-4 3.389802+2 2.110193-4 3.317069+2 2.132375-4 3.269164+2 2.148727-4 3.227201+2 2.171788-4 3.160336+2 2.253000-4 2.906800+2 2.287529-4 2.777203+2 2.309835-4 2.698377+2 2.334330-4 2.633057+2 2.374370-4 2.555532+2 2.402117-4 2.521915+2 2.443500-4 2.484434+2 2.470000-4 2.445654+2 2.510000-4 2.361132+2 2.540973-4 2.281140+2 2.570396-4 2.197775+2 2.595000-4 2.124762+2 2.623225-4 2.038724+2 2.670000-4 1.893336+2 2.722500-4 1.730711+2 2.790000-4 1.532218+2 2.884032-4 1.293164+2 2.911270-4 1.236516+2 2.929194-4 1.203315+2 2.949949-4 1.169353+2 2.980241-4 1.128961+2 3.011953-4 1.099335+2 3.034895-4 1.087127+2 3.081413-4 1.087009+2 3.126079-4 1.118657+2 3.180533-4 1.198995+2 3.236103-4 1.325529+2 3.289278-4 1.484917+2 3.335224-4 1.651108+2 3.365000-4 1.772084+2 3.470000-4 2.276602+2 3.532457-4 2.624769+2 3.600000-4 3.036015+2 3.650000-4 3.359577+2 3.692698-4 3.644434+2 3.730000-4 3.898736+2 3.790000-4 4.313837+2 3.855226-4 4.766951+2 3.936600-4 5.327415+2 4.023858-4 5.916736+2 4.123365-4 6.573061+2 4.223038-4 7.214656+2 4.357313-4 8.045121+2 4.494761-4 8.853417+2 4.623810-4 9.554198+2 4.759134-4 1.021378+3 4.915200-4 1.086651+3 5.011872-4 1.120171+3 5.103355-4 1.145733+3 5.156152-4 1.157138+3 5.208072-4 1.170777+3 5.245418-4 1.187426+3 5.276657-4 1.207267+3 5.346840-4 1.262004+3 5.406936-4 1.304048+3 5.520365-4 1.366298+3 5.583826-4 1.407836+3 5.686200-4 1.484366+3 5.772218-4 1.539252+3 5.928478-4 1.621449+3 6.162880-4 1.725140+3 6.383322-4 1.805154+3 6.634083-4 1.880734+3 6.995164-4 1.970890+3 7.342707-4 2.034410+3 7.531156-4 2.051723+3 7.632463-4 2.057453+3 7.683958-4 2.064282+3 7.734956-4 2.077892+3 7.785669-4 2.099594+3 7.882595-4 2.154631+3 7.973326-4 2.202014+3 8.092043-4 2.245578+3 8.328869-4 2.302872+3 8.622337-4 2.354835+3 8.958723-4 2.400247+3 9.326433-4 2.437749+3 9.667460-4 2.489866+3 1.000854-3 2.524519+3 1.036819-3 2.546811+3 1.057208-3 2.553529+3 1.069214-3 2.562213+3 1.100080-3 2.603967+3 1.132484-3 2.631871+3 1.186411-3 2.659758+3 1.245410-3 2.677031+3 1.312856-3 2.679274+3 1.382400-3 2.673492+3 1.462966-3 2.660021+3 1.548817-3 2.638991+3 1.642657-3 2.606288+3 1.748305-3 2.554196+3 1.862087-3 2.491917+3 1.973991-3 2.423175+3 2.073214-3 2.350054+3 2.179684-3 2.264728+3 2.278682-3 2.176595+3 2.368664-3 2.084710+3 2.440983-3 2.002533+3 2.513553-3 1.910619+3 2.573643-3 1.824544+3 2.625969-3 1.738948+3 2.671102-3 1.653431+3 2.709265-3 1.569755+3 2.736431-3 1.501101+3 2.766477-3 1.411835+3 2.788409-3 1.332831+3 2.806000-3 1.256614+3 2.819856-3 1.187313+3 2.835669-3 1.102162+3 2.849491-3 1.032728+3 2.855819-3 1.006735+3 2.859493-3 9.942501+2 2.863283-3 9.837809+2 2.866386-3 9.772388+2 2.869958-3 9.721666+2 2.873174-3 9.699870+2 2.876843-3 9.703766+2 2.881362-3 9.751519+2 2.885685-3 9.841250+2 2.889551-3 9.956567+2 2.893457-3 1.010438+3 2.897359-3 1.028035+3 2.902724-3 1.056145+3 2.922488-3 1.179875+3 2.931893-3 1.237576+3 2.937204-3 1.267027+3 2.945484-3 1.306987+3 2.955229-3 1.344174+3 2.965513-3 1.373423+3 2.990268-3 1.428955+3 2.997250-3 1.448911+3 3.004893-3 1.476241+3 3.013713-3 1.516247+3 3.017878-3 1.538421+3 3.026044-3 1.587570+3 3.056942-3 1.810862+3 3.065694-3 1.872939+3 3.077427-3 1.948445+3 3.090705-3 2.020989+3 3.105719-3 2.087073+3 3.121748-3 2.142701+3 3.142996-3 2.200410+3 3.164784-3 2.247625+3 3.192831-3 2.296674+3 3.225665-3 2.341694+3 3.260490-3 2.377777+3 3.298529-3 2.405803+3 3.340364-3 2.424682+3 3.373844-3 2.429641+3 3.409718-3 2.422295+3 3.469430-3 2.385196+3 3.483074-3 2.382337+3 3.495909-3 2.386905+3 3.507519-3 2.398523+3 3.526231-3 2.432311+3 3.567662-3 2.542963+3 3.586038-3 2.589250+3 3.606051-3 2.630327+3 3.631116-3 2.668458+3 3.664244-3 2.703114+3 3.699905-3 2.729178+3 3.742765-3 2.751686+3 3.794382-3 2.770596+3 3.858084-3 2.784940+3 3.908534-3 2.789726+3 3.964099-3 2.788216+3 4.012084-3 2.780063+3 4.106541-3 2.746016+3 4.145747-3 2.746252+3 4.240340-3 2.795867+3 4.275014-3 2.805646+3 4.315654-3 2.808155+3 4.419897-3 2.796360+3 4.459995-3 2.803285+3 4.551190-3 2.837169+3 4.591201-3 2.844925+3 4.722732-3 2.848325+3 4.883712-3 2.834674+3 5.128614-3 2.797786+3 5.397436-3 2.744011+3 5.855876-3 2.638087+3 6.294528-3 2.526649+3 6.712356-3 2.417636+3 7.237624-3 2.283450+3 7.723471-3 2.165462+3 8.302315-3 2.030707+3 9.036820-3 1.871891+3 9.472557-3 1.783917+3 1.035132-2 1.619484+3 1.081249-2 1.538744+3 1.122826-2 1.468854+3 1.171521-2 1.390197+3 1.209828-2 1.329803+3 1.246867-2 1.272067+3 1.275561-2 1.227413+3 1.304321-2 1.182199+3 1.328941-2 1.142692+3 1.349886-2 1.107736+3 1.367897-2 1.076041+3 1.382850-2 1.047851+3 1.395594-2 1.021667+3 1.406915-2 9.956723+2 1.415606-2 9.728360+2 1.422386-2 9.525156+2 1.432667-2 9.170984+2 1.445994-2 8.699077+2 1.451861-2 8.544837+2 1.455976-2 8.476376+2 1.461127-2 8.446420+2 1.466267-2 8.479462+2 1.472385-2 8.588355+2 1.488671-2 9.030771+2 1.497039-2 9.226215+2 1.502436-2 9.322743+2 1.508511-2 9.405241+2 1.516422-2 9.478999+2 1.525650-2 9.530520+2 1.536140-2 9.558832+2 1.547309-2 9.564806+2 1.562248-2 9.545545+2 1.577072-2 9.503415+2 1.607131-2 9.365873+2 1.622278-2 9.274857+2 1.640369-2 9.148291+2 1.666889-2 8.920882+2 1.679563-2 8.786521+2 1.690031-2 8.656043+2 1.705269-2 8.428479+2 1.720672-2 8.187298+2 1.729248-2 8.086084+2 1.737654-2 8.032932+2 1.745481-2 8.028179+2 1.759106-2 8.089555+2 1.775572-2 8.173401+2 1.801482-2 8.246136+2 1.819067-2 8.345662+2 1.841642-2 8.490146+2 1.860258-2 8.554631+2 1.886099-2 8.573982+2 1.921985-2 8.537394+2 1.969522-2 8.436615+2 2.040361-2 8.234355+2 2.127471-2 7.941233+2 2.257044-2 7.478899+2 2.436633-2 6.856254+2 2.641916-2 6.207002+2 2.895736-2 5.507754+2 3.226228-2 4.750933+2 3.577616-2 4.101056+2 3.847994-2 3.679915+2 4.168694-2 3.250484+2 4.921901-2 2.487070+2 5.323129-2 2.183610+2 5.956789-2 1.798490+2 6.752636-2 1.438299+2 7.612393-2 1.155139+2 8.213014-2 9.991158+1 8.660842-2 8.975018+1 8.999761-2 8.256580+1 9.240851-2 7.750011+1 9.339742-2 7.535820+1 9.420361-2 7.353811+1 9.490877-2 7.184657+1 9.548619-2 7.034234+1 9.633383-2 6.781862+1 9.786032-2 6.274227+1 9.828708-2 6.176488+1 9.864813-2 6.130573+1 9.893233-2 6.120418+1 9.933326-2 6.141640+1 9.987781-2 6.216859+1 1.007985-1 6.369160+1 1.013970-1 6.438902+1 1.021610-1 6.484754+1 1.032486-1 6.494604+1 1.047690-1 6.455034+1 1.066077-1 6.367187+1 1.088130-1 6.235240+1 1.129715-1 5.956515+1 1.185912-1 5.563396+1 1.250732-1 5.126614+1 1.352401-1 4.514123+1 1.505625-1 3.761061+1 1.743396-1 2.906751+1 2.039487-1 2.192354+1 2.472881-1 1.539041+1 3.130581-1 9.893987+0 4.025360-1 6.126938+0 5.628478-1 3.205945+0 8.536797-1 1.421535+0 1.347258+0 5.791975-1 2.351155+0 1.918553-1 6.158159+0 2.808581-2 1.859734+1 3.080812-3 5.616308+1 3.378160-4 1.696098+2 3.704092-5 5.122134+2 4.061458-6 1.584893+3 4.242128-7 5.011872+3 4.242128-8 1.584893+4 4.242128-9 5.011872+4 4.24213-10 1.000000+5 1.06557-10 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.377300-6 1.258900-6 2.182900-6 1.584900-6 3.459600-6 1.995300-6 5.483100-6 2.511900-6 8.690200-6 3.162300-6 1.377300-5 3.981100-6 2.182900-5 5.011900-6 3.459600-5 6.309600-6 5.483000-5 7.943300-6 8.689900-5 1.000000-5 1.377200-4 1.258900-5 2.182800-4 1.584900-5 3.458900-4 1.995300-5 5.480800-4 2.511900-5 8.685000-4 3.162300-5 1.376300-3 3.981100-5 2.181000-3 5.011900-5 3.456300-3 6.309600-5 5.477200-3 7.943300-5 8.675000-3 1.000000-4 1.373700-2 1.258900-4 2.175600-2 1.584900-4 3.442200-2 1.995300-4 5.443500-2 2.511900-4 8.595900-2 3.162300-4 1.354700-1 3.981100-4 2.128000-1 5.011900-4 3.327000-1 6.309600-4 5.150600-1 7.943300-4 7.860000-1 1.000000-3 1.177500+0 1.258900-3 1.722500+0 1.584900-3 2.450500+0 1.995300-3 3.386800+0 2.511900-3 4.558200+0 3.162300-3 5.978100+0 3.981100-3 7.611200+0 5.011900-3 9.428900+0 6.309600-3 1.147700+1 7.943300-3 1.381900+1 1.000000-2 1.648600+1 1.258900-2 1.930700+1 1.584900-2 2.213900+1 1.995300-2 2.494000+1 2.511900-2 2.769300+1 3.162300-2 3.029700+1 3.981100-2 3.256600+1 5.011900-2 3.417600+1 6.309600-2 3.542900+1 7.943300-2 3.594000+1 1.000000-1 3.585000+1 1.258900-1 3.518100+1 1.584900-1 3.395800+1 1.995300-1 3.243500+1 2.511900-1 3.058700+1 3.162300-1 2.855700+1 3.981100-1 2.642500+1 5.011900-1 2.426100+1 6.309600-1 2.211000+1 7.943300-1 2.001000+1 1.000000+0 1.798900+1 1.258900+0 1.606200+1 1.584900+0 1.424600+1 1.995300+0 1.255100+1 2.511900+0 1.098700+1 3.162300+0 9.556300+0 3.981100+0 8.262300+0 5.011900+0 7.103400+0 6.309600+0 6.074300+0 7.943300+0 5.170000+0 1.000000+1 4.380400+0 1.258900+1 3.696500+0 1.584900+1 3.107800+0 1.995300+1 2.604200+0 2.511900+1 2.175700+0 3.162300+1 1.812700+0 3.981100+1 1.506700+0 5.011900+1 1.249500+0 6.309600+1 1.034100+0 7.943300+1 8.543300-1 1.000000+2 7.046300-1 1.258900+2 5.802800-1 1.584900+2 4.772100-1 1.995300+2 3.919500-1 2.511900+2 3.215400-1 3.162300+2 2.635000-1 3.981100+2 2.157200-1 5.011900+2 1.764300-1 6.309600+2 1.441800-1 7.943300+2 1.177200-1 1.000000+3 9.604600-2 1.258900+3 7.830500-2 1.584900+3 6.379800-2 1.995300+3 5.194500-2 2.511900+3 4.226800-2 3.162300+3 3.437400-2 3.981100+3 2.793900-2 5.011900+3 2.269700-2 6.309600+3 1.842900-2 7.943300+3 1.495700-2 1.000000+4 1.213300-2 1.258900+4 9.838100-3 1.584900+4 7.973900-3 1.995300+4 6.460400-3 2.511900+4 5.232100-3 3.162300+4 4.235700-3 3.981100+4 3.427900-3 5.011900+4 2.773200-3 6.309600+4 2.242800-3 7.943300+4 1.813200-3 1.000000+5 1.465500-3 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980637-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997261-5 1.258925-4 1.258491-4 1.584893-4 1.584206-4 1.995262-4 1.994173-4 2.511886-4 2.510161-4 3.162278-4 3.159546-4 3.981072-4 3.976747-4 5.011872-4 5.005032-4 6.309573-4 6.298745-4 7.943282-4 7.926258-4 1.000000-3 9.973170-4 1.258925-3 1.254716-3 1.584893-3 1.578308-3 1.995262-3 1.984998-3 2.511886-3 2.495850-3 3.162278-3 3.137317-3 3.981072-3 3.942274-3 5.011872-3 4.951653-3 6.309573-3 6.215909-3 7.943282-3 7.796908-3 1.000000-2 9.771996-3 1.258925-2 1.223505-2 1.584893-2 1.530159-2 1.995262-2 1.910952-2 2.511886-2 2.382264-2 3.162278-2 2.963729-2 3.981072-2 3.678904-2 5.011872-2 4.555933-2 6.309573-2 5.627195-2 7.943282-2 6.929310-2 1.000000-1 8.506520-2 1.258925-1 1.040984-1 1.584893-1 1.270659-1 1.995262-1 1.544215-1 2.511886-1 1.871243-1 3.162278-1 2.260550-1 3.981072-1 2.721990-1 5.011872-1 3.267768-1 6.309573-1 3.911912-1 7.943282-1 4.670660-1 1.000000+0 5.564699-1 1.258925+0 6.617580-1 1.584893+0 7.861248-1 1.995262+0 9.332163-1 2.511886+0 1.107805+0 3.162278+0 1.315541+0 3.981072+0 1.563525+0 5.011872+0 1.860424+0 6.309573+0 2.216613+0 7.943282+0 2.645211+0 1.000000+1 3.161785+0 1.258925+1 3.785997+0 1.584893+1 4.541046+0 1.995262+1 5.456299+0 2.511886+1 6.567129+0 3.162278+1 7.917135+0 3.981072+1 9.559596+0 5.011872+1 1.156038+1 6.309573+1 1.400011+1 7.943282+1 1.697777+1 1.000000+2 2.061517+1 1.258925+2 2.506248+1 1.584893+2 3.050384+1 1.995262+2 3.716744+1 2.511886+2 4.533262+1 3.162278+2 5.534523+1 3.981072+2 6.762976+1 5.011872+2 8.271307+1 6.309573+2 1.012426+2 7.943282+2 1.240188+2 1.000000+3 1.520280+2 1.258925+3 1.864937+2 1.584893+3 2.289223+2 1.995262+3 2.811708+2 2.511886+3 3.455616+2 3.162278+3 4.249319+2 3.981072+3 5.228229+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88259-10 1.995262-5 1.090779-9 2.511886-5 1.728736-9 3.162278-5 2.739824-9 3.981072-5 4.342248-9 5.011872-5 6.881805-9 6.309573-5 1.090646-8 7.943282-5 1.728205-8 1.000000-4 2.738605-8 1.258925-4 4.339989-8 1.584893-4 6.875836-8 1.995262-4 1.089368-7 2.511886-4 1.725492-7 3.162278-4 2.732068-7 3.981072-4 4.324331-7 5.011872-4 6.840574-7 6.309573-4 1.082800-6 7.943282-4 1.702455-6 1.000000-3 2.682967-6 1.258925-3 4.209060-6 1.584893-3 6.584924-6 1.995262-3 1.026447-5 2.511886-3 1.603635-5 3.162278-3 2.496057-5 3.981072-3 3.879745-5 5.011872-3 6.021888-5 6.309573-3 9.366412-5 7.943282-3 1.463741-4 1.000000-2 2.280045-4 1.258925-2 3.542005-4 1.584893-2 5.473450-4 1.995262-2 8.430985-4 2.511886-2 1.296226-3 3.162278-2 1.985484-3 3.981072-2 3.021682-3 5.011872-2 4.559391-3 6.309573-2 6.823780-3 7.943282-2 1.013973-2 1.000000-1 1.493480-2 1.258925-1 2.179410-2 1.584893-1 3.142344-2 1.995262-1 4.510476-2 2.511886-1 6.406431-2 3.162278-1 9.017273-2 3.981072-1 1.259082-1 5.011872-1 1.744104-1 6.309573-1 2.397662-1 7.943282-1 3.272623-1 1.000000+0 4.435301-1 1.258925+0 5.971674-1 1.584893+0 7.987683-1 1.995262+0 1.062046+0 2.511886+0 1.404081+0 3.162278+0 1.846737+0 3.981072+0 2.417547+0 5.011872+0 3.151448+0 6.309573+0 4.092960+0 7.943282+0 5.298071+0 1.000000+1 6.838215+0 1.258925+1 8.803257+0 1.584893+1 1.130789+1 1.995262+1 1.449632+1 2.511886+1 1.855174+1 3.162278+1 2.370564+1 3.981072+1 3.025112+1 5.011872+1 3.855834+1 6.309573+1 4.909562+1 7.943282+1 6.245506+1 1.000000+2 7.938483+1 1.258925+2 1.008301+2 1.584893+2 1.279855+2 1.995262+2 1.623588+2 2.511886+2 2.058560+2 3.162278+2 2.608825+2 3.981072+2 3.304774+2 5.011872+2 4.184742+2 6.309573+2 5.297147+2 7.943282+2 6.703094+2 1.000000+3 8.479720+2 1.258925+3 1.072432+3 1.584893+3 1.355971+3 1.995262+3 1.714092+3 2.511886+3 2.166325+3 3.162278+3 2.737346+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 9.640000-6 8.400600+7 9.800000-6 8.250560+7 1.000000-5 8.038640+7 1.035142-5 7.625341+7 1.071519-5 7.164999+7 1.100000-5 6.795800+7 1.135011-5 6.341421+7 1.180000-5 5.775320+7 1.216186-5 5.340928+7 1.270000-5 4.740400+7 1.333521-5 4.109761+7 1.369000-5 3.791821+7 1.369000-5 7.197081+7 1.392000-5 6.991840+7 1.396368-5 6.950417+7 1.415000-5 6.773544+7 1.445440-5 6.477471+7 1.479108-5 6.149253+7 1.480000-5 6.140737+7 1.515000-5 5.795228+7 1.550000-5 5.460599+7 1.584893-5 5.137336+7 1.590000-5 5.091669+7 1.640590-5 4.647426+7 1.698244-5 4.185263+7 1.757924-5 3.755974+7 1.778279-5 3.619093+7 1.840772-5 3.236628+7 1.950000-5 2.674815+7 2.162719-5 1.890430+7 2.426610-5 1.288814+7 2.454709-5 1.240899+7 2.572000-5 1.065563+7 2.572000-5 1.156198+7 2.600160-5 1.115810+7 2.660725-5 1.034446+7 2.691535-5 9.958468+6 2.730000-5 9.508414+6 2.851018-5 8.264699+6 2.951209-5 7.390932+6 3.054921-5 6.619126+6 3.273407-5 5.318786+6 3.349654-5 4.949443+6 3.427678-5 4.606510+6 3.589219-5 3.995154+6 3.630781-5 3.855833+6 3.801894-5 3.350995+6 3.845918-5 3.235827+6 3.981072-5 2.915985+6 4.168694-5 2.539318+6 4.315191-5 2.291665+6 4.350000-5 2.238086+6 4.518559-5 2.001855+6 4.677351-5 1.809564+6 4.800000-5 1.678126+6 4.850000-5 1.628709+6 5.011872-5 1.482083+6 5.184000-5 1.345545+6 5.184000-5 3.133887+6 5.188000-5 3.143969+6 5.217000-5 3.219976+6 5.240000-5 3.293858+6 5.267000-5 3.400438+6 5.288000-5 3.499412+6 5.290000-5 3.509155+6 5.317000-5 3.661303+6 5.340000-5 3.813506+6 5.370000-5 4.048687+6 5.370318-5 4.051525+6 5.400000-5 4.330687+6 5.432503-5 4.697153+6 5.460000-5 5.064162+6 5.495409-5 5.626632+6 5.535000-5 6.396808+6 5.570000-5 7.225255+6 5.580000-5 7.495033+6 5.615000-5 8.536142+6 5.649000-5 9.751910+6 5.649000-5 1.075485+7 5.670000-5 1.164808+7 5.680000-5 1.211446+7 5.700000-5 1.311469+7 5.720000-5 1.421007+7 5.740000-5 1.540844+7 5.750000-5 1.605077+7 5.754399-5 1.640892+7 5.770000-5 1.743760+7 5.800000-5 1.967717+7 5.821032-5 2.150557+7 5.830000-5 2.217034+7 5.860000-5 2.456091+7 5.870000-5 2.541796+7 5.888437-5 2.699955+7 5.910000-5 2.898390+7 5.920000-5 2.989971+7 5.956621-5 3.254591+7 5.970000-5 3.357813+7 5.985000-5 3.408113+7 6.025596-5 3.554624+7 6.030000-5 3.571312+7 6.040000-5 3.632599+7 6.070000-5 3.723032+7 6.110000-5 3.859848+7 6.165950-5 4.088821+7 6.180000-5 4.153757+7 6.190000-5 4.202496+7 6.220700-5 4.345628+7 6.237348-5 4.435278+7 6.300000-5 4.794528+7 6.309573-5 4.849594+7 6.360000-5 5.020554+7 6.385000-5 5.083983+7 6.395200-5 5.118837+7 6.490000-5 5.244904+7 6.540000-5 5.258214+7 6.606934-5 5.240211+7 6.683439-5 5.158341+7 6.690000-5 5.151459+7 6.730000-5 5.072805+7 6.760830-5 5.000919+7 6.850000-5 4.773049+7 6.918310-5 4.616555+7 6.950000-5 4.546679+7 6.970000-5 4.499751+7 7.000000-5 4.418042+7 7.079458-5 4.191221+7 7.110000-5 4.104181+7 7.161434-5 3.970566+7 7.230000-5 3.801679+7 7.300000-5 3.646833+7 7.328245-5 3.582084+7 7.330000-5 3.578110+7 7.350000-5 3.530414+7 7.500000-5 3.208455+7 7.540000-5 3.131418+7 7.620000-5 2.961735+7 7.673615-5 2.848173+7 7.800000-5 2.605907+7 7.852356-5 2.515983+7 7.943282-5 2.368500+7 7.950000-5 2.358180+7 8.150000-5 2.082824+7 8.222426-5 1.995069+7 8.423100-5 1.774360+7 8.609938-5 1.597531+7 8.810489-5 1.430979+7 9.015711-5 1.281946+7 9.440609-5 1.026694+7 9.549926-5 9.713368+6 1.011579-4 7.355440+6 1.023293-4 6.958373+6 1.080000-4 5.368585+6 1.083927-4 5.275864+6 1.122018-4 4.471201+6 1.135011-4 4.233246+6 1.161449-4 3.796165+6 1.202264-4 3.225490+6 1.244515-4 2.742127+6 1.283700-4 2.371809+6 1.283700-4 3.031697+6 1.288250-4 2.999254+6 1.288500-4 2.997496+6 1.297000-4 2.932799+6 1.304000-4 2.877383+6 1.314000-4 2.796327+6 1.325000-4 2.707100+6 1.333521-4 2.638453+6 1.340000-4 2.587621+6 1.380384-4 2.293011+6 1.412538-4 2.083672+6 1.445440-4 1.893993+6 1.490000-4 1.671984+6 1.500000-4 1.627462+6 1.540000-4 1.463976+6 1.548817-4 1.430960+6 1.566751-4 1.368230+6 1.603245-4 1.251844+6 1.621810-4 1.198752+6 1.622900-4 1.195772+6 1.622900-4 1.539856+6 1.626000-4 1.541469+6 1.629000-4 1.541535+6 1.632000-4 1.540006+6 1.635000-4 1.537123+6 1.639000-4 1.531097+6 1.643000-4 1.523306+6 1.648500-4 1.509929+6 1.655000-4 1.491586+6 1.659587-4 1.477311+6 1.662000-4 1.469998+6 1.670000-4 1.444185+6 1.690000-4 1.378560+6 1.720000-4 1.289059+6 1.737801-4 1.240433+6 1.740000-4 1.234611+6 1.757924-4 1.189131+6 1.778279-4 1.141524+6 1.780000-4 1.137659+6 1.790000-4 1.115880+6 1.798871-4 1.097490+6 1.800000-4 1.095218+6 1.820000-4 1.056095+6 1.850000-4 1.002185+6 1.865000-4 9.778177+5 1.900000-4 9.252718+5 1.907600-4 9.146391+5 1.927525-4 8.879063+5 1.930000-4 8.846708+5 1.950000-4 8.595283+5 1.995262-4 8.089405+5 2.000000-4 8.040295+5 2.018366-4 7.857188+5 2.041738-4 7.635874+5 2.060000-4 7.473676+5 2.080000-4 7.305350+5 2.089296-4 7.229218+5 2.113489-4 7.044473+5 2.116900-4 7.019521+5 2.116900-4 7.484573+5 2.123000-4 7.446828+5 2.131000-4 7.402384+5 2.137962-4 7.362672+5 2.142000-4 7.341097+5 2.155000-4 7.270035+5 2.162719-4 7.227063+5 2.170000-4 7.188098+5 2.190000-4 7.079857+5 2.210000-4 6.975459+5 2.213095-4 6.959140+5 2.230000-4 6.873501+5 2.238721-4 6.829070+5 2.240000-4 6.822744+5 2.253000-4 6.761166+5 2.264644-4 6.705628+5 2.280000-4 6.636569+5 2.290868-4 6.587271+5 2.317395-4 6.473774+5 2.338700-4 6.385637+5 2.338700-4 7.703445+5 2.339700-4 7.735647+5 2.341700-4 7.783499+5 2.344229-4 7.837904+5 2.346700-4 7.884409+5 2.349000-4 7.921424+5 2.350000-4 7.935015+5 2.352000-4 7.962873+5 2.355000-4 7.995326+5 2.359000-4 8.027140+5 2.363000-4 8.047273+5 2.367000-4 8.056892+5 2.371374-4 8.056986+5 2.372000-4 8.057080+5 2.378000-4 8.044316+5 2.385000-4 8.015839+5 2.392000-4 7.977424+5 2.400000-4 7.925882+5 2.411600-4 7.844342+5 2.411600-4 8.937992+5 2.412000-4 8.950511+5 2.414000-4 8.979670+5 2.416000-4 9.004446+5 2.418700-4 9.032037+5 2.421000-4 9.049463+5 2.423000-4 9.061426+5 2.426000-4 9.072311+5 2.430000-4 9.076949+5 2.434000-4 9.071727+5 2.437000-4 9.061951+5 2.442000-4 9.037285+5 2.448000-4 8.997447+5 2.450000-4 8.981329+5 2.455000-4 8.943498+5 2.459800-4 8.901752+5 2.465000-4 8.857489+5 2.470000-4 8.811378+5 2.483133-4 8.699073+5 2.485000-4 8.683492+5 2.500000-4 8.567473+5 2.518700-4 8.443202+5 2.520000-4 8.435516+5 2.535000-4 8.354380+5 2.538000-4 8.340112+5 2.540973-4 8.327251+5 2.550000-4 8.290402+5 2.553000-4 8.280019+5 2.565400-4 8.242776+5 2.570396-4 8.230959+5 2.580000-4 8.212531+5 2.585000-4 8.206456+5 2.595000-4 8.198592+5 2.600160-4 8.197683+5 2.608000-4 8.200119+5 2.615000-4 8.206564+5 2.623000-4 8.217700+5 2.630268-4 8.232827+5 2.640000-4 8.258665+5 2.645000-4 8.275297+5 2.655000-4 8.313920+5 2.660725-4 8.339615+5 2.670000-4 8.387322+5 2.675000-4 8.416463+5 2.691535-4 8.524113+5 2.692000-4 8.527457+5 2.710000-4 8.672853+5 2.720000-4 8.763069+5 2.722701-4 8.789558+5 2.730000-4 8.862480+5 2.750000-4 9.085099+5 2.754229-4 9.136115+5 2.770000-4 9.341490+5 2.790000-4 9.628816+5 2.800000-4 9.784387+5 2.818383-4 1.009230+6 2.820000-4 1.012053+6 2.851018-4 1.070812+6 2.884032-4 1.142549+6 2.917427-4 1.225105+6 2.930000-4 1.259151+6 2.970000-4 1.376245+6 3.000000-4 1.473025+6 3.015000-4 1.524743+6 3.054921-4 1.670213+6 3.090295-4 1.807269+6 3.100000-4 1.845762+6 3.126079-4 1.952343+6 3.130000-4 1.969036+6 3.165000-4 2.115566+6 3.200000-4 2.263977+6 3.235937-4 2.416239+6 3.240000-4 2.434185+6 3.273407-4 2.574270+6 3.280000-4 2.602976+6 3.311311-4 2.732763+6 3.320000-4 2.768821+6 3.350000-4 2.890413+6 3.370000-4 2.971567+6 3.388442-4 3.044571+6 3.390000-4 3.050817+6 3.410000-4 3.129267+6 3.430000-4 3.205369+6 3.470000-4 3.357564+6 3.507519-4 3.492879+6 3.515000-4 3.520466+6 3.550000-4 3.641823+6 3.600000-4 3.806056+6 3.630781-4 3.899545+6 3.650000-4 3.958836+6 3.672823-4 4.021506+6 3.700000-4 4.097129+6 3.715352-4 4.137884+6 3.758374-4 4.242857+6 3.760000-4 4.246860+6 3.780000-4 4.292880+6 3.820000-4 4.376472+6 3.850000-4 4.434484+6 3.890451-4 4.503998+6 3.930000-4 4.565715+6 3.935501-4 4.573280+6 3.970000-4 4.620797+6 3.981072-4 4.634264+6 4.000000-4 4.657337+6 4.050000-4 4.709748+6 4.073803-4 4.731455+6 4.100000-4 4.755324+6 4.120975-4 4.770692+6 4.150000-4 4.791951+6 4.200000-4 4.822228+6 4.216965-4 4.832455+6 4.240000-4 4.842612+6 4.315191-4 4.867959+6 4.343400-4 4.877390+6 4.350000-4 4.878599+6 4.365158-4 4.879755+6 4.466836-4 4.887165+6 4.470000-4 4.887391+6 4.479900-4 4.886716+6 4.500000-4 4.883204+6 4.600000-4 4.866123+6 4.623810-4 4.857034+6 4.731513-4 4.816467+6 4.841724-4 4.754319+6 4.850000-4 4.749744+6 4.897788-4 4.723544+6 4.954502-4 4.683478+6 5.011872-4 4.643757+6 5.080000-4 4.597508+6 5.248075-4 4.465929+6 5.298200-4 4.425633+6 5.298200-4 4.654408+6 5.308844-4 4.648491+6 5.370318-4 4.611048+6 5.432503-4 4.575202+6 5.445000-4 4.567703+6 5.559043-4 4.497028+6 5.595000-4 4.473653+6 5.595000-4 4.608918+6 5.604000-4 4.606225+6 5.615500-4 4.600959+6 5.623413-4 4.597251+6 5.630000-4 4.594183+6 5.650000-4 4.582157+6 5.688529-4 4.559520+6 5.807000-4 4.489676+6 5.821032-4 4.480373+6 5.880000-4 4.438593+6 5.888437-4 4.432423+6 5.900000-4 4.424007+6 6.025596-4 4.331013+6 6.080000-4 4.292477+6 6.100000-4 4.277409+6 6.165950-4 4.225525+6 6.200000-4 4.198160+6 6.309573-4 4.107906+6 6.320000-4 4.100293+6 6.382635-4 4.050244+6 6.456542-4 3.992275+6 6.500000-4 3.957395+6 6.550000-4 3.916744+6 6.683439-4 3.811212+6 6.700000-4 3.798518+6 6.760830-4 3.752615+6 6.850000-4 3.687355+6 6.918310-4 3.636970+6 7.000000-4 3.576676+6 7.161434-4 3.461522+6 7.244360-4 3.405172+6 7.300000-4 3.366059+6 7.413102-4 3.286929+6 7.500000-4 3.228436+6 7.650000-4 3.131096+6 7.673615-4 3.116119+6 7.762471-4 3.059402+6 7.793900-4 3.039311+6 7.793900-4 3.224781+6 7.852356-4 3.187065+6 8.035261-4 3.073643+6 8.128305-4 3.018185+6 8.222426-4 2.963878+6 8.317638-4 2.909048+6 8.413951-4 2.854479+6 8.430000-4 2.845468+6 8.511380-4 2.800282+6 8.609938-4 2.747266+6 8.709636-4 2.695058+6 8.810489-4 2.642856+6 8.850000-4 2.622875+6 8.912509-4 2.591470+6 9.015711-4 2.540145+6 9.225714-4 2.440666+6 9.332543-4 2.392351+6 9.350000-4 2.384465+6 9.366400-4 2.377014+6 9.385100-4 2.368563+6 9.385100-4 2.400375+6 9.440609-4 2.375579+6 9.500000-4 2.349544+6 9.549926-4 2.327558+6 9.700000-4 2.263519+6 9.772372-4 2.233725+6 9.930000-4 2.171167+6 1.000000-3 2.144059+6 1.011579-3 2.099452+6 1.030000-3 2.031428+6 1.035142-3 2.012882+6 1.047129-3 1.970710+6 1.050000-3 1.960722+6 1.071519-3 1.888040+6 1.072700-3 1.884120+6 1.072700-3 1.920264+6 1.096478-3 1.843665+6 1.100000-3 1.832756+6 1.110000-3 1.802335+6 1.122018-3 1.766155+6 1.135011-3 1.728004+6 1.161449-3 1.654430+6 1.168000-3 1.636792+6 1.188502-3 1.583451+6 1.190000-3 1.579669+6 1.202264-3 1.549101+6 1.216186-3 1.514909+6 1.230269-3 1.481545+6 1.244515-3 1.448924+6 1.258925-3 1.417076+6 1.273503-3 1.385636+6 1.274000-3 1.384583+6 1.288250-3 1.354444+6 1.300000-3 1.330371+6 1.303167-3 1.324001+6 1.318257-3 1.294072+6 1.350000-3 1.234592+6 1.364583-3 1.208306+6 1.380384-3 1.180600+6 1.396368-3 1.153517+6 1.412538-3 1.127107+6 1.445440-3 1.075934+6 1.450000-3 1.069099+6 1.462177-3 1.051180+6 1.479108-3 1.026822+6 1.496236-3 1.002855+6 1.500000-3 9.976930+5 1.513561-3 9.794244+5 1.531087-3 9.566034+5 1.548817-3 9.343806+5 1.570000-3 9.087278+5 1.603245-3 8.700081+5 1.621810-3 8.494830+5 1.640590-3 8.293201+5 1.678804-3 7.905903+5 1.690000-3 7.796865+5 1.698244-3 7.717525+5 1.730000-3 7.421813+5 1.737801-3 7.351802+5 1.757924-3 7.175376+5 1.778279-3 7.003327+5 1.819701-3 6.670181+5 1.840772-3 6.509296+5 1.862087-3 6.351279+5 1.900000-3 6.083053+5 1.905461-3 6.045745+5 1.927525-3 5.898407+5 1.949845-3 5.754706+5 1.950000-3 5.753727+5 1.972423-3 5.614769+5 1.995262-3 5.477734+5 2.000000-3 5.449692+5 2.041738-3 5.210575+5 2.065380-3 5.081705+5 2.089296-3 4.956209+5 2.113489-3 4.833945+5 2.137962-3 4.714908+5 2.150000-3 4.657964+5 2.162719-3 4.598652+5 2.187762-3 4.484480+5 2.213095-3 4.372199+5 2.220000-3 4.342350+5 2.238721-3 4.262974+5 2.264644-3 4.156467+5 2.317395-3 3.951201+5 2.344229-3 3.852691+5 2.371374-3 3.756765+5 2.400000-3 3.657577+5 2.426610-3 3.568605+5 2.500000-3 3.339443+5 2.511886-3 3.304356+5 2.540973-3 3.220733+5 2.570396-3 3.139328+5 2.600160-3 3.059504+5 2.660725-3 2.905223+5 2.722701-3 2.758731+5 2.754229-3 2.688155+5 2.786121-3 2.619295+5 2.800000-3 2.590117+5 2.818383-3 2.552021+5 2.851018-3 2.486396+5 2.884032-3 2.422018+5 2.889300-3 2.411978+5 2.889300-3 6.442311+5 2.917427-3 6.259500+5 2.951209-3 6.049116+5 2.985383-3 5.846037+5 3.019952-3 5.650079+5 3.021600-3 5.640966+5 3.021600-3 8.038960+5 3.054921-3 7.799963+5 3.090295-3 7.556700+5 3.110000-3 7.432555+5 3.126079-3 7.341244+5 3.150000-3 7.208108+5 3.162278-3 7.138394+5 3.198895-3 6.936085+5 3.235937-3 6.739454+5 3.264200-3 6.592065+5 3.273407-3 6.545802+5 3.311311-3 6.360063+5 3.350000-3 6.178010+5 3.388442-3 6.001672+5 3.427678-3 5.828688+5 3.467369-3 5.660260+5 3.507519-3 5.494913+5 3.517900-3 5.453222+5 3.517900-3 6.340562+5 3.589219-3 6.039984+5 3.613000-3 5.943312+5 3.630781-3 5.872070+5 3.650000-3 5.796449+5 3.715352-3 5.549476+5 3.758374-3 5.394933+5 3.801894-3 5.244830+5 3.845918-3 5.098757+5 3.981072-3 4.679454+5 4.000000-3 4.624689+5 4.027170-3 4.547679+5 4.073803-3 4.418848+5 4.120975-3 4.293676+5 4.147600-3 4.225238+5 4.147600-3 4.486480+5 4.168694-3 4.432036+5 4.216965-3 4.310824+5 4.300000-3 4.113432+5 4.315191-3 4.078465+5 4.340000-3 4.022259+5 4.365158-3 3.966250+5 4.447700-3 3.788738+5 4.447700-3 3.950844+5 4.466836-3 3.910464+5 4.500000-3 3.841418+5 4.518559-3 3.803518+5 4.570882-3 3.699266+5 4.623810-3 3.597978+5 4.677351-3 3.499623+5 4.731513-3 3.403941+5 4.780000-3 3.320911+5 4.786301-3 3.310347+5 4.800000-3 3.287490+5 4.920000-3 3.096837+5 5.011872-3 2.961378+5 5.069907-3 2.879947+5 5.128614-3 2.800319+5 5.188000-3 2.722906+5 5.230000-3 2.669549+5 5.248075-3 2.647092+5 5.308844-3 2.573335+5 5.432503-3 2.432282+5 5.495409-3 2.364865+5 5.500000-3 2.360053+5 5.559043-3 2.299112+5 5.623413-3 2.235183+5 5.650000-3 2.209408+5 5.688529-3 2.172745+5 5.754399-3 2.112003+5 5.800000-3 2.071396+5 5.821032-3 2.053043+5 5.888437-3 1.995481+5 5.900000-3 1.985833+5 6.025596-3 1.885129+5 6.095369-3 1.831939+5 6.165950-3 1.780265+5 6.237348-3 1.730130+5 6.300000-3 1.687543+5 6.309573-3 1.681155+5 6.382635-3 1.633162+5 6.456542-3 1.586605+5 6.531306-3 1.541458+5 6.606934-3 1.497650+5 6.650000-3 1.473487+5 6.683439-3 1.455081+5 6.800000-3 1.393486+5 6.839116-3 1.373682+5 6.843790-3 1.371340+5 6.918310-3 1.334788+5 7.000000-3 1.296330+5 7.079458-3 1.260453+5 7.161434-3 1.224890+5 7.244360-3 1.190198+5 7.328245-3 1.156535+5 7.413102-3 1.123558+5 7.498942-3 1.091516+5 7.500000-3 1.091130+5 7.673615-3 1.029840+5 7.762471-3 1.000208+5 7.852356-3 9.714756+4 7.943282-3 9.435732+4 8.000000-3 9.266542+4 8.035261-3 9.163407+4 8.317638-3 8.394379+4 8.413951-3 8.152555+4 8.511380-3 7.917817+4 8.609938-3 7.689455+4 8.709636-3 7.467008+4 8.810489-3 7.251333+4 8.912509-3 7.042239+4 9.015711-3 6.839464+4 9.120108-3 6.642614+4 9.225714-3 6.451685+4 9.440609-3 6.085628+4 9.549926-3 5.908468+4 9.660509-3 5.736730+4 9.772372-3 5.569561+4 9.800000-3 5.529352+4 1.000000-2 5.249221+4 1.011579-2 5.096309+4 1.023293-2 4.947928+4 1.035142-2 4.804100+4 1.047129-2 4.663910+4 1.080000-2 4.308259+4 1.083927-2 4.268333+4 1.096478-2 4.143728+4 1.109175-2 4.022472+4 1.122018-2 3.904808+4 1.150000-2 3.665028+4 1.161449-2 3.572678+4 1.174898-2 3.468417+4 1.190000-2 3.355960+4 1.216186-2 3.171820+4 1.230269-2 3.078459+4 1.244515-2 2.987857+4 1.258925-2 2.899814+4 1.270000-2 2.834649+4 1.273503-2 2.814450+4 1.303167-2 2.651022+4 1.318257-2 2.573019+4 1.333521-2 2.497372+4 1.348963-2 2.424054+4 1.350000-2 2.419240+4 1.364583-2 2.352675+4 1.380384-2 2.283187+4 1.396368-2 2.215842+4 1.400000-2 2.200937+4 1.412538-2 2.150400+4 1.445440-2 2.025324+4 1.461900-2 1.966571+4 1.461900-2 4.826614+4 1.462177-2 4.824228+4 1.479108-2 4.681297+4 1.490000-2 4.592357+4 1.500000-2 4.510966+4 1.531087-2 4.269523+4 1.548817-2 4.139817+4 1.584893-2 3.892280+4 1.603245-2 3.774213+4 1.621810-2 3.659785+4 1.640590-2 3.548698+4 1.659587-2 3.440889+4 1.698244-2 3.231693+4 1.717908-2 3.132006+4 1.730000-2 3.072702+4 1.737801-2 3.035234+4 1.739600-2 3.026661+4 1.739600-2 4.241814+4 1.753000-2 4.163534+4 1.757924-2 4.132812+4 1.778279-2 4.009112+4 1.798871-2 3.889152+4 1.804200-2 3.858925+4 1.804200-2 4.459988+4 1.819701-2 4.364503+4 1.820000-2 4.362689+4 1.830000-2 4.302226+4 1.840772-2 4.238876+4 1.850000-2 4.185651+4 1.862087-2 4.117353+4 1.870000-2 4.073478+4 1.883649-2 3.999828+4 1.900000-2 3.914037+4 1.905461-2 3.885579+4 1.949845-2 3.664821+4 1.950000-2 3.664081+4 1.970000-2 3.571481+4 1.972423-2 3.560407+4 2.000000-2 3.437608+4 2.018366-2 3.359161+4 2.020000-2 3.352233+4 2.041738-2 3.260964+4 2.065380-2 3.165636+4 2.089296-2 3.073158+4 2.100000-2 3.033000+4 2.113489-2 2.983435+4 2.137962-2 2.896389+4 2.162719-2 2.811927+4 2.187762-2 2.729885+4 2.213095-2 2.650306+4 2.238721-2 2.573012+4 2.264644-2 2.498219+4 2.290868-2 2.425212+4 2.317395-2 2.354406+4 2.344229-2 2.285734+4 2.371374-2 2.219040+4 2.400000-2 2.151160+4 2.426610-2 2.090659+4 2.454709-2 2.028966+4 2.483133-2 1.969105+4 2.500000-2 1.934752+4 2.511886-2 1.911023+4 2.540973-2 1.854664+4 2.570396-2 1.799938+4 2.600160-2 1.746872+4 2.630268-2 1.695271+4 2.660725-2 1.644972+4 2.691535-2 1.596205+4 2.722701-2 1.548920+4 2.754229-2 1.503055+4 2.786121-2 1.458574+4 2.800000-2 1.439795+4 2.818383-2 1.415214+4 2.851018-2 1.372988+4 2.884032-2 1.331824+4 2.917427-2 1.291928+4 2.951209-2 1.253218+4 3.000000-2 1.200047+4 3.054921-2 1.143912+4 3.090295-2 1.109693+4 3.126079-2 1.076520+4 3.198895-2 1.013191+4 3.235937-2 9.829605+3 3.311311-2 9.252154+3 3.349654-2 8.974632+3 3.388442-2 8.705401+3 3.427678-2 8.444223+3 3.467369-2 8.190775+3 3.507519-2 7.945139+3 3.548134-2 7.705449+3 3.589219-2 7.471616+3 3.630781-2 7.245039+3 3.672823-2 7.025497+3 3.715352-2 6.812772+3 3.758374-2 6.606602+3 3.801894-2 6.406772+3 3.845918-2 6.213091+3 3.890451-2 6.025385+3 3.935501-2 5.843489+3 3.981072-2 5.666376+3 4.027170-2 5.494567+3 4.073803-2 5.328087+3 4.120975-2 5.166772+3 4.168694-2 5.010447+3 4.265795-2 4.710622+3 4.315191-2 4.567659+3 4.365158-2 4.429114+3 4.518559-2 4.036833+3 4.570882-2 3.914142+3 4.623810-2 3.794420+3 4.677351-2 3.678121+3 4.731513-2 3.565450+3 4.786301-2 3.456304+3 4.841724-2 3.350567+3 4.897788-2 3.248139+3 4.954502-2 3.148906+3 5.069907-2 2.959594+3 5.188000-2 2.781829+3 5.308844-2 2.614346+3 5.370318-2 2.534511+3 5.432503-2 2.456821+3 5.495409-2 2.381425+3 5.500000-2 2.376049+3 5.559043-2 2.307955+3 5.623413-2 2.236767+3 5.821032-2 2.036345+3 5.888437-2 1.973693+3 5.956621-2 1.912990+3 6.025596-2 1.854179+3 6.095369-2 1.797204+3 6.165950-2 1.742017+3 6.309573-2 1.636776+3 6.382635-2 1.586614+3 6.456542-2 1.537746+3 6.531306-2 1.490325+3 6.606934-2 1.444269+3 6.760830-2 1.356230+3 7.000000-2 1.233555+3 7.079458-2 1.196209+3 7.161434-2 1.159286+3 7.244360-2 1.123527+3 7.328245-2 1.088715+3 7.673615-2 9.601060+2 7.762471-2 9.304257+2 7.852356-2 9.016446+2 8.128305-2 8.205749+2 8.317638-2 7.706882+2 8.413951-2 7.468781+2 8.609938-2 7.011365+2 9.015711-2 6.180030+2 9.225714-2 5.802636+2 9.440609-2 5.448289+2 9.660509-2 5.115758+2 9.772372-2 4.957310+2 9.876400-2 4.815984+2 9.876400-2 2.184854+3 1.000000-1 2.114300+3 1.011580-1 2.050939+3 1.015000-1 2.032728+3 1.030000-1 1.963804+3 1.035142-1 1.938027+3 1.059254-1 1.823175+3 1.060000-1 1.819773+3 1.083927-1 1.721127+3 1.096478-1 1.672372+3 1.109175-1 1.625003+3 1.122019-1 1.577033+3 1.135011-1 1.530487+3 1.148154-1 1.485309+3 1.202264-1 1.317597+3 1.205670-1 1.307926+3 1.216186-1 1.278682+3 1.230269-1 1.240921+3 1.244515-1 1.204279+3 1.273503-1 1.134684+3 1.288250-1 1.101414+3 1.318257-1 1.037785+3 1.348963-1 9.778434+2 1.364583-1 9.491893+2 1.396368-1 8.943843+2 1.412538-1 8.681835+2 1.445440-1 8.173486+2 1.462177-1 7.930627+2 1.479108-1 7.694954+2 1.500000-1 7.417311+2 1.513561-1 7.244326+2 1.548817-1 6.819949+2 1.584893-1 6.420649+2 1.603245-1 6.229956+2 1.621810-1 6.044940+2 1.640590-1 5.865429+2 1.678804-1 5.522292+2 1.737801-1 5.044952+2 1.757924-1 4.895214+2 1.819701-1 4.472218+2 1.840772-1 4.339537+2 1.862087-1 4.210803+2 1.883649-1 4.085897+2 1.905461-1 3.964715+2 1.927525-1 3.847142+2 1.949845-1 3.733110+2 1.972423-1 3.622521+2 2.018366-1 3.411099+2 2.113489-1 3.024613+2 2.162719-1 2.848151+2 2.213095-1 2.682008+2 2.238721-1 2.602616+2 2.264644-1 2.525613+2 2.290868-1 2.450898+2 2.317395-1 2.378401+2 2.344229-1 2.308055+2 2.371374-1 2.239841+2 2.398833-1 2.173648+2 2.426610-1 2.109416+2 2.454709-1 2.047709+2 2.511886-1 1.929670+2 2.540973-1 1.873230+2 2.570396-1 1.818451+2 2.600160-1 1.765278+2 2.630268-1 1.713701+2 2.660725-1 1.663633+2 2.691535-1 1.615035+2 2.722701-1 1.567862+2 2.754229-1 1.522122+2 2.786121-1 1.477749+2 2.818383-1 1.434677+2 2.851018-1 1.392863+2 2.884032-1 1.352269+2 2.917427-1 1.312863+2 2.985383-1 1.238501+2 3.019952-1 1.202936+2 3.054921-1 1.168392+2 3.090295-1 1.134845+2 3.162278-1 1.070616+2 3.198895-1 1.039884+2 3.235937-1 1.010055+2 3.273407-1 9.810971+1 3.311311-1 9.529704+1 3.349654-1 9.256527+1 3.388442-1 8.991599+1 3.427678-1 8.734399+1 3.467369-1 8.488557+1 3.507519-1 8.249678+1 3.589219-1 7.791929+1 3.630781-1 7.572678+1 3.672823-1 7.359613+1 3.715352-1 7.152693+1 3.801894-1 6.756225+1 3.845918-1 6.566444+1 3.890451-1 6.382078+1 3.935501-1 6.202895+1 3.981072-1 6.028776+1 4.073803-1 5.701471+1 4.120975-1 5.544555+1 4.168694-1 5.391962+1 4.216965-1 5.243684+1 4.265795-1 5.099488+1 4.365158-1 4.823082+1 4.415705-1 4.690563+1 4.466836-1 4.561710+1 4.518559-1 4.436415+1 4.550800-1 4.362314+1 4.570882-1 4.317046+1 4.623810-1 4.200898+1 4.677351-1 4.088108+1 4.731513-1 3.978349+1 4.841724-1 3.767871+1 4.897788-1 3.666869+1 4.954502-1 3.568579+1 5.000000-1 3.492433+1 5.011872-1 3.472944+1 5.069907-1 3.379876+1 5.128614-1 3.289304+1 5.188000-1 3.202904+1 5.248075-1 3.118816+1 5.308844-1 3.036983+1 5.370318-1 2.957365+1 5.432503-1 2.880009+1 5.495409-1 2.804695+1 5.559043-1 2.731361+1 5.623413-1 2.659949+1 5.688529-1 2.590409+1 5.754399-1 2.522689+1 5.821032-1 2.456741+1 5.888437-1 2.393890+1 5.956621-1 2.332660+1 6.025596-1 2.273080+1 6.095369-1 2.215025+1 6.165950-1 2.158629+1 6.237348-1 2.103670+1 6.309573-1 2.050111+1 6.456542-1 1.947061+1 6.531306-1 1.897522+1 6.606935-1 1.850274+1 6.683439-1 1.804249+1 6.760830-1 1.759370+1 6.839117-1 1.715621+1 6.998420-1 1.631427+1 7.079458-1 1.590994+1 7.161434-1 1.551568+1 7.244360-1 1.513140+1 7.328245-1 1.475664+1 7.413102-1 1.439118+1 7.498942-1 1.404319+1 7.585776-1 1.370365+1 7.673615-1 1.337240+1 7.762471-1 1.304921+1 7.852356-1 1.273399+1 7.943282-1 1.242641+1 8.035261-1 1.212643+1 8.128305-1 1.183442+1 8.317638-1 1.127134+1 8.413951-1 1.100014+1 8.511380-1 1.073547+1 8.609938-1 1.048347+1 8.709636-1 1.023746+1 8.810489-1 9.997375+0 8.912509-1 9.763118+0 9.015711-1 9.534352+0 9.120108-1 9.310960+0 9.225714-1 9.092806+0 9.332543-1 8.879777+0 9.440609-1 8.672387+0 9.549926-1 8.470320+0 9.660509-1 8.278325+0 9.772372-1 8.090685+0 9.885531-1 7.907473+0 1.000000+0 7.728456+0 1.011579+0 7.553655+0 1.023293+0 7.383009+0 1.035142+0 7.216287+0 1.047129+0 7.053729+0 1.059254+0 6.894852+0 1.071519+0 6.739558+0 1.083927+0 6.587886+0 1.096478+0 6.439636+0 1.109175+0 6.294715+0 1.122018+0 6.153205+0 1.135011+0 6.014908+0 1.148154+0 5.882094+0 1.161449+0 5.752216+0 1.174898+0 5.625310+0 1.188502+0 5.501229+0 1.202264+0 5.379959+0 1.216186+0 5.261711+0 1.230269+0 5.146182+0 1.244515+0 5.033191+0 1.258925+0 4.922730+0 1.273503+0 4.814770+0 1.288250+0 4.712101+0 1.303167+0 4.611627+0 1.318257+0 4.513313+0 1.333521+0 4.417170+0 1.348963+0 4.323162+0 1.364583+0 4.231434+0 1.380384+0 4.141653+0 1.396368+0 4.053779+0 1.445440+0 3.801397+0 1.479108+0 3.646213+0 1.496236+0 3.571026+0 1.500000+0 3.554839+0 1.513561+0 3.497460+0 1.531087+0 3.425713+0 1.548817+0 3.355434+0 1.603245+0 3.153142+0 1.621810+0 3.090098+0 1.678804+0 2.908478+0 1.698244+0 2.850352+0 1.717908+0 2.793433+0 1.737801+0 2.737822+0 1.757924+0 2.683340+0 1.819701+0 2.526432+0 1.840772+0 2.476195+0 1.862087+0 2.428027+0 1.883649+0 2.380795+0 1.927525+0 2.289092+0 1.949845+0 2.244574+0 1.972423+0 2.200929+0 1.995262+0 2.158160+0 2.000000+0 2.149454+0 2.018366+0 2.116228+0 2.044000+0 2.071360+0 2.089296+0 1.995752+0 2.113489+0 1.957150+0 2.137962+0 1.919295+0 2.162719+0 1.883311+0 2.187762+0 1.848003+0 2.213095+0 1.813364+0 2.238721+0 1.779404+0 2.264644+0 1.746087+0 2.290868+0 1.713530+0 2.344229+0 1.650289+0 2.371374+0 1.619549+0 2.398833+0 1.589382+0 2.426610+0 1.560633+0 2.454709+0 1.532411+0 2.483133+0 1.504705+0 2.511886+0 1.477500+0 2.540973+0 1.450809+0 2.570396+0 1.424607+0 2.600160+0 1.398981+0 2.660725+0 1.349154+0 2.691535+0 1.324909+0 2.722701+0 1.301101+0 2.754229+0 1.278367+0 2.786121+0 1.256037+0 2.851018+0 1.212546+0 2.884032+0 1.191368+0 2.917427+0 1.170577+0 2.951209+0 1.150152+0 3.000000+0 1.121769+0 3.090295+0 1.072244+0 3.162278+0 1.035301+0 3.198895+0 1.017310+0 3.235937+0 1.000088+0 3.273407+0 9.831612-1 3.349654+0 9.501688-1 3.388442+0 9.340897-1 3.427678+0 9.182985-1 3.467369+0 9.028330-1 3.589219+0 8.580216-1 3.672823+0 8.293898-1 3.715352+0 8.154343-1 3.758374+0 8.020777-1 3.801894+0 7.889430-1 3.890451+0 7.633205-1 3.935501+0 7.508228-1 4.000000+0 7.335408-1 4.027170+0 7.264889-1 4.168694+0 6.915815-1 4.265795+0 6.692470-1 4.315191+0 6.583517-1 4.365158+0 6.479122-1 4.415704+0 6.376389-1 4.466836+0 6.275306-1 4.570882+0 6.077963-1 4.623810+0 5.981631-1 4.677351+0 5.886918-1 4.731513+0 5.794048-1 4.897788+0 5.524373-1 5.011872+0 5.351600-1 5.069907+0 5.267250-1 5.128614+0 5.186380-1 5.188000+0 5.106758-1 5.308844+0 4.951193-1 5.432503+0 4.800397-1 5.495409+0 4.726729-1 5.559043+0 4.654261-1 5.623413+0 4.583173-1 5.821032+0 4.376534-1 5.956621+0 4.243979-1 6.025596+0 4.179214-1 6.095369+0 4.117141-1 6.165950+0 4.055993-1 6.309573+0 3.936436-1 6.456542+0 3.820424-1 6.531306+0 3.763707-1 6.606934+0 3.707883-1 6.683439+0 3.653083-1 6.918310+0 3.493625-1 7.161434+0 3.341129-1 7.244360+0 3.291791-1 7.328245+0 3.244405-1 7.413102+0 3.197703-1 7.585776+0 3.106325-1 7.762471+0 3.017576-1 7.852356+0 2.974156-1 7.943282+0 2.931401-1 8.000000+0 2.905287-1 8.035261+0 2.889321-1 8.317638+0 2.767048-1 8.609938+0 2.649951-1 8.709636+0 2.612030-1 8.810489+0 2.575547-1 8.912509+0 2.539576-1 9.000000+0 2.509455-1 9.225714+0 2.434669-1 9.440609+0 2.367161-1 9.549926+0 2.334113-1 9.660509+0 2.301526-1 9.772372+0 2.269422-1 9.885531+0 2.237766-1 1.023293+1 2.145813-1 1.059254+1 2.057639-1 1.071519+1 2.029062-1 1.083927+1 2.001575-1 1.096478+1 1.974463-1 1.109175+1 1.947722-1 1.135011+1 1.895324-1 1.161449+1 1.844345-1 1.174898+1 1.819371-1 1.188502+1 1.794738-1 1.202264+1 1.770458-1 1.216186+1 1.746505-1 1.258925+1 1.676863-1 1.273503+1 1.654271-1 1.303167+1 1.609997-1 1.318257+1 1.588306-1 1.333521+1 1.567329-1 1.348963+1 1.546629-1 1.364583+1 1.526206-1 1.412538+1 1.466539-1 1.496236+1 1.372247-1 1.513561+1 1.354129-1 1.531087+1 1.336251-1 1.548817+1 1.318621-1 1.566751+1 1.301226-1 1.584893+1 1.284127-1 1.603245+1 1.267252-1 1.621810+1 1.250598-1 1.640590+1 1.234484-1 1.659587+1 1.218581-1 1.757924+1 1.142083-1 1.972423+1 1.003213-1 2.000000+1 9.876493-2 2.018366+1 9.775420-2 2.041738+1 9.649981-2 2.065380+1 9.526202-2 2.089296+1 9.404011-2 2.113489+1 9.285839-2 2.137962+1 9.169172-2 2.290868+1 8.499314-2 2.317395+1 8.392544-2 2.630268+1 7.302995-2 2.660725+1 7.211254-2 2.691535+1 7.120721-2 2.722701+1 7.031581-2 2.754229+1 6.943584-2 2.800000+1 6.819524-2 2.818383+1 6.771746-2 2.851018+1 6.688512-2 3.126079+1 6.058430-2 3.162278+1 5.983971-2 3.672823+1 5.095339-2 3.715352+1 5.032747-2 3.758374+1 4.970931-2 3.801894+1 4.910037-2 3.845918+1 4.849908-2 3.890451+1 4.790517-2 3.935501+1 4.732840-2 3.981072+1 4.675866-2 4.415704+1 4.192995-2 4.466836+1 4.142525-2 5.370318+1 3.412862-2 5.432503+1 3.371782-2 5.495409+1 3.331213-2 5.559043+1 3.291136-2 5.623413+1 3.251542-2 5.688529+1 3.212508-2 5.754399+1 3.173953-2 5.821032+1 3.135861-2 5.888437+1 3.098226-2 6.000000+1 3.038690-2 6.095369+1 2.989557-2 6.760830+1 2.685907-2 6.839116+1 2.654135-2 8.709636+1 2.067263-2 8.912509+1 2.018644-2 9.120108+1 1.971184-2 9.332543+1 1.924843-2 9.440609+1 1.902083-2 9.660509+1 1.857451-2 9.885531+1 1.813875-2 1.000000+2 1.792473-2 1.023293+2 1.750422-2 1.059254+2 1.689934-2 1.148154+2 1.556814-2 1.161449+2 1.538674-2 1.462177+2 1.217156-2 1.513561+2 1.175104-2 1.603245+2 1.108234-2 1.698244+2 1.045172-2 1.737801+2 1.020964-2 1.757924+2 1.009074-2 1.840772+2 9.629221-3 1.862087+2 9.517192-3 1.972423+2 8.976295-3 1.995262+2 8.871865-3 2.041738+2 8.666629-3 2.113489+2 8.369642-3 2.290868+2 7.715680-3 2.317395+2 7.626529-3 2.917427+2 6.044788-3 3.019952+2 5.837665-3 3.198895+2 5.508168-3 3.388442+2 5.197279-3 3.467369+2 5.077895-3 3.507519+2 5.019246-3 3.672823+2 4.791495-3 3.715352+2 4.736196-3 3.935501+2 4.469127-3 3.981072+2 4.417549-3 4.073803+2 4.316171-3 4.216965+2 4.169143-3 4.570882+2 3.845271-3 4.623810+2 3.801106-3 5.821032+2 3.016970-3 6.025596+2 2.914205-3 1.202264+3 1.457147-3 1.273503+3 1.375373-3 1.348963+3 1.298190-3 1.380384+3 1.268544-3 1.396368+3 1.253977-3 1.462177+3 1.197381-3 1.479108+3 1.183636-3 1.566751+3 1.117243-3 1.584893+3 1.104418-3 1.621810+3 1.079209-3 1.678804+3 1.042553-3 1.819701+3 9.617934-4 3.672823+3 4.763699-4 4.623810+3 3.783548-4 4.786301+3 3.655043-4 3.801894+4 4.597134-5 4.027170+4 4.339865-5 4.265795+4 4.096994-5 1.000000+5 1.747047-5 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 9.640000-6 9.640000-6 1.369000-5 9.640000-6 1.369000-5 1.155624-5 1.445440-5 1.169125-5 1.550000-5 1.180113-5 1.698244-5 1.187530-5 1.950000-5 1.191162-5 2.572000-5 1.192233-5 2.572000-5 1.300393-5 3.630781-5 1.283098-5 4.350000-5 1.278849-5 5.184000-5 1.283010-5 5.184000-5 3.509097-5 5.240000-5 3.638783-5 5.290000-5 3.772516-5 5.370318-5 4.012493-5 5.495409-5 4.393490-5 5.570000-5 4.591360-5 5.615000-5 4.693598-5 5.649000-5 4.761959-5 5.649000-5 4.844680-5 5.720000-5 4.943061-5 5.800000-5 5.025183-5 5.910000-5 5.094997-5 6.190000-5 5.197484-5 6.309573-5 5.255556-5 6.490000-5 5.293788-5 7.350000-5 5.341453-5 7.852356-5 5.331468-5 1.023293-4 5.261501-5 1.244515-4 5.164350-5 1.283700-4 5.143020-5 1.283700-4 6.270292-5 1.304000-4 6.345391-5 1.340000-4 6.410381-5 1.412538-4 6.487713-5 1.622900-4 6.667565-5 1.622900-4 7.519685-5 1.635000-4 7.603442-5 1.648500-4 7.648420-5 1.670000-4 7.671313-5 1.820000-4 7.704759-5 2.018366-4 7.772988-5 2.116900-4 7.782968-5 2.116900-4 8.207599-5 2.190000-4 8.306442-5 2.290868-4 8.365688-5 2.338700-4 8.374837-5 2.338700-4 9.092151-5 2.349000-4 9.210944-5 2.363000-4 9.292326-5 2.378000-4 9.320854-5 2.411600-4 9.301171-5 2.411600-4 9.712156-5 2.426000-4 9.778354-5 2.448000-4 9.787224-5 2.520000-4 9.695562-5 2.580000-4 9.684773-5 2.630268-4 9.740729-5 2.675000-4 9.839524-5 2.730000-4 1.001726-4 2.820000-4 1.038288-4 2.970000-4 1.101199-4 3.054921-4 1.130766-4 3.130000-4 1.151456-4 3.240000-4 1.173370-4 3.370000-4 1.190032-4 3.550000-4 1.203980-4 3.820000-4 1.214650-4 4.343400-4 1.221471-4 5.298200-4 1.222070-4 5.298200-4 1.265596-4 5.595000-4 1.280806-4 5.595000-4 1.307487-4 5.888437-4 1.327131-4 6.320000-4 1.345759-4 7.793900-4 1.393267-4 7.793900-4 1.475232-4 9.385100-4 1.531170-4 9.385100-4 1.553011-4 1.072700-3 1.598140-4 1.072700-3 1.634360-4 1.274000-3 1.700085-4 1.548817-3 1.773718-4 1.862087-3 1.842330-4 2.238721-3 1.908751-4 2.660725-3 1.968892-4 2.889300-3 1.996934-4 2.889300-3 2.941449-4 3.021600-3 2.929430-4 3.021600-3 3.106430-4 3.517900-3 3.104727-4 3.517900-3 3.334838-4 4.147600-3 3.366856-4 4.147600-3 3.484515-4 4.447700-3 3.509005-4 4.447700-3 3.617773-4 5.900000-3 3.748611-4 7.673615-3 3.875166-4 9.800000-3 3.993699-4 1.244515-2 4.107541-4 1.461900-2 4.181994-4 1.461900-2 5.173345-4 1.739600-2 5.197526-4 1.739600-2 5.388995-4 1.804200-2 5.394357-4 1.804200-2 5.792817-4 2.570396-2 5.948725-4 3.630781-2 6.100572-4 4.954502-2 6.235764-4 6.760830-2 6.367392-4 9.225714-2 6.490296-4 9.876400-2 6.516279-4 9.876400-2 5.935435-4 2.454709-1 5.974854-4 6.760830-1 5.997420-4 1.000000+5 5.999799-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.640000-6 0.0 1.283700-4 0.0 1.283700-4 1.90179-10 1.288500-4 1.94324-10 1.297000-4 2.00311-10 1.304000-4 2.04347-10 1.314000-4 2.09017-10 1.325000-4 2.13224-10 1.340000-4 2.18000-10 1.380384-4 2.29221-10 1.445440-4 2.44120-10 1.500000-4 2.56175-10 1.603245-4 2.80673-10 1.622900-4 2.85788-10 1.622900-4 1.346831-9 1.626000-4 1.377222-9 1.629000-4 1.402801-9 1.632000-4 1.424397-9 1.635000-4 1.442632-9 1.639000-4 1.461592-9 1.643000-4 1.476161-9 1.648500-4 1.489510-9 1.655000-4 1.498584-9 1.662000-4 1.502649-9 1.670000-4 1.502388-9 1.757924-4 1.451331-9 1.800000-4 1.433506-9 1.820000-4 1.426163-9 1.995262-4 1.379981-9 2.089296-4 1.347387-9 2.116900-4 1.335946-9 2.116900-4 1.365196-9 2.213095-4 1.335122-9 2.338700-4 1.284457-9 2.338700-4 1.090179-8 2.339700-4 1.112507-8 2.341700-4 1.146830-8 2.344229-4 1.186060-8 2.346700-4 1.220036-8 2.350000-4 1.258254-8 2.352000-4 1.279514-8 2.355000-4 1.305917-8 2.359000-4 1.334449-8 2.363000-4 1.356332-8 2.367000-4 1.372348-8 2.372000-4 1.385792-8 2.378000-4 1.394421-8 2.385000-4 1.397016-8 2.392000-4 1.394056-8 2.400000-4 1.386253-8 2.411600-4 1.368728-8 2.411600-4 1.218895-8 2.416000-4 1.201105-8 2.423000-4 1.179091-8 2.434000-4 1.154317-8 2.448000-4 1.133276-8 2.470000-4 1.114488-8 2.485000-4 1.107525-8 2.500000-4 1.104187-8 2.520000-4 1.105480-8 2.538000-4 1.112279-8 2.553000-4 1.121865-8 2.565400-4 1.132360-8 2.580000-4 1.149181-8 2.595000-4 1.170812-8 2.608000-4 1.193280-8 2.623000-4 1.223500-8 2.645000-4 1.276461-8 2.660725-4 1.319395-8 2.675000-4 1.362004-8 2.692000-4 1.415853-8 2.722701-4 1.523123-8 2.754229-4 1.640591-8 2.851018-4 2.018339-8 2.917427-4 2.265528-8 2.930000-4 2.310173-8 2.970000-4 2.442127-8 3.015000-4 2.573166-8 3.054921-4 2.671815-8 3.090295-4 2.746476-8 3.130000-4 2.815145-8 3.165000-4 2.865144-8 3.200000-4 2.906710-8 3.240000-4 2.945446-8 3.320000-4 3.003631-8 3.410000-4 3.048182-8 3.550000-4 3.090348-8 3.715352-4 3.113593-8 4.000000-4 3.120908-8 4.623810-4 3.112584-8 5.298200-4 3.091942-8 5.298200-4 3.192933-8 5.595000-4 3.220865-8 5.595000-4 3.510273-8 5.821032-4 3.617592-8 6.100000-4 3.699354-8 6.850000-4 3.836649-8 7.793900-4 4.004801-8 7.793900-4 4.977486-8 8.709636-4 5.217950-8 9.385100-4 5.382942-8 9.385100-4 5.654971-8 1.072700-3 6.021513-8 1.072700-3 6.476352-8 1.216186-3 6.900899-8 1.396368-3 7.378238-8 1.570000-3 7.794800-8 1.778279-3 8.247130-8 2.000000-3 8.678026-8 2.264644-3 9.139732-8 2.570396-3 9.615228-8 2.889300-3 1.005756-7 2.889300-3 1.256650-7 3.021600-3 1.258496-7 3.021600-3 3.120362-5 3.110000-3 3.160620-5 3.162278-3 3.164476-5 3.273407-3 3.156090-5 3.388442-3 3.157149-5 3.517900-3 3.153085-5 3.517900-3 3.118184-5 4.147600-3 3.082708-5 4.147600-3 3.439591-5 4.447700-3 3.459601-5 4.447700-3 3.509092-5 5.500000-3 3.573368-5 7.161434-3 3.649579-5 9.225714-3 3.721847-5 1.230269-2 3.800448-5 1.461900-2 3.846157-5 1.461900-2 2.860477-3 1.717908-2 2.840768-3 1.739600-2 2.838294-3 1.739600-2 4.159496-3 1.778279-2 4.168714-3 1.804200-2 4.171172-3 1.804200-2 4.345903-3 2.290868-2 4.393817-3 2.917427-2 4.424049-3 4.073803-2 4.449072-3 7.079458-2 4.459555-3 9.876400-2 4.456560-3 9.876400-2 6.970024-2 1.205670-1 7.029495-2 1.584893-1 7.091773-2 2.344229-1 7.146519-2 4.415705-1 7.204359-2 8.413951-1 7.258051-2 1.216186+0 7.275504-2 1.000000+5 7.272160-2 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 9.640000-6 0.0 1.369000-5 4.050000-6 1.369000-5 2.133764-6 1.396368-5 2.353047-6 1.415000-5 2.505456-6 1.445440-5 2.763145-6 1.480000-5 3.065372-6 1.515000-5 3.378645-6 1.590000-5 4.072413-6 1.698244-5 5.107141-6 1.840772-5 6.504797-6 2.572000-5 1.379767-5 2.572000-5 1.271607-5 3.845918-5 2.564818-5 5.184000-5 3.900990-5 5.184000-5 1.674903-5 5.217000-5 1.633730-5 5.240000-5 1.601217-5 5.267000-5 1.557897-5 5.290000-5 1.517484-5 5.340000-5 1.420721-5 5.460000-5 1.170471-5 5.495409-5 1.101919-5 5.535000-5 1.032398-5 5.580000-5 9.644265-6 5.615000-5 9.214017-6 5.649000-5 8.870406-6 5.649000-5 8.043202-6 5.680000-5 7.893832-6 5.700000-5 7.821384-6 5.720000-5 7.769395-6 5.754399-5 7.716083-6 5.800000-5 7.748175-6 5.821032-5 7.781422-6 5.870000-5 7.962105-6 5.920000-5 8.202735-6 5.970000-5 8.508738-6 6.070000-5 9.195104-6 6.110000-5 9.453481-6 6.190000-5 9.925156-6 6.309573-5 1.054017-5 6.395200-5 1.117215-5 6.490000-5 1.196212-5 6.606934-5 1.301999-5 7.230000-5 1.892209-5 7.540000-5 2.197333-5 8.810489-5 3.505392-5 1.083927-4 5.600952-5 1.283700-4 7.693980-5 1.283700-4 6.566690-5 1.304000-4 6.694589-5 1.340000-4 6.989597-5 1.412538-4 7.637643-5 1.622900-4 9.561406-5 1.622900-4 8.709180-5 1.635000-4 8.746414-5 1.648500-4 8.836432-5 1.670000-4 9.028537-5 1.865000-4 1.092692-4 2.089296-4 1.311079-4 2.116900-4 1.338590-4 2.116900-4 1.296126-4 2.213095-4 1.380491-4 2.338700-4 1.501203-4 2.338700-4 1.429376-4 2.352000-4 1.428390-4 2.372000-4 1.440414-4 2.411600-4 1.481346-4 2.411600-4 1.440263-4 2.430000-4 1.451281-4 2.470000-4 1.494082-4 2.550000-4 1.581835-4 2.623000-4 1.650008-4 2.692000-4 1.703045-4 2.800000-4 1.770129-4 2.970000-4 1.868557-4 3.100000-4 1.955968-4 3.240000-4 2.066336-4 3.430000-4 2.234138-4 3.780000-4 2.566110-4 4.731513-4 3.508556-4 5.298200-4 4.075821-4 5.298200-4 4.032285-4 5.595000-4 4.313872-4 5.595000-4 4.287162-4 6.320000-4 4.973867-4 7.793900-4 6.400233-4 7.793900-4 6.318171-4 9.385100-4 7.853392-4 9.385100-4 7.831524-4 1.072700-3 9.128258-4 1.072700-3 9.091993-4 1.737801-3 1.556042-3 2.889300-3 2.689506-3 2.889300-3 2.595029-3 3.021600-3 2.728531-3 3.021600-3 2.679753-3 3.517900-3 3.175896-3 3.517900-3 3.153234-3 4.147600-3 3.780087-3 4.147600-3 3.764752-3 4.447700-3 4.062203-3 4.447700-3 4.050832-3 1.303167-2 1.258063-2 1.461900-2 1.416234-2 1.461900-2 1.124119-2 1.739600-2 1.403795-2 1.739600-2 1.269760-2 1.804200-2 1.333139-2 1.804200-2 1.311682-2 3.054921-2 2.551808-2 9.876400-2 9.365581-2 9.876400-2 2.847021-2 1.015000-1 3.115721-2 1.035142-1 3.305773-2 1.083927-1 3.779944-2 1.216186-1 5.070769-2 1.584893-1 8.697583-2 2.884032-1 2.161376-1 2.754229+0 2.680917+0 1.000000+5 9.999993+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 9.876400-2 1.703256+3 1.015000-1 1.585850+3 1.030000-1 1.534556+3 1.060000-1 1.423018+3 1.109175-1 1.274569+3 1.244515-1 9.485089+2 1.412538-1 6.872505+2 2.426610-1 1.689783+2 2.917427-1 1.054524+2 3.427678-1 7.031321+1 3.981072-1 4.862795+1 4.518559-1 3.583881+1 5.128614-1 2.661629+1 5.821032-1 1.991265+1 6.531306-1 1.540160+1 7.413102-1 1.169829+1 8.511380-1 8.740130+0 9.549926-1 6.905830+0 1.135011+0 4.908392+0 1.273503+0 3.928513+0 1.445440+0 3.100847+0 1.603245+0 2.571726+0 1.840772+0 2.019654+0 2.137962+0 1.565423+0 2.398833+0 1.296311+0 2.722701+0 1.061207+0 3.198895+0 8.297608-1 3.715352+0 6.651009-1 4.315191+0 5.369784-1 5.069907+0 4.296148-1 6.025596+0 3.408724-1 7.244360+0 2.684899-1 8.709636+0 2.130465-1 1.071519+1 1.654984-1 1.318257+1 1.295510-1 1.621810+1 1.020137-1 2.089296+1 7.670933-2 2.800000+1 5.562800-2 3.890451+1 3.907709-2 5.888437+1 2.527255-2 1.023293+2 1.427795-2 2.041738+2 7.069349-3 4.073803+2 3.520681-3 1.621810+3 8.803480-4 1.000000+5 1.425200-5 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 9.876400-2 5.771200-4 1.000000+5 5.771200-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.876400-2 8.814800-2 1.000000+5 8.814800-2 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 9.876400-2 1.003888-2 1.000000+5 9.999991+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.804200-2 6.010633+3 1.830000-2 5.855416+3 1.870000-2 5.643160+3 1.900000-2 5.502080+3 1.950000-2 5.245220+3 2.020000-2 4.955620+3 2.238721-2 4.115824+3 2.426610-2 3.569524+3 2.600160-2 3.138228+3 2.851018-2 2.633163+3 3.548134-2 1.706241+3 3.935501-2 1.377569+3 4.570882-2 1.006178+3 5.500000-2 6.729920+2 6.382635-2 4.824660+2 7.244360-2 3.614524+2 8.413951-2 2.553179+2 1.000000-1 1.695974+2 1.202264-1 1.087639+2 1.500000-1 6.327380+1 2.722701-1 1.447247+1 3.349654-1 8.724953+0 3.981072-1 5.764670+0 4.623810-1 4.056709+0 5.370318-1 2.876391+0 6.095369-1 2.164936+0 6.998420-1 1.601798+0 8.035261-1 1.194288+0 9.332543-1 8.759686-1 1.035142+0 7.112814-1 1.202264+0 5.305438-1 1.348963+0 4.262867-1 1.513561+0 3.447812-1 1.717908+0 2.753237-1 2.018366+0 2.085900-1 2.264644+0 1.721382-1 2.570396+0 1.404363-1 2.951209+0 1.133625-1 3.427678+0 9.050380-2 4.000000+0 7.229700-2 4.677351+0 5.801920-2 5.559043+0 4.586833-2 6.606934+0 3.654265-2 8.000000+0 2.863300-2 9.885531+0 2.205402-2 1.216186+1 1.721287-2 1.566751+1 1.282858-2 2.018366+1 9.638215-3 2.691535+1 7.020451-3 3.758374+1 4.901423-3 5.623413+1 3.206016-3 9.440609+1 1.875194-3 1.757924+2 9.947885-4 3.507519+2 4.949187-4 1.396368+3 1.236611-4 1.000000+5 1.723100-6 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.804200-2 8.351000-4 1.000000+5 8.351000-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.804200-2 5.467700-3 1.000000+5 5.467700-3 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.804200-2 1.173920-2 1.000000+5 9.999999+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.739600-2 1.215153+4 1.753000-2 1.199693+4 1.820000-2 1.095900+4 1.970000-2 9.000400+3 2.371374-2 5.596400+3 2.630268-2 4.257500+3 3.311311-2 2.289500+3 4.168694-2 1.209500+3 5.188000-2 6.515900+2 6.531306-2 3.363100+2 8.317638-2 1.665900+2 1.584893-1 2.526400+1 1.949845-1 1.385798+1 2.344229-1 8.177396+0 2.754229-1 5.190009+0 3.198895-1 3.427794+0 3.672823-1 2.354642+0 4.168694-1 1.680544+0 4.731513-1 1.208266+0 5.308844-1 9.014255-1 5.956621-1 6.774153-1 6.606935-1 5.274749-1 7.413102-1 4.029042-1 8.317638-1 3.101821-1 9.440609-1 2.343982-1 1.011579+0 2.024794-1 1.109175+0 1.680200-1 1.216186+0 1.403641-1 1.333521+0 1.180736-1 1.513561+0 9.388462-2 1.757924+0 7.205717-2 2.044000+0 5.560503-2 2.290868+0 4.600956-2 2.600160+0 3.756790-2 3.000000+0 3.012800-2 3.467369+0 2.424459-2 4.027170+0 1.951042-2 4.731513+0 1.556053-2 5.623413+0 1.230764-2 6.683439+0 9.810128-3 8.035261+0 7.759318-3 9.885531+0 6.009680-3 1.216186+1 4.690499-3 1.566751+1 3.495719-3 2.018366+1 2.626282-3 2.691535+1 1.912997-3 3.758374+1 1.335559-3 5.623413+1 8.736264-4 9.440609+1 5.109804-4 1.737801+2 2.742580-4 3.467369+2 1.364345-4 1.380384+3 3.408904-5 1.000000+5 4.695300-7 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.739600-2 5.865900-4 1.000000+5 5.865900-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.739600-2 7.450300-3 1.000000+5 7.450300-3 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.739600-2 9.359110-3 1.000000+5 9.999999+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.461900-2 2.860043+4 1.490000-2 2.720992+4 1.659587-2 2.029751+4 2.018366-2 1.174002+4 2.264644-2 8.435883+3 2.800000-2 4.540920+3 3.507519-2 2.315578+3 4.365158-2 1.188249+3 5.370318-2 6.250919+2 6.606934-2 3.261055+2 8.413951-2 1.514186+2 1.548817-1 2.154442+1 1.927525-1 1.077514+1 2.238721-1 6.746825+0 2.600160-1 4.253474+0 2.985383-1 2.799189+0 3.388442-1 1.921375+0 3.801894-1 1.374056+0 4.265795-1 9.898081-1 4.731513-1 7.416753-1 5.248075-1 5.595600-1 5.821032-1 4.252072-1 6.456542-1 3.254661-1 7.161434-1 2.509695-1 7.943282-1 1.950225-1 8.709636-1 1.569071-1 9.440609-1 1.301944-1 1.000000+0 1.146413-1 1.071519+0 9.918979-2 1.161449+0 8.443035-2 1.258925+0 7.238178-2 1.396368+0 5.988505-2 1.737801+0 4.063804-2 2.018366+0 3.138921-2 2.264644+0 2.590418-2 2.570396+0 2.113306-2 2.951209+0 1.705827-2 3.427678+0 1.361855-2 4.000000+0 1.087900-2 4.677351+0 8.730743-3 5.559043+0 6.902425-3 6.606934+0 5.499002-3 8.000000+0 4.308700-3 9.885531+0 3.318753-3 1.216186+1 2.590260-3 1.566751+1 1.930493-3 2.041738+1 1.431851-3 2.722701+1 1.043320-3 3.801894+1 7.285928-4 5.688529+1 4.766858-4 9.660509+1 2.755852-4 1.840772+2 1.428628-4 3.672823+2 7.110074-5 1.462177+3 1.777002-5 1.000000+5 2.593000-7 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.461900-2 5.855000-4 1.000000+5 5.855000-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.461900-2 4.800900-3 1.000000+5 4.800900-3 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.461900-2 9.232600-3 1.000000+5 9.999999+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.447700-3 1.621063+4 4.780000-3 1.477554+4 4.920000-3 1.424722+4 5.230000-3 1.307434+4 5.650000-3 1.179332+4 5.900000-3 1.108250+4 6.800000-3 8.930760+3 7.328245-3 7.983708+3 7.852356-3 7.147619+3 9.660509-3 5.069807+3 1.080000-2 4.174540+3 1.244515-2 3.245433+3 1.462177-2 2.410971+3 1.640590-2 1.940018+3 1.949845-2 1.388438+3 2.344229-2 9.614977+2 2.800000-2 6.680340+2 3.349654-2 4.583002+2 3.935501-2 3.240427+2 4.623810-2 2.274748+2 5.432503-2 1.585550+2 6.456542-2 1.068884+2 7.762471-2 6.962871+1 9.225714-2 4.622444+1 1.135011-1 2.805370+1 1.462177-1 1.511115+1 2.600160-1 3.640844+0 3.235937-1 2.134100+0 3.845918-1 1.409255+0 4.518559-1 9.637639-1 5.188000-1 7.007450-1 5.956621-1 5.132601-1 6.839117-1 3.789003-1 7.762471-1 2.889110-1 8.810489-1 2.216587-1 9.772372-1 1.795787-1 1.188502+0 1.221670-1 1.318257+0 1.002027-1 1.496236+0 7.926554-2 1.698244+0 6.325643-2 1.972423+0 4.884381-2 2.213095+0 4.025170-2 2.511886+0 3.279271-2 2.884032+0 2.643758-2 3.388442+0 2.072775-2 3.935501+0 1.666152-2 4.623810+0 1.327348-2 5.495409+0 1.048820-2 6.531306+0 8.351570-3 7.852356+0 6.599582-3 9.660509+0 5.106782-3 1.188502+1 3.982529-3 1.531087+1 2.965317-3 2.000000+1 2.192400-3 2.660725+1 1.600663-3 3.672823+1 1.130994-3 5.432503+1 7.484004-4 8.912509+1 4.479875-4 1.513561+2 2.607624-4 3.019952+2 1.295808-4 1.202264+3 3.235021-5 3.801894+4 1.020574-6 1.000000+5 3.879700-7 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.447700-3 6.159900-4 1.000000+5 6.159900-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.447700-3 4.665800-5 1.000000+5 4.665800-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.447700-3 3.785052-3 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.147600-3 2.612417+4 4.340000-3 2.495483+4 4.518559-3 2.384156+4 5.011872-3 2.097068+4 5.248075-3 1.971483+4 5.559043-3 1.813084+4 6.300000-3 1.502416+4 6.650000-3 1.379834+4 7.161434-3 1.223222+4 8.609938-3 8.837748+3 9.225714-3 7.771034+3 1.083927-2 5.679310+3 1.174898-2 4.824536+3 1.364583-2 3.526292+3 1.500000-2 2.872060+3 1.717908-2 2.123809+3 1.950000-2 1.586996+3 2.162719-2 1.244366+3 2.500000-2 8.778000+2 2.917427-2 5.991896+2 3.388442-2 4.101107+2 3.935501-2 2.784429+2 4.623810-2 1.819746+2 5.432503-2 1.180140+2 6.456542-2 7.363844+1 7.852356-2 4.280335+1 1.000000-1 2.171291+1 1.883649-1 3.607700+0 2.344229-1 1.952329+0 2.786121-1 1.210278+0 3.235937-1 8.049768-1 3.715352-1 5.561340-1 4.265795-1 3.870224-1 4.841724-1 2.796145-1 5.432503-1 2.094835-1 6.095369-1 1.580327-1 6.839117-1 1.201009-1 7.585776-1 9.444350-2 8.609938-1 7.096217-2 9.440609-1 5.807229-2 1.023293+0 4.908152-2 1.122018+0 4.079737-2 1.244515+0 3.339059-2 1.396368+0 2.695123-2 1.621810+0 2.059110-2 1.883649+0 1.585820-2 2.137962+0 1.279331-2 2.426610+0 1.040166-2 2.754229+0 8.519458-3 3.235937+0 6.664153-3 3.758374+0 5.344783-3 4.415704+0 4.248302-3 5.188000+0 3.402289-3 6.165950+0 2.702304-3 7.413102+0 2.130528-3 8.912509+0 1.692035-3 1.096478+1 1.315532-3 1.348963+1 1.030654-3 1.640590+1 8.227616-4 2.113489+1 6.188515-4 2.818383+1 4.513343-4 3.935501+1 3.154251-4 6.000000+1 2.025100-4 1.059254+2 1.126085-4 2.113489+2 5.578063-5 4.216965+2 2.778601-5 1.678804+3 6.948827-6 1.000000+5 1.164600-7 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.147600-3 5.387500-4 1.000000+5 5.387500-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.147600-3 9.211700-5 1.000000+5 9.211700-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.147600-3 3.516733-3 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.517900-3 8.873399+4 3.613000-3 8.531455+4 3.845918-3 7.731586+4 4.365158-3 6.262806+4 4.786301-3 5.302995+4 5.500000-3 4.103600+4 6.025596-3 3.447895+4 7.328245-3 2.320826+4 7.943282-3 1.957874+4 9.440609-3 1.343388+4 1.035142-2 1.090750+4 1.190000-2 7.899000+3 1.350000-2 5.841760+3 1.500000-2 4.517480+3 1.737801-2 3.124368+3 1.972423-2 2.255976+3 2.213095-2 1.668115+3 2.540973-2 1.152347+3 2.951209-2 7.650158+2 3.427678-2 5.034681+2 3.981072-2 3.286221+2 4.623810-2 2.128870+2 5.370318-2 1.369404+2 6.382635-2 8.166317+1 7.673615-2 4.667676+1 9.440609-2 2.468386+1 1.819701-1 3.213095+0 2.264644-1 1.639571+0 2.660725-1 1.005871+0 3.054921-1 6.663510-1 3.467369-1 4.600548-1 3.935501-1 3.199952-1 4.415705-1 2.317062-1 4.954502-1 1.690446-1 5.495409-1 1.281812-1 6.095369-1 9.787191-2 6.760830-1 7.527889-2 7.498942-1 5.832077-2 8.709636-1 4.068492-2 9.332543-1 3.468746-2 9.885531-1 3.055530-2 1.071519+0 2.583034-2 1.161449+0 2.199091-2 1.258925+0 1.884105-2 1.396368+0 1.557957-2 1.717908+0 1.078300-2 2.000000+0 8.291128-3 2.238721+0 6.864639-3 2.540973+0 5.596477-3 2.917427+0 4.514864-3 3.388442+0 3.602762-3 3.935501+0 2.896058-3 4.623810+0 2.307141-3 5.495409+0 1.823023-3 6.531306+0 1.451573-3 7.852356+0 1.147128-3 9.660509+0 8.876283-4 1.188502+1 6.922055-4 1.531087+1 5.154095-4 2.000000+1 3.810600-4 2.660725+1 2.782064-4 3.715352+1 1.941870-4 5.495409+1 1.285253-4 9.120108+1 7.604115-5 1.603245+2 4.274805-5 3.198895+2 2.125264-5 1.273503+3 5.307626-6 4.027170+4 1.674639-7 1.000000+5 6.743400-8 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.517900-3 4.749000-4 1.000000+5 4.749000-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.517900-3 2.903700-5 1.000000+5 2.903700-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.517900-3 3.013963-3 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.021600-3 2.397994+5 3.150000-3 2.181502+5 3.264200-3 1.988735+5 3.350000-3 1.865764+5 3.589219-3 1.560459+5 4.027170-3 1.144984+5 4.466836-3 8.608827+4 5.069907-3 6.022328+4 5.623413-3 4.457940+4 6.309573-3 3.167966+4 7.673615-3 1.742087+4 8.511380-3 1.258462+4 9.800000-3 8.038440+3 1.150000-2 4.773880+3 1.273503-2 3.405091+3 1.479108-2 2.058145+3 1.730000-2 1.203000+3 2.018366-2 7.028494+2 2.344229-2 4.138596+2 2.722701-2 2.419525+2 3.198895-2 1.347547+2 3.845918-2 6.845731+1 4.677351-2 3.306399+1 5.888437-2 1.393002+1 1.122019-1 1.218112+0 1.396368-1 5.363795-1 1.678804-1 2.706502-1 1.949845-1 1.562617-1 2.264644-1 9.083180-2 2.570396-1 5.782428-2 2.884032-1 3.864453-2 3.235937-1 2.603389-2 3.630781-1 1.767178-2 4.073803-1 1.208550-2 4.518559-1 8.638509-3 5.011872-1 6.219207-3 5.559043-1 4.513664-3 6.165950-1 3.302391-3 6.760830-1 2.518693-3 7.328245-1 1.999585-3 8.511380-1 1.318681-3 9.015711-1 1.130768-3 9.440609-1 1.005743-3 9.885531-1 9.001313-4 1.035142+0 8.112297-4 1.096478+0 7.176572-4 1.161449+0 6.392801-4 1.244515+0 5.606108-4 1.348963+0 4.846043-4 1.548817+0 3.809654-4 1.883649+0 2.702142-4 2.137962+0 2.178091-4 2.398833+0 1.803654-4 2.722701+0 1.476490-4 3.198895+0 1.154429-4 3.715352+0 9.253345-5 4.315191+0 7.470746-5 5.069907+0 5.977008-5 6.025596+0 4.742423-5 7.244360+0 3.735445-5 8.709636+0 2.964018-5 1.071519+1 2.302514-5 1.318257+1 1.802328-5 1.621810+1 1.419329-5 2.065380+1 1.080944-5 2.754229+1 7.878821-6 3.845918+1 5.503573-6 5.754399+1 3.601571-6 9.885531+1 2.057989-6 1.972423+2 1.018529-6 3.935501+2 5.071515-7 1.566751+3 1.267940-7 1.000000+5 1.982800-9 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.021600-3 3.522800-4 1.000000+5 3.522800-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.021600-3 1.043100-4 1.000000+5 1.043100-4 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.021600-3 2.565010-3 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.889300-3 4.030333+5 3.090295-3 3.208399+5 3.110000-3 3.146928+5 3.235937-3 2.843666+5 3.467369-3 2.365957+5 3.845918-3 1.782641+5 4.300000-3 1.304760+5 4.731513-3 9.922207+4 5.188000-3 7.577468+4 5.821032-3 5.369406+4 6.237348-3 4.350217+4 7.500000-3 2.450334+4 8.317638-3 1.759851+4 9.440609-3 1.167848+4 1.096478-2 7.114283+3 1.216186-2 5.017970+3 1.400000-2 3.100362+3 1.621810-2 1.856942+3 1.883649-2 1.092147+3 2.162719-2 6.639444+2 2.454709-2 4.182111+2 2.818383-2 2.510270+2 3.235937-2 1.498033+2 3.801894-2 8.146627+1 4.570882-2 4.029594+1 5.432503-2 2.069420+1 1.096478-1 1.342573+0 1.348963-1 6.025702-1 1.603245-1 3.113095-1 1.840772-1 1.847445-1 2.113489-1 1.104575-1 2.371374-1 7.245270-2 2.630268-1 4.990929-2 2.917427-1 3.463985-2 3.198895-1 2.520989-2 3.507519-1 1.846947-2 3.845918-1 1.362058-2 4.265795-1 9.741937-3 4.677351-1 7.284323-3 5.069907-1 5.683382-3 5.559043-1 4.312543-3 6.095369-1 3.297425-3 6.683439-1 2.539520-3 7.244360-1 2.034200-3 7.852356-1 1.640198-3 8.609938-1 1.287898-3 9.120108-1 1.114329-3 9.660509-1 9.710954-4 1.011579+0 8.752419-4 1.071519+0 7.738811-4 1.148154+0 6.727562-4 1.230269+0 5.889844-4 1.333521+0 5.079628-4 1.819701+0 2.938226-4 2.089296+0 2.319003-4 2.344229+0 1.917769-4 2.660725+0 1.567798-4 3.090295+0 1.245841-4 3.589219+0 9.968886-5 4.168694+0 8.035534-5 4.897788+0 6.418766-5 5.821032+0 5.085040-5 6.918310+0 4.059007-5 8.317638+0 3.214905-5 1.023293+1 2.493164-5 1.273503+1 1.922219-5 1.584893+1 1.492578-5 2.041738+1 1.121658-5 2.722701+1 8.172643-6 3.801894+1 5.707297-6 5.688529+1 3.734025-6 9.660509+1 2.158752-6 1.840772+2 1.119061-6 3.672823+2 5.569545-7 1.462177+3 1.391969-7 1.000000+5 2.031100-9 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.889300-3 3.506700-4 1.000000+5 3.506700-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.889300-3 1.406800-7 1.000000+5 1.406800-7 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.889300-3 2.538489-3 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.072700-3 3.614440+4 1.168000-3 3.415540+4 1.273503-3 3.152333+4 1.570000-3 2.527900+4 1.905461-3 2.003772+4 2.065380-3 1.805313+4 2.511886-3 1.382992+4 2.786121-3 1.191263+4 3.273407-3 9.371019+3 3.801894-3 7.424317+3 4.315191-3 6.063279+3 5.128614-3 4.557490+3 6.095369-3 3.394162+3 7.244360-3 2.505537+3 8.609938-3 1.834696+3 1.035142-2 1.304476+3 1.230269-2 9.402003+2 1.462177-2 6.729250+2 1.737801-2 4.782309+2 2.065380-2 3.375199+2 2.483133-2 2.308770+2 2.951209-2 1.605140+2 3.507519-2 1.107927+2 4.168694-2 7.589594+1 4.954502-2 5.162480+1 5.888437-2 3.485933+1 7.079458-2 2.275705+1 8.413951-2 1.515179+1 1.035142-1 9.218771+0 1.318257-1 5.120269+0 1.621810-1 3.075325+0 2.540973-1 1.013122+0 3.162278-1 5.935494-1 3.801894-1 3.810269-1 4.466836-1 2.604499-1 5.128614-1 1.892602-1 5.888437-1 1.385329-1 6.760830-1 1.021943-1 7.673615-1 7.787018-2 8.810489-1 5.830044-2 9.772372-1 4.722791-2 1.174898+0 3.285276-2 1.303167+0 2.692821-2 1.479108+0 2.128802-2 1.678804+0 1.697681-2 1.949845+0 1.310068-2 2.187762+0 1.078763-2 2.454709+0 8.944981-3 2.786121+0 7.331632-3 3.273407+0 5.738932-3 3.801894+0 4.605377-3 4.466836+0 3.662669-3 5.308844+0 2.889454-3 6.309573+0 2.297346-3 7.585776+0 1.812977-3 9.225714+0 1.420862-3 1.135011+1 1.106105-3 1.412538+1 8.560265-4 1.757924+1 6.664543-4 2.290868+1 4.959534-4 3.126079+1 3.535246-4 4.415704+1 2.446641-4 6.760830+1 1.567345-4 1.148154+2 9.086152-5 2.290868+2 4.504489-5 4.570882+2 2.244746-5 1.819701+3 5.615833-6 1.000000+5 1.020300-7 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.072700-3 3.522400-4 1.000000+5 3.522400-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.072700-3 3.018600-7 1.000000+5 3.018600-7 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.072700-3 7.201581-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 9.385100-4 3.181184+4 1.050000-3 3.150296+4 1.100000-3 3.130517+4 1.216186-3 3.038445+4 1.288250-3 2.964996+4 1.396368-3 2.842894+4 1.500000-3 2.721100+4 1.621810-3 2.576463+4 1.730000-3 2.450060+4 1.862087-3 2.293887+4 2.089296-3 2.050215+4 2.238721-3 1.905906+4 2.426610-3 1.737380+4 2.722701-3 1.510111+4 2.951209-3 1.360157+4 3.311311-3 1.161012+4 3.650000-3 1.009058+4 4.120975-3 8.388870+3 4.570882-3 7.116547+3 5.188000-3 5.768504+3 5.800000-3 4.757500+3 6.531306-3 3.846894+3 7.413102-3 3.041365+3 8.317638-3 2.438936+3 9.440609-3 1.898772+3 1.080000-2 1.443194+3 1.230269-2 1.097632+3 1.412538-2 8.142525+2 1.621810-2 5.989474+2 1.850000-2 4.435780+2 2.100000-2 3.299360+2 2.400000-2 2.398720+2 2.754229-2 1.713761+2 3.198895-2 1.179555+2 3.715352-2 8.055149+1 4.315191-2 5.460099+1 5.069907-2 3.564620+1 6.025596-2 2.239749+1 7.244360-2 1.353271+1 9.015711-2 7.378261+0 1.148154-1 3.744420+0 1.905461-1 8.977299-1 2.398833-1 4.718881-1 2.851018-1 2.933479-1 3.311311-1 1.956676-1 3.801894-1 1.355591-1 4.365158-1 9.459012-2 4.954502-1 6.849556-2 5.623413-1 4.997852-2 6.309573-1 3.780186-2 7.079458-1 2.880706-2 7.852356-1 2.271045-2 8.709636-1 1.800301-2 9.440609-1 1.511689-2 1.023293+0 1.277789-2 1.122018+0 1.062174-2 1.244515+0 8.693603-3 1.396368+0 7.016599-3 1.621810+0 5.361017-3 1.883649+0 4.128924-3 2.137962+0 3.329711-3 2.398833+0 2.757415-3 2.722701+0 2.257266-3 3.198895+0 1.764919-3 3.715352+0 1.414710-3 4.365158+0 1.123838-3 5.128614+0 8.995712-4 6.095369+0 7.141324-4 7.328245+0 5.627656-4 8.810489+0 4.467360-4 1.083927+1 3.471913-4 1.333521+1 2.718814-4 1.621810+1 2.169876-4 2.089296+1 1.631575-4 2.800000+1 1.183200-4 3.890451+1 8.311646-5 5.888437+1 5.375520-5 1.023293+2 3.036857-5 2.041738+2 1.503613-5 4.073803+2 7.488540-6 1.621810+3 1.872466-6 1.000000+5 3.031300-8 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 9.385100-4 3.179200-4 1.000000+5 3.179200-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.385100-4 2.590900-7 1.000000+5 2.590900-7 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.385100-4 6.203309-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 7.793900-4 1.854695+5 8.430000-4 1.753055+5 9.015711-4 1.651616+5 9.225714-4 1.621422+5 1.011579-3 1.481480+5 1.122018-3 1.326346+5 1.230269-3 1.194928+5 1.380384-3 1.039491+5 1.496236-3 9.365451+4 1.737801-3 7.631799+4 1.900000-3 6.712520+4 2.187762-3 5.419960+4 2.400000-3 4.685440+4 2.754229-3 3.737126+4 3.054921-3 3.132712+4 3.507519-3 2.455231+4 3.981072-3 1.946744+4 4.466836-3 1.566601+4 5.128614-3 1.196702+4 5.888437-3 9.058666+3 6.606934-3 7.133654+3 7.413102-3 5.584949+3 8.413951-3 4.236836+3 9.660509-3 3.108592+3 1.109175-2 2.261418+3 1.270000-2 1.642240+3 1.445440-2 1.200728+3 1.640590-2 8.777259+2 1.862087-2 6.373136+2 2.137962-2 4.459965+2 2.454709-2 3.097069+2 2.818383-2 2.133808+2 3.235937-2 1.459175+2 3.758374-2 9.591568+1 4.365158-2 6.256037+1 5.069907-2 4.050984+1 5.956621-2 2.517959+1 7.079458-2 1.501209+1 8.609938-2 8.286829+0 1.096478-1 3.942022+0 2.018366-1 5.975907-1 2.317395-1 3.878809-1 2.540973-1 2.926916-1 2.722701-1 2.383938-1 2.917427-1 1.954959-1 3.019952-1 1.773464-1 3.427678-1 1.224844-1 3.890451-1 8.521383-2 4.365158-1 6.170468-2 4.897788-1 4.500944-2 5.432503-1 3.411499-2 6.025596-1 2.603239-2 6.683439-1 2.000507-2 7.413102-1 1.548601-2 8.609938-1 1.080735-2 9.225714-1 9.211919-3 9.772372-1 8.109999-3 1.047129+0 7.014431-3 1.135011+0 5.962040-3 1.244515+0 4.988654-3 1.380384+0 4.120350-3 1.698244+0 2.849308-3 1.972423+0 2.198524-3 2.213095+0 1.811600-3 2.511886+0 1.475881-3 2.884032+0 1.189911-3 3.388442+0 9.329503-4 3.935501+0 7.499416-4 4.623810+0 5.974381-4 5.495409+0 4.720727-4 6.531306+0 3.759014-4 7.852356+0 2.970420-4 9.660509+0 2.298524-4 1.188502+1 1.792463-4 1.548817+1 1.317230-4 2.018366+1 9.767593-5 2.691535+1 7.114711-5 3.758374+1 4.967278-5 5.559043+1 3.288428-5 9.332543+1 1.922993-5 1.698244+2 1.044123-5 3.388442+2 5.193279-6 1.348963+3 1.297394-6 4.265795+4 4.094328-8 1.000000+5 1.746200-8 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 7.793900-4 2.818400-4 1.000000+5 2.818400-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.793900-4 2.091700-7 1.000000+5 2.091700-7 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 7.793900-4 4.973408-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.595000-4 1.352643+5 5.604000-4 1.383216+5 5.615500-4 1.403434+5 5.807000-4 1.738968+5 6.080000-4 1.977986+5 6.309573-4 2.052557+5 6.320000-4 2.063556+5 6.550000-4 2.118592+5 7.244360-4 2.219588+5 7.500000-4 2.240392+5 7.852356-4 2.249545+5 8.222426-4 2.245375+5 8.609938-4 2.226666+5 9.015711-4 2.193618+5 9.500000-4 2.139076+5 1.000000-3 2.073284+5 1.050000-3 2.000280+5 1.110000-3 1.907928+5 1.190000-3 1.779668+5 1.274000-3 1.651322+5 1.350000-3 1.539424+5 1.445440-3 1.405400+5 1.570000-3 1.248548+5 1.690000-3 1.115584+5 1.819701-3 9.884226+4 2.000000-3 8.396760+4 2.162719-3 7.283627+4 2.371374-3 6.105638+4 2.570396-3 5.201853+4 2.800000-3 4.355000+4 3.090295-3 3.522397+4 3.388442-3 2.865489+4 3.715352-3 2.316094+4 4.073803-3 1.858374+4 4.500000-3 1.454976+4 5.011872-3 1.106767+4 5.500000-3 8.683240+3 6.095369-3 6.595636+3 6.839116-3 4.806046+3 7.673615-3 3.472260+3 8.511380-3 2.573419+3 9.440609-3 1.895194+3 1.047129-2 1.387139+3 1.174898-2 9.737279+2 1.318257-2 6.786722+2 1.479108-2 4.697917+2 1.659587-2 3.230746+2 1.862087-2 2.207750+2 2.113489-2 1.441824+2 2.426610-2 8.987425+1 2.786121-2 5.559558+1 3.235937-2 3.278126+1 3.801894-2 1.840743+1 4.518559-2 9.837783+0 5.495409-2 4.796199+0 7.000000-2 1.955328+0 1.244515-1 2.287848-1 1.513561-1 1.109207-1 1.819701-1 5.650374-2 2.162719-1 3.025985-2 2.454709-1 1.926776-2 2.786121-1 1.235810-2 3.090295-1 8.648758-3 3.467369-1 5.862545-3 3.890451-1 4.003310-3 4.365158-1 2.752657-3 4.841724-1 1.979096-3 5.308844-1 1.486257-3 5.821032-1 1.123582-3 6.456542-1 8.262800-4 7.079458-1 6.332740-4 8.128305-1 4.303968-4 8.609938-1 3.669672-4 9.120108-1 3.149483-4 9.549926-1 2.803945-4 1.000000+0 2.512642-4 1.047129+0 2.267072-4 1.109175+0 2.007784-4 1.174898+0 1.790299-4 1.258925+0 1.571698-4 1.364583+0 1.360441-4 1.531087+0 1.114604-4 1.862087+0 7.901491-5 2.113489+0 6.365248-5 2.371374+0 5.267515-5 2.691535+0 4.308889-5 3.162278+0 3.366706-5 3.672823+0 2.697052-5 4.265795+0 2.176315-5 5.011872+0 1.740253-5 5.956621+0 1.380053-5 7.161434+0 1.086507-5 8.609938+0 8.617381-6 1.059254+1 6.691450-6 1.303167+1 5.235547-6 1.603245+1 4.121870-6 2.041738+1 3.138296-6 2.722701+1 2.286629-6 3.801894+1 1.596887-6 5.688529+1 1.044761-6 9.660509+1 6.040041-7 1.862087+2 3.094827-7 3.715352+2 1.540325-7 1.479108+3 3.850037-8 1.000000+5 5.68310-10 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.595000-4 2.189900-4 1.000000+5 2.189900-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.595000-4 1.308200-7 1.000000+5 1.308200-7 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.595000-4 3.403792-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 5.298200-4 2.287745+5 5.445000-4 2.659593+5 5.630000-4 3.089639+5 5.880000-4 3.353353+5 6.200000-4 3.582660+5 6.382635-4 3.629435+5 7.000000-4 3.733446+5 7.244360-4 3.748161+5 7.650000-4 3.734886+5 8.035261-4 3.697767+5 8.413951-4 3.639601+5 8.850000-4 3.550380+5 9.350000-4 3.429486+5 9.930000-4 3.274134+5 1.047129-3 3.120484+5 1.122018-3 2.904194+5 1.202264-3 2.685299+5 1.274000-3 2.498429+5 1.350000-3 2.309466+5 1.462177-3 2.056702+5 1.570000-3 1.843602+5 1.678804-3 1.651764+5 1.840772-3 1.408581+5 1.995262-3 1.216354+5 2.187762-3 1.019554+5 2.371374-3 8.682277+4 2.600160-3 7.166849+4 2.851018-3 5.874760+4 3.126079-3 4.776965+4 3.427678-3 3.859016+4 3.801894-3 3.008568+4 4.168694-3 2.395295+4 4.677351-3 1.784942+4 5.188000-3 1.358167+4 5.688529-3 1.058771+4 6.309573-3 7.946880+3 7.079458-3 5.728013+3 8.000000-3 4.008660+3 9.015711-3 2.802466+3 1.011579-2 1.969133+3 1.150000-2 1.317210+3 1.303167-2 8.820594+2 1.462177-2 6.052037+2 1.621810-2 4.286763+2 1.840772-2 2.791617+2 2.089296-2 1.804176+2 2.371374-2 1.157244+2 2.722701-2 7.073365+1 3.126079-2 4.290585+1 3.630781-2 2.476853+1 4.265795-2 1.359641+1 5.069907-2 7.094186+0 6.165950-2 3.367530+0 1.216186-1 2.477094-1 1.479108-1 1.175234-1 1.737801-1 6.404408-2 2.018366-1 3.671148-2 2.290868-1 2.305415-2 2.570396-1 1.521449-2 2.818383-1 1.098036-2 3.090295-1 7.976466-3 3.388442-1 5.836544-3 3.715352-1 4.300368-3 4.120975-1 3.073881-3 4.518559-1 2.296216-3 4.954502-1 1.727343-3 5.432503-1 1.308878-3 5.956621-1 9.992190-4 6.531306-1 7.682319-4 7.079458-1 6.144606-4 7.673615-1 4.948495-4 8.511380-1 3.776552-4 9.015711-1 3.269757-4 9.549926-1 2.849947-4 1.000000+0 2.567554-4 1.059254+0 2.269406-4 1.135011+0 1.971791-4 1.216186+0 1.725021-4 1.333521+0 1.454960-4 1.698244+0 9.480724-5 1.972423+0 7.313010-5 2.213095+0 6.026423-5 2.511886+0 4.909926-5 2.884032+0 3.958554-5 3.388442+0 3.103652-5 3.935501+0 2.494824-5 4.623810+0 1.987514-5 5.495409+0 1.570463-5 6.531306+0 1.250550-5 7.943282+0 9.739914-6 9.772372+0 7.540167-6 1.202264+1 5.882595-6 1.566751+1 4.325095-6 2.018366+1 3.249405-6 2.691535+1 2.366867-6 3.758374+1 1.652457-6 5.623413+1 1.080882-6 9.440609+1 6.322032-7 1.757924+2 3.353792-7 3.507519+2 1.668591-7 1.396368+3 4.169244-8 1.000000+5 5.80930-10 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 5.298200-4 2.107600-4 1.000000+5 2.107600-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.298200-4 5.146600-8 1.000000+5 5.146600-8 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.298200-4 3.190085-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 2.411600-4 1.093650+5 2.412000-4 1.108950+5 2.414000-4 1.151982+5 2.416000-4 1.190580+5 2.418700-4 1.236750+5 2.421000-4 1.269930+5 2.423000-4 1.295538+5 2.426000-4 1.326798+5 2.430000-4 1.358430+5 2.434000-4 1.379658+5 2.437000-4 1.389594+5 2.442000-4 1.397544+5 2.448000-4 1.396458+5 2.455000-4 1.384980+5 2.465000-4 1.357014+5 2.500000-4 1.238628+5 2.520000-4 1.181964+5 2.538000-4 1.140990+5 2.553000-4 1.114086+5 2.570396-4 1.090954+5 2.585000-4 1.077882+5 2.600160-4 1.070431+5 2.615000-4 1.068984+5 2.630268-4 1.073841+5 2.645000-4 1.084710+5 2.660725-4 1.103258+5 2.675000-4 1.126542+5 2.691535-4 1.161399+5 2.710000-4 1.210542+5 2.730000-4 1.276326+5 2.750000-4 1.355046+5 2.770000-4 1.446690+5 2.790000-4 1.551270+5 2.820000-4 1.731714+5 2.851018-4 1.948793+5 2.917427-4 2.522411+5 3.000000-4 3.462462+5 3.054921-4 4.230633+5 3.100000-4 4.938000+5 3.130000-4 5.440542+5 3.165000-4 6.051120+5 3.200000-4 6.678240+5 3.240000-4 7.407960+5 3.280000-4 8.138520+5 3.311311-4 8.707327+5 3.350000-4 9.401760+5 3.390000-4 1.010616+6 3.430000-4 1.079436+6 3.470000-4 1.146438+6 3.515000-4 1.219464+6 3.550000-4 1.274256+6 3.600000-4 1.349040+6 3.650000-4 1.419654+6 3.700000-4 1.485270+6 3.760000-4 1.556820+6 3.820000-4 1.620024+6 3.890451-4 1.683235+6 3.970000-4 1.742130+6 4.050000-4 1.788744+6 4.150000-4 1.833420+6 4.240000-4 1.862196+6 4.350000-4 1.885830+6 4.479900-4 1.899538+6 4.600000-4 1.899186+6 4.731513-4 1.886773+6 4.897788-4 1.856509+6 5.080000-4 1.811406+6 5.248075-4 1.763464+6 5.432503-4 1.705145+6 5.688529-4 1.619900+6 5.900000-4 1.546764+6 6.165950-4 1.453040+6 6.500000-4 1.337658+6 6.918310-4 1.203312+6 7.300000-4 1.090812+6 7.762471-4 9.667874+5 8.317638-4 8.367524+5 8.912509-4 7.189598+5 9.500000-4 6.203700+5 1.030000-3 5.102220+5 1.110000-3 4.228434+5 1.202264-3 3.432164+5 1.303167-3 2.761850+5 1.412538-3 2.207308+5 1.548817-3 1.695647+5 1.698244-3 1.292794+5 1.862087-3 9.784986+4 2.041738-3 7.355527+4 2.264644-3 5.293103+4 2.500000-3 3.836718+4 2.722701-3 2.890539+4 3.054921-3 1.956284+4 3.427678-3 1.312094+4 3.845918-3 8.724078+3 4.315191-3 5.752326+3 4.800000-3 3.885192+3 5.308844-3 2.663112+3 5.888437-3 1.794958+3 6.606934-3 1.149620+3 7.498942-3 6.983140+2 8.511380-3 4.205460+2 9.549926-3 2.633586+2 1.083927-2 1.562244+2 1.230269-2 9.200435+1 1.396368-2 5.380125+1 1.584893-2 3.124079+1 1.819701-2 1.713518+1 2.089296-2 9.330995+0 2.426610-2 4.794357+0 2.884032-2 2.206160+0 3.548134-2 8.618574-1 4.623810-2 2.569345-1 8.317638-2 1.730576-2 1.011580-1 7.085014-3 1.205670-1 3.204389-3 1.412538-1 1.577671-3 1.640590-1 8.134985-4 1.862087-1 4.676221-4 2.162719-1 2.450437-4 2.398833-1 1.577641-4 2.630268-1 1.074624-4 2.851018-1 7.735612-5 3.054921-1 5.868039-5 3.311311-1 4.280509-5 3.672823-1 2.875828-5 4.570882-1 1.255020-5 5.000000-1 8.998514-6 5.432503-1 6.670519-6 5.821032-1 5.231906-6 6.165950-1 4.296138-6 6.606935-1 3.414320-6 7.079458-1 2.730549-6 7.498942-1 2.274278-6 8.035261-1 1.818582-6 8.511380-1 1.519104-6 8.912509-1 1.323378-6 9.332543-1 1.160684-6 9.660509-1 1.057427-6 1.000000+0 9.682604-7 1.035142+0 8.914315-7 1.083927+0 8.040614-7 1.135011+0 7.303987-7 1.202264+0 6.530987-7 1.288250+0 5.760813-7 1.396368+0 5.015725-7 1.513561+0 4.384344-7 1.927525+0 2.868860-7 2.162719+0 2.360371-7 2.426610+0 1.955934-7 2.754229+0 1.602070-7 3.273407+0 1.231841-7 3.801894+0 9.885170-8 4.466836+0 7.861748-8 5.308844+0 6.202107-8 6.309573+0 4.931125-8 7.585776+0 3.891379-8 9.225714+0 3.049716-8 1.135011+1 2.374208-8 1.412538+1 1.837426-8 1.757924+1 1.430564-8 2.317395+1 1.051119-8 3.162278+1 7.494657-9 4.466836+1 5.188269-9 6.839116+1 3.324321-9 1.161449+2 1.927440-9 2.317395+2 9.55671-10 4.623810+2 4.76277-10 3.672823+3 5.96795-11 1.000000+5 2.19000-12 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 2.411600-4 1.266000-4 1.000000+5 1.266000-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.411600-4 1.442000-9 1.000000+5 1.442000-9 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.411600-4 1.145586-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 2.338700-4 1.317808+5 2.339700-4 1.354088+5 2.341700-4 1.410080+5 2.344229-4 1.474750+5 2.346700-4 1.531264+5 2.349000-4 1.577568+5 2.352000-4 1.631000+5 2.355000-4 1.675344+5 2.359000-4 1.722944+5 2.363000-4 1.758784+5 2.367000-4 1.784032+5 2.372000-4 1.803584+5 2.378000-4 1.813376+5 2.385000-4 1.811008+5 2.392000-4 1.798480+5 2.400000-4 1.776256+5 2.450000-4 1.602864+5 2.470000-4 1.547832+5 2.485000-4 1.515456+5 2.500000-4 1.490968+5 2.518700-4 1.471559+5 2.535000-4 1.464880+5 2.550000-4 1.467416+5 2.565400-4 1.479020+5 2.580000-4 1.498800+5 2.595000-4 1.528416+5 2.608000-4 1.561976+5 2.623000-4 1.610040+5 2.640000-4 1.676920+5 2.655000-4 1.747000+5 2.670000-4 1.827520+5 2.692000-4 1.964360+5 2.720000-4 2.170424+5 2.754229-4 2.470406+5 2.800000-4 2.955088+5 2.930000-4 4.900720+5 2.970000-4 5.677872+5 3.015000-4 6.643800+5 3.054921-4 7.568638+5 3.090295-4 8.427852+5 3.130000-4 9.420560+5 3.165000-4 1.030784+6 3.200000-4 1.119648+6 3.240000-4 1.220392+6 3.280000-4 1.319480+6 3.320000-4 1.416432+6 3.370000-4 1.534152+6 3.410000-4 1.625240+6 3.470000-4 1.756144+6 3.515000-4 1.849240+6 3.550000-4 1.918248+6 3.600000-4 2.011088+6 3.650000-4 2.096528+6 3.715352-4 2.196195+6 3.780000-4 2.281048+6 3.850000-4 2.357992+6 3.930000-4 2.428680+6 4.000000-4 2.477496+6 4.100000-4 2.529896+6 4.216965-4 2.570317+6 4.343400-4 2.592994+6 4.470000-4 2.596320+6 4.600000-4 2.581776+6 4.731513-4 2.551883+6 4.897788-4 2.498333+6 5.080000-4 2.427488+6 5.308844-4 2.326822+6 5.559043-4 2.209484+6 5.821032-4 2.082310+6 6.100000-4 1.945200+6 6.456542-4 1.775349+6 6.850000-4 1.602088+6 7.244360-4 1.443546+6 7.673615-4 1.286701+6 8.222426-4 1.112547+6 8.709636-4 9.795277+5 9.332543-4 8.345267+5 1.000000-3 7.064216+5 1.071519-3 5.941438+5 1.161449-3 4.817855+5 1.258925-3 3.880234+5 1.364583-3 3.102103+5 1.479108-3 2.466025+5 1.621810-3 1.882111+5 1.778279-3 1.426810+5 1.972423-3 1.035576+5 2.150000-3 7.881104+4 2.371374-3 5.739599+4 2.660725-3 3.916704+4 2.917427-3 2.864816+4 3.198895-3 2.084275+4 3.589219-3 1.388887+4 4.027170-3 9.175864+3 4.518559-3 6.011411+3 5.069907-3 3.906118+3 5.688529-3 2.517659+3 6.382635-3 1.610376+3 7.079458-3 1.070122+3 8.035261-3 6.443151+2 9.015711-3 4.033354+2 1.023293-2 2.390016+2 1.161449-2 1.405588+2 1.318257-2 8.206309+1 1.500000-2 4.706055+1 1.717908-2 2.604616+1 1.972423-2 1.415406+1 2.290868-2 7.254126+0 2.600160-2 4.094415+0 3.054921-2 1.961838+0 3.672823-2 8.397142-1 4.677351-2 2.732939-1 8.413951-2 1.771853-2 1.148154-1 4.197138-3 1.318257-1 2.227244-3 1.500000-1 1.240489-3 1.678804-1 7.502728-4 1.883649-1 4.519546-4 2.113489-1 2.742883-4 2.344229-1 1.762646-4 2.570396-1 1.198327-4 2.786121-1 8.607333-5 3.019952-1 6.221807-5 3.273407-1 4.525394-5 3.589219-1 3.166748-5 3.890451-1 2.332754-5 4.216965-1 1.731666-5 4.550800-1 1.316848-5 4.897788-1 1.020360-5 5.754399-1 5.903678-6 6.237348-1 4.517673-6 6.683439-1 3.614830-6 7.079458-1 3.019134-6 7.498942-1 2.537218-6 7.943282-1 2.148303-6 8.413951-1 1.832669-6 8.912509-1 1.575678-6 9.332543-1 1.404868-6 9.772372-1 1.260142-6 1.023293+0 1.137649-6 1.083927+0 1.007496-6 1.161449+0 8.770893-7 1.258925+0 7.522851-7 1.380384+0 6.366596-7 1.840772+0 3.838037-7 2.113489+0 3.030977-7 2.371374+0 2.508134-7 2.691535+0 2.051726-7 3.162278+0 1.603181-7 3.672823+0 1.284325-7 4.265795+0 1.036363-7 5.011872+0 8.287113-8 5.956621+0 6.571932-8 7.161434+0 5.173978-8 8.609938+0 4.103554-8 1.059254+1 3.186470-8 1.303167+1 2.493129-8 1.603245+1 1.962863-8 2.065380+1 1.475446-8 2.754229+1 1.075353-8 3.845918+1 7.511762-9 5.754399+1 4.915807-9 9.885531+1 2.809014-9 1.972423+2 1.390222-9 3.935501+2 6.92216-10 1.566751+3 1.73060-10 1.000000+5 2.70630-12 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 2.338700-4 1.256800-4 1.000000+5 1.256800-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.338700-4 5.750400-8 1.000000+5 5.750400-8 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.338700-4 1.081325-4 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.116900-4 4.650520+4 2.123000-4 4.715740+4 2.131000-4 4.845020+4 2.142000-4 4.997340+4 2.155000-4 5.150860+4 2.170000-4 5.297140+4 2.190000-4 5.454640+4 2.210000-4 5.577540+4 2.230000-4 5.669960+4 2.253000-4 5.746160+4 2.280000-4 5.802920+4 2.317395-4 5.835931+4 2.350000-4 5.832600+4 2.400000-4 5.790099+4 2.722701-4 5.464501+4 3.126079-4 5.104923+4 3.311311-4 4.927890+4 3.758374-4 4.511221+4 4.073803-4 4.240572+4 4.365158-4 3.994654+4 4.850000-4 3.614860+4 5.370318-4 3.260235+4 5.888437-4 2.946865+4 6.700000-4 2.535080+4 7.413102-4 2.238729+4 8.511380-4 1.873595+4 9.700000-4 1.571020+4 1.135011-3 1.261386+4 1.350000-3 9.813540+3 1.621810-3 7.461283+3 1.949845-3 5.624623+3 2.371374-3 4.134047+3 2.884032-3 3.014956+3 3.467369-3 2.223943+3 4.168694-3 1.628489+3 5.011872-3 1.183615+3 6.025596-3 8.538450+2 7.328245-3 5.987690+2 8.912509-3 4.165624+2 1.083927-2 2.874675+2 1.318257-2 1.968132+2 1.584893-2 1.367764+2 1.905461-2 9.436636+1 2.290868-2 6.461818+1 2.754229-2 4.390890+1 3.311311-2 2.960328+1 3.981072-2 1.980038+1 4.731513-2 1.348228+1 5.623413-2 9.115367+0 6.760830-2 5.958958+0 8.128305-2 3.865860+0 1.011580-1 2.294436+0 1.273503-1 1.309693+0 1.862087-1 5.137263-1 2.691535-1 2.068340-1 3.311311-1 1.248008-1 3.935501-1 8.249437-2 4.570882-1 5.804425-2 5.308844-1 4.114148-2 6.095369-1 3.016537-2 6.998420-1 2.229784-2 8.035261-1 1.661321-2 9.015711-1 1.307333-2 1.000000+0 1.060502-2 1.202264+0 7.385310-3 1.333521+0 6.062228-3 1.500000+0 4.878300-3 1.698244+0 3.911263-3 1.995262+0 2.961242-3 2.238721+0 2.441570-3 2.540973+0 1.990493-3 2.917427+0 1.605898-3 3.388442+0 1.281484-3 3.935501+0 1.030110-3 4.623810+0 8.206429-4 5.495409+0 6.484411-4 6.531306+0 5.163404-4 7.852356+0 4.080292-4 9.660509+0 3.157313-4 1.188502+1 2.462242-4 1.531087+1 1.833318-4 2.000000+1 1.355400-4 2.660725+1 9.896055-5 3.715352+1 6.907260-5 5.495409+1 4.571672-5 9.120108+1 2.704877-5 1.603245+2 1.520552-5 3.198895+2 7.559620-6 1.273503+3 1.887923-6 4.027170+4 5.956975-8 1.000000+5 2.398700-8 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.116900-4 1.461700-4 1.000000+5 1.461700-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.116900-4 1.806700-9 1.000000+5 1.806700-9 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.116900-4 6.551819-5 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.622900-4 3.440840+5 1.626000-4 3.541160+5 1.629000-4 3.622500+5 1.632000-4 3.687120+5 1.635000-4 3.737440+5 1.639000-4 3.781540+5 1.643000-4 3.806680+5 1.648500-4 3.812500+5 1.655000-4 3.790960+5 1.662000-4 3.744580+5 1.670000-4 3.673120+5 1.757924-4 2.852811+5 1.790000-4 2.627900+5 1.820000-4 2.450420+5 1.865000-4 2.226140+5 1.930000-4 1.962412+5 2.018366-4 1.678029+5 2.137962-4 1.382346+5 2.264644-4 1.146838+5 2.400000-4 9.572700+4 2.540973-4 8.077074+4 2.660725-4 7.088460+4 2.770000-4 6.361880+4 2.884032-4 5.746355+4 3.000000-4 5.238740+4 3.126079-4 4.791157+4 3.273407-4 4.370416+4 3.430000-4 4.011000+4 3.600000-4 3.695600+4 3.780000-4 3.425760+4 3.981072-4 3.183777+4 4.216965-4 2.958679+4 4.500000-4 2.745860+4 4.897788-4 2.512882+4 5.432503-4 2.273325+4 7.500000-4 1.695066+4 8.709636-4 1.470159+4 1.000000-3 1.279150+4 1.135011-3 1.117839+4 1.300000-3 9.601140+3 1.479108-3 8.245597+3 1.678804-3 7.051869+3 1.927525-3 5.899761+3 2.220000-3 4.873860+3 2.540973-3 4.027772+3 2.917427-3 3.286493+3 3.311311-3 2.706899+3 3.758374-3 2.213205+3 4.216965-3 1.831281+3 4.786301-3 1.476536+3 5.432503-3 1.181556+3 6.165950-3 9.388715+2 7.000000-3 7.403880+2 8.000000-3 5.721480+2 9.120108-3 4.410117+2 1.035142-2 3.404435+2 1.174898-2 2.610283+2 1.348963-2 1.938682+2 1.548817-2 1.428487+2 1.778279-2 1.044322+2 2.041738-2 7.576036+1 2.344229-2 5.454020+1 2.691535-2 3.897749+1 3.090295-2 2.765897+1 3.589219-2 1.892800+1 4.168694-2 1.285838+1 4.897788-2 8.414746+0 5.821032-2 5.298968+0 7.000000-2 3.207240+0 9.015711-2 1.594622+0 1.083927-1 9.537243-1 1.972423-1 1.768410-1 2.426610-1 9.926998-2 2.884032-1 6.176616-2 3.349654-1 4.121722-2 3.845918-1 2.856362-2 4.415705-1 1.994181-2 5.011872-1 1.445105-2 5.623413-1 1.085575-2 6.309573-1 8.212287-3 7.079458-1 6.259335-3 7.852356-1 4.935209-3 8.709636-1 3.912148-3 9.440609-1 3.284801-3 1.023293+0 2.776412-3 1.122018+0 2.307851-3 1.244515+0 1.888888-3 1.396368+0 1.524458-3 1.621810+0 1.164688-3 1.883649+0 8.969753-4 2.137962+0 7.233518-4 2.398833+0 5.990014-4 2.722701+0 4.903109-4 3.198895+0 3.833333-4 3.715352+0 3.072671-4 4.315191+0 2.480770-4 5.069907+0 1.984742-4 6.025596+0 1.574743-4 7.244360+0 1.240431-4 8.709636+0 9.842232-5 1.071519+1 7.645747-5 1.318257+1 5.984819-5 1.621810+1 4.713026-5 2.065380+1 3.589493-5 2.754229+1 2.616274-5 3.801894+1 1.849969-5 5.754399+1 1.195906-5 9.885531+1 6.833822-6 1.972423+2 3.382150-6 3.935501+2 1.684032-6 1.566751+3 4.210290-7 1.000000+5 6.584000-9 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.622900-4 1.048100-4 1.000000+5 1.048100-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.622900-4 5.034200-9 1.000000+5 5.034200-9 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.622900-4 5.747497-5 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.283700-4 6.598880+5 1.288500-4 6.666640+5 1.297000-4 6.723720+5 1.304000-4 6.729600+5 1.314000-4 6.689480+5 1.325000-4 6.606360+5 1.340000-4 6.456240+5 1.380384-4 6.015670+5 1.412538-4 5.646908+5 1.490000-4 4.857480+5 1.548817-4 4.381367+5 1.603245-4 4.021358+5 1.659587-4 3.717022+5 1.720000-4 3.452716+5 1.780000-4 3.239016+5 1.850000-4 3.034656+5 1.950000-4 2.799620+5 2.089296-4 2.541416+5 2.238721-4 2.322284+5 2.400000-4 2.135356+5 2.580000-4 1.971968+5 2.884032-4 1.762108+5 3.758374-4 1.354849+5 4.315191-4 1.173916+5 4.897788-4 1.022641+5 5.559043-4 8.842500+4 6.309573-4 7.592894+4 7.161434-4 6.473637+4 8.222426-4 5.398605+4 9.366400-4 4.516593+4 1.071519-3 3.732967+4 1.244515-3 2.996105+4 1.450000-3 2.374916+4 1.678804-3 1.886602+4 1.950000-3 1.480172+4 2.238721-3 1.175464+4 2.570396-3 9.272426+3 2.985383-3 7.115313+3 3.467369-3 5.412897+3 4.027170-3 4.081736+3 4.570882-3 3.191799+3 5.248075-3 2.421807+3 6.025596-3 1.823307+3 6.918310-3 1.362004+3 7.943282-3 1.009504+3 9.120108-3 7.421564+2 1.035142-2 5.559234+2 1.174898-2 4.136116+2 1.348963-2 2.972825+2 1.548817-2 2.119835+2 1.778279-2 1.499749+2 2.041738-2 1.052853+2 2.344229-2 7.333834+1 2.691535-2 5.070152+1 3.090295-2 3.479455+1 3.548134-2 2.370735+1 4.120975-2 1.552674+1 4.786301-2 1.009334+1 5.623413-2 6.298586+0 6.531306-2 4.036084+0 7.852356-2 2.314918+0 9.772372-2 1.186442+0 1.445440-1 3.540481-1 1.927525-1 1.457881-1 2.344229-1 8.021331-2 2.754229-1 4.939433-2 3.162278-1 3.283245-2 3.589219-1 2.273827-2 4.073803-1 1.586642-2 4.570882-1 1.152334-2 5.128614-1 8.432767-3 5.688529-1 6.411462-3 6.309573-1 4.908534-3 6.998420-1 3.785091-3 7.762471-1 2.940318-3 8.709636-1 2.232038-3 9.332543-1 1.904364-3 9.885531-1 1.678348-3 1.071519+0 1.419433-3 1.161449+0 1.208580-3 1.258925+0 1.035374-3 1.396368+0 8.559914-4 1.717908+0 5.922967-4 2.000000+0 4.554400-4 2.238721+0 3.771089-4 2.540973+0 3.074434-4 2.917427+0 2.480127-4 3.388442+0 1.979039-4 3.935501+0 1.590817-4 4.623810+0 1.267328-4 5.495409+0 1.001384-4 6.531306+0 7.973768-5 7.852356+0 6.301074-5 9.549926+0 4.944727-5 1.174898+1 3.854411-5 1.513561+1 2.868735-5 1.972423+1 2.125898-5 2.630268+1 1.547457-5 3.672823+1 1.079829-5 5.432503+1 7.145456-6 8.912509+1 4.277200-6 1.513561+2 2.489707-6 3.019952+2 1.237201-6 6.025596+2 6.175446-7 4.786301+3 7.743885-8 1.000000+5 3.704200-9 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.283700-4 1.032200-4 1.000000+5 1.032200-4 1 86000 7 7 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.283700-4 8.73730-10 1.000000+5 8.73730-10 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.283700-4 2.514913-5 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 5.649000-5 1.002936+6 5.680000-5 1.072476+6 5.700000-5 1.124128+6 5.720000-5 1.182732+6 5.740000-5 1.248408+6 5.770000-5 1.363876+6 5.800000-5 1.500628+6 5.830000-5 1.663804+6 5.860000-5 1.856304+6 5.888437-5 2.070439+6 5.920000-5 2.350604+6 5.956621-5 2.741978+6 5.985000-5 3.102512+6 6.030000-5 3.797752+6 6.070000-5 4.568720+6 6.110000-5 5.515960+6 6.180000-5 7.710160+6 6.220700-5 9.373860+6 6.237348-5 1.019017+7 6.300000-5 1.348010+7 6.309573-5 1.398446+7 6.385000-5 1.622761+7 6.395200-5 1.663434+7 6.490000-5 1.842655+7 6.606934-5 1.938722+7 6.760830-5 1.937048+7 6.950000-5 1.870874+7 7.079458-5 1.804821+7 7.300000-5 1.670461+7 7.330000-5 1.648243+7 7.540000-5 1.476411+7 7.620000-5 1.394519+7 7.800000-5 1.211016+7 7.950000-5 1.087696+7 8.150000-5 9.539880+6 8.423100-5 8.091158+6 9.549926-5 4.408982+6 1.122018-4 2.004794+6 1.380384-4 7.388268+5 1.500000-4 4.914200+5 1.690000-4 2.723672+5 1.778279-4 2.130281+5 1.850000-4 1.772044+5 1.907600-4 1.545341+5 1.950000-4 1.406472+5 2.000000-4 1.268136+5 2.060000-4 1.132400+5 2.113489-4 1.034324+5 2.162719-4 9.598255+4 2.213095-4 8.966681+4 2.264644-4 8.435336+4 2.317395-4 7.992244+4 2.371374-4 7.626651+4 2.430000-4 7.312600+4 2.483133-4 7.089558+4 2.540973-4 6.901328+4 2.600160-4 6.756988+4 2.660725-4 6.650174+4 2.730000-4 6.568480+4 2.818383-4 6.512413+4 2.917427-4 6.496184+4 3.054921-4 6.527108+4 3.235937-4 6.618654+4 3.672823-4 6.863080+4 3.935501-4 6.955148+4 4.200000-4 6.994920+4 4.466836-4 6.986414+4 4.731513-4 6.935963+4 5.011872-4 6.841599+4 5.308844-4 6.707628+4 5.650000-4 6.524640+4 6.025596-4 6.298701+4 6.456542-4 6.022513+4 6.918310-4 5.714570+4 7.413102-4 5.388792+4 8.035261-4 4.992537+4 8.609938-4 4.645666+4 9.332543-4 4.241693+4 1.011579-3 3.845331+4 1.096478-3 3.462161+4 1.202264-3 3.047451+4 1.318257-3 2.660825+4 1.462177-3 2.263306+4 1.603245-3 1.944839+4 1.757924-3 1.659043+4 1.927525-3 1.405703+4 2.113489-3 1.182968+4 2.317395-3 9.888764+3 2.540973-3 8.211553+3 2.786121-3 6.774159+3 3.054921-3 5.552151+3 3.388442-3 4.404806+3 3.758374-3 3.466773+3 4.168694-3 2.707065+3 4.623810-3 2.097580+3 5.128614-3 1.613265+3 5.688529-3 1.231849+3 6.309573-3 9.340794+2 7.000000-3 7.030240+2 7.762471-3 5.261741+2 8.709636-3 3.781444+2 9.772372-3 2.696468+2 1.096478-2 1.908038+2 1.230269-2 1.340147+2 1.380384-2 9.347031+1 1.548817-2 6.474534+1 1.757924-2 4.290251+1 2.000000-2 2.798807+1 2.264644-2 1.840932+1 2.600160-2 1.146551+1 3.000000-2 6.966816+0 3.467369-2 4.175785+0 4.073803-2 2.343677+0 4.841724-2 1.252526+0 5.888437-2 6.106006-1 7.673615-2 2.288987-1 1.288250-1 3.331906-2 1.584893-1 1.551506-2 1.883649-1 8.264017-3 2.213095-1 4.622648-3 2.511886-1 2.947927-3 2.818383-1 1.971162-3 3.090295-1 1.436274-3 3.467369-1 9.741832-4 3.890451-1 6.656256-4 4.365158-1 4.579275-4 4.841724-1 3.293146-4 5.370318-1 2.386353-4 5.888437-1 1.804435-4 6.456542-1 1.373008-4 7.079458-1 1.052139-4 7.673615-1 8.389399-5 8.609938-1 6.103917-5 9.120108-1 5.242411-5 9.549926-1 4.669812-5 1.000000+0 4.186700-5 1.059254+0 3.686428-5 1.122018+0 3.270689-5 1.188502+0 2.920545-5 1.273503+0 2.566826-5 1.396368+0 2.178714-5 1.531087+0 1.857172-5 1.862087+0 1.316598-5 2.113489+0 1.060554-5 2.371374+0 8.776253-6 2.691535+0 7.179374-6 3.162278+0 5.609842-6 3.672823+0 4.493994-6 4.265795+0 3.626332-6 5.011872+0 2.899792-6 5.956621+0 2.299616-6 7.161434+0 1.810456-6 8.609938+0 1.435945-6 1.059254+1 1.115001-6 1.303167+1 8.723951-7 1.603245+1 6.868121-7 2.065380+1 5.162702-7 2.754229+1 3.762892-7 3.845918+1 2.628499-7 5.821032+1 1.699519-7 1.000000+2 9.713500-8 1.995262+2 4.808140-8 3.981072+2 2.394204-8 1.584893+3 5.986100-9 1.000000+5 9.46960-11 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 5.649000-5 5.649000-5 1.000000+5 5.649000-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 5.649000-5 0.0 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 5.184000-5 1.788342+6 5.217000-5 1.898562+6 5.240000-5 1.988910+6 5.267000-5 2.114466+6 5.290000-5 2.239038+6 5.317000-5 2.409264+6 5.340000-5 2.576592+6 5.370000-5 2.831130+6 5.400000-5 3.132000+6 5.432503-5 3.518462+6 5.460000-5 3.902034+6 5.495409-5 4.485368+6 5.535000-5 5.278272+6 5.570000-5 6.126300+6 5.615000-5 7.461600+6 5.670000-5 9.552780+6 5.750000-5 1.375926+7 5.754399-5 1.410275+7 5.770000-5 1.507763+7 5.800000-5 1.719455+7 5.821032-5 1.891992+7 5.870000-5 2.253861+7 5.910000-5 2.579298+7 5.920000-5 2.662062+7 5.970000-5 2.976413+7 6.030000-5 3.103244+7 6.040000-5 3.146923+7 6.190000-5 3.311246+7 6.360000-5 3.399132+7 6.540000-5 3.303921+7 6.690000-5 3.146844+7 6.730000-5 3.069653+7 6.850000-5 2.804895+7 6.970000-5 2.579273+7 7.000000-5 2.513724+7 7.110000-5 2.261808+7 7.230000-5 2.035476+7 7.350000-5 1.847154+7 7.500000-5 1.651278+7 7.673615-5 1.464442+7 7.943282-5 1.232348+7 9.015711-5 6.674151+6 1.135011-4 2.139164+6 1.333521-4 9.676857+5 1.548817-4 4.597500+5 1.621810-4 3.673179+5 1.690000-4 3.024402+5 1.740000-4 2.649534+5 1.798871-4 2.294478+5 1.850000-4 2.047302+5 1.900000-4 1.850118+5 1.950000-4 1.689132+5 1.995262-4 1.569320+5 2.041738-4 1.467719+5 2.089296-4 1.382625+5 2.137962-4 1.312106+5 2.190000-4 1.252098+5 2.240000-4 1.206852+5 2.290868-4 1.171096+5 2.350000-4 1.140102+5 2.400000-4 1.121052+5 2.459800-4 1.105104+5 2.540973-4 1.092579+5 2.630268-4 1.087569+5 2.730000-4 1.089300+5 2.884032-4 1.100787+5 3.388442-4 1.152383+5 3.630781-4 1.167525+5 3.850000-4 1.173102+5 4.100000-4 1.171146+5 4.365158-4 1.160830+5 4.623810-4 1.144390+5 4.897788-4 1.121183+5 5.248075-4 1.085403+5 5.623413-4 1.042887+5 6.025596-4 9.947384+4 6.456542-4 9.423392+4 7.000000-4 8.767860+4 7.500000-4 8.191860+4 8.128305-4 7.515384+4 8.810489-4 6.838391+4 9.549926-4 6.181364+4 1.035142-3 5.551630+4 1.135011-3 4.870146+4 1.244515-3 4.239785+4 1.350000-3 3.726690+4 1.462177-3 3.266678+4 1.603245-3 2.788010+4 1.757924-3 2.362525+4 1.927525-3 1.988166+4 2.137962-3 1.624546+4 2.344229-3 1.348174+4 2.570396-3 1.111522+4 2.818383-3 9.104811+3 3.090295-3 7.410018+3 3.427678-3 5.832594+3 3.801894-3 4.554610+3 4.216965-3 3.528719+3 4.677351-3 2.712904+3 5.188000-3 2.070238+3 5.754399-3 1.568369+3 6.382635-3 1.179547+3 7.161434-3 8.526054+2 8.000000-3 6.191221+2 8.912509-3 4.498110+2 1.000000-2 3.175210+2 1.122018-2 2.223882+2 1.258925-2 1.545812+2 1.412538-2 1.066618+2 1.603245-2 7.034529+1 1.798871-2 4.783517+1 2.018366-2 3.230055+1 2.264644-2 2.164356+1 2.570396-2 1.383169+1 2.951209-2 8.421388+0 3.427678-2 4.885700+0 4.027170-2 2.697105+0 4.786301-2 1.415756+0 5.623413-2 7.700661-1 7.161434-2 3.061300-1 1.230269-1 3.843260-2 1.500000-1 1.809203-2 1.757924-1 9.963393-3 2.018366-1 5.969267-3 2.290868-1 3.758826-3 2.570396-1 2.486827-3 2.851018-1 1.726683-3 3.090295-1 1.307272-3 3.427678-1 9.211136-4 3.801894-1 6.541137-4 4.216965-1 4.680745-4 4.623810-1 3.500360-4 5.069907-1 2.637063-4 5.559043-1 2.002751-4 6.095369-1 1.532943-4 6.606935-1 1.220919-4 7.161434-1 9.785347-5 7.762471-1 7.893970-5 8.609938-1 6.022692-5 9.120108-1 5.214584-5 9.660509-1 4.546679-5 1.011579+0 4.099027-5 1.071519+0 3.625042-5 1.148154+0 3.151629-5 1.230269+0 2.759100-5 1.333521+0 2.379275-5 1.819701+0 1.375896-5 2.089296+0 1.085759-5 2.344229+0 8.978177-6 2.660725+0 7.339817-6 3.090295+0 5.832774-6 3.589219+0 4.667148-6 4.168694+0 3.761953-6 4.897788+0 3.005037-6 5.821032+0 2.380660-6 6.918310+0 1.900324-6 8.317638+0 1.505060-6 1.023293+1 1.167213-6 1.258925+1 9.121439-7 1.584893+1 6.987666-7 2.041738+1 5.251174-7 2.722701+1 3.826178-7 3.801894+1 2.671953-7 5.688529+1 1.748139-7 9.660509+1 1.010636-7 1.862087+2 5.178379-8 3.715352+2 2.577420-8 1.479108+3 6.442015-9 1.000000+5 9.50920-11 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 5.184000-5 5.184000-5 1.000000+5 5.184000-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 5.184000-5 0.0 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 2.572000-5 9.063480+5 2.600160-5 8.744993+5 2.660725-5 8.053309+5 2.851018-5 6.206471+5 3.349654-5 3.348871+5 3.589219-5 2.587665+5 3.801894-5 2.102413+5 3.981072-5 1.792214+5 4.168694-5 1.538697+5 4.350000-5 1.346082+5 4.518559-5 1.202445+5 4.677351-5 1.091644+5 4.850000-5 9.925780+4 5.011872-5 9.158894+4 5.188000-5 8.466421+4 5.370318-5 7.873965+4 5.580000-5 7.315700+4 5.800000-5 6.840240+4 6.025596-5 6.443178+4 6.300000-5 6.054140+4 6.606934-5 5.709600+4 6.918310-5 5.430739+4 7.328245-5 5.139173+4 7.852356-5 4.849828+4 8.609938-5 4.530432+4 1.080000-4 3.871440+4 1.202264-4 3.570528+4 1.333521-4 3.278403+4 1.500000-4 2.952820+4 1.800000-4 2.486660+4 2.089296-4 2.146670+4 2.344229-4 1.902292+4 2.630268-4 1.673390+4 3.054921-4 1.404517+4 3.507519-4 1.187328+4 4.073803-4 9.817321+3 4.954502-4 7.597098+3 5.688529-4 6.296181+3 6.760830-4 4.936512+3 8.222426-4 3.713280+3 9.772372-4 2.870887+3 1.216186-3 2.055190+3 1.531087-3 1.434038+3 1.927525-3 9.936899+2 2.426610-3 6.836722+2 3.019952-3 4.757732+2 3.715352-3 3.350329+2 4.518559-3 2.388332+2 5.495409-3 1.689786+2 6.456542-3 1.258753+2 8.035261-3 8.370299+1 1.230269-2 3.735766+1 1.462177-2 2.675386+1 1.698244-2 1.986194+1 2.041738-2 1.365147+1 2.454709-2 9.317629+0 2.951209-2 6.311336+0 3.548134-2 4.241115+0 4.265795-2 2.827599+0 5.069907-2 1.919731+0 6.095369-2 1.260049+0 7.328245-2 8.209545-1 8.609938-2 5.607547-1 1.059254-1 3.407673-1 1.364583-1 1.838244-1 1.678804-1 1.102908-1 2.540973-1 3.956818-2 3.162278-1 2.318100-2 3.801894-1 1.488138-2 4.466836-1 1.017265-2 5.128614-1 7.392599-3 5.888437-1 5.411573-3 6.760830-1 3.992209-3 7.673615-1 3.042076-3 8.810489-1 2.277742-3 9.772372-1 1.845316-3 1.188502+0 1.255303-3 1.318257+0 1.029617-3 1.496236+0 8.145148-4 1.698244+0 6.500215-4 1.972423+0 5.019145-4 2.213095+0 4.136159-4 2.511886+0 3.369702-4 2.884032+0 2.716703-4 3.388442+0 2.129960-4 3.935501+0 1.712110-4 4.623810+0 1.363981-4 5.495409+0 1.077761-4 6.531306+0 8.581886-5 7.852356+0 6.781589-5 9.660509+0 5.247671-5 1.188502+1 4.092262-5 1.531087+1 3.047086-5 2.000000+1 2.252800-5 2.660725+1 1.644731-5 3.715352+1 1.148064-5 5.495409+1 7.598371-6 9.120108+1 4.495573-6 1.603245+2 2.527270-6 3.198895+2 1.256483-6 1.273503+3 3.137844-7 4.027170+4 9.900712-9 1.000000+5 3.986700-9 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 2.572000-5 2.572000-5 1.000000+5 2.572000-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 2.572000-5 0.0 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 1.369000-5 3.405260+7 1.392000-5 3.388880+7 1.415000-5 3.352560+7 1.445440-5 3.280727+7 1.480000-5 3.175940+7 1.515000-5 3.049800+7 1.550000-5 2.913840+7 1.590000-5 2.750240+7 1.640590-5 2.540587+7 1.698244-5 2.309954+7 1.757924-5 2.086752+7 1.840772-5 1.808454+7 1.950000-5 1.500288+7 2.426610-5 7.257443+6 2.691535-5 5.179219+6 2.951209-5 3.867092+6 3.273407-5 2.806461+6 3.630781-5 2.052395+6 4.168694-5 1.364644+6 6.165950-5 4.362330+5 8.810489-5 1.528503+5 1.023293-4 9.913146+4 1.161449-4 6.922639+4 1.288250-4 5.194281+4 1.412538-4 4.050036+4 1.540000-4 3.230720+4 1.659587-4 2.674060+4 1.800000-4 2.194520+4 1.927525-4 1.869864+4 2.080000-4 1.575882+4 2.238721-4 1.346344+4 2.400000-4 1.168734+4 2.570396-4 1.024632+4 2.730000-4 9.187940+3 2.917427-4 8.202941+3 3.126079-4 7.340329+3 3.350000-4 6.607540+3 3.630781-4 5.888568+3 3.935501-4 5.285664+3 4.315191-4 4.709755+3 4.841724-4 4.112499+3 8.609938-4 2.149032+3 1.011579-3 1.781556+3 1.188502-3 1.466101+3 1.396368-3 1.197360+3 1.640590-3 9.702363+2 1.905461-3 7.921937+2 2.213095-3 6.419557+2 2.426610-3 5.613689+2 2.786121-3 4.547574+2 3.162278-3 3.723742+2 3.630781-3 2.970680+2 4.216965-3 2.308239+2 5.248075-3 1.584160+2 6.025596-3 1.240306+2 6.843790-3 9.829193+1 7.673615-3 7.920873+1 8.413951-3 6.617840+1 9.549926-3 5.129399+1 1.096478-2 3.854340+1 1.258925-2 2.873443+1 1.445440-2 2.125260+1 1.659587-2 1.559576+1 1.905461-2 1.135674+1 2.187762-2 8.207050+0 2.511886-2 5.887111+0 2.884032-2 4.193002+0 3.349654-2 2.880515+0 3.890451-2 1.963839+0 4.518559-2 1.329248+0 5.308844-2 8.667363-1 6.309573-2 5.439803-1 7.673615-2 3.181518-1 9.660509-2 1.678351-1 1.949845-1 2.328561-2 2.426610-1 1.265781-2 2.884032-1 7.875975-3 3.349654-1 5.255696-3 3.845918-1 3.642165-3 4.415705-1 2.542823-3 5.011872-1 1.842742-3 5.623413-1 1.384339-3 6.309573-1 1.047268-3 7.079458-1 7.982438-4 7.852356-1 6.294396-4 8.709636-1 4.990930-4 9.440609-1 4.191576-4 1.023293+0 3.543534-4 1.122018+0 2.945776-4 1.244515+0 2.410931-4 1.396368+0 1.945676-4 1.621810+0 1.486322-4 1.883649+0 1.144634-4 2.137962+0 9.232284-5 2.426610+0 7.505498-5 2.754229+0 6.147194-5 3.235937+0 4.808474-5 3.758374+0 3.856488-5 4.415704+0 3.065328-5 5.188000+0 2.454919-5 6.165950+0 1.949883-5 7.413102+0 1.537307-5 9.000000+0 1.206300-5 1.109175+1 9.362648-6 1.364583+1 7.337970-6 1.659587+1 5.859269-6 2.137962+1 4.408601-6 2.851018+1 3.216186-6 3.981072+1 2.248284-6 6.095369+1 1.437409-6 1.059254+2 8.125451-7 2.113489+2 4.024850-7 4.216965+2 2.004868-7 1.678804+3 5.013867-8 1.000000+5 8.40270-10 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 1.369000-5 1.369000-5 1.000000+5 1.369000-5 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 1.369000-5 0.0 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 9.640000-6 8.400600+7 9.800000-6 8.250560+7 1.000000-5 8.038640+7 1.035142-5 7.625341+7 1.071519-5 7.164999+7 1.100000-5 6.795800+7 1.135011-5 6.341421+7 1.180000-5 5.775320+7 1.216186-5 5.340928+7 1.270000-5 4.740400+7 1.333521-5 4.109761+7 1.396368-5 3.568511+7 1.479108-5 2.970681+7 1.584893-5 2.366957+7 1.778279-5 1.605691+7 2.162719-5 8.266817+6 2.454709-5 5.418568+6 2.730000-5 3.826208+6 3.054921-5 2.667514+6 3.427678-5 1.857126+6 3.845918-5 1.302359+6 4.315191-5 9.196125+5 4.800000-5 6.712520+5 5.288000-5 5.076752+5 5.754399-5 4.007011+5 6.237348-5 3.221783+5 6.683439-5 2.690918+5 7.161434-5 2.263445+5 7.673615-5 1.918140+5 8.222426-5 1.638078+5 8.810489-5 1.409249+5 9.440609-5 1.221214+5 1.011579-4 1.065600+5 1.083927-4 9.362119+4 1.161449-4 8.279970+4 1.244515-4 7.371749+4 1.333521-4 6.605894+4 1.445440-4 5.858372+4 1.566751-4 5.232810+4 1.737801-4 4.564104+4 1.995262-4 3.839906+4 3.126079-4 2.240806+4 4.120975-4 1.594656+4 5.011872-4 1.246995+4 5.821032-4 1.026153+4 6.683439-4 8.506336+3 8.035261-4 6.567123+3 9.440609-4 5.198275+3 1.096478-3 4.154105+3 1.288250-3 3.238633+3 1.513561-3 2.506478+3 1.778279-3 1.926545+3 2.065380-3 1.498543+3 2.426610-3 1.134293+3 2.851018-3 8.520929+2 3.467369-3 5.973330+2 4.000000-3 4.574489+2 4.518559-3 3.618252+2 5.128614-3 2.811008+2 5.821032-3 2.168646+2 6.683439-3 1.622280+2 7.673615-3 1.204262+2 8.810489-3 8.869865+1 1.011579-2 6.481806+1 1.161449-2 4.699243+1 1.333521-2 3.380063+1 1.531087-2 2.412051+1 1.757924-2 1.707693+1 2.018366-2 1.199609+1 2.317395-2 8.360881+0 2.660725-2 5.783333+0 3.054921-2 3.970995+0 3.507519-2 2.706980+0 4.073803-2 1.773699+0 4.731513-2 1.153312+0 5.559043-2 7.199931-1 6.531306-2 4.461209-1 7.852356-2 2.561224-1 9.772372-2 1.314417-1 1.862087-1 1.797041-2 2.290868-1 9.537752-3 2.691535-1 5.867621-3 3.090295-1 3.896007-3 3.507519-1 2.695227-3 3.981072-1 1.878345-3 4.466836-1 1.362473-3 5.011872-1 9.957299-4 5.559043-1 7.561846-4 6.165950-1 5.782466-4 6.839117-1 4.453867-4 7.585776-1 3.456129-4 8.609938-1 2.553241-4 9.225714-1 2.177478-4 9.772372-1 1.917683-4 1.047129+0 1.659066-4 1.135011+0 1.410303-4 1.244515+0 1.179987-4 1.380384+0 9.744910-5 1.678804+0 6.875494-5 1.949845+0 5.302364-5 2.187762+0 4.366470-5 2.483133+0 3.554739-5 2.851018+0 2.864004-5 3.349654+0 2.244248-5 3.890451+0 1.803000-5 4.570882+0 1.435545-5 5.432503+0 1.133708-5 6.456542+0 9.023008-6 7.762471+0 7.127014-6 9.440609+0 5.590468-6 1.161449+1 4.355952-6 1.496236+1 3.240586-6 1.972423+1 2.369946-6 2.630268+1 1.725104-6 3.672823+1 1.203853-6 5.370318+1 8.062218-7 8.709636+1 4.882709-7 1.462177+2 2.874644-7 2.917427+2 1.428045-7 5.821032+2 7.127076-8 4.623810+3 8.936571-9 1.000000+5 4.12940-10 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 9.640000-6 9.640000-6 1.000000+5 9.640000-6 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 9.640000-6 0.0 1.000000+5 1.000000+5 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 6.860200-7 1.025800+0 1.236350-6 1.026100+0 1.551150-6 1.026600+0 2.186770-6 1.027100+0 2.975140-6 1.027500+0 3.726330-6 1.028100+0 5.073330-6 1.028750+0 6.860200-6 1.029500+0 9.388370-6 1.030100+0 1.180700-5 1.031000+0 1.615600-5 1.032000+0 2.210550-5 1.033200+0 3.096600-5 1.034000+0 3.801370-5 1.035300+0 5.159810-5 1.036640+0 6.860200-5 1.038200+0 9.258060-5 1.039700+0 1.202810-4 1.041500+0 1.600320-4 1.043800+0 2.221300-4 1.046400+0 3.090520-4 1.048300+0 3.847780-4 1.051200+0 5.219440-4 1.054080+0 6.860200-4 1.057700+0 9.350890-4 1.061100+0 1.216320-3 1.065100+0 1.610270-3 1.070400+0 2.246490-3 1.076200+0 3.104640-3 1.080600+0 3.877190-3 1.087100+0 5.223850-3 1.093710+0 6.860200-3 1.102600+0 9.511540-3 1.110700+0 1.240490-2 1.120600+0 1.659390-2 1.133300+0 2.307260-2 1.147500+0 3.185630-2 1.158200+0 3.958930-2 1.174100+0 5.291250-2 1.190110+0 6.860200-2 1.205100+0 8.539420-2 1.227500+0 1.142910-1 1.250000+0 1.477000-1 1.265600+0 1.732480-1 1.294900+0 2.260700-1 1.331800+0 3.005290-1 1.362600+0 3.683950-1 1.397000+0 4.492160-1 1.433800+0 5.404610-1 1.477900+0 6.548440-1 1.500000+0 7.139000-1 1.562500+0 8.856070-1 1.617200+0 1.039730+0 1.712900+0 1.313430+0 1.784700+0 1.519210+0 1.892300+0 1.824970+0 2.000000+0 2.127000+0 2.044000+0 2.249000+0 2.163500+0 2.573460+0 2.372600+0 3.115210+0 2.686300+0 3.868190+0 3.000000+0 4.561000+0 3.500000+0 5.569760+0 4.000000+0 6.485000+0 5.000000+0 8.093000+0 6.000000+0 9.480000+0 7.000000+0 1.070000+1 8.000000+0 1.180000+1 9.000000+0 1.280000+1 1.000000+1 1.373000+1 1.100000+1 1.459000+1 1.200000+1 1.538000+1 1.300000+1 1.613000+1 1.400000+1 1.683000+1 1.500000+1 1.748000+1 1.600000+1 1.809000+1 1.800000+1 1.919000+1 2.000000+1 2.017000+1 2.200000+1 2.106000+1 2.400000+1 2.188000+1 2.600000+1 2.262000+1 2.800000+1 2.330000+1 3.000000+1 2.393000+1 4.000000+1 2.649000+1 5.000000+1 2.840000+1 6.000000+1 2.987000+1 8.000000+1 3.204000+1 1.000000+2 3.357000+1 1.500000+2 3.598000+1 2.000000+2 3.741000+1 3.000000+2 3.908000+1 4.000000+2 4.003000+1 5.000000+2 4.066000+1 6.000000+2 4.111000+1 8.000000+2 4.170000+1 1.000000+3 4.209000+1 1.500000+3 4.264000+1 2.000000+3 4.294000+1 3.000000+3 4.327000+1 4.000000+3 4.345000+1 5.000000+3 4.356000+1 6.000000+3 4.364000+1 8.000000+3 4.374000+1 1.000000+4 4.380000+1 1.500000+4 4.389000+1 2.000000+4 4.394000+1 3.000000+4 4.399000+1 4.000000+4 4.402000+1 5.000000+4 4.403000+1 6.000000+4 4.404000+1 8.000000+4 4.406000+1 1.000000+5 4.407000+1 1 86000 7 8 2.220000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.606270-7 2.090400+0 1.168520-6 2.094700+0 1.515160-6 2.099900+0 2.015710-6 2.106600+0 2.804020-6 2.114000+0 3.879710-6 2.119500+0 4.830220-6 2.127900+0 6.550680-6 2.136250+0 8.606270-6 2.147000+0 1.179980-5 2.156900+0 1.532650-5 2.169000+0 2.045420-5 2.184500+0 2.843200-5 2.201800+0 3.933660-5 2.214800+0 4.901030-5 2.234200+0 6.592750-5 2.253680+0 8.606270-5 2.281500+0 1.205460-4 2.307000+0 1.583360-4 2.338200+0 2.128970-4 2.377400+0 2.948360-4 2.410200+0 3.749820-4 2.446800+0 4.769980-4 2.485900+0 6.005670-4 2.532900+0 7.685990-4 2.556430+0 8.606270-4 2.611900+0 1.097400-3 2.660400+0 1.326720-3 2.745300+0 1.775750-3 2.809000+0 2.150550-3 2.904500+0 2.770440-3 3.000000+0 3.458000-3 3.125000+0 4.458580-3 3.234400+0 5.424500-3 3.425800+0 7.303030-3 3.569300+0 8.853790-3 3.784700+0 1.137790-2 4.000000+0 1.409000-2 4.250000+0 1.740440-2 4.625000+0 2.261080-2 5.000000+0 2.802000-2 5.500000+0 3.543910-2 6.000000+0 4.295000-2 6.750000+0 5.411070-2 7.000000+0 5.778000-2 8.000000+0 7.212000-2 9.000000+0 8.580000-2 1.000000+1 9.877000-2 1.100000+1 1.110000-1 1.200000+1 1.225000-1 1.300000+1 1.334000-1 1.400000+1 1.436000-1 1.500000+1 1.534000-1 1.600000+1 1.626000-1 1.800000+1 1.796000-1 2.000000+1 1.950000-1 2.200000+1 2.091000-1 2.400000+1 2.219000-1 2.600000+1 2.338000-1 2.800000+1 2.448000-1 3.000000+1 2.549000-1 4.000000+1 2.967000-1 5.000000+1 3.281000-1 6.000000+1 3.528000-1 8.000000+1 3.896000-1 1.000000+2 4.161000-1 1.500000+2 4.594000-1 2.000000+2 4.862000-1 3.000000+2 5.187000-1 4.000000+2 5.380000-1 5.000000+2 5.511000-1 6.000000+2 5.606000-1 8.000000+2 5.737000-1 1.000000+3 5.824000-1 1.500000+3 5.951000-1 2.000000+3 6.024000-1 3.000000+3 6.101000-1 4.000000+3 6.147000-1 5.000000+3 6.175000-1 6.000000+3 6.195000-1 8.000000+3 6.221000-1 1.000000+4 6.237000-1 1.500000+4 6.259000-1 2.000000+4 6.272000-1 3.000000+4 6.284000-1 4.000000+4 6.292000-1 5.000000+4 6.297000-1 6.000000+4 6.300000-1 8.000000+4 6.303000-1 1.000000+5 6.306000-1 1 86000 7 8 2.220000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 86000 7 9 2.220000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.600000+1 1.000000+5 8.600000+1 5.000000+5 8.598400+1 1.000000+6 8.594000+1 1.500000+6 8.586600+1 2.000000+6 8.576200+1 2.500000+6 8.563000+1 3.000000+6 8.546900+1 3.750000+6 8.517120+1 4.000000+6 8.506800+1 4.750000+6 8.469480+1 5.000000+6 8.456700+1 5.500000+6 8.428130+1 6.250000+6 8.380510+1 6.500000+6 8.364220+1 7.000000+6 8.329800+1 7.875000+6 8.265090+1 8.625000+6 8.205440+1 9.000000+6 8.175300+1 1.000000+7 8.090400+1 1.109400+7 7.993510+1 1.187500+7 7.922260+1 1.250000+7 7.864900+1 1.375000+7 7.747880+1 1.500000+7 7.631400+1 1.687500+7 7.456930+1 1.750000+7 7.400300+1 1.937500+7 7.232060+1 2.000000+7 7.177600+1 2.250000+7 6.965690+1 2.375000+7 6.863630+1 2.500000+7 6.764800+1 2.750000+7 6.573560+1 2.875000+7 6.481590+1 3.000000+7 6.391600+1 3.250000+7 6.216020+1 3.500000+7 6.046530+1 4.000000+7 5.722200+1 4.500000+7 5.413780+1 5.000000+7 5.124100+1 5.750000+7 4.725550+1 6.000000+7 4.603100+1 6.750000+7 4.265830+1 7.000000+7 4.163000+1 8.000000+7 3.791100+1 9.000000+7 3.468600+1 9.750000+7 3.249550+1 1.000000+8 3.180100+1 1.062500+8 3.012620+1 1.125000+8 2.853930+1 1.156300+8 2.777810+1 1.250000+8 2.561800+1 1.375000+8 2.302160+1 1.500000+8 2.082100+1 1.625000+8 1.900790+1 1.812500+8 1.687830+1 1.875000+8 1.629550+1 1.953100+8 1.564220+1 2.000000+8 1.528500+1 2.125000+8 1.444950+1 2.375000+8 1.312350+1 2.406300+8 1.298000+1 2.500000+8 1.257400+1 2.671900+8 1.188300+1 2.789100+8 1.141050+1 2.875000+8 1.104940+1 2.894500+8 1.096490+1 3.000000+8 1.049000+1 3.125000+8 9.897410+0 3.359400+8 8.880060+0 3.375000+8 8.821370+0 3.453100+8 8.549950+0 3.500000+8 8.404900+0 3.625000+8 8.081750+0 3.859400+8 7.575090+0 4.000000+8 7.255700+0 4.125000+8 6.935850+0 4.234400+8 6.642510+0 4.425800+8 6.134700+0 4.712900+8 5.463880+0 4.750000+8 5.388330+0 4.856400+8 5.188430+0 5.000000+8 4.957400+0 5.179700+8 4.729940+0 5.330100+8 4.577090+0 5.425800+8 4.492610+0 6.000000+8 4.073300+0 6.250000+8 3.897390+0 7.000000+8 3.421800+0 7.500000+8 3.173510+0 7.750000+8 3.049880+0 8.000000+8 2.917300+0 8.250000+8 2.773720+0 1.000000+9 1.908400+0 1.031300+9 1.814470+0 1.060500+9 1.741590+0 1.100900+9 1.659090+0 1.137900+9 1.597860+0 1.183200+9 1.536890+0 1.241300+9 1.474600+0 1.250000+9 1.466510+0 1.278200+9 1.441690+0 1.500000+9 1.290100+0 1.562500+9 1.250910+0 1.671900+9 1.182240+0 1.753900+9 1.131460+0 1.877000+9 1.056970+0 2.000000+9 9.856500-1 2.139200+9 9.091510-1 2.272600+9 8.407340-1 2.443000+9 7.603760-1 2.602800+9 6.921900-1 2.750000+9 6.351180-1 2.752700+9 6.341270-1 2.959000+9 5.628140-1 3.148200+9 5.053940-1 3.379700+9 4.441640-1 3.676800+9 3.780270-1 3.986900+9 3.212670-1 4.348700+9 2.676130-1 4.674400+9 2.284890-1 5.000000+9 1.962300-1 5.375000+9 1.658070-1 5.703100+9 1.439340-1 6.277300+9 1.138020-1 7.031000+9 8.553620-2 8.000000+9 6.131600-2 9.500000+9 3.904800-2 1.00000+10 3.410000-2 1.00000+11 7.524800-5 1.68570+11 1.904600-5 3.34410+11 3.184250-6 8.62510+11 2.743650-7 2.83020+12 1.305030-8 1.00000+14 1.53180-12 3.16230+15 2.28920-16 1.00000+17 3.26420-20 1 86000 7 0 2.220000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 6.40000-12 1.000000+2 6.40000-10 1.000000+3 6.400000-8 1.000000+4 6.400000-6 1.000000+5 6.400000-4 5.000000+5 1.600000-2 1.000000+6 6.400000-2 1.500000+6 1.436000-1 2.000000+6 2.536000-1 2.500000+6 3.928000-1 3.000000+6 5.596000-1 3.750000+6 8.576170-1 4.000000+6 9.688000-1 4.750000+6 1.333740+0 5.000000+6 1.465000+0 5.500000+6 1.739800+0 6.250000+6 2.179110+0 6.500000+6 2.331710+0 7.000000+6 2.644900+0 7.875000+6 3.212720+0 8.625000+6 3.714130+0 9.000000+6 3.968400+0 1.000000+7 4.652000+0 1.109400+7 5.404440+0 1.187500+7 5.941430+0 1.250000+7 6.370600+0 1.375000+7 7.222130+0 1.500000+7 8.065000+0 1.687500+7 9.311030+0 1.750000+7 9.721600+0 1.937500+7 1.093250+1 2.000000+7 1.132900+1 2.250000+7 1.286620+1 2.375000+7 1.360280+1 2.500000+7 1.431700+1 2.750000+7 1.566830+1 2.875000+7 1.630810+1 3.000000+7 1.692900+1 3.250000+7 1.811030+1 3.500000+7 1.923580+1 4.000000+7 2.138200+1 4.500000+7 2.346370+1 5.000000+7 2.550700+1 5.750000+7 2.849770+1 6.000000+7 2.946900+1 6.750000+7 3.226240+1 7.000000+7 3.315300+1 8.000000+7 3.646000+1 9.000000+7 3.935800+1 9.750000+7 4.128060+1 1.000000+8 4.188500+1 1.062500+8 4.331000+1 1.125000+8 4.464850+1 1.156300+8 4.528760+1 1.250000+8 4.711800+1 1.375000+8 4.939580+1 1.500000+8 5.153300+1 1.625000+8 5.354320+1 1.812500+8 5.633670+1 1.875000+8 5.721100+1 1.953100+8 5.826980+1 2.000000+8 5.888400+1 2.125000+8 6.044650+1 2.375000+8 6.326060+1 2.406300+8 6.358800+1 2.500000+8 6.452100+1 2.671900+8 6.608850+1 2.789100+8 6.706450+1 2.875000+8 6.773100+1 2.894500+8 6.787820+1 3.000000+8 6.864600+1 3.125000+8 6.948390+1 3.359400+8 7.088760+1 3.375000+8 7.097210+1 3.453100+8 7.139090+1 3.500000+8 7.163900+1 3.625000+8 7.225770+1 3.859400+8 7.330540+1 4.000000+8 7.388200+1 4.125000+8 7.435190+1 4.234400+8 7.475400+1 4.425800+8 7.539440+1 4.712900+8 7.627640+1 4.750000+8 7.638520+1 4.856400+8 7.667920+1 5.000000+8 7.706700+1 5.179700+8 7.751950+1 5.330100+8 7.787840+1 5.425800+8 7.809700+1 6.000000+8 7.929600+1 6.250000+8 7.974600+1 7.000000+8 8.092800+1 7.500000+8 8.156300+1 7.750000+8 8.184310+1 8.000000+8 8.210200+1 8.250000+8 8.232930+1 1.000000+9 8.351500+1 1.031300+9 8.365970+1 1.060500+9 8.379090+1 1.100900+9 8.394840+1 1.137900+9 8.407700+1 1.183200+9 8.421970+1 1.241300+9 8.438160+1 1.250000+9 8.440310+1 1.278200+9 8.447160+1 1.500000+9 8.491000+1 1.562500+9 8.500150+1 1.671900+9 8.515350+1 1.753900+9 8.526030+1 1.877000+9 8.538450+1 2.000000+9 8.550100+1 2.139200+9 8.559930+1 2.272600+9 8.567350+1 2.443000+9 8.575230+1 2.602800+9 8.581280+1 2.750000+9 8.585360+1 2.752700+9 8.585430+1 2.959000+9 8.589630+1 3.148200+9 8.592360+1 3.379700+9 8.595490+1 3.676800+9 8.596910+1 3.986900+9 8.598230+1 4.348700+9 8.599140+1 4.674400+9 8.599330+1 5.000000+9 8.599500+1 5.375000+9 8.599580+1 5.703100+9 8.599640+1 6.277300+9 8.599740+1 7.031000+9 8.599860+1 8.000000+9 8.600000+1 9.500000+9 8.600000+1 1.00000+10 8.600000+1 1.00000+11 8.600000+1 1.68570+11 8.600000+1 3.34410+11 8.600000+1 8.62510+11 8.600000+1 2.83020+12 8.600000+1 1.00000+14 8.600000+1 3.16230+15 8.600000+1 1.00000+17 8.600000+1 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 3.044363-6 0.0 6.172814-6 0.0 6.195604-6 3.182724+0 6.203201-6 4.230175+0 6.218395-6 7.726760+0 6.233588-6 1.302838+1 6.250681-6 2.138347+1 6.277300-6 3.747248+1 6.295312-6 4.769946+1 6.310951-6 5.368875+1 6.325793-6 5.565205+1 6.342403-6 5.277104+1 6.358257-6 4.601664+1 6.383655-6 3.087382+1 6.400718-6 2.077163+1 6.415912-6 1.340944+1 6.431105-6 7.991067+0 6.446299-6 4.395951+0 6.465291-6 1.675219+0 6.476686-6 0.0 7.188104-6 0.0 7.205797-6 3.651065-6 7.223489-6 7.224452-6 7.241182-6 1.319605-5 7.258874-6 2.225036-5 7.276567-6 3.463250-5 7.294260-6 4.976047-5 7.311952-6 6.599926-5 7.329645-6 8.080673-5 7.347337-6 9.177552-5 7.365030-6 9.783250-5 7.382723-6 9.661402-5 7.400415-6 9.014334-5 7.435800-6 7.207233-5 7.453493-6 6.561366-5 7.471186-6 6.237225-5 7.506571-6 6.145148-5 7.524340-6 6.003540-5 7.560491-6 4.815434-5 7.578566-6 3.951969-5 7.614717-6 2.093784-5 7.632792-6 1.351674-5 7.650867-6 8.055009-6 7.668942-6 4.431126-6 7.687018-6 2.250175-6 7.705093-6 0.0 7.847416-6 0.0 7.860572-6 2.609123-1 7.886047-6 4.880099+0 7.899268-6 7.415676+0 7.918615-6 1.341384+1 7.937963-6 2.241209+1 7.958893-6 3.581705+1 8.016564-6 8.040775+1 8.036478-6 9.051219+1 8.056218-6 9.409647+1 8.076656-6 9.037189+1 8.094506-6 8.202585+1 8.156463-6 3.965545+1 8.172567-6 3.045005+1 8.189576-6 2.246988+1 8.209202-6 1.559065+1 8.247528-6 5.474697+0 8.268081-6 3.771530+0 8.287707-6 2.434768+0 8.307334-6 1.450948+0 8.326960-6 7.981783-1 8.346586-6 4.053238-1 8.366212-6 0.0 8.526491-6 0.0 8.534504-6 6.766853-2 8.576517-6 3.348606+0 8.597524-6 6.092813+0 8.619843-6 1.071402+1 8.641653-6 1.683097+1 8.703870-6 3.812114+1 8.725790-6 4.322270+1 8.745672-6 4.519007+1 8.768977-6 4.343909+1 8.790358-6 3.873214+1 8.825149-6 2.740321+1 8.851690-6 1.835166+1 8.872670-6 1.314829+1 8.892202-6 9.565263+0 8.914136-6 7.642342+0 8.939215-6 7.599590+0 8.954973-6 8.292619+0 8.968820-6 1.035709+1 9.033852-6 2.103757+1 9.051696-6 2.326421+1 9.070234-6 2.453844+1 9.094703-6 2.440819+1 9.174095-6 1.940842+1 9.205681-6 1.892717+1 9.284441-6 1.986511+1 9.381937-6 2.017989+1 9.477135-6 1.943034+1 9.522275-6 1.885727+1 9.563003-6 1.763541+1 9.691158-6 1.310845+1 9.746150-6 1.201813+1 9.820522-6 1.154201+1 1.015251-5 1.150163+1 1.020658-5 1.275104+1 1.023256-5 1.383340+1 1.025988-5 1.552358+1 1.030366-5 1.925930+1 1.034941-5 2.338259+1 1.037731-5 2.493090+1 1.039936-5 2.536240+1 1.042727-5 2.457838+1 1.045634-5 2.256711+1 1.052269-5 1.640705+1 1.054767-5 1.451781+1 1.057265-5 1.312141+1 1.060387-5 1.204451+1 1.065161-5 1.102301+1 1.182456-5 9.799380+0 1.188289-5 1.213715+1 1.191172-5 1.408741+1 1.194082-5 1.706842+1 1.197076-5 2.134971+1 1.205722-5 3.656766+1 1.208921-5 4.035823+1 1.211926-5 4.166202+1 1.214867-5 4.054240+1 1.218057-5 3.690238+1 1.225550-5 2.441462+1 1.228820-5 1.942520+1 1.232094-5 1.565151+1 1.234640-5 1.342908+1 1.240646-5 9.915438+0 1.248102-5 9.120992+0 1.250390-5 9.042149+0 1.256515-5 1.005889+1 1.259857-5 1.122147+1 1.263304-5 1.308707+1 1.266675-5 1.560152+1 1.275229-5 2.296515+1 1.278533-5 2.479353+1 1.281572-5 2.537635+1 1.284570-5 2.491186+1 1.288227-5 2.304794+1 1.294716-5 1.867562+1 1.299403-5 1.672068+1 1.303685-5 1.673076+1 1.317189-5 1.938656+1 1.330896-5 1.919400+1 1.352628-5 1.880114+1 1.361478-5 1.798676+1 1.385487-5 1.455598+1 1.398618-5 1.388116+1 1.843596-5 8.500172+0 2.042303-5 6.699018+0 2.226567-5 5.471736+0 2.311242-5 5.016938+0 2.328308-5 5.284913+0 2.339686-5 5.800147+0 2.357851-5 6.990377+0 2.362939-5 7.200463+0 2.370209-5 7.221316+0 2.376042-5 7.029670+0 2.388796-5 6.156603+0 2.402312-5 5.189166+0 2.413641-5 4.735793+0 2.425018-5 4.543414+0 2.443166-5 4.690129+0 2.467629-5 5.072144+0 2.480773-5 5.058773+0 2.514162-5 4.736461+0 2.566428-5 4.495692+0 2.617074-5 4.106284+0 2.851018-5 3.373347+0 3.084325-5 2.835538+0 3.364940-5 2.350511+0 3.659880-5 1.971965+0 4.039142-5 1.614570+0 4.485551-5 1.313464+0 4.844821-5 1.133390+0 4.868671-5 1.365787+0 4.880596-5 1.561281+0 4.894011-5 1.911630+0 4.905766-5 2.328562+0 4.940220-5 3.808134+0 4.953636-5 4.196664+0 4.965577-5 4.335458+0 4.978149-5 4.221523+0 5.008383-5 3.396915+0 5.023683-5 3.004935+0 5.037596-5 2.806400+0 5.054157-5 2.797204+0 5.105086-5 3.024892+0 5.130461-5 2.957342+0 5.198051-5 2.538880+0 5.231503-5 2.487491+0 5.275606-5 2.611245+0 5.291477-5 2.681674+0 5.317700-5 2.945801+0 5.343574-5 3.367221+0 5.372347-5 4.132932+0 5.407569-5 5.151485+0 5.423347-5 5.463198+0 5.443676-5 5.579137+0 5.493145-5 5.580834+0 5.517798-5 5.891789+0 5.597463-5 7.738731+0 5.654477-5 9.312938+0 5.703926-5 1.117308+1 5.765646-5 1.437802+1 5.873322-5 2.162485+1 5.957461-5 2.725404+1 6.058750-5 3.187602+1 6.236826-5 3.961382+1 6.374362-5 4.578647+1 6.540000-5 4.898445+1 6.721662-5 4.872581+1 7.084607-5 4.236571+1 7.772149-5 2.960486+1 8.070027-5 2.529921+1 8.448702-5 2.116802+1 8.893291-5 1.743301+1 9.507370-5 1.351854+1 1.001148-4 1.109054+1 1.058705-4 8.958845+0 1.127758-4 7.051217+0 1.199258-4 5.607630+0 1.220675-4 5.251599+0 1.229916-4 5.433996+0 1.235934-4 5.859838+0 1.247543-4 7.089696+0 1.251037-4 7.240951+0 1.254406-4 7.217857+0 1.268350-4 6.453224+0 1.299897-4 5.454837+0 1.401151-4 4.323869+0 1.490000-4 3.569029+0 1.553385-4 3.148052+0 1.569406-4 3.212494+0 1.593040-4 3.752700+0 1.615071-4 3.857147+0 1.662797-4 3.482749+0 1.785963-4 2.877285+0 1.907600-4 2.498308+0 2.049007-4 2.221610+0 2.079154-4 2.245421+0 2.110193-4 2.338366+0 2.171788-4 2.230333+0 2.278622-4 2.181808+0 2.301298-4 2.277512+0 2.334330-4 2.566840+0 2.374370-4 2.812165+0 2.414111-4 3.101556+0 2.470000-4 3.111191+0 2.570396-4 3.033778+0 2.648996-4 3.149864+0 2.736020-4 3.502523+0 2.804044-4 3.961910+0 2.884032-4 4.726669+0 2.949949-4 5.564713+0 3.034895-4 6.937003+0 3.180533-4 9.921430+0 3.650000-4 2.063935+1 3.936600-4 2.573497+1 4.223038-4 2.917378+1 4.623810-4 3.209490+1 5.245418-4 3.392106+1 5.406936-4 3.547206+1 5.772218-4 3.719749+1 6.634083-4 3.653151+1 7.683958-4 3.451492+1 7.882595-4 3.569771+1 9.326433-4 3.215568+1 1.069214-3 2.929526+1 1.382400-3 2.328880+1 1.642657-3 1.944338+1 1.973991-3 1.583327+1 2.368664-3 1.276396+1 2.806000-3 1.035508+1 2.835669-3 1.042719+1 2.849491-3 1.097016+1 2.859493-3 1.190498+1 2.869958-3 1.355720+1 2.885685-3 1.720468+1 2.907681-3 2.243585+1 2.922488-3 2.450136+1 2.945484-3 2.545296+1 2.983116-3 2.566853+1 3.004893-3 2.729260+1 3.041815-3 3.208908+1 3.065694-3 3.342979+1 3.469430-3 2.833261+1 3.518053-3 2.985268+1 3.567662-3 3.110483+1 4.106541-3 2.567422+1 4.212332-3 2.601777+1 4.419897-3 2.460538+1 4.551190-3 2.434588+1 5.263202-3 1.980140+1 6.139387-3 1.581159+1 6.962416-3 1.309341+1 8.000000-3 1.061075+1 9.036820-3 8.795725+0 1.035132-2 7.117577+0 1.171521-2 5.859063+0 1.328941-2 4.793569+0 1.428112-2 4.288592+0 1.438704-2 4.397939+0 1.444417-2 4.662892+0 1.450119-2 5.190689+0 1.455976-2 6.038168+0 1.470229-2 8.502947+0 1.477939-2 9.322228+0 1.488671-2 9.704230+0 1.705269-2 7.827618+0 1.720672-2 7.981941+0 1.733773-2 8.635081+0 1.754568-2 9.950043+0 1.770599-2 1.023703+1 1.795488-2 1.049065+1 1.819067-2 1.112065+1 1.850187-2 1.108053+1 2.127471-2 8.933891+0 2.436633-2 7.215107+0 2.778332-2 5.843010+0 3.147345-2 4.763842+0 3.577616-2 3.859872+0 3.998510-2 3.206075+0 4.537654-2 2.592728+0 5.121238-2 2.111681+0 5.751165-2 1.732407+0 6.477482-2 1.413467+0 7.305027-2 1.148511+0 8.213014-2 9.377915-1 9.339742-2 7.502881-1 9.656896-2 7.167337-1 9.704223-2 7.454846-1 9.733765-2 7.984637-1 9.758917-2 8.807566-1 9.786032-2 1.020598+0 9.817968-2 1.262640+0 9.864813-2 1.739464+0 9.920092-2 2.329950+0 9.965815-2 2.689297+0 1.001159-1 2.884720+0 1.007985-1 2.965451+0 1.205735-1 2.257663+0 1.352401-1 1.880500+0 1.545666-1 1.517369+0 1.743396-1 1.248564+0 1.957470-1 1.035651+0 2.203293-1 8.557787-1 2.472881-1 7.112035-1 2.792303-1 5.874564-1 3.130581-1 4.922210-1 3.556611-1 4.057723-1 4.025360-1 3.382613-1 4.548735-1 2.843782-1 5.143396-1 2.406037-1 5.837810-1 2.039777-1 6.625978-1 1.744177-1 7.762471-1 1.450060-1 8.970223-1 1.236710-1 1.120601+0 9.754947-2 1.286622+0 8.339772-2 1.477239+0 7.129899-2 1.696098+0 6.095546-2 1.947381+0 5.211250-2 2.235892+0 4.455240-2 2.586270+0 3.778262-2 3.086391+0 3.090576-2 3.543651+0 2.642218-2 4.068655+0 2.258904-2 4.671441+0 1.931199-2 5.363532+0 1.651035-2 6.158159+0 1.411515-2 7.070513+0 1.206743-2 8.118035+0 1.031678-2 9.320751+0 8.820096-3 9.821357+0 8.314290-3 1.000000+1 1.741297-2 1 86000 7 0 2.220000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.596456+1 3.044363-6-8.558474+1 5.434144-6-8.271497+1 5.941643-6-7.850602+1 6.092313-6-7.377830+1 6.155032-6-6.857177+1 6.238811-6-5.158113+1 6.256498-6-5.040417+1 6.271691-6-5.226831+1 6.287953-6-5.806395+1 6.309556-6-7.173333+1 6.325793-6-8.479389+1 6.341554-6-7.827772+1 6.362407-6-6.539552+1 6.378046-6-5.973853+1 6.397513-6-5.768117+1 6.417811-6-6.014784+1 6.492515-6-7.575646+1 6.559942-6-8.162868+1 6.757652-6-8.778184+1 7.471186-6-7.886018+1 7.687018-6-7.217644+1 7.783542-6-6.563944+1 7.831942-6-5.954584+1 7.858927-6-5.338686+1 7.899268-6-4.199189+1 7.921034-6-3.518036+1 7.944614-6-2.915492+1 7.961859-6-2.693593+1 7.970989-6-2.730395+1 7.982624-6-2.931904+1 7.993427-6-3.259488+1 8.006104-6-3.833586+1 8.015354-6-4.462913+1 8.034065-6-6.036975+1 8.062463-6-8.914462+1 8.072965-6-8.041626+1 8.094506-6-6.154639+1 8.107866-6-5.336482+1 8.125079-6-4.659175+1 8.141970-6-4.297032+1 8.156463-6-4.221485+1 8.172567-6-4.392755+1 8.189576-6-4.671953+1 8.246665-6-5.938460+1 8.272988-6-6.594602+1 8.346586-6-7.739867+1 8.476297-6-9.076815+1 8.538671-6-8.303896+1 8.626613-6-6.974540+1 8.657449-6-6.810570+1 8.690000-6-7.171679+1 8.723044-6-8.189923+1 8.745672-6-9.154192+1 8.790358-6-7.473102+1 8.821557-6-6.893975+1 8.848551-6-6.884538+1 8.892202-6-7.581780+1 8.975508-6-9.227611+1 9.026719-6-9.221307+1 9.047248-6-9.175740+1 9.119226-6-8.353089+1 9.174095-6-8.265468+1 9.260381-6-8.379802+1 9.617761-6-7.726734+1 1.015830-5-8.628132+1 1.029945-5-8.981632+1 1.037063-5-8.498639+1 1.046454-5-7.475453+1 1.052269-5-7.324990+1 1.074186-5-7.911379+1 1.164414-5-8.634846+1 1.172973-5-8.551026+1 1.184009-5-8.004716+1 1.197076-5-7.166349+1 1.202537-5-7.325036+1 1.207086-5-7.944168+1 1.210547-5-8.605626+1 1.217572-5-7.064826+1 1.222495-5-6.497651+1 1.227365-5-6.402293+1 1.239005-5-7.080618+1 1.259857-5-8.435810+1 1.264196-5-8.595822+1 1.272603-5-8.564670+1 1.275229-5-8.541835+1 1.289038-5-7.448077+1 1.296686-5-7.437426+1 1.309409-5-7.802810+1 1.375597-5-7.146108+1 1.440073-5-7.336551+1 1.991758-5-7.189961+1 2.322619-5-7.379212+1 2.362939-5-7.332791+1 2.396574-5-7.147287+1 2.480773-5-7.278385+1 4.039142-5-7.858703+1 4.820837-5-8.521317+1 4.946183-5-8.733753+1 5.026348-5-8.621447+1 5.307034-5-9.205393+1 5.585755-5-9.905374+1 5.851902-5-1.064786+2 6.273466-5-9.707791+1 6.788013-5-7.039789+1 7.084607-5-6.091538+1 7.456067-5-5.479103+1 7.870145-5-5.158771+1 8.893291-5-5.084587+1 1.176189-4-5.569385+1 1.243953-4-5.821004+1 1.272688-4-5.662211+1 1.615071-4-6.032440+1 2.294254-4-6.599581+1 2.736020-4-7.054613+1 3.236103-4-7.740956+1 3.650000-4-7.702836+1 5.011872-4-6.182395+1 5.346840-4-6.008941+1 6.383322-4-4.905123+1 7.342707-4-4.286541+1 7.827882-4-4.181232+1 8.092043-4-3.926864+1 8.958723-4-3.502591+1 1.036819-3-3.067457+1 1.186411-3-2.736770+1 1.382400-3-2.483137+1 1.642657-3-2.334186+1 1.973991-3-2.321568+1 2.278682-3-2.454976+1 2.513553-3-2.693838+1 2.671102-3-2.997538+1 2.766477-3-3.334215+1 2.819856-3-3.689709+1 2.855819-3-4.182172+1 2.881362-3-4.543896+1 2.897359-3-4.557463+1 2.945484-3-3.994966+1 2.974770-3-3.897498+1 3.017878-3-3.969308+1 3.041815-3-3.770410+1 3.090705-3-3.191644+1 3.142996-3-2.855385+1 3.225665-3-2.530772+1 3.340364-3-2.268281+1 3.434008-3-2.183919+1 3.518053-3-2.264135+1 3.567662-3-2.061268+1 3.631116-3-1.835411+1 3.742765-3-1.618160+1 3.908534-3-1.417479+1 4.050987-3-1.327751+1 4.145747-3-1.332865+1 4.275014-3-1.165667+1 4.386419-3-1.104177+1 4.459995-3-1.077864+1 4.591201-3-9.358714+0 4.793659-3-8.080654+0 5.128614-3-6.706088+0 5.397436-3-5.952446+0 5.855876-3-5.091072+0 6.294528-3-4.578235+0 6.962416-3-4.192751+0 7.723471-3-4.041590+0 8.689291-3-4.137404+0 9.898470-3-4.499009+0 1.122826-2-5.141419+0 1.246867-2-6.035391+0 1.328941-2-6.960399+0 1.382850-2-7.948927+0 1.415606-2-8.988227+0 1.432667-2-9.990773+0 1.455976-2-1.232097+1 1.463557-2-1.247761+1 1.473834-2-1.170795+1 1.488671-2-1.006625+1 1.502436-2-9.090644+0 1.525650-2-8.177378+0 1.562248-2-7.407136+0 1.607131-2-6.957448+0 1.654817-2-6.881195+0 1.690031-2-7.166872+0 1.711997-2-7.745059+0 1.733773-2-8.626872+0 1.745481-2-8.604614+0 1.775572-2-7.493255+0 1.807085-2-7.078849+0 1.841642-2-5.763937+0 1.872541-2-5.004028+0 1.921985-2-4.210798+0 1.995979-2-3.404071+0 2.066331-2-2.852301+0 2.127471-2-2.486036+0 2.217154-2-2.076415+0 2.330773-2-1.699284+0 2.469248-2-1.374029+0 2.579754-2-1.193394+0 2.708254-2-1.041163+0 2.895736-2-8.997171-1 3.076855-2-8.266495-1 3.381135-2-7.842929-1 3.703735-2-7.980843-1 4.351328-2-9.191205-1 7.014581-2-1.613306+0 7.931859-2-1.905237+0 8.660842-2-2.227147+0 9.127492-2-2.552995+0 9.420361-2-2.896533+0 9.594978-2-3.255814+0 9.690175-2-3.613363+0 9.838334-2-4.478230+0 9.893233-2-4.516670+0 9.965815-2-4.143560+0 1.007985-1-3.405291+0 1.017087-1-3.048874+0 1.032486-1-2.678230+0 1.055891-1-2.321296+0 1.088130-1-2.008921+0 1.129715-1-1.732799+0 1.185912-1-1.487709+0 1.250732-1-1.305196+0 1.352401-1-1.126215+0 1.467974-1-1.006773+0 1.632695-1-9.208041-1 1.885360-1-8.738262-1 2.388391-1-8.804465-1 4.388779-1-1.002115+0 6.965137-1-1.065348+0 1.477239+0-1.100513+0 4.461192+0-1.113919+0 1.000000+1-1.114414+0 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.079754+0 1.036679-6 2.757231+0 1.055244-6 3.194426+0 1.072648-6 3.680013+0 1.088965-6 4.217326+0 1.104261-6 4.809748+0 1.118602-6 5.460746+0 1.132047-6 6.173878+0 1.144651-6 6.952785+0 1.156467-6 7.801197+0 1.167545-6 8.722929+0 1.177930-6 9.721880+0 1.187667-6 1.080203+1 1.196795-6 1.196745+1 1.205352-6 1.322227+1 1.213374-6 1.457075+1 1.220896-6 1.601721+1 1.227947-6 1.756606+1 1.234557-6 1.922178+1 1.240754-6 2.098895+1 1.246564-6 2.287220+1 1.252011-6 2.487628+1 1.257117-6 2.700599+1 1.261904-6 2.926633+1 1.266392-6 3.166248+1 1.270600-6 3.419994+1 1.274544-6 3.688450+1 1.278242-6 3.972223+1 1.281709-6 4.271937+1 1.284959-6 4.588240+1 1.288007-6 4.921831+1 1.290863-6 5.273517+1 1.293541-6 5.644270+1 1.298406-6 6.447997+1 1.302819-6 7.378140+1 1.306681-6 8.424197+1 1.310060-6 9.598737+1 1.313016-6 1.090510+2 1.315603-6 1.233386+2 1.317867-6 1.386324+2 1.319848-6 1.546257+2 1.321581-6 1.709708+2 1.323097-6 1.873224+2 1.325585-6 2.188606+2 1.329712-6 2.861873+2 1.334302-6 3.863259+2 1.336995-6 4.580588+2 1.338637-6 5.062457+2 1.340278-6 5.574665+2 1.343561-6 6.671270+2 1.343971-6 6.813239+2 1.346843-6 7.819284+2 1.347972-6 8.213489+2 1.350126-6 8.947813+2 1.351255-6 9.316174+2 1.352332-6 9.652965+2 1.353819-6 1.008827+3 1.355076-6 1.042361+3 1.356692-6 1.080315+3 1.358128-6 1.108491+3 1.359801-6 1.133942+3 1.361718-6 1.152467+3 1.363360-6 1.158772+3 1.363931-6 1.158845+3 1.365562-6 1.152989+3 1.367175-6 1.138448+3 1.367965-6 1.128238+3 1.369529-6 1.102305+3 1.371015-6 1.071015+3 1.373407-6 1.008646+3 1.374676-6 9.703738+2 1.375746-6 9.358067+2 1.377158-6 8.875387+2 1.378257-6 8.482564+2 1.379671-6 7.961974+2 1.381107-6 7.422111+2 1.382608-6 6.854102+2 1.384595-6 6.108099+2 1.386237-6 5.507866+2 1.388083-6 4.859763+2 1.389519-6 4.380924+2 1.393007-6 3.329030+2 1.394065-6 3.044051+2 1.395075-6 2.787450+2 1.396085-6 2.545998+2 1.397521-6 2.228552+2 1.399252-6 1.885597+2 1.401011-6 1.579836+2 1.402310-6 1.380041+2 1.404020-6 1.148650+2 1.405703-6 9.531632+1 1.407360-6 7.890753+1 1.408991-6 6.521907+1 1.411391-6 4.896202+1 1.415266-6 3.062815+1 1.416775-6 2.560633+1 1.418259-6 2.159610+1 1.418993-6 1.991779+1 1.419721-6 1.843264+1 1.420443-6 1.712401+1 1.421160-6 1.597660+1 1.421871-6 1.497640+1 1.422576-6 1.411055+1 1.423276-6 1.336729+1 1.423971-6 1.273584+1 1.468070-6 5.104476+1 1.470827-6 5.857124+1 1.473411-6 6.705197+1 1.475833-6 7.655035+1 1.478104-6 8.712728+1 1.480233-6 9.884153+1 1.482229-6 1.117469+2 1.484100-6 1.258876+2 1.485855-6 1.412924+2 1.487500-6 1.579704+2 1.489041-6 1.759077+2 1.490487-6 1.950656+2 1.493197-6 2.382824+2 1.495569-6 2.855908+2 1.497644-6 3.358783+2 1.501048-6 4.404851+2 1.506466-6 6.798859+2 1.509763-6 8.807038+2 1.512402-6 1.076566+3 1.514747-6 1.278755+3 1.515892-6 1.387411+3 1.517753-6 1.577915+3 1.519614-6 1.785255+3 1.523336-6 2.246302+3 1.523801-6 2.307776+3 1.527058-6 2.756384+3 1.528337-6 2.939030+3 1.530780-6 3.291692+3 1.532670-6 3.563073+3 1.534502-6 3.819779+3 1.536392-6 4.073085+3 1.538224-6 4.302511+3 1.539852-6 4.489331+3 1.541357-6 4.644833+3 1.542179-6 4.721926+3 1.544359-6 4.896931+3 1.546062-6 5.000968+3 1.548047-6 5.083234+3 1.549826-6 5.119800+3 1.550901-6 5.124537+3 1.552559-6 5.106224+3 1.554246-6 5.056272+3 1.554893-6 5.028965+3 1.557067-6 4.905764+3 1.558552-6 4.795414+3 1.559554-6 4.710046+3 1.561021-6 4.570555+3 1.562446-6 4.420373+3 1.564278-6 4.209275+3 1.565906-6 4.007962+3 1.567477-6 3.804753+3 1.569861-6 3.485450+3 1.571722-6 3.232508+3 1.573816-6 2.949539+3 1.575444-6 2.733747+3 1.579166-6 2.265860+3 1.581667-6 1.978264+3 1.582888-6 1.846979+3 1.585680-6 1.571093+3 1.589125-6 1.278087+3 1.595416-6 8.718881+2 1.598936-6 7.076223+2 1.600676-6 6.403695+2 1.602402-6 5.815825+2 1.604115-6 5.302504+2 1.605814-6 4.854415+2 1.607500-6 4.463091+2 1.610846-6 3.818984+2 1.614139-6 3.322623+2 1.617381-6 2.934960+2 1.620572-6 2.627138+2 1.623714-6 2.378266+2 1.626806-6 2.173398+2 1.629850-6 2.001892+2 1.632847-6 1.856142+2 1.635796-6 1.730657+2 1.641603-6 1.523959+2 1.647229-6 1.362166+2 1.652679-6 1.232118+2 1.657958-6 1.125447+2 1.663073-6 1.036526+2 1.668028-6 9.614042+1 1.672827-6 8.972028+1 1.677477-6 8.417722+1 1.687500-6 7.404811+1 1.694932-6 6.780821+1 1.702851-6 6.209231+1 1.710274-6 5.744950+1 1.717233-6 5.361946+1 1.723758-6 5.041582+1 1.735991-6 4.523232+1 1.746695-6 4.140595+1 1.756061-6 3.849638+1 1.764256-6 3.623237+1 1.778598-6 3.279071+1 1.789354-6 3.056684+1 1.805489-6 2.768760+1 1.826107-6 2.463143+1 1.844042-6 2.242418+1 1.866460-6 2.012352+1 1.888878-6 1.821126+1 1.914748-6 1.637223+1 1.942956-6 1.471062+1 1.975865-6 1.311541+1 2.004073-6 1.198042+1 2.040279-6 1.074781+1 2.067434-6 9.952430+0 2.108166-6 8.928578+0 2.175344-6 7.547740+0 2.254682-6 6.278203+0 2.405721-6 4.311320+0 2.448000-6 3.757048+0 2.471800-6 3.423957+0 2.493039-6 3.097300+0 2.508969-6 2.823070+0 2.520917-6 2.592896+0 2.529877-6 2.402495+0 2.536597-6 2.248787+0 2.541638-6 2.127709+0 2.549198-6 1.938840+0 2.554869-6 1.794281+0 2.559905-6 1.666668+0 2.575638-6 1.306244+0 2.581931-6 1.193945+0 2.583504-6 1.169908+0 2.588224-6 1.108987+0 2.589798-6 1.092747+0 2.592158-6 1.072582+0 2.594517-6 1.057845+0 2.596091-6 1.051284+0 2.598451-6 1.046779+0 2.600811-6 1.049308+0 2.603957-6 1.065106+0 2.606317-6 1.087638+0 2.607104-6 1.097428+0 2.613397-6 1.225005+0 2.615560-6 1.293045+0 2.616593-6 1.330724+0 2.618141-6 1.394131+0 2.620336-6 1.499453+0 2.622049-6 1.595456+0 2.623330-6 1.675976+0 2.625252-6 1.811820+0 2.627578-6 2.002450+0 2.630649-6 2.303130+0 2.634029-6 2.705935+0 2.644457-6 4.506661+0 2.648476-6 5.448939+0 2.652045-6 6.403289+0 2.655311-6 7.368662+0 2.657947-6 8.206637+0 2.661029-6 9.244571+0 2.663966-6 1.028092+1 2.667001-6 1.138656+1 2.669767-6 1.241193+1 2.672534-6 1.344029+1 2.675708-6 1.460483+1 2.678659-6 1.565421+1 2.680233-6 1.619432+1 2.682846-6 1.705252+1 2.685871-6 1.797205+1 2.692037-6 1.953837+1 2.694568-6 2.004137+1 2.699244-6 2.073232+1 2.702487-6 2.102268+1 2.704035-6 2.110621+1 2.706357-6 2.116562+1 2.708679-6 2.114777+1 2.710880-6 2.106217+1 2.712531-6 2.095609+1 2.716245-6 2.059537+1 2.717483-6 2.044040+1 2.723127-6 1.954622+1 2.725546-6 1.908410+1 2.730384-6 1.805725+1 2.736835-6 1.655945+1 2.738790-6 1.609330+1 2.744658-6 1.470499+1 2.760530-6 1.139250+1 2.764607-6 1.069877+1 2.768683-6 1.007460+1 2.775350-6 9.196746+0 2.782017-6 8.478327+0 2.787477-6 7.990836+0 2.795666-6 7.396062+0 2.803855-6 6.926156+0 2.808685-6 6.692937+0 2.815352-6 6.411867+0 2.822019-6 6.168018+0 2.828687-6 5.953013+0 2.835354-6 5.760743+0 2.842021-6 5.586712+0 2.865044-6 5.085309+0 2.885189-6 4.730481+0 2.920442-6 4.214106+0 2.973323-6 3.535106+0 2.999763-6 3.171475+0 3.012984-6 2.963507+0 3.019594-6 2.850479+0 3.026204-6 2.731586+0 3.033652-6 2.592385+0 3.052387-6 2.254381+0 3.058106-6 2.172573+0 3.063747-6 2.112647+0 3.069389-6 2.080793+0 3.071270-6 2.077723+0 3.078792-6 2.110318+0 3.080673-6 2.130887+0 3.086315-6 2.225525+0 3.089437-6 2.300076+0 3.092418-6 2.386335+0 3.095398-6 2.487299+0 3.099295-6 2.640915+0 3.104864-6 2.900055+0 3.118088-6 3.655304+0 3.123927-6 4.018864+0 3.131450-6 4.475717+0 3.132390-6 4.530210+0 3.138973-6 4.884981+0 3.142193-6 5.037351+0 3.148340-6 5.280276+0 3.150930-6 5.361802+0 3.153197-6 5.422402+0 3.157163-6 5.503815+0 3.160138-6 5.544213+0 3.164600-6 5.572259+0 3.169063-6 5.563141+0 3.174704-6 5.503465+0 3.176585-6 5.472915+0 3.184108-6 5.306761+0 3.191630-6 5.088008+0 3.194540-6 4.994228+0 3.203269-6 4.697873+0 3.226080-6 3.951628+0 3.241287-6 3.540247+0 3.257520-6 3.173134+0 3.265538-6 3.013869+0 3.277975-6 2.796829+0 3.282004-6 2.736088+0 3.290063-6 2.632859+0 3.298121-6 2.559584+0 3.306180-6 2.522848+0 3.310209-6 2.519826+0 3.314238-6 2.527549+0 3.318267-6 2.546094+0 3.321289-6 2.566985+0 3.325822-6 2.609033+0 3.330355-6 2.662884+0 3.338413-6 2.782334+0 3.354530-6 3.062764+0 3.362588-6 3.191456+0 3.364603-6 3.219764+0 3.370647-6 3.292186+0 3.373544-6 3.319340+0 3.378615-6 3.353726+0 3.382417-6 3.368027+0 3.388122-6 3.370807+0 3.393826-6 3.352080+0 3.398608-6 3.321391+0 3.402880-6 3.284028+0 3.410939-6 3.194097+0 3.435114-6 2.884516+0 3.440434-6 2.829198+0 3.444845-6 2.790393+0 3.450890-6 2.748612+0 3.457164-6 2.719436+0 3.461347-6 2.707608+0 3.465530-6 2.701264+0 3.473895-6 2.701988+0 3.503173-6 2.750009+0 3.515721-6 2.750305+0 3.524372-6 2.738690+0 3.541722-6 2.696763+0 3.564161-6 2.638878+0 3.587922-6 2.597024+0 3.681238-6 2.481387+0 3.722209-6 2.424777+0 3.767887-6 2.342823+0 3.810681-6 2.257681+0 3.839434-6 2.188898+0 3.892219-6 2.050616+0 3.921861-6 1.986436+0 4.032059-6 1.817589+0 4.131963-6 1.659828+0 4.196803-6 1.555664+0 4.315191-6 1.366147+0 4.418883-6 1.205071+0 4.531566-6 1.037837+0 4.611138-6 9.262308-1 4.753830-6 7.391099-1 4.899334-6 5.672750-1 4.969815-6 4.912094-1 5.062873-6 3.996481-1 5.205543-6 2.771877-1 5.371629-6 1.613233-1 5.487784-6 9.853624-2 5.624766-6 4.464112-2 5.712653-6 2.190551-2 5.847592-6 4.857080-3 5.882792-6 3.869699-3 5.887377-6 3.885143-3 5.948358-6 7.304991-3 6.012739-6 1.734500-2 6.079611-6 3.506438-2 6.144000-6 5.970946-2 6.222844-6 1.005122-1 6.290462-6 1.445416-1 6.389206-6 1.934143-1 6.495952-6 1.630147-1 6.579373-6 1.213232-1 6.660096-6 8.539599-2 6.687722-6 7.437897-2 6.740630-6 5.526342-2 6.792711-6 3.910697-2 6.843979-6 2.595290-2 6.894446-6 1.584249-2 6.993802-6 4.567388-3 7.044594-6 3.801113-3 7.077731-6 5.365869-3 7.090053-6 6.372598-3 7.183297-6 2.148084-2 7.273626-6 4.974365-2 7.361133-6 9.179536-2 7.445905-6 1.480621-1 7.528029-6 2.189943-1 7.615749-6 3.145141-1 7.696785-6 4.227523-1 7.765484-6 5.314644-1 7.848452-6 6.856864-1 7.901716-6 7.997364-1 7.969595-6 9.649037-1 8.101110-6 1.350029+0 8.224406-6 1.802048+0 8.346645-6 2.357157+0 8.452471-6 2.941359+0 8.560517-6 3.656469+0 8.818198-6 6.009987+0 9.039224-6 9.096359+0 9.164510-6 1.151238+1 9.274625-6 1.421784+1 9.324576-6 1.567991+1 9.371405-6 1.721496+1 9.456466-6 2.049727+1 9.536221-6 2.431591+1 9.601165-6 2.814852+1 9.662414-6 3.258835+1 9.712784-6 3.706841+1 9.757186-6 4.188041+1 9.796768-6 4.712442+1 9.831403-6 5.276363+1 9.861708-6 5.885462+1 9.888225-6 6.544466+1 9.911428-6 7.254444+1 9.931730-6 8.010989+1 9.949494-6 8.804179+1 9.965038-6 9.620068+1 9.978639-6 1.044287+2 9.990540-6 1.125702+2 1.001137-5 1.292038+2 1.002699-5 1.438868+2 1.008237-5 2.128730+2 1.009864-5 2.380555+2 1.011724-5 2.690419+2 1.012344-5 2.797810+2 1.014823-5 3.238587+2 1.015133-5 3.294074+2 1.017303-5 3.675731+2 1.018155-5 3.819123+2 1.019782-5 4.074945+2 1.020635-5 4.196590+2 1.021448-5 4.302915+2 1.022262-5 4.398352+2 1.023347-5 4.506532+2 1.024393-5 4.587925+2 1.025826-5 4.659139+2 1.027047-5 4.680279+2 1.027531-5 4.678188+2 1.028616-5 4.651498+2 1.029700-5 4.594333+2 1.030146-5 4.562121+2 1.031163-5 4.470016+2 1.032257-5 4.343191+2 1.033366-5 4.187470+2 1.034478-5 4.006690+2 1.035594-5 3.803384+2 1.036166-5 3.692207+2 1.037254-5 3.469303+2 1.038354-5 3.232584+2 1.038907-5 3.110480+2 1.039774-5 2.916722+2 1.040541-5 2.743843+2 1.041222-5 2.590448+2 1.042098-5 2.394830+2 1.043183-5 2.157458+2 1.044198-5 1.942576+2 1.044578-5 1.864581+2 1.045818-5 1.619736+2 1.046883-5 1.423246+2 1.047503-5 1.315424+2 1.048520-5 1.149480+2 1.049614-5 9.866048+1 1.050539-5 8.619501+1 1.051647-5 7.279302+1 1.052772-5 6.087404+1 1.054011-5 4.961514+1 1.055522-5 3.835082+1 1.058114-5 2.452557+1 1.058919-5 2.144354+1 1.059557-5 1.935021+1 1.060190-5 1.755586+1 1.060819-5 1.602984+1 1.061444-5 1.474988+1 1.062064-5 1.369188+1 1.062678-5 1.283364+1 1.063289-5 1.215483+1 1.063894-5 1.163692+1 1.065095-5 1.101656+1 1.066277-5 1.086099+1 1.067441-5 1.107502+1 1.068587-5 1.158241+1 1.069714-5 1.232259+1 1.071935-5 1.433871+1 1.076169-5 1.965471+1 1.078188-5 2.267745+1 1.082098-5 2.919633+1 1.111430-5 9.508481+1 1.118763-5 1.192378+2 1.128387-5 1.610143+2 1.136121-5 2.059757+2 1.140762-5 2.396539+2 1.144548-5 2.720069+2 1.149185-5 3.192330+2 1.151993-5 3.529216+2 1.154801-5 3.913896+2 1.158602-5 4.529831+2 1.160913-5 4.971272+2 1.163224-5 5.476579+2 1.166032-5 6.198256+2 1.169390-5 7.266652+2 1.171648-5 8.153999+2 1.174456-5 9.515200+2 1.176196-5 1.054380+3 1.178806-5 1.243344+3 1.180111-5 1.357005+3 1.181416-5 1.486022+3 1.183552-5 1.736036+3 1.185687-5 2.043878+3 1.187120-5 2.288842+3 1.189551-5 2.787117+3 1.196153-5 4.798287+3 1.198580-5 5.820541+3 1.199542-5 6.270495+3 1.201379-5 7.198223+3 1.202836-5 7.994853+3 1.204661-5 9.060929+3 1.205952-5 9.852991+3 1.207611-5 1.090640+4 1.208256-5 1.132348+4 1.210192-5 1.258469+4 1.211206-5 1.324285+4 1.212174-5 1.386310+4 1.213510-5 1.469758+4 1.214807-5 1.547091+4 1.216262-5 1.628153+4 1.217478-5 1.689965+4 1.218650-5 1.743521+4 1.219041-5 1.759908+4 1.220658-5 1.819140+4 1.222162-5 1.860679+4 1.223873-5 1.890644+4 1.225331-5 1.900813+4 1.226362-5 1.899284+4 1.227815-5 1.884855+4 1.229057-5 1.861359+4 1.230403-5 1.824724+4 1.231748-5 1.777284+4 1.232838-5 1.731456+4 1.234497-5 1.650560+4 1.235843-5 1.576401+4 1.237323-5 1.487831+4 1.238637-5 1.404448+4 1.239693-5 1.335146+4 1.240326-5 1.292887+4 1.241482-5 1.214991+4 1.242638-5 1.136795+4 1.244113-5 1.037813+4 1.245588-5 9.409964+3 1.247247-5 8.361690+3 1.248907-5 7.370031+3 1.251488-5 5.963156+3 1.252822-5 5.307234+3 1.254095-5 4.728289+3 1.255873-5 3.997146+3 1.257727-5 3.328363+3 1.258963-5 2.933610+3 1.260756-5 2.428418+3 1.261909-5 2.143378+3 1.263061-5 1.887205+3 1.265440-5 1.441618+3 1.270411-5 8.115734+2 1.272667-5 6.338925+2 1.273419-5 5.873244+2 1.274617-5 5.252590+2 1.275975-5 4.719019+2 1.276428-5 4.579646+2 1.277343-5 4.354714+2 1.278029-5 4.234610+2 1.278591-5 4.166542+2 1.279096-5 4.128283+2 1.279385-5 4.116064+2 1.279889-5 4.111304+2 1.280268-5 4.121485+2 1.280836-5 4.158599+2 1.281404-5 4.221620+2 1.282103-5 4.334382+2 1.282542-5 4.424756+2 1.283609-5 4.705876+2 1.284418-5 4.976197+2 1.284599-5 5.043512+2 1.287801-5 6.613025+2 1.291355-5 9.107651+2 1.292677-5 1.019706+3 1.294691-5 1.197440+3 1.295948-5 1.313151+3 1.297005-5 1.411787+3 1.298136-5 1.517326+3 1.299356-5 1.629544+3 1.300439-5 1.726405+3 1.301570-5 1.823383+3 1.303083-5 1.943995+3 1.304121-5 2.019243+3 1.305097-5 2.083429+3 1.306345-5 2.155228+3 1.307510-5 2.210762+3 1.309207-5 2.270225+3 1.310415-5 2.296267+3 1.311490-5 2.307804+3 1.312779-5 2.307215+3 1.314160-5 2.289527+3 1.314704-5 2.277915+3 1.316584-5 2.218749+3 1.317955-5 2.158789+3 1.319458-5 2.079103+3 1.320609-5 2.009926+3 1.322254-5 1.901645+3 1.323972-5 1.780622+3 1.325615-5 1.661501+3 1.327606-5 1.518084+3 1.332527-5 1.202020+3 1.334646-5 1.093939+3 1.336168-5 1.028838+3 1.337317-5 9.867940+2 1.338795-5 9.416155+2 1.340586-5 8.996393+2 1.341576-5 8.819987+2 1.342862-5 8.644815+2 1.344370-5 8.508219+2 1.345673-5 8.441573+2 1.347191-5 8.413060+2 1.348710-5 8.425801+2 1.353107-5 8.593052+2 1.357039-5 8.773815+2 1.360242-5 8.875917+2 1.363255-5 8.917920+2 1.366888-5 8.903569+2 1.369485-5 8.860483+2 1.376668-5 8.673284+2 1.386382-5 8.374199+2 1.391209-5 8.184788+2 1.394518-5 8.020953+2 1.398123-5 7.801703+2 1.400985-5 7.594455+2 1.403136-5 7.419412+2 1.406573-5 7.107997+2 1.409778-5 6.787954+2 1.413308-5 6.412184+2 1.417391-5 5.963315+2 1.423323-5 5.323393+2 1.431692-5 4.529320+2 1.433883-5 4.351170+2 1.437780-5 4.066688+2 1.441935-5 3.806886+2 1.446309-5 3.575984+2 1.449170-5 3.444743+2 1.452901-5 3.292667+2 1.459772-5 3.054290+2 1.466723-5 2.848737+2 1.484300-5 2.401974+2 1.501152-5 2.016528+2 1.506646-5 1.909884+2 1.509309-5 1.866833+2 1.512703-5 1.824035+2 1.513753-5 1.814148+2 1.518750-5 1.794079+2 1.520156-5 1.797583+2 1.523798-5 1.827658+2 1.524729-5 1.840367+2 1.527521-5 1.890745+2 1.528452-5 1.911502+2 1.531244-5 1.984684+2 1.534967-5 2.103280+2 1.540552-5 2.303505+2 1.542414-5 2.369158+2 1.545206-5 2.459998+2 1.546602-5 2.500265+2 1.549453-5 2.568070+2 1.550325-5 2.584331+2 1.554049-5 2.626374+2 1.555150-5 2.629751+2 1.557306-5 2.623942+2 1.559633-5 2.599388+2 1.561029-5 2.575882+2 1.563356-5 2.523121+2 1.564753-5 2.484019+2 1.567545-5 2.391504+2 1.568476-5 2.357056+2 1.571268-5 2.245432+2 1.572199-5 2.206076+2 1.575922-5 2.042638+2 1.579645-5 1.877148+2 1.589824-5 1.470778+2 1.593336-5 1.355289+2 1.596627-5 1.258993+2 1.602800-5 1.105837+2 1.615171-5 8.747669+1 1.621470-5 7.821591+1 1.627011-5 7.116169+1 1.631463-5 6.628510+1 1.635098-5 6.292346+1 1.638400-5 6.045904+1 1.640590-5 5.919317+1 1.642555-5 5.834988+1 1.644280-5 5.786839+1 1.646006-5 5.766095+1 1.647778-5 5.777043+1 1.649202-5 5.812531+1 1.650659-5 5.876460+1 1.651633-5 5.936412+1 1.652716-5 6.020923+1 1.654109-5 6.159881+1 1.655121-5 6.284549+1 1.655881-5 6.392333+1 1.657020-5 6.579017+1 1.658451-5 6.860403+1 1.659173-5 7.024211+1 1.660692-5 7.422959+1 1.662211-5 7.903880+1 1.664148-5 8.656620+1 1.665463-5 9.271519+1 1.666676-5 9.924318+1 1.668495-5 1.108083+2 1.670314-5 1.248547+2 1.672037-5 1.408604+2 1.673061-5 1.518003+2 1.674597-5 1.704770+2 1.677156-5 2.086145+2 1.678692-5 2.364079+2 1.681252-5 2.924633+2 1.687935-5 5.130610+2 1.690571-5 6.375102+2 1.693458-5 8.033786+2 1.696008-5 9.782020+2 1.697182-5 1.068192+3 1.700705-5 1.375445+3 1.702834-5 1.588492+3 1.703138-5 1.620585+3 1.707570-5 2.132472+3 1.711777-5 2.683196+3 1.713303-5 2.893971+3 1.714760-5 3.098418+3 1.716590-5 3.357368+3 1.718628-5 3.644594+3 1.719821-5 3.810239+3 1.721777-5 4.074872+3 1.723886-5 4.345577+3 1.726060-5 4.602637+3 1.728019-5 4.810130+3 1.728610-5 4.867558+3 1.730800-5 5.057079+3 1.732860-5 5.198646+3 1.734816-5 5.297119+3 1.736750-5 5.358152+3 1.740917-5 5.362906+3 1.742499-5 5.319703+3 1.743312-5 5.288163+3 1.746116-5 5.133447+3 1.748097-5 4.984415+3 1.749763-5 4.836458+3 1.751545-5 4.658103+3 1.753547-5 4.436913+3 1.755218-5 4.238423+3 1.757368-5 3.969495+3 1.759453-5 3.698765+3 1.761539-5 3.423491+3 1.763929-5 3.108471+3 1.765788-5 2.867590+3 1.770040-5 2.344406+3 1.771719-5 2.152545+3 1.774923-5 1.814787+3 1.778430-5 1.492803+3 1.783906-5 1.096113+3 1.788623-5 8.574624+2 1.789170-5 8.356658+2 1.793004-5 7.153715+2 1.793816-5 6.967960+2 1.797526-5 6.401048+2 1.798321-5 6.335556+2 1.799229-5 6.283096+2 1.801951-5 6.257809+2 1.802895-5 6.291406+2 1.804164-5 6.367315+2 1.805135-5 6.447432+2 1.806524-5 6.591802+2 1.808309-5 6.822517+2 1.810591-5 7.177079+2 1.815937-5 8.159767+2 1.818913-5 8.727360+2 1.820166-5 8.957800+2 1.822607-5 9.379566+2 1.824867-5 9.726022+2 1.825775-5 9.850764+2 1.828497-5 1.016904+3 1.830468-5 1.034329+3 1.832437-5 1.046821+3 1.834183-5 1.053814+3 1.836162-5 1.057249+3 1.838990-5 1.054521+3 1.841943-5 1.043415+3 1.845803-5 1.019376+3 1.850619-5 9.808823+2 1.858265-5 9.193786+2 1.860148-5 9.064647+2 1.863258-5 8.880485+2 1.866946-5 8.712368+2 1.869744-5 8.620221+2 1.874140-5 8.529187+2 1.875888-5 8.508062+2 1.887116-5 8.486379+2 1.898814-5 8.494789+2 1.905658-5 8.457830+2 1.910079-5 8.410057+2 1.916733-5 8.297370+2 1.919687-5 8.230348+2 1.926186-5 8.044763+2 1.933233-5 7.786876+2 1.940034-5 7.492911+2 1.948903-5 7.074106+2 1.963299-5 6.419921+2 1.967731-5 6.244202+2 1.975923-5 5.960787+2 1.984708-5 5.713694+2 1.997744-5 5.430862+2 2.016040-5 5.135222+2 2.040779-5 4.829399+2 2.071084-5 4.533482+2 2.097052-5 4.320785+2 2.113489-5 4.201487+2 2.148900-5 3.978051+2 2.180378-5 3.806726+2 2.216238-5 3.634181+2 2.271172-5 3.410107+2 2.320732-5 3.238190+2 2.385620-5 3.044204+2 2.438425-5 2.907648+2 2.519300-5 2.727903+2 2.622929-5 2.530585+2 2.835971-5 2.201267+2 2.898486-5 2.108889+2 2.947109-5 2.023770+2 2.973296-5 1.968998+2 2.987933-5 1.943698+2 2.995251-5 1.935824+2 3.002570-5 1.932659+2 3.014464-5 1.939487+2 3.021327-5 1.950311+2 3.033823-5 1.980176+2 3.053798-5 2.034118+2 3.061117-5 2.048195+2 3.067731-5 2.055956+2 3.078708-5 2.057094+2 3.090569-5 2.043066+2 3.105027-5 2.012036+2 3.130783-5 1.954051+2 3.146403-5 1.931530+2 3.163035-5 1.918393+2 3.212209-5 1.895841+2 3.269547-5 1.857453+2 3.308801-5 1.822620+2 3.358511-5 1.775201+2 3.630781-5 1.563950+2 3.750803-5 1.479017+2 3.857003-5 1.405812+2 4.000000-5 1.307601+2 4.131971-5 1.218658+2 4.276486-5 1.121001+2 4.403805-5 1.034505+2 4.553955-5 9.300888+1 4.687823-5 8.352312+1 4.841724-5 7.240636+1 4.926064-5 6.619789+1 5.038246-5 5.780742+1 5.104796-5 5.276814+1 5.198126-5 4.561865+1 5.285623-5 3.886043+1 5.333732-5 3.514947+1 5.435436-5 2.741772+1 5.516712-5 2.142059+1 5.584238-5 1.660672+1 5.648077-5 1.230601+1 5.672180-5 1.077262+1 5.707008-5 8.671211+0 5.743013-5 6.670459+0 5.755987-5 5.999714+0 5.796560-5 4.109682+0 5.818446-5 3.246583+0 5.834230-5 2.707256+0 5.847089-5 2.327380+0 5.861410-5 1.976212+0 5.867192-5 1.858419+0 5.875732-5 1.712313+0 5.890053-5 1.550467+0 5.904375-5 1.508875+0 5.912807-5 1.549233+0 5.918696-5 1.609137+0 5.924874-5 1.702170+0 5.933017-5 1.875382+0 5.947339-5 2.332183+0 5.961660-5 3.001079+0 5.969664-5 3.472936+0 5.990303-5 5.017599+0 5.999051-5 5.808220+0 6.008953-5 6.788876+0 6.013745-5 7.292075+0 6.028439-5 8.925206+0 6.036680-5 9.881843+0 6.044922-5 1.085149+1 6.050471-5 1.150537+1 6.060183-5 1.263951+1 6.067467-5 1.347360+1 6.073585-5 1.415921+1 6.078393-5 1.468721+1 6.083856-5 1.527530+1 6.089319-5 1.585127+1 6.104307-5 1.738348+1 6.139001-5 2.105476+1 6.151651-5 2.266296+1 6.159507-5 2.379568+1 6.170472-5 2.559072+1 6.180478-5 2.748053+1 6.194856-5 3.067455+1 6.209076-5 3.444261+1 6.226096-5 3.981258+1 6.252485-5 5.015848+1 6.291834-5 7.111434+1 6.317872-5 8.990589+1 6.349410-5 1.201038+2 6.419594-5 2.304041+2 6.442494-5 2.830453+2 6.458742-5 3.260271+2 6.472871-5 3.672296+2 6.488681-5 4.174370+2 6.502617-5 4.650404+2 6.519291-5 5.256060+2 6.529441-5 5.640568+2 6.539488-5 6.030015+2 6.553600-5 6.586461+2 6.566249-5 7.087799+2 6.579886-5 7.622450+2 6.593523-5 8.141893+2 6.606282-5 8.605998+2 6.617258-5 8.982944+2 6.631826-5 9.444886+2 6.645564-5 9.835233+2 6.659774-5 1.018942+3 6.670737-5 1.042767+3 6.682259-5 1.064584+3 6.699149-5 1.090929+3 6.715849-5 1.111013+3 6.737036-5 1.129212+3 6.758573-5 1.140895+3 6.781852-5 1.147444+3 6.801021-5 1.149111+3 6.844858-5 1.144394+3 6.898353-5 1.134876+3 6.925305-5 1.135150+3 6.948569-5 1.141000+3 6.968085-5 1.150851+3 7.000000-5 1.177330+3 7.031327-5 1.214749+3 7.126460-5 1.359558+3 7.163726-5 1.411253+3 7.198434-5 1.451599+3 7.231029-5 1.482597+3 7.276335-5 1.516598+3 7.307453-5 1.535523+3 7.380798-5 1.571990+3 7.447596-5 1.599177+3 7.520000-5 1.621147+3 7.574983-5 1.630602+3 7.622500-5 1.633285+3 7.684549-5 1.628790+3 7.732985-5 1.618154+3 7.778860-5 1.602003+3 7.822441-5 1.581917+3 7.884844-5 1.547618+3 7.983665-5 1.486283+3 8.118670-5 1.402636+3 8.240000-5 1.339485+3 8.369602-5 1.285383+3 8.477711-5 1.247725+3 8.622138-5 1.204905+3 8.928495-5 1.130828+3 9.660509-5 9.914746+2 1.035142-4 8.875328+2 1.098711-4 8.113746+2 1.198400-4 7.185556+2 1.312200-4 6.340353+2 1.377579-4 5.898535+2 1.398572-4 5.779397+2 1.405578-4 5.723118+2 1.431310-4 5.460942+2 1.440000-4 5.404504+2 1.448535-4 5.384200+2 1.457348-4 5.391487+2 1.473691-4 5.422241+2 1.499484-4 5.416144+2 1.527599-4 5.355330+2 1.576942-4 5.205361+2 1.641588-4 4.988396+2 1.700249-4 4.781361+2 1.768817-4 4.532246+2 1.807490-4 4.376983+2 1.824178-4 4.339574+2 1.853225-4 4.325297+2 1.899673-4 4.272906+2 1.949844-4 4.179429+2 1.992764-4 4.086189+2 2.032146-4 3.996074+2 2.091735-4 3.855395+2 2.141327-4 3.735727+2 2.194204-4 3.604168+2 2.263306-4 3.423191+2 2.338000-4 3.222031+2 2.409854-4 3.061017+2 2.500687-4 2.822381+2 2.546244-4 2.684539+2 2.606699-4 2.488202+2 2.622730-4 2.447742+2 2.649097-4 2.400006+2 2.685710-4 2.339177+2 2.741955-4 2.238525+2 2.766000-4 2.188912+2 2.787297-4 2.136852+2 2.807000-4 2.083652+2 2.833938-4 2.006390+2 2.860000-4 1.928847+2 2.890000-4 1.837742+2 2.920000-4 1.745970+2 2.964688-4 1.610440+2 3.034215-4 1.409598+2 3.098015-4 1.249167+2 3.134850-4 1.173039+2 3.159437-4 1.130848+2 3.177244-4 1.105261+2 3.202474-4 1.076778+2 3.239954-4 1.051900+2 3.271859-4 1.048466+2 3.322182-4 1.077545+2 3.389941-4 1.177598+2 3.429942-4 1.269586+2 3.457471-4 1.348562+2 3.500000-4 1.493561+2 3.525000-4 1.591035+2 3.596320-4 1.916109+2 3.640000-4 2.148152+2 3.696412-4 2.477110+2 3.749451-4 2.809452+2 3.789767-4 3.073810+2 3.823842-4 3.304020+2 3.880000-4 3.693091+2 3.940000-4 4.117556+2 4.000000-4 4.548663+2 4.077262-4 5.109361+2 4.158371-4 5.699240+2 4.244363-4 6.319621+2 4.326601-4 6.901077+2 4.427508-4 7.587257+2 4.532361-4 8.262632+2 4.646265-4 8.954422+2 4.771394-4 9.667060+2 4.938869-4 1.053896+3 5.084520-4 1.121171+3 5.228446-4 1.178674+3 5.317957-4 1.209020+3 5.439229-4 1.241883+3 5.564724-4 1.267973+3 5.602640-4 1.282055+3 5.641128-4 1.304011+3 5.741357-4 1.380359+3 5.794192-4 1.413534+3 5.905719-4 1.471029+3 5.956621-4 1.505491+3 6.044419-4 1.578145+3 6.127045-4 1.640581+3 6.259781-4 1.719136+3 6.438386-4 1.802059+3 6.619209-4 1.868093+3 6.880414-4 1.948114+3 7.134660-4 2.012675+3 7.422170-4 2.074164+3 7.706044-4 2.120610+3 8.036338-4 2.150047+3 8.088990-4 2.158152+3 8.129603-4 2.168919+3 8.242934-4 2.217295+3 8.399783-4 2.289501+3 8.511380-4 2.328993+3 8.718115-4 2.381974+3 9.015711-4 2.437914+3 9.345983-4 2.483537+3 9.951344-4 2.545192+3 1.021821-3 2.578686+3 1.056303-3 2.605490+3 1.093369-3 2.621317+3 1.114727-3 2.626063+3 1.130010-3 2.636282+3 1.161840-3 2.673463+3 1.202980-3 2.700916+3 1.252716-3 2.719619+3 1.320758-3 2.734304+3 1.394326-3 2.734603+3 1.469846-3 2.723917+3 1.550104-3 2.705684+3 1.642640-3 2.677805+3 1.724456-3 2.644769+3 1.826616-3 2.595811+3 1.944000-3 2.533243+3 2.063110-3 2.461516+3 2.174422-3 2.379529+3 2.279551-3 2.293338+3 2.383005-3 2.199556+3 2.475551-3 2.104221+3 2.547953-3 2.021145+3 2.617506-3 1.932179+3 2.677953-3 1.844873+3 2.730549-3 1.757888+3 2.775994-3 1.671244+3 2.810071-3 1.596532+3 2.843129-3 1.512549+3 2.871938-3 1.425663+3 2.893649-3 1.346659+3 2.911196-3 1.270109+3 2.925483-3 1.198120+3 2.935601-3 1.143226+3 2.952718-3 1.052417+3 2.961001-3 1.015728+3 2.967077-3 9.947213+2 2.970854-3 9.849034+2 2.974647-3 9.779227+2 2.978251-3 9.742037+2 2.982460-3 9.736969+2 2.986269-3 9.769482+2 2.991287-3 9.866991+2 2.995452-3 9.994453+2 3.001638-3 1.025700+3 3.007655-3 1.058663+3 3.012957-3 1.092612+3 3.030147-3 1.219141+3 3.038327-3 1.279187+3 3.044090-3 1.318375+3 3.051692-3 1.364349+3 3.059376-3 1.403082+3 3.067480-3 1.435270+3 3.077590-3 1.464417+3 3.086694-3 1.483199+3 3.103689-3 1.513362+3 3.109723-3 1.526721+3 3.116975-3 1.547017+3 3.123502-3 1.570281+3 3.132100-3 1.609049+3 3.140285-3 1.654491+3 3.155071-3 1.753580+3 3.170245-3 1.866144+3 3.177732-3 1.920879+3 3.187731-3 1.989490+3 3.199050-3 2.058231+3 3.210571-3 2.117113+3 3.220000-3 2.157267+3 3.237195-3 2.214937+3 3.259840-3 2.269429+3 3.285610-3 2.314490+3 3.318369-3 2.358138+3 3.352766-3 2.394168+3 3.388442-3 2.423151+3 3.432903-3 2.448226+3 3.467369-3 2.458672+3 3.510077-3 2.459210+3 3.540079-3 2.448969+3 3.596597-3 2.415745+3 3.610086-3 2.414914+3 3.624477-3 2.422264+3 3.636728-3 2.436311+3 3.657307-3 2.475013+3 3.699347-3 2.580876+3 3.715352-3 2.617572+3 3.733078-3 2.651650+3 3.757686-3 2.687937+3 3.784154-3 2.716326+3 3.822557-3 2.745797+3 3.861971-3 2.767385+3 3.917489-3 2.788531+3 3.971121-3 2.801565+3 4.034781-3 2.808976+3 4.086096-3 2.808693+3 4.149663-3 2.800818+3 4.225248-3 2.776941+3 4.279885-3 2.759615+3 4.315970-3 2.763012+3 4.417408-3 2.808821+3 4.457174-3 2.815998+3 4.529932-3 2.811152+3 4.601317-3 2.803825+3 4.642361-3 2.812315+3 4.748858-3 2.845618+3 4.796995-3 2.851006+3 4.927982-3 2.849914+3 5.113874-3 2.831595+3 5.378052-3 2.786822+3 5.649375-3 2.730215+3 6.073478-3 2.630635+3 6.484478-3 2.527782+3 6.963884-3 2.405976+3 7.477389-3 2.278172+3 8.104943-3 2.129320+3 8.759917-3 1.983327+3 9.549926-3 1.819691+3 1.041541-2 1.657165+3 1.084890-2 1.581305+3 1.136032-2 1.495797+3 1.180252-2 1.424697+3 1.224530-2 1.355900+3 1.263292-2 1.296896+3 1.294333-2 1.249983+3 1.324363-2 1.204490+3 1.350906-2 1.163795+3 1.373819-2 1.127745+3 1.393671-2 1.095189+3 1.410840-2 1.065478+3 1.425300-2 1.038697+3 1.436300-2 1.016588+3 1.447295-2 9.920217+2 1.456070-2 9.696289+2 1.463081-2 9.492543+2 1.473689-2 9.139287+2 1.487042-2 8.685504+2 1.493412-2 8.526560+2 1.497019-2 8.468996+2 1.501666-2 8.436317+2 1.507258-2 8.460609+2 1.513925-2 8.568143+2 1.531379-2 9.017100+2 1.535949-2 9.123721+2 1.541301-2 9.229546+2 1.546734-2 9.315285+2 1.554096-2 9.400605+2 1.562909-2 9.466724+2 1.572894-2 9.508957+2 1.584790-2 9.529049+2 1.597064-2 9.525752+2 1.613933-2 9.493320+2 1.642494-2 9.386389+2 1.662301-2 9.282939+2 1.678915-2 9.179910+2 1.698244-2 9.041354+2 1.713665-2 8.914445+2 1.727565-2 8.783172+2 1.740524-2 8.639921+2 1.758117-2 8.400231+2 1.780131-2 8.073772+2 1.788988-2 7.985167+2 1.797178-2 7.947000+2 1.806044-2 7.952359+2 1.832497-2 8.074631+2 1.865098-2 8.169972+2 1.901098-2 8.382514+2 1.919899-2 8.444911+2 1.946415-2 8.463785+2 1.982567-2 8.428301+2 2.041738-2 8.302730+2 2.089296-2 8.171395+2 2.182357-2 7.872971+2 2.278405-2 7.544626+2 2.394611-2 7.145510+2 2.556102-2 6.616527+2 2.754229-2 6.026630+2 3.054921-2 5.255182+2 3.419352-2 4.494573+2 3.731931-2 3.960629+2 4.007708-2 3.556679+2 4.531292-2 2.930247+2 5.142413-2 2.385716+2 5.588807-2 2.073306+2 6.292210-2 1.685010+2 7.393727-2 1.260713+2 7.990057-2 1.091509+2 8.586636-2 9.492993+1 9.024358-2 8.568079+1 9.335695-2 7.943192+1 9.560028-2 7.489213+1 9.709291-2 7.168175+1 9.776089-2 7.011515+1 9.832396-2 6.867452+1 9.913663-2 6.630588+1 1.005150-1 6.190383+1 1.009622-1 6.086187+1 1.013958-1 6.029340+1 1.017442-1 6.019019+1 1.021946-1 6.047359+1 1.029509-1 6.156815+1 1.036335-1 6.260337+1 1.042971-1 6.329845+1 1.051775-1 6.371613+1 1.064397-1 6.370616+1 1.080710-1 6.319560+1 1.101086-1 6.218002+1 1.123587-1 6.084403+1 1.152326-1 5.898403+1 1.206534-1 5.534473+1 1.277461-1 5.072321+1 1.364583-1 4.558724+1 1.517386-1 3.809867+1 1.760722-1 2.935890+1 2.044678-1 2.244801+1 2.399729-1 1.674533+1 2.930459-1 1.154069+1 3.633373-1 7.681338+0 4.930052-1 4.273315+0 6.978306-1 2.175313+0 1.127505+0 8.493124-1 1.776032+0 3.458964-1 3.543651+0 8.745163-2 1.070165+1 9.607031-3 3.231848+1 1.053496-3 9.760024+1 1.155148-4 2.947480+2 1.266596-5 8.901248+2 1.388795-6 3.162278+3 1.100373-7 1.000000+4 1.100373-8 3.162278+4 1.100373-9 1.000000+5 1.10037-10 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.584900-6 1.258900-6 4.096800-6 1.584900-6 6.493000-6 1.995300-6 1.029100-5 2.511900-6 1.631000-5 3.162300-6 2.584900-5 3.981100-6 4.096700-5 5.011900-6 6.492900-5 6.309600-6 1.029000-4 7.943300-6 1.630900-4 1.000000-5 2.584800-4 1.258900-5 4.096500-4 1.584900-5 6.489100-4 1.995300-5 1.027700-3 2.511900-5 1.627900-3 3.162300-5 2.579000-3 3.981100-5 4.086100-3 5.011900-5 6.473300-3 6.309600-5 1.025400-2 7.943300-5 1.621700-2 1.000000-4 2.563600-2 1.258900-4 4.048000-2 1.584900-4 6.376100-2 1.995300-4 1.000500-1 2.511900-4 1.561400-1 3.162300-4 2.416400-1 3.981100-4 3.685000-1 5.011900-4 5.464400-1 6.309600-4 7.876200-1 7.943300-4 1.104400+0 1.000000-3 1.516400+0 1.258900-3 2.056400+0 1.584900-3 2.763800+0 1.995300-3 3.675200+0 2.511900-3 4.816600+0 3.162300-3 6.213600+0 3.981100-3 7.850500+0 5.011900-3 9.679500+0 6.309600-3 1.172300+1 7.943300-3 1.406600+1 1.000000-2 1.671100+1 1.258900-2 1.952300+1 1.584900-2 2.237900+1 1.995300-2 2.520000+1 2.511900-2 2.795900+1 3.162300-2 3.057600+1 3.981100-2 3.286000+1 5.011900-2 3.462900+1 6.309600-2 3.577400+1 7.943300-2 3.629300+1 1.000000-1 3.621300+1 1.258900-1 3.552800+1 1.584900-1 3.437100+1 1.995300-1 3.278900+1 2.511900-1 3.092400+1 3.162300-1 2.887400+1 3.981100-1 2.672200+1 5.011900-1 2.453500+1 6.309600-1 2.236100+1 7.943300-1 2.023900+1 1.000000+0 1.818600+1 1.258900+0 1.624600+1 1.584900+0 1.441000+1 1.995300+0 1.269600+1 2.511900+0 1.111300+1 3.162300+0 9.666500+0 3.981100+0 8.357700+0 5.011900+0 7.185400+0 6.309600+0 6.144400+0 7.943300+0 5.229700+0 1.000000+1 4.431000+0 1.258900+1 3.739200+0 1.584900+1 3.143700+0 1.995300+1 2.634300+0 2.511900+1 2.200800+0 3.162300+1 1.833700+0 3.981100+1 1.524100+0 5.011900+1 1.263900+0 6.309600+1 1.046100+0 7.943300+1 8.642100-1 1.000000+2 7.127700-1 1.258900+2 5.869800-1 1.584900+2 4.827200-1 1.995300+2 3.964800-1 2.511900+2 3.252600-1 3.162300+2 2.665400-1 3.981100+2 2.182100-1 5.011900+2 1.784700-1 6.309600+2 1.458400-1 7.943300+2 1.190800-1 1.000000+3 9.715600-2 1.258900+3 7.921000-2 1.584900+3 6.453500-2 1.995300+3 5.254500-2 2.511900+3 4.275700-2 3.162300+3 3.477200-2 3.981100+3 2.826200-2 5.011900+3 2.295900-2 6.309600+3 1.864200-2 7.943300+3 1.513000-2 1.000000+4 1.227300-2 1.258900+4 9.951800-3 1.584900+4 8.066000-3 1.995300+4 6.535000-3 2.511900+4 5.292500-3 3.162300+4 4.284700-3 3.981100+4 3.467500-3 5.011900+4 2.805200-3 6.309600+4 2.268700-3 7.943300+4 1.834200-3 1.000000+5 1.482400-3 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510168-4 3.162278-4 3.159563-4 3.981072-4 3.976792-4 5.011872-4 5.005155-4 6.309573-4 6.299056-4 7.943282-4 7.926834-4 1.000000-3 9.974246-4 1.258925-3 1.254881-3 1.584893-3 1.578518-3 1.995262-3 1.985254-3 2.511886-3 2.496169-3 3.162278-3 3.137638-3 3.981072-3 3.942576-3 5.011872-3 4.951868-3 6.309573-3 6.216156-3 7.943282-3 7.797650-3 1.000000-2 9.772647-3 1.258925-2 1.223513-2 1.584893-2 1.530160-2 1.995262-2 1.911023-2 2.511886-2 2.382371-2 3.162278-2 2.963846-2 3.981072-2 3.679066-2 5.011872-2 4.555742-2 6.309573-2 5.626653-2 7.943282-2 6.929027-2 1.000000-1 8.506023-2 1.258925-1 1.041330-1 1.584893-1 1.269741-1 1.995262-1 1.543757-1 2.511886-1 1.871058-1 3.162278-1 2.260299-1 3.981072-1 2.721709-1 5.011872-1 3.267458-1 6.309573-1 3.911593-1 7.943282-1 4.670305-1 1.000000+0 5.565987-1 1.258925+0 6.617207-1 1.584893+0 7.860838-1 1.995262+0 9.331781-1 2.511886+0 1.107764+0 3.162278+0 1.315500+0 3.981072+0 1.563486+0 5.011872+0 1.860384+0 6.309573+0 2.216580+0 7.943282+0 2.645174+0 1.000000+1 3.161750+0 1.258925+1 3.785962+0 1.584893+1 4.541015+0 1.995262+1 5.456266+0 2.511886+1 6.567096+0 3.162278+1 7.917100+0 3.981072+1 9.559562+0 5.011872+1 1.156035+1 6.309573+1 1.400008+1 7.943282+1 1.697774+1 1.000000+2 2.061514+1 1.258925+2 2.506245+1 1.584893+2 3.050381+1 1.995262+2 3.716741+1 2.511886+2 4.533260+1 3.162278+2 5.534521+1 3.981072+2 6.762974+1 5.011872+2 8.271305+1 6.309573+2 1.012426+2 7.943282+2 1.240188+2 1.000000+3 1.520280+2 1.258925+3 1.864937+2 1.584893+3 2.289223+2 1.995262+3 2.811705+2 2.511886+3 3.455615+2 3.162278+3 4.249316+2 3.981072+3 5.228229+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88189-10 1.995262-5 1.090609-9 2.511886-5 1.728471-9 3.162278-5 2.739481-9 3.981072-5 4.341847-9 5.011872-5 6.881028-9 6.309573-5 1.090491-8 7.943282-5 1.727472-8 1.000000-4 2.736977-8 1.258925-4 4.335634-8 1.584893-4 6.865612-8 1.995262-4 1.086551-7 2.511886-4 1.718617-7 3.162278-4 2.715110-7 3.981072-4 4.279804-7 5.011872-4 6.716941-7 6.309573-4 1.051700-6 7.943282-4 1.644829-6 1.000000-3 2.575428-6 1.258925-3 4.043927-6 1.584893-3 6.375629-6 1.995262-3 1.000824-5 2.511886-3 1.571726-5 3.162278-3 2.463951-5 3.981072-3 3.849539-5 5.011872-3 6.000453-5 6.309573-3 9.341722-5 7.943282-3 1.456322-4 1.000000-2 2.273531-4 1.258925-2 3.541246-4 1.584893-2 5.473274-4 1.995262-2 8.423920-4 2.511886-2 1.295159-3 3.162278-2 1.984318-3 3.981072-2 3.020061-3 5.011872-2 4.561302-3 6.309573-2 6.829201-3 7.943282-2 1.014256-2 1.000000-1 1.493977-2 1.258925-1 2.175955-2 1.584893-1 3.151525-2 1.995262-1 4.515057-2 2.511886-1 6.408282-2 3.162278-1 9.019785-2 3.981072-1 1.259363-1 5.011872-1 1.744414-1 6.309573-1 2.397981-1 7.943282-1 3.272978-1 1.000000+0 4.434013-1 1.258925+0 5.972047-1 1.584893+0 7.988094-1 1.995262+0 1.062084+0 2.511886+0 1.404122+0 3.162278+0 1.846778+0 3.981072+0 2.417586+0 5.011872+0 3.151488+0 6.309573+0 4.092994+0 7.943282+0 5.298109+0 1.000000+1 6.838250+0 1.258925+1 8.803292+0 1.584893+1 1.130792+1 1.995262+1 1.449636+1 2.511886+1 1.855177+1 3.162278+1 2.370568+1 3.981072+1 3.025115+1 5.011872+1 3.855837+1 6.309573+1 4.909565+1 7.943282+1 6.245509+1 1.000000+2 7.938486+1 1.258925+2 1.008301+2 1.584893+2 1.279855+2 1.995262+2 1.623588+2 2.511886+2 2.058560+2 3.162278+2 2.608826+2 3.981072+2 3.304774+2 5.011872+2 4.184742+2 6.309573+2 5.297147+2 7.943282+2 6.703094+2 1.000000+3 8.479720+2 1.258925+3 1.072432+3 1.584893+3 1.355971+3 1.995262+3 1.714092+3 2.511886+3 2.166325+3 3.162278+3 2.737346+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 3.800000-6 2.294960+6 4.216965-6 1.620373+6 4.623810-6 1.199014+6 5.011872-6 9.272019+5 5.432503-6 7.215856+5 5.888437-6 5.655127+5 6.382635-6 4.461267+5 6.918310-6 3.541894+5 7.500000-6 2.828630+5 8.222426-6 2.205911+5 9.015711-6 1.731663+5 1.000000-5 1.329150+5 1.135011-5 9.694824+4 1.333521-5 6.538353+4 1.414000-5 5.676514+4 1.414000-5 7.833738+7 1.440000-5 7.055512+7 1.480000-5 6.083445+7 1.531087-5 5.100253+7 1.590000-5 4.228198+7 1.640590-5 3.642590+7 1.698244-5 3.109405+7 1.770000-5 2.591491+7 1.850000-5 2.150428+7 1.927525-5 1.819990+7 1.928000-5 1.818229+7 1.928000-5 5.094888+7 1.950000-5 4.774175+7 1.990000-5 4.274977+7 2.018366-5 3.971243+7 2.020000-5 3.954723+7 2.065380-5 3.543231+7 2.110000-5 3.201468+7 2.113489-5 3.177512+7 2.162719-5 2.865305+7 2.213095-5 2.592931+7 2.238721-5 2.470673+7 2.270000-5 2.332602+7 2.344229-5 2.051063+7 2.371374-5 1.961791+7 2.426610-5 1.796642+7 2.454709-5 1.721637+7 2.519300-5 1.563768+7 2.540973-5 1.516253+7 2.610000-5 1.378330+7 2.691535-5 1.238915+7 2.730000-5 1.179452+7 2.754229-5 1.144713+7 2.851018-5 1.019820+7 2.884032-5 9.821457+6 3.019952-5 8.448702+6 3.054921-5 8.146188+6 3.230000-5 6.828200+6 3.235937-5 6.789328+6 3.264000-5 6.609503+6 3.264000-5 7.066501+6 3.330000-5 6.644765+6 3.349654-5 6.524920+6 3.427678-5 6.080160+6 3.507519-5 5.664275+6 3.550000-5 5.461033+6 3.630781-5 5.099408+6 3.715352-5 4.754165+6 3.801894-5 4.431351+6 4.000000-5 3.799396+6 4.220000-5 3.232596+6 4.265795-5 3.129035+6 4.400000-5 2.852253+6 4.466836-5 2.726816+6 4.623810-5 2.459884+6 4.731513-5 2.297112+6 4.841724-5 2.146672+6 4.897788-5 2.075433+6 5.011872-5 1.938940+6 5.188000-5 1.751499+6 5.370318-5 1.584718+6 5.432503-5 1.532954+6 5.559043-5 1.434465+6 5.623413-5 1.387832+6 5.754399-5 1.300161+6 5.956621-5 1.179528+6 6.025596-5 1.142051+6 6.165950-5 1.071612+6 6.352000-5 9.875365+5 6.352000-5 3.322798+6 6.356000-5 3.406795+6 6.370000-5 3.668396+6 6.385000-5 3.995814+6 6.400000-5 4.381956+6 6.415000-5 4.834063+6 6.430000-5 5.367956+6 6.450000-5 6.225720+6 6.470000-5 7.294693+6 6.493000-5 8.851460+6 6.500000-5 9.415220+6 6.515000-5 1.076108+7 6.540000-5 1.359271+7 6.560000-5 1.651752+7 6.570000-5 1.825268+7 6.577000-5 1.941969+7 6.600000-5 2.463943+7 6.606934-5 2.642009+7 6.650000-5 3.270650+7 6.657000-5 3.386172+7 6.710000-5 3.833716+7 6.715000-5 3.856863+7 6.780000-5 3.989157+7 6.868000-5 3.984415+7 6.873000-5 3.967191+7 6.873000-5 4.123395+7 6.876000-5 4.118478+7 6.890000-5 4.089805+7 6.905000-5 4.063381+7 6.918310-5 4.044412+7 6.925000-5 4.036213+7 6.941200-5 4.022298+7 6.955000-5 4.016967+7 6.975500-5 4.022844+7 6.998000-5 4.052252+7 7.000000-5 4.056362+7 7.015000-5 4.094518+7 7.022000-5 4.118212+7 7.040300-5 4.175391+7 7.050000-5 4.210124+7 7.080000-5 4.346220+7 7.090000-5 4.435796+7 7.100000-5 4.495901+7 7.110000-5 4.534261+7 7.220000-5 4.583081+7 7.232000-5 4.568645+7 7.244360-5 4.552155+7 7.357000-5 4.456553+7 7.413102-5 4.372637+7 7.500000-5 4.257218+7 7.510000-5 4.245015+7 7.520000-5 4.226725+7 7.560000-5 4.134175+7 7.620000-5 3.988509+7 7.673615-5 3.873503+7 7.690000-5 3.839429+7 7.700000-5 3.820026+7 7.762471-5 3.644230+7 7.780000-5 3.564957+7 7.852356-5 3.358840+7 7.920000-5 3.183992+7 7.950000-5 3.094494+7 8.000000-5 2.959825+7 8.035261-5 2.875832+7 8.060000-5 2.818629+7 8.128305-5 2.675623+7 8.190000-5 2.559168+7 8.222426-5 2.502663+7 8.239100-5 2.474189+7 8.270000-5 2.422901+7 8.400000-5 2.229043+7 8.413951-5 2.210105+7 8.570000-5 2.010926+7 8.609938-5 1.964612+7 8.709636-5 1.854522+7 8.810489-5 1.750653+7 9.120108-5 1.470933+7 9.440609-5 1.236288+7 9.660509-5 1.100721+7 9.800000-5 1.024031+7 1.011579-4 8.746795+6 1.023293-4 8.260919+6 1.035142-4 7.808014+6 1.040000-4 7.631169+6 1.080000-4 6.362359+6 1.109175-4 5.606962+6 1.122018-4 5.309676+6 1.150000-4 4.726279+6 1.174898-4 4.274435+6 1.198400-4 3.895992+6 1.230269-4 3.446907+6 1.273503-4 2.931407+6 1.303167-4 2.629845+6 1.318257-4 2.491330+6 1.333521-4 2.359457+6 1.364583-4 2.116901+6 1.428894-4 1.702667+6 1.439100-4 1.646656+6 1.439100-4 2.319164+6 1.446000-4 2.260223+6 1.454000-4 2.197453+6 1.462177-4 2.138344+6 1.470000-4 2.086380+6 1.481000-4 2.020687+6 1.488000-4 1.977985+6 1.505000-4 1.875379+6 1.513561-4 1.828314+6 1.520000-4 1.793900+6 1.531087-4 1.738277+6 1.540000-4 1.695152+6 1.566751-4 1.578014+6 1.570000-4 1.564529+6 1.603245-4 1.438308+6 1.621810-4 1.375369+6 1.640590-4 1.316231+6 1.650000-4 1.288543+6 1.678804-4 1.209260+6 1.690000-4 1.180844+6 1.720000-4 1.110267+6 1.737801-4 1.071947+6 1.740000-4 1.067396+6 1.780000-4 9.906395+5 1.800000-4 9.558793+5 1.810000-4 9.395256+5 1.810000-4 1.227589+6 1.820000-4 1.205712+6 1.840772-4 1.162430+6 1.850000-4 1.143928+6 1.862087-4 1.120705+6 1.883649-4 1.080991+6 1.900000-4 1.052781+6 1.927525-4 1.008491+6 1.950000-4 9.743780+5 1.980000-4 9.327764+5 2.000000-4 9.069865+5 2.018366-4 8.849883+5 2.041738-4 8.589142+5 2.060000-4 8.397611+5 2.089296-4 8.108455+5 2.113489-4 7.886445+5 2.137962-4 7.674759+5 2.150000-4 7.578462+5 2.162719-4 7.478928+5 2.190000-4 7.275996+5 2.213095-4 7.115504+5 2.238721-4 6.947353+5 2.240000-4 6.939315+5 2.264644-4 6.791601+5 2.290868-4 6.645318+5 2.300000-4 6.597143+5 2.318700-4 6.500618+5 2.323400-4 6.477301+5 2.323400-4 6.998071+5 2.329000-4 6.976077+5 2.338000-4 6.946736+5 2.344229-4 6.925132+5 2.350000-4 6.903858+5 2.355000-4 6.886351+5 2.370000-4 6.829608+5 2.371374-4 6.824061+5 2.385000-4 6.772637+5 2.400000-4 6.713273+5 2.405000-4 6.694329+5 2.426610-4 6.609680+5 2.430000-4 6.596281+5 2.454709-4 6.502671+5 2.483133-4 6.401388+5 2.511886-4 6.304743+5 2.540973-4 6.212886+5 2.570396-4 6.125298+5 2.580000-4 6.098288+5 2.600160-4 6.044278+5 2.620700-4 5.991967+5 2.620700-4 8.598351+5 2.622000-4 8.521918+5 2.626000-4 8.348930+5 2.630268-4 8.191431+5 2.635000-4 8.043389+5 2.639000-4 7.936925+5 2.643000-4 7.843437+5 2.648500-4 7.733210+5 2.652000-4 7.672571+5 2.657000-4 7.596231+5 2.660725-4 7.546287+5 2.662000-4 7.529545+5 2.670000-4 7.437058+5 2.678500-4 7.354369+5 2.685000-4 7.300391+5 2.691535-4 7.253321+5 2.693000-4 7.242966+5 2.699500-4 7.202607+5 2.699500-4 9.122181+5 2.700000-4 9.088730+5 2.700100-4 9.082172+5 2.703000-4 8.963778+5 2.706000-4 8.856468+5 2.709000-4 8.761507+5 2.710000-4 8.733250+5 2.713000-4 8.652936+5 2.718000-4 8.539351+5 2.722701-4 8.447945+5 2.728000-4 8.363942+5 2.730000-4 8.336044+5 2.732000-4 8.308623+5 2.736000-4 8.259424+5 2.737000-4 8.247956+5 2.745000-4 8.167747+5 2.750000-4 8.124250+5 2.753000-4 8.100435+5 2.762000-4 8.039747+5 2.765000-4 8.022396+5 2.770000-4 7.996768+5 2.780000-4 7.953990+5 2.790000-4 7.924012+5 2.795200-4 7.911304+5 2.800000-4 7.902177+5 2.807000-4 7.892920+5 2.815000-4 7.886839+5 2.818383-4 7.886076+5 2.823000-4 7.885390+5 2.830000-4 7.888926+5 2.840500-4 7.899499+5 2.845800-4 7.908426+5 2.858000-4 7.934698+5 2.860000-4 7.940212+5 2.873000-4 7.982053+5 2.875000-4 7.989637+5 2.884032-4 8.028116+5 2.890000-4 8.054217+5 2.905000-4 8.135550+5 2.908000-4 8.153489+5 2.917427-4 8.215721+5 2.920000-4 8.233449+5 2.930000-4 8.307661+5 2.935000-4 8.348077+5 2.951209-4 8.490441+5 2.970000-4 8.683077+5 2.980000-4 8.795599+5 2.993000-4 8.955607+5 3.015000-4 9.255043+5 3.019952-4 9.330483+5 3.040000-4 9.653054+5 3.054921-4 9.916425+5 3.059100-4 9.993275+5 3.065000-4 1.010537+6 3.100000-4 1.084384+6 3.130000-4 1.157857+6 3.140000-4 1.184644+6 3.162278-4 1.246708+6 3.180000-4 1.300196+6 3.200000-4 1.363158+6 3.210000-4 1.396494+6 3.220000-4 1.430000+6 3.235937-4 1.485206+6 3.240000-4 1.499788+6 3.260000-4 1.571898+6 3.273407-4 1.622136+6 3.290000-4 1.685079+6 3.300000-4 1.723856+6 3.320000-4 1.802007+6 3.335000-4 1.862385+6 3.350000-4 1.922788+6 3.370000-4 2.005243+6 3.380000-4 2.046300+6 3.410000-4 2.172506+6 3.450000-4 2.342269+6 3.467369-4 2.415175+6 3.485000-4 2.491802+6 3.500000-4 2.554507+6 3.507519-4 2.586608+6 3.515000-4 2.619008+6 3.530000-4 2.683647+6 3.550000-4 2.768369+6 3.565000-4 2.831826+6 3.590000-4 2.936325+6 3.600000-4 2.977759+6 3.630781-4 3.102740+6 3.640000-4 3.139823+6 3.650000-4 3.178114+6 3.672823-4 3.267327+6 3.690000-4 3.333146+6 3.715352-4 3.425832+6 3.720000-4 3.443081+6 3.740000-4 3.514781+6 3.760000-4 3.583304+6 3.780000-4 3.649894+6 3.801894-4 3.719263+6 3.835000-4 3.820716+6 3.845918-4 3.852198+6 3.850000-4 3.864020+6 3.890451-4 3.975521+6 3.910000-4 4.026303+6 3.935501-4 4.088554+6 3.950000-4 4.124228+6 3.970000-4 4.169506+6 4.000000-4 4.233502+6 4.027170-4 4.292102+6 4.030000-4 4.297653+6 4.073803-4 4.377603+6 4.100000-4 4.425823+6 4.120975-4 4.457314+6 4.168694-4 4.529365+6 4.180000-4 4.546528+6 4.200000-4 4.570078+6 4.216965-4 4.590033+6 4.265795-4 4.647699+6 4.350000-4 4.718949+6 4.365158-4 4.729862+6 4.415704-4 4.757057+6 4.430000-4 4.764706+6 4.466836-4 4.779521+6 4.470000-4 4.780783+6 4.500000-4 4.787876+6 4.550000-4 4.799712+6 4.600000-4 4.805136+6 4.623810-4 4.804535+6 4.677351-4 4.803147+6 4.731513-4 4.797046+6 4.786301-4 4.784015+6 4.841724-4 4.766677+6 4.897788-4 4.749394+6 4.930000-4 4.735698+6 5.011872-4 4.694982+6 5.069907-4 4.666592+6 5.080000-4 4.661694+6 5.188000-4 4.593888+6 5.248075-4 4.557147+6 5.308844-4 4.511598+6 5.370318-4 4.466513+6 5.432503-4 4.421748+6 5.450000-4 4.409319+6 5.495409-4 4.371908+6 5.500000-4 4.368161+6 5.559043-4 4.320456+6 5.623413-4 4.269605+6 5.650000-4 4.248946+6 5.659500-4 4.241244+6 5.659500-4 4.486309+6 5.688529-4 4.468769+6 5.734700-4 4.438667+6 5.754399-4 4.425931+6 5.821032-4 4.383914+6 5.888437-4 4.340772+6 5.900000-4 4.333574+6 5.950000-4 4.303063+6 5.956621-4 4.298634+6 5.976000-4 4.284874+6 5.976000-4 4.451110+6 5.989500-4 4.445909+6 6.100000-4 4.388196+6 6.130000-4 4.372503+6 6.165950-4 4.352128+6 6.180500-4 4.344026+6 6.200000-4 4.332737+6 6.237348-4 4.307571+6 6.309573-4 4.256871+6 6.350000-4 4.229235+6 6.370000-4 4.215246+6 6.382635-4 4.206074+6 6.430000-4 4.165824+6 6.531306-4 4.084723+6 6.606934-4 4.023200+6 6.683439-4 3.963123+6 6.700000-4 3.950356+6 6.760830-4 3.902446+6 6.850000-4 3.834225+6 6.930000-4 3.773008+6 7.079458-4 3.662274+6 7.150000-4 3.610921+6 7.244360-4 3.544332+6 7.300000-4 3.505860+6 7.328245-4 3.485986+6 7.413102-4 3.427057+6 7.500000-4 3.368663+6 7.585776-4 3.311365+6 7.673615-4 3.253960+6 7.762471-4 3.197700+6 7.800000-4 3.173694+6 7.852356-4 3.140519+6 7.900000-4 3.110855+6 7.943282-4 3.084132+6 8.100000-4 2.988473+6 8.222426-4 2.917082+6 8.228000-4 2.913775+6 8.228000-4 3.092160+6 8.317638-4 3.038795+6 8.413951-4 2.983266+6 8.511380-4 2.927500+6 8.609938-4 2.872974+6 8.709636-4 2.819179+6 8.810489-4 2.765925+6 8.850000-4 2.745114+6 9.015711-4 2.660320+6 9.120108-4 2.607871+6 9.225714-4 2.556591+6 9.440609-4 2.456929+6 9.500000-4 2.430000+6 9.549926-4 2.407542+6 9.660509-4 2.359061+6 9.700000-4 2.341866+6 9.850000-4 2.278069+6 9.885531-4 2.263376+6 9.926900-4 2.246450+6 9.926900-4 2.277091+6 1.000000-3 2.247670+6 1.011579-3 2.201786+6 1.023293-3 2.156180+6 1.035142-3 2.111367+6 1.047129-3 2.067037+6 1.059254-3 2.023799+6 1.071519-3 1.981235+6 1.083927-3 1.939542+6 1.090000-3 1.919655+6 1.096478-3 1.898662+6 1.122018-3 1.818414+6 1.130300-3 1.793021+6 1.130300-3 1.827172+6 1.150000-3 1.768817+6 1.161449-3 1.736330+6 1.174898-3 1.699130+6 1.190000-3 1.658279+6 1.202264-3 1.626154+6 1.216186-3 1.590503+6 1.240000-3 1.531831+6 1.244515-3 1.521123+6 1.273503-3 1.454890+6 1.300000-3 1.397789+6 1.303167-3 1.391209+6 1.318257-3 1.359942+6 1.333521-3 1.329377+6 1.350000-3 1.297412+6 1.380384-3 1.241591+6 1.400000-3 1.206883+6 1.400500-3 1.206018+6 1.412538-3 1.185473+6 1.428894-3 1.158043+6 1.445440-3 1.131308+6 1.450000-3 1.124116+6 1.479108-3 1.079902+6 1.500000-3 1.049527+6 1.513561-3 1.030377+6 1.531087-3 1.006268+6 1.548817-3 9.826227+5 1.550000-3 9.810766+5 1.566751-3 9.595718+5 1.584893-3 9.371108+5 1.610000-3 9.073965+5 1.640590-3 8.727911+5 1.650000-3 8.625568+5 1.659587-3 8.521435+5 1.690000-3 8.204048+5 1.698244-3 8.120704+5 1.717908-3 7.927150+5 1.730000-3 7.811622+5 1.737801-3 7.737735+5 1.757924-3 7.552099+5 1.770000-3 7.444055+5 1.798871-3 7.193768+5 1.819701-3 7.021373+5 1.840772-3 6.852108+5 1.850000-3 6.780011+5 1.862087-3 6.686853+5 1.883649-3 6.525515+5 1.905461-3 6.366685+5 1.927525-3 6.211067+5 1.950000-3 6.058592+5 1.972423-3 5.912049+5 1.995262-3 5.768253+5 2.000000-3 5.738892+5 2.018366-3 5.627184+5 2.041738-3 5.489915+5 2.065380-3 5.354290+5 2.089296-3 5.221888+5 2.113489-3 5.092181+5 2.187762-3 4.723461+5 2.220000-3 4.576047+5 2.238721-3 4.492985+5 2.264644-3 4.379864+5 2.290868-3 4.269744+5 2.300000-3 4.232361+5 2.344229-3 4.058202+5 2.371374-3 3.956748+5 2.400000-3 3.853762+5 2.450000-3 3.682944+5 2.454709-3 3.667324+5 2.483133-3 3.574316+5 2.511886-3 3.483508+5 2.570396-3 3.309021+5 2.630268-3 3.143547+5 2.650000-3 3.091763+5 2.660725-3 3.064068+5 2.691535-3 2.985429+5 2.754229-3 2.833956+5 2.786121-3 2.761131+5 2.818383-3 2.690195+5 2.851018-3 2.621165+5 2.884032-3 2.554045+5 2.900000-3 2.522461+5 2.917427-3 2.488486+5 2.951209-3 2.424561+5 2.999200-3 2.337236+5 2.999200-3 6.839989+5 3.000000-3 6.830476+5 3.019952-3 6.598929+5 3.054921-3 6.217922+5 3.138900-3 5.417892+5 3.138900-3 8.069613+5 3.150000-3 7.926597+5 3.161000-3 7.788134+5 3.162278-3 7.777535+5 3.166000-3 7.746787+5 3.172000-3 7.686460+5 3.174000-3 7.661870+5 3.198895-3 7.440332+5 3.220000-3 7.259870+5 3.235937-3 7.127804+5 3.273407-3 6.892335+5 3.300000-3 6.731814+5 3.311311-3 6.672563+5 3.320000-3 6.627541+5 3.349654-3 6.481417+5 3.388442-3 6.296907+5 3.400000-3 6.243339+5 3.427678-3 6.117554+5 3.467369-3 5.943186+5 3.507519-3 5.770875+5 3.548134-3 5.603453+5 3.589219-3 5.440610+5 3.630781-3 5.282591+5 3.644500-3 5.231853+5 3.644500-3 6.100910+5 3.672823-3 5.984737+5 3.750000-3 5.680323+5 3.758374-3 5.649434+5 3.801894-3 5.492498+5 3.845918-3 5.338524+5 3.900000-3 5.157074+5 3.935501-3 5.042715+5 4.000000-3 4.844102+5 4.027170-3 4.763361+5 4.120975-3 4.497162+5 4.168694-3 4.369847+5 4.216965-3 4.246215+5 4.265795-3 4.126070+5 4.312500-3 4.015435+5 4.312500-3 4.263332+5 4.315191-3 4.256951+5 4.365158-3 4.139982+5 4.415704-3 4.026347+5 4.450000-3 3.951783+5 4.466836-3 3.915746+5 4.518559-3 3.808013+5 4.570882-3 3.703400+5 4.580000-3 3.685487+5 4.619100-3 3.609448+5 4.619100-3 3.763927+5 4.623810-3 3.754719+5 4.650000-3 3.704099+5 4.677351-3 3.652244+5 4.700000-3 3.610058+5 4.731513-3 3.552314+5 4.800000-3 3.431422+5 4.841724-3 3.360709+5 4.897788-3 3.268231+5 4.900000-3 3.264660+5 4.954502-3 3.178235+5 4.970000-3 3.154254+5 5.011872-3 3.090851+5 5.128614-3 2.923716+5 5.150000-3 2.894435+5 5.188000-3 2.843022+5 5.248075-3 2.764353+5 5.308844-3 2.687978+5 5.370318-3 2.613016+5 5.432503-3 2.540251+5 5.495409-3 2.469746+5 5.500000-3 2.464715+5 5.559043-3 2.401293+5 5.623413-3 2.334645+5 5.688529-3 2.269891+5 5.754399-3 2.206697+5 5.821032-3 2.145371+5 5.888437-3 2.085409+5 5.956621-3 2.026929+5 6.025596-3 1.969994+5 6.095369-3 1.914744+5 6.165950-3 1.861107+5 6.237348-3 1.808618+5 6.309573-3 1.757679+5 6.382635-3 1.708189+5 6.400000-3 1.696723+5 6.500000-3 1.632354+5 6.531306-3 1.612900+5 6.683439-3 1.522357+5 6.760830-3 1.479028+5 6.839116-3 1.437003+5 6.918310-3 1.396071+5 7.000000-3 1.355607+5 7.079458-3 1.317898+5 7.161434-3 1.280529+5 7.244360-3 1.244248+5 7.328245-3 1.209057+5 7.500000-3 1.141395+5 7.585776-3 1.109459+5 7.673615-3 1.078001+5 7.762471-3 1.047260+5 7.852356-3 1.017197+5 7.943282-3 9.880294+4 8.128305-3 9.319032+4 8.317638-3 8.790645+4 8.511380-3 8.291497+4 8.609938-3 8.053003+4 8.709636-3 7.820925+4 8.810489-3 7.595701+4 8.912509-3 7.376613+4 9.000000-3 7.194973+4 9.015711-3 7.163036+4 9.440609-3 6.371757+4 9.549926-3 6.188756+4 9.772372-3 5.837504+4 9.800000-3 5.795897+4 9.885531-3 5.668107+4 1.000000-2 5.503248+4 1.011579-2 5.342835+4 1.023293-2 5.186583+4 1.059254-2 4.745994+4 1.071519-2 4.608064+4 1.083927-2 4.474199+4 1.096478-2 4.343794+4 1.109175-2 4.217353+4 1.122018-2 4.094634+4 1.135011-2 3.974979+4 1.148154-2 3.858562+4 1.161449-2 3.745715+4 1.190000-2 3.518863+4 1.202264-2 3.427223+4 1.216186-2 3.327148+4 1.230269-2 3.229711+4 1.258925-2 3.042533+4 1.273503-2 2.953180+4 1.288250-2 2.866247+4 1.300000-2 2.799591+4 1.303167-2 2.781954+4 1.318257-2 2.700057+4 1.333521-2 2.620521+4 1.364583-2 2.468706+4 1.380384-2 2.396167+4 1.412538-2 2.257074+4 1.445440-2 2.125820+4 1.450000-2 2.108488+4 1.462177-2 2.062997+4 1.479108-2 2.002050+4 1.496236-2 1.942986+4 1.500000-2 1.930340+4 1.503400-2 1.919017+4 1.503400-2 4.679853+4 1.514000-2 4.598580+4 1.531087-2 4.471609+4 1.548817-2 4.335768+4 1.566751-2 4.203439+4 1.584893-2 4.075218+4 1.603245-2 3.950950+4 1.659587-2 3.600811+4 1.698244-2 3.385031+4 1.717908-2 3.282014+4 1.730000-2 3.219738+4 1.737801-2 3.180418+4 1.757924-2 3.081990+4 1.778279-2 2.986528+4 1.797100-2 2.901430+4 1.797100-2 4.086398+4 1.798871-2 4.073461+4 1.802600-2 4.046403+4 1.809000-2 4.003647+4 1.815000-2 3.972576+4 1.840772-2 3.827421+4 1.850000-2 3.777245+4 1.863000-2 3.708410+4 1.863000-2 4.284372+4 1.885000-2 4.160417+4 1.905461-2 4.048648+4 1.927525-2 3.932838+4 1.930000-2 3.920144+4 1.949845-2 3.821290+4 1.960000-2 3.772087+4 1.972423-2 3.712194+4 2.000000-2 3.583886+4 2.018366-2 3.501772+4 2.020000-2 3.494589+4 2.041738-2 3.402030+4 2.065380-2 3.303664+4 2.089296-2 3.208221+4 2.100000-2 3.166759+4 2.187762-2 2.850756+4 2.213095-2 2.767859+4 2.238721-2 2.687438+4 2.264644-2 2.608801+4 2.290868-2 2.532343+4 2.300000-2 2.506452+4 2.317395-2 2.458139+4 2.398833-2 2.249066+4 2.426610-2 2.183529+4 2.454709-2 2.119907+4 2.483133-2 2.058165+4 2.500000-2 2.022448+4 2.511886-2 1.997798+4 2.540973-2 1.938953+4 2.570396-2 1.881891+4 2.600160-2 1.826550+4 2.630268-2 1.772746+4 2.660725-2 1.720555+4 2.691535-2 1.669938+4 2.754229-2 1.572843+4 2.786121-2 1.526280+4 2.818383-2 1.481132+4 2.851018-2 1.436964+4 2.884032-2 1.394150+4 2.900000-2 1.374080+4 2.917427-2 1.352619+4 2.951209-2 1.312325+4 2.985383-2 1.273048+4 3.000000-2 1.256751+4 3.019952-2 1.234923+4 3.054921-2 1.197922+4 3.162278-2 1.093592+4 3.198895-2 1.060918+4 3.273407-2 9.985413+3 3.311311-2 9.687781+3 3.349654-2 9.399254+3 3.388442-2 9.119475+3 3.427678-2 8.848250+3 3.467369-2 8.583184+3 3.507519-2 8.325510+3 3.589219-2 7.833703+3 3.672823-2 7.368645+3 3.715352-2 7.145336+3 3.801894-2 6.719207+3 3.890451-2 6.319082+3 3.935501-2 6.128222+3 3.981072-2 5.943272+3 4.000000-2 5.868748+3 4.027170-2 5.764045+3 4.073803-2 5.589773+3 4.120975-2 5.420894+3 4.315191-2 4.793987+3 4.466836-2 4.370885+3 4.518559-2 4.237864+3 4.570882-2 4.108964+3 4.677351-2 3.863083+3 4.731513-2 3.745613+3 4.786301-2 3.630922+3 4.841724-2 3.519811+3 4.897788-2 3.412177+3 5.069907-2 3.108958+3 5.128614-2 3.014118+3 5.308844-2 2.746969+3 5.370318-2 2.663379+3 5.432503-2 2.582084+3 5.495409-2 2.503249+3 5.500000-2 2.497626+3 5.559043-2 2.426542+3 5.623413-2 2.352136+3 5.688529-2 2.279654+3 5.821032-2 2.141460+3 5.888437-2 2.075581+3 6.165950-2 1.832113+3 6.237348-2 1.775941+3 6.309573-2 1.721527+3 6.382635-2 1.668805+3 6.456542-2 1.617501+3 6.531306-2 1.567755+3 6.606934-2 1.519565+3 6.683439-2 1.472798+3 6.760830-2 1.427495+3 6.839116-2 1.383497+3 7.000000-2 1.298587+3 7.328245-2 1.146434+3 7.413102-2 1.110956+3 7.498942-2 1.076595+3 7.585776-2 1.043317+3 7.673615-2 1.011087+3 7.762471-2 9.798427+2 7.852356-2 9.495769+2 7.943282-2 9.202629+2 8.000000-2 9.026083+2 8.035261-2 8.918557+2 8.128305-2 8.643044+2 8.222426-2 8.376190+2 8.317638-2 8.117723+2 8.511380-2 7.624745+2 8.609938-2 7.389800+2 8.709636-2 7.160917+2 8.810489-2 6.939235+2 9.225714-2 6.117889+2 9.549926-2 5.567336+2 9.660509-2 5.395185+2 9.885531-2 5.066404+2 1.011580-1 4.757972+2 1.015200-1 4.711865+2 1.015200-1 2.114165+3 1.023293-1 2.070806+3 1.035142-1 2.009430+3 1.040000-1 1.984995+3 1.047129-1 1.952512+3 1.060000-1 1.895753+3 1.071519-1 1.842201+3 1.083927-1 1.786826+3 1.090000-1 1.760559+3 1.096478-1 1.734815+3 1.135011-1 1.592119+3 1.148154-1 1.545211+3 1.188502-1 1.412653+3 1.216186-1 1.330665+3 1.230269-1 1.291480+3 1.244515-1 1.253411+3 1.258925-1 1.216471+3 1.273503-1 1.180621+3 1.288250-1 1.146050+3 1.303167-1 1.112497+3 1.348963-1 1.017635+3 1.396368-1 9.308941+2 1.412538-1 9.036605+2 1.428894-1 8.772288+2 1.450000-1 8.446854+2 1.462177-1 8.264242+2 1.531088-1 7.327338+2 1.548817-1 7.110263+2 1.584893-1 6.695040+2 1.603245-1 6.496721+2 1.621810-1 6.304291+2 1.659587-1 5.936402+2 1.678804-1 5.760613+2 1.698244-1 5.590041+2 1.717908-1 5.424544+2 1.778279-1 4.956938+2 1.819701-1 4.667871+2 1.840772-1 4.529744+2 1.862087-1 4.395718+2 1.883649-1 4.265679+2 1.905461-1 4.139495+2 1.927525-1 4.017069+2 1.949845-1 3.898386+2 1.972423-1 3.783223+2 2.000000-1 3.648864+2 2.018366-1 3.563029+2 2.041738-1 3.457794+2 2.089296-1 3.256581+2 2.213095-1 2.803396+2 2.238721-1 2.720645+2 2.264644-1 2.640377+2 2.290868-1 2.562482+2 2.317395-1 2.486900+2 2.344229-1 2.413551+2 2.371374-1 2.342410+2 2.398833-1 2.273370+2 2.426610-1 2.207011+2 2.483133-1 2.080063+2 2.511886-1 2.019360+2 2.540973-1 1.960430+2 2.570396-1 1.903228+2 2.600160-1 1.847712+2 2.630268-1 1.793844+2 2.660725-1 1.741549+2 2.691535-1 1.690782+2 2.722701-1 1.641505+2 2.786121-1 1.547331+2 2.818383-1 1.502323+2 2.851018-1 1.458626+2 2.884032-1 1.416208+2 2.900000-1 1.396307+2 2.917427-1 1.375317+2 2.951209-1 1.335866+2 2.985383-1 1.297548+2 3.019952-1 1.260351+2 3.054921-1 1.224223+2 3.090295-1 1.189132+2 3.126079-1 1.155052+2 3.162278-1 1.121951+2 3.198895-1 1.089803+2 3.235937-1 1.058588+2 3.273407-1 1.028291+2 3.311311-1 9.988615+1 3.349654-1 9.702757+1 3.388442-1 9.425566+1 3.427678-1 9.156452+1 3.507519-1 8.649866+1 3.548134-1 8.407230+1 3.630781-1 7.942233+1 3.715352-1 7.502995+1 3.758374-1 7.292744+1 3.801894-1 7.088394+1 3.845918-1 6.889983+1 3.890451-1 6.697182+1 3.935501-1 6.509779+1 3.981072-1 6.330712+1 4.000000-1 6.258526+1 4.027170-1 6.156933+1 4.073803-1 5.987931+1 4.120975-1 5.823578+1 4.168694-1 5.663740+1 4.216965-1 5.508297+1 4.265795-1 5.357245+1 4.365158-1 5.067620+1 4.415705-1 4.928762+1 4.466836-1 4.793741+1 4.518559-1 4.662501+1 4.570882-1 4.537246+1 4.623810-1 4.415362+1 4.731513-1 4.181801+1 4.786301-1 4.069702+1 4.954502-1 3.751542+1 5.000000-1 3.671610+1 5.011872-1 3.651152+1 5.069907-1 3.553460+1 5.128614-1 3.458386+1 5.188000-1 3.367834+1 5.308844-1 3.193794+1 5.370318-1 3.110223+1 5.495409-1 2.950066+1 5.559043-1 2.873121+1 5.623413-1 2.798200+1 5.688529-1 2.725237+1 5.821032-1 2.584983+1 5.888437-1 2.518979+1 5.956621-1 2.454742+1 6.000000-1 2.415101+1 6.025596-1 2.392145+1 6.095369-1 2.331200+1 6.165950-1 2.271977+1 6.237348-1 2.214261+1 6.309573-1 2.158026+1 6.382635-1 2.103220+1 6.531306-1 1.997759+1 6.606935-1 1.947057+1 6.683439-1 1.898684+1 6.760830-1 1.851513+1 6.839117-1 1.805595+1 6.918310-1 1.760819+1 6.998420-1 1.717156+1 7.079458-1 1.674689+1 7.161434-1 1.633273+1 7.244360-1 1.592885+1 7.328245-1 1.553519+1 7.413102-1 1.515126+1 7.498942-1 1.477682+1 7.585776-1 1.442008+1 7.673615-1 1.407196+1 7.762471-1 1.373244+1 7.852356-1 1.340123+1 8.035261-1 1.276261+1 8.222427-1 1.215626+1 8.413951-1 1.157874+1 8.511380-1 1.130713+1 8.609938-1 1.104189+1 8.709636-1 1.078289+1 8.810489-1 1.053009+1 8.912509-1 1.028345+1 9.015711-1 1.004260+1 9.120108-1 9.807403+0 9.225714-1 9.578097+0 9.332543-1 9.354154+0 9.440609-1 9.136140+0 9.549926-1 8.928650+0 9.660509-1 8.725894+0 9.772372-1 8.527911+0 9.885531-1 8.334593+0 1.000000+0 8.145963+0 1.011579+0 7.961611+0 1.023293+0 7.781420+0 1.035142+0 7.605497+0 1.047129+0 7.433986+0 1.059254+0 7.266355+0 1.071519+0 7.102510+0 1.083927+0 6.942384+0 1.096478+0 6.786043+0 1.122018+0 6.488651+0 1.135011+0 6.344908+0 1.148154+0 6.204366+0 1.161449+0 6.066939+0 1.174898+0 5.932585+0 1.188502+0 5.801231+0 1.202264+0 5.672944+0 1.216186+0 5.547986+0 1.230269+0 5.425782+0 1.244515+0 5.306271+0 1.250000+0 5.261319+0 1.258925+0 5.189418+0 1.273503+0 5.078313+0 1.288250+0 4.969590+0 1.303167+0 4.863201+0 1.318257+0 4.759171+0 1.333521+0 4.657443+0 1.348963+0 4.557887+0 1.364583+0 4.460556+0 1.380384+0 4.365591+0 1.396368+0 4.272647+0 1.412538+0 4.181707+0 1.428894+0 4.092719+0 1.462177+0 3.924729+0 1.479108+0 3.843357+0 1.500000+0 3.746519+0 1.513561+0 3.685717+0 1.531087+0 3.609380+0 1.548817+0 3.534868+0 1.603245+0 3.320599+0 1.621810+0 3.253946+0 1.640590+0 3.188631+0 1.659587+0 3.124646+0 1.678804+0 3.061946+0 1.698244+0 3.000516+0 1.717908+0 2.940368+0 1.737801+0 2.881434+0 1.757924+0 2.823879+0 1.778279+0 2.767556+0 1.798871+0 2.712353+0 1.819701+0 2.658252+0 1.840772+0 2.606738+0 1.862087+0 2.556222+0 1.883649+0 2.506700+0 1.905461+0 2.458137+0 1.927525+0 2.410527+0 1.949845+0 2.363875+0 1.972423+0 2.318137+0 1.995262+0 2.273462+0 2.000000+0 2.264374+0 2.018366+0 2.229689+0 2.044000+0 2.182673+0 2.065380+0 2.144655+0 2.113489+0 2.064953+0 2.137962+0 2.026231+0 2.187762+0 1.950952+0 2.213095+0 1.914375+0 2.238721+0 1.878510+0 2.264644+0 1.843324+0 2.290868+0 1.808919+0 2.317395+0 1.775186+0 2.344229+0 1.742082+0 2.371374+0 1.709596+0 2.426610+0 1.647997+0 2.454709+0 1.618043+0 2.511886+0 1.559760+0 2.540973+0 1.531415+0 2.570396+0 1.503606+0 2.600160+0 1.476307+0 2.630268+0 1.449602+0 2.660725+0 1.423403+0 2.691535+0 1.397678+0 2.722701+0 1.372418+0 2.786121+0 1.324524+0 2.818383+0 1.301214+0 2.884032+0 1.255819+0 2.917427+0 1.233723+0 2.951209+0 1.212032+0 3.000000+0 1.181802+0 3.019952+0 1.169843+0 3.054921+0 1.149380+0 3.090295+0 1.129275+0 3.126079+0 1.109521+0 3.198895+0 1.072089+0 3.235937+0 1.053854+0 3.311311+0 1.018311+0 3.349654+0 1.000994+0 3.427678+0 9.672646-1 3.467369+0 9.508320-1 3.507519+0 9.347388-1 3.548134+0 9.189326-1 3.589219+0 9.033939-1 3.630781+0 8.881175-1 3.715352+0 8.591200-1 3.758374+0 8.449823-1 3.845918+0 8.174013-1 3.890451+0 8.039533-1 4.000000+0 7.724429-1 4.027170+0 7.649521-1 4.073803+0 7.524260-1 4.120975+0 7.401167-1 4.168694+0 7.280086-1 4.216965+0 7.160987-1 4.315191+0 6.934654-1 4.365158+0 6.824211-1 4.415704+0 6.715533-1 4.518559+0 6.503343-1 4.570882+0 6.399795-1 4.677351+0 6.197775-1 4.731513+0 6.099189-1 4.786301+0 6.002539-1 4.841724+0 5.907508-1 4.897788+0 5.813984-1 4.954502+0 5.721939-1 5.069907+0 5.546915-1 5.128614+0 5.461441-1 5.188000+0 5.377290-1 5.308844+0 5.212858-1 5.370318+0 5.132552-1 5.432503+0 5.053484-1 5.559043+0 4.899096-1 5.623413+0 4.823697-1 5.688529+0 4.749730-1 5.754399+0 4.676963-1 5.821032+0 4.605312-1 5.888437+0 4.534757-1 6.025596+0 4.400398-1 6.095369+0 4.334734-1 6.165950+0 4.270053-1 6.309573+0 4.143575-1 6.382635+0 4.081760-1 6.456542+0 4.020867-1 6.606934+0 3.901877-1 6.683439+0 3.843721-1 6.760830+0 3.786637-1 6.839116+0 3.730450-1 6.918310+0 3.675096-1 7.000000+0 3.619503-1 7.079458+0 3.568161-1 7.244360+0 3.465671-1 7.328245+0 3.415548-1 7.413102+0 3.366151-1 7.585776+0 3.269493-1 7.673615+0 3.222219-1 7.762471+0 3.175628-1 7.943282+0 3.084523-1 8.035261+0 3.039964-1 8.128305+0 2.996204-1 8.222427+0 2.953111-1 8.317638+0 2.910639-1 8.413951+0 2.868778-1 8.511380+0 2.828507-1 8.810489+0 2.711053-1 8.912509+0 2.673004-1 9.015711+0 2.635491-1 9.225714+0 2.562038-1 9.332543+0 2.526088-1 9.549926+0 2.455697-1 9.772372+0 2.387315-1 9.885531+0 2.353849-1 1.000000+1 2.320971-1 1.011579+1 2.288581-1 1.023293+1 2.256641-1 1.035142+1 2.225883-1 1.059254+1 2.165616-1 1.071519+1 2.136104-1 1.083927+1 2.106993-1 1.122018+1 2.022025-1 1.135011+1 1.994473-1 1.161449+1 1.940493-1 1.202264+1 1.862252-1 1.230269+1 1.811884-1 1.244515+1 1.787218-1 1.258925+1 1.762984-1 1.273503+1 1.739578-1 1.288250+1 1.716487-1 1.303167+1 1.693704-1 1.400000+1 1.558512-1 1.428894+1 1.522001-1 1.479108+1 1.462207-1 1.513561+1 1.423655-1 1.531087+1 1.404772-1 1.548817+1 1.386139-1 1.566751+1 1.367801-1 1.584893+1 1.349726-1 1.603245+1 1.332292-1 1.621810+1 1.315087-1 1.640590+1 1.298104-1 1.778279+1 1.185215-1 1.800000+1 1.169084-1 1.840772+1 1.139898-1 1.862087+1 1.125181-1 1.905461+1 1.096330-1 1.927525+1 1.082183-1 1.972423+1 1.054505-1 2.000000+1 1.038176-1 2.018366+1 1.027564-1 2.041738+1 1.014605-1 2.089296+1 9.891803-2 2.137962+1 9.643937-2 2.371374+1 8.603199-2 2.400000+1 8.490193-2 2.454709+1 8.281918-2 2.483133+1 8.177514-2 2.570396+1 7.872288-2 2.600160+1 7.773331-2 2.630268+1 7.675629-2 2.660725+1 7.579250-2 2.691535+1 7.484080-2 2.722701+1 7.391859-2 2.754229+1 7.300786-2 2.818383+1 7.121998-2 2.884032+1 6.947593-2 3.235937+1 6.137590-2 3.273407+1 6.061987-2 3.388442+1 5.840716-2 3.427678+1 5.768769-2 3.548134+1 5.558301-2 3.630781+1 5.422551-2 3.672823+1 5.355989-2 3.715352+1 5.290244-2 3.758374+1 5.225306-2 3.801894+1 5.162219-2 3.845918+1 5.099903-2 3.981072+1 4.917432-2 4.073803+1 4.799431-2 4.677351+1 4.148571-2 4.731513+1 4.098498-2 4.897788+1 3.951880-2 5.000000+1 3.866719-2 5.188000+1 3.719135-2 5.248075+1 3.674341-2 5.370318+1 3.586370-2 5.432503+1 3.543213-2 5.559043+1 3.458450-2 5.623413+1 3.416833-2 5.688529+1 3.376309-2 5.754399+1 3.336271-2 6.025596+1 3.180809-2 6.165950+1 3.105819-2 7.079458+1 2.691583-2 7.161434+1 2.659669-2 7.498942+1 2.535752-2 7.673615+1 2.475976-2 8.035261+1 2.360656-2 8.128305+1 2.332714-2 8.317638+1 2.277821-2 8.413951+1 2.250862-2 8.511380+1 2.224238-2 8.810489+1 2.146241-2 9.015711+1 2.095769-2 9.120108+1 2.071249-2 9.225714+1 2.047017-2 9.332543+1 2.023069-2 1.000000+2 1.885151-2 1.035142+2 1.819760-2 1.273503+2 1.472390-2 1.288250+2 1.455166-2 1.364583+2 1.372023-2 1.396368+2 1.340112-2 1.412538+2 1.324435-2 1.462177+2 1.278511-2 1.479108+2 1.263577-2 1.513561+2 1.234231-2 1.531087+2 1.219815-2 1.548817+2 1.205569-2 1.566751+2 1.191495-2 1.603245+2 1.163838-2 1.621810+2 1.150251-2 1.640590+2 1.136822-2 1.659587+2 1.123663-2 1.698244+2 1.097802-2 1.798871+2 1.035723-2 1.862087+2 1.000174-2 2.540973+2 7.304051-3 2.570396+2 7.219515-3 2.722701+2 6.811287-3 2.786121+2 6.654533-3 2.818383+2 6.577513-3 2.917427+2 6.351793-3 2.951209+2 6.278341-3 3.019952+2 6.133973-3 3.054921+2 6.063040-3 3.090295+2 5.992937-3 3.126079+2 5.923656-3 3.198895+2 5.787488-3 3.235937+2 5.720582-3 3.273407+2 5.654451-3 3.311311+2 5.589429-3 3.388442+2 5.461624-3 3.589219+2 5.154756-3 3.715352+2 4.978975-3 5.069907+2 3.643568-3 5.128614+2 3.601674-3 5.432503+2 3.399317-3 5.559043+2 3.321594-3 5.623413+2 3.283402-3 1.161449+3 1.584651-3 1.174898+3 1.566440-3 1.202264+3 1.530644-3 1.216186+3 1.513053-3 1.230269+3 1.495666-3 1.244515+3 1.478481-3 1.273503+3 1.444702-3 1.288250+3 1.428102-3 1.303167+3 1.411694-3 1.318257+3 1.395525-3 1.348963+3 1.363743-3 1.428894+3 1.287417-3 1.479108+3 1.243689-3 2.213095+3 8.310387-4 2.238721+3 8.215212-4 4.027170+3 4.565618-4 4.073803+3 4.513332-4 4.315191+3 4.260748-4 7.328245+4 2.505676-5 1.000000+5 1.835993-5 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 3.800000-6 3.800000-6 1.414000-5 3.800000-6 1.414000-5 1.413251-5 1.928000-5 1.412472-5 1.928000-5 1.744022-5 2.065380-5 1.725455-5 2.270000-5 1.710803-5 2.610000-5 1.701459-5 3.264000-5 1.700140-5 3.264000-5 1.801276-5 3.801894-5 1.803965-5 5.188000-5 1.799116-5 6.165950-5 1.805522-5 6.352000-5 1.807902-5 6.352000-5 5.001493-5 6.356000-5 5.037081-5 6.400000-5 5.349011-5 6.430000-5 5.543722-5 6.470000-5 5.767282-5 6.500000-5 5.904707-5 6.540000-5 6.047277-5 6.577000-5 6.141942-5 6.606934-5 6.199485-5 6.657000-5 6.235406-5 6.780000-5 6.257792-5 6.873000-5 6.260680-5 6.873000-5 6.283876-5 6.975500-5 6.315983-5 7.110000-5 6.425141-5 7.244360-5 6.477073-5 7.520000-5 6.529176-5 7.762471-5 6.541104-5 8.413951-5 6.494341-5 1.080000-4 6.393068-5 1.273503-4 6.280169-5 1.439100-4 6.145873-5 1.439100-4 8.018881-5 1.462177-4 7.972962-5 1.488000-4 7.972365-5 1.531087-4 7.956487-5 1.603245-4 7.994378-5 1.740000-4 8.144051-5 1.810000-4 8.228323-5 1.810000-4 9.285615-5 1.980000-4 9.352752-5 2.162719-4 9.372159-5 2.323400-4 9.341976-5 2.323400-4 9.961046-5 2.371374-4 1.002635-4 2.454709-4 1.004175-4 2.620700-4 1.000334-4 2.620700-4 1.171196-4 2.630268-4 1.153125-4 2.643000-4 1.136868-4 2.662000-4 1.122069-4 2.685000-4 1.111542-4 2.699500-4 1.107444-4 2.699500-4 1.200782-4 2.710000-4 1.186300-4 2.728000-4 1.172197-4 2.753000-4 1.162588-4 2.790000-4 1.157841-4 2.840500-4 1.161510-4 2.890000-4 1.173458-4 2.951209-4 1.197743-4 3.019952-4 1.234312-4 3.180000-4 1.331616-4 3.260000-4 1.372810-4 3.335000-4 1.403194-4 3.410000-4 1.426454-4 3.530000-4 1.452939-4 3.672823-4 1.472965-4 3.850000-4 1.487326-4 4.180000-4 1.499896-4 4.786301-4 1.506316-4 5.659500-4 1.505726-4 5.659500-4 1.562780-4 5.976000-4 1.580205-4 5.976000-4 1.620024-4 6.237348-4 1.642125-4 6.430000-4 1.651156-4 8.228000-4 1.713036-4 8.228000-4 1.810384-4 9.660509-4 1.866353-4 9.926900-4 1.875927-4 9.926900-4 1.902449-4 1.130300-3 1.953044-4 1.130300-3 1.996120-4 1.350000-3 2.075028-4 1.610000-3 2.152140-4 1.950000-3 2.234892-4 2.344229-3 2.312067-4 2.818383-3 2.386817-4 2.999200-3 2.411341-4 2.999200-3 3.628507-4 3.138900-3 3.548495-4 3.138900-3 3.783351-4 3.235937-3 3.759825-4 3.644500-3 3.755236-4 3.644500-3 4.042361-4 4.312500-3 4.077707-4 4.312500-3 4.220368-4 4.619100-3 4.250146-4 4.619100-3 4.382189-4 6.165950-3 4.544584-4 7.943282-3 4.692334-4 1.023293-2 4.840936-4 1.303167-2 4.980229-4 1.503400-2 5.060078-4 1.503400-2 6.233601-4 1.797100-2 6.264348-4 1.797100-2 6.483384-4 1.863000-2 6.487747-4 1.863000-2 6.966901-4 2.570396-2 7.137876-4 3.507519-2 7.301323-4 4.841724-2 7.471483-4 6.606934-2 7.629503-4 8.810489-2 7.768286-4 1.015200-1 7.832649-4 1.015200-1 7.136770-4 2.511886-1 7.183929-4 6.839117-1 7.211100-4 1.000000+5 7.213925-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.800000-6 0.0 1.439100-4 0.0 1.439100-4 2.85443-10 1.446000-4 2.83138-10 1.454000-4 2.81525-10 1.462177-4 2.80817-10 1.470000-4 2.81057-10 1.481000-4 2.83025-10 1.488000-4 2.83458-10 1.505000-4 2.83157-10 1.520000-4 2.84269-10 1.540000-4 2.86957-10 1.570000-4 2.92253-10 1.603245-4 2.99573-10 1.650000-4 3.11618-10 1.720000-4 3.31222-10 1.810000-4 3.57037-10 1.810000-4 1.693569-9 1.883649-4 1.676718-9 1.950000-4 1.653645-9 2.018366-4 1.626771-9 2.089296-4 1.601498-9 2.162719-4 1.567710-9 2.290868-4 1.495287-9 2.323400-4 1.475718-9 2.323400-4 1.519213-9 2.385000-4 1.490517-9 2.620700-4 1.359310-9 2.620700-4 2.371415-8 2.622000-4 2.328104-8 2.626000-4 2.229440-8 2.630268-4 2.137336-8 2.635000-4 2.049024-8 2.639000-4 1.984791-8 2.643000-4 1.928026-8 2.648500-4 1.861082-8 2.652000-4 1.824494-8 2.657000-4 1.778934-8 2.662000-4 1.739695-8 2.670000-4 1.685981-8 2.678500-4 1.639176-8 2.685000-4 1.610046-8 2.693000-4 1.580785-8 2.699500-4 1.561520-8 2.699500-4 1.271784-8 2.703000-4 1.281254-8 2.713000-4 1.295246-8 2.732000-4 1.307885-8 2.753000-4 1.318852-8 2.770000-4 1.332047-8 2.780000-4 1.341201-8 2.800000-4 1.367959-8 2.807000-4 1.378697-8 2.823000-4 1.409378-8 2.840500-4 1.450432-8 2.860000-4 1.506002-8 2.875000-4 1.554843-8 2.890000-4 1.608507-8 2.908000-4 1.679377-8 2.935000-4 1.797002-8 2.951209-4 1.872076-8 2.980000-4 2.014932-8 3.019952-4 2.229334-8 3.100000-4 2.678265-8 3.140000-4 2.895009-8 3.180000-4 3.091120-8 3.210000-4 3.221228-8 3.240000-4 3.336371-8 3.273407-4 3.446875-8 3.300000-4 3.523223-8 3.335000-4 3.610024-8 3.380000-4 3.700443-8 3.410000-4 3.753749-8 3.467369-4 3.835111-8 3.530000-4 3.903913-8 3.600000-4 3.957527-8 3.690000-4 4.000972-8 3.835000-4 4.034477-8 4.100000-4 4.057112-8 4.500000-4 4.055682-8 5.559043-4 4.017440-8 5.659500-4 4.013099-8 5.659500-4 4.143620-8 5.976000-4 4.173952-8 5.976000-4 4.579132-8 6.200000-4 4.700819-8 6.382635-4 4.740474-8 6.850000-4 4.809450-8 8.228000-4 5.057016-8 8.228000-4 6.165744-8 8.850000-4 6.346873-8 9.926900-4 6.618657-8 9.926900-4 6.932484-8 1.130300-3 7.320955-8 1.130300-3 7.865050-8 1.244515-3 8.232885-8 1.412538-3 8.718822-8 1.640590-3 9.313749-8 1.927525-3 9.972077-8 2.187762-3 1.049563-7 2.511886-3 1.107733-7 2.900000-3 1.169068-7 2.999200-3 1.183316-7 2.999200-3 1.530031-7 3.138900-3 1.512964-7 3.138900-3 3.715845-5 3.162278-3 3.709718-5 3.166000-3 3.701804-5 3.174000-3 3.665608-5 3.235937-3 3.478475-5 3.300000-3 3.412494-5 3.467369-3 3.399607-5 3.644500-3 3.398579-5 3.644500-3 3.364737-5 4.168694-3 3.333982-5 4.312500-3 3.323401-5 4.312500-3 3.710782-5 4.619100-3 3.734856-5 4.619100-3 3.788725-5 5.821032-3 3.866350-5 7.673615-3 3.953490-5 9.549926-3 4.024112-5 1.258925-2 4.107887-5 1.503400-2 4.160582-5 1.503400-2 2.999506-3 1.548817-2 3.001558-3 1.797100-2 2.976197-3 1.797100-2 4.404372-3 1.809000-2 4.395176-3 1.863000-2 4.404594-3 1.863000-2 4.590059-3 2.290868-2 4.635736-3 2.851018-2 4.670812-3 3.981072-2 4.699917-3 6.456542-2 4.716067-3 1.015200-1 4.714982-3 1.015200-1 7.158227-2 1.216186-1 7.215807-2 1.603245-1 7.281573-2 2.344229-1 7.337411-2 4.365158-1 7.400357-2 8.222427-1 7.456004-2 1.202264+0 7.476467-2 1.000000+5 7.472761-2 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.800000-6 0.0 1.414000-5 1.034000-5 1.414000-5 7.492612-9 1.928000-5 5.155281-6 1.928000-5 1.839782-6 1.950000-5 2.097909-6 1.990000-5 2.556648-6 2.065380-5 3.399254-6 2.162719-5 4.456124-6 2.270000-5 5.591968-6 2.454709-5 7.502798-6 2.754229-5 1.053980-5 3.264000-5 1.563860-5 3.264000-5 1.462724-5 3.801894-5 1.997929-5 5.623413-5 3.822565-5 6.352000-5 4.544098-5 6.352000-5 1.350507-5 6.356000-5 1.318919-5 6.385000-5 1.140070-5 6.400000-5 1.050989-5 6.415000-5 9.663400-6 6.430000-5 8.862783-6 6.450000-5 7.889810-6 6.470000-5 7.027180-6 6.493000-5 6.181951-6 6.500000-5 5.952932-6 6.515000-5 5.519171-6 6.540000-5 4.927230-6 6.560000-5 4.567013-6 6.570000-5 4.421333-6 6.600000-5 4.120024-6 6.606934-5 4.074491-6 6.650000-5 4.190551-6 6.657000-5 4.215941-6 6.710000-5 4.588060-6 6.780000-5 5.222081-6 6.873000-5 6.123202-6 6.873000-5 5.891241-6 6.918310-5 6.247693-6 6.941200-5 6.404472-6 6.955000-5 6.488407-6 6.975500-5 6.595172-6 7.000000-5 6.689819-6 7.050000-5 6.794239-6 7.090000-5 6.831387-6 7.100000-5 6.827705-6 7.110000-5 6.848585-6 7.220000-5 7.487540-6 7.357000-5 8.538235-6 7.520000-5 9.908238-6 7.700000-5 1.157727-5 7.762471-5 1.221367-5 7.780000-5 1.242416-5 7.920000-5 1.391069-5 8.128305-5 1.619024-5 8.413951-5 1.919610-5 9.800000-5 3.358486-5 1.198400-4 5.655585-5 1.364583-4 7.434546-5 1.439100-4 8.245127-5 1.439100-4 6.372090-5 1.462177-4 6.648780-5 1.488000-4 6.907607-5 1.520000-4 7.245271-5 1.603245-4 8.038042-5 1.780000-4 9.609060-5 1.810000-4 9.871641-5 1.810000-4 8.814216-5 1.980000-4 1.044708-4 2.190000-4 1.252990-4 2.323400-4 1.389188-4 2.323400-4 1.327280-4 2.385000-4 1.381467-4 2.580000-4 1.578496-4 2.620700-4 1.620353-4 2.620700-4 1.449267-4 2.630268-4 1.476929-4 2.643000-4 1.505939-4 2.662000-4 1.539757-4 2.693000-4 1.583756-4 2.699500-4 1.591899-4 2.699500-4 1.498591-4 2.713000-4 1.529633-4 2.736000-4 1.567606-4 2.770000-4 1.610463-4 2.823000-4 1.663666-4 2.884032-4 1.712181-4 2.951209-4 1.753279-4 3.040000-4 1.793574-4 3.200000-4 1.856989-4 3.300000-4 1.909633-4 3.410000-4 1.983171-4 3.550000-4 2.093234-4 3.740000-4 2.260135-4 4.073803-4 2.576400-4 4.897788-4 3.390767-4 5.659500-4 4.153373-4 5.659500-4 4.096306-4 5.976000-4 4.395378-4 5.976000-4 4.355518-4 6.382635-4 4.732140-4 8.228000-4 6.514459-4 8.228000-4 6.417000-4 9.926900-4 8.050311-4 9.926900-4 8.023758-4 1.130300-3 9.349224-4 1.130300-3 9.306093-4 1.770000-3 1.550594-3 2.999200-3 2.757948-3 2.999200-3 2.636196-3 3.138900-3 2.783899-3 3.138900-3 2.723406-3 3.427678-3 3.018090-3 3.644500-3 3.234991-3 3.644500-3 3.206616-3 4.312500-3 3.871495-3 4.312500-3 3.853355-3 4.619100-3 4.156737-3 4.619100-3 4.142994-3 1.230269-2 1.176692-2 1.503400-2 1.448639-2 1.503400-2 1.141113-2 1.797100-2 1.436837-2 1.797100-2 1.291829-2 1.863000-2 1.357663-2 1.863000-2 1.334325-2 3.054921-2 2.514864-2 1.015200-1 9.602175-2 1.015200-1 2.922405-2 1.047129-1 3.231733-2 1.071519-1 3.466327-2 1.188502-1 4.603308-2 1.584893-1 8.497859-2 2.818383-1 2.075399-1 2.065380+0 1.989942+0 1.000000+5 9.999993+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.015200-1 1.642979+3 1.040000-1 1.543916+3 1.060000-1 1.477096+3 1.090000-1 1.372684+3 1.135011-1 1.244842+3 1.273503-1 9.269855+2 1.450000-1 6.666780+2 2.398833-1 1.814726+2 2.900000-1 1.117920+2 3.427678-1 7.348457+1 3.935501-1 5.234874+1 4.518559-1 3.756174+1 5.128614-1 2.790718+1 5.821032-1 2.089586+1 6.606935-1 1.576412+1 7.498942-1 1.198157+1 8.413951-1 9.401674+0 9.440609-1 7.429682+0 1.096478+0 5.523918+0 1.258925+0 4.223747+0 1.428894+0 3.330398+0 1.603245+0 2.701689+0 1.819701+0 2.162819+0 2.065380+0 1.745017+0 2.371374+0 1.391053+0 2.722701+0 1.116693+0 3.126079+0 9.027835-1 3.630781+0 7.226334-1 4.216965+0 5.826656-1 4.954502+0 4.655754-1 5.888437+0 3.689831-1 7.000000+0 2.945100-1 8.413951+0 2.334263-1 1.023293+1 1.836236-1 1.258925+1 1.434641-1 1.584893+1 1.098301-1 2.018366+1 8.361440-2 2.691535+1 6.089903-2 3.758374+1 4.251886-2 5.623413+1 2.780272-2 9.015711+1 1.705329-2 1.640590+2 9.250652-3 3.273407+2 4.601203-3 1.303167+3 1.148754-3 1.000000+5 1.494100-5 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.015200-1 6.937200-4 1.000000+5 6.937200-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.015200-1 9.075900-2 1.000000+5 9.075900-2 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.015200-1 1.006728-2 1.000000+5 9.999991+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.863000-2 5.759619+3 1.930000-2 5.423220+3 1.960000-2 5.295300+3 2.020000-2 5.011200+3 2.100000-2 4.703840+3 2.317395-2 3.935961+3 2.511886-2 3.410993+3 2.691535-2 3.001176+3 2.951209-2 2.517082+3 3.672823-2 1.630558+3 4.120975-2 1.285043+3 4.731513-2 9.611401+2 5.623413-2 6.603876+2 6.382635-2 4.980000+2 7.328245-2 3.639653+2 8.609938-2 2.504983+2 1.023293-1 1.665150+2 1.230269-1 1.068786+2 1.548817-1 6.089724+1 2.722701-1 1.515046+1 3.349654-1 9.149343+0 3.981072-1 6.053075+0 4.623810-1 4.264207+0 5.370318-1 3.026424+0 6.095369-1 2.279500+0 6.998420-1 1.687711+0 8.035261-1 1.259030+0 9.332543-1 9.238115-1 1.035142+0 7.503146-1 1.202264+0 5.598387-1 1.364583+0 4.401674-1 1.531087+0 3.560903-1 1.737801+0 2.842553-1 1.972423+0 2.286865-1 2.264644+0 1.818425-1 2.600160+0 1.456384-1 3.000000+0 1.165900-1 3.467369+0 9.380145-2 4.027170+0 7.546669-2 4.731513+0 6.017109-2 5.623413+0 4.758756-2 6.683439+0 3.792166-2 8.035261+0 2.999217-2 9.885531+0 2.322517-2 1.244515+1 1.763947-2 1.548817+1 1.368136-2 1.927525+1 1.067791-2 2.570396+1 7.767950-3 3.548134+1 5.484448-3 5.188000+1 3.669578-3 8.035261+1 2.329010-3 1.462177+2 1.261354-3 2.917427+2 6.268951-4 1.161449+3 1.564039-4 7.328245+4 2.473281-6 1.000000+5 1.812500-6 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.863000-2 1.005200-3 1.000000+5 1.005200-3 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.863000-2 5.784200-3 1.000000+5 5.784200-3 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.863000-2 1.184060-2 1.000000+5 9.999999+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.797100-2 1.184968+4 1.802600-2 1.169207+4 1.809000-2 1.154300+4 1.815000-2 1.149000+4 1.885000-2 1.049700+4 2.041738-2 8.608500+3 2.483133-2 5.215700+3 2.754229-2 3.966800+3 3.427678-2 2.202800+3 4.315191-2 1.165400+3 5.370318-2 6.288300+2 6.760830-2 3.251700+2 8.810489-2 1.510100+2 1.584893-1 2.727500+1 1.927525-1 1.549989+1 2.344229-1 8.874904+0 2.786121-1 5.462695+0 3.235937-1 3.613567+0 3.715352-1 2.485797+0 4.216965-1 1.777275+0 4.786301-1 1.280340+0 5.370318-1 9.568671-1 6.025596-1 7.200831-1 6.760830-1 5.459900-1 7.498942-1 4.285540-1 8.413951-1 3.296507-1 9.120108-1 2.759852-1 9.885531-1 2.325731-1 1.083927+0 1.928497-1 1.202264+0 1.574600-1 1.348963+0 1.267531-1 1.548817+0 9.858083-2 1.757924+0 7.875608-2 1.995262+0 6.338729-2 2.290868+0 5.043706-2 2.630268+0 4.041839-2 3.019952+0 3.261735-2 3.507519+0 2.606235-2 4.073803+0 2.097983-2 4.786301+0 1.673694-2 5.688529+0 1.324401-2 6.760830+0 1.055920-2 8.128305+0 8.354889-3 1.000000+1 6.472500-3 1.244515+1 4.985166-3 1.566751+1 3.815523-3 1.972423+1 2.941092-3 2.630268+1 2.140810-3 3.630781+1 1.512353-3 5.370318+1 1.000185-3 8.413951+1 6.276968-4 1.548817+2 3.362175-4 3.090295+2 1.671729-4 1.230269+3 4.172199-5 1.000000+5 5.122200-7 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.797100-2 7.019700-4 1.000000+5 7.019700-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.797100-2 7.901300-3 1.000000+5 7.901300-3 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.797100-2 9.367730-3 1.000000+5 9.999999+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.503400-2 2.760836+4 1.531087-2 2.641482+4 1.717908-2 1.927892+4 1.850000-2 1.564828+4 2.041738-2 1.188646+4 2.238721-2 9.141983+3 2.818383-2 4.677845+3 3.589219-2 2.272970+3 4.466836-2 1.167014+3 5.500000-2 6.127480+2 6.839116-2 3.093040+2 8.810489-2 1.385707+2 1.548817-1 2.292052+1 1.927525-1 1.147808+1 2.238721-1 7.192623+0 2.600160-1 4.537433+0 2.985383-1 2.986170+0 3.388442-1 2.049832+0 3.801894-1 1.466196+0 4.265795-1 1.056872+0 4.786301-1 7.677290-1 5.308844-1 5.798496-1 5.888437-1 4.409924-1 6.531306-1 3.378003-1 7.244360-1 2.606815-1 8.035261-1 2.027267-1 9.120108-1 1.505289-1 9.660509-1 1.320590-1 1.023293+0 1.165948-1 1.096478+0 1.011116-1 1.188502+0 8.626452-2 1.303167+0 7.253169-2 1.462177+0 5.892333-2 1.757924+0 4.248311-2 1.972423+0 3.484984-2 2.264644+0 2.771489-2 2.600160+0 2.219677-2 3.000000+0 1.776800-2 3.467369+0 1.429517-2 4.027170+0 1.150109-2 4.731513+0 9.170101-3 5.623413+0 7.252398-3 6.683439+0 5.779313-3 8.035261+0 4.570922-3 9.885531+0 3.539494-3 1.244515+1 2.688265-3 1.566751+1 2.057555-3 1.972423+1 1.585970-3 2.630268+1 1.154447-3 3.630781+1 8.155123-4 5.370318+1 5.393664-4 8.413951+1 3.384912-4 1.531087+2 1.834455-4 3.054921+2 9.120148-5 1.216186+3 2.276008-5 1.000000+5 2.762200-7 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.503400-2 7.049300-4 1.000000+5 7.049300-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.503400-2 5.055500-3 1.000000+5 5.055500-3 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.503400-2 9.273570-3 1.000000+5 9.999999+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.619100-3 1.544790+4 4.970000-3 1.404640+4 5.128614-3 1.350807+4 5.432503-3 1.245021+4 5.956621-3 1.100103+4 6.500000-3 9.653520+3 7.000000-3 8.620620+3 7.585776-3 7.644680+3 8.128305-3 6.845159+3 1.000000-2 4.856260+3 1.109175-2 4.055148+3 1.300000-2 3.058500+3 1.548817-2 2.212770+3 1.757924-2 1.739226+3 2.041738-2 1.300212+3 2.426610-2 9.209507+2 2.900000-2 6.390300+2 3.427678-2 4.497152+2 4.027170-2 3.181133+2 4.731513-2 2.233813+2 5.559043-2 1.557696+2 6.606934-2 1.050689+2 8.000000-2 6.733160+1 9.660509-2 4.306386+1 1.188502-1 2.614259+1 1.548817-1 1.369003+1 2.570396-1 3.927092+0 3.198895-1 2.305012+0 3.801894-1 1.523423+0 4.466836-1 1.042457+0 5.128614-1 7.581963-1 5.888437-1 5.554491-1 6.760830-1 4.100397-1 7.673615-1 3.126124-1 8.810489-1 2.341601-1 9.772372-1 1.897543-1 1.188502+0 1.291498-1 1.318257+0 1.059230-1 1.500000+0 8.337289-2 1.698244+0 6.676271-2 1.927525+0 5.363604-2 2.213095+0 4.259677-2 2.540973+0 3.407498-2 2.917427+0 2.744996-2 3.349654+0 2.227096-2 3.890451+0 1.788815-2 4.570882+0 1.423929-2 5.432503+0 1.124344-2 6.456542+0 8.946560-3 7.762471+0 7.065840-3 9.549926+0 5.464099-3 1.202264+1 4.143882-3 1.513561+1 3.169124-3 1.862087+1 2.503738-3 2.483133+1 1.819743-3 3.427678+1 1.283699-3 5.000000+1 8.604600-4 7.673615+1 5.509367-4 1.412538+2 2.947234-4 2.818383+2 1.464318-4 5.623413+2 7.305111-5 2.238721+3 1.828629-5 1.000000+5 4.088500-7 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.619100-3 7.467400-4 1.000000+5 7.467400-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.619100-3 5.047400-5 1.000000+5 5.047400-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.619100-3 3.821886-3 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.312500-3 2.478964+4 4.450000-3 2.410730+4 4.700000-3 2.271360+4 5.308844-3 1.950269+4 5.559043-3 1.830347+4 6.165950-3 1.569606+4 6.839116-3 1.338133+4 7.500000-3 1.151094+4 8.912509-3 8.491869+3 9.549926-3 7.469239+3 1.122018-2 5.461692+3 1.216186-2 4.641139+3 1.412538-2 3.393763+3 1.548817-2 2.780704+3 1.778279-2 2.045693+3 2.018366-2 1.529678+3 2.264644-2 1.167291+3 2.600160-2 8.369882+2 3.000000-2 5.880340+2 3.467369-2 4.079894+2 4.027170-2 2.773830+2 4.677351-2 1.871887+2 5.500000-2 1.213664+2 6.606934-2 7.370058+1 8.035261-2 4.292555+1 1.023293-1 2.182721+1 1.905461-1 3.779341+0 2.398833-1 1.986678+0 2.851018-1 1.234817+0 3.349654-1 7.980141-1 3.845918-1 5.527458-1 4.365158-1 3.974724-1 4.954502-1 2.878920-1 5.559043-1 2.161751-1 6.237348-1 1.634420-1 6.998420-1 1.244819-1 7.762471-1 9.808045-2 8.709636-1 7.574904-2 9.440609-1 6.360929-2 1.023293+0 5.377880-2 1.122018+0 4.471580-2 1.250000+0 3.629876-2 1.396368+0 2.953346-2 1.640590+0 2.208571-2 1.862087+0 1.770267-2 2.113489+0 1.429713-2 2.426610+0 1.140993-2 2.786121+0 9.171690-3 3.198895+0 7.424586-3 3.715352+0 5.949926-3 4.315191+0 4.802604-3 5.069907+0 3.841503-3 6.025596+0 3.047636-3 7.244360+0 2.399987-3 8.810489+0 1.877249-3 1.059254+1 1.499969-3 1.273503+1 1.205251-3 1.603245+1 9.229069-4 2.041738+1 7.028835-4 2.722701+1 5.120884-4 3.801894+1 3.576321-4 5.688529+1 2.339058-4 9.120108+1 1.434956-4 1.659587+2 7.785076-5 3.311311+2 3.872617-5 1.318257+3 9.669156-6 1.000000+5 1.272200-7 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.312500-3 6.531200-4 1.000000+5 6.531200-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.312500-3 9.985600-5 1.000000+5 9.985600-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.312500-3 3.559524-3 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.644500-3 8.690576+4 3.750000-3 8.200466+4 4.000000-3 7.400000+4 4.580000-3 5.891600+4 4.900000-3 5.211400+4 5.688529-3 3.950390+4 6.165950-3 3.386282+4 6.683439-3 2.881241+4 7.673615-3 2.174561+4 8.317638-3 1.831601+4 9.800000-3 1.279124+4 1.083927-2 1.017275+4 1.230269-2 7.581417+3 1.380384-2 5.756026+3 1.548817-2 4.345348+3 1.778279-2 3.073350+3 2.000000-2 2.273180+3 2.264644-2 1.641703+3 2.600160-2 1.134293+3 3.000000-2 7.672040+2 3.467369-2 5.122632+2 4.027170-2 3.347241+2 4.677351-2 2.170479+2 5.432503-2 1.397644+2 6.456542-2 8.344537+1 7.673615-2 4.945344+1 9.660509-2 2.440338+1 1.862087-1 3.194209+0 2.290868-1 1.692308+0 2.691535-1 1.039742+0 3.090295-1 6.895143-1 3.507519-1 4.763609-1 3.935501-1 3.426083-1 4.415705-1 2.482465-1 4.954502-1 1.812340-1 5.495409-1 1.374467-1 6.095369-1 1.049447-1 6.760830-1 8.071741-2 7.498942-1 6.253069-2 8.709636-1 4.361142-2 9.332543-1 3.717994-2 9.885531-1 3.275232-2 1.071519+0 2.769328-2 1.161449+0 2.358081-2 1.258925+0 2.020429-2 1.396368+0 1.670280-2 1.717908+0 1.154332-2 1.949845+0 9.273990-3 2.238721+0 7.369717-3 2.570396+0 5.898866-3 2.951209+0 4.754706-3 3.427678+0 3.794518-3 4.000000+0 3.030500-3 4.677351+0 2.431410-3 5.559043+0 1.921940-3 6.606934+0 1.530794-3 7.943282+0 1.210158-3 9.772372+0 9.366750-4 1.230269+1 7.110673-4 1.548817+1 5.441036-4 1.927525+1 4.246614-4 2.600160+1 3.050696-4 3.630781+1 2.128191-4 5.370318+1 1.407509-4 8.413951+1 8.833211-5 1.531087+2 4.787049-5 3.054921+2 2.379940-5 1.216186+3 5.939417-6 1.000000+5 7.208200-8 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.644500-3 5.770900-4 1.000000+5 5.770900-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.644500-3 3.161000-5 1.000000+5 3.161000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.644500-3 3.035800-3 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.138900-3 2.651721+5 3.166000-3 2.535991+5 3.172000-3 2.500060+5 3.174000-3 2.483566+5 3.235937-3 2.192000+5 3.300000-3 2.030771+5 3.320000-3 1.996515+5 3.672823-3 1.540870+5 4.027170-3 1.204001+5 4.570882-3 8.498477+4 5.150000-3 6.074080+4 5.821032-3 4.259243+4 6.531306-3 3.025039+4 7.943282-3 1.662402+4 8.810489-3 1.200581+4 1.011579-2 7.735663+3 1.190000-2 4.556440+3 1.318257-2 3.245352+3 1.514000-2 2.037649+3 1.778279-2 1.174526+3 2.089296-2 6.698083+2 2.454709-2 3.785906+2 2.917427-2 2.036058+2 3.467369-2 1.085846+2 4.120975-2 5.749146+1 5.069907-2 2.658977+1 6.531306-2 1.027247+1 1.135011-1 1.278733+0 1.412538-1 5.643671-1 1.698244-1 2.853142-1 1.972423-1 1.649923-1 2.344229-1 8.867827-2 2.660725-1 5.660683-2 3.019952-1 3.640064-2 3.388442-1 2.451923-2 3.758374-1 1.730844-2 4.073803-1 1.327964-2 4.518559-1 9.529279-3 5.069907-1 6.643486-3 5.623413-1 4.829063-3 6.237348-1 3.536593-3 6.839117-1 2.700627-3 7.413102-1 2.146577-3 8.511380-1 1.463542-3 9.015711-1 1.255557-3 9.440609-1 1.117124-3 9.885531-1 1.000136-3 1.035142+0 9.016074-4 1.096478+0 7.978238-4 1.161449+0 7.108119-4 1.250000+0 6.183264-4 1.364583+0 5.278569-4 1.531087+0 4.318824-4 1.819701+0 3.183163-4 2.018366+0 2.666517-4 2.317395+0 2.123097-4 2.660725+0 1.702335-4 3.054921+0 1.374567-4 3.548134+0 1.099006-4 4.120975+0 8.851871-5 4.841724+0 7.065439-5 5.754399+0 5.593729-5 6.839116+0 4.461855-5 8.222427+0 3.532153-5 1.011579+1 2.737657-5 1.258925+1 2.109491-5 1.584893+1 1.614913-5 2.018366+1 1.229405-5 2.691535+1 8.954482-6 3.758374+1 6.251835-6 5.623413+1 4.087994-6 9.015711+1 2.507424-6 1.621810+2 1.376120-6 3.235937+2 6.844466-7 1.288250+3 1.708702-7 1.000000+5 2.196900-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.138900-3 4.263200-4 1.000000+5 4.263200-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.138900-3 1.127700-4 1.000000+5 1.127700-4 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.138900-3 2.599810-3 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 2.999200-3 4.502753+5 3.161000-3 3.158380+5 3.467369-3 2.481723+5 3.801894-3 1.932674+5 4.315191-3 1.358014+5 4.841724-3 9.777620+4 5.308844-3 7.469844+4 5.888437-3 5.479848+4 6.400000-3 4.253934+4 7.762471-3 2.330627+4 8.609938-3 1.672344+4 9.800000-3 1.098918+4 1.135011-2 6.752477+3 1.273503-2 4.578064+3 1.450000-2 2.934558+3 1.698244-2 1.690378+3 1.972423-2 9.931902+2 2.300000-2 5.703066+2 2.691535-2 3.205341+2 3.162278-2 1.760704+2 3.715352-2 9.600877+1 4.466836-2 4.762399+1 5.308844-2 2.452081+1 7.000000-2 8.387909+0 1.096478-1 1.464533+0 1.348963-1 6.583206-1 1.603245-1 3.405042-1 1.840772-1 2.022441-1 2.089296-1 1.263111-1 2.344229-1 8.289521-2 2.630268-1 5.479953-2 2.917427-1 3.801988-2 3.235937-1 2.655785-2 3.548134-1 1.943643-2 3.890451-1 1.432789-2 4.168694-1 1.146521-2 4.570882-1 8.579730-3 5.011872-1 6.466196-3 5.495409-1 4.902836-3 6.025596-1 3.745094-3 6.531306-1 2.979880-3 7.079458-1 2.385711-3 7.762471-1 1.864126-3 8.609938-1 1.417486-3 9.120108-1 1.224502-3 9.660509-1 1.065561-3 1.011579+0 9.595249-4 1.071519+0 8.478629-4 1.135011+0 7.539542-4 1.216186+0 6.594954-4 1.318257+0 5.683768-4 1.621810+0 3.939445-4 1.862087+0 3.091452-4 2.065380+0 2.593854-4 2.371374+0 2.067846-4 2.722701+0 1.659963-4 3.126079+0 1.341950-4 3.630781+0 1.074183-4 4.216965+0 8.661343-5 4.954502+0 6.920801-5 5.888437+0 5.484927-5 7.000000+0 4.377900-5 8.413951+0 3.469885-5 1.023293+1 2.729578-5 1.258925+1 2.132649-5 1.584893+1 1.632596-5 2.000000+1 1.255700-5 2.660725+1 9.166846-6 3.715352+1 6.398439-6 5.559043+1 4.182966-6 8.810489+1 2.595710-6 1.603245+2 1.407610-6 3.198895+2 7.000341-7 1.273503+3 1.747520-7 1.000000+5 2.221000-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 2.999200-3 4.260300-4 1.000000+5 4.260300-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.999200-3 1.710000-7 1.000000+5 1.710000-7 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 2.999200-3 2.572999-3 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.130300-3 3.415162+4 1.190000-3 3.328300+4 1.240000-3 3.197780+4 1.350000-3 2.960120+4 1.450000-3 2.744320+4 1.640590-3 2.399306+4 1.972423-3 1.925623+4 2.113489-3 1.762282+4 2.570396-3 1.351163+4 2.818383-3 1.184939+4 3.349654-3 9.172059+3 3.801894-3 7.540448+3 4.365158-3 6.056454+3 5.248075-3 4.471800+3 6.237348-3 3.332691+3 7.328245-3 2.512790+3 8.609938-3 1.881086+3 1.011579-2 1.398562+3 1.202264-2 1.010681+3 1.445440-2 7.089880+2 1.730000-2 4.977740+2 2.065380-2 3.486325+2 2.454709-2 2.445981+2 2.917427-2 1.703557+2 3.467369-2 1.177870+2 4.120975-2 8.084225+1 4.897788-2 5.508707+1 5.821032-2 3.726616+1 7.000000-2 2.436207+1 8.317638-2 1.625936+1 1.023293-1 9.913550+0 1.303167-1 5.519099+0 1.621810-1 3.228641+0 2.540973-1 1.067553+0 3.162278-1 6.265253-1 3.801894-1 4.027689-1 4.466836-1 2.756309-1 5.128614-1 2.004739-1 5.888437-1 1.468601-1 6.760830-1 1.084100-1 7.762471-1 8.066015-2 8.810489-1 6.189903-2 9.772372-1 5.015533-2 1.174898+0 3.490729-2 1.303167+0 2.861188-2 1.479108+0 2.260860-2 1.678804+0 1.800871-2 1.905461+0 1.445757-2 2.187762+0 1.147363-2 2.511886+0 9.172716-3 2.884032+0 7.385185-3 3.311311+0 5.988407-3 3.845918+0 4.807240-3 4.518559+0 3.824430-3 5.308844+0 3.065400-3 6.309573+0 2.436813-3 7.585776+0 1.922701-3 9.225714+0 1.506656-3 1.122018+1 1.189211-3 1.400000+1 9.164200-4 1.778279+1 6.969269-4 2.371374+1 5.059185-4 3.235937+1 3.609124-4 4.677351+1 2.439549-4 7.079458+1 1.582663-4 1.273503+2 8.658134-5 2.540973+2 4.297006-5 5.069907+2 2.142329-5 4.027170+3 2.685142-6 1.000000+5 1.080600-7 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.130300-3 4.257700-4 1.000000+5 4.257700-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.130300-3 3.643100-7 1.000000+5 3.643100-7 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.130300-3 7.041657-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 9.926900-4 3.064068+4 1.202264-3 2.949376+4 1.303167-3 2.868036+4 1.400500-3 2.772047+4 1.513561-3 2.653379+4 1.650000-3 2.505120+4 1.819701-3 2.321270+4 1.950000-3 2.181480+4 2.187762-3 1.947316+4 2.371374-3 1.787455+4 2.570396-3 1.627707+4 2.884032-3 1.412267+4 3.150000-3 1.258016+4 3.548134-3 1.065656+4 3.900000-3 9.284060+3 4.365158-3 7.808169+3 4.841724-3 6.617516+3 5.500000-3 5.349140+3 6.095369-3 4.475629+3 6.839116-3 3.640705+3 7.762471-3 2.877195+3 8.709636-3 2.306670+3 9.885531-3 1.795230+3 1.122018-2 1.386447+3 1.273503-2 1.062828+3 1.450000-2 8.033060+2 1.659587-2 5.957057+2 1.905461-2 4.351473+2 2.187762-2 3.152754+2 2.500000-2 2.292740+2 2.884032-2 1.617702+2 3.349654-2 1.113348+2 3.890451-2 7.604409+1 4.518559-2 5.155581+1 5.308844-2 3.367208+1 6.309573-2 2.116845+1 7.673615-2 1.240402+1 9.549926-2 6.769265+0 1.949845-1 9.159281-1 2.426610-1 4.987200-1 2.884032-1 3.107098-1 3.349654-1 2.075926-1 3.845918-1 1.440281-1 4.415705-1 1.006717-1 5.011872-1 7.302799-2 5.688529-1 5.338099-2 6.382635-1 4.043637-2 7.161434-1 3.085746-2 8.035261-1 2.373287-2 8.810489-1 1.932971-2 9.549926-1 1.625107-2 1.035142+0 1.375560-2 1.135011+0 1.144782-2 1.258925+0 9.378170-3 1.412538+0 7.571893-3 1.640590+0 5.782211-3 1.862087+0 4.634617-3 2.113489+0 3.743562-3 2.426610+0 2.987738-3 2.786121+0 2.401486-3 3.198895+0 1.943925-3 3.715352+0 1.557820-3 4.365158+0 1.237204-3 5.128614+0 9.901153-4 6.095369+0 7.859051-4 7.328245+0 6.191951-4 8.912509+0 4.845597-4 1.071519+1 3.873273-4 1.288250+1 3.113353-4 1.621810+1 2.384695-4 2.089296+1 1.793710-4 2.818383+1 1.291400-4 3.981072+1 8.916176-5 6.025596+1 5.767070-5 1.000000+2 3.417900-5 1.798871+2 1.878347-5 3.589219+2 9.348158-6 1.428894+3 2.335094-6 1.000000+5 3.330800-8 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 9.926900-4 3.846900-4 1.000000+5 3.846900-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.926900-4 2.994100-7 1.000000+5 2.994100-7 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 9.926900-4 6.077006-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 8.228000-4 1.783842+5 8.709636-4 1.726349+5 1.000000-3 1.519176+5 1.071519-3 1.416282+5 1.216186-3 1.232592+5 1.318257-3 1.121212+5 1.479108-3 9.711027+4 1.610000-3 8.672360+4 1.883649-3 6.960351+4 2.065380-3 6.072887+4 2.400000-3 4.810720+4 2.650000-3 4.097200+4 3.054921-3 3.226354+4 3.427678-3 2.637304+4 3.845918-3 2.143168+4 4.415704-3 1.655655+4 4.954502-3 1.326022+4 5.623413-3 1.031453+4 6.500000-3 7.666600+3 7.500000-3 5.664320+3 8.511380-3 4.300796+3 9.549926-3 3.326515+3 1.071519-2 2.558139+3 1.202264-2 1.955939+3 1.364583-2 1.446098+3 1.548817-2 1.061818+3 1.757924-2 7.743622+2 2.000000-2 5.575280+2 2.290868-2 3.916010+2 2.630268-2 2.712809+2 3.019952-2 1.865041+2 3.467369-2 1.272827+2 4.027170-2 8.349382+1 4.677351-2 5.435835+1 5.495409-2 3.397375+1 6.456542-2 2.107520+1 7.762471-2 1.211577+1 9.549926-2 6.446801+0 1.819701-1 8.843021-1 2.264644-1 4.533814-1 2.691535-1 2.694887-1 3.126079-1 1.729227-1 3.548134-1 1.195634-1 4.000000-1 8.491902-2 4.466836-1 6.244585-2 5.011872-1 4.565075-2 5.623413-1 3.362450-2 6.237348-1 2.571802-2 6.918310-1 1.981294-2 7.673615-1 1.537631-2 8.709636-1 1.135277-2 9.332543-1 9.686266-3 9.885531-1 8.537052-3 1.071519+0 7.221087-3 1.161449+0 6.149781-3 1.273503+0 5.156816-3 1.412538+0 4.265489-3 1.717908+0 3.008962-3 1.949845+0 2.417496-3 2.238721+0 1.921094-3 2.570396+0 1.537697-3 2.951209+0 1.239460-3 3.427678+0 9.891515-4 4.000000+0 7.899800-4 4.677351+0 6.338095-4 5.559043+0 5.009987-4 6.606934+0 3.990487-4 7.943282+0 3.154650-4 9.772372+0 2.441634-4 1.230269+1 1.853594-4 1.548817+1 1.418356-4 1.927525+1 1.107001-4 2.570396+1 8.053092-5 3.548134+1 5.685778-5 5.188000+1 3.804260-5 8.035261+1 2.414522-5 1.462177+2 1.307743-5 2.917427+2 6.499032-6 1.161449+3 1.621435-6 1.000000+5 1.879000-8 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 8.228000-4 3.400500-4 1.000000+5 3.400500-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.228000-4 2.427600-7 1.000000+5 2.427600-7 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.228000-4 4.825072-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 5.976000-4 1.662359+5 5.989500-4 1.705355+5 6.180500-4 2.015915+5 6.200000-4 2.044221+5 6.350000-4 2.105605+5 6.370000-4 2.108600+5 6.430000-4 2.098480+5 6.850000-4 2.132852+5 7.328245-4 2.196684+5 7.800000-4 2.228048+5 8.100000-4 2.233008+5 8.413951-4 2.227329+5 8.850000-4 2.204184+5 9.225714-4 2.173658+5 9.700000-4 2.122772+5 1.023293-3 2.054752+5 1.090000-3 1.959992+5 1.161449-3 1.852712+5 1.244515-3 1.724528+5 1.333521-3 1.594675+5 1.412538-3 1.484246+5 1.513561-3 1.350501+5 1.650000-3 1.190384+5 1.770000-3 1.066904+5 1.905461-3 9.437033+4 2.089296-3 8.034115+4 2.238721-3 7.078716+4 2.454709-3 5.928471+4 2.660725-3 5.047450+4 2.900000-3 4.217960+4 3.198895-3 3.413053+4 3.507519-3 2.774872+4 3.845918-3 2.241597+4 4.216965-3 1.797640+4 4.650000-3 1.412892+4 5.188000-3 1.069490+4 5.688529-3 8.405984+3 6.309573-3 6.368393+3 7.079458-3 4.638427+3 7.943282-3 3.349900+3 8.810489-3 2.481992+3 9.800000-3 1.812016+3 1.083927-2 1.337168+3 1.216186-2 9.384338+2 1.364583-2 6.539300+2 1.531087-2 4.526125+2 1.737801-2 2.996746+2 1.972423-2 1.968800+2 2.238721-2 1.284149+2 2.570396-2 7.995131+1 2.951209-2 4.941074+1 3.427678-2 2.911104+1 4.027170-2 1.633859+1 4.786301-2 8.731536+0 5.821032-2 4.258232+0 7.852356-2 1.404657+0 1.230269-1 2.644014-1 1.678804-1 8.397291-2 1.883649-1 5.525240-2 2.344229-1 2.528206-2 2.691535-1 1.554499-2 3.090295-1 9.636206-3 3.427678-1 6.770485-3 3.801894-1 4.790354-3 4.120975-1 3.682697-3 4.570882-1 2.648286-3 5.128614-1 1.850676-3 5.688529-1 1.348926-3 6.309573-1 9.902216-4 6.918310-1 7.573176-4 7.585776-1 5.835441-4 8.609938-1 4.111043-4 9.120108-1 3.530815-4 9.549926-1 3.145275-4 1.000000+0 2.820081-4 1.059254+0 2.483437-4 1.122018+0 2.203682-4 1.188502+0 1.967999-4 1.288250+0 1.693773-4 1.412538+0 1.438591-4 1.531087+0 1.250499-4 1.819701+0 9.216700-5 2.018366+0 7.720330-5 2.317395+0 6.146593-5 2.660725+0 4.928369-5 3.054921+0 3.979440-5 3.548134+0 3.181638-5 4.120975+0 2.562613-5 4.841724+0 2.045453-5 5.754399+0 1.619344-5 6.839116+0 1.291650-5 8.222427+0 1.022584-5 1.000000+1 8.036500-6 1.244515+1 6.189688-6 1.566751+1 4.737404-6 1.972423+1 3.651707-6 2.630268+1 2.658120-6 3.630781+1 1.877771-6 5.370318+1 1.241851-6 8.317638+1 7.886693-7 1.513561+2 4.273424-7 3.019952+2 2.124446-7 1.202264+3 5.301336-8 1.000000+5 6.35990-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 5.976000-4 2.646400-4 1.000000+5 2.646400-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.976000-4 1.502300-7 1.000000+5 1.502300-7 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 5.976000-4 3.328098-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 5.659500-4 2.450646+5 5.734700-4 2.603842+5 5.950000-4 3.060693+5 6.130000-4 3.347767+5 6.382635-4 3.617653+5 6.606934-4 3.645190+5 6.930000-4 3.703494+5 7.244360-4 3.725883+5 7.585776-4 3.730813+5 7.900000-4 3.712068+5 8.222426-4 3.677148+5 8.609938-4 3.616112+5 9.015711-4 3.535347+5 9.500000-4 3.422070+5 1.000000-3 3.293604+5 1.059254-3 3.132337+5 1.122018-3 2.960075+5 1.216186-3 2.701450+5 1.303167-3 2.481537+5 1.380384-3 2.297052+5 1.479108-3 2.077628+5 1.610000-3 1.823208+5 1.730000-3 1.621188+5 1.883649-3 1.397897+5 2.041738-3 1.207349+5 2.220000-3 1.028844+5 2.450000-3 8.449680+4 2.660725-3 7.115221+4 2.951209-3 5.684567+4 3.220000-3 4.672410+4 3.548134-3 3.728344+4 3.845918-3 3.072796+4 4.265795-3 2.379134+4 4.677351-3 1.881425+4 5.150000-3 1.463274+4 5.821032-3 1.052376+4 6.531306-3 7.646526+3 7.161434-3 5.885210+3 7.943282-3 4.356531+3 8.912509-3 3.094183+3 1.000000-2 2.179938+3 1.122018-2 1.523888+3 1.258925-2 1.057279+3 1.412538-2 7.282402+2 1.584893-2 4.980998+2 1.778279-2 3.384695+2 2.018366-2 2.195757+2 2.290868-2 1.413678+2 2.600160-2 9.037135+1 2.985383-2 5.505325+1 3.467369-2 3.191999+1 4.027170-2 1.836772+1 4.786301-2 9.627834+0 5.821032-2 4.590891+0 7.585776-2 1.668714+0 1.188502-1 2.978142-1 1.462177-1 1.353358-1 1.717908-1 7.360443-2 1.927525-1 4.798159-2 2.371374-1 2.254556-2 2.660725-1 1.492669-2 2.951209-1 1.037140-2 3.235937-1 7.552895-3 3.548134-1 5.537030-3 3.890451-1 4.088547-3 4.216965-1 3.158295-3 4.623810-1 2.368728-3 5.188000-1 1.667774-3 5.688529-1 1.267877-3 6.165950-1 1.003642-3 6.683439-1 7.996161-4 7.244360-1 6.412585-4 7.852356-1 5.178043-4 8.609938-1 4.075069-4 9.120108-1 3.530795-4 9.660509-1 3.080584-4 1.011579+0 2.778456-4 1.071519+0 2.458412-4 1.148154+0 2.138677-4 1.244515+0 1.833178-4 1.364583+0 1.549006-4 1.778279+0 9.692373-5 2.000000+0 7.922848-5 2.290868+0 6.329643-5 2.630268+0 5.072473-5 3.019952+0 4.093480-5 3.507519+0 3.270864-5 4.073803+0 2.633030-5 4.786301+0 2.100543-5 5.688529+0 1.662079-5 6.760830+0 1.325094-5 8.128305+0 1.048586-5 1.000000+1 8.123100-6 1.244515+1 6.256436-6 1.566751+1 4.788503-6 1.972423+1 3.691117-6 2.630268+1 2.686764-6 3.630781+1 1.898010-6 5.370318+1 1.255253-6 8.413951+1 7.877687-7 1.531087+2 4.269262-7 3.054921+2 2.122497-7 1.216186+3 5.296942-8 1.000000+5 6.42850-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 5.659500-4 2.550200-4 1.000000+5 2.550200-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.659500-4 6.402500-8 1.000000+5 6.402500-8 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 5.659500-4 3.108660-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 2.699500-4 1.919574+5 2.700100-4 1.883184+5 2.703000-4 1.780446+5 2.706000-4 1.689234+5 2.709000-4 1.610274+5 2.713000-4 1.520484+5 2.718000-4 1.429206+5 2.722701-4 1.358613+5 2.728000-4 1.293948+5 2.732000-4 1.253028+5 2.737000-4 1.209456+5 2.745000-4 1.152204+5 2.753000-4 1.105800+5 2.762000-4 1.064958+5 2.770000-4 1.036500+5 2.780000-4 1.008816+5 2.790000-4 9.879120+4 2.800000-4 9.724560+4 2.815000-4 9.572640+4 2.830000-4 9.498720+4 2.845800-4 9.492365+4 2.860000-4 9.542880+4 2.875000-4 9.652980+4 2.890000-4 9.822420+4 2.905000-4 1.005258+5 2.920000-4 1.034526+5 2.935000-4 1.070172+5 2.951209-4 1.115939+5 2.970000-4 1.178460+5 2.993000-4 1.269150+5 3.015000-4 1.370688+5 3.040000-4 1.504554+5 3.065000-4 1.659600+5 3.100000-4 1.915722+5 3.130000-4 2.174850+5 3.220000-4 3.185340+5 3.260000-4 3.740040+5 3.290000-4 4.191288+5 3.320000-4 4.666650+5 3.350000-4 5.162502+5 3.380000-4 5.674230+5 3.410000-4 6.197640+5 3.450000-4 6.911880+5 3.485000-4 7.545840+5 3.515000-4 8.095020+5 3.550000-4 8.738580+5 3.590000-4 9.472260+5 3.630781-4 1.020928+6 3.672823-4 1.095255+6 3.720000-4 1.175430+6 3.760000-4 1.239942+6 3.801894-4 1.303636+6 3.850000-4 1.371426+6 3.910000-4 1.448496+6 3.970000-4 1.517034+6 4.030000-4 1.578258+6 4.100000-4 1.640880+6 4.180000-4 1.701396+6 4.265795-4 1.754150+6 4.350000-4 1.794162+6 4.430000-4 1.822188+6 4.550000-4 1.848126+6 4.677351-4 1.859080+6 4.786301-4 1.858748+6 4.930000-4 1.847028+6 5.080000-4 1.823412+6 5.248075-4 1.787585+6 5.450000-4 1.733502+6 5.650000-4 1.673406+6 5.821032-4 1.618918+6 6.100000-4 1.526844+6 6.382635-4 1.433582+6 6.700000-4 1.329156+6 7.079458-4 1.209996+6 7.500000-4 1.089546+6 7.943282-4 9.746773+5 8.413951-4 8.651818+5 9.015711-4 7.441140+5 9.660509-4 6.357105+5 1.035142-3 5.388222+5 1.122018-3 4.407039+5 1.202264-3 3.687811+5 1.303167-3 2.972981+5 1.412538-3 2.381755+5 1.531087-3 1.895476+5 1.690000-3 1.421502+5 1.850000-3 1.084008+5 2.041738-3 8.005782+4 2.238721-3 5.989783+4 2.483133-3 4.289136+4 2.754229-3 3.046467+4 3.019952-3 2.233257+4 3.349654-3 1.564246+4 3.758374-3 1.044272+4 4.265795-3 6.629894+3 4.800000-3 4.303422+3 5.370318-3 2.830067+3 6.025596-3 1.827379+3 6.760830-3 1.170818+3 7.500000-3 7.790400+2 8.317638-3 5.160253+2 9.440609-3 3.093281+2 1.071519-2 1.839922+2 1.216186-2 1.086409+2 1.380384-2 6.369256+1 1.566751-2 3.708040+1 1.798871-2 2.039470+1 2.065380-2 1.113501+1 2.398833-2 5.735108+0 2.851018-2 2.645848+0 3.507519-2 1.036914+0 4.466836-2 3.446599-1 8.511380-2 1.794856-2 1.035142-1 7.367820-3 1.230269-1 3.386020-3 1.428894-1 1.737859-3 1.659587-1 8.981027-4 1.883649-1 5.172976-4 2.089296-1 3.314212-4 2.344229-1 2.035885-4 2.630268-1 1.260123-4 2.917427-1 8.237970-5 3.273407-1 5.159915-5 3.548134-1 3.741951-5 3.845918-1 2.733519-5 4.027170-1 2.294003-5 4.365158-1 1.705467-5 4.731513-1 1.276780-5 5.688529-1 6.637682-6 6.237348-1 4.816774-6 6.760830-1 3.663046-6 7.244360-1 2.914637-6 7.762471-1 2.334189-6 8.413951-1 1.816820-6 8.810489-1 1.582822-6 9.225714-1 1.387352-6 9.549926-1 1.262956-6 9.885531-1 1.155412-6 1.023293+0 1.062943-6 1.071519+0 9.578750-7 1.122018+0 8.691817-7 1.188502+0 7.760505-7 1.273503+0 6.834203-7 1.380384+0 5.938038-7 1.513561+0 5.083952-7 1.862087+0 3.527762-7 2.065380+0 2.958593-7 2.371374+0 2.358469-7 2.722701+0 1.893265-7 3.126079+0 1.530575-7 3.630781+0 1.225171-7 4.216965+0 9.878557-8 4.954502+0 7.893095-8 5.888437+0 6.255505-8 7.079458+0 4.921257-8 8.511380+0 3.901136-8 1.035142+1 3.070202-8 1.273503+1 2.399762-8 1.603245+1 1.837533-8 2.041738+1 1.399512-8 2.754229+1 1.006922-8 3.845918+1 7.033978-9 5.754399+1 4.601508-9 9.332543+1 2.790291-9 1.698244+2 1.514299-9 3.388442+2 7.53372-10 1.348963+3 1.88119-10 1.000000+5 2.53300-12 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 2.699500-4 1.551000-4 1.000000+5 1.551000-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.699500-4 1.846400-9 1.000000+5 1.846400-9 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.699500-4 1.148482-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 2.620700-4 2.606384+5 2.622000-4 2.533224+5 2.626000-4 2.370280+5 2.630268-4 2.223451+5 2.635000-4 2.087160+5 2.639000-4 1.990584+5 2.643000-4 1.906944+5 2.648500-4 1.810192+5 2.652000-4 1.758088+5 2.657000-4 1.693888+5 2.662000-4 1.639176+5 2.670000-4 1.565232+5 2.678500-4 1.501540+5 2.685000-4 1.461976+5 2.693000-4 1.422088+5 2.700000-4 1.393600+5 2.710000-4 1.361168+5 2.722701-4 1.331176+5 2.736000-4 1.310376+5 2.750000-4 1.298040+5 2.765000-4 1.294288+5 2.780000-4 1.299504+5 2.795200-4 1.313676+5 2.807000-4 1.330864+5 2.823000-4 1.362984+5 2.840500-4 1.409973+5 2.858000-4 1.469592+5 2.873000-4 1.530800+5 2.890000-4 1.611464+5 2.908000-4 1.709968+5 2.930000-4 1.848912+5 2.951209-4 2.002814+5 2.980000-4 2.245104+5 3.015000-4 2.596328+5 3.059100-4 3.137160+5 3.140000-4 4.432800+5 3.180000-4 5.208864+5 3.210000-4 5.839296+5 3.240000-4 6.503496+5 3.273407-4 7.274885+5 3.300000-4 7.907768+5 3.335000-4 8.760080+5 3.370000-4 9.629280+5 3.410000-4 1.063696+6 3.450000-4 1.165328+6 3.485000-4 1.254328+6 3.530000-4 1.367808+6 3.565000-4 1.454472+6 3.600000-4 1.538952+6 3.640000-4 1.631976+6 3.690000-4 1.741784+6 3.740000-4 1.843488+6 3.780000-4 1.918696+6 3.835000-4 2.013288+6 3.890451-4 2.098779+6 3.950000-4 2.180536+6 4.027170-4 2.272137+6 4.100000-4 2.344960+6 4.180000-4 2.410208+6 4.265795-4 2.464023+6 4.365158-4 2.506911+6 4.470000-4 2.532832+6 4.600000-4 2.543544+6 4.731513-4 2.536746+6 4.897788-4 2.508073+6 5.080000-4 2.456984+6 5.248075-4 2.397754+6 5.450000-4 2.314976+6 5.688529-4 2.208846+6 5.956621-4 2.084163+6 6.237348-4 1.954610+6 6.531306-4 1.820495+6 6.850000-4 1.679520+6 7.300000-4 1.495672+6 7.762471-4 1.327890+6 8.222426-4 1.179210+6 8.810489-4 1.013845+6 9.440609-4 8.657608+5 1.011579-3 7.336998+5 1.096478-3 6.000415+5 1.174898-3 5.019177+5 1.273503-3 4.045042+5 1.380384-3 3.239800+5 1.500000-3 2.558096+5 1.650000-3 1.937144+5 1.819701-3 1.442981+5 1.995262-3 1.086586+5 2.238721-3 7.546899+4 2.454709-3 5.595311+4 2.691535-3 4.124911+4 3.019952-3 2.792523+4 3.400000-3 1.850800+4 3.758374-3 1.297472+4 4.120975-3 9.309963+3 4.570882-3 6.368698+3 5.128614-3 4.143717+3 5.688529-3 2.795217+3 6.382635-3 1.791604+3 7.079458-3 1.192740+3 7.943282-3 7.536054+2 9.015711-3 4.512222+2 1.023293-2 2.679774+2 1.161449-2 1.579159+2 1.318257-2 9.235969+1 1.500000-2 5.304704+1 1.717908-2 2.939478+1 1.972423-2 1.598736+1 2.264644-2 8.627837+0 2.660725-2 4.167423+0 3.198895-2 1.799163+0 3.935501-2 6.937401-1 5.069907-2 2.145886-1 7.498942-2 3.472236-2 1.071519-1 6.636161-3 1.244515-1 3.337234-3 1.428894-1 1.782265-3 1.621810-1 1.010481-3 1.819701-1 6.076256-4 2.018366-1 3.870308-4 2.238721-1 2.483094-4 2.483133-1 1.604897-4 2.818383-1 9.500777-5 3.054921-1 6.849414-5 3.311311-1 4.973581-5 3.507519-1 3.978806-5 3.801894-1 2.938919-5 4.120975-1 2.187686-5 4.570882-1 1.508808-5 4.954502-1 1.137752-5 5.370318-1 8.636866-6 5.821032-1 6.602552-6 6.309573-1 5.083476-6 6.760830-1 4.085433-6 7.244360-1 3.305913-6 7.673615-1 2.787726-6 8.222427-1 2.290654-6 8.810489-1 1.896284-6 9.549926-1 1.531574-6 9.885531-1 1.404211-6 1.023293+0 1.293684-6 1.071519+0 1.167265-6 1.122018+0 1.059864-6 1.188502+0 9.464160-7 1.273503+0 8.330161-7 1.380384+0 7.230269-7 1.513561+0 6.181995-7 1.840772+0 4.376190-7 2.044000+0 3.660700-7 2.344229+0 2.921706-7 2.691535+0 2.344101-7 3.090295+0 1.893952-7 3.589219+0 1.515104-7 4.168694+0 1.220969-7 4.897788+0 9.750938-8 5.821032+0 7.723838-8 6.918310+0 6.163864-8 8.317638+0 4.881804-8 1.011579+1 3.838521-8 1.258925+1 2.957652-8 1.584893+1 2.264243-8 2.000000+1 1.741500-8 2.691535+1 1.255450-8 3.801894+1 8.659054-9 5.688529+1 5.663277-9 9.120108+1 3.474270-9 1.659587+2 1.884911-9 3.311311+2 9.37625-10 1.318257+3 2.34101-10 1.000000+5 3.08020-12 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 2.620700-4 1.564000-4 1.000000+5 1.564000-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.620700-4 7.510700-8 1.000000+5 7.510700-8 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.620700-4 1.055949-4 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.323400-4 5.207700+4 2.329000-4 5.263680+4 2.338000-4 5.409380+4 2.344229-4 5.494180+4 2.355000-4 5.613660+4 2.370000-4 5.729540+4 2.385000-4 5.800120+4 2.405000-4 5.842220+4 2.426610-4 5.845679+4 3.350000-4 4.916960+4 3.630781-4 4.651761+4 4.120975-4 4.235181+4 4.415704-4 3.999169+4 4.841724-4 3.670948+4 5.432503-4 3.273795+4 5.888437-4 3.003460+4 6.606934-4 2.632522+4 7.413102-4 2.292177+4 8.511380-4 1.921935+4 9.549926-4 1.649727+4 1.122018-3 1.320189+4 1.333521-3 1.030451+4 1.584893-3 7.977873+3 1.927525-3 5.921691+3 2.344229-3 4.359708+3 2.851018-3 3.185436+3 3.467369-3 2.309434+3 4.168694-3 1.693476+3 5.011872-3 1.232665+3 6.025596-3 8.905070+2 7.244360-3 6.387020+2 8.810489-3 4.451750+2 1.059254-2 3.146508+2 1.273503-2 2.207859+2 1.531087-2 1.537899+2 1.840772-2 1.063487+2 2.213095-2 7.300214+1 2.660725-2 4.973707+1 3.162278-2 3.446495+1 3.801894-2 2.312577+1 4.570882-2 1.539610+1 5.432503-2 1.043731+1 6.531306-2 6.842510+0 7.943282-2 4.335035+0 9.660509-2 2.722785+0 1.216186-1 1.562779+0 1.548817-1 8.661478-1 2.570396-1 2.485048-1 3.198895-1 1.458805-1 3.845918-1 9.382515-2 4.518559-1 6.424313-2 5.188000-1 4.675286-2 6.000000-1 3.372210-2 6.839117-1 2.531319-2 7.852356-1 1.884506-2 8.912509-1 1.446847-2 9.885531-1 1.173176-2 1.202264+0 7.989198-3 1.333521+0 6.556775-3 1.513561+0 5.188392-3 1.717908+0 4.138672-3 1.949845+0 3.327291-3 2.238721+0 2.644242-3 2.570396+0 2.116481-3 2.951209+0 1.705942-3 3.427678+0 1.361421-3 4.000000+0 1.087300-3 4.677351+0 8.723736-4 5.559043+0 6.895759-4 6.606934+0 5.492499-4 7.943282+0 4.342008-4 9.772372+0 3.360774-4 1.230269+1 2.551260-4 1.548817+1 1.952160-4 1.927525+1 1.523697-4 2.570396+1 1.108464-4 3.548134+1 7.825844-5 5.248075+1 5.173384-5 8.128305+1 3.284168-5 1.479108+2 1.779006-5 2.951209+2 8.842043-6 1.174898+3 2.206143-6 1.000000+5 2.586300-8 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.323400-4 1.766100-4 1.000000+5 1.766100-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.323400-4 2.060200-9 1.000000+5 2.060200-9 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.323400-4 5.572794-5 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 1.810000-4 2.880632+5 1.980000-4 2.050400+5 2.018366-4 1.915432+5 2.264644-4 1.301332+5 2.426610-4 1.041237+5 2.570396-4 8.703360+4 2.691535-4 7.594251+4 2.800000-4 6.802900+4 2.917427-4 6.111779+4 3.054921-4 5.464391+4 3.200000-4 4.918040+4 3.350000-4 4.463220+4 3.507519-4 4.079385+4 3.650000-4 3.797840+4 3.801894-4 3.551134+4 4.000000-4 3.290660+4 4.216965-4 3.061530+4 4.500000-4 2.823380+4 4.786301-4 2.632579+4 5.188000-4 2.422336+4 5.888437-4 2.147505+4 7.852356-4 1.652076+4 9.120108-4 1.431711+4 1.047129-3 1.245020+4 1.174898-3 1.101434+4 1.350000-3 9.426460+3 1.548817-3 8.015712+3 1.757924-3 6.851797+3 2.000000-3 5.799280+3 2.264644-3 4.905271+3 2.570396-3 4.107550+3 2.917427-3 3.415350+3 3.311311-3 2.819484+3 3.758374-3 2.310617+3 4.216965-3 1.915936+3 4.731513-3 1.579032+3 5.370318-3 1.267485+3 6.095369-3 1.010073+3 6.918310-3 7.990734+2 7.852356-3 6.277379+2 8.912509-3 4.897253+2 1.011579-2 3.794354+2 1.148154-2 2.919449+2 1.303167-2 2.230941+2 1.496236-2 1.650897+2 1.717908-2 1.212085+2 1.972423-2 8.830607+1 2.264644-2 6.384339+1 2.600160-2 4.581778+1 3.000000-2 3.225500+1 3.467369-2 2.243824+1 4.027170-2 1.530601+1 4.731513-2 1.005967+1 5.559043-2 6.561106+0 6.683439-2 3.993280+0 8.128305-2 2.336917+0 1.047129-1 1.159345+0 2.000000-1 1.893994-1 2.483133-1 1.039762-1 2.951209-1 6.486617-2 3.427678-1 4.337760-2 3.935501-1 3.012140-2 4.466836-1 2.171090-2 5.069907-1 1.576121-2 5.688529-1 1.185939-2 6.382635-1 8.985143-3 7.161434-1 6.857835-3 8.035261-1 5.275005-3 8.810489-1 4.296175-3 9.549926-1 3.611730-3 1.035142+0 3.056960-3 1.135011+0 2.543997-3 1.258925+0 2.084035-3 1.412538+0 1.682652-3 1.659587+0 1.258926-3 1.883649+0 1.009691-3 2.137962+0 8.160994-4 2.454709+0 6.516786-4 2.818383+0 5.240607-4 3.235937+0 4.244362-4 3.758374+0 3.403293-4 4.415704+0 2.704435-4 5.188000+0 2.165467-4 6.165950+0 1.719714-4 7.413102+0 1.355627-4 9.015711+0 1.061316-4 1.083927+1 8.486893-5 1.303167+1 6.823989-5 1.640590+1 5.228682-5 2.137962+1 3.884278-5 2.884032+1 2.798232-5 4.073803+1 1.932949-5 6.165950+1 1.250859-5 1.035142+2 7.328908-6 1.862087+2 4.029356-6 3.715352+2 2.005706-6 1.479108+3 5.011119-7 1.000000+5 7.399700-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 1.810000-4 1.273400-4 1.000000+5 1.273400-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.810000-4 6.052700-9 1.000000+5 6.052700-9 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 1.810000-4 5.365395-5 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.439100-4 6.725080+5 1.446000-4 6.501240+5 1.454000-4 6.284680+5 1.462177-4 6.100235+5 1.470000-4 5.957080+5 1.481000-4 5.809920+5 1.488000-4 5.695840+5 1.505000-4 5.394640+5 1.520000-4 5.180520+5 1.540000-4 4.941640+5 1.570000-4 4.645040+5 1.603245-4 4.377237+5 1.640590-4 4.131688+5 1.678804-4 3.924150+5 1.720000-4 3.735880+5 1.780000-4 3.506260+5 1.883649-4 3.183720+5 2.018366-4 2.847734+5 2.137962-4 2.612008+5 2.238721-4 2.453134+5 2.371374-4 2.285705+5 2.570396-4 2.089197+5 2.917427-4 1.829444+5 3.845918-4 1.388101+5 4.415704-4 1.201750+5 5.069907-4 1.032657+5 5.754399-4 8.919169+4 6.606934-4 7.540462+4 7.500000-4 6.414800+4 8.511380-4 5.424486+4 9.885531-4 4.411214+4 1.150000-3 3.549056+4 1.318257-3 2.896415+4 1.513561-3 2.343215+4 1.737801-3 1.883789+4 2.000000-3 1.498948+4 2.300000-3 1.186364+4 2.630268-3 9.418124+3 3.000000-3 7.463520+3 3.427678-3 5.858230+3 3.935501-3 4.523585+3 4.518559-3 3.466807+3 5.188000-3 2.635516+3 5.956621-3 1.988201+3 6.839116-3 1.488001+3 7.852356-3 1.105106+3 9.000000-3 8.172760+2 1.023293-2 6.110231+2 1.161449-2 4.555112+2 1.333521-2 3.281023+2 1.531087-2 2.344554+2 1.757924-2 1.662156+2 2.018366-2 1.169279+2 2.317395-2 8.162104+1 2.660725-2 5.654821+1 3.054921-2 3.888991+1 3.507519-2 2.655282+1 4.073803-2 1.742853+1 4.731513-2 1.135343+1 5.559043-2 7.100308+0 6.382635-2 4.718018+0 7.673615-2 2.713015+0 9.549926-2 1.394167+0 1.840772-1 1.849959-1 2.290868-1 9.492302-2 2.691535-1 5.844461-2 3.126079-1 3.753022-2 3.548134-1 2.597771-2 4.000000-1 1.846600-2 4.466836-1 1.358118-2 5.011872-1 9.928874-3 5.559043-1 7.538874-3 6.165950-1 5.762723-3 6.839117-1 4.436711-3 7.585776-1 3.440700-3 8.709636-1 2.470453-3 9.332543-1 2.107544-3 9.885531-1 1.857296-3 1.071519+0 1.570828-3 1.161449+0 1.337778-3 1.273503+0 1.121832-3 1.412538+0 9.279562-4 1.717908+0 6.545966-4 1.949845+0 5.259261-4 2.238721+0 4.179513-4 2.570396+0 3.345361-4 2.951209+0 2.696430-4 3.427678+0 2.151874-4 4.000000+0 1.718600-4 4.677351+0 1.378907-4 5.559043+0 1.089950-4 6.606934+0 8.681385-5 7.943282+0 6.862924-5 9.772372+0 5.311898-5 1.230269+1 4.032522-5 1.531087+1 3.126861-5 1.905461+1 2.439508-5 2.570396+1 1.751969-5 3.548134+1 1.237003-5 5.248075+1 8.176952-6 8.128305+1 5.190921-6 1.479108+2 2.811839-6 2.951209+2 1.397527-6 1.174898+3 3.487066-7 1.000000+5 4.087800-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.439100-4 1.260500-4 1.000000+5 1.260500-4 1 87000 7 7 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.439100-4 9.84360-10 1.000000+5 9.84360-10 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.439100-4 1.785902-5 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 6.873000-5 1.562040+6 6.876000-5 1.615792+6 6.890000-5 1.805240+6 6.905000-5 2.043736+6 6.925000-5 2.430604+6 6.941200-5 2.815201+6 6.955000-5 3.201356+6 6.975500-5 3.901801+6 6.998000-5 4.885160+6 7.015000-5 5.818360+6 7.022000-5 6.263009+6 7.040300-5 7.371047+6 7.050000-5 7.998686+6 7.100000-5 1.200687+7 7.110000-5 1.271993+7 7.220000-5 1.659305+7 7.232000-5 1.679290+7 7.357000-5 1.874195+7 7.510000-5 1.985265+7 7.520000-5 1.986368+7 7.700000-5 1.912145+7 7.762471-5 1.829327+7 7.780000-5 1.773593+7 7.920000-5 1.562869+7 7.950000-5 1.506108+7 8.000000-5 1.424260+7 8.060000-5 1.340216+7 8.128305-5 1.259165+7 8.190000-5 1.195992+7 8.270000-5 1.124788+7 8.400000-5 1.027728+7 8.570000-5 9.233280+6 9.440609-5 5.652032+6 1.023293-4 3.742233+6 1.080000-4 2.860736+6 1.150000-4 2.111516+6 1.273503-4 1.296344+6 1.364583-4 9.254869+5 1.650000-4 3.589652+5 1.737801-4 2.785131+5 1.820000-4 2.233960+5 1.883649-4 1.906211+5 1.950000-4 1.635144+5 2.000000-4 1.469124+5 2.060000-4 1.305076+5 2.113489-4 1.185591+5 2.162719-4 1.094060+5 2.213095-4 1.015917+5 2.264644-4 9.495955+4 2.318700-4 8.925024+4 2.371374-4 8.471625+4 2.430000-4 8.066480+4 2.483133-4 7.774756+4 2.540973-4 7.524707+4 2.600160-4 7.328904+4 2.670000-4 7.160920+4 2.730000-4 7.060160+4 2.818383-4 6.967875+4 2.917427-4 6.922442+4 3.019952-4 6.919184+4 3.162278-4 6.959901+4 3.801894-4 7.286849+4 4.073803-4 7.365769+4 4.350000-4 7.388320+4 4.623810-4 7.359249+4 4.897788-4 7.288124+4 5.188000-4 7.173754+4 5.500000-4 7.015680+4 5.900000-4 6.781080+4 6.309573-4 6.514722+4 6.760830-4 6.206864+4 7.244360-4 5.872891+4 7.852356-4 5.462764+4 8.413951-4 5.098646+4 9.120108-4 4.672856+4 9.885531-4 4.249797+4 1.071519-3 3.839254+4 1.174898-3 3.391533+4 1.300000-3 2.931572+4 1.428894-3 2.536834+4 1.566751-3 2.187073+4 1.698244-3 1.909677+4 1.862087-3 1.625002+4 2.041738-3 1.373266+4 2.264644-3 1.126781+4 2.511886-3 9.171864+3 2.786121-3 7.405977+3 3.054921-3 6.082105+3 3.388442-3 4.835351+3 3.758374-3 3.813669+3 4.168694-3 2.984197+3 4.623810-3 2.317115+3 5.128614-3 1.785820+3 5.688529-3 1.366441+3 6.309573-3 1.038072+3 7.000000-3 7.826400+2 7.762471-3 5.868576+2 8.709636-3 4.226672+2 9.772372-3 3.020516+2 1.096478-2 2.142140+2 1.230269-2 1.507985+2 1.380384-2 1.053956+2 1.548817-2 7.314919+1 1.757924-2 4.856571+1 2.000000-2 3.174501+1 2.264644-2 2.092506+1 2.600160-2 1.306374+1 3.000000-2 7.957302+0 3.467369-2 4.779259+0 4.073803-2 2.688014+0 4.841724-2 1.439568+0 5.888437-2 7.035144-1 7.673615-2 2.645948-1 1.303167-1 3.712669-2 1.603245-1 1.733047-2 1.905461-1 9.249850-3 2.213095-1 5.404351-3 2.540973-1 3.313886-3 2.884032-1 2.131397-3 3.273407-1 1.380198-3 3.630781-1 9.737578-4 4.000000-1 7.076600-4 4.415705-1 5.156725-4 4.954502-1 3.596018-4 5.559043-1 2.523332-4 6.095369-1 1.912751-4 6.683439-1 1.459892-4 7.328245-1 1.122509-4 8.511380-1 7.411597-5 9.015711-1 6.355520-5 9.440609-1 5.652684-5 9.885531-1 5.059025-5 1.035142+0 4.559464-5 1.096478+0 4.033854-5 1.161449+0 3.593656-5 1.244515+0 3.151704-5 1.348963+0 2.724038-5 1.531087+0 2.184458-5 1.819701+0 1.609998-5 2.018366+0 1.348665-5 2.317395+0 1.073837-5 2.660725+0 8.610208-6 3.054921+0 6.952294-6 3.548134+0 5.558458-6 4.120975+0 4.476972-6 4.841724+0 3.573476-6 5.754399+0 2.829113-6 6.839116+0 2.256588-6 8.222427+0 1.786437-6 1.011579+1 1.384602-6 1.258925+1 1.066915-6 1.566751+1 8.276541-7 1.972423+1 6.379823-7 2.630268+1 4.643803-7 3.672823+1 3.240514-7 5.432503+1 2.143596-7 8.511380+1 1.345579-7 1.566751+2 7.208433-8 3.126079+2 3.584402-8 1.244515+3 8.946265-9 1.000000+5 1.11110-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 6.873000-5 6.873000-5 1.000000+5 6.873000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 6.873000-5 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 6.352000-5 2.335261+6 6.356000-5 2.420964+6 6.370000-5 2.688504+6 6.385000-5 3.022230+6 6.400000-5 3.414624+6 6.415000-5 3.872898+6 6.430000-5 4.412904+6 6.450000-5 5.278734+6 6.470000-5 6.355680+6 6.493000-5 7.921500+6 6.515000-5 9.839580+6 6.540000-5 1.268064+7 6.560000-5 1.561290+7 6.570000-5 1.735176+7 6.577000-5 1.852134+7 6.600000-5 2.374946+7 6.606934-5 2.553263+7 6.657000-5 3.299205+7 6.710000-5 3.748571+7 6.715000-5 3.771887+7 6.780000-5 3.906337+7 6.868000-5 3.904393+7 7.080000-5 3.251384+7 7.090000-5 3.254952+7 7.244360-5 2.784803+7 7.560000-5 2.102308+7 7.620000-5 1.982772+7 7.690000-5 1.863492+7 7.762471-5 1.756495+7 7.852356-5 1.641186+7 8.000000-5 1.481364+7 8.239100-5 1.272036+7 8.810489-5 9.052266+6 9.800000-5 5.233044+6 1.040000-4 3.880776+6 1.230269-4 1.704169+6 1.318257-4 1.208012+6 1.540000-4 5.507118+5 1.621810-4 4.266190+5 1.690000-4 3.504450+5 1.740000-4 3.063912+5 1.800000-4 2.638242+5 1.850000-4 2.352756+5 1.900000-4 2.118294+5 1.950000-4 1.925904+5 2.000000-4 1.768434+5 2.041738-4 1.659078+5 2.089296-4 1.555170+5 2.137962-4 1.468074+5 2.190000-4 1.392882+5 2.240000-4 1.335144+5 2.290868-4 1.288503+5 2.350000-4 1.246896+5 2.400000-4 1.220394+5 2.454709-4 1.198833+5 2.511886-4 1.183068+5 2.580000-4 1.171440+5 2.660725-4 1.165303+5 2.770000-4 1.166082+5 2.917427-4 1.176514+5 3.467369-4 1.230078+5 3.715352-4 1.243924+5 3.935501-4 1.248130+5 4.200000-4 1.243866+5 4.466836-4 1.230986+5 4.731513-4 1.211826+5 5.011872-4 1.185798+5 5.370318-4 1.146418+5 5.754399-4 1.100189+5 6.165950-4 1.048033+5 6.606934-4 9.916644+4 7.150000-4 9.232080+4 7.673615-4 8.606320+4 8.317638-4 7.882151+4 9.015711-4 7.168343+4 9.850000-4 6.408180+4 1.083927-3 5.624903+4 1.174898-3 5.006261+4 1.273503-3 4.430225+4 1.400000-3 3.809814+4 1.550000-3 3.211932+4 1.717908-3 2.679733+4 1.905461-3 2.213846+4 2.089296-3 1.854842+4 2.290868-3 1.544020+4 2.511886-3 1.277023+4 2.786121-3 1.023545+4 3.054921-3 8.351078+3 3.388442-3 6.592093+3 3.758374-3 5.162407+3 4.168694-3 4.010851+3 4.623810-3 3.091958+3 5.128614-3 2.365896+3 5.688529-3 1.797278+3 6.309573-3 1.355321+3 7.079458-3 9.823845+2 7.852356-3 7.301953+2 8.709636-3 5.391176+2 9.772372-3 3.819076+2 1.096478-2 2.684257+2 1.230269-2 1.872265+2 1.380384-2 1.296206+2 1.548817-2 8.908786+1 1.737801-2 6.079581+1 1.972423-2 3.962596+1 2.238721-2 2.563131+1 2.540973-2 1.645787+1 2.884032-2 1.049364+1 3.273407-2 6.641330+0 3.801894-2 3.835940+0 4.466836-2 2.106850+0 5.432503-2 1.008856+0 6.839116-2 4.206243-1 1.258925-1 4.081634-2 1.531088-1 1.944589-2 1.778279-1 1.109860-2 2.041738-1 6.660272-3 2.317395-1 4.201589-3 2.600160-1 2.783763-3 2.884032-1 1.934623-3 3.198895-1 1.353412-3 3.507519-1 9.914995-4 3.845918-1 7.314389-4 4.120975-1 5.854235-4 4.518559-1 4.382757-4 5.000000-1 3.213700-4 5.495409-1 2.420766-4 6.025596-1 1.850030-4 6.531306-1 1.472417-4 7.079458-1 1.179336-4 7.673615-1 9.507151-5 8.609938-1 7.035642-5 9.120108-1 6.090102-5 9.660509-1 5.308887-5 1.011579+0 4.785584-5 1.071519+0 4.232033-5 1.148154+0 3.679711-5 1.230269+0 3.221893-5 1.333521+0 2.778189-5 1.798871+0 1.636627-5 2.018366+0 1.343908-5 2.317395+0 1.069848-5 2.660725+0 8.578604-6 3.054921+0 6.927589-6 3.548134+0 5.538714-6 4.120975+0 4.461051-6 4.841724+0 3.560728-6 5.754399+0 2.819054-6 6.839116+0 2.248646-6 8.222427+0 1.780134-6 1.011579+1 1.379683-6 1.258925+1 1.063050-6 1.584893+1 8.138633-7 2.018366+1 6.195930-7 2.691535+1 4.512717-7 3.758374+1 3.150702-7 5.623413+1 2.060248-7 9.015711+1 1.263662-7 1.640590+2 6.854720-8 3.273407+2 3.409573-8 1.303167+3 8.512423-9 1.000000+5 1.10720-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 6.352000-5 6.352000-5 1.000000+5 6.352000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 6.352000-5 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 3.264000-5 4.569980+5 3.330000-5 4.340380+5 3.427678-5 3.994876+5 3.550000-5 3.590720+5 3.715352-5 3.105050+5 4.400000-5 1.765602+5 4.623810-5 1.503792+5 4.841724-5 1.304669+5 5.011872-5 1.179567+5 5.188000-5 1.072663+5 5.370318-5 9.816506+4 5.559043-5 9.044004+4 5.754399-5 8.389820+4 5.956621-5 7.836637+4 6.165950-5 7.369046+4 6.400000-5 6.944840+4 6.650000-5 6.579700+4 6.918310-5 6.263282+4 7.244360-5 5.954681+4 7.673615-5 5.634657+4 8.222426-5 5.314642+4 1.122018-4 4.182032+4 1.333521-4 3.634136+4 1.531087-4 3.227801+4 1.720000-4 2.899260+4 1.927525-4 2.589651+4 2.238721-4 2.213203+4 2.570396-4 1.901776+4 2.917427-4 1.642659+4 3.507519-4 1.315891+4 4.027170-4 1.106623+4 4.786301-4 8.836130+3 5.623413-4 7.105921+3 6.683439-4 5.583825+3 7.943282-4 4.353357+3 9.440609-4 3.370646+3 1.161449-3 2.461360+3 1.445440-3 1.751859+3 1.840772-3 1.194292+3 2.344229-3 8.080778+2 2.917427-3 5.634975+2 3.630781-3 3.899676+2 4.466836-3 2.730331+2 5.432503-3 1.935169+2 6.095369-3 1.573184+2 7.585776-3 1.051761+2 9.440609-3 6.977687+1 1.202264-2 4.402673+1 1.462177-2 3.010754+1 1.757924-2 2.090187+1 2.065380-2 1.508768+1 2.483133-2 1.030709+1 2.985383-2 6.985765+0 3.589219-2 4.698014+0 4.315191-2 3.134830+0 5.128614-2 2.129979+0 6.165950-2 1.399334+0 7.413102-2 9.125938-1 8.709636-2 6.238604-1 1.083927-1 3.691929-1 1.396368-1 1.994373-1 2.600160-1 4.314425-2 3.235937-1 2.533962-2 3.845918-1 1.675744-2 4.518559-1 1.147433-2 5.188000-1 8.350694-3 5.956621-1 6.121314-3 6.839117-1 4.521786-3 7.852356-1 3.366684-3 8.912509-1 2.585327-3 9.885531-1 2.096400-3 1.188502+0 1.459881-3 1.318257+0 1.197380-3 1.500000+0 9.424700-4 1.698244+0 7.546927-4 1.927525+0 6.063058-4 2.213095+0 4.815273-4 2.540973+0 3.851954-4 2.917427+0 3.103013-4 3.349654+0 2.517572-4 3.890451+0 2.022134-4 4.570882+0 1.609648-4 5.432503+0 1.270986-4 6.456542+0 1.011335-4 7.762471+0 7.987406-5 9.549926+0 6.176716-5 1.202264+1 4.684279-5 1.513561+1 3.582516-5 1.862087+1 2.830227-5 2.483133+1 2.057099-5 3.427678+1 1.451095-5 5.000000+1 9.726800-6 7.673615+1 6.227999-6 1.396368+2 3.370942-6 2.786121+2 1.674621-6 5.559043+2 8.353791-7 2.213095+3 2.091080-7 1.000000+5 4.621700-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 3.264000-5 3.264000-5 1.000000+5 3.264000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 3.264000-5 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 1.928000-5 3.276659+7 1.950000-5 3.035180+7 1.990000-5 2.669260+7 2.020000-5 2.440480+7 2.065380-5 2.151574+7 2.110000-5 1.918368+7 2.162719-5 1.693772+7 2.213095-5 1.516523+7 2.270000-5 1.350588+7 2.344229-5 1.175420+7 2.426610-5 1.020533+7 2.519300-5 8.820363+6 2.610000-5 7.734820+6 2.730000-5 6.593660+6 2.851018-5 5.688809+6 3.019952-5 4.713235+6 3.230000-5 3.815420+6 3.507519-5 2.969976+6 4.000000-5 2.013160+6 4.897788-5 1.110153+6 7.413102-5 3.224639+5 8.709636-5 2.006421+5 1.023293-4 1.257949+5 1.174898-4 8.495341+4 1.318257-4 6.169854+4 1.462177-4 4.658557+4 1.603245-4 3.654041+4 1.737801-4 2.973999+4 1.862087-4 2.508588+4 2.000000-4 2.118340+4 2.150000-4 1.799430+4 2.300000-4 1.556322+4 2.454709-4 1.361981+4 2.630268-4 1.190728+4 2.818383-4 1.049331+4 3.019952-4 9.319416+3 3.235937-4 8.340372+3 3.500000-4 7.410320+3 3.801894-4 6.591194+3 4.168694-4 5.833000+3 4.623810-4 5.125364+3 5.308844-4 4.352880+3 8.317638-4 2.622218+3 1.011579-3 2.088902+3 1.202264-3 1.695999+3 1.412538-3 1.386037+3 1.659587-3 1.124151+3 1.927525-3 9.187753+2 2.238721-3 7.453419+2 2.570396-3 6.101621+2 2.951209-3 4.959636+2 3.388442-3 4.001231+2 3.589219-3 3.646336+2 4.120975-3 2.890691+2 4.731513-3 2.275431+2 5.495409-3 1.742896+2 6.839116-3 1.169353+2 7.943282-3 8.834984+1 9.015711-3 6.922135+1 1.011579-2 5.508137+1 1.148154-2 4.239320+1 1.303167-2 3.238654+1 1.479108-2 2.456954+1 1.698244-2 1.804622+1 1.949845-2 1.315417+1 2.238721-2 9.516025+0 2.570396-2 6.833877+0 2.951209-2 4.873079+0 3.427678-2 3.352010+0 4.000000-2 2.260584+0 4.677351-2 1.504937+0 5.495409-2 9.823332-1 6.456542-2 6.367414-1 7.852356-2 3.730574-1 9.885531-2 1.972436-1 2.018366-1 2.676726-2 2.483133-1 1.507431-2 2.951209-1 9.404255-3 3.427678-1 6.288815-3 3.935501-1 4.366934-3 4.466836-1 3.147660-3 5.069907-1 2.285137-3 5.688529-1 1.719480-3 6.382635-1 1.302753-3 7.161434-1 9.943150-4 8.035261-1 7.648494-4 8.810489-1 6.229955-4 9.549926-1 5.237873-4 1.035142+0 4.433514-4 1.135011+0 3.689672-4 1.258925+0 3.022598-4 1.412538+0 2.440312-4 1.640590+0 1.863523-4 1.862087+0 1.493662-4 2.113489+0 1.206301-4 2.426610+0 9.626373-5 2.786121+0 7.737238-5 3.198895+0 6.263001-5 3.715352+0 5.019060-5 4.315191+0 4.051242-5 5.069907+0 3.240499-5 6.025596+0 2.570823-5 7.244360+0 2.024529-5 8.810489+0 1.583536-5 1.059254+1 1.265306-5 1.273503+1 1.016676-5 1.603245+1 7.785222-6 2.041738+1 5.929227-6 2.722701+1 4.319780-6 3.801894+1 3.016820-6 5.688529+1 1.973144-6 9.225714+1 1.196191-6 1.659587+2 6.567097-7 3.311311+2 3.266784-7 1.318257+3 8.156367-8 1.000000+5 1.073200-9 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 1.928000-5 1.928000-5 1.000000+5 1.928000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 1.928000-5 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 1.414000-5 7.828061+7 1.440000-5 7.050080+7 1.480000-5 6.078360+7 1.531087-5 5.095568+7 1.590000-5 4.223920+7 1.640590-5 3.638624+7 1.698244-5 3.105756+7 1.770000-5 2.588188+7 1.850000-5 2.147460+7 1.927525-5 1.817301+7 2.018366-5 1.516501+7 2.113489-5 1.272917+7 2.238721-5 1.029906+7 2.371374-5 8.388116+6 2.540973-5 6.604345+6 2.754229-5 5.037157+6 3.019952-5 3.725924+6 3.349654-5 2.674229+6 3.801894-5 1.797803+6 4.265795-5 1.261599+6 4.731513-5 9.235066+5 5.188000-5 7.048740+5 5.623413-5 5.603481+5 6.025596-5 4.631227+5 6.500000-5 3.784184+5 7.000000-5 3.129596+5 7.500000-5 2.641424+5 8.035261-5 2.246184+5 8.609938-5 1.924222+5 9.120108-5 1.702014+5 9.660509-5 1.514098+5 1.035142-4 1.325421+5 1.109175-4 1.169297+5 1.198400-4 1.024471+5 1.303167-4 8.951470+4 1.428894-4 7.779170+4 1.566751-4 6.810119+4 1.720000-4 5.990680+4 1.927525-4 5.161333+4 2.300000-4 4.136920+4 3.935501-4 2.149674+4 4.677351-4 1.729377+4 5.559043-4 1.380988+4 6.683439-4 1.077762+4 7.762471-4 8.746828+3 9.120108-4 6.932391+3 1.071519-3 5.457645+3 1.244515-3 4.337606+3 1.479108-3 3.301822+3 1.798871-3 2.408563+3 2.113489-3 1.844181+3 2.454709-3 1.428719+3 2.754229-3 1.166979+3 3.162278-3 9.063516+2 3.630781-3 6.989323+2 4.216965-3 5.234378+2 4.897788-3 3.891114+2 5.754399-3 2.805348+2 6.839116-3 1.961623+2 7.762471-3 1.498598+2 8.609938-3 1.194180+2 9.772372-3 8.980201+1 1.122018-2 6.532254+1 1.288250-2 4.714980+1 1.479108-2 3.376487+1 1.698244-2 2.398597+1 1.949845-2 1.690615+1 2.238721-2 1.182400+1 2.570396-2 8.207188+0 2.951209-2 5.654753+0 3.388442-2 3.867658+0 3.935501-2 2.543135+0 4.570882-2 1.659298+0 5.370318-2 1.039379+0 6.237348-2 6.685651-1 7.498942-2 3.851298-1 9.225714-2 2.053901-1 1.148154-1 1.050268-1 1.819701-1 2.543222-2 2.290868-1 1.259836-2 2.691535-1 7.757630-3 3.126079-1 4.982022-3 3.548134-1 3.448759-3 4.000000-1 2.451800-3 4.466836-1 1.803503-3 5.011872-1 1.318768-3 5.559043-1 1.001550-3 6.165950-1 7.657734-4 6.839117-1 5.897125-4 7.585776-1 4.574650-4 8.609938-1 3.377040-4 9.225714-1 2.878761-4 9.772372-1 2.534633-4 1.047129+0 2.192565-4 1.135011+0 1.864006-4 1.244515+0 1.559925-4 1.380384+0 1.288029-4 1.698244+0 8.893423-5 1.927525+0 7.140552-5 2.187762+0 5.778794-5 2.511886+0 4.620015-5 2.884032+0 3.719572-5 3.311311+0 3.016030-5 3.845918+0 2.421131-5 4.518559+0 1.926179-5 5.308844+0 1.543874-5 6.309573+0 1.227255-5 7.585776+0 9.683615-6 9.225714+0 7.588043-6 1.135011+1 5.907312-6 1.428894+1 4.507788-6 1.800000+1 3.462400-6 2.400000+1 2.514700-6 3.273407+1 1.795428-6 4.731513+1 1.213828-6 7.161434+1 7.876799-7 1.288250+2 4.309618-7 2.570396+2 2.139144-7 5.128614+2 1.066561-7 4.073803+3 1.336814-8 1.000000+5 5.44250-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 1.414000-5 1.414000-5 1.000000+5 1.414000-5 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 1.414000-5 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 3.800000-6 2.294960+6 4.216965-6 1.620373+6 4.623810-6 1.199014+6 5.011872-6 9.272019+5 5.432503-6 7.215856+5 5.888437-6 5.655127+5 6.382635-6 4.461267+5 6.918310-6 3.541894+5 7.500000-6 2.828630+5 8.222426-6 2.205911+5 9.015711-6 1.731663+5 1.000000-5 1.329150+5 1.135011-5 9.694824+4 1.333521-5 6.538353+4 2.162719-5 2.036706+4 2.454709-5 1.510573+4 2.691535-5 1.222927+4 2.884032-5 1.050746+4 3.054921-5 9.316595+3 3.235937-5 8.314010+3 3.427678-5 7.468926+3 3.630781-5 6.757925+3 3.801894-5 6.276946+3 4.000000-5 5.826440+3 4.220000-5 5.426180+3 4.466836-5 5.066473+3 4.731513-5 4.755062+3 5.011872-5 4.490693+3 5.432503-5 4.181324+3 7.000000-5 3.383970+3 7.673615-5 3.109346+3 8.413951-5 2.839027+3 9.120108-5 2.601073+3 1.011579-4 2.307164+3 1.122018-4 2.028759+3 1.513561-4 1.380360+3 1.840772-4 1.090674+3 2.483133-4 7.638620+2 2.884032-4 6.351378+2 3.054921-4 5.896616+2 4.073803-4 3.986287+2 4.897788-4 3.119108+2 5.495409-4 2.655717+2 6.382635-4 2.138390+2 8.511380-4 1.402227+2 9.660509-4 1.156896+2 1.318257-3 7.139136+1 1.698244-3 4.783149+1 1.905461-3 3.974930+1 2.018366-3 3.596953+1 3.273407-3 1.615107+1 4.027170-3 1.138697+1 4.954502-3 7.938498+0 6.025596-3 5.605856+0 7.328245-3 3.928965+0 8.912509-3 2.733348+0 1.083927-2 1.887586+0 1.318257-2 1.293872+0 1.603245-2 8.800805-1 1.927525-2 6.078835-1 2.317395-2 4.163201-1 2.786121-2 2.829859-1 3.311311-2 1.956655-1 3.981072-2 1.310028-1 4.786301-2 8.702823-2 5.688529-2 5.887273-2 6.839116-2 3.851592-2 8.222426-2 2.501472-2 1.011580-1 1.525263-2 1.288250-1 8.492882-3 1.603245-1 4.969708-3 2.511886-1 1.643456-3 3.162278-1 9.381446-4 3.758374-1 6.201670-4 4.415705-1 4.245463-4 5.069907-1 3.089534-4 5.821032-1 2.265436-4 6.606935-1 1.716642-4 7.498942-1 1.310214-4 8.413951-1 1.032059-4 9.549926-1 7.997913-5 1.188502+0 5.209433-5 1.348963+0 4.090144-5 1.513561+0 3.304108-5 1.698244+0 2.689275-5 1.927525+0 2.160706-5 2.213095+0 1.715909-5 2.540973+0 1.372605-5 2.917427+0 1.105757-5 3.349654+0 8.971608-6 3.890451+0 7.206235-6 4.570882+0 5.736183-6 5.370318+0 4.600076-6 6.382635+0 3.658569-6 7.673615+0 2.888130-6 9.332543+0 2.264091-6 1.161449+1 1.739287-6 1.479108+1 1.310980-6 1.840772+1 1.021735-6 2.454709+1 7.423917-7 3.388442+1 5.235621-7 4.897788+1 3.542320-7 7.498942+1 2.272888-7 1.364583+2 1.229858-7 2.722701+2 6.108033-8 5.432503+2 3.046574-8 4.315191+3 3.819124-9 1.000000+5 1.64700-10 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 3.800000-6 3.800000-6 1.000000+5 3.800000-6 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 3.800000-6 0.0 1.000000+5 1.000000+5 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.083140-7 1.025800+0 1.276530-6 1.026100+0 1.601560-6 1.026600+0 2.257830-6 1.027100+0 3.071830-6 1.027500+0 3.847430-6 1.028100+0 5.238200-6 1.028750+0 7.083140-6 1.029500+0 9.693470-6 1.030100+0 1.219070-5 1.031000+0 1.668100-5 1.032000+0 2.282380-5 1.033200+0 3.197230-5 1.034000+0 3.924900-5 1.035300+0 5.327500-5 1.036640+0 7.083140-5 1.038200+0 9.558930-5 1.039700+0 1.241900-4 1.041500+0 1.652330-4 1.043800+0 2.293490-4 1.046400+0 3.190960-4 1.048300+0 3.972830-4 1.051200+0 5.389060-4 1.054080+0 7.083140-4 1.057700+0 9.654770-4 1.061100+0 1.255840-3 1.065100+0 1.662600-3 1.070400+0 2.319490-3 1.076200+0 3.205530-3 1.080600+0 4.003180-3 1.087100+0 5.393610-3 1.093710+0 7.083140-3 1.102600+0 9.820670-3 1.110700+0 1.280810-2 1.120600+0 1.713330-2 1.133300+0 2.382280-2 1.147500+0 3.289220-2 1.158200+0 4.087670-2 1.174100+0 5.463280-2 1.190110+0 7.083140-2 1.205100+0 8.816750-2 1.227500+0 1.180010-1 1.250000+0 1.525000-1 1.265600+0 1.788930-1 1.294900+0 2.334960-1 1.331800+0 3.105420-1 1.362600+0 3.808390-1 1.397000+0 4.646290-1 1.433800+0 5.592960-1 1.477900+0 6.780140-1 1.500000+0 7.393000-1 1.562500+0 9.172930-1 1.617200+0 1.077060+0 1.712900+0 1.359870+0 1.784700+0 1.571870+0 1.892300+0 1.886320+0 2.000000+0 2.196000+0 2.044000+0 2.321000+0 2.163500+0 2.653020+0 2.372600+0 3.206180+0 2.686300+0 3.973160+0 3.000000+0 4.678000+0 3.500000+0 5.704890+0 4.000000+0 6.637000+0 5.000000+0 8.273000+0 6.000000+0 9.682000+0 7.000000+0 1.092000+1 8.000000+0 1.204000+1 9.000000+0 1.307000+1 1.000000+1 1.401000+1 1.100000+1 1.488000+1 1.200000+1 1.569000+1 1.300000+1 1.645000+1 1.400000+1 1.716000+1 1.500000+1 1.783000+1 1.600000+1 1.845000+1 1.800000+1 1.957000+1 2.000000+1 2.057000+1 2.200000+1 2.148000+1 2.400000+1 2.231000+1 2.600000+1 2.307000+1 2.800000+1 2.376000+1 3.000000+1 2.441000+1 4.000000+1 2.702000+1 5.000000+1 2.896000+1 6.000000+1 3.047000+1 8.000000+1 3.268000+1 1.000000+2 3.423000+1 1.500000+2 3.670000+1 2.000000+2 3.816000+1 3.000000+2 3.986000+1 4.000000+2 4.083000+1 5.000000+2 4.147000+1 6.000000+2 4.193000+1 8.000000+2 4.254000+1 1.000000+3 4.293000+1 1.500000+3 4.350000+1 2.000000+3 4.381000+1 3.000000+3 4.414000+1 4.000000+3 4.432000+1 5.000000+3 4.444000+1 6.000000+3 4.452000+1 8.000000+3 4.462000+1 1.000000+4 4.469000+1 1.500000+4 4.478000+1 2.000000+4 4.483000+1 3.000000+4 4.488000+1 4.000000+4 4.490000+1 5.000000+4 4.492000+1 6.000000+4 4.493000+1 8.000000+4 4.495000+1 1.000000+5 4.496000+1 1 87000 7 8 2.230000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.705820-7 2.090400+0 1.182030-6 2.094700+0 1.532690-6 2.099900+0 2.039020-6 2.106600+0 2.836450-6 2.114000+0 3.924590-6 2.119500+0 4.886090-6 2.127900+0 6.626460-6 2.136250+0 8.705820-6 2.147000+0 1.193630-5 2.156900+0 1.550380-5 2.169000+0 2.069080-5 2.184500+0 2.876090-5 2.201800+0 3.979160-5 2.214800+0 4.957720-5 2.234200+0 6.669010-5 2.253680+0 8.705820-5 2.281500+0 1.219400-4 2.307000+0 1.601680-4 2.338200+0 2.153590-4 2.377400+0 2.982460-4 2.410200+0 3.793190-4 2.446800+0 4.825140-4 2.485900+0 6.075130-4 2.532900+0 7.774890-4 2.556430+0 8.705820-4 2.611900+0 1.110100-3 2.660400+0 1.342070-3 2.745300+0 1.796300-3 2.809000+0 2.175440-3 2.904500+0 2.802510-3 3.000000+0 3.498000-3 3.125000+0 4.510060-3 3.234400+0 5.486980-3 3.425800+0 7.386760-3 3.569300+0 8.954960-3 3.784700+0 1.150730-2 4.000000+0 1.425000-2 4.250000+0 1.760210-2 4.625000+0 2.286840-2 5.000000+0 2.834000-2 5.500000+0 3.584370-2 6.000000+0 4.344000-2 6.750000+0 5.472920-2 7.000000+0 5.844000-2 8.000000+0 7.294000-2 9.000000+0 8.678000-2 1.000000+1 9.989000-2 1.100000+1 1.123000-1 1.200000+1 1.239000-1 1.300000+1 1.349000-1 1.400000+1 1.453000-1 1.500000+1 1.551000-1 1.600000+1 1.644000-1 1.800000+1 1.816000-1 2.000000+1 1.972000-1 2.200000+1 2.114000-1 2.400000+1 2.244000-1 2.600000+1 2.364000-1 2.800000+1 2.475000-1 3.000000+1 2.577000-1 4.000000+1 3.000000-1 5.000000+1 3.317000-1 6.000000+1 3.566000-1 8.000000+1 3.938000-1 1.000000+2 4.206000-1 1.500000+2 4.644000-1 2.000000+2 4.915000-1 3.000000+2 5.244000-1 4.000000+2 5.440000-1 5.000000+2 5.573000-1 6.000000+2 5.670000-1 8.000000+2 5.803000-1 1.000000+3 5.892000-1 1.500000+3 6.023000-1 2.000000+3 6.098000-1 3.000000+3 6.179000-1 4.000000+3 6.227000-1 5.000000+3 6.256000-1 6.000000+3 6.276000-1 8.000000+3 6.304000-1 1.000000+4 6.321000-1 1.500000+4 6.344000-1 2.000000+4 6.358000-1 3.000000+4 6.371000-1 4.000000+4 6.380000-1 5.000000+4 6.385000-1 6.000000+4 6.388000-1 8.000000+4 6.391000-1 1.000000+5 6.394000-1 1 87000 7 8 2.230000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 87000 7 9 2.230000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.700000+1 1.000000+5 8.700000+1 5.000000+5 8.696900+1 8.750000+5 8.691730+1 1.000000+6 8.690500+1 1.250000+6 8.685510+1 1.500000+6 8.680400+1 1.750000+6 8.673040+1 2.000000+6 8.665700+1 2.250000+6 8.656460+1 2.500000+6 8.647300+1 2.875000+6 8.631270+1 3.000000+6 8.625500+1 3.250000+6 8.612560+1 3.625000+6 8.593470+1 4.000000+6 8.573500+1 4.437500+6 8.548120+1 5.000000+6 8.513800+1 5.500000+6 8.480690+1 6.250000+6 8.427570+1 6.500000+6 8.409860+1 7.000000+6 8.373500+1 9.000000+6 8.219700+1 1.000000+7 8.137400+1 1.187500+7 7.979770+1 1.250000+7 7.926300+1 1.437500+7 7.760410+1 1.500000+7 7.704600+1 1.750000+7 7.477500+1 2.000000+7 7.255100+1 2.250000+7 7.039180+1 2.375000+7 6.934600+1 2.500000+7 6.833200+1 2.750000+7 6.636780+1 3.000000+7 6.451200+1 3.250000+7 6.274100+1 3.500000+7 6.105240+1 3.812500+7 5.901350+1 4.000000+7 5.782900+1 4.500000+7 5.477920+1 5.000000+7 5.189800+1 5.500000+7 4.918930+1 6.000000+7 4.667100+1 6.750000+7 4.325450+1 7.000000+7 4.221000+1 8.000000+7 3.843300+1 9.000000+7 3.517500+1 1.000000+8 3.228200+1 1.062500+8 3.061150+1 1.125000+8 2.903060+1 1.156300+8 2.827010+1 1.250000+8 2.610900+1 1.375000+8 2.349050+1 1.500000+8 2.124400+1 1.718800+8 1.817420+1 1.859400+8 1.668080+1 1.875000+8 1.653360+1 2.000000+8 1.548200+1 2.125000+8 1.461770+1 2.312500+8 1.356570+1 2.375000+8 1.326320+1 2.500000+8 1.270900+1 2.718800+8 1.183440+1 2.859400+8 1.126190+1 2.875000+8 1.119600+1 2.964800+8 1.080500+1 3.000000+8 1.064600+1 3.125000+8 1.006370+1 3.359400+8 9.058720+0 3.375000+8 9.000380+0 3.500000+8 8.583500+0 3.625000+8 8.255310+0 3.859400+8 7.731930+0 4.000000+8 7.400600+0 4.125000+8 7.070180+0 4.234400+8 6.767950+0 4.425800+8 6.245710+0 4.712900+8 5.556350+0 4.750000+8 5.478670+0 4.856400+8 5.272960+0 5.000000+8 5.034800+0 5.179700+8 4.799450+0 5.330100+8 4.640940+0 5.425800+8 4.553330+0 6.000000+8 4.123500+0 6.250000+8 3.946330+0 7.000000+8 3.474200+0 7.500000+8 3.224010+0 7.750000+8 3.099110+0 8.000000+8 2.965500+0 8.250000+8 2.820980+0 1.000000+9 1.948000+0 1.031300+9 1.852050+0 1.074300+9 1.745990+0 1.113800+9 1.668390+0 1.162000+9 1.592640+0 1.204300+9 1.538910+0 1.250000+9 1.490280+0 1.278200+9 1.464140+0 1.500000+9 1.305900+0 1.625000+9 1.226990+0 1.753900+9 1.147670+0 1.894500+9 1.064200+0 2.000000+9 1.004000+0 2.139200+9 9.281430-1 2.272600+9 8.599680-1 2.443000+9 7.795310-1 2.602800+9 7.109970-1 2.750000+9 6.534430-1 2.752700+9 6.524410-1 2.959000+9 5.802880-1 3.148200+9 5.220080-1 3.379700+9 4.596800-1 3.676800+9 3.921430-1 3.986900+9 3.340010-1 4.240200+9 2.941570-1 4.511500+9 2.577460-1 4.837200+9 2.211210-1 5.000000+9 2.052600-1 5.375000+9 1.737780-1 5.703100+9 1.510960-1 6.277300+9 1.197740-1 7.031000+9 9.029410-2 8.000000+9 6.493800-2 9.500000+9 4.152160-2 1.00000+10 3.630200-2 1.54060+10 1.162020-2 2.73280+10 2.558260-3 6.36640+10 2.742340-4 1.00000+11 8.323400-5 1.68570+11 2.121320-5 3.34410+11 3.578350-6 8.62510+11 3.120070-7 2.83020+12 1.505550-8 1.00000+14 1.84210-12 3.16230+15 2.86724-16 1.00000+17 4.26110-20 1 87000 7 0 2.230000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.22000-11 1.000000+2 1.220000-9 1.000000+3 1.220000-7 1.000000+4 1.220000-5 1.000000+5 1.220000-3 5.000000+5 3.050000-2 8.750000+5 9.340625-2 1.000000+6 1.220000-1 1.250000+6 1.888020-1 1.500000+6 2.684000-1 1.750000+6 3.594160-1 2.000000+6 4.607000-1 2.250000+6 5.711540-1 2.500000+6 6.895000-1 2.875000+6 8.789890-1 3.000000+6 9.448000-1 3.250000+6 1.079450+0 3.625000+6 1.287510+0 4.000000+6 1.500500+0 4.437500+6 1.752030+0 5.000000+6 2.078000+0 5.500000+6 2.368490+0 6.250000+6 2.807060+0 6.500000+6 2.954290+0 7.000000+6 3.251600+0 9.000000+6 4.482100+0 1.000000+7 5.124000+0 1.187500+7 6.356610+0 1.250000+7 6.770800+0 1.437500+7 8.005880+0 1.500000+7 8.415000+0 1.750000+7 1.003000+1 2.000000+7 1.160900+1 2.250000+7 1.314380+1 2.375000+7 1.388730+1 2.500000+7 1.461400+1 2.750000+7 1.600240+1 3.000000+7 1.730300+1 3.250000+7 1.851610+1 3.500000+7 1.966110+1 3.812500+7 2.102400+1 4.000000+7 2.181600+1 4.500000+7 2.387360+1 5.000000+7 2.587800+1 5.500000+7 2.785480+1 6.000000+7 2.979100+1 6.750000+7 3.257220+1 7.000000+7 3.346300+1 8.000000+7 3.679500+1 9.000000+7 3.974000+1 1.000000+8 4.231500+1 1.062500+8 4.376350+1 1.125000+8 4.511500+1 1.156300+8 4.576090+1 1.250000+8 4.760200+1 1.375000+8 4.988030+1 1.500000+8 5.201300+1 1.718800+8 5.544550+1 1.859400+8 5.747390+1 1.875000+8 5.768920+1 2.000000+8 5.936800+1 2.125000+8 6.094170+1 2.312500+8 6.310980+1 2.375000+8 6.378430+1 2.500000+8 6.506200+1 2.718800+8 6.706670+1 2.859400+8 6.821190+1 2.875000+8 6.833280+1 2.964800+8 6.901250+1 3.000000+8 6.926800+1 3.125000+8 7.012510+1 3.359400+8 7.156190+1 3.375000+8 7.164840+1 3.500000+8 7.233100+1 3.625000+8 7.296400+1 3.859400+8 7.403510+1 4.000000+8 7.462400+1 4.125000+8 7.510330+1 4.234400+8 7.551340+1 4.425800+8 7.617200+1 4.712900+8 7.706140+1 4.750000+8 7.716920+1 4.856400+8 7.747460+1 5.000000+8 7.786600+1 5.179700+8 7.832530+1 5.330100+8 7.868950+1 5.425800+8 7.891120+1 6.000000+8 8.012800+1 6.250000+8 8.058530+1 7.000000+8 8.178900+1 7.500000+8 8.243870+1 7.750000+8 8.272610+1 8.000000+8 8.299200+1 8.250000+8 8.322600+1 1.000000+9 8.444900+1 1.031300+9 8.459810+1 1.074300+9 8.479000+1 1.113800+9 8.494550+1 1.162000+9 8.510600+1 1.204300+9 8.524030+1 1.250000+9 8.536160+1 1.278200+9 8.543170+1 1.500000+9 8.587900+1 1.625000+9 8.606180+1 1.753900+9 8.623560+1 1.894500+9 8.637960+1 2.000000+9 8.648100+1 2.139200+9 8.658140+1 2.272600+9 8.665750+1 2.443000+9 8.673840+1 2.602800+9 8.680070+1 2.750000+9 8.684290+1 2.752700+9 8.684360+1 2.959000+9 8.688730+1 3.148200+9 8.691590+1 3.379700+9 8.694880+1 3.676800+9 8.696430+1 3.986900+9 8.697870+1 4.240200+9 8.698810+1 4.511500+9 8.699030+1 4.837200+9 8.699280+1 5.000000+9 8.699400+1 5.375000+9 8.699490+1 5.703100+9 8.699570+1 6.277300+9 8.699690+1 7.031000+9 8.699840+1 8.000000+9 8.700000+1 9.500000+9 8.700000+1 1.00000+10 8.700000+1 1.54060+10 8.700000+1 2.73280+10 8.700000+1 6.36640+10 8.700000+1 1.00000+11 8.700000+1 1.68570+11 8.700000+1 3.34410+11 8.700000+1 8.62510+11 8.700000+1 2.83020+12 8.700000+1 1.00000+14 8.700000+1 3.16230+15 8.700000+1 1.00000+17 8.700000+1 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.333712-6 0.0 1.338637-6 2.696050+0 1.340278-6 3.583334+0 1.343561-6 6.545253+0 1.346843-6 1.103620+1 1.350537-6 1.811370+1 1.356288-6 3.174253+1 1.360180-6 4.040569+1 1.363559-6 4.547915+1 1.366999-6 4.701835+1 1.370194-6 4.494824+1 1.373780-6 3.898019+1 1.379318-6 2.602882+1 1.382954-6 1.759542+1 1.386237-6 1.135899+1 1.389519-6 6.769144+0 1.392802-6 3.723762+0 1.397521-6 1.064763+0 1.399368-6 0.0 1.512170-6 0.0 1.518683-6 6.649104+0 1.519614-6 7.589284+0 1.523336-6 1.386245+1 1.527058-6 2.337399+1 1.531245-6 3.836372+1 1.537766-6 6.722874+1 1.542179-6 8.557678+1 1.546270-6 9.661276+1 1.549826-6 9.966597+1 1.553454-6 9.542370+1 1.557503-6 8.295105+1 1.563362-6 5.749146+1 1.568000-6 3.726602+1 1.571722-6 2.405765+1 1.575444-6 1.433664+1 1.579166-6 7.886701+0 1.584749-6 2.004831+0 1.586610-6 0.0 1.821623-6 0.0 1.826107-6 1.621573-6 1.830590-6 3.208646-6 1.835074-6 5.860854-6 1.839558-6 9.882206-6 1.844042-6 1.538157-5 1.848525-6 2.210046-5 1.853009-6 2.931271-5 1.857493-6 3.588926-5 1.861976-6 4.056270-5 1.866460-6 4.231976-5 1.870944-6 4.075805-5 1.875427-6 3.623578-5 1.879911-6 2.973828-5 1.888878-6 1.575557-5 1.893362-6 1.017125-5 1.897846-6 6.061334-6 1.902330-6 3.334390-6 1.906813-6 1.693240-6 1.910047-6 4.729731-7 1.911297-6 8.144731-7 1.919449-6 6.070840-6 1.924151-6 1.108889-5 1.928852-6 1.869739-5 1.933553-6 2.910233-5 1.938255-6 4.181464-5 1.942956-6 5.546040-5 1.947657-6 6.790339-5 1.952359-6 7.674567-5 1.957060-6 8.007006-5 1.961761-6 7.711528-5 1.966463-6 6.855902-5 1.971164-6 5.626558-5 1.980567-6 2.980993-5 1.985268-6 1.924426-5 1.989969-6 1.146820-5 1.994671-6 6.308751-6 1.999372-6 3.203653-6 2.004073-6 0.0 2.148898-6 0.0 2.154187-6 1.93536-15 2.159476-6 3.82954-15 2.164765-6 6.99498-15 2.170055-6 1.17945-14 2.175344-6 1.83580-14 2.180633-6 2.63771-14 2.185922-6 3.49850-14 2.191212-6 4.28341-14 2.196501-6 4.84119-14 2.201790-6 5.05090-14 2.207079-6 4.86451-14 2.212368-6 4.32477-14 2.217658-6 3.54929-14 2.228236-6 1.88044-14 2.233525-6 1.21395-14 2.238815-6 7.23425-15 2.244104-6 3.97962-15 2.249393-6 2.02090-15 2.254682-6 0.0 2.556759-6 0.0 2.566198-6 4.701630-2 2.569345-6 6.248961-2 2.575638-6 1.141424-1 2.581931-6 1.924597-1 2.588224-6 2.995620-1 2.598451-6 5.181242-1 2.607104-6 6.989570-1 2.614184-6 7.942430-1 2.620530-6 8.201413-1 2.628334-6 9.874609-1 2.634029-6 1.073890+0 2.640375-6 1.262311+0 2.646969-6 1.622151+0 2.653700-6 2.193537+0 2.665431-6 3.526256+0 2.672534-6 4.362354+0 2.679486-6 4.891031+0 2.685871-6 5.041966+0 2.692448-6 4.809577+0 2.699244-6 4.197022+0 2.717483-6 1.884467+0 2.723933-6 1.216552+0 2.730384-6 7.249841-1 2.736835-6 3.988270-1 2.744658-6 1.595314-1 2.749736-6 1.525628-5 2.757813-6 1.468836-5 2.768683-6 1.299183-5 2.782017-6 9.910692-6 2.803855-6 3.938063-6 2.808685-6 3.002336-6 2.815352-6 1.938203-6 2.822019-6 1.155031-6 2.828687-6 6.353918-7 2.835354-6 3.226590-7 2.842021-6 0.0 3.026204-6 0.0 3.033652-6 5.982873-3 3.041101-6 1.183846-2 3.048550-6 2.162391-2 3.056225-6 3.707670-2 3.063747-6 1.112376-1 3.071270-6 1.887147-1 3.078792-6 3.029325-1 3.086315-6 4.595936-1 3.097477-6 7.663024-1 3.112024-6 1.199062+0 3.118088-6 1.343919+0 3.123927-6 1.444542+0 3.132390-6 1.466353+0 3.140143-6 1.371611+0 3.148340-6 1.174324+0 3.169063-6 5.248541-1 3.176585-6 3.355193-1 3.184108-6 1.999483-1 3.191630-6 1.099954-1 3.203269-6 2.532993-2 3.206675-6 3.683681-6 3.208845-6 3.177274-6 3.210872-6 2.768097-6 3.218476-6 1.540811-6 3.223971-6 8.573188-7 3.226080-6 6.985955-7 3.233683-6 3.547545-7 3.241287-6 0.0 3.257520-6 0.0 3.265538-6 2.144825-3 3.273556-6 4.244018-3 3.273946-6 4.414149-3 3.282004-6 3.122793-2 3.290063-6 5.938590-2 3.298121-6 1.047299-1 3.306180-6 1.712183-1 3.314238-6 2.593939-1 3.334384-6 5.210097-1 3.338413-6 5.690677-1 3.346472-6 6.334623-1 3.354530-6 6.523213-1 3.362588-6 6.212512-1 3.370647-6 5.470548-1 3.393826-6 2.459837-1 3.398608-6 1.949474-1 3.402880-6 1.576552-1 3.410939-6 1.099278-1 3.415338-6 9.487803-2 3.418997-6 8.640998-2 3.423703-6 8.576189-2 3.432069-6 9.533065-2 3.435114-6 1.030027-1 3.440434-6 1.325455-1 3.461347-6 2.738778-1 3.465530-6 3.003372-1 3.473895-6 3.369780-1 3.482260-6 3.544492-1 3.490625-6 3.472770-1 3.503173-6 3.017554-1 3.515721-6 2.475832-1 3.524372-6 2.223000-1 3.532451-6 2.139626-1 3.541722-6 2.207659-1 3.555620-6 2.406211-1 3.574139-6 2.517189-1 3.614789-6 2.358951-1 3.681238-6 2.253490-1 3.734785-6 1.911810-1 3.767887-6 1.741525-1 3.781359-6 1.730491-1 3.799950-6 1.635578-1 3.839434-6 1.318811-1 3.866659-6 1.206420-1 3.921861-6 1.158546-1 4.315191-6 9.284345-2 4.753830-6 7.467072-2 5.205543-6 6.141613-2 5.712653-6 5.069296-2 6.290462-6 4.194200-2 6.993802-6 3.441279-2 7.765484-6 2.861736-2 8.734488-6 2.353326-2 9.931730-6 1.923683-2 1.007385-5 1.882506-2 1.011724-5 1.928839+0 1.012344-5 2.198914+0 1.014823-5 4.000980+0 1.017303-5 6.733357+0 1.020092-5 1.103948+1 1.024393-5 1.924532+1 1.027531-5 2.480058+1 1.029855-5 2.765439+1 1.032408-5 2.867657+1 1.035006-5 2.728387+1 1.037605-5 2.381103+1 1.041660-5 1.619318+1 1.044578-5 1.072349+1 1.047212-5 6.754815+0 1.049614-5 4.078512+0 1.052094-5 2.248534+0 1.055522-5 6.926248-1 1.056975-5 1.751390-2 1.160913-5 1.535225-2 1.189551-5 1.480939-2 1.195407-5 1.839473+0 1.198393-5 3.393394+0 1.201379-5 1.261472+1 1.204292-5 2.230165+1 1.207242-5 3.724449+1 1.210192-5 5.816082+1 1.213510-5 8.868037+1 1.219041-5 1.464940+2 1.222463-5 1.755733+2 1.225771-5 1.909243+2 1.228747-5 1.908462+2 1.231748-5 1.770805+2 1.235203-5 1.480353+2 1.242638-5 7.416952+1 1.245588-5 5.145559+1 1.248538-5 3.465326+1 1.251488-5 2.385494+1 1.255368-5 1.451860+1 1.257387-5 8.955229+0 1.258963-5 8.291582+0 1.267402-5 3.747708+0 1.270411-5 2.424109+0 1.273419-5 1.449966+0 1.274617-5 1.193034+0 1.276428-5 9.621870-1 1.278257-5 8.853575-1 1.282424-5 3.959693+0 1.284599-5 5.971657+0 1.287801-5 1.081007+1 1.291148-5 1.845109+1 1.294691-5 2.949671+1 1.303271-5 6.023923+1 1.307341-5 6.923468+1 1.310590-5 7.061636+1 1.313495-5 6.736328+1 1.317527-5 5.688801+1 1.325200-5 3.344627+1 1.326381-5 3.053180+1 1.329027-5 2.550226+1 1.332155-5 2.255581+1 1.335364-5 2.248822+1 1.341576-5 2.701207+1 1.345673-5 3.217611+1 1.348710-5 3.455080+1 1.353107-5 3.535802+1 1.367437-5 3.077321+1 1.391209-5 2.761449+1 1.398123-5 2.575431+1 1.417391-5 1.816054+1 1.423323-5 1.642060+1 1.431692-5 1.509152+1 1.446309-5 1.420227+1 1.513753-5 1.182825+1 1.523798-5 1.245903+1 1.528452-5 1.327843+1 1.537992-5 1.595944+1 1.545206-5 1.779268+1 1.550325-5 1.813599+1 1.555150-5 1.742033+1 1.563356-5 1.478766+1 1.571268-5 1.215558+1 1.575922-5 1.105590+1 1.581507-5 1.028689+1 1.588012-5 9.687076+0 1.681252-5 7.844340+0 1.694795-5 7.624126+0 1.703138-5 1.475641+1 1.707570-5 2.126028+1 1.711777-5 3.063521+1 1.716590-5 4.553745+1 1.728610-5 8.940807+1 1.733560-5 1.001871+2 1.736750-5 1.028496+2 1.741219-5 9.825902+1 1.746116-5 8.523627+1 1.757368-5 4.447948+1 1.761539-5 3.224204+1 1.765788-5 2.310060+1 1.770040-5 1.697112+1 1.777916-5 9.373280+0 1.778225-5 9.061245+0 1.779861-5 8.875703+0 1.789170-5 1.031514+1 1.793286-5 1.174971+1 1.797803-5 1.450123+1 1.802534-5 1.879215+1 1.815937-5 3.357968+1 1.820166-5 3.663638+1 1.824867-5 3.799229+1 1.829418-5 3.678978+1 1.836162-5 3.210572+1 1.842625-5 2.687679+1 1.846862-5 2.442123+1 1.850619-5 2.304794+1 1.855200-5 2.250342+1 1.875888-5 2.369775+1 1.903611-5 2.143261+1 1.919687-5 1.921635+1 1.944096-5 1.487581+1 1.957767-5 1.339533+1 1.975923-5 1.255955+1 2.071084-5 1.038225+1 2.180378-5 8.641896+0 2.271172-5 7.573309+0 2.385620-5 6.550296+0 2.571261-5 5.352666+0 2.759926-5 4.492879+0 2.973296-5 3.786463+0 2.995251-5 3.889581+0 3.014464-5 4.223088+0 3.039573-5 4.734685+0 3.053798-5 4.698270+0 3.078708-5 4.054785+0 3.097709-5 3.651622+0 3.119726-5 3.526168+0 3.163035-5 3.723762+0 3.331258-5 3.167200+0 3.630781-5 2.650903+0 4.000000-5 2.176110+0 4.403805-5 1.793621+0 4.841724-5 1.487906+0 5.333732-5 1.234404+0 5.969664-5 1.002161+0 5.999051-5 1.172659+0 6.013745-5 1.316481+0 6.028439-5 1.536870+0 6.050471-5 2.027169+0 6.089319-5 3.028944+0 6.104307-5 3.296073+0 6.118975-5 3.406525+0 6.139001-5 3.307625+0 6.180478-5 2.785888+0 6.194856-5 2.683996+0 6.209076-5 2.662741+0 6.240935-5 2.836352+0 6.302892-5 3.287607+0 6.349410-5 3.601087+0 6.381622-5 4.078005+0 6.410780-5 4.857516+0 6.435515-5 5.817539+0 6.458742-5 7.024648+0 6.481755-5 8.614199+0 6.502617-5 1.044250+1 6.529441-5 1.342484+1 6.566249-5 1.864603+1 6.631826-5 2.875554+1 6.670737-5 3.317054+1 6.715849-5 3.655086+1 6.781852-5 3.940083+1 6.883201-5 4.044660+1 6.968085-5 4.074969+1 7.177048-5 4.643680+1 7.351405-5 4.674999+1 7.574983-5 4.433668+1 7.822441-5 3.861477+1 8.118670-5 3.140627+1 8.369602-5 2.726109+1 8.759917-5 2.261304+1 9.217702-5 1.841078+1 9.760983-5 1.461108+1 1.035142-4 1.158087+1 1.098711-4 9.227051+0 1.152925-4 7.712833+0 1.220926-4 6.246160+0 1.290540-4 5.090224+0 1.367481-4 4.105615+0 1.377579-4 4.211965+0 1.384548-4 4.509716+0 1.398572-4 5.437376+0 1.405578-4 5.582679+0 1.431310-4 5.459706+0 1.457348-4 4.587126+0 1.473691-4 4.353543+0 1.550029-4 3.663316+0 1.641588-4 3.088118+0 1.731257-4 2.692746+0 1.749220-4 2.739188+0 1.758727-4 2.915615+0 1.768817-4 3.234819+0 1.789676-4 4.016306+0 1.798217-4 4.140945+0 1.807490-4 4.007884+0 1.827888-4 3.329617+0 1.840772-4 3.099937+0 1.853225-4 3.017309+0 1.992764-4 2.614469+0 2.141327-4 2.344848+0 2.263306-4 2.217696+0 2.293368-4 2.319603+0 2.318450-4 2.398295+0 2.365144-4 2.321026+0 2.536977-4 2.262362+0 2.555518-4 2.343685+0 2.566893-4 2.482359+0 2.600321-4 3.221078+0 2.613680-4 3.323386+0 2.643912-4 3.241658+0 2.666252-4 3.496547+0 2.685710-4 3.721148+0 2.700592-4 3.658800+0 2.730000-4 3.333635+0 2.753000-4 3.211287+0 2.807000-4 3.179680+0 2.890000-4 3.339480+0 2.964688-4 3.669427+0 3.034215-4 4.161777+0 3.112612-4 4.979363+0 3.202474-4 6.297602+0 3.322182-4 8.614965+0 3.525000-4 1.342195+1 3.823842-4 2.068765+1 4.077262-4 2.554126+1 4.326601-4 2.905362+1 4.646265-4 3.189564+1 5.084520-4 3.385874+1 5.602640-4 3.475960+1 5.741357-4 3.634839+1 5.956621-4 3.736141+1 6.127045-4 3.832294+1 6.880414-4 3.751652+1 8.088990-4 3.495743+1 8.285615-4 3.644039+1 9.808186-4 3.233620+1 1.130010-3 2.939148+1 1.469846-3 2.300680+1 1.724456-3 1.940551+1 2.063110-3 1.584547+1 2.475551-3 1.275046+1 2.911196-3 1.042124+1 2.942648-3 1.050022+1 2.956893-3 1.107942+1 2.967077-3 1.206736+1 2.978251-3 1.393062+1 2.991287-3 1.709608+1 3.012957-3 2.289537+1 3.026251-3 2.536567+1 3.044090-3 2.678862+1 3.095652-3 2.635976+1 3.116975-3 2.743883+1 3.162337-3 3.301747+1 3.187731-3 3.402303+1 3.432903-3 2.995477+1 3.581966-3 2.820229+1 3.624477-3 2.911606+1 3.669696-3 3.089069+1 3.733078-3 3.069730+1 4.225248-3 2.558155+1 4.388779-3 2.565760+1 4.601317-3 2.436618+1 4.712803-3 2.418650+1 5.521941-3 1.929341+1 6.251790-3 1.609060+1 7.169168-3 1.310494+1 8.104943-3 1.089051+1 9.153252-3 9.030547+0 1.041541-2 7.389635+0 1.180252-2 6.071998+0 1.350906-2 4.900001+0 1.468924-2 4.305597+0 1.479168-2 4.422435+0 1.485421-2 4.719797+0 1.491285-2 5.275458+0 1.497019-2 6.099395+0 1.511351-2 8.501315+0 1.519097-2 9.310473+0 1.527162-2 9.655150+0 1.562909-2 9.466967+0 1.758117-2 7.773255+0 1.775609-2 7.881772+0 1.788988-2 8.480763+0 1.810841-2 9.841963+0 1.827543-2 1.015630+1 1.852899-2 1.038361+1 1.884790-2 1.110028+1 2.278405-2 8.376685+0 2.607294-2 6.768683+0 2.992113-2 5.420439+0 3.297018-2 4.625176+0 3.731931-2 3.772245+0 4.182214-2 3.120268+0 4.737326-2 2.531273+0 5.346168-2 2.063058+0 6.050578-2 1.670182+0 6.826445-2 1.358925+0 7.689506-2 1.106716+0 8.586636-2 9.151112-1 9.709291-2 7.396502-1 9.913663-2 7.188701-1 9.969378-2 7.430021-1 1.000539-1 8.015218-1 1.003436-1 8.957959-1 1.005912-1 1.021866+0 1.008906-1 1.237283+0 1.012257-1 1.551120+0 1.019618-1 2.313111+0 1.024099-1 2.659371+0 1.029509-1 2.880894+0 1.036335-1 2.951717+0 1.232657-1 2.267968+0 1.400922-1 1.850871+0 1.592310-1 1.507679+0 1.819701-1 1.216157+0 2.044678-1 1.008238+0 2.306399-1 8.311762-1 2.601132-1 6.872414-1 2.930459-1 5.703932-1 3.319843-1 4.715996-1 3.787814-1 3.877738-1 4.318297-1 3.215057-1 4.930052-1 2.677889-1 5.623413-1 2.252230-1 6.401032-1 1.914565-1 7.328245-1 1.629539-1 8.333256-1 1.409687-1 9.633741-1 1.210048-1 1.173413+0 9.757266-2 1.347258+0 8.340160-2 1.546860+0 7.128869-2 1.776032+0 6.093501-2 2.039158+0 5.208506-2 2.341267+0 4.452044-2 2.688134+0 3.805447-2 3.086391+0 3.252759-2 3.543651+0 2.780342-2 4.068655+0 2.376536-2 4.709870+0 2.013307-2 5.616308+0 1.647855-2 6.448384+0 1.408527-2 7.403736+0 1.203959-2 8.500626+0 1.029101-2 9.760024+0 8.796382-3 1.000000+1 1.830887-2 1 87000 7 0 2.230000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.525804+1 1.240754-6-8.150574+1 1.302819-6-7.708790+1 1.326601-6-7.165423+1 1.333918-6-6.704593+1 1.347972-6-5.544715+1 1.352332-6-5.448199+1 1.356288-6-5.718456+1 1.360180-6-6.420871+1 1.363931-6-7.436986+1 1.367965-6-8.689838+1 1.374106-6-7.062888+1 1.378257-6-6.466088+1 1.382954-6-6.338257+1 1.389519-6-6.771678+1 1.404020-6-7.975504+1 1.423971-6-8.617147+1 1.478104-6-7.718080+1 1.497644-6-7.007562+1 1.507892-6-6.286726+1 1.512170-6-5.704173+1 1.519614-6-4.584451+1 1.523801-6-3.868646+1 1.528337-6-3.234694+1 1.531245-6-3.024726+1 1.533586-6-3.063049+1 1.535781-6-3.261976+1 1.537766-6-3.635379+1 1.540768-6-4.533395+1 1.544687-6-6.290290+1 1.549015-6-8.659239+1 1.550901-6-7.480579+1 1.554246-6-5.584899+1 1.557884-6-3.918177+1 1.560556-6-3.066071+1 1.562446-6-2.636791+1 1.564278-6-2.393739+1 1.565906-6-2.284656+1 1.567477-6-2.264376+1 1.570792-6-2.488898+1 1.575444-6-3.165747+1 1.581667-6-4.169188+1 1.586378-6-4.849667+1 1.589125-6-5.303135+1 1.597183-6-5.987207+1 1.610846-6-6.604995+1 1.635796-6-7.170827+1 1.694932-6-7.715657+1 1.861976-6-8.152917+1 2.639983-6-8.666177+1 2.672534-6-8.623196+1 2.712531-6-8.141917+1 2.842021-6-8.416356+1 3.123927-6-8.504091+1 3.210872-6-8.451921+1 6.894446-6-8.713595+1 9.221343-6-8.269562+1 9.861708-6-7.807374+1 1.004749-5-7.349832+1 1.020092-5-6.361418+1 1.024393-5-6.512839+1 1.028616-5-7.169820+1 1.035914-5-8.907887+1 1.040541-5-8.223956+1 1.044578-5-8.127652+1 1.056975-5-8.876087+1 1.069714-5-8.344862+1 1.136121-5-7.009694+1 1.160913-5-6.134890+1 1.174456-5-5.316157+1 1.183552-5-4.443150+1 1.188495-5-3.735199+1 1.192986-5-2.826904+1 1.195407-5-2.213192+1 1.196713-5-1.807414+1 1.197553-5-1.506485+1 1.198183-5-1.231585+1 1.198580-5-9.957025+0 1.198930-5-8.308914+0 1.199542-5-5.826600+0 1.201379-5 6.884031-1 1.202836-5 5.618239+0 1.203928-5 9.566973+0 1.204661-5 1.290178+1 1.206920-5 2.083893+1 1.207611-5 2.382509+1 1.210561-5 3.192382+1 1.212174-5 3.371237+1 1.213510-5 3.417119+1 1.214807-5 3.242888+1 1.216262-5 2.812951+1 1.217478-5 2.271787+1 1.218259-5 1.823751+1 1.218650-5 1.561836+1 1.220658-5-7.578425-1 1.221062-5-4.364851+0 1.221366-5-7.223725+0 1.221820-5-1.184844+1 1.222162-5-1.575726+1 1.222463-5-1.979516+1 1.224689-5-4.579676+1 1.226086-5-6.580283+1 1.228028-5-9.109229+1 1.229057-5-7.593661+1 1.231220-5-4.958007+1 1.231748-5-4.258823+1 1.232838-5-3.125148+1 1.234497-5-1.573442+1 1.234861-5-1.269680+1 1.235203-5-1.013929+1 1.235843-5-5.877029+0 1.236404-5-2.617287+0 1.236894-5-8.179443-2 1.237323-5 1.910500+0 1.238074-5 4.912295+0 1.238637-5 6.767381+0 1.239059-5 7.934408+0 1.239693-5 9.306818+0 1.240326-5 1.011008+1 1.241482-5 1.064963+1 1.242060-5 1.045178+1 1.242349-5 1.015427+1 1.244113-5 6.975487+0 1.244851-5 5.452836+0 1.245219-5 4.470488+0 1.245957-5 1.690491+0 1.247247-5-2.216800+0 1.247893-5-4.317671+0 1.248215-5-5.514835+0 1.248907-5-8.707844+0 1.251973-5-1.974223+1 1.254095-5-2.614979+1 1.256630-5-3.355129+1 1.258377-5-4.078027+1 1.261909-5-4.994798+1 1.278200-5-8.341814+1 1.282103-5-9.219515+1 1.291355-5-7.316252+1 1.295948-5-6.895265+1 1.299356-5-7.070178+1 1.301831-5-7.492711+1 1.306345-5-8.920126+1 1.307186-5-9.285873+1 1.314160-5-6.506356+1 1.317527-5-5.618620+1 1.320609-5-5.227450+1 1.323576-5-5.168280+1 1.326381-5-5.467678+1 1.331956-5-6.442562+1 1.337317-5-7.315583+1 1.343514-5-7.783617+1 1.348710-5-7.541955+1 1.357039-5-6.980470+1 1.367437-5-6.787015+1 1.396676-5-6.371434+1 1.411307-5-6.275965+1 1.452901-5-7.024958+1 1.518750-5-7.733389+1 1.537992-5-7.944328+1 1.563356-5-7.267163+1 1.652716-5-8.577119+1 1.678692-5-7.711200+1 1.690571-5-6.926956+1 1.694979-5-6.358958+1 1.703138-5-5.281183+1 1.712332-5-3.974232+1 1.717314-5-3.701272+1 1.719821-5-3.806101+1 1.723274-5-4.227786+1 1.726587-5-4.962521+1 1.728610-5-5.703697+1 1.732860-5-7.398958+1 1.735378-5-8.610273+1 1.742034-5-5.321181+1 1.746820-5-3.621728+1 1.748676-5-3.167800+1 1.751545-5-2.685301+1 1.753547-5-2.479788+1 1.755218-5-2.390494+1 1.756830-5-2.389770+1 1.761018-5-2.689634+1 1.765788-5-3.322451+1 1.774923-5-4.608765+1 1.778430-5-5.189903+1 1.782334-5-5.815419+1 1.798321-5-7.475407+1 1.806524-5-7.888438+1 1.814242-5-7.727971+1 1.824072-5-6.774185+1 1.830468-5-6.075634+1 1.837778-5-5.660967+1 1.842625-5-5.630547+1 1.860148-5-6.115688+1 1.875888-5-6.078151+1 1.930590-5-5.705079+1 1.997744-5-6.154850+1 2.241367-5-6.566326+1 3.039573-5-7.058482+1 3.119726-5-7.045264+1 5.104796-5-7.829887+1 5.818446-5-8.520146+1 6.118975-5-9.117477+1 6.282773-5-9.579232+1 6.442494-5-1.053113+2 6.566249-5-1.134423+2 6.645564-5-1.117709+2 6.844858-5-9.687356+1 7.139351-5-8.564062+1 7.447596-5-7.023806+1 7.732985-5-5.974098+1 7.983665-5-5.500033+1 8.622138-5-5.238431+1 9.898427-5-5.220543+1 1.457348-4-5.923250+1 1.794004-4-6.178340+1 2.536977-4-6.703683+1 3.034215-4-7.305517+1 3.457471-4-7.888763+1 3.823842-4-7.849178+1 5.317957-4-6.127110+1 5.695557-4-5.969839+1 6.127045-4-5.491201+1 6.619209-4-4.951693+1 7.422170-4-4.388088+1 8.088990-4-4.133912+1 8.285615-4-4.095119+1 8.718115-4-3.756402+1 9.672891-4-3.366212+1 1.093369-3-3.011132+1 1.252716-3-2.683001+1 1.469846-3-2.431027+1 1.724456-3-2.305071+1 2.063110-3-2.301781+1 2.383005-3-2.448354+1 2.617506-3-2.690246+1 2.775994-3-2.997580+1 2.871938-3-3.339693+1 2.925483-3-3.698661+1 2.961001-3-4.186193+1 2.986269-3-4.588804+1 3.001638-3-4.649872+1 3.026251-3-4.365631+1 3.059376-3-3.895051+1 3.086694-3-3.782225+1 3.132100-3-3.887366+1 3.155071-3-3.729352+1 3.199050-3-3.171720+1 3.237195-3-2.879329+1 3.318369-3-2.548552+1 3.432903-3-2.277184+1 3.540079-3-2.154192+1 3.596597-3-2.193435+1 3.636728-3-2.245769+1 3.669696-3-2.158865+1 3.733078-3-1.887612+1 3.822557-3-1.681507+1 3.971121-3-1.471771+1 4.149663-3-1.322584+1 4.255817-3-1.300171+1 4.315970-3-1.300822+1 4.417408-3-1.168288+1 4.529932-3-1.092271+1 4.620765-3-1.069319+1 4.748858-3-9.362437+0 4.927982-3-8.216562+0 5.245715-3-6.882925+0 5.649375-3-5.798656+0 6.073478-3-5.061595+0 6.484478-3-4.607228+0 7.169168-3-4.215703+0 8.104943-3-4.061327+0 9.153252-3-4.200943+0 1.041541-2-4.601209+0 1.180252-2-5.294699+0 1.294333-2-6.138540+0 1.373819-2-7.049778+0 1.425300-2-8.003746+0 1.456070-2-8.970725+0 1.473689-2-9.982011+0 1.497019-2-1.225415+1 1.504713-2-1.243722+1 1.513925-2-1.184461+1 1.531379-2-9.987918+0 1.546734-2-8.969615+0 1.572894-2-8.032143+0 1.613933-2-7.261165+0 1.662301-2-6.848914+0 1.713665-2-6.825003+0 1.750023-2-7.177703+0 1.770682-2-7.771382+0 1.788988-2-8.523782+0 1.801411-2-8.594183+0 1.832497-2-7.501817+0 1.865098-2-7.083054+0 1.901098-2-5.772022+0 1.932184-2-5.025015+0 1.982567-2-4.241343+0 2.041738-2-3.591202+0 2.089296-2-3.181069+0 2.182357-2-2.585520+0 2.278405-2-2.142954+0 2.394611-2-1.761065+0 2.508274-2-1.490748+0 2.647069-2-1.254823+0 2.754229-2-1.123993+0 2.931492-2-9.759763-1 3.111001-2-8.891473-1 3.297018-2-8.462036-1 3.506832-2-8.262842-1 3.845918-2-8.444258-1 4.531292-2-9.698818-1 7.082304-2-1.609907+0 8.310272-2-1.992323+0 9.024358-2-2.322867+0 9.452563-2-2.642980+0 9.709291-2-2.959890+0 9.877600-2-3.317845+0 9.983154-2-3.746370+0 1.010891-1-4.475771+0 1.015688-1-4.545634+0 1.021946-1-4.314190+0 1.033951-1-3.536074+0 1.042971-1-3.149363+0 1.057770-1-2.773383+0 1.080710-1-2.406162+0 1.113094-1-2.080279+0 1.152326-1-1.813467+0 1.206534-1-1.566020+0 1.277461-1-1.359895+0 1.364583-1-1.198770+0 1.479517-1-1.069036+0 1.638230-1-9.748524-1 1.891135-1-9.176743-1 2.306399-1-9.116256-1 4.502332-1-1.037620+0 7.563973-1-1.103782+0 2.039158+0-1.138220+0 6.158159+0-1.147102+0 1.000000+1-1.146029+0 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.686467-1 1.082889-6 5.568151-1 1.125396-6 6.854087-1 1.180833-6 8.980499-1 1.212469-6 1.046125+0 1.240150-6 1.195561+0 1.264370-6 1.343962+0 1.285564-6 1.489321+0 1.304108-6 1.631052+0 1.336560-6 1.912312+0 1.360899-6 2.155115+0 1.379153-6 2.360436+0 1.406535-6 2.709448+0 1.444504-6 3.284130+0 1.472739-6 3.803265+0 1.500975-6 4.420218+0 1.520189-6 4.906934+0 1.534895-6 5.321910+0 1.548681-6 5.751318+0 1.574529-6 6.669060+0 1.597147-6 7.615353+0 1.616938-6 8.582264+0 1.634254-6 9.557335+0 1.649407-6 1.052899+1 1.662665-6 1.148821+1 1.674265-6 1.242510+1 1.694567-6 1.431288+1 1.709793-6 1.598111+1 1.721213-6 1.741107+1 1.738342-6 1.989822+1 1.746907-6 2.132573+1 1.759792-6 2.376173+1 1.772755-6 2.663816+1 1.785717-6 3.004946+1 1.798680-6 3.414307+1 1.807322-6 3.735107+1 1.815963-6 4.103701+1 1.824605-6 4.530980+1 1.833247-6 5.031367+1 1.841889-6 5.624403+1 1.847445-6 6.066898+1 1.852654-6 6.535171+1 1.857537-6 7.030387+1 1.862115-6 7.553813+1 1.866407-6 8.106861+1 1.870431-6 8.691150+1 1.874203-6 9.308598+1 1.877739-6 9.961490+1 1.881055-6 1.065251+2 1.887271-6 1.221641+2 1.892711-6 1.398363+2 1.897470-6 1.597385+2 1.901635-6 1.818952+2 1.905278-6 2.061099+2 1.908467-6 2.319831+2 1.911257-6 2.589777+2 1.913698-6 2.864994+2 1.915834-6 3.139694+2 1.919338-6 3.667968+2 1.925152-6 4.790646+2 1.931640-6 6.460361+2 1.935539-6 7.686490+2 1.937915-6 8.512442+2 1.940291-6 9.392410+2 1.945043-6 1.128358+3 1.945637-6 1.152917+3 1.949796-6 1.327514+3 1.951429-6 1.396226+3 1.954548-6 1.524768+3 1.956182-6 1.589570+3 1.957741-6 1.649052+3 1.959895-6 1.726347+3 1.961714-6 1.786317+3 1.964053-6 1.854845+3 1.966132-6 1.906452+3 1.968555-6 1.954147+3 1.971330-6 1.990753+3 1.973706-6 2.005786+3 1.974533-6 2.007381+3 1.976894-6 2.001493+3 1.978636-6 1.987275+3 1.983283-6 1.909972+3 1.984765-6 1.874059+3 1.988251-6 1.770823+3 1.990089-6 1.707120+3 1.992567-6 1.612925+3 1.994980-6 1.513965+3 1.997320-6 1.413199+3 1.999399-6 1.321141+3 2.001571-6 1.223891+3 2.004448-6 1.095592+3 2.006824-6 9.919018+2 2.009498-6 8.794773+2 2.011577-6 7.960915+2 2.016626-6 6.118457+2 2.017740-6 5.750602+2 2.019411-6 5.226354+2 2.021081-6 4.735503+2 2.023161-6 4.171299+2 2.025834-6 3.520586+2 2.027969-6 3.059103+2 2.030273-6 2.616189+2 2.031797-6 2.352888+2 2.034809-6 1.896774+2 2.037775-6 1.523393+2 2.040694-6 1.219973+2 2.043568-6 9.749124+1 2.046397-6 7.779752+1 2.049183-6 6.203412+1 2.053279-6 4.416290+1 2.057291-6 3.146058+1 2.065046-6 1.620089+1 2.067551-6 1.311525+1 2.070016-6 1.071704+1 2.071230-6 9.737873+0 2.072434-6 8.883579+0 2.073629-6 8.142446+0 2.074814-6 7.504082+0 2.075990-6 6.959256+0 2.077157-6 6.499758+0 2.078314-6 6.118277+0 2.079463-6 5.808287+0 2.080033-6 5.678494+0 2.080601-6 5.564375+0 2.081588-6 5.400572+0 2.082150-6 5.326388+0 2.083268-6 5.217751+0 2.084378-6 5.159171+0 2.085480-6 5.146975+0 2.087665-6 5.249455+0 2.089816-6 5.502486+0 2.091934-6 5.886718+0 2.125287-6 2.586216+1 2.131541-6 3.284542+1 2.137404-6 4.076008+1 2.142900-6 4.963978+1 2.161658-6 9.560133+1 2.165639-6 1.100236+2 2.169371-6 1.258114+2 2.172869-6 1.430892+2 2.176149-6 1.619886+2 2.179224-6 1.826390+2 2.182106-6 2.051570+2 2.184809-6 2.296356+2 2.187342-6 2.561352+2 2.189718-6 2.846764+2 2.191944-6 3.152365+2 2.194032-6 3.477485+2 2.197946-6 4.207017+2 2.201371-6 5.000718+2 2.204368-6 5.839950+2 2.209285-6 7.574349+2 2.218285-6 1.224424+3 2.223112-6 1.574939+3 2.226330-6 1.853669+3 2.229138-6 2.128018+3 2.230823-6 2.306828+3 2.233562-6 2.620159+3 2.236301-6 2.960951+3 2.241778-6 3.717964+3 2.242463-6 3.818826+3 2.247256-6 4.554328+3 2.249138-6 4.853514+3 2.252733-6 5.430747+3 2.255514-6 5.874510+3 2.258210-6 6.293888+3 2.260992-6 6.707278+3 2.263688-6 7.081239+3 2.266084-6 7.385333+3 2.268732-6 7.683985+3 2.269508-6 7.763163+3 2.272717-6 8.046475+3 2.275223-6 8.214066+3 2.278143-6 8.345362+3 2.280875-6 8.403197+3 2.282874-6 8.405009+3 2.285597-6 8.352667+3 2.287504-6 8.279224+3 2.291417-6 8.038622+3 2.293604-6 7.855463+3 2.295078-6 7.714082+3 2.297237-6 7.483450+3 2.299334-6 7.235521+3 2.302030-6 6.887498+3 2.304426-6 6.555991+3 2.306737-6 6.221656+3 2.310246-6 5.696803+3 2.312984-6 5.281386+3 2.316065-6 4.816977+3 2.318462-6 4.463028+3 2.323939-6 3.696162+3 2.327619-6 3.225172+3 2.329417-6 3.010264+3 2.333525-6 2.558853+3 2.338661-6 2.074119+3 2.349293-6 1.334945+3 2.353488-6 1.127589+3 2.355574-6 1.039213+3 2.359728-6 8.883940+2 2.363850-6 7.671964+2 2.367939-6 6.698013+2 2.371997-6 5.912761+2 2.376023-6 5.275638+2 2.380017-6 4.754096+2 2.383980-6 4.322556+2 2.387913-6 3.961232+2 2.391814-6 3.654991+2 2.395685-6 3.392339+2 2.403367-6 2.963553+2 2.410929-6 2.629276+2 2.418372-6 2.360858+2 2.425699-6 2.140441+2 2.432912-6 1.956280+2 2.440012-6 1.800272+2 2.447001-6 1.666589+2 2.453881-6 1.550910+2 2.460653-6 1.449940+2 2.467320-6 1.361123+2 2.480445-6 1.211248+2 2.493159-6 1.091034+2 2.505477-6 9.927076+1 2.517409-6 9.110210+1 2.528968-6 8.422742+1 2.540167-6 7.837685+1 2.551015-6 7.334782+1 2.561524-6 6.898415+1 2.581886-6 6.168805+1 2.600975-6 5.595279+1 2.618871-6 5.134687+1 2.635649-6 4.758604+1 2.651378-6 4.447131+1 2.666124-6 4.185707+1 2.693772-6 3.759764+1 2.717965-6 3.442602+1 2.739133-6 3.200541+1 2.776178-6 2.838288+1 2.803962-6 2.607594+1 2.845637-6 2.313098+1 2.908633-6 1.951053+1 3.001021-6 1.547802+1 3.029448-6 1.446001+1 3.199163-6 9.139511+0 3.241592-6 7.845849+0 3.271425-6 6.899722+0 3.283607-6 6.492931+0 3.304925-6 5.736564+0 3.320914-6 5.118282+0 3.332905-6 4.618808+0 3.341899-6 4.224185+0 3.348644-6 3.919403+0 3.353703-6 3.688039+0 3.357497-6 3.514305+0 3.363188-6 3.255966+0 3.370952-6 2.915149+0 3.385463-6 2.356433+0 3.391683-6 2.165855+0 3.393756-6 2.110546+0 3.402048-6 1.935130+0 3.404898-6 1.892837+0 3.410340-6 1.839141+0 3.412629-6 1.827462+0 3.415242-6 1.822256+0 3.417201-6 1.824162+0 3.420141-6 1.836646+0 3.423080-6 1.861167+0 3.426600-6 1.907435+0 3.428389-6 1.938548+0 3.431376-6 2.002938+0 3.433296-6 2.053280+0 3.435739-6 2.128547+0 3.437700-6 2.198969+0 3.440642-6 2.323397+0 3.443583-6 2.473576+0 3.445095-6 2.562129+0 3.451997-6 3.086186+0 3.454372-6 3.321110+0 3.457014-6 3.622337+0 3.460411-6 4.079894+0 3.464089-6 4.678111+0 3.468242-6 5.502735+0 3.474010-6 6.957097+0 3.485190-6 1.102906+1 3.488536-6 1.261679+1 3.497403-6 1.771991+1 3.500150-6 1.956559+1 3.507107-6 2.476554+1 3.510177-6 2.727812+1 3.513956-6 3.052348+1 3.517332-6 3.354077+1 3.520789-6 3.671385+1 3.524698-6 4.035969+1 3.528585-6 4.399337+1 3.531993-6 4.713973+1 3.536926-6 5.154616+1 3.540530-6 5.459055+1 3.544861-6 5.798212+1 3.548492-6 6.055030+1 3.551621-6 6.253019+1 3.555998-6 6.489652+1 3.559903-6 6.657670+1 3.565963-6 6.832827+1 3.568832-6 6.878532+1 3.572932-6 6.902469+1 3.575568-6 6.892685+1 3.578204-6 6.863882+1 3.581333-6 6.806100+1 3.585438-6 6.693961+1 3.589397-6 6.550494+1 3.594979-6 6.297837+1 3.599240-6 6.072563+1 3.601371-6 5.951554+1 3.607764-6 5.564094+1 3.616287-6 5.017014+1 3.624811-6 4.471538+1 3.636599-6 3.774398+1 3.647019-6 3.246303+1 3.650967-6 3.070714+1 3.658617-6 2.768734+1 3.665788-6 2.528887+1 3.672512-6 2.338180+1 3.678815-6 2.185593+1 3.690634-6 1.955265+1 3.700975-6 1.799358+1 3.710023-6 1.688137+1 3.725858-6 1.532400+1 3.737735-6 1.437743+1 3.755549-6 1.318725+1 3.773363-6 1.218165+1 3.829089-6 9.638466+0 3.847665-6 8.863177+0 3.856952-6 8.469444+0 3.866240-6 8.066080+0 3.875528-6 7.649730+0 3.884815-6 7.218719+0 3.893985-6 6.780143+0 3.908097-6 6.095307+0 3.922738-6 5.426531+0 3.927530-6 5.234273+0 3.934137-6 5.005976+0 3.937440-6 4.912229+0 3.941907-6 4.812052+0 3.953650-6 4.733362+0 3.955327-6 4.748175+0 3.965015-6 4.985788+0 3.968596-6 5.144965+0 3.975432-6 5.564300+0 3.978739-6 5.822902+0 3.981895-6 6.103807+0 3.986406-6 6.562118+0 3.993115-6 7.361170+0 4.006732-6 9.340132+0 4.013012-6 1.036002+1 4.019320-6 1.140879+1 4.024731-6 1.230065+1 4.032096-6 1.345925+1 4.034350-6 1.379344+1 4.042767-6 1.492105+1 4.046074-6 1.530204+1 4.052386-6 1.591542+1 4.057576-6 1.629818+1 4.060538-6 1.646502+1 4.063129-6 1.657976+1 4.067664-6 1.671035+1 4.071066-6 1.675044+1 4.076167-6 1.672081+1 4.081269-6 1.658960+1 4.088535-6 1.624542+1 4.090957-6 1.609432+1 4.100645-6 1.534213+1 4.110333-6 1.441676+1 4.115177-6 1.391446+1 4.120021-6 1.339791+1 4.129708-6 1.235301+1 4.146226-6 1.065056+1 4.158354-6 9.539826+0 4.168586-6 8.725120+0 4.173388-6 8.386141+0 4.178190-6 8.076907+0 4.189106-6 7.492481+0 4.199367-6 7.106004+0 4.204497-6 6.976107+0 4.209627-6 6.889994+0 4.212192-6 6.863539+0 4.219888-6 6.850394+0 4.222453-6 6.867723+0 4.226942-6 6.923204+0 4.230309-6 6.984945+0 4.235359-6 7.107609+0 4.240409-6 7.262670+0 4.248104-6 7.549703+0 4.260930-6 8.109699+0 4.273755-6 8.671765+0 4.281450-6 8.962903+0 4.284016-6 9.047572+0 4.291711-6 9.256161+0 4.298765-6 9.380475+0 4.302132-6 9.415878+0 4.307182-6 9.439891+0 4.312232-6 9.430065+0 4.319927-6 9.355551+0 4.330188-6 9.165168+0 4.343013-6 8.838425+0 4.360538-6 8.375597+0 4.374406-6 8.095397+0 4.382411-6 7.986692+0 4.392072-6 7.907708+0 4.395575-6 7.891755+0 4.406160-6 7.876016+0 4.445280-6 7.955879+0 4.455831-6 7.954050+0 4.480234-6 7.893123+0 4.503618-6 7.806616+0 4.591211-6 7.589929+0 4.626102-6 7.482528+0 4.666345-6 7.301638+0 4.706797-6 7.125684+0 4.745040-6 7.025712+0 4.796101-6 6.911417+0 4.833020-6 6.792686+0 4.896990-6 6.572988+0 5.405432-6 5.248595+0 5.571211-6 4.929955+0 5.659177-6 4.758291+0 5.766573-6 4.542264+0 5.879968-6 4.310498+0 6.000000-6 4.063738+0 6.144000-6 3.767159+0 6.222534-6 3.606456+0 6.371262-6 3.307510+0 6.528361-6 3.000205+0 6.637690-6 2.792089+0 6.771304-6 2.545290+0 6.908360-6 2.300394+0 7.040088-6 2.075220+0 7.212826-6 1.795656+0 7.310840-6 1.645218+0 7.485580-6 1.392634+0 7.680000-6 1.132829+0 7.798606-6 9.858223-1 7.955589-6 8.068597-1 8.108148-6 6.476567-1 8.322539-6 4.368856-1 8.436591-6 3.371664-1 8.542969-6 2.548231-1 8.630508-6 1.949087-1 8.728288-6 1.371169-1 8.837722-6 8.451166-2 8.921776-6 5.349501-2 9.016258-6 2.904959-2 9.076904-6 1.951292-2 9.109265-6 1.654242-2 9.155041-6 1.497110-2 9.200460-6 1.651609-2 9.245524-6 2.100116-2 9.290236-6 2.776288-2 9.356607-6 3.852876-2 9.411241-6 4.305607-2 9.416669-6 4.313762-2 9.470718-6 4.020709-2 9.513671-6 3.425617-2 9.556288-6 2.727538-2 9.600000-6 2.074998-2 9.640526-6 1.619302-2 9.682152-6 1.342039-2 9.764754-6 1.420488-2 9.846065-6 2.370016-2 9.926106-6 4.228639-2 1.000490-5 7.039553-2 1.008245-5 1.083248-1 1.018348-5 1.739317-1 1.023396-5 2.141612-1 1.030794-5 2.830907-1 1.038800-5 3.723075-1 1.045245-5 4.560841-1 1.059358-5 6.783691-1 1.073030-5 9.500189-1 1.086275-5 1.275781+0 1.099106-5 1.659395+0 1.111536-5 2.103630+0 1.123577-5 2.611743+0 1.135243-5 3.188211+0 1.146543-5 3.836887+0 1.157491-5 4.561187+0 1.168096-5 5.365929+0 1.178371-5 6.256242+0 1.190174-5 7.428753+0 1.216355-5 1.073146+1 1.257530-5 1.874482+1 1.279274-5 2.511072+1 1.292873-5 3.017382+1 1.305623-5 3.587400+1 1.318257-5 4.265908+1 1.328781-5 4.938237+1 1.339287-5 5.729379+1 1.350000-5 6.686588+1 1.358369-5 7.563050+1 1.367025-5 8.614457+1 1.375671-5 9.841928+1 1.382748-5 1.100527+2 1.389880-5 1.235144+2 1.396567-5 1.380231+2 1.402836-5 1.536037+2 1.408712-5 1.702777+2 1.414222-5 1.880632+2 1.419387-5 2.069735+2 1.424230-5 2.270141+2 1.428770-5 2.481819+2 1.433026-5 2.704656+2 1.438712-5 3.046133+2 1.444263-5 3.438135+2 1.447551-5 3.703420+2 1.453715-5 4.283360+2 1.459109-5 4.902784+2 1.463829-5 5.558559+2 1.467959-5 6.246785+2 1.471572-5 6.962045+2 1.474734-5 7.696937+2 1.477501-5 8.442219+2 1.479921-5 9.187536+2 1.482039-5 9.922401+2 1.485746-5 1.142643+3 1.488526-5 1.276742+3 1.492175-5 1.485609+3 1.495694-5 1.728328+3 1.500551-5 2.143419+3 1.506077-5 2.756902+3 1.507920-5 3.002846+3 1.511604-5 3.572575+3 1.515288-5 4.270370+3 1.518973-5 5.133973+3 1.522657-5 6.210821+3 1.527012-5 7.833079+3 1.534420-5 1.168706+4 1.537022-5 1.340290+4 1.539904-5 1.551376+4 1.544352-5 1.912669+4 1.545760-5 2.033061+4 1.548805-5 2.296622+4 1.550062-5 2.404541+4 1.551858-5 2.555392+4 1.553301-5 2.672047+4 1.554834-5 2.789700+4 1.556821-5 2.929869+4 1.558370-5 3.027293+4 1.559731-5 3.102875+4 1.561889-5 3.201106+4 1.563781-5 3.263074+4 1.565755-5 3.301856+4 1.567597-5 3.313193+4 1.569422-5 3.300469+4 1.571300-5 3.262798+4 1.574187-5 3.158638+4 1.575877-5 3.073827+4 1.577034-5 3.006636+4 1.578687-5 2.899117+4 1.579750-5 2.823655+4 1.580813-5 2.743869+4 1.581979-5 2.652044+4 1.583510-5 2.525903+4 1.585478-5 2.356863+4 1.587359-5 2.190965+4 1.589241-5 2.023846+4 1.591358-5 1.837638+4 1.593005-5 1.696147+4 1.596768-5 1.390865+4 1.598062-5 1.293325+4 1.600532-5 1.119369+4 1.603354-5 9.415739+3 1.606486-5 7.711552+3 1.610077-5 6.093927+3 1.616976-5 3.863505+3 1.619083-5 3.372026+3 1.620783-5 3.027809+3 1.623010-5 2.638559+3 1.624567-5 2.403034+3 1.627147-5 2.068859+3 1.629644-5 1.801676+3 1.632266-5 1.568879+3 1.634539-5 1.399324+3 1.638400-5 1.164410+3 1.642209-5 9.821872+2 1.644230-5 9.007317+2 1.646251-5 8.278748+2 1.650293-5 7.035425+2 1.654335-5 6.023499+2 1.658377-5 5.197511+2 1.661142-5 4.722647+2 1.664441-5 4.238225+2 1.666462-5 3.980280+2 1.668483-5 3.748356+2 1.670677-5 3.522668+2 1.672525-5 3.351139+2 1.674546-5 3.180199+2 1.678588-5 2.880102+2 1.687683-5 2.327599+2 1.696254-5 1.892051+2 1.700082-5 1.734098+2 1.702022-5 1.668323+2 1.703946-5 1.615055+2 1.705547-5 1.581220+2 1.707466-5 1.554707+2 1.708352-5 1.548041+2 1.712003-5 1.560718+2 1.712811-5 1.572607+2 1.713732-5 1.590274+2 1.716498-5 1.669244+2 1.718149-5 1.734349+2 1.719438-5 1.793848+2 1.721872-5 1.924831+2 1.728722-5 2.381024+2 1.731271-5 2.561367+2 1.733494-5 2.712444+2 1.734475-5 2.775715+2 1.736681-5 2.907445+2 1.737678-5 2.961158+2 1.741600-5 3.128968+2 1.743527-5 3.182490+2 1.745067-5 3.210450+2 1.747220-5 3.227048+2 1.749376-5 3.217766+2 1.751137-5 3.191863+2 1.753447-5 3.134958+2 1.755675-5 3.058495+2 1.758356-5 2.943813+2 1.762115-5 2.754624+2 1.767241-5 2.476912+2 1.772015-5 2.233385+2 1.773774-5 2.152865+2 1.779051-5 1.950894+2 1.781236-5 1.885751+2 1.783842-5 1.821707+2 1.785406-5 1.789916+2 1.788675-5 1.737523+2 1.789530-5 1.726565+2 1.794174-5 1.682123+2 1.796470-5 1.666989+2 1.806084-5 1.620550+2 1.811078-5 1.594091+2 1.815461-5 1.565930+2 1.824327-5 1.495586+2 1.829026-5 1.452977+2 1.836942-5 1.376143+2 1.845233-5 1.291310+2 1.853972-5 1.199577+2 1.869497-5 1.041942+2 1.885594-5 9.018170+1 1.910321-5 7.303282+1 1.928176-5 6.211720+1 1.943090-5 5.343842+1 1.955256-5 4.671284+1 1.963816-5 4.224056+1 1.976412-5 3.617605+1 1.984874-5 3.254796+1 1.992808-5 2.956274+1 1.997391-5 2.805337+1 2.003619-5 2.628689+1 2.007000-5 2.547573+1 2.010275-5 2.479584+1 2.013448-5 2.424264+1 2.016522-5 2.381322+1 2.020060-5 2.346256+1 2.022362-5 2.332731+1 2.025136-5 2.327607+1 2.026490-5 2.330097+1 2.028479-5 2.340461+1 2.031051-5 2.367283+1 2.033238-5 2.403882+1 2.035674-5 2.462236+1 2.038034-5 2.539501+1 2.039187-5 2.585713+1 2.040322-5 2.637243+1 2.042556-5 2.758120+1 2.044720-5 2.903104+1 2.046817-5 3.073878+1 2.048848-5 3.272136+1 2.050815-5 3.499593+1 2.052721-5 3.757986+1 2.054568-5 4.049088+1 2.056357-5 4.374709+1 2.058090-5 4.736703+1 2.060072-5 5.214919+1 2.061395-5 5.577409+1 2.064546-5 6.604698+1 2.067500-5 7.822311+1 2.070269-5 9.245616+1 2.072866-5 1.088814+2 2.075300-5 1.276053+2 2.077582-5 1.486973+2 2.079721-5 1.721827+2 2.083607-5 2.262004+2 2.088571-5 3.231716+2 2.096173-5 5.601853+2 2.100049-5 7.382638+2 2.103790-5 9.576405+2 2.106547-5 1.154132+3 2.109590-5 1.409616+3 2.112288-5 1.673087+3 2.113910-5 1.849355+3 2.115459-5 2.030540+3 2.117008-5 2.224626+3 2.119607-5 2.579680+3 2.122206-5 2.971617+3 2.127729-5 3.921497+3 2.128338-5 4.035243+3 2.132927-5 4.939494+3 2.134602-5 5.286530+3 2.138186-5 6.047068+3 2.140174-5 6.473309+3 2.142546-5 6.978742+3 2.144629-5 7.414082+3 2.146649-5 7.823470+3 2.149246-5 8.323206+3 2.151555-5 8.734521+3 2.153688-5 9.080758+3 2.154844-5 9.252763+3 2.157519-5 9.604460+3 2.160097-5 9.875515+3 2.162691-5 1.007514+4 2.164800-5 1.018044+4 2.166240-5 1.022219+4 2.168816-5 1.023545+4 2.170572-5 1.019960+4 2.174454-5 9.995561+3 2.176804-5 9.793702+3 2.178858-5 9.573158+3 2.181308-5 9.261648+3 2.183654-5 8.920432+3 2.186334-5 8.487747+3 2.189134-5 7.997924+3 2.192379-5 7.397470+3 2.194978-5 6.902804+3 2.197902-5 6.343273+3 2.200176-5 5.912654+3 2.205374-5 4.968337+3 2.207848-5 4.547611+3 2.212571-5 3.810294+3 2.217916-5 3.092030+3 2.227529-5 2.112890+3 2.230812-5 1.861925+3 2.234094-5 1.647248+3 2.236791-5 1.495065+3 2.239770-5 1.349198+3 2.242184-5 1.246153+3 2.244880-5 1.144996+3 2.250273-5 9.793927+2 2.257153-5 8.218025+2 2.262709-5 7.253833+2 2.268264-5 6.481629+2 2.273820-5 5.849272+2 2.279376-5 5.321510+2 2.284932-5 4.874505+2 2.289173-5 4.577236+2 2.294666-5 4.239434+2 2.301599-5 3.877388+2 2.307396-5 3.622849+2 2.313076-5 3.413320+2 2.316740-5 3.299082+2 2.320404-5 3.201850+2 2.324434-5 3.115432+2 2.330114-5 3.032119+2 2.335793-5 2.995343+2 2.337787-5 2.993401+2 2.340777-5 3.000719+2 2.343768-5 3.019551+2 2.347733-5 3.060182+2 2.352831-5 3.132897+2 2.365037-5 3.341084+2 2.370844-5 3.423719+2 2.375200-5 3.467698+2 2.380400-5 3.495470+2 2.383405-5 3.498724+2 2.388868-5 3.482079+2 2.394469-5 3.439693+2 2.398361-5 3.399359+2 2.415423-5 3.192897+2 2.423333-5 3.112682+2 2.432051-5 3.045225+2 2.445301-5 2.974481+2 2.491637-5 2.792760+2 2.516700-5 2.681407+2 2.553979-5 2.513871+2 2.569610-5 2.455274+2 2.615577-5 2.313496+2 2.671213-5 2.174103+2 2.721158-5 2.069821+2 2.795948-5 1.939163+2 2.868469-5 1.829643+2 3.043080-5 1.619841+2 3.333938-5 1.352701+2 3.458251-5 1.252019+2 3.570000-5 1.157713+2 3.627835-5 1.100302+2 3.645694-5 1.085541+2 3.663553-5 1.077433+2 3.672483-5 1.076782+2 3.683254-5 1.079144+2 3.708201-5 1.093761+2 3.726874-5 1.104394+2 3.734989-5 1.106554+2 3.744237-5 1.106401+2 3.753486-5 1.103290+2 3.770707-5 1.090563+2 3.808731-5 1.049805+2 3.825816-5 1.034422+2 3.849607-5 1.018506+2 3.910978-5 9.865643+1 3.965203-5 9.564061+1 4.016145-5 9.270727+1 4.086842-5 8.851547+1 4.217284-5 8.081263+1 4.315190-5 7.509836+1 4.426712-5 6.865405+1 4.551283-5 6.151626+1 4.669757-5 5.479254+1 4.818523-5 4.641807+1 4.972785-5 3.785663+1 5.090291-5 3.149857+1 5.209028-5 2.527874+1 5.302954-5 2.056458+1 5.375476-5 1.709903+1 5.427385-5 1.473296+1 5.479837-5 1.245631+1 5.546201-5 9.762398+0 5.588739-5 8.167443+0 5.619700-5 7.083316+0 5.664082-5 5.653080+0 5.707078-5 4.420321+0 5.754399-5 3.260896+0 5.789079-5 2.559844+0 5.828168-5 1.939354+0 5.847102-5 1.709493+0 5.869049-5 1.504676+0 5.879723-5 1.429496+0 5.884087-5 1.403355+0 5.902147-5 1.322733+0 5.919925-5 1.283476+0 5.938283-5 1.276735+0 5.954652-5 1.289738+0 5.965360-5 1.302630+0 5.988171-5 1.326183+0 5.998406-5 1.330065+0 6.018622-5 1.319144+0 6.034517-5 1.292740+0 6.065691-5 1.209493+0 6.095898-5 1.122117+0 6.110649-5 1.087907+0 6.125169-5 1.063609+0 6.139462-5 1.050745+0 6.144000-5 1.049206+0 6.162829-5 1.057155+0 6.167601-5 1.063055+0 6.191475-5 1.118270+0 6.194862-5 1.129765+0 6.221270-5 1.253570+0 6.246853-5 1.436758+0 6.257628-5 1.534519+0 6.271637-5 1.681411+0 6.295646-5 1.989424+0 6.319646-5 2.375782+0 6.363265-5 3.311254+0 6.404896-5 4.539862+0 6.424741-5 5.261763+0 6.463190-5 6.952914+0 6.499236-5 8.945856+0 6.536853-5 1.153244+1 6.564711-5 1.384627+1 6.594412-5 1.675613+1 6.648362-5 2.348197+1 6.737453-5 4.031239+1 6.825778-5 6.829528+1 6.878599-5 9.386004+1 6.912665-5 1.156598+2 6.928573-5 1.276982+2 6.956413-5 1.522978+2 6.977292-5 1.743180+2 6.992952-5 1.932790+2 7.016441-5 2.265030+2 7.039931-5 2.668480+2 7.059111-5 3.064720+2 7.074587-5 3.438649+2 7.091915-5 3.927525+2 7.107068-5 4.428842+2 7.119073-5 4.885075+2 7.131486-5 5.422666+2 7.143898-5 6.040654+2 7.154118-5 6.622196+2 7.171641-5 7.812299+2 7.189164-5 9.326273+2 7.206687-5 1.129688+3 7.222532-5 1.363063+3 7.238377-5 1.668855+3 7.251979-5 2.008182+3 7.260654-5 2.271005+3 7.272363-5 2.694887+3 7.289321-5 3.479344+3 7.325146-5 6.012135+3 7.341162-5 7.621339+3 7.354001-5 9.151387+3 7.362633-5 1.030233+4 7.374802-5 1.208728+4 7.386115-5 1.390468+4 7.396186-5 1.563265+4 7.399474-5 1.621548+4 7.411526-5 1.841084+4 7.415359-5 1.912230+4 7.426858-5 2.126677+4 7.433041-5 2.241055+4 7.438650-5 2.343162+4 7.447948-5 2.506698+4 7.454900-5 2.622402+4 7.462812-5 2.745006+4 7.471545-5 2.866453+4 7.479252-5 2.959290+4 7.489259-5 3.056693+4 7.497155-5 3.113079+4 7.503447-5 3.144131+4 7.512835-5 3.166533+4 7.520113-5 3.163736+4 7.527071-5 3.144558+4 7.538528-5 3.078638+4 7.545038-5 3.023017+4 7.553673-5 2.930471+4 7.560823-5 2.839067+4 7.569478-5 2.712739+4 7.576757-5 2.595139+4 7.584546-5 2.460007+4 7.593291-5 2.299574+4 7.600596-5 2.160776+4 7.607640-5 2.024624+4 7.618160-5 1.820445+4 7.626092-5 1.668353+4 7.634394-5 1.513002+4 7.639375-5 1.422408+4 7.649007-5 1.254194+4 7.658859-5 1.093232+4 7.666902-5 9.711511+3 7.676026-5 8.434995+3 7.682978-5 7.541932+3 7.691369-5 6.556063+3 7.697786-5 5.869613+3 7.708421-5 4.856490+3 7.717195-5 4.132609+3 7.728551-5 3.335480+3 7.747434-5 2.322105+3 7.754580-5 2.028546+3 7.761725-5 1.778967+3 7.768852-5 1.570777+3 7.779542-5 1.329015+3 7.790232-5 1.165682+3 7.794759-5 1.118933+3 7.804755-5 1.061582+3 7.807989-5 1.056462+3 7.812017-5 1.059309+3 7.819278-5 1.090665+3 7.824090-5 1.130472+3 7.828522-5 1.181010+3 7.833957-5 1.261793+3 7.836066-5 1.298899+3 7.840661-5 1.391344+3 7.844689-5 1.485871+3 7.849215-5 1.607826+3 7.854623-5 1.776446+3 7.862935-5 2.087301+3 7.879646-5 2.922834+3 7.892768-5 3.800982+3 7.903027-5 4.638583+3 7.914705-5 5.764547+3 7.929056-5 7.409666+3 7.936128-5 8.326829+3 7.950878-5 1.045773+4 7.962414-5 1.231172+4 7.965526-5 1.283680+4 7.975704-5 1.461559+4 7.982603-5 1.586540+4 7.990834-5 1.738822+4 7.998204-5 1.876672+4 8.006747-5 2.036361+4 8.015959-5 2.205809+4 8.025454-5 2.374313+4 8.034009-5 2.518034+4 8.044902-5 2.685945+4 8.053818-5 2.807805+4 8.059317-5 2.874872+4 8.067872-5 2.965637+4 8.072124-5 3.004208+4 8.086612-5 3.100706+4 8.094952-5 3.130769+4 8.105157-5 3.141778+4 8.113019-5 3.131142+4 8.122411-5 3.097394+4 8.128745-5 3.062343+4 8.137580-5 2.998056+4 8.146378-5 2.917820+4 8.156257-5 2.810864+4 8.164508-5 2.709978+4 8.175117-5 2.567979+4 8.186419-5 2.405643+4 8.190187-5 2.349793+4 8.203598-5 2.147311+4 8.219302-5 1.910003+4 8.228147-5 1.779636+4 8.242846-5 1.572705+4 8.259022-5 1.363726+4 8.298825-5 9.517702+3 8.316568-5 8.157137+3 8.326040-5 7.540019+3 8.339686-5 6.771241+3 8.353176-5 6.135384+3 8.366705-5 5.604258+3 8.380207-5 5.163892+3 8.393683-5 4.798532+3 8.407132-5 4.494347+3 8.420556-5 4.239560+3 8.433953-5 4.024393+3 8.461548-5 3.673069+3 8.487331-5 3.423123+3 8.514475-5 3.214001+3 8.541186-5 3.045687+3 8.570666-5 2.890820+3 8.592844-5 2.790553+3 8.626110-5 2.660281+3 8.659655-5 2.548076+3 8.685825-5 2.471062+3 8.726588-5 2.365685+3 8.773761-5 2.261283+3 8.833147-5 2.150236+3 8.894394-5 2.053466+3 8.957367-5 1.967936+3 9.032339-5 1.880223+3 9.169821-5 1.747149+3 9.295929-5 1.647052+3 9.398477-5 1.576732+3 9.486357-5 1.523328+3 9.654966-5 1.435442+3 9.840919-5 1.355326+3 9.963676-5 1.308961+3 1.015956-4 1.243868+3 1.038370-4 1.179823+3 1.054691-4 1.139412+3 1.100232-4 1.045776+3 1.144567-4 9.727837+2 1.220183-4 8.725337+2 1.349642-4 7.417639+2 1.430969-4 6.760475+2 1.458084-4 6.547178+2 1.506261-4 6.162365+2 1.531201-4 5.938890+2 1.554589-4 5.698878+2 1.563192-4 5.635065+2 1.570437-4 5.606572+2 1.577943-4 5.602727+2 1.602850-4 5.667665+2 1.618782-4 5.669752+2 1.635390-4 5.635821+2 1.668679-4 5.548161+2 1.693363-4 5.466644+2 1.736197-4 5.303947+2 1.780000-4 5.127308+2 1.831352-4 4.911906+2 1.880993-4 4.698234+2 1.925096-4 4.481923+2 1.939391-4 4.405435+2 1.949477-4 4.372589+2 1.958679-4 4.370678+2 1.968821-4 4.399681+2 1.990479-4 4.492630+2 1.998861-4 4.509715+2 2.011451-4 4.505736+2 2.019864-4 4.488534+2 2.052039-4 4.394276+2 2.153401-4 4.138428+2 2.206967-4 3.995423+2 2.274957-4 3.804495+2 2.319837-4 3.674189+2 2.402288-4 3.430661+2 2.454717-4 3.264656+2 2.502167-4 3.111871+2 2.553573-4 2.980273+2 2.577249-4 2.907975+2 2.614230-4 2.776699+2 2.660725-4 2.590079+2 2.691535-4 2.447577+2 2.722882-4 2.274564+2 2.741691-4 2.148979+2 2.757835-4 2.019403+2 2.770000-4 1.902247+2 2.779024-4 1.802118+2 2.788956-4 1.679919+2 2.806267-4 1.464535+2 2.811405-4 1.413202+2 2.821702-4 1.357156+2 2.823309-4 1.356294+2 2.825955-4 1.360662+2 2.829575-4 1.379493+2 2.831325-4 1.394383+2 2.837606-4 1.481932+2 2.840809-4 1.548371+2 2.845732-4 1.680140+2 2.850152-4 1.828465+2 2.855688-4 2.050915+2 2.863455-4 2.417251+2 2.866237-4 2.558689+2 2.871318-4 2.822521+2 2.874077-4 2.965410+2 2.879325-4 3.228289+2 2.881037-4 3.309838+2 2.884032-4 3.445643+2 2.887968-4 3.608049+2 2.889864-4 3.678761+2 2.894374-4 3.824985+2 2.897923-4 3.916735+2 2.900974-4 3.978625+2 2.903749-4 4.021293+2 2.906444-4 4.050630+2 2.909061-4 4.068227+2 2.914070-4 4.074619+2 2.919710-4 4.045865+2 2.927880-4 3.958719+2 2.942235-4 3.769909+2 2.949808-4 3.691276+2 2.957918-4 3.636420+2 2.966050-4 3.608875+2 2.984180-4 3.583566+2 2.990770-4 3.563433+2 2.997221-4 3.529973+2 3.002396-4 3.492046+2 3.008445-4 3.435424+2 3.015134-4 3.359284+2 3.022133-4 3.268105+2 3.035960-4 3.071643+2 3.054921-4 2.814255+2 3.064469-4 2.702181+2 3.076883-4 2.576020+2 3.101717-4 2.375233+2 3.130000-4 2.194165+2 3.235937-4 1.672954+2 3.294417-4 1.450164+2 3.318518-4 1.371736+2 3.341326-4 1.305651+2 3.362500-4 1.251654+2 3.386914-4 1.198639+2 3.407484-4 1.161993+2 3.433267-4 1.126480+2 3.456000-4 1.104800+2 3.488709-4 1.089963+2 3.532457-4 1.102073+2 3.591218-4 1.176221+2 3.641218-4 1.289957+2 3.664832-4 1.359720+2 3.687804-4 1.437519+2 3.710010-4 1.521702+2 3.760741-4 1.743799+2 3.852843-4 2.237320+2 3.912976-4 2.610905+2 3.935501-4 2.759766+2 3.985000-4 3.101139+2 4.011986-4 3.294489+2 4.060100-4 3.649850+2 4.120975-4 4.111886+2 4.175000-4 4.527568+2 4.235614-4 4.994486+2 4.314511-4 5.598148+2 4.382847-4 6.114773+2 4.451182-4 6.622922+2 4.544646-4 7.300211+2 4.636806-4 7.943324+2 4.748929-4 8.685089+2 4.883711-4 9.515307+2 5.023723-4 1.030799+3 5.184000-4 1.111672+3 5.308844-4 1.166945+3 5.464024-4 1.225783+3 5.600527-4 1.266444+3 5.682116-4 1.283341+3 5.773854-4 1.291690+3 5.860766-4 1.288353+3 5.878762-4 1.290611+3 5.912809-4 1.308134+3 5.928715-4 1.325124+3 5.941433-4 1.343537+3 5.958481-4 1.374898+3 5.989135-4 1.446044+3 6.012372-4 1.503948+3 6.027410-4 1.538425+3 6.046022-4 1.573988+3 6.059375-4 1.593256+3 6.072124-4 1.606376+3 6.088477-4 1.615998+3 6.100464-4 1.618593+3 6.119138-4 1.617077+3 6.170729-4 1.602047+3 6.204764-4 1.603164+3 6.241856-4 1.625004+3 6.263442-4 1.647733+3 6.332715-4 1.744223+3 6.348981-4 1.764137+3 6.366475-4 1.781430+3 6.382963-4 1.793271+3 6.399251-4 1.800831+3 6.484897-4 1.807811+3 6.521841-4 1.814150+3 6.763263-4 1.911966+3 6.968762-4 1.983729+3 7.252183-4 2.065679+3 7.527169-4 2.130649+3 7.827691-4 2.188323+3 8.123167-4 2.230958+3 8.344327-4 2.249719+3 8.459691-4 2.255674+3 8.517082-4 2.263343+3 8.560517-4 2.273648+3 8.679450-4 2.319496+3 8.856974-4 2.398321+3 8.984781-4 2.442396+3 9.176692-4 2.488774+3 9.451353-4 2.534677+3 9.803614-4 2.578119+3 1.032726-3 2.619951+3 1.078932-3 2.673150+3 1.116610-3 2.701711+3 1.153753-3 2.716098+3 1.173689-3 2.719238+3 1.188373-3 2.727609+3 1.222052-3 2.764881+3 1.262347-3 2.790282+3 1.319043-3 2.807620+3 1.380818-3 2.810927+3 1.458000-3 2.806986+3 1.532232-3 2.796980+3 1.623561-3 2.776094+3 1.717908-3 2.745121+3 1.819701-3 2.699579+3 1.938228-3 2.640670+3 2.051593-3 2.577633+3 2.166476-3 2.503297+3 2.289044-3 2.413709+3 2.401424-3 2.322811+3 2.510662-3 2.222343+3 2.599655-3 2.131116+3 2.683799-3 2.034737+3 2.752692-3 1.944749+3 2.809240-3 1.861263+3 2.862633-3 1.771547+3 2.903778-3 1.691948+3 2.942727-3 1.604389+3 2.971489-3 1.528410+3 2.997882-3 1.445332+3 3.017840-3 1.370744+3 3.035954-3 1.294579+3 3.057904-3 1.203286+3 3.065932-3 1.175849+3 3.073317-3 1.156129+3 3.077447-3 1.147969+3 3.081921-3 1.141754+3 3.086625-3 1.138360+3 3.091542-3 1.138382+3 3.096038-3 1.141607+3 3.103207-3 1.152832+3 3.110680-3 1.171664+3 3.118153-3 1.196351+3 3.144464-3 1.304138+3 3.153880-3 1.341704+3 3.164750-3 1.380706+3 3.180989-3 1.430078+3 3.204502-3 1.494944+3 3.219730-3 1.545921+3 3.227929-3 1.579355+3 3.242714-3 1.651080+3 3.274246-3 1.831010+3 3.290000-3 1.917024+3 3.307555-3 2.001409+3 3.320938-3 2.057350+3 3.337270-3 2.116940+3 3.354099-3 2.169625+3 3.371840-3 2.216727+3 3.393321-3 2.263915+3 3.419056-3 2.309494+3 3.452431-3 2.356171+3 3.486881-3 2.393715+3 3.525864-3 2.425675+3 3.560682-3 2.445592+3 3.601883-3 2.458319+3 3.635596-3 2.458625+3 3.669278-3 2.448200+3 3.725637-3 2.421038+3 3.740114-3 2.422050+3 3.755477-3 2.431716+3 3.777522-3 2.462771+3 3.813400-3 2.543259+3 3.834874-3 2.593822+3 3.854322-3 2.633648+3 3.876571-3 2.670147+3 3.899974-3 2.699370+3 3.937421-3 2.733103+3 3.977164-3 2.758567+3 4.035904-3 2.784936+3 4.089296-3 2.800788+3 4.156133-3 2.812124+3 4.221718-3 2.815426+3 4.277145-3 2.812529+3 4.328523-3 2.803781+3 4.427751-3 2.768319+3 4.473268-3 2.763413+3 4.509627-3 2.774251+3 4.571162-3 2.801900+3 4.603483-3 2.810750+3 4.642360-3 2.814230+3 4.780908-3 2.800504+3 4.865804-3 2.823940+3 4.937637-3 2.840760+3 5.055336-3 2.844587+3 5.224474-3 2.832259+3 5.448162-3 2.799582+3 5.855246-3 2.720567+3 6.332030-3 2.610045+3 6.705217-3 2.518899+3 7.096033-3 2.422544+3 7.585775-3 2.301804+3 8.163473-3 2.165994+3 8.862946-3 2.011434+3 9.674422-3 1.844246+3 1.015956-2 1.751901+3 1.105506-2 1.593396+3 1.152210-2 1.516424+3 1.202640-2 1.436673+3 1.252127-2 1.361289+3 1.293358-2 1.300319+3 1.326338-2 1.251630+3 1.359530-2 1.202905+3 1.388158-2 1.160361+3 1.411648-2 1.124511+3 1.433406-2 1.090028+3 1.450121-2 1.062059+3 1.464019-2 1.037183+3 1.477281-2 1.011404+3 1.488145-2 9.878858+2 1.497226-2 9.655171+2 1.504473-2 9.451746+2 1.514694-2 9.124498+2 1.528783-2 8.664097+2 1.535785-2 8.498704+2 1.540498-2 8.435069+2 1.544990-2 8.416719+2 1.549694-2 8.441961+2 1.555153-2 8.521121+2 1.563373-2 8.707275+2 1.575993-2 9.023182+2 1.580707-2 9.123141+2 1.586868-2 9.230827+2 1.592899-2 9.311677+2 1.600281-2 9.382675+2 1.608633-2 9.434935+2 1.619679-2 9.472786+2 1.632398-2 9.487100+2 1.658647-2 9.452846+2 1.691841-2 9.331233+2 1.729225-2 9.123953+2 1.747833-2 8.996851+2 1.764117-2 8.870939+2 1.780420-2 8.727049+2 1.794402-2 8.583227+2 1.805539-2 8.448951+2 1.827271-2 8.136734+2 1.841043-2 7.954812+2 1.850297-2 7.878177+2 1.858366-2 7.852607+2 1.872025-2 7.882611+2 1.894950-2 7.980390+2 1.922528-2 8.053587+2 1.967152-2 8.292061+2 1.989419-2 8.343410+2 2.020796-2 8.342369+2 2.054755-2 8.297681+2 2.100708-2 8.200582+2 2.187762-2 7.957785+2 2.293053-2 7.620057+2 2.426610-2 7.176191+2 2.615170-2 6.576214+2 2.868509-2 5.853114+2 3.190758-2 5.077639+2 3.601004-2 4.284926+2 3.869009-2 3.856327+2 4.170944-2 3.437397+2 4.721522-2 2.824191+2 5.328435-2 2.317162+2 5.797258-2 2.006791+2 6.578176-2 1.606409+2 7.422610-2 1.293011+2 8.016837-2 1.121934+2 8.670469-2 9.656886+1 9.149616-2 8.661602+1 9.509556-2 7.964485+1 9.774214-2 7.456446+1 9.873932-2 7.258775+1 9.964236-2 7.071759+1 1.003963-1 6.904787+1 1.009775-1 6.764401+1 1.018518-1 6.523486+1 1.033349-1 6.075076+1 1.037468-1 5.985260+1 1.041944-1 5.929045+1 1.045621-1 5.918654+1 1.050630-1 5.950272+1 1.066100-1 6.163854+1 1.072712-1 6.223131+1 1.077294-1 6.246185+1 1.082984-1 6.259047+1 1.096724-1 6.246485+1 1.114315-1 6.184717+1 1.138705-1 6.059062+1 1.181772-1 5.797333+1 1.236693-1 5.443152+1 1.291963-1 5.095331+1 1.377340-1 4.598642+1 1.497932-1 3.996863+1 1.698244-1 3.215701+1 1.963251-1 2.483579+1 2.313265-1 1.842947+1 2.848806-1 1.252585+1 3.637318-1 7.893599+0 4.714520-1 4.800455+0 6.541086-1 2.544120+0 1.022000+0 1.062639+0 1.546860+0 4.693649-1 2.814822+0 1.428666-1 8.575359+0 1.544488-2 2.688134+1 1.571999-3 8.118035+1 1.723688-4 2.451607+2 1.889989-5 7.403736+2 2.072332-6 2.511886+3 1.800367-7 7.943282+3 1.800367-8 2.511886+4 1.800367-9 7.943282+4 1.80037-10 1.000000+5 1.13596-10 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.097900-6 1.258900-6 4.909800-6 1.584900-6 7.781500-6 1.995300-6 1.233300-5 2.511900-6 1.954600-5 3.162300-6 3.097800-5 3.981100-6 4.909700-5 5.011900-6 7.781300-5 6.309600-6 1.233300-4 7.943300-6 1.954600-4 1.000000-5 3.097700-4 1.258900-5 4.909500-4 1.584900-5 7.776800-4 1.995300-5 1.231700-3 2.511900-5 1.951000-3 3.162300-5 3.090800-3 3.981100-5 4.897100-3 5.011900-5 7.758200-3 6.309600-5 1.229000-2 7.943300-5 1.944300-2 1.000000-4 3.074300-2 1.258900-4 4.852900-2 1.584900-4 7.643100-2 1.995300-4 1.199200-1 2.511900-4 1.871800-1 3.162300-4 2.896900-1 3.981100-4 4.422500-1 5.011900-4 6.586400-1 6.309600-4 9.527800-1 7.943300-4 1.331300+0 1.000000-3 1.799400+0 1.258900-3 2.371500+0 1.584900-3 3.086300+0 1.995300-3 3.986800+0 2.511900-3 5.107800+0 3.162300-3 6.479100+0 3.981100-3 8.107300+0 5.011900-3 9.952200+0 6.309600-3 1.199300+1 7.943300-3 1.431800+1 1.000000-2 1.694900+1 1.258900-2 1.978600+1 1.584900-2 2.265700+1 1.995300-2 2.545400+1 2.511900-2 2.823200+1 3.162300-2 3.085800+1 3.981100-2 3.316300+1 5.011900-2 3.495200+1 6.309600-2 3.611600+1 7.943300-2 3.665100+1 1.000000-1 3.657900+1 1.258900-1 3.589500+1 1.584900-1 3.473600+1 1.995300-1 3.314500+1 2.511900-1 3.126400+1 3.162300-1 2.919100+1 3.981100-1 2.702000+1 5.011900-1 2.480700+1 6.309600-1 2.261100+1 7.943300-1 2.046900+1 1.000000+0 1.839600+1 1.258900+0 1.643600+1 1.584900+0 1.458000+1 1.995300+0 1.284700+1 2.511900+0 1.124600+1 3.162300+0 9.782400+0 3.981100+0 8.458400+0 5.011900+0 7.272100+0 6.309600+0 6.219400+0 7.943300+0 5.293200+0 1.000000+1 4.484900+0 1.258900+1 3.784700+0 1.584900+1 3.182000+0 1.995300+1 2.666400+0 2.511900+1 2.227700+0 3.162300+1 1.856100+0 3.981100+1 1.542700+0 5.011900+1 1.279400+0 6.309600+1 1.058900+0 7.943300+1 8.747700-1 1.000000+2 7.214800-1 1.258900+2 5.941600-1 1.584900+2 4.886200-1 1.995300+2 4.013200-1 2.511900+2 3.292400-1 3.162300+2 2.698000-1 3.981100+2 2.208800-1 5.011900+2 1.806500-1 6.309600+2 1.476200-1 7.943300+2 1.205400-1 1.000000+3 9.834300-2 1.258900+3 8.017800-2 1.584900+3 6.532400-2 1.995300+3 5.318800-2 2.511900+3 4.327900-2 3.162300+3 3.519700-2 3.981100+3 2.860800-2 5.011900+3 2.324000-2 6.309600+3 1.887000-2 7.943300+3 1.531500-2 1.000000+4 1.242300-2 1.258900+4 1.007300-2 1.584900+4 8.164700-3 1.995300+4 6.614900-3 2.511900+4 5.357200-3 3.162300+4 4.337100-3 3.981100+4 3.509900-3 5.011900+4 2.839500-3 6.309600+4 2.296400-3 7.943300+4 1.856600-3 1.000000+5 1.500500-3 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994176-4 2.511886-4 2.510168-4 3.162278-4 3.159562-4 3.981072-4 3.976790-4 5.011872-4 5.005147-4 6.309573-4 6.299041-4 7.943282-4 7.926821-4 1.000000-3 9.974393-4 1.258925-3 1.254931-3 1.584893-3 1.578635-3 1.995262-3 1.985424-3 2.511886-3 2.496407-3 3.162278-3 3.137941-3 3.981072-3 3.942840-3 5.011872-3 4.952259-3 6.309573-3 6.216546-3 7.943282-3 7.798191-3 1.000000-2 9.773350-3 1.258925-2 1.223645-2 1.584893-2 1.530289-2 1.995262-2 1.911056-2 2.511886-2 2.382483-2 3.162278-2 2.963982-2 3.981072-2 3.679089-2 5.011872-2 4.555916-2 6.309573-2 5.626930-2 7.943282-2 6.928710-2 1.000000-1 8.505479-2 1.258925-1 1.041218-1 1.584893-1 1.269647-1 1.995262-1 1.543623-1 2.511886-1 1.870754-1 3.162278-1 2.259975-1 3.981072-1 2.721458-1 5.011872-1 3.267255-1 6.309573-1 3.911176-1 7.943282-1 4.670612-1 1.000000+0 5.565052-1 1.258925+0 6.615871-1 1.584893+0 7.859226-1 1.995262+0 9.329662-1 2.511886+0 1.107477+0 3.162278+0 1.315178+0 3.981072+0 1.563166+0 5.011872+0 1.859996+0 6.309573+0 2.216160+0 7.943282+0 2.644788+0 1.000000+1 3.161322+0 1.258925+1 3.785478+0 1.584893+1 4.540620+0 1.995262+1 5.455839+0 2.511886+1 6.566673+0 3.162278+1 7.916604+0 3.981072+1 9.559108+0 5.011872+1 1.156011+1 6.309573+1 1.399968+1 7.943282+1 1.697728+1 1.000000+2 2.061471+1 1.258925+2 2.506211+1 1.584893+2 3.050364+1 1.995262+2 3.716707+1 2.511886+2 4.533208+1 3.162278+2 5.534489+1 3.981072+2 6.762934+1 5.011872+2 8.271264+1 6.309573+2 1.012419+2 7.943282+2 1.240184+2 1.000000+3 1.520266+2 1.258925+3 1.864911+2 1.584893+3 2.289146+2 1.995262+3 2.811762+2 2.511886+3 3.455610+2 3.162278+3 4.249284+2 3.981072+3 5.228168+2 5.011872+3 6.435780+2 6.309573+3 7.926398+2 7.943282+3 9.766720+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88191-10 1.995262-5 1.090612-9 2.511886-5 1.728476-9 3.162278-5 2.739488-9 3.981072-5 4.341855-9 5.011872-5 6.881041-9 6.309573-5 1.090495-8 7.943282-5 1.727627-8 1.000000-4 2.737184-8 1.258925-4 4.335599-8 1.584893-4 6.864856-8 1.995262-4 1.086544-7 2.511886-4 1.718724-7 3.162278-4 2.715334-7 3.981072-4 4.281622-7 5.011872-4 6.725777-7 6.309573-4 1.053249-6 7.943282-4 1.646131-6 1.000000-3 2.560749-6 1.258925-3 3.994543-6 1.584893-3 6.258509-6 1.995262-3 9.838131-6 2.511886-3 1.547899-5 3.162278-3 2.433620-5 3.981072-3 3.823143-5 5.011872-3 5.961345-5 6.309573-3 9.302699-5 7.943282-3 1.450916-4 1.000000-2 2.266504-4 1.258925-2 3.528054-4 1.584893-2 5.460381-4 1.995262-2 8.420611-4 2.511886-2 1.294033-3 3.162278-2 1.982958-3 3.981072-2 3.019828-3 5.011872-2 4.559566-3 6.309573-2 6.826438-3 7.943282-2 1.014572-2 1.000000-1 1.494521-2 1.258925-1 2.177070-2 1.584893-1 3.152458-2 1.995262-1 4.516389-2 2.511886-1 6.411322-2 3.162278-1 9.023023-2 3.981072-1 1.259614-1 5.011872-1 1.744618-1 6.309573-1 2.398397-1 7.943282-1 3.272670-1 1.000000+0 4.434948-1 1.258925+0 5.973383-1 1.584893+0 7.989706-1 1.995262+0 1.062296+0 2.511886+0 1.404409+0 3.162278+0 1.847099+0 3.981072+0 2.417906+0 5.011872+0 3.151877+0 6.309573+0 4.093414+0 7.943282+0 5.298494+0 1.000000+1 6.838678+0 1.258925+1 8.803776+0 1.584893+1 1.130831+1 1.995262+1 1.449678+1 2.511886+1 1.855219+1 3.162278+1 2.370617+1 3.981072+1 3.025161+1 5.011872+1 3.855862+1 6.309573+1 4.909605+1 7.943282+1 6.245554+1 1.000000+2 7.938529+1 1.258925+2 1.008304+2 1.584893+2 1.279857+2 1.995262+2 1.623592+2 2.511886+2 2.058566+2 3.162278+2 2.608829+2 3.981072+2 3.304778+2 5.011872+2 4.184746+2 6.309573+2 5.297154+2 7.943282+2 6.703098+2 1.000000+3 8.479734+2 1.258925+3 1.072434+3 1.584893+3 1.355979+3 1.995262+3 1.714086+3 2.511886+3 2.166325+3 3.162278+3 2.737349+3 3.981072+3 3.458255+3 5.011872+3 4.368294+3 6.309573+3 5.516934+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.730000-6 8.011460+6 5.000000-6 6.681420+6 5.821032-6 4.043888+6 6.839116-6 2.392658+6 8.035261-6 1.426279+6 9.549926-6 8.252700+5 1.135011-5 4.812089+5 1.318257-5 3.037649+5 1.500000-5 2.056720+5 1.659587-5 1.525655+5 1.800000-5 1.207736+5 1.862000-5 1.098822+5 1.862000-5 2.797626+7 1.883649-5 2.649331+7 1.945000-5 2.307765+7 1.950000-5 2.283596+7 2.000000-5 2.058435+7 2.070000-5 1.798905+7 2.089296-5 1.737684+7 2.162719-5 1.527579+7 2.238721-5 1.350190+7 2.270000-5 1.284880+7 2.371374-5 1.105464+7 2.400000-5 1.060740+7 2.488000-5 9.406903+6 2.488000-5 2.144762+7 2.511886-5 2.069543+7 2.540973-5 1.982438+7 2.600160-5 1.824678+7 2.610000-5 1.800262+7 2.660725-5 1.684962+7 2.700000-5 1.602184+7 2.818383-5 1.389699+7 2.951209-5 1.198447+7 2.985383-5 1.155864+7 3.000000-5 1.138261+7 3.162278-5 9.653441+6 3.350000-5 8.076262+6 3.570000-5 6.634517+6 3.801894-5 5.462138+6 3.954000-5 4.836247+6 3.954000-5 5.191709+6 3.981072-5 5.083326+6 4.120975-5 4.561438+6 4.265795-5 4.092043+6 4.315191-5 3.947929+6 4.518559-5 3.418478+6 4.570882-5 3.297666+6 4.677351-5 3.069388+6 4.738400-5 2.949117+6 4.900000-5 2.660493+6 5.000000-5 2.501097+6 5.069907-5 2.397151+6 5.080000-5 2.382789+6 5.248075-5 2.160571+6 5.308844-5 2.087353+6 5.400000-5 1.984600+6 5.500000-5 1.879965+6 5.580000-5 1.802535+6 5.754399-5 1.648706+6 5.900000-5 1.534072+6 5.956621-5 1.492961+6 6.095369-5 1.398783+6 6.165950-5 1.353975+6 6.309573-5 1.269752+6 6.400000-5 1.221105+6 6.683439-5 1.084905+6 6.760830-5 1.051542+6 7.000000-5 9.585354+5 7.244360-5 8.753446+5 7.328245-5 8.495923+5 7.552000-5 7.862196+5 7.552000-5 2.032650+7 7.762471-5 1.810384+7 7.852356-5 1.724770+7 7.870000-5 1.708562+7 7.920000-5 1.658077+7 8.132000-5 1.471338+7 8.132000-5 2.934106+7 8.222426-5 2.775179+7 8.270000-5 2.695767+7 8.317638-5 2.623674+7 8.570000-5 2.279482+7 8.730000-5 2.084944+7 8.810489-5 1.992126+7 8.912509-5 1.881617+7 9.225714-5 1.578576+7 9.450000-5 1.396157+7 9.549926-5 1.327344+7 9.800000-5 1.172493+7 9.900000-5 1.117596+7 1.000000-4 1.063549+7 1.023293-4 9.555203+6 1.047129-4 8.586240+6 1.083927-4 7.328630+6 1.100000-4 6.851090+6 1.109175-4 6.595812+6 1.122018-4 6.252919+6 1.161449-4 5.329393+6 1.170000-4 5.149524+6 1.174898-4 5.048392+6 1.220000-4 4.223787+6 1.258925-4 3.635495+6 1.260000-4 3.620690+6 1.303167-4 3.083831+6 1.364583-4 2.477579+6 1.396368-4 2.222355+6 1.428894-4 1.994508+6 1.450000-4 1.862255+6 1.500000-4 1.591871+6 1.540000-4 1.410769+6 1.566751-4 1.304231+6 1.580000-4 1.255278+6 1.584893-4 1.237791+6 1.598300-4 1.191877+6 1.598300-4 1.728449+6 1.598400-4 1.723427+6 1.599000-4 1.714329+6 1.599900-4 1.704489+6 1.601700-4 1.689951+6 1.604000-4 1.675726+6 1.609000-4 1.649254+6 1.617000-4 1.611690+6 1.627000-4 1.568823+6 1.643000-4 1.506346+6 1.659587-4 1.448041+6 1.665000-4 1.429876+6 1.678804-4 1.386680+6 1.690000-4 1.353009+6 1.720000-4 1.270787+6 1.737801-4 1.226033+6 1.760000-4 1.173657+6 1.780000-4 1.129688+6 1.800000-4 1.088873+6 1.819701-4 1.050765+6 1.840772-4 1.012213+6 1.850000-4 9.964909+5 1.883649-4 9.422459+5 1.905461-4 9.100474+5 1.930000-4 8.762574+5 1.950000-4 8.507016+5 1.972423-4 8.242754+5 1.980000-4 8.157699+5 2.003200-4 7.911795+5 2.003200-4 1.019590+6 2.018366-4 9.979557+5 2.020000-4 9.956649+5 2.065380-4 9.368271+5 2.080000-4 9.193529+5 2.089296-4 9.089361+5 2.113489-4 8.830642+5 2.137962-4 8.586101+5 2.162719-4 8.353126+5 2.170000-4 8.288113+5 2.190000-4 8.110423+5 2.213095-4 7.919875+5 2.238721-4 7.721907+5 2.244000-4 7.682179+5 2.264644-4 7.532895+5 2.300000-4 7.294438+5 2.317395-4 7.186608+5 2.344229-4 7.032569+5 2.350000-4 7.000164+5 2.371374-4 6.884755+5 2.400000-4 6.739633+5 2.426610-4 6.612608+5 2.430000-4 6.597091+5 2.454709-4 6.489589+5 2.500000-4 6.310677+5 2.511886-4 6.266847+5 2.536300-4 6.181007+5 2.536300-4 6.747199+5 2.540973-4 6.730551+5 2.570396-4 6.627794+5 2.580000-4 6.596916+5 2.635000-4 6.426517+5 2.650000-4 6.382906+5 2.660725-4 6.353241+5 2.691535-4 6.271307+5 2.754229-4 6.118962+5 2.770000-4 6.083539+5 2.818383-4 5.981534+5 2.851018-4 5.916712+5 2.884032-4 5.855061+5 2.900000-4 5.826870+5 2.911900-4 5.805937+5 2.911900-4 7.289657+5 2.912300-4 7.274662+5 2.914000-4 7.245900+5 2.917427-4 7.201340+5 2.922000-4 7.153861+5 2.928000-4 7.104032+5 2.933000-4 7.070091+5 2.940000-4 7.030711+5 2.947000-4 6.998533+5 2.951209-4 6.982683+5 2.955000-4 6.968825+5 2.965000-4 6.938740+5 2.980000-4 6.902814+5 2.997000-4 6.871376+5 2.997000-4 7.876550+5 2.998000-4 7.865721+5 3.000000-4 7.851492+5 3.001500-4 7.841530+5 3.007000-4 7.811562+5 3.015000-4 7.776732+5 3.019952-4 7.759360+5 3.022000-4 7.752298+5 3.032000-4 7.728454+5 3.040000-4 7.713966+5 3.045000-4 7.707074+5 3.056900-4 7.695486+5 3.057000-4 7.695393+5 3.073000-4 7.693432+5 3.080000-4 7.696652+5 3.090000-4 7.703978+5 3.100000-4 7.716719+5 3.107000-4 7.729440+5 3.115000-4 7.746684+5 3.126079-4 7.778148+5 3.130000-4 7.789574+5 3.145000-4 7.849034+5 3.150000-4 7.874565+5 3.162278-4 7.939687+5 3.172000-4 8.003615+5 3.180000-4 8.060436+5 3.185000-4 8.100389+5 3.200000-4 8.231395+5 3.215000-4 8.388343+5 3.220000-4 8.445224+5 3.230000-4 8.568227+5 3.240000-4 8.701564+5 3.245000-4 8.772658+5 3.260000-4 9.003109+5 3.275000-4 9.257264+5 3.280000-4 9.348090+5 3.290000-4 9.536695+5 3.311311-4 9.979477+5 3.320000-4 1.017728+6 3.340200-4 1.065634+6 3.350000-4 1.090795+6 3.380000-4 1.172527+6 3.388442-4 1.196688+6 3.400000-4 1.231240+6 3.412100-4 1.268839+6 3.430000-4 1.326038+6 3.440000-4 1.359314+6 3.460000-4 1.427645+6 3.470000-4 1.463184+6 3.485000-4 1.517017+6 3.507519-4 1.601823+6 3.515000-4 1.630363+6 3.540000-4 1.728816+6 3.550000-4 1.769125+6 3.565000-4 1.830665+6 3.580000-4 1.892767+6 3.600000-4 1.977961+6 3.615000-4 2.042279+6 3.630781-4 2.110997+6 3.650000-4 2.194677+6 3.665000-4 2.261075+6 3.680000-4 2.326602+6 3.700000-4 2.414839+6 3.715352-4 2.481565+6 3.740000-4 2.589423+6 3.750000-4 2.632228+6 3.758374-4 2.667470+6 3.780000-4 2.760898+6 3.801894-4 2.850503+6 3.820000-4 2.926985+6 3.850000-4 3.047865+6 3.890451-4 3.205301+6 3.935501-4 3.372695+6 3.985000-4 3.546086+6 4.000000-4 3.594548+6 4.030000-4 3.693198+6 4.080000-4 3.842951+6 4.090200-4 3.871951+6 4.120975-4 3.954429+6 4.130000-4 3.978895+6 4.150000-4 4.029583+6 4.180000-4 4.101307+6 4.200000-4 4.145750+6 4.240000-4 4.228899+6 4.265795-4 4.277643+6 4.280000-4 4.302408+6 4.315191-4 4.364043+6 4.320000-4 4.372511+6 4.350000-4 4.415657+6 4.390000-4 4.473600+6 4.415704-4 4.503076+6 4.466836-4 4.561859+6 4.470000-4 4.565505+6 4.478400-4 4.574118+6 4.550000-4 4.634920+6 4.570882-4 4.650046+6 4.623810-4 4.679196+6 4.650000-4 4.693593+6 4.677351-4 4.705129+6 4.700000-4 4.711415+6 4.740000-4 4.722427+6 4.786301-4 4.730467+6 4.850000-4 4.733522+6 4.897788-4 4.731105+6 4.954502-4 4.722764+6 4.970000-4 4.720519+6 5.011872-4 4.711373+6 5.080000-4 4.689891+6 5.150000-4 4.662615+6 5.188000-4 4.644599+6 5.248075-4 4.616348+6 5.308844-4 4.583504+6 5.432503-4 4.508651+6 5.500000-4 4.464868+6 5.559043-4 4.422571+6 5.583530-4 4.405224+6 5.623413-4 4.377274+6 5.688529-4 4.328942+6 5.720000-4 4.305926+6 5.821032-4 4.227307+6 5.888437-4 4.173688+6 5.956621-4 4.120734+6 6.000000-4 4.085495+6 6.025596-4 4.064941+6 6.030600-4 4.060764+6 6.030600-4 4.439307+6 6.095369-4 4.385562+6 6.200000-4 4.301264+6 6.280000-4 4.234736+6 6.367700-4 4.160609+6 6.367700-4 4.378902+6 6.382635-4 4.366485+6 6.456542-4 4.305923+6 6.531306-4 4.246300+6 6.600000-4 4.190515+6 6.606934-4 4.184772+6 6.760830-4 4.061088+6 6.780000-4 4.046281+6 6.839116-4 4.001406+6 6.850000-4 3.993244+6 6.918310-4 3.940294+6 7.000000-4 3.876538+6 7.161434-4 3.756064+6 7.244360-4 3.694411+6 7.413102-4 3.570734+6 7.500000-4 3.509966+6 7.585776-4 3.451821+6 7.673615-4 3.392217+6 7.762471-4 3.332399+6 7.852356-4 3.273840+6 8.035261-4 3.159406+6 8.128305-4 3.103948+6 8.200000-4 3.061155+6 8.222426-4 3.047992+6 8.413951-4 2.935356+6 8.600000-4 2.832992+6 8.609938-4 2.827670+6 8.673100-4 2.792866+6 8.673100-4 2.970139+6 8.709636-4 2.949337+6 8.810489-4 2.892007+6 8.850000-4 2.870084+6 8.912509-4 2.836500+6 9.000000-4 2.790642+6 9.120108-4 2.729421+6 9.225714-4 2.675820+6 9.440609-4 2.570648+6 9.500000-4 2.542816+6 9.660509-4 2.469695+6 9.772372-4 2.420348+6 9.850000-4 2.387098+6 9.885531-4 2.371834+6 9.930000-4 2.352724+6 1.023293-3 2.228487+6 1.030000-3 2.202216+6 1.047129-3 2.137347+6 1.048600-3 2.131929+6 1.048600-3 2.160928+6 1.050000-3 2.155788+6 1.056000-3 2.133845+6 1.059254-3 2.121887+6 1.071519-3 2.077173+6 1.090000-3 2.012457+6 1.110000-3 1.945529+6 1.122018-3 1.906807+6 1.135011-3 1.866344+6 1.155000-3 1.805279+6 1.161449-3 1.786286+6 1.174898-3 1.747384+6 1.189700-3 1.705843+6 1.189700-3 1.738940+6 1.216186-3 1.667909+6 1.230000-3 1.632494+6 1.230269-3 1.631816+6 1.244515-3 1.596016+6 1.250000-3 1.582450+6 1.258925-3 1.560629+6 1.273503-3 1.526033+6 1.288250-3 1.492273+6 1.290000-3 1.488350+6 1.303167-3 1.459392+6 1.318257-3 1.427243+6 1.330000-3 1.402812+6 1.333521-3 1.395583+6 1.348963-3 1.363916+6 1.350000-3 1.361831+6 1.364583-3 1.333036+6 1.380384-3 1.302883+6 1.400000-3 1.266992+6 1.412538-3 1.244656+6 1.428894-3 1.216350+6 1.445440-3 1.188582+6 1.462177-3 1.161525+6 1.479108-3 1.134639+6 1.480000-3 1.133250+6 1.496236-3 1.108426+6 1.500000-3 1.102744+6 1.513561-3 1.082635+6 1.570000-3 1.004440+6 1.584893-3 9.853112+5 1.610000-3 9.536973+5 1.621810-3 9.393759+5 1.640590-3 9.171628+5 1.659587-3 8.953575+5 1.698244-3 8.534598+5 1.737801-3 8.136896+5 1.757924-3 7.943111+5 1.770000-3 7.829578+5 1.778279-3 7.752439+5 1.819701-3 7.382504+5 1.840772-3 7.204865+5 1.883649-3 6.863666+5 1.900000-3 6.739162+5 1.905461-3 6.698093+5 1.950000-3 6.372883+5 1.972423-3 6.218297+5 2.000000-3 6.035979+5 2.018366-3 5.918716+5 2.041738-3 5.774378+5 2.065380-3 5.633131+5 2.070000-3 5.606161+5 2.089296-3 5.495511+5 2.113489-3 5.359348+5 2.162719-3 5.096825+5 2.187762-3 4.970731+5 2.200000-3 4.910694+5 2.238721-3 4.727839+5 2.264644-3 4.610475+5 2.290868-3 4.495129+5 2.300000-3 4.456009+5 2.317395-3 4.382589+5 2.344229-3 4.272472+5 2.398833-3 4.061261+5 2.400000-3 4.056920+5 2.426610-3 3.959179+5 2.454709-3 3.859868+5 2.483133-3 3.762970+5 2.511886-3 3.667966+5 2.540973-3 3.575080+5 2.570396-3 3.484389+5 2.630268-3 3.309761+5 2.660725-3 3.225553+5 2.691535-3 3.143547+5 2.710800-3 3.093887+5 2.720000-3 3.070369+5 2.722701-3 3.063506+5 2.754229-3 2.985094+5 2.800000-3 2.876547+5 2.818383-3 2.834633+5 2.851018-3 2.761912+5 2.917427-3 2.621226+5 2.985383-3 2.488140+5 3.000000-3 2.460646+5 3.019952-3 2.423756+5 3.090295-3 2.300087+5 3.111300-3 2.264831+5 3.111300-3 5.752787+5 3.126079-3 5.683926+5 3.150000-3 5.574821+5 3.162278-3 5.519912+5 3.198895-3 5.360605+5 3.213000-3 5.300898+5 3.235937-3 5.192183+5 3.258700-3 5.096375+5 3.258700-3 7.409203+5 3.273407-3 7.313635+5 3.275000-3 7.303363+5 3.281000-3 7.262274+5 3.290000-3 7.201237+5 3.311311-3 7.064929+5 3.349654-3 6.828640+5 3.378000-3 6.661063+5 3.427678-3 6.410879+5 3.507519-3 6.050359+5 3.548134-3 5.877813+5 3.589219-3 5.710231+5 3.600000-3 5.667240+5 3.630781-3 5.545014+5 3.672823-3 5.383975+5 3.758374-3 5.075870+5 3.773700-3 5.023248+5 3.773700-3 5.849930+5 3.801894-3 5.744140+5 3.845918-3 5.582536+5 3.890451-3 5.427350+5 3.935501-3 5.276686+5 3.981072-3 5.130065+5 4.027170-3 4.986118+5 4.073803-3 4.846142+5 4.120975-3 4.709172+5 4.150000-3 4.627640+5 4.168694-3 4.576132+5 4.216965-3 4.446865+5 4.300000-3 4.235552+5 4.365158-3 4.078468+5 4.415704-3 3.962108+5 4.482000-3 3.816503+5 4.482000-3 4.054592+5 4.518559-3 3.975048+5 4.560000-3 3.887558+5 4.570882-3 3.865220+5 4.623810-3 3.759117+5 4.677351-3 3.655391+5 4.731513-3 3.554656+5 4.795100-3 3.440439+5 4.795100-3 3.587550+5 4.800000-3 3.578783+5 4.841724-3 3.504729+5 4.897788-3 3.408561+5 4.920000-3 3.371517+5 5.011872-3 3.224013+5 5.128614-3 3.049372+5 5.150000-3 3.018899+5 5.188000-3 2.965963+5 5.248075-3 2.884347+5 5.308844-3 2.804642+5 5.350000-3 2.752416+5 5.432503-3 2.651680+5 5.500000-3 2.573201+5 5.559043-3 2.506899+5 5.623413-3 2.437407+5 5.688529-3 2.369885+5 5.754399-3 2.304309+5 5.800000-3 2.259937+5 5.821032-3 2.239830+5 5.888437-3 2.177182+5 6.009750-3 2.070479+5 6.025596-3 2.057111+5 6.095369-3 1.999712+5 6.165950-3 1.943990+5 6.237348-3 1.889915+5 6.309573-3 1.836813+5 6.456542-3 1.734760+5 6.606934-3 1.637894+5 6.683439-3 1.591575+5 6.800000-3 1.524216+5 6.839116-3 1.502518+5 6.918310-3 1.459927+5 7.000000-3 1.417577+5 7.079458-3 1.377952+5 7.161434-3 1.338721+5 7.300000-3 1.276028+5 7.413102-3 1.227939+5 7.585776-3 1.159471+5 7.673615-3 1.126632+5 7.762471-3 1.094777+5 7.852356-3 1.063672+5 7.943282-3 1.033394+5 8.035261-3 1.003809+5 8.222426-3 9.471573+4 8.317638-3 9.200981+4 8.413951-3 8.935370+4 8.511380-3 8.677465+4 8.609938-3 8.427411+4 8.709636-3 8.183823+4 8.810489-3 7.947472+4 9.015711-3 7.496147+4 9.120108-3 7.280096+4 9.225714-3 7.070525+4 9.549926-3 6.476826+4 9.660509-3 6.290389+4 9.800000-3 6.066015+4 9.885531-3 5.934042+4 1.000000-2 5.762242+4 1.011579-2 5.595670+4 1.035142-2 5.274894+4 1.047129-2 5.121193+4 1.059254-2 4.972180+4 1.071519-2 4.827170+4 1.096478-2 4.550342+4 1.109175-2 4.418154+4 1.122018-2 4.289447+4 1.135011-2 4.164284+4 1.150000-2 4.026176+4 1.174898-2 3.809703+4 1.188502-2 3.698448+4 1.202264-2 3.590472+4 1.216186-2 3.485756+4 1.230269-2 3.384254+4 1.244515-2 3.285793+4 1.258925-2 3.189957+4 1.273503-2 3.096416+4 1.288250-2 3.005093+4 1.303167-2 2.916594+4 1.318257-2 2.830834+4 1.333521-2 2.747660+4 1.348963-2 2.666817+4 1.364583-2 2.588467+4 1.380384-2 2.512395+4 1.396368-2 2.438647+4 1.412538-2 2.367119+4 1.428894-2 2.297613+4 1.445440-2 2.229709+4 1.462177-2 2.163905+4 1.479108-2 2.099922+4 1.496236-2 2.037912+4 1.513561-2 1.977827+4 1.531087-2 1.919540+4 1.545600-2 1.873123+4 1.545600-2 4.551984+4 1.552000-2 4.488041+4 1.556000-2 4.460789+4 1.566751-2 4.388665+4 1.570000-2 4.367149+4 1.580000-2 4.294436+4 1.584893-2 4.259464+4 1.603245-2 4.131741+4 1.621810-2 4.007500+4 1.625000-2 3.986673+4 1.640590-2 3.885451+4 1.659587-2 3.766878+4 1.678804-2 3.651991+4 1.698244-2 3.540562+4 1.717908-2 3.432596+4 1.737801-2 3.327973+4 1.757924-2 3.226452+4 1.770000-2 3.167573+4 1.778279-2 3.127542+4 1.819701-2 2.937306+4 1.840772-2 2.846479+4 1.856000-2 2.783100+4 1.856000-2 3.909244+4 1.862087-2 3.877555+4 1.880000-2 3.786364+4 1.900000-2 3.682508+4 1.923200-2 3.566893+4 1.923200-2 4.122370+4 1.940000-2 4.031603+4 1.949845-2 3.981009+4 1.950000-2 3.980220+4 1.972423-2 3.866931+4 1.995262-2 3.756178+4 2.000000-2 3.733771+4 2.018366-2 3.648687+4 2.030000-2 3.596505+4 2.041738-2 3.544494+4 2.065380-2 3.442850+4 2.080000-2 3.382006+4 2.089296-2 3.344064+4 2.100000-2 3.300660+4 2.162719-2 3.064246+4 2.170000-2 3.038361+4 2.187762-2 2.975847+4 2.213095-2 2.888957+4 2.238721-2 2.804677+4 2.264644-2 2.722895+4 2.290868-2 2.643564+4 2.300000-2 2.616705+4 2.317395-2 2.566533+4 2.344229-2 2.491763+4 2.398833-2 2.348687+4 2.426610-2 2.280346+4 2.483133-2 2.149278+4 2.511886-2 2.086630+4 2.540973-2 2.025439+4 2.570396-2 1.966081+4 2.600160-2 1.908515+4 2.630268-2 1.852688+4 2.660725-2 1.798201+4 2.691535-2 1.745286+4 2.722701-2 1.693905+4 2.754229-2 1.644077+4 2.851018-2 1.502544+4 2.884032-2 1.458068+4 2.917427-2 1.414944+4 2.951209-2 1.373103+4 2.985383-2 1.332189+4 3.000000-2 1.315197+4 3.019952-2 1.292493+4 3.054921-2 1.254008+4 3.090295-2 1.216655+4 3.162278-2 1.144910+4 3.273407-2 1.045334+4 3.311311-2 1.014149+4 3.349654-2 9.839172+3 3.388442-2 9.546073+3 3.400000-2 9.461093+3 3.427678-2 9.261822+3 3.467369-2 8.986218+3 3.507519-2 8.719028+3 3.548134-2 8.457715+3 3.589219-2 8.204204+3 3.630781-2 7.958188+3 3.672823-2 7.719738+3 3.715352-2 7.488603+3 3.801894-2 7.044652+3 3.845918-2 6.831463+3 3.890451-2 6.624886+3 3.935501-2 6.424646+3 4.000000-2 6.152364+3 4.027170-2 6.042489+3 4.073803-2 5.860183+3 4.120975-2 5.683307+3 4.168694-2 5.511891+3 4.216965-2 5.345598+3 4.265795-2 5.184261+3 4.315191-2 5.027463+3 4.415704-2 4.728262+3 4.570882-2 4.311189+3 4.623810-2 4.180667+3 4.677351-2 4.053573+3 4.731513-2 3.930430+3 4.786301-2 3.810993+3 4.841724-2 3.695274+3 4.897788-2 3.583035+3 4.954502-2 3.473535+3 5.069907-2 3.264492+3 5.188000-2 3.068298+3 5.248075-2 2.974747+3 5.370318-2 2.796300+3 5.432503-2 2.711220+3 5.495409-2 2.628768+3 5.500000-2 2.622887+3 5.559043-2 2.548846+3 5.688529-2 2.395645+3 5.754399-2 2.322296+3 5.821032-2 2.251243+3 5.888437-2 2.182344+3 6.095369-2 1.987074+3 6.237348-2 1.866895+3 6.309573-2 1.809611+3 6.531306-2 1.648294+3 6.606934-2 1.597848+3 6.760830-2 1.501535+3 6.839116-2 1.455622+3 6.918310-2 1.411132+3 7.000000-2 1.366903+3 7.079458-2 1.325598+3 7.328245-2 1.206571+3 7.444800-2 1.155876+3 7.498942-2 1.133330+3 7.673615-2 1.064613+3 7.943282-2 9.694109+2 8.000000-2 9.508134+2 8.035261-2 9.394961+2 8.317638-2 8.552005+2 8.413951-2 8.288152+2 8.511380-2 8.032485+2 8.609938-2 7.784844+2 8.709636-2 7.544973+2 9.015711-2 6.869113+2 9.120108-2 6.657514+2 9.225714-2 6.452299+2 9.440609-2 6.058979+2 9.772372-2 5.514180+2 1.000000-1 5.178813+2 1.011580-1 5.018993+2 1.023293-1 4.863966+2 1.035142-1 4.713798+2 1.043200-1 4.615303+2 1.043200-1 2.044829+3 1.047129-1 2.025872+3 1.059254-1 1.968904+3 1.065000-1 1.942695+3 1.071519-1 1.910928+3 1.075000-1 1.894257+3 1.083927-1 1.858272+3 1.088000-1 1.842157+3 1.109175-1 1.751172+3 1.125000-1 1.687190+3 1.135011-1 1.650380+3 1.148154-1 1.603748+3 1.161449-1 1.558444+3 1.174898-1 1.514425+3 1.188502-1 1.469802+3 1.202264-1 1.426497+3 1.230269-1 1.343689+3 1.258925-1 1.265707+3 1.273503-1 1.228432+3 1.288250-1 1.192244+3 1.303167-1 1.157128+3 1.372700-1 1.012203+3 1.380384-1 9.977669+2 1.412538-1 9.403698+2 1.479108-1 8.353322+2 1.500000-1 8.053385+2 1.513561-1 7.866640+2 1.531088-1 7.634069+2 1.548817-1 7.408411+2 1.566751-1 7.189493+2 1.603245-1 6.770913+2 1.611800-1 6.677728+2 1.650000-1 6.282637+2 1.659587-1 6.188524+2 1.678804-1 6.005678+2 1.698244-1 5.828249+2 1.737801-1 5.489017+2 1.757924-1 5.326900+2 1.798871-1 5.016935+2 1.840772-1 4.725084+2 1.883649-1 4.450268+2 1.905461-1 4.318997+2 1.927525-1 4.191616+2 1.949845-1 4.067999+2 1.972423-1 3.948041+2 2.000000-1 3.808080+2 2.018366-1 3.718676+2 2.089296-1 3.399619+2 2.113489-1 3.299497+2 2.137962-1 3.202335+2 2.213095-1 2.927715+2 2.264644-1 2.757961+2 2.290868-1 2.676819+2 2.344229-1 2.521645+2 2.371374-1 2.447519+2 2.398833-1 2.375578+2 2.426610-1 2.306356+2 2.454709-1 2.239155+2 2.483133-1 2.173925+2 2.540973-1 2.049124+2 2.570396-1 1.989446+2 2.600160-1 1.931551+2 2.630268-1 1.875354+2 2.660725-1 1.820794+2 2.691535-1 1.767909+2 2.754229-1 1.666716+2 2.786121-1 1.618350+2 2.851018-1 1.525794+2 2.884032-1 1.481529+2 2.917427-1 1.438552+2 2.951209-1 1.396825+2 2.985383-1 1.357078+2 3.000000-1 1.340560+2 3.054921-1 1.280953+2 3.090295-1 1.244510+2 3.126079-1 1.209111+2 3.162278-1 1.174720+2 3.198895-1 1.141313+2 3.273407-1 1.077349+2 3.311311-1 1.046753+2 3.349654-1 1.017028+2 3.388442-1 9.881632+1 3.427678-1 9.601598+1 3.467369-1 9.329507+1 3.548134-1 8.808275+1 3.589219-1 8.562909+1 3.672823-1 8.092600+1 3.715352-1 7.867244+1 3.722400-1 7.830760+1 3.758374-1 7.648210+1 3.801894-1 7.435556+1 3.845918-1 7.228851+1 3.890451-1 7.027987+1 3.935501-1 6.832708+1 3.981072-1 6.642865+1 4.000000-1 6.566196+1 4.027170-1 6.458306+1 4.073803-1 6.279195+1 4.120975-1 6.108038+1 4.168694-1 5.941583+1 4.216965-1 5.779784+1 4.265795-1 5.622404+1 4.315191-1 5.469444+1 4.365158-1 5.320653+1 4.415705-1 5.175911+1 4.466836-1 5.035117+1 4.518559-1 4.898174+1 4.677351-1 4.509487+1 4.731513-1 4.389529+1 4.786301-1 4.272773+1 4.841724-1 4.159125+1 4.897788-1 4.048605+1 5.000000-1 3.857645+1 5.011872-1 3.836304+1 5.069907-1 3.734371+1 5.128614-1 3.635149+1 5.188000-1 3.538580+1 5.248075-1 3.444675+1 5.308844-1 3.355066+1 5.432503-1 3.183200+1 5.495409-1 3.100671+1 5.559043-1 3.020290+1 5.623413-1 2.941995+1 5.688529-1 2.865732+1 5.754399-1 2.791448+1 5.821032-1 2.719130+1 5.888437-1 2.648697+1 5.956621-1 2.580104+1 6.000000-1 2.538663+1 6.025596-1 2.514681+1 6.095369-1 2.450951+1 6.165950-1 2.389039+1 6.237348-1 2.328696+1 6.309573-1 2.269879+1 6.382635-1 2.212549+1 6.456542-1 2.156699+1 6.531306-1 2.102267+1 6.683439-1 1.997499+1 6.760830-1 1.947137+1 6.839117-1 1.899080+1 6.918310-1 1.852239+1 6.998420-1 1.806557+1 7.079458-1 1.762115+1 7.161434-1 1.718783+1 7.244360-1 1.676523+1 7.328245-1 1.635306+1 7.413102-1 1.595103+1 7.498942-1 1.555888+1 7.585776-1 1.517674+1 7.673615-1 1.480407+1 7.762471-1 1.444873+1 7.852356-1 1.410200+1 7.943282-1 1.376378+1 8.000000-1 1.355885+1 8.035261-1 1.343370+1 8.128305-1 1.311174+1 8.222427-1 1.279837+1 8.413951-1 1.219394+1 8.511380-1 1.190275+1 8.609938-1 1.161854+1 8.709636-1 1.134771+1 8.810489-1 1.108347+1 8.912509-1 1.082539+1 9.015711-1 1.057355+1 9.120108-1 1.032758+1 9.225714-1 1.008807+1 9.332543-1 9.854127+0 9.440609-1 9.625829+0 9.549926-1 9.402912+0 9.660509-1 9.185481+0 9.772372-1 8.978388+0 9.885531-1 8.775964+0 1.000000+0 8.578495+0 1.011579+0 8.385478+0 1.023293+0 8.196792+0 1.035142+0 8.013057+0 1.047129+0 7.833435+0 1.059254+0 7.657851+0 1.071519+0 7.486241+0 1.096478+0 7.154670+0 1.109175+0 6.994430+0 1.122018+0 6.837801+0 1.135011+0 6.684877+0 1.148154+0 6.535380+0 1.161449+0 6.389257+0 1.174898+0 6.246487+0 1.188502+0 6.109802+0 1.202264+0 5.976123+0 1.216186+0 5.845455+0 1.230269+0 5.718029+0 1.244515+0 5.593382+0 1.250000+0 5.546544+0 1.258925+0 5.471622+0 1.273503+0 5.352537+0 1.288250+0 5.236113+0 1.318257+0 5.010816+0 1.333521+0 4.904626+0 1.348963+0 4.800683+0 1.364583+0 4.699025+0 1.380384+0 4.599825+0 1.396368+0 4.502808+0 1.412538+0 4.407869+0 1.428894+0 4.314976+0 1.500000+0 3.944190+0 1.513561+0 3.880821+0 1.531087+0 3.801241+0 1.548817+0 3.723350+0 1.603245+0 3.499852+0 1.640590+0 3.358357+0 1.659587+0 3.289791+0 1.698244+0 3.156948+0 1.717908+0 3.094347+0 1.737801+0 3.033064+0 1.798871+0 2.857010+0 1.819701+0 2.800626+0 1.840772+0 2.745359+0 1.862087+0 2.691182+0 1.883649+0 2.638092+0 1.905461+0 2.586105+0 1.927525+0 2.536659+0 1.949845+0 2.488228+0 2.000000+0 2.385024+0 2.018366+0 2.348936+0 2.041738+0 2.304262+0 2.089296+0 2.217447+0 2.113489+0 2.175286+0 2.187762+0 2.053653+0 2.213095+0 2.015585+0 2.264644+0 1.941642+0 2.317395+0 1.870634+0 2.344229+0 1.836111+0 2.371374+0 1.802226+0 2.426610+0 1.736321+0 2.454709+0 1.704288+0 2.540973+0 1.611771+0 2.570396+0 1.582838+0 2.630268+0 1.526588+0 2.691535+0 1.472516+0 2.722701+0 1.446202+0 2.754229+0 1.420360+0 2.818383+0 1.370053+0 2.851018+0 1.345579+0 2.951209+0 1.274819+0 3.019952+0 1.231111+0 3.090295+0 1.189062+0 3.126079+0 1.168579+0 3.198895+0 1.128667+0 3.235937+0 1.109232+0 3.388442+0 1.034849+0 3.507519+0 9.837845-1 3.589219+0 9.512604-1 3.630781+0 9.354035-1 3.715352+0 9.044806-1 3.758374+0 8.894093-1 3.935501+0 8.316482-1 4.073803+0 7.919158-1 4.168694+0 7.665725-1 4.216965+0 7.542067-1 4.265795+0 7.420405-1 4.365158+0 7.182946-1 4.415704+0 7.067119-1 4.623810+0 6.622597-1 4.786301+0 6.316445-1 4.897788+0 6.120918-1 4.954502+0 6.025436-1 5.011872+0 5.931445-1 5.128614+0 5.747845-1 5.188000+0 5.658216-1 5.432503+0 5.313774-1 5.495409+0 5.230991-1 5.688529+0 4.996939-1 5.821032+0 4.847260-1 5.888437+0 4.774110-1 5.956621+0 4.702066-1 6.095369+0 4.561228-1 6.165950+0 4.492420-1 6.456542+0 4.227658-1 6.531306+0 4.163943-1 6.760830+0 3.983381-1 6.918310+0 3.867744-1 7.000000+0 3.810090-1 7.079458+0 3.755464-1 7.161434+0 3.700553-1 7.328245+0 3.593132-1 7.413102+0 3.540612-1 7.762471+0 3.338279-1 7.852356+0 3.289530-1 8.128305+0 3.151104-1 8.222427+0 3.106409-1 8.413951+0 3.018923-1 8.511380+0 2.976109-1 8.609938+0 2.933901-1 8.709636+0 2.892293-1 8.810489+0 2.851277-1 8.912509+0 2.810843-1 9.015711+0 2.770993-1 9.332543+0 2.654908-1 9.440609+0 2.617305-1 9.885531+0 2.475666-1 1.023293+1 2.374781-1 1.047129+1 2.309818-1 1.059254+1 2.278007-1 1.083927+1 2.215694-1 1.100000+1 2.176756-1 1.109175+1 2.155086-1 1.122018+1 2.125417-1 1.161449+1 2.038907-1 1.174898+1 2.010861-1 1.216186+1 1.931074-1 1.258925+1 1.854679-1 1.288250+1 1.805434-1 1.303167+1 1.781305-1 1.348963+1 1.710835-1 1.380384+1 1.665413-1 1.400000+1 1.638176-1 1.412538+1 1.621201-1 1.462177+1 1.557139-1 1.479108+1 1.536783-1 1.500000+1 1.512367-1 1.513561+1 1.496906-1 1.548817+1 1.458157-1 1.603245+1 1.401907-1 1.621810+1 1.383643-1 1.640590+1 1.365617-1 1.659587+1 1.347827-1 1.757924+1 1.262289-1 1.778279+1 1.245845-1 1.800000+1 1.228736-1 1.819701+1 1.213597-1 1.840772+1 1.197790-1 1.883649+1 1.166818-1 1.905461+1 1.151961-1 1.927525+1 1.137311-1 1.972423+1 1.108641-1 2.041738+1 1.066986-1 2.089296+1 1.040089-1 2.113489+1 1.026896-1 2.137962+1 1.013871-1 2.290868+1 9.391136-2 2.344229+1 9.154405-2 2.371374+1 9.038290-2 2.400000+1 8.918838-2 2.426610+1 8.810481-2 2.483133+1 8.588597-2 2.511886+1 8.481835-2 2.540973+1 8.376499-2 2.630268+1 8.068982-2 2.691535+1 7.870267-2 2.722701+1 7.772755-2 2.800000+1 7.540649-2 2.851018+1 7.394631-2 2.884032+1 7.303009-2 3.162278+1 6.609753-2 3.235937+1 6.446977-2 3.273407+1 6.367102-2 3.311311+1 6.288216-2 3.349654+1 6.210320-2 3.427678+1 6.057509-2 3.467369+1 5.983825-2 3.507519+1 5.911103-2 3.630781+1 5.698633-2 3.672823+1 5.629522-2 3.758374+1 5.493802-2 3.845918+1 5.361354-2 3.935501+1 5.232099-2 4.027170+1 5.105962-2 4.570882+1 4.464636-2 4.623810+1 4.410490-2 4.731513+1 4.304160-2 4.841724+1 4.200396-2 4.897788+1 4.149464-2 4.954502+1 4.099179-2 5.069907+1 4.000430-2 5.128614+1 3.952741-2 5.308844+1 3.813394-2 5.370318+1 3.768045-2 5.432503+1 3.723236-2 5.559043+1 3.635208-2 5.688529+1 3.549264-2 5.754399+1 3.507056-2 6.918310+1 2.896102-2 7.079458+1 2.827631-2 7.328245+1 2.727949-2 7.673615+1 2.600485-2 7.762471+1 2.569565-2 7.852356+1 2.539024-2 8.000000+1 2.490377-2 8.128305+1 2.449565-2 8.222427+1 2.420779-2 8.317638+1 2.392341-2 8.810489+1 2.255320-2 8.912509+1 2.228872-2 9.015711+1 2.202735-2 9.225714+1 2.151375-2 9.332543+1 2.126147-2 9.549926+1 2.076573-2 9.660509+1 2.052222-2 1.188502+2 1.659629-2 1.216186+2 1.620933-2 1.258925+2 1.564575-2 1.333521+2 1.474966-2 1.364583+2 1.440591-2 1.380384+2 1.423705-2 1.412538+2 1.390525-2 1.428894+2 1.374377-2 1.445440+2 1.358416-2 1.462177+2 1.342662-2 1.548817+2 1.266610-2 1.584893+2 1.237411-2 1.603245+2 1.223064-2 1.640590+2 1.194868-2 1.678804+2 1.167322-2 1.717908+2 1.140411-2 1.737801+2 1.127188-2 2.371374+2 8.227176-3 2.426610+2 8.037511-3 2.511886+2 7.761179-3 2.660725+2 7.321576-3 2.722701+2 7.152830-3 2.754229+2 7.069920-3 2.818383+2 6.906975-3 2.851018+2 6.827334-3 2.884032+2 6.748609-3 2.917427+2 6.670853-3 3.090295+2 6.295361-3 3.162278+2 6.151149-3 3.198895+2 6.080288-3 3.273407+2 5.941004-3 3.349654+2 5.804912-3 3.427678+2 5.671935-3 3.467369+2 5.606593-3 4.731513+2 4.100448-3 4.841724+2 4.006518-3 5.011872+2 3.869641-3 5.308844+2 3.651827-3 5.432503+2 3.568186-3 5.495409+2 3.527087-3 5.623413+2 3.446304-3 5.688529+2 3.406748-3 5.754399+2 3.367647-3 5.821032+2 3.329014-3 1.230269+3 1.572681-3 1.258925+3 1.536810-3 1.273503+3 1.519181-3 1.303167+3 1.484529-3 1.333521+3 1.450669-3 1.364583+3 1.417579-3 1.380384+3 1.401319-3 1.883649+3 1.026259-3 1.927525+3 1.002850-3 1.995262+3 9.687350-4 2.113489+3 9.144356-4 4.216965+3 4.576710-4 4.315191+3 4.472326-4 4.365158+3 4.421032-4 4.466836+3 4.320199-4 4.518559+3 4.270727-4 4.570882+3 4.221821-4 4.623810+3 4.173486-4 3.890451+4 4.958927-5 3.981072+4 4.846034-5 8.035261+4 2.400766-5 8.222427+4 2.346111-5 1.000000+5 1.929027-5 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.730000-6 4.730000-6 1.862000-5 4.730000-6 1.862000-5 1.856544-5 2.488000-5 1.854329-5 2.488000-5 2.210073-5 2.818383-5 2.202693-5 3.954000-5 2.209809-5 3.954000-5 2.329229-5 5.308844-5 2.311090-5 6.400000-5 2.313942-5 7.552000-5 2.326030-5 7.552000-5 7.349862-5 8.132000-5 7.320597-5 8.132000-5 7.725114-5 1.174898-4 7.517895-5 1.364583-4 7.358136-5 1.566751-4 7.128031-5 1.598300-4 7.087101-5 1.598300-4 9.510329-5 1.599000-4 9.475997-5 1.601700-4 9.436763-5 1.617000-4 9.395785-5 1.643000-4 9.390328-5 1.720000-4 9.477582-5 1.883649-4 9.682304-5 2.003200-4 9.794410-5 2.003200-4 1.096281-4 2.213095-4 1.096404-4 2.536300-4 1.083326-4 2.536300-4 1.165636-4 2.911900-4 1.151775-4 2.911900-4 1.302479-4 2.922000-4 1.292690-4 2.947000-4 1.282855-4 2.997000-4 1.277937-4 2.997000-4 1.350788-4 3.022000-4 1.345302-4 3.073000-4 1.346506-4 3.126079-4 1.357281-4 3.172000-4 1.375978-4 3.220000-4 1.405952-4 3.280000-4 1.455412-4 3.388442-4 1.552511-4 3.460000-4 1.607201-4 3.540000-4 1.656020-4 3.630781-4 1.697518-4 3.715352-4 1.725220-4 3.820000-4 1.749178-4 3.985000-4 1.772570-4 4.200000-4 1.788965-4 4.570882-4 1.800914-4 5.308844-4 1.805946-4 6.030600-4 1.804035-4 6.030600-4 1.906195-4 6.367700-4 1.910895-4 6.367700-4 1.970019-4 7.585776-4 2.007161-4 8.673100-4 2.046124-4 8.673100-4 2.160080-4 1.048600-3 2.230537-4 1.048600-3 2.261331-4 1.189700-3 2.316537-4 1.189700-3 2.364973-4 1.462177-3 2.465375-4 1.778279-3 2.560323-4 2.113489-3 2.642766-4 2.570396-3 2.733556-4 3.111300-3 2.818961-4 3.111300-3 4.154619-4 3.258700-3 4.149359-4 3.258700-3 4.413893-4 3.427678-3 4.403060-4 3.773700-3 4.402045-4 3.773700-3 4.741138-4 4.482000-3 4.786763-4 4.482000-3 4.956004-4 4.795100-3 4.989144-4 4.795100-3 5.138294-4 6.309573-3 5.316525-4 8.222426-3 5.494957-4 1.059254-2 5.665979-4 1.348963-2 5.825714-4 1.545600-2 5.912893-4 1.545600-2 7.265868-4 1.856000-2 7.299758-4 1.856000-2 7.614777-4 1.923200-2 7.622950-4 1.923200-2 8.192397-4 2.754229-2 8.417151-4 3.845918-2 8.625352-4 5.248075-2 8.815364-4 7.079458-2 8.991852-4 9.772372-2 9.167471-4 1.043200-1 9.201052-4 1.043200-1 8.392417-4 2.540973-1 8.446543-4 6.760830-1 8.478503-4 1.000000+5 8.482237-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.730000-6 0.0 1.598300-4 0.0 1.598300-4 3.79259-10 1.598400-4 3.77041-10 1.599000-4 3.73985-10 1.599900-4 3.71239-10 1.601700-4 3.68232-10 1.604000-4 3.66500-10 1.609000-4 3.64791-10 1.617000-4 3.64043-10 1.627000-4 3.64514-10 1.643000-4 3.67010-10 1.665000-4 3.72700-10 1.690000-4 3.80800-10 1.780000-4 4.13397-10 1.850000-4 4.36113-10 1.905461-4 4.51933-10 2.003200-4 4.76581-10 2.003200-4 2.034386-9 2.170000-4 1.951898-9 2.264644-4 1.882961-9 2.454709-4 1.730152-9 2.536300-4 1.668929-9 2.536300-4 1.749318-9 2.691535-4 1.644065-9 2.851018-4 1.544186-9 2.911900-4 1.508871-9 2.911900-4 2.019182-8 2.912300-4 2.004977-8 2.914000-4 1.979584-8 2.917427-4 1.941556-8 2.922000-4 1.902302-8 2.928000-4 1.863066-8 2.933000-4 1.837936-8 2.940000-4 1.810976-8 2.947000-4 1.791384-8 2.955000-4 1.775880-8 2.965000-4 1.763227-8 2.980000-4 1.753810-8 2.997000-4 1.752773-8 2.997000-4 1.561094-8 3.019952-4 1.581266-8 3.045000-4 1.605394-8 3.057000-4 1.619928-8 3.073000-4 1.646136-8 3.090000-4 1.683296-8 3.100000-4 1.710217-8 3.115000-4 1.757907-8 3.130000-4 1.815113-8 3.145000-4 1.881665-8 3.162278-4 1.970127-8 3.180000-4 2.073570-8 3.200000-4 2.205271-8 3.220000-4 2.350178-8 3.245000-4 2.547119-8 3.320000-4 3.162293-8 3.350000-4 3.391506-8 3.380000-4 3.600846-8 3.412100-4 3.801283-8 3.440000-4 3.957105-8 3.470000-4 4.107031-8 3.515000-4 4.300373-8 3.550000-4 4.429318-8 3.580000-4 4.523083-8 3.600000-4 4.581721-8 3.630781-4 4.656233-8 3.665000-4 4.724481-8 3.700000-4 4.781507-8 3.758374-4 4.850423-8 3.850000-4 4.926784-8 3.935501-4 4.972494-8 4.080000-4 5.014671-8 4.350000-4 5.031481-8 4.786301-4 5.028018-8 6.000000-4 4.968805-8 6.030600-4 4.966452-8 6.030600-4 5.193754-8 6.367700-4 5.190578-8 6.367700-4 5.786720-8 7.000000-4 5.862235-8 7.852356-4 6.000576-8 8.673100-4 6.146250-8 8.673100-4 7.472322-8 9.225714-4 7.609219-8 1.048600-3 7.945280-8 1.048600-3 8.299128-8 1.189700-3 8.722613-8 1.189700-3 9.374930-8 1.428894-3 1.014823-7 1.659587-3 1.080338-7 1.950000-3 1.154043-7 2.200000-3 1.210449-7 2.570396-3 1.284164-7 2.985383-3 1.356412-7 3.111300-3 1.376540-7 3.111300-3 1.771222-7 3.258700-3 1.776323-7 3.258700-3 3.831448-5 3.290000-3 3.805832-5 3.378000-3 3.701841-5 3.427678-3 3.684819-5 3.672823-3 3.674774-5 3.773700-3 3.674043-5 3.773700-3 3.640418-5 4.216965-3 3.613809-5 4.482000-3 3.596006-5 4.482000-3 4.021731-5 4.795100-3 4.041342-5 4.795100-3 4.104744-5 5.888437-3 4.183392-5 7.413102-3 4.265321-5 9.885531-3 4.369541-5 1.318257-2 4.469251-5 1.545600-2 4.522790-5 1.545600-2 3.151571-3 1.552000-2 3.144104-3 1.584893-2 3.149062-3 1.856000-2 3.121991-3 1.856000-2 4.588741-3 1.923200-2 4.603192-3 1.923200-2 4.801729-3 2.426610-2 4.855824-3 3.019952-2 4.889528-3 4.120975-2 4.919069-3 6.606934-2 4.936468-3 1.043200-1 4.933204-3 1.043200-1 7.339070-2 1.230269-1 7.397396-2 1.611800-1 7.465799-2 2.344229-1 7.526527-2 4.518559-1 7.596302-2 9.225714-1 7.664731-2 2.454709+0 7.669482-2 1.000000+5 7.669573-2 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.730000-6 0.0 1.862000-5 1.389000-5 1.862000-5 5.455567-8 2.000000-5 1.440887-6 2.488000-5 6.336709-6 2.488000-5 2.779273-6 2.540973-5 3.333320-6 2.660725-5 4.563032-6 2.818383-5 6.156905-6 3.954000-5 1.744191-5 3.954000-5 1.624771-5 5.400000-5 3.089252-5 7.328245-5 5.004932-5 7.552000-5 5.225970-5 7.552000-5 2.021381-6 7.870000-5 5.343289-6 8.132000-5 8.114026-6 8.132000-5 4.068862-6 8.317638-5 6.030584-6 9.549926-5 1.908814-5 1.161449-4 4.087542-5 1.303167-4 5.615520-5 1.450000-4 7.232208-5 1.598300-4 8.895899-5 1.598300-4 6.472633-5 1.598400-4 6.487895-5 1.599900-4 6.541338-5 1.604000-4 6.616391-5 1.617000-4 6.774178-5 1.643000-4 7.039635-5 1.690000-4 7.465743-5 1.850000-4 8.853665-5 2.003200-4 1.023754-4 2.003200-4 9.068982-5 2.190000-4 1.093168-4 2.511886-4 1.427263-4 2.536300-4 1.452958-4 2.536300-4 1.370647-4 2.911900-4 1.760110-4 2.911900-4 1.609219-4 2.922000-4 1.629120-4 2.951209-4 1.668981-4 2.997000-4 1.718888-4 2.997000-4 1.646056-4 3.032000-4 1.687096-4 3.090000-4 1.740958-4 3.145000-4 1.781107-4 3.200000-4 1.807619-4 3.260000-4 1.821811-4 3.400000-4 1.837573-4 3.470000-4 1.855554-4 3.550000-4 1.888294-4 3.630781-4 1.932798-4 3.740000-4 2.007740-4 3.890451-4 2.129155-4 4.120975-4 2.336271-4 4.550000-4 2.748984-4 5.720000-4 3.914230-4 6.030600-4 4.226068-4 6.030600-4 4.123885-4 6.367700-4 4.456286-4 6.367700-4 4.397103-4 8.673100-4 6.626361-4 8.673100-4 6.512273-4 1.048600-3 8.254668-4 1.048600-3 8.223839-4 1.189700-3 9.579590-4 1.189700-3 9.531089-4 1.840772-3 1.582966-3 3.111300-3 2.829266-3 3.111300-3 2.695661-3 3.258700-3 2.843586-3 3.258700-3 2.778996-3 3.773700-3 3.296755-3 3.773700-3 3.263182-3 4.482000-3 3.967364-3 4.482000-3 3.946182-3 4.795100-3 4.255772-3 4.795100-3 4.240223-3 1.188502-2 1.126642-2 1.545600-2 1.481948-2 1.545600-2 1.157784-2 1.856000-2 1.470803-2 1.856000-2 1.320978-2 1.923200-2 1.386651-2 1.923200-2 1.361103-2 3.162278-2 2.587730-2 1.043200-1 9.846669-2 1.043200-1 3.009006-2 1.083927-1 3.399293-2 1.202264-1 4.546782-2 1.611800-1 8.567989-2 2.754229-1 1.991226-1 1.717908+0 1.640367+0 1.000000+5 9.999993+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.043200-1 1.583299+3 1.065000-1 1.506428+3 1.075000-1 1.468942+3 1.088000-1 1.430542+3 1.125000-1 1.311512+3 1.174898-1 1.180688+3 1.303167-1 9.053994+2 1.479108-1 6.571161+2 2.398833-1 1.890494+2 2.951209-1 1.114945+2 3.548134-1 7.050696+1 4.073803-1 5.036936+1 4.677351-1 3.624662+1 5.248075-1 2.773223+1 5.956621-1 2.080826+1 6.760830-1 1.572987+1 7.673615-1 1.197781+1 8.609938-1 9.415104+0 9.660509-1 7.453312+0 1.174898+0 5.072270+0 1.318257+0 4.068260+0 1.500000+0 3.201381+0 1.698244+0 2.562361+0 1.905461+0 2.099093+0 2.187762+0 1.666890+0 2.540973+0 1.308218+0 2.951209+0 1.034748+0 3.388442+0 8.399525-1 3.935501+0 6.750266-1 4.623810+0 5.375398-1 5.495409+0 4.245852-1 6.531306+0 3.379770-1 7.852356+0 2.670047-1 9.440609+0 2.124394-1 1.174898+1 1.632173-1 1.462177+1 1.263912-1 1.883649+1 9.471138-2 2.483133+1 6.971485-2 3.427678+1 4.917003-2 5.069907+1 3.247256-2 8.128305+1 1.988378-2 1.412538+2 1.128728-2 2.818383+2 5.606631-3 5.623413+2 2.797521-3 4.466836+3 3.506866-4 1.000000+5 1.565900-5 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.043200-1 8.156700-4 1.000000+5 8.156700-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.043200-1 9.334600-2 1.000000+5 9.334600-2 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.043200-1 1.015833-2 1.000000+5 9.999991+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.923200-2 5.554772+3 1.940000-2 5.452843+3 2.030000-2 5.058000+3 2.100000-2 4.756900+3 2.170000-2 4.510700+3 2.426610-2 3.686670+3 2.630268-2 3.193249+3 2.851018-2 2.744964+3 3.090295-2 2.351348+3 3.801894-2 1.557619+3 4.265795-2 1.227247+3 4.897788-2 9.177967+2 5.888437-2 6.147715+2 6.918310-2 4.285517+2 7.943282-2 3.124367+2 9.225714-2 2.204965+2 1.083927-1 1.504814+2 1.303167-1 9.655735+1 1.650000-1 5.426540+1 2.660725-1 1.672504+1 3.388442-1 9.322167+0 4.027170-1 6.181444+0 4.677351-1 4.359279+0 5.308844-1 3.264099+0 6.095369-1 2.397668+0 6.998420-1 1.774401+0 8.128305-1 1.291541+0 9.120108-1 1.018532+0 1.023293+0 8.091552-1 1.216186+0 5.772692-1 1.364583+0 4.639680-1 1.548817+0 3.675513-1 1.737801+0 2.994629-1 1.949845+0 2.456720-1 2.264644+0 1.916970-1 2.630268+0 1.507226-1 3.019952+0 1.215737-1 3.507519+0 9.714111-2 4.073803+0 7.819444-2 4.786301+0 6.236873-2 5.688529+0 4.934144-2 6.760830+0 3.933549-2 8.128305+0 3.111654-2 9.885531+0 2.444609-2 1.216186+1 1.907116-2 1.513561+1 1.478516-2 1.927525+1 1.123354-2 2.540973+1 8.273965-3 3.507519+1 5.838815-3 5.128614+1 3.904897-3 8.317638+1 2.363215-3 1.445440+2 1.341930-3 2.884032+2 6.667220-4 5.754399+2 3.326961-4 4.570882+3 4.170976-5 1.000000+5 1.905800-6 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.923200-2 1.184900-3 1.000000+5 1.184900-3 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.923200-2 6.076600-3 1.000000+5 6.076600-3 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.923200-2 1.197050-2 1.000000+5 9.999999+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.856000-2 1.126144+4 1.880000-2 1.099304+4 1.950000-2 1.007900+4 2.018366-2 9.246900+3 2.089296-2 8.498800+3 2.511886-2 5.314300+3 2.754229-2 4.178000+3 3.507519-2 2.186600+3 4.415704-2 1.159400+3 5.559043-2 6.068100+2 7.000000-2 3.141800+2 9.015711-2 1.513200+2 1.603245-1 2.846000+1 2.018366-1 1.467800+1 2.344229-1 9.595613+0 2.754229-1 6.115324+0 3.273407-1 3.805257+0 3.758374-1 2.622407+0 4.265795-1 1.877129+0 4.841724-1 1.353741+0 5.432503-1 1.012893+0 6.095369-1 7.634047-1 6.683439-1 6.124871-1 7.498942-1 4.687301-1 8.413951-1 3.614899-1 9.549926-1 2.736465-1 1.023293+0 2.367821-1 1.122018+0 1.967439-1 1.244515+0 1.609619-1 1.380384+0 1.327382-1 1.659587+0 9.526246-2 1.883649+0 7.637995-2 2.113489+0 6.295210-2 2.454709+0 4.932084-2 2.851018+0 3.893778-2 3.235937+0 3.209592-2 3.758374+0 2.573564-2 4.415704+0 2.044862-2 5.188000+0 1.637036-2 6.165950+0 1.299850-2 7.413102+0 1.024479-2 9.015711+0 8.018470-3 1.122018+1 6.150611-3 1.412538+1 4.691688-3 1.840772+1 3.467284-3 2.426610+1 2.550433-3 3.349654+1 1.797819-3 4.897788+1 1.201183-3 7.762471+1 7.438320-4 1.333521+2 4.269474-4 2.660725+2 2.119741-4 5.308844+2 1.057362-4 2.113489+3 2.645800-5 1.000000+5 5.585900-7 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.856000-2 8.393300-4 1.000000+5 8.393300-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.856000-2 8.213600-3 1.000000+5 8.213600-3 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.856000-2 9.507070-3 1.000000+5 9.999999+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.545600-2 2.678861+4 1.552000-2 2.634876+4 1.570000-2 2.568636+4 1.625000-2 2.342904+4 1.770000-2 1.853096+4 2.187762-2 1.022604+4 2.426610-2 7.587765+3 2.951209-2 4.285379+3 3.715352-2 2.153669+3 4.623810-2 1.105684+3 5.688529-2 5.821409+2 7.079458-2 2.932095+2 9.120108-2 1.314828+2 1.548817-1 2.436103+1 1.883649-1 1.310683+1 2.213095-1 7.927179+0 2.570396-1 5.005339+0 2.951209-1 3.297355+0 3.349654-1 2.263175+0 3.758374-1 1.617977+0 4.168694-1 1.203704+0 4.677351-1 8.732017-1 5.188000-1 6.586432-1 5.754399-1 5.002078-1 6.382635-1 3.825828-1 7.079458-1 2.947652-1 8.035261-1 2.155745-1 8.709636-1 1.778524-1 9.332543-1 1.518716-1 9.885531-1 1.339324-1 1.071519+0 1.133339-1 1.161449+0 9.655692-2 1.273503+0 8.098065-2 1.412538+0 6.695480-2 1.717908+0 4.719150-2 1.927525+0 3.866470-2 2.213095+0 3.071967-2 2.570396+0 2.412351-2 2.951209+0 1.943358-2 3.388442+0 1.577487-2 3.935501+0 1.267718-2 4.623810+0 1.009506-2 5.495409+0 7.973782-3 6.531306+0 6.347408-3 7.852356+0 5.014366-3 9.440609+0 3.989703-3 1.174898+1 3.065309-3 1.479108+1 2.342423-3 1.905461+1 1.755857-3 2.511886+1 1.292893-3 3.467369+1 9.121129-4 5.069907+1 6.098432-4 8.222427+1 3.690078-4 1.445440+2 2.070589-4 2.884032+2 1.028759-4 5.754399+2 5.133630-5 4.570882+3 6.435829-6 1.000000+5 2.940800-7 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.545600-2 8.211900-4 1.000000+5 8.211900-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.545600-2 5.323600-3 1.000000+5 5.323600-3 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.545600-2 9.311210-3 1.000000+5 9.999999+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.795100-3 1.471118+4 5.011872-3 1.390742+4 5.150000-3 1.340568+4 5.350000-3 1.278728+4 5.821032-3 1.136835+4 6.237348-3 1.035147+4 7.852356-3 7.316837+3 8.413951-3 6.552441+3 1.035142-2 4.649537+3 1.150000-2 3.871900+3 1.333521-2 2.977256+3 1.556000-2 2.240323+3 1.737801-2 1.819489+3 2.065380-2 1.302723+3 2.483133-2 9.025453+2 2.985383-2 6.188169+2 3.548134-2 4.304725+2 4.216965-2 2.968970+2 4.954502-2 2.083573+2 5.821032-2 1.452043+2 6.918310-2 9.788551+1 8.317638-2 6.375619+1 1.011580-1 4.007421+1 1.273503-1 2.301176+1 1.603245-1 1.312135+1 2.570396-1 4.114610+0 3.198895-1 2.419331+0 3.845918-1 1.558064+0 4.518559-1 1.067985+0 5.188000-1 7.779190-1 6.000000-1 5.615987-1 6.839117-1 4.218617-1 7.852356-1 3.142772-1 8.912509-1 2.414308-1 9.885531-1 1.958307-1 1.202264+0 1.334173-1 1.348963+0 1.071546-1 1.531087+0 8.482924-2 1.717908+0 6.906646-2 1.927525+0 5.661878-2 2.213095+0 4.498872-2 2.570396+0 3.532793-2 2.951209+0 2.845920-2 3.388442+0 2.310178-2 3.935501+0 1.856586-2 4.623810+0 1.478442-2 5.495409+0 1.167734-2 6.531306+0 9.295552-3 7.852356+0 7.343527-3 9.440609+0 5.842855-3 1.174898+1 4.489215-3 1.479108+1 3.430503-3 1.905461+1 2.571487-3 2.511886+1 1.893409-3 3.467369+1 1.335723-3 5.128614+1 8.824045-4 8.317638+1 5.340289-4 1.462177+2 2.997147-4 2.917427+2 1.489255-4 5.821032+2 7.431810-5 4.623810+3 9.317178-6 1.000000+5 4.306700-7 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.795100-3 8.626400-4 1.000000+5 8.626400-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.795100-3 5.587500-5 1.000000+5 5.587500-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.795100-3 3.876585-3 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.482000-3 2.380886+4 4.560000-3 2.327528+4 4.731513-3 2.242301+4 4.920000-3 2.145240+4 5.500000-3 1.866006+4 5.800000-3 1.735058+4 6.237348-3 1.558663+4 7.000000-3 1.306366+4 7.762471-3 1.105035+4 9.225714-3 8.156356+3 9.885531-3 7.176434+3 1.150000-2 5.354000+3 1.244515-2 4.569789+3 1.428894-2 3.427960+3 1.566751-2 2.814593+3 1.819701-2 2.021570+3 2.041738-2 1.554315+3 2.300000-2 1.177142+3 2.660725-2 8.301378+2 3.054921-2 5.910973+2 3.507519-2 4.177594+2 4.073803-2 2.846060+2 4.731513-2 1.924392+2 5.559043-2 1.253119+2 6.606934-2 7.854126+1 8.035261-2 4.588114+1 1.011580-1 2.417378+1 2.000000-1 3.561600+0 2.600160-1 1.724781+0 3.090295-1 1.078094+0 3.589219-1 7.223171-1 4.120975-1 5.027368-1 4.677351-1 3.632611-1 5.308844-1 2.644314-1 6.000000-1 1.960422-1 6.760830-1 1.475439-1 7.585776-1 1.130505-1 8.609938-1 8.503755-2 9.440609-1 6.964148-2 1.023293+0 5.889357-2 1.122018+0 4.897827-2 1.250000+0 3.976233-2 1.396368+0 3.234613-2 1.640590+0 2.417426-2 1.862087+0 1.937121-2 2.089296+0 1.595611-2 2.426610+0 1.249398-2 2.818383+0 9.857738-3 3.198895+0 8.120697-3 3.715352+0 6.507681-3 4.365158+0 5.167955-3 5.128614+0 4.135164-3 6.095369+0 3.281666-3 7.328245+0 2.585268-3 8.912509+0 2.022518-3 1.109175+1 1.550700-3 1.400000+1 1.178800-3 1.819701+1 8.734838-4 2.400000+1 6.419600-4 3.311311+1 4.526281-4 4.841724+1 3.023398-4 7.673615+1 1.871805-4 1.333521+2 1.061725-4 2.660725+2 5.271216-5 5.308844+2 2.629319-5 4.216965+3 3.295502-6 1.000000+5 1.389100-7 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.482000-3 7.668900-4 1.000000+5 7.668900-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.482000-3 1.084600-4 1.000000+5 1.084600-4 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.482000-3 3.606650-3 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.773700-3 8.266824+4 3.845918-3 7.990103+4 3.981072-3 7.600765+4 4.216965-3 6.920634+4 4.800000-3 5.550240+4 5.500000-3 4.316240+4 6.237348-3 3.401418+4 6.683439-3 2.968066+4 7.943282-3 2.085644+4 8.609938-3 1.755758+4 1.011579-2 1.232737+4 1.109175-2 9.998837+3 1.273503-2 7.251837+3 1.428894-2 5.502714+3 1.603245-2 4.151993+3 1.840772-2 2.934837+3 2.080000-2 2.143536+3 2.344229-2 1.566337+3 2.691535-2 1.081769+3 3.090295-2 7.413248+2 3.589219-2 4.882163+2 4.168694-2 3.189173+2 4.841724-2 2.067748+2 5.688529-2 1.287104+2 7.079458-2 6.707319+1 8.709636-2 3.588142+1 1.083927-1 1.839269+1 1.273503-1 1.118403+1 1.798871-1 3.799452+0 2.089296-1 2.392330+0 2.454709-1 1.464959+0 2.851018-1 9.357524-1 3.273407-1 6.229207-1 3.715352-1 4.319990-1 4.168694-1 3.119360-1 4.677351-1 2.269319-1 5.248075-1 1.663373-1 5.821032-1 1.266232-1 6.456542-1 9.707345-2 7.161434-1 7.495662-2 7.943282-1 5.829521-2 8.709636-1 4.673145-2 9.332543-1 3.983956-2 9.885531-1 3.507734-2 1.059254+0 3.033569-2 1.148154+0 2.580765-2 1.258925+0 2.163509-2 1.396368+0 1.788744-2 1.737801+0 1.210910-2 1.949845+0 9.927322-3 2.264644+0 7.745867-3 2.630268+0 6.089717-3 3.019952+0 4.911458-3 3.507519+0 3.924459-3 4.073803+0 3.159048-3 4.786301+0 2.519666-3 5.688529+0 1.993368-3 6.760830+0 1.589086-3 8.222427+0 1.239141-3 9.885531+0 9.876152-4 1.216186+1 7.704456-4 1.500000+1 6.035100-4 1.905461+1 4.597247-4 2.511886+1 3.384978-4 3.467369+1 2.388044-4 5.128614+1 1.577519-4 8.317638+1 9.547327-5 1.462177+2 5.358186-5 2.917427+2 2.662428-5 5.821032+2 1.328606-5 4.623810+3 1.665744-6 1.000000+5 7.699500-8 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.773700-3 6.801600-4 1.000000+5 6.801600-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.773700-3 3.436100-5 1.000000+5 3.436100-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.773700-3 3.059179-3 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.258700-3 2.312828+5 3.275000-3 2.274087+5 3.378000-3 2.008608+5 3.427678-3 1.924226+5 3.801894-3 1.474803+5 4.073803-3 1.226222+5 4.623810-3 8.657869+4 5.248075-3 6.065079+4 5.754399-3 4.651389+4 6.309573-3 3.548694+4 6.918310-3 2.691511+4 8.317638-3 1.529519+4 9.549926-3 9.889946+3 1.059254-2 7.102564+3 1.258925-2 4.040159+3 1.412538-2 2.753456+3 1.603245-2 1.795986+3 1.862087-2 1.074659+3 2.162719-2 6.377417+2 2.511886-2 3.756151+2 2.951209-2 2.107599+2 3.507519-2 1.125811+2 4.216965-2 5.721263+1 5.188000-2 2.649932+1 6.760830-2 9.824769+0 1.135011-1 1.400155+0 1.412538-1 6.190529-1 1.737801-1 2.878494-1 1.972423-1 1.817029-1 2.290868-1 1.060098-1 2.600160-1 6.763961-2 2.951209-1 4.346990-2 3.311311-1 2.925992-2 3.672823-1 2.063222-2 4.027170-1 1.522557-2 4.466836-1 1.092168-2 5.011872-1 7.613224-3 5.559043-1 5.532282-3 6.165950-1 4.049732-3 6.760830-1 3.090548-3 7.328245-1 2.454974-3 8.511380-1 1.621762-3 9.015711-1 1.391896-3 9.440609-1 1.238833-3 9.885531-1 1.109419-3 1.035142+0 1.000351-3 1.096478+0 8.853166-4 1.161449+0 7.887640-4 1.250000+0 6.860676-4 1.364583+0 5.856807-4 1.531087+0 4.791354-4 1.798871+0 3.601159-4 2.000000+0 3.002994-4 2.317395+0 2.355484-4 2.691535+0 1.854038-4 3.090295+0 1.497270-4 3.589219+0 1.197810-4 4.216965+0 9.495993-5 4.954502+0 7.586158-5 5.888437+0 6.011113-5 7.079458+0 4.728505-5 8.609938+0 3.693964-5 1.059254+1 2.868096-5 1.303167+1 2.242989-5 1.640590+1 1.719356-5 2.113489+1 1.292880-5 2.851018+1 9.309954-6 3.935501+1 6.587629-6 5.688529+1 4.469347-6 9.549926+1 2.614690-6 1.717908+2 1.436233-6 3.427678+2 7.144605-7 1.364583+3 1.784552-7 1.000000+5 2.430900-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.258700-3 4.996800-4 1.000000+5 4.996800-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.258700-3 1.223500-4 1.000000+5 1.223500-4 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.258700-3 2.636670-3 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.111300-3 3.487956+5 3.213000-3 3.196560+5 3.235937-3 3.121849+5 3.290000-3 2.975352+5 3.600000-3 2.351394+5 3.845918-3 1.965234+5 4.300000-3 1.440966+5 4.731513-3 1.098701+5 5.188000-3 8.421009+4 5.754399-3 6.200701+4 6.456542-3 4.378523+4 7.585776-3 2.652508+4 8.317638-3 1.983518+4 9.885531-3 1.134999+4 1.122018-2 7.467163+3 1.258925-2 5.075217+3 1.462177-2 3.043682+3 1.678804-2 1.882001+3 1.900000-2 1.215474+3 2.162719-2 7.645411+2 2.511886-2 4.439622+2 2.917427-2 2.558394+2 3.400000-2 1.445694+2 4.027170-2 7.631979+1 4.841724-2 3.779777+1 5.500000-2 2.312335+1 8.511380-2 4.241075+0 1.000000-1 2.280230+0 1.161449-1 1.296593+0 1.258925-1 9.525489-1 1.513561-1 4.628063-1 1.678804-1 3.118045-1 1.883649-1 2.026680-1 2.213095-1 1.119274-1 2.483133-1 7.375716-2 2.754229-1 5.100487-2 3.054921-1 3.550797-2 3.349654-1 2.588600-2 3.672823-1 1.899917-2 4.000000-1 1.436017-2 4.365158-1 1.087262-2 4.786301-1 8.166713-3 5.308844-1 5.964049-3 5.821032-1 4.542697-3 6.309573-1 3.604180-3 6.918310-1 2.788365-3 7.585776-1 2.174208-3 8.709636-1 1.508326-3 9.225714-1 1.304008-3 9.660509-1 1.167096-3 1.011579+0 1.050749-3 1.071519+0 9.283725-4 1.135011+0 8.255173-4 1.216186+0 7.221110-4 1.318257+0 6.223891-4 1.819701+0 3.521620-4 2.018366+0 2.950959-4 2.344229+0 2.306686-4 2.722701+0 1.816710-4 3.090295+0 1.493921-4 3.589219+0 1.195119-4 4.216965+0 9.474738-5 4.954502+0 7.569344-5 5.888437+0 5.997688-5 7.079458+0 4.718053-5 8.511380+0 3.738911-5 1.047129+1 2.901687-5 1.288250+1 2.268376-5 1.621810+1 1.738277-5 2.089296+1 1.306632-5 2.800000+1 9.473200-6 3.845918+1 6.735813-6 5.559043+1 4.567885-6 9.225714+1 2.703203-6 1.640590+2 1.501640-6 3.273407+2 7.467470-7 1.303167+3 1.864726-7 8.222427+4 2.949587-9 1.000000+5 2.425500-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.111300-3 5.021900-4 1.000000+5 5.021900-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.111300-3 2.027500-7 1.000000+5 2.027500-7 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.111300-3 2.608907-3 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.189700-3 3.309678+4 1.290000-3 3.057664+4 1.412538-3 2.811996+4 1.480000-3 2.681780+4 1.757924-3 2.211908+4 2.070000-3 1.818162+4 2.238721-3 1.641946+4 2.720000-3 1.259022+4 3.019952-3 1.082593+4 3.548134-3 8.514216+3 4.168694-3 6.622645+3 4.677351-3 5.506202+3 5.559043-3 4.138138+3 6.683439-3 3.020179+3 8.035261-3 2.182368+3 9.660509-3 1.562430+3 1.150000-2 1.129542+3 1.364583-2 8.154814+2 1.621810-2 5.828201+2 1.949845-2 4.041355+2 2.317395-2 2.845949+2 2.754229-2 1.989673+2 3.273407-2 1.380899+2 3.890451-2 9.513608+1 4.623810-2 6.506809+1 5.495409-2 4.418041+1 6.606934-2 2.900697+1 8.000000-2 1.859200+1 9.772372-2 1.156685+1 1.230269-1 6.645015+0 1.566751-1 3.686678+0 2.540973-1 1.124000+0 3.162278-1 6.608052-1 3.801894-1 4.254128-1 4.466836-1 2.914640-1 5.128614-1 2.121809-1 5.888437-1 1.555607-1 6.760830-1 1.149117-1 7.762471-1 8.554528-2 8.912509-1 6.413682-2 9.885531-1 5.201709-2 1.188502+0 3.623422-2 1.318257+0 2.971954-2 1.500000+0 2.338900-2 1.698244+0 1.872049-2 1.905461+0 1.533581-2 2.187762+0 1.217836-2 2.540973+0 9.557716-3 2.951209+0 7.559441-3 3.388442+0 6.136262-3 3.935501+0 4.931352-3 4.623810+0 3.926935-3 5.495409+0 3.101741-3 6.531306+0 2.469057-3 7.852356+0 1.950578-3 9.440609+0 1.552017-3 1.174898+1 1.192384-3 1.462177+1 9.233501-4 1.883649+1 6.919170-4 2.483133+1 5.093007-4 3.427678+1 3.592023-4 5.069907+1 2.372295-4 8.222427+1 1.435399-4 1.445440+2 8.054721-5 2.884032+2 4.001870-5 5.754399+2 1.996998-5 4.570882+3 2.503558-6 1.000000+5 1.143900-7 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.189700-3 4.861400-4 1.000000+5 4.861400-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.189700-3 4.299600-7 1.000000+5 4.299600-7 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.189700-3 7.031300-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.048600-3 2.899912+4 1.155000-3 2.859203+4 1.273503-3 2.797956+4 1.364583-3 2.727894+4 1.462177-3 2.640554+4 1.584893-3 2.524124+4 1.698244-3 2.412283+4 1.883649-3 2.227224+4 2.018366-3 2.094816+4 2.264644-3 1.870952+4 2.454709-3 1.718529+4 2.660725-3 1.565848+4 3.000000-3 1.350956+4 3.273407-3 1.205130+4 3.672823-3 1.026795+4 4.027170-3 8.982496+3 4.518559-3 7.530101+3 5.011872-3 6.384786+3 5.688529-3 5.170704+3 6.309573-3 4.321455+3 7.079458-3 3.517072+3 8.035261-3 2.780507+3 9.015711-3 2.229784+3 1.011579-2 1.776779+3 1.150000-2 1.369214+3 1.318257-2 1.028778+3 1.513561-2 7.638211+2 1.737801-2 5.623692+2 1.972423-2 4.217004+2 2.238721-2 3.141019+2 2.540973-2 2.324524+2 2.917427-2 1.661969+2 3.388442-2 1.146399+2 3.935501-2 7.845359+1 4.570882-2 5.328625+1 5.432503-2 3.382726+1 6.839116-2 1.827536+1 8.413951-2 1.041854+1 1.047129-1 5.711649+0 1.273503-1 3.313972+0 1.905461-1 1.062996+0 2.264644-1 6.572905-1 2.691535-1 4.091956-1 3.198895-1 2.566823-1 3.715352-1 1.726029-1 4.265795-1 1.205411-1 4.841724-1 8.734844-2 5.495409-1 6.376434-2 6.165950-1 4.823402-2 6.918310-1 3.674872-2 7.762471-1 2.821481-2 8.709636-1 2.181373-2 9.440609-1 1.832955-2 1.023293+0 1.550383-2 1.122018+0 1.289481-2 1.250000+0 1.046850-2 1.396368+0 8.515788-3 1.640590+0 6.364375-3 1.862087+0 5.100035-3 2.089296+0 4.200867-3 2.426610+0 3.289462-3 2.818383+0 2.595603-3 3.198895+0 2.138325-3 3.715352+0 1.713588-3 4.365158+0 1.360773-3 5.128614+0 1.088806-3 6.095369+0 8.641099-4 7.328245+0 6.807343-4 8.912509+0 5.325462-4 1.109175+1 4.083285-4 1.400000+1 3.103900-4 1.840772+1 2.270338-4 2.426610+1 1.670064-4 3.349654+1 1.177248-4 4.897788+1 7.865134-5 7.852356+1 4.812975-5 1.364583+2 2.730805-5 2.722701+2 1.356060-5 5.432503+2 6.765109-6 4.315191+3 8.479622-7 1.000000+5 3.657600-8 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.048600-3 4.525200-4 1.000000+5 4.525200-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.048600-3 3.431300-7 1.000000+5 3.431300-7 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.048600-3 5.957369-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 8.673100-4 1.772735+5 8.850000-4 1.724478+5 1.071519-3 1.437787+5 1.174898-3 1.301141+5 1.303167-3 1.157648+5 1.412538-3 1.050305+5 1.584893-3 9.053537+4 1.778279-3 7.720906+4 2.000000-3 6.528720+4 2.187762-3 5.701695+4 2.540973-3 4.508344+4 2.818383-3 3.802176+4 3.198895-3 3.067562+4 3.589219-3 2.503897+4 4.027170-3 2.031948+4 4.623810-3 1.567318+4 5.188000-3 1.253596+4 5.888437-3 9.737944+3 6.800000-3 7.241360+3 7.852356-3 5.333718+3 9.015711-3 3.941934+3 1.035142-2 2.888563+3 1.188502-2 2.098804+3 1.364583-2 1.512622+3 1.566751-2 1.081106+3 1.778279-2 7.889999+2 2.018366-2 5.719513+2 2.300000-2 4.076200+2 2.660725-2 2.771019+2 3.054921-2 1.906449+2 3.507519-2 1.302424+2 4.073803-2 8.553495+1 4.731513-2 5.574339+1 5.559043-2 3.488133+1 6.918310-2 1.829388+1 8.413951-2 1.018966+1 1.035142-1 5.441827+0 1.258925-1 2.989772+0 1.840772-1 9.178278-1 2.113489-1 6.004581-1 2.483133-1 3.686679-1 2.884032-1 2.359740-1 3.349654-1 1.520802-1 3.801894-1 1.056338-1 4.216965-1 7.890703-2 4.731513-1 5.748043-2 5.308844-1 4.218299-2 5.888437-1 3.214353-2 6.531306-1 2.466624-2 7.244360-1 1.906526-2 8.511380-1 1.291931-2 9.120108-1 1.099574-2 9.660509-1 9.667337-3 1.023293+0 8.552365-3 1.109175+0 7.256829-3 1.216186+0 6.061974-3 1.333521+0 5.102971-3 1.603245+0 3.663460-3 1.819701+0 2.931004-3 2.018366+0 2.457073-3 2.344229+0 1.920764-3 2.722701+0 1.512826-3 3.126079+0 1.222547-3 3.630781+0 9.785877-4 4.265795+0 7.762515-4 5.011872+0 6.204739-4 5.956621+0 4.918942-4 7.161434+0 3.871367-4 8.709636+0 3.025755-4 1.083927+1 2.317977-4 1.348963+1 1.789846-4 1.778279+1 1.303568-4 2.344229+1 9.579248-5 3.235937+1 6.746383-5 4.731513+1 4.504096-5 7.328245+1 2.854512-5 1.258925+2 1.637209-5 2.511886+2 8.123763-6 5.011872+2 4.050935-6 1.995262+3 1.013503-6 1.000000+5 2.019800-8 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 8.673100-4 3.955400-4 1.000000+5 3.955400-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.673100-4 2.836400-7 1.000000+5 2.836400-7 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 8.673100-4 4.714864-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 6.367700-4 2.182936+5 6.760830-4 2.173534+5 8.222426-4 2.216967+5 8.600000-4 2.211212+5 9.000000-4 2.190364+5 9.500000-4 2.149048+5 9.930000-4 2.104272+5 1.050000-3 2.032720+5 1.110000-3 1.949600+5 1.174898-3 1.855032+5 1.250000-3 1.744920+5 1.330000-3 1.628268+5 1.428894-3 1.493399+5 1.513561-3 1.384264+5 1.621810-3 1.253727+5 1.757924-3 1.109309+5 1.883649-3 9.928130+4 2.041738-3 8.648292+4 2.238721-3 7.330386+4 2.400000-3 6.432400+4 2.630268-3 5.370552+4 2.851018-3 4.557553+4 3.090295-3 3.841354+4 3.427678-3 3.060228+4 3.758374-3 2.479895+4 4.150000-3 1.963824+4 4.570882-3 1.552060+4 5.011872-3 1.232726+4 5.623413-3 9.160640+3 6.237348-3 6.957314+3 6.918310-3 5.247723+3 7.762471-3 3.804740+3 8.709636-3 2.735632+3 9.800000-3 1.935080+3 1.096478-2 1.381262+3 1.230269-2 9.705635+2 1.396368-2 6.530071+2 1.584893-2 4.356811+2 1.778279-2 2.995154+2 2.000000-2 2.030196+2 2.290868-2 1.285130+2 2.630268-2 8.007753+1 3.019952-2 4.953352+1 3.507519-2 2.921135+1 4.120975-2 1.641319+1 4.897788-2 8.782582+0 5.688529-2 5.078501+0 9.225714-2 8.489313-1 1.011580-1 6.057965-1 1.161449-1 3.676233-1 1.258925-1 2.734241-1 1.513561-1 1.364746-1 1.698244-1 8.936604-2 1.927525-1 5.652922-2 2.290868-1 3.047984-2 2.630268-1 1.873261-2 2.985383-1 1.207736-2 3.349654-1 8.150486-3 3.715352-1 5.761377-3 4.027170-1 4.423372-3 4.466836-1 3.178135-3 5.000000-1 2.235801-3 5.559043-1 1.615745-3 6.165950-1 1.184378-3 6.760830-1 9.042185-4 7.413102-1 6.954153-4 8.511380-1 4.744697-4 9.015711-1 4.072211-4 9.440609-1 3.624376-4 9.885531-1 3.245713-4 1.035142+0 2.926575-4 1.096478+0 2.590045-4 1.161449+0 2.307623-4 1.250000+0 2.007238-4 1.364583+0 1.713499-4 1.531087+0 1.401747-4 1.798871+0 1.053579-4 2.000000+0 8.785744-5 2.317395+0 6.891214-5 2.691535+0 5.424257-5 3.090295+0 4.380521-5 3.589219+0 3.504303-5 4.168694+0 2.823883-5 4.897788+0 2.254838-5 5.821032+0 1.785703-5 6.918310+0 1.424940-5 8.413951+0 1.112124-5 1.023293+1 8.748499-6 1.258925+1 6.833375-6 1.548817+1 5.373097-6 1.972423+1 4.085292-6 2.630268+1 2.973316-6 3.630781+1 2.099932-6 5.308844+1 1.405435-6 8.810489+1 8.310935-7 1.548817+2 4.668062-7 3.090295+2 2.320527-7 1.230269+3 5.792566-8 3.890451+4 1.827867-9 1.000000+5 7.11200-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 6.367700-4 3.096900-4 1.000000+5 3.096900-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.367700-4 1.714900-7 1.000000+5 1.714900-7 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.367700-4 3.269085-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.030600-4 3.785433+5 6.780000-4 3.744994+5 7.852356-4 3.716178+5 8.222426-4 3.684893+5 8.609938-4 3.630917+5 9.120108-4 3.536580+5 9.660509-4 3.414862+5 1.023293-3 3.270718+5 1.090000-3 3.093756+5 1.161449-3 2.901770+5 1.216186-3 2.755826+5 1.318257-3 2.498843+5 1.400000-3 2.308578+5 1.496236-3 2.098275+5 1.640590-3 1.820852+5 1.770000-3 1.609080+5 1.905461-3 1.415767+5 2.089296-3 1.197555+5 2.264644-3 1.027018+5 2.483133-3 8.546478+4 2.710800-3 7.124500+4 2.985383-3 5.783900+4 3.273407-3 4.705801+4 3.589219-3 3.800977+4 3.935501-3 3.049166+4 4.365158-3 2.361006+4 4.841724-3 1.812964+4 5.308844-3 1.424452+4 5.888437-3 1.078236+4 6.606934-3 7.843639+3 7.300000-3 5.911104+3 8.035261-3 4.476961+3 9.015711-3 3.183082+3 1.011579-2 2.244915+3 1.135011-2 1.570916+3 1.273503-2 1.090992+3 1.412538-2 7.810023+2 1.580000-2 5.405670+2 1.757924-2 3.785469+2 1.972423-2 2.561439+2 2.238721-2 1.654275+2 2.540973-2 1.060692+2 2.917427-2 6.481696+1 3.349654-2 3.931654+1 3.890451-2 2.270399+1 4.570882-2 1.247078+1 5.495409-2 6.237035+0 6.839116-2 2.715958+0 1.011580-1 6.068595-1 1.303167-1 2.307298-1 1.531088-1 1.253984-1 2.000000-1 4.628958-2 2.344229-1 2.630735-2 2.540973-1 1.962175-2 2.660725-1 1.652465-2 2.951209-1 1.148892-2 3.273407-1 8.049358-3 3.589219-1 5.907796-3 3.935501-1 4.366731-3 4.265795-1 3.375631-3 4.677351-1 2.532628-3 5.248075-1 1.783618-3 5.754399-1 1.356808-3 6.165950-1 1.111280-3 6.683439-1 8.864014-4 7.244360-1 7.116923-4 7.852356-1 5.751124-4 8.609938-1 4.519468-4 9.120108-1 3.910662-4 9.660509-1 3.407891-4 1.011579+0 3.071379-4 1.071519+0 2.715770-4 1.148154+0 2.361301-4 1.230269+0 2.067683-4 1.333521+0 1.783137-4 1.819701+0 1.029073-4 2.018366+0 8.623894-5 2.344229+0 6.741422-5 2.722701+0 5.309436-5 3.090295+0 4.366001-5 3.589219+0 3.492717-5 4.216965+0 2.768960-5 4.954502+0 2.212114-5 5.888437+0 1.752789-5 7.000000+0 1.398900-5 8.511380+0 1.092672-5 1.047129+1 8.480153-6 1.288250+1 6.629380-6 1.603245+1 5.147251-6 2.041738+1 3.917747-6 2.722701+1 2.854036-6 3.758374+1 2.017318-6 5.432503+1 1.367390-6 9.015711+1 8.089287-7 1.603245+2 4.492102-7 3.198895+2 2.233581-7 1.273503+3 5.576872-8 8.035261+4 8.82072-10 1.000000+5 7.08840-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.030600-4 3.002100-4 1.000000+5 3.002100-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.030600-4 7.632100-8 1.000000+5 7.632100-8 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.030600-4 3.027737-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 2.997000-4 1.005174+5 2.998000-4 9.961800+4 3.001500-4 9.777720+4 3.007000-4 9.555420+4 3.015000-4 9.318960+4 3.022000-4 9.171060+4 3.032000-4 9.027900+4 3.045000-4 8.915220+4 3.057000-4 8.858700+4 3.080000-4 8.821440+4 3.107000-4 8.843280+4 3.130000-4 8.927400+4 3.145000-4 9.030060+4 3.162278-4 9.207894+4 3.172000-4 9.341700+4 3.185000-4 9.561420+4 3.200000-4 9.879960+4 3.215000-4 1.027488+5 3.230000-4 1.075194+5 3.245000-4 1.131810+5 3.260000-4 1.197912+5 3.275000-4 1.274196+5 3.290000-4 1.361094+5 3.311311-4 1.503449+5 3.340200-4 1.732480+5 3.400000-4 2.332074+5 3.430000-4 2.689020+5 3.460000-4 3.077934+5 3.485000-4 3.424416+5 3.515000-4 3.865296+5 3.550000-4 4.412730+5 3.580000-4 4.909764+5 3.615000-4 5.518368+5 3.650000-4 6.152340+5 3.680000-4 6.711120+5 3.715352-4 7.378530+5 3.750000-4 8.034840+5 3.780000-4 8.598540+5 3.820000-4 9.336960+5 3.850000-4 9.877920+5 3.890451-4 1.058697+6 3.935501-4 1.134617+6 3.985000-4 1.214028+6 4.030000-4 1.282410+6 4.090200-4 1.367285+6 4.150000-4 1.443390+6 4.200000-4 1.500318+6 4.265795-4 1.566037+6 4.320000-4 1.612764+6 4.390000-4 1.664244+6 4.470000-4 1.712640+6 4.550000-4 1.751184+6 4.650000-4 1.786830+6 4.740000-4 1.807326+6 4.850000-4 1.821048+6 4.970000-4 1.824276+6 5.080000-4 1.818996+6 5.248075-4 1.797817+6 5.432503-4 1.761617+6 5.623413-4 1.714658+6 5.821032-4 1.658638+6 6.025596-4 1.596441+6 6.280000-4 1.516398+6 6.600000-4 1.413744+6 6.918310-4 1.314844+6 7.244360-4 1.217108+6 7.673615-4 1.095688+6 8.222426-4 9.578890+5 8.709636-4 8.506749+5 9.225714-4 7.500943+5 9.885531-4 6.404225+5 1.059254-3 5.435441+5 1.135011-3 4.578804+5 1.244515-3 3.609605+5 1.333521-3 3.002399+5 1.462177-3 2.328000+5 1.584893-3 1.852599+5 1.737801-3 1.415319+5 1.905461-3 1.074289+5 2.113489-3 7.807877+4 2.317395-3 5.839937+4 2.570396-3 4.179670+4 2.851018-3 2.967185+4 3.126079-3 2.174898+4 3.507519-3 1.462887+4 3.935501-3 9.753094+3 4.415704-3 6.447894+3 4.897788-3 4.411912+3 5.432503-3 2.999547+3 6.025596-3 2.026434+3 6.683439-3 1.360652+3 7.413102-3 9.080772+2 8.222426-3 6.025366+2 9.120108-3 3.975496+2 1.035142-2 2.374677+2 1.174898-2 1.407691+2 1.333521-2 8.284084+1 1.513561-2 4.841013+1 1.737801-2 2.673375+1 2.000000-2 1.450272+1 2.317395-2 7.576772+0 2.722701-2 3.694852+0 3.311311-2 1.531948+0 4.168694-2 5.390898-1 5.821032-2 1.173912-1 8.000000-2 2.724700-2 9.225714-2 1.425978-2 1.047129-1 8.081351-3 1.202264-1 4.409982-3 1.273503-1 3.412704-3 1.513561-1 1.555366-3 1.659587-1 1.034951-3 1.840772-1 6.595807-4 2.137962-1 3.477772-4 2.398833-1 2.140375-4 2.691535-1 1.326934-4 3.198895-1 6.550676-5 3.467369-1 4.743279-5 3.722400-1 3.595456-5 4.000000-1 2.738138-5 4.315191-1 2.070220-5 4.677351-1 1.549248-5 5.128614-1 1.120460-5 6.025596-1 6.429410-6 6.456542-1 5.038593-6 6.839117-1 4.134484-6 7.244360-1 3.414784-6 7.585776-1 2.947696-6 8.000000-1 2.504897-6 8.413951-1 2.160400-6 8.810489-1 1.899329-6 9.225714-1 1.680802-6 9.660509-1 1.498059-6 1.000000+0 1.381077-6 1.059254+0 1.216543-6 1.122018+0 1.079582-6 1.188502+0 9.640669-7 1.273503+0 8.472322-7 1.396368+0 7.189141-7 1.531087+0 6.124481-7 1.798871+0 4.603239-7 2.000000+0 3.838600-7 2.317395+0 3.010903-7 2.691535+0 2.369896-7 3.090295+0 1.913827-7 3.589219+0 1.531022-7 4.216965+0 1.213772-7 4.954502+0 9.696900-8 5.888437+0 7.683531-8 7.079458+0 6.044195-8 8.511380+0 4.789761-8 1.047129+1 3.717318-8 1.288250+1 2.906021-8 1.603245+1 2.256363-8 2.041738+1 1.717368-8 2.691535+1 1.266842-8 3.672823+1 9.062579-9 5.370318+1 6.066855-9 8.912509+1 3.588261-9 1.584893+2 1.992299-9 3.162278+2 9.90537-10 1.258925+3 2.47300-10 3.981072+4 7.80423-12 1.000000+5 3.10730-12 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 2.997000-4 1.848800-4 1.000000+5 1.848800-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.997000-4 2.507800-9 1.000000+5 2.507800-9 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 2.997000-4 1.148175-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 2.911900-4 1.483720+5 2.912300-4 1.469424+5 2.914000-4 1.443632+5 2.917427-4 1.405044+5 2.922000-4 1.365344+5 2.928000-4 1.325672+5 2.933000-4 1.300152+5 2.940000-4 1.272496+5 2.947000-4 1.251968+5 2.955000-4 1.235152+5 2.965000-4 1.220592+5 2.980000-4 1.207688+5 3.000000-4 1.200960+5 3.022000-4 1.202808+5 3.040000-4 1.211320+5 3.057000-4 1.226496+5 3.073000-4 1.248616+5 3.090000-4 1.281984+5 3.100000-4 1.307000+5 3.115000-4 1.352696+5 3.130000-4 1.409080+5 3.145000-4 1.477040+5 3.162278-4 1.570866+5 3.180000-4 1.685744+5 3.200000-4 1.839664+5 3.220000-4 2.020688+5 3.240000-4 2.229568+5 3.320000-4 3.332432+5 3.350000-4 3.842352+5 3.380000-4 4.395656+5 3.412100-4 5.031376+5 3.440000-4 5.618664+5 3.470000-4 6.284480+5 3.507519-4 7.164663+5 3.540000-4 7.963992+5 3.565000-4 8.598000+5 3.600000-4 9.505680+5 3.630781-4 1.031363+6 3.665000-4 1.121192+6 3.700000-4 1.212136+6 3.740000-4 1.313904+6 3.780000-4 1.412568+6 3.820000-4 1.507816+6 3.850000-4 1.576824+6 3.890451-4 1.666361+6 3.935501-4 1.761101+6 3.985000-4 1.858496+6 4.030000-4 1.940408+6 4.080000-4 2.023496+6 4.130000-4 2.097896+6 4.180000-4 2.163936+6 4.240000-4 2.232792+6 4.320000-4 2.308944+6 4.390000-4 2.363072+6 4.478400-4 2.416756+6 4.570882-4 2.456460+6 4.677351-4 2.483791+6 4.786301-4 2.495836+6 4.897788-4 2.494118+6 5.011872-4 2.481338+6 5.150000-4 2.452880+6 5.308844-4 2.407431+6 5.500000-4 2.340720+6 5.720000-4 2.251784+6 5.956621-4 2.148977+6 6.200000-4 2.040760+6 6.531306-4 1.892037+6 6.850000-4 1.755296+6 7.161434-4 1.626184+6 7.585776-4 1.461365+6 8.128305-4 1.275064+6 8.609938-4 1.130657+6 9.120108-4 9.956376+5 9.850000-4 8.334400+5 1.056000-3 7.045387+5 1.135011-3 5.875747+5 1.230269-3 4.764562+5 1.333521-3 3.833218+5 1.462177-3 2.966591+5 1.584893-3 2.354009+5 1.737801-3 1.795017+5 1.900000-3 1.370360+5 2.089296-3 1.021404+5 2.300000-3 7.527368+4 2.511886-3 5.657879+4 2.818383-3 3.861380+4 3.150000-3 2.644832+4 3.427678-3 1.973237+4 3.801894-3 1.369129+4 4.300000-3 8.786080+3 4.841724-3 5.678290+3 5.432503-3 3.687023+3 6.095369-3 2.375318+3 6.839116-3 1.518451+3 7.673615-3 9.633536+2 8.609938-3 6.068397+2 9.660509-3 3.797440+2 1.096478-2 2.249358+2 1.244515-2 1.322487+2 1.412538-2 7.718460+1 1.603245-2 4.472354+1 1.840772-2 2.446820+1 2.089296-2 1.398030+1 2.426610-2 7.157484+0 2.851018-2 3.453402+0 3.467369-2 1.413492+0 4.315191-2 5.164564-1 5.821032-2 1.290124-1 7.444800-2 4.115738-2 1.000000-1 1.051712-2 1.059254-1 8.120474-3 1.188502-1 4.881514-3 1.288250-1 3.377762-3 1.611800-1 1.195969-3 1.757924-1 8.146012-4 1.927525-1 5.456081-4 2.137962-1 3.502059-4 2.426610-1 2.051184-4 2.660725-1 1.399145-4 2.917427-1 9.610961-5 3.198895-1 6.651713-5 3.467369-1 4.855707-5 3.672823-1 3.897386-5 3.981072-1 2.892071-5 4.315191-1 2.161551-5 5.069907-1 1.216566-5 5.432503-1 9.565623-6 5.754399-1 7.876046-6 6.025596-1 6.776325-6 6.456542-1 5.468872-6 6.839117-1 4.592771-6 7.673615-1 3.213965-6 8.222427-1 2.609097-6 8.709636-1 2.206949-6 9.120108-1 1.941202-6 9.549926-1 1.717909-6 1.000000+0 1.531186-6 1.047129+0 1.375694-6 1.096478+0 1.245169-6 1.148154+0 1.134117-6 1.216186+0 1.016318-6 1.318257+0 8.786835-7 1.513561+0 6.932406-7 1.840772+0 4.904983-7 2.041738+0 4.111776-7 2.371374+0 3.215759-7 2.754229+0 2.534305-7 3.126079+0 2.085313-7 3.630781+0 1.669148-7 4.265795+0 1.324034-7 5.011872+0 1.058361-7 5.956621+0 8.390374-8 7.161434+0 6.603394-8 8.709636+0 5.161108-8 1.083927+1 3.953804-8 1.348963+1 3.052941-8 1.757924+1 2.252670-8 2.290868+1 1.675921-8 3.162278+1 1.179600-8 4.570882+1 7.967508-9 6.918310+1 5.168135-9 1.188502+2 2.961614-9 2.371374+2 1.468657-9 4.731513+2 7.32100-10 1.883649+3 1.83125-10 1.000000+5 3.44520-12 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 2.911900-4 1.892200-4 1.000000+5 1.892200-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.911900-4 9.330000-8 1.000000+5 9.330000-8 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 2.911900-4 1.018767-4 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.536300-4 5.661919+4 2.900000-4 5.316517+4 3.630781-4 4.684729+4 3.801894-4 4.535167+4 4.466836-4 3.990339+4 4.786301-4 3.757978+4 5.188000-4 3.477601+4 5.888437-4 3.051479+4 6.456542-4 2.757154+4 7.244360-4 2.406747+4 8.200000-4 2.065040+4 9.440609-4 1.718045+4 1.071519-3 1.446836+4 1.258925-3 1.152762+4 1.513561-3 8.811115+3 1.840772-3 6.560573+3 2.238721-3 4.846115+3 2.722701-3 3.551806+3 3.273407-3 2.632876+3 3.935501-3 1.937911+3 4.731513-3 1.415964+3 5.688529-3 1.026904+3 6.839116-3 7.391606+2 8.222426-3 5.282827+2 9.885531-3 3.748818+2 1.202264-2 2.583538+2 1.445440-2 1.806518+2 1.737801-2 1.254096+2 2.089296-2 8.641931+1 2.511886-2 5.910362+1 3.019952-2 4.011052+1 3.630781-2 2.700552+1 4.315191-2 1.850339+1 5.188000-2 1.226769+1 6.237348-2 8.069543+0 7.498942-2 5.267406+0 9.015711-2 3.413203+0 1.109175-1 2.079151+0 1.513561-1 9.773587-1 2.570396-1 2.661230-1 3.198895-1 1.564985-1 3.845918-1 1.007990-1 4.518559-1 6.909897-2 5.188000-1 5.033287-2 6.000000-1 3.633559-2 6.839117-1 2.729310-2 7.852356-1 2.033058-2 8.912509-1 1.561472-2 9.885531-1 1.266392-2 1.202264+0 8.627113-3 1.348963+0 6.929034-3 1.531087+0 5.485696-3 1.717908+0 4.466247-3 1.927525+0 3.661283-3 2.213095+0 2.909364-3 2.570396+0 2.284637-3 2.951209+0 1.840404-3 3.388442+0 1.493913-3 3.935501+0 1.200569-3 4.623810+0 9.560559-4 5.495409+0 7.551614-4 6.531306+0 6.011312-4 7.852356+0 4.748913-4 9.440609+0 3.778430-4 1.174898+1 2.903078-4 1.462177+1 2.247991-4 1.883649+1 1.684576-4 2.483133+1 1.239899-4 3.427678+1 8.744510-5 5.069907+1 5.775569-5 8.222427+1 3.494692-5 1.445440+2 1.961034-5 2.884032+2 9.742882-6 5.754399+2 4.861856-6 4.570882+3 6.095129-7 1.000000+5 2.785100-8 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.536300-4 2.064200-4 1.000000+5 2.064200-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.536300-4 2.626900-9 1.000000+5 2.626900-9 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.536300-4 4.720737-5 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.003200-4 2.284100+5 2.080000-4 1.991754+5 2.170000-4 1.729792+5 2.317395-4 1.371322+5 2.454709-4 1.129894+5 2.691535-4 8.489737+4 2.818383-4 7.402726+4 2.917427-4 6.715243+4 3.019952-4 6.123799+4 3.150000-4 5.512900+4 3.280000-4 5.018860+4 3.430000-4 4.554420+4 3.600000-4 4.130040+4 3.758374-4 3.810519+4 3.935501-4 3.521613+4 4.120975-4 3.278731+4 4.350000-4 3.039140+4 4.623810-4 2.811856+4 4.954502-4 2.595236+4 5.308844-4 2.412106+4 5.821032-4 2.204906+4 8.413951-4 1.571925+4 9.772372-4 1.360012+4 1.122018-3 1.180568+4 1.258925-3 1.042886+4 1.445440-3 8.916928+3 1.659587-3 7.561955+3 1.900000-3 6.382620+3 2.162719-3 5.387221+3 2.454709-3 4.532334+3 2.800000-3 3.759540+3 3.162278-3 3.141402+3 3.589219-3 2.587302+3 4.073803-3 2.115510+3 4.623810-3 1.716934+3 5.248075-3 1.383283+3 6.009750-3 1.088746+3 6.839116-3 8.598035+2 7.762471-3 6.773681+2 8.810489-3 5.299781+2 1.000000-2 4.117800+2 1.135011-2 3.177258+2 1.288250-2 2.434830+2 1.479108-2 1.807352+2 1.698244-2 1.331060+2 1.949845-2 9.727181+1 2.238721-2 7.053729+1 2.570396-2 5.077131+1 2.951209-2 3.628366+1 3.427678-2 2.501782+1 4.000000-2 1.691182+1 4.677351-2 1.128453+1 5.495409-2 7.383401+0 6.531306-2 4.651211+0 8.413951-2 2.340112+0 1.059254-1 1.243233+0 1.372700-1 6.050730-1 1.949845-1 2.259194-1 2.371374-1 1.313726-1 2.851018-1 7.945419-2 3.349654-1 5.152576-2 3.890451-1 3.472003-2 4.415705-1 2.503480-2 5.011872-1 1.817907-2 5.688529-1 1.330169-2 6.382635-1 1.008474-2 7.161434-1 7.701690-3 8.035261-1 5.927342-3 8.810489-1 4.829608-3 9.549926-1 4.061558-3 1.035142+0 3.438639-3 1.148154+0 2.798534-3 1.273503+0 2.294454-3 1.428894+0 1.853573-3 1.659587+0 1.415560-3 1.862087+0 1.157755-3 2.089296+0 9.536382-4 2.426610+0 7.467157-4 2.818383+0 5.891620-4 3.198895+0 4.853495-4 3.715352+0 3.889476-4 4.365158+0 3.088727-4 5.128614+0 2.471449-4 6.095369+0 1.961404-4 7.328245+0 1.545155-4 8.810489+0 1.226086-4 1.100000+1 9.360800-5 1.380384+1 7.161916-5 1.800000+1 5.285100-5 2.371374+1 3.887842-5 3.273407+1 2.738891-5 4.841724+1 1.806970-5 7.673615+1 1.118700-5 1.333521+2 6.345657-6 2.660725+2 3.150452-6 5.308844+2 1.571469-6 4.216965+3 1.969594-7 1.000000+5 8.302100-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.003200-4 1.501000-4 1.000000+5 1.501000-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.003200-4 7.430400-9 1.000000+5 7.430400-9 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.003200-4 5.021257-5 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.598300-4 5.365720+5 1.598400-4 5.318840+5 1.599000-4 5.247880+5 1.599900-4 5.179440+5 1.601700-4 5.093680+5 1.604000-4 5.027040+5 1.609000-4 4.924560+5 1.617000-4 4.802520+5 1.627000-4 4.680840+5 1.643000-4 4.525200+5 1.665000-4 4.362080+5 1.690000-4 4.217280+5 1.737801-4 3.997631+5 1.950000-4 3.224420+5 2.089296-4 2.882279+5 2.190000-4 2.683596+5 2.300000-4 2.508740+5 2.426610-4 2.348591+5 2.660725-4 2.117800+5 2.951209-4 1.896758+5 4.000000-4 1.395908+5 4.623810-4 1.197909+5 5.248075-4 1.040823+5 6.000000-4 8.901880+4 6.839116-4 7.580629+4 7.762471-4 6.443622+4 8.912509-4 5.356061+4 1.023293-3 4.418416+4 1.174898-3 3.619332+4 1.350000-3 2.941740+4 1.570000-3 2.331016+4 1.819701-3 1.843507+4 2.089296-3 1.470392+4 2.400000-3 1.164332+4 2.754229-3 9.175096+3 3.162278-3 7.174809+3 3.630781-3 5.570142+3 4.120975-3 4.388278+3 4.677351-3 3.434798+3 5.308844-3 2.671118+3 6.095369-3 2.014942+3 7.000000-3 1.507428+3 8.035261-3 1.119761+3 9.120108-3 8.465459+2 1.047129-2 6.191109+2 1.202264-2 4.492281+2 1.380384-2 3.234050+2 1.584893-2 2.309967+2 1.819701-2 1.637019+2 2.089296-2 1.151186+2 2.398833-2 8.032892+1 2.754229-2 5.562964+1 3.162278-2 3.824206+1 3.672823-2 2.527818+1 4.216965-2 1.712813+1 4.897788-2 1.115412+1 5.754399-2 6.976872+0 7.000000-2 3.913803+0 8.511380-2 2.181430+0 1.047129-1 1.164885+0 1.273503-1 6.397537-1 1.840772-1 2.038584-1 2.113489-1 1.334161-1 2.483133-1 8.193297-2 2.884032-1 5.246288-2 3.311311-1 3.499505-2 3.758374-1 2.431329-2 4.216965-1 1.758439-2 4.731513-1 1.281151-2 5.308844-1 9.403953-3 5.888437-1 7.167584-3 6.531306-1 5.500587-3 7.244360-1 4.251334-3 8.511380-1 2.880677-3 9.120108-1 2.451796-3 9.660509-1 2.155564-3 1.023293+0 1.906873-3 1.109175+0 1.617975-3 1.216186+0 1.351606-3 1.333521+0 1.137774-3 1.603245+0 8.167726-4 1.819701+0 6.534578-4 2.018366+0 5.477839-4 2.344229+0 4.282026-4 2.722701+0 3.372480-4 3.126079+0 2.725291-4 3.630781+0 2.181433-4 4.265795+0 1.730360-4 5.011872+0 1.383107-4 5.956621+0 1.096563-4 7.161434+0 8.629885-5 8.709636+0 6.744928-5 1.083927+1 5.167136-5 1.348963+1 3.989839-5 1.757924+1 2.944030-5 2.290868+1 2.190244-5 3.162278+1 1.541652-5 4.623810+1 1.028701-5 7.079458+1 6.594845-6 1.216186+2 3.780511-6 2.426610+2 1.875267-6 4.841724+2 9.348938-7 1.927525+3 2.338641-7 1.000000+5 4.502500-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.598300-4 1.489300-4 1.000000+5 1.489300-4 1 88000 7 7 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.598300-4 1.221700-9 1.000000+5 1.221700-9 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.598300-4 1.089878-5 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 8.132000-5 1.462768+7 9.450000-5 6.347444+6 9.900000-5 5.054797+6 1.000000-4 4.789520+6 1.047129-4 3.848058+6 1.161449-4 2.378844+6 1.220000-4 1.880304+6 1.303167-4 1.359557+6 1.760000-4 3.062636+5 1.840772-4 2.465747+5 1.905461-4 2.098131+5 1.972423-4 1.796923+5 2.020000-4 1.622220+5 2.080000-4 1.439656+5 2.137962-4 1.296240+5 2.190000-4 1.190148+5 2.244000-4 1.098871+5 2.300000-4 1.021088+5 2.350000-4 9.637880+4 2.400000-4 9.161480+4 2.454709-4 8.733615+4 2.511886-4 8.374100+4 2.570396-4 8.082959+4 2.635000-4 7.836600+4 2.691535-4 7.673706+4 2.770000-4 7.512680+4 2.851018-4 7.408043+4 2.951209-4 7.341525+4 3.056900-4 7.323366+4 3.200000-4 7.351520+4 3.430000-4 7.458120+4 3.850000-4 7.664960+4 4.120975-4 7.742593+4 4.415704-4 7.766094+4 4.700000-4 7.732720+4 5.011872-4 7.641967+4 5.308844-4 7.513859+4 5.688529-4 7.307780+4 6.095369-4 7.051794+4 6.531306-4 6.752376+4 7.000000-4 6.420280+4 7.500000-4 6.063640+4 8.128305-4 5.628947+4 8.709636-4 5.246175+4 9.500000-4 4.764480+4 1.030000-3 4.322120+4 1.122018-3 3.871587+4 1.230269-3 3.410552+4 1.348963-3 2.980392+4 1.462177-3 2.632846+4 1.610000-3 2.253740+4 1.778279-3 1.904006+4 1.972423-3 1.583611+4 2.200000-3 1.292180+4 2.454709-3 1.043906+4 2.710800-3 8.536572+3 3.000000-3 6.895720+3 3.311311-3 5.560754+3 3.672823-3 4.402440+3 4.073803-3 3.458025+3 4.518559-3 2.695021+3 5.011872-3 2.084631+3 5.559043-3 1.600785+3 6.165950-3 1.220399+3 6.839116-3 9.238722+2 7.585776-3 6.947756+2 8.511380-3 5.022978+2 9.549926-3 3.602661+2 1.071519-2 2.563646+2 1.202264-2 1.810388+2 1.348963-2 1.269222+2 1.513561-2 8.836932+1 1.717908-2 5.889856+1 1.949845-2 3.895500+1 2.213095-2 2.556661+1 2.511886-2 1.665950+1 2.884032-2 1.036245+1 3.311311-2 6.397801+0 3.845918-2 3.766414+0 4.570882-2 2.027143+0 5.188000-2 1.279996+0 6.606934-2 5.259435-1 9.225714-2 1.535554-1 1.011580-1 1.096855-1 1.161449-1 6.665338-2 1.258925-1 4.961204-2 1.513561-1 2.480395-2 1.698244-1 1.625712-2 1.927525-1 1.029300-2 2.290868-1 5.555706-3 2.630268-1 3.416822-3 3.000000-1 2.167400-3 3.349654-1 1.488059-3 3.715352-1 1.052137-3 4.073803-1 7.783847-4 4.518559-1 5.595933-4 5.069907-1 3.909335-4 5.623413-1 2.847608-4 6.237348-1 2.089431-4 6.839117-1 1.597689-4 7.498942-1 1.230848-4 8.609938-1 8.406695-5 9.120108-1 7.223093-5 9.549926-1 6.436155-5 1.000000+0 5.772000-5 1.059254+0 5.084025-5 1.122018+0 4.512005-5 1.188502+0 4.029829-5 1.288250+0 3.468346-5 1.412538+0 2.945397-5 1.531087+0 2.559809-5 1.798871+0 1.924169-5 2.000000+0 1.604400-5 2.317395+0 1.258209-5 2.691535+0 9.904161-6 3.090295+0 7.999144-6 3.589219+0 6.399165-6 4.216965+0 5.073134-6 4.954502+0 4.052909-6 5.888437+0 3.211356-6 7.079458+0 2.526240-6 8.609938+0 1.973535-6 1.059254+1 1.532238-6 1.303167+1 1.198276-6 1.659587+1 9.065765-7 2.137962+1 6.819446-7 2.884032+1 4.912072-7 4.027170+1 3.434406-7 5.754399+1 2.359285-7 9.660509+1 1.380497-7 1.737801+2 7.584043-8 3.467369+2 3.772942-8 1.380384+3 9.424699-9 1.000000+5 1.29870-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 8.132000-5 8.132000-5 1.000000+5 8.132000-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 8.132000-5 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 7.552000-5 1.954028+7 7.870000-5 1.637782+7 7.920000-5 1.588405+7 8.270000-5 1.301026+7 8.570000-5 1.129266+7 8.730000-5 1.043994+7 8.912509-5 9.504320+6 9.225714-5 8.049491+6 9.800000-5 5.992470+6 1.109175-4 3.328308+6 1.170000-4 2.564004+6 1.258925-4 1.774088+6 1.450000-4 8.680260+5 1.584893-4 5.562586+5 1.659587-4 4.437105+5 1.720000-4 3.739698+5 1.780000-4 3.192276+5 1.840772-4 2.754190+5 1.883649-4 2.502031+5 1.930000-4 2.273082+5 1.980000-4 2.068686+5 2.020000-4 1.931922+5 2.065380-4 1.801028+5 2.113489-4 1.686075+5 2.162719-4 1.589652+5 2.213095-4 1.509433+5 2.264644-4 1.443345+5 2.317395-4 1.389561+5 2.371374-4 1.346542+5 2.430000-4 1.311012+5 2.500000-4 1.280778+5 2.570396-4 1.260908+5 2.650000-4 1.248132+5 2.754229-4 1.242547+5 2.884032-4 1.246696+5 3.100000-4 1.265664+5 3.507519-4 1.303935+5 3.758374-4 1.317634+5 4.000000-4 1.321368+5 4.280000-4 1.315464+5 4.570882-4 1.299386+5 4.850000-4 1.276440+5 5.188000-4 1.241698+5 5.559043-4 1.197538+5 5.956621-4 1.146402+5 6.382635-4 1.089481+5 6.918310-4 1.018182+5 7.413102-4 9.541430+4 8.035261-4 8.780518+4 8.609938-4 8.126686+4 9.440609-4 7.271848+4 1.030000-3 6.490920+4 1.110000-3 5.855220+4 1.230000-3 5.038692+4 1.364583-3 4.287127+4 1.500000-3 3.670662+4 1.621810-3 3.211526+4 1.778279-3 2.726584+4 1.950000-3 2.299152+4 2.162719-3 1.883330+4 2.398833-3 1.529852+4 2.630268-3 1.263223+4 2.917427-3 1.010624+4 3.235937-3 8.020357+3 3.589219-3 6.314460+3 3.981072-3 4.932449+3 4.415704-3 3.822937+3 4.897788-3 2.940518+3 5.432503-3 2.244916+3 6.025596-3 1.701440+3 6.683439-3 1.280467+3 7.413102-3 9.569361+2 8.222426-3 7.103126+2 9.120108-3 5.237983+2 1.011579-2 3.837586+2 1.135011-2 2.695269+2 1.273503-2 1.878539+2 1.428894-2 1.299726+2 1.621810-2 8.598070+1 1.819701-2 5.864434+1 2.065380-2 3.820331+1 2.344229-2 2.469189+1 2.660725-2 1.584141+1 3.019952-2 1.009176+1 3.467369-2 6.118859+0 4.027170-2 3.530801+0 4.731513-2 1.938238+0 5.370318-2 1.203002+0 9.440609-2 1.407324-1 1.011580-1 1.085135-1 1.161449-1 6.490499-2 1.258925-1 4.787424-2 1.513561-1 2.345805-2 1.678804-1 1.587072-2 1.883649-1 1.035932-2 2.213095-1 5.751041-3 2.483133-1 3.802152-3 2.786121-1 2.532020-3 3.126079-1 1.699456-3 3.427678-1 1.243081-3 3.758374-1 9.154458-4 4.073803-1 7.049923-4 4.466836-1 5.274464-4 4.897788-1 3.974050-4 5.432503-1 2.910702-4 5.956621-1 2.223107-4 6.456542-1 1.767798-4 6.998420-1 1.414479-4 7.585776-1 1.138931-4 8.609938-1 8.169685-5 9.120108-1 7.068791-5 9.660509-1 6.160018-5 1.011579+0 5.551942-5 1.071519+0 4.909363-5 1.148154+0 4.268712-5 1.230269+0 3.737938-5 1.333521+0 3.223459-5 1.819701+0 1.860310-5 2.018366+0 1.558876-5 2.344229+0 1.218463-5 2.722701+0 9.596800-6 3.126079+0 7.755558-6 3.630781+0 6.207974-6 4.265795+0 4.924368-6 5.011872+0 3.936111-6 5.956621+0 3.120479-6 7.161434+0 2.455850-6 8.709636+0 1.919515-6 1.083927+1 1.470431-6 1.348963+1 1.135474-6 1.757924+1 8.378029-7 2.290868+1 6.232990-7 3.162278+1 4.387092-7 4.570882+1 2.963167-7 6.918310+1 1.922100-7 1.188502+2 1.101438-7 2.371374+2 5.462259-8 4.731513+2 2.722760-8 1.883649+3 6.810564-9 1.000000+5 1.28130-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 7.552000-5 7.552000-5 1.000000+5 7.552000-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 7.552000-5 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 3.954000-5 3.554620+5 3.981072-5 3.483681+5 4.120975-5 3.074927+5 4.570882-5 2.084118+5 4.738400-5 1.830070+5 4.900000-5 1.630572+5 5.080000-5 1.450682+5 5.248075-5 1.314841+5 5.400000-5 1.213320+5 5.580000-5 1.113842+5 5.754399-5 1.034587+5 5.956621-5 9.591037+4 6.165950-5 8.952851+4 6.400000-5 8.369560+4 6.683439-5 7.798797+4 7.000000-5 7.287800+4 7.328245-5 6.859194+4 7.762471-5 6.405312+4 8.222426-5 6.024777+4 8.810489-5 5.641322+4 9.549926-5 5.266933+4 1.220000-4 4.350940+4 1.364583-4 3.959142+4 1.580000-4 3.470260+4 1.800000-4 3.064140+4 2.018366-4 2.726604+4 2.344229-4 2.321229+4 2.691535-4 1.987332+4 3.126079-4 1.666078+4 3.630781-4 1.387611+4 4.315191-4 1.114080+4 5.011872-4 9.148335+3 5.956621-4 7.233756+3 7.161434-4 5.581563+3 8.609938-4 4.270811+3 1.047129-3 3.186868+3 1.288250-3 2.319202+3 1.640590-3 1.587498+3 2.113489-3 1.058527+3 2.660725-3 7.271587+2 3.349654-3 4.957063+2 4.120975-3 3.485268+2 5.011872-3 2.480788+2 6.095369-3 1.752737+2 7.161434-3 1.308825+2 8.709636-3 9.096165+1 1.000000-2 7.004430+1 1.412538-2 3.512535+1 1.640590-2 2.621258+1 1.840772-2 2.106270+1 2.041738-2 1.737945+1 2.213095-2 1.484213+1 2.426610-2 1.229120+1 2.691535-2 9.859935+0 3.054921-2 7.482031+0 3.672823-2 5.033319+0 4.415704-2 3.359680+0 5.248075-2 2.283393+0 6.309573-2 1.500780+0 7.673615-2 9.532541-1 9.225714-2 6.168476-1 1.148154-1 3.649431-1 1.500000-1 1.905881-1 2.540973-1 5.220526-2 3.162278-1 3.069071-2 3.801894-1 1.975755-2 4.466836-1 1.353651-2 5.128614-1 9.854519-3 5.888437-1 7.225073-3 6.760830-1 5.337111-3 7.762471-1 3.973148-3 8.912509-1 2.978812-3 9.885531-1 2.416052-3 1.202264+0 1.645932-3 1.348963+0 1.321969-3 1.531087+0 1.046600-3 1.717908+0 8.520958-4 1.927525+0 6.985136-4 2.213095+0 5.550557-4 2.570396+0 4.358689-4 2.951209+0 3.511184-4 3.388442+0 2.850149-4 3.935501+0 2.290489-4 4.623810+0 1.823947-4 5.432503+0 1.463200-4 6.456542+0 1.164162-4 7.762471+0 9.192452-5 9.332543+0 7.310790-5 1.161449+1 5.614701-5 1.462177+1 4.288773-5 1.883649+1 3.213777-5 2.483133+1 2.365587-5 3.427678+1 1.668524-5 5.069907+1 1.101837-5 8.222427+1 6.667216-6 1.428894+2 3.785368-6 2.851018+2 1.880517-6 5.688529+2 9.383430-7 4.518559+3 1.176265-7 1.000000+5 5.313400-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 3.954000-5 3.954000-5 1.000000+5 3.954000-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 3.954000-5 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 2.488000-5 1.204072+7 2.540973-5 1.105571+7 2.610000-5 9.981300+6 2.700000-5 8.839120+6 2.818383-5 7.651026+6 2.951209-5 6.608041+6 3.162278-5 5.352365+6 3.801894-5 3.084993+6 4.315191-5 2.094930+6 5.308844-5 1.106000+6 6.165950-5 7.030184+5 7.852356-5 3.420250+5 9.800000-5 1.775574+5 1.122018-4 1.196653+5 1.260000-4 8.588040+4 1.396368-4 6.445954+4 1.540000-4 4.941600+4 1.678804-4 3.937044+4 1.819701-4 3.206199+4 1.950000-4 2.705620+4 2.089296-4 2.299961+4 2.238721-4 1.968725+4 2.400000-4 1.695774+4 2.580000-4 1.463212+4 2.754229-4 1.289946+4 2.951209-4 1.137570+4 3.162278-4 1.010856+4 3.388442-4 9.043366+3 3.630781-4 8.141207+3 3.935501-4 7.253703+3 4.315191-4 6.412113+3 4.786301-4 5.626271+3 5.432503-4 4.836573+3 6.531306-4 3.917648+3 8.810489-4 2.790233+3 1.059254-3 2.249522+3 1.258925-3 1.824321+3 1.479108-3 1.489444+3 1.737801-3 1.206832+3 2.018366-3 9.855034+2 2.344229-3 7.988865+2 2.691535-3 6.535948+2 3.090295-3 5.309658+2 3.427678-3 4.514891+2 3.935501-3 3.609488+2 4.518559-3 2.863340+2 5.128614-3 2.299393+2 5.821032-3 1.833794+2 6.606934-3 1.452290+2 7.585776-3 1.117667+2 9.225714-3 7.646597+1 1.059254-2 5.809521+1 1.216186-2 4.381486+1 1.380384-2 3.358417+1 1.531087-2 2.685305+1 1.737801-2 2.025720+1 1.995262-2 1.477963+1 2.290868-2 1.070411+1 2.630268-2 7.696040+0 3.019952-2 5.494275+0 3.507519-2 3.784187+0 4.073803-2 2.586823+0 4.786301-2 1.703582+0 5.688529-2 1.080225+0 6.918310-2 6.393379-1 8.511380-2 3.639468-1 1.071519-1 1.930380-1 1.380384-1 9.537809-2 1.949845-1 3.617937-2 2.371374-1 2.104069-2 2.851018-1 1.272650-2 3.349654-1 8.253360-3 3.890451-1 5.561450-3 4.415705-1 4.010005-3 5.011872-1 2.911814-3 5.688529-1 2.130565-3 6.382635-1 1.615346-3 7.161434-1 1.233703-3 8.035261-1 9.495199-4 8.810489-1 7.736865-4 9.549926-1 6.506438-4 1.035142+0 5.508363-4 1.148154+0 4.483003-4 1.273503+0 3.675651-4 1.428894+0 2.969390-4 1.659587+0 2.267655-4 1.862087+0 1.854617-4 2.089296+0 1.527621-4 2.426610+0 1.196165-4 2.818383+0 9.438006-5 3.198895+0 7.775053-5 3.715352+0 6.230702-5 4.365158+0 4.947933-5 5.128614+0 3.959087-5 6.095369+0 3.141998-5 7.328245+0 2.475213-5 8.912509+0 1.936387-5 1.109175+1 1.484665-5 1.400000+1 1.128600-5 1.840772+1 8.255130-6 2.426610+1 6.072436-6 3.349654+1 4.280425-6 4.954502+1 2.825399-6 8.000000+1 1.716700-6 1.380384+2 9.813704-7 2.754229+2 4.873834-7 5.495409+2 2.431575-7 4.365158+3 3.047964-8 1.000000+5 1.329900-9 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 2.488000-5 2.488000-5 1.000000+5 2.488000-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 2.488000-5 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 1.862000-5 2.786638+7 1.883649-5 2.638692+7 1.945000-5 2.298036+7 2.000000-5 2.049412+7 2.070000-5 1.790680+7 2.162719-5 1.520242+7 2.270000-5 1.278396+7 2.400000-5 1.055084+7 2.600160-5 8.073623+6 3.000000-5 5.062040+6 3.801894-5 2.353614+6 4.265795-5 1.631911+6 4.677351-5 1.225649+6 5.069907-5 9.603175+5 5.500000-5 7.559640+5 5.900000-5 6.192200+5 6.309573-5 5.149906+5 6.760830-5 4.290463+5 7.244360-5 3.601682+5 7.762471-5 3.047385+5 8.317638-5 2.598599+5 8.912509-5 2.232223+5 9.549926-5 1.931024+5 1.023293-4 1.682168+5 1.100000-4 1.466876+5 1.174898-4 1.303589+5 1.260000-4 1.157996+5 1.364583-4 1.019310+5 1.500000-4 8.835360+4 1.659587-4 7.642201+4 1.850000-4 6.589240+4 2.089296-4 5.625271+4 2.540973-4 4.404042+4 3.758374-4 2.719440+4 4.677351-4 2.062731+4 5.583530-4 1.636672+4 6.606934-4 1.304111+4 7.762471-4 1.041376+4 9.120108-4 8.255871+3 1.071519-3 6.496478+3 1.258925-3 5.075234+3 1.479108-3 3.935835+3 1.737801-3 3.029773+3 2.065380-3 2.270701+3 2.426610-3 1.722356+3 2.818383-3 1.322873+3 3.281000-3 1.004273+3 3.801894-3 7.629096+2 4.365158-3 5.853483+2 5.011872-3 4.458504+2 5.754399-3 3.370006+2 6.683439-3 2.469790+2 7.673615-3 1.840678+2 8.810489-3 1.361645+2 1.000000-2 1.025758+2 1.135011-2 7.664872+1 1.303167-2 5.534946+1 1.496236-2 3.965653+1 1.717908-2 2.820023+1 1.972423-2 1.990058+1 2.264644-2 1.393172+1 2.600160-2 9.678410+0 3.000000-2 6.585857+0 3.467369-2 4.425352+0 4.027170-2 2.910952+0 4.677351-2 1.899623+0 5.495409-2 1.190563+0 6.839116-2 6.255935-1 8.317638-2 3.490382-1 1.023293-1 1.867135-1 1.258925-1 9.916170-2 1.840772-1 3.048868-2 2.113489-1 1.995362-2 2.483133-1 1.225499-2 2.884032-1 7.847950-3 3.311311-1 5.235601-3 3.758374-1 3.637974-3 4.216965-1 2.631453-3 4.731513-1 1.917436-3 5.308844-1 1.407585-3 5.888437-1 1.072949-3 6.531306-1 8.235660-4 7.244360-1 6.366903-4 8.511380-1 4.316351-4 9.120108-1 3.674551-4 9.660509-1 3.231099-4 1.023293+0 2.858669-4 1.109175+0 2.425762-4 1.216186+0 2.026387-4 1.333521+0 1.705725-4 1.603245+0 1.224386-4 1.819701+0 9.795680-5 2.018366+0 8.211644-5 2.344229+0 6.419059-5 2.722701+0 5.055544-5 3.090295+0 4.157245-5 3.589219+0 3.325740-5 4.216965+0 2.636610-5 4.954502+0 2.106398-5 5.888437+0 1.669032-5 7.079458+0 1.312936-5 8.511380+0 1.040420-5 1.047129+1 8.074702-6 1.288250+1 6.312428-6 1.621810+1 4.837123-6 2.089296+1 3.636029-6 2.800000+1 2.636100-6 3.845918+1 1.874411-6 5.559043+1 1.271100-6 9.332543+1 7.433737-7 1.678804+2 4.082079-7 3.349654+2 2.030350-7 1.333521+3 5.070679-8 1.000000+5 6.74960-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 1.862000-5 1.862000-5 1.000000+5 1.862000-5 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 1.862000-5 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 4.730000-6 8.011460+6 5.000000-6 6.681420+6 5.821032-6 4.043888+6 6.839116-6 2.392658+6 8.035261-6 1.426279+6 9.549926-6 8.252700+5 1.135011-5 4.812089+5 1.318257-5 3.037649+5 1.500000-5 2.056720+5 1.659587-5 1.525655+5 1.800000-5 1.207736+5 1.950000-5 9.659580+4 2.089296-5 8.022357+4 2.238721-5 6.710389+4 2.371374-5 5.818956+4 2.511886-5 5.079080+4 2.660725-5 4.465537+4 2.818383-5 3.955508+4 2.985383-5 3.529682+4 3.162278-5 3.172192+4 3.350000-5 2.869380+4 3.570000-5 2.587620+4 3.801894-5 2.353090+4 4.120975-5 2.101080+4 4.518559-5 1.861058+4 5.000000-5 1.640932+4 6.095369-5 1.299202+4 9.225714-5 8.082516+3 1.083927-4 6.755949+3 1.428894-4 5.014546+3 1.566751-4 4.517244+3 1.737801-4 3.985260+3 1.972423-4 3.391858+3 2.454709-4 2.554082+3 3.758374-4 1.452727+3 4.265795-4 1.222088+3 5.888437-4 7.791321+2 6.918310-4 6.161737+2 8.810489-4 4.309059+2 1.071519-3 3.194042+2 1.380384-3 2.152291+2 1.757924-3 1.465428+2 2.000000-3 1.190264+2 2.290868-3 9.433462+1 2.754229-3 6.944132+1 3.890451-3 3.935572+1 4.168694-3 3.499592+1 5.128614-3 2.438552+1 6.237348-3 1.721114+1 7.585776-3 1.205582+1 9.225714-3 8.381500+0 1.122018-2 5.783022+0 1.364583-2 3.959465+0 1.659587-2 2.689613+0 2.018366-2 1.812470+0 2.426610-2 1.240767+0 2.917427-2 8.429956-1 3.507519-2 5.681972-1 4.216965-2 3.799848-1 5.069907-2 2.521340-1 6.095369-2 1.659464-1 7.328245-2 1.084231-1 8.609938-2 7.424540-2 1.071519-1 4.403194-2 1.380384-1 2.384341-2 2.540973-1 5.334764-3 3.162278-1 3.137414-3 3.801894-1 2.020654-3 4.466836-1 1.385258-3 5.128614-1 1.009188-3 5.888437-1 7.406212-4 6.683439-1 5.616005-4 7.585776-1 4.288349-4 8.609938-1 3.298634-4 9.772372-1 2.556552-4 1.202264+0 1.704061-4 1.364583+0 1.339056-4 1.531087+0 1.082596-4 1.717908+0 8.813747-5 1.927525+0 7.225607-5 2.213095+0 5.741553-5 2.570396+0 4.508683-5 2.951209+0 3.632084-5 3.388442+0 2.948325-5 3.935501+0 2.369407-5 4.623810+0 1.886782-5 5.432503+0 1.513568-5 6.456542+0 1.204227-5 7.762471+0 9.508945-6 9.332543+0 7.562457-6 1.161449+1 5.808007-6 1.462177+1 4.436425-6 1.883649+1 3.324478-6 2.483133+1 2.447038-6 3.427678+1 1.725931-6 5.069907+1 1.139779-6 8.222427+1 6.896825-7 1.428894+2 3.915648-7 2.851018+2 1.945260-7 5.688529+2 9.706524-8 4.518559+3 1.216860-8 1.000000+5 5.49630-10 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 4.730000-6 4.730000-6 1.000000+5 4.730000-6 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 4.730000-6 0.0 1.000000+5 1.000000+5 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.296800-7 1.025800+0 1.315030-6 1.026100+0 1.649870-6 1.026600+0 2.325940-6 1.027100+0 3.164490-6 1.027500+0 3.963480-6 1.028100+0 5.396210-6 1.028750+0 7.296800-6 1.029500+0 9.985860-6 1.030100+0 1.255840-5 1.031000+0 1.718420-5 1.032000+0 2.351230-5 1.033200+0 3.293680-5 1.034000+0 4.043290-5 1.035300+0 5.488200-5 1.036640+0 7.296800-5 1.038200+0 9.847270-5 1.039700+0 1.279360-4 1.041500+0 1.702170-4 1.043800+0 2.362670-4 1.046400+0 3.287210-4 1.048300+0 4.092670-4 1.051200+0 5.551610-4 1.054080+0 7.296800-4 1.057700+0 9.946000-4 1.061100+0 1.293720-3 1.065100+0 1.712750-3 1.070400+0 2.389460-3 1.076200+0 3.302220-3 1.080600+0 4.123930-3 1.087100+0 5.556300-3 1.093710+0 7.296800-3 1.102600+0 1.011690-2 1.110700+0 1.319450-2 1.120600+0 1.765040-2 1.133300+0 2.454190-2 1.147500+0 3.388520-2 1.158200+0 4.211080-2 1.174100+0 5.628190-2 1.190110+0 7.296800-2 1.205100+0 9.082450-2 1.227500+0 1.215540-1 1.250000+0 1.571000-1 1.265600+0 1.843080-1 1.294900+0 2.406430-1 1.331800+0 3.202340-1 1.362600+0 3.929440-1 1.397000+0 4.796990-1 1.433800+0 5.777880-1 1.477900+0 7.008180-1 1.500000+0 7.643000-1 1.562500+0 9.483980-1 1.617200+0 1.113260+0 1.712900+0 1.404280+0 1.784700+0 1.621900+0 1.892300+0 1.944510+0 2.000000+0 2.263000+0 2.044000+0 2.392000+0 2.163500+0 2.734090+0 2.372600+0 3.301340+0 2.686300+0 4.082950+0 3.000000+0 4.798000+0 3.500000+0 5.841530+0 4.000000+0 6.790000+0 5.000000+0 8.454000+0 6.000000+0 9.886000+0 7.000000+0 1.115000+1 8.000000+0 1.229000+1 9.000000+0 1.333000+1 1.000000+1 1.429000+1 1.100000+1 1.518000+1 1.200000+1 1.600000+1 1.300000+1 1.678000+1 1.400000+1 1.750000+1 1.500000+1 1.818000+1 1.600000+1 1.881000+1 1.800000+1 1.995000+1 2.000000+1 2.097000+1 2.200000+1 2.190000+1 2.400000+1 2.275000+1 2.600000+1 2.352000+1 2.800000+1 2.423000+1 3.000000+1 2.488000+1 4.000000+1 2.755000+1 5.000000+1 2.953000+1 6.000000+1 3.106000+1 8.000000+1 3.332000+1 1.000000+2 3.491000+1 1.500000+2 3.742000+1 2.000000+2 3.891000+1 3.000000+2 4.064000+1 4.000000+2 4.164000+1 5.000000+2 4.229000+1 6.000000+2 4.276000+1 8.000000+2 4.338000+1 1.000000+3 4.378000+1 1.500000+3 4.436000+1 2.000000+3 4.468000+1 3.000000+3 4.502000+1 4.000000+3 4.520000+1 5.000000+3 4.532000+1 6.000000+3 4.540000+1 8.000000+3 4.551000+1 1.000000+4 4.557000+1 1.500000+4 4.567000+1 2.000000+4 4.572000+1 3.000000+4 4.577000+1 4.000000+4 4.580000+1 5.000000+4 4.581000+1 6.000000+4 4.582000+1 8.000000+4 4.584000+1 1.000000+5 4.585000+1 1 88000 7 8 2.260000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.805380-7 2.090400+0 1.195550-6 2.094700+0 1.550210-6 2.099900+0 2.062340-6 2.106600+0 2.868890-6 2.114000+0 3.969470-6 2.119500+0 4.941960-6 2.127900+0 6.702240-6 2.136250+0 8.805380-6 2.147000+0 1.207280-5 2.156900+0 1.568110-5 2.169000+0 2.092740-5 2.184500+0 2.908980-5 2.201800+0 4.024660-5 2.214800+0 5.014410-5 2.234200+0 6.745270-5 2.253680+0 8.805380-5 2.281500+0 1.233350-4 2.307000+0 1.620000-4 2.338200+0 2.178230-4 2.377400+0 3.016580-4 2.410200+0 3.836580-4 2.446800+0 4.880340-4 2.485900+0 6.144620-4 2.532900+0 7.863820-4 2.556430+0 8.805380-4 2.611900+0 1.122790-3 2.660400+0 1.357400-3 2.745300+0 1.816810-3 2.809000+0 2.200270-3 2.904500+0 2.834510-3 3.000000+0 3.538000-3 3.125000+0 4.561850-3 3.234400+0 5.550330-3 3.425800+0 7.472940-3 3.569300+0 9.060240-3 3.784700+0 1.164390-2 4.000000+0 1.442000-2 4.250000+0 1.781220-2 4.625000+0 2.313880-2 5.000000+0 2.867000-2 5.500000+0 3.625180-2 6.000000+0 4.393000-2 6.750000+0 5.535560-2 7.000000+0 5.911000-2 8.000000+0 7.376000-2 9.000000+0 8.775000-2 1.000000+1 1.010000-1 1.100000+1 1.135000-1 1.200000+1 1.253000-1 1.300000+1 1.364000-1 1.400000+1 1.469000-1 1.500000+1 1.568000-1 1.600000+1 1.662000-1 1.800000+1 1.836000-1 2.000000+1 1.994000-1 2.200000+1 2.137000-1 2.400000+1 2.269000-1 2.600000+1 2.390000-1 2.800000+1 2.502000-1 3.000000+1 2.606000-1 4.000000+1 3.032000-1 5.000000+1 3.353000-1 6.000000+1 3.604000-1 8.000000+1 3.980000-1 1.000000+2 4.251000-1 1.500000+2 4.694000-1 2.000000+2 4.968000-1 3.000000+2 5.301000-1 4.000000+2 5.500000-1 5.000000+2 5.635000-1 6.000000+2 5.734000-1 8.000000+2 5.870000-1 1.000000+3 5.961000-1 1.500000+3 6.096000-1 2.000000+3 6.172000-1 3.000000+3 6.256000-1 4.000000+3 6.306000-1 5.000000+3 6.336000-1 6.000000+3 6.357000-1 8.000000+3 6.386000-1 1.000000+4 6.404000-1 1.500000+4 6.428000-1 2.000000+4 6.443000-1 3.000000+4 6.456000-1 4.000000+4 6.465000-1 5.000000+4 6.470000-1 6.000000+4 6.474000-1 8.000000+4 6.477000-1 1.000000+5 6.480000-1 1 88000 7 8 2.260000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 88000 7 9 2.260000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.800000+1 1.000000+5 8.800000+1 5.000000+5 8.796800+1 7.500000+5 8.793180+1 9.375000+5 8.790720+1 1.000000+6 8.789700+1 1.250000+6 8.784050+1 1.500000+6 8.778300+1 1.875000+6 8.766430+1 2.000000+6 8.761900+1 2.375000+6 8.746800+1 2.500000+6 8.741300+1 2.875000+6 8.723430+1 3.000000+6 8.717000+1 3.250000+6 8.702720+1 3.625000+6 8.681180+1 4.000000+6 8.658500+1 4.437500+6 8.629760+1 4.812500+6 8.603640+1 5.000000+6 8.591000+1 5.500000+6 8.553850+1 5.875000+6 8.524920+1 6.437500+6 8.480400+1 6.500000+6 8.475160+1 7.000000+6 8.435100+1 8.000000+6 8.353120+1 9.000000+6 8.270000+1 1.000000+7 8.185300+1 1.250000+7 7.975000+1 1.500000+7 7.761000+1 1.750000+7 7.543100+1 2.000000+7 7.325900+1 2.375000+7 7.007130+1 2.500000+7 6.904400+1 2.875000+7 6.609440+1 3.000000+7 6.516200+1 3.250000+7 6.335950+1 3.500000+7 6.164650+1 3.625000+7 6.080970+1 4.000000+7 5.840600+1 4.500000+7 5.537620+1 5.000000+7 5.252200+1 5.500000+7 4.982890+1 6.000000+7 4.730900+1 6.750000+7 4.386110+1 7.000000+7 4.280200+1 8.000000+7 3.896300+1 9.000000+7 3.566000+1 1.000000+8 3.275200+1 1.062500+8 3.108330+1 1.125000+8 2.950870+1 1.156300+8 2.875070+1 1.250000+8 2.659000+1 1.359400+8 2.426740+1 1.500000+8 2.166900+1 1.750000+8 1.811950+1 1.875000+8 1.678560+1 2.000000+8 1.568900+1 2.125000+8 1.479270+1 2.312500+8 1.371040+1 2.375000+8 1.340220+1 2.500000+8 1.284200+1 2.718800+8 1.197020+1 2.859400+8 1.140550+1 2.875000+8 1.134160+1 2.964800+8 1.095730+1 3.000000+8 1.080100+1 3.125000+8 1.022930+1 3.359400+8 9.235650+0 3.375000+8 9.177870+0 3.500000+8 8.760500+0 3.625000+8 8.427400+0 3.859400+8 7.888200+0 4.000000+8 7.545300+0 4.125000+8 7.204980+0 4.234400+8 6.894470+0 4.425800+8 6.358690+0 4.750000+8 5.571820+0 4.784700+8 5.499820+0 4.928200+8 5.231990+0 5.000000+8 5.115000+0 5.179700+8 4.871420+0 5.330100+8 4.706820+0 5.425800+8 4.615790+0 6.000000+8 4.173700+0 7.000000+8 3.525500+0 7.500000+8 3.273880+0 7.750000+8 3.148110+0 8.000000+8 3.013500+0 8.250000+8 2.868560+0 9.500000+8 2.187420+0 1.000000+9 1.989600+0 1.031300+9 1.891610+0 1.074300+9 1.782490+0 1.113800+9 1.702010+0 1.162000+9 1.622840+0 1.204300+9 1.566260+0 1.250000+9 1.514930+0 1.278200+9 1.487140+0 1.389100+9 1.396760+0 1.500000+9 1.321400+0 1.625000+9 1.242100+0 1.718800+9 1.184650+0 1.859400+9 1.101680+0 2.000000+9 1.022300+0 2.139200+9 9.472060-1 2.272600+9 8.793580-1 2.443000+9 7.989170-1 2.602800+9 7.300810-1 2.750000+9 6.720740-1 2.752700+9 6.710630-1 2.959000+9 5.980930-1 3.148200+9 5.389630-1 3.379700+9 4.755390-1 3.676800+9 4.065990-1 3.986900+9 3.470640-1 4.240200+9 3.061640-1 4.511500+9 2.687100-1 4.837200+9 2.309560-1 5.000000+9 2.145800-1 5.375000+9 1.820240-1 5.703100+9 1.585210-1 6.277300+9 1.259870-1 7.031000+9 9.526450-2 8.000000+9 6.873900-2 9.500000+9 4.413160-2 1.00000+10 3.862900-2 1.54060+10 1.250920-2 1.00000+11 9.207200-5 1.68570+11 2.363160-5 3.34410+11 4.022550-6 8.62510+11 3.549810-7 2.83020+12 1.738260-8 1.00000+14 2.21890-12 3.16230+15 3.60007-16 1.00000+17 5.58050-20 1 88000 7 0 2.260000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.44000-11 1.000000+2 1.440000-9 1.000000+3 1.440000-7 1.000000+4 1.440000-5 1.000000+5 1.440000-3 5.000000+5 3.600000-2 7.500000+5 8.100000-2 9.375000+5 1.265625-1 1.000000+6 1.440000-1 1.250000+6 2.228660-1 1.500000+6 3.170000-1 1.875000+6 4.846810-1 2.000000+6 5.470000-1 2.375000+6 7.505600-1 2.500000+6 8.234000-1 2.875000+6 1.054150+0 3.000000+6 1.134600+0 3.250000+6 1.299570+0 3.625000+6 1.555140+0 4.000000+6 1.816900+0 4.437500+6 2.125240+0 4.812500+6 2.388970+0 5.000000+6 2.520000+0 5.500000+6 2.863680+0 5.875000+6 3.116290+0 6.437500+6 3.486870+0 6.500000+6 3.527260+0 7.000000+6 3.847900+0 8.000000+6 4.470420+0 9.000000+6 5.082400+0 1.000000+7 5.696000+0 1.250000+7 7.266500+0 1.500000+7 8.858000+0 1.750000+7 1.042700+1 2.000000+7 1.196400+1 2.375000+7 1.420750+1 2.500000+7 1.493400+1 2.875000+7 1.701570+1 3.000000+7 1.767200+1 3.250000+7 1.891660+1 3.500000+7 2.008760+1 3.625000+7 2.065160+1 4.000000+7 2.227000+1 4.500000+7 2.431030+1 5.000000+7 2.628300+1 5.500000+7 2.822880+1 6.000000+7 3.013900+1 6.750000+7 3.290040+1 7.000000+7 3.379000+1 8.000000+7 3.713600+1 9.000000+7 4.012100+1 1.000000+8 4.274400+1 1.062500+8 4.421650+1 1.125000+8 4.558590+1 1.156300+8 4.623860+1 1.250000+8 4.809300+1 1.359400+8 5.009740+1 1.500000+8 5.250200+1 1.750000+8 5.639420+1 1.875000+8 5.817470+1 2.000000+8 5.985800+1 2.125000+8 6.143990+1 2.312500+8 6.362670+1 2.375000+8 6.430680+1 2.500000+8 6.560200+1 2.718800+8 6.763950+1 2.859400+8 6.880690+1 2.875000+8 6.893020+1 2.964800+8 6.962400+1 3.000000+8 6.988500+1 3.125000+8 7.076110+1 3.359400+8 7.223090+1 3.375000+8 7.231940+1 3.500000+8 7.301800+1 3.625000+8 7.366580+1 3.859400+8 7.476120+1 4.000000+8 7.536300+1 4.125000+8 7.585970+1 4.234400+8 7.626460+1 4.425800+8 7.693880+1 4.750000+8 7.796040+1 4.784700+8 7.806040+1 4.928200+8 7.846510+1 5.000000+8 7.866400+1 5.179700+8 7.913010+1 5.330100+8 7.949970+1 5.425800+8 7.972450+1 6.000000+8 8.095900+1 7.000000+8 8.264900+1 7.500000+8 8.331350+1 7.750000+8 8.360810+1 8.000000+8 8.388100+1 8.250000+8 8.412150+1 9.500000+8 8.509120+1 1.000000+9 8.538100+1 1.031300+9 8.553440+1 1.074300+9 8.573190+1 1.113800+9 8.589170+1 1.162000+9 8.605640+1 1.204300+9 8.619410+1 1.250000+9 8.631840+1 1.278200+9 8.639010+1 1.389100+9 8.663890+1 1.500000+9 8.684700+1 1.625000+9 8.703340+1 1.718800+9 8.716430+1 1.859400+9 8.732190+1 2.000000+9 8.746100+1 2.139200+9 8.756380+1 2.272600+9 8.764180+1 2.443000+9 8.772510+1 2.602800+9 8.778920+1 2.750000+9 8.783290+1 2.752700+9 8.783370+1 2.959000+9 8.787920+1 3.148200+9 8.790930+1 3.379700+9 8.794370+1 3.676800+9 8.796060+1 3.986900+9 8.797640+1 4.240200+9 8.798670+1 4.511500+9 8.798940+1 4.837200+9 8.799250+1 5.000000+9 8.799400+1 5.375000+9 8.799490+1 5.703100+9 8.799570+1 6.277300+9 8.799690+1 7.031000+9 8.799840+1 8.000000+9 8.800000+1 9.500000+9 8.800000+1 1.00000+10 8.800000+1 1.54060+10 8.800000+1 1.00000+11 8.800000+1 1.68570+11 8.800000+1 3.34410+11 8.800000+1 8.62510+11 8.800000+1 2.83020+12 8.800000+1 1.00000+14 8.800000+1 3.16230+15 8.800000+1 1.00000+17 8.800000+1 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.433916-6 0.0 1.437445-6 2.705981-7 1.440975-6 5.354389-7 1.444504-6 9.780230-7 1.448034-6 1.649081-6 1.451563-6 2.566781-6 1.455092-6 3.687988-6 1.458622-6 4.891523-6 1.462151-6 5.988977-6 1.465681-6 6.768852-6 1.469210-6 7.062059-6 1.472739-6 6.801451-6 1.476269-6 6.046802-6 1.479798-6 4.962539-6 1.486857-6 2.629191-6 1.490386-6 1.697314-6 1.493916-6 1.011478-6 1.497445-6 5.564223-7 1.500975-6 2.825574-7 1.504504-6 0.0 1.755471-6 0.0 1.759792-6 9.035699-7 1.764113-6 1.787916-6 1.768434-6 3.265774-6 1.772755-6 5.506544-6 1.777076-6 8.570890-6 1.781397-6 1.231478-5 1.785717-6 1.633357-5 1.790038-6 1.999814-5 1.794359-6 2.260227-5 1.798680-6 2.358134-5 1.803001-6 2.271112-5 1.807322-6 2.019123-5 1.811643-6 1.657071-5 1.820284-6 8.779287-6 1.824605-6 5.667602-6 1.828926-6 3.377485-6 1.833247-6 1.857982-6 1.837568-6 9.435040-7 1.841889-6 0.0 1.930786-6 0.0 1.939697-6 4.432798+0 1.940291-6 4.725597+0 1.945043-6 8.631689+0 1.949796-6 1.455421+1 1.955142-6 2.388783+1 1.963468-6 4.186112+1 1.969102-6 5.328584+1 1.973994-6 5.997658+1 1.978636-6 6.216981+1 1.983832-6 5.895138+1 1.988791-6 5.140594+1 1.996735-6 3.448965+1 2.002072-6 2.320432+1 2.006824-6 1.497990+1 2.011577-6 8.926950+0 2.016329-6 4.910788+0 2.023161-6 1.404179+0 2.025834-6 0.0 2.225346-6 0.0 2.234931-6 8.516655+0 2.236301-6 9.720905+0 2.241778-6 1.775603+1 2.247256-6 2.993910+1 2.253418-6 4.913904+1 2.263014-6 8.611145+1 2.269508-6 1.096130+2 2.275529-6 1.237486+2 2.280875-6 1.275612+2 2.286411-6 1.214494+2 2.292059-6 1.062497+2 2.300682-6 7.363923+1 2.307507-6 4.773302+1 2.312984-6 3.081478+1 2.318462-6 1.836340+1 2.323939-6 1.010186+1 2.332155-6 2.567933+0 2.334894-6 0.0 2.887312-6 0.0 2.894419-6 2.76595-15 2.901526-6 5.47304-15 2.908633-6 9.99696-15 2.915739-6 1.68563-14 2.922846-6 2.62366-14 2.929953-6 3.76972-14 2.937060-6 4.99992-14 2.944166-6 6.12169-14 2.951273-6 6.91885-14 2.958380-6 7.21856-14 2.965487-6 6.95217-14 2.972594-6 6.18080-14 2.979700-6 5.07251-14 2.993914-6 2.68745-14 3.001021-6 1.73493-14 3.008127-6 1.03389-14 3.015234-6 5.68753-15 3.022341-6 2.88819-15 3.029448-6 0.0 3.368879-6 0.0 3.383390-6 1.101362-1 3.385463-6 1.257095-1 3.393756-6 2.296199-1 3.402048-6 3.871723-1 3.411136-6 6.284579-1 3.435739-6 1.417576+0 3.444109-6 1.594021+0 3.452523-6 1.652491+0 3.461658-6 1.563542+0 3.463052-6 1.541942+0 3.469843-6 1.684294+0 3.480624-6 1.835654+0 3.488536-6 2.154198+0 3.497403-6 2.895378+0 3.507488-6 4.270154+0 3.531993-6 8.558201+0 3.540530-6 9.555798+0 3.549000-6 9.884069+0 3.557156-6 9.490365+0 3.565963-6 8.345322+0 3.590717-6 3.694180+0 3.599240-6 2.384834+0 3.607764-6 1.421190+0 3.616287-6 7.818085-1 3.629072-6 1.987389-1 3.633334-6 0.0 3.773363-6 0.0 3.782651-6 9.44051-12 3.791939-6 1.86802-11 3.801226-6 3.41209-11 3.810514-6 5.75325-11 3.819802-6 8.95488-11 3.829089-6 1.28665-10 3.838377-6 1.70653-10 3.847665-6 2.08941-10 3.856952-6 2.36149-10 3.866240-6 2.46378-10 3.875528-6 2.37286-10 3.884815-6 2.10958-10 3.893985-6 1.73615-10 3.913154-6 2.712496-2 3.922738-6 4.954692-2 3.932323-6 8.354426-2 3.935952-6 1.011203-1 3.941907-6 2.001470-1 3.955327-6 4.370823-1 3.965015-6 6.832162-1 3.976635-6 1.099897+0 3.988947-6 1.654109+0 4.010320-6 2.670146+0 4.015112-6 2.852618+0 4.024731-6 3.087396+0 4.034350-6 3.115532+0 4.043970-6 2.924747+0 4.054192-6 2.517303+0 4.081269-6 1.115726+0 4.090957-6 7.160193-1 4.100645-6 4.266954-1 4.110333-6 2.347280-1 4.120021-6 1.191973-1 4.129708-6 1.98532-10 4.138518-6 2.22475-10 4.146226-6 2.38496-10 4.166637-6 1.036099-2 4.168586-6 1.199319-2 4.178190-6 6.842447-2 4.189106-6 1.365257-1 4.199367-6 2.387109-1 4.209627-6 3.874931-1 4.219888-6 5.836349-1 4.245539-6 1.160349+0 4.250669-6 1.265621+0 4.260930-6 1.405431+0 4.271190-6 1.444520+0 4.281450-6 1.373674+0 4.294276-6 1.155520+0 4.312232-6 7.766614-1 4.322492-6 5.841643-1 4.332753-6 4.529169-1 4.343013-6 3.947345-1 4.353274-6 4.067590-1 4.374406-6 5.603897-1 4.387214-6 7.058601-1 4.395575-6 7.838019-1 4.406160-6 8.310148-1 4.419215-6 8.200524-1 4.455831-6 6.654277-1 4.472552-6 6.446042-1 4.503618-6 6.679938-1 4.591211-6 6.337489-1 4.636522-6 5.967512-1 4.666345-6 5.536880-1 4.699963-6 5.517755-1 4.728879-6 5.725518-1 4.756657-6 5.732158-1 4.824183-6 5.194256-1 5.324691-6 4.137331-1 5.879968-6 3.293951-1 6.371262-6 2.748840-1 7.040088-6 2.197208-1 7.798606-6 1.752347-1 8.630508-6 1.405138-1 9.600000-6 1.116063-1 1.059358-5 9.052229-2 1.178371-5 7.235150-2 1.318257-5 5.732895-2 1.474734-5 4.570906-2 1.496867-5 4.436010-2 1.502393-5 1.789524+0 1.504235-5 2.363870+0 1.507920-5 4.281283+0 1.511604-5 7.188622+0 1.515288-5 1.116461+1 1.518973-5 1.602234+1 1.524499-5 2.361135+1 1.527012-5 2.660569+1 1.529025-5 2.845115+1 1.530026-5 3.196339+1 1.534420-5 4.433379+1 1.537022-5 5.073942+1 1.540315-5 6.223104+1 1.544352-5 8.404726+1 1.548805-5 1.190097+2 1.559731-5 2.249081+2 1.563781-5 2.489506+2 1.567400-5 2.541271+2 1.570887-5 2.422551+2 1.574795-5 2.117580+2 1.585478-5 9.496550+1 1.589241-5 6.132034+1 1.593005-5 3.655836+1 1.596768-5 2.012860+1 1.602413-5 5.145738+0 1.604295-5 3.884362-2 1.642209-5 3.701464-2 1.650293-5 4.554523-1 1.654335-5 8.014647-1 1.658377-5 1.326190+0 1.662420-5 2.043835+0 1.668483-5 3.390704+0 1.674546-5 4.720123+0 1.678588-5 5.329964+0 1.682630-5 5.559141+0 1.686672-5 5.355142+0 1.690714-5 4.764714+0 1.695312-5 3.827309+0 1.702846-5 3.488743+0 1.703946-5 3.525756+0 1.707830-5 4.045902+0 1.712003-5 5.436277+0 1.716944-5 8.227412+0 1.729310-5 1.715656+1 1.733494-5 1.913713+1 1.737678-5 1.977850+1 1.741913-5 1.894737+1 1.748370-5 1.559222+1 1.758356-5 9.577618+0 1.762653-5 7.944112+0 1.766702-5 7.156252+0 1.771010-5 7.084996+0 1.779845-5 8.023195+0 1.785406-5 9.146543+0 1.789530-5 9.659506+0 1.794174-5 9.862575+0 1.811078-5 9.143635+0 1.842675-5 8.052440+0 1.860878-5 7.380802+0 1.879861-5 7.044058+0 2.060072-5 5.412237+0 2.111810-5 5.048181+0 2.122206-5 1.532087+1 2.127404-5 2.383337+1 2.132927-5 3.785933+1 2.138186-5 5.605835+1 2.151555-5 1.123305+2 2.157162-5 1.313041+2 2.160097-5 1.370744+2 2.164521-5 1.403665+2 2.169465-5 1.346775+2 2.174975-5 1.181084+2 2.189780-5 5.534517+1 2.194978-5 3.732517+1 2.200176-5 2.405523+1 2.205374-5 1.524103+1 2.215770-5 4.444510+0 2.257153-5 4.238118+0 2.273820-5 4.389145+0 2.284932-5 4.708710+0 2.301599-5 5.437191+0 2.307396-5 5.597790+0 2.316740-5 6.087944+0 2.324434-5 6.437282+0 2.330114-5 6.914141+0 2.335793-5 7.649644+0 2.352831-5 1.091058+1 2.359231-5 1.176005+1 2.366489-5 1.204097+1 2.372478-5 1.165341+1 2.389736-5 9.224967+0 2.398361-5 8.403138+0 2.408749-5 8.305707+0 2.432051-5 8.638289+0 2.497915-5 7.845781+0 2.539699-5 7.217367+0 2.721158-5 6.084660+0 2.951209-5 5.064764+0 3.235937-5 4.164700+0 3.570000-5 3.392199+0 3.627835-5 3.291805+0 3.663553-5 3.412805+0 3.708201-5 3.803486+0 3.726874-5 3.746199+0 3.770707-5 3.200715+0 3.788566-5 3.098504+0 3.825816-5 3.126558+0 3.860443-5 3.133981+0 4.086842-5 2.739507+0 4.551283-5 2.177715+0 4.972785-5 1.810468+0 5.479837-5 1.491160+0 6.125169-5 1.209813+0 6.878599-5 9.889011-1 7.119073-5 9.344476-1 7.154118-5 1.066257+0 7.171641-5 1.177581+0 7.189164-5 1.348207+0 7.206687-5 1.582827+0 7.260654-5 2.499088+0 7.289321-5 2.808050+0 7.299849-5 2.874147+0 7.304645-5 2.963334+0 7.320271-5 3.732856+0 7.329982-5 4.767898+0 7.336287-5 5.906300+0 7.341162-5 7.265881+0 7.346730-5 9.402628+0 7.354001-5 1.298474+1 7.362633-5 1.829811+1 7.374802-5 2.690959+1 7.386115-5 3.733501+1 7.396186-5 4.904634+1 7.409336-5 6.814738+1 7.430276-5 1.078366+2 7.479252-5 2.154291+2 7.501301-5 2.480269+2 7.520113-5 2.572742+2 7.539772-5 2.457403+2 7.560823-5 2.139477+2 7.609988-5 1.110948+2 7.626092-5 8.295259+1 7.639375-5 6.452358+1 7.649007-5 5.367257+1 7.658859-5 4.458830+1 7.666902-5 3.867221+1 7.676026-5 3.325945+1 7.691369-5 2.609871+1 7.702465-5 2.242303+1 7.710551-5 2.102238+1 7.725116-5 2.054614+1 7.860886-5 2.114547+1 7.876715-5 2.160409+1 7.889348-5 2.427999+1 7.912199-5 3.343166+1 7.914705-5 3.451568+1 7.929056-5 4.312463+1 7.936128-5 4.858382+1 7.950878-5 6.281175+1 7.965526-5 8.145561+1 7.978213-5 1.006795+2 8.018296-5 1.731776+2 8.035264-5 2.048439+2 8.057487-5 2.340302+2 8.072124-5 2.452601+2 8.092689-5 2.433189+2 8.113019-5 2.248675+2 8.142273-5 1.787720+2 8.175117-5 1.199010+2 8.190187-5 9.669063+1 8.203598-5 7.926648+1 8.219302-5 6.331647+1 8.228147-5 5.634730+1 8.242846-5 4.728457+1 8.263646-5 3.705777+1 8.276764-5 3.353265+1 8.298825-5 3.178688+1 8.541186-5 2.833317+1 9.169821-5 2.139359+1 9.654966-5 1.741757+1 1.015956-4 1.437861+1 1.078203-4 1.159609+1 1.144567-4 9.350586+0 1.220183-4 7.375899+0 1.296000-4 5.878860+0 1.366506-4 4.819018+0 1.458084-4 3.790126+0 1.531201-4 3.176849+0 1.542513-4 3.114048+0 1.554589-4 3.177658+0 1.563192-4 3.360648+0 1.581526-4 3.906461+0 1.594161-4 3.992041+0 1.635390-4 3.594430+0 1.736197-4 3.058040+0 1.880993-4 2.548850+0 1.925096-4 2.433889+0 1.939391-4 2.537404+0 1.949477-4 2.769889+0 1.968821-4 3.440136+0 1.978181-4 3.547660+0 1.990479-4 3.381086+0 2.011451-4 3.018070+0 2.019864-4 2.919562+0 2.052039-4 2.799840+0 2.206967-4 2.518710+0 2.402288-4 2.313945+0 2.470377-4 2.288940+0 2.528059-4 2.490723+0 2.660725-4 2.419270+0 2.809478-4 2.412311+0 2.823309-4 3.354536+0 2.830224-4 4.161674+0 2.837606-4 5.530104+0 2.845732-4 7.665514+0 2.866237-4 1.428167+1 2.874077-4 1.600073+1 2.881037-4 1.661491+1 2.887968-4 1.624173+1 2.895967-4 1.474507+1 2.915037-4 9.639638+0 2.921238-4 8.321565+0 2.927880-4 7.398845+0 2.934711-4 6.977249+0 2.947967-4 7.025702+0 2.958745-4 7.754288+0 2.966050-4 7.938503+0 2.973024-4 7.838090+0 2.980862-4 7.398176+0 3.008445-4 4.791906+0 3.015134-4 4.313444+0 3.022133-4 3.947322+0 3.035960-4 3.470973+0 3.064469-4 3.379653+0 3.155799-4 3.582630+0 3.219988-4 3.909361+0 3.294417-4 4.558442+0 3.362500-4 5.424964+0 3.456000-4 7.006445+0 3.532457-4 8.596150+0 3.710010-4 1.303973+1 4.011986-4 2.082611+1 4.235614-4 2.553073+1 4.544646-4 3.005782+1 4.883711-4 3.301968+1 5.308844-4 3.476655+1 5.878762-4 3.515219+1 5.941433-4 3.636344+1 6.027410-4 4.074575+1 6.072124-4 4.028539+1 6.140957-4 3.844003+1 6.241856-4 3.836074+1 6.301613-4 3.993763+1 6.366475-4 4.208603+1 6.521841-4 3.967741+1 8.517082-4 3.534092+1 8.721332-4 3.684699+1 1.032726-3 3.244997+1 1.188373-3 2.942753+1 1.532232-3 2.315085+1 1.819701-3 1.922600+1 2.166476-3 1.574439+1 2.599655-3 1.264052+1 3.035954-3 1.043774+1 3.051239-3 1.094556+1 3.061152-3 1.169697+1 3.070405-3 1.292360+1 3.081921-3 1.530703+1 3.110680-3 2.316902+1 3.124476-3 2.541553+1 3.138976-3 2.605333+1 3.186275-3 2.482930+1 3.211638-3 2.604038+1 3.227929-3 2.833637+1 3.258590-3 3.410665+1 3.274246-3 3.536854+1 3.307555-3 3.418049+1 3.354099-3 3.265624+1 3.691867-3 2.814005+1 3.740114-3 2.858929+1 3.798562-3 3.077050+1 3.899974-3 3.010660+1 4.397489-3 2.523814+1 4.539271-3 2.551044+1 4.753924-3 2.408890+1 4.899523-3 2.387657+1 5.704926-3 1.921553+1 6.521913-3 1.579124+1 7.328245-3 1.325636+1 8.499141-3 1.059520+1 9.674422-3 8.679106+0 1.105506-2 7.051115+0 1.252127-2 5.797010+0 1.433406-2 4.675427+0 1.509597-2 4.321039+0 1.520294-2 4.437692+0 1.527116-2 4.759027+0 1.533342-2 5.353298+0 1.542506-2 6.743375+0 1.553107-2 8.456249+0 1.560734-2 9.249443+0 1.572187-2 9.669269+0 1.821004-2 7.686607+0 1.836738-2 7.904097+0 1.854180-2 8.861142+0 1.872025-2 9.841072+0 1.894950-2 1.010085+1 1.916951-2 1.041429+1 1.941016-2 1.098294+1 1.989419-2 1.077595+1 2.316613-2 8.518067+0 2.661675-2 6.844672+0 3.062936-2 5.460596+0 3.489413-2 4.414412+0 4.014578-2 3.501851+0 4.531201-2 2.862698+0 5.128614-2 2.323515+0 5.797258-2 1.888828+0 6.578176-2 1.522508+0 7.422610-2 1.238266+0 8.353677-2 1.010605+0 9.509556-2 8.087195-1 1.018518-1 7.232080-1 1.024137-1 7.445012-1 1.027775-1 7.970849-1 1.030725-1 8.833307-1 1.033349-1 1.005801+0 1.036903-1 1.250660+0 1.040314-1 1.561212+0 1.047882-1 2.316105+0 1.052813-1 2.673488+0 1.058656-1 2.883318+0 1.066100-1 2.938343+0 1.257739-1 2.285308+0 1.413622-1 1.898965+0 1.629071-1 1.514330+0 1.815125-1 1.273437+0 2.040099-1 1.056048+0 2.313265-1 8.641159-1 2.613627-1 7.130763-1 2.965018-1 5.859947-1 3.356611-1 4.861243-1 3.793748-1 4.059859-1 4.315191-1 3.377962-1 4.914414-1 2.825913-1 5.649251-1 2.354020-1 6.541086-1 1.961585-1 7.717915-1 1.615895-1 8.976871-1 1.370390-1 1.120601+0 1.082746-1 1.286622+0 9.253157-2 1.477239+0 7.907755-2 1.696589+0 6.755854-2 1.947381+0 5.775369-2 2.258160+0 4.882415-2 2.688134+0 4.002771-2 3.086391+0 3.420771-2 3.543651+0 2.923393-2 4.068655+0 2.498334-2 4.671441+0 2.135078-2 5.363532+0 1.824640-2 6.158159+0 1.559338-2 7.087074+0 1.329232-2 8.118035+0 1.138851-2 9.320751+0 9.732629-3 9.760024+0 9.236014-3 1.000000+1 1.923577-2 1 88000 7 0 2.260000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.726640+1 1.662665-6-8.391401+1 1.837568-6-7.931591+1 1.897470-6-7.386295+1 1.920769-6-6.829401+1 1.930489-6-6.305307+1 1.951429-6-4.716360+1 1.956182-6-4.572788+1 1.960934-6-4.722802+1 1.965241-6-5.188025+1 1.969102-6-5.881961+1 1.973706-6-6.991093+1 1.978636-6-8.392082+1 1.983283-6-7.912222+1 1.989263-6-6.538667+1 1.994201-6-5.842094+1 1.999399-6-5.560079+1 2.005636-6-5.700134+1 2.031797-6-7.660567+1 2.054623-6-8.364579+1 2.084378-6-8.762718+1 2.169371-6-7.580231+1 2.197946-6-6.813119+1 2.214586-6-5.991764+1 2.223112-6-5.246465+1 2.229138-6-4.372822+1 2.235616-6-3.593654+1 2.242463-6-2.565863+1 2.247940-6-1.868340+1 2.249138-6-1.756032+1 2.253418-6-1.488392+1 2.255514-6-1.486493+1 2.258210-6-1.615591+1 2.260093-6-1.794177+1 2.262340-6-2.140310+1 2.265057-6-2.763505+1 2.267432-6-3.424612+1 2.269165-6-4.052714+1 2.274101-6-6.094662+1 2.279547-6-8.794963+1 2.281966-6-7.455137+1 2.285769-6-5.562289+1 2.287504-6-4.741765+1 2.292059-6-2.899849+1 2.293604-6-2.402297+1 2.296552-6-1.616396+1 2.297237-6-1.453158+1 2.298435-6-1.216001+1 2.299334-6-1.066060+1 2.300682-6-8.822048+0 2.301356-6-8.094230+0 2.303399-6-6.648106+0 2.304426-6-6.141746+0 2.305967-6-5.802316+0 2.306737-6-5.878293+0 2.310246-6-7.771127+0 2.311615-6-8.746664+0 2.312300-6-9.407761+0 2.313669-6-1.135487+1 2.317264-6-1.551770+1 2.325822-6-2.808010+1 2.334209-6-3.837011+1 2.336511-6-4.232357+1 2.342939-6-4.864912+1 2.355574-6-5.603624+1 2.376023-6-6.287024+1 2.410929-6-6.910784+1 2.480445-6-7.487177+1 2.651378-6-7.996745+1 3.404898-6-8.679076+1 3.488536-6-8.784939+1 3.523236-6-8.743329+1 3.531993-6-8.762944+1 3.575568-6-7.875775+1 3.607764-6-7.916127+1 3.678815-6-8.264178+1 4.010320-6-8.570097+1 4.081269-6-8.280531+1 4.258364-6-8.493786+1 4.680910-6-8.480005+1 9.926106-6-8.779494+1 1.265009-5-8.252480+1 1.375671-5-7.612476+1 1.433026-5-6.850985+1 1.463829-5-6.056920+1 1.482039-5-5.258513+1 1.492175-5-4.573120+1 1.497788-5-3.997764+1 1.504235-5-3.248409+1 1.518973-5-1.141296+1 1.524499-5-4.246241+0 1.526341-5-1.597954+0 1.527012-5-5.275393-1 1.528019-5 1.583982+0 1.528522-5 2.925068+0 1.528773-5 3.733589+0 1.529275-5 5.899304+0 1.529650-5 7.013741+0 1.530026-5 7.837066+0 1.531868-5 1.123677+1 1.532789-5 1.271808+1 1.534420-5 1.484211+1 1.536019-5 1.792249+1 1.537022-5 2.079454+1 1.539904-5 2.786921+1 1.540315-5 2.931828+1 1.544864-5 4.159982+1 1.545760-5 4.300123+1 1.548805-5 4.588121+1 1.550062-5 4.522547+1 1.551858-5 4.143210+1 1.553301-5 3.639569+1 1.554834-5 2.902979+1 1.555927-5 2.271995+1 1.556821-5 1.680427+1 1.557491-5 1.184451+1 1.557993-5 7.782682+0 1.558370-5 4.511119+0 1.558935-5-8.525745-1 1.559218-5-3.823516+0 1.559359-5-5.431018+0 1.559731-5-1.013994+1 1.561889-5-3.438340+1 1.562912-5-4.753013+1 1.563781-5-6.081874+1 1.565951-5-8.986465+1 1.566969-5-7.361880+1 1.568290-5-5.434439+1 1.570271-5-2.782074+1 1.570887-5-1.820805+1 1.571300-5-1.270931+1 1.571660-5-8.210307+0 1.574187-5 2.111486+1 1.574394-5 2.381259+1 1.575171-5 3.186449+1 1.576494-5 4.286730+1 1.578687-5 5.657829+1 1.580813-5 6.564964+1 1.582854-5 7.075871+1 1.584986-5 7.181627+1 1.588771-5 6.418612+1 1.592593-5 4.989115+1 1.597238-5 2.927248+1 1.599406-5 2.116707+1 1.602413-5 1.075010+1 1.603354-5 7.046020+0 1.603825-5 4.944238+0 1.604060-5 3.759535+0 1.604493-5 1.041219+0 1.604864-5-7.867399-1 1.605513-5-3.477058+0 1.606486-5-6.911934+0 1.607460-5-9.908461+0 1.608412-5-1.254082+1 1.610077-5-1.662640+1 1.613200-5-2.302437+1 1.616976-5-2.927862+1 1.623010-5-3.711140+1 1.632266-5-4.608173+1 1.646251-5-5.611833+1 1.664441-5-6.566416+1 1.678588-5-6.884109+1 1.694450-5-7.098942+1 1.719438-5-8.214755+1 1.729049-5-8.057194+1 1.745067-5-6.963425+1 1.753447-5-6.770797+1 1.766702-5-7.172039+1 1.783842-5-7.600500+1 1.829026-5-7.605032+1 2.000129-5-8.599581+1 2.033238-5-8.899153+1 2.075300-5-7.967537+1 2.096173-5-7.061284+1 2.106547-5-6.261064+1 2.111602-5-5.587163+1 2.115459-5-4.954626+1 2.122206-5-4.006328+1 2.128338-5-2.982496+1 2.133536-5-2.247415+1 2.134602-5-2.142694+1 2.138186-5-1.881276+1 2.140174-5-1.860741+1 2.142546-5-1.989850+1 2.144629-5-2.203037+1 2.146649-5-2.530666+1 2.148759-5-3.016457+1 2.152853-5-4.329737+1 2.154844-5-5.180003+1 2.158290-5-6.852438+1 2.161864-5-8.845767+1 2.166240-5-6.261913+1 2.168988-5-4.733924+1 2.170572-5-3.855877+1 2.174975-5-1.821019+1 2.175950-5-1.451673+1 2.176804-5-1.166587+1 2.177551-5-9.398720+0 2.178858-5-5.864764+0 2.179838-5-3.536153+0 2.181308-5-5.096267-1 2.182778-5 2.007183+0 2.183654-5 3.265067+0 2.185185-5 4.996080+0 2.186334-5 5.907568+0 2.187195-5 6.361057+0 2.188488-5 6.620563+0 2.189134-5 6.511374+0 2.192379-5 4.419761+0 2.193678-5 3.366485+0 2.194328-5 2.656523+0 2.194978-5 1.638548+0 2.195627-5 5.730396-1 2.197902-5-2.320526+0 2.199039-5-3.885681+0 2.199607-5-4.781726+0 2.200176-5-5.904614+0 2.206273-5-1.598584+1 2.214170-5-2.679986+1 2.217916-5-3.348612+1 2.222904-5-3.897356+1 2.230812-5-4.487700+1 2.244880-5-5.176520+1 2.268264-5-5.901192+1 2.307396-5-6.623959+1 2.346033-5-7.072823+1 2.383405-5-6.641992+1 2.432051-5-6.884093+1 2.951209-5-7.292433+1 5.209028-5-8.213263+1 6.034517-5-8.870941+1 6.622257-5-8.283588+1 6.912665-5-7.546993+1 7.074587-5-6.687773+1 7.154118-5-5.942512+1 7.222532-5-4.957593+1 7.260654-5-4.183308+1 7.289321-5-3.376494+1 7.304645-5-2.781160+1 7.320271-5-2.006490+1 7.329982-5-1.407234+1 7.336287-5-9.544958+0 7.354001-5 4.495345+0 7.362633-5 1.112106+1 7.374802-5 2.038721+1 7.399474-5 3.948255+1 7.411526-5 4.678759+1 7.415359-5 4.828982+1 7.430276-5 5.100004+1 7.438650-5 4.893701+1 7.447948-5 4.351437+1 7.457777-5 3.449858+1 7.462812-5 2.847998+1 7.466637-5 2.318989+1 7.471545-5 1.533809+1 7.474731-5 9.404986+0 7.476324-5 6.068579+0 7.477121-5 4.244887+0 7.477917-5 2.153055+0 7.479252-5-1.247676+0 7.489259-5-2.362095+1 7.495044-5-3.780748+1 7.498738-5-4.850684+1 7.501301-5-5.716263+1 7.517131-5-1.021518+2 7.519733-5-1.115659+2 7.540938-5-5.223359+1 7.548387-5-3.490818+1 7.557176-5-1.653645+1 7.559237-5-1.163329+1 7.560823-5-8.371609+0 7.563896-5-2.842707+0 7.566777-5 1.756349+0 7.569478-5 5.660270+0 7.572010-5 9.020387+0 7.576757-5 1.460565+1 7.580911-5 1.880693+1 7.587726-5 2.435939+1 7.593291-5 2.772631+1 7.600596-5 3.047292+1 7.607640-5 3.097527+1 7.622066-5 2.632605+1 7.626092-5 2.391201+1 7.636885-5 1.693830+1 7.649007-5 7.153281+0 7.657469-5 1.858930-3 7.658859-5-1.177837+0 7.666902-5-8.145349+0 7.682978-5-2.126909+1 7.713913-5-4.575824+1 7.728551-5-5.493157+1 7.761725-5-7.026677+1 7.836066-5-9.888428+1 7.871445-5-8.012267+1 7.929056-5-3.726062+1 7.936128-5-3.156365+1 7.950878-5-2.072394+1 7.962414-5-1.351399+1 7.965526-5-1.198973+1 7.975704-5-7.620517+0 7.978213-5-6.905037+0 7.982603-5-6.327245+0 7.985896-5-6.296249+0 7.990834-5-6.768560+0 7.995773-5-7.668848+0 7.998204-5-8.286296+0 8.002760-5-1.010979+1 8.006747-5-1.224278+1 8.010236-5-1.449964+1 8.015959-5-1.900236+1 8.022562-5-2.552401+1 8.029480-5-3.414596+1 8.034009-5-4.133383+1 8.050125-5-7.100565+1 8.063604-5-1.018171+2 8.072124-5-8.142174+1 8.090860-5-3.586956+1 8.092689-5-3.077794+1 8.094952-5-2.536929+1 8.105157-5-3.570350+0 8.110789-5 8.516107+0 8.111548-5 1.044040+1 8.113019-5 1.361379+1 8.115776-5 1.891629+1 8.122411-5 2.992991+1 8.137580-5 5.097440+1 8.146378-5 5.989696+1 8.160972-5 6.935806+1 8.172465-5 7.227426+1 8.190187-5 6.899461+1 8.203598-5 6.291281+1 8.228147-5 4.797109+1 8.242846-5 3.852966+1 8.259022-5 2.910991+1 8.279936-5 1.556775+1 8.289451-5 1.065713+1 8.298825-5 6.510151+0 8.305118-5 4.067832+0 8.309287-5 2.574113+0 8.312441-5 1.504357+0 8.314786-5 7.368405-1 8.316568-5 1.714328-1 8.318196-5-3.322898-1 8.321841-5-1.418714+0 8.326040-5-2.610549+0 8.339686-5-6.013409+0 8.353176-5-8.878897+0 8.366705-5-1.138837+1 8.393683-5-1.555271+1 8.433953-5-2.032048+1 8.487331-5-2.494867+1 8.570666-5-2.988979+1 8.685825-5-3.423338+1 8.833147-5-3.775509+1 9.169821-5-4.212582+1 9.840919-5-4.643264+1 1.144567-4-5.138913+1 1.589560-4-5.948101+1 1.934872-4-6.259044+1 2.206967-4-6.382259+1 2.691535-4-6.900998+1 2.796218-4-7.250787+1 2.851585-4-7.838798+1 2.870339-4-7.502421+1 2.897923-4-6.533089+1 2.915037-4-6.376081+1 2.957918-4-6.701110+1 3.002396-4-6.515617+1 3.101717-4-6.952379+1 3.591218-4-7.915806+1 3.935501-4-8.030088+1 4.636806-4-7.240621+1 5.464024-4-6.274202+1 5.825703-4-6.091855+1 5.989135-4-6.249796+1 6.088477-4-5.721929+1 6.399251-4-5.580501+1 6.763263-4-5.083058+1 7.527169-4-4.481150+1 8.344327-4-4.084962+1 8.721332-4-4.034663+1 8.984781-4-3.794617+1 9.803614-4-3.415672+1 1.153753-3-2.938845+1 1.222052-3-2.802055+1 1.380818-3-2.537654+1 1.623561-3-2.330473+1 1.938228-3-2.243592+1 2.289044-3-2.302245+1 2.599655-3-2.500683+1 2.809240-3-2.773710+1 2.942727-3-3.097748+1 3.017840-3-3.437503+1 3.061152-3-3.838861+1 3.103207-3-4.389106+1 3.124476-3-4.376564+1 3.172664-3-3.881256+1 3.204502-3-3.793996+1 3.251641-3-3.903675+1 3.274246-3-3.764130+1 3.333859-3-3.096100+1 3.393321-3-2.752897+1 3.486881-3-2.443955+1 3.601883-3-2.221878+1 3.691867-3-2.163670+1 3.765653-3-2.248646+1 3.798562-3-2.166145+1 3.854322-3-1.927055+1 3.937421-3-1.722391+1 4.089296-3-1.496711+1 4.277145-3-1.328486+1 4.397489-3-1.282068+1 4.491007-3-1.284848+1 4.603483-3-1.145767+1 4.719015-3-1.081571+1 4.801861-3-1.059682+1 4.937637-3-9.255192+0 5.150000-3-8.022177+0 5.448162-3-6.859785+0 5.855246-3-5.814459+0 6.332030-3-5.041177+0 6.850222-3-4.540316+0 7.585775-3-4.210802+0 8.499141-3-4.106302+0 9.674422-3-4.298415+0 1.105506-2-4.768860+0 1.252127-2-5.548069+0 1.359530-2-6.416627+0 1.433406-2-7.364739+0 1.477281-2-8.294659+0 1.504473-2-9.293136+0 1.520294-2-1.039397+1 1.538018-2-1.213897+1 1.546877-2-1.239046+1 1.557226-2-1.172198+1 1.575993-2-9.823203+0 1.592899-2-8.816788+0 1.619679-2-7.942228+0 1.658647-2-7.234830+0 1.711872-2-6.789126+0 1.764117-2-6.746503+0 1.805539-2-7.099745+0 1.827271-2-7.674582+0 1.850297-2-8.542574+0 1.862298-2-8.518304+0 1.889142-2-7.567038+0 1.928007-2-7.001828+0 1.967152-2-5.635164+0 2.002106-2-4.893472+0 2.054755-2-4.150362+0 2.130007-2-3.411697+0 2.187762-2-2.987809+0 2.247330-2-2.638213+0 2.354041-2-2.168011+0 2.462781-2-1.821721+0 2.556102-2-1.594964+0 2.690476-2-1.354673+0 2.808937-2-1.200961+0 2.993987-2-1.039203+0 3.190758-2-9.403162-1 3.489413-2-8.797912-1 3.869009-2-8.792450-1 4.531201-2-9.837421-1 7.151286-2-1.610565+0 8.353677-2-1.957536+0 9.149616-2-2.284339+0 9.653994-2-2.615657+0 9.964236-2-2.963521+0 1.014629-1-3.327771+0 1.025575-1-3.748920+0 1.038773-1-4.486972+0 1.043805-1-4.555582+0 1.050630-1-4.298779+0 1.063454-1-3.506348+0 1.072712-1-3.142980+0 1.089166-1-2.757113+0 1.114315-1-2.390413+0 1.151878-1-2.051066+0 1.198670-1-1.771431+0 1.257739-1-1.541783+0 1.345146-1-1.330128+0 1.444936-1-1.182700+0 1.584537-1-1.062600+0 1.763452-1-9.890925-1 2.040099-1-9.502713-1 2.723991-1-9.706072-1 4.714520-1-1.077071+0 8.099585-1-1.141028+0 2.451607+0-1.172927+0 7.403736+0-1.180127+0 1.000000+1-1.178253+0 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.916356-1 1.037423-6 2.352805-1 1.053603-6 2.573375-1 1.068772-6 2.801336-1 1.082992-6 3.036591-1 1.096324-6 3.280730-1 1.121322-6 3.803002-1 1.143194-6 4.345749-1 1.162333-6 4.908466-1 1.179079-6 5.487943-1 1.193732-6 6.080671-1 1.206554-6 6.682901-1 1.217772-6 7.291193-1 1.227589-6 7.902152-1 1.236178-6 8.512310-1 1.243694-6 9.118343-1 1.250270-6 9.716465-1 1.256024-6 1.030204+0 1.266094-6 1.150104+0 1.273646-6 1.259132+0 1.279310-6 1.355463+0 1.283559-6 1.438218+0 1.289931-6 1.584264+0 1.296303-6 1.766422+0 1.299494-6 1.876645+0 1.302685-6 2.004205+0 1.305875-6 2.154408+0 1.309066-6 2.334752+0 1.312257-6 2.555630+0 1.315447-6 2.830955+0 1.318638-6 3.178427+0 1.321829-6 3.619088+0 1.323424-6 3.881518+0 1.325019-6 4.175851+0 1.326615-6 4.504792+0 1.329805-6 5.275643+0 1.336671-6 7.476317+0 1.339377-6 8.529653+0 1.340973-6 9.186386+0 1.344249-6 1.058025+1 1.344659-6 1.075607+1 1.347533-6 1.196526+1 1.348662-6 1.241970+1 1.351200-6 1.336542+1 1.352542-6 1.380898+1 1.353638-6 1.413488+1 1.355076-6 1.450581+1 1.356001-6 1.470664+1 1.356926-6 1.487560+1 1.358565-6 1.509130+1 1.359881-6 1.518264+1 1.361082-6 1.519950+1 1.362519-6 1.513455+1 1.364058-6 1.496164+1 1.364456-6 1.489977+1 1.366457-6 1.448442+1 1.367772-6 1.412125+1 1.368944-6 1.374155+1 1.370498-6 1.316411+1 1.371674-6 1.267761+1 1.373961-6 1.163056+1 1.375249-6 1.099582+1 1.376056-6 1.058620+1 1.377299-6 9.942638+0 1.378610-6 9.253898+0 1.379880-6 8.584267+0 1.381199-6 7.895018+0 1.382623-6 7.164916+0 1.383662-6 6.646165+0 1.385304-6 5.858009+0 1.386793-6 5.183914+0 1.387922-6 4.701569+0 1.389076-6 4.236335+0 1.390231-6 3.800953+0 1.393618-6 2.703566+0 1.394842-6 2.373524+0 1.397621-6 1.751815+0 1.399920-6 1.363657+0 1.401178-6 1.196043+0 1.402294-6 1.071920+0 1.403175-6 9.896030-1 1.403992-6 9.249797-1 1.404726-6 8.760244-1 1.405199-6 8.489965-1 1.405671-6 8.253417-1 1.406104-6 8.065695-1 1.406861-6 7.801544-1 1.407428-6 7.655487-1 1.408280-6 7.516804-1 1.409131-6 7.470716-1 1.410861-6 7.645362-1 1.412591-6 8.153754-1 1.414321-6 8.968175-1 1.415186-6 9.482406-1 1.416051-6 1.006419+0 1.417634-6 1.129487+0 1.421621-6 1.525145+0 1.422971-6 1.683393+0 1.424269-6 1.845475+0 1.425567-6 2.016085+0 1.429058-6 2.507090+0 1.429495-6 2.570734+0 1.432550-6 3.020583+0 1.433750-6 3.195875+0 1.436042-6 3.520046+0 1.437495-6 3.714113+0 1.438189-6 3.802472+0 1.439229-6 3.928896+0 1.440270-6 4.047019+0 1.441784-6 4.201889+0 1.443243-6 4.329688+0 1.443730-6 4.367158+0 1.445244-6 4.466120+0 1.446825-6 4.539353+0 1.448599-6 4.582730+0 1.450117-6 4.586229+0 1.450725-6 4.578859+0 1.452459-6 4.530464+0 1.454065-6 4.450382+0 1.454891-6 4.396514+0 1.456545-6 4.264260+0 1.458155-6 4.106758+0 1.458829-6 4.033239+0 1.461137-6 3.751879+0 1.462685-6 3.542196+0 1.463813-6 3.381281+0 1.464893-6 3.222185+0 1.466315-6 3.007973+0 1.467848-6 2.773700+0 1.469209-6 2.565532+0 1.470630-6 2.350458+0 1.471395-6 2.236614+0 1.472922-6 2.014539+0 1.474450-6 1.801545+0 1.475487-6 1.663175+0 1.476714-6 1.506534+0 1.478160-6 1.332908+0 1.478569-6 1.286005+0 1.480717-6 1.056595+0 1.482061-6 9.277564-1 1.482777-6 8.637056-1 1.483851-6 7.735982-1 1.484925-6 6.905405-1 1.486453-6 5.841989-1 1.488106-6 4.839846-1 1.489698-6 4.011588-1 1.491611-6 3.179086-1 1.494774-6 2.142313-1 1.496970-6 1.632056-1 1.497906-6 1.458429-1 1.499151-6 1.263381-1 1.499772-6 1.180125-1 1.500391-6 1.105597-1 1.501010-6 1.039239-1 1.501627-6 9.805214-2 1.502243-6 9.289406-2 1.503472-6 8.452326-2 1.504696-6 7.847029-2 1.505916-6 7.442040-2 1.507131-6 7.209509-2 1.508341-6 7.124946-2 1.509547-6 7.166933-2 1.510747-6 7.316837-2 1.513139-6 7.879466-2 1.515513-6 8.708352-2 1.517868-6 9.726813-2 1.520204-6 1.087922-1 1.522522-6 1.212550-1 1.524823-6 1.343692-1 1.529387-6 1.618951-1 1.533880-6 1.902143-1 1.538303-6 2.187709-1 1.542656-6 2.472679-1 1.546942-6 2.755452-1 1.555379-6 3.315819-1 1.563553-6 3.861527-1 1.571471-6 4.392627-1 1.579142-6 4.910077-1 1.594005-6 5.925090-1 1.607938-6 6.899869-1 1.634063-6 8.845969-1 1.708594-6 1.529526+0 1.739788-6 1.864657+0 1.759075-6 2.108725+0 1.773541-6 2.319217+0 1.784390-6 2.501016+0 1.792527-6 2.658117+0 1.804733-6 2.942472+0 1.821411-6 3.423657+0 1.825883-6 3.552365+0 1.830355-6 3.667348+0 1.834827-6 3.759319+0 1.839299-6 3.819452+0 1.841535-6 3.835356+0 1.843771-6 3.841052+0 1.846007-6 3.836305+0 1.848244-6 3.821199+0 1.850480-6 3.796155+0 1.852716-6 3.761930+0 1.857188-6 3.670578+0 1.861660-6 3.559088+0 1.867250-6 3.414207+0 1.871722-6 3.312712+0 1.875076-6 3.253896+0 1.877313-6 3.225362+0 1.879549-6 3.206422+0 1.881785-6 3.197626+0 1.884021-6 3.199219+0 1.886257-6 3.211156+0 1.888493-6 3.233129+0 1.892965-6 3.304898+0 1.897437-6 3.408454+0 1.901909-6 3.536371+0 1.922168-6 4.245238+0 1.985441-6 6.525015+0 2.001418-6 7.192582+0 2.025383-6 8.346241+0 2.054392-6 1.002180+1 2.074569-6 1.142772+1 2.094746-6 1.309444+1 2.114923-6 1.508911+1 2.130055-6 1.685730+1 2.145188-6 1.891901+1 2.162200-6 2.167482+1 2.173419-6 2.380749+1 2.183937-6 2.608824+1 2.193798-6 2.852500+1 2.203043-6 3.112570+1 2.211710-6 3.389822+1 2.219835-6 3.685052+1 2.227452-6 3.999078+1 2.234593-6 4.332743+1 2.241288-6 4.686931+1 2.247565-6 5.062581+1 2.253449-6 5.460709+1 2.259755-6 5.947188+1 2.264137-6 6.329007+1 2.269226-6 6.826914+1 2.273531-6 7.302777+1 2.277792-6 7.833705+1 2.281787-6 8.397015+1 2.285532-6 8.995312+1 2.292555-6 1.035593+2 2.298699-6 1.189908+2 2.304076-6 1.363512+2 2.308780-6 1.555710+2 2.312897-6 1.763959+2 2.316499-6 1.984247+2 2.319650-6 2.211744+2 2.322408-6 2.441455+2 2.326932-6 2.889672+2 2.332013-6 3.515001+2 2.342747-6 5.338971+2 2.347476-6 6.376452+2 2.350357-6 7.077119+2 2.353239-6 7.825147+2 2.359003-6 9.438163+2 2.359724-6 9.648194+2 2.364767-6 1.114533+3 2.366748-6 1.173662+3 2.370531-6 1.284651+3 2.373458-6 1.366940+3 2.376295-6 1.441910+3 2.379222-6 1.512628+3 2.382059-6 1.573178+3 2.384580-6 1.619236+3 2.387518-6 1.662466+3 2.390884-6 1.696781+3 2.393766-6 1.712335+3 2.394770-6 1.714655+3 2.397632-6 1.712364+3 2.399746-6 1.702222+3 2.405381-6 1.641286+3 2.407179-6 1.612114+3 2.411407-6 1.527154+3 2.413636-6 1.474230+3 2.416641-6 1.395527+3 2.419568-6 1.312411+3 2.422405-6 1.227423+3 2.424927-6 1.149516+3 2.427561-6 1.066974+3 2.431051-6 9.577346+2 2.433933-6 8.691808+2 2.437175-6 7.729039+2 2.439697-6 7.013167+2 2.445461-6 5.512569+2 2.447442-6 5.045661+2 2.449333-6 4.624756+2 2.452665-6 3.942974+2 2.455908-6 3.352581+2 2.458442-6 2.939895+2 2.461831-6 2.451923+2 2.464004-6 2.175515+2 2.466125-6 1.931220+2 2.470171-6 1.529915+2 2.473968-6 1.222052+2 2.477532-6 9.852676+1 2.480876-6 8.023080+1 2.484065-6 6.580131+1 2.489856-6 4.569106+1 2.497255-6 2.849757+1 2.503352-6 1.923417+1 2.510041-6 1.243494+1 2.522285-6 5.541213+0 2.524686-6 4.741421+0 2.526487-6 4.228867+0 2.529189-6 3.585449+0 2.531891-6 3.076834+0 2.533449-6 2.838921+0 2.534617-6 2.685174+0 2.536370-6 2.492012+0 2.537246-6 2.411520+0 2.538123-6 2.341321+0 2.539712-6 2.239322+0 2.540292-6 2.209936+0 2.541308-6 2.168310+0 2.542831-6 2.128557+0 2.544355-6 2.115026+0 2.547471-6 2.164888+0 2.550587-6 2.313104+0 2.553702-6 2.554107+0 2.556818-6 2.883727+0 2.563050-6 3.797847+0 2.574406-6 6.313586+0 2.581746-6 8.534354+0 2.587978-6 1.080999+1 2.594210-6 1.347336+1 2.600442-6 1.656238+1 2.607558-6 2.067326+1 2.614673-6 2.549797+1 2.619138-6 2.894324+1 2.627545-6 3.645993+1 2.633980-6 4.329131+1 2.653287-6 7.170493+1 2.659723-6 8.494741+1 2.666159-6 1.009721+2 2.672594-6 1.206649+2 2.675779-6 1.321440+2 2.680622-6 1.523903+2 2.685466-6 1.768467+2 2.688951-6 1.977336+2 2.692244-6 2.205768+2 2.695537-6 2.470417+2 2.698830-6 2.778261+2 2.702123-6 3.137459+2 2.705417-6 3.557436+2 2.708710-6 4.048928+2 2.711667-6 4.561258+2 2.716104-6 5.477360+2 2.722523-6 7.182425+2 2.732584-6 1.101614+3 2.738657-6 1.417556+3 2.743039-6 1.690594+3 2.745632-6 1.870838+3 2.748226-6 2.065099+3 2.752223-6 2.391598+3 2.753555-6 2.507542+3 2.760300-6 3.144312+3 2.761143-6 3.229164+3 2.767514-6 3.898847+3 2.769940-6 4.163020+3 2.775178-6 4.738127+3 2.778495-6 5.097274+3 2.780436-6 5.302575+3 2.783620-6 5.627544+3 2.787053-6 5.955593+3 2.790102-6 6.221794+3 2.793470-6 6.482510+3 2.794452-6 6.551092+3 2.798491-6 6.793969+3 2.801614-6 6.934935+3 2.805427-6 7.047328+3 2.808803-6 7.089655+3 2.810900-6 7.088482+3 2.814254-6 7.043125+3 2.816602-6 6.980223+3 2.821420-6 6.775077+3 2.824112-6 6.619244+3 2.825928-6 6.499058+3 2.828586-6 6.303132+3 2.831168-6 6.092650+3 2.834487-6 5.797382+3 2.837438-6 5.516297+3 2.840283-6 5.232965+3 2.844604-6 4.788455+3 2.847976-6 4.436857+3 2.851770-6 4.044025+3 2.854720-6 3.744794+3 2.861465-6 3.096980+3 2.865996-6 2.699470+3 2.868209-6 2.518188+3 2.873267-6 2.137623+3 2.879860-6 1.713603+3 2.892315-6 1.121418+3 2.897028-6 9.588272+2 2.901632-6 8.267900+2 2.906091-6 7.205062+2 2.910412-6 6.347410+2 2.914597-6 5.652130+2 2.918651-6 5.084846+2 2.922579-6 4.618341+2 2.926384-6 4.231280+2 2.933756-6 3.624535+2 2.940667-6 3.184302+2 2.947147-6 2.852630+2 2.953221-6 2.594469+2 2.958916-6 2.388042+2 2.964255-6 2.219342+2 2.974265-6 1.953123+2 2.983024-6 1.761181+2 2.990688-6 1.617150+2 2.997394-6 1.505839+2 3.009130-6 1.337347+2 3.017932-6 1.228461+2 3.031135-6 1.086605+2 3.044337-6 9.649043+1 3.059324-6 8.469212+1 3.066817-6 7.956886+1 3.073526-6 7.544761+1 3.081054-6 7.138501+1 3.089297-6 6.766517+1 3.093256-6 6.615930+1 3.097216-6 6.483652+1 3.101235-6 6.367783+1 3.108560-6 6.201674+1 3.113291-6 6.122334+1 3.120086-6 6.039920+1 3.126763-6 5.985572+1 3.146165-6 5.868654+1 3.154505-6 5.790810+1 3.160392-6 5.715028+1 3.166280-6 5.620271+1 3.171723-6 5.516254+1 3.179216-6 5.350534+1 3.186709-6 5.165160+1 3.193974-6 4.974676+1 3.219444-6 4.327012+1 3.231274-6 4.074723+1 3.239093-6 3.928465+1 3.254730-6 3.675708+1 3.287548-6 3.227131+1 3.301642-6 3.040448+1 3.317279-6 2.832775+1 3.332917-6 2.627198+1 3.365304-6 2.230422+1 3.373567-6 2.143164+1 3.381829-6 2.065744+1 3.390092-6 2.000485+1 3.398355-6 1.949255+1 3.406618-6 1.912971+1 3.413158-6 1.894620+1 3.423144-6 1.881974+1 3.431407-6 1.881830+1 3.447933-6 1.890317+1 3.456196-6 1.889324+1 3.462393-6 1.882957+1 3.467041-6 1.874232+1 3.474013-6 1.854109+1 3.480985-6 1.825275+1 3.489248-6 1.780275+1 3.497540-6 1.724743+1 3.506044-6 1.659294+1 3.514548-6 1.588017+1 3.522299-6 1.520500+1 3.545186-6 1.329701+1 3.554373-6 1.266186+1 3.562790-6 1.218917+1 3.567170-6 1.199125+1 3.571527-6 1.182936+1 3.575885-6 1.170334+1 3.581203-6 1.159820+1 3.585192-6 1.155353+1 3.591175-6 1.153785+1 3.597158-6 1.157679+1 3.608093-6 1.175306+1 3.630341-6 1.222404+1 3.638054-6 1.232599+1 3.643312-6 1.235958+1 3.651199-6 1.234823+1 3.659086-6 1.226180+1 3.668093-6 1.207962+1 3.676593-6 1.184183+1 3.683779-6 1.160506+1 3.694515-6 1.121543+1 3.707695-6 1.071595+1 3.741490-6 9.477301+0 3.759426-6 8.848498+0 3.791277-6 7.747899+0 3.806044-6 7.241046+0 3.832509-6 6.341307+0 3.841556-6 6.041177+0 3.864327-6 5.330767+0 3.879960-6 4.903015+0 3.899828-6 4.442420+0 3.918160-6 4.069091+0 3.927710-6 3.872771+0 3.936655-6 3.676647+0 3.946403-6 3.443567+0 3.952258-6 3.293437+0 3.960479-6 3.072457+0 3.968554-6 2.849965+0 3.987506-6 2.365661+0 3.994952-6 2.216216+0 3.999636-6 2.140626+0 4.006573-6 2.059524+0 4.007970-6 2.048032+0 4.012774-6 2.021724+0 4.017749-6 2.017007+0 4.019291-6 2.020380+0 4.022293-6 2.033718+0 4.026035-6 2.063227+0 4.030082-6 2.111921+0 4.032306-6 2.146466+0 4.036197-6 2.221036+0 4.039116-6 2.289559+0 4.041305-6 2.348600+0 4.044589-6 2.450522+0 4.047872-6 2.570124+0 4.050204-6 2.667029+0 4.053703-6 2.833357+0 4.057201-6 3.028286+0 4.058396-6 3.102238+0 4.066882-6 3.757273+0 4.070589-6 4.129825+0 4.074411-6 4.582023+0 4.078333-6 5.128845+0 4.082363-6 5.791390+0 4.086247-6 6.539944+0 4.093292-6 8.215816+0 4.107348-6 1.305184+1 4.111793-6 1.505612+1 4.122219-6 2.071720+1 4.126715-6 2.356611+1 4.133695-6 2.842930+1 4.137748-6 3.146626+1 4.142484-6 3.517265+1 4.147245-6 3.902027+1 4.151567-6 4.257034+1 4.155692-6 4.596311+1 4.160013-6 4.947217+1 4.163467-6 5.220758+1 4.168314-6 5.588800+1 4.172970-6 5.918565+1 4.175265-6 6.070659+1 4.179337-6 6.320621+1 4.183711-6 6.557581+1 4.193098-6 6.939692+1 4.197255-6 7.048865+1 4.203901-6 7.143414+1 4.208580-6 7.151066+1 4.213786-6 7.104264+1 4.217133-6 7.044938+1 4.220480-6 6.964158+1 4.225577-6 6.803241+1 4.230492-6 6.609590+1 4.232130-6 6.537644+1 4.237511-6 6.279107+1 4.242623-6 6.007561+1 4.245023-6 5.873404+1 4.252222-6 5.453754+1 4.262268-6 4.851232+1 4.264779-6 4.701799+1 4.277964-6 3.953750+1 4.299669-6 2.943873+1 4.304385-6 2.767386+1 4.313186-6 2.477903+1 4.320295-6 2.279168+1 4.332446-6 2.002253+1 4.342000-6 1.830335+1 4.355783-6 1.635830+1 4.369231-6 1.489742+1 4.386733-6 1.341658+1 4.400655-6 1.245762+1 4.418265-6 1.142013+1 4.465355-6 9.158242+0 4.480435-6 8.514597+0 4.495566-6 7.885392+0 4.517407-6 6.990698+0 4.533074-6 6.359786+0 4.555721-6 5.517955+0 4.566547-6 5.190884+0 4.572450-6 5.048966+0 4.578353-6 4.941128+0 4.583907-6 4.877305+0 4.588862-6 4.856457+0 4.604772-6 5.074459+0 4.616050-6 5.547467+0 4.620345-6 5.806003+0 4.628545-6 6.424223+0 4.632924-6 6.821027+0 4.641283-6 7.701216+0 4.654868-6 9.425595+0 4.663563-6 1.066236+1 4.666965-6 1.116107+1 4.672911-6 1.203758+1 4.679780-6 1.303518+1 4.686070-6 1.390909+1 4.694666-6 1.499828+1 4.697297-6 1.529991+1 4.707120-6 1.626198+1 4.711447-6 1.659332+1 4.719707-6 1.705234+1 4.725514-6 1.723323+1 4.728828-6 1.728350+1 4.734628-6 1.728042+1 4.740158-6 1.717346+1 4.747134-6 1.690397+1 4.752027-6 1.663373+1 4.760447-6 1.603469+1 4.763254-6 1.580286+1 4.774425-6 1.476083+1 4.785228-6 1.363802+1 4.788837-6 1.325198+1 4.805755-6 1.146832+1 4.825370-6 9.655323+0 4.831308-6 9.193364+0 4.841724-6 8.500827+0 4.849124-6 8.106485+0 4.861001-6 7.651624+0 4.866939-6 7.507572+0 4.872878-6 7.418460+0 4.875847-6 7.394065+0 4.884755-6 7.398031+0 4.888548-6 7.432927+0 4.895185-6 7.537320+0 4.900164-6 7.648163+0 4.909498-6 7.917645+0 4.932263-6 8.754150+0 4.944140-6 9.178513+0 4.947109-6 9.273564+0 4.956017-6 9.520466+0 4.959813-6 9.605547+0 4.965507-6 9.708028+0 4.971202-6 9.778960+0 4.977290-6 9.819475+0 4.981856-6 9.826491+0 4.992129-6 9.775113+0 5.003525-6 9.629144+0 5.015402-6 9.413835+0 5.039156-6 8.953753+0 5.053147-6 8.747273+0 5.061541-6 8.660364+0 5.073939-6 8.582537+0 5.086336-6 8.554666+0 5.104284-6 8.567261+0 5.133061-6 8.606194+0 5.161386-6 8.588770+0 5.258534-6 8.372793+0 5.296618-6 8.259098+0 5.353852-6 8.055073+0 5.379805-6 7.997284+0 5.410431-6 7.978534+0 5.463038-6 7.988374+0 5.494117-6 7.959824+0 5.639363-6 7.661279+0 6.327842-6 6.656718+0 6.879320-6 5.960743+0 7.416221-6 5.337812+0 7.842821-6 4.856381+0 8.223426-6 4.431616+0 8.685795-6 3.909681+0 9.013761-6 3.537741+0 9.225903-6 3.297145+0 9.425557-6 3.071658+0 9.720000-6 2.744498+0 9.940110-6 2.507651+0 1.014257-5 2.296284+0 1.033697-5 2.100095+0 1.060774-5 1.845303+0 1.084771-5 1.647372+0 1.097629-5 1.566562+0 1.104365-5 1.550316+0 1.105495-5 1.550283+0 1.120014-5 1.614434+0 1.130852-5 1.711120+0 1.145953-5 1.881834+0 1.162600-5 2.116562+0 1.178730-5 2.396508+0 1.194361-5 2.722615+0 1.205238-5 2.984957+0 1.217019-5 3.305508+0 1.231576-5 3.758484+0 1.245678-5 4.265808+0 1.264440-5 5.054408+0 1.285395-5 6.114573+0 1.321503-5 8.503828+0 1.347836-5 1.082925+1 1.364596-5 1.263448+1 1.380384-5 1.461328+1 1.393509-5 1.650588+1 1.411310-5 1.949004+1 1.423984-5 2.195715+1 1.436235-5 2.466572+1 1.451648-5 2.860281+1 1.466097-5 3.292908+1 1.479644-5 3.766145+1 1.492343-5 4.281308+1 1.504249-5 4.839472+1 1.515411-5 5.441688+1 1.525875-5 6.088722+1 1.535686-5 6.781079+1 1.544883-5 7.518976+1 1.553505-5 8.302010+1 1.563230-5 9.309917+1 1.569167-5 1.000129+2 1.576271-5 1.091716+2 1.582932-5 1.187618+2 1.589176-5 1.287639+2 1.599450-5 1.477288+2 1.605663-5 1.609887+2 1.615310-5 1.848748+2 1.623751-5 2.098267+2 1.631185-5 2.357462+2 1.638400-5 2.653387+2 1.643255-5 2.882619+2 1.648203-5 3.146384+2 1.652532-5 3.406688+2 1.656321-5 3.661106+2 1.663087-5 4.191743+2 1.667922-5 4.646676+2 1.671652-5 5.052962+2 1.677245-5 5.778726+2 1.680042-5 6.206654+2 1.682839-5 6.687307+2 1.686981-5 7.513196+2 1.691123-5 8.500218+2 1.695265-5 9.676078+2 1.701478-5 1.184383+3 1.708545-5 1.493890+3 1.712740-5 1.708426+3 1.716935-5 1.944140+3 1.722179-5 2.268563+3 1.729837-5 2.826271+3 1.732544-5 3.064472+3 1.735227-5 3.335208+3 1.737910-5 3.652595+3 1.742105-5 4.278060+3 1.743154-5 4.465497+3 1.746300-5 5.120235+3 1.747742-5 5.472850+3 1.750495-5 6.251465+3 1.754008-5 7.470785+3 1.761795-5 1.119102+4 1.765195-5 1.325638+4 1.765943-5 1.374234+4 1.770137-5 1.664268+4 1.771527-5 1.765361+4 1.774560-5 1.990075+4 1.775895-5 2.089188+4 1.777801-5 2.229227+4 1.779027-5 2.317363+4 1.781112-5 2.461925+4 1.783096-5 2.591018+4 1.784857-5 2.696686+4 1.786963-5 2.809572+4 1.789414-5 2.919399+4 1.791504-5 2.992289+4 1.792586-5 3.021949+4 1.794707-5 3.063165+4 1.796769-5 3.081172+4 1.797902-5 3.081670+4 1.800064-5 3.064222+4 1.801378-5 3.042032+4 1.804562-5 2.953803+4 1.806170-5 2.891956+4 1.807960-5 2.810906+4 1.809111-5 2.752619+4 1.811144-5 2.639233+4 1.813266-5 2.508834+4 1.815040-5 2.392514+4 1.817319-5 2.235837+4 1.819476-5 2.083049+4 1.821633-5 1.928611+4 1.824060-5 1.755985+4 1.825947-5 1.624463+4 1.830261-5 1.339725+4 1.833159-5 1.165058+4 1.834574-5 1.085429+4 1.837810-5 9.183476+3 1.841118-5 7.694309+3 1.850752-5 4.540752+3 1.853024-5 4.018578+3 1.855296-5 3.565476+3 1.857568-5 3.173734+3 1.859841-5 2.835919+3 1.862113-5 2.545040+3 1.864385-5 2.294663+3 1.866657-5 2.078971+3 1.868929-5 1.892796+3 1.871201-5 1.731611+3 1.873473-5 1.591504+3 1.878017-5 1.361676+3 1.882562-5 1.182427+3 1.887780-5 1.020426+3 1.891650-5 9.222314+2 1.896194-5 8.246605+2 1.901494-5 7.293583+2 1.905283-5 6.707568+2 1.909827-5 6.088434+2 1.914371-5 5.544284+2 1.918915-5 5.061681+2 1.932548-5 3.886905+2 1.941755-5 3.256724+2 1.957547-5 2.380496+2 1.967184-5 1.960778+2 1.972002-5 1.787394+2 1.976820-5 1.640503+2 1.979230-5 1.577199+2 1.981639-5 1.520571+2 1.984451-5 1.462609+2 1.986457-5 1.426330+2 1.988866-5 1.387883+2 1.991275-5 1.354453+2 1.994889-5 1.312137+2 2.000912-5 1.255765+2 2.010548-5 1.176059+2 2.016852-5 1.118979+2 2.023991-5 1.052348+2 2.028948-5 1.012976+2 2.033906-5 9.874434+1 2.034600-5 9.853572+1 2.039458-5 9.828980+1 2.041379-5 9.881482+1 2.043214-5 9.965051+1 2.046078-5 1.015846+2 2.047880-5 1.031652+2 2.051765-5 1.073685+2 2.059312-5 1.172369+2 2.063650-5 1.227524+2 2.068607-5 1.278170+2 2.070764-5 1.294090+2 2.074882-5 1.312037+2 2.076159-5 1.314090+2 2.078393-5 1.313639+2 2.080068-5 1.309990+2 2.082626-5 1.299219+2 2.085094-5 1.283384+2 2.088854-5 1.250610+2 2.093920-5 1.194738+2 2.100419-5 1.114817+2 2.107542-5 1.031758+2 2.112118-5 9.861201+1 2.116533-5 9.491199+1 2.121580-5 9.149122+1 2.129834-5 8.732155+1 2.148454-5 8.020616+1 2.157330-5 7.652577+1 2.166149-5 7.250186+1 2.176451-5 6.754374+1 2.190245-5 6.095000+1 2.217455-5 4.942034+1 2.234470-5 4.313929+1 2.244176-5 3.973172+1 2.252190-5 3.699199+1 2.258452-5 3.490295+1 2.267651-5 3.194206+1 2.287573-5 2.623585+1 2.294519-5 2.459455+1 2.298786-5 2.371063+1 2.301578-5 2.319209+1 2.304967-5 2.263426+1 2.308295-5 2.217250+1 2.310778-5 2.189033+1 2.313731-5 2.163246+1 2.316592-5 2.147306+1 2.319364-5 2.141453+1 2.322028-5 2.145872+1 2.324610-5 2.160744+1 2.327640-5 2.193285+1 2.330337-5 2.237813+1 2.332660-5 2.289497+1 2.333795-5 2.319659+1 2.336029-5 2.389351+1 2.338194-5 2.471083+1 2.340290-5 2.565022+1 2.342321-5 2.671307+1 2.344289-5 2.790050+1 2.346195-5 2.921340+1 2.348700-5 3.120782+1 2.349831-5 3.221807+1 2.353297-5 3.579211+1 2.356546-5 3.989138+1 2.359593-5 4.451489+1 2.362448-5 4.965991+1 2.365647-5 5.652937+1 2.367636-5 6.149332+1 2.369989-5 6.816433+1 2.372195-5 7.532074+1 2.374987-5 8.584384+1 2.376202-5 9.101133+1 2.379838-5 1.089854+2 2.383019-5 1.284247+2 2.385803-5 1.489547+2 2.388238-5 1.701658+2 2.392234-5 2.130096+2 2.395500-5 2.571616+2 2.399780-5 3.308165+2 2.412687-5 7.140056+2 2.417128-5 9.251406+2 2.421383-5 1.177992+3 2.424688-5 1.413100+3 2.428459-5 1.726635+3 2.430066-5 1.875823+3 2.434888-5 2.381308+3 2.438262-5 2.787152+3 2.438744-5 2.848600+3 2.445091-5 3.734202+3 2.445791-5 3.839962+3 2.451064-5 4.678865+3 2.452989-5 5.000024+3 2.457153-5 5.710435+3 2.458873-5 6.006318+3 2.461330-5 6.427262+3 2.462910-5 6.694624+3 2.465767-5 7.166581+3 2.468667-5 7.623197+3 2.471671-5 8.063286+3 2.474583-5 8.449088+3 2.478164-5 8.856788+3 2.481189-5 9.135285+3 2.482633-5 9.244806+3 2.485693-5 9.424023+3 2.488418-5 9.520683+3 2.490105-5 9.550093+3 2.493125-5 9.544405+3 2.495182-5 9.498147+3 2.496241-5 9.461231+3 2.499865-5 9.270114+3 2.502722-5 9.053111+3 2.505130-5 8.829039+3 2.507802-5 8.541104+3 2.510757-5 8.181421+3 2.513224-5 7.853423+3 2.516396-5 7.403228+3 2.519383-5 6.958779+3 2.522370-5 6.502979+3 2.525729-5 5.986492+3 2.528343-5 5.588356+3 2.534316-5 4.713389+3 2.537289-5 4.305378+3 2.542965-5 3.592446+3 2.550547-5 2.792135+3 2.558083-5 2.170780+3 2.563242-5 1.836770+3 2.566430-5 1.663062+3 2.569476-5 1.517781+3 2.572522-5 1.390614+3 2.575812-5 1.271269+3 2.578614-5 1.182561+3 2.585235-5 1.012073+3 2.590451-5 9.082803+2 2.596890-5 8.072798+2 2.600268-5 7.634601+2 2.608495-5 6.759518+2 2.617288-5 6.038943+2 2.621336-5 5.760113+2 2.629568-5 5.268771+2 2.640598-5 4.728486+2 2.651872-5 4.274141+2 2.666280-5 3.792121+2 2.680369-5 3.396918+2 2.693957-5 3.072563+2 2.706371-5 2.821641+2 2.712968-5 2.705849+2 2.720665-5 2.585954+2 2.734348-5 2.412144+2 2.739354-5 2.360851+2 2.745950-5 2.303448+2 2.749995-5 2.274178+2 2.757386-5 2.233036+2 2.762885-5 2.213341+2 2.769636-5 2.202390+2 2.776764-5 2.206279+2 2.786013-5 2.231529+2 2.808557-5 2.327832+2 2.811778-5 2.338064+2 2.818584-5 2.352315+2 2.823736-5 2.355718+2 2.829450-5 2.352064+2 2.834105-5 2.343875+2 2.843983-5 2.314827+2 2.862726-5 2.243094+2 2.882460-5 2.180372+2 2.903323-5 2.136286+2 2.962530-5 2.046105+2 3.037274-5 1.919734+2 3.121975-5 1.806136+2 3.251107-5 1.664539+2 3.645000-5 1.338303+2 3.784556-5 1.240593+2 3.890787-5 1.168029+2 4.021528-5 1.077943+2 4.119859-5 1.003209+2 4.164008-5 9.664607+1 4.185085-5 9.527109+1 4.205388-5 9.455451+1 4.224558-5 9.455571+1 4.266784-5 9.588241+1 4.277209-5 9.608187+1 4.289861-5 9.606251+1 4.300419-5 9.578870+1 4.319305-5 9.473527+1 4.349743-5 9.210283+1 4.369991-5 9.029327+1 4.390536-5 8.871513+1 4.423438-5 8.673111+1 4.474347-5 8.408259+1 4.541734-5 8.045896+1 4.602515-5 7.705572+1 4.720147-5 7.034234+1 4.870551-5 6.174004+1 5.040806-5 5.211192+1 5.191735-5 4.369235+1 5.327979-5 3.627633+1 5.432503-5 3.074827+1 5.527134-5 2.591357+1 5.617064-5 2.150730+1 5.693923-5 1.792162+1 5.783457-5 1.401465+1 5.844816-5 1.173113+1 5.898003-5 1.073257+1 5.900017-5 1.072338+1 5.972065-5 1.169164+1 6.045928-5 1.413935+1 6.387376-5 3.454452+1 6.553600-5 5.269692+1 6.665243-5 6.984319+1 6.760830-5 8.904985+1 6.815118-5 1.023165+2 6.871116-5 1.182082+2 6.919115-5 1.339459+2 6.978306-5 1.565581+2 7.023338-5 1.765906+2 7.071875-5 2.014869+2 7.126504-5 2.344026+2 7.187246-5 2.783966+2 7.227413-5 3.127557+2 7.276250-5 3.615617+2 7.316103-5 4.083350+2 7.356335-5 4.632757+2 7.397447-5 5.291536+2 7.434469-5 5.987554+2 7.465220-5 6.655420+2 7.502510-5 7.598328+2 7.532984-5 8.500395+2 7.556533-5 9.295269+2 7.585776-5 1.042477+3 7.612603-5 1.162777+3 7.643316-5 1.324755+3 7.663097-5 1.445817+3 7.689994-5 1.636468+3 7.712398-5 1.823396+3 7.734593-5 2.040179+3 7.758365-5 2.316598+3 7.783546-5 2.675099+3 7.805580-5 3.064000+3 7.824860-5 3.483369+3 7.841730-5 3.932310+3 7.856491-5 4.408296+3 7.869407-5 4.906842+3 7.880709-5 5.421663+3 7.890598-5 5.945224+3 7.899250-5 6.469490+3 7.914392-5 7.565669+3 7.925749-5 8.567188+3 7.934267-5 9.438100+3 7.947043-5 1.096810+4 7.959819-5 1.280798+4 7.981339-5 1.674088+4 8.007599-5 2.322803+4 8.022275-5 2.776278+4 8.034598-5 3.209454+4 8.046362-5 3.666591+4 8.058125-5 4.163536+4 8.077862-5 5.072332+4 8.085200-5 5.428179+4 8.099210-5 6.121809+4 8.106146-5 6.467039+4 8.112409-5 6.776617+4 8.121923-5 7.237984+4 8.130191-5 7.624647+4 8.139038-5 8.017118+4 8.145812-5 8.298667+4 8.155647-5 8.671660+4 8.165605-5 8.998315+4 8.175327-5 9.260058+4 8.179018-5 9.343254+4 8.190529-5 9.541346+4 8.199517-5 9.628126+4 8.211317-5 9.648065+4 8.218986-5 9.603302+4 8.237636-5 9.309761+4 8.246285-5 9.090131+4 8.256370-5 8.774052+4 8.264303-5 8.484799+4 8.273332-5 8.117822+4 8.283239-5 7.676738+4 8.290824-5 7.317456+4 8.299828-5 6.873084+4 8.306696-5 6.525201+4 8.315639-5 6.066061+4 8.327001-5 5.481820+4 8.335869-5 5.032171+4 8.347936-5 4.438570+4 8.357051-5 4.009810+4 8.372365-5 3.337692+4 8.380041-5 3.026542+4 8.405938-5 2.115905+4 8.415287-5 1.840715+4 8.424301-5 1.601586+4 8.434618-5 1.358176+4 8.446929-5 1.107581+4 8.459840-5 8.875948+3 8.476415-5 6.625575+3 8.486223-5 5.564230+3 8.499857-5 4.384933+3 8.514222-5 3.477537+3 8.525348-5 2.990304+3 8.535505-5 2.700032+3 8.546749-5 2.545678+3 8.551394-5 2.532789+3 8.555458-5 2.546050+3 8.559035-5 2.576821+3 8.562127-5 2.617954+3 8.564849-5 2.665467+3 8.567232-5 2.715795+3 8.571141-5 2.816281+3 8.575355-5 2.949965+3 8.579335-5 3.100800+3 8.583910-5 3.304337+3 8.588940-5 3.566345+3 8.595389-5 3.962496+3 8.603958-5 4.597463+3 8.632471-5 7.670927+3 8.642101-5 9.062807+3 8.663700-5 1.285080+4 8.667593-5 1.362935+4 8.683122-5 1.700482+4 8.691819-5 1.906650+4 8.695922-5 2.007635+4 8.708231-5 2.322482+4 8.717202-5 2.560487+4 8.726252-5 2.804772+4 8.733865-5 3.011197+4 8.742010-5 3.230625+4 8.750793-5 3.462670+4 8.758382-5 3.656924+4 8.768078-5 3.893100+4 8.773718-5 4.022739+4 8.782836-5 4.217757+4 8.792661-5 4.404606+4 8.797183-5 4.481525+4 8.806892-5 4.625504+4 8.814865-5 4.720759+4 8.821096-5 4.780000+4 8.830016-5 4.840885+4 8.837347-5 4.869475+4 8.841846-5 4.877412+4 8.855301-5 4.858105+4 8.864858-5 4.806514+4 8.875491-5 4.714555+4 8.882327-5 4.637665+4 8.889163-5 4.548061+4 8.896338-5 4.441548+4 8.905757-5 4.284691+4 8.915406-5 4.107085+4 8.930145-5 3.810947+4 8.939645-5 3.609351+4 8.952773-5 3.323950+4 8.959147-5 3.184632+4 8.980629-5 2.723954+4 8.991078-5 2.510188+4 9.011025-5 2.130702+4 9.034075-5 1.748693+4 9.067526-5 1.310144+4 9.078910-5 1.190740+4 9.088379-5 1.101922+4 9.098313-5 1.018230+4 9.115580-5 8.935737+3 9.126895-5 8.245143+3 9.138210-5 7.641000+3 9.160484-5 6.663270+3 9.167437-5 6.406365+3 9.182757-5 5.906787+3 9.202711-5 5.369307+3 9.222666-5 4.931105+3 9.253198-5 4.400351+3 9.284172-5 3.983672+3 9.311315-5 3.689319+3 9.338809-5 3.440871+3 9.368125-5 3.218249+3 9.385000-5 3.106090+3 9.410298-5 2.956052+3 9.436507-5 2.819977+3 9.465485-5 2.688572+3 9.501833-5 2.546905+3 9.558742-5 2.365504+3 9.597969-5 2.262742+3 9.618477-5 2.214881+3 9.668152-5 2.112908+3 9.722218-5 2.020476+3 9.788326-5 1.927712+3 9.850000-5 1.856413+3 9.923967-5 1.785367+3 1.000875-4 1.717951+3 1.005773-4 1.683999+3 1.014061-4 1.632990+3 1.024476-4 1.577868+3 1.038531-4 1.513865+3 1.058051-4 1.436395+3 1.078542-4 1.365744+3 1.108290-4 1.276391+3 1.130608-4 1.219633+3 1.158309-4 1.158310+3 1.182736-4 1.111859+3 1.213182-4 1.060295+3 1.270656-4 9.781542+2 1.376417-4 8.581661+2 1.569139-4 7.001144+2 1.598638-4 6.792340+2 1.629335-4 6.571982+2 1.661006-4 6.330678+2 1.704621-4 5.955996+2 1.718003-4 5.887970+2 1.729309-4 5.869821+2 1.753681-4 5.885556+2 1.769337-4 5.877931+2 1.781500-4 5.856893+2 1.831291-4 5.727609+2 1.881203-4 5.574592+2 1.937452-4 5.393607+2 1.984042-4 5.237947+2 2.041905-4 5.028059+2 2.075843-4 4.877173+2 2.109687-4 4.704768+2 2.119824-4 4.676893+2 2.129224-4 4.673846+2 2.141184-4 4.698304+2 2.157252-4 4.745006+2 2.171353-4 4.760311+2 2.183436-4 4.747575+2 2.371374-4 4.321260+2 2.460375-4 4.114801+2 2.511886-4 3.988668+2 2.605624-4 3.745626+2 2.688500-4 3.513700+2 2.720270-4 3.448561+2 2.740140-4 3.415284+2 2.780357-4 3.336547+2 2.812426-4 3.260470+2 2.915987-4 2.991143+2 3.000000-4 2.744693+2 3.038457-4 2.612911+2 3.077960-4 2.451813+2 3.100694-4 2.361982+2 3.108839-4 2.336287+2 3.116619-4 2.316655+2 3.127510-4 2.297897+2 3.147504-4 2.284282+2 3.171310-4 2.272155+2 3.188350-4 2.249211+2 3.218776-4 2.198918+2 3.258953-4 2.158179+2 3.273407-4 2.132614+2 3.289000-4 2.091343+2 3.305500-4 2.035806+2 3.319154-4 1.985320+2 3.378975-4 1.765576+2 3.410000-4 1.654809+2 3.433750-4 1.569686+2 3.474375-4 1.426306+2 3.548134-4 1.193206+2 3.566110-4 1.145196+2 3.585919-4 1.097755+2 3.599986-4 1.067928+2 3.627703-4 1.019348+2 3.658638-4 9.819374+1 3.686400-4 9.641789+1 3.715352-4 9.622293+1 3.758734-4 9.912514+1 3.783734-4 1.026021+2 3.841220-4 1.153443+2 3.855050-4 1.193772+2 3.878110-4 1.269967+2 3.906221-4 1.377593+2 3.948036-4 1.565330+2 4.033200-4 2.036648+2 4.085545-4 2.372296+2 4.135462-4 2.717361+2 4.158879-4 2.886968+2 4.196492-4 3.168754+2 4.220800-4 3.356346+2 4.260000-4 3.666479+2 4.307500-4 4.051301+2 4.367045-4 4.541252+2 4.422028-4 4.995436+2 4.492624-4 5.572574+2 4.576764-4 6.246173+2 4.654531-4 6.852911+2 4.745241-4 7.540008+2 4.818993-4 8.081060+2 4.930823-4 8.859062+2 5.040710-4 9.574753+2 5.184000-4 1.043171+3 5.308844-4 1.110888+3 5.418871-4 1.165543+3 5.561329-4 1.227373+3 5.697010-4 1.277553+3 5.825081-4 1.315441+3 5.933533-4 1.338563+3 6.015319-4 1.346882+3 6.073550-4 1.345134+3 6.109162-4 1.339454+3 6.147256-4 1.330602+3 6.175637-4 1.327044+3 6.191261-4 1.329389+3 6.200655-4 1.333307+3 6.231248-4 1.365459+3 6.246037-4 1.394642+3 6.262149-4 1.437961+3 6.280724-4 1.502118+3 6.322081-4 1.677455+3 6.338479-4 1.745293+3 6.352221-4 1.794926+3 6.371221-4 1.847409+3 6.388891-4 1.876215+3 6.402850-4 1.885051+3 6.412470-4 1.884563+3 6.430501-4 1.871630+3 6.444721-4 1.853217+3 6.502733-4 1.758444+3 6.514562-4 1.742975+3 6.548582-4 1.716101+3 6.584602-4 1.722604+3 6.601099-4 1.739117+3 6.616542-4 1.762362+3 6.634475-4 1.798009+3 6.664370-4 1.872398+3 6.694569-4 1.952321+3 6.711396-4 1.991866+3 6.726852-4 2.021928+3 6.740723-4 2.042616+3 6.749578-4 2.052489+3 6.764943-4 2.063540+3 6.780317-4 2.067550+3 6.795645-4 2.065819+3 6.829360-4 2.049902+3 6.871465-4 2.026332+3 6.895465-4 2.017573+3 6.962305-4 2.014673+3 7.191663-4 2.072090+3 7.520557-4 2.162673+3 7.787367-4 2.225145+3 8.128305-4 2.287929+3 8.439444-4 2.324620+3 8.702478-4 2.339311+3 8.856210-4 2.336490+3 8.927815-4 2.339324+3 8.975529-4 2.351084+3 9.024172-4 2.374752+3 9.145718-4 2.461776+3 9.207239-4 2.497861+3 9.304888-4 2.534052+3 9.558765-4 2.591669+3 9.874983-4 2.643380+3 1.019027-3 2.677467+3 1.054761-3 2.703677+3 1.093334-3 2.723634+3 1.126212-3 2.764933+3 1.163737-3 2.790913+3 1.206713-3 2.803393+3 1.229042-3 2.803260+3 1.241689-3 2.808349+3 1.265855-3 2.836226+3 1.294214-3 2.859224+3 1.344063-3 2.874537+3 1.404969-3 2.879039+3 1.477778-3 2.875567+3 1.556287-3 2.862963+3 1.639406-3 2.840662+3 1.739052-3 2.800758+3 1.840772-3 2.754232+3 1.957774-3 2.695317+3 2.072824-3 2.626091+3 2.189595-3 2.547012+3 2.317395-3 2.455061+3 2.445256-3 2.351799+3 2.552286-3 2.254549+3 2.652601-3 2.155244+3 2.741525-3 2.057961+3 2.821980-3 1.959272+3 2.906623-3 1.843588+3 2.959856-3 1.762611+3 3.007038-3 1.680115+3 3.046141-3 1.600338+3 3.073098-3 1.536284+3 3.102835-3 1.452865+3 3.125533-3 1.378562+3 3.154924-3 1.282093+3 3.165322-3 1.256471+3 3.173056-3 1.243327+3 3.181739-3 1.235952+3 3.187311-3 1.235636+3 3.196415-3 1.242353+3 3.203771-3 1.253524+3 3.217225-3 1.282942+3 3.243211-3 1.346242+3 3.266556-3 1.392318+3 3.292443-3 1.442556+3 3.308771-3 1.483483+3 3.318805-3 1.514820+3 3.327222-3 1.545449+3 3.344525-3 1.620660+3 3.375453-3 1.774020+3 3.383519-3 1.811214+3 3.392592-3 1.849607+3 3.410161-3 1.913647+3 3.441333-3 2.008725+3 3.472860-3 2.099305+3 3.495056-3 2.157307+3 3.521977-3 2.216722+3 3.550857-3 2.267994+3 3.583991-3 2.314669+3 3.620624-3 2.354524+3 3.663903-3 2.388790+3 3.704795-3 2.409451+3 3.744305-3 2.418097+3 3.780998-3 2.414753+3 3.846178-3 2.388113+3 3.860064-3 2.386592+3 3.874375-3 2.390729+3 3.888593-3 2.402044+3 3.911844-3 2.436520+3 3.959588-3 2.541460+3 3.981788-3 2.587433+3 4.000120-3 2.619288+3 4.027170-3 2.656236+3 4.059605-3 2.688518+3 4.103054-3 2.719354+3 4.160010-3 2.747963+3 4.216965-3 2.767507+3 4.283112-3 2.781842+3 4.347839-3 2.787833+3 4.401221-3 2.787137+3 4.471936-3 2.779031+3 4.559412-3 2.753747+3 4.619497-3 2.735717+3 4.657210-3 2.737669+3 4.741015-3 2.770552+3 4.775522-3 2.780078+3 4.818615-3 2.783952+3 4.931586-3 2.770388+3 4.982297-3 2.773966+3 5.085979-3 2.804859+3 5.184269-3 2.815270+3 5.269833-3 2.813550+3 5.479615-3 2.791913+3 5.797237-3 2.740790+3 6.062154-3 2.687178+3 6.382635-3 2.616733+3 6.805367-3 2.517815+3 7.341110-3 2.389951+3 7.894847-3 2.258758+3 8.535914-3 2.114884+3 8.868528-3 2.044127+3 9.674422-3 1.879498+3 1.059467-2 1.709271+3 1.106783-2 1.628185+3 1.155474-2 1.548771+3 1.207267-2 1.468080+3 1.254405-2 1.397487+3 1.302801-2 1.327421+3 1.338148-2 1.277374+3 1.375427-2 1.224927+3 1.406452-2 1.181184+3 1.435504-2 1.139360+3 1.459891-2 1.103173+3 1.480389-2 1.071366+3 1.497852-2 1.042615+3 1.510865-2 1.019571+3 1.522299-2 9.974668+2 1.532621-2 9.751281+2 1.541301-2 9.536682+2 1.553000-2 9.196759+2 1.570227-2 8.650875+2 1.576288-2 8.501964+2 1.581559-2 8.417323+2 1.586375-2 8.384934+2 1.592059-2 8.404276+2 1.597567-2 8.476092+2 1.606947-2 8.677237+2 1.618431-2 8.953360+2 1.628241-2 9.142983+2 1.634722-2 9.234901+2 1.642597-2 9.315102+2 1.651847-2 9.375820+2 1.663210-2 9.416780+2 1.676141-2 9.433607+2 1.690035-2 9.426828+2 1.705462-2 9.396752+2 1.740532-2 9.269533+2 1.778279-2 9.070856+2 1.797572-2 8.947042+2 1.826890-2 8.726398+2 1.843445-2 8.577065+2 1.857023-2 8.433870+2 1.875184-2 8.201769+2 1.897330-2 7.896157+2 1.907096-2 7.801089+2 1.915763-2 7.758194+2 1.924142-2 7.754582+2 1.959786-2 7.881495+2 1.981959-2 7.936713+2 2.002194-2 8.034434+2 2.026686-2 8.162522+2 2.048560-2 8.219141+2 2.079571-2 8.225706+2 2.121380-2 8.173991+2 2.171341-2 8.067704+2 2.246769-2 7.864088+2 2.348417-2 7.552172+2 2.465205-2 7.178237+2 2.626486-2 6.674171+2 2.845618-2 6.045563+2 3.182618-2 5.217072+2 3.528403-2 4.521631+2 3.853355-2 3.980327+2 4.264531-2 3.410270+2 4.845311-2 2.786060+2 5.272479-2 2.427299+2 5.708629-2 2.121991+2 6.477430-2 1.701503+2 7.601469-2 1.277630+2 8.229891-2 1.103665+2 8.862579-2 9.580611+1 9.387721-2 8.531522+1 9.765984-2 7.830839+1 1.004089-1 7.327081+1 1.022917-1 6.964463+1 1.030667-1 6.802259+1 1.037014-1 6.657736+1 1.046137-1 6.420514+1 1.061289-1 5.982998+1 1.066011-1 5.883090+1 1.069614-1 5.835852+1 1.073190-1 5.817250+1 1.078346-1 5.836492+1 1.086080-1 5.930007+1 1.093863-1 6.034795+1 1.099707-1 6.091712+1 1.108810-1 6.136143+1 1.114816-1 6.143588+1 1.130144-1 6.120109+1 1.147534-1 6.054864+1 1.179953-1 5.885572+1 1.214629-1 5.679924+1 1.271573-1 5.327863+1 1.330352-1 4.973863+1 1.447910-1 4.336412+1 1.577866-1 3.750169+1 1.804950-1 2.965292+1 2.136684-1 2.190460+1 2.610470-1 1.516488+1 3.187407-1 1.043839+1 4.126167-1 6.389394+0 5.770985-1 3.345121+0 8.423796-1 1.600600+0 1.286622+0 6.968303-1 2.135261+0 2.555148-1 4.671441+0 5.367354-2 1.410753+1 5.891427-3 4.260405+1 6.460155-4 1.286622+2 7.083456-5 3.885536+2 7.766859-6 1.258925+3 7.398560-7 3.981072+3 7.398560-8 1.258925+4 7.398560-9 3.981072+4 7.39856-10 1.000000+5 1.17259-10 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.002700-6 1.258900-6 4.758900-6 1.584900-6 7.542300-6 1.995300-6 1.195400-5 2.511900-6 1.894500-5 3.162300-6 3.002600-5 3.981100-6 4.758800-5 5.011900-6 7.542200-5 6.309600-6 1.195300-4 7.943300-6 1.894500-4 1.000000-5 3.002500-4 1.258900-5 4.758600-4 1.584900-5 7.541800-4 1.995300-5 1.195200-3 2.511900-5 1.893200-3 3.162300-5 2.998700-3 3.981100-5 4.750400-3 5.011900-5 7.526200-3 6.309600-5 1.192500-2 7.943300-5 1.887200-2 1.000000-4 2.985000-2 1.258900-4 4.714400-2 1.584900-4 7.431200-2 1.995300-4 1.167600-1 2.511900-4 1.826000-1 3.162300-4 2.835000-1 3.981100-4 4.348000-1 5.011900-4 6.523300-1 6.309600-4 9.529900-1 7.943300-4 1.346900+0 1.000000-3 1.839300+0 1.258900-3 2.439500+0 1.584900-3 3.177700+0 1.995300-3 4.098300+0 2.511900-3 5.234800+0 3.162300-3 6.622900+0 3.981100-3 8.275300+0 5.011900-3 1.015400+1 6.309600-3 1.222300+1 7.943300-3 1.454800+1 1.000000-2 1.715400+1 1.258900-2 2.002000+1 1.584900-2 2.288800+1 1.995300-2 2.574000+1 2.511900-2 2.850300+1 3.162300-2 3.113900+1 3.981100-2 3.345800+1 5.011900-2 3.527500+1 6.309600-2 3.627700+1 7.943300-2 3.700900+1 1.000000-1 3.694400+1 1.258900-1 3.626000+1 1.584900-1 3.509500+1 1.995300-1 3.349400+1 2.511900-1 3.160100+1 3.162300-1 2.951000+1 3.981100-1 2.731700+1 5.011900-1 2.508200+1 6.309600-1 2.286600+1 7.943300-1 2.070000+1 1.000000+0 1.860400+1 1.258900+0 1.662200+1 1.584900+0 1.474400+1 1.995300+0 1.299200+1 2.511900+0 1.137300+1 3.162300+0 9.893000+0 3.981100+0 8.554000+0 5.011900+0 7.354300+0 6.309600+0 6.289700+0 7.943300+0 5.353000+0 1.000000+1 4.535600+0 1.258900+1 3.827400+0 1.584900+1 3.217900+0 1.995300+1 2.696500+0 2.511900+1 2.252800+0 3.162300+1 1.877000+0 3.981100+1 1.560100+0 5.011900+1 1.293800+0 6.309600+1 1.070800+0 7.943300+1 8.846300-1 1.000000+2 7.296200-1 1.258900+2 6.008600-1 1.584900+2 4.941300-1 1.995300+2 4.058500-1 2.511900+2 3.329500-1 3.162300+2 2.728400-1 3.981100+2 2.233700-1 5.011900+2 1.826900-1 6.309600+2 1.492900-1 7.943300+2 1.219000-1 1.000000+3 9.945200-2 1.258900+3 8.108200-2 1.584900+3 6.606000-2 1.995300+3 5.378700-2 2.511900+3 4.376700-2 3.162300+3 3.559400-2 3.981100+3 2.893000-2 5.011900+3 2.350200-2 6.309600+3 1.908300-2 7.943300+3 1.548700-2 1.000000+4 1.256300-2 1.258900+4 1.018700-2 1.584900+4 8.256700-3 1.995300+4 6.689500-3 2.511900+4 5.417600-3 3.162300+4 4.386000-3 3.981100+4 3.549500-3 5.011900+4 2.871600-3 6.309600+4 2.322300-3 7.943300+4 1.877500-3 1.000000+5 1.517500-3 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584207-4 1.995262-4 1.994175-4 2.511886-4 2.510167-4 3.162278-4 3.159553-4 3.981072-4 3.976783-4 5.011872-4 5.005129-4 6.309573-4 6.299000-4 7.943282-4 7.926762-4 1.000000-3 9.974255-4 1.258925-3 1.254914-3 1.584893-3 1.578622-3 1.995262-3 1.985423-3 2.511886-3 2.496395-3 3.162278-3 3.137984-3 3.981072-3 3.942956-3 5.011872-3 4.952299-3 6.309573-3 6.216728-3 7.943282-3 7.798424-3 1.000000-2 9.773387-3 1.258925-2 1.223699-2 1.584893-2 1.530274-2 1.995262-2 1.911172-2 2.511886-2 2.382585-2 3.162278-2 2.964099-2 3.981072-2 3.679204-2 5.011872-2 4.555745-2 6.309573-2 5.627188-2 7.943282-2 6.928337-2 1.000000-1 8.505026-2 1.258925-1 1.041141-1 1.584893-1 1.269519-1 1.995262-1 1.543755-1 2.511886-1 1.870645-1 3.162278-1 2.259735-1 3.981072-1 2.721224-1 5.011872-1 3.266928-1 6.309573-1 3.910626-1 7.943282-1 4.669168-1 1.000000+0 5.564608-1 1.258925+0 6.615506-1 1.584893+0 7.858614-1 1.995262+0 9.329588-1 2.511886+0 1.107509+0 3.162278+0 1.315198+0 3.981072+0 1.563178+0 5.011872+0 1.860026+0 6.309573+0 2.216230+0 7.943282+0 2.644872+0 1.000000+1 3.161414+0 1.258925+1 3.785491+0 1.584893+1 4.540693+0 1.995262+1 5.456027+0 2.511886+1 6.566766+0 3.162278+1 7.916927+0 3.981072+1 9.559201+0 5.011872+1 1.156013+1 6.309573+1 1.399972+1 7.943282+1 1.697744+1 1.000000+2 2.061487+1 1.258925+2 2.506206+1 1.584893+2 3.050355+1 1.995262+2 3.716710+1 2.511886+2 4.533235+1 3.162278+2 5.534498+1 3.981072+2 6.762946+1 5.011872+2 8.271268+1 6.309573+2 1.012418+2 7.943282+2 1.240185+2 1.000000+3 1.520273+2 1.258925+3 1.864906+2 1.584893+3 2.289155+2 1.995262+3 2.811748+2 2.511886+3 3.455642+2 3.162278+3 4.249300+2 3.981072+3 5.228158+2 5.011872+3 6.435801+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34284-10 1.584893-5 6.88285-10 1.995262-5 1.090816-9 2.511886-5 1.728588-9 3.162278-5 2.739445-9 3.981072-5 4.341651-9 5.011872-5 6.881034-9 6.309573-5 1.090552-8 7.943282-5 1.727798-8 1.000000-4 2.737521-8 1.258925-4 4.336386-8 1.584893-4 6.866784-8 1.995262-4 1.087032-7 2.511886-4 1.719896-7 3.162278-4 2.724971-7 3.981072-4 4.288641-7 5.011872-4 6.743770-7 6.309573-4 1.057343-6 7.943282-4 1.651994-6 1.000000-3 2.574522-6 1.258925-3 4.011788-6 1.584893-3 6.271380-6 1.995262-3 9.839427-6 2.511886-3 1.549190-5 3.162278-3 2.429367-5 3.981072-3 3.811541-5 5.011872-3 5.957383-5 6.309573-3 9.284536-5 7.943282-3 1.448587-4 1.000000-2 2.266125-4 1.258925-2 3.522647-4 1.584893-2 5.461915-4 1.995262-2 8.408988-4 2.511886-2 1.293011-3 3.162278-2 1.981785-3 3.981072-2 3.018682-3 5.011872-2 4.561278-3 6.309573-2 6.823853-3 7.943282-2 1.014946-2 1.000000-1 1.494974-2 1.258925-1 2.177846-2 1.584893-1 3.153744-2 1.995262-1 4.515075-2 2.511886-1 6.412419-2 3.162278-1 9.025429-2 3.981072-1 1.259848-1 5.011872-1 1.744945-1 6.309573-1 2.398947-1 7.943282-1 3.274114-1 1.000000+0 4.435392-1 1.258925+0 5.973748-1 1.584893+0 7.990317-1 1.995262+0 1.062304+0 2.511886+0 1.404378+0 3.162278+0 1.847080+0 3.981072+0 2.417894+0 5.011872+0 3.151846+0 6.309573+0 4.093344+0 7.943282+0 5.298410+0 1.000000+1 6.838586+0 1.258925+1 8.803763+0 1.584893+1 1.130824+1 1.995262+1 1.449660+1 2.511886+1 1.855210+1 3.162278+1 2.370585+1 3.981072+1 3.025152+1 5.011872+1 3.855859+1 6.309573+1 4.909601+1 7.943282+1 6.245538+1 1.000000+2 7.938513+1 1.258925+2 1.008305+2 1.584893+2 1.279858+2 1.995262+2 1.623591+2 2.511886+2 2.058563+2 3.162278+2 2.608828+2 3.981072+2 3.304777+2 5.011872+2 4.184745+2 6.309573+2 5.297156+2 7.943282+2 6.703098+2 1.000000+3 8.479727+2 1.258925+3 1.072435+3 1.584893+3 1.355978+3 1.995262+3 1.714087+3 2.511886+3 2.166322+3 3.162278+3 2.737348+3 3.981072+3 3.458256+3 5.011872+3 4.368292+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.000000-6 6.855540+6 4.168694-6 7.000216+6 4.365158-6 7.114486+6 4.490000-6 7.161630+6 4.490000-6 1.069815+7 4.570882-6 1.079981+7 4.770000-6 1.097491+7 4.841724-6 1.102874+7 4.954502-6 1.109235+7 5.200000-6 1.120227+7 5.410000-6 1.123746+7 5.410000-6 2.005552+7 5.500000-6 1.959703+7 5.559043-6 1.930787+7 5.754399-6 1.841719+7 5.821032-6 1.813801+7 6.025596-6 1.734609+7 6.200000-6 1.673729+7 6.500000-6 1.581965+7 6.600000-6 1.554099+7 7.000000-6 1.455120+7 7.500000-6 1.351983+7 7.585776-6 1.336170+7 8.035261-6 1.258969+7 8.200000-6 1.233153+7 8.609938-6 1.172566+7 8.810489-6 1.145159+7 9.120108-6 1.104223+7 9.440609-6 1.064406+7 9.700000-6 1.033280+7 1.000000-5 9.987612+6 1.023293-5 9.725386+6 1.050000-5 9.432405+6 1.059254-5 9.335759+6 1.083927-5 9.076633+6 1.122018-5 8.690853+6 1.150000-5 8.414883+6 1.188502-5 8.049280+6 1.216186-5 7.793455+6 1.258925-5 7.415156+6 1.273503-5 7.288044+6 1.333521-5 6.789716+6 1.380384-5 6.413934+6 1.412538-5 6.176285+6 1.500000-5 5.558774+6 1.531087-5 5.350814+6 1.584893-5 5.019212+6 1.678804-5 4.484111+6 1.690000-5 4.426299+6 1.800000-5 3.887488+6 1.819701-5 3.799720+6 1.927525-5 3.358424+6 1.950000-5 3.274527+6 2.089296-5 2.808436+6 2.113489-5 2.736411+6 2.195000-5 2.508657+6 2.195000-5 1.919696+7 2.230000-5 1.828989+7 2.300000-5 1.664093+7 2.317395-5 1.626174+7 2.371374-5 1.515416+7 2.511886-5 1.270698+7 2.540973-5 1.227153+7 2.580000-5 1.171735+7 2.660725-5 1.067125+7 2.818383-5 8.962419+6 2.851018-5 8.655326+6 2.931000-5 7.957560+6 2.931000-5 1.548090+7 2.985383-5 1.473836+7 3.019952-5 1.429209+7 3.054921-5 1.384674+7 3.126079-5 1.299027+7 3.162278-5 1.257350+7 3.311311-5 1.103565+7 3.350000-5 1.067339+7 3.427678-5 9.993456+6 3.507519-5 9.349937+6 3.589219-5 8.736715+6 3.672823-5 8.164059+6 3.715352-5 7.891652+6 3.730000-5 7.800563+6 3.845918-5 7.113909+6 3.981072-5 6.411695+6 4.000000-5 6.318925+6 4.168694-5 5.564952+6 4.265795-5 5.184616+6 4.315191-5 5.002487+6 4.517000-5 4.339810+6 4.517000-5 4.649496+6 4.518559-5 4.644424+6 4.590000-5 4.419639+6 4.650000-5 4.241012+6 4.677351-5 4.162558+6 4.800000-5 3.834782+6 4.954502-5 3.469787+6 5.011872-5 3.346468+6 5.069907-5 3.227427+6 5.128614-5 3.113646+6 5.248075-5 2.898854+6 5.400000-5 2.654081+6 5.432503-5 2.605525+6 5.500000-5 2.509306+6 5.559043-5 2.428918+6 5.730000-5 2.217684+6 5.800000-5 2.138628+6 5.821032-5 2.115617+6 5.900000-5 2.033108+6 6.025596-5 1.911108+6 6.095369-5 1.847435+6 6.237348-5 1.726966+6 6.309573-5 1.671100+6 6.531306-5 1.514887+6 6.683439-5 1.419437+6 6.800000-5 1.352643+6 7.079458-5 1.209755+6 7.161434-5 1.171954+6 7.328245-5 1.100973+6 7.413102-5 1.067082+6 7.585776-5 1.002976+6 7.800000-5 9.317978+5 7.852356-5 9.155535+5 8.128305-5 8.360953+5 8.222426-5 8.116452+5 8.413951-5 7.651571+5 8.638000-5 7.153954+5 8.638000-5 3.751966+6 8.642000-5 3.817234+6 8.660000-5 3.993142+6 8.680000-5 4.181264+6 8.700000-5 4.361639+6 8.709636-5 4.444526+6 8.720000-5 4.535817+6 8.750000-5 4.784313+6 8.780000-5 5.019954+6 8.815000-5 5.278844+6 8.850000-5 5.523181+6 8.885000-5 5.752392+6 8.920000-5 5.966211+6 8.970000-5 6.246122+6 9.015711-5 6.474385+6 9.020000-5 6.496253+6 9.070000-5 6.716026+6 9.120108-5 6.901399+6 9.130000-5 6.938609+6 9.190000-5 7.115887+6 9.225714-5 7.194370+6 9.250000-5 7.248241+6 9.282000-5 7.297512+6 9.282000-5 9.015084+6 9.287000-5 9.066963+6 9.300000-5 9.161944+6 9.310000-5 9.231265+6 9.332543-5 9.381581+6 9.350000-5 9.494965+6 9.355000-5 9.525025+6 9.385000-5 9.697029+6 9.415000-5 9.862866+6 9.420000-5 9.889002+6 9.450000-5 1.002931+7 9.485000-5 1.018478+7 9.500000-5 1.024693+7 9.520000-5 1.031921+7 9.565000-5 1.046909+7 9.580000-5 1.051393+7 9.610000-5 1.058925+7 9.650000-5 1.067681+7 9.660509-5 1.069583+7 9.680000-5 1.073212+7 9.700000-5 1.076093+7 9.750000-5 1.081202+7 9.772372-5 1.082608+7 9.800000-5 1.083397+7 9.850000-5 1.082938+7 9.885531-5 1.081267+7 9.900000-5 1.080644+7 9.950000-5 1.075257+7 1.000000-4 1.068263+7 1.007000-4 1.054509+7 1.012000-4 1.043135+7 1.020000-4 1.022628+7 1.027000-4 1.001773+7 1.035142-4 9.759970+6 1.045000-4 9.432918+6 1.047129-4 9.359509+6 1.055000-4 9.094454+6 1.071519-4 8.538393+6 1.083927-4 8.131339+6 1.096478-4 7.744002+6 1.150000-4 6.305466+6 1.161449-4 6.042566+6 1.205000-4 5.145147+6 1.220000-4 4.870083+6 1.230269-4 4.689597+6 1.244515-4 4.452962+6 1.260000-4 4.208244+6 1.273503-4 4.005021+6 1.300000-4 3.640482+6 1.303167-4 3.599743+6 1.318257-4 3.408265+6 1.330000-4 3.267964+6 1.348963-4 3.056407+6 1.364583-4 2.894857+6 1.380384-4 2.740727+6 1.428894-4 2.327544+6 1.445440-4 2.204785+6 1.450000-4 2.172388+6 1.462177-4 2.088839+6 1.479108-4 1.979292+6 1.500000-4 1.854998+6 1.548817-4 1.601059+6 1.566751-4 1.519001+6 1.580000-4 1.462036+6 1.603245-4 1.368615+6 1.659587-4 1.174235+6 1.698244-4 1.061267+6 1.717908-4 1.009916+6 1.720000-4 1.004647+6 1.746600-4 9.407578+5 1.746600-4 1.356740+6 1.760000-4 1.321401+6 1.778279-4 1.276033+6 1.781500-4 1.268293+6 1.800000-4 1.225192+6 1.820000-4 1.181434+6 1.840772-4 1.139251+6 1.862087-4 1.098330+6 1.880000-4 1.065698+6 1.883649-4 1.059369+6 1.900000-4 1.032043+6 1.905461-4 1.023154+6 1.930000-4 9.846461+5 1.950000-4 9.555497+5 1.972423-4 9.249675+5 1.980000-4 9.149795+5 1.985000-4 9.086256+5 2.000000-4 8.895377+5 2.018366-4 8.670689+5 2.020000-4 8.651479+5 2.050000-4 8.317712+5 2.065380-4 8.159503+5 2.080000-4 8.017516+5 2.113489-4 7.712915+5 2.137962-4 7.508158+5 2.150000-4 7.412679+5 2.162719-4 7.313961+5 2.187900-4 7.135746+5 2.187900-4 8.952928+5 2.190000-4 8.934337+5 2.213095-4 8.737272+5 2.240000-4 8.522423+5 2.264644-4 8.336674+5 2.270000-4 8.298292+5 2.290868-4 8.144737+5 2.300000-4 8.078991+5 2.305000-4 8.044116+5 2.317395-4 7.955143+5 2.350000-4 7.734577+5 2.371374-4 7.593348+5 2.398833-4 7.426920+5 2.400000-4 7.419990+5 2.430000-4 7.249057+5 2.454709-4 7.117485+5 2.470800-4 7.036057+5 2.500000-4 6.892590+5 2.511886-4 6.840891+5 2.570396-4 6.602640+5 2.630268-4 6.388475+5 2.635000-4 6.372191+5 2.650000-4 6.322439+5 2.660725-4 6.289427+5 2.691535-4 6.196761+5 2.700000-4 6.172479+5 2.730000-4 6.090812+5 2.741000-4 6.062494+5 2.741000-4 6.616724+5 2.754229-4 6.581578+5 2.818383-4 6.422127+5 2.830000-4 6.394379+5 2.851018-4 6.347925+5 2.917427-4 6.207037+5 2.951209-4 6.141763+5 3.000000-4 6.053903+5 3.019952-4 6.019197+5 3.054921-4 5.961638+5 3.090295-4 5.906294+5 3.100000-4 5.891650+5 3.150000-4 5.817671+5 3.162278-4 5.800459+5 3.197400-4 5.753279+5 3.197400-4 6.799207+5 3.200000-4 6.796901+5 3.250000-4 6.754205+5 3.273407-4 6.737297+5 3.282400-4 6.730966+5 3.289000-4 6.726559+5 3.289000-4 7.449199+5 3.290000-4 7.451884+5 3.296000-4 7.459396+5 3.300000-4 7.462569+5 3.304000-4 7.466991+5 3.311311-4 7.472467+5 3.316000-4 7.476175+5 3.322000-4 7.479631+5 3.330000-4 7.487579+5 3.335000-4 7.491514+5 3.350000-4 7.510396+5 3.365000-4 7.535625+5 3.375300-4 7.559136+5 3.390000-4 7.602308+5 3.400000-4 7.638873+5 3.415000-4 7.707847+5 3.420000-4 7.735169+5 3.427678-4 7.780847+5 3.430000-4 7.794945+5 3.435000-4 7.829118+5 3.445000-4 7.903632+5 3.450000-4 7.945115+5 3.458000-4 8.017109+5 3.465000-4 8.086110+5 3.472000-4 8.160894+5 3.480000-4 8.254001+5 3.490000-4 8.380851+5 3.495000-4 8.449517+5 3.507519-4 8.636117+5 3.510000-4 8.674648+5 3.515000-4 8.756342+5 3.525000-4 8.929318+5 3.540000-4 9.214485+5 3.555000-4 9.531196+5 3.565000-4 9.761605+5 3.570000-4 9.878594+5 3.589219-4 1.036709+6 3.590000-4 1.038801+6 3.610000-4 1.094602+6 3.635000-4 1.170201+6 3.657000-4 1.242044+6 3.665000-4 1.269088+6 3.672823-4 1.296122+6 3.680000-4 1.321803+6 3.690000-4 1.357742+6 3.700000-4 1.394559+6 3.715352-4 1.452020+6 3.730000-4 1.508979+6 3.740000-4 1.548201+6 3.758374-4 1.622370+6 3.765000-4 1.649307+6 3.790000-4 1.754228+6 3.815000-4 1.861616+6 3.845918-4 1.997495+6 3.850000-4 2.015887+6 3.880000-4 2.151147+6 3.915000-4 2.310085+6 3.935501-4 2.401372+6 3.950000-4 2.468550+6 3.981072-4 2.607319+6 4.000000-4 2.688720+6 4.015000-4 2.755303+6 4.016400-4 2.761362+6 4.027170-4 2.806044+6 4.050000-4 2.903425+6 4.080000-4 3.025124+6 4.090000-4 3.065202+6 4.100000-4 3.103639+6 4.120975-4 3.185863+6 4.130000-4 3.220452+6 4.150000-4 3.293892+6 4.180000-4 3.402776+6 4.190000-4 3.437381+6 4.216965-4 3.527804+6 4.235600-4 3.591682+6 4.240000-4 3.605925+6 4.265795-4 3.686233+6 4.280000-4 3.731155+6 4.335000-4 3.888418+6 4.365158-4 3.964305+6 4.390000-4 4.027711+6 4.430000-4 4.115221+6 4.450000-4 4.159582+6 4.466836-4 4.190684+6 4.500000-4 4.252465+6 4.518559-4 4.284780+6 4.550000-4 4.333436+6 4.570882-4 4.362927+6 4.600000-4 4.404191+6 4.623810-4 4.433874+6 4.677351-4 4.492914+6 4.680000-4 4.495846+6 4.700000-4 4.514740+6 4.731513-4 4.540560+6 4.780000-4 4.580262+6 4.794100-4 4.589847+6 4.841724-4 4.616043+6 4.850000-4 4.620593+6 4.897788-4 4.639761+6 4.954502-4 4.655327+6 4.970000-4 4.659581+6 5.000000-4 4.663739+6 5.011872-4 4.664054+6 5.080000-4 4.665887+6 5.128614-4 4.661600+6 5.150000-4 4.657712+6 5.230000-4 4.643239+6 5.248075-4 4.637949+6 5.308844-4 4.615549+6 5.400000-4 4.582694+6 5.432503-4 4.565150+6 5.500000-4 4.529194+6 5.559043-4 4.498259+6 5.580000-4 4.487402+6 5.623413-4 4.462355+6 5.754399-4 4.377545+6 5.821032-4 4.332388+6 5.888437-4 4.283663+6 5.956621-4 4.235487+6 6.000000-4 4.203329+6 6.025596-4 4.184578+6 6.200000-4 4.050867+6 6.237348-4 4.021589+6 6.285300-4 3.984505+6 6.382635-4 3.906782+6 6.396200-4 3.896161+6 6.396200-4 4.263258+6 6.456542-4 4.216882+6 6.500000-4 4.184101+6 6.531306-4 4.159527+6 6.606934-4 4.098214+6 6.700000-4 4.025080+6 6.755100-4 3.982883+6 6.755100-4 4.187356+6 6.839116-4 4.125832+6 6.850000-4 4.117676+6 6.918310-4 4.064936+6 7.000000-4 4.003629+6 7.079458-4 3.945615+6 7.161434-4 3.887473+6 7.328245-4 3.765901+6 7.350000-4 3.750530+6 7.498942-4 3.648262+6 7.500000-4 3.647555+6 7.585776-4 3.589859+6 7.673615-4 3.529942+6 7.852356-4 3.412704+6 7.900000-4 3.381840+6 7.943282-4 3.353991+6 8.000000-4 3.318140+6 8.128305-4 3.236910+6 8.222426-4 3.179262+6 8.317638-4 3.120834+6 8.511380-4 3.007852+6 8.609938-4 2.951502+6 8.810489-4 2.841448+6 8.912509-4 2.787333+6 9.015711-4 2.733902+6 9.114400-4 2.684015+6 9.114400-4 2.850294+6 9.120108-4 2.847392+6 9.225714-4 2.793321+6 9.332543-4 2.740489+6 9.350000-4 2.731865+6 9.500000-4 2.659290+6 9.660509-4 2.584653+6 9.700000-4 2.566815+6 9.885531-4 2.482542+6 1.000000-3 2.432074+6 1.011579-3 2.382347+6 1.015000-3 2.367989+6 1.035142-3 2.285902+6 1.047129-3 2.238642+6 1.059254-3 2.192487+6 1.071519-3 2.146288+6 1.083927-3 2.100862+6 1.104800-3 2.028029+6 1.104800-3 2.055454+6 1.109175-3 2.040723+6 1.110000-3 2.037965+6 1.122018-3 1.997844+6 1.130000-3 1.971791+6 1.135011-3 1.955566+6 1.150000-3 1.908001+6 1.161449-3 1.872525+6 1.174898-3 1.832200+6 1.188502-3 1.792874+6 1.190000-3 1.788631+6 1.202264-3 1.753989+6 1.210000-3 1.732397+6 1.216186-3 1.715426+6 1.230269-3 1.677807+6 1.244515-3 1.640646+6 1.249500-3 1.627947+6 1.249500-3 1.659228+6 1.260000-3 1.632763+6 1.273503-3 1.599716+6 1.288250-3 1.564497+6 1.300000-3 1.537170+6 1.303167-3 1.529846+6 1.318257-3 1.495730+6 1.333521-3 1.462481+6 1.350000-3 1.427609+6 1.364583-3 1.397723+6 1.380384-3 1.366466+6 1.396368-3 1.335863+6 1.412538-3 1.305784+6 1.420000-3 1.292105+6 1.428894-3 1.276090+6 1.450000-3 1.239365+6 1.462177-3 1.218762+6 1.479108-3 1.190869+6 1.496236-3 1.163326+6 1.500000-3 1.157407+6 1.531087-3 1.110330+6 1.548817-3 1.084803+6 1.570000-3 1.055005+6 1.584893-3 1.034495+6 1.621810-3 9.863313+5 1.650000-3 9.519110+5 1.659587-3 9.405623+5 1.678804-3 9.183664+5 1.690000-3 9.058166+5 1.698244-3 8.966628+5 1.717908-3 8.753781+5 1.737801-3 8.544951+5 1.770000-3 8.221078+5 1.778279-3 8.140861+5 1.800000-3 7.936051+5 1.819701-3 7.756368+5 1.862087-3 7.391086+5 1.864900-3 7.367396+5 1.883649-3 7.212376+5 1.905461-3 7.038290+5 1.927525-3 6.867550+5 1.950000-3 6.699153+5 1.972423-3 6.537520+5 1.995262-3 6.378980+5 2.000000-3 6.346832+5 2.018366-3 6.223494+5 2.041738-3 6.070391+5 2.070000-3 5.893001+5 2.089296-3 5.775841+5 2.113489-3 5.633296+5 2.187762-3 5.226814+5 2.200000-3 5.164099+5 2.213095-3 5.098219+5 2.220000-3 5.063955+5 2.238721-3 4.972042+5 2.264644-3 4.848324+5 2.300000-3 4.686318+5 2.317395-3 4.609334+5 2.344229-3 4.494309+5 2.371374-3 4.382159+5 2.400000-3 4.268422+5 2.426610-3 4.165843+5 2.454709-3 4.060925+5 2.483133-3 3.957933+5 2.511886-3 3.857777+5 2.540973-3 3.760359+5 2.570396-3 3.665242+5 2.600160-3 3.572759+5 2.630268-3 3.482824+5 2.650000-3 3.425772+5 2.660725-3 3.395070+5 2.691535-3 3.308346+5 2.722701-3 3.223914+5 2.786121-3 3.060988+5 2.800000-3 3.027020+5 2.818383-3 2.982763+5 2.851018-3 2.906605+5 2.884032-3 2.832542+5 2.900000-3 2.797454+5 2.917427-3 2.759862+5 2.951209-3 2.688646+5 3.019952-3 2.551562+5 3.054921-3 2.485563+5 3.090295-3 2.421371+5 3.126079-3 2.358768+5 3.162278-3 2.297923+5 3.198895-3 2.238026+5 3.224100-3 2.198127+5 3.224100-3 5.450568+5 3.235937-3 5.402373+5 3.246000-3 5.361847+5 3.273407-3 5.253662+5 3.300000-3 5.151626+5 3.311311-3 5.109038+5 3.349654-3 4.968344+5 3.379600-3 4.862144+5 3.379600-3 6.887127+5 3.467369-3 6.487347+5 3.507519-3 6.312161+5 3.548134-3 6.141574+5 3.600000-3 5.933186+5 3.630781-3 5.807749+5 3.672823-3 5.642353+5 3.715352-3 5.481560+5 3.801894-3 5.168241+5 3.845918-3 5.018099+5 3.903900-3 4.829138+5 3.903900-3 5.617822+5 3.920000-3 5.563702+5 3.935501-3 5.511674+5 3.970000-3 5.398458+5 4.000000-3 5.301313+5 4.027170-3 5.215487+5 4.073803-3 5.068800+5 4.168694-3 4.788126+5 4.216965-3 4.653803+5 4.265795-3 4.521873+5 4.315191-3 4.393711+5 4.365158-3 4.268585+5 4.400000-3 4.184341+5 4.466836-3 4.029230+5 4.518559-3 3.914746+5 4.623810-3 3.694121+5 4.650000-3 3.641994+5 4.654700-3 3.632740+5 4.654700-3 3.858136+5 4.688000-3 3.791959+5 4.731513-3 3.707973+5 4.786301-3 3.605797+5 4.800000-3 3.580899+5 4.841724-3 3.506203+5 4.897788-3 3.409410+5 4.900000-3 3.405668+5 4.954502-3 3.315040+5 4.974300-3 3.282695+5 4.974300-3 3.422863+5 5.011872-3 3.361377+5 5.015000-3 3.356331+5 5.069907-3 3.269528+5 5.128614-3 3.179605+5 5.188000-3 3.091884+5 5.248075-3 3.006619+5 5.300000-3 2.935673+5 5.308844-3 2.923835+5 5.370318-3 2.843438+5 5.432503-3 2.765071+5 5.495409-3 2.689010+5 5.500000-3 2.683580+5 5.559043-3 2.614617+5 5.688529-3 2.472090+5 5.754399-3 2.403340+5 5.800000-3 2.357313+5 5.821032-3 2.336452+5 5.956621-3 2.208273+5 6.000000-3 2.169274+5 6.025596-3 2.146719+5 6.095369-3 2.086751+5 6.165950-3 2.028529+5 6.237348-3 1.971989+5 6.309573-3 1.917072+5 6.456542-3 1.810733+5 6.500000-3 1.780949+5 6.606934-3 1.710336+5 6.683439-3 1.662310+5 6.760830-3 1.615360+5 6.839116-3 1.569800+5 6.918310-3 1.525581+5 7.000000-3 1.481259+5 7.079458-3 1.439865+5 7.161434-3 1.398863+5 7.244360-3 1.359085+5 7.328245-3 1.320370+5 7.413102-3 1.282778+5 7.498942-3 1.246212+5 7.585776-3 1.210745+5 7.673615-3 1.176370+5 7.762471-3 1.143025+5 7.800000-3 1.129343+5 7.943282-3 1.079226+5 8.000000-3 1.060281+5 8.035261-3 1.048748+5 8.128305-3 1.019185+5 8.222426-3 9.902169+4 8.317638-3 9.619050+4 8.500000-3 9.105038+4 8.511380-3 9.074294+4 8.609938-3 8.814083+4 8.709636-3 8.560150+4 8.810489-3 8.313514+4 8.912509-3 8.074202+4 9.120108-3 7.614695+4 9.225714-3 7.395336+4 9.332543-3 7.181967+4 9.440609-3 6.974851+4 9.549926-3 6.774043+4 9.660509-3 6.578518+4 9.772372-3 6.388785+4 9.885531-3 6.204814+4 1.000000-2 6.025846+4 1.011579-2 5.852193+4 1.023293-2 5.683823+4 1.047129-2 5.360809+4 1.059254-2 5.204771+4 1.071519-2 5.053498+4 1.080000-2 4.952302+4 1.096478-2 4.763637+4 1.109175-2 4.624596+4 1.120000-2 4.510643+4 1.135011-2 4.359083+4 1.148154-2 4.232246+4 1.150000-2 4.214857+4 1.161449-2 4.108814+4 1.188502-2 3.873073+4 1.190000-2 3.860577+4 1.202264-2 3.760081+4 1.216186-2 3.650095+4 1.230269-2 3.543451+4 1.244515-2 3.440012+4 1.258925-2 3.339624+4 1.288250-2 3.147826+4 1.300000-2 3.075037+4 1.318257-2 2.966339+4 1.333521-2 2.879096+4 1.350000-2 2.788980+4 1.364583-2 2.712333+4 1.380384-2 2.632659+4 1.396368-2 2.555159+4 1.412538-2 2.480052+4 1.445440-2 2.336432+4 1.462177-2 2.267886+4 1.479108-2 2.201272+4 1.496236-2 2.136413+4 1.500000-2 2.122474+4 1.513561-2 2.073316+4 1.548817-2 1.952907+4 1.566751-2 1.895271+4 1.584893-2 1.839420+4 1.588300-2 1.829186+4 1.588300-2 4.398524+4 1.599000-2 4.335768+4 1.602000-2 4.318416+4 1.603245-2 4.309645+4 1.621810-2 4.181577+4 1.640590-2 4.057388+4 1.659587-2 3.936775+4 1.675000-2 3.842225+4 1.698244-2 3.700171+4 1.717908-2 3.585609+4 1.737801-2 3.477256+4 1.778279-2 3.270374+4 1.798871-2 3.171564+4 1.800000-2 3.166267+4 1.819701-2 3.073721+4 1.840772-2 2.978787+4 1.862087-2 2.886843+4 1.883649-2 2.797788+4 1.900000-2 2.732754+4 1.905461-2 2.711460+4 1.916300-2 2.669784+4 1.916300-2 3.754961+4 1.927525-2 3.701874+4 1.934000-2 3.671748+4 1.949845-2 3.595101+4 1.950000-2 3.594362+4 1.960000-2 3.547120+4 1.972423-2 3.488562+4 1.984800-2 3.431557+4 1.984800-2 3.965265+4 2.000000-2 3.888507+4 2.001000-2 3.883637+4 2.018366-2 3.800487+4 2.041738-2 3.691488+4 2.065380-2 3.585654+4 2.080000-2 3.522343+4 2.089296-2 3.483176+4 2.113489-2 3.383806+4 2.120000-2 3.357756+4 2.150000-2 3.240636+4 2.162719-2 3.192579+4 2.214200-2 3.007892+4 2.238721-2 2.925229+4 2.264644-2 2.841304+4 2.290868-2 2.759019+4 2.317395-2 2.679175+4 2.344229-2 2.600961+4 2.371374-2 2.525064+4 2.398833-2 2.451423+4 2.400000-2 2.448360+4 2.426610-2 2.379908+4 2.454709-2 2.310434+4 2.483133-2 2.242899+4 2.511886-2 2.177368+4 2.540973-2 2.113910+4 2.570396-2 2.052354+4 2.600160-2 1.992401+4 2.630268-2 1.934247+4 2.660725-2 1.877841+4 2.691535-2 1.823114+4 2.722701-2 1.769633+4 2.754229-2 1.717753+4 2.786121-2 1.667080+4 2.800000-2 1.645657+4 2.818383-2 1.617839+4 2.851018-2 1.570064+4 2.884032-2 1.523727+4 2.917427-2 1.478796+4 2.951209-2 1.435222+4 2.985383-2 1.392956+4 3.000000-2 1.375410+4 3.019952-2 1.351862+4 3.054921-2 1.311946+4 3.126079-2 1.235039+4 3.235937-2 1.127524+4 3.273407-2 1.093784+4 3.311311-2 1.061071+4 3.388442-2 9.986218+3 3.427678-2 9.688213+3 3.467369-2 9.399317+3 3.507519-2 9.119261+3 3.589219-2 8.584457+3 3.630781-2 8.329162+3 3.672823-2 8.081437+3 3.715352-2 7.839572+3 3.758374-2 7.605087+3 3.800000-2 7.387191+3 3.845918-2 7.156649+3 3.935501-2 6.732537+3 3.981072-2 6.528809+3 4.027170-2 6.331382+3 4.073803-2 6.140057+3 4.168694-2 5.775011+3 4.265795-2 5.432016+3 4.300000-2 5.317988+3 4.315191-2 5.268373+3 4.365158-2 5.109678+3 4.415704-2 4.955682+3 4.500000-2 4.712038+3 4.623810-2 4.383566+3 4.677351-2 4.250748+3 4.731513-2 4.122046+3 4.786301-2 3.997330+3 4.800000-2 3.966971+3 4.841724-2 3.876057+3 4.897788-2 3.758385+3 4.954502-2 3.644368+3 5.000000-2 3.556361+3 5.011872-2 3.533880+3 5.069907-2 3.426790+3 5.128614-2 3.322121+3 5.188000-2 3.220701+3 5.248075-2 3.122361+3 5.559043-2 2.674721+3 5.688529-2 2.514562+3 5.754399-2 2.438177+3 5.800000-2 2.387174+3 5.821032-2 2.364063+3 5.888437-2 2.292064+3 5.956621-2 2.222069+3 6.000000-2 2.178999+3 6.025596-2 2.154123+3 6.095369-2 2.088291+3 6.237348-2 1.961808+3 6.683439-2 1.627295+3 6.760830-2 1.577484+3 6.839116-2 1.529219+3 6.918310-2 1.482459+3 6.998420-2 1.437155+3 7.079458-2 1.393264+3 7.161434-2 1.350663+3 7.244360-2 1.309163+3 7.328245-2 1.268962+3 7.413102-2 1.229817+3 7.585776-2 1.155130+3 8.035261-2 9.879943+2 8.128305-2 9.576433+2 8.222426-2 9.282376+2 8.317638-2 8.996120+2 8.511380-2 8.450237+2 8.609938-2 8.189624+2 8.709636-2 7.937125+2 8.912509-2 7.455325+2 9.015711-2 7.225692+2 9.549926-2 6.180839+2 9.772372-2 5.804968+2 1.000000-1 5.451990+2 1.011580-1 5.283749+2 1.023293-1 5.120777+2 1.047129-1 4.809954+2 1.059254-1 4.661607+2 1.071900-1 4.513505+2 1.071900-1 1.979492+3 1.081000-1 1.938292+3 1.083927-1 1.925296+3 1.096478-1 1.870937+3 1.097000-1 1.868723+3 1.107000-1 1.824553+3 1.109175-1 1.816064+3 1.122019-1 1.767069+3 1.123000-1 1.763405+3 1.135011-1 1.714518+3 1.153000-1 1.644654+3 1.161449-1 1.615034+3 1.202264-1 1.482030+3 1.205000-1 1.473674+3 1.216186-1 1.438773+3 1.230269-1 1.396446+3 1.258925-1 1.315509+3 1.273503-1 1.276814+3 1.288250-1 1.239260+3 1.303167-1 1.202817+3 1.333521-1 1.133128+3 1.380384-1 1.036920+3 1.412538-1 9.773092+2 1.428894-1 9.488080+2 1.445440-1 9.211403+2 1.462177-1 8.942838+2 1.479108-1 8.682130+2 1.500000-1 8.374801+2 1.531088-1 7.944876+2 1.566751-1 7.483345+2 1.603245-1 7.048862+2 1.640590-1 6.639841+2 1.644310-1 6.600919+2 1.678804-1 6.254638+2 1.737801-1 5.718442+2 1.757924-1 5.550157+2 1.798871-1 5.228349+2 1.862087-1 4.780412+2 1.883649-1 4.639821+2 1.905461-1 4.503376+2 1.927525-1 4.371018+2 1.949845-1 4.242570+2 1.995262-1 3.996923+2 2.000000-1 3.972444+2 2.018366-1 3.879501+2 2.041738-1 3.765596+2 2.065380-1 3.655048+2 2.137962-1 3.342540+2 2.264644-1 2.880063+2 2.290868-1 2.795574+2 2.317395-1 2.713611+2 2.344229-1 2.634058+2 2.371374-1 2.556844+2 2.398833-1 2.481943+2 2.426610-1 2.409899+2 2.483133-1 2.272055+2 2.511886-1 2.206128+2 2.540973-1 2.142116+2 2.570396-1 2.079971+2 2.600160-1 2.019646+2 2.630268-1 1.961075+2 2.660725-1 1.904206+2 2.691535-1 1.849024+2 2.722701-1 1.795446+2 2.754229-1 1.743421+2 2.786121-1 1.692910+2 2.818383-1 1.643864+2 2.851018-1 1.596338+2 2.884032-1 1.550188+2 2.917427-1 1.505976+2 2.951209-1 1.463027+2 2.985383-1 1.421306+2 3.000000-1 1.403969+2 3.000060-1 1.403898+2 3.054921-1 1.341409+2 3.090295-1 1.303184+2 3.162278-1 1.229984+2 3.198895-1 1.194944+2 3.235937-1 1.160904+2 3.273407-1 1.127850+2 3.311311-1 1.095739+2 3.349654-1 1.064567+2 3.388442-1 1.034284+2 3.427678-1 1.005312+2 3.467369-1 9.771976+1 3.507519-1 9.498857+1 3.589219-1 8.975418+1 3.630781-1 8.724628+1 3.672823-1 8.480865+1 3.715352-1 8.243930+1 3.722400-1 8.205568+1 3.801894-1 7.789760+1 3.845918-1 7.572331+1 3.890451-1 7.360990+1 3.935501-1 7.155801+1 3.981072-1 6.960114+1 4.027170-1 6.769819+1 4.073803-1 6.584735+1 4.120975-1 6.405051+1 4.168694-1 6.230281+1 4.315191-1 5.734109+1 4.365158-1 5.577886+1 4.415705-1 5.425921+1 4.466836-1 5.278133+1 4.518559-1 5.136900+1 4.570882-1 4.999461+1 4.623810-1 4.865786+1 4.677351-1 4.735693+1 4.786301-1 4.486379+1 4.841724-1 4.366696+1 4.897788-1 4.250274+1 4.954502-1 4.137052+1 5.011872-1 4.026851+1 5.069907-1 3.919625+1 5.128614-1 3.817205+1 5.188000-1 3.717471+1 5.248075-1 3.620353+1 5.308844-1 3.525835+1 5.370318-1 3.433787+1 5.432503-1 3.344192+1 5.495409-1 3.257127+1 5.559043-1 3.172405+1 5.623413-1 3.089890+1 5.688529-1 3.009534+1 5.754399-1 2.931288+1 5.821032-1 2.856618+1 5.888437-1 2.783858+1 5.956621-1 2.712955+1 6.000000-1 2.669223+1 6.025596-1 2.643897+1 6.095369-1 2.576647+1 6.165950-1 2.511108+1 6.237348-1 2.447299+1 6.309573-1 2.385262+1 6.382635-1 2.324800+1 6.456542-1 2.265887+1 6.531306-1 2.209647+1 6.606935-1 2.154809+1 6.683439-1 2.101367+1 6.760830-1 2.049252+1 6.918310-1 1.948871+1 6.998420-1 1.900626+1 7.079458-1 1.853576+1 7.161434-1 1.807693+1 7.328245-1 1.719540+1 7.413102-1 1.678014+1 7.585776-1 1.597951+1 7.673615-1 1.559365+1 7.762471-1 1.521715+1 7.852356-1 1.485013+1 7.943282-1 1.449196+1 8.035261-1 1.414268+1 8.128305-1 1.380214+1 8.317638-1 1.314725+1 8.413951-1 1.283159+1 8.511380-1 1.253047+1 8.609938-1 1.223677+1 8.709636-1 1.194996+1 8.810489-1 1.167017+1 8.912509-1 1.139700+1 9.015711-1 1.113023+1 9.120108-1 1.086994+1 9.225714-1 1.061576+1 9.332543-1 1.036829+1 9.440609-1 1.012714+1 9.549926-1 9.897700+0 9.660509-1 9.673532+0 9.772372-1 9.454447+0 9.885531-1 9.240323+0 1.000000+0 9.031313+0 1.011579+0 8.827203+0 1.023293+0 8.627926+0 1.035142+0 8.433159+0 1.047129+0 8.242833+0 1.059254+0 8.057158+0 1.071519+0 7.875707+0 1.083927+0 7.698455+0 1.096478+0 7.525213+0 1.109175+0 7.358429+0 1.122018+0 7.195529+0 1.135011+0 7.036220+0 1.148154+0 6.880444+0 1.161449+0 6.728188+0 1.188502+0 6.433916+0 1.202264+0 6.291642+0 1.216186+0 6.152637+0 1.230269+0 6.016710+0 1.250000+0 5.834541+0 1.258925+0 5.754891+0 1.273503+0 5.631700+0 1.303167+0 5.393400+0 1.318257+0 5.278060+0 1.333521+0 5.165192+0 1.348963+0 5.054729+0 1.364583+0 4.946744+0 1.380384+0 4.841068+0 1.412538+0 4.637251+0 1.428894+0 4.538631+0 1.496236+0 4.173920+0 1.513561+0 4.087420+0 1.531087+0 4.002711+0 1.548817+0 3.919839+0 1.584893+0 3.759749+0 1.603245+0 3.682174+0 1.659587+0 3.464948+0 1.717908+0 3.260587+0 1.737801+0 3.195218+0 1.757924+0 3.131228+0 1.798871+0 3.007490+0 1.819701+0 2.947468+0 1.840772+0 2.890334+0 1.862087+0 2.834309+0 1.883649+0 2.779368+0 1.949845+0 2.620895+0 1.972423+0 2.570141+0 2.000000+0 2.510301+0 2.018366+0 2.471795+0 2.041738+0 2.424137+0 2.044000+0 2.419602+0 2.065380+0 2.377400+0 2.089296+0 2.332767+0 2.137962+0 2.245998+0 2.238721+0 2.082061+0 2.264644+0 2.043007+0 2.290868+0 2.004721+0 2.317395+0 1.967272+0 2.344229+0 1.930523+0 2.371374+0 1.894461+0 2.398833+0 1.859987+0 2.454709+0 1.792908+0 2.570396+0 1.665951+0 2.600160+0 1.635661+0 2.630268+0 1.605952+0 2.660725+0 1.576877+0 2.691535+0 1.548328+0 2.722701+0 1.520297+0 2.754229+0 1.493517+0 2.818383+0 1.441366+0 2.951209+0 1.342486+0 3.000000+0 1.308964+0 3.019952+0 1.295666+0 3.054921+0 1.272969+0 3.090295+0 1.250670+0 3.126079+0 1.228762+0 3.162278+0 1.207853+0 3.235937+0 1.167097+0 3.427678+0 1.071147+0 3.467369+0 1.052937+0 3.507519+0 1.035055+0 3.548134+0 1.017535+0 3.589219+0 1.000312+0 3.630781+0 9.833802-1 3.672823+0 9.672015-1 3.758374+0 9.356377-1 4.000000+0 8.553154-1 4.027170+0 8.470203-1 4.073803+0 8.331110-1 4.120975+0 8.194748-1 4.216965+0 7.928681-1 4.265795+0 7.798909-1 4.315191+0 7.674785-1 4.415704+0 7.432435-1 4.677351+0 6.859651-1 4.731513+0 6.750572-1 4.786301+0 6.643339-1 4.841724+0 6.538156-1 4.954502+0 6.332760-1 5.011872+0 6.232498-1 5.069907+0 6.136555-1 5.188000+0 5.949077-1 5.495409+0 5.505165-1 5.559043+0 5.420493-1 5.623413+0 5.337208-1 5.754399+0 5.174975-1 5.888437+0 5.017672-1 5.956621+0 4.940826-1 6.025596+0 4.867165-1 6.165950+0 4.723122-1 6.606934+0 4.316162-1 6.683439+0 4.251869-1 6.760830+0 4.188598-1 6.918310+0 4.065262-1 7.079458+0 3.945558-1 7.161434+0 3.887036-1 7.244360+0 3.830927-1 7.413102+0 3.721130-1 7.943282+0 3.410332-1 8.035261+0 3.361149-1 8.128305+0 3.312725-1 8.317638+0 3.218264-1 8.413951+0 3.172049-1 8.511380+0 3.126498-1 8.609938+0 3.081601-1 8.709636+0 3.038448-1 8.912509+0 2.953946-1 9.772372+0 2.638860-1 9.885531+0 2.601937-1 1.000000+1 2.565567-1 1.023293+1 2.494568-1 1.035142+1 2.459809-1 1.047129+1 2.425533-1 1.059254+1 2.392563-1 1.083927+1 2.327963-1 1.230269+1 2.002667-1 1.244515+1 1.975466-1 1.258925+1 1.948643-1 1.273503+1 1.922200-1 1.303167+1 1.870545-1 1.318257+1 1.845240-1 1.333521+1 1.820279-1 1.348963+1 1.796280-1 1.364583+1 1.772600-1 1.531087+1 1.552347-1 1.548817+1 1.531897-1 1.566751+1 1.511720-1 1.584893+1 1.491810-1 1.600000+1 1.475648-1 1.603245+1 1.472220-1 1.640590+1 1.433808-1 1.659587+1 1.414980-1 1.678804+1 1.396399-1 1.698244+1 1.378423-1 1.757924+1 1.325871-1 1.972423+1 1.164774-1 2.000000+1 1.146726-1 2.018366+1 1.135000-1 2.041738+1 1.120448-1 2.065380+1 1.106084-1 2.089296+1 1.091903-1 2.113489+1 1.077905-1 2.137962+1 1.064352-1 2.238721+1 1.011824-1 2.691535+1 8.264137-2 2.722701+1 8.160287-2 2.754229+1 8.058057-2 2.786121+1 7.957117-2 2.800000+1 7.913940-2 2.818383+1 7.857438-2 2.851018+1 7.760863-2 2.985383+1 7.386282-2 3.758374+1 5.767981-2 3.801894+1 5.697153-2 3.845918+1 5.627347-2 3.890451+1 5.558400-2 3.935501+1 5.490296-2 3.981072+1 5.424118-2 4.000000+1 5.397086-2 4.216965+1 5.105005-2 5.495409+1 3.862619-2 5.559043+1 3.816099-2 5.623413+1 3.770226-2 5.688529+1 3.724906-2 5.754399+1 3.680130-2 5.888437+1 3.593383-2 6.309573+1 3.345220-2 8.810489+1 2.367163-2 8.912509+1 2.339118-2 9.015711+1 2.311452-2 9.120108+1 2.284114-2 9.225714+1 2.257424-2 9.332543+1 2.231060-2 9.440609+1 2.205003-2 1.011579+2 2.054930-2 1.621810+2 1.269505-2 1.640590+2 1.254685-2 1.659587+2 1.240051-2 1.678804+2 1.225589-2 1.717908+2 1.197169-2 1.737801+2 1.183207-2 1.757924+2 1.169505-2 1.798871+2 1.142584-2 1.840772+2 1.116281-2 2.018366+2 1.016990-2 3.235937+2 6.309367-3 3.273407+2 6.236350-3 3.311311+2 6.164232-3 3.349654+2 6.092952-3 3.427678+2 5.952855-3 3.467369+2 5.884020-3 3.507519+2 5.816364-3 3.589219+2 5.683407-3 3.672823+2 5.553487-3 4.027170+2 5.062839-3 1.288250+3 1.574889-3 1.303167+3 1.556789-3 1.318257+3 1.538903-3 1.333521+3 1.521225-3 1.364583+3 1.486473-3 1.380384+3 1.469396-3 1.396368+3 1.452567-3 1.428894+3 1.419489-3 1.462177+3 1.387165-3 1.603245+3 1.265061-3 1.000000+5 2.024966-5 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.000000-6 4.000000-6 4.490000-6 4.000000-6 4.490000-6 4.161981-6 5.410000-6 4.175700-6 5.410000-6 4.718400-6 6.200000-6 4.591044-6 7.000000-6 4.497510-6 7.585776-6 4.447601-6 8.609938-6 4.385794-6 1.000000-5 4.335121-6 1.216186-5 4.295506-6 1.584893-5 4.269672-6 2.195000-5 4.259536-6 2.195000-5 1.963821-5 2.660725-5 1.930471-5 2.931000-5 1.914562-5 2.931000-5 2.408526-5 3.589219-5 2.419456-5 4.517000-5 2.416037-5 4.517000-5 2.555974-5 5.248075-5 2.534695-5 6.025596-5 2.531752-5 7.413102-5 2.555257-5 8.638000-5 2.586590-5 8.638000-5 7.484165-5 8.660000-5 7.560980-5 8.720000-5 7.706591-5 8.780000-5 7.810930-5 8.885000-5 7.937647-5 9.020000-5 8.041030-5 9.225714-5 8.128791-5 9.282000-5 8.143599-5 9.282000-5 8.360489-5 9.485000-5 8.480038-5 9.772372-5 8.575347-5 1.012000-4 8.625354-5 1.071519-4 8.622479-5 1.273503-4 8.483196-5 1.445440-4 8.293642-5 1.659587-4 7.987225-5 1.746600-4 7.846426-5 1.746600-4 1.044814-4 1.930000-4 1.069579-4 2.020000-4 1.077899-4 2.187900-4 1.088361-4 2.187900-4 1.212547-4 2.305000-4 1.213820-4 2.741000-4 1.185691-4 2.741000-4 1.276682-4 3.197400-4 1.253228-4 3.197400-4 1.393917-4 3.289000-4 1.397499-4 3.289000-4 1.466647-4 3.375300-4 1.485140-4 3.420000-4 1.504661-4 3.458000-4 1.530905-4 3.495000-4 1.565800-4 3.555000-4 1.636419-4 3.635000-4 1.735836-4 3.700000-4 1.804735-4 3.765000-4 1.859595-4 3.815000-4 1.893620-4 3.880000-4 1.929026-4 3.981072-4 1.968600-4 4.100000-4 1.998372-4 4.265795-4 2.023392-4 4.518559-4 2.042763-4 4.970000-4 2.055376-4 5.956621-4 2.057870-4 6.396200-4 2.055788-4 6.396200-4 2.169373-4 6.755100-4 2.175737-4 6.755100-4 2.237614-4 9.114400-4 2.324308-4 9.114400-4 2.446472-4 1.104800-3 2.525749-4 1.104800-3 2.559668-4 1.249500-3 2.616802-4 1.249500-3 2.669442-4 1.531087-3 2.775562-4 1.883649-3 2.882654-4 2.264644-3 2.976361-4 2.722701-3 3.067349-4 3.224100-3 3.148803-4 3.224100-3 4.641367-4 3.379600-3 4.644085-4 3.379600-3 4.924942-4 3.903900-3 4.929355-4 3.903900-3 5.311207-4 4.654700-3 5.366657-4 4.654700-3 5.556090-4 4.974300-3 5.593749-4 4.974300-3 5.761390-4 6.606934-3 5.968186-4 8.609938-3 6.168762-4 1.109175-2 6.360384-4 1.412538-2 6.538820-4 1.588300-2 6.622858-4 1.588300-2 8.100339-4 1.916300-2 8.145456-4 1.916300-2 8.478857-4 1.984800-2 8.487760-4 1.984800-2 9.122142-4 2.884032-2 9.380510-4 4.073803-2 9.620734-4 5.559043-2 9.830857-4 7.585776-2 1.003317-3 1.023293-1 1.021361-3 1.071900-1 1.024013-3 1.071900-1 9.342441-4 2.691535-1 9.404949-4 7.161434-1 9.437737-4 1.000000+5 9.441733-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.000000-6 0.0 1.746600-4 0.0 1.746600-4 7.17853-10 1.820000-4 7.70568-10 1.883649-4 8.12264-10 1.950000-4 8.50827-10 2.000000-4 8.75657-10 2.113489-4 9.19971-10 2.187900-4 9.42798-10 2.187900-4 2.599953-9 2.270000-4 2.599318-9 2.317395-4 2.577373-9 2.350000-4 2.554066-9 2.511886-4 2.394779-9 2.700000-4 2.217750-9 2.741000-4 2.182620-9 2.741000-4 2.332937-9 2.951209-4 2.175044-9 3.100000-4 2.073055-9 3.197400-4 2.013567-9 3.197400-4 1.882981-8 3.250000-4 1.928794-8 3.289000-4 1.967701-8 3.289000-4 1.815269-8 3.304000-4 1.824991-8 3.322000-4 1.844041-8 3.335000-4 1.864865-8 3.350000-4 1.897718-8 3.365000-4 1.942121-8 3.375300-4 1.979753-8 3.390000-4 2.044313-8 3.400000-4 2.095866-8 3.415000-4 2.184709-8 3.430000-4 2.287649-8 3.445000-4 2.404273-8 3.458000-4 2.515982-8 3.472000-4 2.646722-8 3.490000-4 2.828883-8 3.515000-4 3.102100-8 3.570000-4 3.729805-8 3.590000-4 3.948692-8 3.610000-4 4.152638-8 3.635000-4 4.386080-8 3.657000-4 4.569081-8 3.680000-4 4.739638-8 3.700000-4 4.872490-8 3.730000-4 5.048677-8 3.765000-4 5.223288-8 3.790000-4 5.335024-8 3.815000-4 5.433185-8 3.850000-4 5.551406-8 3.880000-4 5.634898-8 3.935501-4 5.752214-8 4.000000-4 5.842862-8 4.100000-4 5.927638-8 4.235600-4 5.992617-8 4.390000-4 6.020424-8 4.850000-4 6.026019-8 6.396200-4 5.937934-8 6.396200-4 6.195891-8 6.755100-4 6.192261-8 6.755100-4 6.838916-8 8.317638-4 7.126558-8 9.114400-4 7.273437-8 9.114400-4 8.739545-8 9.885531-4 8.982238-8 1.104800-3 9.310540-8 1.104800-3 9.707146-8 1.249500-3 1.015958-7 1.249500-3 1.090303-7 1.479108-3 1.169673-7 1.698244-3 1.236802-7 1.995262-3 1.318366-7 2.264644-3 1.384284-7 2.650000-3 1.467689-7 3.054921-3 1.544202-7 3.224100-3 1.573957-7 3.224100-3 2.038526-7 3.379600-3 2.047019-7 3.379600-3 3.887046-5 3.600000-3 3.948107-5 3.903900-3 3.942934-5 3.903900-3 3.913686-5 4.466836-3 3.876738-5 4.654700-3 3.864365-5 4.654700-3 4.322482-5 4.974300-3 4.346981-5 4.974300-3 4.416626-5 6.165950-3 4.506239-5 7.800000-3 4.600208-5 1.023293-2 4.710414-5 1.350000-2 4.816178-5 1.588300-2 4.876903-5 1.588300-2 3.286305-3 1.603245-2 3.295298-3 1.698244-2 3.290359-3 1.916300-2 3.266052-3 1.916300-2 4.833736-3 1.984800-2 4.850228-3 1.984800-2 5.060045-3 2.540973-2 5.120335-3 3.273407-2 5.161442-3 4.623810-2 5.195508-3 8.222426-2 5.210366-3 1.071900-1 5.209321-3 1.071900-1 7.534870-2 1.273503-1 7.596992-2 1.678804-1 7.668352-2 2.540973-1 7.733251-2 4.954502-1 7.808331-2 9.332543-1 7.872876-2 1.000000+5 7.876676-2 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.000000-6 0.0 4.490000-6 4.900000-7 4.490000-6 3.280192-7 4.954502-6 7.843983-7 5.410000-6 1.234300-6 5.410000-6 6.915998-7 5.559043-6 8.677398-7 5.821032-6 1.173370-6 6.200000-6 1.608956-6 6.600000-6 2.059726-6 7.000000-6 2.502490-6 7.585776-6 3.138175-6 8.609938-6 4.224144-6 1.023293-5 5.903675-6 1.333521-5 9.051460-6 2.195000-5 1.769046-5 2.195000-5 2.311788-6 2.371374-5 4.212350-6 2.660725-5 7.302541-6 2.931000-5 1.016438-5 2.931000-5 5.224739-6 3.054921-5 6.424089-6 3.507519-5 1.088409-5 4.265795-5 1.847413-5 4.517000-5 2.100963-5 4.517000-5 1.961026-5 5.248075-5 2.713380-5 6.095369-5 3.563128-5 8.222426-5 5.647104-5 8.638000-5 6.051410-5 8.638000-5 1.153835-5 8.642000-5 1.136746-5 8.660000-5 1.099020-5 8.680000-5 1.064432-5 8.700000-5 1.036322-5 8.720000-5 1.013409-5 8.750000-5 9.873703-6 8.780000-5 9.690696-6 8.815000-5 9.556172-6 8.850000-5 9.487411-6 8.885000-5 9.473531-6 8.920000-5 9.505720-6 8.970000-5 9.616525-6 9.020000-5 9.789695-6 9.070000-5 1.001426-5 9.130000-5 1.034062-5 9.190000-5 1.071887-5 9.250000-5 1.114097-5 9.282000-5 1.138401-5 9.282000-5 9.215105-6 9.287000-5 9.212492-6 9.332543-5 9.349232-6 9.385000-5 9.554765-6 9.450000-5 9.863544-6 9.520000-5 1.024903-5 9.610000-5 1.080936-5 9.700000-5 1.142993-5 9.800000-5 1.218252-5 9.900000-5 1.299239-5 1.000000-4 1.385337-5 1.012000-4 1.494646-5 1.027000-4 1.638392-5 1.055000-4 1.920964-5 1.096478-4 2.355752-5 1.230269-4 3.783039-5 1.330000-4 4.871652-5 1.479108-4 6.541450-5 1.659587-4 8.608645-5 1.746600-4 9.619574-5 1.746600-4 7.017788-5 1.905461-4 8.387562-5 2.020000-4 9.420925-5 2.187900-4 1.099529-4 2.187900-4 9.753272-5 2.305000-4 1.091154-4 2.741000-4 1.555288-4 2.741000-4 1.464295-4 3.197400-4 1.944152-4 3.197400-4 1.803295-4 3.289000-4 1.891304-4 3.289000-4 1.822171-4 3.375300-4 1.889962-4 3.420000-4 1.915117-4 3.465000-4 1.927907-4 3.515000-4 1.926803-4 3.635000-4 1.898725-4 3.700000-4 1.894778-4 3.765000-4 1.904882-4 3.815000-4 1.920836-4 3.880000-4 1.950411-4 3.981072-4 2.011890-4 4.100000-4 2.101036-4 4.280000-4 2.254388-4 4.570882-4 2.525209-4 5.150000-4 3.092210-4 6.396200-4 4.339818-4 6.396200-4 4.226207-4 6.755100-4 4.578744-4 6.755100-4 4.516802-4 9.114400-4 6.789364-4 9.114400-4 6.667054-4 1.104800-3 8.521320-4 1.104800-3 8.487361-4 1.249500-3 9.877183-4 1.249500-3 9.824468-4 1.905461-3 1.616475-3 3.224100-3 2.909062-3 3.224100-3 2.759760-3 3.379600-3 2.914987-3 3.379600-3 2.848235-3 3.903900-3 3.371535-3 3.903900-3 3.333643-3 4.654700-3 4.079391-3 4.654700-3 4.055866-3 4.974300-3 4.371455-3 4.974300-3 4.353995-3 1.190000-2 1.121097-2 1.588300-2 1.517195-2 1.588300-2 1.178666-2 1.862087-2 1.453348-2 1.916300-2 1.508240-2 1.916300-2 1.348138-2 1.984800-2 1.414900-2 1.984800-2 1.387574-2 3.311311-2 2.700248-2 1.071900-1 1.009567-1 1.071900-1 3.090705-2 1.135011-1 3.697565-2 1.258925-1 4.901641-2 1.678804-1 9.025937-2 3.090295-1 2.305199-1 1.972423+0 1.892706+0 1.000000+5 9.999992+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.071900-1 1.528142+3 1.097000-1 1.444904+3 1.107000-1 1.411058+3 1.123000-1 1.365718+3 1.153000-1 1.274512+3 1.205000-1 1.145450+3 1.333521-1 8.839425+2 1.531088-1 6.233218+2 2.398833-1 1.968016+2 2.884032-1 1.233144+2 3.388442-1 8.248695+1 3.935501-1 5.719452+1 4.466836-1 4.226911+1 5.069907-1 3.144857+1 5.754399-1 2.356220+1 6.456542-1 1.824482+1 7.328245-1 1.387149+1 8.413951-1 1.037132+1 9.440609-1 8.195571+0 1.096478+0 6.094675+0 1.258925+0 4.660774+0 1.428894+0 3.674861+0 1.603245+0 2.980964+0 1.819701+0 2.386178+0 2.065380+0 1.924772+0 2.371374+0 1.533801+0 2.722701+0 1.230854+0 3.126079+0 9.948064-1 3.630781+0 7.961510-1 4.265795+0 6.313929-1 5.011872+0 5.045803-1 5.956621+0 3.999997-1 7.161434+0 3.146892-1 8.609938+0 2.494844-1 1.047129+1 1.963730-1 1.333521+1 1.473711-1 1.678804+1 1.130547-1 2.113489+1 8.727087-2 2.818383+1 6.361734-2 3.935501+1 4.445213-2 5.754399+1 2.979648-2 9.120108+1 1.849375-2 1.737801+2 9.579982-3 3.467369+2 4.764077-3 1.380384+3 1.189735-3 1.000000+5 1.639600-5 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.071900-1 9.077300-4 1.000000+5 9.077300-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.071900-1 9.606500-2 1.000000+5 9.606500-2 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.071900-1 1.021727-2 1.000000+5 9.999990+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 1.984800-2 5.337079+3 2.000000-2 5.251920+3 2.120000-2 4.756220+3 2.162719-2 4.587279+3 2.264644-2 4.252417+3 2.511886-2 3.523216+3 2.754229-2 2.987883+3 3.126079-2 2.349582+3 3.935501-2 1.487345+3 4.415704-2 1.171694+3 5.069907-2 8.760562+2 6.095369-2 5.866753+2 7.161434-2 4.089219+2 8.222426-2 2.981573+2 9.549926-2 2.104247+2 1.135011-1 1.397490+2 1.380384-1 8.722995+1 2.818383-1 1.523416+1 3.427678-1 9.503112+0 4.073803-1 6.310940+0 4.677351-1 4.577907+0 5.432503-1 3.258333+0 6.237348-1 2.397727+0 7.161434-1 1.777220+0 8.128305-1 1.359824+0 9.225714-1 1.048418+0 1.047129+0 8.148951-1 1.230269+0 5.948939-1 1.380384+0 4.785023-1 1.548817+0 3.873865-1 1.757924+0 3.094523-1 2.000000+0 2.480847-1 2.290868+0 1.981013-1 2.630268+0 1.586981-1 3.019952+0 1.280370-1 3.507519+0 1.022872-1 4.073803+0 8.232093-2 4.786301+0 6.564626-2 5.623413+0 5.273593-2 6.760830+0 4.138737-2 8.128305+0 3.273250-2 1.000000+1 2.535300-2 1.273503+1 1.899457-2 1.584893+1 1.474356-2 2.018366+1 1.121723-2 2.722701+1 8.066115-3 3.801894+1 5.631721-3 5.559043+1 3.772335-3 8.912509+1 2.312513-3 1.640590+2 1.240338-3 3.273407+2 6.165533-4 1.303167+3 1.539243-4 1.000000+5 2.002300-6 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 1.984800-2 1.320100-3 1.000000+5 1.320100-3 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.984800-2 6.409100-3 1.000000+5 6.409100-3 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 1.984800-2 1.211880-2 1.000000+5 9.999999+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.916300-2 1.085177+4 1.934000-2 1.068137+4 1.960000-2 1.036700+4 2.018366-2 9.660800+3 2.080000-2 8.960700+3 2.162719-2 8.149000+3 2.454709-2 5.907400+3 2.691535-2 4.665300+3 3.000000-2 3.504800+3 3.672823-2 2.038100+3 4.623810-2 1.081600+3 5.800000-2 5.726000+2 7.328245-2 2.940700+2 9.772372-2 1.283800+2 1.603245-1 3.068300+1 2.018366-1 1.586300+1 2.371374-1 1.005100+1 2.818383-1 6.206300+0 3.311311-1 3.994440+0 3.801894-1 2.758281+0 4.315191-1 1.978309+0 4.897788-1 1.429317+0 5.495409-1 1.070906+0 6.165950-1 8.080711-1 6.918310-1 6.144197-1 7.762471-1 4.703617-1 8.511380-1 3.822880-1 9.332543-1 3.129874-1 1.011579+0 2.645356-1 1.109175+0 2.198539-1 1.230269+0 1.798482-1 1.380384+0 1.449941-1 1.603245+0 1.105875-1 1.819701+0 8.852411-2 2.065380+0 7.139519-2 2.371374+0 5.689837-2 2.722701+0 4.567081-2 3.126079+0 3.691996-2 3.630781+0 2.954746-2 4.265795+0 2.343261-2 5.011872+0 1.872616-2 5.956621+0 1.484575-2 7.161434+0 1.167901-2 8.609938+0 9.259183-3 1.047129+1 7.287853-3 1.333521+1 5.469306-3 1.678804+1 4.195812-3 2.113489+1 3.238907-3 2.818383+1 2.361063-3 3.935501+1 1.649748-3 5.754399+1 1.105842-3 9.225714+1 6.782766-4 1.757924+2 3.514177-4 3.507519+2 1.747713-4 1.396368+3 4.364841-5 1.000000+5 6.085200-7 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.916300-2 9.299100-4 1.000000+5 9.299100-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.916300-2 8.690600-3 1.000000+5 8.690600-3 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.916300-2 9.542490-3 1.000000+5 9.999999+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.588300-2 2.569338+4 1.602000-2 2.529570+4 1.675000-2 2.249576+4 1.717908-2 2.095093+4 1.800000-2 1.846888+4 2.089296-2 1.216233+4 2.317395-2 9.076048+3 2.570396-2 6.722483+3 3.054921-2 4.059255+3 3.845918-2 2.039532+3 4.800000-2 1.037868+3 5.888437-2 5.513121+2 7.328245-2 2.778181+2 9.549926-2 1.202143+2 1.566751-1 2.494473+1 1.905461-1 1.347072+1 2.290868-1 7.595850+0 2.660725-1 4.802744+0 3.054921-1 3.168565+0 3.467369-1 2.179740+0 3.890451-1 1.562071+0 4.315191-1 1.164940+0 4.841724-1 8.472582-1 5.370318-1 6.405771-1 5.956621-1 4.876487-1 6.606935-1 3.738731-1 8.035261-1 2.299377-1 8.709636-1 1.896729-1 9.332543-1 1.619428-1 9.885531-1 1.427976-1 1.071519+0 1.208137-1 1.161449+0 1.029061-1 1.273503+0 8.629678-2 1.412538+0 7.137388-2 1.717908+0 5.034537-2 1.949845+0 4.044199-2 2.238721+0 3.212167-2 2.570396+0 2.570099-2 2.951209+0 2.071051-2 3.427678+0 1.652569-2 4.000000+0 1.319600-2 4.677351+0 1.058310-2 5.495409+0 8.493069-3 6.606934+0 6.658766-3 7.943282+0 5.261161-3 9.772372+0 4.071451-3 1.230269+1 3.089641-3 1.531087+1 2.394970-3 1.972423+1 1.797159-3 2.691535+1 1.275442-3 3.758374+1 8.902728-4 5.495409+1 5.961986-4 8.810489+1 3.654195-4 1.621810+2 1.959692-4 3.235937+2 9.740644-5 1.288250+3 2.431421-5 1.000000+5 3.126700-7 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.588300-2 9.152200-4 1.000000+5 9.152200-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.588300-2 5.591200-3 1.000000+5 5.591200-3 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.588300-2 9.376580-3 1.000000+5 9.999999+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 4.974300-3 1.401677+4 5.370318-3 1.269091+4 5.500000-3 1.233448+4 5.956621-3 1.103166+4 6.500000-3 9.805460+3 6.918310-3 8.936164+3 7.585776-3 7.760503+3 8.128305-3 6.999780+3 8.709636-3 6.269258+3 1.071519-2 4.449536+3 1.188502-2 3.716409+3 1.380384-2 2.849614+3 1.603245-2 2.162853+3 1.800000-2 1.739384+3 2.150000-2 1.233134+3 2.570396-2 8.636557+2 3.054921-2 6.063943+2 3.630781-2 4.219934+2 4.300000-2 2.934400+2 5.069907-2 2.044318+2 5.956621-2 1.425288+2 7.079458-2 9.610270+1 8.511380-2 6.263414+1 1.047129-1 3.838647+1 1.258925-1 2.462801+1 2.570396-1 4.305684+0 3.235937-1 2.468320+0 3.890451-1 1.592692+0 4.570882-1 1.093593+0 5.248075-1 7.977555-1 6.025596-1 5.860695-1 6.918310-1 4.338019-1 7.943282-1 3.235609-1 9.015711-1 2.488266-1 1.000000+0 2.019995-1 1.202264+0 1.407794-1 1.348963+0 1.130750-1 1.531087+0 8.953548-2 1.737801+0 7.147339-2 1.972423+0 5.748896-2 2.264644+0 4.569286-2 2.600160+0 3.658161-2 3.000000+0 2.927600-2 3.467369+0 2.355003-2 4.027170+0 1.894340-2 4.731513+0 1.509848-2 5.559043+0 1.212308-2 6.683439+0 9.509261-3 8.035261+0 7.517001-3 9.885531+0 5.819760-3 1.258925+1 4.358378-3 1.584893+1 3.337295-3 2.018366+1 2.539012-3 2.722701+1 1.825842-3 3.758374+1 1.290541-3 5.495409+1 8.642495-4 8.810489+1 5.297037-4 1.621810+2 2.840741-4 3.235937+2 1.411928-4 1.288250+3 3.524560-5 1.000000+5 4.532500-7 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 4.974300-3 9.687500-4 1.000000+5 9.687500-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.974300-3 6.047700-5 1.000000+5 6.047700-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 4.974300-3 3.945073-3 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.654700-3 2.253965+4 4.900000-3 2.143220+4 5.128614-3 2.036739+4 5.800000-3 1.743350+4 6.025596-3 1.654147+4 6.683439-3 1.418306+4 7.413102-3 1.207955+4 8.128305-3 1.039345+4 9.549926-3 7.831168+3 1.023293-2 6.892507+3 1.190000-2 5.148480+3 1.288250-2 4.392829+3 1.496236-2 3.218057+3 1.640590-2 2.640645+3 1.900000-2 1.908720+3 2.150000-2 1.438840+3 2.400000-2 1.112862+3 2.786121-2 7.783479+2 3.235937-2 5.386007+2 3.800000-2 3.592700+2 4.415704-2 2.440587+2 5.188000-2 1.598676+2 6.095369-2 1.039487+2 7.413102-2 6.115271+1 8.709636-2 3.927304+1 1.135011-1 1.880145+1 1.927525-1 4.276280+0 2.426610-1 2.260030+0 2.884032-1 1.410281+0 3.388442-1 9.146163-1 3.890451-1 6.353483-1 4.415705-1 4.580551-1 5.011872-1 3.325906-1 5.688529-1 2.433507-1 6.382635-1 1.845022-1 7.161434-1 1.409124-1 8.035261-1 1.084557-1 8.810489-1 8.837643-2 9.549926-1 7.432329-2 1.035142+0 6.292102-2 1.148154+0 5.120441-2 1.273503+0 4.198115-2 1.428894+0 3.391857-2 1.659587+0 2.591476-2 1.883649+0 2.078234-2 2.137962+0 1.679277-2 2.454709+0 1.340456-2 2.818383+0 1.077587-2 3.235937+0 8.725354-3 3.758374+0 6.995047-3 4.415704+0 5.556870-3 5.188000+0 4.447953-3 6.165950+0 3.531329-3 7.413102+0 2.782175-3 8.912509+0 2.208844-3 1.083927+1 1.740713-3 1.364583+1 1.325649-3 1.757924+1 9.913266-4 2.238721+1 7.565905-4 2.985383+1 5.522785-4 4.216965+1 3.817023-4 6.309573+1 2.501150-4 1.011579+2 1.536466-4 2.018366+2 7.605319-5 4.027170+2 3.785917-5 1.603245+3 9.463488-6 1.000000+5 1.515000-7 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.654700-3 8.609200-4 1.000000+5 8.609200-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.654700-3 1.170600-4 1.000000+5 1.170600-4 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.654700-3 3.676720-3 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 3.903900-3 7.886838+4 3.970000-3 7.747617+4 4.027170-3 7.602821+4 4.315191-3 6.800553+4 4.954502-3 5.367693+4 5.500000-3 4.428440+4 6.309573-3 3.413434+4 6.918310-3 2.847482+4 8.222426-3 1.999424+4 8.912509-3 1.682255+4 1.047129-2 1.180020+4 1.150000-2 9.530760+3 1.318257-2 6.933027+3 1.479108-2 5.257852+3 1.659587-2 3.965184+3 1.905461-2 2.801119+3 2.150000-2 2.052552+3 2.426610-2 1.493625+3 2.800000-2 1.017304+3 3.235937-2 6.841925+2 3.758374-2 4.501370+2 4.365158-2 2.938215+2 5.069907-2 1.903753+2 5.956621-2 1.184202+2 7.079458-2 7.065003+1 8.511380-2 4.043048+1 1.059254-1 2.067054+1 1.798871-1 4.034578+0 2.264644-1 1.996159+0 2.660725-1 1.227995+0 3.090295-1 7.878716-1 3.507519-1 5.448659-1 3.981072-1 3.796323-1 4.466836-1 2.754465-1 5.011872-1 2.013303-1 5.623413-1 1.482857-1 6.237348-1 1.134113-1 6.918310-1 8.735981-2 7.673615-1 6.777190-2 8.709636-1 4.999358-2 9.332543-1 4.261708-2 9.885531-1 3.752054-2 1.059254+0 3.244638-2 1.148154+0 2.760073-2 1.250000+0 2.344795-2 1.380384+0 1.953389-2 1.717908+0 1.322521-2 1.949845+0 1.062281-2 2.238721+0 8.437687-3 2.570396+0 6.751177-3 2.951209+0 5.440168-3 3.427678+0 4.340781-3 4.000000+0 3.466100-3 4.677351+0 2.779853-3 5.495409+0 2.230890-3 6.606934+0 1.749028-3 7.943282+0 1.381907-3 9.772372+0 1.069446-3 1.230269+1 8.115612-4 1.531087+1 6.290808-4 2.000000+1 4.647900-4 2.722701+1 3.308555-4 3.801894+1 2.309961-4 5.559043+1 1.547349-4 8.912509+1 9.485456-5 1.640590+2 5.087586-5 3.273407+2 2.528949-5 1.303167+3 6.313264-6 1.000000+5 8.213000-8 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 3.903900-3 7.649300-4 1.000000+5 7.649300-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.903900-3 3.734600-5 1.000000+5 3.734600-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 3.903900-3 3.101624-3 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.379600-3 2.024983+5 3.600000-3 1.772015+5 3.920000-3 1.425264+5 4.216965-3 1.172367+5 4.800000-3 8.205280+4 5.370318-3 5.982063+4 5.956621-3 4.438382+4 6.683439-3 3.160511+4 7.244360-3 2.477403+4 8.609938-3 1.457377+4 9.885531-3 9.419646+3 1.096478-2 6.763129+3 1.300000-2 3.876772+3 1.462177-2 2.620432+3 1.659587-2 1.708996+3 1.950000-2 9.823240+2 2.264644-2 5.827722+2 2.660725-2 3.292980+2 3.126079-2 1.846320+2 3.715352-2 9.856874+1 4.500000-2 4.872840+1 4.954502-2 3.415198+1 5.888437-2 1.795809+1 1.161449-1 1.407797+0 1.445440-1 6.240326-1 1.737801-1 3.166359-1 2.018366-1 1.836694-1 2.317395-1 1.118590-1 2.630268-1 7.147337-2 2.985383-1 4.600027-2 3.349654-1 3.100251-2 3.715352-1 2.189069-2 4.027170-1 1.679273-2 4.466836-1 1.205203-2 5.011872-1 8.405648-3 5.559043-1 6.110750-3 6.165950-1 4.475018-3 6.760830-1 3.416324-3 7.328245-1 2.714634-3 8.511380-1 1.794744-3 9.015711-1 1.540911-3 9.440609-1 1.371778-3 9.885531-1 1.228674-3 1.035142+0 1.107967-3 1.096478+0 9.805933-4 1.161449+0 8.736449-4 1.250000+0 7.598695-4 1.364583+0 6.486886-4 1.531087+0 5.307385-4 1.819701+0 3.911852-4 2.044000+0 3.207253-4 2.344229+0 2.558543-4 2.691535+0 2.052097-4 3.090295+0 1.657697-4 3.589219+0 1.325882-4 4.216965+0 1.050903-4 4.954502+0 8.393968-5 5.888437+0 6.650807-5 7.079458+0 5.229766-5 8.511380+0 4.144128-5 1.047129+1 3.215589-5 1.333521+1 2.413144-5 1.678804+1 1.851308-5 2.113489+1 1.429088-5 2.818383+1 1.041769-5 3.935501+1 7.279118-6 5.754399+1 4.879173-6 9.225714+1 2.992751-6 1.757924+2 1.550563-6 3.507519+2 7.711260-7 1.396368+3 1.925873-7 1.000000+5 2.684900-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.379600-3 5.599300-4 1.000000+5 5.599300-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.379600-3 1.317100-4 1.000000+5 1.317100-4 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.379600-3 2.687960-3 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.224100-3 3.252441+5 3.467369-3 2.708811+5 3.715352-3 2.261889+5 4.027170-3 1.815879+5 4.518559-3 1.315909+5 5.069907-3 9.472709+4 5.688529-3 6.763762+4 6.309573-3 4.958071+4 6.918310-3 3.739943+4 8.317638-3 2.101520+4 9.225714-3 1.506411+4 1.047129-2 9.979194+3 1.202264-2 6.305963+3 1.350000-2 4.264026+3 1.548817-2 2.661084+3 1.778279-2 1.642853+3 2.041738-2 1.006499+3 2.344229-2 6.122124+2 2.691535-2 3.698945+2 3.126079-2 2.128152+2 3.672823-2 1.164852+2 4.415704-2 5.801058+1 5.248075-2 2.999476+1 6.839116-2 1.079720+1 1.122019-1 1.588419+0 1.380384-1 7.167967-1 1.640590-1 3.719829-1 1.883649-1 2.215752-1 2.137962-1 1.387644-1 2.398833-1 9.129873-2 2.691535-1 6.051055-2 3.000060-1 4.137111-2 3.311311-1 2.946239-2 3.630781-1 2.161105-2 3.981072-1 1.596830-2 4.365158-1 1.190733-2 4.786301-1 8.944783-3 5.308844-1 6.532833-3 5.821032-1 4.976189-3 6.309573-1 3.948243-3 6.918310-1 3.054534-3 7.585776-1 2.381491-3 8.709636-1 1.651141-3 9.225714-1 1.426982-3 9.660509-1 1.276805-3 1.011579+0 1.149219-3 1.071519+0 1.015126-3 1.135011+0 9.025550-4 1.216186+0 7.894971-4 1.318257+0 6.805695-4 1.840772+0 3.778230-4 2.065380+0 3.106231-4 2.371374+0 2.475049-4 2.722701+0 1.986270-4 3.126079+0 1.605436-4 3.630781+0 1.284829-4 4.265795+0 1.018948-4 5.011872+0 8.143139-5 5.956621+0 6.455444-5 7.161434+0 5.078608-5 8.609938+0 4.026293-5 1.047129+1 3.169085-5 1.333521+1 2.378311-5 1.678804+1 1.824531-5 2.113489+1 1.408391-5 2.818383+1 1.026679-5 3.935501+1 7.173927-6 5.754399+1 4.808662-6 9.225714+1 2.949511-6 1.757924+2 1.528098-6 3.507519+2 7.599755-7 1.396368+3 1.898035-7 1.000000+5 2.646100-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.224100-3 5.650100-4 1.000000+5 5.650100-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.224100-3 2.352500-7 1.000000+5 2.352500-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.224100-3 2.658855-3 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.249500-3 3.128190+4 1.479108-3 2.665273+4 1.548817-3 2.545457+4 1.800000-3 2.147860+4 1.864900-3 2.063237+4 2.187762-3 1.699617+4 2.371374-3 1.529487+4 2.900000-3 1.159534+4 3.198895-3 1.005527+4 3.801894-3 7.758581+3 4.466836-3 6.023598+3 5.015000-3 4.997209+3 6.000000-3 3.707060+3 7.161434-3 2.734226+3 8.511380-3 2.013838+3 1.023293-2 1.440348+3 1.216186-2 1.043491+3 1.445440-2 7.504066+2 1.737801-2 5.237494+2 2.089296-2 3.625718+2 2.483133-2 2.549342+2 2.951209-2 1.779435+2 3.507519-2 1.232972+2 4.168694-2 8.480710+1 5.000000-2 5.674720+1 6.000000-2 3.762360+1 7.161434-2 2.506331+1 8.609938-2 1.630116+1 1.081000-1 9.502200+0 1.380384-1 5.253684+0 2.540973-1 1.181779+0 3.235937-1 6.589397-1 3.890451-1 4.252275-1 4.570882-1 2.919943-1 5.248075-1 2.130087-1 6.025596-1 1.564837-1 6.918310-1 1.158217-1 7.943282-1 8.638104-2 9.015711-1 6.641884-2 1.000000+0 5.391600-2 1.202264+0 3.757518-2 1.348963+0 3.018091-2 1.531087+0 2.389798-2 1.737801+0 1.907487-2 1.972423+0 1.534381-2 2.264644+0 1.219828-2 2.600160+0 9.765662-3 3.000000+0 7.814200-3 3.467369+0 6.285847-3 4.027170+0 5.056221-3 4.731513+0 4.029823-3 5.559043+0 3.235637-3 6.683439+0 2.538137-3 8.035261+0 2.006397-3 9.885531+0 1.553385-3 1.244515+1 1.179290-3 1.548817+1 9.145097-4 2.000000+1 6.846400-4 2.722701+1 4.873429-4 3.801894+1 3.402589-4 5.559043+1 2.279194-4 8.912509+1 1.397155-4 1.659587+2 7.406853-5 3.311311+2 3.682107-5 1.318257+3 9.192945-6 1.000000+5 1.209800-7 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.249500-3 5.408900-4 1.000000+5 5.408900-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.249500-3 4.959300-7 1.000000+5 4.959300-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.249500-3 7.081141-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.104800-3 2.742545+4 1.210000-3 2.724792+4 1.333521-3 2.662423+4 1.420000-3 2.600860+4 1.531087-3 2.508321+4 1.650000-3 2.407080+4 1.770000-3 2.299720+4 1.883649-3 2.194316+4 2.018366-3 2.073691+4 2.187762-3 1.923361+4 2.454709-3 1.713226+4 2.650000-3 1.574902+4 2.917427-3 1.404049+4 3.235937-3 1.232773+4 3.548134-3 1.089082+4 4.000000-3 9.194440+3 4.400000-3 7.975600+3 4.954502-3 6.630092+3 5.500000-3 5.592060+3 6.165950-3 4.611007+3 7.000000-3 3.688000+3 7.800000-3 3.027800+3 8.810489-3 2.407800+3 1.000000-2 1.882160+3 1.135011-2 1.459713+3 1.288250-2 1.123653+3 1.462177-2 8.586462+2 1.659587-2 6.514940+2 1.883649-2 4.909039+2 2.150000-2 3.626580+2 2.483133-2 2.586377+2 2.851018-2 1.855746+2 3.273407-2 1.322056+2 3.758374-2 9.354025+1 4.365158-2 6.383741+1 5.128614-2 4.198184+1 6.095369-2 2.660340+1 7.328245-2 1.620764+1 9.015711-2 9.208595+0 1.135011-1 4.877118+0 1.995262-1 1.015456+0 2.483133-1 5.559321-1 2.951209-1 3.479035-1 3.427678-1 2.333535-1 3.935501-1 1.624758-1 4.518559-1 1.139558-1 5.128614-1 8.291753-2 5.821032-1 6.079381-2 6.531306-1 4.617996-2 7.328245-1 3.533916-2 8.317638-1 2.655382-2 9.120108-1 2.170240-2 9.885531-1 1.830690-2 1.083927+0 1.518897-2 1.202264+0 1.240332-2 1.348963+0 9.983093-3 1.548817+0 7.762361-3 1.757924+0 6.201197-3 2.000000+0 4.970022-3 2.290868+0 3.968610-3 2.630268+0 3.179174-3 3.019952+0 2.564898-3 3.507519+0 2.049061-3 4.073803+0 1.649086-3 4.786301+0 1.315047-3 5.623413+0 1.056443-3 6.760830+0 8.291074-4 8.128305+0 6.557303-4 1.000000+1 5.078900-4 1.273503+1 3.805181-4 1.600000+1 2.921800-4 2.041738+1 2.218500-4 2.754229+1 1.595734-4 3.845918+1 1.114473-4 5.623413+1 7.466781-5 9.015711+1 4.578178-5 1.678804+2 2.427361-5 3.349654+2 1.206846-5 1.333521+3 3.013075-6 1.000000+5 4.011200-8 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.104800-3 5.067900-4 1.000000+5 5.067900-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.104800-3 3.903500-7 1.000000+5 3.903500-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.104800-3 5.976197-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 9.114400-4 1.662785+5 9.700000-4 1.599286+5 1.122018-3 1.390839+5 1.230269-3 1.255378+5 1.380384-3 1.100102+5 1.479108-3 1.010455+5 1.659587-3 8.689478+4 1.905461-3 7.157749+4 2.113489-3 6.158604+4 2.344229-3 5.251670+4 2.660725-3 4.296344+4 2.951209-3 3.618122+4 3.349654-3 2.914326+4 3.801894-3 2.326751+4 4.265795-3 1.884165+4 4.897788-3 1.450155+4 5.559043-3 1.131514+4 6.237348-3 8.972854+3 7.079458-3 6.904113+3 8.128305-3 5.143474+3 9.332543-3 3.798974+3 1.080000-2 2.732440+3 1.244515-2 1.966406+3 1.412538-2 1.455034+3 1.603245-2 1.069255+3 1.819701-2 7.804429+2 2.065380-2 5.658876+2 2.371374-2 3.954793+2 2.722701-2 2.742222+2 3.126079-2 1.887456+2 3.589219-2 1.289856+2 4.168694-2 8.473678+1 4.841724-2 5.524669+1 5.688529-2 3.458139+1 6.760830-2 2.076655+1 8.128305-2 1.195757+1 1.011580-1 6.156387+0 1.905461-1 8.837036-1 2.344229-1 4.711993-1 2.754229-1 2.908548-1 3.235937-1 1.809345-1 3.672823-1 1.254824-1 4.120975-1 9.059892-2 4.623810-1 6.591551-2 5.188000-1 4.831001-2 5.754399-1 3.676292-2 6.382635-1 2.816800-2 7.079458-1 2.173725-2 7.852356-1 1.689635-2 8.709636-1 1.317749-2 9.332543-1 1.123875-2 9.885531-1 9.902845-3 1.071519+0 8.374816-3 1.161449+0 7.132076-3 1.273503+0 5.981017-3 1.412538+0 4.948178-3 1.737801+0 3.421384-3 1.972423+0 2.750134-3 2.264644+0 2.185757-3 2.600160+0 1.749942-3 3.000000+0 1.400500-3 3.467369+0 1.126574-3 4.027170+0 9.061881-4 4.731513+0 7.222379-4 5.559043+0 5.799057-4 6.683439+0 4.548823-4 8.035261+0 3.595801-4 9.885531+0 2.783979-4 1.244515+1 2.113425-4 1.566751+1 1.617593-4 2.018366+1 1.214571-4 2.722701+1 8.734154-5 3.801894+1 6.098136-5 5.559043+1 4.084816-5 8.912509+1 2.504067-5 1.659587+2 1.327424-5 3.311311+2 6.599189-6 1.318257+3 1.647560-6 1.000000+5 2.168200-8 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 9.114400-4 4.418400-4 1.000000+5 4.418400-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.114400-4 3.240500-7 1.000000+5 3.240500-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.114400-4 4.692760-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 6.755100-4 2.044726+5 7.350000-4 2.129361+5 7.673615-4 2.167506+5 8.128305-4 2.193116+5 8.511380-4 2.198821+5 8.912509-4 2.189599+5 9.350000-4 2.163376+5 9.700000-4 2.133088+5 1.015000-3 2.086836+5 1.071519-3 2.019018+5 1.135011-3 1.933495+5 1.202264-3 1.838330+5 1.288250-3 1.716400+5 1.350000-3 1.629392+5 1.462177-3 1.479794+5 1.548817-3 1.372452+5 1.650000-3 1.254076+5 1.800000-3 1.098580+5 1.927525-3 9.844999+4 2.070000-3 8.718960+4 2.264644-3 7.423681+4 2.454709-3 6.386920+4 2.660725-3 5.452851+4 2.917427-3 4.521641+4 3.162278-3 3.812923+4 3.507519-3 3.037387+4 3.801894-3 2.529228+4 4.216965-3 1.983216+4 4.650000-3 1.564596+4 5.128614-3 1.224962+4 5.688529-3 9.384574+3 6.309573-3 7.136931+3 7.000000-3 5.384880+3 7.762471-3 4.040003+3 8.609938-3 3.009257+3 9.660509-3 2.152688+3 1.096478-2 1.475844+3 1.230269-2 1.039011+3 1.380384-2 7.262219+2 1.548817-2 5.041154+2 1.737801-2 3.476399+2 1.949845-2 2.382453+2 2.214200-2 1.558734+2 2.540973-2 9.767443+1 2.917427-2 6.063572+1 3.388442-2 3.589576+1 3.981072-2 2.024620+1 4.731513-2 1.087397+1 5.754399-2 5.331422+0 7.413102-2 2.100211+0 1.273503-1 2.841413-1 1.678804-1 1.031535-1 1.905461-1 6.522510-2 2.344229-1 3.117837-2 2.691535-1 1.920381-2 3.090295-1 1.192561-2 3.427678-1 8.391174-3 3.801894-1 5.945600-3 4.120975-1 4.576111-3 4.570882-1 3.295586-3 5.188000-1 2.225219-3 5.754399-1 1.623522-3 6.382635-1 1.192903-3 6.998420-1 9.134041-4 7.585776-1 7.278471-4 8.511380-1 5.302495-4 9.015711-1 4.554311-4 9.440609-1 4.055552-4 9.885531-1 3.633311-4 1.035142+0 3.276907-4 1.096478+0 2.900558-4 1.161449+0 2.584351-4 1.250000+0 2.247758-4 1.364583+0 1.918664-4 1.531087+0 1.569506-4 1.819701+0 1.156725-4 2.041738+0 9.502298-5 2.344229+0 7.566899-5 2.691535+0 6.068799-5 3.090295+0 4.902075-5 3.589219+0 3.920867-5 4.216965+0 3.107743-5 4.954502+0 2.482294-5 5.888437+0 1.966763-5 7.079458+0 1.546596-5 8.511380+0 1.225491-5 1.035142+1 9.641834-6 1.318257+1 7.232858-6 1.659587+1 5.546987-6 2.089296+1 4.280377-6 2.818383+1 3.080636-6 3.981072+1 2.126387-6 5.888437+1 1.408592-6 9.332543+1 8.746032-7 1.798871+2 4.479355-7 3.589219+2 2.228074-7 1.428894+3 5.565331-8 1.000000+5 7.93990-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 6.755100-4 3.442900-4 1.000000+5 3.442900-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.755100-4 1.943500-7 1.000000+5 1.943500-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 6.755100-4 3.310257-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.396200-4 3.670973+5 7.328245-4 3.706853+5 7.900000-4 3.708528+5 8.222426-4 3.689472+5 8.609938-4 3.644986+5 9.015711-4 3.577958+5 9.500000-4 3.480636+5 1.000000-3 3.365472+5 1.059254-3 3.217790+5 1.130000-3 3.033090+5 1.202264-3 2.843947+5 1.273503-3 2.663263+5 1.396368-3 2.369046+5 1.479108-3 2.190048+5 1.570000-3 2.005722+5 1.717908-3 1.739985+5 1.862087-3 1.522182+5 2.000000-3 1.342122+5 2.220000-3 1.105998+5 2.400000-3 9.505680+4 2.650000-3 7.771560+4 2.884032-3 6.500977+4 3.162278-3 5.310942+4 3.467369-3 4.310788+4 3.845918-3 3.378094+4 4.216965-3 2.701679+4 4.731513-3 2.024242+4 5.188000-3 1.595044+4 5.754399-3 1.211760+4 6.500000-3 8.686740+3 7.328245-3 6.198188+3 8.128305-3 4.595567+3 8.912509-3 3.503545+3 9.885531-3 2.566017+3 1.120000-2 1.747998+3 1.258925-2 1.210219+3 1.412538-2 8.364600+2 1.584893-2 5.740281+2 1.778279-2 3.912770+2 2.018366-2 2.547757+2 2.290868-2 1.646250+2 2.600160-2 1.055981+2 2.985383-2 6.455834+1 3.672823-2 3.005521+1 5.011872-2 9.624466+0 6.095369-2 4.599026+0 8.035261-2 1.606392+0 1.230269-1 3.161190-1 1.500000-1 1.493286-1 1.757924-1 8.246272-2 2.041738-1 4.744720-2 2.317395-1 2.991854-2 2.600160-1 1.980928-2 2.884032-1 1.375858-2 3.198895-1 9.625023-3 3.507519-1 7.052935-3 3.845918-1 5.203648-3 4.168694-1 4.014151-3 4.570882-1 3.005933-3 5.069907-1 2.188663-3 5.559043-1 1.661580-3 6.025596-1 1.313872-3 6.531306-1 1.046676-3 7.079458-1 8.391814-4 7.762471-1 6.568270-4 8.609938-1 5.002137-4 9.120108-1 4.323869-4 9.660509-1 3.764440-4 1.011579+0 3.390698-4 1.071519+0 2.996691-4 1.135011+0 2.665048-4 1.216186+0 2.331222-4 1.318257+0 2.009043-4 1.819701+0 1.136959-4 2.044000+0 9.323371-5 2.344229+0 7.437924-5 2.691535+0 5.965392-5 3.090295+0 4.818636-5 3.589219+0 3.854154-5 4.216965+0 3.054875-5 4.954502+0 2.440067-5 5.888437+0 1.933342-5 7.079458+0 1.520281-5 8.511380+0 1.204690-5 1.047129+1 9.347385-6 1.333521+1 7.014920-6 1.678804+1 5.381563-6 2.113489+1 4.154178-6 2.818383+1 3.028305-6 3.935501+1 2.115930-6 5.754399+1 1.418383-6 9.225714+1 8.699614-7 1.757924+2 4.507198-7 3.507519+2 2.241542-7 1.396368+3 5.598301-8 1.000000+5 7.80480-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.396200-4 3.374900-4 1.000000+5 3.374900-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.396200-4 8.933700-8 1.000000+5 8.933700-8 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.396200-4 3.020407-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 3.289000-4 7.226400+4 3.290000-4 7.259880+4 3.296000-4 7.374600+4 3.304000-4 7.490820+4 3.316000-4 7.622400+4 3.330000-4 7.745940+4 3.350000-4 7.879680+4 3.400000-4 8.116380+4 3.420000-4 8.248020+4 3.435000-4 8.397840+4 3.450000-4 8.607060+4 3.465000-4 8.887860+4 3.480000-4 9.250140+4 3.495000-4 9.701460+4 3.510000-4 1.025088+5 3.525000-4 1.090626+5 3.540000-4 1.167546+5 3.555000-4 1.256790+5 3.570000-4 1.359048+5 3.590000-4 1.516482+5 3.665000-4 2.321436+5 3.690000-4 2.655882+5 3.715352-4 3.020960+5 3.740000-4 3.396522+5 3.765000-4 3.794628+5 3.790000-4 4.209546+5 3.815000-4 4.638918+5 3.845918-4 5.190759+5 3.880000-4 5.822556+5 3.915000-4 6.492360+5 3.950000-4 7.174440+5 3.981072-4 7.783277+5 4.015000-4 8.444160+5 4.050000-4 9.110940+5 4.080000-4 9.667080+5 4.120975-4 1.040042+6 4.150000-4 1.089918+6 4.190000-4 1.155810+6 4.240000-4 1.233888+6 4.280000-4 1.292604+6 4.335000-4 1.367904+6 4.390000-4 1.436034+6 4.450000-4 1.501968+6 4.500000-4 1.549848+6 4.550000-4 1.591710+6 4.623810-4 1.643767+6 4.700000-4 1.686972+6 4.794100-4 1.728759+6 4.897788-4 1.761409+6 5.000000-4 1.780896+6 5.128614-4 1.790771+6 5.248075-4 1.788604+6 5.400000-4 1.774410+6 5.580000-4 1.744668+6 5.754399-4 1.706355+6 5.956621-4 1.654364+6 6.200000-4 1.584966+6 6.500000-4 1.494366+6 6.839116-4 1.390540+6 7.161434-4 1.293986+6 7.500000-4 1.196466+6 7.852356-4 1.101900+6 8.222426-4 1.008373+6 8.810489-4 8.757684+5 9.332543-4 7.744611+5 9.885531-4 6.805650+5 1.059254-3 5.783011+5 1.150000-3 4.728486+5 1.230269-3 3.982340+5 1.333521-3 3.218003+5 1.450000-3 2.562462+5 1.570000-3 2.049294+5 1.737801-3 1.528174+5 1.905461-3 1.161739+5 2.089296-3 8.772139+4 2.300000-3 6.496200+4 2.540973-3 4.722737+4 2.800000-3 3.436824+4 3.090295-3 2.471462+4 3.467369-3 1.667475+4 3.845918-3 1.161186+4 4.216965-3 8.371561+3 4.731513-3 5.519370+3 5.308844-3 3.610069+3 6.000000-3 2.278872+3 6.760830-3 1.442653+3 7.585776-3 9.213249+2 8.500000-3 5.872590+2 9.440609-3 3.853819+2 1.059254-2 2.413231+2 1.202264-2 1.431293+2 1.364583-2 8.427267+1 1.548817-2 4.927382+1 1.778279-2 2.723182+1 2.041738-2 1.493843+1 2.371374-2 7.731343+0 2.786121-2 3.774699+0 3.388442-2 1.567448+0 4.265795-2 5.525899-1 8.035261-2 3.084291-2 1.011580-1 1.085946-2 1.216186-1 4.742706-3 1.428894-1 2.313918-3 1.644310-1 1.246881-3 1.862087-1 7.259082-4 2.065380-1 4.653025-4 2.317395-1 2.859971-4 2.600160-1 1.771198-4 2.917427-1 1.105541-4 3.273407-1 6.933432-5 3.507519-1 5.273160-5 3.722400-1 4.189165-5 4.027170-1 3.116940-5 4.466836-1 2.125829-5 4.897788-1 1.522952-5 5.370318-1 1.098314-5 5.888437-1 7.976316-6 6.456542-1 5.827663-6 6.998420-1 4.460956-6 7.943282-1 2.962648-6 8.413951-1 2.475215-6 8.810489-1 2.156664-6 9.225714-1 1.891533-6 9.549926-1 1.722901-6 9.885531-1 1.576879-6 1.023293+0 1.450872-6 1.071519+0 1.307568-6 1.122018+0 1.186578-6 1.188502+0 1.059507-6 1.273503+0 9.330770-7 1.380384+0 8.107052-7 1.513561+0 6.940607-7 1.862087+0 4.815858-7 2.065380+0 4.037639-7 2.371374+0 3.217194-7 2.722701+0 2.581726-7 3.126079+0 2.086661-7 3.630781+0 1.670021-7 4.265795+0 1.324404-7 5.011872+0 1.058361-7 5.956621+0 8.390507-8 7.161434+0 6.600980-8 8.609938+0 5.233226-8 1.047129+1 4.119025-8 1.333521+1 3.091195-8 1.678804+1 2.371487-8 2.113489+1 1.830612-8 2.818383+1 1.334486-8 3.935501+1 9.324379-9 5.754399+1 6.250014-9 9.225714+1 3.833603-9 1.757924+2 1.986172-9 3.507519+2 9.87800-10 1.396368+3 2.46701-10 1.000000+5 3.43930-12 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 3.289000-4 2.110300-4 1.000000+5 2.110300-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.289000-4 3.963800-9 1.000000+5 3.963800-9 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.289000-4 1.178660-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 3.197400-4 1.045928+5 3.250000-4 1.068864+5 3.300000-4 1.095376+5 3.322000-4 1.113744+5 3.335000-4 1.129944+5 3.350000-4 1.155584+5 3.365000-4 1.190352+5 3.375300-4 1.220282+5 3.390000-4 1.272432+5 3.400000-4 1.314760+5 3.415000-4 1.389512+5 3.430000-4 1.478808+5 3.445000-4 1.583856+5 3.458000-4 1.688536+5 3.472000-4 1.816344+5 3.490000-4 2.004696+5 3.515000-4 2.312664+5 3.565000-4 3.086544+5 3.590000-4 3.543112+5 3.610000-4 3.935672+5 3.635000-4 4.454608+5 3.657000-4 4.933288+5 3.680000-4 5.453248+5 3.700000-4 5.920120+5 3.730000-4 6.644752+5 3.758374-4 7.355898+5 3.790000-4 8.175280+5 3.815000-4 8.839440+5 3.850000-4 9.785120+5 3.880000-4 1.060176+6 3.915000-4 1.154840+6 3.950000-4 1.247752+6 3.981072-4 1.327953+6 4.016400-4 1.415985+6 4.050000-4 1.496464+6 4.090000-4 1.588056+6 4.130000-4 1.675112+6 4.180000-4 1.777464+6 4.235600-4 1.882560+6 4.280000-4 1.959392+6 4.335000-4 2.045192+6 4.390000-4 2.120168+6 4.450000-4 2.190232+6 4.518559-4 2.256620+6 4.600000-4 2.319720+6 4.680000-4 2.367928+6 4.780000-4 2.411896+6 4.850000-4 2.432768+6 4.970000-4 2.450664+6 5.080000-4 2.451968+6 5.230000-4 2.436560+6 5.400000-4 2.400784+6 5.623413-4 2.332903+6 5.821032-4 2.260385+6 6.025596-4 2.178552+6 6.285300-4 2.068278+6 6.531306-4 1.962259+6 6.850000-4 1.826096+6 7.161434-4 1.697832+6 7.585776-4 1.534399+6 8.000000-4 1.386472+6 8.511380-4 1.222139+6 9.120108-4 1.054538+6 9.700000-4 9.180080+5 1.035142-3 7.871674+5 1.110000-3 6.636336+5 1.190000-3 5.560688+5 1.300000-3 4.404136+5 1.412538-3 3.512175+5 1.548817-3 2.708810+5 1.690000-3 2.103904+5 1.862087-3 1.575330+5 2.018366-3 1.231917+5 2.238721-3 8.907019+4 2.426610-3 6.883204+4 2.722701-3 4.722810+4 3.019952-3 3.335723+4 3.300000-3 2.463208+4 3.672823-3 1.696254+4 4.168694-3 1.080126+4 4.731513-3 6.808142+3 5.370318-3 4.248996+3 6.095369-3 2.626456+3 6.839116-3 1.682352+3 7.673615-3 1.069415+3 8.709636-3 6.443363+2 9.772372-3 4.034839+2 1.096478-2 2.511691+2 1.244515-2 1.479351+2 1.412538-2 8.646375+1 1.621810-2 4.774396+1 1.862087-2 2.615618+1 2.113489-2 1.496297+1 2.454709-2 7.672234+0 2.884032-2 3.707784+0 3.467369-2 1.602571+0 4.315191-2 5.869173-1 5.821032-2 1.470564-1 7.413102-2 4.798264-2 1.011580-1 1.143737-2 1.288250-1 3.781004-3 1.462177-1 2.132355-3 1.640590-1 1.275957-3 1.798871-1 8.517358-4 2.018366-1 5.179905-4 2.264644-1 3.175365-4 2.511886-1 2.057937-4 2.786121-1 1.343730-4 3.090295-1 8.841889-5 3.349654-1 6.421388-5 3.630781-1 4.695281-5 3.845918-1 3.773605-5 4.168694-1 2.801029-5 4.518559-1 2.095794-5 4.897788-1 1.580115-5 5.308844-1 1.200406-5 5.754399-1 9.191717-6 6.165950-1 7.361911-6 6.683439-1 5.726906-6 7.328245-1 4.332880-6 8.035261-1 3.295398-6 8.709636-1 2.609763-6 9.660509-1 1.949413-6 1.000000+0 1.777669-6 1.035142+0 1.632084-6 1.071519+0 1.506703-6 1.109175+0 1.397817-6 1.161449+0 1.273197-6 1.216186+0 1.167017-6 1.303167+0 1.032145-6 1.412538+0 9.016461-7 1.513561+0 8.050242-7 1.883649+0 5.476091-7 2.089296+0 4.593292-7 2.398833+0 3.661975-7 2.754229+0 2.940490-7 3.162278+0 2.378165-7 3.672823+0 1.904406-7 4.315191+0 1.511140-7 5.069907+0 1.208261-7 6.025596+0 9.583536-8 7.244360+0 7.543162-8 8.709636+0 5.983007-8 1.059254+1 4.711178-8 1.348963+1 3.537111-8 1.698244+1 2.714416-8 2.137962+1 2.096002-8 2.851018+1 1.528342-8 4.000000+1 1.062800-8 5.888437+1 7.076186-9 9.440609+1 4.341972-9 1.840772+2 2.198226-9 3.672823+2 1.093568-9 1.462177+3 2.73199-10 1.000000+5 3.98860-12 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 3.197400-4 2.167800-4 1.000000+5 2.167800-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.197400-4 1.113300-7 1.000000+5 1.113300-7 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.197400-4 1.028487-4 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.741000-4 5.542298+4 3.100000-4 5.168498+4 3.850000-4 4.512500+4 4.027170-4 4.374377+4 4.731513-4 3.825462+4 5.128614-4 3.559566+4 5.559043-4 3.285970+4 6.382635-4 2.837233+4 7.000000-4 2.555500+4 7.943282-4 2.193050+4 8.912509-4 1.896391+4 1.035142-3 1.554603+4 1.174898-3 1.305482+4 1.396368-3 1.020002+4 1.678804-3 7.770594+3 2.041738-3 5.768189+3 2.483133-3 4.248934+3 3.019952-3 3.105795+3 3.630781-3 2.296318+3 4.365158-3 1.685833+3 5.248075-3 1.228417+3 6.309573-3 8.884248+2 7.585776-3 6.378557+2 9.120108-3 4.546643+2 1.096478-2 3.217999+2 1.318257-2 2.261263+2 1.599000-2 1.550133+2 1.927525-2 1.067424+2 2.317395-2 7.334252+1 2.786121-2 5.001055+1 3.311311-2 3.467752+1 3.981072-2 2.328559+1 4.786301-2 1.551228+1 5.754399-2 1.025334+1 6.918310-2 6.724409+0 8.317638-2 4.377272+0 1.023293-1 2.678567+0 1.273503-1 1.582406+0 1.603245-1 9.040494-1 2.570396-1 2.846489-1 3.198895-1 1.676875-1 3.845918-1 1.081572-1 4.518559-1 7.422720-2 5.188000-1 5.411632-2 6.000000-1 3.909933-2 6.918310-1 2.866808-2 7.943282-1 2.138025-2 9.015711-1 1.643914-2 1.000000+0 1.334405-2 1.202264+0 9.299420-3 1.348963+0 7.469514-3 1.531087+0 5.914741-3 1.737801+0 4.721535-3 1.972423+0 3.797723-3 2.264644+0 3.018514-3 2.600160+0 2.416625-3 3.000000+0 1.934000-3 3.467369+0 1.555735-3 4.027170+0 1.251404-3 4.731513+0 9.973767-4 5.559043+0 8.008238-4 6.683439+0 6.281755-4 8.035261+0 4.965718-4 9.885531+0 3.844515-4 1.244515+1 2.918532-4 1.566751+1 2.233777-4 2.018366+1 1.677326-4 2.722701+1 1.206139-4 3.758374+1 8.525019-5 5.495409+1 5.709167-5 8.810489+1 3.499196-5 1.621810+2 1.876561-5 3.235937+2 9.327495-6 1.288250+3 2.328264-6 1.000000+5 2.994100-8 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.741000-4 2.272000-4 1.000000+5 2.272000-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.741000-4 3.977200-9 1.000000+5 3.977200-9 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.741000-4 4.689602-5 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.187900-4 1.817182+5 2.270000-4 1.667872+5 2.305000-4 1.598484+5 2.350000-4 1.502624+5 2.500000-4 1.206556+5 2.700000-4 9.403680+4 2.917427-4 7.466980+4 3.054921-4 6.546739+4 3.162278-4 5.960442+4 3.282400-4 5.419246+4 3.390000-4 5.018220+4 3.507519-4 4.650707+4 3.672823-4 4.226791+4 3.850000-4 3.860220+4 4.050000-4 3.527080+4 4.216965-4 3.300796+4 4.430000-4 3.066040+4 4.677351-4 2.850009+4 4.954502-4 2.656823+4 5.308844-4 2.458857+4 5.754399-4 2.262586+4 6.456542-4 2.028209+4 8.810489-4 1.524601+4 1.011579-3 1.333630+4 1.150000-3 1.170148+4 1.318257-3 1.010454+4 1.500000-3 8.727200+3 1.717908-3 7.424898+3 1.950000-3 6.339240+3 2.213095-3 5.375470+3 2.511886-3 4.527136+3 2.851018-3 3.785823+3 3.246000-3 3.129280+3 3.672823-3 2.591947+3 4.168694-3 2.121354+3 4.688000-3 1.750194+3 5.300000-3 1.421742+3 6.000000-3 1.144364+3 6.839116-3 9.032242+2 7.762471-3 7.132451+2 8.810489-3 5.593098+2 1.000000-2 4.354940+2 1.135011-2 3.367623+2 1.288250-2 2.586528+2 1.479108-2 1.924707+2 1.698244-2 1.420892+2 1.949845-2 1.040840+2 2.238721-2 7.565795+1 2.570396-2 5.458723+1 2.951209-2 3.910306+1 3.427678-2 2.702899+1 3.935501-2 1.909112+1 4.897788-2 1.083760+1 5.888437-2 6.681403+0 7.079458-2 4.084749+0 8.709636-2 2.329776+0 1.096478-1 1.238752+0 2.041738-1 2.203929-1 2.511886-1 1.247240-1 3.000000-1 7.710155-2 3.507519-1 5.084420-2 4.027170-1 3.543195-2 4.570882-1 2.562207-2 5.188000-1 1.865973-2 5.888437-1 1.369439-2 6.606935-1 1.041171-2 7.413102-1 7.974579-3 8.413951-1 5.996639-3 9.225714-1 4.905171-3 1.000000+0 4.141384-3 1.096478+0 3.438906-3 1.216186+0 2.810519-3 1.364583+0 2.263924-3 1.584893+0 1.725263-3 1.798871+0 1.379821-3 2.018366+0 1.133782-3 2.344229+0 8.858333-4 2.691535+0 7.103791-4 3.090295+0 5.737088-4 3.589219+0 4.588757-4 4.216965+0 3.637145-4 4.954502+0 2.905157-4 5.888437+0 2.301786-4 7.079458+0 1.810049-4 8.511380+0 1.434315-4 1.047129+1 1.112898-4 1.333521+1 8.351977-5 1.678804+1 6.407291-5 2.113489+1 4.945939-5 2.818383+1 3.605488-5 3.935501+1 2.519333-5 5.754399+1 1.688696-5 9.225714+1 1.035770-5 1.757924+2 5.366339-6 3.507519+2 2.668845-6 1.396368+3 6.665445-7 1.000000+5 9.292500-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.187900-4 1.700200-4 1.000000+5 1.700200-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.187900-4 9.107300-9 1.000000+5 9.107300-9 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.187900-4 4.876089-5 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.746600-4 4.159825+5 1.985000-4 3.372644+5 2.050000-4 3.181212+5 2.162719-4 2.921719+5 2.371374-4 2.558906+5 2.500000-4 2.388460+5 2.650000-4 2.232596+5 3.090295-4 1.897466+5 4.120975-4 1.415414+5 4.731513-4 1.222118+5 5.432503-4 1.047196+5 6.200000-4 8.962480+4 7.079458-4 7.607438+4 8.128305-4 6.360728+4 9.332543-4 5.276751+4 1.071519-3 4.345482+4 1.244515-3 3.493229+4 1.450000-3 2.773272+4 1.698244-3 2.166461+4 1.995262-3 1.670271+4 2.317395-3 1.301771+4 2.660725-3 1.027409+4 3.054921-3 8.054404+3 3.467369-3 6.404541+3 4.027170-3 4.847237+3 4.623810-3 3.718289+3 5.248075-3 2.895974+3 6.025596-3 2.189167+3 6.918310-3 1.641423+3 7.943282-3 1.221218+3 9.120108-3 9.015559+2 1.047129-2 6.603497+2 1.202264-2 4.798418+2 1.380384-2 3.459220+2 1.584893-2 2.474097+2 1.819701-2 1.755643+2 2.001000-2 1.381149+2 2.238721-2 1.061771+2 2.398833-2 8.940927+1 2.570396-2 7.478951+1 2.786121-2 6.028350+1 3.054921-2 4.674013+1 3.388442-2 3.482892+1 4.073803-2 2.043237+1 4.841724-2 1.248772+1 5.754399-2 7.572593+0 6.683439-2 4.871696+0 8.035261-2 2.808223+0 1.000000-1 1.447974+0 1.862087-1 2.154634-1 2.317395-1 1.108930-1 2.722701-1 6.843913-2 3.162278-1 4.403844-2 3.589219-1 3.053188-2 4.027170-1 2.202720-2 4.518559-1 1.600774-2 5.069907-1 1.171758-2 5.688529-1 8.642023-3 6.309573-1 6.616867-3 6.998420-1 5.101839-3 7.762471-1 3.962058-3 8.709636-1 3.005914-3 9.332543-1 2.563812-3 9.885531-1 2.259155-3 1.071519+0 1.910633-3 1.161449+0 1.627143-3 1.273503+0 1.364542-3 1.412538+0 1.128901-3 1.737801+0 7.805033-4 1.972423+0 6.273779-4 2.264644+0 4.986662-4 2.600160+0 3.992309-4 3.000000+0 3.194900-4 3.467369+0 2.570000-4 4.027170+0 2.067252-4 4.731513+0 1.647628-4 5.559043+0 1.322977-4 6.683439+0 1.037740-4 8.035261+0 8.203203-5 9.885531+0 6.351043-5 1.244515+1 4.821443-5 1.548817+1 3.739007-5 2.000000+1 2.799200-5 2.722701+1 1.992499-5 3.801894+1 1.391154-5 5.559043+1 9.318739-6 8.912509+1 5.712546-6 1.659587+2 3.028347-6 3.311311+2 1.505439-6 1.318257+3 3.758570-7 1.000000+5 4.946200-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.746600-4 1.633200-4 1.000000+5 1.633200-4 1 89000 7 7 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.746600-4 2.341300-9 1.000000+5 2.341300-9 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.746600-4 1.133766-5 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 9.282000-5 1.717572+6 9.287000-5 1.761724+6 9.310000-5 1.896240+6 9.332543-5 2.024736+6 9.355000-5 2.149544+6 9.385000-5 2.311636+6 9.415000-5 2.467524+6 9.450000-5 2.643740+6 9.485000-5 2.812444+6 9.520000-5 2.972992+6 9.565000-5 3.168584+6 9.610000-5 3.351588+6 9.650000-5 3.502056+6 9.700000-5 3.673464+6 9.750000-5 3.824760+6 9.800000-5 3.956024+6 9.850000-5 4.067240+6 9.900000-5 4.157560+6 9.950000-5 4.228280+6 1.000000-4 4.279960+6 1.007000-4 4.322000+6 1.012000-4 4.332640+6 1.020000-4 4.320120+6 1.027000-4 4.283640+6 1.035142-4 4.218188+6 1.045000-4 4.113280+6 1.055000-4 3.988868+6 1.071519-4 3.763254+6 1.096478-4 3.418372+6 1.220000-4 2.146612+6 1.260000-4 1.855596+6 1.303167-4 1.584108+6 1.364583-4 1.265181+6 1.566751-4 6.353967+5 1.800000-4 3.200524+5 1.883649-4 2.570089+5 1.950000-4 2.186092+5 2.018366-4 1.873580+5 2.080000-4 1.649124+5 2.137962-4 1.477620+5 2.190000-4 1.350332+5 2.240000-4 1.247788+5 2.300000-4 1.146012+5 2.350000-4 1.076040+5 2.400000-4 1.017388+5 2.454709-4 9.641900+4 2.511886-4 9.189101+4 2.570396-4 8.817057+4 2.635000-4 8.495160+4 2.691535-4 8.276879+4 2.754229-4 8.091683+4 2.830000-4 7.932360+4 2.917427-4 7.816125+4 3.019952-4 7.746144+4 3.150000-4 7.725920+4 3.311311-4 7.762019+4 3.981072-4 8.062996+4 4.265795-4 8.122916+4 4.570882-4 8.125387+4 4.850000-4 8.074320+4 5.150000-4 7.970280+4 5.500000-4 7.802800+4 5.821032-4 7.615928+4 6.237348-4 7.339935+4 6.700000-4 7.011120+4 7.161434-4 6.672563+4 7.673615-4 6.297306+4 8.222426-4 5.906551+4 8.912509-4 5.439602+4 9.660509-4 4.972597+4 1.047129-3 4.513232+4 1.135011-3 4.068481+4 1.244515-3 3.586240+4 1.364583-3 3.135890+4 1.496236-3 2.721253+4 1.621810-3 2.390035+4 1.778279-3 2.046909+4 1.972423-3 1.705362+4 2.200000-3 1.394156+4 2.454709-3 1.128390+4 2.722701-3 9.161599+3 3.019952-3 7.378136+3 3.311311-3 6.045502+3 3.672823-3 4.795033+3 4.073803-3 3.773513+3 4.518559-3 2.947161+3 5.011872-3 2.284412+3 5.559043-3 1.757440+3 6.165950-3 1.342464+3 6.839116-3 1.018383+3 7.585776-3 7.672790+2 8.511380-3 5.558618+2 9.549926-3 3.995075+2 1.059254-2 2.947744+2 1.188502-2 2.087403+2 1.333521-2 1.467409+2 1.500000-2 1.016322+2 1.603245-2 8.227314+1 1.778279-2 5.841360+1 1.905461-2 4.678076+1 2.001000-2 4.016882+1 2.162719-2 3.201760+1 2.214200-2 2.983087+1 2.317395-2 2.570548+1 2.426610-2 2.196058+1 2.600160-2 1.718500+1 3.019952-2 9.972824+0 3.388442-2 6.634289+0 4.027170-2 3.629228+0 4.786301-2 1.953666+0 5.821032-2 9.601550-1 7.413102-2 3.957768-1 1.303167-1 4.946830-2 1.640590-1 2.131388-2 1.949845-1 1.141439-2 2.264644-1 6.690853-3 2.600160-1 4.116014-3 2.951209-1 2.655423-3 3.311311-1 1.793171-3 3.672823-1 1.267812-3 4.027170-1 9.376349-4 4.466836-1 6.741330-4 5.011872-1 4.709565-4 5.559043-1 3.427471-4 6.095369-1 2.600006-4 6.683439-1 1.986166-4 7.328245-1 1.528514-4 8.511380-1 1.010593-4 9.015711-1 8.669713-5 9.440609-1 7.713120-5 9.885531-1 6.904492-5 1.035142+0 6.223480-5 1.096478+0 5.506633-5 1.161449+0 4.906033-5 1.250000+0 4.268000-5 1.364583+0 3.644080-5 1.531087+0 2.982067-5 1.819701+0 2.197743-5 2.018366+0 1.840612-5 2.317395+0 1.464925-5 2.660725+0 1.174175-5 3.054921+0 9.478152-6 3.548134+0 7.576567-6 4.120975+0 6.100991-6 4.841724+0 4.867847-6 5.754399+0 3.852901-6 6.918310+0 3.026708-6 8.317638+0 2.396119-6 1.023293+1 1.857594-6 1.303167+1 1.392826-6 1.640590+1 1.067816-6 2.065380+1 8.237173-7 2.786121+1 5.926796-7 3.890451+1 4.140199-7 5.688529+1 2.774554-7 9.120108+1 1.701473-7 1.717908+2 8.917906-8 3.427678+2 4.434374-8 1.364583+3 1.107337-8 1.000000+5 1.50850-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 9.282000-5 9.282000-5 1.000000+5 9.282000-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 9.282000-5 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 8.638000-5 3.036571+6 8.642000-5 3.102684+6 8.660000-5 3.282378+6 8.680000-5 3.474672+6 8.700000-5 3.659184+6 8.720000-5 3.837420+6 8.750000-5 4.091880+6 8.780000-5 4.333410+6 8.815000-5 4.599078+6 8.850000-5 4.850094+6 8.885000-5 5.085888+6 8.920000-5 5.306196+6 8.970000-5 5.595216+6 9.020000-5 5.854272+6 9.070000-5 6.082800+6 9.130000-5 6.315660+6 9.190000-5 6.502980+6 9.250000-5 6.645120+6 9.300000-5 6.730200+6 9.350000-5 6.786420+6 9.420000-5 6.820080+6 9.500000-5 6.801420+6 9.580000-5 6.731400+6 9.680000-5 6.587760+6 9.772372-5 6.414880+6 9.900000-5 6.136860+6 1.000000-4 5.902740+6 1.020000-4 5.428566+6 1.161449-4 3.025194+6 1.205000-4 2.548602+6 1.244515-4 2.181043+6 1.303167-4 1.733167+6 1.479108-4 9.101005+5 1.603245-4 6.083810+5 1.698244-4 4.591247+5 1.760000-4 3.874950+5 1.820000-4 3.323442+5 1.880000-4 2.885034+5 1.930000-4 2.589372+5 1.980000-4 2.345484+5 2.020000-4 2.181648+5 2.065380-4 2.024218+5 2.113489-4 1.885338+5 2.162719-4 1.768258+5 2.213095-4 1.670306+5 2.264644-4 1.589071+5 2.317395-4 1.522362+5 2.371374-4 1.468234+5 2.430000-4 1.422654+5 2.500000-4 1.382652+5 2.570396-4 1.354870+5 2.650000-4 1.335012+5 2.730000-4 1.324398+5 2.830000-4 1.320618+5 2.951209-4 1.324833+5 3.589219-4 1.379881+5 3.850000-4 1.391976+5 4.100000-4 1.393338+5 4.365158-4 1.385191+5 4.623810-4 1.369675+5 4.897788-4 1.346154+5 5.248075-4 1.308252+5 5.623413-4 1.261929+5 6.025596-4 1.207817+5 6.500000-4 1.141812+5 7.000000-4 1.072644+5 7.585776-4 9.939736+4 8.222426-4 9.138164+4 8.912509-4 8.337187+4 9.660509-4 7.553819+4 1.059254-3 6.693880+4 1.161449-3 5.882210+4 1.260000-3 5.213638+4 1.380384-3 4.523467+4 1.531087-3 3.816788+4 1.698244-3 3.192272+4 1.862087-3 2.704052+4 2.018366-3 2.326316+4 2.213095-3 1.946961+4 2.426610-3 1.619072+4 2.691535-3 1.305955+4 2.951209-3 1.071074+4 3.273407-3 8.506973+3 3.630781-3 6.704673+3 4.027170-3 5.242916+3 4.466836-3 4.067313+3 4.954502-3 3.131430+3 5.495409-3 2.393197+3 6.095369-3 1.815644+3 6.760830-3 1.367529+3 7.498942-3 1.022958+3 8.317638-3 7.601092+2 9.225714-3 5.610994+2 1.023293-2 4.115075+2 1.148154-2 2.893721+2 1.288250-2 2.019226+2 1.445440-2 1.398552+2 1.603245-2 9.985109+1 1.778279-2 7.026151+1 1.905461-2 5.590678+1 2.001000-2 4.777094+1 2.162719-2 3.775273+1 2.214200-2 3.508396+1 2.317395-2 3.009161+1 2.426610-2 2.559106+1 2.600160-2 1.989410+1 2.851018-2 1.412430+1 3.019952-2 1.138332+1 3.427678-2 7.177412+0 4.027170-2 4.014986+0 4.677351-2 2.306780+0 5.559043-2 1.207753+0 6.918310-2 5.276590-1 1.202264-1 6.430786-2 1.479108-1 2.939454-2 1.737801-1 1.608401-2 2.000000-1 9.574293-3 2.264644-1 6.093828-3 2.540973-1 4.036977-3 2.851018-1 2.694358-3 3.198895-1 1.812798-3 3.507519-1 1.329050-3 3.845918-1 9.810190-4 4.120975-1 7.853508-4 4.518559-1 5.879701-4 4.954502-1 4.432512-4 5.432503-1 3.361501-4 5.956621-1 2.567332-4 6.456542-1 2.041403-4 6.998420-1 1.633363-4 7.585776-1 1.315252-4 8.511380-1 9.723234-5 9.015711-1 8.405417-5 9.549926-1 7.315825-5 1.000000+0 6.585100-5 1.059254+0 5.816242-5 1.135011+0 5.050696-5 1.216186+0 4.417672-5 1.318257+0 3.805977-5 1.819701+0 2.152386-5 2.044000+0 1.765000-5 2.344229+0 1.408013-5 2.691535+0 1.129297-5 3.090295+0 9.122477-6 3.589219+0 7.296576-6 4.216965+0 5.783328-6 4.954502+0 4.619293-6 5.888437+0 3.660011-6 7.079458+0 2.878044-6 8.511380+0 2.280601-6 1.047129+1 1.769614-6 1.333521+1 1.328005-6 1.678804+1 1.018840-6 2.113489+1 7.864422-7 2.818383+1 5.732919-7 3.935501+1 4.005790-7 5.754399+1 2.685093-7 9.225714+1 1.646925-7 1.737801+2 8.632876-8 3.467369+2 4.293188-8 1.380384+3 1.072135-8 1.000000+5 1.47760-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 8.638000-5 8.638000-5 1.000000+5 8.638000-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 8.638000-5 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 4.517000-5 3.096860+5 4.590000-5 2.907740+5 4.800000-5 2.413680+5 4.954502-5 2.125431+5 5.128614-5 1.863334+5 5.248075-5 1.714935+5 5.400000-5 1.556354+5 5.559043-5 1.419798+5 5.730000-5 1.299476+5 5.900000-5 1.201142+5 6.095369-5 1.108524+5 6.309573-5 1.026029+5 6.531306-5 9.564489+4 6.800000-5 8.878860+4 7.079458-5 8.298940+4 7.413102-5 7.734253+4 7.800000-5 7.203920+4 8.222426-5 6.736145+4 8.709636-5 6.304376+4 9.225714-5 5.941265+4 9.900000-5 5.569140+4 1.096478-4 5.120420+4 1.273503-4 4.538865+4 1.445440-4 4.066535+4 1.698244-4 3.509318+4 1.900000-4 3.145920+4 2.150000-4 2.765020+4 2.511886-4 2.332487+4 2.851018-4 2.016947+4 3.427678-4 1.616370+4 3.935501-4 1.360099+4 4.731513-4 1.071683+4 5.623413-4 8.498060+3 6.606934-4 6.797777+3 7.852356-4 5.313005+3 9.332543-4 4.123039+3 1.122018-3 3.124259+3 1.396368-3 2.229156+3 1.778279-3 1.522533+3 2.317395-3 9.944351+2 2.917427-3 6.816355+2 3.630781-3 4.727329+2 4.466836-3 3.317858+2 5.432503-3 2.357594+2 6.606934-3 1.662593+2 7.943282-3 1.188289+2 9.660509-3 8.238422+1 1.023293-2 7.376329+1 1.584893-2 3.107447+1 1.840772-2 2.326933+1 2.214200-2 1.649858+1 2.398833-2 1.408715+1 2.630268-2 1.166280+1 2.917427-2 9.358780+0 3.311311-2 7.091592+0 3.981072-2 4.689600+0 4.954502-2 2.888731+0 6.025596-2 1.858107+0 7.244360-2 1.215581+0 8.912509-2 7.481389-1 1.096478-1 4.570129-1 1.412538-1 2.471067-1 2.511886-1 6.044655-2 3.198895-1 3.369026-2 3.845918-1 2.172977-2 4.518559-1 1.491301-2 5.188000-1 1.087271-2 6.000000-1 7.855800-3 6.918310-1 5.760033-3 7.943282-1 4.295812-3 9.015711-1 3.303096-3 1.000000+0 2.681300-3 1.202264+0 1.868624-3 1.348963+0 1.500924-3 1.531087+0 1.188512-3 1.737801+0 9.487233-4 1.972423+0 7.630945-4 2.264644+0 6.065401-4 2.600160+0 4.855952-4 3.000000+0 3.886100-4 3.467369+0 3.126004-4 4.027170+0 2.514496-4 4.731513+0 2.004111-4 5.559043+0 1.609145-4 6.683439+0 1.262230-4 8.035261+0 9.977784-5 9.885531+0 7.725032-5 1.244515+1 5.864460-5 1.566751+1 4.488468-5 2.018366+1 3.370302-5 2.722701+1 2.423613-5 3.758374+1 1.713038-5 5.495409+1 1.147170-5 8.810489+1 7.031170-6 1.621810+2 3.770712-6 3.235937+2 1.874197-6 1.288250+3 4.678398-7 1.000000+5 6.016300-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 4.517000-5 4.517000-5 1.000000+5 4.517000-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 4.517000-5 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 2.931000-5 7.523339+6 3.019952-5 7.024979+6 3.126079-5 6.453557+6 3.311311-5 5.564452+6 3.507519-5 4.774267+6 3.730000-5 4.025860+6 3.981072-5 3.334824+6 4.265795-5 2.709405+6 4.677351-5 2.035108+6 5.559043-5 1.183897+6 6.237348-5 8.310564+5 7.413102-5 4.943150+5 1.000000-4 2.023280+5 1.150000-4 1.341612+5 1.300000-4 9.424220+4 1.428894-4 7.224166+4 1.580000-4 5.486360+4 1.720000-4 4.377740+4 1.862087-4 3.568520+4 2.000000-4 2.988560+4 2.150000-4 2.516540+4 2.300000-4 2.158940+4 2.454709-4 1.873738+4 2.630268-4 1.623390+4 2.818383-4 1.416993+4 3.000000-4 1.261930+4 3.200000-4 1.126730+4 3.430000-4 1.004086+4 3.715352-4 8.861885+3 4.000000-4 7.954960+3 4.365158-4 7.054278+3 4.850000-4 6.155440+3 5.500000-4 5.281640+3 6.500000-4 4.350720+3 9.225714-4 2.918418+3 1.109175-3 2.349761+3 1.318257-3 1.903823+3 1.548817-3 1.553129+3 1.819701-3 1.257343+3 2.113489-3 1.026052+3 2.454709-3 8.312830+2 2.818383-3 6.797671+2 3.235937-3 5.519393+2 3.630781-3 4.612609+2 4.168694-3 3.684224+2 4.786301-3 2.919842+2 5.432503-3 2.342560+2 6.165950-3 1.866642+2 7.000000-3 1.476723+2 8.000000-3 1.145584+2 9.225714-3 8.661424+1 1.161449-2 5.457996+1 1.333521-2 4.109763+1 1.513561-2 3.145966+1 1.603245-2 2.777613+1 1.819701-2 2.081619+1 1.972423-2 1.742501+1 2.238721-2 1.338649+1 2.398833-2 1.148081+1 2.570396-2 9.779229+0 2.786121-2 8.049597+0 3.054921-2 6.391763+0 3.388442-2 4.892192+0 3.981072-2 3.195646+0 4.841724-2 1.928516+0 5.821032-2 1.189643+0 6.918310-2 7.499892-1 8.511380-2 4.275111-1 1.083927-1 2.200263-1 2.018366-1 3.915884-2 2.511886-1 2.146850-2 3.000000-1 1.327200-2 3.507519-1 8.752374-3 4.027170-1 6.099322-3 4.570882-1 4.410482-3 5.188000-1 3.211899-3 5.888437-1 2.357176-3 6.606935-1 1.792232-3 7.413102-1 1.372802-3 8.413951-1 1.032340-3 9.225714-1 8.444350-4 1.000000+0 7.129400-4 1.096478+0 5.920033-4 1.216186+0 4.838298-4 1.364583+0 3.897359-4 1.584893+0 2.970319-4 1.798871+0 2.375855-4 2.044000+0 1.910900-4 2.344229+0 1.524477-4 2.691535+0 1.222691-4 3.090295+0 9.876612-5 3.589219+0 7.899694-5 4.216965+0 6.261355-5 4.954502+0 5.001145-5 5.888437+0 3.962536-5 7.079458+0 3.115954-5 8.413951+0 2.504719-5 1.035142+1 1.942642-5 1.318257+1 1.457227-5 1.659587+1 1.117581-5 2.089296+1 8.623875-6 2.800000+1 6.251100-6 3.890451+1 4.390371-6 5.688529+1 2.942188-6 9.120108+1 1.804341-6 1.717908+2 9.456477-7 3.427678+2 4.702280-7 1.364583+3 1.174178-7 1.000000+5 1.599700-9 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 2.931000-5 2.931000-5 1.000000+5 2.931000-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 2.931000-5 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.195000-5 1.668830+7 2.511886-5 1.087551+7 3.054921-5 5.878684+6 3.427678-5 4.065505+6 4.265795-5 2.001954+6 4.677351-5 1.494674+6 5.069907-5 1.164840+6 5.432503-5 9.462683+5 5.821032-5 7.735487+5 6.237348-5 6.366780+5 6.683439-5 5.279074+5 7.161434-5 4.412132+5 7.585776-5 3.822984+5 8.128305-5 3.242831+5 8.709636-5 2.771980+5 9.332543-5 2.386675+5 1.000000-4 2.069428+5 1.071519-4 1.807054+5 1.150000-4 1.584636+5 1.230269-4 1.407816+5 1.330000-4 1.237856+5 1.450000-4 1.082120+5 1.603245-4 9.329418+4 1.778279-4 8.062210+4 2.000000-4 6.887520+4 2.371374-4 5.536825+4 3.981072-4 2.897446+4 4.897788-4 2.221350+4 5.888437-4 1.740512+4 7.000000-4 1.373724+4 8.222426-4 1.094288+4 9.660509-4 8.650111+3 1.135011-3 6.788150+3 1.333521-3 5.286745+3 1.584893-3 4.013590+3 1.862087-3 3.081772+3 2.213095-3 2.303968+3 2.600160-3 1.742731+3 3.019952-3 1.335047+3 3.507519-3 1.015135+3 4.027170-3 7.827967+2 4.623810-3 5.994118+2 5.308844-3 4.556123+2 6.095369-3 3.437102+2 7.000000-3 2.572217+2 8.035261-3 1.912326+2 9.225714-3 1.410294+2 1.071519-2 1.005791+2 1.230269-2 7.307947+1 1.412538-2 5.269323+1 1.599000-2 3.902130+1 1.798871-2 2.889573+1 1.927525-2 2.436249+1 2.001000-2 2.227316+1 2.162719-2 1.869967+1 2.214200-2 1.770513+1 2.317395-2 1.578583+1 2.426610-2 1.397259+1 2.600160-2 1.154214+1 2.985383-2 7.922599+0 3.467369-2 5.228652+0 4.073803-2 3.314827+0 4.841724-2 2.017562+0 5.888437-2 1.140458+0 7.161434-2 6.395019-1 8.317638-2 4.085993-1 1.047129-1 2.029886-1 1.883649-1 3.364319-2 2.344229-1 1.732846-2 2.754229-1 1.070134-2 3.198895-1 6.891042-3 3.630781-1 4.781144-3 4.073803-1 3.452091-3 4.570882-1 2.510633-3 5.128614-1 1.839247-3 5.754399-1 1.357723-3 6.382635-1 1.040509-3 7.079458-1 8.030513-4 7.852356-1 6.242911-4 8.709636-1 4.870495-4 9.332543-1 4.154924-4 9.885531-1 3.661668-4 1.071519+0 3.097145-4 1.161449+0 2.637691-4 1.273503+0 2.211924-4 1.412538+0 1.829800-4 1.737801+0 1.265060-4 1.972423+0 1.016895-4 2.264644+0 8.082571-5 2.600160+0 6.470847-5 3.000000+0 5.178400-5 3.467369+0 4.165593-5 4.027170+0 3.350743-5 4.731513+0 2.670570-5 5.559043+0 2.144317-5 6.683439+0 1.681996-5 8.035261+0 1.329643-5 1.000000+1 1.015100-5 1.273503+1 7.605212-6 1.603245+1 5.826097-6 2.041738+1 4.433963-6 2.754229+1 3.189409-6 3.845918+1 2.227385-6 5.688529+1 1.474551-6 9.120108+1 9.042551-7 1.717908+2 4.739293-7 3.427678+2 2.356590-7 1.364583+3 5.884760-8 1.000000+5 8.01710-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.195000-5 2.195000-5 1.000000+5 2.195000-5 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.195000-5 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.490000-6 3.536519+6 4.570882-6 3.608174+6 4.770000-6 3.746120+6 4.954502-6 3.850713+6 5.200000-6 3.961048+6 5.500000-6 4.058280+6 5.821032-6 4.125587+6 6.200000-6 4.171000+6 6.600000-6 4.184960+6 7.000000-6 4.171720+6 7.500000-6 4.127920+6 8.035261-6 4.054253+6 8.609938-6 3.949658+6 9.120108-6 3.839521+6 9.700000-6 3.699848+6 1.023293-5 3.561336+6 1.083927-5 3.393678+6 1.150000-5 3.205308+6 1.216186-5 3.014993+6 1.273503-5 2.849911+6 1.333521-5 2.680447+6 1.412538-5 2.464702+6 1.500000-5 2.239604+6 1.584893-5 2.037423+6 1.690000-5 1.810468+6 1.800000-5 1.600456+6 1.927525-5 1.390460+6 2.089296-5 1.169443+6 2.300000-5 9.433840+5 2.540973-5 7.497325+5 2.851018-5 5.704367+5 3.126079-5 4.554168+5 3.427678-5 3.610970+5 3.715352-5 2.925161+5 4.000000-5 2.396060+5 4.315191-5 1.936937+5 4.650000-5 1.560016+5 5.069907-5 1.204386+5 5.500000-5 9.374320+4 6.025596-5 7.035615+4 6.683439-5 5.038839+4 7.328245-5 3.714732+4 7.852356-5 2.936169+4 8.413951-5 2.306440+4 9.015711-5 1.798908+4 9.660509-5 1.393400+4 1.047129-4 1.026653+4 1.161449-4 6.870801+3 1.348963-4 3.829328+3 1.428894-4 3.072885+3 1.500000-4 2.567252+3 1.548817-4 2.296170+3 1.603245-4 2.046099+3 1.659587-4 1.833251+3 1.717908-4 1.651933+3 1.781500-4 1.489977+3 1.840772-4 1.365748+3 1.905461-4 1.253672+3 1.972423-4 1.158467+3 2.000000-4 1.124428+3 2.065380-4 1.066866+3 2.137962-4 1.015516+3 2.213095-4 9.732452+2 2.290868-4 9.385956+2 2.371374-4 9.103696+2 2.470800-4 8.837945+2 2.570396-4 8.641637+2 2.691535-4 8.472173+2 2.851018-4 8.329333+2 3.273407-4 8.106100+2 3.935501-4 7.891248+2 4.120975-4 7.802327+2 4.466836-4 7.596740+2 4.841724-4 7.345130+2 5.128614-4 7.133448+2 5.559043-4 6.795681+2 6.025596-4 6.423943+2 6.531306-4 6.027306+2 7.079458-4 5.614656+2 7.673615-4 5.194323+2 8.317638-4 4.771127+2 9.015711-4 4.352548+2 9.885531-4 3.890340+2 1.083927-3 3.450345+2 1.188502-3 3.037200+2 1.303167-3 2.654177+2 1.428894-3 2.303248+2 1.584893-3 1.948123+2 1.737801-3 1.667171+2 1.905461-3 1.417514+2 2.113489-3 1.172109+2 2.371374-3 9.409722+1 2.600160-3 7.836244+1 2.851018-3 6.480093+1 3.162278-3 5.191814+1 3.548134-3 4.022861+1 3.935501-3 3.174254+1 4.365158-3 2.486130+1 4.841724-3 1.932729+1 5.370318-3 1.491403+1 5.956621-3 1.142609+1 6.606934-3 8.691986+0 7.328245-3 6.566770+0 8.128305-3 4.928099+0 9.120108-3 3.555073+0 1.023293-2 2.544372+0 1.148154-2 1.806741+0 1.288250-2 1.273463+0 1.445440-2 8.912434-1 1.603245-2 6.424164-1 1.778279-2 4.562058-1 1.905461-2 3.654527-1 2.001000-2 3.138897-1 2.162719-2 2.503753-1 2.214200-2 2.333200-1 2.317395-2 2.010929-1 2.426610-2 1.718126-1 2.600160-2 1.344661-1 2.818383-2 1.004921-1 3.019952-2 7.798739-2 3.507519-2 4.568506-2 5.069907-2 1.242580-2 6.237348-2 5.844101-3 8.222426-2 2.117750-3 1.333521-1 3.563374-4 1.640590-1 1.671262-4 1.949845-1 8.955758-5 2.264644-1 5.250656-5 2.600160-1 3.230295-5 2.951209-1 2.084094-5 3.311311-1 1.407410-5 3.672823-1 9.950915-6 4.027170-1 7.359359-6 4.466836-1 5.290467-6 5.011872-1 3.696487-6 5.559043-1 2.692190-6 6.165950-1 1.975372-6 6.760830-1 1.510833-6 7.328245-1 1.202357-6 8.413951-1 8.218472-7 8.912509-1 7.049893-7 9.332543-1 6.269442-7 9.772372-1 5.607727-7 1.023293+0 5.049560-7 1.083927+0 4.463045-7 1.148154+0 3.971510-7 1.230269+0 3.478287-7 1.333521+0 3.002737-7 1.496236+0 2.456568-7 1.819701+0 1.738232-7 2.044000+0 1.425000-7 2.344229+0 1.136654-7 2.691535+0 9.116884-8 3.090295+0 7.365175-8 3.589219+0 5.891005-8 4.216965+0 4.669287-8 4.954502+0 3.729517-8 5.888437+0 2.955014-8 7.079458+0 2.323640-8 8.511380+0 1.841267-8 1.047129+1 1.428735-8 1.318257+1 1.086738-8 1.659587+1 8.334134-9 2.089296+1 6.431069-9 2.800000+1 4.661600-9 3.890451+1 3.274003-9 5.754399+1 2.167859-9 9.120108+1 1.345545-9 1.737801+2 6.97009-10 3.467369+2 3.46619-10 1.380384+3 8.65616-11 1.000000+5 1.19290-12 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.490000-6 4.490000-6 1.000000+5 4.490000-6 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.490000-6 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 4.000000-6 6.855540+6 4.168694-6 7.000216+6 4.365158-6 7.114486+6 4.570882-6 7.191640+6 4.841724-6 7.241832+6 5.200000-6 7.241220+6 5.559043-6 7.185325+6 6.025596-6 7.062218+6 6.500000-6 6.897780+6 7.000000-6 6.694920+6 7.585776-6 6.434659+6 8.200000-6 6.145020+6 8.810489-6 5.846034+6 9.440609-6 5.532239+6 1.000000-5 5.251620+6 1.059254-5 4.954420+6 1.122018-5 4.645530+6 1.188502-5 4.325832+6 1.258925-5 4.001090+6 1.333521-5 3.674400+6 1.412538-5 3.349951+6 1.500000-5 3.020124+6 1.584893-5 2.729871+6 1.690000-5 2.409090+6 1.819701-5 2.069079+6 1.950000-5 1.782822+6 2.113489-5 1.488421+6 2.317395-5 1.202593+6 2.580000-5 9.304620+5 2.851018-5 7.281077+5 3.162278-5 5.603205+5 3.427678-5 4.538733+5 3.672823-5 3.769548+5 3.981072-5 3.011268+5 4.265795-5 2.468265+5 4.650000-5 1.908402+5 5.011872-5 1.514970+5 5.432503-5 1.174845+5 6.025596-5 8.400807+4 6.683439-5 5.956641+4 7.328245-5 4.352626+4 7.852356-5 3.419253+4 8.413951-5 2.670547+4 9.120108-5 1.985347+4 9.885531-5 1.464568+4 1.244515-4 6.038946+3 1.318257-4 4.869279+3 1.380384-4 4.123736+3 1.428894-4 3.657498+3 1.479108-4 3.259599+3 1.500000-4 3.115446+3 1.548817-4 2.838215+3 1.603245-4 2.582386+3 1.659587-4 2.364348+3 1.717908-4 2.178234+3 1.781500-4 2.011585+3 1.840772-4 1.883445+3 1.905461-4 1.767606+3 1.972423-4 1.669071+3 2.000000-4 1.633830+3 2.065380-4 1.573956+3 2.137962-4 1.521119+3 2.213095-4 1.478317+3 2.290868-4 1.443978+3 2.398833-4 1.409076+3 2.511886-4 1.384158+3 2.660725-4 1.363527+3 3.019952-4 1.339385+3 3.589219-4 1.280910+3 3.935501-4 1.241680+3 4.265795-4 1.199839+3 4.623810-4 1.151349+3 5.011872-4 1.096774+3 5.432503-4 1.035642+3 5.888437-4 9.706748+2 6.382635-4 9.033814+2 6.918310-4 8.353732+2 7.498942-4 7.674824+2 8.128305-4 7.004699+2 8.810489-4 6.350722+2 9.660509-4 5.635370+2 1.059254-3 4.963594+2 1.161449-3 4.340893+2 1.273503-3 3.770300+2 1.396368-3 3.253506+2 1.531087-3 2.787849+2 1.678804-3 2.370969+2 1.862087-3 1.960481+2 2.089296-3 1.573989+2 2.317395-3 1.283021+2 2.570396-3 1.038029+2 2.818383-3 8.541119+1 3.126079-3 6.806482+1 3.467369-3 5.382080+1 3.845918-3 4.222911+1 4.265795-3 3.288237+1 4.731513-3 2.541234+1 5.248075-3 1.949351+1 5.821032-3 1.484469+1 6.456542-3 1.122373+1 7.161434-3 8.426641+0 8.000000-3 6.156497+0 8.912509-3 4.499527+0 9.885531-3 3.308500+0 1.109175-2 2.332901+0 1.244515-2 1.632256+0 1.396368-2 1.133582+0 1.566751-2 7.816775-1 1.603245-2 7.247828-1 1.778279-2 5.098878-1 1.905461-2 4.058766-1 2.001000-2 3.470400-1 2.162719-2 2.748376-1 2.214200-2 2.555500-1 2.317395-2 2.192852-1 2.426610-2 1.865076-1 2.600160-2 1.449390-1 2.851018-2 1.028061-1 3.019952-2 8.280711-2 3.427678-2 5.224606-2 4.027170-2 2.922873-2 4.731513-2 1.611267-2 5.688529-2 8.092336-3 6.998420-2 3.697750-3 1.216186-1 4.517997-4 1.500000-1 2.047800-4 1.757924-1 1.132126-4 2.018366-1 6.805266-5 2.290868-1 4.298522-5 2.570396-1 2.850754-5 2.851018-1 1.982597-5 3.198895-1 1.334405-5 3.507519-1 9.786429-6 3.845918-1 7.227331-6 4.120975-1 5.789087-6 4.518559-1 4.338577-6 4.954502-1 3.274689-6 5.432503-1 2.486725-6 5.956621-1 1.902122-6 6.456542-1 1.514737-6 6.998420-1 1.214086-6 7.585776-1 9.796506-7 8.511380-1 7.274287-7 9.015711-1 6.304242-7 9.549926-1 5.498869-7 1.000000+0 4.956100-7 1.059254+0 4.382204-7 1.135011+0 3.808662-7 1.230269+0 3.260875-7 1.348963+0 2.752248-7 1.757924+0 1.720122-7 1.972423+0 1.410492-7 2.264644+0 1.121163-7 2.600160+0 8.976004-8 3.000000+0 7.183000-8 3.467369+0 5.778094-8 4.027170+0 4.647806-8 4.731513+0 3.704402-8 5.559043+0 2.974333-8 6.683439+0 2.333060-8 8.035261+0 1.844295-8 9.885531+0 1.427841-8 1.258925+1 1.069356-8 1.584893+1 8.188189-9 2.018366+1 6.229630-9 2.722701+1 4.479756-9 3.801894+1 3.127760-9 5.559043+1 2.095103-9 8.912509+1 1.284305-9 1.640590+2 6.88870-10 3.273407+2 3.42424-10 1.303167+3 8.54835-11 1.000000+5 1.11210-12 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 4.000000-6 4.000000-6 1.000000+5 4.000000-6 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 4.000000-6 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.410000-6 8.818060+6 5.754399-6 7.173045+6 7.000000-6 3.684560+6 8.609938-6 1.835714+6 1.050000-5 9.484960+5 1.216186-5 5.855770+5 1.380384-5 3.889543+5 1.531087-5 2.802583+5 1.678804-5 2.109074+5 1.819701-5 1.655867+5 1.950000-5 1.354412+5 2.089296-5 1.116577+5 2.230000-5 9.375780+4 2.371374-5 8.012303+4 2.511886-5 6.965788+4 2.660725-5 6.099287+4 2.818383-5 5.379442+4 2.985383-5 4.779961+4 3.162278-5 4.278550+4 3.350000-5 3.855000+4 3.589219-5 3.429865+4 3.845918-5 3.073395+4 4.168694-5 2.724717+4 4.518559-5 2.433209+4 5.069907-5 2.087088+4 5.800000-5 1.758392+4 7.328245-5 1.321751+4 9.225714-5 1.006677+4 1.083927-4 8.395302+3 1.462177-4 6.091353+3 1.603245-4 5.482841+3 1.778279-4 4.834112+3 2.113489-4 3.872876+3 2.630268-4 2.904679+3 3.715352-4 1.829317+3 4.265795-4 1.512605+3 6.000000-4 9.369580+2 7.943282-4 6.206935+2 9.332543-4 4.877434+2 1.216186-3 3.241731+2 1.548817-3 2.216059+2 2.000000-3 1.470590+2 2.630268-3 9.400960+1 2.786121-3 8.533124+1 4.731513-3 3.419750+1 5.956621-3 2.283604+1 7.244360-3 1.605983+1 8.810489-3 1.121227+1 1.011579-2 8.657318+0 1.364583-2 4.826053+0 1.698244-2 3.154262+0 1.927525-2 2.479021+0 2.238721-2 1.876643+0 2.454709-2 1.566218+0 2.722701-2 1.268446+0 3.054921-2 9.932671-1 3.467369-2 7.527991-1 4.027170-2 5.378995-1 4.954502-2 3.345032-1 6.237348-2 1.983818-1 7.585776-2 1.263095-1 8.912509-2 8.650227-2 1.109175-1 5.132609-2 1.445440-1 2.705395-2 2.570396-1 6.614829-3 3.198895-1 3.898035-3 3.801894-1 2.584159-3 4.466836-1 1.773356-3 5.128614-1 1.292943-3 5.888437-1 9.495133-4 6.760830-1 7.026508-4 7.673615-1 5.369572-4 8.709636-1 4.132007-4 9.885531-1 3.203629-4 1.216186+0 2.135959-4 1.380384+0 1.679793-4 1.548817+0 1.359410-4 1.757924+0 1.085911-4 2.000000+0 8.706100-5 2.290868+0 6.951999-5 2.630268+0 5.569070-5 3.019952+0 4.492979-5 3.507519+0 3.589440-5 4.073803+0 2.888825-5 4.786301+0 2.303667-5 5.623413+0 1.850674-5 6.760830+0 1.452416-5 8.128305+0 1.148662-5 1.000000+1 8.897000-6 1.273503+1 6.665730-6 1.600000+1 5.118200-6 2.041738+1 3.886198-6 2.754229+1 2.795401-6 3.845918+1 1.952238-6 5.623413+1 1.308031-6 9.015711+1 8.019816-7 1.678804+2 4.252082-7 3.349654+2 2.113978-7 1.333521+3 5.278212-8 1.000000+5 7.02670-10 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.410000-6 5.410000-6 1.000000+5 5.410000-6 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.410000-6 0.0 1.000000+5 1.000000+5 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.515100-7 1.025500+0 1.059430-6 1.025800+0 1.354380-6 1.026100+0 1.699230-6 1.026600+0 2.395520-6 1.027100+0 3.259160-6 1.027500+0 4.082060-6 1.028100+0 5.557650-6 1.028750+0 7.515100-6 1.029500+0 1.028460-5 1.030100+0 1.293420-5 1.031000+0 1.769830-5 1.032000+0 2.421570-5 1.033200+0 3.392220-5 1.034000+0 4.164260-5 1.035300+0 5.652390-5 1.036640+0 7.515100-5 1.038200+0 1.014190-4 1.039700+0 1.317630-4 1.041500+0 1.753090-4 1.043800+0 2.433350-4 1.046400+0 3.385560-4 1.048300+0 4.215110-4 1.051200+0 5.717700-4 1.054080+0 7.515100-4 1.057700+0 1.024360-3 1.061100+0 1.332430-3 1.065100+0 1.763990-3 1.070400+0 2.460940-3 1.076200+0 3.401010-3 1.080600+0 4.247300-3 1.087100+0 5.722520-3 1.093710+0 7.515100-3 1.102600+0 1.041960-2 1.110700+0 1.358940-2 1.120600+0 1.817860-2 1.133300+0 2.527650-2 1.147500+0 3.489970-2 1.158200+0 4.337160-2 1.174100+0 5.796660-2 1.190110+0 7.515100-2 1.205100+0 9.353960-2 1.227500+0 1.251850-1 1.250000+0 1.618000-1 1.265600+0 1.898380-1 1.294900+0 2.479310-1 1.331800+0 3.300940-1 1.362600+0 4.052170-1 1.397000+0 4.949880-1 1.433800+0 5.965430-1 1.477900+0 7.239690-1 1.500000+0 7.897000-1 1.562500+0 9.802350-1 1.641100+0 1.225550+0 1.706900+0 1.431890+0 1.811600+0 1.758010+0 1.937200+0 2.142250+0 2.000000+0 2.332000+0 2.044000+0 2.464000+0 2.163500+0 2.813850+0 2.372600+0 3.393600+0 2.686300+0 4.191030+0 3.000000+0 4.920000+0 3.500000+0 5.981430+0 4.000000+0 6.945000+0 5.000000+0 8.636000+0 6.000000+0 1.009000+1 7.000000+0 1.137000+1 8.000000+0 1.253000+1 9.000000+0 1.359000+1 1.000000+1 1.457000+1 1.100000+1 1.547000+1 1.200000+1 1.632000+1 1.300000+1 1.710000+1 1.400000+1 1.784000+1 1.500000+1 1.853000+1 1.600000+1 1.917000+1 1.800000+1 2.034000+1 2.000000+1 2.138000+1 2.200000+1 2.232000+1 2.400000+1 2.319000+1 2.600000+1 2.398000+1 2.800000+1 2.470000+1 3.000000+1 2.537000+1 4.000000+1 2.808000+1 5.000000+1 3.010000+1 6.000000+1 3.166000+1 8.000000+1 3.396000+1 1.000000+2 3.558000+1 1.500000+2 3.814000+1 2.000000+2 3.966000+1 3.000000+2 4.143000+1 4.000000+2 4.245000+1 5.000000+2 4.311000+1 6.000000+2 4.359000+1 8.000000+2 4.422000+1 1.000000+3 4.463000+1 1.500000+3 4.523000+1 2.000000+3 4.555000+1 3.000000+3 4.590000+1 4.000000+3 4.609000+1 5.000000+3 4.621000+1 6.000000+3 4.629000+1 8.000000+3 4.640000+1 1.000000+4 4.647000+1 1.500000+4 4.656000+1 2.000000+4 4.661000+1 3.000000+4 4.667000+1 4.000000+4 4.670000+1 5.000000+4 4.671000+1 6.000000+4 4.672000+1 8.000000+4 4.674000+1 1.000000+5 4.675000+1 1 89000 7 8 2.270000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 8.904930-7 2.090400+0 1.209070-6 2.094700+0 1.567740-6 2.099900+0 2.085660-6 2.106600+0 2.901320-6 2.114000+0 4.014350-6 2.119500+0 4.997840-6 2.127900+0 6.778010-6 2.136250+0 8.904930-6 2.147000+0 1.220930-5 2.156900+0 1.585840-5 2.169000+0 2.116400-5 2.184500+0 2.941870-5 2.201800+0 4.070160-5 2.214800+0 5.071100-5 2.234200+0 6.821530-5 2.253680+0 8.904930-5 2.281500+0 1.247290-4 2.307000+0 1.638310-4 2.338200+0 2.202850-4 2.377400+0 3.050680-4 2.410200+0 3.879950-4 2.446800+0 4.935510-4 2.485900+0 6.214080-4 2.532900+0 7.952720-4 2.556430+0 8.904930-4 2.611900+0 1.135490-3 2.660400+0 1.372750-3 2.745300+0 1.837360-3 2.809000+0 2.225170-3 2.904500+0 2.866570-3 3.000000+0 3.578000-3 3.125000+0 4.613350-3 3.234400+0 5.612860-3 3.425800+0 7.556780-3 3.569300+0 9.161570-3 3.784700+0 1.177350-2 4.000000+0 1.458000-2 4.250000+0 1.800940-2 4.625000+0 2.339530-2 5.000000+0 2.899000-2 5.500000+0 3.666220-2 6.000000+0 4.443000-2 6.750000+0 5.597570-2 7.000000+0 5.977000-2 8.000000+0 7.459000-2 9.000000+0 8.873000-2 1.000000+1 1.021000-1 1.100000+1 1.148000-1 1.200000+1 1.267000-1 1.300000+1 1.379000-1 1.400000+1 1.485000-1 1.500000+1 1.585000-1 1.600000+1 1.680000-1 1.800000+1 1.856000-1 2.000000+1 2.015000-1 2.200000+1 2.160000-1 2.400000+1 2.293000-1 2.600000+1 2.416000-1 2.800000+1 2.529000-1 3.000000+1 2.634000-1 4.000000+1 3.065000-1 5.000000+1 3.388000-1 6.000000+1 3.643000-1 8.000000+1 4.022000-1 1.000000+2 4.296000-1 1.500000+2 4.743000-1 2.000000+2 5.021000-1 3.000000+2 5.358000-1 4.000000+2 5.559000-1 5.000000+2 5.696000-1 6.000000+2 5.796000-1 8.000000+2 5.934000-1 1.000000+3 6.026000-1 1.500000+3 6.163000-1 2.000000+3 6.241000-1 3.000000+3 6.326000-1 4.000000+3 6.376000-1 5.000000+3 6.407000-1 6.000000+3 6.428000-1 8.000000+3 6.457000-1 1.000000+4 6.475000-1 1.500000+4 6.500000-1 2.000000+4 6.515000-1 3.000000+4 6.529000-1 4.000000+4 6.538000-1 5.000000+4 6.543000-1 6.000000+4 6.546000-1 8.000000+4 6.550000-1 1.000000+5 6.553000-1 1 89000 7 8 2.270000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 89000 7 9 2.270000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 8.900000+1 1.000000+5 8.900000+1 5.000000+5 8.896300+1 7.500000+5 8.892200+1 9.375000+5 8.889950+1 1.000000+6 8.889300+1 1.250000+6 8.884130+1 1.500000+6 8.878700+1 1.875000+6 8.866910+1 2.000000+6 8.862400+1 2.375000+6 8.847450+1 2.500000+6 8.842000+1 2.875000+6 8.824230+1 3.000000+6 8.817800+1 3.250000+6 8.803500+1 3.625000+6 8.781910+1 4.000000+6 8.759200+1 4.437500+6 8.730420+1 4.812500+6 8.704010+1 5.000000+6 8.691200+1 5.500000+6 8.653020+1 5.875000+6 8.623020+1 6.437500+6 8.576640+1 6.500000+6 8.571170+1 7.000000+6 8.529300+1 7.875000+6 8.454170+1 9.000000+6 8.355700+1 1.000000+7 8.265900+1 1.250000+7 8.045400+1 1.500000+7 7.824100+1 1.750000+7 7.603400+1 2.000000+7 7.386200+1 2.375000+7 7.067070+1 2.500000+7 6.964100+1 2.875000+7 6.668480+1 3.000000+7 6.575100+1 3.250000+7 6.394790+1 3.500000+7 6.223660+1 3.625000+7 6.140180+1 4.000000+7 5.900700+1 4.500000+7 5.599400+1 5.000000+7 5.315300+1 5.500000+7 5.046420+1 6.000000+7 4.793700+1 6.750000+7 4.445840+1 7.000000+7 4.338600+1 8.000000+7 3.949100+1 9.000000+7 3.614700+1 1.000000+8 3.321900+1 1.109400+8 3.036050+1 1.125000+8 2.997730+1 1.203100+8 2.812420+1 1.250000+8 2.706400+1 1.359400+8 2.473460+1 1.500000+8 2.210400+1 1.812500+8 1.771280+1 1.875000+8 1.705230+1 1.937500+8 1.645300+1 2.000000+8 1.590900+1 2.125000+8 1.497580+1 2.312500+8 1.385710+1 2.375000+8 1.354080+1 2.500000+8 1.297200+1 2.750000+8 1.198130+1 2.875000+8 1.148360+1 3.000000+8 1.095400+1 3.375000+8 9.352910+0 3.500000+8 8.935300+0 3.625000+8 8.598000+0 3.859400+8 8.043120+0 4.000000+8 7.689700+0 4.125000+8 7.340300+0 4.234400+8 7.022200+0 4.425800+8 6.473280+0 4.750000+8 5.668160+0 4.784700+8 5.594800+0 4.928200+8 5.318750+0 5.000000+8 5.198400+0 5.179700+8 4.946190+0 5.330100+8 4.775030+0 5.425800+8 4.680230+0 6.000000+8 4.223800+0 7.000000+8 3.575300+0 7.500000+8 3.322800+0 7.750000+8 3.196260+0 8.000000+8 3.061500+0 8.250000+8 2.916630+0 9.500000+8 2.239790+0 1.000000+9 2.034000+0 1.031300+9 1.933910+0 1.074300+9 1.821520+0 1.113800+9 1.737900+0 1.162000+9 1.655000+0 1.204300+9 1.595060+0 1.250000+9 1.540680+0 1.278200+9 1.511050+0 1.333700+9 1.459700+0 1.500000+9 1.336600+0 1.671900+9 1.227890+0 1.789100+9 1.158590+0 1.929700+9 1.078950+0 2.000000+9 1.040400+0 2.139200+9 9.661940-1 2.272600+9 8.987680-1 2.443000+9 8.184130-1 2.602800+9 7.493380-1 2.750000+9 6.909200-1 2.752700+9 6.899000-1 2.959000+9 6.161700-1 3.148200+9 5.562050-1 3.379700+9 4.917020-1 3.582200+9 4.423740-1 3.842200+9 3.874400-1 4.131600+9 3.356980-1 4.348700+9 3.023400-1 4.674400+9 2.596350-1 5.000000+9 2.241900-1 5.375000+9 1.905490-1 5.703100+9 1.662140-1 6.277300+9 1.324380-1 7.031000+9 1.004500-1 8.000000+9 7.272500-2 9.500000+9 4.688570-2 1.00000+10 4.108500-2 1.27030+10 2.214370-2 1.84370+10 8.408940-3 1.00000+11 1.018600-4 1.68570+11 2.633300-5 3.34410+11 4.523830-6 8.62510+11 4.041720-7 2.83020+12 2.008970-8 1.00000+14 2.67730-12 3.16230+15 4.53134-16 1.00000+17 7.33260-20 1 89000 7 0 2.270000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.40000-11 1.000000+2 1.400000-9 1.000000+3 1.400000-7 1.000000+4 1.400000-5 1.000000+5 1.400000-3 5.000000+5 3.500000-2 7.500000+5 7.875000-2 9.375000+5 1.230469-1 1.000000+6 1.400000-1 1.250000+6 2.166190-1 1.500000+6 3.083000-1 1.875000+6 4.726270-1 2.000000+6 5.340000-1 2.375000+6 7.352950-1 2.500000+6 8.077000-1 2.875000+6 1.038260+0 3.000000+6 1.119200+0 3.250000+6 1.285750+0 3.625000+6 1.545710+0 4.000000+6 1.814400+0 4.437500+6 2.134110+0 4.812500+6 2.410120+0 5.000000+6 2.548000+0 5.500000+6 2.911980+0 5.875000+6 3.181020+0 6.437500+6 3.576840+0 6.500000+6 3.620090+0 7.000000+6 3.962400+0 7.875000+6 4.542140+0 9.000000+6 5.264700+0 1.000000+7 5.898000+0 1.250000+7 7.487800+0 1.500000+7 9.092000+0 1.750000+7 1.067400+1 2.000000+7 1.222000+1 2.375000+7 1.447130+1 2.500000+7 1.520300+1 2.875000+7 1.731920+1 3.000000+7 1.799200+1 3.250000+7 1.927320+1 3.500000+7 2.048210+1 3.625000+7 2.106180+1 4.000000+7 2.271500+1 4.500000+7 2.475890+1 5.000000+7 2.671200+1 5.500000+7 2.863070+1 6.000000+7 3.051100+1 6.750000+7 3.324790+1 7.000000+7 3.413300+1 8.000000+7 3.748300+1 9.000000+7 4.049800+1 1.000000+8 4.316400+1 1.109400+8 4.571480+1 1.125000+8 4.605060+1 1.203100+8 4.767120+1 1.250000+8 4.858800+1 1.359400+8 5.059820+1 1.500000+8 5.300000+1 1.812500+8 5.778790+1 1.875000+8 5.866960+1 1.937500+8 5.952040+1 2.000000+8 6.035600+1 2.125000+8 6.194460+1 2.312500+8 6.414640+1 2.375000+8 6.483280+1 2.500000+8 6.614200+1 2.750000+8 6.848270+1 2.875000+8 6.952530+1 3.000000+8 7.049700+1 3.375000+8 7.298690+1 3.500000+8 7.370200+1 3.625000+8 7.436470+1 3.859400+8 7.548430+1 4.000000+8 7.609900+1 4.125000+8 7.660590+1 4.234400+8 7.701870+1 4.425800+8 7.770600+1 4.750000+8 7.874580+1 4.784700+8 7.884740+1 4.928200+8 7.925880+1 5.000000+8 7.946100+1 5.179700+8 7.993430+1 5.330100+8 8.030940+1 5.425800+8 8.053750+1 6.000000+8 8.179000+1 7.000000+8 8.350800+1 7.500000+8 8.418870+1 7.750000+8 8.448200+1 8.000000+8 8.476700+1 8.250000+8 8.501410+1 9.500000+8 8.601290+1 1.000000+9 8.631200+1 1.031300+9 8.647010+1 1.074300+9 8.667350+1 1.113800+9 8.683790+1 1.162000+9 8.700690+1 1.204300+9 8.714820+1 1.250000+9 8.727530+1 1.278200+9 8.734870+1 1.333700+9 8.748860+1 1.500000+9 8.781500+1 1.671900+9 8.807260+1 1.789100+9 8.822420+1 1.929700+9 8.837130+1 2.000000+9 8.844100+1 2.139200+9 8.854610+1 2.272600+9 8.862600+1 2.443000+9 8.871150+1 2.602800+9 8.877740+1 2.750000+9 8.882260+1 2.752700+9 8.882340+1 2.959000+9 8.887050+1 3.148200+9 8.890190+1 3.379700+9 8.893790+1 3.582200+9 8.895060+1 3.842200+9 8.896530+1 4.131600+9 8.898050+1 4.348700+9 8.898550+1 4.674400+9 8.898940+1 5.000000+9 8.899300+1 5.375000+9 8.899410+1 5.703100+9 8.899500+1 6.277300+9 8.899640+1 7.031000+9 8.899810+1 8.000000+9 8.900000+1 9.500000+9 8.900000+1 1.00000+10 8.900000+1 1.27030+10 8.900000+1 1.84370+10 8.900000+1 1.00000+11 8.900000+1 1.68570+11 8.900000+1 3.34410+11 8.900000+1 8.62510+11 8.900000+1 2.83020+12 8.900000+1 1.00000+14 8.900000+1 3.16230+15 8.900000+1 1.00000+17 8.900000+1 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.296303-6 0.0 1.299494-6 1.26886-15 1.302685-6 2.51072-15 1.305875-6 4.58603-15 1.309066-6 7.73267-15 1.312257-6 1.20358-14 1.315447-6 1.72933-14 1.318638-6 2.29367-14 1.321829-6 2.80828-14 1.325019-6 3.17397-14 1.328210-6 3.31145-14 1.331401-6 3.18925-14 1.334396-6 2.85716-14 1.340973-6 3.913296-1 1.344249-6 7.133085-1 1.347533-6 1.202736+0 1.351200-6 1.969899+0 1.360671-6 4.367983+0 1.364456-6 4.969290+0 1.367588-6 5.130522+0 1.371051-6 4.872443+0 1.374341-6 4.282416+0 1.379880-6 2.875092+0 1.383662-6 1.917567+0 1.387152-6 1.206721+0 1.390231-6 7.377083-1 1.393618-6 3.995918-1 1.398237-6 1.160390-1 1.400064-6 1.292465-3 1.400084-6 0.0 1.405671-6 0.0 1.410861-6 3.028998-7 1.412591-6 4.025857-7 1.416051-6 7.353556-7 1.418583-6 1.104436-6 1.425567-6 2.272036-1 1.429058-6 4.150047-1 1.432550-6 6.997535-1 1.436042-6 1.089159+0 1.445244-6 2.359724+0 1.448599-6 2.738455+0 1.450725-6 2.897707+0 1.453870-6 2.984929+0 1.457429-6 2.843702+0 1.461740-6 2.399082+0 1.471395-6 1.066312+0 1.474668-6 7.020677-1 1.477942-6 4.291971-1 1.481433-6 2.361048-1 1.486453-6 6.751124-2 1.488417-6 0.0 1.816938-6 0.0 1.821411-6 2.232177-2 1.825883-6 4.416863-2 1.830355-6 8.067761-2 1.834827-6 1.360335-1 1.839299-6 2.117351-1 1.846007-6 3.538045-1 1.852716-6 4.940337-1 1.857188-6 5.583660-1 1.861660-6 5.825528-1 1.866132-6 5.610551-1 1.870604-6 4.988038-1 1.877313-6 3.598044-1 1.884021-6 2.168833-1 1.888493-6 1.400123-1 1.892965-6 8.343732-2 1.897437-6 4.589955-2 1.901909-6 2.330830-2 1.906382-6 0.0 2.049348-6 0.0 2.054392-6 2.534599-8 2.059436-6 5.015272-8 2.064481-6 9.160805-8 2.069525-6 1.544638-7 2.074569-6 2.404216-7 2.079613-6 3.454412-7 2.084657-6 4.581722-7 2.089702-6 5.609668-7 2.094746-6 6.340151-7 2.099790-6 6.614788-7 2.104834-6 6.370685-7 2.109878-6 5.663832-7 2.114923-6 4.648240-7 2.125011-6 2.462673-7 2.130055-6 1.589816-7 2.135099-6 9.474166-8 2.140144-6 5.211816-8 2.145188-6 2.646618-8 2.150232-6 0.0 2.341712-6 0.0 2.350357-6 3.295721+0 2.353239-6 4.380360+0 2.359003-6 8.001086+0 2.364767-6 1.349093+1 2.371251-6 2.214266+1 2.381349-6 3.880288+1 2.388183-6 4.939295+1 2.394115-6 5.559488+1 2.399746-6 5.762788+1 2.406047-6 5.464459+1 2.412061-6 4.765039+1 2.421696-6 3.196995+1 2.428169-6 2.150909+1 2.433933-6 1.388552+1 2.439697-6 8.274776+0 2.445461-6 4.552022+0 2.452665-6 1.734695+0 2.456988-6 0.0 2.531891-6 0.0 2.542831-6 2.639641-8 2.544355-6 3.003474-8 2.550587-6 5.486090-8 2.556818-6 9.250302-8 2.563050-6 1.439802-7 2.581746-6 3.359438-7 2.587978-6 3.796899-7 2.594210-6 4.001341-7 2.600442-6 4.044802-7 2.614673-6 3.496147-7 2.619138-6 3.822225-7 2.625370-6 4.468494-7 2.627545-6 4.777200-7 2.633980-6 6.196268-7 2.640416-6 8.308924-7 2.653287-6 1.387961-6 2.659723-6 1.677889-6 2.666159-6 1.906188-6 2.672594-6 2.027587-6 2.675779-6 2.023454-6 2.688951-6 3.599859-2 2.695537-6 6.575264-2 2.702123-6 1.108667-1 2.708710-6 1.725621-1 2.728468-6 4.026313-1 2.735054-6 4.550612-1 2.740067-6 4.700562-1 2.753555-6 9.357572+0 2.760300-6 1.667792+1 2.767044-6 2.780251+1 2.775178-6 4.690861+1 2.794452-6 1.008670+2 2.801982-6 1.139314+2 2.808440-6 1.173316+2 2.815256-6 1.117099+2 2.822211-6 9.772920+1 2.832828-6 6.773385+1 2.841232-6 4.390515+1 2.847976-6 2.834364+1 2.854720-6 1.689078+1 2.861465-6 9.291756+0 2.871581-6 2.362002+0 2.874953-6 0.0 3.044337-6 0.0 3.058470-6 1.367052-2 3.059324-6 1.998598-2 3.066817-6 8.011742-2 3.073526-6 1.387069-1 3.081054-6 2.423356-1 3.089297-6 4.111418-1 3.097216-6 6.239149-1 3.113291-6 1.117743+0 3.120086-6 1.290539+0 3.126763-6 1.402081+0 3.134257-6 1.427329+0 3.141750-6 1.345879+0 3.150580-6 1.135194+0 3.166280-6 6.528380-1 3.171723-6 4.960655-1 3.179216-6 3.249913-1 3.186709-6 2.082966-1 3.193974-6 1.364747-1 3.201502-6 1.079427-1 3.209030-6 8.452851-2 3.231274-6 1.828073-1 3.239093-6 2.094829-1 3.246911-6 2.234107-1 3.254730-6 2.216063-1 3.262549-6 2.043075-1 3.272014-6 1.672210-1 3.287548-6 9.590590-2 3.293823-6 7.003722-2 3.301642-6 4.433671-2 3.309461-6 2.541652-2 3.313798-6 1.791996-2 3.317279-6 1.313196-2 3.325098-6 6.668553-3 3.332917-6 0.0 3.356699-6 0.0 3.356748-6 9.67674-11 3.357041-6 5.284847-5 3.365304-6 3.042566-2 3.373567-6 6.018825-2 3.381829-6 1.099121-1 3.390092-6 1.852853-1 3.398355-6 2.883350-1 3.423144-6 6.736603-1 3.431407-6 7.641040-1 3.439670-6 8.006220-1 3.447933-6 7.771436-1 3.456196-6 7.008212-1 3.480985-6 3.541893-1 3.489248-6 2.609680-1 3.497540-6 1.912363-1 3.506044-6 1.411197-1 3.514548-6 1.049113-1 3.519199-6 8.233609-2 3.522299-6 7.331733-2 3.536524-6 8.173831-2 3.540622-6 8.989934-2 3.545186-6 1.108788-1 3.554373-6 1.729488-1 3.558454-6 2.105667-1 3.562790-6 2.580606-1 3.567170-6 3.149026-1 3.575885-6 4.507263-1 3.597158-6 8.391566-1 3.608093-6 9.820205-1 3.617590-6 1.038383+0 3.627770-6 1.024247+0 3.638054-6 9.224869-1 3.659086-6 6.382854-1 3.668093-6 5.478558-1 3.676593-6 4.942464-1 3.683779-6 4.730204-1 3.694515-6 4.613718-1 3.707695-6 4.655578-1 3.741490-6 4.054102-1 3.759426-6 3.810066-1 3.806044-6 3.707747-1 3.841556-6 3.746132-1 3.864327-6 4.147156-1 3.879960-6 4.779788-1 3.918160-6 7.074394-1 3.927710-6 7.393491-1 3.936655-6 7.418514-1 3.946403-6 7.156816-1 3.968554-6 5.823112-1 3.987506-6 5.708241-1 3.997434-6 6.260352-1 4.006573-6 7.399460-1 4.019291-6 1.006176+0 4.050204-6 1.814653+0 4.058396-6 1.960568+0 4.068550-6 2.031800+0 4.079110-6 1.979231+0 4.081754-6 1.957678+0 4.095223-6 2.206763+0 4.102597-6 2.333408+0 4.111793-6 2.687693+0 4.122219-6 3.464755+0 4.133695-6 4.813974+0 4.163467-6 9.283690+0 4.174102-6 1.030918+1 4.184298-6 1.056274+1 4.193773-6 1.009851+1 4.204937-6 8.774114+0 4.232130-6 4.375855+0 4.242623-6 3.003786+0 4.252222-6 2.070494+0 4.262268-6 1.423605+0 4.282359-6 6.375906-1 4.400655-6 6.577266-1 4.480435-6 6.496314-1 4.533074-6 6.815258-1 4.566547-6 7.448836-1 4.582255-6 7.991528-1 4.604772-6 1.137898+0 4.617612-6 1.434794+0 4.630137-6 1.834689+0 4.654868-6 2.854005+0 4.670929-6 3.511045+0 4.684667-6 3.878626+0 4.697297-6 3.913732+0 4.708694-6 3.708524+0 4.721727-6 3.240796+0 4.752027-6 1.869557+0 4.763254-6 1.469344+0 4.774425-6 1.180619+0 4.785228-6 9.933563-1 4.807785-6 7.594311-1 4.825370-6 7.706174-1 4.849124-6 9.013448-1 4.861001-6 1.007071+0 4.875847-6 1.211187+0 4.888548-6 1.439315+0 4.920386-6 2.072239+0 4.932263-6 2.220443+0 4.947109-6 2.248856+0 4.959813-6 2.147747+0 4.981856-6 1.815205+0 4.995554-6 1.584745+0 5.003525-6 1.476414+0 5.015402-6 1.377346+0 5.027279-6 1.352908+0 5.044753-6 1.429408+0 5.073939-6 1.638477+0 5.086336-6 1.692592+0 5.104284-6 1.688181+0 5.145187-6 1.592421+0 5.258534-6 1.584200+0 5.353852-6 1.524428+0 5.433813-6 1.597847+0 5.559043-6 1.534771+0 6.879320-6 1.458013+0 1.105495-5 1.400525+0 1.436235-5 1.233135+0 1.704350-5 1.061419+0 1.712740-5 3.207192+0 1.716935-5 4.982664+0 1.721130-5 7.676135+0 1.725325-5 1.136056+1 1.737910-5 2.510205+1 1.742105-5 2.823271+1 1.746824-5 2.927717+1 1.751024-5 2.797647+1 1.752612-5 2.682916+1 1.754690-5 2.985123+1 1.761239-5 3.687145+1 1.765943-5 4.917032+1 1.770137-5 6.840114+1 1.774560-5 9.861481+1 1.787392-5 2.112267+2 1.792134-5 2.380096+2 1.796315-5 2.453701+2 1.800460-5 2.350874+2 1.804918-5 2.064069+2 1.817319-5 9.240876+1 1.821633-5 6.000435+1 1.825947-5 3.615489+1 1.830261-5 2.032981+1 1.836731-5 5.897014+0 1.838888-5 9.776342-1 1.957547-5 9.093130-1 1.967184-5 1.243195+0 1.972002-5 1.520976+0 1.976820-5 1.943528+0 1.981639-5 2.522364+0 1.996093-5 4.682946+0 2.000912-5 5.174523+0 2.005730-5 5.357730+0 2.011430-5 5.105042+0 2.014076-5 4.849649+0 2.018636-5 4.557779+0 2.023991-5 4.121515+0 2.028948-5 3.949835+0 2.033906-5 4.188406+0 2.039458-5 5.019289+0 2.047880-5 7.113871+0 2.053286-5 8.569519+0 2.059312-5 9.797193+0 2.064270-5 1.019543+1 2.069392-5 9.938118+0 2.076159-5 8.886983+0 2.087914-5 6.544981+0 2.093920-5 5.792589+0 2.098987-5 5.597086+0 2.107542-5 5.790210+0 2.121580-5 6.430956+0 2.129834-5 6.588520+0 2.176451-5 5.962224+0 2.206250-5 5.803088+0 2.280940-5 5.573858+0 2.426797-5 4.905114+0 2.438744-5 1.481441+1 2.444717-5 2.302080+1 2.451064-5 3.653826+1 2.457153-5 5.424599+1 2.475186-5 1.174604+2 2.481999-5 1.317040+2 2.488091-5 1.345488+2 2.493885-5 1.277934+2 2.500704-5 1.094196+2 2.516396-5 5.344604+1 2.522370-5 3.609569+1 2.528343-5 2.332077+1 2.534316-5 1.483748+1 2.546263-5 4.448029+0 2.680369-5 4.008887+0 2.699775-5 4.129501+0 2.712968-5 4.386918+0 2.738420-5 5.165375+0 2.762885-5 5.833200+0 2.772453-5 6.337463+0 2.794920-5 7.820380+0 2.801650-5 8.016674+0 2.811778-5 7.820507+0 2.834105-5 6.807424+0 2.843983-5 6.586890+0 2.897036-5 6.674314+0 2.954570-5 6.477451+0 3.037274-5 6.115305+0 3.364535-5 5.077836+0 3.784556-5 4.045796+0 4.164008-5 3.355346+0 4.205388-5 3.486044+0 4.256359-5 3.797332+0 4.277209-5 3.729301+0 4.327995-5 3.234036+0 4.349743-5 3.151535+0 4.423438-5 3.166226+0 4.720147-5 2.732869+0 5.191735-5 2.228113+0 5.693923-5 1.842813+0 6.317920-5 1.505792+0 7.071875-5 1.228511+0 7.959819-5 1.006689+0 7.999003-5 2.624797+0 8.018651-5 3.970715+0 8.058125-5 4.072559+1 8.077862-5 7.051268+1 8.099210-5 1.188641+2 8.121923-5 1.881403+2 8.177790-5 3.809293+2 8.199517-5 4.244109+2 8.218986-5 4.334902+2 8.238807-5 4.099362+2 8.260883-5 3.505775+2 8.315639-5 1.579087+2 8.335869-5 1.014834+2 8.354662-5 6.240139+1 8.374241-5 3.576753+1 8.409664-5 6.005371+0 8.413389-5 2.803731+0 8.459840-5 2.665571+0 8.486223-5 2.743065+0 8.525348-5 3.046450+0 8.582596-5 3.716860+0 8.599289-5 3.933327+0 8.642101-5 2.732816+1 8.663700-5 4.694510+1 8.686794-5 7.939654+1 8.710118-5 1.240680+2 8.771101-5 2.607449+2 8.795043-5 2.929351+2 8.814865-5 3.006319+2 8.834938-5 2.878611+2 8.857418-5 2.517299+2 8.917866-5 1.168848+2 8.939645-5 7.795498+1 8.959147-5 5.181321+1 8.980629-5 3.284246+1 9.022611-5 9.923801+0 9.115580-5 1.006348+1 9.253198-5 1.155903+1 9.465485-5 1.358801+1 9.668152-5 1.474582+1 9.923967-5 1.525104+1 1.024476-4 1.476973+1 1.130608-4 1.098451+1 1.213182-4 8.673208+0 1.297086-4 6.833942+0 1.376417-4 5.477958+0 1.450000-4 4.513756+0 1.536000-4 3.660425+0 1.629335-4 2.972416+0 1.681926-4 2.696897+0 1.700124-4 2.757696+0 1.709563-4 2.887979+0 1.733391-4 3.358051+0 1.742876-4 3.407219+0 1.881203-4 2.865320+0 2.041905-4 2.458099+0 2.093774-4 2.366212+0 2.109687-4 2.478996+0 2.119824-4 2.675357+0 2.141184-4 3.248586+0 2.151514-4 3.283686+0 2.177458-4 2.889451+0 2.204685-4 2.787074+0 2.460375-4 2.496546+0 2.669197-4 2.412011+0 2.732093-4 2.648103+0 2.812426-4 2.590169+0 3.077960-4 2.610639+0 3.100694-4 2.763575+0 3.116619-4 3.030399+0 3.140388-4 3.592846+0 3.154748-4 3.771879+0 3.171310-4 3.698103+0 3.194639-4 3.506764+0 3.208466-4 3.604088+0 3.242297-4 4.057079+0 3.258953-4 3.980645+0 3.289000-4 3.624814+0 3.319154-4 3.533400+0 3.433750-4 3.861192+0 3.495000-4 4.253047+0 3.566110-4 5.024343+0 3.627703-4 5.979930+0 3.715352-4 7.734586+0 3.855050-4 1.124350+1 4.220800-4 2.135219+1 4.422028-4 2.589371+1 4.654531-4 2.971011+1 4.930823-4 3.275390+1 5.418871-4 3.541148+1 6.175637-4 3.592004+1 6.231248-4 3.663349+1 6.268300-4 3.869670+1 6.338479-4 4.529271+1 6.371221-4 4.560400+1 6.459617-4 3.986403+1 6.514562-4 3.881093+1 6.601099-4 3.964570+1 6.711396-4 4.435863+1 6.764943-4 4.298474+1 6.829360-4 4.079747+1 6.962305-4 4.014590+1 8.927815-4 3.571443+1 9.145718-4 3.719559+1 1.093334-3 3.250063+1 1.241689-3 2.950199+1 1.639406-3 2.263455+1 1.957774-3 1.860972+1 2.317395-3 1.528644+1 2.741525-3 1.245429+1 3.142013-3 1.050197+1 3.157589-3 1.141180+1 3.165322-3 1.223179+1 3.173056-3 1.353137+1 3.181739-3 1.567645+1 3.196415-3 2.060576+1 3.212684-3 2.643118+1 3.220420-3 2.836102+1 3.228156-3 2.943505+1 3.236304-3 2.963752+1 3.260195-3 2.718047+1 3.282164-3 2.509215+1 3.297091-3 2.442773+1 3.318805-3 2.542774+1 3.335224-3 2.751572+1 3.367781-3 3.442836+1 3.383519-3 3.626653+1 3.402441-3 3.578725+1 3.441333-3 3.289704+1 3.472860-3 3.211303+1 3.829148-3 2.793842+1 3.874375-3 2.868022+1 3.924236-3 3.055005+1 4.000120-3 3.034132+1 4.559412-3 2.500688+1 4.707248-3 2.524956+1 4.931586-3 2.384199+1 5.085979-3 2.361671+1 5.921088-3 1.899211+1 6.805367-3 1.548074+1 7.599434-3 1.311193+1 8.868528-3 1.037874+1 1.010979-2 8.481552+0 1.155474-2 6.886729+0 1.302801-2 5.702504+0 1.480389-2 4.653958+0 1.553000-2 4.341194+0 1.563684-2 4.500103+0 1.570227-2 4.850881+0 1.576288-2 5.451774+0 1.586375-2 6.980227+0 1.597567-2 8.659230+0 1.606947-2 9.425518+0 1.618431-2 9.672301+0 1.875184-2 7.625503+0 1.892650-2 7.733020+0 1.907096-2 8.328656+0 1.929231-2 9.636565+0 1.947402-2 9.998065+0 1.975216-2 1.026376+1 2.002194-2 1.089368+1 2.048560-2 1.073430+1 2.348417-2 8.703823+0 2.702012-2 6.980227+0 3.038181-2 5.787201+0 3.443205-2 4.718595+0 3.853355-2 3.927207+0 4.264531-2 3.318669+0 4.845311-2 2.682968+0 5.493560-2 2.171580+0 6.228379-2 1.756095+0 7.004275-2 1.437658+0 7.895691-2 1.170936+0 8.862579-2 9.603850-1 1.004089-1 7.750589-1 1.046137-1 7.263845-1 1.052313-1 7.476771-1 1.056051-1 7.998330-1 1.059321-1 8.944253-1 1.062152-1 1.027638+0 1.064857-1 1.205872+0 1.069614-1 1.623149+0 1.076930-1 2.324367+0 1.082197-1 2.681584+0 1.087996-1 2.872445+0 1.099707-1 2.915429+0 1.271573-1 2.333663+0 1.447910-1 1.900825+0 1.669562-1 1.516436+0 1.882069-1 1.252819+0 2.136684-1 1.023747+0 2.406884-1 8.479762-1 2.720559-1 7.006618-1 3.063530-1 5.841476-1 3.469864-1 4.844840-1 3.949508-1 4.011461-1 4.484297-1 3.357050-1 5.082970-1 2.835504-1 5.770985-1 2.405976-1 6.550131-1 2.059142-1 7.640557-1 1.721158-1 8.861352-1 1.462456-1 1.070165+0 1.201175-1 1.228714+0 1.026329-1 1.410753+0 8.769337-2 1.619761+0 7.492850-2 1.859734+0 6.402172-2 2.135261+0 5.470256-2 2.451607+0 4.673991-2 2.814822+0 3.993633-2 3.231848+0 3.412310-2 3.736934+0 2.893225-2 4.461192+0 2.363937-2 5.122134+0 2.019836-2 5.880996+0 1.725824-2 6.752287+0 1.474608-2 7.752663+0 1.259961-2 8.901248+0 1.076558-2 9.760024+0 9.693727-3 1.000000+1 2.020149-2 1 89000 7 0 2.270000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.847117+1 1.331401-6-8.647804+1 1.357862-6-8.522196+1 1.371674-6-8.883236+1 1.387152-6-8.748164+1 1.410861-6-8.851695+1 1.446825-6-8.744333+1 1.458829-6-8.864094+1 1.490337-6-8.886503+1 2.094746-6-8.464500+1 2.259755-6-7.991815+1 2.312897-6-7.484356+1 2.336256-6-6.910687+1 2.366748-6-5.182261+1 2.373458-6-5.056034+1 2.379222-6-5.245196+1 2.385391-6-5.841032+1 2.393396-6-7.200969+1 2.399746-6-8.598135+1 2.405725-6-7.948200+1 2.413636-6-6.617700+1 2.419568-6-6.034722+1 2.426953-6-5.825450+1 2.434653-6-6.085150+1 2.464004-6-7.759900+1 2.492483-6-8.412888+1 2.544355-6-8.877934+1 2.659723-6-7.879061+1 2.702123-6-7.127195+1 2.725495-6-6.336705+1 2.737247-6-5.610729+1 2.745632-6-4.736856+1 2.753555-6-4.006848+1 2.761143-6-3.173507+1 2.768396-6-2.486944+1 2.769940-6-2.393738+1 2.775178-6-2.197003+1 2.777460-6-2.206279+1 2.780436-6-2.338311+1 2.783620-6-2.602841+1 2.787053-6-3.030107+1 2.791082-6-3.749009+1 2.793746-6-4.420993+1 2.800574-6-6.582312+1 2.806940-6-8.881385+1 2.810900-6-7.305675+1 2.816602-6-5.208399+1 2.822211-6-3.514269+1 2.824112-6-3.056672+1 2.828586-6-2.183808+1 2.831168-6-1.827858+1 2.833657-6-1.591910+1 2.837438-6-1.412493+1 2.839335-6-1.381362+1 2.840283-6-1.388396+1 2.844604-6-1.562712+1 2.847133-6-1.713379+1 2.848819-6-1.892561+1 2.853983-6-2.352782+1 2.863783-6-3.431764+1 2.873267-6-4.283629+1 2.878565-6-4.890015+1 2.889902-6-5.588319+1 2.910412-6-6.300693+1 2.947147-6-6.974205+1 3.017932-6-7.585620+1 3.120086-6-7.994468+1 3.209030-6-8.093908+1 3.456196-6-8.363822+1 3.643312-6-8.464541+1 4.093292-6-8.900738+1 4.126715-6-8.888724+1 4.163467-6-8.902740+1 4.213786-6-8.015471+1 4.252222-6-8.050843+1 4.342000-6-8.413237+1 4.666965-6-8.707578+1 4.752027-6-8.407100+1 4.929294-6-8.615326+1 1.162600-5-8.789363+1 1.466097-5-8.220003+1 1.589176-5-7.546752+1 1.648203-5-6.804391+1 1.680042-5-6.032610+1 1.697336-5-5.314173+1 1.708545-5-4.516079+1 1.727130-5-2.864512+1 1.732544-5-2.575679+1 1.736568-5-2.452368+1 1.743154-5-2.431263+1 1.746824-5-2.353559+1 1.749119-5-2.190567+1 1.751024-5-1.977993+1 1.752215-5-1.730673+1 1.752871-5-1.492049+1 1.753326-5-1.365816+1 1.754008-5-1.211044+1 1.756327-5-7.853820+0 1.757555-5-5.427308+0 1.759397-5-1.360701+0 1.760318-5 1.022307+0 1.760779-5 2.383369+0 1.761795-5 6.057571+0 1.764709-5 1.476354+1 1.765195-5 1.642046+1 1.765943-5 1.967984+1 1.770642-5 3.490425+1 1.774560-5 4.284331+1 1.775895-5 4.370071+1 1.777801-5 4.225620+1 1.779027-5 4.006131+1 1.781112-5 3.427744+1 1.783096-5 2.610786+1 1.784102-5 2.088163+1 1.784857-5 1.641833+1 1.785424-5 1.272143+1 1.785848-5 9.720982+0 1.786485-5 4.762607+0 1.786804-5 1.995362+0 1.786963-5 4.907076-1 1.787122-5-1.223197+0 1.787392-5-4.041092+0 1.789920-5-2.764503+1 1.791010-5-3.931690+1 1.792134-5-5.380152+1 1.795200-5-8.868354+1 1.796769-5-6.721683+1 1.799794-5-3.210110+1 1.800460-5-2.293676+1 1.800950-5-1.727916+1 1.801378-5-1.267517+1 1.804378-5 1.689567+1 1.804562-5 1.894748+1 1.804918-5 2.233159+1 1.806170-5 3.230819+1 1.807960-5 4.370031+1 1.810261-5 5.502845+1 1.811916-5 6.108912+1 1.814280-5 6.646356+1 1.816749-5 6.766872+1 1.821094-5 6.031862+1 1.825475-5 4.670934+1 1.830800-5 2.705340+1 1.833159-5 1.969165+1 1.836731-5 9.434079+0 1.837810-5 5.906073+0 1.838349-5 3.901512+0 1.838619-5 2.770355+0 1.839117-5 1.612820-1 1.839560-5-1.650159+0 1.840391-5-4.476656+0 1.841118-5-6.628452+0 1.842391-5-9.948698+0 1.843345-5-1.217045+1 1.844776-5-1.518174+1 1.846208-5-1.788811+1 1.848480-5-2.169791+1 1.853024-5-2.801332+1 1.859841-5-3.531966+1 1.868929-5-4.256650+1 1.882562-5-5.032915+1 1.905283-5-5.890686+1 1.941755-5-6.763796+1 1.991275-5-7.647794+1 2.022652-5-7.690129+1 2.049630-5-8.110992+1 2.080068-5-7.605921+1 2.121580-5-7.967136+1 2.275500-5-8.553524+1 2.331508-5-8.899101+1 2.383019-5-7.980869+1 2.408686-5-7.068502+1 2.421383-5-6.237860+1 2.426797-5-5.596607+1 2.430066-5-5.142302+1 2.438744-5-4.123809+1 2.445791-5-3.140016+1 2.451764-5-2.434163+1 2.457153-5-2.079661+1 2.458873-5-2.055889+1 2.461330-5-2.144462+1 2.462910-5-2.261611+1 2.465767-5-2.587000+1 2.468667-5-3.063352+1 2.471671-5-3.740035+1 2.474174-5-4.515283+1 2.480435-5-6.982920+1 2.482633-5-8.079671+1 2.484933-5-8.552369+1 2.490105-5-6.019968+1 2.493326-5-4.558737+1 2.495182-5-3.727133+1 2.499865-5-2.009558+1 2.501438-5-1.527038+1 2.502722-5-1.194814+1 2.503685-5-9.720600+0 2.505130-5-6.736455+0 2.506575-5-4.100389+0 2.507802-5-2.156499+0 2.508877-5-7.217546-1 2.510757-5 1.264084+0 2.512166-5 2.318522+0 2.513224-5 2.853245+0 2.514810-5 3.191036+0 2.515603-5 3.097962+0 2.519383-5 1.035558+0 2.520876-5 2.554358-2 2.521623-5-6.549436-1 2.522370-5-1.631607+0 2.523116-5-2.653650+0 2.525729-5-5.423297+0 2.527036-5-6.921195+0 2.527689-5-7.779259+0 2.528343-5-8.855710+0 2.535397-5-1.856742+1 2.544614-5-2.908492+1 2.548122-5-3.451690+1 2.552821-5-3.916397+1 2.563242-5-4.588092+1 2.578614-5-5.208827+1 2.608495-5-5.908842+1 2.666280-5-6.605747+1 2.749995-5-7.178354+1 2.794920-5-7.260480+1 2.834105-5-7.148017+1 3.364535-5-7.475246+1 5.327979-5-8.200865+1 5.972065-5-8.524206+1 6.760830-5-7.771569+1 7.187246-5-6.902715+1 7.434469-5-5.983915+1 7.585776-5-5.077975+1 7.689994-5-4.157050+1 7.758365-5-3.325181+1 7.805580-5-2.581966+1 7.841730-5-1.877872+1 7.869407-5-1.229640+1 7.880709-5-9.302600+0 7.890598-5-6.486191+0 7.899250-5-3.852358+0 7.914392-5 1.194159+0 7.925749-5 5.409605+0 7.934267-5 8.859484+0 7.947043-5 1.459859+1 7.959819-5 2.128010+1 7.970579-5 2.762172+1 7.981339-5 3.457146+1 7.994587-5 4.456746+1 8.007599-5 5.690617+1 8.015888-5 6.712618+1 8.022275-5 7.813356+1 8.055184-5 1.167642+2 8.085200-5 1.574257+2 8.106146-5 1.770685+2 8.124799-5 1.818666+2 8.139038-5 1.724601+2 8.151343-5 1.555770+2 8.163271-5 1.305908+2 8.172864-5 1.016662+2 8.177790-5 8.343566+1 8.190529-5 3.439834+1 8.193550-5 2.185992+1 8.195493-5 1.313963+1 8.196464-5 8.423808+0 8.196949-5 5.894279+0 8.197435-5 3.032186+0 8.197742-5 1.151517+0 8.198346-5-2.077589+0 8.199517-5-7.843765+0 8.201713-5-1.796806+1 8.213839-5-7.203613+1 8.217347-5-9.040086+1 8.218986-5-8.155895+1 8.236725-5-1.794496+0 8.237032-5-9.378172-5 8.237636-5 3.070762+0 8.238807-5 8.498915+0 8.241003-5 1.781546+1 8.242924-5 2.542700+1 8.246285-5 3.798153+1 8.256370-5 7.406321+1 8.260883-5 8.937958+1 8.270515-5 1.135378+2 8.283239-5 1.358620+2 8.293921-5 1.478104+2 8.306696-5 1.540726+2 8.315639-5 1.513447+2 8.334002-5 1.369127+2 8.354662-5 1.092537+2 8.380041-5 7.225697+1 8.405938-5 4.054210+1 8.411718-5 3.200551+1 8.415287-5 2.500232+1 8.420013-5 1.810945+1 8.424301-5 1.280880+1 8.428053-5 8.599368+0 8.434618-5 1.899707+0 8.439543-5-2.706531+0 8.446929-5-9.110614+0 8.459840-5-1.924467+1 8.476415-5-3.085646+1 8.525348-5-6.079105+1 8.572737-5-9.046780+1 8.579335-5-9.486840+1 8.597096-5-7.978896+1 8.605740-5-6.979832+1 8.640000-5-4.002677+1 8.663700-5-1.633269+1 8.665054-5-1.463793+1 8.667593-5-1.208605+1 8.685365-5 2.839180+0 8.686794-5 4.345827+0 8.689474-5 6.391562+0 8.691819-5 7.844263+0 8.695922-5 9.917258+0 8.710118-5 1.535673+1 8.713774-5 1.587380+1 8.717202-5 1.576289+1 8.720415-5 1.524450+1 8.726252-5 1.339766+1 8.728900-5 1.219301+1 8.733865-5 9.333118+0 8.738209-5 6.187911+0 8.742010-5 2.931125+0 8.745336-5-3.194406-1 8.748246-5-3.485142+0 8.750793-5-6.514182+0 8.754971-5-1.204862+1 8.758382-5-1.715050+1 8.762860-5-2.480730+1 8.767538-5-3.456294+1 8.771101-5-4.383325+1 8.786646-5-7.988258+1 8.792083-5-9.537658+1 8.797183-5-7.993506+1 8.809440-5-4.554356+1 8.812307-5-3.617923+1 8.813657-5-3.096782+1 8.817131-5-2.008833+1 8.821096-5-8.779584+0 8.827043-5 7.622620+0 8.831503-5 2.047668+1 8.833653-5 2.789139+1 8.837347-5 3.858280+1 8.841846-5 4.992555+1 8.857418-5 8.664429+1 8.864858-5 1.001951+2 8.875491-5 1.148870+2 8.889163-5 1.278765+2 8.905757-5 1.357914+2 8.917866-5 1.348079+2 8.939645-5 1.240008+2 8.959147-5 1.081556+2 8.991078-5 8.028039+1 9.016997-5 6.110057+1 9.027736-5 5.000502+1 9.039798-5 4.144941+1 9.056606-5 3.246873+1 9.067526-5 2.766494+1 9.088379-5 1.991928+1 9.098313-5 1.673105+1 9.115580-5 1.177588+1 9.126895-5 8.870578+0 9.138210-5 6.198547+0 9.160484-5 1.506049+0 9.182757-5-2.558482+0 9.202711-5-5.772477+0 9.222666-5-8.636976+0 9.253198-5-1.245922+1 9.284172-5-1.578149+1 9.338809-5-2.059812+1 9.410298-5-2.548317+1 9.501833-5-3.010919+1 9.618477-5-3.425523+1 9.788326-5-3.819547+1 1.005773-4-4.172284+1 1.078542-4-4.612175+1 1.242471-4-5.122147+1 1.742876-4-5.976639+1 2.151514-4-6.268304+1 3.038457-4-6.937142+1 3.242297-4-7.136248+1 3.906221-4-8.204496+1 4.260000-4-8.137427+1 5.561329-4-6.468761+1 6.073550-4-6.140549+1 6.200655-4-6.273771+1 6.289820-4-6.526010+1 6.335803-4-6.231948+1 6.395671-4-5.552541+1 6.444721-4-5.440161+1 6.634475-4-5.792520+1 6.694569-4-5.581037+1 6.764943-4-5.146349+1 7.191663-4-4.903462+1 8.128305-4-4.297642+1 8.856210-4-4.046696+1 9.067760-4-4.038172+1 9.304888-4-3.797953+1 1.019027-3-3.396989+1 1.206713-3-2.910445+1 1.265855-3-2.806427+1 1.404969-3-2.566395+1 1.639406-3-2.361944+1 1.957774-3-2.274308+1 2.317395-3-2.332257+1 2.652601-3-2.532980+1 2.906623-3-2.841100+1 3.046141-3-3.144005+1 3.125533-3-3.468453+1 3.165322-3-3.785293+1 3.212684-3-4.374982+1 3.236304-3-4.391011+1 3.295130-3-3.857414+1 3.327222-3-3.810049+1 3.375453-3-3.902029+1 3.402441-3-3.716494+1 3.456052-3-3.178241+1 3.521977-3-2.817292+1 3.620624-3-2.499475+1 3.744305-3-2.272735+1 3.829148-3-2.234860+1 3.899974-3-2.306681+1 3.939937-3-2.183072+1 4.000120-3-1.947225+1 4.103054-3-1.724077+1 4.283112-3-1.487104+1 4.471936-3-1.341670+1 4.592059-3-1.315583+1 4.657210-3-1.318380+1 4.775522-3-1.179627+1 4.895069-3-1.113499+1 4.982297-3-1.090171+1 5.128684-3-9.511654+0 5.370318-3-8.210376+0 5.687506-3-7.080451+0 6.062154-3-6.172423+0 6.569011-3-5.374845+0 7.159422-3-4.835523+0 7.894847-3-4.522871+0 8.868528-3-4.407810+0 1.010979-2-4.586120+0 1.155474-2-5.038761+0 1.302801-2-5.784290+0 1.406452-2-6.598088+0 1.480389-2-7.543207+0 1.522299-2-8.444469+0 1.548290-2-9.425199+0 1.563684-2-1.052716+1 1.581559-2-1.220302+1 1.589117-2-1.239371+1 1.600220-2-1.172164+1 1.618431-2-9.916688+0 1.634722-2-8.926408+0 1.663210-2-7.981098+0 1.705462-2-7.224130+0 1.762176-2-6.765377+0 1.815673-2-6.702624+0 1.857023-2-6.983135+0 1.882365-2-7.509416+0 1.911593-2-8.550713+0 1.924142-2-8.482614+0 1.953307-2-7.511946+0 1.988363-2-7.053096+0 2.026686-2-5.748860+0 2.063947-2-4.956241+0 2.121380-2-4.169248+0 2.197228-2-3.459946+0 2.287573-2-2.859324+0 2.388660-2-2.375429+0 2.510080-2-1.962803+0 2.626486-2-1.679131+0 2.770129-2-1.424318+0 2.911136-2-1.250689+0 3.111086-2-1.089637+0 3.353980-2-9.855312-1 3.631292-2-9.431034-1 3.981072-2-9.423907-1 4.641192-2-1.038929+0 7.004275-2-1.570648+0 8.556176-2-1.985970+0 9.387721-2-2.310420+0 9.912645-2-2.638725+0 1.022917-1-2.975614+0 1.042065-1-3.337270+0 1.052313-1-3.696254+0 1.067351-1-4.499745+0 1.073190-1-4.558836+0 1.079292-1-4.327406+0 1.093863-1-3.473390+0 1.103775-1-3.123116+0 1.122019-1-2.733399+0 1.147534-1-2.391921+0 1.179953-1-2.110457+0 1.234040-1-1.796260+0 1.303167-1-1.547523+0 1.395180-1-1.346769+0 1.535551-1-1.171752+0 1.669562-1-1.082465+0 1.882069-1-1.015333+0 2.231072-1-9.884405-1 5.082970-1-1.121520+0 8.861352-1-1.179534+0 2.688134+0-1.206779+0 8.118035+0-1.213430+0 1.000000+1-1.210999+0 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.034211-2 1.088254-6 1.192179-1 1.159484-6 1.614612-1 1.222089-6 2.084491-1 1.250488-6 2.336265-1 1.277112-6 2.599778-1 1.327032-6 3.167286-1 1.370713-6 3.754952-1 1.408933-6 4.353141-1 1.471638-6 5.533686-1 1.497243-6 6.104504-1 1.542051-6 7.243374-1 1.575657-6 8.231495-1 1.600862-6 9.069748-1 1.638669-6 1.049803+0 1.692981-6 1.295304+0 1.734246-6 1.525783+0 1.759004-6 1.687008+0 1.784439-6 1.873093+0 1.808284-6 2.068616+0 1.830638-6 2.274009+0 1.851596-6 2.489306+0 1.871244-6 2.714583+0 1.889663-6 2.949817+0 1.906932-6 3.194924+0 1.923121-6 3.449815+0 1.938298-6 3.714449+0 1.952527-6 3.989029+0 1.965866-6 4.274143+0 1.978372-6 4.569961+0 2.001820-6 5.212396+0 2.025000-6 5.989077+0 2.040290-6 6.607355+0 2.055998-6 7.365193+0 2.069743-6 8.165442+0 2.081770-6 9.009023+0 2.092294-6 9.897897+0 2.101502-6 1.083542+1 2.109559-6 1.182725+1 2.116608-6 1.288157+1 2.122777-6 1.400695+1 2.128175-6 1.520820+1 2.132898-6 1.648243+1 2.137030-6 1.781742+1 2.140646-6 1.919306+1 2.143810-6 2.058457+1 2.146578-6 2.196616+1 2.151423-6 2.480255+1 2.155057-6 2.731862+1 2.161359-6 3.254447+1 2.167790-6 3.901087+1 2.171289-6 4.295601+1 2.175287-6 4.774157+1 2.176620-6 4.938189+1 2.181951-6 5.600764+1 2.182618-6 5.682850+1 2.187283-6 6.237911+1 2.189115-6 6.441380+1 2.192614-6 6.795132+1 2.194446-6 6.957825+1 2.196196-6 7.095906+1 2.197945-6 7.215296+1 2.200277-6 7.342485+1 2.202527-6 7.427486+1 2.205609-6 7.479288+1 2.208233-6 7.461445+1 2.211273-6 7.367828+1 2.213606-6 7.243317+1 2.214897-6 7.155235+1 2.217083-6 6.976186+1 2.219437-6 6.743945+1 2.221821-6 6.470600+1 2.224254-6 6.157117+1 2.226589-6 5.828602+1 2.229014-6 5.464702+1 2.231363-6 5.096044+1 2.233794-6 4.704318+1 2.236222-6 4.308968+1 2.238084-6 4.006844+1 2.240242-6 3.661655+1 2.241928-6 3.397994+1 2.244239-6 3.048239+1 2.246259-6 2.756301+1 2.249149-6 2.365099+1 2.251424-6 2.081617+1 2.252352-6 1.972634+1 2.255000-6 1.683750+1 2.257683-6 1.425159+1 2.264445-6 9.257024+0 2.266856-6 7.978980+0 2.268773-6 7.138374+0 2.270349-6 6.557068+0 2.271861-6 6.088404+0 2.273245-6 5.731943+0 2.274399-6 5.485502+0 2.275519-6 5.288385+0 2.276065-6 5.206713+0 2.277142-6 5.072942+0 2.278185-6 4.976394+0 2.279196-6 4.912656+0 2.280175-6 4.877796+0 2.282071-6 4.881878+0 2.283849-6 4.966546+0 2.285516-6 5.112337+0 2.288641-6 5.545715+0 2.294111-6 6.752912+0 2.305328-6 1.072721+1 2.309222-6 1.250728+1 2.312474-6 1.412652+1 2.314340-6 1.510274+1 2.316207-6 1.610861+1 2.320472-6 1.849353+1 2.321894-6 1.930631+1 2.327581-6 2.256745+1 2.328292-6 2.296920+1 2.333268-6 2.567389+1 2.335223-6 2.666042+1 2.338955-6 2.836973+1 2.340910-6 2.915348+1 2.342776-6 2.981761+1 2.344642-6 3.039125+1 2.347130-6 3.100231+1 2.349529-6 3.141189+1 2.350329-6 3.150721+1 2.352817-6 3.166705+1 2.354416-6 3.165825+1 2.356016-6 3.156095+1 2.358859-6 3.116957+1 2.361348-6 3.060190+1 2.362725-6 3.020038+1 2.365057-6 2.938555+1 2.367568-6 2.833218+1 2.369688-6 2.731426+1 2.372230-6 2.595882+1 2.374593-6 2.458845+1 2.375115-6 2.427424+1 2.379070-6 2.178527+1 2.381608-6 2.012586+1 2.383548-6 1.884545+1 2.385949-6 1.726839+1 2.388527-6 1.560768+1 2.389912-6 1.473809+1 2.392560-6 1.313521+1 2.395430-6 1.150764+1 2.399446-6 9.461895+0 2.407266-6 6.378816+0 2.413064-6 4.891609+0 2.414619-6 4.603187+0 2.415608-6 4.442723+0 2.417091-6 4.234255+0 2.418573-6 4.062972+0 2.419995-6 3.932031+0 2.421062-6 3.854211+0 2.421861-6 3.806842+0 2.423061-6 3.752740+0 2.424507-6 3.713271+0 2.425980-6 3.700243+0 2.426958-6 3.705840+0 2.427932-6 3.722083+0 2.429872-6 3.784097+0 2.431797-6 3.881356+0 2.433708-6 4.009327+0 2.435603-6 4.163884+0 2.439364-6 4.539898+0 2.443066-6 4.983104+0 2.450297-6 5.997478+0 2.457360-6 7.112252+0 2.464201-6 8.264950+0 2.517225-6 1.883055+1 2.536488-6 2.407947+1 2.553418-6 2.998837+1 2.562891-6 3.402365+1 2.568297-6 3.662545+1 2.575047-6 4.023971+1 2.581375-6 4.406618+1 2.587308-6 4.811802+1 2.594927-6 5.413884+1 2.602972-6 6.178967+1 2.607555-6 6.692090+1 2.611851-6 7.238046+1 2.615879-6 7.819566+1 2.623431-6 9.146736+1 2.630039-6 1.065483+2 2.635822-6 1.234791+2 2.640881-6 1.421233+2 2.645308-6 1.621781+2 2.649181-6 1.832243+2 2.652571-6 2.047904+2 2.655536-6 2.264106+2 2.660402-6 2.682152+2 2.676708-6 4.796009+2 2.680857-6 5.534315+2 2.682884-6 5.925283+2 2.686177-6 6.601822+2 2.689471-6 7.326068+2 2.696058-6 8.894633+2 2.696882-6 9.099570+2 2.702646-6 1.056531+3 2.704910-6 1.114674+3 2.709233-6 1.224258+3 2.712578-6 1.305950+3 2.715821-6 1.380792+3 2.719166-6 1.451877+3 2.722408-6 1.513280+3 2.725290-6 1.560513+3 2.728648-6 1.605600+3 2.732495-6 1.642653+3 2.735788-6 1.661030+3 2.736935-6 1.664425+3 2.740207-6 1.665440+3 2.743459-6 1.653709+3 2.745292-6 1.641580+3 2.748514-6 1.610959+3 2.751118-6 1.577951+3 2.755756-6 1.502533+3 2.758386-6 1.451432+3 2.760602-6 1.404342+3 2.762756-6 1.355546+3 2.765277-6 1.295188+3 2.768519-6 1.213619+3 2.771401-6 1.138523+3 2.774412-6 1.058664+3 2.778401-6 9.525549+2 2.781694-6 8.662121+2 2.785400-6 7.720221+2 2.788282-6 7.017757+2 2.794869-6 5.539353+2 2.797236-6 5.057275+2 2.803991-6 3.836745+2 2.807790-6 3.251990+2 2.811136-6 2.796042+2 2.815508-6 2.279017+2 2.818739-6 1.950462+2 2.822400-6 1.628251+2 2.827569-6 1.254162+2 2.834461-6 8.788203+1 2.845660-6 4.911758+1 2.851690-6 3.612967+1 2.855136-6 3.043392+1 2.860305-6 2.368816+1 2.862028-6 2.183275+1 2.867197-6 1.719764+1 2.868920-6 1.591388+1 2.874089-6 1.267653+1 2.882704-6 8.790961+0 2.893041-6 5.699772+0 2.896487-6 4.923340+0 2.903379-6 3.653291+0 2.910271-6 2.700613+0 2.917163-6 2.023732+0 2.918024-6 1.957300+0 2.924055-6 1.601075+0 2.925293-6 1.551095+0 2.926707-6 1.503561+0 2.927767-6 1.474527+0 2.930152-6 1.429813+0 2.930947-6 1.421221+0 2.932670-6 1.413380+0 2.935254-6 1.429163+0 2.936546-6 1.449402+0 2.937838-6 1.477846+0 2.939507-6 1.526672+0 2.941482-6 1.602113+0 2.943457-6 1.696639+0 2.947053-6 1.917703+0 2.950649-6 2.202124+0 2.965033-6 3.983525+0 2.972224-6 5.274533+0 2.979416-6 6.849908+0 2.986608-6 8.729307+0 2.993800-6 1.093864+1 3.000992-6 1.351121+1 3.008184-6 1.648912+1 3.015376-6 1.992509+1 3.022567-6 2.388487+1 3.029759-6 2.845040+1 3.036951-6 3.372429+1 3.051335-6 4.695083+1 3.065718-6 6.511741+1 3.071972-6 7.518581+1 3.077835-6 8.622339+1 3.083332-6 9.831945+1 3.088484-6 1.115746+2 3.093315-6 1.260971+2 3.097844-6 1.419968+2 3.102090-6 1.593770+2 3.107241-6 1.844630+2 3.109802-6 1.989102+2 3.113301-6 2.211640+2 3.116581-6 2.450892+2 3.119656-6 2.706509+2 3.125421-6 3.283927+2 3.130466-6 3.917605+2 3.134880-6 4.593027+2 3.142122-6 6.003318+2 3.156678-6 1.035561+3 3.162899-6 1.300162+3 3.168777-6 1.600817+3 3.173571-6 1.884476+3 3.177467-6 2.140716+3 3.181363-6 2.419473+3 3.189155-6 3.038860+3 3.190129-6 3.121399+3 3.196947-6 3.723362+3 3.199626-6 3.968252+3 3.204739-6 4.440739+3 3.208696-6 4.803959+3 3.212531-6 5.147179+3 3.216488-6 5.485424+3 3.220324-6 5.791301+3 3.223733-6 6.039908+3 3.226883-6 6.246386+3 3.228603-6 6.348537+3 3.233168-6 6.579591+3 3.236734-6 6.715930+3 3.240887-6 6.822226+3 3.244774-6 6.868286+3 3.247617-6 6.868735+3 3.251492-6 6.824371+3 3.254205-6 6.763135+3 3.259771-6 6.563813+3 3.262882-6 6.412555+3 3.264979-6 6.295943+3 3.268051-6 6.105901+3 3.271033-6 5.901799+3 3.274869-6 5.615551+3 3.278278-6 5.343111+3 3.281565-6 5.068536+3 3.286557-6 4.637829+3 3.290453-6 4.297191+3 3.294836-6 3.916640+3 3.298245-6 3.626783+3 3.306037-6 2.999311+3 3.311273-6 2.614307+3 3.313829-6 2.438733+3 3.319674-6 2.070162+3 3.326381-6 1.704446+3 3.340249-6 1.132370+3 3.347535-6 9.179195+2 3.351008-6 8.329790+2 3.354372-6 7.600111+2 3.357632-6 6.972064+2 3.363946-6 5.946768+2 3.369867-6 5.176798+2 3.375417-6 4.589176+2 3.380620-6 4.132765+2 3.385498-6 3.771862+2 3.390071-6 3.481486+2 3.398646-6 3.034625+2 3.406149-6 2.722509+2 3.412714-6 2.494112+2 3.418458-6 2.320985+2 3.428511-6 2.064536+2 3.436051-6 1.902616+2 3.447360-6 1.696862+2 3.458669-6 1.525588+2 3.467182-6 1.414474+2 3.475695-6 1.315824+2 3.484208-6 1.227665+2 3.492722-6 1.148407+2 3.507468-6 1.028463+2 3.526168-6 9.010835+1 3.552313-6 7.557368+1 3.588279-6 5.968467+1 3.605943-6 5.346319+1 3.614775-6 5.086030+1 3.623607-6 4.866451+1 3.632440-6 4.691599+1 3.636249-6 4.630492+1 3.641963-6 4.554869+1 3.647677-6 4.497720+1 3.653306-6 4.457991+1 3.658936-6 4.432572+1 3.667768-6 4.414867+1 3.690698-6 4.410392+1 3.700341-6 4.387635+1 3.704717-6 4.368200+1 3.712739-6 4.315534+1 3.720760-6 4.240320+1 3.729593-6 4.133409+1 3.738425-6 4.005886+1 3.747257-6 3.864011+1 3.756089-6 3.714362+1 3.793093-6 3.113028+1 3.809169-6 2.893830+1 3.837302-6 2.570197+1 3.879502-6 2.175575+1 3.921702-6 1.838298+1 3.941008-6 1.693328+1 3.950661-6 1.621451+1 3.960313-6 1.549385+1 3.969966-6 1.476804+1 3.979619-6 1.403626+1 3.989272-6 1.330167+1 4.006817-6 1.199206+1 4.018230-6 1.120129+1 4.026542-6 1.068464+1 4.036404-6 1.016534+1 4.046266-6 9.775870+0 4.051554-6 9.628738+0 4.056841-6 9.527537+0 4.060435-6 9.485369+0 4.066726-6 9.462770+0 4.071443-6 9.486811+0 4.074981-6 9.526276+0 4.082942-6 9.674034+0 4.095578-6 1.003043+1 4.105440-6 1.035541+1 4.117768-6 1.074005+1 4.125165-6 1.093103+1 4.130096-6 1.103553+1 4.137492-6 1.115509+1 4.144889-6 1.123081+1 4.154751-6 1.127224+1 4.168219-6 1.124972+1 4.186619-6 1.113948+1 4.194200-6 1.107536+1 4.211411-6 1.086326+1 4.217541-6 1.075303+1 4.227914-6 1.050842+1 4.234279-6 1.031707+1 4.240644-6 1.009227+1 4.247268-6 9.822898+0 4.253892-6 9.519322+0 4.263966-6 9.000540+0 4.272850-6 8.498871+0 4.281689-6 7.974274+0 4.295072-6 7.166466+0 4.312036-6 6.188464+0 4.327593-6 5.400329+0 4.338193-6 4.945803+0 4.348792-6 4.567158+0 4.360638-6 4.236153+0 4.364663-6 4.145057+0 4.371707-6 4.009582+0 4.376990-6 3.926021+0 4.384914-6 3.824670+0 4.397314-6 3.704783+0 4.412390-6 3.573578+0 4.422990-6 3.457496+0 4.426185-6 3.415376+0 4.435771-6 3.264972+0 4.442479-6 3.137430+0 4.449500-6 2.985703+0 4.456243-6 2.825821+0 4.458490-6 2.770260+0 4.468201-6 2.524212+0 4.480438-6 2.224948+0 4.486587-6 2.091688+0 4.491412-6 1.999828+0 4.501195-6 1.857473+0 4.502715-6 1.841391+0 4.513360-6 1.780404+0 4.516205-6 1.780311+0 4.521636-6 1.800227+0 4.523300-6 1.811751+0 4.526421-6 1.840409+0 4.529152-6 1.873202+0 4.531542-6 1.907980+0 4.533633-6 1.943207+0 4.537292-6 2.016070+0 4.540036-6 2.080557+0 4.542094-6 2.134781+0 4.546725-6 2.276587+0 4.549661-6 2.381998+0 4.554535-6 2.587142+0 4.558191-6 2.769138+0 4.559409-6 2.835816+0 4.564103-6 3.124354+0 4.568916-6 3.479938+0 4.572452-6 3.786660+0 4.579797-6 4.572742+0 4.584858-6 5.255585+0 4.589396-6 5.985132+0 4.605776-6 9.798281+0 4.616437-6 1.352581+1 4.623695-6 1.672290+1 4.627090-6 1.841072+1 4.633092-6 2.169426+1 4.637049-6 2.406249+1 4.646036-6 2.999250+1 4.649804-6 3.267760+1 4.655097-6 3.660677+1 4.659828-6 4.023341+1 4.664577-6 4.393746+1 4.669191-6 4.755219+1 4.673945-6 5.123981+1 4.679114-6 5.514635+1 4.685457-6 5.969239+1 4.690366-6 6.294862+1 4.692637-6 6.436149+1 4.698133-6 6.749497+1 4.702585-6 6.970531+1 4.714011-6 7.384749+1 4.718820-6 7.488237+1 4.727524-6 7.565558+1 4.731325-6 7.555595+1 4.735091-6 7.520522+1 4.740432-6 7.429865+1 4.745053-6 7.315407+1 4.751118-6 7.119659+1 4.756966-6 6.888478+1 4.764453-6 6.543522+1 4.769990-6 6.261500+1 4.778368-6 5.806608+1 4.781161-6 5.650462+1 4.792255-6 5.025782+1 4.795419-6 4.849775+1 4.807963-6 4.180839+1 4.842064-6 2.743169+1 4.851193-6 2.462980+1 4.863656-6 2.142429+1 4.872415-6 1.953697+1 4.883204-6 1.755082+1 4.895285-6 1.567929+1 4.904377-6 1.446176+1 4.919559-6 1.270404+1 4.942374-6 1.053441+1 4.964618-6 8.836097+0 4.978354-6 7.972578+0 4.990328-6 7.332191+0 5.001744-6 6.815365+0 5.009233-6 6.522765+0 5.015738-6 6.295839+0 5.026433-6 5.971103+0 5.031869-6 5.825772+0 5.046979-6 5.474569+0 5.063648-6 5.148014+0 5.074646-6 4.958119+0 5.081658-6 4.849762+0 5.088670-6 4.755634+0 5.093889-6 4.698193+0 5.101717-6 4.639586+0 5.107588-6 4.623901+0 5.111833-6 4.631387+0 5.127852-6 4.846640+0 5.131427-6 4.943871+0 5.135002-6 5.062011+0 5.147491-6 5.654841+0 5.149071-6 5.751023+0 5.160130-6 6.563291+0 5.164980-6 6.995896+0 5.188779-6 9.702085+0 5.196539-6 1.073201+1 5.204645-6 1.183471+1 5.212815-6 1.293473+1 5.219114-6 1.374882+1 5.226195-6 1.460278+1 5.232503-6 1.528905+1 5.237891-6 1.580707+1 5.249113-6 1.664706+1 5.254171-6 1.690851+1 5.258999-6 1.708599+1 5.265979-6 1.721601+1 5.270012-6 1.722325+1 5.273541-6 1.718961+1 5.279717-6 1.704418+1 5.284349-6 1.686658+1 5.287823-6 1.669741+1 5.295640-6 1.621484+1 5.298245-6 1.602582+1 5.308408-6 1.517859+1 5.311795-6 1.486444+1 5.323948-6 1.365410+1 5.336799-6 1.231729+1 5.365950-6 9.582594+0 5.371513-6 9.160353+0 5.388204-6 8.151982+0 5.401320-6 7.651054+0 5.405709-6 7.541385+0 5.415842-6 7.395296+0 5.420467-6 7.375931+0 5.426612-6 7.392694+0 5.433299-6 7.461382+0 5.436196-6 7.505915+0 5.443016-6 7.641620+0 5.452987-6 7.903429+0 5.481715-6 8.831352+0 5.495067-6 9.210905+0 5.498655-6 9.296207+0 5.509475-6 9.499320+0 5.513302-6 9.550104+0 5.519791-6 9.609994+0 5.524397-6 9.632577+0 5.530848-6 9.637365+0 5.536331-6 9.618383+0 5.547356-6 9.524897+0 5.562472-6 9.310801+0 5.592888-6 8.809703+0 5.605366-6 8.650044+0 5.620429-6 8.520386+0 5.635493-6 8.457825+0 5.654184-6 8.449867+0 5.710000-6 8.550956+0 5.742363-6 8.569589+0 5.799889-6 8.543623+0 5.852016-6 8.463211+0 5.916242-6 8.334037+0 5.945328-6 8.318098+0 5.985768-6 8.352796+0 6.042274-6 8.414022+0 6.090663-6 8.412242+0 6.165950-6 8.372548+0 6.365959-6 8.330623+0 6.668568-6 8.327534+0 6.972870-6 8.397786+0 7.313486-6 8.531768+0 7.777721-6 8.789826+0 9.120108-6 9.658032+0 9.660509-6 9.939853+0 1.023293-5 1.012120+1 1.062689-5 1.015766+1 1.086516-5 1.014120+1 1.108042-5 1.008648+1 1.135011-5 9.989615+0 1.158719-5 9.869762+0 1.188986-5 9.661254+0 1.215000-5 9.436185+0 1.240453-5 9.184981+0 1.264393-5 8.924523+0 1.283232-5 8.838075+0 1.304050-5 9.158418+0 1.323960-5 9.672992+0 1.350316-5 1.050669+1 1.382372-5 1.175691+1 1.400346-5 1.259960+1 1.425075-5 1.396581+1 1.447505-5 1.542507+1 1.460186-5 1.636882+1 1.480303-5 1.807303+1 1.506359-5 2.066906+1 1.531189-5 2.364065+1 1.553192-5 2.679229+1 1.575687-5 3.063807+1 1.598182-5 3.525294+1 1.618225-5 4.016982+1 1.638400-5 4.607393+1 1.657667-5 5.281616+1 1.673444-5 5.934886+1 1.684579-5 6.463322+1 1.694572-5 6.993192+1 1.708048-5 7.804847+1 1.719617-5 8.605935+1 1.732848-5 9.664644+1 1.739756-5 1.028925+2 1.749344-5 1.125278+2 1.760776-5 1.257423+2 1.766759-5 1.335393+2 1.774659-5 1.449233+2 1.782066-5 1.568863+2 1.792671-5 1.765978+2 1.801622-5 1.961066+2 1.807343-5 2.102467+2 1.817735-5 2.400324+2 1.822449-5 2.556352+2 1.831288-5 2.892930+2 1.839023-5 3.246297+2 1.845790-5 3.614460+2 1.851712-5 3.995530+2 1.856893-5 4.387426+2 1.861427-5 4.787421+2 1.866331-5 5.295941+2 1.871902-5 5.994701+2 1.877217-5 6.811556+2 1.881203-5 7.538866+2 1.886435-5 8.661799+2 1.898007-5 1.184608+3 1.902482-5 1.329352+3 1.907142-5 1.487209+3 1.911801-5 1.647292+3 1.916461-5 1.805635+3 1.921121-5 1.962051+3 1.928111-5 2.210876+3 1.930440-5 2.307038+3 1.933935-5 2.477103+3 1.935100-5 2.543300+3 1.939760-5 2.876731+3 1.941444-5 3.031944+3 1.944420-5 3.364646+3 1.946022-5 3.579802+3 1.947551-5 3.812012+3 1.950016-5 4.247818+3 1.951552-5 4.561393+3 1.954454-5 5.250438+3 1.957903-5 6.248936+3 1.964631-5 8.802432+3 1.966805-5 9.799849+3 1.969966-5 1.138845+4 1.971320-5 1.211495+4 1.976136-5 1.487409+4 1.977688-5 1.580551+4 1.981007-5 1.782645+4 1.982847-5 1.894407+4 1.985041-5 2.025488+4 1.986848-5 2.130173+4 1.989317-5 2.266060+4 1.991486-5 2.376592+4 1.993575-5 2.473156+4 1.995399-5 2.548370+4 1.998221-5 2.645498+4 2.000425-5 2.703454+4 2.002743-5 2.746178+4 2.005156-5 2.769871+4 2.006684-5 2.773712+4 2.008830-5 2.764500+4 2.011222-5 2.734510+4 2.014663-5 2.656810+4 2.016585-5 2.597041+4 2.017881-5 2.550733+4 2.019780-5 2.474988+4 2.021623-5 2.393367+4 2.023993-5 2.278566+4 2.026100-5 2.169036+4 2.028132-5 2.058446+4 2.031217-5 1.884646+4 2.033625-5 1.746961+4 2.036334-5 1.592942+4 2.038441-5 1.475506+4 2.043257-5 1.220964+4 2.046492-5 1.064593+4 2.048073-5 9.932413+3 2.051685-5 8.433786+3 2.055908-5 6.920318+3 2.065920-5 4.298068+3 2.069506-5 3.641685+3 2.072926-5 3.127220+3 2.076131-5 2.728649+3 2.079136-5 2.416974+3 2.081954-5 2.170562+3 2.084595-5 1.973409+3 2.087071-5 1.813713+3 2.091714-5 1.567308+3 2.095777-5 1.395941+3 2.101358-5 1.209374+3 2.107885-5 1.041630+3 2.111968-5 9.564113+2 2.118091-5 8.492096+2 2.124215-5 7.607614+2 2.129444-5 6.965587+2 2.134672-5 6.406180+2 2.142436-5 5.696586+2 2.150358-5 5.089466+2 2.156503-5 4.682555+2 2.166043-5 4.138269+2 2.176500-5 3.637399+2 2.187762-5 3.182841+2 2.213099-5 2.376717+2 2.237358-5 1.765909+2 2.253905-5 1.416487+2 2.259830-5 1.312501+2 2.265365-5 1.229539+2 2.270900-5 1.162358+2 2.273667-5 1.135056+2 2.277819-5 1.101982+2 2.281970-5 1.077914+2 2.284737-5 1.066392+2 2.287505-5 1.058003+2 2.293040-5 1.048491+2 2.307360-5 1.038363+2 2.313210-5 1.028237+2 2.318736-5 1.012804+2 2.331917-5 9.647935+1 2.338388-5 9.470916+1 2.343895-5 9.407061+1 2.348748-5 9.429036+1 2.354066-5 9.531192+1 2.360992-5 9.746888+1 2.366691-5 9.941913+1 2.373498-5 1.012342+2 2.375214-5 1.015259+2 2.379287-5 1.018732+2 2.384252-5 1.015803+2 2.389291-5 1.004774+2 2.392506-5 9.939128+1 2.397510-5 9.722490+1 2.405637-5 9.293771+1 2.420866-5 8.476478+1 2.430979-5 8.032887+1 2.446064-5 7.499343+1 2.457600-5 7.118870+1 2.469191-5 6.717234+1 2.478560-5 6.376063+1 2.491311-5 5.902789+1 2.508493-5 5.280548+1 2.523154-5 4.776531+1 2.533945-5 4.419674+1 2.540230-5 4.216272+1 2.547915-5 3.971713+1 2.556584-5 3.702182+1 2.574429-5 3.184090+1 2.582195-5 2.988839+1 2.588009-5 2.864200+1 2.592940-5 2.778556+1 2.597669-5 2.718694+1 2.602923-5 2.683981+1 2.606814-5 2.684160+1 2.610586-5 2.708845+1 2.614336-5 2.760482+1 2.617424-5 2.825620+1 2.620867-5 2.924779+1 2.624334-5 3.055735+1 2.629038-5 3.288982+1 2.632876-5 3.532401+1 2.635153-5 3.701805+1 2.638069-5 3.948528+1 2.640893-5 4.222377+1 2.645709-5 4.778820+1 2.648847-5 5.210637+1 2.653871-5 6.038077+1 2.658340-5 6.943833+1 2.662721-5 8.026009+1 2.666829-5 9.258881+1 2.671515-5 1.099410+2 2.674290-5 1.222643+2 2.677674-5 1.398433+2 2.680847-5 1.593724+2 2.683822-5 1.809061+2 2.686611-5 2.044611+2 2.689225-5 2.300130+2 2.691676-5 2.574960+2 2.694880-5 2.994049+2 2.700042-5 3.841678+2 2.706698-5 5.337826+2 2.717290-5 9.017951+2 2.722174-5 1.141626+3 2.727092-5 1.437315+3 2.730889-5 1.706481+3 2.735159-5 2.054312+3 2.738516-5 2.362361+3 2.741874-5 2.700687+3 2.749010-5 3.514541+3 2.749797-5 3.611502+3 2.755725-5 4.379163+3 2.757890-5 4.672441+3 2.762021-5 5.243551+3 2.765432-5 5.718469+3 2.768737-5 6.173761+3 2.772147-5 6.629995+3 2.775453-5 7.050819+3 2.778391-5 7.400626+3 2.781106-5 7.698610+3 2.782588-5 7.849504+3 2.786523-5 8.204278+3 2.789784-5 8.442101+3 2.793227-5 8.632361+3 2.796545-5 8.752709+3 2.798765-5 8.797574+3 2.802094-5 8.810584+3 2.804362-5 8.782372+3 2.809354-5 8.617787+3 2.812172-5 8.466045+3 2.815812-5 8.213042+3 2.819339-5 7.913303+3 2.822722-5 7.583120+3 2.825546-5 7.280915+3 2.829179-5 6.865012+3 2.832536-5 6.461134+3 2.835894-5 6.046510+3 2.839672-5 5.576158+3 2.842610-5 5.213202+3 2.850165-5 4.318824+3 2.856041-5 3.685645+3 2.862757-5 3.048585+3 2.874314-5 2.185703+3 2.877749-5 1.983795+3 2.881185-5 1.804573+3 2.884621-5 1.646296+3 2.888057-5 1.507102+3 2.891493-5 1.385087+3 2.897160-5 1.216397+3 2.901801-5 1.103707+3 2.908673-5 9.701085+2 2.915544-5 8.669017+2 2.922416-5 7.858342+2 2.930147-5 7.135831+2 2.939140-5 6.472187+2 2.947852-5 5.955585+2 2.956292-5 5.539665+2 2.968428-5 5.046562+2 2.981349-5 4.619726+2 2.997054-5 4.197058+2 3.013830-5 3.827823+2 3.032371-5 3.488117+2 3.059772-5 3.070113+2 3.084040-5 2.753545+2 3.099222-5 2.578902+2 3.114404-5 2.427205+2 3.121995-5 2.361663+2 3.134324-5 2.271338+2 3.145668-5 2.206153+2 3.153165-5 2.172263+2 3.162602-5 2.139671+2 3.176221-5 2.112056+2 3.184058-5 2.106418+2 3.194097-5 2.109401+2 3.209251-5 2.130443+2 3.229807-5 2.166109+2 3.243756-5 2.176800+2 3.253644-5 2.173944+2 3.269521-5 2.154303+2 3.305816-5 2.091009+2 3.333584-5 2.058968+2 3.386097-5 2.015961+2 3.508060-5 1.888426+2 3.902420-5 1.581307+2 4.094944-5 1.452050+2 4.241310-5 1.357162+2 4.400058-5 1.254251+2 4.573341-5 1.136105+2 4.632515-5 1.089491+2 4.680066-5 1.051615+2 4.705967-5 1.036658+2 4.726144-5 1.030696+2 4.748910-5 1.030634+2 4.795260-5 1.040626+2 4.806779-5 1.041338+2 4.821172-5 1.039507+2 4.839295-5 1.032379+2 4.864872-5 1.014552+2 4.912641-5 9.735667+1 4.951517-5 9.463517+1 5.076279-5 8.762476+1 5.155520-5 8.297728+1 5.285785-5 7.513631+1 5.437738-5 6.598020+1 5.593481-5 5.664133+1 5.751806-5 4.725940+1 5.861268-5 4.090029+1 5.985272-5 3.386584+1 6.103403-5 2.750040+1 6.190436-5 2.481943+1 6.291901-5 2.747193+1 6.395327-5 3.286323+1 6.473788-5 3.773678+1 6.574876-5 4.512939+1 6.655490-5 5.206735+1 6.731704-5 5.963839+1 6.804612-5 6.795662+1 6.859108-5 7.500062+1 6.930766-5 8.549418+1 7.012588-5 9.938841+1 7.079458-5 1.125707+2 7.152124-5 1.291422+2 7.224351-5 1.483716+2 7.297821-5 1.712946+2 7.372800-5 1.988787+2 7.430385-5 2.235922+2 7.500000-5 2.584827+2 7.565582-5 2.974143+2 7.612395-5 3.295762+2 7.654126-5 3.618820+2 7.714785-5 4.160561+2 7.762471-5 4.658382+2 7.811553-5 5.251989+2 7.857610-5 5.899857+2 7.900789-5 6.603408+2 7.951888-5 7.581781+2 7.991533-5 8.473738+2 8.024875-5 9.334033+2 8.048152-5 1.000522+3 8.079422-5 1.101397+3 8.108737-5 1.208986+3 8.136221-5 1.323363+3 8.168574-5 1.478009+3 8.198794-5 1.646114+3 8.230017-5 1.849514+3 8.253300-5 2.025349+3 8.268580-5 2.154145+3 8.286073-5 2.316784+3 8.302473-5 2.486199+3 8.320129-5 2.690004+3 8.346676-5 3.047368+3 8.371900-5 3.459598+3 8.393971-5 3.897861+3 8.413284-5 4.360541+3 8.430182-5 4.845077+3 8.444968-5 5.347619+3 8.457906-5 5.862977+3 8.469226-5 6.384882+3 8.479132-5 6.906484+3 8.496582-5 8.005764+3 8.509467-5 8.998425+3 8.519218-5 9.873528+3 8.533844-5 1.142370+4 8.548470-5 1.331085+4 8.558991-5 1.491178+4 8.580032-5 1.883128+4 8.615625-5 2.807937+4 8.632634-5 3.382187+4 8.645545-5 3.877510+4 8.657868-5 4.396704+4 8.670192-5 4.957818+4 8.691428-5 6.005987+4 8.694082-5 6.142588+4 8.712664-5 7.117787+4 8.719964-5 7.503940+4 8.733900-5 8.231101+4 8.742169-5 8.648915+4 8.751017-5 9.077963+4 8.760953-5 9.530235+4 8.769251-5 9.878179+4 8.779921-5 1.027764+5 8.789126-5 1.057241+5 8.800130-5 1.085641+5 8.814606-5 1.110502+5 8.825409-5 1.119151+5 8.838521-5 1.117875+5 8.848390-5 1.108391+5 8.858077-5 1.092141+5 8.867211-5 1.070796+5 8.871410-5 1.059120+5 8.886081-5 1.009861+5 8.895021-5 9.740576+4 8.901226-5 9.469878+4 8.911781-5 8.973828+4 8.919862-5 8.569125+4 8.928936-5 8.095213+4 8.936516-5 7.688136+4 8.946260-5 7.155998+4 8.956878-5 6.573061+4 8.967496-5 5.995536+4 8.979441-5 5.362105+4 8.988732-5 4.887264+4 9.009968-5 3.880505+4 9.017268-5 3.563840+4 9.024236-5 3.276854+4 9.036513-5 2.808701+4 9.048459-5 2.399703+4 9.060007-5 2.047449+4 9.072105-5 1.722381+4 9.085825-5 1.405203+4 9.099545-5 1.138595+4 9.116351-5 8.740892+3 9.137960-5 6.217160+3 9.148936-5 5.266709+3 9.186990-5 3.452165+3 9.195463-5 3.336531+3 9.198442-5 3.320077+3 9.205273-5 3.330022+3 9.211488-5 3.397168+3 9.214239-5 3.444766+3 9.217835-5 3.523695+3 9.221108-5 3.612140+3 9.225766-5 3.765710+3 9.230302-5 3.946923+3 9.235978-5 4.218660+3 9.241475-5 4.530536+3 9.248375-5 4.991526+3 9.256921-5 5.673096+3 9.298533-5 1.086680+4 9.300207-5 1.114366+4 9.322986-5 1.543303+4 9.327079-5 1.630405+4 9.347189-5 2.098693+4 9.354530-5 2.284585+4 9.369959-5 2.695810+4 9.380085-5 2.976851+4 9.387988-5 3.199754+4 9.394039-5 3.371317+4 9.402686-5 3.616031+4 9.411719-5 3.868535+4 9.423184-5 4.179651+4 9.433537-5 4.446747+4 9.443146-5 4.678772+4 9.455695-5 4.952808+4 9.466374-5 5.155321+4 9.477082-5 5.326008+4 9.486927-5 5.451678+4 9.492991-5 5.513336+4 9.504558-5 5.596393+4 9.513751-5 5.629466+4 9.520578-5 5.635093+4 9.535403-5 5.592761+4 9.546561-5 5.513691+4 9.553241-5 5.448168+4 9.565142-5 5.300433+4 9.575828-5 5.137329+4 9.585874-5 4.961385+4 9.595561-5 4.774319+4 9.610206-5 4.466373+4 9.620693-5 4.232732+4 9.634372-5 3.918851+4 9.642579-5 3.728674+4 9.664673-5 3.223709+4 9.669276-5 3.121542+4 9.701907-5 2.449269+4 9.728219-5 1.991467+4 9.754757-5 1.614050+4 9.769762-5 1.436769+4 9.784767-5 1.283403+4 9.802057-5 1.133359+4 9.814424-5 1.041564+4 9.832083-5 9.298350+3 9.847255-5 8.493661+3 9.855751-5 8.096652+3 9.874082-5 7.351015+3 9.888007-5 6.870370+3 9.904611-5 6.376040+3 9.928990-5 5.773776+3 9.953368-5 5.284123+3 9.980249-5 4.841687+3 1.000481-4 4.505668+3 1.002943-4 4.220010+3 1.005474-4 3.968901+3 1.007625-4 3.782952+3 1.010059-4 3.597041+3 1.012426-4 3.436384+3 1.015420-4 3.255406+3 1.022336-4 2.903909+3 1.028051-4 2.663054+3 1.031686-4 2.529197+3 1.034760-4 2.426957+3 1.038287-4 2.321304+3 1.043464-4 2.186593+3 1.049838-4 2.048714+3 1.056542-4 1.930110+3 1.064528-4 1.816185+3 1.073000-4 1.720593+3 1.082500-4 1.636921+3 1.090500-4 1.581080+3 1.098000-4 1.537939+3 1.105000-4 1.503954+3 1.113750-4 1.468116+3 1.122913-4 1.436384+3 1.144014-4 1.376021+3 1.217593-4 1.206482+3 1.236369-4 1.169933+3 1.293461-4 1.076055+3 1.321428-4 1.036783+3 1.360042-4 9.886093+2 1.491432-4 8.563487+2 1.679757-4 7.164310+2 1.731863-4 6.832020+2 1.778045-4 6.536963+2 1.814471-4 6.297210+2 1.852981-4 5.993354+2 1.864745-4 5.931673+2 1.878836-4 5.905676+2 1.913606-4 5.919477+2 1.919697-4 5.914630+2 1.977950-4 5.797910+2 2.033049-4 5.653871+2 2.089785-4 5.490386+2 2.150972-4 5.303557+2 2.216282-4 5.090653+2 2.244295-4 4.980560+2 2.282161-4 4.819114+2 2.294259-4 4.793584+2 2.310500-4 4.798781+2 2.333632-4 4.837123+2 2.349707-4 4.834908+2 2.376520-4 4.777495+2 2.435212-4 4.655593+2 2.581610-4 4.360613+2 2.673269-4 4.152287+2 2.757539-4 3.952315+2 2.850156-4 3.710611+2 2.890239-4 3.602963+2 2.923846-4 3.538676+2 2.949120-4 3.500461+2 2.993462-4 3.416501+2 3.034988-4 3.320145+2 3.148654-4 3.033512+2 3.244788-4 2.761481+2 3.311311-4 2.541706+2 3.351188-4 2.383097+2 3.376372-4 2.287475+2 3.392559-4 2.242474+2 3.404314-4 2.221129+2 3.425813-4 2.201170+2 3.444612-4 2.187161+2 3.463082-4 2.161716+2 3.506973-4 2.078137+2 3.536243-4 2.036696+2 3.545382-4 2.021115+2 3.558463-4 1.992302+2 3.570801-4 1.957104+2 3.586097-4 1.904158+2 3.611109-4 1.805901+2 3.668253-4 1.582718+2 3.693750-4 1.487164+2 3.714375-4 1.410621+2 3.754000-4 1.267122+2 3.805171-4 1.101032+2 3.824375-4 1.047803+2 3.836412-4 1.017651+2 3.854857-4 9.768404+1 3.869987-4 9.486944+1 3.892472-4 9.165361+1 3.914990-4 8.966953+1 3.942092-4 8.899120+1 3.974987-4 9.070167+1 4.000502-4 9.393589+1 4.033344-4 1.004922+2 4.061884-4 1.082947+2 4.072479-4 1.116751+2 4.108736-4 1.251608+2 4.128981-4 1.339563+2 4.182500-4 1.613957+2 4.242836-4 1.986524+2 4.290346-4 2.318752+2 4.335000-4 2.654992+2 4.350000-4 2.772078+2 4.392852-4 3.115890+2 4.430000-4 3.423029+2 4.470000-4 3.761440+2 4.500000-4 4.019763+2 4.555000-4 4.500560+2 4.609977-4 4.986351+2 4.667852-4 5.498234+2 4.745151-4 6.172363+2 4.817611-4 6.785123+2 4.902671-4 7.474406+2 5.011872-4 8.315422+2 5.132585-4 9.190226+2 5.242880-4 9.940387+2 5.375485-4 1.077081+3 5.500000-4 1.147498+3 5.623600-4 1.210722+3 5.799288-4 1.289151+3 5.965503-4 1.349719+3 6.109585-4 1.389813+3 6.204930-4 1.408327+3 6.287972-4 1.416089+3 6.354469-4 1.414149+3 6.401506-4 1.405978+3 6.468670-4 1.385259+3 6.493540-4 1.382394+3 6.508863-4 1.386192+3 6.517822-4 1.391448+3 6.550867-4 1.438763+3 6.565515-4 1.477364+3 6.582433-4 1.536955+3 6.600881-4 1.619014+3 6.642032-4 1.838354+3 6.661737-4 1.938493+3 6.668871-4 1.970514+3 6.683439-4 2.025984+3 6.700000-4 2.069801+3 6.716136-4 2.091002+3 6.724185-4 2.093764+3 6.734646-4 2.090179+3 6.751999-4 2.068901+3 6.770760-4 2.030210+3 6.808110-4 1.934536+3 6.839116-4 1.864559+3 6.848966-4 1.847172+3 6.885223-4 1.809000+3 6.907832-4 1.807965+3 6.924161-4 1.818949+3 6.939381-4 1.838282+3 6.955835-4 1.868868+3 6.975792-4 1.918163+3 7.039148-4 2.115888+3 7.055704-4 2.161060+3 7.079598-4 2.209695+3 7.098999-4 2.232085+3 7.113617-4 2.238853+3 7.129729-4 2.237495+3 7.157573-4 2.219351+3 7.226057-4 2.154958+3 7.245688-4 2.142908+3 7.297697-4 2.130170+3 7.438138-4 2.155139+3 7.846449-4 2.262975+3 8.149667-4 2.335319+3 8.480195-4 2.396851+3 8.777591-4 2.434501+3 9.066858-4 2.453456+3 9.326329-4 2.445601+3 9.378460-4 2.450497+3 9.429859-4 2.465060+3 9.618891-4 2.555700+3 9.761824-4 2.615440+3 9.896564-4 2.659365+3 1.014814-3 2.714310+3 1.045191-3 2.759750+3 1.085121-3 2.802460+3 1.164101-3 2.854957+3 1.193533-3 2.885553+3 1.230269-3 2.909328+3 1.269821-3 2.920317+3 1.292113-3 2.921606+3 1.307805-3 2.927638+3 1.344245-3 2.958057+3 1.385161-3 2.974598+3 1.445440-3 2.983817+3 1.520110-3 2.984549+3 1.594043-3 2.977873+3 1.680979-3 2.957077+3 1.781092-3 2.923256+3 1.875535-3 2.885516+3 2.001838-3 2.825147+3 2.118331-3 2.761020+3 2.238994-3 2.689050+3 2.364808-3 2.605223+3 2.489593-3 2.511323+3 2.600489-3 2.421214+3 2.706099-3 2.327748+3 2.792644-3 2.241108+3 2.880554-3 2.143970+3 2.954386-3 2.052847+3 3.019432-3 1.962335+3 3.076983-3 1.870830+3 3.123831-3 1.784352+3 3.162663-3 1.699731+3 3.197107-3 1.609859+3 3.222928-3 1.531807+3 3.249293-3 1.448898+3 3.265558-3 1.406703+3 3.273625-3 1.391948+3 3.281692-3 1.382743+3 3.289710-3 1.379682+3 3.296078-3 1.381562+3 3.302274-3 1.386714+3 3.313765-3 1.402883+3 3.337820-3 1.444974+3 3.356346-3 1.469056+3 3.386161-3 1.501490+3 3.394061-3 1.513582+3 3.409247-3 1.544564+3 3.420175-3 1.574074+3 3.434789-3 1.623866+3 3.451818-3 1.696414+3 3.475979-3 1.814787+3 3.485487-3 1.860071+3 3.493687-3 1.896098+3 3.502100-3 1.929286+3 3.510513-3 1.958461+3 3.530903-3 2.016093+3 3.576665-3 2.134415+3 3.608363-3 2.221148+3 3.631320-3 2.276011+3 3.658974-3 2.330023+3 3.690058-3 2.377761+3 3.723704-3 2.417999+3 3.763407-3 2.453681+3 3.802745-3 2.478271+3 3.845918-3 2.493929+3 3.884983-3 2.497068+3 3.921191-3 2.489051+3 3.982702-3 2.463206+3 3.998316-3 2.463563+3 4.015300-3 2.472402+3 4.027774-3 2.485370+3 4.052567-3 2.526128+3 4.106587-3 2.641621+3 4.127256-3 2.679339+3 4.150000-3 2.712913+3 4.182863-3 2.749202+3 4.221718-3 2.779973+3 4.264708-3 2.804831+3 4.321768-3 2.828329+3 4.376623-3 2.843222+3 4.450693-3 2.853903+3 4.514425-3 2.855933+3 4.584469-3 2.851643+3 4.647910-3 2.841342+3 4.737228-3 2.812619+3 4.800097-3 2.793766+3 4.840986-3 2.796225+3 4.952389-3 2.831403+3 4.991990-3 2.834576+3 5.141140-3 2.818617+3 5.227737-3 2.838127+3 5.301995-3 2.854003+3 5.432503-3 2.855869+3 5.613039-3 2.839722+3 5.831251-3 2.807908+3 6.104147-3 2.756115+3 6.440302-3 2.684199+3 6.942933-3 2.567511+3 7.413102-3 2.454848+3 7.920452-3 2.333195+3 8.536681-3 2.192133+3 9.203089-3 2.047897+3 1.001440-2 1.883568+3 1.087785-2 1.724775+3 1.139921-2 1.635735+3 1.191928-2 1.551165+3 1.244165-2 1.470347+3 1.293823-2 1.396733+3 1.339249-2 1.331711+3 1.379996-2 1.274398+3 1.417750-2 1.221967+3 1.450804-2 1.175610+3 1.478809-2 1.135731+3 1.502686-2 1.100752+3 1.522641-2 1.070159+3 1.540122-2 1.041628+3 1.554992-2 1.015374+3 1.567628-2 9.906879+2 1.577775-2 9.682350+2 1.585822-2 9.479558+2 1.598101-2 9.120625+2 1.613180-2 8.659726+2 1.619161-2 8.518260+2 1.624576-2 8.433895+2 1.630109-2 8.400396+2 1.635329-2 8.419490+2 1.640236-2 8.477747+2 1.649365-2 8.658133+2 1.661047-2 8.929397+2 1.671684-2 9.133558+2 1.678744-2 9.232439+2 1.685288-2 9.300136+2 1.694582-2 9.365078+2 1.705811-2 9.409106+2 1.718277-2 9.428852+2 1.731969-2 9.426453+2 1.749183-2 9.398248+2 1.783122-2 9.286537+2 1.805695-2 9.182638+2 1.825200-2 9.077810+2 1.849520-2 8.929208+2 1.870334-2 8.784991+2 1.886472-2 8.659037+2 1.903604-2 8.506754+2 1.917173-2 8.366209+2 1.936056-2 8.130372+2 1.959322-2 7.821068+2 1.969605-2 7.728034+2 1.979374-2 7.687532+2 1.989183-2 7.691801+2 2.024070-2 7.808791+2 2.046295-2 7.863032+2 2.092282-2 8.081154+2 2.113489-2 8.129877+2 2.145432-2 8.132873+2 2.187022-2 8.079864+2 2.261808-2 7.915869+2 2.348727-2 7.674970+2 2.462152-2 7.328876+2 2.581517-2 6.960118+2 2.778114-2 6.379842+2 3.012616-2 5.756423+2 3.349654-2 4.993919+2 3.651433-2 4.425398+2 3.907812-2 4.008862+2 4.243204-2 3.537795+2 4.765467-2 2.948262+2 5.177417-2 2.578732+2 5.626916-2 2.243276+2 6.379447-2 1.803743+2 7.463950-2 1.363887+2 8.368619-2 1.106061+2 9.062409-2 9.503283+1 9.600680-2 8.463034+1 9.998689-2 7.753530+1 1.029594-1 7.232226+1 1.049570-1 6.866170+1 1.057739-1 6.704411+1 1.064413-1 6.561219+1 1.069908-1 6.431725+1 1.079082-1 6.186682+1 1.090200-1 5.882223+1 1.094584-1 5.792135+1 1.099069-1 5.735266+1 1.104058-1 5.719679+1 1.108520-1 5.743806+1 1.117292-1 5.848941+1 1.126534-1 5.957029+1 1.134038-1 6.008151+1 1.144509-1 6.030946+1 1.159386-1 6.010354+1 1.177941-1 5.944221+1 1.199629-1 5.838879+1 1.232328-1 5.657697+1 1.289188-1 5.322268+1 1.355727-1 4.934863+1 1.448325-1 4.439679+1 1.612229-1 3.707454+1 1.818676-1 3.004452+1 2.147972-1 2.229736+1 2.600160-1 1.571026+1 3.205993-1 1.062529+1 4.134883-1 6.553010+0 5.639622-1 3.604100+0 8.511380-1 1.617209+0 1.286622+0 7.187462-1 2.039158+0 2.889038-1 4.260405+0 6.657762-2 1.286622+1 7.310436-3 3.885536+1 8.016193-4 1.173413+2 8.789631-5 3.543651+2 9.637643-6 1.258925+3 7.636118-7 3.981072+3 7.636118-8 1.258925+4 7.636118-9 3.981072+4 7.63612-10 1.000000+5 1.21024-10 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.906400-6 1.258900-6 4.606400-6 1.584900-6 7.300600-6 1.995300-6 1.157100-5 2.511900-6 1.833800-5 3.162300-6 2.906400-5 3.981100-6 4.606300-5 5.011900-6 7.300500-5 6.309600-6 1.157000-4 7.943300-6 1.833800-4 1.000000-5 2.906300-4 1.258900-5 4.606100-4 1.584900-5 7.296400-4 1.995300-5 1.155600-3 2.511900-5 1.830600-3 3.162300-5 2.900000-3 3.981100-5 4.594800-3 5.011900-5 7.280600-3 6.309600-5 1.153700-2 7.943300-5 1.825300-2 1.000000-4 2.887000-2 1.258900-4 4.564300-2 1.584900-4 7.194600-2 1.995300-4 1.132000-1 2.511900-4 1.773100-1 3.162300-4 2.758600-1 3.981100-4 4.245100-1 5.011900-4 6.403800-1 6.309600-4 9.423900-1 7.943300-4 1.344300+0 1.000000-3 1.853700+0 1.258900-3 2.477200+0 1.584900-3 3.238500+0 1.995300-3 4.179100+0 2.511900-3 5.339600+0 3.162300-3 6.740100+0 3.981100-3 8.413000+0 5.011900-3 1.032800+1 6.309600-3 1.244000+1 7.943300-3 1.477500+1 1.000000-2 1.740000+1 1.258900-2 2.025500+1 1.584900-2 2.316600+1 1.995300-2 2.601200+1 2.511900-2 2.878300+1 3.162300-2 3.142300+1 3.981100-2 3.375900+1 5.011900-2 3.559700+1 6.309600-2 3.680000+1 7.943300-2 3.736400+1 1.000000-1 3.730600+1 1.258900-1 3.665000+1 1.584900-1 3.545900+1 1.995300-1 3.384800+1 2.511900-1 3.193600+1 3.162300-1 2.983000+1 3.981100-1 2.761200+1 5.011900-1 2.536000+1 6.309600-1 2.311700+1 7.943300-1 2.092700+1 1.000000+0 1.881500+1 1.258900+0 1.680200+1 1.584900+0 1.490400+1 1.995300+0 1.313300+1 2.511900+0 1.149600+1 3.162300+0 9.999800+0 3.981100+0 8.646100+0 5.011900+0 7.433500+0 6.309600+0 6.356700+0 7.943300+0 5.410400+0 1.000000+1 4.584200+0 1.258900+1 3.868400+0 1.584900+1 3.252400+0 1.995300+1 2.725400+0 2.511900+1 2.276900+0 3.162300+1 1.897100+0 3.981100+1 1.576800+0 5.011900+1 1.307600+0 6.309600+1 1.082300+0 7.943300+1 8.941000-1 1.000000+2 7.374200-1 1.258900+2 6.072800-1 1.584900+2 4.994200-1 1.995300+2 4.101900-1 2.511900+2 3.365100-1 3.162300+2 2.757600-1 3.981100+2 2.257600-1 5.011900+2 1.846400-1 6.309600+2 1.508900-1 7.943300+2 1.232000-1 1.000000+3 1.005200-1 1.258900+3 8.195000-2 1.584900+3 6.676700-2 1.995300+3 5.436200-2 2.511900+3 4.423600-2 3.162300+3 3.597400-2 3.981100+3 2.924000-2 5.011900+3 2.375400-2 6.309600+3 1.928700-2 7.943300+3 1.565300-2 1.000000+4 1.269800-2 1.258900+4 1.029600-2 1.584900+4 8.345000-3 1.995300+4 6.761000-3 2.511900+4 5.475600-3 3.162300+4 4.432900-3 3.981100+4 3.587500-3 5.011900+4 2.902300-3 6.309600+4 2.347200-3 7.943300+4 1.897600-3 1.000000+5 1.533700-3 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159557-4 3.981072-4 3.976778-4 5.011872-4 5.005115-4 6.309573-4 6.298969-4 7.943282-4 7.926698-4 1.000000-3 9.974102-4 1.258925-3 1.254896-3 1.584893-3 1.578595-3 1.995262-3 1.985392-3 2.511886-3 2.496420-3 3.162278-3 3.137956-3 3.981072-3 3.942922-3 5.011872-3 4.952201-3 6.309573-3 6.216728-3 7.943282-3 7.798554-3 1.000000-2 9.774123-3 1.258925-2 1.223748-2 1.584893-2 1.530389-2 1.995262-2 1.911230-2 2.511886-2 2.382662-2 3.162278-2 2.964267-2 3.981072-2 3.679320-2 5.011872-2 4.555784-2 6.309573-2 5.626653-2 7.943282-2 6.928072-2 1.000000-1 8.504573-2 1.258925-1 1.040655-1 1.584893-1 1.269394-1 1.995262-1 1.543333-1 2.511886-1 1.870492-1 3.162278-1 2.259662-1 3.981072-1 2.720999-1 5.011872-1 3.266497-1 6.309573-1 3.910487-1 7.943282-1 4.669207-1 1.000000+0 5.562803-1 1.258925+0 6.616565-1 1.584893+0 7.859242-1 1.995262+0 9.331152-1 2.511886+0 1.107614+0 3.162278+0 1.315325+0 3.981072+0 1.563306+0 5.011872+0 1.860210+0 6.309573+0 2.216413+0 7.943282+0 2.644950+0 1.000000+1 3.161579+0 1.258925+1 3.785672+0 1.584893+1 4.540862+0 1.995262+1 5.456120+0 2.511886+1 6.566965+0 3.162278+1 7.916961+0 3.981072+1 9.559444+0 5.011872+1 1.156016+1 6.309573+1 1.399996+1 7.943282+1 1.697761+1 1.000000+2 2.061502+1 1.258925+2 2.506225+1 1.584893+2 3.050358+1 1.995262+2 3.716730+1 2.511886+2 4.533249+1 3.162278+2 5.534507+1 3.981072+2 6.762957+1 5.011872+2 8.271299+1 6.309573+2 1.012425+2 7.943282+2 1.240186+2 1.000000+3 1.520282+2 1.258925+3 1.864936+2 1.584893+3 2.289211+2 1.995262+3 2.811688+2 2.511886+3 3.455641+2 3.162278+3 4.249301+2 3.981072+3 5.228206+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88194-10 1.995262-5 1.090620-9 2.511886-5 1.728488-9 3.162278-5 2.739503-9 3.981072-5 4.341872-9 5.011872-5 6.881391-9 6.309573-5 1.090597-8 7.943282-5 1.727720-8 1.000000-4 2.737500-8 1.258925-4 4.337306-8 1.584893-4 6.867863-8 1.995262-4 1.087447-7 2.511886-4 1.720779-7 3.162278-4 2.720382-7 3.981072-4 4.293683-7 5.011872-4 6.756913-7 6.309573-4 1.060403-6 7.943282-4 1.658430-6 1.000000-3 2.589834-6 1.258925-3 4.029505-6 1.584893-3 6.298483-6 1.995262-3 9.870743-6 2.511886-3 1.546635-5 3.162278-3 2.432199-5 3.981072-3 3.814922-5 5.011872-3 5.967115-5 6.309573-3 9.284564-5 7.943282-3 1.447285-4 1.000000-2 2.258766-4 1.258925-2 3.517723-4 1.584893-2 5.450457-4 1.995262-2 8.403234-4 2.511886-2 1.292241-3 3.162278-2 1.980108-3 3.981072-2 3.017519-3 5.011872-2 4.560882-3 6.309573-2 6.829209-3 7.943282-2 1.015210-2 1.000000-1 1.495427-2 1.258925-1 2.182708-2 1.584893-1 3.154992-2 1.995262-1 4.519293-2 2.511886-1 6.413948-2 3.162278-1 9.026155-2 3.981072-1 1.260072-1 5.011872-1 1.745375-1 6.309573-1 2.399087-1 7.943282-1 3.274075-1 1.000000+0 4.437197-1 1.258925+0 5.972689-1 1.584893+0 7.989690-1 1.995262+0 1.062147+0 2.511886+0 1.404273+0 3.162278+0 1.846952+0 3.981072+0 2.417766+0 5.011872+0 3.151662+0 6.309573+0 4.093160+0 7.943282+0 5.298333+0 1.000000+1 6.838421+0 1.258925+1 8.803582+0 1.584893+1 1.130807+1 1.995262+1 1.449650+1 2.511886+1 1.855190+1 3.162278+1 2.370582+1 3.981072+1 3.025127+1 5.011872+1 3.855856+1 6.309573+1 4.909578+1 7.943282+1 6.245522+1 1.000000+2 7.938498+1 1.258925+2 1.008303+2 1.584893+2 1.279857+2 1.995262+2 1.623589+2 2.511886+2 2.058562+2 3.162278+2 2.608827+2 3.981072+2 3.304776+2 5.011872+2 4.184742+2 6.309573+2 5.297148+2 7.943282+2 6.703096+2 1.000000+3 8.479718+2 1.258925+3 1.072432+3 1.584893+3 1.355972+3 1.995262+3 1.714093+3 2.511886+3 2.166322+3 3.162278+3 2.737348+3 3.981072+3 3.458251+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.980000-6 1.017887+7 4.987000-6 1.022034+7 5.200000-6 1.077569+7 5.420000-6 1.127172+7 5.620000-6 1.166233+7 5.620000-6 1.680794+7 5.623413-6 1.682145+7 5.710000-6 1.714349+7 5.850000-6 1.761666+7 5.900000-6 1.777236+7 5.970000-6 1.797897+7 5.970000-6 2.720029+7 6.100000-6 2.693353+7 6.165950-6 2.680921+7 6.237348-6 2.667006+7 6.350000-6 2.647146+7 6.500000-6 2.623712+7 6.606934-6 2.607805+7 6.760830-6 2.587098+7 6.850000-6 2.577633+7 7.200000-6 2.540360+7 7.244360-6 2.536297+7 7.500000-6 2.511800+7 7.673615-6 2.496832+7 7.852356-6 2.480488+7 8.128305-6 2.456864+7 8.222426-6 2.448123+7 8.511380-6 2.421342+7 8.609938-6 2.413431+7 9.015711-6 2.372736+7 9.120108-6 2.362247+7 9.440609-6 2.326421+7 9.660509-6 2.301281+7 9.930000-6 2.267601+7 1.020000-5 2.233063+7 1.023293-5 2.228424+7 1.035142-5 2.212106+7 1.071519-5 2.160723+7 1.083927-5 2.142154+7 1.122018-5 2.083745+7 1.135011-5 2.062899+7 1.180000-5 1.990263+7 1.202264-5 1.951604+7 1.230269-5 1.905345+7 1.273503-5 1.829897+7 1.290000-5 1.801291+7 1.330000-5 1.730933+7 1.350000-5 1.696082+7 1.364583-5 1.670001+7 1.380384-5 1.642563+7 1.420000-5 1.574441+7 1.445440-5 1.530864+7 1.496236-5 1.446543+7 1.513561-5 1.418286+7 1.570000-5 1.329220+7 1.590000-5 1.298568+7 1.659587-5 1.196714+7 1.678804-5 1.169791+7 1.757924-5 1.065267+7 1.770000-5 1.050087+7 1.800000-5 1.012828+7 1.883649-5 9.187282+6 1.950000-5 8.498596+6 2.018366-5 7.865077+6 2.089296-5 7.254001+6 2.187762-5 6.513213+6 2.213095-5 6.337578+6 2.230000-5 6.222196+6 2.371374-5 5.364788+6 2.426610-5 5.075238+6 2.454709-5 4.934832+6 2.501000-5 4.712044+6 2.501000-5 1.657728+7 2.511886-5 1.640373+7 2.580000-5 1.537424+7 2.660725-5 1.420963+7 2.754229-5 1.295828+7 2.800000-5 1.239916+7 2.818383-5 1.217610+7 2.985383-5 1.037989+7 3.126079-5 9.106373+6 3.162278-5 8.811318+6 3.198895-5 8.525944+6 3.350000-5 7.449447+6 3.352000-5 7.436465+6 3.352000-5 1.289945+7 3.410000-5 1.244092+7 3.427678-5 1.229528+7 3.480000-5 1.187090+7 3.550000-5 1.130855+7 3.570000-5 1.114895+7 3.650000-5 1.054214+7 3.715352-5 1.006186+7 3.780000-5 9.610448+6 3.801894-5 9.459242+6 3.935501-5 8.604380+6 4.000000-5 8.218550+6 4.073803-5 7.803238+6 4.265795-5 6.824814+6 4.315191-5 6.594502+6 4.415704-5 6.154775+6 4.472100-5 5.925159+6 4.650000-5 5.258392+6 4.677351-5 5.164365+6 4.731513-5 4.986036+6 4.841724-5 4.641509+6 5.055000-5 4.059417+6 5.055000-5 4.340363+6 5.069907-5 4.300014+6 5.120000-5 4.168561+6 5.128614-5 4.146320+6 5.248075-5 3.851751+6 5.400000-5 3.517237+6 5.432503-5 3.451038+6 5.500000-5 3.318759+6 5.559043-5 3.209177+6 5.688529-5 2.986100+6 5.850000-5 2.736909+6 5.900000-5 2.665707+6 6.000000-5 2.531903+6 6.025596-5 2.499251+6 6.165950-5 2.330917+6 6.309573-5 2.174703+6 6.350000-5 2.133731+6 6.531306-5 1.962959+6 6.683439-5 1.834114+6 6.730000-5 1.797319+6 6.760830-5 1.773596+6 6.918310-5 1.659679+6 7.079458-5 1.553565+6 7.161434-5 1.503733+6 7.328245-5 1.409234+6 7.413102-5 1.364209+6 7.500000-5 1.320284+6 7.762471-5 1.200266+6 7.800000-5 1.184436+6 7.852356-5 1.162911+6 8.000000-5 1.104967+6 8.035261-5 1.091921+6 8.128305-5 1.058530+6 8.222426-5 1.026135+6 8.511380-5 9.353183+5 8.709636-5 8.801824+5 9.120108-5 7.801006+5 9.225714-5 7.573332+5 9.500000-5 7.027706+5 9.711000-5 6.645638+5 9.711000-5 2.147513+6 9.740000-5 2.261799+6 9.795000-5 2.479987+6 9.800000-5 2.499986+6 9.850000-5 2.713070+6 9.885531-5 2.867089+6 9.900000-5 2.933132+6 9.940000-5 3.112618+6 9.980000-5 3.291952+6 1.002000-4 3.469123+6 1.007000-4 3.684610+6 1.012000-4 3.889699+6 1.016500-4 4.062504+6 1.020000-4 4.187441+6 1.025000-4 4.349739+6 1.030000-4 4.491218+6 1.035142-4 4.613681+6 1.040200-4 4.711008+6 1.042300-4 4.742056+6 1.042300-4 5.646993+6 1.045000-4 5.750639+6 1.047129-4 5.826319+6 1.050000-4 5.928576+6 1.053000-4 6.028360+6 1.055000-4 6.095467+6 1.059254-4 6.230450+6 1.060000-4 6.254069+6 1.063000-4 6.342463+6 1.065000-4 6.400430+6 1.068000-4 6.481356+6 1.071519-4 6.574875+6 1.072000-4 6.588171+6 1.076000-4 6.680240+6 1.080000-4 6.769971+6 1.084000-4 6.842878+6 1.088000-4 6.910735+6 1.090000-4 6.940275+6 1.093000-4 6.978881+6 1.097000-4 7.021244+6 1.100000-4 7.046563+6 1.101000-4 7.053268+6 1.105000-4 7.070914+6 1.109175-4 7.079193+6 1.110000-4 7.081118+6 1.115000-4 7.076393+6 1.116000-4 7.074171+6 1.122018-4 7.040876+6 1.127000-4 7.000789+6 1.133000-4 6.938487+6 1.135011-4 6.912541+6 1.140000-4 6.844795+6 1.148154-4 6.715931+6 1.155000-4 6.596939+6 1.163000-4 6.449158+6 1.175000-4 6.217613+6 1.190000-4 5.923878+6 1.202264-4 5.686346+6 1.210000-4 5.542882+6 1.216186-4 5.428392+6 1.220000-4 5.359297+6 1.273503-4 4.488489+6 1.275500-4 4.459590+6 1.288250-4 4.276447+6 1.303167-4 4.071839+6 1.318257-4 3.877304+6 1.340000-4 3.611225+6 1.350000-4 3.494305+6 1.364583-4 3.332287+6 1.370000-4 3.273332+6 1.376300-4 3.206417+6 1.380384-4 3.163962+6 1.415000-4 2.825458+6 1.428894-4 2.700428+6 1.430000-4 2.690778+6 1.462177-4 2.426436+6 1.480000-4 2.292234+6 1.496236-4 2.178054+6 1.500000-4 2.152631+6 1.513561-4 2.064174+6 1.531087-4 1.956568+6 1.548817-4 1.854892+6 1.566751-4 1.758780+6 1.584893-4 1.669007+6 1.590000-4 1.644805+6 1.640590-4 1.427805+6 1.659587-4 1.355987+6 1.678804-4 1.289554+6 1.698244-4 1.226602+6 1.740000-4 1.104447+6 1.757924-4 1.057578+6 1.800000-4 9.574977+5 1.819701-4 9.160191+5 1.840772-4 8.742997+5 1.862087-4 8.346345+5 1.883649-4 7.976747+5 1.890300-4 7.867263+5 1.894100-4 7.805645+5 1.894100-4 1.159883+6 1.905461-4 1.138672+6 1.949845-4 1.063439+6 1.950000-4 1.063191+6 1.990000-4 1.003244+6 2.000000-4 9.893276+5 2.041738-4 9.356769+5 2.060000-4 9.141631+5 2.065380-4 9.080909+5 2.089296-4 8.818909+5 2.113489-4 8.565098+5 2.120000-4 8.498889+5 2.137962-4 8.323776+5 2.150000-4 8.213100+5 2.162719-4 8.096994+5 2.176900-4 7.970555+5 2.190000-4 7.858582+5 2.213095-4 7.673180+5 2.220000-4 7.621897+5 2.238721-4 7.488654+5 2.240000-4 7.479707+5 2.280000-4 7.217862+5 2.290868-4 7.151092+5 2.300000-4 7.097861+5 2.330000-4 6.927420+5 2.344229-4 6.850901+5 2.371374-4 6.714288+5 2.374300-4 6.700116+5 2.374300-4 8.180092+5 2.380000-4 8.155500+5 2.386000-4 8.130588+5 2.398833-4 8.068829+5 2.400000-4 8.063261+5 2.425000-4 7.939877+5 2.430000-4 7.913685+5 2.454709-4 7.789326+5 2.483133-4 7.644690+5 2.485000-4 7.635577+5 2.511886-4 7.498233+5 2.520000-4 7.457639+5 2.524300-4 7.436910+5 2.542400-4 7.346658+5 2.570396-4 7.214010+5 2.580000-4 7.169573+5 2.600160-4 7.078994+5 2.630268-4 6.954305+5 2.660725-4 6.832612+5 2.691535-4 6.720658+5 2.710000-4 6.655385+5 2.730000-4 6.589090+5 2.754229-4 6.515354+5 2.800000-4 6.386046+5 2.851018-4 6.253028+5 2.884032-4 6.172688+5 2.930000-4 6.068269+5 2.947600-4 6.031082+5 2.947600-4 6.566790+5 2.951209-4 6.558817+5 2.985383-4 6.488010+5 3.050000-4 6.364358+5 3.054921-4 6.355508+5 3.162278-4 6.171600+5 3.200000-4 6.113768+5 3.311311-4 5.955111+5 3.320000-4 5.943610+5 3.349654-4 5.905736+5 3.388442-4 5.857566+5 3.430000-4 5.807735+5 3.486900-4 5.743462+5 3.486900-4 6.568198+5 3.487700-4 6.573202+5 3.492000-4 6.585140+5 3.498000-4 6.597733+5 3.507519-4 6.610969+5 3.518000-4 6.620490+5 3.532000-4 6.627502+5 3.548134-4 6.630868+5 3.550000-4 6.630735+5 3.556600-4 6.630458+5 3.585500-4 6.630258+5 3.585500-4 7.204946+5 3.587000-4 7.213591+5 3.592000-4 7.232446+5 3.596500-4 7.246890+5 3.598000-4 7.251103+5 3.601000-4 7.260711+5 3.610000-4 7.285226+5 3.616000-4 7.299028+5 3.618000-4 7.304732+5 3.630781-4 7.337037+5 3.640000-4 7.362734+5 3.643000-4 7.370422+5 3.653000-4 7.401852+5 3.655000-4 7.409349+5 3.657200-4 7.417164+5 3.665000-4 7.445396+5 3.672823-4 7.479359+5 3.677000-4 7.498004+5 3.690000-4 7.566495+5 3.705000-4 7.661180+5 3.720000-4 7.778348+5 3.731000-4 7.881008+5 3.735000-4 7.921286+5 3.743000-4 8.009386+5 3.752200-4 8.119483+5 3.754000-4 8.142683+5 3.765000-4 8.294418+5 3.770000-4 8.368829+5 3.777000-4 8.480558+5 3.790000-4 8.707206+5 3.801894-4 8.936291+5 3.815000-4 9.214608+5 3.830000-4 9.568730+5 3.843000-4 9.909244+5 3.845918-4 9.987445+5 3.860000-4 1.039112+6 3.865000-4 1.053846+6 3.880000-4 1.101398+6 3.890451-4 1.135745+6 3.900000-4 1.169089+6 3.920000-4 1.241773+6 3.935501-4 1.301037+6 3.940000-4 1.319161+6 3.960000-4 1.400007+6 3.965000-4 1.420579+6 3.981072-4 1.488750+6 3.985000-4 1.505414+6 4.000000-4 1.570209+6 4.007000-4 1.601908+6 4.027170-4 1.691666+6 4.030000-4 1.704841+6 4.050000-4 1.795936+6 4.073803-4 1.905440+6 4.080000-4 1.934649+6 4.090000-4 1.981239+6 4.100000-4 2.028083+6 4.115000-4 2.098393+6 4.120975-4 2.126468+6 4.130000-4 2.169781+6 4.140000-4 2.216675+6 4.165000-4 2.335777+6 4.168694-4 2.353058+6 4.200000-4 2.500823+6 4.216965-4 2.578327+6 4.230000-4 2.639819+6 4.260000-4 2.774811+6 4.265795-4 2.800888+6 4.290000-4 2.906159+6 4.300000-4 2.949197+6 4.315191-4 3.012103+6 4.320000-4 3.032320+6 4.335000-4 3.093740+6 4.350000-4 3.153032+6 4.365158-4 3.211384+6 4.370000-4 3.230260+6 4.387000-4 3.293520+6 4.415704-4 3.397012+6 4.430000-4 3.446220+6 4.470000-4 3.579424+6 4.518559-4 3.726449+6 4.530000-4 3.759826+6 4.570882-4 3.871884+6 4.580000-4 3.895662+6 4.623810-4 4.003004+6 4.630000-4 4.018375+6 4.677351-4 4.119182+6 4.680000-4 4.124885+6 4.700000-4 4.164885+6 4.731513-4 4.221350+6 4.740000-4 4.236633+6 4.760000-4 4.269636+6 4.800000-4 4.327734+6 4.841724-4 4.382910+6 4.850000-4 4.392292+6 4.897788-4 4.440026+6 4.930000-4 4.472334+6 4.954502-4 4.489346+6 5.011872-4 4.529130+6 5.040000-4 4.545257+6 5.069907-4 4.557962+6 5.120000-4 4.579231+6 5.128614-4 4.581907+6 5.150000-4 4.588544+6 5.188000-4 4.595230+6 5.233200-4 4.603123+6 5.248075-4 4.604177+6 5.260000-4 4.605004+6 5.300000-4 4.602597+6 5.308844-4 4.602066+6 5.350000-4 4.599510+6 5.400000-4 4.591318+6 5.432503-4 4.582155+6 5.495409-4 4.564653+6 5.500000-4 4.563388+6 5.559043-4 4.542409+6 5.580000-4 4.535019+6 5.650000-4 4.503848+6 5.688529-4 4.484367+6 5.754399-4 4.451374+6 5.821032-4 4.413596+6 5.888437-4 4.372097+6 5.956621-4 4.330993+6 6.025596-4 4.285286+6 6.100000-4 4.233417+6 6.165950-4 4.188348+6 6.200000-4 4.165454+6 6.237348-4 4.138231+6 6.309573-4 4.083390+6 6.382635-4 4.029267+6 6.456542-4 3.975773+6 6.500000-4 3.944934+6 6.531306-4 3.920131+6 6.700000-4 3.790820+6 6.760830-4 3.746038+6 6.766400-4 3.741801+6 6.766400-4 4.098783+6 6.839116-4 4.045728+6 6.850000-4 4.037383+6 6.918310-4 3.985695+6 7.000000-4 3.925558+6 7.079458-4 3.868641+6 7.148100-4 3.818934+6 7.148100-4 4.011824+6 7.244360-4 3.948238+6 7.328245-4 3.891856+6 7.413102-4 3.836616+6 7.480000-4 3.791677+6 7.498942-4 3.778857+6 7.500000-4 3.778144+6 7.585776-4 3.721119+6 7.650000-4 3.679587+6 7.673615-4 3.663718+6 7.800000-4 3.579293+6 7.852356-4 3.545416+6 7.950000-4 3.481832+6 8.035261-4 3.427387+6 8.128305-4 3.369704+6 8.222426-4 3.311185+6 8.350000-4 3.234173+6 8.500000-4 3.144682+6 8.511380-4 3.138072+6 8.609938-4 3.080177+6 8.709636-4 3.023030+6 8.810489-4 2.967062+6 8.850000-4 2.945121+6 8.912509-4 2.910793+6 9.015711-4 2.855670+6 9.225714-4 2.745520+6 9.440609-4 2.639583+6 9.500000-4 2.611530+6 9.549926-4 2.587709+6 9.561600-4 2.582194+6 9.561600-4 2.743014+6 9.660509-4 2.696151+6 9.752800-4 2.653408+6 9.885531-4 2.592650+6 1.000000-3 2.542217+6 1.011579-3 2.492218+6 1.015000-3 2.477540+6 1.035142-3 2.392650+6 1.047129-3 2.343325+6 1.059254-3 2.295194+6 1.071519-3 2.247518+6 1.083927-3 2.200269+6 1.110000-3 2.106236+6 1.135011-3 2.019610+6 1.148154-3 1.976402+6 1.161449-3 1.934256+6 1.162000-3 1.932522+6 1.162300-3 1.931578+6 1.162300-3 1.957595+6 1.171000-3 1.930558+6 1.174898-3 1.918578+6 1.188502-3 1.877367+6 1.190000-3 1.872920+6 1.202264-3 1.837140+6 1.210000-3 1.814799+6 1.230269-3 1.758096+6 1.244515-3 1.719738+6 1.258925-3 1.682014+6 1.278000-3 1.633558+6 1.288250-3 1.608429+6 1.303167-3 1.572469+6 1.310600-3 1.554950+6 1.310600-3 1.584874+6 1.333521-3 1.532293+6 1.350000-3 1.495846+6 1.364583-3 1.464434+6 1.380384-3 1.431563+6 1.396368-3 1.399348+6 1.412538-3 1.367956+6 1.428894-3 1.336995+6 1.445440-3 1.306790+6 1.450000-3 1.298638+6 1.462177-3 1.277162+6 1.496236-3 1.219619+6 1.513561-3 1.191710+6 1.531087-3 1.164503+6 1.548817-3 1.137680+6 1.566751-3 1.111174+6 1.570000-3 1.106479+6 1.584893-3 1.085235+6 1.603245-3 1.059936+6 1.611800-3 1.048465+6 1.621810-3 1.035274+6 1.640590-3 1.011037+6 1.650000-3 9.992355+5 1.659587-3 9.873343+5 1.678804-3 9.639606+5 1.690000-3 9.506299+5 1.737801-3 8.968313+5 1.757924-3 8.755465+5 1.778279-3 8.548224+5 1.800000-3 8.334365+5 1.819701-3 8.144700+5 1.840772-3 7.947626+5 1.862087-3 7.755747+5 1.900000-3 7.431861+5 1.927525-3 7.209968+5 1.949845-3 7.037093+5 1.950000-3 7.035916+5 1.972423-3 6.865201+5 2.018366-3 6.534526+5 2.070000-3 6.189703+5 2.089296-3 6.068054+5 2.113489-3 5.918524+5 2.137962-3 5.772812+5 2.162719-3 5.631045+5 2.187762-3 5.492354+5 2.213095-3 5.355801+5 2.238721-3 5.222990+5 2.264644-3 5.093811+5 2.300000-3 4.924132+5 2.317395-3 4.843769+5 2.350000-3 4.697218+5 2.371374-3 4.604420+5 2.400000-3 4.484534+5 2.426610-3 4.377032+5 2.454709-3 4.267520+5 2.483133-3 4.160365+5 2.511886-3 4.056167+5 2.540973-3 3.953232+5 2.570000-3 3.854474+5 2.570396-3 3.853152+5 2.600160-3 3.755596+5 2.630268-3 3.660722+5 2.650000-3 3.600263+5 2.691535-3 3.477901+5 2.700000-3 3.453489+5 2.754229-3 3.302983+5 2.786121-3 3.218965+5 2.800000-3 3.183149+5 2.851018-3 3.056118+5 2.900000-3 2.941213+5 2.917427-3 2.901770+5 2.985383-3 2.755464+5 2.985740-3 2.754717+5 3.000000-3 2.725130+5 3.019952-3 2.684414+5 3.054921-3 2.614667+5 3.090295-3 2.546884+5 3.162278-3 2.416562+5 3.198895-3 2.354072+5 3.235937-3 2.293130+5 3.311311-3 2.175604+5 3.338600-3 2.135187+5 3.338600-3 5.276451+5 3.349654-3 5.232961+5 3.388442-3 5.083620+5 3.400000-3 5.040298+5 3.467369-3 4.797971+5 3.480000-3 4.754383+5 3.502400-3 4.674663+5 3.502400-3 6.657936+5 3.507519-3 6.632738+5 3.527000-3 6.538065+5 3.548134-3 6.441265+5 3.589219-3 6.258389+5 3.650000-3 6.000917+5 3.672823-3 5.907862+5 3.715352-3 5.738353+5 3.758374-3 5.573690+5 3.845918-3 5.258637+5 3.890451-3 5.107944+5 3.900000-3 5.075860+5 3.935501-3 4.958850+5 3.981072-3 4.814096+5 4.000000-3 4.755722+5 4.027170-3 4.673538+5 4.036200-3 4.646667+5 4.036200-3 5.414308+5 4.073803-3 5.294304+5 4.080000-3 5.274847+5 4.130000-3 5.120004+5 4.150000-3 5.059596+5 4.168694-3 5.004038+5 4.216965-3 4.864607+5 4.265795-3 4.727870+5 4.315191-3 4.595117+5 4.365158-3 4.466084+5 4.415704-3 4.338789+5 4.518559-3 4.094910+5 4.570882-3 3.978129+5 4.677351-3 3.754663+5 4.731513-3 3.647674+5 4.800000-3 3.518354+5 4.831600-3 3.460404+5 4.831600-3 3.675577+5 4.841724-3 3.656846+5 4.897788-3 3.555618+5 4.900000-3 3.551688+5 4.954502-3 3.456671+5 5.011872-3 3.360618+5 5.069907-3 3.267377+5 5.080000-3 3.251543+5 5.128614-3 3.176639+5 5.150000-3 3.144473+5 5.157900-3 3.132619+5 5.157900-3 3.266112+5 5.159000-3 3.264431+5 5.188000-3 3.220560+5 5.248075-3 3.132418+5 5.308844-3 3.046739+5 5.350000-3 2.990607+5 5.370318-3 2.963354+5 5.432503-3 2.882077+5 5.500000-3 2.796701+5 5.559043-3 2.724439+5 5.623413-3 2.648956+5 5.754399-3 2.504486+5 5.821032-3 2.435189+5 5.888437-3 2.367820+5 5.956621-3 2.302380+5 6.025596-3 2.238766+5 6.095369-3 2.176362+5 6.165950-3 2.115546+5 6.237348-3 2.056251+5 6.309573-3 1.998781+5 6.382635-3 1.942846+5 6.456542-3 1.888523+5 6.531306-3 1.835745+5 6.606934-3 1.784521+5 6.683439-3 1.734762+5 6.760830-3 1.685762+5 6.800000-3 1.661735+5 6.839116-3 1.638167+5 6.998420-3 1.547071+5 7.000000-3 1.546198+5 7.079458-3 1.503138+5 7.161434-3 1.460502+5 7.244360-3 1.419142+5 7.328245-3 1.378940+5 7.413102-3 1.339625+5 7.585776-3 1.264421+5 7.673615-3 1.228466+5 7.852356-3 1.159609+5 8.000000-3 1.106948+5 8.035261-3 1.094880+5 8.128305-3 1.063920+5 8.222426-3 1.033858+5 8.317638-3 1.004694+5 8.413951-3 9.760405+4 8.500000-3 9.512551+4 8.511380-3 9.480361+4 8.709636-3 8.943986+4 8.810489-3 8.687643+4 8.912509-3 8.437749+4 9.015711-3 8.195116+4 9.120108-3 7.958553+4 9.225714-3 7.729054+4 9.332543-3 7.506267+4 9.440609-3 7.290268+4 9.549926-3 7.080155+4 9.800000-3 6.630306+4 9.885531-3 6.485640+4 1.000000-2 6.299081+4 1.011579-2 6.117797+4 1.023293-2 5.942010+4 1.035142-2 5.770583+4 1.047129-2 5.604226+4 1.059254-2 5.442918+4 1.071519-2 5.284612+4 1.083927-2 5.131090+4 1.096478-2 4.982218+4 1.109175-2 4.837890+4 1.122018-2 4.697594+4 1.135011-2 4.560540+4 1.150000-2 4.409505+4 1.161449-2 4.298710+4 1.174898-2 4.173096+4 1.188502-2 4.051229+4 1.216186-2 3.818616+4 1.230269-2 3.707626+4 1.244515-2 3.599874+4 1.250010-2 3.559341+4 1.258925-2 3.494969+4 1.273503-2 3.393259+4 1.303167-2 3.197984+4 1.318257-2 3.104742+4 1.333521-2 3.014236+4 1.364583-2 2.839638+4 1.396368-2 2.675683+4 1.400000-2 2.657762+4 1.412538-2 2.597044+4 1.428894-2 2.520786+4 1.445440-2 2.446641+4 1.462177-2 2.374743+4 1.479108-2 2.305000+4 1.496236-2 2.237395+4 1.500000-2 2.222894+4 1.513561-2 2.171758+4 1.584893-2 1.927139+4 1.603245-2 1.870441+4 1.621810-2 1.815233+4 1.631500-2 1.787324+4 1.631500-2 4.286227+4 1.640590-2 4.227402+4 1.643000-2 4.211997+4 1.659587-2 4.108082+4 1.665000-2 4.074932+4 1.678804-2 3.986716+4 1.698244-2 3.866659+4 1.717908-2 3.750183+4 1.720000-2 3.738081+4 1.737801-2 3.635108+4 1.757924-2 3.523288+4 1.778279-2 3.414975+4 1.780000-2 3.406019+4 1.798871-2 3.311462+4 1.819701-2 3.211258+4 1.840772-2 3.114113+4 1.850000-2 3.072845+4 1.862087-2 3.019876+4 1.870000-2 2.985848+4 1.883649-2 2.927184+4 1.905461-2 2.836692+4 1.949845-2 2.664166+4 1.950000-2 2.663589+4 1.972423-2 2.581749+4 1.978000-2 2.561925+4 1.978000-2 3.609504+4 2.000000-2 3.512450+4 2.047800-2 3.301484+4 2.047800-2 3.813654+4 2.065380-2 3.732918+4 2.080000-2 3.667606+4 2.089296-2 3.626276+4 2.113489-2 3.521769+4 2.135000-2 3.432406+4 2.150000-2 3.372597+4 2.162719-2 3.323465+4 2.165000-2 3.314757+4 2.213095-2 3.135790+4 2.225000-2 3.093583+4 2.238721-2 3.046523+4 2.264644-2 2.959273+4 2.290868-2 2.874603+4 2.300000-2 2.845925+4 2.317395-2 2.791913+4 2.344229-2 2.710613+4 2.371374-2 2.631693+4 2.398833-2 2.555140+4 2.426610-2 2.480874+4 2.454709-2 2.408827+4 2.483133-2 2.338934+4 2.511886-2 2.271125+4 2.540973-2 2.205257+4 2.543900-2 2.198774+4 2.570396-2 2.141141+4 2.600160-2 2.078483+4 2.630268-2 2.017702+4 2.650000-2 1.979228+4 2.660725-2 1.958734+4 2.691535-2 1.901502+4 2.754229-2 1.792143+4 2.786121-2 1.739916+4 2.818383-2 1.689238+4 2.851018-2 1.639724+4 2.884032-2 1.591332+4 2.917427-2 1.544408+4 2.951209-2 1.498890+4 3.000000-2 1.436361+4 3.054921-2 1.370259+4 3.090295-2 1.329926+4 3.126079-2 1.290516+4 3.162278-2 1.252306+4 3.198895-2 1.215107+4 3.235937-2 1.178830+4 3.273407-2 1.143664+4 3.311311-2 1.109572+4 3.349654-2 1.076471+4 3.388442-2 1.044382+4 3.427678-2 1.013266+4 3.487120-2 9.685142+3 3.507519-2 9.537939+3 3.548134-2 9.253998+3 3.589219-2 8.978730+3 3.630781-2 8.711838+3 3.672823-2 8.453041+3 3.715352-2 8.202106+3 3.801894-2 7.719486+3 3.845918-2 7.489194+3 3.890451-2 7.265695+3 3.935501-2 7.047687+3 3.981072-2 6.836344+3 4.000000-2 6.751081+3 4.027170-2 6.630406+3 4.073803-2 6.430181+3 4.120975-2 6.236141+3 4.216965-2 5.865791+3 4.265795-2 5.689139+3 4.315191-2 5.517925+3 4.415704-2 5.191093+3 4.466836-2 5.035018+3 4.518559-2 4.883597+3 4.570882-2 4.736838+3 4.623810-2 4.594562+3 4.677351-2 4.455388+3 4.786301-2 4.189784+3 4.841724-2 4.063110+3 4.954502-2 3.820269+3 5.011872-2 3.704480+3 5.069907-2 3.592258+3 5.128614-2 3.483517+3 5.188000-2 3.378120+3 5.308844-2 3.175399+3 5.370318-2 3.078739+3 5.432503-2 2.985064+3 5.495409-2 2.894222+3 5.688529-2 2.638236+3 5.754399-2 2.558151+3 5.800000-2 2.504681+3 5.821032-2 2.480450+3 5.956621-2 2.331819+3 6.000000-2 2.286891+3 6.025596-2 2.260858+3 6.095369-2 2.191956+3 6.165950-2 2.125060+3 6.237348-2 2.060247+3 6.309573-2 1.997026+3 6.382635-2 1.935769+3 6.456542-2 1.876426+3 6.531306-2 1.818894+3 6.760830-2 1.656839+3 6.839116-2 1.606161+3 6.918310-2 1.557062+3 7.161434-2 1.418761+3 7.244360-2 1.375452+3 7.328245-2 1.333491+3 7.500000-2 1.252673+3 7.585776-2 1.214513+3 7.673615-2 1.177079+3 7.762471-2 1.140818+3 7.852356-2 1.105671+3 7.943282-2 1.071626+3 8.222426-2 9.757473+2 8.317638-2 9.457685+2 8.511380-2 8.885948+2 8.709636-2 8.348789+2 8.912509-2 7.844658+2 9.015711-2 7.604332+2 9.332543-2 6.922657+2 9.660509-2 6.302894+2 9.772372-2 6.108987+2 9.885531-2 5.920942+2 1.000000-1 5.738753+2 1.011580-1 5.562123+2 1.023293-1 5.391034+2 1.035142-1 5.225288+2 1.047129-1 5.064550+2 1.071519-1 4.758012+2 1.096478-1 4.470304+2 1.101100-1 4.419402+2 1.101100-1 1.916421+3 1.113000-1 1.868436+3 1.116000-1 1.853366+3 1.122019-1 1.831133+3 1.123000-1 1.827546+3 1.135011-1 1.775509+3 1.148154-1 1.728262+3 1.150000-1 1.721771+3 1.161449-1 1.677739+3 1.188502-1 1.579708+3 1.190000-1 1.574514+3 1.202264-1 1.534862+3 1.216186-1 1.491533+3 1.244515-1 1.408535+3 1.288250-1 1.288267+3 1.303167-1 1.250514+3 1.318257-1 1.213861+3 1.333521-1 1.178289+3 1.348963-1 1.143721+3 1.364583-1 1.110174+3 1.396368-1 1.046013+3 1.445440-1 9.573367+2 1.462177-1 9.294888+2 1.479108-1 9.024541+2 1.496236-1 8.762074+2 1.513561-1 8.507293+2 1.531088-1 8.259931+2 1.580000-1 7.620485+2 1.584893-1 7.559731+2 1.603245-1 7.337850+2 1.621810-1 7.122497+2 1.640590-1 6.913556+2 1.698244-1 6.322921+2 1.717908-1 6.137519+2 1.737801-1 5.957559+2 1.778279-1 5.613224+2 1.819701-1 5.288843+2 1.862087-1 4.983294+2 1.883649-1 4.837225+2 1.905461-1 4.695451+2 1.927525-1 4.557848+2 1.949845-1 4.424286+2 1.972423-1 4.294651+2 2.000000-1 4.143455+2 2.018366-1 4.046845+2 2.041738-1 3.928372+2 2.162719-1 3.386456+2 2.213095-1 3.191286+2 2.213400-1 3.190152+2 2.238721-1 3.097971+2 2.264644-1 3.007391+2 2.299100-1 2.892611+2 2.317395-1 2.834132+2 2.344229-1 2.751336+2 2.400000-1 2.589699+2 2.426610-1 2.517253+2 2.454709-1 2.443777+2 2.483133-1 2.372461+2 2.511886-1 2.303230+2 2.540973-1 2.236021+2 2.570396-1 2.170780+2 2.600160-1 2.108279+2 2.630268-1 2.047598+2 2.660725-1 1.988671+2 2.691535-1 1.931514+2 2.722701-1 1.876032+2 2.754229-1 1.822145+2 2.818383-1 1.718990+2 2.851018-1 1.669665+2 2.884032-1 1.621755+2 2.917427-1 1.575225+2 2.951209-1 1.530039+2 3.019952-1 1.443524+2 3.054921-1 1.402125+2 3.090295-1 1.361914+2 3.162278-1 1.286079+2 3.198895-1 1.249763+2 3.235937-1 1.214475+2 3.273407-1 1.180200+2 3.311311-1 1.146923+2 3.349654-1 1.114633+2 3.388442-1 1.083253+2 3.427678-1 1.052759+2 3.467369-1 1.023130+2 3.507519-1 9.943360+1 3.548134-1 9.663726+1 3.630781-1 9.127864+1 3.672823-1 8.875256+1 3.758374-1 8.390866+1 3.801894-1 8.158896+1 3.845918-1 7.933348+1 3.890451-1 7.714054+1 3.935501-1 7.500910+1 3.981072-1 7.294205+1 4.000000-1 7.210725+1 4.027170-1 7.093237+1 4.073803-1 6.897810+1 4.120975-1 6.707784+1 4.168694-1 6.526492+1 4.265795-1 6.178502+1 4.365158-1 5.849384+1 4.415705-1 5.691466+1 4.466836-1 5.537909+1 4.518559-1 5.388551+1 4.570882-1 5.243229+1 4.623810-1 5.102201+1 4.731513-1 4.831481+1 4.786301-1 4.703947+1 4.841724-1 4.579784+1 4.897788-1 4.459015+1 4.954502-1 4.341434+1 5.000000-1 4.250341+1 5.011872-1 4.227022+1 5.069907-1 4.115643+1 5.128614-1 4.007227+1 5.188000-1 3.901672+1 5.248075-1 3.798905+1 5.308844-1 3.698900+1 5.370318-1 3.601732+1 5.432503-1 3.508986+1 5.495409-1 3.418712+1 5.559043-1 3.330817+1 5.623413-1 3.245185+1 5.688529-1 3.161769+1 5.754399-1 3.080499+1 5.821032-1 3.001342+1 5.888437-1 2.924220+1 5.956621-1 2.849084+1 6.000000-1 2.802725+1 6.025596-1 2.775881+1 6.095369-1 2.704601+1 6.165950-1 2.637039+1 6.237348-1 2.571176+1 6.309573-1 2.506974+1 6.382635-1 2.444376+1 6.456542-1 2.383347+1 6.531306-1 2.323856+1 6.683439-1 2.209297+1 6.760830-1 2.154156+1 6.839117-1 2.100416+1 6.918310-1 2.048067+1 6.998420-1 1.998083+1 7.079458-1 1.949437+1 7.161434-1 1.901979+1 7.244360-1 1.855685+1 7.328245-1 1.810530+1 7.413102-1 1.766474+1 7.498942-1 1.723492+1 7.585776-1 1.681557+1 7.673615-1 1.640643+1 7.762471-1 1.600731+1 7.852356-1 1.561831+1 7.943282-1 1.524680+1 8.035261-1 1.488530+1 8.128305-1 1.453238+1 8.222427-1 1.418789+1 8.317638-1 1.385166+1 8.511380-1 1.320293+1 8.609938-1 1.289066+1 8.709636-1 1.258578+1 8.912509-1 1.199769+1 9.015711-1 1.171403+1 9.120108-1 1.143815+1 9.225714-1 1.117481+1 9.332543-1 1.091759+1 9.440609-1 1.066669+1 9.549926-1 1.042157+1 9.660509-1 1.018209+1 9.772372-1 9.948126+0 9.885531-1 9.719815+0 1.000000+0 9.496815+0 1.011579+0 9.278943+0 1.035142+0 8.868810+0 1.047129+0 8.670602+0 1.059254+0 8.476986+0 1.071519+0 8.287739+0 1.096478+0 7.921935+0 1.109175+0 7.745131+0 1.122018+0 7.572286+0 1.135011+0 7.403481+0 1.148154+0 7.238550+0 1.161449+0 7.077337+0 1.174898+0 6.919723+0 1.188502+0 6.765628+0 1.202264+0 6.614999+0 1.216186+0 6.467726+0 1.230269+0 6.327903+0 1.244515+0 6.191130+0 1.250000+0 6.139706+0 1.258925+0 6.057519+0 1.273503+0 5.926853+0 1.303167+0 5.673936+0 1.318257+0 5.551555+0 1.333521+0 5.431852+0 1.348963+0 5.314720+0 1.364583+0 5.200126+0 1.380384+0 5.091139+0 1.396368+0 4.984524+0 1.428894+0 4.778154+0 1.496236+0 4.390721+0 1.513561+0 4.298896+0 1.531087+0 4.208990+0 1.548817+0 4.123679+0 1.621810+0 3.799461+0 1.659587+0 3.647181+0 1.698244+0 3.501013+0 1.717908+0 3.430175+0 1.737801+0 3.360793+0 1.757924+0 3.294873+0 1.778279+0 3.230262+0 1.819701+0 3.104811+0 1.840772+0 3.043925+0 1.862087+0 2.984294+0 1.883649+0 2.925831+0 1.905461+0 2.868516+0 1.927525+0 2.812325+0 1.949845+0 2.757263+0 1.972423+0 2.703303+0 1.995262+0 2.650441+0 2.018366+0 2.600097+0 2.044000+0 2.546018+0 2.065380+0 2.502278+0 2.089296+0 2.454758+0 2.113489+0 2.408189+0 2.137962+0 2.362505+0 2.187762+0 2.273724+0 2.213095+0 2.230615+0 2.238721+0 2.188342+0 2.264644+0 2.146870+0 2.290868+0 2.107420+0 2.317395+0 2.068704+0 2.344229+0 2.030700+0 2.371374+0 1.993394+0 2.398833+0 1.956773+0 2.426610+0 1.920864+0 2.454709+0 1.885613+0 2.511886+0 1.817046+0 2.540973+0 1.783719+0 2.570396+0 1.751019+0 2.600160+0 1.718918+0 2.630268+0 1.688384+0 2.660725+0 1.658399+0 2.691535+0 1.628946+0 2.722701+0 1.600017+0 2.754229+0 1.571600+0 2.786121+0 1.543719+0 2.818383+0 1.516332+0 2.884032+0 1.463011+0 2.917427+0 1.437072+0 2.951209+0 1.411604+0 3.000000+0 1.376108+0 3.019952+0 1.362435+0 3.054921+0 1.339014+0 3.090295+0 1.315995+0 3.126079+0 1.293372+0 3.162278+0 1.271138+0 3.198895+0 1.249287+0 3.273407+0 1.206749+0 3.349654+0 1.165662+0 3.388442+0 1.145657+0 3.427678+0 1.126003+0 3.467369+0 1.106687+0 3.507519+0 1.088270+0 3.548134+0 1.070163+0 3.589219+0 1.052357+0 3.630781+0 1.034848+0 3.672823+0 1.017630+0 3.715352+0 1.000699+0 3.801894+0 9.677111-1 3.890451+0 9.358133-1 3.935501+0 9.202685-1 4.000000+0 8.987676-1 4.027170+0 8.899629-1 4.073803+0 8.756299-1 4.120975+0 8.615309-1 4.168694+0 8.476586-1 4.216965+0 8.340100-1 4.265795+0 8.205811-1 4.315191+0 8.073683-1 4.365158+0 7.943688-1 4.466836+0 7.690202-1 4.570882+0 7.444822-1 4.623810+0 7.325146-1 4.677351+0 7.207444-1 4.731513+0 7.091632-1 4.786301+0 6.981099-1 4.841724+0 6.872311-1 4.897788+0 6.765219-1 4.954502+0 6.659795-1 5.011872+0 6.556016-1 5.069907+0 6.453852-1 5.128614+0 6.353284-1 5.248075+0 6.157022-1 5.370318+0 5.966836-1 5.432503+0 5.874004-1 5.495409+0 5.782654-1 5.559043+0 5.692726-1 5.688529+0 5.522052-1 5.754399+0 5.438659-1 5.821032+0 5.356526-1 5.888437+0 5.275633-1 5.956621+0 5.195964-1 6.025596+0 5.117496-1 6.095369+0 5.040215-1 6.237348+0 4.889284-1 6.382635+0 4.742882-1 6.456542+0 4.671369-1 6.531306+0 4.600936-1 6.606934+0 4.531594-1 6.683439+0 4.465303-1 6.760830+0 4.400033-1 6.839116+0 4.335730-1 6.918310+0 4.272367-1 7.000000+0 4.208715-1 7.079458+0 4.148406-1 7.161434+0 4.087781-1 7.244360+0 4.028043-1 7.413102+0 3.911291-1 7.585776+0 3.797930-1 7.673615+0 3.742514-1 7.762471+0 3.687909-1 7.943282+0 3.581113-1 8.035261+0 3.530241-1 8.128305+0 3.480125-1 8.317638+0 3.382034-1 8.413951+0 3.334031-1 8.511380+0 3.286709-1 8.609938+0 3.240059-1 8.709636+0 3.194071-1 8.810489+0 3.148735-1 8.912509+0 3.104045-1 9.120108+0 3.016641-1 9.332543+0 2.931703-1 9.440609+0 2.890158-1 9.549926+0 2.849213-1 9.660509+0 2.808852-1 9.772372+0 2.770224-1 9.885531+0 2.732156-1 1.011579+1 2.657598-1 1.023293+1 2.621083-1 1.035142+1 2.585072-1 1.047129+1 2.549554-1 1.059254+1 2.514525-1 1.071519+1 2.479980-1 1.109175+1 2.379240-1 1.161449+1 2.251266-1 1.174898+1 2.220378-1 1.202264+1 2.159884-1 1.216186+1 2.130260-1 1.230269+1 2.101811-1 1.244515+1 2.073766-1 1.258925+1 2.046096-1 1.273503+1 2.018794-1 1.288250+1 1.991856-1 1.300000+1 1.970881-1 1.380384+1 1.837722-1 1.462177+1 1.718435-1 1.479108+1 1.695535-1 1.500000+1 1.668055-1 1.513561+1 1.651082-1 1.531087+1 1.629622-1 1.548817+1 1.608440-1 1.798871+1 1.357066-1 1.972423+1 1.222320-1 1.995262+1 1.206447-1 2.000000+1 1.203204-1 2.018366+1 1.190790-1 2.041738+1 1.175774-1 2.065380+1 1.160948-1 2.213095+1 1.075916-1 2.570396+1 9.124474-2 2.600160+1 9.009537-2 2.660725+1 8.783994-2 2.691535+1 8.673384-2 2.722701+1 8.564188-2 2.800000+1 8.309670-2 2.818383+1 8.251275-2 2.851018+1 8.149535-2 3.090295+1 7.472088-2 3.507519+1 6.519528-2 3.548134+1 6.439204-2 3.630781+1 6.281511-2 3.672823+1 6.204144-2 3.715352+1 6.127741-2 3.758374+1 6.052294-2 3.845918+1 5.906864-2 3.890451+1 5.835467-2 3.935501+1 5.764930-2 3.981072+1 5.695289-2 4.000000+1 5.666843-2 4.466836+1 5.043519-2 5.188000+1 4.306453-2 5.248075+1 4.254433-2 5.370318+1 4.152274-2 5.432503+1 4.102133-2 5.495409+1 4.052607-2 5.559043+1 4.003687-2 5.688529+1 3.909257-2 5.754399+1 3.862880-2 5.821032+1 3.817054-2 5.888437+1 3.771797-2 6.606934+1 3.347719-2 8.035261+1 2.733337-2 8.222427+1 2.668909-2 8.511380+1 2.575105-2 8.609938+1 2.544582-2 8.709636+1 2.514424-2 8.810489+1 2.484628-2 9.015711+1 2.426093-2 9.332543+1 2.341990-2 9.440609+1 2.314609-2 9.549926+1 2.287548-2 9.660509+1 2.260804-2 9.885531+1 2.208272-2 1.122018+2 1.940423-2 1.333521+2 1.626751-2 1.396368+2 1.552034-2 1.513561+2 1.429443-2 1.531087+2 1.412741-2 1.566751+2 1.379920-2 1.621810+2 1.332116-2 1.659587+2 1.301170-2 1.698244+2 1.270946-2 1.717908+2 1.256099-2 1.798871+2 1.198424-2 1.862087+2 1.157309-2 1.883649+2 1.143920-2 1.905461+2 1.130686-2 1.927525+2 1.117605-2 1.972423+2 1.091904-2 2.238721+2 9.607543-3 2.511886+2 8.552504-3 2.540973+2 8.453593-3 2.630268+2 8.163677-3 2.691535+2 7.975964-3 2.754229+2 7.792568-3 2.917427+2 7.352339-3 3.054921+2 7.018131-3 3.311311+2 6.469443-3 3.388442+2 6.320706-3 3.589219+2 5.963657-3 3.715352+2 5.760346-3 3.758374+2 5.694128-3 3.801894+2 5.628671-3 3.845918+2 5.563966-3 3.935501+2 5.436803-3 4.466836+2 4.787608-3 5.011872+2 4.264957-3 5.069907+2 4.215938-3 5.248075+2 4.072237-3 5.370318+2 3.979175-3 5.495409+2 3.888239-3 1.161449+3 1.834263-3 1.216186+3 1.751388-3 1.318257+3 1.615269-3 1.348963+3 1.578359-3 1.428894+3 1.489731-3 1.479108+3 1.439128-3 1.496236+3 1.422645-3 1.513561+3 1.406351-3 1.531087+3 1.390244-3 1.566751+3 1.358584-3 1.778279+3 1.196910-3 1.995262+3 1.066692-3 2.018366+3 1.054476-3 2.089296+3 1.018662-3 2.137962+3 9.954649-4 2.187762+3 9.727960-4 1.000000+5 2.125042-5 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.980000-6 4.980000-6 5.620000-6 4.980000-6 5.620000-6 5.175931-6 5.970000-6 5.185036-6 5.970000-6 5.451151-6 6.850000-6 5.371936-6 7.852356-6 5.322642-6 9.440609-6 5.288008-6 1.290000-5 5.271224-6 2.501000-5 5.272526-6 2.501000-5 1.939968-5 2.660725-5 1.939332-5 3.198895-5 1.912546-5 3.352000-5 1.903206-5 3.352000-5 2.516778-5 3.550000-5 2.542137-5 3.935501-5 2.562370-5 4.472100-5 2.569007-5 5.055000-5 2.565279-5 5.055000-5 2.726435-5 5.688529-5 2.706243-5 6.309573-5 2.705566-5 7.161434-5 2.723886-5 8.709636-5 2.779878-5 9.711000-5 2.821512-5 9.711000-5 7.578997-5 9.740000-5 7.702340-5 9.800000-5 7.922444-5 9.885531-5 8.185624-5 9.980000-5 8.414236-5 1.007000-4 8.578522-5 1.020000-4 8.746339-5 1.035142-4 8.867407-5 1.042300-4 8.904266-5 1.042300-4 9.147645-5 1.072000-4 9.355949-5 1.100000-4 9.484721-5 1.127000-4 9.544910-5 1.163000-4 9.559814-5 1.303167-4 9.459910-5 1.430000-4 9.319285-5 1.590000-4 9.073983-5 1.894100-4 8.518634-5 1.894100-4 1.057022-4 2.120000-4 1.066174-4 2.374300-4 1.068011-4 2.374300-4 1.214738-4 2.430000-4 1.218133-4 2.524300-4 1.214049-4 2.800000-4 1.188220-4 2.947600-4 1.176414-4 2.947600-4 1.263424-4 3.486900-4 1.236872-4 3.486900-4 1.362943-4 3.507519-4 1.371348-4 3.556600-4 1.380199-4 3.585500-4 1.383698-4 3.585500-4 1.451800-4 3.672823-4 1.489974-4 3.705000-4 1.511060-4 3.743000-4 1.546381-4 3.777000-4 1.587912-4 3.830000-4 1.666065-4 3.900000-4 1.774402-4 3.940000-4 1.829523-4 3.985000-4 1.882360-4 4.030000-4 1.925948-4 4.100000-4 1.978281-4 4.168694-4 2.016270-4 4.265795-4 2.054287-4 4.387000-4 2.084361-4 4.570882-4 2.110598-4 4.850000-4 2.129884-4 5.350000-4 2.141521-4 6.531306-4 2.141877-4 6.766400-4 2.140564-4 6.766400-4 2.256978-4 7.148100-4 2.265865-4 7.148100-4 2.327256-4 8.128305-4 2.368038-4 9.561600-4 2.417428-4 9.561600-4 2.533142-4 1.162300-3 2.610936-4 1.162300-3 2.645587-4 1.310600-3 2.699784-4 1.310600-3 2.752351-4 1.621810-3 2.859924-4 1.972423-3 2.957792-4 2.400000-3 3.054322-4 2.917427-3 3.147074-4 3.338600-3 3.209372-4 3.338600-3 4.760478-4 3.502400-3 4.757947-4 3.502400-3 5.061504-4 4.036200-3 5.057378-4 4.036200-3 5.453175-4 4.831600-3 5.506800-4 4.831600-3 5.703294-4 5.157900-3 5.740370-4 5.157900-3 5.911184-4 6.839116-3 6.120067-4 8.912509-3 6.323321-4 1.135011-2 6.509552-4 1.445440-2 6.690594-4 1.631500-2 6.778479-4 1.631500-2 8.264986-4 1.978000-2 8.308999-4 1.978000-2 8.640149-4 2.047800-2 8.648979-4 2.047800-2 9.292543-4 2.851018-2 9.526837-4 4.027170-2 9.768318-4 5.495409-2 9.981194-4 7.500000-2 1.018739-3 1.023293-1 1.037702-3 1.101100-1 1.042032-3 1.101100-1 9.514344-4 2.754229-1 9.577213-4 7.328245-1 9.610307-4 1.000000+5 9.614214-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.980000-6 0.0 1.894100-4 0.0 1.894100-4 2.719303-9 1.950000-4 2.847697-9 2.000000-4 2.953245-9 2.065380-4 3.075113-9 2.089296-4 3.115608-9 2.150000-4 3.192935-9 2.280000-4 3.313278-9 2.344229-4 3.355427-9 2.374300-4 3.369603-9 2.374300-4 4.802232-9 2.400000-4 4.835808-9 2.430000-4 4.851068-9 2.454709-4 4.855154-9 2.511886-4 4.831592-9 2.600160-4 4.751763-9 2.754229-4 4.588234-9 2.947600-4 4.382601-9 2.947600-4 4.742974-9 3.349654-4 4.385587-9 3.486900-4 4.276484-9 3.486900-4 2.007929-8 3.487700-4 2.017946-8 3.492000-4 2.046657-8 3.498000-4 2.079767-8 3.507519-4 2.120826-8 3.518000-4 2.157409-8 3.532000-4 2.196552-8 3.550000-4 2.236943-8 3.585500-4 2.302119-8 3.585500-4 2.181521-8 3.601000-4 2.199114-8 3.618000-4 2.232131-8 3.630781-4 2.267426-8 3.643000-4 2.312774-8 3.655000-4 2.369330-8 3.665000-4 2.424501-8 3.677000-4 2.502737-8 3.690000-4 2.601568-8 3.705000-4 2.734041-8 3.720000-4 2.884994-8 3.735000-4 3.053381-8 3.754000-4 3.290511-8 3.770000-4 3.506323-8 3.801894-4 3.973026-8 3.845918-4 4.635748-8 3.865000-4 4.909034-8 3.880000-4 5.113094-8 3.900000-4 5.363268-8 3.920000-4 5.586659-8 3.940000-4 5.781312-8 3.965000-4 5.987894-8 3.985000-4 6.129483-8 4.007000-4 6.265615-8 4.030000-4 6.387618-8 4.050000-4 6.481263-8 4.100000-4 6.676928-8 4.140000-4 6.795314-8 4.168694-4 6.867936-8 4.216965-4 6.960090-8 4.265795-4 7.023685-8 4.370000-4 7.094855-8 4.580000-4 7.159179-8 4.760000-4 7.168476-8 5.432503-4 7.141107-8 6.766400-4 7.046277-8 6.766400-4 7.343942-8 7.148100-4 7.345699-8 7.148100-4 8.049129-8 7.673615-4 8.198342-8 9.561600-4 8.561025-8 9.561600-4 1.038685-7 1.035142-3 1.066825-7 1.162300-3 1.105830-7 1.162300-3 1.150319-7 1.310600-3 1.201659-7 1.310600-3 1.288454-7 1.548817-3 1.378372-7 1.778279-3 1.456375-7 2.113489-3 1.557895-7 2.400000-3 1.635047-7 2.851018-3 1.741557-7 3.235937-3 1.821766-7 3.338600-3 1.841680-7 3.338600-3 2.383031-7 3.502400-3 2.391714-7 3.502400-3 4.235682-5 3.758374-3 4.232873-5 4.036200-3 4.224501-5 4.036200-3 4.202496-5 4.518559-3 4.174263-5 4.831600-3 4.151690-5 4.831600-3 4.647668-5 5.157900-3 4.673972-5 5.157900-3 4.758979-5 6.531306-3 4.870216-5 8.317638-3 4.980610-5 1.047129-2 5.087146-5 1.303167-2 5.187090-5 1.631500-2 5.284583-5 1.631500-2 3.447322-3 1.678804-2 3.451863-3 1.978000-2 3.418531-3 1.978000-2 5.092934-3 2.047800-2 5.109497-3 2.047800-2 5.332662-3 2.543900-2 5.393252-3 3.198895-2 5.438433-3 4.518559-2 5.477351-3 7.244360-2 5.499512-3 1.101100-1 5.502592-3 1.101100-1 7.731497-2 1.288250-1 7.792939-2 1.737801-1 7.871212-2 2.540973-1 7.933367-2 4.623810-1 8.007022-2 9.015711-1 8.082726-2 1.000000+5 8.087417-2 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.980000-6 0.0 5.620000-6 6.400000-7 5.620000-6 4.440694-7 5.850000-6 6.678255-7 5.970000-6 7.849642-7 5.970000-6 5.188492-7 6.237348-6 8.146766-7 6.606934-6 1.217129-6 6.850000-6 1.478064-6 7.244360-6 1.895786-6 7.852356-6 2.529714-6 9.120108-6 3.827922-6 1.202264-5 6.750055-6 2.501000-5 1.973747-5 2.501000-5 5.610318-6 2.580000-5 6.391833-6 2.660725-5 7.213930-6 2.985383-5 1.060665-5 3.352000-5 1.448794-5 3.352000-5 8.352222-6 3.427678-5 8.991655-6 3.550000-5 1.007863-5 3.715352-5 1.162532-5 3.935501-5 1.373131-5 4.315191-5 1.747106-5 5.055000-5 2.489721-5 5.055000-5 2.328565-5 5.688529-5 2.982286-5 6.350000-5 3.644058-5 7.500000-5 4.765402-5 9.711000-5 6.889488-5 9.711000-5 2.132003-5 9.740000-5 2.037660-5 9.800000-5 1.877556-5 9.850000-5 1.765829-5 9.900000-5 1.674490-5 9.940000-5 1.614546-5 9.980000-5 1.565764-5 1.002000-4 1.527104-5 1.007000-4 1.491478-5 1.012000-4 1.468391-5 1.016500-4 1.457005-5 1.020000-4 1.453661-5 1.025000-4 1.456270-5 1.030000-4 1.466537-5 1.035142-4 1.484013-5 1.042300-4 1.518734-5 1.042300-4 1.275355-5 1.050000-4 1.291383-5 1.063000-4 1.329987-5 1.072000-4 1.364051-5 1.080000-4 1.399958-5 1.090000-4 1.453226-5 1.101000-4 1.521895-5 1.110000-4 1.586300-5 1.122018-4 1.682284-5 1.135011-4 1.797231-5 1.155000-4 1.989486-5 1.175000-4 2.193818-5 1.220000-4 2.671932-5 1.318257-4 3.736573-5 1.380384-4 4.422251-5 1.496236-4 5.737485-5 1.678804-4 7.868508-5 1.894100-4 1.042237-4 1.894100-4 8.370503-5 2.120000-4 1.053795-4 2.374300-4 1.306255-4 2.374300-4 1.159514-4 2.430000-4 1.211819-4 2.524300-4 1.310202-4 2.851018-4 1.666846-4 2.947600-4 1.771143-4 2.947600-4 1.684129-4 3.486900-4 2.249985-4 3.486900-4 2.123756-4 3.532000-4 2.155089-4 3.585500-4 2.201572-4 3.585500-4 2.133482-4 3.677000-4 2.184471-4 3.720000-4 2.196185-4 3.765000-4 2.192451-4 3.815000-4 2.171729-4 3.900000-4 2.125062-4 3.960000-4 2.105187-4 4.007000-4 2.101554-4 4.073803-4 2.112606-4 4.140000-4 2.137624-4 4.230000-4 2.187208-4 4.350000-4 2.272596-4 4.530000-4 2.423226-4 4.800000-4 2.671761-4 5.400000-4 3.257259-4 6.766400-4 4.625132-4 6.766400-4 4.508688-4 7.148100-4 4.881501-4 7.148100-4 4.820040-4 9.561600-4 7.143316-4 9.561600-4 7.027419-4 1.162300-3 9.010958-4 1.162300-3 8.976263-4 1.310600-3 1.040501-3 1.310600-3 1.035236-3 2.018366-3 1.721301-3 3.338600-3 3.017479-3 3.338600-3 2.862314-3 3.502400-3 3.026366-3 3.502400-3 2.953893-3 4.036200-3 3.488217-3 4.036200-3 3.448858-3 4.831600-3 4.239403-3 4.831600-3 4.214794-3 5.157900-3 4.537123-3 5.157900-3 4.519192-3 1.230269-2 1.159404-2 1.631500-2 1.558431-2 1.631500-2 1.204118-2 1.978000-2 1.553057-2 1.978000-2 1.382305-2 2.047800-2 1.450360-2 2.047800-2 1.421608-2 3.273407-2 2.633059-2 1.101100-1 1.035654-1 1.101100-1 3.184360-2 1.123000-1 3.390257-2 1.135011-1 3.510244-2 1.161449-1 3.761920-2 1.303167-1 5.140517-2 1.737801-1 9.411318-2 3.162278-1 2.356531-1 1.778279+0 1.696446+0 1.000000+5 9.999992+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.101100-1 1.474481+3 1.113000-1 1.439238+3 1.116000-1 1.427300+3 1.123000-1 1.408666+3 1.135011-1 1.368578+3 1.150000-1 1.329100+3 1.190000-1 1.216676+3 1.244515-1 1.091640+3 1.396368-1 8.140903+2 1.580000-1 5.960880+2 2.570396-1 1.717512+2 3.090295-1 1.080955+2 3.630781-1 7.263456+1 4.120975-1 5.348353+1 4.731513-1 3.861061+1 5.370318-1 2.884125+1 6.095369-1 2.170064+1 6.918310-1 1.646684+1 7.852356-1 1.258307+1 9.120108-1 9.231915+0 1.011579+0 7.493888+0 1.216186+0 5.224840+0 1.364583+0 4.200188+0 1.531087+0 3.398974+0 1.737801+0 2.714020+0 1.995262+0 2.140379+0 2.264644+0 1.733702+0 2.600160+0 1.388124+0 3.000000+0 1.111300+0 3.467369+0 8.937226-1 4.027170+0 7.186991-1 4.731513+0 5.726946-1 5.559043+0 4.597231-1 6.606934+0 3.659541-1 7.943282+0 2.891962-1 9.660509+0 2.268323-1 1.216186+1 1.720325-1 1.500000+1 1.347100-1 2.018366+1 9.616642-2 2.722701+1 6.916290-2 3.758374+1 4.887733-2 5.559043+1 3.233308-2 9.015711+1 1.959267-2 1.798871+2 9.678195-3 3.589219+2 4.816172-3 1.428894+3 1.203081-3 1.000000+5 1.716200-5 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.101100-1 9.242800-4 1.000000+5 9.242800-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.101100-1 9.883900-2 1.000000+5 9.883900-2 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.101100-1 1.034672-2 1.000000+5 9.999990+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.047800-2 5.121700+3 2.135000-2 4.761260+3 2.165000-2 4.658320+3 2.225000-2 4.429060+3 2.317395-2 4.145223+3 2.851018-2 2.853397+3 3.198895-2 2.293531+3 4.000000-2 1.473460+3 4.623810-2 1.091710+3 5.188000-2 8.566561+2 6.237348-2 5.741221+2 7.500000-2 3.799920+2 9.015711-2 2.489807+2 1.096478-1 1.572127+2 1.333521-1 9.842618+1 1.737801-1 5.175586+1 2.660725-1 1.829720+1 3.311311-1 1.080216+1 3.935501-1 7.173167+0 4.570882-1 5.063942+0 5.308844-1 3.603675+0 6.095369-1 2.650879+0 6.998420-1 1.963947+0 7.943282-1 1.501634+0 9.015711-1 1.156554+0 1.011579+0 9.185051-1 1.216186+0 6.405040-1 1.364583+0 5.148370-1 1.531087+0 4.165564-1 1.737801+0 3.326001-1 1.995262+0 2.622985-1 2.264644+0 2.124527-1 2.600160+0 1.700917-1 3.000000+0 1.361600-1 3.467369+0 1.095054-1 4.027170+0 8.806296-2 4.731513+0 7.017248-2 5.559043+0 5.632984-2 6.606934+0 4.484015-2 7.943282+0 3.543565-2 9.660509+0 2.779366-2 1.216186+1 2.107849-2 1.500000+1 1.650600-2 2.018366+1 1.178380-2 2.722701+1 8.474621-3 3.758374+1 5.988961-3 5.559043+1 3.961805-3 9.015711+1 2.400673-3 1.798871+2 1.185871-3 3.589219+2 5.901285-4 1.428894+3 1.474145-4 1.000000+5 2.102800-6 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.047800-2 1.344100-3 1.000000+5 1.344100-3 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.047800-2 6.771200-3 1.000000+5 6.771200-3 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.047800-2 1.236270-2 1.000000+5 9.999999+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 1.978000-2 1.047579+4 2.000000-2 1.026700+4 2.080000-2 9.362400+3 2.150000-2 8.616300+3 2.238721-2 7.811800+3 2.543900-2 5.651000+3 2.818383-2 4.346000+3 3.162278-2 3.208200+3 3.715352-2 2.086100+3 4.623810-2 1.146400+3 5.800000-2 6.089500+2 7.328245-2 3.137800+2 9.772372-2 1.375100+2 1.621810-1 3.198000+1 2.041738-1 1.658000+1 2.400000-1 1.051300+1 2.818383-1 6.726793+0 3.273407-1 4.470010+0 3.758374-1 3.087988+0 4.265795-1 2.215376+0 4.841724-1 1.600824+0 5.432503-1 1.199455+0 6.095369-1 9.050058-1 6.839117-1 6.880030-1 7.762471-1 5.129787-1 8.511380-1 4.171060-1 9.332543-1 3.416142-1 1.011579+0 2.887953-1 1.122018+0 2.346578-1 1.250000+0 1.905062-1 1.396368+0 1.549908-1 1.621810+0 1.183062-1 1.840772+0 9.477228-2 2.089296+0 7.645104-2 2.398833+0 6.094833-2 2.754229+0 4.895767-2 3.198895+0 3.892058-2 3.715352+0 3.117675-2 4.365158+0 2.474720-2 5.128614+0 1.979406-2 6.095369+0 1.570323-2 7.244360+0 1.254808-2 8.912509+0 9.670226-3 1.071519+1 7.726044-3 1.288250+1 6.208424-3 1.548817+1 5.013318-3 2.065380+1 3.618817-3 2.851018+1 2.539968-3 3.935501+1 1.796865-3 5.821032+1 1.189784-3 9.660509+1 7.046227-4 1.927525+2 3.483357-4 3.845918+2 1.734557-4 1.531087+3 4.334773-5 1.000000+5 6.626100-7 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 1.978000-2 9.450000-4 1.000000+5 9.450000-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.978000-2 9.187800-3 1.000000+5 9.187800-3 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 1.978000-2 9.647200-3 1.000000+5 9.999999+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.631500-2 2.498903+4 1.665000-2 2.379576+4 1.720000-2 2.180572+4 1.780000-2 1.981864+4 1.870000-2 1.733812+4 2.300000-2 9.693600+3 2.570396-2 7.043894+3 3.090295-2 4.113510+3 3.890451-2 2.069282+3 4.841724-2 1.063603+3 6.000000-2 5.481480+2 7.500000-2 2.726916+2 1.000000-1 1.098832+2 1.584893-1 2.552006+1 1.972423-1 1.284076+1 2.317395-1 7.792883+0 2.691535-1 4.935551+0 3.090295-1 3.260056+0 3.507519-1 2.244983+0 3.935501-1 1.610320+0 4.415705-1 1.164101+0 4.954502-1 8.481279-1 5.495409-1 6.422313-1 6.095369-1 4.896726-1 6.760830-1 3.760103-1 7.852356-1 2.589204-1 8.511380-1 2.131866-1 9.120108-1 1.816472-1 9.772372-1 1.559089-1 1.047129+0 1.348990-1 1.135011+0 1.147013-1 1.244515+0 9.600096-2 1.380384+0 7.927130-2 1.698244+0 5.474383-2 1.927525+0 4.394147-2 2.187762+0 3.552842-2 2.511886+0 2.839066-2 2.884032+0 2.285489-2 3.349654+0 1.821097-2 3.890451+0 1.462071-2 4.570882+0 1.163120-2 5.370318+0 9.322505-3 6.382635+0 7.410320-3 7.585776+0 5.933192-3 9.332543+0 4.580586-3 1.161449+1 3.516958-3 1.462177+1 2.685196-3 1.995262+1 1.885613-3 2.660725+1 1.372833-3 3.630781+1 9.816459-4 5.370318+1 6.489149-4 8.511380+1 4.024161-4 1.513561+2 2.233706-4 2.630268+2 1.275335-4 5.248075+2 6.361192-5 2.089296+3 1.592201-5 1.000000+5 3.322000-7 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.631500-2 9.328200-4 1.000000+5 9.328200-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.631500-2 5.875200-3 1.000000+5 5.875200-3 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.631500-2 9.506980-3 1.000000+5 9.999999+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.157900-3 1.334930+4 5.432503-3 1.251233+4 5.559043-3 1.212091+4 5.754399-3 1.162160+4 6.237348-3 1.037801+4 6.800000-3 9.231100+3 7.244360-3 8.397032+3 7.852356-3 7.420656+3 8.500000-3 6.588860+3 9.225714-3 5.772600+3 1.109175-2 4.256194+3 1.230269-2 3.555052+3 1.428894-2 2.726178+3 1.659587-2 2.069183+3 1.862087-2 1.666056+3 2.213095-2 1.192743+3 2.650000-2 8.329060+2 3.162278-2 5.798966+2 3.715352-2 4.135268+2 4.415704-2 2.854695+2 5.188000-2 2.004845+2 6.095369-2 1.398215+2 7.161434-2 9.687486+1 8.511380-2 6.492262+1 1.035142-1 4.090494+1 1.303167-1 2.356283+1 1.621810-1 1.386305+1 2.600160-1 4.382840+0 3.235937-1 2.587266+0 3.890451-1 1.671848+0 4.570882-1 1.149286+0 5.248075-1 8.391449-1 6.025596-1 6.169737-1 6.918310-1 4.569953-1 7.943282-1 3.410516-1 9.015711-1 2.623788-1 1.011579+0 2.082525-1 1.216186+0 1.452178-1 1.364583+0 1.167278-1 1.531087+0 9.444538-2 1.737801+0 7.540341-2 1.972423+0 6.063908-2 2.264644+0 4.817648-2 2.600160+0 3.857055-2 3.000000+0 3.087300-2 3.467369+0 2.482851-2 4.027170+0 1.996622-2 4.731513+0 1.590995-2 5.559043+0 1.277184-2 6.683439+0 1.001582-2 8.035261+0 7.918756-3 9.772372+0 6.213740-3 1.230269+1 4.714903-3 1.500000+1 3.742400-3 2.018366+1 2.671634-3 2.722701+1 1.921455-3 3.758374+1 1.357874-3 5.559043+1 8.982604-4 9.015711+1 5.443049-4 1.798871+2 2.688736-4 3.589219+2 1.338023-4 1.428894+3 3.342289-5 1.000000+5 4.767700-7 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.157900-3 9.919600-4 1.000000+5 9.919600-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.157900-3 6.753800-5 1.000000+5 6.753800-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.157900-3 4.098402-3 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 4.831600-3 2.151723+4 5.080000-3 2.045460+4 5.350000-3 1.930430+4 6.025596-3 1.661018+4 6.309573-3 1.558160+4 7.000000-3 1.334960+4 7.673615-3 1.157760+4 8.317638-3 1.016185+4 9.549926-3 7.990792+3 1.023293-2 7.058560+3 1.122018-2 5.926931+3 1.273503-2 4.631568+3 1.396368-2 3.840030+3 1.603245-2 2.875757+3 1.778279-2 2.296176+3 2.000000-2 1.768892+3 2.300000-2 1.283970+3 2.570396-2 9.888626+2 2.951209-2 7.094082+2 3.427678-2 4.905894+2 3.981072-2 3.363890+2 4.623810-2 2.288804+2 5.432503-2 1.500069+2 6.456542-2 9.462152+1 7.762471-2 5.743759+1 9.660509-2 3.149617+1 1.288250-1 1.416296+1 1.972423-1 4.327813+0 2.454709-1 2.368297+0 2.917427-1 1.481051+0 3.427678-1 9.624969-1 3.935501-1 6.698024-1 4.466836-1 4.836835-1 5.069907-1 3.517520-1 5.754399-1 2.577687-1 6.456542-1 1.957026-1 7.244360-1 1.496713-1 8.222427-1 1.123979-1 9.015711-1 9.178778-2 9.772372-1 7.735645-2 1.071519+0 6.412169-2 1.188502+0 5.232057-2 1.318257+0 4.299365-2 1.496236+0 3.409499-2 1.717908+0 2.664935-2 1.949845+0 2.141226-2 2.213095+0 1.732602-2 2.540973+0 1.385505-2 2.917427+0 1.116094-2 3.388442+0 8.898515-3 3.935501+0 7.148072-3 4.623810+0 5.689673-3 5.432503+0 4.562729-3 6.531306+0 3.574490-3 7.762471+0 2.864631-3 9.440609+0 2.244962-3 1.174898+1 1.724457-3 1.479108+1 1.317248-3 2.000000+1 9.348500-4 2.691535+1 6.739163-4 3.672823+1 4.819964-4 5.432503+1 3.187110-4 8.609938+1 1.976812-4 1.566751+2 1.071947-4 2.754229+2 6.051859-5 5.495409+2 3.019095-5 2.187762+3 7.557771-6 1.000000+5 1.651300-7 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 4.831600-3 8.863300-4 1.000000+5 8.863300-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.831600-3 1.262400-4 1.000000+5 1.262400-4 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 4.831600-3 3.819030-3 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.036200-3 7.676416+4 4.130000-3 7.420934+4 4.365158-3 6.805279+4 4.677351-3 6.051482+4 5.150000-3 5.124400+4 5.500000-3 4.538520+4 6.165950-3 3.659158+4 6.998420-3 2.861579+4 8.317638-3 2.011240+4 9.015711-3 1.692971+4 1.059254-2 1.189011+4 1.161449-2 9.644231+3 1.333521-2 6.996794+3 1.513561-2 5.163656+3 1.678804-2 4.007306+3 1.950000-2 2.751468+3 2.238721-2 1.927373+3 2.511886-2 1.423350+3 2.851018-2 1.013449+3 3.311311-2 6.726676+2 3.845918-2 4.427033+2 4.466836-2 2.890501+2 5.188000-2 1.873726+2 6.095369-2 1.166088+2 7.328245-2 6.725373+1 9.015711-2 3.589405+1 1.161449-1 1.651647+1 1.819701-1 4.145203+0 2.264644-1 2.127421+0 2.660725-1 1.309872+0 3.090295-1 8.409648-1 3.507519-1 5.818849-1 3.981072-1 4.055935-1 4.466836-1 2.943610-1 5.011872-1 2.151930-1 5.623413-1 1.585099-1 6.237348-1 1.212342-1 6.918310-1 9.338482-2 7.673615-1 7.244205-2 8.709636-1 5.343012-2 9.332543-1 4.554175-2 9.885531-1 4.009216-2 1.059254+0 3.466746-2 1.148154+0 2.948870-2 1.250000+0 2.505202-2 1.380384+0 2.087257-2 1.717908+0 1.413555-2 1.949845+0 1.135245-2 2.213095+0 9.185713-3 2.540973+0 7.344922-3 2.917427+0 5.915900-3 3.388442+0 4.716570-3 3.935501+0 3.788792-3 4.623810+0 3.015790-3 5.432503+0 2.418455-3 6.531306+0 1.894618-3 7.762471+0 1.518363-3 9.549926+0 1.173277-3 1.202264+1 8.893697-4 1.500000+1 6.870500-4 2.018366+1 4.904676-4 2.722701+1 3.527563-4 3.715352+1 2.523613-4 5.432503+1 1.689270-4 8.709636+1 1.035396-4 1.659587+2 5.358067-5 3.054921+2 2.889645-5 1.216186+3 7.210718-6 1.000000+5 8.752900-8 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.036200-3 7.849000-4 1.000000+5 7.849000-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.036200-3 4.069300-5 1.000000+5 4.069300-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.036200-3 3.210607-3 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.502400-3 1.983273+5 3.672823-3 1.760659+5 4.080000-3 1.342520+5 4.365158-3 1.120157+5 4.897788-3 8.152397+4 5.500000-3 5.882160+4 6.095369-3 4.374817+4 6.683439-3 3.338640+4 7.328245-3 2.532470+4 8.810489-3 1.438316+4 9.800000-3 1.028440+4 1.122018-2 6.679432+3 1.333521-2 3.799761+3 1.496236-2 2.590019+3 1.698244-2 1.690027+3 2.000000-2 9.643680+2 2.344229-2 5.541652+2 2.786121-2 3.005841+2 3.311311-2 1.616312+2 3.981072-2 8.267995+1 4.841724-2 4.023994+1 6.165950-2 1.638586+1 1.216186-1 1.291567+0 1.496236-1 5.986876-1 1.778279-1 3.180694-1 2.000000-1 2.078432-1 2.660725-1 7.632548-2 3.019952-1 4.861792-2 3.388442-1 3.281176-2 3.758374-1 2.320004-2 4.073803-1 1.782124-2 4.518559-1 1.280685-2 5.069907-1 8.942347-3 5.623413-1 6.509002-3 6.237348-1 4.772919-3 6.839117-1 3.648354-3 7.413102-1 2.902535-3 8.511380-1 1.983547-3 9.015711-1 1.703656-3 9.440609-1 1.517040-3 9.885531-1 1.359028-3 1.035142+0 1.225636-3 1.096478+0 1.084820-3 1.161449+0 9.665468-4 1.250000+0 8.406878-4 1.364583+0 7.176750-4 1.531087+0 5.871732-4 1.819701+0 4.328276-4 2.044000+0 3.547711-4 2.344229+0 2.829406-4 2.691535+0 2.269462-4 3.090295+0 1.833401-4 3.589219+0 1.466083-4 4.168694+0 1.180907-4 4.897788+0 9.425325-5 5.821032+0 7.462114-5 6.918310+0 5.951290-5 8.413951+0 4.644197-5 1.023293+1 3.651033-5 1.258925+1 2.851466-5 1.531087+1 2.271137-5 2.065380+1 1.617915-5 2.818383+1 1.149886-5 3.845918+1 8.232518-6 5.688529+1 5.448534-6 9.332543+1 3.263933-6 1.862087+2 1.612927-6 3.715352+2 8.029292-7 1.479108+3 2.006163-7 1.000000+5 2.962400-9 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.502400-3 5.777000-4 1.000000+5 5.777000-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.502400-3 1.416300-4 1.000000+5 1.416300-4 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.502400-3 2.783070-3 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.338600-3 3.141264+5 3.480000-3 2.813742+5 3.527000-3 2.707503+5 3.890451-3 2.091401+5 4.216965-3 1.676421+5 4.800000-3 1.163982+5 5.432503-3 8.145848+4 6.025596-3 6.001140+4 6.683439-3 4.391657+4 7.328245-3 3.302200+4 8.413951-3 2.144453+4 9.440609-3 1.481908+4 1.059254-2 1.019776+4 1.244515-2 5.972131+3 1.400000-2 4.009686+3 1.584893-2 2.619767+3 1.850000-2 1.526532+3 2.162719-2 8.762814+2 2.540973-2 4.895069+2 3.000000-2 2.662062+2 3.507519-2 1.489063+2 4.120975-2 8.122773+1 5.011872-2 3.859962+1 6.237348-2 1.666674+1 1.148154-1 1.576787+0 1.396368-1 7.451625-1 1.640590-1 4.048272-1 1.883649-1 2.415931-1 2.162719-1 1.452484-1 2.426610-1 9.568999-2 2.722701-1 6.349604-2 3.019952-1 4.420149-2 3.349654-1 3.098317-2 3.672823-1 2.275189-2 4.000000-1 1.720323-2 4.365158-1 1.302888-2 4.786301-1 9.788407-3 5.308844-1 7.149461-3 5.821032-1 5.445956-3 6.309573-1 4.320927-3 6.918310-1 3.342741-3 7.585776-1 2.606005-3 8.709636-1 1.806283-3 9.225714-1 1.560863-3 9.660509-1 1.396499-3 1.011579+0 1.256919-3 1.071519+0 1.110238-3 1.135011+0 9.870800-4 1.216186+0 8.633946-4 1.318257+0 7.443027-4 1.862087+0 4.051726-4 2.089296+0 3.331945-4 2.398833+0 2.655760-4 2.754229+0 2.132755-4 3.162278+0 1.724920-4 3.672823+0 1.380908-4 4.315191+0 1.095506-4 5.069907+0 8.757869-5 6.025596+0 6.944373-5 7.161434+0 5.546483-5 8.810489+0 4.272516-5 1.059254+1 3.411986-5 1.273503+1 2.740854-5 1.531087+1 2.212642-5 2.065380+1 1.576149-5 2.851018+1 1.106291-5 4.000000+1 7.692600-6 5.888437+1 5.120308-6 9.885531+1 2.997305-6 1.972423+2 1.482146-6 3.935501+2 7.381825-7 1.566751+3 1.845026-7 1.000000+5 2.886100-9 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.338600-3 5.814800-4 1.000000+5 5.814800-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.338600-3 2.751000-7 1.000000+5 2.751000-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.338600-3 2.756845-3 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.310600-3 2.992398+4 1.412538-3 2.765463+4 1.513561-3 2.579636+4 1.611800-3 2.428814+4 1.690000-3 2.304360+4 1.972423-3 1.927435+4 2.264644-3 1.630545+4 2.426610-3 1.490731+4 3.000000-3 1.113894+4 3.311311-3 9.652749+3 3.935501-3 7.449646+3 4.570882-3 5.891337+3 5.159000-3 4.849342+3 6.165950-3 3.605570+3 7.413102-3 2.627503+3 8.912509-3 1.895879+3 1.071519-2 1.355385+3 1.273503-2 9.815104+2 1.513561-2 7.054903+2 1.798871-2 5.034571+2 2.150000-2 3.527100+2 2.570396-2 2.450300+2 3.054921-2 1.710194+2 3.630781-2 1.184749+2 4.315191-2 8.148722+1 5.128614-2 5.562990+1 6.095369-2 3.771673+1 7.328245-2 2.472640+1 9.015711-2 1.524450+1 1.122019-1 9.077724+0 1.303167-1 6.332737+0 2.630268-1 1.143431+0 3.273407-1 6.753325-1 3.935501-1 4.366027-1 4.623810-1 3.002664-1 5.370318-1 2.138009-1 6.165950-1 1.573574-1 7.161434-1 1.137805-1 8.128305-1 8.706960-2 9.225714-1 6.712887-2 1.047129+0 5.217242-2 1.230269+0 3.808669-2 1.380384+0 3.063783-2 1.548817+0 2.480772-2 1.757924+0 1.982091-2 2.018366+0 1.564186-2 2.290868+0 1.267764-2 2.630268+0 1.015622-2 3.019952+0 8.195725-3 3.507519+0 6.546045-3 4.073803+0 5.267056-3 4.786301+0 4.199293-3 5.688529+0 3.321103-3 6.760830+0 2.646201-3 8.128305+0 2.093111-3 9.885531+0 1.643230-3 1.230269+1 1.264376-3 1.500000+1 1.003600-3 2.018366+1 7.164650-4 2.722701+1 5.152846-4 3.715352+1 3.686458-4 5.495409+1 2.438100-4 8.709636+1 1.512509-4 1.659587+2 7.826933-5 3.054921+2 4.221155-5 1.216186+3 1.053311-5 1.000000+5 1.278600-7 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.310600-3 5.483900-4 1.000000+5 5.483900-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.310600-3 5.798600-7 1.000000+5 5.798600-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.310600-3 7.616301-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.162300-3 2.601651+4 1.278000-3 2.587273+4 1.428894-3 2.511583+4 1.531087-3 2.438600+4 1.678804-3 2.322998+4 1.800000-3 2.226820+4 1.927525-3 2.121517+4 2.113489-3 1.967554+4 2.264644-3 1.845421+4 2.570000-3 1.623700+4 2.754229-3 1.505677+4 3.000000-3 1.360424+4 3.349654-3 1.184923+4 3.650000-3 1.057116+4 4.150000-3 8.817540+3 4.518559-3 7.776362+3 5.069907-3 6.503656+3 5.623413-3 5.502823+3 6.382635-3 4.445914+3 7.079458-3 3.708774+3 8.000000-3 2.972940+3 9.120108-3 2.324766+3 1.035142-2 1.818050+3 1.174898-2 1.410737+3 1.333521-2 1.086461+3 1.513561-2 8.305981+2 1.737801-2 6.146872+2 2.000000-2 4.487360+2 2.290868-2 3.284545+2 2.600160-2 2.439028+2 3.000000-2 1.729556+2 3.487120-2 1.194636+2 4.027170-2 8.324079+1 4.677351-2 5.676525+1 5.495409-2 3.730562+1 6.531306-2 2.360847+1 7.943282-2 1.393935+1 9.885531-2 7.672200+0 1.333521-1 3.356554+0 2.000000-1 1.092290+0 2.754229-1 4.568286-1 3.235937-1 2.964691-1 3.758374-1 1.998735-1 4.265795-1 1.441491-1 4.841724-1 1.046867-1 5.495409-1 7.658242-2 6.237348-1 5.646106-2 6.998420-1 4.310711-2 7.852356-1 3.316193-2 8.709636-1 2.634056-2 9.549926-1 2.161619-2 1.035142+0 1.830753-2 1.148154+0 1.490112-2 1.273503+0 1.221645-2 1.428894+0 9.869405-3 1.659587+0 7.541457-3 1.883649+0 6.047780-3 2.137962+0 4.883987-3 2.454709+0 3.897807-3 2.818383+0 3.134017-3 3.273407+0 2.494119-3 3.801894+0 2.000119-3 4.466836+0 1.589428-3 5.248075+0 1.272659-3 6.237348+0 1.010634-3 7.413102+0 8.083800-4 9.120108+0 6.235330-4 1.109175+1 4.917410-4 1.380384+1 3.797955-4 1.798871+1 2.804991-4 2.213095+1 2.223583-4 3.090295+1 1.544225-4 4.466836+1 1.042308-4 6.606934+1 6.918536-5 1.122018+2 4.010148-5 2.238721+2 1.985736-5 4.466836+2 9.898130-6 1.778279+3 2.475678-6 1.000000+5 4.395800-8 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.162300-3 5.218200-4 1.000000+5 5.218200-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.162300-3 4.453400-7 1.000000+5 4.453400-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.162300-3 6.400347-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 9.561600-4 1.608201+5 1.000000-3 1.567446+5 1.011579-3 1.554984+5 1.110000-3 1.422576+5 1.210000-3 1.301884+5 1.445440-3 1.058260+5 1.548817-3 9.712196+4 1.737801-3 8.335078+4 1.927525-3 7.197439+4 2.187762-3 5.985365+4 2.400000-3 5.192040+4 2.800000-3 4.057360+4 3.090295-3 3.440998+4 3.548134-3 2.711464+4 4.000000-3 2.186424+4 4.518559-3 1.745641+4 5.248075-3 1.310651+4 5.888437-3 1.043501+4 6.606934-3 8.261248+3 7.585776-3 6.190987+3 8.709636-3 4.598586+3 1.000000-2 3.387032+3 1.150000-2 2.464436+3 1.318257-2 1.791464+3 1.513561-2 1.286877+3 1.737801-2 9.169157+2 1.972423-2 6.672542+2 2.238721-2 4.823927+2 2.540973-2 3.464684+2 2.917427-2 2.397271+2 3.388442-2 1.594816+2 3.935501-2 1.052654+2 4.570882-2 6.893082+1 5.370318-2 4.334211+1 6.309573-2 2.704476+1 7.585776-2 1.564527+1 9.332543-2 8.380498+0 1.188502-1 4.012959+0 1.862087-1 1.015306+0 2.317395-1 5.231646-1 2.754229-1 3.122041-1 3.235937-1 1.943616-1 3.672823-1 1.348626-1 4.120975-1 9.740523-2 4.623810-1 7.088357-2 5.188000-1 5.196092-2 5.754399-1 3.954732-2 6.382635-1 3.030474-2 7.079458-1 2.338704-2 7.852356-1 1.817741-2 8.709636-1 1.417159-2 9.332543-1 1.208357-2 9.885531-1 1.064555-2 1.071519+0 9.001818-3 1.161449+0 7.665584-3 1.258925+0 6.568459-3 1.396368+0 5.430753-3 1.717908+0 3.754256-3 1.949845+0 3.015192-3 2.213095+0 2.439575-3 2.540973+0 1.950730-3 2.917427+0 1.571302-3 3.388442+0 1.252765-3 3.935501+0 1.006330-3 4.623810+0 8.010092-4 5.432503+0 6.423433-4 6.456542+0 5.108374-4 7.673615+0 4.092063-4 9.332543+0 3.205549-4 1.161449+1 2.461221-4 1.462177+1 1.879124-4 1.972423+1 1.336789-4 2.570396+1 9.976861-5 3.507519+1 7.127847-5 5.188000+1 4.708570-5 8.035261+1 2.988403-5 1.333521+2 1.778297-5 2.511886+2 9.349420-6 5.011872+2 4.662472-6 1.995262+3 1.166766-6 1.000000+5 2.324800-8 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 9.561600-4 4.391100-4 1.000000+5 4.391100-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.561600-4 3.970300-7 1.000000+5 3.970300-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.561600-4 5.166530-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 7.148100-4 1.928900+5 7.480000-4 2.070406+5 7.673615-4 2.122769+5 7.950000-4 2.158972+5 8.350000-4 2.176886+5 8.850000-4 2.177428+5 9.225714-4 2.165349+5 9.660509-4 2.138339+5 1.011579-3 2.097445+5 1.059254-3 2.045315+5 1.110000-3 1.983960+5 1.171000-3 1.903469+5 1.230269-3 1.821617+5 1.303167-3 1.720471+5 1.380384-3 1.615640+5 1.450000-3 1.523828+5 1.570000-3 1.376528+5 1.659587-3 1.275158+5 1.778279-3 1.150070+5 1.950000-3 9.936400+4 2.089296-3 8.854685+4 2.264644-3 7.674562+4 2.511886-3 6.330549+4 2.691535-3 5.534474+4 2.985383-3 4.482521+4 3.235937-3 3.782741+4 3.548134-3 3.090790+4 3.900000-3 2.495972+4 4.315191-3 1.968014+4 4.731513-3 1.575250+4 5.308844-3 1.181488+4 5.821032-3 9.321824+3 6.456542-3 7.092286+3 7.244360-3 5.189542+3 8.035261-3 3.889176+3 8.912509-3 2.895800+3 1.000000-2 2.070776+3 1.122018-2 1.469380+3 1.273503-2 9.988370+2 1.445440-2 6.731360+2 1.621810-2 4.668774+2 1.819701-2 3.217101+2 2.065380-2 2.120813+2 2.344229-2 1.387755+2 2.691535-2 8.671483+1 3.090295-2 5.378750+1 3.589219-2 3.181738+1 4.216965-2 1.793509+1 5.011872-2 9.629554+0 6.095369-2 4.722600+0 7.943282-2 1.784575+0 1.303167-1 2.877612-1 1.584893-1 1.407331-1 1.883649-1 7.537310-2 2.213400-1 4.236551-2 2.540973-1 2.602716-2 2.884032-1 1.676250-2 3.235937-1 1.131639-2 3.630781-1 7.705138-3 4.027170-1 5.489977-3 4.466836-1 3.939134-3 4.954502-1 2.847962-3 5.495409-1 2.074053-3 6.165950-1 1.469975-3 6.760830-1 1.122735-3 7.328245-1 8.924887-4 8.128305-1 6.676895-4 8.609938-1 5.715249-4 9.120108-1 4.924949-4 9.549926-1 4.397724-4 1.000000+0 3.950660-4 1.059254+0 3.484369-4 1.122018+0 3.094052-4 1.202264+0 2.703264-4 1.303167+0 2.328103-4 1.819701+0 1.291879-4 2.044000+0 1.059067-4 2.344229+0 8.447170-5 2.691535+0 6.775444-5 3.090295+0 5.473442-5 3.589219+0 4.376845-5 4.216965+0 3.468252-5 4.954502+0 2.769604-5 5.888437+0 2.193891-5 7.000000+0 1.750000-5 8.511380+0 1.366695-5 1.035142+1 1.074950-5 1.258925+1 8.512691-6 1.513561+1 6.870366-6 2.041738+1 4.892319-6 2.800000+1 3.457200-6 3.845918+1 2.457714-6 5.688529+1 1.626597-6 9.332543+1 9.744125-7 1.862087+2 4.815246-7 3.715352+2 2.397016-7 1.479108+3 5.988986-8 1.000000+5 8.84370-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 7.148100-4 3.542700-4 1.000000+5 3.542700-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.148100-4 2.197600-7 1.000000+5 2.197600-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.148100-4 3.603202-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 6.766400-4 3.569826+5 7.413102-4 3.700618+5 7.650000-4 3.708957+5 8.222426-4 3.687408+5 8.609938-4 3.652470+5 9.015711-4 3.595869+5 9.500000-4 3.506784+5 1.000000-3 3.398280+5 1.059254-3 3.257462+5 1.110000-3 3.129210+5 1.174898-3 2.962718+5 1.244515-3 2.785766+5 1.333521-3 2.568811+5 1.462177-3 2.277416+5 1.548817-3 2.100942+5 1.650000-3 1.908972+5 1.800000-3 1.659336+5 1.950000-3 1.449684+5 2.089296-3 1.281256+5 2.317395-3 1.054986+5 2.511886-3 9.004694+4 2.786121-3 7.277484+4 3.019952-3 6.128173+4 3.349654-3 4.869666+4 3.650000-3 3.999594+4 4.073803-3 3.080763+4 4.415704-3 2.528924+4 4.900000-3 1.945704+4 5.370318-3 1.533901+4 5.956621-3 1.164524+4 6.683439-3 8.497887+3 7.413102-3 6.349969+3 8.128305-3 4.874110+3 9.015711-3 3.596856+3 1.023293-2 2.458303+3 1.150000-2 1.716504+3 1.303167-2 1.158173+3 1.462177-2 8.001033+2 1.643000-2 5.461774+2 1.840772-2 3.739616+2 2.065380-2 2.531630+2 2.344229-2 1.636482+2 2.660725-2 1.050293+2 3.054921-2 6.425409+1 3.507519-2 3.902200+1 4.073803-2 2.256595+1 4.786301-2 1.241641+1 5.754399-2 6.224161+0 7.161434-2 2.718300+0 1.202264-1 3.775803-1 1.462177-1 1.802631-1 1.717908-1 9.871990-2 2.000000-1 5.635106-2 2.299100-1 3.396127-2 2.600160-1 2.185555-2 2.884032-1 1.517973-2 3.162278-1 1.104677-2 3.467369-1 8.090387-3 3.801894-1 5.964665-3 4.120975-1 4.595989-3 4.518559-1 3.437211-3 4.954502-1 2.589508-3 5.432503-1 1.965182-3 5.956621-1 1.501629-3 6.456542-1 1.194254-3 6.918310-1 9.866266-4 7.585776-1 7.714217-4 8.317638-1 6.076288-4 9.015711-1 4.946893-4 9.549926-1 4.279921-4 1.000000+0 3.836822-4 1.047129+0 3.463170-4 1.109175+0 3.068481-4 1.174898+0 2.737101-4 1.258925+0 2.403370-4 1.364583+0 2.079455-4 1.531087+0 1.702147-4 1.819701+0 1.254803-4 2.044000+0 1.028403-4 2.344229+0 8.201171-5 2.691535+0 6.578141-5 3.090295+0 5.314289-5 3.589219+0 4.249526-5 4.168694+0 3.422912-5 4.897788+0 2.731986-5 5.821032+0 2.162869-5 6.918310+0 1.724976-5 8.413951+0 1.346174-5 1.011579+1 1.073128-5 1.244515+1 8.377504-6 1.513561+1 6.670631-6 2.041738+1 4.750052-6 2.818383+1 3.332807-6 3.890451+1 2.357248-6 5.688529+1 1.579312-6 9.332543+1 9.460824-7 1.862087+2 4.675157-7 3.715352+2 2.327318-7 1.479108+3 5.814855-8 1.000000+5 8.58660-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 6.766400-4 3.477200-4 1.000000+5 3.477200-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.766400-4 1.046400-7 1.000000+5 1.046400-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 6.766400-4 3.288154-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 3.585500-4 5.746885+4 3.587000-4 5.833104+4 3.592000-4 6.020640+4 3.596500-4 6.163860+4 3.601000-4 6.289620+4 3.610000-4 6.497640+4 3.618000-4 6.647700+4 3.630781-4 6.844191+4 3.640000-4 6.956880+4 3.655000-4 7.101900+4 3.705000-4 7.485000+4 3.720000-4 7.648620+4 3.731000-4 7.806960+4 3.743000-4 8.025720+4 3.754000-4 8.275860+4 3.765000-4 8.578200+4 3.777000-4 8.972460+4 3.790000-4 9.480360+4 3.801894-4 1.002340+5 3.815000-4 1.071294+5 3.830000-4 1.162752+5 3.845918-4 1.275474+5 3.865000-4 1.433316+5 3.890451-4 1.685203+5 3.940000-4 2.313744+5 3.965000-4 2.694402+5 3.985000-4 3.023904+5 4.007000-4 3.406404+5 4.030000-4 3.822576+5 4.050000-4 4.194660+5 4.073803-4 4.647316+5 4.090000-4 4.959588+5 4.115000-4 5.447292+5 4.140000-4 5.943084+5 4.168694-4 6.518759+5 4.200000-4 7.154460+5 4.230000-4 7.765740+5 4.260000-4 8.374380+5 4.290000-4 8.975940+5 4.320000-4 9.560820+5 4.350000-4 1.012548+6 4.387000-4 1.079028+6 4.430000-4 1.151274+6 4.470000-4 1.213806+6 4.518559-4 1.284409+6 4.570882-4 1.354201+6 4.630000-4 1.425522+6 4.680000-4 1.480002+6 4.740000-4 1.537272+6 4.800000-4 1.586256+6 4.850000-4 1.620528+6 4.930000-4 1.664784+6 5.011872-4 1.698626+6 5.120000-4 1.730598+6 5.233200-4 1.751046+6 5.350000-4 1.759848+6 5.500000-4 1.755606+6 5.650000-4 1.739328+6 5.821032-4 1.710214+6 6.025596-4 1.665135+6 6.237348-4 1.610993+6 6.500000-4 1.537650+6 6.760830-4 1.461701+6 7.079458-4 1.368088+6 7.413102-4 1.272298+6 7.852356-4 1.152550+6 8.350000-4 1.028106+6 8.810489-4 9.233541+5 9.500000-4 7.866120+5 1.015000-3 6.788880+5 1.071519-3 5.981322+5 1.161449-3 4.912309+5 1.258925-3 4.006729+5 1.350000-3 3.334074+5 1.496236-3 2.519630+5 1.621810-3 2.008892+5 1.800000-3 1.484682+5 1.950000-3 1.170072+5 2.162719-3 8.528299+4 2.350000-3 6.578520+4 2.630268-3 4.587169+4 2.900000-3 3.329946+4 3.198895-3 2.398135+4 3.589219-3 1.617289+4 4.000000-3 1.107114+4 4.415704-3 7.784402+3 4.897788-3 5.347366+3 5.500000-3 3.485334+3 6.165950-3 2.267813+3 6.998420-3 1.396429+3 7.852356-3 8.915829+2 8.810489-3 5.651773+2 9.885531-3 3.558566+2 1.096478-2 2.333321+2 1.258925-2 1.318781+2 1.428894-2 7.762062+1 1.621810-2 4.536869+1 1.862087-2 2.506395+1 2.113489-2 1.445254+1 2.454709-2 7.482951+0 2.917427-2 3.472434+0 3.548134-2 1.442571+0 4.518559-2 4.831588-1 8.222426-2 3.172615-2 1.161449-1 6.666322-3 1.348963-1 3.414041-3 1.513561-1 2.052772-3 1.717908-1 1.182717-3 1.949845-1 6.865422-4 2.213095-1 4.012750-4 2.483133-1 2.480245-4 2.754229-1 1.619285-4 3.054921-1 1.064441-4 3.349654-1 7.375565-5 3.672823-1 5.144855-5 4.027170-1 3.615222-5 4.365158-1 2.672971-5 4.731513-1 1.989027-5 5.128614-1 1.490075-5 5.559043-1 1.124168-5 6.000000-1 8.666785-6 6.531306-1 6.559944-6 7.161434-1 4.887899-6 8.035261-1 3.416113-6 8.511380-1 2.837974-6 8.912509-1 2.459889-6 9.332543-1 2.146540-6 9.660509-1 1.948686-6 1.000000+0 1.778921-6 1.035142+0 1.633911-6 1.071519+0 1.508851-6 1.122018+0 1.366947-6 1.174898+0 1.247337-6 1.244515+0 1.121402-6 1.333521+0 9.937614-7 1.513561+0 8.056954-7 1.905461+0 5.372846-7 2.113489+0 4.508516-7 2.426610+0 3.595904-7 2.786121+0 2.889468-7 3.198895+0 2.338269-7 3.715352+0 1.873047-7 4.365158+0 1.486785-7 5.128614+0 1.189203-7 6.095369+0 9.434091-8 7.244360+0 7.538791-8 8.912509+0 5.809685-8 1.071519+1 4.641632-8 1.288250+1 3.729917-8 1.548817+1 3.011931-8 2.065380+1 2.174089-8 2.851018+1 1.525968-8 3.935501+1 1.079585-8 5.754399+1 7.234368-9 9.440609+1 4.334577-9 1.883649+2 2.142250-9 3.758374+2 1.066553-9 1.496236+3 2.66499-10 1.000000+5 3.98090-12 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 3.585500-4 2.237500-4 1.000000+5 2.237500-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.585500-4 7.901700-9 1.000000+5 7.901700-9 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.585500-4 1.347921-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 3.486900-4 8.247360+4 3.487700-4 8.306240+4 3.492000-4 8.473040+4 3.498000-4 8.664880+4 3.507519-4 8.901187+4 3.518000-4 9.110000+4 3.532000-4 9.330480+4 3.548134-4 9.535473+4 3.598000-4 1.003456+5 3.616000-4 1.028592+5 3.630781-4 1.057495+5 3.643000-4 1.088880+5 3.653000-4 1.120504+5 3.665000-4 1.166288+5 3.677000-4 1.221320+5 3.690000-4 1.292096+5 3.705000-4 1.389160+5 3.720000-4 1.503856+5 3.735000-4 1.637480+5 3.752200-4 1.815765+5 3.770000-4 2.030472+5 3.843000-4 3.253792+5 3.860000-4 3.613608+5 3.880000-4 4.066104+5 3.900000-4 4.544768+5 3.920000-4 5.043608+5 3.940000-4 5.557320+5 3.960000-4 6.082304+5 3.981072-4 6.644420+5 4.007000-4 7.346440+5 4.030000-4 7.977640+5 4.050000-4 8.532320+5 4.080000-4 9.372960+5 4.100000-4 9.937680+5 4.130000-4 1.078712+6 4.165000-4 1.177160+6 4.200000-4 1.273664+6 4.230000-4 1.353800+6 4.265795-4 1.445337+6 4.300000-4 1.528184+6 4.335000-4 1.608048+6 4.370000-4 1.683048+6 4.415704-4 1.774333+6 4.470000-4 1.873688+6 4.530000-4 1.972784+6 4.580000-4 2.046584+6 4.630000-4 2.112288+6 4.700000-4 2.190216+6 4.760000-4 2.244512+6 4.841724-4 2.302024+6 4.930000-4 2.347248+6 5.040000-4 2.385136+6 5.150000-4 2.406448+6 5.260000-4 2.412736+6 5.400000-4 2.402616+6 5.580000-4 2.368920+6 5.754399-4 2.321151+6 5.956621-4 2.253837+6 6.200000-4 2.161888+6 6.500000-4 2.040192+6 6.839116-4 1.899885+6 7.244360-4 1.735321+6 7.650000-4 1.580064+6 8.128305-4 1.411665+6 8.511380-4 1.288320+6 9.015711-4 1.141409+6 9.752800-4 9.600774+5 1.035142-3 8.366173+5 1.110000-3 7.062224+5 1.202264-3 5.779328+5 1.288250-3 4.826381+5 1.412538-3 3.764044+5 1.531087-3 3.007384+5 1.678804-3 2.308331+5 1.819701-3 1.820912+5 2.018366-3 1.330715+5 2.187762-3 1.036868+5 2.454709-3 7.194032+4 2.691535-3 5.330166+4 2.985383-3 3.778046+4 3.349654-3 2.553408+4 3.715352-3 1.780365+4 4.073803-3 1.284954+4 4.570882-3 8.482347+3 5.128614-3 5.552263+3 5.821032-3 3.451907+3 6.531306-3 2.222254+3 7.328245-3 1.419677+3 8.222426-3 9.001585+2 9.225714-3 5.666734+2 1.035142-2 3.543097+2 1.174898-2 2.098155+2 1.333521-2 1.233049+2 1.513561-2 7.193709+1 1.717908-2 4.167454+1 1.972423-2 2.280154+1 2.264644-2 1.237790+1 2.630268-2 6.338095+0 3.126079-2 2.904408+0 3.801894-2 1.189610+0 4.841724-2 3.914557-1 8.222426-2 3.384931-2 1.202264-1 5.921906-3 1.364583-1 3.334152-3 1.513561-1 2.098238-3 1.819701-1 9.332238-4 2.018366-1 5.953166-4 2.238721-1 3.823774-4 2.483133-1 2.475634-4 2.754229-1 1.615045-4 3.162278-1 9.233828-5 3.427678-1 6.707501-5 3.672823-1 5.133710-5 3.890451-1 4.134147-5 4.168694-1 3.211304-5 4.415705-1 2.615335-5 4.731513-1 2.060749-5 5.128614-1 1.572062-5 5.688529-1 1.119188-5 6.025596-1 9.282628-6 6.531306-1 7.082792-6 6.918310-1 5.868572-6 7.328245-1 4.893320-6 7.673615-1 4.258053-6 8.128305-1 3.612758-6 8.609938-1 3.089812-6 9.120108-1 2.660705-6 9.549926-1 2.375792-6 1.000000+0 2.135015-6 1.059254+0 1.884108-6 1.122018+0 1.673465-6 1.202264+0 1.462059-6 1.303167+0 1.258810-6 1.840772+0 6.841922-7 2.065380+0 5.622597-7 2.371374+0 4.478552-7 2.722701+0 3.594467-7 3.126079+0 2.905530-7 3.630781+0 2.324737-7 4.265795+0 1.843200-7 5.011872+0 1.472709-7 5.956621+0 1.167157-7 7.079458+0 9.317644-8 8.709636+0 7.174151-8 1.047129+1 5.726736-8 1.273503+1 4.536926-8 1.531087+1 3.662562-8 2.065380+1 2.609056-8 2.851018+1 1.831307-8 3.935501+1 1.295581-8 5.754399+1 8.681730-9 9.549926+1 5.140680-9 1.905461+2 2.540962-9 3.801894+2 1.265175-9 1.513561+3 3.16159-10 1.000000+5 4.77740-12 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 3.486900-4 2.240900-4 1.000000+5 2.240900-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.486900-4 1.301300-7 1.000000+5 1.301300-7 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.486900-4 1.244699-4 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 2.947600-4 5.357081+4 4.120975-4 4.313054+4 4.365158-4 4.131743+4 5.300000-4 3.481260+4 5.688529-4 3.249914+4 6.309573-4 2.911693+4 7.079458-4 2.562848+4 7.800000-4 2.284920+4 9.015711-4 1.906661+4 1.000000-3 1.665178+4 1.174898-3 1.337654+4 1.380384-3 1.064178+4 1.603245-3 8.551224+3 1.900000-3 6.627980+3 2.300000-3 4.938020+3 2.754229-3 3.716402+3 3.349654-3 2.709678+3 4.027170-3 1.998269+3 4.841724-3 1.463007+3 5.821032-3 1.063193+3 7.000000-3 7.665460+2 8.413951-3 5.491134+2 1.011579-2 3.904028+2 1.216186-2 2.755773+2 1.462177-2 1.931235+2 1.757924-2 1.343517+2 2.113489-2 9.277563+1 2.540973-2 6.358672+1 3.054921-2 4.324556+1 3.672823-2 2.917884+1 4.415704-2 1.953230+1 5.308844-2 1.297194+1 6.382635-2 8.548040+0 7.673615-2 5.589840+0 9.332543-2 3.532515+0 1.148154-1 2.155637+0 1.531088-1 1.075983+0 2.570396-1 3.039702-1 3.198895-1 1.793829-1 3.845918-1 1.158661-1 4.518559-1 7.961051-2 5.188000-1 5.809432-2 6.000000-1 4.200954-2 6.918310-1 3.082321-2 7.943282-1 2.299975-2 9.015711-1 1.769226-2 1.011579+0 1.404001-2 1.202264+0 1.000995-2 1.348963+0 8.040724-3 1.531087+0 6.367501-3 1.737801+0 5.083776-3 1.972423+0 4.088284-3 2.264644+0 3.247941-3 2.600160+0 2.600315-3 3.000000+0 2.081400-3 3.467369+0 1.673952-3 4.027170+0 1.346167-3 4.731513+0 1.072663-3 5.559043+0 8.610586-4 6.606934+0 6.854312-4 7.943282+0 5.416653-4 9.660509+0 4.248554-4 1.216186+1 3.222117-4 1.500000+1 2.523100-4 2.018366+1 1.801188-4 2.722701+1 1.295466-4 3.758374+1 9.154770-5 5.495409+1 6.129432-5 8.810489+1 3.757680-5 1.698244+2 1.922057-5 3.311311+2 9.783869-6 1.318257+3 2.442728-6 1.000000+5 3.214400-8 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 2.947600-4 2.243000-4 1.000000+5 2.243000-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.947600-4 8.800100-9 1.000000+5 8.800100-9 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 2.947600-4 7.045120-5 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.374300-4 1.479976+5 2.386000-4 1.485864+5 2.400000-4 1.482938+5 2.425000-4 1.467176+5 2.454709-4 1.437654+5 2.485000-4 1.397472+5 2.524300-4 1.335947+5 2.580000-4 1.242812+5 2.710000-4 1.046528+5 2.851018-4 8.935760+4 2.930000-4 8.190980+4 3.162278-4 6.581098+4 3.320000-4 5.759380+4 3.430000-4 5.293120+4 3.550000-4 4.869120+4 3.672823-4 4.509349+4 3.801894-4 4.193865+4 3.981072-4 3.833919+4 4.200000-4 3.481620+4 4.415704-4 3.204026+4 4.623810-4 2.987723+4 4.850000-4 2.797460+4 5.150000-4 2.596640+4 5.559043-4 2.382936+4 6.025596-4 2.192178+4 6.700000-4 1.980378+4 9.225714-4 1.475155+4 1.059254-3 1.290020+4 1.202264-3 1.133598+4 1.380384-3 9.768538+3 1.548817-3 8.573937+3 1.757924-3 7.378917+3 2.018366-3 6.215895+3 2.317395-3 5.192056+3 2.650000-3 4.326380+3 3.000000-3 3.629020+3 3.400000-3 3.018680+3 3.845918-3 2.500806+3 4.365158-3 2.046173+3 4.954502-3 1.661857+3 5.623413-3 1.339814+3 6.382635-3 1.072331+3 7.328245-3 8.341165+2 8.317638-3 6.575431+2 9.549926-3 5.033143+2 1.083927-2 3.911248+2 1.230269-2 3.018386+2 1.396368-2 2.313500+2 1.584893-2 1.761317+2 1.819701-2 1.298252+2 2.089296-2 9.495601+1 2.398833-2 6.892711+1 2.754229-2 4.966938+1 3.162278-2 3.553929+1 3.672823-2 2.454052+1 4.265795-2 1.681934+1 5.011872-2 1.110992+1 5.956621-2 7.065472+0 7.161434-2 4.324620+0 9.015711-2 2.318973+0 1.148154-1 1.196453+0 2.041738-1 2.439337-1 2.540973-1 1.341055-1 3.019952-1 8.418064-2 3.548134-1 5.490299-2 4.073803-1 3.832906-2 4.623810-1 2.776042-2 5.248075-1 2.024802-2 5.956621-1 1.488265-2 6.683439-1 1.133125-2 7.498942-1 8.691077-3 8.511380-1 6.544286-3 9.332543-1 5.359906-3 1.011579+0 4.530600-3 1.122018+0 3.681022-3 1.250000+0 2.988200-3 1.396368+0 2.430927-3 1.621810+0 1.855259-3 1.840772+0 1.485944-3 2.089296+0 1.198493-3 2.398833+0 9.552747-4 2.754229+0 7.671526-4 3.162278+0 6.204600-4 3.672823+0 4.967251-4 4.315191+0 3.940604-4 5.069907+0 3.150193-4 6.025596+0 2.497892-4 7.161434+0 1.995120-4 8.810489+0 1.536774-4 1.071519+1 1.210389-4 1.300000+1 9.624000-5 1.548817+1 7.854372-5 2.065380+1 5.669599-5 2.851018+1 3.979350-5 3.981072+1 2.780975-5 5.821032+1 1.864040-5 9.549926+1 1.117076-5 1.905461+2 5.521515-6 3.801894+2 2.749263-6 1.513561+3 6.870028-7 1.000000+5 1.038100-8 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.374300-4 1.879000-4 1.000000+5 1.879000-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.374300-4 1.128800-8 1.000000+5 1.128800-8 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.374300-4 4.951871-5 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.894100-4 3.793188+5 2.089296-4 3.304382+5 2.150000-4 3.153768+5 2.213095-4 3.000596+5 2.371374-4 2.719644+5 2.600160-4 2.403521+5 2.730000-4 2.265824+5 2.951209-4 2.083009+5 3.890451-4 1.568124+5 4.518559-4 1.341112+5 5.188000-4 1.152777+5 5.956621-4 9.830395+4 6.760830-4 8.430845+4 7.673615-4 7.181262+4 8.810489-4 5.980713+4 1.011579-3 4.942856+4 1.162000-3 4.053307+4 1.350000-3 3.244900+4 1.584893-3 2.536563+4 1.840772-3 2.000430+4 2.162719-3 1.536770+4 2.511886-3 1.193745+4 2.900000-3 9.301120+3 3.311311-3 7.339752+3 3.758374-3 5.819445+3 4.315191-3 4.486413+3 4.954502-3 3.432181+3 5.623413-3 2.666797+3 6.382635-3 2.058989+3 7.244360-3 1.578902+3 8.317638-3 1.173084+3 9.440609-3 8.874552+2 1.083927-2 6.495494+2 1.244515-2 4.716940+2 1.428894-2 3.398557+2 1.640590-2 2.429472+2 1.883649-2 1.723219+2 2.162719-2 1.212795+2 2.483133-2 8.470306+1 2.851018-2 5.871696+1 3.273407-2 4.040253+1 3.801894-2 2.673435+1 4.415704-2 1.755303+1 5.128614-2 1.144056+1 6.025596-2 7.160281+0 7.161434-2 4.300546+0 8.709636-2 2.393142+0 1.071519-1 1.276530+0 1.883649-1 2.276577-1 2.344229-1 1.174003-1 2.754229-1 7.255851-2 3.198895-1 4.675302-2 3.630781-1 3.245314-2 4.073803-1 2.343935-2 4.570882-1 1.705047-2 5.128614-1 1.249180-2 5.754399-1 9.220724-3 6.382635-1 7.065667-3 7.079458-1 5.452374-3 7.852356-1 4.237606-3 8.709636-1 3.304274-3 9.332543-1 2.817773-3 9.885531-1 2.482622-3 1.071519+0 2.099384-3 1.161449+0 1.787783-3 1.258925+0 1.531903-3 1.396368+0 1.266512-3 1.717908+0 8.755293-4 1.949845+0 7.031617-4 2.213095+0 5.688768-4 2.540973+0 4.548739-4 2.917427+0 3.664055-4 3.388442+0 2.921327-4 3.935501+0 2.346692-4 4.623810+0 1.867870-4 5.432503+0 1.497877-4 6.456542+0 1.191249-4 7.673615+0 9.542393-5 9.332543+0 7.475061-5 1.161449+1 5.739293-5 1.462177+1 4.381960-5 1.972423+1 3.117331-5 2.600160+1 2.297446-5 3.548134+1 1.641782-5 5.248075+1 1.084836-5 8.222427+1 6.805094-6 1.396368+2 3.956869-6 2.540973+2 2.155004-6 5.069907+2 1.074794-6 2.018366+3 2.689665-7 1.000000+5 5.421200-9 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.894100-4 1.479200-4 1.000000+5 1.479200-4 1 90000 7 7 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.894100-4 8.315100-9 1.000000+5 8.315100-9 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.894100-4 4.148168-5 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.042300-4 9.049372+5 1.047129-4 1.021310+6 1.053000-4 1.172376+6 1.059254-4 1.348077+6 1.063000-4 1.458556+6 1.068000-4 1.608864+6 1.072000-4 1.730156+6 1.076000-4 1.850740+6 1.080000-4 1.968704+6 1.084000-4 2.082668+6 1.088000-4 2.191076+6 1.093000-4 2.317088+6 1.097000-4 2.409184+6 1.101000-4 2.492364+6 1.105000-4 2.566736+6 1.110000-4 2.646556+6 1.116000-4 2.722888+6 1.122018-4 2.778867+6 1.127000-4 2.810828+6 1.133000-4 2.833232+6 1.140000-4 2.840016+6 1.148154-4 2.826267+6 1.155000-4 2.800684+6 1.163000-4 2.758464+6 1.175000-4 2.678340+6 1.190000-4 2.562904+6 1.210000-4 2.402008+6 1.288250-4 1.852433+6 1.340000-4 1.566044+6 1.380384-4 1.371456+6 1.415000-4 1.221808+6 1.462177-4 1.042272+6 1.659587-4 5.532624+5 1.800000-4 3.712816+5 1.905461-4 2.821184+5 1.990000-4 2.302488+5 2.060000-4 1.971848+5 2.120000-4 1.744652+5 2.176900-4 1.568142+5 2.220000-4 1.455528+5 2.280000-4 1.324040+5 2.330000-4 1.233392+5 2.380000-4 1.157120+5 2.430000-4 1.093008+5 2.483133-4 1.036138+5 2.542400-4 9.841678+4 2.600160-4 9.432064+4 2.660725-4 9.087562+4 2.730000-4 8.781360+4 2.800000-4 8.549480+4 2.884032-4 8.353166+4 2.951209-4 8.247315+4 3.050000-4 8.154360+4 3.162278-4 8.113611+4 3.311311-4 8.124002+4 3.556600-4 8.213826+4 4.027170-4 8.412344+4 4.315191-4 8.474642+4 4.623810-4 8.473516+4 4.954502-4 8.406206+4 5.248075-4 8.297984+4 5.559043-4 8.142836+4 5.956621-4 7.902264+4 6.382635-4 7.610654+4 6.850000-4 7.266320+4 7.328245-4 6.905306+4 7.852356-4 6.513141+4 8.500000-4 6.042720+4 9.225714-4 5.548955+4 1.000000-3 5.062680+4 1.083927-3 4.588895+4 1.190000-3 4.059760+4 1.288250-3 3.635103+4 1.412538-3 3.174541+4 1.548817-3 2.751155+4 1.690000-3 2.386980+4 1.862087-3 2.024021+4 2.070000-3 1.675980+4 2.300000-3 1.377056+4 2.570396-3 1.109056+4 2.851018-3 8.988046+3 3.162278-3 7.226772+3 3.467369-3 5.913529+3 3.845918-3 4.682738+3 4.265795-3 3.679604+3 4.731513-3 2.869617+3 5.248075-3 2.221181+3 5.821032-3 1.706698+3 6.456542-3 1.302134+3 7.161434-3 9.866428+2 8.000000-3 7.280409+2 8.912509-3 5.373407+2 1.000000-2 3.857677+2 1.122018-2 2.748054+2 1.258925-2 1.943057+2 1.412538-2 1.364035+2 1.603245-2 9.169865+1 1.819701-2 6.115381+1 2.065380-2 4.046709+1 2.344229-2 2.656926+1 2.691535-2 1.665674+1 3.090295-2 1.036326+1 3.589219-2 6.149716+0 4.216965-2 3.477994+0 5.011872-2 1.873773+0 6.095369-2 9.215749-1 7.852356-2 3.646622-1 1.333521-1 5.198344-2 1.621810-1 2.546933-2 1.927525-1 1.366827-2 2.264644-1 7.700731-3 2.600160-1 4.742320-3 2.951209-1 3.061901-3 3.311311-1 2.069209-3 3.672823-1 1.463812-3 4.027170-1 1.082975-3 4.466836-1 7.786433-4 5.000000-1 5.481269-4 5.559043-1 3.964281-4 6.165950-1 2.909121-4 6.760830-1 2.224301-4 7.413102-1 1.713260-4 8.511380-1 1.170662-4 9.015711-1 1.004975-4 9.440609-1 8.945481-5 9.885531-1 8.011207-5 1.035142+0 7.223401-5 1.096478+0 6.392423-5 1.161449+0 5.695000-5 1.250000+0 4.953400-5 1.364583+0 4.229224-5 1.531087+0 3.461019-5 1.819701+0 2.551382-5 2.044000+0 2.091000-5 2.344229+0 1.667483-5 2.691535+0 1.337547-5 3.126079+0 1.061900-5 3.630781+0 8.496247-6 4.265795+0 6.736318-6 5.011872+0 5.382289-6 5.956621+0 4.265577-6 7.079458+0 3.405219-6 8.709636+0 2.621939-6 1.047129+1 2.092874-6 1.273503+1 1.658083-6 1.531087+1 1.338571-6 2.065380+1 9.535352-7 2.851018+1 6.692671-7 3.935501+1 4.734764-7 5.754399+1 3.172936-7 9.549926+1 1.878760-7 1.905461+2 9.286416-8 3.801894+2 4.623722-8 1.513561+3 1.155444-8 1.000000+5 1.74600-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.042300-4 1.042300-4 1.000000+5 1.042300-4 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.042300-4 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 9.711000-5 1.482949+6 9.740000-5 1.602246+6 9.795000-5 1.829784+6 9.850000-5 2.071878+6 9.900000-5 2.299956+6 9.940000-5 2.485746+6 9.980000-5 2.671290+6 1.002000-4 2.854578+6 1.007000-4 3.077586+6 1.012000-4 3.290058+6 1.016500-4 3.469392+6 1.020000-4 3.599334+6 1.025000-4 3.768672+6 1.030000-4 3.917064+6 1.035142-4 4.046509+6 1.040200-4 4.150534+6 1.045000-4 4.228080+6 1.050000-4 4.287984+6 1.055000-4 4.327692+6 1.060000-4 4.348956+6 1.065000-4 4.353690+6 1.072000-4 4.336440+6 1.080000-4 4.288800+6 1.090000-4 4.198146+6 1.100000-4 4.084488+6 1.115000-4 3.890976+6 1.135011-4 3.621131+6 1.220000-4 2.649930+6 1.275500-4 2.176581+6 1.318257-4 1.868990+6 1.364583-4 1.581715+6 1.430000-4 1.250142+6 1.566751-4 7.852502+5 1.659587-4 5.900272+5 1.740000-4 4.696176+5 1.800000-4 4.007166+5 1.862087-4 3.438333+5 1.905461-4 3.111716+5 1.950000-4 2.826804+5 2.000000-4 2.558616+5 2.041738-4 2.370297+5 2.089296-4 2.189122+5 2.137962-4 2.034991+5 2.190000-4 1.899516+5 2.240000-4 1.793226+5 2.290868-4 1.705079+5 2.344229-4 1.630591+5 2.400000-4 1.568922+5 2.454709-4 1.521551+5 2.520000-4 1.478676+5 2.580000-4 1.449756+5 2.660725-4 1.423121+5 2.754229-4 1.405489+5 2.851018-4 1.397922+5 2.985383-4 1.399212+5 3.200000-4 1.415436+5 3.630781-4 1.451231+5 3.890451-4 1.462413+5 4.168694-4 1.463197+5 4.430000-4 1.453836+5 4.731513-4 1.433189+5 5.011872-4 1.406884+5 5.308844-4 1.373156+5 5.688529-4 1.323932+5 6.100000-4 1.266744+5 6.531306-4 1.204567+5 7.000000-4 1.136862+5 7.500000-4 1.066938+5 8.035261-4 9.950551+4 8.709636-4 9.109829+4 9.440609-4 8.277947+4 1.035142-3 7.361531+4 1.135011-3 6.489268+4 1.230269-3 5.775401+4 1.364583-3 4.929472+4 1.513561-3 4.168802+4 1.659587-3 3.565216+4 1.800000-3 3.089304+4 1.972423-3 2.613020+4 2.187762-3 2.144830+4 2.426610-3 1.746349+4 2.700000-3 1.401324+4 2.985383-3 1.130303+4 3.311311-3 8.982997+3 3.672823-3 7.085512+3 4.073803-3 5.546052+3 4.518559-3 4.307284+3 5.011872-3 3.319855+3 5.559043-3 2.539440+3 6.165950-3 1.928465+3 6.839116-3 1.454225+3 7.585776-3 1.088921+3 8.511380-3 7.833495+2 9.440609-3 5.783866+2 1.047129-2 4.242732+2 1.174898-2 2.984461+2 1.318257-2 2.083477+2 1.479108-2 1.443869+2 1.659587-2 9.927201+1 1.905461-2 6.282010+1 2.264644-2 3.514408+1 2.511886-2 2.466331+1 2.786121-2 1.716697+1 3.126079-2 1.139455+1 3.548134-2 7.204367+0 4.265795-2 3.660603+0 5.069907-2 1.926936+0 6.237348-2 8.846743-1 8.222426-2 3.104719-1 1.188502-1 7.648152-2 1.445440-1 3.655582-2 1.698244-1 2.003084-2 1.972423-1 1.154096-2 2.238721-1 7.285292-3 2.511886-1 4.825987-3 2.818383-1 3.219607-3 3.162278-1 2.164593-3 3.467369-1 1.585617-3 3.801894-1 1.169370-3 4.073803-1 9.354375-4 4.466836-1 7.000126-4 4.897788-1 5.275401-4 5.432503-1 3.865694-4 5.956621-1 2.953658-4 6.531306-1 2.273803-4 7.079458-1 1.820337-4 7.673615-1 1.466532-4 8.609938-1 1.084496-4 9.120108-1 9.385121-5 9.660509-1 8.179780-5 1.011579+0 7.372940-5 1.071519+0 6.519859-5 1.148154+0 5.668921-5 1.230269+0 4.963806-5 1.333521+0 4.280804-5 1.819701+0 2.472705-5 2.044000+0 2.026900-5 2.344229+0 1.616364-5 2.691535+0 1.296517-5 3.090295+0 1.047453-5 3.589219+0 8.375924-6 4.168694+0 6.746629-6 4.897788+0 5.384755-6 5.821032+0 4.263158-6 6.918310+0 3.400010-6 8.413951+0 2.653307-6 1.011579+1 2.115108-6 1.244515+1 1.651223-6 1.513561+1 1.314826-6 2.041738+1 9.362420-7 2.818383+1 6.569105-7 3.890451+1 4.646112-7 5.754399+1 3.075602-7 9.440609+1 1.842764-7 1.883649+2 9.107746-8 3.758374+2 4.534315-8 1.496236+3 1.133046-8 1.000000+5 1.69240-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 9.711000-5 9.711000-5 1.000000+5 9.711000-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 9.711000-5 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.055000-5 2.809460+5 5.120000-5 2.666280+5 5.248075-5 2.386458+5 5.400000-5 2.113120+5 5.559043-5 1.881493+5 5.688529-5 1.725716+5 5.850000-5 1.564546+5 6.000000-5 1.441432+5 6.165950-5 1.328735+5 6.350000-5 1.226244+5 6.531306-5 1.143166+5 6.730000-5 1.067766+5 6.918310-5 1.007964+5 7.161434-5 9.434165+4 7.413102-5 8.878509+4 7.800000-5 8.181840+4 8.222426-5 7.574133+4 8.709636-5 7.011139+4 9.225714-5 6.533496+4 9.800000-5 6.111180+4 1.047129-4 5.725089+4 1.135011-4 5.333311+4 1.364583-4 4.572067+4 1.548817-4 4.081707+4 1.840772-4 3.470696+4 2.041738-4 3.130111+4 2.300000-4 2.757140+4 2.691535-4 2.314667+4 3.054921-4 1.996677+4 3.672823-4 1.594346+4 4.265795-4 1.318419+4 5.128614-4 1.034986+4 6.165950-4 8.053409+3 7.413102-4 6.214693+3 8.912509-4 4.756839+3 1.071519-3 3.613468+3 1.303167-3 2.678561+3 1.640590-3 1.868460+3 2.113489-3 1.247187+3 2.691535-3 8.418543+2 3.388442-3 5.747572+2 4.168694-3 4.048267+2 5.128614-3 2.829869+2 6.237348-3 2.002808+2 7.585776-3 1.406777+2 8.810489-3 1.067541+2 1.059254-2 7.546131+1 1.303167-2 5.066268+1 1.603245-2 3.374953+1 2.000000-2 2.173911+1 2.426610-2 1.468704+1 2.884032-2 1.027466+1 3.349654-2 7.486110+0 3.981072-2 5.157514+0 4.786301-2 3.439125+0 5.754399-2 2.275175+0 6.918310-2 1.493972+0 8.317638-2 9.738782-1 1.023293-1 5.964522-1 1.303167-1 3.338965-1 1.621810-1 1.963463-1 2.540973-1 6.563461-2 3.198895-1 3.766836-2 3.845918-1 2.433029-2 4.518559-1 1.671705-2 5.188000-1 1.219899-2 6.000000-1 8.821500-3 6.918310-1 6.472704-3 7.943282-1 4.829993-3 9.015711-1 3.715179-3 1.000000+0 3.016400-3 1.202264+0 2.102342-3 1.348963+0 1.688652-3 1.531087+0 1.337226-3 1.737801+0 1.067645-3 1.972423+0 8.585872-4 2.264644+0 6.821021-4 2.600160+0 5.460961-4 3.000000+0 4.371200-4 3.467369+0 3.515439-4 4.027170+0 2.827020-4 4.731513+0 2.252653-4 5.559043+0 1.808334-4 6.683439+0 1.418113-4 8.035261+0 1.121179-4 9.772372+0 8.798017-5 1.230269+1 6.675821-5 1.500000+1 5.298800-5 2.018366+1 3.782709-5 2.722701+1 2.720562-5 3.715352+1 1.946311-5 5.495409+1 1.287236-5 8.709636+1 7.985713-6 1.621810+2 4.230479-6 2.917427+2 2.334537-6 1.161449+3 5.823680-7 1.000000+5 6.750600-9 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.055000-5 5.055000-5 1.000000+5 5.055000-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.055000-5 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.352000-5 5.462980+6 3.410000-5 5.368020+6 3.480000-5 5.214040+6 3.550000-5 5.038220+6 3.650000-5 4.773440+6 3.780000-5 4.422720+6 3.935501-5 4.019622+6 4.073803-5 3.680925+6 4.265795-5 3.249222+6 4.472100-5 2.838047+6 4.731513-5 2.396256+6 5.128614-5 1.863393+6 6.025596-5 1.118894+6 6.760830-5 7.836495+5 7.762471-5 5.158198+5 1.035142-4 2.177072+5 1.202264-4 1.399099+5 1.350000-4 1.000486+5 1.496236-4 7.483319+4 1.640590-4 5.812129+4 1.800000-4 4.540020+4 1.950000-4 3.693920+4 2.089296-4 3.112075+4 2.238721-4 2.639390+4 2.400000-4 2.252700+4 2.580000-4 1.925240+4 2.754229-4 1.681597+4 2.951209-4 1.468120+4 3.162278-4 1.291689+4 3.388442-4 1.145214+4 3.657200-4 1.010360+4 3.935501-4 9.021599+3 4.265795-4 8.024675+3 4.677351-4 7.079906+3 5.188000-4 6.198685+3 5.821032-4 5.388499+3 7.000000-4 4.347320+3 9.660509-4 3.005602+3 1.174898-3 2.383505+3 1.396368-3 1.928710+3 1.640590-3 1.571421+3 1.927525-3 1.270592+3 2.238721-3 1.035797+3 2.600160-3 8.382769+2 3.000000-3 6.798200+2 3.467369-3 5.456162+2 3.935501-3 4.470566+2 4.518559-3 3.563001+2 5.188000-3 2.817772+2 5.888437-3 2.255896+2 6.760830-3 1.756401+2 7.673615-3 1.386544+2 8.810489-3 1.063958+2 9.885531-3 8.469575+1 1.059254-2 7.324799+1 1.303167-2 4.697396+1 1.364583-2 4.270312+1 1.584893-2 3.195969+1 1.659587-2 2.911893+1 1.798871-2 2.443634+1 1.972423-2 1.982793+1 2.398833-2 1.259349+1 2.754229-2 9.073529+0 3.198895-2 6.311417+0 3.715352-2 4.356186+0 4.315191-2 2.984376+0 5.069907-2 1.970575+0 6.025596-2 1.253077+0 7.244360-2 7.664213-1 8.912509-2 4.372535-1 1.148154-1 2.183514-1 2.041738-1 4.453470-2 2.540973-1 2.448576-2 3.019952-1 1.537090-2 3.548134-1 1.002508-2 4.073803-1 6.998783-3 4.623810-1 5.069081-3 5.248075-1 3.697375-3 5.956621-1 2.717658-3 6.683439-1 2.069088-3 7.498942-1 1.586957-3 8.511380-1 1.195002-3 9.332543-1 9.787809-4 1.011579+0 8.273597-4 1.122018+0 6.722199-4 1.250000+0 5.457000-4 1.396368+0 4.439249-4 1.621810+0 3.387895-4 1.840772+0 2.713483-4 2.089296+0 2.188702-4 2.398833+0 1.744599-4 2.754229+0 1.401015-4 3.162278+0 1.133088-4 3.672823+0 9.071100-5 4.315191+0 7.196208-5 5.069907+0 5.752785-5 6.025596+0 4.561534-5 7.161434+0 3.643337-5 8.810489+0 2.806492-5 1.059254+1 2.241234-5 1.273503+1 1.800379-5 1.531087+1 1.453431-5 2.065380+1 1.035333-5 2.851018+1 7.266896-6 3.935501+1 5.141021-6 5.754399+1 3.445153-6 9.549926+1 2.039906-6 1.905461+2 1.008318-6 3.801894+2 5.020497-7 1.513561+3 1.254548-7 1.000000+5 1.895800-9 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.352000-5 3.352000-5 1.000000+5 3.352000-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.352000-5 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.501000-5 1.186524+7 2.580000-5 1.101068+7 2.660725-5 1.016584+7 2.800000-5 8.835280+6 2.985383-5 7.348849+6 3.198895-5 5.983511+6 3.427678-5 4.840265+6 3.715352-5 3.753113+6 4.677351-5 1.788956+6 5.069907-5 1.388055+6 5.500000-5 1.081708+6 5.900000-5 8.782920+5 6.309573-5 7.244982+5 6.683439-5 6.177824+5 7.079458-5 5.297913+5 7.500000-5 4.568680+5 8.000000-5 3.899612+5 8.511380-5 3.373236+5 9.120108-5 2.891840+5 9.800000-5 2.483144+5 1.047129-4 2.172140+5 1.122018-4 1.901866+5 1.202264-4 1.676978+5 1.288250-4 1.489090+5 1.380384-4 1.330905+5 1.500000-4 1.171268+5 1.659587-4 1.010384+5 1.862087-4 8.604071+4 2.113489-4 7.268362+4 2.570396-4 5.659281+4 3.935501-4 3.307436+4 4.897788-4 2.493893+4 5.821032-4 1.982522+4 6.839116-4 1.590359+4 8.128305-4 1.246710+4 9.660509-4 9.691135+3 1.135011-3 7.605513+3 1.333521-3 5.926525+3 1.566751-3 4.585029+3 1.840772-3 3.521913+3 2.213095-3 2.584078+3 2.600160-3 1.955960+3 3.019952-3 1.499458+3 3.507519-3 1.141062+3 4.073803-3 8.614453+2 4.677351-3 6.598341+2 5.370318-3 5.018063+2 6.165950-3 3.787879+2 7.079458-3 2.838083+2 8.128305-3 2.110404+2 9.332543-3 1.557250+2 1.083927-2 1.111366+2 1.250010-2 7.997461+1 1.428894-2 5.829876+1 1.621810-2 4.291841+1 1.840772-2 3.136437+1 2.113489-2 2.210561+1 2.426610-2 1.545775+1 2.786121-2 1.072791+1 3.198895-2 7.391506+0 3.715352-2 4.898450+0 4.265795-2 3.327168+0 4.954502-2 2.172475+0 5.821032-2 1.362372+0 6.839116-2 8.477193-1 8.317638-2 4.725308-1 1.047129-1 2.355516-1 1.905461-1 3.785076-2 2.344229-1 2.021876-2 2.754229-1 1.249746-2 3.198895-1 8.053266-3 3.630781-1 5.590345-3 4.073803-1 4.037829-3 4.570882-1 2.937425-3 5.128614-1 2.152280-3 5.754399-1 1.588920-3 6.382635-1 1.217703-3 7.079458-1 9.397704-4 7.852356-1 7.305002-4 8.709636-1 5.697714-4 9.332543-1 4.859792-4 9.885531-1 4.282374-4 1.071519+0 3.621796-4 1.161449+0 3.084365-4 1.258925+0 2.642859-4 1.396368+0 2.184867-4 1.717908+0 1.510237-4 1.949845+0 1.212935-4 2.213095+0 9.813478-5 2.540973+0 7.846850-5 2.917427+0 6.320502-5 3.388442+0 5.039213-5 3.935501+0 4.047976-5 4.623810+0 3.222124-5 5.432503+0 2.583847-5 6.456542+0 2.054828-5 7.673615+0 1.646014-5 9.440609+0 1.271346-5 1.174898+1 9.765366-6 1.479108+1 7.459525-6 2.000000+1 5.294100-6 2.691535+1 3.816387-6 3.672823+1 2.729581-6 5.432503+1 1.804811-6 8.609938+1 1.119479-6 1.531087+2 6.214465-7 2.691535+2 3.507641-7 5.370318+2 1.749725-7 2.137962+3 4.379824-8 1.000000+5 9.35150-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.501000-5 2.501000-5 1.000000+5 2.501000-5 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.501000-5 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 5.620000-6 5.145611+6 5.710000-6 5.327960+6 5.900000-6 5.650848+6 6.100000-6 5.964520+6 6.350000-6 6.317648+6 6.606934-6 6.640640+6 6.850000-6 6.911280+6 7.200000-6 7.249096+6 7.500000-6 7.494688+6 7.852356-6 7.730410+6 8.222426-6 7.925658+6 8.609938-6 8.078178+6 9.015711-6 8.183376+6 9.440609-6 8.239554+6 9.930000-6 8.238640+6 1.035142-5 8.186905+6 1.083927-5 8.075661+6 1.135011-5 7.907416+6 1.180000-5 7.723040+6 1.230269-5 7.484683+6 1.273503-5 7.258210+6 1.330000-5 6.938208+6 1.380384-5 6.637237+6 1.445440-5 6.239402+6 1.513561-5 5.824380+6 1.590000-5 5.371000+6 1.678804-5 4.869778+6 1.770000-5 4.394920+6 1.883649-5 3.864471+6 2.018366-5 3.324036+6 2.187762-5 2.766400+6 2.426610-5 2.165812+6 2.754229-5 1.592945+6 3.126079-5 1.162691+6 3.427678-5 9.188752+5 3.715352-5 7.434481+5 4.000000-5 6.083920+5 4.315191-5 4.917265+5 4.650000-5 3.957664+5 5.069907-5 3.052931+5 5.500000-5 2.372944+5 6.025596-5 1.777897+5 6.683439-5 1.271509+5 7.328245-5 9.372654+4 7.852356-5 7.418216+4 8.511380-5 5.605968+4 9.120108-5 4.378060+4 9.800000-5 3.362800+4 1.071519-4 2.402363+4 1.376300-4 9.179378+3 1.462177-4 7.326369+3 1.531087-4 6.207848+3 1.590000-4 5.450056+3 1.640590-4 4.914473+3 1.698244-4 4.410192+3 1.757924-4 3.987939+3 1.819701-4 3.634013+3 1.883649-4 3.336770+3 1.949845-4 3.086903+3 2.000000-4 2.928992+3 2.065380-4 2.769656+3 2.137962-4 2.628070+3 2.213095-4 2.511927+3 2.290868-4 2.417005+3 2.371374-4 2.339860+3 2.454709-4 2.277641+3 2.570396-4 2.213805+3 2.691535-4 2.167491+3 2.851018-4 2.128115+3 3.349654-4 2.052229+3 3.981072-4 1.988890+3 4.315191-4 1.938340+3 4.677351-4 1.876976+3 5.011872-4 1.815794+3 5.432503-4 1.733054+3 5.888437-4 1.641691+3 6.382635-4 1.543398+3 6.918310-4 1.440589+3 7.498942-4 1.335664+3 8.128305-4 1.230003+3 8.810489-4 1.125029+3 9.549926-4 1.022513+3 1.047129-3 9.100578+2 1.148154-3 8.040049+2 1.258925-3 7.051967+2 1.380384-3 6.142086+2 1.513561-3 5.313432+2 1.659587-3 4.566935+2 1.819701-3 3.899921+2 2.018366-3 3.240567+2 2.238721-3 2.671650+2 2.483133-3 2.185832+2 2.754229-3 1.775079+2 3.054921-3 1.432868+2 3.349654-3 1.176510+2 3.672823-3 9.595228+1 4.073803-3 7.568235+1 4.518559-3 5.922403+1 5.011872-3 4.599688+1 5.559043-3 3.546683+1 6.165950-3 2.715305+1 6.839116-3 2.064454+1 7.585776-3 1.558956+1 8.413951-3 1.169407+1 9.440609-3 8.431478+0 1.059254-2 6.031378+0 1.188502-2 4.281497+0 1.333521-2 3.016974+0 1.500000-2 2.094314+0 1.698244-2 1.412457+0 1.949845-2 9.042365-1 2.290868-2 5.336313-1 2.540973-2 3.779973-1 2.851018-2 2.552853-1 3.235937-2 1.645286-1 3.715352-2 1.011007-1 4.677351-2 4.448390-2 5.688529-2 2.196254-2 6.918310-2 1.075904-2 1.318257-1 1.006627-3 1.621810-1 4.731263-4 1.927525-1 2.539049-4 2.264644-1 1.430410-4 2.600160-1 8.808302-5 2.951209-1 5.686826-5 3.311311-1 3.842816-5 3.672823-1 2.718511-5 4.027170-1 2.011487-5 4.466836-1 1.446882-5 5.011872-1 1.011459-5 5.559043-1 7.367495-6 6.165950-1 5.406195-6 6.760830-1 4.135468-6 7.413102-1 3.187457-6 8.511380-1 2.180646-6 9.015711-1 1.872937-6 9.440609-1 1.667669-6 9.885531-1 1.493830-6 1.035142+0 1.347083-6 1.096478+0 1.192229-6 1.161449+0 1.062216-6 1.250000+0 9.239100-7 1.364583+0 7.887592-7 1.531087+0 6.453804-7 1.819701+0 4.757261-7 2.044000+0 3.899300-7 2.344229+0 3.109791-7 2.691535+0 2.494306-7 3.090295+0 2.015008-7 3.589219+0 1.611322-7 4.216965+0 1.276824-7 4.954502+0 1.019603-7 5.888437+0 8.076585-8 7.000000+0 6.442600-8 8.609938+0 4.959725-8 1.035142+1 3.957290-8 1.258925+1 3.133891-8 1.513561+1 2.529304-8 2.041738+1 1.801050-8 2.818383+1 1.263683-8 3.935501+1 8.829226-9 5.754399+1 5.916653-9 9.440609+1 3.545067-9 1.883649+2 1.752084-9 3.758374+2 8.72270-10 1.496236+3 2.17957-10 1.000000+5 3.25580-12 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 5.620000-6 5.620000-6 1.000000+5 5.620000-6 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 5.620000-6 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 4.980000-6 1.017887+7 4.987000-6 1.022034+7 5.200000-6 1.077569+7 5.420000-6 1.127172+7 5.623413-6 1.166899+7 5.850000-6 1.205160+7 6.165950-6 1.249025+7 6.500000-6 1.284936+7 6.850000-6 1.312824+7 7.244360-6 1.334473+7 7.673615-6 1.347396+7 8.128305-6 1.350627+7 8.609938-6 1.344109+7 9.120108-6 1.327530+7 9.660509-6 1.300637+7 1.020000-5 1.265652+7 1.071519-5 1.225955+7 1.122018-5 1.182255+7 1.180000-5 1.128002+7 1.230269-5 1.078608+7 1.290000-5 1.018218+7 1.350000-5 9.569664+6 1.420000-5 8.866776+6 1.496236-5 8.128594+6 1.570000-5 7.455576+6 1.659587-5 6.699731+6 1.757924-5 5.951853+6 1.883649-5 5.122524+6 2.018366-5 4.377797+6 2.213095-5 3.519708+6 2.454709-5 2.733124+6 2.800000-5 1.965264+6 3.126079-5 1.480819+6 3.427678-5 1.161604+6 3.715352-5 9.330238+5 4.000000-5 7.586484+5 4.315191-5 6.088022+5 4.650000-5 4.867536+5 5.069907-5 3.724319+5 5.500000-5 2.873556+5 6.025596-5 2.134702+5 6.760830-5 1.454404+5 7.500000-5 1.020256+5 8.128305-5 7.695017+4 8.709636-5 6.006985+4 9.500000-5 4.365756+4 1.059254-4 2.897450+4 1.216186-4 1.717207+4 1.303167-4 1.330618+4 1.370000-4 1.113174+4 1.428894-4 9.640541+3 1.480000-4 8.594388+3 1.531087-4 7.739873+3 1.584893-4 7.010742+3 1.640590-4 6.398583+3 1.698244-4 5.882970+3 1.757924-4 5.447611+3 1.819701-4 5.079435+3 1.890300-4 4.738955+3 1.949845-4 4.504513+3 2.000000-4 4.337448+3 2.065380-4 4.174337+3 2.137962-4 4.028998+3 2.213095-4 3.909777+3 2.290868-4 3.812597+3 2.398833-4 3.711369+3 2.511886-4 3.636175+3 2.754229-4 3.516025+3 3.054921-4 3.415696+3 3.672823-4 3.262322+3 4.000000-4 3.174877+3 4.365158-4 3.044785+3 4.731513-4 2.911098+3 5.069907-4 2.785523+3 5.495409-4 2.626096+3 5.956621-4 2.458345+3 6.456542-4 2.285341+3 7.000000-4 2.109828+3 7.585776-4 1.936185+3 8.222426-4 1.765399+3 9.015711-4 1.576838+3 9.885531-4 1.397690+3 1.083927-3 1.229828+3 1.188502-3 1.074434+3 1.303167-3 9.322318+2 1.428894-3 8.035031+2 1.584893-3 6.747143+2 1.757924-3 5.622039+2 1.949845-3 4.647600+2 2.137962-3 3.896215+2 2.371374-3 3.170465+2 2.630268-3 2.559904+2 2.917427-3 2.051404+2 3.235937-3 1.632678+2 3.589219-3 1.290051+2 3.981072-3 1.011679+2 4.415704-3 7.871690+1 4.897788-3 6.078823+1 5.432503-3 4.660225+1 6.025596-3 3.547106+1 6.683439-3 2.680393+1 7.413102-3 2.011291+1 8.222426-3 1.498964+1 9.120108-3 1.109760+1 1.011579-2 8.162531+0 1.135011-2 5.758455+0 1.273503-2 4.031363+0 1.428894-2 2.801386+0 1.584893-2 2.005401+0 1.798871-2 1.322718+0 2.113489-2 7.719908-1 2.398833-2 5.029123-1 2.600160-2 3.808713-1 2.917427-2 2.539418-1 3.311311-2 1.612503-1 3.801894-2 9.748476-2 4.677351-2 4.546086-2 5.688529-2 2.193391-2 6.760830-2 1.144619-2 1.216186-1 1.231817-3 1.479108-1 5.895728-4 1.737801-1 3.234696-4 2.000000-1 1.929800-4 2.264644-1 1.229834-4 2.540973-1 8.154683-5 2.851018-1 5.446685-5 3.198895-1 3.667082-5 3.507519-1 2.690026-5 3.845918-1 1.986893-5 4.120975-1 1.591579-5 4.518559-1 1.192769-5 4.954502-1 9.001772-6 5.432503-1 6.834323-6 5.956621-1 5.225945-6 6.456542-1 4.159961-6 6.998420-1 3.332545-6 7.585776-1 2.687302-6 8.511380-1 1.992587-6 9.015711-1 1.725468-6 9.549926-1 1.504004-6 1.000000+0 1.355000-6 1.059254+0 1.197725-6 1.135011+0 1.040763-6 1.216186+0 9.106062-7 1.333521+0 7.680542-7 1.778279+0 4.610983-7 2.018366+0 3.709686-7 2.317395+0 2.951222-7 2.660725+0 2.365677-7 3.054921+0 1.909955-7 3.548134+0 1.526372-7 4.120975+0 1.228795-7 4.841724+0 9.802357-8 5.754399+0 7.756571-8 6.839116+0 6.183197-8 8.317638+0 4.822950-8 1.011579+1 3.789785-8 1.244515+1 2.958566-8 1.513561+1 2.355807-8 2.041738+1 1.677510-8 2.800000+1 1.185400-8 3.935501+1 8.223563-9 5.754399+1 5.510753-9 9.549926+1 3.262993-9 1.905461+2 1.612913-9 3.801894+2 8.03068-10 1.513561+3 2.00684-10 1.000000+5 3.03240-12 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 4.980000-6 4.980000-6 1.000000+5 4.980000-6 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 4.980000-6 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.970000-6 9.221320+6 6.237348-6 7.944548+6 6.760830-6 6.001102+6 8.511380-6 2.719545+6 1.023293-5 1.452875+6 1.202264-5 8.447440+5 1.364583-5 5.552494+5 1.513561-5 3.962244+5 1.659587-5 2.955156+5 1.800000-5 2.296520+5 1.950000-5 1.804548+5 2.089296-5 1.476399+5 2.230000-5 1.230404+5 2.371374-5 1.043686+5 2.511886-5 9.008471+4 2.660725-5 7.831502+4 2.818383-5 6.858550+4 2.985383-5 6.050180+4 3.162278-5 5.375049+4 3.350000-5 4.807760+4 3.570000-5 4.284000+4 3.801894-5 3.848646+4 4.073803-5 3.444478+4 4.415704-5 3.047978+4 4.841724-5 2.670882+4 5.432503-5 2.284933+4 6.309573-5 1.881365+4 8.035261-5 1.392277+4 9.885531-5 1.083873+4 1.109175-4 9.486371+3 1.273503-4 8.140991+3 1.513561-4 6.750228+3 1.678804-4 5.997765+3 1.862087-4 5.286086+3 2.162719-4 4.363072+3 2.630268-4 3.364383+3 3.801894-4 2.052474+3 4.216965-4 1.777770+3 6.237348-4 1.021058+3 7.498942-4 7.788485+2 9.440609-4 5.524336+2 1.174898-3 3.947092+2 1.496236-3 2.699544+2 1.927525-3 1.800046+2 2.540973-3 1.147606+2 2.985740-3 8.793360+1 3.467369-3 6.779801+1 5.069907-3 3.530329+1 6.095369-3 2.558623+1 7.413102-3 1.798964+1 9.015711-3 1.255688+1 1.096478-2 8.700772+0 1.333521-2 5.983988+0 1.621810-2 4.083943+0 1.972423-2 2.765256+0 2.371374-2 1.901822+0 2.851018-2 1.298585+0 3.311311-2 9.461426-1 3.981072-2 6.359105-1 4.786301-2 4.241168-1 5.688529-2 2.879899-1 6.839116-2 1.891848-1 8.222426-2 1.233851-1 1.011580-1 7.559892-2 1.288250-1 4.233690-2 1.603245-1 2.490488-2 2.540973-1 8.095766-3 3.162278-1 4.777136-3 3.801894-1 3.085003-3 4.466836-1 2.119383-3 5.128614-1 1.546443-3 5.888437-1 1.136378-3 6.760830-1 8.413409-4 7.673615-1 6.431324-4 8.709636-1 4.949393-4 9.885531-1 3.837104-4 1.202264+0 2.615710-4 1.348963+0 2.100623-4 1.513561+0 1.697794-4 1.717908+0 1.354438-4 1.949845+0 1.088604-4 2.238721+0 8.643745-5 2.570396+0 6.915943-5 2.951209+0 5.573799-5 3.427678+0 4.446527-5 4.000000+0 3.549600-5 4.677351+0 2.846300-5 5.495409+0 2.283692-5 6.606934+0 1.789925-5 7.943282+0 1.414499-5 9.660509+0 1.109481-5 1.216186+1 8.414304-6 1.500000+1 6.588900-6 2.018366+1 4.703743-6 2.722701+1 3.382916-6 3.758374+1 2.390706-6 5.495409+1 1.600658-6 8.810489+1 9.812724-7 1.717908+2 4.960930-7 3.388442+2 2.496391-7 1.348963+3 6.233582-8 1.000000+5 8.39410-10 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.970000-6 5.970000-6 1.000000+5 5.970000-6 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.970000-6 0.0 1.000000+5 1.000000+5 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.733400-7 1.025500+0 1.090210-6 1.025800+0 1.393720-6 1.026100+0 1.748590-6 1.026600+0 2.465110-6 1.027100+0 3.353830-6 1.027500+0 4.200640-6 1.028100+0 5.719090-6 1.028750+0 7.733400-6 1.029500+0 1.058340-5 1.030100+0 1.330990-5 1.031000+0 1.821240-5 1.032000+0 2.491920-5 1.033200+0 3.490750-5 1.034000+0 4.285220-5 1.035300+0 5.816580-5 1.036640+0 7.733400-5 1.038200+0 1.043650-4 1.039700+0 1.355910-4 1.041500+0 1.804020-4 1.043800+0 2.504040-4 1.046400+0 3.483900-4 1.048300+0 4.337550-4 1.051200+0 5.883790-4 1.054080+0 7.733400-4 1.057700+0 1.054110-3 1.061100+0 1.371130-3 1.065100+0 1.815220-3 1.070400+0 2.532420-3 1.076200+0 3.499790-3 1.080600+0 4.370670-3 1.087100+0 5.888740-3 1.093710+0 7.733400-3 1.102600+0 1.072230-2 1.110700+0 1.398420-2 1.120600+0 1.870690-2 1.133300+0 2.601130-2 1.147500+0 3.591440-2 1.158200+0 4.463260-2 1.174100+0 5.965150-2 1.190110+0 7.733400-2 1.205100+0 9.625420-2 1.227500+0 1.288150-1 1.250000+0 1.665000-1 1.265600+0 1.953720-1 1.294900+0 2.552390-1 1.331800+0 3.400170-1 1.362600+0 4.176320-1 1.397000+0 5.104830-1 1.433800+0 6.156220-1 1.477900+0 7.476160-1 1.500000+0 8.157000-1 1.562500+0 1.012900+0 1.641100+0 1.266320+0 1.706900+0 1.478990+0 1.811600+0 1.814120+0 1.937200+0 2.207900+0 2.000000+0 2.402000+0 2.044000+0 2.537000+0 2.163500+0 2.894610+0 2.372600+0 3.486660+0 2.686300+0 4.300170+0 3.000000+0 5.043000+0 3.500000+0 6.122930+0 4.000000+0 7.102000+0 5.000000+0 8.820000+0 6.000000+0 1.030000+1 7.000000+0 1.160000+1 8.000000+0 1.278000+1 9.000000+0 1.386000+1 1.000000+1 1.485000+1 1.100000+1 1.577000+1 1.200000+1 1.663000+1 1.300000+1 1.743000+1 1.400000+1 1.818000+1 1.500000+1 1.888000+1 1.600000+1 1.954000+1 1.800000+1 2.072000+1 2.000000+1 2.178000+1 2.200000+1 2.275000+1 2.400000+1 2.363000+1 2.600000+1 2.443000+1 2.800000+1 2.517000+1 3.000000+1 2.585000+1 4.000000+1 2.861000+1 5.000000+1 3.067000+1 6.000000+1 3.226000+1 8.000000+1 3.461000+1 1.000000+2 3.626000+1 1.500000+2 3.887000+1 2.000000+2 4.042000+1 3.000000+2 4.223000+1 4.000000+2 4.326000+1 5.000000+2 4.394000+1 6.000000+2 4.443000+1 8.000000+2 4.507000+1 1.000000+3 4.549000+1 1.500000+3 4.610000+1 2.000000+3 4.643000+1 3.000000+3 4.679000+1 4.000000+3 4.698000+1 5.000000+3 4.710000+1 6.000000+3 4.719000+1 8.000000+3 4.730000+1 1.000000+4 4.736000+1 1.500000+4 4.746000+1 2.000000+4 4.751000+1 3.000000+4 4.757000+1 4.000000+4 4.760000+1 5.000000+4 4.762000+1 6.000000+4 4.763000+1 8.000000+4 4.764000+1 1.000000+5 4.765000+1 1 90000 7 8 2.320380+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.004480-7 2.090400+0 1.222580-6 2.094700+0 1.585270-6 2.099900+0 2.108970-6 2.106600+0 2.933760-6 2.114000+0 4.059230-6 2.119500+0 5.053710-6 2.127900+0 6.853780-6 2.136250+0 9.004480-6 2.147000+0 1.234580-5 2.156900+0 1.603570-5 2.169000+0 2.140060-5 2.184500+0 2.974760-5 2.201800+0 4.115670-5 2.214800+0 5.127800-5 2.234200+0 6.897790-5 2.253680+0 9.004480-5 2.281500+0 1.261240-4 2.307000+0 1.656630-4 2.338200+0 2.227470-4 2.377400+0 3.084780-4 2.410200+0 3.923320-4 2.446800+0 4.990680-4 2.485900+0 6.283540-4 2.532900+0 8.041620-4 2.556430+0 9.004480-4 2.611900+0 1.148180-3 2.660400+0 1.388110-3 2.745300+0 1.857920-3 2.809000+0 2.250060-3 2.904500+0 2.898640-3 3.000000+0 3.618000-3 3.125000+0 4.664820-3 3.234400+0 5.675340-3 3.425800+0 7.640520-3 3.569300+0 9.262740-3 3.784700+0 1.190300-2 4.000000+0 1.474000-2 4.250000+0 1.820700-2 4.625000+0 2.365290-2 5.000000+0 2.931000-2 5.500000+0 3.706700-2 6.000000+0 4.492000-2 6.750000+0 5.659320-2 7.000000+0 6.043000-2 8.000000+0 7.541000-2 9.000000+0 8.971000-2 1.000000+1 1.033000-1 1.100000+1 1.160000-1 1.200000+1 1.281000-1 1.300000+1 1.394000-1 1.400000+1 1.501000-1 1.500000+1 1.603000-1 1.600000+1 1.699000-1 1.800000+1 1.876000-1 2.000000+1 2.037000-1 2.200000+1 2.184000-1 2.400000+1 2.318000-1 2.600000+1 2.442000-1 2.800000+1 2.556000-1 3.000000+1 2.662000-1 4.000000+1 3.097000-1 5.000000+1 3.424000-1 6.000000+1 3.681000-1 8.000000+1 4.064000-1 1.000000+2 4.341000-1 1.500000+2 4.793000-1 2.000000+2 5.074000-1 3.000000+2 5.415000-1 4.000000+2 5.618000-1 5.000000+2 5.757000-1 6.000000+2 5.858000-1 8.000000+2 5.998000-1 1.000000+3 6.091000-1 1.500000+3 6.230000-1 2.000000+3 6.308000-1 3.000000+3 6.394000-1 4.000000+3 6.445000-1 5.000000+3 6.476000-1 6.000000+3 6.498000-1 8.000000+3 6.527000-1 1.000000+4 6.546000-1 1.500000+4 6.571000-1 2.000000+4 6.586000-1 3.000000+4 6.599000-1 4.000000+4 6.609000-1 5.000000+4 6.614000-1 6.000000+4 6.617000-1 8.000000+4 6.621000-1 1.000000+5 6.624000-1 1 90000 7 8 2.320380+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 90000 7 9 2.320380+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.000000+1 1.000000+5 9.000000+1 5.000000+5 8.995900+1 8.750000+5 8.990410+1 1.000000+6 8.989100+1 1.375000+6 8.982200+1 1.500000+6 8.979100+1 1.875000+6 8.967540+1 2.000000+6 8.963100+1 2.375000+6 8.948380+1 2.500000+6 8.943000+1 2.875000+6 8.925390+1 3.000000+6 8.919000+1 3.250000+6 8.904740+1 3.625000+6 8.883220+1 4.000000+6 8.860600+1 4.437500+6 8.831960+1 4.812500+6 8.806090+1 5.000000+6 8.792700+1 5.500000+6 8.754090+1 5.875000+6 8.723560+1 6.437500+6 8.676130+1 6.500000+6 8.670500+1 7.000000+6 8.627500+1 7.500000+6 8.582960+1 8.250000+6 8.516310+1 9.000000+6 8.447800+1 1.000000+7 8.354200+1 1.250000+7 8.123900+1 1.500000+7 7.893400+1 1.750000+7 7.667400+1 2.000000+7 7.447100+1 2.375000+7 7.124990+1 2.500000+7 7.021400+1 2.875000+7 6.724810+1 3.000000+7 6.631300+1 3.250000+7 6.450940+1 3.500000+7 6.280030+1 3.625000+7 6.197180+1 4.000000+7 5.958500+1 4.500000+7 5.659530+1 5.000000+7 5.377400+1 5.500000+7 5.109400+1 6.000000+7 4.856300+1 6.750000+7 4.505680+1 7.000000+7 4.397400+1 8.000000+7 4.002400+1 9.000000+7 3.663300+1 1.000000+8 3.368100+1 1.109400+8 3.081830+1 1.125000+8 3.043540+1 1.203100+8 2.858540+1 1.250000+8 2.752700+1 1.359400+8 2.519800+1 1.500000+8 2.254100+1 1.812500+8 1.802040+1 1.875000+8 1.733270+1 1.937500+8 1.670740+1 2.000000+8 1.614100+1 2.125000+8 1.516800+1 2.312500+8 1.400730+1 2.375000+8 1.368190+1 2.500000+8 1.310200+1 2.750000+8 1.211340+1 2.875000+8 1.162370+1 3.000000+8 1.110400+1 3.375000+8 9.525090+0 3.500000+8 9.107400+0 3.875000+8 8.158120+0 4.000000+8 7.833600+0 4.125000+8 7.476070+0 4.234400+8 7.151250+0 4.425800+8 6.591010+0 4.750000+8 5.768530+0 4.784700+8 5.693350+0 4.928200+8 5.410040+0 5.000000+8 5.285900+0 5.179700+8 5.024690+0 5.330100+8 4.846480+0 5.569300+8 4.613830+0 6.000000+8 4.274300+0 7.000000+8 3.623100+0 7.500000+8 3.370100+0 7.750000+8 3.243290+0 8.000000+8 3.108900+0 8.250000+8 2.964580+0 8.468800+8 2.830410+0 8.851600+8 2.607920+0 9.500000+8 2.287920+0 9.712900+8 2.195920+0 1.000000+9 2.080600+0 1.031300+9 1.978400+0 1.074300+9 1.862510+0 1.113800+9 1.775600+0 1.162000+9 1.688510+0 1.224000+9 1.599090+0 1.250000+9 1.567320+0 1.293000+9 1.520270+0 1.396500+9 1.427410+0 1.500000+9 1.351600+0 1.671900+9 1.242360+0 1.789100+9 1.174180+0 1.929700+9 1.096290+0 2.000000+9 1.058400+0 2.139200+9 9.851870-1 2.272600+9 9.182620-1 2.443000+9 8.380710-1 2.602800+9 7.688090-1 2.750000+9 7.100150-1 2.752700+9 7.089880-1 2.959000+9 6.345170-1 3.148200+9 5.737450-1 3.379700+9 5.081800-1 3.582200+9 4.579040-1 3.842200+9 4.017790-1 4.131600+9 3.487810-1 4.348700+9 3.145430-1 4.674400+9 2.706250-1 5.000000+9 2.341000-1 5.375000+9 1.993620-1 5.703100+9 1.741820-1 6.277300+9 1.391620-1 7.031000+9 1.058720-1 8.000000+9 7.690500-2 9.500000+9 4.978410-2 1.00000+10 4.367900-2 1.27030+10 2.366620-2 1.84370+10 9.064250-3 1.00000+11 1.126900-4 1.68570+11 2.934620-5 3.34410+11 5.088780-6 8.62510+11 4.603840-7 2.83020+12 2.323400-8 1.00000+14 3.23610-12 3.16230+15 5.71863-16 1.00000+17 9.66810-20 1 90000 7 0 2.320380+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.35000-11 1.000000+2 1.350000-9 1.000000+3 1.350000-7 1.000000+4 1.350000-5 1.000000+5 1.350000-3 5.000000+5 3.375000-2 8.750000+5 1.033594-1 1.000000+6 1.350000-1 1.375000+6 2.521230-1 1.500000+6 2.986000-1 1.875000+6 4.587610-1 2.000000+6 5.187000-1 2.375000+6 7.160510-1 2.500000+6 7.873000-1 2.875000+6 1.015070+0 3.000000+6 1.095300+0 3.250000+6 1.261070+0 3.625000+6 1.521300+0 4.000000+6 1.792000+0 4.437500+6 2.116310+0 4.812500+6 2.398340+0 5.000000+6 2.540000+0 5.500000+6 2.916480+0 5.875000+6 3.196720+0 6.437500+6 3.611230+0 6.500000+6 3.656630+0 7.000000+6 4.016500+0 7.500000+6 4.367680+0 8.250000+6 4.881320+0 9.000000+6 5.382600+0 1.000000+7 6.039000+0 1.250000+7 7.663400+0 1.500000+7 9.289000+0 1.750000+7 1.088900+1 2.000000+7 1.244600+1 2.375000+7 1.470610+1 2.500000+7 1.544200+1 2.875000+7 1.758440+1 3.000000+7 1.827100+1 3.250000+7 1.958840+1 3.500000+7 2.083740+1 3.625000+7 2.143690+1 4.000000+7 2.313900+1 4.500000+7 2.521340+1 5.000000+7 2.716200+1 5.500000+7 2.905430+1 6.000000+7 3.090900+1 6.750000+7 3.361830+1 7.000000+7 3.449600+1 8.000000+7 3.784200+1 9.000000+7 4.087900+1 1.000000+8 4.358200+1 1.109400+8 4.617520+1 1.125000+8 4.651790+1 1.203100+8 4.815640+1 1.250000+8 4.908600+1 1.359400+8 5.110790+1 1.500000+8 5.351000+1 1.812500+8 5.829140+1 1.875000+8 5.917260+1 1.937500+8 6.002400+1 2.000000+8 6.086000+1 2.125000+8 6.245300+1 2.312500+8 6.466760+1 2.375000+8 6.535970+1 2.500000+8 6.668200+1 2.750000+8 6.905600+1 2.875000+8 7.011680+1 3.000000+8 7.110700+1 3.375000+8 7.364970+1 3.500000+8 7.438100+1 3.875000+8 7.627870+1 4.000000+8 7.683200+1 4.125000+8 7.734970+1 4.234400+8 7.777080+1 4.425800+8 7.847160+1 4.750000+8 7.953020+1 4.784700+8 7.963350+1 4.928200+8 8.005160+1 5.000000+8 8.025700+1 5.179700+8 8.073730+1 5.330100+8 8.111780+1 5.569300+8 8.168970+1 6.000000+8 8.261900+1 7.000000+8 8.436500+1 7.500000+8 8.505990+1 7.750000+8 8.536020+1 8.000000+8 8.565200+1 8.250000+8 8.590560+1 8.468800+8 8.612200+1 8.851600+8 8.645650+1 9.500000+8 8.693290+1 9.712900+8 8.706590+1 1.000000+9 8.724100+1 1.031300+9 8.740380+1 1.074300+9 8.761320+1 1.113800+9 8.778230+1 1.162000+9 8.795600+1 1.224000+9 8.816090+1 1.250000+9 8.823170+1 1.293000+9 8.834580+1 1.396500+9 8.858210+1 1.500000+9 8.878400+1 1.671900+9 8.904620+1 1.789100+9 8.920050+1 1.929700+9 8.935010+1 2.000000+9 8.942100+1 2.139200+9 8.952820+1 2.272600+9 8.960990+1 2.443000+9 8.969750+1 2.602800+9 8.976530+1 2.750000+9 8.981190+1 2.752700+9 8.981270+1 2.959000+9 8.986170+1 3.148200+9 8.989460+1 3.379700+9 8.993230+1 3.582200+9 8.994600+1 3.842200+9 8.996190+1 4.131600+9 8.997840+1 4.348700+9 8.998410+1 4.674400+9 8.998870+1 5.000000+9 8.999300+1 5.375000+9 8.999410+1 5.703100+9 8.999500+1 6.277300+9 8.999640+1 7.031000+9 8.999810+1 8.000000+9 9.000000+1 9.500000+9 9.000000+1 1.00000+10 9.000000+1 1.27030+10 9.000000+1 1.84370+10 9.000000+1 1.00000+11 9.000000+1 1.68570+11 9.000000+1 3.34410+11 9.000000+1 8.62510+11 9.000000+1 2.83020+12 9.000000+1 1.00000+14 9.000000+1 3.16230+15 9.000000+1 1.00000+17 9.000000+1 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.047635-9 1.004743-6 8.278136-8 1.007203-6 1.512069-7 1.009664-6 2.549556-7 1.012125-6 3.968364-7 1.014586-6 5.701802-7 1.017047-6 7.562524-7 1.019508-6 9.259238-7 1.021969-6 1.046496-6 1.024430-6 1.091827-6 1.026891-6 1.051536-6 1.029352-6 9.348639-7 1.031813-6 7.672317-7 1.036735-6 4.064852-7 1.039196-6 2.624127-7 1.041657-6 1.563792-7 1.044117-6 8.602548-8 1.046578-6 4.368469-8 1.049039-6 0.0 1.676476-6 0.0 1.680602-6 7.79591-15 1.684729-6 1.54260-14 1.688855-6 2.81768-14 1.692981-6 4.75099-14 1.697108-6 7.39487-14 1.701234-6 1.06251-13 1.705361-6 1.40924-13 1.709487-6 1.72542-13 1.713614-6 1.95010-13 1.717740-6 2.03457-13 1.721866-6 1.95949-13 1.725993-6 1.74208-13 1.730119-6 1.42970-13 1.738372-6 7.57468-14 1.742499-6 4.88995-14 1.746625-6 2.91406-14 1.750751-6 1.60305-14 1.754878-6 8.14045-15 1.759004-6 0.0 2.165958-6 0.0 2.175287-6 7.240425-1 2.176620-6 8.264218-1 2.181951-6 1.509527+0 2.187283-6 2.545270+0 2.193280-6 4.177550+0 2.202527-6 7.288045+0 2.208608-6 9.243670+0 2.214272-6 1.047559+1 2.219759-6 1.086308+1 2.225315-6 1.034202+1 2.231103-6 8.966157+0 2.239889-6 6.049164+0 2.246259-6 3.968325+0 2.251424-6 2.586712+0 2.256755-6 1.539265+0 2.262003-6 8.522192-1 2.270030-6 2.090188-1 2.272515-6 5.544210-3 2.272582-6 0.0 2.310519-6 0.0 2.320472-6 4.589686-1 2.321894-6 5.238665-1 2.327581-6 9.568851-1 2.333268-6 1.613440+0 2.339666-6 2.648138+0 2.349529-6 4.619872+0 2.356016-6 5.859537+0 2.362058-6 6.640448+0 2.367912-6 6.886075+0 2.373998-6 6.535187+0 2.380004-6 5.685346+0 2.389685-6 3.772309+0 2.396003-6 2.543941+0 2.401818-6 1.624586+0 2.407266-6 9.844252-1 2.413064-6 5.360422-1 2.421062-6 1.556634-1 2.424261-6 0.0 2.676296-6 0.0 2.686177-6 3.261209+0 2.689471-6 4.334489+0 2.696058-6 7.917299+0 2.702646-6 1.334965+1 2.710057-6 2.191078+1 2.721597-6 3.839654+1 2.729407-6 4.887571+1 2.736187-6 5.501270+1 2.743112-6 5.686793+1 2.749824-6 5.407235+1 2.756528-6 4.737607+1 2.766898-6 3.283526+1 2.775107-6 2.128385+1 2.781694-6 1.374011+1 2.788282-6 8.188123+0 2.794869-6 4.504354+0 2.808044-6 5.194652-2 2.813785-6 8.838015-2 2.820677-6 1.614336-1 2.827569-6 2.721992-1 2.834461-6 4.236758-1 2.845660-6 7.327922-1 2.855136-6 9.885471-1 2.862028-6 1.117274+0 2.868920-6 1.165671+0 2.875812-6 1.122655+0 2.882704-6 9.980919-1 2.893041-6 7.199583-1 2.903379-6 4.339772-1 2.910271-6 2.801606-1 2.917163-6 1.669557-1 2.924055-6 9.184370-2 2.932670-6 3.500007-2 2.937838-6 1.161700-7 2.943457-6 1.797538-7 2.950649-6 3.030897-7 2.957841-6 4.717565-7 2.965033-6 6.778266-7 2.972224-6 8.990280-7 2.979416-6 1.100732-6 2.986608-6 1.244068-6 2.993800-6 1.297957-6 3.000992-6 1.250059-6 3.008184-6 1.111360-6 3.015376-6 9.120802-7 3.029759-6 4.832271-7 3.036951-6 3.119546-7 3.044143-6 1.859026-7 3.051335-6 1.022665-7 3.058527-6 5.193208-8 3.065718-6 0.0 3.165778-6 0.0 3.179415-6 7.710476+0 3.181363-6 8.800733+0 3.189155-6 1.607526+1 3.196947-6 2.710509+1 3.205713-6 4.448758+1 3.219365-6 7.796021+1 3.228603-6 9.923709+1 3.237169-6 1.120347+2 3.244774-6 1.154863+2 3.252650-6 1.099531+2 3.260684-6 9.619222+1 3.272951-6 6.666860+1 3.282661-6 4.321466+1 3.290453-6 2.789788+1 3.298245-6 1.662514+1 3.306037-6 9.145625+0 3.317726-6 2.324855+0 3.321622-6 0.0 3.458669-6 0.0 3.467182-6 2.88739-14 3.475695-6 5.71334-14 3.484208-6 1.04359-13 3.492722-6 1.75963-13 3.501235-6 2.73885-13 3.507468-6 3.61430-13 3.524735-6 7.763208-8 3.526168-6 8.826430-8 3.533368-6 2.499987-7 3.542001-6 4.747973-7 3.543800-6 5.316773-7 3.552313-6 8.793140-7 3.560885-6 1.377454-6 3.569564-6 2.018265-6 3.588279-6 3.578725-6 3.605943-6 1.012922-1 3.614775-6 1.850147-1 3.623607-6 3.119569-1 3.632440-6 4.855553-1 3.658936-6 1.132921+0 3.667768-6 1.280448+0 3.676600-6 1.335912+0 3.685432-6 1.286614+0 3.695965-6 1.104443+0 3.720760-6 4.973574-1 3.729593-6 3.210766-1 3.738425-6 1.913387-1 3.747257-6 1.052570-1 3.756089-6 5.345066-2 3.764921-6 0.0 3.921702-6 0.0 3.931355-6 9.49417-15 3.941008-6 1.87864-14 3.950661-6 3.43148-14 3.960313-6 5.78595-14 3.969966-6 9.00578-14 3.979619-6 1.29396-13 3.989272-6 1.71623-13 3.998924-6 2.10129-13 4.006700-6 2.32160-13 4.006817-6 3.049650-5 4.026542-6 1.055555-1 4.036404-6 1.927904-1 4.046266-6 3.250471-1 4.056841-6 5.218227-1 4.085596-6 1.177598+0 4.095578-6 1.339864+0 4.105440-6 1.418367+0 4.115302-6 1.400781+0 4.130096-6 1.242440+0 4.144889-6 1.045821+0 4.154751-6 9.619408-1 4.164614-6 9.357941-1 4.194200-6 1.030076+0 4.211411-6 9.613099-1 4.223671-6 8.337846-1 4.253892-6 3.901363-1 4.263966-6 2.795973-1 4.272850-6 2.139836-1 4.281689-6 1.753145-1 4.291805-6 1.500258-1 4.295072-6 1.478724-1 4.305720-6 1.550195-1 4.312036-6 1.761756-1 4.316993-6 2.007774-1 4.327593-6 2.433689-1 4.338193-6 2.968043-1 4.348792-6 3.695585-1 4.360638-6 4.821787-1 4.392838-6 8.940039-1 4.401790-6 9.837639-1 4.412390-6 1.036350+0 4.422990-6 1.024652+0 4.438454-6 9.019995-1 4.456243-6 6.901758-1 4.458490-6 6.614684-1 4.468201-6 5.868625-1 4.475988-6 5.450399-1 4.480438-6 5.312045-1 4.486587-6 5.280406-1 4.491412-6 5.379890-1 4.501195-6 6.137701-1 4.514394-6 8.206218-1 4.523300-6 1.032100+0 4.549661-6 1.762879+0 4.559409-6 1.966777+0 4.570202-6 2.075875+0 4.580908-6 2.057992+0 4.589396-6 1.986544+0 4.612477-6 2.293398+0 4.623360-6 2.691745+0 4.634592-6 3.495058+0 4.646036-6 4.773673+0 4.679372-6 9.659493+0 4.691381-6 1.086505+1 4.702585-6 1.128400+1 4.714792-6 1.083587+1 4.727524-6 9.539692+0 4.758915-6 5.094269+0 4.769990-6 3.784477+0 4.781161-6 2.775013+0 4.792255-6 2.060185+0 4.813960-6 1.101446+0 4.842064-6 9.150661-1 4.872415-6 7.616088-1 4.925008-6 5.956797-1 4.942374-6 5.726355-1 4.964618-6 5.864084-1 4.978354-6 6.343462-1 4.990328-6 7.051767-1 5.001744-6 7.948942-1 5.041755-6 1.166858+0 5.063648-6 1.284333+0 5.081658-6 1.289266+0 5.109545-6 1.212646+0 5.135002-6 1.428403+0 5.149071-6 1.693845+0 5.161893-6 2.066012+0 5.180039-6 2.786015+0 5.206516-6 3.950092+0 5.219114-6 4.345112+0 5.232503-6 4.509863+0 5.237891-6 4.508835+0 5.250952-6 4.282747+0 5.265979-6 3.755878+0 5.298245-6 2.358652+0 5.311795-6 1.912829+0 5.323948-6 1.629311+0 5.336799-6 1.437930+0 5.361075-6 1.220488+0 5.388204-6 1.374610+0 5.405709-6 1.549900+0 5.420467-6 1.762905+0 5.464471-6 2.580900+0 5.481715-6 2.778287+0 5.498655-6 2.786066+0 5.513302-6 2.673589+0 5.550944-6 2.148952+0 5.562472-6 2.036270+0 5.573921-6 1.977611+0 5.592888-6 2.011049+0 5.635493-6 2.249863+0 5.667877-6 2.294712+0 5.742363-6 2.276231+0 5.932088-6 2.277385+0 6.020092-6 2.360201+0 6.365959-6 2.408146+0 9.120108-6 3.080140+0 1.086516-5 3.321175+0 1.283232-5 3.325715+0 1.553192-5 3.011402+0 1.893162-5 2.462052+0 1.902482-5 4.431001+0 1.907142-5 6.063279+0 1.911801-5 8.542103+0 1.916461-5 1.193477+1 1.930440-5 2.459245+1 1.935100-5 2.747462+1 1.940342-5 2.843226+1 1.945002-5 2.723117+1 1.950016-5 2.393859+1 1.956571-5 1.804243+1 1.964631-5 2.557259+1 1.966203-5 2.723078+1 1.971019-5 3.874065+1 1.976136-5 6.042629+1 1.981007-5 9.000058+1 1.988351-5 1.461381+2 1.995399-5 1.992947+2 2.000694-5 2.246908+2 2.005294-5 2.317123+2 2.010261-5 2.205447+2 2.015227-5 1.932215+2 2.023401-5 1.297669+2 2.028809-5 8.803876+1 2.033625-5 5.762721+1 2.038441-5 3.524327+1 2.043257-5 2.038911+1 2.050481-5 6.839232+0 2.052889-5 2.220843+0 2.248760-5 1.962992+0 2.259830-5 2.257484+0 2.265365-5 2.505398+0 2.270900-5 2.884981+0 2.277819-5 3.566023+0 2.293040-5 5.356712+0 2.298575-5 5.799302+0 2.305221-5 5.927472+0 2.316613-5 5.491373+0 2.326798-5 4.804385+0 2.331917-5 4.679406+0 2.338388-5 4.927081+0 2.345319-5 5.616807+0 2.355293-5 6.897686+0 2.360992-5 7.435214+0 2.366691-5 7.767595+0 2.373498-5 7.708025+0 2.386734-5 6.719746+0 2.392506-5 6.230287+0 2.397510-5 5.947531+0 2.405637-5 5.760986+0 2.425431-5 5.952212+0 2.435484-5 6.131113+0 2.495667-5 5.795139+0 2.617424-5 5.553279+0 2.728443-5 5.191656+0 2.741874-5 1.457315+1 2.748590-5 2.234152+1 2.755725-5 3.513699+1 2.762861-5 5.272073+1 2.782206-5 1.105107+2 2.789784-5 1.248287+2 2.796545-5 1.286352+2 2.802932-5 1.234561+2 2.809978-5 1.085875+2 2.829179-5 5.115595+1 2.835894-5 3.473305+1 2.842610-5 2.264079+1 2.849326-5 1.461145+1 2.862757-5 4.779211+0 3.084040-5 4.178700+0 3.106813-5 4.283583+0 3.121995-5 4.508747+0 3.162602-5 5.438620+0 3.184058-5 5.835458+0 3.212205-5 6.744955+0 3.220771-5 6.869482+0 3.235863-5 6.723728+0 3.260329-5 6.267478+0 3.305816-5 6.235492+0 3.362110-5 6.265485+0 3.508060-5 5.843736+0 4.241310-5 4.214765+0 4.665308-5 3.499517+0 4.714624-5 3.592693+0 4.772544-5 3.887933+0 4.806779-5 3.823498+0 4.864872-5 3.349359+0 4.912641-5 3.278279+0 4.976656-5 3.267342+0 5.437738-5 2.679115+0 5.985272-5 2.186010+0 6.655490-5 1.769795+0 7.372800-5 1.462591+0 8.268580-5 1.196624+0 8.548470-5 1.131608+0 8.590552-5 2.858903+0 8.611593-5 4.289588+0 8.627720-5 5.952986+0 8.637329-5 1.500066+1 8.670192-5 4.674932+1 8.691428-5 7.911676+1 8.712664-5 1.259731+2 8.736776-5 1.978750+2 8.785181-5 3.658572+2 8.802277-5 4.167222+2 8.825409-5 4.572900+2 8.846227-5 4.618442+2 8.867211-5 4.331377+2 8.887962-5 3.774199+2 8.946260-5 1.713005+2 8.967496-5 1.103865+2 8.988732-5 6.615482+1 9.009968-5 3.685754+1 9.036513-5 1.468397+1 9.052440-5 1.031314+0 9.198442-5 1.006112+0 9.249944-5 1.172208+0 9.254649-5 1.195873+0 9.300207-5 2.572691+1 9.322986-5 4.598145+1 9.347189-5 7.920060+1 9.369959-5 1.216183+2 9.423184-5 2.425808+2 9.443146-5 2.827490+2 9.466811-5 3.121577+2 9.488306-5 3.183327+2 9.510704-5 3.012793+2 9.535403-5 2.595127+2 9.598791-5 1.166879+2 9.620693-5 7.704732+1 9.642579-5 4.765244+1 9.664673-5 2.780253+1 9.708047-5 4.120108+0 9.710231-5 2.905262+0 9.855751-5 3.839111+0 9.928990-5 4.569569+0 9.980249-5 5.324558+0 1.007625-4 6.999272+0 1.012426-4 7.400420+0 1.025100-4 7.386797+0 1.038287-4 8.122871+0 1.073000-4 1.010454+1 1.098000-4 1.098582+1 1.122913-4 1.125993+1 1.157000-4 1.084490+1 1.293461-4 7.786891+0 1.388958-4 6.117908+0 1.491432-4 4.725016+0 1.591957-4 3.729816+0 1.679757-4 3.094944+0 1.778045-4 2.576181+0 1.839171-4 2.384083+0 1.852981-4 2.485914+0 1.879924-4 3.043015+0 1.890300-4 3.126164+0 2.089785-4 2.635696+0 2.244295-4 2.399050+0 2.264844-4 2.393070+0 2.282161-4 2.506688+0 2.294259-4 2.700129+0 2.310500-4 3.051991+0 2.321500-4 3.161821+0 2.333632-4 3.056948+0 2.355204-4 2.773377+0 2.757539-4 2.567738+0 2.869166-4 2.568603+0 2.906021-4 2.723735+0 2.938022-4 2.840690+0 3.034988-4 2.775848+0 3.351188-4 2.835402+0 3.376372-4 3.003809+0 3.392559-4 3.256362+0 3.425813-4 3.929001+0 3.433856-4 3.985701+0 3.452741-4 3.890132+0 3.476309-4 3.700957+0 3.493304-4 3.820338+0 3.522191-4 4.204943+0 3.536243-4 4.232795+0 3.578115-4 3.798855+0 3.611109-4 3.740373+0 3.714375-4 4.136644+0 3.765000-4 4.507155+0 3.824375-4 5.207267+0 3.892472-4 6.403249+0 3.974987-4 8.337798+0 4.128981-4 1.278309+1 4.392852-4 2.079664+1 4.609977-4 2.613561+1 4.817611-4 2.994007+1 5.132585-4 3.360180+1 5.500000-4 3.586504+1 6.109585-4 3.692272+1 6.517822-4 3.665681+1 6.565515-4 3.836657+1 6.608476-4 4.258157+1 6.657551-4 4.824751+1 6.683439-4 4.910048+1 6.716136-4 4.704641+1 6.776465-4 4.112895+1 6.839116-4 3.925384+1 6.924161-4 4.008700+1 6.986928-4 4.306892+1 7.039148-4 4.611823+1 7.079598-4 4.596876+1 7.173232-4 4.150247+1 7.245688-4 4.082683+1 9.066858-4 3.669016+1 9.378460-4 3.617055+1 9.561800-4 3.756925+1 1.144705-3 3.264274+1 1.307805-3 2.957440+1 1.680979-3 2.312381+1 2.001838-3 1.905300+1 2.364808-3 1.567871+1 2.792644-3 1.279675+1 3.249293-3 1.057486+1 3.265558-3 1.169545+1 3.273625-3 1.268429+1 3.281692-3 1.423327+1 3.289710-3 1.640716+1 3.321783-3 2.831951+1 3.329802-3 3.032585+1 3.337820-3 3.131916+1 3.349080-3 3.099219+1 3.386161-3 2.589385+1 3.409247-3 2.433335+1 3.434789-3 2.564116+1 3.451818-3 2.803670+1 3.485487-3 3.563015+1 3.502100-3 3.741299+1 3.520452-3 3.655787+1 3.559970-3 3.301573+1 3.591262-3 3.210544+1 3.966931-3 2.783051+1 4.015300-3 2.898899+1 4.066696-3 3.059064+1 4.737228-3 2.469931+1 4.889228-3 2.495485+1 5.111643-3 2.359964+1 5.266628-3 2.340809+1 6.104147-3 1.894608+1 7.117766-3 1.510792+1 8.222426-3 1.216751+1 9.203089-3 1.024585+1 1.045704-2 8.417238+0 1.191928-2 6.861593+0 1.339249-2 5.713931+0 1.540122-2 4.576030+0 1.592593-2 4.351919+0 1.603936-2 4.454186+0 1.611365-2 4.765767+0 1.617490-2 5.289016+0 1.624576-2 6.221010+0 1.638381-2 8.347828+0 1.647938-2 9.276365+0 1.661047-2 9.657663+0 1.936056-2 7.550494+0 1.954345-2 7.680046+0 1.969605-2 8.322807+0 1.989183-2 9.474062+0 2.005879-2 9.890713+0 2.032313-2 1.008038+1 2.065997-2 1.081544+1 2.113489-2 1.065364+1 2.462152-2 8.424546+0 2.834653-2 6.753046+0 3.255204-2 5.408084+0 3.651433-2 4.486135+0 4.076552-2 3.745691+0 4.573349-2 3.096817+0 5.177417-2 2.517149+0 5.864835-2 2.040969+0 6.611762-2 1.665667+0 7.463950-2 1.355936+0 8.368619-2 1.114515+0 9.352122-2 9.215789-1 1.064413-1 7.382749-1 1.076914-1 7.330248-1 1.082203-1 7.633510-1 1.085929-1 8.282602-1 1.089119-1 9.341294-1 1.091936-1 1.078187+0 1.095783-1 1.354941+0 1.106343-1 2.322853+0 1.111312-1 2.652773+0 1.117292-1 2.852601+0 1.126534-1 2.909394+0 1.308622-1 2.317772+0 1.496650-1 1.875850+0 1.685343-1 1.555068+0 1.904638-1 1.280931+0 2.147972-1 1.059203+0 2.427660-1 8.736214-1 2.714876-1 7.343527-1 3.068451-1 6.090677-1 3.483624-1 5.044149-1 3.975347-1 4.165141-1 4.553955-1 3.447204-1 5.180803-1 2.902431-1 5.905409-1 2.455657-1 6.719605-1 2.099881-1 7.733898-1 1.786104-1 9.002746-1 1.514025-1 1.120601+0 1.197743-1 1.286622+0 1.023201-1 1.480139+0 8.722322-2 1.696098+0 7.467159-2 1.947381+0 6.379002-2 2.235892+0 5.449417-2 2.567148+0 4.655296-2 2.947480+0 3.976899-2 3.384160+0 3.397363-2 3.885536+0 2.902279-2 4.461192+0 2.479342-2 5.122134+0 2.118038-2 5.880996+0 1.809386-2 6.801197+0 1.533561-2 8.118035+0 1.252924-2 9.320751+0 1.070341-2 9.760024+0 1.015597-2 1.000000+1 2.117790-2 1 90000 7 0 2.320380+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-8.965767+1 2.055998-6-8.674316+1 2.163658-6-8.362767+1 2.197945-6-8.026182+1 2.214272-6-8.433703+1 2.229416-6-8.978086+1 2.246259-6-8.756765+1 2.271861-6-8.962551+1 2.347130-6-8.360294+1 2.384540-6-8.983688+1 2.419995-6-8.895141+1 2.615879-6-7.994613+1 2.660402-6-7.396440+1 2.676296-6-6.836880+1 2.704910-6-5.412754+1 2.712578-6-5.286994+1 2.719166-6-5.473453+1 2.726216-6-6.062277+1 2.735583-6-7.455888+1 2.743956-6-9.005472+1 2.751118-6-7.713810+1 2.759272-6-6.596231+1 2.766898-6-6.021746+1 2.775107-6-5.918872+1 2.785400-6-6.280627+1 2.816800-6-7.860191+1 2.848244-6-8.477404+1 2.937838-6-8.981250+1 3.077835-6-7.977252+1 3.125421-6-7.233362+1 3.149930-6-6.487546+1 3.162899-6-5.769673+1 3.171174-6-5.003592+1 3.181363-6-4.197696+1 3.190129-6-3.371128+1 3.197921-6-2.740874+1 3.204739-6-2.435495+1 3.207418-6-2.384139+1 3.212531-6-2.514171+1 3.216488-6-2.786740+1 3.220324-6-3.250339+1 3.225650-6-4.153615+1 3.232255-6-5.766901+1 3.236030-6-6.892973+1 3.243013-6-8.996830+1 3.247617-6-7.435786+1 3.254205-6-5.371424+1 3.260684-6-3.703659+1 3.264979-6-2.882213+1 3.268051-6-2.393727+1 3.271033-6-2.043211+1 3.273910-6-1.810816+1 3.278278-6-1.633985+1 3.281565-6-1.610096+1 3.288505-6-1.869730+1 3.297393-6-2.558568+1 3.308716-6-3.620126+1 3.321135-6-4.604852+1 3.326381-6-5.096125+1 3.340249-6-5.795135+1 3.363946-6-6.472067+1 3.412714-6-7.185483+1 3.507468-6-7.794310+1 3.667768-6-8.221136+1 3.793093-6-8.333620+1 4.105440-6-8.628835+1 4.316993-6-8.717035+1 4.523300-6-8.957049+1 4.627090-6-9.044474+1 4.669191-6-9.022000+1 4.679372-6-9.104913+1 4.737792-6-8.155292+1 4.781161-6-8.156927+1 4.904377-6-8.560127+1 5.206516-6-8.854439+1 5.298245-6-8.543278+1 5.464471-6-8.771171+1 5.852016-6-8.727896+1 1.350316-5-8.779099+1 1.657667-5-8.171298+1 1.782066-5-7.523372+1 1.845790-5-6.770761+1 1.877217-5-6.040402+1 1.892321-5-5.413691+1 1.917626-5-3.792318+1 1.924616-5-3.570396+1 1.930440-5-3.602727+1 1.941444-5-3.951073+1 1.946022-5-3.970538+1 1.950835-5-3.721241+1 1.953748-5-3.340829+1 1.955777-5-2.920833+1 1.957167-5-2.458556+1 1.957903-5-2.259764+1 1.963059-5-1.052765+1 1.964631-5-6.437585+0 1.965417-5-4.184542+0 1.965810-5-2.936778+0 1.966203-5-1.451511+0 1.966805-5 7.340264-1 1.969966-5 1.015195+1 1.970492-5 1.188633+1 1.971320-5 1.529187+1 1.976700-5 3.108103+1 1.977688-5 3.313169+1 1.981676-5 3.904596+1 1.983724-5 3.893533+1 1.986848-5 3.533733+1 1.988351-5 3.164218+1 1.989800-5 2.651789+1 1.991486-5 1.855239+1 1.992393-5 1.388885+1 1.993067-5 1.011427+1 1.993575-5 7.056251+0 1.994336-5 2.030235+0 1.994717-5-7.612659-1 1.994908-5-2.273881+0 1.995399-5-6.635709+0 1.998221-5-2.902350+1 1.999438-5-4.010580+1 2.000694-5-5.386181+1 2.004169-5-8.783997+1 2.005808-5-6.876554+1 2.009367-5-3.368392+1 2.009988-5-2.642325+1 2.010774-5-1.890105+1 2.011222-5-1.493352+1 2.014362-5 1.093041+1 2.014663-5 1.361676+1 2.015227-5 1.790488+1 2.016585-5 2.676532+1 2.019178-5 4.074381+1 2.020833-5 4.785289+1 2.023401-5 5.503385+1 2.026100-5 5.842044+1 2.028132-5 5.880786+1 2.032421-5 5.348619+1 2.037914-5 3.962351+1 2.043859-5 2.127722+1 2.044912-5 1.834330+1 2.050481-5 4.830595+0 2.051685-5 1.534269+0 2.052287-5-3.397635-1 2.052588-5-1.397747+0 2.053167-5-3.927927+0 2.053722-5-5.793727+0 2.054824-5-8.837130+0 2.055908-5-1.139556+1 2.058026-5-1.565971+1 2.060094-5-1.919777+1 2.064039-5-2.481399+1 2.069506-5-3.096942+1 2.079136-5-3.901904+1 2.091714-5-4.642146+1 2.111968-5-5.441300+1 2.142436-5-6.194621+1 2.197901-5-7.001786+1 2.287505-5-7.925612+1 2.326798-5-7.883861+1 2.355293-5-8.102031+1 2.392506-5-7.917980+1 2.606814-5-8.825003+1 2.624334-5-8.771861+1 2.680847-5-7.893451+1 2.709416-5-7.007153+1 2.723640-5-6.176402+1 2.728653-5-5.630371+1 2.741874-5-4.273852+1 2.749797-5-3.340932+1 2.756512-5-2.671316+1 2.762861-5-2.330409+1 2.765432-5-2.327101+1 2.769577-5-2.498881+1 2.772974-5-2.841935+1 2.775453-5-3.234039+1 2.780044-5-4.198114+1 2.782588-5-4.950996+1 2.787888-5-6.655458+1 2.793227-5-8.741731+1 2.798765-5-6.429810+1 2.802526-5-4.933290+1 2.804362-5-4.235307+1 2.809978-5-2.402493+1 2.812172-5-1.838702+1 2.814636-5-1.330692+1 2.815812-5-1.123466+1 2.817575-5-8.494775+0 2.819339-5-6.141468+0 2.820569-5-4.735947+0 2.822722-5-2.808456+0 2.824336-5-1.783806+0 2.825546-5-1.261550+0 2.827363-5-9.234884-1 2.828271-5-1.004821+0 2.832536-5-2.929473+0 2.834215-5-3.881861+0 2.835055-5-4.524611+0 2.836734-5-6.414330+0 2.841141-5-1.045009+1 2.842610-5-1.228031+1 2.851634-5-2.262320+1 2.861078-5-3.159129+1 2.864367-5-3.602631+1 2.869759-5-4.064802+1 2.881185-5-4.698301+1 2.901801-5-5.380756+1 2.939140-5-6.052439+1 3.013830-5-6.695011+1 3.162602-5-7.326031+1 5.593481-5-8.123135+1 6.190436-5-8.457068+1 7.079458-5-7.729704+1 7.565582-5-6.930796+1 7.857610-5-6.092646+1 8.048152-5-5.229980+1 8.168574-5-4.441439+1 8.268580-5-3.542965+1 8.320129-5-2.942789+1 8.371900-5-2.207880+1 8.413284-5-1.484634+1 8.430182-5-1.144311+1 8.444968-5-8.204282+0 8.457906-5-5.142411+0 8.469226-5-2.265411+0 8.479132-5 4.218440-1 8.496582-5 5.601470+0 8.509467-5 9.847883+0 8.519218-5 1.334869+1 8.533844-5 1.916041+1 8.548470-5 2.592086+1 8.569511-5 3.710312+1 8.590552-5 5.065070+1 8.606333-5 6.338146+1 8.621672-5 7.961089+1 8.627720-5 8.892671+1 8.637329-5 1.030199+2 8.670192-5 1.412314+2 8.694082-5 1.726336+2 8.719964-5 1.982638+2 8.736776-5 2.050407+2 8.751017-5 1.994891+2 8.765695-5 1.824393+2 8.777254-5 1.604500+2 8.794304-5 1.132409+2 8.800130-5 9.269671+1 8.802277-5 8.321597+1 8.814606-5 3.579818+1 8.817842-5 2.232898+1 8.819922-5 1.298185+1 8.820963-5 7.933800+0 8.821483-5 5.228151+0 8.822003-5 2.169302+0 8.822332-5 1.600222-1 8.822979-5-3.291216+0 8.824233-5-9.453510+0 8.827613-5-2.484348+1 8.840014-5-7.985968+1 8.841549-5-8.727891+1 8.845651-5-6.484207+1 8.852068-5-3.612129+1 8.858077-5-1.085267+1 8.861081-5 2.015443+0 8.862583-5 8.773888+0 8.863709-5 1.424931+1 8.864742-5 1.991294+1 8.867211-5 3.095268+1 8.871410-5 4.741853+1 8.887962-5 1.054287+2 8.898224-5 1.320457+2 8.911781-5 1.564251+2 8.923162-5 1.695600+2 8.936516-5 1.767317+2 8.946260-5 1.743984+2 8.965620-5 1.596097+2 8.988732-5 1.288232+2 9.017268-5 8.734470+1 9.044477-5 5.429138+1 9.051445-5 4.370299+1 9.053669-5 3.899182+1 9.055974-5 3.520899+1 9.063031-5 2.581825+1 9.067568-5 2.064266+1 9.072105-5 1.588784+1 9.077593-5 1.056316+1 9.085825-5 3.245721+0 9.094057-5-3.456766+0 9.099545-5-7.655509+0 9.109149-5-1.458871+1 9.127156-5-2.652853+1 9.217835-5-8.105342+1 9.228538-5-8.844321+1 9.249944-5-7.074129+1 9.261150-5-5.764420+1 9.298533-5-2.441067+1 9.300207-5-2.243083+1 9.322986-5 2.569663-1 9.324410-5 2.041616+0 9.327079-5 4.747337+0 9.345765-5 2.068007+1 9.347189-5 2.220179+1 9.349858-5 2.432397+1 9.354530-5 2.723252+1 9.369959-5 3.489496+1 9.375268-5 3.617776+1 9.380085-5 3.612534+1 9.387988-5 3.420741+1 9.394039-5 3.135323+1 9.399004-5 2.813053+1 9.405466-5 2.270039+1 9.409635-5 1.836283+1 9.411719-5 1.588991+1 9.420626-5 3.475368+0 9.423184-5-2.857709-1 9.427661-5-7.327787+0 9.431026-5-1.309254+1 9.435425-5-2.141057+1 9.440029-5-3.159525+1 9.443146-5-3.997546+1 9.458593-5-7.764070+1 9.462792-5-8.915523+1 9.468281-5-7.175296+1 9.482169-5-3.266836+1 9.485417-5-2.207835+1 9.486233-5-1.873042+1 9.488306-5-1.171342+1 9.490788-5-4.192554+0 9.492991-5 2.128344+0 9.506679-5 4.000716+1 9.510704-5 5.303910+1 9.516054-5 6.690912+1 9.535403-5 1.096015+2 9.546561-5 1.281378+2 9.565142-5 1.480599+2 9.581569-5 1.571646+2 9.595561-5 1.580340+2 9.620693-5 1.448175+2 9.642579-5 1.267132+2 9.669276-5 1.020046+2 9.708047-5 7.144917+1 9.714319-5 6.423374+1 9.728219-5 5.385905+1 9.745498-5 4.431127+1 9.769762-5 3.390173+1 9.784767-5 2.861083+1 9.802057-5 2.327194+1 9.832083-5 1.545543+1 9.855751-5 1.024524+1 9.874082-5 6.658764+0 9.888007-5 4.164744+0 9.904611-5 1.397538+0 9.928990-5-2.305418+0 9.953368-5-5.626319+0 9.980249-5-8.885147+0 1.000481-4-1.151181+1 1.002943-4-1.383256+1 1.007625-4-1.743378+1 1.015420-4-2.199289+1 1.031686-4-3.016103+1 1.043464-4-3.445255+1 1.064528-4-3.956566+1 1.098000-4-4.388308+1 1.170500-4-4.743924+1 1.388958-4-5.303367+1 1.897932-4-6.062272+1 2.333632-4-6.329282+1 3.311311-4-7.064267+1 3.536243-4-7.286619+1 4.108736-4-8.351817+1 4.430000-4-8.332743+1 5.799288-4-6.512701+1 6.287972-4-6.160810+1 6.493540-4-6.259881+1 6.608476-4-6.665078+1 6.645792-4-6.420290+1 6.716136-4-5.413536+1 6.751999-4-5.244506+1 6.975792-4-5.812635+1 7.023104-4-5.652848+1 7.098999-4-5.046850+1 7.157573-4-4.949026+1 7.297697-4-5.016752+1 8.480195-4-4.265168+1 9.252834-4-3.992661+1 9.471313-4-4.014838+1 1.014814-3-3.556688+1 1.124472-3-3.170700+1 1.269821-3-2.835845+1 1.344245-3-2.703927+1 1.520110-3-2.447755+1 1.781092-3-2.257593+1 2.118331-3-2.185480+1 2.489593-3-2.254332+1 2.792644-3-2.433508+1 3.019432-3-2.700751+1 3.162663-3-3.019320+1 3.243469-3-3.362178+1 3.281692-3-3.682431+1 3.329802-3-4.247722+1 3.349080-3-4.256490+1 3.409247-3-3.719297+1 3.443228-3-3.648519+1 3.493687-3-3.762615+1 3.520452-3-3.624362+1 3.576665-3-3.069377+1 3.631320-3-2.754968+1 3.723704-3-2.441209+1 3.845918-3-2.203183+1 3.946495-3-2.131516+1 4.027774-3-2.215429+1 4.066696-3-2.117205+1 4.127256-3-1.879129+1 4.221718-3-1.668979+1 4.376623-3-1.455821+1 4.584469-3-1.281724+1 4.737228-3-1.225291+1 4.840986-3-1.228898+1 4.952389-3-1.104206+1 5.070759-3-1.042284+1 5.165883-3-1.020440+1 5.301995-3-8.970792+0 5.531610-3-7.741097+0 5.831251-3-6.681890+0 6.265580-3-5.660612+0 6.809653-3-4.876605+0 7.413102-3-4.386081+0 8.222426-3-4.112337+0 9.203089-3-4.063908+0 1.045704-2-4.300425+0 1.191928-2-4.813445+0 1.339249-2-5.593708+0 1.450804-2-6.499618+0 1.522641-2-7.435750+0 1.567628-2-8.425926+0 1.592593-2-9.416217+0 1.609021-2-1.065967+1 1.624576-2-1.206480+1 1.632641-2-1.224952+1 1.643140-2-1.163805+1 1.661047-2-9.900156+0 1.678744-2-8.819389+0 1.705811-2-7.921119+0 1.749183-2-7.138244+0 1.805695-2-6.651358+0 1.870334-2-6.551539+0 1.917173-2-6.861684+0 1.942972-2-7.393223+0 1.969605-2-8.371050+0 1.984167-2-8.414866+0 2.017686-2-7.396281+0 2.051758-2-6.964974+0 2.092282-2-5.643708+0 2.128001-2-4.916430+0 2.187022-2-4.140239+0 2.261808-2-3.455478+0 2.348727-2-2.885641+0 2.431573-2-2.482188+0 2.553079-2-2.048945+0 2.639552-2-1.817220+0 2.778114-2-1.540243+0 2.944845-2-1.309245+0 3.097152-2-1.166213+0 3.255204-2-1.066464+0 3.523052-2-9.783423-1 3.907812-2-9.470819-1 4.243204-2-9.696172-1 5.177417-2-1.134593+0 8.070766-2-1.805495+0 9.062409-2-2.099356+0 9.808773-2-2.418066+0 1.029594-1-2.759602+0 1.057739-1-3.101367+0 1.074330-1-3.465071+0 1.084819-1-3.902594+0 1.095783-1-4.487268+0 1.102570-1-4.568721+0 1.110147-1-4.257055+0 1.123718-1-3.490745+0 1.134038-1-3.139328+0 1.151776-1-2.771907+0 1.177941-1-2.428826+0 1.217007-1-2.108954+0 1.271198-1-1.815704+0 1.334505-1-1.596073+0 1.415201-1-1.415234+0 1.533051-1-1.254241+0 1.685343-1-1.137149+0 1.904638-1-1.061935+0 2.332197-1-1.029321+0 5.180803-1-1.157383+0 9.002746-1-1.213301+0 2.814822+0-1.240662+0 8.500626+0-1.247212+0 1.000000+1-1.244343+0 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.309336-1 1.047409-6 1.668298-1 1.070245-6 1.873790-1 1.091655-6 2.090646-1 1.111726-6 2.318649-1 1.130543-6 2.557591-1 1.148184-6 2.807302-1 1.164722-6 3.067761-1 1.180227-6 3.340015-1 1.200000-6 3.732546-1 1.221165-6 4.214717-1 1.233142-6 4.524765-1 1.244370-6 4.847109-1 1.254897-6 5.181118-1 1.264765-6 5.527614-1 1.274017-6 5.887348-1 1.291365-6 6.668035-1 1.306544-6 7.499251-1 1.319825-6 8.388167-1 1.331446-6 9.339390-1 1.341615-6 1.035742+0 1.350513-6 1.144705+0 1.358298-6 1.261364+0 1.365110-6 1.386359+0 1.371071-6 1.520555+0 1.376287-6 1.665212+0 1.380850-6 1.822027+0 1.384843-6 1.992755+0 1.388337-6 2.178470+0 1.391395-6 2.378861+0 1.394070-6 2.591944+0 1.396411-6 2.814296+0 1.398459-6 3.041609+0 1.400251-6 3.269332+0 1.401819-6 3.493203+0 1.404563-6 3.946463+0 1.406621-6 4.342599+0 1.411493-6 5.489295+0 1.415132-6 6.538844+0 1.418012-6 7.472799+0 1.419751-6 8.071192+0 1.423228-6 9.312341+0 1.423663-6 9.468884+0 1.426705-6 1.054832+1 1.427901-6 1.095554+1 1.430183-6 1.168570+1 1.431378-6 1.203538+1 1.432519-6 1.234309+1 1.433660-6 1.262174+1 1.435182-6 1.294233+1 1.436649-6 1.319014+1 1.438007-6 1.336093+1 1.439148-6 1.345800+1 1.440615-6 1.351771+1 1.442571-6 1.347975+1 1.444201-6 1.334430+1 1.444622-6 1.329407+1 1.446741-6 1.294899+1 1.448133-6 1.264186+1 1.449374-6 1.231801+1 1.451058-6 1.180983+1 1.452256-6 1.140491+1 1.454634-6 1.051409+1 1.455735-6 1.006942+1 1.457365-6 9.385451+0 1.458984-6 8.685095+0 1.460076-6 8.206852+0 1.461480-6 7.591291+0 1.463001-6 6.930671+0 1.464224-6 6.409841+0 1.464957-6 6.103324+0 1.466696-6 5.399435+0 1.468217-6 4.814749+0 1.469467-6 4.359561+0 1.470689-6 3.938124+0 1.471912-6 3.541591+0 1.475389-6 2.555980+0 1.476727-6 2.233359+0 1.477797-6 1.997606+0 1.478867-6 1.781049+0 1.480388-6 1.504911+0 1.482189-6 1.223673+0 1.484096-6 9.758073-1 1.487150-6 6.724326-1 1.489448-6 5.090296-1 1.490875-6 4.311306-1 1.491886-6 3.855418-1 1.492549-6 3.595599-1 1.493202-6 3.368245-1 1.493844-6 3.170353-1 1.494477-6 2.999182-1 1.495099-6 2.852231-1 1.495712-6 2.727220-1 1.496919-6 2.533651-1 1.498088-6 2.406228-1 1.499220-6 2.332759-1 1.500317-6 2.303208-1 1.501380-6 2.309327-1 1.534325-6 1.158296+0 1.541878-6 1.724195+0 1.544981-6 2.020417+0 1.546093-6 2.135347+0 1.549431-6 2.504653+0 1.551607-6 2.761648+0 1.555407-6 3.227230+0 1.555882-6 3.285839+0 1.559208-6 3.689171+0 1.560514-6 3.840894+0 1.563008-6 4.112147+0 1.564832-6 4.289936+0 1.565702-6 4.367240+0 1.567008-6 4.472771+0 1.568313-6 4.564540+0 1.569075-6 4.611215+0 1.570409-6 4.679846+0 1.572159-6 4.743124+0 1.573565-6 4.770688+0 1.574884-6 4.776969+0 1.576547-6 4.757365+0 1.578210-6 4.706978+0 1.578893-6 4.677465+0 1.580841-6 4.565830+0 1.582625-6 4.429652+0 1.583372-6 4.363662+0 1.585296-6 4.171155+0 1.587022-6 3.974028+0 1.589849-6 3.611011+0 1.591327-6 3.406566+0 1.592784-6 3.198385+0 1.594012-6 3.019716+0 1.595141-6 2.854348+0 1.596517-6 2.652729+0 1.598000-6 2.437428+0 1.599318-6 2.249796+0 1.601012-6 2.015745+0 1.603031-6 1.750585+0 1.604645-6 1.551551+0 1.605495-6 1.451935+0 1.607054-6 1.279109+0 1.608731-6 1.108021+0 1.610148-6 9.759145-1 1.611847-6 8.325147-1 1.613571-6 7.035204-1 1.615222-6 5.950872-1 1.617163-6 4.856357-1 1.620014-6 3.572567-1 1.622953-6 2.602217-1 1.624574-6 2.198647-1 1.625867-6 1.935448-1 1.626511-6 1.821879-1 1.627154-6 1.719445-1 1.627796-6 1.627509-1 1.628436-6 1.545455-1 1.629075-6 1.472693-1 1.630351-6 1.352691-1 1.631622-6 1.263403-1 1.632888-6 1.200939-1 1.634149-6 1.161787-1 1.635406-6 1.142797-1 1.636657-6 1.141163-1 1.637903-6 1.154404-1 1.640386-6 1.217222-1 1.642850-6 1.316908-1 1.645294-6 1.442727-1 1.650126-6 1.743710-1 1.652513-6 1.909438-1 1.657251-6 2.259454-1 1.661914-6 2.624231-1 1.666505-6 2.999723-1 1.671024-6 3.384645-1 1.955722-6 3.257407+0 1.960536-6 3.351447+0 1.965350-6 3.458353+0 1.970164-6 3.578357+0 1.989419-6 4.144310+0 1.996385-6 4.335734+0 2.001263-6 4.442869+0 2.006141-6 4.517222+0 2.010733-6 4.551054+0 2.013488-6 4.553259+0 2.017131-6 4.535525+0 2.020774-6 4.496072+0 2.025652-6 4.415693+0 2.037847-6 4.162757+0 2.042010-6 4.092346+0 2.044597-6 4.059544+0 2.047184-6 4.037030+0 2.051052-6 4.024904+0 2.054919-6 4.040277+0 2.059797-6 4.098845+0 2.064675-6 4.197627+0 2.069553-6 4.330142+0 2.074430-6 4.488502+0 2.087530-6 4.983868+0 2.096914-6 5.358201+0 2.125064-6 6.473866+0 2.187831-6 9.434253+0 2.213984-6 1.106535+1 2.229676-6 1.220910+1 2.247157-6 1.366097+1 2.263546-6 1.522524+1 2.278910-6 1.690999+1 2.293314-6 1.872341+1 2.306818-6 2.067296+1 2.319478-6 2.276595+1 2.331346-6 2.500977+1 2.342473-6 2.741198+1 2.352904-6 2.998026+1 2.362684-6 3.272245+1 2.371852-6 3.564657+1 2.380447-6 3.876084+1 2.388505-6 4.207383+1 2.396059-6 4.559453+1 2.403142-6 4.933247+1 2.409781-6 5.329779+1 2.416006-6 5.750133+1 2.421841-6 6.195480+1 2.427312-6 6.667123+1 2.432441-6 7.166566+1 2.437250-6 7.695584+1 2.441757-6 8.256277+1 2.445983-6 8.851075+1 2.453907-6 1.020163+2 2.460841-6 1.173300+2 2.466908-6 1.346097+2 2.472216-6 1.538569+2 2.476861-6 1.748818+2 2.480925-6 1.973241+2 2.484481-6 2.207113+2 2.487593-6 2.445282+2 2.490316-6 2.682768+2 2.494783-6 3.138973+2 2.501167-6 3.956020+2 2.510485-6 5.552151+2 2.515551-6 6.635323+2 2.518640-6 7.368077+2 2.521728-6 8.151525+2 2.527904-6 9.845442+2 2.528677-6 1.006651+3 2.534081-6 1.164624+3 2.536204-6 1.227232+3 2.540837-6 1.361675+3 2.542873-6 1.418725+3 2.545783-6 1.496750+3 2.547654-6 1.544129+3 2.550683-6 1.615089+3 2.553469-6 1.672938+3 2.556543-6 1.727148+3 2.559173-6 1.764520+3 2.562068-6 1.795202+3 2.565157-6 1.815079+3 2.566232-6 1.818779+3 2.569299-6 1.820028+3 2.572336-6 1.807675+3 2.573709-6 1.797699+3 2.576746-6 1.766245+3 2.578999-6 1.734888+3 2.583791-6 1.647479+3 2.586811-6 1.579685+3 2.589966-6 1.500204+3 2.593024-6 1.416382+3 2.595133-6 1.355569+3 2.598147-6 1.265640+3 2.601296-6 1.169439+3 2.605111-6 1.052196+3 2.608199-6 9.584956+2 2.611673-6 8.560772+2 2.614376-6 7.795421+2 2.620552-6 6.179717+2 2.622305-6 5.759820+2 2.624306-6 5.303121+2 2.628808-6 4.365769+2 2.632581-6 3.677086+2 2.636523-6 3.049049+2 2.639242-6 2.668044+2 2.642737-6 2.236604+2 2.646621-6 1.828136+2 2.650460-6 1.490066+2 2.655081-6 1.158411+2 2.661022-6 8.322003+1 2.667572-6 5.743431+1 2.677397-6 3.270485+1 2.683947-6 2.239661+1 2.690616-6 1.517700+1 2.696238-6 1.088781+1 2.705097-6 6.404277+0 2.710588-6 4.619276+0 2.713903-6 3.819855+0 2.716227-6 3.366379+0 2.718381-6 3.017174+0 2.720534-6 2.731218+0 2.722880-6 2.486687+0 2.724417-6 2.362013+0 2.725954-6 2.264121+0 2.727184-6 2.204374+0 2.728652-6 2.153988+0 2.729533-6 2.134387+0 2.731196-6 2.118528+0 2.733691-6 2.145053+0 2.736186-6 2.229880+0 2.740427-6 2.503041+0 2.747058-6 3.245535+0 2.757359-6 5.161521+0 2.766951-6 7.829684+0 2.771527-6 9.429070+0 2.776103-6 1.125418+1 2.782756-6 1.432997+1 2.785108-6 1.554076+1 2.790585-6 1.861228+1 2.793323-6 2.027952+1 2.796810-6 2.252603+1 2.798818-6 2.388078+1 2.806737-6 2.961851+1 2.810578-6 3.260087+1 2.817462-6 3.819019+1 2.824346-6 4.398531+1 2.827788-6 4.692372+1 2.831230-6 4.987568+1 2.835124-6 5.322672+1 2.838044-6 5.575109+1 2.844615-6 6.151672+1 2.853660-6 7.001660+1 2.860146-6 7.706690+1 2.865650-6 8.421723+1 2.867371-6 8.676222+1 2.872534-6 9.556884+1 2.874671-6 9.983557+1 2.877876-6 1.070764+2 2.881081-6 1.155048+2 2.882795-6 1.205770+2 2.885794-6 1.305452+2 2.888043-6 1.390516+2 2.891417-6 1.537314+2 2.894791-6 1.710934+2 2.897431-6 1.868571+2 2.900070-6 2.048235+2 2.903512-6 2.320555+2 2.906954-6 2.642795+2 2.910396-6 3.023380+2 2.913838-6 3.471793+2 2.917280-6 3.998587+2 2.924909-6 5.505030+2 2.934490-6 8.242484+2 2.940020-6 1.035848+3 2.945630-6 1.297447+3 2.949921-6 1.532154+3 2.954384-6 1.809561+3 2.958011-6 2.060223+3 2.961638-6 2.332989+3 2.968892-6 2.939352+3 2.969799-6 3.020187+3 2.976146-6 3.609970+3 2.978640-6 3.850039+3 2.983400-6 4.313476+3 2.987084-6 4.669998+3 2.990654-6 5.007140+3 2.994338-6 5.339692+3 2.997908-6 5.640751+3 3.001082-6 5.885760+3 3.004014-6 6.089557+3 3.005615-6 6.190528+3 3.009866-6 6.419479+3 3.013185-6 6.555271+3 3.017052-6 6.662181+3 3.020519-6 6.709069+3 3.022614-6 6.714558+3 3.025846-6 6.689327+3 3.029134-6 6.622480+3 3.030395-6 6.586136+3 3.034631-6 6.422715+3 3.037527-6 6.276711+3 3.039479-6 6.163890+3 3.042339-6 5.979707+3 3.045116-6 5.781578+3 3.048686-6 5.503307+3 3.051860-6 5.238128+3 3.054920-6 4.970608+3 3.059567-6 4.550533+3 3.063194-6 4.217980+3 3.067274-6 3.846159+3 3.070448-6 3.562752+3 3.077702-6 2.948685+3 3.082576-6 2.571532+3 3.084956-6 2.399443+3 3.090396-6 2.037979+3 3.097409-6 1.638978+3 3.109964-6 1.102399+3 3.114526-6 9.570035+2 3.118802-6 8.408718+2 3.122811-6 7.476227+2 3.126569-6 6.722421+2 3.130093-6 6.108340+2 3.133396-6 5.603897+2 3.139590-6 4.814620+2 3.145009-6 4.260204+2 3.149751-6 3.857204+2 3.158050-6 3.292287+2 3.164274-6 2.956508+2 3.173610-6 2.552558+2 3.183102-6 2.229361+2 3.190937-6 2.010631+2 3.198772-6 1.825483+2 3.206606-6 1.667966+2 3.214441-6 1.534016+2 3.222276-6 1.420659+2 3.230111-6 1.325453+2 3.237946-6 1.246102+2 3.245879-6 1.179484+2 3.253829-6 1.123971+2 3.261779-6 1.077006+2 3.277679-6 9.984704+1 3.290583-6 9.406152+1 3.301530-6 8.915010+1 3.316294-6 8.239027+1 3.324128-6 7.879534+1 3.365756-6 6.168841+1 3.376570-6 5.809859+1 3.387086-6 5.495431+1 3.400078-6 5.149886+1 3.408988-6 4.937373+1 3.425058-6 4.596704+1 3.465169-6 3.888358+1 3.482268-6 3.604532+1 3.507628-6 3.209225+1 3.516553-6 3.090464+1 3.525561-6 2.987723+1 3.534175-6 2.907725+1 3.542506-6 2.847558+1 3.550838-6 2.802690+1 3.560018-6 2.767038+1 3.585860-6 2.691346+1 3.592321-6 2.666572+1 3.602011-6 2.618864+1 3.611702-6 2.556924+1 3.619704-6 2.495341+1 3.627978-6 2.423150+1 3.636549-6 2.341504+1 3.644753-6 2.259357+1 3.671476-6 1.994878+1 3.680718-6 1.913860+1 3.689521-6 1.844805+1 3.698387-6 1.783915+1 3.707358-6 1.730921+1 3.716329-6 1.685432+1 3.734270-6 1.609043+1 3.750063-6 1.546444+1 3.770528-6 1.460596+1 3.788999-6 1.385128+1 3.798234-6 1.353651+1 3.807469-6 1.329064+1 3.813917-6 1.316539+1 3.820364-6 1.307825+1 3.830524-6 1.300891+1 3.860171-6 1.300663+1 3.872702-6 1.293956+1 3.881711-6 1.282837+1 3.890720-6 1.265971+1 3.904190-6 1.230948+1 3.922948-6 1.168074+1 3.938499-6 1.109756+1 3.952106-6 1.057706+1 3.994000-6 9.030533+0 4.032850-6 7.646316+0 4.049174-6 7.062882+0 4.064596-6 6.517112+0 4.110096-6 5.081509+0 4.144205-6 4.247515+0 4.152795-6 4.046017+0 4.162859-6 3.801275+0 4.168372-6 3.661636+0 4.174264-6 3.507910+0 4.183368-6 3.263013+0 4.192511-6 3.014080+0 4.211380-6 2.539377+0 4.215999-6 2.441954+0 4.223891-6 2.302118+0 4.226326-6 2.266729+0 4.236652-6 2.162977+0 4.238031-6 2.155133+0 4.247685-6 2.141880+0 4.252014-6 2.159938+0 4.256146-6 2.191149+0 4.260279-6 2.236125+0 4.262615-6 2.267747+0 4.266705-6 2.334168+0 4.269772-6 2.393642+0 4.272072-6 2.444005+0 4.277248-6 2.577044+0 4.280277-6 2.669033+0 4.284840-6 2.830660+0 4.288262-6 2.973073+0 4.290055-6 3.056030+0 4.299832-6 3.636355+0 4.303845-6 3.953826+0 4.307053-6 4.249965+0 4.311408-6 4.722490+0 4.315483-6 5.250279+0 4.320106-6 5.966346+0 4.320972-6 6.115834+0 4.334814-6 9.304630+0 4.349231-6 1.461445+1 4.351974-6 1.589266+1 4.362943-6 2.190577+1 4.367213-6 2.462708+1 4.372666-6 2.838673+1 4.377769-6 3.216186+1 4.382809-6 3.608926+1 4.387694-6 4.003543+1 4.392102-6 4.366593+1 4.396769-6 4.753039+1 4.401602-6 5.149271+1 4.406479-6 5.538186+1 4.412493-6 5.992561+1 4.416564-6 6.278278+1 4.422030-6 6.626769+1 4.426615-6 6.882820+1 4.430598-6 7.075027+1 4.435374-6 7.265407+1 4.439216-6 7.385080+1 4.441785-6 7.447889+1 4.449491-6 7.552342+1 4.454037-6 7.555250+1 4.457294-6 7.531314+1 4.462637-6 7.447143+1 4.464819-6 7.397545+1 4.468637-6 7.290925+1 4.473649-6 7.115762+1 4.478481-6 6.913475+1 4.480092-6 6.839637+1 4.489100-6 6.378946+1 4.492946-6 6.163146+1 4.500622-6 5.711831+1 4.510804-6 5.098027+1 4.513462-6 4.939197+1 4.528289-6 4.097746+1 4.551684-6 3.021797+1 4.560702-6 2.702338+1 4.567545-6 2.493320+1 4.577227-6 2.241879+1 4.588176-6 2.011096+1 4.598408-6 1.837052+1 4.611770-6 1.655728+1 4.624689-6 1.516334+1 4.641510-6 1.370354+1 4.654608-6 1.275354+1 4.666946-6 1.196131+1 4.715668-6 9.398064+0 4.739106-6 8.336141+0 4.767434-6 7.108538+0 4.775801-6 6.756166+0 4.799398-6 5.830005+0 4.811740-6 5.432123+0 4.816913-6 5.296287+0 4.823506-6 5.158412+0 4.828991-6 5.079814+0 4.831086-6 5.059684+0 4.837371-6 5.036263+0 4.848915-6 5.160877+0 4.852762-6 5.257575+0 4.864648-6 5.753699+0 4.868734-6 5.997395+0 4.876534-6 6.570376+0 4.880620-6 6.926806+0 4.888420-6 7.710945+0 4.905121-6 9.786135+0 4.913537-6 1.097794+1 4.916830-6 1.145858+1 4.924570-6 1.259743+1 4.929876-6 1.336926+1 4.936008-6 1.423262+1 4.938052-6 1.451025+1 4.949664-6 1.594717+1 4.959736-6 1.693711+1 4.964809-6 1.732484+1 4.969652-6 1.761887+1 4.976544-6 1.790347+1 4.980386-6 1.799264+1 4.983748-6 1.802993+1 4.989631-6 1.800525+1 4.994043-6 1.791410+1 4.997352-6 1.780677+1 5.004798-6 1.745181+1 5.007280-6 1.730127+1 5.016194-6 1.664565+1 5.019166-6 1.639231+1 5.031052-6 1.524957+1 5.042938-6 1.397977+1 5.050000-6 1.320630+1 5.064481-6 1.166614+1 5.080344-6 1.017194+1 5.085108-6 9.780665+0 5.100567-6 8.732606+0 5.113060-6 8.156016+0 5.119306-6 7.961805+0 5.125553-6 7.829745+0 5.129094-6 7.781849+0 5.134407-6 7.745366+0 5.139720-6 7.749405+0 5.143769-6 7.778058+0 5.148208-6 7.833078+0 5.152260-6 7.903098+0 5.161375-6 8.120083+0 5.173674-6 8.508208+0 5.189107-6 9.059512+0 5.201454-6 9.473006+0 5.204543-6 9.565044+0 5.213809-6 9.802347+0 5.217256-6 9.873689+0 5.227599-6 1.002616+1 5.236445-6 1.008111+1 5.240667-6 1.008353+1 5.250167-6 1.003805+1 5.259237-6 9.939449+0 5.265141-6 9.853639+0 5.301713-6 9.235934+0 5.312421-6 9.106398+0 5.326094-6 9.004957+0 5.335915-6 8.974778+0 5.344340-6 8.972593+0 5.357086-6 8.998897+0 5.393769-6 9.122111+0 5.408130-6 9.143864+0 5.447371-6 9.094381+0 5.472010-6 9.016318+0 5.545455-6 8.736090+0 5.611154-6 8.458826+0 5.642612-6 8.379620+0 5.676031-6 8.357173+0 5.719147-6 8.358612+0 5.743052-6 8.339628+0 5.765498-6 8.302210+0 5.856227-6 8.091395+0 5.927596-6 7.996375+0 6.000000-6 7.895856+0 6.084608-6 7.713026+0 6.113499-6 7.662862+0 6.145822-6 7.628899+0 6.250171-6 7.598108+0 6.297955-6 7.539466+0 6.382635-6 7.382840+0 6.698764-6 6.893825+0 6.831314-6 6.750250+0 7.288858-6 6.229466+0 7.762471-6 5.718980+0 8.210602-6 5.263290+0 8.740410-6 4.729533+0 9.225714-6 4.253780+0 9.653560-6 3.833527+0 1.003418-5 3.461622+0 1.035142-5 3.160860+0 1.059254-5 2.937551+0 1.084440-5 2.712332+0 1.100539-5 2.573166+0 1.161449-5 2.107388+0 1.171505-5 2.044345+0 1.187968-5 1.951597+0 1.199359-5 1.895950+0 1.209008-5 1.856641+0 1.217807-5 1.833147+0 1.225309-5 1.829102+0 1.236483-5 1.853995+0 1.249795-5 1.916835+0 1.261268-5 1.989158+0 1.268114-5 2.039921+0 1.280855-5 2.150726+0 1.290508-5 2.250092+0 1.306073-5 2.440534+0 1.323320-5 2.697556+0 1.331541-5 2.839531+0 1.347470-5 3.154980+0 1.366875-5 3.612783+0 1.376417-5 3.871705+0 1.389528-5 4.272087+0 1.405329-5 4.828904+0 1.424183-5 5.608133+0 1.443827-5 6.574421+0 1.462177-5 7.649190+0 1.481143-5 8.964701+0 1.496235-5 1.018546+1 1.513274-5 1.178440+1 1.531556-5 1.380305+1 1.545268-5 1.556451+1 1.559305-5 1.763051+1 1.570977-5 1.958057+1 1.591088-5 2.350432+1 1.605926-5 2.695155+1 1.621810-5 3.129377+1 1.637164-5 3.626123+1 1.652783-5 4.226542+1 1.664497-5 4.754256+1 1.678736-5 5.505014+1 1.691071-5 6.272580+1 1.703663-5 7.194042+1 1.715742-5 8.238834+1 1.728077-5 9.506967+1 1.740412-5 1.103004+2 1.748636-5 1.222081+2 1.759831-5 1.412224+2 1.768541-5 1.587657+2 1.778535-5 1.826678+2 1.784007-5 1.978454+2 1.789137-5 2.136791+2 1.793947-5 2.301433+2 1.799710-5 2.522657+2 1.806910-5 2.843028+2 1.814471-5 3.245592+2 1.820780-5 3.648981+2 1.826443-5 4.079723+2 1.831399-5 4.525692+2 1.835735-5 4.983303+2 1.839529-5 5.447703+2 1.842849-5 5.912968+2 1.845754-5 6.372650+2 1.850838-5 7.315395+2 1.854651-5 8.155419+2 1.859655-5 9.453942+2 1.870682-5 1.315316+3 1.875275-5 1.500703+3 1.879868-5 1.700176+3 1.885609-5 1.964688+3 1.890203-5 2.188503+3 1.895944-5 2.496143+3 1.898241-5 2.635259+3 1.901685-5 2.873161+3 1.902834-5 2.962861+3 1.906279-5 3.274294+3 1.908575-5 3.526498+3 1.912020-5 3.992613+3 1.913599-5 4.248741+3 1.916613-5 4.826366+3 1.918946-5 5.364362+3 1.922314-5 6.301669+3 1.924922-5 7.171074+3 1.932445-5 1.044239+4 1.936142-5 1.246175+4 1.937474-5 1.324823+4 1.942207-5 1.625033+4 1.943732-5 1.726887+4 1.947064-5 1.953419+4 1.948539-5 2.053958+4 1.950647-5 2.195930+4 1.952003-5 2.285216+4 1.954294-5 2.430667+4 1.956456-5 2.559344+4 1.958376-5 2.664644+4 1.960670-5 2.777146+4 1.963358-5 2.887301+4 1.965651-5 2.960406+4 1.966839-5 2.990143+4 1.969165-5 3.031453+4 1.970661-5 3.045850+4 1.975191-5 3.030665+4 1.977308-5 2.993874+4 1.979468-5 2.937950+4 1.981112-5 2.883705+4 1.983235-5 2.799980+4 1.985101-5 2.714954+4 1.986913-5 2.623397+4 1.989243-5 2.494736+4 1.991313-5 2.372114+4 1.993310-5 2.248440+4 1.996342-5 2.054362+4 1.998709-5 1.900870+4 2.001371-5 1.729451+4 2.003442-5 1.598956+4 2.008175-5 1.316778+4 2.011355-5 1.143923+4 2.012909-5 1.065185+4 2.016458-5 9.001138+3 2.020488-5 7.383169+3 2.030435-5 4.476048+3 2.032921-5 3.957672+3 2.035408-5 3.507858+3 2.037894-5 3.118980+3 2.040381-5 2.783679+3 2.042868-5 2.495033+3 2.045354-5 2.246660+3 2.047841-5 2.032789+3 2.050751-5 1.819436+3 2.055300-5 1.550001+3 2.060274-5 1.322827+3 2.065247-5 1.145953+3 2.070220-5 1.004902+3 2.076262-5 8.677478+2 2.080166-5 7.939265+2 2.085140-5 7.126802+2 2.090113-5 6.428231+2 2.095086-5 5.820132+2 2.101747-5 5.117459+2 2.120151-5 3.632658+2 2.146000-5 2.247845+2 2.151256-5 2.050977+2 2.156513-5 1.884615+2 2.159141-5 1.812898+2 2.161769-5 1.748636+2 2.164859-5 1.682201+2 2.167025-5 1.641180+2 2.169653-5 1.597008+2 2.172664-5 1.553137+2 2.177538-5 1.494443+2 2.182794-5 1.442717+2 2.195579-5 1.330970+2 2.206912-5 1.228705+2 2.212330-5 1.187030+2 2.217195-5 1.160911+2 2.221407-5 1.150492+2 2.225655-5 1.153441+2 2.229203-5 1.166629+2 2.231332-5 1.179003+2 2.234872-5 1.206117+2 2.239424-5 1.250238+2 2.245541-5 1.317156+2 2.250429-5 1.368035+2 2.255968-5 1.413469+2 2.257872-5 1.424728+2 2.261507-5 1.438900+2 2.264814-5 1.442984+2 2.267515-5 1.440087+2 2.270078-5 1.432414+2 2.274238-5 1.410832+2 2.275619-5 1.401514+2 2.280666-5 1.360513+2 2.290103-5 1.269461+2 2.300114-5 1.179272+2 2.306125-5 1.135948+2 2.312107-5 1.101540+2 2.313727-5 1.093524+2 2.326947-5 1.041455+2 2.341120-5 9.935868+1 2.353514-5 9.480032+1 2.374137-5 8.679323+1 2.402512-5 7.696094+1 2.416374-5 7.275839+1 2.447578-5 6.381608+1 2.466096-5 5.858465+1 2.484224-5 5.351453+1 2.499388-5 4.936294+1 2.522585-5 4.331471+1 2.550213-5 3.697603+1 2.558186-5 3.542284+1 2.565887-5 3.408551+1 2.573833-5 3.290627+1 2.580797-5 3.207212+1 2.586775-5 3.153266+1 2.593012-5 3.117817+1 2.597689-5 3.107918+1 2.602500-5 3.115646+1 2.605849-5 3.133594+1 2.610162-5 3.174528+1 2.613086-5 3.215365+1 2.616399-5 3.276323+1 2.618737-5 3.329854+1 2.621076-5 3.393028+1 2.624194-5 3.493868+1 2.627313-5 3.615934+1 2.630743-5 3.778033+1 2.633549-5 3.935096+1 2.636668-5 4.138866+1 2.639786-5 4.377377+1 2.642904-5 4.655387+1 2.646363-5 5.016718+1 2.649141-5 5.353247+1 2.652259-5 5.787607+1 2.655704-5 6.348375+1 2.658495-5 6.875262+1 2.662923-5 7.871786+1 2.667074-5 9.026411+1 2.671424-5 1.052848+2 2.674614-5 1.186921+2 2.678035-5 1.358542+2 2.681241-5 1.551362+2 2.684633-5 1.796389+2 2.687066-5 2.003266+2 2.690352-5 2.331962+2 2.694507-5 2.845464+2 2.698725-5 3.505310+2 2.704227-5 4.632904+2 2.717435-5 9.115577+2 2.722869-5 1.195397+3 2.726610-5 1.433179+3 2.730364-5 1.710046+3 2.733923-5 2.010290+3 2.736500-5 2.251431+3 2.739418-5 2.549103+3 2.742777-5 2.923907+3 2.749914-5 3.828759+3 2.750702-5 3.936810+3 2.756632-5 4.793658+3 2.758797-5 5.121528+3 2.762930-5 5.760541+3 2.766342-5 6.292226+3 2.769648-5 6.801939+3 2.773060-5 7.312421+3 2.776366-5 7.782700+3 2.779305-5 8.172865+3 2.782021-5 8.504373+3 2.783504-5 8.671810+3 2.787440-5 9.063682+3 2.790514-5 9.310672+3 2.794225-5 9.532873+3 2.797465-5 9.654687+3 2.799686-5 9.698093+3 2.803016-5 9.701501+3 2.805285-5 9.661812+3 2.810286-5 9.458448+3 2.813174-5 9.272803+3 2.816905-5 8.966609+3 2.818712-5 8.793948+3 2.821719-5 8.476067+3 2.825390-5 8.043770+3 2.829225-5 7.552253+3 2.833469-5 6.976723+3 2.836828-5 6.508874+3 2.840606-5 5.980429+3 2.843545-5 5.574216+3 2.850263-5 4.684796+3 2.852573-5 4.396957+3 2.856981-5 3.879168+3 2.863279-5 3.219932+3 2.878237-5 2.049377+3 2.884032-5 1.731966+3 2.886420-5 1.619889+3 2.890784-5 1.440049+3 2.895958-5 1.263456+3 2.900000-5 1.148880+3 2.902816-5 1.079388+3 2.909910-5 9.351266+2 2.914452-5 8.614280+2 2.919230-5 7.960455+2 2.927513-5 7.050879+2 2.936629-5 6.282273+2 2.941924-5 5.914672+2 2.949130-5 5.482740+2 2.960113-5 4.936735+2 2.970802-5 4.498648+2 2.980753-5 4.150393+2 2.998894-5 3.622297+2 3.013502-5 3.274620+2 3.021187-5 3.115893+2 3.028393-5 2.981563+2 3.035645-5 2.860251+2 3.043440-5 2.745089+2 3.056527-5 2.586269+2 3.065169-5 2.504553+2 3.082382-5 2.396615+2 3.089106-5 2.374658+2 3.096709-5 2.363381+2 3.101476-5 2.363259+2 3.108136-5 2.371034+2 3.121345-5 2.406160+2 3.132959-5 2.444314+2 3.144881-5 2.473837+2 3.152349-5 2.482257+2 3.162467-5 2.479444+2 3.170234-5 2.467401+2 3.180130-5 2.443423+2 3.206764-5 2.368265+2 3.222002-5 2.335735+2 3.243084-5 2.306357+2 3.285407-5 2.262352+2 3.345620-5 2.173057+2 3.416760-5 2.085420+2 3.521981-5 1.986096+2 3.672823-5 1.877594+2 3.812355-5 1.797937+2 4.340103-5 1.567788+2 4.536057-5 1.483582+2 4.638469-5 1.430670+2 4.663908-5 1.425840+2 4.682721-5 1.428859+2 4.706306-5 1.440824+2 4.750392-5 1.471120+2 4.761695-5 1.475722+2 4.776666-5 1.477750+2 4.789192-5 1.475707+2 4.808627-5 1.466820+2 4.858500-5 1.432826+2 4.888540-5 1.417601+2 5.031226-5 1.375459+2 5.132306-5 1.338535+2 5.332831-5 1.259806+2 5.600991-5 1.143337+2 5.801169-5 1.047370+2 5.974036-5 9.570923+1 6.136282-5 8.672911+1 6.287380-5 7.794269+1 6.409047-5 7.060202+1 6.531738-5 6.299659+1 6.629553-5 5.699842+1 6.719270-5 5.394955+1 6.825123-5 5.780922+1 6.931973-5 6.541363+1 7.033614-5 7.416069+1 7.117650-5 8.271936+1 7.224517-5 9.565274+1 7.310840-5 1.080839+2 7.372800-5 1.183780+2 7.464423-5 1.360605+2 7.549371-5 1.555731+2 7.629678-5 1.774876+2 7.710230-5 2.036267+2 7.775773-5 2.286905+2 7.842150-5 2.583605+2 7.915370-5 2.971440+2 7.962906-5 3.264786+2 8.018641-5 3.659978+2 8.070893-5 4.090675+2 8.119879-5 4.558458+2 8.165804-5 5.065089+2 8.208858-5 5.612256+2 8.249222-5 6.201231+2 8.294968-5 6.976019+2 8.334112-5 7.748968+2 8.356113-5 8.236572+2 8.392416-5 9.140599+2 8.416208-5 9.811174+2 8.443612-5 1.067402+3 8.471898-5 1.168351+3 8.504370-5 1.302131+3 8.537138-5 1.461022+3 8.556984-5 1.571518+3 8.585191-5 1.751302+3 8.609385-5 1.931431+3 8.624715-5 2.060657+3 8.653460-5 2.342216+3 8.678612-5 2.642281+3 8.700620-5 2.959934+3 8.719876-5 3.293850+3 8.736726-5 3.641993+3 8.751469-5 4.001426+3 8.765434-5 4.401099+3 8.775658-5 4.738181+3 8.795412-5 5.522637+3 8.810227-5 6.254922+3 8.821339-5 6.904645+3 8.829672-5 7.457969+3 8.842173-5 8.409839+3 8.854673-5 9.529296+3 8.865571-5 1.066172+4 8.887365-5 1.343609+4 8.928250-5 2.086736+4 8.941852-5 2.407375+4 8.982787-5 3.597369+4 9.004788-5 4.355009+4 9.007538-5 4.453774+4 9.026790-5 5.159207+4 9.035052-5 5.464562+4 9.043539-5 5.775781+4 9.053550-5 6.135341+4 9.063127-5 6.466948+4 9.073882-5 6.818660+4 9.082865-5 7.090832+4 9.094415-5 7.405208+4 9.103950-5 7.629506+4 9.115347-5 7.849916+4 9.130342-5 8.051895+4 9.140314-5 8.126617+4 9.153405-5 8.149230+4 9.164522-5 8.100472+4 9.175467-5 7.992482+4 9.186339-5 7.828672+4 9.203388-5 7.467507+4 9.212210-5 7.236099+4 9.222251-5 6.941004+4 9.233269-5 6.584472+4 9.241704-5 6.292746+4 9.251175-5 5.950368+4 9.259086-5 5.655730+4 9.269258-5 5.269931+4 9.280499-5 4.840536+4 9.291741-5 4.414613+4 9.303593-5 3.976011+4 9.312812-5 3.646161+4 9.334813-5 2.913030+4 9.343193-5 2.657416+4 9.351191-5 2.426761+4 9.359190-5 2.209551+4 9.369003-5 1.961719+4 9.380231-5 1.703389+4 9.391003-5 1.480371+4 9.401444-5 1.286612+4 9.416753-5 1.040115+4 9.431966-5 8.358519+3 9.450227-5 6.381584+3 9.475642-5 4.361517+3 9.486863-5 3.700096+3 9.500404-5 3.065301+3 9.510862-5 2.687589+3 9.539170-5 2.117184+3 9.542679-5 2.090850+3 9.549926-5 2.067313+3 9.557966-5 2.090413+3 9.565782-5 2.163552+3 9.569311-5 2.213340+3 9.574032-5 2.296635+3 9.578163-5 2.385506+3 9.583261-5 2.516199+3 9.589142-5 2.696656+3 9.595228-5 2.917936+3 9.601639-5 3.190311+3 9.610788-5 3.651777+3 9.658793-5 7.627684+3 9.663410-5 8.157932+3 9.687079-5 1.129298+4 9.696186-5 1.267931+4 9.707107-5 1.446386+4 9.718089-5 1.637991+4 9.722757-5 1.722714+4 9.738882-5 2.027634+4 9.746845-5 2.183508+4 9.757018-5 2.385516+4 9.765575-5 2.556231+4 9.774731-5 2.737802+4 9.784603-5 2.930029+4 9.793135-5 3.091213+4 9.804033-5 3.287646+4 9.810718-5 3.401488+4 9.821582-5 3.573413+4 9.832851-5 3.731723+4 9.838238-5 3.799300+4 9.849412-5 3.921154+4 9.858615-5 4.001666+4 9.869445-5 4.072113+4 9.881916-5 4.119511+4 9.889516-5 4.130461+4 9.905339-5 4.110163+4 9.916827-5 4.060259+4 9.926871-5 3.993954+4 9.938856-5 3.889489+4 9.946046-5 3.814821+4 9.958248-5 3.670131+4 9.970013-5 3.512461+4 9.984927-5 3.293017+4 9.998864-5 3.074519+4 1.001433-4 2.824452+4 1.001948-4 2.740575+4 1.004211-4 2.377431+4 1.004712-4 2.299361+4 1.008219-4 1.794067+4 1.013671-4 1.195686+4 1.014914-4 1.092584+4 1.016145-4 1.001643+4 1.017381-4 9.206462+3 1.019309-4 8.130669+3 1.021237-4 7.251622+3 1.023138-4 6.544498+3 1.025039-4 5.965950+3 1.027675-4 5.328787+3 1.030216-4 4.849825+3 1.032793-4 4.461136+3 1.035700-4 4.105468+3 1.039253-4 3.753427+3 1.042737-4 3.469609+3 1.045953-4 3.246759+3 1.049790-4 3.018996+3 1.053620-4 2.825184+3 1.056506-4 2.697725+3 1.059473-4 2.581125+3 1.064694-4 2.405783+3 1.068871-4 2.288082+3 1.074375-4 2.157249+3 1.080811-4 2.031745+3 1.087000-4 1.932928+3 1.092239-4 1.862696+3 1.099738-4 1.779306+3 1.107869-4 1.706750+3 1.116154-4 1.647153+3 1.123125-4 1.605443+3 1.131745-4 1.562033+3 1.143104-4 1.515181+3 1.154262-4 1.477102+3 1.181381-4 1.401729+3 1.203553-4 1.349111+3 1.262964-4 1.228129+3 1.326736-4 1.124510+3 1.392436-4 1.039981+3 1.536000-4 8.952870+2 1.733739-4 7.471576+2 1.798871-4 7.048569+2 1.842537-4 6.754188+2 1.875020-4 6.503861+2 1.899547-4 6.308233+2 1.911500-4 6.246835+2 1.926023-4 6.222815+2 1.953666-4 6.243703+2 1.967854-4 6.237955+2 2.019937-4 6.136785+2 2.065380-4 6.026812+2 2.125819-4 5.861674+2 2.187901-4 5.679693+2 2.248031-4 5.494265+2 2.296812-4 5.333784+2 2.340234-4 5.168481+2 2.374700-4 5.019294+2 2.386326-4 4.991952+2 2.399337-4 4.989759+2 2.428554-4 5.047183+2 2.437785-4 5.057856+2 2.450910-4 5.055559+2 2.484468-4 4.995248+2 2.663268-4 4.644417+2 2.757273-4 4.441159+2 2.845238-4 4.244403+2 2.956188-4 3.974154+2 2.997658-4 3.870260+2 3.038748-4 3.798416+2 3.057676-4 3.771230+2 3.100392-4 3.698630+2 3.162278-4 3.567773+2 3.281216-4 3.289460+2 3.388442-4 3.008643+2 3.457814-4 2.806010+2 3.512758-4 2.616692+2 3.564477-4 2.418540+2 3.573968-4 2.389618+2 3.583298-4 2.366284+2 3.597117-4 2.341592+2 3.618268-4 2.321051+2 3.635785-4 2.307300+2 3.646355-4 2.295376+2 3.666035-4 2.263064+2 3.700269-4 2.198977+2 3.736843-4 2.149733+2 3.747768-4 2.132210+2 3.760724-4 2.105271+2 3.773060-4 2.072521+2 3.789389-4 2.019742+2 3.815971-4 1.920590+2 3.869000-4 1.718328+2 3.901500-4 1.598072+2 3.923000-4 1.519115+2 3.961750-4 1.379534+2 4.024375-4 1.175282+2 4.045000-4 1.117562+2 4.065000-4 1.067702+2 4.085000-4 1.024804+2 4.103743-4 9.917137+1 4.120975-4 9.679484+1 4.139981-4 9.496435+1 4.168694-4 9.385076+1 4.200000-4 9.497012+1 4.238186-4 9.966146+1 4.283936-4 1.100185+2 4.292480-4 1.125257+2 4.320000-4 1.218504+2 4.350232-4 1.342790+2 4.389703-4 1.538198+2 4.472464-4 2.055746+2 4.508819-4 2.321726+2 4.549280-4 2.640494+2 4.597500-4 3.044693+2 4.630000-4 3.328403+2 4.655631-4 3.557369+2 4.680000-4 3.778738+2 4.717357-4 4.123856+2 4.747864-4 4.409803+2 4.786301-4 4.773596+2 4.831551-4 5.204153+2 4.876148-4 5.628397+2 4.935820-4 6.191877+2 5.011872-4 6.894126+2 5.098993-4 7.663799+2 5.190000-4 8.424833+2 5.289257-4 9.209769+2 5.396718-4 1.001096+3 5.509211-4 1.079320+3 5.638421-4 1.161429+3 5.760000-4 1.231493+3 5.922061-4 1.313916+3 6.075001-4 1.380564+3 6.200000-4 1.426090+3 6.352787-4 1.470946+3 6.486747-4 1.496407+3 6.571435-4 1.502605+3 6.626178-4 1.500315+3 6.675139-4 1.492001+3 6.746605-4 1.470487+3 6.771714-4 1.467404+3 6.795962-4 1.474814+3 6.829361-4 1.515572+3 6.846076-4 1.554194+3 6.862754-4 1.606343+3 6.882689-4 1.685474+3 6.927274-4 1.900782+3 6.947474-4 1.994371+3 6.965828-4 2.064825+3 6.983843-4 2.114599+3 6.999295-4 2.139784+3 7.012326-4 2.148382+3 7.024094-4 2.146928+3 7.036144-4 2.137522+3 7.044976-4 2.126371+3 7.065773-4 2.089861+3 7.129901-4 1.958149+3 7.142028-4 1.938936+3 7.184802-4 1.898974+3 7.201976-4 1.896794+3 7.226813-4 1.909403+3 7.242286-4 1.927173+3 7.261173-4 1.959184+3 7.281320-4 2.004773+3 7.345890-4 2.190136+3 7.366290-4 2.242301+3 7.383096-4 2.276685+3 7.405996-4 2.308230+3 7.419982-4 2.318534+3 7.437514-4 2.322695+3 7.450164-4 2.320590+3 7.489911-4 2.296733+3 7.539304-4 2.260775+3 7.558248-4 2.251137+3 7.616556-4 2.240072+3 7.812333-4 2.280235+3 8.176121-4 2.374444+3 8.521569-4 2.455826+3 8.925344-4 2.523122+3 9.219625-4 2.553446+3 9.467751-4 2.563244+3 9.693165-4 2.553573+3 9.744285-4 2.561207+3 9.797920-4 2.579900+3 9.984065-4 2.674192+3 1.010724-3 2.724411+3 1.022557-3 2.762495+3 1.047129-3 2.817127+3 1.081059-3 2.870094+3 1.122826-3 2.915790+3 1.164407-3 2.945750+3 1.211094-3 2.972633+3 1.238023-3 2.999670+3 1.267754-3 3.019917+3 1.309241-3 3.033065+3 1.353585-3 3.033352+3 1.404527-3 3.071101+3 1.448322-3 3.085445+3 1.511904-3 3.092476+3 1.600744-3 3.091214+3 1.669167-3 3.082386+3 1.759228-3 3.058154+3 1.847736-3 3.025165+3 1.961101-3 2.977641+3 2.083291-3 2.919957+3 2.213095-3 2.843820+3 2.340858-3 2.763392+3 2.469249-3 2.674040+3 2.591242-3 2.580711+3 2.719915-3 2.473669+3 2.829416-3 2.371509+3 2.919527-3 2.279086+3 3.003041-3 2.184455+3 3.070277-3 2.099364+3 3.135391-3 2.005659+3 3.191658-3 1.910187+3 3.237302-3 1.821270+3 3.273581-3 1.739417+3 3.304171-3 1.658393+3 3.328865-3 1.582745+3 3.368842-3 1.456568+3 3.378339-3 1.433885+3 3.388960-3 1.416091+3 3.394848-3 1.410301+3 3.406132-3 1.407777+3 3.415075-3 1.413227+3 3.427866-3 1.429680+3 3.467821-3 1.498671+3 3.502924-3 1.556214+3 3.522111-3 1.594609+3 3.540314-3 1.640163+3 3.556894-3 1.692660+3 3.575927-3 1.767388+3 3.609220-3 1.915269+3 3.626865-3 1.985874+3 3.646635-3 2.053300+3 3.679748-3 2.152850+3 3.710046-3 2.240131+3 3.726697-3 2.284195+3 3.749999-3 2.338024+3 3.776902-3 2.388574+3 3.811200-3 2.438706+3 3.847877-3 2.479268+3 3.889139-3 2.512463+3 3.932160-3 2.535484+3 3.974522-3 2.547384+3 4.011291-3 2.547597+3 4.046313-3 2.537681+3 4.108067-3 2.511974+3 4.123683-3 2.513369+3 4.139315-3 2.522175+3 4.163055-3 2.551302+3 4.189395-3 2.601333+3 4.229120-3 2.685554+3 4.249771-3 2.723237+3 4.275211-3 2.760650+3 4.306854-3 2.795295+3 4.338969-3 2.821185+3 4.384595-3 2.848305+3 4.431871-3 2.868826+3 4.494148-3 2.887482+3 4.562919-3 2.899955+3 4.630926-3 2.905303+3 4.704044-3 2.904174+3 4.770200-3 2.896085+3 4.838564-3 2.879660+3 4.947378-3 2.839356+3 4.995739-3 2.833813+3 5.102846-3 2.864276+3 5.139220-3 2.870451+3 5.221771-3 2.866150+3 5.324146-3 2.853527+3 5.495409-3 2.884854+3 5.619368-3 2.883628+3 5.868005-3 2.856359+3 6.144000-3 2.807382+3 6.578472-3 2.715529+3 7.088378-3 2.596537+3 7.673615-3 2.455247+3 8.204696-3 2.328323+3 8.825955-3 2.188346+3 9.636207-3 2.015829+3 1.044870-2 1.857084+3 1.132563-2 1.700766+3 1.180140-2 1.621758+3 1.232426-2 1.539142+3 1.287887-2 1.455679+3 1.339249-2 1.381705+3 1.386787-2 1.315333+3 1.424788-2 1.263500+3 1.462093-2 1.212524+3 1.495647-2 1.166590+3 1.522758-2 1.128790+3 1.545235-2 1.096337+3 1.565660-2 1.065508+3 1.581411-2 1.040333+3 1.595976-2 1.015289+3 1.608944-2 9.906644+2 1.619381-2 9.681968+2 1.627698-2 9.477765+2 1.640129-2 9.124218+2 1.656083-2 8.653319+2 1.663280-2 8.497732+2 1.668860-2 8.427681+2 1.673653-2 8.409339+2 1.679710-2 8.441439+2 1.685461-2 8.520824+2 1.698250-2 8.791146+2 1.708206-2 9.005197+2 1.714478-2 9.116790+2 1.722090-2 9.222511+2 1.729403-2 9.296064+2 1.738404-2 9.356991+2 1.750022-2 9.401800+2 1.763149-2 9.422317+2 1.778333-2 9.419257+2 1.793700-2 9.394884+2 1.831270-2 9.275052+2 1.874522-2 9.066884+2 1.914511-2 8.822381+2 1.936564-2 8.664551+2 1.952355-2 8.537886+2 1.966754-2 8.407862+2 1.979984-2 8.270761+2 1.998434-2 8.043589+2 2.021532-2 7.748111+2 2.031890-2 7.658702+2 2.042047-2 7.618550+2 2.052878-2 7.624127+2 2.084493-2 7.725381+2 2.114745-2 7.802475+2 2.154259-2 7.985754+2 2.172426-2 8.033183+2 2.202956-2 8.047400+2 2.241879-2 8.007301+2 2.293372-2 7.909557+2 2.381300-2 7.689372+2 2.452941-2 7.487101+2 2.569384-2 7.138778+2 2.755212-2 6.589455+2 2.956457-2 6.040605+2 3.246796-2 5.344672+2 3.570062-2 4.691593+2 3.813646-2 4.269586+2 4.221881-2 3.667666+2 4.695978-2 3.107362+2 5.116433-2 2.709068+2 5.559659-2 2.360260+2 6.304679-2 1.899537+2 7.420287-2 1.423035+2 8.392051-2 1.137501+2 9.091542-2 9.782567+1 9.721090-2 8.569913+1 1.017054-1 7.789538+1 1.049388-1 7.247126+1 1.073094-1 6.838934+1 1.082302-1 6.670115+1 1.089739-1 6.524198+1 1.096026-1 6.389599+1 1.104800-1 6.176719+1 1.119649-1 5.788067+1 1.124209-1 5.699270+1 1.128912-1 5.643543+1 1.133803-1 5.629257+1 1.139340-1 5.660080+1 1.153703-1 5.826430+1 1.160197-1 5.881723+1 1.168656-1 5.918420+1 1.174918-1 5.925968+1 1.190261-1 5.904945+1 1.209201-1 5.839321+1 1.234678-1 5.718962+1 1.271234-1 5.521865+1 1.313388-1 5.282364+1 1.386980-1 4.869560+1 1.494979-1 4.317528+1 1.636129-1 3.709104+1 1.864433-1 2.953999+1 2.175417-1 2.240296+1 2.550719-1 1.674685+1 3.152791-1 1.128874+1 3.924336-1 7.458709+0 5.115023-1 4.486170+0 7.223808-1 2.296932+0 1.120601+0 9.732623-1 1.696098+0 4.297042-1 3.086391+0 1.307554-1 9.320751+0 1.438291-2 2.814822+1 1.577207-3 8.500626+1 1.729391-4 2.567148+2 1.896241-5 7.752663+2 2.079187-6 2.511886+3 1.980593-7 7.943282+3 1.980593-8 2.511886+4 1.980593-9 7.943282+4 1.98059-10 1.000000+5 1.24967-10 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.882900-6 1.258900-6 4.569100-6 1.584900-6 7.241500-6 1.995300-6 1.147700-5 2.511900-6 1.819000-5 3.162300-6 2.882900-5 3.981100-6 4.569000-5 5.011900-6 7.241300-5 6.309600-6 1.147700-4 7.943300-6 1.818900-4 1.000000-5 2.882700-4 1.258900-5 4.568800-4 1.584900-5 7.237100-4 1.995300-5 1.146200-3 2.511900-5 1.815600-3 3.162300-5 2.876200-3 3.981100-5 4.557000-3 5.011900-5 7.220600-3 6.309600-5 1.144100-2 7.943300-5 1.810100-2 1.000000-4 2.862600-2 1.258900-4 4.525200-2 1.584900-4 7.130900-2 1.995300-4 1.121600-1 2.511900-4 1.755600-1 3.162300-4 2.728800-1 3.981100-4 4.192900-1 5.011900-4 6.309000-1 6.309600-4 9.253300-1 7.943300-4 1.314700+0 1.000000-3 1.806400+0 1.258900-3 2.410800+0 1.584900-3 3.158800+0 1.995300-3 4.096600+0 2.511900-3 5.259700+0 3.162300-3 6.670400+0 3.981100-3 8.349000+0 5.011900-3 1.027000+1 6.309600-3 1.239400+1 7.943300-3 1.476100+1 1.000000-2 1.742300+1 1.258900-2 2.032900+1 1.584900-2 2.330700+1 1.995300-2 2.620400+1 2.511900-2 2.900900+1 3.162300-2 3.166900+1 3.981100-2 3.403500+1 5.011900-2 3.573300+1 6.309600-2 3.713400+1 7.943300-2 3.771100+1 1.000000-1 3.765600+1 1.258900-1 3.699200+1 1.584900-1 3.581800+1 1.995300-1 3.419700+1 2.511900-1 3.226900+1 3.162300-1 3.014500+1 3.981100-1 2.791000+1 5.011900-1 2.563400+1 6.309600-1 2.336700+1 7.943300-1 2.115300+1 1.000000+0 1.902000+1 1.258900+0 1.698400+1 1.584900+0 1.506600+1 1.995300+0 1.327500+1 2.511900+0 1.162100+1 3.162300+0 1.010800+1 3.981100+0 8.739600+0 5.011900+0 7.513900+0 6.309600+0 6.426000+0 7.943300+0 5.468900+0 1.000000+1 4.633700+0 1.258900+1 3.910200+0 1.584900+1 3.287600+0 1.995300+1 2.754900+0 2.511900+1 2.301500+0 3.162300+1 1.917600+0 3.981100+1 1.593800+0 5.011900+1 1.321800+0 6.309600+1 1.094000+0 7.943300+1 9.037600-1 1.000000+2 7.453900-1 1.258900+2 6.138500-1 1.584900+2 5.048200-1 1.995300+2 4.146200-1 2.511900+2 3.401500-1 3.162300+2 2.787400-1 3.981100+2 2.282000-1 5.011900+2 1.866400-1 6.309600+2 1.525200-1 7.943300+2 1.245300-1 1.000000+3 1.016000-1 1.258900+3 8.283500-2 1.584900+3 6.748900-2 1.995300+3 5.495000-2 2.511900+3 4.471400-2 3.162300+3 3.636300-2 3.981100+3 2.955600-2 5.011900+3 2.401000-2 6.309600+3 1.949500-2 7.943300+3 1.582200-2 1.000000+4 1.283500-2 1.258900+4 1.040700-2 1.584900+4 8.435200-3 1.995300+4 6.834100-3 2.511900+4 5.534800-3 3.162300+4 4.480800-3 3.981100+4 3.626200-3 5.011900+4 2.933600-3 6.309600+4 2.372500-3 7.943300+4 1.918100-3 1.000000+5 1.550300-3 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159558-4 3.981072-4 3.976780-4 5.011872-4 5.005121-4 6.309573-4 6.298983-4 7.943282-4 7.926726-4 1.000000-3 9.974181-4 1.258925-3 1.254900-3 1.584893-3 1.578600-3 1.995262-3 1.985389-3 2.511886-3 2.496376-3 3.162278-3 3.137927-3 3.981072-3 3.942895-3 5.011872-3 4.952199-3 6.309573-3 6.216567-3 7.943282-3 7.798275-3 1.000000-2 9.773707-3 1.258925-2 1.223681-2 1.584893-2 1.530278-2 1.995262-2 1.911092-2 2.511886-2 2.382545-2 3.162278-2 2.964184-2 3.981072-2 3.679235-2 5.011872-2 4.555491-2 6.309573-2 5.626394-2 7.943282-2 6.928573-2 1.000000-1 8.505852-2 1.258925-1 1.040986-1 1.584893-1 1.269264-1 1.995262-1 1.543167-1 2.511886-1 1.870303-1 3.162278-1 2.259442-1 3.981072-1 2.720710-1 5.011872-1 3.266193-1 6.309573-1 3.910243-1 7.943282-1 4.669679-1 1.000000+0 5.562809-1 1.258925+0 6.616490-1 1.584893+0 7.859253-1 1.995262+0 9.331215-1 2.511886+0 1.107613+0 3.162278+0 1.315351+0 3.981072+0 1.563339+0 5.011872+0 1.860237+0 6.309573+0 2.216450+0 7.943282+0 2.645034+0 1.000000+1 3.161617+0 1.258925+1 3.785833+0 1.584893+1 4.540883+0 1.995262+1 5.456144+0 2.511886+1 6.566972+0 3.162278+1 7.916963+0 3.981072+1 9.559436+0 5.011872+1 1.156022+1 6.309573+1 1.399998+1 7.943282+1 1.697763+1 1.000000+2 2.061505+1 1.258925+2 2.506236+1 1.584893+2 3.050367+1 1.995262+2 3.716732+1 2.511886+2 4.533251+1 3.162278+2 5.534511+1 3.981072+2 6.762962+1 5.011872+2 8.271298+1 6.309573+2 1.012425+2 7.943282+2 1.240187+2 1.000000+3 1.520279+2 1.258925+3 1.864937+2 1.584893+3 2.289223+2 1.995262+3 2.811693+2 2.511886+3 3.455610+2 3.162278+3 4.249305+2 3.981072+3 5.228228+2 5.011872+3 6.435841+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88188-10 1.995262-5 1.090607-9 2.511886-5 1.728468-9 3.162278-5 2.739477-9 3.981072-5 4.341843-9 5.011872-5 6.881359-9 6.309573-5 1.090593-8 7.943282-5 1.727678-8 1.000000-4 2.737403-8 1.258925-4 4.337102-8 1.584893-4 6.867240-8 1.995262-4 1.087301-7 2.511886-4 1.720420-7 3.162278-4 2.719496-7 3.981072-4 4.291389-7 5.011872-4 6.750844-7 6.309573-4 1.059031-6 7.943282-4 1.655627-6 1.000000-3 2.581887-6 1.258925-3 4.025010-6 1.584893-3 6.293056-6 1.995262-3 9.873536-6 2.511886-3 1.551070-5 3.162278-3 2.435096-5 3.981072-3 3.817639-5 5.011872-3 5.967302-5 6.309573-3 9.300650-5 7.943282-3 1.450074-4 1.000000-2 2.262934-4 1.258925-2 3.524476-4 1.584893-2 5.461477-4 1.995262-2 8.417003-4 2.511886-2 1.293415-3 3.162278-2 1.980935-3 3.981072-2 3.018367-3 5.011872-2 4.563813-3 6.309573-2 6.831798-3 7.943282-2 1.014709-2 1.000000-1 1.494148-2 1.258925-1 2.179394-2 1.584893-1 3.156292-2 1.995262-1 4.520953-2 2.511886-1 6.415834-2 3.162278-1 9.028359-2 3.981072-1 1.260362-1 5.011872-1 1.745679-1 6.309573-1 2.399330-1 7.943282-1 3.273604-1 1.000000+0 4.437191-1 1.258925+0 5.972764-1 1.584893+0 7.989679-1 1.995262+0 1.062141+0 2.511886+0 1.404274+0 3.162278+0 1.846926+0 3.981072+0 2.417732+0 5.011872+0 3.151635+0 6.309573+0 4.093123+0 7.943282+0 5.298248+0 1.000000+1 6.838383+0 1.258925+1 8.803421+0 1.584893+1 1.130805+1 1.995262+1 1.449648+1 2.511886+1 1.855189+1 3.162278+1 2.370581+1 3.981072+1 3.025128+1 5.011872+1 3.855850+1 6.309573+1 4.909576+1 7.943282+1 6.245519+1 1.000000+2 7.938495+1 1.258925+2 1.008302+2 1.584893+2 1.279856+2 1.995262+2 1.623589+2 2.511886+2 2.058561+2 3.162278+2 2.608827+2 3.981072+2 3.304776+2 5.011872+2 4.184743+2 6.309573+2 5.297148+2 7.943282+2 6.703095+2 1.000000+3 8.479721+2 1.258925+3 1.072432+3 1.584893+3 1.355971+3 1.995262+3 1.714093+3 2.511886+3 2.166325+3 3.162278+3 2.737347+3 3.981072+3 3.458249+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 6.432361+6 4.265795-6 6.579569+6 4.466836-6 6.744320+6 4.677351-6 6.871106+6 4.710000-6 6.884315+6 4.710000-6 1.007442+7 4.786301-6 1.018286+7 4.954502-6 1.037755+7 5.000000-6 1.042142+7 5.200000-6 1.058919+7 5.308844-6 1.066857+7 5.432503-6 1.073963+7 5.623413-6 1.082954+7 5.670000-6 1.084549+7 5.670000-6 2.016623+7 5.700000-6 2.001912+7 5.821032-6 1.944849+7 6.000000-6 1.866260+7 6.025596-6 1.855666+7 6.382635-6 1.723101+7 6.500000-6 1.685419+7 6.683439-6 1.630230+7 6.760830-6 1.609017+7 6.800000-6 1.598379+7 6.800000-6 1.610592+7 7.000000-6 1.560564+7 7.100000-6 1.536823+7 7.200000-6 1.514452+7 7.328245-6 1.486744+7 7.500000-6 1.452600+7 7.600000-6 1.433336+7 7.640000-6 1.425918+7 7.640000-6 1.433267+7 7.673615-6 1.427228+7 7.700000-6 1.422535+7 7.762471-6 1.411296+7 7.852356-6 1.395740+7 7.950000-6 1.379627+7 8.035261-6 1.366182+7 8.128305-6 1.351549+7 8.200000-6 1.340704+7 8.350000-6 1.318365+7 8.609938-6 1.282984+7 8.709636-6 1.269692+7 8.912509-6 1.243265+7 9.225714-6 1.206421+7 9.549926-6 1.169002+7 9.700000-6 1.153199+7 9.772372-6 1.145880+7 9.850000-6 1.137874+7 1.035142-5 1.087786+7 1.047129-5 1.076418+7 1.096478-5 1.031089+7 1.100000-5 1.027952+7 1.109175-5 1.019912+7 1.135011-5 9.971220+6 1.161449-5 9.756589+6 1.174898-5 9.648378+6 1.202264-5 9.427327+6 1.216186-5 9.321319+6 1.230269-5 9.217975+6 1.244515-5 9.112725+6 1.290000-5 8.785414+6 1.303167-5 8.694638+6 1.310000-5 8.649062+6 1.318257-5 8.595026+6 1.333521-5 8.492311+6 1.350000-5 8.385942+6 1.396368-5 8.101196+6 1.420000-5 7.962542+6 1.428894-5 7.910622+6 1.462177-5 7.727734+6 1.479108-5 7.641363+6 1.500000-5 7.535107+6 1.548817-5 7.303057+6 1.570000-5 7.212931+6 1.584893-5 7.150001+6 1.603245-5 7.073391+6 1.621810-5 6.999810+6 1.659587-5 6.864884+6 1.678804-5 6.799577+6 1.737801-5 6.616992+6 1.770000-5 6.532625+6 1.778279-5 6.511502+6 1.800000-5 6.457337+6 1.862087-5 6.327667+6 1.905461-5 6.256176+6 1.927525-5 6.220988+6 1.980000-5 6.155093+6 2.018366-5 6.117848+6 2.041738-5 6.099361+6 2.089296-5 6.067139+6 2.113489-5 6.054517+6 2.190000-5 6.033562+6 2.213095-5 6.031201+6 2.230000-5 6.030612+6 2.238721-5 6.029679+6 2.300000-5 6.034582+6 2.344229-5 6.043741+6 2.382000-5 6.054727+6 2.382000-5 2.161641+7 2.400000-5 2.125310+7 2.430000-5 2.067179+7 2.454709-5 2.021734+7 2.511886-5 1.923839+7 2.540973-5 1.877578+7 2.570396-5 1.833322+7 2.630268-5 1.749924+7 2.660725-5 1.710440+7 2.691535-5 1.672371+7 2.722701-5 1.635968+7 2.754229-5 1.601116+7 2.770000-5 1.584128+7 2.786121-5 1.567063+7 2.851018-5 1.503605+7 2.884032-5 1.473956+7 2.900000-5 1.459974+7 3.019952-5 1.364815+7 3.054921-5 1.339542+7 3.162278-5 1.269954+7 3.198895-5 1.247893+7 3.261000-5 1.213130+7 3.261000-5 1.897122+7 3.311311-5 1.849655+7 3.326000-5 1.836205+7 3.330000-5 1.832536+7 3.349654-5 1.813918+7 3.400000-5 1.767623+7 3.427678-5 1.743348+7 3.467369-5 1.708662+7 3.507519-5 1.674869+7 3.600000-5 1.601764+7 3.630781-5 1.578553+7 3.650000-5 1.564472+7 3.672823-5 1.548131+7 3.715352-5 1.518368+7 3.845918-5 1.433701+7 3.890451-5 1.406731+7 3.900000-5 1.401035+7 3.935501-5 1.380360+7 4.073803-5 1.304981+7 4.168694-5 1.257248+7 4.216965-5 1.234073+7 4.265795-5 1.211687+7 4.300000-5 1.196570+7 4.315191-5 1.189878+7 4.365158-5 1.168103+7 4.518559-5 1.105366+7 4.570882-5 1.085350+7 4.722300-5 1.029826+7 4.786301-5 1.007798+7 4.900000-5 9.700670+6 4.954502-5 9.524880+6 5.001000-5 9.375250+6 5.001000-5 9.696290+6 5.011872-5 9.659343+6 5.101000-5 9.369267+6 5.128614-5 9.280791+6 5.150000-5 9.213222+6 5.308844-5 8.724415+6 5.370318-5 8.544035+6 5.400000-5 8.456531+6 5.432503-5 8.362850+6 5.500000-5 8.175440+6 5.580000-5 7.957436+6 5.623413-5 7.840003+6 5.730000-5 7.564297+6 5.754399-5 7.501944+6 5.800000-5 7.388038+6 5.821032-5 7.334737+6 5.888437-5 7.169152+6 5.900000-5 7.141349+6 5.956621-5 7.008094+6 6.025596-5 6.847550+6 6.070000-5 6.744154+6 6.095369-5 6.686336+6 6.165950-5 6.530378+6 6.237348-5 6.374998+6 6.300000-5 6.244441+6 6.400000-5 6.038352+6 6.456542-5 5.924008+6 6.531306-5 5.777756+6 6.580000-5 5.685410+6 6.606934-5 5.633742+6 6.683439-5 5.491059+6 6.839116-5 5.212898+6 6.918310-5 5.076418+6 7.079458-5 4.809557+6 7.150000-5 4.699250+6 7.161434-5 4.681344+6 7.328245-5 4.425982+6 7.413102-5 4.303844+6 7.585776-5 4.059185+6 7.673615-5 3.942690+6 7.762471-5 3.824649+6 7.800000-5 3.776251+6 7.943282-5 3.599028+6 8.035261-5 3.486451+6 8.222426-5 3.273218+6 8.413951-5 3.063659+6 8.500000-5 2.975403+6 8.511380-5 2.964005+6 8.810489-5 2.672477+6 9.015711-5 2.486343+6 9.120108-5 2.398746+6 9.150000-5 2.373895+6 9.225714-5 2.310995+6 9.440609-5 2.144177+6 9.549926-5 2.061939+6 9.660509-5 1.983079+6 9.772372-5 1.907660+6 9.800000-5 1.888854+6 9.840000-5 1.862059+6 9.840000-5 3.460562+6 9.849000-5 3.506184+6 9.890000-5 3.667276+6 9.930000-5 3.827126+6 9.960000-5 3.948554+6 1.000000-4 4.110050+6 1.003700-4 4.258816+6 1.007000-4 4.390185+6 1.011579-4 4.568225+6 1.016500-4 4.751471+6 1.020000-4 4.876264+6 1.025000-4 5.045289+6 1.030000-4 5.201193+6 1.035142-4 5.345973+6 1.040000-4 5.466960+6 1.045000-4 5.573791+6 1.047129-4 5.610544+6 1.050000-4 5.660675+6 1.050700-4 5.673057+6 1.055000-4 5.732047+6 1.060000-4 5.783858+6 1.060800-4 5.789272+6 1.060800-4 6.753053+6 1.062000-4 6.798418+6 1.065000-4 6.895193+6 1.066000-4 6.924572+6 1.071000-4 7.073848+6 1.071519-4 7.089317+6 1.072000-4 7.103758+6 1.075000-4 7.183021+6 1.080000-4 7.317261+6 1.082000-4 7.362302+6 1.084000-4 7.409260+6 1.087000-4 7.477315+6 1.088000-4 7.497602+6 1.092000-4 7.575156+6 1.095000-4 7.631046+6 1.096478-4 7.655066+6 1.101000-4 7.721979+6 1.105000-4 7.777049+6 1.109175-4 7.817620+6 1.110000-4 7.823775+6 1.115000-4 7.864197+6 1.120000-4 7.882461+6 1.126000-4 7.891556+6 1.128000-4 7.889675+6 1.131000-4 7.882395+6 1.137000-4 7.853697+6 1.143000-4 7.810531+6 1.148154-4 7.753357+6 1.150000-4 7.733194+6 1.157000-4 7.639491+6 1.161449-4 7.569771+6 1.165000-4 7.515157+6 1.170000-4 7.427890+6 1.173000-4 7.374085+6 1.180000-4 7.238549+6 1.190000-4 7.033354+6 1.191000-4 7.013306+6 1.203000-4 6.759838+6 1.210600-4 6.596305+6 1.216186-4 6.479083+6 1.218000-4 6.441520+6 1.230269-4 6.183481+6 1.240000-4 5.985802+6 1.244515-4 5.894047+6 1.250000-4 5.784740+6 1.273503-4 5.343608+6 1.280000-4 5.229302+6 1.288250-4 5.088009+6 1.307000-4 4.775068+6 1.315000-4 4.648681+6 1.318257-4 4.598338+6 1.333521-4 4.371383+6 1.340000-4 4.277474+6 1.350000-4 4.137208+6 1.364583-4 3.939239+6 1.365000-4 3.933759+6 1.380384-4 3.737827+6 1.381800-4 3.720389+6 1.382400-4 3.712891+6 1.396368-4 3.543602+6 1.400000-4 3.501104+6 1.415000-4 3.329058+6 1.428894-4 3.178845+6 1.445440-4 3.010665+6 1.450000-4 2.965037+6 1.462177-4 2.847213+6 1.479108-4 2.693027+6 1.480000-4 2.685193+6 1.500000-4 2.516620+6 1.510000-4 2.436359+6 1.513561-4 2.408482+6 1.540000-4 2.213682+6 1.548817-4 2.153035+6 1.566751-4 2.036143+6 1.570000-4 2.015842+6 1.600000-4 1.839665+6 1.603245-4 1.821771+6 1.621810-4 1.724594+6 1.627000-4 1.698657+6 1.659587-4 1.546555+6 1.660000-4 1.544744+6 1.678804-4 1.464974+6 1.690000-4 1.420032+6 1.698244-4 1.388468+6 1.717908-4 1.316822+6 1.720000-4 1.309490+6 1.737801-4 1.249671+6 1.760000-4 1.180055+6 1.778279-4 1.126537+6 1.786400-4 1.104148+6 1.798871-4 1.070933+6 1.810000-4 1.042413+6 1.819701-4 1.018400+6 1.835000-4 9.820592+5 1.846300-4 9.563737+5 1.850000-4 9.481601+5 1.850800-4 9.464266+5 1.862087-4 9.224415+5 1.865000-4 9.164466+5 1.880000-4 8.864540+5 1.885000-4 8.767637+5 1.895000-4 8.578250+5 1.905461-4 8.386243+5 1.908000-4 8.341358+5 1.922000-4 8.099953+5 1.927525-4 8.007540+5 1.936900-4 7.853976+5 1.940700-4 7.793038+5 1.940700-4 1.156493+6 1.950000-4 1.139363+6 1.961000-4 1.119991+6 1.965000-4 1.113084+6 1.972423-4 1.100462+6 1.973000-4 1.099502+6 1.980000-4 1.087979+6 1.985000-4 1.079877+6 1.995262-4 1.063571+6 2.000000-4 1.056185+6 2.010000-4 1.041247+6 2.015000-4 1.033916+6 2.018366-4 1.029035+6 2.025000-4 1.019535+6 2.028000-4 1.015292+6 2.040000-4 9.986264+5 2.041738-4 9.962533+5 2.055000-4 9.789473+5 2.060000-4 9.725616+5 2.065380-4 9.659596+5 2.070000-4 9.603558+5 2.085000-4 9.425606+5 2.089296-4 9.375737+5 2.098200-4 9.273721+5 2.100000-4 9.253345+5 2.113489-4 9.103267+5 2.118000-4 9.056303+5 2.120000-4 9.035645+5 2.137962-4 8.846308+5 2.140000-4 8.825270+5 2.162719-4 8.596667+5 2.170000-4 8.527773+5 2.182000-4 8.418277+5 2.187762-4 8.366605+5 2.188000-4 8.364436+5 2.213095-4 8.141176+5 2.214300-4 8.131053+5 2.215400-4 8.121839+5 2.220000-4 8.083515+5 2.264644-4 7.734727+5 2.270000-4 7.696092+5 2.280000-4 7.627523+5 2.290868-4 7.556078+5 2.317395-4 7.386838+5 2.330000-4 7.312069+5 2.344229-4 7.231695+5 2.371374-4 7.082987+5 2.380000-4 7.038987+5 2.392000-4 6.980951+5 2.398833-4 6.949447+5 2.400000-4 6.944099+5 2.426610-4 6.824426+5 2.430000-4 6.809467+5 2.450000-4 6.726430+5 2.454709-4 6.707902+5 2.458900-4 6.691550+5 2.458900-4 8.251082+5 2.483133-4 8.123754+5 2.511886-4 7.982498+5 2.540973-4 7.848766+5 2.570396-4 7.716426+5 2.580000-4 7.675513+5 2.600160-4 7.586821+5 2.625000-4 7.483636+5 2.635000-4 7.441307+5 2.660725-4 7.337853+5 2.691535-4 7.225482+5 2.700000-4 7.196254+5 2.722701-4 7.118947+5 2.743100-4 7.051154+5 2.754229-4 7.016244+5 2.786121-4 6.922197+5 2.800000-4 6.882418+5 2.818383-4 6.834930+5 2.830000-4 6.805347+5 2.851018-4 6.756592+5 2.884032-4 6.682622+5 2.900900-4 6.645886+5 2.917427-4 6.611943+5 2.951209-4 6.547120+5 2.985383-4 6.484128+5 3.000000-4 6.458741+5 3.019952-4 6.421341+5 3.030000-4 6.403252+5 3.051700-4 6.366541+5 3.051700-4 6.885372+5 3.054921-4 6.879643+5 3.090295-4 6.821818+5 3.126079-4 6.764865+5 3.162278-4 6.708904+5 3.198895-4 6.655599+5 3.200000-4 6.654007+5 3.235937-4 6.603092+5 3.273407-4 6.552312+5 3.280000-4 6.543558+5 3.311311-4 6.503938+5 3.376700-4 6.424000+5 3.388442-4 6.409986+5 3.404800-4 6.390435+5 3.467369-4 6.319769+5 3.507519-4 6.276950+5 3.550000-4 6.232424+5 3.589219-4 6.193651+5 3.630781-4 6.153265+5 3.670400-4 6.115282+5 3.670400-4 7.022570+5 3.672823-4 7.021116+5 3.715352-4 6.995844+5 3.730000-4 6.987286+5 3.758374-4 6.973314+5 3.768700-4 6.968369+5 3.776300-4 6.964666+5 3.776300-4 7.585486+5 3.777000-4 7.586973+5 3.779000-4 7.591666+5 3.785000-4 7.600336+5 3.794000-4 7.609091+5 3.800000-4 7.613167+5 3.801894-4 7.615075+5 3.808000-4 7.621400+5 3.815000-4 7.627345+5 3.822000-4 7.635989+5 3.830000-4 7.644350+5 3.845918-4 7.669178+5 3.858000-4 7.692657+5 3.869000-4 7.719673+5 3.880000-4 7.752563+5 3.890451-4 7.790593+5 3.895000-4 7.807578+5 3.898000-4 7.820650+5 3.908000-4 7.866782+5 3.912000-4 7.888037+5 3.923000-4 7.950971+5 3.928000-4 7.983727+5 3.935501-4 8.036653+5 3.940000-4 8.069212+5 3.943000-4 8.093222+5 3.958000-4 8.224438+5 3.973000-4 8.382273+5 3.980000-4 8.463076+5 3.985000-4 8.525425+5 4.000000-4 8.729260+5 4.015000-4 8.963482+5 4.027170-4 9.174242+5 4.030000-4 9.225370+5 4.045000-4 9.517163+5 4.065000-4 9.957278+5 4.073803-4 1.016629+6 4.085000-4 1.044757+6 4.090000-4 1.058083+6 4.100000-4 1.084923+6 4.115000-4 1.128570+6 4.120975-4 1.146218+6 4.140000-4 1.206283+6 4.165000-4 1.290835+6 4.168694-4 1.303659+6 4.190000-4 1.381295+6 4.200000-4 1.418783+6 4.216965-4 1.485149+6 4.220000-4 1.497043+6 4.240000-4 1.577943+6 4.265795-4 1.685324+6 4.270000-4 1.703412+6 4.290000-4 1.789409+6 4.300000-4 1.833593+6 4.315191-4 1.900791+6 4.328000-4 1.958599+6 4.343000-4 2.026309+6 4.360000-4 2.104600+6 4.365158-4 2.128011+6 4.371600-4 2.157733+6 4.390000-4 2.243197+6 4.400000-4 2.289247+6 4.415704-4 2.361941+6 4.420000-4 2.382322+6 4.430000-4 2.428304+6 4.450000-4 2.520613+6 4.460000-4 2.565855+6 4.466836-4 2.596426+6 4.485000-4 2.679757+6 4.500000-4 2.744674+6 4.518559-4 2.827532+6 4.550000-4 2.961194+6 4.580000-4 3.082507+6 4.590900-4 3.126005+6 4.615000-4 3.218589+6 4.623810-4 3.251550+6 4.630000-4 3.274922+6 4.650000-4 3.346739+6 4.680000-4 3.452092+6 4.690000-4 3.485501+6 4.731513-4 3.619744+6 4.780000-4 3.762151+6 4.786301-4 3.779926+6 4.835000-4 3.908130+6 4.841724-4 3.924922+6 4.890000-4 4.036435+6 4.897788-4 4.053306+6 4.954502-4 4.165892+6 5.011872-4 4.260405+6 5.020000-4 4.272493+6 5.069907-4 4.338786+6 5.080000-4 4.352236+6 5.128614-4 4.402433+6 5.150000-4 4.424568+6 5.188000-4 4.452522+6 5.230000-4 4.483485+6 5.260000-4 4.502083+6 5.308844-4 4.524825+6 5.320000-4 4.530020+6 5.370318-4 4.547709+6 5.400000-4 4.553821+6 5.432503-4 4.560407+6 5.495409-4 4.566775+6 5.540000-4 4.565581+6 5.559043-4 4.563273+6 5.623413-4 4.555595+6 5.650000-4 4.549877+6 5.688529-4 4.538529+6 5.754399-4 4.519353+6 5.800000-4 4.502406+6 5.821032-4 4.493009+6 5.900000-4 4.458174+6 5.956621-4 4.429550+6 6.025596-4 4.390989+6 6.095369-4 4.352756+6 6.100000-4 4.350244+6 6.150000-4 4.319760+6 6.165950-4 4.309200+6 6.200000-4 4.286834+6 6.237348-4 4.262526+6 6.309573-4 4.216157+6 6.382635-4 4.166378+6 6.456542-4 4.113919+6 6.531306-4 4.062105+6 6.606934-4 4.007353+6 6.700000-4 3.938370+6 6.760830-4 3.894326+6 6.839116-4 3.835801+6 6.850000-4 3.827786+6 7.032100-4 3.692450+6 7.032100-4 4.044281+6 7.079458-4 4.011755+6 7.161434-4 3.953164+6 7.172700-4 3.945242+6 7.244360-4 3.893335+6 7.300000-4 3.853857+6 7.437500-4 3.759575+6 7.437500-4 3.961008+6 7.500000-4 3.920765+6 7.585776-4 3.864083+6 7.586200-4 3.863790+6 7.673615-4 3.804251+6 7.800000-4 3.721423+6 7.900000-4 3.658368+6 8.000000-4 3.592930+6 8.035261-4 3.569759+6 8.128305-4 3.509974+6 8.222426-4 3.451372+6 8.280000-4 3.416204+6 8.317638-4 3.393183+6 8.413951-4 3.335580+6 8.423100-4 3.330023+6 8.430000-4 3.325750+6 8.511380-4 3.275911+6 8.709636-4 3.159135+6 8.810489-4 3.102608+6 8.850000-4 3.080939+6 9.015711-4 2.987942+6 9.120108-4 2.930960+6 9.332543-4 2.820620+6 9.440609-4 2.764997+6 9.500000-4 2.735047+6 9.549926-4 2.710025+6 9.772372-4 2.603228+6 9.885531-4 2.551641+6 9.905700-4 2.542633+6 9.905700-4 2.700547+6 9.930000-4 2.689525+6 1.000000-3 2.657995+6 1.011579-3 2.604954+6 1.023293-3 2.553153+6 1.035142-3 2.502573+6 1.047129-3 2.453129+6 1.059254-3 2.403956+6 1.070000-3 2.361346+6 1.071519-3 2.355322+6 1.083927-3 2.306104+6 1.096478-3 2.258006+6 1.100000-3 2.244815+6 1.109175-3 2.210934+6 1.122018-3 2.164707+6 1.130000-3 2.136767+6 1.135011-3 2.119351+6 1.161449-3 2.028550+6 1.174898-3 1.984561+6 1.188502-3 1.941660+6 1.190000-3 1.937030+6 1.202264-3 1.899759+6 1.210100-3 1.876351+6 1.210100-3 1.901118+6 1.216186-3 1.883259+6 1.230269-3 1.842993+6 1.244515-3 1.802443+6 1.273503-3 1.724027+6 1.280000-3 1.707227+6 1.288250-3 1.686103+6 1.303167-3 1.648990+6 1.313000-3 1.625098+6 1.318257-3 1.612541+6 1.330000-3 1.585046+6 1.333521-3 1.576852+6 1.362100-3 1.511870+6 1.362100-3 1.540403+6 1.364583-3 1.534911+6 1.380384-3 1.500416+6 1.396368-3 1.466620+6 1.412538-3 1.433685+6 1.428894-3 1.401551+6 1.445440-3 1.369711+6 1.450000-3 1.361152+6 1.462177-3 1.338411+6 1.470000-3 1.324111+6 1.480000-3 1.306059+6 1.500000-3 1.271093+6 1.513561-3 1.248243+6 1.531087-3 1.219677+6 1.548817-3 1.191850+6 1.566751-3 1.164706+6 1.570000-3 1.159892+6 1.584893-3 1.137962+6 1.603245-3 1.111335+6 1.610000-3 1.101787+6 1.621810-3 1.085311+6 1.640590-3 1.059881+6 1.650000-3 1.047499+6 1.659587-3 1.035121+6 1.698244-3 9.870475+5 1.717908-3 9.638577+5 1.730000-3 9.498226+5 1.737801-3 9.408468+5 1.778279-3 8.963540+5 1.800000-3 8.736613+5 1.819701-3 8.538417+5 1.840772-3 8.334248+5 1.850000-3 8.246761+5 1.862087-3 8.133780+5 1.883649-3 7.938224+5 1.900000-3 7.794837+5 1.905461-3 7.747850+5 1.927525-3 7.559789+5 1.949845-3 7.376545+5 1.950000-3 7.375297+5 1.972423-3 7.196989+5 2.018366-3 6.851547+5 2.065380-3 6.522240+5 2.070000-3 6.491228+5 2.089296-3 6.363498+5 2.150000-3 5.980708+5 2.162719-3 5.904991+5 2.187762-3 5.758875+5 2.213095-3 5.616320+5 2.238721-3 5.477646+5 2.300000-3 5.164519+5 2.344229-3 4.952822+5 2.348700-3 4.932043+5 2.371374-3 4.828726+5 2.398833-3 4.707782+5 2.400000-3 4.702725+5 2.426610-3 4.589514+5 2.454709-3 4.474496+5 2.483133-3 4.362603+5 2.511886-3 4.252832+5 2.540973-3 4.145652+5 2.570396-3 4.040753+5 2.600160-3 3.938647+5 2.630268-3 3.838674+5 2.660725-3 3.741463+5 2.691535-3 3.646817+5 2.722701-3 3.553993+5 2.754229-3 3.463681+5 2.786121-3 3.375631+5 2.800000-3 3.338222+5 2.818383-3 3.289012+5 2.851018-3 3.204333+5 2.884032-3 3.122029+5 2.917427-3 3.041953+5 2.951209-3 2.964114+5 2.985383-3 2.888333+5 3.019952-3 2.814101+5 3.054921-3 2.741819+5 3.090295-3 2.671243+5 3.126079-3 2.601779+5 3.162278-3 2.534136+5 3.198895-3 2.468382+5 3.235937-3 2.404413+5 3.273407-3 2.341730+5 3.311311-3 2.280739+5 3.349654-3 2.221465+5 3.400000-3 2.146669+5 3.427678-3 2.106985+5 3.443600-3 2.084580+5 3.443600-3 5.050922+5 3.467369-3 4.973126+5 3.548134-3 4.721516+5 3.589219-3 4.600418+5 3.600000-3 4.572315+5 3.616100-3 4.518870+5 3.616100-3 6.463470+5 3.641000-3 6.344744+5 3.645000-3 6.325950+5 3.672823-3 6.201281+5 3.715352-3 6.017084+5 3.758374-3 5.838381+5 3.801894-3 5.664982+5 3.900000-3 5.310146+5 3.935501-3 5.189242+5 3.981072-3 5.039487+5 4.027170-3 4.894150+5 4.073803-3 4.750480+5 4.120975-3 4.611055+5 4.159400-3 4.501656+5 4.159400-3 5.248780+5 4.168694-3 5.220188+5 4.216965-3 5.075151+5 4.230000-3 5.036986+5 4.265795-3 4.933233+5 4.300000-3 4.837378+5 4.315191-3 4.795650+5 4.365158-3 4.661803+5 4.400000-3 4.571641+5 4.415704-3 4.531447+5 4.466836-3 4.403100+5 4.518559-3 4.278505+5 4.570882-3 4.157452+5 4.623810-3 4.038952+5 4.677351-3 3.923342+5 4.731513-3 3.811096+5 4.800000-3 3.675380+5 4.841724-3 3.596046+5 4.897788-3 3.493106+5 4.954502-3 3.393227+5 5.001800-3 3.313018+5 5.001800-3 3.518293+5 5.011872-3 3.501164+5 5.069907-3 3.404064+5 5.128614-3 3.309781+5 5.188000-3 3.218193+5 5.248075-3 3.128808+5 5.300000-3 3.054199+5 5.308844-3 3.041646+5 5.334900-3 3.005000+5 5.334900-3 3.133019+5 5.370318-3 3.083054+5 5.379000-3 3.070983+5 5.432503-3 2.998017+5 5.495409-3 2.915458+5 5.500000-3 2.909583+5 5.623413-3 2.757449+5 5.754399-3 2.606839+5 5.821032-3 2.534963+5 5.888437-3 2.464856+5 5.956621-3 2.396405+5 5.960000-3 2.393085+5 6.025596-3 2.329745+5 6.095369-3 2.265008+5 6.165950-3 2.202173+5 6.237348-3 2.141003+5 6.309573-3 2.081638+5 6.382635-3 2.023565+5 6.500000-3 1.935133+5 6.531306-3 1.912382+5 6.606934-3 1.858753+5 6.683439-3 1.806595+5 6.760830-3 1.755999+5 6.800000-3 1.731175+5 6.839116-3 1.706762+5 6.918310-3 1.658847+5 7.000000-3 1.611318+5 7.079458-3 1.566570+5 7.161434-3 1.522290+5 7.244360-3 1.479343+5 7.328245-3 1.437590+5 7.378200-3 1.413236+5 7.413102-3 1.396562+5 7.498942-3 1.356678+5 7.585776-3 1.317996+5 7.673615-3 1.280442+5 7.852356-3 1.208654+5 7.943282-3 1.174380+5 8.035261-3 1.141130+5 8.128305-3 1.108806+5 8.222426-3 1.077369+5 8.317638-3 1.046872+5 8.413951-3 1.017251+5 8.511380-3 9.885162+4 8.609938-3 9.604645+4 8.709636-3 9.330168+4 8.720000-3 9.302211+4 8.810489-3 9.062082+4 8.912509-3 8.802018+4 9.015711-3 8.549829+4 9.120108-3 8.305134+4 9.225714-3 8.067410+4 9.332543-3 7.835617+4 9.440609-3 7.608564+4 9.660509-3 7.174593+4 9.772372-3 6.967499+4 9.885531-3 6.766521+4 1.011579-2 6.382751+4 1.023293-2 6.199454+4 1.035142-2 6.020825+4 1.047129-2 5.847594+4 1.059254-2 5.679578+4 1.083927-2 5.357658+4 1.096478-2 5.203190+4 1.122018-2 4.904526+4 1.135011-2 4.762015+4 1.148154-2 4.623881+4 1.150000-2 4.604943+4 1.161449-2 4.489533+4 1.174898-2 4.359095+4 1.188502-2 4.232181+4 1.190000-2 4.218532+4 1.202264-2 4.109046+4 1.216186-2 3.989144+4 1.230269-2 3.872935+4 1.244515-2 3.760299+4 1.258925-2 3.650610+4 1.273503-2 3.544290+4 1.288250-2 3.440731+4 1.303167-2 3.340352+4 1.318257-2 3.242980+4 1.333521-2 3.148447+4 1.348963-2 3.056729+4 1.364583-2 2.967824+4 1.380384-2 2.881645+4 1.400000-2 2.778422+4 1.412538-2 2.714810+4 1.428894-2 2.634832+4 1.445440-2 2.557332+4 1.462177-2 2.482208+4 1.479108-2 2.409394+4 1.496236-2 2.338624+4 1.500000-2 2.323463+4 1.513561-2 2.269952+4 1.531087-2 2.203328+4 1.548817-2 2.138750+4 1.566751-2 2.076134+4 1.580000-2 2.031551+4 1.584893-2 2.015358+4 1.603245-2 1.956119+4 1.621810-2 1.898240+4 1.640590-2 1.842149+4 1.659587-2 1.787790+4 1.674300-2 1.747250+4 1.674300-2 4.173827+4 1.678804-2 4.146200+4 1.686000-2 4.102591+4 1.698244-2 4.029882+4 1.700000-2 4.019602+4 1.717908-2 3.909928+4 1.737801-2 3.792858+4 1.757924-2 3.679322+4 1.770000-2 3.613195+4 1.778279-2 3.567682+4 1.798871-2 3.457875+4 1.800000-2 3.451991+4 1.819701-2 3.351429+4 1.820000-2 3.349934+4 1.840772-2 3.249677+4 1.862087-2 3.150958+4 1.883649-2 3.055292+4 1.905461-2 2.962563+4 1.927525-2 2.872696+4 1.930000-2 2.862840+4 1.972423-2 2.697937+4 1.995262-2 2.614578+4 2.018366-2 2.533813+4 2.040200-2 2.460630+4 2.040200-2 3.473809+4 2.041738-2 3.467283+4 2.065380-2 3.368797+4 2.089296-2 3.268730+4 2.111300-2 3.180241+4 2.111300-2 3.673432+4 2.113489-2 3.663671+4 2.120000-2 3.634839+4 2.126000-2 3.608549+4 2.137962-2 3.558384+4 2.162719-2 3.456183+4 2.187762-2 3.356999+4 2.200000-2 3.310001+4 2.213095-2 3.261046+4 2.238721-2 3.168747+4 2.264644-2 3.077846+4 2.300000-2 2.959711+4 2.317395-2 2.904572+4 2.344229-2 2.821449+4 2.371374-2 2.740784+4 2.398833-2 2.662356+4 2.400000-2 2.659094+4 2.426610-2 2.585437+4 2.454709-2 2.509914+4 2.511886-2 2.365531+4 2.540973-2 2.296570+4 2.570396-2 2.229681+4 2.600160-2 2.164729+4 2.630268-2 2.101711+4 2.691535-2 1.981490+4 2.722701-2 1.923996+4 2.754229-2 1.868199+4 2.786121-2 1.814018+4 2.800000-2 1.791063+4 2.818383-2 1.761280+4 2.884032-2 1.659704+4 2.900000-2 1.636258+4 2.917427-2 1.611194+4 2.985383-2 1.517918+4 3.000000-2 1.498835+4 3.019952-2 1.473323+4 3.090295-2 1.388025+4 3.126079-2 1.347285+4 3.162278-2 1.307772+4 3.198895-2 1.269241+4 3.230000-2 1.237529+4 3.235937-2 1.231565+4 3.273407-2 1.194834+4 3.300000-2 1.169687+4 3.311311-2 1.159207+4 3.349654-2 1.124645+4 3.427678-2 1.058660+4 3.467369-2 1.027163+4 3.500000-2 1.002212+4 3.548134-2 9.669014+3 3.589219-2 9.381315+3 3.630781-2 9.102311+3 3.715352-2 8.569555+3 3.758374-2 8.315275+3 3.845918-2 7.829565+3 3.890451-2 7.596125+3 3.935501-2 7.369608+3 4.000000-2 7.061528+3 4.027170-2 6.936226+3 4.073803-2 6.728352+3 4.120975-2 6.526679+3 4.168694-2 6.329671+3 4.216965-2 6.138756+3 4.265795-2 5.953727+3 4.315191-2 5.774408+3 4.365158-2 5.600624+3 4.466836-2 5.268919+3 4.518559-2 5.110646+3 4.570882-2 4.957240+3 4.623810-2 4.808416+3 4.677351-2 4.663997+3 4.731513-2 4.523576+3 4.786301-2 4.387482+3 4.800000-2 4.354343+3 4.841724-2 4.255448+3 4.897788-2 4.126807+3 5.011872-2 3.881318+3 5.069907-2 3.763688+3 5.188000-2 3.539267+3 5.248075-2 3.432243+3 5.308844-2 3.328530+3 5.370318-2 3.227333+3 5.432503-2 3.129099+3 5.495409-2 3.033919+3 5.623413-2 2.852301+3 5.688529-2 2.765599+3 5.754399-2 2.681578+3 5.821032-2 2.600161+3 5.888437-2 2.521269+3 5.956621-2 2.444823+3 6.025596-2 2.370744+3 6.165950-2 2.228893+3 6.237348-2 2.161253+3 6.309573-2 2.095495+3 6.382635-2 2.031729+3 6.456542-2 1.969476+3 6.531306-2 1.909164+3 6.606934-2 1.850725+3 6.683439-2 1.794099+3 6.760830-2 1.739198+3 6.839116-2 1.686005+3 6.998420-2 1.584545+3 7.079458-2 1.536174+3 7.328245-2 1.399908+3 7.498942-2 1.315979+3 7.500000-2 1.315481+3 7.673615-2 1.236495+3 7.762471-2 1.198551+3 7.852356-2 1.161708+3 7.943282-2 1.126013+3 8.035261-2 1.091429+3 8.128305-2 1.057904+3 8.222426-2 1.025427+3 8.413951-2 9.634837+2 8.609938-2 9.053495+2 8.709636-2 8.776360+2 8.810489-2 8.506549+2 9.015711-2 7.991971+2 9.120108-2 7.746675+2 9.225714-2 7.508647+2 9.332543-2 7.277995+2 9.772372-2 6.425154+2 1.000000-1 6.037468+2 1.011580-1 5.852607+2 1.023293-1 5.672558+2 1.035142-1 5.497968+2 1.059254-1 5.164970+2 1.071519-1 5.006160+2 1.096478-1 4.703244+2 1.109175-1 4.558835+2 1.122019-1 4.418929+2 1.130800-1 4.326593+2 1.130800-1 1.859327+3 1.142000-1 1.815039+3 1.146000-1 1.796243+3 1.148154-1 1.788708+3 1.153000-1 1.771924+3 1.165000-1 1.722581+3 1.180000-1 1.672033+3 1.188502-1 1.640998+3 1.202264-1 1.592429+3 1.216186-1 1.545246+3 1.220000-1 1.532659+3 1.230269-1 1.501147+3 1.273503-1 1.378031+3 1.288250-1 1.337678+3 1.303167-1 1.298512+3 1.333521-1 1.223602+3 1.348963-1 1.187788+3 1.364583-1 1.153028+3 1.380384-1 1.119289+3 1.396368-1 1.086542+3 1.428894-1 1.023903+3 1.445440-1 9.941989+2 1.479108-1 9.373504+2 1.496236-1 9.101605+2 1.500000-1 9.043283+2 1.531088-1 8.580916+2 1.548817-1 8.331899+2 1.584893-1 7.855420+2 1.603245-1 7.627637+2 1.621810-1 7.404372+2 1.640590-1 7.187663+2 1.659587-1 6.977422+2 1.737801-1 6.196363+2 1.757924-1 6.015203+2 1.778279-1 5.839365+2 1.819701-1 5.502991+2 1.862087-1 5.186086+2 1.883649-1 5.034563+2 1.905461-1 4.887479+2 1.927525-1 4.744709+2 1.949845-1 4.606123+2 1.995262-1 4.341020+2 2.000000-1 4.314609+2 2.018366-1 4.214323+2 2.041738-1 4.091333+2 2.065380-1 3.971960+2 2.137962-1 3.634596+2 2.187762-1 3.425798+2 2.264644-1 3.134931+2 2.290868-1 3.043591+2 2.317395-1 2.954921+2 2.344229-1 2.868843+2 2.371374-1 2.785276+2 2.398833-1 2.704196+2 2.454709-1 2.549062+2 2.483133-1 2.474872+2 2.511886-1 2.402897+2 2.540973-1 2.333815+2 2.570396-1 2.266737+2 2.600160-1 2.201596+2 2.630268-1 2.138332+2 2.660725-1 2.076907+2 2.722701-1 1.959325+2 2.754229-1 1.903058+2 2.786121-1 1.848443+2 2.818383-1 1.795399+2 2.851018-1 1.743881+2 2.884032-1 1.693842+2 2.917427-1 1.645244+2 2.951209-1 1.598077+2 3.000000-1 1.533228+2 3.019952-1 1.507767+2 3.054921-1 1.465154+2 3.090295-1 1.423822+2 3.126079-1 1.383664+2 3.162278-1 1.344642+2 3.198895-1 1.306744+2 3.235937-1 1.269920+2 3.273407-1 1.234149+2 3.311311-1 1.199387+2 3.311800-1 1.198948+2 3.349654-1 1.165606+2 3.388442-1 1.132777+2 3.427678-1 1.100902+2 3.507519-1 1.039821+2 3.548134-1 1.010571+2 3.589219-1 9.825890+1 3.630781-1 9.553975+1 3.672823-1 9.289618+1 3.715352-1 9.032598+1 3.758374-1 8.783110+1 3.801894-1 8.540527+1 3.845918-1 8.304657+1 3.890451-1 8.075345+1 3.935501-1 7.852645+1 4.027170-1 7.425536+1 4.073803-1 7.220965+1 4.120975-1 7.025943+1 4.168694-1 6.836197+1 4.216965-1 6.651604+1 4.265795-1 6.472004+1 4.315191-1 6.297259+1 4.365158-1 6.127243+1 4.415705-1 5.962167+1 4.518559-1 5.645560+1 4.570882-1 5.493759+1 4.623810-1 5.346144+1 4.677351-1 5.202506+1 4.731513-1 5.065250+1 4.786301-1 4.931633+1 4.841724-1 4.801545+1 4.954502-1 4.551588+1 5.000000-1 4.456008+1 5.011872-1 4.431541+1 5.069907-1 4.314852+1 5.128614-1 4.201482+1 5.188000-1 4.091120+1 5.248075-1 3.983683+1 5.308844-1 3.879126+1 5.370318-1 3.779237+1 5.432503-1 3.681933+1 5.495409-1 3.587137+1 5.559043-1 3.494785+1 5.623413-1 3.404876+1 5.688529-1 3.317367+1 5.754399-1 3.232110+1 5.821032-1 3.149068+1 5.888437-1 3.068161+1 5.956621-1 2.989517+1 6.000000-1 2.940991+1 6.025596-1 2.912890+1 6.095369-1 2.839999+1 6.165950-1 2.768972+1 6.237348-1 2.699761+1 6.309573-1 2.632292+1 6.382635-1 2.566581+1 6.456542-1 2.502515+1 6.531306-1 2.440050+1 6.606935-1 2.379161+1 6.683439-1 2.319794+1 6.760830-1 2.261912+1 6.804800-1 2.229960+1 6.839117-1 2.205533+1 6.918310-1 2.151793+1 6.998420-1 2.099383+1 7.079458-1 2.048329+1 7.161434-1 1.998520+1 7.244360-1 1.949924+1 7.328245-1 1.902511+1 7.413102-1 1.856263+1 7.498942-1 1.811141+1 7.585776-1 1.767119+1 7.673615-1 1.724187+1 7.682800-1 1.719787+1 7.762471-1 1.682304+1 7.852356-1 1.641544+1 7.943282-1 1.602650+1 8.035261-1 1.564685+1 8.128305-1 1.527639+1 8.222427-1 1.491471+1 8.317638-1 1.456160+1 8.413951-1 1.421695+1 8.511380-1 1.388048+1 8.609938-1 1.355198+1 8.611500-1 1.354687+1 8.709636-1 1.323149+1 8.810489-1 1.291864+1 8.912509-1 1.261431+1 9.015711-1 1.231715+1 9.120108-1 1.202707+1 9.225714-1 1.175008+1 9.332543-1 1.147968+1 9.440609-1 1.121557+1 9.549926-1 1.095755+1 9.660509-1 1.070551+1 9.772372-1 1.045964+1 9.885531-1 1.021963+1 1.000000+0 9.985267+0 1.011579+0 9.756847+0 1.023293+0 9.538480+0 1.035142+0 9.325116+0 1.047129+0 9.116533+0 1.059254+0 8.913071+0 1.071519+0 8.714157+0 1.083927+0 8.519706+0 1.096478+0 8.329670+0 1.109175+0 8.143866+0 1.122018+0 7.962220+0 1.135011+0 7.784611+0 1.148154+0 7.611109+0 1.161449+0 7.441688+0 1.188502+0 7.114158+0 1.202264+0 6.955839+0 1.216186+0 6.801512+0 1.230269+0 6.654517+0 1.244515+0 6.510790+0 1.250000+0 6.456714+0 1.258925+0 6.370178+0 1.273503+0 6.232638+0 1.288250+0 6.098223+0 1.303167+0 5.966714+0 1.318257+0 5.838040+0 1.333521+0 5.712147+0 1.348963+0 5.588959+0 1.364583+0 5.468908+0 1.380384+0 5.354376+0 1.396368+0 5.242242+0 1.412538+0 5.132469+0 1.428894+0 5.025011+0 1.496236+0 4.617567+0 1.500000+0 4.596313+0 1.513561+0 4.520980+0 1.531087+0 4.426412+0 1.548817+0 4.336691+0 1.566751+0 4.248816+0 1.640590+0 3.914755+0 1.659587+0 3.835430+0 1.678804+0 3.757716+0 1.698244+0 3.681651+0 1.717908+0 3.607161+0 1.737801+0 3.534182+0 1.757924+0 3.464838+0 1.778279+0 3.396860+0 1.798871+0 3.330229+0 1.819701+0 3.264907+0 1.840772+0 3.200866+0 1.862087+0 3.138082+0 1.883649+0 3.076530+0 1.905461+0 3.016189+0 1.927525+0 2.957033+0 1.949845+0 2.899128+0 1.972423+0 2.842366+0 1.995262+0 2.786904+0 2.000000+0 2.775910+0 2.018366+0 2.733944+0 2.041738+0 2.682003+0 2.044000+0 2.677060+0 2.065380+0 2.631051+0 2.089296+0 2.581067+0 2.113489+0 2.532032+0 2.137962+0 2.483929+0 2.187762+0 2.390455+0 2.213095+0 2.345117+0 2.238721+0 2.300647+0 2.264644+0 2.257019+0 2.290868+0 2.215489+0 2.317395+0 2.174758+0 2.344229+0 2.134787+0 2.371374+0 2.095550+0 2.398833+0 2.057035+0 2.426610+0 2.019228+0 2.454709+0 1.982115+0 2.511886+0 1.909932+0 2.540973+0 1.874886+0 2.570396+0 1.840490+0 2.600160+0 1.806725+0 2.630268+0 1.774590+0 2.660725+0 1.743051+0 2.691535+0 1.712081+0 2.722701+0 1.681661+0 2.754229+0 1.651782+0 2.786121+0 1.622434+0 2.818383+0 1.593608+0 2.884032+0 1.537486+0 2.917427+0 1.510216+0 2.951209+0 1.483432+0 3.000000+0 1.446103+0 3.019952+0 1.431724+0 3.054921+0 1.407107+0 3.090295+0 1.382921+0 3.126079+0 1.359150+0 3.162278+0 1.335787+0 3.198895+0 1.312827+0 3.235937+0 1.290261+0 3.349654+0 1.224870+0 3.388442+0 1.203851+0 3.427678+0 1.183197+0 3.467369+0 1.162896+0 3.507519+0 1.143532+0 3.548134+0 1.124505+0 3.589219+0 1.105799+0 3.630781+0 1.087405+0 3.672823+0 1.069317+0 3.715352+0 1.051530+0 3.758374+0 1.034039+0 3.890451+0 9.832960-1 3.935501+0 9.669668-1 4.000000+0 9.443744-1 4.027170+0 9.351227-1 4.073803+0 9.200530-1 4.120975+0 9.052380-1 4.168694+0 8.906651-1 4.216965+0 8.763272-1 4.265795+0 8.622200-1 4.315191+0 8.483399-1 4.365158+0 8.346835-1 4.415704+0 8.212468-1 4.570882+0 7.822239-1 4.623810+0 7.696530-1 4.677351+0 7.572857-1 4.731513+0 7.451171-1 4.786301+0 7.334994-1 4.841724+0 7.220717-1 4.897788+0 7.108251-1 4.954502+0 6.997536-1 5.011872+0 6.888548-1 5.069907+0 6.781256-1 5.128614+0 6.675635-1 5.188000+0 6.571661-1 5.432503+0 6.171740-1 5.495409+0 6.075773-1 5.559043+0 5.981313-1 5.623413+0 5.888323-1 5.688529+0 5.799507-1 5.754399+0 5.712100-1 5.821032+0 5.626033-1 5.888437+0 5.541263-1 5.956621+0 5.457772-1 6.025596+0 5.375538-1 6.095369+0 5.294544-1 6.165950+0 5.214770-1 6.456542+0 4.907541-1 6.531306+0 4.833718-1 6.606934+0 4.761017-1 6.683439+0 4.689409-1 6.760830+0 4.620825-1 6.839116+0 4.553294-1 6.918310+0 4.486765-1 7.079458+0 4.356611-1 7.161434+0 4.292957-1 7.244360+0 4.230233-1 7.328245+0 4.168426-1 7.413102+0 4.107522-1 7.852356+0 3.816115-1 7.943282+0 3.760455-1 8.035261+0 3.705607-1 8.128305+0 3.652914-1 8.222427+0 3.601178-1 8.317638+0 3.550188-1 8.511380+0 3.450363-1 8.609938+0 3.401508-1 8.709636+0 3.353346-1 8.810489+0 3.305865-1 8.912509+0 3.259058-1 9.440609+0 3.034791-1 9.549926+0 2.991889-1 9.660509+0 2.949594-1 9.772372+0 2.908806-1 9.885531+0 2.868716-1 1.011579+1 2.790205-1 1.047129+1 2.676444-1 1.071519+1 2.603196-1 1.083927+1 2.567325-1 1.109175+1 2.497062-1 1.122018+1 2.462656-1 1.161449+1 2.362259-1 1.174898+1 2.329759-1 1.188502+1 2.298394-1 1.202264+1 2.267556-1 1.230269+1 2.207127-1 1.244515+1 2.177520-1 1.318257+1 2.035336-1 1.348963+1 1.981097-1 1.364583+1 1.954523-1 1.380384+1 1.928304-1 1.396368+1 1.902438-1 1.412538+1 1.876918-1 1.428894+1 1.851774-1 1.445440+1 1.827482-1 1.462177+1 1.803529-1 1.531087+1 1.710813-1 1.603245+1 1.622863-1 1.698244+1 1.519256-1 1.717908+1 1.499343-1 1.737801+1 1.479691-1 1.757924+1 1.460387-1 1.862087+1 1.369386-1 2.137962+1 1.173450-1 2.213095+1 1.129014-1 2.238721+1 1.114579-1 2.264644+1 1.100357-1 2.290868+1 1.086345-1 2.426610+1 1.020019-1 2.454709+1 1.007248-1 2.851018+1 8.550716-2 2.917427+1 8.337940-2 2.951209+1 8.233756-2 2.985383+1 8.131103-2 3.162278+1 7.645153-2 3.273407+1 7.367637-2 4.000000+1 5.944674-2 4.027170+1 5.901749-2 4.120975+1 5.758050-2 4.168694+1 5.687598-2 4.216965+1 5.618194-2 4.518559+1 5.225320-2 4.731513+1 4.978787-2 5.821032+1 4.005643-2 5.888437+1 3.957536-2 5.956621+1 3.910008-2 6.025596+1 3.863050-2 6.095369+1 3.816659-2 6.165950+1 3.770865-2 6.237348+1 3.725717-2 6.309573+1 3.681111-2 6.918310+1 3.347066-2 7.413102+1 3.116580-2 9.225714+1 2.486317-2 9.332543+1 2.456927-2 9.549926+1 2.399184-2 9.660509+1 2.370834-2 9.772372+1 2.342831-2 9.885531+1 2.315206-2 1.161449+2 1.964313-2 1.318257+2 1.726344-2 1.757924+2 1.287257-2 1.778279+2 1.272233-2 1.819701+2 1.242710-2 1.840772+2 1.228209-2 1.862087+2 1.213882-2 1.883649+2 1.199722-2 1.905461+2 1.185851-2 2.317395+2 9.731313-3 2.630268+2 8.562803-3 3.507519+2 6.402556-3 3.548134+2 6.328531-3 3.630781+2 6.183038-3 3.672823+2 6.111560-3 3.715352+2 6.040922-3 3.758374+2 5.971104-3 3.801894+2 5.902485-3 4.623810+2 4.849540-3 5.248075+2 4.270553-3 1.396368+3 1.598868-3 1.412538+3 1.580493-3 1.445440+3 1.544377-3 1.462177+3 1.526632-3 1.479108+3 1.509092-3 1.496236+3 1.491753-3 1.513561+3 1.474672-3 1.840772+3 1.212462-3 2.089296+3 1.068195-3 1.000000+5 2.229030-5 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 4.130000-6 4.710000-6 4.130000-6 4.710000-6 4.313659-6 5.670000-6 4.332589-6 5.670000-6 4.950734-6 6.500000-6 4.807649-6 6.800000-6 4.766168-6 6.800000-6 4.781590-6 7.640000-6 4.696187-6 7.640000-6 4.711281-6 8.350000-6 4.668416-6 9.225714-6 4.641465-6 1.035142-5 4.640380-6 1.161449-5 4.674735-6 1.290000-5 4.744048-6 1.428894-5 4.855421-6 1.570000-5 5.004236-6 1.737801-5 5.220835-6 2.113489-5 5.760359-6 2.300000-5 6.001311-6 2.382000-5 6.095350-6 2.382000-5 1.885535-5 2.900000-5 1.635393-5 3.162278-5 1.517703-5 3.261000-5 1.476817-5 3.261000-5 2.120089-5 3.507519-5 2.030003-5 3.935501-5 1.868284-5 4.315191-5 1.734388-5 4.570882-5 1.652309-5 4.786301-5 1.590016-5 5.001000-5 1.535062-5 5.001000-5 1.649818-5 5.150000-5 1.609565-5 5.400000-5 1.550193-5 5.623413-5 1.506227-5 5.888437-5 1.463316-5 6.165950-5 1.428125-5 6.456542-5 1.400363-5 6.683439-5 1.383224-5 6.918310-5 1.369916-5 7.161434-5 1.359734-5 7.585776-5 1.350312-5 8.035261-5 1.349488-5 8.511380-5 1.358304-5 9.015711-5 1.378645-5 9.549926-5 1.410466-5 9.840000-5 1.432288-5 9.840000-5 5.315979-5 9.849000-5 5.389533-5 9.890000-5 5.648231-5 9.930000-5 5.881257-5 9.960000-5 6.044418-5 1.000000-4 6.245734-5 1.007000-4 6.558370-5 1.011579-4 6.737209-5 1.016500-4 6.910432-5 1.025000-4 7.165378-5 1.030000-4 7.292131-5 1.040000-4 7.501372-5 1.050700-4 7.672102-5 1.060800-4 7.792306-5 1.060800-4 8.194155-5 1.075000-4 8.416238-5 1.092000-4 8.627714-5 1.110000-4 8.796150-5 1.131000-4 8.933658-5 1.157000-4 9.031035-5 1.191000-4 9.085770-5 1.288250-4 9.111363-5 1.450000-4 9.097296-5 1.627000-4 9.004942-5 1.786400-4 8.855363-5 1.927525-4 8.654993-5 1.940700-4 8.632879-5 1.940700-4 1.046164-4 2.120000-4 1.050213-4 2.290868-4 1.043682-4 2.458900-4 1.034028-4 2.458900-4 1.183983-4 2.580000-4 1.170315-4 3.000000-4 1.098376-4 3.051700-4 1.091764-4 3.051700-4 1.172537-4 3.311311-4 1.147069-4 3.589219-4 1.126771-4 3.670400-4 1.122153-4 3.670400-4 1.241252-4 3.776300-4 1.243061-4 3.776300-4 1.308114-4 3.858000-4 1.324247-4 3.898000-4 1.338886-4 3.940000-4 1.363548-4 3.980000-4 1.397945-4 4.015000-4 1.436180-4 4.085000-4 1.526059-4 4.140000-4 1.597711-4 4.200000-4 1.666616-4 4.240000-4 1.705949-4 4.300000-4 1.754752-4 4.371600-4 1.799815-4 4.460000-4 1.840315-4 4.550000-4 1.869077-4 4.690000-4 1.897530-4 4.890000-4 1.920310-4 5.188000-4 1.935918-4 5.754399-4 1.945551-4 7.032100-4 1.944689-4 7.032100-4 2.059253-4 7.437500-4 2.069888-4 7.437500-4 2.133253-4 8.850000-4 2.186168-4 9.905700-4 2.220842-4 9.905700-4 2.334105-4 1.188502-3 2.406803-4 1.210100-3 2.413953-4 1.210100-3 2.446119-4 1.362100-3 2.499351-4 1.362100-3 2.549171-4 1.659587-3 2.648743-4 2.018366-3 2.746220-4 2.426610-3 2.837097-4 2.985383-3 2.936028-4 3.443600-3 3.001886-4 3.443600-3 4.400813-4 3.616100-3 4.411277-4 3.616100-3 4.692468-4 4.159400-3 4.686615-4 4.159400-3 5.042540-4 5.001800-3 5.092622-4 5.001800-3 5.273998-4 5.334900-3 5.307793-4 5.334900-3 5.463850-4 7.079458-3 5.657297-4 9.225714-3 5.845147-4 1.188502-2 6.024498-4 1.513561-2 6.191096-4 1.674300-2 6.258722-4 1.674300-2 7.598033-4 2.040200-2 7.639462-4 2.040200-2 8.118412-4 2.111300-2 8.128487-4 2.111300-2 8.698485-4 2.917427-2 8.910783-4 4.120975-2 9.130925-4 5.754399-2 9.335887-4 7.943282-2 9.524157-4 1.096478-1 9.697048-4 1.130800-1 9.712639-4 1.130800-1 8.913693-4 2.818383-1 8.969920-4 7.852356-1 8.998349-4 1.000000+5 9.000977-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 0.0 1.940700-4 0.0 1.940700-4 1.894111-9 2.000000-4 1.989508-9 2.070000-4 2.089097-9 2.120000-4 2.153096-9 2.182000-4 2.209626-9 2.220000-4 2.235687-9 2.330000-4 2.289351-9 2.430000-4 2.316726-9 2.458900-4 2.320747-9 2.458900-4 4.160990-9 2.540973-4 4.116323-9 2.600160-4 4.055637-9 2.660725-4 3.971104-9 2.818383-4 3.726041-9 3.030000-4 3.421875-9 3.051700-4 3.395916-9 3.051700-4 3.703980-9 3.235937-4 3.504930-9 3.404800-4 3.343395-9 3.589219-4 3.191868-9 3.670400-4 3.132612-9 3.670400-4 1.723660-8 3.730000-4 1.759452-8 3.776300-4 1.792390-8 3.776300-4 1.943768-8 3.808000-4 1.985248-8 3.822000-4 2.009184-8 3.830000-4 2.024392-8 3.845918-4 2.064148-8 3.858000-4 2.101625-8 3.869000-4 2.142080-8 3.880000-4 2.189003-8 3.898000-4 2.281195-8 3.912000-4 2.366204-8 3.923000-4 2.440574-8 3.943000-4 2.598128-8 3.958000-4 2.731810-8 3.980000-4 2.953831-8 4.000000-4 3.178373-8 4.030000-4 3.545485-8 4.090000-4 4.317442-8 4.120975-4 4.691974-8 4.140000-4 4.908295-8 4.168694-4 5.202850-8 4.190000-4 5.401578-8 4.220000-4 5.648043-8 4.240000-4 5.796058-8 4.270000-4 5.993639-8 4.300000-4 6.165957-8 4.328000-4 6.306730-8 4.371600-4 6.489172-8 4.420000-4 6.653239-8 4.466836-4 6.771112-8 4.518559-4 6.872662-8 4.590900-4 6.972584-8 4.690000-4 7.062032-8 4.841724-4 7.148945-8 5.020000-4 7.193582-8 5.400000-4 7.229002-8 6.100000-4 7.223578-8 7.032100-4 7.174221-8 7.032100-4 7.359370-8 7.437500-4 7.354622-8 7.437500-4 8.260349-8 8.430000-4 8.494804-8 9.905700-4 8.783873-8 9.905700-4 1.076594-7 1.059254-3 1.102571-7 1.210100-3 1.150893-7 1.210100-3 1.200268-7 1.362100-3 1.255235-7 1.362100-3 1.350585-7 1.621810-3 1.454353-7 1.883649-3 1.547811-7 2.238721-3 1.660854-7 2.540973-3 1.746271-7 2.951209-3 1.849825-7 3.443600-3 1.959387-7 3.443600-3 2.431456-7 3.616100-3 2.446332-7 3.616100-3 4.615148-5 3.801894-3 4.563019-5 4.159400-3 4.548148-5 4.159400-3 4.558504-5 4.731513-3 4.526808-5 5.001800-3 4.506861-5 5.001800-3 5.040495-5 5.334900-3 5.071951-5 5.334900-3 5.166117-5 6.760830-3 5.295469-5 8.128305-3 5.393906-5 1.059254-2 5.536322-5 1.400000-2 5.681303-5 1.674300-2 5.768968-5 1.674300-2 3.605912-3 1.717908-2 3.609558-3 1.995262-2 3.579476-3 2.040200-2 3.572550-3 2.040200-2 5.246473-3 2.111300-2 5.261667-3 2.111300-2 5.509728-3 2.630268-2 5.573572-3 3.311311-2 5.622711-3 4.570882-2 5.664230-3 7.079458-2 5.694179-3 1.130800-1 5.704974-3 1.130800-1 7.924718-2 1.364583-1 7.993002-2 1.819701-1 8.068322-2 2.851018-1 8.142109-2 5.370318-1 8.222623-2 9.332543-1 8.285975-2 2.264644+1 8.290670-2 1.000000+5 8.290507-2 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 0.0 4.710000-6 5.800000-7 4.710000-6 3.963408-7 4.786301-6 4.701648-7 5.432503-6 1.103481-6 5.670000-6 1.337411-6 5.670000-6 7.192658-7 6.025596-6 1.140879-6 6.500000-6 1.692351-6 6.800000-6 2.033832-6 6.800000-6 2.018410-6 7.328245-6 2.604418-6 7.640000-6 2.943813-6 7.640000-6 2.928719-6 8.350000-6 3.681584-6 9.225714-6 4.584249-6 1.047129-5 5.829324-6 1.202264-5 7.329303-6 1.350000-5 8.712410-6 1.548817-5 1.050814-5 1.800000-5 1.269167-5 2.238721-5 1.646160-5 2.382000-5 1.772465-5 2.382000-5 4.964651-6 2.630268-5 8.647993-6 2.900000-5 1.264607-5 3.054921-5 1.490287-5 3.261000-5 1.784183-5 3.261000-5 1.140911-5 3.467369-5 1.421968-5 3.935501-5 2.067217-5 4.365158-5 2.647679-5 4.786301-5 3.196285-5 5.001000-5 3.465938-5 5.001000-5 3.351182-5 5.432503-5 3.889156-5 5.900000-5 4.438350-5 6.456542-5 5.056179-5 7.161434-5 5.801700-5 8.035261-5 6.685773-5 9.150000-5 7.764613-5 9.840000-5 8.407712-5 9.840000-5 4.524021-5 9.849000-5 4.459467-5 9.890000-5 4.241769-5 9.930000-5 4.048743-5 9.960000-5 3.915582-5 1.000000-4 3.754266-5 1.003700-4 3.619976-5 1.007000-4 3.511630-5 1.011579-4 3.378581-5 1.016500-4 3.254568-5 1.020000-4 3.178228-5 1.025000-4 3.084622-5 1.030000-4 3.007869-5 1.035142-4 2.944798-5 1.040000-4 2.898628-5 1.045000-4 2.862783-5 1.050700-4 2.834898-5 1.055000-4 2.822150-5 1.060800-4 2.815694-5 1.060800-4 2.413845-5 1.065000-4 2.383438-5 1.072000-4 2.346099-5 1.082000-4 2.310307-5 1.088000-4 2.296992-5 1.096478-4 2.289860-5 1.105000-4 2.294678-5 1.115000-4 2.314821-5 1.126000-4 2.353482-5 1.137000-4 2.407856-5 1.150000-4 2.489359-5 1.165000-4 2.600229-5 1.180000-4 2.726309-5 1.203000-4 2.935761-5 1.250000-4 3.393094-5 1.382400-4 4.712636-5 1.500000-4 5.921034-5 1.660000-4 7.620201-5 1.810000-4 9.273086-5 1.940700-4 1.077412-4 1.940700-4 8.945175-5 2.100000-4 1.049859-4 2.220000-4 1.172720-4 2.458900-4 1.424849-4 2.458900-4 1.274875-4 2.600160-4 1.432949-4 3.019952-4 1.924206-4 3.051700-4 1.959902-4 3.051700-4 1.879125-4 3.467369-4 2.332516-4 3.670400-4 2.548216-4 3.670400-4 2.428976-4 3.776300-4 2.533059-4 3.776300-4 2.467992-4 3.869000-4 2.541222-4 3.928000-4 2.572343-4 3.980000-4 2.581760-4 4.045000-4 2.571391-4 4.165000-4 2.536593-4 4.240000-4 2.533472-4 4.315191-4 2.549190-4 4.400000-4 2.584905-4 4.500000-4 2.645009-4 4.650000-4 2.758481-4 4.890000-4 2.968974-4 5.320000-4 3.379661-4 6.606934-4 4.659921-4 7.032100-4 5.086694-4 7.032100-4 4.972112-4 7.437500-4 5.366876-4 7.437500-4 5.303421-4 9.905700-4 7.683980-4 9.905700-4 7.570518-4 1.210100-3 9.685896-4 1.210100-3 9.653681-4 1.362100-3 1.112039-3 1.362100-3 1.107048-3 2.162719-3 1.884481-3 3.443600-3 3.143215-3 3.443600-3 3.003276-3 3.616100-3 3.174728-3 3.616100-3 3.100702-3 4.159400-3 3.645257-3 4.159400-3 3.609561-3 5.001800-3 4.447469-3 5.001800-3 4.423995-3 5.334900-3 4.753401-3 5.334900-3 4.736854-3 1.348963-2 1.282174-2 1.674300-2 1.605944-2 1.674300-2 1.237728-2 2.040200-2 1.606550-2 2.040200-2 1.434369-2 2.111300-2 1.503848-2 2.111300-2 1.473342-2 3.427678-2 2.774807-2 1.130800-1 1.064038-1 1.130800-1 3.294145-2 1.153000-1 3.506138-2 1.165000-1 3.626616-2 1.188502-1 3.849447-2 1.230269-1 4.257044-2 1.303167-1 4.961907-2 1.778279-1 9.629939-2 3.427678-1 2.602049-1 1.883649+0 1.799842+0 1.000000+5 9.999992+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.130800-1 1.426668+3 1.142000-1 1.393774+3 1.146000-1 1.378946+3 1.153000-1 1.361450+3 1.165000-1 1.323448+3 1.180000-1 1.286476+3 1.220000-1 1.180390+3 1.273503-1 1.064471+3 1.428894-1 7.942266+2 1.603245-1 5.944531+2 2.511886-1 1.893303+2 3.019952-1 1.192294+2 3.548134-1 8.012986+1 4.073803-1 5.738560+1 4.677351-1 4.144328+1 5.308844-1 3.096469+1 6.025596-1 2.329833+1 6.839117-1 1.767929+1 7.852356-1 1.318656+1 9.120108-1 9.679500+0 1.011579+0 7.858895+0 1.216186+0 5.480404+0 1.364583+0 4.405775+0 1.531087+0 3.565215+0 1.737801+0 2.846580+0 1.995262+0 2.244666+0 2.264644+0 1.817891+0 2.600160+0 1.455231+0 3.000000+0 1.164800+0 3.467369+0 9.366806-1 4.027170+0 7.532118-1 4.731513+0 6.001681-1 5.623413+0 4.742859-1 6.683439+0 3.777180-1 8.035261+0 2.984724-1 9.660509+0 2.375809-1 1.174898+1 1.876560-1 1.428894+1 1.491586-1 1.757924+1 1.176323-1 2.290868+1 8.750344-2 2.985383+1 6.549407-2 4.216965+1 4.525348-2 6.309573+1 2.965036-2 9.885531+1 1.864879-2 1.883649+2 9.663765-3 3.758374+2 4.809733-3 1.496236+3 1.201618-3 1.000000+5 1.795500-5 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.130800-1 8.671400-4 1.000000+5 8.671400-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.130800-1 1.015500-1 1.000000+5 1.015500-1 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.130800-1 1.066286-2 1.000000+5 9.999990+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.111300-2 4.931911+3 2.126000-2 4.855991+3 2.200000-2 4.582280+3 2.238721-2 4.457364+3 2.300000-2 4.240760+3 2.400000-2 3.956320+3 2.630268-2 3.348770+3 2.917427-2 2.782346+3 3.230000-2 2.297060+3 4.120975-2 1.419559+3 4.677351-2 1.092639+3 5.308844-2 8.375238+2 6.382635-2 5.615225+2 7.500000-2 3.917260+2 8.709636-2 2.784985+2 1.011580-1 1.966878+2 1.202264-1 1.307867+2 1.496236-1 7.735528+1 3.054921-1 1.369502+1 3.715352-1 8.599867+0 4.365158-1 5.903148+0 5.069907-1 4.195260+0 5.888437-1 3.004499+0 6.804800-1 2.192945+0 7.762471-1 1.657511+0 8.810489-1 1.275376+0 1.000000+0 9.889254-1 1.202264+0 6.893933-1 1.348963+0 5.537464-1 1.531087+0 4.384721-1 1.737801+0 3.500487-1 1.972423+0 2.814706-1 2.264644+0 2.235679-1 2.600160+0 1.789444-1 3.000000+0 1.432000-1 3.467369+0 1.151587-1 4.027170+0 9.260561-2 4.731513+0 7.378976-2 5.623413+0 5.831296-2 6.683439+0 4.644011-2 8.128305+0 3.616869-2 9.772372+0 2.880249-2 1.188502+1 2.275921-2 1.428894+1 1.833928-2 1.737801+1 1.465181-2 2.264644+1 1.089556-2 2.951209+1 8.153278-3 4.168694+1 5.632117-3 6.165950+1 3.733897-3 9.772372+1 2.320030-3 1.883649+2 1.188132-3 3.758374+2 5.913446-4 1.496236+3 1.477311-4 1.000000+5 2.207500-6 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.111300-2 1.237400-3 1.000000+5 1.237400-3 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.111300-2 7.109300-3 1.000000+5 7.109300-3 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.111300-2 1.276630-2 1.000000+5 9.999999+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.040200-2 1.013179+4 2.065380-2 9.893200+3 2.137962-2 9.124400+3 2.213095-2 8.372500+3 2.317395-2 7.485900+3 2.818383-2 4.560900+3 3.162278-2 3.377400+3 3.845918-2 2.005800+3 4.841724-2 1.069400+3 6.025596-2 5.814600+2 7.500000-2 3.132800+2 1.023293-1 1.289800+2 1.640590-1 3.332100+1 2.065380-1 1.732316+1 2.483133-1 1.033818+1 2.917427-1 6.626685+0 3.388442-1 4.415823+0 3.890451-1 3.058044+0 4.415705-1 2.199099+0 5.011872-1 1.593848+0 5.623413-1 1.198006+0 6.309573-1 9.070276-1 6.998420-1 7.111829-1 7.852356-1 5.468091-1 8.810489-1 4.235922-1 9.660509-1 3.468885-1 1.047129+0 2.935110-1 1.148154+0 2.443583-1 1.273503+0 2.004149-1 1.428894+0 1.620868-1 1.678804+0 1.214562-1 1.927525+0 9.555850-2 2.187762+0 7.725926-2 2.511886+0 6.173691-2 2.884032+0 4.970357-2 3.349654+0 3.960318-2 3.890451+0 3.179363-2 4.570882+0 2.529226-2 5.432503+0 1.995565-2 6.456542+0 1.586901-2 7.852356+0 1.234175-2 9.440609+0 9.814679-3 1.161449+1 7.641076-3 1.412538+1 6.071332-3 1.737801+1 4.786570-3 2.238721+1 3.605174-3 2.917427+1 2.697009-3 4.168694+1 1.840009-3 6.165950+1 1.219815-3 9.772372+1 7.579342-4 1.883649+2 3.881497-4 3.758374+2 1.931856-4 1.496236+3 4.826324-5 1.000000+5 7.211600-7 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.040200-2 9.281600-4 1.000000+5 9.281600-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.040200-2 9.311800-3 1.000000+5 9.311800-3 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.040200-2 1.016204-2 1.000000+5 9.999999+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.674300-2 2.426577+4 1.700000-2 2.340096+4 1.770000-2 2.100812+4 1.820000-2 1.943700+4 1.930000-2 1.656560+4 2.426610-2 8.697780+3 2.786121-2 5.828771+3 3.198895-2 3.892859+3 4.000000-2 1.998132+3 5.011872-2 1.006125+3 6.237348-2 5.118229+2 7.762471-2 2.582586+2 1.059254-1 9.681997+1 1.584893-1 2.705953+1 1.995262-1 1.316039+1 2.371374-1 7.716728+0 2.754229-1 4.894165+0 3.162278-1 3.238455+0 3.589219-1 2.234094+0 4.027170-1 1.605187+0 4.518559-1 1.161876+0 5.011872-1 8.749572-1 5.559043-1 6.632467-1 6.165950-1 5.061774-1 6.839117-1 3.890004-1 7.585776-1 3.011359-1 8.609938-1 2.218052-1 9.225714-1 1.888413-1 9.772372-1 1.660593-1 1.047129+0 1.434153-1 1.135011+0 1.218659-1 1.230269+0 1.043037-1 1.348963+0 8.792995-2 1.698244+0 5.828141-2 1.927525+0 4.677103-2 2.187762+0 3.780790-2 2.511886+0 3.020516-2 2.884032+0 2.431061-2 3.349654+0 1.936853-2 3.890451+0 1.554918-2 4.570882+0 1.236977-2 5.432503+0 9.759947-3 6.456542+0 7.761021-3 7.852356+0 6.035913-3 9.440609+0 4.800097-3 1.161449+1 3.737036-3 1.412538+1 2.969342-3 1.737801+1 2.341004-3 2.238721+1 1.763172-3 2.917427+1 1.319068-3 4.120975+1 9.109343-4 6.095369+1 6.037721-4 9.549926+1 3.795479-4 1.819701+2 1.966071-4 3.630781+2 9.782601-5 1.445440+3 2.443469-5 1.000000+5 3.527000-7 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.674300-2 8.562400-4 1.000000+5 8.562400-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.674300-2 6.160800-3 1.000000+5 6.160800-3 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.674300-2 9.725960-3 1.000000+5 9.999999+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.334900-3 1.280189+4 5.495409-3 1.228174+4 5.623413-3 1.194630+4 5.754399-3 1.157720+4 5.960000-3 1.109276+4 6.531306-3 9.759132+3 6.918310-3 9.038143+3 7.413102-3 8.169336+3 8.035261-3 7.212158+3 8.709636-3 6.398011+3 9.332543-3 5.731533+3 1.150000-2 4.058600+3 1.273503-2 3.399437+3 1.479108-2 2.607049+3 1.717908-2 1.978860+3 1.927525-2 1.593266+3 2.300000-2 1.131680+3 2.754229-2 7.898858+2 3.300000-2 5.452120+2 3.890451-2 3.857358+2 4.570882-2 2.728375+2 5.370318-2 1.915856+2 6.382635-2 1.301920+2 7.673615-2 8.549713+1 9.120108-2 5.721001+1 1.122019-1 3.504116+1 1.445440-1 1.908431+1 2.630268-1 4.456854+0 3.235937-1 2.710360+0 3.890451-1 1.754228+0 4.570882-1 1.207237+0 5.248075-1 8.822087-1 6.095369-1 6.331508-1 6.998420-1 4.695229-1 8.035261-1 3.507255-1 9.120108-1 2.700978-1 1.023293+0 2.145948-1 1.216186+0 1.530914-1 1.364583+0 1.230590-1 1.531087+0 9.956685-2 1.737801+0 7.949196-2 1.995262+0 6.268486-2 2.290868+0 4.982060-2 2.630268+0 3.990272-2 3.019952+0 3.219297-2 3.507519+0 2.571133-2 4.073803+0 2.068714-2 4.786301+0 1.649271-2 5.688529+0 1.304001-2 6.760830+0 1.039003-2 8.128305+0 8.213933-3 9.772372+0 6.540980-3 1.188502+1 5.168433-3 1.445440+1 4.109873-3 1.737801+1 3.327310-3 2.238721+1 2.506088-3 2.917427+1 1.874817-3 4.120975+1 1.294773-3 6.095369+1 8.581856-4 9.660509+1 5.331324-4 1.840772+2 2.762002-4 3.672823+2 1.374444-4 1.462177+3 3.433262-5 1.000000+5 5.013100-7 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.334900-3 9.127000-4 1.000000+5 9.127000-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.334900-3 7.376500-5 1.000000+5 7.376500-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.334900-3 4.348435-3 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.001800-3 2.052756+4 5.248075-3 1.959001+4 5.500000-3 1.860368+4 6.165950-3 1.613144+4 6.500000-3 1.502160+4 7.244360-3 1.279491+4 8.035261-3 1.089973+4 8.720000-3 9.539560+3 1.023293-2 7.211593+3 1.096478-2 6.351519+3 1.273503-2 4.761441+3 1.380384-2 4.055440+3 1.603245-2 2.974143+3 1.757924-2 2.442412+3 2.041738-2 1.756092+3 2.317395-2 1.315700+3 2.570396-2 1.033686+3 2.985383-2 7.231267+2 3.500000-2 4.896160+2 4.073803-2 3.344061+2 4.800000-2 2.195400+2 5.623413-2 1.450958+2 6.683439-2 9.164449+1 8.035261-2 5.571475+1 1.011580-1 2.965830+1 2.041738-1 4.245015+0 2.540973-1 2.331334+0 3.019952-1 1.462533+0 3.507519-1 9.828281-1 4.027170-1 6.855173-1 4.570882-1 4.959127-1 5.128614-1 3.718378-1 5.754399-1 2.807152-1 6.531306-1 2.076263-1 7.328245-1 1.590085-1 8.317638-1 1.195614-1 9.120108-1 9.776020-2 9.885531-1 8.248656-2 1.083927+0 6.844949-2 1.202264+0 5.590317-2 1.348963+0 4.499946-2 1.548817+0 3.499308-2 1.778279+0 2.740326-2 2.018366+0 2.205675-2 2.317395+0 1.754289-2 2.660725+0 1.406029-2 3.054921+0 1.135107-2 3.548134+0 9.070947-3 4.120975+0 7.302315-3 4.841724+0 5.824869-3 5.754399+0 4.608001-3 6.839116+0 3.673341-3 8.222427+0 2.905219-3 9.885531+0 2.314566-3 1.202264+1 1.829600-3 1.445440+1 1.474831-3 1.737801+1 1.194058-3 2.238721+1 8.993130-4 2.917427+1 6.727766-4 4.120975+1 4.646238-4 6.095369+1 3.079551-4 9.549926+1 1.935893-4 1.840772+2 9.911322-5 3.672823+2 4.932061-5 1.462177+3 1.231998-5 1.000000+5 1.799000-7 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.001800-3 8.201300-4 1.000000+5 8.201300-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.001800-3 1.365300-4 1.000000+5 1.365300-4 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.001800-3 4.045140-3 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.159400-3 7.471239+4 4.265795-3 7.173340+4 4.415704-3 6.802701+4 4.623810-3 6.306500+4 5.300000-3 4.979360+4 5.888437-3 4.093822+4 6.800000-3 3.109888+4 7.328245-3 2.680383+4 8.609938-3 1.926739+4 9.332543-3 1.620878+4 1.096478-2 1.137304+4 1.202264-2 9.219311+3 1.380384-2 6.683851+3 1.580000-2 4.829720+3 1.757924-2 3.715680+3 2.041738-2 2.548234+3 2.371374-2 1.729600+3 2.691535-2 1.236558+3 3.019952-2 9.064302+2 3.467369-2 6.201345+2 4.000000-2 4.156320+2 4.623810-2 2.749962+2 5.370318-2 1.782273+2 6.309573-2 1.109170+2 7.500000-2 6.620720+1 9.120108-2 3.664995+1 1.188502-1 1.630757+1 1.819701-1 4.407290+0 2.264644-1 2.265108+0 2.660725-1 1.395891+0 3.090295-1 8.968501-1 3.548134-1 6.007006-1 4.027170-1 4.191199-1 4.518559-1 3.042758-1 5.011872-1 2.295632-1 5.559043-1 1.743999-1 6.237348-1 1.294943-1 6.918310-1 9.973718-2 7.673615-1 7.735786-2 8.709636-1 5.705173-2 9.332543-1 4.864855-2 9.885531-1 4.286158-2 1.071519+0 3.624631-2 1.161449+0 3.086806-2 1.258925+0 2.645143-2 1.396368+0 2.186990-2 1.717908+0 1.511848-2 1.949845+0 1.214047-2 2.213095+0 9.819558-3 2.540973+0 7.849866-3 2.917427+0 6.321994-3 3.388442+0 5.039984-3 3.935501+0 4.048405-3 4.623810+0 3.222282-3 5.495409+0 2.543784-3 6.531306+0 2.023827-3 7.852356+0 1.597812-3 9.440609+0 1.270646-3 1.161449+1 9.892404-4 1.412538+1 7.860214-4 1.737801+1 6.196821-4 2.238721+1 4.667398-4 2.917427+1 3.491676-4 4.120975+1 2.411366-4 6.025596+1 1.617605-4 9.549926+1 1.004711-4 1.819701+2 5.204351-5 3.630781+2 2.589609-5 1.445440+3 6.468225-6 1.000000+5 9.336400-8 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.159400-3 7.187100-4 1.000000+5 7.187100-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.159400-3 4.620900-5 1.000000+5 4.620900-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.159400-3 3.394481-3 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.616100-3 1.944600+5 3.801894-3 1.684983+5 4.230000-3 1.277508+5 4.570882-3 1.036639+5 5.188000-3 7.294537+4 5.821032-3 5.262778+4 6.531306-3 3.771002+4 7.328245-3 2.677950+4 8.128305-3 1.950984+4 9.225714-3 1.320744+4 1.059254-2 8.529690+3 1.174898-2 6.120754+3 1.400000-2 3.448284+3 1.584893-2 2.279065+3 1.800000-2 1.481892+3 2.089296-2 8.878817+2 2.454709-2 5.057725+2 2.900000-2 2.801456+2 3.427678-2 1.537010+2 4.120975-2 7.867302+1 5.011872-2 3.831982+1 6.456542-2 1.497129+1 1.216186-1 1.409897+0 1.500000-1 6.486200-1 1.778279-1 3.482379-1 2.317395-1 1.334507-1 2.540973-1 9.620908-2 2.754229-1 7.275798-2 3.019952-1 5.336636-2 3.388442-1 3.607156-2 3.801894-1 2.456192-2 4.265795-1 1.684729-2 4.677351-1 1.254381-2 5.069907-1 9.755684-3 5.559043-1 7.388562-3 6.531306-1 4.598516-3 7.161434-1 3.529427-3 7.762471-1 2.817469-3 8.511380-1 2.187779-3 9.015711-1 1.879478-3 9.440609-1 1.673955-3 9.885531-1 1.499981-3 1.035142+0 1.353148-3 1.096478+0 1.197962-3 1.161449+0 1.067460-3 1.250000+0 9.284543-4 1.364583+0 7.925500-4 1.531087+0 6.483503-4 1.819701+0 4.779416-4 2.044000+0 3.917274-4 2.344229+0 3.123783-4 2.691535+0 2.505405-4 3.090295+0 2.023938-4 3.589219+0 1.618297-4 4.168694+0 1.303455-4 4.897788+0 1.040300-4 5.821032+0 8.233977-5 6.918310+0 6.567094-5 8.317638+0 5.196158-5 1.011579+1 4.083885-5 1.230269+1 3.230361-5 1.531087+1 2.503991-5 1.862087+1 2.004197-5 2.454709+1 1.474142-5 3.273407+1 1.078072-5 4.731513+1 7.285025-6 7.413102+1 4.560072-6 1.318257+2 2.525638-6 2.630268+2 1.253304-6 5.248075+2 6.250516-7 2.089296+3 1.564364-7 1.000000+5 3.264300-9 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.616100-3 5.345900-4 1.000000+5 5.345900-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.616100-3 1.528300-4 1.000000+5 1.528300-4 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.616100-3 2.928680-3 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.443600-3 2.966342+5 3.589219-3 2.705404+5 3.600000-3 2.690436+5 3.645000-3 2.596614+5 4.027170-3 1.992919+5 4.400000-3 1.561230+5 5.011872-3 1.080471+5 5.623413-3 7.746529+4 6.309573-3 5.509214+4 7.000000-3 4.021860+4 8.511380-3 2.186439+4 9.332543-3 1.629493+4 1.083927-2 1.002910+4 1.244515-2 6.343420+3 1.400000-2 4.266750+3 1.603245-2 2.682231+3 1.840772-2 1.657746+3 2.113489-2 1.016838+3 2.426610-2 6.192511+2 2.800000-2 3.678678+2 3.273407-2 2.068477+2 3.845918-2 1.133498+2 4.623810-2 5.654188+1 5.688529-2 2.564480+1 1.188502-1 1.499428+0 1.428894-1 7.413104-1 1.659587-1 4.211357-1 1.905461-1 2.516103-1 2.065380-1 1.871120-1 2.371374-1 1.135681-1 2.786121-1 6.390639-2 3.090295-1 4.457778-2 3.427678-1 3.132803-2 3.758374-1 2.304853-2 4.168694-1 1.644510-2 4.570882-1 1.227379-2 4.954502-1 9.567277-3 5.370318-1 7.517699-3 5.888437-1 5.752512-3 6.531306-1 4.289180-3 7.161434-1 3.327480-3 8.609938-1 2.033320-3 9.120108-1 1.754171-3 9.549926-1 1.567084-3 1.000000+0 1.408032-3 1.059254+0 1.241931-3 1.122018+0 1.102826-3 1.202264+0 9.635112-4 1.303167+0 8.297891-4 1.840772+0 4.513292-4 2.065380+0 3.708286-4 2.371374+0 2.953094-4 2.722701+0 2.369622-4 3.126079+0 1.915156-4 3.630781+0 1.532253-4 4.265795+0 1.214826-4 5.011872+0 9.705586-5 5.956621+0 7.689865-5 7.161434+0 6.048742-5 8.609938+0 4.792564-5 1.071519+1 3.667582-5 1.348963+1 2.791557-5 1.717908+1 2.113579-5 2.238721+1 1.571304-5 2.951209+1 1.160923-5 4.168694+1 8.019680-6 6.165950+1 5.316655-6 9.772372+1 3.303486-6 1.883649+2 1.691822-6 3.758374+2 8.420184-7 1.496236+3 2.103584-7 1.000000+5 3.143200-9 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.443600-3 5.383900-4 1.000000+5 5.383900-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.443600-3 2.763200-7 1.000000+5 2.763200-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.443600-3 2.904934-3 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.362100-3 2.853249+4 1.445440-3 2.678651+4 1.621810-3 2.394150+4 1.698244-3 2.284394+4 2.018366-3 1.873359+4 2.371374-3 1.540575+4 2.540973-3 1.407369+4 3.126079-3 1.058172+4 3.467369-3 9.101388+3 4.073803-3 7.146315+3 4.731513-3 5.652864+3 5.379000-3 4.598976+3 6.382635-3 3.460901+3 7.673615-3 2.522598+3 9.120108-3 1.858615+3 1.096478-2 1.329725+3 1.303167-2 9.635464+2 1.548817-2 6.929262+2 1.840772-2 4.947372+2 2.213095-2 3.426349+2 2.630268-2 2.409920+2 3.162278-2 1.642350+2 3.758374-2 1.137472+2 4.466836-2 7.822197+1 5.308844-2 5.340300+1 6.382635-2 3.526214+1 7.673615-2 2.311137+1 9.225714-2 1.502773+1 1.148154-1 8.941205+0 1.500000-1 4.701307+0 2.570396-1 1.269290+0 3.198895-1 7.505365-1 3.845918-1 4.855858-1 4.518559-1 3.340216-1 5.188000-1 2.439504-1 6.025596-1 1.749714-1 6.918310-1 1.296688-1 7.943282-1 9.679436-2 9.015711-1 7.447969-2 1.011579+0 5.912644-2 1.216186+0 4.123417-2 1.364583+0 3.314569-2 1.531087+0 2.681822-2 1.737801+0 2.140884-2 1.972423+0 1.721553-2 2.264644+0 1.367624-2 2.600160+0 1.094670-2 3.000000+0 8.759600-3 3.467369+0 7.044196-3 4.027170+0 5.664539-3 4.731513+0 4.513566-3 5.623413+0 3.566874-3 6.683439+0 2.840616-3 8.035261+0 2.244636-3 9.660509+0 1.786674-3 1.188502+1 1.392096-3 1.445440+1 1.106998-3 1.737801+1 8.962208-4 2.238721+1 6.750202-4 2.917427+1 5.049793-4 4.120975+1 3.487388-4 6.095369+1 2.311485-4 9.660509+1 1.435967-4 1.862087+2 7.352942-5 3.715352+2 3.659303-5 1.479108+3 9.141447-6 1.000000+5 1.350300-7 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.362100-3 5.189000-4 1.000000+5 5.189000-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.362100-3 6.403000-7 1.000000+5 6.403000-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.362100-3 8.425597-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.210100-3 2.476679+4 1.313000-3 2.463941+4 1.480000-3 2.391680+4 1.566751-3 2.339124+4 1.698244-3 2.247542+4 1.850000-3 2.137460+4 1.972423-3 2.045259+4 2.162719-3 1.901723+4 2.300000-3 1.800198+4 2.570396-3 1.612693+4 2.800000-3 1.473668+4 3.019952-3 1.350670+4 3.400000-3 1.166818+4 3.715352-3 1.039274+4 4.120975-3 8.997734+3 4.570882-3 7.744103+3 5.069907-3 6.608286+3 5.623413-3 5.607118+3 6.309573-3 4.632051+3 7.000000-3 3.876280+3 8.035261-3 3.029892+3 9.015711-3 2.447306+3 1.011579-2 1.964030+3 1.150000-2 1.525308+3 1.318257-2 1.155186+3 1.513561-2 8.644377+2 1.737801-2 6.413636+2 1.995262-2 4.719281+2 2.264644-2 3.537321+2 2.600160-2 2.563612+2 3.000000-2 1.822522+2 3.467369-2 1.279991+2 4.000000-2 8.967740+1 4.677351-2 6.027147+1 5.495409-2 3.971421+1 6.531306-2 2.520162+1 7.852356-2 1.539562+1 9.772372-2 8.504567+0 1.303167-1 3.858043+0 2.000000-1 1.184254+0 2.630268-1 5.623113-1 3.126079-1 3.540103-1 3.630781-1 2.386279-1 4.168694-1 1.669479-1 4.731513-1 1.211525-1 5.370318-1 8.856612-2 6.025596-1 6.707165-2 6.683439-1 5.255456-2 7.498942-1 4.037872-2 8.413951-1 3.124617-2 9.549926-1 2.374028-2 1.035142+0 2.007754-2 1.135011+0 1.670423-2 1.258925+0 1.368750-2 1.412538+0 1.105716-2 1.659587+0 8.277097-3 1.883649+0 6.636779-3 2.137962+0 5.358811-3 2.454709+0 4.275974-3 2.818383+0 3.437469-3 3.235937+0 2.783016-3 3.758374+0 2.230401-3 4.415704+0 1.771350-3 5.188000+0 1.417372-3 6.165950+0 1.124770-3 7.413102+0 8.859988-4 8.912509+0 7.029534-4 1.122018+1 5.313038-4 1.396368+1 4.105639-4 1.717908+1 3.235786-4 2.238721+1 2.405646-4 2.951209+1 1.777355-4 4.168694+1 1.227766-4 6.237348+1 8.042603-5 9.885531+1 4.998247-5 1.905461+2 2.560012-5 3.801894+2 1.274220-5 1.513561+3 3.183706-6 1.000000+5 4.812200-8 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.210100-3 4.883000-4 1.000000+5 4.883000-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.210100-3 4.940900-7 1.000000+5 4.940900-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.210100-3 7.213059-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 9.905700-4 1.579138+5 1.047129-3 1.524975+5 1.100000-3 1.456756+5 1.244515-3 1.281533+5 1.450000-3 1.071904+5 1.570000-3 9.722720+4 1.698244-3 8.767336+4 1.850000-3 7.802960+4 2.187762-3 6.119594+4 2.398833-3 5.324306+4 2.754229-3 4.273062+4 3.054921-3 3.604269+4 3.548134-3 2.787748+4 3.935501-3 2.319174+4 4.518559-3 1.799707+4 5.128614-3 1.414735+4 5.754399-3 1.129644+4 6.606934-3 8.551720+3 7.585776-3 6.417421+3 8.609938-3 4.894576+3 9.772372-3 3.706428+3 1.096478-2 2.861001+3 1.244515-2 2.137600+3 1.412538-2 1.585891+3 1.603245-2 1.168563+3 1.819701-2 8.552096+2 2.065380-2 6.217236+2 2.371374-2 4.358207+2 2.722701-2 3.030947+2 3.090295-2 2.158145+2 3.589219-2 1.433621+2 4.120975-2 9.759933+1 4.786301-2 6.386074+1 5.623413-2 4.012804+1 6.606934-2 2.502662+1 7.943282-2 1.447481+1 9.772372-2 7.754085+0 1.927525-1 9.778556-1 2.371374-1 5.229451-1 2.786121-1 3.235336-1 3.235937-1 2.085973-1 3.672823-1 1.448273-1 4.168694-1 1.012861-1 4.623810-1 7.608023-2 5.188000-1 5.578553-2 5.754399-1 4.247853-2 6.382635-1 3.256217-2 7.079458-1 2.515505-2 7.852356-1 1.956503-2 8.810489-1 1.490998-2 9.549926-1 1.235869-2 1.011579+0 1.088161-2 1.083927+0 9.418981-3 1.161449+0 8.208794-3 1.258925+0 7.041358-3 1.396368+0 5.828076-3 1.757924+0 3.873264-3 2.000000+0 3.101408-3 2.290868+0 2.474898-3 2.630268+0 1.982215-3 3.019952+0 1.599205-3 3.507519+0 1.277221-3 4.073803+0 1.027633-3 4.786301+0 8.192625-4 5.688529+0 6.477664-4 6.760830+0 5.161254-4 8.128305+0 4.080216-4 9.772372+0 3.249253-4 1.188502+1 2.567427-4 1.445440+1 2.041525-4 1.757924+1 1.631575-4 2.264644+1 1.229159-4 2.917427+1 9.313145-5 4.120975+1 6.431730-5 6.095369+1 4.263035-5 9.549926+1 2.679814-5 1.840772+2 1.371972-5 3.672823+2 6.827409-6 1.462177+3 1.705445-6 1.000000+5 2.490300-8 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 9.905700-4 4.157800-4 1.000000+5 4.157800-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.905700-4 4.268000-7 1.000000+5 4.268000-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 9.905700-4 5.743632-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 7.437500-4 2.014328+5 8.222426-4 2.152202+5 8.280000-4 2.159631+5 8.430000-4 2.162792+5 9.015711-4 2.160250+5 9.440609-4 2.146295+5 9.930000-4 2.115168+5 1.047129-3 2.065993+5 1.109175-3 1.996307+5 1.161449-3 1.932536+5 1.230269-3 1.842402+5 1.303167-3 1.744371+5 1.380384-3 1.641708+5 1.470000-3 1.526912+5 1.610000-3 1.358616+5 1.717908-3 1.241831+5 1.840772-3 1.118955+5 2.018366-3 9.655541+4 2.162719-3 8.595966+4 2.344229-3 7.443911+4 2.600160-3 6.132815+4 2.800000-3 5.305240+4 3.090295-3 4.335686+4 3.349654-3 3.656367+4 3.672823-3 2.985450+4 4.027170-3 2.422961+4 4.415704-3 1.951291+4 4.841724-3 1.562347+4 5.379000-3 1.201778+4 5.888437-3 9.532672+3 6.606934-3 7.040480+3 7.378200-3 5.220364+3 8.128305-3 3.990777+3 9.120108-3 2.877908+3 1.023293-2 2.058724+3 1.161449-2 1.411602+3 1.318257-2 9.592413+2 1.496236-2 6.462906+2 1.678804-2 4.481817+2 1.883649-2 3.087749+2 2.120000-2 2.093040+2 2.426610-2 1.331899+2 2.786121-2 8.323202+1 3.198895-2 5.163332+1 3.715352-2 3.055236+1 4.365158-2 1.723146+1 5.248075-2 8.881789+0 6.456542-2 4.179546+0 9.332543-2 1.080888+0 1.348963-1 2.788414-1 1.659587-1 1.310291-1 1.927525-1 7.647547-2 2.317395-1 3.980267-2 2.660725-1 2.455929-2 3.019952-1 1.588749-2 3.427678-1 1.035563-2 3.845918-1 7.064028-3 4.265795-1 5.042151-3 4.731513-1 3.626508-3 5.188000-1 2.728592-3 5.688529-1 2.067400-3 6.237348-1 1.576905-3 6.918310-1 1.171612-3 7.585776-1 9.053102-4 8.222427-1 7.272404-4 9.015711-1 5.686117-4 9.440609-1 5.054251-4 9.885531-1 4.520377-4 1.035142+0 4.072407-4 1.096478+0 3.601809-4 1.161449+0 3.208237-4 1.244515+0 2.813729-4 1.348963+0 2.433091-4 1.531087+0 1.952892-4 1.840772+0 1.410965-4 2.065380+0 1.159092-4 2.371374+0 9.230251-5 2.722701+0 7.407032-5 3.126079+0 5.986845-5 3.630781+0 4.789863-5 4.265795+0 3.797585-5 5.011872+0 3.034018-5 5.956621+0 2.403897-5 7.161434+0 1.890844-5 8.609938+0 1.498142-5 1.071519+1 1.146541-5 1.348963+1 8.726554-6 1.717908+1 6.607122-6 2.238721+1 4.912113-6 2.917427+1 3.674719-6 4.120975+1 2.537803-6 6.025596+1 1.702427-6 9.549926+1 1.057381-6 1.819701+2 5.477196-7 3.630781+2 2.725337-7 1.445440+3 6.807376-8 1.000000+5 9.82600-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 7.437500-4 3.315900-4 1.000000+5 3.315900-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.437500-4 2.516500-7 1.000000+5 2.516500-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.437500-4 4.119084-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.032100-4 3.518304+5 7.585776-4 3.669310+5 7.900000-4 3.709530+5 8.511380-4 3.664443+5 9.015711-4 3.608089+5 9.500000-4 3.527418+5 1.000000-3 3.425406+5 1.059254-3 3.291363+5 1.130000-3 3.119976+5 1.202264-3 2.939186+5 1.280000-3 2.747190+5 1.364583-3 2.546961+5 1.428894-3 2.400496+5 1.570000-3 2.108790+5 1.659587-3 1.943254+5 1.778279-3 1.741919+5 1.950000-3 1.492860+5 2.089296-3 1.323206+5 2.238721-3 1.165137+5 2.483133-3 9.547012+4 2.691535-3 8.118941+4 2.985383-3 6.533018+4 3.235937-3 5.483194+4 3.589219-3 4.339727+4 3.900000-3 3.576816+4 4.315191-3 2.803706+4 4.731513-3 2.231481+4 5.308844-3 1.662610+4 5.888437-3 1.264858+4 6.500000-3 9.682680+3 7.328245-3 6.938318+3 8.317638-3 4.829866+3 9.440609-3 3.328327+3 1.059254-2 2.352390+3 1.190000-2 1.643310+3 1.333521-2 1.148350+3 1.500000-2 7.871220+2 1.698244-2 5.242084+2 1.927525-2 3.434771+2 2.162719-2 2.322935+2 2.454709-2 1.499953+2 2.818383-2 9.234972+1 3.235937-2 5.642112+1 3.758374-2 3.282167+1 4.365158-2 1.895199+1 5.188000-2 9.978232+0 6.309573-2 4.783851+0 8.810489-2 1.348670+0 1.288250-1 3.182795-1 1.531088-1 1.661292-1 1.819701-1 8.749484-2 2.018366-1 5.981129-2 2.511886-1 2.740152-2 2.722701-1 2.044698-2 3.019952-1 1.426116-2 3.349654-1 1.001607-2 3.672823-1 7.361416-3 4.027170-1 5.446848-3 4.415705-1 4.060178-3 4.841724-1 3.052578-3 5.308844-1 2.313310-3 5.754399-1 1.827207-3 6.309573-1 1.405909-3 6.918310-1 1.090102-3 7.585776-1 8.519280-4 8.317638-1 6.705054-4 9.549926-1 4.728154-4 1.000000+0 4.228765-4 1.047129+0 3.807153-4 1.096478+0 3.449968-4 1.161449+0 3.073778-4 1.230269+0 2.757251-4 1.333521+0 2.383715-4 1.496236+0 1.954288-4 1.840772+0 1.355500-4 2.065380+0 1.113622-4 2.371374+0 8.868692-5 2.722701+0 7.115735-5 3.126079+0 5.750425-5 3.630781+0 4.600679-5 4.216965+0 3.707611-5 4.954502+0 2.960604-5 5.888437+0 2.344541-5 7.079458+0 1.843234-5 8.609938+0 1.439010-5 1.071519+1 1.101223-5 1.348963+1 8.381950-6 1.717908+1 6.346206-6 2.238721+1 4.718110-6 2.917427+1 3.529619-6 4.120975+1 2.437627-6 6.095369+1 1.615622-6 9.660509+1 1.003707-6 1.840772+2 5.199848-7 3.672823+2 2.587540-7 1.462177+3 6.463643-8 1.000000+5 9.43800-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.032100-4 3.261600-4 1.000000+5 3.261600-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.032100-4 9.302500-8 1.000000+5 9.302500-8 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.032100-4 3.769570-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 3.776300-4 6.208201+4 3.779000-4 6.278880+4 3.785000-4 6.381840+4 3.794000-4 6.493200+4 3.808000-4 6.625020+4 3.822000-4 6.730500+4 3.845918-4 6.862768+4 3.898000-4 7.071180+4 3.912000-4 7.146360+4 3.928000-4 7.268580+4 3.943000-4 7.430460+4 3.958000-4 7.650240+4 3.973000-4 7.937280+4 3.985000-4 8.221560+4 4.000000-4 8.651400+4 4.015000-4 9.171660+4 4.030000-4 9.790500+4 4.045000-4 1.051524+5 4.065000-4 1.166208+5 4.085000-4 1.303230+5 4.100000-4 1.421682+5 4.168694-4 2.141657+5 4.200000-4 2.561190+5 4.220000-4 2.853942+5 4.240000-4 3.163704+5 4.265795-4 3.583321+5 4.290000-4 3.995856+5 4.315191-4 4.440505+5 4.343000-4 4.948962+5 4.371600-4 5.487531+5 4.400000-4 6.036480+5 4.430000-4 6.629640+5 4.460000-4 7.229400+5 4.485000-4 7.731120+5 4.518559-4 8.400039+5 4.550000-4 9.016020+5 4.580000-4 9.586620+5 4.615000-4 1.022658+6 4.650000-4 1.083570+6 4.690000-4 1.149420+6 4.731513-4 1.213165+6 4.780000-4 1.282176+6 4.835000-4 1.353912+6 4.890000-4 1.418274+6 4.954502-4 1.484724+6 5.020000-4 1.541844+6 5.080000-4 1.585086+6 5.150000-4 1.626018+6 5.230000-4 1.661718+6 5.320000-4 1.691292+6 5.432503-4 1.715364+6 5.540000-4 1.727532+6 5.650000-4 1.729404+6 5.800000-4 1.719822+6 5.956621-4 1.698824+6 6.150000-4 1.662132+6 6.382635-4 1.607450+6 6.606934-4 1.548710+6 6.850000-4 1.481052+6 7.172700-4 1.389686+6 7.585776-4 1.274245+6 8.000000-4 1.163598+6 8.423100-4 1.058602+6 8.850000-4 9.616800+5 9.332543-4 8.614877+5 1.000000-3 7.413420+5 1.070000-3 6.358140+5 1.135011-3 5.523141+5 1.230269-3 4.521081+5 1.330000-3 3.701484+5 1.428894-3 3.056345+5 1.584893-3 2.297870+5 1.717908-3 1.826927+5 1.905461-3 1.349189+5 2.070000-3 1.051848+5 2.300000-3 7.604640+4 2.511886-3 5.757518+4 2.786121-3 4.122496+4 3.090295-3 2.927474+4 3.400000-3 2.121486+4 3.801894-3 1.444369+4 4.300000-3 9.364560+3 4.800000-3 6.306600+3 5.308844-3 4.362462+3 5.888437-3 2.967872+3 6.531306-3 2.006502+3 7.328245-3 1.289353+3 8.222426-3 8.224096+2 9.225714-3 5.209400+2 1.047129-2 3.127551+2 1.188502-2 1.862861+2 1.348963-2 1.101758+2 1.531087-2 6.471710+1 1.757924-2 3.593439+1 2.018366-2 1.980323+1 2.344229-2 1.029946+1 2.754229-2 5.053669+0 3.311311-2 2.221566+0 4.120975-2 8.299120-1 5.754399-2 1.827113-1 8.035261-2 4.010072-2 1.202264-1 6.532542-3 1.396368-1 3.356130-3 1.548817-1 2.128142-3 1.757924-1 1.228951-3 1.995262-1 7.150493-4 2.264644-1 4.192910-4 2.540973-1 2.598785-4 2.851018-1 1.622477-4 3.273407-1 9.293501-5 3.589219-1 6.450620-5 3.935501-1 4.509261-5 4.265795-1 3.318819-5 4.570882-1 2.566902-5 4.954502-1 1.915907-5 5.308844-1 1.501136-5 5.688529-1 1.185408-5 6.095369-1 9.420503-6 6.606935-1 7.259020-6 7.161434-1 5.634672-6 7.852356-1 4.248529-6 8.511380-1 3.340645-6 9.549926-1 2.392240-6 9.885531-1 2.175132-6 1.023293+0 1.991107-6 1.059254+0 1.833883-6 1.096478+0 1.698109-6 1.148154+0 1.543697-6 1.202264+0 1.413055-6 1.288250+0 1.248694-6 1.380384+0 1.111221-6 1.500000+0 9.711365-7 1.905461+0 6.374554-7 2.113489+0 5.347785-7 2.426610+0 4.264248-7 2.786121+0 3.425876-7 3.198895+0 2.772032-7 3.715352+0 2.220365-7 4.365158+0 1.762375-7 5.128614+0 1.409477-7 6.095369+0 1.117963-7 7.328245+0 8.801889-8 8.810489+0 6.980232-8 1.109175+1 5.273187-8 1.380384+1 4.073215-8 1.717908+1 3.167596-8 2.238721+1 2.355030-8 2.917427+1 1.761812-8 4.120975+1 1.216686-8 6.095369+1 8.064332-9 9.660509+1 5.009841-9 1.840772+2 2.595453-9 3.672823+2 1.291531-9 1.462177+3 3.22623-10 1.000000+5 4.71090-12 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 3.776300-4 2.037900-4 1.000000+5 2.037900-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.776300-4 3.642000-8 1.000000+5 3.642000-8 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 3.776300-4 1.738036-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 3.670400-4 9.072881+4 3.730000-4 9.278080+4 3.777000-4 9.477280+4 3.800000-4 9.623840+4 3.815000-4 9.768720+4 3.830000-4 9.971440+4 3.845918-4 1.026766+5 3.858000-4 1.055840+5 3.869000-4 1.087864+5 3.880000-4 1.125680+5 3.895000-4 1.187336+5 3.908000-4 1.250960+5 3.923000-4 1.337184+5 3.940000-4 1.452864+5 3.958000-4 1.598008+5 3.980000-4 1.809776+5 4.000000-4 2.037456+5 4.065000-4 3.016504+5 4.090000-4 3.484296+5 4.115000-4 3.994568+5 4.140000-4 4.540208+5 4.165000-4 5.115472+5 4.190000-4 5.715112+5 4.216965-4 6.385674+5 4.240000-4 6.975864+5 4.270000-4 7.765976+5 4.300000-4 8.576240+5 4.328000-4 9.346640+5 4.360000-4 1.023616+6 4.390000-4 1.106968+6 4.420000-4 1.189456+6 4.450000-4 1.270200+6 4.485000-4 1.361296+6 4.518559-4 1.444805+6 4.550000-4 1.519336+6 4.590900-4 1.610705+6 4.630000-4 1.692408+6 4.680000-4 1.789088+6 4.731513-4 1.880015+6 4.786301-4 1.967053+6 4.841724-4 2.044792+6 4.897788-4 2.112817+6 4.954502-4 2.170978+6 5.011872-4 2.219589+6 5.080000-4 2.265768+6 5.150000-4 2.302232+6 5.260000-4 2.342080+6 5.370318-4 2.364767+6 5.495409-4 2.372163+6 5.623413-4 2.363300+6 5.754399-4 2.341898+6 5.900000-4 2.306824+6 6.100000-4 2.246744+6 6.309573-4 2.172977+6 6.531306-4 2.088594+6 6.760830-4 1.997169+6 7.079458-4 1.869574+6 7.500000-4 1.704960+6 7.900000-4 1.557024+6 8.413951-4 1.383005+6 8.850000-4 1.250416+6 9.332543-4 1.117188+6 1.000000-3 9.579920+5 1.071519-3 8.164358+5 1.135011-3 7.101877+5 1.230269-3 5.796162+5 1.333521-3 4.697151+5 1.450000-3 3.744256+5 1.584893-3 2.920761+5 1.730000-3 2.269920+5 1.905461-3 1.705814+5 2.089296-3 1.289547+5 2.300000-3 9.563520+4 2.540973-3 6.961541+4 2.800000-3 5.072360+4 3.090295-3 3.651952+4 3.427678-3 2.566430+4 3.758374-3 1.864148+4 4.168694-3 1.292676+4 4.677351-3 8.535650+3 5.308844-3 5.355577+3 6.025596-3 3.327866+3 6.839116-3 2.048303+3 7.673615-3 1.307044+3 8.609938-3 8.278979+2 9.660509-3 5.207241+2 1.096478-2 3.102271+2 1.244515-2 1.833961+2 1.412538-2 1.075964+2 1.621810-2 5.965679+1 1.862087-2 3.281445+1 2.113489-2 1.883987+1 2.454709-2 9.699760+0 2.884032-2 4.707009+0 3.467369-2 2.042854+0 4.315191-2 7.515143-1 5.821032-2 1.894462-1 8.128305-2 4.057568-2 1.188502-1 7.128776-3 1.364583-1 3.812821-3 1.531088-1 2.279648-3 1.862087-1 9.635089-4 2.065380-1 6.148807-4 2.290868-1 3.955247-4 2.511886-1 2.690328-4 2.754229-1 1.842657-4 3.019952-1 1.271255-4 3.311800-1 8.831867-5 3.589219-1 6.460796-5 3.890451-1 4.757414-5 4.168694-1 3.683813-5 4.415705-1 2.993834-5 4.786301-1 2.258781-5 5.495409-1 1.408055-5 5.956621-1 1.075536-5 6.382635-1 8.588949-6 6.839117-1 6.904876-6 7.244360-1 5.790673-6 7.682800-1 4.868779-6 8.128305-1 4.148802-6 8.611500-1 3.548753-6 9.015711-1 3.154194-6 9.440609-1 2.818441-6 9.885531-1 2.533808-6 1.047129+0 2.236664-6 1.122018+0 1.941280-6 1.202264+0 1.696903-6 1.318257+0 1.429920-6 1.798871+0 8.239198-7 2.041738+0 6.631939-7 2.344229+0 5.277799-7 2.691535+0 4.232475-7 3.090295+0 3.418804-7 3.589219+0 2.733658-7 4.168694+0 2.201830-7 4.897788+0 1.757263-7 5.821032+0 1.390815-7 6.918310+0 1.109252-7 8.317638+0 8.777269-8 1.011579+1 6.898286-8 1.244515+1 5.382796-8 1.603245+1 4.010380-8 2.137962+1 2.900625-8 2.851018+1 2.114229-8 4.000000+1 1.469900-8 5.821032+1 9.903217-9 9.225714+1 6.147702-9 1.757924+2 3.183166-9 3.507519+2 1.583452-9 1.396368+3 3.95441-10 1.000000+5 5.51390-12 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 3.670400-4 2.044000-4 1.000000+5 2.044000-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.670400-4 1.123000-7 1.000000+5 1.123000-7 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.670400-4 1.625277-4 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.051700-4 5.188311+4 4.216965-4 4.206710+4 4.466836-4 4.033927+4 5.400000-4 3.416100+4 5.821032-4 3.181111+4 6.382635-4 2.890107+4 7.300000-4 2.493860+4 8.035261-4 2.228066+4 9.332543-4 1.849690+4 1.047129-3 1.591582+4 1.216186-3 1.298945+4 1.412538-3 1.051035+4 1.650000-3 8.379360+3 1.949845-3 6.525214+3 2.344229-3 4.914929+3 2.818383-3 3.677534+3 3.467369-3 2.632672+3 4.216965-3 1.904301+3 5.069907-3 1.393787+3 6.165950-3 9.922855+2 7.413102-3 7.151092+2 8.912509-3 5.116624+2 1.083927-2 3.556969+2 1.303167-2 2.507531+2 1.566751-2 1.754841+2 1.883649-2 1.219048+2 2.264644-2 8.405671+1 2.722701-2 5.752099+1 3.235937-2 4.002138+1 3.890451-2 2.697250+1 4.677351-2 1.803453+1 5.623413-2 1.196415+1 6.760830-2 7.875846+0 8.222426-2 5.009482+0 1.000000-1 3.162020+0 1.288250-1 1.726304+0 1.603245-1 1.017903+0 2.570396-1 3.229961-1 3.198895-1 1.909658-1 3.845918-1 1.235476-1 4.518559-1 8.498272-2 5.188000-1 6.206467-2 6.025596-1 4.451328-2 6.918310-1 3.298680-2 7.943282-1 2.462293-2 9.015711-1 1.894567-2 1.011579+0 1.504038-2 1.216186+0 1.048903-2 1.364583+0 8.431536-3 1.531087+0 6.822162-3 1.737801+0 5.446569-3 1.972423+0 4.379442-3 2.264644+0 3.478382-3 2.600160+0 2.784198-3 3.000000+0 2.228200-3 3.467369+0 1.791885-3 4.027170+0 1.440941-3 4.731513+0 1.148119-3 5.623413+0 9.073192-4 6.683439+0 7.225904-4 8.035261+0 5.709893-4 9.660509+0 4.544952-4 1.174898+1 3.589958-4 1.428894+1 2.853565-4 1.737801+1 2.279831-4 2.238721+1 1.717066-4 2.951209+1 1.268612-4 4.168694+1 8.763539-5 6.165950+1 5.809823-5 9.772372+1 3.609930-5 1.862087+2 1.870465-5 3.715352+2 9.308427-6 1.479108+3 2.325319-6 1.000000+5 3.434800-8 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.051700-4 2.163700-4 1.000000+5 2.163700-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.051700-4 7.484200-9 1.000000+5 7.484200-9 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.051700-4 8.879252-5 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.458900-4 1.559532+5 2.540973-4 1.446679+5 2.580000-4 1.389218+5 2.625000-4 1.317084+5 2.700000-4 1.195286+5 2.800000-4 1.051932+5 3.030000-4 8.169040+4 3.235937-4 6.743866+4 3.404800-4 5.846049+4 3.550000-4 5.231800+4 3.672823-4 4.807544+4 3.801894-4 4.437627+4 3.935501-4 4.118789+4 4.120975-4 3.756130+4 4.315191-4 3.448492+4 4.518559-4 3.185120+4 4.731513-4 2.960344+4 4.954502-4 2.769432+4 5.230000-4 2.580360+4 5.559043-4 2.400585+4 6.025596-4 2.199895+4 6.606934-4 2.007328+4 9.772372-4 1.399912+4 1.122018-3 1.224000+4 1.273503-3 1.075072+4 1.462177-3 9.259629+3 1.659587-3 8.013688+3 1.900000-3 6.814400+3 2.162719-3 5.792057+3 2.454709-3 4.905509+3 2.800000-3 4.098220+3 3.162278-3 3.447118+3 3.589219-3 2.859202+3 4.073803-3 2.354422+3 4.623810-3 1.924537+3 5.248075-3 1.561507+3 5.956621-3 1.257707+3 6.760830-3 1.005705+3 7.673615-3 7.983054+2 8.709636-3 6.292493+2 9.885531-3 4.925697+2 1.122018-2 3.829007+2 1.273503-2 2.956083+2 1.445440-2 2.266714+2 1.659587-2 1.683685+2 1.905461-2 1.240850+2 2.187762-2 9.074337+1 2.511886-2 6.586337+1 2.884032-2 4.746018+1 3.311311-2 3.395913+1 3.845918-2 2.345325+1 4.466836-2 1.607809+1 5.248075-2 1.062523+1 6.237348-2 6.762550+0 7.498942-2 4.142839+0 9.332543-2 2.295220+0 1.188502-1 1.187211+0 2.041738-1 2.679258-1 2.540973-1 1.477315-1 3.054921-1 9.012094-2 3.589219-1 5.889814-2 4.120975-1 4.119124-2 4.731513-1 2.903019-2 5.370318-1 2.122086-2 6.025596-1 1.606791-2 6.760830-1 1.225099-2 7.585776-1 9.409607-3 8.609938-1 7.090951-3 9.332543-1 5.958015-3 1.011579+0 5.041994-3 1.135011+0 4.008405-3 1.258925+0 3.281275-3 1.412538+0 2.648792-3 1.640590+0 2.022678-3 1.883649+0 1.589186-3 2.137962+0 1.283060-3 2.454709+0 1.023738-3 2.818383+0 8.229972-4 3.235937+0 6.663224-4 3.758374+0 5.340191-4 4.415704+0 4.241079-4 5.188000+0 3.393539-4 6.165950+0 2.692980-4 7.413102+0 2.121256-4 8.912509+0 1.682989-4 1.122018+1 1.272081-4 1.396368+1 9.829833-5 1.737801+1 7.647140-5 2.238721+1 5.759708-5 2.917427+1 4.308805-5 4.120975+1 2.975737-5 6.095369+1 1.972308-5 9.660509+1 1.225241-5 1.862087+2 6.274053-6 3.715352+2 3.122348-6 1.479108+3 7.800137-7 1.000000+5 1.152100-8 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.458900-4 1.827400-4 1.000000+5 1.827400-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.458900-4 1.205700-8 1.000000+5 1.205700-8 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.458900-4 6.313794-5 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 1.940700-4 3.771890+5 2.041738-4 3.516425+5 2.120000-4 3.349912+5 2.187762-4 3.189851+5 2.270000-4 2.996792+5 2.380000-4 2.792640+5 2.660725-4 2.407534+5 2.800000-4 2.262652+5 3.019952-4 2.084017+5 4.415704-4 1.410760+5 5.069907-4 1.216367+5 5.800000-4 1.044880+5 6.531306-4 9.077642+4 7.500000-4 7.644840+4 8.511380-4 6.484030+4 9.772372-4 5.376626+4 1.135011-3 4.351793+4 1.318257-3 3.492504+4 1.513561-3 2.831083+4 1.737801-3 2.280610+4 2.018366-3 1.791661+4 2.344229-3 1.397421+4 2.722701-3 1.081934+4 3.126079-3 8.485535+3 3.548134-3 6.751330+3 4.027170-3 5.339742+3 4.570882-3 4.197531+3 5.248075-3 3.205176+3 6.025596-3 2.428024+3 6.918310-3 1.825555+3 7.943282-3 1.361501+3 9.120108-3 1.007868+3 1.047129-2 7.400651+2 1.202264-2 5.392046+2 1.380384-2 3.898048+2 1.584893-2 2.796019+2 1.819701-2 1.989934+2 2.089296-2 1.405249+2 2.398833-2 9.846666+1 2.754229-2 6.848043+1 3.162278-2 4.727778+1 3.630781-2 3.240830+1 4.216965-2 2.136182+1 4.897788-2 1.397404+1 5.754399-2 8.779918+0 6.760830-2 5.475607+0 8.128305-2 3.167434+0 1.000000-1 1.697199+0 1.949845-1 2.219965-1 2.398833-1 1.188121-1 2.818383-1 7.357358-2 3.235937-1 4.911442-2 3.672823-1 3.413203-2 4.168694-1 2.389139-2 4.677351-1 1.739710-2 5.188000-1 1.316294-2 5.754399-1 1.002622-2 6.456542-1 7.465442-3 7.161434-1 5.765260-3 7.943282-1 4.483576-3 8.709636-1 3.592907-3 9.332543-1 3.063489-3 9.885531-1 2.698972-3 1.071519+0 2.282384-3 1.161449+0 1.943659-3 1.258925+0 1.665517-3 1.396368+0 1.377111-3 1.737801+0 9.329102-4 1.972423+0 7.496130-4 2.238721+0 6.067427-4 2.570396+0 4.853509-4 2.951209+0 3.911060-4 3.427678+0 3.119836-4 4.000000+0 2.490400-4 4.677351+0 1.996829-4 5.559043+0 1.577151-4 6.606934+0 1.255423-4 8.035261+0 9.773226-5 9.660509+0 7.779304-5 1.174898+1 6.144608-5 1.428894+1 4.884198-5 1.737801+1 3.902116-5 2.238721+1 2.938953-5 2.917427+1 2.198653-5 4.120975+1 1.518399-5 6.165950+1 9.944160-6 9.772372+1 6.178868-6 1.883649+2 3.164317-6 3.758374+2 1.574856-6 1.496236+3 3.934584-7 1.000000+5 5.879100-9 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 1.940700-4 1.424000-4 1.000000+5 1.424000-4 1 91000 7 7 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.940700-4 5.807500-9 1.000000+5 5.807500-9 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 1.940700-4 5.166419-5 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.060800-4 9.637804+5 1.062000-4 1.000972+6 1.066000-4 1.103604+6 1.071000-4 1.238396+6 1.075000-4 1.349664+6 1.080000-4 1.491876+6 1.084000-4 1.606212+6 1.088000-4 1.720072+6 1.092000-4 1.832820+6 1.096478-4 1.956440+6 1.101000-4 2.076720+6 1.105000-4 2.178324+6 1.109175-4 2.278483+6 1.115000-4 2.407384+6 1.120000-4 2.506352+6 1.126000-4 2.610188+6 1.131000-4 2.683704+6 1.137000-4 2.756236+6 1.143000-4 2.811756+6 1.150000-4 2.856256+6 1.157000-4 2.881268+6 1.165000-4 2.888128+6 1.173000-4 2.875976+6 1.180000-4 2.852792+6 1.191000-4 2.798184+6 1.203000-4 2.721236+6 1.218000-4 2.611040+6 1.240000-4 2.440112+6 1.288250-4 2.086689+6 1.350000-4 1.710796+6 1.400000-4 1.456056+6 1.445440-4 1.254897+6 1.500000-4 1.048148+6 1.720000-4 5.281880+5 1.862087-4 3.575642+5 1.972423-4 2.710924+5 2.041738-4 2.307853+5 2.113489-4 1.977137+5 2.170000-4 1.766684+5 2.220000-4 1.610732+5 2.280000-4 1.454876+5 2.330000-4 1.346880+5 2.392000-4 1.235849+5 2.450000-4 1.151056+5 2.511886-4 1.077273+5 2.570396-4 1.020609+5 2.635000-4 9.701920+4 2.691535-4 9.347396+4 2.754229-4 9.032418+4 2.830000-4 8.741880+4 2.900900-4 8.542324+4 2.985383-4 8.376815+4 3.054921-4 8.287239+4 3.162278-4 8.210948+4 3.280000-4 8.187680+4 3.467369-4 8.223324+4 4.168694-4 8.507235+4 4.466836-4 8.560398+4 4.786301-4 8.547507+4 5.128614-4 8.468426+4 5.432503-4 8.349172+4 5.800000-4 8.156400+4 6.200000-4 7.908200+4 6.606934-4 7.627549+4 7.079458-4 7.280404+4 7.586200-4 6.903219+4 8.128305-4 6.502681+4 8.810489-4 6.017675+4 9.500000-4 5.557640+4 1.035142-3 5.035742+4 1.122018-3 4.558115+4 1.230269-3 4.035075+4 1.333521-3 3.601832+4 1.462177-3 3.141755+4 1.621810-3 2.670093+4 1.800000-3 2.246468+4 1.972423-3 1.916604+4 2.162719-3 1.622832+4 2.371374-3 1.365308+4 2.600160-3 1.141321+4 2.884032-3 9.258076+3 3.198895-3 7.450591+3 3.548134-3 5.948208+3 3.935501-3 4.712026+3 4.365158-3 3.703845+3 4.841724-3 2.889307+3 5.370318-3 2.237137+3 5.956621-3 1.719703+3 6.606934-3 1.312559+3 7.328245-3 9.948854+2 8.128305-3 7.490340+2 9.120108-3 5.422585+2 1.023293-2 3.894721+2 1.148154-2 2.775788+2 1.288250-2 1.963641+2 1.445440-2 1.379165+2 1.621810-2 9.619700+1 1.840772-2 6.422710+1 2.089296-2 4.255150+1 2.371374-2 2.797899+1 2.722701-2 1.756965+1 3.126079-2 1.094910+1 3.630781-2 6.507860+0 4.265795-2 3.686725+0 5.069907-2 1.989651+0 6.165950-2 9.805837-1 7.943282-2 3.890573-1 1.348963-1 5.577925-2 1.640590-1 2.739026-2 1.949845-1 1.472783-2 2.290868-1 8.312490-3 2.630268-1 5.127125-3 3.000000-1 3.260383-3 3.388442-1 2.160091-3 3.801894-1 1.474213-3 4.315191-1 9.762855-4 4.731513-1 7.285690-4 5.069907-1 5.881995-4 5.559043-1 4.460967-4 6.531306-1 2.782433-4 7.161434-1 2.137515-4 7.762471-1 1.707105-4 8.609938-1 1.284537-4 9.120108-1 1.104542-4 9.549926-1 9.847544-5 1.000000+0 8.835600-5 1.059254+0 7.785584-5 1.122018+0 6.910275-5 1.202264+0 6.037061-5 1.303167+0 5.201204-5 1.531087+0 3.920369-5 1.819701+0 2.889655-5 2.044000+0 2.368000-5 2.344229+0 1.888013-5 2.691535+0 1.514079-5 3.090295+0 1.223007-5 3.589219+0 9.779041-6 4.168694+0 7.876493-6 4.897788+0 6.286158-6 5.821032+0 4.975465-6 6.918310+0 3.968274-6 8.317638+0 3.139901-6 1.011579+1 2.467694-6 1.244515+1 1.925573-6 1.603245+1 1.434665-6 2.137962+1 1.037689-6 2.851018+1 7.563149-7 4.027170+1 5.220509-7 5.888437+1 3.500423-7 9.332543+1 2.173386-7 1.778279+2 1.125493-7 3.548134+2 5.599308-8 1.412538+3 1.398428-8 1.000000+5 1.97250-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.060800-4 1.060800-4 1.000000+5 1.060800-4 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.060800-4 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 9.840000-5 1.598503+6 9.849000-5 1.650084+6 9.890000-5 1.837998+6 9.930000-5 2.023518+6 9.960000-5 2.163882+6 1.000000-4 2.350212+6 1.003700-4 2.521541+6 1.007000-4 2.672706+6 1.011579-4 2.877715+6 1.016500-4 3.090384+6 1.020000-4 3.235686+6 1.025000-4 3.433422+6 1.030000-4 3.617364+6 1.035142-4 3.790298+6 1.040000-4 3.937164+6 1.045000-4 4.070448+6 1.050700-4 4.199542+6 1.055000-4 4.280694+6 1.060000-4 4.357710+6 1.065000-4 4.416624+6 1.072000-4 4.470402+6 1.080000-4 4.494930+6 1.087000-4 4.488036+6 1.095000-4 4.453464+6 1.105000-4 4.378572+6 1.115000-4 4.278024+6 1.128000-4 4.123158+6 1.143000-4 3.927438+6 1.170000-4 3.569730+6 1.230269-4 2.869704+6 1.288250-4 2.337715+6 1.333521-4 1.992908+6 1.381800-4 1.679084+6 1.445440-4 1.339945+6 1.603245-4 7.893587+5 1.690000-4 6.067860+5 1.778279-4 4.739849+5 1.850000-4 3.938352+5 1.905461-4 3.447251+5 1.950000-4 3.118608+5 2.000000-4 2.808006+5 2.060000-4 2.503200+5 2.113489-4 2.283032+5 2.162719-4 2.115878+5 2.213095-4 1.974267+5 2.264644-4 1.855214+5 2.317395-4 1.755987+5 2.371374-4 1.674109+5 2.430000-4 1.603710+5 2.483133-4 1.553553+5 2.540973-4 1.510960+5 2.600160-4 1.477903+5 2.660725-4 1.452935+5 2.743100-4 1.430212+5 2.830000-4 1.416846+5 2.917427-4 1.411402+5 3.054921-4 1.413679+5 3.273407-4 1.430954+5 3.672823-4 1.465442+5 3.935501-4 1.478275+5 4.216965-4 1.480940+5 4.500000-4 1.472166+5 4.786301-4 1.453724+5 5.069907-4 1.428423+5 5.400000-4 1.391904+5 5.800000-4 1.340628+5 6.237348-4 1.280377+5 6.700000-4 1.214034+5 7.244360-4 1.136366+5 7.800000-4 1.059798+5 8.413951-4 9.795330+4 9.120108-4 8.945682+4 1.000000-3 7.992840+4 1.083927-3 7.191875+4 1.190000-3 6.314520+4 1.303167-3 5.519621+4 1.412538-3 4.869911+4 1.548817-3 4.192689+4 1.730000-3 3.470550+4 1.927525-3 2.858507+4 2.150000-3 2.328720+4 2.400000-3 1.877364+4 2.660725-3 1.521472+4 2.951209-3 1.222327+4 3.273407-3 9.736640+3 3.641000-3 7.650552+3 4.027170-3 6.044126+3 4.466836-3 4.706497+3 4.954502-3 3.637148+3 5.495409-3 2.789512+3 6.095369-3 2.123847+3 6.760830-3 1.605626+3 7.498942-3 1.205299+3 8.413951-3 8.694216+2 9.332543-3 6.434873+2 1.035142-2 4.731595+2 1.161449-2 3.337099+2 1.303167-2 2.335627+2 1.462177-2 1.622611+2 1.640590-2 1.119191+2 1.840772-2 7.666155+1 2.089296-2 5.017173+1 2.371374-2 3.257468+1 2.691535-2 2.099470+1 3.090295-2 1.290120+1 3.548134-2 7.868900+0 4.073803-2 4.766329+0 4.731513-2 2.746909+0 5.623413-2 1.443192+0 6.998420-2 6.332163-1 1.216186-1 7.790821-2 1.479108-1 3.732931-2 1.737801-1 2.049936-2 2.018366-1 1.183689-2 2.290868-1 7.487056-3 2.570396-1 4.969474-3 2.884032-1 3.322306-3 3.198895-1 2.328544-3 3.548134-1 1.643959-3 3.890451-1 1.214432-3 4.265795-1 9.028451-4 4.623810-1 7.007736-4 5.011872-1 5.474743-4 5.432503-1 4.311799-4 5.956621-1 3.306443-4 6.606935-1 2.467503-4 7.244360-1 1.916140-4 7.852356-1 1.545716-4 8.609938-1 1.214064-4 9.120108-1 1.050571-4 9.660509-1 9.156495-5 1.011579+0 8.253927-5 1.071519+0 7.299682-5 1.148154+0 6.347355-5 1.230269+0 5.557929-5 1.333521+0 4.793210-5 1.640590+0 3.321300-5 1.883649+0 2.607543-5 2.113489+0 2.145377-5 2.426610+0 1.710652-5 2.786121+0 1.374359-5 3.198895+0 1.112084-5 3.715352+0 8.907777-6 4.365158+0 7.070500-6 5.128614+0 5.654673-6 6.095369+0 4.484985-6 7.328245+0 3.531185-6 8.810489+0 2.800347-6 1.109175+1 2.115553-6 1.380384+1 1.634128-6 1.717908+1 1.270812-6 2.238721+1 9.447863-7 2.917427+1 7.067976-7 4.120975+1 4.881192-7 6.095369+1 3.235272-7 9.549926+1 2.033814-7 1.819701+2 1.053485-7 3.630781+2 5.241917-8 1.445440+3 1.309278-8 1.000000+5 1.88990-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 9.840000-5 9.840000-5 1.000000+5 9.840000-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 9.840000-5 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 7.640000-6 7.348782+4 7.673615-6 7.427974+4 7.762471-6 7.553516+4 7.950000-6 7.869798+4 8.128305-6 8.218065+4 8.350000-6 8.712516+4 8.609938-6 9.378219+4 8.912509-6 1.025942+5 9.225714-6 1.129071+5 9.700000-6 1.307006+5 1.202264-5 2.508486+5 1.310000-5 3.233923+5 1.428894-5 4.150872+5 1.548817-5 5.196333+5 1.678804-5 6.461036+5 1.800000-5 7.750896+5 1.905461-5 8.943495+5 2.018366-5 1.027849+6 2.113489-5 1.143049+6 2.230000-5 1.284317+6 2.344229-5 1.420367+6 2.454709-5 1.547255+6 2.570396-5 1.673013+6 2.660725-5 1.764654+6 2.770000-5 1.866583+6 2.900000-5 1.974669+6 3.019952-5 2.062225+6 3.162278-5 2.151756+6 3.311311-5 2.229643+6 3.467369-5 2.295711+6 3.672823-5 2.362999+6 3.890451-5 2.413040+6 4.073803-5 2.439081+6 4.300000-5 2.452612+6 4.518559-5 2.446694+6 4.722300-5 2.423594+6 4.900000-5 2.390092+6 5.101000-5 2.338827+6 5.308844-5 2.272417+6 5.500000-5 2.200860+6 5.730000-5 2.104723+6 5.956621-5 2.003201+6 6.165950-5 1.905997+6 6.400000-5 1.795612+6 6.683439-5 1.662815+6 6.918310-5 1.555863+6 7.161434-5 1.448677+6 7.413102-5 1.341752+6 7.673615-5 1.236218+6 7.943282-5 1.132919+6 8.222426-5 1.031918+6 8.511380-5 9.336453+5 8.810489-5 8.391645+5 9.120108-5 7.490974+5 9.440609-5 6.636588+5 9.772372-5 5.835526+5 1.011579-4 5.094493+5 1.040000-4 4.543406+5 1.071519-4 3.992462+5 1.109175-4 3.412455+5 1.148154-4 2.892974+5 1.180000-4 2.521440+5 1.216186-4 2.150660+5 1.250000-4 1.849037+5 1.280000-4 1.613469+5 1.315000-4 1.371926+5 1.350000-4 1.162406+5 1.380384-4 1.003945+5 1.415000-4 8.468830+4 1.445440-4 7.268515+4 1.479108-4 6.115033+4 1.510000-4 5.201127+4 1.540000-4 4.431249+4 1.570000-4 3.763441+4 1.600000-4 3.185366+4 1.627000-4 2.733412+4 1.660000-4 2.259395+4 1.690000-4 1.894843+4 1.720000-4 1.585620+4 1.760000-4 1.247726+4 1.835000-4 8.019516+3 1.865000-4 6.795858+3 1.885000-4 6.127252+3 1.905461-4 5.552720+3 1.922000-4 5.162581+3 1.936900-4 4.863707+3 1.950000-4 4.639466+3 1.965000-4 4.424186+3 1.980000-4 4.250375+3 1.995262-4 4.113185+3 2.010000-4 4.016058+3 2.025000-4 3.950366+3 2.040000-4 3.915764+3 2.055000-4 3.909978+3 2.070000-4 3.930901+3 2.085000-4 3.976535+3 2.100000-4 4.044986+3 2.118000-4 4.154778+3 2.140000-4 4.326044+3 2.162719-4 4.541033+3 2.188000-4 4.820229+3 2.214300-4 5.149394+3 2.290868-4 6.278214+3 2.317395-4 6.698867+3 2.344229-4 7.133011+3 2.371374-4 7.579892+3 2.426610-4 8.508388+3 2.483133-4 9.476573+3 2.540973-4 1.047544+4 2.600160-4 1.149495+4 2.660725-4 1.252428+4 2.722701-4 1.355210+4 2.786121-4 1.456686+4 2.851018-4 1.555705+4 2.917427-4 1.651157+4 2.985383-4 1.741990+4 3.054921-4 1.825625+4 3.126079-4 1.902287+4 3.198895-4 1.971783+4 3.273407-4 2.033659+4 3.376700-4 2.104558+4 3.467369-4 2.153404+4 3.589219-4 2.201167+4 3.715352-4 2.231655+4 3.845918-4 2.246171+4 4.073803-4 2.245589+4 4.216965-4 2.236468+4 4.365158-4 2.215923+4 4.518559-4 2.185016+4 4.731513-4 2.129727+4 4.954502-4 2.061062+4 5.188000-4 1.983945+4 5.432503-4 1.898845+4 5.754399-4 1.783659+4 6.095369-4 1.662485+4 6.456542-4 1.538855+4 6.839116-4 1.414741+4 7.244360-4 1.292406+4 7.673615-4 1.173663+4 8.222426-4 1.037939+4 8.810489-4 9.112254+3 9.440609-4 7.945421+3 1.011579-3 6.883365+3 1.096478-3 5.777854+3 1.188502-3 4.811668+3 1.288250-3 3.977112+3 1.396368-3 3.264096+3 1.531087-3 2.583661+3 1.659587-3 2.092118+3 1.819701-3 1.631690+3 2.018366-3 1.223660+3 2.213095-3 9.422897+2 2.398833-3 7.447618+2 2.570396-3 6.048774+2 2.786121-3 4.713546+2 3.054921-3 3.519155+2 3.349654-3 2.611548+2 3.715352-3 1.853075+2 4.120975-3 1.305038+2 4.570882-3 9.130783+1 5.069907-3 6.343486+1 5.623413-3 4.375163+1 6.237348-3 2.995934+1 6.918310-3 2.037156+1 7.673615-3 1.375950+1 8.609938-3 8.830588+0 9.660509-3 5.624535+0 1.083927-2 3.556929+0 1.216186-2 2.233943+0 1.380384-2 1.328972+0 1.566751-2 7.844737-1 1.778279-2 4.595495-1 2.041738-2 2.543906-1 2.344229-2 1.397772-1 2.722701-2 7.252634-2 3.235937-2 3.374826-2 3.935501-2 1.406573-2 5.069907-2 4.492012-3 8.709636-2 3.886444-4 1.096478-1 1.380707-4 1.303167-1 6.385578-5 1.479108-1 3.650422-5 1.659587-1 2.212497-5 1.883649-1 1.285065-5 2.187762-1 6.818404-6 2.454709-1 4.215478-6 2.754229-1 2.625086-6 3.054921-1 1.725854-6 3.388442-1 1.142871-6 3.758374-1 7.626848-7 4.168694-1 5.130970-7 4.570882-1 3.634120-7 4.954502-1 2.705365-7 5.370318-1 2.030154-7 5.821032-1 1.535080-7 6.309573-1 1.169588-7 6.839117-1 8.980340-8 7.413102-1 6.949735-8 8.035261-1 5.417035-8 8.413951-1 4.683129-8 8.810489-1 4.071842-8 9.225714-1 3.564458-8 9.549926-1 3.242359-8 9.885531-1 2.963788-8 1.023293+0 2.723609-8 1.059254+0 2.515207-8 1.109175+0 2.277119-8 1.161449+0 2.075207-8 1.230269+0 1.861756-8 1.318257+0 1.646203-8 1.513561+0 1.304490-8 1.883649+0 8.873081-9 2.089296+0 7.439423-9 2.398833+0 5.928202-9 2.754229+0 4.759845-9 3.162278+0 3.849221-9 3.672823+0 3.081415-9 4.315191+0 2.444473-9 5.069907+0 1.953984-9 6.025596+0 1.548955-9 7.244360+0 1.218961-9 8.709636+0 9.66259-10 1.083927+1 7.39779-10 1.364583+1 5.63338-10 1.717908+1 4.32271-10 2.238721+1 3.21379-10 2.917427+1 2.40423-10 4.120975+1 1.66032-10 6.095369+1 1.10056-10 9.549926+1 6.91803-11 1.819701+2 3.58351-11 3.630781+2 1.78307-11 1.445440+3 4.45377-12 1.000000+5 6.42870-14 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 7.640000-6 7.640000-6 1.000000+5 7.640000-6 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 7.640000-6 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 6.800000-6 1.221284+5 7.100000-6 1.304163+5 7.328245-6 1.380318+5 7.600000-6 1.487147+5 7.852356-6 1.601116+5 8.200000-6 1.778964+5 8.709636-6 2.079163+5 1.100000-5 3.903393+5 1.216186-5 5.079072+5 1.333521-5 6.422055+5 1.462177-5 8.066337+5 1.603245-5 1.006169+6 1.737801-5 1.212785+6 1.862087-5 1.414238+6 1.980000-5 1.611078+6 2.089296-5 1.794950+6 2.190000-5 1.961811+6 2.300000-5 2.137594+6 2.400000-5 2.289514+6 2.511886-5 2.448410+6 2.630268-5 2.600890+6 2.754229-5 2.741579+6 2.884032-5 2.868976+6 3.019952-5 2.982051+6 3.162278-5 3.079017+6 3.326000-5 3.166369+6 3.507519-5 3.239227+6 3.715352-5 3.295981+6 3.935501-5 3.327474+6 4.168694-5 3.333635+6 4.365158-5 3.316876+6 4.570882-5 3.277084+6 4.786301-5 3.213444+6 4.954502-5 3.149127+6 5.150000-5 3.058979+6 5.370318-5 2.941123+6 5.580000-5 2.817767+6 5.800000-5 2.680178+6 6.025596-5 2.533247+6 6.300000-5 2.353526+6 6.580000-5 2.173834+6 6.839116-5 2.012026+6 7.150000-5 1.827033+6 7.413102-5 1.679547+6 7.673615-5 1.540811+6 7.943282-5 1.405216+6 8.222426-5 1.274228+6 8.511380-5 1.147951+6 8.810489-5 1.026656+6 9.150000-5 9.013154+5 9.440609-5 8.041255+5 9.772372-5 7.035318+5 1.011579-4 6.108170+5 1.047129-4 5.264168+5 1.082000-4 4.536136+5 1.110000-4 4.016901+5 1.148154-4 3.396048+5 1.180000-4 2.944876+5 1.210600-4 2.561185+5 1.244515-4 2.188069+5 1.280000-4 1.850382+5 1.307000-4 1.624804+5 1.340000-4 1.381466+5 1.365000-4 1.218894+5 1.396368-4 1.038986+5 1.428894-4 8.774365+4 1.450000-4 7.846145+4 1.480000-4 6.673080+4 1.510000-4 5.656654+4 1.540000-4 4.779921+4 1.570000-4 4.025507+4 1.600000-4 3.377997+4 1.627000-4 2.876476+4 1.660000-4 2.356554+4 1.698244-4 1.865603+4 1.786400-4 1.094575+4 1.810000-4 9.568207+3 1.835000-4 8.367198+3 1.850800-4 7.732156+3 1.865000-4 7.236475+3 1.880000-4 6.784726+3 1.895000-4 6.401799+3 1.908000-4 6.121970+3 1.922000-4 5.871226+3 1.936900-4 5.658363+3 1.950000-4 5.514254+3 1.961000-4 5.422494+3 1.973000-4 5.351076+3 1.985000-4 5.307933+3 2.000000-4 5.291236+3 2.015000-4 5.312996+3 2.028000-4 5.360676+3 2.065380-4 5.571576+3 2.098200-4 5.791215+3 2.137962-4 6.100432+3 2.182000-4 6.498548+3 2.213095-4 6.815453+3 2.264644-4 7.407622+3 2.317395-4 8.102171+3 2.371374-4 8.908448+3 2.454709-4 1.034825+4 2.722701-4 1.655996+4 2.818383-4 1.927268+4 2.884032-4 2.122830+4 2.951209-4 2.326976+4 3.000000-4 2.475469+4 3.090295-4 2.597020+4 3.162278-4 2.681457+4 3.235937-4 2.756639+4 3.311311-4 2.822221+4 3.388442-4 2.878013+4 3.507519-4 2.943295+4 3.630781-4 2.986939+4 3.768700-4 3.011013+4 3.890451-4 3.014119+4 4.120975-4 2.992674+4 4.265795-4 2.964488+4 4.415704-4 2.922638+4 4.623810-4 2.848148+4 4.841724-4 2.755728+4 5.128614-4 2.622364+4 5.370318-4 2.505386+4 5.688529-4 2.348554+4 6.025596-4 2.184626+4 6.382635-4 2.018687+4 6.760830-4 1.852886+4 7.161434-4 1.689971+4 7.585776-4 1.532255+4 8.128305-4 1.352514+4 8.709636-4 1.185283+4 9.332543-4 1.031747+4 1.000000-3 8.923988+3 1.083927-3 7.477121+3 1.174898-3 6.215806+3 1.273503-3 5.128842+3 1.380384-3 4.202512+3 1.500000-3 3.400224+3 1.640590-3 2.687439+3 1.778279-3 2.160264+3 1.927525-3 1.725175+3 2.065380-3 1.414666+3 2.238721-3 1.115145+3 2.454709-3 8.435395+2 2.691535-3 6.338352+2 2.985383-3 4.559606+2 3.311311-3 3.254620+2 3.715352-3 2.219711+2 4.120975-3 1.561031+2 4.570882-3 1.089027+2 5.069907-3 7.539326+1 5.623413-3 5.181468+1 6.237348-3 3.535623+1 6.918310-3 2.395545+1 7.673615-3 1.612085+1 8.609938-3 1.030228+1 9.660509-3 6.533083+0 1.083927-2 4.112871+0 1.216186-2 2.571139+0 1.364583-2 1.596356+0 1.548817-2 9.377901-1 1.737801-2 5.742658-1 1.972423-2 3.324435-1 2.264644-2 1.817324-1 2.630268-2 9.370838-2 3.090295-2 4.555338-2 3.715352-2 1.981060-2 4.623810-2 7.306996-3 9.015711-2 3.406830-4 1.109175-1 1.323700-4 1.303167-1 6.375363-5 1.479108-1 3.615689-5 1.659587-1 2.177078-5 1.862087-1 1.320523-5 2.137962-1 7.310125-6 2.371374-1 4.723126-6 2.600160-1 3.223767-6 2.851018-1 2.215439-6 3.126079-1 1.533656-6 3.427678-1 1.069917-6 3.715352-1 7.859793-7 4.073803-1 5.566704-7 4.365158-1 4.318416-7 4.677351-1 3.371988-7 5.000000-1 2.674500-7 5.370318-1 2.111316-7 5.821032-1 1.630560-7 6.606935-1 1.092911-7 7.161434-1 8.524406-8 7.673615-1 6.930523-8 8.413951-1 5.299961-8 8.912509-1 4.513205-8 9.332543-1 3.992965-8 9.772372-1 3.555115-8 1.023293+0 3.188065-8 1.071519+0 2.879322-8 1.122018+0 2.616484-8 1.188502+0 2.338025-8 1.288250+0 2.015714-8 1.412538+0 1.714854-8 1.513561+0 1.523381-8 1.840772+0 1.078325-8 2.065380+0 8.858193-9 2.371374+0 7.054305-9 2.722701+0 5.660547-9 3.126079+0 4.574902-9 3.630781+0 3.660168-9 4.216965+0 2.949652-9 4.954502+0 2.355359-9 5.888437+0 1.865255-9 7.079458+0 1.466435-9 8.511380+0 1.161371-9 1.047129+1 9.00827-10 1.318257+1 6.85002-10 1.698244+1 5.11494-10 2.213095+1 3.80166-10 2.917427+1 2.80803-10 4.120975+1 1.93925-10 6.095369+1 1.28539-10 9.549926+1 8.08003-11 1.840772+2 4.13681-11 3.672823+2 2.05859-11 1.462177+3 5.14220-12 1.000000+5 7.50850-14 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 6.800000-6 6.800000-6 1.000000+5 6.800000-6 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 6.800000-6 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.001000-5 3.210400+5 5.128614-5 2.913262+5 5.400000-5 2.366360+5 5.580000-5 2.085180+5 5.754399-5 1.862571+5 5.900000-5 1.707842+5 6.070000-5 1.556260+5 6.237348-5 1.431871+5 6.400000-5 1.329884+5 6.606934-5 1.221582+5 6.839116-5 1.122275+5 7.079458-5 1.038188+5 7.328245-5 9.661380+4 7.673615-5 8.845815+4 8.035261-5 8.158339+4 8.500000-5 7.451120+4 9.015711-5 6.832674+4 9.549926-5 6.327849+4 1.011579-4 5.905795+4 1.071519-4 5.550747+4 1.150000-4 5.181620+4 1.500000-4 4.076240+4 1.862087-4 3.324063+4 2.089296-4 2.963969+4 2.400000-4 2.558540+4 2.818383-4 2.141654+4 3.200000-4 1.847418+4 3.845918-4 1.478535+4 4.466836-4 1.223897+4 5.308844-4 9.769727+3 6.309573-4 7.734796+3 7.500000-4 6.076840+3 9.015711-4 4.661604+3 1.083927-3 3.547683+3 1.318257-3 2.633991+3 1.603245-3 1.941964+3 2.065380-3 1.299044+3 2.630268-3 8.782704+2 3.349654-3 5.892166+2 4.168694-3 4.075841+2 5.128614-3 2.853108+2 6.237348-3 2.022009+2 7.585776-3 1.422272+2 8.810489-3 1.080498+2 1.059254-2 7.646397+1 1.303167-2 5.139580+1 1.603245-2 3.428058+1 2.018366-2 2.171408+1 2.454709-2 1.461959+1 2.917427-2 1.023879+1 3.427678-2 7.283585+0 4.073803-2 5.019332+0 4.897788-2 3.347879+0 5.888437-2 2.215583+0 7.079458-2 1.455500+0 8.413951-2 9.751035-1 1.035142-1 5.979258-1 1.333521-1 3.260897-1 1.659587-1 1.919827-1 2.570396-1 6.625805-2 3.198895-1 3.917641-2 3.845918-1 2.534516-2 4.518559-1 1.743354-2 5.188000-1 1.273200-2 6.025596-1 9.131492-3 6.918310-1 6.766992-3 7.943282-1 5.051285-3 9.015711-1 3.886925-3 1.011579+0 3.085573-3 1.216186+0 2.151823-3 1.364583+0 1.729738-3 1.531087+0 1.399561-3 1.737801+0 1.117365-3 1.972423+0 8.984602-4 2.264644+0 7.136210-4 2.600160+0 5.712042-4 3.000000+0 4.571300-4 3.467369+0 3.676061-4 4.027170+0 2.956063-4 4.731513+0 2.355457-4 5.623413+0 1.861388-4 6.683439+0 1.482448-4 8.128305+0 1.154558-4 9.772372+0 9.194259-5 1.188502+1 7.265015-5 1.445440+1 5.776958-5 1.757924+1 4.616703-5 2.264644+1 3.478163-5 2.951209+1 2.602650-5 4.216965+1 1.776069-5 6.237348+1 1.177715-5 9.885531+1 7.319075-6 1.905461+2 3.748740-6 3.801894+2 1.865910-6 1.513561+3 4.661941-7 1.000000+5 7.046700-9 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.001000-5 5.001000-5 1.000000+5 5.001000-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.001000-5 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.261000-5 6.839919+6 3.330000-5 6.546800+6 3.427678-5 6.123399+6 3.600000-5 5.418200+6 3.845918-5 4.558163+6 4.073803-5 3.892994+6 4.315191-5 3.302378+6 4.570882-5 2.783610+6 4.900000-5 2.248260+6 6.095369-5 1.132004+6 6.839116-5 7.939492+5 8.035261-5 4.883698+5 1.080000-4 2.017380+5 1.244515-4 1.328578+5 1.400000-4 9.455140+4 1.548817-4 7.108704+4 1.698244-4 5.517664+4 1.862087-4 4.312735+4 2.018366-4 3.500527+4 2.162719-4 2.945507+4 2.317395-4 2.495224+4 2.483133-4 2.129032+4 2.660725-4 1.829156+4 2.851018-4 1.582760+4 3.054921-4 1.379844+4 3.235937-4 1.238276+4 3.467369-4 1.095277+4 3.715352-4 9.753921+3 4.000000-4 8.679440+3 4.315191-4 7.754384+3 4.731513-4 6.823479+3 5.188000-4 6.049266+3 5.754399-4 5.320800+3 6.606934-4 4.519842+3 1.023293-3 2.741091+3 1.230269-3 2.205179+3 1.462177-3 1.785087+3 1.717908-3 1.454416+3 2.018366-3 1.175966+3 2.344229-3 9.585190+2 2.722701-3 7.755134+2 3.126079-3 6.333064+2 3.589219-3 5.135145+2 4.027170-3 4.285885+2 4.623810-3 3.419452+2 5.308844-3 2.707090+2 6.025596-3 2.169095+2 6.918310-3 1.690320+2 7.943282-3 1.306760+2 9.120108-3 1.001892+2 1.135011-2 6.508420+1 1.318257-2 4.809891+1 1.500000-2 3.678820+1 1.686000-2 2.866561+1 1.905461-2 2.187129+1 2.187762-2 1.599129+1 2.511886-2 1.160642+1 2.884032-2 8.363276+0 3.349654-2 5.818255+0 3.890451-2 4.016600+0 4.518559-2 2.752413+0 5.308844-2 1.818293+0 6.237348-2 1.192549+0 7.498942-2 7.303534-1 9.332543-2 4.045724-1 1.202264-1 2.024861-1 1.995262-1 5.023809-2 2.511886-1 2.683756-2 3.019952-1 1.636713-2 3.548134-1 1.069084-2 4.073803-1 7.472500-3 4.677351-1 5.263173-3 5.308844-1 3.844944-3 6.025596-1 2.830482-3 6.760830-1 2.157993-3 7.585776-1 1.657427-3 8.609938-1 1.249078-3 9.332543-1 1.049572-3 1.011579+0 8.882368-4 1.135011+0 7.061636-4 1.258925+0 5.780659-4 1.412538+0 4.666383-4 1.640590+0 3.563144-4 1.862087+0 2.855402-4 2.113489+0 2.304219-4 2.426610+0 1.837393-4 2.786121+0 1.476101-4 3.198895+0 1.194353-4 3.715352+0 9.566715-5 4.365158+0 7.593539-5 5.128614+0 6.072972-5 6.095369+0 4.816700-5 7.328245+0 3.792375-5 8.810489+0 3.007526-5 1.109175+1 2.271994-5 1.380384+1 1.754985-5 1.717908+1 1.364819-5 2.238721+1 1.014643-5 2.917427+1 7.590790-6 4.120975+1 5.242260-6 6.095369+1 3.474609-6 9.660509+1 2.158518-6 1.840772+2 1.118294-6 3.672823+2 5.564736-7 1.462177+3 1.390089-7 1.000000+5 2.029700-9 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.261000-5 3.261000-5 1.000000+5 3.261000-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.261000-5 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.382000-5 1.556168+7 2.786121-5 9.422260+6 3.349654-5 5.253058+6 3.845918-5 3.361083+6 4.570882-5 1.918050+6 5.011872-5 1.431341+6 5.432503-5 1.115486+6 5.821032-5 9.065107+5 6.237348-5 7.416227+5 6.683439-5 6.111599+5 7.150000-5 5.097520+5 7.585776-5 4.376915+5 8.035261-5 3.796495+5 8.511380-5 3.312808+5 9.015711-5 2.907477+5 9.660509-5 2.503723+5 1.035142-4 2.171754+5 1.109175-4 1.897118+5 1.190000-4 1.664984+5 1.273503-4 1.478151+5 1.364583-4 1.318304+5 1.479108-4 1.162271+5 1.621810-4 1.014186+5 1.819701-4 8.622858+4 2.041738-4 7.386311+4 2.371374-4 6.093690+4 4.027170-4 3.141504+4 5.011872-4 2.372535+4 6.025596-4 1.858654+4 7.161434-4 1.467141+4 8.413951-4 1.168286+4 9.885531-4 9.233958+3 1.161449-3 7.245914+3 1.364583-3 5.644535+3 1.603245-3 4.365266+3 1.883649-3 3.351688+3 2.238721-3 2.506617+3 2.630268-3 1.897072+3 3.054921-3 1.454244+3 3.548134-3 1.106752+3 4.120975-3 8.359021+2 4.731513-3 6.405862+2 5.432503-3 4.874497+2 6.237348-3 3.681385+2 7.161434-3 2.759804+2 8.222426-3 2.053391+2 9.440609-3 1.516199+2 1.096478-2 1.083139+2 1.258925-2 7.883081+1 1.445440-2 5.693357+1 1.640590-2 4.194646+1 1.862087-2 3.066551+1 2.137962-2 2.162149+1 2.454709-2 1.513177+1 2.818383-2 1.051205+1 3.235937-2 7.249567+0 3.758374-2 4.808834+0 4.365158-2 3.164617+0 5.069907-2 2.067158+0 5.956621-2 1.296972+0 7.079458-2 7.805468-1 8.609938-2 4.354390-1 1.059254-1 2.329477-1 1.905461-1 3.892741-2 2.344229-1 2.082048-2 2.754229-1 1.288110-2 3.198895-1 8.307210-3 3.672823-1 5.583783-3 4.168694-1 3.908755-3 4.677351-1 2.846498-3 5.188000-1 2.153992-3 5.754399-1 1.641003-3 6.456542-1 1.222053-3 7.161434-1 9.438257-4 7.943282-1 7.340958-4 8.709636-1 5.884515-4 9.332543-1 5.018535-4 9.885531-1 4.421987-4 1.071519+0 3.739819-4 1.161449+0 3.184973-4 1.258925+0 2.729210-4 1.396368+0 2.256394-4 1.717908+0 1.559644-4 1.949845+0 1.252445-4 2.213095+0 1.013113-4 2.540973+0 8.099142-5 2.917427+0 6.522563-5 3.388442+0 5.199807-5 3.935501+0 4.176769-5 4.623810+0 3.324540-5 5.495409+0 2.624454-5 6.531306+0 2.088007-5 7.943282+0 1.624706-5 9.549926+0 1.292617-5 1.174898+1 1.006752-5 1.428894+1 8.002385-6 1.737801+1 6.393335-6 2.264644+1 4.754468-6 2.951209+1 3.557763-6 4.168694+1 2.457627-6 6.165950+1 1.629302-6 9.772372+1 1.012360-6 1.883649+2 5.184489-7 3.758374+2 2.580391-7 1.496236+3 6.446494-8 1.000000+5 9.63250-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.382000-5 2.382000-5 1.000000+5 2.382000-5 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.382000-5 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.710000-6 3.190102+6 4.786301-6 3.267928+6 5.000000-6 3.431200+6 5.200000-6 3.560056+6 5.432503-6 3.685212+6 5.700000-6 3.801140+6 6.000000-6 3.900920+6 6.382635-6 3.992273+6 6.760830-6 4.049919+6 7.200000-6 4.082320+6 7.700000-6 4.086440+6 8.200000-6 4.061200+6 8.709636-6 4.010663+6 9.225714-6 3.937169+6 9.772372-6 3.839611+6 1.035142-5 3.719047+6 1.096478-5 3.574847+6 1.161449-5 3.408590+6 1.230269-5 3.224354+6 1.290000-5 3.060440+6 1.350000-5 2.894188+6 1.420000-5 2.702264+6 1.500000-5 2.489744+6 1.584893-5 2.276303+6 1.678804-5 2.056834+6 1.778279-5 1.844963+6 1.905461-5 1.606326+6 2.041738-5 1.388041+6 2.213095-5 1.161271+6 2.430000-5 9.370153+5 2.722701-5 7.154872+5 3.019952-5 5.558599+5 3.349654-5 4.288386+5 3.650000-5 3.435256+5 3.935501-5 2.811232+5 4.265795-5 2.251080+5 4.570882-5 1.849312+5 4.954502-5 1.458917+5 5.370318-5 1.142678+5 5.888437-5 8.577725+4 6.531306-5 6.161875+4 7.161434-5 4.560659+4 7.762471-5 3.483872+4 8.413951-5 2.642904+4 9.120108-5 1.988099+4 9.800000-5 1.530532+4 1.050000-4 1.183628+4 1.150000-4 8.372480+3 1.364583-4 4.331109+3 1.462177-4 3.337206+3 1.513561-4 2.941350+3 1.566751-4 2.605545+3 1.621810-4 2.319068+3 1.678804-4 2.074527+3 1.737801-4 1.865706+3 1.798871-4 1.687383+3 1.862087-4 1.535175+3 1.927525-4 1.405413+3 2.000000-4 1.288092+3 2.065380-4 1.216321+3 2.137962-4 1.151745+3 2.215400-4 1.096533+3 2.290868-4 1.053356+3 2.371374-4 1.016376+3 2.454709-4 9.858846+2 2.570396-4 9.536325+2 2.691535-4 9.292146+2 2.818383-4 9.110025+2 3.019952-4 8.919578+2 3.235937-4 8.769286+2 4.027170-4 8.454613+2 4.415704-4 8.215576+2 4.786301-4 7.959691+2 5.128614-4 7.700464+2 5.559043-4 7.351890+2 6.025596-4 6.965525+2 6.531306-4 6.547530+2 7.079458-4 6.110854+2 7.673615-4 5.665450+2 8.317638-4 5.216389+2 9.015711-4 4.770599+2 9.772372-4 4.335104+2 1.071519-3 3.857589+2 1.174898-3 3.407168+2 1.288250-3 2.987588+2 1.412538-3 2.601360+2 1.548817-3 2.249887+2 1.698244-3 1.933322+2 1.883649-3 1.617619+2 2.089296-3 1.342792+2 2.348700-3 1.080064+2 2.540973-3 9.273353+1 2.786121-3 7.703071+1 3.090295-3 6.202633+1 3.427678-3 4.956384+1 3.801894-3 3.935455+1 4.216965-3 3.102149+1 4.677351-3 2.426572+1 5.188000-3 1.884212+1 5.754399-3 1.452646+1 6.382635-3 1.111968+1 7.079458-3 8.452136+0 7.852356-3 6.380863+0 8.709636-3 4.785611+0 9.772372-3 3.450060+0 1.096478-2 2.467823+0 1.230269-2 1.751901+0 1.380384-2 1.234604+0 1.548817-2 8.639258-1 1.737801-2 6.004334-1 1.972423-2 3.993625-1 2.238721-2 2.635941-1 2.540973-2 1.727142-1 2.917427-2 1.080759-1 3.349654-2 6.712876-2 3.890451-2 3.977639-2 4.570882-2 2.246969-2 5.432503-2 1.209496-2 6.760830-2 5.471449-3 9.225714-2 1.754870-3 1.348963-1 4.357168-4 1.621810-1 2.230740-4 1.927525-1 1.199047-4 2.264644-1 6.763823-5 2.600160-1 4.169206-5 2.951209-1 2.694035-5 3.311311-1 1.823360-5 3.715352-1 1.242761-5 4.216965-1 8.220017-6 4.623810-1 6.125451-6 5.011872-1 4.764939-6 5.495409-1 3.610356-6 6.309573-1 2.406953-6 6.998420-1 1.786814-6 7.673615-1 1.381268-6 8.511380-1 1.039983-6 9.015711-1 8.935874-7 9.440609-1 7.959218-7 9.885531-1 7.132095-7 1.035142+0 6.433810-7 1.096478+0 5.695755-7 1.161449+0 5.075091-7 1.250000+0 4.414000-7 1.364583+0 3.767765-7 1.531087+0 3.082120-7 1.819701+0 2.271850-7 2.044000+0 1.861700-7 2.344229+0 1.484285-7 2.691535+0 1.190321-7 3.090295+0 9.615076-8 3.589219+0 7.688124-8 4.168694+0 6.192411-8 4.897788+0 4.942157-8 5.821032+0 3.911657-8 6.918310+0 3.119737-8 8.317638+0 2.468528-8 1.011579+1 1.940131-8 1.244515+1 1.513833-8 1.603245+1 1.127878-8 2.137962+1 8.157764-9 2.851018+1 5.946071-9 4.027170+1 4.104271-9 5.956621+1 2.719090-9 9.332543+1 1.708677-9 1.778279+2 8.84837-10 3.548134+2 4.40205-10 1.412538+3 1.09937-10 1.000000+5 1.55070-12 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.710000-6 4.710000-6 1.000000+5 4.710000-6 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.710000-6 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 6.432361+6 4.265795-6 6.579569+6 4.466836-6 6.744320+6 4.677351-6 6.871106+6 4.954502-6 6.981183+6 5.308844-6 7.049779+6 5.623413-6 7.061389+6 6.025596-6 7.026860+6 6.500000-6 6.937800+6 7.000000-6 6.801480+6 7.500000-6 6.634800+6 8.035261-6 6.433091+6 8.609938-6 6.196644+6 9.225714-6 5.925733+6 9.850000-6 5.639952+6 1.047129-5 5.347279+6 1.109175-5 5.050820+6 1.174898-5 4.739072+6 1.244515-5 4.413622+6 1.318257-5 4.080583+6 1.396368-5 3.743522+6 1.479108-5 3.407953+6 1.570000-5 3.068952+6 1.659587-5 2.765674+6 1.770000-5 2.432496+6 1.905461-5 2.082480+6 2.041738-5 1.787976+6 2.230000-5 1.459602+6 2.454709-5 1.161466+6 2.754229-5 8.755601+5 3.054921-5 6.740300+5 3.349654-5 5.309629+5 3.672823-5 4.150815+5 3.935501-5 3.430555+5 4.265795-5 2.727491+5 4.570882-5 2.225341+5 4.954502-5 1.742841+5 5.432503-5 1.305807+5 5.888437-5 1.007422+5 6.456542-5 7.443743+4 7.079458-5 5.465662+4 7.800000-5 3.918522+4 8.511380-5 2.880374+4 9.225714-5 2.151134+4 1.000000-4 1.595424+4 1.244515-4 6.974745+3 1.318257-4 5.634606+3 1.382400-4 4.750303+3 1.445440-4 4.072094+3 1.500000-4 3.603204+3 1.548817-4 3.273977+3 1.603245-4 2.969463+3 1.659587-4 2.709341+3 1.717908-4 2.486806+3 1.778279-4 2.296265+3 1.846300-4 2.120108+3 1.905461-4 1.993542+3 1.972423-4 1.874422+3 2.000000-4 1.831698+3 2.065380-4 1.758278+3 2.137962-4 1.692837+3 2.215400-4 1.637659+3 2.290868-4 1.595281+3 2.398833-4 1.549557+3 2.540973-4 1.507581+3 2.722701-4 1.467569+3 2.951209-4 1.432782+3 3.758374-4 1.353985+3 4.027170-4 1.325317+3 4.415704-4 1.270254+3 4.786301-4 1.215915+3 5.128614-4 1.164428+3 5.559043-4 1.099077+3 6.025596-4 1.029977+3 6.531306-4 9.582014+2 7.079458-4 8.853571+2 7.673615-4 8.127423+2 8.317638-4 7.415586+2 9.120108-4 6.628595+2 1.000000-3 5.879686+2 1.096478-3 5.176344+2 1.202264-3 4.524539+2 1.318257-3 3.927622+2 1.445440-3 3.387169+2 1.584893-3 2.900532+2 1.737801-3 2.465971+2 1.927525-3 2.038629+2 2.162719-3 1.638000+2 2.398833-3 1.335815+2 2.660725-3 1.081295+2 2.917427-3 8.899376+1 3.235937-3 7.095525+1 3.589219-3 5.614295+1 3.981072-3 4.409271+1 4.415704-3 3.437102+1 4.897788-3 2.659383+1 5.432503-3 2.042342+1 6.025596-3 1.557060+1 6.683439-3 1.178598+1 7.413102-3 8.859023+0 8.222426-3 6.613593+0 9.120108-3 4.904450+0 1.011579-2 3.613230+0 1.135011-2 2.553736+0 1.273503-2 1.791050+0 1.428894-2 1.246774+0 1.603245-2 8.615937-1 1.798871-2 5.912339-1 2.041738-2 3.876745-1 2.317395-2 2.521819-1 2.630268-2 1.628202-1 3.019952-2 1.002308-1 3.467369-2 6.123047-2 4.027170-2 3.562318-2 4.731513-2 1.971673-2 5.688529-2 9.945563-3 6.839116-2 4.978012-3 1.230269-1 5.388790-4 1.500000-1 2.560400-4 1.757924-1 1.420451-4 2.018366-1 8.561006-5 2.290868-1 5.416779-5 2.570396-1 3.596741-5 2.884032-1 2.405793-5 3.198895-1 1.687244-5 3.548134-1 1.192109-5 3.890451-1 8.812912-6 4.265795-1 6.556717-6 4.623810-1 5.092732-6 5.011872-1 3.981600-6 5.432503-1 3.138088-6 5.956621-1 2.408998-6 6.531306-1 1.859626-6 7.161434-1 1.446000-6 7.762471-1 1.168192-6 8.511380-1 9.205463-7 9.015711-1 7.976130-7 9.549926-1 6.956201-7 1.000000+0 6.269400-7 1.059254+0 5.543652-7 1.135011+0 4.818259-7 1.230269+0 4.125407-7 1.348963+0 3.482267-7 1.778279+0 2.133783-7 2.018366+0 1.716398-7 2.317395+0 1.365026-7 2.660725+0 1.093975-7 3.054921+0 8.831360-8 3.548134+0 7.057348-8 4.120975+0 5.681302-8 4.841724+0 4.531818-8 5.754399+0 3.585034-8 6.839116+0 2.857840-8 8.222427+0 2.260346-8 9.885531+0 1.800732-8 1.202264+1 1.423411-8 1.462177+1 1.132326-8 1.737801+1 9.289296-9 2.238721+1 6.996724-9 2.917427+1 5.234231-9 4.120975+1 3.614798-9 6.095369+1 2.395887-9 9.660509+1 1.488398-9 1.862087+2 7.62150-10 3.715352+2 3.79298-10 1.479108+3 9.47529-11 1.000000+5 1.39960-12 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 4.130000-6 1.000000+5 4.130000-6 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.670000-6 9.320740+6 5.821032-6 8.562687+6 6.683439-6 5.377688+6 8.035261-6 2.909714+6 9.549926-6 1.647005+6 1.135011-5 9.389667+5 1.303167-5 6.029796+5 1.462177-5 4.193231+5 1.621810-5 3.043867+5 1.778279-5 2.304105+5 1.927525-5 1.816780+5 2.089296-5 1.443024+5 2.238721-5 1.192501+5 2.400000-5 9.912860+4 2.540973-5 8.570071+4 2.691535-5 7.442413+4 2.851018-5 6.501003+4 3.019952-5 5.713676+4 3.198895-5 5.053503+4 3.400000-5 4.467220+4 3.630781-5 3.940615+4 3.900000-5 3.464200+4 4.216965-5 3.032769+4 4.570882-5 2.664912+4 5.011872-5 2.318367+4 5.623413-5 1.965391+4 6.237348-5 1.705451+4 7.328245-5 1.381066+4 8.511380-5 1.142995+4 1.000000-4 9.375260+3 1.161449-4 7.868788+3 1.603245-4 5.509962+3 1.778279-4 4.880275+3 2.000000-4 4.218640+3 2.344229-4 3.436496+3 3.090295-4 2.381064+3 3.801894-4 1.813374+3 4.168694-4 1.599720+3 6.165950-4 9.254913+2 7.244360-4 7.331137+2 9.549926-4 4.870647+2 1.161449-3 3.615253+2 1.445440-3 2.569844+2 1.862087-3 1.717853+2 2.426610-3 1.118512+2 2.851018-3 8.580338+1 5.188000-3 3.064873+1 6.237348-3 2.220110+1 7.585776-3 1.562325+1 9.225714-3 1.091533+1 1.122018-2 7.570801+0 1.364583-2 5.212248+0 1.659587-2 3.561326+0 2.018366-2 2.414581+0 2.454709-2 1.624298+0 2.884032-2 1.164572+0 3.467369-2 7.883166-1 4.168694-2 5.295071-1 5.011872-2 3.529321-1 6.025596-2 2.333341-1 7.328245-2 1.491339-1 8.609938-2 1.025006-1 1.071519-1 6.110306-2 1.380384-1 3.328957-2 2.570396-1 7.352953-3 3.198895-1 4.348188-3 3.845918-1 2.813359-3 4.518559-1 1.936128-3 5.188000-1 1.414933-3 6.000000-1 1.024900-3 6.839117-1 7.720987-4 7.852356-1 5.769455-4 8.912509-1 4.448376-4 1.011579+0 3.454951-4 1.230269+0 2.357931-4 1.396368+0 1.855950-4 1.566751+0 1.503232-4 1.778279+0 1.201741-4 2.044000+0 9.471800-5 2.344229+0 7.552074-5 2.691535+0 6.056232-5 3.090295+0 4.891832-5 3.589219+0 3.911439-5 4.168694+0 3.150442-5 4.897788+0 2.514338-5 5.821032+0 1.990121-5 6.918310+0 1.587231-5 8.317638+0 1.255900-5 1.011579+1 9.870726-6 1.230269+1 7.807743-6 1.531087+1 6.052164-6 1.862087+1 4.844140-6 2.426610+1 3.608595-6 3.162278+1 2.704563-6 4.518559+1 1.848364-6 6.918310+1 1.183974-6 1.161449+2 6.947508-7 2.317395+2 3.442590-7 4.623810+2 1.715813-7 1.840772+3 4.291781-8 1.000000+5 7.88960-10 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.670000-6 5.670000-6 1.000000+5 5.670000-6 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.670000-6 0.0 1.000000+5 1.000000+5 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 7.956340-7 1.025500+0 1.121640-6 1.025800+0 1.433900-6 1.026100+0 1.799000-6 1.026600+0 2.536170-6 1.027100+0 3.450520-6 1.027500+0 4.321730-6 1.028100+0 5.883960-6 1.028750+0 7.956340-6 1.029500+0 1.088850-5 1.030100+0 1.369360-5 1.031000+0 1.873750-5 1.032000+0 2.563750-5 1.033200+0 3.591390-5 1.034000+0 4.408760-5 1.035300+0 5.984260-5 1.036640+0 7.956340-5 1.038200+0 1.073730-4 1.039700+0 1.395000-4 1.041500+0 1.856030-4 1.043800+0 2.576230-4 1.046400+0 3.584340-4 1.048300+0 4.462590-4 1.051200+0 6.053410-4 1.054080+0 7.956340-4 1.057700+0 1.084500-3 1.061100+0 1.410660-3 1.065100+0 1.867550-3 1.070400+0 2.605420-3 1.076200+0 3.600680-3 1.080600+0 4.496660-3 1.087100+0 6.058500-3 1.093710+0 7.956340-3 1.102600+0 1.103150-2 1.110700+0 1.438740-2 1.120600+0 1.924650-2 1.133300+0 2.676160-2 1.147500+0 3.695050-2 1.158200+0 4.592030-2 1.174100+0 6.137220-2 1.190110+0 7.956340-2 1.205100+0 9.902660-2 1.227500+0 1.325230-1 1.250000+0 1.713000-1 1.265600+0 2.010230-1 1.294900+0 2.626990-1 1.331800+0 3.501410-1 1.362600+0 4.302890-1 1.397000+0 5.262750-1 1.433800+0 6.350620-1 1.477900+0 7.717120-1 1.500000+0 8.422000-1 1.562500+0 1.046230+0 1.641100+0 1.307920+0 1.706900+0 1.527300+0 1.811600+0 1.871880+0 1.937200+0 2.275450+0 2.000000+0 2.474000+0 2.044000+0 2.612000+0 2.163500+0 2.977370+0 2.372600+0 3.581680+0 2.686300+0 4.411540+0 3.000000+0 5.168000+0 3.500000+0 6.264380+0 4.000000+0 7.259000+0 5.000000+0 9.005000+0 6.000000+0 1.050000+1 7.000000+0 1.183000+1 8.000000+0 1.303000+1 9.000000+0 1.412000+1 1.000000+1 1.513000+1 1.100000+1 1.607000+1 1.200000+1 1.694000+1 1.300000+1 1.776000+1 1.400000+1 1.852000+1 1.500000+1 1.923000+1 1.600000+1 1.990000+1 1.800000+1 2.111000+1 2.000000+1 2.219000+1 2.200000+1 2.317000+1 2.400000+1 2.407000+1 2.600000+1 2.489000+1 2.800000+1 2.564000+1 3.000000+1 2.633000+1 4.000000+1 2.915000+1 5.000000+1 3.125000+1 6.000000+1 3.287000+1 8.000000+1 3.526000+1 1.000000+2 3.694000+1 1.500000+2 3.960000+1 2.000000+2 4.118000+1 3.000000+2 4.303000+1 4.000000+2 4.408000+1 5.000000+2 4.478000+1 6.000000+2 4.527000+1 8.000000+2 4.593000+1 1.000000+3 4.636000+1 1.500000+3 4.698000+1 2.000000+3 4.731000+1 3.000000+3 4.768000+1 4.000000+3 4.787000+1 5.000000+3 4.800000+1 6.000000+3 4.809000+1 8.000000+3 4.820000+1 1.000000+4 4.827000+1 1.500000+4 4.837000+1 2.000000+4 4.842000+1 3.000000+4 4.848000+1 4.000000+4 4.851000+1 5.000000+4 4.852000+1 6.000000+4 4.854000+1 8.000000+4 4.855000+1 1.000000+5 4.856000+1 1 91000 7 8 2.330000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.104030-7 2.090400+0 1.236100-6 2.094700+0 1.602790-6 2.099900+0 2.132290-6 2.106600+0 2.966190-6 2.114000+0 4.104100-6 2.119500+0 5.109580-6 2.127900+0 6.929560-6 2.136250+0 9.104030-6 2.147000+0 1.248230-5 2.156900+0 1.621300-5 2.169000+0 2.163720-5 2.184500+0 3.007650-5 2.201800+0 4.161170-5 2.214800+0 5.184490-5 2.234200+0 6.974050-5 2.253680+0 9.104030-5 2.281500+0 1.275180-4 2.307000+0 1.674940-4 2.338200+0 2.252100-4 2.377400+0 3.118880-4 2.410200+0 3.966690-4 2.446800+0 5.045850-4 2.485900+0 6.353000-4 2.532900+0 8.130510-4 2.556430+0 9.104030-4 2.611900+0 1.160880-3 2.660400+0 1.403460-3 2.745300+0 1.878480-3 2.809000+0 2.274960-3 2.904500+0 2.930710-3 3.000000+0 3.658000-3 3.125000+0 4.716300-3 3.234400+0 5.737820-3 3.425800+0 7.724250-3 3.569300+0 9.363910-3 3.784700+0 1.203250-2 4.000000+0 1.490000-2 4.250000+0 1.840470-2 4.625000+0 2.391050-2 5.000000+0 2.963000-2 5.500000+0 3.747160-2 6.000000+0 4.541000-2 6.750000+0 5.721160-2 7.000000+0 6.109000-2 8.000000+0 7.623000-2 9.000000+0 9.068000-2 1.000000+1 1.044000-1 1.100000+1 1.173000-1 1.200000+1 1.295000-1 1.300000+1 1.409000-1 1.400000+1 1.517000-1 1.500000+1 1.620000-1 1.600000+1 1.717000-1 1.800000+1 1.896000-1 2.000000+1 2.059000-1 2.200000+1 2.207000-1 2.400000+1 2.343000-1 2.600000+1 2.467000-1 2.800000+1 2.583000-1 3.000000+1 2.690000-1 4.000000+1 3.130000-1 5.000000+1 3.460000-1 6.000000+1 3.719000-1 8.000000+1 4.106000-1 1.000000+2 4.385000-1 1.500000+2 4.841000-1 2.000000+2 5.124000-1 3.000000+2 5.467000-1 4.000000+2 5.671000-1 5.000000+2 5.811000-1 6.000000+2 5.912000-1 8.000000+2 6.053000-1 1.000000+3 6.146000-1 1.500000+3 6.285000-1 2.000000+3 6.364000-1 3.000000+3 6.450000-1 4.000000+3 6.500000-1 5.000000+3 6.531000-1 6.000000+3 6.553000-1 8.000000+3 6.582000-1 1.000000+4 6.601000-1 1.500000+4 6.626000-1 2.000000+4 6.641000-1 3.000000+4 6.654000-1 4.000000+4 6.663000-1 5.000000+4 6.669000-1 6.000000+4 6.672000-1 8.000000+4 6.676000-1 1.000000+5 6.679000-1 1 91000 7 8 2.330000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 91000 7 9 2.330000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.100000+1 1.000000+5 9.100000+1 5.000000+5 9.096000+1 8.750000+5 9.090590+1 1.000000+6 9.089300+1 1.375000+6 9.082450+1 1.500000+6 9.079400+1 1.875000+6 9.068070+1 2.000000+6 9.063700+1 2.375000+6 9.049190+1 2.500000+6 9.043900+1 2.875000+6 9.026650+1 3.000000+6 9.020400+1 3.250000+6 9.006470+1 3.625000+6 8.985030+1 4.000000+6 8.963400+1 4.437500+6 8.935490+1 4.812500+6 8.909780+1 5.000000+6 8.897300+1 5.500000+6 8.859810+1 5.875000+6 8.830220+1 6.437500+6 8.784340+1 6.500000+6 8.778910+1 7.000000+6 8.737400+1 7.875000+6 8.662720+1 9.000000+6 8.564300+1 1.000000+7 8.474000+1 1.250000+7 8.250700+1 1.500000+7 8.023900+1 1.750000+7 7.797400+1 2.000000+7 7.573000+1 2.375000+7 7.240280+1 2.500000+7 7.132500+1 2.875000+7 6.822580+1 3.000000+7 6.724600+1 3.250000+7 6.535480+1 3.500000+7 6.356550+1 3.625000+7 6.270050+1 4.000000+7 6.022100+1 4.500000+7 5.714660+1 4.750000+7 5.568560+1 5.000000+7 5.427600+1 5.500000+7 5.157230+1 6.000000+7 4.903300+1 6.750000+7 4.553020+1 7.000000+7 4.444800+1 8.000000+7 4.051000+1 9.000000+7 3.713100+1 1.000000+8 3.418500+1 1.109400+8 3.131960+1 1.125000+8 3.093580+1 1.203100+8 2.908020+1 1.250000+8 2.801800+1 1.359400+8 2.567680+1 1.500000+8 2.298600+1 1.875000+8 1.761900+1 2.000000+8 1.637900+1 2.171900+8 1.502970+1 2.359400+8 1.390200+1 2.375000+8 1.382070+1 2.500000+8 1.322900+1 2.750000+8 1.224150+1 2.875000+8 1.175920+1 3.000000+8 1.124800+1 3.375000+8 9.700300+0 3.500000+8 9.266900+0 3.812500+8 8.456500+0 3.937500+8 8.138910+0 4.000000+8 7.969800+0 4.125000+8 7.606060+0 4.234400+8 7.276130+0 4.425800+8 6.707000+0 4.750000+8 5.870110+0 4.784700+8 5.793320+0 4.928200+8 5.503270+0 5.000000+8 5.375700+0 5.179700+8 5.105750+0 5.330100+8 4.920410+0 5.569300+8 4.677700+0 6.000000+8 4.325900+0 7.000000+8 3.669600+0 7.500000+8 3.416200+0 7.750000+8 3.289470+0 8.000000+8 3.155500+0 8.250000+8 3.011910+0 8.468800+8 2.880690+0 9.500000+8 2.335880+0 1.000000+9 2.127200+0 1.045900+9 1.979530+0 1.088000+9 1.870420+0 1.139500+9 1.762450+0 1.204300+9 1.655290+0 1.250000+9 1.593770+0 1.258500+9 1.583260+0 1.344800+9 1.491310+0 1.448300+9 1.404170+0 1.500000+9 1.366400+0 1.750000+9 1.211570+0 1.875000+9 1.142740+0 2.000000+9 1.076300+0 2.139200+9 1.004130+0 2.272600+9 9.377560-1 2.443000+9 8.578430-1 2.602800+9 7.883560-1 2.750000+9 7.292530-1 2.752700+9 7.282060-1 2.959000+9 6.530460-1 3.148200+9 5.915130-1 3.379700+9 5.249470-1 3.582200+9 4.737320-1 3.842200+9 4.164300-1 4.131600+9 3.621640-1 4.348700+9 3.270510-1 4.674400+9 2.819210-1 5.000000+9 2.443100-1 5.375000+9 2.084660-1 5.703100+9 1.824340-1 6.277300+9 1.461400-1 7.031000+9 1.115250-1 8.000000+9 8.128700-2 9.500000+9 5.284230-2 1.00000+10 4.641800-2 1.27030+10 2.528490-2 1.84370+10 9.758220-3 3.06880+10 2.629720-3 8.26720+10 2.035130-4 1.00000+11 1.246900-4 1.68570+11 3.271280-5 3.34410+11 5.726690-6 8.62510+11 5.247910-7 2.83020+12 2.689660-8 1.00000+14 3.91870-12 3.16230+15 7.23654-16 1.00000+17 1.27930-19 1 91000 7 0 2.330000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.34000-11 1.000000+2 1.340000-9 1.000000+3 1.340000-7 1.000000+4 1.340000-5 1.000000+5 1.340000-3 5.000000+5 3.350000-2 8.750000+5 1.025938-1 1.000000+6 1.340000-1 1.375000+6 2.500660-1 1.500000+6 2.961000-1 1.875000+6 4.545110-1 2.000000+6 5.137000-1 2.375000+6 7.082540-1 2.500000+6 7.784000-1 2.875000+6 1.002070+0 3.000000+6 1.080700+0 3.250000+6 1.242920+0 3.625000+6 1.496970+0 4.000000+6 1.760500+0 4.437500+6 2.075290+0 4.812500+6 2.348220+0 5.000000+6 2.485000+0 5.500000+6 2.847610+0 5.875000+6 3.116940+0 6.437500+6 3.514970+0 6.500000+6 3.558480+0 7.000000+6 3.904400+0 7.875000+6 4.492420+0 9.000000+6 5.227700+0 1.000000+7 5.873000+0 1.250000+7 7.497500+0 1.500000+7 9.143000+0 1.750000+7 1.076700+1 2.000000+7 1.234500+1 2.375000+7 1.462460+1 2.500000+7 1.536400+1 2.875000+7 1.750460+1 3.000000+7 1.818900+1 3.250000+7 1.950220+1 3.500000+7 2.074950+1 3.625000+7 2.134950+1 4.000000+7 2.306200+1 4.500000+7 2.517190+1 4.750000+7 2.617490+1 5.000000+7 2.716300+1 5.500000+7 2.909970+1 6.000000+7 3.098800+1 6.750000+7 3.374030+1 7.000000+7 3.463100+1 8.000000+7 3.803200+1 9.000000+7 4.113700+1 1.000000+8 4.391600+1 1.109400+8 4.658470+1 1.125000+8 4.693680+1 1.203100+8 4.861600+1 1.250000+8 4.956500+1 1.359400+8 5.161890+1 1.500000+8 5.403000+1 1.875000+8 5.968870+1 2.000000+8 6.137400+1 2.171900+8 6.353850+1 2.359400+8 6.571280+1 2.375000+8 6.588670+1 2.500000+8 6.721900+1 2.750000+8 6.962170+1 2.875000+8 7.069950+1 3.000000+8 7.170700+1 3.375000+8 7.430220+1 3.500000+8 7.505000+1 3.812500+8 7.669110+1 3.937500+8 7.727670+1 4.000000+8 7.755800+1 4.125000+8 7.808740+1 4.234400+8 7.851770+1 4.425800+8 7.923340+1 4.750000+8 8.031310+1 4.784700+8 8.041820+1 4.928200+8 8.084390+1 5.000000+8 8.105300+1 5.179700+8 8.154120+1 5.330100+8 8.192770+1 5.569300+8 8.250820+1 6.000000+8 8.345100+1 7.000000+8 8.522400+1 7.500000+8 8.593190+1 7.750000+8 8.623880+1 8.000000+8 8.653700+1 8.250000+8 8.679700+1 8.468800+8 8.701880+1 9.500000+8 8.785260+1 1.000000+9 8.817000+1 1.045900+9 8.841410+1 1.088000+9 8.861400+1 1.139500+9 8.882380+1 1.204300+9 8.905420+1 1.250000+9 8.918780+1 1.258500+9 8.921120+1 1.344800+9 8.943760+1 1.448300+9 8.965090+1 1.500000+9 8.975200+1 1.750000+9 9.013110+1 1.875000+9 9.026990+1 2.000000+9 9.040000+1 2.139200+9 9.050970+1 2.272600+9 9.059380+1 2.443000+9 9.068430+1 2.602800+9 9.075460+1 2.750000+9 9.080340+1 2.752700+9 9.080430+1 2.959000+9 9.085600+1 3.148200+9 9.089110+1 3.379700+9 9.093130+1 3.582200+9 9.094650+1 3.842200+9 9.096430+1 4.131600+9 9.098260+1 4.348700+9 9.098900+1 4.674400+9 9.099420+1 5.000000+9 9.099900+1 5.375000+9 9.099920+1 5.703100+9 9.099930+1 6.277300+9 9.099950+1 7.031000+9 9.099970+1 8.000000+9 9.100000+1 9.500000+9 9.100000+1 1.00000+10 9.100000+1 1.27030+10 9.100000+1 1.84370+10 9.100000+1 3.06880+10 9.100000+1 8.26720+10 9.100000+1 1.00000+11 9.100000+1 1.68570+11 9.100000+1 3.34410+11 9.100000+1 8.62510+11 9.100000+1 2.83020+12 9.100000+1 1.00000+14 9.100000+1 3.16230+15 9.100000+1 1.00000+17 9.100000+1 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 3.413739-7 1.003393-6 1.852826-7 1.005769-6 1.104152-7 1.008145-6 6.074029-8 1.011050-6 2.399682-8 1.012897-6 3.15296-15 1.013450-6 2.79869-15 1.015850-6 1.66782-15 1.018250-6 9.17482-16 1.020650-6 4.65907-16 1.023050-6 0.0 1.412796-6 0.0 1.418012-6 2.787465-1 1.419751-6 3.704833-1 1.423228-6 6.767181-1 1.426705-6 1.141040+0 1.430618-6 1.872788+0 1.436649-6 3.267217+0 1.441050-6 4.211232+0 1.444622-6 4.714382+0 1.447939-6 4.867343+0 1.451591-6 4.624601+0 1.455041-6 4.072706+0 1.460778-6 2.769683+0 1.464957-6 1.819202+0 1.468652-6 1.144820+0 1.471912-6 6.998663-1 1.475389-6 3.850022-1 1.480388-6 1.100866-1 1.482344-6 0.0 1.534325-6 0.0 1.540934-6 3.819332-7 1.541878-6 4.359384-7 1.544006-6 6.388234-7 1.551607-6 2.196581-1 1.555407-6 4.012228-1 1.559208-6 6.765159-1 1.563008-6 1.052990+0 1.574884-6 2.496808+0 1.578447-6 2.784333+0 1.582413-6 2.885809+0 1.586354-6 2.746043+0 1.590299-6 2.398046+0 1.601249-6 1.054750+0 1.605050-6 6.787541-1 1.608731-6 4.091243-1 1.612532-6 2.247615-1 1.617876-6 6.526937-2 1.619987-6 8.178541-4 1.620000-6 4.089304-4 1.620014-6 0.0 1.955722-6 0.0 1.960536-6 1.08264-16 1.965350-6 2.14224-16 1.970164-6 3.91298-16 1.974977-6 6.59783-16 1.979791-6 1.02695-15 1.981752-6 1.20938-15 1.991507-6 4.171390-2 1.996385-6 7.619385-2 2.001263-6 1.284733-1 2.006141-6 1.999676-1 2.020774-6 4.665772-1 2.025652-6 5.273341-1 2.030530-6 5.501767-1 2.035408-6 5.298738-1 2.040286-6 4.710821-1 2.054919-6 2.048297-1 2.059797-6 1.322310-1 2.064675-6 7.880019-2 2.069553-6 4.334863-2 2.074430-6 2.201291-2 2.079308-6 0.0 2.125064-6 0.0 2.130295-6 2.444094-8 2.135525-6 4.836188-8 2.140756-6 8.833692-8 2.145987-6 1.489482-7 2.151217-6 2.318366-7 2.156448-6 3.331062-7 2.161678-6 4.418118-7 2.166909-6 5.409359-7 2.172139-6 6.113757-7 2.177370-6 6.378587-7 2.182601-6 6.143201-7 2.187831-6 5.461588-7 2.193062-6 4.482261-7 2.203523-6 2.374736-7 2.208753-6 1.533047-7 2.213984-6 9.135863-8 2.219215-6 5.025713-8 2.224445-6 2.552113-8 2.229676-6 0.0 2.509375-6 0.0 2.518640-6 3.236227+0 2.521728-6 4.301286+0 2.527904-6 7.926728+0 2.534081-6 1.344991+1 2.540837-6 2.188761+1 2.559173-6 5.008862+1 2.565530-6 5.676970+1 2.572003-6 5.920080+1 2.578357-6 5.682951+1 2.584368-6 5.073212+1 2.599116-6 2.846103+1 2.602023-6 2.388997+1 2.608199-6 1.584134+1 2.614376-6 9.752275+0 2.620552-6 5.579747+0 2.630309-6 1.458944+0 2.632905-6 4.090950-1 2.636523-6 2.770442-1 2.644291-6 1.055766-1 2.648952-6 0.0 2.661022-6 0.0 2.670847-6 2.35044-14 2.674122-6 3.12398-14 2.680672-6 5.70621-14 2.687221-6 9.62146-14 2.694010-6 1.52141-13 2.702921-6 1.943988-8 2.707272-6 4.110975-8 2.713903-6 8.343421-8 2.716227-6 1.025120-7 2.720534-6 1.459143-7 2.722880-6 1.742278-7 2.725954-6 2.186883-7 2.729533-6 3.073294-7 2.736186-6 4.939684-7 2.740427-6 6.297997-7 2.747058-6 8.778322-7 2.766951-6 1.723115-6 2.776103-6 2.013560-6 2.785108-6 2.127924-6 2.796810-6 3.034482-2 2.798818-6 6.454898-2 2.806737-6 2.145640-1 2.810578-6 2.940195-1 2.817462-6 5.135998-1 2.824346-6 8.318219-1 2.831230-6 1.248723+0 2.846805-6 2.357872+0 2.853660-6 2.749990+0 2.860146-6 2.968636+0 2.865650-6 3.016712+0 2.872534-6 2.853957+0 2.882795-6 2.259844+0 2.897431-6 1.224232+0 2.900070-6 1.046723+0 2.906954-6 6.693879-1 2.913838-6 3.956208-1 2.920722-6 2.091919-1 2.922212-6 1.833033-1 2.931048-6 5.214060-2 2.934490-6 0.0 2.947130-6 0.0 2.959825-6 7.619658+0 2.961638-6 8.697073+0 2.968892-6 1.588592+1 2.976146-6 2.678584+1 2.984307-6 4.396358+1 2.997015-6 7.704196+1 3.005615-6 9.806822+1 3.013590-6 1.107151+2 3.020519-6 1.142140+2 3.027590-6 1.093525+2 3.035481-6 9.505921+1 3.046901-6 6.588334+1 3.055940-6 4.270565+1 3.063194-6 2.756928+1 3.070448-6 1.642932+1 3.077702-6 9.037903+0 3.088583-6 2.297472+0 3.092210-6 0.0 3.182946-6 0.0 3.183102-6 4.153180-5 3.190937-6 4.330224-2 3.198772-6 8.567082-2 3.206606-6 1.564638-1 3.214441-6 2.637868-1 3.222276-6 4.105348-1 3.230111-6 5.899211-1 3.241912-6 8.814579-1 3.245879-6 9.736188-1 3.253829-6 1.109892+0 3.261779-6 1.171783+0 3.269729-6 1.149741+0 3.277679-6 1.053789+0 3.301530-6 5.911413-1 3.309480-6 4.591229-1 3.316294-6 3.657086-1 3.324128-6 2.881761-1 3.339798-6 1.823245-1 3.352410-6 1.782478-1 3.365756-6 1.838206-1 3.376570-6 1.946935-1 3.387086-6 1.928698-1 3.400078-6 1.994529-1 3.408988-6 2.114211-1 3.436620-6 2.759079-1 3.444876-6 2.797681-1 3.449000-6 2.763568-1 3.457110-6 2.533150-1 3.465169-6 2.208820-1 3.482268-6 1.304473-1 3.490840-6 1.161104-1 3.499058-6 1.100808-1 3.507628-6 1.316401-1 3.516553-6 1.876324-1 3.525561-6 2.781552-1 3.534175-6 3.879319-1 3.550838-6 6.171426-1 3.560018-6 7.000977-1 3.568632-6 7.287380-1 3.577246-6 7.036504-1 3.585860-6 6.325108-1 3.611702-6 3.225485-1 3.619704-6 2.438870-1 3.627978-6 1.805494-1 3.636549-6 1.323938-1 3.644753-6 9.889662-2 3.653534-6 7.512798-2 3.662505-6 7.851541-2 3.671476-6 9.392485-2 3.680718-6 1.278318-1 3.689521-6 1.795925-1 3.698387-6 2.468978-1 3.716329-6 3.936887-1 3.725299-6 4.483120-1 3.734270-6 4.730544-1 3.743241-6 4.643342-1 3.770528-6 3.605494-1 3.779764-6 3.468727-1 3.788999-6 3.704090-1 3.798234-6 4.344859-1 3.807469-6 5.320928-1 3.825444-6 7.404266-1 3.835175-6 8.335435-1 3.844410-6 8.672206-1 3.853645-6 8.532225-1 3.872702-6 7.230354-1 3.890720-6 5.803649-1 3.904190-6 5.068545-1 3.922948-6 4.433883-1 3.938499-6 4.082367-1 3.994000-6 3.705674-1 4.055851-6 3.453801-1 4.077502-6 3.605817-1 4.085467-6 3.725967-1 4.102876-6 4.315588-1 4.134775-6 6.129930-1 4.144205-6 6.557362-1 4.152795-6 6.791340-1 4.162859-6 6.824922-1 4.179895-6 6.365511-1 4.195559-6 5.667626-1 4.215999-6 5.995308-1 4.226326-6 6.732820-1 4.238031-6 8.334520-1 4.249259-6 1.059368+0 4.280277-6 1.862565+0 4.290055-6 2.039536+0 4.301706-6 2.109664+0 4.312411-6 2.039804+0 4.320106-6 1.946795+0 4.341621-6 2.234811+0 4.351974-6 2.632451+0 4.363286-6 3.505063+0 4.375151-6 4.926699+0 4.407061-6 9.674460+0 4.416564-6 1.060803+1 4.427262-6 1.093362+1 4.437749-6 1.046455+1 4.450448-6 8.986003+0 4.480092-6 4.333652+0 4.490387-6 3.038558+0 4.500622-6 2.085743+0 4.510804-6 1.448237+0 4.532067-6 6.345592-1 4.624689-6 6.457734-1 4.699966-6 6.382155-1 4.775801-6 6.862262-1 4.811740-6 7.488832-1 4.828991-6 8.062120-1 4.852762-6 1.159852+0 4.866134-6 1.462186+0 4.878020-6 1.825286+0 4.893525-6 2.431263+0 4.916830-6 3.429911+0 4.929876-6 3.842819+0 4.938052-6 4.020821+0 4.949664-6 4.062165+0 4.961995-6 3.847515+0 4.976544-6 3.329241+0 5.007280-6 1.946032+0 5.019166-6 1.520664+0 5.031052-6 1.211256+0 5.042938-6 1.006801+0 5.066709-6 7.661723-1 5.075581-6 7.722263-1 5.100567-6 9.099224-1 5.113060-6 1.021165+0 5.125553-6 1.182533+0 5.143769-6 1.511633+0 5.173674-6 2.099776+0 5.189107-6 2.299357+0 5.204543-6 2.319255+0 5.217256-6 2.221210+0 5.236445-6 1.951633+0 5.253333-6 1.675811+0 5.265141-6 1.535630+0 5.276470-6 1.464094+0 5.289600-6 1.461013+0 5.305996-6 1.552361+0 5.344340-6 1.808132+0 5.369833-6 1.827774+0 5.408130-6 1.731082+0 5.611154-6 1.606817+0 5.698060-6 1.684594+0 5.801743-6 1.620249+0 5.956144-6 1.631728+0 6.113499-6 1.600000+0 6.226553-6 1.635113+0 6.382635-6 1.583999+0 8.210602-6 1.572042+0 1.280855-5 1.620805+0 1.728077-5 1.644521+0 1.866089-5 1.688824+0 1.875275-5 3.832515+0 1.879868-5 5.603155+0 1.884461-5 8.286803+0 1.889054-5 1.195608+1 1.902834-5 2.563768+1 1.907427-5 2.875619+1 1.912594-5 2.980047+1 1.917187-5 2.851507+1 1.922314-5 2.483526+1 1.922978-5 2.420929+1 1.932445-5 3.321782+1 1.937178-5 4.422719+1 1.942207-5 6.589548+1 1.947064-5 9.680306+1 1.961139-5 2.102297+2 1.966343-5 2.371202+2 1.970661-5 2.449471+2 1.975478-5 2.342284+2 1.980627-5 2.038435+2 1.988660-5 1.366999+2 1.993976-5 9.254608+1 1.998709-5 6.036853+1 2.003442-5 3.668744+1 2.008175-5 2.097586+1 2.015275-5 6.649700+0 2.017642-5 1.766608+0 2.135488-5 1.847804+0 2.146000-5 2.184976+0 2.151256-5 2.461148+0 2.156513-5 2.877836+0 2.161769-5 3.446194+0 2.177538-5 5.563294+0 2.182794-5 6.047205+0 2.188050-5 6.231857+0 2.194442-5 5.981838+0 2.204265-5 5.407523+0 2.206912-5 5.221497+0 2.212330-5 5.050834+0 2.217195-5 5.201250+0 2.221407-5 5.646550+0 2.225655-5 6.340600+0 2.239424-5 9.336301+0 2.245541-5 1.030425+1 2.250429-5 1.066434+1 2.256923-5 1.046208+1 2.264814-5 9.427697+0 2.275619-5 7.749690+0 2.282348-5 7.130983+0 2.290103-5 6.989016+0 2.306125-5 7.353768+0 2.313727-5 7.637067+0 2.326947-5 7.689892+0 2.365882-5 7.246237+0 2.550213-5 6.805154+0 2.729341-5 6.360439+0 2.742777-5 1.625475+1 2.749495-5 2.444238+1 2.756632-5 3.792272+1 2.763770-5 5.644330+1 2.783084-5 1.172210+2 2.790889-5 1.325335+2 2.797465-5 1.363993+2 2.803855-5 1.309569+2 2.810926-5 1.152390+2 2.830110-5 5.488638+1 2.836828-5 3.760814+1 2.843545-5 2.488864+1 2.850263-5 1.644545+1 2.863699-5 6.115457+0 2.998894-5 5.924048+0 3.028393-5 6.172895+0 3.060848-5 7.010965+0 3.089106-5 7.806293+0 3.126591-5 9.666229+0 3.140251-5 9.794322+0 3.170234-5 8.937810+0 3.206764-5 8.880548+0 3.270683-5 9.003998+0 3.345620-5 8.693646+0 4.055387-5 7.625852+0 4.638469-5 7.069082+0 4.750392-5 7.570600+0 4.835673-5 7.007583+0 5.031226-5 6.932106+0 7.629678-5 4.367560+0 8.854673-5 3.334143+0 8.898263-5 4.770576+0 8.920057-5 5.969016+0 8.938783-5 7.537260+0 8.941852-5 9.842096+0 8.982787-5 4.208979+1 9.004788-5 6.943825+1 9.026790-5 1.089715+2 9.053550-5 1.746956+2 9.103950-5 3.165053+2 9.117571-5 3.503211+2 9.140314-5 3.867050+2 9.162796-5 3.941482+2 9.183903-5 3.738982+2 9.206443-5 3.261196+2 9.269258-5 1.456538+2 9.291741-5 9.368647+1 9.312812-5 5.796693+1 9.334813-5 3.322358+1 9.369003-5 9.909723+0 9.378817-5 3.070851+0 9.425938-5 3.314523+0 9.475642-5 3.818497+0 9.510862-5 4.242573+0 9.549926-5 4.566654+0 9.592356-5 4.634975+0 9.616073-5 4.556917+0 9.663410-5 2.482183+1 9.687079-5 4.168980+1 9.712373-5 6.979942+1 9.738882-5 1.106100+2 9.807599-5 2.356934+2 9.835775-5 2.663474+2 9.858615-5 2.722117+2 9.881916-5 2.582623+2 9.907883-5 2.224571+2 9.973935-5 1.019534+2 9.995919-5 6.945178+1 1.001948-4 4.389022+1 1.004211-4 2.739836+1 1.008945-4 6.509818+0 1.017381-4 7.470052+0 1.027675-4 9.014016+0 1.032793-4 9.361738+0 1.045953-4 9.412311+0 1.092239-4 1.179790+1 1.123125-4 1.262449+1 1.154262-4 1.264511+1 1.203553-4 1.161798+1 1.326736-4 8.496257+0 1.422309-4 6.620401+0 1.509050-4 5.282648+0 1.594043-4 4.276994+0 1.681363-4 3.503988+0 1.768072-4 2.927736+0 1.842537-4 2.554813+0 1.885724-4 2.463352+0 1.899547-4 2.565896+0 1.927356-4 3.136173+0 1.937112-4 3.217054+0 2.065380-4 2.856709+0 2.248031-4 2.530691+0 2.356742-4 2.426367+0 2.374700-4 2.548301+0 2.386326-4 2.737163+0 2.409731-4 3.240418+0 2.421678-4 3.286098+0 2.450910-4 2.975335+0 2.484468-4 2.894462+0 2.757273-4 2.765519+0 2.975426-4 2.787902+0 3.045193-4 3.061700+0 3.162278-4 3.035458+0 3.537513-4 3.160982+0 3.564477-4 3.316707+0 3.583298-4 3.588585+0 3.618268-4 4.241551+0 3.635785-4 4.295334+0 3.672924-4 4.076897+0 3.688077-4 4.172846+0 3.727771-4 4.627915+0 3.747768-4 4.547017+0 3.789389-4 4.186932+0 3.815971-4 4.153238+0 3.923000-4 4.487673+0 3.985000-4 4.899013+0 4.045000-4 5.553108+0 4.120975-4 6.799439+0 4.200000-4 8.555572+0 4.328110-4 1.214308+1 4.655631-4 2.238057+1 4.876148-4 2.788061+1 5.098993-4 3.183878+1 5.396718-4 3.510716+1 5.760000-4 3.718049+1 6.352787-4 3.800938+1 6.795962-4 3.760459+1 6.846076-4 3.918881+1 6.899765-4 4.406395+1 6.947474-4 4.874755+1 6.983843-4 4.873625+1 7.065773-4 4.223277+1 7.129901-4 4.037608+1 7.226813-4 4.099753+1 7.293644-4 4.381609+1 7.345890-4 4.655880+1 7.392579-4 4.644063+1 7.489911-4 4.256318+1 7.616556-4 4.185722+1 9.693165-4 3.678468+1 9.917427-4 3.837374+1 1.190899-3 3.302645+1 1.353585-3 2.986413+1 1.759228-3 2.308819+1 2.083291-3 1.908695+1 2.469249-3 1.560725+1 2.919527-3 1.269131+1 3.353576-3 1.064736+1 3.370085-3 1.158433+1 3.378339-3 1.242174+1 3.388960-3 1.427241+1 3.394848-3 1.563998+1 3.415075-3 2.219635+1 3.427866-3 2.648259+1 3.436257-3 2.848527+1 3.444374-3 2.957977+1 3.452629-3 2.980936+1 3.474532-3 2.773803+1 3.494672-3 2.549904+1 3.522111-3 2.415404+1 3.548134-3 2.526564+1 3.566277-3 2.748718+1 3.600550-3 3.446257+1 3.617890-3 3.636628+1 3.637658-3 3.585122+1 3.679748-3 3.286135+1 3.726697-3 3.183116+1 4.071198-3 2.781613+1 4.123683-3 2.838041+1 4.189395-3 3.053215+1 4.915960-3 2.441905+1 5.071418-3 2.467504+1 5.298588-3 2.341333+1 5.451807-3 2.318942+1 6.263784-3 1.899922+1 7.254793-3 1.530778+1 8.204696-3 1.272218+1 9.245651-3 1.061697+1 1.044870-2 8.794629+0 1.180140-2 7.280346+0 1.339249-2 5.969264+0 1.522758-2 4.871167+0 1.634372-2 4.365714+0 1.646453-2 4.476795+0 1.654277-2 4.813976+0 1.660807-2 5.387046+0 1.670730-2 6.758857+0 1.682497-2 8.483182+0 1.692503-2 9.349706+0 1.704101-2 9.646023+0 1.989837-2 7.510429+0 2.012090-2 7.540168+0 2.026536-2 7.987247+0 2.052878-2 9.443473+0 2.070897-2 9.835699+0 2.102339-2 1.014291+1 2.135433-2 1.078290+1 2.569384-2 8.210374+0 2.956457-2 6.587495+0 3.415414-2 5.224967+0 3.813646-2 4.369849+0 4.344623-2 3.526980+0 4.899479-2 2.891680+0 5.559659-2 2.340526+0 6.304679-2 1.895111+0 7.121364-2 1.541348+0 8.083103-2 1.242724+0 9.091542-2 1.016784+0 1.033920-1 8.164375-1 1.104800-1 7.350991-1 1.110775-1 7.605446-1 1.114849-1 8.223791-1 1.117696-1 9.052029-1 1.120453-1 1.026995+0 1.124209-1 1.266451+0 1.128912-1 1.664757+0 1.137076-1 2.381377+0 1.142243-1 2.684876+0 1.148975-1 2.861742+0 1.164071-1 2.876675+0 1.335317-1 2.331548+0 1.525636-1 1.891079+0 1.727631-1 1.555771+0 1.934834-1 1.301396+0 2.175417-1 1.082595+0 2.465580-1 8.897352-1 2.786121-1 7.371139-1 3.152791-1 6.114198-1 3.598467-1 5.029035-1 4.089727-1 4.188613-1 4.677351-1 3.483099-1 5.328203-1 2.934654-1 6.042964-1 2.504095-1 6.878599-1 2.145332-1 7.947571-1 1.820838-1 9.265631-1 1.544962-1 1.120601+0 1.259207-1 1.286622+0 1.075473-1 1.477239+0 9.185479-2 1.696098+0 7.845203-2 1.947381+0 6.700489-2 2.235892+0 5.722804-2 2.567148+0 4.887775-2 2.962437+0 4.151566-2 3.543651+0 3.382854-2 4.068655+0 2.889253-2 4.671441+0 2.467675-2 5.363532+0 2.107610-2 6.158159+0 1.800084-2 7.070513+0 1.537429-2 8.118035+0 1.313099-2 9.320751+0 1.121501-2 9.760024+0 1.064062-2 1.000000+1 2.218718-2 1 91000 7 0 2.330000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.056301+1 1.410191-6-8.860922+1 1.438659-6-8.762637+1 1.452256-6-9.077383+1 1.469467-6-8.950112+1 1.501380-6-9.065417+1 1.574884-6-8.922709+1 1.591327-6-9.052097+1 2.224445-6-8.686461+1 2.416006-6-8.205578+1 2.476861-6-7.680607+1 2.503219-6-7.083937+1 2.536204-6-5.296869+1 2.542873-6-5.141774+1 2.549525-6-5.341337+1 2.556543-6-5.922440+1 2.564963-6-7.285442+1 2.573709-6-9.089361+1 2.585923-6-6.920232+1 2.594149-6-6.153292+1 2.601296-6-5.929703+1 2.608971-6-6.139033+1 2.640990-6-7.855693+1 2.670847-6-8.544167+1 2.731196-6-9.090183+1 2.853660-6-8.119813+1 2.891417-6-7.891726+1 2.922212-6-7.122640+1 2.940020-6-6.298158+1 2.947130-6-5.697112+1 2.954384-6-5.035515+1 2.961638-6-4.405468+1 2.969799-6-3.582253+1 2.977053-6-2.954617+1 2.984307-6-2.611636+1 2.987084-6-2.608881+1 2.991561-6-2.767892+1 2.994338-6-2.990704+1 2.997908-6-3.447228+1 3.002867-6-4.337752+1 3.009016-6-5.929601+1 3.012753-6-7.126593+1 3.018959-6-9.082257+1 3.022614-6-7.739596+1 3.029134-6-5.568005+1 3.035481-6-3.829812+1 3.039479-6-3.019111+1 3.042339-6-2.537126+1 3.045116-6-2.191448+1 3.047793-6-1.962462+1 3.051860-6-1.788709+1 3.054920-6-1.765832+1 3.061380-6-2.023908+1 3.069655-6-2.706482+1 3.080195-6-3.757814+1 3.091756-6-4.733371+1 3.096051-6-5.175631+1 3.107610-6-5.831055+1 3.130093-6-6.551721+1 3.173610-6-7.270003+1 3.245879-6-7.835318+1 3.550838-6-8.478503+1 4.320972-6-9.056103+1 4.351974-6-9.161540+1 4.394661-6-9.115817+1 4.407061-6-9.104215+1 4.457294-6-8.212759+1 4.492946-6-8.188657+1 4.588176-6-8.594601+1 4.916830-6-8.912840+1 5.007280-6-8.597461+1 5.186021-6-8.811472+1 1.290508-5-9.015238+1 1.605926-5-8.496768+1 1.740412-5-7.855177+1 1.806910-5-7.115626+1 1.842849-5-6.322903+1 1.859655-5-5.683775+1 1.875275-5-4.660455+1 1.890203-5-3.505552+1 1.895944-5-3.237253+1 1.901685-5-3.156830+1 1.913599-5-3.309738+1 1.918192-5-3.134281+1 1.921206-5-2.776457+1 1.922646-5-2.475284+1 1.923274-5-2.250115+1 1.924922-5-1.844553+1 1.928683-5-1.053760+1 1.930564-5-6.188638+0 1.931504-5-3.691219+0 1.931974-5-2.281281+0 1.932445-5-5.708402-1 1.933036-5 1.553257+0 1.936142-5 1.080724+1 1.936660-5 1.255032+1 1.937474-5 1.601923+1 1.942761-5 3.231308+1 1.947064-5 4.046184+1 1.948539-5 4.134252+1 1.950647-5 3.989313+1 1.952003-5 3.765885+1 1.954294-5 3.174037+1 1.955829-5 2.620904+1 1.957553-5 1.835887+1 1.958376-5 1.391721+1 1.958993-5 1.024054+1 1.959455-5 7.257556+0 1.960150-5 2.329424+0 1.960497-5-4.205103-1 1.960670-5-1.915737+0 1.961139-5-6.437064+0 1.963913-5-3.003447+1 1.965109-5-4.171227+1 1.966343-5-5.622124+1 1.969740-5-9.146146+1 1.970661-5-7.928863+1 1.975043-5-3.173460+1 1.975478-5-2.641450+1 1.976485-5-1.621598+1 1.977308-5-8.677823+0 1.978542-5 2.008516+0 1.979468-5 1.002305+1 1.980072-5 1.585676+1 1.981112-5 2.398104+1 1.981961-5 2.973505+1 1.984510-5 4.448270+1 1.986137-5 5.197903+1 1.988660-5 5.953896+1 1.991313-5 6.308410+1 1.993310-5 6.346652+1 1.997526-5 5.777995+1 2.002924-5 4.304478+1 2.008767-5 2.356649+1 2.011355-5 1.626861+1 2.015275-5 6.097738+0 2.016458-5 2.598007+0 2.017050-5 6.091276-1 2.017346-5-5.133327-1 2.017642-5-1.901285+0 2.017997-5-3.522261+0 2.018620-5-5.694604+0 2.019568-5-8.470761+0 2.020488-5-1.083239+1 2.021732-5-1.367080+1 2.023596-5-1.739831+1 2.025461-5-2.066128+1 2.030435-5-2.781783+1 2.037894-5-3.587733+1 2.047841-5-4.370404+1 2.060274-5-5.077574+1 2.080166-5-5.864228+1 2.120151-5-6.858581+1 2.169653-5-7.750064+1 2.206912-5-7.846106+1 2.234872-5-8.227295+1 2.270078-5-7.806209+1 2.313727-5-8.103928+1 2.558186-5-8.851103+1 2.611332-5-9.095402+1 2.674614-5-8.231677+1 2.704227-5-7.414675+1 2.720988-5-6.563358+1 2.728658-5-5.868727+1 2.733923-5-5.217061+1 2.742777-5-4.297828+1 2.750702-5-3.318689+1 2.757420-5-2.616008+1 2.763770-5-2.259287+1 2.766342-5-2.256679+1 2.770488-5-2.438769+1 2.773060-5-2.693279+1 2.775746-5-3.093664+1 2.780313-5-4.067977+1 2.783084-5-4.871063+1 2.789304-5-7.023158+1 2.794225-5-9.056548+1 2.799686-5-6.660568+1 2.803448-5-5.085443+1 2.805285-5-4.350742+1 2.810926-5-2.413540+1 2.813174-5-1.808719+1 2.815700-5-1.266494+1 2.816905-5-1.046402+1 2.818712-5-7.569176+0 2.820520-5-5.107158+0 2.821719-5-3.716554+0 2.823817-5-1.806988+0 2.825390-5-7.937569-1 2.826570-5-2.804797-1 2.828340-5 4.177726-2 2.829225-5-4.953591-2 2.833469-5-2.065914+0 2.835148-5-3.069260+0 2.835988-5-3.746438+0 2.837667-5-5.737073+0 2.842076-5-9.990039+0 2.842811-5-1.084541+1 2.843545-5-1.191843+1 2.852573-5-2.281710+1 2.862020-5-3.227213+1 2.865358-5-3.700207+1 2.870240-5-4.149316+1 2.880607-5-4.778477+1 2.900000-5-5.497543+1 2.927513-5-6.099026+1 2.980753-5-6.745943+1 3.065169-5-7.350824+1 3.126591-5-7.473321+1 3.180130-5-7.427149+1 4.055387-5-7.723156+1 6.136282-5-8.127491+1 6.719270-5-8.403030+1 7.549371-5-7.661667+1 8.018641-5-6.836143+1 8.294968-5-5.964667+1 8.471898-5-5.060190+1 8.585191-5-4.194789+1 8.653460-5-3.486649+1 8.700620-5-2.868818+1 8.751469-5-2.030283+1 8.775658-5-1.544252+1 8.795412-5-1.091688+1 8.810227-5-7.118794+0 8.821339-5-3.997361+0 8.829672-5-1.477096+0 8.842173-5 2.647309+0 8.848423-5 4.900057+0 8.854673-5 7.354522+0 8.865571-5 1.185977+1 8.876468-5 1.663296+1 8.892814-5 2.474686+1 8.909160-5 3.457161+1 8.924739-5 4.622282+1 8.936150-5 5.749310+1 8.941852-5 6.571517+1 8.982787-5 1.053347+2 9.007538-5 1.317778+2 9.035052-5 1.538811+2 9.053550-5 1.585798+2 9.067038-5 1.537515+2 9.082865-5 1.382284+2 9.094415-5 1.193765+2 9.109313-5 8.681460+1 9.115347-5 6.998747+1 9.117571-5 6.221605+1 9.130342-5 2.294414+1 9.133694-5 1.170694+1 9.135849-5 3.894924+0 9.136926-5-3.273925-1 9.137465-5-2.590988+0 9.138345-5-6.830610+0 9.139015-5-9.720076+0 9.140314-5-1.488421+1 9.142750-5-2.395967+1 9.156127-5-7.221657+1 9.159416-5-8.593925+1 9.163384-5-6.857300+1 9.169340-5-4.685846+1 9.178530-5-1.464172+1 9.180062-5-8.898128+0 9.180827-5-5.852327+0 9.181210-5-4.236311+0 9.181934-5-8.054065-1 9.182604-5 1.970630+0 9.183903-5 6.880135+0 9.186339-5 1.531286+1 9.188470-5 2.220830+1 9.206443-5 7.552152+1 9.216176-5 9.715965+1 9.228127-5 1.165865+2 9.241704-5 1.314146+2 9.256258-5 1.394106+2 9.266715-5 1.393370+2 9.288930-5 1.258022+2 9.312812-5 9.977597+1 9.343193-5 6.397088+1 9.369003-5 3.869267+1 9.376363-5 3.013623+1 9.380231-5 2.394628+1 9.382883-5 2.047922+1 9.387523-5 1.535181+1 9.391003-5 1.193493+1 9.396224-5 7.257866+0 9.401444-5 2.975084+0 9.407567-5-1.659932+0 9.416753-5-8.000918+0 9.425938-5-1.378934+1 9.441008-5-2.238417+1 9.462594-5-3.331565+1 9.510862-5-5.462550+1 9.578163-5-8.425489+1 9.584707-5-8.763815+1 9.610788-5-7.164482+1 9.624377-5-5.950868+1 9.661593-5-3.384106+1 9.687079-5-1.355977+1 9.688558-5-1.208401+1 9.691332-5-9.857655+0 9.696186-5-6.478721+0 9.703467-5-1.877946+0 9.707107-5 4.547203-1 9.708927-5 1.725345+0 9.712373-5 4.688394+0 9.715422-5 6.564301+0 9.718089-5 7.887276+0 9.722757-5 9.757510+0 9.738882-5 1.460987+1 9.742992-5 1.503309+1 9.746845-5 1.487725+1 9.750457-5 1.434763+1 9.757018-5 1.254455+1 9.759994-5 1.138910+1 9.765575-5 8.670006+0 9.770458-5 5.699290+0 9.774731-5 2.636879+0 9.778470-5-4.103114-1 9.781741-5-3.371279+0 9.784603-5-6.200218+0 9.789299-5-1.136027+1 9.793135-5-1.610805+1 9.798168-5-2.322221+1 9.803427-5-3.227632+1 9.807599-5-4.119915+1 9.825204-5-7.455258+1 9.832009-5-8.979653+1 9.838238-5-7.381549+1 9.852346-5-4.144775+1 9.855646-5-3.264158+1 9.857210-5-2.769390+1 9.858615-5-2.392792+1 9.879681-5 2.510012+1 9.881916-5 3.092189+1 9.884679-5 3.705298+1 9.889516-5 4.675099+1 9.907883-5 8.049649+1 9.920480-5 9.707383+1 9.938856-5 1.125803+2 9.958248-5 1.199059+2 9.973935-5 1.191096+2 9.995919-5 1.097373+2 1.001948-4 9.417242+1 1.004712-4 7.347698+1 1.008582-4 4.903993+1 1.009199-4 4.318527+1 1.009961-4 3.786051+1 1.011507-4 2.974124+1 1.012434-4 2.574686+1 1.013671-4 2.108456+1 1.014914-4 1.697971+1 1.016145-4 1.336453+1 1.017381-4 1.010029+1 1.019309-4 5.623355+0 1.021237-4 1.754804+0 1.023138-4-1.579998+0 1.025039-4-4.494678+0 1.027675-4-7.979459+0 1.030216-4-1.086548+1 1.035700-4-1.605393+1 1.042737-4-2.159169+1 1.049790-4-2.620878+1 1.059473-4-3.107598+1 1.074375-4-3.627237+1 1.092239-4-4.034470+1 1.123125-4-4.424243+1 1.181381-4-4.733011+1 1.422309-4-5.315143+1 1.937112-4-6.088324+1 2.428554-4-6.375246+1 3.457814-4-7.070755+1 3.727771-4-7.349049+1 4.103743-4-8.051815+1 4.435000-4-8.535315+1 4.786301-4-8.337451+1 5.922061-4-6.680149+1 6.486747-4-6.188389+1 6.746605-4-6.204480+1 6.891208-4-6.617786+1 6.927274-4-6.425649+1 7.004897-4-5.464679+1 7.044976-4-5.311727+1 7.281320-4-5.792296+1 7.345890-4-5.542604+1 7.419982-4-5.044792+1 7.489911-4-4.991086+1 7.616556-4-5.009056+1 8.925344-4-4.198518+1 9.610974-4-3.978025+1 9.837590-4-3.991330+1 1.022557-3-3.686852+1 1.122826-3-3.264545+1 1.309241-3-2.819717+1 1.382400-3-2.706630+1 1.511904-3-2.493611+1 1.759228-3-2.277526+1 2.083291-3-2.172806+1 2.469249-3-2.203169+1 2.829416-3-2.373662+1 3.070277-3-2.613753+1 3.237302-3-2.924937+1 3.328865-3-3.243237+1 3.378339-3-3.579007+1 3.427866-3-4.155612+1 3.452629-3-4.219661+1 3.522111-3-3.666405+1 3.556894-3-3.624573+1 3.609220-3-3.740570+1 3.637658-3-3.575859+1 3.695042-3-3.024437+1 3.749999-3-2.722927+1 3.847877-3-2.409841+1 3.974522-3-2.182604+1 4.071198-3-2.126134+1 4.151768-3-2.207121+1 4.189395-3-2.115664+1 4.249771-3-1.881924+1 4.338969-3-1.681212+1 4.494148-3-1.465825+1 4.704044-3-1.283670+1 4.881583-3-1.206351+1 4.995739-3-1.218837+1 5.139220-3-1.079356+1 5.259645-3-1.027490+1 5.348251-3-1.004249+1 5.495409-3-8.790057+0 5.720620-3-7.663733+0 5.999195-3-6.714388+0 6.423146-3-5.732829+0 6.928380-3-4.986397+0 7.435414-3-4.527473+0 8.204696-3-4.191754+0 9.245651-3-4.078936+0 1.044870-2-4.253038+0 1.180140-2-4.656799+0 1.339249-2-5.393717+0 1.462093-2-6.251178+0 1.545235-2-7.167814+0 1.595976-2-8.083588+0 1.627698-2-9.076813+0 1.646453-2-1.021555+1 1.666215-2-1.197753+1 1.676472-2-1.220297+1 1.687784-2-1.146962+1 1.708206-2-9.604349+0 1.729403-2-8.531576+0 1.763149-2-7.621609+0 1.813728-2-6.901128+0 1.874522-2-6.523941+0 1.936564-2-6.522466+0 1.979984-2-6.854830+0 2.006268-2-7.425601+0 2.031890-2-8.343716+0 2.047131-2-8.372531+0 2.077692-2-7.442434+0 2.114745-2-6.969309+0 2.161868-2-5.525999+0 2.202956-2-4.783606+0 2.267090-2-4.022073+0 2.362352-2-3.260869+0 2.452941-2-2.744090+0 2.569384-2-2.273415+0 2.699293-2-1.907237+0 2.859236-2-1.586851+0 3.021929-2-1.366696+0 3.246796-2-1.170669+0 3.511277-2-1.053346+0 3.813646-2-1.000400+0 4.221881-2-9.994429-1 4.899479-2-1.094647+0 7.420287-2-1.634131+0 9.091542-2-2.062067+0 9.973038-2-2.397938+0 1.049388-1-2.719274+0 1.082302-1-3.067170+0 1.100945-1-3.421173+0 1.112285-1-3.831854+0 1.125449-1-4.505635+0 1.132398-1-4.580253+0 1.139340-1-4.314649+0 1.153703-1-3.526611+0 1.164071-1-3.179053+0 1.182298-1-2.809277+0 1.209201-1-2.466451+0 1.252861-1-2.123034+0 1.313388-1-1.821542+0 1.386980-1-1.592619+0 1.494979-1-1.390605+0 1.636129-1-1.241411+0 1.778279-1-1.158668+0 2.009671-1-1.095452+0 2.465580-1-1.072382+0 5.328203-1-1.195473+0 9.773020-1-1.251182+0 2.962437+0-1.275281+0 8.901248+0-1.281651+0 1.000000+1-1.278325+0 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.143372-1 1.053568-6 1.506272-1 1.084234-6 1.765462-1 1.108409-6 2.005009-1 1.126281-6 2.204692-1 1.143037-6 2.413231-1 1.158745-6 2.630617-1 1.173472-6 2.856856-1 1.187278-6 3.091952-1 1.200221-6 3.335764-1 1.212355-6 3.588248-1 1.223731-6 3.849795-1 1.234396-6 4.120802-1 1.244394-6 4.401565-1 1.253768-6 4.692434-1 1.262555-6 4.994065-1 1.270794-6 5.307434-1 1.278517-6 5.632880-1 1.292999-6 6.342175-1 1.305670-6 7.101907-1 1.316758-6 7.918565-1 1.326459-6 8.797594-1 1.334948-6 9.744019-1 1.342375-6 1.076231+0 1.350000-6 1.207292+0 1.354562-6 1.304042+0 1.359538-6 1.432272+0 1.363892-6 1.572176+0 1.367701-6 1.725323+0 1.371035-6 1.892478+0 1.373952-6 2.073041+0 1.376504-6 2.264897+0 1.378737-6 2.464719+0 1.380691-6 2.668502+0 1.382401-6 2.872134+0 1.383897-6 3.071841+0 1.386515-6 3.474896+0 1.389951-6 4.118679+0 1.396675-6 5.786151+0 1.399517-6 6.642891+0 1.401233-6 7.193999+0 1.404666-6 8.343086+0 1.405095-6 8.488659+0 1.408098-6 9.497203+0 1.409277-6 9.880244+0 1.411530-6 1.057187+1 1.412709-6 1.090600+1 1.413836-6 1.120224+1 1.414962-6 1.147296+1 1.416463-6 1.178883+1 1.417911-6 1.203879+1 1.419252-6 1.221765+1 1.420378-6 1.232608+1 1.421826-6 1.240655+1 1.423756-6 1.240680+1 1.425365-6 1.231193+1 1.425963-6 1.225476+1 1.427326-6 1.208049+1 1.428849-6 1.181615+1 1.430470-6 1.145857+1 1.432145-6 1.101367+1 1.433740-6 1.052741+1 1.435661-6 9.873131+0 1.437308-6 9.265544+0 1.438986-6 8.614579+0 1.440447-6 8.030973+0 1.442049-6 7.383465+0 1.443276-6 6.887395+0 1.444402-6 6.436480+0 1.445850-6 5.867474+0 1.447566-6 5.215840+0 1.449068-6 4.671768+0 1.450301-6 4.246286+0 1.451508-6 3.850705+0 1.452714-6 3.476899+0 1.456147-6 2.539570+0 1.457467-6 2.229525+0 1.458523-6 2.001642+0 1.459579-6 1.791142+0 1.461080-6 1.520727+0 1.462603-6 1.279509+0 1.464026-6 1.082523+0 1.465258-6 9.323888-1 1.467074-6 7.429666-1 1.468848-6 5.909128-1 1.471149-6 4.356895-1 1.474326-6 2.854112-1 1.475398-6 2.484261-1 1.476456-6 2.176517-1 1.477497-6 1.923286-1 1.478011-6 1.814776-1 1.478522-6 1.717211-1 1.479535-6 1.551288-1 1.480532-6 1.420761-1 1.481513-6 1.320718-1 1.482480-6 1.246906-1 1.483431-6 1.195652-1 1.484367-6 1.163788-1 1.486210-6 1.147788-1 1.487996-6 1.181943-1 1.489726-6 1.253035-1 1.491402-6 1.351349-1 1.494649-6 1.607523-1 1.497693-6 1.909558-1 1.520523-6 5.799287-1 1.523376-6 6.624492-1 1.525873-6 7.464140-1 1.528058-6 8.306048-1 1.531643-6 9.944131-1 1.538412-6 1.410124+0 1.543352-6 1.814251+0 1.545905-6 2.056441+0 1.547151-6 2.182231+0 1.549050-6 2.382211+0 1.550950-6 2.590490+0 1.554749-6 3.021653+0 1.555223-6 3.075963+0 1.558547-6 3.450053+0 1.559853-6 3.590981+0 1.562346-6 3.843346+0 1.563652-6 3.964013+0 1.564898-6 4.070056+0 1.566145-6 4.165931+0 1.567807-6 4.275957+0 1.569410-6 4.360646+0 1.570893-6 4.418610+0 1.572140-6 4.451145+0 1.573742-6 4.470332+0 1.575879-6 4.455091+0 1.577660-6 4.406419+0 1.578120-6 4.388579+0 1.580132-6 4.285768+0 1.581743-6 4.175678+0 1.582701-6 4.099126+0 1.584625-6 3.922746+0 1.586295-6 3.747598+0 1.589114-6 3.414517+0 1.590603-6 3.224127+0 1.591537-6 3.101267+0 1.592974-6 2.908286+0 1.594490-6 2.701884+0 1.595960-6 2.501386+0 1.597485-6 2.295249+0 1.599132-6 2.077207+0 1.600334-6 1.922508+0 1.602233-6 1.687866+0 1.603955-6 1.487591+0 1.604815-6 1.392396+0 1.606373-6 1.229069+0 1.607931-6 1.077893+0 1.609393-6 9.474694-1 1.611146-6 8.057554-1 1.612510-6 7.064608-1 1.613265-6 6.555929-1 1.614397-6 5.845868-1 1.615529-6 5.197560-1 1.617191-6 4.352674-1 1.619396-6 3.414537-1 1.624136-6 2.004545-1 1.625817-6 1.669584-1 1.626855-6 1.498500-1 1.627829-6 1.360336-1 1.628758-6 1.247159-1 1.629629-6 1.156184-1 1.630445-6 1.083154-1 1.631210-6 1.024651-1 1.632645-6 9.384991-2 1.633900-6 8.855173-2 1.634998-6 8.541609-2 1.636921-6 8.281247-2 1.638362-6 8.289415-2 1.640525-6 8.564686-2 1.642687-6 9.089366-2 1.644709-6 9.751723-2 1.646731-6 1.054001-1 1.650774-6 1.237796-1 1.654817-6 1.443044-1 1.658860-6 1.659546-1 1.662904-6 1.881449-1 1.666947-6 2.105471-1 1.670990-6 2.329820-1 1.675033-6 2.553554-1 1.679077-6 2.776219-1 1.683120-6 2.997641-1 1.687163-6 3.217807-1 1.691207-6 3.436800-1 1.695250-6 3.654756-1 1.699293-6 3.871843-1 1.703336-6 4.088246-1 1.707380-6 4.304158-1 1.711423-6 4.519775-1 1.719509-6 4.950898-1 1.723553-6 5.166784-1 1.740757-6 6.092899-1 1.756886-6 6.981518-1 1.787128-6 8.739086-1 1.840051-6 1.218502+0 1.879744-6 1.523316+0 1.909513-6 1.790736+0 1.931840-6 2.022144+0 1.948586-6 2.221070+0 1.961145-6 2.392436+0 1.970564-6 2.540312+0 1.984693-6 2.808860+0 2.003741-6 3.261472+0 2.008661-6 3.378260+0 2.013581-6 3.482583+0 2.018501-6 3.566111+0 2.023421-6 3.620952+0 2.025881-6 3.635638+0 2.028341-6 3.641159+0 2.030801-6 3.637317+0 2.033260-6 3.624198+0 2.035720-6 3.602192+0 2.038180-6 3.571993+0 2.043100-6 3.491230+0 2.048020-6 3.392713+0 2.054170-6 3.265145+0 2.057860-6 3.196715+0 2.060320-6 3.157780+0 2.062780-6 3.125721+0 2.065239-6 3.101575+0 2.067699-6 3.086107+0 2.070159-6 3.079800+0 2.072619-6 3.082861+0 2.075079-6 3.095234+0 2.077539-6 3.116628+0 2.082459-6 3.184365+0 2.087379-6 3.280483+0 2.092299-6 3.398163+0 2.108252-6 3.852097+0 2.118605-6 4.157384+0 2.128958-6 4.455711+0 2.144487-6 4.898334+0 2.175546-6 5.836209+0 2.206605-6 6.924810+0 2.230041-6 7.884931+0 2.252013-6 8.920553+0 2.272611-6 1.004072+1 2.291922-6 1.125250+1 2.310026-6 1.256198+1 2.326999-6 1.397523+1 2.342911-6 1.549876+1 2.357828-6 1.713910+1 2.371813-6 1.890134+1 2.387734-6 2.122907+1 2.397215-6 2.281160+1 2.408739-6 2.497425+1 2.419542-6 2.728580+1 2.429669-6 2.975345+1 2.439164-6 3.238430+1 2.448066-6 3.518570+1 2.456411-6 3.816537+1 2.464234-6 4.133151+1 2.471569-6 4.469279+1 2.478445-6 4.825848+1 2.484892-6 5.203850+1 2.490935-6 5.604360+1 2.496601-6 6.028577+1 2.501912-6 6.477884+1 2.506892-6 6.953917+1 2.511561-6 7.458618+1 2.515937-6 7.994242+1 2.524144-6 9.211507+1 2.531324-6 1.059395+2 2.537607-6 1.215699+2 2.543105-6 1.390175+2 2.547915-6 1.581161+2 2.552124-6 1.785397+2 2.555807-6 1.998561+2 2.560000-6 2.287614+2 2.564317-6 2.645330+2 2.568364-6 3.044476+2 2.582729-6 5.058822+2 2.587942-6 6.043219+2 2.591119-6 6.708131+2 2.594296-6 7.418065+2 2.600650-6 8.949169+2 2.601445-6 9.148555+2 2.607005-6 1.056994+3 2.609189-6 1.113135+3 2.613359-6 1.218522+3 2.616586-6 1.296660+3 2.619713-6 1.367848+3 2.622940-6 1.434995+3 2.626067-6 1.492479+3 2.628847-6 1.536198+3 2.632086-6 1.577219+3 2.635797-6 1.609756+3 2.638974-6 1.624476+3 2.640080-6 1.626659+3 2.643236-6 1.624426+3 2.645566-6 1.614752+3 2.651779-6 1.556790+3 2.654780-6 1.513210+3 2.658013-6 1.456254+3 2.660817-6 1.399453+3 2.662738-6 1.357131+3 2.665482-6 1.292573+3 2.667247-6 1.248958+3 2.669997-6 1.178412+3 2.673018-6 1.098443+3 2.676173-6 1.013492+3 2.680078-6 9.084118+2 2.683255-6 8.245136+2 2.686830-6 7.333080+2 2.689610-6 6.654949+2 2.695964-6 5.233415+2 2.699047-6 4.616247+2 2.703978-6 3.734406+2 2.707792-6 3.140973+2 2.711447-6 2.642878+2 2.715622-6 2.153288+2 2.719297-6 1.787097+2 2.723895-6 1.405274+2 2.728036-6 1.125177+2 2.731130-6 9.500872+1 2.736026-6 7.238223+1 2.741432-6 5.334897+1 2.748131-6 3.638347+1 2.757359-6 2.134717+1 2.763730-6 1.471351+1 2.770369-6 9.935741+0 2.778198-6 6.211366+0 2.782626-6 4.757769+0 2.785473-6 4.015932+0 2.788320-6 3.402552+0 2.791875-6 2.793808+0 2.793584-6 2.556355+0 2.794866-6 2.399801+0 2.798713-6 2.031435+0 2.799916-6 1.944967+0 2.801053-6 1.874980+0 2.802599-6 1.797202+0 2.805551-6 1.700950+0 2.806406-6 1.685146+0 2.807902-6 1.669821+0 2.810145-6 1.674942+0 2.812389-6 1.711918+0 2.813776-6 1.749872+0 2.816202-6 1.842677+0 2.818022-6 1.933382+0 2.820752-6 2.101744+0 2.823482-6 2.307212+0 2.826149-6 2.542296+0 2.837480-6 3.903583+0 2.840812-6 4.414771+0 2.846580-6 5.424168+0 2.853418-6 6.841079+0 2.856837-6 7.647583+0 2.860256-6 8.525290+0 2.863675-6 9.479120+0 2.867095-6 1.051434+1 2.873933-6 1.285141+1 2.880771-6 1.558374+1 2.887609-6 1.876232+1 2.894447-6 2.244315+1 2.901285-6 2.669029+1 2.908289-6 3.170738+1 2.914962-6 3.720881+1 2.929747-6 5.253254+1 2.942741-6 7.089216+1 2.948636-6 8.134820+1 2.954162-6 9.275425+1 2.959343-6 1.052003+2 2.964200-6 1.187863+2 2.968754-6 1.336180+2 2.973023-6 1.498002+2 2.977025-6 1.674291+2 2.980777-6 1.865837+2 2.984294-6 2.073185+2 2.987592-6 2.296575+2 2.990684-6 2.535908+2 2.996480-6 3.079387+2 3.001552-6 3.680461+2 3.005990-6 4.326170+2 3.009874-6 5.000989+2 3.016245-6 6.374825+2 3.030194-6 1.088408+3 3.036695-6 1.386052+3 3.040353-6 1.581413+3 3.044894-6 1.852879+3 3.048451-6 2.087901+3 3.052007-6 2.342059+3 3.059973-6 2.974187+3 3.060891-6 3.051962+3 3.067323-6 3.617061+3 3.069893-6 3.849949+3 3.074799-6 4.297861+3 3.078595-6 4.640821+3 3.082275-6 4.963661+3 3.086072-6 5.280441+3 3.089751-6 5.565448+3 3.093022-6 5.795758+3 3.096045-6 5.985790+3 3.097695-6 6.079233+3 3.102075-6 6.288407+3 3.105496-6 6.409233+3 3.109481-6 6.499600+3 3.112734-6 6.531665+3 3.119890-6 6.469035+3 3.123234-6 6.378711+3 3.127600-6 6.206292+3 3.130584-6 6.055797+3 3.132596-6 5.940723+3 3.135543-6 5.754365+3 3.138405-6 5.555385+3 3.142085-6 5.277777+3 3.145356-6 5.014752+3 3.148510-6 4.750590+3 3.153299-6 4.337733+3 3.157037-6 4.012312+3 3.161031-6 3.667809+3 3.164137-6 3.405533+3 3.172273-6 2.758143+3 3.175680-6 2.509094+3 3.182185-6 2.076338+3 3.187599-6 1.761322+3 3.194907-6 1.401519+3 3.205682-6 9.973659+2 3.209598-6 8.832159+2 3.213515-6 7.840838+2 3.217431-6 6.983853+2 3.221347-6 6.245734+2 3.225264-6 5.611758+2 3.229180-6 5.068208+2 3.233096-6 4.602536+2 3.237012-6 4.203448+2 3.240929-6 3.860925+2 3.244845-6 3.566187+2 3.249372-6 3.275102+2 3.253899-6 3.027788+2 3.261297-6 2.696955+2 3.269325-6 2.413632+2 3.277927-6 2.170186+2 3.293945-6 1.819875+2 3.307505-6 1.587310+2 3.323457-6 1.362732+2 3.338835-6 1.185683+2 3.352330-6 1.056925+2 3.360383-6 9.900330+1 3.376489-6 8.740651+1 3.408702-6 6.913289+1 3.481029-6 4.161821+1 3.507176-6 3.471593+1 3.515866-6 3.277906+1 3.524314-6 3.108675+1 3.532883-6 2.956351+1 3.545401-6 2.765736+1 3.567160-6 2.491603+1 3.575729-6 2.387104+1 3.584298-6 2.275756+1 3.590725-6 2.185043+1 3.595545-6 2.112144+1 3.602776-6 1.994631+1 3.610006-6 1.868125+1 3.618575-6 1.710138+1 3.627144-6 1.550862+1 3.638792-6 1.353777+1 3.643076-6 1.293755+1 3.644283-6 1.278600+1 3.648567-6 1.232128+1 3.652852-6 1.198984+1 3.658061-6 1.180144+1 3.659798-6 1.179776+1 3.668762-6 1.231838+1 3.670478-6 1.253016+1 3.678314-6 1.399497+1 3.681666-6 1.487824+1 3.687685-6 1.685072+1 3.693854-6 1.936332+1 3.702865-6 2.379864+1 3.708198-6 2.674447+1 3.713014-6 2.952819+1 3.714239-6 3.024612+1 3.719166-6 3.313935+1 3.723630-6 3.571920+1 3.726564-6 3.736254+1 3.730685-6 3.956544+1 3.733876-6 4.116217+1 3.742028-6 4.467542+1 3.745249-6 4.579859+1 3.751397-6 4.746831+1 3.756061-6 4.829570+1 3.758723-6 4.859420+1 3.761051-6 4.875216+1 3.765127-6 4.880079+1 3.768183-6 4.865295+1 3.770475-6 4.844298+1 3.775633-6 4.768061+1 3.777352-6 4.734371+1 3.783309-6 4.589605+1 3.785294-6 4.532790+1 3.792017-6 4.315217+1 3.794258-6 4.235766+1 3.803222-6 3.897013+1 3.823087-6 3.141077+1 3.835461-6 2.739793+1 3.839633-6 2.622220+1 3.845891-6 2.463254+1 3.852149-6 2.324487+1 3.858949-6 2.194780+1 3.865749-6 2.084330+1 3.875265-6 1.956000+1 3.884780-6 1.850118+1 3.908394-6 1.634885+1 3.919275-6 1.541259+1 3.930157-6 1.444830+1 3.947156-6 1.285183+1 3.968786-6 1.068693+1 3.975394-6 1.001804+1 3.997672-6 7.934336+0 4.001496-6 7.635977+0 4.006665-6 7.279498+0 4.009525-6 7.109685+0 4.028278-6 6.665435+0 4.038185-6 7.049335+0 4.039447-6 7.135090+0 4.048287-6 7.984125+0 4.052418-6 8.532700+0 4.056021-6 9.089375+0 4.061540-6 1.007816+1 4.075917-6 1.331353+1 4.082235-6 1.494874+1 4.087221-6 1.628200+1 4.092688-6 1.774982+1 4.097512-6 1.901864+1 4.101658-6 2.006737+1 4.106335-6 2.118176+1 4.108699-6 2.171048+1 4.118139-6 2.353079+1 4.121860-6 2.410017+1 4.128963-6 2.492490+1 4.133862-6 2.528390+1 4.139104-6 2.547611+1 4.143385-6 2.548890+1 4.146596-6 2.541671+1 4.149506-6 2.529352+1 4.154423-6 2.496853+1 4.156229-6 2.481476+1 4.164077-6 2.395822+1 4.166693-6 2.361321+1 4.176276-6 2.215690+1 4.186040-6 2.046693+1 4.194529-6 1.892622+1 4.203502-6 1.730190+1 4.211646-6 1.587665+1 4.227600-6 1.331094+1 4.236775-6 1.199120+1 4.246832-6 1.067314+1 4.256889-6 9.479240+0 4.269138-6 8.177131+0 4.300508-6 5.556999+0 4.313264-6 4.803113+0 4.324389-6 4.305601+0 4.329659-6 4.122264+0 4.334929-6 3.971666+0 4.338038-6 3.897678+0 4.342701-6 3.806484+0 4.347364-6 3.737872+0 4.350239-6 3.706223+0 4.355269-6 3.669249+0 4.359042-6 3.656121+0 4.364701-6 3.658805+0 4.370360-6 3.688027+0 4.376527-6 3.751856+0 4.381156-6 3.824790+0 4.386946-6 3.953054+0 4.390213-6 4.047659+0 4.399573-6 4.438589+0 4.403251-6 4.655401+0 4.406761-6 4.905110+0 4.410271-6 5.203611+0 4.413948-6 5.576946+0 4.417019-6 5.943023+0 4.420968-6 6.496210+0 4.423312-6 6.873380+0 4.425784-6 7.314135+0 4.430637-6 8.320566+0 4.435788-6 9.616151+0 4.443255-6 1.196670+1 4.455630-6 1.725982+1 4.462497-6 2.100655+1 4.468409-6 2.469390+1 4.473070-6 2.788767+1 4.478334-6 3.176951+1 4.483098-6 3.550246+1 4.488006-6 3.952208+1 4.492697-6 4.348297+1 4.497124-6 4.728050+1 4.502000-6 5.147399+1 4.506625-6 5.540146+1 4.510542-6 5.864532+1 4.515715-6 6.274941+1 4.519819-6 6.581135+1 4.525388-6 6.961735+1 4.530104-6 7.246914+1 4.530850-6 7.288578+1 4.542043-6 7.786841+1 4.546519-6 7.914597+1 4.553887-6 8.031319+1 4.559263-6 8.043039+1 4.562241-6 8.023537+1 4.567716-6 7.941471+1 4.571711-6 7.845925+1 4.575613-6 7.725795+1 4.578164-6 7.634015+1 4.583760-6 7.399765+1 4.585078-6 7.338629+1 4.593149-6 6.923357+1 4.595839-6 6.771976+1 4.600781-6 6.481548+1 4.606400-6 6.137750+1 4.616935-6 5.478588+1 4.620246-6 5.272997+1 4.633929-6 4.462523+1 4.656797-6 3.346982+1 4.663074-6 3.103485+1 4.671073-6 2.831796+1 4.678731-6 2.609759+1 4.685984-6 2.430566+1 4.692858-6 2.285494+1 4.700023-6 2.156544+1 4.710399-6 2.003261+1 4.716243-6 1.931080+1 4.728030-6 1.808957+1 4.740000-6 1.707835+1 4.752628-6 1.616504+1 4.784566-6 1.414540+1 4.794808-6 1.352530+1 4.805868-6 1.285976+1 4.816885-6 1.220096+1 4.839929-6 1.084320+1 4.872375-6 8.998231+0 4.900000-6 7.549858+0 4.914643-6 6.900154+0 4.923034-6 6.596802+0 4.926651-6 6.486810+0 4.933742-6 6.315191+0 4.940186-6 6.218196+0 4.958030-6 6.321362+0 4.970174-6 6.774287+0 4.971692-6 6.855461+0 4.977004-6 7.184293+0 4.983835-6 7.710308+0 4.987019-6 7.994951+0 4.994461-6 8.755327+0 5.008073-6 1.045584+1 5.017674-6 1.184183+1 5.024680-6 1.291186+1 5.032213-6 1.408185+1 5.038880-6 1.510440+1 5.044554-6 1.594390+1 5.053852-6 1.721356+1 5.056698-6 1.756730+1 5.067324-6 1.870325+1 5.071498-6 1.905884+1 5.079468-6 1.957899+1 5.086014-6 1.984258+1 5.089749-6 1.992549+1 5.093018-6 1.995791+1 5.098738-6 1.992619+1 5.103028-6 1.983085+1 5.109464-6 1.957950+1 5.115899-6 1.920891+1 5.125007-6 1.850899+1 5.128043-6 1.823697+1 5.140186-6 1.700393+1 5.152330-6 1.562684+1 5.174607-6 1.308095+1 5.190967-6 1.144799+1 5.207139-6 1.018617+1 5.219893-6 9.488019+0 5.226269-6 9.242791+0 5.232646-6 9.066769+0 5.236228-6 8.997711+0 5.241600-6 8.933110+0 5.246972-6 8.913385+0 5.250482-6 8.923459+0 5.256625-6 8.981632+0 5.261232-6 9.056236+0 5.268142-6 9.211363+0 5.275053-6 9.409122+0 5.296416-6 1.016578+1 5.309170-6 1.061529+1 5.312358-6 1.071694+1 5.321924-6 1.098247+1 5.325112-6 1.105566+1 5.334678-6 1.122285+1 5.343446-6 1.130354+1 5.351816-6 1.131668+1 5.360186-6 1.127303+1 5.372940-6 1.111875+1 5.385942-6 1.089189+1 5.412133-6 1.040802+1 5.425229-6 1.022220+1 5.436216-6 1.011108+1 5.447204-6 1.003968+1 5.455203-6 1.000897+1 5.468722-6 9.986482+0 5.510196-6 9.982983+0 5.533340-6 9.950618+0 5.607391-6 9.743046+0 5.664422-6 9.534881+0 5.722781-6 9.287625+0 5.755080-6 9.204971+0 5.787990-6 9.181055+0 5.829204-6 9.179679+0 5.849378-6 9.164954+0 5.876328-6 9.120998+0 6.007330-6 8.776399+0 6.291317-6 8.133281+0 6.363208-6 7.952517+0 6.394532-6 7.898244+0 6.425857-6 7.886819+0 6.441519-6 7.901655+0 6.469926-6 7.961641+0 6.519830-6 8.110787+0 6.535492-6 8.146515+0 6.554567-6 8.171073+0 6.578090-6 8.167143+0 6.598141-6 8.134623+0 6.629466-6 8.043643+0 6.720310-6 7.724738+0 6.913669-6 7.280183+0 6.964720-6 7.200186+0 7.000000-6 7.168730+0 7.100857-6 7.144988+0 7.143189-6 7.102575+0 7.202960-6 6.984656+0 7.263604-6 6.850973+0 7.316314-6 6.766467+0 7.387843-6 6.725310+0 7.426466-6 6.742682+0 7.512036-6 6.812884+0 7.533124-6 6.814709+0 7.558953-6 6.801020+0 7.601406-6 6.743510+0 7.881733-6 6.200025+0 7.933422-6 6.126807+0 7.984690-6 6.082667+0 8.106210-6 6.028774+0 8.164350-6 5.972582+0 8.261250-6 5.850589+0 8.462897-6 5.649985+0 8.733568-6 5.374019+0 9.362857-6 4.721803+0 9.826567-6 4.257305+0 1.025145-5 3.828970+0 1.055728-5 3.524712+0 1.085000-5 3.240314+0 1.108443-5 3.017698+0 1.137801-5 2.747482+0 1.166502-5 2.501579+0 1.218376-5 2.117917+0 1.230188-5 2.046200+0 1.244348-5 1.969530+0 1.256791-5 1.911606+0 1.266531-5 1.874201+0 1.277702-5 1.845906+0 1.284905-5 1.840992+0 1.294572-5 1.853486+0 1.305749-5 1.889444+0 1.312928-5 1.921139+0 1.325201-5 1.988495+0 1.339473-5 2.087890+0 1.351725-5 2.192885+0 1.366875-5 2.349793+0 1.375119-5 2.449017+0 1.384075-5 2.569366+0 1.402413-5 2.859308+0 1.420761-5 3.213884+0 1.436995-5 3.588533+0 1.452305-5 4.001186+0 1.467241-5 4.468145+0 1.486956-5 5.192372+0 1.497107-5 5.619998+0 1.506706-5 6.065701+0 1.521106-5 6.816674+0 1.541832-5 8.080594+0 1.558182-5 9.257198+0 1.577079-5 1.086006+1 1.595977-5 1.276574+1 1.611095-5 1.455394+1 1.621826-5 1.599488+1 1.640408-5 1.887225+1 1.656667-5 2.185400+1 1.672740-5 2.532904+1 1.688813-5 2.943712+1 1.704887-5 3.431872+1 1.712923-5 3.710966+1 1.727826-5 4.301582+1 1.741586-5 4.945596+1 1.752243-5 5.523696+1 1.763747-5 6.242160+1 1.774532-5 7.022110+1 1.784642-5 7.864515+1 1.796284-5 8.994185+1 1.803841-5 9.836758+1 1.811338-5 1.077355+2 1.819148-5 1.187446+2 1.826470-5 1.304181+2 1.833334-5 1.427502+2 1.842097-5 1.608114+2 1.851890-5 1.847756+2 1.856762-5 1.985063+2 1.861733-5 2.139871+2 1.866393-5 2.300414+2 1.875132-5 2.649616+2 1.882778-5 3.019845+2 1.889959-5 3.440447+2 1.895322-5 3.815016+2 1.901514-5 4.332591+2 1.904926-5 4.667172+2 1.908848-5 5.105361+2 1.912280-5 5.544481+2 1.915282-5 5.978404+2 1.920572-5 6.874975+2 1.924478-5 7.661260+2 1.930089-5 9.000399+2 1.937492-5 1.116841+3 1.941066-5 1.237307+3 1.945832-5 1.411586+3 1.950598-5 1.597981+3 1.955364-5 1.792642+3 1.960130-5 1.993840+3 1.969662-5 2.439430+3 1.973237-5 2.644997+3 1.974428-5 2.722206+3 1.978003-5 2.990159+3 1.980386-5 3.207780+3 1.983066-5 3.501259+3 1.984556-5 3.690905+3 1.985598-5 3.836504+3 1.988726-5 4.345303+3 1.990364-5 4.660172+3 1.991928-5 4.995344+3 1.994914-5 5.738227+3 1.998761-5 6.914823+3 2.006084-5 9.904624+3 2.009337-5 1.154899+4 2.011794-5 1.290822+4 2.016709-5 1.587123+4 2.018293-5 1.687651+4 2.021662-5 1.905407+4 2.024299-5 2.075732+4 2.025576-5 2.157054+4 2.028004-5 2.307435+4 2.029893-5 2.418925+4 2.031338-5 2.500081+4 2.033404-5 2.608377+4 2.035687-5 2.715623+4 2.036368-5 2.744768+4 2.039247-5 2.852003+4 2.041496-5 2.916105+4 2.044116-5 2.967240+4 2.046465-5 2.990543+4 2.047885-5 2.994089+4 2.050075-5 2.984005+4 2.052302-5 2.954733+4 2.054438-5 2.909347+4 2.056603-5 2.847076+4 2.057988-5 2.799200+4 2.059311-5 2.748098+4 2.061249-5 2.664548+4 2.063130-5 2.574575+4 2.065549-5 2.448137+4 2.067708-5 2.327123+4 2.069773-5 2.206099+4 2.072921-5 2.015384+4 2.075378-5 1.864559+4 2.078143-5 1.696127+4 2.080293-5 1.567912+4 2.085208-5 1.290690+4 2.087072-5 1.192988+4 2.090632-5 1.019931+4 2.094487-5 8.538733+3 2.098207-5 7.151268+3 2.108642-5 4.304727+3 2.111215-5 3.806558+3 2.113788-5 3.374368+3 2.116361-5 3.000756+3 2.118934-5 2.678603+3 2.121507-5 2.401226+3 2.124080-5 2.162481+3 2.126653-5 1.956816+3 2.129225-5 1.779304+3 2.131798-5 1.625626+3 2.136944-5 1.375396+3 2.142090-5 1.182495+3 2.147970-5 1.011121+3 2.152382-5 9.071966+2 2.157527-5 8.055246+2 2.163856-5 7.020752+2 2.167819-5 6.466248+2 2.173491-5 5.770123+2 2.185067-5 4.615271+2 2.211048-5 2.832811+2 2.217911-5 2.498912+2 2.223343-5 2.273291+2 2.228776-5 2.082206+2 2.234208-5 1.924987+2 2.238665-5 1.819702+2 2.241339-5 1.765813+2 2.244268-5 1.713876+2 2.248787-5 1.645956+2 2.255938-5 1.559806+2 2.268875-5 1.427971+2 2.280163-5 1.314772+2 2.285762-5 1.266580+2 2.289526-5 1.241572+2 2.291360-5 1.232273+2 2.295159-5 1.220100+2 2.299579-5 1.219241+2 2.301065-5 1.222305+2 2.303295-5 1.230024+2 2.305524-5 1.241340+2 2.309125-5 1.266472+2 2.313754-5 1.308631+2 2.323902-5 1.415332+2 2.330550-5 1.472896+2 2.333026-5 1.488267+2 2.335389-5 1.499161+2 2.339366-5 1.508548+2 2.342191-5 1.508272+2 2.344309-5 1.504390+2 2.347487-5 1.493068+2 2.350665-5 1.475890+2 2.354846-5 1.446133+2 2.358543-5 1.415021+2 2.372205-5 1.290737+2 2.376722-5 1.254258+2 2.383194-5 1.209743+2 2.389805-5 1.173561+2 2.401748-5 1.125012+2 2.423147-5 1.052969+2 2.443287-5 9.811867+1 2.477379-5 8.700908+1 2.515091-5 7.653388+1 2.531528-5 7.223025+1 2.559080-5 6.517509+1 2.582402-5 5.932610+1 2.600849-5 5.482272+1 2.617882-5 5.080552+1 2.652601-5 4.322169+1 2.675531-5 3.894022+1 2.687392-5 3.708922+1 2.693712-5 3.623337+1 2.699254-5 3.556745+1 2.704623-5 3.500468+1 2.709824-5 3.454338+1 2.714863-5 3.418247+1 2.722108-5 3.383065+1 2.728982-5 3.371204+1 2.733379-5 3.376934+1 2.738799-5 3.401466+1 2.742892-5 3.435288+1 2.746866-5 3.483179+1 2.750717-5 3.546169+1 2.752597-5 3.583670+1 2.756299-5 3.672132+1 2.759886-5 3.778692+1 2.763360-5 3.904403+1 2.766726-5 4.050282+1 2.770000-5 4.218090+1 2.773145-5 4.406477+1 2.776205-5 4.618737+1 2.779169-5 4.855090+1 2.782041-5 5.116566+1 2.784823-5 5.404254+1 2.787518-5 5.719313+1 2.790128-5 6.062986+1 2.792658-5 6.436608+1 2.797558-5 7.294454+1 2.802319-5 8.335869+1 2.806459-5 9.453366+1 2.810496-5 1.078376+2 2.814963-5 1.260634+2 2.817831-5 1.401802+2 2.821158-5 1.594545+2 2.824277-5 1.809029+2 2.827201-5 2.045548+2 2.829942-5 2.303950+2 2.833612-5 2.715673+2 2.837180-5 3.202300+2 2.841684-5 3.964355+2 2.848263-5 5.452649+2 2.857698-5 8.629872+2 2.863388-5 1.131776+3 2.868405-5 1.427291+3 2.872139-5 1.686975+3 2.876231-5 2.013256+3 2.878129-5 2.180018+3 2.881663-5 2.516747+3 2.885196-5 2.887681+3 2.892704-5 3.783649+3 2.893533-5 3.890671+3 2.899771-5 4.739507+3 2.902049-5 5.064353+3 2.906396-5 5.697478+3 2.909985-5 6.224212+3 2.913463-5 6.729072+3 2.917052-5 7.234512+3 2.920530-5 7.699895+3 2.923621-5 8.085724+3 2.927037-5 8.473656+3 2.928038-5 8.578545+3 2.932220-5 8.968262+3 2.935412-5 9.207582+3 2.939278-5 9.423217+3 2.942724-5 9.542793+3 2.945061-5 9.583684+3 2.948563-5 9.583669+3 2.950950-5 9.541920+3 2.956230-5 9.333886+3 2.959437-5 9.134748+3 2.962240-5 8.919820+3 2.965585-5 8.618764+3 2.968776-5 8.292261+3 2.972402-5 7.882873+3 2.976190-5 7.421689+3 2.980597-5 6.856398+3 2.984131-5 6.391708+3 2.988106-5 5.867444+3 2.991197-5 5.464866+3 2.998264-5 4.584645+3 3.000693-5 4.300151+3 3.005400-5 3.781594+3 3.011956-5 3.138805+3 3.025404-5 2.122312+3 3.029127-5 1.908229+3 3.032850-5 1.719946+3 3.036909-5 1.541450+3 3.040297-5 1.411648+3 3.043630-5 1.299188+3 3.048985-5 1.146067+3 3.055124-5 1.005240+3 3.061394-5 8.915003+2 3.068418-5 7.913956+2 3.072000-5 7.489258+2 3.078511-5 6.831760+2 3.086070-5 6.210752+2 3.094611-5 5.641447+2 3.101187-5 5.273055+2 3.108746-5 4.905931+2 3.124641-5 4.275102+2 3.141818-5 3.740916+2 3.157285-5 3.353018+2 3.165018-5 3.186756+2 3.172751-5 3.037547+2 3.180510-5 2.904280+2 3.196825-5 2.675294+2 3.207010-5 2.566017+2 3.212189-5 2.520116+2 3.218635-5 2.472034+2 3.226636-5 2.426377+2 3.233501-5 2.399586+2 3.243073-5 2.380882+2 3.252287-5 2.381680+2 3.262539-5 2.399687+2 3.281281-5 2.452956+2 3.294526-5 2.481771+2 3.302306-5 2.488862+2 3.311863-5 2.486275+2 3.320394-5 2.474682+2 3.333235-5 2.446355+2 3.363255-5 2.374830+2 3.385560-5 2.342075+2 3.429929-5 2.302283+2 3.445863-5 2.283668+2 3.496658-5 2.211088+2 3.569669-5 2.129712+2 3.658927-5 2.056310+2 3.770563-5 1.984862+2 3.907622-5 1.918647+2 4.048993-5 1.865399+2 4.349249-5 1.783317+2 4.713435-5 1.701030+2 4.852873-5 1.658306+2 4.876762-5 1.658860+2 4.890993-5 1.663286+2 4.915200-5 1.678536+2 4.972980-5 1.730593+2 4.997838-5 1.740875+2 5.016111-5 1.739956+2 5.048978-5 1.725661+2 5.099936-5 1.701504+2 5.131947-5 1.694814+2 5.248075-5 1.685562+2 5.339764-5 1.670116+2 5.547076-5 1.626928+2 5.854735-5 1.542863+2 6.098080-5 1.458819+2 6.287803-5 1.378869+2 6.474706-5 1.289030+2 6.622645-5 1.209852+2 6.764871-5 1.126682+2 6.900442-5 1.041135+2 7.038822-5 9.486595+1 7.162747-5 8.959690+1 7.168941-5 8.962952+1 7.281722-5 9.543183+1 7.415670-5 1.076589+2 7.521335-5 1.193537+2 7.629569-5 1.336667+2 7.723893-5 1.484701+2 7.826502-5 1.675778+2 7.921620-5 1.887254+2 8.013362-5 2.130261+2 8.094523-5 2.384994+2 8.175230-5 2.684170+2 8.235705-5 2.945045+2 8.302688-5 3.278904+2 8.360048-5 3.609917+2 8.417440-5 3.991810+2 8.471245-5 4.405111+2 8.535914-5 4.987184+2 8.584396-5 5.498125+2 8.613310-5 5.839720+2 8.654873-5 6.388011+2 8.693838-5 6.973804+2 8.735810-5 7.697534+2 8.777922-5 8.540117+2 8.810489-5 9.288272+2 8.855039-5 1.047960+3 8.891490-5 1.163270+3 8.929547-5 1.305359+3 8.967768-5 1.476492+3 8.991140-5 1.598775+3 9.025738-5 1.811082+3 9.057311-5 2.046629+3 9.085395-5 2.300884+3 9.109109-5 2.559160+3 9.130260-5 2.833898+3 9.149603-5 3.132908+3 9.164960-5 3.411802+3 9.179130-5 3.709888+3 9.191528-5 4.009804+3 9.202377-5 4.307979+3 9.221361-5 4.928074+3 9.235600-5 5.494104+3 9.246279-5 5.987824+3 9.262298-5 6.861271+3 9.278316-5 7.924725+3 9.289735-5 8.819531+3 9.301318-5 9.860300+3 9.323991-5 1.234437+4 9.369666-5 1.951987+4 9.379604-5 2.151340+4 9.421520-5 3.163145+4 9.444596-5 3.820404+4 9.447481-5 3.906102+4 9.467672-5 4.518504+4 9.475605-5 4.761408+4 9.483177-5 4.992028+4 9.494600-5 5.333883+4 9.505659-5 5.652856+4 9.516085-5 5.937664+4 9.524588-5 6.155114+4 9.536741-5 6.437481+4 9.547970-5 6.663329+4 9.560239-5 6.865577+4 9.574941-5 7.039414+4 9.585500-5 7.114467+4 9.599361-5 7.146744+4 9.610151-5 7.119012+4 9.618891-5 7.062899+4 9.630277-5 6.945909+4 9.636487-5 6.861985+4 9.653442-5 6.566017+4 9.665200-5 6.309225+4 9.677484-5 6.002977+4 9.689389-5 5.675920+4 9.700431-5 5.352150+4 9.709654-5 5.070865+4 9.721511-5 4.700210+4 9.733050-5 4.335612+4 9.744588-5 3.972820+4 9.757568-5 3.573096+4 9.767664-5 3.272164+4 9.790740-5 2.630188+4 9.802789-5 2.325491+4 9.822054-5 1.886992+4 9.835965-5 1.608816+4 9.849024-5 1.376775+4 9.864298-5 1.139700+4 9.878942-5 9.450025+3 9.895746-5 7.574094+3 9.917350-5 5.656291+3 9.942599-5 4.005544+3 9.951890-5 3.533950+3 9.970916-5 2.764402+3 9.976205-5 2.593607+3 1.000537-4 1.957304+3 1.002132-4 1.817917+3 1.003160-4 1.805901+3 1.004160-4 1.854391+3 1.004858-4 1.924586+3 1.005467-4 2.011087+3 1.005955-4 2.098035+3 1.006526-4 2.220251+3 1.006871-4 2.304923+3 1.007260-4 2.410503+3 1.008024-4 2.650163+3 1.008807-4 2.941750+3 1.009725-4 3.345849+3 1.012521-4 5.021357+3 1.013997-4 6.195712+3 1.015278-4 7.385863+3 1.015970-4 8.094572+3 1.017462-4 9.781272+3 1.018432-4 1.098945+4 1.020276-4 1.351170+4 1.021002-4 1.457692+4 1.021953-4 1.602673+4 1.023400-4 1.832518+4 1.024619-4 2.032233+4 1.025624-4 2.198737+4 1.026726-4 2.381133+4 1.027914-4 2.574628+4 1.028710-4 2.700804+4 1.029815-4 2.869106+4 1.030631-4 2.987014+4 1.032078-4 3.179017+4 1.033286-4 3.319402+4 1.033794-4 3.372224+4 1.034964-4 3.478795+4 1.035929-4 3.549560+4 1.036870-4 3.602933+4 1.038061-4 3.647436+4 1.038964-4 3.663790+4 1.039434-4 3.666344+4 1.041068-4 3.644001+4 1.042286-4 3.596922+4 1.042999-4 3.558032+4 1.044168-4 3.477399+4 1.045554-4 3.357369+4 1.046578-4 3.254008+4 1.047636-4 3.136176+4 1.049202-4 2.945413+4 1.050690-4 2.751744+4 1.052280-4 2.537566+4 1.052810-4 2.465605+4 1.055211-4 2.143597+4 1.055727-4 2.076240+4 1.059338-4 1.638173+4 1.064936-4 1.113354+4 1.065943-4 1.040094+4 1.067750-4 9.236464+3 1.069557-4 8.248629+3 1.071191-4 7.490531+3 1.072502-4 6.963262+3 1.073814-4 6.499944+3 1.076438-4 5.735038+3 1.079127-4 5.128472+3 1.081077-4 4.774142+3 1.083180-4 4.454222+3 1.085178-4 4.197454+3 1.087077-4 3.987412+3 1.089751-4 3.735788+3 1.092412-4 3.524924+3 1.095638-4 3.308492+3 1.099014-4 3.115908+3 1.106625-4 2.765789+3 1.110169-4 2.630963+3 1.113908-4 2.504031+3 1.118025-4 2.380501+3 1.122811-4 2.255907+3 1.129874-4 2.103574+3 1.137836-4 1.967086+3 1.145390-4 1.863571+3 1.153433-4 1.774560+3 1.162252-4 1.696412+3 1.172188-4 1.627018+3 1.183198-4 1.567112+3 1.193500-4 1.522949+3 1.202264-4 1.492071+3 1.214643-4 1.455630+3 1.239171-4 1.397893+3 1.336048-4 1.224004+3 1.430000-4 1.097800+3 1.616859-4 9.144795+2 1.830000-4 7.619184+2 1.895759-4 7.201030+2 1.931250-4 6.966150+2 1.954040-4 6.803549+2 1.991274-4 6.507238+2 2.003827-4 6.442093+2 2.017509-4 6.416579+2 2.051500-4 6.440963+2 2.063119-4 6.435765+2 2.115969-4 6.335174+2 2.173424-4 6.186740+2 2.235501-4 6.015171+2 2.297613-4 5.838214+2 2.371374-4 5.620075+2 2.448958-4 5.376722+2 2.488255-4 5.213945+2 2.507379-4 5.138003+2 2.519457-4 5.109174+2 2.532427-4 5.103200+2 2.572897-4 5.165136+2 2.588269-4 5.163974+2 2.611738-4 5.129196+2 2.839366-4 4.695650+2 2.951209-4 4.462791+2 3.095405-4 4.139328+2 3.157960-4 3.990245+2 3.200560-4 3.924791+2 3.259524-4 3.833657+2 3.331547-4 3.689219+2 3.459721-4 3.405368+2 3.566279-4 3.146275+2 3.658740-4 2.893491+2 3.732802-4 2.658134+2 3.798100-4 2.418558+2 3.817718-4 2.365202+2 3.833966-4 2.335626+2 3.884685-4 2.278024+2 3.904868-4 2.242470+2 3.928422-4 2.190441+2 3.963790-4 2.102118+2 3.991938-4 2.021624+2 4.037297-4 1.880360+2 4.065912-4 1.794084+2 4.106625-4 1.672694+2 4.138805-4 1.572123+2 4.168694-4 1.474916+2 4.191947-4 1.398311+2 4.240000-4 1.244272+2 4.284375-4 1.117914+2 4.307000-4 1.063326+2 4.329372-4 1.017767+2 4.354065-4 9.787266+1 4.377561-4 9.538878+1 4.401958-4 9.420178+1 4.417964-4 9.423992+1 4.450000-4 9.634822+1 4.481726-4 1.011774+2 4.527012-4 1.128142+2 4.561282-4 1.253170+2 4.570994-4 1.294365+2 4.614976-4 1.512030+2 4.684362-4 1.953601+2 4.732181-4 2.318390+2 4.780127-4 2.723923+2 4.813553-4 3.025886+2 4.845295-4 3.324408+2 4.872877-4 3.591263+2 4.900000-4 3.858865+2 4.941850-4 4.279057+2 4.973553-4 4.601697+2 5.011872-4 4.995056+2 5.055335-4 5.443619+2 5.100337-4 5.908723+2 5.150000-4 6.419153+2 5.219813-4 7.124543+2 5.264650-4 7.566552+2 5.331685-4 8.204314+2 5.412858-4 8.938276+2 5.514032-4 9.798075+2 5.638682-4 1.078609+3 5.777287-4 1.180070+3 5.906290-4 1.266469+3 6.050000-4 1.353182+3 6.177604-4 1.421626+3 6.335000-4 1.497373+3 6.533221-4 1.578726+3 6.700000-4 1.633994+3 6.851550-4 1.672835+3 6.995021-4 1.700020+3 7.095835-4 1.766719+3 7.131649-4 1.838786+3 7.148972-4 1.886566+3 7.184948-4 2.004758+3 7.233950-4 2.154222+3 7.255093-4 2.191161+3 7.271956-4 2.202829+3 7.289594-4 2.197597+3 7.307820-4 2.175436+3 7.341084-4 2.105596+3 7.375637-4 2.023432+3 7.392343-4 1.989744+3 7.409236-4 1.962858+3 7.444162-4 1.933471+3 7.504432-4 1.958030+3 7.517146-4 1.973134+3 7.551896-4 2.028802+3 7.586729-4 2.101200+3 7.605717-4 2.144139+3 7.660783-4 2.253872+3 7.677995-4 2.275849+3 7.695870-4 2.289788+3 7.715043-4 2.294426+3 7.735110-4 2.288999+3 7.831010-4 2.210618+3 7.846078-4 2.203157+3 7.878880-4 2.197060+3 7.967274-4 2.227967+3 8.099964-4 2.296176+3 8.280000-4 2.369759+3 8.567366-4 2.463458+3 8.893878-4 2.548019+3 9.166463-4 2.604082+3 9.501783-4 2.657221+3 9.783160-4 2.683984+3 1.008390-3 2.693378+3 1.020299-3 2.715457+3 1.037448-3 2.775387+3 1.051474-3 2.830956+3 1.064829-3 2.874598+3 1.087479-3 2.925423+3 1.119414-3 2.974252+3 1.161449-3 3.020945+3 1.198918-3 3.050099+3 1.250445-3 3.074335+3 1.297988-3 3.114420+3 1.334634-3 3.130988+3 1.400791-3 3.133446+3 1.419156-3 3.138560+3 1.460155-3 3.169292+3 1.507367-3 3.185619+3 1.569282-3 3.191873+3 1.645725-3 3.189742+3 1.727525-3 3.176594+3 1.819701-3 3.148848+3 1.922024-3 3.111358+3 2.024184-3 3.067908+3 2.144125-3 3.007884+3 2.270213-3 2.934569+3 2.408584-3 2.848802+3 2.544632-3 2.752811+3 2.683316-3 2.647923+3 2.786121-3 2.561944+3 2.900000-3 2.458918+3 2.996143-3 2.363944+3 3.085133-3 2.266988+3 3.162278-3 2.172051+3 3.219678-3 2.089674+3 3.279301-3 1.994682+3 3.325658-3 1.910740+3 3.367787-3 1.822485+3 3.400000-3 1.743486+3 3.428605-3 1.661566+3 3.478565-3 1.506908+3 3.486932-3 1.486940+3 3.495452-3 1.471122+3 3.503971-3 1.460725+3 3.515280-3 1.455961+3 3.523187-3 1.458515+3 3.538050-3 1.473762+3 3.613748-3 1.603163+3 3.638911-3 1.654907+3 3.657158-3 1.699419+3 3.674650-3 1.750942+3 3.694841-3 1.823166+3 3.728832-3 1.958998+3 3.746635-3 2.023653+3 3.775773-3 2.114198+3 3.834464-3 2.282355+3 3.854775-3 2.334581+3 3.879270-3 2.388420+3 3.906358-3 2.436587+3 3.939816-3 2.482900+3 3.973350-3 2.518314+3 4.015300-3 2.550994+3 4.055416-3 2.571876+3 4.090697-3 2.582218+3 4.135052-3 2.584010+3 4.168085-3 2.575659+3 4.231872-3 2.547364+3 4.247482-3 2.546564+3 4.262785-3 2.552114+3 4.288033-3 2.577573+3 4.313022-3 2.620524+3 4.369586-3 2.735756+3 4.392544-3 2.773914+3 4.419378-3 2.809047+3 4.453738-3 2.842395+3 4.494582-3 2.871139+3 4.543010-3 2.895595+3 4.601375-3 2.915666+3 4.663426-3 2.929286+3 4.735344-3 2.937716+3 4.878626-3 2.934951+3 4.942971-3 2.925631+3 5.008184-3 2.909347+3 5.125122-3 2.864897+3 5.175231-3 2.857817+3 5.251575-3 2.875894+3 5.316857-3 2.889612+3 5.363187-3 2.889815+3 5.485061-3 2.870894+3 5.535332-3 2.872503+3 5.647897-3 2.894867+3 5.765923-3 2.898584+3 5.923358-3 2.885148+3 6.144000-3 2.851847+3 6.475153-3 2.789401+3 6.949298-3 2.683747+3 7.503328-3 2.552943+3 8.036686-3 2.425341+3 8.619235-3 2.289843+3 9.310743-3 2.138455+3 1.012171-2 1.972622+3 1.105987-2 1.797315+3 1.161240-2 1.702405+3 1.214532-2 1.615750+3 1.270201-2 1.529891+3 1.328965-2 1.443717+3 1.375272-2 1.378643+3 1.425813-2 1.310054+3 1.467250-2 1.254519+3 1.506092-2 1.203018+3 1.539184-2 1.158739+3 1.566751-2 1.121073+3 1.590953-2 1.086860+3 1.610617-2 1.057672+3 1.628241-2 1.029779+3 1.640913-2 1.008097+3 1.654079-2 9.831789+2 1.664108-2 9.615706+2 1.672121-2 9.419754+2 1.683643-2 9.098561+2 1.699505-2 8.645855+2 1.706386-2 8.499427+2 1.710908-2 8.436519+2 1.714204-2 8.410468+2 1.719246-2 8.404605+2 1.725516-2 8.451799+2 1.733869-2 8.587343+2 1.753275-2 8.993896+2 1.759079-2 9.093596+2 1.766801-2 9.198672+2 1.774397-2 9.273685+2 1.783477-2 9.334031+2 1.795104-2 9.378217+2 1.808469-2 9.398566+2 1.821396-2 9.397419+2 1.839920-2 9.371340+2 1.857487-2 9.327015+2 1.881438-2 9.243555+2 1.926767-2 9.031499+2 1.971401-2 8.766916+2 2.008573-2 8.498989+2 2.024939-2 8.359703+2 2.039686-2 8.215797+2 2.059600-2 7.983151+2 2.084791-2 7.670522+2 2.095564-2 7.578953+2 2.105118-2 7.538421+2 2.115497-2 7.536355+2 2.156882-2 7.650153+2 2.179439-2 7.707121+2 2.223912-2 7.895766+2 2.245989-2 7.939025+2 2.277334-2 7.939916+2 2.320706-2 7.887026+2 2.373067-2 7.783579+2 2.467104-2 7.548864+2 2.581155-2 7.227371+2 2.700386-2 6.881771+2 2.888153-2 6.355859+2 3.154596-2 5.682280+2 3.450995-2 5.040415+2 3.815346-2 4.377132+2 4.221881-2 3.767158+2 4.783561-2 3.103533+2 5.193412-2 2.720298+2 5.632003-2 2.377230+2 6.371262-2 1.921222+2 7.504935-2 1.437692+2 8.488814-2 1.149628+2 9.214886-2 9.857222+1 9.592539-2 9.119449+1 1.017527-1 8.092925+1 1.059254-1 7.412955+1 1.088501-1 6.941523+1 1.100334-1 6.744773+1 1.110016-1 6.576598+1 1.118274-1 6.423410+1 1.124973-1 6.287755+1 1.134264-1 6.074100+1 1.149622-1 5.691640+1 1.154721-1 5.598333+1 1.158624-1 5.553527+1 1.162991-1 5.534524+1 1.167995-1 5.550101+1 1.176058-1 5.628675+1 1.187272-1 5.747518+1 1.196386-1 5.800901+1 1.202264-1 5.814759+1 1.209235-1 5.816733+1 1.227143-1 5.781338+1 1.245962-1 5.711417+1 1.278579-1 5.555633+1 1.330259-1 5.279758+1 1.380384-1 5.006307+1 1.459024-1 4.594562+1 1.573499-1 4.060406+1 1.739677-1 3.421537+1 2.008790-1 2.655289+1 2.368735-1 1.971267+1 2.895208-1 1.361428+1 3.568958-1 9.190220+0 4.574172-1 5.726809+0 6.422583-1 2.973782+0 9.886186-1 1.282343+0 1.477239+0 5.823030-1 2.451607+0 2.133103-1 5.616308+0 4.084300-2 1.696098+1 4.481738-3 5.122134+1 4.914252-4 1.546860+2 5.388382-5 4.671441+2 5.908244-6 1.584893+3 5.132870-7 5.011872+3 5.132870-8 1.584893+4 5.132870-9 5.011872+4 5.13287-10 1.000000+5 1.28932-10 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.826500-6 1.258900-6 4.479700-6 1.584900-6 7.099900-6 1.995300-6 1.125200-5 2.511900-6 1.783400-5 3.162300-6 2.826500-5 3.981100-6 4.479600-5 5.011900-6 7.099700-5 6.309600-6 1.125200-4 7.943300-6 1.783300-4 1.000000-5 2.826400-4 1.258900-5 4.479400-4 1.584900-5 7.095700-4 1.995300-5 1.123800-3 2.511900-5 1.780200-3 3.162300-5 2.820200-3 3.981100-5 4.468400-3 5.011900-5 7.080200-3 6.309600-5 1.121900-2 7.943300-5 1.775800-2 1.000000-4 2.809500-2 1.258900-4 4.438900-2 1.584900-4 7.000700-2 1.995300-4 1.100900-1 2.511900-4 1.724000-1 3.162300-4 2.682200-1 3.981100-4 4.125800-1 5.011900-4 6.216300-1 6.309600-4 9.132400-1 7.943300-4 1.300200+0 1.000000-3 1.790600+0 1.258900-3 2.395200+0 1.584900-3 3.144500+0 1.995300-3 4.085500+0 2.511900-3 5.254300+0 3.162300-3 6.671400+0 3.981100-3 8.356200+0 5.011900-3 1.029100+1 6.309600-3 1.243800+1 7.943300-3 1.482900+1 1.000000-2 1.751400+1 1.258900-2 2.042600+1 1.584900-2 2.348000+1 1.995300-2 2.642400+1 2.511900-2 2.925400+1 3.162300-2 3.193100+1 3.981100-2 3.418300+1 5.011900-2 3.603200+1 6.309600-2 3.746500+1 7.943300-2 3.805900+1 1.000000-1 3.801900+1 1.258900-1 3.737300+1 1.584900-1 3.613100+1 1.995300-1 3.454600+1 2.511900-1 3.260500+1 3.162300-1 3.046100+1 3.981100-1 2.820500+1 5.011900-1 2.590500+1 6.309600-1 2.362200+1 7.943300-1 2.138700+1 1.000000+0 1.922600+1 1.258900+0 1.717600+1 1.584900+0 1.523800+1 1.995300+0 1.342700+1 2.511900+0 1.175400+1 3.162300+0 1.022500+1 3.981100+0 8.841200+0 5.011900+0 7.601300+0 6.309600+0 6.501000+0 7.943300+0 5.532900+0 1.000000+1 4.688000+0 1.258900+1 3.956000+0 1.584900+1 3.326100+0 1.995300+1 2.787200+0 2.511900+1 2.328500+0 3.162300+1 1.940100+0 3.981100+1 1.612500+0 5.011900+1 1.337300+0 6.309600+1 1.106800+0 7.943300+1 9.143800-1 1.000000+2 7.541500-1 1.258900+2 6.210600-1 1.584900+2 5.107500-1 1.995300+2 4.195000-1 2.511900+2 3.441400-1 3.162300+2 2.820200-1 3.981100+2 2.308800-1 5.011900+2 1.888300-1 6.309600+2 1.543100-1 7.943300+2 1.259900-1 1.000000+3 1.028000-1 1.258900+3 8.380900-2 1.584900+3 6.828200-2 1.995300+3 5.559600-2 2.511900+3 4.523900-2 3.162300+3 3.679000-2 3.981100+3 2.990300-2 5.011900+3 2.429200-2 6.309600+3 1.972500-2 7.943300+3 1.600800-2 1.000000+4 1.298600-2 1.258900+4 1.053000-2 1.584900+4 8.534400-3 1.995300+4 6.914400-3 2.511900+4 5.599800-3 3.162300+4 4.533500-3 3.981100+4 3.668800-3 5.011900+4 2.968100-3 6.309600+4 2.400400-3 7.943300+4 1.940700-3 1.000000+5 1.568500-3 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941554-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159551-4 3.981072-4 3.976779-4 5.011872-4 5.005118-4 6.309573-4 6.298976-4 7.943282-4 7.926711-4 1.000000-3 9.974120-4 1.258925-3 1.254896-3 1.584893-3 1.578593-3 1.995262-3 1.985377-3 2.511886-3 2.496359-3 3.162278-3 3.137905-3 3.981072-3 3.942871-3 5.011872-3 4.952152-3 6.309573-3 6.216478-3 7.943282-3 7.798148-3 1.000000-2 9.773555-3 1.258925-2 1.223592-2 1.584893-2 1.530229-2 1.995262-2 1.911016-2 2.511886-2 2.382490-2 3.162278-2 2.964159-2 3.981072-2 3.678918-2 5.011872-2 4.555341-2 6.309573-2 5.626174-2 7.943282-2 6.927394-2 1.000000-1 8.503277-2 1.258925-1 1.040479-1 1.584893-1 1.269955-1 1.995262-1 1.543002-1 2.511886-1 1.870061-1 3.162278-1 2.259218-1 3.981072-1 2.720421-1 5.011872-1 3.265967-1 6.309573-1 3.909715-1 7.943282-1 4.668055-1 1.000000+0 5.563677-1 1.258925+0 6.614227-1 1.584893+0 7.857346-1 1.995262+0 9.328129-1 2.511886+0 1.107376+0 3.162278+0 1.315078+0 3.981072+0 1.563060+0 5.011872+0 1.859908+0 6.309573+0 2.216112+0 7.943282+0 2.644756+0 1.000000+1 3.161311+0 1.258925+1 3.785384+0 1.584893+1 4.540596+0 1.995262+1 5.455912+0 2.511886+1 6.566607+0 3.162278+1 7.916829+0 3.981072+1 9.559116+0 5.011872+1 1.156000+1 6.309573+1 1.399963+1 7.943282+1 1.697734+1 1.000000+2 2.061477+1 1.258925+2 2.506194+1 1.584893+2 3.050342+1 1.995262+2 3.716703+1 2.511886+2 4.533228+1 3.162278+2 5.534490+1 3.981072+2 6.762941+1 5.011872+2 8.271264+1 6.309573+2 1.012423+2 7.943282+2 1.240185+2 1.000000+3 1.520274+2 1.258925+3 1.864903+2 1.584893+3 2.289149+2 1.995262+3 2.811740+2 2.511886+3 3.455631+2 3.162278+3 4.249289+2 3.981072+3 5.228151+2 5.011872+3 6.435809+2 6.309573+3 7.926433+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88193-10 1.995262-5 1.090618-9 2.511886-5 1.728485-9 3.162278-5 2.739500-9 3.981072-5 4.341869-9 5.011872-5 6.881387-9 6.309573-5 1.090599-8 7.943282-5 1.727903-8 1.000000-4 2.737730-8 1.258925-4 4.336890-8 1.584893-4 6.868575-8 1.995262-4 1.087353-7 2.511886-4 1.720672-7 3.162278-4 2.726878-7 3.981072-4 4.293135-7 5.011872-4 6.754281-7 6.309573-4 1.059740-6 7.943282-4 1.657087-6 1.000000-3 2.588045-6 1.258925-3 4.029871-6 1.584893-3 6.300609-6 1.995262-3 9.884910-6 2.511886-3 1.552759-5 3.162278-3 2.437233-5 3.981072-3 3.820069-5 5.011872-3 5.972026-5 6.309573-3 9.309553-5 7.943282-3 1.451341-4 1.000000-2 2.264446-4 1.258925-2 3.533343-4 1.584893-2 5.466453-4 1.995262-2 8.424672-4 2.511886-2 1.293962-3 3.162278-2 1.981188-3 3.981072-2 3.021540-3 5.011872-2 4.565312-3 6.309573-2 6.833993-3 7.943282-2 1.015889-2 1.000000-1 1.496723-2 1.258925-1 2.184466-2 1.584893-1 3.149380-2 1.995262-1 4.522601-2 2.511886-1 6.418254-2 3.162278-1 9.030593-2 3.981072-1 1.260651-1 5.011872-1 1.745906-1 6.309573-1 2.399859-1 7.943282-1 3.275227-1 1.000000+0 4.436323-1 1.258925+0 5.975027-1 1.584893+0 7.991586-1 1.995262+0 1.062449+0 2.511886+0 1.404510+0 3.162278+0 1.847200+0 3.981072+0 2.418012+0 5.011872+0 3.151965+0 6.309573+0 4.093462+0 7.943282+0 5.298527+0 1.000000+1 6.838689+0 1.258925+1 8.803870+0 1.584893+1 1.130834+1 1.995262+1 1.449671+1 2.511886+1 1.855226+1 3.162278+1 2.370595+1 3.981072+1 3.025160+1 5.011872+1 3.855872+1 6.309573+1 4.909611+1 7.943282+1 6.245548+1 1.000000+2 7.938523+1 1.258925+2 1.008306+2 1.584893+2 1.279859+2 1.995262+2 1.623592+2 2.511886+2 2.058564+2 3.162278+2 2.608829+2 3.981072+2 3.304778+2 5.011872+2 4.184746+2 6.309573+2 5.297150+2 7.943282+2 6.703097+2 1.000000+3 8.479726+2 1.258925+3 1.072435+3 1.584893+3 1.355978+3 1.995262+3 1.714088+3 2.511886+3 2.166323+3 3.162278+3 2.737349+3 3.981072+3 3.458257+3 5.011872+3 4.368291+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 6.277742+6 4.216965-6 6.380484+6 4.415704-6 6.557310+6 4.623810-6 6.697708+6 4.740000-6 6.751944+6 4.740000-6 9.805547+6 4.800000-6 9.892344+6 4.900000-6 1.001729+7 4.960000-6 1.008043+7 5.188000-6 1.029366+7 5.248075-6 1.034247+7 5.432503-6 1.046305+7 5.600000-6 1.055307+7 5.754399-6 1.061429+7 5.780000-6 1.062198+7 5.780000-6 2.019100+7 6.025596-6 1.903794+7 6.165950-6 1.844363+7 6.382635-6 1.762537+7 6.500000-6 1.722311+7 6.760830-6 1.640909+7 7.000000-6 1.575576+7 7.079458-6 1.555154+7 7.200000-6 1.526219+7 7.585776-6 1.443290+7 7.700000-6 1.420827+7 7.950000-6 1.374420+7 7.950000-6 1.398033+7 8.150000-6 1.364719+7 8.200000-6 1.356882+7 8.222426-6 1.353250+7 8.350000-6 1.332566+7 8.500000-6 1.309700+7 8.550000-6 1.302448+7 8.709636-6 1.280329+7 8.770000-6 1.272026+7 8.810489-6 1.266590+7 8.910000-6 1.252851+7 8.910000-6 1.267148+7 9.015711-6 1.253160+7 9.120108-6 1.239919+7 9.225714-6 1.227051+7 9.350000-6 1.211994+7 9.440609-6 1.201450+7 9.500000-6 1.194342+7 9.660509-6 1.175905+7 9.772372-6 1.163664+7 9.930000-6 1.146519+7 1.000000-5 1.139200+7 1.011579-5 1.126830+7 1.020000-5 1.118152+7 1.035142-5 1.103148+7 1.050000-5 1.088417+7 1.059254-5 1.079647+7 1.085000-5 1.055032+7 1.096478-5 1.044676+7 1.100000-5 1.041401+7 1.122018-5 1.021765+7 1.161449-5 9.876576+6 1.165000-5 9.846341+6 1.188502-5 9.654402+6 1.216186-5 9.431559+6 1.230269-5 9.325009+6 1.258925-5 9.112062+6 1.273503-5 9.003420+6 1.290000-5 8.886161+6 1.333521-5 8.588822+6 1.350000-5 8.478632+6 1.364583-5 8.382015+6 1.412538-5 8.092846+6 1.420000-5 8.048819+6 1.479108-5 7.718232+6 1.496236-5 7.633393+6 1.500000-5 7.614515+6 1.531087-5 7.458518+6 1.570000-5 7.285230+6 1.584893-5 7.221979+6 1.659587-5 6.935462+6 1.678804-5 6.870959+6 1.717908-5 6.746159+6 1.757924-5 6.639173+6 1.778279-5 6.589447+6 1.850000-5 6.440584+6 1.862087-5 6.420410+6 1.900000-5 6.363063+6 1.905461-5 6.356082+6 1.927525-5 6.328271+6 1.995262-5 6.269964+6 2.000000-5 6.267107+6 2.041738-5 6.246695+6 2.070000-5 6.239133+6 2.137962-5 6.244177+6 2.150000-5 6.247403+6 2.190000-5 6.263473+6 2.213095-5 6.276307+6 2.238721-5 6.293230+6 2.270000-5 6.319949+6 2.317395-5 6.365257+6 2.398833-5 6.463533+6 2.400000-5 6.465024+6 2.426610-5 6.501000+6 2.457000-5 6.542177+6 2.457000-5 2.195571+7 2.511886-5 2.097203+7 2.540973-5 2.049025+7 2.570396-5 2.002841+7 2.580000-5 1.988343+7 2.630268-5 1.917045+7 2.660725-5 1.876775+7 2.691535-5 1.838159+7 2.754229-5 1.766594+7 2.770000-5 1.749704+7 2.818383-5 1.700518+7 2.851018-5 1.670553+7 2.884032-5 1.642147+7 2.900000-5 1.628764+7 2.951209-5 1.587912+7 3.019952-5 1.539208+7 3.150000-5 1.459039+7 3.162278-5 1.452302+7 3.273407-5 1.395749+7 3.311311-5 1.378515+7 3.350000-5 1.361413+7 3.409000-5 1.337521+7 3.409000-5 2.004937+7 3.427678-5 1.990364+7 3.467369-5 1.960087+7 3.480000-5 1.950578+7 3.507519-5 1.929156+7 3.548134-5 1.898867+7 3.589219-5 1.869497+7 3.650000-5 1.826356+7 3.758374-5 1.755388+7 3.801894-5 1.728319+7 3.845918-5 1.702325+7 3.850000-5 1.699985+7 3.950000-5 1.644551+7 3.981072-5 1.628265+7 4.000000-5 1.618609+7 4.073803-5 1.581969+7 4.150000-5 1.546100+7 4.168694-5 1.537739+7 4.220000-5 1.515094+7 4.265795-5 1.495450+7 4.315191-5 1.475319+7 4.400000-5 1.441805+7 4.466836-5 1.416564+7 4.500000-5 1.404349+7 4.518559-5 1.397685+7 4.623810-5 1.360475+7 4.650000-5 1.351452+7 4.731513-5 1.324639+7 4.800000-5 1.302053+7 4.841724-5 1.289035+7 4.954502-5 1.254798+7 5.011872-5 1.237605+7 5.069907-5 1.220369+7 5.150000-5 1.197473+7 5.188000-5 1.186461+7 5.223000-5 1.176168+7 5.223000-5 1.209225+7 5.248075-5 1.201417+7 5.308844-5 1.183162+7 5.328000-5 1.177534+7 5.350000-5 1.171159+7 5.400000-5 1.156237+7 5.432503-5 1.146419+7 5.559043-5 1.110013+7 5.580000-5 1.103961+7 5.688529-5 1.072638+7 5.700000-5 1.069460+7 5.754399-5 1.054705+7 5.800000-5 1.042099+7 5.888437-5 1.017582+7 5.900000-5 1.014463+7 5.956621-5 9.995011+6 6.000000-5 9.878056+6 6.025596-5 9.810245+6 6.095369-5 9.623152+6 6.165950-5 9.441977+6 6.237348-5 9.257052+6 6.300000-5 9.094748+6 6.309573-5 9.070442+6 6.400000-5 8.847187+6 6.456542-5 8.706754+6 6.500000-5 8.597807+6 6.531306-5 8.520857+6 6.650000-5 8.240514+6 6.683439-5 8.161192+6 6.730000-5 8.052932+6 6.918310-5 7.624557+6 7.000000-5 7.443429+6 7.079458-5 7.269414+6 7.161434-5 7.096889+6 7.244360-5 6.923399+6 7.413102-5 6.580897+6 7.500000-5 6.410040+6 7.585776-5 6.243364+6 7.673615-5 6.079112+6 7.800000-5 5.846672+6 7.852356-5 5.751914+6 7.943282-5 5.592963+6 8.035261-5 5.433244+6 8.128305-5 5.274632+6 8.222426-5 5.120648+6 8.300000-5 4.994659+6 8.317638-5 4.966608+6 8.413951-5 4.813729+6 8.511380-5 4.665700+6 8.609938-5 4.517865+6 8.709636-5 4.371147+6 8.810489-5 4.229231+6 8.912509-5 4.087892+6 9.120108-5 3.812896+6 9.225714-5 3.678260+6 9.332543-5 3.545432+6 9.440609-5 3.417914+6 9.500000-5 3.348449+6 9.660509-5 3.165965+6 9.772372-5 3.046482+6 9.800000-5 3.017086+6 9.885531-5 2.926574+6 1.000000-4 2.811046+6 1.010000-4 2.715242+6 1.011579-4 2.700113+6 1.023293-4 2.589042+6 1.035142-4 2.482725+6 1.040000-4 2.440788+6 1.040200-4 2.439041+6 1.040200-4 3.776682+6 1.041400-4 3.813921+6 1.047000-4 3.950815+6 1.047129-4 3.953994+6 1.051000-4 4.054330+6 1.055000-4 4.161902+6 1.059254-4 4.278697+6 1.063000-4 4.383196+6 1.068500-4 4.536217+6 1.071519-4 4.616705+6 1.074000-4 4.685983+6 1.079500-4 4.830100+6 1.080000-4 4.841997+6 1.085000-4 4.965402+6 1.091000-4 5.100716+6 1.097000-4 5.220487+6 1.100000-4 5.270633+6 1.103000-4 5.321999+6 1.109175-4 5.405969+6 1.110000-4 5.414252+6 1.115000-4 5.465277+6 1.122018-4 5.511674+6 1.123500-4 5.516595+6 1.123500-4 6.338248+6 1.127000-4 6.416346+6 1.132000-4 6.513881+6 1.135011-4 6.567698+6 1.140000-4 6.660428+6 1.146000-4 6.757335+6 1.148154-4 6.792023+6 1.150000-4 6.817787+6 1.152000-4 6.847230+6 1.155000-4 6.888869+6 1.157000-4 6.913818+6 1.162000-4 6.973298+6 1.163000-4 6.984251+6 1.166500-4 7.016357+6 1.170000-4 7.045976+6 1.174898-4 7.083190+6 1.175000-4 7.084027+6 1.180000-4 7.105529+6 1.185000-4 7.120037+6 1.188502-4 7.124954+6 1.190000-4 7.125073+6 1.197000-4 7.111157+6 1.202264-4 7.090718+6 1.205000-4 7.075143+6 1.208000-4 7.055037+6 1.214000-4 7.003612+6 1.216186-4 6.980612+6 1.221000-4 6.930725+6 1.225000-4 6.881216+6 1.229000-4 6.829846+6 1.230269-4 6.811276+6 1.236000-4 6.728789+6 1.240000-4 6.665459+6 1.245000-4 6.587297+6 1.250000-4 6.502274+6 1.255000-4 6.418553+6 1.258925-4 6.348748+6 1.265000-4 6.240699+6 1.273503-4 6.083914+6 1.280000-4 5.967164+6 1.288250-4 5.814982+6 1.300000-4 5.606223+6 1.303167-4 5.549502+6 1.310000-4 5.429154+6 1.318257-4 5.288144+6 1.330000-4 5.092100+6 1.333521-4 5.033943+6 1.338900-4 4.946718+6 1.350000-4 4.772159+6 1.365000-4 4.547904+6 1.372400-4 4.441877+6 1.380384-4 4.328923+6 1.400000-4 4.062202+6 1.402400-4 4.030909+6 1.412538-4 3.902063+6 1.415000-4 3.871040+6 1.428894-4 3.701257+6 1.430000-4 3.688153+6 1.450000-4 3.456273+6 1.462177-4 3.323781+6 1.480000-4 3.137835+6 1.496236-4 2.976240+6 1.500000-4 2.940187+6 1.513561-4 2.814817+6 1.530000-4 2.671489+6 1.531087-4 2.662318+6 1.540000-4 2.587442+6 1.548817-4 2.515554+6 1.560000-4 2.428001+6 1.566751-4 2.376895+6 1.570000-4 2.352791+6 1.584893-4 2.245997+6 1.590000-4 2.210481+6 1.603245-4 2.121455+6 1.611900-4 2.065642+6 1.621810-4 2.004040+6 1.635000-4 1.925554+6 1.650000-4 1.840913+6 1.659587-4 1.789241+6 1.660000-4 1.787079+6 1.678804-4 1.692011+6 1.680000-4 1.686196+6 1.690000-4 1.638511+6 1.698244-4 1.600459+6 1.705000-4 1.570137+6 1.720000-4 1.505377+6 1.737801-4 1.432913+6 1.740000-4 1.424396+6 1.757924-4 1.357336+6 1.778279-4 1.286094+6 1.798871-4 1.219659+6 1.800000-4 1.216152+6 1.820000-4 1.156154+6 1.841500-4 1.096889+6 1.862087-4 1.043990+6 1.865000-4 1.036786+6 1.883649-4 9.922913+5 1.890000-4 9.779921+5 1.905461-4 9.444266+5 1.908000-4 9.391215+5 1.915000-4 9.247335+5 1.927525-4 8.997600+5 1.929400-4 8.961098+5 1.940000-4 8.758482+5 1.945000-4 8.665204+5 1.950000-4 8.573467+5 1.957000-4 8.449796+5 1.973000-4 8.177121+5 1.985000-4 7.981229+5 1.990000-4 7.901689+5 2.000000-4 7.746104+5 2.005000-4 7.671864+5 2.015000-4 7.526571+5 2.018366-4 7.478662+5 2.020000-4 7.455875+5 2.030000-4 7.318779+5 2.033900-4 7.266416+5 2.033900-4 1.095193+6 2.035000-4 1.093446+6 2.041738-4 1.082863+6 2.045000-4 1.077795+6 2.050000-4 1.070119+6 2.058000-4 1.058044+6 2.060000-4 1.055067+6 2.065380-4 1.047314+6 2.074600-4 1.034271+6 2.080000-4 1.026776+6 2.089296-4 1.014106+6 2.090000-4 1.013171+6 2.095000-4 1.006587+6 2.107000-4 9.911056+5 2.110000-4 9.873064+5 2.113489-4 9.829280+5 2.123000-4 9.714846+5 2.124000-4 9.702974+5 2.137962-4 9.540098+5 2.140000-4 9.516811+5 2.155000-4 9.348847+5 2.162719-4 9.264610+5 2.170000-4 9.187972+5 2.190000-4 8.989686+5 2.200000-4 8.893919+5 2.213095-4 8.769905+5 2.215000-4 8.752177+5 2.220000-4 8.706064+5 2.240000-4 8.534915+5 2.264644-4 8.333337+5 2.270000-4 8.291111+5 2.285500-4 8.171521+5 2.290868-4 8.131921+5 2.300000-4 8.065471+5 2.317395-4 7.941858+5 2.344229-4 7.765607+5 2.371374-4 7.599919+5 2.379860-4 7.553660+5 2.398833-4 7.452311+5 2.400000-4 7.446188+5 2.426610-4 7.313541+5 2.454709-4 7.185456+5 2.483133-4 7.065003+5 2.500000-4 6.999040+5 2.511886-4 6.953434+5 2.540973-4 6.853236+5 2.570396-4 6.760269+5 2.588600-4 6.707215+5 2.593800-4 6.692064+5 2.593800-4 8.163000+5 2.600160-4 8.136134+5 2.635000-4 7.998403+5 2.640000-4 7.979773+5 2.645600-4 7.958933+5 2.660725-4 7.903004+5 2.691535-4 7.796551+5 2.722701-4 7.688705+5 2.730000-4 7.664014+5 2.754229-4 7.582403+5 2.780000-4 7.499577+5 2.786121-4 7.479499+5 2.800000-4 7.434731+5 2.818383-4 7.378636+5 2.884032-4 7.198644+5 2.917427-4 7.113820+5 2.951209-4 7.034856+5 2.985383-4 6.965155+5 3.019952-4 6.897943+5 3.030000-4 6.879675+5 3.054921-4 6.837109+5 3.126079-4 6.719206+5 3.162278-4 6.663535+5 3.180000-4 6.638176+5 3.198895-4 6.613105+5 3.200000-4 6.611608+5 3.206500-4 6.602986+5 3.206500-4 7.109223+5 3.240000-4 7.062169+5 3.273407-4 7.018567+5 3.349654-4 6.921368+5 3.350000-4 6.920929+5 3.427678-4 6.828949+5 3.436000-4 6.819154+5 3.467369-4 6.783601+5 3.507519-4 6.739605+5 3.548134-4 6.696799+5 3.589219-4 6.653764+5 3.600000-4 6.642517+5 3.672823-4 6.570596+5 3.715352-4 6.529473+5 3.758374-4 6.489157+5 3.801894-4 6.449670+5 3.845918-4 6.409925+5 3.850000-4 6.406226+5 3.907500-4 6.354298+5 3.907500-4 7.214162+5 3.935501-4 7.193503+5 3.950000-4 7.182796+5 4.000000-4 7.156644+5 4.015000-4 7.149343+5 4.020900-4 7.147612+5 4.020900-4 7.732672+5 4.023000-4 7.737515+5 4.027170-4 7.742781+5 4.030000-4 7.746367+5 4.040000-4 7.754209+5 4.055000-4 7.766729+5 4.058000-4 7.768685+5 4.073803-4 7.785147+5 4.075000-4 7.786949+5 4.090000-4 7.807125+5 4.100000-4 7.825450+5 4.101300-4 7.827746+5 4.115000-4 7.858573+5 4.120975-4 7.875594+5 4.130000-4 7.901671+5 4.145000-4 7.955697+5 4.153000-4 7.990188+5 4.158000-4 8.013358+5 4.168694-4 8.070339+5 4.170000-4 8.077469+5 4.173000-4 8.094727+5 4.185000-4 8.173334+5 4.190000-4 8.208934+5 4.200000-4 8.287594+5 4.215000-4 8.425987+5 4.216965-4 8.445680+5 4.220000-4 8.476503+5 4.230000-4 8.587239+5 4.240000-4 8.708303+5 4.245000-4 8.773739+5 4.260000-4 8.987993+5 4.265795-4 9.078181+5 4.270000-4 9.145438+5 4.275000-4 9.228155+5 4.290000-4 9.497475+5 4.307000-4 9.839730+5 4.315191-4 1.002049+6 4.320000-4 1.013057+6 4.323000-4 1.019885+6 4.340000-4 1.061502+6 4.343000-4 1.069391+6 4.365158-4 1.130052+6 4.390000-4 1.205245+6 4.410000-4 1.270736+6 4.415704-4 1.289967+6 4.430000-4 1.340643+6 4.450000-4 1.414169+6 4.458000-4 1.444499+6 4.466836-4 1.478741+6 4.470000-4 1.491328+6 4.480000-4 1.530865+6 4.492000-4 1.579754+6 4.500000-4 1.612443+6 4.518559-4 1.690897+6 4.523000-4 1.709695+6 4.540000-4 1.783076+6 4.550000-4 1.827465+6 4.565000-4 1.893899+6 4.570882-4 1.920225+6 4.580000-4 1.962041+6 4.590000-4 2.007649+6 4.600000-4 2.053511+6 4.615000-4 2.122282+6 4.623810-4 2.163086+6 4.630000-4 2.192357+6 4.640000-4 2.238344+6 4.665000-4 2.355901+6 4.677351-4 2.412005+6 4.690000-4 2.471236+6 4.700000-4 2.518048+6 4.720000-4 2.609541+6 4.731513-4 2.662248+6 4.750000-4 2.745158+6 4.760000-4 2.789700+6 4.780000-4 2.876800+6 4.786301-4 2.903857+6 4.790000-4 2.919879+6 4.810000-4 3.002824+6 4.835000-4 3.105948+6 4.841724-4 3.132573+6 4.870000-4 3.241625+6 4.880000-4 3.278977+6 4.897788-4 3.342699+6 4.910000-4 3.387163+6 4.920000-4 3.421717+6 4.957500-4 3.546642+6 4.963700-4 3.566259+6 5.011872-4 3.711928+6 5.060000-4 3.842033+6 5.069907-4 3.867800+6 5.080000-4 3.891732+6 5.100000-4 3.939599+6 5.128614-4 4.004956+6 5.135000-4 4.019674+6 5.150000-4 4.051029+6 5.188000-4 4.124852+6 5.190000-4 4.128756+6 5.210000-4 4.163792+6 5.248075-4 4.225212+6 5.260000-4 4.244603+6 5.308844-4 4.308411+6 5.320000-4 4.323095+6 5.370318-4 4.372895+6 5.400000-4 4.402421+6 5.432503-4 4.424408+6 5.480000-4 4.456579+6 5.500000-4 4.467557+6 5.559043-4 4.490829+6 5.580000-4 4.499096+6 5.623413-4 4.511278+6 5.688529-4 4.520384+6 5.690000-4 4.520591+6 5.754399-4 4.523070+6 5.821032-4 4.516889+6 5.888437-4 4.503963+6 5.900000-4 4.501727+6 5.956621-4 4.485239+6 6.000000-4 4.469343+6 6.025596-4 4.460044+6 6.050000-4 4.451243+6 6.095369-4 4.431234+6 6.100000-4 4.429203+6 6.165950-4 4.396260+6 6.200000-4 4.379488+6 6.237348-4 4.361258+6 6.280000-4 4.337373+6 6.309573-4 4.319199+6 6.456542-4 4.230872+6 6.500000-4 4.202801+6 6.531306-4 4.181197+6 6.683439-4 4.079246+6 6.700000-4 4.068411+6 6.760830-4 4.025795+6 6.839116-4 3.968978+6 7.000000-4 3.856611+6 7.079458-4 3.797228+6 7.161434-4 3.737576+6 7.244360-4 3.678799+6 7.300000-4 3.640147+6 7.351400-4 3.602104+6 7.351400-4 3.917698+6 7.478000-4 3.853785+6 7.481000-4 3.853571+6 7.498942-4 3.843009+6 7.585776-4 3.793015+6 7.630000-4 3.767234+6 7.650000-4 3.754841+6 7.673615-4 3.739568+6 7.701800-4 3.721471+6 7.781800-4 3.667091+6 7.781800-4 3.852647+6 7.800000-4 3.841569+6 7.852356-4 3.810137+6 7.970000-4 3.740554+6 8.000000-4 3.722968+6 8.030000-4 3.704916+6 8.035261-4 3.701616+6 8.222426-4 3.584340+6 8.280000-4 3.549756+6 8.317638-4 3.527216+6 8.320000-4 3.525811+6 8.413951-4 3.468768+6 8.511380-4 3.407889+6 8.609938-4 3.348303+6 8.709636-4 3.289989+6 8.780000-4 3.249952+6 8.810489-4 3.232508+6 9.015711-4 3.116937+6 9.120108-4 3.058532+6 9.332543-4 2.945362+6 9.440609-4 2.889268+6 9.500000-4 2.859060+6 9.549926-4 2.833837+6 9.772372-4 2.722852+6 9.885531-4 2.669264+6 9.930000-4 2.648257+6 1.000000-3 2.615564+6 1.011579-3 2.562442+6 1.023293-3 2.510537+6 1.030500-3 2.478919+6 1.030500-3 2.636109+6 1.035142-3 2.615391+6 1.047129-3 2.562811+6 1.059254-3 2.511450+6 1.071519-3 2.460774+6 1.083927-3 2.410539+6 1.090000-3 2.386554+6 1.096478-3 2.361248+6 1.110000-3 2.308855+6 1.122018-3 2.263923+6 1.130000-3 2.234893+6 1.135011-3 2.216813+6 1.148154-3 2.170501+6 1.150000-3 2.164016+6 1.161449-3 2.124497+6 1.170000-3 2.095591+6 1.174898-3 2.078988+6 1.188502-3 2.033955+6 1.202264-3 1.990030+6 1.216186-3 1.946796+6 1.230269-3 1.904389+6 1.244515-3 1.862467+6 1.264200-3 1.807010+6 1.264200-3 1.830545+6 1.273503-3 1.805272+6 1.274000-3 1.803907+6 1.288250-3 1.765491+6 1.300000-3 1.734578+6 1.318257-3 1.688047+6 1.348963-3 1.614245+6 1.350000-3 1.611846+6 1.364583-3 1.578355+6 1.380384-3 1.542814+6 1.396368-3 1.507635+6 1.412538-3 1.473358+6 1.419900-3 1.458173+6 1.419900-3 1.485353+6 1.428894-3 1.466967+6 1.445440-3 1.434057+6 1.450000-3 1.425201+6 1.462177-3 1.401736+6 1.479108-3 1.369621+6 1.496236-3 1.338335+6 1.500000-3 1.331610+6 1.513561-3 1.307562+6 1.515000-3 1.305049+6 1.531087-3 1.277509+6 1.548817-3 1.248151+6 1.566751-3 1.219338+6 1.570000-3 1.214227+6 1.584893-3 1.191074+6 1.610000-3 1.153631+6 1.621810-3 1.136536+6 1.640590-3 1.110163+6 1.650000-3 1.097190+6 1.659587-3 1.084211+6 1.698244-3 1.034126+6 1.717908-3 1.009887+6 1.730000-3 9.952743+5 1.737801-3 9.859454+5 1.778279-3 9.396255+5 1.800000-3 9.159516+5 1.819701-3 8.951511+5 1.840772-3 8.737199+5 1.862087-3 8.526789+5 1.883649-3 8.322002+5 1.905461-3 8.120385+5 1.927525-3 7.923995+5 1.950000-3 7.730549+5 1.972423-3 7.543344+5 2.000000-3 7.322554+5 2.018366-3 7.181123+5 2.030000-3 7.093057+5 2.065380-3 6.835124+5 2.089296-3 6.669030+5 2.113489-3 6.506100+5 2.150000-3 6.269959+5 2.187762-3 6.037985+5 2.213095-3 5.888067+5 2.220000-3 5.848209+5 2.264644-3 5.600350+5 2.290868-3 5.461409+5 2.317395-3 5.325685+5 2.344229-3 5.193686+5 2.350000-3 5.165861+5 2.371374-3 5.064103+5 2.388200-3 4.985659+5 2.398833-3 4.936855+5 2.426610-3 4.812810+5 2.454709-3 4.692063+5 2.483133-3 4.573846+5 2.511886-3 4.458882+5 2.540973-3 4.346524+5 2.570396-3 4.237137+5 2.600160-3 4.130757+5 2.630268-3 4.026216+5 2.650000-3 3.959342+5 2.691535-3 3.823929+5 2.722701-3 3.726862+5 2.754229-3 3.631823+5 2.786121-3 3.539413+5 2.818383-3 3.449242+5 2.851018-3 3.360732+5 2.900000-3 3.234287+5 2.917427-3 3.190784+5 2.951209-3 3.108976+5 2.985383-3 3.028971+5 3.000000-3 2.995677+5 3.019952-3 2.951127+5 3.054921-3 2.875311+5 3.126079-3 2.728804+5 3.162278-3 2.658006+5 3.198895-3 2.589201+5 3.235937-3 2.522041+5 3.273407-3 2.456602+5 3.311311-3 2.392673+5 3.400000-3 2.252263+5 3.427678-3 2.210561+5 3.507519-3 2.096249+5 3.548134-3 2.041510+5 3.555200-3 2.032098+5 3.555200-3 4.940798+5 3.589219-3 4.816556+5 3.596000-3 4.792313+5 3.630781-3 4.681581+5 3.672823-3 4.552548+5 3.695000-3 4.486493+5 3.715352-3 4.421647+5 3.736800-3 4.354733+5 3.736800-3 6.197133+5 3.758374-3 6.105207+5 3.763000-3 6.085745+5 3.801894-3 5.930856+5 3.845918-3 5.762093+5 3.860000-3 5.709491+5 3.890451-3 5.593634+5 3.900000-3 5.557984+5 3.935501-3 5.428117+5 4.000000-3 5.207606+5 4.027170-3 5.118454+5 4.073803-3 4.970360+5 4.120975-3 4.826328+5 4.168694-3 4.686552+5 4.216965-3 4.548904+5 4.265795-3 4.415253+5 4.289600-3 4.352091+5 4.289600-3 5.076355+5 4.315191-3 5.003063+5 4.319000-3 4.992270+5 4.365158-3 4.864031+5 4.415704-3 4.728856+5 4.466836-3 4.596237+5 4.518559-3 4.467471+5 4.623810-3 4.218017+5 4.677351-3 4.097940+5 4.731513-3 3.981389+5 4.786301-3 3.867438+5 4.800000-3 3.839680+5 4.841724-3 3.756771+5 4.897788-3 3.649233+5 4.954502-3 3.544788+5 5.011872-3 3.442941+5 5.181500-3 3.165257+5 5.181500-3 3.361109+5 5.188000-3 3.350878+5 5.300000-3 3.180286+5 5.308844-3 3.167348+5 5.370318-3 3.079490+5 5.432503-3 2.993787+5 5.450000-3 2.970294+5 5.495409-3 2.910400+5 5.500000-3 2.904442+5 5.521300-3 2.876757+5 5.521300-3 2.998701+5 5.559043-3 2.949480+5 5.568000-3 2.937974+5 5.623413-3 2.868248+5 5.690000-3 2.787527+5 5.700000-3 2.775732+5 5.754399-3 2.712593+5 5.800000-3 2.661290+5 5.821032-3 2.638027+5 5.888437-3 2.564975+5 5.956621-3 2.493660+5 6.000000-3 2.449911+5 6.025596-3 2.424619+5 6.095369-3 2.357365+5 6.100570-3 2.352453+5 6.165950-3 2.291967+5 6.237348-3 2.228248+5 6.300000-3 2.174462+5 6.309573-3 2.166411+5 6.382635-3 2.106397+5 6.500000-3 2.014340+5 6.531306-3 1.990679+5 6.606934-3 1.934848+5 6.683439-3 1.880650+5 6.760830-3 1.827990+5 6.800000-3 1.802191+5 6.839116-3 1.776954+5 6.918310-3 1.727415+5 6.928200-3 1.721344+5 6.998420-3 1.678999+5 7.000000-3 1.678064+5 7.079458-3 1.631966+5 7.161434-3 1.585987+5 7.244360-3 1.541218+5 7.300000-3 1.512213+5 7.328245-3 1.497690+5 7.498942-3 1.414109+5 7.500000-3 1.413612+5 7.585776-3 1.374134+5 7.650000-3 1.345471+5 7.673615-3 1.335133+5 7.762471-3 1.297100+5 7.800000-3 1.281512+5 7.852356-3 1.260172+5 7.943282-3 1.224308+5 8.035261-3 1.189416+5 8.128305-3 1.155574+5 8.222426-3 1.122671+5 8.317638-3 1.090764+5 8.413951-3 1.059816+5 8.511380-3 1.029701+5 8.709636-3 9.722084+4 8.810489-3 9.447425+4 8.912509-3 9.180844+4 9.015711-3 8.920254+4 9.120108-3 8.664120+4 9.225714-3 8.414980+4 9.332543-3 8.173139+4 9.440609-3 7.937010+4 9.500000-3 7.811441+4 9.660509-3 7.486069+4 9.772372-3 7.269955+4 9.800000-3 7.217969+4 9.885531-3 7.060392+4 1.000000-2 6.856966+4 1.011579-2 6.659438+4 1.023293-2 6.467365+4 1.047129-2 6.100262+4 1.060000-2 5.914427+4 1.080000-2 5.640530+4 1.083927-2 5.588852+4 1.096478-2 5.427817+4 1.109175-2 5.271644+4 1.122018-2 5.120242+4 1.135011-2 4.973305+4 1.148154-2 4.828284+4 1.150000-2 4.808406+4 1.174898-2 4.551230+4 1.188502-2 4.419039+4 1.190000-2 4.404822+4 1.202264-2 4.290552+4 1.216186-2 4.165465+4 1.230269-2 4.044221+4 1.244515-2 3.926705+4 1.258925-2 3.812164+4 1.273503-2 3.701134+4 1.288250-2 3.593409+4 1.300000-2 3.510730+4 1.318257-2 3.387509+4 1.333521-2 3.289087+4 1.348963-2 3.192910+4 1.350000-2 3.186596+4 1.380384-2 3.009245+4 1.396368-2 2.921599+4 1.412538-2 2.836633+4 1.428894-2 2.754255+4 1.445440-2 2.673436+4 1.450000-2 2.651760+4 1.462177-2 2.594875+4 1.500000-2 2.428690+4 1.531087-2 2.303018+4 1.548817-2 2.235299+4 1.566751-2 2.169677+4 1.584893-2 2.106078+4 1.603245-2 2.044407+4 1.621810-2 1.984601+4 1.640590-2 1.926319+4 1.659587-2 1.869716+4 1.678804-2 1.814696+4 1.698244-2 1.761159+4 1.718200-2 1.708373+4 1.718200-2 4.060848+4 1.737801-2 3.949038+4 1.750000-2 3.881663+4 1.757924-2 3.835397+4 1.778279-2 3.719941+4 1.819701-2 3.499533+4 1.840772-2 3.392895+4 1.862087-2 3.289388+4 1.883649-2 3.188970+4 1.905461-2 3.091677+4 1.972423-2 2.817411+4 1.995262-2 2.731418+4 2.000000-2 2.714037+4 2.018366-2 2.647230+4 2.041738-2 2.565457+4 2.065380-2 2.486244+4 2.089296-2 2.409505+4 2.104400-2 2.362604+4 2.104400-2 3.343074+4 2.113489-2 3.306354+4 2.150000-2 3.164206+4 2.162719-2 3.115469+4 2.176800-2 3.062715+4 2.176800-2 3.536207+4 2.187762-2 3.491575+4 2.215000-2 3.384089+4 2.220000-2 3.365360+4 2.230000-2 3.327984+4 2.264644-2 3.200257+4 2.290868-2 3.109193+4 2.310000-2 3.045513+4 2.317395-2 3.021065+4 2.344229-2 2.934607+4 2.371374-2 2.850669+4 2.398833-2 2.769972+4 2.400000-2 2.766615+4 2.426610-2 2.690693+4 2.454709-2 2.613691+4 2.483133-2 2.538249+4 2.511886-2 2.464315+4 2.600160-2 2.255446+4 2.630268-2 2.189948+4 2.660725-2 2.126407+4 2.691535-2 2.064676+4 2.722701-2 2.004780+4 2.730000-2 1.991087+4 2.754229-2 1.946375+4 2.786121-2 1.889780+4 2.800000-2 1.865872+4 2.851018-2 1.781575+4 2.884032-2 1.729842+4 2.917427-2 1.679659+4 2.951209-2 1.630614+4 2.985383-2 1.583030+4 3.000000-2 1.563279+4 3.019952-2 1.536692+4 3.054921-2 1.491614+4 3.090295-2 1.447884+4 3.126079-2 1.405371+4 3.162278-2 1.364140+4 3.198895-2 1.324137+4 3.235937-2 1.285318+4 3.273407-2 1.247660+4 3.311311-2 1.210656+4 3.349654-2 1.174781+4 3.388442-2 1.139789+4 3.427678-2 1.105838+4 3.467369-2 1.072922+4 3.507519-2 1.041012+4 3.548134-2 1.010065+4 3.589219-2 9.800222+3 3.630781-2 9.508650+3 3.672823-2 9.225951+3 3.758374-2 8.685989+3 3.801894-2 8.428160+3 3.845918-2 8.178130+3 3.981072-2 7.472772+3 4.000000-2 7.380906+3 4.027170-2 7.250950+3 4.073803-2 7.035098+3 4.120975-2 6.825830+3 4.168694-2 6.621487+3 4.216965-2 6.422085+3 4.265795-2 6.228735+3 4.315191-2 6.041348+3 4.365158-2 5.859741+3 4.466836-2 5.513034+3 4.518559-2 5.347644+3 4.570882-2 5.187273+3 4.623810-2 5.031212+3 4.677351-2 4.879954+3 4.786301-2 4.591251+3 4.800000-2 4.556656+3 4.841724-2 4.453306+3 4.897788-2 4.319410+3 4.954502-2 4.189590+3 5.011872-2 4.063755+3 5.128614-2 3.822381+3 5.188000-2 3.706730+3 5.248075-2 3.594641+3 5.370318-2 3.380773+3 5.432503-2 3.278752+3 5.495409-2 3.179189+3 5.623413-2 2.989235+3 5.688529-2 2.898482+3 5.754399-2 2.810465+3 5.821032-2 2.725149+3 5.956621-2 2.562370+3 6.025596-2 2.484742+3 6.165950-2 2.336582+3 6.237348-2 2.265920+3 6.309573-2 2.197187+3 6.456542-2 2.065638+3 6.531306-2 2.002898+3 6.606934-2 1.941722+3 6.683439-2 1.882346+3 6.760830-2 1.824819+3 6.839116-2 1.769038+3 6.998420-2 1.662614+3 7.079458-2 1.611875+3 7.161434-2 1.562715+3 7.244360-2 1.515083+3 7.328245-2 1.468923+3 7.413102-2 1.424197+3 7.498942-2 1.380859+3 7.673615-2 1.298172+3 7.762471-2 1.258542+3 7.852356-2 1.220131+3 7.943282-2 1.182781+3 8.000000-2 1.160233+3 8.035261-2 1.146505+3 8.128305-2 1.111348+3 8.222426-2 1.077289+3 8.511380-2 9.812743+2 8.609938-2 9.512454+2 8.810489-2 8.939670+2 8.912509-2 8.665294+2 9.120108-2 8.141966+2 9.332543-2 7.650706+2 9.440609-2 7.416256+2 9.660509-2 6.968921+2 1.000000-1 6.348799+2 1.011580-1 6.154672+2 1.023293-1 5.966597+2 1.035142-1 5.783462+2 1.047129-1 5.605787+2 1.059254-1 5.433656+2 1.071519-1 5.266895+2 1.083927-1 5.105318+2 1.109175-1 4.796993+2 1.122019-1 4.649975+2 1.135011-1 4.507531+2 1.148154-1 4.369512+2 1.161100-1 4.239225+2 1.161100-1 1.801238+3 1.161449-1 1.799865+3 1.174898-1 1.748054+3 1.188502-1 1.697744+3 1.202264-1 1.648888+3 1.207000-1 1.635702+3 1.216186-1 1.603871+3 1.244515-1 1.510859+3 1.250000-1 1.493721+3 1.258925-1 1.467523+3 1.303167-1 1.346759+3 1.318257-1 1.308768+3 1.333521-1 1.270457+3 1.348963-1 1.233268+3 1.364583-1 1.197174+3 1.396368-1 1.128136+3 1.445440-1 1.031998+3 1.450000-1 1.023652+3 1.496236-1 9.449062+2 1.500000-1 9.388726+2 1.513561-1 9.175514+2 1.531088-1 8.909829+2 1.548817-1 8.651884+2 1.566751-1 8.401444+2 1.603245-1 7.922181+2 1.640590-1 7.470528+2 1.659587-1 7.254493+2 1.678804-1 7.042322+2 1.717908-1 6.636478+2 1.778279-1 6.071267+2 1.798871-1 5.893805+2 1.819701-1 5.721549+2 1.862087-1 5.392043+2 1.883649-1 5.235167+2 1.927525-1 4.935017+2 1.949845-1 4.791479+2 1.972423-1 4.652131+2 2.000000-1 4.489476+2 2.041738-1 4.258119+2 2.065380-1 4.134403+2 2.089296-1 4.014293+2 2.113489-1 3.897759+2 2.162719-1 3.674773+2 2.213095-1 3.464579+2 2.213400-1 3.463358+2 2.238721-1 3.364048+2 2.290868-1 3.171670+2 2.317395-1 3.079670+2 2.344229-1 2.990345+2 2.371374-1 2.903661+2 2.398833-1 2.819497+2 2.426610-1 2.737778+2 2.483133-1 2.581397+2 2.511886-1 2.506598+2 2.540973-1 2.434021+2 2.570396-1 2.363563+2 2.600160-1 2.295935+2 2.630268-1 2.230270+2 2.660725-1 2.166486+2 2.691535-1 2.104531+2 2.722701-1 2.044360+2 2.786121-1 1.929199+2 2.818383-1 1.874080+2 2.851018-1 1.820541+2 2.884032-1 1.768534+2 2.917427-1 1.718017+2 2.951209-1 1.669021+2 2.985383-1 1.621459+2 3.000000-1 1.601695+2 3.019952-1 1.575257+2 3.054921-1 1.530382+2 3.090295-1 1.486788+2 3.126079-1 1.445041+2 3.162278-1 1.404495+2 3.198895-1 1.365091+2 3.235937-1 1.326806+2 3.273407-1 1.289601+2 3.311311-1 1.253442+2 3.388442-1 1.184143+2 3.427678-1 1.150947+2 3.467369-1 1.118711+2 3.507519-1 1.087379+2 3.548134-1 1.056927+2 3.589219-1 1.027396+2 3.630781-1 9.986973+1 3.672823-1 9.712378+1 3.715352-1 9.445344+1 3.758374-1 9.185664+1 3.801894-1 8.933148+1 3.845918-1 8.687585+1 3.890451-1 8.448884+1 3.935501-1 8.216774+1 4.000000-1 7.900159+1 4.027170-1 7.772015+1 4.073803-1 7.558845+1 4.120975-1 7.351606+1 4.168694-1 7.153861+1 4.216965-1 6.961448+1 4.265795-1 6.774574+1 4.315191-1 6.592730+1 4.365158-1 6.415779+1 4.415705-1 6.243582+1 4.466836-1 6.076018+1 4.472100-1 6.059142+1 4.518559-1 5.913196+1 4.570882-1 5.754829+1 4.623810-1 5.600752+1 4.677351-1 5.450840+1 4.731513-1 5.304943+1 4.786301-1 5.165523+1 4.897788-1 4.897598+1 4.954502-1 4.769186+1 5.011872-1 4.644149+1 5.069907-1 4.522464+1 5.128614-1 4.404105+1 5.188000-1 4.288850+1 5.248075-1 4.176673+1 5.308844-1 4.067466+1 5.370318-1 3.961132+1 5.432503-1 3.859565+1 5.495409-1 3.760603+1 5.559043-1 3.664184+1 5.623413-1 3.570296+1 5.688529-1 3.478831+1 5.754399-1 3.389992+1 5.821032-1 3.303425+1 5.888437-1 3.219069+1 5.956621-1 3.136877+1 6.025596-1 3.056804+1 6.095369-1 2.978821+1 6.165950-1 2.904570+1 6.237348-1 2.832214+1 6.309573-1 2.761662+1 6.382635-1 2.692879+1 6.456542-1 2.625890+1 6.531306-1 2.560569+1 6.606935-1 2.497026+1 6.623700-1 2.483252+1 6.683439-1 2.435062+1 6.760830-1 2.374653+1 6.839117-1 2.315744+1 6.918310-1 2.258322+1 6.998420-1 2.203491+1 7.079458-1 2.150009+1 7.161434-1 2.097826+1 7.244360-1 2.046965+1 7.328245-1 1.997341+1 7.413102-1 1.948921+1 7.498942-1 1.901676+1 7.585776-1 1.855590+1 7.673615-1 1.810738+1 7.762471-1 1.766971+1 7.852356-1 1.724267+1 7.943282-1 1.682598+1 8.000000-1 1.657899+1 8.035261-1 1.642814+1 8.128305-1 1.604012+1 8.222427-1 1.566134+1 8.413951-1 1.493042+1 8.511380-1 1.457787+1 8.609938-1 1.423365+1 8.709636-1 1.389890+1 8.810489-1 1.357208+1 8.912509-1 1.325297+1 9.015711-1 1.294136+1 9.120108-1 1.263730+1 9.225714-1 1.234040+1 9.332543-1 1.205759+1 9.440609-1 1.178135+1 9.549926-1 1.151156+1 9.660509-1 1.124795+1 9.772372-1 1.099038+1 9.885531-1 1.073963+1 1.000000+0 1.049466+1 1.011579+0 1.025571+1 1.023293+0 1.002233+1 1.035142+0 9.798520+0 1.047129+0 9.579717+0 1.059254+0 9.365967+0 1.071519+0 9.157037+0 1.083927+0 8.952765+0 1.096478+0 8.753062+0 1.109175+0 8.558065+0 1.122018+0 8.367429+0 1.135011+0 8.181022+0 1.148154+0 7.998955+0 1.161449+0 7.821000+0 1.174898+0 7.647004+0 1.188502+0 7.476889+0 1.202264+0 7.310990+0 1.216186+0 7.148958+0 1.230269+0 6.994459+0 1.244515+0 6.843333+0 1.250000+0 6.786514+0 1.258925+0 6.695607+0 1.273503+0 6.551115+0 1.288250+0 6.409751+0 1.303167+0 6.271445+0 1.318257+0 6.136122+0 1.333521+0 6.003724+0 1.348963+0 5.874717+0 1.364583+0 5.748491+0 1.380384+0 5.628132+0 1.396368+0 5.510373+0 1.412538+0 5.395094+0 1.428894+0 5.282265+0 1.513561+0 4.752570+0 1.531087+0 4.653525+0 1.548817+0 4.556689+0 1.566751+0 4.464437+0 1.640590+0 4.113789+0 1.659587+0 4.030541+0 1.698244+0 3.869074+0 1.717908+0 3.790786+0 1.737801+0 3.714358+0 1.757924+0 3.639542+0 1.778279+0 3.568239+0 1.798871+0 3.498346+0 1.819701+0 3.429823+0 1.840772+0 3.362643+0 1.862087+0 3.296779+0 1.883649+0 3.232224+0 1.905461+0 3.168936+0 1.927525+0 3.106890+0 1.949845+0 3.046057+0 1.972423+0 2.986634+0 2.000000+0 2.916576+0 2.018366+0 2.872599+0 2.044000+0 2.812986+0 2.065380+0 2.764767+0 2.113489+0 2.660984+0 2.137962+0 2.610578+0 2.187762+0 2.512619+0 2.213095+0 2.465027+0 2.238721+0 2.418513+0 2.264644+0 2.372881+0 2.290868+0 2.328146+0 2.317395+0 2.285455+0 2.344229+0 2.243556+0 2.371374+0 2.202425+0 2.426610+0 2.122412+0 2.454709+0 2.083514+0 2.511886+0 2.007849+0 2.540973+0 1.971053+0 2.570396+0 1.935067+0 2.600160+0 1.899744+0 2.630268+0 1.865093+0 2.660725+0 1.832018+0 2.691535+0 1.799536+0 2.722701+0 1.767631+0 2.786121+0 1.705507+0 2.818383+0 1.675277+0 2.884032+0 1.616420+0 2.917427+0 1.587773+0 2.951209+0 1.559736+0 3.000000+0 1.520662+0 3.054921+0 1.478604+0 3.090295+0 1.453230+0 3.126079+0 1.428297+0 3.162278+0 1.403792+0 3.235937+0 1.356036+0 3.273407+0 1.332778+0 3.349654+0 1.287455+0 3.388442+0 1.265374+0 3.427678+0 1.243755+0 3.467369+0 1.222508+0 3.548134+0 1.181130+0 3.589219+0 1.161520+0 3.630781+0 1.142239+0 3.672823+0 1.123279+0 3.758374+0 1.086299+0 3.801894+0 1.068272+0 3.890451+0 1.033116+0 3.935501+0 1.015973+0 4.000000+0 9.923429-1 4.027170+0 9.826668-1 4.120975+0 9.504814-1 4.168694+0 9.352174-1 4.216965+0 9.202017-1 4.265795+0 9.054271-1 4.365158+0 8.765861-1 4.415704+0 8.625161-1 4.570882+0 8.216493-1 4.623810+0 8.084622-1 4.677351+0 7.955368-1 4.731513+0 7.828196-1 4.841724+0 7.580122-1 4.897788+0 7.462368-1 4.954502+0 7.346466-1 5.011872+0 7.232366-1 5.128614+0 7.009454-1 5.188000+0 6.900621-1 5.370318+0 6.584176-1 5.432503+0 6.481954-1 5.495409+0 6.381318-1 5.559043+0 6.282620-1 5.623413+0 6.185463-1 5.754399+0 5.995783-1 5.821032+0 5.905645-1 5.888437+0 5.816881-1 5.956621+0 5.729454-1 6.095369+0 5.558520-1 6.165950+0 5.474999-1 6.382635+0 5.231911-1 6.456542+0 5.153305-1 6.531306+0 5.075879-1 6.606934+0 4.999887-1 6.683439+0 4.925041-1 6.839116+0 4.778803-1 6.918310+0 4.709104-1 6.998420+0 4.640423-1 7.000000+0 4.639086-1 7.079458+0 4.572756-1 7.161434+0 4.506076-1 7.328245+0 4.375621-1 7.413102+0 4.311835-1 7.673615+0 4.126013-1 7.762471+0 4.065870-1 7.852356+0 4.006604-1 8.000000+0 3.912886-1 8.035261+0 3.891084-1 8.222427+0 3.778995-1 8.317638+0 3.725664-1 8.413951+0 3.673085-1 8.511380+0 3.621259-1 8.609938+0 3.570163-1 8.810489+0 3.470126-1 8.912509+0 3.421178-1 9.225714+0 3.278447-1 9.440609+0 3.186617-1 9.549926+0 3.141671-1 9.772372+0 3.053966-1 1.011579+1 2.927083-1 1.023293+1 2.886965-1 1.035142+1 2.847398-1 1.047129+1 2.808378-1 1.059254+1 2.769896-1 1.083927+1 2.694506-1 1.096478+1 2.657585-1 1.100000+1 2.647393-1 1.109175+1 2.621177-1 1.148154+1 2.514929-1 1.174898+1 2.446501-1 1.188502+1 2.412991-1 1.202264+1 2.380045-1 1.216186+1 2.347552-1 1.258925+1 2.252780-1 1.273503+1 2.222796-1 1.288250+1 2.193210-1 1.303167+1 2.164026-1 1.318257+1 2.135229-1 1.348963+1 2.078780-1 1.364583+1 2.051119-1 1.380384+1 2.023825-1 1.428894+1 1.944129-1 1.445440+1 1.918267-1 1.462177+1 1.892819-1 1.479108+1 1.867710-1 1.566751+1 1.747133-1 1.584893+1 1.723988-1 1.621810+1 1.679526-1 1.659587+1 1.636211-1 1.698244+1 1.594021-1 1.737801+1 1.552919-1 1.757924+1 1.532767-1 1.778279+1 1.512878-1 1.800000+1 1.492189-1 1.819701+1 1.473880-1 1.905461+1 1.399159-1 1.927525+1 1.381079-1 1.949845+1 1.363244-1 2.041738+1 1.295231-1 2.213095+1 1.184270-1 2.317395+1 1.125195-1 2.344229+1 1.110893-1 2.371374+1 1.096772-1 2.398833+1 1.082835-1 2.400000+1 1.082250-1 2.426610+1 1.069121-1 2.454709+1 1.055582-1 2.600160+1 9.916044-2 3.054921+1 8.323561-2 3.162278+1 8.017137-2 3.198895+1 7.917525-2 3.235937+1 7.819148-2 3.273407+1 7.722020-2 3.311311+1 7.626390-2 3.349654+1 7.531947-2 3.548134+1 7.084828-2 4.315191+1 5.753931-2 4.518559+1 5.479047-2 4.570882+1 5.412402-2 4.623810+1 5.346568-2 4.677351+1 5.281550-2 4.731513+1 5.217466-2 4.786301+1 5.154190-2 4.841724+1 5.091682-2 5.128614+1 4.794939-2 6.456542+1 3.771118-2 6.839116+1 3.551359-2 6.918310+1 3.508968-2 6.998420+1 3.467084-2 7.079458+1 3.425701-2 7.161434+1 3.384818-2 7.244360+1 3.344500-2 7.328245+1 3.304678-2 7.413102+1 3.265330-2 7.498942+1 3.226941-2 8.035261+1 3.006013-2 1.083927+2 2.210668-2 1.188502+2 2.011222-2 1.202264+2 1.987591-2 1.216186+2 1.964238-2 1.230269+2 1.941158-2 1.244515+2 1.918351-2 1.258925+2 1.895816-2 1.273503+2 1.873544-2 1.288250+2 1.851562-2 1.303167+2 1.829843-2 1.318257+2 1.808386-2 1.364583+2 1.745512-2 1.380384+2 1.725249-2 1.479108+2 1.608557-2 1.905461+2 1.244269-2 2.238721+2 1.056694-2 2.317395+2 1.020334-2 2.371374+2 9.967915-3 2.398833+2 9.852250-3 2.454709+2 9.624929-3 2.483133+2 9.513246-3 2.511886+2 9.402866-3 2.540973+2 9.293763-3 2.570396+2 9.186003-3 2.600160+2 9.079503-3 2.630268+2 8.974257-3 2.722701+2 8.665781-3 2.754229+2 8.565836-3 2.951209+2 7.990046-3 3.801894+2 6.190710-3 4.466836+2 5.262940-3 4.623810+2 5.082984-3 4.731513+2 4.966444-3 4.786301+2 4.909180-3 4.897788+2 4.796626-3 4.954502+2 4.741321-3 5.011872+2 4.686657-3 5.069907+2 4.632622-3 5.128614+2 4.579239-3 5.188000+2 4.526476-3 5.248075+2 4.474327-3 5.432503+2 4.321460-3 5.495409+2 4.271863-3 5.888437+2 3.986057-3 1.513561+3 1.547162-3 1.778279+3 1.316331-3 1.840772+3 1.271536-3 1.883649+3 1.242522-3 1.905461+3 1.228265-3 1.949845+3 1.200239-3 1.972423+3 1.186466-3 1.995262+3 1.172853-3 2.018366+3 1.159395-3 2.041738+3 1.146094-3 2.065380+3 1.132947-3 2.089296+3 1.119951-3 2.162719+3 1.081851-3 2.187762+3 1.069461-3 2.344229+3 9.980503-4 1.000000+5 2.335955-5 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 4.130000-6 4.740000-6 4.130000-6 4.740000-6 4.319964-6 5.780000-6 4.341845-6 5.780000-6 5.023423-6 6.500000-6 4.889049-6 7.200000-6 4.787929-6 7.950000-6 4.706913-6 7.950000-6 4.761689-6 8.910000-6 4.700079-6 8.910000-6 4.747577-6 9.930000-6 4.726543-6 1.100000-5 4.741929-6 1.188502-5 4.780251-6 1.290000-5 4.852866-6 1.364583-5 4.924876-6 1.479108-5 5.067053-6 1.584893-5 5.230761-6 1.717908-5 5.477692-6 1.905461-5 5.877177-6 2.150000-5 6.417358-6 2.317395-5 6.752427-6 2.457000-5 6.994895-6 2.457000-5 1.933312-5 2.951209-5 1.668834-5 3.162278-5 1.564486-5 3.350000-5 1.481088-5 3.409000-5 1.456637-5 3.409000-5 2.106552-5 3.981072-5 1.863522-5 4.315191-5 1.732859-5 4.623810-5 1.626342-5 4.841724-5 1.559989-5 5.069907-5 1.499174-5 5.223000-5 1.462547-5 5.223000-5 1.565347-5 5.432503-5 1.513182-5 5.580000-5 1.480544-5 5.800000-5 1.438765-5 6.025596-5 1.403197-5 6.309573-5 1.367496-5 6.650000-5 1.335548-5 7.000000-5 1.311834-5 7.413102-5 1.293708-5 7.852356-5 1.283329-5 8.317638-5 1.280302-5 8.810489-5 1.285461-5 9.332543-5 1.299740-5 9.885531-5 1.323927-5 1.040200-4 1.354686-5 1.040200-4 4.559102-5 1.041400-4 4.641458-5 1.051000-4 5.170253-5 1.059254-4 5.592625-5 1.063000-4 5.771018-5 1.068500-4 6.015704-5 1.074000-4 6.240046-5 1.080000-4 6.461493-5 1.085000-4 6.629894-5 1.091000-4 6.810143-5 1.100000-4 7.038259-5 1.110000-4 7.246185-5 1.115000-4 7.333393-5 1.123500-4 7.456072-5 1.123500-4 7.945950-5 1.140000-4 8.248863-5 1.157000-4 8.508150-5 1.175000-4 8.728454-5 1.190000-4 8.870364-5 1.208000-4 8.994628-5 1.230269-4 9.094062-5 1.265000-4 9.174420-5 1.365000-4 9.259157-5 1.513561-4 9.325946-5 1.660000-4 9.326764-5 1.800000-4 9.268792-5 1.915000-4 9.160376-5 2.030000-4 8.985841-5 2.033900-4 8.978843-5 2.033900-4 1.049188-4 2.170000-4 1.044764-4 2.317395-4 1.031728-4 2.593800-4 9.983757-5 2.593800-4 1.156141-4 2.754229-4 1.127930-4 2.951209-4 1.088420-4 3.180000-4 1.051822-4 3.206500-4 1.048272-4 3.206500-4 1.125079-4 3.467369-4 1.097283-4 3.715352-4 1.078357-4 3.907500-4 1.068238-4 3.907500-4 1.177794-4 4.020900-4 1.178634-4 4.020900-4 1.240408-4 4.101300-4 1.254893-4 4.145000-4 1.269565-4 4.185000-4 1.291403-4 4.220000-4 1.318722-4 4.260000-4 1.359366-4 4.315191-4 1.427371-4 4.410000-4 1.550862-4 4.470000-4 1.618304-4 4.523000-4 1.667830-4 4.590000-4 1.717854-4 4.665000-4 1.760279-4 4.760000-4 1.798469-4 4.880000-4 1.829651-4 5.011872-4 1.850997-4 5.210000-4 1.869509-4 5.559043-4 1.883954-4 6.237348-4 1.891622-4 7.351400-4 1.890097-4 7.351400-4 1.997913-4 7.585776-4 2.014879-4 7.781800-4 2.022486-4 7.781800-4 2.082667-4 8.413951-4 2.111450-4 1.030500-3 2.173875-4 1.030500-3 2.289469-4 1.264200-3 2.369639-4 1.264200-3 2.401046-4 1.419900-3 2.453742-4 1.419900-3 2.502743-4 1.737801-3 2.605253-4 2.113489-3 2.703636-4 2.540973-3 2.794964-4 3.054921-3 2.883623-4 3.555200-3 2.954070-4 3.555200-3 4.323958-4 3.736800-3 4.323003-4 3.736800-3 4.597230-4 4.289600-3 4.594524-4 4.289600-3 4.943572-4 5.181500-3 4.994261-4 5.181500-3 5.171957-4 5.521300-3 5.204923-4 5.521300-3 5.356974-4 7.328245-3 5.547713-4 9.500000-3 5.729508-4 1.216186-2 5.901512-4 1.548817-2 6.065523-4 1.718200-2 6.133719-4 1.718200-2 7.413512-4 2.104400-2 7.455832-4 2.104400-2 7.909298-4 2.176800-2 7.918524-4 2.176800-2 8.471721-4 3.000000-2 8.677186-4 4.168694-2 8.880370-4 5.821032-2 9.079645-4 8.000000-2 9.259610-4 1.109175-1 9.429374-4 1.161100-1 9.451872-4 1.161100-1 8.678527-4 2.851018-1 8.732417-4 7.852356-1 8.760827-4 1.000000+5 8.763340-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 0.0 2.033900-4 0.0 2.033900-4 2.114069-9 2.095000-4 2.206626-9 2.162719-4 2.292846-9 2.220000-4 2.350494-9 2.270000-4 2.387365-9 2.317395-4 2.410059-9 2.426610-4 2.438708-9 2.511886-4 2.440433-9 2.593800-4 2.432258-9 2.593800-4 4.440670-9 2.691535-4 4.336991-9 2.754229-4 4.241684-9 2.951209-4 3.885083-9 3.126079-4 3.607807-9 3.206500-4 3.490181-9 3.206500-4 3.841938-9 3.350000-4 3.668593-9 3.467369-4 3.539606-9 3.600000-4 3.409009-9 3.758374-4 3.274730-9 3.850000-4 3.205523-9 3.907500-4 3.167407-9 3.907500-4 1.609518-8 3.950000-4 1.621733-8 4.020900-4 1.662366-8 4.020900-4 1.835420-8 4.058000-4 1.881167-8 4.075000-4 1.911471-8 4.090000-4 1.945261-8 4.101300-4 1.976960-8 4.115000-4 2.022879-8 4.130000-4 2.083805-8 4.145000-4 2.156604-8 4.158000-4 2.229982-8 4.173000-4 2.327253-8 4.190000-4 2.454446-8 4.200000-4 2.537584-8 4.220000-4 2.722578-8 4.240000-4 2.930604-8 4.270000-4 3.279336-8 4.290000-4 3.528114-8 4.343000-4 4.215122-8 4.365158-4 4.492695-8 4.390000-4 4.787020-8 4.415704-4 5.066521-8 4.430000-4 5.212196-8 4.458000-4 5.470066-8 4.480000-4 5.652297-8 4.500000-4 5.802960-8 4.523000-4 5.960617-8 4.550000-4 6.127107-8 4.590000-4 6.335347-8 4.640000-4 6.545594-8 4.677351-4 6.671954-8 4.731513-4 6.815692-8 4.790000-4 6.925676-8 4.870000-4 7.028212-8 4.963700-4 7.107405-8 5.100000-4 7.180928-8 5.260000-4 7.227367-8 5.623413-4 7.265471-8 6.309573-4 7.261874-8 7.351400-4 7.209699-8 7.351400-4 7.380856-8 7.781800-4 7.397294-8 7.781800-4 8.350718-8 8.035261-4 8.467381-8 8.413951-4 8.590019-8 9.015711-4 8.734380-8 1.030500-3 9.002206-8 1.030500-3 1.124892-7 1.264200-3 1.204647-7 1.264200-3 1.258616-7 1.419900-3 1.318702-7 1.419900-3 1.424117-7 1.659587-3 1.527153-7 1.927525-3 1.630812-7 2.264644-3 1.747438-7 2.570396-3 1.842489-7 3.019952-3 1.966925-7 3.507519-3 2.085071-7 3.555200-3 2.095927-7 3.555200-3 2.560286-7 3.736800-3 2.573350-7 3.736800-3 4.907755-5 3.860000-3 4.916122-5 3.935501-3 4.896951-5 4.289600-3 4.878962-5 4.289600-3 4.894961-5 4.800000-3 4.870295-5 5.181500-3 4.840914-5 5.181500-3 5.416450-5 5.521300-3 5.451230-5 5.521300-3 5.554576-5 6.928200-3 5.690771-5 9.120108-3 5.853843-5 1.150000-2 5.990296-5 1.500000-2 6.141457-5 1.718200-2 6.216846-5 1.718200-2 3.764997-3 1.757924-2 3.771180-3 2.104400-2 3.729551-3 2.104400-2 5.517983-3 2.176800-2 5.532027-3 2.176800-2 5.792268-3 2.660725-2 5.856010-3 3.311311-2 5.910338-3 4.623810-2 5.958268-3 7.161434-2 5.991474-3 1.161100-1 6.004335-3 1.161100-1 8.126545-2 1.396368-1 8.196446-2 1.819701-1 8.268976-2 2.722701-1 8.342677-2 5.248075-1 8.432616-2 9.120108-1 8.500842-2 1.698244+0 8.507467-2 1.000000+5 8.507585-2 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.130000-6 0.0 4.740000-6 6.100000-7 4.740000-6 4.200363-7 5.188000-6 8.567438-7 5.780000-6 1.438155-6 5.780000-6 7.565770-7 6.025596-6 1.051598-6 6.500000-6 1.610951-6 7.000000-6 2.186227-6 7.700000-6 2.968796-6 7.950000-6 3.243087-6 7.950000-6 3.188311-6 8.770000-6 4.063278-6 8.910000-6 4.209921-6 8.910000-6 4.162423-6 9.930000-6 5.203457-6 1.100000-5 6.258071-6 1.230269-5 7.496153-6 1.364583-5 8.720954-6 1.531087-5 1.016699-5 1.717908-5 1.170139-5 2.270000-5 1.603783-5 2.457000-5 1.757510-5 2.457000-5 5.236882-6 2.660725-5 8.367265-6 2.900000-5 1.204820-5 3.019952-5 1.386366-5 3.162278-5 1.597792-5 3.350000-5 1.868912-5 3.409000-5 1.952363-5 3.409000-5 1.302448-5 3.650000-5 1.646190-5 4.000000-5 2.144070-5 4.315191-5 2.582332-5 4.650000-5 3.031944-5 5.011872-5 3.498225-5 5.223000-5 3.760453-5 5.223000-5 3.657653-5 5.580000-5 4.099456-5 6.025596-5 4.622399-5 6.650000-5 5.314452-5 7.500000-5 6.208892-5 8.609938-5 7.327383-5 1.000000-4 8.669921-5 1.040200-4 9.047314-5 1.040200-4 5.842898-5 1.041400-4 5.772542-5 1.051000-4 5.339747-5 1.059254-4 4.999915-5 1.063000-4 4.858982-5 1.068500-4 4.669296-5 1.074000-4 4.499954-5 1.080000-4 4.338507-5 1.085000-4 4.220106-5 1.091000-4 4.099857-5 1.097000-4 4.001316-5 1.103000-4 3.922438-5 1.110000-4 3.853815-5 1.115000-4 3.816607-5 1.123500-4 3.778928-5 1.123500-4 3.289050-5 1.127000-4 3.253222-5 1.140000-4 3.151137-5 1.152000-4 3.083131-5 1.163000-4 3.042050-5 1.175000-4 3.021546-5 1.188502-4 3.027365-5 1.197000-4 3.046135-5 1.208000-4 3.085372-5 1.221000-4 3.150947-5 1.236000-4 3.247874-5 1.258925-4 3.424910-5 1.288250-4 3.681000-5 1.372400-4 4.459483-5 1.480000-4 5.482322-5 1.603245-4 6.698804-5 1.740000-4 8.097963-5 1.865000-4 9.434384-5 1.990000-4 1.084599-4 2.033900-4 1.136016-4 2.033900-4 9.846912-5 2.170000-4 1.125213-4 2.317395-4 1.285643-4 2.593800-4 1.595400-4 2.593800-4 1.437614-4 2.786121-4 1.664553-4 3.030000-4 1.954846-4 3.206500-4 2.158193-4 3.206500-4 2.081382-4 3.589219-4 2.502090-4 3.907500-4 2.839230-4 3.907500-4 2.729545-4 4.020900-4 2.842100-4 4.020900-4 2.780308-4 4.120975-4 2.860151-4 4.185000-4 2.893356-4 4.245000-4 2.901667-4 4.323000-4 2.884935-4 4.430000-4 2.854798-4 4.500000-4 2.851962-4 4.580000-4 2.868186-4 4.677351-4 2.910699-4 4.790000-4 2.981564-4 4.963700-4 3.118668-4 5.248075-4 3.375411-4 5.888437-4 3.998296-4 7.351400-4 5.460582-4 7.351400-4 5.352749-4 7.781800-4 5.758574-4 7.781800-4 5.698298-4 1.030500-3 8.130225-4 1.030500-3 8.014407-4 1.264200-3 1.027116-3 1.264200-3 1.023970-3 1.419900-3 1.174394-3 1.419900-3 1.169483-3 2.290868-3 2.016302-3 3.555200-3 3.259583-3 3.555200-3 3.122548-3 3.736800-3 3.304243-3 3.736800-3 3.228000-3 4.289600-3 3.781358-3 4.289600-3 3.746293-3 5.181500-3 4.633665-3 5.181500-3 4.610140-3 5.521300-3 4.946296-3 5.521300-3 4.930057-3 1.428894-2 1.362663-2 1.718200-2 1.650646-2 1.718200-2 1.267565-2 2.104400-2 1.656887-2 2.104400-2 1.473509-2 2.176800-2 1.544412-2 2.176800-2 1.512856-2 3.467369-2 2.787992-2 1.148154-1 1.078665-1 1.161100-1 1.091605-1 1.161100-1 3.397670-2 1.202264-1 3.796076-2 1.216186-1 3.927513-2 1.364583-1 5.368566-2 1.819701-1 9.840953-2 3.388442-1 2.542291-1 1.659587+0 1.573638+0 1.000000+5 9.999991+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.161100-1 1.377315+3 1.202264-1 1.263030+3 1.207000-1 1.253916+3 1.250000-1 1.146438+3 1.318257-1 1.007993+3 1.450000-1 7.910120+2 1.659587-1 5.637311+2 1.862087-1 4.203684+2 2.570396-1 1.856724+2 3.090295-1 1.172150+2 3.630781-1 7.895769+1 4.120975-1 5.824884+1 4.731513-1 4.213679+1 5.370318-1 3.152992+1 6.095369-1 2.376041+1 6.918310-1 1.805270+1 7.943282-1 1.348153+1 9.225714-1 9.906486+0 1.023293+0 8.051882+0 1.216186+0 5.745143+0 1.364583+0 4.618753+0 1.548817+0 3.660261+0 1.757924+0 2.923572+0 2.000000+0 2.342923+0 2.290868+0 1.870245+0 2.630268+0 1.498284+0 3.054921+0 1.187779+0 3.548134+0 9.488147-1 4.120975+0 7.635303-1 4.841724+0 6.089188-1 5.754399+0 4.816499-1 6.839116+0 3.838929-1 8.222427+0 3.035724-1 1.011579+1 2.351358-1 1.258925+1 1.809701-1 1.584893+1 1.384863-1 1.949845+1 1.095150-1 2.454709+1 8.480224-2 3.349654+1 6.050937-2 4.841724+1 4.090468-2 7.413102+1 2.623256-2 1.364583+2 1.402253-2 2.722701+2 6.961872-3 5.432503+2 3.471775-3 2.162719+3 8.691476-4 1.000000+5 1.876700-5 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.161100-1 8.440500-4 1.000000+5 8.440500-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.161100-1 1.044300-1 1.000000+5 1.044300-1 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.161100-1 1.083595-2 1.000000+5 9.999989+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.176800-2 4.734915+3 2.215000-2 4.583476+3 2.230000-2 4.540560+3 2.264644-2 4.416132+3 2.310000-2 4.278840+3 2.371374-2 4.077291+3 2.483133-2 3.780513+3 2.754229-2 3.132107+3 3.000000-2 2.689500+3 3.349654-2 2.184055+3 4.168694-2 1.418260+3 4.570882-2 1.174706+3 5.432503-2 8.184005+2 6.531306-2 5.490463+2 7.673615-2 3.833077+2 8.810489-2 2.798920+2 1.023293-1 1.979100+2 1.216186-1 1.317482+2 1.500000-1 7.977660+1 2.917427-1 1.596476+1 3.548134-1 1.002594+1 4.216965-1 6.697111+0 4.897788-1 4.754257+0 5.688529-1 3.402314+0 6.531306-1 2.515798+0 7.585776-1 1.828293+0 8.609938-1 1.405517+0 9.772372-1 1.088585+0 1.188502+0 7.416037-1 1.333521+0 5.952972-1 1.513561+0 4.709797-1 1.717908+0 3.756685-1 1.949845+0 3.018455-1 2.213095+0 2.441957-1 2.540973+0 1.952496-1 2.917427+0 1.572601-1 3.388442+0 1.253310-1 3.935501+0 1.006312-1 4.623810+0 8.007728-2 5.495409+0 6.320679-2 6.531306+0 5.027965-2 7.852356+0 3.968628-2 9.549926+0 3.111840-2 1.188502+1 2.390077-2 1.445440+1 1.900092-2 1.819701+1 1.459812-2 2.400000+1 1.072400-2 3.273407+1 7.652045-3 4.677351+1 5.233344-3 7.161434+1 3.354093-3 1.273503+2 1.856333-3 2.540973+2 9.209958-4 5.069907+2 4.590978-4 2.018366+3 1.149132-4 1.000000+5 2.315400-6 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.176800-2 1.205000-3 1.000000+5 1.205000-3 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.176800-2 7.475600-3 1.000000+5 7.475600-3 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.176800-2 1.308740-2 1.000000+5 9.999999+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.104400-2 9.804704+3 2.150000-2 9.360100+3 2.220000-2 8.670400+3 2.290868-2 8.019300+3 2.400000-2 7.165600+3 2.917427-2 4.375400+3 3.273407-2 3.243100+3 4.000000-2 1.903700+3 5.011872-2 1.029800+3 6.237348-2 5.608800+2 7.852356-2 2.931700+2 1.035142-1 1.335400+2 1.659587-1 3.470200+1 2.089296-1 1.809100+1 2.511886-1 1.082081+1 2.951209-1 6.949803+0 3.427678-1 4.639645+0 3.935501-1 3.218560+0 4.472100-1 2.311204+0 5.069907-1 1.682914+0 5.688529-1 1.266763+0 6.382635-1 9.604080-1 7.161434-1 7.343055-1 8.035261-1 5.656610-1 9.225714-1 4.172340-1 1.000000+0 3.513923-1 1.096478+0 2.914480-1 1.202264+0 2.435064-1 1.333521+0 2.003910-1 1.531087+0 1.559323-1 1.757924+0 1.220225-1 2.000000+0 9.775521-2 2.290868+0 7.803663-2 2.630268+0 6.252633-2 3.054921+0 4.957908-2 3.548134+0 3.960511-2 4.120975+0 3.187147-2 4.841724+0 2.541771-2 5.754399+0 2.010505-2 6.839116+0 1.602389-2 8.222427+0 1.267192-2 1.011579+1 9.815059-3 1.258925+1 7.554044-3 1.566751+1 5.858089-3 1.927525+1 4.630642-3 2.454709+1 3.539775-3 3.349654+1 2.525770-3 4.841724+1 1.707397-3 7.498942+1 1.082032-3 1.380384+2 5.784923-4 2.754229+2 2.872431-4 5.495409+2 1.432553-4 2.187762+3 3.586441-5 1.000000+5 7.833900-7 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.104400-2 9.002000-4 1.000000+5 9.002000-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.104400-2 9.827500-3 1.000000+5 9.827500-3 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.104400-2 1.031630-2 1.000000+5 9.999999+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.718200-2 2.352475+4 1.750000-2 2.252824+4 1.819701-2 2.027653+4 2.000000-2 1.563852+4 2.454709-2 8.791527+3 2.730000-2 6.471080+3 3.273407-2 3.809743+3 4.120975-2 1.916613+3 5.128614-2 9.855266+2 6.309573-2 5.199264+2 7.943282-2 2.533383+2 1.083927-1 9.513343+1 1.603245-1 2.764808+1 2.000000-1 1.384772+1 2.344229-1 8.481238+0 2.722701-1 5.380396+0 3.126079-1 3.560430+0 3.548134-1 2.456054+0 4.000000-1 1.740606+0 4.466836-1 1.276575+0 5.011872-1 9.307932-1 5.559043-1 7.053993-1 6.165950-1 5.384909-1 6.839117-1 4.139711-1 7.943282-1 2.850686-1 8.609938-1 2.348008-1 9.225714-1 2.001840-1 9.772372-1 1.762898-1 1.047129+0 1.525071-1 1.135011+0 1.296681-1 1.244515+0 1.085383-1 1.380384+0 8.964643-2 1.717908+0 6.066389-2 1.949845+0 4.871153-2 2.213095+0 3.940897-2 2.540973+0 3.150965-2 2.917427+0 2.537735-2 3.388442+0 2.022513-2 3.935501+0 1.623969-2 4.623810+0 1.292271-2 5.495409+0 1.020003-2 6.531306+0 8.113861-3 7.852356+0 6.404434-3 9.549926+0 5.021690-3 1.188502+1 3.857051-3 1.445440+1 3.066290-3 1.819701+1 2.355767-3 2.400000+1 1.730600-3 3.273407+1 1.234870-3 4.677351+1 8.445344-4 7.161434+1 5.412618-4 1.288250+2 2.960641-4 2.570396+2 1.469060-4 5.128614+2 7.323454-5 2.041738+3 1.833086-5 1.000000+5 3.736400-7 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.718200-2 8.342900-4 1.000000+5 8.342900-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.718200-2 6.454000-3 1.000000+5 6.454000-3 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.718200-2 9.893710-3 1.000000+5 9.999999+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.521300-3 1.219433+4 5.690000-3 1.171395+4 5.800000-3 1.145734+4 5.956621-3 1.104925+4 6.165950-3 1.059722+4 6.760830-3 9.318087+3 7.161434-3 8.630228+3 7.650000-3 7.841840+3 8.511380-3 6.661647+3 9.120108-3 6.004609+3 9.885531-3 5.272805+3 1.190000-2 3.881020+3 1.318257-2 3.249057+3 1.531087-2 2.491842+3 1.757924-2 1.932198+3 1.972423-2 1.556829+3 2.371374-2 1.090154+3 2.851018-2 7.549019+2 3.388442-2 5.297756+2 4.027170-2 3.685525+2 4.800000-2 2.526160+2 5.623413-2 1.783842+2 6.606934-2 1.243312+2 7.852356-2 8.384920+1 9.332543-2 5.613502+1 1.161449-1 3.348595+1 1.500000-1 1.814802+1 2.600160-1 4.787938+0 3.198895-1 2.915517+0 3.845918-1 1.888903+0 4.518559-1 1.300807+0 5.188000-1 9.509140-1 6.025596-1 6.826826-1 6.918310-1 5.063244-1 7.943282-1 3.782153-1 9.015711-1 2.911727-1 1.011579+0 2.312343-1 1.216186+0 1.613119-1 1.364583+0 1.296665-1 1.531087+0 1.049000-1 1.737801+0 8.372728-2 1.972423+0 6.732063-2 2.264644+0 5.348322-2 2.600160+0 4.281642-2 3.000000+0 3.426600-2 3.467369+0 2.754551-2 4.027170+0 2.214174-2 4.731513+0 1.763907-2 5.623413+0 1.393760-2 6.683439+0 1.109785-2 8.035261+0 8.768035-3 9.772372+0 6.881124-3 1.216186+1 5.289574-3 1.479108+1 4.208566-3 1.819701+1 3.320283-3 2.400000+1 2.439200-3 3.273407+1 1.740389-3 4.731513+1 1.175957-3 7.244360+1 7.538176-4 1.303167+2 4.123936-4 2.600160+2 2.046540-4 5.188000+2 1.020253-4 2.065380+3 2.553984-5 1.000000+5 5.266100-7 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.521300-3 8.944000-4 1.000000+5 8.944000-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.521300-3 7.992600-5 1.000000+5 7.992600-5 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.521300-3 4.546974-3 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.181500-3 1.958512+4 5.450000-3 1.864406+4 5.700000-3 1.775214+4 6.500000-3 1.506818+4 6.928200-3 1.377795+4 7.800000-3 1.153518+4 8.413951-3 1.024735+4 9.015711-3 9.162187+3 1.060000-2 6.907940+3 1.135011-2 6.093893+3 1.333521-2 4.469437+3 1.450000-2 3.780160+3 1.678804-2 2.789585+3 1.840772-2 2.289938+3 2.113489-2 1.689125+3 2.371374-2 1.300222+3 2.660725-2 9.953418+2 3.090295-2 6.967340+2 3.589219-2 4.831868+2 4.168694-2 3.322761+2 4.841724-2 2.267452+2 5.688529-2 1.491035+2 6.760830-2 9.439577+1 8.222426-2 5.576232+1 1.035142-1 2.976763+1 2.041738-1 4.576915+0 2.540973-1 2.519665+0 3.019952-1 1.583445+0 3.548134-1 1.033813+0 4.073803-1 7.223833-1 4.623810-1 5.236415-1 5.248075-1 3.822553-1 5.956621-1 2.811908-1 6.683439-1 2.142531-1 7.498942-1 1.644367-1 8.609938-1 1.207699-1 9.440609-1 9.901471-2 1.023293+0 8.377993-2 1.135011+0 6.814041-2 1.258925+0 5.583368-2 1.412538+0 4.508246-2 1.640590+0 3.442477-2 1.862087+0 2.758345-2 2.113489+0 2.226057-2 2.426610+0 1.775477-2 2.786121+0 1.426675-2 3.235937+0 1.134407-2 3.758374+0 9.088168-3 4.365158+0 7.333455-3 5.128614+0 5.863981-3 6.095369+0 4.650523-3 7.328245+0 3.660694-3 8.810489+0 2.903008-3 1.096478+1 2.223249-3 1.380384+1 1.692963-3 1.778279+1 1.265633-3 2.371374+1 9.180045-4 3.235937+1 6.544995-4 4.623810+1 4.475068-4 7.079458+1 2.867475-4 1.244515+2 1.605543-4 2.483133+2 7.963797-5 4.954502+2 3.969222-5 1.972423+3 9.933682-6 1.000000+5 1.956000-7 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.181500-3 8.043800-4 1.000000+5 8.043800-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.181500-3 1.471800-4 1.000000+5 1.471800-4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.181500-3 4.229940-3 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.289600-3 7.242637+4 4.623810-3 6.429860+4 4.954502-3 5.716031+4 5.500000-3 4.763600+4 6.025596-3 4.018703+4 6.918310-3 3.083650+4 7.585776-3 2.569359+4 8.912509-3 1.844914+4 9.660509-3 1.551109+4 1.135011-2 1.087303+4 1.244515-2 8.809029+3 1.428894-2 6.381286+3 1.621810-2 4.703580+3 1.819701-2 3.543353+3 2.089296-2 2.500763+3 2.400000-2 1.747332+3 2.722701-2 1.251997+3 3.090295-2 8.900815+2 3.548134-2 6.090840+2 4.120975-2 4.006081+2 4.800000-2 2.593442+2 5.623413-2 1.638684+2 6.606934-2 1.019295+2 8.000000-2 5.754240+1 1.000000-1 2.929084+1 1.258925-1 1.449203+1 1.862087-1 4.364562+0 2.290868-1 2.326772+0 2.691535-1 1.435850+0 3.126079-1 9.237494-1 3.589219-1 6.194749-1 4.073803-1 4.326916-1 4.570882-1 3.144306-1 5.069907-1 2.374392-1 5.623413-1 1.805329-1 6.309573-1 1.341619-1 6.998420-1 1.034125-1 7.762471-1 8.026262-2 8.709636-1 6.085928-2 9.332543-1 5.187546-2 9.885531-1 4.567079-2 1.059254+0 3.949612-2 1.148154+0 3.360171-2 1.250000+0 2.855071-2 1.380384+0 2.378865-2 1.737801+0 1.578410-2 1.972423+0 1.268132-2 2.238721+0 1.026547-2 2.570396+0 8.213233-3 2.951209+0 6.619216-3 3.427678+0 5.278367-3 4.000000+0 4.211700-3 4.677351+0 3.376333-3 5.559043+0 2.666410-3 6.606934+0 2.122102-3 8.000000+0 1.660800-3 9.772372+0 1.296260-3 1.202264+1 1.010137-3 1.462177+1 8.033540-4 1.819701+1 6.254519-4 2.400000+1 4.594800-4 3.273407+1 3.278423-4 4.677351+1 2.242221-4 7.161434+1 1.437041-4 1.273503+2 7.953057-5 2.540973+2 3.945949-5 5.069907+2 1.966955-5 2.018366+3 4.923226-6 1.000000+5 9.920000-8 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.289600-3 7.041000-4 1.000000+5 7.041000-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.289600-3 4.991100-5 1.000000+5 4.991100-5 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.289600-3 3.535589-3 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.736800-3 1.842400+5 3.860000-3 1.700312+5 3.935501-3 1.610168+5 4.415704-3 1.192569+5 4.731513-3 9.889955+4 5.370318-3 6.954101+4 5.888437-3 5.357345+4 6.531306-3 3.971533+4 7.300000-3 2.860320+4 7.943282-3 2.214242+4 9.332543-3 1.349695+4 1.083927-2 8.412666+3 1.202264-2 6.037118+3 1.428894-2 3.432713+3 1.659587-2 2.082894+3 1.862087-2 1.410164+3 2.150000-2 8.605760+2 2.511886-2 5.001784+2 2.951209-2 2.827691+2 3.507519-2 1.522513+2 4.216965-2 7.801165+1 5.188000-2 3.646653+1 6.683439-2 1.426973+1 1.216186-1 1.537112+0 1.500000-1 7.083160-1 1.778279-1 3.807613-1 2.290868-1 1.527428-1 2.540973-1 1.058206-1 2.786121-1 7.691081-2 3.467369-1 3.665167-2 3.890451-1 2.501097-2 4.365158-1 1.719128-2 4.786301-1 1.282908-2 5.128614-1 1.036109-2 5.623413-1 7.857317-3 6.531306-1 5.066652-3 7.244360-1 3.766794-3 8.609938-1 2.330130-3 9.120108-1 1.999482-3 9.549926-1 1.779951-3 1.000000+0 1.595040-3 1.047129+0 1.439336-3 1.109175+0 1.275032-3 1.174898+0 1.137244-3 1.258925+0 9.986775-4 1.364583+0 8.644920-4 1.531087+0 7.080959-4 1.840772+0 5.115211-4 2.065380+0 4.202817-4 2.371374+0 3.347970-4 2.722701+0 2.687349-4 3.162278+0 2.134540-4 3.672823+0 1.708105-4 4.265795+0 1.376790-4 5.011872+0 1.099716-4 5.956621+0 8.712483-5 7.161434+0 6.851715-5 8.609938+0 5.428452-5 1.059254+1 4.211854-5 1.318257+1 3.246772-5 1.737801+1 2.360815-5 2.344229+1 1.689522-5 3.198895+1 1.204181-5 4.570882+1 8.231727-6 6.918310+1 5.336812-6 1.216186+2 2.987152-6 2.398833+2 1.498654-6 4.786301+2 7.468123-7 1.905461+3 1.868635-7 1.000000+5 3.554500-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.736800-3 5.245400-4 1.000000+5 5.245400-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.736800-3 1.644700-4 1.000000+5 1.644700-4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.736800-3 3.047790-3 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.555200-3 2.908700+5 3.596000-3 2.813309+5 3.695000-3 2.628108+5 3.763000-3 2.493203+5 4.168694-3 1.897947+5 4.518559-3 1.519552+5 5.188000-3 1.026837+5 5.821032-3 7.354379+4 6.382635-3 5.600188+4 7.079458-3 4.095845+4 7.673615-3 3.191702+4 9.015711-3 1.925833+4 1.011579-2 1.329212+4 1.135011-2 9.137360+3 1.333521-2 5.343700+3 1.500000-2 3.585408+3 1.698244-2 2.339838+3 1.972423-2 1.386420+3 2.317395-2 7.813632+2 2.722701-2 4.362580+2 3.198895-2 2.414914+2 3.758374-2 1.326868+2 4.518559-2 6.638868+1 5.432503-2 3.297351+1 7.079458-2 1.194693+1 1.202264-1 1.557188+0 1.445440-1 7.716874-1 1.678804-1 4.392275-1 1.927525-1 2.628630-1 2.213095-1 1.584810-1 2.483133-1 1.046646-1 2.786121-1 6.962688-2 3.090295-1 4.858621-2 3.427678-1 3.415560-2 3.758374-1 2.513467-2 4.168694-1 1.793760-2 4.570882-1 1.338993-2 4.954502-1 1.043839-2 5.370318-1 8.202637-3 5.888437-1 6.276726-3 6.531306-1 4.681148-3 7.161434-1 3.631880-3 8.222427-1 2.505613-3 8.810489-1 2.084960-3 9.332543-1 1.801493-3 9.772372-1 1.612350-3 1.023293+0 1.452296-3 1.083927+0 1.283929-3 1.148154+0 1.142750-3 1.230269+0 1.000991-3 1.333521+0 8.641646-4 1.840772+0 4.901463-4 2.065380+0 4.027161-4 2.371374+0 3.207651-4 2.722701+0 2.574413-4 3.162278+0 2.044628-4 3.672823+0 1.636120-4 4.265795+0 1.318808-4 5.011872+0 1.053467-4 5.956621+0 8.345786-5 7.161434+0 6.563305-5 8.609938+0 5.199948-5 1.059254+1 4.034573-5 1.318257+1 3.110122-5 1.737801+1 2.261437-5 2.344229+1 1.618405-5 3.235937+1 1.139293-5 4.623810+1 7.790065-6 6.998420+1 5.051570-6 1.230269+2 2.827919-6 2.454709+2 1.402548-6 4.897788+2 6.990012-7 1.949845+3 1.749270-7 1.000000+5 3.404900-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.555200-3 5.281000-4 1.000000+5 5.281000-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.555200-3 2.884700-7 1.000000+5 2.884700-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.555200-3 3.026812-3 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.419900-3 2.717971+4 1.515000-3 2.537800+4 1.737801-3 2.215709+4 1.840772-3 2.077477+4 2.113489-3 1.770651+4 2.454709-3 1.475959+4 2.650000-3 1.335116+4 3.235937-3 1.014147+4 3.548134-3 8.874790+3 4.216965-3 6.851769+3 4.841724-3 5.520519+3 5.500000-3 4.500940+3 6.606934-3 3.320387+3 7.943282-3 2.420808+3 9.500000-3 1.763988+3 1.135011-2 1.276458+3 1.350000-2 9.237100+2 1.603245-2 6.653035+2 1.905461-2 4.749878+2 2.264644-2 3.366509+2 2.691535-2 2.368692+2 3.198895-2 1.654337+2 3.801894-2 1.146993+2 4.518559-2 7.892749+1 5.370318-2 5.393295+1 6.456542-2 3.564643+1 7.762471-2 2.338024+1 9.440609-2 1.481995+1 1.161449-1 9.072285+0 1.500000-1 4.908600+0 2.600160-1 1.295483+0 3.235937-1 7.675188-1 3.890451-1 4.974217-1 4.570882-1 3.429083-1 5.308844-1 2.444767-1 6.095369-1 1.801114-1 6.998420-1 1.336738-1 8.128305-1 9.754460-2 9.225714-1 7.518642-2 1.035142+0 5.978200-2 1.230269+0 4.267713-2 1.396368+0 3.360443-2 1.566751+0 2.722401-2 1.778279+0 2.175827-2 2.018366+0 1.751687-2 2.317395+0 1.393474-2 2.660725+0 1.116921-2 3.090295+0 8.859181-3 3.589219+0 7.081033-3 4.168694+0 5.701425-3 4.897788+0 4.549350-3 5.821032+0 3.600449-3 7.000000+0 2.827900-3 8.413951+0 2.238980-3 1.035142+1 1.735669-3 1.288250+1 1.336992-3 1.659587+1 9.971335-4 2.213095+1 7.215674-4 3.054921+1 5.072223-4 4.315191+1 3.506216-4 6.456542+1 2.297987-4 1.083927+2 1.346930-4 1.905461+2 7.583339-5 3.801894+2 3.774065-5 1.513561+3 9.428434-6 1.000000+5 1.424600-7 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.419900-3 5.131600-4 1.000000+5 5.131600-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.419900-3 7.079600-7 1.000000+5 7.079600-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.419900-3 9.060320-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.264200-3 2.353543+4 1.380384-3 2.337309+4 1.548817-3 2.268831+4 1.650000-3 2.211680+4 1.778279-3 2.129492+4 1.905461-3 2.046542+4 2.030000-3 1.962098+4 2.187762-3 1.852656+4 2.344229-3 1.747415+4 2.540973-3 1.617570+4 2.818383-3 1.455454+4 3.019952-3 1.348812+4 3.311311-3 1.208011+4 3.672823-3 1.060519+4 4.000000-3 9.460620+3 4.518559-3 7.963281+3 4.954502-3 6.947030+3 5.623413-3 5.702875+3 6.165950-3 4.910815+3 7.000000-3 3.964420+3 7.852356-3 3.239169+3 8.810489-3 2.627600+3 1.000000-2 2.070500+3 1.135011-2 1.618381+3 1.288250-2 1.255186+3 1.462177-2 9.662597+2 1.659587-2 7.384334+2 1.905461-2 5.462556+2 2.162719-2 4.114085+2 2.454709-2 3.077767+2 2.800000-2 2.260900+2 3.235937-2 1.598555+2 3.758374-2 1.107704+2 4.365158-2 7.617104+1 5.128614-2 5.049515+1 6.025596-2 3.321959+1 7.244360-2 2.042052+1 8.810489-2 1.208134+1 1.109175-1 6.462828+0 2.113489-1 1.105320+0 2.600160-1 6.299675-1 3.090295-1 3.970150-1 3.589219-1 2.678981-1 4.120975-1 1.876041-1 4.731513-1 1.323456-1 5.370318-1 9.682392-2 6.095369-1 7.138242-2 6.839117-1 5.449339-2 7.852356-1 3.970843-2 8.609938-1 3.236728-2 9.332543-1 2.723268-2 1.011579+0 2.306619-2 1.148154+0 1.793702-2 1.273503+0 1.469601-2 1.428894+0 1.186989-2 1.659587+0 9.066964-3 1.883649+0 7.269714-3 2.137962+0 5.870503-3 2.454709+0 4.685146-3 2.818383+0 3.766958-3 3.273407+0 2.996935-3 3.801894+0 2.402248-3 4.415704+0 1.939485-3 5.188000+0 1.551698-3 6.165950+0 1.231210-3 7.413102+0 9.695674-4 8.912509+0 7.692894-4 1.109175+1 5.894044-4 1.380384+1 4.550675-4 1.778279+1 3.402131-4 2.371374+1 2.467621-4 3.235937+1 1.759204-4 4.623810+1 1.202893-4 6.998420+1 7.800246-5 1.230269+2 4.366706-5 2.454709+2 2.165736-5 4.897788+2 1.079389-5 1.949845+3 2.701046-6 1.000000+5 5.257600-8 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.264200-3 4.812400-4 1.000000+5 4.812400-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.264200-3 5.402300-7 1.000000+5 5.402300-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.264200-3 7.824198-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.030500-3 1.571900+5 1.170000-3 1.382170+5 1.300000-3 1.239032+5 1.531087-3 1.020506+5 1.659587-3 9.219350+4 1.883649-3 7.768739+4 2.113489-3 6.578564+4 2.388200-3 5.487545+4 2.630268-3 4.716618+4 3.054921-3 3.699100+4 3.400000-3 3.084272+4 3.845918-3 2.486993+4 4.365158-3 1.976396+4 4.897788-3 1.594001+4 5.623413-3 1.221036+4 6.382635-3 9.487511+3 7.161434-3 7.495957+3 8.128305-3 5.744815+3 9.332543-3 4.261634+3 1.080000-2 3.079544+3 1.244515-2 2.226245+3 1.428894-2 1.609169+3 1.640590-2 1.153637+3 1.862087-2 8.443431+2 2.113489-2 6.139225+2 2.426610-2 4.303673+2 2.786121-2 2.993666+2 3.162278-2 2.132072+2 3.672823-2 1.416599+2 4.216965-2 9.646972+1 4.897788-2 6.315111+1 5.754399-2 3.969868+1 6.839116-2 2.394809+1 8.222426-2 1.385519+1 1.000000-1 7.688657+0 2.000000-1 9.347220-1 2.426610-1 5.223993-1 2.851018-1 3.238064-1 3.311311-1 2.091511-1 3.758374-1 1.454572-1 4.265795-1 1.019105-1 4.731513-1 7.668328-2 5.308844-1 5.632853-2 5.888437-1 4.295995-2 6.531306-1 3.298578-2 7.244360-1 2.552008-2 8.128305-1 1.933497-2 9.440609-1 1.360405-2 1.000000+0 1.195602-2 1.071519+0 1.033293-2 1.148154+0 8.995773-3 1.250000+0 7.647410-3 1.380384+0 6.377537-3 1.778279+0 4.068755-3 2.018366+0 3.272905-3 2.290868+0 2.652624-3 2.630268+0 2.124951-3 3.054921+0 1.684599-3 3.548134+0 1.345672-3 4.120975+0 1.082888-3 4.841724+0 8.636172-4 5.754399+0 6.831120-4 6.839116+0 5.444710-4 8.222427+0 4.305512-4 1.011579+1 3.334901-4 1.258925+1 2.566692-4 1.566751+1 1.990462-4 1.905461+1 1.593760-4 2.426610+1 1.218047-4 3.311311+1 8.688537-5 4.786301+1 5.872120-5 7.328245+1 3.765134-5 1.318257+2 2.060057-5 2.630268+2 1.022468-5 5.248075+2 5.097791-6 2.089296+3 1.276131-6 1.000000+5 2.661800-8 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.030500-3 4.112400-4 1.000000+5 4.112400-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.030500-3 4.668000-7 1.000000+5 4.668000-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.030500-3 6.187932-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 7.781800-4 1.855558+5 8.030000-4 2.006565+5 8.320000-4 2.101316+5 8.780000-4 2.149636+5 9.440609-4 2.135611+5 9.930000-4 2.111384+5 1.035142-3 2.079655+5 1.090000-3 2.026784+5 1.161449-3 1.945847+5 1.216186-3 1.878422+5 1.288250-3 1.786005+5 1.364583-3 1.686417+5 1.462177-3 1.562492+5 1.548817-3 1.457356+5 1.698244-3 1.290205+5 1.800000-3 1.187360+5 1.927525-3 1.068498+5 2.113489-3 9.199058+4 2.264644-3 8.174123+4 2.454709-3 7.064384+4 2.722701-3 5.807437+4 2.951209-3 4.949524+4 3.273407-3 3.993627+4 3.548134-3 3.359494+4 3.935501-3 2.666359+4 4.315191-3 2.156473+4 4.800000-3 1.672568+4 5.300000-3 1.310408+4 5.888437-3 1.003242+4 6.531306-3 7.654872+3 7.300000-3 5.679880+3 8.128305-3 4.224748+3 9.015711-3 3.154309+3 1.000000-2 2.340120+3 1.122018-2 1.666982+3 1.273503-2 1.137866+3 1.428894-2 7.980633+2 1.621810-2 5.359291+2 1.819701-2 3.705940+2 2.041738-2 2.546902+2 2.344229-2 1.611110+2 2.660725-2 1.051267+2 3.054921-2 6.548725+1 3.548134-2 3.891779+1 4.168694-2 2.204325+1 4.954502-2 1.189415+1 6.025596-2 5.863569+0 7.673615-2 2.426500+0 1.364583-1 2.940087-1 1.659587-1 1.443653-1 1.927525-1 8.435006-2 2.317395-1 4.393943-2 2.660725-1 2.713851-2 3.019952-1 1.757541-2 3.427678-1 1.146956-2 3.890451-1 7.546779-3 4.315191-1 5.392986-3 4.786301-1 3.882772-3 5.128614-1 3.134884-3 5.623413-1 2.373886-3 6.165950-1 1.810133-3 6.760830-1 1.389590-3 7.413102-1 1.073787-3 8.222427-1 8.095413-4 9.660509-1 5.283403-4 1.000000+0 4.846393-4 1.047129+0 4.352713-4 1.096478+0 3.937902-4 1.148154+0 3.584978-4 1.216186+0 3.211095-4 1.318257+0 2.777462-4 1.513561+0 2.195721-4 1.862087+0 1.523193-4 2.065380+0 1.276383-4 2.371374+0 1.016640-4 2.722701+0 8.158887-5 3.162278+0 6.479520-5 3.672823+0 5.184971-5 4.265795+0 4.179351-5 5.011872+0 3.338421-5 5.956621+0 2.644814-5 7.161434+0 2.079933-5 8.511380+0 1.671674-5 1.047129+1 1.296414-5 1.303167+1 9.990381-6 1.698244+1 7.356688-6 2.317395+1 5.194219-6 3.162278+1 3.701222-6 4.518559+1 2.529423-6 6.839116+1 1.639507-6 1.188502+2 9.283818-7 2.238721+2 4.878839-7 4.466836+2 2.430262-7 1.778279+3 6.078142-8 1.000000+5 1.079000-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 7.781800-4 3.272000-4 1.000000+5 3.272000-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.781800-4 2.719300-7 1.000000+5 2.719300-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 7.781800-4 4.507081-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.351400-4 3.155936+5 7.478000-4 3.425840+5 7.481000-4 3.444773+5 7.630000-4 3.612578+5 7.701800-4 3.662587+5 7.852356-4 3.691042+5 7.970000-4 3.701550+5 8.280000-4 3.692968+5 9.015711-4 3.616372+5 9.500000-4 3.545202+5 1.000000-3 3.451698+5 1.059254-3 3.323967+5 1.130000-3 3.158220+5 1.202264-3 2.983104+5 1.273503-3 2.810081+5 1.364583-3 2.596025+5 1.462177-3 2.379700+5 1.610000-3 2.081694+5 1.717908-3 1.890815+5 1.840772-3 1.693020+5 2.018366-3 1.448851+5 2.187762-3 1.256225+5 2.350000-3 1.098726+5 2.600160-3 9.025310+4 2.818383-3 7.660207+4 3.126079-3 6.151017+4 3.400000-3 5.114484+4 3.763000-3 4.059598+4 4.073803-3 3.369635+4 4.518559-3 2.621503+4 4.954502-3 2.083003+4 5.500000-3 1.593000+4 6.095369-3 1.213645+4 6.683439-3 9.457187+3 7.500000-3 6.864600+3 8.413951-3 4.942579+3 9.225714-3 3.776478+3 1.023293-2 2.773347+3 1.150000-2 1.943448+3 1.300000-2 1.326342+3 1.462177-2 9.123171+2 1.640590-2 6.278640+2 1.840772-2 4.291763+2 2.065380-2 2.914578+2 2.344229-2 1.890448+2 2.660725-2 1.217336+2 3.054921-2 7.473970+1 3.507519-2 4.554327+1 4.073803-2 2.643138+1 4.786301-2 1.459902+1 5.754399-2 7.347690+0 7.161434-2 3.224164+0 1.303167-1 3.334520-1 1.531088-1 1.820166-1 1.819701-1 9.596834-2 2.041738-1 6.294727-2 2.344229-1 3.821065-2 2.630268-1 2.536422-2 2.917427-1 1.765407-2 3.235937-1 1.237700-2 3.589219-1 8.744203-3 3.935501-1 6.464327-3 4.315191-1 4.809537-3 4.731513-1 3.604806-3 5.069907-1 2.920091-3 5.495409-1 2.300739-3 6.025596-1 1.765376-3 6.623700-1 1.355059-3 7.244360-1 1.060603-3 7.943282-1 8.299728-4 9.015711-1 5.965681-4 9.549926-1 5.167864-4 1.000000+0 4.637672-4 1.059254+0 4.087114-4 1.122018+0 3.628017-4 1.202264+0 3.169845-4 1.303167+0 2.731014-4 1.531087+0 2.058110-4 1.819701+0 1.516534-4 2.044000+0 1.242822-4 2.344229+0 9.911095-5 2.691535+0 7.949108-5 3.126079+0 6.309087-5 3.630781+0 5.045692-5 4.216965+0 4.064840-5 4.954502+0 3.245179-5 5.888437+0 2.569605-5 7.079458+0 2.019805-5 8.511380+0 1.599455-5 1.047129+1 1.240514-5 1.303167+1 9.559016-6 1.698244+1 7.039100-6 2.317395+1 4.969950-6 3.162278+1 3.541447-6 4.518559+1 2.420243-6 6.839116+1 1.568768-6 1.202264+2 8.779216-7 2.317395+2 4.507944-7 4.623810+2 2.245879-7 1.840772+3 5.618423-8 1.000000+5 1.032500-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.351400-4 3.228500-4 1.000000+5 3.228500-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.351400-4 9.334400-8 1.000000+5 9.334400-8 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.351400-4 4.121967-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 4.020900-4 5.850606+4 4.023000-4 5.905134+4 4.030000-4 6.014100+4 4.040000-4 6.121800+4 4.055000-4 6.243480+4 4.075000-4 6.368040+4 4.100000-4 6.478620+4 4.153000-4 6.665880+4 4.170000-4 6.760380+4 4.185000-4 6.880620+4 4.200000-4 7.046820+4 4.215000-4 7.268940+4 4.230000-4 7.555380+4 4.245000-4 7.914000+4 4.260000-4 8.352600+4 4.275000-4 8.878260+4 4.290000-4 9.499800+4 4.307000-4 1.032972+5 4.323000-4 1.124316+5 4.340000-4 1.236414+5 4.365158-4 1.433214+5 4.430000-4 2.118360+5 4.458000-4 2.490432+5 4.480000-4 2.810472+5 4.500000-4 3.119892+5 4.523000-4 3.495132+5 4.540000-4 3.783510+5 4.565000-4 4.222398+5 4.590000-4 4.677900+5 4.615000-4 5.146626+5 4.640000-4 5.627526+5 4.665000-4 6.118740+5 4.690000-4 6.618000+5 4.720000-4 7.224780+5 4.750000-4 7.831980+5 4.780000-4 8.434500+5 4.810000-4 9.025860+5 4.841724-4 9.633648+5 4.880000-4 1.033488+6 4.920000-4 1.102386+6 4.963700-4 1.172557+6 5.011872-4 1.243467+6 5.060000-4 1.308354+6 5.100000-4 1.357806+6 5.150000-4 1.414344+6 5.210000-4 1.473870+6 5.260000-4 1.516854+6 5.320000-4 1.560924+6 5.400000-4 1.607196+6 5.480000-4 1.641210+6 5.580000-4 1.670892+6 5.690000-4 1.690944+6 5.821032-4 1.701303+6 5.956621-4 1.698368+6 6.100000-4 1.684212+6 6.280000-4 1.655556+6 6.500000-4 1.609422+6 6.760830-4 1.545452+6 7.000000-4 1.482078+6 7.300000-4 1.399950+6 7.585776-4 1.321939+6 8.000000-4 1.212240+6 8.413951-4 1.108364+6 8.810489-4 1.016189+6 9.332543-4 9.062383+5 9.885531-4 8.019055+5 1.071519-3 6.693870+5 1.148154-3 5.695201+5 1.230269-3 4.805110+5 1.350000-3 3.789114+5 1.450000-3 3.136884+5 1.570000-3 2.522274+5 1.730000-3 1.919574+5 1.883649-3 1.498780+5 2.089296-3 1.100736+5 2.290868-3 8.299260+4 2.511886-3 6.221213+4 2.786121-3 4.461116+4 3.054921-3 3.299304+4 3.427678-3 2.243078+4 3.801894-3 1.572484+4 4.216965-3 1.094895+4 4.731513-3 7.263944+3 5.308844-3 4.779899+3 6.000000-3 3.036804+3 6.800000-3 1.892466+3 7.673615-3 1.188539+3 8.709636-3 7.237359+2 9.800000-3 4.524738+2 1.096478-2 2.874389+2 1.216186-2 1.881149+2 1.396368-2 1.060927+2 1.584893-2 6.231720+1 1.819701-2 3.460266+1 2.089296-2 1.906993+1 2.426610-2 9.921975+0 2.851018-2 4.871522+0 3.427678-2 2.143244+0 4.265795-2 8.016090-1 9.660509-2 1.979381-2 1.148154-1 9.113098-3 1.333521-1 4.685101-3 1.496236-1 2.826178-3 1.717908-1 1.552868-3 1.949845-1 9.033684-4 2.213400-1 5.290991-4 2.483133-1 3.278511-4 2.786121-1 2.044530-4 3.235937-1 1.117171-4 3.548134-1 7.750217-5 3.890451-1 5.413811-5 4.216965-1 3.981333-5 4.570882-1 2.949528-5 4.954502-1 2.200696-5 5.308844-1 1.723650-5 5.754399-1 1.305561-5 6.237348-1 9.960304-6 6.760830-1 7.650301-6 7.413102-1 5.702291-6 8.035261-1 4.431886-6 8.511380-1 3.673150-6 8.912509-1 3.182179-6 9.225714-1 2.871298-6 9.549926-1 2.603130-6 9.885531-1 2.372592-6 1.023293+0 2.175219-6 1.059254+0 2.005487-6 1.096478+0 1.858260-6 1.148154+0 1.690035-6 1.202264+0 1.547029-6 1.288250+0 1.366351-6 1.396368+0 1.191807-6 1.513561+0 1.043619-6 1.905461+0 6.956863-7 2.113489+0 5.836940-7 2.426610+0 4.655101-7 2.786121+0 3.740388-7 3.235937+0 2.974003-7 3.758374+0 2.382531-7 4.365158+0 1.922527-7 5.128614+0 1.537327-7 6.095369+0 1.219212-7 7.328245+0 9.596917-8 8.810489+0 7.610673-8 1.096478+1 5.828512-8 1.364583+1 4.498291-8 1.757924+1 3.361689-8 2.371374+1 2.406626-8 3.235937+1 1.715820-8 4.677351+1 1.158998-8 7.161434+1 7.428364-9 1.273503+2 4.111206-9 2.540973+2 2.039736-9 5.069907+2 1.016809-9 2.018366+3 2.54490-10 1.000000+5 5.12780-12 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 4.020900-4 1.995100-4 1.000000+5 1.995100-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.020900-4 3.949600-8 1.000000+5 3.949600-8 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.020900-4 2.025405-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 3.907500-4 8.598640+4 3.950000-4 8.658160+4 4.015000-4 8.877680+4 4.040000-4 9.009840+4 4.058000-4 9.161200+4 4.073803-4 9.354943+4 4.090000-4 9.630560+4 4.101300-4 9.877469+4 4.115000-4 1.024552+5 4.130000-4 1.074400+5 4.145000-4 1.135264+5 4.158000-4 1.197760+5 4.173000-4 1.282096+5 4.190000-4 1.394912+5 4.200000-4 1.470480+5 4.220000-4 1.643656+5 4.240000-4 1.848224+5 4.270000-4 2.218000+5 4.320000-4 3.005480+5 4.343000-4 3.435216+5 4.365158-4 3.884404+5 4.390000-4 4.423568+5 4.410000-4 4.881024+5 4.430000-4 5.356344+5 4.450000-4 5.847272+5 4.470000-4 6.352040+5 4.492000-4 6.921584+5 4.518559-4 7.626568+5 4.550000-4 8.482640+5 4.580000-4 9.314960+5 4.600000-4 9.875520+5 4.630000-4 1.071744+6 4.665000-4 1.169264+6 4.700000-4 1.264616+6 4.731513-4 1.347560+6 4.760000-4 1.419672+6 4.790000-4 1.492256+6 4.835000-4 1.594368+6 4.870000-4 1.668144+6 4.910000-4 1.746696+6 4.957500-4 1.832373+6 5.011872-4 1.920803+6 5.069907-4 2.004108+6 5.135000-4 2.084072+6 5.190000-4 2.140552+6 5.260000-4 2.198848+6 5.320000-4 2.237840+6 5.400000-4 2.276816+6 5.500000-4 2.309272+6 5.623413-4 2.330500+6 5.754399-4 2.334414+6 5.900000-4 2.319816+6 6.050000-4 2.290512+6 6.237348-4 2.240146+6 6.456542-4 2.168425+6 6.700000-4 2.079896+6 7.000000-4 1.964720+6 7.300000-4 1.848088+6 7.650000-4 1.715728+6 8.035261-4 1.575791+6 8.413951-4 1.447791+6 9.015711-4 1.263761+6 9.549926-4 1.119663+6 1.023293-3 9.598466+5 1.096478-3 8.179289+5 1.170000-3 6.990656+5 1.273503-3 5.639789+5 1.380384-3 4.565760+5 1.500000-3 3.642520+5 1.640590-3 2.833637+5 1.778279-3 2.245975+5 1.950000-3 1.709824+5 2.150000-3 1.270904+5 2.371374-3 9.366170+4 2.630268-3 6.728212+4 2.900000-3 4.890600+4 3.198895-3 3.525532+4 3.548134-3 2.476183+4 3.900000-3 1.782408+4 4.319000-3 1.242152+4 4.841724-3 8.223332+3 5.432503-3 5.382368+3 6.095369-3 3.494704+3 6.839116-3 2.251569+3 7.673615-3 1.439620+3 8.709636-3 8.727153+2 9.772372-3 5.493957+2 1.096478-2 3.435406+2 1.244515-2 2.035207+2 1.412538-2 1.196176+2 1.621810-2 6.643609+1 1.862087-2 3.660521+1 2.113489-2 2.105072+1 2.454709-2 1.086097+1 2.884032-2 5.282320+0 3.427678-2 2.420992+0 4.216965-2 9.413560-1 5.688529-2 2.381384-1 8.128305-2 4.602732-2 1.174898-1 8.557584-3 1.364583-1 4.348865-3 1.566751-1 2.346229-3 1.778279-1 1.342600-3 2.000000-1 8.060649-4 2.213095-1 5.227154-4 2.426610-1 3.547546-4 2.630268-1 2.541633-4 2.884032-1 1.749148-4 3.162278-1 1.212971-4 3.467369-1 8.475598-5 3.758374-1 6.230979-5 4.073803-1 4.614294-5 4.365158-1 3.590793-5 4.731513-1 2.704885-5 5.128614-1 2.052869-5 5.688529-1 1.449338-5 6.165950-1 1.113010-5 6.683439-1 8.610819-6 7.161434-1 6.956429-6 7.673615-1 5.653549-6 8.128305-1 4.786144-6 8.609938-1 4.078545-6 9.015711-1 3.607269-6 9.440609-1 3.209383-6 9.885531-1 2.874727-6 1.035142+0 2.593718-6 1.096478+0 2.296679-6 1.161449+0 2.046692-6 1.250000+0 1.780195-6 1.364583+0 1.519356-6 1.531087+0 1.242503-6 1.819701+0 9.155915-7 2.044000+0 7.503600-7 2.344229+0 5.983759-7 2.691535+0 4.799237-7 3.126079+0 3.809100-7 3.630781+0 3.046291-7 4.216965+0 2.454137-7 4.954502+0 1.959337-7 5.888437+0 1.551465-7 7.079458+0 1.219434-7 8.511380+0 9.656967-8 1.047129+1 7.489664-8 1.303167+1 5.771270-8 1.698244+1 4.249835-8 2.317395+1 3.000614-8 3.198895+1 2.111746-8 4.570882+1 1.443587-8 6.918310+1 9.358731-9 1.216186+2 5.238364-9 2.371374+2 2.658997-9 4.731513+2 1.324950-9 1.883649+3 3.31495-10 1.000000+5 6.23340-12 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 3.907500-4 1.987400-4 1.000000+5 1.987400-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.907500-4 1.116300-7 1.000000+5 1.116300-7 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 3.907500-4 1.918984-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.206500-4 5.062366+4 4.000000-4 4.341940+4 4.570882-4 3.950973+4 4.786301-4 3.803578+4 5.754399-4 3.224379+4 6.200000-4 2.996760+4 7.000000-4 2.632380+4 7.800000-4 2.332240+4 8.609938-4 2.072236+4 9.885531-4 1.742858+4 1.110000-3 1.496462+4 1.288250-3 1.221456+4 1.531087-3 9.551807+3 1.819701-3 7.407699+3 2.150000-3 5.754960+3 2.600160-3 4.285462+3 3.126079-3 3.198364+3 3.801894-3 2.327009+3 4.623810-3 1.679496+3 5.559043-3 1.226520+3 6.683439-3 8.890282+2 8.128305-3 6.264434+2 9.885531-3 4.378009+2 1.202264-2 3.034769+2 1.445440-2 2.133868+2 1.737801-2 1.489225+2 2.089296-2 1.031575+2 2.511886-2 7.092115+1 3.019952-2 4.838473+1 3.630781-2 3.275109+1 4.365158-2 2.199394+1 5.188000-2 1.503290+1 6.237348-2 9.941585+0 7.498942-2 6.526022+0 9.120108-2 4.139753+0 1.122019-1 2.536992+0 1.513561-1 1.238213+0 2.570396-1 3.431208-1 3.198895-1 2.032262-1 3.845918-1 1.316718-1 4.518559-1 9.067874-2 5.188000-1 6.628625-2 6.025596-1 4.758351-2 6.918310-1 3.528676-2 7.943282-1 2.635465-2 9.015711-1 2.028753-2 1.011579+0 1.610770-2 1.216186+0 1.123616-2 1.364583+0 9.032632-3 1.531087+0 7.307877-3 1.737801+0 5.833006-3 1.972423+0 4.689801-3 2.264644+0 3.725553-3 2.600160+0 2.982518-3 3.000000+0 2.387000-3 3.467369+0 1.918857-3 4.027170+0 1.542435-3 4.731513+0 1.228774-3 5.623413+0 9.709458-4 6.683439+0 7.731261-4 8.035261+0 6.108000-4 9.772372+0 4.793587-4 1.216186+1 3.684866-4 1.479108+1 2.931836-4 1.819701+1 2.312992-4 2.400000+1 1.699200-4 3.273407+1 1.212389-4 4.731513+1 8.191835-5 7.244360+1 5.251316-5 1.303167+2 2.872815-5 2.600160+2 1.425712-5 5.188000+2 7.107679-6 2.065380+3 1.779155-6 1.000000+5 3.668500-8 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.206500-4 2.126900-4 1.000000+5 2.126900-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.206500-4 8.430000-9 1.000000+5 8.430000-9 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.206500-4 1.079516-4 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.593800-4 1.470936+5 2.691535-4 1.347770+5 2.730000-4 1.295656+5 2.780000-4 1.223082+5 2.951209-4 9.927387+4 3.180000-4 7.817680+4 3.436000-4 6.242751+4 3.600000-4 5.482640+4 3.715352-4 5.042883+4 3.850000-4 4.614040+4 4.000000-4 4.223340+4 4.168694-4 3.866945+4 4.365158-4 3.531346+4 4.600000-4 3.209680+4 4.841724-4 2.945989+4 5.080000-4 2.738380+4 5.308844-4 2.576674+4 5.623413-4 2.397482+4 6.025596-4 2.216090+4 6.531306-4 2.036801+4 7.161434-4 1.863439+4 1.011579-3 1.357947+4 1.161449-3 1.188161+4 1.318257-3 1.044456+4 1.513561-3 9.002507+3 1.717908-3 7.795698+3 1.950000-3 6.703120+3 2.220000-3 5.702400+3 2.540973-3 4.780272+3 2.900000-3 3.992320+3 3.311311-3 3.306318+3 3.758374-3 2.741802+3 4.265795-3 2.257225+3 4.841724-3 1.844692+3 5.500000-3 1.494432+3 6.300000-3 1.184326+3 7.161434-3 9.434941+2 8.128305-3 7.482629+2 9.225714-3 5.893636+2 1.047129-2 4.609453+2 1.188502-2 3.580126+2 1.348963-2 2.761657+2 1.531087-2 2.115923+2 1.757924-2 1.570371+2 2.018366-2 1.156438+2 2.317395-2 8.450658+1 2.660725-2 6.129753+1 3.054921-2 4.414507+1 3.548134-2 3.069309+1 4.120975-2 2.117763+1 4.841724-2 1.408714+1 5.688529-2 9.299332+0 7.762471-2 4.154792+0 9.120108-2 2.717936+0 1.047129-1 1.875817+0 1.188502-1 1.325839+0 1.333521-1 9.603371-1 1.548817-1 6.263420-1 1.778279-1 4.258718-1 2.065380-1 2.826422-1 2.426610-1 1.831539-1 2.951209-1 1.090296-1 3.507519-1 6.916368-2 4.027170-1 4.836897-2 4.623810-1 3.408097-2 5.248075-1 2.490243-2 5.956621-1 1.833339-2 6.683439-1 1.397840-2 7.498942-1 1.073435-2 8.609938-1 7.888251-3 9.440609-1 6.469119-3 1.023293+0 5.474638-3 1.135011+0 4.452883-3 1.258925+0 3.648358-3 1.412538+0 2.945487-3 1.640590+0 2.248887-3 1.862087+0 1.801862-3 2.113489+0 1.454081-3 2.426610+0 1.159690-3 2.786121+0 9.317947-4 3.235937+0 7.408658-4 3.758374+0 5.935258-4 4.365158+0 4.789293-4 5.128614+0 3.829631-4 6.095369+0 3.037116-4 7.328245+0 2.390711-4 8.810489+0 1.895945-4 1.083927+1 1.472219-4 1.348963+1 1.135797-4 1.757924+1 8.374283-5 2.371374+1 5.995328-5 3.235937+1 4.274429-5 4.623810+1 2.922540-5 7.079458+1 1.872662-5 1.258925+2 1.036288-5 2.511886+2 5.140795-6 5.011872+2 2.562384-6 1.995262+3 6.413194-7 1.000000+5 1.277400-8 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.593800-4 1.873900-4 1.000000+5 1.873900-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.593800-4 1.357800-8 1.000000+5 1.357800-8 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.593800-4 7.197642-5 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.033900-4 3.685513+5 2.200000-4 3.301257+5 2.264644-4 3.162909+5 2.371374-4 2.934876+5 2.511886-4 2.701186+5 2.800000-4 2.345956+5 2.951209-4 2.204895+5 3.200000-4 2.023196+5 4.518559-4 1.419531+5 5.188000-4 1.223874+5 5.888437-4 1.060952+5 6.700000-4 9.106320+4 7.673615-4 7.692324+4 8.709636-4 6.523246+4 1.000000-3 5.407680+4 1.150000-3 4.438560+4 1.318257-3 3.633428+4 1.513561-3 2.947418+4 1.737801-3 2.375782+4 2.018366-3 1.867512+4 2.344229-3 1.457486+4 2.722701-3 1.129164+4 3.126079-3 8.862702+3 3.589219-3 6.910271+3 4.073803-3 5.467219+3 4.677351-3 4.205363+3 5.370318-3 3.210410+3 6.100570-3 2.485228+3 7.000000-3 1.872084+3 8.035261-3 1.397678+3 9.120108-3 1.061845+3 1.047129-2 7.806960+2 1.202264-2 5.695691+2 1.380384-2 4.123229+2 1.584893-2 2.961642+2 1.819701-2 2.110733+2 2.089296-2 1.492649+2 2.398833-2 1.047397+2 2.754229-2 7.294741+1 3.162278-2 5.043378+1 3.630781-2 3.462091+1 4.216965-2 2.285498+1 4.897788-2 1.497321+1 5.754399-2 9.422933+0 6.760830-2 5.885782+0 8.128305-2 3.410608+0 1.000000-1 1.831096+0 1.972423-1 2.325325-1 2.398833-1 1.290322-1 2.818383-1 7.997428-2 3.273407-1 5.167136-2 3.715352-1 3.594777-2 4.216965-1 2.518853-2 4.731513-1 1.835887-2 5.248075-1 1.390322-2 5.888437-1 1.028840-2 6.606935-1 7.673423-3 7.328245-1 5.934734-3 8.609938-1 4.021335-3 9.225714-1 3.423850-3 9.772372-1 3.010752-3 1.047129+0 2.600190-3 1.135011+0 2.209608-3 1.230269+0 1.891347-3 1.348963+0 1.594560-3 1.717908+0 1.035529-3 1.949845+0 8.314239-4 2.213095+0 6.725944-4 2.540973+0 5.377794-4 2.917427+0 4.331391-4 3.388442+0 3.452000-4 3.935501+0 2.771726-4 4.623810+0 2.205586-4 5.432503+0 1.768167-4 6.456542+0 1.405850-4 7.762471+0 1.109149-4 9.440609+0 8.692667-5 1.174898+1 6.673926-5 1.445440+1 5.233435-5 1.819701+1 4.020844-5 2.400000+1 2.953800-5 3.273407+1 2.107643-5 4.677351+1 1.441424-5 7.161434+1 9.238349-6 1.288250+2 5.053105-6 2.570396+2 2.507445-6 5.128614+2 1.249981-6 2.041738+3 3.128706-7 1.000000+5 6.377200-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.033900-4 1.347500-4 1.000000+5 1.347500-4 1 92000 7 7 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.033900-4 6.282200-9 1.000000+5 6.282200-9 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.033900-4 6.863372-5 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.123500-4 8.216528+5 1.127000-4 8.877120+5 1.135011-4 1.041612+6 1.140000-4 1.145760+6 1.146000-4 1.276628+6 1.152000-4 1.410568+6 1.157000-4 1.522740+6 1.162000-4 1.633808+6 1.166500-4 1.731068+6 1.170000-4 1.804128+6 1.175000-4 1.903896+6 1.180000-4 1.997212+6 1.185000-4 2.082628+6 1.190000-4 2.159772+6 1.197000-4 2.252620+6 1.202264-4 2.310482+6 1.208000-4 2.362008+6 1.214000-4 2.403116+6 1.221000-4 2.435632+6 1.229000-4 2.454492+6 1.236000-4 2.457236+6 1.245000-4 2.445056+6 1.255000-4 2.414916+6 1.265000-4 2.372220+6 1.280000-4 2.293104+6 1.300000-4 2.173800+6 1.330000-4 1.990952+6 1.380384-4 1.710699+6 1.430000-4 1.472824+6 1.480000-4 1.263828+6 1.531087-4 1.077632+6 1.584893-4 9.099378+5 1.778279-4 5.109761+5 1.905461-4 3.640842+5 2.018366-4 2.763636+5 2.089296-4 2.353962+5 2.162719-4 2.017149+5 2.220000-4 1.804400+5 2.285500-4 1.604865+5 2.344229-4 1.458774+5 2.400000-4 1.343796+5 2.454709-4 1.249794+5 2.511886-4 1.168199+5 2.570396-4 1.099414+5 2.635000-4 1.037760+5 2.691535-4 9.940028+4 2.754229-4 9.546725+4 2.818383-4 9.227107+4 2.884032-4 8.971450+4 2.951209-4 8.771238+4 3.030000-4 8.600640+4 3.126079-4 8.466365+4 3.240000-4 8.384960+4 3.350000-4 8.361720+4 3.507519-4 8.384739+4 4.265795-4 8.674403+4 4.570882-4 8.724569+4 4.897788-4 8.707690+4 5.188000-4 8.640739+4 5.500000-4 8.523640+4 5.821032-4 8.363040+4 6.237348-4 8.111586+4 6.683439-4 7.808099+4 7.161434-4 7.460279+4 7.673615-4 7.077977+4 8.222426-4 6.672544+4 8.810489-4 6.250856+4 9.549926-4 5.749968+4 1.035142-3 5.249679+4 1.135011-3 4.690721+4 1.230269-3 4.219793+4 1.350000-3 3.707800+4 1.496236-3 3.182686+4 1.621810-3 2.805437+4 1.778279-3 2.413424+4 1.972423-3 2.020784+4 2.187762-3 1.677747+4 2.426610-3 1.381640+4 2.691535-3 1.128692+4 2.985383-3 9.147856+3 3.311311-3 7.355882+3 3.630781-3 6.021215+3 4.027170-3 4.770041+3 4.466836-3 3.749978+3 4.954502-3 2.925843+3 5.495409-3 2.266098+3 6.095369-3 1.742494+3 6.760830-3 1.330394+3 7.498942-3 1.008757+3 8.317638-3 7.597324+2 9.332543-3 5.502049+2 1.047129-2 3.954535+2 1.174898-2 2.821673+2 1.318257-2 1.998423+2 1.462177-2 1.455083+2 1.640590-2 1.015558+2 1.862087-2 6.784005+1 2.113489-2 4.497728+1 2.398833-2 2.961191+1 2.754229-2 1.862534+1 3.162278-2 1.162572+1 3.672823-2 6.921199+0 4.315191-2 3.927717+0 5.128614-2 2.123550+0 6.237348-2 1.048687+0 8.035261-2 4.171673-1 1.348963-1 6.272736-2 1.640590-1 3.085849-2 1.949845-1 1.661710-2 2.290868-1 9.390135-3 2.630268-1 5.797175-3 3.000000-1 3.689432-3 3.388442-1 2.445877-3 3.801894-1 1.670289-3 4.265795-1 1.148820-3 4.677351-1 8.571475-4 5.069907-1 6.677592-4 5.559043-1 5.066312-4 6.456542-1 3.270893-4 7.161434-1 2.432314-4 8.609938-1 1.456626-4 9.120108-1 1.249338-4 9.549926-1 1.111743-4 1.000000+0 9.959100-5 1.047129+0 8.984602-5 1.109175+0 7.957433-5 1.174898+0 7.096941-5 1.258925+0 6.232329-5 1.364583+0 5.395530-5 1.531087+0 4.420138-5 1.840772+0 3.192343-5 2.065380+0 2.622832-5 2.371374+0 2.089186-5 2.722701+0 1.676589-5 3.162278+0 1.331435-5 3.672823+0 1.065426-5 4.265795+0 8.587847-6 5.011872+0 6.859845-6 5.956621+0 5.434617-6 7.161434+0 4.273894-6 8.609938+0 3.386073-6 1.059254+1 2.627210-6 1.318257+1 2.025236-6 1.737801+1 1.472643-6 2.344229+1 1.053881-6 3.198895+1 7.511560-7 4.570882+1 5.134726-7 6.918310+1 3.328950-7 1.216186+2 1.863286-7 2.398833+2 9.348389-8 4.786301+2 4.658356-8 1.905461+3 1.165607-8 1.000000+5 2.21720-10 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.123500-4 1.123500-4 1.000000+5 1.123500-4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.123500-4 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.040200-4 1.337641+6 1.041400-4 1.385328+6 1.047000-4 1.570206+6 1.051000-4 1.707888+6 1.055000-4 1.849008+6 1.059254-4 2.000794+6 1.063000-4 2.135532+6 1.068500-4 2.332002+6 1.074000-4 2.524452+6 1.079500-4 2.710566+6 1.085000-4 2.887482+6 1.091000-4 3.067050+6 1.097000-4 3.229842+6 1.103000-4 3.373626+6 1.109175-4 3.500318+6 1.115000-4 3.599370+6 1.122018-4 3.692327+6 1.127000-4 3.741378+6 1.132000-4 3.777090+6 1.140000-4 3.808428+6 1.148154-4 3.811576+6 1.155000-4 3.795156+6 1.163000-4 3.757968+6 1.175000-4 3.674526+6 1.188502-4 3.554222+6 1.205000-4 3.387408+6 1.225000-4 3.176622+6 1.258925-4 2.833623+6 1.318257-4 2.320335+6 1.372400-4 1.936415+6 1.412538-4 1.691868+6 1.462177-4 1.429911+6 1.540000-4 1.100286+6 1.659587-4 7.513106+5 1.737801-4 5.972140+5 1.820000-4 4.775790+5 1.883649-4 4.066992+5 1.950000-4 3.481272+5 2.000000-4 3.122730+5 2.060000-4 2.768850+5 2.113489-4 2.511547+5 2.170000-4 2.288760+5 2.220000-4 2.126676+5 2.264644-4 2.005371+5 2.317395-4 1.886145+5 2.371374-4 1.786906+5 2.426610-4 1.705180+5 2.483133-4 1.638678+5 2.540973-4 1.585328+5 2.600160-4 1.543239+5 2.660725-4 1.510740+5 2.730000-4 1.483968+5 2.818383-4 1.462188+5 2.917427-4 1.449837+5 3.019952-4 1.446415+5 3.162278-4 1.451625+5 3.507519-4 1.481978+5 3.850000-4 1.506894+5 4.120975-4 1.515526+5 4.365158-4 1.514241+5 4.623810-4 1.504202+5 4.897788-4 1.485383+5 5.188000-4 1.458413+5 5.500000-4 1.423386+5 5.888437-4 1.373434+5 6.309573-4 1.314884+5 6.760830-4 1.250175+5 7.244360-4 1.180345+5 7.852356-4 1.095397+5 8.413951-4 1.020750+5 9.120108-4 9.334541+4 9.885531-4 8.475862+4 1.083927-3 7.528032+4 1.174898-3 6.738696+4 1.288250-3 5.895573+4 1.428894-3 5.025515+4 1.566751-3 4.327138+4 1.698244-3 3.775937+4 1.883649-3 3.145045+4 2.089296-3 2.597980+4 2.344229-3 2.081502+4 2.600160-3 1.690831+4 2.900000-3 1.346916+4 3.235937-3 1.062899+4 3.548134-3 8.651165+3 3.935501-3 6.809149+3 4.365158-3 5.319808+3 4.841724-3 4.125107+3 5.370318-3 3.174710+3 5.956621-3 2.425331+3 6.606934-3 1.839582+3 7.328245-3 1.385397+3 8.128305-3 1.036171+3 9.015711-3 7.698467+2 1.011579-2 5.492451+2 1.135011-2 3.889574+2 1.273503-2 2.733417+2 1.412538-2 1.976276+2 1.584893-2 1.367691+2 1.778279-2 9.396646+1 2.018366-2 6.169539+1 2.290868-2 4.020963+1 2.600160-2 2.601581+1 2.985383-2 1.605200+1 3.427678-2 9.826504+0 3.981072-2 5.728647+0 4.623810-2 3.311382+0 5.495409-2 1.745075+0 6.760830-2 8.022461-1 1.258925-1 7.648774-2 1.531088-1 3.675322-2 1.798871-1 2.023887-2 2.089296-1 1.171878-2 2.371374-1 7.431492-3 2.660725-1 4.945351-3 2.985383-1 3.315580-3 3.311311-1 2.330461-3 3.672823-1 1.650317-3 4.027170-1 1.222591-3 4.415705-1 9.117002-4 4.786301-1 7.097585-4 5.128614-1 5.758233-4 5.623413-1 4.392532-4 6.237348-1 3.266685-4 6.839117-1 2.526913-4 7.498942-1 1.968599-4 8.609938-1 1.365761-4 9.120108-1 1.179946-4 9.660509-1 1.026929-4 1.011579+0 9.248755-5 1.071519+0 8.174059-5 1.135011+0 7.269885-5 1.216186+0 6.360034-5 1.318257+0 5.481949-5 1.840772+0 3.041091-5 2.065380+0 2.498673-5 2.371374+0 1.990097-5 2.722701+0 1.597191-5 3.162278+0 1.268488-5 3.672823+0 1.015036-5 4.265795+0 8.181623-6 5.011872+0 6.535402-6 5.956621+0 5.177558-6 7.161434+0 4.071715-6 8.609938+0 3.225907-6 1.059254+1 2.502927-6 1.318257+1 1.929424-6 1.737801+1 1.402922-6 2.344229+1 1.003997-6 3.198895+1 7.156252-7 4.570882+1 4.891810-7 6.918310+1 3.171480-7 1.216186+2 1.775133-7 2.371374+2 9.010352-8 4.731513+2 4.489697-8 1.883649+3 1.123346-8 1.000000+5 2.11230-10 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.040200-4 1.040200-4 1.000000+5 1.040200-4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.040200-4 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 8.910000-6 1.429658+5 9.120108-6 1.443340+5 9.350000-6 1.465581+5 9.660509-6 1.508123+5 9.930000-6 1.556635+5 1.020000-5 1.615713+5 1.050000-5 1.693511+5 1.085000-5 1.799943+5 1.122018-5 1.930729+5 1.165000-5 2.104926+5 1.216186-5 2.342868+5 1.273503-5 2.647977+5 1.350000-5 3.116330+5 1.479108-5 4.059791+5 1.778279-5 6.967521+5 1.927525-5 8.778424+5 2.070000-5 1.070186+6 2.190000-5 1.243609+6 2.317395-5 1.436150+6 2.426610-5 1.605173+6 2.540973-5 1.781824+6 2.660725-5 1.962905+6 2.770000-5 2.121987+6 2.900000-5 2.301228+6 3.019952-5 2.455085+6 3.150000-5 2.607536+6 3.273407-5 2.737755+6 3.427678-5 2.881884+6 3.589219-5 3.012946+6 3.758374-5 3.130200+6 3.950000-5 3.240028+6 4.168694-5 3.339219+6 4.400000-5 3.416581+6 4.623810-5 3.463234+6 4.841724-5 3.481173+6 5.011872-5 3.476790+6 5.188000-5 3.455386+6 5.400000-5 3.406926+6 5.580000-5 3.347616+6 5.800000-5 3.255996+6 6.025596-5 3.144474+6 6.237348-5 3.027064+6 6.456542-5 2.896161+6 6.730000-5 2.725435+6 7.000000-5 2.554256+6 7.244360-5 2.399768+6 7.500000-5 2.240491+6 7.800000-5 2.058975+6 8.035261-5 1.922070+6 8.317638-5 1.763987+6 8.609938-5 1.607810+6 8.912509-5 1.455308+6 9.225714-5 1.307932+6 9.500000-5 1.187426+6 9.800000-5 1.064821+6 1.011579-4 9.465820+5 1.047129-4 8.265600+5 1.080000-4 7.269970+5 1.110000-4 6.451153+5 1.148154-4 5.527377+5 1.180000-4 4.848361+5 1.216186-4 4.166118+5 1.250000-4 3.605787+5 1.288250-4 3.053401+5 1.318257-4 2.674006+5 1.350000-4 2.317981+5 1.380384-4 2.016337+5 1.415000-4 1.714996+5 1.450000-4 1.451425+5 1.480000-4 1.254503+5 1.513561-4 1.062077+5 1.540000-4 9.290682+4 1.570000-4 7.960319+4 1.603245-4 6.685232+4 1.635000-4 5.639561+4 1.660000-4 4.920592+4 1.690000-4 4.165765+4 1.720000-4 3.516584+4 1.757924-4 2.829209+4 1.800000-4 2.216384+4 1.890000-4 1.323163+4 1.915000-4 1.156215+4 1.940000-4 1.018154+4 1.957000-4 9.392292+3 1.973000-4 8.750915+3 1.990000-4 8.169414+3 2.005000-4 7.735911+3 2.020000-4 7.371901+3 2.035000-4 7.072832+3 2.050000-4 6.834397+3 2.065380-4 6.648652+3 2.080000-4 6.523500+3 2.095000-4 6.443619+3 2.110000-4 6.409483+3 2.124000-4 6.416053+3 2.137962-4 6.457033+3 2.155000-4 6.550191+3 2.170000-4 6.668489+3 2.190000-4 6.874460+3 2.213095-4 7.173995+3 2.240000-4 7.596103+3 2.270000-4 8.146233+3 2.317395-4 9.154176+3 2.400000-4 1.120240+4 2.454709-4 1.268307+4 2.500000-4 1.394455+4 2.540973-4 1.509776+4 2.588600-4 1.644048+4 2.640000-4 1.787561+4 2.691535-4 1.928167+4 2.722701-4 2.011190+4 2.754229-4 2.093357+4 2.818383-4 2.254112+4 2.884032-4 2.408546+4 2.951209-4 2.555027+4 3.054921-4 2.762836+4 3.126079-4 2.893298+4 3.198895-4 3.013767+4 3.273407-4 3.123324+4 3.349654-4 3.221275+4 3.427678-4 3.307153+4 3.507519-4 3.380719+4 3.589219-4 3.441951+4 3.715352-4 3.511116+4 3.845918-4 3.554346+4 4.027170-4 3.578495+4 4.168694-4 3.585018+4 4.315191-4 3.571356+4 4.466836-4 3.539093+4 4.623810-4 3.490067+4 4.841724-4 3.402124+4 5.128614-4 3.265580+4 5.370318-4 3.140338+4 5.623413-4 3.002132+4 5.956621-4 2.816335+4 6.309573-4 2.622887+4 6.683439-4 2.425642+4 7.079458-4 2.228032+4 7.498942-4 2.033557+4 8.000000-4 1.822533+4 8.511380-4 1.630324+4 9.120108-4 1.430077+4 9.772372-4 1.246356+4 1.047129-3 1.079235+4 1.122018-3 9.287285+3 1.216186-3 7.737144+3 1.318257-3 6.398028+3 1.428894-3 5.253957+3 1.566751-3 4.161766+3 1.717908-3 3.270683+3 1.883649-3 2.550164+3 2.065380-3 1.972891+3 2.264644-3 1.514626+3 2.483133-3 1.154452+3 2.754229-3 8.437013+2 3.019952-3 6.343879+2 3.311311-3 4.738155+2 3.630781-3 3.514846+2 3.935501-3 2.689216+2 4.315191-3 1.966788+2 4.786301-3 1.372681+2 5.308844-3 9.508147+1 5.956621-3 6.275724+1 6.606934-3 4.289444+1 7.328245-3 2.912492+1 8.128305-3 1.964641+1 9.120108-3 1.258919+1 1.023293-2 8.006333+0 1.148154-2 5.054927+0 1.288250-2 3.169503+0 1.462177-2 1.882324+0 1.659587-2 1.109407+0 1.883649-2 6.492597-1 2.162719-2 3.592199-1 2.511886-2 1.876351-1 2.951209-2 9.248214-2 3.507519-2 4.299508-2 4.315191-2 1.701026-2 8.912509-2 6.471219-4 1.122019-1 2.306652-4 1.348963-1 1.015859-4 1.513561-1 6.122410-5 1.717908-1 3.539472-5 1.949845-1 2.062256-5 2.238721-1 1.151737-5 2.511886-1 7.136301-6 2.818383-1 4.454369-6 3.126079-1 2.935085-6 3.467369-1 1.948150-6 3.801894-1 1.362204-6 4.216965-1 9.177639-7 4.623810-1 6.509547-7 5.011872-1 4.852784-7 5.432503-1 3.655459-7 5.888437-1 2.774219-7 6.382635-1 2.119975-7 6.998420-1 1.570966-7 7.673615-1 1.172712-7 8.000000-1 1.029700-7 8.413951-1 8.706683-8 8.810489-1 7.515827-8 9.225714-1 6.535085-8 9.549926-1 5.917626-8 9.885531-1 5.387982-8 1.023293+0 4.935663-8 1.059254+0 4.547800-8 1.096478+0 4.212280-8 1.148154+0 3.830011-8 1.202264+0 3.505989-8 1.288250+0 3.097657-8 1.396368+0 2.703906-8 1.513561+0 2.369500-8 1.905461+0 1.579403-8 2.113489+0 1.325205-8 2.426610+0 1.056916-8 2.786121+0 8.491984-9 3.235937+0 6.751840-9 3.758374+0 5.409082-9 4.365158+0 4.364721-9 5.128614+0 3.490143-9 6.095369+0 2.767886-9 7.328245+0 2.178774-9 8.810489+0 1.727787-9 1.083927+1 1.341729-9 1.348963+1 1.035053-9 1.757924+1 7.63186-10 2.371374+1 5.46377-10 3.235937+1 3.89534-10 4.623810+1 2.66345-10 7.079458+1 1.70663-10 1.273503+2 9.33375-11 2.540973+2 4.63082-11 5.069907+2 2.30836-11 2.018366+3 5.77757-12 1.000000+5 1.16420-13 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 8.910000-6 8.910000-6 1.000000+5 8.910000-6 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 8.910000-6 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 7.950000-6 2.361297+5 8.150000-6 2.372492+5 8.350000-6 2.395686+5 8.550000-6 2.430298+5 8.770000-6 2.480749+5 9.015711-6 2.553288+5 9.225714-6 2.627162+5 9.500000-6 2.740464+5 9.772372-6 2.869957+5 1.011579-5 3.056802+5 1.050000-5 3.295654+5 1.100000-5 3.650306+5 1.161449-5 4.149228+5 1.230269-5 4.786440+5 1.350000-5 6.082009+5 1.678804-5 1.077612+6 1.850000-5 1.382198+6 2.000000-5 1.676936+6 2.137962-5 1.963982+6 2.270000-5 2.246646+6 2.398833-5 2.522767+6 2.511886-5 2.760426+6 2.630268-5 2.999081+6 2.754229-5 3.233331+6 2.884032-5 3.459253+6 3.019952-5 3.673084+6 3.162278-5 3.870259+6 3.311311-5 4.047971+6 3.467369-5 4.206571+6 3.650000-5 4.361308+6 3.850000-5 4.495074+6 4.073803-5 4.606120+6 4.315191-5 4.686271+6 4.518559-5 4.720240+6 4.731513-5 4.722201+6 4.954502-5 4.689423+6 5.150000-5 4.631309+6 5.350000-5 4.543760+6 5.559043-5 4.425801+6 5.754399-5 4.295974+6 5.956621-5 4.145248+6 6.165950-5 3.975299+6 6.400000-5 3.774695+6 6.650000-5 3.555335+6 6.918310-5 3.319300+6 7.161434-5 3.107184+6 7.413102-5 2.892959+6 7.673615-5 2.679621+6 7.943282-5 2.467662+6 8.222426-5 2.257727+6 8.511380-5 2.052322+6 8.810489-5 1.853283+6 9.120108-5 1.660922+6 9.440609-5 1.476744+6 9.772372-5 1.303118+6 1.010000-4 1.147998+6 1.040000-4 1.019175+6 1.071519-4 8.971017+5 1.100000-4 7.980620+5 1.135011-4 6.895228+5 1.170000-4 5.939929+5 1.205000-4 5.102996+5 1.240000-4 4.373377+5 1.273503-4 3.762382+5 1.303167-4 3.284329+5 1.338900-4 2.779634+5 1.365000-4 2.455703+5 1.400000-4 2.073468+5 1.430000-4 1.787816+5 1.462177-4 1.519819+5 1.496236-4 1.275222+5 1.530000-4 1.067706+5 1.560000-4 9.087348+4 1.590000-4 7.707705+4 1.621810-4 6.449462+4 1.650000-4 5.491797+4 1.680000-4 4.616206+4 1.705000-4 3.986599+4 1.740000-4 3.239117+4 1.841500-4 1.783412+4 1.865000-4 1.566763+4 1.890000-4 1.375733+4 1.908000-4 1.260984+4 1.927525-4 1.156179+4 1.945000-4 1.078386+4 1.957000-4 1.033105+4 1.973000-4 9.823499+3 1.985000-4 9.510709+3 2.000000-4 9.196120+3 2.015000-4 8.960902+3 2.030000-4 8.799416+3 2.045000-4 8.706330+3 2.058000-4 8.677102+3 2.074600-4 8.704080+3 2.090000-4 8.788753+3 2.107000-4 8.943365+3 2.123000-4 9.142686+3 2.140000-4 9.406755+3 2.162719-4 9.835724+3 2.190000-4 1.045269+4 2.215000-4 1.110263+4 2.344229-4 1.533372+4 2.379860-4 1.665674+4 2.426610-4 1.842273+4 2.454709-4 1.949331+4 2.483133-4 2.057906+4 2.511886-4 2.167677+4 2.540973-4 2.278313+4 2.588600-4 2.457734+4 2.645600-4 2.667993+4 2.691535-4 2.832595+4 2.754229-4 3.048535+4 2.818383-4 3.257346+4 2.884032-4 3.456763+4 2.951209-4 3.644808+4 3.054921-4 3.909783+4 3.126079-4 4.073530+4 3.198895-4 4.222035+4 3.273407-4 4.354325+4 3.349654-4 4.469748+4 3.427678-4 4.567977+4 3.548134-4 4.683114+4 3.672823-4 4.760700+4 3.801894-4 4.803096+4 3.935501-4 4.813658+4 4.168694-4 4.798187+4 4.315191-4 4.761552+4 4.466836-4 4.701923+4 4.677351-4 4.590938+4 4.897788-4 4.449759+4 5.188000-4 4.244827+4 5.432503-4 4.062169+4 5.754399-4 3.815133+4 6.095369-4 3.555454+4 6.456542-4 3.290694+4 6.839116-4 3.025003+4 7.244360-4 2.763190+4 7.673615-4 2.509118+4 8.222426-4 2.218800+4 8.810489-4 1.947769+4 9.440609-4 1.697991+4 1.011579-3 1.470568+4 1.096478-3 1.234022+4 1.188502-3 1.027372+4 1.288250-3 8.489288+3 1.396368-3 6.965061+3 1.513561-3 5.677036+3 1.659587-3 4.460481+3 1.819701-3 3.477518+3 2.000000-3 2.673304+3 2.187762-3 2.073229+3 2.371374-3 1.639447+3 2.570396-3 1.287524+3 2.754229-3 1.040107+3 3.000000-3 7.923413+2 3.311311-3 5.743164+2 3.672823-3 4.064103+2 4.073803-3 2.854372+2 4.677351-3 1.765958+2 5.188000-3 1.223437+2 5.754399-3 8.417819+1 6.309573-3 5.999666+1 6.998420-3 4.070520+1 7.762471-3 2.742980+1 8.709636-3 1.755461+1 9.772372-3 1.114867+1 1.096478-2 7.031210+0 1.230269-2 4.403794+0 1.380384-2 2.738841+0 1.548817-2 1.690766+0 1.757924-2 9.871714-1 1.995262-2 5.721895-1 2.290868-2 3.131935-1 2.660725-2 1.617309-1 3.126079-2 7.874579-2 3.758374-2 3.430505-2 4.677351-2 1.267995-2 9.120108-2 5.963265-4 1.135011-1 2.204571-4 1.333521-1 1.063550-4 1.500000-1 6.287400-5 1.678804-1 3.833568-5 1.883649-1 2.328695-5 2.162719-1 1.291088-5 2.398833-1 8.352741-6 2.630268-1 5.708671-6 2.884032-1 3.929096-6 3.162278-1 2.723916-6 3.467369-1 1.902732-6 3.758374-1 1.399300-6 4.168694-1 9.508325-7 4.466836-1 7.393632-7 4.786301-1 5.787962-7 5.011872-1 4.937474-7 5.370318-1 3.926787-7 5.821032-1 3.030311-7 6.606935-1 2.032038-7 7.161434-1 1.585636-7 7.762471-1 1.245749-7 8.511380-1 9.498265-8 9.015711-1 8.072057-8 9.440609-1 7.132803-8 9.885531-1 6.346371-8 1.035142+0 5.691287-8 1.083927+0 5.142873-8 1.135011+0 4.677688-8 1.202264+0 4.186063-8 1.303167+0 3.615823-8 1.428894+0 3.083155-8 1.513561+0 2.795809-8 1.862087+0 1.939458-8 2.065380+0 1.625160-8 2.371374+0 1.294343-8 2.722701+0 1.038792-8 3.162278+0 8.250167-9 3.672823+0 6.601872-9 4.265795+0 5.321414-9 5.011872+0 4.250648-9 5.956621+0 3.367531-9 7.161434+0 2.648316-9 8.609938+0 2.098173-9 1.059254+1 1.627950-9 1.318257+1 1.254968-9 1.737801+1 9.12511-10 2.344229+1 6.53022-10 3.198895+1 4.65448-10 4.570882+1 3.18170-10 6.918310+1 2.06276-10 1.216186+2 1.15455-10 2.398833+2 5.79263-11 4.786301+2 2.88658-11 1.905461+3 7.22253-12 1.000000+5 1.37390-13 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 7.950000-6 7.950000-6 1.000000+5 7.950000-6 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 7.950000-6 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.223000-5 3.305680+5 5.308844-5 3.111580+5 5.700000-5 2.349440+5 5.900000-5 2.062520+5 6.095369-5 1.835996+5 6.300000-5 1.644102+5 6.500000-5 1.491554+5 6.683439-5 1.375523+5 6.918310-5 1.252880+5 7.161434-5 1.149527+5 7.413102-5 1.061503+5 7.673615-5 9.856873+4 8.035261-5 8.993860+4 8.413951-5 8.262875+4 8.810489-5 7.635338+4 9.332543-5 6.968462+4 9.885531-5 6.411242+4 1.047129-4 5.946749+4 1.109175-4 5.558120+4 1.190000-4 5.159880+4 1.698244-4 3.672586+4 2.041738-4 3.068471+4 2.300000-4 2.712120+4 2.754229-4 2.228054+4 3.126079-4 1.928988+4 3.715352-4 1.569516+4 4.315191-4 1.304137+4 5.188000-4 1.028793+4 6.095369-4 8.297787+3 7.244360-4 6.541849+3 8.609938-4 5.118933+3 1.023293-3 3.977514+3 1.244515-3 2.964496+3 1.531087-3 2.154215+3 1.905461-3 1.526429+3 2.454709-3 1.016269+3 3.126079-3 6.839622+2 3.935501-3 4.656167+2 4.841724-3 3.270290+2 5.888437-3 2.325760+2 7.161434-3 1.642003+2 8.709636-3 1.150385+2 1.047129-2 8.154438+1 1.273503-2 5.614016+1 1.566751-2 3.752449+1 2.041738-2 2.223036+1 2.483133-2 1.498180+1 2.951209-2 1.050110+1 3.467369-2 7.474641+0 4.120975-2 5.154860+0 4.954502-2 3.441055+0 5.956621-2 2.279245+0 7.244360-2 1.459622+0 8.511380-2 1.004901+0 1.059254-1 6.003183-1 1.364583-1 3.278193-1 2.570396-1 7.077739-2 3.198895-1 4.192266-2 3.845918-1 2.716104-2 4.518559-1 1.870462-2 5.188000-1 1.367300-2 6.025596-1 9.815297-3 6.918310-1 7.278926-3 7.943282-1 5.436531-3 9.015711-1 4.184946-3 1.011579+0 3.322872-3 1.216186+0 2.317901-3 1.364583+0 1.863309-3 1.531087+0 1.507511-3 1.737801+0 1.203253-3 1.972423+0 9.674412-4 2.264644+0 7.685534-4 2.600160+0 6.152689-4 3.000000+0 4.924100-4 3.467369+0 3.958426-4 4.027170+0 3.181920-4 4.731513+0 2.534821-4 5.623413+0 2.002958-4 6.683439+0 1.594881-4 8.035261+0 1.260006-4 9.772372+0 9.888601-5 1.216186+1 7.601347-5 1.479108+1 6.047917-5 1.819701+1 4.771393-5 2.400000+1 3.505200-5 3.273407+1 2.501054-5 4.731513+1 1.689861-5 7.244360+1 1.083269-5 1.303167+2 5.926265-6 2.600160+2 2.940986-6 5.188000+2 1.466193-6 2.065380+3 3.670140-7 1.000000+5 7.567600-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.223000-5 5.223000-5 1.000000+5 5.223000-5 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.223000-5 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.409000-5 6.674160+6 3.480000-5 6.394640+6 3.589219-5 5.951442+6 3.758374-5 5.302160+6 4.000000-5 4.503840+6 4.220000-5 3.890340+6 4.466836-5 3.309497+6 4.731513-5 2.791254+6 5.069907-5 2.258601+6 6.309573-5 1.134967+6 7.079458-5 7.956414+5 8.222426-5 5.064370+5 1.122018-4 1.998228+5 1.288250-4 1.329612+5 1.462177-4 9.217673+4 1.621810-4 6.879164+4 1.778279-4 5.338191+4 1.950000-4 4.170720+4 2.113489-4 3.385106+4 2.264644-4 2.847898+4 2.426610-4 2.412288+4 2.600160-4 2.057557+4 2.786121-4 1.767274+4 2.985383-4 1.528736+4 3.198895-4 1.332454+4 3.427678-4 1.170853+4 3.672823-4 1.036560+4 3.935501-4 9.240459+3 4.216965-4 8.289146+3 4.518559-4 7.483609+3 4.897788-4 6.687381+3 5.432503-4 5.836431+3 6.095369-4 5.063169+3 7.161434-4 4.190914+3 1.047129-3 2.717150+3 1.274000-3 2.156997+3 1.513561-3 1.748379+3 1.778279-3 1.425091+3 2.089296-3 1.152759+3 2.426610-3 9.398962+2 2.818383-3 7.606661+2 3.235937-3 6.213618+2 3.715352-3 5.040026+2 4.168694-3 4.208604+2 4.786301-3 3.358516+2 5.495409-3 2.659300+2 6.237348-3 2.131959+2 7.079458-3 1.697479+2 8.035261-3 1.342464+2 9.225714-3 1.031155+2 1.135011-2 6.872236+1 1.318257-2 5.089380+1 1.500000-2 3.900107+1 1.698244-2 2.998094+1 1.905461-2 2.329375+1 2.187762-2 1.707219+1 2.511886-2 1.242219+1 2.884032-2 8.973947+0 3.311311-2 6.437219+0 3.845918-2 4.457698+0 4.466836-2 3.063933+0 5.248075-2 2.030485+0 6.165950-2 1.335909+0 7.413102-2 8.210240-1 9.120108-2 4.710104-1 1.174898-1 2.368891-1 2.041738-1 5.214797-2 2.540973-1 2.882573-2 3.054921-1 1.761846-2 3.589219-1 1.153166-2 4.120975-1 8.074455-3 4.731513-1 5.697025-3 5.370318-1 4.168405-3 6.095369-1 3.073361-3 6.839117-1 2.346537-3 7.673615-1 1.804602-3 8.709636-1 1.361243-3 9.440609-1 1.144888-3 1.023293+0 9.699948-4 1.148154+0 7.717608-4 1.273503+0 6.323276-4 1.428894+0 5.108282-4 1.659587+0 3.902503-4 1.883649+0 3.128799-4 2.137962+0 2.526405-4 2.454709+0 2.016156-4 2.818383+0 1.620956-4 3.273407+0 1.289596-4 3.801894+0 1.033713-4 4.415704+0 8.345667-5 5.188000+0 6.676849-5 6.165950+0 5.297908-5 7.413102+0 4.172141-5 8.912509+0 3.310312-5 1.100000+1 2.561600-5 1.380384+1 1.958163-5 1.778279+1 1.463945-5 2.371374+1 1.061814-5 3.235937+1 7.570124-6 4.623810+1 5.176013-6 6.998420+1 3.356481-6 1.244515+2 1.856984-6 2.483133+2 9.211366-7 4.954502+2 4.590916-7 1.972423+3 1.148944-7 1.000000+5 2.262400-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.409000-5 3.409000-5 1.000000+5 3.409000-5 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.409000-5 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.457000-5 1.541353+7 2.818383-5 9.863822+6 3.548134-5 4.722993+6 4.265795-5 2.592251+6 4.800000-5 1.768260+6 5.248075-5 1.332875+6 5.688529-5 1.040097+6 6.095369-5 8.465264+5 6.531306-5 6.938346+5 7.000000-5 5.726760+5 7.413102-5 4.916373+5 7.852356-5 4.243624+5 8.317638-5 3.685413+5 8.810489-5 3.220251+5 9.332543-5 2.830202+5 1.000000-4 2.441384+5 1.071519-4 2.121605+5 1.150000-4 1.851152+5 1.230269-4 1.636128+5 1.318257-4 1.451816+5 1.412538-4 1.296936+5 1.531087-4 1.145315+5 1.678804-4 1.001112+5 1.883649-4 8.526325+4 2.137962-4 7.204591+4 2.540973-4 5.784338+4 4.027170-4 3.255888+4 5.011872-4 2.460454+4 6.000000-4 1.939984+4 7.079458-4 1.548116+4 8.317638-4 1.234253+4 9.772372-4 9.767053+3 1.148154-3 7.673028+3 1.348963-3 5.983065+3 1.584893-3 4.630513+3 1.862087-3 3.558178+3 2.213095-3 2.663236+3 2.600160-3 2.017467+3 3.054921-3 1.516578+3 3.548134-3 1.155216+3 4.120975-3 8.734228+2 4.731513-3 6.699788+2 5.432503-3 5.103194+2 6.237348-3 3.858841+2 7.161434-3 2.896022+2 8.222426-3 2.157165+2 9.440609-3 1.594715+2 1.096478-2 1.140898+2 1.258925-2 8.315633+1 1.445440-2 6.014768+1 1.621810-2 4.560282+1 1.840772-2 3.340035+1 2.113489-2 2.360159+1 2.426610-2 1.655376+1 2.786121-2 1.152524+1 3.198895-2 7.965271+0 3.672823-2 5.465654+0 4.265795-2 3.606756+0 4.954502-2 2.362158+0 5.821032-2 1.486063+0 6.839116-2 9.277996-1 8.222426-2 5.374483-1 1.011580-1 2.885998-1 1.972423-1 3.797177-2 2.398833-1 2.107328-2 2.818383-1 1.306255-2 3.273407-1 8.440372-3 3.715352-1 5.872392-3 4.216965-1 4.115209-3 4.731513-1 2.999795-3 5.248075-1 2.272064-3 5.888437-1 1.681598-3 6.606935-1 1.254307-3 7.328245-1 9.701751-4 8.609938-1 6.575986-4 9.225714-1 5.600101-4 9.772372-1 4.925197-4 1.047129+0 4.254156-4 1.135011+0 3.615325-4 1.230269+0 3.094507-4 1.348963+0 2.608763-4 1.698244+0 1.728753-4 1.927525+0 1.387183-4 2.187762+0 1.121455-4 2.511886+0 8.960946-5 2.884032+0 7.212957-5 3.349654+0 5.745174-5 3.890451+0 4.610428-5 4.570882+0 3.666688-5 5.370318+0 2.938029-5 6.382635+0 2.334778-5 7.673615+0 1.841188-5 9.225714+0 1.462871-5 1.148154+1 1.122196-5 1.428894+1 8.675994-6 1.800000+1 6.659000-6 2.398833+1 4.834982-6 3.273407+1 3.448014-6 4.677351+1 2.358085-6 7.161434+1 1.511373-6 1.273503+2 8.364341-7 2.540973+2 4.149978-7 5.069907+2 2.068630-7 2.018366+3 5.177783-8 1.000000+5 1.043300-9 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.457000-5 2.457000-5 1.000000+5 2.457000-5 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.457000-5 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.740000-6 3.053603+6 4.800000-6 3.112744+6 4.960000-6 3.239908+6 5.188000-6 3.396170+6 5.432503-6 3.534766+6 5.754399-6 3.679877+6 6.025596-6 3.774360+6 6.382635-6 3.869568+6 6.760830-6 3.939606+6 7.200000-6 3.986324+6 7.700000-6 4.006440+6 8.222426-6 3.996670+6 8.709636-6 3.962937+6 9.225714-6 3.905221+6 9.772372-6 3.823434+6 1.035142-5 3.718001+6 1.096478-5 3.589591+6 1.161449-5 3.437093+6 1.230269-5 3.264407+6 1.290000-5 3.109212+6 1.350000-5 2.949712+6 1.420000-5 2.763996+6 1.496236-5 2.565203+6 1.570000-5 2.379740+6 1.659587-5 2.167030+6 1.757924-5 1.951699+6 1.862087-5 1.745401+6 1.995262-5 1.514239+6 2.150000-5 1.288280+6 2.317395-5 1.087813+6 2.570396-5 8.540495+5 2.851018-5 6.655204+5 3.162278-5 5.153961+5 3.507519-5 3.961487+5 3.801894-5 3.208236+5 4.150000-5 2.531424+5 4.466836-5 2.059691+5 4.841724-5 1.631287+5 5.248075-5 1.281529+5 5.688529-5 1.000197+5 6.309573-5 7.211400+4 7.000000-5 5.153360+4 7.673615-5 3.801075+4 8.300000-5 2.912524+4 8.912509-5 2.273725+4 9.660509-5 1.704120+4 1.035142-4 1.321948+4 1.122018-4 9.765539+3 1.310000-4 5.395000+3 1.428894-4 3.876361+3 1.500000-4 3.236532+3 1.566751-4 2.772071+3 1.621810-4 2.463621+3 1.678804-4 2.199847+3 1.737801-4 1.974260+3 1.798871-4 1.781370+3 1.862087-4 1.616540+3 1.929400-4 1.472218+3 2.000000-4 1.348520+3 2.065380-4 1.270059+3 2.137962-4 1.199199+3 2.213095-4 1.139954+3 2.290868-4 1.090460+3 2.371374-4 1.049193+3 2.454709-4 1.014895+3 2.540973-4 9.865145+2 2.660725-4 9.563625+2 2.786121-4 9.333899+2 2.951209-4 9.125130+2 3.162278-4 8.941478+2 3.467369-4 8.780305+2 4.000000-4 8.585280+2 4.415704-4 8.331397+2 4.786301-4 8.078176+2 5.128614-4 7.822406+2 5.559043-4 7.478356+2 6.025596-4 7.094997+2 6.531306-4 6.676636+2 7.079458-4 6.238382+2 7.673615-4 5.790961+2 8.317638-4 5.339517+2 9.015711-4 4.890420+2 9.772372-4 4.449555+2 1.071519-3 3.964815+2 1.174898-3 3.506533+2 1.288250-3 3.078699+2 1.412538-3 2.684085+2 1.548817-3 2.324287+2 1.698244-3 1.999647+2 1.883649-3 1.675418+2 2.089296-3 1.392779+2 2.317395-3 1.149068+2 2.570396-3 9.408809+1 2.851018-3 7.645052+1 3.162278-3 6.165292+1 3.507519-3 4.934069+1 3.890451-3 3.918768+1 4.315191-3 3.088922+1 4.786301-3 2.416809+1 5.308844-3 1.877150+1 5.888437-3 1.447511+1 6.531306-3 1.108280+1 7.244360-3 8.426613+0 8.035261-3 6.363732+0 9.015711-3 4.622157+0 1.011579-2 3.331212+0 1.135011-2 2.383525+0 1.273503-2 1.692777+0 1.412538-2 1.235812+0 1.584893-2 8.647348-1 1.778279-2 6.008551-1 2.018366-2 3.995494-1 2.290868-2 2.638082-1 2.630268-2 1.664310-1 3.019952-2 1.041922-1 3.507519-2 6.219932-2 4.073803-2 3.685330-2 4.841724-2 1.998496-2 5.821032-2 1.031932-2 7.328245-2 4.478213-3 1.396368-1 4.247614-4 1.678804-1 2.181064-4 2.000000-1 1.165900-4 2.344229-1 6.651485-5 2.691535-1 4.111545-5 3.054921-1 2.664263-5 3.427678-1 1.808104-5 3.845918-1 1.235929-5 4.315191-1 8.508899-6 4.731513-1 6.355206-6 5.069907-1 5.133177-6 5.559043-1 3.894094-6 6.382635-1 2.600257-6 7.079458-1 1.933828-6 8.128305-1 1.317704-6 8.709636-1 1.089468-6 9.225714-1 9.366295-7 9.660509-1 8.352197-7 1.011579+0 7.499290-7 1.071519+0 6.612266-7 1.135011+0 5.874349-7 1.202264+0 5.251940-7 1.303167+0 4.526854-7 1.531087+0 3.416578-7 1.840772+0 2.467609-7 2.065380+0 2.027409-7 2.371374+0 1.614894-7 2.722701+0 1.295981-7 3.162278+0 1.029189-7 3.672823+0 8.235551-8 4.265795+0 6.638217-8 5.011872+0 5.302520-8 5.956621+0 4.200809-8 7.161434+0 3.303605-8 8.609938+0 2.617409-8 1.059254+1 2.030810-8 1.318257+1 1.565456-8 1.737801+1 1.138308-8 2.344229+1 8.146175-9 3.198895+1 5.806330-9 4.570882+1 3.969028-9 6.918310+1 2.573178-9 1.216186+2 1.440319-9 2.398833+2 7.22600-10 4.786301+2 3.60079-10 1.905461+3 9.00980-11 1.000000+5 1.71390-12 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.740000-6 4.740000-6 1.000000+5 4.740000-6 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.740000-6 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 6.277742+6 4.216965-6 6.380484+6 4.415704-6 6.557310+6 4.623810-6 6.697708+6 4.900000-6 6.825180+6 5.248075-6 6.912165+6 5.600000-6 6.942480+6 6.025596-6 6.920770+6 6.500000-6 6.847080+6 7.000000-6 6.727080+6 7.585776-6 6.548344+6 8.200000-6 6.330660+6 8.810489-6 6.091926+6 9.440609-6 5.827668+6 1.000000-5 5.583474+6 1.059254-5 5.316481+6 1.122018-5 5.029037+6 1.188502-5 4.724927+6 1.258925-5 4.407329+6 1.333521-5 4.079691+6 1.412538-5 3.746346+6 1.500000-5 3.400104+6 1.584893-5 3.089308+6 1.678804-5 2.774677+6 1.778279-5 2.475905+6 1.905461-5 2.143512+6 2.041738-5 1.841720+6 2.213095-5 1.531672+6 2.426610-5 1.230817+6 2.691535-5 9.552117+5 3.019952-5 7.148175+5 3.311311-5 5.633140+5 3.650000-5 4.347774+5 3.981072-5 3.422986+5 4.265795-5 2.813166+5 4.650000-5 2.183562+5 5.011872-5 1.738612+5 5.432503-5 1.351572+5 6.000000-5 9.819120+4 6.683439-5 6.878084+4 7.413102-5 4.846980+4 8.128305-5 3.524581+4 8.810489-5 2.648720+4 9.500000-5 2.015514+4 1.035142-4 1.466526+4 1.258925-4 7.023830+3 1.333521-4 5.682449+3 1.402400-4 4.748866+3 1.462177-4 4.116332+3 1.500000-4 3.783582+3 1.548817-4 3.433575+3 1.611900-4 3.063063+3 1.678804-4 2.748238+3 1.737801-4 2.522255+3 1.798871-4 2.328436+3 1.862087-4 2.162250+3 1.927525-4 2.019941+3 2.000000-4 1.890750+3 2.074600-4 1.801555+3 2.137962-4 1.740530+3 2.213095-4 1.681976+3 2.290868-4 1.633874+3 2.398833-4 1.583204+3 2.511886-4 1.544980+3 2.691535-4 1.503611+3 2.951209-4 1.459802+3 3.758374-4 1.371890+3 4.101300-4 1.333519+3 4.466836-4 1.280818+3 4.841724-4 1.225213+3 5.248075-4 1.163732+3 5.688529-4 1.097366+3 6.165950-4 1.027396+3 6.683439-4 9.549300+2 7.244360-4 8.815749+2 7.852356-4 8.085876+2 8.511380-4 7.370977+2 9.332543-4 6.582153+2 1.023293-3 5.833439+2 1.122018-3 5.132606+2 1.230269-3 4.483704+2 1.348963-3 3.889666+2 1.479108-3 3.351185+2 1.621810-3 2.866838+2 1.778279-3 2.436173+2 1.972423-3 2.013447+2 2.187762-3 1.653706+2 2.426610-3 1.348786+2 2.691535-3 1.092090+2 2.985383-3 8.776901+1 3.311311-3 6.999032+1 3.672823-3 5.539306+1 4.073803-3 4.351003+1 4.518559-3 3.391649+1 5.011872-3 2.624221+1 5.568000-3 2.007203+1 6.165950-3 1.536717+1 6.839116-3 1.163320+1 7.585776-3 8.745379+0 8.413951-3 6.529563+0 9.332543-3 4.842866+0 1.047129-2 3.449049+0 1.174898-2 2.438005+0 1.318257-2 1.710118+0 1.462177-2 1.234072+0 1.640590-2 8.525262-1 1.840772-2 5.847457-1 2.089296-2 3.833007-1 2.371374-2 2.494307-1 2.691535-2 1.611467-1 3.054921-2 1.033966-1 3.507519-2 6.324546-2 4.073803-2 3.684516-2 4.786301-2 2.042253-2 5.754399-2 1.031861-2 6.998420-2 4.953499-3 1.244515-1 5.632264-4 1.513561-1 2.706784-4 1.778279-1 1.490220-4 2.065380-1 8.626866-5 2.344229-1 5.469637-5 2.630268-1 3.639078-5 2.951209-1 2.439265-5 3.273407-1 1.714200-5 3.630781-1 1.213675-5 4.000000-1 8.853200-6 4.365158-1 6.700597-6 4.731513-1 5.214557-6 5.069907-1 4.229262-6 5.495409-1 3.336714-6 6.025596-1 2.563934-6 6.606935-1 1.981231-6 7.244360-1 1.542191-6 7.852356-1 1.246722-6 8.609938-1 9.815008-7 9.120108-1 8.503797-7 9.660509-1 7.418956-7 1.011579+0 6.691300-7 1.071519+0 5.920902-7 1.148154+0 5.151431-7 1.244515+0 4.416306-7 1.364583+0 3.732500-7 1.798871+0 2.288817-7 2.018366+0 1.878531-7 2.317395+0 1.494471-7 2.660725+0 1.197849-7 3.090295+0 9.500641-8 3.589219+0 7.593697-8 4.168694+0 6.114212-8 4.897788+0 4.878769-8 5.821032+0 3.861135-8 6.998420+0 3.033482-8 8.413951+0 2.401085-8 1.035142+1 1.861374-8 1.288250+1 1.433728-8 1.659587+1 1.069342-8 2.213095+1 7.738120-9 3.054921+1 5.439544-9 4.315191+1 3.760048-9 6.456542+1 2.464312-9 1.083927+2 1.444515-9 1.905461+2 8.13240-10 3.801894+2 4.04738-10 1.513561+3 1.01115-10 1.000000+5 1.52780-12 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 4.130000-6 1.000000+5 4.130000-6 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 4.130000-6 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 9.569020+6 6.165950-6 7.733177+6 7.079458-6 4.876115+6 8.500000-6 2.667600+6 1.000000-5 1.571114+6 1.188502-5 9.019724+5 1.364583-5 5.827836+5 1.531087-5 4.074921+5 1.717908-5 2.871718+5 1.900000-5 2.130880+5 2.070000-5 1.665036+5 2.238721-5 1.338584+5 2.400000-5 1.110262+5 2.580000-5 9.209220+4 2.754229-5 7.833055+4 2.951209-5 6.650913+4 3.150000-5 5.740760+4 3.350000-5 5.029860+4 3.589219-5 4.371042+4 3.845918-5 3.826279+4 4.150000-5 3.330000+4 4.500000-5 2.894640+4 4.841724-5 2.567189+4 5.328000-5 2.212027+4 5.888437-5 1.906856+4 6.531306-5 1.646442+4 7.585776-5 1.344677+4 8.709636-5 1.123219+4 1.023293-4 9.164557+3 1.174898-4 7.761268+3 1.318257-4 6.802731+3 1.659587-4 5.260368+3 1.862087-4 4.588669+3 2.113489-4 3.917594+3 2.483133-4 3.175108+3 3.054921-4 2.410361+3 3.801894-4 1.812079+3 4.168694-4 1.600057+3 6.237348-4 9.126992+2 7.244360-4 7.365234+2 9.772372-4 4.735076+2 1.174898-3 3.581264+2 1.445440-3 2.594658+2 1.840772-3 1.768442+2 2.398833-3 1.152670+2 2.917427-3 8.354052+1 3.311311-3 6.721929+1 5.188000-3 3.133938+1 6.095369-3 2.371382+1 7.498942-3 1.637026+1 9.120108-3 1.145070+1 1.109175-2 7.949971+0 1.348963-2 5.477388+0 1.640590-2 3.744553+0 1.995262-2 2.539735+0 2.398833-2 1.749365+0 2.884032-2 1.196149+0 3.467369-2 8.107824-1 4.168694-2 5.453222-1 5.011872-2 3.639601-1 6.025596-2 2.409512-1 7.328245-2 1.542270-1 8.609938-2 1.061304-1 1.071519-1 6.337352-2 1.396368-1 3.365095-2 2.630268-1 7.266191-3 3.273407-1 4.307937-3 3.935501-1 2.794145-3 4.623810-1 1.927226-3 5.308844-1 1.411226-3 6.095369-1 1.040576-3 6.998420-1 7.729989-4 8.035261-1 5.786591-4 9.120108-1 4.468460-4 1.035142+0 3.475463-4 1.230269+0 2.482234-4 1.396368+0 1.953892-4 1.566751+0 1.582375-4 1.778279+0 1.264646-4 2.018366+0 1.018187-4 2.317395+0 8.099994-5 2.660725+0 6.492368-5 3.090295+0 5.149487-5 3.589219+0 4.115952-5 4.168694+0 3.314069-5 4.897788+0 2.644425-5 5.821032+0 2.092820-5 6.918310+0 1.668778-5 8.317638+0 1.320300-5 1.023293+1 1.023080-5 1.273503+1 7.877211-6 1.621810+1 5.950678-6 2.041738+1 4.589329-6 2.600160+1 3.513064-6 3.548134+1 2.510018-6 5.128614+1 1.698875-6 8.035261+1 1.064957-6 1.479108+2 5.699377-7 2.951209+2 2.831684-7 5.888437+2 1.412769-7 2.344229+3 3.537385-8 1.000000+5 8.28070-10 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 5.780000-6 1.000000+5 5.780000-6 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 0.0 1.000000+5 1.000000+5 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.179280-7 1.025500+0 1.153060-6 1.025800+0 1.474070-6 1.026100+0 1.849410-6 1.026600+0 2.607240-6 1.027100+0 3.547200-6 1.027500+0 4.442830-6 1.028100+0 6.048830-6 1.028750+0 8.179280-6 1.029500+0 1.119360-5 1.030100+0 1.407730-5 1.031000+0 1.926250-5 1.032000+0 2.635590-5 1.033200+0 3.692020-5 1.034000+0 4.532290-5 1.035300+0 6.151940-5 1.036640+0 8.179280-5 1.038200+0 1.103820-4 1.039700+0 1.434080-4 1.041500+0 1.908030-4 1.043800+0 2.648410-4 1.046400+0 3.684770-4 1.048300+0 4.587640-4 1.051200+0 6.223030-4 1.054080+0 8.179280-4 1.057700+0 1.114890-3 1.061100+0 1.450180-3 1.065100+0 1.919880-3 1.070400+0 2.678420-3 1.076200+0 3.701570-3 1.080600+0 4.622650-3 1.087100+0 6.228250-3 1.093710+0 8.179280-3 1.102600+0 1.134060-2 1.110700+0 1.479070-2 1.120600+0 1.978600-2 1.133300+0 2.751210-2 1.147500+0 3.798690-2 1.158200+0 4.720830-2 1.174100+0 6.309310-2 1.190110+0 8.179280-2 1.205100+0 1.017980-1 1.227500+0 1.362290-1 1.250000+0 1.761000-1 1.265600+0 2.066780-1 1.294900+0 2.701630-1 1.331800+0 3.603310-1 1.362600+0 4.430720-1 1.397000+0 5.422700-1 1.433800+0 6.547950-1 1.477900+0 7.961890-1 1.500000+0 8.691000-1 1.562500+0 1.079880+0 1.641100+0 1.349570+0 1.706900+0 1.575070+0 1.811600+0 1.928460+0 1.937200+0 2.342090+0 2.000000+0 2.546000+0 2.044000+0 2.688000+0 2.163500+0 3.063410+0 2.372600+0 3.682000+0 2.686300+0 4.526520+0 3.000000+0 5.294000+0 3.500000+0 6.407830+0 4.000000+0 7.419000+0 5.000000+0 9.191000+0 6.000000+0 1.071000+1 7.000000+0 1.206000+1 8.000000+0 1.327000+1 9.000000+0 1.439000+1 1.000000+1 1.541000+1 1.100000+1 1.637000+1 1.200000+1 1.725000+1 1.300000+1 1.808000+1 1.400000+1 1.886000+1 1.500000+1 1.959000+1 1.600000+1 2.027000+1 1.800000+1 2.150000+1 2.000000+1 2.260000+1 2.200000+1 2.360000+1 2.400000+1 2.451000+1 2.600000+1 2.535000+1 2.800000+1 2.611000+1 3.000000+1 2.682000+1 4.000000+1 2.969000+1 5.000000+1 3.182000+1 6.000000+1 3.348000+1 8.000000+1 3.591000+1 1.000000+2 3.763000+1 1.500000+2 4.034000+1 2.000000+2 4.195000+1 3.000000+2 4.383000+1 4.000000+2 4.491000+1 5.000000+2 4.562000+1 6.000000+2 4.612000+1 8.000000+2 4.679000+1 1.000000+3 4.723000+1 1.500000+3 4.786000+1 2.000000+3 4.820000+1 3.000000+3 4.857000+1 4.000000+3 4.878000+1 5.000000+3 4.890000+1 6.000000+3 4.899000+1 8.000000+3 4.911000+1 1.000000+4 4.918000+1 1.500000+4 4.928000+1 2.000000+4 4.933000+1 3.000000+4 4.939000+1 4.000000+4 4.942000+1 5.000000+4 4.944000+1 6.000000+4 4.945000+1 8.000000+4 4.947000+1 1.000000+5 4.948000+1 1 92000 7 8 2.380510+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.203580-7 2.090400+0 1.249620-6 2.094700+0 1.620320-6 2.099900+0 2.155610-6 2.106600+0 2.998630-6 2.114000+0 4.148980-6 2.119500+0 5.165450-6 2.127900+0 7.005330-6 2.136250+0 9.203580-6 2.147000+0 1.261880-5 2.156900+0 1.639020-5 2.169000+0 2.187380-5 2.184500+0 3.040530-5 2.201800+0 4.206670-5 2.214800+0 5.241180-5 2.234200+0 7.050310-5 2.253680+0 9.203580-5 2.281500+0 1.289120-4 2.307000+0 1.693260-4 2.338200+0 2.276730-4 2.377400+0 3.152990-4 2.410200+0 4.010070-4 2.446800+0 5.101040-4 2.485900+0 6.422490-4 2.532900+0 8.219430-4 2.556430+0 9.203580-4 2.611900+0 1.173570-3 2.660400+0 1.418790-3 2.745300+0 1.898980-3 2.809000+0 2.299790-3 2.904500+0 2.962700-3 3.000000+0 3.698000-3 3.125000+0 4.768100-3 3.234400+0 5.801190-3 3.425800+0 7.810460-3 3.569300+0 9.469220-3 3.784700+0 1.216910-2 4.000000+0 1.507000-2 4.250000+0 1.861460-2 4.625000+0 2.418070-2 5.000000+0 2.996000-2 5.500000+0 3.788060-2 6.000000+0 4.590000-2 6.750000+0 5.783000-2 7.000000+0 6.175000-2 8.000000+0 7.705000-2 9.000000+0 9.166000-2 1.000000+1 1.055000-1 1.100000+1 1.186000-1 1.200000+1 1.308000-1 1.300000+1 1.424000-1 1.400000+1 1.533000-1 1.500000+1 1.637000-1 1.600000+1 1.735000-1 1.800000+1 1.916000-1 2.000000+1 2.081000-1 2.200000+1 2.230000-1 2.400000+1 2.367000-1 2.600000+1 2.493000-1 2.800000+1 2.610000-1 3.000000+1 2.718000-1 4.000000+1 3.162000-1 5.000000+1 3.495000-1 6.000000+1 3.757000-1 8.000000+1 4.148000-1 1.000000+2 4.429000-1 1.500000+2 4.889000-1 2.000000+2 5.175000-1 3.000000+2 5.520000-1 4.000000+2 5.726000-1 5.000000+2 5.867000-1 6.000000+2 5.969000-1 8.000000+2 6.110000-1 1.000000+3 6.204000-1 1.500000+3 6.344000-1 2.000000+3 6.423000-1 3.000000+3 6.509000-1 4.000000+3 6.561000-1 5.000000+3 6.592000-1 6.000000+3 6.614000-1 8.000000+3 6.643000-1 1.000000+4 6.662000-1 1.500000+4 6.686000-1 2.000000+4 6.701000-1 3.000000+4 6.715000-1 4.000000+4 6.724000-1 5.000000+4 6.730000-1 6.000000+4 6.733000-1 8.000000+4 6.737000-1 1.000000+5 6.740000-1 1 92000 7 8 2.380510+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 92000 7 9 2.380510+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.200000+1 1.000000+5 9.200000+1 5.000000+5 9.195900+1 7.500000+5 9.192100+1 9.375000+5 9.190010+1 1.000000+6 9.189400+1 1.250000+6 9.184700+1 1.500000+6 9.179700+1 1.875000+6 9.168590+1 2.000000+6 9.164300+1 2.375000+6 9.150020+1 2.500000+6 9.144800+1 2.875000+6 9.127770+1 3.000000+6 9.121600+1 3.250000+6 9.107850+1 3.625000+6 9.086710+1 4.000000+6 9.065400+1 4.437500+6 9.037950+1 4.812500+6 9.012610+1 5.000000+6 9.000300+1 5.500000+6 8.963180+1 5.875000+6 8.933810+1 6.437500+6 8.888200+1 6.500000+6 8.882800+1 7.000000+6 8.841500+1 7.875000+6 8.767130+1 9.000000+6 8.669000+1 1.000000+7 8.578800+1 1.250000+7 8.354900+1 1.500000+7 8.126400+1 1.750000+7 7.897800+1 2.000000+7 7.670600+1 2.375000+7 7.331550+1 2.500000+7 7.222100+1 2.875000+7 6.905310+1 3.000000+7 6.805000+1 3.437500+7 6.472550+1 3.500000+7 6.427940+1 3.812500+7 6.210670+1 4.000000+7 6.086400+1 4.500000+7 5.774230+1 4.750000+7 5.626480+1 5.000000+7 5.484200+1 5.500000+7 5.212010+1 6.000000+7 4.956800+1 6.750000+7 4.604870+1 7.000000+7 4.496100+1 8.000000+7 4.100200+1 9.000000+7 3.760900+1 1.000000+8 3.465500+1 1.109400+8 3.178810+1 1.125000+8 3.140220+1 1.203100+8 2.954900+1 1.250000+8 2.848800+1 1.359400+8 2.614530+1 1.437500+8 2.459790+1 1.453100+8 2.429900+1 1.500000+8 2.343300+1 1.718800+8 1.990350+1 1.875000+8 1.792210+1 1.906300+8 1.757670+1 2.000000+8 1.663300+1 2.171900+8 1.522330+1 2.289100+8 1.445130+1 2.375000+8 1.396660+1 2.429700+8 1.368660+1 2.500000+8 1.335900+1 2.812500+8 1.213490+1 2.875000+8 1.189550+1 2.937500+8 1.164740+1 3.000000+8 1.139200+1 3.375000+8 9.845840+0 3.500000+8 9.426500+0 3.812500+8 8.603490+0 3.937500+8 8.279750+0 4.000000+8 8.107400+0 4.125000+8 7.738020+0 4.234400+8 7.403470+0 4.425800+8 6.827530+0 4.750000+8 5.975850+0 4.784700+8 5.896950+0 4.928200+8 5.600400+0 5.000000+8 5.469200+0 5.179700+8 5.190100+0 5.330100+8 4.997230+0 5.569300+8 4.743650+0 6.000000+8 4.378100+0 7.000000+8 3.715100+0 7.500000+8 3.461370+0 7.750000+8 3.335210+0 8.000000+8 3.201600+0 8.250000+8 3.059020+0 8.468800+8 2.931310+0 9.500000+8 2.381220+0 1.000000+9 2.174600+0 1.045900+9 2.023850+0 1.088000+9 1.911110+0 1.139500+9 1.798390+0 1.204300+9 1.685670+0 1.250000+9 1.620500+0 1.258500+9 1.609350+0 1.344800+9 1.511770+0 1.461200+9 1.409880+0 1.500000+9 1.381000+0 1.812500+9 1.192160+0 1.937500+9 1.126240+0 2.000000+9 1.094000+0 2.139200+9 1.022940+0 2.272600+9 9.571710-1 2.443000+9 8.775540-1 2.602800+9 8.079860-1 2.750000+9 7.485950-1 2.752700+9 7.475410-1 2.959000+9 6.717810-1 3.148200+9 6.095000-1 3.379700+9 5.418990-1 3.670900+9 4.688380-1 3.914500+9 4.165610-1 4.185900+9 3.664030-1 4.476700+9 3.206420-1 4.825600+9 2.746910-1 5.000000+9 2.548300-1 5.375000+9 2.178730-1 5.703100+9 1.909780-1 6.277300+9 1.533920-1 7.031000+9 1.174240-1 8.000000+9 8.587900-2 9.500000+9 5.606230-2 1.00000+10 4.930700-2 1.27030+10 2.700330-2 1.84370+10 1.050200-2 2.45630+10 5.051360-3 1.00000+11 1.380000-4 1.68570+11 3.648030-5 3.34410+11 6.448560-6 8.62510+11 5.986880-7 2.83020+12 3.117230-8 1.00000+14 4.75430-12 3.16230+15 9.18236-16 1.00000+17 1.69900-19 1 92000 7 0 2.380510+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.32000-11 1.000000+2 1.320000-9 1.000000+3 1.320000-7 1.000000+4 1.320000-5 1.000000+5 1.320000-3 5.000000+5 3.300000-2 7.500000+5 7.425000-2 9.375000+5 1.160156-1 1.000000+6 1.320000-1 1.250000+6 2.043210-1 1.500000+6 2.910000-1 1.875000+6 4.467920-1 2.000000+6 5.051000-1 2.375000+6 6.967580-1 2.500000+6 7.659000-1 2.875000+6 9.866290-1 3.000000+6 1.064300+0 3.250000+6 1.224630+0 3.625000+6 1.475990+0 4.000000+6 1.737100+0 4.437500+6 2.049530+0 4.812500+6 2.320860+0 5.000000+6 2.457000+0 5.500000+6 2.818430+0 5.875000+6 3.087310+0 6.437500+6 3.485270+0 6.500000+6 3.528810+0 7.000000+6 3.875200+0 7.875000+6 4.464770+0 9.000000+6 5.202900+0 1.000000+7 5.851000+0 1.250000+7 7.481900+0 1.500000+7 9.136000+0 1.750000+7 1.077100+1 2.000000+7 1.235900+1 2.375000+7 1.464710+1 2.500000+7 1.538700+1 2.875000+7 1.753390+1 3.000000+7 1.822200+1 3.437500+7 2.049860+1 3.500000+7 2.080900+1 3.812500+7 2.230200+1 4.000000+7 2.315700+1 4.500000+7 2.530030+1 4.750000+7 2.632000+1 5.000000+7 2.732100+1 5.500000+7 2.927370+1 6.000000+7 3.117800+1 6.750000+7 3.394600+1 7.000000+7 3.484200+1 8.000000+7 3.827000+1 9.000000+7 4.141800+1 1.000000+8 4.425400+1 1.109400+8 4.698790+1 1.125000+8 4.734870+1 1.203100+8 4.906720+1 1.250000+8 5.003600+1 1.359400+8 5.211750+1 1.437500+8 5.349370+1 1.453100+8 5.376190+1 1.500000+8 5.455100+1 1.718800+8 5.797660+1 1.875000+8 6.021060+1 1.906300+8 6.063800+1 2.000000+8 6.189400+1 2.171900+8 6.406320+1 2.289100+8 6.544710+1 2.375000+8 6.642050+1 2.429700+8 6.701520+1 2.500000+8 6.776100+1 2.812500+8 7.074050+1 2.875000+8 7.128230+1 2.937500+8 7.180120+1 3.000000+8 7.230600+1 3.375000+8 7.495260+1 3.500000+8 7.571700+1 3.812500+8 7.739550+1 3.937500+8 7.799430+1 4.000000+8 7.828200+1 4.125000+8 7.882300+1 4.234400+8 7.926230+1 4.425800+8 7.999280+1 4.750000+8 8.109320+1 4.784700+8 8.120020+1 4.928200+8 8.163320+1 5.000000+8 8.184600+1 5.179700+8 8.234210+1 5.330100+8 8.273450+1 5.569300+8 8.332360+1 6.000000+8 8.428000+1 7.000000+8 8.608100+1 7.500000+8 8.680210+1 7.750000+8 8.711550+1 8.000000+8 8.742000+1 8.250000+8 8.768630+1 8.468800+8 8.791350+1 9.500000+8 8.877040+1 1.000000+9 8.909700+1 1.045900+9 8.934800+1 1.088000+9 8.955350+1 1.139500+9 8.976890+1 1.204300+9 9.000540+1 1.250000+9 9.014220+1 1.258500+9 9.016610+1 1.344800+9 9.039790+1 1.461200+9 9.064190+1 1.500000+9 9.071900+1 1.812500+9 9.117720+1 1.937500+9 9.131390+1 2.000000+9 9.137900+1 2.139200+9 9.149060+1 2.272600+9 9.157610+1 2.443000+9 9.166810+1 2.602800+9 9.173960+1 2.750000+9 9.178930+1 2.752700+9 9.179020+1 2.959000+9 9.184290+1 3.148200+9 9.187880+1 3.379700+9 9.191980+1 3.670900+9 9.194210+1 3.914500+9 9.195900+1 4.185900+9 9.197660+1 4.476700+9 9.198260+1 4.825600+9 9.198900+1 5.000000+9 9.199200+1 5.375000+9 9.199320+1 5.703100+9 9.199420+1 6.277300+9 9.199590+1 7.031000+9 9.199780+1 8.000000+9 9.200000+1 9.500000+9 9.200000+1 1.00000+10 9.200000+1 1.27030+10 9.200000+1 1.84370+10 9.200000+1 2.45630+10 9.200000+1 1.00000+11 9.200000+1 1.68570+11 9.200000+1 3.34410+11 9.200000+1 8.62510+11 9.200000+1 2.83020+12 9.200000+1 1.00000+14 9.200000+1 3.16230+15 9.200000+1 1.00000+17 9.200000+1 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.110464-5 1.006317-6 5.157277-6 1.008705-6 3.329359-6 1.011094-6 1.984059-6 1.013483-6 1.091447-6 1.015872-6 5.542491-7 1.018260-6 0.0 1.038235-6 0.0 1.040791-6 3.431723-8 1.043346-6 6.790434-8 1.045902-6 1.240328-7 1.048457-6 2.091364-7 1.051013-6 3.255191-7 1.053568-6 4.677105-7 1.056124-6 6.203428-7 1.058679-6 7.595217-7 1.061235-6 8.584255-7 1.063790-6 8.956099-7 1.066345-6 8.625597-7 1.068901-6 7.668552-7 1.071456-6 6.293490-7 1.076567-6 3.334339-7 1.079123-6 2.152533-7 1.081678-6 1.282756-7 1.084234-6 7.056545-8 1.086789-6 3.583392-8 1.089345-6 0.0 1.394369-6 0.0 1.399517-6 2.699981-1 1.401233-6 3.588559-1 1.404666-6 6.554796-1 1.408098-6 1.105229+0 1.411959-6 1.814011+0 1.417911-6 3.164677+0 1.422255-6 4.079064+0 1.425573-6 4.554545+0 1.429054-6 4.714584+0 1.432678-6 4.476606+0 1.436064-6 3.944886+0 1.441679-6 2.693624+0 1.445850-6 1.762107+0 1.449497-6 1.108891+0 1.452714-6 6.779013-1 1.456147-6 3.729191-1 1.461080-6 1.066316-1 1.463011-6 0.0 1.543352-6 0.0 1.549050-6 1.604190-1 1.550950-6 2.132138-1 1.554749-6 3.894524-1 1.558547-6 6.566702-1 1.562821-6 1.077793+0 1.569410-6 1.880289+0 1.574217-6 2.423571+0 1.578120-6 2.713135+0 1.581743-6 2.801164+0 1.585679-6 2.665693+0 1.589552-6 2.338115+0 1.595385-6 1.642367+0 1.600334-6 1.046954+0 1.604370-6 6.588460-1 1.607931-6 4.027742-1 1.611849-6 2.181693-1 1.617191-6 6.335502-2 1.619328-6 0.0 1.642687-6 0.0 1.648752-6 3.798916-7 1.650774-6 5.049159-7 1.654817-6 9.222701-7 1.658860-6 1.555074-6 1.662904-6 2.420460-6 1.666947-6 3.477752-6 1.670990-6 4.612679-6 1.675033-6 5.647571-6 1.679077-6 6.382989-6 1.683120-6 6.659481-6 1.687163-6 6.413730-6 1.691207-6 5.702100-6 1.695250-6 4.679646-6 1.703336-6 2.479312-6 1.707380-6 1.600558-6 1.711423-6 9.538179-7 1.715466-6 5.247030-7 1.719509-6 2.664500-7 1.723553-6 0.0 1.998822-6 0.0 2.003741-6 2.050772-2 2.008661-6 4.057912-2 2.013581-6 7.412108-2 2.018501-6 1.249783-1 2.023421-6 1.945277-1 2.030801-6 3.250514-1 2.038180-6 4.538844-1 2.043100-6 5.129885-1 2.048020-6 5.352097-1 2.052940-6 5.154591-1 2.057860-6 4.582668-1 2.065239-6 3.305637-1 2.072619-6 1.992576-1 2.077539-6 1.286337-1 2.082459-6 7.665651-2 2.087379-6 4.216938-2 2.092299-6 2.141408-2 2.097218-6 0.0 2.103075-6 0.0 2.108252-6 2.404708-8 2.113428-6 4.758253-8 2.118605-6 8.691339-8 2.123781-6 1.465479-7 2.128958-6 2.281006-7 2.134134-6 3.277383-7 2.139311-6 4.346921-7 2.144487-6 5.322188-7 2.149664-6 6.015235-7 2.154840-6 6.275798-7 2.160016-6 6.044205-7 2.165193-6 5.373576-7 2.170369-6 4.410030-7 2.180722-6 2.336468-7 2.185899-6 1.508342-7 2.191075-6 8.988640-8 2.196252-6 4.944725-8 2.201428-6 2.510986-8 2.206605-6 0.0 2.581588-6 0.0 2.591119-6 3.212735+0 2.594296-6 4.270063+0 2.600650-6 7.799619+0 2.607005-6 1.315123+1 2.614153-6 2.158511+1 2.625285-6 3.782583+1 2.632819-6 4.814924+1 2.639359-6 5.419500+1 2.645566-6 5.617681+1 2.652513-6 5.326864+1 2.659023-6 4.654189+1 2.676901-6 2.096749+1 2.683255-6 1.353588+1 2.689610-6 8.066417+0 2.695964-6 4.437402+0 2.705151-6 1.249999+0 2.708672-6 3.390450-8 2.710617-6 4.345261-8 2.717256-6 8.809981-8 2.721338-6 1.257557-7 2.723895-6 1.756073-7 2.728036-6 2.678714-7 2.734224-6 4.222983-7 2.741432-6 6.667383-7 2.748131-6 9.557080-7 2.763730-6 1.733870-6 2.770369-6 2.004930-6 2.778198-6 2.191921-6 2.791875-6 3.389924-2 2.798713-6 6.191776-2 2.805551-6 1.044003-1 2.812389-6 1.624970-1 2.830148-6 3.477945-1 2.834148-6 3.881137-1 2.840812-6 4.314179-1 2.846580-6 4.470796-1 2.853418-6 4.305812-1 2.860256-6 3.828064-1 2.870514-6 2.761315-1 2.880771-6 1.664469-1 2.887609-6 1.074523-1 2.894447-6 6.403388-2 2.901285-6 3.522556-2 2.908289-6 1.745523-2 2.914962-6 0.0 3.037057-6 0.0 3.052007-6 8.592554+0 3.059483-6 1.569500+1 3.067323-6 2.718070+1 3.075733-6 4.432143+1 3.096045-6 9.397185+1 3.105496-6 1.093076+2 3.112734-6 1.127851+2 3.120343-6 1.074147+2 3.128476-6 9.303607+1 3.141165-6 6.180124+1 3.149561-6 4.144504+1 3.157037-6 2.668660+1 3.164137-6 1.623188+1 3.171613-6 8.929288+0 3.186016-6 3.533274-1 3.186563-6 2.353959-2 3.197850-6 8.335051-2 3.205682-6 1.522313-1 3.213515-6 2.566591-1 3.221347-6 3.994534-1 3.233096-6 6.673963-1 3.244845-6 9.318230-1 3.253899-6 1.060199+0 3.261297-6 1.101026+0 3.269325-6 1.056657+0 3.277927-6 9.281700-1 3.293945-6 6.059177-1 3.299673-6 5.021760-1 3.307505-6 3.928024-1 3.315356-6 3.241108-1 3.323457-6 2.899369-1 3.333990-6 2.740279-1 3.338835-6 2.577542-1 3.344277-6 2.674158-1 3.352330-6 2.707579-1 3.360383-6 2.621400-1 3.368436-6 2.428230-1 3.376489-6 2.148408-1 3.400649-6 1.143765-1 3.408702-6 8.570982-2 3.414081-6 6.900471-2 3.420663-6 5.846131-2 3.428764-6 5.267723-2 3.436864-6 5.328311-2 3.449258-6 5.984922-2 3.453065-6 6.026488-2 3.457584-6 6.428937-2 3.465910-6 6.707413-2 3.474236-6 6.459891-2 3.481029-6 5.876848-2 3.498606-6 9.203183-2 3.507176-6 1.260969-1 3.515866-6 1.860281-1 3.524314-6 2.704248-1 3.545401-6 5.433028-1 3.549574-6 5.986926-1 3.558591-6 6.811277-1 3.567160-6 7.126360-1 3.575729-6 6.918427-1 3.584298-6 6.252930-1 3.610006-6 3.222055-1 3.618575-6 2.384411-1 3.627144-6 1.738804-1 3.635714-6 1.262827-1 3.641870-6 1.009863-1 3.648567-6 2.615148-1 3.652852-6 3.658912-1 3.659798-6 5.522573-1 3.668762-6 9.616758-1 3.678858-6 1.700716+0 3.687685-6 2.580684+0 3.714239-6 5.786091+0 3.724592-6 6.560458+0 3.732712-6 6.750096+0 3.743199-6 6.330621+0 3.753020-6 5.435976+0 3.777352-6 2.536167+0 3.785294-6 1.772416+0 3.794258-6 1.165428+0 3.803222-6 7.860501-1 3.821150-6 4.032783-1 3.852149-6 6.796172-1 3.865749-6 7.673077-1 3.875265-6 8.003513-1 3.884780-6 8.051238-1 3.893278-6 7.848685-1 3.908394-6 7.038855-1 3.930157-6 5.513355-1 3.947156-6 4.697043-1 3.968786-6 4.115440-1 3.975394-6 4.000863-1 4.008076-6 3.799212-1 4.028278-6 7.352891-1 4.038185-6 1.030103+0 4.048958-6 1.536494+0 4.059880-6 2.237084+0 4.087221-6 4.293116+0 4.098826-6 4.843555+0 4.108699-6 4.967944+0 4.119492-6 4.698133+0 4.130667-6 4.082338+0 4.156229-6 2.276764+0 4.166693-6 1.705434+0 4.176276-6 1.323079+0 4.186040-6 1.058647+0 4.202242-6 7.444938-1 4.205199-6 6.810169-1 4.227600-6 5.825348-1 4.246832-6 4.935872-1 4.256889-6 4.666485-1 4.269138-6 4.485216-1 4.286854-6 4.483099-1 4.292135-6 4.591226-1 4.313264-6 6.371193-1 4.324389-6 7.796601-1 4.334929-6 9.605629-1 4.359042-6 1.507123+0 4.370360-6 1.776921+0 4.381156-6 1.968600+0 4.390213-6 2.069209+0 4.400910-6 2.082719+0 4.411608-6 1.986398+0 4.421314-6 1.839494+0 4.443586-6 2.176415+0 4.454387-6 2.631129+0 4.465724-6 3.532159+0 4.476307-6 4.771853+0 4.510542-6 9.816454+0 4.519819-6 1.074361+1 4.530850-6 1.109376+1 4.542770-6 1.052656+1 4.554975-6 9.106598+0 4.585078-6 4.424328+0 4.595839-6 3.081199+0 4.606400-6 2.107652+0 4.616935-6 1.462411+0 4.638570-6 6.689743-1 4.663074-6 7.391292-1 4.700023-6 9.166378-1 4.716243-6 9.741313-1 4.728030-6 9.862140-1 4.740000-6 9.705690-1 4.768532-6 8.587562-1 4.794808-6 7.510843-1 4.816885-6 7.060695-1 4.839929-6 6.860908-1 4.878619-6 6.964533-1 4.914643-6 7.512749-1 4.933742-6 8.132872-1 4.958030-6 1.173814+0 4.971692-6 1.481365+0 4.983835-6 1.850522+0 4.999891-6 2.474855+0 5.024680-6 3.528060+0 5.043036-6 4.072123+0 5.056698-6 4.134555+0 5.068842-6 3.941190+0 5.081745-6 3.503510+0 5.115899-6 1.971839+0 5.128043-6 1.538524+0 5.140186-6 1.222692+0 5.152330-6 1.014015+0 5.176618-6 7.700924-1 5.181631-6 7.739563-1 5.207139-6 9.149102-1 5.219893-6 1.028682+0 5.232646-6 1.193666+0 5.250482-6 1.513833+0 5.283360-6 2.154955+0 5.296416-6 2.330086+0 5.312358-6 2.362704+0 5.325112-6 2.276131+0 5.337866-6 2.115285+0 5.360186-6 1.748545+0 5.372940-6 1.586049+0 5.385942-6 1.497441+0 5.402311-6 1.503950+0 5.447204-6 1.757958+0 5.468722-6 1.804946+0 5.533340-6 1.703699+0 5.664422-6 1.674863+0 5.734160-6 1.644445+0 5.815327-6 1.717499+0 5.914650-6 1.651452+0 6.394532-6 1.619708+0 6.519830-6 1.749174+0 6.645128-6 1.604257+0 6.964720-6 1.586776+0 7.100857-6 1.630730+0 7.242993-6 1.579561+0 7.454710-6 1.660878+0 7.533124-6 1.661383+0 7.639673-6 1.597030+0 7.933422-6 1.580116+0 8.106210-6 1.620308+0 8.261250-6 1.601482+0 1.312928-5 1.639144+0 1.712923-5 1.657931+0 1.936300-5 1.751799+0 1.945832-5 3.884519+0 1.950598-5 5.645509+0 1.955364-5 8.314074+0 1.960130-5 1.196239+1 1.974428-5 2.556646+1 1.979194-5 2.866774+1 1.984556-5 2.970712+1 1.989322-5 2.843046+1 1.994305-5 2.507727+1 1.996743-5 2.287647+1 2.006572-5 3.172789+1 2.011487-5 4.286784+1 2.016709-5 6.465398+1 2.021662-5 9.484084+1 2.036368-5 2.085677+2 2.041771-5 2.352337+2 2.046465-5 2.426136+2 2.051256-5 2.323686+2 2.056603-5 2.022402+2 2.064944-5 1.356628+2 2.070464-5 9.188111+1 2.075378-5 5.997504+1 2.080293-5 3.649407+1 2.085208-5 2.091567+1 2.092835-5 6.210592+0 2.095037-5 1.870218+0 2.207046-5 1.982208+0 2.217911-5 2.319835+0 2.223343-5 2.595269+0 2.228776-5 3.010046+0 2.234208-5 3.574938+0 2.250505-5 5.676850+0 2.255938-5 6.157865+0 2.261691-5 6.333708+0 2.274660-5 5.778591+0 2.280163-5 5.408408+0 2.285762-5 5.219017+0 2.291360-5 5.387907+0 2.295159-5 5.766756+0 2.299579-5 6.446475+0 2.313754-5 9.446251+0 2.320753-5 1.051408+1 2.324951-5 1.088650+1 2.331450-5 1.077815+1 2.342191-5 9.447563+0 2.350665-5 8.201590+0 2.358543-5 7.486977+0 2.365665-5 7.351544+0 2.391621-5 7.978785+0 2.412103-5 7.878806+0 2.451677-5 7.623214+0 2.871062-5 6.791987+0 2.885196-5 1.662057+1 2.892704-5 2.551841+1 2.899771-5 3.813048+1 2.907280-5 5.651220+1 2.927596-5 1.168317+2 2.935807-5 1.320307+2 2.942724-5 1.358719+2 2.949445-5 1.304771+2 2.956940-5 1.147117+2 2.977064-5 5.502170+1 2.984131-5 3.788365+1 2.991197-5 2.526881+1 2.998264-5 1.689667+1 3.012398-5 6.656356+0 3.141818-5 6.579268+0 3.172751-5 6.842103+0 3.207010-5 7.707723+0 3.233501-5 8.435292+0 3.274361-5 1.037019+1 3.289495-5 1.053737+1 3.320394-5 9.811278+0 3.346707-5 9.733495+0 3.421590-5 9.949078+0 3.496658-5 9.685978+0 4.349249-5 9.092138+0 4.852873-5 8.952947+0 4.972980-5 9.538861+0 5.067024-5 9.021863+0 5.339764-5 8.966365+0 6.622645-5 7.865017+0 9.278316-5 4.796719+0 9.323991-5 6.110579+0 9.346828-5 7.213452+0 9.372516-5 9.186939+0 9.375367-5 9.475342+0 9.421520-5 4.195798+1 9.444596-5 6.734934+1 9.467672-5 1.038677+2 9.494600-5 1.613932+2 9.561420-5 3.242752+2 9.585500-5 3.597795+2 9.609536-5 3.679638+2 9.631652-5 3.501041+2 9.655689-5 3.053921+2 9.721511-5 1.377684+2 9.744588-5 9.016716+1 9.767664-5 5.544251+1 9.790740-5 3.239443+1 9.833183-5 6.500359+0 9.836893-5 4.193819+0 9.895746-5 4.175165+0 9.951890-5 4.297442+0 1.000537-4 4.655451+0 1.010257-4 5.580586+0 1.010430-4 5.587973+0 1.015480-4 2.522446+1 1.017973-4 4.121834+1 1.020691-4 6.837534+1 1.023400-4 1.054161+2 1.030631-4 2.217263+2 1.033535-4 2.490849+2 1.035929-4 2.543342+2 1.038388-4 2.410118+2 1.041068-4 2.085264+2 1.047988-4 9.619044+1 1.050387-4 6.486785+1 1.052810-4 4.151856+1 1.055211-4 2.603217+1 1.060170-4 6.514499+0 1.072502-4 7.264351+0 1.081077-4 8.211628+0 1.089751-4 9.347426+0 1.095638-4 9.676359+0 1.110169-4 9.650831+0 1.162252-4 1.156055+1 1.193500-4 1.211307+1 1.226653-4 1.201458+1 1.284595-4 1.081307+1 1.398757-4 8.171552+0 1.492610-4 6.437531+0 1.584893-4 5.098059+0 1.673069-4 4.123108+0 1.768667-4 3.342963+0 1.865000-4 2.770149+0 1.931250-4 2.486658+0 1.976621-4 2.379848+0 1.991274-4 2.488386+0 2.021186-4 3.092546+0 2.030770-4 3.177618+0 2.235501-4 2.742887+0 2.371374-4 2.580491+0 2.488255-4 2.527452+0 2.507379-4 2.648971+0 2.519457-4 2.825544+0 2.544892-4 3.324840+0 2.557212-4 3.374522+0 2.594531-4 3.071750+0 2.658321-4 3.008249+0 2.951209-4 2.971285+0 3.129794-4 3.028851+0 3.200560-4 3.317116+0 3.331547-4 3.309007+0 3.769983-4 3.497109+0 3.798100-4 3.654441+0 3.817718-4 3.916376+0 3.854253-4 4.546547+0 3.873605-4 4.607788+0 3.913592-4 4.406234+0 3.928422-4 4.491458+0 3.972099-4 4.957077+0 3.991938-4 4.898236+0 4.037297-4 4.544960+0 4.065912-4 4.514440+0 4.168694-4 4.840346+0 4.240000-4 5.327091+0 4.307000-4 6.116660+0 4.377561-4 7.354852+0 4.450000-4 9.039846+0 4.570994-4 1.258367+1 4.900000-4 2.344299+1 5.100337-4 2.869248+1 5.331685-4 3.300105+1 5.638682-4 3.635371+1 6.050000-4 3.848212+1 6.851550-4 3.879609+1 7.095835-4 3.844566+1 7.148972-4 4.012596+1 7.184948-4 4.300330+1 7.233950-4 4.846197+1 7.271956-4 5.049861+1 7.307820-4 4.888934+1 7.375637-4 4.299683+1 7.444162-4 4.101468+1 7.551896-4 4.180028+1 7.605717-4 4.382908+1 7.677995-4 4.773603+1 7.715043-4 4.784374+1 7.831010-4 4.326230+1 7.967274-4 4.263155+1 1.008390-3 3.733777+1 1.031194-3 3.891469+1 1.250445-3 3.316873+1 1.419156-3 3.002020+1 1.819701-3 2.331413+1 2.144125-3 1.935207+1 2.544632-3 1.577765+1 2.996143-3 1.288263+1 3.461373-3 1.072014+1 3.478565-3 1.165481+1 3.486932-3 1.246334+1 3.495452-3 1.376512+1 3.503971-3 1.562597+1 3.523187-3 2.151442+1 3.538050-3 2.629892+1 3.546570-3 2.827156+1 3.555400-3 2.940400+1 3.563609-3 2.964557+1 3.586354-3 2.769380+1 3.613748-3 2.511560+1 3.632179-3 2.421416+1 3.665758-3 2.527879+1 3.684088-3 2.737099+1 3.719763-3 3.415689+1 3.737677-3 3.598440+1 3.756410-3 3.557558+1 3.800702-3 3.263837+1 3.854775-3 3.159528+1 4.216041-3 2.768667+1 4.262785-3 2.865358+1 4.313022-3 3.034474+1 4.392544-3 3.010485+1 5.055985-3 2.437631+1 5.156479-3 2.427628+1 5.251575-3 2.443048+1 5.485061-3 2.319493+1 5.647897-3 2.293918+1 6.475153-3 1.884588+1 7.503328-3 1.516528+1 8.619235-3 1.231072+1 9.694889-3 1.029509+1 1.105987-2 8.406572+0 1.270201-2 6.774280+0 1.425813-2 5.651819+0 1.628241-2 4.578212+0 1.677862-2 4.381372+0 1.690068-2 4.501910+0 1.697652-2 4.826547+0 1.704354-2 5.397049+0 1.714204-2 6.713411+0 1.725516-2 8.342108+0 1.735681-2 9.273728+0 1.748880-2 9.637782+0 2.050377-2 7.445842+0 2.073740-2 7.447101+0 2.089931-2 7.895169+0 2.115497-2 9.286666+0 2.133780-2 9.738026+0 2.164840-2 1.001079+1 2.195680-2 1.064939+1 2.245989-2 1.050560+1 2.614509-2 8.324501+0 2.962616-2 6.845719+0 3.359285-2 5.605646+0 3.815346-2 4.561052+0 4.398906-2 3.615643+0 4.976640-2 2.949499+0 5.632003-2 2.400111+0 6.371262-2 1.952285+0 7.214143-2 1.582118+0 8.166411-2 1.282927+0 9.214886-2 1.044500+0 1.039626-1 8.507056-1 1.134264-1 7.391940-1 1.140538-1 7.644613-1 1.144721-1 8.257324-1 1.147645-1 9.077697-1 1.151130-1 1.062721+0 1.154721-1 1.293646+0 1.161763-1 1.893277+0 1.167995-1 2.402827+0 1.173343-1 2.692231+0 1.180496-1 2.856252+0 1.196386-1 2.857809+0 1.380384-1 2.296792+0 1.573499-1 1.871580+0 1.788375-1 1.531786+0 2.008790-1 1.276487+0 2.270980-1 1.054387+0 2.568547-1 8.709415-1 2.895208-1 7.258266-1 3.265632-1 6.063167-1 3.682633-1 5.088107-1 4.168694-1 4.268545-1 4.775980-1 3.549798-1 5.401322-1 3.023416-1 6.130558-1 2.581515-1 6.964593-1 2.219887-1 8.047831-1 1.886003-1 9.369818-1 1.604361-1 1.173413+0 1.255602-1 1.347258+0 1.072160-1 1.561145+0 9.063175-2 1.859734+0 7.416688-2 2.135261+0 6.333115-2 2.451607+0 5.407851-2 2.814822+0 4.617768-2 3.231848+0 3.943116-2 3.710658+0 3.367029-2 4.260405+0 2.875109-2 4.899541+0 2.450720-2 5.616308+0 2.096375-2 6.448384+0 1.790096-2 7.403736+0 1.528565-2 8.500626+0 1.305242-2 9.760024+0 1.114547-2 1.000000+1 2.327378-2 1 92000 7 0 2.380510+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.159160+1 1.393127-6-8.968875+1 1.420378-6-8.891765+1 1.433740-6-9.156463+1 1.452564-6-9.059472+1 1.491402-6-9.163408+1 1.574217-6-9.031444+1 1.590603-6-9.150157+1 2.272611-6-8.818800+1 2.484892-6-8.348928+1 2.552124-6-7.790944+1 2.577404-6-7.197683+1 2.609189-6-5.583329+1 2.616586-6-5.460824+1 2.622940-6-5.645755+1 2.629741-6-6.227257+1 2.638776-6-7.602365+1 2.645566-6-8.917489+1 2.652158-6-8.267533+1 2.660817-6-6.964309+1 2.669011-6-6.352648+1 2.676173-6-6.207971+1 2.686830-6-6.578688+1 2.717256-6-8.114062+1 2.752030-6-8.773877+1 2.806406-6-9.182573+1 2.936454-6-8.322610+1 2.990684-6-7.584117+1 3.018846-6-6.811233+1 3.033197-6-6.070429+1 3.044894-6-5.039494+1 3.052007-6-4.449175+1 3.060891-6-3.591636+1 3.069893-6-2.910741+1 3.075733-6-2.694879+1 3.078595-6-2.704358+1 3.083210-6-2.884977+1 3.086072-6-3.118877+1 3.089751-6-3.588650+1 3.094862-6-4.491865+1 3.102075-6-6.322990+1 3.111376-6-9.182076+1 3.121191-6-5.922578+1 3.128476-6-4.021480+1 3.132596-6-3.238316+1 3.135543-6-2.777258+1 3.138405-6-2.447784+1 3.141165-6-2.232189+1 3.145356-6-2.076170+1 3.148510-6-2.062089+1 3.155168-6-2.329015+1 3.163361-6-2.984170+1 3.175680-6-4.142195+1 3.186016-6-4.986772+1 3.190002-6-5.396116+1 3.202745-6-6.103860+1 3.225264-6-6.804826+1 3.261297-6-7.339952+1 3.368436-6-8.054982+1 3.575729-6-8.603427+1 3.705377-6-9.004982+1 3.765127-6-8.337809+1 3.893278-6-8.698447+1 4.083110-6-9.023573+1 4.152617-6-8.590786+1 4.399573-6-9.050890+1 4.467418-6-9.219110+1 4.509686-6-9.183496+1 4.562241-6-8.266368+1 4.600781-6-8.261867+1 4.692858-6-8.671144+1 5.024680-6-8.982414+1 5.115899-6-8.667497+1 5.293844-6-8.889027+1 1.351725-5-9.123798+1 1.688813-5-8.569015+1 1.819148-5-7.910117+1 1.882778-5-7.163026+1 1.915282-5-6.425872+1 1.932975-5-5.727891+1 1.950598-5-4.536403+1 1.961397-5-3.769458+1 1.967279-5-3.522628+1 1.974428-5-3.482658+1 1.985598-5-3.696790+1 1.990364-5-3.587528+1 1.994305-5-3.211912+1 1.996286-5-2.821837+1 1.997645-5-2.398684+1 2.002667-5-1.327339+1 2.004619-5-8.811711+0 2.005596-5-6.253446+0 2.006084-5-4.809663+0 2.007187-5-8.824989-1 2.010412-5 8.521491+0 2.010949-5 1.028079+1 2.011794-5 1.377016+1 2.017285-5 3.008002+1 2.018293-5 3.222398+1 2.022311-5 3.853998+1 2.024299-5 3.852451+1 2.026854-5 3.553281+1 2.029011-5 3.059317+1 2.030664-5 2.515732+1 2.031338-5 2.251986+1 2.032519-5 1.727606+1 2.033404-5 1.276680+1 2.034068-5 9.014330+0 2.034566-5 5.958344+0 2.035313-5 8.884234-1 2.035687-5-1.952696+0 2.035874-5-3.502034+0 2.036368-5-8.108236+0 2.039247-5-3.166153+1 2.040489-5-4.327937+1 2.041771-5-5.769842+1 2.045299-5-9.294628+1 2.046991-5-7.275115+1 2.050622-5-3.599854+1 2.051256-5-2.838920+1 2.052302-5-1.826860+1 2.053156-5-1.078782+1 2.054438-5-1.829771-1 2.055079-5 5.066314+0 2.055399-5 7.769955+0 2.056027-5 1.355820+1 2.056603-5 1.805032+1 2.057988-5 2.732998+1 2.060634-5 4.196536+1 2.062324-5 4.940514+1 2.064944-5 5.691017+1 2.067708-5 6.043684+1 2.069773-5 6.081705+1 2.074150-5 5.518651+1 2.079756-5 4.058382+1 2.085896-5 2.105576+1 2.087072-5 1.772346+1 2.092835-5 3.261832+0 2.093936-5 8.891011-2 2.094487-5-1.713619+0 2.094762-5-2.729411+0 2.095405-5-5.582817+0 2.096095-5-7.868935+0 2.097302-5-1.117182+1 2.098207-5-1.332779+1 2.100923-5-1.881296+1 2.104140-5-2.408506+1 2.108642-5-3.006511+1 2.116361-5-3.793419+1 2.126653-5-4.560904+1 2.142090-5-5.372549+1 2.167819-5-6.262396+1 2.234208-5-7.682808+1 2.263083-5-7.805810+1 2.289526-5-8.057969+1 2.311440-5-8.296313+1 2.344309-5-7.887574+1 2.401748-5-8.180141+1 2.693712-5-9.019345+1 2.742892-5-9.218732+1 2.810496-5-8.400264+1 2.845006-5-7.527571+1 2.860351-5-6.819676+1 2.869938-5-6.060294+1 2.876231-5-5.334381+1 2.885196-5-4.455285+1 2.893533-5-3.485021+1 2.900599-5-2.788881+1 2.907280-5-2.436005+1 2.909985-5-2.433801+1 2.914346-5-2.615098+1 2.917921-5-2.974945+1 2.920530-5-3.385604+1 2.925361-5-4.394631+1 2.928038-5-5.182153+1 2.933615-5-6.964722+1 2.939355-5-9.199667+1 2.945061-5-6.833731+1 2.949018-5-5.270533+1 2.950950-5-4.541283+1 2.956940-5-2.600099+1 2.959437-5-1.973930+1 2.962240-5-1.419001+1 2.963578-5-1.196325+1 2.965585-5-9.070422+0 2.967592-5-6.667532+0 2.968776-5-5.477635+0 2.970848-5-3.837295+0 2.972402-5-2.971676+0 2.973567-5-2.539445+0 2.975316-5-2.288104+0 2.976190-5-2.388059+0 2.980597-5-4.352902+0 2.982364-5-5.345291+0 2.983247-5-6.016021+0 2.985014-5-7.989322+0 2.989651-5-1.220648+1 3.000693-5-2.493175+1 3.010631-5-3.431328+1 3.014592-5-3.948147+1 3.022665-5-4.572061+1 3.036909-5-5.250510+1 3.061394-5-5.946462+1 3.108746-5-6.671199+1 3.207010-5-7.454957+1 3.274361-5-7.611402+1 3.346707-5-7.598800+1 4.349249-5-7.856954+1 6.622645-5-8.117317+1 7.168941-5-8.331783+1 8.013362-5-7.552697+1 8.471245-5-6.742936+1 8.735810-5-5.926823+1 8.891490-5-5.182244+1 8.991140-5-4.515500+1 9.085395-5-3.647753+1 9.149603-5-2.842278+1 9.191528-5-2.169797+1 9.221361-5-1.588220+1 9.246279-5-1.012347+1 9.262298-5-5.841365+0 9.270307-5-3.474908+0 9.278316-5-8.702267-1 9.289735-5 3.063027+0 9.301318-5 7.263745+0 9.312572-5 1.171580+1 9.323991-5 1.679277+1 9.341119-5 2.556905+1 9.352538-5 3.255245+1 9.365384-5 4.189384+1 9.373942-5 5.023406+1 9.379604-5 5.733742+1 9.421520-5 9.240241+1 9.447481-5 1.163938+2 9.475605-5 1.357776+2 9.498210-5 1.401502+2 9.516085-5 1.315762+2 9.531532-5 1.160115+2 9.543576-5 9.810371+1 9.552365-5 8.056277+1 9.559026-5 6.395221+1 9.561420-5 5.666600+1 9.574941-5 2.018615+1 9.578490-5 9.718788+0 9.580772-5 2.434195+0 9.581913-5-1.505809+0 9.582483-5-3.618949+0 9.583414-5-7.578949+0 9.584124-5-1.027747+1 9.585500-5-1.510040+1 9.588078-5-2.357900+1 9.602322-5-6.905262+1 9.606220-5-8.398764+1 9.611342-5-6.522133+1 9.626459-5-1.753380+1 9.628519-5-1.039076+1 9.628863-5-9.075779+0 9.629567-5-6.066173+0 9.630277-5-3.436828+0 9.631652-5 1.210293+0 9.634231-5 9.189204+0 9.636487-5 1.571333+1 9.655689-5 6.672258+1 9.665200-5 8.581401+1 9.677484-5 1.040473+2 9.693472-5 1.197747+2 9.709654-5 1.272068+2 9.721511-5 1.255845+2 9.741703-5 1.148856+2 9.767664-5 9.032242+1 9.796876-5 5.986184+1 9.829474-5 3.131857+1 9.835038-5 2.531006+1 9.838301-5 2.055816+1 9.840940-5 1.749556+1 9.845559-5 1.296285+1 9.849024-5 9.940304+0 9.854220-5 5.801506+0 9.859417-5 2.014313+0 9.864298-5-1.295602+0 9.871620-5-5.903863+0 9.878942-5-1.017281+1 9.895746-5-1.897397+1 9.917350-5-2.885635+1 9.951890-5-4.270088+1 1.005955-4-8.284964+1 1.006526-4-8.530271+1 1.009479-4-7.049032+1 1.011432-4-5.592912+1 1.015076-4-3.426197+1 1.015970-4-2.759254+1 1.017718-4-1.624552+1 1.018133-4-1.272185+1 1.018432-4-1.063565+1 1.020276-4-2.844552-3 1.020526-4 1.433685+0 1.020691-4 2.642813+0 1.021002-4 4.265214+0 1.021546-4 6.375903+0 1.021953-4 7.589306+0 1.023400-4 1.117971+1 1.023833-4 1.151057+1 1.024239-4 1.130761+1 1.024619-4 1.075991+1 1.024976-4 9.962745+0 1.025310-4 8.979088+0 1.025624-4 7.855219+0 1.026212-4 5.229758+0 1.026726-4 2.376548+0 1.027176-4-5.556320-1 1.027570-4-3.467567+0 1.027914-4-6.293481+0 1.028216-4-8.990857+0 1.028710-4-1.390761+1 1.029114-4-1.842870+1 1.029644-4-2.520144+1 1.030134-4-3.269348+1 1.030631-4-4.221495+1 1.032449-4-7.320115+1 1.033132-4-8.724696+1 1.033794-4-7.219331+1 1.035272-4-4.213057+1 1.035618-4-3.395466+1 1.035782-4-2.935796+1 1.036205-4-1.980154+1 1.036870-4-6.344065+0 1.037505-4 6.104947+0 1.037823-4 1.253307+1 1.038061-4 1.774465+1 1.038225-4 2.195255+1 1.038695-4 3.150112+1 1.039434-4 4.421593+1 1.041068-4 7.005757+1 1.042286-4 8.479430+1 1.044168-4 9.986091+1 1.046108-4 1.080190+2 1.047636-4 1.088356+2 1.050087-4 1.004860+2 1.052810-4 8.425576+1 1.055727-4 6.494660+1 1.059754-4 4.249001+1 1.060585-4 3.576772+1 1.061392-4 3.103708+1 1.062915-4 2.410077+1 1.063929-4 2.027586+1 1.065943-4 1.384556+1 1.067750-4 9.024477+0 1.069557-4 4.863221+0 1.071191-4 1.529034+0 1.072502-4-9.064404-1 1.073814-4-3.156348+0 1.076438-4-7.179868+0 1.079127-4-1.074522+1 1.083180-4-1.522977+1 1.087077-4-1.869228+1 1.092412-4-2.236888+1 1.106625-4-2.972431+1 1.122811-4-3.592298+1 1.145390-4-4.117974+1 1.172188-4-4.474111+1 1.226653-4-4.790724+1 1.492610-4-5.367999+1 2.030770-4-6.141449+1 2.563743-4-6.448088+1 3.658740-4-7.142455+1 4.216965-4-7.871600+1 4.614976-4-8.633490+1 4.941850-4-8.551611+1 6.177604-4-6.623474+1 6.851550-4-5.950630+1 7.233950-4-5.820324+1 7.392343-4-5.829725+1 7.660783-4-5.504158+1 7.878880-4-5.310302+1 8.280000-4-4.856822+1 9.166463-4-4.248585+1 9.997260-4-3.917119+1 1.031194-3-3.921527+1 1.064829-3-3.650480+1 1.161449-3-3.251660+1 1.377248-3-2.762712+1 1.433898-3-2.688827+1 1.569282-3-2.467929+1 1.819701-3-2.257205+1 2.144125-3-2.153720+1 2.544632-3-2.181920+1 2.900000-3-2.338204+1 3.162278-3-2.580556+1 3.325658-3-2.859786+1 3.428605-3-3.179892+1 3.478565-3-3.470348+1 3.546570-3-4.176795+1 3.572045-3-4.147368+1 3.632179-3-3.635677+1 3.674650-3-3.564328+1 3.728832-3-3.686925+1 3.756410-3-3.550470+1 3.818867-3-2.988449+1 3.879270-3-2.679412+1 3.973350-3-2.393970+1 4.090697-3-2.185425+1 4.194304-3-2.116013+1 4.288033-3-2.193606+1 4.327896-3-2.078171+1 4.392544-3-1.845816+1 4.494582-3-1.639596+1 4.663426-3-1.425916+1 4.878626-3-1.255756+1 5.055985-3-1.185548+1 5.175231-3-1.199559+1 5.316857-3-1.068255+1 5.443416-3-1.015123+1 5.535332-3-9.920846+0 5.698332-3-8.629809+0 5.923358-3-7.577796+0 6.300500-3-6.422582+0 6.760830-3-5.513743+0 7.300000-3-4.843098+0 8.036686-3-4.352827+0 8.989799-3-4.128510+0 1.012171-2-4.163516+0 1.161240-2-4.507934+0 1.328965-2-5.171602+0 1.467250-2-5.993396+0 1.566751-2-6.920879+0 1.628241-2-7.868450+0 1.664108-2-8.817948+0 1.683643-2-9.758015+0 1.710908-2-1.200501+1 1.719246-2-1.218986+1 1.728293-2-1.176044+1 1.753275-2-9.564143+0 1.774397-2-8.520192+0 1.808469-2-7.617266+0 1.857487-2-6.912567+0 1.926767-2-6.467378+0 1.991408-2-6.450394+0 2.039686-2-6.780760+0 2.067134-2-7.321268+0 2.095564-2-8.306505+0 2.109859-2-8.371917+0 2.147505-2-7.352887+0 2.179439-2-6.979130+0 2.223912-2-5.647900+0 2.261808-2-4.930529+0 2.320706-2-4.202892+0 2.408261-2-3.466503+0 2.498964-2-2.919910+0 2.614509-2-2.427557+0 2.750860-2-2.018769+0 2.888153-2-1.729194+0 3.036618-2-1.501725+0 3.209631-2-1.319290+0 3.450995-2-1.160478+0 3.715353-2-1.077456+0 4.070491-2-1.040491+0 4.585011-2-1.070957+0 5.632003-2-1.249984+0 8.488814-2-1.870395+0 9.592539-2-2.177093+0 1.039626-1-2.506718+0 1.088501-1-2.840534+0 1.118274-1-3.198090+0 1.134264-1-3.551801+0 1.145839-1-4.039435+0 1.157327-1-4.570335+0 1.162991-1-4.590166+0 1.171250-1-4.255313+0 1.183635-1-3.591502+0 1.196386-1-3.177711+0 1.217495-1-2.786666+0 1.245962-1-2.457401+0 1.278579-1-2.207036+0 1.330259-1-1.932938+0 1.404429-1-1.680625+0 1.496777-1-1.489977+0 1.612242-1-1.342924+0 1.788375-1-1.217947+0 2.008790-1-1.148292+0 2.473516-1-1.114950+0 5.654201-1-1.238445+0 1.070165+0-1.288301+0 3.231848+0-1.310882+0 9.760024+0-1.316854+0 1.000000+1-1.312865+0 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.047996-1 1.036459-6 1.271184-1 1.053463-6 1.392462-1 1.078969-6 1.599272-1 1.112630-6 1.925068-1 1.134379-6 2.180585-1 1.156168-6 2.482666-1 1.175704-6 2.803623-1 1.189658-6 3.070375-1 1.200000-6 3.292473-1 1.209475-6 3.517301-1 1.218465-6 3.753189-1 1.226893-6 3.998168-1 1.234794-6 4.252695-1 1.242201-6 4.517298-1 1.249145-6 4.792697-1 1.255656-6 5.079547-1 1.261759-6 5.378061-1 1.273203-6 6.032523-1 1.283216-6 6.739156-1 1.291978-6 7.503523-1 1.299645-6 8.331044-1 1.306353-6 9.227318-1 1.312222-6 1.019940+0 1.317358-6 1.125738+0 1.321852-6 1.241516+0 1.325785-6 1.368827+0 1.329225-6 1.508831+0 1.332236-6 1.661669+0 1.334870-6 1.826124+0 1.337175-6 1.999704+0 1.339192-6 2.179048+0 1.340957-6 2.360441+0 1.342501-6 2.540284+0 1.343852-6 2.715417+0 1.346216-6 3.065663+0 1.349320-6 3.618218+0 1.355470-6 5.049053+0 1.358306-6 5.851861+0 1.359972-6 6.357005+0 1.363303-6 7.416395+0 1.363719-6 7.551257+0 1.366634-6 8.490423+0 1.367779-6 8.849714+0 1.369965-6 9.503298+0 1.371110-6 9.821974+0 1.372203-6 1.010669+1 1.373296-6 1.036931+1 1.374753-6 1.068005+1 1.376159-6 1.093152+1 1.377460-6 1.111765+1 1.378553-6 1.123665+1 1.379958-6 1.133665+1 1.381832-6 1.137317+1 1.383393-6 1.131701+1 1.383973-6 1.127605+1 1.385627-6 1.110018+1 1.387159-6 1.086180+1 1.388448-6 1.060804+1 1.390041-6 1.023235+1 1.391191-6 9.922642+0 1.393588-6 9.188605+0 1.395093-6 8.678363+0 1.397029-6 7.982494+0 1.398509-6 7.431296+0 1.399944-6 6.889580+0 1.401401-6 6.339042+0 1.402924-6 5.771033+0 1.404941-6 5.041353+0 1.406398-6 4.537335+0 1.406814-6 4.397628+0 1.408766-6 3.771553+0 1.409937-6 3.420623+0 1.413268-6 2.533049+0 1.414550-6 2.236557+0 1.415574-6 2.017490+0 1.416599-6 1.814139+0 1.418056-6 1.551262+0 1.419667-6 1.295225+0 1.421161-6 1.088037+0 1.422654-6 9.079725-1 1.424128-6 7.547186-1 1.425578-6 6.253247-1 1.427006-6 5.166974-1 1.428412-6 4.260143-1 1.429796-6 3.507363-1 1.431831-6 2.618441-1 1.435274-6 1.589613-1 1.436627-6 1.313921-1 1.437256-6 1.205794-1 1.437882-6 1.109742-1 1.438502-6 1.024920-1 1.439118-6 9.503447-2 1.439729-6 8.851145-2 1.440335-6 8.284043-2 1.440937-6 7.794594-2 1.442130-6 7.019105-2 1.443305-6 6.480665-2 1.444462-6 6.138719-2 1.445600-6 5.959666-2 1.446721-6 5.915723-2 1.447824-6 5.983957-2 1.449996-6 6.389014-2 1.452100-6 7.059129-2 1.454138-6 7.914694-2 1.459938-6 1.117036-1 1.463525-6 1.365091-1 1.470250-6 1.910792-1 1.482018-6 3.157567-1 1.486431-6 3.770716-1 1.490293-6 4.413457-1 1.493671-6 5.088131-1 1.496628-6 5.791969-1 1.500000-6 6.761082-1 1.501478-6 7.253197-1 1.503459-6 7.987110-1 1.505192-6 8.706903-1 1.508225-6 1.016249+0 1.517323-6 1.628633+0 1.519832-6 1.846427+0 1.521058-6 1.959855+0 1.522925-6 2.140606+0 1.524792-6 2.329412+0 1.528527-6 2.722155+0 1.528994-6 2.771821+0 1.532262-6 3.115319+0 1.533546-6 3.245464+0 1.535997-6 3.479870+0 1.537280-6 3.592760+0 1.538506-6 3.692572+0 1.539731-6 3.783481+0 1.541365-6 3.889000+0 1.542941-6 3.971773+0 1.544400-6 4.030184+0 1.545625-6 4.064784+0 1.547201-6 4.088906+0 1.549301-6 4.084181+0 1.551052-6 4.047563+0 1.551504-6 4.033298+0 1.553780-6 3.932313+0 1.555275-6 3.840494+0 1.556607-6 3.742756+0 1.558379-6 3.591603+0 1.559762-6 3.458645+0 1.562256-6 3.191255+0 1.563744-6 3.018429+0 1.564676-6 2.906395+0 1.566108-6 2.730189+0 1.567598-6 2.543407+0 1.569232-6 2.337515+0 1.570542-6 2.173241+0 1.571768-6 2.021684+0 1.573343-6 1.831366+0 1.575211-6 1.614808+0 1.576903-6 1.429054+0 1.578187-6 1.295786+0 1.579500-6 1.166908+0 1.581046-6 1.025266+0 1.582250-6 9.228681-1 1.583973-6 7.883845-1 1.585219-6 7.000608-1 1.585985-6 6.493968-1 1.587133-6 5.785101-1 1.588282-6 5.135986-1 1.589916-6 4.311506-1 1.591518-6 3.609297-1 1.593234-6 2.965443-1 1.595301-6 2.323842-1 1.600198-6 1.290295-1 1.601195-6 1.148341-1 1.602515-6 9.892576-2 1.603171-6 9.213960-2 1.603825-6 8.606124-2 1.604476-6 8.064106-2 1.605125-6 7.583225-2 1.606417-6 6.786123-2 1.607699-6 6.184673-2 1.608972-6 5.750393-2 1.610234-6 5.458396-2 1.611486-6 5.287055-2 1.612729-6 5.217673-2 1.613961-6 5.234158-2 1.616408-6 5.472970-2 1.618816-6 5.915743-2 1.621187-6 6.498652-2 1.625817-6 7.916230-2 1.628078-6 8.696029-2 1.632530-6 1.032908-1 1.636842-6 1.198359-1 1.641020-6 1.362021-1 1.645067-6 1.521989-1 1.648988-6 1.677380-1 1.656584-6 1.977979-1 1.663706-6 2.258261-1 1.670383-6 2.519522-1 1.682901-6 3.006471-1 1.693855-6 3.431320-1 1.713024-6 4.178496-1 1.727400-6 4.747786-1 1.748966-6 5.625955-1 1.770531-6 6.543269-1 1.787962-6 7.323087-1 1.809752-6 8.358902-1 1.840258-6 9.949383-1 1.857689-6 1.095382+0 1.915579-6 1.490159+0 1.934186-6 1.647691+0 1.948142-6 1.783734+0 1.958609-6 1.902111+0 1.966459-6 2.004781+0 1.978233-6 2.188936+0 1.994907-6 2.503761+0 1.999805-6 2.594799+0 2.004703-6 2.675235+0 2.009601-6 2.738028+0 2.014499-6 2.776488+0 2.016948-6 2.784909+0 2.019397-6 2.785540+0 2.021846-6 2.778205+0 2.024296-6 2.762964+0 2.026745-6 2.740132+0 2.029194-6 2.710282+0 2.034092-6 2.633020+0 2.038990-6 2.540178+0 2.048786-6 2.353151+0 2.050759-6 2.321504+0 2.053718-6 2.280755+0 2.056677-6 2.249438+0 2.060079-6 2.226483+0 2.063481-6 2.218260+0 2.065930-6 2.221499+0 2.068379-6 2.232162+0 2.073277-6 2.274013+0 2.078175-6 2.339180+0 2.083073-6 2.421985+0 2.102238-6 2.818301+0 2.112362-6 3.030058+0 2.122487-6 3.233699+0 2.137674-6 3.532373+0 2.157923-6 3.940145+0 2.238056-6 5.923246+0 2.261500-6 6.678589+0 2.283479-6 7.488865+0 2.304084-6 8.356786+0 2.323401-6 9.284628+0 2.341511-6 1.027435+1 2.358489-6 1.132763+1 2.374406-6 1.244582+1 2.389328-6 1.363002+1 2.403318-6 1.488121+1 2.416433-6 1.620026+1 2.428728-6 1.758784+1 2.440255-6 1.904439+1 2.451062-6 2.057023+1 2.461193-6 2.216556+1 2.470691-6 2.383034+1 2.479595-6 2.556380+1 2.487943-6 2.736421+1 2.495769-6 2.922898+1 2.510443-6 3.327891+1 2.523283-6 3.756607+1 2.534518-6 4.206426+1 2.544348-6 4.674327+1 2.552949-6 5.156779+1 2.560476-6 5.649883+1 2.567061-6 6.149603+1 2.572824-6 6.651949+1 2.577866-6 7.153063+1 2.586689-6 8.211076+1 2.593307-6 9.210707+1 2.598270-6 1.012110+2 2.601993-6 1.092076+2 2.607577-6 1.236073+2 2.613160-6 1.417350+2 2.616376-6 1.543180+2 2.619592-6 1.687914+2 2.622808-6 1.854490+2 2.626024-6 2.046091+2 2.629240-6 2.266100+2 2.632456-6 2.518025+2 2.635672-6 2.805404+2 2.643712-6 3.700984+2 2.652426-6 4.995995+2 2.658184-6 6.047774+2 2.661200-6 6.658588+2 2.664216-6 7.307022+2 2.670741-6 8.816450+2 2.671584-6 9.019462+2 2.677480-6 1.046716+3 2.679691-6 1.101266+3 2.684514-6 1.217875+3 2.686629-6 1.267034+3 2.689652-6 1.334040+3 2.691596-6 1.374583+3 2.694768-6 1.435535+3 2.697724-6 1.485487+3 2.700988-6 1.531704+3 2.703777-6 1.562936+3 2.707600-6 1.592225+3 2.710494-6 1.603386+3 2.714475-6 1.602722+3 2.716868-6 1.593358+3 2.723248-6 1.536606+3 2.726330-6 1.493780+3 2.729793-6 1.435112+3 2.733057-6 1.370893+3 2.736467-6 1.296149+3 2.739772-6 1.217869+3 2.741946-6 1.164044+3 2.745053-6 1.084963+3 2.748299-6 1.000917+3 2.752310-6 8.970590+2 2.755573-6 8.141402+2 2.759244-6 7.239847+2 2.762099-6 6.569473+2 2.768624-6 5.164290+2 2.770969-6 4.707832+2 2.773646-6 4.220214+2 2.777660-6 3.556407+2 2.781675-6 2.973006+2 2.785480-6 2.491521+2 2.788751-6 2.130082+2 2.792424-6 1.777755+2 2.796807-6 1.424509+2 2.801435-6 1.121107+2 2.807430-6 8.170148+1 2.820950-6 3.962208+1 2.834471-6 1.932639+1 2.847992-6 9.475059+0 2.861513-6 4.610517+0 2.864893-6 3.862481+0 2.868273-6 3.256046+0 2.869963-6 3.001050+0 2.872498-6 2.674213+0 2.875033-6 2.409921+0 2.878414-6 2.147666+0 2.880949-6 2.013922+0 2.882267-6 1.964515+0 2.883679-6 1.926228+0 2.884616-6 1.908988+0 2.886016-6 1.895021+0 2.886945-6 1.893370+0 2.888796-6 1.907668+0 2.890632-6 1.944270+0 2.892454-6 2.001834+0 2.896070-6 2.175719+0 2.899629-6 2.419833+0 2.955684-6 1.386573+1 2.966195-6 1.794434+1 2.976048-6 2.265778+1 2.985286-6 2.802279+1 2.993946-6 3.404784+1 3.023502-6 6.516447+1 3.031001-6 7.698310+1 3.035654-6 8.552897+1 3.041166-6 9.714292+1 3.046334-6 1.098304+2 3.051179-6 1.236916+2 3.055721-6 1.388299+2 3.059979-6 1.553442+2 3.063971-6 1.733212+2 3.067713-6 1.928274+2 3.072000-6 2.189908+2 3.077595-6 2.607553+2 3.083377-6 3.154541+2 3.088436-6 3.755546+2 3.092863-6 4.397076+2 3.096736-6 5.063602+2 3.105686-6 7.064339+2 3.117005-6 1.076812+3 3.123489-6 1.361251+3 3.129174-6 1.659158+3 3.131539-6 1.796912+3 3.135384-6 2.038112+3 3.139228-6 2.300205+3 3.146917-6 2.881605+3 3.147878-6 2.958993+3 3.155152-6 3.569940+3 3.157969-6 3.814770+3 3.160658-6 4.050184+3 3.164034-6 4.345362+3 3.167789-6 4.668503+3 3.169985-6 4.852961+3 3.173589-6 5.144550+3 3.177475-6 5.438410+3 3.180926-6 5.676484+3 3.184114-6 5.873571+3 3.185843-6 5.970068+3 3.190348-6 6.183766+3 3.193866-6 6.309326+3 3.198725-6 6.418449+3 3.202311-6 6.449183+3 3.206547-6 6.430331+3 3.209948-6 6.372585+3 3.213298-6 6.279992+3 3.218301-6 6.080040+3 3.221999-6 5.889310+3 3.225583-6 5.674120+3 3.228771-6 5.461190+3 3.232351-6 5.202157+3 3.235341-6 4.972967+3 3.239185-6 4.665869+3 3.243029-6 4.350113+3 3.246874-6 4.031178+3 3.251199-6 3.674794+3 3.254563-6 3.403253+3 3.262252-6 2.815034+3 3.265015-6 2.617976+3 3.271322-6 2.202029+3 3.277630-6 1.836809+3 3.285537-6 1.452108+3 3.299372-6 9.591833+2 3.302285-6 8.807567+2 3.306654-6 7.770620+2 3.311023-6 6.883466+2 3.316432-6 5.964181+2 3.321841-6 5.211477+2 3.325840-6 4.744161+2 3.329840-6 4.340563+2 3.333840-6 3.991140+2 3.337839-6 3.687561+2 3.345838-6 3.190248+2 3.353837-6 2.803158+2 3.360223-6 2.551439+2 3.366609-6 2.337771+2 3.377158-6 2.046517+2 3.386428-6 1.837180+2 3.394622-6 1.679115+2 3.406756-6 1.480709+2 3.416585-6 1.344692+2 3.425951-6 1.231599+2 3.434869-6 1.136479+2 3.450348-6 9.953389+1 3.460174-6 9.190155+1 3.472027-6 8.387270+1 3.480531-6 7.883870+1 3.489035-6 7.437549+1 3.497540-6 7.045634+1 3.504373-6 6.768062+1 3.511206-6 6.521476+1 3.517129-6 6.330655+1 3.523052-6 6.158744+1 3.531556-6 5.939648+1 3.548564-6 5.566994+1 3.563446-6 5.268851+1 3.573013-6 5.074301+1 3.582580-6 4.872224+1 3.591085-6 4.685822+1 3.599589-6 4.494527+1 3.608093-6 4.300947+1 3.643671-6 3.538695+1 3.652574-6 3.376569+1 3.661832-6 3.224907+1 3.670736-6 3.095948+1 3.679639-6 2.982941+1 3.688543-6 2.884108+1 3.706350-6 2.717258+1 3.724310-6 2.567264+1 3.733455-6 2.490267+1 3.742599-6 2.410600+1 3.751744-6 2.328083+1 3.770032-6 2.158618+1 3.794322-6 1.944271+1 3.806610-6 1.848887+1 3.825186-6 1.728176+1 3.836628-6 1.669629+1 3.846165-6 1.630386+1 3.852332-6 1.609492+1 3.862011-6 1.583162+1 3.871690-6 1.563378+1 3.903481-6 1.516061+1 3.911394-6 1.501590+1 3.919688-6 1.483123+1 3.929413-6 1.456592+1 3.945165-6 1.402763+1 3.961343-6 1.336765+1 3.981366-6 1.247751+1 4.010246-6 1.118649+1 4.026682-6 1.047055+1 4.043884-6 9.727396+0 4.059024-6 9.071295+0 4.074776-6 8.388063+0 4.096671-6 7.465817+0 4.118412-6 6.647475+0 4.131647-6 6.229905+0 4.144249-6 5.901218+0 4.154526-6 5.683034+0 4.164823-6 5.504010+0 4.174110-6 5.368870+0 4.202491-6 5.009868+0 4.212562-6 4.865129+0 4.222634-6 4.696377+0 4.232705-6 4.499551+0 4.242776-6 4.274659+0 4.252847-6 4.025287+0 4.262919-6 3.757630+0 4.272990-6 3.479285+0 4.285415-6 3.132659+0 4.295886-6 2.846541+0 4.306357-6 2.571931+0 4.322372-6 2.181515+0 4.337769-6 1.843828+0 4.365158-6 1.348016+0 4.372440-6 1.246010+0 4.377329-6 1.186995+0 4.382217-6 1.136698+0 4.386677-6 1.099270+0 4.396050-6 1.050292+0 4.400736-6 1.042441+0 4.403079-6 1.042963+0 4.405422-6 1.046535+0 4.408108-6 1.054443+0 4.412138-6 1.074045+0 4.416167-6 1.102991+0 4.417580-6 1.115348+0 4.423869-6 1.184046+0 4.428782-6 1.252804+0 4.431081-6 1.289319+0 4.438979-6 1.434494+0 4.447537-6 1.623431+0 4.464219-6 2.081691+0 4.472370-6 2.360875+0 4.478933-6 2.628006+0 4.482504-6 2.795464+0 4.492766-6 3.403030+0 4.497117-6 3.737580+0 4.503927-6 4.388032+0 4.508287-6 4.904797+0 4.512867-6 5.549617+0 4.518410-6 6.493177+0 4.520495-6 6.899989+0 4.532413-6 9.862853+0 4.542061-6 1.317463+1 4.549153-6 1.618593+1 4.555228-6 1.915944+1 4.560186-6 2.184574+1 4.564219-6 2.419144+1 4.567817-6 2.639294+1 4.573680-6 3.016873+1 4.577644-6 3.282543+1 4.582821-6 3.637502+1 4.586549-6 3.895707+1 4.591583-6 4.242762+1 4.596462-6 4.571854+1 4.600784-6 4.852461+1 4.605254-6 5.127177+1 4.609739-6 5.382355+1 4.614037-6 5.603588+1 4.618982-6 5.825321+1 4.622279-6 5.951408+1 4.627142-6 6.102745+1 4.631026-6 6.192195+1 4.641605-6 6.286607+1 4.646172-6 6.258980+1 4.653241-6 6.137478+1 4.656584-6 6.048461+1 4.659819-6 5.944387+1 4.662903-6 5.829791+1 4.665701-6 5.713856+1 4.670455-6 5.493354+1 4.674111-6 5.306276+1 4.679283-6 5.020813+1 4.684103-6 4.738495+1 4.690563-6 4.346094+1 4.695870-6 4.020875+1 4.702601-6 3.617795+1 4.718818-6 2.773399+1 4.721138-6 2.674815+1 4.725199-6 2.519144+1 4.731290-6 2.329443+1 4.734580-6 2.250473+1 4.737382-6 2.196867+1 4.740542-6 2.151868+1 4.742997-6 2.128432+1 4.751018-6 2.123201+1 4.753483-6 2.143558+1 4.754675-6 2.157078+1 4.758801-6 2.222116+1 4.763594-6 2.332243+1 4.767413-6 2.445455+1 4.771377-6 2.585362+1 4.777285-6 2.832612+1 4.794456-6 3.751393+1 4.800749-6 4.132146+1 4.806948-6 4.512181+1 4.810063-6 4.701293+1 4.815982-6 5.050546+1 4.821588-6 5.361859+1 4.824282-6 5.502341+1 4.828891-6 5.726045+1 4.834236-6 5.955087+1 4.838034-6 6.095450+1 4.844379-6 6.284266+1 4.848650-6 6.377184+1 4.855075-6 6.462901+1 4.859065-6 6.483079+1 4.862873-6 6.478897+1 4.866682-6 6.452300+1 4.871760-6 6.383282+1 4.875025-6 6.319660+1 4.878289-6 6.241874+1 4.884093-6 6.071367+1 4.889897-6 5.864353+1 4.895700-6 5.626824+1 4.901504-6 5.365044+1 4.904493-6 5.222824+1 4.910935-6 4.904039+1 4.913111-6 4.793652+1 4.924718-6 4.196946+1 4.928125-6 4.022910+1 4.938343-6 3.515709+1 4.947933-6 3.071061+1 4.958046-6 2.645039+1 4.968656-6 2.250527+1 4.987956-6 1.670003+1 5.000203-6 1.385295+1 5.012450-6 1.156880+1 5.024698-6 9.784513+0 5.030741-6 9.074347+0 5.034709-6 8.666828+0 5.040570-6 8.148553+0 5.057530-6 7.199710+0 5.069918-6 7.011872+0 5.071466-6 7.017349+0 5.082305-6 7.225721+0 5.087003-6 7.402735+0 5.091487-6 7.615770+0 5.097828-6 7.982475+0 5.107020-6 8.624680+0 5.122234-6 9.854117+0 5.130299-6 1.051998+1 5.134921-6 1.088753+1 5.142084-6 1.142067+1 5.144472-6 1.158593+1 5.157404-6 1.234983+1 5.169948-6 1.287406+1 5.182192-6 1.324144+1 5.194922-6 1.362401+1 5.201116-6 1.387552+1 5.207089-6 1.419544+1 5.210675-6 1.443526+1 5.216257-6 1.489547+1 5.221839-6 1.547859+1 5.222979-6 1.561432+1 5.230955-6 1.673792+1 5.236890-6 1.778398+1 5.248650-6 2.041095+1 5.261448-6 2.406601+1 5.274375-6 2.841584+1 5.281839-6 3.110486+1 5.289376-6 3.385463+1 5.296137-6 3.627994+1 5.300684-6 3.785569+1 5.305917-6 3.958689+1 5.311947-6 4.143957+1 5.324706-6 4.470665+1 5.328818-6 4.553784+1 5.337863-6 4.694428+1 5.344526-6 4.759669+1 5.351655-6 4.793498+1 5.357477-6 4.794455+1 5.365119-6 4.761659+1 5.372487-6 4.696865+1 5.374943-6 4.668761+1 5.384512-6 4.532482+1 5.387702-6 4.478802+1 5.400764-6 4.226618+1 5.417984-6 3.845825+1 5.433011-6 3.501138+1 5.441862-6 3.302304+1 5.476742-6 2.608516+1 5.489742-6 2.399582+1 5.502742-6 2.220944+1 5.509242-6 2.142952+1 5.515743-6 2.072291+1 5.522243-6 2.008676+1 5.528743-6 1.951737+1 5.542428-6 1.851618+1 5.549271-6 1.810384+1 5.556113-6 1.774147+1 5.569789-6 1.714005+1 5.586413-6 1.656865+1 5.603825-6 1.608314+1 5.647087-6 1.508235+1 5.685614-6 1.430650+1 5.805110-6 1.224186+1 5.818975-6 1.205334+1 5.830310-6 1.192629+1 5.842660-6 1.182364+1 5.854649-6 1.176649+1 5.872766-6 1.177031+1 5.879740-6 1.180205+1 5.895313-6 1.193168+1 5.910900-6 1.213250+1 5.956621-6 1.289903+1 5.967203-6 1.305497+1 5.981256-6 1.321786+1 5.996345-6 1.332175+1 6.012346-6 1.334269+1 6.026537-6 1.328628+1 6.038230-6 1.319322+1 6.049475-6 1.307147+1 6.063801-6 1.288299+1 6.128850-6 1.193568+1 6.173665-6 1.144697+1 6.248357-6 1.091351+1 6.367863-6 1.033549+1 6.477742-6 9.919317+0 6.576003-6 9.593988+0 7.287493-6 7.800859+0 7.408167-6 7.466876+0 7.444636-6 7.406936+0 7.466301-6 7.402473+0 7.481104-6 7.416729+0 7.499339-6 7.455117+0 7.528445-6 7.560901+0 7.590947-6 7.867755+0 7.609315-6 7.938294+0 7.627682-6 7.984762+0 7.641667-6 8.001191+0 7.655652-6 8.000529+0 7.682785-6 7.953617+0 7.718150-6 7.824071+0 7.811359-6 7.396944+0 7.959839-6 6.942044+0 8.018615-6 6.835496+0 8.038207-6 6.815324+0 8.072666-6 6.800575+0 8.175352-6 6.820656+0 8.194944-6 6.810324+0 8.222426-6 6.779463+0 8.253721-6 6.723225+0 8.351809-6 6.501738+0 8.423363-6 6.377244+0 8.487540-6 6.285047+0 8.521914-6 6.247646+0 8.554548-6 6.230595+0 8.576225-6 6.233241+0 8.601063-6 6.251549+0 8.659312-6 6.344592+0 8.704663-6 6.422456+0 8.726773-6 6.445560+0 8.752310-6 6.452560+0 8.783046-6 6.429594+0 8.818004-6 6.364858+0 8.855683-6 6.262130+0 8.961707-6 5.934693+0 9.024243-6 5.783583+0 9.081514-6 5.687236+0 9.144377-6 5.627595+0 9.235338-6 5.603585+0 9.298474-6 5.586277+0 9.329429-6 5.565736+0 9.389420-6 5.501451+0 9.503570-6 5.354846+0 9.609692-6 5.246492+0 9.917638-6 4.916047+0 1.012646-5 4.661304+0 1.039495-5 4.389222+0 1.080000-5 3.964248+0 1.109861-5 3.648525+0 1.139950-5 3.335304+0 1.165750-5 3.076890+0 1.193040-5 2.815898+0 1.230269-5 2.485184+0 1.260654-5 2.245559+0 1.276337-5 2.136610+0 1.290563-5 2.048171+0 1.299930-5 1.995991+0 1.314468-5 1.925712+0 1.322377-5 1.893912+0 1.331976-5 1.863638+0 1.341280-5 1.847044+0 1.345690-5 1.844838+0 1.354153-5 1.851155+0 1.369731-5 1.891060+0 1.376859-5 1.918364+0 1.389806-5 1.981201+0 1.401553-5 2.053503+0 1.412538-5 2.135548+0 1.420824-5 2.207488+0 1.433606-5 2.336328+0 1.443026-5 2.445995+0 1.454232-5 2.594343+0 1.468286-5 2.810549+0 1.487431-5 3.164302+0 1.505691-5 3.574806+0 1.524491-5 4.084441+0 1.542213-5 4.656681+0 1.556821-5 5.206906+0 1.575521-5 6.032998+0 1.598144-5 7.239933+0 1.617764-5 8.507653+0 1.637384-5 1.002809+1 1.654471-5 1.159861+1 1.672700-5 1.357654+1 1.687281-5 1.542613+1 1.703663-5 1.783908+1 1.721055-5 2.087343+1 1.738622-5 2.454088+1 1.755092-5 2.864193+1 1.770531-5 3.320595+1 1.785006-5 3.826288+1 1.798577-5 4.383525+1 1.813166-5 5.091390+1 1.823226-5 5.658963+1 1.834407-5 6.382397+1 1.844890-5 7.166030+1 1.854717-5 8.010629+1 1.866710-5 9.214436+1 1.873413-5 9.986006+1 1.880666-5 1.091525+2 1.890890-5 1.242155+2 1.902047-5 1.438638+2 1.911641-5 1.641348+2 1.919664-5 1.840969+2 1.924818-5 1.986727+2 1.929650-5 2.137978+2 1.938710-5 2.467304+2 1.946637-5 2.816922+2 1.953574-5 3.184832+2 1.960459-5 3.626174+2 1.964954-5 3.967558+2 1.969601-5 4.376947+2 1.973667-5 4.792955+2 1.977225-5 5.210228+2 1.980338-5 5.622901+2 1.985786-5 6.470176+2 1.989872-5 7.225768+2 1.995235-5 8.393991+2 2.003362-5 1.056982+3 2.007058-5 1.171435+3 2.011986-5 1.336639+3 2.016914-5 1.512546+3 2.021842-5 1.694895+3 2.026770-5 1.881199+3 2.036626-5 2.283542+3 2.040322-5 2.465450+3 2.041554-5 2.533522+3 2.045250-5 2.769628+3 2.046482-5 2.861652+3 2.051410-5 3.321267+3 2.053104-5 3.521299+3 2.056338-5 3.978618+3 2.058032-5 4.263406+3 2.059649-5 4.567866+3 2.061833-5 5.034206+3 2.064966-5 5.824109+3 2.075541-5 9.688107+3 2.078866-5 1.129551+4 2.081375-5 1.261988+4 2.086460-5 1.554274+4 2.088098-5 1.653377+4 2.091226-5 1.845807+4 2.093897-5 2.010323+4 2.095489-5 2.107010+4 2.097765-5 2.241622+4 2.099959-5 2.365563+4 2.102138-5 2.480962+4 2.104648-5 2.601950+4 2.106798-5 2.693396+4 2.109778-5 2.798607+4 2.112104-5 2.861429+4 2.114815-5 2.911450+4 2.117027-5 2.932962+4 2.121894-5 2.918082+4 2.124168-5 2.882414+4 2.126488-5 2.828260+4 2.128254-5 2.775765+4 2.130536-5 2.694779+4 2.132540-5 2.612569+4 2.134486-5 2.524074+4 2.136989-5 2.399760+4 2.139213-5 2.281321+4 2.141359-5 2.161900+4 2.144616-5 1.974563+4 2.147158-5 1.826455+4 2.150018-5 1.661102+4 2.152243-5 1.535263+4 2.157774-5 1.240690+4 2.160075-5 1.128162+4 2.164468-5 9.326627+3 2.168278-5 7.848342+3 2.173083-5 6.271666+3 2.183171-5 3.899129+3 2.185674-5 3.475979+3 2.188325-5 3.086218+3 2.190976-5 2.749616+3 2.193626-5 2.459486+3 2.196277-5 2.209620+3 2.200392-5 1.888424+3 2.204229-5 1.648052+3 2.206880-5 1.508648+3 2.212334-5 1.274894+3 2.217483-5 1.103589+3 2.222852-5 9.612165+2 2.228221-5 8.455793+2 2.233639-5 7.487706+2 2.239057-5 6.669620+2 2.244474-5 5.966850+2 2.255310-5 4.815312+2 2.271471-5 3.529114+2 2.282653-5 2.863705+2 2.288243-5 2.593503+2 2.293834-5 2.364160+2 2.297168-5 2.246342+2 2.301941-5 2.100933+2 2.305715-5 2.003893+2 2.309488-5 1.920818+2 2.314521-5 1.828094+2 2.321789-5 1.720005+2 2.338577-5 1.512870+2 2.346531-5 1.420548+2 2.352278-5 1.362706+2 2.355760-5 1.334545+2 2.358026-5 1.319923+2 2.361488-5 1.304145+2 2.364384-5 1.297663+2 2.368021-5 1.298678+2 2.371658-5 1.309843+2 2.374204-5 1.323322+2 2.377546-5 1.347216+2 2.381843-5 1.386026+2 2.392391-5 1.495092+2 2.394209-5 1.512378+2 2.399301-5 1.553236+2 2.400756-5 1.562354+2 2.405121-5 1.581611+2 2.406934-5 1.585819+2 2.410106-5 1.587703+2 2.412831-5 1.583878+2 2.416156-5 1.572859+2 2.419624-5 1.554811+2 2.425858-5 1.509575+2 2.434383-5 1.434098+2 2.444097-5 1.350150+2 2.449595-5 1.309605+2 2.453472-5 1.284776+2 2.459883-5 1.250124+2 2.471456-5 1.202177+2 2.494188-5 1.124116+2 2.538244-5 9.757873+1 2.591830-5 8.324132+1 2.630419-5 7.388577+1 2.661809-5 6.656218+1 2.685495-5 6.122921+1 2.704710-5 5.704592+1 2.737151-5 5.033732+1 2.788140-5 4.120648+1 2.800530-5 3.942788+1 2.813426-5 3.785556+1 2.825528-5 3.668608+1 2.836886-5 3.588861+1 2.847505-5 3.542684+1 2.855010-5 3.528646+1 2.862159-5 3.532746+1 2.868818-5 3.556212+1 2.874270-5 3.593744+1 2.880540-5 3.663441+1 2.884558-5 3.726754+1 2.888483-5 3.805665+1 2.892284-5 3.900935+1 2.895967-5 4.013720+1 2.899535-5 4.145116+1 2.902992-5 4.296171+1 2.906340-5 4.467897+1 2.909584-5 4.661291+1 2.912726-5 4.877354+1 2.915770-5 5.117114+1 2.918719-5 5.381644+1 2.921663-5 5.681450+1 2.924344-5 5.989632+1 2.927025-5 6.335602+1 2.932220-5 7.132346+1 2.937090-5 8.065205+1 2.942303-5 9.321287+1 2.945949-5 1.040076+2 2.949949-5 1.182465+2 2.953710-5 1.344523+2 2.957237-5 1.527024+2 2.960543-5 1.730718+2 2.963819-5 1.969919+2 2.966549-5 2.202811+2 2.969273-5 2.470671+2 2.971828-5 2.758657+2 2.974222-5 3.065459+2 2.977651-5 3.575850+2 2.982517-5 4.469871+2 2.997743-5 9.068002+2 3.004143-5 1.211162+3 3.008852-5 1.488288+3 3.012838-5 1.761794+3 3.015193-5 1.941086+3 3.017548-5 2.133887+3 3.021253-5 2.464864+3 3.024957-5 2.829649+3 3.032830-5 3.711373+3 3.033698-5 3.816739+3 3.040239-5 4.652691+3 3.042626-5 4.972695+3 3.047185-5 5.596465+3 3.050947-5 6.115448+3 3.054594-5 6.612850+3 3.058356-5 7.110733+3 3.061319-5 7.485331+3 3.063855-5 7.789620+3 3.067068-5 8.148450+3 3.069875-5 8.433371+3 3.074216-5 8.812628+3 3.077606-5 9.050450+3 3.081659-5 9.260884+3 3.085272-5 9.376554+3 3.087069-5 9.408082+3 3.090497-5 9.419913+3 3.093896-5 9.369526+3 3.099442-5 9.159662+3 3.102259-5 8.996290+3 3.104458-5 8.844421+3 3.107601-5 8.593405+3 3.109621-5 8.412857+3 3.111641-5 8.218869+3 3.114050-5 7.971958+3 3.117211-5 7.625958+3 3.121275-5 7.152821+3 3.124980-5 6.702998+3 3.128684-5 6.244206+3 3.132852-5 5.727116+3 3.136094-5 5.330404+3 3.143503-5 4.464083+3 3.146049-5 4.184400+3 3.150912-5 3.682155+3 3.157858-5 3.044437+3 3.174373-5 1.916800+3 3.177440-5 1.762929+3 3.182369-5 1.546748+3 3.187835-5 1.347042+3 3.191082-5 1.245824+3 3.194865-5 1.142145+3 3.198895-5 1.046511+3 3.202896-5 9.646108+2 3.209141-5 8.583148+2 3.217562-5 7.471207+2 3.225128-5 6.700825+2 3.232838-5 6.073013+2 3.240737-5 5.547944+2 3.249999-5 5.041146+2 3.263048-5 4.465645+2 3.279480-5 3.895894+2 3.295624-5 3.453134+2 3.303928-5 3.261303+2 3.311827-5 3.098932+2 3.319840-5 2.953005+2 3.328399-5 2.816964+2 3.340537-5 2.657362+2 3.344450-5 2.613929+2 3.352128-5 2.539767+2 3.360200-5 2.477388+2 3.368272-5 2.430806+2 3.373426-5 2.409213+2 3.385082-5 2.382859+2 3.391317-5 2.380528+2 3.399123-5 2.387270+2 3.409920-5 2.409268+2 3.425024-5 2.448491+2 3.438857-5 2.474487+2 3.447776-5 2.480441+2 3.457484-5 2.476376+2 3.470546-5 2.456794+2 3.504198-5 2.383483+2 3.520252-5 2.357608+2 3.548134-5 2.330348+2 3.576959-5 2.305711+2 3.616905-5 2.255509+2 3.643187-5 2.220209+2 3.707077-5 2.153131+2 3.784501-5 2.094949+2 3.908690-5 2.027868+2 4.012380-5 1.987084+2 4.147924-5 1.949367+2 4.358881-5 1.915712+2 4.656519-5 1.895998+2 4.952734-5 1.882596+2 5.032446-5 1.873125+2 5.065925-5 1.873968+2 5.101203-5 1.888567+2 5.127662-5 1.912252+2 5.174575-5 1.967893+2 5.203132-5 1.992092+2 5.222289-5 1.998886+2 5.238389-5 1.998982+2 5.323664-5 1.977855+2 5.364061-5 1.980493+2 5.474792-5 1.997511+2 5.594265-5 2.001251+2 5.900000-5 1.999753+2 6.165950-5 1.977328+2 6.389527-5 1.939035+2 6.614973-5 1.879694+2 6.804324-5 1.811424+2 6.991747-5 1.727681+2 7.148804-5 1.644905+2 7.304703-5 1.550952+2 7.450490-5 1.452736+2 7.570537-5 1.374433+2 7.631985-5 1.361159+2 7.745973-5 1.426850+2 7.864820-5 1.553917+2 8.000645-5 1.731746+2 8.115568-5 1.912875+2 8.204717-5 2.078318+2 8.317638-5 2.326561+2 8.423128-5 2.606640+2 8.517507-5 2.908096+2 8.609480-5 3.260022+2 8.685899-5 3.607808+2 8.768478-5 4.054869+2 8.838519-5 4.506433+2 8.899693-5 4.968922+2 8.931163-5 5.236444+2 8.995878-5 5.862564+2 9.023378-5 6.164817+2 9.067760-5 6.707246+2 9.104427-5 7.214556+2 9.146396-5 7.873188+2 9.185969-5 8.584871+2 9.230695-5 9.518423+2 9.266671-5 1.039136+3 9.293297-5 1.112213+3 9.332543-5 1.235856+3 9.372454-5 1.385725+3 9.404678-5 1.529341+3 9.438475-5 1.707929+3 9.470252-5 1.909672+3 9.500000-5 2.137867+3 9.522385-5 2.342506+3 9.543673-5 2.571202+3 9.562299-5 2.806008+3 9.578598-5 3.044910+3 9.592859-5 3.285549+3 9.605337-5 3.525334+3 9.627175-5 4.026670+3 9.643553-5 4.488359+3 9.655836-5 4.894692+3 9.665049-5 5.239138+3 9.678868-5 5.829666+3 9.692687-5 6.522815+3 9.716544-5 8.011999+3 9.728473-5 8.920652+3 9.752330-5 1.112851+4 9.801235-5 1.761055+4 9.821822-5 2.121804+4 9.836594-5 2.412685+4 9.851367-5 2.728250+4 9.875496-5 3.287643+4 9.878512-5 3.360539+4 9.899625-5 3.881210+4 9.907920-5 4.087625+4 9.923754-5 4.477002+4 9.933677-5 4.713659+4 9.944294-5 4.956626+4 9.956643-5 5.221150+4 9.966172-5 5.408540+4 9.978975-5 5.632580+4 9.991314-5 5.813688+4 9.997650-5 5.891937+4 1.001179-4 6.027310+4 1.002283-4 6.093119+4 1.003732-4 6.123921+4 1.004573-4 6.112386+4 1.006991-4 5.960806+4 1.007918-4 5.858131+4 1.008395-4 5.796350+4 1.009930-4 5.559197+4 1.010907-4 5.380822+4 1.011585-4 5.246014+4 1.012738-4 4.998780+4 1.013621-4 4.796667+4 1.014882-4 4.493040+4 1.016200-4 4.163262+4 1.017711-4 3.778017+4 1.018917-4 3.470790+4 1.020381-4 3.105250+4 1.021330-4 2.875309+4 1.023743-4 2.327014+4 1.024413-4 2.185819+4 1.027470-4 1.610788+4 1.029035-4 1.362446+4 1.030562-4 1.149613+4 1.032528-4 9.165427+3 1.034365-4 7.367110+3 1.036322-4 5.807877+3 1.041007-4 3.267527+3 1.043044-4 2.572692+3 1.046486-4 1.834621+3 1.048753-4 1.617553+3 1.050082-4 1.588342+3 1.051267-4 1.625883+3 1.052218-4 1.701612+3 1.052959-4 1.790012+3 1.053632-4 1.893638+3 1.054052-4 1.970191+3 1.054638-4 2.092139+3 1.055154-4 2.215113+3 1.055691-4 2.358700+3 1.056623-4 2.647988+3 1.057940-4 3.146912+3 1.060675-4 4.550246+3 1.062586-4 5.846813+3 1.063997-4 6.978335+3 1.065741-4 8.581229+3 1.066945-4 9.814857+3 1.069379-4 1.259594+4 1.070717-4 1.426505+4 1.072244-4 1.625819+4 1.073496-4 1.793932+4 1.074206-4 1.890136+4 1.075413-4 2.053728+4 1.076715-4 2.227629+4 1.077588-4 2.341155+4 1.078798-4 2.492641+4 1.079705-4 2.600262+4 1.080857-4 2.727611+4 1.082119-4 2.853185+4 1.083072-4 2.936713+4 1.084342-4 3.031404+4 1.085312-4 3.089832+4 1.087747-4 3.179524+4 1.089003-4 3.192799+4 1.090702-4 3.175142+4 1.091978-4 3.135980+4 1.092725-4 3.103341+4 1.093949-4 3.035328+4 1.095324-4 2.939524+4 1.096473-4 2.845792+4 1.097950-4 2.710122+4 1.099182-4 2.586671+4 1.100734-4 2.421772+4 1.101856-4 2.298605+4 1.102978-4 2.173967+4 1.105528-4 1.893039+4 1.106085-4 1.833238+4 1.110341-4 1.412639+4 1.114894-4 1.055822+4 1.117260-4 9.111778+3 1.119328-4 8.056935+3 1.121351-4 7.193912+3 1.122718-4 6.693975+3 1.124084-4 6.252988+3 1.125595-4 5.825991+3 1.127573-4 5.349230+3 1.129551-4 4.950005+3 1.131136-4 4.675973+3 1.133906-4 4.275334+3 1.136677-4 3.951939+3 1.139623-4 3.671223+3 1.141904-4 3.488442+3 1.144001-4 3.341688+3 1.146051-4 3.214708+3 1.148258-4 3.093222+3 1.150742-4 2.972331+3 1.153366-4 2.859466+3 1.156848-4 2.728219+3 1.160350-4 2.612408+3 1.168201-4 2.392582+3 1.171997-4 2.300806+3 1.178224-4 2.167269+3 1.183118-4 2.076213+3 1.189458-4 1.974704+3 1.198891-4 1.852201+3 1.208295-4 1.756087+3 1.219492-4 1.667011+3 1.233402-4 1.584358+3 1.245000-4 1.532568+3 1.259500-4 1.483380+3 1.273503-4 1.446733+3 1.287000-4 1.417866+3 1.334481-4 1.338485+3 1.449814-4 1.176469+3 1.902459-4 7.926859+2 1.971788-4 7.497091+2 2.012464-4 7.237645+2 2.035800-4 7.079847+2 2.082086-4 6.719141+2 2.094375-4 6.657738+2 2.107505-4 6.633293+2 2.132814-4 6.661151+2 2.158000-4 6.678246+2 2.213095-4 6.613863+2 2.268032-4 6.508473+2 2.371374-4 6.276899+2 2.434193-4 6.127605+2 2.485808-4 5.997400+2 2.570396-4 5.767322+2 2.594428-4 5.687126+2 2.641013-4 5.513038+2 2.654414-4 5.485111+2 2.667395-4 5.481423+2 2.712438-4 5.553901+2 2.733750-4 5.549151+2 2.800141-4 5.440119+2 2.990324-4 5.116055+2 3.117247-4 4.866372+2 3.260900-4 4.548239+2 3.314197-4 4.428722+2 3.374072-4 4.346206+2 3.419872-4 4.274875+2 3.539769-4 4.033622+2 3.693524-4 3.680341+2 3.816306-4 3.363357+2 3.915121-4 3.073573+2 3.974462-4 2.870985+2 4.032614-4 2.652131+2 4.052766-4 2.594271+2 4.069042-4 2.561357+2 4.101893-4 2.521188+2 4.125980-4 2.490918+2 4.147582-4 2.451455+2 4.170875-4 2.397865+2 4.208509-4 2.298298+2 4.240849-4 2.199812+2 4.288205-4 2.042909+2 4.320000-4 1.939819+2 4.363155-4 1.799991+2 4.394757-4 1.693069+2 4.422000-4 1.597929+2 4.450000-4 1.499351+2 4.535000-4 1.224409+2 4.553750-4 1.174668+2 4.574577-4 1.126395+2 4.595306-4 1.086731+2 4.621894-4 1.049754+2 4.644928-4 1.031717+2 4.670932-4 1.028346+2 4.700000-4 1.047279+2 4.725105-4 1.083694+2 4.765000-4 1.180488+2 4.802484-4 1.315249+2 4.835029-4 1.466674+2 4.882181-4 1.741133+2 4.957902-4 2.306637+2 5.000551-4 2.682565+2 5.030000-4 2.961636+2 5.050749-4 3.166312+2 5.080000-4 3.464388+2 5.108838-4 3.767261+2 5.135220-4 4.050602+2 5.159501-4 4.315534+2 5.194422-4 4.701647+2 5.242880-4 5.243034+2 5.289942-4 5.770469+2 5.347941-4 6.417809+2 5.417569-4 7.185744+2 5.475000-4 7.804475+2 5.559043-4 8.673315+2 5.617120-4 9.245230+2 5.684933-4 9.880171+2 5.790377-4 1.080836+3 5.903311-4 1.172739+3 6.025596-4 1.264312+3 6.117925-4 1.328598+3 6.273357-4 1.426252+3 6.456542-4 1.526241+3 6.654560-4 1.617318+3 6.837540-4 1.687675+3 6.996061-4 1.737018+3 7.169997-4 1.778369+3 7.315342-4 1.805669+3 7.398610-4 1.868492+3 7.436944-4 1.945331+3 7.454266-4 1.992940+3 7.492411-4 2.117400+3 7.541476-4 2.266155+3 7.563974-4 2.305865+3 7.582503-4 2.318436+3 7.601451-4 2.311847+3 7.620246-4 2.288054+3 7.656570-4 2.210499+3 7.689883-4 2.131627+3 7.707636-4 2.096112+3 7.725845-4 2.067690+3 7.763176-4 2.037980+3 7.820936-4 2.058721+3 7.839642-4 2.079140+3 7.880663-4 2.142992+3 7.939478-4 2.266300+3 7.993353-4 2.369553+3 8.013936-4 2.394124+3 8.033794-4 2.406937+3 8.053804-4 2.408898+3 8.073558-4 2.401335+3 8.168513-4 2.318805+3 8.190502-4 2.307516+3 8.225880-4 2.302132+3 8.320029-4 2.337402+3 8.462526-4 2.409415+3 8.676796-4 2.494087+3 9.041698-4 2.606677+3 9.339261-4 2.677135+3 9.681622-4 2.740483+3 1.003651-3 2.782184+3 1.043614-3 2.796470+3 1.056046-3 2.812054+3 1.070427-3 2.855011+3 1.093327-3 2.944092+3 1.106751-3 2.986212+3 1.132691-3 3.040823+3 1.164796-3 3.088345+3 1.205426-3 3.132549+3 1.255354-3 3.170119+3 1.310690-3 3.192767+3 1.356146-3 3.224405+3 1.397502-3 3.238085+3 1.461403-3 3.237351+3 1.479769-3 3.243197+3 1.519181-3 3.271924+3 1.566751-3 3.287868+3 1.629005-3 3.293010+3 1.716511-3 3.286733+3 1.790838-3 3.269029+3 1.898676-3 3.236189+3 1.998136-3 3.199128+3 2.109284-3 3.149501+3 2.235689-3 3.080721+3 2.367931-3 3.004012+3 2.513142-3 2.909057+3 2.637850-3 2.821409+3 2.783973-3 2.709007+3 2.909336-3 2.604392+3 3.032886-3 2.491797+3 3.136437-3 2.384113+3 3.224503-3 2.281948+3 3.298598-3 2.185577+3 3.359310-3 2.096273+3 3.409082-3 2.013161+3 3.454025-3 1.927321+3 3.492962-3 1.840827+3 3.527000-3 1.751430+3 3.551942-3 1.676256+3 3.588468-3 1.565489+3 3.596911-3 1.544832+3 3.605699-3 1.527397+3 3.614665-3 1.514758+3 3.621382-3 1.509008+3 3.628189-3 1.506467+3 3.640861-3 1.509848+3 3.658480-3 1.527756+3 3.696022-3 1.586379+3 3.729608-3 1.648414+3 3.769304-3 1.734292+3 3.794000-3 1.799546+3 3.814643-3 1.866054+3 3.850020-3 1.993725+3 3.868816-3 2.056997+3 3.906765-3 2.169570+3 3.941499-3 2.269038+3 3.961163-3 2.323006+3 3.978294-3 2.366082+3 4.007935-3 2.429471+3 4.039203-3 2.482019+3 4.073870-3 2.526928+3 4.112422-3 2.564370+3 4.150913-3 2.591121+3 4.194526-3 2.610356+3 4.237157-3 2.618372+3 4.271957-3 2.615935+3 4.333184-3 2.591963+3 4.370362-3 2.579425+3 4.385968-3 2.581390+3 4.403013-3 2.591349+3 4.430029-3 2.625076+3 4.499383-3 2.760336+3 4.520998-3 2.796992+3 4.543263-3 2.827912+3 4.574643-3 2.861264+3 4.615324-3 2.892256+3 4.667265-3 2.920147+3 4.720862-3 2.940205+3 4.772375-3 2.953204+3 4.853847-3 2.965384+3 4.993052-3 2.967811+3 5.132888-3 2.948381+3 5.243418-3 2.913230+3 5.312384-3 2.886624+3 5.363642-3 2.880416+3 5.491587-3 2.907250+3 5.573830-3 2.904557+3 5.693639-3 2.886114+3 5.796014-3 2.901882+3 5.884229-3 2.913026+3 6.033576-3 2.906209+3 6.259548-3 2.876102+3 6.551885-3 2.822812+3 6.874405-3 2.754104+3 7.328245-3 2.650211+3 7.776000-3 2.545835+3 8.222426-3 2.439589+3 8.857314-3 2.293248+3 9.529333-3 2.146834+3 1.028460-2 1.993971+3 1.123230-2 1.817537+3 1.228076-2 1.642794+3 1.278428-2 1.565233+3 1.336042-2 1.480749+3 1.393039-2 1.401038+3 1.445440-2 1.330523+3 1.487648-2 1.275176+3 1.527786-2 1.223330+3 1.561736-2 1.179203+3 1.592435-2 1.138842+3 1.617731-2 1.104774+3 1.640417-2 1.072989+3 1.658820-2 1.045842+3 1.675184-2 1.020065+3 1.688496-2 9.972277+2 1.700326-2 9.745763+2 1.710027-2 9.534264+2 1.722963-2 9.204349+2 1.744692-2 8.607449+2 1.751582-2 8.474354+2 1.758256-2 8.404532+2 1.764022-2 8.398082+2 1.771339-2 8.458224+2 1.780820-2 8.618798+2 1.795396-2 8.918810+2 1.806005-2 9.097640+2 1.812269-2 9.177083+2 1.820802-2 9.256605+2 1.831521-2 9.320103+2 1.843211-2 9.357878+2 1.857461-2 9.375230+2 1.873054-2 9.369662+2 1.890046-2 9.342305+2 1.912492-2 9.281094+2 1.955450-2 9.110432+2 2.002488-2 8.868646+2 2.026370-2 8.726350+2 2.048580-2 8.580202+2 2.068332-2 8.436690+2 2.086474-2 8.289011+2 2.101878-2 8.145574+2 2.122108-2 7.920886+2 2.147429-2 7.612964+2 2.158277-2 7.513506+2 2.168055-2 7.460999+2 2.177379-2 7.446054+2 2.194709-2 7.480489+2 2.225916-2 7.559491+2 2.249219-2 7.619837+2 2.285263-2 7.770647+2 2.306791-2 7.825106+2 2.338661-2 7.838707+2 2.378397-2 7.799856+2 2.430201-2 7.708616+2 2.486709-2 7.581491+2 2.602773-2 7.278720+2 2.717033-2 6.959539+2 2.913860-2 6.417956+2 3.130275-2 5.869648+2 3.408617-2 5.248804+2 3.768889-2 4.568097+2 4.078411-2 4.072447+2 4.530529-2 3.472058+2 5.079427-2 2.900135+2 5.510894-2 2.537026+2 6.022209-2 2.181696+2 7.084807-2 1.641434+2 8.000000-2 1.321196+2 9.051557-2 1.053072+2 9.788828-2 9.066949+1 1.013036-1 8.469619+1 1.065250-1 7.624394+1 1.102792-1 7.045512+1 1.128144-1 6.648930+1 1.138114-1 6.484774+1 1.146991-1 6.329358+1 1.154031-1 6.195190+1 1.164016-1 5.978822+1 1.181093-1 5.577641+1 1.186244-1 5.493252+1 1.190494-1 5.452687+1 1.194350-1 5.440773+1 1.200237-1 5.463140+1 1.217198-1 5.631612+1 1.226310-1 5.689132+1 1.237372-1 5.711095+1 1.254314-1 5.688792+1 1.275976-1 5.616783+1 1.301366-1 5.503791+1 1.338243-1 5.320082+1 1.400850-1 4.992627+1 1.493173-1 4.526208+1 1.599387-1 4.045740+1 1.791001-1 3.335216+1 2.064568-1 2.594558+1 2.438864-1 1.919383+1 2.874353-1 1.418124+1 3.567514-1 9.458363+0 4.579009-1 5.880804+0 6.225578-1 3.252467+0 9.386420-1 1.462345+0 1.347258+0 7.197915-1 2.135261+0 2.894454-1 4.461192+0 6.671936-2 1.347258+1 7.326593-3 4.068655+1 8.033715-4 1.228714+2 8.808820-5 3.710658+2 9.658680-6 1.258925+3 8.391113-7 3.981072+3 8.391113-8 1.258925+4 8.391113-9 3.981072+4 8.39111-10 1.000000+5 1.32990-10 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.786400-6 1.258900-6 4.416200-6 1.584900-6 6.999100-6 1.995300-6 1.109300-5 2.511900-6 1.758100-5 3.162300-6 2.786400-5 3.981100-6 4.416100-5 5.011900-6 6.999000-5 6.309600-6 1.109300-4 7.943300-6 1.758000-4 1.000000-5 2.786300-4 1.258900-5 4.415900-4 1.584900-5 6.995100-4 1.995300-5 1.107900-3 2.511900-5 1.755000-3 3.162300-5 2.780400-3 3.981100-5 4.405300-3 5.011900-5 6.980300-3 6.309600-5 1.106100-2 7.943300-5 1.750100-2 1.000000-4 2.768100-2 1.258900-4 4.376700-2 1.584900-4 6.899700-2 1.995300-4 1.085800-1 2.511900-4 1.701100-1 3.162300-4 2.647700-1 3.981100-4 4.076200-1 5.011900-4 6.148500-1 6.309600-4 9.046600-1 7.943300-4 1.290500+0 1.000000-3 1.781200+0 1.258900-3 2.387400+0 1.584900-3 3.139300+0 1.995300-3 4.083400+0 2.511900-3 5.256100+0 3.162300-3 6.676400+0 3.981100-3 8.364000+0 5.011900-3 1.030900+1 6.309600-3 1.247200+1 7.943300-3 1.488900+1 1.000000-2 1.760000+1 1.258900-2 2.056900+1 1.584900-2 2.364300+1 1.995300-2 2.663200+1 2.511900-2 2.949300+1 3.162300-2 3.219300+1 3.981100-2 3.460000+1 5.011900-2 3.651900+1 6.309600-2 3.779700+1 7.943300-2 3.840700+1 1.000000-1 3.837800+1 1.258900-1 3.773500+1 1.584900-1 3.648800+1 1.995300-1 3.489800+1 2.511900-1 3.293900+1 3.162300-1 3.077700+1 3.981100-1 2.850200+1 5.011900-1 2.618000+1 6.309600-1 2.386900+1 7.943300-1 2.161100+1 1.000000+0 1.943600+1 1.258900+0 1.735900+1 1.584900+0 1.540100+1 1.995300+0 1.357200+1 2.511900+0 1.188200+1 3.162300+0 1.033600+1 3.981100+0 8.937700+0 5.011900+0 7.684500+0 6.309600+0 6.572000+0 7.943300+0 5.593600+0 1.000000+1 4.739500+0 1.258900+1 3.999600+0 1.584900+1 3.362700+0 1.995300+1 2.817900+0 2.511900+1 2.354200+0 3.162300+1 1.961500+0 3.981100+1 1.630300+0 5.011900+1 1.352100+0 6.309600+1 1.119000+0 7.943300+1 9.244700-1 1.000000+2 7.624800-1 1.258900+2 6.279200-1 1.584900+2 5.163900-1 1.995300+2 4.241300-1 2.511900+2 3.479400-1 3.162300+2 2.851300-1 3.981100+2 2.334300-1 5.011900+2 1.909200-1 6.309600+2 1.560100-1 7.943300+2 1.273900-1 1.000000+3 1.039300-1 1.258900+3 8.473500-2 1.584900+3 6.903600-2 1.995300+3 5.621000-2 2.511900+3 4.573900-2 3.162300+3 3.719700-2 3.981100+3 3.023300-2 5.011900+3 2.456100-2 6.309600+3 1.994200-2 7.943300+3 1.618500-2 1.000000+4 1.312900-2 1.258900+4 1.064600-2 1.584900+4 8.628700-3 1.995300+4 6.990800-3 2.511900+4 5.661700-3 3.162300+4 4.583500-3 3.981100+4 3.709400-3 5.011900+4 3.000900-3 6.309600+4 2.426900-3 7.943300+4 1.962100-3 1.000000+5 1.585800-3 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997262-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159557-4 3.981072-4 3.976777-4 5.011872-4 5.005115-4 6.309573-4 6.298970-4 7.943282-4 7.926698-4 1.000000-3 9.974093-4 1.258925-3 1.254891-3 1.584893-3 1.578586-3 1.995262-3 1.985369-3 2.511886-3 2.496349-3 3.162278-3 3.137896-3 3.981072-3 3.942862-3 5.011872-3 4.952129-3 6.309573-3 6.216283-3 7.943282-3 7.798041-3 1.000000-2 9.773407-3 1.258925-2 1.223630-2 1.584893-2 1.530183-2 1.995262-2 1.910944-2 2.511886-2 2.382430-2 3.162278-2 2.964086-2 3.981072-2 3.679184-2 5.011872-2 4.555441-2 6.309573-2 5.625599-2 7.943282-2 6.927884-2 1.000000-1 8.502666-2 1.258925-1 1.040344-1 1.584893-1 1.269810-1 1.995262-1 1.542819-1 2.511886-1 1.869896-1 3.162278-1 2.258852-1 3.981072-1 2.720137-1 5.011872-1 3.265811-1 6.309573-1 3.909671-1 7.943282-1 4.668677-1 1.000000+0 5.560943-1 1.258925+0 6.614324-1 1.584893+0 7.856605-1 1.995262+0 9.326934-1 2.511886+0 1.107217+0 3.162278+0 1.314896+0 3.981072+0 1.562849+0 5.011872+0 1.859705+0 6.309573+0 2.216004+0 7.943282+0 2.644370+0 1.000000+1 3.160972+0 1.258925+1 3.785163+0 1.584893+1 4.540242+0 1.995262+1 5.455494+0 2.511886+1 6.566311+0 3.162278+1 7.916236+0 3.981072+1 9.558775+0 5.011872+1 1.155963+1 6.309573+1 1.399937+1 7.943282+1 1.697702+1 1.000000+2 2.061436+1 1.258925+2 2.506176+1 1.584893+2 3.050328+1 1.995262+2 3.716693+1 2.511886+2 4.533181+1 3.162278+2 5.534434+1 3.981072+2 6.762911+1 5.011872+2 8.271252+1 6.309573+2 1.012419+2 7.943282+2 1.240177+2 1.000000+3 1.520266+2 1.258925+3 1.864897+2 1.584893+3 2.289187+2 1.995262+3 2.811769+2 2.511886+3 3.455612+2 3.162278+3 4.249306+2 3.981072+3 5.228172+2 5.011872+3 6.435773+2 6.309573+3 7.926362+2 7.943282+3 9.766708+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88196-10 1.995262-5 1.090625-9 2.511886-5 1.728496-9 3.162278-5 2.739513-9 3.981072-5 4.341884-9 5.011872-5 6.881404-9 6.309573-5 1.090599-8 7.943282-5 1.727738-8 1.000000-4 2.737541-8 1.258925-4 4.337392-8 1.584893-4 6.868124-8 1.995262-4 1.087508-7 2.511886-4 1.720930-7 3.162278-4 2.720757-7 3.981072-4 4.294343-7 5.011872-4 6.757091-7 6.309573-4 1.060364-6 7.943282-4 1.658444-6 1.000000-3 2.590711-6 1.258925-3 4.034288-6 1.584893-3 6.306899-6 1.995262-3 9.893038-6 2.511886-3 1.553737-5 3.162278-3 2.438147-5 3.981072-3 3.820922-5 5.011872-3 5.974354-5 6.309573-3 9.329048-5 7.943282-3 1.452415-4 1.000000-2 2.265925-4 1.258925-2 3.529511-4 1.584893-2 5.471062-4 1.995262-2 8.431840-4 2.511886-2 1.294569-3 3.162278-2 1.981912-3 3.981072-2 3.018872-3 5.011872-2 4.564311-3 6.309573-2 6.839740-3 7.943282-2 1.015399-2 1.000000-1 1.497334-2 1.258925-1 2.185810-2 1.584893-1 3.150831-2 1.995262-1 4.524431-2 2.511886-1 6.419909-2 3.162278-1 9.034257-2 3.981072-1 1.260935-1 5.011872-1 1.746061-1 6.309573-1 2.399902-1 7.943282-1 3.274605-1 1.000000+0 4.439057-1 1.258925+0 5.974930-1 1.584893+0 7.992327-1 1.995262+0 1.062569+0 2.511886+0 1.404669+0 3.162278+0 1.847382+0 3.981072+0 2.418223+0 5.011872+0 3.152168+0 6.309573+0 4.093569+0 7.943282+0 5.298913+0 1.000000+1 6.839028+0 1.258925+1 8.804091+0 1.584893+1 1.130869+1 1.995262+1 1.449713+1 2.511886+1 1.855255+1 3.162278+1 2.370654+1 3.981072+1 3.025194+1 5.011872+1 3.855909+1 6.309573+1 4.909636+1 7.943282+1 6.245580+1 1.000000+2 7.938564+1 1.258925+2 1.008308+2 1.584893+2 1.279860+2 1.995262+2 1.623593+2 2.511886+2 2.058568+2 3.162278+2 2.608834+2 3.981072+2 3.304781+2 5.011872+2 4.184747+2 6.309573+2 5.297154+2 7.943282+2 6.703106+2 1.000000+3 8.479734+2 1.258925+3 1.072436+3 1.584893+3 1.355975+3 1.995262+3 1.714085+3 2.511886+3 2.166325+3 3.162278+3 2.737347+3 3.981072+3 3.458255+3 5.011872+3 4.368295+3 6.309573+3 5.516937+3 7.943282+3 6.966612+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 4.110000-6 6.172208+6 4.180000-6 6.262800+6 4.365158-6 6.428768+6 4.600000-6 6.588240+6 4.750000-6 6.655468+6 4.750000-6 9.598441+6 4.800000-6 9.673835+6 4.900000-6 9.795988+6 4.960000-6 9.857782+6 5.150000-6 1.003383+7 5.248075-6 1.011354+7 5.420000-6 1.022688+7 5.600000-6 1.032466+7 5.700000-6 1.036595+7 5.880000-6 1.042531+7 5.880000-6 2.024645+7 5.956621-6 1.990613+7 6.025596-6 1.956857+7 6.350000-6 1.815981+7 6.500000-6 1.759992+7 6.700000-6 1.691741+7 6.918310-6 1.625215+7 7.000000-6 1.602789+7 7.100000-6 1.575946+7 7.585776-6 1.462416+7 8.128305-6 1.358510+7 8.222426-6 1.342567+7 8.317638-6 1.326414+7 8.609938-6 1.281124+7 8.810489-6 1.252018+7 9.030000-6 1.221159+7 9.030000-6 1.259269+7 9.120108-6 1.247063+7 9.200000-6 1.236665+7 9.440609-6 1.205863+7 9.772372-6 1.165581+7 1.000000-5 1.139658+7 1.010000-5 1.128237+7 1.012000-5 1.126009+7 1.012000-5 1.149020+7 1.035142-5 1.124047+7 1.059254-5 1.098924+7 1.060000-5 1.098132+7 1.085000-5 1.072716+7 1.090000-5 1.067869+7 1.096478-5 1.061711+7 1.120000-5 1.039148+7 1.122018-5 1.037290+7 1.150000-5 1.011216+7 1.161449-5 1.001191+7 1.175000-5 9.892004+6 1.188502-5 9.776963+6 1.190000-5 9.763680+6 1.210000-5 9.592455+6 1.230269-5 9.428207+6 1.245000-5 9.309791+6 1.258925-5 9.202297+6 1.273503-5 9.087089+6 1.280000-5 9.037475+6 1.290000-5 8.963097+6 1.318257-5 8.753960+6 1.320000-5 8.741629+6 1.333521-5 8.648409+6 1.350000-5 8.532516+6 1.364583-5 8.429687+6 1.365000-5 8.426820+6 1.412538-5 8.122020+6 1.420000-5 8.075112+6 1.428894-5 8.017889+6 1.470000-5 7.772854+6 1.496236-5 7.631300+6 1.513561-5 7.534397+6 1.531087-5 7.442420+6 1.570000-5 7.255876+6 1.584893-5 7.187132+6 1.610000-5 7.072055+6 1.621810-5 7.021432+6 1.659587-5 6.874061+6 1.678804-5 6.802689+6 1.698244-5 6.731448+6 1.757924-5 6.545466+6 1.778279-5 6.488859+6 1.840772-5 6.335399+6 1.862087-5 6.293461+6 1.883649-5 6.253678+6 1.905461-5 6.218659+6 1.980000-5 6.126195+6 2.041738-5 6.085072+6 2.070000-5 6.075256+6 2.113489-5 6.071317+6 2.162719-5 6.082688+6 2.213095-5 6.112175+6 2.238721-5 6.133077+6 2.290868-5 6.185158+6 2.317395-5 6.217733+6 2.378500-5 6.306453+6 2.400000-5 6.340398+6 2.426610-5 6.385092+6 2.454709-5 6.436939+6 2.511886-5 6.551205+6 2.525000-5 6.577565+6 2.525000-5 2.199380+7 2.580000-5 2.104534+7 2.600160-5 2.072379+7 2.630268-5 2.026964+7 2.660725-5 1.983508+7 2.691535-5 1.942360+7 2.754229-5 1.866279+7 2.800000-5 1.816317+7 2.818383-5 1.798228+7 2.884032-5 1.738712+7 2.917427-5 1.711059+7 2.951209-5 1.684734+7 3.000000-5 1.650070+7 3.040000-5 1.623683+7 3.090295-5 1.593113+7 3.126079-5 1.573719+7 3.162278-5 1.554909+7 3.198895-5 1.536911+7 3.273407-5 1.504796+7 3.300000-5 1.494119+7 3.427678-5 1.449452+7 3.450000-5 1.442540+7 3.467369-5 1.437161+7 3.552000-5 1.413849+7 3.552000-5 2.070781+7 3.589219-5 2.047685+7 3.630781-5 2.021962+7 3.672823-5 1.995664+7 3.740000-5 1.956436+7 3.758374-5 1.945920+7 3.801894-5 1.920692+7 3.900000-5 1.869088+7 3.935501-5 1.851611+7 3.950000-5 1.844725+7 3.981072-5 1.829490+7 4.120975-5 1.768144+7 4.168694-5 1.749708+7 4.265795-5 1.711544+7 4.315191-5 1.693864+7 4.400000-5 1.665940+7 4.415704-5 1.660600+7 4.466836-5 1.643403+7 4.623810-5 1.596585+7 4.677351-5 1.580895+7 4.800000-5 1.547191+7 4.850000-5 1.534790+7 5.000000-5 1.496467+7 5.011872-5 1.493590+7 5.080000-5 1.477673+7 5.188000-5 1.450568+7 5.248075-5 1.436487+7 5.300000-5 1.424973+7 5.400000-5 1.400644+7 5.439000-5 1.391530+7 5.439000-5 1.425694+7 5.495409-5 1.411733+7 5.500000-5 1.410612+7 5.623413-5 1.377942+7 5.688529-5 1.361671+7 5.900000-5 1.306952+7 5.920000-5 1.301473+7 6.025596-5 1.273558+7 6.095369-5 1.255924+7 6.165950-5 1.236719+7 6.309573-5 1.199688+7 6.382635-5 1.179760+7 6.531306-5 1.141294+7 6.580000-5 1.128133+7 6.606934-5 1.120988+7 6.760830-5 1.081709+7 6.800000-5 1.071210+7 6.839116-5 1.060918+7 7.000000-5 1.020320+7 7.244360-5 9.589841+6 7.328245-5 9.377819+6 7.413102-5 9.171339+6 7.500000-5 8.967802+6 7.585776-5 8.758923+6 7.673615-5 8.552517+6 7.800000-5 8.268218+6 7.852356-5 8.146761+6 7.943282-5 7.942511+6 8.035261-5 7.743434+6 8.150000-5 7.489327+6 8.317638-5 7.139368+6 8.511380-5 6.738546+6 8.609938-5 6.546990+6 8.709636-5 6.348358+6 8.810489-5 6.155757+6 8.912509-5 5.969427+6 9.000000-5 5.805281+6 9.225714-5 5.409389+6 9.332543-5 5.223699+6 9.500000-5 4.949957+6 9.549926-5 4.867617+6 9.800000-5 4.481301+6 1.000000-4 4.185703+6 1.011579-4 4.026607+6 1.035142-4 3.711676+6 1.040000-4 3.650778+6 1.047129-4 3.559506+6 1.060000-4 3.402175+6 1.071519-4 3.268941+6 1.094700-4 3.010352+6 1.094700-4 4.180029+6 1.096478-4 4.206644+6 1.098000-4 4.228469+6 1.100000-4 4.255672+6 1.107000-4 4.363407+6 1.113000-4 4.465869+6 1.118500-4 4.566351+6 1.122018-4 4.630923+6 1.124000-4 4.669780+6 1.129500-4 4.773796+6 1.135011-4 4.876550+6 1.141000-4 4.981023+6 1.146000-4 5.062650+6 1.150000-4 5.120837+6 1.152000-4 5.151384+6 1.157700-4 5.224624+6 1.161449-4 5.264586+6 1.163000-4 5.281765+6 1.169000-4 5.332622+6 1.170000-4 5.338335+6 1.174898-4 5.366600+6 1.175000-4 5.367195+6 1.182500-4 5.387477+6 1.184800-4 5.386392+6 1.184800-4 6.115452+6 1.186000-4 6.132344+6 1.190000-4 6.182083+6 1.192000-4 6.201949+6 1.198000-4 6.270497+6 1.204000-4 6.333736+6 1.205000-4 6.343205+6 1.208500-4 6.375349+6 1.211000-4 6.400177+6 1.212000-4 6.408570+6 1.218000-4 6.458659+6 1.219000-4 6.466591+6 1.225000-4 6.506925+6 1.230269-4 6.541334+6 1.235000-4 6.561298+6 1.240000-4 6.579786+6 1.242800-4 6.587228+6 1.244515-4 6.589655+6 1.245000-4 6.590385+6 1.252000-4 6.590418+6 1.257000-4 6.584314+6 1.258925-4 6.579440+6 1.262000-4 6.568759+6 1.267000-4 6.545057+6 1.273503-4 6.505397+6 1.278000-4 6.470354+6 1.280000-4 6.453676+6 1.287000-4 6.383535+6 1.295000-4 6.292417+6 1.303167-4 6.188775+6 1.310000-4 6.091848+6 1.318257-4 5.968025+6 1.320000-4 5.942269+6 1.330000-4 5.786345+6 1.333521-4 5.729177+6 1.345000-4 5.547081+6 1.348963-4 5.482432+6 1.350000-4 5.465680+6 1.364583-4 5.232737+6 1.365000-4 5.226011+6 1.380384-4 4.984293+6 1.390000-4 4.839929+6 1.400000-4 4.691943+6 1.412538-4 4.510690+6 1.415000-4 4.476181+6 1.421100-4 4.391771+6 1.421350-4 4.388355+6 1.428894-4 4.286882+6 1.430000-4 4.272024+6 1.450000-4 4.013216+6 1.465000-4 3.828009+6 1.479108-4 3.662890+6 1.480000-4 3.652761+6 1.500000-4 3.430236+6 1.513561-4 3.286079+6 1.531087-4 3.110427+6 1.548817-4 2.941112+6 1.560000-4 2.840003+6 1.566751-4 2.780305+6 1.580000-4 2.667762+6 1.590000-4 2.584951+6 1.610000-4 2.428438+6 1.621810-4 2.341467+6 1.635000-4 2.248723+6 1.640590-4 2.210317+6 1.650000-4 2.147390+6 1.670000-4 2.020779+6 1.678804-4 1.967969+6 1.680000-4 1.960939+6 1.698244-4 1.857402+6 1.705000-4 1.820899+6 1.717908-4 1.753370+6 1.720000-4 1.742737+6 1.737801-4 1.656475+6 1.740000-4 1.646215+6 1.757924-4 1.565243+6 1.770000-4 1.513662+6 1.778279-4 1.479534+6 1.798871-4 1.398832+6 1.800000-4 1.394581+6 1.819701-4 1.323943+6 1.820000-4 1.322909+6 1.840772-4 1.253590+6 1.862087-4 1.187378+6 1.880000-4 1.135881+6 1.883649-4 1.125933+6 1.890000-4 1.108935+6 1.915000-4 1.045436+6 1.927525-4 1.015552+6 1.940000-4 9.869430+5 1.949845-4 9.651902+5 1.950000-4 9.648530+5 1.953400-4 9.576387+5 1.957000-4 9.500936+5 1.973000-4 9.176037+5 1.980000-4 9.039052+5 1.990000-4 8.850671+5 2.000000-4 8.668211+5 2.007000-4 8.543858+5 2.018366-4 8.347759+5 2.020000-4 8.320718+5 2.023000-4 8.271518+5 2.035000-4 8.079284+5 2.040000-4 8.001258+5 2.050000-4 7.848678+5 2.055000-4 7.774180+5 2.065380-4 7.622971+5 2.070000-4 7.557327+5 2.080000-4 7.418264+5 2.085000-4 7.353179+5 2.095000-4 7.225767+5 2.100000-4 7.163461+5 2.107000-4 7.077774+5 2.115000-4 6.981990+5 2.123000-4 6.888323+5 2.125600-4 6.858409+5 2.125600-4 1.048681+6 2.128000-4 1.045315+6 2.137962-4 1.031563+6 2.140000-4 1.028856+6 2.142000-4 1.026221+6 2.155000-4 1.009408+6 2.158000-4 1.005603+6 2.168100-4 9.930129+5 2.170000-4 9.907136+5 2.173000-4 9.871125+5 2.185000-4 9.729732+5 2.190000-4 9.671991+5 2.198000-4 9.583500+5 2.213095-4 9.420782+5 2.230900-4 9.236429+5 2.238721-4 9.157766+5 2.240000-4 9.145036+5 2.250000-4 9.051584+5 2.265000-4 8.915218+5 2.270000-4 8.870776+5 2.290868-4 8.690491+5 2.300000-4 8.616621+5 2.317395-4 8.482537+5 2.345100-4 8.278676+5 2.350000-4 8.245038+5 2.371374-4 8.103303+5 2.398833-4 7.929536+5 2.400000-4 7.922354+5 2.420000-4 7.809571+5 2.426610-4 7.773062+5 2.454709-4 7.622694+5 2.460000-4 7.598172+5 2.483133-4 7.493092+5 2.500000-4 7.418970+5 2.511886-4 7.368202+5 2.540973-4 7.257531+5 2.550000-4 7.224179+5 2.570396-4 7.150131+5 2.580000-4 7.119305+5 2.600160-4 7.055973+5 2.630268-4 6.969221+5 2.635000-4 6.956610+5 2.637900-4 6.948842+5 2.650000-4 6.918938+5 2.660725-4 6.892486+5 2.691535-4 6.819229+5 2.703130-4 6.793640+5 2.710000-4 6.778422+5 2.729500-4 6.739031+5 2.729500-4 8.137313+5 2.750000-4 8.072194+5 2.754229-4 8.058886+5 2.786121-4 7.963272+5 2.800000-4 7.924891+5 2.818383-4 7.874736+5 2.830000-4 7.844265+5 2.851018-4 7.787558+5 2.860000-4 7.763557+5 2.880000-4 7.708476+5 2.884032-4 7.698035+5 2.900000-4 7.657866+5 2.917427-4 7.612680+5 2.951209-4 7.530304+5 2.970000-4 7.487071+5 2.985383-4 7.451893+5 3.019952-4 7.377760+5 3.030000-4 7.356612+5 3.054921-4 7.307197+5 3.090295-4 7.239169+5 3.100000-4 7.222457+5 3.126079-4 7.182213+5 3.162278-4 7.127839+5 3.198895-4 7.074390+5 3.200000-4 7.072789+5 3.235937-4 7.024250+5 3.273407-4 6.974744+5 3.280000-4 6.966108+5 3.311311-4 6.927396+5 3.320000-4 6.916598+5 3.328000-4 6.907145+5 3.349654-4 6.882750+5 3.350000-4 6.882356+5 3.362500-4 6.868301+5 3.362500-4 7.363086+5 3.370000-4 7.353928+5 3.388442-4 7.332495+5 3.429800-4 7.284620+5 3.430000-4 7.284391+5 3.467369-4 7.243717+5 3.507519-4 7.200528+5 3.548134-4 7.157707+5 3.550000-4 7.155711+5 3.589219-4 7.114728+5 3.600000-4 7.103433+5 3.672823-4 7.033202+5 3.715352-4 6.992600+5 3.801894-4 6.911906+5 3.845918-4 6.872381+5 3.935501-4 6.790522+5 3.981072-4 6.750777+5 4.000000-4 6.734378+5 4.027170-4 6.711155+5 4.073803-4 6.672252+5 4.100000-4 6.650907+5 4.120975-4 6.634502+5 4.137700-4 6.620571+5 4.146000-4 6.613544+5 4.146000-4 7.434728+5 4.168694-4 7.412179+5 4.170000-4 7.410890+5 4.195000-4 7.391953+5 4.216965-4 7.379850+5 4.255000-4 7.359446+5 4.265795-4 7.355477+5 4.267500-4 7.354810+5 4.267500-4 7.910195+5 4.270000-4 7.914820+5 4.277000-4 7.921543+5 4.280000-4 7.923050+5 4.290000-4 7.930790+5 4.300000-4 7.936115+5 4.307000-4 7.942336+5 4.315191-4 7.948409+5 4.317000-4 7.949769+5 4.330000-4 7.964788+5 4.332000-4 7.966814+5 4.344000-4 7.983797+5 4.355000-4 8.003814+5 4.365158-4 8.027281+5 4.370000-4 8.038280+5 4.385000-4 8.081470+5 4.400000-4 8.135394+5 4.415704-4 8.207060+5 4.422000-4 8.240285+5 4.430000-4 8.286076+5 4.440000-4 8.350946+5 4.445000-4 8.385861+5 4.450000-4 8.424351+5 4.465000-4 8.549967+5 4.466836-4 8.567636+5 4.480000-4 8.699682+5 4.485000-4 8.754193+5 4.495000-4 8.873075+5 4.508000-4 9.042811+5 4.515400-4 9.147815+5 4.523000-4 9.262430+5 4.535000-4 9.458271+5 4.550000-4 9.728292+5 4.565000-4 1.002873+6 4.570882-4 1.015626+6 4.585000-4 1.047131+6 4.600000-4 1.084186+6 4.607000-4 1.101952+6 4.623810-4 1.148199+6 4.630000-4 1.165756+6 4.640000-4 1.195650+6 4.665000-4 1.274822+6 4.677351-4 1.316002+6 4.690000-4 1.360864+6 4.700000-4 1.396414+6 4.715000-4 1.453024+6 4.731513-4 1.516328+6 4.740000-4 1.550726+6 4.765000-4 1.653202+6 4.786301-4 1.743441+6 4.790000-4 1.759887+6 4.815000-4 1.869927+6 4.841724-4 1.990719+6 4.850000-4 2.027714+6 4.865000-4 2.097314+6 4.871500-4 2.127760+6 4.890000-4 2.213631+6 4.897788-4 2.250105+6 4.900000-4 2.260605+6 4.923700-4 2.371716+6 4.930000-4 2.401467+6 4.954502-4 2.515237+6 4.965000-4 2.564309+6 4.990000-4 2.678704+6 5.000000-4 2.724567+6 5.011872-4 2.777073+6 5.020000-4 2.813741+6 5.030000-4 2.857953+6 5.050000-4 2.944219+6 5.060000-4 2.986810+6 5.080000-4 3.068937+6 5.100000-4 3.150200+6 5.110000-4 3.189232+6 5.128614-4 3.260373+6 5.135000-4 3.285201+6 5.150000-4 3.337774+6 5.170000-4 3.409381+6 5.188000-4 3.472077+6 5.200000-4 3.511469+6 5.230000-4 3.606246+6 5.245000-4 3.651384+6 5.248075-4 3.660153+6 5.280000-4 3.752470+6 5.308844-4 3.827755+6 5.320000-4 3.857277+6 5.370318-4 3.974719+6 5.380000-4 3.996385+6 5.400000-4 4.036637+6 5.432503-4 4.098774+6 5.450000-4 4.132571+6 5.495409-4 4.205505+6 5.500000-4 4.212936+6 5.559043-4 4.289044+6 5.560000-4 4.290288+6 5.580000-4 4.313415+6 5.623413-4 4.356056+6 5.650000-4 4.378440+6 5.688529-4 4.404678+6 5.690000-4 4.405681+6 5.754399-4 4.442102+6 5.760000-4 4.445268+6 5.850000-4 4.473651+6 5.888437-4 4.478083+6 5.956621-4 4.485826+6 6.025596-4 4.480304+6 6.050000-4 4.478314+6 6.095369-4 4.471265+6 6.165950-4 4.453074+6 6.237348-4 4.429553+6 6.309573-4 4.399889+6 6.313200-4 4.398407+6 6.382635-4 4.365421+6 6.430000-4 4.343237+6 6.456542-4 4.328753+6 6.500000-4 4.305179+6 6.531306-4 4.286573+6 6.606934-4 4.242294+6 6.683439-4 4.198476+6 6.700000-4 4.188018+6 6.760830-4 4.147215+6 6.839116-4 4.095626+6 6.918310-4 4.044649+6 6.930000-4 4.037204+6 7.079458-4 3.931759+6 7.161434-4 3.876018+6 7.244360-4 3.818668+6 7.300000-4 3.778511+6 7.413102-4 3.698925+6 7.500000-4 3.637253+6 7.585776-4 3.578060+6 7.672900-4 3.516662+6 7.672900-4 3.857233+6 7.673615-4 3.856767+6 7.762471-4 3.799648+6 7.852356-4 3.741545+6 7.943282-4 3.684433+6 7.950000-4 3.680284+6 8.000000-4 3.648831+6 8.035261-4 3.625798+6 8.128305-4 3.566311+6 8.129400-4 3.565601+6 8.129400-4 3.749811+6 8.222426-4 3.694950+6 8.237000-4 3.686525+6 8.317638-4 3.640018+6 8.350000-4 3.621730+6 8.480000-4 3.548609+6 8.500000-4 3.537404+6 8.511380-4 3.530797+6 8.609938-4 3.472974+6 8.709636-4 3.414966+6 8.750000-4 3.392040+6 8.810489-4 3.357809+6 8.912509-4 3.300721+6 9.000000-4 3.252604+6 9.015711-4 3.243611+6 9.120108-4 3.185021+6 9.225714-4 3.126861+6 9.332543-4 3.069870+6 9.440609-4 3.012804+6 9.549926-4 2.956951+6 9.772372-4 2.843999+6 9.850000-4 2.806122+6 9.885531-4 2.788908+6 1.000000-3 2.734666+6 1.011579-3 2.680114+6 1.015000-3 2.664334+6 1.023293-3 2.625870+6 1.030000-3 2.595441+6 1.035142-3 2.572375+6 1.059254-3 2.467847+6 1.070000-3 2.423546+6 1.070800-3 2.420238+6 1.070800-3 2.573798+6 1.071519-3 2.570724+6 1.083927-3 2.518674+6 1.090000-3 2.493302+6 1.096478-3 2.466477+6 1.109175-3 2.415252+6 1.122018-3 2.365253+6 1.135011-3 2.316440+6 1.148154-3 2.268479+6 1.161449-3 2.221652+6 1.174898-3 2.174859+6 1.190000-3 2.123556+6 1.202264-3 2.083098+6 1.216186-3 2.038455+6 1.230269-3 1.994895+6 1.244515-3 1.951256+6 1.270000-3 1.876035+6 1.273503-3 1.866009+6 1.288250-3 1.824743+6 1.300000-3 1.792931+6 1.303167-3 1.784507+6 1.318257-3 1.744872+6 1.319500-3 1.741633+6 1.319500-3 1.763915+6 1.333521-3 1.728037+6 1.348963-3 1.689328+6 1.350000-3 1.686780+6 1.380384-3 1.614396+6 1.412538-3 1.542593+6 1.428894-3 1.507975+6 1.440000-3 1.484755+6 1.445440-3 1.473578+6 1.462177-3 1.440030+6 1.478900-3 1.407437+6 1.478900-3 1.433351+6 1.479108-3 1.432950+6 1.513561-3 1.368301+6 1.548817-3 1.306615+6 1.566751-3 1.276602+6 1.570000-3 1.271280+6 1.584893-3 1.246911+6 1.610000-3 1.207394+6 1.621810-3 1.189391+6 1.640590-3 1.161606+6 1.650000-3 1.148073+6 1.659587-3 1.134543+6 1.698244-3 1.082521+6 1.701200-3 1.078665+6 1.717908-3 1.057107+6 1.730000-3 1.041823+6 1.737801-3 1.032116+6 1.778279-3 9.836653+5 1.800000-3 9.591481+5 1.819701-3 9.374935+5 1.850000-3 9.056789+5 1.862087-3 8.933542+5 1.883649-3 8.718594+5 1.905461-3 8.507585+5 1.927525-3 8.301930+5 1.949845-3 8.100239+5 1.950000-3 8.098865+5 1.972423-3 7.903221+5 2.000000-3 7.671225+5 2.018366-3 7.522588+5 2.030000-3 7.430769+5 2.041738-3 7.339790+5 2.065380-3 7.160473+5 2.070000-3 7.126234+5 2.089296-3 6.984876+5 2.137962-3 6.647197+5 2.150000-3 6.566980+5 2.162719-3 6.483468+5 2.187762-3 6.323561+5 2.213095-3 6.167777+5 2.220000-3 6.126352+5 2.238721-3 6.015424+5 2.264644-3 5.866859+5 2.290868-3 5.722331+5 2.300000-3 5.672960+5 2.317395-3 5.579775+5 2.344229-3 5.440611+5 2.400000-3 5.166392+5 2.426610-3 5.042868+5 2.454709-3 4.917258+5 2.483133-3 4.794607+5 2.500000-3 4.723591+5 2.511886-3 4.674216+5 2.540973-3 4.555555+5 2.570396-3 4.440042+5 2.600160-3 4.327311+5 2.630268-3 4.217704+5 2.660725-3 4.111107+5 2.691535-3 4.007455+5 2.722701-3 3.906348+5 2.754229-3 3.806710+5 2.786121-3 3.708976+5 2.818383-3 3.613905+5 2.851018-3 3.521299+5 2.884032-3 3.431194+5 2.900000-3 3.388880+5 2.951209-3 3.258265+5 3.000000-3 3.139963+5 3.019952-3 3.093164+5 3.054921-3 3.013238+5 3.090295-3 2.935269+5 3.126079-3 2.859493+5 3.140000-3 2.830766+5 3.150000-3 2.810373+5 3.162278-3 2.785538+5 3.235937-3 2.643206+5 3.273407-3 2.574981+5 3.311311-3 2.507803+5 3.349654-3 2.442515+5 3.388442-3 2.378835+5 3.427678-3 2.316657+5 3.467369-3 2.256140+5 3.500000-3 2.208108+5 3.507519-3 2.197228+5 3.548134-3 2.139785+5 3.589219-3 2.083545+5 3.630781-3 2.028889+5 3.668100-3 1.981363+5 3.668100-3 4.736263+5 3.672823-3 4.722129+5 3.693000-3 4.662345+5 3.713000-3 4.604179+5 3.715352-3 4.597850+5 3.758374-3 4.484314+5 3.780000-3 4.428731+5 3.790000-3 4.406586+5 3.801894-3 4.369793+5 3.845918-3 4.237227+5 3.859200-3 4.198324+5 3.859200-3 5.941724+5 3.870000-3 5.899986+5 3.890451-3 5.825294+5 3.935501-3 5.665445+5 3.970000-3 5.546849+5 4.000000-3 5.445057+5 4.027170-3 5.355051+5 4.073803-3 5.198905+5 4.120975-3 5.047424+5 4.150000-3 4.957208+5 4.168694-3 4.900273+5 4.230000-3 4.719789+5 4.265795-3 4.619168+5 4.300000-3 4.525797+5 4.315191-3 4.485092+5 4.365158-3 4.352891+5 4.415704-3 4.224482+5 4.421600-3 4.209846+5 4.421600-3 4.912680+5 4.466836-3 4.791464+5 4.500000-3 4.705335+5 4.518559-3 4.658109+5 4.540000-3 4.604355+5 4.570882-3 4.528080+5 4.623810-3 4.400172+5 4.650000-3 4.338801+5 4.677351-3 4.275982+5 4.731513-3 4.154074+5 4.786301-3 4.035686+5 4.800000-3 4.006802+5 4.841724-3 3.920481+5 4.954502-3 3.700140+5 5.069907-3 3.491260+5 5.128614-3 3.391365+5 5.188000-3 3.294440+5 5.248075-3 3.199890+5 5.308844-3 3.107951+5 5.365500-3 3.025435+5 5.365500-3 3.212613+5 5.370318-3 3.205569+5 5.405000-3 3.155174+5 5.432503-3 3.116032+5 5.495409-3 3.029146+5 5.623413-3 2.863022+5 5.688529-3 2.783233+5 5.712200-3 2.754778+5 5.712200-3 2.871389+5 5.754399-3 2.820534+5 5.821032-3 2.742909+5 5.888437-3 2.666985+5 5.890000-3 2.665258+5 5.956621-3 2.593395+5 6.000000-3 2.547817+5 6.025596-3 2.521465+5 6.095369-3 2.451505+5 6.165950-3 2.383486+5 6.237348-3 2.317480+5 6.309573-3 2.253416+5 6.456542-3 2.130171+5 6.500000-3 2.095620+5 6.531306-3 2.071174+5 6.606934-3 2.013464+5 6.683439-3 1.957017+5 6.760830-3 1.902260+5 6.800000-3 1.875385+5 6.918310-3 1.797133+5 6.928200-3 1.790820+5 6.998420-3 1.746906+5 7.161434-3 1.650890+5 7.244360-3 1.604695+5 7.328245-3 1.559827+5 7.413102-3 1.515610+5 7.498942-3 1.472666+5 7.500000-3 1.472148+5 7.585776-3 1.430895+5 7.673615-3 1.390371+5 7.762471-3 1.351058+5 7.852356-3 1.312929+5 7.943282-3 1.275571+5 8.000000-3 1.253020+5 8.035261-3 1.239244+5 8.128305-3 1.203901+5 8.222426-3 1.169564+5 8.317638-3 1.136181+5 8.413951-3 1.103778+5 8.511380-3 1.072308+5 8.609938-3 1.041783+5 8.709636-3 1.012238+5 8.912509-3 9.557874+4 9.000000-3 9.328016+4 9.015711-3 9.287593+4 9.120108-3 9.024766+4 9.225714-3 8.769859+4 9.332543-3 8.520498+4 9.400000-3 8.366793+4 9.440609-3 8.275807+4 9.549926-3 8.037910+4 9.660509-3 7.806019+4 9.800000-3 7.526676+4 9.885531-3 7.362517+4 1.000000-2 7.150727+4 1.011579-2 6.944180+4 1.023293-2 6.743759+4 1.047129-2 6.360622+4 1.059254-2 6.177637+4 1.071519-2 5.999311+4 1.083927-2 5.826419+4 1.096478-2 5.658797+4 1.109175-2 5.496189+4 1.122018-2 5.337562+4 1.148154-2 5.034389+4 1.161449-2 4.889707+4 1.174898-2 4.749264+4 1.188502-2 4.612052+4 1.190000-2 4.597224+4 1.202264-2 4.477931+4 1.216186-2 4.347764+4 1.230269-2 4.221061+4 1.244515-2 4.097873+4 1.258925-2 3.978372+4 1.261910-2 3.954239+4 1.273503-2 3.862489+4 1.288250-2 3.750019+4 1.300000-2 3.663759+4 1.318257-2 3.534824+4 1.333521-2 3.431897+4 1.364583-2 3.235420+4 1.380384-2 3.141472+4 1.396368-2 3.050009+4 1.400000-2 3.029758+4 1.412538-2 2.960989+4 1.445440-2 2.790847+4 1.462177-2 2.709649+4 1.479108-2 2.630566+4 1.496236-2 2.553410+4 1.500000-2 2.536892+4 1.513561-2 2.478590+4 1.531087-2 2.405796+4 1.548817-2 2.335246+4 1.566751-2 2.266586+4 1.584893-2 2.200039+4 1.603245-2 2.135345+4 1.621810-2 2.072644+4 1.659587-2 1.952973+4 1.678804-2 1.895871+4 1.698244-2 1.840160+4 1.717908-2 1.786017+4 1.737801-2 1.733545+4 1.757924-2 1.682665+4 1.762600-2 1.671053+4 1.762600-2 3.953878+4 1.790000-2 3.808330+4 1.798871-2 3.758882+4 1.819701-2 3.646244+4 1.840772-2 3.536971+4 1.862087-2 3.431033+4 1.865000-2 3.416900+4 1.883649-2 3.326364+4 1.905461-2 3.224419+4 1.927525-2 3.125555+4 1.949845-2 3.030785+4 1.972423-2 2.938927+4 1.995262-2 2.849904+4 2.000000-2 2.831908+4 2.018366-2 2.763586+4 2.041738-2 2.678335+4 2.089296-2 2.515435+4 2.113489-2 2.437802+4 2.137962-2 2.362610+4 2.162719-2 2.289762+4 2.170200-2 2.268312+4 2.170200-2 3.213840+4 2.187762-2 3.149569+4 2.200000-2 3.105837+4 2.213095-2 3.058144+4 2.238721-2 2.967558+4 2.244000-2 2.949364+4 2.244000-2 3.405702+4 2.264644-2 3.326919+4 2.265000-2 3.325582+4 2.275000-2 3.289358+4 2.290868-2 3.232186+4 2.317395-2 3.139734+4 2.344229-2 3.050008+4 2.371374-2 2.963439+4 2.380000-2 2.936881+4 2.398833-2 2.879256+4 2.426610-2 2.797151+4 2.450000-2 2.730580+4 2.454709-2 2.717597+4 2.483133-2 2.639998+4 2.511886-2 2.563962+4 2.540973-2 2.490175+4 2.570396-2 2.418491+4 2.600160-2 2.348166+4 2.630268-2 2.279928+4 2.691535-2 2.149500+4 2.722701-2 2.087189+4 2.754229-2 2.026853+4 2.786121-2 1.967958+4 2.818383-2 1.910825+4 2.851018-2 1.855326+4 2.884032-2 1.801431+4 2.900000-2 1.776157+4 2.951209-2 1.698399+4 3.000000-2 1.628680+4 3.019952-2 1.601333+4 3.054921-2 1.554612+4 3.070000-2 1.535055+4 3.162278-2 1.422172+4 3.198895-2 1.380622+4 3.235937-2 1.340269+4 3.273407-2 1.301116+4 3.311311-2 1.263086+4 3.349654-2 1.225759+4 3.388442-2 1.189356+4 3.427678-2 1.154065+4 3.467369-2 1.119850+4 3.507519-2 1.086670+4 3.548134-2 1.054498+4 3.589219-2 1.023277+4 3.630781-2 9.928747+3 3.672823-2 9.633898+3 3.758374-2 9.070176+3 3.801894-2 8.801119+3 3.845918-2 8.539832+3 3.890451-2 8.286471+3 4.000000-2 7.706586+3 4.027170-2 7.571618+3 4.073803-2 7.347564+3 4.120975-2 7.130311+3 4.168694-2 6.918253+3 4.216965-2 6.711433+3 4.265795-2 6.510547+3 4.315191-2 6.315817+3 4.365158-2 6.127074+3 4.415704-2 5.944041+3 4.466836-2 5.765169+3 4.518559-2 5.591800+3 4.570882-2 5.423756+3 4.677351-2 5.102962+3 4.731513-2 4.949911+3 4.786301-2 4.801526+3 4.841724-2 4.657661+3 4.897788-2 4.518209+3 4.954502-2 4.382896+3 5.000000-2 4.278420+3 5.011872-2 4.251733+3 5.069907-2 4.124453+3 5.128614-2 4.001042+3 5.188000-2 3.880439+3 5.248075-2 3.762940+3 5.370318-2 3.538754+3 5.432503-2 3.431827+3 5.495409-2 3.328201+3 5.500000-2 3.320809+3 5.559043-2 3.227745+3 5.623413-2 3.130393+3 5.688529-2 3.036041+3 5.754399-2 2.943940+3 5.821032-2 2.854692+3 5.888437-2 2.768206+3 5.956621-2 2.684317+3 6.025596-2 2.603002+3 6.095369-2 2.524200+3 6.165950-2 2.447762+3 6.382635-2 2.232331+3 6.456542-2 2.164698+3 6.531306-2 2.098914+3 6.760830-2 1.913527+3 6.839116-2 1.855472+3 6.918310-2 1.798831+3 7.000000-2 1.742839+3 7.079458-2 1.690672+3 7.244360-2 1.589113+3 7.328245-2 1.540685+3 7.413102-2 1.493725+3 7.498942-2 1.448224+3 7.585776-2 1.404136+3 7.852356-2 1.279907+3 8.000000-2 1.217608+3 8.128305-2 1.166739+3 8.222426-2 1.131174+3 8.317638-2 1.096496+3 8.413951-2 1.062862+3 8.511380-2 1.030277+3 8.810489-2 9.384778+2 8.912509-2 9.097646+2 9.015711-2 8.819449+2 9.120108-2 8.549735+2 9.660509-2 7.321896+2 9.772372-2 7.098694+2 9.885531-2 6.882414+2 1.000000-1 6.671610+2 1.011580-1 6.467231+2 1.059254-1 5.710468+2 1.083927-1 5.366415+2 1.109175-1 5.043092+2 1.122019-1 4.888920+2 1.174898-1 4.318424+2 1.188502-1 4.186691+2 1.192000-1 4.153721+2 1.192000-1 1.745056+3 1.202264-1 1.708807+3 1.216186-1 1.661257+3 1.218000-1 1.655200+3 1.225000-1 1.628258+3 1.230269-1 1.611668+3 1.244515-1 1.568005+3 1.250000-1 1.551644+3 1.258925-1 1.523020+3 1.273503-1 1.477815+3 1.288250-1 1.433946+3 1.318257-1 1.355154+3 1.333521-1 1.317410+3 1.348963-1 1.279091+3 1.364583-1 1.241894+3 1.380384-1 1.205783+3 1.396368-1 1.170727+3 1.445440-1 1.071577+3 1.462177-1 1.040439+3 1.496236-1 9.808595+2 1.513561-1 9.523404+2 1.548817-1 8.977733+2 1.584893-1 8.463464+2 1.603245-1 8.217524+2 1.610000-1 8.129542+2 1.659587-1 7.522094+2 1.698244-1 7.091594+2 1.717908-1 6.885825+2 1.778279-1 6.303746+2 1.798871-1 6.120900+2 1.819701-1 5.943381+2 1.840772-1 5.771028+2 1.905461-1 5.283473+2 1.927525-1 5.130331+2 1.949845-1 4.981640+2 1.972423-1 4.837276+2 2.000000-1 4.668747+2 2.018366-1 4.561074+2 2.041738-1 4.429002+2 2.065380-1 4.300784+2 2.113489-1 4.055411+2 2.137962-1 3.938042+2 2.162719-1 3.824157+2 2.187762-1 3.713577+2 2.213095-1 3.606203+2 2.238721-1 3.501944+2 2.290868-1 3.302399+2 2.344229-1 3.114256+2 2.371374-1 3.024264+2 2.398833-1 2.936880+2 2.400000-1 2.933245+2 2.426610-1 2.852079+2 2.483133-1 2.689771+2 2.511886-1 2.612127+2 2.540973-1 2.536725+2 2.570396-1 2.463519+2 2.576800-1 2.447989+2 2.600160-1 2.393092+2 2.630268-1 2.324869+2 2.660725-1 2.258596+2 2.691535-1 2.194215+2 2.722701-1 2.131676+2 2.754229-1 2.070994+2 2.786121-1 2.012053+2 2.800000-1 1.987136+2 2.818383-1 1.954812+2 2.851018-1 1.899216+2 2.917427-1 1.792730+2 2.951209-1 1.741754+2 3.000000-1 1.671649+2 3.000060-1 1.671565+2 3.019952-1 1.644118+2 3.054921-1 1.597414+2 3.090295-1 1.552048+2 3.126079-1 1.508588+2 3.162278-1 1.466349+2 3.198895-1 1.425296+2 3.235937-1 1.385435+2 3.273407-1 1.346696+2 3.311311-1 1.309041+2 3.349654-1 1.272442+2 3.388442-1 1.236867+2 3.427678-1 1.202342+2 3.467369-1 1.168783+2 3.507519-1 1.136163+2 3.548134-1 1.104483+2 3.589219-1 1.073688+2 3.630781-1 1.043758+2 3.672823-1 1.015133+2 3.715352-1 9.872991+1 3.758374-1 9.602294+1 3.801894-1 9.339035+1 3.845918-1 9.083015+1 3.890451-1 8.834128+1 4.027170-1 8.127784+1 4.073803-1 7.905773+1 4.120975-1 7.689961+1 4.168694-1 7.484042+1 4.216965-1 7.283691+1 4.265795-1 7.088717+1 4.315191-1 6.898977+1 4.365158-1 6.714327+1 4.415705-1 6.534624+1 4.466836-1 6.359743+1 4.518559-1 6.189550+1 4.570882-1 6.023990+1 4.677351-1 5.706605+1 4.731513-1 5.554266+1 4.786301-1 5.409090+1 4.841724-1 5.267721+1 4.897788-1 5.130056+1 4.954502-1 4.995993+1 5.011872-1 4.865441+1 5.069907-1 4.738304+1 5.128614-1 4.614570+1 5.188000-1 4.494074+1 5.248075-1 4.376926+1 5.308844-1 4.262840+1 5.370318-1 4.151743+1 5.432503-1 4.043583+1 5.495409-1 3.940235+1 5.559043-1 3.839755+1 5.623413-1 3.741843+1 5.754399-1 3.553557+1 5.821032-1 3.463015+1 5.888437-1 3.374874+1 5.956621-1 3.288983+1 6.025596-1 3.205281+1 6.095369-1 3.123775+1 6.165950-1 3.046071+1 6.237348-1 2.970304+1 6.309573-1 2.896466+1 6.382635-1 2.824633+1 6.456542-1 2.754585+1 6.531306-1 2.686285+1 6.606935-1 2.619763+1 6.683439-1 2.554893+1 6.760830-1 2.491630+1 6.839117-1 2.429955+1 6.918310-1 2.369809+1 6.998420-1 2.312348+1 7.079458-1 2.256325+1 7.161434-1 2.201662+1 7.244360-1 2.148331+1 7.328245-1 2.096420+1 7.413102-1 2.045819+1 7.498942-1 1.996441+1 7.585776-1 1.948256+1 7.673615-1 1.901249+1 7.762471-1 1.855377+1 7.852356-1 1.810640+1 7.943282-1 1.766982+1 8.000000-1 1.741075+1 8.035261-1 1.725260+1 8.128305-1 1.684537+1 8.222427-1 1.644785+1 8.317638-1 1.606011+1 8.413951-1 1.568153+1 8.511380-1 1.531283+1 8.609938-1 1.495284+1 8.709636-1 1.460159+1 8.810489-1 1.425866+1 8.912509-1 1.392380+1 9.015711-1 1.359681+1 9.120108-1 1.327750+1 9.225714-1 1.296592+1 9.332543-1 1.266174+1 9.440609-1 1.237187+1 9.549926-1 1.208932+1 9.660509-1 1.181410+1 9.772372-1 1.154516+1 9.885531-1 1.128236+1 1.000000+0 1.102560+1 1.011579+0 1.077494+1 1.022000+0 1.055667+1 1.023293+0 1.053009+1 1.035142+0 1.029128+1 1.047129+0 1.006161+1 1.059254+0 9.837126+0 1.071519+0 9.617702+0 1.083927+0 9.403329+0 1.096478+0 9.193749+0 1.109175+0 8.988829+0 1.122018+0 8.788504+0 1.135011+0 8.592900+0 1.148154+0 8.401727+0 1.161449+0 8.215402+0 1.174898+0 8.033209+0 1.188502+0 7.855067+0 1.202264+0 7.680871+0 1.216186+0 7.510537+0 1.230269+0 7.344095+0 1.244515+0 7.185600+0 1.250000+0 7.126046+0 1.258925+0 7.030822+0 1.273503+0 6.879479+0 1.288250+0 6.731396+0 1.303167+0 6.586964+0 1.318257+0 6.445634+0 1.333521+0 6.307343+0 1.348963+0 6.172010+0 1.364583+0 6.039589+0 1.380384+0 5.910097+0 1.396368+0 5.786533+0 1.412538+0 5.665693+0 1.428894+0 5.547426+0 1.462177+0 5.318249+0 1.496236+0 5.099276+0 1.513561+0 4.993200+0 1.531087+0 4.889327+0 1.548817+0 4.787688+0 1.566751+0 4.690839+0 1.640590+0 4.322652+0 1.659587+0 4.235513+0 1.678804+0 4.150226+0 1.698244+0 4.066654+0 1.737801+0 3.904530+0 1.757924+0 3.825972+0 1.778279+0 3.750946+0 1.798871+0 3.677389+0 1.840772+0 3.534580+0 1.862087+0 3.465269+0 1.883649+0 3.397317+0 1.905461+0 3.330910+0 1.927525+0 3.265875+0 1.949845+0 3.202109+0 2.000000+0 3.065814+0 2.018366+0 3.018198+0 2.044000+0 2.953757+0 2.065380+0 2.903051+0 2.089296+0 2.847966+0 2.113489+0 2.793926+0 2.137962+0 2.740912+0 2.162719+0 2.688919+0 2.187762+0 2.638158+0 2.213095+0 2.588355+0 2.264644+0 2.491555+0 2.290868+0 2.444526+0 2.317395+0 2.398449+0 2.344229+0 2.354511+0 2.371374+0 2.311379+0 2.398833+0 2.269039+0 2.426610+0 2.227474+0 2.454709+0 2.186683+0 2.483133+0 2.146827+0 2.511886+0 2.107698+0 2.570396+0 2.031566+0 2.600160+0 1.994543+0 2.630268+0 1.958243+0 2.660725+0 1.922604+0 2.691535+0 1.888575+0 2.722701+0 1.855150+0 2.754229+0 1.822316+0 2.786121+0 1.790064+0 2.818383+0 1.758392+0 2.851018+0 1.727421+0 2.884032+0 1.696994+0 2.951209+0 1.637742+0 3.000000+0 1.596817+0 3.054921+0 1.552782+0 3.090295+0 1.525468+0 3.126079+0 1.499300+0 3.198895+0 1.448305+0 3.235937+0 1.423462+0 3.273407+0 1.399045+0 3.311311+0 1.375055+0 3.349654+0 1.351583+0 3.427678+0 1.305835+0 3.467369+0 1.283548+0 3.548134+0 1.240166+0 3.589219+0 1.219028+0 3.630781+0 1.198805+0 3.715352+0 1.159362+0 3.758374+0 1.140130+0 3.801894+0 1.121218+0 3.845918+0 1.102624+0 3.890451+0 1.084423+0 4.000000+0 1.041748+0 4.027170+0 1.031604+0 4.120975+0 9.978773-1 4.168694+0 9.814300-1 4.216965+0 9.656867-1 4.315191+0 9.349550-1 4.365158+0 9.199583-1 4.415704+0 9.052020-1 4.466836+0 8.906864-1 4.518559+0 8.764680-1 4.677351+0 8.351604-1 4.731513+0 8.218301-1 4.841724+0 7.958382-1 4.897788+0 7.831525-1 4.954502+0 7.709865-1 5.069907+0 7.472199-1 5.128614+0 7.356128-1 5.248075+0 7.129369-1 5.308844+0 7.018658-1 5.370318+0 6.910148-1 5.559043+0 6.594585-1 5.623413+0 6.492649-1 5.754399+0 6.293732-1 5.821032+0 6.196571-1 5.888437+0 6.103387-1 6.025596+0 5.921212-1 6.095369+0 5.832176-1 6.237348+0 5.658099-1 6.309573+0 5.573042-1 6.382635+0 5.489639-1 6.606934+0 5.246851-1 6.683439+0 5.168342-1 6.839116+0 5.015024-1 6.918310+0 4.940079-1 7.000000+0 4.866741-1 7.161434+0 4.727398-1 7.244360+0 4.658561-1 7.413102+0 4.523880-1 7.498942+0 4.458023-1 7.585776+0 4.393193-1 7.673615+0 4.329504-1 7.943282+0 4.143927-1 8.035261+0 4.083860-1 8.317638+0 3.909034-1 8.413951+0 3.852439-1 8.511380+0 3.798024-1 8.810489+0 3.639358-1 8.912509+0 3.587957-1 9.015711+0 3.537281-1 9.120108+0 3.487336-1 9.225714+0 3.438152-1 9.332543+0 3.389819-1 9.549926+0 3.295185-1 9.660509+0 3.248869-1 1.000000+1 3.113948-1 1.011579+1 3.070233-1 1.023293+1 3.028068-1 1.035142+1 2.986492-1 1.083927+1 2.825822-1 1.109175+1 2.748759-1 1.122018+1 2.711021-1 1.135011+1 2.673807-1 1.148154+1 2.637144-1 1.161449+1 2.601098-1 1.188502+1 2.530479-1 1.202264+1 2.495897-1 1.230269+1 2.428222-1 1.244515+1 2.395077-1 1.258925+1 2.363136-1 1.273503+1 2.331624-1 1.318257+1 2.239592-1 1.333521+1 2.209731-1 1.380384+1 2.122512-1 1.400000+1 2.087878-1 1.428894+1 2.038747-1 1.445440+1 2.011595-1 1.462177+1 1.984880-1 1.500000+1 1.926878-1 1.513561+1 1.906846-1 1.548817+1 1.856591-1 1.566751+1 1.831963-1 1.584893+1 1.808207-1 1.603245+1 1.784762-1 1.678804+1 1.693987-1 1.698244+1 1.672024-1 1.737801+1 1.628950-1 1.757924+1 1.607830-1 1.800000+1 1.565305-1 1.819701+1 1.546175-1 1.840772+1 1.526197-1 1.905461+1 1.467799-1 1.927525+1 1.448836-1 2.018366+1 1.375471-1 2.065380+1 1.340193-1 2.089296+1 1.323215-1 2.113489+1 1.306455-1 2.213095+1 1.241512-1 2.238721+1 1.225787-1 2.264644+1 1.210262-1 2.317395+1 1.179798-1 2.344229+1 1.164855-1 2.400000+1 1.134930-1 2.426610+1 1.121215-1 2.454709+1 1.107072-1 2.511886+1 1.079320-1 2.540973+1 1.065721-1 2.570396+1 1.052293-1 2.600160+1 1.039035-1 2.630268+1 1.026167-1 2.818383+1 9.522521-2 2.917427+1 9.173160-2 3.019952+1 8.836615-2 3.054921+1 8.727202-2 3.198895+1 8.302925-2 3.235937+1 8.200117-2 3.349654+1 7.899328-2 3.388442+1 7.801738-2 3.427678+1 7.705432-2 3.507519+1 7.516370-2 3.548134+1 7.423669-2 3.589219+1 7.332116-2 3.630781+1 7.243187-2 3.672823+1 7.155350-2 3.935501+1 6.650265-2 4.000000+1 6.536681-2 4.120975+1 6.333510-2 4.265795+1 6.105885-2 4.315191+1 6.031843-2 4.518559+1 5.744545-2 4.570882+1 5.674884-2 4.786301+1 5.404632-2 4.841724+1 5.339230-2 4.897788+1 5.274665-2 5.011872+1 5.147869-2 5.069907+1 5.085668-2 5.128614+1 5.024220-2 5.188000+1 4.963515-2 5.248075+1 4.904416-2 5.308844+1 4.846029-2 5.754399+1 4.456332-2 5.888437+1 4.350859-2 6.095369+1 4.197314-2 6.382635+1 4.000983-2 6.456542+1 3.953353-2 6.918310+1 3.679243-2 6.998420+1 3.635442-2 7.498942+1 3.383409-2 7.585776+1 3.343199-2 7.673615+1 3.303489-2 7.943282+1 3.187168-2 8.035261+1 3.149337-2 8.128305+1 3.111955-2 8.222427+1 3.075017-2 8.317638+1 3.038955-2 8.413951+1 3.003319-2 8.511380+1 2.968100-2 9.332543+1 2.700825-2 9.549926+1 2.637855-2 9.885531+1 2.546143-2 1.000000+2 2.516286-2 1.059254+2 2.372172-2 1.083927+2 2.316866-2 1.188502+2 2.108236-2 1.202264+2 2.083515-2 1.333521+2 1.873686-2 1.348963+2 1.851741-2 1.380384+2 1.808641-2 1.428894+2 1.745864-2 1.445440+2 1.725430-2 1.462177+2 1.705242-2 1.479108+2 1.685290-2 1.531087+2 1.626824-2 1.548817+2 1.607964-2 1.566751+2 1.589326-2 1.584893+2 1.570904-2 1.778279+2 1.398026-2 1.840772+2 1.349972-2 1.905461+2 1.303571-2 1.927525+2 1.288461-2 2.065380+2 1.201409-2 2.113489+2 1.173719-2 2.317395+2 1.069194-2 2.344229+2 1.056802-2 2.570396+2 9.626965-3 2.600160+2 9.515464-3 2.630268+2 9.405285-3 2.660725+2 9.296382-3 2.786121+2 8.873236-3 2.818383+2 8.770507-3 2.851018+2 8.668983-3 2.884032+2 8.568633-3 2.917427+2 8.469447-3 3.054921+2 8.084050-3 3.090295+2 7.990906-3 3.126079+2 7.898837-3 3.162278+2 7.807828-3 3.548134+2 6.953484-3 3.672823+2 6.715899-3 3.801894+2 6.486431-3 3.845918+2 6.411698-3 4.120975+2 5.981036-3 4.216965+2 5.844009-3 4.623810+2 5.326583-3 4.677351+2 5.265216-3 5.128614+2 4.799054-3 5.188000+2 4.743793-3 5.248075+2 4.689177-3 5.308844+2 4.635191-3 5.559043+2 4.425390-3 5.623413+2 4.374446-3 5.688529+2 4.324094-3 5.754399+2 4.274322-3 5.821032+2 4.225122-3 6.095369+2 4.033923-3 6.165950+2 3.987660-3 6.237348+2 3.941928-3 6.309573+2 3.896722-3 7.079458+2 3.472210-3 7.328245+2 3.354116-3 7.585776+2 3.240038-3 7.673615+2 3.202881-3 1.640590+3 1.495979-3 1.678804+3 1.461864-3 1.840772+3 1.333006-3 1.862087+3 1.317720-3 4.073803+3 6.014458-4 4.120975+3 5.945499-4 4.168694+3 5.877335-4 4.216965+3 5.809952-4 4.415704+3 5.548060-4 4.466836+3 5.484454-4 4.518559+3 5.421582-4 4.570882+3 5.359428-4 4.623810+3 5.297989-4 4.841724+3 5.059191-4 4.897788+3 5.001267-4 4.954502+3 4.944006-4 5.011872+3 4.887402-4 5.623413+3 4.355801-4 1.161449+4 2.108652-4 1.202264+4 2.037053-4 1.216186+4 2.013729-4 1.000000+5 2.448040-5 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 4.110000-6 4.110000-6 4.750000-6 4.110000-6 4.750000-6 4.306230-6 5.880000-6 4.331495-6 5.880000-6 5.082643-6 6.700000-6 4.924296-6 7.100000-6 4.861094-6 7.585776-6 4.796086-6 8.317638-6 4.718377-6 9.030000-6 4.661860-6 9.030000-6 4.794055-6 1.000000-5 4.751439-6 1.012000-5 4.748390-6 1.012000-5 4.855965-6 1.096478-5 4.855404-6 1.190000-5 4.883239-6 1.290000-5 4.947867-6 1.365000-5 5.019577-6 1.428894-5 5.097520-6 1.531087-5 5.254659-6 1.621810-5 5.426790-6 1.698244-5 5.594999-6 1.778279-5 5.790811-6 1.905461-5 6.134305-6 2.238721-5 7.096642-6 2.400000-5 7.516141-6 2.525000-5 7.800713-6 2.525000-5 2.003154-5 3.040000-5 1.716886-5 3.198895-5 1.635666-5 3.300000-5 1.587152-5 3.467369-5 1.513617-5 3.552000-5 1.479547-5 3.552000-5 2.137010-5 3.981072-5 1.939593-5 4.265795-5 1.818826-5 4.466836-5 1.740972-5 4.677351-5 1.666840-5 4.850000-5 1.610872-5 5.080000-5 1.545359-5 5.300000-5 1.490929-5 5.439000-5 1.461089-5 5.439000-5 1.556411-5 5.688529-5 1.498822-5 5.920000-5 1.454419-5 6.165950-5 1.415868-5 6.382635-5 1.388010-5 6.606934-5 1.364342-5 6.839116-5 1.344622-5 7.000000-5 1.332875-5 7.413102-5 1.310758-5 7.943282-5 1.293821-5 8.317638-5 1.287590-5 8.912509-5 1.286647-5 9.500000-5 1.294925-5 1.011579-4 1.312875-5 1.071519-4 1.339166-5 1.094700-4 1.351889-5 1.094700-4 4.036842-5 1.113000-4 4.896941-5 1.124000-4 5.388248-5 1.129500-4 5.616280-5 1.135011-4 5.830843-5 1.141000-4 6.049202-5 1.146000-4 6.217035-5 1.152000-4 6.400565-5 1.161449-4 6.649821-5 1.170000-4 6.838686-5 1.175000-4 6.935701-5 1.184800-4 7.094063-5 1.184800-4 7.660808-5 1.204000-4 8.037929-5 1.225000-4 8.392196-5 1.245000-4 8.664349-5 1.262000-4 8.843399-5 1.280000-4 8.981925-5 1.303167-4 9.102351-5 1.333521-4 9.194993-5 1.400000-4 9.309433-5 1.548817-4 9.482727-5 1.680000-4 9.571970-5 1.820000-4 9.603869-5 1.927525-4 9.565433-5 2.035000-4 9.453123-5 2.125600-4 9.297306-5 2.125600-4 1.047705-4 2.250000-4 1.036709-4 2.420000-4 1.012733-4 2.729500-4 9.631005-5 2.729500-4 1.126362-4 2.917427-4 1.086954-4 3.100000-4 1.047682-4 3.311311-4 1.012285-4 3.362500-4 1.005113-4 3.362500-4 1.078110-4 3.600000-4 1.052190-4 3.845918-4 1.033151-4 4.146000-4 1.017751-4 4.146000-4 1.118555-4 4.267500-4 1.118093-4 4.267500-4 1.176804-4 4.355000-4 1.191864-4 4.400000-4 1.206997-4 4.440000-4 1.228662-4 4.480000-4 1.259826-4 4.523000-4 1.303711-4 4.570882-4 1.362196-4 4.665000-4 1.484044-4 4.715000-4 1.542134-4 4.765000-4 1.592309-4 4.815000-4 1.634463-4 4.871500-4 1.673371-4 4.954502-4 1.716865-4 5.050000-4 1.751934-4 5.170000-4 1.780418-4 5.320000-4 1.802108-4 5.560000-4 1.820565-4 5.956621-4 1.832710-4 6.839116-4 1.838077-4 7.672900-4 1.836383-4 7.672900-4 1.955970-4 8.129400-4 1.970153-4 8.129400-4 2.031851-4 8.912509-4 2.068468-4 1.070800-3 2.126365-4 1.070800-3 2.240765-4 1.319500-3 2.323292-4 1.319500-3 2.353793-4 1.478900-3 2.405924-4 1.478900-3 2.453992-4 1.819701-3 2.559302-4 2.187762-3 2.652080-4 2.630268-3 2.743745-4 3.162278-3 2.832497-4 3.668100-3 2.901540-4 3.668100-3 4.224389-4 3.801894-3 4.233710-4 3.859200-3 4.231552-4 3.859200-3 4.498605-4 4.421600-3 4.499736-4 4.421600-3 4.840913-4 5.365500-3 4.891381-4 5.365500-3 5.065438-4 5.712200-3 5.097266-4 5.712200-3 5.245482-4 7.585776-3 5.433245-4 9.885531-3 5.614865-4 1.261910-2 5.781332-4 1.603245-2 5.940421-4 1.762600-2 6.001395-4 1.762600-2 7.223619-4 2.170200-2 7.266322-4 2.170200-2 7.692148-4 2.244000-2 7.701457-4 2.244000-2 8.239911-4 3.070000-2 8.433097-4 4.168694-2 8.615976-4 5.754399-2 8.804851-4 7.852356-2 8.975945-4 1.083927-1 9.140242-4 1.192000-1 9.186309-4 1.192000-1 8.436827-4 2.951209-1 8.489500-4 8.222427-1 8.516707-4 1.000000+5 8.518629-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.110000-6 0.0 2.125600-4 0.0 2.125600-4 2.271814-9 2.190000-4 2.354066-9 2.250000-4 2.414276-9 2.300000-4 2.452909-9 2.350000-4 2.481100-9 2.400000-4 2.497060-9 2.511886-4 2.505751-9 2.580000-4 2.495320-9 2.691535-4 2.464862-9 2.729500-4 2.449951-9 2.729500-4 4.647911-9 2.830000-4 4.498637-9 2.900000-4 4.369564-9 3.090295-4 3.972314-9 3.235937-4 3.713729-9 3.362500-4 3.510964-9 3.362500-4 3.902885-9 3.507519-4 3.716212-9 3.600000-4 3.608427-9 3.715352-4 3.486463-9 3.845918-4 3.362674-9 4.000000-4 3.238833-9 4.146000-4 3.136390-9 4.146000-4 1.518273-8 4.170000-4 1.515363-8 4.195000-4 1.519644-8 4.255000-4 1.545354-8 4.267500-4 1.553329-8 4.267500-4 1.726370-8 4.300000-4 1.761992-8 4.317000-4 1.787511-8 4.332000-4 1.816820-8 4.344000-4 1.845523-8 4.355000-4 1.876841-8 4.370000-4 1.928018-8 4.385000-4 1.989738-8 4.400000-4 2.062765-8 4.415704-4 2.152597-8 4.430000-4 2.246783-8 4.445000-4 2.358618-8 4.466836-4 2.546171-8 4.485000-4 2.722769-8 4.508000-4 2.973281-8 4.523000-4 3.147795-8 4.550000-4 3.481978-8 4.607000-4 4.219532-8 4.640000-4 4.629145-8 4.665000-4 4.915996-8 4.690000-4 5.179570-8 4.715000-4 5.418549-8 4.740000-4 5.633593-8 4.765000-4 5.826253-8 4.790000-4 5.998327-8 4.815000-4 6.152075-8 4.850000-4 6.338004-8 4.890000-4 6.515997-8 4.930000-4 6.663093-8 4.965000-4 6.766635-8 5.020000-4 6.889460-8 5.080000-4 6.985497-8 5.150000-4 7.064525-8 5.280000-4 7.159651-8 5.450000-4 7.225747-8 5.690000-4 7.258727-8 6.095369-4 7.280466-8 7.079458-4 7.248869-8 7.672900-4 7.214988-8 7.672900-4 7.408653-8 8.129400-4 7.406092-8 8.129400-4 8.473921-8 8.709636-4 8.708465-8 9.332543-4 8.890637-8 1.070800-3 9.192438-8 1.070800-3 1.171370-7 1.319500-3 1.262328-7 1.319500-3 1.320909-7 1.478900-3 1.386408-7 1.478900-3 1.502890-7 1.737801-3 1.621362-7 2.018366-3 1.737188-7 2.400000-3 1.878275-7 2.722701-3 1.983941-7 3.162278-3 2.114013-7 3.668100-3 2.245366-7 3.668100-3 2.697162-7 3.859200-3 2.715539-7 3.859200-3 5.205912-5 4.027170-3 5.259401-5 4.365158-3 5.231160-5 4.421600-3 5.230240-5 4.421600-3 5.253969-5 4.954502-3 5.229976-5 5.365500-3 5.195406-5 5.365500-3 5.815363-5 5.712200-3 5.852188-5 5.712200-3 5.965997-5 7.161434-3 6.117051-5 9.549926-3 6.305760-5 1.244515-2 6.476140-5 1.566751-2 6.620440-5 1.762600-2 6.693439-5 1.762600-2 3.927571-3 1.798871-2 3.934510-3 2.113489-2 3.897504-3 2.170200-2 3.888759-3 2.170200-2 5.793807-3 2.244000-2 5.811051-3 2.244000-2 6.086238-3 2.754229-2 6.156262-3 3.427678-2 6.214379-3 4.677351-2 6.264525-3 7.244360-2 6.303193-3 1.192000-1 6.321276-3 1.192000-1 8.330996-2 1.396368-1 8.396442-2 2.018366-1 8.496175-2 3.235937-1 8.578133-2 6.025596-1 8.666123-2 9.772372-1 8.725349-2 1.000000+5 8.727163-2 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 4.110000-6 0.0 4.750000-6 6.400000-7 4.750000-6 4.437699-7 4.960000-6 6.473099-7 5.700000-6 1.371446-6 5.880000-6 1.548505-6 5.880000-6 7.973567-7 6.350000-6 1.362425-6 6.700000-6 1.775704-6 7.100000-6 2.238906-6 7.585776-6 2.789690-6 8.317638-6 3.599261-6 9.030000-6 4.368140-6 9.030000-6 4.235945-6 1.000000-5 5.248561-6 1.012000-5 5.371610-6 1.012000-5 5.264035-6 1.122018-5 6.360560-6 1.245000-5 7.535600-6 1.365000-5 8.630423-6 1.496236-5 9.766025-6 1.621810-5 1.079131-5 1.778279-5 1.199198-5 2.041738-5 1.388838-5 2.317395-5 1.586554-5 2.525000-5 1.744929-5 2.525000-5 5.218461-6 2.660725-5 7.324635-6 2.917427-5 1.133997-5 3.126079-5 1.454180-5 3.300000-5 1.712848-5 3.467369-5 1.953752-5 3.552000-5 2.072453-5 3.552000-5 1.414990-5 3.981072-5 2.041479-5 4.315191-5 2.516145-5 4.677351-5 3.010511-5 5.011872-5 3.447472-5 5.400000-5 3.930639-5 5.439000-5 3.977911-5 5.439000-5 3.882589-5 5.688529-5 4.189707-5 6.165950-5 4.750082-5 6.800000-5 5.452435-5 7.673615-5 6.372379-5 9.000000-5 7.712477-5 1.060000-4 9.266324-5 1.094700-4 9.595111-5 1.094700-4 6.910158-5 1.118500-4 6.037307-5 1.124000-4 5.851752-5 1.129500-4 5.678720-5 1.135011-4 5.519267-5 1.141000-4 5.360798-5 1.146000-4 5.242965-5 1.152000-4 5.119435-5 1.157700-4 5.019807-5 1.163000-4 4.942074-5 1.170000-4 4.861314-5 1.175000-4 4.814299-5 1.184800-4 4.753937-5 1.184800-4 4.187192-5 1.192000-4 4.111320-5 1.205000-4 3.994196-5 1.219000-4 3.891737-5 1.230269-4 3.831103-5 1.245000-4 3.785651-5 1.257000-4 3.773927-5 1.267000-4 3.783675-5 1.280000-4 3.818075-5 1.295000-4 3.883745-5 1.310000-4 3.971809-5 1.333521-4 4.140217-5 1.365000-4 4.393059-5 1.450000-4 5.124876-5 1.560000-4 6.107161-5 1.680000-4 7.228030-5 1.800000-4 8.396249-5 1.915000-4 9.576193-5 2.023000-4 1.076066-4 2.125600-4 1.195869-4 2.125600-4 1.077872-4 2.270000-4 1.235621-4 2.500000-4 1.500262-4 2.729500-4 1.766375-4 2.729500-4 1.603092-4 3.162278-4 2.125817-4 3.362500-4 2.357352-4 3.362500-4 2.284351-4 3.715352-4 2.672920-4 4.146000-4 3.128218-4 4.146000-4 3.027293-4 4.267500-4 3.149252-4 4.267500-4 3.090523-4 4.370000-4 3.173727-4 4.440000-4 3.211106-4 4.495000-4 3.220654-4 4.570882-4 3.208310-4 4.700000-4 3.174151-4 4.786301-4 3.174576-4 4.871500-4 3.197485-4 4.965000-4 3.242882-4 5.100000-4 3.333787-4 5.308844-4 3.507322-4 5.650000-4 3.824664-4 6.606934-4 4.768352-4 7.672900-4 5.835795-4 7.672900-4 5.716189-4 8.129400-4 6.158507-4 8.129400-4 6.096701-4 1.023293-3 8.119884-4 1.070800-3 8.580715-4 1.070800-3 8.466064-4 1.319500-3 1.087045-3 1.319500-3 1.083989-3 1.478900-3 1.238169-3 1.478900-3 1.233351-3 2.426610-3 2.156013-3 3.668100-3 3.377721-3 3.668100-3 3.245392-3 3.859200-3 3.435773-3 3.859200-3 3.357281-3 4.421600-3 3.919324-3 4.421600-3 3.884969-3 5.365500-3 4.824408-3 5.365500-3 4.800803-3 5.712200-3 5.143952-3 5.712200-3 5.127992-3 1.513561-2 1.447930-2 1.762600-2 1.695893-2 1.762600-2 1.297607-2 2.170200-2 1.708661-2 2.170200-2 1.513898-2 2.244000-2 1.585880-2 2.244000-2 1.552977-2 3.589219-2 2.881699-2 1.122019-1 1.049665-1 1.192000-1 1.119601-1 1.192000-1 3.504636-2 1.218000-1 3.751825-2 1.230269-1 3.873505-2 1.258925-1 4.146766-2 1.318257-1 4.722307-2 1.717908-1 8.638168-2 2.722701-1 1.859005-1 1.096478+0 1.008320+0 1.000000+5 9.999991+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.192000-1 1.329684+3 1.218000-1 1.263312+3 1.225000-1 1.242390+3 1.250000-1 1.186258+3 1.288250-1 1.097106+3 1.333521-1 1.010531+3 2.576800-1 1.916363+2 3.090295-1 1.219317+2 3.630781-1 8.224351+1 4.120975-1 6.073332+1 4.731513-1 4.398077+1 5.432503-1 3.209575+1 6.095369-1 2.484285+1 6.918310-1 1.888870+1 7.943282-1 1.411471+1 9.332543-1 1.013681+1 1.035142+0 8.245902+0 1.230269+0 5.885824+0 1.380384+0 4.735474+0 1.548817+0 3.835082+0 1.757924+0 3.064752+0 2.044000+0 2.366163+0 2.317395+0 1.921364+0 2.660725+0 1.540158+0 3.090295+0 1.222014+0 3.589219+0 9.765372-1 4.168694+0 7.862095-1 4.897788+0 6.273649-1 5.821032+0 4.963942-1 6.918310+0 3.957383-1 8.413951+0 3.086098-1 1.011579+1 2.459521-1 1.244515+1 1.918661-1 1.566751+1 1.467579-1 2.065380+1 1.073600-1 2.600160+1 8.324042-2 3.589219+1 5.873983-2 5.188000+1 3.976411-2 8.222427+1 2.463496-2 1.531087+2 1.303287-2 3.054921+2 6.476800-3 6.095369+2 3.231786-3 4.841724+3 4.053452-4 1.000000+5 1.961400-5 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.192000-1 8.202700-4 1.000000+5 8.202700-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.192000-1 1.073600-1 1.000000+5 1.073600-1 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.192000-1 1.101973-2 1.000000+5 9.999989+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.244000-2 4.563374+3 2.265000-2 4.470631+3 2.344229-2 4.218230+3 2.380000-2 4.118320+3 2.450000-2 3.904520+3 2.570396-2 3.608495+3 2.722701-2 3.248228+3 3.070000-2 2.618660+3 3.311311-2 2.274582+3 3.589219-2 1.947692+3 4.415704-2 1.291029+3 5.128614-2 9.467460+2 5.688529-2 7.610525+2 6.839116-2 5.101203+2 8.222426-2 3.378784+2 9.885531-2 2.215277+2 1.202264-1 1.400962+2 1.496236-1 8.320389+1 2.722701-1 1.963615+1 3.388442-1 1.166974+1 4.027170-1 7.791571+0 4.731513-1 5.386537+0 5.495409-1 3.850980+0 6.309573-1 2.845181+0 7.244360-1 2.117493+0 8.413951-1 1.549682+0 9.549926-1 1.198179+0 1.148154+0 8.335855-1 1.288250+0 6.678418-1 1.462177+0 5.273475-1 1.640590+0 4.285531-1 1.883649+0 3.367726-1 2.162719+0 2.665393-1 2.454709+0 2.167293-1 2.818383+0 1.742803-1 3.311311+0 1.362770-1 3.845918+0 1.092774-1 4.466836+0 8.827345-2 5.308844+0 6.955847-2 6.309573+0 5.523377-2 7.585776+0 4.353940-2 9.225714+0 3.407408-2 1.148154+1 2.613576-2 1.445440+1 1.993799-2 1.800000+1 1.551300-2 2.400000+1 1.124800-2 3.349654+1 7.830897-3 4.786301+1 5.357581-3 7.498942+1 3.354105-3 1.333521+2 1.857389-3 2.570396+2 9.543421-4 5.128614+2 4.758826-4 4.073803+3 5.964041-5 1.000000+5 2.428100-6 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.244000-2 1.172000-3 1.000000+5 1.172000-3 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.244000-2 7.864800-3 1.000000+5 7.864800-3 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.244000-2 1.340320-2 1.000000+5 9.999999+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.170200-2 9.455277+3 2.200000-2 9.202900+3 2.275000-2 8.512000+3 2.371374-2 7.681800+3 2.454709-2 7.073200+3 3.019952-2 4.197100+3 3.349654-2 3.208600+3 4.120975-2 1.853500+3 5.128614-2 1.023400+3 6.456542-2 5.410500+2 8.128305-2 2.833900+2 1.083927-1 1.252800+2 1.698244-1 3.496700+1 2.137962-1 1.828800+1 2.570396-1 1.096783+1 3.019952-1 7.061957+0 3.507519-1 4.725926+0 4.027170-1 3.286103+0 4.570882-1 2.372257+0 5.188000-1 1.726114+0 5.821032-1 1.302026+0 6.531306-1 9.893650-1 7.328245-1 7.580815-1 8.222427-1 5.851337-1 9.440609-1 4.324946-1 1.022000+0 3.661197-1 1.122018+0 3.034675-1 1.244515+0 2.484677-1 1.396368+0 2.006673-1 1.659587+0 1.472094-1 1.905461+0 1.157315-1 2.162719+0 9.343853-2 2.454709+0 7.599370-2 2.818383+0 6.112263-2 3.311311+0 4.779992-2 3.845918+0 3.833014-2 4.466836+0 3.096228-2 5.308844+0 2.439753-2 6.309573+0 1.937316-2 7.498942+0 1.549686-2 9.120108+0 1.212292-2 1.135011+1 9.294486-3 1.428894+1 7.087158-3 1.800000+1 5.441100-3 2.400000+1 3.945100-3 3.388442+1 2.712926-3 4.841724+1 1.856546-3 7.585776+1 1.162552-3 1.348963+2 6.438730-4 2.600160+2 3.308698-4 5.188000+2 1.649939-4 4.120975+3 2.067959-5 1.000000+5 8.516500-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.170200-2 8.713700-4 1.000000+5 8.713700-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.170200-2 1.036400-2 1.000000+5 1.036400-2 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.170200-2 1.046663-2 1.000000+5 9.999999+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.762600-2 2.282825+4 1.790000-2 2.203060+4 1.865000-2 1.973940+4 1.927525-2 1.801148+4 2.018366-2 1.589171+4 2.483133-2 8.879963+3 2.754229-2 6.594753+3 3.311311-2 3.854602+3 4.168694-2 1.941451+3 5.188000-2 9.993856+2 6.382635-2 5.278219+2 8.000000-2 2.610824+2 1.083927-1 1.004625+2 1.603245-1 2.926764+1 2.000000-1 1.467660+1 2.400000-1 8.368246+0 2.800000-1 5.249656+0 3.198895-1 3.533506+0 3.630781-1 2.441748+0 4.073803-1 1.756487+0 4.570882-1 1.272594+0 5.069907-1 9.587227-1 5.623413-1 7.275784-1 6.237348-1 5.558931-1 6.998420-1 4.153681-1 7.762471-1 3.218973-1 8.609938-1 2.513373-1 9.440609-1 2.026624-1 1.000000+0 1.782991-1 1.071519+0 1.542010-1 1.148154+0 1.342751-1 1.250000+0 1.141295-1 1.380384+0 9.514322-2 1.757924+0 6.194294-2 2.018366+0 4.881465-2 2.290868+0 3.953363-2 2.600160+0 3.224758-2 3.000000+0 2.581600-2 3.467369+0 2.074877-2 4.027170+0 1.667612-2 4.731513+0 1.328504-2 5.623413+0 1.049568-2 6.683439+0 8.355146-3 8.035261+0 6.601665-3 9.660509+0 5.252003-3 1.202264+1 4.034877-3 1.513561+1 3.083190-3 1.927525+1 2.341870-3 2.511886+1 1.745010-3 3.507519+1 1.215457-3 5.011872+1 8.324233-4 7.943282+1 5.154028-4 1.428894+2 2.823063-4 2.786121+2 1.434816-4 5.559043+2 7.157047-5 4.415704+3 8.973183-6 1.000000+5 3.959800-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.762600-2 8.118300-4 1.000000+5 8.118300-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.762600-2 6.753600-3 1.000000+5 6.753600-3 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.762600-2 1.006057-2 1.000000+5 9.999999+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.712200-3 1.166110+4 5.890000-3 1.117950+4 6.025596-3 1.088296+4 6.500000-3 9.864300+3 6.918310-3 9.030925+3 7.500000-3 8.105280+3 8.128305-3 7.197862+3 8.609938-3 6.579250+3 9.332543-3 5.836873+3 1.000000-2 5.229920+3 1.230269-2 3.715187+3 1.364583-2 3.103838+3 1.584893-2 2.380677+3 1.819701-2 1.845990+3 2.041738-2 1.487368+3 2.454709-2 1.041453+3 2.951209-2 7.210998+2 3.548134-2 4.940417+2 4.216965-2 3.434078+2 5.011872-2 2.366904+2 5.888437-2 1.660007+2 6.918310-2 1.156481+2 8.317638-2 7.591144+1 1.011580-1 4.810781+1 1.273503-1 2.789457+1 1.610000-1 1.589969+1 2.600160-1 4.998972+0 3.198895-1 3.049377+0 3.845918-1 1.978649+0 4.518559-1 1.364299+0 5.188000-1 9.982820-1 6.025596-1 7.173293-1 6.918310-1 5.323933-1 8.000000-1 3.920707-1 9.120108-1 2.994264-1 1.023293+0 2.379770-1 1.216186+0 1.697980-1 1.364583+0 1.364984-1 1.531087+0 1.104507-1 1.737801+0 8.820175-2 2.018366+0 6.817609-2 2.290868+0 5.521391-2 2.600160+0 4.503830-2 3.000000+0 3.605600-2 3.467369+0 2.897870-2 4.027170+0 2.329052-2 4.731513+0 1.855440-2 5.623413+0 1.465847-2 6.683439+0 1.166932-2 8.035261+0 9.220187-3 9.660509+0 7.335063-3 1.202264+1 5.635199-3 1.513561+1 4.306105-3 1.927525+1 3.270670-3 2.511886+1 2.437175-3 3.507519+1 1.697572-3 5.011872+1 1.162600-3 7.943282+1 7.198292-4 1.445440+2 3.896735-4 2.818383+2 1.980770-4 5.623413+2 9.880659-5 4.466836+3 1.238920-5 1.000000+5 5.530400-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.712200-3 8.746900-4 1.000000+5 8.746900-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.712200-3 8.654600-5 1.000000+5 8.654600-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.712200-3 4.750964-3 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.365500-3 1.871779+4 5.821032-3 1.721474+4 6.095369-3 1.629974+4 6.800000-3 1.420502+4 7.328245-3 1.276907+4 8.222426-3 1.073853+4 8.912509-3 9.457355+3 9.400000-3 8.668660+3 1.109175-2 6.496375+3 1.190000-2 5.705600+3 1.400000-2 4.172660+3 1.513561-2 3.568025+3 1.757924-2 2.615874+3 1.927525-2 2.146347+3 2.213095-2 1.583100+3 2.540973-2 1.155604+3 2.851018-2 8.832248+2 3.273407-2 6.349008+2 3.801894-2 4.400862+2 4.415704-2 3.025173+2 5.188000-2 2.003609+2 6.095369-2 1.316860+2 7.328245-2 8.083252+1 9.015711-2 4.628900+1 1.122019-1 2.550780+1 2.041738-1 4.931657+0 2.540973-1 2.721494+0 3.054921-1 1.661642+0 3.589219-1 1.087090+0 4.120975-1 7.609552-1 4.731513-1 5.368072-1 5.370318-1 3.927387-1 6.025596-1 2.975923-1 6.760830-1 2.270603-1 7.585776-1 1.745002-1 8.609938-1 1.315545-1 9.332543-1 1.105504-1 1.011579+0 9.355926-2 1.135011+0 7.438181-2 1.258925+0 6.089199-2 1.412538+0 4.916436-2 1.640590+0 3.755793-2 1.883649+0 2.950906-2 2.137962+0 2.380580-2 2.426610+0 1.934559-2 2.786121+0 1.554816-2 3.273407+0 1.215140-2 3.801894+0 9.738426-3 4.415704+0 7.862235-3 5.248075+0 6.192018-3 6.237348+0 4.914362-3 7.413102+0 3.929128-3 9.015711+0 3.072171-3 1.122018+1 2.354569-3 1.400000+1 1.813200-3 1.757924+1 1.396343-3 2.344229+1 1.011675-3 3.235937+1 7.122533-4 4.570882+1 4.928829-4 6.998420+1 3.157476-4 1.202264+2 1.809500-4 2.317395+2 9.285910-5 4.623810+2 4.628573-5 1.840772+3 1.157943-5 1.000000+5 2.127900-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.365500-3 7.878800-4 1.000000+5 7.878800-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.365500-3 1.583600-4 1.000000+5 1.583600-4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.365500-3 4.419260-3 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.421600-3 7.028345+4 4.540000-3 6.739642+4 5.188000-3 5.386082+4 5.688529-3 4.584110+4 6.531306-3 3.532916+4 7.328245-3 2.826681+4 7.852356-3 2.461559+4 9.225714-3 1.765758+4 1.000000-2 1.483656+4 1.174898-2 1.039008+4 1.300000-2 8.237240+3 1.479108-2 6.089782+3 1.678804-2 4.485719+3 1.883649-2 3.377351+3 2.162719-2 2.382123+3 2.483133-2 1.665616+3 2.818383-2 1.191352+3 3.198895-2 8.466424+2 3.672823-2 5.791276+2 4.216965-2 3.933626+2 4.897788-2 2.568302+2 5.688529-2 1.665183+2 6.760830-2 1.002081+2 8.128305-2 5.783418+1 1.000000-1 3.092280+1 1.905461-1 4.318933+0 2.344229-1 2.307558+0 2.754229-1 1.426660+0 3.198895-1 9.195617-1 3.672823-1 6.177953-1 4.168694-1 4.322766-1 4.677351-1 3.146658-1 5.188000-1 2.380113-1 5.754399-1 1.812407-1 6.456542-1 1.348987-1 7.161434-1 1.041329-1 7.943282-1 8.094159-2 8.709636-1 6.485750-2 9.332543-1 5.527671-2 9.885531-1 4.866021-2 1.059254+0 4.207630-2 1.148154+0 3.579233-2 1.250000+0 3.040991-2 1.380384+0 2.534120-2 1.737801+0 1.682679-2 2.000000+0 1.319948-2 2.264644+0 1.072566-2 2.570396+0 8.743762-3 2.951209+0 7.048537-3 3.427678+0 5.619800-3 4.000000+0 4.483400-3 4.677351+0 3.594233-3 5.559043+0 2.838113-3 6.606934+0 2.258199-3 7.943282+0 1.783433-3 9.549926+0 1.418187-3 1.188502+1 1.089085-3 1.500000+1 8.294900-4 1.905461+1 6.316499-4 2.511886+1 4.646251-4 3.507519+1 3.236320-4 5.011872+1 2.216371-4 7.943282+1 1.372246-4 1.445440+2 7.428737-5 2.786121+2 3.820338-5 5.559043+2 1.905578-5 4.415704+3 2.389159-6 1.000000+5 1.054300-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.421600-3 6.884500-4 1.000000+5 6.884500-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.421600-3 5.396100-5 1.000000+5 5.396100-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.421600-3 3.679189-3 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.859200-3 1.743400+5 3.970000-3 1.640163+5 4.027170-3 1.587460+5 4.230000-3 1.393388+5 4.570882-3 1.137753+5 4.954502-3 9.135994+4 5.623413-3 6.414674+4 6.309573-3 4.621690+4 7.161434-3 3.192734+4 7.852356-3 2.424150+4 9.549926-3 1.329659+4 1.059254-2 9.593961+3 1.216186-2 6.177358+3 1.462177-2 3.385548+3 1.698244-2 2.055109+3 1.905461-2 1.391941+3 2.187762-2 8.666377+2 2.570396-2 4.943174+2 3.054921-2 2.684288+2 3.630781-2 1.445812+2 4.365158-2 7.412748+1 5.370318-2 3.468346+1 7.000000-2 1.301368+1 1.230269-1 1.603963+0 1.513561-1 7.475526-1 1.798871-1 3.988686-1 2.000000-1 2.723952-1 2.398833-1 1.429675-1 2.722701-1 9.180432-2 3.090295-1 5.937915-2 3.467369-1 4.024334-2 3.890451-1 2.747794-2 4.365158-1 1.889739-2 4.786301-1 1.410815-2 5.128614-1 1.139747-2 5.623413-1 8.646455-3 6.531306-1 5.578718-3 7.244360-1 4.149036-3 8.609938-1 2.568118-3 9.120108-1 2.204049-3 9.549926-1 1.962200-3 1.000000+0 1.758374-3 1.047129+0 1.586654-3 1.109175+0 1.405437-3 1.174898+0 1.253470-3 1.258925+0 1.100673-3 1.364583+0 9.527899-4 1.531087+0 7.805123-4 1.862087+0 5.528801-4 2.089296+0 4.541816-4 2.371374+0 3.685781-4 2.722701+0 2.958254-4 3.198895+0 2.309101-4 3.715352+0 1.848420-4 4.315191+0 1.490683-4 5.069907+0 1.191396-4 6.025596+0 9.440884-5 7.161434+0 7.537490-5 8.810489+0 5.802133-5 1.083927+1 4.504781-5 1.333521+1 3.522705-5 1.698244+1 2.665168-5 2.238721+1 1.954336-5 2.917427+1 1.462221-5 4.120975+1 1.009530-5 6.095369+1 6.690411-6 9.885531+1 4.058571-6 1.905461+2 2.077865-6 3.801894+2 1.034525-6 7.585776+2 5.166228-7 1.202264+4 3.249316-8 1.000000+5 3.905600-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.859200-3 5.141700-4 1.000000+5 5.141700-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.859200-3 1.767700-4 1.000000+5 1.767700-4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.859200-3 3.168260-3 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.668100-3 2.754900+5 3.713000-3 2.677966+5 3.780000-3 2.580764+5 3.790000-3 2.569914+5 3.870000-3 2.417286+5 4.315191-3 1.806182+5 4.677351-3 1.444970+5 5.370318-3 9.752874+4 5.956621-3 7.219674+4 6.606934-3 5.312185+4 7.328245-3 3.882257+4 8.000000-3 2.956956+4 9.332543-3 1.822900+4 1.059254-2 1.211369+4 1.188502-2 8.316715+3 1.380384-2 5.048272+3 1.548817-2 3.415466+3 1.757924-2 2.208594+3 2.041738-2 1.307981+3 2.371374-2 7.679718+2 2.754229-2 4.473120+2 3.235937-2 2.478958+2 3.801894-2 1.363388+2 4.570882-2 6.830187+1 5.500000-2 3.385869+1 7.244360-2 1.179894+1 1.216186-1 1.614533+0 1.462177-1 8.015148-1 1.698244-1 4.568860-1 1.949845-1 2.738103-1 2.213095-1 1.723540-1 2.483133-1 1.138888-1 2.786121-1 7.580000-2 3.090295-1 5.291398-2 3.427678-1 3.720997-2 3.758374-1 2.738889-2 4.168694-1 1.955048-2 4.570882-1 1.459593-2 4.954502-1 1.137952-2 5.370318-1 8.942658-3 5.888437-1 6.843153-3 6.531306-1 5.103526-3 7.161434-1 3.959387-3 8.222427-1 2.731032-3 8.810489-1 2.272114-3 9.332543-1 1.962965-3 9.772372-1 1.756768-3 1.023293+0 1.582364-3 1.083927+0 1.398854-3 1.148154+0 1.244927-3 1.230269+0 1.090375-3 1.333521+0 9.413724-4 1.840772+0 5.343682-4 2.089296+0 4.303307-4 2.371374+0 3.492342-4 2.722701+0 2.803084-4 3.198895+0 2.188073-4 3.715352+0 1.751587-4 4.315191+0 1.412553-4 5.069907+0 1.128899-4 6.025596+0 8.945986-5 7.161434+0 7.142334-5 8.810489+0 5.497902-5 1.083927+1 4.268649-5 1.318257+1 3.383430-5 1.678804+1 2.558760-5 2.213095+1 1.875749-5 2.818383+1 1.438432-5 4.000000+1 9.873400-6 5.888437+1 6.572069-6 9.549926+1 3.984608-6 1.840772+2 2.039184-6 3.672823+2 1.014977-6 7.328245+2 5.068125-7 1.161449+4 3.187266-8 1.000000+5 3.700800-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.668100-3 5.175800-4 1.000000+5 5.175800-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.668100-3 3.022100-7 1.000000+5 3.022100-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.668100-3 3.150218-3 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.478900-3 2.591410+4 1.584893-3 2.406105+4 1.717908-3 2.217903+4 1.800000-3 2.119820+4 1.905461-3 1.989975+4 2.238721-3 1.648088+4 2.570396-3 1.392741+4 2.786121-3 1.251856+4 3.388442-3 9.556595+3 3.758374-3 8.216378+3 4.415704-3 6.450245+3 5.188000-3 5.009161+3 5.821032-3 4.160480+3 6.928200-3 3.114715+3 8.317638-3 2.275414+3 9.885531-3 1.676190+3 1.174898-2 1.224568+3 1.400000-2 8.832060+2 1.678804-2 6.243110+2 2.000000-2 4.434500+2 2.371374-2 3.155887+2 2.818383-2 2.219244+2 3.349654-2 1.548833+2 4.000000-2 1.062250+2 4.786301-2 7.198048+1 5.688529-2 4.912897+1 6.839116-2 3.244061+1 8.222426-2 2.125995+1 1.011580-1 1.309983+1 1.258925-1 7.796489+0 2.600160-1 1.357938+0 3.235937-1 8.061640-1 3.890451-1 5.232824-1 4.570882-1 3.611908-1 5.308844-1 2.577798-1 6.095369-1 1.900684-1 6.998420-1 1.411561-1 8.128305-1 1.030667-1 9.225714-1 7.948240-2 1.047129+0 6.178467-2 1.230269+0 4.511356-2 1.380384+0 3.629325-2 1.548817+0 2.938933-2 1.757924+0 2.348457-2 2.044000+0 1.813001-2 2.317395+0 1.472082-2 2.660725+0 1.179923-2 3.090295+0 9.361143-3 3.589219+0 7.480584-3 4.168694+0 6.022545-3 4.897788+0 4.805750-3 5.821032+0 3.802493-3 6.918310+0 3.031466-3 8.413951+0 2.364003-3 1.023293+1 1.857859-3 1.258925+1 1.449972-3 1.584893+1 1.109424-3 2.089296+1 8.119040-4 2.630268+1 6.296661-4 3.630781+1 4.444521-4 5.248075+1 3.009420-4 8.317638+1 1.864861-4 1.548817+2 9.866923-5 3.090295+2 4.904106-5 6.165950+2 2.447098-5 4.897788+3 3.069468-6 1.000000+5 1.502500-7 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.478900-3 5.064600-4 1.000000+5 5.064600-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.478900-3 7.829200-7 1.000000+5 7.829200-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.478900-3 9.716571-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.319500-3 2.228245+4 1.440000-3 2.216683+4 1.621810-3 2.149937+4 1.737801-3 2.088787+4 1.883649-3 2.003591+4 2.030000-3 1.916518+4 2.187762-3 1.818331+4 2.400000-3 1.686614+4 2.570396-3 1.582544+4 2.900000-3 1.402064+4 3.126079-3 1.292113+4 3.427678-3 1.158041+4 3.801894-3 1.017323+4 4.150000-3 9.052240+3 4.731513-3 7.522977+3 5.188000-3 6.560029+3 5.888437-3 5.384859+3 6.500000-3 4.583720+3 7.328245-3 3.742980+3 8.317638-3 2.993782+3 9.225714-3 2.478439+3 1.047129-2 1.952741+3 1.202264-2 1.491613+3 1.364583-2 1.155745+3 1.548817-2 8.888952+2 1.757924-2 6.787339+2 2.000000-2 5.119380+2 2.264644-2 3.875644+2 2.600160-2 2.823058+2 3.000000-2 2.017080+2 3.467369-2 1.424057+2 4.027170-2 9.857557+1 4.731513-2 6.578472+1 5.495409-2 4.487197+1 6.531306-2 2.863231+1 7.852356-2 1.759234+1 9.660509-2 1.009075+1 1.258925-1 4.915950+0 2.018366-1 1.354805+0 2.600160-1 6.839746-1 3.126079-1 4.189722-1 3.630781-1 2.832135-1 4.168694-1 1.986154-1 4.731513-1 1.444240-1 5.370318-1 1.057704-1 6.095369-1 7.805867-2 6.760830-1 6.128186-2 7.585776-1 4.717300-2 8.511380-1 3.656066-2 9.549926-1 2.849979-2 1.035142+0 2.410630-2 1.135011+0 2.005654-2 1.258925+0 1.643328-2 1.412538+0 1.327660-2 1.659587+0 9.941936-3 1.905461+0 7.814937-3 2.162719+0 6.308204-3 2.454709+0 5.129327-3 2.818383+0 4.124551-3 3.311311+0 3.225173-3 3.845918+0 2.586247-3 4.466836+0 2.089081-3 5.308844+0 1.646143-3 6.309573+0 1.307184-3 7.585776+0 1.030403-3 9.225714+0 8.064075-4 1.148154+1 6.185364-4 1.445440+1 4.718519-4 1.819701+1 3.626276-4 2.426610+1 2.629881-4 3.388442+1 1.830422-4 4.841724+1 1.252656-4 7.585776+1 7.843984-5 1.348963+2 4.344311-5 2.630268+2 2.206636-5 5.248075+2 1.100493-5 4.168694+3 1.379332-6 1.000000+5 5.746200-8 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.319500-3 4.737800-4 1.000000+5 4.737800-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.319500-3 5.899700-7 1.000000+5 5.899700-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.319500-3 8.451300-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.070800-3 1.535600+5 1.161449-3 1.412254+5 1.190000-3 1.380292+5 1.333521-3 1.222152+5 1.584893-3 9.942375+4 1.730000-3 8.892080+4 1.950000-3 7.552720+4 2.162719-3 6.498649+4 2.454709-3 5.381945+4 2.691535-3 4.658125+4 3.150000-3 3.605308+4 3.500000-3 3.013212+4 4.000000-3 2.384092+4 4.518559-3 1.909147+4 5.069907-3 1.538685+4 5.821032-3 1.177678+4 6.606934-3 9.143966+3 7.413102-3 7.219984+3 8.413951-3 5.529457+3 9.660509-3 4.099090+3 1.109175-2 3.013095+3 1.273503-2 2.196175+3 1.462177-2 1.587606+3 1.678804-2 1.138282+3 1.927525-2 8.095547+2 2.213095-2 5.713352+2 2.540973-2 4.000300+2 2.900000-2 2.824304+2 3.273407-2 2.040517+2 3.801894-2 1.355500+2 4.365158-2 9.227349+1 5.069907-2 6.038645+1 5.956621-2 3.795887+1 7.079458-2 2.289754+1 8.511380-2 1.325172+1 1.059254-1 6.865433+0 1.584893-1 2.018588+0 2.065380-1 9.046413-1 2.483133-1 5.209742-1 2.917427-1 3.234849-1 3.349654-1 2.164359-1 3.801894-1 1.507519-1 4.265795-1 1.092421-1 4.786301-1 7.971262-2 5.370318-1 5.858690-2 5.956621-1 4.471113-2 6.606935-1 3.434634-2 7.328245-1 2.656139-2 8.511380-1 1.845557-2 9.120108-1 1.570151-2 9.660509-1 1.380195-2 1.023293+0 1.220757-2 1.109175+0 1.035594-2 1.202264+0 8.843299-3 1.303167+0 7.598934-3 1.462177+0 6.170737-3 1.757924+0 4.450711-3 2.018366+0 3.507779-3 2.290868+0 2.840870-3 2.600160+0 2.317333-3 3.000000+0 1.855200-3 3.467369+0 1.491062-3 4.027170+0 1.198395-3 4.731513+0 9.547084-4 5.623413+0 7.542444-4 6.683439+0 6.004161-4 8.035261+0 4.744099-4 9.660509+0 3.774168-4 1.202264+1 2.899517-4 1.513561+1 2.215653-4 1.927525+1 1.682899-4 2.540973+1 1.238337-4 3.548134+1 8.627765-5 5.069907+1 5.910077-5 8.035261+1 3.660045-5 1.462177+2 1.981682-5 2.851018+2 1.007442-5 5.688529+2 5.025645-6 4.518559+3 6.301508-7 1.000000+5 2.845600-8 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.070800-3 4.043800-4 1.000000+5 4.043800-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.070800-3 5.145100-7 1.000000+5 5.145100-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.070800-3 6.659055-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.129400-4 1.842100+5 8.237000-4 1.894034+5 8.480000-4 1.991582+5 8.750000-4 2.067155+5 8.810489-4 2.079540+5 9.120108-4 2.116537+5 9.332543-4 2.123624+5 9.772372-4 2.111548+5 1.030000-3 2.081516+5 1.083927-3 2.037719+5 1.135011-3 1.986507+5 1.202264-3 1.909888+5 1.270000-3 1.827884+5 1.350000-3 1.727256+5 1.428894-3 1.628211+5 1.513561-3 1.524860+5 1.610000-3 1.413056+5 1.737801-3 1.275296+5 1.862087-3 1.155667+5 1.972423-3 1.057933+5 2.150000-3 9.187640+4 2.344229-3 7.923973+4 2.511886-3 6.993003+4 2.754229-3 5.872942+4 3.000000-3 4.964840+4 3.273407-3 4.148330+4 3.630781-3 3.325106+4 3.935501-3 2.780862+4 4.365158-3 2.193370+4 4.786301-3 1.763348+4 5.308844-3 1.369092+4 5.888437-3 1.054497+4 6.531306-3 8.062171+3 7.244360-3 6.118528+3 8.035261-3 4.611503+3 9.015711-3 3.341433+3 1.011579-2 2.401386+3 1.122018-2 1.771805+3 1.244515-2 1.299486+3 1.380384-2 9.474892+2 1.548817-2 6.625098+2 1.737801-2 4.601467+2 1.949845-2 3.175508+2 2.213095-2 2.096604+2 2.511886-2 1.374650+2 2.884032-2 8.608738+1 3.311311-2 5.351966+1 3.845918-2 3.174304+1 4.518559-2 1.794982+1 5.432503-2 9.280993+0 6.760830-2 4.203890+0 1.396368-1 2.969553-1 1.698244-1 1.461938-1 1.972423-1 8.559429-2 2.344229-1 4.650934-2 2.660725-1 2.993607-2 3.019952-1 1.940949-2 3.427678-1 1.268016-2 3.890451-1 8.350533-3 4.315191-1 5.969870-3 4.786301-1 4.299705-3 5.128614-1 3.472676-3 5.623413-1 2.631506-3 6.165950-1 2.007964-3 6.760830-1 1.542395-3 7.244360-1 1.269209-3 7.852356-1 1.005946-3 8.317638-1 8.567666-4 8.810489-1 7.342151-4 9.332543-1 6.339427-4 9.772372-1 5.672587-4 1.023293+0 5.108344-4 1.083927+0 4.514865-4 1.148154+0 4.017595-4 1.230269+0 3.518777-4 1.333521+0 3.038272-4 1.548817+0 2.338745-4 1.840772+0 1.724888-4 2.065380+0 1.416301-4 2.344229+0 1.148661-4 2.691535+0 9.212491-5 3.126079+0 7.312509-5 3.630781+0 5.846896-5 4.216965+0 4.709979-5 4.954502+0 3.760414-5 5.888437+0 2.976811-5 7.000000+0 2.373700-5 8.511380+0 1.852459-5 1.035142+1 1.456509-5 1.273503+1 1.137166-5 1.603245+1 8.703579-6 2.113489+1 6.372109-6 2.630268+1 5.005684-6 3.672823+1 3.490014-6 5.308844+1 2.363677-6 8.413951+1 1.465028-6 1.548817+2 7.844063-7 3.090295+2 3.898542-7 6.165950+2 1.945344-7 4.897788+3 2.440097-8 1.000000+5 1.194400-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.129400-4 3.226100-4 1.000000+5 3.226100-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.129400-4 2.914300-7 1.000000+5 2.914300-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.129400-4 4.900386-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.672900-4 3.405715+5 7.950000-4 3.522121+5 8.350000-4 3.618495+5 8.609938-4 3.643816+5 8.912509-4 3.629903+5 9.332543-4 3.583017+5 9.850000-4 3.501036+5 1.035142-3 3.403882+5 1.090000-3 3.285258+5 1.161449-3 3.120209+5 1.230269-3 2.957346+5 1.303167-3 2.785085+5 1.380384-3 2.607232+5 1.479108-3 2.392128+5 1.570000-3 2.206170+5 1.701200-3 1.966161+5 1.800000-3 1.803780+5 1.927525-3 1.612881+5 2.137962-3 1.349376+5 2.300000-3 1.182408+5 2.500000-3 1.008504+5 2.722701-3 8.522214+4 2.951209-3 7.219124+4 3.273407-3 5.784883+4 3.548134-3 4.838385+4 3.935501-3 3.814958+4 4.300000-3 3.092508+4 4.800000-3 2.362770+4 5.248075-3 1.885911+4 5.821032-3 1.441988+4 6.531306-3 1.060128+4 7.161434-3 8.235156+3 7.943282-3 6.159334+3 9.015711-3 4.277257+3 1.023293-2 2.940632+3 1.161449-2 2.002383+3 1.318257-2 1.350826+3 1.500000-2 8.959140+2 1.698244-2 5.986780+2 1.905461-2 4.090466+2 2.137962-2 2.776854+2 2.398833-2 1.873116+2 2.754229-2 1.158885+2 3.162278-2 7.114940+1 3.630781-2 4.336025+1 4.216965-2 2.516839+1 5.000000-2 1.344126+1 6.025596-2 6.706778+0 7.585776-2 2.819054+0 1.318257-1 3.488826-1 1.548817-1 1.907729-1 1.840772-1 1.007441-1 2.113489-1 6.081481-2 2.398833-1 3.856107-2 2.691535-1 2.566207-2 3.000060-1 1.760346-2 3.349654-1 1.209649-2 3.672823-1 8.896531-3 4.027170-1 6.587462-3 4.415705-1 4.914338-3 4.841724-1 3.699083-3 5.308844-1 2.805737-3 5.821032-1 2.143559-3 6.382635-1 1.649605-3 6.998420-1 1.278813-3 7.673615-1 9.991188-4 8.413951-1 7.861118-4 9.549926-1 5.704848-4 1.000000+0 5.102117-4 1.047129+0 4.593366-4 1.096478+0 4.162367-4 1.161449+0 3.708471-4 1.230269+0 3.326626-4 1.333521+0 2.876260-4 1.496236+0 2.358572-4 1.862087+0 1.604276-4 2.089296+0 1.317740-4 2.371374+0 1.069315-4 2.722701+0 8.582321-5 3.198895+0 6.699127-5 3.715352+0 5.362720-5 4.315191+0 4.324756-5 5.069907+0 3.456362-5 6.025596+0 2.739002-5 7.161434+0 2.186761-5 8.810489+0 1.683252-5 1.083927+1 1.306950-5 1.318257+1 1.035894-5 1.678804+1 7.834036-6 2.213095+1 5.742987-6 2.818383+1 4.404147-6 3.935501+1 3.075633-6 5.754399+1 2.061134-6 9.332543+1 1.249150-6 1.778279+2 6.466115-7 3.548134+2 3.217642-7 7.079458+2 1.606444-7 5.623413+3 2.016003-8 1.000000+5 1.133100-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.672900-4 3.190800-4 1.000000+5 3.190800-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.672900-4 9.408400-8 1.000000+5 9.408400-8 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.672900-4 4.481159-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 4.267500-4 5.553852+4 4.270000-4 5.609856+4 4.277000-4 5.704194+4 4.290000-4 5.820264+4 4.307000-4 5.930226+4 4.330000-4 6.043740+4 4.365158-4 6.161828+4 4.400000-4 6.264120+4 4.422000-4 6.365760+4 4.440000-4 6.496440+4 4.450000-4 6.594540+4 4.465000-4 6.782100+4 4.480000-4 7.025640+4 4.495000-4 7.332660+4 4.508000-4 7.655940+4 4.523000-4 8.100480+4 4.535000-4 8.516640+4 4.550000-4 9.118380+4 4.565000-4 9.819060+4 4.585000-4 1.091952+5 4.607000-4 1.237038+5 4.630000-4 1.417866+5 4.690000-4 2.038416+5 4.715000-4 2.359590+5 4.740000-4 2.713794+5 4.765000-4 3.096720+5 4.790000-4 3.505380+5 4.815000-4 3.934878+5 4.841724-4 4.415005+5 4.865000-4 4.847430+5 4.890000-4 5.325156+5 4.923700-4 5.987786+5 4.954502-4 6.607330+5 4.990000-4 7.329840+5 5.020000-4 7.942920+5 5.050000-4 8.548500+5 5.080000-4 9.141600+5 5.110000-4 9.716460+5 5.135000-4 1.017864+6 5.170000-4 1.079520+6 5.200000-4 1.129458+6 5.245000-4 1.199076+6 5.280000-4 1.249110+6 5.320000-4 1.302036+6 5.370318-4 1.362800+6 5.400000-4 1.395558+6 5.450000-4 1.445676+6 5.500000-4 1.489722+6 5.560000-4 1.534656+6 5.623413-4 1.573639+6 5.690000-4 1.605312+6 5.760000-4 1.630602+6 5.850000-4 1.652688+6 5.956621-4 1.668360+6 6.050000-4 1.674546+6 6.165950-4 1.673483+6 6.313200-4 1.660999+6 6.500000-4 1.632750+6 6.700000-4 1.592712+6 6.930000-4 1.538916+6 7.161434-4 1.480190+6 7.413102-4 1.413954+6 7.762471-4 1.321233+6 8.128305-4 1.226646+6 8.511380-4 1.132155+6 9.000000-4 1.020252+6 9.549926-4 9.064388+5 1.015000-3 7.972740+5 1.083927-3 6.880192+5 1.174898-3 5.698785+5 1.244515-3 4.954351+5 1.333521-3 4.157959+5 1.462177-3 3.266006+5 1.570000-3 2.694090+5 1.717908-3 2.093649+5 1.883649-3 1.606968+5 2.070000-3 1.215144+5 2.290868-3 8.933077+4 2.511886-3 6.704436+4 2.754229-3 5.001797+4 3.054921-3 3.569679+4 3.388442-3 2.528695+4 3.758374-3 1.777712+4 4.168694-3 1.240929+4 4.650000-3 8.432340+3 5.248075-3 5.448791+3 5.956621-3 3.417433+3 6.760830-3 2.123349+3 7.673615-3 1.307242+3 8.709636-3 7.976649+2 9.800000-3 4.996356+2 1.096478-2 3.179511+2 1.244515-2 1.896247+2 1.412538-2 1.122737+2 1.621810-2 6.286948+1 1.862087-2 3.493894+1 2.113489-2 2.025635+1 2.454709-2 1.055439+1 2.884032-2 5.190018+0 3.467369-2 2.287650+0 4.315191-2 8.574279-1 8.128305-2 4.908717-2 1.396368-1 4.339405-3 1.548817-1 2.752768-3 1.717908-1 1.759135-3 1.927525-1 1.077779-3 2.187762-1 6.337848-4 2.483133-1 3.743831-4 2.786121-1 2.336294-4 3.235937-1 1.277959-4 3.548134-1 8.873381-5 3.890451-1 6.205431-5 4.216965-1 4.569302-5 4.518559-1 3.537020-5 4.897788-1 2.641280-5 5.308844-1 1.986162-5 5.754399-1 1.503888-5 6.237348-1 1.146461-5 6.760830-1 8.798448-6 7.328245-1 6.796985-6 8.035261-1 5.096073-6 8.413951-1 4.389415-6 8.810489-1 3.802595-6 9.225714-1 3.317451-6 9.549926-1 3.010788-6 9.885531-1 2.746705-6 1.023293+0 2.520157-6 1.059254+0 2.324674-6 1.109175+0 2.102685-6 1.161449+0 1.915594-6 1.230269+0 1.718954-6 1.318257+0 1.521315-6 1.513561+0 1.208683-6 1.927525+0 7.901752-7 2.162719+0 6.503057-7 2.454709+0 5.287754-7 2.818383+0 4.252007-7 3.311311+0 3.324832-7 3.845918+0 2.666148-7 4.466836+0 2.153696-7 5.308844+0 1.697088-7 6.309573+0 1.347601-7 7.585776+0 1.062254-7 9.225714+0 8.313429-8 1.148154+1 6.376562-8 1.445440+1 4.864417-8 1.819701+1 3.738387-8 2.426610+1 2.711189-8 3.388442+1 1.887069-8 4.841724+1 1.291348-8 7.585776+1 8.086403-9 1.348963+2 4.478574-9 2.600160+2 2.301498-9 5.188000+2 1.147708-9 4.120975+3 1.43839-10 1.000000+5 5.92390-12 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 4.267500-4 1.954300-4 1.000000+5 1.954300-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.267500-4 4.017900-8 1.000000+5 4.017900-8 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.267500-4 2.312798-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 4.146000-4 8.211840+4 4.170000-4 8.174720+4 4.195000-4 8.192080+4 4.255000-4 8.351120+4 4.280000-4 8.457040+4 4.300000-4 8.594640+4 4.317000-4 8.771920+4 4.332000-4 8.989520+4 4.344000-4 9.213040+4 4.355000-4 9.461760+4 4.370000-4 9.876320+4 4.385000-4 1.038688+5 4.400000-4 1.100368+5 4.415704-4 1.177435+5 4.430000-4 1.259736+5 4.445000-4 1.359648+5 4.465000-4 1.516344+5 4.485000-4 1.702232+5 4.515400-4 2.045492+5 4.570882-4 2.871343+5 4.600000-4 3.404440+5 4.623810-4 3.885581+5 4.640000-4 4.233264+5 4.665000-4 4.798584+5 4.690000-4 5.394160+5 4.715000-4 6.015088+5 4.740000-4 6.658296+5 4.765000-4 7.320568+5 4.790000-4 7.999096+5 4.815000-4 8.690800+5 4.841724-4 9.440578+5 4.871500-4 1.028246+6 4.900000-4 1.108704+6 4.930000-4 1.192448+6 4.965000-4 1.287736+6 5.000000-4 1.379280+6 5.030000-4 1.454032+6 5.060000-4 1.525160+6 5.100000-4 1.613864+6 5.135000-4 1.685904+6 5.188000-4 1.785533+6 5.230000-4 1.856864+6 5.280000-4 1.933464+6 5.320000-4 1.988536+6 5.380000-4 2.061016+6 5.450000-4 2.130456+6 5.500000-4 2.170672+6 5.580000-4 2.220376+6 5.650000-4 2.251464+6 5.760000-4 2.282464+6 5.850000-4 2.295624+6 5.956621-4 2.300134+6 6.095369-4 2.290130+6 6.237348-4 2.265726+6 6.430000-4 2.217440+6 6.683439-4 2.137725+6 6.930000-4 2.050096+6 7.244360-4 1.933099+6 7.585776-4 1.804524+6 8.000000-4 1.653976+6 8.500000-4 1.483360+6 9.000000-4 1.328448+6 9.549926-4 1.176773+6 1.000000-3 1.066016+6 1.070000-3 9.143920+5 1.161449-3 7.532992+5 1.230269-3 6.539522+5 1.318257-3 5.479713+5 1.428894-3 4.431296+5 1.548817-3 3.556763+5 1.698244-3 2.744740+5 1.850000-3 2.142432+5 2.041738-3 1.597493+5 2.220000-3 1.237720+5 2.483133-3 8.720663+4 2.722701-3 6.491116+4 3.019952-3 4.624426+4 3.349654-3 3.267248+4 3.672823-3 2.385152+4 4.120975-3 1.596539+4 4.677351-3 1.016216+4 5.308844-3 6.403230+3 6.000000-3 4.060000+3 6.760830-3 2.581029+3 7.585776-3 1.654478+3 8.511380-3 1.052706+3 9.660509-3 6.348726+2 1.096478-2 3.796119+2 1.230269-2 2.362167+2 1.412538-2 1.325718+2 1.603245-2 7.751280+1 1.840772-2 4.282580+1 2.089296-2 2.468811+1 2.398833-2 1.343824+1 2.786121-2 6.902791+0 3.311311-2 3.175020+0 4.027170-2 1.305875+0 5.248075-2 3.887399-1 8.128305-2 5.207560-2 1.188502-1 9.220573-3 1.396368-1 4.434568-3 1.548817-1 2.789054-3 1.717908-1 1.767789-3 1.905461-1 1.128622-3 2.162719-1 6.577186-4 2.398833-1 4.254186-4 2.630268-1 2.908396-4 2.851018-1 2.098448-4 3.126079-1 1.455600-4 3.427678-1 1.017511-4 3.758374-1 7.166824-5 4.073803-1 5.309882-5 4.415705-1 3.961860-5 4.786301-1 2.978453-5 5.188000-1 2.256142-5 5.559043-1 1.789459-5 6.025596-1 1.375870-5 6.531306-1 1.065981-5 7.161434-1 8.030321-6 7.762471-1 6.316411-6 8.317638-1 5.176248-6 9.120108-1 3.996137-6 9.549926-1 3.533594-6 9.885531-1 3.237986-6 1.023293+0 2.981809-6 1.071519+0 2.689355-6 1.122018+0 2.441469-6 1.188502+0 2.180194-6 1.273503+0 1.919541-6 1.380384+0 1.667027-6 1.513561+0 1.426313-6 1.883649+0 9.703592-7 2.113489+0 7.974744-7 2.398833+0 6.475788-7 2.754229+0 5.200905-7 3.235937+0 4.062099-7 3.758374+0 3.253594-7 4.365158+0 2.625347-7 5.128614+0 2.099279-7 6.095369+0 1.664378-7 7.244360+0 1.329407-7 8.912509+0 1.023816-7 1.109175+1 7.843287-8 1.380384+1 6.055996-8 1.737801+1 4.647736-8 2.317395+1 3.366473-8 3.198895+1 2.369304-8 4.518559+1 1.639109-8 6.918310+1 1.049818-8 1.188502+2 6.015274-9 2.317395+2 3.050933-9 4.623810+2 1.520659-9 1.840772+3 3.80426-10 1.000000+5 6.99100-12 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 4.146000-4 1.930400-4 1.000000+5 1.930400-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.146000-4 1.122000-7 1.000000+5 1.122000-7 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.146000-4 2.214478-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.362500-4 4.947851+4 4.315191-4 4.099550+4 4.786301-4 3.798825+4 5.128614-4 3.576352+4 6.025596-4 3.088178+4 6.531306-4 2.849588+4 7.500000-4 2.453960+4 8.317638-4 2.181298+4 9.332543-4 1.896039+4 1.059254-3 1.614901+4 1.216186-3 1.343278+4 1.380384-3 1.128011+4 1.650000-3 8.735080+3 2.000000-3 6.566500+3 2.426610-3 4.885173+3 2.951209-3 3.593645+3 3.589219-3 2.623677+3 4.315191-3 1.937951+3 5.188000-3 1.421216+3 6.237348-3 1.034603+3 7.413102-3 7.630674+2 8.912509-3 5.475702+2 1.071519-2 3.900663+2 1.288250-2 2.758953+2 1.548817-2 1.937243+2 1.862087-2 1.350045+2 2.238721-2 9.338046+1 2.691535-2 6.410053+1 3.235937-2 4.366112+1 3.890451-2 2.950584+1 4.677351-2 1.978191+1 5.623413-2 1.315744+1 6.760830-2 8.684514+0 8.128305-2 5.690729+0 1.000000-1 3.507980+0 1.244515-1 2.088204+0 1.584893-1 1.170037+0 2.570396-1 3.639254-1 3.198895-1 2.159327-1 3.845918-1 1.401103-1 4.518559-1 9.660596-2 5.188000-1 7.068542-2 6.025596-1 5.078713-2 6.998420-1 3.677545-2 8.128305-1 2.684612-2 9.225714-1 2.070265-2 1.047129+0 1.609251-2 1.230269+0 1.175086-2 1.396368+0 9.253234-3 1.566751+0 7.498431-3 1.778279+0 5.995908-3 2.065380+0 4.640001-3 2.344229+0 3.762777-3 2.691535+0 3.018084-3 3.126079+0 2.395921-3 3.630781+0 1.915677-3 4.216965+0 1.543166-3 4.954502+0 1.232070-3 5.888437+0 9.753399-4 7.000000+0 7.777200-4 8.511380+0 6.069331-4 1.035142+1 4.771981-4 1.273503+1 3.725798-4 1.603245+1 2.851674-4 2.113489+1 2.087766-4 2.630268+1 1.640025-4 3.672823+1 1.143470-4 5.308844+1 7.744499-5 8.511380+1 4.743279-5 1.584893+2 2.510573-5 3.162278+2 1.248005-5 6.309573+2 6.228138-6 5.011872+3 7.812939-7 1.000000+5 3.913400-8 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.362500-4 2.091400-4 1.000000+5 2.091400-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.362500-4 9.343300-9 1.000000+5 9.343300-9 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.362500-4 1.271007-4 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.729500-4 1.398282+5 2.830000-4 1.280998+5 2.860000-4 1.244634+5 2.900000-4 1.192922+5 2.970000-4 1.099916+5 3.090295-4 9.561509+4 3.328000-4 7.535800+4 3.370000-4 7.251340+4 3.600000-4 5.996160+4 3.801894-4 5.156489+4 3.935501-4 4.709472+4 4.100000-4 4.258860+4 4.265795-4 3.893925+4 4.430000-4 3.599060+4 4.623810-4 3.313153+4 4.850000-4 3.040980+4 5.080000-4 2.815300+4 5.308844-4 2.631342+4 5.559043-4 2.467075+4 5.888437-4 2.294176+4 6.309573-4 2.120518+4 6.839116-4 1.949070+4 7.585776-4 1.763712+4 1.059254-3 1.299703+4 1.202264-3 1.150729+4 1.380384-3 1.000195+4 1.584893-3 8.621616+3 1.800000-3 7.462140+3 2.041738-3 6.421071+3 2.317395-3 5.483213+3 2.630268-3 4.648908+3 3.019952-3 3.852588+3 3.427678-3 3.219147+3 3.935501-3 2.624849+3 4.500000-3 2.135680+3 5.128614-3 1.732522+3 5.821032-3 1.404185+3 6.606934-3 1.129678+3 7.413102-3 9.211475+2 8.413951-3 7.308919+2 9.549926-3 5.758713+2 1.083927-2 4.505820+2 1.230269-2 3.501119+2 1.396368-2 2.701885+2 1.584893-2 2.071028+2 1.819701-2 1.537830+2 2.089296-2 1.133074+2 2.398833-2 8.285129+1 2.754229-2 6.013708+1 3.162278-2 4.333741+1 3.672823-2 3.015377+1 4.265795-2 2.082183+1 5.011872-2 1.386389+1 5.888437-2 9.162217+0 7.000000-2 5.830340+0 8.413951-2 3.577929+0 1.059254-1 1.925787+0 2.113489-1 2.944569-1 2.630268-1 1.632621-1 3.126079-1 1.031606-1 3.672823-1 6.769658-2 4.216965-1 4.751182-2 4.841724-1 3.360151-2 5.495409-1 2.463977-2 6.165950-1 1.870963-2 6.918310-1 1.430505-2 7.762471-1 1.101633-2 8.709636-1 8.532553-3 9.440609-1 7.178525-3 1.023293+0 6.082521-3 1.148154+0 4.839209-3 1.273503+0 3.964714-3 1.428894+0 3.203117-3 1.659587+0 2.448329-3 1.905461+0 1.924687-3 2.162719+0 1.553480-3 2.454709+0 1.263148-3 2.818383+0 1.015772-3 3.311311+0 7.942946-4 3.845918+0 6.369309-4 4.466836+0 5.145021-4 5.308844+0 4.054203-4 6.309573+0 3.219331-4 7.585776+0 2.537662-4 9.225714+0 1.986002-4 1.148154+1 1.523335-4 1.445440+1 1.162068-4 1.800000+1 9.041500-5 2.400000+1 6.555700-5 3.349654+1 4.564257-5 4.786301+1 3.122624-5 7.498942+1 1.954928-5 1.348963+2 1.069940-5 2.600160+2 5.498143-6 5.188000+2 2.741763-6 4.120975+3 3.436347-7 1.000000+5 1.415200-8 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.729500-4 1.913200-4 1.000000+5 1.913200-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.729500-4 1.524100-8 1.000000+5 1.524100-8 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.729500-4 8.161476-5 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.125600-4 3.628402+5 2.350000-4 3.115560+5 2.454709-4 2.906706+5 2.600160-4 2.675434+5 2.917427-4 2.309423+5 3.090295-4 2.160152+5 3.429800-4 1.937374+5 4.677351-4 1.407935+5 5.370318-4 1.213169+5 6.095369-4 1.051040+5 6.918310-4 9.042730+4 7.852356-4 7.722674+4 8.912509-4 6.548777+4 1.023293-3 5.428155+4 1.174898-3 4.464629+4 1.350000-3 3.641220+4 1.548817-3 2.956157+4 1.800000-3 2.336324+4 2.089296-3 1.836382+4 2.426610-3 1.431770+4 2.818383-3 1.108089+4 3.235937-3 8.689796+3 3.715352-3 6.769924+3 4.300000-3 5.159320+3 4.954502-3 3.933916+3 5.688529-3 2.996929+3 6.456542-3 2.319826+3 7.413102-3 1.741538+3 8.413951-3 1.329852+3 9.660509-3 9.835612+2 1.096478-2 7.409808+2 1.258925-2 5.399242+2 1.445440-2 3.903407+2 1.659587-2 2.799873+2 1.905461-2 1.992881+2 2.187762-2 1.407791+2 2.511886-2 9.869530+1 2.884032-2 6.867962+1 3.311311-2 4.744193+1 3.845918-2 3.152567+1 4.466836-2 2.078517+1 5.188000-2 1.360362+1 6.095369-2 8.551954+0 7.244360-2 5.155735+0 8.810489-2 2.881883+0 1.083927-1 1.545191+0 1.927525-1 2.697379-1 2.371374-1 1.446934-1 2.786121-1 8.971449-2 3.235937-1 5.796820-2 3.715352-1 3.902660-2 4.216965-1 2.735565-2 4.731513-1 1.994344-2 5.248075-1 1.510613-2 5.888437-1 1.118031-2 6.606935-1 8.338579-3 7.328245-1 6.448489-3 8.609938-1 4.368450-3 9.225714-1 3.719022-3 9.772372-1 3.270045-3 1.047129+0 2.823851-3 1.135011+0 2.399355-3 1.230269+0 2.053557-3 1.348963+0 1.731460-3 1.698244+0 1.148347-3 1.949845+0 9.033588-4 2.213095+0 7.300759-4 2.511886+0 5.944087-4 2.884032+0 4.785788-4 3.349654+0 3.811604-4 3.890451+0 3.058182-4 4.518559+0 2.471677-4 5.370318+0 1.948663-4 6.382635+0 1.548156-4 7.673615+0 1.220947-4 9.332543+0 9.559996-5 1.161449+1 7.335651-5 1.462177+1 5.598600-5 1.840772+1 4.303912-5 2.454709+1 3.122469-5 3.427678+1 2.173914-5 4.897788+1 1.488060-5 7.673615+1 9.319881-6 1.380384+2 5.102313-6 2.660725+2 2.622667-6 5.308844+2 1.307961-6 4.216965+3 1.639542-7 1.000000+5 6.909300-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.125600-4 1.270700-4 1.000000+5 1.270700-4 1 93000 7 7 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.125600-4 6.566000-9 1.000000+5 6.566000-9 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.125600-4 8.548343-5 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.184800-4 7.290602+5 1.186000-4 7.464160+5 1.192000-4 8.238080+5 1.205000-4 1.025432+6 1.212000-4 1.146564+6 1.218000-4 1.254088+6 1.225000-4 1.380540+6 1.230269-4 1.474064+6 1.235000-4 1.555512+6 1.240000-4 1.637804+6 1.245000-4 1.715372+6 1.252000-4 1.814080+6 1.257000-4 1.876800+6 1.262000-4 1.932460+6 1.267000-4 1.980852+6 1.273503-4 2.032779+6 1.280000-4 2.072444+6 1.287000-4 2.102440+6 1.295000-4 2.122188+6 1.303167-4 2.127941+6 1.310000-4 2.123504+6 1.320000-4 2.104620+6 1.330000-4 2.074516+6 1.345000-4 2.015252+6 1.364583-4 1.924110+6 1.390000-4 1.798972+6 1.428894-4 1.614167+6 1.480000-4 1.396744+6 1.531087-4 1.205701+6 1.580000-4 1.043864+6 1.635000-4 8.853560+5 1.862087-4 4.624875+5 1.980000-4 3.429376+5 2.080000-4 2.714664+5 2.168100-4 2.244716+5 2.240000-4 1.945892+5 2.300000-4 1.743220+5 2.350000-4 1.601304+5 2.400000-4 1.480232+5 2.454709-4 1.368162+5 2.511886-4 1.270351+5 2.570396-4 1.187427+5 2.630268-4 1.117580+5 2.691535-4 1.059167+5 2.754229-4 1.010714+5 2.818383-4 9.709040+4 2.884032-4 9.385825+4 2.951209-4 9.127272+4 3.030000-4 8.899480+4 3.100000-4 8.752400+4 3.200000-4 8.612880+4 3.320000-4 8.527520+4 3.430000-4 8.504000+4 3.600000-4 8.529360+4 4.365158-4 8.811239+4 4.677351-4 8.859233+4 5.000000-4 8.840640+4 5.308844-4 8.767050+4 5.650000-4 8.635640+4 6.025596-4 8.441290+4 6.456542-4 8.173299+4 6.918310-4 7.855498+4 7.413102-4 7.494231+4 8.000000-4 7.058120+4 8.609938-4 6.613529+4 9.332543-4 6.108427+4 1.011579-3 5.599692+4 1.096478-3 5.094654+4 1.190000-3 4.597080+4 1.300000-3 4.082080+4 1.412538-3 3.627635+4 1.566751-3 3.103069+4 1.717908-3 2.679761+4 1.862087-3 2.344076+4 2.070000-3 1.950800+4 2.300000-3 1.610968+4 2.570396-3 1.304554+4 2.851018-3 1.062814+4 3.162278-3 8.591503+3 3.507519-3 6.890502+3 3.890451-3 5.483034+3 4.315191-3 4.330167+3 4.786301-3 3.394241+3 5.308844-3 2.640380+3 5.888437-3 2.038695+3 6.531306-3 1.562941+3 7.244360-3 1.189952+3 8.035261-3 8.998567+2 9.000000-3 6.577849+2 1.000000-2 4.882206+2 1.122018-2 3.498585+2 1.258925-2 2.488254+2 1.412538-2 1.756844+2 1.584893-2 1.231754+2 1.798871-2 8.269932+1 2.041738-2 5.508771+1 2.317395-2 3.641458+1 2.630268-2 2.389711+1 3.019952-2 1.498025+1 3.507519-2 8.958313+0 4.073803-2 5.316999+0 4.841724-2 2.888900+0 5.821032-2 1.494120+0 7.328245-2 6.496061-1 1.380384-1 6.468753-2 1.698244-1 3.060547-2 2.018366-1 1.651908-2 2.344229-1 9.744400-3 2.691535-1 6.029168-3 3.054921-1 3.910173-3 3.427678-1 2.655211-3 3.845918-1 1.816002-3 4.315191-1 1.251030-3 4.731513-1 9.348259-4 5.069907-1 7.552900-4 5.559043-1 5.731185-4 6.382635-1 3.827451-4 7.079458-1 2.846061-4 8.128305-1 1.937648-4 8.709636-1 1.600442-4 9.225714-1 1.374804-4 9.660509-1 1.225247-4 1.011579+0 1.099620-4 1.059254+0 9.933018-5 1.122018+0 8.809716-5 1.188502+0 7.866211-5 1.273503+0 6.915514-5 1.380384+0 5.993247-5 1.531087+0 5.010878-5 1.862087+0 3.549422-5 2.089296+0 2.915635-5 2.371374+0 2.366024-5 2.722701+0 1.898960-5 3.198895+0 1.482244-5 3.715352+0 1.186534-5 4.315191+0 9.568961-6 5.069907+0 7.647787-6 6.025596+0 6.060412-6 7.161434+0 4.838569-6 8.810489+0 3.724516-6 1.083927+1 2.891772-6 1.333521+1 2.261322-6 1.698244+1 1.710908-6 2.238721+1 1.254573-6 2.917427+1 9.386178-7 4.120975+1 6.480307-7 6.095369+1 4.294721-7 1.000000+2 2.574700-7 1.927525+2 1.318421-7 3.845918+2 6.564383-8 7.673615+2 3.278263-8 1.216186+4 2.061903-9 1.000000+5 2.50710-10 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.184800-4 1.184800-4 1.000000+5 1.184800-4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.184800-4 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.094700-4 1.169677+6 1.096478-4 1.215015+6 1.098000-4 1.252746+6 1.107000-4 1.482594+6 1.113000-4 1.646730+6 1.118500-4 1.802256+6 1.124000-4 1.959348+6 1.129500-4 2.115690+6 1.135011-4 2.269570+6 1.141000-4 2.430714+6 1.146000-4 2.558442+6 1.152000-4 2.701056+6 1.157700-4 2.824041+6 1.163000-4 2.926248+6 1.169000-4 3.026754+6 1.175000-4 3.110664+6 1.182500-4 3.192111+6 1.190000-4 3.248550+6 1.198000-4 3.283218+6 1.204000-4 3.293814+6 1.211000-4 3.291426+6 1.219000-4 3.272238+6 1.230269-4 3.221615+6 1.242800-4 3.142168+6 1.258925-4 3.018377+6 1.278000-4 2.858046+6 1.303167-4 2.644715+6 1.350000-4 2.279586+6 1.400000-4 1.945512+6 1.450000-4 1.659150+6 1.500000-4 1.412190+6 1.560000-4 1.162680+6 1.720000-4 7.079580+5 1.800000-4 5.651292+5 1.880000-4 4.588686+5 1.950000-4 3.878304+5 2.018366-4 3.333958+5 2.080000-4 2.942826+5 2.137962-4 2.644380+5 2.190000-4 2.423676+5 2.240000-4 2.246838+5 2.290868-4 2.096853+5 2.345100-4 1.964986+5 2.400000-4 1.856226+5 2.454709-4 1.768492+5 2.511886-4 1.695100+5 2.570396-4 1.635958+5 2.637900-4 1.583951+5 2.710000-4 1.543602+5 2.786121-4 1.514131+5 2.880000-4 1.491624+5 2.985383-4 1.479368+5 3.100000-4 1.476618+5 3.280000-4 1.485372+5 3.845918-4 1.532532+5 4.120975-4 1.544050+5 4.365158-4 1.545304+5 4.623810-4 1.537702+5 4.897788-4 1.521197+5 5.188000-4 1.496226+5 5.500000-4 1.462680+5 5.888437-4 1.414126+5 6.309573-4 1.356430+5 6.760830-4 1.291707+5 7.300000-4 1.213806+5 7.852356-4 1.135722+5 8.511380-4 1.047221+5 9.225714-4 9.581582+4 1.000000-3 8.704440+4 1.083927-3 7.852830+4 1.190000-3 6.916260+4 1.303167-3 6.061579+4 1.412538-3 5.361188+4 1.570000-3 4.525326+4 1.737801-3 3.811484+4 1.905461-3 3.239010+4 2.070000-3 2.783424+4 2.290868-3 2.295893+4 2.540973-3 1.871007+4 2.818383-3 1.512894+4 3.140000-3 1.202214+4 3.467369-3 9.663344+3 3.845918-3 7.635500+3 4.265795-3 5.986414+3 4.731513-3 4.657385+3 5.248075-3 3.596467+3 5.821032-3 2.756868+3 6.456542-3 2.097890+3 7.161434-3 1.585127+3 8.000000-3 1.165896+3 8.912509-3 8.576543+2 9.885531-3 6.345367+2 1.109175-2 4.505534+2 1.244515-2 3.174322+2 1.396368-2 2.219595+2 1.566751-2 1.540698+2 1.757924-2 1.061899+2 1.972423-2 7.268834+1 2.213095-2 4.942502+1 2.511886-2 3.209060+1 2.851018-2 2.068672+1 3.273407-2 1.271900+1 3.758374-2 7.762887+0 4.265795-2 4.904068+0 5.011872-2 2.710545+0 6.025596-2 1.365099+0 7.852356-2 5.049418-1 1.244515-1 8.905373-2 1.513561-1 4.281882-2 1.778279-1 2.358748-2 2.065380-1 1.365992-2 2.344229-1 8.662635-3 2.630268-1 5.764487-3 2.951209-1 3.864361-3 3.273407-1 2.715771-3 3.630781-1 1.922607-3 4.027170-1 1.371814-3 4.415705-1 1.023101-3 4.786301-1 7.964740-4 5.128614-1 6.461011-4 5.623413-1 4.927329-4 6.237348-1 3.664050-4 6.839117-1 2.835030-4 7.498942-1 2.209309-4 8.609938-1 1.532832-4 9.120108-1 1.324098-4 9.660509-1 1.152184-4 1.011579+0 1.037518-4 1.071519+0 9.167989-5 1.135011+0 8.152929-5 1.216186+0 7.132145-5 1.318257+0 6.147952-5 1.840772+0 3.413699-5 2.089296+0 2.749102-5 2.371374+0 2.230877-5 2.722701+0 1.790466-5 3.198895+0 1.397551-5 3.715352+0 1.118751-5 4.315191+0 9.022285-6 5.069907+0 7.210792-6 6.025596+0 5.714169-6 7.161434+0 4.562104-6 8.810489+0 3.511779-6 1.083927+1 2.726564-6 1.333521+1 2.132120-6 1.698244+1 1.613177-6 2.264644+1 1.167801-6 3.019952+1 8.525031-7 4.265795+1 5.890353-7 6.382635+1 3.859804-7 1.059254+2 2.288399-7 2.065380+2 1.159025-7 4.120975+2 5.773490-8 1.640590+3 1.443414-8 1.000000+5 2.36390-10 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.094700-4 1.094700-4 1.000000+5 1.094700-4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.094700-4 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.012000-5 2.301091+5 1.035142-5 2.292332+5 1.060000-5 2.292057+5 1.090000-5 2.304109+5 1.122018-5 2.331102+5 1.150000-5 2.367554+5 1.175000-5 2.409366+5 1.210000-5 2.483080+5 1.245000-5 2.575069+5 1.280000-5 2.684201+5 1.320000-5 2.829779+5 1.364583-5 3.017982+5 1.412538-5 3.250992+5 1.470000-5 3.570592+5 1.531087-5 3.957877+5 1.610000-5 4.529034+5 1.698244-5 5.263659+5 1.840772-5 6.661150+5 2.162719-5 1.074977+6 2.317395-5 1.311992+6 2.454709-5 1.538650+6 2.580000-5 1.754199+6 2.691535-5 1.950404+6 2.818383-5 2.174232+6 2.917427-5 2.346025+6 3.040000-5 2.552064+6 3.162278-5 2.748050+6 3.300000-5 2.955436+6 3.450000-5 3.164168+6 3.589219-5 3.340982+6 3.758374-5 3.533731+6 3.950000-5 3.725375+6 4.168694-5 3.914267+6 4.400000-5 4.081450+6 4.623810-5 4.211137+6 4.850000-5 4.310771+6 5.080000-5 4.378674+6 5.300000-5 4.409171+6 5.500000-5 4.406720+6 5.688529-5 4.379232+6 5.900000-5 4.321451+6 6.095369-5 4.244603+6 6.309573-5 4.137425+6 6.531306-5 4.006012+6 6.760830-5 3.853999+6 7.000000-5 3.683666+6 7.244360-5 3.501286+6 7.500000-5 3.305648+6 7.800000-5 3.075162+6 8.035261-5 2.896453+6 8.317638-5 2.685829+6 8.609938-5 2.473530+6 8.912509-5 2.261718+6 9.225714-5 2.053071+6 9.500000-5 1.879633+6 9.800000-5 1.700224+6 1.011579-4 1.524021+6 1.040000-4 1.377283+6 1.071519-4 1.227549+6 1.100000-4 1.103495+6 1.135011-4 9.651358+5 1.174898-4 8.258321+5 1.208500-4 7.224358+5 1.244515-4 6.242173+5 1.280000-4 5.389573+5 1.318257-4 4.586899+5 1.350000-4 4.003176+5 1.380384-4 3.506286+5 1.415000-4 3.006008+5 1.450000-4 2.564475+5 1.480000-4 2.232503+5 1.513561-4 1.906514+5 1.548817-4 1.609594+5 1.580000-4 1.381327+5 1.610000-4 1.188939+5 1.640590-4 1.017487+5 1.670000-4 8.736948+4 1.705000-4 7.262761+4 1.740000-4 6.013815+4 1.770000-4 5.100578+4 1.800000-4 4.315982+4 1.840772-4 3.430666+4 1.953400-4 1.833719+4 1.980000-4 1.598270+4 2.000000-4 1.449718+4 2.020000-4 1.323408+4 2.040000-4 1.217497+4 2.055000-4 1.150412+4 2.070000-4 1.093150+4 2.085000-4 1.045071+4 2.100000-4 1.005577+4 2.115000-4 9.741041+3 2.128000-4 9.529018+3 2.142000-4 9.359852+3 2.155000-4 9.254389+3 2.170000-4 9.190566+3 2.185000-4 9.184652+3 2.198000-4 9.223240+3 2.213095-4 9.315531+3 2.230900-4 9.485192+3 2.250000-4 9.734219+3 2.270000-4 1.006237+4 2.290868-4 1.047080+4 2.317395-4 1.107591+4 2.350000-4 1.193226+4 2.483133-4 1.630241+4 2.540973-4 1.845780+4 2.580000-4 1.994834+4 2.635000-4 2.206086+4 2.691535-4 2.421820+4 2.750000-4 2.641138+4 2.800000-4 2.823727+4 2.851018-4 3.003310+4 2.917427-4 3.225134+4 2.985383-4 3.438272+4 3.054921-4 3.641927+4 3.126079-4 3.835284+4 3.198895-4 4.016802+4 3.273407-4 4.184937+4 3.349654-4 4.338425+4 3.429800-4 4.479780+4 3.507519-4 4.597888+4 3.589219-4 4.702835+4 3.715352-4 4.828959+4 3.845918-4 4.918408+4 3.981072-4 4.973257+4 4.137700-4 5.014548+4 4.265795-4 5.022134+4 4.415704-4 5.003728+4 4.570882-4 4.958969+4 4.731513-4 4.890629+4 4.954502-4 4.768059+4 5.188000-4 4.622207+4 5.432503-4 4.453184+4 5.688529-4 4.264459+4 6.025596-4 4.008569+4 6.382635-4 3.740187+4 6.760830-4 3.464273+4 7.161434-4 3.187214+4 7.585776-4 2.914128+4 8.035261-4 2.648695+4 8.609938-4 2.344816+4 9.225714-4 2.060525+4 9.885531-4 1.798286+4 1.059254-3 1.559317+4 1.135011-3 1.343794+4 1.230269-3 1.121327+4 1.333521-3 9.286126+3 1.445440-3 7.635405+3 1.584893-3 6.057662+3 1.717908-3 4.914193+3 1.883649-3 3.840297+3 2.065380-3 2.977930+3 2.264644-3 2.292285+3 2.483133-3 1.751755+3 2.722701-3 1.329349+3 3.000000-3 9.871928+2 3.311311-3 7.236289+2 3.630781-3 5.378825+2 4.000000-3 3.910024+2 4.415704-3 2.801815+2 4.841724-3 2.037776+2 5.370318-3 1.413027+2 6.000000-3 9.472993+1 6.683439-3 6.383302+1 7.498942-3 4.156681+1 8.317638-3 2.805872+1 9.332543-3 1.799279+1 1.047129-2 1.145097+1 1.174898-2 7.234850+0 1.318257-2 4.539556+0 1.496236-2 2.698114+0 1.698244-2 1.591502+0 1.927525-2 9.321924-1 2.213095-2 5.162565-1 2.570396-2 2.699591-1 3.019952-2 1.332230-1 3.589219-2 6.202323-2 4.415704-2 2.458376-2 9.015711-2 9.916453-4 1.122019-1 3.730653-4 1.348963-1 1.647628-4 1.513561-1 9.943758-5 1.717908-1 5.754573-5 1.949845-1 3.355904-5 2.238721-1 1.876111-5 2.511886-1 1.163429-5 2.818383-1 7.267783-6 3.126079-1 4.792230-6 3.467369-1 3.182920-6 3.845918-1 2.130533-6 4.265795-1 1.437534-6 4.677351-1 1.021094-6 5.011872-1 7.944114-7 5.432503-1 5.986112-7 5.888437-1 4.544384-7 6.382635-1 3.473577-7 6.998420-1 2.574626-7 7.673615-1 1.922240-7 8.000000-1 1.687900-7 8.413951-1 1.427228-7 8.810489-1 1.232012-7 9.225714-1 1.071227-7 9.549926-1 9.699922-8 9.885531-1 8.831512-8 1.023293+0 8.089851-8 1.059254+0 7.453817-8 1.096478+0 6.903585-8 1.148154+0 6.276687-8 1.202264+0 5.745371-8 1.288250+0 5.076184-8 1.396368+0 4.431375-8 1.513561+0 3.883949-8 1.927525+0 2.539059-8 2.162719+0 2.089554-8 2.454709+0 1.699077-8 2.818383+0 1.366283-8 3.311311+0 1.068360-8 3.845918+0 8.567020-9 4.466836+0 6.920329-9 5.308844+0 5.453085-9 6.309573+0 4.330080-9 7.585776+0 3.413310-9 9.225714+0 2.671339-9 1.148154+1 2.048940-9 1.445440+1 1.563050-9 1.819701+1 1.201215-9 2.426610+1 8.71154-10 3.388442+1 6.06359-10 4.841724+1 4.14951-10 7.585776+1 2.59841-10 1.348963+2 1.43904-10 2.600160+2 7.39523-11 5.188000+2 3.68780-11 4.120975+3 4.62199-12 1.000000+5 1.90350-13 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.012000-5 1.012000-5 1.000000+5 1.012000-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.012000-5 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 9.030000-6 3.810986+5 9.120108-6 3.787280+5 9.440609-6 3.747115+5 9.772372-6 3.737525+5 1.010000-5 3.761227+5 1.035142-5 3.799717+5 1.060000-5 3.855878+5 1.085000-5 3.928358+5 1.120000-5 4.056907+5 1.150000-5 4.191535+5 1.190000-5 4.404312+5 1.230269-5 4.654946+5 1.273503-5 4.962571+5 1.318257-5 5.322107+5 1.365000-5 5.740744+5 1.428894-5 6.381994+5 1.513561-5 7.351178+5 1.621810-5 8.781455+5 2.070000-5 1.682909+6 2.238721-5 2.060764+6 2.378500-5 2.393550+6 2.511886-5 2.719478+6 2.630268-5 3.010040+6 2.754229-5 3.309135+6 2.884032-5 3.611846+6 3.000000-5 3.868564+6 3.126079-5 4.129335+6 3.273407-5 4.408487+6 3.427678-5 4.671980+6 3.589219-5 4.916548+6 3.758374-5 5.139155+6 3.950000-5 5.355190+6 4.168694-5 5.562075+6 4.400000-5 5.735852+6 4.623810-5 5.859683+6 4.850000-5 5.942480+6 5.080000-5 5.980423+6 5.300000-5 5.969497+6 5.500000-5 5.920857+6 5.688529-5 5.844185+6 5.900000-5 5.725086+6 6.095369-5 5.586590+6 6.309573-5 5.408924+6 6.531306-5 5.204312+6 6.760830-5 4.977255+6 7.000000-5 4.729317+6 7.244360-5 4.469447+6 7.500000-5 4.196792+6 7.800000-5 3.881410+6 8.035261-5 3.639347+6 8.317638-5 3.355776+6 8.609938-5 3.073674+6 8.912509-5 2.796075+6 9.225714-5 2.523941+6 9.500000-5 2.298944+6 9.800000-5 2.068826+6 1.011579-4 1.845387+6 1.040000-4 1.660127+6 1.071519-4 1.471669+6 1.100000-4 1.316772+6 1.135011-4 1.145717+6 1.170000-4 9.941581+5 1.205000-4 8.599732+5 1.240000-4 7.418889+5 1.273503-4 6.426127+5 1.303167-4 5.646563+5 1.333521-4 4.934636+5 1.365000-4 4.279741+5 1.400000-4 3.642439+5 1.430000-4 3.164383+5 1.465000-4 2.676452+5 1.500000-4 2.254814+5 1.531087-4 1.930019+5 1.560000-4 1.665688+5 1.590000-4 1.425718+5 1.621810-4 1.204947+5 1.650000-4 1.034935+5 1.680000-4 8.775984+4 1.705000-4 7.632649+4 1.740000-4 6.259943+4 1.778279-4 5.024040+4 1.820000-4 3.944861+4 1.890000-4 2.645938+4 1.915000-4 2.310807+4 1.940000-4 2.032565+4 1.957000-4 1.872742+4 1.973000-4 1.742237+4 1.990000-4 1.623208+4 2.007000-4 1.522964+4 2.023000-4 1.444541+4 2.035000-4 1.395200+4 2.050000-4 1.344226+4 2.065380-4 1.303541+4 2.080000-4 1.275006+4 2.095000-4 1.255296+4 2.107000-4 1.246055+4 2.123000-4 1.242144+4 2.140000-4 1.247765+4 2.158000-4 1.263776+4 2.173000-4 1.284361+4 2.190000-4 1.314967+4 2.213095-4 1.367740+4 2.240000-4 1.443574+4 2.265000-4 1.526052+4 2.300000-4 1.657990+4 2.420000-4 2.211205+4 2.460000-4 2.415813+4 2.511886-4 2.687736+4 2.550000-4 2.889937+4 2.600160-4 3.156304+4 2.650000-4 3.417456+4 2.703130-4 3.688290+4 2.754229-4 3.940271+4 2.818383-4 4.243074+4 2.884032-4 4.534840+4 2.951209-4 4.812453+4 3.019952-4 5.076094+4 3.090295-4 5.329867+4 3.162278-4 5.565850+4 3.235937-4 5.782114+4 3.311311-4 5.977140+4 3.388442-4 6.149835+4 3.467369-4 6.299533+4 3.548134-4 6.425984+4 3.672823-4 6.572497+4 3.801894-4 6.669119+4 3.935501-4 6.719402+4 4.120975-4 6.746766+4 4.265795-4 6.731978+4 4.415704-4 6.681114+4 4.570882-4 6.597532+4 4.786301-4 6.441687+4 5.011872-4 6.244262+4 5.248075-4 6.021933+4 5.495409-4 5.772156+4 5.754399-4 5.501481+4 6.095369-4 5.143997+4 6.456542-4 4.775791+4 6.839116-4 4.403121+4 7.244360-4 4.033571+4 7.673615-4 3.672789+4 8.222426-4 3.257608+4 8.810489-4 2.867308+4 9.440609-4 2.505738+4 1.011579-3 2.175120+4 1.083927-3 1.876719+4 1.174898-3 1.568193+4 1.273503-3 1.300409+4 1.380384-3 1.070567+4 1.513561-3 8.502512+3 1.640590-3 6.905258+3 1.778279-3 5.572550+3 1.949845-3 4.328887+3 2.137962-3 3.337676+3 2.344229-3 2.554660+3 2.570396-3 1.941395+3 2.818383-3 1.465305+3 3.090295-3 1.098662+3 3.388442-3 8.182766+2 3.693000-3 6.176356+2 3.758374-3 5.849197+2 3.845918-3 5.413704+2 3.890451-3 5.192682+2 4.073803-3 4.337993+2 4.265795-3 3.654766+2 4.466836-3 3.100044+2 4.731513-3 2.542116+2 5.128614-3 1.942476+2 5.405000-3 1.633964+2 5.956621-3 1.149508+2 6.606934-3 7.845451+1 7.328245-3 5.317284+1 8.128305-3 3.579682+1 9.120108-3 2.288897+1 1.023293-2 1.452257+1 1.148154-2 9.145574+0 1.288250-2 5.718411+0 1.462177-2 3.384749+0 1.659587-2 1.987646+0 1.883649-2 1.158622+0 2.162719-2 6.380155-1 2.483133-2 3.486363-1 2.884032-2 1.797751-1 3.388442-2 8.742355-2 4.073803-2 3.805541-2 5.188000-2 1.266342-2 9.120108-2 9.617855-4 1.174898-1 3.040166-4 1.348963-1 1.632917-4 1.513561-1 9.788898-5 1.717908-1 5.625588-5 1.927525-1 3.423930-5 2.187762-1 1.996340-5 2.426610-1 1.292897-5 2.660725-1 8.847123-6 2.917427-1 6.099486-6 3.198895-1 4.235407-6 3.507519-1 2.962867-6 3.801894-1 2.181498-6 4.216965-1 1.483904-6 4.518559-1 1.154979-6 4.841724-1 9.052095-7 5.069907-1 7.733597-7 5.432503-1 6.160163-7 5.888437-1 4.761166-7 6.606935-1 3.311192-7 7.161434-1 2.582933-7 7.762471-1 2.028201-7 8.511380-1 1.544054-7 8.912509-1 1.353688-7 9.332543-1 1.193789-7 9.772372-1 1.060241-7 1.011579+0 9.752504-8 1.059254+0 8.783861-8 1.109175+0 7.963928-8 1.174898+0 7.101124-8 1.250000+0 6.325300-8 1.348963+0 5.524001-8 1.513561+0 4.540606-8 1.883649+0 3.089059-8 2.113489+0 2.539010-8 2.398833+0 2.061839-8 2.754229+0 1.655871-8 3.235937+0 1.293251-8 3.758374+0 1.035846-8 4.365158+0 8.358250-9 5.128614+0 6.683388-9 6.095369+0 5.298906-9 7.244360+0 4.232603-9 8.912509+0 3.259612-9 1.109175+1 2.497042-9 1.380384+1 1.928046-9 1.757924+1 1.460547-9 2.344229+1 1.058158-9 3.235937+1 7.45016-10 4.570882+1 5.15545-10 6.998420+1 3.30266-10 1.202264+2 1.89266-10 2.344229+2 9.60084-11 4.677351+2 4.78562-11 1.862087+3 1.19730-11 1.000000+5 2.22570-13 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 9.030000-6 9.030000-6 1.000000+5 9.030000-6 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 9.030000-6 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.439000-5 3.416380+5 5.495409-5 3.295221+5 5.623413-5 3.017552+5 5.920000-5 2.465100+5 6.165950-5 2.115740+5 6.382635-5 1.872396+5 6.580000-5 1.692220+5 6.800000-5 1.527658+5 7.000000-5 1.404156+5 7.244360-5 1.279418+5 7.500000-5 1.172506+5 7.800000-5 1.069932+5 8.150000-5 9.730400+4 8.511380-5 8.915872+4 9.000000-5 8.030200+4 9.500000-5 7.310220+4 1.000000-4 6.731080+4 1.047129-4 6.285778+4 1.100000-4 5.877060+4 1.161449-4 5.493329+4 1.244515-4 5.082547+4 1.380384-4 4.568172+4 2.137962-4 2.954565+4 2.426610-4 2.585088+4 2.917427-4 2.110410+4 3.311311-4 1.824396+4 4.000000-4 1.453802+4 4.623810-4 1.213075+4 5.559043-4 9.557378+3 6.606934-4 7.579281+3 7.852356-4 5.965527+3 9.332543-4 4.660295+3 1.109175-3 3.615560+3 1.333521-3 2.738515+3 1.640590-3 1.987892+3 2.089296-3 1.356427+3 2.660725-3 9.184171+2 3.427678-3 6.054822+2 4.265795-3 4.194573+2 5.248075-3 2.941246+2 6.456542-3 2.046292+2 7.852356-3 1.441496+2 9.332543-3 1.051061+2 1.122018-2 7.440218+1 1.380384-2 5.004176+1 1.698244-2 3.340080+1 2.137962-2 2.117621+1 2.570396-2 1.460252+1 3.019952-2 1.048005+1 3.589219-2 7.279195+0 4.265795-2 5.018874+0 5.128614-2 3.349628+0 6.165950-2 2.218563+0 7.498942-2 1.420845+0 8.912509-2 9.521451-1 1.109175-1 5.688387-1 1.445440-1 3.023757-1 2.600160-1 7.327883-2 3.235937-1 4.349941-2 3.890451-1 2.823714-2 4.570882-1 1.947888-2 5.248075-1 1.426070-2 6.095369-1 1.025230-2 6.998420-1 7.612701-3 8.128305-1 5.557347-3 9.225714-1 4.285558-3 1.047129+0 3.331588-3 1.230269+0 2.432661-3 1.380384+0 1.957034-3 1.548817+0 1.584720-3 1.757924+0 1.266261-3 2.018366+0 9.986953-4 2.290868+0 8.088823-4 2.630268+0 6.479064-4 3.054921+0 5.137106-4 3.548134+0 4.102719-4 4.120975+0 3.301197-4 4.841724+0 2.632829-4 5.754399+0 2.082104-4 6.839116+0 1.659080-4 8.317638+0 1.293254-4 1.000000+1 1.030200-4 1.230269+1 8.033330-5 1.548817+1 6.142673-5 2.018366+1 4.550041-5 2.570396+1 3.481691-5 3.548134+1 2.456341-5 5.128614+1 1.662373-5 8.128305+1 1.029748-5 1.479108+2 5.575981-6 2.917427+2 2.802357-6 5.821032+2 1.398089-6 4.623810+3 1.753241-7 1.000000+5 8.101400-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.439000-5 5.439000-5 1.000000+5 5.439000-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.439000-5 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.552000-5 6.569319+6 3.630781-5 6.271772+6 3.740000-5 5.846560+6 3.900000-5 5.259480+6 4.168694-5 4.413414+6 4.415704-5 3.767269+6 4.677351-5 3.194912+6 5.000000-5 2.618340+6 5.400000-5 2.063160+6 6.531306-5 1.132922+6 7.328245-5 7.940730+5 8.511380-5 5.054382+5 1.161449-4 1.993640+5 1.350000-4 1.279214+5 1.531087-4 8.889513+4 1.698244-4 6.633338+4 1.883649-4 4.987971+4 2.065380-4 3.899933+4 2.238721-4 3.167085+4 2.400000-4 2.663480+4 2.580000-4 2.241040+4 2.754229-4 1.929699+4 2.951209-4 1.658447+4 3.162278-4 1.435825+4 3.350000-4 1.280556+4 3.550000-4 1.147960+4 3.801894-4 1.015783+4 4.073803-4 9.041374+3 4.365158-4 8.101127+3 4.700000-4 7.254020+3 5.150000-4 6.383120+3 5.688529-4 5.602097+3 6.309573-4 4.928112+3 7.244360-4 4.186801+3 1.122018-3 2.541734+3 1.348963-3 2.045683+3 1.584893-3 1.680050+3 1.862087-3 1.369467+3 2.187762-3 1.107729+3 2.540973-3 9.030468+2 2.951209-3 7.306920+2 3.388442-3 5.967495+2 3.890451-3 4.839369+2 4.466836-3 3.895779+2 5.069907-3 3.171735+2 5.754399-3 2.564703+2 6.531306-3 2.059851+2 7.413102-3 1.642966+2 8.511380-3 1.273793+2 9.660509-3 1.001708+2 1.109175-2 7.648512+1 1.273503-2 5.793839+1 1.462177-2 4.354358+1 1.757924-2 2.946346+1 1.995262-2 2.231419+1 2.290868-2 1.635053+1 2.630268-2 1.189675+1 3.019952-2 8.594862+0 3.507519-2 5.995620+0 4.073803-2 4.150349+0 4.731513-2 2.852034+0 5.559043-2 1.890047+0 6.531306-2 1.243605+0 7.852356-2 7.649183-1 9.772372-2 4.259924-1 1.288250-1 2.013499-1 2.113489-1 5.228808-2 2.630268-1 2.899394-2 3.162278-1 1.777488-2 3.672823-1 1.202397-2 4.216965-1 8.438986-3 4.841724-1 5.968349-3 5.495409-1 4.376586-3 6.165950-1 3.323241-3 6.918310-1 2.540837-3 7.762471-1 1.956681-3 8.709636-1 1.515568-3 9.440609-1 1.275100-3 1.023293+0 1.080443-3 1.148154+0 8.596043-4 1.273503+0 7.042608-4 1.428894+0 5.689623-4 1.659587+0 4.348792-4 1.905461+0 3.418724-4 2.162719+0 2.759520-4 2.454709+0 2.243812-4 2.818383+0 1.804338-4 3.311311+0 1.410918-4 3.845918+0 1.131403-4 4.466836+0 9.139184-5 5.308844+0 7.201412-5 6.309573+0 5.718361-5 7.498942+0 4.574111-5 9.120108+0 3.578154-5 1.135011+1 2.743394-5 1.428894+1 2.091866-5 1.800000+1 1.606000-5 2.400000+1 1.164500-5 3.349654+1 8.107273-6 4.786301+1 5.546676-6 7.498942+1 3.472569-6 1.333521+2 1.922896-6 2.570396+2 9.880301-7 5.128614+2 4.926874-7 4.073803+3 6.174642-8 1.000000+5 2.513800-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.552000-5 3.552000-5 1.000000+5 3.552000-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.552000-5 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.525000-5 1.541624+7 2.800000-5 1.092264+7 3.090295-5 7.927414+6 3.672823-5 4.546007+6 4.800000-5 1.896700+6 5.248075-5 1.425669+6 5.688529-5 1.109265+6 6.095369-5 9.003216+5 6.531306-5 7.357806+5 7.000000-5 6.055000+5 7.413102-5 5.185143+5 7.852356-5 4.464279+5 8.317638-5 3.867423+5 8.810489-5 3.371423+5 9.332543-5 2.956966+5 1.000000-4 2.545288+5 1.071519-4 2.207669+5 1.150000-4 1.922864+5 1.230269-4 1.696764+5 1.318257-4 1.502981+5 1.412538-4 1.340494+5 1.531087-4 1.182066+5 1.678804-4 1.032197+5 1.883649-4 8.785958+4 2.137962-4 7.418943+4 2.500000-4 6.077120+4 4.073803-4 3.307409+4 5.011872-4 2.538135+4 5.956621-4 2.022299+4 7.079458-4 1.599635+4 8.317638-4 1.276115+4 9.772372-4 1.010828+4 1.148154-3 7.946754+3 1.348963-3 6.201006+3 1.584893-3 4.802598+3 1.862087-3 3.692920+3 2.213095-3 2.765547+3 2.600160-3 2.095960+3 3.054921-3 1.576535+3 3.548134-3 1.201768+3 4.120975-3 9.094043+2 4.731513-3 6.982320+2 5.432503-3 5.323760+2 6.237348-3 4.029985+2 7.161434-3 3.027908+2 8.222426-3 2.258052+2 9.440609-3 1.671307+2 1.096478-2 1.197336+2 1.261910-2 8.691087+1 1.445440-2 6.329690+1 1.621810-2 4.804705+1 1.840772-2 3.523551+1 2.113489-2 2.493283+1 2.426610-2 1.751044+1 2.786121-2 1.220770+1 3.198895-2 8.448567+0 3.672823-2 5.805442+0 4.216965-2 3.962059+0 4.897788-2 2.600095+0 5.754399-2 1.639160+0 6.760830-2 1.025458+0 8.128305-2 5.952747-1 1.000000-1 3.203666-1 1.972423-1 4.092237-2 2.426610-1 2.197100-2 2.851018-1 1.363779-2 3.311311-1 8.823581-3 3.758374-1 6.145779-3 4.265795-1 4.311423-3 4.786301-1 3.145883-3 5.308844-1 2.384858-3 5.956621-1 1.766636-3 6.683439-1 1.318770-3 7.413102-1 1.020748-3 8.609938-1 7.114636-4 9.225714-1 6.058065-4 9.772372-1 5.327418-4 1.047129+0 4.601033-4 1.135011+0 3.909623-4 1.230269+0 3.346157-4 1.348963+0 2.821169-4 1.678804+0 1.909140-4 1.927525+0 1.501032-4 2.187762+0 1.212453-4 2.483133+0 9.865249-5 2.851018+0 7.937325-5 3.311311+0 6.318034-5 3.845918+0 5.066338-5 4.466836+0 4.092499-5 5.308844+0 3.224823-5 6.309573+0 2.560716-5 7.498942+0 2.048326-5 9.120108+0 1.602271-5 1.148154+1 1.211713-5 1.445440+1 9.243600-6 1.819701+1 7.103889-6 2.426610+1 5.151862-6 3.388442+1 3.585895-6 4.841724+1 2.453916-6 7.585776+1 1.536649-6 1.333521+2 8.610891-7 2.600160+2 4.373332-7 5.188000+2 2.180855-7 4.120975+3 2.733312-8 1.000000+5 1.125700-9 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.525000-5 2.525000-5 1.000000+5 2.525000-5 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.525000-5 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.750000-6 2.942973+6 4.800000-6 2.996280+6 4.960000-6 3.121992+6 5.150000-6 3.252960+6 5.420000-6 3.409620+6 5.700000-6 3.539868+6 5.956621-6 3.636843+6 6.350000-6 3.750052+6 6.700000-6 3.823132+6 7.100000-6 3.877504+6 7.585776-6 3.912078+6 8.128305-6 3.918713+6 8.609938-6 3.900156+6 9.200000-6 3.850248+6 9.772372-6 3.778175+6 1.035142-5 3.685870+6 1.096478-5 3.570868+6 1.161449-5 3.431639+6 1.230269-5 3.271593+6 1.290000-5 3.125960+6 1.350000-5 2.974860+6 1.420000-5 2.796684+6 1.496236-5 2.603866+6 1.570000-5 2.422640+6 1.659587-5 2.213054+6 1.757924-5 1.998515+6 1.862087-5 1.791259+6 1.980000-5 1.582756+6 2.113489-5 1.378060+6 2.290868-5 1.151790+6 2.511886-5 9.307862+5 2.800000-5 7.177960+5 3.126079-5 5.474126+5 3.467369-5 4.212853+5 3.801894-5 3.313815+5 4.120975-5 2.668391+5 4.466836-5 2.132355+5 4.800000-5 1.734292+5 5.188000-5 1.377401+5 5.623413-5 1.077016+5 6.165950-5 8.070950+4 6.839116-5 5.787663+4 7.585776-5 4.117456+4 8.317638-5 3.018721+4 8.912509-5 2.377506+4 9.549926-5 1.862017+4 1.035142-4 1.389066+4 1.122018-4 1.028404+4 1.421350-4 4.179560+3 1.500000-4 3.419752+3 1.566751-4 2.925555+3 1.640590-4 2.497391+3 1.698244-4 2.229374+3 1.757924-4 1.999771+3 1.819701-4 1.803196+3 1.883649-4 1.635066+3 1.949845-4 1.491494+3 2.000000-4 1.399660+3 2.065380-4 1.314627+3 2.137962-4 1.237570+3 2.213095-4 1.172879+3 2.290868-4 1.118570+3 2.371374-4 1.073029+3 2.454709-4 1.034923+3 2.540973-4 1.003146+3 2.660725-4 9.690325+2 2.786121-4 9.426863+2 2.917427-4 9.225769+2 3.090295-4 9.039452+2 3.311311-4 8.884692+2 4.027170-4 8.601808+2 4.415704-4 8.367424+2 4.786301-4 8.120032+2 5.128614-4 7.870564+2 5.559043-4 7.534632+2 6.025596-4 7.159036+2 6.531306-4 6.747344+2 7.079458-4 6.313208+2 7.673615-4 5.866505+2 8.317638-4 5.416094+2 9.015711-4 4.968097+2 9.772372-4 4.526223+2 1.071519-3 4.038935+2 1.174898-3 3.577065+2 1.288250-3 3.144873+2 1.412538-3 2.745404+2 1.548817-3 2.380474+2 1.698244-3 2.050620+2 1.883649-3 1.720652+2 2.089296-3 1.432557+2 2.317395-3 1.185109+2 2.511886-3 1.016583+2 2.754229-3 8.470263+1 3.090295-3 6.685790+1 3.427678-3 5.368625+1 3.801894-3 4.280529+1 4.168694-3 3.477829+1 4.623810-3 2.733276+1 5.128614-3 2.132363+1 5.688529-3 1.651375+1 6.309573-3 1.269649+1 6.998420-3 9.693533+0 7.762471-3 7.350478+0 8.609938-3 5.536900+0 9.660509-3 4.010846+0 1.083927-2 2.882614+0 1.216186-2 2.055984+0 1.364583-2 1.455617+0 1.531087-2 1.023234+0 1.717908-2 7.143496-1 1.949845-2 4.774275-1 2.213095-2 3.166193-1 2.511886-2 2.083903-1 2.884032-2 1.310197-1 3.311311-2 8.176783-2 3.845918-2 4.869376-2 4.518559-2 2.764132-2 5.370318-2 1.495201-2 6.456542-2 7.707460-3 8.413951-2 2.946157-3 1.348963-1 5.277043-4 1.659587-1 2.495759-4 1.972423-1 1.346162-4 2.290868-1 7.933472-5 2.630268-1 4.903000-5 3.000000-1 3.123600-5 3.388442-1 2.072741-5 3.801894-1 1.416727-5 4.265795-1 9.752648-6 4.677351-1 7.281246-6 5.069907-1 5.675096-6 5.559043-1 4.307266-6 6.382635-1 2.877922-6 7.079458-1 2.141116-6 8.128305-1 1.459754-6 8.709636-1 1.207445-6 9.225714-1 1.038381-6 9.660509-1 9.261290-7 1.011579+0 8.316475-7 1.071519+0 7.333127-7 1.135011+0 6.514655-7 1.202264+0 5.824110-7 1.288250+0 5.125082-7 1.412538+0 4.356250-7 1.531087+0 3.789235-7 1.862087+0 2.684137-7 2.089296+0 2.204856-7 2.371374+0 1.789223-7 2.722701+0 1.436063-7 3.198895+0 1.120955-7 3.715352+0 8.973153-8 4.315191+0 7.236331-8 5.069907+0 5.783328-8 6.025596+0 4.582969-8 7.161434+0 3.658975-8 8.810489+0 2.816576-8 1.083927+1 2.186786-8 1.333521+1 1.710054-8 1.698244+1 1.293822-8 2.264644+1 9.366188-9 3.054921+1 6.752775-9 4.315191+1 4.667004-9 6.456542+1 3.058884-9 1.083927+2 1.792552-9 2.113489+2 9.08159-10 4.216965+2 4.52442-10 1.678804+3 1.13132-10 1.000000+5 1.89590-12 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.750000-6 4.750000-6 1.000000+5 4.750000-6 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.750000-6 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 4.110000-6 6.172208+6 4.180000-6 6.262800+6 4.365158-6 6.428768+6 4.600000-6 6.588240+6 4.900000-6 6.721260+6 5.248075-6 6.803603+6 5.600000-6 6.831120+6 6.025596-6 6.810310+6 6.500000-6 6.740580+6 7.000000-6 6.626580+6 7.585776-6 6.458010+6 8.222426-6 6.244796+6 8.810489-6 6.027365+6 9.440609-6 5.777694+6 1.000000-5 5.546304+6 1.059254-5 5.292395+6 1.122018-5 5.018112+6 1.188502-5 4.726694+6 1.258925-5 4.420016+6 1.333521-5 4.102646+6 1.412538-5 3.777808+6 1.496236-5 3.451499+6 1.584893-5 3.130089+6 1.678804-5 2.817814+6 1.778279-5 2.518933+6 1.905461-5 2.184464+6 2.041738-5 1.879825+6 2.213095-5 1.564579+6 2.400000-5 1.292016+6 2.660725-5 1.004494+6 2.951209-5 7.745624+5 3.300000-5 5.808798+5 3.672823-5 4.369562+5 3.981072-5 3.501105+5 4.315191-5 2.786433+5 4.677351-5 2.199150+5 5.011872-5 1.784516+5 5.500000-5 1.335402+5 6.025596-5 9.957586+4 6.606934-5 7.354295+4 7.244360-5 5.398481+4 7.943282-5 3.938284+4 8.709636-5 2.851734+4 9.549926-5 2.047630+4 1.060000-4 1.393404+4 1.273503-4 7.012074+3 1.348963-4 5.680493+3 1.421100-4 4.723967+3 1.479108-4 4.122959+3 1.513561-4 3.827182+3 1.566751-4 3.447443+3 1.621810-4 3.122095+3 1.678804-4 2.842961+3 1.737801-4 2.603250+3 1.798871-4 2.397319+3 1.862087-4 2.220472+3 1.927525-4 2.068801+3 2.000000-4 1.930884+3 2.065380-4 1.846215+3 2.137962-4 1.770177+3 2.213095-4 1.707144+3 2.290868-4 1.655078+3 2.398833-4 1.599799+3 2.511886-4 1.557623+3 2.660725-4 1.519073+3 2.818383-4 1.491931+3 3.019952-4 1.467525+3 3.801894-4 1.372700+3 4.168694-4 1.327925+3 4.466836-4 1.286462+3 4.841724-4 1.231456+3 5.248075-4 1.170678+3 5.688529-4 1.105020+3 6.165950-4 1.035560+3 6.683439-4 9.633555+2 7.244360-4 8.901324+2 7.943282-4 8.068941+2 8.709636-4 7.257979+2 9.549926-4 6.477534+2 1.035142-3 5.826444+2 1.135011-3 5.125500+2 1.244515-3 4.477249+2 1.380384-3 3.815572+2 1.513561-3 3.287100+2 1.659587-3 2.810873+2 1.819701-3 2.387410+2 2.018366-3 1.972203+2 2.238721-3 1.619613+2 2.483133-3 1.320574+2 2.754229-3 1.068933+2 3.054921-3 8.588195+1 3.388442-3 6.847394+1 3.758374-3 5.418782+1 4.168694-3 4.256130+1 4.623810-3 3.317923+1 5.128614-3 2.567454+1 5.688529-3 1.972017+1 6.309573-3 1.503579+1 6.998420-3 1.138296+1 7.762471-3 8.557871+0 8.609938-3 6.390498+0 9.549926-3 4.740374+0 1.059254-2 3.493333+0 1.188502-2 2.469840+0 1.333521-2 1.732850+0 1.500000-2 1.197151+0 1.678804-2 8.343087-1 1.883649-2 5.727892-1 2.137962-2 3.758186-1 2.426610-2 2.446526-1 2.754229-2 1.580913-1 3.162278-2 9.742127-2 3.630781-2 5.958959-2 4.216965-2 3.471867-2 4.954502-2 1.925125-2 5.956621-2 9.733404-3 7.413102-2 4.289875-3 1.273503-1 5.588806-4 1.548817-1 2.690780-4 1.819701-1 1.484475-4 2.113489-1 8.611309-5 2.398833-1 5.470851-5 2.691535-1 3.647353-5 3.000000-1 2.506400-5 3.311311-1 1.793288-5 3.672823-1 1.271208-5 4.073803-1 9.083129-6 4.466836-1 6.784342-6 4.841724-1 5.290207-6 5.188000-1 4.299778-6 5.623413-1 3.398711-6 6.237348-1 2.532107-6 6.839117-1 1.961915-6 7.498942-1 1.531602-6 8.511380-1 1.100362-6 9.015711-1 9.521095-7 9.549926-1 8.293224-7 1.000000+0 7.468400-7 1.059254+0 6.599477-7 1.135011+0 5.733850-7 1.216186+0 5.017130-7 1.333521+0 4.232975-7 1.798871+0 2.492852-7 2.044000+0 2.001500-7 2.317395+0 1.625065-7 2.660725+0 1.302508-7 3.090295+0 1.033367-7 3.589219+0 8.257965-8 4.168694+0 6.648577-8 4.897788+0 5.305340-8 5.821032+0 4.197708-8 6.918310+0 3.346501-8 8.413951+0 2.609741-8 1.023293+1 2.050991-8 1.258925+1 1.600621-8 1.603245+1 1.208593-8 2.113489+1 8.848710-9 2.630268+1 6.951145-9 3.672823+1 4.846447-9 5.308844+1 3.282393-9 8.511380+1 2.010397-9 1.566751+2 1.076598-9 3.126079+2 5.35133-10 6.237348+2 2.67045-10 4.954502+3 3.34979-11 1.000000+5 1.65860-12 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 4.110000-6 4.110000-6 1.000000+5 4.110000-6 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 4.110000-6 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.880000-6 9.821140+6 5.956621-6 9.455710+6 6.918310-6 5.754537+6 8.317638-6 3.144845+6 9.772372-6 1.866154+6 1.161449-5 1.075220+6 1.333521-5 6.965009+5 1.513561-5 4.708543+5 1.698244-5 3.323048+5 1.883649-5 2.445951+5 2.070000-5 1.863984+5 2.238721-5 1.497484+5 2.426610-5 1.204403+5 2.600160-5 1.005947+5 2.800000-5 8.355880+4 3.000000-5 7.079380+4 3.198895-5 6.106635+4 3.427678-5 5.246985+4 3.672823-5 4.541724+4 3.935501-5 3.958231+4 4.265795-5 3.398070+4 4.623810-5 2.939622+4 5.011872-5 2.562367+4 5.500000-5 2.203520+4 6.095369-5 1.879535+4 6.760830-5 1.614213+4 7.673615-5 1.350622+4 8.709636-5 1.138146+4 1.011579-4 9.357328+3 1.161449-4 7.872180+3 1.303167-4 6.863498+3 1.717908-4 5.010295+3 1.949845-4 4.303576+3 2.213095-4 3.667370+3 3.054921-4 2.396044+3 3.801894-4 1.803510+3 4.216965-4 1.568988+3 6.095369-4 9.412060+2 7.079458-4 7.620173+2 9.440609-4 4.996284+2 1.109175-3 3.926483+2 1.348963-3 2.907123+2 1.717908-3 1.988319+2 2.187762-3 1.349476+2 2.884032-3 8.595328+1 5.495409-3 2.877174+1 6.165950-3 2.356778+1 7.585776-3 1.628380+1 9.225714-3 1.140023+1 1.122018-2 7.922139+0 1.364583-2 5.463184+0 1.659587-2 3.738013+0 1.995262-2 2.596090+0 2.398833-2 1.789903+0 2.884032-2 1.224973+0 3.427678-2 8.519895-1 4.120975-2 5.740462-1 4.954502-2 3.838165-1 5.956621-2 2.545571-1 7.244360-2 1.632457-1 8.511380-2 1.125234-1 1.059254-1 6.733401-2 1.364583-1 3.684444-2 2.570396-1 7.998000-3 3.198895-1 4.746407-3 3.845918-1 3.079971-3 4.518559-1 2.124572-3 5.248075-1 1.515994-3 6.025596-1 1.118084-3 6.918310-1 8.306603-4 7.943282-1 6.217781-4 9.015711-1 4.800063-4 1.023293+0 3.731720-4 1.230269+0 2.605276-4 1.396368+0 2.050851-4 1.548817+0 1.696234-4 1.757924+0 1.355632-4 2.044000+0 1.046300-4 2.317395+0 8.493347-5 2.630268+0 6.932786-5 3.054921+0 5.498328-5 3.548134+0 4.391175-5 4.120975+0 3.533281-5 4.841724+0 2.817941-5 5.754399+0 2.228527-5 6.839116+0 1.775734-5 8.317638+0 1.384173-5 1.000000+1 1.102700-5 1.230269+1 8.598232-6 1.548817+1 6.574622-6 2.018366+1 4.869948-6 2.570396+1 3.726529-6 3.548134+1 2.629054-6 5.128614+1 1.779308-6 8.128305+1 1.102149-6 1.479108+2 5.968143-7 2.884032+2 3.034440-7 5.754399+2 1.513828-7 4.570882+3 1.898248-8 1.000000+5 8.67110-10 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.880000-6 5.880000-6 1.000000+5 5.880000-6 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.880000-6 0.0 1.000000+5 1.000000+5 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.402230-7 1.025500+0 1.184490-6 1.025800+0 1.514250-6 1.026100+0 1.899820-6 1.026600+0 2.678310-6 1.027100+0 3.643890-6 1.027500+0 4.563930-6 1.028100+0 6.213710-6 1.028750+0 8.402230-6 1.029500+0 1.149870-5 1.030100+0 1.446100-5 1.031000+0 1.978750-5 1.032000+0 2.707430-5 1.033200+0 3.792650-5 1.034000+0 4.655830-5 1.035300+0 6.319630-5 1.036640+0 8.402230-5 1.038200+0 1.133910-4 1.039700+0 1.473170-4 1.041500+0 1.960040-4 1.043800+0 2.720600-4 1.046400+0 3.785210-4 1.048300+0 4.712690-4 1.051200+0 6.392660-4 1.054080+0 8.402230-4 1.057700+0 1.145280-3 1.061100+0 1.489710-3 1.065100+0 1.972210-3 1.070400+0 2.751430-3 1.076200+0 3.802460-3 1.080600+0 4.748650-3 1.087100+0 6.398010-3 1.093710+0 8.402230-3 1.102600+0 1.164980-2 1.110700+0 1.519400-2 1.120600+0 2.032560-2 1.133300+0 2.826250-2 1.147500+0 3.902330-2 1.158200+0 4.849630-2 1.174100+0 6.481400-2 1.190110+0 8.402230-2 1.205100+0 1.045710-1 1.227500+0 1.399350-1 1.250000+0 1.809000-1 1.265600+0 2.123320-1 1.294900+0 2.776410-1 1.331800+0 3.705120-1 1.362600+0 4.558390-1 1.397000+0 5.582510-1 1.433800+0 6.745300-1 1.477900+0 8.207190-1 1.500000+0 8.961000-1 1.562500+0 1.113850+0 1.641100+0 1.391970+0 1.706900+0 1.623990+0 1.811600+0 1.986730+0 1.937200+0 2.409760+0 2.000000+0 2.618000+0 2.044000+0 2.763000+0 2.163500+0 3.146240+0 2.372600+0 3.777480+0 2.686300+0 4.638710+0 3.000000+0 5.420000+0 3.500000+0 6.550130+0 4.000000+0 7.575000+0 5.000000+0 9.374000+0 6.000000+0 1.091000+1 7.000000+0 1.228000+1 8.000000+0 1.351000+1 9.000000+0 1.464000+1 1.000000+1 1.569000+1 1.100000+1 1.666000+1 1.200000+1 1.756000+1 1.300000+1 1.840000+1 1.400000+1 1.919000+1 1.500000+1 1.993000+1 1.600000+1 2.063000+1 1.800000+1 2.188000+1 2.000000+1 2.300000+1 2.200000+1 2.402000+1 2.400000+1 2.495000+1 2.600000+1 2.580000+1 2.800000+1 2.658000+1 3.000000+1 2.730000+1 4.000000+1 3.023000+1 5.000000+1 3.240000+1 6.000000+1 3.409000+1 8.000000+1 3.657000+1 1.000000+2 3.832000+1 1.500000+2 4.108000+1 2.000000+2 4.272000+1 3.000000+2 4.463000+1 4.000000+2 4.573000+1 5.000000+2 4.645000+1 6.000000+2 4.697000+1 8.000000+2 4.765000+1 1.000000+3 4.809000+1 1.500000+3 4.872000+1 2.000000+3 4.908000+1 3.000000+3 4.943000+1 4.000000+3 4.967000+1 5.000000+3 4.979000+1 6.000000+3 4.988000+1 8.000000+3 5.000000+1 1.000000+4 5.008000+1 1.500000+4 5.017000+1 2.000000+4 5.023000+1 3.000000+4 5.028000+1 4.000000+4 5.032000+1 5.000000+4 5.034000+1 6.000000+4 5.035000+1 8.000000+4 5.036000+1 1.000000+5 5.037000+1 1 93000 7 8 2.370000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.303140-7 2.090400+0 1.263140-6 2.094700+0 1.637850-6 2.099900+0 2.178920-6 2.106600+0 3.031060-6 2.114000+0 4.193860-6 2.119500+0 5.221330-6 2.127900+0 7.081110-6 2.136250+0 9.303140-6 2.147000+0 1.275530-5 2.156900+0 1.656750-5 2.169000+0 2.211040-5 2.184500+0 3.073420-5 2.201800+0 4.252170-5 2.214800+0 5.297870-5 2.234200+0 7.126580-5 2.253680+0 9.303140-5 2.281500+0 1.303070-4 2.307000+0 1.711570-4 2.338200+0 2.301360-4 2.377400+0 3.187100-4 2.410200+0 4.053450-4 2.446800+0 5.156210-4 2.485900+0 6.491960-4 2.532900+0 8.308340-4 2.556430+0 9.303140-4 2.611900+0 1.186260-3 2.660400+0 1.434140-3 2.745300+0 1.919540-3 2.809000+0 2.324680-3 2.904500+0 2.994770-3 3.000000+0 3.738000-3 3.125000+0 4.819590-3 3.234400+0 5.863710-3 3.425800+0 7.894300-3 3.569300+0 9.570540-3 3.784700+0 1.229870-2 4.000000+0 1.523000-2 4.250000+0 1.881190-2 4.625000+0 2.443720-2 5.000000+0 3.028000-2 5.500000+0 3.829090-2 6.000000+0 4.640000-2 6.750000+0 5.845070-2 7.000000+0 6.241000-2 8.000000+0 7.787000-2 9.000000+0 9.263000-2 1.000000+1 1.066000-1 1.100000+1 1.198000-1 1.200000+1 1.322000-1 1.300000+1 1.439000-1 1.400000+1 1.550000-1 1.500000+1 1.654000-1 1.600000+1 1.753000-1 1.800000+1 1.936000-1 2.000000+1 2.102000-1 2.200000+1 2.253000-1 2.400000+1 2.392000-1 2.600000+1 2.519000-1 2.800000+1 2.637000-1 3.000000+1 2.746000-1 4.000000+1 3.195000-1 5.000000+1 3.531000-1 6.000000+1 3.795000-1 8.000000+1 4.190000-1 1.000000+2 4.473000-1 1.500000+2 4.938000-1 2.000000+2 5.225000-1 3.000000+2 5.574000-1 4.000000+2 5.781000-1 5.000000+2 5.923000-1 6.000000+2 6.026000-1 8.000000+2 6.168000-1 1.000000+3 6.262000-1 1.500000+3 6.403000-1 2.000000+3 6.482000-1 3.000000+3 6.569000-1 4.000000+3 6.621000-1 5.000000+3 6.652000-1 6.000000+3 6.674000-1 8.000000+3 6.703000-1 1.000000+4 6.722000-1 1.500000+4 6.747000-1 2.000000+4 6.762000-1 3.000000+4 6.776000-1 4.000000+4 6.785000-1 5.000000+4 6.790000-1 6.000000+4 6.794000-1 8.000000+4 6.797000-1 1.000000+5 6.800000-1 1 93000 7 8 2.370000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 93000 7 9 2.370000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.300000+1 1.000000+5 9.300000+1 5.000000+5 9.295800+1 8.750000+5 9.290630+1 1.000000+6 9.289400+1 1.375000+6 9.282930+1 1.500000+6 9.280000+1 1.875000+6 9.269020+1 2.000000+6 9.264800+1 2.375000+6 9.250820+1 2.500000+6 9.245700+1 2.875000+6 9.228900+1 3.000000+6 9.222800+1 3.250000+6 9.208990+1 3.625000+6 9.188610+1 4.000000+6 9.167300+1 4.437500+6 9.140260+1 4.812500+6 9.115240+1 5.000000+6 9.103100+1 5.500000+6 9.066370+1 5.875000+6 9.037260+1 6.437500+6 8.992000+1 6.500000+6 8.986630+1 7.000000+6 8.945600+1 7.875000+6 8.871640+1 9.000000+6 8.773900+1 1.000000+7 8.683900+1 1.250000+7 8.459700+1 1.500000+7 8.229800+1 1.750000+7 7.999800+1 2.000000+7 7.770100+1 2.250000+7 7.540000+1 2.375000+7 7.425880+1 2.500000+7 7.314400+1 2.875000+7 6.991260+1 3.000000+7 6.888700+1 3.437500+7 6.548480+1 3.500000+7 6.502150+1 3.812500+7 6.279620+1 4.000000+7 6.153200+1 4.500000+7 5.835350+1 4.750000+7 5.685500+1 5.000000+7 5.541500+1 5.750000+7 5.136110+1 6.000000+7 5.009900+1 6.750000+7 4.655800+1 7.000000+7 4.546400+1 8.000000+7 4.148400+1 9.000000+7 3.807700+1 1.000000+8 3.511700+1 1.109400+8 3.224910+1 1.125000+8 3.186350+1 1.203100+8 3.001180+1 1.250000+8 2.895200+1 1.359400+8 2.661010+1 1.437500+8 2.505660+1 1.453100+8 2.475620+1 1.500000+8 2.388100+1 1.875000+8 1.823840+1 2.000000+8 1.689800+1 2.171900+8 1.542440+1 2.289100+8 1.461920+1 2.375000+8 1.411450+1 2.429700+8 1.382730+1 2.500000+8 1.349100+1 2.812500+8 1.226800+1 2.875000+8 1.203160+1 2.937500+8 1.178860+1 3.000000+8 1.153600+1 3.375000+8 1.001330+1 3.500000+8 9.581500+0 3.812500+8 8.746940+0 3.937500+8 8.417790+0 4.000000+8 8.242900+0 4.125000+8 7.869290+0 4.750000+8 6.083870+0 5.000000+8 5.565600+0 5.125000+8 5.358740+0 5.343800+8 5.059810+0 5.630900+8 4.751550+0 6.000000+8 4.431200+0 6.750000+8 3.903950+0 7.000000+8 3.760300+0 7.625000+8 3.443880+0 7.875000+8 3.315020+0 8.000000+8 3.247800+0 8.250000+8 3.106390+0 8.468800+8 2.979760+0 9.500000+8 2.431460+0 1.000000+9 2.222900+0 1.045900+9 2.068850+0 1.088000+9 1.952430+0 1.139500+9 1.834990+0 1.205600+9 1.714100+0 1.250000+9 1.647370+0 1.279200+9 1.608290+0 1.334400+9 1.543140+0 1.417200+9 1.462060+0 1.500000+9 1.395300+0 1.812500+9 1.207350+0 1.937500+9 1.143170+0 2.000000+9 1.111600+0 2.139200+9 1.041730+0 2.272600+9 9.766350-1 2.440400+9 8.985500-1 2.600300+9 8.288340-1 2.750000+9 7.681410-1 2.750300+9 7.680230-1 2.959000+9 6.907220-1 3.086500+9 6.475640-1 3.325700+9 5.743310-1 3.535000+9 5.179670-1 3.718100+9 4.738990-1 4.038600+9 4.070610-1 4.278900+9 3.643530-1 4.639500+9 3.101380-1 5.000000+9 2.656600-1 5.375000+9 2.275820-1 5.703100+9 1.998170-1 6.277300+9 1.609220-1 7.031000+9 1.235750-1 8.000000+9 9.069000-2 9.000000+9 6.796180-2 1.00000+10 5.235600-2 1.27030+10 2.883240-2 1.55700+10 1.730230-2 2.15420+10 7.623110-3 1.00000+11 1.527500-4 1.68570+11 4.069160-5 3.34410+11 7.264040-6 8.62510+11 6.834270-7 2.83020+12 3.616320-8 1.00000+14 5.77970-12 3.16230+15 1.16862-15 1.00000+17 2.26490-19 1 93000 7 0 2.370000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.30000-11 1.000000+2 1.300000-9 1.000000+3 1.300000-7 1.000000+4 1.300000-5 1.000000+5 1.300000-3 5.000000+5 3.250000-2 8.750000+5 9.953125-2 1.000000+6 1.300000-1 1.375000+6 2.424550-1 1.500000+6 2.871000-1 1.875000+6 4.410110-1 2.000000+6 4.986000-1 2.375000+6 6.881050-1 2.500000+6 7.565000-1 2.875000+6 9.751130-1 3.000000+6 1.052100+0 3.250000+6 1.211120+0 3.625000+6 1.460690+0 4.000000+6 1.720300+0 4.437500+6 2.031430+0 4.812500+6 2.301960+0 5.000000+6 2.438000+0 5.500000+6 2.799430+0 5.875000+6 3.068730+0 6.437500+6 3.467870+0 6.500000+6 3.511580+0 7.000000+6 3.859500+0 7.875000+6 4.452310+0 9.000000+6 5.194700+0 1.000000+7 5.846000+0 1.250000+7 7.483500+0 1.500000+7 9.143000+0 1.750000+7 1.078400+1 2.000000+7 1.237500+1 2.250000+7 1.391270+1 2.375000+7 1.466340+1 2.500000+7 1.540300+1 2.875000+7 1.755160+1 3.000000+7 1.824200+1 3.437500+7 2.053640+1 3.500000+7 2.085030+1 3.812500+7 2.236170+1 4.000000+7 2.323000+1 4.500000+7 2.540650+1 4.750000+7 2.644250+1 5.000000+7 2.745600+1 5.750000+7 3.039570+1 6.000000+7 3.134900+1 6.750000+7 3.413580+1 7.000000+7 3.503800+1 8.000000+7 3.849500+1 9.000000+7 4.168300+1 1.000000+8 4.457300+1 1.109400+8 4.737380+1 1.125000+8 4.774380+1 1.203100+8 4.950510+1 1.250000+8 5.049600+1 1.359400+8 5.261280+1 1.437500+8 5.400620+1 1.453100+8 5.427460+1 1.500000+8 5.507200+1 1.875000+8 6.074000+1 2.000000+8 6.242000+1 2.171900+8 6.459270+1 2.289100+8 6.598390+1 2.375000+8 6.695150+1 2.429700+8 6.755660+1 2.500000+8 6.830400+1 2.812500+8 7.131460+1 2.875000+8 7.186350+1 2.937500+8 7.238640+1 3.000000+8 7.290200+1 3.375000+8 7.559840+1 3.500000+8 7.637900+1 3.812500+8 7.809470+1 3.937500+8 7.870690+1 4.000000+8 7.900100+1 4.125000+8 7.955390+1 4.750000+8 8.187060+1 5.000000+8 8.263700+1 5.125000+8 8.298930+1 5.343800+8 8.357470+1 5.630900+8 8.428760+1 6.000000+8 8.510800+1 6.750000+8 8.652410+1 7.000000+8 8.693600+1 7.625000+8 8.783190+1 7.875000+8 8.814750+1 8.000000+8 8.830200+1 8.250000+8 8.857480+1 8.468800+8 8.880740+1 9.500000+8 8.968720+1 1.000000+9 9.002300+1 1.045900+9 9.028110+1 1.088000+9 9.049230+1 1.139500+9 9.071360+1 1.205600+9 9.096110+1 1.250000+9 9.109670+1 1.279200+9 9.118040+1 1.334400+9 9.133360+1 1.417200+9 9.151630+1 1.500000+9 9.168700+1 1.812500+9 9.215000+1 1.937500+9 9.229090+1 2.000000+9 9.235800+1 2.139200+9 9.247160+1 2.272600+9 9.255900+1 2.440400+9 9.265170+1 2.600300+9 9.272550+1 2.750000+9 9.277760+1 2.750300+9 9.277770+1 2.959000+9 9.283310+1 3.086500+9 9.285850+1 3.325700+9 9.290350+1 3.535000+9 9.292630+1 3.718100+9 9.294050+1 4.038600+9 9.296380+1 4.278900+9 9.297630+1 4.639500+9 9.298390+1 5.000000+9 9.299100+1 5.375000+9 9.299220+1 5.703100+9 9.299320+1 6.277300+9 9.299490+1 7.031000+9 9.299680+1 8.000000+9 9.299900+1 9.000000+9 9.299950+1 1.00000+10 9.300000+1 1.27030+10 9.300000+1 1.55700+10 9.300000+1 2.15420+10 9.300000+1 1.00000+11 9.300000+1 1.68570+11 9.300000+1 3.34410+11 9.300000+1 8.62510+11 9.300000+1 2.83020+12 9.300000+1 1.00000+14 9.300000+1 3.16230+15 9.300000+1 1.00000+17 9.300000+1 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.104475-6 0.0 1.107193-6 7.319306-7 1.109912-6 1.448289-6 1.112630-6 2.645418-6 1.115349-6 4.460538-6 1.118067-6 6.942791-6 1.120786-6 9.975502-6 1.123504-6 1.323090-5 1.126223-6 1.619936-5 1.128941-6 1.830881-5 1.131660-6 1.910190-5 1.134379-6 1.840511-5 1.137097-6 1.640494-5 1.145253-6 7.382042-6 1.147971-6 5.003164-6 1.150690-6 3.319259-6 1.153408-6 2.271465-6 1.156168-6 1.688665-6 1.158845-6 1.052978-6 1.161750-6 1.103795-6 1.164541-6 1.063062-6 1.167332-6 9.451109-7 1.170122-6 7.756413-7 1.175704-6 4.109407-7 1.178495-6 2.652890-7 1.181286-6 1.580933-7 1.184076-6 8.696840-8 1.186867-6 4.416352-8 1.189658-6 0.0 1.353310-6 0.0 1.358306-6 2.609360-1 1.359972-6 3.468113-1 1.363303-6 6.334792-1 1.366634-6 1.068133+0 1.370381-6 1.753126+0 1.376159-6 3.058458+0 1.380374-6 3.942155+0 1.383595-6 4.401678+0 1.386973-6 4.556345+0 1.390382-6 4.342310+0 1.393966-6 3.772679+0 1.399585-6 2.519187+0 1.403275-6 1.702964+0 1.406814-6 1.071672+0 1.409937-6 6.551484-1 1.413268-6 3.604025-1 1.418056-6 1.030526-1 1.419930-6 0.0 1.517323-6 0.0 1.522925-6 1.549302-1 1.524792-6 2.059185-1 1.528527-6 3.761269-1 1.532262-6 6.342016-1 1.536463-6 1.040915+0 1.542941-6 1.815953+0 1.547667-6 2.340646+0 1.551504-6 2.620302+0 1.555066-6 2.705320+0 1.558966-6 2.572164+0 1.562694-6 2.263652+0 1.568855-6 1.539419+0 1.573343-6 1.011131+0 1.577312-6 6.363029-1 1.580813-6 3.889929-1 1.584548-6 2.139882-1 1.589916-6 6.118727-2 1.592017-6 0.0 1.770531-6 0.0 1.774889-6 3.052211-7 1.779247-6 6.039484-7 1.783604-6 1.103161-6 1.787962-6 1.860081-6 1.792320-6 2.895201-6 1.796678-6 4.159867-6 1.801036-6 5.517395-6 1.805394-6 6.755267-6 1.809752-6 7.634928-6 1.814110-6 7.965650-6 1.818468-6 7.671698-6 1.822826-6 6.820492-6 1.827184-6 5.597497-6 1.835900-6 2.965597-6 1.840258-6 1.914486-6 1.844616-6 1.140897-6 1.848973-6 6.276166-7 1.853331-6 3.187107-7 1.857689-6 0.0 1.990008-6 0.0 1.994907-6 1.996547-2 1.999805-6 3.950615-2 2.004703-6 7.216122-2 2.009601-6 1.216737-1 2.014499-6 1.893842-1 2.021846-6 3.164566-1 2.029194-6 4.418831-1 2.034092-6 4.994244-1 2.038990-6 5.210581-1 2.043888-6 5.018297-1 2.048786-6 4.461497-1 2.063481-6 1.939890-1 2.068379-6 1.252326-1 2.073277-6 7.462971-2 2.078175-6 4.105453-2 2.083073-6 2.084810-2 2.087972-6 3.408290-7 2.097175-6 5.225297-7 2.102238-6 5.905727-7 2.107300-6 6.161546-7 2.112362-6 5.934170-7 2.117425-6 5.275749-7 2.122487-6 4.329745-7 2.132611-6 2.293932-7 2.137674-6 1.480883-7 2.142736-6 8.825001-8 2.147798-6 4.854706-8 2.152860-6 2.465273-8 2.157923-6 0.0 2.613160-6 0.0 2.622808-6 2.36823-14 2.626024-6 3.14763-14 2.632456-6 5.74941-14 2.638888-6 9.69429-14 2.645320-6 1.50891-13 2.651165-6 2.10772-13 2.664216-6 4.243438+0 2.670741-6 7.750986+0 2.677480-6 1.330611+1 2.684514-6 2.134079+1 2.703777-6 4.784901+1 2.710494-6 5.385708+1 2.716868-6 5.582653+1 2.724002-6 5.293649+1 2.730417-6 4.663171+1 2.749048-6 2.084261+1 2.755573-6 1.347279+1 2.762099-6 8.055772+0 2.768624-6 4.478364+0 2.781675-6 1.655909-1 2.799436-6 3.448108-1 2.807430-6 4.032133-1 2.814190-6 4.206792-1 2.820950-6 4.051550-1 2.827711-6 3.602014-1 2.837851-6 2.598257-1 2.847992-6 1.566180-1 2.854752-6 1.011072-1 2.861513-6 6.025263-2 2.868273-6 3.314547-2 2.878414-6 8.425712-3 2.881794-6 0.0 3.123850-6 0.0 3.137306-6 7.440271+0 3.139228-6 8.492322+0 3.146917-6 1.551192+1 3.154606-6 2.615523+1 3.164034-6 4.479350+1 3.185843-6 9.600334+1 3.193866-6 1.082354+2 3.201693-6 1.120528+2 3.209424-6 1.069453+2 3.219211-6 8.986673+1 3.239185-6 4.275779+1 3.246874-6 2.788163+1 3.254563-6 1.685560+1 3.262252-6 9.465925+0 3.277630-6 3.464285-1 3.279954-6 3.105314-1 3.287721-6 2.348723-1 3.295488-6 2.041744-1 3.311023-6 2.147735-1 3.321841-6 2.760935-1 3.329840-6 3.033515-1 3.337839-6 3.091279-1 3.345838-6 2.922367-1 3.353837-6 2.563450-1 3.377158-6 1.144891-1 3.383275-6 8.352726-2 3.386428-6 7.066467-2 3.391602-6 5.305884-2 3.394622-6 4.480511-2 3.398727-6 3.523700-2 3.406756-6 2.259552-2 3.409831-6 1.966923-2 3.416585-6 1.980008-2 3.422816-6 2.150865-2 3.425951-6 2.492642-2 3.450348-6 5.554903-2 3.454531-6 5.916364-2 3.460174-6 8.061192-2 3.472027-6 1.185825-1 3.480531-6 1.578318-1 3.489035-6 2.159519-1 3.497540-6 2.962964-1 3.523052-6 6.072617-1 3.531556-6 6.796191-1 3.540060-6 7.075267-1 3.548564-6 6.839262-1 3.557068-6 6.172802-1 3.582580-6 3.157488-1 3.591085-6 2.322442-1 3.599589-6 1.678821-1 3.608093-6 1.205810-1 3.617314-6 8.282706-2 3.624589-6 6.322634-2 3.635122-6 6.829461-2 3.643671-6 8.368089-2 3.652574-6 1.163589-1 3.661832-6 1.705680-1 3.679639-6 3.086741-1 3.688543-6 3.802493-1 3.697446-6 4.324031-1 3.706350-6 4.555142-1 3.715254-6 4.454162-1 3.724310-6 4.138504-1 3.742599-6 3.038739-1 3.751744-6 2.601770-1 3.760888-6 2.373921-1 3.770032-6 2.375253-1 3.779177-6 2.560438-1 3.794322-6 3.036096-1 3.806610-6 3.623184-1 3.825186-6 4.263898-1 3.836628-6 4.806138-1 3.862011-6 6.641407-1 3.871690-6 7.393246-1 3.882078-6 7.863584-1 3.890111-6 7.945807-1 3.903481-6 7.553539-1 3.929413-6 5.854934-1 3.945165-6 4.937900-1 3.961343-6 4.299442-1 3.981366-6 3.860824-1 4.010246-6 3.574673-1 4.035044-6 3.255128-1 4.074776-6 2.602301-1 4.092337-6 2.505662-1 4.106009-6 2.726798-1 4.112375-6 2.878089-1 4.121537-6 3.202457-1 4.133719-6 3.829152-1 4.154526-6 5.167515-1 4.174110-6 6.378112-1 4.182349-6 6.745688-1 4.192420-6 6.967272-1 4.202491-6 6.933142-1 4.212562-6 6.668349-1 4.252847-6 4.842119-1 4.262919-6 4.584377-1 4.275953-6 4.410839-1 4.292630-6 4.412686-1 4.306357-6 4.722750-1 4.337769-6 5.741327-1 4.358710-6 6.146573-1 4.372440-6 6.114861-1 4.383999-6 5.974415-1 4.405422-6 6.797742-1 4.417580-6 7.885034-1 4.428782-6 9.545053-1 4.440918-6 1.204950+0 4.472370-6 1.940955+0 4.482504-6 2.088597+0 4.494047-6 2.130063+0 4.505368-6 2.039499+0 4.517729-6 1.845171+0 4.540149-6 2.163442+0 4.551133-6 2.619395+0 4.562147-6 3.467272+0 4.574294-6 4.899263+0 4.606099-6 9.600074+0 4.619303-6 1.095192+1 4.631026-6 1.120702+1 4.642450-6 1.059744+1 4.654365-6 9.207128+0 4.685282-6 4.422891+0 4.695870-6 3.106530+0 4.706656-6 2.113628+0 4.715901-6 1.543403+0 4.718818-6 1.489457+0 4.739483-6 1.344587+0 4.751393-6 1.966984+0 4.763594-6 2.940123+0 4.777285-6 4.453704+0 4.810063-6 8.646641+0 4.822965-6 9.643100+0 4.834236-6 9.876332+0 4.846509-6 9.354662+0 4.856526-6 8.447513+0 4.875025-6 6.068604+0 4.889897-6 4.140331+0 4.901504-6 2.917834+0 4.913111-6 2.018684+0 4.924718-6 1.422953+0 4.947933-6 6.962176-1 4.981833-6 7.097994-1 5.012450-6 7.570571-1 5.032755-6 8.230980-1 5.057530-6 1.191732+0 5.071466-6 1.505272+0 5.084013-6 1.888307+0 5.104355-6 2.693079+0 5.130299-6 3.752866+0 5.144472-6 4.147696+0 5.158856-6 4.201301+0 5.169948-6 4.031719+0 5.183910-6 3.567757+0 5.210675-6 2.935234+0 5.222979-6 2.862890+0 5.234598-6 3.084756+0 5.248650-6 3.782257+0 5.279326-6 6.124236+0 5.298391-6 7.513341+0 5.311947-6 7.876772+0 5.326201-6 7.655266+0 5.340181-6 6.955869+0 5.374943-6 4.588703+0 5.387702-6 3.898599+0 5.400764-6 3.360320+0 5.433011-6 2.384790+0 5.438737-6 2.192241+0 5.463741-6 1.788563+0 5.476742-6 1.627302+0 5.489742-6 1.540937+0 5.502742-6 1.531363+0 5.556113-6 1.817640+0 5.569789-6 1.843748+0 5.621237-6 1.752318+0 5.774226-6 1.707640+0 5.818975-6 1.697391+0 5.854649-6 1.781858+0 5.879740-6 1.884682+0 5.932855-6 2.170239+0 5.956621-6 2.225738+0 5.981256-6 2.179685+0 6.049475-6 1.803152+0 6.079337-6 1.717044+0 6.106778-6 1.676025+0 7.408167-6 1.589966+0 7.481104-6 1.646745+0 7.572579-6 1.827130+0 7.609315-6 1.826622+0 7.718150-6 1.619417+0 7.811359-6 1.581897+0 8.038207-6 1.602481+0 8.155760-6 1.677859+0 8.320616-6 1.602949+0 8.576225-6 1.659914+0 8.684674-6 1.763264+0 8.752310-6 1.733634+0 8.855683-6 1.628741+0 8.961707-6 1.597355+0 9.298474-6 1.683489+0 9.433744-6 1.646829+0 1.322377-5 1.650217+0 1.738622-5 1.643067+0 2.002130-5 1.750668+0 2.011986-5 3.869852+0 2.016914-5 5.619459+0 2.021842-5 8.270620+0 2.026770-5 1.189498+1 2.041554-5 2.540897+1 2.046482-5 2.849009+1 2.052026-5 2.952317+1 2.056954-5 2.825561+1 2.061833-5 2.516192+1 2.065803-5 2.171836+1 2.076050-5 3.056073+1 2.081057-5 4.162066+1 2.086460-5 6.345531+1 2.091818-5 9.536897+1 2.106798-5 2.065218+2 2.112388-5 2.329238+2 2.117027-5 2.406100+2 2.122201-5 2.300891+2 2.127733-5 2.002610+2 2.136363-5 1.343465+2 2.142074-5 9.100069+1 2.147158-5 5.941243+1 2.152243-5 3.616570+1 2.157328-5 2.074307+1 2.166740-5 3.317573+0 2.167497-5 1.888904+0 2.271471-5 2.006149+0 2.282653-5 2.343013+0 2.288243-5 2.617203+0 2.293834-5 3.029311+0 2.299425-5 3.590336+0 2.316198-5 5.677273+0 2.321789-5 6.155117+0 2.327380-5 6.339229+0 2.334003-5 6.112257+0 2.340565-5 5.820782+0 2.346531-5 5.441383+0 2.352278-5 5.257422+0 2.358026-5 5.428610+0 2.364384-5 6.129615+0 2.376114-5 8.462165+0 2.381843-5 9.674379+0 2.389421-5 1.075060+1 2.394209-5 1.108027+1 2.400756-5 1.086760+1 2.410106-5 9.740265+0 2.419624-5 8.395127+0 2.427586-5 7.739312+0 2.436484-5 7.641974+0 2.461890-5 8.211805+0 2.518380-5 7.865762+0 2.899535-5 7.160960+0 3.010139-5 7.077974+0 3.024957-5 1.681922+1 3.032830-5 2.563486+1 3.040239-5 3.812794+1 3.048111-5 5.633523+1 3.069412-5 1.160821+2 3.078020-5 1.311403+2 3.085272-5 1.349483+2 3.092319-5 1.296102+2 3.100204-5 1.139224+2 3.121275-5 5.490448+1 3.128684-5 3.793856+1 3.136094-5 2.545237+1 3.143503-5 1.716755+1 3.158321-5 7.036809+0 3.279480-5 7.049863+0 3.311827-5 7.326719+0 3.344450-5 8.109728+0 3.373426-5 8.918035+0 3.417354-5 1.095161+1 3.433189-5 1.113843+1 3.470546-5 1.045275+1 3.576959-5 1.067635+1 3.707077-5 1.047438+1 4.656519-5 1.056724+1 5.065925-5 1.076582+1 5.190000-5 1.143309+1 5.282191-5 1.098750+1 5.594265-5 1.108213+1 6.614973-5 1.058498+1 8.000645-5 8.951560+0 9.692687-5 6.440272+0 9.740401-5 7.620868+0 9.764259-5 8.620135+0 9.788116-5 1.015312+1 9.803109-5 1.147738+1 9.851367-5 4.154418+1 9.875496-5 6.476273+1 9.899625-5 9.801563+1 9.927206-5 1.491986+2 9.996142-5 2.967075+2 1.002283-4 3.313127+2 1.004573-4 3.402429+2 1.007168-4 3.213974+2 1.010136-4 2.707352+2 1.016505-4 1.281131+2 1.018917-4 8.462695+1 1.021330-4 5.271106+1 1.023743-4 3.152331+1 1.028569-4 5.590093+0 1.043044-4 5.438709+0 1.051267-4 5.641386+0 1.058584-4 6.236478+0 1.063833-4 2.442137+1 1.066451-4 3.924332+1 1.069379-4 6.517173+1 1.072244-4 9.973943+1 1.079705-4 2.047739+2 1.082802-4 2.305279+2 1.085312-4 2.352124+2 1.087917-4 2.225698+2 1.090702-4 1.927571+2 1.097950-4 8.940832+1 1.100414-4 6.105347+1 1.102978-4 3.931676+1 1.105528-4 2.490888+1 1.110696-4 7.018082+0 1.131136-4 7.868302+0 1.139623-4 8.588340+0 1.150742-4 9.867099+0 1.156848-4 1.015296+1 1.171997-4 1.003162+1 1.233402-4 1.153479+1 1.273503-4 1.181672+1 1.314772-4 1.131081+1 1.484126-4 7.663673+0 1.584341-4 5.972199+0 1.678804-4 4.734306+0 1.759325-4 3.930184+0 1.843036-4 3.291060+0 1.936679-4 2.758489+0 2.012464-4 2.454894+0 2.056150-4 2.324242+0 2.071634-4 2.346581+0 2.082086-4 2.451192+0 2.112372-4 3.062871+0 2.123397-4 3.166029+0 2.317395-4 2.814201+0 2.485808-4 2.662857+0 2.621440-4 2.652379+0 2.641013-4 2.764559+0 2.654414-4 2.946778+0 2.680400-4 3.434728+0 2.693624-4 3.498513+0 2.733750-4 3.223941+0 2.800141-4 3.174542+0 3.260900-4 3.262591+0 3.314197-4 3.409315+0 3.357940-4 3.597679+0 3.539769-4 3.628084+0 4.002914-4 3.858159+0 4.032614-4 4.010045+0 4.052766-4 4.251234+0 4.091663-4 4.875471+0 4.112390-4 4.952712+0 4.156254-4 4.766750+0 4.186480-4 5.012187+0 4.218868-4 5.315703+0 4.240849-4 5.254238+0 4.288205-4 4.930965+0 4.320000-4 4.910858+0 4.422000-4 5.243909+0 4.492586-4 5.733201+0 4.553750-4 6.446252+0 4.621894-4 7.614112+0 4.700000-4 9.441763+0 4.802484-4 1.248932+1 5.159501-4 2.482814+1 5.347941-4 2.994263+1 5.559043-4 3.403450+1 5.903311-4 3.778994+1 6.273357-4 3.957760+1 6.996061-4 3.990039+1 7.398610-4 3.926532+1 7.454266-4 4.097320+1 7.492411-4 4.396456+1 7.563974-4 5.102623+1 7.601451-4 5.104985+1 7.689883-4 4.388875+1 7.763176-4 4.190406+1 7.880663-4 4.261522+1 7.939478-4 4.476444+1 8.013936-4 4.857597+1 8.053804-4 4.854274+1 8.168513-4 4.398284+1 8.320029-4 4.330648+1 1.050675-3 3.795539+1 1.075139-3 3.945638+1 1.310690-3 3.332513+1 1.479769-3 3.016091+1 1.790838-3 2.484689+1 2.109284-3 2.065676+1 2.513142-3 1.678852+1 2.909336-3 1.400785+1 3.454025-3 1.125249+1 3.570546-3 1.078881+1 3.588468-3 1.170484+1 3.596911-3 1.246621+1 3.605699-3 1.371868+1 3.614665-3 1.555534+1 3.636602-3 2.189954+1 3.649671-3 2.579974+1 3.658480-3 2.771250+1 3.667290-3 2.881094+1 3.676100-3 2.908012+1 3.703048-3 2.689513+1 3.729608-3 2.483728+1 3.746624-3 2.410055+1 3.776398-3 2.467492+1 3.794000-3 2.592112+1 3.814643-3 2.893016+1 3.840771-3 3.367778+1 3.859780-3 3.544207+1 3.879254-3 3.504867+1 3.925844-3 3.231303+1 4.007935-3 3.108122+1 4.333184-3 2.763016+1 4.385968-3 2.828824+1 4.442163-3 3.020483+1 4.520998-3 3.009141+1 5.243418-3 2.408205+1 5.342728-3 2.404851+1 5.456008-3 2.407564+1 5.661127-3 2.298120+1 5.835469-3 2.276757+1 6.693064-3 1.868190+1 7.776000-3 1.497498+1 8.857314-3 1.230691+1 1.028460-2 9.801278+0 1.172154-2 8.015041+0 1.336042-2 6.531645+0 1.527786-2 5.290805+0 1.717850-2 4.398208+0 1.732351-2 4.483350+0 1.740304-2 4.768019+0 1.746472-2 5.217896+0 1.755119-2 6.230016+0 1.771339-2 8.485119+0 1.780820-2 9.278677+0 1.795396-2 9.630278+0 2.112903-2 7.383274+0 2.136566-2 7.354565+0 2.152711-2 7.716895+0 2.182990-2 9.262256+0 2.202372-2 9.676858+0 2.235917-2 1.002415+1 2.265320-2 1.059160+1 2.321372-2 1.038668+1 2.670005-2 8.386401+0 3.062239-2 6.772142+0 3.495747-2 5.485409+0 3.962273-2 4.480902+0 4.530529-2 3.601187+0 5.079427-2 2.984253+0 5.763135-2 2.418732+0 6.531306-2 1.962254+0 7.380834-2 1.596734+0 8.369408-2 1.291841+0 9.419633-2 1.056807+0 1.065250-1 8.577049-1 1.164016-1 7.430067-1 1.170557-1 7.655221-1 1.174898-1 8.231108-1 1.177745-1 8.957586-1 1.181093-1 1.029874+0 1.184893-1 1.254133+0 1.190494-1 1.698627+0 1.199073-1 2.392767+0 1.204783-1 2.686999+0 1.211627-1 2.840508+0 1.226310-1 2.851380+0 1.431668-1 2.250986+0 1.642092-1 1.817064+0 1.858141-1 1.499005+0 2.064568-1 1.272569+0 2.344229-1 1.045143+0 2.624801-1 8.780607-1 3.011272-1 7.138834-1 3.411070-1 5.940502-1 3.844880-1 5.001928-1 4.370659-1 4.187330-1 4.993649-1 3.506806-1 5.737861-1 2.937205-1 6.579023-1 2.489557-1 7.663222-1 2.091257-1 8.976871-1 1.762591-1 1.120601+0 1.389656-1 1.286622+0 1.186368-1 1.477239+0 1.012819-1 1.696098+0 8.646582-2 1.947381+0 7.381708-2 2.235892+0 6.301868-2 2.581524+0 5.347165-2 3.086391+0 4.357107-2 3.543651+0 3.719724-2 4.068655+0 3.175580-2 4.671441+0 2.711037-2 5.363532+0 2.314451-2 6.158159+0 1.975879-2 7.070513+0 1.686836-2 8.118035+0 1.440075-2 9.320751+0 1.229412-2 9.803331+0 1.160638-2 1.000000+1 2.437119-2 1 93000 7 0 2.370000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.260915+1 1.353518-6-9.072742+1 1.378553-6-9.012838+1 1.391191-6-9.254313+1 1.409644-6-9.150037+1 1.456113-6-9.267786+1 1.547667-6-9.143066+1 1.563744-6-9.245305+1 2.304084-6-8.952108+1 2.544348-6-8.491804+1 2.616376-6-7.967050+1 2.645320-6-7.372196+1 2.679691-6-5.705581+1 2.686629-6-5.581913+1 2.694768-6-5.865649+1 2.702178-6-6.519065+1 2.710494-6-7.837335+1 2.716868-6-9.021673+1 2.723637-6-8.374576+1 2.732098-6-7.129524+1 2.740931-6-6.469481+1 2.748299-6-6.324545+1 2.759244-6-6.699136+1 2.790087-6-8.216295+1 2.824331-6-8.820552+1 2.890632-6-9.284749+1 3.035654-6-8.274732+1 3.083377-6-7.551061+1 3.109943-6-6.739985+1 3.122407-6-6.002426+1 3.129174-6-5.376358+1 3.139228-6-4.595070+1 3.147878-6-3.792390+1 3.156177-6-3.127349+1 3.164034-6-2.850619+1 3.167789-6-2.892473+1 3.171907-6-3.106489+1 3.176349-6-3.509777+1 3.180926-6-4.130950+1 3.185050-6-4.951181+1 3.192671-6-6.963355+1 3.200371-6-9.286813+1 3.210932-6-5.903955+1 3.219211-6-3.948979+1 3.223791-6-3.183842+1 3.227283-6-2.739907+1 3.230072-6-2.481436+1 3.234059-6-2.244608+1 3.237263-6-2.175062+1 3.243029-6-2.344737+1 3.245913-6-2.482726+1 3.254563-6-3.166399+1 3.265015-6-4.098702+1 3.277235-6-5.057191+1 3.281896-6-5.495250+1 3.295488-6-6.192035+1 3.321841-6-6.927021+1 3.377158-6-7.640067+1 3.489035-6-8.282214+1 3.846165-6-8.825047+1 4.417580-6-9.272228+1 4.537466-6-9.290536+1 4.589714-6-9.094495+1 4.618916-6-9.318007+1 4.662903-6-8.612935+1 4.702601-6-8.699734+1 4.781431-6-9.370599+1 4.822262-6-9.055304+1 4.871760-6-8.421512+1 4.938343-6-8.649898+1 5.118790-6-9.161503+1 5.209081-6-9.019277+1 5.279326-6-9.182150+1 5.365119-6-8.568646+1 5.647087-6-8.865790+1 1.412538-5-9.230166+1 1.755092-5-8.678450+1 1.880666-5-8.064997+1 1.946637-5-7.334207+1 1.980338-5-6.612538+1 1.998683-5-5.928122+1 2.016914-5-4.760148+1 2.028002-5-4.017658+1 2.035394-5-3.756431+1 2.041554-5-3.760709+1 2.053104-5-4.027657+1 2.058032-5-3.963313+1 2.061833-5-3.688655+1 2.064128-5-3.358621+1 2.065594-5-3.018810+1 2.066744-5-2.663359+1 2.071978-5-1.563943+1 2.074014-5-1.106727+1 2.075032-5-8.446468+0 2.075541-5-6.967191+0 2.076676-5-2.987180+0 2.078866-5 3.248160+0 2.079962-5 6.429049+0 2.080509-5 8.181782+0 2.081375-5 1.166213+1 2.087055-5 2.806055+1 2.088098-5 3.022777+1 2.091818-5 3.642942+1 2.092927-5 3.711895+1 2.094746-5 3.649644+1 2.096789-5 3.380854+1 2.097765-5 3.184731+1 2.099959-5 2.582400+1 2.100690-5 2.326480+1 2.102138-5 1.748277+1 2.103223-5 1.249087+1 2.104038-5 8.301405+0 2.104648-5 4.867809+0 2.105106-5 2.100723+0 2.105793-5-2.439149+0 2.106137-5-4.956515+0 2.106309-5-6.320256+0 2.106798-5-1.062815+1 2.109778-5-3.382239+1 2.111314-5-4.786924+1 2.112388-5-5.956459+1 2.116033-5-9.412664+1 2.117027-5-8.211675+1 2.121735-5-3.540072+1 2.122201-5-3.017526+1 2.123284-5-2.015747+1 2.124168-5-1.275270+1 2.125494-5-2.255505+0 2.126156-5 2.940580+0 2.126488-5 5.616853+0 2.127137-5 1.134663+1 2.127733-5 1.579328+1 2.128254-5 1.932674+1 2.129167-5 2.497884+1 2.131904-5 3.946552+1 2.133652-5 4.682918+1 2.136363-5 5.425651+1 2.139213-5 5.774145+1 2.141359-5 5.811963+1 2.145887-5 5.254140+1 2.151687-5 3.807993+1 2.158611-5 1.715006+1 2.160075-5 1.341428+1 2.164468-5 2.973744+0 2.165983-5-9.719080-1 2.166740-5-3.222185+0 2.167119-5-4.495753+0 2.167781-5-7.312626+0 2.168278-5-8.989138+0 2.169024-5-1.113179+1 2.169770-5-1.302793+1 2.171095-5-1.601352+1 2.173083-5-1.987561+1 2.176397-5-2.524154+1 2.180373-5-3.051108+1 2.188325-5-3.865974+1 2.200392-5-4.743648+1 2.217483-5-5.595142+1 2.244474-5-6.476650+1 2.301941-5-7.721420+1 2.350841-5-8.008930+1 2.377546-5-8.363168+1 2.416156-5-7.959354+1 2.471456-5-8.242116+1 2.813426-5-9.120716+1 2.874270-5-9.332650+1 2.945949-5-8.537288+1 2.982517-5-7.677674+1 3.002004-5-6.782873+1 3.009817-5-6.114577+1 3.015193-5-5.531391+1 3.024957-5-4.630941+1 3.033698-5-3.671309+1 3.041107-5-2.983092+1 3.048111-5-2.634543+1 3.050947-5-2.632702+1 3.055520-5-2.812785+1 3.059268-5-3.169577+1 3.062417-5-3.651811+1 3.067068-5-4.576483+1 3.069875-5-5.356737+1 3.076271-5-7.322950+1 3.081778-5-9.342117+1 3.087069-5-7.241651+1 3.091871-5-5.462701+1 3.093896-5-4.740493+1 3.100204-5-2.809948+1 3.102259-5-2.312038+1 3.104458-5-1.870808+1 3.107601-5-1.360644+1 3.109621-5-1.096403+1 3.111641-5-8.771029+0 3.114050-5-6.748540+0 3.115856-5-5.670518+0 3.117211-5-5.118096+0 3.119243-5-4.752309+0 3.120259-5-4.828877+0 3.124980-5-6.784849+0 3.126832-5-7.767124+0 3.127758-5-8.431229+0 3.129611-5-1.038534+1 3.134473-5-1.456242+1 3.146049-5-2.716874+1 3.157395-5-3.750303+1 3.160737-5-4.169520+1 3.170218-5-4.840808+1 3.187835-5-5.578751+1 3.217562-5-6.292420+1 3.279480-5-7.066516+1 3.373426-5-7.689144+1 3.433189-5-7.701103+1 4.147924-5-7.961849+1 7.148804-5-8.103784+1 7.631985-5-8.269412+1 8.517507-5-7.410056+1 8.931163-5-6.655200+1 9.185969-5-5.871102+1 9.332543-5-5.184312+1 9.438475-5-4.487630+1 9.522385-5-3.731410+1 9.578598-5-3.063222+1 9.627175-5-2.323510+1 9.655836-5-1.783579+1 9.678868-5-1.269084+1 9.692687-5-9.060279+0 9.716544-5-2.078899+0 9.728473-5 1.793358+0 9.740401-5 6.118209+0 9.752330-5 1.091366+1 9.764259-5 1.629046+1 9.782152-5 2.577534+1 9.795613-5 3.489869+1 9.801235-5 3.978882+1 9.804217-5 4.341108+1 9.811973-5 5.031922+1 9.847674-5 7.516271+1 9.878512-5 1.000472+2 9.907920-5 1.175524+2 9.927206-5 1.220184+2 9.944294-5 1.173872+2 9.961905-5 1.039802+2 9.975774-5 8.695491+1 9.986485-5 6.878629+1 9.994935-5 5.149813+1 9.997650-5 4.438126+1 1.000896-4 1.809644+1 1.001179-4 1.122560+1 1.001391-4 5.863483+0 1.001550-4 1.682273+0 1.001789-4-4.963337+0 1.001908-4-8.558684+0 1.001967-4-1.048713+1 1.002065-4-1.410099+1 1.002283-4-2.096767+1 1.004034-4-7.006402+1 1.004406-4-8.220819+1 1.004573-4-7.585085+1 1.006853-4-9.797980+0 1.006899-4-8.022008+0 1.006991-4-5.033708+0 1.007168-4 1.775569-1 1.007334-4 4.696587+0 1.007646-4 1.258161+1 1.007918-4 1.903579+1 1.008395-4 2.962799+1 1.010136-4 6.595622+1 1.011257-4 8.355463+1 1.012738-4 9.975605+1 1.014342-4 1.102460+2 1.015896-4 1.132968+2 1.018616-4 1.017809+2 1.021330-4 7.949670+1 1.024413-4 5.147513+1 1.027470-4 2.835744+1 1.028294-4 2.106810+1 1.028569-4 1.778952+1 1.028731-4 1.571581+1 1.029035-4 1.269557+1 1.029566-4 8.249387+0 1.029965-4 5.298265+0 1.030562-4 1.274058+0 1.031160-4-2.392225+0 1.031844-4-6.251879+0 1.032528-4-9.825971+0 1.033673-4-1.530803+1 1.035142-4-2.162006+1 1.037586-4-3.092561+1 1.043044-4-4.860083+1 1.052959-4-7.928748+1 1.054052-4-8.322299+1 1.057361-4-6.916927+1 1.058652-4-6.086262+1 1.059830-4-5.351317+1 1.063521-4-3.430283+1 1.064304-4-2.910764+1 1.066191-4-1.840490+1 1.066623-4-1.518470+1 1.066945-4-1.322802+1 1.069203-4-2.067482+0 1.069379-4-9.680688-1 1.069708-4 4.938212-1 1.070285-4 2.370339+0 1.070717-4 3.428841+0 1.072244-4 6.434876+0 1.072689-4 6.654002+0 1.073105-4 6.409208+0 1.073496-4 5.865174+0 1.073863-4 5.104968+0 1.074206-4 4.183663+0 1.074850-4 1.929426+0 1.075413-4-6.013096-1 1.075907-4-3.248727+0 1.076338-4-5.907359+0 1.076715-4-8.507231+0 1.077335-4-1.336447+1 1.078030-4-1.980474+1 1.078798-4-2.845866+1 1.079305-4-3.574150+1 1.079705-4-4.242649+1 1.081728-4-7.262772+1 1.082384-4-8.472657+1 1.083072-4-7.099150+1 1.084620-4-4.329496+1 1.084982-4-3.575600+1 1.085155-4-3.147660+1 1.085312-4-2.820947+1 1.087659-4 1.421816+1 1.087747-4 1.618098+1 1.087917-4 1.942092+1 1.088515-4 2.926224+1 1.090702-4 5.998461+1 1.091978-4 7.349389+1 1.093378-4 8.400597+1 1.095324-4 9.308608+1 1.097211-4 9.585566+1 1.100106-4 8.794681+1 1.102978-4 7.295779+1 1.106085-4 5.498849+1 1.110341-4 3.409879+1 1.110986-4 2.930408+1 1.111857-4 2.462880+1 1.113098-4 1.943936+1 1.113913-4 1.653940+1 1.114894-4 1.341993+1 1.116359-4 9.328321+0 1.117854-4 5.682748+0 1.118949-4 3.281140+0 1.119830-4 1.489576+0 1.121351-4-1.356536+0 1.122718-4-3.685764+0 1.124084-4-5.833720+0 1.125595-4-8.034999+0 1.127573-4-1.066514+1 1.131136-4-1.480474+1 1.136677-4-2.012240+1 1.144001-4-2.545972+1 1.153366-4-2.996548+1 1.178224-4-3.797996+1 1.198891-4-4.227295+1 1.233402-4-4.633193+1 1.298887-4-4.928553+1 1.789672-4-5.752561+1 2.132814-4-6.182607+1 2.712438-4-6.443704+1 3.816306-4-7.082098+1 4.422000-4-7.820004+1 4.871238-4-8.728621+1 5.159501-4-8.676989+1 6.273357-4-6.834009+1 6.996061-4-6.032412+1 7.492411-4-5.771010+1 7.707636-4-5.808316+1 7.939478-4-5.486257+1 8.190502-4-5.327954+1 8.676796-4-4.790677+1 9.681622-4-4.149268+1 1.043614-3-3.884019+1 1.075139-3-3.872575+1 1.106751-3-3.617703+1 1.205426-3-3.223595+1 1.397502-3-2.782810+1 1.519181-3-2.595026+1 1.716511-3-2.352951+1 1.998136-3-2.183430+1 2.367931-3-2.126401+1 2.783973-3-2.210584+1 3.136437-3-2.423961+1 3.359310-3-2.693896+1 3.492962-3-2.990091+1 3.570546-3-3.308798+1 3.614665-3-3.675150+1 3.658480-3-4.125246+1 3.684321-3-4.108274+1 3.746624-3-3.603019+1 3.785282-3-3.512378+1 3.850020-3-3.642343+1 3.879254-3-3.512037+1 3.941499-3-2.978434+1 4.007935-3-2.653370+1 4.112422-3-2.354985+1 4.237157-3-2.156531+1 4.333184-3-2.114506+1 4.416636-3-2.190474+1 4.459326-3-2.078453+1 4.520998-3-1.856470+1 4.615324-3-1.659086+1 4.772375-3-1.452685+1 4.993052-3-1.269111+1 5.199530-3-1.172648+1 5.363642-3-1.180094+1 5.532369-3-1.037035+1 5.721759-3-9.851169+0 5.884229-3-8.599834+0 6.128352-3-7.506335+0 6.551885-3-6.299662+0 6.874405-3-5.674235+0 7.328245-3-5.061124+0 7.986265-3-4.520642+0 8.857314-3-4.218252+0 9.857119-3-4.141894+0 1.123230-2-4.353437+0 1.278428-2-4.826848+0 1.445440-2-5.618561+0 1.561736-2-6.456176+0 1.640417-2-7.355816+0 1.688496-2-8.264296+0 1.717850-2-9.237503+0 1.735283-2-1.033564+1 1.755119-2-1.197817+1 1.764022-2-1.215657+1 1.775585-2-1.151975+1 1.795396-2-9.767019+0 1.812269-2-8.812061+0 1.843211-2-7.856734+0 1.890046-2-7.059552+0 1.955450-2-6.520476+0 2.026370-2-6.351646+0 2.086474-2-6.578284+0 2.122108-2-7.044743+0 2.163468-2-8.322617+0 2.177379-2-8.321755+0 2.209222-2-7.436701+0 2.249219-2-6.919100+0 2.295197-2-5.587799+0 2.338661-2-4.836371+0 2.403785-2-4.107329+0 2.486709-2-3.454918+0 2.602773-2-2.819964+0 2.717033-2-2.386009+0 2.856017-2-2.009053+0 2.975924-2-1.771316+0 3.130275-2-1.544373+0 3.315172-2-1.357303+0 3.573757-2-1.201648+0 3.852407-2-1.120237+0 4.221483-2-1.087641+0 4.678966-2-1.113856+0 5.763135-2-1.288984+0 8.706309-2-1.904305+0 9.788828-2-2.192721+0 1.065250-1-2.528098+0 1.116675-1-2.862899+0 1.146991-1-3.208113+0 1.164016-1-3.562590+0 1.175958-1-4.040050+0 1.187272-1-4.563611+0 1.194350-1-4.598808+0 1.203318-1-4.225232+0 1.217198-1-3.532606+0 1.231538-1-3.130205+0 1.254314-1-2.756520+0 1.286794-1-2.426203+0 1.338243-1-2.096697+0 1.400850-1-1.839902+0 1.493173-1-1.606467+0 1.599387-1-1.443245+0 1.728829-1-1.324140+0 1.916708-1-1.231020+0 2.245157-1-1.169157+0 3.011272-1-1.172576+0 5.737861-1-1.276045+0 1.070165+0-1.323329+0 3.231848+0-1.346233+0 9.803331+0-1.352486+0 1.000000+1-1.349945+0 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.111135-1 1.109921-6 1.812908-1 1.180093-6 2.435333-1 1.214276-6 2.808703-1 1.289497-6 3.817833-1 1.323620-6 4.377153-1 1.355610-6 4.970902-1 1.413717-6 6.251292-1 1.440077-6 6.932323-1 1.464788-6 7.642942-1 1.511122-6 9.165999-1 1.551665-6 1.073724+0 1.587140-6 1.233542+0 1.618180-6 1.393438+0 1.645340-6 1.551158+0 1.669106-6 1.706056+0 1.710695-6 2.016166+0 1.741887-6 2.286718+0 1.765281-6 2.517725+0 1.800372-6 2.914659+0 1.849016-6 3.578632+0 1.880640-6 4.107054+0 1.912264-6 4.732184+0 1.925818-6 5.035931+0 1.951592-6 5.679127+0 1.975755-6 6.371765+0 1.998409-6 7.118022+0 2.019646-6 7.919799+0 2.039556-6 8.778228+0 2.058222-6 9.694225+0 2.075721-6 1.066913+1 2.092127-6 1.170444+1 2.107507-6 1.280129+1 2.121926-6 1.396047+1 2.135443-6 1.518247+1 2.148116-6 1.646754+1 2.159997-6 1.781574+1 2.171135-6 1.922697+1 2.181577-6 2.070116+1 2.191366-6 2.223833+1 2.200544-6 2.383801+1 2.209148-6 2.549863+1 2.217214-6 2.721736+1 2.232338-6 3.094359+1 2.245572-6 3.487736+1 2.257152-6 3.899377+1 2.267284-6 4.326399+1 2.276149-6 4.765423+1 2.283907-6 5.212696+1 2.290694-6 5.664250+1 2.296633-6 6.116084+1 2.301830-6 6.564334+1 2.306377-6 7.005412+1 2.314335-6 7.916502+1 2.320303-6 8.752980+1 2.324779-6 9.496326+1 2.331494-6 1.086500+2 2.334851-6 1.169898+2 2.338208-6 1.266130+2 2.343963-6 1.469002+2 2.346841-6 1.592810+2 2.349718-6 1.734846+2 2.352596-6 1.897937+2 2.355474-6 2.085153+2 2.358351-6 2.299758+2 2.361229-6 2.545144+2 2.364106-6 2.824739+2 2.369862-6 3.499743+2 2.379685-6 5.060371+2 2.384488-6 6.022989+2 2.387415-6 6.671463+2 2.390342-6 7.362351+2 2.396197-6 8.847155+2 2.396929-6 9.039980+2 2.402052-6 1.041086+3 2.404064-6 1.095044+3 2.408586-6 1.213389+3 2.410976-6 1.272876+3 2.413659-6 1.335852+3 2.415900-6 1.384543+3 2.418781-6 1.440800+3 2.421708-6 1.489400+3 2.424412-6 1.525605+3 2.425837-6 1.541021+3 2.429267-6 1.567116+3 2.431863-6 1.576036+3 2.435435-6 1.572617+3 2.437582-6 1.561814+3 2.443306-6 1.502137+3 2.445132-6 1.474269+3 2.449427-6 1.393971+3 2.451691-6 1.344331+3 2.454744-6 1.270847+3 2.457717-6 1.193558+3 2.460599-6 1.114783+3 2.463160-6 1.042759+3 2.465836-6 9.666149+2 2.469381-6 8.660768+2 2.472308-6 7.847554+2 2.475601-6 6.965139+2 2.478163-6 6.310163+2 2.484018-6 4.940476+2 2.486030-6 4.515257+2 2.487951-6 4.132357+2 2.489872-6 3.772191+2 2.492434-6 3.327338+2 2.495727-6 2.813835+2 2.498901-6 2.378887+2 2.501947-6 2.013677+2 2.505838-6 1.615579+2 2.508115-6 1.415199+2 2.511851-6 1.132979+2 2.516045-6 8.765267+1 2.518047-6 7.737071+1 2.521051-6 6.400611+1 2.524054-6 5.280897+1 2.527160-6 4.317605+1 2.530266-6 3.522116+1 2.533373-6 2.867430+1 2.539585-6 1.890512+1 2.545798-6 1.239378+1 2.552010-6 8.110758+0 2.555117-6 6.578047+0 2.556670-6 5.934341+0 2.559000-6 5.103323+0 2.561329-6 4.416788+0 2.562883-6 4.031165+0 2.565212-6 3.550294+0 2.566377-6 3.350392+0 2.567542-6 3.175665+0 2.569095-6 2.979714+0 2.570187-6 2.865958+0 2.571354-6 2.765237+0 2.571954-6 2.721510+0 2.572855-6 2.665868+0 2.573755-6 2.621826+0 2.575308-6 2.572070+0 2.577638-6 2.556555+0 2.579967-6 2.607676+0 2.583074-6 2.772488+0 2.586180-6 3.040659+0 2.592393-6 3.864249+0 2.598605-6 5.046284+0 2.604818-6 6.571933+0 2.611031-6 8.439580+0 2.617243-6 1.065857+1 2.623456-6 1.324825+1 2.629668-6 1.623788+1 2.635881-6 1.966736+1 2.642094-6 2.358869+1 2.648306-6 2.806818+1 2.655906-6 3.443065+1 2.663030-6 4.144655+1 2.687344-6 7.677762+1 2.692503-6 8.769198+1 2.697340-6 9.958277+1 2.701874-6 1.125412+2 2.706125-6 1.266657+2 2.710111-6 1.420564+2 2.713847-6 1.588079+2 2.717350-6 1.770015+2 2.720634-6 1.966969+2 2.723713-6 2.179268+2 2.726599-6 2.406921+2 2.729305-6 2.649601+2 2.734378-6 3.196238+2 2.738818-6 3.794358+2 2.742702-6 4.430452+2 2.749075-6 5.755385+2 2.763028-6 1.030368+3 2.769169-6 1.322166+3 2.772516-6 1.508497+3 2.776710-6 1.770244+3 2.780119-6 2.006158+3 2.783528-6 2.262283+3 2.790346-6 2.829612+3 2.791198-6 2.905039+3 2.797164-6 3.453935+3 2.799507-6 3.676629+3 2.803981-6 4.105262+3 2.807443-6 4.433780+3 2.810799-6 4.743316+3 2.814261-6 5.047369+3 2.817617-6 5.321268+3 2.820600-6 5.542915+3 2.823356-6 5.726087+3 2.824861-6 5.816288+3 2.828855-6 6.018698+3 2.831975-6 6.136199+3 2.836028-6 6.231734+3 2.838523-6 6.257218+3 2.845204-6 6.199141+3 2.847039-6 6.151681+3 2.852132-6 5.953461+3 2.854853-6 5.810508+3 2.856688-6 5.701002+3 2.859375-6 5.523408+3 2.861985-6 5.333530+3 2.865341-6 5.068295+3 2.868324-6 4.816722+3 2.871200-6 4.563849+3 2.875568-6 4.168286+3 2.878976-6 3.856242+3 2.882811-6 3.508357+3 2.885794-6 3.243846+3 2.892612-6 2.672510+3 2.897193-6 2.322770+3 2.899430-6 2.163482+3 2.904543-6 1.829519+3 2.910434-6 1.497571+3 2.927465-6 8.294426+2 2.933576-6 6.760415+2 2.936489-6 6.152305+2 2.939312-6 5.628813+2 2.944780-6 4.773359+2 2.949906-6 4.129311+2 2.954712-6 3.635946+2 2.959217-6 3.250906+2 2.963441-6 2.944687+2 2.971361-6 2.479512+2 2.978291-6 2.157654+2 3.027730-6 8.533619+1 3.030990-6 8.046724+1 3.034249-6 7.612287+1 3.039837-6 7.001998+1 3.041699-6 6.839461+1 3.049149-6 6.414477+1 3.050081-6 6.388088+1 3.056600-6 6.379175+1 3.059160-6 6.461433+1 3.064050-6 6.752805+1 3.067076-6 7.019317+1 3.070444-6 7.389204+1 3.073150-6 7.738671+1 3.077499-6 8.387195+1 3.087331-6 1.014576+2 3.092220-6 1.109824+2 3.096062-6 1.184615+2 3.098681-6 1.234418+2 3.101766-6 1.290844+2 3.108750-6 1.404831+2 3.111311-6 1.440363+2 3.116200-6 1.496850+2 3.120126-6 1.530377+2 3.122000-6 1.542459+2 3.124810-6 1.555741+2 3.127621-6 1.563207+2 3.130353-6 1.564970+2 3.132403-6 1.562828+2 3.137013-6 1.547705+2 3.138550-6 1.539682+2 3.144138-6 1.499330+2 3.146000-6 1.482398+2 3.151588-6 1.423115+2 3.153451-6 1.401008+2 3.160901-6 1.304645+2 3.163905-6 1.263536+2 3.174360-6 1.119245+2 3.188017-6 9.465891+1 3.195567-6 8.648522+1 3.203117-6 7.939026+1 3.210666-6 7.331616+1 3.218216-6 6.814375+1 3.231267-6 6.091104+1 3.243502-6 5.557820+1 3.254972-6 5.145698+1 3.265726-6 4.814578+1 3.285888-6 4.295024+1 3.303531-6 3.917809+1 3.318968-6 3.631124+1 3.345983-6 3.202128+1 3.366244-6 2.926695+1 3.458474-6 1.976723+1 3.484012-6 1.768684+1 3.501037-6 1.637614+1 3.519815-6 1.498038+1 3.535087-6 1.387094+1 3.543600-6 1.325828+1 3.552113-6 1.264726+1 3.561991-6 1.193746+1 3.570426-6 1.132816+1 3.586163-6 1.017459+1 3.594676-6 9.536246+0 3.603188-6 8.884179+0 3.611701-6 8.216195+0 3.620213-6 7.531960+0 3.628726-6 6.835154+0 3.635305-6 6.294641+0 3.641062-6 5.828341+0 3.654363-6 4.839834+0 3.657737-6 4.627889+0 3.660690-6 4.462817+0 3.665857-6 4.232316+0 3.669732-6 4.120714+0 3.672639-6 4.079306+0 3.674818-6 4.075648+0 3.676453-6 4.089925+0 3.678599-6 4.132732+0 3.680668-6 4.201984+0 3.682190-6 4.271746+0 3.683219-6 4.328473+0 3.685019-6 4.447264+0 3.686369-6 4.553428+0 3.688394-6 4.741643+0 3.690419-6 4.966532+0 3.692685-6 5.264150+0 3.694384-6 5.520967+0 3.696613-6 5.903932+0 3.699622-6 6.507357+0 3.702339-6 7.142357+0 3.707560-6 8.615682+0 3.718878-6 1.301861+1 3.721424-6 1.423992+1 3.727624-6 1.754870+1 3.731552-6 1.987144+1 3.734551-6 2.174961+1 3.738006-6 2.400813+1 3.741743-6 2.654544+1 3.744786-6 2.866391+1 3.748547-6 3.131994+1 3.752273-6 3.396084+1 3.754268-6 3.536710+1 3.758588-6 3.836027+1 3.762681-6 4.108847+1 3.764769-6 4.242475+1 3.768370-6 4.461779+1 3.772253-6 4.679707+1 3.781031-6 5.084631+1 3.784518-6 5.206675+1 3.790092-6 5.351477+1 3.793207-6 5.404548+1 3.796180-6 5.436420+1 3.799154-6 5.450084+1 3.801419-6 5.448484+1 3.805666-6 5.418393+1 3.808215-6 5.384099+1 3.812745-6 5.295150+1 3.817276-6 5.173658+1 3.821807-6 5.023938+1 3.826337-6 4.850660+1 3.828602-6 4.756697+1 3.835398-6 4.452761+1 3.844460-6 4.017513+1 3.846725-6 3.906863+1 3.853521-6 3.577730+1 3.863475-6 3.119153+1 3.881736-6 2.405642+1 3.893260-6 2.053308+1 3.903716-6 1.793164+1 3.976904-6 7.625212+0 3.996481-6 5.928025+0 4.006269-6 5.248829+0 4.016058-6 4.698005+0 4.018505-6 4.580855+0 4.025847-6 4.277985+0 4.030273-6 4.129435+0 4.034498-6 4.010229+0 4.038722-6 3.911867+0 4.042845-6 3.834817+0 4.048256-6 3.760462+0 4.051734-6 3.728159+0 4.056595-6 3.703421+0 4.063854-6 3.714605+0 4.066274-6 3.733110+0 4.074790-6 3.874844+0 4.078155-6 3.972718+0 4.084579-6 4.249876+0 4.087887-6 4.450282+0 4.089990-6 4.602301+0 4.092750-6 4.834673+0 4.094525-6 5.005728+0 4.097681-6 5.356486+0 4.099840-6 5.634163+0 4.102117-6 5.963321+0 4.106101-6 6.638260+0 4.109089-6 7.235468+0 4.113011-6 8.150417+0 4.118514-6 9.711528+0 4.132770-6 1.548977+1 4.138866-6 1.879007+1 4.143736-6 2.178683+1 4.148796-6 2.522104+1 4.153001-6 2.830367+1 4.157093-6 3.147680+1 4.161818-6 3.531864+1 4.166410-6 3.918591+1 4.170757-6 4.291881+1 4.175204-6 4.675632+1 4.179508-6 5.043248+1 4.184051-6 5.421330+1 4.188612-6 5.784215+1 4.190396-6 5.920244+1 4.194468-6 6.215664+1 4.198855-6 6.506761+1 4.208626-6 7.032570+1 4.212507-6 7.188296+1 4.219657-6 7.389532+1 4.223207-6 7.447318+1 4.226427-6 7.475682+1 4.231711-6 7.473843+1 4.233868-6 7.456414+1 4.237643-6 7.403834+1 4.242599-6 7.294950+1 4.247377-6 7.151360+1 4.248970-6 7.095937+1 4.257795-6 6.731638+1 4.261577-6 6.551475+1 4.269141-6 6.162151+1 4.279227-6 5.611946+1 4.289313-6 5.062717+1 4.318102-6 3.716938+1 4.328500-6 3.342077+1 4.338898-6 3.024008+1 4.349296-6 2.755402+1 4.359170-6 2.538657+1 4.369469-6 2.345125+1 4.380491-6 2.167740+1 4.390889-6 2.023167+1 4.401287-6 1.896636+1 4.411685-6 1.785023+1 4.422083-6 1.685764+1 4.432481-6 1.596639+1 4.543459-6 8.865255+0 4.554642-6 8.195534+0 4.565825-6 7.541141+0 4.582600-6 6.640264+0 4.588191-6 6.379251+0 4.596513-6 6.046909+0 4.599374-6 5.951610+0 4.604316-6 5.814219+0 4.615434-6 5.655141+0 4.619140-6 5.655996+0 4.622153-6 5.678986+0 4.631192-6 5.878060+0 4.635072-6 6.027332+0 4.642480-6 6.424590+0 4.646884-6 6.731771+0 4.651087-6 7.074180+0 4.655290-6 7.463523+0 4.662673-6 8.254671+0 4.677656-6 1.020845+1 4.686044-6 1.143472+1 4.690237-6 1.206198+1 4.695130-6 1.279267+1 4.700023-6 1.351050+1 4.711419-6 1.506490+1 4.712854-6 1.524364+1 4.722903-6 1.634933+1 4.727831-6 1.678406+1 4.734386-6 1.723733+1 4.739769-6 1.749665+1 4.744165-6 1.763084+1 4.747462-6 1.768565+1 4.752407-6 1.769531+1 4.757353-6 1.762077+1 4.762237-6 1.746907+1 4.767121-6 1.724567+1 4.775484-6 1.671725+1 4.778272-6 1.650591+1 4.789224-6 1.554667+1 4.800512-6 1.442278+1 4.814770-6 1.296517+1 4.828436-6 1.167453+1 4.839219-6 1.080094+1 4.846673-6 1.029097+1 4.851130-6 1.002597+1 4.858477-6 9.656535+0 4.869498-6 9.261531+0 4.880518-6 9.053498+0 4.887336-6 9.013523+0 4.894153-6 9.036486+0 4.899197-6 9.090951+0 4.908025-6 9.254630+0 4.914646-6 9.426389+0 4.927059-6 9.831691+0 4.946419-6 1.055437+1 4.959166-6 1.098682+1 4.962218-6 1.107608+1 4.971373-6 1.129848+1 4.974424-6 1.135552+1 4.983579-6 1.146965+1 4.989178-6 1.149559+1 4.993377-6 1.149313+1 5.002825-6 1.142194+1 5.011930-6 1.127666+1 5.017886-6 1.114843+1 5.029797-6 1.083777+1 5.058802-6 1.002520+1 5.066576-6 9.844116+0 5.077441-6 9.636432+0 5.086779-6 9.501701+0 5.099208-6 9.378727+0 5.117455-6 9.281193+0 5.159405-6 9.148240+0 5.175414-6 9.071752+0 5.210897-6 8.852524+0 5.299540-6 8.271438+0 5.317803-6 8.174875+0 5.341724-6 8.092192+0 5.359140-6 8.076774+0 5.377015-6 8.105262+0 5.402109-6 8.206800+0 5.436633-6 8.368942+0 5.457978-6 8.414039+0 5.475324-6 8.397307+0 5.488801-6 8.350341+0 5.509320-6 8.231921+0 5.563780-6 7.819529+0 5.590880-6 7.656990+0 5.608871-6 7.580310+0 5.645256-6 7.485587+0 5.686038-6 7.405457+0 5.726820-6 7.281824+0 5.786985-6 7.029122+0 5.856150-6 6.706128+0 5.874851-6 6.618494+0 5.903858-6 6.506889+0 5.918081-6 6.474226+0 5.935086-6 6.464113+0 5.950174-6 6.486662+0 5.960833-6 6.521606+0 5.976821-6 6.602038+0 5.992975-6 6.711149+0 6.022165-6 6.939309+0 6.036950-6 7.046212+0 6.052370-6 7.135255+0 6.067683-6 7.191776+0 6.084989-6 7.211233+0 6.097413-6 7.195818+0 6.109453-6 7.159356+0 6.122128-6 7.101337+0 6.136235-6 7.018224+0 6.181996-6 6.686799+0 6.223474-6 6.404738+0 6.247402-6 6.272315+0 6.293932-6 6.074272+0 6.448230-6 5.598281+0 6.480000-6 5.530096+0 6.511405-6 5.498748+0 6.542992-6 5.504297+0 6.590374-6 5.538841+0 6.621961-6 5.536157+0 6.654469-6 5.489034+0 6.685228-6 5.407184+0 6.754474-6 5.189942+0 6.803744-6 5.081826+0 6.904290-6 4.934276+0 7.200173-6 4.438601+0 7.280726-6 4.290599+0 7.408924-6 4.026417+0 7.463442-6 3.931575+0 7.555520-6 3.795650+0 7.762471-6 3.490849+0 8.035261-6 3.096598+0 8.192000-6 2.871842+0 8.420000-6 2.551506+0 8.725990-6 2.142240+0 9.015711-6 1.780889+0 9.120108-6 1.657634+0 9.332543-6 1.419048+0 9.549926-6 1.192658+0 9.665331-6 1.081055+0 1.004279-5 7.467229-1 1.035142-5 5.162886-1 1.039665-5 4.867310-1 1.072840-5 3.008478-1 1.089229-5 2.310072-1 1.103942-5 1.845305-1 1.118521-5 1.533036-1 1.132644-5 1.379001-1 1.146326-5 1.377808-1 1.157625-5 1.495566-1 1.159580-5 1.527646-1 1.172420-5 1.827609-1 1.184859-5 2.272540-1 1.196910-5 2.858733-1 1.208583-5 3.582903-1 1.225494-5 4.914829-1 1.241460-5 6.510233-1 1.261546-5 8.830506-1 1.272858-5 9.668495-1 1.273439-5 9.687883-1 1.296986-5 8.852539-1 1.313811-5 7.680166-1 1.329601-5 6.635839-1 1.344522-5 5.722809-1 1.358548-5 4.946086-1 1.384210-5 3.775408-1 1.395851-5 3.374130-1 1.406764-5 3.089708-1 1.416995-5 2.917616-1 1.426587-5 2.849437-1 1.444572-5 2.983661-1 1.460309-5 3.425174-1 1.474078-5 4.115500-1 1.486126-5 4.998994-1 1.496669-5 6.019599-1 1.515118-5 8.420814-1 1.539332-5 1.305379+0 1.554899-5 1.715104+0 1.570465-5 2.228601+0 1.582061-5 2.692010+0 1.593658-5 3.236923+0 1.605254-5 3.875016+0 1.616851-5 4.620087+0 1.640044-5 6.500228+0 1.659267-5 8.556069+0 1.723550-5 2.075721+1 1.736001-5 2.461259+1 1.748452-5 2.920703+1 1.760903-5 3.470865+1 1.769204-5 3.898682+1 1.779791-5 4.529125+1 1.791580-5 5.364881+1 1.799022-5 5.979981+1 1.807746-5 6.805141+1 1.815925-5 7.699808+1 1.823592-5 8.665363+1 1.830780-5 9.702524+1 1.837519-5 1.081162+2 1.846180-5 1.247049+2 1.855313-5 1.457183+2 1.860518-5 1.596849+2 1.865399-5 1.743487+2 1.870801-5 1.926444+2 1.874263-5 2.056872+2 1.882598-5 2.421856+2 1.889343-5 2.783553+2 1.895501-5 3.182588+2 1.900889-5 3.602477+2 1.905603-5 4.039992+2 1.909728-5 4.490579+2 1.913338-5 4.948391+2 1.916496-5 5.406751+2 1.919259-5 5.858819+2 1.924095-5 6.782820+2 1.927723-5 7.603045+2 1.932483-5 8.868620+2 1.943375-5 1.268325+3 1.948147-5 1.479010+3 1.952919-5 1.718117+3 1.964848-5 2.475006+3 1.967233-5 2.666665+3 1.969619-5 2.878662+3 1.972005-5 3.115452+3 1.975584-5 3.528831+3 1.976777-5 3.685193+3 1.981548-5 4.426418+3 1.984531-5 5.002489+3 1.988397-5 5.906415+3 1.993477-5 7.406647+3 1.999279-5 9.598388+3 2.003027-5 1.128343+4 2.005245-5 1.236980+4 2.008056-5 1.382563+4 2.010341-5 1.505910+4 2.013751-5 1.694614+4 2.016293-5 1.835624+4 2.018436-5 1.952308+4 2.020761-5 2.074402+4 2.023163-5 2.193069+4 2.025297-5 2.289961+4 2.027654-5 2.385532+4 2.028345-5 2.410978+4 2.031214-5 2.502391+4 2.033453-5 2.556516+4 2.035811-5 2.595732+4 2.038184-5 2.615945+4 2.040267-5 2.617400+4 2.042572-5 2.601297+4 2.044249-5 2.578128+4 2.046344-5 2.536145+4 2.048500-5 2.478693+4 2.050540-5 2.412114+4 2.053083-5 2.314227+4 2.055077-5 2.227539+4 2.057317-5 2.121590+4 2.059187-5 2.027497+4 2.061591-5 1.901010+4 2.064397-5 1.748589+4 2.066852-5 1.613652+4 2.067849-5 1.558938+4 2.069956-5 1.444498+4 2.072098-5 1.330644+4 2.077058-5 1.082129+4 2.078778-5 1.002293+4 2.080419-5 9.295473+3 2.082060-5 8.603507+3 2.085603-5 7.235408+3 2.088415-5 6.273346+3 2.092706-5 5.011418+3 2.097756-5 3.822197+3 2.105501-5 2.520000+3 2.108083-5 2.199585+3 2.110665-5 1.925084+3 2.113267-5 1.688775+3 2.115828-5 1.490385+3 2.118410-5 1.319778+3 2.121708-5 1.137881+3 2.123573-5 1.050178+3 2.125699-5 9.616049+2 2.128888-5 8.481368+2 2.132076-5 7.538844+2 2.135570-5 6.682042+2 2.139063-5 5.970260+2 2.141645-5 5.518452+2 2.144227-5 5.117839+2 2.149390-5 4.437073+2 2.154553-5 3.876248+2 2.161683-5 3.243489+2 2.169664-5 2.697416+2 2.172324-5 2.554287+2 2.175482-5 2.412033+2 2.177645-5 2.332969+2 2.179228-5 2.284968+2 2.180811-5 2.245528+2 2.182966-5 2.205842+2 2.184795-5 2.184927+2 2.188286-5 2.177278+2 2.189816-5 2.186891+2 2.192215-5 2.217005+2 2.193360-5 2.237478+2 2.195078-5 2.275010+2 2.197931-5 2.353442+2 2.201498-5 2.473983+2 2.209569-5 2.789507+2 2.214308-5 2.964356+2 2.214890-5 2.983814+2 2.220634-5 3.140866+2 2.223003-5 3.183688+2 2.224901-5 3.207659+2 2.226984-5 3.223089+2 2.229900-5 3.225634+2 2.232359-5 3.211161+2 2.234079-5 3.192595+2 2.236745-5 3.151377+2 2.239424-5 3.096734+2 2.243637-5 2.990138+2 2.248120-5 2.859445+2 2.259578-5 2.521516+2 2.262428-5 2.448230+2 2.266667-5 2.351613+2 2.270819-5 2.271820+2 2.275656-5 2.196096+2 2.277291-5 2.174194+2 2.286585-5 2.075470+2 2.310756-5 1.888942+2 2.344250-5 1.640215+2 2.362152-5 1.531953+2 2.371374-5 1.482843+2 2.393073-5 1.379705+2 2.542357-5 8.727013+1 2.601790-5 7.283691+1 2.704254-5 5.317532+1 2.724210-5 5.031445+1 2.737588-5 4.866317+1 2.750966-5 4.727829+1 2.764343-5 4.621483+1 2.777721-5 4.551610+1 2.791099-5 4.516891+1 2.816182-5 4.504625+1 2.831232-5 4.512910+1 2.837921-5 4.531080+1 2.844610-5 4.569859+1 2.847954-5 4.600612+1 2.851298-5 4.641222+1 2.855005-5 4.700090+1 2.858596-5 4.773664+1 2.862075-5 4.863256+1 2.865445-5 4.970071+1 2.868710-5 5.095232+1 2.871873-5 5.239808+1 2.874937-5 5.404849+1 2.877905-5 5.591408+1 2.880780-5 5.800566+1 2.883566-5 6.033457+1 2.886265-5 6.291277+1 2.891493-5 6.897594+1 2.896395-5 7.624060+1 2.900990-5 8.483768+1 2.905298-5 9.490703+1 2.909337-5 1.065902+2 2.913123-5 1.200213+2 2.916673-5 1.353166+2 2.920060-5 1.529021+2 2.923121-5 1.718241+2 2.926046-5 1.931074+2 2.928788-5 2.163899+2 2.931358-5 2.416050+2 2.933769-5 2.686477+2 2.938146-5 3.276343+2 2.942118-5 3.942449+2 2.948634-5 5.372887+2 2.957442-5 8.172354+2 2.962755-5 1.046970+3 2.966897-5 1.263764+3 2.971233-5 1.529833+3 2.974981-5 1.794270+3 2.977229-5 1.968878+3 2.980884-5 2.278672+3 2.984539-5 2.620595+3 2.992306-5 3.448518+3 2.994020-5 3.647962+3 2.999160-5 4.276021+3 3.001972-5 4.634721+3 3.006470-5 5.221490+3 3.008937-5 5.546080+3 3.011577-5 5.891870+3 3.014542-5 6.274299+3 3.017018-5 6.585577+3 3.020202-5 6.969983+3 3.022251-5 7.205423+3 3.025806-5 7.585965+3 3.028857-5 7.879283+3 3.033140-5 8.229932+3 3.036485-5 8.447716+3 3.040326-5 8.631337+3 3.043630-5 8.729135+3 3.045821-5 8.762489+3 3.049203-5 8.764229+3 3.052557-5 8.706954+3 3.057992-5 8.494642+3 3.061072-5 8.313351+3 3.065050-5 8.020987+3 3.066977-5 7.858148+3 3.070251-5 7.554103+3 3.072606-5 7.316737+3 3.075698-5 6.985830+3 3.079672-5 6.535827+3 3.083389-5 6.098891+3 3.087106-5 5.655008+3 3.091091-5 5.180203+3 3.094191-5 4.817000+3 3.101501-5 4.001691+3 3.104219-5 3.718522+3 3.109408-5 3.214403+3 3.115701-5 2.672987+3 3.126678-5 1.917118+3 3.131597-5 1.651686+3 3.136281-5 1.436439+3 3.139143-5 1.321271+3 3.144485-5 1.135874+3 3.148336-5 1.023363+3 3.152187-5 9.261562+2 3.156038-5 8.422723+2 3.159889-5 7.698944+2 3.163740-5 7.073888+2 3.167591-5 6.533124+2 3.172031-5 5.997998+2 3.176470-5 5.542014+2 3.183618-5 4.941338+2 3.189260-5 4.559688+2 3.194176-5 4.280665+2 3.199091-5 4.043644+2 3.204960-5 3.808062+2 3.213802-5 3.536966+2 3.221504-5 3.371903+2 3.229206-5 3.264300+2 3.232527-5 3.233635+2 3.237510-5 3.203348+2 3.242686-5 3.189367+2 3.249039-5 3.191883+2 3.252966-5 3.201688+2 3.277203-5 3.303133+2 3.283953-5 3.318838+2 3.290108-5 3.322293+2 3.295347-5 3.316658+2 3.305882-5 3.283666+2 3.323372-5 3.188118+2 3.346352-5 3.057236+2 3.361456-5 2.994428+2 3.380803-5 2.939273+2 3.414673-5 2.858990+2 3.427678-5 2.822121+2 3.483079-5 2.651931+2 3.511565-5 2.583771+2 3.565488-5 2.486500+2 3.615489-5 2.415963+2 3.700000-5 2.325767+2 3.796427-5 2.253653+2 3.852298-5 2.222888+2 3.937834-5 2.187057+2 4.051260-5 2.155650+2 4.197192-5 2.137850+2 4.373087-5 2.136528+2 4.628850-5 2.160465+2 4.940000-5 2.198981+2 4.961265-5 2.206775+2 4.988589-5 2.227162+2 5.014036-5 2.258796+2 5.061871-5 2.334138+2 5.086099-5 2.362697+2 5.104038-5 2.374456+2 5.118358-5 2.378292+2 5.199384-5 2.374306+2 5.242180-5 2.389171+2 5.338115-5 2.434810+2 5.763750-5 2.573429+2 6.102263-5 2.664470+2 6.390300-5 2.718801+2 6.683439-5 2.740966+2 6.918310-5 2.729619+2 7.161434-5 2.690738+2 7.361606-5 2.631621+2 7.548071-5 2.555584+2 7.717412-5 2.466442+2 7.894174-5 2.352488+2 8.190628-5 2.131263+2 8.239453-5 2.124470+2 8.388031-5 2.246952+2 8.509756-5 2.418084+2 8.625447-5 2.615501+2 8.747660-5 2.870139+2 8.861034-5 3.160218+2 8.964107-5 3.482304+2 9.062327-5 3.857485+2 9.143012-5 4.231113+2 9.221275-5 4.667144+2 9.269668-5 4.982441+2 9.332543-5 5.456877+2 9.375106-5 5.827955+2 9.434829-5 6.433313+2 9.471419-5 6.864066+2 9.502731-5 7.276424+2 9.549926-5 7.989171+2 9.601496-5 8.923656+2 9.646613-5 9.914289+2 9.681878-5 1.083484+3 9.724123-5 1.215904+3 9.737096-5 1.262570+3 9.769406-5 1.394190+3 9.797676-5 1.531689+3 9.830400-5 1.725867+3 9.844058-5 1.821292+3 9.862997-5 1.971488+3 9.879569-5 2.123662+3 9.900000-5 2.344936+3 9.910821-5 2.480583+3 9.928961-5 2.743434+3 9.945614-5 3.032439+3 9.958103-5 3.285801+3 9.967470-5 3.499962+3 9.982235-5 3.886202+3 9.995572-5 4.294290+3 1.002017-4 5.225477+3 1.003248-4 5.793330+3 1.004478-4 6.439845+3 1.006938-4 7.999667+3 1.011314-4 1.179004+4 1.013320-4 1.399713+4 1.014715-4 1.570171+4 1.016110-4 1.753428+4 1.018599-4 2.106670+4 1.018910-4 2.152662+4 1.021087-4 2.480969+4 1.021943-4 2.611057+4 1.023576-4 2.856436+4 1.024565-4 3.000699+4 1.025623-4 3.149194+4 1.026860-4 3.312405+4 1.027804-4 3.427604+4 1.029081-4 3.567782+4 1.030157-4 3.670032+4 1.031346-4 3.763860+4 1.032552-4 3.836546+4 1.033832-4 3.887322+4 1.034288-4 3.898576+4 1.035594-4 3.910491+4 1.036701-4 3.896889+4 1.039002-4 3.800384+4 1.040143-4 3.720115+4 1.041797-4 3.569238+4 1.042971-4 3.440261+4 1.043958-4 3.319625+4 1.045014-4 3.180094+4 1.046200-4 3.012920+4 1.047190-4 2.866766+4 1.048464-4 2.672948+4 1.049708-4 2.480171+4 1.050953-4 2.287062+4 1.052353-4 2.072712+4 1.053443-4 1.910307+4 1.055930-4 1.561099+4 1.056209-4 1.524263+4 1.060388-4 1.037220+4 1.061900-4 8.928586+3 1.063571-4 7.527654+3 1.066078-4 5.785595+3 1.072098-4 3.036165+3 1.073700-4 2.563658+3 1.075114-4 2.214533+3 1.077953-4 1.674260+3 1.082759-4 1.158689+3 1.084508-4 1.085127+3 1.086211-4 1.075305+3 1.087428-4 1.108845+3 1.088401-4 1.162047+3 1.089214-4 1.225696+3 1.089950-4 1.299398+3 1.090821-4 1.407449+3 1.091171-4 1.457623+3 1.091809-4 1.559116+3 1.092413-4 1.667917+3 1.093465-4 1.888120+3 1.094865-4 2.245481+3 1.095937-4 2.571754+3 1.100181-4 4.354463+3 1.101182-4 4.894628+3 1.103110-4 6.062421+3 1.104401-4 6.935228+3 1.105822-4 7.973014+3 1.106880-4 8.791979+3 1.107423-4 9.226383+3 1.109295-4 1.078091+4 1.110618-4 1.191677+4 1.111708-4 1.286335+4 1.112903-4 1.390038+4 1.114192-4 1.500125+4 1.115494-4 1.607659+4 1.116756-4 1.706669+4 1.117185-4 1.738777+4 1.118829-4 1.853370+4 1.120124-4 1.932447+4 1.121576-4 2.007269+4 1.122587-4 2.049865+4 1.124980-4 2.116675+4 1.125985-4 2.129860+4 1.127190-4 2.133899+4 1.128508-4 2.123804+4 1.129340-4 2.109869+4 1.130528-4 2.080271+4 1.131292-4 2.055549+4 1.132056-4 2.026658+4 1.132962-4 1.987380+4 1.134150-4 1.928360+4 1.135679-4 1.841851+4 1.137027-4 1.757659+4 1.138375-4 1.668056+4 1.140481-4 1.521650+4 1.141071-4 1.480030+4 1.144079-4 1.269970+4 1.145253-4 1.191162+4 1.147894-4 1.025035+4 1.153510-4 7.389433+3 1.156022-4 6.425031+3 1.158036-4 5.781401+3 1.160141-4 5.218043+3 1.161739-4 4.856045+3 1.163297-4 4.550337+3 1.166278-4 4.073643+3 1.169260-4 3.707751+3 1.172731-4 3.380924+3 1.175663-4 3.163158+3 1.179719-4 2.921690+3 1.184125-4 2.713177+3 1.187924-4 2.565021+3 1.191950-4 2.432120+3 1.195000-4 2.344810+3 1.202708-4 2.164035+3 1.210143-4 2.030217+3 1.217700-4 1.923217+3 1.224147-4 1.849307+3 1.232000-4 1.775870+3 1.243152-4 1.694855+3 1.255307-4 1.628578+3 1.266421-4 1.581955+3 1.279162-4 1.540130+3 1.295245-4 1.499215+3 1.310720-4 1.467915+3 1.368945-4 1.378875+3 1.767721-4 9.592164+2 1.959899-4 8.243901+2 2.018366-4 7.857114+2 2.049306-4 7.645344+2 2.068345-4 7.505499+2 2.094857-4 7.287285+2 2.120924-4 7.075098+2 2.133672-4 7.009966+2 2.147015-4 6.986036+2 2.176156-4 7.018639+2 2.197204-4 7.021688+2 2.218138-4 6.991787+2 2.280711-4 6.847771+2 2.387401-4 6.565682+2 2.448921-4 6.393747+2 2.570396-4 6.037890+2 2.636545-4 5.840670+2 2.678102-4 5.702396+2 2.735454-4 5.463919+2 2.749288-4 5.427308+2 2.765019-4 5.418231+2 2.783168-4 5.447049+2 2.805414-4 5.496683+2 2.830047-4 5.511296+2 2.848339-4 5.490670+2 3.025484-4 5.180181+2 3.181091-4 4.903968+2 3.364089-4 4.534723+2 3.424946-4 4.407639+2 3.482686-4 4.332989+2 3.534485-4 4.258617+2 3.680098-4 3.992520+2 3.840000-4 3.663756+2 3.943413-4 3.432286+2 4.055985-4 3.153003+2 4.132880-4 2.933355+2 4.182162-4 2.770498+2 4.226298-4 2.621430+2 4.246886-4 2.566473+2 4.268047-4 2.526390+2 4.326803-4 2.457564+2 4.351038-4 2.419118+2 4.383034-4 2.354867+2 4.413399-4 2.283675+2 4.446191-4 2.195707+2 4.501000-4 2.035682+2 4.529486-4 1.952134+2 4.565726-4 1.843579+2 4.607000-4 1.713747+2 4.640000-4 1.605974+2 4.670176-4 1.506619+2 4.755413-4 1.245596+2 4.781838-4 1.178010+2 4.804375-4 1.128091+2 4.827483-4 1.085678+2 4.855362-4 1.048151+2 4.864977-4 1.039030+2 4.887483-4 1.025998+2 4.915200-4 1.027093+2 4.942435-4 1.048036+2 4.964364-4 1.080110+2 4.991939-4 1.140500+2 5.033182-4 1.273309+2 5.069907-4 1.434698+2 5.088385-4 1.531332+2 5.117539-4 1.704720+2 5.205000-4 2.371196+2 5.236474-4 2.658948+2 5.254100-4 2.829483+2 5.290000-4 3.195131+2 5.342489-4 3.765672+2 5.390000-4 4.308432+2 5.432985-4 4.813527+2 5.448752-4 5.000956+2 5.480000-4 5.374415+2 5.503020-4 5.650372+2 5.560000-4 6.332734+2 5.607500-4 6.897031+2 5.663168-4 7.547621+2 5.736726-4 8.383044+2 5.789381-4 8.961084+2 5.845112-4 9.551067+2 5.905765-4 1.016359+3 6.003276-4 1.108245+3 6.106631-4 1.197558+3 6.237348-4 1.300553+3 6.382635-4 1.403524+3 6.535293-4 1.498867+3 6.645076-4 1.559832+3 6.780569-4 1.628375+3 6.944328-4 1.700307+3 7.140852-4 1.773366+3 7.293328-4 1.818250+3 7.454640-4 1.853648+3 7.590135-4 1.875170+3 7.688730-4 1.929234+3 7.728299-4 1.991923+3 7.747431-4 2.033834+3 7.788091-4 2.140686+3 7.837519-4 2.264317+3 7.860714-4 2.301630+3 7.879780-4 2.317302+3 7.898996-4 2.318777+3 7.920739-4 2.304920+3 7.946364-4 2.273307+3 7.994126-4 2.201215+3 8.012167-4 2.178351+3 8.028751-4 2.161883+3 8.066051-4 2.142913+3 8.127646-4 2.160833+3 8.156857-4 2.186519+3 8.199651-4 2.241483+3 8.261090-4 2.347260+3 8.317638-4 2.438786+3 8.336755-4 2.459885+3 8.357668-4 2.474877+3 8.376180-4 2.480930+3 8.398149-4 2.480219+3 8.502293-4 2.434051+3 8.531123-4 2.429360+3 8.553721-4 2.430554+3 8.643883-4 2.463380+3 8.802500-4 2.537218+3 9.035939-4 2.623439+3 9.372559-4 2.724545+3 9.745577-4 2.809640+3 1.011360-3 2.866790+3 1.044533-3 2.898453+3 1.079625-3 2.905668+3 1.086719-3 2.910611+3 1.092137-3 2.919527+3 1.101306-3 2.946004+3 1.130674-3 3.065507+3 1.144835-3 3.108368+3 1.171877-3 3.163218+3 1.212024-3 3.219094+3 1.258926-3 3.264887+3 1.294890-3 3.289610+3 1.374500-3 3.324688+3 1.408478-3 3.348205+3 1.454190-3 3.360013+3 1.517924-3 3.354275+3 1.534720-3 3.359207+3 1.578065-3 3.388370+3 1.618103-3 3.399704+3 1.686068-3 3.404185+3 1.755484-3 3.400401+3 1.843423-3 3.380448+3 1.933081-3 3.352745+3 2.045969-3 3.310317+3 2.156503-3 3.258884+3 2.288036-3 3.189566+3 2.406951-3 3.122283+3 2.546006-3 3.033368+3 2.672636-3 2.946911+3 2.813867-3 2.841390+3 2.939021-3 2.740011+3 3.066862-3 2.628746+3 3.169400-3 2.530498+3 3.267083-3 2.421309+3 3.344995-3 2.327194+3 3.423210-3 2.221817+3 3.486131-3 2.125178+3 3.535360-3 2.038546+3 3.576697-3 1.954518+3 3.611512-3 1.871862+3 3.641884-3 1.786919+3 3.666077-3 1.709307+3 3.697744-3 1.603436+3 3.715061-3 1.555251+3 3.724862-3 1.535241+3 3.735805-3 1.521085+3 3.742890-3 1.516969+3 3.752403-3 1.517725+3 3.760914-3 1.524112+3 3.769970-3 1.536038+3 3.788083-3 1.571520+3 3.833924-3 1.685025+3 3.861082-3 1.745206+3 3.913685-3 1.845424+3 3.934519-3 1.897135+3 3.961850-3 1.983864+3 4.003460-3 2.131998+3 4.039141-3 2.251789+3 4.066134-3 2.334277+3 4.080807-3 2.375032+3 4.102737-3 2.429311+3 4.130804-3 2.486818+3 4.161115-3 2.535856+3 4.199933-3 2.583759+3 4.243660-3 2.622900+3 4.285859-3 2.648687+3 4.333956-3 2.665455+3 4.378769-3 2.668970+3 4.414820-3 2.661651+3 4.488669-3 2.628878+3 4.504858-3 2.627253+3 4.521458-3 2.632142+3 4.535116-3 2.642152+3 4.561559-3 2.676891+3 4.634069-3 2.816307+3 4.657602-3 2.853880+3 4.685464-3 2.888865+3 4.722371-3 2.922676+3 4.762689-3 2.948998+3 4.821269-3 2.975861+3 4.874320-3 2.992895+3 4.948707-3 3.008938+3 5.013590-3 3.016869+3 5.097417-3 3.019183+3 5.178882-3 3.013668+3 5.258175-3 3.001992+3 5.331915-3 2.985072+3 5.435001-3 2.947954+3 5.506537-3 2.921375+3 5.549400-3 2.917462+3 5.683509-3 2.941414+3 5.772457-3 2.935038+3 5.887042-3 2.916913+3 6.081605-3 2.939635+3 6.240996-3 2.929182+3 6.451898-3 2.898745+3 6.737004-3 2.844795+3 7.228738-3 2.736320+3 7.629569-3 2.644675+3 8.184071-3 2.512537+3 8.826153-3 2.362295+3 9.836747-3 2.141240+3 1.063162-2 1.983108+3 1.158944-2 1.808649+3 1.263416-2 1.638416+3 1.319433-2 1.554041+3 1.371968-2 1.478805+3 1.431913-2 1.397110+3 1.482491-2 1.330292+3 1.531087-2 1.268141+3 1.570839-2 1.217591+3 1.608051-2 1.170297+3 1.639142-2 1.130225+3 1.665185-2 1.095718+3 1.687784-2 1.064484+3 1.707948-2 1.034868+3 1.724248-2 1.008948+3 1.738195-2 9.843598+2 1.749199-2 9.623406+2 1.757968-2 9.423831+2 1.770965-2 9.084161+2 1.788345-2 8.621425+2 1.794675-2 8.497139+2 1.799959-2 8.429346+2 1.806411-2 8.399262+2 1.811941-2 8.420402+2 1.819086-2 8.503106+2 1.832092-2 8.746465+2 1.844251-2 8.979967+2 1.850378-2 9.076605+2 1.856893-2 9.159898+2 1.865472-2 9.241133+2 1.875627-2 9.303932+2 1.887286-2 9.344784+2 1.901366-2 9.364878+2 1.916461-2 9.362625+2 1.934638-2 9.337318+2 1.954410-2 9.289237+2 1.981211-2 9.199122+2 2.029326-2 8.986517+2 2.079173-2 8.715183+2 2.122386-2 8.435060+2 2.141041-2 8.295657+2 2.158370-2 8.149794+2 2.172603-2 8.012485+2 2.192366-2 7.789436+2 2.217890-2 7.497567+2 2.229220-2 7.412304+2 2.239621-2 7.375341+2 2.250235-2 7.375246+2 2.317618-2 7.537843+2 2.355067-2 7.684538+2 2.377156-2 7.735042+2 2.410000-2 7.744791+2 2.455334-2 7.697623+2 2.502331-2 7.614144+2 2.600160-2 7.389718+2 2.709173-2 7.104859+2 2.842313-2 6.744503+2 3.053204-2 6.192988+2 3.320978-2 5.563744+2 3.608621-2 4.977721+2 3.903225-2 4.457845+2 4.308633-2 3.852190+2 4.797955-2 3.265174+2 5.211150-2 2.862828+2 5.678393-2 2.483415+2 6.420670-2 2.010683+2 7.590553-2 1.497060+2 8.617908-2 1.190561+2 9.345202-2 1.024543+2 1.010488-1 8.817349+1 1.044567-1 8.250738+1 1.096951-1 7.442067+1 1.117595-1 7.136698+1 1.135291-1 6.876364+1 1.161449-1 6.482442+1 1.170656-1 6.335409+1 1.179073-1 6.192130+1 1.186095-1 6.061659+1 1.195661-1 5.860486+1 1.211974-1 5.494635+1 1.216877-1 5.414975+1 1.222087-1 5.365153+1 1.226660-1 5.354085+1 1.232461-1 5.378306+1 1.248132-1 5.526083+1 1.256309-1 5.580685+1 1.267077-1 5.609531+1 1.274341-1 5.609589+1 1.292674-1 5.573684+1 1.314368-1 5.496934+1 1.346727-1 5.352056+1 1.388439-1 5.147523+1 1.431955-1 4.928703+1 1.494722-1 4.618850+1 1.605343-1 4.117085+1 1.742477-1 3.585634+1 1.942903-1 2.966978+1 2.213677-1 2.350722+1 2.619408-1 1.730370+1 3.211580-1 1.185580+1 3.986805-1 7.883996+0 5.281697-1 4.602045+0 7.615171-1 2.265834+0 1.173413+0 9.738100-1 1.776032+0 4.301539-1 3.231848+0 1.309366-1 9.760024+0 1.440514-2 2.947480+1 1.579636-3 8.901248+1 1.732044-4 2.688134+2 1.899149-5 8.118035+2 2.082375-6 2.511886+3 2.175008-7 7.943282+3 2.175008-8 2.511886+4 2.175008-9 7.943282+4 2.17501-10 1.000000+5 1.37234-10 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.821500-6 1.258900-6 4.471700-6 1.584900-6 7.087200-6 1.995300-6 1.123200-5 2.511900-6 1.780200-5 3.162300-6 2.821400-5 3.981100-6 4.471700-5 5.011900-6 7.087100-5 6.309600-6 1.123200-4 7.943300-6 1.780200-4 1.000000-5 2.821300-4 1.258900-5 4.471400-4 1.584900-5 7.082900-4 1.995300-5 1.121800-3 2.511900-5 1.776900-3 3.162300-5 2.814900-3 3.981100-5 4.459900-3 5.011900-5 7.066700-3 6.309600-5 1.119800-2 7.943300-5 1.771500-2 1.000000-4 2.801500-2 1.258900-4 4.427300-2 1.584900-4 6.982800-2 1.995300-4 1.097800-1 2.511900-4 1.718300-1 3.162300-4 2.670400-1 3.981100-4 4.102200-1 5.011900-4 6.168000-1 6.309600-4 9.036000-1 7.943300-4 1.282900+0 1.000000-3 1.763800+0 1.258900-3 2.360600+0 1.584900-3 3.107900+0 1.995300-3 4.050600+0 2.511900-3 5.217000+0 3.162300-3 6.619900+0 3.981100-3 8.283000+0 5.011900-3 1.020700+1 6.309600-3 1.237500+1 7.943300-3 1.481100+1 1.000000-2 1.755600+1 1.258900-2 2.057900+1 1.584900-2 2.372500+1 1.995300-2 2.678900+1 2.511900-2 2.969800+1 3.162300-2 3.243000+1 3.981100-2 3.472300+1 5.011900-2 3.681800+1 6.309600-2 3.812200+1 7.943300-2 3.875200+1 1.000000-1 3.873300+1 1.258900-1 3.809400+1 1.584900-1 3.689400+1 1.995300-1 3.524400+1 2.511900-1 3.326600+1 3.162300-1 3.109400+1 3.981100-1 2.879700+1 5.011900-1 2.645400+1 6.309600-1 2.412000+1 7.943300-1 2.183900+1 1.000000+0 1.964000+1 1.258900+0 1.754200+1 1.584900+0 1.556400+1 1.995300+0 1.371600+1 2.511900+0 1.200800+1 3.162300+0 1.044700+1 3.981100+0 9.033200+0 5.011900+0 7.766800+0 6.309600+0 6.642500+0 7.943300+0 5.653600+0 1.000000+1 4.790500+0 1.258900+1 4.042600+0 1.584900+1 3.398900+0 1.995300+1 2.848300+0 2.511900+1 2.379600+0 3.162300+1 1.982700+0 3.981100+1 1.647900+0 5.011900+1 1.366600+0 6.309600+1 1.131100+0 7.943300+1 9.344500-1 1.000000+2 7.707100-1 1.258900+2 6.347000-1 1.584900+2 5.219600-1 1.995300+2 4.287100-1 2.511900+2 3.517000-1 3.162300+2 2.882100-1 3.981100+2 2.359500-1 5.011900+2 1.929800-1 6.309600+2 1.577000-1 7.943300+2 1.287600-1 1.000000+3 1.050500-1 1.258900+3 8.565000-2 1.584900+3 6.978200-2 1.995300+3 5.681700-2 2.511900+3 4.623300-2 3.162300+3 3.759800-2 3.981100+3 3.056000-2 5.011900+3 2.482600-2 6.309600+3 2.015800-2 7.943300+3 1.636000-2 1.000000+4 1.327100-2 1.258900+4 1.076100-2 1.584900+4 8.721800-3 1.995300+4 7.066300-3 2.511900+4 5.722800-3 3.162300+4 4.633000-3 3.981100+4 3.749400-3 5.011900+4 3.033300-3 6.309600+4 2.453100-3 7.943300+4 1.983300-3 1.000000+5 1.602900-3 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159558-4 3.981072-4 3.976770-4 5.011872-4 5.005108-4 6.309573-4 6.298987-4 7.943282-4 7.926732-4 1.000000-3 9.974146-4 1.258925-3 1.254896-3 1.584893-3 1.578587-3 1.995262-3 1.985362-3 2.511886-3 2.496340-3 3.162278-3 3.137861-3 3.981072-3 3.942886-3 5.011872-3 4.952152-3 6.309573-3 6.216350-3 7.943282-3 7.797806-3 1.000000-2 9.772935-3 1.258925-2 1.223549-2 1.584893-2 1.530045-2 1.995262-2 1.910750-2 2.511886-2 2.382206-2 3.162278-2 2.963945-2 3.981072-2 3.678684-2 5.011872-2 4.555233-2 6.309573-2 5.625265-2 7.943282-2 6.927436-2 1.000000-1 8.502021-2 1.258925-1 1.040258-1 1.584893-1 1.268792-1 1.995262-1 1.542676-1 2.511886-1 1.870254-1 3.162278-1 2.258572-1 3.981072-1 2.719861-1 5.011872-1 3.265320-1 6.309573-1 3.909261-1 7.943282-1 4.667780-1 1.000000+0 5.561243-1 1.258925+0 6.614142-1 1.584893+0 7.856188-1 1.995262+0 9.327391-1 2.511886+0 1.107149+0 3.162278+0 1.314810+0 3.981072+0 1.562726+0 5.011872+0 1.859545+0 6.309573+0 2.215836+0 7.943282+0 2.644215+0 1.000000+1 3.160756+0 1.258925+1 3.784925+0 1.584893+1 4.539960+0 1.995262+1 5.455206+0 2.511886+1 6.566008+0 3.162278+1 7.915998+0 3.981072+1 9.558471+0 5.011872+1 1.155929+1 6.309573+1 1.399904+1 7.943282+1 1.697670+1 1.000000+2 2.061412+1 1.258925+2 2.506145+1 1.584893+2 3.050283+1 1.995262+2 3.716679+1 2.511886+2 4.533235+1 3.162278+2 5.534414+1 3.981072+2 6.762944+1 5.011872+2 8.271223+1 6.309573+2 1.012417+2 7.943282+2 1.240177+2 1.000000+3 1.520267+2 1.258925+3 1.864916+2 1.584893+3 2.289191+2 1.995262+3 2.811772+2 2.511886+3 3.455593+2 3.162278+3 4.249307+2 3.981072+3 5.228176+2 5.011872+3 6.435775+2 6.309573+3 7.926346+2 7.943282+3 9.766634+2 1.000000+4 1.203935+3 1.258925+4 1.484751+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88188-10 1.995262-5 1.090606-9 2.511886-5 1.728467-9 3.162278-5 2.739476-9 3.981072-5 4.341841-9 5.011872-5 6.881356-9 6.309573-5 1.090593-8 7.943282-5 1.727675-8 1.000000-4 2.737397-8 1.258925-4 4.336673-8 1.584893-4 6.868509-8 1.995262-4 1.087306-7 2.511886-4 1.720324-7 3.162278-4 2.719240-7 3.981072-4 4.301261-7 5.011872-4 6.763903-7 6.309573-4 1.058603-6 7.943282-4 1.655030-6 1.000000-3 2.585430-6 1.258925-3 4.029183-6 1.584893-3 6.306685-6 1.995262-3 9.900300-6 2.511886-3 1.554626-5 3.162278-3 2.441669-5 3.981072-3 3.818608-5 5.011872-3 5.972032-5 6.309573-3 9.322299-5 7.943282-3 1.454768-4 1.000000-2 2.270654-4 1.258925-2 3.537676-4 1.584893-2 5.484779-4 1.995262-2 8.451259-4 2.511886-2 1.296801-3 3.162278-2 1.983326-3 3.981072-2 3.023875-3 5.011872-2 4.566390-3 6.309573-2 6.843085-3 7.943282-2 1.015847-2 1.000000-1 1.497979-2 1.258925-1 2.186672-2 1.584893-1 3.161008-2 1.995262-1 4.525862-2 2.511886-1 6.416326-2 3.162278-1 9.037061-2 3.981072-1 1.261211-1 5.011872-1 1.746552-1 6.309573-1 2.400313-1 7.943282-1 3.275502-1 1.000000+0 4.438757-1 1.258925+0 5.975112-1 1.584893+0 7.992744-1 1.995262+0 1.062523+0 2.511886+0 1.404737+0 3.162278+0 1.847468+0 3.981072+0 2.418346+0 5.011872+0 3.152328+0 6.309573+0 4.093737+0 7.943282+0 5.299068+0 1.000000+1 6.839244+0 1.258925+1 8.804329+0 1.584893+1 1.130897+1 1.995262+1 1.449742+1 2.511886+1 1.855286+1 3.162278+1 2.370678+1 3.981072+1 3.025225+1 5.011872+1 3.855943+1 6.309573+1 4.909670+1 7.943282+1 6.245612+1 1.000000+2 7.938588+1 1.258925+2 1.008311+2 1.584893+2 1.279865+2 1.995262+2 1.623594+2 2.511886+2 2.058563+2 3.162278+2 2.608836+2 3.981072+2 3.304777+2 5.011872+2 4.184750+2 6.309573+2 5.297156+2 7.943282+2 6.703105+2 1.000000+3 8.479733+2 1.258925+3 1.072434+3 1.584893+3 1.355974+3 1.995262+3 1.714085+3 2.511886+3 2.166327+3 3.162278+3 2.737347+3 3.981072+3 3.458254+3 5.011872+3 4.368295+3 6.309573+3 5.516939+3 7.943282+3 6.966619+3 1.000000+4 8.796065+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 9.579960+6 5.688529-6 8.243580+6 6.250000-6 6.104614+6 6.250000-6 6.841992+6 6.310000-6 6.651468+6 6.531306-6 6.020033+6 6.606934-6 5.825722+6 6.760830-6 5.463542+6 7.000000-6 4.968444+6 7.244360-6 4.535049+6 7.400000-6 4.292066+6 7.400000-6 4.738826+6 7.440000-6 4.676800+6 7.500000-6 4.588682+6 7.673615-6 4.352785+6 7.700000-6 4.319463+6 7.762471-6 4.243218+6 7.943282-6 4.039278+6 8.035261-6 3.943691+6 8.128305-6 3.853118+6 8.350000-6 3.657072+6 8.420000-6 3.600945+6 8.709636-6 3.393395+6 8.912509-6 3.271454+6 9.015711-6 3.215780+6 9.120108-6 3.163742+6 9.332543-6 3.069701+6 9.549926-6 2.987234+6 9.660509-6 2.950681+6 1.000000-5 2.857045+6 1.011579-5 2.830950+6 1.035142-5 2.787539+6 1.047129-5 2.769680+6 1.071519-5 2.741142+6 1.083927-5 2.730547+6 1.122018-5 2.713489+6 1.174898-5 2.719446+6 1.180000-5 2.721860+6 1.216186-5 2.747777+6 1.244515-5 2.776331+6 1.303167-5 2.856908+6 1.333521-5 2.909426+6 1.412538-5 3.074875+6 1.445440-5 3.153884+6 1.513561-5 3.336227+6 1.640590-5 3.731353+6 1.883649-5 4.648775+6 2.018366-5 5.233404+6 2.070000-5 5.464906+6 2.089296-5 5.551801+6 2.213095-5 6.130324+6 2.264644-5 6.374183+6 2.317395-5 6.624467+6 2.342000-5 6.743113+6 2.342000-5 3.159505+7 2.360000-5 3.062322+7 2.400000-5 2.892848+7 2.426610-5 2.789795+7 2.454709-5 2.695918+7 2.483133-5 2.607582+7 2.540973-5 2.456444+7 2.550000-5 2.434673+7 2.600160-5 2.329460+7 2.630268-5 2.272015+7 2.691535-5 2.173883+7 2.722701-5 2.128778+7 2.754229-5 2.088906+7 2.786121-5 2.051122+7 2.819900-5 2.014226+7 2.851018-5 1.984659+7 2.917427-5 1.927232+7 2.960000-5 1.894455+7 3.019952-5 1.856313+7 3.080000-5 1.822068+7 3.150000-5 1.787181+7 3.198895-5 1.767571+7 3.235937-5 1.753449+7 3.388442-5 1.706105+7 3.392000-5 1.705144+7 3.392000-5 2.679642+7 3.400000-5 2.667275+7 3.427678-5 2.625375+7 3.430000-5 2.621981+7 3.500000-5 2.530791+7 3.510000-5 2.518651+7 3.589219-5 2.434326+7 3.700000-5 2.334678+7 3.758374-5 2.290990+7 3.801894-5 2.260932+7 3.810000-5 2.255238+7 3.981072-5 2.154692+7 4.000000-5 2.145428+7 4.027170-5 2.132665+7 4.073803-5 2.110268+7 4.220000-5 2.048678+7 4.265795-5 2.032196+7 4.400000-5 1.984762+7 4.518559-5 1.949099+7 4.623810-5 1.917985+7 4.786301-5 1.877157+7 4.800000-5 1.874050+7 5.011872-5 1.824141+7 5.080000-5 1.808595+7 5.128614-5 1.797313+7 5.188000-5 1.784282+7 5.248075-5 1.771749+7 5.308844-5 1.758483+7 5.312000-5 1.757759+7 5.312000-5 1.796719+7 5.370318-5 1.782641+7 5.495409-5 1.753743+7 5.500000-5 1.752724+7 5.559043-5 1.738559+7 5.623413-5 1.722740+7 5.650000-5 1.716365+7 5.688529-5 1.707273+7 5.730000-5 1.697723+7 5.821032-5 1.675387+7 6.000000-5 1.631537+7 6.070000-5 1.614091+7 6.237348-5 1.571885+7 6.309573-5 1.553238+7 6.382635-5 1.533770+7 6.456542-5 1.514726+7 6.580000-5 1.482028+7 6.650000-5 1.463151+7 6.683439-5 1.454334+7 6.839116-5 1.412329+7 6.918310-5 1.390825+7 7.079458-5 1.347073+7 7.161434-5 1.324804+7 7.328245-5 1.279081+7 7.413102-5 1.256049+7 7.585776-5 1.209025+7 7.673615-5 1.185357+7 7.800000-5 1.151063+7 7.852356-5 1.137377+7 8.000000-5 1.098649+7 8.150000-5 1.059440+7 8.300000-5 1.021005+7 8.317638-5 1.016402+7 8.413951-5 9.918661+6 8.609938-5 9.430958+6 8.709636-5 9.186363+6 8.810489-5 8.940037+6 8.912509-5 8.700744+6 9.015711-5 8.457717+6 9.150000-5 8.144844+6 9.225714-5 7.975618+6 9.332543-5 7.735292+6 9.500000-5 7.367128+6 9.549926-5 7.258276+6 9.660509-5 7.024933+6 9.800000-5 6.736652+6 9.900000-5 6.532808+6 9.950000-5 6.434115+6 1.011579-4 6.112005+6 1.020000-4 5.950994+6 1.023293-4 5.889583+6 1.040000-4 5.583074+6 1.050000-4 5.403919+6 1.060000-4 5.228009+6 1.071519-4 5.034738+6 1.083927-4 4.831507+6 1.098500-4 4.601080+6 1.098500-4 5.895707+6 1.099600-4 5.926043+6 1.100000-4 5.932473+6 1.102500-4 5.974381+6 1.106000-4 6.033003+6 1.110000-4 6.098368+6 1.110500-4 6.107134+6 1.115000-4 6.178449+6 1.120000-4 6.256052+6 1.124000-4 6.315982+6 1.129500-4 6.394465+6 1.135011-4 6.468362+6 1.141000-4 6.538322+6 1.146000-4 6.591181+6 1.152000-4 6.647118+6 1.159000-4 6.700724+6 1.161449-4 6.714389+6 1.165000-4 6.735862+6 1.170000-4 6.755944+6 1.171000-4 6.759720+6 1.177000-4 6.769460+6 1.185000-4 6.765345+6 1.192600-4 6.743094+6 1.195000-4 6.730409+6 1.195000-4 7.517697+6 1.196000-4 7.533075+6 1.200000-4 7.576446+6 1.202264-4 7.597661+6 1.205000-4 7.622534+6 1.208000-4 7.651125+6 1.213000-4 7.687362+6 1.216186-4 7.711165+6 1.217000-4 7.715688+6 1.220000-4 7.730677+6 1.222000-4 7.742116+6 1.227000-4 7.769378+6 1.233000-4 7.789324+6 1.235000-4 7.795249+6 1.237000-4 7.798642+6 1.240000-4 7.801685+6 1.242000-4 7.803817+6 1.244515-4 7.804249+6 1.245000-4 7.804474+6 1.247000-4 7.802216+6 1.252000-4 7.793022+6 1.258925-4 7.776118+6 1.265000-4 7.746573+6 1.270000-4 7.718513+6 1.273503-4 7.695118+6 1.277000-4 7.667320+6 1.285000-4 7.593160+6 1.292000-4 7.518853+6 1.293500-4 7.501916+6 1.302000-4 7.393027+6 1.303167-4 7.376493+6 1.310000-4 7.279607+6 1.318257-4 7.153233+6 1.320000-4 7.126035+6 1.330000-4 6.958057+6 1.340000-4 6.783635+6 1.348963-4 6.621084+6 1.350000-4 6.602646+6 1.365000-4 6.323058+6 1.380384-4 6.035513+6 1.400000-4 5.680048+6 1.412538-4 5.457372+6 1.430000-4 5.162002+6 1.450000-4 4.837431+6 1.462177-4 4.652471+6 1.465000-4 4.610362+6 1.479108-4 4.404641+6 1.500000-4 4.116705+6 1.513561-4 3.940484+6 1.520000-4 3.860211+6 1.531087-4 3.724997+6 1.540000-4 3.619414+6 1.566751-4 3.320849+6 1.584893-4 3.133922+6 1.603245-4 2.954303+6 1.621810-4 2.784034+6 1.630000-4 2.712912+6 1.640590-4 2.623910+6 1.650000-4 2.546668+6 1.665000-4 2.429536+6 1.670000-4 2.391820+6 1.698244-4 2.191548+6 1.700000-4 2.179723+6 1.705000-4 2.146342+6 1.730000-4 1.988345+6 1.740000-4 1.929164+6 1.760000-4 1.817131+6 1.770000-4 1.764124+6 1.778279-4 1.721632+6 1.790000-4 1.664326+6 1.800000-4 1.617267+6 1.819701-4 1.529340+6 1.820000-4 1.528057+6 1.835000-4 1.465326+6 1.854000-4 1.390528+6 1.862087-4 1.360193+6 1.865000-4 1.349623+6 1.905461-4 1.213406+6 1.930000-4 1.140293+6 1.972423-4 1.029224+6 2.000000-4 9.650480+5 2.018366-4 9.268708+5 2.041738-4 8.820873+5 2.045000-4 8.761089+5 2.065380-4 8.400780+5 2.068000-4 8.357125+5 2.078400-4 8.187469+5 2.089296-4 8.015217+5 2.090000-4 8.004309+5 2.110000-4 7.703945+5 2.118800-4 7.577157+5 2.120000-4 7.560181+5 2.125000-4 7.492594+5 2.137962-4 7.321885+5 2.140000-4 7.295660+5 2.155000-4 7.107371+5 2.162719-4 7.013481+5 2.164200-4 6.995759+5 2.164200-4 1.068156+6 2.168000-4 1.062530+6 2.170000-4 1.059598+6 2.183000-4 1.041212+6 2.187762-4 1.034625+6 2.196000-4 1.023442+6 2.207500-4 1.008207+6 2.213095-4 1.001030+6 2.220000-4 9.923561+5 2.238721-4 9.699835+5 2.240900-4 9.674424+5 2.264644-4 9.405259+5 2.280000-4 9.238834+5 2.290868-4 9.129036+5 2.295000-4 9.088202+5 2.317395-4 8.875073+5 2.330000-4 8.759715+5 2.344229-4 8.636045+5 2.350000-4 8.587191+5 2.371374-4 8.413744+5 2.380000-4 8.347703+5 2.398833-4 8.211138+5 2.400000-4 8.202897+5 2.426610-4 8.022904+5 2.430000-4 8.000757+5 2.454709-4 7.848415+5 2.483133-4 7.686807+5 2.511886-4 7.538659+5 2.520000-4 7.498583+5 2.540973-4 7.400763+5 2.570396-4 7.277062+5 2.580000-4 7.238544+5 2.600160-4 7.162557+5 2.630268-4 7.061160+5 2.635000-4 7.045976+5 2.650000-4 7.000648+5 2.660725-4 6.971620+5 2.691535-4 6.898831+5 2.722701-4 6.835006+5 2.730000-4 6.821260+5 2.754229-4 6.781685+5 2.786121-4 6.738178+5 2.800000-4 6.721302+5 2.813300-4 6.707933+5 2.813300-4 8.308735+5 2.818383-4 8.275413+5 2.827000-4 8.221542+5 2.840000-4 8.157079+5 2.855000-4 8.099722+5 2.868000-4 8.059479+5 2.884032-4 8.019452+5 2.890000-4 8.006447+5 2.917427-4 7.959020+5 2.925000-4 7.946991+5 2.951209-4 7.911216+5 2.985383-4 7.874116+5 3.000000-4 7.862336+5 3.019952-4 7.818491+5 3.030000-4 7.796037+5 3.090295-4 7.672898+5 3.100000-4 7.653820+5 3.126079-4 7.607640+5 3.162278-4 7.546899+5 3.180000-4 7.518563+5 3.200000-4 7.488770+5 3.235937-4 7.439381+5 3.280000-4 7.383798+5 3.311311-4 7.348453+5 3.350000-4 7.304502+5 3.390000-4 7.262002+5 3.427678-4 7.226285+5 3.430000-4 7.224016+5 3.466400-4 7.192222+5 3.466400-4 7.673242+5 3.467369-4 7.672318+5 3.535700-4 7.611476+5 3.548134-4 7.601523+5 3.589219-4 7.566529+5 3.672823-4 7.501295+5 3.715352-4 7.467960+5 3.758374-4 7.436830+5 3.801894-4 7.406890+5 3.890451-4 7.343168+5 3.935501-4 7.312254+5 4.000000-4 7.265776+5 4.027170-4 7.244457+5 4.073803-4 7.207231+5 4.120975-4 7.171839+5 4.168694-4 7.135227+5 4.200000-4 7.110808+5 4.216965-4 7.097095+5 4.265795-4 7.059211+5 4.315191-4 7.020115+5 4.330900-4 7.007447+5 4.330900-4 8.055727+5 4.332000-4 8.038156+5 4.336000-4 8.000615+5 4.341000-4 7.961698+5 4.345000-4 7.935364+5 4.352000-4 7.897296+5 4.358000-4 7.871256+5 4.365158-4 7.846065+5 4.367000-4 7.839695+5 4.375000-4 7.817652+5 4.385000-4 7.795632+5 4.400000-4 7.770071+5 4.415704-4 7.749564+5 4.430000-4 7.733880+5 4.451800-4 7.714576+5 4.460800-4 7.708342+5 4.460800-4 8.397064+5 4.464000-4 8.381937+5 4.466836-4 8.371734+5 4.468000-4 8.367545+5 4.470000-4 8.361442+5 4.477000-4 8.341717+5 4.483000-4 8.328160+5 4.490000-4 8.314826+5 4.500000-4 8.302235+5 4.501000-4 8.300950+5 4.507000-4 8.295258+5 4.513000-4 8.291150+5 4.523000-4 8.286843+5 4.528000-4 8.286272+5 4.540000-4 8.287653+5 4.550000-4 8.291832+5 4.565000-4 8.305375+5 4.570882-4 8.313083+5 4.580000-4 8.325097+5 4.595000-4 8.353793+5 4.607000-4 8.382440+5 4.610000-4 8.390998+5 4.623810-4 8.434273+5 4.632000-4 8.464710+5 4.640000-4 8.496993+5 4.648000-4 8.534191+5 4.658000-4 8.584540+5 4.663000-4 8.613020+5 4.677351-4 8.701698+5 4.692000-4 8.809828+5 4.700000-4 8.874211+5 4.705000-4 8.918021+5 4.720000-4 9.060394+5 4.731513-4 9.185416+5 4.735000-4 9.224670+5 4.750000-4 9.406588+5 4.765000-4 9.611703+5 4.780000-4 9.838602+5 4.786301-4 9.941406+5 4.795000-4 1.008857+6 4.810000-4 1.036354+6 4.820000-4 1.056262+6 4.827000-4 1.070445+6 4.841724-4 1.102514+6 4.850000-4 1.121672+6 4.880000-4 1.196915+6 4.910000-4 1.281642+6 4.930000-4 1.342688+6 4.940000-4 1.375436+6 4.950000-4 1.408507+6 4.954502-4 1.423711+6 4.960000-4 1.442704+6 4.985000-4 1.532064+6 5.000000-4 1.587385+6 5.011872-4 1.633613+6 5.040000-4 1.745403+6 5.069907-4 1.869749+6 5.070000-4 1.870157+6 5.100000-4 1.999538+6 5.128614-4 2.126332+6 5.160000-4 2.268036+6 5.188000-4 2.395265+6 5.190000-4 2.404722+6 5.220000-4 2.541370+6 5.248075-4 2.667085+6 5.253000-4 2.689944+6 5.254100-4 2.694925+6 5.280000-4 2.808399+6 5.290000-4 2.852361+6 5.300000-4 2.894665+6 5.308844-4 2.932737+6 5.310000-4 2.937758+6 5.320000-4 2.980165+6 5.335000-4 3.041883+6 5.350000-4 3.102670+6 5.370318-4 3.182429+6 5.390000-4 3.258383+6 5.400000-4 3.295184+6 5.432503-4 3.412463+6 5.465000-4 3.520169+6 5.480000-4 3.568601+6 5.495409-4 3.615661+6 5.500000-4 3.629802+6 5.520000-4 3.688479+6 5.540000-4 3.743627+6 5.559043-4 3.793723+6 5.580000-4 3.849685+6 5.635000-4 3.976681+6 5.650000-4 4.006131+6 5.688529-4 4.082711+6 5.690000-4 4.085664+6 5.740000-4 4.168468+6 5.754399-4 4.190462+6 5.760000-4 4.199011+6 5.800000-4 4.252267+6 5.830000-4 4.288309+6 5.850000-4 4.308991+6 5.900000-4 4.355245+6 5.980000-4 4.405947+6 6.000000-4 4.416078+6 6.025596-4 4.425336+6 6.058100-4 4.437062+6 6.095369-4 4.445978+6 6.100000-4 4.447072+6 6.165950-4 4.454518+6 6.237348-4 4.455111+6 6.280000-4 4.450549+6 6.309573-4 4.445072+6 6.382635-4 4.431685+6 6.390000-4 4.429558+6 6.456542-4 4.405945+6 6.531306-4 4.379697+6 6.550000-4 4.371840+6 6.606934-4 4.343610+6 6.700000-4 4.298202+6 6.760830-4 4.265489+6 6.839116-4 4.218505+6 6.850000-4 4.212035+6 6.918310-4 4.171810+6 7.000000-4 4.120758+6 7.079458-4 4.068260+6 7.161434-4 4.015214+6 7.244360-4 3.959684+6 7.328245-4 3.900972+6 7.413102-4 3.843053+6 7.585776-4 3.724533+6 7.673615-4 3.663239+6 7.762471-4 3.602851+6 7.852356-4 3.540943+6 7.941700-4 3.481070+6 7.941700-4 3.829387+6 7.943282-4 3.828395+6 8.035261-4 3.768572+6 8.128305-4 3.709882+6 8.200000-4 3.664195+6 8.283800-4 3.612083+6 8.317638-4 3.591050+6 8.413951-4 3.532454+6 8.425500-4 3.525286+6 8.425500-4 3.712559+6 8.500000-4 3.669823+6 8.511380-4 3.663276+6 8.570000-4 3.629959+6 8.609938-4 3.607350+6 8.650000-4 3.584184+6 8.709636-4 3.549345+6 8.760000-4 3.520408+6 8.810489-4 3.491497+6 8.850000-4 3.468429+6 8.912509-4 3.432093+6 9.100000-4 3.327280+6 9.120108-4 3.316311+6 9.225714-4 3.257892+6 9.332543-4 3.200323+6 9.350000-4 3.190799+6 9.549926-4 3.082780+6 9.660509-4 3.025258+6 9.700000-4 3.005147+6 9.772372-4 2.968092+6 9.885531-4 2.911157+6 1.000000-3 2.855419+6 1.023293-3 2.744416+6 1.030000-3 2.713670+6 1.035142-3 2.690271+6 1.047129-3 2.635904+6 1.059254-3 2.582684+6 1.071519-3 2.529392+6 1.090000-3 2.451923+6 1.096478-3 2.425472+6 1.106000-3 2.386798+6 1.106000-3 2.539472+6 1.109175-3 2.526238+6 1.114000-3 2.506345+6 1.130000-3 2.442234+6 1.135011-3 2.422609+6 1.148154-3 2.371809+6 1.161449-3 2.322184+6 1.174898-3 2.273278+6 1.190000-3 2.220391+6 1.202264-3 2.178186+6 1.230269-3 2.086644+6 1.244515-3 2.041375+6 1.258925-3 1.997117+6 1.273503-3 1.953663+6 1.288250-3 1.910647+6 1.303167-3 1.868709+6 1.318257-3 1.827440+6 1.333521-3 1.786514+6 1.348963-3 1.746371+6 1.364583-3 1.707220+6 1.370500-3 1.692569+6 1.370500-3 1.713802+6 1.380384-3 1.689765+6 1.396368-3 1.651843+6 1.420000-3 1.597783+6 1.445440-3 1.542426+6 1.450000-3 1.532708+6 1.462177-3 1.507240+6 1.479108-3 1.472951+6 1.500000-3 1.432295+6 1.513561-3 1.406421+6 1.533700-3 1.369166+6 1.533700-3 1.393859+6 1.550000-3 1.364596+6 1.570000-3 1.330038+6 1.584893-3 1.304663+6 1.603245-3 1.274434+6 1.610000-3 1.263562+6 1.621810-3 1.244821+6 1.640590-3 1.215654+6 1.659587-3 1.187216+6 1.670000-3 1.172063+6 1.698244-3 1.132455+6 1.717908-3 1.105980+6 1.737801-3 1.079936+6 1.740000-3 1.077093+6 1.757924-3 1.054373+6 1.778279-3 1.029232+6 1.819701-3 9.809069+5 1.840772-3 9.576736+5 1.850000-3 9.477661+5 1.862087-3 9.350166+5 1.883649-3 9.125736+5 1.905461-3 8.905060+5 1.927525-3 8.690150+5 1.972423-3 8.274677+5 2.000000-3 8.033192+5 2.018366-3 7.877274+5 2.041738-3 7.684457+5 2.070000-3 7.460979+5 2.089296-3 7.312961+5 2.113489-3 7.132738+5 2.150000-3 6.872324+5 2.187762-3 6.618329+5 2.213095-3 6.456017+5 2.220000-3 6.412424+5 2.238721-3 6.296387+5 2.264644-3 6.140773+5 2.290868-3 5.988339+5 2.300000-3 5.936635+5 2.317395-3 5.839998+5 2.371374-3 5.552288+5 2.426610-3 5.277796+5 2.454709-3 5.145883+5 2.500000-3 4.943420+5 2.511886-3 4.891988+5 2.540973-3 4.768798+5 2.570396-3 4.647995+5 2.600160-3 4.529695+5 2.630268-3 4.414697+5 2.660725-3 4.302737+5 2.691535-3 4.193574+5 2.722701-3 4.087336+5 2.754229-3 3.983466+5 2.786121-3 3.881958+5 2.800000-3 3.838894+5 2.818383-3 3.782962+5 2.884032-3 3.590818+5 2.951209-3 3.409167+5 2.985383-3 3.321908+5 3.000000-3 3.285593+5 3.019952-3 3.236952+5 3.054921-3 3.153807+5 3.090295-3 3.071934+5 3.126079-3 2.992350+5 3.198895-3 2.839301+5 3.235937-3 2.765834+5 3.273407-3 2.694084+5 3.311311-3 2.623936+5 3.388442-3 2.489369+5 3.400000-3 2.469960+5 3.427678-3 2.424216+5 3.467369-3 2.360790+5 3.507519-3 2.298865+5 3.548134-3 2.238623+5 3.589219-3 2.179914+5 3.630781-3 2.122790+5 3.650000-3 2.097137+5 3.672823-3 2.067115+5 3.715352-3 2.012819+5 3.758374-3 1.959654+5 3.776900-3 1.937330+5 3.776900-3 4.644130+5 3.815000-3 4.515661+5 3.845918-3 4.427188+5 3.890451-3 4.303953+5 3.900000-3 4.278173+5 3.935501-3 4.184161+5 3.977800-3 4.066656+5 3.977800-3 5.762114+5 3.981072-3 5.749890+5 4.000000-3 5.679866+5 4.005000-3 5.661570+5 4.073803-3 5.426034+5 4.120975-3 5.272320+5 4.168694-3 5.122749+5 4.216965-3 4.972244+5 4.265795-3 4.826180+5 4.300000-3 4.727372+5 4.315191-3 4.684783+5 4.400000-3 4.456700+5 4.415704-3 4.416137+5 4.500000-3 4.206999+5 4.518559-3 4.162104+5 4.549900-3 4.087617+5 4.549900-3 4.768487+5 4.581000-3 4.689358+5 4.677351-3 4.455691+5 4.731513-3 4.330440+5 4.740000-3 4.311268+5 4.800000-3 4.178389+5 4.841724-3 4.089272+5 4.897788-3 3.973788+5 5.011872-3 3.752843+5 5.188000-3 3.437465+5 5.248075-3 3.338386+5 5.370318-3 3.148936+5 5.432503-3 3.058292+5 5.495409-3 2.970289+5 5.548500-3 2.898814+5 5.548500-3 3.077416+5 5.559043-3 3.063179+5 5.623413-3 2.978165+5 5.688529-3 2.895234+5 5.800000-3 2.760146+5 5.821032-3 2.735693+5 5.888437-3 2.658736+5 5.900000-3 2.645840+5 5.902100-3 2.643502+5 5.902100-3 2.754723+5 5.956621-3 2.693839+5 6.000000-3 2.646752+5 6.025596-3 2.619538+5 6.095369-3 2.547384+5 6.165950-3 2.477241+5 6.309573-3 2.341927+5 6.382635-3 2.276956+5 6.456542-3 2.213886+5 6.531306-3 2.152267+5 6.606934-3 2.092195+5 6.650000-3 2.059086+5 6.683439-3 2.033829+5 6.800000-3 1.949168+5 6.839116-3 1.921877+5 6.998420-3 1.816302+5 7.000000-3 1.815294+5 7.079458-3 1.765604+5 7.161434-3 1.716130+5 7.244360-3 1.668118+5 7.300000-3 1.637008+5 7.328245-3 1.621436+5 7.413102-3 1.575920+5 7.585776-3 1.488695+5 7.673615-3 1.446698+5 7.762471-3 1.405868+5 7.852356-3 1.366258+5 7.943282-3 1.327527+5 8.000000-3 1.304178+5 8.035261-3 1.289957+5 8.128305-3 1.253179+5 8.222426-3 1.217285+5 8.317638-3 1.182477+5 8.413951-3 1.148689+5 8.609938-3 1.084148+5 8.709636-3 1.053327+5 8.810489-3 1.023403+5 9.000000-3 9.702864+4 9.015711-3 9.660644+4 9.120108-3 9.386673+4 9.225714-3 9.120918+4 9.300000-3 8.940411+4 9.440609-3 8.612392+4 9.549926-3 8.369402+4 9.660509-3 8.130091+4 9.885531-3 7.669277+4 1.000000-2 7.448173+4 1.011579-2 7.233499+4 1.023293-2 7.025143+4 1.035142-2 6.823038+4 1.047129-2 6.626698+4 1.059254-2 6.435256+4 1.071519-2 6.249064+4 1.109175-2 5.723989+4 1.122018-2 5.559189+4 1.135011-2 5.399406+4 1.148154-2 5.244330+4 1.150000-2 5.223066+4 1.161449-2 5.093165+4 1.174898-2 4.946469+4 1.188502-2 4.804154+4 1.190000-2 4.788841+4 1.202264-2 4.665968+4 1.216186-2 4.531967+4 1.230269-2 4.400410+4 1.244515-2 4.272403+4 1.258925-2 4.148326+4 1.273503-2 4.027561+4 1.288250-2 3.910075+4 1.318257-2 3.685768+4 1.333521-2 3.578542+4 1.355400-2 3.431811+4 1.364583-2 3.372809+4 1.396368-2 3.179485+4 1.412538-2 3.087223+4 1.428894-2 2.997587+4 1.445440-2 2.910346+4 1.450000-2 2.886937+4 1.462177-2 2.825465+4 1.479108-2 2.743076+4 1.500000-2 2.646097+4 1.513561-2 2.585544+4 1.531087-2 2.510045+4 1.566751-2 2.364962+4 1.580000-2 2.314121+4 1.584893-2 2.295674+4 1.603245-2 2.228285+4 1.621810-2 2.162971+4 1.640590-2 2.099514+4 1.650000-2 2.068722+4 1.659587-2 2.037923+4 1.678804-2 1.978124+4 1.698244-2 1.920158+4 1.717908-2 1.863835+4 1.737801-2 1.809169+4 1.757924-2 1.756122+4 1.778279-2 1.704475+4 1.798871-2 1.654383+4 1.807100-2 1.634950+4 1.807100-2 3.854070+4 1.819701-2 3.789519+4 1.835000-2 3.713125+4 1.840772-2 3.682523+4 1.883649-2 3.465442+4 1.905461-2 3.361838+4 1.927525-2 3.259666+4 1.949845-2 3.160491+4 1.950000-2 3.159817+4 1.972423-2 3.064144+4 1.995262-2 2.970745+4 2.000000-2 2.951867+4 2.018366-2 2.880233+4 2.041738-2 2.792497+4 2.065380-2 2.707384+4 2.089296-2 2.624903+4 2.113489-2 2.543880+4 2.137962-2 2.465325+4 2.162719-2 2.389225+4 2.187762-2 2.315441+4 2.237100-2 2.179045+4 2.237100-2 3.095317+4 2.238721-2 3.089566+4 2.264644-2 2.999556+4 2.290000-2 2.914839+4 2.290868-2 2.911931+4 2.300000-2 2.881582+4 2.312200-2 2.841665+4 2.312200-2 3.280953+4 2.317395-2 3.261894+4 2.334000-2 3.202005+4 2.344229-2 3.167064+4 2.371374-2 3.076944+4 2.398833-2 2.989465+4 2.400000-2 2.985826+4 2.410000-2 2.954900+4 2.426610-2 2.904948+4 2.450000-2 2.836634+4 2.454709-2 2.822952+4 2.500000-2 2.696027+4 2.511886-2 2.664050+4 2.530000-2 2.616344+4 2.540973-2 2.588320+4 2.550000-2 2.565556+4 2.580000-2 2.491129+4 2.600160-2 2.442442+4 2.630268-2 2.372219+4 2.660725-2 2.303986+4 2.691535-2 2.237021+4 2.722701-2 2.172058+4 2.754229-2 2.109030+4 2.786121-2 2.047878+4 2.818383-2 1.988548+4 2.851018-2 1.930988+4 2.884032-2 1.874836+4 2.917427-2 1.820365+4 2.951209-2 1.767489+4 2.985383-2 1.716230+4 3.000000-2 1.694949+4 3.019952-2 1.666467+4 3.090295-2 1.571230+4 3.126079-2 1.525736+4 3.162278-2 1.481597+4 3.223700-2 1.410157+4 3.235937-2 1.396411+4 3.311311-2 1.315785+4 3.349654-2 1.277279+4 3.388442-2 1.239859+4 3.427678-2 1.203525+4 3.467369-2 1.168031+4 3.500000-2 1.139939+4 3.507519-2 1.133573+4 3.548134-2 1.100038+4 3.589219-2 1.067523+4 3.630781-2 1.035965+4 3.758374-2 9.464012+3 3.845918-2 8.911288+3 3.890451-2 8.647449+3 4.027170-2 7.901018+3 4.120975-2 7.440303+3 4.168694-2 7.220328+3 4.216965-2 7.007011+3 4.265795-2 6.800131+3 4.315191-2 6.597988+3 4.365158-2 6.400873+3 4.415704-2 6.209803+3 4.466836-2 6.024589+3 4.518559-2 5.844853+3 4.570882-2 5.669207+3 4.677351-2 5.333912+3 4.786301-2 5.018908+3 4.841724-2 4.868614+3 4.897788-2 4.722887+3 5.000000-2 4.472550+3 5.011872-2 4.444688+3 5.069907-2 4.311517+3 5.188000-2 4.057029+3 5.248075-2 3.935482+3 5.308844-2 3.817625+3 5.370318-2 3.702666+3 5.623413-2 3.275443+3 5.688529-2 3.176747+3 5.754399-2 3.081091+3 5.821032-2 2.988358+3 6.000000-2 2.756345+3 6.025596-2 2.725209+3 6.095369-2 2.642717+3 6.165950-2 2.562767+3 6.237348-2 2.485269+3 6.309573-2 2.410078+3 6.456542-2 2.266579+3 6.606934-2 2.131799+3 6.683439-2 2.067505+3 6.839116-2 1.943986+3 6.918310-2 1.885082+3 7.000000-2 1.826888+3 7.161434-2 1.718276+3 7.244360-2 1.665915+3 7.328245-2 1.615181+3 7.413102-2 1.566011+3 7.498942-2 1.518354+3 7.500000-2 1.517779+3 7.585776-2 1.472137+3 7.943282-2 1.301160+3 8.128305-2 1.223406+3 8.222426-2 1.186323+3 8.317638-2 1.150376+3 8.413951-2 1.115312+3 8.511380-2 1.081248+3 8.609938-2 1.048173+3 8.709636-2 1.016128+3 8.810489-2 9.850592+2 8.912509-2 9.549557+2 9.015711-2 9.257834+2 9.120108-2 8.975134+2 9.225714-2 8.701210+2 9.660509-2 7.687333+2 9.772372-2 7.452149+2 1.011580-1 6.789529+2 1.035142-1 6.380893+2 1.071519-1 5.814272+2 1.083927-1 5.636983+2 1.096478-1 5.465194+2 1.109175-1 5.298647+2 1.122019-1 5.137243+2 1.135011-1 4.980844+2 1.161449-1 4.681010+2 1.174898-1 4.537977+2 1.188502-1 4.399388+2 1.223500-1 4.068772+2 1.223500-1 1.690304+3 1.230269-1 1.667925+3 1.244515-1 1.622184+3 1.250000-1 1.605048+3 1.258925-1 1.573464+3 1.260000-1 1.569717+3 1.273503-1 1.530770+3 1.283000-1 1.504196+3 1.288250-1 1.488160+3 1.318257-1 1.400895+3 1.333521-1 1.361678+3 1.348963-1 1.323568+3 1.364583-1 1.286534+3 1.380384-1 1.250500+3 1.396368-1 1.214095+3 1.412538-1 1.178751+3 1.428894-1 1.144444+3 1.462177-1 1.078805+3 1.479108-1 1.047417+3 1.500000-1 1.010414+3 1.513561-1 9.873642+2 1.531088-1 9.586459+2 1.548817-1 9.307676+2 1.566751-1 9.037036+2 1.603245-1 8.521471+2 1.621810-1 8.274831+2 1.659587-1 7.802835+2 1.678804-1 7.577073+2 1.701200-1 7.325308+2 1.717908-1 7.145030+2 1.737801-1 6.938368+2 1.798871-1 6.354227+2 1.800000-1 6.344085+2 1.819701-1 6.170654+2 1.883649-1 5.651243+2 1.905461-1 5.488039+2 1.927525-1 5.329583+2 1.949845-1 5.175713+2 1.972423-1 5.026304+2 2.000000-1 4.851868+2 2.018366-1 4.740354+2 2.065380-1 4.470727+2 2.113489-1 4.216514+2 2.187762-1 3.862285+2 2.238721-1 3.643044+2 2.264644-1 3.538150+2 2.317395-1 3.337355+2 2.344229-1 3.241285+2 2.371374-1 3.147998+2 2.398833-1 3.057404+2 2.426610-1 2.969424+2 2.454709-1 2.883986+2 2.500000-1 2.753415+2 2.511886-1 2.720761+2 2.540973-1 2.643107+2 2.570396-1 2.567676+2 2.600160-1 2.494420+2 2.630268-1 2.423277+2 2.660725-1 2.354169+2 2.691535-1 2.287092+2 2.722701-1 2.221932+2 2.754229-1 2.158631+2 2.786121-1 2.097149+2 2.818383-1 2.037421+2 2.851018-1 1.979399+2 2.884032-1 1.923033+2 2.917427-1 1.868314+2 2.951209-1 1.815780+2 2.985383-1 1.764726+2 3.000000-1 1.743540+2 3.019952-1 1.715196+2 3.054921-1 1.667059+2 3.090295-1 1.620276+2 3.126079-1 1.574818+2 3.162278-1 1.530677+2 3.198895-1 1.487780+2 3.235937-1 1.446108+2 3.273407-1 1.405608+2 3.311311-1 1.366246+2 3.349654-1 1.327989+2 3.388442-1 1.290826+2 3.427678-1 1.254706+2 3.467369-1 1.220110+2 3.507519-1 1.186470+2 3.630781-1 1.091026+2 3.672823-1 1.061034+2 3.715352-1 1.031874+2 3.758374-1 1.003516+2 3.801894-1 9.759400+1 3.845918-1 9.491399+1 3.890451-1 9.230898+1 3.935501-1 8.977552+1 3.981072-1 8.731183+1 4.027170-1 8.496384+1 4.120975-1 8.045586+1 4.168694-1 7.829463+1 4.216965-1 7.619239+1 4.265795-1 7.414683+1 4.315191-1 7.215745+1 4.365158-1 7.022513+1 4.466836-1 6.651461+1 4.518559-1 6.473366+1 4.570882-1 6.300044+1 4.623810-1 6.134515+1 4.677351-1 5.973350+1 4.731513-1 5.816609+1 4.786301-1 5.663991+1 4.841724-1 5.515520+1 4.897788-1 5.370958+1 4.954502-1 5.230188+1 5.011872-1 5.093116+1 5.069907-1 4.959954+1 5.128614-1 4.830278+1 5.188000-1 4.704000+1 5.248075-1 4.581045+1 5.308844-1 4.463683+1 5.370318-1 4.349527+1 5.432503-1 4.238301+1 5.495409-1 4.129949+1 5.559043-1 4.024378+1 5.623413-1 3.921511+1 5.688529-1 3.821278+1 5.754399-1 3.723610+1 5.821032-1 3.628441+1 5.888437-1 3.535926+1 5.956621-1 3.445826+1 6.000000-1 3.390285+1 6.025596-1 3.358871+1 6.095369-1 3.275369+1 6.165950-1 3.194022+1 6.219700-1 3.134041+1 6.237348-1 3.114706+1 6.309573-1 3.037362+1 6.382635-1 2.961942+1 6.456542-1 2.888398+1 6.531306-1 2.816681+1 6.606935-1 2.746759+1 6.683439-1 2.678614+1 6.760830-1 2.612237+1 6.839117-1 2.547658+1 6.918310-1 2.485947+1 6.998420-1 2.425738+1 7.079458-1 2.366989+1 7.161434-1 2.309706+1 7.244360-1 2.253814+1 7.328245-1 2.199284+1 7.413102-1 2.146106+1 7.498942-1 2.094215+1 7.673615-1 1.994286+1 7.762471-1 1.946138+1 7.852356-1 1.899260+1 7.943282-1 1.854420+1 8.035261-1 1.810641+1 8.128305-1 1.767897+1 8.222427-1 1.726187+1 8.317638-1 1.685492+1 8.413951-1 1.645759+1 8.511380-1 1.606964+1 8.609938-1 1.569091+1 8.709636-1 1.532164+1 8.810489-1 1.496118+1 8.912509-1 1.460925+1 9.015711-1 1.426655+1 9.120108-1 1.393190+1 9.225714-1 1.361161+1 9.332543-1 1.329870+1 9.440609-1 1.299354+1 9.549926-1 1.269596+1 9.660509-1 1.240523+1 9.772372-1 1.212120+1 9.885531-1 1.184375+1 1.000000+0 1.157291+1 1.011579+0 1.130890+1 1.023293+0 1.105602+1 1.035142+0 1.080925+1 1.047129+0 1.056797+1 1.059254+0 1.033237+1 1.071519+0 1.010203+1 1.083927+0 9.876926+0 1.096478+0 9.656866+0 1.109175+0 9.441698+0 1.122018+0 9.231349+0 1.135011+0 9.025827+0 1.148154+0 8.825194+0 1.161449+0 8.629098+0 1.174898+0 8.437373+0 1.188502+0 8.249920+0 1.202264+0 8.066625+0 1.216186+0 7.887395+0 1.230269+0 7.716923+0 1.250000+0 7.487429+0 1.258925+0 7.387130+0 1.273503+0 7.227864+0 1.288250+0 7.072103+0 1.303167+0 6.919709+0 1.318257+0 6.770597+0 1.333521+0 6.624705+0 1.348963+0 6.482032+0 1.364583+0 6.342461+0 1.396368+0 6.079577+0 1.412538+0 5.952247+0 1.428894+0 5.827752+0 1.445440+0 5.705988+0 1.500000+0 5.331157+0 1.513561+0 5.243888+0 1.531087+0 5.134334+0 1.548817+0 5.027417+0 1.584893+0 4.825773+0 1.603245+0 4.728025+0 1.621810+0 4.632325+0 1.640590+0 4.538567+0 1.659587+0 4.446808+0 1.678804+0 4.356962+0 1.717908+0 4.182695+0 1.737801+0 4.098202+0 1.757924+0 4.015677+0 1.778279+0 3.936893+0 1.798871+0 3.859653+0 1.819701+0 3.783946+0 1.840772+0 3.709780+0 1.862087+0 3.637072+0 1.883649+0 3.565788+0 1.905461+0 3.496002+0 1.927525+0 3.427629+0 1.949845+0 3.360591+0 1.972423+0 3.294876+0 2.000000+0 3.217575+0 2.018366+0 3.168951+0 2.044000+0 3.103027+0 2.065380+0 3.049717+0 2.089296+0 2.991801+0 2.113489+0 2.935028+0 2.137962+0 2.879335+0 2.162719+0 2.824780+0 2.213095+0 2.718822+0 2.238721+0 2.667350+0 2.264644+0 2.616853+0 2.290868+0 2.567473+0 2.317395+0 2.520274+0 2.344229+0 2.473945+0 2.371374+0 2.428477+0 2.398833+0 2.383845+0 2.426610+0 2.340067+0 2.454709+0 2.297095+0 2.483133+0 2.254977+0 2.540973+0 2.173094+0 2.570396+0 2.133281+0 2.600160+0 2.094197+0 2.630268+0 2.055955+0 2.660725+0 2.019379+0 2.691535+0 1.983454+0 2.722701+0 1.948177+0 2.754229+0 1.913527+0 2.786121+0 1.879520+0 2.818383+0 1.846118+0 2.851018+0 1.813359+0 2.917427+0 1.749615+0 2.951209+0 1.718594+0 3.000000+0 1.675358+0 3.019952+0 1.658247+0 3.054921+0 1.629722+0 3.090295+0 1.601688+0 3.126079+0 1.574143+0 3.162278+0 1.547071+0 3.198895+0 1.520485+0 3.273407+0 1.468679+0 3.388442+0 1.394414+0 3.427678+0 1.370508+0 3.467369+0 1.347011+0 3.507519+0 1.323992+0 3.548134+0 1.301965+0 3.589219+0 1.280306+0 3.630781+0 1.259011+0 3.672823+0 1.238071+0 3.715352+0 1.217495+0 3.801894+0 1.177365+0 3.935501+0 1.119753+0 4.000000+0 1.093625+0 4.073803+0 1.064968+0 4.120975+0 1.047365+0 4.168694+0 1.030497+0 4.216965+0 1.013902+0 4.265795+0 9.975768-1 4.315191+0 9.815148-1 4.365158+0 9.657236-1 4.466836+0 9.349004-1 4.623810+0 8.905931-1 4.677351+0 8.762979-1 4.786301+0 8.483920-1 4.841724+0 8.348181-1 4.897788+0 8.218096-1 4.954502+0 8.090042-1 5.011872+0 7.964013-1 5.069907+0 7.839947-1 5.128614+0 7.717907-1 5.248075+0 7.479512-1 5.432503+0 7.136374-1 5.495409+0 7.025544-1 5.623413+0 6.809025-1 5.688529+0 6.703613-1 5.821032+0 6.502793-1 5.888437+0 6.404653-1 5.956621+0 6.308016-1 6.025596+0 6.212837-1 6.095369+0 6.119160-1 6.237348+0 5.936033-1 6.456542+0 5.672085-1 6.531306+0 5.586748-1 6.606934+0 5.502697-1 6.760830+0 5.338368-1 6.839116+0 5.258312-1 7.000000+0 5.104344-1 7.079458+0 5.031255-1 7.161434+0 4.957783-1 7.244360+0 4.885436-1 7.413102+0 4.743904-1 7.762471+0 4.473560-1 7.852356+0 4.408426-1 7.943282+0 4.344241-1 8.128305+0 4.218660-1 8.222427+0 4.157422-1 8.413951+0 4.040468-1 8.511380+0 3.983231-1 8.609938+0 3.926818-1 8.709636+0 3.871205-1 8.810489+0 3.816421-1 9.015711+0 3.709173-1 9.332543+0 3.554245-1 9.440609+0 3.504061-1 9.549926+0 3.454585-1 9.772372+0 3.357720-1 9.885531+0 3.310439-1 1.023293+1 3.175428-1 1.047129+1 3.088493-1 1.059254+1 3.045932-1 1.071519+1 3.003959-1 1.083927+1 2.962562-1 1.100000+1 2.910502-1 1.122018+1 2.841854-1 1.135011+1 2.802754-1 1.161449+1 2.726251-1 1.174898+1 2.688792-1 1.202264+1 2.615414-1 1.244515+1 2.511865-1 1.273503+1 2.445123-1 1.288250+1 2.412424-1 1.300000+1 2.386947-1 1.318257+1 2.348337-1 1.333521+1 2.316936-1 1.364583+1 2.255422-1 1.400000+1 2.188890-1 1.412538+1 2.166220-1 1.428894+1 2.137294-1 1.479108+1 2.052888-1 1.531087+1 1.971823-1 1.603245+1 1.871035-1 1.640590+1 1.822589-1 1.659587+1 1.798844-1 1.678804+1 1.775409-1 1.698244+1 1.752279-1 1.717908+1 1.729451-1 1.737801+1 1.706935-1 1.757924+1 1.684714-1 1.778279+1 1.662800-1 1.819701+1 1.619862-1 1.905461+1 1.537295-1 2.089296+1 1.387647-1 2.187762+1 1.318378-1 2.213095+1 1.301611-1 2.238721+1 1.285058-1 2.264644+1 1.268715-1 2.290868+1 1.252579-1 2.317395+1 1.236649-1 2.344229+1 1.220931-1 2.371374+1 1.205423-1 2.400000+1 1.189482-1 2.483133+1 1.145388-1 2.851018+1 9.853958-2 3.000000+1 9.322236-2 3.019952+1 9.255196-2 3.054921+1 9.139902-2 3.090295+1 9.026104-2 3.126079+1 8.913875-2 3.198895+1 8.693607-2 4.073803+1 6.717003-2 4.265795+1 6.394958-2 4.315191+1 6.316900-2 4.365158+1 6.239796-2 4.415704+1 6.163694-2 4.466836+1 6.088592-2 4.570882+1 5.941136-2 6.025596+1 4.449821-2 6.382635+1 4.189780-2 6.531306+1 4.090081-2 6.606934+1 4.041125-2 6.683439+1 3.992786-2 6.839116+1 3.897907-2 6.998420+1 3.805289-2 9.885531+1 2.666462-2 1.035142+2 2.542974-2 1.047129+2 2.513007-2 1.059254+2 2.483395-2 1.071519+2 2.454134-2 1.083927+2 2.425215-2 1.096478+2 2.396667-2 1.109175+2 2.368454-2 1.135011+2 2.313030-2 1.161449+2 2.258906-2 1.174898+2 2.232355-2 1.927525+2 1.349621-2 2.065380+2 1.258104-2 2.089296+2 1.243467-2 2.113489+2 1.229000-2 2.137962+2 1.214702-2 2.162719+2 1.200570-2 2.187762+2 1.186612-2 2.213095+2 1.172817-2 2.264644+2 1.145708-2 2.317395+2 1.119226-2 2.344229+2 1.106227-2 3.845918+2 6.715913-3 4.120975+2 6.264155-3 4.168694+2 6.191875-3 4.216965+2 6.120431-3 4.265795+2 6.049810-3 4.315191+2 5.980004-3 4.365158+2 5.911032-3 4.415704+2 5.842855-3 4.518559+2 5.708859-3 4.623810+2 5.577939-3 4.677351+2 5.513641-3 1.531087+3 1.678193-3 1.640590+3 1.565845-3 1.659587+3 1.547866-3 1.678804+3 1.530094-3 1.698244+3 1.512525-3 1.717908+3 1.495159-3 1.737801+3 1.477995-3 1.757924+3 1.461029-3 1.798871+3 1.427680-3 1.840772+3 1.395092-3 1.862087+3 1.379082-3 1.000000+5 2.563991-5 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 5.420000-6 6.250000-6 5.420000-6 6.250000-6 5.509451-6 7.400000-6 5.557109-6 7.400000-6 5.730851-6 8.709636-6 5.867575-6 1.122018-5 6.183684-6 1.244515-5 6.312100-6 1.333521-5 6.386316-6 1.445440-5 6.459030-6 1.640590-5 6.544231-6 1.883649-5 6.604706-6 2.342000-5 6.659650-6 2.342000-5 1.984295-5 2.630268-5 1.743000-5 2.819900-5 1.594433-5 2.960000-5 1.494031-5 3.080000-5 1.415604-5 3.198895-5 1.344364-5 3.392000-5 1.243202-5 3.392000-5 2.024649-5 3.510000-5 1.925490-5 3.589219-5 1.864418-5 3.758374-5 1.749512-5 3.810000-5 1.716749-5 4.027170-5 1.594999-5 4.265795-5 1.480743-5 4.400000-5 1.424625-5 4.518559-5 1.378089-5 4.623810-5 1.340395-5 4.800000-5 1.282034-5 5.080000-5 1.203091-5 5.312000-5 1.147988-5 5.312000-5 1.238280-5 5.559043-5 1.181031-5 5.821032-5 1.129228-5 6.070000-5 1.088139-5 6.309573-5 1.055253-5 6.580000-5 1.024905-5 6.918310-5 9.949077-6 7.161434-5 9.782570-6 7.413102-5 9.642041-6 7.852356-5 9.460779-6 8.317638-5 9.337381-6 8.810489-5 9.270400-6 9.332543-5 9.255006-6 9.950000-5 9.308753-6 1.050000-4 9.416921-6 1.098500-4 9.558971-6 1.098500-4 3.158168-5 1.099600-4 3.226961-5 1.106000-4 3.530513-5 1.110500-4 3.734028-5 1.115000-4 3.929196-5 1.120000-4 4.136495-5 1.124000-4 4.294522-5 1.129500-4 4.500397-5 1.135011-4 4.694154-5 1.141000-4 4.893739-5 1.146000-4 5.049438-5 1.152000-4 5.223414-5 1.161449-4 5.467934-5 1.171000-4 5.685665-5 1.177000-4 5.807800-5 1.185000-4 5.952612-5 1.195000-4 6.104958-5 1.195000-4 6.717078-5 1.208000-4 7.014929-5 1.222000-4 7.294641-5 1.237000-4 7.554574-5 1.252000-4 7.776425-5 1.270000-4 7.995663-5 1.293500-4 8.214611-5 1.320000-4 8.384161-5 1.350000-4 8.506339-5 1.400000-4 8.631414-5 1.650000-4 9.080540-5 1.820000-4 9.328704-5 1.930000-4 9.427542-5 2.000000-4 9.448499-5 2.090000-4 9.384990-5 2.164200-4 9.283834-5 2.164200-4 1.060962-4 2.317395-4 1.051668-4 2.483133-4 1.033992-4 2.600160-4 1.015676-4 2.730000-4 9.892237-5 2.813300-4 9.684767-5 2.813300-4 1.137949-4 2.840000-4 1.121104-4 2.890000-4 1.098453-4 3.000000-4 1.053691-4 3.200000-4 1.008849-4 3.390000-4 9.730109-5 3.466400-4 9.605259-5 3.466400-4 1.029299-4 3.672823-4 1.000872-4 3.890451-4 9.772832-5 4.073803-4 9.623807-5 4.330900-4 9.489447-5 4.330900-4 1.064961-4 4.341000-4 1.056359-4 4.358000-4 1.048292-4 4.385000-4 1.042094-4 4.451800-4 1.037668-4 4.460800-4 1.037582-4 4.460800-4 1.104872-4 4.490000-4 1.099273-4 4.540000-4 1.100049-4 4.580000-4 1.106009-4 4.623810-4 1.118545-4 4.663000-4 1.136349-4 4.705000-4 1.163357-4 4.750000-4 1.201644-4 4.795000-4 1.248018-4 4.940000-4 1.414551-4 5.000000-4 1.474738-4 5.040000-4 1.510101-4 5.100000-4 1.555163-4 5.160000-4 1.591721-4 5.248075-4 1.632428-4 5.350000-4 1.665310-4 5.480000-4 1.692081-4 5.650000-4 1.712641-4 5.900000-4 1.728268-4 6.390000-4 1.739146-4 7.585776-4 1.741886-4 7.941700-4 1.741056-4 7.941700-4 1.864273-4 8.425500-4 1.878963-4 8.425500-4 1.942155-4 9.350000-4 1.980447-4 1.106000-3 2.032771-4 1.106000-3 2.148151-4 1.370500-3 2.232371-4 1.370500-3 2.261502-4 1.533700-3 2.313137-4 1.533700-3 2.359444-4 1.883649-3 2.464336-4 2.264644-3 2.558009-4 2.722701-3 2.650858-4 3.311311-3 2.746176-4 3.776900-3 2.808099-4 3.776900-3 4.068381-4 3.977800-3 4.067488-4 3.977800-3 4.321658-4 4.549900-3 4.322257-4 4.549900-3 4.646357-4 5.548500-3 4.698217-4 5.548500-3 4.864380-4 5.902100-3 4.894886-4 5.902100-3 5.042452-4 7.852356-3 5.228528-4 1.011579-2 5.398962-4 1.288250-2 5.561324-4 1.640590-2 5.719566-4 1.807100-2 5.780805-4 1.807100-2 6.917346-4 2.237100-2 6.961129-4 2.237100-2 7.348639-4 2.312200-2 7.356725-4 2.312200-2 7.870901-4 3.235937-2 8.069671-4 4.518559-2 8.261427-4 6.309573-2 8.445467-4 8.709636-2 8.613815-4 1.188502-1 8.762726-4 1.223500-1 8.775671-4 1.223500-1 8.052396-4 2.951209-1 8.102344-4 8.035261-1 8.129058-4 1.000000+5 8.131141-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 0.0 2.164200-4 0.0 2.164200-4 1.750879-9 2.220000-4 1.804146-9 2.295000-4 1.860912-9 2.350000-4 1.895453-9 2.430000-4 1.932765-9 2.483133-4 1.947550-9 2.540973-4 1.954222-9 2.600160-4 1.950734-9 2.691535-4 1.930199-9 2.754229-4 1.907243-9 2.813300-4 1.877205-9 2.813300-4 4.657706-9 2.827000-4 4.548054-9 2.840000-4 4.465511-9 2.855000-4 4.391591-9 2.868000-4 4.338871-9 2.890000-4 4.264449-9 3.000000-4 3.945431-9 3.180000-4 3.555476-9 3.311311-4 3.303579-9 3.430000-4 3.096972-9 3.466400-4 3.043018-9 3.466400-4 3.412118-9 3.589219-4 3.245111-9 3.672823-4 3.139381-9 3.801894-4 2.993754-9 3.935501-4 2.860336-9 4.073803-4 2.743462-9 4.216965-4 2.641772-9 4.330900-4 2.573296-9 4.330900-4 1.632745-8 4.332000-4 1.613754-8 4.336000-4 1.574558-8 4.341000-4 1.534388-8 4.345000-4 1.507599-8 4.352000-4 1.469773-8 4.358000-4 1.444899-8 4.367000-4 1.416210-8 4.375000-4 1.397599-8 4.385000-4 1.380848-8 4.400000-4 1.364550-8 4.415704-4 1.354893-8 4.430000-4 1.350613-8 4.451800-4 1.349510-8 4.460800-4 1.351113-8 4.460800-4 1.629617-8 4.470000-4 1.620472-8 4.490000-4 1.614955-8 4.507000-4 1.620804-8 4.528000-4 1.639144-8 4.540000-4 1.654225-8 4.550000-4 1.670077-8 4.565000-4 1.699901-8 4.580000-4 1.736634-8 4.595000-4 1.781612-8 4.610000-4 1.835307-8 4.623810-4 1.892035-8 4.640000-4 1.969613-8 4.658000-4 2.070010-8 4.677351-4 2.195018-8 4.700000-4 2.364515-8 4.720000-4 2.534140-8 4.735000-4 2.674412-8 4.750000-4 2.821404-8 4.765000-4 2.977530-8 4.795000-4 3.307755-8 4.880000-4 4.294936-8 4.910000-4 4.624321-8 4.950000-4 5.027806-8 4.985000-4 5.345350-8 5.011872-4 5.564072-8 5.040000-4 5.771403-8 5.070000-4 5.968773-8 5.100000-4 6.143737-8 5.128614-4 6.290833-8 5.160000-4 6.431691-8 5.190000-4 6.548024-8 5.220000-4 6.648125-8 5.254100-4 6.744578-8 5.320000-4 6.888225-8 5.400000-4 7.005303-8 5.520000-4 7.118661-8 5.690000-4 7.206393-8 5.900000-4 7.255213-8 6.382635-4 7.288839-8 7.244360-4 7.270419-8 7.941700-4 7.233759-8 7.941700-4 7.411660-8 8.425500-4 7.407292-8 8.425500-4 8.809293-8 9.120108-4 9.126312-8 9.350000-4 9.222600-8 1.106000-3 9.685843-8 1.106000-3 1.248831-7 1.370500-3 1.356447-7 1.370500-3 1.422655-7 1.533700-3 1.498626-7 1.533700-3 1.626498-7 1.778279-3 1.752379-7 2.041738-3 1.876178-7 2.371374-3 2.014810-7 2.691535-3 2.138121-7 3.126079-3 2.285198-7 3.548134-3 2.414087-7 3.776900-3 2.477375-7 3.776900-3 2.901350-7 3.977800-3 2.920484-7 3.977800-3 5.664474-5 4.168694-3 5.695903-5 4.415704-3 5.670375-5 4.549900-3 5.664856-5 4.549900-3 5.725560-5 4.897788-3 5.714461-5 5.548500-3 5.669998-5 5.548500-3 6.338634-5 5.902100-3 6.376101-5 5.902100-3 6.497023-5 7.413102-3 6.671908-5 9.885531-3 6.885677-5 1.273503-2 7.070458-5 1.621810-2 7.240027-5 1.807100-2 7.313636-5 1.807100-2 4.097515-3 1.840772-2 4.104306-3 2.162719-2 4.065869-3 2.237100-2 4.053914-3 2.237100-2 6.088772-3 2.312200-2 6.103071-3 2.312200-2 6.391957-3 2.786121-2 6.462639-3 3.467369-2 6.527077-3 4.677351-2 6.582141-3 7.000000-2 6.625331-3 1.223500-1 6.647988-3 1.223500-1 8.540282-2 1.428894-1 8.606767-2 2.065380-1 8.708257-2 3.273407-1 8.794258-2 5.956621-1 8.885577-2 9.772372-1 8.950225-2 1.000000+5 8.951822-2 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.420000-6 0.0 6.250000-6 8.300000-7 6.250000-6 7.405489-7 6.760830-6 1.233468-6 7.400000-6 1.842891-6 7.400000-6 1.669149-6 8.128305-6 2.327060-6 9.120108-6 3.201747-6 1.122018-5 5.036496-6 1.244515-5 6.133050-6 1.412538-5 7.685311-6 1.640590-5 9.861669-6 2.089296-5 1.425754-5 2.342000-5 1.676035-5 2.342000-5 3.577045-6 2.360000-5 3.918161-6 2.550000-5 7.410904-6 2.722701-5 1.053726-5 2.851018-5 1.279525-5 2.960000-5 1.465969-5 3.080000-5 1.664396-5 3.235937-5 1.912130-5 3.392000-5 2.148798-5 3.392000-5 1.367351-5 3.510000-5 1.584510-5 3.589219-5 1.724801-5 3.758374-5 2.008862-5 3.810000-5 2.093251-5 4.027170-5 2.432171-5 4.265795-5 2.785052-5 4.518559-5 3.140470-5 4.800000-5 3.517966-5 5.188000-5 4.011643-5 5.312000-5 4.164012-5 5.312000-5 4.073720-5 5.821032-5 4.691804-5 6.382635-5 5.336220-5 7.161434-5 6.183177-5 8.317638-5 7.383900-5 1.011579-4 9.182339-5 1.098500-4 1.002910-4 1.098500-4 7.826832-5 1.100000-4 7.754229-5 1.110500-4 7.370972-5 1.120000-4 7.063505-5 1.129500-4 6.794603-5 1.141000-4 6.516261-5 1.152000-4 6.296586-5 1.161449-4 6.146556-5 1.171000-4 6.024335-5 1.177000-4 5.962200-5 1.185000-4 5.897388-5 1.195000-4 5.845042-5 1.195000-4 5.232922-5 1.202264-4 5.134677-5 1.216186-4 4.977655-5 1.227000-4 4.882667-5 1.240000-4 4.799475-5 1.252000-4 4.743575-5 1.265000-4 4.710136-5 1.277000-4 4.701730-5 1.293500-4 4.720389-5 1.310000-4 4.772680-5 1.320000-4 4.815839-5 1.340000-4 4.929931-5 1.365000-4 5.100605-5 1.400000-4 5.368586-5 1.584893-4 6.877553-5 1.770000-4 8.437425-5 1.865000-4 9.272794-5 1.972423-4 1.027883-4 2.045000-4 1.102415-4 2.155000-4 1.225157-4 2.164200-4 1.235817-4 2.164200-4 1.103221-4 2.330000-4 1.279418-4 2.511886-4 1.481863-4 2.691535-4 1.693833-4 2.813300-4 1.844805-4 2.813300-4 1.675304-4 2.855000-4 1.741380-4 3.000000-4 1.946270-4 3.280000-4 2.286899-4 3.466400-4 2.505844-4 3.466400-4 2.437067-4 3.801894-4 2.815752-4 4.168694-4 3.212004-4 4.330900-4 3.381930-4 4.330900-4 3.265775-4 4.365158-4 3.318872-4 4.460800-4 3.423083-4 4.460800-4 3.355765-4 4.528000-4 3.428692-4 4.610000-4 3.495952-4 4.677351-4 3.532583-4 4.750000-4 3.548074-4 4.850000-4 3.538106-4 4.960000-4 3.523877-4 5.040000-4 3.529322-4 5.128614-4 3.554398-4 5.253000-4 3.617920-4 5.400000-4 3.722103-4 5.635000-4 3.922949-4 6.100000-4 4.364940-4 7.941700-4 6.199920-4 7.941700-4 6.076686-4 8.425500-4 6.545796-4 8.425500-4 6.482464-4 1.106000-3 9.026260-4 1.106000-3 8.910600-4 1.370500-3 1.147127-3 1.370500-3 1.144208-3 1.533700-3 1.302236-3 1.533700-3 1.297593-3 2.540973-3 2.279116-3 3.776900-3 3.495842-3 3.776900-3 3.369772-3 3.977800-3 3.570759-3 3.977800-3 3.488990-3 4.549900-3 4.061026-3 4.549900-3 4.028009-3 5.548500-3 5.021978-3 5.548500-3 4.998676-3 5.902100-3 5.348851-3 5.902100-3 5.332885-3 1.584893-2 1.520694-2 1.807100-2 1.741978-2 1.807100-2 1.328175-2 2.237100-2 1.762097-2 2.237100-2 1.554736-2 2.312200-2 1.628326-2 2.312200-2 1.594295-2 3.630781-2 2.895718-2 1.083927-1 1.008757-1 1.223500-1 1.148244-1 1.223500-1 3.614194-2 1.250000-1 3.864580-2 1.260000-1 3.966668-2 1.288250-1 4.233749-2 1.348963-1 4.825026-2 1.531088-1 6.603434-2 2.238721-1 1.358040-1 5.688529-1 4.792418-1 1.000000+5 9.999991+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.223500-1 1.283427+3 1.250000-1 1.220952+3 1.260000-1 1.193758+3 1.283000-1 1.146072+3 1.318257-1 1.067924+3 1.380384-1 9.562478+2 1.566751-1 6.942654+2 2.500000-1 2.145400+2 2.917427-1 1.460810+2 3.427678-1 9.841145+1 3.981072-1 6.867112+1 4.570882-1 4.968931+1 5.248075-1 3.622719+1 6.000000-1 2.687325+1 6.839117-1 2.024361+1 7.852356-1 1.512672+1 9.120108-1 1.112062+1 1.011579+0 9.035281+0 1.216186+0 6.304095+0 1.364583+0 5.068145+0 1.548817+0 4.016195+0 1.757924+0 3.207882+0 2.000000+0 2.570432+0 2.290868+0 2.051146+0 2.630268+0 1.642510+0 3.019952+0 1.324786+0 3.507519+0 1.057738+0 4.120975+0 8.367420-1 4.841724+0 6.669377-1 5.688529+0 5.355533-1 6.839116+0 4.200893-1 8.222427+0 3.321377-1 9.885531+0 2.644723-1 1.202264+1 2.089526-1 1.531087+1 1.575352-1 1.905461+1 1.228181-1 2.483133+1 9.151110-2 3.198895+1 6.945846-2 4.570882+1 4.746742-2 6.998420+1 3.040281-2 1.174898+2 1.783531-2 2.344229+2 8.838442-3 4.677351+2 4.405261-3 1.862087+3 1.101878-3 1.000000+5 2.048600-5 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.223500-1 7.823100-4 1.000000+5 7.823100-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.223500-1 1.103700-1 1.000000+5 1.103700-1 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.223500-1 1.119769-2 1.000000+5 9.999989+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.312200-2 4.392883+3 2.334000-2 4.297671+3 2.410000-2 4.070040+3 2.450000-2 3.967520+3 2.530000-2 3.741420+3 2.660725-2 3.443174+3 2.951209-2 2.851226+3 3.223700-2 2.434569+3 3.630781-2 1.942771+3 4.518559-2 1.259513+3 5.011872-2 1.017177+3 5.821032-2 7.431697+2 7.000000-2 4.981440+2 8.317638-2 3.390135+2 9.660509-2 2.409668+2 1.135011-1 1.657697+2 1.364583-1 1.073626+2 1.800000-1 5.534360+1 2.985383-1 1.643602+1 3.630781-1 1.036895+1 4.315191-1 6.954265+0 5.011872-1 4.952249+0 5.821032-1 3.556383+0 6.760830-1 2.573663+0 7.762471-1 1.923157+0 8.912509-1 1.446673+0 1.000000+0 1.148873+0 1.216186+0 7.837727-1 1.364583+0 6.300030-1 1.531087+0 5.096312-1 1.737801+0 4.067745-1 1.972423+0 3.270209-1 2.264644+0 2.597018-1 2.600160+0 2.078191-1 3.000000+0 1.662600-1 3.467369+0 1.336637-1 4.073803+0 1.056769-1 4.786301+0 8.418563-2 5.623413+0 6.756606-2 6.760830+0 5.297320-2 8.128305+0 4.186201-2 9.772372+0 3.332011-2 1.202264+1 2.595695-2 1.531087+1 1.957001-2 1.905461+1 1.525797-2 2.483133+1 1.136841-2 3.198895+1 8.628735-3 4.570882+1 5.896790-3 6.998420+1 3.776838-3 1.161449+2 2.241936-3 2.317395+2 1.110850-3 4.623810+2 5.536291-4 1.840772+3 1.384723-4 1.000000+5 2.545000-6 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.312200-2 1.119700-3 1.000000+5 1.119700-3 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.312200-2 8.260700-3 1.000000+5 8.260700-3 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.312200-2 1.374160-2 1.000000+5 9.999999+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.237100-2 9.162718+3 2.290000-2 8.702900+3 2.550000-2 6.716700+3 3.162278-2 3.909600+3 3.500000-2 3.004300+3 4.265795-2 1.781700+3 5.308844-2 9.853800+2 6.683439-2 5.219100+2 8.413951-2 2.739500+2 1.737801-1 3.523100+1 2.187762-1 1.848500+1 2.660725-1 1.077414+1 3.126079-1 6.957362+0 3.630781-1 4.670480+0 4.120975-1 3.356082+0 4.677351-1 2.428653+0 5.308844-1 1.770786+0 5.956621-1 1.338394+0 6.683439-1 1.018919+0 7.498942-1 7.815472-1 8.609938-1 5.736850-1 9.440609-1 4.702839-1 1.023293+0 3.979231-1 1.135011+0 3.236620-1 1.258925+0 2.652410-1 1.412538+0 2.142054-1 1.640590+0 1.636126-1 1.883649+0 1.285393-1 2.137962+0 1.037693-1 2.454709+0 8.279363-2 2.818383+0 6.656039-2 3.273407+0 5.295822-2 3.801894+0 4.245224-2 4.466836+0 3.371050-2 5.248075+0 2.697096-2 6.237348+0 2.140373-2 7.413102+0 1.710594-2 9.015711+0 1.337515-2 1.135011+1 1.010785-2 1.428894+1 7.707782-3 1.778279+1 5.996781-3 2.371374+1 4.348168-3 3.090295+1 3.256483-3 4.415704+1 2.223703-3 6.683439+1 1.440526-3 1.083927+2 8.748883-4 2.162719+2 4.331104-4 4.315191+2 2.157799-4 1.717908+3 5.394677-5 1.000000+5 9.253400-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.237100-2 8.270200-4 1.000000+5 8.270200-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.237100-2 1.092800-2 1.000000+5 1.092800-2 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.237100-2 1.061598-2 1.000000+5 9.999999+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.807100-2 2.219120+4 1.835000-2 2.141768+4 1.905461-2 1.936880+4 2.089296-2 1.503919+4 2.580000-2 8.308760+3 2.851018-2 6.234505+3 3.427678-2 3.642446+3 4.315191-2 1.834059+3 5.370318-2 9.441171+2 6.683439-2 4.812245+2 8.511380-2 2.265207+2 1.333521-1 5.520437+1 1.737801-1 2.406274+1 2.113489-1 1.310468+1 2.454709-1 8.283688+0 2.884032-1 5.094399+0 3.349654-1 3.274317+0 3.801894-1 2.269200+0 4.265795-1 1.637461+0 4.786301-1 1.190384+0 5.308844-1 8.998748-1 5.888437-1 6.849709-1 6.606935-1 5.097596-1 7.328245-1 3.934420-1 8.128305-1 3.058687-1 9.332543-1 2.208574-1 9.885531-1 1.940370-1 1.047129+0 1.716338-1 1.122018+0 1.491490-1 1.216186+0 1.275838-1 1.333521+0 1.075298-1 1.659587+0 7.274133-2 1.905461+0 5.714807-2 2.162719+0 4.615686-2 2.483133+0 3.684424-2 2.851018+0 2.962952-2 3.273407+0 2.399642-2 3.801894+0 1.923613-2 4.466836+0 1.527536-2 5.248075+0 1.222130-2 6.237348+0 9.698249-3 7.413102+0 7.751181-3 9.015711+0 6.060425-3 1.122018+1 4.643671-3 1.400000+1 3.576400-3 1.757924+1 2.752934-3 2.344229+1 1.995414-3 3.090295+1 1.475541-3 4.365158+1 1.019957-3 6.606934+1 6.605955-4 1.083927+2 3.964321-4 2.162719+2 1.962572-4 4.315191+2 9.777547-5 1.717908+3 2.444426-5 1.000000+5 4.192900-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.807100-2 7.754700-4 1.000000+5 7.754700-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.807100-2 7.062500-3 1.000000+5 7.062500-3 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.807100-2 1.023303-2 1.000000+5 9.999999+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 5.902100-3 1.112208+4 6.165950-3 1.055069+4 6.309573-3 1.020624+4 6.650000-3 9.560640+3 7.079458-3 8.750671+3 7.673615-3 7.859735+3 8.035261-3 7.355672+3 9.015711-3 6.173162+3 9.660509-3 5.571301+3 1.035142-2 4.992205+3 1.273503-2 3.547282+3 1.412538-2 2.963826+3 1.650000-2 2.250080+3 1.927525-2 1.689089+3 2.162719-2 1.359112+3 2.540973-2 9.944432+2 3.019952-2 7.046972+2 3.589219-2 4.947105+2 4.265795-2 3.442671+2 5.069907-2 2.375113+2 6.000000-2 1.640558+2 7.000000-2 1.161880+2 8.317638-2 7.844150+1 1.011580-1 4.979277+1 1.273503-1 2.892720+1 1.603245-1 1.668887+1 2.600160-1 5.215713+0 3.198895-1 3.187117+0 3.845918-1 2.071138+0 4.570882-1 1.392861+0 5.248075-1 1.020762+0 6.095369-1 7.345969-1 7.079458-1 5.327472-1 8.222427-1 3.894245-1 9.332543-1 3.006721-1 1.071519+0 2.287413-1 1.250000+0 1.695399-1 1.428894+0 1.318902-1 1.603245+0 1.069917-1 1.819701+0 8.562829-2 2.089296+0 6.768725-2 2.398833+0 5.392552-2 2.754229+0 4.328561-2 3.162278+0 3.499454-2 3.672823+0 2.800493-2 4.315191+0 2.220238-2 5.069907+0 1.773493-2 6.025596+0 1.405338-2 7.161434+0 1.121578-2 8.709636+0 8.756889-3 1.083927+1 6.700876-3 1.333521+1 5.240281-3 1.717908+1 3.911615-3 2.317395+1 2.797559-3 3.054921+1 2.068260-3 4.365158+1 1.411988-3 6.606934+1 9.144632-4 1.083927+2 5.487819-4 2.162719+2 2.716820-4 4.315191+2 1.353479-4 1.717908+3 3.383921-5 1.000000+5 5.804300-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 5.902100-3 8.549800-4 1.000000+5 8.549800-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.902100-3 9.371100-5 1.000000+5 9.371100-5 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 5.902100-3 4.953409-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.548500-3 1.786018+4 5.900000-3 1.679786+4 6.165950-3 1.600690+4 6.998420-3 1.367909+4 7.413102-3 1.262484+4 8.035261-3 1.121045+4 8.810489-3 9.742027+3 9.660509-3 8.405706+3 1.150000-2 6.208920+3 1.230269-2 5.483800+3 1.450000-2 3.999500+3 1.580000-2 3.366480+3 1.840772-2 2.452450+3 2.041738-2 1.961484+3 2.300000-2 1.508736+3 2.660725-2 1.082841+3 2.951209-2 8.502013+2 3.349654-2 6.288880+2 3.890451-2 4.365481+2 4.518559-2 3.005497+2 5.308844-2 1.993746+2 6.237348-2 1.312412+2 7.500000-2 8.068732+1 9.225714-2 4.633026+1 1.161449-1 2.480330+1 2.065380-1 5.145971+0 2.570396-1 2.847729+0 3.090295-1 1.742789+0 3.630781-1 1.142518+0 4.168694-1 8.011704-1 4.786301-1 5.661457-1 5.432503-1 4.148435-1 6.095369-1 3.147815-1 6.839117-1 2.405048-1 7.673615-1 1.850823-1 8.709636-1 1.397160-1 9.440609-1 1.175566-1 1.023293+0 9.962374-2 1.148154+0 7.928000-2 1.273503+0 6.496263-2 1.428894+0 5.248142-2 1.659587+0 4.009740-2 1.883649+0 3.214826-2 2.137962+0 2.595202-2 2.454709+0 2.070367-2 2.818383+0 1.664120-2 3.273407+0 1.323903-2 3.801894+0 1.061254-2 4.466836+0 8.427285-3 5.248075+0 6.742458-3 6.237348+0 5.350594-3 7.413102+0 4.276349-3 9.015711+0 3.343587-3 1.122018+1 2.561923-3 1.400000+1 1.973100-3 1.757924+1 1.518768-3 2.344229+1 1.100859-3 3.090295+1 8.140752-4 4.415704+1 5.559090-4 6.683439+1 3.601125-4 1.109175+2 2.136137-4 2.213095+2 1.057839-4 4.415704+2 5.270675-5 1.757924+3 1.317919-5 1.000000+5 2.313200-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.548500-3 7.561300-4 1.000000+5 7.561300-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.548500-3 1.719100-4 1.000000+5 1.719100-4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.548500-3 4.620460-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.549900-3 6.808700+4 4.740000-3 6.395600+4 5.011872-3 5.840052+4 5.821032-3 4.495286+4 6.531306-3 3.620123+4 7.585776-3 2.710219+4 8.035261-3 2.414348+4 9.549926-3 1.689289+4 1.047129-2 1.383085+4 1.216186-2 9.924210+3 1.333521-2 8.030953+3 1.531087-2 5.809145+3 1.757924-2 4.157317+3 1.950000-2 3.217000+3 2.264644-2 2.202176+3 2.630268-2 1.492053+3 3.000000-2 1.051380+3 3.388442-2 7.558284+2 3.890451-2 5.162350+2 4.466836-2 3.501612+2 5.188000-2 2.283201+2 6.025596-2 1.478627+2 7.161434-2 8.890271+1 8.709636-2 4.953305+1 1.096478-1 2.468042+1 1.905461-1 4.581348+0 2.344229-1 2.450871+0 2.754229-1 1.516553+0 3.198895-1 9.781432-1 3.672823-1 6.574698-1 4.168694-1 4.601970-1 4.677351-1 3.350687-1 5.188000-1 2.534794-1 5.821032-1 1.873518-1 6.531306-1 1.395565-1 7.244360-1 1.078033-1 8.511380-1 7.293573-2 9.120108-1 6.201939-2 9.772372-1 5.311000-2 1.047129+0 4.586535-2 1.135011+0 3.897538-2 1.230269+0 3.336251-2 1.348963+0 2.813032-2 1.717908+0 1.827027-2 1.949845+0 1.466788-2 2.213095+0 1.186396-2 2.540973+0 9.482199-3 2.917427+0 7.633838-3 3.388442+0 6.083876-3 3.935501+0 4.884980-3 4.623810+0 3.885375-3 5.432503+0 3.113500-3 6.456542+0 2.474355-3 7.762471+0 1.951583-3 9.332543+0 1.550600-3 1.161449+1 1.189603-3 1.479108+1 8.958880-4 1.819701+1 7.068338-4 2.400000+1 5.191100-4 3.126079+1 3.890787-4 4.466836+1 2.657625-4 6.839116+1 1.701442-4 1.135011+2 1.009616-4 2.264644+2 5.001116-5 4.518559+2 2.492225-5 1.798871+3 6.232506-6 1.000000+5 1.119400-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.549900-3 6.592100-4 1.000000+5 6.592100-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.549900-3 6.090000-5 1.000000+5 6.090000-5 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.549900-3 3.829790-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 3.977800-3 1.695458+5 4.168694-3 1.515703+5 4.300000-3 1.394244+5 4.677351-3 1.118915+5 5.011872-3 9.279037+4 5.623413-3 6.733388+4 6.456542-3 4.546884+4 7.300000-3 3.178192+4 8.128305-3 2.304580+4 9.885531-3 1.263186+4 1.109175-2 8.784395+3 1.258925-2 5.864278+3 1.500000-2 3.309192+3 1.698244-2 2.189094+3 1.927525-2 1.428282+3 2.264644-2 8.219982+2 2.660725-2 4.688921+2 3.162278-2 2.546893+2 3.758374-2 1.372307+2 4.570882-2 6.751910+1 5.623413-2 3.161310+1 7.585776-2 1.046475+1 1.244515-1 1.672702+0 1.513561-1 8.153101-1 1.798871-1 4.356144-1 2.113489-1 2.444246-1 2.426610-1 1.499141-1 2.754229-1 9.640095-2 3.126079-1 6.244335-2 3.507519-1 4.237753-2 3.935501-1 2.897566-2 4.365158-1 2.070476-2 4.786301-1 1.546461-2 5.128614-1 1.249725-2 5.623413-1 9.484406-3 6.531306-1 6.123393-3 7.244360-1 4.556286-3 8.609938-1 2.821884-3 9.120108-1 2.422161-3 9.549926-1 2.156588-3 1.000000+0 1.932749-3 1.047129+0 1.744164-3 1.109175+0 1.545153-3 1.174898+0 1.378246-3 1.258925+0 1.210376-3 1.364583+0 1.047779-3 1.531087+0 8.582406-4 1.840772+0 6.199775-4 2.065380+0 5.093025-4 2.371374+0 4.055577-4 2.722701+0 3.253977-4 3.162278+0 2.584008-4 3.672823+0 2.067858-4 4.315191+0 1.639443-4 5.069907+0 1.309613-4 6.025596+0 1.037720-4 7.161434+0 8.281728-5 8.709636+0 6.466147-5 1.083927+1 4.947967-5 1.333521+1 3.869518-5 1.717908+1 2.888398-5 2.317395+1 2.065733-5 3.090295+1 1.508287-5 4.415704+1 1.030008-5 6.683439+1 6.672156-6 1.096478+2 4.004777-6 2.187762+2 1.982861-6 4.365158+2 9.879390-7 1.737801+3 2.470105-7 1.000000+5 4.286000-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 3.977800-3 4.931300-4 1.000000+5 4.931300-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.977800-3 1.918100-4 1.000000+5 1.918100-4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 3.977800-3 3.292860-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.776900-3 2.706800+5 3.815000-3 2.623048+5 3.935501-3 2.423492+5 4.005000-3 2.303370+5 4.500000-3 1.683294+5 5.011872-3 1.245144+5 5.688529-3 8.662112+4 6.309573-3 6.402659+4 7.079458-3 4.538466+4 7.852356-3 3.306123+4 9.549926-3 1.788714+4 1.059254-2 1.281075+4 1.216186-2 8.162719+3 1.428894-2 4.766917+3 1.621810-2 3.098499+3 1.819701-2 2.083530+3 2.113489-2 1.233428+3 2.500000-2 6.779460+2 2.951209-2 3.717053+2 3.467369-2 2.056234+2 4.120975-2 1.081802+2 5.011872-2 5.181352+1 6.309573-2 2.158005+1 1.230269-1 1.672875+0 1.479108-1 8.319265-1 1.717908-1 4.749318-1 1.972423-1 2.850215-1 2.238721-1 1.796355-1 2.511886-1 1.188431-1 2.818383-1 7.919522-2 3.126079-1 5.534826-2 3.467369-1 3.896684-2 3.801894-1 2.871168-2 4.216965-1 2.051699-2 4.623810-1 1.533440-2 5.011872-1 1.196805-2 5.432503-1 9.415925-3 5.956621-1 7.212419-3 6.531306-1 5.558771-3 7.161434-1 4.312273-3 8.222427-1 2.973954-3 8.810489-1 2.473947-3 9.332543-1 2.137189-3 9.772372-1 1.912632-3 1.023293+0 1.722750-3 1.083927+0 1.523026-3 1.148154+0 1.355542-3 1.230269+0 1.187381-3 1.333521+0 1.025157-3 1.548817+0 7.887786-4 1.840772+0 5.815252-4 2.065380+0 4.777094-4 2.371374+0 3.803518-4 2.722701+0 3.051288-4 3.126079+0 2.465463-4 3.630781+0 1.971933-4 4.265795+0 1.562520-4 5.011872+0 1.247429-4 5.956621+0 9.879421-5 7.079458+0 7.880888-5 8.609938+0 6.150306-5 1.071519+1 4.704175-5 1.318257+1 3.677325-5 1.698244+1 2.743826-5 2.290868+1 1.961651-5 3.054921+1 1.431950-5 4.365158+1 9.775628-6 6.606934+1 6.331250-6 1.083927+2 3.799439-6 2.162719+2 1.880922-6 4.315191+2 9.370849-7 1.717908+3 2.342796-7 1.000000+5 4.018600-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.776900-3 4.970400-4 1.000000+5 4.970400-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.776900-3 3.204800-7 1.000000+5 3.204800-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.776900-3 3.279540-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.533700-3 2.469335+4 1.740000-3 2.167980+4 1.850000-3 2.043700+4 1.972423-3 1.903241+4 2.300000-3 1.591548+4 2.660725-3 1.332562+4 2.884032-3 1.198025+4 3.507519-3 9.146478+3 3.900000-3 7.836740+3 4.581000-3 6.154861+3 5.370318-3 4.797119+3 6.025596-3 3.985221+3 7.161434-3 2.991468+3 8.609938-3 2.180669+3 1.023293-2 1.606669+3 1.216186-2 1.174014+3 1.445440-2 8.509869+2 1.717908-2 6.120644+2 2.018366-2 4.470136+2 2.400000-2 3.166800+2 2.851018-2 2.230819+2 3.349654-2 1.596640+2 4.027170-2 1.080769+2 4.841724-2 7.254809+1 5.754399-2 4.955368+1 6.918310-2 3.275102+1 8.222426-2 2.206452+1 1.011580-1 1.361508+1 1.288250-1 7.686920+0 1.621810-1 4.430734+0 2.570396-1 1.462995+0 3.198895-1 8.697895-1 3.845918-1 5.652764-1 4.570882-1 3.801770-1 5.248075-1 2.786143-1 6.095369-1 2.004924-1 7.079458-1 1.453850-1 8.222427-1 1.062548-1 9.332543-1 8.202372-2 1.071519+0 6.239090-2 1.250000+0 4.624392-2 1.412538+0 3.674963-2 1.584893+0 2.979159-2 1.798871+0 2.382680-2 2.044000+0 1.915498-2 2.344229+0 1.526992-2 2.691535+0 1.224185-2 3.090295+0 9.885074-3 3.589219+0 7.901659-3 4.216965+0 6.257708-3 4.954502+0 4.993222-3 5.888437+0 3.952480-3 7.000000+0 3.150500-3 8.511380+0 2.458213-3 1.047129+1 1.905762-3 1.273503+1 1.508851-3 1.640590+1 1.124461-3 2.187762+1 8.133487-4 3.000000+1 5.753300-4 4.265795+1 3.946613-4 6.382635+1 2.585735-4 1.035142+2 1.569306-4 2.065380+2 7.764287-5 4.120975+2 3.867102-5 1.640590+3 9.665742-6 1.000000+5 1.583300-7 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.533700-3 4.927000-4 1.000000+5 4.927000-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.533700-3 8.716600-7 1.000000+5 8.716600-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.533700-3 1.040128-3 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.370500-3 2.123270+4 1.500000-3 2.100792+4 1.670000-3 2.045680+4 1.778279-3 1.996638+4 1.905461-3 1.931286+4 2.070000-3 1.842912+4 2.213095-3 1.762999+4 2.454709-3 1.626629+4 2.630268-3 1.528763+4 2.951209-3 1.364480+4 3.198895-3 1.252684+4 3.467369-3 1.140519+4 3.900000-3 9.863660+3 4.216965-3 8.903204+3 4.731513-3 7.585520+3 5.188000-3 6.636679+3 5.821032-3 5.563031+3 6.456542-3 4.716982+3 7.328245-3 3.819452+3 8.128305-3 3.191966+3 9.225714-3 2.543571+3 1.047129-2 2.009233+3 1.174898-2 1.610079+3 1.318257-2 1.282044+3 1.500000-2 9.854640+2 1.717908-2 7.413816+2 1.950000-2 5.641180+2 2.238721-2 4.155606+2 2.540973-2 3.117963+2 2.917427-2 2.262231+2 3.349654-2 1.629539+2 3.890451-2 1.133032+2 4.518559-2 7.816790+1 5.308844-2 5.201328+1 6.237348-2 3.435223+1 7.413102-2 2.186316+1 9.015711-2 1.299945+1 1.135011-1 6.995609+0 2.018366-1 1.464850+0 2.660725-1 6.972439-1 3.162278-1 4.414453-1 3.672823-1 2.990451-1 4.216965-1 2.101368-1 4.841724-1 1.487474-1 5.495409-1 1.091576-1 6.165950-1 8.294237-2 6.918310-1 6.347223-2 7.762471-1 4.896922-2 8.810489-1 3.710081-2 9.660509-1 3.044059-2 1.047129+0 2.577851-2 1.148154+0 2.147069-2 1.273503+0 1.760936-2 1.428894+0 1.423563-2 1.678804+0 1.066096-2 1.905461+0 8.551557-3 2.162719+0 6.907331-3 2.483133+0 5.513546-3 2.851018+0 4.433813-3 3.273407+0 3.590797-3 3.801894+0 2.878430-3 4.466836+0 2.285773-3 5.248075+0 1.828806-3 6.237348+0 1.451266-3 7.413102+0 1.159908-3 9.015711+0 9.068734-4 1.122018+1 6.948685-4 1.400000+1 5.351700-4 1.757924+1 4.119391-4 2.344229+1 2.985866-4 3.090295+1 2.208018-4 4.415704+1 1.507784-4 6.683439+1 9.767091-5 1.109175+2 5.793891-5 2.213095+2 2.869079-5 4.415704+2 1.429591-5 1.757924+3 3.574590-6 1.000000+5 6.274200-8 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.370500-3 4.583700-4 1.000000+5 4.583700-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.370500-3 6.700400-7 1.000000+5 6.700400-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.370500-3 9.114600-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.106000-3 1.526745+5 1.135011-3 1.476075+5 1.230269-3 1.348569+5 1.380384-3 1.192485+5 1.603245-3 9.960802+4 1.757924-3 8.864571+4 2.018366-3 7.339859+4 2.238721-3 6.308903+4 2.540973-3 5.218734+4 2.786121-3 4.513719+4 3.235937-3 3.533697+4 3.548134-3 3.021372+4 4.073803-3 2.371311+4 4.581000-3 1.915471+4 5.188000-3 1.517290+4 5.956621-3 1.161131+4 6.683439-3 9.227985+3 7.585776-3 7.118510+3 8.709636-3 5.318786+3 1.000000-2 3.940188+3 1.150000-2 2.883800+3 1.318257-2 2.108209+3 1.513561-2 1.523005+3 1.737801-2 1.091324+3 1.972423-2 7.983533+2 2.238721-2 5.801544+2 2.540973-2 4.188893+2 2.917427-2 2.915302+2 3.349654-2 2.013348+2 3.890451-2 1.337648+2 4.518559-2 8.818231+1 5.248075-2 5.770341+1 6.165950-2 3.627059+1 7.328245-2 2.188331+1 8.912509-2 1.224056+1 1.109175-1 6.340133+0 1.972423-1 1.109943+0 2.426610-1 5.964030-1 2.851018-1 3.703539-1 3.311311-1 2.395508-1 3.801894-1 1.614142-1 4.315191-1 1.132588-1 4.786301-1 8.532472-2 5.370318-1 6.274476-2 6.025596-1 4.649727-2 6.683439-1 3.576155-2 7.498942-1 2.693745-2 8.413951-1 2.044921-2 9.549926-1 1.520101-2 1.011579+0 1.337753-2 1.083927+0 1.157583-2 1.161449+0 1.008891-2 1.258925+0 8.656549-3 1.396368+0 7.167406-3 1.778279+0 4.668638-3 2.018366+0 3.754828-3 2.317395+0 2.985499-3 2.660725+0 2.392051-3 3.054921+0 1.930501-3 3.548134+0 1.542275-3 4.168694+0 1.220731-3 4.897788+0 9.735247-4 5.821032+0 7.702041-4 7.000000+0 6.045800-4 8.511380+0 4.717294-4 1.047129+1 3.657167-4 1.273503+1 2.895373-4 1.640590+1 2.157883-4 2.187762+1 1.560748-4 3.000000+1 1.104000-4 4.265795+1 7.573579-5 6.382635+1 4.961921-5 1.047129+2 2.976152-5 2.089296+2 1.472690-5 4.168694+2 7.335387-6 1.659587+3 1.833561-6 1.000000+5 3.038300-8 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.106000-3 3.951900-4 1.000000+5 3.951900-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.106000-3 5.630000-7 1.000000+5 5.630000-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.106000-3 7.102470-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.425500-4 1.872730+5 8.570000-4 1.928070+5 8.760000-4 1.987326+5 9.100000-4 2.067571+5 9.225714-4 2.090772+5 9.350000-4 2.108324+5 9.549926-4 2.109815+5 1.023293-3 2.080203+5 1.071519-3 2.048130+5 1.130000-3 1.996732+5 1.190000-3 1.934556+5 1.258925-3 1.855633+5 1.333521-3 1.766757+5 1.420000-3 1.661308+5 1.513561-3 1.549134+5 1.610000-3 1.438528+5 1.698244-3 1.343127+5 1.862087-3 1.181397+5 1.972423-3 1.084489+5 2.113489-3 9.712484+4 2.317395-3 8.318015+4 2.500000-3 7.276840+4 2.722701-3 6.205513+4 3.019952-3 5.072963+4 3.273407-3 4.305257+4 3.650000-3 3.417544+4 3.935501-3 2.897005+4 4.400000-3 2.247220+4 4.800000-3 1.831592+4 5.370318-3 1.394308+4 5.888437-3 1.107013+4 6.531306-3 8.480881+3 7.300000-3 6.316600+3 8.035261-3 4.868251+3 9.015711-3 3.534743+3 1.011579-2 2.545316+3 1.135011-2 1.818447+3 1.273503-2 1.289450+3 1.412538-2 9.404104+2 1.584893-2 6.578360+2 1.778279-2 4.571088+2 2.000000-2 3.131772+2 2.264644-2 2.085142+2 2.600160-2 1.316140+2 2.985383-2 8.242112+1 3.467369-2 4.924229+1 4.027170-2 2.920042+1 4.786301-2 1.584972+1 5.754399-2 8.194406+0 7.161434-2 3.713523+0 1.412538-1 3.123564-1 1.701200-1 1.596305-1 2.000000-1 8.963440-2 2.398833-1 4.731201-2 2.754229-1 2.933118-2 3.126079-1 1.905841-2 3.507519-1 1.296522-2 3.935501-1 8.876974-3 4.365158-1 6.355806-3 4.841724-1 4.585395-3 5.188000-1 3.709017-3 5.688529-1 2.815189-3 6.237348-1 2.151148-3 7.244360-1 1.406578-3 7.852356-1 1.114916-3 8.317638-1 9.495988-4 8.810489-1 8.137746-4 9.332543-1 7.026407-4 9.772372-1 6.287386-4 1.023293+0 5.662150-4 1.083927+0 5.004747-4 1.148154+0 4.454043-4 1.230269+0 3.901584-4 1.333521+0 3.368877-4 1.531087+0 2.646370-4 1.819701+0 1.949967-4 2.044000+0 1.597860-4 2.344229+0 1.273853-4 2.691535+0 1.021237-4 3.090295+0 8.246094-5 3.589219+0 6.591509-5 4.216965+0 5.220106-5 4.954502+0 4.165271-5 5.888437+0 3.297132-5 7.000000+0 2.628100-5 8.511380+0 2.050585-5 1.047129+1 1.589734-5 1.273503+1 1.258578-5 1.659587+1 9.257642-6 2.213095+1 6.698547-6 3.000000+1 4.799300-6 4.265795+1 3.292196-6 6.382635+1 2.156973-6 1.047129+2 1.293724-6 2.089296+2 6.401772-7 4.168694+2 3.188666-7 1.659587+3 7.970472-8 1.000000+5 1.320800-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.425500-4 3.131700-4 1.000000+5 3.131700-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.425500-4 3.520100-7 1.000000+5 3.520100-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.425500-4 5.290280-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 7.941700-4 3.483166+5 8.283800-4 3.597605+5 8.500000-4 3.643305+5 8.650000-4 3.660059+5 8.850000-4 3.650553+5 9.120108-4 3.618547+5 9.772372-4 3.529662+5 1.030000-3 3.436494+5 1.090000-3 3.313326+5 1.161449-3 3.154846+5 1.230269-3 2.996988+5 1.303167-3 2.828589+5 1.396368-3 2.618044+5 1.500000-3 2.395914+5 1.570000-3 2.255952+5 1.737801-3 1.949727+5 1.862087-3 1.753738+5 2.000000-3 1.558566+5 2.213095-3 1.306944+5 2.371374-3 1.152564+5 2.570396-3 9.877233+4 2.818383-3 8.226298+4 3.054921-3 6.963137+4 3.388442-3 5.572419+4 3.715352-3 4.537025+4 4.120975-3 3.570478+4 4.518559-3 2.864869+4 5.011872-3 2.219218+4 5.559043-3 1.705040+4 6.095369-3 1.340389+4 6.800000-3 9.994440+3 7.585776-3 7.391997+3 8.317638-3 5.699091+3 9.300000-3 4.128930+3 1.047129-2 2.906639+3 1.190000-2 1.971942+3 1.333521-2 1.384851+3 1.513561-2 9.268700+2 1.698244-2 6.385619+2 1.905461-2 4.369729+2 2.137962-2 2.971147+2 2.426610-2 1.929737+2 2.754229-2 1.244298+2 3.162278-2 7.650651+1 3.630781-2 4.670384+1 4.216965-2 2.715716+1 5.000000-2 1.453122+1 6.025596-2 7.265302+0 7.585776-2 3.060895+0 1.318257-1 3.806659-1 1.548817-1 2.084013-1 1.798871-1 1.199548-1 2.065380-1 7.255625-2 2.371374-1 4.421443-2 2.722701-1 2.715279-2 3.054921-1 1.821536-2 3.388442-1 1.280615-2 3.758374-1 9.068900-3 4.120975-1 6.719870-3 4.466836-1 5.202117-3 4.731513-1 4.352988-3 5.128614-1 3.414332-3 5.623413-1 2.605765-3 6.382635-1 1.814346-3 6.998420-1 1.403743-3 7.673615-1 1.094167-3 8.609938-1 8.067779-4 9.120108-1 6.971718-4 9.660509-1 6.069437-4 1.011579+0 5.467639-4 1.071519+0 4.833463-4 1.135011+0 4.299356-4 1.216186+0 3.761437-4 1.318257+0 3.242024-4 1.840772+0 1.798136-4 2.065380+0 1.477330-4 2.371374+0 1.176288-4 2.722701+0 9.436332-5 3.126079+0 7.624380-5 3.630781+0 6.098054-5 4.265795+0 4.831958-5 5.011872+0 3.857612-5 5.956621+0 3.055193-5 7.079458+0 2.437084-5 8.609938+0 1.901949-5 1.059254+1 1.475181-5 1.288250+1 1.168378-5 1.659587+1 8.710683-6 2.213095+1 6.302860-6 3.000000+1 4.515800-6 4.265795+1 3.097722-6 6.382635+1 2.029556-6 1.047129+2 1.217319-6 2.089296+2 6.023579-7 4.168694+2 3.000351-7 1.659587+3 7.499679-8 1.000000+5 1.242700-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 7.941700-4 3.095700-4 1.000000+5 3.095700-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.941700-4 9.189600-8 1.000000+5 9.189600-8 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 7.941700-4 4.845081-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 4.460800-4 6.887219+4 4.464000-4 6.758040+4 4.468000-4 6.642000+4 4.477000-4 6.434520+4 4.483000-4 6.330060+4 4.490000-4 6.232800+4 4.501000-4 6.125160+4 4.513000-4 6.049140+4 4.528000-4 5.991540+4 4.550000-4 5.954946+4 4.580000-4 5.949444+4 4.610000-4 5.983368+4 4.632000-4 6.047280+4 4.648000-4 6.123720+4 4.663000-4 6.224700+4 4.677351-4 6.353173+4 4.692000-4 6.521400+4 4.705000-4 6.706140+4 4.720000-4 6.965400+4 4.735000-4 7.279080+4 4.750000-4 7.652040+4 4.765000-4 8.091120+4 4.780000-4 8.600760+4 4.795000-4 9.188160+4 4.810000-4 9.858060+4 4.827000-4 1.072608+5 4.850000-4 1.209516+5 4.880000-4 1.424832+5 4.950000-4 2.099220+5 4.985000-4 2.525976+5 5.011872-4 2.891112+5 5.040000-4 3.304644+5 5.070000-4 3.778182+5 5.100000-4 4.281138+5 5.128614-4 4.785369+5 5.160000-4 5.362704+5 5.190000-4 5.933724+5 5.220000-4 6.519240+5 5.253000-4 7.173780+5 5.280000-4 7.712580+5 5.310000-4 8.308560+5 5.335000-4 8.799120+5 5.370318-4 9.475459+5 5.400000-4 1.002306+6 5.432503-4 1.059780+6 5.465000-4 1.114176+6 5.500000-4 1.169262+6 5.540000-4 1.227648+6 5.580000-4 1.281474+6 5.635000-4 1.347816+6 5.690000-4 1.406058+6 5.740000-4 1.452396+6 5.800000-4 1.500306+6 5.850000-4 1.533798+6 5.900000-4 1.561902+6 5.980000-4 1.596570+6 6.058100-4 1.620438+6 6.165950-4 1.640230+6 6.280000-4 1.649286+6 6.390000-4 1.649190+6 6.531306-4 1.639409+6 6.700000-4 1.615968+6 6.918310-4 1.574253+6 7.161434-4 1.519070+6 7.413102-4 1.456532+6 7.762471-4 1.366833+6 8.128305-4 1.273032+6 8.609938-4 1.154967+6 9.120108-4 1.038875+6 9.700000-4 9.198600+5 1.035142-3 8.027801+5 1.096478-3 7.063888+5 1.190000-3 5.836560+5 1.273503-3 4.953296+5 1.364583-3 4.158453+5 1.500000-3 3.243510+5 1.621810-3 2.624982+5 1.757924-3 2.093913+5 1.927525-3 1.607098+5 2.089296-3 1.266640+5 2.317395-3 9.257670+4 2.540973-3 6.955816+4 2.818383-3 5.005614+4 3.126079-3 3.573431+4 3.467369-3 2.532074+4 3.845918-3 1.780598+4 4.265795-3 1.243463+4 4.800000-3 8.192580+3 5.432503-3 5.238820+3 6.165950-3 3.284228+3 7.000000-3 2.038104+3 8.000000-3 1.221318+3 9.015711-3 7.657995+2 1.011579-2 4.850190+2 1.135011-2 3.051037+2 1.273503-2 1.907196+2 1.428894-2 1.185363+2 1.640590-2 6.645632+1 1.883649-2 3.697794+1 2.162719-2 2.042236+1 2.511886-2 1.065192+1 2.951209-2 5.244268+0 3.548134-2 2.314278+0 4.415704-2 8.688108-1 8.317638-2 5.002137-2 1.035142-1 1.877531-2 1.258925-1 7.870563-3 1.462177-1 4.071552-3 1.678804-1 2.231236-3 1.883649-1 1.360443-3 2.113489-1 8.351878-4 2.371374-1 5.163117-4 2.660725-1 3.215781-4 2.951209-1 2.115024-4 3.273407-1 1.400365-4 3.890451-1 7.120433-5 4.168694-1 5.463943-5 4.466836-1 4.221907-5 4.677351-1 3.575704-5 5.011872-1 2.807865-5 5.308844-1 2.307913-5 5.821032-1 1.702181-5 6.456542-1 1.214543-5 7.244360-1 8.213139-6 7.673615-1 6.787450-6 8.035261-1 5.856901-6 8.511380-1 4.925630-6 9.120108-1 4.032936-6 9.660509-1 3.424060-6 1.000000+0 3.122356-6 1.035142+0 2.866287-6 1.071519+0 2.645961-6 1.109175+0 2.454779-6 1.161449+0 2.236146-6 1.216186+0 2.049989-6 1.303167+0 1.813548-6 1.412538+0 1.584714-6 1.513561+0 1.415171-6 1.905461+0 9.433096-7 2.113489+0 7.912274-7 2.426610+0 6.307568-7 2.786121+0 5.066210-7 3.198895+0 4.098274-7 3.715352+0 3.281588-7 4.365158+0 2.603070-7 5.128614+0 2.080416-7 6.095369+0 1.649357-7 7.244360+0 1.316951-7 8.810489+0 1.028681-7 1.100000+1 7.844900-8 1.364583+1 6.078762-8 1.737801+1 4.600947-8 2.317395+1 3.333854-8 3.054921+1 2.464593-8 4.365158+1 1.682598-8 6.606934+1 1.089761-8 1.083927+2 6.539713-9 2.162719+2 3.237516-9 4.315191+2 1.612898-9 1.717908+3 4.03253-10 1.000000+5 6.91690-12 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 4.460800-4 1.858000-4 1.000000+5 1.858000-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.460800-4 4.746700-8 1.000000+5 4.746700-8 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.460800-4 2.602325-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 4.330900-4 1.048280+5 4.332000-4 1.031592+5 4.336000-4 9.972560+4 4.341000-4 9.623360+4 4.345000-4 9.391920+4 4.352000-4 9.066880+4 4.358000-4 8.854000+4 4.367000-4 8.609040+4 4.375000-4 8.450000+4 4.385000-4 8.306160+4 4.400000-4 8.164320+4 4.415704-4 8.077369+4 4.430000-4 8.034400+4 4.451800-4 8.013369+4 4.470000-4 8.029760+4 4.490000-4 8.086320+4 4.507000-4 8.174080+4 4.523000-4 8.298400+4 4.540000-4 8.484880+4 4.550000-4 8.624640+4 4.565000-4 8.882240+4 4.580000-4 9.203520+4 4.595000-4 9.595760+4 4.607000-4 9.965840+4 4.623810-4 1.057593+5 4.640000-4 1.127416+5 4.658000-4 1.219088+5 4.677351-4 1.335658+5 4.700000-4 1.498168+5 4.720000-4 1.667096+5 4.750000-4 1.968792+5 4.820000-4 2.912576+5 4.850000-4 3.418840+5 4.880000-4 3.981312+5 4.910000-4 4.595072+5 4.940000-4 5.254384+5 4.960000-4 5.716864+5 4.985000-4 6.318224+5 5.011872-4 6.990438+5 5.040000-4 7.718832+5 5.070000-4 8.518160+5 5.100000-4 9.335040+5 5.128614-4 1.012328+6 5.160000-4 1.098960+6 5.190000-4 1.181056+6 5.220000-4 1.261616+6 5.254100-4 1.350386+6 5.290000-4 1.439688+6 5.320000-4 1.510520+6 5.350000-4 1.577648+6 5.390000-4 1.661232+6 5.432503-4 1.742668+6 5.480000-4 1.825032+6 5.520000-4 1.887648+6 5.580000-4 1.970640+6 5.635000-4 2.035880+6 5.690000-4 2.091184+6 5.760000-4 2.148048+6 5.830000-4 2.191208+6 5.900000-4 2.222408+6 6.000000-4 2.250544+6 6.100000-4 2.263968+6 6.237348-4 2.265286+6 6.382635-4 2.250077+6 6.550000-4 2.215704+6 6.760830-4 2.158026+6 7.000000-4 2.079672+6 7.244360-4 1.993267+6 7.585776-4 1.868292+6 7.943282-4 1.738647+6 8.413951-4 1.575082+6 8.810489-4 1.447176+6 9.332543-4 1.292797+6 1.000000-3 1.119880+6 1.059254-3 9.864202+5 1.135011-3 8.401816+5 1.230269-3 6.919190+5 1.318257-3 5.814367+5 1.445440-3 4.565988+5 1.570000-3 3.648880+5 1.717908-3 2.834288+5 1.883649-3 2.172566+5 2.070000-3 1.641728+5 2.264644-3 1.248855+5 2.511886-3 9.039438+4 2.754229-3 6.735594+4 3.054921-3 4.802718+4 3.400000-3 3.358688+4 3.758374-3 2.385706+4 4.168694-3 1.663373+4 4.677351-3 1.104883+4 5.248075-3 7.277101+3 5.800000-3 5.029624+3 6.382635-3 3.512919+3 7.079458-3 2.367506+3 8.000000-3 1.474240+3 9.000000-3 9.266000+2 1.000000-2 6.077784+2 1.109175-2 3.991797+2 1.244515-2 2.486665+2 1.396368-2 1.539489+2 1.603245-2 8.588172+1 1.840772-2 4.753703+1 2.089296-2 2.745160+1 2.398833-2 1.497044+1 2.786121-2 7.705008+0 3.311311-2 3.551475+0 4.027170-2 1.463863+0 5.188000-2 4.605427-1 8.128305-2 5.876738-2 1.188502-1 1.044241-2 1.380384-1 5.323160-3 1.500000-1 3.676440-3 1.905461-1 1.303763-3 2.113489-1 8.267998-4 2.344229-1 5.340462-4 2.540973-1 3.824251-4 2.786121-1 2.629077-4 3.054921-1 1.820356-4 3.349654-1 1.269642-4 3.672823-1 8.921995-5 4.027170-1 6.318257-5 4.466836-1 4.319772-5 4.786301-1 3.371777-5 5.128614-1 2.649271-5 5.370318-1 2.265936-5 5.754399-1 1.806902-5 6.219700-1 1.411717-5 6.760830-1 1.089320-5 7.328245-1 8.536091-6 7.943282-1 6.732140-6 8.609938-1 5.343267-6 9.332543-1 4.267653-6 1.000000+0 3.537243-6 1.035142+0 3.242879-6 1.071519+0 2.990875-6 1.109175+0 2.773222-6 1.161449+0 2.525525-6 1.216186+0 2.315627-6 1.303167+0 2.049970-6 1.412538+0 1.793498-6 1.500000+0 1.628659-6 1.927525+0 1.047667-6 2.162719+0 8.627449-7 2.483133+0 6.886621-7 2.851018+0 5.537883-7 3.273407+0 4.484924-7 3.801894+0 3.595189-7 4.466836+0 2.854907-7 5.248075+0 2.284153-7 6.237348+0 1.812614-7 7.413102+0 1.448629-7 9.015711+0 1.132657-7 1.135011+1 8.560009-8 1.428894+1 6.527496-8 1.778279+1 5.078480-8 2.371374+1 3.682340-8 3.090295+1 2.757801-8 4.365158+1 1.906308-8 6.606934+1 1.234669-8 1.096478+2 7.322242-9 2.187762+2 3.625470-9 4.365158+2 1.806373-9 1.737801+3 4.51635-10 1.000000+5 7.83650-12 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 4.330900-4 1.840500-4 1.000000+5 1.840500-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.330900-4 1.082700-7 1.000000+5 1.082700-7 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.330900-4 2.489317-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.466400-4 4.810201+4 4.930000-4 3.685460+4 5.300000-4 3.458360+4 6.309573-4 2.946404+4 6.839116-4 2.716145+4 7.943282-4 2.308724+4 8.709636-4 2.077093+4 9.885531-4 1.779283+4 1.114000-3 1.528286+4 1.303167-3 1.238787+4 1.479108-3 1.038638+4 1.737801-3 8.237046+3 2.089296-3 6.264695+3 2.540973-3 4.642300+3 3.090295-3 3.413770+3 3.758374-3 2.491285+3 4.518559-3 1.839469+3 5.495409-3 1.322380+3 6.606934-3 9.618887+2 7.943282-3 6.944672+2 9.549926-3 4.977474+2 1.161449-2 3.466562+2 1.396368-2 2.447438+2 1.678804-2 1.715138+2 2.018366-2 1.192806+2 2.426610-2 8.231900+1 2.917427-2 5.637579+1 3.507519-2 3.830850+1 4.216965-2 2.583045+1 5.069907-2 1.728217+1 6.095369-2 1.146989+1 7.413102-2 7.361612+0 8.810489-2 4.943303+0 1.096478-1 2.960702+0 1.428894-1 1.578498+0 2.630268-1 3.642494-1 3.273407-1 2.167495-1 3.935501-1 1.409800-1 4.623810-1 9.741892-2 5.308844-1 7.143045-2 6.165950-1 5.142941-2 7.161434-1 3.731538-2 8.317638-1 2.728669-2 9.440609-1 2.107898-2 1.109175+0 1.533537-2 1.273503+0 1.173849-2 1.445440+0 9.262838-3 1.621810+0 7.519560-3 1.840772+0 6.022099-3 2.113489+0 4.763450-3 2.426610+0 3.797405-3 2.786121+0 3.050011-3 3.198895+0 2.467245-3 3.715352+0 1.975569-3 4.365158+0 1.567087-3 5.128614+0 1.252439-3 6.095369+0 9.929227-4 7.244360+0 7.928203-4 8.810489+0 6.193042-4 1.100000+1 4.722800-4 1.364583+1 3.659534-4 1.737801+1 2.769908-4 2.317395+1 2.007015-4 3.054921+1 1.483821-4 4.365158+1 1.012942-4 6.606934+1 6.560562-5 1.083927+2 3.937082-5 2.162719+2 1.949083-5 4.315191+2 9.710084-6 1.717908+3 2.427664-6 1.000000+5 4.164100-8 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.466400-4 2.057600-4 1.000000+5 2.057600-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.466400-4 8.930900-9 1.000000+5 8.930900-9 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.466400-4 1.408711-4 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.813300-4 1.600802+5 2.827000-4 1.525348+5 2.840000-4 1.470522+5 2.855000-4 1.423166+5 2.868000-4 1.390614+5 2.890000-4 1.347210+5 2.925000-4 1.292136+5 3.019952-4 1.164789+5 3.200000-4 9.524620+4 3.430000-4 7.572840+4 3.672823-4 6.189321+4 3.890451-4 5.255120+4 4.073803-4 4.641123+4 4.216965-4 4.252690+4 4.365158-4 3.918912+4 4.550000-4 3.578640+4 4.731513-4 3.305919+4 4.954502-4 3.031147+4 5.188000-4 2.796524+4 5.432503-4 2.596182+4 5.688529-4 2.425872+4 6.000000-4 2.259860+4 6.382635-4 2.098549+4 6.839116-4 1.945597+4 7.413102-4 1.793161+4 8.317638-4 1.609948+4 1.109175-3 1.239013+4 1.273503-3 1.085074+4 1.450000-3 9.511680+3 1.659587-3 8.228704+3 1.883649-3 7.128274+3 2.150000-3 6.088060+3 2.454709-3 5.158184+3 2.800000-3 4.341300+3 3.198895-3 3.618889+3 3.650000-3 2.998460+3 4.168694-3 2.461572+3 4.731513-3 2.024493+3 5.370318-3 1.652787+3 6.095369-3 1.339327+3 6.839116-3 1.099145+3 7.762471-3 8.783506+2 8.810489-3 6.967853+2 1.000000-2 5.488820+2 1.135011-2 4.293759+2 1.288250-2 3.335978+2 1.462177-2 2.574281+2 1.659587-2 1.973025+2 1.905461-2 1.464935+2 2.187762-2 1.079243+2 2.511886-2 7.890948+1 2.884032-2 5.727505+1 3.311311-2 4.127741+1 3.845918-2 2.872711+1 4.466836-2 1.984267+1 5.248075-2 1.321682+1 6.237348-2 8.481435+0 7.498942-2 5.241343+0 9.120108-2 3.118517+0 1.161449-1 1.628214+0 2.238721-1 2.758158-1 2.754229-1 1.583842-1 3.273407-1 1.004426-1 3.801894-1 6.814502-2 4.365158-1 4.796978-2 4.954502-1 3.500625-2 5.623413-1 2.572695-2 6.309573-1 1.957491-2 7.079458-1 1.499643-2 7.943282-1 1.157228-2 8.810489-1 9.206879-3 9.549926-1 7.756007-3 1.035142+0 6.580244-3 1.161449+0 5.240408-3 1.288250+0 4.297183-3 1.445440+0 3.473482-3 1.678804+0 2.655100-3 1.905461+0 2.129952-3 2.162719+0 1.720512-3 2.483133+0 1.373333-3 2.851018+0 1.104356-3 3.273407+0 8.943757-4 3.801894+0 7.169492-4 4.466836+0 5.693220-4 5.248075+0 4.555001-4 6.237348+0 3.614734-4 7.413102+0 2.889002-4 9.015711+0 2.258827-4 1.122018+1 1.730729-4 1.412538+1 1.319262-4 1.757924+1 1.026038-4 2.344229+1 7.437076-5 3.090295+1 5.499640-5 4.415704+1 3.755541-5 6.683439+1 2.432825-5 1.109175+2 1.443094-5 2.213095+2 7.146240-6 4.415704+2 3.560735-6 1.757924+3 8.903587-7 1.000000+5 1.562700-8 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.813300-4 1.848100-4 1.000000+5 1.848100-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.813300-4 1.630900-8 1.000000+5 1.630900-8 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.813300-4 9.650369-5 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.164200-4 3.685800+5 2.295000-4 3.333073+5 2.371374-4 3.161138+5 2.650000-4 2.676404+5 3.000000-4 2.288160+5 3.162278-4 2.152206+5 3.427678-4 1.976507+5 4.786301-4 1.403494+5 5.500000-4 1.208864+5 6.237348-4 1.048778+5 7.079458-4 9.026695+4 8.035261-4 7.711232+4 9.120108-4 6.540597+4 1.047129-3 5.422133+4 1.202264-3 4.459258+4 1.364583-3 3.703800+4 1.584893-3 2.951795+4 1.862087-3 2.291825+4 2.187762-3 1.764009+4 2.570396-3 1.346492+4 2.985383-3 1.039877+4 3.427678-3 8.138386+3 3.935501-3 6.327400+3 4.518559-3 4.885165+3 5.188000-3 3.744887+3 5.956621-3 2.848970+3 6.839116-3 2.151135+3 7.852356-3 1.611414+3 9.015711-3 1.197899+3 1.035142-2 8.838135+2 1.188502-2 6.469533+2 1.364583-2 4.698653+2 1.566751-2 3.385879+2 1.798871-2 2.421432+2 2.065380-2 1.718566+2 2.371374-2 1.210315+2 2.722701-2 8.457947+1 3.126079-2 5.867582+1 3.589219-2 4.041939+1 4.168694-2 2.678554+1 4.841724-2 1.761485+1 5.688529-2 1.112843+1 6.606934-2 7.212600+0 7.943282-2 4.195259+0 9.772372-2 2.262016+0 1.288250-1 9.827109-1 1.949845-1 2.805167-1 2.398833-1 1.507257-1 2.818383-1 9.358196-2 3.273407-1 6.054457-2 3.758374-1 4.080907-2 4.265795-1 2.863523-2 4.786301-1 2.089634-2 5.308844-1 1.584184-2 5.956621-1 1.173482-2 6.683439-1 8.758823-3 7.413102-1 6.778147-3 8.609938-1 4.721797-3 9.225714-1 4.019390-3 9.772372-1 3.533983-3 1.047129+0 3.051845-3 1.135011+0 2.593372-3 1.230269+0 2.219920-3 1.348963+0 1.871798-3 1.717908+0 1.215817-3 1.949845+0 9.760530-4 2.213095+0 7.893511-4 2.540973+0 6.308701-4 2.917427+0 5.079266-4 3.388442+0 4.048052-4 3.935501+0 3.250341-4 4.623810+0 2.585197-4 5.432503+0 2.071667-4 6.531306+0 1.621759-4 7.852356+0 1.279760-4 9.440609+0 1.017258-4 1.174898+1 7.807549-5 1.479108+1 5.960978-5 1.819701+1 4.703067-5 2.400000+1 3.454000-5 3.126079+1 2.588903-5 4.466836+1 1.768284-5 6.839116+1 1.132142-5 1.135011+2 6.717920-6 2.264644+2 3.327625-6 4.518559+2 1.658264-6 1.798871+3 4.146970-7 1.000000+5 7.448300-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.164200-4 1.312600-4 1.000000+5 1.312600-4 1 94000 7 7 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.164200-4 5.074100-9 1.000000+5 5.074100-9 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.164200-4 8.515493-5 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.195000-4 7.872882+5 1.196000-4 8.078520+5 1.202264-4 9.094397+5 1.208000-4 1.005904+6 1.213000-4 1.091604+6 1.217000-4 1.160636+6 1.222000-4 1.246808+6 1.227000-4 1.332524+6 1.233000-4 1.433772+6 1.237000-4 1.499680+6 1.242000-4 1.579584+6 1.247000-4 1.656336+6 1.252000-4 1.729416+6 1.258925-4 1.823870+6 1.265000-4 1.899392+6 1.270000-4 1.955944+6 1.277000-4 2.026216+6 1.285000-4 2.093176+6 1.293500-4 2.148432+6 1.302000-4 2.188068+6 1.310000-4 2.211744+6 1.320000-4 2.224688+6 1.330000-4 2.221476+6 1.340000-4 2.204912+6 1.350000-4 2.177680+6 1.365000-4 2.122060+6 1.380384-4 2.053201+6 1.400000-4 1.956208+6 1.430000-4 1.803304+6 1.479108-4 1.567686+6 1.540000-4 1.315316+6 1.584893-4 1.154777+6 1.640590-4 9.814294+5 1.698244-4 8.290473+5 1.905461-4 4.658844+5 2.018366-4 3.514314+5 2.120000-4 2.781816+5 2.207500-4 2.310008+5 2.280000-4 2.003360+5 2.350000-4 1.764840+5 2.400000-4 1.623104+5 2.454709-4 1.491052+5 2.520000-4 1.360184+5 2.580000-4 1.261424+5 2.635000-4 1.186044+5 2.691535-4 1.121307+5 2.754229-4 1.062229+5 2.818383-4 1.013308+5 2.884032-4 9.732008+4 2.951209-4 9.407140+4 3.030000-4 9.115200+4 3.100000-4 8.920800+4 3.180000-4 8.758240+4 3.280000-4 8.625080+4 3.390000-4 8.546280+4 3.535700-4 8.517732+4 3.715352-4 8.553015+4 4.415704-4 8.818131+4 4.731513-4 8.876900+4 5.011872-4 8.876912+4 5.308844-4 8.825552+4 5.650000-4 8.714040+4 6.025596-4 8.541051+4 6.382635-4 8.338275+4 6.850000-4 8.035080+4 7.328245-4 7.701000+4 7.852356-4 7.320988+4 8.500000-4 6.850880+4 9.120108-4 6.415614+4 9.885531-4 5.904592+4 1.071519-3 5.395224+4 1.161449-3 4.892800+4 1.258925-3 4.409396+4 1.380384-3 3.883083+4 1.500000-3 3.439592+4 1.659587-3 2.943841+4 1.840772-3 2.487018+4 2.018366-3 2.125142+4 2.213095-3 1.804344+4 2.426610-3 1.522308+4 2.691535-3 1.247809+4 3.000000-3 1.004736+4 3.311311-3 8.188685+3 3.672823-3 6.557335+3 4.073803-3 5.209934+3 4.518559-3 4.107765+3 5.011872-3 3.214477+3 5.559043-3 2.497139+3 6.165950-3 1.925803+3 6.839116-3 1.474626+3 7.585776-3 1.121352+3 8.413951-3 8.469325+2 9.440609-3 6.153016+2 1.059254-2 4.437367+2 1.188502-2 3.177266+2 1.333521-2 2.257988+2 1.479108-2 1.648359+2 1.659587-2 1.153631+2 1.883649-2 7.729054+1 2.162719-2 4.951594+1 2.454709-2 3.268598+1 2.818383-2 2.061782+1 3.235937-2 1.290597+1 3.758374-2 7.707852+0 4.365158-2 4.568874+0 5.188000-2 2.478828+0 6.309573-2 1.229353+0 8.128305-2 4.914561-1 1.333521-1 8.129788-2 1.659587-1 3.695267-2 1.972423-1 1.996164-2 2.317395-1 1.131205-2 2.660725-1 7.001462-3 3.019952-1 4.541367-3 3.388442-1 3.083898-3 3.801894-1 2.108992-3 4.265795-1 1.452684-3 4.677351-1 1.085072-3 5.069907-1 8.459850-4 5.559043-1 6.422008-4 6.382635-1 4.291337-4 7.079458-1 3.192391-4 8.128305-1 2.174683-4 8.709636-1 1.796751-4 9.225714-1 1.543809-4 9.660509-1 1.376131-4 1.011579+0 1.235268-4 1.059254+0 1.116024-4 1.122018+0 9.899679-5 1.188502+0 8.840266-5 1.273503+0 7.772038-5 1.396368+0 6.601557-5 1.531087+0 5.629614-5 1.840772+0 4.066114-5 2.065380+0 3.339789-5 2.371374+0 2.659052-5 2.722701+0 2.133114-5 3.126079+0 1.723513-5 3.630781+0 1.378450-5 4.265795+0 1.092253-5 5.011872+0 8.720244-6 5.956621+0 6.906315-6 7.079458+0 5.509256-6 8.609938+0 4.299433-6 1.059254+1 3.334606-6 1.300000+1 2.613100-6 1.678804+1 1.943410-6 2.264644+1 1.388887-6 3.019952+1 1.013512-6 4.315191+1 6.917639-7 6.531306+1 4.479287-7 1.071519+2 2.687532-7 2.137962+2 1.330261-7 4.265795+2 6.627080-8 1.698244+3 1.656767-8 1.000000+5 2.80920-10 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.195000-4 1.195000-4 1.000000+5 1.195000-4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.195000-4 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.098500-4 1.294627+6 1.099600-4 1.341774+6 1.102500-4 1.435152+6 1.106000-4 1.547586+6 1.110500-4 1.689852+6 1.115000-4 1.829142+6 1.120000-4 1.980708+6 1.124000-4 2.098650+6 1.129500-4 2.255262+6 1.135011-4 2.405592+6 1.141000-4 2.560842+6 1.146000-4 2.683164+6 1.152000-4 2.820426+6 1.159000-4 2.966202+6 1.165000-4 3.078096+6 1.171000-4 3.177330+6 1.177000-4 3.263520+6 1.185000-4 3.358146+6 1.192600-4 3.426449+6 1.200000-4 3.473664+6 1.208000-4 3.504390+6 1.216186-4 3.515949+6 1.227000-4 3.504024+6 1.235000-4 3.478314+6 1.245000-4 3.429768+6 1.258925-4 3.339041+6 1.273503-4 3.224674+6 1.292000-4 3.064296+6 1.318257-4 2.828723+6 1.350000-4 2.554914+6 1.412538-4 2.086052+6 1.462177-4 1.778350+6 1.520000-4 1.477860+6 1.584893-4 1.201779+6 1.778279-4 6.696606+5 1.862087-4 5.332367+5 1.930000-4 4.492992+5 2.000000-4 3.814422+5 2.065380-4 3.313300+5 2.120000-4 2.972892+5 2.170000-4 2.712552+5 2.220000-4 2.493438+5 2.280000-4 2.276082+5 2.330000-4 2.126844+5 2.380000-4 2.001972+5 2.430000-4 1.897830+5 2.483133-4 1.806434+5 2.540973-4 1.725946+5 2.600160-4 1.660656+5 2.660725-4 1.608569+5 2.730000-4 1.563786+5 2.800000-4 1.531296+5 2.884032-4 1.505317+5 2.985383-4 1.487828+5 3.100000-4 1.480554+5 3.235937-4 1.482727+5 3.467369-4 1.499928+5 3.890451-4 1.536646+5 4.200000-4 1.550916+5 4.500000-4 1.552038+5 4.786301-4 1.542326+5 5.069907-4 1.523909+5 5.400000-4 1.493826+5 5.754399-4 1.454074+5 6.165950-4 1.401520+5 6.606934-4 1.340633+5 7.079458-4 1.273406+5 7.585776-4 1.201672+5 8.200000-4 1.116894+5 8.912509-4 1.024584+5 9.660509-4 9.350716+4 1.047129-3 8.475886+4 1.135011-3 7.628926+4 1.244515-3 6.714988+4 1.364583-3 5.861223+4 1.479108-3 5.173272+4 1.640590-3 4.371084+4 1.819701-3 3.660673+4 2.018366-3 3.040195+4 2.220000-3 2.544936+4 2.426610-3 2.142745+4 2.660725-3 1.782531+4 2.951209-3 1.438490+4 3.235937-3 1.181295+4 3.589219-3 9.393401+3 3.981072-3 7.415421+3 4.415704-3 5.809592+3 4.897788-3 4.517173+3 5.432503-3 3.485386+3 6.025596-3 2.669367+3 6.683439-3 2.029757+3 7.413102-3 1.532687+3 8.222426-3 1.149383+3 9.120108-3 8.560188+2 1.023293-2 6.125324+2 1.148154-2 4.351715+2 1.288250-2 3.067963+2 1.412538-2 2.305441+2 1.584893-2 1.600546+2 1.778279-2 1.102931+2 2.018366-2 7.264824+1 2.290868-2 4.751460+1 2.600160-2 3.085008+1 2.951209-2 1.989090+1 3.388442-2 1.223027+1 3.890451-2 7.463810+0 4.466836-2 4.519607+0 5.248075-2 2.497309+0 6.456542-2 1.154490+0 1.273503-1 9.001532-2 1.548817-1 4.339453-2 1.819701-1 2.396144-2 2.113489-1 1.390788-2 2.398833-1 8.838182-3 2.691535-1 5.893037-3 3.000000-1 4.049685-3 3.349654-1 2.787871-3 3.715352-1 1.977701-3 4.120975-1 1.413862-3 4.518559-1 1.056488-3 4.897788-1 8.239735-4 5.308844-1 6.473214-4 5.821032-1 4.951818-4 6.456542-1 3.691931-4 7.079458-1 2.863977-4 7.762471-1 2.237819-4 8.609938-1 1.701338-4 9.120108-1 1.469627-4 9.660509-1 1.278914-4 1.011579+0 1.151815-4 1.071519+0 1.017997-4 1.135011+0 9.053819-5 1.216186+0 7.920523-5 1.318257+0 6.827401-5 1.640590+0 4.637764-5 1.883649+0 3.639957-5 2.113489+0 2.994409-5 2.426610+0 2.387157-5 2.786121+0 1.917283-5 3.198895+0 1.550950-5 3.715352+0 1.241912-5 4.365158+0 9.851263-6 5.128614+0 7.873130-6 6.095369+0 6.241724-6 7.244360+0 4.983776-6 8.810489+0 3.893055-6 1.100000+1 2.968800-6 1.364583+1 2.300438-6 1.737801+1 1.741207-6 2.317395+1 1.261681-6 3.054921+1 9.327116-7 4.365158+1 6.367664-7 6.606934+1 4.124053-7 1.083927+2 2.474924-7 2.162719+2 1.225229-7 4.315191+2 6.103895-8 1.717908+3 1.526036-8 1.000000+5 2.61760-10 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.098500-4 1.098500-4 1.000000+5 1.098500-4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.098500-4 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 7.400000-6 4.467599+5 7.440000-6 4.437774+5 7.700000-6 4.352351+5 7.943282-6 4.306623+5 8.128305-6 4.289398+5 8.420000-6 4.295085+5 8.709636-6 4.334852+5 9.015711-6 4.409554+5 9.332543-6 4.519332+5 9.660509-6 4.664644+5 1.000000-5 4.844677+5 1.035142-5 5.060215+5 1.071519-5 5.311972+5 1.122018-5 5.705935+5 1.180000-5 6.215506+5 1.244515-5 6.845978+5 1.333521-5 7.816042+5 1.445440-5 9.185961+5 1.640590-5 1.194603+6 2.070000-5 1.945819+6 2.264644-5 2.334628+6 2.454709-5 2.729820+6 2.600160-5 3.034873+6 2.754229-5 3.351875+6 2.917427-5 3.675021+6 3.080000-5 3.979134+6 3.235937-5 4.248969+6 3.400000-5 4.507357+6 3.589219-5 4.774328+6 3.801894-5 5.035696+6 4.027170-5 5.269652+6 4.265795-5 5.476743+6 4.518559-5 5.654212+6 4.800000-5 5.801609+6 5.080000-5 5.899040+6 5.308844-5 5.940029+6 5.559043-5 5.943168+6 5.821032-5 5.902319+6 6.070000-5 5.822849+6 6.309573-5 5.710613+6 6.580000-5 5.548452+6 6.839116-5 5.365630+6 7.079458-5 5.175256+6 7.328245-5 4.962296+6 7.585776-5 4.732081+6 7.852356-5 4.487360+6 8.150000-5 4.208659+6 8.413951-5 3.960932+6 8.709636-5 3.687137+6 9.015711-5 3.408640+6 9.332543-5 3.127186+6 9.660509-5 2.847249+6 9.950000-5 2.611364+6 1.023293-4 2.391055+6 1.050000-4 2.193445+6 1.083927-4 1.958873+6 1.110000-4 1.791310+6 1.135011-4 1.640522+6 1.170000-4 1.445887+6 1.205000-4 1.270459+6 1.240000-4 1.113231+6 1.273503-4 9.781533+5 1.303167-4 8.703491+5 1.340000-4 7.510401+5 1.365000-4 6.784641+5 1.400000-4 5.869778+5 1.430000-4 5.171609+5 1.465000-4 4.449731+5 1.500000-4 3.818136+5 1.531087-4 3.323818+5 1.566751-4 2.825333+5 1.603245-4 2.383805+5 1.640590-4 1.996059+5 1.670000-4 1.730760+5 1.705000-4 1.455365+5 1.740000-4 1.219007+5 1.770000-4 1.044201+5 1.800000-4 8.922219+4 1.835000-4 7.403147+4 1.865000-4 6.292701+4 1.905461-4 5.040307+4 2.018366-4 2.731856+4 2.045000-4 2.386583+4 2.068000-4 2.137185+4 2.090000-4 1.937045+4 2.110000-4 1.784914+4 2.125000-4 1.688005+4 2.140000-4 1.604801+4 2.155000-4 1.534431+4 2.168000-4 1.483183+4 2.183000-4 1.434591+4 2.196000-4 1.401072+4 2.213095-4 1.368336+4 2.240900-4 1.331622+4 2.264644-4 1.312028+4 2.290868-4 1.301489+4 2.317395-4 1.301528+4 2.344229-4 1.311620+4 2.371374-4 1.331464+4 2.398833-4 1.360954+4 2.426610-4 1.400153+4 2.454709-4 1.449278+4 2.483133-4 1.508682+4 2.511886-4 1.578842+4 2.540973-4 1.660353+4 2.570396-4 1.753916+4 2.600160-4 1.860327+4 2.630268-4 1.980468+4 2.660725-4 2.115288+4 2.691535-4 2.265795+4 2.722701-4 2.433023+4 2.786121-4 2.821790+4 3.000000-4 4.626877+4 3.090295-4 4.980826+4 3.162278-4 5.248197+4 3.235937-4 5.506625+4 3.311311-4 5.753987+4 3.427678-4 6.099917+4 3.548134-4 6.410308+4 3.672823-4 6.679944+4 3.801894-4 6.904702+4 3.935501-4 7.081649+4 4.027170-4 7.169975+4 4.168694-4 7.253565+4 4.315191-4 7.289742+4 4.466836-4 7.281399+4 4.623810-4 7.232270+4 4.786301-4 7.146720+4 5.011872-4 6.985050+4 5.248075-4 6.790825+4 5.495409-4 6.557475+4 5.754399-4 6.292724+4 6.095369-4 5.930595+4 6.456542-4 5.545644+4 6.839116-4 5.146563+4 7.244360-4 4.744020+4 7.673615-4 4.345433+4 8.128305-4 3.956194+4 8.709636-4 3.508406+4 9.332543-4 3.087785+4 1.000000-3 2.698695+4 1.071519-3 2.343999+4 1.148154-3 2.022974+4 1.244515-3 1.690343+4 1.348963-3 1.401803+4 1.462177-3 1.154889+4 1.584893-3 9.451441+3 1.717908-3 7.682615+3 1.883649-3 6.016283+3 2.089296-3 4.530981+3 2.290868-3 3.497135+3 2.511886-3 2.679221+3 2.722701-3 2.108678+3 2.985383-3 1.589652+3 3.273407-3 1.189662+3 3.630781-3 8.518288+2 4.073803-3 5.830097+2 4.518559-3 4.114275+2 5.011872-3 2.881547+2 5.559043-3 2.002512+2 6.165950-3 1.381465+2 6.839116-3 9.462712+1 7.585776-3 6.437361+1 8.413951-3 4.349987+1 9.440609-3 2.793331+1 1.071519-2 1.702476+1 1.202264-2 1.077887+1 1.355400-2 6.646792+0 1.531087-2 4.028205+0 1.737801-2 2.375072+0 1.995262-2 1.323903+0 2.317395-2 6.975740-1 2.691535-2 3.647733-1 3.126079-2 1.894418-1 3.758374-2 8.387256-2 4.677351-2 3.160543-2 9.015711-2 1.661638-3 1.122019-1 6.264589-4 1.364583-1 2.635612-4 1.531088-1 1.593494-4 1.737801-1 9.238022-5 1.972423-1 5.396403-5 2.264644-1 3.021034-5 2.540973-1 1.875889-5 2.851018-1 1.173517-5 3.162278-1 7.750246-6 3.507519-1 5.156758-6 3.890451-1 3.457690-6 4.315191-1 2.336218-6 4.731513-1 1.661464-6 5.069907-1 1.294467-6 5.495409-1 9.767290-7 5.956621-1 7.424479-7 6.456542-1 5.682157-7 7.079458-1 4.217558-7 8.035261-1 2.828885-7 8.413951-1 2.428848-7 8.810489-1 2.097528-7 9.225714-1 1.824543-7 9.549926-1 1.652606-7 9.885531-1 1.505069-7 1.023293+0 1.379025-7 1.059254+0 1.270860-7 1.096478+0 1.177220-7 1.148154+0 1.070451-7 1.202264+0 9.798846-8 1.288250+0 8.657134-8 1.396368+0 7.556087-8 1.513561+0 6.620962-8 1.905461+0 4.413280-8 2.113489+0 3.701929-8 2.426610+0 2.951195-8 2.786121+0 2.370347-8 3.198895+0 1.917427-8 3.715352+0 1.535299-8 4.365158+0 1.217845-8 5.128614+0 9.733277-9 6.095369+0 7.716575-9 7.244360+0 6.161416-9 8.810489+0 4.812909-9 1.100000+1 3.670300-9 1.364583+1 2.844015-9 1.737801+1 2.152531-9 2.344229+1 1.540065-9 3.090295+1 1.138813-9 4.415704+1 7.77698-10 6.683439+1 5.03784-10 1.109175+2 2.98836-10 2.213095+2 1.47983-10 4.415704+2 7.37348-11 1.757924+3 1.84373-11 1.000000+5 3.23610-13 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 7.400000-6 7.400000-6 1.000000+5 7.400000-6 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 7.400000-6 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 6.250000-6 7.373782+5 6.310000-6 7.301723+5 6.531306-6 7.155645+5 6.760830-6 7.067169+5 7.000000-6 7.030728+5 7.244360-6 7.049374+5 7.500000-6 7.116031+5 7.762471-6 7.232861+5 8.035261-6 7.396051+5 8.350000-6 7.632237+5 8.709636-6 7.957812+5 9.120108-6 8.390463+5 9.549926-6 8.902669+5 1.011579-5 9.656006+5 1.083927-5 1.073288+6 1.174898-5 1.224126+6 1.303167-5 1.461745+6 1.513561-5 1.906421+6 2.018366-5 3.201981+6 2.213095-5 3.757299+6 2.400000-5 4.297472+6 2.540973-5 4.698357+6 2.691535-5 5.110050+6 2.851018-5 5.522335+6 3.019952-5 5.925110+6 3.198895-5 6.306084+6 3.388442-5 6.660279+6 3.589219-5 6.982749+6 3.801894-5 7.266021+6 4.027170-5 7.512544+6 4.265795-5 7.720243+6 4.518559-5 7.881107+6 4.800000-5 7.999951+6 5.011872-5 8.043466+6 5.248075-5 8.043873+6 5.500000-5 7.994945+6 5.730000-5 7.901002+6 6.000000-5 7.733722+6 6.237348-5 7.547123+6 6.456542-5 7.343279+6 6.683439-5 7.103509+6 6.918310-5 6.835389+6 7.161434-5 6.543761+6 7.413102-5 6.227747+6 7.673615-5 5.892333+6 8.000000-5 5.473129+6 8.300000-5 5.089781+6 8.609938-5 4.698909+6 8.912509-5 4.330009+6 9.225714-5 3.961237+6 9.500000-5 3.649404+6 9.800000-5 3.324729+6 1.011579-4 3.003086+6 1.040000-4 2.730139+6 1.071519-4 2.447277+6 1.100000-4 2.211373+6 1.135011-4 1.945724+6 1.170000-4 1.705254+6 1.205000-4 1.489837+6 1.240000-4 1.298218+6 1.273503-4 1.134485+6 1.303167-4 1.004394+6 1.340000-4 8.612431+5 1.365000-4 7.745997+5 1.400000-4 6.658523+5 1.430000-4 5.832786+5 1.465000-4 4.984044+5 1.500000-4 4.245838+5 1.531087-4 3.671007+5 1.566751-4 3.094884+5 1.603245-4 2.588713+5 1.630000-4 2.265462+5 1.665000-4 1.896051+5 1.700000-4 1.580063+5 1.730000-4 1.347106+5 1.760000-4 1.145448+5 1.790000-4 9.715779+4 1.820000-4 8.221677+4 1.854000-4 6.788809+4 1.972423-4 3.525733+4 2.000000-4 3.053224+4 2.018366-4 2.853098+4 2.041738-4 2.642991+4 2.065380-4 2.471981+4 2.078400-4 2.392747+4 2.089296-4 2.333577+4 2.118800-4 2.201800+4 2.137962-4 2.135446+4 2.162719-4 2.068680+4 2.187762-4 2.020018+4 2.213095-4 1.987614+4 2.238721-4 1.970068+4 2.264644-4 1.966347+4 2.290868-4 1.975724+4 2.317395-4 1.997731+4 2.344229-4 2.032122+4 2.371374-4 2.078845+4 2.398833-4 2.138019+4 2.426610-4 2.209914+4 2.454709-4 2.294939+4 2.483133-4 2.393626+4 2.511886-4 2.506618+4 2.540973-4 2.634658+4 2.570396-4 2.778574+4 2.600160-4 2.939266+4 2.630268-4 3.117685+4 2.660725-4 3.314819+4 2.722701-4 3.769177+4 2.818383-4 4.614429+4 2.951209-4 6.068990+4 3.000000-4 6.674946+4 3.162278-4 7.311905+4 3.311311-4 7.863673+4 3.427678-4 8.262902+4 3.548134-4 8.639843+4 3.672823-4 8.984902+4 3.801894-4 9.288023+4 3.935501-4 9.539020+4 4.000000-4 9.636270+4 4.120975-4 9.704824+4 4.265795-4 9.727825+4 4.415704-4 9.693964+4 4.570882-4 9.608138+4 4.731513-4 9.475973+4 5.000000-4 9.195161+4 5.248075-4 8.889895+4 5.495409-4 8.552442+4 5.754399-4 8.178834+4 6.095369-4 7.676103+4 6.456542-4 7.149807+4 6.839116-4 6.611216+4 7.244360-4 6.073947+4 7.673615-4 5.546773+4 8.128305-4 5.035637+4 8.709636-4 4.451254+4 9.332543-4 3.905228+4 1.000000-3 3.402986+4 1.071519-3 2.947596+4 1.148154-3 2.537228+4 1.244515-3 2.113726+4 1.348963-3 1.747720+4 1.479108-3 1.396539+4 1.603245-3 1.140165+4 1.737801-3 9.246698+3 1.883649-3 7.446868+3 2.041738-3 5.942949+3 2.213095-3 4.711227+3 2.426610-3 3.586082+3 2.660725-3 2.710196+3 2.985383-3 1.897577+3 3.311311-3 1.366238+3 3.672823-3 9.760800+2 4.073803-3 6.918997+2 4.518559-3 4.865490+2 5.011872-3 3.395364+2 5.559043-3 2.351640+2 6.165950-3 1.616351+2 6.839116-3 1.102977+2 7.585776-3 7.474332+1 8.413951-3 5.030683+1 9.440609-3 3.215900+1 1.071519-2 1.950031+1 1.202264-2 1.228694+1 1.355400-2 7.537482+0 1.513561-2 4.767093+0 1.717908-2 2.796008+0 1.949845-2 1.627663+0 2.238721-2 8.957880-1 2.600160-2 4.654249-1 3.019952-2 2.400343-1 3.589219-2 1.108388-1 4.365158-2 4.579657-2 5.821032-2 1.236257-2 9.120108-2 1.595902-3 1.174898-1 5.057429-4 1.348963-1 2.719990-4 1.513561-1 1.632158-4 1.717908-1 9.387555-5 1.927525-1 5.718059-5 2.187762-1 3.339184-5 2.426610-1 2.165321-5 2.691535-1 1.414641-5 2.951209-1 9.757807-6 3.235937-1 6.780982-6 3.507519-1 4.963755-6 3.801894-1 3.656549-6 4.216965-1 2.489523-6 4.518559-1 1.938944-6 4.841724-1 1.520450-6 5.069907-1 1.299221-6 5.432503-1 1.034787-6 5.888437-1 7.996703-7 6.606935-1 5.565436-7 7.161434-1 4.345377-7 7.762471-1 3.415815-7 8.511380-1 2.605483-7 9.015711-1 2.214621-7 9.440609-1 1.957125-7 9.885531-1 1.741470-7 1.035142+0 1.561795-7 1.083927+0 1.411363-7 1.135011+0 1.283751-7 1.202264+0 1.148874-7 1.303167+0 9.924103-8 1.428894+0 8.462338-8 1.513561+0 7.673691-8 1.862087+0 5.322951-8 2.065380+0 4.459942-8 2.371374+0 3.550931-8 2.722701+0 2.848556-8 3.126079+0 2.301574-8 3.630781+0 1.840832-8 4.265795+0 1.458634-8 5.011872+0 1.164500-8 5.956621+0 9.222624-9 7.079458+0 7.356974-9 8.609938+0 5.741436-9 1.059254+1 4.453004-9 1.300000+1 3.489500-9 1.678804+1 2.595233-9 2.238721+1 1.878495-9 3.019952+1 1.353465-9 4.315191+1 9.23765-10 6.531306+1 5.98156-10 1.071519+2 3.58897-10 2.137962+2 1.77648-10 4.265795+2 8.84972-11 1.698244+3 2.21240-11 1.000000+5 3.75140-13 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 6.250000-6 6.250000-6 1.000000+5 6.250000-6 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 6.250000-6 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.312000-5 3.895960+5 5.370318-5 3.795705+5 5.495409-5 3.533027+5 5.650000-5 3.220820+5 6.382635-5 2.103379+5 6.650000-5 1.835262+5 6.918310-5 1.620393+5 7.161434-5 1.462381+5 7.413102-5 1.327526+5 7.673615-5 1.211954+5 8.000000-5 1.093506+5 8.317638-5 9.994621+4 8.709636-5 9.048472+4 9.150000-5 8.192800+4 9.660509-5 7.399954+4 1.020000-4 6.733400+4 1.071519-4 6.220828+4 1.135011-4 5.714483+4 1.202264-4 5.289327+4 1.273503-4 4.927368+4 1.380384-4 4.497562+4 1.621810-4 3.794856+4 2.317395-4 2.628291+4 2.722701-4 2.208341+4 3.235937-4 1.820200+4 3.758374-4 1.527278+4 4.466836-4 1.238330+4 5.248075-4 1.009745+4 6.165950-4 8.180034+3 7.413102-4 6.373348+3 8.810489-4 5.003305+3 1.047129-3 3.899526+3 1.258925-3 2.966437+3 1.550000-3 2.159840+3 1.905461-3 1.564304+3 2.426610-3 1.063651+3 3.090295-3 7.175912+2 3.890451-3 4.897911+2 4.841724-3 3.382507+2 5.956621-3 2.364026+2 7.244360-3 1.672766+2 8.810489-3 1.174839+2 1.047129-2 8.530021+1 1.273503-2 5.888275+1 1.566751-2 3.947057+1 2.089296-2 2.241476+1 2.511886-2 1.549705+1 3.000000-2 1.077813+1 3.548134-2 7.576414+0 4.216965-2 5.232640+0 5.069907-2 3.498387+0 6.095369-2 2.321306+0 7.413102-2 1.489508+0 8.709636-2 1.027064+0 1.083927-1 6.151139-1 1.412538-1 3.278667-1 2.630268-1 7.351796-2 3.235937-1 4.494074-2 3.890451-1 2.921591-2 4.570882-1 2.017836-2 5.248075-1 1.478677-2 6.095369-1 1.064019-2 7.079458-1 7.715494-3 8.222427-1 5.638905-3 9.332543-1 4.353063-3 1.071519+0 3.311369-3 1.250000+0 2.454300-3 1.412538+0 1.950434-3 1.584893+0 1.581149-3 1.798871+0 1.264556-3 2.044000+0 1.016600-3 2.344229+0 8.104142-4 2.691535+0 6.497133-4 3.090295+0 5.246368-4 3.589219+0 4.193709-4 4.216965+0 3.321177-4 4.954502+0 2.650031-4 5.888437+0 2.097679-4 7.000000+0 1.672100-4 8.413951+0 1.323573-4 1.023293+1 1.040125-4 1.244515+1 8.227706-5 1.603245+1 6.127334-5 2.089296+1 4.544004-5 2.851018+1 3.226422-5 4.073803+1 2.199445-5 6.025596+1 1.457116-5 9.885531+1 8.731602-6 1.927525+2 4.419541-6 3.845918+2 2.200126-6 1.531087+3 5.496725-7 1.000000+5 8.402900-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.312000-5 5.312000-5 1.000000+5 5.312000-5 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.312000-5 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.392000-5 9.744977+6 3.430000-5 9.270120+6 3.510000-5 8.413100+6 3.589219-5 7.706066+6 3.700000-5 6.893080+6 3.810000-5 6.229460+6 3.981072-5 5.400975+6 4.220000-5 4.508780+6 5.011872-5 2.683951+6 5.623413-5 1.881094+6 6.918310-5 9.872916+5 7.800000-5 6.848080+5 9.549926-5 3.733147+5 1.244515-4 1.698887+5 1.450000-4 1.086154+5 1.640590-4 7.619061+4 1.819701-4 5.696984+4 2.000000-4 4.399540+4 2.187762-4 3.465748+4 2.371374-4 2.816364+4 2.540973-4 2.372826+4 2.730000-4 1.999844+4 2.917427-4 1.718728+4 3.126079-4 1.478170+4 3.350000-4 1.280266+4 3.589219-4 1.118173+4 3.801894-4 1.004747+4 4.073803-4 8.900123+3 4.365158-4 7.937427+3 4.700000-4 7.075380+3 5.069907-4 6.334191+3 5.559043-4 5.584677+3 6.095369-4 4.961004+3 6.760830-4 4.372032+3 7.852356-4 3.673097+3 1.161449-3 2.357052+3 1.396368-3 1.899649+3 1.640590-3 1.561786+3 1.927525-3 1.274465+3 2.238721-3 1.047659+3 2.600160-3 8.550001+2 3.019952-3 6.925689+2 3.467369-3 5.662996+2 4.000000-3 4.564480+2 4.581000-3 3.692052+2 5.248075-3 2.962773+2 6.000000-3 2.367580+2 6.839116-3 1.887248+2 7.762471-3 1.505216+2 8.810489-3 1.192181+2 1.011579-2 9.173810+1 1.161449-2 7.003151+1 1.333521-2 5.303973+1 1.531087-2 3.985740+1 1.798871-2 2.835695+1 2.041738-2 2.149605+1 2.344229-2 1.576731+1 2.691535-2 1.148668+1 3.090295-2 8.309166+0 3.589219-2 5.804268+0 4.168694-2 4.023397+0 4.897788-2 2.689547+0 5.754399-2 1.784294+0 6.839116-2 1.140521+0 8.317638-2 6.811868-1 1.035142-1 3.798042-1 2.187762-1 5.007953-2 2.691535-1 2.873737-2 3.235937-1 1.766779-2 3.758374-1 1.198069-2 4.315191-1 8.428624-3 4.954502-1 5.975249-3 5.623413-1 4.391385-3 6.309573-1 3.341380-3 7.079458-1 2.559967-3 7.943282-1 1.975510-3 8.810489-1 1.571618-3 9.549926-1 1.323938-3 1.035142+0 1.123296-3 1.161449+0 8.945686-4 1.288250+0 7.335259-4 1.445440+0 5.929362-4 1.678804+0 4.532374-4 1.905461+0 3.635853-4 2.162719+0 2.936867-4 2.483133+0 2.344246-4 2.851018+0 1.885145-4 3.273407+0 1.526727-4 3.801894+0 1.223863-4 4.466836+0 9.718640-5 5.248075+0 7.775607-5 6.237348+0 6.170424-5 7.413102+0 4.931570-5 9.015711+0 3.855882-5 1.122018+1 2.954464-5 1.412538+1 2.251947-5 1.757924+1 1.751513-5 2.344229+1 1.269554-5 3.090295+1 9.388153-6 4.415704+1 6.410904-6 6.683439+1 4.152928-6 1.096478+2 2.492698-6 2.187762+2 1.234149-6 4.365158+2 6.149100-7 1.737801+3 1.537425-7 1.000000+5 2.667700-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.392000-5 3.392000-5 1.000000+5 3.392000-5 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.392000-5 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.342000-5 2.485194+7 2.360000-5 2.379260+7 2.426610-5 2.074284+7 2.483133-5 1.864841+7 2.550000-5 1.659632+7 2.630268-5 1.459101+7 2.722701-5 1.272746+7 2.819900-5 1.114311+7 2.960000-5 9.340360+6 3.150000-5 7.511040+6 3.427678-5 5.636683+6 4.000000-5 3.372256+6 4.623810-5 2.094697+6 5.128614-5 1.499830+6 5.559043-5 1.163763+6 6.000000-5 9.213400+5 6.456542-5 7.414472+5 6.918310-5 6.085716+5 7.328245-5 5.192783+5 7.800000-5 4.400560+5 8.317638-5 3.738683+5 8.810489-5 3.252114+5 9.332543-5 2.846589+5 9.900000-5 2.499124+5 1.060000-4 2.166124+5 1.135011-4 1.891338+5 1.220000-4 1.651148+5 1.303167-4 1.467995+5 1.400000-4 1.300548+5 1.513561-4 1.148747+5 1.650000-4 1.009640+5 1.819701-4 8.790953+4 2.065380-4 7.412528+4 2.371374-4 6.205274+4 4.120975-4 3.137607+4 5.069907-4 2.413187+4 6.095369-4 1.896745+4 7.161434-4 1.525490+4 8.511380-4 1.198423+4 1.000000-3 9.495640+3 1.174898-3 7.466152+3 1.364583-3 5.930749+3 1.603245-3 4.593217+3 1.883649-3 3.531018+3 2.238721-3 2.643793+3 2.630268-3 2.003539+3 3.090295-3 1.507049+3 3.589219-3 1.148864+3 4.168694-3 8.695037+2 4.841724-3 6.530511+2 5.559043-3 4.978324+2 6.382635-3 3.767831+2 7.328245-3 2.830614+2 8.413951-3 2.110690+2 9.660509-3 1.562278+2 1.122018-2 1.119769+2 1.288250-2 8.176468+1 1.479108-2 5.925247+1 1.678804-2 4.374145+1 1.905461-2 3.206566+1 2.187762-2 2.267952+1 2.511886-2 1.591859+1 2.884032-2 1.109064+1 3.311311-2 7.671627+0 3.845918-2 5.106099+0 4.466836-2 3.371595+0 5.188000-2 2.209922+0 6.095369-2 1.391642+0 7.244360-2 8.408987-1 8.810489-2 4.713012-1 1.071519-1 2.622946-1 1.972423-1 4.147120-2 2.426610-1 2.229427-2 2.851018-1 1.385033-2 3.311311-1 8.967134-3 3.801894-1 6.048904-3 4.315191-1 4.247965-3 4.841724-1 3.102576-3 5.370318-1 2.354089-3 6.025596-1 1.745314-3 6.760830-1 1.303889-3 7.498942-1 1.009951-3 8.609938-1 7.237986-4 9.225714-1 6.162388-4 9.772372-1 5.419003-4 1.047129+0 4.680459-4 1.135011+0 3.977560-4 1.230269+0 3.404636-4 1.348963+0 2.870532-4 1.717908+0 1.864154-4 1.949845+0 1.496652-4 2.238721+0 1.187920-4 2.570396+0 9.500067-5 2.951209+0 7.652190-5 3.427678+0 6.102192-5 4.000000+0 4.869000-5 4.677351+0 3.901215-5 5.495409+0 3.127864-5 6.606934+0 2.449826-5 7.943282+0 1.934188-5 9.549926+0 1.538095-5 1.174898+1 1.197291-5 1.479108+1 9.141121-6 1.819701+1 7.212154-6 2.400000+1 5.296700-6 3.126079+1 3.969992-6 4.466836+1 2.711690-6 6.839116+1 1.736120-6 1.135011+2 1.030156-6 2.264644+2 5.102881-7 4.518559+2 2.542928-7 1.798871+3 6.359327-8 1.000000+5 1.142200-9 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.342000-5 2.342000-5 1.000000+5 2.342000-5 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.342000-5 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.420000-6 9.579960+6 5.688529-6 8.243580+6 6.606934-6 5.113119+6 7.673615-6 3.197349+6 8.912509-6 2.015875+6 1.047129-5 1.237379+6 1.216186-5 7.925038+5 1.412538-5 5.112191+5 1.640590-5 3.324280+5 1.883649-5 2.251284+5 2.089296-5 1.691464+5 2.317395-5 1.279674+5 2.540973-5 1.005725+5 2.786121-5 7.964403+4 3.019952-5 6.541563+4 3.235937-5 5.561569+4 3.500000-5 4.659420+4 3.758374-5 3.994882+4 4.073803-5 3.381904+4 4.400000-5 2.906940+4 4.786301-5 2.485045+4 5.188000-5 2.153516+4 5.688529-5 1.842149+4 6.237348-5 1.588953+4 6.918310-5 1.355285+4 7.673615-5 1.163970+4 8.912509-5 9.437399+3 1.011579-4 7.955859+3 1.161449-4 6.638841+3 1.348963-4 5.505543+3 1.972423-4 3.515423+3 2.213095-4 3.043979+3 3.090295-4 1.968887+3 4.000000-4 1.409482+3 4.841724-4 1.092040+3 6.918310-4 6.662343+2 8.035261-4 5.380277+2 1.059254-3 3.581457+2 1.288250-3 2.663440+2 1.584893-3 1.931925+2 2.000000-3 1.336464+2 2.570396-3 8.910636+1 2.722701-3 8.108696+1 3.019952-3 6.769844+1 4.315191-3 3.721554+1 5.495409-3 2.464216+1 6.382635-3 1.898903+1 7.852356-3 1.312995+1 9.549926-3 9.199850+0 1.161449-2 6.399171+0 1.412538-2 4.417748+0 1.717908-2 3.026392+0 2.065380-2 2.104398+0 2.511886-2 1.419311+0 2.884032-2 1.068742+0 3.467369-2 7.262545-1 4.168694-2 4.897513-1 5.011872-2 3.277424-1 6.025596-2 2.175562-1 7.328245-2 1.396562-1 8.609938-2 9.633819-2 1.071519-1 5.772202-2 1.396368-1 3.077943-2 2.630268-1 6.716190-3 3.235937-1 4.106463-3 3.890451-1 2.670429-3 4.570882-1 1.845274-3 5.248075-1 1.353005-3 6.095369-1 9.743944-4 6.998420-1 7.248978-4 8.035261-1 5.432969-4 9.225714-1 4.104267-4 1.083927+0 2.986595-4 1.258925+0 2.234270-4 1.428894+0 1.761047-4 1.584893+0 1.457983-4 1.798871+0 1.166120-4 2.065380+0 9.212098-5 2.371374+0 7.334411-5 2.722701+0 5.883782-5 3.126079+0 4.754055-5 3.630781+0 3.802316-5 4.265795+0 3.012872-5 5.011872+0 2.405350-5 5.956621+0 1.904965-5 7.079458+0 1.519625-5 8.609938+0 1.185897-5 1.059254+1 9.197894-6 1.300000+1 7.207800-6 1.678804+1 5.360602-6 2.238721+1 3.880190-6 3.019952+1 2.795594-6 4.315191+1 1.908086-6 6.531306+1 1.235510-6 1.059254+2 7.501169-7 2.113489+2 3.712332-7 4.216965+2 1.849251-7 1.678804+3 4.622724-8 1.000000+5 7.74870-10 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.420000-6 5.420000-6 1.000000+5 5.420000-6 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.420000-6 0.0 1.000000+5 1.000000+5 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.625170-7 1.025500+0 1.215920-6 1.025800+0 1.554430-6 1.026100+0 1.950230-6 1.026600+0 2.749370-6 1.027100+0 3.740570-6 1.027500+0 4.685030-6 1.028100+0 6.378580-6 1.028750+0 8.625170-6 1.029500+0 1.180380-5 1.030100+0 1.484470-5 1.031000+0 2.031260-5 1.032000+0 2.779270-5 1.033200+0 3.893290-5 1.034000+0 4.779370-5 1.035300+0 6.487310-5 1.036640+0 8.625170-5 1.038200+0 1.163990-4 1.039700+0 1.512260-4 1.041500+0 2.012050-4 1.043800+0 2.792790-4 1.046400+0 3.885640-4 1.048300+0 4.837730-4 1.051200+0 6.562280-4 1.054080+0 8.625170-4 1.057700+0 1.175660-3 1.061100+0 1.529240-3 1.065100+0 2.024540-3 1.070400+0 2.824430-3 1.076200+0 3.903340-3 1.080600+0 4.874630-3 1.087100+0 6.567760-3 1.093710+0 8.625170-3 1.102600+0 1.195890-2 1.110700+0 1.559720-2 1.120600+0 2.086520-2 1.133300+0 2.901300-2 1.147500+0 4.005980-2 1.158200+0 4.978430-2 1.174100+0 6.653500-2 1.190110+0 8.625170-2 1.205100+0 1.073420-1 1.227500+0 1.436410-1 1.250000+0 1.857000-1 1.280300+0 2.506520-1 1.307700+0 3.169740-1 1.343000+0 4.119230-1 1.382200+0 5.280530-1 1.411700+0 6.215970-1 1.455800+0 7.690530-1 1.500000+0 9.236000-1 1.562500+0 1.148590+0 1.641100+0 1.435460+0 1.706900+0 1.674270+0 1.811600+0 2.046580+0 1.937200+0 2.479350+0 2.000000+0 2.692000+0 2.044000+0 2.840000+0 2.163500+0 3.230970+0 2.372600+0 3.874210+0 2.686300+0 4.751320+0 3.000000+0 5.546000+0 3.500000+0 6.693410+0 4.000000+0 7.733000+0 5.000000+0 9.557000+0 6.000000+0 1.111000+1 7.000000+0 1.250000+1 8.000000+0 1.375000+1 9.000000+0 1.490000+1 1.000000+1 1.596000+1 1.100000+1 1.695000+1 1.200000+1 1.787000+1 1.300000+1 1.872000+1 1.400000+1 1.953000+1 1.500000+1 2.028000+1 1.600000+1 2.098000+1 1.800000+1 2.226000+1 2.000000+1 2.340000+1 2.200000+1 2.444000+1 2.400000+1 2.539000+1 2.600000+1 2.626000+1 2.800000+1 2.705000+1 3.000000+1 2.778000+1 4.000000+1 3.076000+1 5.000000+1 3.298000+1 6.000000+1 3.470000+1 8.000000+1 3.723000+1 1.000000+2 3.902000+1 1.500000+2 4.183000+1 2.000000+2 4.350000+1 3.000000+2 4.545000+1 4.000000+2 4.656000+1 5.000000+2 4.729000+1 6.000000+2 4.782000+1 8.000000+2 4.851000+1 1.000000+3 4.896000+1 1.500000+3 4.960000+1 2.000000+3 4.996000+1 3.000000+3 5.033000+1 4.000000+3 5.056000+1 5.000000+3 5.069000+1 6.000000+3 5.078000+1 8.000000+3 5.090000+1 1.000000+4 5.098000+1 1.500000+4 5.107000+1 2.000000+4 5.113000+1 3.000000+4 5.118000+1 4.000000+4 5.122000+1 5.000000+4 5.125000+1 6.000000+4 5.126000+1 8.000000+4 5.127000+1 1.000000+5 5.128000+1 1 94000 7 8 2.390520+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.402690-7 2.090400+0 1.276650-6 2.094700+0 1.655370-6 2.099900+0 2.202240-6 2.106600+0 3.063500-6 2.114000+0 4.238740-6 2.119500+0 5.277200-6 2.127900+0 7.156880-6 2.136250+0 9.402690-6 2.147000+0 1.289180-5 2.156900+0 1.674480-5 2.169000+0 2.234700-5 2.184500+0 3.106310-5 2.201800+0 4.297670-5 2.214800+0 5.354570-5 2.234200+0 7.202840-5 2.253680+0 9.402690-5 2.281500+0 1.317010-4 2.307000+0 1.729890-4 2.338200+0 2.325980-4 2.377400+0 3.221200-4 2.410200+0 4.096820-4 2.446800+0 5.211380-4 2.485900+0 6.561420-4 2.532900+0 8.397240-4 2.556430+0 9.402690-4 2.611900+0 1.198960-3 2.660400+0 1.449500-3 2.745300+0 1.940090-3 2.809000+0 2.349580-3 2.904500+0 3.026840-3 3.000000+0 3.778000-3 3.125000+0 4.871070-3 3.234400+0 5.926200-3 3.425800+0 7.978030-3 3.569300+0 9.671720-3 3.784700+0 1.242820-2 4.000000+0 1.539000-2 4.250000+0 1.900950-2 4.625000+0 2.469480-2 5.000000+0 3.060000-2 5.500000+0 3.869570-2 6.000000+0 4.689000-2 6.750000+0 5.906820-2 7.000000+0 6.307000-2 8.000000+0 7.870000-2 9.000000+0 9.361000-2 1.000000+1 1.077000-1 1.100000+1 1.211000-1 1.200000+1 1.336000-1 1.300000+1 1.454000-1 1.400000+1 1.566000-1 1.500000+1 1.671000-1 1.600000+1 1.772000-1 1.800000+1 1.956000-1 2.000000+1 2.124000-1 2.200000+1 2.277000-1 2.400000+1 2.416000-1 2.600000+1 2.545000-1 2.800000+1 2.664000-1 3.000000+1 2.774000-1 4.000000+1 3.227000-1 5.000000+1 3.566000-1 6.000000+1 3.833000-1 8.000000+1 4.231000-1 1.000000+2 4.517000-1 1.500000+2 4.984000-1 2.000000+2 5.273000-1 3.000000+2 5.624000-1 4.000000+2 5.832000-1 5.000000+2 5.974000-1 6.000000+2 6.078000-1 8.000000+2 6.220000-1 1.000000+3 6.315000-1 1.500000+3 6.456000-1 2.000000+3 6.536000-1 3.000000+3 6.622000-1 4.000000+3 6.674000-1 5.000000+3 6.705000-1 6.000000+3 6.727000-1 8.000000+3 6.757000-1 1.000000+4 6.776000-1 1.500000+4 6.801000-1 2.000000+4 6.816000-1 3.000000+4 6.829000-1 4.000000+4 6.839000-1 5.000000+4 6.844000-1 6.000000+4 6.847000-1 8.000000+4 6.851000-1 1.000000+5 6.854000-1 1 94000 7 8 2.390520+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 94000 7 9 2.390520+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.400000+1 1.000000+5 9.400000+1 5.000000+5 9.396300+1 8.750000+5 9.391130+1 1.000000+6 9.389900+1 1.250000+6 9.385290+1 1.500000+6 9.380400+1 1.750000+6 9.372910+1 2.000000+6 9.365400+1 2.375000+6 9.351620+1 2.500000+6 9.346600+1 2.875000+6 9.330230+1 3.000000+6 9.324300+1 3.250000+6 9.310850+1 3.625000+6 9.291000+1 4.000000+6 9.270200+1 4.437500+6 9.243800+1 4.812500+6 9.219490+1 5.000000+6 9.207700+1 5.500000+6 9.172270+1 5.875000+6 9.144320+1 6.437500+6 9.100990+1 6.500000+6 9.095870+1 7.000000+6 9.056700+1 7.875000+6 8.986210+1 9.000000+6 8.892900+1 1.000000+7 8.806700+1 1.250000+7 8.590900+1 1.500000+7 8.365800+1 1.750000+7 8.135200+1 2.000000+7 7.901500+1 2.250000+7 7.665290+1 2.375000+7 7.547600+1 2.500000+7 7.432400+1 2.875000+7 7.097300+1 3.000000+7 6.990700+1 3.500000+7 6.588470+1 4.000000+7 6.226300+1 4.500000+7 5.898260+1 4.750000+7 5.744210+1 5.000000+7 5.597000+1 5.750000+7 5.184470+1 6.000000+7 5.057100+1 6.750000+7 4.700580+1 7.000000+7 4.590800+1 8.000000+7 4.192600+1 9.000000+7 3.852800+1 1.000000+8 3.557900+1 1.109400+8 3.271940+1 1.125000+8 3.233460+1 1.203100+8 3.048590+1 1.250000+8 2.942700+1 1.359400+8 2.708280+1 1.437500+8 2.552110+1 1.453100+8 2.521810+1 1.500000+8 2.433400+1 1.625000+8 2.213610+1 1.875000+8 1.856360+1 2.000000+8 1.717200+1 2.171900+8 1.563290+1 2.289100+8 1.479160+1 2.429700+8 1.397020+1 2.500000+8 1.362600+1 2.812500+8 1.240060+1 2.875000+8 1.216700+1 2.937500+8 1.192680+1 3.000000+8 1.167700+1 3.125000+8 1.115190+1 3.375000+8 1.015010+1 3.406300+8 1.003800+1 3.500000+8 9.728100+0 3.812500+8 8.883500+0 3.937500+8 8.549950+0 4.000000+8 8.373100+0 4.125000+8 7.996080+0 4.750000+8 6.192060+0 5.000000+8 5.663000+0 5.125000+8 5.449950+0 5.343800+8 5.139810+0 5.630900+8 4.818160+0 6.000000+8 4.485600+0 6.750000+8 3.949860+0 7.000000+8 3.805600+0 7.625000+8 3.489190+0 7.875000+8 3.361030+0 8.000000+8 3.294300+0 8.250000+8 3.154130+0 8.468800+8 3.028620+0 8.851600+8 2.812450+0 9.500000+8 2.482270+0 9.712900+8 2.387420+0 1.000000+9 2.271600+0 1.045900+9 2.114040+0 1.088000+9 1.994060+0 1.139500+9 1.871630+0 1.205600+9 1.744710+0 1.250000+9 1.674160+0 1.279200+9 1.632780+0 1.334400+9 1.563930+0 1.417200+9 1.478690+0 1.500000+9 1.409400+0 1.625000+9 1.325310+0 1.859400+9 1.198770+0 2.000000+9 1.129100+0 2.139200+9 1.060470+0 2.272600+9 9.961020-1 2.440400+9 9.184370-1 2.600300+9 8.487430-1 2.750000+9 7.878380-1 2.750300+9 7.877190-1 2.959000+9 7.098600-1 3.086500+9 6.662610-1 3.325700+9 5.920810-1 3.535000+9 5.348270-1 3.718100+9 4.899650-1 4.038600+9 4.217620-1 4.278900+9 3.780790-1 4.639500+9 3.225070-1 5.000000+9 2.768100-1 5.375000+9 2.376050-1 5.703100+9 2.089630-1 6.277300+9 1.687420-1 7.031000+9 1.299900-1 8.000000+9 9.573000-2 9.000000+9 7.195340-2 1.00000+10 5.557300-2 1.27030+10 3.077130-2 1.55700+10 1.854840-2 2.15420+10 8.225460-3 1.00000+11 1.691200-4 1.68570+11 4.540960-5 3.34410+11 8.187830-6 8.62510+11 7.808140-7 2.83020+12 4.200030-8 1.00000+14 7.04070-12 3.16230+15 1.49168-15 1.00000+17 3.03140-19 1 94000 7 0 2.390520+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.31000-11 1.000000+2 1.310000-9 1.000000+3 1.310000-7 1.000000+4 1.310000-5 1.000000+5 1.310000-3 5.000000+5 3.275000-2 8.750000+5 1.002969-1 1.000000+6 1.310000-1 1.250000+6 2.033920-1 1.500000+6 2.903000-1 1.750000+6 3.905550-1 2.000000+6 5.033000-1 2.375000+6 6.934590-1 2.500000+6 7.620000-1 2.875000+6 9.804540-1 3.000000+6 1.057200+0 3.250000+6 1.215410+0 3.625000+6 1.462910+0 4.000000+6 1.719400+0 4.437500+6 2.025560+0 4.812500+6 2.290960+0 5.000000+6 2.424000+0 5.500000+6 2.776820+0 5.875000+6 3.039410+0 6.437500+6 3.428240+0 6.500000+6 3.471030+0 7.000000+6 3.810600+0 7.875000+6 4.391070+0 9.000000+6 5.124300+0 1.000000+7 5.774000+0 1.250000+7 7.422200+0 1.500000+7 9.089000+0 1.750000+7 1.072000+1 2.000000+7 1.228800+1 2.250000+7 1.379560+1 2.375000+7 1.453030+1 2.500000+7 1.525400+1 2.875000+7 1.736020+1 3.000000+7 1.803900+1 3.500000+7 2.062030+1 4.000000+7 2.300700+1 4.500000+7 2.521700+1 4.750000+7 2.627650+1 5.000000+7 2.731500+1 5.750000+7 3.032490+1 6.000000+7 3.130100+1 6.750000+7 3.413830+1 7.000000+7 3.505900+1 8.000000+7 3.858000+1 9.000000+7 4.184000+1 1.000000+8 4.481200+1 1.109400+8 4.770350+1 1.125000+8 4.808570+1 1.203100+8 4.990330+1 1.250000+8 5.092400+1 1.359400+8 5.309620+1 1.437500+8 5.451740+1 1.453100+8 5.478850+1 1.500000+8 5.559300+1 1.625000+8 5.761410+1 1.875000+8 6.127900+1 2.000000+8 6.295600+1 2.171900+8 6.512740+1 2.289100+8 6.652020+1 2.429700+8 6.809790+1 2.500000+8 6.884900+1 2.812500+8 7.188590+1 2.875000+8 7.244120+1 2.937500+8 7.297130+1 3.000000+8 7.349400+1 3.125000+8 7.447410+1 3.375000+8 7.623830+1 3.406300+8 7.643980+1 3.500000+8 7.703500+1 3.812500+8 7.878770+1 3.937500+8 7.941340+1 4.000000+8 7.971400+1 4.125000+8 8.027910+1 4.750000+8 8.264480+1 5.000000+8 8.342600+1 5.125000+8 8.378460+1 5.343800+8 8.438000+1 5.630900+8 8.510430+1 6.000000+8 8.593700+1 6.750000+8 8.737380+1 7.000000+8 8.779200+1 7.625000+8 8.870370+1 7.875000+8 8.902550+1 8.000000+8 8.918300+1 8.250000+8 8.946200+1 8.468800+8 8.970000+1 8.851600+8 9.007090+1 9.500000+8 9.060280+1 9.712900+8 9.075180+1 1.000000+9 9.094800+1 1.045900+9 9.121330+1 1.088000+9 9.143040+1 1.139500+9 9.165780+1 1.205600+9 9.191200+1 1.250000+9 9.205100+1 1.279200+9 9.213680+1 1.334400+9 9.229390+1 1.417200+9 9.248050+1 1.500000+9 9.265500+1 1.625000+9 9.286480+1 1.859400+9 9.318060+1 2.000000+9 9.333700+1 2.139200+9 9.345250+1 2.272600+9 9.354160+1 2.440400+9 9.363630+1 2.600300+9 9.371180+1 2.750000+9 9.376530+1 2.750300+9 9.376540+1 2.959000+9 9.382250+1 3.086500+9 9.384890+1 3.325700+9 9.389560+1 3.535000+9 9.391970+1 3.718100+9 9.393490+1 4.038600+9 9.395970+1 4.278900+9 9.397310+1 4.639500+9 9.398190+1 5.000000+9 9.399000+1 5.375000+9 9.399150+1 5.703100+9 9.399280+1 6.277300+9 9.399480+1 7.031000+9 9.399730+1 8.000000+9 9.400000+1 9.000000+9 9.400000+1 1.00000+10 9.400000+1 1.27030+10 9.400000+1 1.55700+10 9.400000+1 2.15420+10 9.400000+1 1.00000+11 9.400000+1 1.68570+11 9.400000+1 3.34410+11 9.400000+1 8.62510+11 9.400000+1 2.83020+12 9.400000+1 1.00000+14 9.400000+1 3.16230+15 9.400000+1 1.00000+17 9.400000+1 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.157304-6 0.0 1.160153-6 9.238934-7 1.163002-6 1.828130-6 1.165850-6 3.339229-6 1.168699-6 5.630399-6 1.171547-6 8.763670-6 1.174396-6 1.259177-5 1.177244-6 1.670096-5 1.180093-6 2.044795-5 1.182941-6 2.311065-5 1.185790-6 2.411174-5 1.188639-6 2.322195-5 1.191487-6 2.064538-5 1.194336-6 1.694342-5 1.200033-6 8.976754-6 1.202881-6 5.795080-6 1.205730-6 3.453453-6 1.208578-6 1.899773-6 1.211427-6 9.647257-7 1.214276-6 0.0 1.835462-6 0.0 1.839980-6 3.102047-7 1.844498-6 6.138096-7 1.849016-6 1.121173-6 1.853533-6 1.890452-6 1.858051-6 2.942474-6 1.862569-6 4.227789-6 1.867087-6 5.607482-6 1.871604-6 6.865566-6 1.876122-6 7.759589-6 1.880640-6 8.095712-6 1.885158-6 7.796960-6 1.889676-6 6.931855-6 1.894193-6 5.688892-6 1.903229-6 3.014018-6 1.907747-6 1.945745-6 1.912264-6 1.159525-6 1.916782-6 6.378642-7 1.921300-6 3.239145-7 1.925818-6 0.0 2.338208-6 0.0 2.346841-6 1.861948-6 2.349718-6 2.474725-6 2.355474-6 4.520287-6 2.361229-6 7.621825-6 2.366984-6 1.186331-5 2.376975-6 2.112822-5 2.378633-6 2.272979-5 2.387415-6 3.151933+0 2.390342-6 4.189242+0 2.396197-6 7.651968+0 2.402052-6 1.290225+1 2.408586-6 2.113047+1 2.425837-6 4.723756+1 2.431863-6 5.316885+1 2.437582-6 5.511313+1 2.443982-6 5.226002+1 2.450092-6 4.557103+1 2.459878-6 3.057485+1 2.466454-6 2.057048+1 2.472308-6 1.327959+1 2.478163-6 7.913683+0 2.484018-6 4.353382+0 2.492434-6 1.244795+0 2.495727-6 0.0 2.524054-6 0.0 2.533373-6 1.64362-15 2.536479-6 2.18455-15 2.542692-6 3.99026-15 2.548904-6 6.72812-15 2.555117-6 1.04723-14 2.566377-6 1.90346-14 2.573755-6 2.44346-14 2.579967-6 2.76164-14 2.586180-6 2.88127-14 2.592393-6 2.77494-14 2.598605-6 2.46705-14 2.604818-6 2.02468-14 2.617243-6 1.07269-14 2.623456-6 6.92491-15 2.629668-6 4.12675-15 2.635881-6 2.27016-15 2.642094-6 1.15281-15 2.648306-6 0.0 2.769893-6 0.0 2.781824-6 7.352803+0 2.783528-6 8.392486+0 2.790346-6 1.532956+1 2.797164-6 2.584775+1 2.804834-6 4.242390+1 2.816778-6 7.434381+1 2.824861-6 9.463369+1 2.831975-6 1.065813+2 2.838523-6 1.104200+2 2.845610-6 1.053552+2 2.852931-6 9.173007+1 2.863663-6 6.357599+1 2.872159-6 4.121002+1 2.878976-6 2.660376+1 2.885794-6 1.585393+1 2.892612-6 8.721379+0 2.902839-6 2.217010+0 2.906247-6 0.0 3.026799-6 0.0 3.039837-6 6.977219-1 3.041699-6 7.963794-1 3.049149-6 1.454652+0 3.056600-6 2.452743+0 3.064720-6 3.970503+0 3.087331-6 9.052333+0 3.094316-6 1.009478+1 3.101766-6 1.047951+1 3.109681-6 9.976064+0 3.117628-6 8.674036+0 3.138550-6 3.910500+0 3.146000-6 2.524482+0 3.153451-6 1.504411+0 3.160901-6 8.275888-1 3.174360-6 8.145467-2 3.175801-6 3.36050-20 3.180468-6 2.65438-20 3.188017-6 1.71358-20 3.195567-6 1.02117-20 3.203117-6 5.61753-21 3.210666-6 2.85265-21 3.218216-6 0.0 3.427028-6 0.0 3.435463-6 7.22193-15 3.443898-6 1.42902-14 3.452334-6 2.61022-14 3.458474-6 3.91310-14 3.475499-6 6.809483-8 3.484012-6 1.243807-7 3.492524-6 2.097229-7 3.501037-6 3.264320-7 3.519815-6 6.507690-7 3.528250-6 7.811367-7 3.535087-6 8.608325-7 3.543600-6 8.981212-7 3.552113-6 8.649783-7 3.561991-6 7.469234-7 3.586163-6 3.343688-7 3.594676-6 2.158569-7 3.603188-6 1.286352-7 3.611701-6 7.076330-8 3.620213-6 3.593439-8 3.628726-6 0.0 3.681358-6 0.0 3.697330-6 5.703840-1 3.699622-6 6.547257-1 3.708942-6 1.216375+0 3.718091-6 2.050326+0 3.727624-6 3.241842+0 3.744576-6 5.871334+0 3.754268-6 7.273638+0 3.763741-6 8.203978+0 3.772802-6 8.496706+0 3.781598-6 8.154098+0 3.791225-6 7.136600+0 3.805666-6 4.947798+0 3.817276-6 3.174035+0 3.826337-6 2.049047+0 3.835398-6 1.221085+0 3.844460-6 6.717289-1 3.858051-6 1.707562-1 3.862582-6 0.0 3.976904-6 0.0 3.991587-6 9.487476-2 3.996481-6 1.260985-1 4.006269-6 2.303293-1 4.016058-6 3.883668-1 4.025847-6 6.044897-1 4.056595-6 1.434463+0 4.066274-6 1.603069+0 4.076014-6 1.655518+0 4.085311-6 1.587595+0 4.097999-6 1.341339+0 4.118514-6 1.582956+0 4.128471-6 1.987903+0 4.138567-6 2.787453+0 4.149236-6 4.094246+0 4.179508-6 8.836632+0 4.189232-6 9.886010+0 4.199466-6 1.026830+1 4.209256-6 9.884106+0 4.219657-6 8.750449+0 4.248970-6 4.172211+0 4.259056-6 2.916547+0 4.269141-6 2.005123+0 4.279227-6 1.399490+0 4.289313-6 1.015752+0 4.299399-6 5.745379-1 4.307704-6 5.218942-1 4.318102-6 4.272419-1 4.328500-6 3.225012-1 4.338898-6 2.244947-1 4.349296-6 1.441262-1 4.359170-6 8.734058-2 4.369469-6 4.804692-2 4.380491-6 2.268963-2 4.390066-6 2.436513-7 4.390889-6 2.334884-7 4.401287-6 1.391424-7 4.411685-6 7.654336-8 4.422083-6 3.886957-8 4.432481-6 0.0 4.543459-6 0.0 4.554642-6 1.420934-2 4.565825-6 2.811637-2 4.577008-6 5.135737-2 4.588191-6 8.659637-2 4.596513-6 1.224342-1 4.599374-6 1.658648-1 4.619140-6 4.857125-1 4.631192-6 7.703345-1 4.642480-6 1.125881+0 4.660532-6 1.869177+0 4.677656-6 2.628446+0 4.690237-6 3.073586+0 4.700023-6 3.296400+0 4.712854-6 3.305153+0 4.724338-6 3.071286+0 4.737257-6 2.574169+0 4.762237-6 1.400577+0 4.767121-6 1.184154+0 4.778272-6 7.931729-1 4.789224-6 5.266844-1 4.800512-6 3.716410-1 4.814770-6 3.016185-1 4.822787-6 2.736186-1 4.839219-6 4.101794-1 4.851130-6 5.577832-1 4.887336-6 9.500481-1 4.934508-6 1.558207+0 4.946419-6 1.643575+0 4.959166-6 1.630949+0 4.971373-6 1.515062+0 4.989178-6 1.218580+0 5.005974-6 9.054765-1 5.017886-6 7.286177-1 5.024688-6 6.615796-1 5.029797-6 6.243962-1 5.041708-6 5.984820-1 5.053619-6 6.395588-1 5.074351-6 7.914978-1 5.077441-6 8.044515-1 5.086779-6 8.849977-1 5.099208-6 9.449208-1 5.111637-6 9.542526-1 5.159405-6 8.304739-1 5.299540-6 7.999984-1 5.341724-6 8.222637-1 5.377015-6 9.019008-1 5.391661-6 9.521978-1 5.420697-6 9.799341-1 5.443006-6 9.495624-1 5.496532-6 7.799674-1 5.523668-6 7.320014-1 5.547449-6 7.156097-1 5.590880-6 7.321407-1 5.645256-6 7.756982-1 5.686038-6 7.589089-1 5.742242-6 7.080235-1 5.817713-6 7.065318-1 5.874851-6 6.893442-1 5.918081-6 7.196459-1 5.950174-6 7.887998-1 5.992975-6 9.237813-1 6.008876-6 9.550244-1 6.022165-6 9.627624-1 6.036950-6 9.478795-1 6.067683-6 8.529109-1 6.109453-6 6.997561-1 6.136235-6 6.331254-1 6.163898-6 5.898367-1 6.223474-6 5.747419-1 6.322841-6 5.929034-1 6.448230-6 5.853075-1 6.495611-6 6.106442-1 6.558786-6 6.716431-1 6.590374-6 6.692388-1 6.685228-6 5.595902-1 6.732722-6 5.455128-1 6.836590-6 5.800029-1 6.938278-6 5.470732-1 7.243080-6 5.096295-1 7.375954-6 4.818510-1 7.555520-6 4.876458-1 8.420000-6 4.341111-1 9.332543-6 4.101078-1 1.039665-5 4.140948-1 1.159580-5 4.510213-1 1.296986-5 5.290363-1 1.444572-5 6.529359-1 1.605254-5 8.316005-1 1.815925-5 1.138238+0 1.938604-5 1.355200+0 1.948147-5 3.494681+0 1.952919-5 5.257287+0 1.957690-5 7.925176+0 1.962462-5 1.157104+1 1.969619-5 1.840969+1 1.976777-5 2.515995+1 1.981548-5 2.825976+1 1.986959-5 2.929455+1 1.988876-5 2.888390+1 1.991092-5 3.235070+1 1.997616-5 3.928033+1 1.998667-5 4.017322+1 2.003562-5 4.975522+1 2.008764-5 6.828392+1 2.013751-5 9.494807+1 2.028345-5 1.975041+2 2.033727-5 2.215059+2 2.038463-5 2.281400+2 2.043175-5 2.186044+2 2.048500-5 1.902473+2 2.061591-5 9.170417+1 2.067202-5 5.633662+1 2.072098-5 3.423704+1 2.077058-5 1.945974+1 2.084422-5 6.055384+0 2.086784-5 1.660267+0 2.097756-5 1.683662+0 2.108083-5 2.062077+0 2.113267-5 2.369510+0 2.118410-5 2.825352+0 2.123573-5 3.447194+0 2.139063-5 5.758075+0 2.144227-5 6.288186+0 2.149390-5 6.494385+0 2.154553-5 6.331968+0 2.161683-5 5.601247+0 2.172324-5 5.319951+0 2.177645-5 5.682309+0 2.182966-5 6.737795+0 2.188818-5 8.797800+0 2.204249-5 1.627134+1 2.210234-5 1.832024+1 2.214890-5 1.910755+1 2.220634-5 1.881749+1 2.228539-5 1.659584+1 2.239424-5 1.274864+1 2.243637-5 1.170129+1 2.248120-5 1.094453+1 2.254599-5 1.063947+1 2.277291-5 1.164701+1 2.292337-5 1.148848+1 2.330511-5 1.057880+1 2.492107-5 9.219750+0 2.676442-5 8.419943+0 2.942118-5 8.034167+0 2.969919-5 8.025885+0 2.984539-5 1.740750+1 2.992306-5 2.589602+1 2.999616-5 3.792476+1 3.007328-5 5.537923+1 3.028857-5 1.138278+2 3.036893-5 1.274738+2 3.044048-5 1.311418+2 3.051001-5 1.260055+2 3.058674-5 1.112123+2 3.079672-5 5.387859+1 3.087106-5 3.740730+1 3.094191-5 2.576092+1 3.101501-5 1.778875+1 3.116121-5 8.042691+0 3.156038-5 8.289576+0 3.189260-5 9.087120+0 3.221504-5 1.065299+1 3.237510-5 1.212324+1 3.259205-5 1.434836+1 3.269313-5 1.485078+1 3.279864-5 1.475337+1 3.309188-5 1.344145+1 3.334693-5 1.318826+1 3.400000-5 1.335725+1 3.483079-5 1.271144+1 3.852298-5 1.228115+1 4.628850-5 1.268687+1 4.988589-5 1.318706+1 5.073910-5 1.382789+1 5.163278-5 1.342887+1 5.418138-5 1.372711+1 6.390300-5 1.399762+1 7.548071-5 1.315639+1 9.062327-5 1.082425+1 9.995572-5 9.072750+0 1.004478-4 9.964380+0 1.006938-4 1.073192+1 1.010265-4 1.249728+1 1.011132-4 1.307583+1 1.016110-4 3.667211+1 1.018599-4 5.485422+1 1.021087-4 8.087313+1 1.023920-4 1.207291+2 1.030157-4 2.217789+2 1.032552-4 2.522090+2 1.033991-4 2.636254+2 1.036701-4 2.675082+2 1.039156-4 2.519125+2 1.041797-4 2.175222+2 1.048464-4 1.041081+2 1.050953-4 7.007650+1 1.053443-4 4.509959+1 1.055930-4 2.859244+1 1.060908-4 8.588008+0 1.072098-4 9.226937+0 1.090821-4 9.001382+0 1.095242-4 9.100575+0 1.100699-4 2.335569+1 1.103550-4 3.601218+1 1.106214-4 5.370449+1 1.109295-4 8.197371+1 1.117185-4 1.669112+2 1.120242-4 1.863766+2 1.122587-4 1.912138+2 1.125143-4 1.837632+2 1.128001-4 1.617639+2 1.135679-4 7.829315+1 1.138375-4 5.435800+1 1.141071-4 3.678658+1 1.143766-4 2.517614+1 1.149158-4 1.115686+1 1.166278-4 1.254344+1 1.191950-4 1.275902+1 1.243152-4 1.384591+1 1.279162-4 1.396333+1 1.321250-4 1.341665+1 1.497245-4 8.907123+0 1.597539-4 6.886322+0 1.683643-4 5.530723+0 1.767721-4 4.497769+0 1.854000-4 3.694547+0 1.959899-4 2.978003+0 2.049306-4 2.550130+0 2.094857-4 2.419293+0 2.110530-4 2.455062+0 2.120924-4 2.563212+0 2.152310-4 3.217022+0 2.163640-4 3.314409+0 2.332228-4 2.919608+0 2.520000-4 2.705198+0 2.713123-4 2.671551+0 2.735454-4 2.796527+0 2.749288-4 2.991754+0 2.776348-4 3.541451+0 2.789516-4 3.664714+0 2.805414-4 3.608223+0 2.837473-4 3.375058+0 2.878635-4 3.310313+0 3.388515-4 3.540061+0 3.467547-4 3.844735+0 4.194155-4 4.271622+0 4.236127-4 4.500497+0 4.287691-4 5.204320+0 4.308645-4 5.314523+0 4.359303-4 5.195397+0 4.425247-4 5.719414+0 4.446191-4 5.700840+0 4.513000-4 5.391204+0 4.607000-4 5.545748+0 4.698500-4 5.997132+0 4.781838-4 6.806685+0 4.864977-4 8.118601+0 4.942435-4 9.837230+0 5.033182-4 1.240494+1 5.205000-4 1.840288+1 5.448752-4 2.694901+1 5.663168-4 3.259820+1 5.905765-4 3.675434+1 6.237348-4 3.969685+1 6.780569-4 4.121992+1 7.688730-4 4.021877+1 7.747431-4 4.166455+1 7.788091-4 4.428029+1 7.860714-4 5.016463+1 7.898996-4 5.044898+1 8.012167-4 4.418449+1 8.066051-4 4.314344+1 8.199651-4 4.355765+1 8.261090-4 4.538141+1 8.336755-4 4.859190+1 8.398149-4 4.823599+1 8.502293-4 4.503794+1 1.086719-3 3.863558+1 1.111032-3 4.016125+1 1.356276-3 3.366803+1 1.534720-3 3.040576+1 1.933081-3 2.389465+1 2.288036-3 1.966219+1 2.672636-3 1.629357+1 3.169400-3 1.315327+1 3.679497-3 1.085868+1 3.697744-3 1.158059+1 3.706575-3 1.221881+1 3.716024-3 1.332862+1 3.724862-3 1.482051+1 3.742890-3 1.912661+1 3.760914-3 2.392613+1 3.769970-3 2.579802+1 3.783607-3 2.730017+1 3.801614-3 2.727537+1 3.844226-3 2.475154+1 3.861082-3 2.415182+1 3.895407-3 2.449612+1 3.913685-3 2.551271+1 3.934519-3 2.801977+1 3.971390-3 3.347213+1 3.990769-3 3.440133+1 4.066134-3 3.168113+1 4.470156-3 2.756396+1 4.521458-3 2.844358+1 4.576034-3 3.018405+1 4.657602-3 3.000246+1 5.435001-3 2.378974+1 5.647744-3 2.381697+1 5.855863-3 2.278052+1 6.031509-3 2.255954+1 6.898426-3 1.857785+1 7.968650-3 1.502211+1 9.120108-3 1.225430+1 1.063162-2 9.702062+0 1.211307-2 7.937407+0 1.371968-2 6.532525+0 1.570839-2 5.281544+0 1.765006-2 4.408173+0 1.777678-2 4.525104+0 1.786159-2 4.875217+0 1.792537-2 5.390246+0 1.803247-2 6.733459+0 1.815998-2 8.447348+0 1.825034-2 9.219021+0 1.836118-2 9.586554+0 1.887286-2 9.314083+0 2.158370-2 7.422007+0 2.200472-2 7.269822+0 2.217890-2 7.593103+0 2.250235-2 9.177249+0 2.269949-2 9.600949+0 2.304845-2 9.967444+0 2.334140-2 1.051064+1 2.390782-2 1.031565+1 2.791576-2 8.143495+0 3.173375-2 6.669544+0 3.608621-2 5.436980+0 4.130303-2 4.373359+0 4.607421-2 3.661089+0 5.211150-2 2.990787+0 5.923970-2 2.418358+0 6.683864-2 1.977885+0 7.590553-2 1.597063+0 8.617908-2 1.289870+0 9.716468-2 1.052687+0 1.096951-1 8.571900-1 1.195661-1 7.476693-1 1.202264-1 7.755568-1 1.206241-1 8.318243-1 1.209666-1 9.238150-1 1.212994-1 1.064271+0 1.216877-1 1.297876+0 1.224495-1 1.905168+0 1.230303-1 2.350267+0 1.235503-1 2.631672+0 1.240972-1 2.788736+0 1.252500-1 2.852172+0 1.467343-1 2.246734+0 1.647776-1 1.874571+0 1.874587-1 1.535829+0 2.118961-1 1.270996+0 2.406594-1 1.044547+0 2.722702-1 8.661597-1 3.078276-1 7.209757-1 3.490568-1 5.998916-1 3.986805-1 4.966533-1 4.579009-1 4.112593-1 5.281697-1 3.414227-1 6.019340-1 2.900610-1 6.886570-1 2.474965-1 7.966672-1 2.101477-1 9.288457-1 1.785217-1 1.173413+0 1.383858-1 1.359923+0 1.169046-1 1.619761+0 9.563105-2 1.859734+0 8.162372-2 2.135261+0 6.966808-2 2.451607+0 5.946361-2 2.814822+0 5.075382-2 3.231848+0 4.331978-2 3.710658+0 3.697462-2 4.268021+0 3.149729-2 4.891600+0 2.693634-2 5.616308+0 2.299090-2 6.448384+0 1.962337-2 7.403736+0 1.674908-2 8.500626+0 1.429580-2 9.760024+0 1.220186-2 1.000000+1 2.551565-2 1 94000 7 0 2.390520+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.359756+1 2.039556-6-9.043246+1 2.276149-6-8.581366+1 2.346841-6-8.035016+1 2.372739-6-7.460651+1 2.404064-6-5.788429+1 2.410976-6-5.660300+1 2.417340-6-5.909227+1 2.424412-6-6.600615+1 2.431863-6-7.891483+1 2.437582-6-9.058274+1 2.443655-6-8.529191+1 2.451691-6-7.257680+1 2.457717-6-6.700829+1 2.465836-6-6.507458+1 2.476882-6-6.935652+1 2.503328-6-8.373195+1 2.536479-6-9.050103+1 2.575308-6-9.372085+1 2.697340-6-8.300232+1 2.738818-6-7.520541+1 2.757690-6-6.834349+1 2.768445-6-6.127352+1 2.774613-6-5.491950+1 2.783528-6-4.720498+1 2.791198-6-3.929721+1 2.799507-6-3.229190+1 2.804834-6-2.997154+1 2.809121-6-3.039559+1 2.813143-6-3.259486+1 2.816778-6-3.672294+1 2.822277-6-4.665063+1 2.828855-6-6.429135+1 2.837725-6-9.363199+1 2.847039-6-6.077012+1 2.853630-6-4.257538+1 2.858523-6-3.316379+1 2.861985-6-2.842536+1 2.865341-6-2.574661+1 2.868324-6-2.454882+1 2.871200-6-2.433316+1 2.877272-6-2.683566+1 2.885794-6-3.435158+1 2.897193-6-4.549649+1 2.905821-6-5.306405+1 2.910434-6-5.779317+1 2.924261-6-6.523131+1 2.949906-6-7.265197+1 2.978291-6-7.748347+1 3.070444-6-8.859151+1 3.093850-6-8.556939+1 3.124810-6-7.856974+1 3.151588-6-7.932740+1 3.210666-6-8.406100+1 3.511380-6-8.923725+1 3.690419-6-9.299664+1 3.726664-6-9.345086+1 3.754268-6-9.335453+1 3.804000-6-8.539774+1 4.006269-6-9.149549+1 4.120213-6-9.355736+1 4.179508-6-9.352239+1 4.231711-6-8.447407+1 4.279227-6-8.541358+1 4.432481-6-8.926141+1 4.683248-6-9.157222+1 4.767121-6-8.872121+1 4.934508-6-9.057621+1 1.358548-5-9.462791+1 1.686196-5-8.988573+1 1.815925-5-8.363309+1 1.882598-5-7.584676+1 1.916496-5-6.786709+1 1.935543-5-5.978215+1 1.952919-5-4.689141+1 1.964848-5-3.718109+1 1.972005-5-3.340413+1 1.982741-5-3.054569+1 1.986959-5-2.781579+1 1.988637-5-2.516424+1 1.989638-5-2.262453+1 1.991092-5-2.057244+1 1.996604-5-1.372231+1 1.998141-5-1.094858+1 1.999279-5-8.014498+0 2.001421-5-3.489410+0 2.002492-5-1.106455+0 2.003027-5 2.370911-1 2.003562-5 1.924832+0 2.004174-5 3.813302+0 2.005245-5 6.334589+0 2.007655-5 1.147304+1 2.008056-5 1.246128+1 2.008764-5 1.472630+1 2.009337-5 1.604856+1 2.010341-5 1.779957+1 2.013751-5 2.271658+1 2.015150-5 2.343897+1 2.016293-5 2.307494+1 2.017150-5 2.238131+1 2.018436-5 2.075154+1 2.019721-5 1.854310+1 2.020761-5 1.624878+1 2.021671-5 1.374426+1 2.022467-5 1.121118+1 2.023163-5 8.730412+0 2.024382-5 3.765619+0 2.025297-5-5.255063-1 2.025982-5-4.106999+0 2.026497-5-7.029414+0 2.027268-5-1.188753+1 2.027846-5-1.610449+1 2.028345-5-2.044987+1 2.031644-5-4.581767+1 2.032874-5-5.731706+1 2.034240-5-7.092858+1 2.037152-5-9.800474+1 2.038979-5-7.784467+1 2.042572-5-4.389258+1 2.043175-5-3.710561+1 2.044249-5-2.742241+1 2.045068-5-2.072373+1 2.047302-5-3.466122+0 2.047621-5-6.974255-1 2.047927-5 1.923089+0 2.048500-5 6.096030+0 2.049002-5 9.406277+0 2.049881-5 1.468926+1 2.051528-5 2.333545+1 2.053083-5 3.057140+1 2.055077-5 3.763704+1 2.057317-5 4.310008+1 2.059187-5 4.574779+1 2.060990-5 4.635794+1 2.065799-5 4.122505+1 2.067202-5 3.782876+1 2.071562-5 2.654075+1 2.072098-5 2.461090+1 2.077058-5 9.922118+0 2.077684-5 7.819353+0 2.078778-5 4.805670+0 2.080419-5 7.411881-1 2.082060-5-3.122817+0 2.084422-5-8.881311+0 2.085603-5-1.212226+1 2.086488-5-1.499399+1 2.087049-5-1.742504+1 2.088415-5-2.159199+1 2.091023-5-2.753333+1 2.095863-5-3.581841+1 2.102920-5-4.479810+1 2.113267-5-5.436217+1 2.128888-5-6.422659+1 2.144227-5-6.942714+1 2.161683-5-7.343969+1 2.193360-5-8.504781+1 2.206909-5-8.390963+1 2.228539-5-7.585637+1 2.239424-5-7.568725+1 2.266667-5-8.032438+1 2.777721-5-9.357822+1 2.831232-5-9.541710+1 2.905298-5-8.778293+1 2.942118-5-7.952195+1 2.960000-5-7.187838+1 2.969541-5-6.439335+1 2.977229-5-5.676209+1 2.984539-5-5.002475+1 2.994020-5-3.995044+1 3.001972-5-3.315034+1 3.007328-5-3.055543+1 3.010345-5-3.057116+1 3.014542-5-3.266525+1 3.018610-5-3.669021+1 3.023984-5-4.523802+1 3.027427-5-5.277977+1 3.035168-5-7.599332+1 3.040727-5-9.589549+1 3.045821-5-7.615554+1 3.052557-5-5.213781+1 3.058674-5-3.392924+1 3.062051-5-2.635834+1 3.065050-5-2.122182+1 3.066977-5-1.851216+1 3.070251-5-1.481557+1 3.072606-5-1.292744+1 3.074373-5-1.193139+1 3.075698-5-1.143116+1 3.077685-5-1.112831+1 3.078679-5-1.122931+1 3.085248-5-1.424688+1 3.087106-5-1.584195+1 3.093416-5-2.156925+1 3.104219-5-3.318421+1 3.114443-5-4.223649+1 3.119258-5-4.786536+1 3.130300-5-5.509503+1 3.152187-5-6.346988+1 3.189260-5-7.153830+1 3.242686-5-7.773108+1 3.309188-5-7.646889+1 3.511565-5-7.914479+1 4.373087-5-8.131629+1 5.418138-5-8.070790+1 7.548071-5-7.964696+1 8.239453-5-8.145186+1 9.062327-5-7.289028+1 9.434829-5-6.529308+1 9.646613-5-5.783076+1 9.797676-5-4.919616+1 9.879569-5-4.215176+1 9.945614-5-3.418482+1 9.988546-5-2.705822+1 1.002017-4-2.021468+1 1.003248-4-1.722656+1 1.004478-4-1.389158+1 1.006323-4-8.212773+0 1.006938-4-6.069053+0 1.008168-4-1.398076+0 1.008783-4 1.180740+0 1.009398-4 4.031793+0 1.010265-4 8.593682+0 1.010699-4 1.125417+1 1.011024-4 1.364030+1 1.011314-4 1.633785+1 1.011859-4 2.006001+1 1.013320-4 2.808801+1 1.015761-4 4.074741+1 1.018910-4 5.992620+1 1.021943-4 7.352040+1 1.023920-4 7.696892+1 1.025130-4 7.521323+1 1.026056-4 7.164763+1 1.027379-4 6.353021+1 1.028762-4 5.075182+1 1.030503-4 2.791117+1 1.031152-4 1.794763+1 1.031346-4 1.460899+1 1.031790-4 6.034756+0 1.032225-4-1.937755+0 1.032552-4-8.031727+0 1.032980-4-1.646904+1 1.033428-4-2.642814+1 1.033663-4-3.287921+1 1.034288-4-4.671912+1 1.035928-4-8.065291+1 1.036701-4-6.115498+1 1.038922-4-1.460518+1 1.039002-4-1.255666+1 1.039156-4-9.149792+0 1.039446-4-3.391183+0 1.039699-4 1.278047+0 1.040143-4 8.930747+0 1.041797-4 3.588490+1 1.042604-4 4.621662+1 1.043314-4 5.357617+1 1.044521-4 6.332479+1 1.045445-4 6.871296+1 1.046766-4 7.340760+1 1.048145-4 7.397260+1 1.050642-4 6.530279+1 1.053170-4 5.006956+1 1.056209-4 2.856936+1 1.060388-4 3.798740+0 1.060648-4 1.891646+0 1.060778-4 8.217705-1 1.060908-4-4.837425-1 1.061003-4-1.474471+0 1.061189-4-3.015910+0 1.061552-4-5.549243+0 1.061900-4-7.694438+0 1.062527-4-1.114526+1 1.063571-4-1.610606+1 1.065113-4-2.230057+1 1.067015-4-2.874896+1 1.070828-4-3.924045+1 1.077953-4-5.480088+1 1.089214-4-7.898354+1 1.090821-4-8.323902+1 1.094573-4-7.115069+1 1.095937-4-6.405258+1 1.100699-4-4.474038+1 1.103385-4-3.249984+1 1.104401-4-2.786246+1 1.105822-4-2.241461+1 1.106214-4-2.039366+1 1.106880-4-1.817985+1 1.107423-4-1.689327+1 1.109295-4-1.359329+1 1.109765-4-1.331405+1 1.110618-4-1.378755+1 1.111367-4-1.501273+1 1.112345-4-1.764096+1 1.113391-4-2.173138+1 1.114519-4-2.772426+1 1.115494-4-3.444931+1 1.116392-4-4.239828+1 1.119467-4-7.824816+1 1.119833-4-8.361184+1 1.121576-4-5.911120+1 1.122460-4-4.614006+1 1.122587-4-4.374360+1 1.124896-4-1.049785+1 1.124980-4-9.002537+0 1.125143-4-6.517406+0 1.125449-4-2.310329+0 1.125985-4 4.377950+0 1.127406-4 2.070739+1 1.127731-4 2.494196+1 1.128508-4 3.278290+1 1.129340-4 3.948820+1 1.130528-4 4.712698+1 1.132056-4 5.427882+1 1.133641-4 5.874368+1 1.135297-4 5.978387+1 1.138038-4 5.417717+1 1.140776-4 4.384605+1 1.144079-4 2.908237+1 1.145253-4 2.452350+1 1.147894-4 1.515665+1 1.148774-4 1.150597+1 1.148966-4 1.055800+1 1.149458-4 7.667840+0 1.149984-4 5.407229+0 1.150772-4 2.601564+0 1.151561-4 1.862897-1 1.152340-4-1.937441+0 1.153510-4-4.752191+0 1.154679-4-7.231038+0 1.156022-4-9.752274+0 1.158036-4-1.301876+1 1.161739-4-1.781985+1 1.166278-4-2.227600+1 1.172731-4-2.705128+1 1.184125-4-3.330163+1 1.195000-4-3.752428+1 1.217700-4-4.294729+1 1.243152-4-4.628870+1 1.295245-4-4.924634+1 2.152310-4-6.217721+1 2.741875-4-6.588791+1 3.405970-4-6.857062+1 4.182162-4-7.391739+1 4.670176-4-7.988739+1 5.117539-4-8.900933+1 5.400000-4-8.885200+1 6.535293-4-6.915269+1 7.293328-4-6.065200+1 7.788091-4-5.836452+1 7.976085-4-5.869553+1 8.236955-4-5.507537+1 8.502293-4-5.327836+1 8.802500-4-4.956391+1 9.745577-4-4.279415+1 1.068127-3-3.892927+1 1.111032-3-3.861288+1 1.144835-3-3.596397+1 1.258926-3-3.165496+1 1.454190-3-2.744731+1 1.550883-3-2.618892+1 1.686068-3-2.418256+1 1.933081-3-2.223862+1 2.288036-3-2.118047+1 2.672636-3-2.139263+1 3.066862-3-2.292011+1 3.344995-3-2.522399+1 3.535360-3-2.818532+1 3.641884-3-3.125891+1 3.697744-3-3.430683+1 3.760914-3-4.067999+1 3.788083-3-4.111196+1 3.861082-3-3.549045+1 3.903964-3-3.470227+1 3.971390-3-3.606777+1 4.003460-3-3.441601+1 4.066134-3-2.927520+1 4.130804-3-2.629464+1 4.243660-3-2.326581+1 4.378769-3-2.133344+1 4.470156-3-2.115972+1 4.535116-3-2.186823+1 4.576034-3-2.116623+1 4.657602-3-1.835965+1 4.762689-3-1.632169+1 4.948707-3-1.409650+1 5.178882-3-1.235046+1 5.394968-3-1.148890+1 5.549400-3-1.160038+1 5.725844-3-1.019853+1 5.912280-3-9.727887+0 6.081605-3-8.493405+0 6.354138-3-7.360609+0 6.737004-3-6.319685+0 7.228738-3-5.465036+0 7.804303-3-4.831961+0 8.405650-3-4.451030+0 9.120108-3-4.245783+0 1.015180-2-4.175117+0 1.158944-2-4.397104+0 1.319433-2-4.879755+0 1.482491-2-5.635196+0 1.608051-2-6.526649+0 1.687784-2-7.445048+0 1.738195-2-8.439747+0 1.765006-2-9.409471+0 1.783638-2-1.070302+1 1.799959-2-1.198183+1 1.809462-2-1.211999+1 1.820322-2-1.150761+1 1.844251-2-9.511236+0 1.865472-2-8.514431+0 1.901366-2-7.599159+0 1.954410-2-6.861196+0 2.029326-2-6.385718+0 2.100674-2-6.319135+0 2.158370-2-6.606427+0 2.192366-2-7.127867+0 2.229220-2-8.280864+0 2.244751-2-8.295234+0 2.277198-2-7.426898+0 2.317618-2-6.912128+0 2.365839-2-5.571280+0 2.410000-2-4.846109+0 2.479018-2-4.101891+0 2.563009-2-3.475857+0 2.673869-2-2.888174+0 2.791576-2-2.445701+0 2.936890-2-2.061037+0 3.102441-2-1.757217+0 3.320978-2-1.487169+0 3.500000-2-1.343428+0 3.797541-2-1.208136+0 4.130303-2-1.148726+0 4.607421-2-1.143347+0 5.452966-2-1.250638+0 8.617908-2-1.871114+0 1.010488-1-2.244885+0 1.096951-1-2.578392+0 1.149910-1-2.924814+0 1.179073-1-3.262105+0 1.195661-1-3.611980+0 1.208400-1-4.127678+0 1.218307-1-4.570365+0 1.224495-1-4.632838+0 1.232461-1-4.380898+0 1.248132-1-3.605058+0 1.260910-1-3.227562+0 1.283005-1-2.846771+0 1.314368-1-2.511806+0 1.369316-1-2.157724+0 1.431955-1-1.898523+0 1.530658-1-1.652332+0 1.647776-1-1.481144+0 1.790583-1-1.359316+0 2.031845-1-1.257960+0 2.406594-1-1.207847+0 3.643376-1-1.241405+0 6.650458-1-1.329407+0 1.546860+0-1.369470+0 4.694823+0-1.385504+0 1.000000+1-1.386131+0 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.610879-2 1.092053-6 1.443565-1 1.163583-6 1.954073-1 1.197722-6 2.248361-1 1.261732-6 2.915401-1 1.325740-6 3.752451-1 1.364141-6 4.364601-1 1.402754-6 5.074049-1 1.438954-6 5.833858-1 1.472891-6 6.645367-1 1.504707-6 7.505860-1 1.534534-6 8.412207-1 1.588713-6 1.034824+0 1.613290-6 1.137070+0 1.636331-6 1.243336+0 1.679533-6 1.469953+0 1.717335-6 1.702572+0 1.750411-6 1.938520+0 1.779353-6 2.174232+0 1.804678-6 2.406738+0 1.826836-6 2.635007+0 1.865614-6 3.092444+0 1.894697-6 3.492629+0 1.916510-6 3.835227+0 1.949228-6 4.426382+0 1.991704-6 5.353046+0 2.020973-6 6.134763+0 2.050243-6 7.066401+0 2.074635-6 7.985134+0 2.101394-6 9.177702+0 2.121907-6 1.024970+1 2.141139-6 1.141026+1 2.159168-6 1.266517+1 2.176071-6 1.401965+1 2.191917-6 1.547899+1 2.206772-6 1.704868+1 2.220700-6 1.873438+1 2.233756-6 2.054191+1 2.245997-6 2.247729+1 2.257473-6 2.454670+1 2.268231-6 2.675650+1 2.278317-6 2.911322+1 2.287773-6 3.162354+1 2.296638-6 3.429436+1 2.304948-6 3.713277+1 2.312740-6 4.014618+1 2.320044-6 4.334234+1 2.326892-6 4.672952+1 2.333312-6 5.031653+1 2.339330-6 5.411281+1 2.344972-6 5.812866+1 2.350262-6 6.237564+1 2.355221-6 6.686714+1 2.359871-6 7.161906+1 2.364229-6 7.665029+1 2.368315-6 8.198265+1 2.375977-6 9.407585+1 2.382681-6 1.077697+2 2.388547-6 1.232026+2 2.393679-6 1.403710+2 2.398171-6 1.590998+2 2.402100-6 1.790629+2 2.405539-6 1.998365+2 2.408547-6 2.209616+2 2.411180-6 2.419973+2 2.415499-6 2.823306+2 2.421672-6 3.543395+2 2.430683-6 4.943076+2 2.435588-6 5.889234+2 2.438579-6 6.527219+2 2.441569-6 7.207469+2 2.447549-6 8.671348+2 2.448296-6 8.861656+2 2.453529-6 1.021608+3 2.455585-6 1.074990+3 2.459509-6 1.175002+3 2.461565-6 1.225508+3 2.463527-6 1.271931+3 2.466237-6 1.332371+3 2.468526-6 1.379379+3 2.471469-6 1.433277+3 2.474086-6 1.474069+3 2.477134-6 1.512064+3 2.480627-6 1.541737+3 2.483617-6 1.554586+3 2.484658-6 1.556253+3 2.487628-6 1.552949+3 2.489820-6 1.542875+3 2.495668-6 1.485472+3 2.497533-6 1.458412+3 2.501933-6 1.379852+3 2.504302-6 1.330040+3 2.506299-6 1.284621+3 2.508264-6 1.237289+3 2.510616-6 1.177869+3 2.513638-6 1.098102+3 2.516325-6 1.025171+3 2.519132-6 9.481237+2 2.522536-6 8.550985+2 2.525291-6 7.812332+2 2.528655-6 6.940914+2 2.531271-6 6.293517+2 2.537695-6 4.845040+2 2.539981-6 4.383619+2 2.544347-6 3.586504+2 2.547387-6 3.096438+2 2.550488-6 2.650418+2 2.553607-6 2.254257+2 2.556630-6 1.917469+2 2.560469-6 1.551351+2 2.564307-6 1.247048+2 2.568913-6 9.524869+1 2.571984-6 7.927889+1 2.575055-6 6.581227+1 2.578126-6 5.450880+1 2.584267-6 3.718542+1 2.590409-6 2.522107+1 2.596551-6 1.702911+1 2.608834-6 7.719228+0 2.611905-6 6.357384+0 2.614976-6 5.266765+0 2.618047-6 4.408364+0 2.619720-6 4.026768+0 2.621381-6 3.702745+0 2.623029-6 3.431290+0 2.624663-6 3.207974+0 2.626286-6 3.028868+0 2.627895-6 2.890473+0 2.628693-6 2.835649+0 2.629885-6 2.770191+0 2.631069-6 2.723830+0 2.631855-6 2.703006+0 2.633421-6 2.684272+0 2.634975-6 2.694416+0 2.638058-6 2.794117+0 2.641092-6 2.988189+0 2.644080-6 3.264655+0 2.691132-6 1.632970+1 2.699954-6 2.086972+1 2.708225-6 2.604586+1 2.715979-6 3.187818+1 2.730063-6 4.557166+1 2.742441-6 6.213941+1 2.748057-6 7.160719+1 2.753321-6 8.194631+1 2.758257-6 9.323433+1 2.762883-6 1.055599+2 2.767221-6 1.190190+2 2.771288-6 1.337096+2 2.775100-6 1.497240+2 2.778674-6 1.671418+2 2.782025-6 1.860214+2 2.785166-6 2.063951+2 2.788112-6 2.282639+2 2.790872-6 2.515968+2 2.796049-6 3.042134+2 2.800579-6 3.618547+2 2.804542-6 4.232121+2 2.811045-6 5.511453+2 2.824116-6 9.450485+2 2.830563-6 1.225264+3 2.834969-6 1.454782+3 2.839258-6 1.709349+3 2.842744-6 1.939000+3 2.846229-6 2.188533+3 2.853201-6 2.741980+3 2.854072-6 2.815634+3 2.860172-6 3.352143+3 2.862569-6 3.570081+3 2.867143-6 3.990041+3 2.870684-6 4.312394+3 2.874115-6 4.616579+3 2.877655-6 4.915914+3 2.881086-6 5.186159+3 2.884136-6 5.405419+3 2.886954-6 5.587174+3 2.888493-6 5.676939+3 2.892578-6 5.879400+3 2.895768-6 5.998193+3 2.899124-6 6.083228+3 2.902567-6 6.126107+3 2.905505-6 6.126596+3 2.908971-6 6.084646+3 2.911398-6 6.028531+3 2.916378-6 5.848152+3 2.919161-6 5.712071+3 2.921038-6 5.607386+3 2.923785-6 5.437053+3 2.926454-6 5.254376+3 2.929885-6 4.998482+3 2.932935-6 4.755165+3 2.935876-6 4.510108+3 2.940342-6 4.125955+3 2.943828-6 3.822297+3 2.947749-6 3.483188+3 2.950799-6 3.224968+3 2.957771-6 2.666152+3 2.962454-6 2.323368+3 2.964742-6 2.167068+3 2.969970-6 1.838997+3 2.976855-6 1.470195+3 2.990230-6 9.455493+2 2.995435-6 8.000262+2 2.998008-6 7.381662+2 3.003112-6 6.325531+2 3.008136-6 5.477525+2 3.013082-6 4.795646+2 3.017950-6 4.244996+2 3.022743-6 3.797287+2 3.027460-6 3.430037+2 3.032104-6 3.125656+2 3.036676-6 2.870543+2 3.041175-6 2.654265+2 3.050035-6 2.305807+2 3.058617-6 2.039929+2 3.066931-6 1.830148+2 3.074985-6 1.660251+2 3.082788-6 1.519837+2 3.090346-6 1.401911+2 3.097669-6 1.301560+2 3.104763-6 1.215214+2 3.118507-6 1.072493+2 3.131392-6 9.618861+1 3.143472-6 8.739757+1 3.154796-6 8.026879+1 3.165413-6 7.439152+1 3.175367-6 6.947718+1 3.194029-6 6.153277+1 3.210359-6 5.567482+1 3.224648-6 5.121923+1 3.237150-6 4.774848+1 3.259029-6 4.246537+1 3.275439-6 3.904513+1 3.300053-6 3.460410+1 3.332851-6 2.968756+1 3.373767-6 2.475652+1 3.471966-6 1.632727+1 3.509466-6 1.389215+1 3.535191-6 1.238305+1 3.560915-6 1.097748+1 3.578065-6 1.008777+1 3.595214-6 9.229536+0 3.612364-6 8.397830+0 3.620939-6 7.990482+0 3.629514-6 7.588081+0 3.638088-6 7.190116+0 3.646663-6 6.796101+0 3.655238-6 6.405581+0 3.669874-6 5.745916+0 3.682681-6 5.174758+0 3.693887-6 4.679047+0 3.703692-6 4.248379+0 3.712272-6 3.874232+0 3.727286-6 3.227955+0 3.738547-6 2.754959+0 3.746992-6 2.411804+0 3.753326-6 2.164737+0 3.758077-6 1.987687+0 3.772329-6 1.525805+0 3.776971-6 1.410055+0 3.781614-6 1.320035+0 3.786257-6 1.262967+0 3.790899-6 1.247828+0 3.795542-6 1.285645+0 3.797863-6 1.328488+0 3.800184-6 1.389775+0 3.802506-6 1.471582+0 3.804246-6 1.547749+0 3.806858-6 1.688240+0 3.809469-6 1.863500+0 3.811791-6 2.051666+0 3.813532-6 2.214647+0 3.815817-6 2.459416+0 3.819335-6 2.911541+0 3.824886-6 3.837263+0 3.832836-6 5.707685+0 3.837934-6 7.309212+0 3.841319-6 8.570929+0 3.845108-6 1.018753+1 3.847381-6 1.126704+1 3.849742-6 1.247936+1 3.852842-6 1.421566+1 3.856827-6 1.669771+1 3.858525-6 1.784194+1 3.864337-6 2.215802+1 3.867971-6 2.516862+1 3.869909-6 2.686880+1 3.874994-6 3.163348+1 3.877418-6 3.404910+1 3.879355-6 3.604146+1 3.885703-6 4.290464+1 3.889541-6 4.725304+1 3.893759-6 5.214456+1 3.897505-6 5.653618+1 3.901417-6 6.111670+1 3.904942-6 6.518807+1 3.908589-6 6.929550+1 3.912729-6 7.376582+1 3.914374-6 7.546988+1 3.918643-6 7.965645+1 3.923073-6 8.357898+1 3.925288-6 8.535547+1 3.929733-6 8.850413+1 3.933401-6 9.065014+1 3.935381-6 9.162756+1 3.940230-6 9.346283+1 3.943786-6 9.428938+1 3.945663-6 9.454591+1 3.951884-6 9.451127+1 3.956381-6 9.365905+1 3.960740-6 9.220528+1 3.965537-6 8.994388+1 3.970186-6 8.715719+1 3.974319-6 8.425083+1 3.978305-6 8.112259+1 3.984356-6 7.588523+1 3.989080-6 7.149897+1 3.990260-6 7.037344+1 3.997493-6 6.333547+1 3.998526-6 6.232014+1 4.007973-6 5.312359+1 4.013286-6 4.813843+1 4.017419-6 4.441313+1 4.024504-6 3.841131+1 4.029692-6 3.436543+1 4.035338-6 3.032403+1 4.045084-6 2.425308+1 4.067472-6 1.435393+1 4.074935-6 1.211928+1 4.082398-6 1.031152+1 4.084886-6 9.792853+0 4.092348-6 8.457321+0 4.094882-6 8.071841+0 4.098682-6 7.550949+0 4.102483-6 7.092895+0 4.105800-6 6.739497+0 4.110687-6 6.289366+0 4.112580-6 6.135494+0 4.117629-6 5.775495+0 4.121416-6 5.549470+0 4.122678-6 5.481910+0 4.130251-6 5.153406+0 4.132776-6 5.072493+0 4.143122-6 4.898599+0 4.146628-6 4.904887+0 4.153320-6 5.031599+0 4.154595-6 5.075473+0 4.156826-6 5.169593+0 4.158499-6 5.255681+0 4.161008-6 5.411873+0 4.164368-6 5.676865+0 4.167237-6 5.959595+0 4.169091-6 6.172525+0 4.171383-6 6.471386+0 4.178403-6 7.660584+0 4.182352-6 8.534231+0 4.186894-6 9.744517+0 4.189663-6 1.059827+1 4.205780-6 1.749492+1 4.211420-6 2.071764+1 4.215974-6 2.361510+1 4.220887-6 2.701486+1 4.225429-6 3.038156+1 4.229349-6 3.343250+1 4.233731-6 3.696650+1 4.238102-6 4.058046+1 4.242484-6 4.424236+1 4.247088-6 4.807536+1 4.250162-6 5.059397+1 4.254020-6 5.367705+1 4.258400-6 5.702528+1 4.261457-6 5.923830+1 4.266471-6 6.259854+1 4.270421-6 6.496940+1 4.273623-6 6.668952+1 4.278972-6 6.912067+1 4.283683-6 7.076975+1 4.289993-6 7.221729+1 4.294591-6 7.271198+1 4.299708-6 7.271256+1 4.302997-6 7.241604+1 4.306287-6 7.189703+1 4.309905-6 7.108195+1 4.314655-6 6.965218+1 4.319235-6 6.792494+1 4.325890-6 6.489778+1 4.331018-6 6.222828+1 4.333582-6 6.080736+1 4.339351-6 5.745391+1 4.341274-6 5.630016+1 4.351531-6 5.001074+1 4.354095-6 4.843522+1 4.361787-6 4.379489+1 4.372043-6 3.797495+1 4.401615-6 2.479675+1 4.408226-6 2.262218+1 4.414631-6 2.075377+1 4.427039-6 1.771370+1 4.438673-6 1.542898+1 4.449579-6 1.366286+1 4.470028-6 1.102214+1 4.519234-6 6.461422+0 4.530976-6 5.567500+0 4.541251-6 4.834550+0 4.550241-6 4.237292+0 4.564991-6 3.381266+0 4.571013-6 3.094897+0 4.576283-6 2.886202+0 4.580894-6 2.743222+0 4.584929-6 2.654572+0 4.588460-6 2.609695+0 4.591549-6 2.599082+0 4.594252-6 2.614425+0 4.598982-6 2.704124+0 4.602530-6 2.831096+0 4.605190-6 2.964284+0 4.607186-6 3.087509+0 4.608683-6 3.193931+0 4.610928-6 3.377433+0 4.613173-6 3.591346+0 4.615899-6 3.895004+0 4.618839-6 4.280436+0 4.622558-6 4.861612+0 4.627053-6 5.717520+0 4.632622-6 7.036496+0 4.641966-6 9.981259+0 4.647929-6 1.239737+1 4.649910-6 1.330023+1 4.654433-6 1.555550+1 4.659312-6 1.829929+1 4.670738-6 2.601241+1 4.674223-6 2.871848+1 4.676439-6 3.052119+1 4.683804-6 3.694235+1 4.688383-6 4.123495+1 4.692242-6 4.500504+1 4.697335-6 5.015377+1 4.700958-6 5.390659+1 4.704835-6 5.797573+1 4.710075-6 6.351121+1 4.714758-6 6.843204+1 4.719706-6 7.353690+1 4.724897-6 7.871043+1 4.730150-6 8.367690+1 4.736822-6 8.946729+1 4.740618-6 9.245123+1 4.752268-6 9.991587+1 4.754264-6 1.009120+2 4.764097-6 1.045031+2 4.767793-6 1.052737+2 4.774850-6 1.058616+2 4.779084-6 1.056687+2 4.782261-6 1.052645+2 4.788046-6 1.039838+2 4.792769-6 1.024488+2 4.798969-6 9.983033+1 4.804947-6 9.673491+1 4.812632-6 9.207719+1 4.818324-6 8.824032+1 4.826861-6 8.205638+1 4.829707-6 7.991851+1 4.841090-6 7.121512+1 4.848953-6 6.524394+1 4.856114-6 5.996514+1 4.865936-6 5.311267+1 4.880297-6 4.414332+1 4.902030-6 3.325827+1 4.911246-6 2.960412+1 4.918547-6 2.708482+1 4.930564-6 2.360190+1 4.935423-6 2.241065+1 4.947511-6 1.993827+1 4.953555-6 1.894521+1 4.959600-6 1.810103+1 4.965644-6 1.739613+1 4.971688-6 1.682084+1 4.975561-6 1.651576+1 4.982338-6 1.609181+1 4.987421-6 1.585780+1 4.995046-6 1.562502+1 5.002670-6 1.551171+1 5.007953-6 1.548927+1 5.020042-6 1.555610+1 5.044218-6 1.581690+1 5.056307-6 1.583228+1 5.066154-6 1.573424+1 5.070854-6 1.564864+1 5.081428-6 1.536586+1 5.093023-6 1.492948+1 5.105406-6 1.436032+1 5.135310-6 1.290702+1 5.143015-6 1.258489+1 5.150720-6 1.230327+1 5.161535-6 1.198637+1 5.172350-6 1.176731+1 5.199906-6 1.163926+1 5.213684-6 1.177525+1 5.227463-6 1.201051+1 5.268536-6 1.295107+1 5.284717-6 1.325147+1 5.292204-6 1.335022+1 5.304924-6 1.344562+1 5.315125-6 1.345107+1 5.327963-6 1.336805+1 5.338617-6 1.322896+1 5.360099-6 1.279418+1 5.381502-6 1.223192+1 5.443606-6 1.055630+1 5.463069-6 1.013389+1 5.483360-6 9.777547+0 5.488194-6 9.707450+0 5.503399-6 9.530481+0 5.515789-6 9.442177+0 5.528527-6 9.412573+0 5.541057-6 9.451522+0 5.547556-6 9.500106+0 5.555794-6 9.590158+0 5.563829-6 9.708179+0 5.578511-6 9.994633+0 5.597402-6 1.046560+1 5.623008-6 1.115805+1 5.636650-6 1.148100+1 5.650423-6 1.173306+1 5.656079-6 1.180961+1 5.664564-6 1.189196+1 5.673049-6 1.193419+1 5.680716-6 1.193814+1 5.688384-6 1.191114+1 5.701886-6 1.179623+1 5.715389-6 1.161165+1 5.728892-6 1.137905+1 5.780873-6 1.038138+1 5.812661-6 9.876357+0 5.850697-6 9.410258+0 6.002867-6 8.049626+0 6.032418-6 7.838727+0 6.047193-6 7.759712+0 6.061968-6 7.705700+0 6.076744-6 7.680757+0 6.090522-6 7.685073+0 6.104300-6 7.714549+0 6.121069-6 7.777858+0 6.165395-6 7.985491+0 6.182792-6 8.033119+0 6.195118-6 8.042514+0 6.207444-6 8.029003+0 6.224496-6 7.972675+0 6.239272-6 7.892574+0 6.268822-6 7.674638+0 6.312041-6 7.337316+0 6.328820-6 7.232163+0 6.349207-6 7.133768+0 6.374540-6 7.053302+0 6.456000-6 6.898045+0 6.499458-6 6.764181+0 6.585827-6 6.450013+0 6.660594-6 6.166921+0 6.720273-6 5.892168+0 6.746812-6 5.765846+0 6.781046-6 5.636073+0 6.796999-6 5.602887+0 6.814078-6 5.595693+0 6.833069-6 5.628043+0 6.846240-6 5.676598+0 6.864871-6 5.778928+0 6.898215-6 6.027654+0 6.914435-6 6.155306+0 6.931164-6 6.273643+0 6.949583-6 6.374099+0 6.961541-6 6.417293+0 6.979399-6 6.445627+0 6.997289-6 6.430958+0 7.012413-6 6.388660+0 7.028522-6 6.319562+0 7.044599-6 6.232995+0 7.132039-6 5.709249+0 7.200000-6 5.393613+0 7.286561-6 5.054746+0 7.322430-6 4.936229+0 7.340365-6 4.888739+0 7.358300-6 4.852377+0 7.376235-6 4.829014+0 7.390767-6 4.820175+0 7.417669-6 4.826009+0 7.483845-6 4.894571+0 7.515504-6 4.900043+0 7.529229-6 4.889444+0 7.555585-6 4.846097+0 7.591455-6 4.749415+0 7.645259-6 4.582960+0 7.673615-6 4.510093+0 7.712819-6 4.435035+0 7.821543-6 4.282472+0 8.052392-6 3.924972+0 8.112131-6 3.827801+0 8.147728-6 3.763137+0 8.227304-6 3.600744+0 8.305803-6 3.442805+0 8.366640-6 3.341628+0 8.517224-6 3.137286+0 8.627178-6 2.983622+0 8.761224-6 2.800899+0 9.015711-6 2.455363+0 9.350000-6 2.016032+0 9.717453-6 1.571233+0 1.010000-5 1.161908+0 1.029404-5 9.764941-1 1.060658-5 7.074105-1 1.089959-5 4.935612-1 1.102178-5 4.166239-1 1.117428-5 3.346954-1 1.143180-5 2.263997-1 1.158670-5 1.806362-1 1.167323-5 1.629156-1 1.178893-5 1.483327-1 1.189957-5 1.444234-1 1.203626-5 1.539244-1 1.211176-5 1.666393-1 1.231069-5 2.255781-1 1.249718-5 3.159281-1 1.275134-5 5.049245-1 1.294884-5 7.090372-1 1.312465-5 9.311122-1 1.330514-5 1.103081+0 1.331291-5 1.105743+0 1.350658-5 1.045630+0 1.368429-5 9.127844-1 1.386588-5 7.800749-1 1.397679-5 7.032038-1 1.411738-5 6.114890-1 1.426453-5 5.236905-1 1.450597-5 4.027631-1 1.460455-5 3.638418-1 1.470655-5 3.314282-1 1.477707-5 3.141952-1 1.490647-5 2.945618-1 1.500351-5 2.910021-1 1.514908-5 3.060810-1 1.522079-5 3.237704-1 1.529464-5 3.500793-1 1.533229-5 3.669095-1 1.536993-5 3.861863-1 1.544523-5 4.325010-1 1.552052-5 4.899080-1 1.559581-5 5.593750-1 1.567591-5 6.476854-1 1.578404-5 7.928611-1 1.604756-5 1.296815+0 1.618438-5 1.661188+0 1.628699-5 1.990200+0 1.644092-5 2.587116+0 1.659484-5 3.328221+0 1.671738-5 4.042222+0 1.683992-5 4.887647+0 1.696245-5 5.886392+0 1.721365-5 8.527287+0 1.785574-5 2.123096+1 1.798233-5 2.536731+1 1.810341-5 3.010360+1 1.821691-5 3.539250+1 1.832332-5 4.126101+1 1.842309-5 4.773254+1 1.851661-5 5.482515+1 1.862142-5 6.420433+1 1.868649-5 7.093918+1 1.876356-5 7.999386+1 1.883580-5 8.972946+1 1.890354-5 1.001510+2 1.898617-5 1.148969+2 1.902656-5 1.230564+2 1.909370-5 1.382563+2 1.918374-5 1.624988+2 1.923726-5 1.794713+2 1.931595-5 2.088009+2 1.939140-5 2.431221+2 1.946472-5 2.842510+2 1.951517-5 3.184424+2 1.957315-5 3.655652+2 1.960994-5 4.009486+2 1.964863-5 4.438442+2 1.968249-5 4.870474+2 1.971212-5 5.299049+2 1.976397-5 6.182235+2 1.980285-5 6.973530+2 1.985389-5 8.205776+2 1.996854-5 1.189648+3 2.001757-5 1.389975+3 2.006659-5 1.617747+3 2.018917-5 2.341585+3 2.021368-5 2.525394+3 2.023820-5 2.728834+3 2.026397-5 2.968528+3 2.029948-5 3.353001+3 2.032558-5 3.684804+3 2.036709-5 4.320288+3 2.039378-5 4.812314+3 2.043493-5 5.722333+3 2.053965-5 9.017618+3 2.057815-5 1.059926+4 2.060094-5 1.161901+4 2.062982-5 1.298563+4 2.065329-5 1.414357+4 2.068853-5 1.592568+4 2.071599-5 1.731632+4 2.073912-5 1.846433+4 2.076327-5 1.961539+4 2.078698-5 2.067656+4 2.080804-5 2.154325+4 2.083321-5 2.246454+4 2.086183-5 2.333291+4 2.088619-5 2.390117+4 2.090804-5 2.426498+4 2.093216-5 2.449792+4 2.095232-5 2.455298+4 2.097336-5 2.447413+4 2.099632-5 2.423167+4 2.100131-5 2.415778+4 2.103887-5 2.337292+4 2.106510-5 2.260313+4 2.108365-5 2.196191+4 2.110578-5 2.110544+4 2.112757-5 2.017956+4 2.115364-5 1.898648+4 2.118088-5 1.766905+4 2.121231-5 1.609781+4 2.123746-5 1.482972+4 2.126575-5 1.341872+4 2.128775-5 1.234819+4 2.133804-5 1.004415+4 2.135533-5 9.309937+3 2.137183-5 8.640532+3 2.140479-5 7.400965+3 2.143863-5 6.267911+3 2.147107-5 5.314481+3 2.150609-5 4.426282+3 2.157942-5 2.992820+3 2.163215-5 2.261305+3 2.166106-5 1.945508+3 2.168998-5 1.680061+3 2.171637-5 1.475528+3 2.173471-5 1.351809+3 2.176347-5 1.184032+3 2.179250-5 1.042323+3 2.181764-5 9.383262+2 2.184305-5 8.479118+2 2.186941-5 7.671725+2 2.189577-5 6.974473+2 2.194850-5 5.836270+2 2.200123-5 4.947502+2 2.205395-5 4.233380+2 2.208061-5 3.924198+2 2.211111-5 3.607654+2 2.214855-5 3.269876+2 2.216893-5 3.108957+2 2.218931-5 2.964274+2 2.221402-5 2.810913+2 2.224366-5 2.659560+2 2.226765-5 2.563563+2 2.229801-5 2.476509+2 2.231669-5 2.442026+2 2.235236-5 2.415689+2 2.236768-5 2.419707+2 2.237761-5 2.426996+2 2.239173-5 2.443441+2 2.240321-5 2.461831+2 2.242043-5 2.497312+2 2.244897-5 2.574785+2 2.248366-5 2.694226+2 2.257520-5 3.072202+2 2.261747-5 3.238408+2 2.263607-5 3.303390+2 2.268340-5 3.436531+2 2.270559-5 3.480119+2 2.273251-5 3.515218+2 2.276271-5 3.530749+2 2.277852-5 3.528934+2 2.279826-5 3.517435+2 2.281523-5 3.499758+2 2.284068-5 3.460818+2 2.286613-5 3.408680+2 2.290254-5 3.315534+2 2.296130-5 3.135379+2 2.309091-5 2.726530+2 2.311854-5 2.651793+2 2.316390-5 2.543472+2 2.320527-5 2.460440+2 2.325430-5 2.379668+2 2.334643-5 2.266876+2 2.342882-5 2.190203+2 2.361316-5 2.035736+2 2.390154-5 1.803037+2 2.410229-5 1.669156+2 2.430618-5 1.554464+2 2.455234-5 1.435926+2 2.559682-5 1.053150+2 2.654440-5 8.078264+1 2.749162-5 6.206035+1 2.790732-5 5.543001+1 2.819449-5 5.152252+1 2.840797-5 4.908352+1 2.853477-5 4.787727+1 2.867089-5 4.683038+1 2.880700-5 4.608555+1 2.894311-5 4.567731+1 2.907253-5 4.558396+1 2.942676-5 4.581541+1 2.956613-5 4.588485+1 2.963113-5 4.604339+1 2.967312-5 4.623939+1 2.971379-5 4.652859+1 2.975320-5 4.692780+1 2.979137-5 4.745224+1 2.982835-5 4.811560+1 2.986417-5 4.893030+1 2.989887-5 4.990769+1 2.993249-5 5.105838+1 2.996506-5 5.239259+1 2.999756-5 5.397014+1 3.002718-5 5.565198+1 3.005679-5 5.759791+1 3.008547-5 5.976929+1 3.014105-5 6.492780+1 3.019315-5 7.117623+1 3.024200-5 7.863665+1 3.028779-5 8.744133+1 3.033072-5 9.772670+1 3.037097-5 1.096250+2 3.040871-5 1.232548+2 3.045007-5 1.416247+2 3.047724-5 1.560621+2 3.050833-5 1.753339+2 3.053748-5 1.965176+2 3.056481-5 2.195637+2 3.059043-5 2.443854+2 3.061444-5 2.708621+2 3.063696-5 2.988453+2 3.067918-5 3.607713+2 3.074844-5 4.948977+2 3.084778-5 7.804009+2 3.089854-5 9.802580+2 3.095060-5 1.230675+3 3.098840-5 1.444273+3 3.102819-5 1.700109+3 3.105094-5 1.861081+3 3.108906-5 2.155409+3 3.112718-5 2.480418+3 3.120818-5 3.267814+3 3.122605-5 3.457547+3 3.127966-5 4.055063+3 3.130899-5 4.396301+3 3.135590-5 4.954382+3 3.138172-5 5.264093+3 3.142064-5 5.727385+3 3.145519-5 6.128903+3 3.149129-5 6.531030+3 3.152087-5 6.842136+3 3.155773-5 7.199952+3 3.158938-5 7.475611+3 3.163406-5 7.805967+3 3.166894-5 8.010217+3 3.170888-5 8.180725+3 3.174600-5 8.275153+3 3.177183-5 8.303489+3 3.181168-5 8.286769+3 3.184883-5 8.206296+3 3.186245-5 8.161610+3 3.190728-5 7.959974+3 3.194205-5 7.749977+3 3.197245-5 7.532087+3 3.200872-5 7.235477+3 3.203049-5 7.040956+3 3.206893-5 6.672421+3 3.210909-5 6.261200+3 3.215703-5 5.748183+3 3.219570-5 5.326593+3 3.223920-5 4.853849+3 3.227304-5 4.492945+3 3.234702-5 3.743004+3 3.238298-5 3.404567+3 3.245163-5 2.815959+3 3.251905-5 2.317275+3 3.267628-5 1.454548+3 3.271624-5 1.295018+3 3.276800-5 1.118580+3 3.279620-5 1.035284+3 3.283960-5 9.227430+2 3.288303-5 8.269113+2 3.293607-5 7.292098+2 3.297586-5 6.677567+2 3.303553-5 5.912283+2 3.309520-5 5.299873+2 3.313593-5 4.953082+2 3.317666-5 4.654542+2 3.324124-5 4.264298+2 3.333958-5 3.827052+2 3.342104-5 3.578582+2 3.346833-5 3.473283+2 3.351561-5 3.392802+2 3.354580-5 3.353117+2 3.359109-5 3.308901+2 3.363638-5 3.280929+2 3.366906-5 3.269461+2 3.371807-5 3.263672+2 3.377233-5 3.269767+2 3.384896-5 3.292620+2 3.400968-5 3.349786+2 3.411494-5 3.365642+2 3.418460-5 3.360706+2 3.426952-5 3.338204+2 3.434045-5 3.307864+2 3.446694-5 3.237853+2 3.469244-5 3.109704+2 3.484304-5 3.045100+2 3.502402-5 2.990833+2 3.539493-5 2.898030+2 3.555620-5 2.847753+2 3.598579-5 2.702458+2 3.623927-5 2.631276+2 3.655328-5 2.562157+2 3.690016-5 2.501217+2 3.749402-5 2.417716+2 3.784923-5 2.377329+2 3.826913-5 2.337205+2 3.910891-5 2.275481+2 3.981072-5 2.239800+2 4.050621-5 2.213161+2 4.123942-5 2.194986+2 4.282833-5 2.179903+2 4.392621-5 2.184224+2 4.536477-5 2.203553+2 4.748623-5 2.251810+2 5.130821-5 2.362614+2 5.155936-5 2.377979+2 5.180840-5 2.403288+2 5.211885-5 2.450846+2 5.257015-5 2.532466+2 5.269888-5 2.551747+2 5.289176-5 2.573329+2 5.318194-5 2.588819+2 5.395900-5 2.598901+2 5.432503-5 2.617794+2 5.529369-5 2.685840+2 5.900000-5 2.895573+2 6.129893-5 3.020123+2 6.377180-5 3.141380+2 6.626560-5 3.250387+2 6.882302-5 3.343395+2 7.147299-5 3.407842+2 7.398471-5 3.435508+2 7.650177-5 3.425700+2 7.867200-5 3.387422+2 8.053998-5 3.324892+2 8.249734-5 3.230022+2 8.436734-5 3.107473+2 8.579577-5 2.992692+2 8.730570-5 2.884440+2 8.769391-5 2.883119+2 8.912509-5 3.019943+2 9.042147-5 3.236601+2 9.165626-5 3.488438+2 9.277887-5 3.766367+2 9.386420-5 4.093043+2 9.472738-5 4.405718+2 9.557097-5 4.769581+2 9.609035-5 5.029372+2 9.669266-5 5.372706+2 9.729464-5 5.770382+2 9.789290-5 6.232849+2 9.830400-5 6.598564+2 9.886999-5 7.180915+2 9.944295-5 7.886251+2 1.000000-4 8.717609+2 1.003610-4 9.355400+2 1.008443-4 1.036857+3 1.011919-4 1.124084+3 1.015498-4 1.230398+3 1.016988-4 1.280697+3 1.020590-4 1.421128+3 1.023293-4 1.548667+3 1.024626-4 1.620500+3 1.026564-4 1.737945+3 1.029743-4 1.973393+3 1.031041-4 2.089164+3 1.033313-4 2.327684+3 1.035017-4 2.543848+3 1.036295-4 2.731882+3 1.038212-4 3.064557+3 1.039170-4 3.257616+3 1.040129-4 3.471185+3 1.042689-4 4.159470+3 1.043969-4 4.578747+3 1.045249-4 5.056217+3 1.046529-4 5.598044+3 1.049729-4 7.272550+3 1.053604-4 9.995212+3 1.058313-4 1.436624+4 1.060905-4 1.718710+4 1.061229-4 1.755413+4 1.063497-4 2.017337+4 1.064388-4 2.121120+4 1.066413-4 2.353563+4 1.067552-4 2.479476+4 1.068425-4 2.572145+4 1.069671-4 2.697274+4 1.070973-4 2.816614+4 1.072408-4 2.931775+4 1.073763-4 3.022292+4 1.075547-4 3.110665+4 1.076877-4 3.151846+4 1.078413-4 3.171576+4 1.079709-4 3.164583+4 1.081325-4 3.125724+4 1.082460-4 3.079053+4 1.084385-4 2.965815+4 1.085461-4 2.885432+4 1.086301-4 2.815116+4 1.087501-4 2.704382+4 1.088659-4 2.587788+4 1.089786-4 2.466687+4 1.090759-4 2.357469+4 1.092011-4 2.212537+4 1.093307-4 2.059330+4 1.094603-4 1.905330+4 1.096116-4 1.727491+4 1.097195-4 1.603545+4 1.099787-4 1.321769+4 1.100068-4 1.292943+4 1.104017-4 9.288690+3 1.105997-4 7.778218+3 1.108405-4 6.224343+3 1.114485-4 3.503097+3 1.115874-4 3.077583+3 1.117577-4 2.632236+3 1.119368-4 2.242090+3 1.122025-4 1.784986+3 1.125386-4 1.372647+3 1.129435-4 1.079480+3 1.131331-4 1.016662+3 1.133292-4 1.006757+3 1.134759-4 1.040143+3 1.136097-4 1.104624+3 1.137168-4 1.181849+3 1.138048-4 1.263714+3 1.138363-4 1.297338+3 1.139109-4 1.386217+3 1.139732-4 1.470876+3 1.140817-4 1.642114+3 1.141860-4 1.836810+3 1.143589-4 2.229090+3 1.144686-4 2.525287+3 1.147477-4 3.453952+3 1.149000-4 4.070252+3 1.151040-4 5.015454+3 1.152142-4 5.581100+3 1.154690-4 7.022315+3 1.155617-4 7.586389+3 1.157547-4 8.814381+3 1.158703-4 9.574358+3 1.159973-4 1.042082+4 1.161101-4 1.117412+4 1.162279-4 1.195396+4 1.163790-4 1.292880+4 1.164991-4 1.367113+4 1.166366-4 1.447113+4 1.167922-4 1.529442+4 1.169150-4 1.587028+4 1.170577-4 1.644505+4 1.171930-4 1.688580+4 1.174573-4 1.742582+4 1.175358-4 1.750073+4 1.176670-4 1.753717+4 1.177852-4 1.747591+4 1.178755-4 1.737065+4 1.180045-4 1.713604+4 1.180875-4 1.693566+4 1.181704-4 1.669898+4 1.183277-4 1.615956+4 1.184919-4 1.548616+4 1.186705-4 1.465312+4 1.188463-4 1.375947+4 1.190310-4 1.277487+4 1.190925-4 1.244157+4 1.193816-4 1.088342+4 1.194355-4 1.059919+4 1.198747-4 8.444983+3 1.202631-4 6.865961+3 1.205569-4 5.900376+3 1.207039-4 5.489062+3 1.208591-4 5.102752+3 1.210123-4 4.766258+3 1.211602-4 4.479989+3 1.213108-4 4.223594+3 1.215154-4 3.924920+3 1.217512-4 3.640522+3 1.219659-4 3.426977+3 1.221184-4 3.296654+3 1.224253-4 3.076935+3 1.227625-4 2.884738+3 1.231545-4 2.706016+3 1.236154-4 2.536919+3 1.240424-4 2.407355+3 1.244515-4 2.301151+3 1.250267-4 2.174996+3 1.255463-4 2.079879+3 1.261492-4 1.987537+3 1.271314-4 1.868721+3 1.282629-4 1.766404+3 1.292187-4 1.700541+3 1.305651-4 1.630192+3 1.318257-4 1.581016+3 1.333767-4 1.535828+3 1.349617-4 1.501287+3 1.367016-4 1.471933+3 1.495347-4 1.316288+3 1.601021-4 1.201949+3 1.747575-4 1.065350+3 1.950074-4 9.104497+2 2.062583-4 8.362624+2 2.129307-4 7.928793+2 2.147619-4 7.800362+2 2.181170-4 7.532675+2 2.207458-4 7.316230+2 2.220726-4 7.244846+2 2.235602-4 7.215846+2 2.265952-4 7.250465+2 2.287461-4 7.260491+2 2.314127-4 7.234796+2 2.371374-4 7.131730+2 2.470193-4 6.917917+2 2.580540-4 6.647863+2 2.711199-4 6.313776+2 2.770268-4 6.152417+2 2.818383-4 6.002640+2 2.886545-4 5.732070+2 2.921207-4 5.626859+2 2.946556-4 5.574148+2 2.977422-4 5.550160+2 3.024502-4 5.551166+2 3.135574-4 5.470649+2 3.313467-4 5.242856+2 3.521729-4 4.911632+2 3.630781-4 4.718150+2 3.691990-4 4.638309+2 3.839997-4 4.417485+2 4.000000-4 4.127564+2 4.147200-4 3.825274+2 4.294573-4 3.481872+2 4.405208-4 3.190722+2 4.485075-4 2.966964+2 4.539930-4 2.809014+2 4.617211-4 2.596189+2 4.674150-4 2.448410+2 4.695663-4 2.386261+2 4.740821-4 2.247632+2 4.785000-4 2.109614+2 4.823000-4 1.987768+2 4.860250-4 1.863080+2 4.897788-4 1.733315+2 4.925000-4 1.638689+2 5.005886-4 1.374560+2 5.034262-4 1.295453+2 5.061050-4 1.230994+2 5.089370-4 1.176086+2 5.118240-4 1.136642+2 5.138929-4 1.120046+2 5.164668-4 1.114479+2 5.188000-4 1.125039+2 5.213111-4 1.154092+2 5.242880-4 1.213583+2 5.267647-4 1.284660+2 5.302484-4 1.418747+2 5.336385-4 1.587873+2 5.358587-4 1.719292+2 5.385139-4 1.897769+2 5.472485-4 2.638431+2 5.508738-4 3.006287+2 5.522490-4 3.153680+2 5.563119-4 3.611275+2 5.590310-4 3.933570+2 5.625437-4 4.365098+2 5.652500-4 4.706393+2 5.670000-4 4.930059+2 5.695000-4 5.252482+2 5.722500-4 5.609739+2 5.740000-4 5.837835+2 5.783487-4 6.404697+2 5.835516-4 7.078144+2 5.875000-4 7.582300+2 5.938930-4 8.380061+2 6.012602-4 9.265819+2 6.090372-4 1.015613+3 6.183151-4 1.114340+3 6.291439-4 1.218976+3 6.419607-4 1.330095+3 6.553600-4 1.434229+3 6.725079-4 1.551743+3 6.866865-4 1.636980+3 7.010158-4 1.711783+3 7.152725-4 1.776951+3 7.332714-4 1.847900+3 7.500000-4 1.901552+3 7.661617-4 1.941837+3 7.952509-4 1.996452+3 7.998800-4 2.031847+3 8.039388-4 2.091480+3 8.059774-4 2.132850+3 8.101171-4 2.233441+3 8.153122-4 2.353123+3 8.177028-4 2.388197+3 8.196352-4 2.402651+3 8.217253-4 2.403719+3 8.239990-4 2.389606+3 8.273981-4 2.348657+3 8.315046-4 2.291775+3 8.334121-4 2.269990+3 8.352366-4 2.254097+3 8.392795-4 2.238023+3 8.457780-4 2.259663+3 8.493280-4 2.290345+3 8.537498-4 2.345021+3 8.598929-4 2.444563+3 8.659643-4 2.537388+3 8.677467-4 2.556286+3 8.698830-4 2.571716+3 8.718755-4 2.578797+3 8.741814-4 2.579014+3 8.852644-4 2.536981+3 8.906620-4 2.536608+3 8.991624-4 2.568779+3 9.127475-4 2.632798+3 9.394234-4 2.733045+3 9.667460-4 2.814447+3 1.005971-3 2.907669+3 1.041118-3 2.967617+3 1.079182-3 3.007612+3 1.103859-3 3.014792+3 1.119647-3 3.014341+3 1.127315-3 3.019344+3 1.132844-3 3.028152+3 1.147780-3 3.075337+3 1.171584-3 3.172160+3 1.186160-3 3.216722+3 1.212031-3 3.270090+3 1.244753-3 3.316526+3 1.293285-3 3.365539+3 1.345609-3 3.402222+3 1.430843-3 3.428866+3 1.463553-3 3.449568+3 1.504072-3 3.461498+3 1.577288-3 3.457570+3 1.596526-3 3.462640+3 1.638400-3 3.489434+3 1.693332-3 3.503436+3 1.758556-3 3.505149+3 1.839586-3 3.491388+3 1.930301-3 3.467298+3 2.045414-3 3.429306+3 2.147460-3 3.385335+3 2.268127-3 3.325892+3 2.390164-3 3.260364+3 2.542034-3 3.167414+3 2.682337-3 3.075657+3 2.834230-3 2.965822+3 2.975827-3 2.854412+3 3.090751-3 2.756850+3 3.200272-3 2.656632+3 3.311311-3 2.546092+3 3.401707-3 2.445114+3 3.472011-3 2.357959+3 3.538334-3 2.266612+3 3.602156-3 2.167489+3 3.650428-3 2.081767+3 3.692232-3 1.996376+3 3.727204-3 1.912695+3 3.757108-3 1.827769+3 3.780933-3 1.750081+3 3.819455-3 1.621206+3 3.828787-3 1.595397+3 3.838488-3 1.573572+3 3.850147-3 1.555861+3 3.857449-3 1.550143+3 3.866729-3 1.549120+3 3.875718-3 1.554629+3 3.884780-3 1.566101+3 3.894112-3 1.583222+3 3.909398-3 1.619957+3 3.952244-3 1.742838+3 3.974138-3 1.798004+3 3.995707-3 1.841334+3 4.047197-3 1.928860+3 4.067265-3 1.974714+3 4.096400-3 2.059567+3 4.154094-3 2.251254+3 4.178424-3 2.328359+3 4.194304-3 2.375086+3 4.212269-3 2.423397+3 4.236714-3 2.480419+3 4.263694-3 2.531997+3 4.297320-3 2.582447+3 4.333862-3 2.624205+3 4.374719-3 2.658816+3 4.423459-3 2.687026+3 4.468318-3 2.701744+3 4.516027-3 2.704622+3 4.552940-3 2.696019+3 4.625937-3 2.664144+3 4.642628-3 2.663350+3 4.662874-3 2.671419+3 4.689335-3 2.699187+3 4.718592-3 2.748575+3 4.757621-3 2.824306+3 4.779458-3 2.862398+3 4.805037-3 2.899443+3 4.834456-3 2.932346+3 4.876908-3 2.966614+3 4.924115-3 2.993510+3 4.987786-3 3.018800+3 5.049185-3 3.035231+3 5.130789-3 3.047588+3 5.288475-3 3.049584+3 5.448773-3 3.027718+3 5.517478-3 3.010889+3 5.624061-3 2.971750+3 5.695330-3 2.944261+3 5.745415-3 2.938444+3 5.875265-3 2.959204+3 5.964160-3 2.952812+3 6.086532-3 2.931996+3 6.275931-3 2.951000+3 6.427508-3 2.942091+3 6.645311-3 2.910315+3 6.948243-3 2.852750+3 7.473885-3 2.736762+3 8.058422-3 2.598789+3 8.447648-3 2.507769+3 9.028696-3 2.372646+3 9.780207-3 2.207399+3 1.045754-2 2.070030+3 1.135623-2 1.900609+3 1.240045-2 1.723382+3 1.296984-2 1.634894+3 1.353764-2 1.551329+3 1.412061-2 1.469902+3 1.471810-2 1.390062+3 1.523987-2 1.323188+3 1.573711-2 1.260844+3 1.614736-2 1.210107+3 1.652437-2 1.163401+3 1.683794-2 1.123972+3 1.710552-2 1.089249+3 1.733507-2 1.058118+3 1.752309-2 1.031063+3 1.768880-2 1.005285+3 1.783288-2 9.803896+2 1.794373-2 9.586063+2 1.803014-2 9.393350+2 1.815835-2 9.067100+2 1.832842-2 8.626071+2 1.839961-2 8.488516+2 1.844837-2 8.426149+2 1.850333-2 8.392942+2 1.853896-2 8.393299+2 1.861430-2 8.446912+2 1.869069-2 8.558718+2 1.886718-2 8.893341+2 1.893601-2 9.008462+2 1.900402-2 9.102158+2 1.907764-2 9.180719+2 1.916644-2 9.248080+2 1.927868-2 9.301031+2 1.940681-2 9.331939+2 1.955804-2 9.342174+2 1.973736-2 9.329309+2 1.992445-2 9.294733+2 2.014207-2 9.234447+2 2.059444-2 9.062303+2 2.112776-2 8.801742+2 2.161989-2 8.515759+2 2.197682-2 8.275587+2 2.216441-2 8.131194+2 2.232740-2 7.989114+2 2.255543-2 7.752350+2 2.282265-2 7.449056+2 2.293529-2 7.352070+2 2.304093-2 7.297684+2 2.314420-2 7.280986+2 2.333095-2 7.312363+2 2.386036-2 7.433315+2 2.434811-2 7.603880+2 2.461562-2 7.639894+2 2.500748-2 7.624953+2 2.545285-2 7.564807+2 2.602017-2 7.456433+2 2.703325-2 7.220527+2 2.844871-2 6.856706+2 3.037932-2 6.357137+2 3.331050-2 5.665211+2 3.596500-2 5.118983+2 3.916987-2 4.546208+2 4.349079-2 3.897618+2 4.844470-2 3.303549+2 5.245125-2 2.911636+2 5.738979-2 2.508874+2 6.526807-2 2.011144+2 7.681263-2 1.509660+2 8.682041-2 1.210832+2 9.477639-2 1.029848+2 1.028086-1 8.814274+1 1.065473-1 8.208530+1 1.096211-1 7.741010+1 1.122435-1 7.359126+1 1.162606-1 6.790921+1 1.190375-1 6.392543+1 1.201219-1 6.227916+1 1.210104-1 6.083785+1 1.217311-1 5.956178+1 1.227129-1 5.759637+1 1.243269-1 5.413481+1 1.249063-1 5.322594+1 1.254200-1 5.275945+1 1.258628-1 5.264302+1 1.264238-1 5.283188+1 1.282309-1 5.439454+1 1.289812-1 5.483315+1 1.301201-1 5.508699+1 1.308622-1 5.506772+1 1.328639-1 5.464838+1 1.350216-1 5.388771+1 1.385702-1 5.234474+1 1.428894-1 5.029483+1 1.486033-1 4.753693+1 1.578577-1 4.326742+1 1.727195-1 3.728091+1 1.923801-1 3.095752+1 2.182123-1 2.475225+1 2.554996-1 1.859924+1 3.148820-1 1.264151+1 3.920926-1 8.367702+0 5.166045-1 4.941756+0 7.610378-1 2.336080+0 1.228714+0 9.166855-1 1.859734+0 4.047949-1 3.384160+0 1.231846-1 1.032996+1 1.326347-2 3.231848+1 1.355127-3 9.760024+1 1.485870-4 2.947480+2 1.629224-5 8.901248+2 1.786408-6 3.162278+3 1.415411-7 1.000000+4 1.415411-8 3.162278+4 1.415411-9 1.000000+5 1.41541-10 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.773800-6 1.258900-6 4.396200-6 1.584900-6 6.967400-6 1.995300-6 1.104300-5 2.511900-6 1.750100-5 3.162300-6 2.773800-5 3.981100-6 4.396100-5 5.011900-6 6.967300-5 6.309600-6 1.104200-4 7.943300-6 1.750100-4 1.000000-5 2.773700-4 1.258900-5 4.395900-4 1.584900-5 6.963300-4 1.995300-5 1.102900-3 2.511900-5 1.747000-3 3.162300-5 2.767600-3 3.981100-5 4.384900-3 5.011900-5 6.948000-3 6.309600-5 1.100900-2 7.943300-5 1.741500-2 1.000000-4 2.753600-2 1.258900-4 4.353400-2 1.584900-4 6.863400-2 1.995300-4 1.079800-1 2.511900-4 1.691200-1 3.162300-4 2.630400-1 3.981100-4 4.044700-1 5.011900-4 6.087300-1 6.309600-4 8.930200-1 7.943300-4 1.269800+0 1.000000-3 1.748700+0 1.258900-3 2.344100+0 1.584900-3 3.090300+0 1.995300-3 4.033500+0 2.511900-3 5.202400+0 3.162300-3 6.608200+0 3.981100-3 8.271900+0 5.011900-3 1.020300+1 6.309600-3 1.238400+1 7.943300-3 1.483800+1 1.000000-2 1.760400+1 1.258900-2 2.065700+1 1.584900-2 2.385300+1 1.995300-2 2.697400+1 2.511900-2 2.992300+1 3.162300-2 3.268000+1 3.981100-2 3.514200+1 5.011900-2 3.711800+1 6.309600-2 3.844800+1 7.943300-2 3.909900+1 1.000000-1 3.908700+1 1.258900-1 3.845500+1 1.584900-1 3.725300+1 1.995300-1 3.559300+1 2.511900-1 3.359900+1 3.162300-1 3.140800+1 3.981100-1 2.909200+1 5.011900-1 2.672800+1 6.309600-1 2.437200+1 7.943300-1 2.206900+1 1.000000+0 1.984900+1 1.258900+0 1.773000+1 1.584900+0 1.573000+1 1.995300+0 1.386200+1 2.511900+0 1.213600+1 3.162300+0 1.055800+1 3.981100+0 9.129500+0 5.011900+0 7.849600+0 6.309600+0 6.713100+0 7.943300+0 5.713800+0 1.000000+1 4.841400+0 1.258900+1 4.085600+0 1.584900+1 3.435000+0 1.995300+1 2.878500+0 2.511900+1 2.404900+0 3.162300+1 2.003700+0 3.981100+1 1.665400+0 5.011900+1 1.381100+0 6.309600+1 1.143100+0 7.943300+1 9.443600-1 1.000000+2 7.788800-1 1.258900+2 6.414300-1 1.584900+2 5.275000-1 1.995300+2 4.332500-1 2.511900+2 3.554300-1 3.162300+2 2.912700-1 3.981100+2 2.384500-1 5.011900+2 1.950200-1 6.309600+2 1.593700-1 7.943300+2 1.301300-1 1.000000+3 1.061700-1 1.258900+3 8.655700-2 1.584900+3 7.052100-2 1.995300+3 5.741900-2 2.511900+3 4.672300-2 3.162300+3 3.799700-2 3.981100+3 3.088400-2 5.011900+3 2.508900-2 6.309600+3 2.037100-2 7.943300+3 1.653300-2 1.000000+4 1.341200-2 1.258900+4 1.087500-2 1.584900+4 8.814200-3 1.995300+4 7.141200-3 2.511900+4 5.783500-3 3.162300+4 4.682100-3 3.981100+4 3.789200-3 5.011900+4 3.065400-3 6.309600+4 2.479100-3 7.943300+4 2.004300-3 1.000000+5 1.619900-3 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159557-4 3.981072-4 3.976779-4 5.011872-4 5.005120-4 6.309573-4 6.298982-4 7.943282-4 7.926721-4 1.000000-3 9.974126-4 1.258925-3 1.254893-3 1.584893-3 1.578581-3 1.995262-3 1.985353-3 2.511886-3 2.496327-3 3.162278-3 3.137843-3 3.981072-3 3.942809-3 5.011872-3 4.952119-3 6.309573-3 6.216286-3 7.943282-3 7.797695-3 1.000000-2 9.772772-3 1.258925-2 1.223520-2 1.584893-2 1.529981-2 1.995262-2 1.910643-2 2.511886-2 2.382088-2 3.162278-2 2.963845-2 3.981072-2 3.679018-2 5.011872-2 4.555102-2 6.309573-2 5.625434-2 7.943282-2 6.927018-2 1.000000-1 8.501449-2 1.258925-1 1.040236-1 1.584893-1 1.268792-1 1.995262-1 1.542515-1 2.511886-1 1.870080-1 3.162278-1 2.258498-1 3.981072-1 2.719575-1 5.011872-1 3.265153-1 6.309573-1 3.908925-1 7.943282-1 4.667826-1 1.000000+0 5.560360-1 1.258925+0 6.612669-1 1.584893+0 7.855521-1 1.995262+0 9.325867-1 2.511886+0 1.107114+0 3.162278+0 1.314795+0 3.981072+0 1.562751+0 5.011872+0 1.859603+0 6.309573+0 2.215887+0 7.943282+0 2.644262+0 1.000000+1 3.160882+0 1.258925+1 3.785077+0 1.584893+1 4.540139+0 1.995262+1 5.455427+0 2.511886+1 6.566209+0 3.162278+1 7.916218+0 3.981072+1 9.558698+0 5.011872+1 1.155959+1 6.309573+1 1.399931+1 7.943282+1 1.697695+1 1.000000+2 2.061437+1 1.258925+2 2.506168+1 1.584893+2 3.050317+1 1.995262+2 3.716685+1 2.511886+2 4.533174+1 3.162278+2 5.534426+1 3.981072+2 6.762905+1 5.011872+2 8.271246+1 6.309573+2 1.012419+2 7.943282+2 1.240178+2 1.000000+3 1.520266+2 1.258925+3 1.864905+2 1.584893+3 2.289186+2 1.995262+3 2.811768+2 2.511886+3 3.455597+2 3.162278+3 4.249296+2 3.981072+3 5.228169+2 5.011872+3 6.435771+2 6.309573+3 7.926361+2 7.943282+3 9.766707+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88192-10 1.995262-5 1.090615-9 2.511886-5 1.728481-9 3.162278-5 2.739494-9 3.981072-5 4.341862-9 5.011872-5 6.881380-9 6.309573-5 1.090595-8 7.943282-5 1.727608-8 1.000000-4 2.737233-8 1.258925-4 4.337262-8 1.584893-4 6.868090-8 1.995262-4 1.087455-7 2.511886-4 1.720680-7 3.162278-4 2.720208-7 3.981072-4 4.292776-7 5.011872-4 6.752116-7 6.309573-4 1.059163-6 7.943282-4 1.656142-6 1.000000-3 2.587442-6 1.258925-3 4.032608-6 1.584893-3 6.311849-6 1.995262-3 9.908828-6 2.511886-3 1.555984-5 3.162278-3 2.443505-5 3.981072-3 3.826235-5 5.011872-3 5.975299-5 6.309573-3 9.328705-5 7.943282-3 1.455876-4 1.000000-2 2.272280-4 1.258925-2 3.540591-4 1.584893-2 5.491265-4 1.995262-2 8.461906-4 2.511886-2 1.297984-3 3.162278-2 1.984324-3 3.981072-2 3.020536-3 5.011872-2 4.567698-3 6.309573-2 6.841393-3 7.943282-2 1.016264-2 1.000000-1 1.498551-2 1.258925-1 2.186897-2 1.584893-1 3.161014-2 1.995262-1 4.527478-2 2.511886-1 6.418061-2 3.162278-1 9.037792-2 3.981072-1 1.261496-1 5.011872-1 1.746719-1 6.309573-1 2.400649-1 7.943282-1 3.275457-1 1.000000+0 4.439640-1 1.258925+0 5.976585-1 1.584893+0 7.993411-1 1.995262+0 1.062676+0 2.511886+0 1.404772+0 3.162278+0 1.847483+0 3.981072+0 2.418320+0 5.011872+0 3.152269+0 6.309573+0 4.093687+0 7.943282+0 5.299021+0 1.000000+1 6.839118+0 1.258925+1 8.804177+0 1.584893+1 1.130879+1 1.995262+1 1.449720+1 2.511886+1 1.855266+1 3.162278+1 2.370656+1 3.981072+1 3.025202+1 5.011872+1 3.855914+1 6.309573+1 4.909643+1 7.943282+1 6.245587+1 1.000000+2 7.938563+1 1.258925+2 1.008309+2 1.584893+2 1.279861+2 1.995262+2 1.623594+2 2.511886+2 2.058569+2 3.162278+2 2.608835+2 3.981072+2 3.304781+2 5.011872+2 4.184748+2 6.309573+2 5.297155+2 7.943282+2 6.703104+2 1.000000+3 8.479734+2 1.258925+3 1.072435+3 1.584893+3 1.355975+3 1.995262+3 1.714086+3 2.511886+3 2.166327+3 3.162278+3 2.737348+3 3.981072+3 3.458255+3 5.011872+3 4.368295+3 6.309573+3 5.516937+3 7.943282+3 6.966612+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.490000-6 9.813440+6 5.688529-6 8.818544+6 6.760830-6 5.110127+6 7.000000-6 4.586830+6 7.000000-6 5.633966+6 7.244360-6 5.126806+6 7.420000-6 4.805630+6 7.673615-6 4.397085+6 7.762471-6 4.268443+6 7.920000-6 4.057630+6 8.200000-6 3.727148+6 8.290000-6 3.632075+6 8.290000-6 4.261568+6 8.330000-6 4.214713+6 8.420000-6 4.118136+6 8.609938-6 3.930414+6 8.709636-6 3.839490+6 8.912509-6 3.670594+6 9.000000-6 3.603471+6 9.015711-6 3.591891+6 9.200000-6 3.465542+6 9.350000-6 3.371539+6 9.440609-6 3.319400+6 9.700000-6 3.184010+6 1.000000-5 3.054035+6 1.010000-5 3.015536+6 1.023293-5 2.969266+6 1.050000-5 2.887715+6 1.060000-5 2.862131+6 1.100000-5 2.777478+6 1.135011-5 2.727290+6 1.150000-5 2.711005+6 1.174898-5 2.691623+6 1.202264-5 2.678981+6 1.216186-5 2.676505+6 1.258925-5 2.682544+6 1.273503-5 2.688518+6 1.310000-5 2.713412+6 1.355400-5 2.758257+6 1.365000-5 2.770133+6 1.412538-5 2.839458+6 1.440000-5 2.884764+6 1.462177-5 2.925272+6 1.513561-5 3.031862+6 1.603245-5 3.247885+6 1.610000-5 3.265883+6 1.650000-5 3.378271+6 1.737801-5 3.644466+6 1.819701-5 3.918921+6 1.883649-5 4.149183+6 1.927525-5 4.314233+6 2.137962-5 5.182607+6 2.238721-5 5.639018+6 2.350000-5 6.158454+6 2.371374-5 6.259859+6 2.389000-5 6.344284+6 2.389000-5 3.227190+7 2.400000-5 3.157826+7 2.440000-5 2.963912+7 2.454709-5 2.902156+7 2.483133-5 2.789389+7 2.540000-5 2.600077+7 2.540973-5 2.597269+7 2.600160-5 2.438645+7 2.630268-5 2.371044+7 2.650000-5 2.329504+7 2.660725-5 2.307586+7 2.730000-5 2.187148+7 2.754229-5 2.149482+7 2.818383-5 2.065921+7 2.851018-5 2.027674+7 2.884032-5 1.994362+7 2.900000-5 1.979244+7 2.985383-5 1.907230+7 3.000000-5 1.897193+7 3.054921-5 1.861713+7 3.126079-5 1.822069+7 3.150000-5 1.810474+7 3.162278-5 1.805224+7 3.230000-5 1.777975+7 3.349654-5 1.740368+7 3.388442-5 1.730162+7 3.400000-5 1.727576+7 3.514000-5 1.705634+7 3.514000-5 2.698528+7 3.548134-5 2.649597+7 3.570000-5 2.619366+7 3.589219-5 2.595065+7 3.630781-5 2.544663+7 3.672823-5 2.500285+7 3.715352-5 2.458677+7 3.758374-5 2.422216+7 3.801894-5 2.386481+7 3.900000-5 2.318525+7 3.981072-5 2.273171+7 4.027170-5 2.248197+7 4.216965-5 2.167300+7 4.220000-5 2.166254+7 4.315191-5 2.132563+7 4.415704-5 2.102088+7 4.466836-5 2.088542+7 4.472100-5 2.087129+7 4.500000-5 2.079984+7 4.677351-5 2.037363+7 4.731513-5 2.026494+7 4.786301-5 2.015587+7 4.954502-5 1.983685+7 5.011872-5 1.974555+7 5.069907-5 1.965132+7 5.080000-5 1.963566+7 5.248075-5 1.936964+7 5.300000-5 1.929599+7 5.308844-5 1.928230+7 5.432503-5 1.907643+7 5.500000-5 1.897548+7 5.506000-5 1.896682+7 5.506000-5 1.936988+7 5.559043-5 1.928711+7 5.580000-5 1.925450+7 5.660000-5 1.910414+7 5.821032-5 1.882503+7 5.900000-5 1.866804+7 6.000000-5 1.848168+7 6.070000-5 1.835793+7 6.095369-5 1.830338+7 6.309573-5 1.786972+7 6.531306-5 1.737796+7 6.580000-5 1.727641+7 6.606934-5 1.721027+7 6.760830-5 1.684573+7 6.839116-5 1.666936+7 7.079458-5 1.607138+7 7.161434-5 1.585072+7 7.244360-5 1.563454+7 7.328245-5 1.542277+7 7.585776-5 1.473429+7 7.673615-5 1.448793+7 7.852356-5 1.400988+7 7.900000-5 1.387264+7 8.035261-5 1.349544+7 8.128305-5 1.324626+7 8.150000-5 1.318939+7 8.222426-5 1.298321+7 8.413951-5 1.246252+7 8.609938-5 1.191981+7 8.709636-5 1.165818+7 9.015711-5 1.083890+7 9.120108-5 1.055449+7 9.332543-5 1.000874+7 9.500000-5 9.571871+6 9.660509-5 9.177993+6 9.885531-5 8.622235+6 9.950000-5 8.471598+6 1.000000-4 8.352514+6 1.023293-4 7.809613+6 1.030000-4 7.657207+6 1.050000-4 7.212272+6 1.059254-4 7.011430+6 1.060000-4 6.995570+6 1.083927-4 6.497533+6 1.090000-4 6.374556+6 1.096478-4 6.243386+6 1.110000-4 5.980934+6 1.120000-4 5.790867+6 1.122018-4 5.753476+6 1.135011-4 5.514422+6 1.149000-4 5.264135+6 1.149000-4 6.393360+6 1.150000-4 6.410296+6 1.154000-4 6.440187+6 1.158000-4 6.471415+6 1.162000-4 6.504257+6 1.166000-4 6.537314+6 1.170000-4 6.571044+6 1.171900-4 6.585810+6 1.174898-4 6.610582+6 1.180000-4 6.649860+6 1.185000-4 6.684950+6 1.190300-4 6.720135+6 1.195000-4 6.748896+6 1.200000-4 6.776391+6 1.205000-4 6.798251+6 1.207000-4 6.807565+6 1.212000-4 6.823017+6 1.216186-4 6.830821+6 1.218000-4 6.834455+6 1.225000-4 6.836569+6 1.230269-4 6.829372+6 1.232000-4 6.827663+6 1.240000-4 6.803265+6 1.244515-4 6.779291+6 1.247000-4 6.766770+6 1.250000-4 6.745482+6 1.252900-4 6.724625+6 1.252900-4 7.427757+6 1.255000-4 7.439416+6 1.257000-4 7.447483+6 1.260000-4 7.457483+6 1.262000-4 7.465394+6 1.266000-4 7.476557+6 1.270000-4 7.488544+6 1.273503-4 7.495027+6 1.278000-4 7.503352+6 1.280000-4 7.507939+6 1.285000-4 7.509167+6 1.288250-4 7.509690+6 1.290000-4 7.510448+6 1.292000-4 7.508337+6 1.298000-4 7.499564+6 1.300000-4 7.495662+6 1.303167-4 7.490946+6 1.305000-4 7.486066+6 1.311000-4 7.466142+6 1.315000-4 7.450457+6 1.318257-4 7.434304+6 1.325000-4 7.394413+6 1.330000-4 7.361728+6 1.331000-4 7.354353+6 1.337000-4 7.304973+6 1.343000-4 7.251627+6 1.350000-4 7.184141+6 1.358000-4 7.089781+6 1.365000-4 7.001740+6 1.373000-4 6.895128+6 1.380384-4 6.787590+6 1.384600-4 6.722546+6 1.390000-4 6.639946+6 1.391000-4 6.624686+6 1.400000-4 6.478865+6 1.402000-4 6.446431+6 1.412538-4 6.268334+6 1.414000-4 6.244210+6 1.415000-4 6.226783+6 1.428894-4 5.989520+6 1.447000-4 5.681083+6 1.450000-4 5.629979+6 1.465000-4 5.377956+6 1.470000-4 5.296614+6 1.480000-4 5.133807+6 1.500000-4 4.824612+6 1.513561-4 4.623161+6 1.540000-4 4.253089+6 1.550000-4 4.120448+6 1.566751-4 3.908275+6 1.570000-4 3.868311+6 1.580000-4 3.747833+6 1.584893-4 3.690634+6 1.603245-4 3.481786+6 1.621810-4 3.284383+6 1.640590-4 3.095641+6 1.650000-4 3.004439+6 1.678804-4 2.744343+6 1.680000-4 2.734127+6 1.698244-4 2.583429+6 1.705000-4 2.529675+6 1.717908-4 2.429933+6 1.740000-4 2.270798+6 1.760000-4 2.136862+6 1.770000-4 2.073140+6 1.800000-4 1.894696+6 1.835000-4 1.709577+6 1.840772-4 1.681145+6 1.865000-4 1.569395+6 1.883649-4 1.489517+6 1.900000-4 1.424007+6 1.905461-4 1.402919+6 1.940200-4 1.279392+6 1.950000-4 1.247166+6 1.980000-4 1.155166+6 2.018366-4 1.052913+6 2.041738-4 9.969516+5 2.050000-4 9.784642+5 2.065380-4 9.454451+5 2.070000-4 9.358560+5 2.089296-4 8.974174+5 2.093350-4 8.897278+5 2.100000-4 8.774032+5 2.113489-4 8.536793+5 2.123000-4 8.376214+5 2.137962-4 8.132900+5 2.139800-4 8.103722+5 2.145000-4 8.022634+5 2.162719-4 7.755770+5 2.165000-4 7.723357+5 2.185000-4 7.448446+5 2.187762-4 7.411742+5 2.190000-4 7.382419+5 2.200000-4 7.255229+5 2.213095-4 7.094003+5 2.215000-4 7.071139+5 2.220000-4 7.011944+5 2.230000-4 6.898826+5 2.238721-4 6.802853+5 2.247000-4 6.713924+5 2.248000-4 6.703368+5 2.252500-4 6.656336+5 2.252500-4 1.024634+6 2.263000-4 1.011076+6 2.264644-4 1.008990+6 2.280000-4 9.902057+5 2.290868-4 9.776358+5 2.297500-4 9.701363+5 2.300000-4 9.673488+5 2.310000-4 9.563372+5 2.317395-4 9.483630+5 2.325000-4 9.403254+5 2.330000-4 9.351298+5 2.340000-4 9.251325+5 2.344229-4 9.209803+5 2.355000-4 9.107913+5 2.371374-4 8.957476+5 2.380000-4 8.880887+5 2.388000-4 8.812817+5 2.398833-4 8.722677+5 2.400000-4 8.713136+5 2.410000-4 8.634934+5 2.426610-4 8.508770+5 2.430000-4 8.483654+5 2.454709-4 8.311764+5 2.458000-4 8.290139+5 2.483133-4 8.130006+5 2.511886-4 7.963650+5 2.520000-4 7.919410+5 2.540973-4 7.811324+5 2.570396-4 7.674291+5 2.580000-4 7.631623+5 2.600160-4 7.547404+5 2.630268-4 7.435004+5 2.635000-4 7.418106+5 2.660725-4 7.332487+5 2.691535-4 7.243515+5 2.722701-4 7.165319+5 2.730000-4 7.148029+5 2.754229-4 7.097420+5 2.800000-4 7.029848+5 2.818383-4 7.009214+5 2.851018-4 6.981659+5 2.880000-4 6.962817+5 2.884032-4 6.961110+5 2.950600-4 6.951847+5 2.950600-4 8.507795+5 2.951209-4 8.504207+5 2.962000-4 8.444359+5 2.969000-4 8.412486+5 2.980000-4 8.372760+5 2.995000-4 8.333933+5 3.000000-4 8.324566+5 3.009600-4 8.292995+5 3.019952-4 8.264074+5 3.030000-4 8.237426+5 3.054921-4 8.180905+5 3.065000-4 8.159308+5 3.100000-4 8.091117+5 3.126079-4 8.045137+5 3.150000-4 8.003617+5 3.151200-4 8.001680+5 3.162278-4 7.983550+5 3.180000-4 7.956645+5 3.198895-4 7.928998+5 3.273407-4 7.825727+5 3.280000-4 7.816688+5 3.311311-4 7.777409+5 3.349654-4 7.734701+5 3.350000-4 7.734313+5 3.388442-4 7.696962+5 3.390000-4 7.695441+5 3.427678-4 7.662036+5 3.507519-4 7.595305+5 3.548134-4 7.563132+5 3.589219-4 7.533599+5 3.624400-4 7.510478+5 3.624400-4 7.978823+5 3.630781-4 7.974131+5 3.650000-4 7.959257+5 3.696900-4 7.926341+5 3.758374-4 7.883533+5 3.780000-4 7.868181+5 3.801894-4 7.853458+5 3.850000-4 7.820126+5 3.890451-4 7.794246+5 3.935501-4 7.764424+5 4.000000-4 7.721856+5 4.027170-4 7.700131+5 4.120975-4 7.630404+5 4.216965-4 7.555885+5 4.265795-4 7.520561+5 4.365158-4 7.440298+5 4.415704-4 7.402063+5 4.500000-4 7.334407+5 4.518559-4 7.319622+5 4.570882-4 7.279475+5 4.571700-4 7.278768+5 4.571700-4 8.313896+5 4.572500-4 8.296262+5 4.576000-4 8.259075+5 4.579500-4 8.226958+5 4.585000-4 8.185130+5 4.591000-4 8.148182+5 4.596000-4 8.122606+5 4.603000-4 8.092931+5 4.611000-4 8.065284+5 4.619000-4 8.042871+5 4.630000-4 8.018039+5 4.641000-4 7.997927+5 4.653000-4 7.979756+5 4.668000-4 7.960915+5 4.690000-4 7.938550+5 4.700900-4 7.929778+5 4.710300-4 7.922369+5 4.710300-4 8.596991+5 4.713000-4 8.581531+5 4.719000-4 8.558476+5 4.725000-4 8.539240+5 4.731513-4 8.521830+5 4.735000-4 8.514145+5 4.740000-4 8.504437+5 4.750000-4 8.489515+5 4.757000-4 8.481937+5 4.765000-4 8.475411+5 4.772000-4 8.471798+5 4.780000-4 8.469951+5 4.786301-4 8.469883+5 4.790000-4 8.469726+5 4.800000-4 8.472763+5 4.807000-4 8.476038+5 4.823000-4 8.489711+5 4.827000-4 8.494794+5 4.840000-4 8.513292+5 4.850000-4 8.531485+5 4.852300-4 8.536394+5 4.866400-4 8.569024+5 4.870000-4 8.579037+5 4.880000-4 8.608999+5 4.890000-4 8.644284+5 4.897788-4 8.674296+5 4.910000-4 8.728795+5 4.915000-4 8.753006+5 4.925000-4 8.807702+5 4.935000-4 8.867107+5 4.940000-4 8.900271+5 4.954502-4 9.004587+5 4.955000-4 9.008297+5 4.958000-4 9.031572+5 4.970000-4 9.133623+5 4.980000-4 9.226234+5 4.985000-4 9.276284+5 5.000000-4 9.438793+5 5.011872-4 9.580209+5 5.015000-4 9.619463+5 5.030000-4 9.821454+5 5.045000-4 1.004477+6 5.060000-4 1.029104+6 5.069907-4 1.046803+6 5.080000-4 1.065837+6 5.100000-4 1.106313+6 5.110000-4 1.128552+6 5.128614-4 1.171897+6 5.135000-4 1.187975+6 5.150000-4 1.226621+6 5.160000-4 1.254026+6 5.188000-4 1.335166+6 5.190000-4 1.341381+6 5.220000-4 1.437613+6 5.220200-4 1.438272+6 5.248075-4 1.535026+6 5.253000-4 1.552590+6 5.280000-4 1.654047+6 5.300000-4 1.731640+6 5.310000-4 1.772742+6 5.339400-4 1.894710+6 5.370318-4 2.027949+6 5.400000-4 2.159493+6 5.430000-4 2.294702+6 5.432503-4 2.306258+6 5.450000-4 2.384977+6 5.465000-4 2.453872+6 5.480000-4 2.521539+6 5.495409-4 2.591548+6 5.500000-4 2.612894+6 5.510000-4 2.657576+6 5.530000-4 2.747078+6 5.540000-4 2.790948+6 5.559043-4 2.874075+6 5.560000-4 2.878336+6 5.570000-4 2.921031+6 5.590000-4 3.005617+6 5.600000-4 3.046332+6 5.635000-4 3.187852+6 5.650000-4 3.243788+6 5.670000-4 3.320266+6 5.688529-4 3.384437+6 5.705000-4 3.442690+6 5.720000-4 3.493865+6 5.740000-4 3.558363+6 5.754399-4 3.602819+6 5.760000-4 3.620268+6 5.780000-4 3.678632+6 5.800000-4 3.734135+6 5.815000-4 3.776377+6 5.821032-4 3.792316+6 5.850000-4 3.865251+6 5.888437-4 3.951380+6 5.900000-4 3.977670+6 5.956621-4 4.086755+6 6.000000-4 4.155885+6 6.030000-4 4.200273+6 6.050000-4 4.225968+6 6.095369-4 4.278835+6 6.100000-4 4.284255+6 6.165950-4 4.341015+6 6.180000-4 4.351197+6 6.200000-4 4.362314+6 6.237348-4 4.383157+6 6.240000-4 4.384636+6 6.282500-4 4.402568+6 6.309573-4 4.410199+6 6.320000-4 4.413101+6 6.382635-4 4.422781+6 6.390000-4 4.423922+6 6.430000-4 4.425492+6 6.456542-4 4.423682+6 6.531306-4 4.418482+6 6.550000-4 4.415152+6 6.606934-4 4.400425+6 6.683439-4 4.380855+6 6.700000-4 4.375389+6 6.760830-4 4.349918+6 6.839116-4 4.317553+6 6.850000-4 4.313089+6 6.918310-4 4.276152+6 7.000000-4 4.232878+6 7.079458-4 4.187605+6 7.080000-4 4.187298+6 7.161434-4 4.136891+6 7.244360-4 4.086774+6 7.300000-4 4.051236+6 7.328245-4 4.033358+6 7.498942-4 3.919794+6 7.500000-4 3.919108+6 7.585776-4 3.861229+6 7.642400-4 3.823796+6 7.673615-4 3.802184+6 7.800000-4 3.716688+6 7.852356-4 3.680793+6 8.000000-4 3.582459+6 8.128305-4 3.496327+6 8.266800-4 3.403911+6 8.266800-4 3.743173+6 8.317638-4 3.711731+6 8.413951-4 3.653525+6 8.511380-4 3.594077+6 8.609938-4 3.533941+6 8.709636-4 3.475062+6 8.730000-4 3.463256+6 8.761400-4 3.445039+6 8.779000-4 3.434895+6 8.779000-4 3.622197+6 8.850000-4 3.583221+6 8.912509-4 3.548263+6 8.950000-4 3.527009+6 9.100000-4 3.442911+6 9.120108-4 3.431663+6 9.200000-4 3.387648+6 9.332543-4 3.316917+6 9.350000-4 3.307808+6 9.430000-4 3.265545+6 9.440609-4 3.259898+6 9.600000-4 3.175208+6 9.772372-4 3.086715+6 9.885531-4 3.031045+6 1.000000-3 2.974863+6 1.011579-3 2.917004+6 1.023293-3 2.859777+6 1.047129-3 2.749085+6 1.050800-3 2.732693+6 1.059254-3 2.695349+6 1.070000-3 2.648672+6 1.071519-3 2.642186+6 1.083927-3 2.587637+6 1.096478-3 2.534266+6 1.110000-3 2.478533+6 1.117100-3 2.450066+6 1.122018-3 2.430521+6 1.135011-3 2.380102+6 1.147000-3 2.333287+6 1.147000-3 2.481767+6 1.150000-3 2.469865+6 1.155000-3 2.450129+6 1.174898-3 2.374121+6 1.188502-3 2.324010+6 1.190000-3 2.318600+6 1.202264-3 2.275037+6 1.210000-3 2.248242+6 1.216186-3 2.227078+6 1.230269-3 2.180073+6 1.244515-3 2.132956+6 1.250000-3 2.115246+6 1.273503-3 2.041417+6 1.288250-3 1.997033+6 1.303167-3 1.953681+6 1.318257-3 1.911342+6 1.333521-3 1.869408+6 1.348963-3 1.827403+6 1.350000-3 1.824636+6 1.396368-3 1.706892+6 1.412538-3 1.668726+6 1.420000-3 1.651346+6 1.428200-3 1.632446+6 1.428200-3 1.652684+6 1.428894-3 1.651098+6 1.445440-3 1.613260+6 1.450000-3 1.603047+6 1.462177-3 1.576257+6 1.500000-3 1.497496+6 1.530000-3 1.439046+6 1.531087-3 1.436985+6 1.548817-3 1.404017+6 1.570000-3 1.365828+6 1.584893-3 1.339673+6 1.595200-3 1.322028+6 1.595200-3 1.345647+6 1.603245-3 1.332009+6 1.610000-3 1.320621+6 1.640590-3 1.270969+6 1.650000-3 1.256300+6 1.659587-3 1.241550+6 1.678804-3 1.212803+6 1.690000-3 1.196338+6 1.698244-3 1.184429+6 1.700000-3 1.181889+6 1.717908-3 1.156468+6 1.730000-3 1.139695+6 1.737801-3 1.129071+6 1.757924-3 1.102193+6 1.798871-3 1.050557+6 1.819701-3 1.025755+6 1.820000-3 1.025405+6 1.840772-3 1.001540+6 1.862087-3 9.778160+5 1.883649-3 9.542765+5 1.900000-3 9.369980+5 1.905461-3 9.313374+5 1.927525-3 9.088596+5 1.972423-3 8.656348+5 2.018366-3 8.242988+5 2.041738-3 8.042535+5 2.070000-3 7.806382+5 2.113489-3 7.463258+5 2.137962-3 7.280325+5 2.162719-3 7.101166+5 2.187762-3 6.926263+5 2.213095-3 6.755083+5 2.238721-3 6.587449+5 2.264644-3 6.423255+5 2.290868-3 6.263560+5 2.317395-3 6.108251+5 2.344229-3 5.956981+5 2.350000-3 5.925184+5 2.371374-3 5.808611+5 2.398833-3 5.663888+5 2.426610-3 5.523091+5 2.450000-3 5.408104+5 2.457300-3 5.372762+5 2.511886-3 5.117958+5 2.540973-3 4.988730+5 2.570396-3 4.863070+5 2.600160-3 4.740822+5 2.630268-3 4.620233+5 2.691535-3 4.388966+5 2.722701-3 4.278110+5 2.754229-3 4.169209+5 2.786121-3 4.062472+5 2.818383-3 3.958578+5 2.851018-3 3.857083+5 2.884032-3 3.758065+5 2.900000-3 3.711521+5 2.917427-3 3.661712+5 2.951209-3 3.567904+5 3.000000-3 3.438646+5 3.019952-3 3.387595+5 3.090295-3 3.214301+5 3.126079-3 3.131297+5 3.150000-3 3.077304+5 3.162278-3 3.050108+5 3.200000-3 2.968801+5 3.235937-3 2.894312+5 3.273407-3 2.819548+5 3.311311-3 2.746871+5 3.349654-3 2.675695+5 3.388442-3 2.605694+5 3.400000-3 2.585254+5 3.467369-3 2.470618+5 3.507519-3 2.405889+5 3.548134-3 2.342998+5 3.589219-3 2.281829+5 3.630781-3 2.222306+5 3.650000-3 2.195571+5 3.672823-3 2.164154+5 3.715352-3 2.106970+5 3.758374-3 2.051195+5 3.892500-3 1.890137+5 3.892500-3 4.583311+5 3.924000-3 4.486409+5 3.935501-3 4.446192+5 3.981072-3 4.291621+5 4.000000-3 4.229583+5 4.027170-3 4.142664+5 4.060000-3 4.040687+5 4.073803-3 4.004679+5 4.103600-3 3.928207+5 4.103600-3 5.538307+5 4.120975-3 5.478803+5 4.150000-3 5.381316+5 4.168694-3 5.321438+5 4.265795-3 5.025229+5 4.315191-3 4.883323+5 4.365158-3 4.745489+5 4.370000-3 4.732428+5 4.415704-3 4.610417+5 4.466836-3 4.478817+5 4.518559-3 4.348224+5 4.570882-3 4.221274+5 4.623810-3 4.097896+5 4.685500-3 3.958320+5 4.685500-3 4.619760+5 4.786301-3 4.384024+5 4.841724-3 4.261720+5 4.897788-3 4.141646+5 4.954502-3 4.024863+5 5.011872-3 3.910622+5 5.069907-3 3.799745+5 5.128614-3 3.691162+5 5.248075-3 3.483462+5 5.308844-3 3.382934+5 5.370318-3 3.285396+5 5.432503-3 3.190628+5 5.500000-3 3.091996+5 5.559043-3 3.009256+5 5.623413-3 2.922455+5 5.688529-3 2.838218+5 5.741600-3 2.771635+5 5.741600-3 2.942359+5 5.821032-3 2.843979+5 5.825000-3 2.839189+5 5.888437-3 2.764637+5 5.956621-3 2.687664+5 6.025596-3 2.612850+5 6.095369-3 2.539200+5 6.102100-3 2.532226+5 6.102100-3 2.638601+5 6.237348-3 2.501029+5 6.290000-3 2.450297+5 6.309573-3 2.431878+5 6.382635-3 2.364802+5 6.400000-3 2.349260+5 6.450000-3 2.305188+5 6.456542-3 2.299499+5 6.531306-3 2.235935+5 6.606934-3 2.173683+5 6.683439-3 2.113302+5 6.800000-3 2.025694+5 6.839116-3 1.997351+5 6.850000-3 1.989567+5 6.918310-3 1.941562+5 7.079458-3 1.834801+5 7.150000-3 1.790759+5 7.161434-3 1.783734+5 7.244360-3 1.733931+5 7.328245-3 1.685359+5 7.413102-3 1.637838+5 7.498942-3 1.591733+5 7.500000-3 1.591177+5 7.585776-3 1.547046+5 7.673615-3 1.503659+5 7.762471-3 1.461491+5 7.800000-3 1.444199+5 7.852356-3 1.420477+5 7.943282-3 1.380515+5 8.000000-3 1.356419+5 8.035261-3 1.341673+5 8.128305-3 1.303811+5 8.222426-3 1.266813+5 8.317638-3 1.230794+5 8.511380-3 1.161446+5 8.609938-3 1.128335+5 8.709636-3 1.096107+5 8.912509-3 1.034521+5 9.000000-3 1.009513+5 9.015711-3 1.005116+5 9.120108-3 9.765778+4 9.225714-3 9.488174+4 9.300000-3 9.299538+4 9.332543-3 9.218515+4 9.549926-3 8.702404+4 9.660509-3 8.455934+4 9.800000-3 8.159400+4 9.885531-3 7.983774+4 9.900000-3 7.954384+4 1.000000-2 7.755036+4 1.011579-2 7.533169+4 1.023293-2 7.317369+4 1.035142-2 7.107276+4 1.047129-2 6.902379+4 1.059254-2 6.703327+4 1.071519-2 6.509239+4 1.083927-2 6.321058+4 1.096478-2 6.138569+4 1.122018-2 5.788703+4 1.135011-2 5.621734+4 1.148154-2 5.459691+4 1.161449-2 5.302595+4 1.174898-2 5.150154+4 1.200000-2 4.881903+4 1.202264-2 4.858714+4 1.230269-2 4.583353+4 1.258925-2 4.323375+4 1.273503-2 4.197753+4 1.288250-2 4.075853+4 1.300000-2 3.981988+4 1.303167-2 3.957212+4 1.318257-2 3.842096+4 1.333521-2 3.730198+4 1.348963-2 3.621700+4 1.350000-2 3.614576+4 1.380384-2 3.413952+4 1.396368-2 3.314445+4 1.412538-2 3.217995+4 1.428894-2 3.124417+4 1.450000-2 3.009189+4 1.462177-2 2.945398+4 1.479108-2 2.859488+4 1.500000-2 2.758396+4 1.513561-2 2.695247+4 1.548817-2 2.540484+4 1.584893-2 2.394966+4 1.603245-2 2.325000+4 1.621810-2 2.256952+4 1.640590-2 2.190709+4 1.650000-2 2.158540+4 1.659587-2 2.126328+4 1.698244-2 2.003230+4 1.717908-2 1.944356+4 1.737801-2 1.887290+4 1.757924-2 1.831975+4 1.778279-2 1.778367+4 1.798871-2 1.726347+4 1.800000-2 1.723558+4 1.819701-2 1.675705+4 1.852700-2 1.599644+4 1.852700-2 3.758332+4 1.862087-2 3.711072+4 1.865000-2 3.696572+4 1.883649-2 3.605626+4 1.890000-2 3.575266+4 1.905461-2 3.498718+4 1.950000-2 3.290397+4 1.970000-2 3.202411+4 1.972423-2 3.191772+4 1.995262-2 3.093830+4 2.018366-2 2.998946+4 2.041738-2 2.906811+4 2.065380-2 2.817535+4 2.113489-2 2.647049+4 2.137962-2 2.565761+4 2.150000-2 2.527045+4 2.187762-2 2.410651+4 2.213095-2 2.336540+4 2.238721-2 2.264686+4 2.264644-2 2.195084+4 2.290868-2 2.127658+4 2.306200-2 2.089558+4 2.306200-2 2.973912+4 2.317395-2 2.937051+4 2.318000-2 2.935074+4 2.335000-2 2.882414+4 2.344229-2 2.853412+4 2.360000-2 2.804793+4 2.371374-2 2.769859+4 2.382700-2 2.735624+4 2.382700-2 3.156842+4 2.400000-2 3.099805+4 2.420000-2 3.035659+4 2.426610-2 3.015161+4 2.430000-2 3.004721+4 2.483133-2 2.846211+4 2.511886-2 2.765861+4 2.530000-2 2.717216+4 2.540973-2 2.687908+4 2.570396-2 2.611442+4 2.580000-2 2.587151+4 2.600160-2 2.536784+4 2.630268-2 2.464899+4 2.660725-2 2.394293+4 2.691535-2 2.325679+4 2.722701-2 2.259096+4 2.754229-2 2.193907+4 2.786121-2 2.130642+4 2.818383-2 2.069007+4 2.917427-2 1.893610+4 2.951209-2 1.838610+4 2.985383-2 1.785234+4 3.000000-2 1.763134+4 3.019952-2 1.733592+4 3.054921-2 1.683381+4 3.090295-2 1.634655+4 3.162278-2 1.541435+4 3.235937-2 1.453668+4 3.273407-2 1.411411+4 3.311311-2 1.370420+4 3.388442-2 1.291541+4 3.427678-2 1.253866+4 3.467369-2 1.217276+4 3.507519-2 1.181734+4 3.548134-2 1.146981+4 3.630781-2 1.080230+4 3.672823-2 1.048335+4 3.715352-2 1.017222+4 3.758374-2 9.870446+3 3.801894-2 9.577851+3 3.890451-2 9.019048+3 3.935501-2 8.752299+3 3.981072-2 8.493360+3 4.000000-2 8.388979+3 4.027170-2 8.242282+3 4.073803-2 7.998539+3 4.120975-2 7.762182+3 4.168694-2 7.532911+3 4.216965-2 7.310542+3 4.265795-2 7.094856+3 4.315191-2 6.885514+3 4.365158-2 6.682392+3 4.400000-2 6.545723+3 4.415704-2 6.484992+3 4.466836-2 6.291548+3 4.518559-2 6.104034+3 4.570882-2 5.922068+3 4.677351-2 5.572415+3 4.731513-2 5.405590+3 4.786301-2 5.243708+3 4.897788-2 4.934664+3 5.011872-2 4.644180+3 5.069907-2 4.505354+3 5.128614-2 4.370406+3 5.248075-2 4.112723+3 5.432503-2 3.754689+3 5.495409-2 3.642562+3 5.500000-2 3.634564+3 5.559043-2 3.533352+3 5.623413-2 3.426899+3 5.754399-2 3.223729+3 5.821032-2 3.126794+3 5.888437-2 3.032244+3 5.956621-2 2.940594+3 6.000000-2 2.884288+3 6.025596-2 2.851735+3 6.095369-2 2.765564+3 6.165950-2 2.681980+3 6.309573-2 2.522433+3 6.382635-2 2.446322+3 6.531306-2 2.301053+3 6.606934-2 2.231695+3 6.839116-2 2.036145+3 6.918310-2 1.974914+3 6.928200-2 1.967400+3 7.000000-2 1.913740+3 7.161434-2 1.800291+3 7.413102-2 1.641082+3 7.498942-2 1.591255+3 7.585776-2 1.542971+3 7.673615-2 1.496180+3 7.762471-2 1.450836+3 7.852356-2 1.406861+3 7.943282-2 1.364076+3 8.035261-2 1.322610+3 8.128305-2 1.282428+3 8.317638-2 1.205755+3 8.413951-2 1.169180+3 8.609938-2 1.099372+3 8.709636-2 1.066021+3 8.912509-2 1.002210+3 9.015711-2 9.717249+2 9.225714-2 9.132645+2 9.332543-2 8.853890+2 9.549926-2 8.322072+2 9.772372-2 7.822401+2 1.035142-1 6.702392+2 1.059254-1 6.300941+2 1.071519-1 6.109464+2 1.083927-1 5.922870+2 1.148154-1 5.072963+2 1.161449-1 4.918441+2 1.174898-1 4.768695+2 1.188502-1 4.623585+2 1.216186-1 4.346660+2 1.230269-1 4.214566+2 1.244515-1 4.086555+2 1.255700-1 3.989770+2 1.255700-1 1.639321+3 1.270000-1 1.594983+3 1.273503-1 1.582935+3 1.275000-1 1.577824+3 1.283000-1 1.555546+3 1.288250-1 1.538558+3 1.297000-1 1.510778+3 1.320000-1 1.449221+3 1.333521-1 1.410823+3 1.348963-1 1.368671+3 1.350000-1 1.365903+3 1.364583-1 1.329998+3 1.380384-1 1.292579+3 1.396368-1 1.256218+3 1.412538-1 1.220884+3 1.428894-1 1.186549+3 1.462177-1 1.118648+3 1.479108-1 1.086175+3 1.531088-1 9.943242+2 1.548817-1 9.654746+2 1.566751-1 9.374662+2 1.584893-1 9.102732+2 1.603245-1 8.841199+2 1.621810-1 8.587205+2 1.659587-1 8.100840+2 1.717908-1 7.422595+2 1.737801-1 7.209420+2 1.757924-1 7.002395+2 1.778279-1 6.801348+2 1.800000-1 6.595725+2 1.819701-1 6.415127+2 1.840772-1 6.229517+2 1.862087-1 6.049298+2 1.949845-1 5.379225+2 1.972423-1 5.223706+2 2.000000-1 5.042141+2 2.018366-1 4.926093+2 2.041738-1 4.784416+2 2.065380-1 4.646830+2 2.089296-1 4.513212+2 2.113489-1 4.383447+2 2.137962-1 4.257427+2 2.162719-1 4.135039+2 2.187762-1 4.016183+2 2.213095-1 3.900754+2 2.238721-1 3.788658+2 2.264644-1 3.679873+2 2.290868-1 3.574217+2 2.317395-1 3.471607+2 2.371374-1 3.275163+2 2.398833-1 3.181162+2 2.400000-1 3.177251+2 2.426610-1 3.089926+2 2.454709-1 3.001315+2 2.483133-1 2.915264+2 2.511886-1 2.831686+2 2.540973-1 2.750509+2 2.570396-1 2.672365+2 2.600160-1 2.596447+2 2.630268-1 2.522704+2 2.691535-1 2.381597+2 2.710800-1 2.339516+2 2.722701-1 2.314071+2 2.786121-1 2.184827+2 2.818383-1 2.122945+2 2.851018-1 2.062826+2 2.851700-1 2.061596+2 2.884032-1 2.004449+2 2.917427-1 1.947738+2 2.951209-1 1.892634+2 3.000060-1 1.816746+2 3.019952-1 1.787462+2 3.054921-1 1.737572+2 3.090295-1 1.689078+2 3.126079-1 1.641982+2 3.162278-1 1.596211+2 3.198895-1 1.551720+2 3.235937-1 1.508472+2 3.273407-1 1.466448+2 3.311311-1 1.425622+2 3.349654-1 1.385941+2 3.388442-1 1.347366+2 3.427678-1 1.309925+2 3.467369-1 1.273529+2 3.507519-1 1.238146+2 3.548134-1 1.203749+2 3.589219-1 1.170817+2 3.672823-1 1.107696+2 3.715352-1 1.077433+2 3.758374-1 1.048015+2 3.801894-1 1.019407+2 3.845918-1 9.915833+1 3.890451-1 9.645209+1 3.981072-1 9.126146+1 4.027170-1 8.877209+1 4.073803-1 8.635078+1 4.120975-1 8.404509+1 4.168694-1 8.180356+1 4.216965-1 7.962324+1 4.265795-1 7.750165+1 4.315191-1 7.543698+1 4.415705-1 7.147191+1 4.466836-1 6.956839+1 4.518559-1 6.771570+1 4.570882-1 6.591239+1 4.623810-1 6.415722+1 4.677351-1 6.244964+1 4.731513-1 6.082003+1 4.786301-1 5.923309+1 4.841724-1 5.769132+1 4.897788-1 5.619044+1 4.954502-1 5.472865+1 5.011872-1 5.330507+1 5.069907-1 5.191857+1 5.188000-1 4.925307+1 5.248075-1 4.797214+1 5.308844-1 4.672665+1 5.370318-1 4.551411+1 5.432503-1 4.435577+1 5.495409-1 4.322701+1 5.559043-1 4.212735+1 5.623413-1 4.105815+1 5.688529-1 4.001620+1 5.754399-1 3.900073+1 5.821032-1 3.801108+1 5.888437-1 3.704717+1 5.956621-1 3.610879+1 6.000000-1 3.552963+1 6.025596-1 3.519425+1 6.095369-1 3.430305+1 6.165950-1 3.345407+1 6.309573-1 3.182000+1 6.382635-1 3.103321+1 6.456542-1 3.026598+1 6.531306-1 2.952003+1 6.606935-1 2.879249+1 6.683439-1 2.808374+1 6.839117-1 2.671846+1 6.918310-1 2.606094+1 6.998420-1 2.541980+1 7.079458-1 2.480686+1 7.161434-1 2.420874+1 7.244360-1 2.362575+1 7.328245-1 2.305688+1 7.413102-1 2.250173+1 7.498942-1 2.196006+1 7.585776-1 2.143284+1 7.673615-1 2.091830+1 7.762471-1 2.041675+1 7.852356-1 1.992733+1 7.943282-1 1.944966+1 8.000000-1 1.916020+1 8.035261-1 1.898344+1 8.128305-1 1.853727+1 8.222427-1 1.810159+1 8.317638-1 1.767618+1 8.413951-1 1.726102+1 8.511380-1 1.685619+1 8.609938-1 1.646087+1 8.709636-1 1.607590+1 8.810489-1 1.570056+1 8.912509-1 1.533402+1 9.015711-1 1.497604+1 9.120108-1 1.462642+1 9.225714-1 1.428499+1 9.332543-1 1.395205+1 9.440609-1 1.362725+1 9.549926-1 1.331815+1 9.660509-1 1.301610+1 9.772372-1 1.272091+1 9.885531-1 1.243323+1 1.000000+0 1.215242+1 1.011579+0 1.187839+1 1.023293+0 1.161053+1 1.035142+0 1.134881+1 1.047129+0 1.109297+1 1.059254+0 1.084293+1 1.071519+0 1.059882+1 1.083927+0 1.036359+1 1.096478+0 1.013360+1 1.109175+0 9.908698+0 1.122018+0 9.688813+0 1.135011+0 9.473883+0 1.148154+0 9.263977+0 1.161449+0 9.058997+0 1.174898+0 8.858555+0 1.188502+0 8.662559+0 1.202264+0 8.470947+0 1.216186+0 8.284086+0 1.230269+0 8.101352+0 1.250000+0 7.855438+0 1.258925+0 7.750849+0 1.273503+0 7.584768+0 1.303167+0 7.263553+0 1.318257+0 7.108098+0 1.333521+0 6.955979+0 1.348963+0 6.807141+0 1.364583+0 6.661942+0 1.380384+0 6.519839+0 1.412538+0 6.244837+0 1.428894+0 6.115083+0 1.445440+0 5.988058+0 1.479108+0 5.742056+0 1.500000+0 5.597194+0 1.513561+0 5.506172+0 1.531087+0 5.391923+0 1.548817+0 5.280427+0 1.584893+0 5.064320+0 1.603245+0 4.962280+0 1.621810+0 4.862294+0 1.640590+0 4.764394+0 1.659587+0 4.668580+0 1.698244+0 4.482744+0 1.717908+0 4.392630+0 1.737801+0 4.304344+0 1.778279+0 4.133714+0 1.798871+0 4.050950+0 1.819701+0 3.971841+0 1.840772+0 3.894278+0 1.862087+0 3.818285+0 1.883649+0 3.743775+0 1.905461+0 3.670804+0 1.927525+0 3.599278+0 1.949845+0 3.529145+0 1.972423+0 3.460385+0 1.995262+0 3.393022+0 2.044000+0 3.256483+0 2.065380+0 3.199320+0 2.089296+0 3.138828+0 2.113489+0 3.079481+0 2.137962+0 3.021300+0 2.162719+0 2.964289+0 2.213095+0 2.853511+0 2.238721+0 2.799690+0 2.264644+0 2.746928+0 2.317395+0 2.644715+0 2.344229+0 2.595045+0 2.371374+0 2.547576+0 2.398833+0 2.500976+0 2.426610+0 2.455263+0 2.454709+0 2.410440+0 2.483133+0 2.366437+0 2.540973+0 2.280853+0 2.570396+0 2.239233+0 2.600160+0 2.198406+0 2.660725+0 2.119245+0 2.691535+0 2.080740+0 2.722701+0 2.043927+0 2.754229+0 2.007766+0 2.786121+0 1.972271+0 2.818383+0 1.937447+0 2.851018+0 1.903240+0 2.917427+0 1.836644+0 2.951209+0 1.804228+0 3.000000+0 1.759081+0 3.090295+0 1.680529+0 3.126079+0 1.650986+0 3.162278+0 1.622698+0 3.198895+0 1.594896+0 3.273407+0 1.540752+0 3.311311+0 1.514407+0 3.388442+0 1.463076+0 3.427678+0 1.438069+0 3.467369+0 1.413510+0 3.589219+0 1.342559+0 3.630781+0 1.319709+0 3.672823+0 1.297836+0 3.715352+0 1.276327+0 3.801894+0 1.234402+0 3.845918+0 1.213985+0 3.935501+0 1.174171+0 4.000000+0 1.146853+0 4.027170+0 1.135676+0 4.168694+0 1.080512+0 4.216965+0 1.062727+0 4.265795+0 1.045690+0 4.315191+0 1.028927+0 4.415704+0 9.962263-1 4.466836+0 9.802873-1 4.623810+0 9.339985-1 4.677351+0 9.190612-1 4.731513+0 9.043745-1 4.897788+0 8.618499-1 4.954502+0 8.481240-1 5.011872+0 8.349559-1 5.069907+0 8.219922-1 5.188000+0 7.966839-1 5.248075+0 7.843380-1 5.308844+0 7.721840-1 5.495409+0 7.368506-1 5.559043+0 7.254367-1 5.623413+0 7.142092-1 5.821032+0 6.816663-1 5.888437+0 6.711516-1 5.956621+0 6.610647-1 6.025596+0 6.511293-1 6.165950+0 6.317187-1 6.237348+0 6.222430-1 6.309573+0 6.129095-1 6.531306+0 5.857489-1 6.606934+0 5.769664-1 6.683439+0 5.683226-1 6.918310+0 5.432425-1 7.000000+0 5.349731-1 7.079458+0 5.273381-1 7.161434+0 5.196627-1 7.328245+0 5.046563-1 7.498942+0 4.901001-1 7.585776+0 4.829803-1 7.852356+0 4.622418-1 7.943282+0 4.555292-1 8.035261+0 4.489192-1 8.413951+0 4.235019-1 8.511380+0 4.173757-1 8.609938+0 4.114844-1 8.709636+0 4.056764-1 8.912509+0 3.943131-1 9.120108+0 3.832805-1 9.225714+0 3.778806-1 9.549926+0 3.621376-1 9.660509+0 3.570375-1 9.772372+0 3.520133-1 1.023293+1 3.326770-1 1.035142+1 3.280114-1 1.047129+1 3.235237-1 1.059254+1 3.190978-1 1.071519+1 3.147355-1 1.100000+1 3.050272-1 1.122018+1 2.978919-1 1.174898+1 2.819536-1 1.188502+1 2.781046-1 1.202264+1 2.743081-1 1.216186+1 2.705658-1 1.230269+1 2.668848-1 1.288250+1 2.526566-1 1.303167+1 2.492197-1 1.318257+1 2.459047-1 1.333521+1 2.426339-1 1.348963+1 2.394085-1 1.380384+1 2.330930-1 1.396368+1 2.299981-1 1.412538+1 2.269441-1 1.479108+1 2.151323-1 1.500000+1 2.116587-1 1.513561+1 2.094609-1 1.584893+1 1.985978-1 1.603245+1 1.959713-1 1.621810+1 1.934276-1 1.640590+1 1.909169-1 1.659587+1 1.884389-1 1.698244+1 1.835815-1 1.800000+1 1.718673-1 1.819701+1 1.697605-1 1.862087+1 1.653888-1 1.927525+1 1.590430-1 1.949845+1 1.569827-1 2.018366+1 1.509789-1 2.041738+1 1.490291-1 2.065380+1 1.471401-1 2.089296+1 1.452752-1 2.113489+1 1.434338-1 2.137962+1 1.416158-1 2.213095+1 1.363016-1 2.400000+1 1.246073-1 2.426610+1 1.230964-1 2.511886+1 1.184813-1 2.570396+1 1.155018-1 2.600160+1 1.140406-1 2.630268+1 1.126025-1 2.660725+1 1.111826-1 2.691535+1 1.098064-1 2.722701+1 1.084474-1 2.754229+1 1.071057-1 3.311311+1 8.777467-2 3.427678+1 8.455927-2 3.548134+1 8.146167-2 3.630781+1 7.946031-2 3.672823+1 7.848052-2 3.715352+1 7.752962-2 4.786301+1 5.931251-2 4.954502+1 5.718531-2 5.188000+1 5.446725-2 5.308844+1 5.315727-2 5.370318+1 5.251424-2 5.432503+1 5.188034-2 5.495409+1 5.126323-2 7.413102+1 3.756471-2 7.585776+1 3.667697-2 8.128305+1 3.413767-2 8.317638+1 3.333104-2 8.413951+1 3.293494-2 8.511380+1 3.254423-2 8.609938+1 3.215819-2 8.709636+1 3.178160-2 1.258925+2 2.180077-2 1.288250+2 2.129315-2 1.412538+2 1.937824-2 1.428894+2 1.915134-2 1.479108+2 1.848646-2 1.500000+2 1.822310-2 1.513561+2 1.805610-2 1.548817+2 1.763629-2 1.566751+2 1.743007-2 1.584893+2 1.722801-2 1.621810+2 1.683104-2 2.483133+2 1.093492-2 2.540973+2 1.068296-2 2.722701+2 9.961386-3 2.851018+2 9.507647-3 2.884032+2 9.397477-3 2.917427+2 9.288593-3 2.951209+2 9.180971-3 3.019952+2 8.969604-3 3.054921+2 8.865755-3 3.090295+2 8.763108-3 3.126079+2 8.662119-3 3.162278+2 8.562306-3 3.235937+2 8.366163-3 4.954502+2 5.449228-3 5.069907+2 5.324400-3 5.432503+2 4.966810-3 5.688529+2 4.741871-3 5.754399+2 4.687247-3 5.821032+2 4.633254-3 5.888437+2 4.579882-3 6.025596+2 4.475036-3 6.095369+2 4.423517-3 6.165950+2 4.372591-3 6.237348+2 4.322435-3 6.309573+2 4.272860-3 6.456542+2 4.175424-3 1.972423+3 1.364035-3 4.027170+3 6.672170-4 4.315191+3 6.226055-4 4.518559+3 5.945349-4 4.570882+3 5.877172-4 4.623810+3 5.809779-4 4.677351+3 5.743158-4 4.786301+3 5.612226-4 4.841724+3 5.547883-4 4.897788+3 5.484279-4 4.954502+3 5.421487-4 5.011872+3 5.359416-4 5.128614+3 5.237405-4 1.000000+5 2.685022-5 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.490000-6 5.490000-6 7.000000-6 5.490000-6 7.000000-6 5.770650-6 8.290000-6 5.868604-6 8.290000-6 6.226277-6 9.700000-6 6.424207-6 1.216186-5 6.813483-6 1.365000-5 7.004974-6 1.513561-5 7.145746-6 1.650000-5 7.237958-6 1.883649-5 7.338052-6 2.238721-5 7.415633-6 2.389000-5 7.435841-6 2.389000-5 2.065530-5 2.754229-5 1.767302-5 2.900000-5 1.655472-5 3.000000-5 1.582773-5 3.162278-5 1.474968-5 3.230000-5 1.434108-5 3.388442-5 1.345812-5 3.514000-5 1.284819-5 3.514000-5 2.105022-5 3.630781-5 1.999904-5 3.758374-5 1.898890-5 3.900000-5 1.800709-5 4.027170-5 1.722242-5 4.220000-5 1.617135-5 4.415704-5 1.525232-5 4.500000-5 1.488781-5 4.731513-5 1.399983-5 4.954502-5 1.326527-5 5.080000-5 1.289678-5 5.308844-5 1.230326-5 5.506000-5 1.186355-5 5.506000-5 1.276240-5 5.821032-5 1.207235-5 6.095369-5 1.157497-5 6.309573-5 1.124850-5 6.606934-5 1.087713-5 6.839116-5 1.063781-5 7.161434-5 1.037402-5 7.328245-5 1.026084-5 7.673615-5 1.007310-5 8.128305-5 9.892779-6 8.609938-5 9.771850-6 9.120108-5 9.700166-6 9.660509-5 9.675954-6 1.030000-4 9.714206-6 1.096478-4 9.822218-6 1.149000-4 9.956968-6 1.149000-4 2.849250-5 1.150000-4 2.900689-5 1.162000-4 3.361691-5 1.174898-4 3.832593-5 1.185000-4 4.177122-5 1.195000-4 4.492797-5 1.205000-4 4.777793-5 1.212000-4 4.964254-5 1.218000-4 5.110886-5 1.225000-4 5.269070-5 1.232000-4 5.412600-5 1.244515-4 5.633667-5 1.252900-4 5.761166-5 1.252900-4 6.401829-5 1.266000-4 6.696069-5 1.285000-4 7.075706-5 1.305000-4 7.422998-5 1.325000-4 7.711119-5 1.343000-4 7.923123-5 1.365000-4 8.126712-5 1.391000-4 8.298609-5 1.415000-4 8.412650-5 1.450000-4 8.534738-5 1.603245-4 8.922943-5 1.770000-4 9.305898-5 1.905461-4 9.568695-5 1.980000-4 9.671796-5 2.065380-4 9.736890-5 2.145000-4 9.724284-5 2.230000-4 9.632594-5 2.252500-4 9.597681-5 2.252500-4 1.082934-4 2.355000-4 1.075303-4 2.483133-4 1.057744-4 2.630268-4 1.029286-4 2.754229-4 9.984113-5 2.884032-4 9.602663-5 2.950600-4 9.383912-5 2.950600-4 1.111036-4 2.980000-4 1.089220-4 3.000000-4 1.077661-4 3.065000-4 1.057923-4 3.280000-4 1.003545-4 3.427678-4 9.717370-5 3.589219-4 9.423817-5 3.624400-4 9.369127-5 3.624400-4 1.003294-4 3.801894-4 9.788384-5 4.027170-4 9.548695-5 4.265795-4 9.378930-5 4.518559-4 9.263536-5 4.571700-4 9.244697-5 4.571700-4 1.037438-4 4.579500-4 1.029591-4 4.596000-4 1.020453-4 4.619000-4 1.014040-4 4.668000-4 1.009082-4 4.710300-4 1.008029-4 4.710300-4 1.074587-4 4.735000-4 1.068627-4 4.780000-4 1.067652-4 4.827000-4 1.073384-4 4.870000-4 1.084099-4 4.915000-4 1.102478-4 4.958000-4 1.128370-4 5.000000-4 1.161961-4 5.045000-4 1.205905-4 5.128614-4 1.301329-4 5.220200-4 1.405657-4 5.280000-4 1.465195-4 5.339400-4 1.515396-4 5.400000-4 1.557540-4 5.480000-4 1.600859-4 5.570000-4 1.636516-4 5.670000-4 1.663891-4 5.815000-4 1.688910-4 6.000000-4 1.706913-4 6.309573-4 1.720917-4 6.918310-4 1.729134-4 8.266800-4 1.729030-4 8.266800-4 1.854647-4 8.779000-4 1.870328-4 8.779000-4 1.936949-4 1.000000-3 1.986418-4 1.147000-3 2.030600-4 1.147000-3 2.147295-4 1.428200-3 2.235943-4 1.428200-3 2.264993-4 1.595200-3 2.316540-4 1.595200-3 2.362820-4 1.927525-3 2.461580-4 2.317395-3 2.557041-4 2.786121-3 2.652313-4 3.400000-3 2.751382-4 3.892500-3 2.816481-4 3.892500-3 4.081017-4 4.103600-3 4.063359-4 4.103600-3 4.315862-4 4.685500-3 4.319514-4 4.685500-3 4.629918-4 5.741600-3 4.680771-4 5.741600-3 4.847282-4 6.102100-3 4.876437-4 6.102100-3 5.021618-4 8.128305-3 5.205430-4 1.047129-2 5.373867-4 1.333521-2 5.533907-4 1.698244-2 5.689825-4 1.852700-2 5.744007-4 1.852700-2 6.853004-4 2.306200-2 6.895668-4 2.306200-2 7.269532-4 2.382700-2 7.277966-4 2.382700-2 7.785138-4 3.311311-2 7.978055-4 4.570882-2 8.160533-4 6.382635-2 8.341911-4 8.709636-2 8.502131-4 1.188502-1 8.649087-4 1.255700-1 8.673812-4 1.255700-1 7.961142-4 3.054921-1 8.011385-4 8.413951-1 8.036709-4 1.000000+5 8.038708-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.490000-6 0.0 2.252500-4 0.0 2.252500-4 1.772307-9 2.310000-4 1.821077-9 2.371374-4 1.861459-9 2.430000-4 1.889734-9 2.483133-4 1.906580-9 2.540973-4 1.916179-9 2.600160-4 1.916793-9 2.660725-4 1.906926-9 2.730000-4 1.883179-9 2.818383-4 1.842134-9 2.884032-4 1.802598-9 2.950600-4 1.754590-9 2.950600-4 4.767512-9 2.962000-4 4.653138-9 2.969000-4 4.592607-9 2.980000-4 4.512312-9 3.000000-4 4.400454-9 3.019952-4 4.328193-9 3.054921-4 4.227411-9 3.198895-4 3.870934-9 3.311311-4 3.605019-9 3.350000-4 3.517704-9 3.427678-4 3.359860-9 3.548134-4 3.135546-9 3.589219-4 3.063892-9 3.624400-4 3.009410-9 3.624400-4 3.403546-9 3.758374-4 3.214710-9 3.890451-4 3.052497-9 4.027170-4 2.904666-9 4.120975-4 2.818206-9 4.265795-4 2.699679-9 4.415704-4 2.597451-9 4.571700-4 2.507922-9 4.571700-4 1.598593-8 4.572500-4 1.579314-8 4.576000-4 1.540360-8 4.579500-4 1.506946-8 4.585000-4 1.464054-8 4.591000-4 1.427035-8 4.596000-4 1.402129-8 4.603000-4 1.374328-8 4.611000-4 1.349838-8 4.619000-4 1.331492-8 4.630000-4 1.313338-8 4.641000-4 1.300783-8 4.653000-4 1.291566-8 4.668000-4 1.284651-8 4.690000-4 1.280749-8 4.710300-4 1.282287-8 4.710300-4 1.544643-8 4.719000-4 1.534959-8 4.735000-4 1.527364-8 4.757000-4 1.531587-8 4.772000-4 1.541712-8 4.790000-4 1.561517-8 4.807000-4 1.588061-8 4.827000-4 1.630395-8 4.840000-4 1.663646-8 4.852300-4 1.701224-8 4.870000-4 1.764686-8 4.880000-4 1.805548-8 4.897788-4 1.889090-8 4.915000-4 1.983032-8 4.935000-4 2.109248-8 4.958000-4 2.277366-8 4.980000-4 2.461008-8 5.000000-4 2.647231-8 5.015000-4 2.795299-8 5.030000-4 2.951950-8 5.060000-4 3.283457-8 5.135000-4 4.159994-8 5.160000-4 4.443626-8 5.190000-4 4.767945-8 5.220200-4 5.072070-8 5.253000-4 5.372086-8 5.280000-4 5.598185-8 5.310000-4 5.823537-8 5.339400-4 6.020421-8 5.370318-4 6.203394-8 5.400000-4 6.357381-8 5.432503-4 6.503621-8 5.480000-4 6.677569-8 5.530000-4 6.823996-8 5.590000-4 6.951970-8 5.670000-4 7.067406-8 5.760000-4 7.152669-8 5.900000-4 7.232216-8 6.100000-4 7.287896-8 6.531306-4 7.322161-8 7.328245-4 7.310328-8 8.266800-4 7.259436-8 8.266800-4 7.451570-8 8.779000-4 7.448673-8 8.779000-4 9.065909-8 1.000000-3 9.601102-8 1.117100-3 9.957993-8 1.147000-3 1.004451-7 1.147000-3 1.313677-7 1.428200-3 1.438571-7 1.428200-3 1.511350-7 1.595200-3 1.594144-7 1.595200-3 1.736300-7 1.840772-3 1.872036-7 2.070000-3 1.989759-7 2.371374-3 2.129440-7 2.691535-3 2.266453-7 2.951209-3 2.366618-7 3.400000-3 2.525596-7 3.892500-3 2.679646-7 3.892500-3 3.103340-7 4.103600-3 3.119962-7 4.103600-3 6.004868-5 4.415704-3 6.069230-5 4.518559-3 6.071521-5 4.685500-3 6.064247-5 4.685500-3 6.184279-5 5.011872-3 6.175701-5 5.741600-3 6.130209-5 5.741600-3 6.848463-5 6.102100-3 6.895155-5 6.102100-3 7.034275-5 7.762471-3 7.243167-5 9.549926-3 7.419212-5 1.083927-2 7.529120-5 1.318257-2 7.698173-5 1.659587-2 7.885094-5 1.852700-2 7.971822-5 1.852700-2 4.271719-3 1.905461-2 4.275214-3 2.306200-2 4.217045-3 2.306200-2 6.385755-3 2.382700-2 6.404193-3 2.382700-2 6.705999-3 2.818383-2 6.776519-3 3.548134-2 6.851045-3 4.786301-2 6.910801-3 7.000000-2 6.957696-3 1.255700-1 6.985556-3 1.255700-1 8.752361-2 1.479108-1 8.822975-2 2.018366-1 8.914066-2 3.126079-1 9.002960-2 5.821032-1 9.107228-2 9.332543-1 9.174218-2 1.000000+5 9.178936-2 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.490000-6 0.0 7.000000-6 1.510000-6 7.000000-6 1.229350-6 7.673615-6 1.857540-6 8.290000-6 2.421396-6 8.290000-6 2.063723-6 8.912509-6 2.604914-6 1.000000-5 3.528240-6 1.216186-5 5.348377-6 1.355400-5 6.559735-6 1.513561-5 7.989864-6 1.650000-5 9.262042-6 1.927525-5 1.192414-5 2.389000-5 1.645416-5 2.389000-5 3.234698-6 2.400000-5 3.443133-6 2.660725-5 8.183745-6 2.818383-5 1.101226-5 2.985383-5 1.392354-5 3.162278-5 1.687310-5 3.349654-5 1.983336-5 3.514000-5 2.229181-5 3.514000-5 1.408978-5 3.589219-5 1.553323-5 3.715352-5 1.783941-5 3.801894-5 1.934525-5 3.900000-5 2.099291-5 4.027170-5 2.304928-5 4.220000-5 2.602865-5 4.500000-5 3.011219-5 4.786301-5 3.405515-5 5.080000-5 3.790322-5 5.506000-5 4.319645-5 5.506000-5 4.229760-5 6.000000-5 4.826195-5 6.606934-5 5.519221-5 7.328245-5 6.302161-5 8.609938-5 7.632753-5 1.060000-4 9.624518-5 1.149000-4 1.049430-4 1.149000-4 8.640750-5 1.150000-4 8.599311-5 1.170000-4 8.042691-5 1.185000-4 7.672878-5 1.200000-4 7.360066-5 1.212000-4 7.155746-5 1.225000-4 6.980930-5 1.232000-4 6.907400-5 1.247000-4 6.795313-5 1.252900-4 6.767834-5 1.252900-4 6.127171-5 1.266000-4 5.963931-5 1.285000-4 5.774294-5 1.300000-4 5.659268-5 1.315000-4 5.577144-5 1.331000-4 5.522087-5 1.350000-4 5.505954-5 1.365000-4 5.523288-5 1.380384-4 5.567877-5 1.402000-4 5.663366-5 1.428894-4 5.823159-5 1.470000-4 6.108362-5 1.650000-4 7.465663-5 1.800000-4 8.631340-5 1.905461-4 9.485915-5 1.980000-4 1.012820-4 2.065380-4 1.091691-4 2.145000-4 1.172572-4 2.248000-4 1.287465-4 2.252500-4 1.292732-4 2.252500-4 1.169548-4 2.371374-4 1.297830-4 2.520000-4 1.468681-4 2.691535-4 1.676640-4 2.884032-4 1.923748-4 2.950600-4 2.012191-4 2.950600-4 1.839516-4 2.995000-4 1.914608-4 3.065000-4 2.007035-4 3.350000-4 2.362336-4 3.624400-4 2.687457-4 3.624400-4 2.621072-4 4.000000-4 3.042815-4 4.500000-4 3.572914-4 4.571700-4 3.647205-4 4.571700-4 3.534103-4 4.603000-4 3.584890-4 4.710300-4 3.702143-4 4.710300-4 3.635559-4 4.780000-4 3.712193-4 4.880000-4 3.792341-4 4.958000-4 3.829402-4 5.030000-4 3.839270-4 5.253000-4 3.813189-4 5.339400-4 3.823402-4 5.450000-4 3.863296-4 5.590000-4 3.946420-4 5.780000-4 4.095315-4 6.100000-4 4.386224-4 7.000000-4 5.269734-4 8.266800-4 6.537044-4 8.266800-4 6.411407-4 8.779000-4 6.907927-4 8.779000-4 6.841144-4 1.147000-3 9.438395-4 1.147000-3 9.321391-4 1.428200-3 1.204462-3 1.428200-3 1.201550-3 1.595200-3 1.363387-3 1.595200-3 1.358744-3 2.630268-3 2.367760-3 3.892500-3 3.610584-3 3.892500-3 3.484088-3 4.103600-3 3.696952-3 4.103600-3 3.611965-3 4.685500-3 4.192906-3 4.685500-3 4.160665-3 5.741600-3 5.212221-3 5.741600-3 5.188387-3 6.102100-3 5.545505-3 6.102100-3 5.529595-3 1.659587-2 1.594951-2 1.852700-2 1.787288-2 1.852700-2 1.356998-2 2.306200-2 1.815539-2 2.306200-2 1.594929-2 2.382700-2 1.669501-2 2.382700-2 1.634249-2 3.672823-2 2.906582-2 9.772372-2 8.989094-2 1.255700-1 1.177171-1 1.255700-1 3.725027-2 1.288250-1 4.037317-2 1.333521-1 4.474132-2 1.479108-1 5.888392-2 2.018366-1 1.118969-1 3.890451-1 2.978464-1 1.548817+0 1.456227+0 1.000000+5 9.999991+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.255700-1 1.240344+3 1.270000-1 1.207922+3 1.275000-1 1.194814+3 1.283000-1 1.178900+3 1.297000-1 1.144950+3 1.320000-1 1.100278+3 1.350000-1 1.037402+3 1.428894-1 9.044710+2 1.584893-1 6.964766+2 1.800000-1 5.073040+2 2.018366-1 3.801987+2 2.540973-1 2.135795+2 3.000060-1 1.415862+2 3.548134-1 9.414184+1 4.073803-1 6.772286+1 4.677351-1 4.912052+1 5.370318-1 3.589525+1 6.095369-1 2.711665+1 6.998420-1 2.014784+1 8.035261-1 1.508388+1 9.440609-1 1.085140+1 1.071519+0 8.445414+0 1.250000+0 6.260038+0 1.412538+0 4.975394+0 1.584893+0 4.034067+0 1.798871+0 3.226878+0 2.065380+0 2.548570+0 2.344229+0 2.067192+0 2.691535+0 1.657509+0 3.126079+0 1.315159+0 3.630781+0 1.051267+0 4.216965+0 8.465627-1 4.954502+0 6.756135-1 5.888437+0 5.346364-1 7.000000+0 4.261600-1 8.511380+0 3.324804-1 1.035142+1 2.612935-1 1.303167+1 1.985303-1 1.603245+1 1.561171-1 2.041738+1 1.187206-1 2.660725+1 8.857598-2 3.672823+1 6.252486-2 5.432503+1 4.133285-2 8.609938+1 2.562018-2 1.566751+2 1.388631-2 3.090295+2 6.981576-3 6.165950+2 3.483615-3 4.897788+3 4.369382-4 1.000000+5 2.139200-5 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.255700-1 7.731900-4 1.000000+5 7.731900-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.255700-1 1.134300-1 1.000000+5 1.134300-1 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.255700-1 1.136681-2 1.000000+5 9.999989+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.382700-2 4.212172+3 2.420000-2 4.086932+3 2.483133-2 3.913412+3 2.530000-2 3.799860+3 2.600160-2 3.612972+3 2.722701-2 3.350345+3 2.786121-2 3.216212+3 2.985383-2 2.833104+3 3.311311-2 2.354471+3 3.672823-2 1.935626+3 4.570882-2 1.257247+3 5.069907-2 1.016204+3 5.821032-2 7.617501+2 6.928200-2 5.233017+2 7.852356-2 3.967804+2 9.015711-2 2.908408+2 1.071519-1 1.956777+2 1.288250-1 1.272118+2 1.621810-1 7.366034+1 2.710800-1 2.153037+1 3.388442-1 1.271521+1 4.073803-1 8.291150+0 4.786301-1 5.745005+0 5.559043-1 4.119594+0 6.456542-1 2.975974+0 7.498942-1 2.166436+0 8.609938-1 1.628312+0 9.772372-1 1.262390+0 1.202264+0 8.414949-1 1.348963+0 6.759818-1 1.531087+0 5.352188-1 1.737801+0 4.272520-1 1.995262+0 3.368096-1 2.264644+0 2.726890-1 2.600160+0 2.182250-1 3.000000+0 1.746000-1 3.467369+0 1.402825-1 4.027170+0 1.127075-1 4.731513+0 8.975696-2 5.623413+0 7.088317-2 6.683439+0 5.640701-2 8.035261+0 4.455300-2 9.772372+0 3.493445-2 1.216186+1 2.685165-2 1.513561+1 2.078840-2 1.949845+1 1.558250-2 2.600160+1 1.132124-2 3.630781+1 7.890565-3 5.370318+1 5.214900-3 8.413951+1 3.270410-3 1.513561+2 1.792985-3 2.951209+2 9.116570-4 5.888437+2 4.548168-4 4.677351+3 5.703509-5 1.000000+5 2.666600-6 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.382700-2 1.107900-3 1.000000+5 1.107900-3 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.382700-2 8.666100-3 1.000000+5 8.666100-3 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.382700-2 1.405300-2 1.000000+5 9.999999+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.306200-2 8.843539+3 2.318000-2 8.742001+3 2.335000-2 8.620100+3 2.360000-2 8.419300+3 2.430000-2 7.857700+3 2.511886-2 7.244400+3 2.630268-2 6.488800+3 3.235937-2 3.860900+3 3.548134-2 3.045300+3 4.400000-2 1.728900+3 5.500000-2 9.465500+2 6.918310-2 5.034800+2 8.709636-2 2.648700+2 1.778279-1 3.549600+1 2.238721-1 1.868400+1 2.630268-1 1.199773+1 3.090295-1 7.756278+0 3.589219-1 5.210967+0 4.120975-1 3.636194+0 4.677351-1 2.632964+0 5.248075-1 1.976181+0 5.888437-1 1.493313+0 6.606935-1 1.136480+0 7.673615-1 8.046601-1 8.413951-1 6.547439-1 9.225714-1 5.366559-1 1.000000+0 4.540873-1 1.135011+0 3.528930-1 1.258925+0 2.889659-1 1.412538+0 2.332955-1 1.640590+0 1.781655-1 1.883649+0 1.399714-1 2.137962+0 1.129667-1 2.426610+0 9.181034-2 2.786121+0 7.376959-2 3.273407+0 5.763281-2 3.801894+0 4.617413-2 4.415704+0 3.726483-2 5.188000+0 2.980083-2 6.165950+0 2.363133-2 7.328245+0 1.887746-2 8.912509+0 1.475065-2 1.071519+1 1.177547-2 1.348963+1 8.956814-3 1.698244+1 6.867470-3 2.213095+1 5.098447-3 2.754229+1 4.009032-3 3.715352+1 2.901859-3 5.495409+1 1.918780-3 8.609938+1 1.203811-3 1.584893+2 6.448603-4 3.162278+2 3.205045-4 6.309573+2 1.599411-4 5.011872+3 2.006231-5 1.000000+5 1.005100-6 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.306200-2 8.152900-4 1.000000+5 8.152900-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.306200-2 1.151000-2 1.000000+5 1.151000-2 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.306200-2 1.073671-2 1.000000+5 9.999999+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.852700-2 2.158688+4 1.890000-2 2.055924+4 1.970000-2 1.838244+4 2.580000-2 8.660280+3 2.818383-2 6.730375+3 3.507519-2 3.559527+3 4.415704-2 1.792824+3 5.559043-2 8.914222+2 6.918310-2 4.544434+2 8.912509-2 2.064839+2 1.621810-1 3.156251+1 2.018366-1 1.598819+1 2.400000-1 9.393720+0 2.851018-1 5.590208+0 3.273407-1 3.714108+0 3.715352-1 2.571753+0 4.168694-1 1.853665+0 4.677351-1 1.345600+0 5.248075-1 9.843394-1 5.821032-1 7.481220-1 6.456542-1 5.727831-1 7.161434-1 4.417313-1 8.709636-1 2.745814-1 9.332543-1 2.338331-1 9.885531-1 2.057439-1 1.059254+0 1.778539-1 1.148154+0 1.512886-1 1.250000+0 1.285643-1 1.380384+0 1.071639-1 1.737801+0 7.114986-2 1.972423+0 5.714894-2 2.238721+0 4.623642-2 2.570396+0 3.697843-2 2.951209+0 2.979302-2 3.427678+0 2.374596-2 4.000000+0 1.893800-2 4.677351+0 1.517686-2 5.559043+0 1.197915-2 6.606934+0 9.527813-3 7.943282+0 7.521981-3 9.660509+0 5.895406-3 1.202264+1 4.529445-3 1.500000+1 3.495100-3 1.949845+1 2.592893-3 2.600160+1 1.883774-3 3.672823+1 1.296911-3 5.370318+1 8.677375-4 8.413951+1 5.441854-4 1.513561+2 2.983421-4 2.951209+2 1.516972-4 5.888437+2 7.567988-5 4.677351+3 9.490456-6 1.000000+5 4.437100-7 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.852700-2 7.674800-4 1.000000+5 7.674800-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.852700-2 7.378100-3 1.000000+5 7.378100-3 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.852700-2 1.038142-2 1.000000+5 9.999999+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.102100-3 1.063750+4 6.290000-3 1.020280+4 6.450000-3 9.897420+3 6.606934-3 9.584274+3 6.850000-3 9.173460+3 7.500000-3 8.086080+3 7.852356-3 7.611311+3 8.317638-3 7.017065+3 1.011579-2 5.221592+3 1.096478-2 4.586478+3 1.318257-2 3.385186+3 1.462177-2 2.828607+3 1.698244-2 2.169890+3 1.950000-2 1.682420+3 2.187762-2 1.355708+3 2.600160-2 9.708226+2 3.090295-2 6.883124+2 3.630781-2 4.951048+2 4.265795-2 3.533987+2 5.011872-2 2.503603+2 6.000000-2 1.689464+2 7.161434-2 1.138035+2 8.609938-2 7.482766+1 1.035142-1 4.882779+1 1.273503-1 2.998686+1 1.659587-1 1.594903+1 2.630268-1 5.290809+0 3.235937-1 3.239928+0 3.890451-1 2.109609+0 4.623810-1 1.421374+0 5.308844-1 1.043278+0 6.165950-1 7.519366-1 7.161434-1 5.460868-1 8.317638-1 3.996537-1 9.440609-1 3.089088-1 1.122018+0 2.198020-1 1.273503+0 1.720916-1 1.445440+0 1.357966-1 1.621810+0 1.102469-1 1.840772+0 8.829478-2 2.113489+0 6.982023-2 2.398833+0 5.669968-2 2.754229+0 4.551609-2 3.198895+0 3.615450-2 3.715352+0 2.893298-2 4.315191+0 2.332488-2 5.069907+0 1.863423-2 6.025596+0 1.476135-2 7.161434+0 1.178081-2 8.709636+0 9.196786-3 1.059254+1 7.234292-3 1.333521+1 5.500674-3 1.659587+1 4.271853-3 2.137962+1 3.210161-3 2.722701+1 2.459441-3 3.715352+1 1.758229-3 5.432503+1 1.176670-3 8.609938+1 7.293583-4 1.566751+2 3.953244-4 3.126079+2 1.964529-4 6.237348+2 9.803462-5 4.954502+3 1.229596-5 1.000000+5 6.089800-7 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.102100-3 8.477600-4 1.000000+5 8.477600-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.102100-3 1.034600-4 1.000000+5 1.034600-4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.102100-3 5.150880-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.741600-3 1.707243+4 5.825000-3 1.677482+4 6.095369-3 1.605638+4 6.400000-3 1.522040+4 7.244360-3 1.306793+4 7.673615-3 1.206010+4 8.222426-3 1.090692+4 9.120108-3 9.318078+3 9.900000-3 8.177160+3 1.023293-2 7.742279+3 1.202264-2 5.844219+3 1.288250-2 5.143177+3 1.500000-2 3.841160+3 1.621810-2 3.286500+3 1.883649-2 2.412778+3 2.065380-2 1.981331+3 2.371374-2 1.463238+3 2.722701-2 1.069526+3 3.019952-2 8.407735+2 3.467369-2 6.056842+2 4.027170-2 4.208114+2 4.731513-2 2.816755+2 5.559043-2 1.869475+2 6.531306-2 1.231340+2 7.762471-2 7.815731+1 9.549926-2 4.493222+1 1.244515-1 2.195017+1 2.000000-1 6.031900+0 2.600160-1 2.979030+0 3.126079-1 1.827452+0 3.672823-1 1.200526+0 4.216965-1 8.432073-1 4.841724-1 5.966364-1 5.495409-1 4.377268-1 6.165950-1 3.326014-1 6.918310-1 2.545668-1 7.762471-1 1.962403-1 8.709636-1 1.521234-1 9.440609-1 1.280358-1 1.023293+0 1.085103-1 1.148154+0 8.635576-2 1.273503+0 7.076728-2 1.428894+0 5.717233-2 1.659587+0 4.368441-2 1.905461+0 3.433776-2 2.162719+0 2.773024-2 2.483133+0 2.213508-2 2.851018+0 1.780267-2 3.311311+0 1.416606-2 3.845918+0 1.135628-2 4.466836+0 9.169974-3 5.308844+0 7.222631-3 6.309573+0 5.733147-3 7.585776+0 4.517496-3 9.225714+0 3.534469-3 1.122018+1 2.786439-3 1.412538+1 2.122651-3 1.862087+1 1.547007-3 2.511886+1 1.108339-3 3.548134+1 7.623426-4 5.188000+1 5.097222-4 8.128305+1 3.194674-4 1.412538+2 1.813310-4 2.722701+2 9.321210-5 5.432503+2 4.649020-5 4.315191+3 5.827852-6 1.000000+5 2.513600-7 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.741600-3 7.550500-4 1.000000+5 7.550500-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.741600-3 1.850900-4 1.000000+5 1.850900-4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.741600-3 4.801460-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.685500-3 6.614400+4 4.954502-3 6.060658+4 5.248075-3 5.504122+4 6.025596-3 4.315679+4 6.800000-3 3.434228+4 7.800000-3 2.628940+4 8.317638-3 2.311202+4 9.800000-3 1.645412+4 1.059254-2 1.390465+4 1.258925-2 9.474631+3 1.380384-2 7.662612+3 1.584893-2 5.538350+3 1.800000-2 4.067680+3 2.018366-2 3.063922+3 2.317395-2 2.158300+3 2.660725-2 1.507388+3 3.019952-2 1.077178+3 3.427678-2 7.648762+2 3.935501-2 5.228010+2 4.518559-2 3.549118+2 5.248075-2 2.316115+2 6.095369-2 1.501310+2 7.161434-2 9.349496+1 8.609938-2 5.401405+1 1.071519-1 2.793361+1 1.949845-1 4.524978+0 2.454709-1 2.266620+0 2.884032-1 1.406613+0 3.311311-1 9.407517-1 3.758374-1 6.548917-1 4.265795-1 4.592173-1 4.786301-1 3.349095-1 5.370318-1 2.460295-1 6.000000-1 1.841636-1 6.683439-1 1.400202-1 7.413102-1 1.083744-1 8.709636-1 7.346129-2 9.332543-1 6.259176-2 9.885531-1 5.508992-2 1.059254+0 4.763208-2 1.148154+0 4.052030-2 1.250000+0 3.443185-2 1.380384+0 2.869714-2 1.737801+0 1.905092-2 1.995262+0 1.500474-2 2.264644+0 1.214598-2 2.600160+0 9.719689-3 3.000000+0 7.777000-3 3.467369+0 6.248722-3 4.027170+0 5.020583-3 4.731513+0 3.998122-3 5.623413+0 3.157401-3 6.683439+0 2.512586-3 8.035261+0 1.984554-3 9.772372+0 1.556046-3 1.230269+1 1.179824-3 1.513561+1 9.259833-4 1.949845+1 6.941188-4 2.600160+1 5.042763-4 3.630781+1 3.514716-4 5.370318+1 2.322933-4 8.511380+1 1.439539-4 1.513561+2 7.986634-5 2.951209+2 4.060775-5 5.888437+2 2.025947-5 4.677351+3 2.540542-6 1.000000+5 1.187800-7 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.685500-3 6.487500-4 1.000000+5 6.487500-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.685500-3 6.902600-5 1.000000+5 6.902600-5 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.685500-3 3.967724-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.103600-3 1.610100+5 4.370000-3 1.389427+5 4.466836-3 1.317350+5 4.841724-3 1.066313+5 5.248075-3 8.560005+4 6.025596-3 5.812291+4 6.683439-3 4.320982+4 7.150000-3 3.553556+4 8.000000-3 2.548868+4 8.609938-3 2.040518+4 1.035142-2 1.156877+4 1.230269-2 6.691773+3 1.350000-2 4.960960+3 1.603245-2 2.822821+3 1.905461-2 1.582836+3 2.213095-2 9.500242+2 2.540973-2 5.890288+2 2.951209-2 3.485586+2 3.467369-2 1.966942+2 4.120975-2 1.057617+2 5.011872-2 5.197391+1 6.382635-2 2.141129+1 1.273503-1 1.670395+0 1.548817-1 8.161858-1 1.840772-1 4.370661-1 2.162719-1 2.457662-1 2.483133-1 1.510470-1 2.818383-1 9.732587-2 3.198895-1 6.317820-2 3.589219-1 4.296426-2 4.027170-1 2.944064-2 4.466836-1 2.110015-2 4.954502-1 1.523155-2 5.432503-1 1.147025-2 5.956621-1 8.698207-3 6.456542-1 6.883929-3 7.079458-1 5.309372-3 8.035261-1 3.755073-3 8.609938-1 3.102426-3 9.120108-1 2.661821-3 9.549926-1 2.367282-3 1.000000+0 2.117490-3 1.047129+0 1.906744-3 1.096478+0 1.728139-3 1.161449+0 1.539961-3 1.230269+0 1.381568-3 1.333521+0 1.194587-3 1.531087+0 9.404858-4 1.840772+0 6.794623-4 2.065380+0 5.579726-4 2.344229+0 4.526013-4 2.691535+0 3.629366-4 3.126079+0 2.880000-4 3.630781+0 2.302119-4 4.216965+0 1.853845-4 4.954502+0 1.479490-4 5.888437+0 1.170776-4 7.000000+0 9.332300-5 8.511380+0 7.280749-5 1.035142+1 5.721863-5 1.303167+1 4.347421-5 1.603245+1 3.418551-5 2.041738+1 2.599762-5 2.660725+1 1.939663-5 3.672823+1 1.369146-5 5.432503+1 9.051296-6 8.609938+1 5.610464-6 1.566751+2 3.040901-6 3.054921+2 1.546743-6 6.095369+2 7.717383-7 4.841724+3 9.678995-8 1.000000+5 4.684500-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.103600-3 4.931900-4 1.000000+5 4.931900-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.103600-3 2.057900-4 1.000000+5 2.057900-4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.103600-3 3.404620-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 3.892500-3 2.693174+5 3.924000-3 2.631321+5 4.060000-3 2.326674+5 4.150000-3 2.184996+5 4.623810-3 1.632508+5 5.069907-3 1.261759+5 5.688529-3 9.078199+4 6.531306-3 6.068270+4 7.328245-3 4.297948+4 8.128305-3 3.128539+4 9.885531-3 1.690796+4 1.096478-2 1.210277+4 1.258925-2 7.706235+3 1.462177-2 4.674543+3 1.650000-2 3.100440+3 1.883649-2 1.963777+3 2.187762-2 1.161964+3 2.540973-2 6.817559+2 2.985383-2 3.806202+2 3.507519-2 2.107849+2 4.168694-2 1.110121+2 5.011872-2 5.560187+1 6.309573-2 2.320542+1 1.230269-1 1.808492+0 1.479108-1 9.004987-1 1.717908-1 5.145527-1 1.972423-1 3.090379-1 2.238721-1 1.948968-1 2.511886-1 1.290073-1 2.818383-1 8.600844-2 3.126079-1 6.013191-2 3.467369-1 4.234799-2 3.845918-1 3.005583-2 4.216965-1 2.231661-2 4.623810-1 1.668611-2 5.069907-1 1.256641-2 5.559043-1 9.534827-3 6.025596-1 7.539309-3 6.531306-1 6.010284-3 7.161434-1 4.673896-3 7.943282-1 3.551005-3 8.709636-1 2.773161-3 9.225714-1 2.391895-3 9.660509-1 2.137003-3 1.011579+0 1.921140-3 1.071519+0 1.695377-3 1.135011+0 1.506852-3 1.216186+0 1.318349-3 1.318257+0 1.137314-3 1.548817+0 8.577263-4 1.840772+0 6.324079-4 2.065380+0 5.193949-4 2.344229+0 4.212983-4 2.691535+0 3.377908-4 3.126079+0 2.680081-4 3.630781+0 2.142303-4 4.216965+0 1.725161-4 4.954502+0 1.376807-4 5.888437+0 1.089473-4 7.000000+0 8.684500-5 8.511380+0 6.775453-5 1.035142+1 5.324678-5 1.303167+1 4.045687-5 1.603245+1 3.181302-5 2.041738+1 2.419271-5 2.660725+1 1.805063-5 3.672823+1 1.274214-5 5.432503+1 8.422947-6 8.609938+1 5.221027-6 1.566751+2 2.829803-6 3.126079+2 1.406284-6 6.237348+2 7.017469-7 4.954502+3 8.801956-8 1.000000+5 4.359300-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 3.892500-3 4.968500-4 1.000000+5 4.968500-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.892500-3 3.400700-7 1.000000+5 3.400700-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 3.892500-3 3.395310-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.595200-3 2.361925+4 1.700000-3 2.207054+4 1.737801-3 2.152869+4 1.820000-3 2.052940+4 1.927525-3 1.941474+4 2.041738-3 1.820327+4 2.371374-3 1.529589+4 2.754229-3 1.274226+4 2.951209-3 1.163859+4 3.650000-3 8.683720+3 4.073803-3 7.397546+3 4.786301-3 5.806409+3 5.688529-3 4.426722+3 6.382635-3 3.673631+3 7.500000-3 2.808780+3 9.015711-3 2.047231+3 1.083927-2 1.476921+3 1.300000-2 1.060240+3 1.548817-2 7.639178+2 1.819701-2 5.610460+2 2.150000-2 4.048620+2 2.570396-2 2.833124+2 3.054921-2 1.990763+2 3.630781-2 1.388563+2 4.315191-2 9.613529+1 5.128614-2 6.607490+1 6.165950-2 4.393967+1 7.413102-2 2.900169+1 8.709636-2 2.003531+1 1.083927-1 1.202789+1 1.412538-1 6.428019+0 2.113489-1 2.446294+0 2.818383-1 1.230104+0 3.427678-1 7.758194-1 4.120975-1 5.063664-1 4.841724-1 3.510796-1 5.559043-1 2.582842-1 6.456542-1 1.865668-1 7.498942-1 1.358023-1 8.709636-1 9.959755-2 9.772372-1 7.897296-2 1.188502+0 5.381543-2 1.333521+0 4.320368-2 1.513561+0 3.418467-2 1.717908+0 2.727168-2 1.972423+0 2.148335-2 2.238721+0 1.738039-2 2.570396+0 1.389970-2 2.951209+0 1.119856-2 3.427678+0 8.925704-3 4.000000+0 7.118500-3 4.677351+0 5.704517-3 5.559043+0 4.502632-3 6.606934+0 3.581328-3 7.943282+0 2.827290-3 9.660509+0 2.216004-3 1.202264+1 1.702485-3 1.500000+1 1.313800-3 1.927525+1 9.873041-4 2.570396+1 7.170555-4 3.630781+1 4.935135-4 5.308844+1 3.301320-4 8.317638+1 2.069903-4 1.479108+2 1.147975-4 2.884032+2 5.835915-5 5.754399+2 2.911225-5 4.570882+3 3.650394-6 1.000000+5 1.667800-7 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.595200-3 4.953200-4 1.000000+5 4.953200-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.595200-3 9.693100-7 1.000000+5 9.693100-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.595200-3 1.098911-3 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.428200-3 2.023839+4 1.737801-3 1.937456+4 1.883649-3 1.877966+4 2.041738-3 1.802816+4 2.213095-3 1.717933+4 2.350000-3 1.648368+4 2.600160-3 1.521258+4 2.786121-3 1.428464+4 3.150000-3 1.262656+4 3.400000-3 1.162892+4 3.672823-3 1.061987+4 4.150000-3 9.116560+3 4.518559-3 8.142727+3 5.069907-3 6.923492+3 5.559043-3 6.047845+3 6.237348-3 5.059877+3 6.918310-3 4.283313+3 7.852356-3 3.461665+3 8.709636-3 2.888679+3 9.885531-3 2.297853+3 1.135011-2 1.772710+3 1.288250-2 1.385708+3 1.450000-2 1.093272+3 1.640590-2 8.477477+2 1.862087-2 6.484407+2 2.113489-2 4.924845+2 2.400000-2 3.711040+2 2.754229-2 2.711034+2 3.162278-2 1.963559+2 3.672823-2 1.373632+2 4.216965-2 9.807635+1 4.897788-2 6.758661+1 5.754399-2 4.492097+1 6.839116-2 2.876639+1 8.317638-2 1.721430+1 1.035142-1 9.617298+0 2.213095-1 1.236886+0 2.722701-1 7.109429-1 3.235937-1 4.512475-1 3.758374-1 3.064267-1 4.315191-1 2.158327-1 4.954502-1 1.531409-1 5.623413-1 1.126224-1 6.382635-1 8.345718-2 7.244360-1 6.234714-2 8.035261-1 4.934610-2 8.810489-1 4.034998-2 9.549926-1 3.404051-2 1.047129+0 2.824275-2 1.188502+0 2.201559-2 1.303167+0 1.847383-2 1.479108+0 1.463205-2 1.698244+0 1.142820-2 1.949845+0 8.994537-3 2.213095+0 7.272479-3 2.540973+0 5.812352-3 2.917427+0 4.679988-3 3.388442+0 3.728002-3 3.935501+0 2.991862-3 4.623810+0 2.379871-3 5.495409+0 1.877491-3 6.531306+0 1.492588-3 7.852356+0 1.177808-3 9.549926+0 9.227190-4 1.174898+1 7.183868-4 1.479108+1 5.481685-4 1.927525+1 4.053507-4 2.570396+1 2.943884-4 3.630781+1 2.026182-4 5.308844+1 1.355352-4 8.413951+1 8.397840-5 1.500000+2 4.646500-5 2.884032+2 2.395963-5 5.754399+2 1.195250-5 4.570882+3 1.498693-6 1.000000+5 6.847300-8 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.428200-3 4.608200-4 1.000000+5 4.608200-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.428200-3 7.381800-7 1.000000+5 7.381800-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.428200-3 9.666418-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.147000-3 1.484800+5 1.303167-3 1.289060+5 1.445440-3 1.147088+5 1.678804-3 9.558089+4 1.819701-3 8.619926+4 2.018366-3 7.480866+4 2.162719-3 6.781887+4 2.600160-3 5.148270+4 2.851018-3 4.453855+4 3.349654-3 3.418449+4 3.672823-3 2.920837+4 4.265795-3 2.243565+4 4.841724-3 1.778322+4 5.432503-3 1.431306+4 6.309573-3 1.069027+4 7.161434-3 8.281471+3 8.035261-3 6.527180+3 9.225714-3 4.866720+3 1.059254-2 3.597584+3 1.230269-2 2.568729+3 1.428894-2 1.816157+3 1.650000-2 1.289640+3 1.883649-2 9.337956+2 2.150000-2 6.715240+2 2.426610-2 4.935662+2 2.786121-2 3.448366+2 3.235937-2 2.318356+2 3.715352-2 1.595036+2 4.315191-2 1.055926+2 5.011872-2 6.935297+1 5.888437-2 4.375721+1 7.000000-2 2.648611+1 8.413951-2 1.539069+1 1.059254-1 7.735630+0 1.364583-1 3.603445+0 1.949845-1 1.224154+0 2.398833-1 6.582983-1 2.851700-1 3.951511-1 3.311311-1 2.560567-1 3.801894-1 1.727162-1 4.315191-1 1.212685-1 4.841724-1 8.854056-2 5.432503-1 6.511251-2 6.025596-1 4.970736-2 6.683439-1 3.822057-2 7.413102-1 2.958679-2 8.709636-1 2.005425-2 9.332543-1 1.708547-2 9.885531-1 1.503660-2 1.059254+0 1.300017-2 1.148154+0 1.105897-2 1.250000+0 9.397517-3 1.380384+0 7.832495-3 1.737801+0 5.199569-3 1.972423+0 4.176374-3 2.238721+0 3.378824-3 2.570396+0 2.702151-3 2.951209+0 2.176961-3 3.427678+0 1.735107-3 4.000000+0 1.383800-3 4.677351+0 1.108960-3 5.559043+0 8.753071-4 6.606934+0 6.961947-4 7.943282+0 5.496262-4 9.660509+0 4.307784-4 1.202264+1 3.309583-4 1.500000+1 2.553900-4 1.949845+1 1.894687-4 2.600160+1 1.376508-4 3.672823+1 9.476485-5 5.432503+1 6.264471-5 8.609938+1 3.883080-5 1.566751+2 2.104662-5 3.054921+2 1.070533-5 6.095369+2 5.341319-6 4.841724+3 6.699012-7 1.000000+5 3.242200-8 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.147000-3 3.981100-4 1.000000+5 3.981100-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.147000-3 6.173000-7 1.000000+5 6.173000-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.147000-3 7.482727-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 8.779000-4 1.873025+5 9.600000-4 2.030847+5 1.000000-3 2.071004+5 1.011579-3 2.073060+5 1.050800-3 2.057071+5 1.096478-3 2.026761+5 1.150000-3 1.981644+5 1.210000-3 1.921556+5 1.273503-3 1.851437+5 1.350000-3 1.763932+5 1.428894-3 1.671024+5 1.530000-3 1.553000+5 1.650000-3 1.419684+5 1.737801-3 1.328143+5 1.905461-3 1.167281+5 2.041738-3 1.052956+5 2.187762-3 9.421333+4 2.426610-3 7.898513+4 2.600160-3 6.982336+4 2.818383-3 6.000645+4 3.126079-3 4.899825+4 3.388442-3 4.155309+4 3.758374-3 3.332978+4 4.073803-3 2.791567+4 4.518559-3 2.203707+4 4.954502-3 1.774436+4 5.559043-3 1.340538+4 6.095369-3 1.063750+4 6.800000-3 8.022400+3 7.585776-3 5.999937+3 8.317638-3 4.670306+3 9.332543-3 3.389164+3 1.047129-2 2.439405+3 1.174898-2 1.742055+3 1.303167-2 1.278416+3 1.450000-2 9.237600+2 1.621810-2 6.527522+2 1.819701-2 4.537497+2 2.041738-2 3.134229+2 2.317395-2 2.071749+2 2.660725-2 1.308508+2 3.054921-2 8.199241+1 3.548134-2 4.903197+1 4.120975-2 2.910544+1 4.897788-2 1.581564+1 5.956621-2 7.855736+0 7.498942-2 3.418754+0 1.462177-1 3.019841-1 1.757924-1 1.557642-1 2.018366-1 9.537472-2 2.454709-1 4.805509-2 2.818383-1 2.983929-2 3.162278-1 2.019236-2 3.548134-1 1.375592-2 3.981072-1 9.438699-3 4.415705-1 6.764416-3 4.897788-1 4.883159-3 5.370318-1 3.680761-3 5.821032-1 2.893601-3 6.382635-1 2.213302-3 7.585776-1 1.348689-3 8.128305-1 1.112520-3 8.609938-1 9.531934-4 9.120108-1 8.221893-4 9.549926-1 7.346605-4 1.000000+0 6.602723-4 1.059254+0 5.824918-4 1.122018+0 5.173384-4 1.202264+0 4.520644-4 1.303167+0 3.893720-4 1.840772+0 2.117417-4 2.065380+0 1.739031-4 2.344229+0 1.410491-4 2.691535+0 1.130865-4 3.126079+0 8.972218-5 3.630781+0 7.171900-5 4.216965+0 5.775307-5 4.954502+0 4.609002-5 5.888437+0 3.647352-5 7.000000+0 2.907300-5 8.511380+0 2.268166-5 1.035142+1 1.782524-5 1.303167+1 1.354411-5 1.603245+1 1.065023-5 2.041738+1 8.099113-6 2.660725+1 6.042666-6 3.672823+1 4.265554-6 5.432503+1 2.819732-6 8.609938+1 1.747850-6 1.566751+2 9.473437-7 3.090295+2 4.762921-7 6.165950+2 2.376570-7 4.897788+3 2.980779-8 1.000000+5 1.459400-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 8.779000-4 3.158700-4 1.000000+5 3.158700-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.779000-4 3.872400-7 1.000000+5 3.872400-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 8.779000-4 5.616428-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 8.266800-4 3.392619+5 8.730000-4 3.526265+5 8.950000-4 3.577310+5 9.100000-4 3.594666+5 9.430000-4 3.585538+5 1.000000-3 3.507006+5 1.059254-3 3.402081+5 1.117100-3 3.283560+5 1.174898-3 3.158182+5 1.250000-3 2.989764+5 1.333521-3 2.801577+5 1.420000-3 2.610810+5 1.500000-3 2.442264+5 1.603245-3 2.237916+5 1.717908-3 2.028316+5 1.862087-3 1.797726+5 1.972423-3 1.639630+5 2.137962-3 1.429304+5 2.350000-3 1.208112+5 2.511886-3 1.066944+5 2.754229-3 8.911202+4 3.019952-3 7.392481+4 3.311311-3 6.081557+4 3.650000-3 4.911204+4 4.027170-3 3.924911+4 4.415704-3 3.160331+4 4.897788-3 2.456515+4 5.370318-3 1.950591+4 5.956621-3 1.493688+4 6.606934-3 1.134989+4 7.328245-3 8.562856+3 8.222426-3 6.209060+3 9.300000-3 4.360752+3 1.047129-2 3.074973+3 1.161449-2 2.250472+3 1.273503-2 1.696399+3 1.412538-2 1.227333+3 1.584893-2 8.505881+2 1.778279-2 5.853321+2 1.972423-2 4.157763+2 2.213095-2 2.825534+2 2.483133-2 1.908775+2 2.818383-2 1.231290+2 3.235937-2 7.574382+1 3.715352-2 4.625421+1 4.315191-2 2.691041+1 5.069907-2 1.490620+1 6.095369-2 7.529344+0 7.585776-2 3.319364+0 1.333521-1 3.972963-1 1.566751-1 2.178663-1 1.840772-1 1.203444-1 2.041738-1 8.256861-2 2.483133-1 4.111743-2 2.691535-1 3.094229-2 3.054921-1 1.996480-2 3.388442-1 1.403444-2 3.715352-1 1.032524-2 4.027170-1 7.938244-3 4.415705-1 5.923942-3 4.841724-1 4.453197-3 5.308844-1 3.371372-3 5.821032-1 2.571259-3 6.309573-1 2.041668-3 6.839117-1 1.632303-3 7.498942-1 1.273837-3 8.222427-1 1.001737-3 9.015711-1 7.899484-4 9.549926-1 6.853309-4 1.000000+0 6.155786-4 1.059254+0 5.428515-4 1.122018+0 4.820396-4 1.202264+0 4.212083-4 1.303167+0 3.628501-4 1.840772+0 1.974431-4 2.065380+0 1.621309-4 2.344229+0 1.314871-4 2.691535+0 1.054285-4 3.126079+0 8.365607-5 3.630781+0 6.686948-5 4.216965+0 5.384802-5 4.954502+0 4.297408-5 5.888437+0 3.400675-5 7.000000+0 2.710700-5 8.511380+0 2.114831-5 1.035142+1 1.662016-5 1.303167+1 1.262776-5 1.603245+1 9.929914-6 2.041738+1 7.551508-6 2.660725+1 5.634128-6 3.672823+1 3.977104-6 5.370318+1 2.661014-6 8.511380+1 1.649120-6 1.548817+2 8.937043-7 3.019952+2 4.545214-7 6.025596+2 2.267682-7 4.786301+3 2.844042-8 1.000000+5 1.360700-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 8.266800-4 3.115000-4 1.000000+5 3.115000-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.266800-4 9.379300-8 1.000000+5 9.379300-8 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.266800-4 5.150862-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 4.710300-4 6.746219+4 4.713000-4 6.612840+4 4.719000-4 6.417420+4 4.725000-4 6.260040+4 4.731513-4 6.123770+4 4.740000-4 5.989122+4 4.750000-4 5.875788+4 4.765000-4 5.767188+4 4.780000-4 5.703372+4 4.800000-4 5.660766+4 4.827000-4 5.642448+4 4.852300-4 5.652268+4 4.870000-4 5.677272+4 4.890000-4 5.731716+4 4.910000-4 5.823000+4 4.925000-4 5.922096+4 4.940000-4 6.052800+4 4.955000-4 6.219780+4 4.970000-4 6.428160+4 4.985000-4 6.682500+4 5.000000-4 6.987540+4 5.015000-4 7.348320+4 5.030000-4 7.770000+4 5.045000-4 8.258760+4 5.060000-4 8.819160+4 5.080000-4 9.688560+4 5.100000-4 1.070910+5 5.128614-4 1.245811+5 5.220200-4 2.061403+5 5.253000-4 2.451108+5 5.280000-4 2.808564+5 5.310000-4 3.241266+5 5.339400-4 3.698773+5 5.370318-4 4.212175+5 5.400000-4 4.732470+5 5.430000-4 5.282610+5 5.450000-4 5.660262+5 5.480000-4 6.241620+5 5.510000-4 6.834720+5 5.540000-4 7.434540+5 5.570000-4 8.034720+5 5.600000-4 8.629080+5 5.635000-4 9.307020+5 5.670000-4 9.960300+5 5.705000-4 1.058238+6 5.740000-4 1.116870+6 5.780000-4 1.179174+6 5.821032-4 1.237872+6 5.850000-4 1.276104+6 5.900000-4 1.336188+6 5.956621-4 1.395947+6 6.000000-4 1.435944+6 6.050000-4 1.476258+6 6.100000-4 1.510722+6 6.165950-4 1.547716+6 6.240000-4 1.579200+6 6.320000-4 1.602462+6 6.430000-4 1.620762+6 6.550000-4 1.627620+6 6.683439-4 1.624177+6 6.850000-4 1.607556+6 7.000000-4 1.583658+6 7.244360-4 1.534256+6 7.500000-4 1.474836+6 7.800000-4 1.400634+6 8.128305-4 1.318147+6 8.511380-4 1.223858+6 8.912509-4 1.129843+6 9.440609-4 1.014482+6 1.000000-3 9.048540+5 1.071519-3 7.819005+5 1.135011-3 6.874451+5 1.230269-3 5.688118+5 1.318257-3 4.808013+5 1.412538-3 4.033216+5 1.548817-3 3.162921+5 1.678804-3 2.540546+5 1.840772-3 1.959116+5 2.018366-3 1.501291+5 2.213095-3 1.140893+5 2.450000-3 8.368920+4 2.722701-3 6.011658+4 3.000000-3 4.406388+4 3.349654-3 3.069021+4 3.672823-3 2.253733+4 4.073803-3 1.581924+4 4.570882-3 1.058464+4 5.069907-3 7.319498+3 5.623413-3 5.029462+3 6.309573-3 3.289871+3 7.079458-3 2.135297+3 8.035261-3 1.315792+3 9.015711-3 8.408059+2 1.011579-2 5.334896+2 1.135011-2 3.361841+2 1.273503-2 2.105112+2 1.428894-2 1.310157+2 1.621810-2 7.726235+1 1.862087-2 4.309765+1 2.137962-2 2.386067+1 2.483133-2 1.247804+1 2.917427-2 6.159787+0 3.467369-2 2.868974+0 4.265795-2 1.137795+0 5.956621-2 2.537549-1 8.035261-2 6.595642-2 1.174898-1 1.213233-2 1.396368-1 5.659070-3 1.603245-1 3.095871-3 1.819701-1 1.793567-3 2.065380-1 1.047983-3 2.317395-1 6.475786-4 2.630268-1 3.843217-4 2.917427-1 2.523311-4 3.235937-1 1.668767-4 3.548134-1 1.163460-4 3.890451-1 8.177754-5 4.265795-1 5.787329-5 4.786301-1 3.788643-5 5.188000-1 2.831784-5 5.623413-1 2.130704-5 6.025596-1 1.679876-5 6.456542-1 1.332909-5 6.918310-1 1.064896-5 7.328245-1 8.885724-6 7.852356-1 7.206425-6 9.120108-1 4.644880-6 9.549926-1 4.087765-6 9.885531-1 3.734227-6 1.023293+0 3.430548-6 1.059254+0 3.167563-6 1.109175+0 2.867461-6 1.161449+0 2.613251-6 1.230269+0 2.344789-6 1.318257+0 2.073890-6 1.513561+0 1.644422-6 1.905461+0 1.096193-6 2.137962+0 9.018202-7 2.454709+0 7.193254-7 2.818383+0 5.781542-7 3.273407+0 4.597760-7 3.801894+0 3.683670-7 4.415704+0 2.972923-7 5.248075+0 2.340390-7 6.237348+0 1.856803-7 7.498942+0 1.462319-7 9.120108+0 1.143658-7 1.100000+1 9.102400-8 1.396368+1 6.862461-8 1.819701+1 5.064853-8 2.426610+1 3.672946-8 3.427678+1 2.523608-8 4.954502+1 1.706628-8 7.585776+1 1.094519-8 1.288250+2 6.353882-9 2.540973+2 3.188116-9 5.069907+2 1.589649-9 4.027170+3 1.99206-10 1.000000+5 8.01830-12 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 4.710300-4 1.856200-4 1.000000+5 1.856200-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.710300-4 4.625600-8 1.000000+5 4.625600-8 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 4.710300-4 2.853637-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 4.571700-4 1.035128+5 4.572500-4 1.018184+5 4.576000-4 9.840160+4 4.579500-4 9.549120+4 4.585000-4 9.178080+4 4.591000-4 8.860000+4 4.596000-4 8.646960+4 4.603000-4 8.409840+4 4.611000-4 8.201280+4 4.619000-4 8.044800+4 4.630000-4 7.889072+4 4.641000-4 7.780072+4 4.653000-4 7.698296+4 4.668000-4 7.634024+4 4.690000-4 7.590856+4 4.713000-4 7.592984+4 4.735000-4 7.638840+4 4.757000-4 7.738240+4 4.772000-4 7.844888+4 4.790000-4 8.024480+4 4.807000-4 8.254800+4 4.823000-4 8.534320+4 4.840000-4 8.906960+4 4.850000-4 9.166400+4 4.866400-4 9.662609+4 4.880000-4 1.014680+5 4.897788-4 1.088874+5 4.915000-4 1.173512+5 4.935000-4 1.289376+5 4.958000-4 1.448152+5 4.980000-4 1.627984+5 5.011872-4 1.941328+5 5.080000-4 2.836392+5 5.110000-4 3.328544+5 5.135000-4 3.782096+5 5.160000-4 4.272304+5 5.190000-4 4.905576+5 5.220000-4 5.583096+5 5.248075-4 6.252673+5 5.280000-4 7.051360+5 5.310000-4 7.832240+5 5.339400-4 8.620202+5 5.370318-4 9.466018+5 5.400000-4 1.028664+6 5.432503-4 1.118558+6 5.465000-4 1.207376+6 5.500000-4 1.300648+6 5.530000-4 1.377760+6 5.560000-4 1.451664+6 5.590000-4 1.521944+6 5.635000-4 1.620096+6 5.670000-4 1.690208+6 5.720000-4 1.781160+6 5.760000-4 1.846416+6 5.815000-4 1.925912+6 5.850000-4 1.970792+6 5.900000-4 2.027400+6 5.956621-4 2.081674+6 6.030000-4 2.137424+6 6.100000-4 2.176688+6 6.180000-4 2.207496+6 6.282500-4 2.229497+6 6.390000-4 2.237304+6 6.531306-4 2.231154+6 6.700000-4 2.205744+6 6.850000-4 2.170416+6 7.080000-4 2.102920+6 7.328245-4 2.020414+6 7.642400-4 1.909166+6 8.000000-4 1.781704+6 8.413951-4 1.638462+6 8.850000-4 1.496736+6 9.350000-4 1.346520+6 9.885531-4 1.202790+6 1.071519-3 1.010908+6 1.135011-3 8.863200+5 1.230269-3 7.305216+5 1.333521-3 5.979211+5 1.428894-3 4.997761+5 1.570000-3 3.880080+5 1.698244-3 3.120916+5 1.862087-3 2.398295+5 2.041738-3 1.829805+5 2.238721-3 1.386003+5 2.457300-3 1.039505+5 2.722701-3 7.515734+4 3.019952-3 5.372546+4 3.349654-3 3.811733+4 3.715352-3 2.683708+4 4.120975-3 1.875502+4 4.570882-3 1.301767+4 5.128614-3 8.605551+3 5.821032-3 5.406984+3 6.606934-3 3.364367+3 7.500000-3 2.072888+3 8.511380-3 1.266779+3 9.549926-3 8.029588+2 1.071519-2 5.053665+2 1.200000-2 3.183424+2 1.333521-2 2.058357+2 1.500000-2 1.258360+2 1.717908-2 7.079757+1 1.972423-2 3.910122+1 2.264644-2 2.142672+1 2.630268-2 1.108105+1 3.090295-2 5.404541+0 3.672823-2 2.485040+0 4.518559-2 9.701205-1 8.128305-2 6.618505-2 1.188502-1 1.179906-2 1.380384-1 6.021764-3 1.548817-1 3.613348-3 1.737801-1 2.185116-3 1.949845-1 1.326122-3 2.137962-1 8.951348-4 2.371374-1 5.795689-4 2.600160-1 3.964603-4 2.851018-1 2.729599-4 3.126079-1 1.892184-4 3.427678-1 1.321108-4 3.715352-1 9.708959-5 4.073803-1 6.877928-5 4.466836-1 4.909440-5 4.954502-1 3.377882-5 5.248075-1 2.759080-5 5.559043-1 2.267316-5 5.754399-1 2.023459-5 6.095369-1 1.687295-5 6.683439-1 1.273181-5 7.498942-1 8.888571-6 8.035261-1 7.206436-6 8.511380-1 6.087045-6 9.015711-1 5.179347-6 9.440609-1 4.581104-6 9.885531-1 4.079196-6 1.035142+0 3.659831-6 1.083927+0 3.308107-6 1.135011+0 3.009334-6 1.202264+0 2.693165-6 1.303167+0 2.326086-6 1.428894+0 1.983005-6 1.513561+0 1.797971-6 1.862087+0 1.247438-6 2.089296+0 1.024717-6 2.371374+0 8.315343-7 2.722701+0 6.671722-7 3.162278+0 5.297098-7 3.672823+0 4.236644-7 4.265795+0 3.413520-7 5.011872+0 2.725597-7 5.956621+0 2.158011-7 7.079458+0 1.721468-7 8.609938+0 1.343325-7 1.047129+1 1.056148-7 1.318257+1 8.027615-8 1.640590+1 6.232071-8 2.089296+1 4.742272-8 2.691535+1 3.585480-8 3.715352+1 2.531473-8 5.495409+1 1.673796-8 8.609938+1 1.050103-8 1.566751+2 5.691716-9 3.126079+2 2.828516-9 6.237348+2 1.411421-9 4.954502+3 1.77032-10 1.000000+5 8.76790-12 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 4.571700-4 1.831800-4 1.000000+5 1.831800-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.571700-4 1.107600-7 1.000000+5 1.107600-7 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.571700-4 2.738792-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.624400-4 4.683450+4 5.188000-4 3.523886+4 5.559043-4 3.311773+4 6.700000-4 2.776220+4 7.300000-4 2.541020+4 8.511380-4 2.143943+4 9.332543-4 1.925301+4 1.070000-3 1.624854+4 1.202264-3 1.397737+4 1.412538-3 1.123689+4 1.610000-3 9.346461+3 1.900000-3 7.347580+3 2.264644-3 5.649331+3 2.754229-3 4.178322+3 3.349654-3 3.067557+3 4.120975-3 2.193370+3 5.011872-3 1.585220+3 6.025596-3 1.159180+3 7.244360-3 8.413786+2 8.709636-3 6.061448+2 1.047129-2 4.335009+2 1.258925-2 3.077816+2 1.513561-2 2.169141+2 1.819701-2 1.517428+2 2.187762-2 1.053539+2 2.630268-2 7.258777+1 3.162278-2 4.962207+1 3.801894-2 3.365440+1 4.570882-2 2.264639+1 5.432503-2 1.550912+1 6.531306-2 1.027913+1 7.943282-2 6.587366+0 9.772372-2 4.076985+0 1.216186-1 2.437088+0 1.603245-1 1.261248+0 2.722701-1 3.550557-1 3.388442-1 2.117673-1 4.027170-1 1.417811-1 4.731513-1 9.825680-2 5.495409-1 7.037841-2 6.309573-1 5.206792-2 7.328245-1 3.786062-2 8.609938-1 2.709107-2 9.772372-1 2.097927-2 1.188502+0 1.429578-2 1.333521+0 1.147680-2 1.513561+0 9.080985-3 1.717908+0 7.244414-3 1.972423+0 5.706880-3 2.238721+0 4.617152-3 2.570396+0 3.692466-3 2.951209+0 2.974808-3 3.427678+0 2.371050-3 4.000000+0 1.891000-3 4.677351+0 1.515395-3 5.559043+0 1.196125-3 6.606934+0 9.513652-4 7.943282+0 7.510680-4 9.660509+0 5.886645-4 1.202264+1 4.522664-4 1.500000+1 3.489900-4 1.949845+1 2.589085-4 2.600160+1 1.880974-4 3.672823+1 1.295035-4 5.432503+1 8.560531-5 8.609938+1 5.306236-5 1.566751+2 2.875995-5 3.090295+2 1.446010-5 6.165950+2 7.215052-6 4.897788+3 9.049427-7 1.000000+5 4.430500-8 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.624400-4 2.067800-4 1.000000+5 2.067800-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.624400-4 9.724000-9 1.000000+5 9.724000-9 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.624400-4 1.556503-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 2.950600-4 1.555948+5 2.962000-4 1.489570+5 2.969000-4 1.455448+5 2.980000-4 1.411600+5 2.995000-4 1.365986+5 3.009600-4 1.331490+5 3.030000-4 1.293540+5 3.065000-4 1.241644+5 3.180000-4 1.099906+5 3.350000-4 9.168420+4 3.589219-4 7.300083+4 3.780000-4 6.253120+4 4.027170-4 5.208562+4 4.216965-4 4.588444+4 4.365158-4 4.194788+4 4.518559-4 3.856295+4 4.700900-4 3.526353+4 4.897788-4 3.236531+4 5.150000-4 2.937420+4 5.400000-4 2.699080+4 5.650000-4 2.505180+4 5.900000-4 2.346720+4 6.200000-4 2.192580+4 6.531306-4 2.055265+4 7.000000-4 1.899910+4 7.585776-4 1.747548+4 8.413951-4 1.582897+4 1.174898-3 1.168319+4 1.350000-3 1.022006+4 1.531087-3 8.992898+3 1.757924-3 7.751372+3 1.972423-3 6.801262+3 2.238721-3 5.850057+3 2.540973-3 4.996170+3 2.900000-3 4.204720+3 3.311311-3 3.509741+3 3.758374-3 2.932119+3 4.265795-3 2.432162+3 4.841724-3 2.002780+3 5.500000-3 1.634778+3 6.237348-3 1.328194+3 7.079458-3 1.069662+3 8.035261-3 8.551993+2 9.120108-3 6.787396+2 1.035142-2 5.349160+2 1.174898-2 4.186583+2 1.333521-2 3.254296+2 1.513561-2 2.512453+2 1.737801-2 1.880017+2 1.995262-2 1.395768+2 2.290868-2 1.028195+2 2.630268-2 7.517648+1 3.019952-2 5.456794+1 3.507519-2 3.826017+1 4.073803-2 2.661754+1 4.731513-2 1.838115+1 5.559043-2 1.224197+1 6.606934-2 7.857571+0 7.943282-2 4.858324+0 9.772372-2 2.805859+0 1.273503-1 1.378815+0 2.290868-1 2.837605-1 2.818383-1 1.634462-1 3.349654-1 1.039381-1 3.890451-1 7.069088-2 4.466836-1 4.986732-2 5.069907-1 3.645864-2 5.754399-1 2.684772-2 6.456542-1 2.047340-2 7.244360-1 1.572293-2 8.317638-1 1.155208-2 9.120108-1 9.458380-3 9.885531-1 7.993246-3 1.109175+0 6.348676-3 1.250000+0 5.035469-3 1.412538+0 4.010357-3 1.640590+0 3.061970-3 1.883649+0 2.405194-3 2.137962+0 1.941108-3 2.454709+0 1.548337-3 2.818383+0 1.244431-3 3.273407+0 9.896121-4 3.801894+0 7.928650-4 4.415704+0 6.398882-4 5.248075+0 5.037404-4 6.237348+0 3.996535-4 7.498942+0 3.147591-4 9.120108+0 2.461635-4 1.100000+1 1.959200-4 1.380384+1 1.497061-4 1.800000+1 1.103700-4 2.400000+1 8.002700-5 3.311311+1 5.637255-5 4.786301+1 3.809363-5 7.413102+1 2.412588-5 1.258925+2 1.400199-5 2.483133+2 7.023515-6 4.954502+2 3.501847-6 1.972423+3 8.760083-7 1.000000+5 1.725900-8 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 2.950600-4 1.882400-4 1.000000+5 1.882400-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.950600-4 1.822900-8 1.000000+5 1.822900-8 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 2.950600-4 1.068018-4 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.252500-4 3.590000+5 2.400000-4 3.231300+5 2.511886-4 3.009828+5 2.754229-4 2.626577+5 3.150000-4 2.223360+5 3.350000-4 2.074552+5 4.954502-4 1.386789+5 5.688529-4 1.194917+5 6.456542-4 1.035151+5 7.328245-4 8.904081+4 8.317638-4 7.601911+4 9.440609-4 6.443787+4 1.083927-3 5.337754+4 1.244515-3 4.386855+4 1.428894-3 3.578613+4 1.650000-3 2.873260+4 1.905461-3 2.290344+4 2.213095-3 1.795876+4 2.570396-3 1.398171+4 3.000000-3 1.071364+4 3.467369-3 8.289780+3 4.000000-3 6.390360+3 4.570882-3 4.979232+3 5.248075-3 3.818766+3 6.025596-3 2.906365+3 6.839116-3 2.248015+3 7.762471-3 1.727744+3 8.912509-3 1.286722+3 1.023293-2 9.511303+2 1.174898-2 6.975675+2 1.348963-2 5.076125+2 1.548817-2 3.665112+2 1.778279-2 2.626293+2 2.041738-2 1.867646+2 2.344229-2 1.317962+2 2.691535-2 9.228636+1 3.090295-2 6.414952+1 3.548134-2 4.427644+1 4.120975-2 2.940247+1 4.786301-2 1.937361+1 5.623413-2 1.226548+1 6.606934-2 7.705889+0 7.943282-2 4.493577+0 9.772372-2 2.429558+0 1.244515-1 1.173813+0 1.949845-1 3.023358-1 2.398833-1 1.626401-1 2.851018-1 9.771833-2 3.311311-1 6.329962-2 3.801894-1 4.271431-2 4.315191-1 3.000602-2 4.841724-1 2.191730-2 5.432503-1 1.612510-2 6.025596-1 1.231458-2 6.683439-1 9.469635-3 7.413102-1 7.331371-3 8.709636-1 4.970788-3 9.332543-1 4.235582-3 9.885531-1 3.728102-3 1.059254+0 3.223541-3 1.148154+0 2.742278-3 1.250000+0 2.330200-3 1.380384+0 1.942070-3 1.737801+0 1.289372-3 1.995262+0 1.015482-3 2.264644+0 8.219117-4 2.600160+0 6.577420-4 3.000000+0 5.263300-4 3.467369+0 4.228953-4 4.027170+0 3.397760-4 4.731513+0 2.705812-4 5.623413+0 2.136824-4 6.683439+0 1.700398-4 8.035261+0 1.343122-4 9.772372+0 1.053092-4 1.216186+1 8.094556-5 1.513561+1 6.266824-5 1.949845+1 4.697597-5 2.600160+1 3.412872-5 3.672823+1 2.349582-5 5.432503+1 1.553273-5 8.609938+1 9.627732-6 1.566751+2 5.218283-6 3.090295+2 2.623564-6 6.165950+2 1.309136-6 4.897788+3 1.641887-7 1.000000+5 8.038700-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.252500-4 1.311300-4 1.000000+5 1.311300-4 1 95000 7 7 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.252500-4 5.058400-9 1.000000+5 5.058400-9 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.252500-4 9.411494-5 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.252900-4 7.031327+5 1.257000-4 7.555760+5 1.266000-4 8.701480+5 1.273503-4 9.715916+5 1.280000-4 1.061668+6 1.285000-4 1.131688+6 1.292000-4 1.229552+6 1.298000-4 1.311896+6 1.305000-4 1.404988+6 1.311000-4 1.481248+6 1.318257-4 1.567918+6 1.325000-4 1.642140+6 1.331000-4 1.702280+6 1.337000-4 1.756604+6 1.343000-4 1.804492+6 1.350000-4 1.852084+6 1.358000-4 1.895576+6 1.365000-4 1.924440+6 1.373000-4 1.947348+6 1.380384-4 1.959668+6 1.391000-4 1.964068+6 1.402000-4 1.954664+6 1.414000-4 1.931444+6 1.428894-4 1.888628+6 1.447000-4 1.823140+6 1.470000-4 1.729236+6 1.500000-4 1.602128+6 1.540000-4 1.439672+6 1.584893-4 1.274002+6 1.640590-4 1.093037+6 1.698244-4 9.310163+5 1.760000-4 7.831880+5 1.980000-4 4.353840+5 2.089296-4 3.352094+5 2.190000-4 2.685136+5 2.264644-4 2.305107+5 2.344229-4 1.982152+5 2.400000-4 1.796984+5 2.454709-4 1.642796+5 2.520000-4 1.488948+5 2.580000-4 1.371976+5 2.635000-4 1.282080+5 2.691535-4 1.204346+5 2.754229-4 1.132871+5 2.818383-4 1.073180+5 2.884032-4 1.023783+5 2.951209-4 9.833269+4 3.019952-4 9.505903+4 3.100000-4 9.213920+4 3.180000-4 8.998560+4 3.280000-4 8.812480+4 3.390000-4 8.688400+4 3.507519-4 8.623696+4 3.650000-4 8.609800+4 3.850000-4 8.658880+4 4.500000-4 8.900800+4 4.850000-4 8.963440+4 5.188000-4 8.954627+4 5.500000-4 8.888480+4 5.888437-4 8.747885+4 6.237348-4 8.578281+4 6.606934-4 8.362612+4 7.079458-4 8.054022+4 7.585776-4 7.701492+4 8.128305-4 7.310398+4 8.761400-4 6.858263+4 9.440609-4 6.389119+4 1.023293-3 5.873026+4 1.110000-3 5.354160+4 1.216186-3 4.784229+4 1.318257-3 4.301418+4 1.450000-3 3.763404+4 1.584893-3 3.296204+4 1.730000-3 2.873956+4 1.905461-3 2.452778+4 2.113489-3 2.052091+4 2.344229-3 1.702718+4 2.600160-3 1.401575+4 2.884032-3 1.144674+4 3.200000-3 9.269800+3 3.548134-3 7.460125+3 3.935501-3 5.953103+3 4.315191-3 4.841069+3 4.786301-3 3.807681+3 5.308844-3 2.972907+3 5.888437-3 2.304418+3 6.531306-3 1.773294+3 7.244360-3 1.354997+3 8.035261-3 1.028308+3 9.000000-3 7.546077+2 1.000000-2 5.620907+2 1.122018-2 4.043649+2 1.258925-2 2.886972+2 1.412538-2 2.046041+2 1.584893-2 1.439710+2 1.778279-2 1.006097+2 2.018366-2 6.732002+1 2.290868-2 4.470171+1 2.600160-2 2.947111+1 2.985383-2 1.856533+1 3.427678-2 1.160828+1 4.000000-2 6.813609+0 4.677351-2 3.939903+0 5.623413-2 2.050128+0 6.918310-2 9.751185-1 1.428894-1 7.063750-2 1.757924-1 3.357578-2 2.089296-1 1.819612-2 2.426610-1 1.077597-2 2.786121-1 6.692973-3 3.162278-1 4.356786-3 3.548134-1 2.969158-3 3.981072-1 2.038244-3 4.415705-1 1.462882-3 4.897788-1 1.057165-3 5.432503-1 7.692199-4 5.956621-1 5.839786-4 6.456542-1 4.626943-4 7.079458-1 3.573157-4 8.035261-1 2.530744-4 8.609938-1 2.089719-4 9.120108-1 1.793006-4 9.549926-1 1.595579-4 1.000000+0 1.429100-4 1.047129+0 1.288943-4 1.109175+0 1.141399-4 1.174898+0 1.017951-4 1.258925+0 8.940459-5 1.364583+0 7.742426-5 1.531087+0 6.345817-5 1.840772+0 4.583832-5 2.065380+0 3.764107-5 2.344229+0 3.053059-5 2.691535+0 2.447851-5 3.126079+0 1.942108-5 3.630781+0 1.552353-5 4.216965+0 1.250057-5 4.954502+0 9.976472-6 5.888437+0 7.894716-6 7.000000+0 6.293000-6 8.511380+0 4.909590-6 1.035142+1 3.858407-6 1.303167+1 2.931586-6 1.603245+1 2.305240-6 2.041738+1 1.753054-6 2.660725+1 1.308004-6 3.672823+1 9.232771-7 5.432503+1 6.103504-7 8.609938+1 3.783240-7 1.566751+2 2.050527-7 3.126079+2 1.019015-7 6.237348+2 5.085051-8 4.954502+3 6.378082-9 1.000000+5 3.15880-10 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.252900-4 1.252900-4 1.000000+5 1.252900-4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.252900-4 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.149000-4 1.129225+6 1.150000-4 1.163490+6 1.154000-4 1.263582+6 1.158000-4 1.363818+6 1.162000-4 1.464498+6 1.166000-4 1.564248+6 1.170000-4 1.663548+6 1.174898-4 1.783299+6 1.180000-4 1.905168+6 1.185000-4 2.021382+6 1.190300-4 2.140647+6 1.195000-4 2.242368+6 1.200000-4 2.345868+6 1.207000-4 2.481594+6 1.212000-4 2.571312+6 1.218000-4 2.670336+6 1.225000-4 2.773302+6 1.232000-4 2.862186+6 1.240000-4 2.945940+6 1.247000-4 3.003738+6 1.255000-4 3.052482+6 1.262000-4 3.080778+6 1.270000-4 3.097860+6 1.280000-4 3.098652+6 1.290000-4 3.079776+6 1.303167-4 3.030803+6 1.315000-4 2.969058+6 1.330000-4 2.874348+6 1.350000-4 2.731698+6 1.373000-4 2.559486+6 1.400000-4 2.360538+6 1.450000-4 2.024358+6 1.513561-4 1.665145+6 1.566751-4 1.414643+6 1.621810-4 1.195290+6 1.840772-4 6.309890+5 1.905461-4 5.322647+5 1.980000-4 4.432710+5 2.041738-4 3.851343+5 2.100000-4 3.404400+5 2.162719-4 3.012120+5 2.220000-4 2.719518+5 2.280000-4 2.468076+5 2.330000-4 2.294400+5 2.380000-4 2.148156+5 2.430000-4 2.025312+5 2.483133-4 1.916593+5 2.540973-4 1.819851+5 2.600160-4 1.740361+5 2.660725-4 1.675979+5 2.730000-4 1.619550+5 2.800000-4 1.577544+5 2.880000-4 1.543992+5 2.951209-4 1.524161+5 3.054921-4 1.507694+5 3.162278-4 1.501522+5 3.311311-4 1.504354+5 3.548134-4 1.522214+5 4.000000-4 1.560258+5 4.265795-4 1.572038+5 4.570882-4 1.573564+5 4.850000-4 1.564824+5 5.150000-4 1.546098+5 5.500000-4 1.514382+5 5.900000-4 1.469382+5 6.309573-4 1.416977+5 6.760830-4 1.354555+5 7.300000-4 1.278264+5 7.852356-4 1.200531+5 8.511380-4 1.110968+5 9.200000-4 1.023456+5 1.000000-3 9.297300+4 1.083927-3 8.415774+4 1.190000-3 7.434060+4 1.288250-3 6.647514+4 1.412538-3 5.795856+4 1.548817-3 5.014905+4 1.690000-3 4.344960+4 1.862087-3 3.678481+4 2.070000-3 3.041526+4 2.317395-3 2.460395+4 2.600160-3 1.963175+4 2.917427-3 1.551596+4 3.235937-3 1.245449+4 3.589219-3 9.922099+3 3.981072-3 7.842544+3 4.415704-3 6.154074+3 4.897788-3 4.793180+3 5.432503-3 3.704549+3 6.025596-3 2.841951+3 6.683439-3 2.164619+3 7.413102-3 1.637229+3 8.222426-3 1.229796+3 9.120108-3 9.175035+2 1.011579-2 6.800164+2 1.135011-2 4.838051+2 1.273503-2 3.415340+2 1.428894-2 2.392766+2 1.603245-2 1.663946+2 1.798871-2 1.148865+2 2.018366-2 7.878076+1 2.290868-2 5.162393+1 2.600160-2 3.357415+1 2.951209-2 2.168067+1 3.388442-2 1.335436+1 3.890451-2 8.164017+0 4.466836-2 4.951885+0 5.248075-2 2.741338+0 6.531306-2 1.217126+0 1.333521-1 8.407292-2 1.603245-1 4.240087-2 1.862087-1 2.446980-2 2.137962-1 1.483110-2 2.426610-1 9.437831-3 2.722701-1 6.301226-3 3.019952-1 4.408746-3 3.349654-1 3.106081-3 3.715352-1 2.204214-3 4.120975-1 1.576413-3 4.518559-1 1.178373-3 4.954502-1 8.869608-4 5.432503-1 6.724300-4 5.888437-1 5.311511-4 6.382635-1 4.226621-4 6.918310-1 3.386248-4 7.585776-1 2.647861-4 8.709636-1 1.841968-4 9.225714-1 1.593409-4 9.660509-1 1.426580-4 1.011579+0 1.284620-4 1.071519+0 1.135177-4 1.135011+0 1.009532-4 1.216186+0 8.831910-5 1.318257+0 7.614039-5 1.883649+0 4.061206-5 2.113489+0 3.339741-5 2.398833+0 2.712088-5 2.754229+0 2.177192-5 3.198895+0 1.729422-5 3.715352+0 1.383979-5 4.315191+0 1.115732-5 5.069907+0 8.913662-6 6.025596+0 7.060891-6 7.161434+0 5.635347-6 8.709636+0 4.399273-6 1.059254+1 3.460553-6 1.333521+1 2.631292-6 1.659587+1 2.043427-6 2.113489+1 1.555484-6 2.691535+1 1.191256-6 3.715352+1 8.410397-7 5.495409+1 5.561111-7 8.709636+1 3.447722-7 1.621810+2 1.825708-7 3.235937+2 9.075990-8 6.456542+2 4.529532-8 5.128614+3 5.682016-9 1.000000+5 2.91310-10 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.149000-4 1.149000-4 1.000000+5 1.149000-4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.149000-4 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 8.290000-6 6.294924+5 8.330000-6 6.235920+5 8.609938-6 6.016293+5 8.912509-6 5.835270+5 9.200000-6 5.710560+5 9.440609-6 5.636683+5 9.700000-6 5.589030+5 1.000000-5 5.566710+5 1.023293-5 5.573436+5 1.060000-5 5.622780+5 1.100000-5 5.724090+5 1.135011-5 5.849173+5 1.174898-5 6.029426+5 1.216186-5 6.255849+5 1.258925-5 6.528130+5 1.310000-5 6.900150+5 1.365000-5 7.352250+5 1.440000-5 8.049420+5 1.513561-5 8.815116+5 1.610000-5 9.936840+5 1.737801-5 1.161366+6 1.927525-5 1.447538+6 2.350000-5 2.219283+6 2.540973-5 2.610948+6 2.730000-5 3.010710+6 2.900000-5 3.371220+6 3.054921-5 3.692966+6 3.230000-5 4.041720+6 3.400000-5 4.360650+6 3.589219-5 4.689616+6 3.758374-5 4.958539+6 3.981072-5 5.276088+6 4.220000-5 5.574930+6 4.466836-5 5.842261+6 4.731513-5 6.083548+6 5.011872-5 6.292193+6 5.300000-5 6.455430+6 5.580000-5 6.558810+6 5.821032-5 6.604713+6 6.070000-5 6.609480+6 6.309573-5 6.571028+6 6.580000-5 6.480570+6 6.839116-5 6.353986+6 7.079458-5 6.204812+6 7.328245-5 6.021536+6 7.585776-5 5.809182+6 7.852356-5 5.572325+6 8.150000-5 5.290710+6 8.413951-5 5.029965+6 8.709636-5 4.733020+6 9.015711-5 4.424373+6 9.332543-5 4.104483+6 9.660509-5 3.777326+6 1.000000-4 3.448800+6 1.030000-4 3.168510+6 1.060000-4 2.898543+6 1.090000-4 2.641581+6 1.122018-4 2.384092+6 1.150000-4 2.173365+6 1.180000-4 1.961979+6 1.216186-4 1.727745+6 1.250000-4 1.529784+6 1.288250-4 1.328677+6 1.318257-4 1.186436+6 1.350000-4 1.050063+6 1.390000-4 8.977470+5 1.428894-4 7.684050+5 1.465000-4 6.628800+5 1.500000-4 5.727210+5 1.540000-4 4.830030+5 1.570000-4 4.240500+5 1.603245-4 3.660734+5 1.640590-4 3.092090+5 1.678804-4 2.591564+5 1.705000-4 2.291136+5 1.740000-4 1.937706+5 1.770000-4 1.673661+5 1.800000-4 1.441641+5 1.835000-4 1.207317+5 1.865000-4 1.034385+5 1.900000-4 8.613450+4 1.940200-4 6.958111+4 1.980000-4 5.620830+4 2.065380-4 3.576998+4 2.100000-4 3.008550+4 2.123000-4 2.698959+4 2.145000-4 2.448456+4 2.165000-4 2.256186+4 2.185000-4 2.094969+4 2.200000-4 1.992954+4 2.215000-4 1.906047+4 2.230000-4 1.833315+4 2.247000-4 1.766901+4 2.263000-4 1.718889+4 2.280000-4 1.682175+4 2.297500-4 1.658649+4 2.310000-4 1.650093+4 2.325000-4 1.648293+4 2.340000-4 1.655139+4 2.355000-4 1.670037+4 2.371374-4 1.694839+4 2.388000-4 1.728465+4 2.410000-4 1.784907+4 2.430000-4 1.846932+4 2.458000-4 1.948995+4 2.630268-4 2.764558+4 2.722701-4 3.290405+4 2.818383-4 3.892055+4 2.884032-4 4.332823+4 2.951209-4 4.801413+4 3.000000-4 5.149170+4 3.054921-4 5.463334+4 3.126079-4 5.852779+4 3.198895-4 6.227730+4 3.273407-4 6.584158+4 3.349654-4 6.918518+4 3.427678-4 7.227828+4 3.507519-4 7.509725+4 3.589219-4 7.762493+4 3.696900-4 8.042663+4 3.801894-4 8.261599+4 3.935501-4 8.470525+4 4.120975-4 8.684594+4 4.265795-4 8.787601+4 4.415704-4 8.831895+4 4.570882-4 8.821502+4 4.731513-4 8.761506+4 4.897788-4 8.657746+4 5.188000-4 8.420281+4 5.432503-4 8.175021+4 5.688529-4 7.883939+4 6.000000-4 7.502400+4 6.309573-4 7.113959+4 6.683439-4 6.643777+4 7.079458-4 6.159165+4 7.498942-4 5.672210+4 8.000000-4 5.131650+4 8.511380-4 4.629664+4 9.120108-4 4.096966+4 9.772372-4 3.599376+4 1.047129-3 3.140483+4 1.122018-3 2.722253+4 1.202264-3 2.345044+4 1.303167-3 1.955851+4 1.412538-3 1.619317+4 1.531087-3 1.331485+4 1.659587-3 1.087812+4 1.798871-3 8.830894+3 1.972423-3 6.906864+3 2.162719-3 5.364043+3 2.371374-3 4.135271+3 2.600160-3 3.164368+3 2.851018-3 2.403552+3 3.090295-3 1.877885+3 3.388442-3 1.406188+3 3.715352-3 1.045590+3 4.120975-3 7.434190+2 4.570882-3 5.252576+2 5.069907-3 3.683989+2 5.623413-3 2.564831+2 6.237348-3 1.771989+2 6.918310-3 1.215336+2 7.673615-3 8.278180+1 8.511380-3 5.601111+1 9.549926-3 3.602029+1 1.083927-2 2.199188+1 1.230269-2 1.332300+1 1.396368-2 8.006754+0 1.584893-2 4.773398+0 1.778279-2 2.961266+0 2.018366-2 1.734130+0 2.317395-2 9.596820-1 2.691535-2 5.015272-1 3.273407-2 2.126351-1 3.981072-2 8.945112-2 5.128614-2 2.891898-2 9.015711-2 2.319277-3 1.148154-1 7.914381-4 1.396368-1 3.333818-4 1.548817-1 2.121398-4 1.737801-1 1.293721-4 1.972423-1 7.567584-5 2.264644-1 4.241060-5 2.540973-1 2.635509-5 2.851018-1 1.649905-5 3.162278-1 1.090283-5 3.507519-1 7.258254-6 3.890451-1 4.869183-6 4.265795-1 3.437693-6 4.677351-1 2.443633-6 5.188000-1 1.678196-6 5.623413-1 1.261354-6 6.025596-1 9.941549-7 6.456542-1 7.923550-7 6.998420-1 6.130476-7 7.673615-1 4.608798-7 8.000000-1 4.058600-7 8.511380-1 3.315431-7 8.912509-1 2.867749-7 9.332543-1 2.497196-7 9.660509-1 2.263686-7 1.000000+0 2.063800-7 1.035142+0 1.893609-7 1.071519+0 1.747435-7 1.109175+0 1.620811-7 1.161449+0 1.476267-7 1.216186+0 1.353423-7 1.303167+0 1.197687-7 1.412538+0 1.047166-7 1.500000+0 9.504100-8 1.927525+0 6.113994-8 2.162719+0 5.033274-8 2.483133+0 4.017417-8 2.851018+0 3.230911-8 3.311311+0 2.570802-8 3.845918+0 2.060840-8 4.466836+0 1.664099-8 5.308844+0 1.310753-8 6.309573+0 1.040469-8 7.585776+0 8.198394-9 9.225714+0 6.414421-9 1.122018+1 5.056792-9 1.412538+1 3.852201-9 1.862087+1 2.807577-9 2.511886+1 2.011469-9 3.548134+1 1.383560-9 5.188000+1 9.25036-10 8.128305+1 5.79776-10 1.428894+2 3.25253-10 2.722701+2 1.69161-10 5.432503+2 8.43703-11 4.315191+3 1.05762-11 1.000000+5 4.56180-13 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 8.290000-6 8.290000-6 1.000000+5 8.290000-6 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 8.290000-6 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 7.000000-6 1.047136+6 7.244360-6 1.003906+6 7.420000-6 9.785160+5 7.673615-6 9.495219+5 7.920000-6 9.291400+5 8.200000-6 9.135200+5 8.420000-6 9.066320+5 8.709636-6 9.034160+5 9.015711-6 9.064224+5 9.350000-6 9.164720+5 9.700000-6 9.335080+5 1.010000-5 9.600040+5 1.050000-5 9.929360+5 1.100000-5 1.042128+6 1.150000-5 1.099160+6 1.202264-5 1.166136+6 1.273503-5 1.268230+6 1.355400-5 1.399217+6 1.462177-5 1.589567+6 1.603245-5 1.871416+6 1.819701-5 2.364226+6 2.238721-5 3.484657+6 2.454709-5 4.112934+6 2.650000-5 4.688000+6 2.818383-5 5.172789+6 3.000000-5 5.671880+6 3.162278-5 6.091779+6 3.349654-5 6.536743+6 3.548134-5 6.958020+6 3.758374-5 7.353070+6 3.981072-5 7.713652+6 4.220000-5 8.040920+6 4.500000-5 8.359200+6 4.786301-5 8.610655+6 5.080000-5 8.797960+6 5.308844-5 8.892108+6 5.580000-5 8.939160+6 5.821032-5 8.925395+6 6.070000-5 8.856200+6 6.309573-5 8.734246+6 6.580000-5 8.541800+6 6.839116-5 8.311981+6 7.079458-5 8.061071+6 7.328245-5 7.771377+6 7.585776-5 7.451198+6 7.852356-5 7.102768+6 8.150000-5 6.697240+6 8.413951-5 6.332270+6 8.709636-5 5.924037+6 9.015711-5 5.502380+6 9.332543-5 5.071888+6 9.660509-5 4.640416+6 9.950000-5 4.272240+6 1.023293-4 3.924942+6 1.050000-4 3.611812+6 1.083927-4 3.237518+6 1.110000-4 2.967300+6 1.135011-4 2.722405+6 1.171900-4 2.388884+6 1.205000-4 2.118020+6 1.240000-4 1.858464+6 1.278000-4 1.606248+6 1.315000-4 1.389476+6 1.350000-4 1.208020+6 1.384600-4 1.048577+6 1.415000-4 9.237120+5 1.450000-4 7.963360+5 1.480000-4 6.996320+5 1.513561-4 6.034759+5 1.550000-4 5.121240+5 1.584893-4 4.362589+5 1.621810-4 3.669008+5 1.650000-4 3.205468+5 1.680000-4 2.768396+5 1.705000-4 2.444884+5 1.740000-4 2.048344+5 1.770000-4 1.755076+5 1.800000-4 1.499568+5 1.835000-4 1.243744+5 1.865000-4 1.056880+5 1.905461-4 8.465356+4 1.950000-4 6.623520+4 2.018366-4 4.579643+4 2.050000-4 3.899524+4 2.070000-4 3.543176+4 2.093350-4 3.192004+4 2.113489-4 2.945656+4 2.139800-4 2.689927+4 2.162719-4 2.515886+4 2.187762-4 2.367104+4 2.213095-4 2.252465+4 2.238721-4 2.166772+4 2.248000-4 2.142269+4 2.264644-4 2.106116+4 2.290868-4 2.067594+4 2.317395-4 2.049095+4 2.344229-4 2.049143+4 2.371374-4 2.066788+4 2.398833-4 2.101517+4 2.426610-4 2.153192+4 2.454709-4 2.222008+4 2.483133-4 2.308453+4 2.511886-4 2.413287+4 2.540973-4 2.537520+4 2.570396-4 2.682391+4 2.600160-4 2.849355+4 2.630268-4 3.040066+4 2.660725-4 3.256351+4 2.691535-4 3.500184+4 2.722701-4 3.773652+4 2.754229-4 4.078908+4 2.818383-4 4.793371+4 3.000000-4 7.523760+4 3.151200-4 8.311881+4 3.273407-4 8.924722+4 3.388442-4 9.471465+4 3.507519-4 9.997592+4 3.630781-4 1.049080+5 3.758374-4 1.093796+5 3.890451-4 1.132549+5 4.000000-4 1.158468+5 4.120975-4 1.169977+5 4.265795-4 1.176634+5 4.415704-4 1.176565+5 4.570882-4 1.170358+5 4.786301-4 1.153872+5 5.011872-4 1.129108+5 5.248075-4 1.097178+5 5.495409-4 1.059132+5 5.754399-4 1.016126+5 6.095369-4 9.572288+4 6.456542-4 8.946272+4 6.839116-4 8.298342+4 7.244360-4 7.645930+4 7.673615-4 7.000853+4 8.128305-4 6.371638+4 8.709636-4 5.648989+4 9.332543-4 4.970790+4 1.000000-3 4.342950+4 1.071519-3 3.769576+4 1.155000-3 3.209284+4 1.244515-3 2.715971+4 1.348963-3 2.251583+4 1.462177-3 1.853198+4 1.603245-3 1.472271+4 1.737801-3 1.195510+4 1.883649-3 9.642626+3 2.018366-3 7.975479+3 2.187762-3 6.343546+3 2.398833-3 4.846106+3 2.630268-3 3.675147+3 2.951209-3 2.582953+3 3.273407-3 1.866684+3 3.630781-3 1.338599+3 4.000000-3 9.739812+2 4.415704-3 6.986873+2 4.897788-3 4.895192+2 5.432503-3 3.403189+2 6.025596-3 2.348137+2 6.683439-3 1.608241+2 7.413102-3 1.093678+2 8.222426-3 7.386741+1 9.225714-3 4.739514+1 1.047129-2 2.885080+1 1.174898-2 1.825466+1 1.318257-2 1.147082+1 1.479108-2 7.156750+0 1.659587-2 4.432357+0 1.798871-2 3.153498+0 2.041738-2 1.831148+0 2.344229-2 1.004150+0 2.786121-2 4.702619-1 3.311311-2 2.184975-1 4.000000-2 9.370900-2 5.011872-2 3.374683-2 9.772372-2 1.612535-3 1.161449-1 7.393184-4 1.348963-1 3.788018-4 1.531088-1 2.165886-4 1.737801-1 1.247965-4 1.949845-1 7.611012-5 2.187762-1 4.672096-5 2.426610-1 3.031565-5 2.691535-1 1.981499-5 2.951209-1 1.367071-5 3.235937-1 9.502869-6 3.507519-1 6.958304-6 3.801894-1 5.127317-6 4.120975-1 3.802654-6 4.466836-1 2.839183-6 4.841724-1 2.134916-6 5.248075-1 1.616828-6 5.623413-1 1.282014-6 6.025596-1 1.023224-6 6.456542-1 8.241979-7 6.918310-1 6.683515-7 7.498942-1 5.272871-7 8.035261-1 4.324076-7 8.511380-1 3.650295-7 9.015711-1 3.102095-7 9.440609-1 2.740942-7 9.885531-1 2.438913-7 1.035142+0 2.187814-7 1.083927+0 1.976943-7 1.135011+0 1.797602-7 1.202264+0 1.607830-7 1.303167+0 1.388648-7 1.428894+0 1.184928-7 1.513561+0 1.074977-7 1.862087+0 7.457799-8 2.089296+0 6.127286-8 2.371374+0 4.972770-8 2.722701+0 3.989462-8 3.162278+0 3.167101-8 3.672823+0 2.533055-8 4.265795+0 2.040949-8 5.011872+0 1.629676-8 5.956621+0 1.290283-8 7.079458+0 1.029309-8 8.609938+0 8.031508-9 1.047129+1 6.314756-9 1.318257+1 4.799752-9 1.621810+1 3.775577-9 2.065380+1 2.872146-9 2.691535+1 2.143779-9 3.672823+1 1.532236-9 5.432503+1 1.012929-9 8.609938+1 6.27862-10 1.566751+2 3.40308-10 3.054921+2 1.73094-10 6.095369+2 8.63642-11 4.841724+3 1.08322-11 1.000000+5 5.24230-13 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 7.000000-6 7.000000-6 1.000000+5 7.000000-6 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 7.000000-6 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 5.506000-5 4.030540+5 5.559043-5 3.946438+5 5.660000-5 3.746020+5 5.821032-5 3.424716+5 6.095369-5 2.926710+5 6.531306-5 2.301268+5 6.839116-5 1.971623+5 7.079458-5 1.764907+5 7.328245-5 1.588062+5 7.585776-5 1.436752+5 7.900000-5 1.286042+5 8.222426-5 1.160861+5 8.609938-5 1.039501+5 9.015711-5 9.374778+4 9.500000-5 8.398880+4 1.000000-4 7.592680+4 1.059254-4 6.832426+4 1.120000-4 6.217600+4 1.174898-4 5.770000+4 1.244515-4 5.311899+4 1.318257-4 4.923538+4 1.412538-4 4.526221+4 1.580000-4 3.987080+4 1.905461-4 3.255589+4 2.454709-4 2.490956+4 3.000000-4 1.996166+4 3.507519-4 1.670078+4 4.216965-4 1.340509+4 4.897788-4 1.114176+4 5.888437-4 8.796933+3 6.918310-4 7.099535+3 8.128305-4 5.692632+3 9.772372-4 4.386632+3 1.174898-3 3.352395+3 1.412538-3 2.542878+3 1.737801-3 1.848416+3 2.187762-3 1.285905+3 2.754229-3 8.878254+2 3.507519-3 5.972843+2 4.415704-3 4.064321+2 5.432503-3 2.853810+2 6.683439-3 1.988608+2 8.128305-3 1.403088+2 9.549926-3 1.046366+2 1.148154-2 7.416738+1 1.412538-2 4.995626+1 1.757924-2 3.265563+1 2.238721-2 2.028355+1 2.691535-2 1.401104+1 3.090295-2 1.055533+1 3.672823-2 7.343492+0 4.365158-2 5.070507+0 5.248075-2 3.389287+0 6.309573-2 2.248755+0 7.673615-2 1.443000+0 9.225714-2 9.430246-1 1.161449-1 5.495155-1 1.531088-1 2.849810-1 2.570396-1 8.224900-2 3.198895-1 4.898153-2 3.845918-1 3.187642-2 4.570882-1 2.146427-2 5.248075-1 1.574424-2 6.095369-1 1.133963-2 7.079458-1 8.229112-3 8.222427-1 6.018060-3 9.332543-1 4.647579-3 1.071519+0 3.536018-3 1.250000+0 2.621000-3 1.428894+0 2.039095-3 1.603245+0 1.654364-3 1.819701+0 1.324139-3 2.089296+0 1.046320-3 2.371374+0 8.491399-4 2.722701+0 6.812599-4 3.162278+0 5.408536-4 3.672823+0 4.325737-4 4.265795+0 3.485342-4 5.011872+0 2.783009-4 5.956621+0 2.203447-4 7.079458+0 1.757735-4 8.609938+0 1.371552-4 1.035142+1 1.093503-4 1.303167+1 8.308454-5 1.603245+1 6.533309-5 2.041738+1 4.968386-5 2.660725+1 3.706878-5 3.715352+1 2.584726-5 5.495409+1 1.709060-5 8.709636+1 1.059596-5 1.584893+2 5.743773-6 3.162278+2 2.854774-6 6.309573+2 1.424566-6 5.011872+3 1.786953-7 1.000000+5 8.952500-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 5.506000-5 5.506000-5 1.000000+5 5.506000-5 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 5.506000-5 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.514000-5 9.928940+6 3.570000-5 9.216620+6 3.630781-5 8.549711+6 3.715352-5 7.771345+6 3.801894-5 7.111465+6 3.900000-5 6.481600+6 4.027170-5 5.809419+6 4.216965-5 5.006857+6 4.472100-5 4.176478+6 5.248075-5 2.572917+6 7.161434-5 9.803399+5 8.035261-5 6.901195+5 9.885531-5 3.709514+5 1.300000-4 1.643718+5 1.513561-4 1.053222+5 1.717908-4 7.321222+4 1.905461-4 5.473105+4 2.089296-4 4.252085+4 2.300000-4 3.291700+4 2.483133-4 2.701534+4 2.660725-4 2.274946+4 2.851018-4 1.928214+4 3.054921-4 1.645689+4 3.280000-4 1.408114+4 3.507519-4 1.224280+4 3.758374-4 1.068363+4 4.000000-4 9.513120+3 4.265795-4 8.494291+3 4.570882-4 7.571369+3 4.897788-4 6.795678+3 5.300000-4 6.051960+3 5.800000-4 5.347020+3 6.382635-4 4.726255+3 7.161434-4 4.108478+3 8.317638-4 3.454349+3 1.216186-3 2.247768+3 1.462177-3 1.812680+3 1.717908-3 1.490574+3 2.018366-3 1.216647+3 2.344229-3 1.000277+3 2.722701-3 8.164427+2 3.162278-3 6.613510+2 3.630781-3 5.406515+2 4.168694-3 4.388859+2 4.623810-3 3.732999+2 5.308844-3 2.982757+2 6.095369-3 2.364791+2 6.918310-3 1.897961+2 7.852356-3 1.513063+2 9.015711-3 1.172338+2 1.096478-2 8.079601+1 1.273503-2 6.035701+1 1.462177-2 4.578430+1 1.659587-2 3.529627+1 1.865000-2 2.759364+1 2.113489-2 2.101294+1 2.426610-2 1.543309+1 2.786121-2 1.124692+1 3.235937-2 7.919297+0 3.758374-2 5.532969+0 4.365158-2 3.836408+0 5.128614-2 2.565690+0 6.025596-2 1.703136+0 7.161434-2 1.089447+0 8.709636-2 6.515002-1 1.071519-1 3.752261-1 2.264644-1 4.996149-2 2.786121-1 2.876962-2 3.311311-1 1.828728-2 3.845918-1 1.243110-2 4.415705-1 8.764090-3 5.011872-1 6.403622-3 5.688529-1 4.712366-3 6.382635-1 3.591100-3 7.161434-1 2.756050-3 8.222427-1 2.023777-3 9.015711-1 1.655533-3 9.772372-1 1.397595-3 1.083927+0 1.134468-3 1.216186+0 9.061144-4 1.348963+0 7.454228-4 1.548817+0 5.795251-4 1.778279+0 4.537556-4 2.044000+0 3.573800-4 2.317395+0 2.902241-4 2.660725+0 2.325457-4 3.090295+0 1.843962-4 3.589219+0 1.473126-4 4.168694+0 1.185606-4 4.897788+0 9.456646-5 5.821032+0 7.479588-5 6.918310+0 5.960839-5 8.413951+0 4.646949-5 1.023293+1 3.650257-5 1.288250+1 2.772379-5 1.584893+1 2.179226-5 2.018366+1 1.656832-5 2.630268+1 1.235655-5 3.672823+1 8.614220-6 5.370318+1 5.763463-6 8.413951+1 3.614417-6 1.500000+2 1.999900-6 2.917427+2 1.019324-6 5.821032+2 5.085090-7 4.623810+3 6.376490-8 1.000000+5 2.947100-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.514000-5 3.514000-5 1.000000+5 3.514000-5 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.514000-5 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.389000-5 2.592762+7 2.400000-5 2.518096+7 2.440000-5 2.304688+7 2.483133-5 2.109207+7 2.540000-5 1.892012+7 2.600160-5 1.701013+7 2.660725-5 1.539763+7 2.754229-5 1.335720+7 2.851018-5 1.166681+7 2.985383-5 9.819873+6 3.150000-5 8.098920+6 3.388442-5 6.289043+6 3.758374-5 4.432865+6 4.415704-5 2.595074+6 4.954502-5 1.780454+6 5.432503-5 1.325397+6 5.900000-5 1.024540+6 6.309573-5 8.361755+5 6.760830-5 6.828029+5 7.244360-5 5.616749+5 7.673615-5 4.802516+5 8.128305-5 4.130884+5 8.609938-5 3.575330+5 9.120108-5 3.114122+5 9.660509-5 2.729697+5 1.023293-4 2.407693+5 1.096478-4 2.086971+5 1.174898-4 1.822707+5 1.260000-4 1.600740+5 1.350000-4 1.417752+5 1.450000-4 1.258692+5 1.566751-4 1.114766+5 1.698244-4 9.894683+4 1.883649-4 8.558487+4 2.137962-4 7.228430+4 2.454709-4 6.059371+4 4.216965-4 3.114143+4 5.128614-4 2.431505+4 6.165950-4 1.912313+4 7.244360-4 1.538719+4 8.609938-4 1.209493+4 1.011579-3 9.587404+3 1.188502-3 7.540987+3 1.396368-3 5.883373+3 1.640590-3 4.555410+3 1.927525-3 3.501053+3 2.290868-3 2.620310+3 2.691535-3 1.984672+3 3.162278-3 1.492173+3 3.672823-3 1.137191+3 4.265795-3 8.604459+2 4.954502-3 6.460849+2 5.688529-3 4.924034+2 6.531306-3 3.725972+2 7.498942-3 2.798718+2 8.609938-3 2.086639+2 9.885531-3 1.544511+2 1.148154-2 1.107376+2 1.318257-2 8.086969+1 1.500000-2 5.986362+1 1.717908-2 4.325219+1 1.972423-2 3.081410+1 2.264644-2 2.178142+1 2.600160-2 1.528081+1 3.000000-2 1.050514+1 3.467369-2 7.133176+0 4.027170-2 4.743050+0 4.677351-2 3.129047+0 5.495409-2 1.983380+0 6.382635-2 1.289752+0 7.585776-2 7.790697-1 9.332543-2 4.219410-1 1.148154-1 2.267549-1 1.972423-1 4.433548-2 2.426610-1 2.386491-2 2.851018-1 1.483891-2 3.311311-1 9.613630-3 3.801894-1 6.488250-3 4.315191-1 4.558529-3 4.841724-1 3.330078-3 5.432503-1 2.450207-3 6.025596-1 1.871332-3 6.683439-1 1.439232-3 7.413102-1 1.114465-3 8.709636-1 7.559128-4 9.332543-1 6.442034-4 9.885531-1 5.670626-4 1.059254+0 4.903345-4 1.148154+0 4.171451-4 1.250000+0 3.544700-4 1.380384+0 2.954172-4 1.737801+0 1.960757-4 1.972423+0 1.574992-4 2.238721+0 1.274395-4 2.570396+0 1.019169-4 2.951209+0 8.210147-5 3.427678+0 6.543705-5 4.000000+0 5.218800-5 4.677351+0 4.182194-5 5.559043+0 3.301079-5 6.606934+0 2.625592-5 7.943282+0 2.072839-5 9.660509+0 1.624665-5 1.188502+1 1.265399-5 1.479108+1 9.788720-6 1.927525+1 7.238377-6 2.570396+1 5.257009-6 3.630781+1 3.618160-6 5.370318+1 2.391203-6 8.413951+1 1.499637-6 1.479108+2 8.416616-7 2.851018+2 4.328485-7 5.688529+2 2.159125-7 4.518559+3 2.707239-8 1.000000+5 1.222700-9 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.389000-5 2.389000-5 1.000000+5 2.389000-5 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.389000-5 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.490000-6 9.813440+6 5.688529-6 8.818544+6 6.760830-6 5.110127+6 7.762471-6 3.326397+6 9.000000-6 2.117540+6 1.050000-5 1.333832+6 1.216186-5 8.650448+5 1.412538-5 5.604906+5 1.650000-5 3.601460+5 1.883649-5 2.486639+5 2.137962-5 1.758341+5 2.371374-5 1.333326+5 2.630268-5 1.018680+5 2.884032-5 8.077621+4 3.126079-5 6.639163+4 3.388442-5 5.495408+4 3.672823-5 4.582632+4 3.981072-5 3.848783+4 4.315191-5 3.257432+4 4.677351-5 2.778150+4 5.069907-5 2.386028+4 5.500000-5 2.058440+4 6.000000-5 1.770896+4 6.606934-5 1.510743+4 7.328245-5 1.282668+4 8.128305-5 1.097794+4 9.332543-5 8.992638+3 1.096478-4 7.199894+3 1.230269-4 6.178130+3 1.400000-4 5.237640+3 2.018366-4 3.373600+3 2.344229-4 2.789551+3 4.365158-4 1.239208+3 5.069907-4 1.014202+3 7.328245-4 6.086791+2 8.413951-4 4.994552+2 1.071519-3 3.499333+2 1.318257-3 2.560369+2 1.603245-3 1.892845+2 2.018366-3 1.315797+2 2.754229-3 7.964926+1 3.019952-3 6.790281+1 4.365158-3 3.666808+1 5.559043-3 2.430443+1 6.456542-3 1.873813+1 7.943282-3 1.296846+1 9.660509-3 9.094203+0 1.174898-2 6.328865+0 1.428894-2 4.370910+0 1.737801-2 2.995589+0 2.113489-2 2.037309+0 2.540973-2 1.407175+0 2.917427-2 1.060409+0 3.507519-2 7.212759-1 4.216965-2 4.867998-1 5.069907-2 3.260172-1 6.095369-2 2.165999-1 7.413102-2 1.391777-1 8.709636-2 9.608163-2 1.083927-1 5.764126-2 1.412538-1 3.078985-2 2.600160-1 7.134467-3 3.235937-1 4.251483-3 3.890451-1 2.768850-3 4.570882-1 1.915590-3 5.248075-1 1.405872-3 6.095369-1 1.013354-3 6.998420-1 7.543948-4 8.035261-1 5.657134-4 9.225714-1 4.275490-4 1.083927+0 3.111596-4 1.258925+0 2.327998-4 1.428894+0 1.835040-4 1.584893+0 1.519404-4 1.798871+0 1.215372-4 2.065380+0 9.598132-5 2.344229+0 7.784412-5 2.691535+0 6.241405-5 3.126079+0 4.952166-5 3.630781+0 3.958449-5 4.216965+0 3.187602-5 4.954502+0 2.543891-5 5.888437+0 2.013145-5 7.000000+0 1.604700-5 8.511380+0 1.251943-5 1.035142+1 9.838728-6 1.303167+1 7.475342-6 1.603245+1 5.878231-6 2.041738+1 4.470253-6 2.660725+1 3.335214-6 3.672823+1 2.354344-6 5.432503+1 1.556381-6 8.609938+1 9.647176-7 1.566751+2 5.228806-7 3.090295+2 2.628812-7 6.165950+2 1.311758-7 4.897788+3 1.645258-8 1.000000+5 8.05480-10 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.490000-6 5.490000-6 1.000000+5 5.490000-6 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.490000-6 0.0 1.000000+5 1.000000+5 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 8.848120-7 1.025500+0 1.247350-6 1.025800+0 1.594610-6 1.026100+0 2.000640-6 1.026600+0 2.820440-6 1.027100+0 3.837260-6 1.027500+0 4.806130-6 1.028100+0 6.543460-6 1.028750+0 8.848120-6 1.029500+0 1.210890-5 1.030100+0 1.522840-5 1.031000+0 2.083760-5 1.032000+0 2.851110-5 1.033200+0 3.993920-5 1.034000+0 4.902910-5 1.035300+0 6.655000-5 1.036640+0 8.848120-5 1.038200+0 1.194080-4 1.039700+0 1.551350-4 1.041500+0 2.064060-4 1.043800+0 2.864980-4 1.046400+0 3.986080-4 1.048300+0 4.962780-4 1.051200+0 6.731910-4 1.054080+0 8.848120-4 1.057700+0 1.206050-3 1.061100+0 1.568770-3 1.065100+0 2.076870-3 1.070400+0 2.897430-3 1.076200+0 4.004230-3 1.080600+0 5.000630-3 1.087100+0 6.737520-3 1.093710+0 8.848120-3 1.102600+0 1.226810-2 1.110700+0 1.600060-2 1.120600+0 2.140490-2 1.133300+0 2.976370-2 1.147500+0 4.109640-2 1.158200+0 5.107270-2 1.174100+0 6.825640-2 1.190110+0 8.848120-2 1.205100+0 1.101130-1 1.227500+0 1.473450-1 1.250000+0 1.905000-1 1.280300+0 2.572030-1 1.307700+0 3.253960-1 1.343000+0 4.231560-1 1.382200+0 5.429080-1 1.411700+0 6.394800-1 1.455800+0 7.918250-1 1.500000+0 9.515000-1 1.562500+0 1.183640+0 1.641100+0 1.478890+0 1.706900+0 1.724030+0 1.811600+0 2.105170+0 1.937200+0 2.548040+0 2.000000+0 2.766000+0 2.044000+0 2.918000+0 2.163500+0 3.319040+0 2.372600+0 3.976670+0 2.686300+0 4.868560+0 3.000000+0 5.674000+0 3.500000+0 6.837210+0 4.000000+0 7.892000+0 5.000000+0 9.741000+0 6.000000+0 1.131000+1 7.000000+0 1.272000+1 8.000000+0 1.399000+1 9.000000+0 1.516000+1 1.000000+1 1.624000+1 1.100000+1 1.724000+1 1.200000+1 1.817000+1 1.300000+1 1.904000+1 1.400000+1 1.986000+1 1.500000+1 2.063000+1 1.600000+1 2.134000+1 1.800000+1 2.264000+1 2.000000+1 2.380000+1 2.200000+1 2.486000+1 2.400000+1 2.583000+1 2.600000+1 2.671000+1 2.800000+1 2.752000+1 3.000000+1 2.826000+1 4.000000+1 3.131000+1 5.000000+1 3.357000+1 6.000000+1 3.532000+1 8.000000+1 3.790000+1 1.000000+2 3.972000+1 1.500000+2 4.258000+1 2.000000+2 4.428000+1 3.000000+2 4.627000+1 4.000000+2 4.740000+1 5.000000+2 4.815000+1 6.000000+2 4.868000+1 8.000000+2 4.939000+1 1.000000+3 4.984000+1 1.500000+3 5.050000+1 2.000000+3 5.086000+1 3.000000+3 5.123000+1 4.000000+3 5.147000+1 5.000000+3 5.161000+1 6.000000+3 5.170000+1 8.000000+3 5.182000+1 1.000000+4 5.190000+1 1.500000+4 5.199000+1 2.000000+4 5.206000+1 3.000000+4 5.210000+1 4.000000+4 5.215000+1 5.000000+4 5.217000+1 6.000000+4 5.218000+1 8.000000+4 5.219000+1 1.000000+5 5.220000+1 1 95000 7 8 2.420000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.502240-7 2.090400+0 1.290170-6 2.094700+0 1.672900-6 2.099900+0 2.225560-6 2.106600+0 3.095930-6 2.114000+0 4.283620-6 2.119500+0 5.333070-6 2.127900+0 7.232650-6 2.136250+0 9.502240-6 2.147000+0 1.302820-5 2.156900+0 1.692210-5 2.169000+0 2.258360-5 2.184500+0 3.139200-5 2.201800+0 4.343180-5 2.214800+0 5.411260-5 2.234200+0 7.279100-5 2.253680+0 9.502240-5 2.281500+0 1.330950-4 2.307000+0 1.748200-4 2.338200+0 2.350600-4 2.377400+0 3.255300-4 2.410200+0 4.140190-4 2.446800+0 5.266550-4 2.485900+0 6.630880-4 2.532900+0 8.486140-4 2.556430+0 9.502240-4 2.611900+0 1.211660-3 2.660400+0 1.464850-3 2.745300+0 1.960650-3 2.809000+0 2.374480-3 2.904500+0 3.058910-3 3.000000+0 3.818000-3 3.125000+0 4.922550-3 3.234400+0 5.988680-3 3.425800+0 8.061770-3 3.569300+0 9.772900-3 3.784700+0 1.255770-2 4.000000+0 1.555000-2 4.250000+0 1.920720-2 4.625000+0 2.495230-2 5.000000+0 3.092000-2 5.500000+0 3.910050-2 6.000000+0 4.738000-2 6.750000+0 5.968540-2 7.000000+0 6.373000-2 8.000000+0 7.952000-2 9.000000+0 9.458000-2 1.000000+1 1.089000-1 1.100000+1 1.223000-1 1.200000+1 1.350000-1 1.300000+1 1.469000-1 1.400000+1 1.582000-1 1.500000+1 1.689000-1 1.600000+1 1.790000-1 1.800000+1 1.976000-1 2.000000+1 2.146000-1 2.200000+1 2.300000-1 2.400000+1 2.441000-1 2.600000+1 2.571000-1 2.800000+1 2.691000-1 3.000000+1 2.802000-1 4.000000+1 3.259000-1 5.000000+1 3.602000-1 6.000000+1 3.871000-1 8.000000+1 4.272000-1 1.000000+2 4.561000-1 1.500000+2 5.032000-1 2.000000+2 5.323000-1 3.000000+2 5.676000-1 4.000000+2 5.886000-1 5.000000+2 6.029000-1 6.000000+2 6.133000-1 8.000000+2 6.276000-1 1.000000+3 6.371000-1 1.500000+3 6.512000-1 2.000000+3 6.593000-1 3.000000+3 6.680000-1 4.000000+3 6.732000-1 5.000000+3 6.763000-1 6.000000+3 6.785000-1 8.000000+3 6.815000-1 1.000000+4 6.834000-1 1.500000+4 6.859000-1 2.000000+4 6.874000-1 3.000000+4 6.888000-1 4.000000+4 6.897000-1 5.000000+4 6.902000-1 6.000000+4 6.906000-1 8.000000+4 6.909000-1 1.000000+5 6.912000-1 1 95000 7 8 2.420000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 95000 7 9 2.420000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.500000+1 1.000000+5 9.500000+1 5.000000+5 9.496200+1 1.000000+6 9.490000+1 1.375000+6 9.483580+1 1.500000+6 9.480700+1 1.750000+6 9.473310+1 2.000000+6 9.465900+1 2.375000+6 9.451650+1 2.500000+6 9.447400+1 2.875000+6 9.431260+1 3.000000+6 9.425400+1 3.250000+6 9.412100+1 3.625000+6 9.392460+1 4.000000+6 9.371900+1 4.437500+6 9.345850+1 4.812500+6 9.321850+1 5.000000+6 9.310200+1 5.500000+6 9.275150+1 5.875000+6 9.247460+1 6.437500+6 9.204480+1 6.500000+6 9.199400+1 7.000000+6 9.160500+1 7.875000+6 9.090420+1 9.000000+6 8.997600+1 1.000000+7 8.911800+1 1.250000+7 8.696200+1 1.500000+7 8.470800+1 1.750000+7 8.239600+1 2.000000+7 8.004300+1 2.250000+7 7.765780+1 2.500000+7 7.529900+1 2.875000+7 7.189180+1 3.000000+7 7.080500+1 3.500000+7 6.669480+1 4.000000+7 6.299100+1 4.500000+7 5.964140+1 4.750000+7 5.807210+1 5.000000+7 5.657500+1 5.750000+7 5.239780+1 6.000000+7 5.110600+1 6.750000+7 4.750550+1 7.000000+7 4.639800+1 8.000000+7 4.238600+1 9.000000+7 3.897200+1 1.000000+8 3.601800+1 1.109400+8 3.315990+1 1.125000+8 3.277550+1 1.203100+8 3.093280+1 1.250000+8 2.987600+1 1.359400+8 2.753850+1 1.437500+8 2.597600+1 1.453100+8 2.567180+1 1.500000+8 2.478300+1 1.625000+8 2.255940+1 1.750000+8 2.059560+1 2.000000+8 1.746100+1 2.171900+8 1.585310+1 2.289100+8 1.497460+1 2.429700+8 1.412040+1 2.500000+8 1.376700+1 2.812500+8 1.253600+1 2.875000+8 1.230560+1 2.937500+8 1.206720+1 3.000000+8 1.182000+1 3.125000+8 1.129830+1 3.500000+8 9.873600+0 3.812500+8 9.019460+0 3.937500+8 8.682180+0 4.000000+8 8.503700+0 4.125000+8 8.123970+0 4.750000+8 6.303640+0 5.000000+8 5.763800+0 5.125000+8 5.544100+0 5.343800+8 5.223070+0 5.630900+8 4.887240+0 6.000000+8 4.541100+0 6.500000+8 4.157860+0 7.000000+8 3.850500+0 7.625000+8 3.534300+0 7.875000+8 3.406830+0 8.000000+8 3.340400+0 8.250000+8 3.201520+0 8.468800+8 3.077180+0 8.851600+8 2.860960+0 9.500000+8 2.533860+0 1.000000+9 2.320200+0 1.031300+9 2.207250+0 1.089800+9 2.030640+0 1.141100+9 1.904450+0 1.205600+9 1.775010+0 1.250000+9 1.700630+0 1.259600+9 1.685930+0 1.319700+9 1.602710+0 1.384100+9 1.528410+0 1.461400+9 1.454930+0 1.500000+9 1.423300+0 1.625000+9 1.338410+0 1.859400+9 1.214320+0 2.000000+9 1.146500+0 2.139200+9 1.079150+0 2.272600+9 1.015560+0 2.440400+9 9.383630-1 2.600300+9 8.687380-1 2.750000+9 8.076600-1 2.750300+9 8.075410-1 2.959000+9 7.291290-1 3.086500+9 6.851230-1 3.325700+9 6.100760-1 3.535000+9 5.519670-1 3.718100+9 5.063190-1 4.038600+9 4.367570-1 4.278900+9 3.921180-1 4.639500+9 3.351930-1 5.000000+9 2.882800-1 5.375000+9 2.479460-1 5.703100+9 2.184210-1 6.277300+9 1.768590-1 7.031000+9 1.366790-1 8.000000+9 1.010100-1 9.000000+9 7.615120-2 1.00000+10 5.896700-2 1.27030+10 3.283250-2 1.55700+10 1.987920-2 2.15420+10 8.874010-3 3.13500+10 3.470130-3 1.00000+11 1.873000-4 1.68570+11 5.069520-5 3.34410+11 9.235110-6 8.62510+11 8.929060-7 2.83020+12 4.884610-8 1.00000+14 8.59560-12 3.16230+15 1.90995-15 1.00000+17 4.07370-19 1 95000 7 0 2.420000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.29000-11 1.000000+2 1.290000-9 1.000000+3 1.290000-7 1.000000+4 1.290000-5 1.000000+5 1.290000-3 5.000000+5 3.225000-2 1.000000+6 1.290000-1 1.375000+6 2.413990-1 1.500000+6 2.860000-1 1.750000+6 3.848760-1 2.000000+6 4.960000-1 2.375000+6 6.837280-1 2.500000+6 7.514000-1 2.875000+6 9.672320-1 3.000000+6 1.043100+0 3.250000+6 1.199610+0 3.625000+6 1.444710+0 4.000000+6 1.699000+0 4.437500+6 2.002910+0 4.812500+6 2.266670+0 5.000000+6 2.399000+0 5.500000+6 2.750300+0 5.875000+6 3.012030+0 6.437500+6 3.399880+0 6.500000+6 3.442590+0 7.000000+6 3.781500+0 7.875000+6 4.361080+0 9.000000+6 5.094300+0 1.000000+7 5.745000+0 1.250000+7 7.391900+0 1.500000+7 9.065000+0 1.750000+7 1.070000+1 2.000000+7 1.227700+1 2.250000+7 1.378820+1 2.500000+7 1.524600+1 2.875000+7 1.735310+1 3.000000+7 1.803300+1 3.500000+7 2.062370+1 4.000000+7 2.302700+1 4.500000+7 2.525950+1 4.750000+7 2.633040+1 5.000000+7 2.738000+1 5.750000+7 3.041670+1 6.000000+7 3.140100+1 6.750000+7 3.426180+1 7.000000+7 3.519000+1 8.000000+7 3.874000+1 9.000000+7 4.204000+1 1.000000+8 4.506700+1 1.109400+8 4.802970+1 1.125000+8 4.842220+1 1.203100+8 5.029210+1 1.250000+8 5.133800+1 1.359400+8 5.356070+1 1.437500+8 5.501190+1 1.453100+8 5.529010+1 1.500000+8 5.610600+1 1.625000+8 5.814920+1 1.750000+8 6.004210+1 2.000000+8 6.349500+1 2.171900+8 6.566630+1 2.289100+8 6.706130+1 2.429700+8 6.864420+1 2.500000+8 6.939900+1 2.812500+8 7.246080+1 2.875000+8 7.302220+1 2.937500+8 7.355880+1 3.000000+8 7.408800+1 3.125000+8 7.508210+1 3.500000+8 7.768800+1 3.812500+8 7.947810+1 3.937500+8 8.011760+1 4.000000+8 8.042500+1 4.125000+8 8.100260+1 4.750000+8 8.341730+1 5.000000+8 8.421300+1 5.125000+8 8.457760+1 5.343800+8 8.518280+1 5.630900+8 8.591840+1 6.000000+8 8.676300+1 6.500000+8 8.776760+1 7.000000+8 8.864500+1 7.625000+8 8.957300+1 7.875000+8 8.990130+1 8.000000+8 9.006200+1 8.250000+8 9.034730+1 8.468800+8 9.059070+1 8.851600+8 9.097060+1 9.500000+8 9.151640+1 1.000000+9 9.187100+1 1.031300+9 9.205810+1 1.089800+9 9.237540+1 1.141100+9 9.260650+1 1.205600+9 9.286100+1 1.250000+9 9.300850+1 1.259600+9 9.303890+1 1.319700+9 9.321010+1 1.384100+9 9.337490+1 1.461400+9 9.354270+1 1.500000+9 9.362200+1 1.625000+9 9.383570+1 1.859400+9 9.415700+1 2.000000+9 9.431600+1 2.139200+9 9.443370+1 2.272600+9 9.452470+1 2.440400+9 9.462150+1 2.600300+9 9.469900+1 2.750000+9 9.475410+1 2.750300+9 9.475420+1 2.959000+9 9.481330+1 3.086500+9 9.484070+1 3.325700+9 9.488930+1 3.535000+9 9.491460+1 3.718100+9 9.493070+1 4.038600+9 9.495710+1 4.278900+9 9.497150+1 4.639500+9 9.498110+1 5.000000+9 9.499000+1 5.375000+9 9.499150+1 5.703100+9 9.499280+1 6.277300+9 9.499480+1 7.031000+9 9.499730+1 8.000000+9 9.500000+1 9.000000+9 9.500000+1 1.00000+10 9.500000+1 1.27030+10 9.500000+1 1.55700+10 9.500000+1 2.15420+10 9.500000+1 3.13500+10 9.500000+1 1.00000+11 9.500000+1 1.68570+11 9.500000+1 3.34410+11 9.500000+1 8.62510+11 9.500000+1 2.83020+12 9.500000+1 1.00000+14 9.500000+1 3.16230+15 9.500000+1 1.00000+17 9.500000+1 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.300139-6 0.0 1.303339-6 1.059172-6 1.306539-6 2.095809-6 1.309739-6 3.828166-6 1.312939-6 6.454813-6 1.316139-6 1.004686-5 1.319339-6 1.443548-5 1.322540-6 1.914634-5 1.325740-6 2.344198-5 1.328940-6 2.649456-5 1.332140-6 2.764222-5 1.335340-6 2.662216-5 1.338540-6 2.366832-5 1.341740-6 1.942431-5 1.348141-6 1.029115-5 1.351341-6 6.643607-6 1.354541-6 3.959114-6 1.357741-6 2.177941-6 1.360941-6 1.105983-6 1.364141-6 0.0 1.981947-6 0.0 1.986825-6 3.846122-7 1.991704-6 7.610415-7 1.996582-6 1.390104-6 2.001460-6 2.343907-6 2.006338-6 3.648272-6 2.011217-6 5.241890-6 2.016095-6 6.952524-6 2.020973-6 8.512380-6 2.025852-6 9.620849-6 2.030730-6 1.003760-5 2.035608-6 9.667183-6 2.040487-6 8.594570-6 2.045365-6 7.053462-6 2.055122-6 3.736978-6 2.060000-6 2.412463-6 2.064878-6 1.437655-6 2.069756-6 7.908660-7 2.074635-6 4.016105-7 2.079513-6 0.0 2.429608-6 0.0 2.438579-6 3.133279+0 2.441569-6 4.164457+0 2.447549-6 7.606722+0 2.453529-6 1.282598+1 2.460257-6 2.105127+1 2.470734-6 3.689033+1 2.477823-6 4.695843+1 2.483979-6 5.285468+1 2.489820-6 5.478747+1 2.496358-6 5.195122+1 2.502628-6 4.525505+1 2.512883-6 2.997036+1 2.519780-6 1.988149+1 2.525291-6 1.320113+1 2.531271-6 7.866942+0 2.537251-6 4.327685+0 2.545563-6 1.342137+0 2.549212-6 3.690783-5 2.552600-6 3.837740-5 2.556630-6 3.945321-5 2.562772-6 3.799728-5 2.568913-6 3.378133-5 2.578126-6 2.436764-5 2.587338-6 1.468835-5 2.593480-6 9.482291-6 2.599622-6 5.650767-6 2.605763-6 3.108533-6 2.614976-6 7.902017-7 2.618047-6 0.0 2.832287-6 0.0 2.844487-6 7.274128+0 2.846229-6 8.302686+0 2.853201-6 1.516554+1 2.860172-6 2.557118+1 2.868015-6 4.196996+1 2.880228-6 7.354833+1 2.888493-6 9.362111+1 2.896157-6 1.056945+2 2.902961-6 1.089508+2 2.910007-6 1.037307+2 2.917195-6 9.074855+1 2.928170-6 6.289573+1 2.936857-6 4.076907+1 2.943828-6 2.631910+1 2.950799-6 1.568430+1 2.957771-6 8.628061+0 2.968227-6 2.193288+0 2.971713-6 0.0 3.324668-6 0.0 3.332851-6 3.86868-15 3.341034-6 7.65506-15 3.349217-6 1.39826-14 3.357401-6 2.35766-14 3.365584-6 3.66967-14 3.373767-6 5.27264-14 3.381950-6 6.99331-14 3.390134-6 8.56231-14 3.398317-6 9.67728-14 3.406500-6 1.00965-13 3.414683-6 9.72389-14 3.422866-6 8.64499-14 3.431050-6 7.09484-14 3.447416-6 3.75890-14 3.455599-6 2.42661-14 3.463783-6 1.44609-14 3.471966-6 7.95505-15 3.483742-6 2.26837-15 3.488332-6 3.61244-15 3.500892-6 1.33677-14 3.509466-6 2.44173-14 3.518041-6 4.11709-14 3.526616-6 6.40822-14 3.535191-6 9.20742-14 3.543766-6 1.22122-13 3.552340-6 1.49521-13 3.560915-6 1.68991-13 3.569490-6 1.76311-13 3.578065-6 1.69805-13 3.586640-6 1.50964-13 3.595214-6 1.23895-13 3.612364-6 6.56403-14 3.620939-6 4.23751-14 3.629514-6 2.52525-14 3.638088-6 1.38916-14 3.646663-6 7.05432-15 3.655238-6 0.0 3.772329-6 0.0 3.786257-6 1.24870-20 3.790899-6 1.65966-20 3.800184-6 3.03150-20 3.809469-6 5.11153-20 3.819879-6 8.37599-20 3.837934-6 1.53846-19 3.854835-6 8.907169-1 3.856827-6 9.946986-1 3.866274-6 1.816898+0 3.876311-6 3.169850+0 3.885703-6 4.889925+0 3.913802-6 1.117105+1 3.924308-6 1.265264+1 3.933401-6 1.306817+1 3.942714-6 1.250682+1 3.952991-6 1.087208+1 3.967862-6 7.535186+0 3.979633-6 4.884315+0 3.989080-6 3.153144+0 3.998526-6 1.879048+0 4.007973-6 1.033680+0 4.022143-6 2.627656-1 4.026866-6 0.0 4.042597-6 0.0 4.052547-6 6.462186-2 4.062497-6 1.278688-1 4.072448-6 2.335629-1 4.082398-6 3.938191-1 4.092348-6 6.129762-1 4.110687-6 1.122222+0 4.122678-6 1.439180+0 4.132776-6 1.620883+0 4.144397-6 1.670306+0 4.154595-6 1.576809+0 4.165642-6 1.349468+0 4.167237-6 1.319736+0 4.187905-6 1.554960+0 4.198061-6 1.966519+0 4.208494-6 2.797778+0 4.218973-6 4.072224+0 4.250162-6 8.950920+0 4.260311-6 1.001135+1 4.270421-6 1.036221+1 4.280377-6 9.944373+0 4.291011-6 8.738313+0 4.320762-6 3.870901+0 4.331018-6 2.498919+0 4.341274-6 1.489176+0 4.351531-6 8.192071-1 4.366915-6 2.082458-1 4.372043-6 4.105682-8 4.380533-6 0.0 4.613173-6 0.0 4.624806-6 1.483287-2 4.647573-6 8.655295-1 4.659312-6 1.607403+0 4.670738-6 2.725044+0 4.683804-6 4.591569+0 4.712627-6 9.646007+0 4.722022-6 1.113060+1 4.730793-6 1.219938+1 4.740618-6 1.289476+1 4.752962-6 1.279215+1 4.765441-6 1.176646+1 4.779084-6 9.882531+0 4.806940-6 5.370705+0 4.818324-6 3.803175+0 4.829707-6 2.549274+0 4.841090-6 1.608969+0 4.851574-6 8.202870-1 4.852474-6 7.615399-1 4.863064-6 4.686120-1 4.874553-6 2.577868-1 4.897531-6 7.009582-3 4.906529-6 1.113650-2 4.911246-6 1.474428-2 4.918547-6 5.480482-2 4.930564-6 1.248213-1 4.935423-6 1.550287-1 4.947511-6 2.693857-1 4.959600-6 4.352060-1 4.971688-6 6.531706-1 5.007953-6 1.408699+0 5.020042-6 1.563297+0 5.032130-6 1.606543+0 5.044218-6 1.530466+0 5.059888-6 1.306703+0 5.084953-6 8.604544-1 5.093023-6 7.511609-1 5.098811-6 6.964103-1 5.105406-6 6.515179-1 5.116749-6 6.307530-1 5.130173-6 6.845669-1 5.172350-6 1.057167+0 5.253196-6 1.552785+0 5.268536-6 1.577780+0 5.284717-6 1.515366+0 5.338617-6 1.026182+0 5.360099-6 9.006717-1 5.393546-6 7.953230-1 5.422245-6 7.807318-1 5.455137-6 7.936627-1 5.488194-6 8.544859-1 5.528527-6 9.831537-1 5.547556-6 1.084275+0 5.572360-6 1.270256+0 5.597402-6 1.472539+0 5.609786-6 1.534116+0 5.623008-6 1.546774+0 5.636650-6 1.501729+0 5.656079-6 1.345520+0 5.688384-6 1.021436+0 5.701886-6 9.103530-1 5.715389-6 8.276867-1 5.728892-6 7.716441-1 5.755897-6 7.003486-1 6.002867-6 6.398904-1 6.047193-6 6.701481-1 6.076744-6 7.294821-1 6.121069-6 8.622298-1 6.135845-6 8.914724-1 6.150620-6 9.004763-1 6.165395-6 8.864492-1 6.195118-6 8.011729-1 6.239272-6 6.591643-1 6.254047-6 6.290458-1 6.281271-6 6.049606-1 6.298373-6 5.986958-1 6.349207-6 6.525449-1 6.389780-6 6.977224-1 6.420376-6 6.975054-1 6.483577-6 6.371858-1 6.585827-6 6.310119-1 6.746812-6 5.998674-1 6.781046-6 6.234107-1 6.796999-6 6.441560-1 6.814078-6 6.808109-1 6.864871-6 8.531642-1 6.879867-6 9.082891-1 6.898215-6 9.494870-1 6.914435-6 9.591288-1 6.931164-6 9.381501-1 6.961541-6 8.358606-1 6.997289-6 6.946505-1 7.028522-6 6.073448-1 7.044599-6 5.815304-1 7.077408-6 5.487245-1 7.286561-6 5.265315-1 7.340365-6 5.429863-1 7.376235-6 5.765185-1 7.447975-6 6.715983-1 7.483845-6 6.708829-1 7.529229-6 6.072068-1 7.573520-6 5.429149-1 7.609390-6 5.213318-1 7.645259-6 5.251372-1 7.712819-6 5.650422-1 7.749960-6 5.661913-1 7.848000-6 5.373626-1 8.112131-6 5.108351-1 8.254816-6 4.757770-1 8.438477-6 4.937730-1 9.350000-6 4.511793-1 1.029404-5 4.346577-1 1.143180-5 4.448208-1 1.275134-5 4.908563-1 1.411738-5 5.746583-1 1.567591-5 7.096941-1 1.756850-5 9.340640-1 1.960994-5 1.248035+0 1.991951-5 1.303661+0 2.001757-5 3.405516+0 2.006659-5 5.137107+0 2.011562-5 7.758037+0 2.016465-5 1.133902+1 2.031174-5 2.468684+1 2.036709-5 2.787967+1 2.041554-5 2.876467+1 2.043277-5 2.841179+1 2.046742-5 3.318844+1 2.053336-5 3.950222+1 2.058365-5 4.876886+1 2.063709-5 6.665554+1 2.068853-5 9.255670+1 2.083826-5 1.916273+2 2.089355-5 2.148816+2 2.094220-5 2.212495+2 2.099061-5 2.120014+2 2.104388-5 1.852579+2 2.118716-5 8.375279+1 2.123746-5 5.462708+1 2.128775-5 3.319410+1 2.133804-5 1.897673+1 2.140479-5 7.542043+0 2.143863-5 1.659491+0 2.152669-5 1.973562+0 2.157942-5 2.277778+0 2.163215-5 2.733380+0 2.168998-5 3.425251+0 2.184305-5 5.654561+0 2.189577-5 6.183196+0 2.194850-5 6.389373+0 2.200123-5 6.228615+0 2.206728-5 5.585196+0 2.208061-5 5.417929+0 2.218931-5 5.224946+0 2.224366-5 5.678746+0 2.229801-5 6.865500+0 2.235769-5 9.123424+0 2.252825-5 1.767723+1 2.258196-5 1.945439+1 2.263607-5 2.020723+1 2.269147-5 1.970484+1 2.277852-5 1.702940+1 2.286613-5 1.381038+1 2.291468-5 1.249768+1 2.296130-5 1.164843+1 2.301649-5 1.127270+1 2.320527-5 1.191502+1 2.325430-5 1.221379+1 2.337349-5 1.216553+1 2.373829-5 1.107287+1 2.497752-5 9.799616+0 2.654440-5 8.821864+0 2.873894-5 8.250366+0 3.097470-5 8.145743+0 3.112718-5 1.729256+1 3.120818-5 2.556741+1 3.128442-5 3.729334+1 3.136488-5 5.431489+1 3.158938-5 1.112733+2 3.167320-5 1.245737+2 3.174600-5 1.281279+2 3.183216-5 1.210635+2 3.191498-5 1.051411+2 3.211836-5 5.309027+1 3.219570-5 3.701666+1 3.227304-5 2.525809+1 3.234702-5 1.772342+1 3.249950-5 8.249179+0 3.283960-5 8.633300+0 3.313593-5 9.459935+0 3.342104-5 1.084348+1 3.363638-5 1.289855+1 3.383373-5 1.494058+1 3.392726-5 1.541987+1 3.404663-5 1.531039+1 3.434045-5 1.406947+1 3.469244-5 1.383569+1 3.519141-5 1.403690+1 3.598579-5 1.329598+1 3.981072-5 1.294644+1 4.748623-5 1.373746+1 5.180840-5 1.456425+1 5.269888-5 1.528722+1 5.361765-5 1.495230+1 5.900000-5 1.574829+1 6.882302-5 1.629307+1 7.867200-5 1.570789+1 9.165626-5 1.368625+1 1.040129-4 1.105425+1 1.046529-4 1.213703+1 1.050369-4 1.349765+1 1.053129-4 1.506361+1 1.058313-4 3.597538+1 1.060905-4 5.189190+1 1.063497-4 7.459442+1 1.066413-4 1.089350+2 1.073456-4 2.053144+2 1.076733-4 2.344909+2 1.079442-4 2.397816+2 1.081917-4 2.287090+2 1.084676-4 1.997026+2 1.092011-4 9.445986+1 1.094603-4 6.443050+1 1.097195-4 4.235561+1 1.099787-4 2.770757+1 1.104971-4 9.871849+0 1.122025-4 1.069176+1 1.143094-4 1.037796+1 1.148779-4 2.282956+1 1.151623-4 3.324750+1 1.154690-4 5.068200+1 1.157547-4 7.262840+1 1.164085-4 1.329492+2 1.166366-4 1.518953+2 1.169378-4 1.670112+2 1.171930-4 1.701603+2 1.174858-4 1.609634+2 1.177302-4 1.447407+2 1.185298-4 7.118304+1 1.188111-4 5.002752+1 1.190925-4 3.447172+1 1.193816-4 2.399572+1 1.199366-4 1.168228+1 1.215154-4 1.270725+1 1.224253-4 1.324973+1 1.250267-4 1.327070+1 1.305651-4 1.395158+1 1.349617-4 1.384759+1 1.402201-4 1.291736+1 1.562285-4 8.869116+0 1.659587-4 6.930614+0 1.747575-4 5.556320+0 1.842454-4 4.417886+0 1.920655-4 3.707025+0 2.028124-4 2.990399+0 2.129307-4 2.524108+0 2.181170-4 2.384060+0 2.197075-4 2.415297+0 2.207458-4 2.519318+0 2.240625-4 3.202994+0 2.252600-4 3.305163+0 2.412809-4 2.975975+0 2.580540-4 2.819944+0 2.770268-4 2.805083+0 2.850187-4 2.863936+0 2.871470-4 2.989283+0 2.886545-4 3.193857+0 2.914472-4 3.747300+0 2.928259-4 3.887568+0 2.946556-4 3.835419+0 2.990098-4 3.581800+0 3.313467-4 3.686280+0 3.545717-4 3.858089+0 3.630781-4 4.184886+0 4.429869-4 4.685616+0 4.474280-4 4.905266+0 4.539930-4 5.669589+0 4.605613-4 5.597680+0 4.674150-4 6.113689+0 4.695663-4 6.114750+0 4.757000-4 5.833604+0 4.823000-4 5.873222+0 4.925000-4 6.242251+0 5.005886-4 6.864078+0 5.089370-4 7.963567+0 5.164668-4 9.428420+0 5.267647-4 1.216419+1 5.422484-4 1.753721+1 5.695000-4 2.768641+1 5.875000-4 3.287320+1 6.090372-4 3.713975+1 6.419607-4 4.056770+1 6.866865-4 4.223197+1 7.812905-4 4.142719+1 7.998800-4 4.102864+1 8.059774-4 4.239830+1 8.101171-4 4.483413+1 8.177028-4 5.049488+1 8.217253-4 5.076057+1 8.334121-4 4.484507+1 8.392795-4 4.387658+1 8.537498-4 4.424977+1 8.598929-4 4.587601+1 8.698830-4 4.932513+1 8.788546-4 4.723291+1 8.906620-4 4.516366+1 1.127315-3 3.917083+1 1.151977-3 4.068016+1 1.412660-3 3.383689+1 1.596526-3 3.052726+1 1.930301-3 2.503038+1 2.268127-3 2.078133+1 2.682337-3 1.697870+1 3.200272-3 1.359546+1 3.780933-3 1.094969+1 3.791458-3 1.092057+1 3.810122-3 1.157274+1 3.819455-3 1.217852+1 3.828787-3 1.315385+1 3.838488-3 1.464529+1 3.857449-3 1.881630+1 3.875718-3 2.336289+1 3.884780-3 2.518214+1 3.894112-3 2.646674+1 3.909398-3 2.715178+1 3.932670-3 2.634966+1 3.978878-3 2.438845+1 4.017597-3 2.453537+1 4.036412-3 2.538907+1 4.057522-3 2.757516+1 4.096400-3 3.277641+1 4.116530-3 3.371963+1 4.212269-3 3.125455+1 4.607572-3 2.749535+1 4.662874-3 2.858491+1 4.718592-3 3.018419+1 4.876908-3 2.922671+1 5.624061-3 2.354817+1 5.837509-3 2.358904+1 6.053924-3 2.255634+1 6.230969-3 2.235457+1 7.283561-3 1.783602+1 8.447648-3 1.431238+1 9.345983-3 1.228673+1 1.045754-2 1.036609+1 1.185144-2 8.546109+0 1.353764-2 6.954633+0 1.523987-2 5.777552+0 1.752309-2 4.633336+0 1.809736-2 4.421239+0 1.822838-2 4.543461+0 1.830544-2 4.843446+0 1.837770-2 5.395758+0 1.848749-2 6.731626+0 1.861430-2 8.394857+0 1.872583-2 9.288550+0 1.886718-2 9.612668+0 2.216441-2 7.385836+0 2.264058-2 7.173590+0 2.282265-2 7.389401+0 2.299173-2 8.073852+0 2.320331-2 9.111787+0 2.341162-2 9.527231+0 2.378135-2 9.948529+0 2.412682-2 1.046698+1 2.895155-2 8.004170+0 3.331050-2 6.435338+0 3.793696-2 5.230897+0 4.349079-2 4.199987+0 4.844470-2 3.522709+0 5.488493-2 2.871269+0 6.259363-2 2.308561+0 7.083916-2 1.879728+0 8.003940-2 1.531240+0 9.072120-2 1.240765+0 1.028086-1 1.004715+0 1.162606-1 8.164417-1 1.227129-1 7.520862-1 1.233809-1 7.788546-1 1.238399-1 8.436879-1 1.242037-1 9.447701-1 1.246203-1 1.132446+0 1.250371-1 1.399372+0 1.261813-1 2.282640+0 1.267287-1 2.588583+0 1.273769-1 2.777413+0 1.285331-1 2.836439+0 1.486033-1 2.283185+0 1.681026-1 1.886912+0 1.923801-1 1.532950+0 2.182123-1 1.262936+0 2.454709-1 1.054498+0 2.774618-1 8.767221-1 3.148820-1 7.270724-1 3.581007-1 6.034300-1 4.086142-1 5.015400-1 4.685668-1 4.171644-1 5.404723-1 3.471393-1 6.183723-1 2.942222-1 7.202778-1 2.465730-1 8.472331-1 2.063561-1 9.994379-1 1.740134-1 1.173413+0 1.453733-1 1.347258+0 1.240530-1 1.546860+0 1.058595-1 1.776032+0 9.033422-2 2.043727+0 7.689717-2 2.341267+0 6.578052-2 2.688134+0 5.613320-2 3.086391+0 4.790075-2 3.543651+0 4.087566-2 4.068655+0 3.488087-2 4.671441+0 2.976527-2 5.363532+0 2.539992-2 6.158159+0 2.167478-2 7.070513+0 1.849598-2 8.118035+0 1.578337-2 9.390870+0 1.335789-2 9.760024+0 1.277507-2 1.000000+1 2.647934-2 1 95000 7 0 2.420000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.462595+1 2.101394-6-9.135437+1 2.326892-6-8.690030+1 2.398171-6-8.143701+1 2.425144-6-7.529957+1 2.455585-6-5.931611+1 2.463527-6-5.823940+1 2.469998-6-6.085973+1 2.477134-6-6.845451+1 2.484658-6-8.148647+1 2.489820-6-9.177870+1 2.496024-6-8.616981+1 2.504302-6-7.344377+1 2.510616-6-6.787383+1 2.519132-6-6.607832+1 2.530617-6-7.065237+1 2.556630-6-8.444174+1 2.590409-6-9.120155+1 2.634975-6-9.469566+1 2.758257-6-8.439143+1 2.800579-6-7.674259+1 2.821392-6-6.923287+1 2.831425-6-6.241670+1 2.839258-6-5.509964+1 2.846229-6-4.914216+1 2.854072-6-4.133545+1 2.862569-6-3.442386+1 2.868015-6-3.214090+1 2.872399-6-3.257089+1 2.876511-6-3.475673+1 2.880228-6-3.885002+1 2.885852-6-4.868616+1 2.893191-6-6.792094+1 2.901475-6-9.474064+1 2.905505-6-8.035170+1 2.911398-6-6.087797+1 2.917910-6-4.351156+1 2.922914-6-3.418323+1 2.926454-6-2.948270+1 2.929885-6-2.681983+1 2.932935-6-2.562316+1 2.935876-6-2.539823+1 2.942085-6-2.784845+1 2.950799-6-3.524557+1 2.962454-6-4.621451+1 2.971277-6-5.365340+1 2.976855-6-5.891003+1 2.992843-6-6.656325+1 3.022743-6-7.387048+1 3.082788-6-8.057966+1 3.224648-6-8.643993+1 3.820867-6-9.510896+1 3.895900-6-9.061406+1 3.924814-6-9.463521+1 3.960740-6-8.564935+1 3.990260-6-8.540770+1 4.074935-6-9.158981+1 4.193674-6-9.483382+1 4.243625-6-9.497818+1 4.302997-6-8.556108+1 4.341274-6-8.618984+1 4.438673-6-9.052156+1 4.632622-6-9.504577+1 4.698596-6-9.191721+1 4.730793-6-9.470653+1 4.782261-6-8.489865+1 4.818324-6-8.404450+1 4.953555-6-9.025567+1 9.350000-6-9.334539+1 1.411738-5-9.575268+1 1.741176-5-9.108169+1 1.876356-5-8.445353+1 1.939140-5-7.688604+1 1.971212-5-6.928448+1 1.988670-5-6.207314+1 2.006659-5-4.936930+1 2.018917-5-3.985641+1 2.026397-5-3.612209+1 2.037777-5-3.299813+1 2.041554-5-3.054083+1 2.043062-5-2.826457+1 2.044304-5-2.553177+1 2.046742-5-2.251307+1 2.049868-5-1.897843+1 2.052542-5-1.512883+1 2.053965-5-1.185261+1 2.056165-5-7.540949+0 2.057265-5-5.263490+0 2.057815-5-3.977348+0 2.058994-5-5.480936-1 2.060094-5 1.868474+0 2.062569-5 6.799377+0 2.062982-5 7.749751+0 2.063709-5 9.931508+0 2.064298-5 1.120403+1 2.065329-5 1.288839+1 2.068853-5 1.767650+1 2.069659-5 1.824429+1 2.070364-5 1.834485+1 2.071599-5 1.788523+1 2.072524-5 1.709354+1 2.073912-5 1.527366+1 2.075301-5 1.281326+1 2.076327-5 1.051923+1 2.077225-5 8.070831+0 2.078011-5 5.621662+0 2.078698-5 3.240250+0 2.079902-5-1.491280+0 2.080804-5-5.554741+0 2.081481-5-8.932416+0 2.081989-5-1.168078+1 2.082750-5-1.623613+1 2.083321-5-2.017746+1 2.083826-5-2.431939+1 2.087215-5-4.890245+1 2.088479-5-6.006207+1 2.089882-5-7.327367+1 2.092861-5-9.923269+1 2.094751-5-7.958429+1 2.098441-5-4.663429+1 2.099061-5-4.004089+1 2.100131-5-3.087546+1 2.103629-5-4.384880+0 2.103887-5-2.185095+0 2.104388-5 1.398413+0 2.104858-5 4.423986+0 2.105739-5 9.536289+0 2.106510-5 1.354636+1 2.107184-5 1.675901+1 2.108365-5 2.179877+1 2.109250-5 2.513875+1 2.110578-5 2.950393+1 2.112757-5 3.513554+1 2.115364-5 3.920418+1 2.117459-5 4.017655+1 2.118716-5 3.918706+1 2.122488-5 3.444877+1 2.123746-5 3.154269+1 2.124374-5 2.976389+1 2.127675-5 2.226849+1 2.128775-5 1.890848+1 2.133804-5 4.774694+0 2.134433-5 2.755176+0 2.135533-5-1.383938-1 2.137183-5-4.039718+0 2.140479-5-1.148804+1 2.142124-5-1.556922+1 2.143645-5-2.014114+1 2.144156-5-2.227830+1 2.145666-5-2.660297+1 2.148549-5-3.273449+1 2.153988-5-4.136924+1 2.160578-5-4.920473+1 2.171637-5-5.864979+1 2.184305-5-6.538633+1 2.216893-5-7.626992+1 2.239173-5-8.560614+1 2.252825-5-8.517609+1 2.276271-5-7.620320+1 2.290254-5-7.646332+1 2.318489-5-8.104027+1 2.894311-5-9.483703+1 2.952106-5-9.660626+1 3.033072-5-8.878628+1 3.072000-5-8.012064+1 3.089854-5-7.225167+1 3.097470-5-6.596271+1 3.112718-5-5.253766+1 3.122605-5-4.273309+1 3.130899-5-3.612040+1 3.136488-5-3.360086+1 3.140936-5-3.401750+1 3.145519-5-3.685346+1 3.149129-5-4.068561+1 3.154876-5-4.983246+1 3.158462-5-5.810040+1 3.165521-5-7.801569+1 3.171324-5-9.711186+1 3.177183-5-7.587066+1 3.184883-5-5.122987+1 3.191498-5-3.401213+1 3.195311-5-2.679313+1 3.198696-5-2.208514+1 3.200872-5-1.973148+1 3.203049-5-1.788222+1 3.205246-5-1.649238+1 3.208129-5-1.538853+1 3.210909-5-1.529026+1 3.217636-5-1.808300+1 3.219570-5-1.964431+1 3.226458-5-2.542233+1 3.238298-5-3.722639+1 3.249352-5-4.673221+1 3.254136-5-5.173658+1 3.267628-5-5.944656+1 3.293607-5-6.794921+1 3.342104-5-7.663098+1 3.377233-5-7.905649+1 3.434045-5-7.779061+1 3.623927-5-8.043351+1 4.536477-5-8.289896+1 5.599461-5-8.203363+1 8.053998-5-7.907175+1 8.769391-5-8.052729+1 9.557097-5-7.197595+1 9.886999-5-6.522584+1 1.011919-4-5.697685+1 1.024626-4-4.954379+1 1.033313-4-4.189878+1 1.039170-4-3.442677+1 1.043969-4-2.585180+1 1.046529-4-2.006490+1 1.047809-4-1.670673+1 1.049729-4-1.093155+1 1.050369-4-8.715886+0 1.051059-4-6.131727+0 1.051576-4-4.051205+0 1.052352-4-5.305311-1 1.052741-4 1.536310+0 1.052935-4 2.721399+0 1.053291-4 5.478371+0 1.053604-4 7.391731+0 1.058313-4 2.889383+1 1.061229-4 4.345061+1 1.063821-4 5.377906+1 1.066413-4 5.845891+1 1.067552-4 5.734194+1 1.069137-4 5.181023+1 1.070072-4 4.657055+1 1.070973-4 3.994865+1 1.072408-4 2.607928+1 1.073046-4 1.889488+1 1.073456-4 1.368646+1 1.073763-4 9.262218+0 1.074028-4 4.808951+0 1.075243-4-1.320367+1 1.075945-4-2.446809+1 1.076394-4-3.282375+1 1.076733-4-4.002121+1 1.078871-4-7.893151+1 1.079580-4-6.370396+1 1.081484-4-2.966824+1 1.081762-4-2.361244+1 1.082207-4-1.561594+1 1.082460-4-1.148161+1 1.084234-4 1.520924+1 1.084385-4 1.770815+1 1.084949-4 2.516391+1 1.085909-4 3.527311+1 1.086987-4 4.413186+1 1.088273-4 5.192629+1 1.089786-4 5.752290+1 1.091385-4 5.930546+1 1.093996-4 5.272086+1 1.096911-4 3.826145+1 1.100068-4 1.944060+1 1.104275-4-1.516060+0 1.104623-4-3.587918+0 1.104797-4-4.754212+0 1.105144-4-7.602955+0 1.105402-4-9.279580+0 1.105997-4-1.252699+1 1.106587-4-1.529582+1 1.107471-4-1.895154+1 1.109035-4-2.447248+1 1.112185-4-3.337182+1 1.115874-4-4.159810+1 1.122025-4-5.256755+1 1.134759-4-7.354121+1 1.138363-4-8.084603+1 1.142353-4-7.025745+1 1.144686-4-6.090240+1 1.148779-4-4.718733+1 1.151623-4-3.627788+1 1.152142-4-3.406050+1 1.155027-4-2.460459+1 1.155617-4-2.325416+1 1.157860-4-1.957736+1 1.158703-4-1.955725+1 1.159604-4-2.052700+1 1.160617-4-2.266935+1 1.161463-4-2.530554+1 1.162580-4-3.025417+1 1.164085-4-3.874189+1 1.165282-4-4.707533+1 1.166200-4-5.563821+1 1.168709-4-8.145035+1 1.169519-4-7.097943+1 1.171412-4-4.880750+1 1.171930-4-4.127682+1 1.174421-4-1.229391+1 1.174573-4-1.024244+1 1.174858-4-6.928366+0 1.175358-4-1.661533+0 1.176670-4 1.118874+1 1.177009-4 1.496432+1 1.177302-4 1.771150+1 1.177852-4 2.216396+1 1.178755-4 2.827665+1 1.180045-4 3.516754+1 1.181704-4 4.146587+1 1.183277-4 4.497367+1 1.184919-4 4.574775+1 1.187760-4 4.089180+1 1.190617-4 3.180601+1 1.194355-4 1.783748+1 1.198128-4 6.319360+0 1.198747-4 4.202751+0 1.199056-4 2.999679+0 1.199366-4 1.491709+0 1.199529-4 6.222395-1 1.199693-4-8.052457-2 1.200060-4-1.456277+0 1.200703-4-3.512545+0 1.201667-4-6.134539+0 1.202631-4-8.408054+0 1.204136-4-1.147209+1 1.205569-4-1.400053+1 1.208591-4-1.841891+1 1.213108-4-2.346747+1 1.219659-4-2.861592+1 1.227625-4-3.283843+1 1.244515-4-3.908848+1 1.261492-4-4.312385+1 1.292187-4-4.721283+1 1.349617-4-5.022684+1 2.252600-4-6.255450+1 2.928259-4-6.648349+1 4.000000-4-7.051005+1 4.695663-4-7.685233+1 5.061050-4-8.343804+1 5.422484-4-9.039142+1 5.722500-4-8.904994+1 6.725079-4-7.031616+1 7.500000-4-6.110654+1 8.078335-4-5.795257+1 8.295264-4-5.848802+1 8.578858-4-5.469735+1 8.852644-4-5.298952+1 9.127475-4-4.956783+1 1.005971-3-4.289709+1 1.103859-3-3.881282+1 1.151977-3-3.840508+1 1.186160-3-3.577690+1 1.293285-3-3.171331+1 1.504072-3-2.722646+1 1.758556-3-2.381868+1 2.045414-3-2.181790+1 2.390164-3-2.097618+1 2.834230-3-2.140097+1 3.200272-3-2.297721+1 3.472011-3-2.531420+1 3.650428-3-2.813815+1 3.757108-3-3.120521+1 3.810122-3-3.406557+1 3.875718-3-4.054110+1 3.902897-3-4.098376+1 3.978878-3-3.494764+1 4.027429-3-3.401797+1 4.096400-3-3.546962+1 4.128087-3-3.404659+1 4.194304-3-2.893987+1 4.263694-3-2.595373+1 4.374719-3-2.315082+1 4.516027-3-2.122533+1 4.607572-3-2.113019+1 4.675509-3-2.178319+1 4.718592-3-2.088124+1 4.805037-3-1.806859+1 4.924115-3-1.596011+1 5.130789-3-1.369567+1 5.360220-3-1.210745+1 5.578954-3-1.129310+1 5.745415-3-1.140095+1 5.918800-3-1.007510+1 6.113660-3-9.607730+0 6.275931-3-8.466232+0 6.531306-3-7.418001+0 6.948243-3-6.314380+0 7.473885-3-5.438192+0 8.058422-3-4.842133+0 8.748000-3-4.440906+0 9.780207-3-4.227173+0 1.093327-2-4.252060+0 1.296984-2-4.712670+0 1.471810-2-5.401474+0 1.614736-2-6.257741+0 1.710552-2-7.177049+0 1.768880-2-8.121786+0 1.803014-2-9.106734+0 1.822838-2-1.021825+1 1.844837-2-1.193410+1 1.853896-2-1.211284+1 1.865939-2-1.150656+1 1.886718-2-9.759479+0 1.907764-2-8.669948+0 1.940681-2-7.757468+0 1.992445-2-6.954293+0 2.059444-2-6.434671+0 2.137121-2-6.243762+0 2.197682-2-6.385614+0 2.245312-2-6.821805+0 2.271443-2-7.421174+0 2.299173-2-8.280584+0 2.314420-2-8.270845+0 2.348572-2-7.406422+0 2.386036-2-6.962383+0 2.434811-2-5.648540+0 2.479717-2-4.908640+0 2.545285-2-4.206023+0 2.637712-2-3.525754+0 2.752681-2-2.931029+0 2.895155-2-2.425712+0 3.037932-2-2.079030+0 3.242848-2-1.737126+0 3.416960-2-1.540565+0 3.596500-2-1.399033+0 3.793696-2-1.298492+0 4.182214-2-1.207714+0 4.644443-2-1.189651+0 5.488493-2-1.281239+0 8.328118-2-1.805639+0 9.868459-2-2.143575+0 1.096211-1-2.482696+0 1.162606-1-2.822038+0 1.201219-1-3.169901+0 1.223062-1-3.532242+0 1.235460-1-3.930936+0 1.250371-1-4.587224+0 1.256409-1-4.652847+0 1.264238-1-4.430032+0 1.278882-1-3.712939+0 1.289812-1-3.356323+0 1.308622-1-2.994287+0 1.339801-1-2.627878+0 1.385702-1-2.299728+0 1.457017-1-1.982717+0 1.548817-1-1.740528+0 1.681026-1-1.538881+0 1.867939-1-1.386765+0 2.089296-1-1.302543+0 2.554996-1-1.251559+0 6.889083-1-1.370026+0 1.859734+0-1.410123+0 5.616308+0-1.423474+0 1.000000+1-1.423023+0 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.235108-1 1.013367-6 1.386693-1 1.024000-6 1.528619-1 1.029198-6 1.606157-1 1.036379-6 1.724188-1 1.043112-6 1.848502-1 1.049424-6 1.979395-1 1.055341-6 2.117174-1 1.060888-6 2.262178-1 1.066089-6 2.414766-1 1.070965-6 2.575307-1 1.075536-6 2.744186-1 1.079821-6 2.921808-1 1.083838-6 3.108607-1 1.087605-6 3.305044-1 1.091136-6 3.511594-1 1.094446-6 3.728722-1 1.097549-6 3.956872-1 1.100459-6 4.196484-1 1.103186-6 4.448030-1 1.108300-6 5.008897-1 1.112775-6 5.630217-1 1.116691-6 6.321962-1 1.120117-6 7.096173-1 1.123115-6 7.963420-1 1.125738-6 8.928188-1 1.128033-6 9.985683-1 1.130041-6 1.112150+0 1.131799-6 1.231388+0 1.133336-6 1.353716+0 1.134682-6 1.476527+0 1.135859-6 1.597439+0 1.136889-6 1.714454+0 1.138692-6 1.946652+0 1.145183-6 3.113508+0 1.146916-6 3.517154+0 1.148324-6 3.871978+0 1.149732-6 4.248304+0 1.152548-6 5.051077+0 1.152900-6 5.154707+0 1.155364-6 5.886928+0 1.156332-6 6.172719+0 1.158180-6 6.703085+0 1.159148-6 6.967965+0 1.160072-6 7.209297+0 1.161348-6 7.519721+0 1.162426-6 7.757340+0 1.163812-6 8.023899+0 1.165044-6 8.219133+0 1.166479-6 8.391562+0 1.168124-6 8.510177+0 1.169532-6 8.541130+0 1.170022-6 8.536282+0 1.171421-6 8.477974+0 1.172732-6 8.364324+0 1.173484-6 8.274046+0 1.174824-6 8.070303+0 1.176155-6 7.816961+0 1.178151-6 7.353495+0 1.179240-6 7.064669+0 1.180157-6 6.805040+0 1.181368-6 6.444085+0 1.182311-6 6.151474+0 1.183524-6 5.765058+0 1.184756-6 5.365799+0 1.186043-6 4.947185+0 1.187748-6 4.399496+0 1.189156-6 3.960481+0 1.190740-6 3.488069+0 1.191972-6 3.140114+0 1.194964-6 2.379045+0 1.195872-6 2.173669+0 1.196738-6 1.989054+0 1.197604-6 1.815614+0 1.198837-6 1.588003+0 1.200322-6 1.342642+0 1.201593-6 1.156734+0 1.203140-6 9.585245-1 1.204670-6 7.906754-1 1.205682-6 6.936752-1 1.206686-6 6.075579-1 1.207682-6 5.313149-1 1.208670-6 4.639882-1 1.209651-6 4.046768-1 1.210623-6 3.525411-1 1.211589-6 3.068050-1 1.212546-6 2.667566-1 1.214440-6 2.011872-1 1.216303-6 1.513540-1 1.218138-6 1.136515-1 1.219944-6 8.522766-2 1.221722-6 6.385970-2 1.223472-6 4.783637-2 1.226047-6 3.105798-2 1.229387-6 1.768417-2 1.230205-6 1.544443-2 1.231018-6 1.353870-2 1.231824-6 1.192581-2 1.232622-6 1.057270-2 1.233414-6 9.445519-3 1.234199-6 8.518464-3 1.234394-6 8.315256-3 1.235172-6 7.606237-3 1.235944-6 7.050090-3 1.236711-6 6.630355-3 1.237473-6 6.334278-3 1.238228-6 6.149809-3 1.238978-6 6.066565-3 1.239722-6 6.075592-3 1.241198-6 6.342241-3 1.242650-6 6.900025-3 1.244081-6 7.710555-3 1.245488-6 8.744238-3 1.246874-6 9.977598-3 1.249603-6 1.299519-2 1.252246-6 1.661759-2 1.254806-6 2.073301-2 1.294493-6 1.308467-1 1.299454-6 1.557146-1 1.303795-6 1.834029-1 1.307593-6 2.141769-1 1.310917-6 2.481978-1 1.313825-6 2.854206-1 1.316369-6 3.255095-1 1.318596-6 3.678455-1 1.320544-6 4.116118-1 1.322249-6 4.559110-1 1.325045-6 5.427297-1 1.328186-6 6.646497-1 1.334386-6 9.951662-1 1.337465-6 1.206413+0 1.339107-6 1.331063+0 1.340749-6 1.463007+0 1.344033-6 1.743537+0 1.344443-6 1.779651+0 1.347316-6 2.034055+0 1.348445-6 2.132927+0 1.350600-6 2.315592+0 1.351729-6 2.406316+0 1.352807-6 2.488594+0 1.353884-6 2.565809+0 1.355321-6 2.659498+0 1.356706-6 2.738258+0 1.357989-6 2.799723+0 1.359067-6 2.842043+0 1.360657-6 2.887800+0 1.362582-6 2.914874+0 1.364038-6 2.913970+0 1.366041-6 2.882268+0 1.367638-6 2.832250+0 1.369163-6 2.764881+0 1.370766-6 2.674983+0 1.371418-6 2.633250+0 1.373690-6 2.467085+0 1.375159-6 2.345159+0 1.376230-6 2.250562+0 1.377641-6 2.119994+0 1.378741-6 2.014868+0 1.380156-6 1.876946+0 1.381592-6 1.735464+0 1.383093-6 1.588210+0 1.385082-6 1.397237+0 1.386518-6 1.264166+0 1.386929-6 1.227113+0 1.389238-6 1.028218+0 1.390007-6 9.659039-1 1.393291-6 7.251611-1 1.394555-6 6.438954-1 1.395565-6 5.835364-1 1.396575-6 5.272423-1 1.398012-6 4.540443-1 1.399513-6 3.858950-1 1.400954-6 3.280691-1 1.402399-6 2.770681-1 1.403827-6 2.330490-1 1.404772-6 2.071649-1 1.405709-6 1.838486-1 1.406639-6 1.628933-1 1.407562-6 1.441018-1 1.408477-6 1.272868-1 1.409386-6 1.122717-1 1.410287-6 9.889115-2 1.411181-6 8.699080-2 1.412068-6 7.642751-2 1.412949-6 6.706901-2 1.413822-6 5.879361-2 1.415549-6 4.505560-2 1.417248-6 3.443407-2 1.419335-6 2.457663-2 1.422184-6 1.544448-2 1.422983-6 1.358223-2 1.423776-6 1.198099-2 1.424954-6 1.000299-2 1.425734-6 8.927080-3 1.426508-6 8.020608-3 1.427275-6 7.263442-3 1.428037-6 6.637864-3 1.428792-6 6.128307-3 1.429542-6 5.721111-3 1.431030-6 5.165801-3 1.432494-6 4.896488-3 1.433935-6 4.852060-3 1.435354-6 4.985809-3 1.436751-6 5.261980-3 1.438126-6 5.653088-3 1.439480-6 6.137855-3 1.442144-6 7.335792-3 1.444726-6 8.751825-3 1.447227-6 1.032095-2 1.449649-6 1.199755-2 1.451996-6 1.374787-2 1.456543-6 1.743200-2 1.460806-6 2.116611-2 1.464803-6 2.485589-2 1.468549-6 2.844463-2 1.475575-6 3.542568-2 1.481721-6 4.173087-2 1.487100-6 4.735773-2 1.496513-6 5.738969-2 1.503572-6 6.503639-2 1.514161-6 7.667019-2 1.524750-6 8.848636-2 1.532256-6 9.697605-2 1.540854-6 1.068274-1 1.548439-6 1.156408-1 1.556024-6 1.245777-1 1.567402-6 1.382342-1 1.578780-6 1.522246-1 1.586365-6 1.617588-1 1.601536-6 1.814289-1 1.616706-6 2.021656-1 1.669831-6 2.815758-1 1.709675-6 3.507127-1 1.761970-6 4.604835-1 1.778779-6 5.028681-1 1.803993-6 5.763689-1 1.816600-6 6.201661-1 1.829206-6 6.730024-1 1.833709-6 6.953590-1 1.838211-6 7.202735-1 1.842713-6 7.482395-1 1.847216-6 7.796616-1 1.851718-6 8.147079-1 1.865849-6 9.416376-1 1.870430-6 9.821534-1 1.875011-6 1.017237+0 1.879592-6 1.043042+0 1.881883-6 1.051279+0 1.884174-6 1.055844+0 1.886190-6 1.056555+0 1.889215-6 1.051442+0 1.892239-6 1.038681+0 1.895078-6 1.019827+0 1.897917-6 9.947280-1 1.901353-6 9.570639-1 1.902499-6 9.430201-1 1.905935-6 8.975534-1 1.908225-6 8.653754-1 1.912807-6 8.000290-1 1.919106-6 7.174970-1 1.922168-6 6.840621-1 1.923687-6 6.696201-1 1.925405-6 6.551674-1 1.927696-6 6.391585-1 1.929986-6 6.269884-1 1.933422-6 6.159309-1 1.934568-6 6.141126-1 1.939149-6 6.154742-1 1.943730-6 6.288328-1 1.946021-6 6.391289-1 1.948311-6 6.513371-1 1.952893-6 6.800465-1 1.964042-6 7.608003-1 1.972726-6 8.233381-1 1.981138-6 8.796369-1 1.997437-6 9.793465-1 2.119677-6 1.707774+0 2.153497-6 1.956085+0 2.218998-6 2.544540+0 2.263991-6 3.054480+0 2.308136-6 3.667690+0 2.341246-6 4.221644+0 2.383313-6 5.073749+0 2.420287-6 5.986776+0 2.450000-6 6.874561+0 2.473770-6 7.713487+0 2.497540-6 8.695838+0 2.519223-6 9.755730+0 2.537825-6 1.083602+1 2.554275-6 1.195889+1 2.574788-6 1.355600+1 2.587431-6 1.456905+1 2.594080-6 1.508167+1 2.606033-6 1.594454+1 2.631546-6 1.772607+1 2.637853-6 1.825381+1 2.646655-6 1.912226+1 2.651714-6 1.970547+1 2.656772-6 2.035673+1 2.663079-6 2.126783+1 2.669385-6 2.228999+1 2.675692-6 2.342156+1 2.688305-6 2.600338+1 2.709633-6 3.136430+1 2.718964-6 3.417577+1 2.727712-6 3.714280+1 2.735913-6 4.027940+1 2.743602-6 4.359898+1 2.750810-6 4.711400+1 2.757567-6 5.083663+1 2.763903-6 5.477946+1 2.769842-6 5.895637+1 2.775410-6 6.338329+1 2.780630-6 6.807885+1 2.785524-6 7.306449+1 2.790112-6 7.836405+1 2.798714-6 9.043242+1 2.806241-6 1.041467+2 2.812828-6 1.196071+2 2.818591-6 1.367585+2 2.823633-6 1.553779+2 2.828045-6 1.751081+2 2.831906-6 1.955152+2 2.835284-6 2.161484+2 2.840826-6 2.564741+2 2.847050-6 3.128496+2 2.859371-6 4.654213+2 2.865968-6 5.714516+2 2.869486-6 6.347945+2 2.873005-6 7.024634+2 2.880042-6 8.485333+2 2.880921-6 8.675684+2 2.887079-6 1.003361+3 2.889498-6 1.057046+3 2.894116-6 1.157913+3 2.897689-6 1.232791+3 2.901152-6 1.301095+3 2.904726-6 1.365625+3 2.908189-6 1.420984+3 2.911268-6 1.463197+3 2.914855-6 1.502964+3 2.918965-6 1.534769+3 2.922483-6 1.549483+3 2.923708-6 1.551799+3 2.927203-6 1.550325+3 2.929783-6 1.541562+3 2.936663-6 1.487369+3 2.938858-6 1.461216+3 2.944020-6 1.384782+3 2.946741-6 1.337051+3 2.950411-6 1.265963+3 2.953984-6 1.190785+3 2.957448-6 1.113829+3 2.960526-6 1.043223+3 2.963742-6 9.683617+2 2.968003-6 8.692099+2 2.971521-6 7.887766+2 2.975480-6 7.012769+2 2.978558-6 6.361853+2 2.985595-6 4.996719+2 2.988014-6 4.571823+2 2.990323-6 4.188765+2 2.994391-6 3.568300+2 2.998350-6 3.031130+2 3.002468-6 2.539967+2 3.006597-6 2.113309+2 3.009811-6 1.823811+2 3.013943-6 1.501859+2 3.018712-6 1.193456+2 3.023126-6 9.605603+1 3.030472-6 6.655330+1 3.041491-6 3.835636+1 3.048837-6 2.680032+1 3.054718-6 2.029816+1 3.058762-6 1.685864+1 3.064409-6 1.310454+1 3.066291-6 1.206992+1 3.073820-6 8.743707+0 3.084449-6 5.590186+0 3.092175-6 4.024558+0 3.102097-6 2.622226+0 3.109443-6 1.931680+0 3.110361-6 1.863751+0 3.116789-6 1.494868+0 3.118538-6 1.425660+0 3.119536-6 1.391947+0 3.120409-6 1.365853+0 3.121841-6 1.329859+0 3.123162-6 1.304098+0 3.124002-6 1.291385+0 3.126521-6 1.270130+0 3.129017-6 1.273674+0 3.130264-6 1.284487+0 3.131512-6 1.301261+0 3.133321-6 1.336069+0 3.135385-6 1.390811+0 3.138482-6 1.502550+0 3.141579-6 1.649364+0 3.144518-6 1.820760+0 3.148927-6 2.135710+0 3.153337-6 2.519522+0 3.162343-6 3.517068+0 3.170051-6 4.601744+0 3.179223-6 6.182268+0 3.193174-6 9.250118+0 3.201809-6 1.160806+1 3.209338-6 1.399943+1 3.216393-6 1.656582+1 3.224006-6 1.974098+1 3.231326-6 2.325379+1 3.238647-6 2.729007+1 3.247129-6 3.273528+1 3.285668-6 7.341886+1 3.292622-6 8.508863+1 3.299576-6 9.888200+1 3.307658-6 1.183779+2 3.311940-6 1.306459+2 3.316223-6 1.446009+2 3.324306-6 1.768252+2 3.330246-6 2.069630+2 3.334701-6 2.342791+2 3.341384-6 2.849795+2 3.348067-6 3.506824+2 3.352560-6 4.055236+2 3.357054-6 4.707397+2 3.364948-6 6.156548+2 3.379370-6 1.009431+3 3.386468-6 1.278717+3 3.388974-6 1.387185+3 3.400418-6 1.974171+3 3.402686-6 2.108078+3 3.411020-6 2.645308+3 3.412062-6 2.716913+3 3.419950-6 3.283150+3 3.423021-6 3.511625+3 3.425952-6 3.731479+3 3.429628-6 4.006889+3 3.433687-6 4.306670+3 3.436063-6 4.477914+3 3.439960-6 4.748811+3 3.444163-6 5.022101+3 3.447894-6 5.243764+3 3.452017-6 5.460802+3 3.453212-6 5.517593+3 3.458096-6 5.717736+3 3.461909-6 5.835593+3 3.466352-6 5.927093+3 3.469914-6 5.963374+3 3.477955-6 5.922096+3 3.480596-6 5.872018+3 3.486374-6 5.703358+3 3.489396-6 5.585165+3 3.492758-6 5.431872+3 3.497081-6 5.204933+3 3.500350-6 5.014194+3 3.504022-6 4.784006+3 3.507088-6 4.581420+3 3.511031-6 4.310915+3 3.515198-6 4.017443+3 3.519366-6 3.721205+3 3.524054-6 3.390436+3 3.527700-6 3.138611+3 3.536780-6 2.547589+3 3.541600-6 2.261526+3 3.547975-6 1.917861+3 3.554310-6 1.617651+3 3.563367-6 1.259741+3 3.573422-6 9.529195+2 3.581581-6 7.639829+2 3.585806-6 6.839456+2 3.590031-6 6.143601+2 3.594578-6 5.497294+2 3.599125-6 4.943389+2 3.603512-6 4.484343+2 3.610091-6 3.911136+2 3.616798-6 3.441447+2 3.622975-6 3.088732+2 3.631535-6 2.695795+2 3.640094-6 2.385252+2 3.648795-6 2.130447+2 3.655320-6 1.969492+2 3.665108-6 1.764642+2 3.674896-6 1.593429+2 3.683619-6 1.462631+2 3.692673-6 1.344195+2 3.701727-6 1.240300+2 3.716525-6 1.096098+2 3.723759-6 1.035436+2 3.732769-6 9.677355+1 3.741105-6 9.121603+1 3.752848-6 8.441872+1 3.764822-6 7.858169+1 3.776796-6 7.367332+1 3.787853-6 6.979965+1 3.806322-6 6.431040+1 3.845010-6 5.456069+1 3.869211-6 4.886901+1 3.925962-6 3.734500+1 3.955736-6 3.268767+1 3.985757-6 2.883671+1 4.010907-6 2.612022+1 4.030131-6 2.433927+1 4.040451-6 2.350014+1 4.050985-6 2.273475+1 4.063945-6 2.192043+1 4.079844-6 2.109491+1 4.121227-6 1.937982+1 4.133793-6 1.882938+1 4.148780-6 1.810011+1 4.163728-6 1.730091+1 4.183859-6 1.617205+1 4.215284-6 1.452939+1 4.226883-6 1.401099+1 4.245345-6 1.329454+1 4.288547-6 1.192823+1 4.317078-6 1.105493+1 4.340709-6 1.032195+1 4.384618-6 9.043040+0 4.429031-6 7.870505+0 4.484259-6 6.480710+0 4.531597-6 5.309830+0 4.563092-6 4.514572+0 4.570898-6 4.312727+0 4.586991-6 3.889621+0 4.601022-6 3.514246+0 4.612564-6 3.204175+0 4.624477-6 2.888654+0 4.637074-6 2.570060+0 4.653864-6 2.195454+0 4.659796-6 2.084061+0 4.674171-6 1.876775+0 4.679186-6 1.828755+0 4.690945-6 1.771424+0 4.702885-6 1.794727+0 4.707061-6 1.821615+0 4.715035-6 1.897628+0 4.720807-6 1.970956+0 4.727229-6 2.068422+0 4.735485-6 2.215569+0 4.744090-6 2.394109+0 4.751715-6 2.577682+0 4.758784-6 2.777920+0 4.761141-6 2.853407+0 4.770870-6 3.232278+0 4.775280-6 3.452412+0 4.782331-6 3.894236+0 4.786273-6 4.202397+0 4.788779-6 4.425947+0 4.792068-6 4.756440+0 4.796297-6 5.251470+0 4.800736-6 5.868409+0 4.805390-6 6.638564+0 4.811200-6 7.803787+0 4.818427-6 9.618010+0 4.831588-6 1.414692+1 4.839423-6 1.768834+1 4.844925-6 2.057287+1 4.850988-6 2.412743+1 4.854994-6 2.668487+1 4.863565-6 3.266059+1 4.869079-6 3.681687+1 4.873707-6 4.044935+1 4.877593-6 4.357265+1 4.882151-6 4.728941+1 4.887130-6 5.136545+1 4.891914-6 5.524730+1 4.897224-6 5.945008+1 4.902325-6 6.331592+1 4.907562-6 6.704179+1 4.911769-6 6.981315+1 4.917715-6 7.332821+1 4.922710-6 7.586582+1 4.934617-6 8.017175+1 4.940014-6 8.125133+1 4.948644-6 8.181505+1 4.953519-6 8.151276+1 4.957154-6 8.100794+1 4.962743-6 7.979090+1 4.969178-6 7.778197+1 4.974553-6 7.566272+1 4.979736-6 7.329262+1 4.987376-6 6.932479+1 4.993288-6 6.596153+1 4.996244-6 6.421125+1 5.002896-6 6.016532+1 5.005113-6 5.879672+1 5.016937-6 5.150572+1 5.019893-6 4.971857+1 5.028762-6 4.453535+1 5.042038-6 3.746907+1 5.063987-6 2.806158+1 5.069063-6 2.630070+1 5.078898-6 2.329932+1 5.088118-6 2.093252+1 5.100000-6 1.842765+1 5.104865-6 1.755332+1 5.120059-6 1.527634+1 5.133354-6 1.372179+1 5.144987-6 1.260195+1 5.165345-6 1.101038+1 5.195882-6 9.147612+0 5.239341-6 7.009699+0 5.252206-6 6.437851+0 5.263964-6 5.936987+0 5.289877-6 4.946325+0 5.302834-6 4.551948+0 5.309681-6 4.386585+0 5.316527-6 4.259360+0 5.321721-6 4.192717+0 5.326915-6 4.155532+0 5.331627-6 4.150156+0 5.353138-6 4.539029+0 5.366249-6 5.169373+0 5.371247-6 5.496191+0 5.382404-6 6.399538+0 5.405303-6 8.927718+0 5.413478-6 9.992162+0 5.419443-6 1.079730+1 5.426934-6 1.181995+1 5.434019-6 1.277580+1 5.439688-6 1.351565+1 5.445356-6 1.421990+1 5.446976-6 1.441287+1 5.455479-6 1.535150+1 5.459932-6 1.578508+1 5.471269-6 1.667243+1 5.475733-6 1.692733+1 5.484253-6 1.725425+1 5.491321-6 1.736235+1 5.495354-6 1.735786+1 5.498883-6 1.731522+1 5.505060-6 1.715652+1 5.509692-6 1.697059+1 5.513166-6 1.679582+1 5.520982-6 1.630152+1 5.523588-6 1.610854+1 5.533421-6 1.527400+1 5.536699-6 1.496454+1 5.546533-6 1.396943+1 5.549811-6 1.362195+1 5.562922-6 1.220305+1 5.578717-6 1.054925+1 5.595001-6 9.062483+0 5.606180-6 8.232367+0 5.609757-6 8.004511+0 5.620491-6 7.437572+0 5.623903-6 7.294617+0 5.634140-6 6.973279+0 5.637540-6 6.901479+0 5.642640-6 6.825137+0 5.647740-6 6.784839+0 5.652091-6 6.777334+0 5.655899-6 6.789775+0 5.662561-6 6.850530+0 5.667559-6 6.925084+0 5.671306-6 6.995140+0 5.679739-6 7.188969+0 5.702299-6 7.836580+0 5.716030-6 8.218572+0 5.729762-6 8.518364+0 5.733262-6 8.576673+0 5.743762-6 8.701548+0 5.753387-6 8.748515+0 5.757980-6 8.748917+0 5.768316-6 8.702879+0 5.782261-6 8.557826+0 5.799761-6 8.298526+0 5.822033-6 7.959949+0 5.836921-6 7.780368+0 5.846082-6 7.696404+0 5.855759-6 7.629545+0 5.874238-6 7.553624+0 5.934485-6 7.460367+0 5.975696-6 7.335279+0 6.086448-6 6.886467+0 6.112758-6 6.807830+0 6.134003-6 6.771671+0 6.159600-6 6.763369+0 6.211508-6 6.797943+0 6.231815-6 6.791653+0 6.247994-6 6.767929+0 6.274621-6 6.691107+0 6.296021-6 6.602121+0 6.373787-6 6.227562+0 6.637912-6 5.272990+0 6.710482-6 5.013021+0 6.792003-6 4.711413+0 6.863270-6 4.439002+0 6.918310-6 4.222818+0 6.951049-6 4.091517+0 7.004064-6 3.873746+0 7.073022-6 3.580324+0 7.124741-6 3.353197+0 7.159220-6 3.198680+0 7.193700-6 3.042067+0 7.228179-6 2.884080+0 7.279898-6 2.647227+0 7.393948-6 2.166659+0 7.423682-6 2.068380+0 7.441989-6 2.018463+0 7.459169-6 1.981292+0 7.476000-6 1.956590+0 7.490423-6 1.947537+0 7.497636-6 1.948354+0 7.508007-6 1.957341+0 7.517847-6 1.976349+0 7.524153-6 1.995129+0 7.532668-6 2.030474+0 7.540639-6 2.076134+0 7.548973-6 2.139889+0 7.556964-6 2.219915+0 7.562097-6 2.283022+0 7.567070-6 2.354317+0 7.571887-6 2.434198+0 7.576554-6 2.523035+0 7.581076-6 2.621170+0 7.585456-6 2.728909+0 7.589699-6 2.846515+0 7.593809-6 2.974209+0 7.597791-6 3.112161+0 7.605506-6 3.424652+0 7.612739-6 3.780312+0 7.619520-6 4.178575+0 7.625877-6 4.618010+0 7.631836-6 5.096399+0 7.637424-6 5.610849+0 7.642662-6 6.157919+0 7.652176-6 7.334245+0 7.660538-6 8.592051+0 7.680572-6 1.266217+1 7.700377-6 1.854978+1 7.712434-6 2.325860+1 7.722976-6 2.817878+1 7.728909-6 3.130254+1 7.734573-6 3.453379+1 7.740237-6 3.801538+1 7.749739-6 4.443159+1 7.759241-6 5.157477+1 7.779434-6 6.909557+1 7.781661-6 7.121041+1 7.798439-6 8.812959+1 7.804563-6 9.466865+1 7.816256-6 1.075097+2 7.825907-6 1.182890+2 7.830584-6 1.235122+2 7.837636-6 1.313224+2 7.844912-6 1.392197+2 7.854266-6 1.489889+2 7.862580-6 1.571634+2 7.871015-6 1.648227+2 7.873864-6 1.672417+2 7.885371-6 1.760193+2 7.893860-6 1.813544+2 7.902449-6 1.856562+2 7.911723-6 1.889764+2 7.918185-6 1.904429+2 7.927260-6 1.913045+2 7.936075-6 1.908017+2 7.950477-6 1.872257+2 7.959525-6 1.833401+2 7.968294-6 1.784815+2 7.977945-6 1.720306+2 7.987299-6 1.648337+2 7.995614-6 1.577958+2 8.003632-6 1.505592+2 8.015807-6 1.389783+2 8.025309-6 1.296571+2 8.040157-6 1.150223+2 8.044314-6 1.109741+2 8.063319-6 9.314747+1 8.069852-6 8.737205+1 8.082323-6 7.697773+1 8.100141-6 6.373710+1 8.143902-6 3.957965+1 8.156048-6 3.479777+1 8.167436-6 3.095110+1 8.178111-6 2.784004+1 8.192000-6 2.441300+1 8.206885-6 2.139289+1 8.223305-6 1.868877+1 8.237673-6 1.674629+1 8.262816-6 1.404424+1 8.288881-6 1.188752+1 8.379292-6 6.914042+0 8.399815-6 6.122903+0 8.420339-6 5.475801+0 8.430601-6 5.223796+0 8.440862-6 5.033783+0 8.451124-6 4.920187+0 8.461386-6 4.900797+0 8.471648-6 4.997057+0 8.476779-6 5.096306+0 8.481909-6 5.234257+0 8.487040-6 5.414686+0 8.490888-6 5.580288+0 8.496661-6 5.881627+0 8.502433-6 6.252113+0 8.507564-6 6.644838+0 8.511412-6 6.981584+0 8.516463-6 7.482345+0 8.522956-6 8.231525+0 8.530939-6 9.329471+0 8.540564-6 1.093934+1 8.556561-6 1.439612+1 8.575152-6 1.980495+1 8.587639-6 2.436458+1 8.591301-6 2.584893+1 8.605925-6 3.245467+1 8.616511-6 3.790323+1 8.627480-6 4.411049+1 8.637139-6 5.001130+1 8.651237-6 5.924532+1 8.659530-6 6.494936+1 8.668645-6 7.137741+1 8.676739-6 7.716416+1 8.685194-6 8.322190+1 8.693246-6 8.893827+1 8.701493-6 9.467121+1 8.710403-6 1.006452+2 8.714151-6 1.030691+2 8.726496-6 1.105789+2 8.736037-6 1.157823+2 8.748911-6 1.217966+2 8.757171-6 1.249678+2 8.763737-6 1.270731+2 8.773138-6 1.294148+2 8.780051-6 1.306160+2 8.784365-6 1.311386+2 8.798619-6 1.316262+2 8.805397-6 1.312016+2 8.811867-6 1.304153+2 8.820966-6 1.287086+2 8.829017-6 1.266489+2 8.839369-6 1.233124+2 8.844627-6 1.213503+2 8.856458-6 1.163676+2 8.860401-6 1.145545+2 8.870917-6 1.094174+2 8.881433-6 1.039383+2 8.886691-6 1.011081+2 8.902466-6 9.242608+1 8.923498-6 8.087730+1 8.933507-6 7.557226+1 8.959088-6 6.303433+1 8.996256-6 4.822134+1 9.007167-6 4.469138+1 9.018077-6 4.151631+1 9.028988-6 3.867602+1 9.039898-6 3.614630+1 9.061719-6 3.191053+1 9.083540-6 2.858813+1 9.105361-6 2.597050+1 9.127182-6 2.387937+1 9.149003-6 2.217340+1 9.170824-6 2.074724+1 9.218051-6 1.830133+1 9.262086-6 1.657015+1 9.284883-6 1.585608+1 9.307680-6 1.527475+1 9.330478-6 1.483864+1 9.353275-6 1.455883+1 9.364674-6 1.447928+1 9.376073-6 1.443960+1 9.387471-6 1.443847+1 9.398870-6 1.447366+1 9.421668-6 1.463928+1 9.444465-6 1.490018+1 9.490060-6 1.551171+1 9.512857-6 1.575836+1 9.535655-6 1.590729+1 9.558452-6 1.593221+1 9.569851-6 1.589478+1 9.581250-6 1.582445+1 9.604047-6 1.559200+1 9.626845-6 1.525595+1 9.649642-6 1.484518+1 9.672440-6 1.439081+1 9.738172-6 1.307380+1 9.773414-6 1.246119+1 9.826276-6 1.170627+1 9.903454-6 1.087242+1 1.003586-5 9.777100+0 1.022580-5 8.389084+0 1.024044-5 8.301637+0 1.029086-5 8.086460+0 1.031683-5 8.049560+0 1.034127-5 8.073346+0 1.036647-5 8.161441+0 1.037791-5 8.222251+0 1.039507-5 8.335628+0 1.042716-5 8.603853+0 1.046729-5 8.983017+0 1.049250-5 9.201829+0 1.051771-5 9.374805+0 1.054291-5 9.482034+0 1.055396-5 9.505020+0 1.057054-5 9.510625+0 1.058712-5 9.481823+0 1.060283-5 9.424388+0 1.061853-5 9.340270+0 1.064373-5 9.158372+0 1.066894-5 8.933693+0 1.069414-5 8.683959+0 1.076708-5 7.957726+0 1.079265-5 7.735961+0 1.084578-5 7.366582+0 1.087235-5 7.233164+0 1.089891-5 7.134487+0 1.092548-5 7.068820+0 1.094739-5 7.036906+0 1.098724-5 7.018845+0 1.105930-5 7.037117+0 1.108639-5 7.032495+0 1.111347-5 7.011542+0 1.114056-5 6.972227+0 1.116765-5 6.915857+0 1.122133-5 6.770350+0 1.128410-5 6.588026+0 1.134850-5 6.425557+0 1.156108-5 5.969213+0 1.166945-5 5.676037+0 1.175739-5 5.407620+0 1.181582-5 5.268956+0 1.184128-5 5.234590+0 1.187086-5 5.221815+0 1.190105-5 5.241771+0 1.192452-5 5.279738+0 1.194123-5 5.317309+0 1.198693-5 5.450464+0 1.201727-5 5.546545+0 1.204632-5 5.628346+0 1.207261-5 5.683618+0 1.210030-5 5.714925+0 1.211132-5 5.718615+0 1.213761-5 5.706302+0 1.216585-5 5.660924+0 1.218845-5 5.603240+0 1.221629-5 5.511294+0 1.224368-5 5.405146+0 1.233046-5 5.046890+0 1.237932-5 4.878220+0 1.241182-5 4.790368+0 1.245419-5 4.706851+0 1.249038-5 4.660798+0 1.254070-5 4.625282+0 1.265474-5 4.573718+0 1.269555-5 4.538561+0 1.274772-5 4.474855+0 1.290938-5 4.228532+0 1.302200-5 4.075486+0 1.319415-5 3.839159+0 1.330282-5 3.670101+0 1.345524-5 3.434570+0 1.353324-5 3.332907+0 1.373968-5 3.114940+0 1.389281-5 2.956645+0 1.407752-5 2.763839+0 1.456338-5 2.315192+0 1.469246-5 2.217781+0 1.481300-5 2.137870+0 1.492238-5 2.075126+0 1.504311-5 2.017244+0 1.514114-5 1.979637+0 1.521406-5 1.957689+0 1.531087-5 1.937382+0 1.539636-5 1.928360+0 1.546928-5 1.927225+0 1.559122-5 1.937983+0 1.570056-5 1.960469+0 1.579308-5 1.988941+0 1.597131-5 2.068602+0 1.609503-5 2.145026+0 1.615256-5 2.187272+0 1.630000-5 2.316635+0 1.642048-5 2.446392+0 1.658280-5 2.658431+0 1.674637-5 2.919907+0 1.690483-5 3.225509+0 1.708206-5 3.636248+0 1.720704-5 3.975837+0 1.735958-5 4.455175+0 1.749066-5 4.931146+0 1.764947-5 5.596063+0 1.778279-5 6.237626+0 1.789709-5 6.857379+0 1.800663-5 7.520211+0 1.815228-5 8.518498+0 1.830000-5 9.684075+0 1.846106-5 1.115876+1 1.862087-5 1.286946+1 1.876595-5 1.467519+1 1.895366-5 1.744387+1 1.913262-5 2.063062+1 1.930039-5 2.421020+1 1.945768-5 2.820761+1 1.960514-5 3.264712+1 1.974338-5 3.755319+1 1.987298-5 4.294360+1 2.001820-5 5.008190+1 2.012560-5 5.626453+1 2.021518-5 6.212859+1 2.031529-5 6.958389+1 2.040915-5 7.759122+1 2.049714-5 8.615569+1 2.058510-5 9.592480+1 2.065697-5 1.049585+2 2.075090-5 1.184550+2 2.079744-5 1.259629+2 2.089296-5 1.433994+2 2.097691-5 1.614045+2 2.104882-5 1.792745+2 2.113489-5 2.043435+2 2.121401-5 2.318523+2 2.128938-5 2.632326+2 2.135533-5 2.961088+2 2.141304-5 3.302876+2 2.146354-5 3.654936+2 2.150772-5 4.013456+2 2.154638-5 4.373715+2 2.158021-5 4.730530+2 2.163941-5 5.464354+2 2.168381-5 6.119717+2 2.174208-5 7.133819+2 2.183237-5 9.069081+2 2.187762-5 1.019495+3 2.192440-5 1.144647+3 2.197810-5 1.295708+3 2.203180-5 1.450198+3 2.204523-5 1.488882+3 2.208550-5 1.604577+3 2.213920-5 1.759065+3 2.221975-5 2.009655+3 2.224660-5 2.107841+3 2.229359-5 2.315815+3 2.230030-5 2.350620+3 2.235400-5 2.694239+3 2.237246-5 2.845760+3 2.240770-5 3.196448+3 2.242616-5 3.417521+3 2.244378-5 3.655864+3 2.247051-5 4.073739+3 2.250287-5 4.680994+3 2.254235-5 5.588787+3 2.262250-5 8.058066+3 2.265211-5 9.188462+3 2.268851-5 1.072962+4 2.270411-5 1.143692+4 2.275958-5 1.413570+4 2.277745-5 1.505081+4 2.281654-5 1.708747+4 2.283399-5 1.799831+4 2.285893-5 1.928370+4 2.287496-5 2.009140+4 2.290187-5 2.139640+4 2.292699-5 2.253780+4 2.294929-5 2.347175+4 2.297595-5 2.446995+4 2.300744-5 2.545558+4 2.303430-5 2.611018+4 2.305839-5 2.653854+4 2.308518-5 2.682966+4 2.309576-5 2.688963+4 2.315304-5 2.667208+4 2.317853-5 2.628928+4 2.321181-5 2.554426+4 2.323894-5 2.475037+4 2.326523-5 2.384077+4 2.328890-5 2.292068+4 2.331548-5 2.179333+4 2.333768-5 2.079133+4 2.336623-5 1.944510+4 2.339396-5 1.809900+4 2.342169-5 1.673954+4 2.345289-5 1.522136+4 2.347716-5 1.406567+4 2.353728-5 1.136831+4 2.355474-5 1.064201+4 2.360713-5 8.646716+3 2.365062-5 7.212942+3 2.370507-5 5.703910+3 2.380658-5 3.659832+3 2.383507-5 3.238741+3 2.386872-5 2.812022+3 2.389397-5 2.536378+3 2.393183-5 2.184383+3 2.397145-5 1.882666+3 2.400602-5 1.665075+3 2.403451-5 1.512087+3 2.406300-5 1.379055+3 2.411999-5 1.160908+3 2.417895-5 9.857693+2 2.423023-5 8.634914+2 2.429094-5 7.448835+2 2.436343-5 6.304610+2 2.440926-5 5.698116+2 2.448336-5 4.869685+2 2.454333-5 4.315377+2 2.460330-5 3.850362+2 2.463618-5 3.629366+2 2.466907-5 3.430343+2 2.469821-5 3.270988+2 2.474782-5 3.032785+2 2.478563-5 2.875880+2 2.484391-5 2.668125+2 2.490313-5 2.489325+2 2.505344-5 2.116129+2 2.517677-5 1.857445+2 2.523844-5 1.750735+2 2.528170-5 1.690277+2 2.532179-5 1.647473+2 2.534347-5 1.630228+2 2.538287-5 1.610172+2 2.540096-5 1.605927+2 2.542809-5 1.605355+2 2.545522-5 1.611486+2 2.549527-5 1.631734+2 2.553688-5 1.664645+2 2.561435-5 1.746088+2 2.567969-5 1.818885+2 2.575657-5 1.887782+2 2.577362-5 1.898814+2 2.582478-5 1.920452+2 2.586824-5 1.924592+2 2.590972-5 1.916590+2 2.595529-5 1.895735+2 2.599245-5 1.870971+2 2.605719-5 1.816162+2 2.626592-5 1.622211+2 2.635106-5 1.560600+2 2.647879-5 1.490157+2 2.709857-5 1.239459+2 2.736000-5 1.157125+2 2.764512-5 1.080488+2 2.872882-5 8.329598+1 2.948436-5 6.883449+1 2.983293-5 6.286695+1 3.028657-5 5.561860+1 3.118483-5 4.328959+1 3.137533-5 4.120283+1 3.157890-5 3.929754+1 3.171697-5 3.824220+1 3.179581-5 3.774170+1 3.187640-5 3.731557+1 3.201786-5 3.679000+1 3.215457-5 3.654257+1 3.234355-5 3.651246+1 3.252606-5 3.668893+1 3.263678-5 3.695394+1 3.271076-5 3.728480+1 3.275818-5 3.760108+1 3.280448-5 3.801594+1 3.284934-5 3.854248+1 3.289279-5 3.919494+1 3.293489-5 3.998641+1 3.297567-5 4.092892+1 3.301518-5 4.203357+1 3.305346-5 4.331082+1 3.309053-5 4.477069+1 3.312645-5 4.642306+1 3.316125-5 4.827788+1 3.319496-5 5.034542+1 3.322761-5 5.263645+1 3.326092-5 5.530527+1 3.332054-5 6.107256+1 3.337800-5 6.811780+1 3.343187-5 7.642501+1 3.348238-5 8.613133+1 3.352972-5 9.737748+1 3.357411-5 1.102990+2 3.361572-5 1.250163+2 3.365474-5 1.416255+2 3.370043-5 1.653360+2 3.372560-5 1.807365+2 3.375774-5 2.032493+2 3.378788-5 2.276732+2 3.381613-5 2.539141+2 3.386745-5 3.113058+2 3.391401-5 3.763374+2 3.402159-5 5.883570+2 3.409646-5 8.021747+2 3.415594-5 1.021022+3 3.421335-5 1.280221+3 3.425277-5 1.488243+3 3.429742-5 1.755543+3 3.432420-5 1.932658+3 3.436634-5 2.237165+3 3.440848-5 2.573346+3 3.449803-5 3.387865+3 3.450790-5 3.485350+3 3.458230-5 4.259640+3 3.460946-5 4.556377+3 3.466131-5 5.135181+3 3.470411-5 5.617023+3 3.474559-5 6.078934+3 3.478839-5 6.541259+3 3.482987-5 6.966617+3 3.486674-5 7.318806+3 3.490748-5 7.672197+3 3.491941-5 7.767563+3 3.496879-5 8.117681+3 3.500736-5 8.336238+3 3.505151-5 8.521580+3 3.508973-5 8.622823+3 3.511500-5 8.658691+3 3.515398-5 8.665109+3 3.519265-5 8.613358+3 3.525551-5 8.410771+3 3.529270-5 8.226656+3 3.532521-5 8.030351+3 3.536401-5 7.757549+3 3.540189-5 7.456073+3 3.544660-5 7.063628+3 3.549331-5 6.621687+3 3.554622-5 6.095662+3 3.558836-5 5.667639+3 3.563577-5 5.186307+3 3.567264-5 4.817787+3 3.575692-5 4.015323+3 3.578589-5 3.756948+3 3.584120-5 3.293871+3 3.590440-5 2.817576+3 3.601749-5 2.112355+3 3.610835-5 1.676053+3 3.614564-5 1.527215+3 3.619007-5 1.370420+3 3.623450-5 1.233898+3 3.627893-5 1.115452+3 3.632336-5 1.012939+3 3.636779-5 9.243257+2 3.641222-5 8.477250+2 3.645665-5 7.814237+2 3.654551-5 6.737895+2 3.662895-5 5.958424+2 3.671238-5 5.339831+2 3.678625-5 4.890766+2 3.691366-5 4.271090+2 3.696734-5 4.054282+2 3.705789-5 3.734225+2 3.715352-5 3.447558+2 3.724978-5 3.203055+2 3.737145-5 2.947440+2 3.744699-5 2.815165+2 3.752295-5 2.700731+2 3.775062-5 2.459252+2 3.784353-5 2.400965+2 3.794162-5 2.362262+2 3.801226-5 2.347424+2 3.807441-5 2.342173+2 3.820062-5 2.348857+2 3.849043-5 2.396138+2 3.864145-5 2.407433+2 3.877945-5 2.401852+2 3.892692-5 2.382754+2 3.929961-5 2.324493+2 3.959600-5 2.299511+2 3.989858-5 2.277810+2 4.022454-5 2.238933+2 4.068721-5 2.174737+2 4.109634-5 2.132451+2 4.169444-5 2.090552+2 4.273171-5 2.042799+2 4.349575-5 2.021255+2 4.475008-5 2.005688+2 4.645907-5 2.014341+2 4.800000-5 2.042429+2 4.985396-5 2.097372+2 5.275000-5 2.217731+2 5.599187-5 2.382587+2 5.671902-5 2.425960+2 5.699860-5 2.453272+2 5.731029-5 2.497062+2 5.810485-5 2.647768+2 5.832098-5 2.679798+2 5.854576-5 2.702691+2 5.892998-5 2.721853+2 5.947643-5 2.740877+2 5.983390-5 2.764483+2 6.070000-5 2.844401+2 6.147522-5 2.910850+2 6.569011-5 3.238165+2 6.839116-5 3.439198+2 7.100128-5 3.613369+2 7.349725-5 3.755846+2 7.606037-5 3.869746+2 7.881603-5 3.949794+2 8.128505-5 3.977979+2 8.380582-5 3.957003+2 8.568199-5 3.907707+2 8.750855-5 3.825812+2 8.929128-5 3.714890+2 9.067760-5 3.608038+2 9.205855-5 3.557661+2 9.349455-5 3.715106+2 9.497673-5 3.993112+2 9.623195-5 4.279801+2 9.734724-5 4.584462+2 9.840875-5 4.931198+2 9.952858-5 5.373758+2 1.005256-4 5.855345+2 1.012008-4 6.243111+2 1.020352-4 6.810810+2 1.024609-4 7.147123+2 1.030487-4 7.675765+2 1.036971-4 8.364521+2 1.042730-4 9.094544+2 1.048492-4 9.970038+2 1.053738-4 1.093215+3 1.058540-4 1.199515+3 1.063071-4 1.321048+3 1.065469-4 1.396099+3 1.068574-4 1.507410+3 1.071292-4 1.621032+3 1.073669-4 1.736144+3 1.076499-4 1.897513+3 1.079163-4 2.080942+3 1.080557-4 2.192312+3 1.082996-4 2.419474+3 1.084825-4 2.623155+3 1.086537-4 2.846080+3 1.088255-4 3.108131+3 1.089284-4 3.286685+3 1.090313-4 3.483782+3 1.092997-4 4.100858+3 1.094339-4 4.475363+3 1.095681-4 4.901622+3 1.097022-4 5.385813+3 1.098364-4 5.934222+3 1.101048-4 7.248195+3 1.106330-4 1.081420+4 1.108061-4 1.228551+4 1.110133-4 1.423744+4 1.111167-4 1.528245+4 1.113889-4 1.821772+4 1.114229-4 1.859956+4 1.116610-4 2.132464+4 1.117546-4 2.240470+4 1.119699-4 2.485501+4 1.120988-4 2.626706+4 1.121976-4 2.730282+4 1.123387-4 2.869323+4 1.124861-4 3.000496+4 1.126375-4 3.117103+4 1.127885-4 3.212109+4 1.129625-4 3.292092+4 1.131003-4 3.331161+4 1.132593-4 3.348282+4 1.133524-4 3.344150+4 1.136020-4 3.281924+4 1.137220-4 3.226424+4 1.138619-4 3.142211+4 1.140065-4 3.035077+4 1.141303-4 2.928820+4 1.142666-4 2.798644+4 1.143987-4 2.661547+4 1.145107-4 2.538616+4 1.146548-4 2.374153+4 1.147909-4 2.214795+4 1.149270-4 2.054099+4 1.150800-4 1.874615+4 1.151991-4 1.737800+4 1.154713-4 1.440886+4 1.156541-4 1.257940+4 1.157434-4 1.174254+4 1.159476-4 9.979204+3 1.161904-4 8.159093+3 1.165057-4 6.234067+3 1.169486-4 4.260859+3 1.172231-4 3.383164+3 1.174247-4 2.869734+3 1.176271-4 2.445186+3 1.178654-4 2.042093+3 1.182934-4 1.528293+3 1.187336-4 1.241650+3 1.188757-4 1.202308+3 1.190949-4 1.198680+3 1.192344-4 1.236215+3 1.193802-4 1.312263+3 1.194922-4 1.398556+3 1.195642-4 1.467760+3 1.196734-4 1.594324+3 1.197630-4 1.718684+3 1.198502-4 1.858363+3 1.199247-4 1.993009+3 1.200826-4 2.326973+3 1.203560-4 3.071036+3 1.206065-4 3.948408+3 1.207489-4 4.532111+3 1.210698-4 6.067142+3 1.211033-4 6.244242+3 1.213724-4 7.765905+3 1.215272-4 8.710537+3 1.217028-4 9.826834+3 1.218424-4 1.073585+4 1.219933-4 1.172634+4 1.221110-4 1.249538+4 1.222380-4 1.331102+4 1.223689-4 1.412654+4 1.225193-4 1.501770+4 1.226739-4 1.586558+4 1.228094-4 1.653862+4 1.229322-4 1.708181+4 1.230939-4 1.768762+4 1.231891-4 1.798114+4 1.234687-4 1.854798+4 1.235873-4 1.864956+4 1.238036-4 1.861887+4 1.239480-4 1.844686+4 1.241064-4 1.812645+4 1.242316-4 1.778295+4 1.243268-4 1.747316+4 1.244626-4 1.696579+4 1.246240-4 1.627647+4 1.247630-4 1.562207+4 1.249020-4 1.492499+4 1.250784-4 1.399893+4 1.251842-4 1.343070+4 1.255129-4 1.166641+4 1.260390-4 9.075014+3 1.264903-4 7.266810+3 1.268088-4 6.251248+3 1.270272-4 5.672636+3 1.272097-4 5.255747+3 1.273574-4 4.958493+3 1.275360-4 4.641703+3 1.276178-4 4.510808+3 1.277987-4 4.249336+3 1.280100-4 3.986813+3 1.281563-4 3.828118+3 1.284083-4 3.591223+3 1.287022-4 3.361820+3 1.290189-4 3.157190+3 1.294185-4 2.945039+3 1.298651-4 2.751325+3 1.301492-4 2.645969+3 1.306765-4 2.479080+3 1.311020-4 2.366887+3 1.314219-4 2.293958+3 1.317643-4 2.225666+3 1.321849-4 2.154124+3 1.326803-4 2.084659+3 1.333521-4 2.009399+3 1.340375-4 1.945897+3 1.355245-4 1.825109+3 1.365670-4 1.750412+3 1.380151-4 1.665292+3 1.397862-4 1.586707+3 1.414958-4 1.531136+3 1.435731-4 1.482788+3 1.453964-4 1.452998+3 1.490500-4 1.411541+3 1.533012-4 1.370422+3 1.609266-4 1.294070+3 1.728000-4 1.181660+3 1.920495-4 1.022273+3 2.150000-4 8.685399+2 2.242090-4 8.131066+2 2.291941-4 7.819247+2 2.343859-4 7.429461+2 2.358474-4 7.351884+2 2.373871-4 7.315523+2 2.390051-4 7.321921+2 2.416631-4 7.360576+2 2.433952-4 7.366902+2 2.490332-4 7.302233+2 2.560000-4 7.172740+2 2.713413-4 6.856318+2 2.770268-4 6.732532+2 2.864719-4 6.518783+2 2.953063-4 6.312209+2 2.994173-4 6.200864+2 3.054540-4 5.999230+2 3.069932-4 5.967255+2 3.093974-4 5.968078+2 3.123034-4 6.020920+2 3.152672-4 6.047762+2 3.180561-4 6.026784+2 3.243645-4 5.935336+2 3.459261-4 5.615068+2 3.701809-4 5.191877+2 3.845918-4 4.936065+2 3.914418-4 4.848962+2 4.050420-4 4.651925+2 4.216965-4 4.360541+2 4.398211-4 3.987976+2 4.518559-4 3.707049+2 4.626931-4 3.429934+2 4.716049-4 3.181042+2 4.776073-4 3.011842+2 4.822384-4 2.874823+2 4.963433-4 2.452834+2 5.001205-4 2.333789+2 5.049834-4 2.167321+2 5.094096-4 2.015652+2 5.134614-4 1.876295+2 5.173750-4 1.738492+2 5.203750-4 1.631738+2 5.259741-4 1.438980+2 5.286255-4 1.355626+2 5.310000-4 1.288130+2 5.336385-4 1.223402+2 5.353750-4 1.187880+2 5.377734-4 1.149574+2 5.400000-4 1.126596+2 5.419736-4 1.117480+2 5.435541-4 1.118420+2 5.457984-4 1.133197+2 5.484849-4 1.172906+2 5.509991-4 1.232955+2 5.542485-4 1.344506+2 5.587485-4 1.563263+2 5.614983-4 1.733937+2 5.633983-4 1.868253+2 5.728500-4 2.725459+2 5.762485-4 3.101844+2 5.792489-4 3.458609+2 5.822674-4 3.837378+2 5.837494-4 4.029619+2 5.870000-4 4.463228+2 5.882500-4 4.633630+2 5.910000-4 5.014025+2 5.930000-4 5.294349+2 5.965000-4 5.789563+2 5.982500-4 6.038313+2 6.030000-4 6.712999+2 6.050983-4 7.009404+2 6.087698-4 7.523690+2 6.148836-4 8.363585+2 6.220554-4 9.314408+2 6.301104-4 1.032728+3 6.359803-4 1.102282+3 6.441140-4 1.192120+3 6.546598-4 1.298117+3 6.618830-4 1.364305+3 6.741398-4 1.466946+3 6.855000-4 1.553113+3 7.000000-4 1.651858+3 7.140852-4 1.736132+3 7.235243-4 1.786340+3 7.417974-4 1.873768+3 7.585776-4 1.940914+3 7.746605-4 1.993047+3 7.943282-4 2.043781+3 8.268349-4 2.105486+3 8.328891-4 2.154561+3 8.370524-4 2.224922+3 8.391364-4 2.273025+3 8.434247-4 2.390048+3 8.488960-4 2.525547+3 8.514443-4 2.560398+3 8.535392-4 2.569482+3 8.555674-4 2.561131+3 8.580230-4 2.531501+3 8.659643-4 2.378624+3 8.675828-4 2.353212+3 8.700178-4 2.325146+3 8.738926-4 2.306897+3 8.787537-4 2.322013+3 8.848811-4 2.381126+3 8.895629-4 2.449698+3 8.962231-4 2.572245+3 9.019737-4 2.667073+3 9.047150-4 2.694586+3 9.065781-4 2.704375+3 9.088246-4 2.706489+3 9.113548-4 2.697774+3 9.216628-4 2.622057+3 9.245568-4 2.611622+3 9.282500-4 2.611178+3 9.362485-4 2.644755+3 9.489505-4 2.718082+3 9.685281-4 2.805176+3 9.993035-4 2.908246+3 1.028844-3 2.984231+3 1.059254-3 3.044015+3 1.096478-3 3.100045+3 1.128456-3 3.127012+3 1.165917-3 3.133753+3 1.179188-3 3.148220+3 1.194041-3 3.191103+3 1.219747-3 3.289305+3 1.232613-3 3.328118+3 1.259424-3 3.382798+3 1.298487-3 3.436775+3 1.342988-3 3.479639+3 1.389009-3 3.510480+3 1.429117-3 3.525143+3 1.495561-3 3.539825+3 1.526484-3 3.558262+3 1.557569-3 3.569270+3 1.606444-3 3.571045+3 1.656064-3 3.565705+3 1.727826-3 3.601776+3 1.798871-3 3.605971+3 1.883961-3 3.591322+3 1.978108-3 3.567023+3 2.074521-3 3.535716+3 2.191046-3 3.485972+3 2.309072-3 3.427146+3 2.449759-3 3.350304+3 2.583514-3 3.268318+3 2.705284-3 3.188935+3 2.862163-3 3.079379+3 3.006412-3 2.970792+3 3.130269-3 2.870089+3 3.259305-3 2.757708+3 3.368992-3 2.652908+3 3.467368-3 2.549124+3 3.559143-3 2.442494+3 3.641246-3 2.335668+3 3.699408-3 2.250387+3 3.752970-3 2.160799+3 3.802173-3 2.064689+3 3.841578-3 1.974673+3 3.873169-3 1.890318+3 3.906682-3 1.788632+3 3.935529-3 1.701974+3 3.953365-3 1.658843+3 3.963436-3 1.640843+3 3.977682-3 1.625012+3 3.990769-3 1.620986+3 4.004268-3 1.626935+3 4.021379-3 1.647213+3 4.039765-3 1.681249+3 4.099297-3 1.822376+3 4.122672-3 1.869301+3 4.174550-3 1.961159+3 4.203596-3 2.026485+3 4.246686-3 2.145672+3 4.313400-3 2.352791+3 4.343227-3 2.438914+3 4.363618-3 2.489690+3 4.392420-3 2.548927+3 4.428020-3 2.604936+3 4.465767-3 2.649099+3 4.504224-3 2.682291+3 4.553664-3 2.711652+3 4.603180-3 2.728212+3 4.648081-3 2.731398+3 4.687306-3 2.723465+3 4.762466-3 2.690643+3 4.778882-3 2.688049+3 4.796762-3 2.691422+3 4.813309-3 2.701665+3 4.841026-3 2.734488+3 4.920511-3 2.875358+3 4.944533-3 2.910868+3 4.974919-3 2.946368+3 5.011872-3 2.978244+3 5.060284-3 3.007952+3 5.121238-3 3.033828+3 5.188000-3 3.052579+3 5.256073-3 3.064196+3 5.418839-3 3.070235+3 5.511249-3 3.063574+3 5.671159-3 3.035702+3 5.800635-3 2.993719+3 5.880908-3 2.960840+3 5.942624-3 2.948762+3 6.084757-3 2.965592+3 6.177647-3 2.957587+3 6.299638-3 2.937412+3 6.501569-3 2.953138+3 6.684767-3 2.937286+3 6.954925-3 2.893691+3 7.454244-3 2.790956+3 7.831377-3 2.706154+3 8.427348-3 2.566499+3 8.939002-3 2.448172+3 9.506446-3 2.320211+3 1.024398-2 2.164662+3 1.104744-2 2.007420+3 1.208770-2 1.822124+3 1.264373-2 1.731520+3 1.326702-2 1.636029+3 1.387605-2 1.548184+3 1.453136-2 1.458978+3 1.513634-2 1.380302+3 1.566328-2 1.314322+3 1.618607-2 1.250522+3 1.662724-2 1.197327+3 1.700122-2 1.152039+3 1.732445-2 1.112286+3 1.758210-2 1.079512+3 1.781586-2 1.048380+3 1.800000-2 1.022305+3 1.814554-2 1.000092+3 1.828793-2 9.760840+2 1.839953-2 9.547147+2 1.848986-2 9.350829+2 1.861419-2 9.044047+2 1.878733-2 8.609022+2 1.886340-2 8.466072+2 1.893228-2 8.388663+2 1.900456-2 8.370955+2 1.907862-2 8.418644+2 1.916298-2 8.535713+2 1.937620-2 8.918581+2 1.950539-2 9.092731+2 1.959056-2 9.170852+2 1.969220-2 9.233355+2 1.981224-2 9.276436+2 1.994603-2 9.298416+2 2.010781-2 9.300564+2 2.046536-2 9.243820+2 2.093245-2 9.093972+2 2.149226-2 8.849603+2 2.181572-2 8.685741+2 2.234396-2 8.382579+2 2.274099-2 8.114971+2 2.291266-2 7.981206+2 2.306597-2 7.846274+2 2.327771-2 7.628291+2 2.355845-2 7.326551+2 2.367967-2 7.236029+2 2.379001-2 7.192825+2 2.390666-2 7.186119+2 2.457802-2 7.326169+2 2.506470-2 7.487525+2 2.531565-2 7.524841+2 2.569527-2 7.517378+2 2.618032-2 7.456626+2 2.680426-2 7.341162+2 2.791387-2 7.090008+2 2.913231-2 6.787110+2 3.085851-2 6.355180+2 3.306026-2 5.838280+2 3.645337-2 5.138657+2 3.975347-2 4.556123+2 4.308985-2 4.050031+2 4.820649-2 3.415558+2 5.210976-2 3.021073+2 5.671462-2 2.629799+2 6.427223-2 2.124322+2 7.611718-2 1.579067+2 8.609938-2 1.266077+2 9.712990-2 1.014182+2 1.053968-1 8.672948+1 1.122211-1 7.638773+1 1.172380-1 6.945455+1 1.191842-1 6.683374+1 1.207864-1 6.466294+1 1.221371-1 6.279002+1 1.232425-1 6.119094+1 1.241626-1 5.977054+1 1.249149-1 5.850357+1 1.259280-1 5.657468+1 1.276432-1 5.309523+1 1.281520-1 5.234179+1 1.287119-1 5.184834+1 1.293027-1 5.174708+1 1.299710-1 5.206292+1 1.315170-1 5.335608+1 1.323183-1 5.380767+1 1.334421-1 5.405444+1 1.342848-1 5.403406+1 1.363379-1 5.361294+1 1.388053-1 5.276138+1 1.429942-1 5.097705+1 1.472836-1 4.900536+1 1.536957-1 4.604563+1 1.649023-1 4.118585+1 1.804674-1 3.540917+1 2.022023-1 2.906195+1 2.304093-1 2.302123+1 2.726623-1 1.694475+1 3.349654-1 1.156727+1 4.170944-1 7.648759+0 5.523617-1 4.468865+0 8.181851-1 2.088575+0 1.228714+0 9.441441-1 1.859734+0 4.171176-1 3.384160+0 1.269771-1 1.022000+1 1.396986-2 3.086391+1 1.531886-3 9.320751+1 1.679680-4 2.814822+2 1.841732-5 8.500626+2 2.019419-6 3.162278+3 1.459245-7 1.000000+4 1.459245-8 3.162278+4 1.459245-9 1.000000+5 1.45924-10 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.670300-6 1.258900-6 4.232200-6 1.584900-6 6.707500-6 1.995300-6 1.063100-5 2.511900-6 1.684800-5 3.162300-6 2.670300-5 3.981100-6 4.232100-5 5.011900-6 6.707400-5 6.309600-6 1.063000-4 7.943300-6 1.684800-4 1.000000-5 2.670200-4 1.258900-5 4.231900-4 1.584900-5 6.703900-4 1.995300-5 1.061800-3 2.511900-5 1.682100-3 3.162300-5 2.664800-3 3.981100-5 4.222300-3 5.011900-5 6.690300-3 6.309600-5 1.060100-2 7.943300-5 1.677300-2 1.000000-4 2.652500-2 1.258900-4 4.194500-2 1.584900-4 6.615900-2 1.995300-4 1.041600-1 2.511900-4 1.632800-1 3.162300-4 2.543800-1 3.981100-4 3.923200-1 5.011900-4 5.936700-1 6.309600-4 8.780900-1 7.943300-4 1.259200+0 1.000000-3 1.745700+0 1.258900-3 2.349900+0 1.584900-3 3.102400+0 1.995300-3 4.050900+0 2.511900-3 5.228300+0 3.162300-3 6.653300+0 3.981100-3 8.336800+0 5.011900-3 1.028400+1 6.309600-3 1.248000+1 7.943300-3 1.496000+1 1.000000-2 1.774900+1 1.258900-2 2.082600+1 1.584900-2 2.404700+1 1.995300-2 2.719600+1 2.511900-2 3.017300+1 3.162300-2 3.294900+1 3.981100-2 3.543000+1 5.011900-2 3.742700+1 6.309600-2 3.878700+1 7.943300-2 3.944900+1 1.000000-1 3.944700+1 1.258900-1 3.881400+1 1.584900-1 3.760600+1 1.995300-1 3.593800+1 2.511900-1 3.393500+1 3.162300-1 3.172200+1 3.981100-1 2.938700+1 5.011900-1 2.699800+1 6.309600-1 2.462200+1 7.943300-1 2.229900+1 1.000000+0 2.005500+1 1.258900+0 1.791500+1 1.584900+0 1.589500+1 1.995300+0 1.400800+1 2.511900+0 1.226400+1 3.162300+0 1.066900+1 3.981100+0 9.225200+0 5.011900+0 7.931800+0 6.309600+0 6.783800+0 7.943300+0 5.773800+0 1.000000+1 4.892100+0 1.258900+1 4.128400+0 1.584900+1 3.471000+0 1.995300+1 2.908700+0 2.511900+1 2.430100+0 3.162300+1 2.024700+0 3.981100+1 1.682800+0 5.011900+1 1.395600+0 6.309600+1 1.155100+0 7.943300+1 9.542500-1 1.000000+2 7.870400-1 1.258900+2 6.481500-1 1.584900+2 5.330200-1 1.995300+2 4.377900-1 2.511900+2 3.591500-1 3.162300+2 2.943200-1 3.981100+2 2.409500-1 5.011900+2 1.970700-1 6.309600+2 1.610400-1 7.943300+2 1.314900-1 1.000000+3 1.072800-1 1.258900+3 8.746400-2 1.584900+3 7.126000-2 1.995300+3 5.802100-2 2.511900+3 4.721200-2 3.162300+3 3.839500-2 3.981100+3 3.120700-2 5.011900+3 2.535200-2 6.309600+3 2.058500-2 7.943300+3 1.670600-2 1.000000+4 1.355200-2 1.258900+4 1.098900-2 1.584900+4 8.906600-3 1.995300+4 7.216000-3 2.511900+4 5.844000-3 3.162300+4 4.731200-3 3.981100+4 3.828900-3 5.011900+4 3.097600-3 6.309600+4 2.505100-3 7.943300+4 2.025300-3 1.000000+5 1.636900-3 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976775-4 5.011872-4 5.005108-4 6.309573-4 6.298950-4 7.943282-4 7.926660-4 1.000000-3 9.974031-4 1.258925-3 1.254876-3 1.584893-3 1.578563-3 1.995262-3 1.985329-3 2.511886-3 2.496320-3 3.162278-3 3.137824-3 3.981072-3 3.942837-3 5.011872-3 4.952094-3 6.309573-3 6.216137-3 7.943282-3 7.797678-3 1.000000-2 9.772763-3 1.258925-2 1.223520-2 1.584893-2 1.529982-2 1.995262-2 1.910641-2 2.511886-2 2.382078-2 3.162278-2 2.963851-2 3.981072-2 3.679023-2 5.011872-2 4.555075-2 6.309573-2 5.624849-2 7.943282-2 6.926772-2 1.000000-1 8.501242-2 1.258925-1 1.040104-1 1.584893-1 1.268694-1 1.995262-1 1.542670-1 2.511886-1 1.869925-1 3.162278-1 2.258333-1 3.981072-1 2.719345-1 5.011872-1 3.264774-1 6.309573-1 3.908532-1 7.943282-1 4.667290-1 1.000000+0 5.559702-1 1.258925+0 6.613164-1 1.584893+0 7.855172-1 1.995262+0 9.325432-1 2.511886+0 1.107078+0 3.162278+0 1.314766+0 3.981072+0 1.562715+0 5.011872+0 1.859588+0 6.309573+0 2.215741+0 7.943282+0 2.644413+0 1.000000+1 3.160906+0 1.258925+1 3.785091+0 1.584893+1 4.540221+0 1.995262+1 5.455457+0 2.511886+1 6.566315+0 3.162278+1 7.916202+0 3.981072+1 9.559089+0 5.011872+1 1.155973+1 6.309573+1 1.399937+1 7.943282+1 1.697696+1 1.000000+2 2.061441+1 1.258925+2 2.506175+1 1.584893+2 3.050325+1 1.995262+2 3.716673+1 2.511886+2 4.533176+1 3.162278+2 5.534454+1 3.981072+2 6.762902+1 5.011872+2 8.271235+1 6.309573+2 1.012420+2 7.943282+2 1.240181+2 1.000000+3 1.520262+2 1.258925+3 1.864899+2 1.584893+3 2.289163+2 1.995262+3 2.811755+2 2.511886+3 3.455620+2 3.162278+3 4.249286+2 3.981072+3 5.228145+2 5.011872+3 6.435768+2 6.309573+3 7.926391+2 7.943282+3 9.766720+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88200-10 1.995262-5 1.090636-9 2.511886-5 1.728513-9 3.162278-5 2.739536-9 3.981072-5 4.341911-9 5.011872-5 6.881434-9 6.309573-5 1.090601-8 7.943282-5 1.727687-8 1.000000-4 2.737415-8 1.258925-4 4.337601-8 1.584893-4 6.869089-8 1.995262-4 1.087684-7 2.511886-4 1.721301-7 3.162278-4 2.721614-7 3.981072-4 4.296882-7 5.011872-4 6.764750-7 6.309573-4 1.062338-6 7.943282-4 1.662210-6 1.000000-3 2.596893-6 1.258925-3 4.049346-6 1.584893-3 6.330033-6 1.995262-3 9.933082-6 2.511886-3 1.556666-5 3.162278-3 2.445328-5 3.981072-3 3.823425-5 5.011872-3 5.977818-5 6.309573-3 9.343611-5 7.943282-3 1.456045-4 1.000000-2 2.272370-4 1.258925-2 3.540582-4 1.584893-2 5.491119-4 1.995262-2 8.462154-4 2.511886-2 1.298086-3 3.162278-2 1.984271-3 3.981072-2 3.020486-3 5.011872-2 4.567975-3 6.309573-2 6.847241-3 7.943282-2 1.016510-2 1.000000-1 1.498758-2 1.258925-1 2.188218-2 1.584893-1 3.161989-2 1.995262-1 4.525926-2 2.511886-1 6.419619-2 3.162278-1 9.039444-2 3.981072-1 1.261727-1 5.011872-1 1.747098-1 6.309573-1 2.401042-1 7.943282-1 3.275993-1 1.000000+0 4.440298-1 1.258925+0 5.976090-1 1.584893+0 7.993760-1 1.995262+0 1.062719+0 2.511886+0 1.404809+0 3.162278+0 1.847512+0 3.981072+0 2.418356+0 5.011872+0 3.152284+0 6.309573+0 4.093833+0 7.943282+0 5.298870+0 1.000000+1 6.839094+0 1.258925+1 8.804163+0 1.584893+1 1.130871+1 1.995262+1 1.449717+1 2.511886+1 1.855255+1 3.162278+1 2.370657+1 3.981072+1 3.025163+1 5.011872+1 3.855900+1 6.309573+1 4.909636+1 7.943282+1 6.245586+1 1.000000+2 7.938559+1 1.258925+2 1.008308+2 1.584893+2 1.279861+2 1.995262+2 1.623595+2 2.511886+2 2.058569+2 3.162278+2 2.608832+2 3.981072+2 3.304782+2 5.011872+2 4.184749+2 6.309573+2 5.297154+2 7.943282+2 6.703101+2 1.000000+3 8.479738+2 1.258925+3 1.072436+3 1.584893+3 1.355977+3 1.995262+3 1.714087+3 2.511886+3 2.166324+3 3.162278+3 2.737349+3 3.981072+3 3.458257+3 5.011872+3 4.368296+3 6.309573+3 5.516934+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 3.930000-6 6.129062+6 4.000000-6 6.204180+6 4.200000-6 6.354960+6 4.466836-6 6.492110+6 4.650000-6 6.547620+6 4.650000-6 9.288278+6 4.731513-6 9.382398+6 4.900000-6 9.523031+6 5.100000-6 9.669481+6 5.128614-6 9.686515+6 5.370318-6 9.805299+6 5.432503-6 9.829838+6 5.700000-6 9.906362+6 5.888437-6 9.943232+6 6.025596-6 9.957288+6 6.180000-6 9.963799+6 6.180000-6 2.057288+7 6.382635-6 1.957037+7 6.456542-6 1.922613+7 6.760830-6 1.792138+7 6.918310-6 1.732821+7 7.244360-6 1.623983+7 7.585776-6 1.527776+7 7.762471-6 1.483280+7 8.035261-6 1.420656+7 8.222426-6 1.382645+7 8.317638-6 1.363955+7 8.912509-6 1.260487+7 9.549926-6 1.167775+7 1.023293-5 1.083415+7 1.083927-5 1.016474+7 1.100000-5 9.999356+6 1.109175-5 9.903242+6 1.150000-5 9.504112+6 1.174898-5 9.271020+6 1.195000-5 9.083169+6 1.195000-5 1.002366+7 1.216186-5 9.811276+6 1.219000-5 9.784458+6 1.250000-5 9.490212+6 1.273503-5 9.269738+6 1.288250-5 9.134057+6 1.318257-5 8.871327+6 1.348000-5 8.618760+6 1.348000-5 9.174996+6 1.348963-5 9.166680+6 1.364583-5 9.029163+6 1.365000-5 9.025585+6 1.396368-5 8.768278+6 1.412538-5 8.635909+6 1.420000-5 8.577042+6 1.428894-5 8.505497+6 1.445440-5 8.376297+6 1.479108-5 8.128802+6 1.480000-5 8.122183+6 1.490000-5 8.049272+6 1.496236-5 8.005217+6 1.531087-5 7.759954+6 1.566751-5 7.530629+6 1.570000-5 7.509563+6 1.584893-5 7.413346+6 1.621810-5 7.188375+6 1.630000-5 7.141513+6 1.650000-5 7.031319+6 1.659587-5 6.978148+6 1.670000-5 6.919426+6 1.678804-5 6.871673+6 1.717908-5 6.671848+6 1.730000-5 6.614378+6 1.737801-5 6.578592+6 1.757924-5 6.485488+6 1.770000-5 6.429240+6 1.778279-5 6.392419+6 1.830000-5 6.179975+6 1.840772-5 6.140526+6 1.862087-5 6.062410+6 1.883649-5 5.984314+6 1.927525-5 5.844443+6 1.950000-5 5.780106+6 1.980000-5 5.700106+6 1.990000-5 5.673869+6 2.018366-5 5.605638+6 2.055000-5 5.529607+6 2.070000-5 5.502216+6 2.089296-5 5.467787+6 2.113489-5 5.430542+6 2.187762-5 5.339543+6 2.190000-5 5.337571+6 2.213095-5 5.320701+6 2.264644-5 5.292185+6 2.270000-5 5.289876+6 2.300000-5 5.282225+6 2.371374-5 5.291719+6 2.454709-5 5.342369+6 2.483133-5 5.368567+6 2.500000-5 5.386310+6 2.580000-5 5.495952+6 2.660725-5 5.638064+6 2.694000-5 5.705932+6 2.700000-5 5.718783+6 2.700000-5 2.176598+7 2.786121-5 2.017389+7 2.818383-5 1.968114+7 2.851018-5 1.921453+7 2.917427-5 1.836436+7 2.951209-5 1.797993+7 2.985383-5 1.763880+7 3.000000-5 1.750040+7 3.126079-5 1.647901+7 3.162278-5 1.625531+7 3.300000-5 1.555784+7 3.311311-5 1.551274+7 3.388442-5 1.522566+7 3.427678-5 1.511135+7 3.467369-5 1.501329+7 3.507519-5 1.491818+7 3.589219-5 1.477194+7 3.630781-5 1.471186+7 3.715352-5 1.462178+7 3.758374-5 1.459672+7 3.890451-5 1.454908+7 3.900000-5 1.454970+7 3.935501-5 1.455098+7 3.964000-5 1.455007+7 3.964000-5 2.102989+7 4.027170-5 2.081695+7 4.030000-5 2.080814+7 4.073803-5 2.066085+7 4.120975-5 2.051127+7 4.150000-5 2.042096+7 4.216965-5 2.022143+7 4.265795-5 2.009499+7 4.300000-5 2.001012+7 4.315191-5 1.997450+7 4.400000-5 1.978235+7 4.466836-5 1.965874+7 4.518559-5 1.957119+7 4.570882-5 1.949118+7 4.623810-5 1.941136+7 4.677351-5 1.934264+7 4.800000-5 1.921150+7 4.841724-5 1.917945+7 4.900000-5 1.912786+7 5.011872-5 1.904364+7 5.069907-5 1.901428+7 5.080000-5 1.901038+7 5.150000-5 1.897613+7 5.248075-5 1.892787+7 5.308844-5 1.890918+7 5.370318-5 1.889822+7 5.400000-5 1.888913+7 5.432503-5 1.887623+7 5.559043-5 1.883819+7 5.623413-5 1.883098+7 5.650000-5 1.882420+7 5.754399-5 1.879061+7 5.800000-5 1.878073+7 5.821032-5 1.877707+7 5.900000-5 1.874677+7 6.025596-5 1.869083+7 6.069000-5 1.867637+7 6.069000-5 1.905769+7 6.070000-5 1.905720+7 6.095369-5 1.903820+7 6.150000-5 1.899820+7 6.190000-5 1.896277+7 6.309573-5 1.886373+7 6.382635-5 1.879113+7 6.400000-5 1.877461+7 6.500000-5 1.866519+7 6.531306-5 1.863320+7 6.606934-5 1.853942+7 6.683439-5 1.843482+7 6.760830-5 1.833413+7 6.839116-5 1.821535+7 6.918310-5 1.808405+7 7.000000-5 1.795479+7 7.079458-5 1.781230+7 7.161434-5 1.765354+7 7.244360-5 1.749929+7 7.328245-5 1.732738+7 7.413102-5 1.714266+7 7.500000-5 1.695937+7 7.585776-5 1.676398+7 7.673615-5 1.655332+7 7.762471-5 1.634655+7 7.800000-5 1.625268+7 7.852356-5 1.612402+7 7.943282-5 1.589031+7 8.000000-5 1.574806+7 8.035261-5 1.566113+7 8.128305-5 1.541696+7 8.222426-5 1.516255+7 8.317638-5 1.491301+7 8.413951-5 1.465048+7 8.511380-5 1.437856+7 8.609938-5 1.411214+7 8.709636-5 1.383380+7 8.810489-5 1.354700+7 8.912509-5 1.326678+7 9.015711-5 1.297550+7 9.120108-5 1.267712+7 9.225714-5 1.238588+7 9.332543-5 1.208538+7 9.500000-5 1.161669+7 9.650000-5 1.119898+7 9.660509-5 1.116935+7 9.800000-5 1.078631+7 9.900000-5 1.051020+7 9.950000-5 1.037606+7 1.011579-4 9.932196+6 1.023293-4 9.621109+6 1.040000-4 9.186326+6 1.047129-4 9.001495+6 1.050000-4 8.928495+6 1.059254-4 8.691492+6 1.071519-4 8.390425+6 1.080000-4 8.182032+6 1.083927-4 8.085055+6 1.100000-4 7.703473+6 1.102500-4 7.646282+6 1.109175-4 7.490716+6 1.110000-4 7.471777+6 1.135011-4 6.912710+6 1.161449-4 6.348068+6 1.170000-4 6.178258+6 1.174898-4 6.077689+6 1.205000-4 5.503220+6 1.220000-4 5.228074+6 1.240000-4 4.888081+6 1.252300-4 4.682461+6 1.252300-4 5.580013+6 1.254000-4 5.573467+6 1.258925-4 5.549239+6 1.261000-4 5.540422+6 1.277300-4 5.515887+6 1.280000-4 5.515635+6 1.288250-4 5.520724+6 1.290000-4 5.523903+6 1.298000-4 5.538170+6 1.303167-4 5.547854+6 1.305000-4 5.552645+6 1.311900-4 5.565899+6 1.315000-4 5.569569+6 1.318257-4 5.573079+6 1.325000-4 5.573795+6 1.331000-4 5.568935+6 1.337000-4 5.558067+6 1.343000-4 5.540589+6 1.350000-4 5.511488+6 1.358000-4 5.462310+6 1.364583-4 5.411731+6 1.364600-4 5.411604+6 1.364600-4 5.987968+6 1.366700-4 5.982763+6 1.372000-4 5.962876+6 1.373000-4 5.960268+6 1.378000-4 5.942289+6 1.380384-4 5.936431+6 1.385000-4 5.920225+6 1.390000-4 5.908457+6 1.391000-4 5.906240+6 1.391900-4 5.903055+6 1.396368-4 5.888046+6 1.400000-4 5.878068+6 1.402000-4 5.873459+6 1.407000-4 5.858711+6 1.414000-4 5.840577+6 1.415000-4 5.837578+6 1.423000-4 5.812076+6 1.428894-4 5.792818+6 1.430000-4 5.788532+6 1.430700-4 5.785786+6 1.437000-4 5.756847+6 1.442000-4 5.732386+6 1.447000-4 5.705639+6 1.448000-4 5.699953+6 1.455000-4 5.654581+6 1.462177-4 5.602997+6 1.465000-4 5.580095+6 1.470000-4 5.539181+6 1.479108-4 5.452663+6 1.488000-4 5.361341+6 1.498000-4 5.251828+6 1.500000-4 5.228721+6 1.505000-4 5.169074+6 1.513561-4 5.063568+6 1.515000-4 5.046194+6 1.525000-4 4.921187+6 1.531087-4 4.843208+6 1.541400-4 4.712695+6 1.548817-4 4.617460+6 1.560000-4 4.476420+6 1.566751-4 4.391111+6 1.584893-4 4.168555+6 1.600000-4 3.989956+6 1.603245-4 3.952285+6 1.604600-4 3.936575+6 1.621810-4 3.742319+6 1.640590-4 3.540834+6 1.650000-4 3.443701+6 1.670000-4 3.245584+6 1.678804-4 3.161635+6 1.705000-4 2.925153+6 1.717908-4 2.814429+6 1.720000-4 2.796712+6 1.737801-4 2.651752+6 1.740000-4 2.634534+6 1.760000-4 2.482578+6 1.770000-4 2.409785+6 1.778279-4 2.351290+6 1.798871-4 2.212647+6 1.800000-4 2.205363+6 1.810000-4 2.141847+6 1.835000-4 1.990407+6 1.850000-4 1.905897+6 1.862087-4 1.840881+6 1.865000-4 1.825662+6 1.880000-4 1.749549+6 1.890000-4 1.700825+6 1.905461-4 1.628648+6 1.927525-4 1.533243+6 1.929400-4 1.525496+6 1.930000-4 1.523028+6 1.940000-4 1.482496+6 1.972423-4 1.360429+6 1.980000-4 1.333812+6 1.995262-4 1.282992+6 2.000000-4 1.267751+6 2.020000-4 1.206209+6 2.041738-4 1.143838+6 2.060000-4 1.096076+6 2.065380-4 1.082593+6 2.090000-4 1.023812+6 2.113489-4 9.720728+5 2.120000-4 9.587014+5 2.137962-4 9.232370+5 2.150000-4 9.009162+5 2.160000-4 8.830224+5 2.170000-4 8.657465+5 2.180000-4 8.492996+5 2.190200-4 8.330933+5 2.198000-4 8.210497+5 2.213095-4 7.985806+5 2.220000-4 7.887165+5 2.230000-4 7.750295+5 2.238721-4 7.635254+5 2.245000-4 7.555148+5 2.250000-4 7.492706+5 2.260000-4 7.370733+5 2.264644-4 7.315493+5 2.265000-4 7.311289+5 2.275000-4 7.195247+5 2.280000-4 7.138715+5 2.290868-4 7.021899+5 2.292300-4 7.006710+5 2.295000-4 6.978472+5 2.307000-4 6.855688+5 2.323000-4 6.699250+5 2.330000-4 6.633660+5 2.340000-4 6.546234+5 2.341500-4 6.533392+5 2.350000-4 6.462105+5 2.358000-4 6.396219+5 2.371374-4 6.290557+5 2.373000-4 6.277910+5 2.380000-4 6.224431+5 2.391700-4 6.137721+5 2.396500-4 6.104480+5 2.396500-4 9.430620+5 2.400000-4 9.400196+5 2.407000-4 9.341489+5 2.426610-4 9.182207+5 2.445000-4 9.040438+5 2.450000-4 9.003018+5 2.454709-4 8.969277+5 2.465000-4 8.898724+5 2.483133-4 8.778756+5 2.490000-4 8.734440+5 2.500000-4 8.671960+5 2.520000-4 8.555467+5 2.540973-4 8.442633+5 2.560000-4 8.344739+5 2.570396-4 8.295751+5 2.580000-4 8.251464+5 2.600160-4 8.164373+5 2.620000-4 8.082526+5 2.630268-4 8.043635+5 2.635000-4 8.025106+5 2.650000-4 7.969704+5 2.670000-4 7.897674+5 2.691535-4 7.827633+5 2.710000-4 7.772996+5 2.730000-4 7.714601+5 2.754229-4 7.652225+5 2.770000-4 7.615854+5 2.786121-4 7.578358+5 2.800000-4 7.549002+5 2.818383-4 7.515037+5 2.830000-4 7.495966+5 2.880000-4 7.415331+5 2.884032-4 7.409931+5 2.917427-4 7.367802+5 2.930000-4 7.353209+5 2.951209-4 7.330219+5 2.985383-4 7.303743+5 3.000000-4 7.292703+5 3.019952-4 7.276905+5 3.030000-4 7.270359+5 3.050000-4 7.260152+5 3.060000-4 7.254904+5 3.090295-4 7.238160+5 3.100000-4 7.233260+5 3.126079-4 7.222160+5 3.148000-4 7.214062+5 3.148000-4 8.457712+5 3.150000-4 8.454750+5 3.162278-4 8.436920+5 3.180000-4 8.411018+5 3.198895-4 8.385992+5 3.235937-4 8.341272+5 3.273407-4 8.299946+5 3.311311-4 8.255036+5 3.325000-4 8.238873+5 3.349654-4 8.207537+5 3.350000-4 8.207083+5 3.388442-4 8.163542+5 3.390000-4 8.161941+5 3.400000-4 8.151259+5 3.440000-4 8.109139+5 3.470000-4 8.077524+5 3.470500-4 8.077041+5 3.540000-4 8.011292+5 3.550000-4 8.001816+5 3.589219-4 7.967432+5 3.600000-4 7.958848+5 3.630781-4 7.936619+5 3.650000-4 7.922199+5 3.672823-4 7.904418+5 3.715352-4 7.873002+5 3.758374-4 7.842780+5 3.801894-4 7.810432+5 3.843000-4 7.781647+5 3.843000-4 8.236981+5 3.845918-4 8.234704+5 3.850000-4 8.231547+5 3.890451-4 8.201817+5 3.935501-4 8.167208+5 3.970000-4 8.141830+5 4.000000-4 8.119160+5 4.027170-4 8.099519+5 4.073803-4 8.064407+5 4.100000-4 8.043356+5 4.120975-4 8.027149+5 4.168694-4 7.991459+5 4.216965-4 7.954010+5 4.265795-4 7.915508+5 4.315191-4 7.877821+5 4.365158-4 7.838453+5 4.415704-4 7.796907+5 4.466836-4 7.756281+5 4.518559-4 7.714031+5 4.550000-4 7.687870+5 4.570882-4 7.671066+5 4.600000-4 7.647904+5 4.623810-4 7.628843+5 4.677351-4 7.584616+5 4.731513-4 7.537373+5 4.786301-4 7.491709+5 4.841724-4 7.444356+5 4.874700-4 7.415819+5 4.874700-4 8.156310+5 4.886000-4 8.131777+5 4.897788-4 8.111224+5 4.914000-4 8.089468+5 4.930000-4 8.073192+5 4.932000-4 8.071192+5 4.954502-4 8.053441+5 4.970000-4 8.040472+5 5.000000-4 8.019141+5 5.011872-4 8.010787+5 5.012500-4 8.010442+5 5.022500-4 8.004630+5 5.022500-4 8.495434+5 5.024000-4 8.496974+5 5.031000-4 8.498327+5 5.032200-4 8.498181+5 5.045000-4 8.499453+5 5.055000-4 8.499158+5 5.069907-4 8.502849+5 5.070000-4 8.502870+5 5.075000-4 8.505454+5 5.087000-4 8.510780+5 5.100000-4 8.520904+5 5.110000-4 8.532221+5 5.115000-4 8.537682+5 5.128614-4 8.557930+5 5.143000-4 8.585846+5 5.150000-4 8.602500+5 5.155000-4 8.614765+5 5.170000-4 8.658838+5 5.185000-4 8.713949+5 5.190000-4 8.735232+5 5.200000-4 8.780986+5 5.208000-4 8.822467+5 5.215000-4 8.861472+5 5.222000-4 8.904554+5 5.230000-4 8.957435+5 5.238000-4 9.016075+5 5.248075-4 9.096153+5 5.253000-4 9.136588+5 5.265000-4 9.248543+5 5.280000-4 9.403432+5 5.295000-4 9.582536+5 5.300000-4 9.647249+5 5.308844-4 9.766250+5 5.310000-4 9.782230+5 5.320000-4 9.927577+5 5.335000-4 1.016589+6 5.350000-4 1.043053+6 5.365000-4 1.071765+6 5.370318-4 1.082720+6 5.380000-4 1.103545+6 5.385000-4 1.114396+6 5.400000-4 1.149354+6 5.407000-4 1.166702+6 5.432503-4 1.234062+6 5.457000-4 1.305710+6 5.480000-4 1.378733+6 5.495409-4 1.430600+6 5.500000-4 1.446803+6 5.510000-4 1.482146+6 5.520000-4 1.518758+6 5.540000-4 1.593992+6 5.550000-4 1.633676+6 5.559043-4 1.669291+6 5.560000-4 1.673137+6 5.580000-4 1.756047+6 5.600000-4 1.840426+6 5.610000-4 1.884252+6 5.623413-4 1.942685+6 5.628000-4 1.963312+6 5.642000-4 2.026974+6 5.650000-4 2.062983+6 5.670000-4 2.155460+6 5.688529-4 2.240579+6 5.697000-4 2.281144+6 5.720000-4 2.388093+6 5.730000-4 2.435786+6 5.740000-4 2.482128+6 5.754399-4 2.549215+6 5.760000-4 2.575968+6 5.770000-4 2.622098+6 5.790000-4 2.714595+6 5.800000-4 2.759845+6 5.821032-4 2.854919+6 5.830000-4 2.894492+6 5.850000-4 2.981480+6 5.865000-4 3.044769+6 5.888437-4 3.142127+6 5.890000-4 3.148760+6 5.900000-4 3.188605+6 5.930000-4 3.305820+6 5.956621-4 3.401922+6 5.965000-4 3.432889+6 6.000000-4 3.550610+6 6.025596-4 3.628724+6 6.030000-4 3.642365+6 6.050000-4 3.701466+6 6.065000-4 3.742904+6 6.095369-4 3.823011+6 6.100000-4 3.835386+6 6.140000-4 3.927763+6 6.157900-4 3.966614+6 6.165950-4 3.982386+6 6.190000-4 4.029878+6 6.220000-4 4.084766+6 6.237348-4 4.113280+6 6.240000-4 4.117659+6 6.280000-4 4.177082+6 6.300000-4 4.203248+6 6.350000-4 4.261658+6 6.382635-4 4.289540+6 6.410000-4 4.312920+6 6.430000-4 4.327621+6 6.456542-4 4.342651+6 6.460000-4 4.344607+6 6.531306-4 4.376791+6 6.606934-4 4.390718+6 6.653400-4 4.394144+6 6.720500-4 4.391813+6 6.760830-4 4.386362+6 6.780000-4 4.383791+6 6.839116-4 4.370429+6 6.850000-4 4.367972+6 6.918310-4 4.347405+6 6.930000-4 4.343907+6 7.000000-4 4.317283+6 7.080000-4 4.281671+6 7.161434-4 4.240583+6 7.244360-4 4.194851+6 7.300000-4 4.164662+6 7.328245-4 4.148022+6 7.350000-4 4.135209+6 7.413102-4 4.095759+6 7.498942-4 4.043242+6 7.500000-4 4.042603+6 7.585776-4 3.987653+6 7.673615-4 3.929617+6 7.762471-4 3.872339+6 7.800000-4 3.848563+6 7.852356-4 3.813803+6 8.000000-4 3.713952+6 8.035261-4 3.690766+6 8.128305-4 3.630774+6 8.200000-4 3.583475+6 8.222426-4 3.568318+6 8.413951-4 3.442865+6 8.511380-4 3.381748+6 8.609938-4 3.318905+6 8.637100-4 3.301381+6 8.654400-4 3.290284+6 8.654400-4 3.623916+6 8.709636-4 3.590461+6 8.781000-4 3.548068+6 8.912509-4 3.474003+6 9.015711-4 3.418062+6 9.120108-4 3.359428+6 9.170000-4 3.332118+6 9.196400-4 3.317268+6 9.196400-4 3.486828+6 9.200000-4 3.485075+6 9.225714-4 3.472603+6 9.308000-4 3.433514+6 9.332543-4 3.421819+6 9.350000-4 3.413551+6 9.415000-4 3.382684+6 9.440609-4 3.370438+6 9.500000-4 3.342468+6 9.530000-4 3.327570+6 9.549926-4 3.317536+6 9.650000-4 3.266759+6 9.700000-4 3.241485+6 9.772372-4 3.205248+6 9.885531-4 3.149075+6 9.900000-4 3.142026+6 1.000000-3 3.093317+6 1.015000-3 3.018499+6 1.023293-3 2.977119+6 1.047129-3 2.862093+6 1.059254-3 2.806449+6 1.070000-3 2.758619+6 1.071519-3 2.751826+6 1.074300-3 2.739221+6 1.083927-3 2.695955+6 1.096478-3 2.641194+6 1.122018-3 2.534836+6 1.135011-3 2.483491+6 1.148154-3 2.431554+6 1.150000-3 2.424401+6 1.161449-3 2.380023+6 1.174898-3 2.329308+6 1.190000-3 2.274481+6 1.194400-3 2.258886+6 1.194400-3 2.401206+6 1.202264-3 2.372818+6 1.216186-3 2.322594+6 1.230269-3 2.272580+6 1.258925-3 2.175971+6 1.285000-3 2.093877+6 1.288250-3 2.083942+6 1.303167-3 2.038963+6 1.318257-3 1.994423+6 1.333521-3 1.950523+6 1.348963-3 1.907501+6 1.364583-3 1.865555+6 1.380384-3 1.824313+6 1.400000-3 1.774853+6 1.412538-3 1.743842+6 1.420000-3 1.725775+6 1.445440-3 1.665659+6 1.450000-3 1.655234+6 1.462177-3 1.627682+6 1.479108-3 1.590347+6 1.493200-3 1.560310+6 1.493200-3 1.579226+6 1.500000-3 1.565051+6 1.513561-3 1.536927+6 1.548817-3 1.466888+6 1.570000-3 1.426752+6 1.584893-3 1.399543+6 1.603245-3 1.367121+6 1.610000-3 1.355490+6 1.621810-3 1.335517+6 1.630000-3 1.321936+6 1.650000-3 1.289668+6 1.659587-3 1.274363+6 1.664100-3 1.267162+6 1.664100-3 1.289600+6 1.678804-3 1.266360+6 1.698244-3 1.236652+6 1.717908-3 1.207729+6 1.730000-3 1.190468+6 1.750000-3 1.162550+6 1.757924-3 1.151788+6 1.778279-3 1.124776+6 1.800000-3 1.096602+6 1.840772-3 1.046150+6 1.862087-3 1.021234+6 1.883649-3 9.969664+5 1.905461-3 9.733028+5 1.927525-3 9.498867+5 1.949845-3 9.270805+5 1.950000-3 9.269252+5 1.972423-3 9.048593+5 2.000000-3 8.784631+5 2.018366-3 8.615568+5 2.041738-3 8.405904+5 2.065380-3 8.201492+5 2.089296-3 8.001285+5 2.113489-3 7.806222+5 2.150000-3 7.525483+5 2.162719-3 7.430539+5 2.187762-3 7.245570+5 2.238721-3 6.888591+5 2.264644-3 6.717327+5 2.290868-3 6.550765+5 2.317395-3 6.388573+5 2.344229-3 6.230583+5 2.371374-3 6.076868+5 2.376900-3 6.046121+5 2.400000-3 5.919625+5 2.454709-3 5.631419+5 2.511886-3 5.352398+5 2.540973-3 5.218463+5 2.570396-3 5.088221+5 2.600160-3 4.960412+5 2.630268-3 4.835046+5 2.660725-3 4.711764+5 2.691535-3 4.591942+5 2.754229-3 4.361729+5 2.800000-3 4.204130+5 2.818383-3 4.142937+5 2.851018-3 4.036927+5 2.884032-3 3.933627+5 2.900000-3 3.885106+5 2.917427-3 3.833161+5 2.951209-3 3.734255+5 3.019952-3 3.544641+5 3.054921-3 3.453561+5 3.090295-3 3.365014+5 3.126079-3 3.277856+5 3.162278-3 3.193153+5 3.198895-3 3.110587+5 3.223700-3 3.056263+5 3.235937-3 3.029886+5 3.273407-3 2.951108+5 3.349654-3 2.800186+5 3.388442-3 2.726883+5 3.467369-3 2.586466+5 3.500000-3 2.531496+5 3.507519-3 2.519079+5 3.548134-3 2.453259+5 3.589219-3 2.388978+5 3.600000-3 2.372479+5 3.650000-3 2.298074+5 3.715352-3 2.205641+5 3.720000-3 2.199232+5 3.758374-3 2.147293+5 3.845918-3 2.035537+5 3.890451-3 1.981999+5 3.900000-3 1.970766+5 3.935501-3 1.929716+5 4.000000-3 1.858153+5 4.015600-3 1.841382+5 4.015600-3 4.329993+5 4.027170-3 4.298501+5 4.073803-3 4.174485+5 4.120975-3 4.053832+5 4.168694-3 3.936780+5 4.237200-3 3.776912+5 4.237200-3 5.356098+5 4.265795-3 5.261278+5 4.285000-3 5.198910+5 4.315191-3 5.111219+5 4.350000-3 5.012678+5 4.365158-3 4.967745+5 4.400000-3 4.866595+5 4.415704-3 4.821855+5 4.466836-3 4.680039+5 4.518559-3 4.542228+5 4.570882-3 4.409251+5 4.731513-3 4.033495+5 4.786301-3 3.913899+5 4.829000-3 3.824093+5 4.829000-3 4.462553+5 4.841724-3 4.434071+5 4.897788-3 4.311608+5 4.900000-3 4.306878+5 4.920000-3 4.264396+5 4.954502-3 4.191518+5 5.000000-3 4.098060+5 5.011872-3 4.074130+5 5.069907-3 3.959965+5 5.128614-3 3.847936+5 5.188000-3 3.739209+5 5.308844-3 3.527664+5 5.370318-3 3.426578+5 5.432503-3 3.328397+5 5.495409-3 3.232536+5 5.500000-3 3.225693+5 5.623413-3 3.048195+5 5.688529-3 2.960091+5 5.754399-3 2.874546+5 5.821032-3 2.791557+5 5.888437-3 2.711057+5 5.945600-3 2.645359+5 5.945600-3 2.806862+5 5.956621-3 2.794219+5 6.025596-3 2.716319+5 6.095369-3 2.640745+5 6.100000-3 2.635828+5 6.165950-3 2.566888+5 6.237348-3 2.494288+5 6.309573-3 2.423823+5 6.313100-3 2.420457+5 6.313100-3 2.521630+5 6.382635-3 2.455209+5 6.500000-3 2.348845+5 6.531306-3 2.321571+5 6.606934-3 2.257493+5 6.650000-3 2.222130+5 6.683439-3 2.195172+5 6.760830-3 2.134072+5 6.800000-3 2.104093+5 6.839116-3 2.074642+5 6.850000-3 2.066541+5 6.918310-3 2.016847+5 7.079458-3 1.905761+5 7.161434-3 1.852490+5 7.244360-3 1.800808+5 7.300000-3 1.767310+5 7.328245-3 1.750636+5 7.413102-3 1.701913+5 7.498942-3 1.654520+5 7.500000-3 1.653948+5 7.585776-3 1.608000+5 7.673615-3 1.562869+5 7.800000-3 1.501167+5 7.852356-3 1.476512+5 7.943282-3 1.435084+5 8.000000-3 1.409886+5 8.035261-3 1.394541+5 8.128305-3 1.355185+5 8.222426-3 1.317014+5 8.317638-3 1.279947+5 8.413951-3 1.243480+5 8.511380-3 1.208120+5 8.609938-3 1.173833+5 8.709636-3 1.140391+5 8.912509-3 1.076140+5 9.000000-3 1.050060+5 9.015711-3 1.045467+5 9.120108-3 1.015666+5 9.225714-3 9.867634+4 9.332543-3 9.586724+4 9.440609-3 9.314340+4 9.500000-3 9.169747+4 9.549926-3 9.050594+4 9.660509-3 8.793883+4 9.800000-3 8.484902+4 9.900000-3 8.272925+4 1.000000-2 8.067080+4 1.011579-2 7.837971+4 1.020000-2 7.677069+4 1.023293-2 7.615271+4 1.035142-2 7.397086+4 1.040000-2 7.310225+4 1.059254-2 6.978459+4 1.071519-2 6.777409+4 1.083927-2 6.581651+4 1.096478-2 6.391649+4 1.122018-2 6.028050+4 1.135011-2 5.854535+4 1.148154-2 5.685454+4 1.150000-2 5.662277+4 1.161449-2 5.521534+4 1.188502-2 5.208365+4 1.216186-2 4.913332+4 1.230269-2 4.772539+4 1.244515-2 4.635263+4 1.258925-2 4.501983+4 1.270000-2 4.403309+4 1.273503-2 4.372528+4 1.288250-2 4.246045+4 1.303167-2 4.123437+4 1.318257-2 4.003919+4 1.333521-2 3.887617+4 1.355400-2 3.728809+4 1.364583-2 3.664688+4 1.380384-2 3.558006+4 1.396368-2 3.454548+4 1.400000-2 3.431644+4 1.412538-2 3.353909+4 1.428894-2 3.256262+4 1.445440-2 3.161466+4 1.479108-2 2.980214+4 1.513561-2 2.809674+4 1.531087-2 2.728302+4 1.548817-2 2.649114+4 1.566751-2 2.572027+4 1.584893-2 2.497256+4 1.603245-2 2.424301+4 1.621810-2 2.353498+4 1.640590-2 2.284608+4 1.650000-2 2.251157+4 1.678804-2 2.152872+4 1.698244-2 2.089755+4 1.717908-2 2.028589+4 1.737801-2 1.969126+4 1.757924-2 1.911358+4 1.778279-2 1.855368+4 1.798871-2 1.801101+4 1.800000-2 1.798190+4 1.819701-2 1.748272+4 1.840772-2 1.697025+4 1.862087-2 1.647299+4 1.883649-2 1.598989+4 1.899400-2 1.564928+4 1.899400-2 3.664668+4 1.905461-2 3.634424+4 1.927525-2 3.527239+4 1.949845-2 3.423282+4 1.950000-2 3.422575+4 1.972423-2 3.322125+4 2.000000-2 3.204179+4 2.018366-2 3.125964+4 2.041738-2 3.030220+4 2.065380-2 2.937439+4 2.089296-2 2.847543+4 2.100000-2 2.808951+4 2.113489-2 2.761339+4 2.150000-2 2.637924+4 2.162719-2 2.596680+4 2.187762-2 2.518021+4 2.190000-2 2.511154+4 2.213095-2 2.440477+4 2.238721-2 2.365245+4 2.264644-2 2.292298+4 2.290868-2 2.221563+4 2.317395-2 2.153040+4 2.344229-2 2.086491+4 2.371374-2 2.022038+4 2.377600-2 2.007641+4 2.377600-2 2.861418+4 2.398833-2 2.798184+4 2.410000-2 2.765727+4 2.426610-2 2.716960+4 2.454709-2 2.637104+4 2.455400-2 2.635179+4 2.455400-2 3.041459+4 2.468000-2 3.000961+4 2.483133-2 2.955363+4 2.485000-2 2.949806+4 2.490000-2 2.934745+4 2.511886-2 2.871144+4 2.528000-2 2.825574+4 2.540973-2 2.789164+4 2.550000-2 2.764222+4 2.570396-2 2.709833+4 2.600160-2 2.633185+4 2.610000-2 2.608729+4 2.630268-2 2.558580+4 2.660725-2 2.485769+4 2.670000-2 2.464124+4 2.691535-2 2.415498+4 2.700000-2 2.396760+4 2.722701-2 2.346862+4 2.754229-2 2.279990+4 2.786121-2 2.214482+4 2.818383-2 2.150901+4 2.820000-2 2.147779+4 2.851018-2 2.088565+4 2.884032-2 2.028036+4 2.951209-2 1.912343+4 2.985383-2 1.857057+4 3.000000-2 1.834077+4 3.054921-2 1.751251+4 3.090295-2 1.700500+4 3.126079-2 1.651259+4 3.150000-2 1.619464+4 3.162278-2 1.603466+4 3.198895-2 1.557185+4 3.235937-2 1.512225+4 3.273407-2 1.468592+4 3.311311-2 1.426248+4 3.349654-2 1.384960+4 3.388442-2 1.344572+4 3.400000-2 1.332855+4 3.427678-2 1.305345+4 3.467369-2 1.267280+4 3.548134-2 1.194541+4 3.589219-2 1.159634+4 3.630781-2 1.125546+4 3.672823-2 1.092452+4 3.715352-2 1.060341+4 3.801894-2 9.986884+3 3.845918-2 9.692576+3 3.890451-2 9.406919+3 3.935501-2 9.128635+3 3.981072-2 8.858426+3 4.027170-2 8.596421+3 4.073803-2 8.342353+3 4.120975-2 8.095937+3 4.168694-2 7.856981+3 4.216965-2 7.625228+3 4.265795-2 7.400130+3 4.315191-2 7.181845+3 4.466836-2 6.565771+3 4.518559-2 6.370312+3 4.570882-2 6.180824+3 4.623810-2 5.996748+3 4.677351-2 5.818259+3 4.731513-2 5.645223+3 4.841724-2 5.312667+3 4.897788-2 5.153975+3 4.954502-2 4.999900+3 5.011872-2 4.850533+3 5.069907-2 4.705708+3 5.308844-2 4.169297+3 5.370318-2 4.044795+3 5.432503-2 3.923970+3 5.495409-2 3.806828+3 5.559043-2 3.693231+3 5.688529-2 3.474359+3 5.754399-2 3.369939+3 5.821032-2 3.268584+3 5.956621-2 3.075140+3 6.000000-2 3.016641+3 6.025596-2 2.982852+3 6.095369-2 2.893394+3 6.165950-2 2.806118+3 6.237348-2 2.721458+3 6.309573-2 2.639406+3 6.382635-2 2.559805+3 6.606934-2 2.335382+3 6.683439-2 2.265108+3 6.760830-2 2.196986+3 6.839116-2 2.130943+3 6.918310-2 2.066850+3 6.998420-2 2.004314+3 7.161434-2 1.884981+3 7.244360-2 1.828061+3 7.328245-2 1.772897+3 7.498942-2 1.666894+3 7.500000-2 1.666265+3 7.585776-2 1.616290+3 7.673615-2 1.567251+3 8.035261-2 1.385786+3 8.128305-2 1.343854+3 8.222426-2 1.303207+3 8.317638-2 1.263775+3 8.511380-2 1.188515+3 8.609938-2 1.152614+3 8.709636-2 1.117819+3 8.810489-2 1.083819+3 8.912509-2 1.050813+3 9.015711-2 1.018809+3 9.225714-2 9.576865+2 9.332543-2 9.285385+2 9.440609-2 9.002933+2 9.885531-2 7.957852+2 1.000000-1 7.716378+2 1.011580-1 7.482313+2 1.023293-1 7.255297+2 1.035142-1 7.035283+2 1.071519-1 6.412013+2 1.096478-1 6.027960+2 1.122019-1 5.666889+2 1.174898-1 5.009056+2 1.188502-1 4.857088+2 1.202264-1 4.709797+2 1.216186-1 4.566984+2 1.230269-1 4.428571+2 1.249600-1 4.247912+2 1.258925-1 4.164010+2 1.273503-1 4.037387+2 1.288250-1 3.914659+2 1.288600-1 3.911809+2 1.288600-1 1.588250+3 1.303167-1 1.545311+3 1.318257-1 1.502546+3 1.332000-1 1.461575+3 1.333521-1 1.457731+3 1.348963-1 1.419514+3 1.350000-1 1.416999+3 1.364583-1 1.377869+3 1.380384-1 1.337143+3 1.390000-1 1.313167+3 1.396368-1 1.298508+3 1.412538-1 1.262308+3 1.445440-1 1.192932+3 1.450000-1 1.183745+3 1.479108-1 1.125247+3 1.513561-1 1.061099+3 1.548817-1 1.000622+3 1.566751-1 9.716946+2 1.584893-1 9.435864+2 1.603245-1 9.162946+2 1.621810-1 8.897942+2 1.640590-1 8.642608+2 1.659587-1 8.394743+2 1.717908-1 7.693154+2 1.737801-1 7.472619+2 1.757924-1 7.258436+2 1.840772-1 6.461988+2 1.850000-1 6.380965+2 1.862087-1 6.276462+2 1.905461-1 5.920544+2 1.927525-1 5.750256+2 1.949845-1 5.584896+2 1.972423-1 5.424312+2 2.000000-1 5.236803+2 2.018366-1 5.116921+2 2.041738-1 4.969842+2 2.065380-1 4.827118+2 2.089296-1 4.688504+2 2.137962-1 4.423139+2 2.187762-1 4.172836+2 2.213095-1 4.053065+2 2.238721-1 3.936828+2 2.264644-1 3.823933+2 2.290868-1 3.714284+2 2.371374-1 3.403898+2 2.398833-1 3.307147+2 2.400000-1 3.303121+2 2.426610-1 3.213204+2 2.454709-1 3.121939+2 2.483133-1 3.033274+2 2.511886-1 2.947138+2 2.570396-1 2.782162+2 2.600160-1 2.703179+2 2.660725-1 2.552014+2 2.691535-1 2.479639+2 2.722701-1 2.409326+2 2.754229-1 2.341024+2 2.786121-1 2.274665+2 2.800000-1 2.246613+2 2.818383-1 2.210219+2 2.851018-1 2.147621+2 2.884032-1 2.086797+2 2.917427-1 2.027703+2 2.951209-1 1.971207+2 3.000060-1 1.893388+2 3.019952-1 1.862993+2 3.054921-1 1.811207+2 3.090295-1 1.760863+2 3.126079-1 1.711922+2 3.162278-1 1.664343+2 3.198895-1 1.618096+2 3.235937-1 1.573161+2 3.273407-1 1.529488+2 3.311311-1 1.487029+2 3.349654-1 1.445765+2 3.388442-1 1.405648+2 3.467369-1 1.328805+2 3.507519-1 1.292512+2 3.548134-1 1.257212+2 3.589219-1 1.222879+2 3.630781-1 1.189484+2 3.672823-1 1.157024+2 3.715352-1 1.125500+2 3.758374-1 1.094842+2 3.801894-1 1.065021+2 3.845918-1 1.036018+2 3.890451-1 1.007809+2 3.935501-1 9.803952+1 3.981072-1 9.537293+1 4.027170-1 9.278001+1 4.073803-1 9.029799+1 4.120975-1 8.788254+1 4.168694-1 8.553325+1 4.216965-1 8.324689+1 4.265795-1 8.102212+1 4.315191-1 7.885688+1 4.365158-1 7.674964+1 4.415705-1 7.470264+1 4.466836-1 7.271253+1 4.518559-1 7.077575+1 4.570882-1 6.889060+1 4.623810-1 6.709202+1 4.677351-1 6.534198+1 4.731513-1 6.363842+1 4.786301-1 6.197969+1 4.841724-1 6.036425+1 4.897788-1 5.879101+1 4.954502-1 5.725884+1 5.011872-1 5.576675+1 5.069907-1 5.431534+1 5.128614-1 5.290502+1 5.188000-1 5.153220+1 5.248075-1 5.019501+1 5.308844-1 4.891764+1 5.370318-1 4.767300+1 5.432503-1 4.646070+1 5.495409-1 4.527925+1 5.559043-1 4.412796+1 5.623413-1 4.300608+1 5.688529-1 4.191397+1 5.754399-1 4.085033+1 5.821032-1 3.981372+1 5.888437-1 3.880344+1 5.956621-1 3.782096+1 6.025596-1 3.686382+1 6.095369-1 3.594950+1 6.237348-1 3.418847+1 6.309573-1 3.334109+1 6.382635-1 3.251625+1 6.456542-1 3.171193+1 6.531306-1 3.092753+1 6.606935-1 3.016257+1 6.683439-1 2.941667+1 6.760830-1 2.868943+1 6.839117-1 2.798019+1 6.918310-1 2.729013+1 6.998420-1 2.663028+1 7.079458-1 2.598689+1 7.161434-1 2.535961+1 7.244360-1 2.474756+1 7.328245-1 2.415064+1 7.413102-1 2.356823+1 7.498942-1 2.299988+1 7.585776-1 2.244540+1 7.673615-1 2.190431+1 7.762471-1 2.137627+1 7.852356-1 2.086128+1 7.943282-1 2.036888+1 8.000000-1 2.007155+1 8.035261-1 1.988994+1 8.128305-1 1.942227+1 8.222427-1 1.896564+1 8.413951-1 1.808451+1 8.511380-1 1.765943+1 8.609938-1 1.724461+1 8.709636-1 1.683996+1 8.810489-1 1.644539+1 8.912509-1 1.606007+1 9.015711-1 1.569191+1 9.120108-1 1.533221+1 9.225714-1 1.498178+1 9.332543-1 1.463946+1 9.440609-1 1.430512+1 9.549926-1 1.397928+1 9.660509-1 1.366087+1 9.772372-1 1.334993+1 9.885531-1 1.304625+1 1.000000+0 1.274949+1 1.011579+0 1.245980+1 1.023293+0 1.218142+1 1.035142+0 1.190966+1 1.047129+0 1.164451+1 1.059254+0 1.138530+1 1.071519+0 1.113187+1 1.083927+0 1.088428+1 1.096478+0 1.064221+1 1.109175+0 1.040552+1 1.122018+0 1.017416+1 1.135011+0 9.947949+0 1.148154+0 9.726785+0 1.161449+0 9.510776+0 1.174898+0 9.299827+0 1.188502+0 9.093713+0 1.202264+0 8.892169+0 1.216186+0 8.695122+0 1.230269+0 8.506819+0 1.244515+0 8.323151+0 1.250000+0 8.254051+0 1.258925+0 8.143557+0 1.273503+0 7.967875+0 1.288250+0 7.796039+0 1.303167+0 7.628146+0 1.318257+0 7.463898+0 1.333521+0 7.303332+0 1.348963+0 7.146215+0 1.364583+0 6.992488+0 1.380384+0 6.842066+0 1.396368+0 6.698558+0 1.412538+0 6.558483+0 1.428894+0 6.421348+0 1.462177+0 6.155688+0 1.479108+0 6.027142+0 1.500000+0 5.874195+0 1.513561+0 5.778178+0 1.531087+0 5.657644+0 1.566751+0 5.424061+0 1.621810+0 5.101445+0 1.659587+0 4.897103+0 1.678804+0 4.798062+0 1.698244+0 4.701163+0 1.717908+0 4.606301+0 1.737801+0 4.513357+0 1.757924+0 4.422290+0 1.778279+0 4.333123+0 1.798871+0 4.248436+0 1.819701+0 4.165406+0 1.840772+0 4.084000+0 1.883649+0 3.925934+0 1.905461+0 3.849243+0 1.927525+0 3.774175+0 1.949845+0 3.700629+0 1.972423+0 3.628527+0 2.000000+0 3.543503+0 2.018366+0 3.490057+0 2.044000+0 3.417840+0 2.065380+0 3.359423+0 2.137962+0 3.172587+0 2.162719+0 3.112668+0 2.187762+0 3.053952+0 2.213095+0 2.996355+0 2.238721+0 2.939884+0 2.264644+0 2.884483+0 2.290868+0 2.830160+0 2.317395+0 2.776860+0 2.344229+0 2.725828+0 2.371374+0 2.675894+0 2.398833+0 2.626876+0 2.483133+0 2.485144+0 2.511886+0 2.439640+0 2.540973+0 2.395023+0 2.570396+0 2.351233+0 2.600160+0 2.308274+0 2.630268+0 2.266106+0 2.660725+0 2.224736+0 2.691535+0 2.184120+0 2.722701+0 2.145253+0 2.754229+0 2.107202+0 2.786121+0 2.069827+0 2.884032+0 1.961633+0 2.917427+0 1.926855+0 2.951209+0 1.892740+0 2.985383+0 1.859235+0 3.019952+0 1.826351+0 3.054921+0 1.794076+0 3.090295+0 1.762371+0 3.126079+0 1.732066+0 3.162278+0 1.702382+0 3.198895+0 1.673207+0 3.311311+0 1.588651+0 3.388442+0 1.534689+0 3.427678+0 1.508433+0 3.467369+0 1.482632+0 3.507519+0 1.457291+0 3.548134+0 1.432403+0 3.589219+0 1.407940+0 3.630781+0 1.384521+0 3.672823+0 1.361571+0 3.715352+0 1.339000+0 3.845918+0 1.273510+0 3.935501+0 1.231657+0 4.000000+0 1.202975+0 4.027170+0 1.191232+0 4.073803+0 1.171536+0 4.168694+0 1.133148+0 4.216965+0 1.114428+0 4.265795+0 1.096496+0 4.315191+0 1.078913+0 4.365158+0 1.061612+0 4.518559+0 1.011356+0 4.623810+0 9.791939-1 4.677351+0 9.635189-1 4.731513+0 9.480978-1 4.786301+0 9.329353-1 4.897788+0 9.033574-1 4.954502+0 8.889220-1 5.011872+0 8.750965-1 5.069907+0 8.615325-1 5.128614+0 8.481788-1 5.308844+0 8.093479-1 5.432503+0 7.844634-1 5.495409+0 7.723246-1 5.559043+0 7.603761-1 5.623413+0 7.486213-1 5.821032+0 7.144614-1 5.888437+0 7.034246-1 5.956621+0 6.928274-1 6.025596+0 6.824235-1 6.095369+0 6.721759-1 6.309573+0 6.423480-1 6.456542+0 6.232092-1 6.531306+0 6.138663-1 6.683439+0 5.956025-1 6.760830+0 5.866881-1 6.998420+0 5.607396-1 7.000000+0 5.605738-1 7.079458+0 5.525516-1 7.161434+0 5.444872-1 7.244360+0 5.365665-1 7.328245+0 5.287611-1 7.585776+0 5.060199-1 7.762471+0 4.914111-1 7.852356+0 4.842748-1 8.035261+0 4.703144-1 8.128305+0 4.634957-1 8.413951+0 4.436283-1 8.511380+0 4.373507-1 8.609938+0 4.311619-1 8.709636+0 4.250791-1 8.810489+0 4.190820-1 9.225714+0 3.959287-1 9.549926+0 3.794129-1 9.660509+0 3.740684-1 9.885531+0 3.636061-1 1.000000+1 3.584921-1 1.035142+1 3.435785-1 1.047129+1 3.388643-1 1.059254+1 3.342151-1 1.071519+1 3.296443-1 1.083927+1 3.251356-1 1.122018+1 3.119772-1 1.135011+1 3.077115-1 1.161449+1 2.993552-1 1.174898+1 2.952670-1 1.202264+1 2.872592-1 1.216186+1 2.833418-1 1.288250+1 2.645431-1 1.303167+1 2.610199-1 1.318257+1 2.575435-1 1.333521+1 2.541233-1 1.348963+1 2.507482-1 1.380384+1 2.441324-1 1.396368+1 2.408910-1 1.412538+1 2.376925-1 1.428894+1 2.345369-1 1.462177+1 2.283565-1 1.513561+1 2.193914-1 1.548817+1 2.136179-1 1.659587+1 1.971943-1 1.678804+1 1.946445-1 1.698244+1 1.921349-1 1.717908+1 1.896579-1 1.737801+1 1.872127-1 1.757924+1 1.847997-1 1.778279+1 1.824180-1 1.819701+1 1.777507-1 1.883649+1 1.709737-1 1.949845+1 1.644610-1 1.972423+1 1.623459-1 2.264644+1 1.389887-1 2.290868+1 1.372455-1 2.317395+1 1.355265-1 2.344229+1 1.338292-1 2.371374+1 1.321548-1 2.985383+1 1.027377-1 3.000000+1 1.022005-1 4.315191+1 6.920453-2 6.456542+1 4.534005-2 6.531306+1 4.480468-2 1.059254+2 2.720699-2 1.071519+2 2.688645-2 1.083927+2 2.657309-2 1.096478+2 2.626342-2 2.000000+2 1.424214-2 2.018366+2 1.411020-2 2.041738+2 1.394585-2 2.065380+2 1.378360-2 2.089296+2 1.362429-2 2.113489+2 1.346683-2 3.981072+2 7.105478-3 4.027170+2 7.023358-3 4.073803+2 6.942216-3 4.120975+2 6.862077-3 4.168694+2 6.783233-3 4.216965+2 6.705298-3 1.584893+3 1.775287-3 1.603245+3 1.754890-3 1.621810+3 1.734731-3 1.640590+3 1.714813-3 1.659587+3 1.695176-3 1.678804+3 1.675765-3 1.000000+5 2.809037-5 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 3.930000-6 3.930000-6 4.650000-6 3.930000-6 4.650000-6 4.142448-6 6.180000-6 4.180627-6 6.180000-6 5.211669-6 6.918310-6 5.041934-6 7.762471-6 4.883448-6 8.317638-6 4.799768-6 8.912509-6 4.725743-6 9.549926-6 4.660951-6 1.023293-5 4.606201-6 1.150000-5 4.532556-6 1.195000-5 4.512936-6 1.195000-5 5.210736-6 1.288250-5 5.184302-6 1.348000-5 5.184020-6 1.348000-5 5.686965-6 1.445440-5 5.730615-6 1.531087-5 5.804096-6 1.621810-5 5.922077-6 1.678804-5 6.017856-6 1.770000-5 6.207815-6 1.862087-5 6.446388-6 1.950000-5 6.715242-6 2.055000-5 7.084746-6 2.190000-5 7.618905-6 2.500000-5 8.937821-6 2.660725-5 9.571272-6 2.700000-5 9.715366-6 2.700000-5 2.245864-5 3.126079-5 2.018826-5 3.427678-5 1.863349-5 3.630781-5 1.770001-5 3.758374-5 1.717296-5 3.964000-5 1.643034-5 3.964000-5 2.358180-5 4.315191-5 2.176567-5 4.570882-5 2.057266-5 4.841724-5 1.945889-5 5.080000-5 1.859964-5 5.370318-5 1.770422-5 5.650000-5 1.698098-5 5.900000-5 1.644571-5 6.069000-5 1.613240-5 6.069000-5 1.702394-5 6.400000-5 1.638699-5 6.683439-5 1.595206-5 7.000000-5 1.557056-5 7.328245-5 1.527248-5 7.800000-5 1.496569-5 8.317638-5 1.474544-5 9.015711-5 1.457685-5 9.800000-5 1.450638-5 1.071519-4 1.454914-5 1.161449-4 1.470851-5 1.240000-4 1.493892-5 1.252300-4 1.498545-5 1.252300-4 3.271843-5 1.261000-4 3.484859-5 1.277300-4 3.942252-5 1.305000-4 4.801700-5 1.318257-4 5.183215-5 1.325000-4 5.362198-5 1.331000-4 5.510028-5 1.337000-4 5.646605-5 1.343000-4 5.771700-5 1.350000-4 5.903319-5 1.358000-4 6.039414-5 1.364600-4 6.136270-5 1.364600-4 6.859109-5 1.415000-4 7.796461-5 1.437000-4 8.163561-5 1.455000-4 8.418251-5 1.470000-4 8.593168-5 1.488000-4 8.761746-5 1.515000-4 8.950177-5 1.548817-4 9.121968-5 1.621810-4 9.403066-5 1.740000-4 9.777926-5 1.850000-4 1.006899-4 1.972423-4 1.032302-4 2.065380-4 1.044649-4 2.150000-4 1.048356-4 2.220000-4 1.044799-4 2.295000-4 1.034053-4 2.380000-4 1.013319-4 2.396500-4 1.008316-4 2.396500-4 1.151223-4 2.500000-4 1.132553-4 2.650000-4 1.095938-4 2.930000-4 1.019432-4 3.100000-4 9.804036-5 3.148000-4 9.706453-5 3.148000-4 1.126887-4 3.350000-4 1.074547-4 3.540000-4 1.030848-4 3.715352-4 1.000355-4 3.843000-4 9.817999-5 3.843000-4 1.050269-4 4.073803-4 1.024830-4 4.315191-4 1.005482-4 4.600000-4 9.903957-5 4.874700-4 9.818476-5 4.874700-4 1.072368-4 4.914000-4 1.068288-4 5.022500-4 1.068361-4 5.022500-4 1.123276-4 5.100000-4 1.133112-4 5.155000-4 1.147467-4 5.200000-4 1.167282-4 5.238000-4 1.191815-4 5.265000-4 1.214141-4 5.300000-4 1.249098-4 5.335000-4 1.289771-4 5.407000-4 1.385062-4 5.480000-4 1.482680-4 5.540000-4 1.554796-4 5.600000-4 1.616474-4 5.650000-4 1.659452-4 5.720000-4 1.707869-4 5.800000-4 1.749442-4 5.890000-4 1.782864-4 6.000000-4 1.810260-4 6.165950-4 1.834785-4 6.382635-4 1.851576-4 6.780000-4 1.863648-4 7.673615-4 1.868682-4 8.654400-4 1.866804-4 8.654400-4 2.003095-4 9.196400-4 2.022674-4 9.196400-4 2.090483-4 9.700000-4 2.120609-4 1.059254-3 2.152969-4 1.194400-3 2.193824-4 1.194400-3 2.317886-4 1.493200-3 2.415319-4 1.493200-3 2.446012-4 1.664100-3 2.500093-4 1.664100-3 2.549317-4 2.041738-3 2.662936-4 2.454709-3 2.764474-4 2.917427-3 2.858809-4 3.507519-3 2.956978-4 4.015600-3 3.026811-4 4.015600-3 4.357380-4 4.237200-3 4.358573-4 4.237200-3 4.638708-4 4.829000-3 4.638742-4 4.829000-3 4.973392-4 5.945600-3 5.030683-4 5.945600-3 5.208886-4 6.313100-3 5.240759-4 6.313100-3 5.395218-4 8.317638-3 5.586262-4 1.071519-2 5.767666-4 1.364583-2 5.939748-4 1.737801-2 6.107826-4 1.899400-2 6.167417-4 1.899400-2 7.329731-4 2.377600-2 7.376998-4 2.377600-2 7.759039-4 2.455400-2 7.767865-4 2.455400-2 8.309553-4 3.467369-2 8.522066-4 4.841724-2 8.722301-4 6.683439-2 8.907288-4 9.225714-2 9.081925-4 1.288250-1 9.246534-4 1.288600-1 9.246657-4 1.288600-1 8.494795-4 3.090295-1 8.547495-4 8.609938-1 8.575948-4 1.000000+5 8.577179-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.930000-6 0.0 2.396500-4 0.0 2.396500-4 1.901242-9 2.465000-4 1.941381-9 2.520000-4 1.961362-9 2.580000-4 1.971494-9 2.635000-4 1.970850-9 2.710000-4 1.950828-9 2.818383-4 1.905200-9 3.030000-4 1.792778-9 3.148000-4 1.725337-9 3.148000-4 4.569105-9 3.198895-4 4.438809-9 3.273407-4 4.273118-9 3.350000-4 4.080395-9 3.470500-4 3.774397-9 3.550000-4 3.587430-9 3.672823-4 3.349515-9 3.801894-4 3.124510-9 3.843000-4 3.057904-9 3.843000-4 3.512746-9 3.970000-4 3.341658-9 4.100000-4 3.186554-9 4.216965-4 3.065313-9 4.365158-4 2.928027-9 4.550000-4 2.786495-9 4.731513-4 2.673029-9 4.874700-4 2.599963-9 4.874700-4 1.318307-8 4.886000-4 1.299721-8 4.897788-4 1.286751-8 4.914000-4 1.277535-8 4.932000-4 1.274810-8 4.970000-4 1.279616-8 5.012500-4 1.291970-8 5.022500-4 1.296937-8 5.022500-4 1.445890-8 5.055000-4 1.472518-8 5.075000-4 1.497775-8 5.087000-4 1.516044-8 5.100000-4 1.541029-8 5.115000-4 1.576181-8 5.128614-4 1.614517-8 5.143000-4 1.662526-8 5.155000-4 1.708884-8 5.170000-4 1.775490-8 5.185000-4 1.852681-8 5.200000-4 1.940971-8 5.215000-4 2.040972-8 5.230000-4 2.153158-8 5.253000-4 2.349024-8 5.265000-4 2.464272-8 5.280000-4 2.615538-8 5.300000-4 2.837356-8 5.320000-4 3.073629-8 5.335000-4 3.259768-8 5.370318-4 3.717976-8 5.407000-4 4.203566-8 5.432503-4 4.530948-8 5.457000-4 4.831216-8 5.480000-4 5.096822-8 5.510000-4 5.414474-8 5.540000-4 5.700092-8 5.560000-4 5.873459-8 5.580000-4 6.035230-8 5.610000-4 6.250397-8 5.650000-4 6.492646-8 5.688529-4 6.687356-8 5.740000-4 6.890369-8 5.790000-4 7.039123-8 5.850000-4 7.162282-8 5.900000-4 7.229951-8 6.000000-4 7.318599-8 6.165950-4 7.392854-8 6.350000-4 7.424759-8 6.930000-4 7.438389-8 8.222426-4 7.376921-8 8.654400-4 7.348542-8 8.654400-4 7.588319-8 9.196400-4 7.593148-8 9.196400-4 9.261495-8 9.530000-4 9.561582-8 9.772372-4 9.733439-8 1.000000-3 9.858425-8 1.023293-3 9.953151-8 1.194400-3 1.048881-7 1.194400-3 1.389406-7 1.380384-3 1.482719-7 1.493200-3 1.535970-7 1.493200-3 1.598889-7 1.664100-3 1.686514-7 1.664100-3 1.837355-7 1.950000-3 1.997785-7 2.187762-3 2.120366-7 2.570396-3 2.296022-7 2.851018-3 2.414714-7 3.235937-3 2.559445-7 3.650000-3 2.701485-7 4.015600-3 2.814957-7 4.015600-3 3.237931-7 4.237200-3 3.262405-7 4.237200-3 6.512999-5 4.285000-3 6.493048-5 4.350000-3 6.520151-5 4.570882-3 6.486812-5 4.829000-3 6.468484-5 4.829000-3 6.599840-5 5.432503-3 6.581065-5 5.945600-3 6.541752-5 5.945600-3 7.306050-5 6.313100-3 7.359143-5 6.313100-3 7.505863-5 8.035261-3 7.734404-5 9.660509-3 7.902997-5 1.122018-2 8.042424-5 1.380384-2 8.235460-5 1.737801-2 8.438267-5 1.899400-2 8.514243-5 1.899400-2 4.448217-3 2.041738-2 4.439005-3 2.377600-2 4.388615-3 2.377600-2 6.695770-3 2.455400-2 6.716044-3 2.455400-2 7.034295-3 2.985383-2 7.119004-3 3.672823-2 7.191423-3 4.954502-2 7.256779-3 7.328245-2 7.309081-3 1.288600-1 7.339784-3 1.288600-1 8.966694-2 1.513561-1 9.038427-2 2.089296-1 9.136480-2 3.349654-1 9.236842-2 5.956621-1 9.338917-2 1.000000+0 9.410910-2 1.000000+5 9.410712-2 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.930000-6 0.0 4.650000-6 7.200000-7 4.650000-6 5.075523-7 4.900000-6 7.484246-7 5.700000-6 1.528019-6 6.180000-6 1.999373-6 6.180000-6 9.683307-7 6.456542-6 1.310641-6 6.918310-6 1.876376-6 7.244360-6 2.268030-6 7.762471-6 2.879023-6 8.317638-6 3.517870-6 8.912509-6 4.186766-6 9.549926-6 4.888975-6 1.083927-5 6.272210-6 1.195000-5 7.437064-6 1.195000-5 6.739264-6 1.318257-5 8.000824-6 1.348000-5 8.295980-6 1.348000-5 7.793035-6 1.445440-5 8.723785-6 1.570000-5 9.851105-6 1.678804-5 1.077018-5 1.778279-5 1.155512-5 1.883649-5 1.232819-5 2.018366-5 1.323287-5 2.190000-5 1.428109-5 2.580000-5 1.653792-5 2.700000-5 1.728463-5 2.700000-5 4.541355-6 2.851018-5 6.834708-6 3.162278-5 1.162845-5 3.388442-5 1.505824-5 3.589219-5 1.801147-5 3.758374-5 2.041078-5 3.964000-5 2.320966-5 3.964000-5 1.605820-5 4.315191-5 2.138624-5 4.623810-5 2.589505-5 4.900000-5 2.976269-5 5.248075-5 3.441550-5 5.650000-5 3.951902-5 6.069000-5 4.455760-5 6.069000-5 4.366606-5 6.606934-5 5.000987-5 7.244360-5 5.710353-5 8.222426-5 6.744463-5 9.900000-5 8.449447-5 1.220000-4 1.071276-4 1.252300-4 1.102445-4 1.252300-4 9.251157-5 1.261000-4 9.125141-5 1.280000-4 8.774910-5 1.305000-4 8.248300-5 1.318257-4 7.999355-5 1.331000-4 7.799972-5 1.343000-4 7.658300-5 1.358000-4 7.540586-5 1.364600-4 7.509730-5 1.364600-4 6.786891-5 1.415000-4 6.353539-5 1.437000-4 6.206439-5 1.448000-4 6.153714-5 1.465000-4 6.113968-5 1.479108-4 6.107390-5 1.498000-4 6.141357-5 1.515000-4 6.199823-5 1.548817-4 6.366202-5 1.604600-4 6.706576-5 1.678804-4 7.196858-5 1.770000-4 7.835976-5 1.880000-4 8.660360-5 1.980000-4 9.464229-5 2.065380-4 1.020731-4 2.150000-4 1.101644-4 2.230000-4 1.186168-4 2.307000-4 1.275358-4 2.396500-4 1.388184-4 2.396500-4 1.245258-4 2.520000-4 1.391778-4 2.691535-4 1.607021-4 2.985383-4 1.979305-4 3.148000-4 2.177337-4 3.148000-4 2.021067-4 3.470500-4 2.424600-4 3.715352-4 2.714964-4 3.843000-4 2.861170-4 3.843000-4 2.792696-4 4.265795-4 3.256759-4 4.841724-4 3.859167-4 4.874700-4 3.892826-4 4.874700-4 3.802201-4 5.022500-4 3.954010-4 5.022500-4 3.899080-4 5.150000-4 4.004014-4 5.230000-4 4.043839-4 5.300000-4 4.050618-4 5.407000-4 4.021518-4 5.520000-4 3.987517-4 5.610000-4 3.983649-4 5.697000-4 4.002878-4 5.821032-4 4.061940-4 5.965000-4 4.161448-4 6.220000-4 4.379020-4 6.720500-4 4.857126-4 8.654400-4 6.786861-4 8.654400-4 6.650546-4 9.196400-4 7.172966-4 9.196400-4 7.104990-4 1.047129-3 8.321108-4 1.194400-3 9.749127-4 1.194400-3 9.624724-4 1.493200-3 1.251514-3 1.493200-3 1.248439-3 1.664100-3 1.413922-3 1.664100-3 1.408985-3 2.754229-3 2.471183-3 4.015600-3 3.712637-3 4.015600-3 3.579538-3 4.237200-3 3.801016-3 4.237200-3 3.708199-3 4.829000-3 4.300441-3 4.829000-3 4.265662-3 5.945600-3 5.377114-3 5.945600-3 5.351651-3 6.313100-3 5.715433-3 6.313100-3 5.698520-3 1.678804-2 1.609549-2 1.899400-2 1.829212-2 1.899400-2 1.381281-2 2.377600-2 1.864969-2 2.377600-2 1.630433-2 2.455400-2 1.706117-2 2.455400-2 1.668875-2 3.801894-2 2.996101-2 9.885531-2 9.061484-2 1.288600-1 1.205956-1 1.288600-1 3.834358-2 1.318257-1 4.116162-2 1.333521-1 4.267304-2 1.350000-1 4.419966-2 1.412538-1 5.030540-2 1.548817-1 6.357588-2 2.137962-1 1.215237-1 4.518559-1 3.580987-1 2.187762+0 2.092789+0 1.000000+5 9.999990+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.288600-1 1.197069+3 1.318257-1 1.134502+3 1.332000-1 1.103614+3 1.350000-1 1.071674+3 1.390000-1 9.937940+2 1.450000-1 8.984940+2 1.621810-1 6.782211+2 1.850000-1 4.889540+2 2.371374-1 2.627163+2 2.917427-1 1.573190+2 3.467369-1 1.035033+2 4.027170-1 7.249807+1 4.570882-1 5.397244+1 5.248075-1 3.944204+1 6.025596-1 2.904498+1 6.918310-1 2.155599+1 7.852356-1 1.651384+1 8.912509-1 1.273929+1 1.011579+0 9.898327+0 1.216186+0 6.910284+0 1.380384+0 5.436165+0 1.566751+0 4.308449+0 1.778279+0 3.441821+0 2.000000+0 2.814655+0 2.317395+0 2.205696+0 2.691535+0 1.734826+0 3.090295+0 1.399804+0 3.589219+0 1.118302+0 4.216965+0 8.851611-1 4.954502+0 7.060488-1 5.888437+0 5.587115-1 7.000000+0 4.452400-1 8.413951+0 3.523576-1 1.035142+1 2.728929-1 1.288250+1 2.101142-1 1.659587+1 1.566267-1 2.264644+1 1.104022-1 2.985383+1 8.161111-2 4.315191+1 5.497350-2 6.456542+1 3.601642-2 1.071519+2 2.135727-2 2.065380+2 1.094912-2 4.120975+2 5.450935-3 1.640590+3 1.362177-3 1.000000+5 2.231400-5 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.288600-1 8.249100-4 1.000000+5 8.249100-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.288600-1 1.165700-1 1.000000+5 1.165700-1 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.288600-1 1.146509-2 1.000000+5 9.999988+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.455400-2 4.062807+3 2.468000-2 4.005492+3 2.490000-2 3.937609+3 2.528000-2 3.842480+3 2.550000-2 3.781140+3 2.610000-2 3.644380+3 2.670000-2 3.492660+3 2.820000-2 3.191140+3 3.162278-2 2.591889+3 3.311311-2 2.389045+3 3.548134-2 2.103061+3 3.890451-2 1.762940+3 4.731513-2 1.197404+3 5.308844-2 9.447491+2 6.095369-2 7.076665+2 7.328245-2 4.751572+2 8.709636-2 3.236137+2 1.035142-1 2.184712+2 1.249600-1 1.411584+2 1.566751-1 8.279059+1 3.000060-1 1.762691+1 3.672823-1 1.099294+1 4.365158-1 7.397878+0 5.069907-1 5.283504+0 5.888437-1 3.804312+0 6.839117-1 2.759657+0 7.943282-1 2.017514+0 9.120108-1 1.521223+0 1.035142+0 1.183126+0 1.230269+0 8.453024-1 1.396368+0 6.654605-1 1.566751+0 5.388551-1 1.778279+0 4.304993-1 2.018366+0 3.466777-1 2.344229+0 2.707373-1 2.722701+0 2.130927-1 3.126079+0 1.720640-1 3.630781+0 1.375372-1 4.265795+0 1.089238-1 5.011872+0 8.693093-2 5.956621+0 6.882767-2 7.161434+0 5.408167-2 8.609938+0 4.282660-2 1.059254+1 3.319656-2 1.318257+1 2.558314-2 1.678804+1 1.933678-2 2.264644+1 1.381065-2 2.985383+1 1.020842-2 4.315191+1 6.876760-3 6.456542+1 4.505369-3 1.059254+2 2.703392-3 2.041738+2 1.385684-3 4.073803+2 6.898158-4 1.621810+3 1.723722-4 1.000000+5 2.791300-6 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.455400-2 1.182300-3 1.000000+5 1.182300-3 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.455400-2 9.098500-3 1.000000+5 9.098500-3 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.455400-2 1.427320-2 1.000000+5 9.999999+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.377600-2 8.537774+3 2.410000-2 8.307600+3 2.485000-2 7.746400+3 2.600160-2 6.934200+3 2.700000-2 6.342500+3 3.349654-2 3.703400+3 3.715352-2 2.836200+3 4.466836-2 1.749800+3 5.559043-2 9.723500+2 6.918310-2 5.343200+2 8.709636-2 2.820200+2 1.757924-1 3.938100+1 2.213095-1 2.077100+1 2.600160-1 1.335000+1 2.917427-1 9.780887+0 3.388442-1 6.561036+0 3.890451-1 4.569249+0 4.415705-1 3.301176+0 5.011872-1 2.401939+0 5.623413-1 1.811427+0 6.309573-1 1.375521+0 7.079458-1 1.052177+0 7.943282-1 8.091816-1 8.709636-1 6.603814-1 9.440609-1 5.563040-1 1.023293+0 4.718047-1 1.161449+0 3.673214-1 1.288250+0 3.012555-1 1.462177+0 2.384402-1 1.678804+0 1.860235-1 1.905461+0 1.492394-1 2.162719+0 1.206792-1 2.511886+0 9.460074-2 2.917427+0 7.474371-2 3.388442+0 5.953542-2 3.935501+0 4.777656-2 4.623810+0 3.798476-2 5.432503+0 3.042946-2 6.456542+0 2.417582-2 7.762471+0 1.906250-2 9.549926+0 1.471861-2 1.161449+1 1.161254-2 1.428894+1 9.098886-3 1.778279+1 7.077313-3 2.290868+1 5.328203-3 2.985383+1 3.988775-3 4.315191+1 2.686898-3 6.456542+1 1.760325-3 1.059254+2 1.056261-3 2.018366+2 5.477707-4 4.027170+2 2.726653-4 1.603245+3 6.813282-5 1.000000+5 1.090600-6 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.377600-2 8.657400-4 1.000000+5 8.657400-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.377600-2 1.212100-2 1.000000+5 1.212100-2 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.377600-2 1.078926-2 1.000000+5 9.999999+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.899400-2 2.099740+4 2.000000-2 1.834716+4 2.089296-2 1.625149+4 2.190000-2 1.429580+4 2.754229-2 7.499951+3 3.054921-2 5.561905+3 3.589219-2 3.475557+3 4.466836-2 1.813239+3 5.559043-2 9.348911+2 6.918310-2 4.773318+2 8.810489-2 2.252010+2 1.640590-1 3.215910+1 2.041738-1 1.631468+1 2.400000-1 9.943737+0 2.800000-1 6.247750+0 3.198895-1 4.210457+0 3.630781-1 2.912813+0 4.120975-1 2.030245+0 4.623810-1 1.472907+0 5.128614-1 1.110617+0 5.688529-1 8.430543-1 6.309573-1 6.442542-1 6.998420-1 4.958377-1 7.762471-1 3.843610-1 8.609938-1 3.001211-1 9.440609-1 2.418548-1 1.000000+0 2.127095-1 1.071519+0 1.839401-1 1.148154+0 1.601941-1 1.250000+0 1.362041-1 1.380384+0 1.135594-1 1.757924+0 7.384737-2 1.972423+0 6.054281-2 2.264644+0 4.811768-2 2.630268+0 3.780329-2 3.019952+0 3.046947-2 3.507519+0 2.431349-2 4.073803+0 1.954287-2 4.786301+0 1.556328-2 5.623413+0 1.248721-2 6.683439+0 9.935330-3 8.035261+0 7.845156-3 9.885531+0 6.065648-3 1.202264+1 4.791644-3 1.513561+1 3.659063-3 1.883649+1 2.851481-3 2.344229+1 2.233597-3 3.000000+1 1.706000-3 4.315191+1 1.155194-3 6.456542+1 7.568402-4 1.071519+2 4.487923-4 2.041738+2 2.327758-4 4.073803+2 1.158775-4 1.621810+3 2.895654-5 1.000000+5 4.688900-7 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.899400-2 8.196000-4 1.000000+5 8.196000-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.899400-2 7.700000-3 1.000000+5 7.700000-3 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.899400-2 1.047440-2 1.000000+5 9.999999+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.313100-3 1.011730+4 6.500000-3 9.740040+3 6.650000-3 9.479740+3 6.850000-3 9.115980+3 7.079458-3 8.759090+3 7.673615-3 7.828121+3 8.317638-3 7.030683+3 9.000000-3 6.257140+3 9.440609-3 5.810496+3 1.020000-2 5.185940+3 1.096478-2 4.624153+3 1.333521-2 3.357270+3 1.479108-2 2.808315+3 1.717908-2 2.157843+3 2.000000-2 1.633022+3 2.238721-2 1.321845+3 2.660725-2 9.473426+2 3.198895-2 6.566219+2 3.845918-2 4.502654+2 4.570882-2 3.132173+2 5.370318-2 2.215056+2 6.309573-2 1.555407+2 7.500000-2 1.056854+2 9.015711-2 6.948006+1 1.096478-1 4.413614+1 1.380384-1 2.566048+1 2.722701-1 5.079262+0 3.311311-1 3.204683+0 3.981072-1 2.091743+0 4.677351-1 1.449798+0 5.370318-1 1.065802+0 6.237348-1 7.693371-1 7.244360-1 5.595105-1 8.511380-1 4.004064-1 9.660509-1 3.100423-1 1.174898+0 2.112515-1 1.318257+0 1.694817-1 1.500000+0 1.333500-1 1.698244+0 1.067217-1 1.927525+0 8.569106-2 2.213095+0 6.802152-2 2.570396+0 5.337527-2 2.985383+0 4.221434-2 3.467369+0 3.366584-2 4.027170+0 2.704580-2 4.731513+0 2.152579-2 5.559043+0 1.726269-2 6.683439+0 1.352354-2 8.035261+0 1.067860-2 9.885531+0 8.256454-3 1.202264+1 6.522260-3 1.513561+1 4.980612-3 1.883649+1 3.881364-3 2.344229+1 3.040332-3 3.000000+1 2.322100-3 4.315191+1 1.572398-3 6.456542+1 1.030206-3 1.059254+2 6.181450-4 2.018366+2 3.205656-4 4.027170+2 1.595687-4 1.603245+3 3.987264-5 1.000000+5 6.382400-7 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.313100-3 9.090500-4 1.000000+5 9.090500-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.313100-3 1.101600-4 1.000000+5 1.101600-4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.313100-3 5.293890-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 5.945600-3 1.615026+4 6.100000-3 1.582175+4 6.500000-3 1.483008+4 6.839116-3 1.396746+4 7.500000-3 1.247072+4 7.943282-3 1.152707+4 8.609938-3 1.024413+4 9.549926-3 8.750250+3 1.040000-2 7.637420+3 1.230269-2 5.713862+3 1.318257-2 5.035954+3 1.548817-2 3.701305+3 1.678804-2 3.152650+3 1.950000-2 2.315680+3 2.150000-2 1.879782+3 2.454709-2 1.406158+3 2.818383-2 1.028501+3 3.150000-2 7.946780+2 3.630781-2 5.672994+2 4.216965-2 3.942129+2 4.897788-2 2.717362+2 5.754399-2 1.805523+2 6.839116-2 1.155515+2 8.222426-2 7.121177+1 1.011580-1 4.098272+1 1.318257-1 2.006601+1 2.041738-1 6.134790+0 2.722701-1 2.851451+0 2.951209-1 2.297344+0 3.467369-1 1.507455+0 4.027170-1 1.026610+0 4.623810-1 7.253319-1 5.248075-1 5.312131-1 5.956621-1 3.919645-1 6.683439-1 2.995516-1 7.498942-1 2.305463-1 8.609938-1 1.697359-1 9.332543-1 1.427856-1 1.011579+0 1.209290-1 1.148154+0 9.406639-2 1.273503+0 7.708585-2 1.428894+0 6.225855-2 1.659587+0 4.753397-2 1.883649+0 3.810258-2 2.137962+0 3.078320-2 2.483133+0 2.411132-2 2.884032+0 1.903545-2 3.311311+0 1.541588-2 3.845918+0 1.235716-2 4.518559+0 9.813895-3 5.308844+0 7.853666-3 6.309573+0 6.233665-3 7.585776+0 4.910323-3 9.225714+0 3.842067-3 1.122018+1 3.027339-3 1.380384+1 2.369607-3 1.737801+1 1.817253-3 2.290868+1 1.332872-3 2.985383+1 9.978190-4 4.315191+1 6.721446-4 6.456542+1 4.403596-4 1.071519+2 2.611287-4 2.041738+2 1.354349-4 4.073803+2 6.742353-5 1.621810+3 1.684811-5 1.000000+5 2.728200-7 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 5.945600-3 8.127800-4 1.000000+5 8.127800-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.945600-3 1.982500-4 1.000000+5 1.982500-4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 5.945600-3 4.934570-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.829000-3 6.384600+4 4.920000-3 6.224489+4 5.188000-3 5.718455+4 5.500000-3 5.174800+4 6.165950-3 4.228898+4 6.800000-3 3.517756+4 7.943282-3 2.600886+4 8.609938-3 2.209805+4 9.900000-3 1.656648+4 1.071519-2 1.396433+4 1.270000-2 9.586200+3 1.400000-2 7.661560+3 1.584893-2 5.731370+3 1.800000-2 4.215120+3 2.000000-2 3.252744+3 2.317395-2 2.243040+3 2.660725-2 1.568730+3 2.985383-2 1.157521+3 3.400000-2 8.159840+2 3.935501-2 5.463120+2 4.570882-2 3.595153+2 5.308844-2 2.348120+2 6.165950-2 1.523462+2 7.328245-2 9.178706+1 8.912509-2 5.127207+1 1.122019-1 2.562674+1 1.927525-1 4.965127+0 2.371374-1 2.663705+0 2.786121-1 1.651785+0 3.235937-1 1.067391+0 3.715352-1 7.186408-1 4.216965-1 5.037474-1 4.731513-1 3.672169-1 5.308844-1 2.696002-1 5.956621-1 1.994585-1 6.606935-1 1.531971-1 7.328245-1 1.184745-1 8.609938-1 8.021992-2 9.225714-1 6.826635-2 9.772372-1 6.001234-2 1.035142+0 5.307795-2 1.109175+0 4.609855-2 1.202264+0 3.938783-2 1.318257+0 3.315665-2 1.479108+0 2.695422-2 1.757924+0 1.981985-2 1.972423+0 1.625021-2 2.264644+0 1.291530-2 2.630268+0 1.014672-2 3.019952+0 8.178188-3 3.507519+0 6.525970-3 4.073803+0 5.245513-3 4.786301+0 4.177277-3 5.623413+0 3.351613-3 6.683439+0 2.666756-3 8.035261+0 2.105689-3 9.885531+0 1.628055-3 1.202264+1 1.286113-3 1.513561+1 9.821193-4 1.883649+1 7.653581-4 2.344229+1 5.995115-4 3.000000+1 4.579000-4 4.315191+1 3.100622-4 6.531306+1 2.007229-4 1.083927+2 1.190448-4 2.089296+2 6.103814-5 4.168694+2 3.039067-5 1.659587+3 7.594830-6 1.000000+5 1.258500-7 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.829000-3 6.977800-4 1.000000+5 6.977800-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.829000-3 7.386600-5 1.000000+5 7.386600-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.829000-3 4.057354-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.237200-3 1.579186+5 4.285000-3 1.528113+5 4.350000-3 1.479544+5 4.518559-3 1.334736+5 5.069907-3 9.844271+4 5.432503-3 8.147017+4 6.165950-3 5.710119+4 6.918310-3 4.108496+4 7.800000-3 2.893476+4 8.709636-3 2.078499+4 1.059254-2 1.137621+4 1.188502-2 7.905163+3 1.355400-2 5.193181+3 1.621810-2 2.886627+3 1.862087-2 1.820136+3 2.089296-2 1.233242+3 2.426610-2 7.380645+2 2.851018-2 4.210576+2 3.388442-2 2.288214+2 4.073803-2 1.183795+2 5.011872-2 5.591823+1 6.382635-2 2.309304+1 1.071519-1 3.422593+0 1.364583-1 1.407695+0 1.640590-1 7.202241-1 1.949845-1 3.871606-1 2.264644-1 2.275826-1 2.600160-1 1.403305-1 2.951209-1 9.072231-2 3.311311-1 6.143393-2 3.715352-1 4.189643-2 4.120975-1 2.988479-2 4.570882-1 2.146260-2 5.069907-1 1.552538-2 5.559043-1 1.171546-2 6.025596-1 9.212265-3 6.531306-1 7.300954-3 7.161434-1 5.638283-3 7.943282-1 4.250529-3 8.609938-1 3.403899-3 9.120108-1 2.921100-3 9.549926-1 2.598334-3 1.000000+0 2.324596-3 1.047129+0 2.093625-3 1.096478+0 1.897785-3 1.161449+0 1.691331-3 1.244515+0 1.485814-3 1.348963+0 1.285606-3 1.513561+0 1.053819-3 1.819701+0 7.604742-4 2.018366+0 6.367534-4 2.344229+0 4.973332-4 2.722701+0 3.914988-4 3.126079+0 3.161561-4 3.630781+0 2.527201-4 4.265795+0 2.001490-4 5.011872+0 1.597379-4 5.956621+0 1.264641-4 7.161434+0 9.937390-5 8.609938+0 7.869332-5 1.059254+1 6.099834-5 1.318257+1 4.700811-5 1.678804+1 3.553142-5 2.264644+1 2.537665-5 2.985383+1 1.875823-5 4.315191+1 1.263574-5 6.456542+1 8.278556-6 1.071519+2 4.909109-6 2.041738+2 2.546137-6 4.073803+2 1.267547-6 1.621810+3 3.167363-7 1.000000+5 5.128900-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.237200-3 5.308700-4 1.000000+5 5.308700-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.237200-3 2.201200-4 1.000000+5 2.201200-4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.237200-3 3.486210-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.015600-3 2.488611+5 4.731513-3 1.600072+5 5.188000-3 1.237437+5 5.956621-3 8.322843+4 6.683439-3 5.942318+4 7.500000-3 4.209036+4 8.317638-3 3.066196+4 1.023293-2 1.596980+4 1.135011-2 1.142410+4 1.303167-2 7.269672+3 1.531087-2 4.239310+3 1.737801-2 2.752778+3 1.950000-2 1.849074+3 2.264644-2 1.093935+3 2.660725-2 6.156425+2 3.162278-2 3.292822+2 3.715352-2 1.821204+2 4.466836-2 9.180473+1 5.370318-2 4.592872+1 6.918310-2 1.755688+1 1.230269-1 1.953071+0 1.479108-1 9.736947-1 1.717908-1 5.568859-1 1.972423-1 3.347198-1 2.238721-1 2.112287-1 2.511886-1 1.398913-1 2.818383-1 9.330817-2 3.126079-1 6.525906-2 3.467369-1 4.597284-2 3.845918-1 3.263660-2 4.216965-1 2.423681-2 4.623810-1 1.812396-2 5.069907-1 1.365044-2 5.559043-1 1.035803-2 6.025596-1 8.190447-3 6.531306-1 6.529039-3 7.161434-1 5.076946-3 7.943282-1 3.857066-3 8.609938-1 3.105255-3 9.120108-1 2.674966-3 9.549926-1 2.386867-3 1.000000+0 2.142391-3 1.059254+0 1.888015-3 1.122018+0 1.676059-3 1.202264+0 1.464632-3 1.303167+0 1.262098-3 1.531087+0 9.512431-4 1.819701+0 7.005593-4 2.018366+0 5.866401-4 2.344229+0 4.581640-4 2.722701+0 3.606118-4 3.126079+0 2.911779-4 3.630781+0 2.327530-4 4.265795+0 1.843358-4 5.011872+0 1.471192-4 5.956621+0 1.164782-4 7.161434+0 9.152414-5 8.609938+0 7.247735-5 1.059254+1 5.617967-5 1.318257+1 4.329428-5 1.678804+1 3.272436-5 2.264644+1 2.337243-5 2.985383+1 1.727647-5 4.315191+1 1.163774-5 6.456542+1 7.624549-6 1.071519+2 4.521287-6 2.041738+2 2.345088-6 4.073803+2 1.167413-6 1.621810+3 2.917143-7 1.000000+5 4.723700-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.015600-3 5.341900-4 1.000000+5 5.341900-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.015600-3 3.550900-7 1.000000+5 3.550900-7 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.015600-3 3.481055-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.664100-3 2.243786+4 1.750000-3 2.119651+4 1.927525-3 1.918338+4 2.041738-3 1.811046+4 2.162719-3 1.695625+4 2.511886-3 1.421806+4 2.917427-3 1.182003+4 3.162278-3 1.062047+4 3.890451-3 7.961011+3 4.315191-3 6.837149+3 5.069907-3 5.359420+3 5.956621-3 4.156529+3 6.683439-3 3.449913+3 8.000000-3 2.554940+3 9.660509-3 1.844846+3 1.161449-2 1.328773+3 1.380384-2 9.686113+2 1.650000-2 6.928220+2 1.949845-2 5.025545+2 2.317395-2 3.579093+2 2.754229-2 2.530005+2 3.273407-2 1.774989+2 3.890451-2 1.236069+2 4.623810-2 8.543780+1 5.495409-2 5.864745+1 6.606934-2 3.893954+1 8.035261-2 2.500871+1 9.885531-2 1.552802+1 1.202264-1 9.831387+0 1.603245-1 4.952042+0 2.511886-1 1.691538+0 3.162278-1 9.815749-1 3.801894-1 6.393846-1 4.466836-1 4.425153-1 5.248075-1 3.085406-1 6.025596-1 2.279645-1 6.998420-1 1.656911-1 8.222427-1 1.184514-1 9.772372-1 8.335181-2 1.174898+0 5.804479-2 1.303167+0 4.759430-2 1.479108+0 3.761486-2 1.678804+0 2.994590-2 1.905461+0 2.402605-2 2.187762+0 1.906124-2 2.540973+0 1.494844-2 2.951209+0 1.181506-2 3.427678+0 9.416368-3 4.000000+0 7.509000-3 4.677351+0 6.014310-3 5.495409+0 4.820572-3 6.531306+0 3.831789-3 7.852356+0 3.022776-3 9.660509+0 2.334981-3 1.174898+1 1.843051-3 1.462177+1 1.425327-3 1.819701+1 1.109482-3 2.317395+1 8.465472-4 2.985383+1 6.418091-4 4.315191+1 4.323267-4 6.456542+1 2.832416-4 1.071519+2 1.679594-4 2.041738+2 8.711603-5 4.073803+2 4.336743-5 1.621810+3 1.083729-5 1.000000+5 1.754800-7 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.664100-3 5.329200-4 1.000000+5 5.329200-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.664100-3 1.035600-6 1.000000+5 1.035600-6 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.664100-3 1.130144-3 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.493200-3 1.891578+4 1.630000-3 1.876610+4 1.800000-3 1.836551+4 1.950000-3 1.781452+4 2.113489-3 1.712088+4 2.290868-3 1.633712+4 2.454709-3 1.558613+4 2.691535-3 1.449555+4 2.851018-3 1.377319+4 3.162278-3 1.243883+4 3.467369-3 1.129746+4 3.720000-3 1.042492+4 4.168694-3 9.064758+3 4.570882-3 8.046510+3 5.011872-3 7.085461+3 5.623413-3 6.003606+3 6.165950-3 5.219029+3 6.918310-3 4.351705+3 7.673615-3 3.667011+3 8.609938-3 3.012421+3 9.800000-3 2.392140+3 1.096478-2 1.944402+3 1.230269-2 1.562241+3 1.400000-2 1.212250+3 1.603245-2 9.210549+2 1.840772-2 6.901401+2 2.113489-2 5.127794+2 2.426610-2 3.778876+2 2.786121-2 2.762900+2 3.198895-2 2.004833+2 3.672823-2 1.444317+2 4.216965-2 1.033480+2 4.897788-2 7.140307+1 5.754399-2 4.757700+1 6.839116-2 3.055391+1 8.222426-2 1.890277+1 1.011580-1 1.092619+1 1.333521-1 5.212878+0 2.041738-1 1.656324+0 2.691535-1 7.939792-1 3.235937-1 4.897976-1 3.801894-1 3.233333-1 4.365158-1 2.280487-1 5.011872-1 1.620433-1 5.688529-1 1.193462-1 6.382635-1 9.099486-2 7.161434-1 6.995076-2 8.128305-1 5.279209-2 9.440609-1 3.819681-2 1.023293+0 3.229818-2 1.122018+0 2.686437-2 1.250000+0 2.181771-2 1.396368+0 1.775577-2 1.659587+0 1.300372-2 1.883649+0 1.042291-2 2.137962+0 8.421147-3 2.483133+0 6.596073-3 2.884032+0 5.207235-3 3.311311+0 4.217128-3 3.845918+0 3.380480-3 4.518559+0 2.684652-3 5.308844+0 2.148367-3 6.309573+0 1.705256-3 7.585776+0 1.343222-3 9.225714+0 1.050989-3 1.135011+1 8.168151-4 1.412538+1 6.310585-4 1.757924+1 4.906687-4 2.290868+1 3.646202-4 2.985383+1 2.729587-4 4.315191+1 1.838649-4 6.456542+1 1.204656-4 1.059254+2 7.228184-5 2.018366+2 3.748504-5 4.027170+2 1.865940-5 1.603245+3 4.662467-6 1.000000+5 7.463200-8 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.493200-3 4.977800-4 1.000000+5 4.977800-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.493200-3 6.788900-7 1.000000+5 6.788900-7 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.493200-3 9.947411-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.194400-3 1.423195+5 1.333521-3 1.270556+5 1.500000-3 1.114428+5 1.757924-3 9.162526+4 1.905461-3 8.251331+4 2.162719-3 6.919775+4 2.400000-3 5.932200+4 2.754229-3 4.813145+4 3.019952-3 4.153439+4 3.507519-3 3.242009+4 3.900000-3 2.699528+4 4.466836-3 2.120962+4 5.069907-3 1.678744+4 5.688529-3 1.349147+4 6.531306-3 1.029304+4 7.413102-3 7.968832+3 8.317638-3 6.276008+3 9.500000-3 4.729080+3 1.083927-2 3.543367+3 1.244515-2 2.597250+3 1.428894-2 1.888043+3 1.650000-2 1.342660+3 1.883649-2 9.734706+2 2.162719-2 6.906647+2 2.454709-2 5.008290+2 2.818383-2 3.501743+2 3.235937-2 2.429712+2 3.672823-2 1.726983+2 4.216965-2 1.182388+2 4.897788-2 7.785105+1 5.754399-2 4.924824+1 6.760830-2 3.092119+1 8.128305-2 1.801892+1 1.000000-1 9.732800+0 1.333521-1 4.096608+0 2.000000-1 1.206728+0 2.483133-1 6.332447-1 2.917427-1 3.944969-1 3.388442-1 2.560416-1 3.890451-1 1.729807-1 4.415705-1 1.216117-1 4.954502-1 8.889008-2 5.559043-1 6.549520-2 6.237348-1 4.863496-2 6.918310-1 3.746297-2 7.943282-1 2.657025-2 8.609938-1 2.189931-2 9.225714-1 1.868223-2 9.772372-1 1.645960-2 1.047129+0 1.424432-2 1.135011+0 1.211639-2 1.244515+0 1.014581-2 1.380384+0 8.378116-3 1.717908+0 5.664417-3 1.949845+0 4.548505-3 2.238721+0 3.612654-3 2.600160+0 2.836472-3 3.019952+0 2.244750-3 3.507519+0 1.791254-3 4.073803+0 1.439806-3 4.786301+0 1.146612-3 5.623413+0 9.199827-4 6.683439+0 7.319740-4 8.035261+0 5.779845-4 9.885531+0 4.468834-4 1.202264+1 3.530176-4 1.513561+1 2.695759-4 1.883649+1 2.100811-4 2.344229+1 1.645616-4 2.985383+1 1.263508-4 4.315191+1 8.510747-5 6.456542+1 5.575910-5 1.071519+2 3.306462-5 2.041738+2 1.714917-5 4.073803+2 8.537307-6 1.621810+3 2.133355-6 1.000000+5 3.454500-8 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.194400-3 4.287000-4 1.000000+5 4.287000-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.194400-3 6.794200-7 1.000000+5 6.794200-7 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.194400-3 7.650206-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 9.196400-4 1.695600+5 9.308000-4 1.778408+5 9.415000-4 1.847518+5 9.530000-4 1.910368+5 9.650000-4 1.963459+5 9.772372-4 2.004946+5 9.900000-4 2.035458+5 1.000000-3 2.051000+5 1.015000-3 2.062032+5 1.023293-3 2.062536+5 1.096478-3 2.022120+5 1.161449-3 1.973220+5 1.216186-3 1.922943+5 1.285000-3 1.851812+5 1.380384-3 1.745088+5 1.462177-3 1.651634+5 1.548817-3 1.553379+5 1.659587-3 1.432485+5 1.778279-3 1.311404+5 1.905461-3 1.191637+5 2.065380-3 1.058744+5 2.187762-3 9.669907+4 2.376900-3 8.414365+4 2.600160-3 7.191898+4 2.800000-3 6.273400+4 3.090295-3 5.183025+4 3.349654-3 4.410268+4 3.650000-3 3.684152+4 4.027170-3 2.978522+4 4.400000-3 2.441256+4 4.900000-3 1.902024+4 5.370318-3 1.526233+4 5.956621-3 1.181826+4 6.606934-3 9.076352+3 7.300000-3 6.993680+3 8.222426-3 5.079956+3 9.225714-3 3.695866+3 1.023293-2 2.756764+3 1.135011-2 2.043458+3 1.273503-2 1.454414+3 1.445440-2 9.920676+2 1.640590-2 6.709403+2 1.862087-2 4.500923+2 2.100000-2 3.059068+2 2.371374-2 2.056944+2 2.691535-2 1.350920+2 3.090295-2 8.477553+1 3.589219-2 5.076583+1 4.168694-2 3.017497+1 4.954502-2 1.642400+1 6.025596-2 8.173120+0 7.585776-2 3.565000+0 1.445440-1 3.444461-1 1.737801-1 1.778753-1 2.018366-1 1.046351-1 2.398833-1 5.714502-2 2.754229-1 3.548183-2 3.126079-1 2.308773-2 3.507519-1 1.572703-2 3.935501-1 1.078814-2 4.365158-1 7.735031-3 4.841724-1 5.586029-3 5.308844-1 4.210690-3 5.821032-1 3.195413-3 6.382635-1 2.442262-3 6.918310-1 1.946827-3 7.673615-1 1.466467-3 9.440609-1 8.440398-4 9.885531-1 7.506942-4 1.023293+0 6.911868-4 1.071519+0 6.233181-4 1.122018+0 5.658855-4 1.188502+0 5.054269-4 1.273503+0 4.451303-4 1.380384+0 3.866527-4 1.513561+0 3.308510-4 1.840772+0 2.339978-4 2.044000+0 1.956740-4 2.371374+0 1.532004-4 2.754229+0 1.206519-4 3.162278+0 9.747645-5 3.672823+0 7.796061-5 4.315191+0 6.177628-5 5.069907+0 4.932981-5 6.025596+0 3.907638-5 7.161434+0 3.117852-5 8.609938+0 2.469008-5 1.059254+1 1.913834-5 1.318257+1 1.474891-5 1.678804+1 1.114780-5 2.264644+1 7.961967-6 2.985383+1 5.885499-6 4.315191+1 3.964428-6 6.456542+1 2.597395-6 1.071519+2 1.540237-6 2.089296+2 7.804330-7 4.168694+2 3.885709-7 1.659587+3 9.710794-8 1.000000+5 1.609200-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 9.196400-4 3.417100-4 1.000000+5 3.417100-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.196400-4 4.190100-7 1.000000+5 4.190100-7 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.196400-4 5.775110-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 8.654400-4 3.336316+5 8.781000-4 3.372438+5 9.170000-4 3.529084+5 9.350000-4 3.561923+5 9.500000-4 3.575857+5 9.700000-4 3.560021+5 1.000000-3 3.523361+5 1.074300-3 3.394576+5 1.135011-3 3.275362+5 1.202264-3 3.131684+5 1.288250-3 2.941363+5 1.364583-3 2.773809+5 1.450000-3 2.590428+5 1.548817-3 2.388077+5 1.650000-3 2.195544+5 1.730000-3 2.053320+5 1.905461-3 1.776424+5 2.018366-3 1.620582+5 2.162719-3 1.441115+5 2.400000-3 1.197354+5 2.570396-3 1.053788+5 2.818383-3 8.798344+4 3.090295-3 7.297468+4 3.349654-3 6.153698+4 3.715352-3 4.904072+4 4.073803-3 3.977695+4 4.518559-3 3.118260+4 5.000000-3 2.437902+4 5.500000-3 1.920498+4 6.095369-3 1.473647+4 6.683439-3 1.154969+4 7.413102-3 8.720959+3 8.317638-3 6.328818+3 9.225714-3 4.707327+3 1.011579-2 3.598848+3 1.135011-2 2.554010+3 1.273503-2 1.798288+3 1.445440-2 1.211758+3 1.621810-2 8.398953+2 1.819701-2 5.781142+2 2.041738-2 3.952521+2 2.290868-2 2.685088+2 2.600160-2 1.742926+2 2.951209-2 1.123110+2 3.388442-2 6.903297+1 3.935501-2 4.042767+1 4.570882-2 2.349720+1 5.432503-2 1.246593+1 6.683439-2 5.777470+0 1.396368-1 3.655772-1 1.659587-1 1.925059-1 1.905461-1 1.159635-1 2.187762-1 7.037951-2 2.483133-1 4.484713-2 2.851018-1 2.765631-2 3.162278-1 1.937015-2 3.507519-1 1.366221-2 3.845918-1 1.008451-2 4.216965-1 7.501655-3 4.623810-1 5.619102-3 5.069907-1 4.238620-3 5.559043-1 3.219721-3 6.095369-1 2.464593-3 6.606935-1 1.963918-3 7.161434-1 1.575399-3 7.762471-1 1.271592-3 8.609938-1 9.692003-4 9.120108-1 8.380634-4 9.660509-1 7.298078-4 1.011579+0 6.575196-4 1.071519+0 5.813301-4 1.135011+0 5.171602-4 1.216186+0 4.525157-4 1.318257+0 3.900420-4 1.798871+0 2.250372-4 2.018366+0 1.847112-4 2.344229+0 1.442458-4 2.722701+0 1.135443-4 3.126079+0 9.169187-5 3.630781+0 7.329434-5 4.265795+0 5.804703-5 5.011872+0 4.632660-5 5.956621+0 3.667808-5 7.161434+0 2.882072-5 8.609938+0 2.282287-5 1.059254+1 1.769059-5 1.318257+1 1.363328-5 1.678804+1 1.030461-5 2.264644+1 7.359845-6 2.985383+1 5.440372-6 4.315191+1 3.664676-6 6.456542+1 2.400990-6 1.071519+2 1.423675-6 2.041738+2 7.384381-7 4.073803+2 3.676115-7 1.621810+3 9.186060-8 1.000000+5 1.487500-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 8.654400-4 3.347200-4 1.000000+5 3.347200-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.654400-4 9.953000-8 1.000000+5 9.953000-8 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.654400-4 5.306205-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 5.022500-4 4.908048+4 5.024000-4 4.932120+4 5.031000-4 4.986030+4 5.045000-4 5.049882+4 5.075000-4 5.146326+4 5.110000-4 5.228916+4 5.170000-4 5.329398+4 5.190000-4 5.383332+4 5.208000-4 5.459544+4 5.222000-4 5.544480+4 5.238000-4 5.675370+4 5.253000-4 5.836764+4 5.265000-4 5.996874+4 5.280000-4 6.239640+4 5.295000-4 6.535560+4 5.310000-4 6.889560+4 5.320000-4 7.161060+4 5.335000-4 7.626000+4 5.350000-4 8.166360+4 5.365000-4 8.788140+4 5.385000-4 9.757200+4 5.407000-4 1.102518+5 5.432503-4 1.278436+5 5.510000-4 2.025366+5 5.540000-4 2.401452+5 5.560000-4 2.677656+5 5.580000-4 2.973210+5 5.600000-4 3.285894+5 5.628000-4 3.750270+5 5.650000-4 4.134996+5 5.670000-4 4.498350+5 5.697000-4 5.006772+5 5.720000-4 5.454378+5 5.740000-4 5.852802+5 5.770000-4 6.462300+5 5.800000-4 7.081500+5 5.830000-4 7.705320+5 5.865000-4 8.426400+5 5.900000-4 9.131400+5 5.930000-4 9.715380+5 5.965000-4 1.036542+6 6.000000-4 1.097652+6 6.030000-4 1.146714+6 6.065000-4 1.199928+6 6.100000-4 1.248912+6 6.140000-4 1.299882+6 6.190000-4 1.356570+6 6.240000-4 1.406388+6 6.300000-4 1.457034+6 6.350000-4 1.492458+6 6.410000-4 1.527222+6 6.460000-4 1.550346+6 6.531306-4 1.575258+6 6.606934-4 1.592430+6 6.720500-4 1.605496+6 6.850000-4 1.607094+6 7.000000-4 1.597842+6 7.161434-4 1.576728+6 7.350000-4 1.542276+6 7.585776-4 1.491592+6 7.852356-4 1.428832+6 8.200000-4 1.343970+6 8.609938-4 1.244839+6 9.015711-4 1.150641+6 9.549926-4 1.035115+6 1.015000-3 9.180480+5 1.071519-3 8.199011+5 1.150000-3 7.019580+5 1.216186-3 6.166711+5 1.318257-3 5.075375+5 1.420000-3 4.215234+5 1.513561-3 3.569858+5 1.659587-3 2.786572+5 1.800000-3 2.226048+5 1.972423-3 1.712907+5 2.162719-3 1.307918+5 2.371374-3 9.905892+4 2.630268-3 7.197607+4 2.917427-3 5.183162+4 3.198895-3 3.848687+4 3.589219-3 2.629141+4 3.935501-3 1.925522+4 4.400000-3 1.310796+4 4.954502-3 8.628535+3 5.500000-3 5.928054+3 6.095369-3 4.072158+3 6.839116-3 2.654224+3 7.673615-3 1.716853+3 8.709636-3 1.054075+3 9.800000-3 6.639840+2 1.096478-2 4.247311+2 1.230269-2 2.669004+2 1.380384-2 1.666952+2 1.566751-2 9.864751+1 1.798871-2 5.524156+1 2.065380-2 3.069856+1 2.398833-2 1.611466+1 2.818383-2 7.984829+0 3.349654-2 3.732637+0 4.073803-2 1.564119+0 5.370318-2 4.538352-1 8.035261-2 7.428368-2 1.023293-1 2.519143-2 1.216186-1 1.171525-2 1.412538-1 6.074693-3 1.603245-1 3.507160-3 1.840772-1 1.940751-3 2.089296-1 1.136469-3 2.371374-1 6.705930-4 2.660725-1 4.176833-4 2.951209-1 2.746785-4 3.273407-1 1.820100-4 3.589219-1 1.273240-4 3.981072-1 8.584165-5 4.786301-1 4.317270-5 5.188000-1 3.215673-5 5.559043-1 2.513209-5 5.956621-1 1.977538-5 6.309573-1 1.632399-5 6.760830-1 1.305588-5 7.943282-1 7.863668-6 8.413951-1 6.602288-6 8.810489-1 5.772441-6 9.225714-1 5.077595-6 9.660509-1 4.498256-6 1.000000+0 4.129362-6 1.047129+0 3.711472-6 1.096478+0 3.359436-6 1.148154+0 3.059213-6 1.216186+0 2.740420-6 1.318257+0 2.369746-6 1.513561+0 1.871637-6 1.840772+0 1.323881-6 2.044000+0 1.106830-6 2.371374+0 8.663448-7 2.754229+0 6.823152-7 3.162278+0 5.513042-7 3.672823+0 4.409392-7 4.315191+0 3.494047-7 5.069907+0 2.790060-7 6.025596+0 2.210166-7 7.244360+0 1.737555-7 8.709636+0 1.376551-7 1.071519+1 1.067436-7 1.333521+1 8.230151-8 1.698244+1 6.223070-8 2.264644+1 4.503246-8 2.985383+1 3.328816-8 4.315191+1 2.242283-8 6.456542+1 1.469075-8 1.071519+2 8.711348-9 2.041738+2 4.518314-9 4.073803+2 2.249311-9 1.621810+3 5.62063-10 1.000000+5 9.10140-12 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 5.022500-4 2.018900-4 1.000000+5 2.018900-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.022500-4 3.875200-8 1.000000+5 3.875200-8 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.022500-4 3.003212-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 4.874700-4 7.404911+4 4.886000-4 7.256416+4 4.897788-4 7.151392+4 4.914000-4 7.073160+4 4.932000-4 7.043672+4 4.970000-4 7.060248+4 5.011872-4 7.127715+4 5.032200-4 7.191584+4 5.055000-4 7.312864+4 5.070000-4 7.433576+4 5.087000-4 7.621407+4 5.100000-4 7.808360+4 5.115000-4 8.077680+4 5.128614-4 8.377944+4 5.143000-4 8.759680+4 5.155000-4 9.133360+4 5.170000-4 9.678080+4 5.185000-4 1.031720+5 5.200000-4 1.105952+5 5.215000-4 1.191504+5 5.230000-4 1.289320+5 5.253000-4 1.465320+5 5.280000-4 1.716104+5 5.350000-4 2.614272+5 5.380000-4 3.112576+5 5.407000-4 3.616480+5 5.432503-4 4.136730+5 5.457000-4 4.673504+5 5.480000-4 5.207136+5 5.500000-4 5.692152+5 5.520000-4 6.194856+5 5.550000-4 6.978392+5 5.580000-4 7.791560+5 5.610000-4 8.628560+5 5.642000-4 9.538880+5 5.670000-4 1.034224+6 5.697000-4 1.111552+6 5.730000-4 1.204840+6 5.760000-4 1.287480+6 5.790000-4 1.367216+6 5.821032-4 1.445903+6 5.850000-4 1.515488+6 5.890000-4 1.604936+6 5.930000-4 1.686496+6 5.965000-4 1.751648+6 6.000000-4 1.811296+6 6.050000-4 1.887392+6 6.100000-4 1.953696+6 6.157900-4 2.019052+6 6.220000-4 2.076400+6 6.280000-4 2.120248+6 6.350000-4 2.158360+6 6.430000-4 2.187240+6 6.531306-4 2.206454+6 6.653400-4 2.211780+6 6.780000-4 2.203464+6 6.930000-4 2.180016+6 7.080000-4 2.144880+6 7.300000-4 2.081016+6 7.500000-4 2.016176+6 7.800000-4 1.913168+6 8.128305-4 1.798669+6 8.511380-4 1.668276+6 9.015711-4 1.506048+6 9.500000-4 1.363216+6 1.000000-3 1.229288+6 1.070000-3 1.064064+6 1.135011-3 9.328552+5 1.202264-3 8.149715+5 1.303167-3 6.692702+5 1.400000-3 5.585336+5 1.500000-3 4.658944+5 1.650000-3 3.597088+5 1.778279-3 2.916644+5 1.972423-3 2.163085+5 2.150000-3 1.675184+5 2.400000-3 1.198344+5 2.630268-3 9.000317+4 2.917427-3 6.464564+4 3.223700-3 4.662727+4 3.548134-3 3.386210+4 4.000000-3 2.248800+4 4.415704-3 1.592448+4 4.841724-3 1.148731+4 5.500000-3 7.242496+3 6.237348-3 4.549064+3 7.079458-3 2.821655+3 8.035261-3 1.734078+3 9.120108-3 1.056019+3 1.023293-2 6.676727+2 1.150000-2 4.164520+2 1.303167-2 2.493215+2 1.479108-2 1.471727+2 1.678804-2 8.627943+1 1.905461-2 5.021363+1 2.187762-2 2.761461+1 2.540973-2 1.433482+1 2.985383-2 7.017643+0 3.548134-2 3.238050+0 4.315191-2 1.336665+0 5.821032-2 3.417946-1 8.128305-2 7.438424-2 1.071519-1 2.122775-2 1.258925-1 1.028632-2 1.445440-1 5.566111-3 1.640590-1 3.193466-3 1.862087-1 1.845745-3 2.089296-1 1.128886-3 2.398833-1 6.308853-4 2.660725-1 4.107973-4 2.917427-1 2.824922-4 3.162278-1 2.049703-4 3.467369-1 1.431526-4 3.801894-1 1.007448-4 4.265795-1 6.553582-5 4.623810-1 4.887433-5 4.954502-1 3.827191-5 5.248075-1 3.142810-5 5.623413-1 2.497317-5 6.095369-1 1.921095-5 6.683439-1 1.419622-5 7.161434-1 1.137756-5 7.585776-1 9.511653-6 8.035261-1 8.000609-6 8.511380-1 6.779166-6 8.912509-1 5.974013-6 9.332543-1 5.296643-6 9.772372-1 4.727692-6 1.023293+0 4.250839-6 1.083927+0 3.753123-6 1.148154+0 3.338791-6 1.230269+0 2.925273-6 1.333521+0 2.527777-6 1.531087+0 1.988636-6 1.819701+0 1.464498-6 2.018366+0 1.226235-6 2.344229+0 9.576943-7 2.722701+0 7.537164-7 3.126079+0 6.085450-7 3.630781+0 4.864408-7 4.265795+0 3.852492-7 5.011872+0 3.074651-7 5.956621+0 2.434268-7 7.079458+0 1.941401-7 8.511380+0 1.536697-7 1.047129+1 1.190566-7 1.303167+1 9.171180-8 1.678804+1 6.839173-8 2.264644+1 4.884643-8 2.985383+1 3.610704-8 4.315191+1 2.432187-8 6.456542+1 1.593478-8 1.059254+2 9.561466-9 2.018366+2 4.958439-9 4.027170+2 2.468218-9 1.603245+3 6.16747-10 1.000000+5 9.87220-12 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 4.874700-4 1.978900-4 1.000000+5 1.978900-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.874700-4 1.191700-7 1.000000+5 1.191700-7 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 4.874700-4 2.894608-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 3.843000-4 4.553338+4 4.841724-4 3.726910+4 5.559043-4 3.322448+4 7.000000-4 2.662200+4 7.585776-4 2.447935+4 8.912509-4 2.044850+4 9.772372-4 1.834669+4 1.122018-3 1.544230+4 1.258925-3 1.329922+4 1.479108-3 1.068483+4 1.678804-3 8.936839+3 1.972423-3 7.070583+3 2.371374-3 5.365333+3 2.884032-3 3.967104+3 3.500000-3 2.921400+3 4.265795-3 2.120704+3 5.128614-3 1.562904+3 6.237348-3 1.121242+3 7.500000-3 8.137700+2 9.015711-3 5.864657+2 1.083927-2 4.194860+2 1.303167-2 2.978707+2 1.566751-2 2.099444+2 1.883649-2 1.468678+2 2.264644-2 1.019648+2 2.722701-2 7.024691+1 3.273407-2 4.801692+1 3.935501-2 3.256326+1 4.731513-2 2.190965+1 5.688529-2 1.462522+1 6.839116-2 9.688872+0 8.317638-2 6.205538+0 1.011580-1 3.944812+0 1.273503-1 2.295906+0 2.722701-1 3.754695-1 3.388442-1 2.243543-1 4.027170-1 1.504151-1 4.731513-1 1.043663-1 5.495409-1 7.483080-2 6.309573-1 5.540836-2 7.328245-1 4.032074-2 8.609938-1 2.887029-2 9.772372-1 2.236441-2 1.188502+0 1.524560-2 1.333521+0 1.223932-2 1.513561+0 9.680988-3 1.717908+0 7.717789-3 1.949845+0 6.201287-3 2.238721+0 4.925592-3 2.600160+0 3.867398-3 3.019952+0 3.060709-3 3.507519+0 2.442365-3 4.073803+0 1.963144-3 4.786301+0 1.563343-3 5.623413+0 1.254379-3 6.760830+0 9.831717-4 8.128305+0 7.767086-4 1.000000+1 6.007900-4 1.216186+1 4.747878-4 1.548817+1 3.578951-4 1.949845+1 2.755241-4 2.371374+1 2.215481-4 3.000000+1 1.713700-4 4.315191+1 1.160437-4 6.456542+1 7.602516-5 1.071519+2 4.508238-5 2.041738+2 2.338233-5 4.073803+2 1.164072-5 1.621810+3 2.908699-6 1.000000+5 4.710000-8 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 3.843000-4 2.220400-4 1.000000+5 2.220400-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.843000-4 1.128600-8 1.000000+5 1.128600-8 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 3.843000-4 1.622487-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.148000-4 1.243650+5 3.198895-4 1.187552+5 3.273407-4 1.120022+5 3.325000-4 1.068736+5 3.400000-4 9.899920+4 3.550000-4 8.484120+4 3.715352-4 7.329849+4 3.850000-4 6.520080+4 4.100000-4 5.428800+4 4.365158-4 4.555218+4 4.550000-4 4.079900+4 4.731513-4 3.701990+4 4.930000-4 3.369180+4 5.150000-4 3.073980+4 5.400000-4 2.805340+4 5.688529-4 2.557244+4 5.956621-4 2.371112+4 6.237348-4 2.212300+4 6.531306-4 2.077089+4 6.918310-4 1.934265+4 7.413102-4 1.789979+4 8.035261-4 1.647072+4 8.912509-4 1.492221+4 1.230269-3 1.113080+4 1.400000-3 9.834120+3 1.603245-3 8.573039+3 1.840772-3 7.390635+3 2.065380-3 6.487293+3 2.344229-3 5.580740+3 2.691535-3 4.697180+3 3.054921-3 3.980133+3 3.467369-3 3.349108+3 3.935501-3 2.798143+3 4.466836-3 2.320965+3 5.069907-3 1.911132+3 5.754399-3 1.561952+3 6.531306-3 1.267110+3 7.328245-3 1.040900+3 8.317638-3 8.326725+2 9.549926-3 6.473351+2 1.096478-2 4.988849+2 1.244515-2 3.901663+2 1.412538-2 3.030829+2 1.603245-2 2.338294+2 1.840772-2 1.748434+2 2.113489-2 1.297140+2 2.426610-2 9.549353+1 2.786121-2 6.978021+1 3.198895-2 5.062259+1 3.715352-2 3.547646+1 4.315191-2 2.467153+1 5.069907-2 1.655126+1 6.000000-2 1.081742+1 7.161434-2 6.863498+0 8.709636-2 4.115445+0 1.096478-1 2.235067+0 2.187762-1 3.511944-1 2.722701-1 1.963740-1 3.235937-1 1.249124-1 3.801894-1 8.247822-2 4.365158-1 5.818121-2 5.011872-1 4.134529-2 5.688529-1 3.045192-2 6.382635-1 2.322201-2 7.161434-1 1.783287-2 8.222427-1 1.310343-2 9.015711-1 1.072363-2 9.772372-1 9.056359-3 1.096478+0 7.189131-3 1.230269+0 5.746956-3 1.380384+0 4.631000-3 1.621810+0 3.457125-3 1.840772+0 2.767406-3 2.065380+0 2.276258-3 2.398833+0 1.779736-3 2.786121+0 1.402429-3 3.198895+0 1.133736-3 3.715352+0 9.072896-4 4.365158+0 7.193533-4 5.128614+0 5.747333-4 6.095369+0 4.555069-4 7.328245+0 3.582752-4 8.810489+0 2.839706-4 1.083927+1 2.203017-4 1.348963+1 1.699315-4 1.717908+1 1.285351-4 2.290868+1 9.305256-5 2.985383+1 6.966064-5 4.315191+1 4.692354-5 6.456542+1 3.074324-5 1.071519+2 1.822963-5 2.041738+2 9.455371-6 4.073803+2 4.707062-6 1.621810+3 1.176209-6 1.000000+5 1.904600-8 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.148000-4 2.033200-4 1.000000+5 2.033200-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.148000-4 2.106500-8 1.000000+5 2.106500-8 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.148000-4 1.114589-4 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.396500-4 3.326140+5 2.630268-4 2.941976+5 2.786121-4 2.698425+5 2.930000-4 2.517904+5 3.350000-4 2.141964+5 3.589219-4 1.985721+5 4.897788-4 1.442769+5 5.623413-4 1.244753+5 6.382635-4 1.080240+5 7.300000-4 9.220920+4 8.222426-4 7.960502+4 9.332543-4 6.759693+4 1.059254-3 5.699192+4 1.216186-3 4.695079+4 1.400000-3 3.823952+4 1.621810-3 3.061114+4 1.883649-3 2.421719+4 2.162719-3 1.937740+4 2.511886-3 1.511181+4 2.900000-3 1.182348+4 3.349654-3 9.181004+3 3.845918-3 7.157629+3 4.466836-3 5.424984+3 5.188000-3 4.077153+3 5.956621-3 3.108577+3 6.800000-3 2.380424+3 7.852356-3 1.766476+3 9.015711-3 1.316665+3 1.035142-2 9.737248+2 1.188502-2 7.145439+2 1.364583-2 5.203007+2 1.566751-2 3.759299+2 1.798871-2 2.695206+2 2.065380-2 1.917528+2 2.371374-2 1.353832+2 2.722701-2 9.489728+1 3.126079-2 6.603296+1 3.589219-2 4.561222+1 4.168694-2 3.031504+1 4.841724-2 1.999302+1 5.688529-2 1.267035+1 6.683439-2 7.967970+0 8.035261-2 4.651812+0 9.885531-2 2.518520+0 1.288250-1 1.137057+0 1.972423-1 3.150340-1 2.426610-1 1.697501-1 2.884032-1 1.021342-1 3.349654-1 6.624109-2 3.845918-1 4.475046-2 4.365158-1 3.147107-2 4.897788-1 2.301000-2 5.495409-1 1.694432-2 6.095369-1 1.295030-2 6.760830-1 9.965358-3 7.498942-1 7.720103-3 8.709636-1 5.381810-3 9.332543-1 4.585423-3 9.885531-1 4.035935-3 1.059254+0 3.489888-3 1.148154+0 2.969256-3 1.250000+0 2.523400-3 1.380384+0 2.102868-3 1.737801+0 1.394537-3 1.949845+0 1.142636-3 2.238721+0 9.076793-4 2.600160+0 7.126577-4 3.019952+0 5.639347-4 3.507519+0 4.500083-4 4.073803+0 3.617131-4 4.786301+0 2.880461-4 5.623413+0 2.311160-4 6.760830+0 1.811544-4 8.128305+0 1.431112-4 1.000000+1 1.107000-4 1.216186+1 8.748063-5 1.548817+1 6.594375-5 1.972423+1 5.011396-5 2.371374+1 4.082093-5 3.000000+1 3.157500-5 4.315191+1 2.138046-5 6.456542+1 1.400788-5 1.071519+2 8.306486-6 2.041738+2 4.308259-6 4.073803+2 2.144749-6 1.621810+3 5.359408-7 1.000000+5 8.678400-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.396500-4 1.413500-4 1.000000+5 1.413500-4 1 96000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.396500-4 5.390600-9 1.000000+5 5.390600-9 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.396500-4 9.829461-5 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.364600-4 5.763641+5 1.372000-4 6.138080+5 1.378000-4 6.511680+5 1.385000-4 7.028920+5 1.407000-4 9.062640+5 1.415000-4 9.879840+5 1.423000-4 1.069204+6 1.430700-4 1.144566+6 1.437000-4 1.202536+6 1.442000-4 1.245492+6 1.448000-4 1.292816+6 1.455000-4 1.341684+6 1.462177-4 1.384000+6 1.470000-4 1.421076+6 1.479108-4 1.452769+6 1.488000-4 1.472648+6 1.498000-4 1.483456+6 1.505000-4 1.484768+6 1.515000-4 1.479316+6 1.525000-4 1.466924+6 1.541400-4 1.435798+6 1.560000-4 1.390576+6 1.584893-4 1.322322+6 1.621810-4 1.217954+6 1.670000-4 1.087692+6 1.717908-4 9.677510+5 1.760000-4 8.703240+5 1.810000-4 7.646160+5 1.880000-4 6.362160+5 2.041738-4 4.228534+5 2.137962-4 3.385572+5 2.238721-4 2.728903+5 2.330000-4 2.278488+5 2.400000-4 2.004332+5 2.454709-4 1.825228+5 2.520000-4 1.645500+5 2.580000-4 1.508052+5 2.635000-4 1.401820+5 2.691535-4 1.309427+5 2.754229-4 1.223906+5 2.818383-4 1.151912+5 2.884032-4 1.091781+5 2.951209-4 1.042009+5 3.019952-4 1.001210+5 3.100000-4 9.641960+4 3.180000-4 9.362560+4 3.273407-4 9.126247+4 3.350000-4 8.989480+4 3.470000-4 8.853960+4 3.600000-4 8.786480+4 3.758374-4 8.777149+4 4.000000-4 8.842560+4 4.600000-4 9.053360+4 4.954502-4 9.110859+4 5.300000-4 9.095920+4 5.650000-4 9.017520+4 6.025596-4 8.876983+4 6.382635-4 8.698932+4 6.850000-4 8.420360+4 7.328245-4 8.103860+4 7.852356-4 7.734797+4 8.413951-4 7.331752+4 9.015711-4 6.905671+4 9.700000-4 6.435960+4 1.047129-3 5.939416+4 1.135011-3 5.416848+4 1.230269-3 4.906720+4 1.333521-3 4.413856+4 1.462177-3 3.882488+4 1.610000-3 3.365828+4 1.757924-3 2.933958+4 1.927525-3 2.523938+4 2.150000-3 2.092360+4 2.371374-3 1.754441+4 2.600160-3 1.477135+4 2.851018-3 1.236188+4 3.162278-3 1.004366+4 3.507519-3 8.097542+3 3.890451-3 6.478695+3 4.315191-3 5.145664+3 4.786301-3 4.055102+3 5.308844-3 3.171704+3 5.888437-3 2.462800+3 6.531306-3 1.898550+3 7.244360-3 1.453331+3 8.035261-3 1.104949+3 9.015711-3 8.084147+2 1.011579-2 5.869420+2 1.135011-2 4.232877+2 1.273503-2 3.029980+2 1.396368-2 2.305207+2 1.566751-2 1.624892+2 1.757924-2 1.136959+2 2.000000-2 7.559632+1 2.264644-2 5.069759+1 2.570396-2 3.350899+1 2.951209-2 2.116847+1 3.388442-2 1.326976+1 3.935501-2 7.939510+0 4.623810-2 4.529545+0 5.495409-2 2.463405+0 6.606934-2 1.277000+0 8.609938-2 4.920806-1 1.396368-1 8.574448-2 1.717908-1 4.080303-2 2.041738-1 2.212514-2 2.371374-1 1.310353-2 2.722701-1 8.136546-3 3.090295-1 5.293974-3 3.467369-1 3.605607-3 3.890451-1 2.472925-3 4.365158-1 1.709018-3 4.841724-1 1.234384-3 5.370318-1 8.979980-4 5.888437-1 6.815822-4 6.382635-1 5.395622-4 6.998420-1 4.163698-4 7.673615-1 3.235744-4 8.035261-1 2.857483-4 8.609938-1 2.361027-4 9.120108-1 2.026833-4 9.549926-1 1.804305-4 1.000000+0 1.616500-4 1.047129+0 1.458258-4 1.109175+0 1.291630-4 1.174898+0 1.152136-4 1.258925+0 1.011983-4 1.364583+0 8.761719-5 1.513561+0 7.326267-5 1.819701+0 5.285994-5 2.018366+0 4.425700-5 2.344229+0 3.456172-5 2.722701+0 2.720224-5 3.126079+0 2.196443-5 3.630781+0 1.755716-5 4.265795+0 1.390441-5 5.011872+0 1.109674-5 5.956621+0 8.786126-6 7.161434+0 6.903838-6 8.609938+0 5.467132-6 1.059254+1 4.237721-6 1.318257+1 3.265776-6 1.678804+1 2.468445-6 2.264644+1 1.763023-6 2.985383+1 1.303220-6 4.315191+1 8.778496-7 6.456542+1 5.751384-7 1.071519+2 3.410433-7 2.065380+2 1.748360-7 4.120975+2 8.704451-8 1.640590+3 2.175233-8 1.000000+5 3.56320-10 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.364600-4 1.364600-4 1.000000+5 1.364600-4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.364600-4 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.252300-4 8.975523+5 1.254000-4 9.185640+5 1.261000-4 9.968700+5 1.280000-4 1.259904+6 1.290000-4 1.416618+6 1.298000-4 1.544970+6 1.305000-4 1.656000+6 1.311900-4 1.761491+6 1.318257-4 1.853245+6 1.325000-4 1.943082+6 1.331000-4 2.015292+6 1.337000-4 2.079462+6 1.343000-4 2.135052+6 1.350000-4 2.188788+6 1.358000-4 2.235624+6 1.366700-4 2.269823+6 1.373000-4 2.284548+6 1.380384-4 2.292184+6 1.391000-4 2.287428+6 1.402000-4 2.266662+6 1.414000-4 2.230242+6 1.428894-4 2.171399+6 1.447000-4 2.088048+6 1.470000-4 1.974576+6 1.500000-4 1.826670+6 1.548817-4 1.602365+6 1.600000-4 1.392936+6 1.650000-4 1.211466+6 1.705000-4 1.036350+6 1.778279-4 8.414621+5 1.905461-4 5.959705+5 1.980000-4 4.949610+5 2.041738-4 4.288956+5 2.113489-4 3.676038+5 2.170000-4 3.286416+5 2.220000-4 2.997234+5 2.280000-4 2.707416+5 2.330000-4 2.506020+5 2.391700-4 2.299440+5 2.450000-4 2.139960+5 2.500000-4 2.026416+5 2.560000-4 1.914036+5 2.620000-4 1.823604+5 2.670000-4 1.762350+5 2.730000-4 1.703052+5 2.800000-4 1.650096+5 2.880000-4 1.606578+5 2.951209-4 1.579685+5 3.030000-4 1.559820+5 3.126079-4 1.546002+5 3.235937-4 1.540093+5 3.388442-4 1.543122+5 3.630781-4 1.561339+5 4.073803-4 1.596970+5 4.365158-4 1.608310+5 4.677351-4 1.608477+5 4.954502-4 1.598463+5 5.248075-4 1.578846+5 5.623413-4 1.544049+5 6.000000-4 1.501086+5 6.382635-4 1.451453+5 6.850000-4 1.386798+5 7.328245-4 1.318844+5 7.852356-4 1.244120+5 8.511380-4 1.153493+5 9.200000-4 1.063938+5 1.000000-3 9.682320+4 1.083927-3 8.774648+4 1.190000-3 7.764960+4 1.303167-3 6.836295+4 1.412538-3 6.069233+4 1.570000-3 5.146218+4 1.730000-3 4.385784+4 1.883649-3 3.789464+4 2.089296-3 3.147922+4 2.317395-3 2.593963+4 2.600160-3 2.072823+4 2.917427-3 1.640840+4 3.235937-3 1.319001+4 3.600000-3 1.045350+4 4.027170-3 8.115052+3 4.466836-3 6.372278+3 4.954502-3 4.965835+3 5.495409-3 3.841664+3 6.095369-3 2.950197+3 6.760830-3 2.249026+3 7.498942-3 1.702161+3 8.317638-3 1.279476+3 9.225714-3 9.554122+2 1.035142-2 6.856347+2 1.161449-2 4.885778+2 1.303167-2 3.454689+2 1.428894-2 2.601275+2 1.603245-2 1.810269+2 1.798871-2 1.250351+2 2.041738-2 8.257612+1 2.317395-2 5.415766+1 2.630268-2 3.526086+1 3.000000-2 2.241397+1 3.427678-2 1.405808+1 3.935501-2 8.603751+0 4.518559-2 5.224171+0 5.308844-2 2.896144+0 6.606934-2 1.288380+0 1.303167-1 1.018681-1 1.584893-1 4.927740-2 1.862087-1 2.728971-2 2.137962-1 1.655719-2 2.426610-1 1.054475-2 2.722701-1 7.044340-3 3.054921-1 4.740710-3 3.388442-1 3.342773-3 3.758374-1 2.374228-3 4.120975-1 1.763219-3 4.518559-1 1.318177-3 4.954502-1 9.924582-4 5.432503-1 7.528944-4 5.956621-1 5.756433-4 6.456542-1 4.584556-4 7.079458-1 3.561619-4 8.222427-1 2.395842-4 8.810489-1 2.001372-4 9.332543-1 1.734365-4 9.772372-1 1.555305-4 1.023293+0 1.402925-4 1.083927+0 1.241688-4 1.161449+0 1.081110-4 1.250000+0 9.403400-5 1.364583+0 8.021044-5 1.819701+0 4.825513-5 2.018366+0 4.041052-5 2.344229+0 3.155782-5 2.722701+0 2.483797-5 3.126079+0 2.005541-5 3.630781+0 1.603127-5 4.265795+0 1.269633-5 5.011872+0 1.013289-5 5.956621+0 8.022514-6 7.079458+0 6.397967-6 8.511380+0 5.064129-6 1.047129+1 3.923736-6 1.303167+1 3.022460-6 1.678804+1 2.253894-6 2.264644+1 1.609789-6 2.985383+1 1.189928-6 4.315191+1 8.015526-7 6.456542+1 5.251475-7 1.071519+2 3.114073-7 2.041738+2 1.615130-7 4.073803+2 8.040541-8 1.621810+3 2.009260-8 1.000000+5 3.25350-10 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.252300-4 1.252300-4 1.000000+5 1.252300-4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.252300-4 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.348000-5 5.562357+5 1.364583-5 5.497642+5 1.428894-5 5.314690+5 1.480000-5 5.204040+5 1.531087-5 5.128005+5 1.584893-5 5.089853+5 1.630000-5 5.090100+5 1.678804-5 5.122446+5 1.730000-5 5.193420+5 1.778279-5 5.294985+5 1.830000-5 5.440470+5 1.883649-5 5.630234+5 1.927525-5 5.814603+5 1.990000-5 6.123060+5 2.055000-5 6.500580+5 2.113489-5 6.890282+5 2.190000-5 7.471470+5 2.270000-5 8.166330+5 2.371374-5 9.174023+5 2.500000-5 1.065615+6 2.660725-5 1.281991+6 2.985383-5 1.811800+6 3.162278-5 2.140641+6 3.311311-5 2.430959+6 3.467369-5 2.740746+6 3.630781-5 3.066363+6 3.758374-5 3.317901+6 3.900000-5 3.590430+6 4.073803-5 3.911530+6 4.265795-5 4.248962+6 4.466836-5 4.581649+6 4.677351-5 4.908519+6 4.900000-5 5.231130+6 5.150000-5 5.564400+6 5.400000-5 5.864670+6 5.650000-5 6.128310+6 5.900000-5 6.349980+6 6.150000-5 6.523140+6 6.400000-5 6.642240+6 6.606934-5 6.698149+6 6.839116-5 6.715509+6 7.079458-5 6.685251+6 7.328245-5 6.605867+6 7.585776-5 6.477777+6 7.852356-5 6.304191+6 8.128305-5 6.090334+6 8.413951-5 5.841020+6 8.709636-5 5.559987+6 9.015711-5 5.251288+6 9.332543-5 4.920336+6 9.650000-5 4.583640+6 9.950000-5 4.264680+6 1.023293-4 3.965961+6 1.050000-4 3.688680+6 1.080000-4 3.386250+6 1.110000-4 3.096300+6 1.135011-4 2.865487+6 1.170000-4 2.560485+6 1.205000-4 2.277729+6 1.240000-4 2.018868+6 1.277300-4 1.769284+6 1.315000-4 1.543023+6 1.350000-4 1.354734+6 1.391900-4 1.155138+6 1.430000-4 9.962640+5 1.465000-4 8.674290+5 1.500000-4 7.532100+5 1.531087-4 6.628298+5 1.566751-4 5.708395+5 1.603245-4 4.884873+5 1.640590-4 4.152356+5 1.678804-4 3.504288+5 1.705000-4 3.112710+5 1.740000-4 2.649441+5 1.778279-4 2.213264+5 1.810000-4 1.901466+5 1.850000-4 1.564500+5 1.890000-4 1.282011+5 1.930000-4 1.046343+5 1.972423-4 8.404394+4 2.020000-4 6.555540+4 2.120000-4 3.919800+4 2.150000-4 3.390420+4 2.170000-4 3.092280+4 2.190200-4 2.831676+4 2.213095-4 2.581642+4 2.230000-4 2.425524+4 2.250000-4 2.269641+4 2.265000-4 2.171799+4 2.280000-4 2.089191+4 2.295000-4 2.020875+4 2.307000-4 1.975905+4 2.323000-4 1.928529+4 2.340000-4 1.892946+4 2.358000-4 1.870638+4 2.373000-4 1.863246+4 2.391700-4 1.867218+4 2.407000-4 1.880556+4 2.426610-4 1.909868+4 2.445000-4 1.948809+4 2.465000-4 2.002623+4 2.490000-4 2.085018+4 2.520000-4 2.203461+4 2.560000-4 2.389512+4 2.710000-4 3.275610+4 2.770000-4 3.675360+4 2.830000-4 4.084950+4 2.884032-4 4.455822+4 2.930000-4 4.768770+4 2.985383-4 5.138491+4 3.050000-4 5.555880+4 3.100000-4 5.867070+4 3.162278-4 6.239031+4 3.235937-4 6.653421+4 3.311311-4 7.045053+4 3.390000-4 7.418850+4 3.470500-4 7.767261+4 3.550000-4 8.078070+4 3.650000-4 8.419800+4 3.758374-4 8.733275+4 3.850000-4 8.958780+4 3.970000-4 9.198960+4 4.073803-4 9.358241+4 4.216965-4 9.518419+4 4.365158-4 9.619661+4 4.518559-4 9.663826+4 4.677351-4 9.653901+4 4.841724-4 9.593808+4 5.069907-4 9.446603+4 5.308844-4 9.235690+4 5.559043-4 8.964448+4 5.821032-4 8.643659+4 6.165950-4 8.192122+4 6.531306-4 7.700680+4 6.918310-4 7.181693+4 7.328245-4 6.650398+4 7.762471-4 6.117146+4 8.222426-4 5.591198+4 8.709636-4 5.080583+4 9.332543-4 4.497425+4 1.000000-3 3.952770+4 1.071519-3 3.450062+4 1.148154-3 2.991473+4 1.230269-3 2.577631+4 1.333521-3 2.150456+4 1.445440-3 1.780576+4 1.584893-3 1.423527+4 1.717908-3 1.162317+4 1.862087-3 9.429397+3 2.041738-3 7.370561+3 2.238721-3 5.719614+3 2.454709-3 4.406224+3 2.691535-3 3.369897+3 2.951209-3 2.558729+3 3.235937-3 1.929647+3 3.548134-3 1.445612+3 3.890451-3 1.075956+3 4.315191-3 7.659659+2 4.786301-3 5.411671+2 5.308844-3 3.792795+2 5.821032-3 2.746497+2 6.382635-3 1.974152+2 7.079458-3 1.351616+2 7.943282-3 8.804255+1 8.912509-3 5.698410+1 1.000000-2 3.662951+1 1.122018-2 2.339807+1 1.258925-2 1.484232+1 1.380384-2 1.025527+1 1.548817-2 6.407490+0 1.757924-2 3.789263+0 2.018366-2 2.119079+0 2.344229-2 1.121056+0 2.722701-2 5.885633-1 3.162278-2 3.068208-1 3.801894-2 1.364479-1 4.731513-2 5.168528-2 9.332543-2 2.492888-3 1.188502-1 8.518135-4 1.380384-1 4.412596-4 1.548817-1 2.676893-4 1.757924-1 1.556491-4 2.018366-1 8.681787-5 2.290868-1 5.115087-5 2.570396-1 3.183823-5 2.884032-1 1.996489-5 3.198895-1 1.321278-5 3.548134-1 8.808579-6 3.935501-1 5.917923-6 4.315191-1 4.184414-6 4.731513-1 2.978846-6 5.248075-1 2.048081-6 5.688529-1 1.540775-6 6.025596-1 1.263994-6 6.456542-1 1.007546-6 6.998420-1 7.797241-7 7.673615-1 5.863696-7 8.000000-1 5.164400-7 8.511380-1 4.219311-7 8.912509-1 3.649864-7 9.332543-1 3.178430-7 9.660509-1 2.881294-7 1.000000+0 2.626900-7 1.035142+0 2.410285-7 1.071519+0 2.224325-7 1.109175+0 2.063290-7 1.161449+0 1.879504-7 1.216186+0 1.723302-7 1.303167+0 1.525022-7 1.412538+0 1.333157-7 1.500000+0 1.209800-7 1.883649+0 8.093537-8 2.065380+0 6.920154-8 2.398833+0 5.410613-8 2.786121+0 4.263650-8 3.198895+0 3.446813-8 3.715352+0 2.758353-8 4.365158+0 2.186993-8 5.128614+0 1.747315-8 6.095369+0 1.384811-8 7.328245+0 1.089209-8 8.810489+0 8.633290-9 1.083927+1 6.697614-9 1.348963+1 5.166139-9 1.698244+1 3.959164-9 2.264644+1 2.865018-9 2.985383+1 2.117789-9 4.315191+1 1.426570-9 6.531306+1 9.23473-10 1.096478+2 5.41302-10 2.113489+2 2.77572-10 4.216965+2 1.38213-10 1.678804+3 3.45418-11 1.000000+5 5.79040-13 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.348000-5 1.348000-5 1.000000+5 1.348000-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.348000-5 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 1.195000-5 9.404946+5 1.216186-5 9.169868+5 1.273503-5 8.703621+5 1.318257-5 8.424845+5 1.365000-5 8.211640+5 1.412538-5 8.067754+5 1.445440-5 8.011267+5 1.490000-5 7.986920+5 1.531087-5 8.014149+5 1.570000-5 8.081360+5 1.621810-5 8.231488+5 1.670000-5 8.430600+5 1.717908-5 8.683250+5 1.770000-5 9.018120+5 1.830000-5 9.478440+5 1.883649-5 9.955938+5 1.950000-5 1.063128+6 2.018366-5 1.142276+6 2.089296-5 1.234513+6 2.187762-5 1.379359+6 2.300000-5 1.567720+6 2.454709-5 1.866137+6 2.818383-5 2.720636+6 3.000000-5 3.205932+6 3.162278-5 3.656274+6 3.311311-5 4.073349+6 3.467369-5 4.505704+6 3.589219-5 4.836017+6 3.758374-5 5.278068+6 3.935501-5 5.717719+6 4.120975-5 6.148585+6 4.315191-5 6.567222+6 4.570882-5 7.073747+6 4.841724-5 7.558545+6 5.080000-5 7.937960+6 5.370318-5 8.339214+6 5.623413-5 8.630208+6 5.821032-5 8.812169+6 6.070000-5 8.977520+6 6.309573-5 9.067549+6 6.531306-5 9.091137+6 6.760830-5 9.055288+6 7.000000-5 8.954800+6 7.244360-5 8.792859+6 7.500000-5 8.570920+6 7.762471-5 8.298131+6 8.035261-5 7.975419+6 8.317638-5 7.609050+6 8.609938-5 7.207036+6 8.912509-5 6.776778+6 9.225714-5 6.322833+6 9.500000-5 5.922360+6 9.800000-5 5.486720+6 1.011579-4 5.037305+6 1.040000-4 4.644720+6 1.071519-4 4.225758+6 1.102500-4 3.833117+6 1.135011-4 3.445604+6 1.170000-4 3.059716+6 1.205000-4 2.706368+6 1.240000-4 2.384720+6 1.277300-4 2.076104+6 1.315000-4 1.798880+6 1.350000-4 1.570472+6 1.390000-4 1.340036+6 1.428894-4 1.144169+6 1.465000-4 9.850160+5 1.500000-4 8.496040+5 1.531087-4 7.432486+5 1.566751-4 6.355829+5 1.604600-4 5.363081+5 1.640590-4 4.547343+5 1.678804-4 3.802800+5 1.705000-4 3.356664+5 1.740000-4 2.832592+5 1.770000-4 2.441972+5 1.800000-4 2.099652+5 1.835000-4 1.754932+5 1.865000-4 1.501204+5 1.905461-4 1.212322+5 1.940000-4 1.007840+5 1.995262-4 7.486690+4 2.060000-4 5.324560+4 2.090000-4 4.584880+4 2.113489-4 4.104169+4 2.137962-4 3.685773+4 2.160000-4 3.374252+4 2.180000-4 3.140256+4 2.198000-4 2.966076+4 2.213095-4 2.844669+4 2.230000-4 2.733564+4 2.245000-4 2.655512+4 2.260000-4 2.595520+4 2.275000-4 2.552420+4 2.292300-4 2.522240+4 2.307000-4 2.511904+4 2.323000-4 2.515492+4 2.341500-4 2.537474+4 2.358000-4 2.571940+4 2.380000-4 2.637724+4 2.400000-4 2.715324+4 2.426610-4 2.841846+4 2.454709-4 3.000646+4 2.490000-4 3.231096+4 2.650000-4 4.559800+4 2.710000-4 5.120720+4 2.770000-4 5.689960+4 2.830000-4 6.258600+4 2.884032-4 6.764224+4 2.930000-4 7.184960+4 3.000000-4 7.801160+4 3.060000-4 8.302280+4 3.126079-4 8.825383+4 3.198895-4 9.364954+4 3.273407-4 9.870970+4 3.349654-4 1.033939+5 3.440000-4 1.083808+5 3.540000-4 1.132136+5 3.630781-4 1.169513+5 3.758374-4 1.212913+5 3.890451-4 1.247333+5 4.027170-4 1.273046+5 4.168694-4 1.291248+5 4.315191-4 1.301328+5 4.466836-4 1.303641+5 4.623810-4 1.298694+5 4.786301-4 1.287109+5 5.012500-4 1.262591+5 5.248075-4 1.230942+5 5.495409-4 1.191635+5 5.754399-4 1.146177+5 6.095369-4 1.083079+5 6.456542-4 1.015514+5 6.839116-4 9.448793+4 7.244360-4 8.730488+4 7.673615-4 8.014435+4 8.128305-4 7.312276+4 8.637100-4 6.597517+4 9.225714-4 5.859815+4 9.885531-4 5.137803+4 1.059254-3 4.474637+4 1.135011-3 3.872268+4 1.230269-3 3.246020+4 1.333521-3 2.699691+4 1.445440-3 2.228716+4 1.584893-3 1.775698+4 1.717908-3 1.445509+4 1.862087-3 1.169237+4 2.041738-3 9.108402+3 2.238721-3 7.044150+3 2.454709-3 5.408448+3 2.691535-3 4.123442+3 2.951209-3 3.122255+3 3.235937-3 2.347683+3 3.548134-3 1.753204+3 3.890451-3 1.300593+3 4.315191-3 9.224956+2 4.731513-3 6.755268+2 5.069907-3 5.317413+2 5.495409-3 3.990114+2 6.095369-3 2.736670+2 7.161434-3 1.511696+2 8.035261-3 9.824735+1 9.015711-3 6.327044+1 1.011579-2 4.044227+1 1.135011-2 2.569004+1 1.273503-2 1.620238+1 1.396368-2 1.113963+1 1.566751-2 6.917563+0 1.778279-2 4.062888+0 2.041738-2 2.254908+0 2.344229-2 1.243221+0 2.722701-2 6.472428-1 3.126079-2 3.519566-1 3.715352-2 1.629949-1 4.570882-2 6.415509-2 6.237348-2 1.568041-2 9.332543-2 2.518477-3 1.174898-1 8.898848-4 1.348963-1 4.797193-4 1.513561-1 2.883801-4 1.717908-1 1.661678-4 1.927525-1 1.013619-4 2.187762-1 5.926073-5 2.426610-1 3.845834-5 2.691535-1 2.514727-5 2.951209-1 1.736300-5 3.235937-1 1.207637-5 3.548134-1 8.464502-6 3.845918-1 6.243442-6 4.168694-1 4.634123-6 4.518559-1 3.462533-6 4.897788-1 2.605846-6 5.308844-1 1.975863-6 5.688529-1 1.568724-6 6.025596-1 1.300827-6 6.456542-1 1.047621-6 6.918310-1 8.492105-7 7.498942-1 6.695233-7 8.035261-1 5.486167-7 8.511380-1 4.626525-7 9.015711-1 3.927782-7 9.440609-1 3.468043-7 9.885531-1 3.084137-7 1.035142+0 2.765557-7 1.083927+0 2.498513-7 1.135011+0 2.271745-7 1.202264+0 2.032091-7 1.303167+0 1.755409-7 1.428894+0 1.498196-7 1.513561+0 1.359264-7 1.840772+0 9.613916-8 2.044000+0 8.038500-8 2.371374+0 6.292803-8 2.754229+0 4.955831-8 3.162278+0 4.003983-8 3.672823+0 3.202383-8 4.315191+0 2.537617-8 5.069907+0 2.026370-8 6.025596+0 1.605197-8 7.244360+0 1.261934-8 8.709636+0 9.997625-9 1.071519+1 7.752780-9 1.333521+1 5.977371-9 1.698244+1 4.519663-9 2.264644+1 3.270595-9 2.985383+1 2.417655-9 4.315191+1 1.628478-9 6.456542+1 1.066984-9 1.059254+2 6.40192-10 2.000000+2 3.35100-10 3.981072+2 1.67186-10 1.584893+3 4.17749-11 1.000000+5 6.61010-13 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 1.195000-5 1.195000-5 1.000000+5 1.195000-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 1.195000-5 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.069000-5 3.813180+5 6.095369-5 3.766526+5 6.190000-5 3.579400+5 6.683439-5 2.677931+5 6.918310-5 2.359819+5 7.161434-5 2.091908+5 7.413102-5 1.866798+5 7.673615-5 1.677247+5 7.943282-5 1.516788+5 8.222426-5 1.379877+5 8.511380-5 1.261925+5 8.912509-5 1.127803+5 9.332543-5 1.014214+5 9.900000-5 8.918920+4 1.047129-4 7.949557+4 1.100000-4 7.228360+4 1.161449-4 6.554882+4 1.220000-4 6.041280+4 1.288250-4 5.560836+4 1.364583-4 5.131575+4 1.462177-4 4.693806+4 1.621810-4 4.141328+4 1.862087-4 3.532784+4 2.570396-4 2.482986+4 3.273407-4 1.889213+4 3.801894-4 1.584175+4 4.570882-4 1.266344+4 5.432503-4 1.018070+4 6.382635-4 8.250804+3 7.585776-4 6.538304+3 9.120108-4 5.060276+3 1.096478-3 3.883843+3 1.333521-3 2.907315+3 1.621810-3 2.158842+3 2.018366-3 1.535098+3 2.540973-3 1.063816+3 3.273407-3 7.048169+2 4.120975-3 4.812328+2 5.128614-3 3.325135+2 6.309573-3 2.325250+2 7.673615-3 1.646449+2 9.332543-3 1.157096+2 1.059254-2 9.164313+1 1.288250-2 6.341267+1 1.584893-2 4.261182+1 2.041738-2 2.597583+1 2.483133-2 1.760943+1 2.951209-2 1.240763+1 3.467369-2 8.874077+0 4.120975-2 6.150143+0 4.954502-2 4.126628+0 5.956621-2 2.747995+0 7.244360-2 1.769993+0 8.609938-2 1.192402+0 1.071519-1 7.168419-1 1.396368-1 3.838261-1 2.691535-1 8.011541-2 3.311311-1 4.918225-2 3.981072-1 3.209893-2 4.677351-1 2.224610-2 5.370318-1 1.635203-2 6.237348-1 1.180141-2 7.244360-1 8.581016-3 8.511380-1 6.139247-3 9.660509-1 4.752914-3 1.174898+0 3.238410-3 1.318257+0 2.598093-3 1.500000+0 2.044200-3 1.698244+0 1.636173-3 1.927525+0 1.313723-3 2.213095+0 1.042607-3 2.540973+0 8.332773-4 2.951209+0 6.587170-4 3.427678+0 5.250064-4 4.000000+0 4.186700-4 4.677351+0 3.353289-4 5.495409+0 2.687716-4 6.531306+0 2.136451-4 7.852356+0 1.685340-4 9.660509+0 1.301915-4 1.174898+1 1.027603-4 1.462177+1 7.947139-5 1.819701+1 6.186103-5 2.317395+1 4.719976-5 3.000000+1 3.559700-5 4.315191+1 2.410494-5 6.456542+1 1.579218-5 1.071519+2 9.364557-6 2.065380+2 4.800803-6 4.120975+2 2.390121-6 1.640590+3 5.972845-7 1.000000+5 9.784000-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.069000-5 6.069000-5 1.000000+5 6.069000-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.069000-5 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.964000-5 6.479820+6 4.030000-5 6.244340+6 4.150000-5 5.798680+6 4.518559-5 4.619101+6 4.841724-5 3.818007+6 5.150000-5 3.199780+6 5.432503-5 2.730403+6 5.821032-5 2.207992+6 7.161434-5 1.148486+6 8.000000-5 8.161000+5 9.120108-5 5.494452+5 1.303167-4 1.889496+5 1.513561-4 1.214993+5 1.720000-4 8.386960+4 1.927525-4 6.068641+4 2.150000-4 4.483660+4 2.350000-4 3.527540+4 2.540973-4 2.876444+4 2.730000-4 2.400260+4 2.917427-4 2.042353+4 3.150000-4 1.707404+4 3.350000-4 1.487628+4 3.589219-4 1.284048+4 3.845918-4 1.116897+4 4.120975-4 9.792798+3 4.415704-4 8.649865+3 4.731513-4 7.695405+3 5.069907-4 6.895115+3 5.432503-4 6.218117+3 5.888437-4 5.550351+3 6.456542-4 4.912830+3 7.161434-4 4.317602+3 8.128305-4 3.716159+3 1.333521-3 2.117214+3 1.584893-3 1.727825+3 1.862087-3 1.418746+3 2.162719-3 1.173435+3 2.511886-3 9.637211+2 2.917427-3 7.857134+2 3.388442-3 6.357202+2 3.890451-3 5.190882+2 4.466836-3 4.208098+2 5.011872-3 3.511243+2 5.754399-3 2.800190+2 6.531306-3 2.259875+2 7.413102-3 1.811368+2 8.413951-3 1.442012+2 9.660509-3 1.115959+2 1.148154-2 8.037332+1 1.333521-2 6.001951+1 1.531087-2 4.550481+1 1.737801-2 3.506750+1 1.949845-2 2.749357+1 2.238721-2 2.032728+1 2.570396-2 1.491244+1 2.951209-2 1.086003+1 3.427678-2 7.643855+0 3.981072-2 5.338641+0 4.623810-2 3.700548+0 5.432503-2 2.474736+0 6.382635-2 1.642812+0 7.673615-2 1.020277+0 9.440609-2 5.921581-1 1.188502-1 3.208165-1 2.238721-1 5.866913-2 2.754229-1 3.384844-2 3.273407-1 2.154328-2 3.845918-1 1.423336-2 4.415705-1 1.004626-2 5.069907-1 7.143800-3 5.754399-1 5.265122-3 6.456542-1 4.017978-3 7.244360-1 3.087748-3 8.413951-1 2.213469-3 9.225714-1 1.814656-3 1.000000+0 1.535600-3 1.135011+0 1.193793-3 1.273503+0 9.564717-4 1.428894+0 7.724480-4 1.659587+0 5.897106-4 1.883649+0 4.727048-4 2.137962+0 3.819400-4 2.483133+0 2.991638-4 2.884032+0 2.361676-4 3.311311+0 1.912606-4 3.845918+0 1.533156-4 4.518559+0 1.217579-4 5.308844+0 9.743696-5 6.309573+0 7.734005-5 7.585776+0 6.092100-5 9.225714+0 4.766791-5 1.122018+1 3.756015-5 1.396368+1 2.900756-5 1.737801+1 2.254623-5 2.290868+1 1.653693-5 2.985383+1 1.237979-5 4.315191+1 8.339148-6 6.456542+1 5.463542-6 1.071519+2 3.239752-6 2.041738+2 1.680351-6 4.073803+2 8.365211-7 1.621810+3 2.090344-7 1.000000+5 3.384800-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.964000-5 3.964000-5 1.000000+5 3.964000-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.964000-5 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.700000-5 1.604720+7 2.786121-5 1.425131+7 2.951209-5 1.158560+7 3.126079-5 9.494522+6 3.388442-5 7.251433+6 4.300000-5 3.307032+6 5.069907-5 1.917701+6 5.559043-5 1.422553+6 6.025596-5 1.103118+6 6.500000-5 8.750760+5 6.918310-5 7.279073+5 7.328245-5 6.176296+5 7.800000-5 5.202720+5 8.317638-5 4.393263+5 8.810489-5 3.801200+5 9.332543-5 3.310416+5 9.900000-5 2.891956+5 1.059254-4 2.496399+5 1.135011-4 2.165171+5 1.220000-4 1.880908+5 1.303167-4 1.665286+5 1.400000-4 1.469356+5 1.500000-4 1.311728+5 1.621810-4 1.162277+5 1.778279-4 1.016093+5 2.000000-4 8.636280+4 2.264644-4 7.328494+4 2.630268-4 6.064810+4 4.265795-4 3.336003+4 5.248075-4 2.564188+4 6.237348-4 2.045801+4 7.413102-4 1.619850+4 8.709636-4 1.293389+4 1.023293-3 1.025015+4 1.202264-3 8.062291+3 1.412538-3 6.293474+3 1.659587-3 4.874099+3 1.949845-3 3.747992+3 2.290868-3 2.860830+3 2.691535-3 2.167426+3 3.198895-3 1.596949+3 3.715352-3 1.217231+3 4.315191-3 9.212219+2 5.011872-3 6.919910+2 5.754399-3 5.276729+2 6.606934-3 3.995136+2 7.585776-3 3.001772+2 8.709636-3 2.239228+2 1.011579-2 1.617386+2 1.161449-2 1.190360+2 1.333521-2 8.695054+1 1.513561-2 6.473365+1 1.717908-2 4.782296+1 1.972423-2 3.410852+1 2.264644-2 2.414468+1 2.600160-2 1.696442+1 3.000000-2 1.168092+1 3.467369-2 7.942916+0 4.027170-2 5.289134+0 4.677351-2 3.494308+0 5.495409-2 2.218262+0 6.382635-2 1.444482+0 7.585776-2 8.738915-1 9.225714-2 4.906276-1 1.122019-1 2.735130-1 2.000000-1 4.806600-2 2.454709-1 2.610068-2 2.884032-1 1.625079-2 3.349654-1 1.054115-2 3.845918-1 7.122135-3 4.365158-1 5.009108-3 4.897788-1 3.662600-3 5.495409-1 2.697165-3 6.095369-1 2.061527-3 6.760830-1 1.586664-3 7.498942-1 1.229459-3 8.709636-1 8.573201-4 9.332543-1 7.305151-4 9.885531-1 6.429948-4 1.059254+0 5.559998-4 1.148154+0 4.730578-4 1.250000+0 4.020300-4 1.380384+0 3.350308-4 1.737801+0 2.221894-4 1.949845+0 1.820477-4 2.238721+0 1.445963-4 2.600160+0 1.135306-4 3.019952+0 8.984545-5 3.507519+0 7.169433-5 4.073803+0 5.762714-5 4.786301+0 4.589118-5 5.623413+0 3.682130-5 6.760830+0 2.886018-5 8.128305+0 2.280018-5 1.000000+1 1.763600-5 1.216186+1 1.393724-5 1.548817+1 1.050583-5 1.972423+1 7.984057-6 2.371374+1 6.503463-6 3.000000+1 5.030400-6 4.315191+1 3.406314-6 6.456542+1 2.231713-6 1.071519+2 1.323351-6 2.041738+2 6.863889-7 4.073803+2 3.416927-7 1.621810+3 8.538503-8 1.000000+5 1.382600-9 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.700000-5 2.700000-5 1.000000+5 2.700000-5 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.700000-5 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.650000-6 2.740658+6 4.731513-6 2.810627+6 4.900000-6 2.930652+6 5.128614-6 3.071042+6 5.370318-6 3.194324+6 5.700000-6 3.329376+6 6.025596-6 3.430802+6 6.382635-6 3.516775+6 6.760830-6 3.581772+6 7.244360-6 3.633585+6 7.762471-6 3.661051+6 8.317638-6 3.664358+6 8.912509-6 3.641726+6 9.549926-6 3.592510+6 1.023293-5 3.517454+6 1.083927-5 3.432931+6 1.150000-5 3.324760+6 1.219000-5 3.199083+6 1.273503-5 3.091864+6 1.348963-5 2.934017+6 1.420000-5 2.779812+6 1.496236-5 2.611698+6 1.570000-5 2.449940+6 1.650000-5 2.278452+6 1.737801-5 2.097572+6 1.840772-5 1.898208+6 1.950000-5 1.704436+6 2.070000-5 1.513524+6 2.213095-5 1.314733+6 2.371374-5 1.128691+6 2.580000-5 9.297640+5 2.851018-5 7.326827+5 3.162278-5 5.680570+5 3.507519-5 4.375096+5 3.890451-5 3.342943+5 4.216965-5 2.694054+5 4.570882-5 2.156722+5 4.900000-5 1.768896+5 5.308844-5 1.398121+5 5.800000-5 1.068844+5 6.309573-5 8.218713+4 6.918310-5 6.125714+4 7.673615-5 4.368911+4 8.511380-5 3.091021+4 9.332543-5 2.253716+4 1.011579-4 1.695965+4 1.083927-4 1.321020+4 1.174898-4 9.805915+3 1.479108-4 4.110226+3 1.566751-4 3.325628+3 1.640590-4 2.822565+3 1.717908-4 2.410067+3 1.798871-4 2.072723+3 1.862087-4 1.861167+3 1.929400-4 1.675231+3 2.000000-4 1.515268+3 2.065380-4 1.410915+3 2.137962-4 1.315545+3 2.213095-4 1.234679+3 2.290868-4 1.166017+3 2.371374-4 1.107687+3 2.454709-4 1.058157+3 2.540973-4 1.016164+3 2.630268-4 9.806553+2 2.754229-4 9.418996+2 2.884032-4 9.114066+2 3.000000-4 8.908040+2 3.162278-4 8.727409+2 3.349654-4 8.590419+2 3.672823-4 8.451215+2 4.027170-4 8.336500+2 4.518559-4 8.075839+2 4.954502-4 7.818546+2 5.370318-4 7.541219+2 5.821032-4 7.222022+2 6.237348-4 6.916685+2 6.760830-4 6.529958+2 7.328245-4 6.119641+2 8.000000-4 5.657200+2 8.709636-4 5.204561+2 9.440609-4 4.776649+2 1.023293-3 4.355965+2 1.122018-3 3.890958+2 1.230269-3 3.448815+2 1.348963-3 3.034304+2 1.479108-3 2.650690+2 1.621810-3 2.300187+2 1.778279-3 1.982964+2 1.972423-3 1.665370+2 2.264644-3 1.310447+2 2.454709-3 1.131459+2 2.660725-3 9.682598+1 2.917427-3 8.044421+1 3.349654-3 6.050377+1 3.758374-3 4.736672+1 4.168694-3 3.773610+1 4.570882-3 3.062531+1 5.069907-3 2.404182+1 5.623413-3 1.873790+1 6.237348-3 1.449903+1 6.918310-3 1.113913+1 7.673615-3 8.499019+0 8.511380-3 6.440474+0 9.549926-3 4.696513+0 1.083927-2 3.291350+0 1.216186-2 2.364640+0 1.355400-2 1.720076+0 1.513561-2 1.233353+0 1.698244-2 8.653254-1 1.927525-2 5.813059-1 2.213095-2 3.736431-1 2.511886-2 2.473940-1 2.884032-2 1.565667-1 3.311311-2 9.831387-2 3.845918-2 5.891784-2 4.466836-2 3.504688-2 5.308844-2 1.909578-2 6.382635-2 9.916614-3 8.222426-2 3.990844-3 1.412538-1 5.656993-4 1.737801-1 2.693571-4 2.065380-1 1.461382-4 2.398833-1 8.659979-5 2.754229-1 5.380782-5 3.126079-1 3.503339-5 3.507519-1 2.387721-5 3.935501-1 1.639040-5 4.365158-1 1.176084-5 4.841724-1 8.497529-6 5.370318-1 6.184026-6 5.888437-1 4.695417-6 6.309573-1 3.842857-6 6.918310-1 2.964432-6 7.585776-1 2.303685-6 8.035261-1 1.973229-6 8.609938-1 1.632412-6 9.120108-1 1.402696-6 9.549926-1 1.249507-6 1.000000+0 1.120000-6 1.047129+0 1.010686-6 1.109175+0 8.954507-7 1.174898+0 7.988624-7 1.258925+0 7.016839-7 1.364583+0 6.073364-7 1.531087+0 4.972843-7 1.819701+0 3.662551-7 2.018366+0 3.066405-7 2.344229+0 2.394413-7 2.722701+0 1.884582-7 3.126079+0 1.521768-7 3.630781+0 1.216441-7 4.265795+0 9.633938-8 5.011872+0 7.688774-8 5.956621+0 6.087535-8 7.079458+0 4.854828-8 8.511380+0 3.842708-8 1.047129+1 2.977381-8 1.303167+1 2.293443-8 1.678804+1 1.710305-8 2.264644+1 1.221536-8 2.985383+1 9.029355-9 4.315191+1 6.082286-9 6.456542+1 3.984828-9 1.071519+2 2.362930-9 2.065380+2 1.211356-9 4.120975+2 6.03087-10 1.640590+3 1.50713-10 1.000000+5 2.46880-12 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.650000-6 4.650000-6 1.000000+5 4.650000-6 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.650000-6 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 3.930000-6 6.129062+6 4.000000-6 6.204180+6 4.200000-6 6.354960+6 4.466836-6 6.492110+6 4.731513-6 6.571771+6 5.100000-6 6.616020+6 5.432503-6 6.609851+6 5.888437-6 6.554841+6 6.382635-6 6.456135+6 6.918310-6 6.317440+6 7.585776-6 6.117950+6 8.222426-6 5.910048+6 8.912509-6 5.670612+6 9.549926-6 5.441125+6 1.023293-5 5.186254+6 1.100000-5 4.894224+6 1.174898-5 4.606349+6 1.250000-5 4.318590+6 1.318257-5 4.059039+6 1.396368-5 3.769009+6 1.479108-5 3.474182+6 1.566751-5 3.177383+6 1.659587-5 2.883357+6 1.757924-5 2.597973+6 1.862087-5 2.324471+6 1.980000-5 2.049408+6 2.113489-5 1.780537+6 2.264644-5 1.523453+6 2.454709-5 1.260742+6 2.660725-5 1.036743+6 2.951209-5 8.002783+5 3.300000-5 6.004500+5 3.589219-5 4.811498+5 3.935501-5 3.750071+5 4.300000-5 2.927436+5 4.623810-5 2.374962+5 5.011872-5 1.868975+5 5.400000-5 1.486596+5 5.821032-5 1.173729+5 6.382635-5 8.715319+4 7.079458-5 6.183902+4 7.943282-5 4.187353+4 8.810489-5 2.924107+4 9.660509-5 2.109252+4 1.071519-4 1.447748+4 1.318257-4 6.726448+3 1.396368-4 5.463326+3 1.462177-4 4.649754+3 1.500000-4 4.262964+3 1.566751-4 3.712730+3 1.621810-4 3.343766+3 1.678804-4 3.025495+3 1.737801-4 2.750923+3 1.798871-4 2.514116+3 1.862087-4 2.310045+3 1.927525-4 2.134457+3 2.000000-4 1.974246+3 2.065380-4 1.875536+3 2.137962-4 1.786123+3 2.213095-4 1.711187+3 2.290868-4 1.648458+3 2.371374-4 1.596054+3 2.483133-4 1.539540+3 2.600160-4 1.495459+3 2.754229-4 1.453911+3 2.917427-4 1.423445+3 3.273407-4 1.373670+3 3.935501-4 1.306563+3 4.168694-4 1.278858+3 4.570882-4 1.226816+3 5.000000-4 1.169466+3 5.432503-4 1.110849+3 5.888437-4 1.049393+3 6.382635-4 9.839415+2 6.918310-4 9.160098+2 7.498942-4 8.471606+2 8.128305-4 7.784821+2 8.912509-4 7.014359+2 9.772372-4 6.271527+2 1.071519-3 5.565713+2 1.174898-3 4.903146+2 1.288250-3 4.288838+2 1.412538-3 3.725363+2 1.548817-3 3.213457+2 1.698244-3 2.752853+2 1.883649-3 2.295741+2 2.113489-3 1.860849+2 2.344229-3 1.529446+2 2.600160-3 1.248021+2 2.884032-3 1.010854+2 3.198895-3 8.126932+1 3.548134-3 6.485926+1 3.935501-3 5.138416+1 4.365158-3 4.041105+1 4.841724-3 3.154981+1 5.370318-3 2.445278+1 5.956621-3 1.881511+1 6.606934-3 1.437231+1 7.328245-3 1.089965+1 8.128305-3 8.208706+0 9.015711-3 6.140141+0 1.011579-2 4.414067+0 1.135011-2 3.151251+0 1.273503-2 2.232425+0 1.396368-2 1.683996+0 1.548817-2 1.217595+0 1.737801-2 8.429820-1 1.949845-2 5.794560-1 2.213095-2 3.812189-1 2.511886-2 2.489878-1 2.851018-2 1.614667-1 3.235937-2 1.039831-1 3.715352-2 6.386962-2 4.265795-2 3.895852-2 5.011872-2 2.171432-2 6.025596-2 1.104194-2 7.498942-2 4.899892-3 1.303167-1 6.214213-4 1.584893-1 3.007525-4 1.862087-1 1.666297-4 2.137962-1 1.011354-4 2.426610-1 6.443375-5 2.722701-1 4.306323-5 3.019952-1 3.015591-5 3.349654-1 2.126108-5 3.715352-1 1.510040-5 4.073803-1 1.121531-5 4.466836-1 8.386589-6 4.897788-1 6.315700-6 5.370318-1 4.790894-6 5.821032-1 3.786427-6 6.237348-1 3.112501-6 6.760830-1 2.493030-6 7.328245-1 2.009814-6 8.609938-1 1.322664-6 9.120108-1 1.145770-6 9.660509-1 9.993203-7 1.011579+0 9.010876-7 1.071519+0 7.971948-7 1.148154+0 6.936019-7 1.230269+0 6.076683-7 1.348963+0 5.132677-7 1.840772+0 2.961270-7 2.044000+0 2.477300-7 2.371374+0 1.939351-7 2.754229+0 1.527313-7 3.162278+0 1.233964-7 3.672823+0 9.869266-8 4.315191+0 7.820483-8 5.069907+0 6.244816-8 6.025596+0 4.946845-8 7.244360+0 3.888972-8 8.709636+0 3.081056-8 1.071519+1 2.389279-8 1.333521+1 1.842129-8 1.698244+1 1.392840-8 2.290868+1 9.952581-9 2.985383+1 7.450595-9 4.315191+1 5.018768-9 6.456542+1 3.288133-9 1.071519+2 1.949774-9 2.065380+2 9.99573-10 4.120975+2 4.97637-10 1.640590+3 1.24358-10 1.000000+5 2.03710-12 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 3.930000-6 3.930000-6 1.000000+5 3.930000-6 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 3.930000-6 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 6.180000-6 1.060908+7 6.456542-6 9.260313+6 8.035261-6 4.575139+6 9.549926-6 2.644114+6 1.109175-5 1.655862+6 1.288250-5 1.043986+6 1.479108-5 6.869338+5 1.659587-5 4.875554+5 1.862087-5 3.484462+5 2.070000-5 2.575740+5 2.264644-5 2.005287+5 2.483133-5 1.562329+5 2.694000-5 1.260947+5 2.917427-5 1.029455+5 3.162278-5 8.440714+4 3.427678-5 6.970797+4 3.715352-5 5.799935+4 4.027170-5 4.861389+4 4.400000-5 4.035820+4 4.800000-5 3.385720+4 5.248075-5 2.849953+4 5.754399-5 2.404508+4 6.309573-5 2.042633+4 6.918310-5 1.748041+4 7.673615-5 1.479139+4 8.609938-5 1.237952+4 9.800000-5 1.022922+4 1.109175-4 8.576883+3 1.258925-4 7.223188+3 1.391900-4 6.343510+3 1.621810-4 5.257196+3 1.927525-4 4.262905+3 2.213095-4 3.576861+3 3.090295-4 2.300654+3 4.027170-4 1.627735+3 4.954502-4 1.231651+3 7.244360-4 7.278207+2 8.413951-4 5.872464+2 1.071519-3 4.121457+2 1.303167-3 3.071272+2 1.603245-3 2.232444+2 2.000000-3 1.576132+2 2.540973-3 1.072914+2 3.126079-3 7.646257+1 4.897788-3 3.601174+1 6.025596-3 2.528900+1 7.413102-3 1.756152+1 9.015711-3 1.235558+1 1.096478-2 8.628460+0 1.333521-2 5.979178+0 1.603245-2 4.203050+0 1.927525-2 2.933176+0 2.317395-2 2.032096+0 2.786121-2 1.397521+0 3.349654-2 9.538855-1 4.027170-2 6.460432-1 4.841724-2 4.340188-1 5.821032-2 2.893688-1 6.998420-2 1.914159-1 8.511380-2 1.224592-1 1.035142-1 7.778575-2 1.333521-1 4.279174-2 2.187762-1 1.313502-2 2.884032-1 6.808044-3 3.507519-1 4.302233-3 4.120975-1 2.966845-3 4.841724-1 2.061398-3 5.623413-1 1.480447-3 6.456542-1 1.098280-3 7.413102-1 8.205541-4 8.511380-1 6.174127-4 9.772372-1 4.680785-4 1.202264+0 3.123009-4 1.364583+0 2.454670-4 1.531087+0 1.984593-4 1.737801+0 1.583293-4 1.972423+0 1.273173-4 2.290868+0 9.929620-5 2.660725+0 7.805758-5 3.054921+0 6.295311-5 3.548134+0 5.026350-5 4.168694+0 3.976202-5 4.897788+0 3.169955-5 5.821032+0 2.507127-5 6.998420+0 1.967974-5 8.413951+0 1.557005-5 1.035142+1 1.205856-5 1.288250+1 9.284844-6 1.659587+1 6.921081-6 2.264644+1 4.878655-6 2.985383+1 3.606276-6 4.315191+1 2.429200-6 6.456542+1 1.591529-6 1.059254+2 9.549245-7 2.018366+2 4.952398-7 4.027170+2 2.465143-7 1.603245+3 6.159889-8 1.000000+5 9.86010-10 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 6.180000-6 6.180000-6 1.000000+5 6.180000-6 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 6.180000-6 0.0 1.000000+5 1.000000+5 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.075710-7 1.025500+0 1.279440-6 1.025800+0 1.635630-6 1.026100+0 2.052100-6 1.026600+0 2.892980-6 1.027100+0 3.935970-6 1.027500+0 4.929750-6 1.028100+0 6.711770-6 1.028750+0 9.075710-6 1.029500+0 1.242040-5 1.030100+0 1.562010-5 1.031000+0 2.137360-5 1.032000+0 2.924450-5 1.033200+0 4.096650-5 1.034000+0 5.029020-5 1.035300+0 6.826180-5 1.036640+0 9.075710-5 1.038200+0 1.224800-4 1.039700+0 1.591260-4 1.041500+0 2.117150-4 1.043800+0 2.938670-4 1.046400+0 4.088610-4 1.048300+0 5.090440-4 1.051200+0 6.905070-4 1.054080+0 9.075710-4 1.057700+0 1.237070-3 1.061100+0 1.609120-3 1.065100+0 2.130290-3 1.070400+0 2.971960-3 1.076200+0 4.107220-3 1.080600+0 5.129240-3 1.087100+0 6.910820-3 1.093710+0 9.075710-3 1.102600+0 1.258370-2 1.110700+0 1.641220-2 1.120600+0 2.195570-2 1.133300+0 3.052980-2 1.147500+0 4.215450-2 1.158200+0 5.238770-2 1.174100+0 7.001330-2 1.190110+0 9.075710-2 1.205100+0 1.129430-1 1.227500+0 1.511280-1 1.250000+0 1.954000-1 1.280300+0 2.638810-1 1.307700+0 3.339620-1 1.343000+0 4.345510-1 1.382200+0 5.579460-1 1.411700+0 6.575740-1 1.455800+0 8.148970-1 1.500000+0 9.799000-1 1.562500+0 1.219860+0 1.641100+0 1.524620+0 1.706900+0 1.777120+0 1.811600+0 2.168320+0 1.937200+0 2.620530+0 2.000000+0 2.842000+0 2.044000+0 2.996000+0 2.163500+0 3.402590+0 2.372600+0 4.071050+0 2.686300+0 4.981500+0 3.000000+0 5.804000+0 3.500000+0 6.984690+0 4.000000+0 8.052000+0 5.000000+0 9.927000+0 6.000000+0 1.151000+1 7.000000+0 1.294000+1 8.000000+0 1.423000+1 9.000000+0 1.542000+1 1.000000+1 1.651000+1 1.100000+1 1.753000+1 1.200000+1 1.848000+1 1.300000+1 1.936000+1 1.400000+1 2.020000+1 1.500000+1 2.098000+1 1.600000+1 2.170000+1 1.800000+1 2.303000+1 2.000000+1 2.421000+1 2.200000+1 2.528000+1 2.400000+1 2.627000+1 2.600000+1 2.717000+1 2.800000+1 2.799000+1 3.000000+1 2.875000+1 4.000000+1 3.185000+1 5.000000+1 3.415000+1 6.000000+1 3.594000+1 8.000000+1 3.857000+1 1.000000+2 4.042000+1 1.500000+2 4.333000+1 2.000000+2 4.507000+1 3.000000+2 4.709000+1 4.000000+2 4.825000+1 5.000000+2 4.901000+1 6.000000+2 4.955000+1 8.000000+2 5.027000+1 1.000000+3 5.074000+1 1.500000+3 5.140000+1 2.000000+3 5.178000+1 3.000000+3 5.215000+1 4.000000+3 5.240000+1 5.000000+3 5.253000+1 6.000000+3 5.263000+1 8.000000+3 5.275000+1 1.000000+4 5.283000+1 1.500000+4 5.293000+1 2.000000+4 5.299000+1 3.000000+4 5.304000+1 4.000000+4 5.308000+1 5.000000+4 5.311000+1 6.000000+4 5.312000+1 8.000000+4 5.313000+1 1.000000+5 5.314000+1 1 96000 7 8 2.470000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.601790-7 2.090400+0 1.303680-6 2.094700+0 1.690420-6 2.099900+0 2.248870-6 2.106600+0 3.128370-6 2.114000+0 4.328490-6 2.119500+0 5.388940-6 2.127900+0 7.308430-6 2.136250+0 9.601790-6 2.147000+0 1.316470-5 2.156900+0 1.709940-5 2.169000+0 2.282020-5 2.184500+0 3.172090-5 2.201800+0 4.388680-5 2.214800+0 5.467950-5 2.234200+0 7.355360-5 2.253680+0 9.601790-5 2.281500+0 1.344900-4 2.307000+0 1.766520-4 2.338200+0 2.375240-4 2.377400+0 3.289410-4 2.410200+0 4.183580-4 2.446800+0 5.321750-4 2.485900+0 6.700380-4 2.532900+0 8.575060-4 2.556430+0 9.601790-4 2.611900+0 1.224340-3 2.660400+0 1.480180-3 2.745300+0 1.981140-3 2.809000+0 2.399280-3 2.904500+0 3.090880-3 3.000000+0 3.858000-3 3.125000+0 4.974430-3 3.234400+0 6.052230-3 3.425800+0 8.148440-3 3.569300+0 9.878860-3 3.784700+0 1.269500-2 4.000000+0 1.572000-2 4.250000+0 1.941500-2 4.625000+0 2.521570-2 5.000000+0 3.124000-2 5.500000+0 3.950300-2 6.000000+0 4.787000-2 6.750000+0 6.030440-2 7.000000+0 6.439000-2 8.000000+0 8.034000-2 9.000000+0 9.556000-2 1.000000+1 1.100000-1 1.100000+1 1.236000-1 1.200000+1 1.364000-1 1.300000+1 1.484000-1 1.400000+1 1.598000-1 1.500000+1 1.706000-1 1.600000+1 1.808000-1 1.800000+1 1.996000-1 2.000000+1 2.167000-1 2.200000+1 2.323000-1 2.400000+1 2.465000-1 2.600000+1 2.596000-1 2.800000+1 2.718000-1 3.000000+1 2.830000-1 4.000000+1 3.292000-1 5.000000+1 3.637000-1 6.000000+1 3.909000-1 8.000000+1 4.314000-1 1.000000+2 4.605000-1 1.500000+2 5.080000-1 2.000000+2 5.374000-1 3.000000+2 5.731000-1 4.000000+2 5.942000-1 5.000000+2 6.086000-1 6.000000+2 6.191000-1 8.000000+2 6.336000-1 1.000000+3 6.432000-1 1.500000+3 6.574000-1 2.000000+3 6.655000-1 3.000000+3 6.743000-1 4.000000+3 6.795000-1 5.000000+3 6.827000-1 6.000000+3 6.849000-1 8.000000+3 6.878000-1 1.000000+4 6.897000-1 1.500000+4 6.922000-1 2.000000+4 6.938000-1 3.000000+4 6.952000-1 4.000000+4 6.961000-1 5.000000+4 6.966000-1 6.000000+4 6.970000-1 8.000000+4 6.973000-1 1.000000+5 6.976000-1 1 96000 7 8 2.470000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 96000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.600000+1 1.000000+5 9.600000+1 5.000000+5 9.595600+1 1.000000+6 9.589500+1 1.375000+6 9.583630+1 1.500000+6 9.580900+1 1.875000+6 9.570460+1 2.000000+6 9.566400+1 2.375000+6 9.552230+1 2.500000+6 9.548000+1 2.875000+6 9.531950+1 3.000000+6 9.526100+1 3.437500+6 9.503460+1 3.812500+6 9.482610+1 4.000000+6 9.472600+1 4.500000+6 9.443170+1 4.875000+6 9.418640+1 5.000000+6 9.410900+1 5.500000+6 9.375290+1 5.875000+6 9.346940+1 6.437500+6 9.302730+1 6.500000+6 9.297480+1 7.000000+6 9.257300+1 7.875000+6 9.184730+1 9.000000+6 9.088600+1 1.000000+7 8.999800+1 1.250000+7 8.776100+1 1.500000+7 8.544200+1 1.750000+7 8.311700+1 2.000000+7 8.076600+1 2.250000+7 7.838950+1 2.500000+7 7.604100+1 2.875000+7 7.264240+1 3.000000+7 7.155500+1 3.500000+7 6.742440+1 4.000000+7 6.369000+1 4.500000+7 6.031020+1 4.750000+7 5.872710+1 5.000000+7 5.721700+1 5.750000+7 5.300070+1 6.000000+7 5.170100+1 6.750000+7 4.806360+1 7.000000+7 4.694300+1 8.000000+7 4.287800+1 9.000000+7 3.942100+1 1.000000+8 3.644000+1 1.125000+8 3.319110+1 1.218800+8 3.099390+1 1.250000+8 3.029800+1 1.359400+8 2.797270+1 1.437500+8 2.641290+1 1.453100+8 2.611040+1 1.500000+8 2.522100+1 1.625000+8 2.298250+1 1.750000+8 2.098470+1 2.000000+8 1.776500+1 2.171900+8 1.608600+1 2.289100+8 1.516560+1 2.429700+8 1.427850+1 2.500000+8 1.391400+1 2.625000+8 1.337470+1 2.859400+8 1.250550+1 2.875000+8 1.244720+1 3.000000+8 1.196600+1 3.125000+8 1.143560+1 3.500000+8 1.001800+1 3.812500+8 9.154700+0 3.937500+8 8.814260+0 4.000000+8 8.634500+0 4.125000+8 8.252770+0 4.234400+8 7.907570+0 4.425800+8 7.312960+0 4.750000+8 6.418670+0 4.856400+8 6.168260+0 5.000000+8 5.868200+0 5.125000+8 5.642020+0 5.343800+8 5.308990+0 5.630900+8 4.958400+0 6.000000+8 4.597900+0 6.500000+8 4.205060+0 7.000000+8 3.894900+0 7.625000+8 3.578390+0 7.875000+8 3.451920+0 8.000000+8 3.386100+0 8.250000+8 3.248540+0 8.468800+8 3.125370+0 8.851600+8 2.912270+0 9.500000+8 2.583100+0 1.000000+9 2.368400+0 1.062500+9 2.151480+0 1.117200+9 1.998570+0 1.186000+9 1.843150+0 1.243500+9 1.737670+0 1.250000+9 1.726920+0 1.307700+9 1.640130+0 1.376400+9 1.554460+0 1.458800+9 1.471880+0 1.500000+9 1.437000+0 2.000000+9 1.163700+0 2.139200+9 1.097760+0 2.272600+9 1.034950+0 2.357800+9 9.955950-1 2.522900+9 9.218830-1 2.677700+9 8.566100-1 2.750000+9 8.275480-1 2.890900+9 7.734370-1 3.086500+9 7.041850-1 3.325700+9 6.282880-1 3.535000+9 5.693520-1 3.718100+9 5.229530-1 4.038600+9 4.520780-1 4.278900+9 4.064870-1 4.639500+9 3.482210-1 5.000000+9 3.000900-1 5.375000+9 2.586190-1 5.703100+9 2.282000-1 6.277300+9 1.852770-1 7.031000+9 1.436400-1 7.677000+9 1.172980-1 8.000000+9 1.065300-1 9.000000+9 8.056630-2 1.00000+10 6.254600-2 1.27030+10 3.502610-2 1.55700+10 2.130170-2 2.15420+10 9.574790-3 3.13500+10 3.770520-3 1.00000+11 2.074800-4 1.68570+11 5.661240-5 3.34410+11 1.042060-5 8.62510+11 1.021730-6 2.83020+12 5.685250-8 1.00000+14 1.05170-11 3.16230+15 2.45351-15 1.00000+17 5.49750-19 1 96000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.24300-11 1.000000+2 1.243000-9 1.000000+3 1.243000-7 1.000000+4 1.243000-5 1.000000+5 1.243000-3 5.000000+5 3.107500-2 1.000000+6 1.243000-1 1.375000+6 2.325560-1 1.500000+6 2.756000-1 1.875000+6 4.237690-1 2.000000+6 4.792000-1 2.375000+6 6.621340-1 2.500000+6 7.283000-1 2.875000+6 9.401360-1 3.000000+6 1.014800+0 3.437500+6 1.288930+0 3.812500+6 1.538000+0 4.000000+6 1.666800+0 4.500000+6 2.020250+0 4.875000+6 2.290600+0 5.000000+6 2.381000+0 5.500000+6 2.739760+0 5.875000+6 3.006440+0 6.437500+6 3.401730+0 6.500000+6 3.445130+0 7.000000+6 3.791600+0 7.875000+6 4.387640+0 9.000000+6 5.134600+0 1.000000+7 5.783200+0 1.250000+7 7.432200+0 1.500000+7 9.115700+0 1.750000+7 1.074400+1 2.000000+7 1.235600+1 2.250000+7 1.390040+1 2.500000+7 1.538000+1 2.875000+7 1.750460+1 3.000000+7 1.818900+1 3.500000+7 2.079910+1 4.000000+7 2.322200+1 4.500000+7 2.547200+1 4.750000+7 2.655120+1 5.000000+7 2.760900+1 5.750000+7 3.066990+1 6.000000+7 3.166200+1 6.750000+7 3.454470+1 7.000000+7 3.548000+1 8.000000+7 3.905800+1 9.000000+7 4.238400+1 1.000000+8 4.543500+1 1.125000+8 4.881570+1 1.218800+8 5.106030+1 1.250000+8 5.175500+1 1.359400+8 5.400130+1 1.437500+8 5.546670+1 1.453100+8 5.574540+1 1.500000+8 5.657200+1 1.625000+8 5.864040+1 1.750000+8 6.055580+1 2.000000+8 6.403700+1 2.171900+8 6.621170+1 2.289100+8 6.760670+1 2.429700+8 6.919240+1 2.500000+8 6.995100+1 2.625000+8 7.123930+1 2.859400+8 7.347310+1 2.875000+8 7.361300+1 3.000000+8 7.469700+1 3.125000+8 7.570290+1 3.500000+8 7.834000+1 3.812500+8 8.016430+1 3.937500+8 8.081780+1 4.000000+8 8.113200+1 4.125000+8 8.172230+1 4.234400+8 8.220060+1 4.425800+8 8.299510+1 4.750000+8 8.418670+1 4.856400+8 8.453620+1 5.000000+8 8.499700+1 5.125000+8 8.536430+1 5.343800+8 8.598990+1 5.630900+8 8.672490+1 6.000000+8 8.758700+1 6.500000+8 8.860570+1 7.000000+8 8.949700+1 7.625000+8 9.044410+1 7.875000+8 9.077970+1 8.000000+8 9.094400+1 8.250000+8 9.123540+1 8.468800+8 9.148400+1 8.851600+8 9.187190+1 9.500000+8 9.242890+1 1.000000+9 9.279100+1 1.062500+9 9.316790+1 1.117200+9 9.344400+1 1.186000+9 9.372790+1 1.243500+9 9.393620+1 1.250000+9 9.395750+1 1.307700+9 9.413240+1 1.376400+9 9.431460+1 1.458800+9 9.450100+1 1.500000+9 9.458800+1 2.000000+9 9.529400+1 2.139200+9 9.541370+1 2.272600+9 9.550640+1 2.357800+9 9.555750+1 2.522900+9 9.565160+1 2.677700+9 9.571440+1 2.750000+9 9.574140+1 2.890900+9 9.578680+1 3.086500+9 9.583110+1 3.325700+9 9.588160+1 3.535000+9 9.590830+1 3.718100+9 9.592540+1 4.038600+9 9.595340+1 4.278900+9 9.596870+1 4.639500+9 9.597930+1 5.000000+9 9.598900+1 5.375000+9 9.599050+1 5.703100+9 9.599180+1 6.277300+9 9.599380+1 7.031000+9 9.599630+1 7.677000+9 9.599810+1 8.000000+9 9.599900+1 9.000000+9 9.599950+1 1.00000+10 9.600000+1 1.27030+10 9.600000+1 1.55700+10 9.600000+1 2.15420+10 9.600000+1 3.13500+10 9.600000+1 1.00000+11 9.600000+1 1.68570+11 9.600000+1 3.34410+11 9.600000+1 8.62510+11 9.600000+1 2.83020+12 9.600000+1 1.00000+14 9.600000+1 3.16230+15 9.600000+1 1.00000+17 9.600000+1 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.144099-6 0.0 1.149380-6 2.879972-1 1.149732-6 3.070203-1 1.152548-6 5.607976-1 1.155364-6 9.455818-1 1.158532-6 1.551983+0 1.163465-6 2.719701+0 1.166804-6 3.461961+0 1.169702-6 3.896656+0 1.172576-6 4.032673+0 1.175472-6 3.839195+0 1.178470-6 3.339825+0 1.183221-6 2.230150+0 1.186340-6 1.507576+0 1.189156-6 9.732387-1 1.191972-6 5.799806-1 1.194788-6 3.190521-1 1.198837-6 9.122898-2 1.200421-6 0.0 1.334181-6 0.0 1.340338-6 1.685583-1 1.340749-6 1.796920-1 1.344033-6 3.282222-1 1.347316-6 5.534277-1 1.351011-6 9.083406-1 1.356706-6 1.584667+0 1.360657-6 2.026208+0 1.364038-6 2.280625+0 1.367460-6 2.358323+0 1.370766-6 2.246994+0 1.374262-6 1.954724+0 1.379449-6 1.348794+0 1.383440-6 8.823502-1 1.386929-6 5.552613-1 1.390007-6 3.394495-1 1.393291-6 1.867340-1 1.398012-6 5.339426-2 1.399859-6 0.0 1.524750-6 0.0 1.528503-6 9.125832-8 1.532256-6 1.805751-7 1.536009-6 3.298351-7 1.539762-6 5.561473-7 1.540854-6 6.460215-7 1.548439-6 3.841880-6 1.552232-6 6.283579-6 1.556024-6 9.719703-6 1.559817-6 1.416544-5 1.567402-6 2.478123-5 1.571195-6 2.954841-5 1.574987-6 3.276350-5 1.578780-6 3.371671-5 1.582573-6 3.215567-5 1.586365-6 2.838909-5 1.597743-6 1.218936-5 1.601536-6 7.835112-6 1.605328-6 4.669166-6 1.609121-6 2.568547-6 1.612914-6 1.304336-6 1.616706-6 0.0 1.829206-6 0.0 1.833709-6 2.172792-8 1.838211-6 4.299357-8 1.842713-6 7.853127-8 1.847216-6 1.324145-7 1.851718-6 2.061021-7 1.858744-6 3.496936-7 1.861267-6 4.034012-7 1.865849-6 1.849144-2 1.870430-6 3.658903-2 1.875011-6 6.683242-2 1.879592-6 1.126882-1 1.884174-6 1.753979-1 1.897917-6 4.092487-1 1.902499-6 4.625403-1 1.907080-6 4.825761-1 1.911661-6 4.647678-1 1.916243-6 4.131999-1 1.923687-6 2.877768-1 1.929986-6 1.796622-1 1.934568-6 1.159836-1 1.939149-6 6.911795-2 1.943730-6 3.802235-2 1.950602-6 9.665436-3 1.952893-6 0.0 2.241918-6 0.0 2.247436-6 5.657905-7 2.252954-6 1.119543-6 2.258473-6 2.044937-6 2.263991-6 3.448045-6 2.269509-6 5.366854-6 2.275027-6 7.711174-6 2.280545-6 1.022763-5 2.286064-6 1.252228-5 2.291582-6 1.415292-5 2.297100-6 1.476598-5 2.302618-6 1.422108-5 2.308136-6 1.264319-5 2.313655-6 1.037612-5 2.324691-6 5.497347-6 2.330209-6 3.548896-6 2.335727-6 2.114888-6 2.341246-6 1.163417-6 2.346764-6 5.907961-7 2.352282-6 0.0 2.414344-6 0.0 2.420287-6 1.59143-14 2.426229-6 3.14900-14 2.432172-6 5.75190-14 2.438114-6 9.69849-14 2.444057-6 1.50956-13 2.450000-6 2.16896-13 2.455942-6 2.87678-13 2.461885-6 3.52221-13 2.467827-6 3.98086-13 2.473770-6 4.15330-13 2.479713-6 4.00004-13 2.485655-6 3.55622-13 2.489894-6 3.10164-13 2.502152-6 3.535470-8 2.508280-6 6.457805-8 2.514409-6 1.088873-7 2.519223-6 1.564589-7 2.521311-6 1.974688-7 2.531624-6 4.176007-7 2.537825-6 5.830370-7 2.546374-6 8.605404-7 2.562175-6 1.435836-6 2.574788-6 2.409499-2 2.581230-6 4.465628-2 2.587431-6 7.439883-2 2.594080-6 1.184708-1 2.612627-6 2.694879-1 2.618934-6 3.045799-1 2.625240-6 3.177731-1 2.631546-6 3.060464-1 2.637853-6 2.720892-1 2.656772-6 1.183062-1 2.663079-6 7.637436-2 2.669385-6 4.551365-2 2.675692-6 2.503743-2 2.681998-6 1.271428-2 2.688305-6 0.0 2.858931-6 0.0 2.869486-6 3.139614+0 2.873005-6 4.172877+0 2.880042-6 7.622101+0 2.887079-6 1.285191+1 2.894995-6 2.109383+1 2.907323-6 3.696492+1 2.915666-6 4.705337+1 2.922909-6 5.296153+1 2.929783-6 5.489824+1 2.937476-6 5.205625+1 2.944819-6 4.539335+1 2.956582-6 3.045563+1 2.964484-6 2.049027+1 2.971521-6 1.322781+1 2.978558-6 7.882827+0 2.985595-6 4.342604+0 2.994391-6 1.711370+0 2.999669-6 9.096656-2 3.006597-6 1.587066-1 3.013943-6 2.675879-1 3.021289-6 4.164794-1 3.033227-6 7.202955-1 3.043328-6 9.716417-1 3.050674-6 1.098130+0 3.058762-6 1.141399+0 3.066291-6 1.087968+0 3.073820-6 9.544349-1 3.094751-6 4.320061-1 3.102097-6 2.856568-1 3.109443-6 1.820577-1 3.116789-6 1.193662-1 3.131512-6 6.140745-2 3.144518-6 1.002692-1 3.153337-6 1.241508-1 3.162343-6 1.411775-1 3.170051-6 1.514928-1 3.179223-6 1.584833-1 3.193174-6 1.609761-1 3.201809-6 1.559634-1 3.209338-6 1.467510-1 3.216393-6 1.333870-1 3.224006-6 1.138633-1 3.238647-6 6.822272-2 3.247129-6 4.622227-2 3.254837-6 2.983975-2 3.262545-6 1.778271-2 3.270253-6 9.782866-3 3.279343-6 4.078966-3 3.283413-6 2.567196-3 3.285668-6 9.395887-3 3.299576-6 6.065810-2 3.307658-6 1.102364-1 3.316223-6 1.910119-1 3.324306-6 2.940514-1 3.348067-6 6.641785-1 3.357054-6 7.543364-1 3.364948-6 7.821488-1 3.372803-6 7.546635-1 3.382169-6 6.581618-1 3.386017-6 6.053630-1 3.402686-6 8.564288+0 3.411020-6 1.524089+1 3.419354-6 2.544134+1 3.429628-6 4.344175+1 3.453212-6 9.253962+1 3.462375-6 1.044782+2 3.469914-6 1.079970+2 3.478932-6 1.025938+2 3.487043-6 9.072826+1 3.511031-6 4.064277+1 3.519366-6 2.642480+1 3.527700-6 1.595078+1 3.536034-6 8.980434+0 3.550339-6 1.626076+0 3.552703-6 3.810891-1 3.570217-6 2.615578-1 3.573422-6 2.445934-1 3.581581-6 2.144691-1 3.590031-6 2.067310-1 3.599125-6 2.222488-1 3.616798-6 2.825397-1 3.622975-6 3.091406-1 3.631535-6 3.318750-1 3.640094-6 3.385731-1 3.674896-6 3.010612-1 3.683619-6 2.995941-1 3.701727-6 3.105110-1 3.716525-6 3.400836-1 3.723759-6 3.597118-1 3.732769-6 3.949902-1 3.741105-6 4.385104-1 3.764822-6 6.157888-1 3.776796-6 7.103458-1 3.787853-6 7.594328-1 3.796474-6 7.714170-1 3.806322-6 7.482485-1 3.820206-6 6.659369-1 3.845010-6 4.751414-1 3.861621-6 3.837726-1 3.881593-6 3.141204-1 3.891171-6 2.920054-1 3.913353-6 2.700722-1 3.925962-6 2.679167-1 3.943313-6 2.825636-1 3.978740-6 3.310183-1 4.000542-6 3.480404-1 4.020284-6 3.778848-1 4.030131-6 3.988017-1 4.040451-6 4.303268-1 4.050985-6 4.740565-1 4.079844-6 6.219060-1 4.090576-6 6.596373-1 4.100474-6 6.738526-1 4.110372-6 6.650693-1 4.121227-6 6.317874-1 4.158629-6 4.641061-1 4.168537-6 4.378579-1 4.183859-6 4.206576-1 4.197529-6 4.205519-1 4.215284-6 4.586545-1 4.245345-6 5.533409-1 4.266906-6 5.895836-1 4.277231-6 5.882229-1 4.317078-6 5.282967-1 4.327326-6 5.244916-1 4.384618-6 5.667819-1 4.570898-6 5.924707-1 4.653864-6 6.011868-1 4.656262-6 6.020482-1 4.679186-6 7.327956-1 4.690945-6 8.419925-1 4.704403-6 1.037772+0 4.718710-6 1.325054+0 4.749584-6 2.011050+0 4.761141-6 2.179350+0 4.772929-6 2.227737+0 4.784840-6 2.141718+0 4.801575-6 1.848268+0 4.804655-6 1.802355+0 4.828833-6 2.145712+0 4.840180-6 2.631632+0 4.851762-6 3.530776+0 4.864249-6 4.990867+0 4.900220-6 1.028717+1 4.911769-6 1.141130+1 4.922710-6 1.181471+1 4.935494-6 1.127397+1 4.949669-6 9.689263+0 4.981463-6 4.835812+0 4.993288-6 3.365929+0 5.005113-6 2.284727+0 5.016937-6 1.568100+0 5.040587-6 6.935819-1 5.263964-6 7.338981-1 5.302834-6 7.903097-1 5.326915-6 8.684451-1 5.353138-6 1.260360+0 5.368067-6 1.597351+0 5.382404-6 2.040052+0 5.400975-6 2.773135+0 5.429667-6 3.950980+0 5.446976-6 4.386382+0 5.459932-6 4.438672+0 5.472892-6 4.232260+0 5.486711-6 3.763860+0 5.523588-6 2.104676+0 5.536699-6 1.636673+0 5.549811-6 1.294291+0 5.562922-6 1.071963+0 5.578717-6 9.146897-1 5.589145-6 8.577690-1 5.606180-6 9.552437-1 5.620491-6 1.087090+0 5.637540-6 1.327156+0 5.655899-6 1.670146+0 5.688567-6 2.325109+0 5.702299-6 2.498317+0 5.716030-6 2.552920+0 5.733262-6 2.459793+0 5.757980-6 2.120608+0 5.771761-6 1.908953+0 5.785761-6 1.755198+0 5.799761-6 1.682617+0 5.816307-6 1.708523+0 5.846082-6 1.867328+0 5.874238-6 1.964476+0 5.942275-6 1.877181+0 6.112758-6 1.827733+0 6.211508-6 1.941506+0 6.296021-6 1.821528+0 6.475603-6 1.772659+0 7.721232-6 1.648856+0 7.759241-6 2.984344+0 7.779434-6 4.193275+0 7.798439-6 5.906895+0 7.818631-6 8.404710+0 7.873864-6 1.666195+1 7.894949-6 1.865115+1 7.914481-6 1.917029+1 7.932029-6 1.845505+1 7.952705-6 1.625575+1 8.006304-6 8.201935+0 8.025309-6 5.873312+0 8.044314-6 4.159285+0 8.063319-6 3.021737+0 8.101328-6 1.630136+0 8.545488-6 1.628344+0 8.587639-6 2.665029+0 8.608672-6 3.525719+0 8.630361-6 4.879858+0 8.653481-6 6.884151+0 8.714151-6 1.314935+1 8.737237-6 1.465412+1 8.757171-6 1.508883+1 8.780051-6 1.437578+1 8.801084-6 1.281682+1 8.860401-6 6.642721+0 8.881433-6 4.857701+0 8.902466-6 3.543796+0 8.923498-6 2.671789+0 8.965562-6 1.605047+0 9.262086-6 1.599026+0 9.330478-6 1.724315+0 9.376073-6 1.928814+0 9.444465-6 2.369647+0 9.467263-6 2.470024+0 9.490060-6 2.507669+0 9.524256-6 2.425014+0 9.626845-6 1.812707+0 9.672440-6 1.664638+0 9.718034-6 1.592079+0 1.024044-5 1.584743+0 1.031683-5 1.673908+0 1.037791-5 1.862521+0 1.045469-5 2.159163+0 1.049250-5 2.220552+0 1.053031-5 2.162268+0 1.064373-5 1.732070+0 1.069414-5 1.627899+0 1.076708-5 1.576514+0 1.089891-5 1.633390+0 1.103221-5 1.814142+0 1.111347-5 1.795270+0 1.122133-5 1.699940+0 1.138823-5 1.730783+0 1.172818-5 1.684517+0 1.184128-5 1.687558+0 1.192452-5 1.818066+0 1.201727-5 2.011888+0 1.207261-5 2.030970+0 1.224368-5 1.758681+0 1.233046-5 1.705098+0 1.249038-5 1.763431+0 1.262410-5 1.841660+0 1.284960-5 1.779421+0 1.353324-5 1.743690+0 1.456338-5 1.728123+0 1.862087-5 1.615166+0 2.128938-5 1.648872+0 2.181700-5 1.669542+0 2.192440-5 3.731944+0 2.197810-5 5.435572+0 2.203180-5 8.017134+0 2.208550-5 1.154647+1 2.224660-5 2.470566+1 2.230030-5 2.770544+1 2.236071-5 2.871062+1 2.241441-5 2.747547+1 2.247051-5 2.421623+1 2.253425-5 1.913223+1 2.263951-5 2.723165+1 2.264518-5 2.773733+1 2.270064-5 3.887847+1 2.275958-5 6.020882+1 2.281654-5 9.009529+1 2.298144-5 1.982682+2 2.304241-5 2.236173+2 2.309576-5 2.303582+2 2.315649-5 2.176376+2 2.321848-5 1.866162+2 2.336623-5 8.735051+1 2.342169-5 5.702137+1 2.347716-5 3.470118+1 2.353262-5 1.989331+1 2.363445-5 3.302512+0 2.364355-5 1.790479+0 2.436343-5 1.858958+0 2.448336-5 2.186480+0 2.454333-5 2.453349+0 2.460330-5 2.855503+0 2.466907-5 3.467697+0 2.484391-5 5.447448+0 2.490313-5 5.908404+0 2.496310-5 6.088191+0 2.503875-5 5.832752+0 2.517677-5 5.188446+0 2.523844-5 5.074446+0 2.530010-5 5.348356+0 2.534347-5 5.857737+0 2.540096-5 6.866391+0 2.554677-5 1.008656+1 2.562401-5 1.137718+1 2.567969-5 1.188176+1 2.575657-5 1.168134+1 2.586824-5 1.037053+1 2.599245-5 8.765380+0 2.605719-5 8.354047+0 2.616970-5 8.292512+0 2.635106-5 8.642282+0 2.647879-5 8.715209+0 2.695247-5 8.268554+0 3.028657-5 7.482218+0 3.343187-5 7.366642+0 3.423993-5 7.411631+0 3.440848-5 1.677451+1 3.449803-5 2.524049+1 3.458230-5 3.723434+1 3.467185-5 5.471040+1 3.491415-5 1.120512+2 3.501206-5 1.265067+2 3.509456-5 1.301693+2 3.517471-5 1.250591+2 3.526374-5 1.101873+2 3.550409-5 5.344843+1 3.558836-5 3.718632+1 3.567264-5 2.522050+1 3.575692-5 1.728450+1 3.592547-5 7.590453+0 3.696734-5 7.824133+0 3.724978-5 8.192220+0 3.752295-5 8.855553+0 3.784353-5 9.801675+0 3.830889-5 1.198779+1 3.849043-5 1.228686+1 3.892692-5 1.180907+1 3.984956-5 1.223486+1 4.068721-5 1.203387+1 4.800000-5 1.319236+1 5.699860-5 1.540971+1 5.832098-5 1.637254+1 5.947643-5 1.620662+1 6.569011-5 1.745299+1 7.349725-5 1.815643+1 8.128505-5 1.791695+1 9.349455-5 1.609235+1 1.090313-4 1.237748+1 1.097022-4 1.345099+1 1.101048-4 1.481830+1 1.105724-4 1.758049+1 1.111167-4 3.895387+1 1.113889-4 5.490564+1 1.116610-4 7.763314+1 1.119699-4 1.125006+2 1.126752-4 2.052298+2 1.128052-4 2.201470+2 1.131003-4 2.411337+2 1.133524-4 2.448898+2 1.136182-4 2.323100+2 1.139102-4 2.019432+2 1.146548-4 9.765574+1 1.149270-4 6.684773+1 1.151991-4 4.415543+1 1.154713-4 2.907703+1 1.160156-4 1.058729+1 1.200252-4 9.707688+0 1.201565-4 9.714768+0 1.207489-4 2.234969+1 1.210488-4 3.304213+1 1.213724-4 5.102605+1 1.217028-4 7.619394+1 1.225193-4 1.493365+2 1.229012-4 1.700350+2 1.231891-4 1.733854+2 1.234879-4 1.641116+2 1.238036-4 1.427351+2 1.246240-4 6.901473+1 1.249020-4 4.881936+1 1.251842-4 3.352925+1 1.254800-4 2.291127+1 1.260715-4 9.969633+0 1.306765-4 1.047915+1 1.317643-4 1.105534+1 1.330191-4 1.198098+1 1.340375-4 1.204697+1 1.355245-4 1.170847+1 1.453964-4 1.174930+1 1.508253-4 1.105793+1 1.688496-4 7.428238+0 1.792453-4 5.791293+0 1.891178-4 4.594099+0 1.988031-4 3.722846+0 2.076962-4 3.138205+0 2.184500-4 2.636028+0 2.242090-4 2.446952+0 2.319742-4 2.259099+0 2.337532-4 2.319455+0 2.350000-4 2.456000+0 2.384206-4 3.094900+0 2.397607-4 3.211296+0 2.630268-4 3.028693+0 2.864719-4 3.050852+0 3.031890-4 3.176326+0 3.054540-4 3.287879+0 3.069932-4 3.476595+0 3.100346-4 3.997444+0 3.114473-4 4.093158+0 3.180561-4 3.832456+0 3.760545-4 4.244324+0 3.845918-4 4.593256+0 4.216965-4 4.796445+0 4.716049-4 5.098396+0 4.763785-4 5.341211+0 4.822384-4 6.038256+0 4.845570-4 6.114439+0 4.902375-4 5.972693+0 4.974514-4 6.517941+0 5.074597-4 6.205325+0 5.173750-4 6.450848+0 5.259741-4 6.983183+0 5.336385-4 7.862133+0 5.419736-4 9.389988+0 5.509991-4 1.176158+1 5.633983-4 1.607766+1 5.965000-4 2.918606+1 6.148836-4 3.461371+1 6.359803-4 3.875261+1 6.618830-4 4.150735+1 7.140852-4 4.337966+1 8.126876-4 4.220047+1 8.328891-4 4.173331+1 8.391364-4 4.327537+1 8.434247-4 4.602244+1 8.514443-4 5.235316+1 8.555674-4 5.229489+1 8.659643-4 4.555350+1 8.738926-4 4.421747+1 8.895629-4 4.493785+1 8.962231-4 4.690506+1 9.047150-4 5.032203+1 9.113548-4 4.947779+1 9.216628-4 4.603600+1 1.173360-3 3.955326+1 1.198428-3 4.105210+1 1.466757-3 3.398585+1 1.656064-3 3.055770+1 2.074521-3 2.412105+1 2.449759-3 1.983194+1 2.862163-3 1.638978+1 3.368992-3 1.332326+1 3.906682-3 1.098502+1 3.926353-3 1.171288+1 3.935529-3 1.231856+1 3.945843-3 1.342933+1 3.956226-3 1.505899+1 3.977682-3 1.973399+1 3.994625-3 2.366897+1 4.004268-3 2.534342+1 4.013910-3 2.640169+1 4.033157-3 2.672552+1 4.093798-3 2.417916+1 4.122672-3 2.389101+1 4.153461-3 2.464609+1 4.174550-3 2.629311+1 4.224647-3 3.274760+1 4.246686-3 3.364370+1 4.343227-3 3.124213+1 4.744815-3 2.739860+1 4.796762-3 2.824413+1 4.857830-3 3.003848+1 4.974919-3 2.955052+1 5.800635-3 2.338912+1 5.918820-3 2.327351+1 6.046183-3 2.330909+1 6.265897-3 2.231340+1 6.453366-3 2.207866+1 7.454244-3 1.791297+1 8.669007-3 1.431786+1 9.903104-3 1.171728+1 1.104744-2 9.915023+0 1.264373-2 8.059149+0 1.453136-2 6.487115+0 1.662724-2 5.252679+0 1.855156-2 4.434724+0 1.868301-2 4.550365+0 1.876685-2 4.867363+0 1.884093-2 5.426148+0 1.893228-2 6.482194+0 1.907862-2 8.365580+0 1.916298-2 9.095422+0 1.928389-2 9.549354+0 1.969220-2 9.402843+0 2.253656-2 7.494646+0 2.336796-2 7.114072+0 2.355845-2 7.405627+0 2.396874-2 9.192625+0 2.449415-2 9.853634+0 2.484229-2 1.038048+1 2.954928-2 8.062263+0 3.393321-2 6.506657+0 3.890451-2 5.239265+0 4.308985-2 4.446593+0 4.820649-2 3.708498+0 5.424691-2 3.058655+0 6.168079-2 2.475286+0 6.999196-2 2.007450+0 7.939058-2 1.626424+0 8.987106-2 1.322004+0 1.012406-1 1.082191+0 1.148791-1 8.750446-1 1.259280-1 7.566845-1 1.265780-1 7.803030-1 1.270423-1 8.391160-1 1.274020-1 9.291441-1 1.277535-1 1.067389+0 1.281520-1 1.290002+0 1.289494-1 1.880590+0 1.296853-1 2.395274+0 1.303249-1 2.673198+0 1.311995-1 2.811442+0 1.375448-1 2.659102+0 1.573851-1 2.164306+0 1.804674-1 1.754875+0 2.022023-1 1.474164+0 2.304093-1 1.207270+0 2.611675-1 9.994056-1 2.945508-1 8.353298-1 3.349654-1 6.931032-1 3.818783-1 5.760183-1 4.373816-1 4.782244-1 5.031746-1 3.980177-1 5.821032-1 3.317063-1 6.732269-1 2.790292-1 7.779246-1 2.369478-1 9.054720-1 2.016163-1 1.120601+0 1.607749-1 1.286622+0 1.371658-1 1.477239+0 1.170236-1 1.696098+0 9.983914-2 1.947381+0 8.517818-2 2.235892+0 7.267013-2 2.567148+0 6.199882-2 2.947480+0 5.289456-2 3.384160+0 4.512722-2 3.885536+0 3.850047-2 4.496376+0 3.256342-2 5.363532+0 2.657849-2 6.158159+0 2.267555-2 7.070513+0 1.934574-2 8.118035+0 1.650490-2 9.320751+0 1.408123-2 9.760024+0 1.335518-2 1.000000+1 2.796649-2 1 96000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.557660+1 1.149732-6-9.379828+1 1.168124-6-9.433444+1 1.175907-6-9.536377+1 1.191972-6-9.439184+1 1.254806-6-9.585878+1 1.363592-6-9.518554+1 2.297100-6-9.374477+1 2.709633-6-8.933313+1 2.812828-6-8.396368+1 2.850020-6-7.796053+1 2.889498-6-6.085259+1 2.897689-6-5.965382+1 2.904726-6-6.145873+1 2.913742-6-6.868356+1 2.922909-6-8.177497+1 2.929783-6-9.340617+1 2.937083-6-8.689722+1 2.946741-6-7.422716+1 2.953984-6-6.867957+1 2.963742-6-6.675726+1 2.977019-6-7.104493+1 3.009811-6-8.582484+1 3.047001-6-9.169191+1 3.131512-6-9.581435+1 3.285668-6-8.648841+1 3.348067-6-7.781723+1 3.374824-6-7.014305+1 3.385536-6-6.386764+1 3.388974-6-6.076073+1 3.402686-6-5.133023+1 3.412062-6-4.360084+1 3.421067-6-3.718708+1 3.429628-6-3.453963+1 3.433687-6-3.495787+1 3.439960-6-3.830020+1 3.446295-6-4.472774+1 3.451342-6-5.267472+1 3.460614-6-7.422580+1 3.468740-6-9.610609+1 3.480596-6-6.270738+1 3.488298-6-4.561960+1 3.492758-6-3.869528+1 3.498824-6-3.198419+1 3.504022-6-2.858235+1 3.507088-6-2.759318+1 3.510046-6-2.751398+1 3.518324-6-3.056044+1 3.527700-6-3.725017+1 3.541600-6-4.794058+1 3.552703-6-5.588544+1 3.561083-6-6.163746+1 3.581581-6-6.906335+1 3.616798-6-7.582493+1 3.701727-6-8.292398+1 3.845010-6-8.709367+1 4.245345-6-9.167884+1 4.819645-6-9.657161+1 4.883815-6-9.487704+1 4.905372-6-9.612972+1 4.957154-6-8.714896+1 4.996244-6-8.686678+1 5.104865-6-9.134802+1 5.426934-6-9.455015+1 5.523588-6-9.125411+1 5.698866-6-9.360055+1 7.476000-6-9.578226+1 7.690101-6-9.376562+1 7.830584-6-8.767053+1 7.873864-6-9.118457+1 7.904519-6-9.557125+1 7.963910-6-8.524679+1 8.006304-6-8.350154+1 8.167436-6-9.055115+1 8.551644-6-9.528670+1 8.673270-6-9.191006+1 8.733359-6-9.534887+1 8.811867-6-8.565101+1 8.876175-6-8.449771+1 9.039898-6-8.962098+1 9.490060-6-9.181972+1 1.597131-5-9.548031+1 1.930039-5-9.032376+1 2.065697-5-8.392900+1 2.135533-5-7.604544+1 2.168381-5-6.854037+1 2.183237-5-6.216706+1 2.210075-5-4.698088+1 2.219290-5-4.472779+1 2.224660-5-4.515921+1 2.237246-5-4.873754+1 2.242616-5-4.885424+1 2.247847-5-4.628432+1 2.251660-5-4.138080+1 2.253425-5-3.725138+1 2.255237-5-3.276651+1 2.260497-5-2.260428+1 2.263384-5-1.608966+1 2.264518-5-1.281792+1 2.265211-5-1.067455+1 2.268851-5-1.380817+0 2.269458-5 3.402319-1 2.270064-5 2.442848+0 2.270411-5 3.730507+0 2.275611-5 1.683587+1 2.275958-5 1.795749+1 2.276608-5 1.948558+1 2.277745-5 2.154270+1 2.281654-5 2.706656+1 2.283399-5 2.783741+1 2.284824-5 2.733010+1 2.285893-5 2.642419+1 2.287496-5 2.429859+1 2.289100-5 2.132516+1 2.290187-5 1.879860+1 2.291971-5 1.361261+1 2.292699-5 1.112267+1 2.293973-5 6.205045+0 2.294929-5 2.001561+0 2.295646-5-1.483295+0 2.296184-5-4.314253+0 2.296990-5-8.999587+0 2.297595-5-1.304854+1 2.298144-5-1.740030+1 2.301394-5-3.993687+1 2.303069-5-5.351686+1 2.304241-5-6.481048+1 2.308145-5-9.788049+1 2.309576-5-8.268415+1 2.315126-5-3.565825+1 2.315649-5-3.065718+1 2.316862-5-2.112675+1 2.317853-5-1.412697+1 2.320824-5 5.740175+0 2.321181-5 8.301275+0 2.321848-5 1.238614+1 2.323017-5 1.862865+1 2.323894-5 2.279568+1 2.326523-5 3.345849+1 2.328890-5 4.076800+1 2.331548-5 4.623049+1 2.333768-5 4.869791+1 2.335909-5 4.892004+1 2.340802-5 4.321603+1 2.347109-5 2.929403+1 2.347716-5 2.738404+1 2.353262-5 1.297452+1 2.353728-5 1.152835+1 2.355474-5 7.283397+0 2.360713-5-3.743618+0 2.362534-5-7.857258+0 2.363445-5-1.020126+1 2.363900-5-1.152912+1 2.364612-5-1.419346+1 2.365737-5-1.735742+1 2.367836-5-2.190105+1 2.372110-5-2.897041+1 2.377808-5-3.608088+1 2.386872-5-4.444279+1 2.400602-5-5.335186+1 2.423023-5-6.304775+1 2.463618-5-7.483732+1 2.490313-5-7.823545+1 2.522302-5-8.121359+1 2.549527-5-8.543185+1 2.590972-5-8.109321+1 2.647879-5-8.398093+1 3.187640-5-9.490874+1 3.263678-5-9.703234+1 3.352972-5-8.913442+1 3.395475-5-8.047483+1 3.415594-5-7.234039+1 3.423993-5-6.593852+1 3.440848-5-5.225331+1 3.450790-5-4.307854+1 3.460946-5-3.556756+1 3.467185-5-3.317833+1 3.472485-5-3.367617+1 3.477456-5-3.615002+1 3.482209-5-4.111660+1 3.488748-5-5.186406+1 3.496879-5-7.155807+1 3.505590-5-9.752930+1 3.511500-5-7.772421+1 3.519265-5-5.375497+1 3.526374-5-3.542790+1 3.530452-5-2.759530+1 3.534073-5-2.234514+1 3.536401-5-1.961244+1 3.540189-5-1.609543+1 3.542744-5-1.441972+1 3.546097-5-1.308971+1 3.548253-5-1.282332+1 3.549331-5-1.291667+1 3.556729-5-1.576559+1 3.558836-5-1.732546+1 3.566342-5-2.311939+1 3.578589-5-3.443920+1 3.590440-5-4.338977+1 3.595014-5-4.818948+1 3.605935-5-5.482548+1 3.627893-5-6.253053+1 3.662895-5-6.949712+1 3.744699-5-7.824167+1 3.826659-5-8.168155+1 4.800000-5-8.463973+1 5.983390-5-8.403268+1 8.568199-5-7.935345+1 9.205855-5-8.024061+1 9.952858-5-7.215693+1 1.036971-4-6.407504+1 1.058540-4-5.691535+1 1.073669-4-4.892527+1 1.082996-4-4.143918+1 1.089284-4-3.419555+1 1.094339-4-2.614151+1 1.097022-4-2.084529+1 1.099706-4-1.452071+1 1.101048-4-1.087067+1 1.102390-4-6.785568+0 1.103061-4-4.550896+0 1.103732-4-2.097575+0 1.104230-4-1.120339-1 1.104977-4 3.200317+0 1.105350-4 5.132481+0 1.105537-4 6.236723+0 1.105935-4 9.146425+0 1.106330-4 1.135705+1 1.107023-4 1.463450+1 1.110650-4 2.924400+1 1.114229-4 4.636522+1 1.116951-4 5.671110+1 1.119699-4 6.147042+1 1.120988-4 6.009846+1 1.121976-4 5.713484+1 1.123387-4 5.034084+1 1.124861-4 3.968090+1 1.126375-4 2.440571+1 1.127036-4 1.684363+1 1.127460-4 1.140521+1 1.127779-4 6.805078+0 1.128052-4 2.186280+0 1.129625-4-2.116326+1 1.130303-4-3.246011+1 1.131003-4-4.629611+1 1.132791-4-7.683298+1 1.133524-4-6.151998+1 1.135936-4-1.921473+1 1.136182-4-1.439630+1 1.136487-4-9.287687+0 1.136753-4-5.131321+0 1.137220-4 1.708828+0 1.138444-4 1.856218+1 1.138787-4 2.375201+1 1.139102-4 2.779185+1 1.140065-4 3.817905+1 1.141638-4 5.183781+1 1.142666-4 5.809180+1 1.143987-4 6.282038+1 1.145828-4 6.477315+1 1.148589-4 5.852727+1 1.151694-4 4.377038+1 1.155053-4 2.440164+1 1.156541-4 1.707609+1 1.158795-4 6.798341+0 1.159476-4 3.278595+0 1.159816-4 1.289066+0 1.159986-4 1.716862-1 1.160156-4-1.199513+0 1.160278-4-2.224393+0 1.160520-4-3.818204+0 1.160996-4-6.455262+0 1.161457-4-8.687504+0 1.161904-4-1.065675+1 1.162770-4-1.409188+1 1.164413-4-1.966595+1 1.166395-4-2.534242+1 1.169486-4-3.271567+1 1.174247-4-4.198841+1 1.193802-4-7.381711+1 1.195642-4-7.746572+1 1.200252-4-6.598682+1 1.203560-4-5.334540+1 1.207285-4-4.117219+1 1.211033-4-2.672868+1 1.214127-4-1.693630+1 1.215272-4-1.482856+1 1.217028-4-1.266403+1 1.217523-4-1.250839+1 1.218424-4-1.305395+1 1.219215-4-1.422065+1 1.219933-4-1.578458+1 1.221110-4-1.937412+1 1.222380-4-2.474147+1 1.223689-4-3.218014+1 1.224690-4-3.976303+1 1.225510-4-4.783153+1 1.227853-4-6.975107+1 1.228564-4-7.827866+1 1.230532-4-5.523439+1 1.231512-4-4.317183+1 1.231891-4-3.768829+1 1.234587-4-6.962726+0 1.234687-4-5.562631+0 1.234879-4-3.251136+0 1.235241-4 6.366693-1 1.235873-4 6.751486+0 1.238036-4 2.570490+1 1.239029-4 3.269125+1 1.240325-4 3.967339+1 1.241711-4 4.521553+1 1.243268-4 4.936008+1 1.244626-4 5.116338+1 1.245822-4 5.115369+1 1.248673-4 4.590171+1 1.251313-4 3.767095+1 1.255129-4 2.360331+1 1.260066-4 8.509517+0 1.260390-4 7.285027+0 1.260954-4 4.565274+0 1.261372-4 2.981443+0 1.262000-4 9.827994-1 1.262627-4-7.657961-1 1.263765-4-3.530423+0 1.264903-4-5.929896+0 1.266186-4-8.320432+0 1.268088-4-1.140757+1 1.270272-4-1.444351+1 1.273574-4-1.828453+1 1.277987-4-2.243282+1 1.284083-4-2.694033+1 1.294185-4-3.245952+1 1.311020-4-3.886892+1 1.326803-4-4.255654+1 1.380151-4-4.815757+1 1.435731-4-5.098802+1 2.397607-4-6.331411+1 3.123034-4-6.634034+1 4.518559-4-7.284604+1 5.173750-4-8.084932+1 5.662730-4-9.173512+1 5.930000-4-9.122357+1 7.000000-4-7.033454+1 7.746605-4-6.127145+1 8.391364-4-5.728728+1 8.675828-4-5.795465+1 8.962231-4-5.416934+1 9.282500-4-5.222818+1 9.685281-4-4.780930+1 1.059254-3-4.184229+1 1.154782-3-3.819176+1 1.198428-3-3.796542+1 1.232613-3-3.537347+1 1.342988-3-3.126395+1 1.466757-3-2.851101+1 1.637695-3-2.582839+1 1.883961-3-2.287290+1 2.191046-3-2.115754+1 2.583514-3-2.061000+1 3.006412-3-2.130831+1 3.368992-3-2.307046+1 3.641246-3-2.567668+1 3.802173-3-2.852490+1 3.898462-3-3.167790+1 3.945843-3-3.471292+1 4.004268-3-4.011997+1 4.033157-3-3.996010+1 4.099297-3-3.490749+1 4.145214-3-3.371554+1 4.224647-3-3.528111+1 4.260235-3-3.398228+1 4.326112-3-2.892868+1 4.392420-3-2.596310+1 4.504224-3-2.308080+1 4.648081-3-2.111159+1 4.744815-3-2.092899+1 4.826825-3-2.156912+1 4.873619-3-2.036474+1 4.944533-3-1.811410+1 5.060284-3-1.602943+1 5.256073-3-1.382320+1 5.511249-3-1.202966+1 5.749812-3-1.110124+1 5.880908-3-1.114168+1 5.965200-3-1.110140+1 6.084757-3-1.012256+1 6.217533-3-9.643172+0 6.328140-3-9.440362+0 6.501569-3-8.295949+0 6.808362-3-7.157792+0 7.261321-3-6.108314+0 7.831377-3-5.283485+0 8.427348-3-4.753306+0 9.242540-3-4.386095+0 1.024398-2-4.240235+0 1.156286-2-4.328192+0 1.326702-2-4.724299+0 1.513634-2-5.439713+0 1.662724-2-6.320308+0 1.758210-2-7.235782+0 1.814554-2-8.141449+0 1.848986-2-9.117889+0 1.868301-2-1.016890+1 1.889719-2-1.182467+1 1.900456-2-1.209023+1 1.912906-2-1.148823+1 1.937620-2-9.526061+0 1.959056-2-8.544690+0 1.994603-2-7.646141+0 2.046536-2-6.904224+0 2.121679-2-6.368408+0 2.208323-2-6.199961+0 2.274099-2-6.394734+0 2.317707-2-6.831015+0 2.344229-2-7.465897+0 2.367967-2-8.205541+0 2.384609-2-8.267913+0 2.420037-2-7.415599+0 2.457802-2-6.975390+0 2.506470-2-5.706065+0 2.548789-2-5.000795+0 2.618032-2-4.263819+0 2.719372-2-3.538988+0 2.830959-2-2.983816+0 2.954928-2-2.545871+0 3.085851-2-2.211416+0 3.306026-2-1.828908+0 3.471113-2-1.633805+0 3.715352-2-1.443139+0 3.975347-2-1.326666+0 4.308985-2-1.259775+0 4.820649-2-1.242485+0 5.671462-2-1.333220+0 8.987106-2-1.932416+0 1.053968-1-2.289165+0 1.148791-1-2.616367+0 1.207864-1-2.961134+0 1.241626-1-3.316249+0 1.259280-1-3.662688+0 1.272697-1-4.169200+0 1.283131-1-4.603830+0 1.289494-1-4.667669+0 1.298270-1-4.407457+0 1.315170-1-3.633556+0 1.328825-1-3.269984+0 1.352520-1-2.897896+0 1.388053-1-2.555820+0 1.429942-1-2.294930+0 1.499133-1-2.011588+0 1.573851-1-1.815947+0 1.694210-1-1.620370+0 1.851858-1-1.474665+0 2.111796-1-1.358182+0 2.502968-1-1.303486+0 3.646860-1-1.322269+0 7.001432-1-1.409261+0 2.135261+0-1.450015+0 6.448384+0-1.461777+0 1.000000+1-1.460513+0 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 8.325028-2 1.123969-6 1.426809-1 1.154039-6 1.618332-1 1.200000-6 1.955284-1 1.258216-6 2.465017-1 1.301576-6 2.921257-1 1.372715-6 3.837827-1 1.401764-6 4.288687-1 1.452598-6 5.195042-1 1.490724-6 5.986943-1 1.519319-6 6.661126-1 1.562211-6 7.812736-1 1.624856-6 9.835311-1 1.672265-6 1.172901+0 1.722897-6 1.418445+0 1.759252-6 1.625500+0 1.793336-6 1.848944+0 1.825289-6 2.088660+0 1.855245-6 2.344318+0 1.883329-6 2.615649+0 1.909657-6 2.902128+0 1.934340-6 3.202980+0 1.957481-6 3.517525+0 1.979175-6 3.845184+0 1.999513-6 4.185900+0 2.018580-6 4.540386+0 2.054331-6 5.301254+0 2.085612-6 6.089647+0 2.112984-6 6.900605+0 2.136934-6 7.723851+0 2.157891-6 8.548737+0 2.176228-6 9.366113+0 2.192272-6 1.016868+1 2.206311-6 1.094821+1 2.230880-6 1.250993+1 2.249306-6 1.388099+1 2.263126-6 1.504973+1 2.283856-6 1.707092+1 2.304586-6 1.948142+1 2.321603-6 2.183831+1 2.338620-6 2.463857+1 2.355638-6 2.800465+1 2.366982-6 3.064466+1 2.378327-6 3.367947+1 2.389672-6 3.719898+1 2.401017-6 4.132219+1 2.412362-6 4.621002+1 2.418034-6 4.900734+1 2.425113-6 5.289801+1 2.431748-6 5.702210+1 2.437970-6 6.139090+1 2.443802-6 6.601680+1 2.449270-6 7.091379+1 2.454396-6 7.609812+1 2.459201-6 8.158904+1 2.463706-6 8.740928+1 2.467930-6 9.358494+1 2.475850-6 1.076144+2 2.482779-6 1.235311+2 2.488842-6 1.414915+2 2.494148-6 1.614832+2 2.498790-6 1.832929+2 2.502852-6 2.065336+2 2.506406-6 2.307072+2 2.509516-6 2.552779+2 2.512237-6 2.797331+2 2.516702-6 3.265942+2 2.523082-6 4.101866+2 2.532405-6 5.727182+2 2.537516-6 6.834130+2 2.540631-6 7.581252+2 2.543746-6 8.378477+2 2.549977-6 1.009619+3 2.550756-6 1.031971+3 2.556207-6 1.191201+3 2.558349-6 1.254036+3 2.562438-6 1.371894+3 2.564580-6 1.431489+3 2.566624-6 1.486321+3 2.569447-6 1.557803+3 2.571832-6 1.613491+3 2.574899-6 1.677480+3 2.577625-6 1.726059+3 2.580801-6 1.771520+3 2.584439-6 1.807379+3 2.587554-6 1.823354+3 2.588639-6 1.825621+3 2.591733-6 1.822610+3 2.594018-6 1.811404+3 2.600109-6 1.745527+3 2.602053-6 1.714185+3 2.606623-6 1.623145+3 2.609032-6 1.566539+3 2.612281-6 1.482453+3 2.615445-6 1.393739+3 2.618512-6 1.303096+3 2.621238-6 1.220056+3 2.624085-6 1.132120+3 2.627857-6 1.015803+3 2.630973-6 9.215584+2 2.634477-6 8.191381+2 2.637203-6 7.430119+2 2.643434-6 5.835187+2 2.645575-6 5.339164+2 2.647620-6 4.892119+2 2.651222-6 4.168224+2 2.654726-6 3.541625+2 2.657560-6 3.089578+2 2.661499-6 2.538242+2 2.665347-6 2.080317+2 2.667873-6 1.819459+2 2.670358-6 1.590798+2 2.672806-6 1.390804+2 2.677585-6 1.063981+2 2.682217-6 8.160677+1 2.688897-6 5.525586+1 2.697326-6 3.352111+1 2.707203-6 1.860747+1 2.710946-6 1.491913+1 2.714572-6 1.208797+1 2.718084-6 9.919053+0 2.721487-6 8.267702+0 2.724783-6 7.025493+0 2.727976-6 6.110163+0 2.731070-6 5.458371+0 2.734066-6 5.020567+0 2.736970-6 4.757365+0 2.738376-6 4.681542+0 2.739760-6 4.637458+0 2.826968-6 2.985778+1 2.833926-6 3.479124+1 2.840884-6 4.072099+1 2.847842-6 4.782823+1 2.854801-6 5.632800+1 2.861759-6 6.649772+1 2.868717-6 7.871872+1 2.875675-6 9.353670+1 2.882634-6 1.117519+2 2.889592-6 1.345536+2 2.893071-6 1.481991+2 2.896550-6 1.637149+2 2.900029-6 1.814568+2 2.903508-6 2.018527+2 2.906987-6 2.254137+2 2.910466-6 2.527446+2 2.913946-6 2.845538+2 2.917425-6 3.216617+2 2.920904-6 3.650065+2 2.924383-6 4.156469+2 2.927862-6 4.747602+2 2.931341-6 5.436347+2 2.938299-6 7.162879+2 2.949606-6 1.122627+3 2.955709-6 1.421319+3 2.960374-6 1.692295+3 2.963253-6 1.878690+3 2.966132-6 2.079866+3 2.968882-6 2.285697+3 2.971632-6 2.504515+3 2.978911-6 3.141057+3 2.979821-6 3.225809+3 2.986189-6 3.843419+3 2.988691-6 4.094430+3 2.993468-6 4.578331+3 2.997164-6 4.949958+3 3.000746-6 5.300807+3 3.004442-6 5.646235+3 3.008025-6 5.958271+3 3.011209-6 6.211592+3 3.014152-6 6.421719+3 3.015758-6 6.525559+3 3.020023-6 6.759992+3 3.023353-6 6.897812+3 3.027233-6 7.004515+3 3.030863-6 7.049666+3 3.033519-6 7.048671+3 3.037138-6 7.001316+3 3.039672-6 6.937313+3 3.044872-6 6.730717+3 3.047777-6 6.574550+3 3.049736-6 6.454325+3 3.052605-6 6.258603+3 3.055391-6 6.048597+3 3.058974-6 5.754304+3 3.062158-6 5.474385+3 3.065229-6 5.192400+3 3.069892-6 4.750263+3 3.073531-6 4.400711+3 3.077625-6 4.010301+3 3.080809-6 3.712993+3 3.088088-6 3.069528+3 3.092978-6 2.674792+3 3.095366-6 2.494799+3 3.100825-6 2.116991+3 3.106962-6 1.749262+3 3.122030-6 1.086329+3 3.125728-6 9.689863+2 3.129396-6 8.672316+2 3.133036-6 7.792105+2 3.136648-6 7.031844+2 3.140231-6 6.375556+2 3.143787-6 5.808802+2 3.147314-6 5.318724+2 3.154314-6 4.522131+2 3.161205-6 3.916381+2 3.167988-6 3.447317+2 3.174665-6 3.076491+2 3.181238-6 2.777068+2 3.187708-6 2.530457+2 3.194076-6 2.323737+2 3.200346-6 2.147827+2 3.206517-6 1.996225+2 3.212592-6 1.864176+2 3.224552-6 1.643772+2 3.236139-6 1.468966+2 3.247363-6 1.327151+2 3.258236-6 1.210021+2 3.268770-6 1.111854+2 3.278975-6 1.028559+2 3.288860-6 9.571198+1 3.298437-6 8.952601+1 3.316992-6 7.922212+1 3.334387-6 7.116738+1 3.350695-6 6.472317+1 3.365984-6 5.947212+1 3.383380-6 5.426195+1 3.393755-6 5.148176+1 3.418950-6 4.556573+1 3.440996-6 4.118300+1 3.477164-6 3.521432+1 3.506702-6 3.120718+1 3.528856-6 2.860407+1 3.564113-6 2.501619+1 3.696150-6 1.547961+1 3.731605-6 1.356075+1 3.758725-6 1.218078+1 3.785082-6 1.089564+1 3.831445-6 8.894105+0 3.841806-6 8.525742+0 3.856768-6 8.055420+0 3.875922-6 7.549461+0 3.923601-6 6.542817+0 3.932132-6 6.371532+0 3.949549-6 6.015404+0 3.975211-6 5.470885+0 3.999794-6 4.930272+0 4.021304-6 4.446503+0 4.040125-6 4.017034+0 4.056594-6 3.636899+0 4.071004-6 3.300715+0 4.084434-6 2.984127+0 4.097348-6 2.676840+0 4.113953-6 2.279584+0 4.128433-6 1.937208+0 4.139294-6 1.690571+0 4.158130-6 1.314190+0 4.165002-6 1.204523+0 4.170156-6 1.135976+0 4.173158-6 1.102271+0 4.177651-6 1.061269+0 4.187277-6 1.015922+0 4.189845-6 1.014448+0 4.192412-6 1.017676+0 4.194979-6 1.025684+0 4.198830-6 1.046750+0 4.201718-6 1.069693+0 4.203964-6 1.091737+0 4.206210-6 1.117406+0 4.209579-6 1.162556+0 4.213591-6 1.226307+0 4.216900-6 1.286632+0 4.225062-6 1.462166+0 4.239683-6 1.851229+0 4.250148-6 2.175440+0 4.261669-6 2.591710+0 4.266400-6 2.794762+0 4.271500-6 3.048009+0 4.275503-6 3.280780+0 4.277688-6 3.423822+0 4.285149-6 4.022465+0 4.288849-6 4.399227+0 4.291583-6 4.719771+0 4.296107-6 5.342493+0 4.300147-6 6.011116+0 4.305116-6 7.003992+0 4.309003-6 7.930489+0 4.317724-6 1.056734+1 4.326927-6 1.431889+1 4.332883-6 1.733662+1 4.336403-6 1.934775+1 4.346761-6 2.623533+1 4.349568-6 2.833952+1 4.357029-6 3.436106+1 4.361108-6 3.787689+1 4.365663-6 4.194212+1 4.369486-6 4.543332+1 4.373972-6 4.957370+1 4.378612-6 5.384710+1 4.383270-6 5.806081+1 4.388030-6 6.221355+1 4.392424-6 6.584583+1 4.396806-6 6.921799+1 4.401653-6 7.259264+1 4.406470-6 7.551668+1 4.410332-6 7.751535+1 4.413639-6 7.896319+1 4.419163-6 8.080995+1 4.424087-6 8.183119+1 4.431119-6 8.225514+1 4.434754-6 8.200442+1 4.439843-6 8.113792+1 4.442328-6 8.050623+1 4.445381-6 7.955371+1 4.449556-6 7.795590+1 4.452468-6 7.665493+1 4.455889-6 7.495019+1 4.460907-6 7.214566+1 4.462322-6 7.129792+1 4.468798-6 6.715531+1 4.472914-6 6.434653+1 4.476272-6 6.198517+1 4.483507-6 5.677944+1 4.494099-6 4.916238+1 4.496115-6 4.774624+1 4.510590-6 3.820428+1 4.521749-6 3.184105+1 4.536184-6 2.508046+1 4.542384-6 2.267657+1 4.549205-6 2.035278+1 4.557951-6 1.781771+1 4.562966-6 1.656551+1 4.573013-6 1.443458+1 4.585067-6 1.242308+1 4.594447-6 1.117563+1 4.604170-6 1.010555+1 4.622048-6 8.563069+0 4.633235-6 7.794022+0 4.640000-6 7.381341+0 4.652315-6 6.707359+0 4.685010-6 5.233208+0 4.712461-6 4.191902+0 4.729078-6 3.615127+0 4.739546-6 3.273466+0 4.761706-6 2.635429+0 4.767552-6 2.496376+0 4.773398-6 2.374821+0 4.779243-6 2.274296+0 4.785089-6 2.198782+0 4.790935-6 2.152664+0 4.796781-6 2.140656+0 4.802243-6 2.164616+0 4.804974-6 2.190655+0 4.808459-6 2.238559+0 4.809921-6 2.263780+0 4.812663-6 2.319585+0 4.831855-6 3.055555+0 4.844278-6 3.885949+0 4.859106-6 5.241975+0 4.865539-6 5.938628+0 4.872569-6 6.758147+0 4.877439-6 7.352411+0 4.882898-6 8.034193+0 4.887614-6 8.628594+0 4.893081-6 9.312876+0 4.898830-6 1.001402+1 4.903112-6 1.051518+1 4.908659-6 1.112657+1 4.914206-6 1.168358+1 4.916333-6 1.188015+1 4.921186-6 1.228913+1 4.926780-6 1.268502+1 4.937874-6 1.320185+1 4.942427-6 1.330329+1 4.950817-6 1.331681+1 4.952966-6 1.328441+1 4.956996-6 1.318530+1 4.960523-6 1.305870+1 4.966308-6 1.277467+1 4.971033-6 1.247747+1 4.974577-6 1.221959+1 4.977235-6 1.200819+1 4.983214-6 1.148259+1 4.985208-6 1.129381+1 4.994083-6 1.038855+1 4.997041-6 1.006866+1 5.005916-6 9.078108+0 5.008875-6 8.742989+0 5.020708-6 7.417146+0 5.023070-6 7.160194+0 5.039603-6 5.499552+0 5.055919-6 4.187153+0 5.063550-6 3.705881+0 5.076404-6 3.094420+0 5.080539-6 2.949953+0 5.089866-6 2.712626+0 5.094141-6 2.642517+0 5.102303-6 2.569839+0 5.106578-6 2.560773+0 5.110658-6 2.568572+0 5.114739-6 2.590718+0 5.118501-6 2.622307+0 5.124902-6 2.696404+0 5.131803-6 2.797581+0 5.148929-6 3.084124+0 5.153602-6 3.157790+0 5.159043-6 3.235046+0 5.165261-6 3.308238+0 5.174370-6 3.379028+0 5.179278-6 3.396879+0 5.181970-6 3.400332+0 5.190044-6 3.383775+0 5.194435-6 3.358400+0 5.202818-6 3.281182+0 5.210029-6 3.189618+0 5.219342-6 3.048116+0 5.239545-6 2.729461+0 5.246989-6 2.638299+0 5.252315-6 2.591460+0 5.255229-6 2.574114+0 5.259601-6 2.561199+0 5.263974-6 2.566573+0 5.266216-6 2.577450+0 5.276451-6 2.712929+0 5.279693-6 2.791162+0 5.282634-6 2.879852+0 5.285805-6 2.996532+0 5.290609-6 3.220514+0 5.293665-6 3.396588+0 5.296119-6 3.559268+0 5.298851-6 3.764689+0 5.301484-6 3.989339+0 5.303714-6 4.201756+0 5.308448-6 4.727358+0 5.313181-6 5.368083+0 5.317790-6 6.119664+0 5.321536-6 6.836208+0 5.325704-6 7.758862+0 5.334527-6 1.021887+1 5.350342-6 1.681192+1 5.358941-6 2.187766+1 5.363851-6 2.532254+1 5.366615-6 2.745253+1 5.371453-6 3.152727+1 5.378709-6 3.850851+1 5.385058-6 4.551013+1 5.388335-6 4.945817+1 5.396451-6 6.021490+1 5.401527-6 6.763757+1 5.404232-6 7.180389+1 5.411334-6 8.339195+1 5.414932-6 8.959393+1 5.420091-6 9.882677+1 5.427927-6 1.134644+2 5.432503-6 1.222521+2 5.438208-6 1.333319+2 5.443058-6 1.427600+2 5.448248-6 1.527417+2 5.453844-6 1.632453+2 5.458679-6 1.719898+2 5.464685-6 1.822647+2 5.466825-6 1.857371+2 5.474531-6 1.972568+2 5.480798-6 2.053159+2 5.483471-6 2.083517+2 5.489633-6 2.143640+2 5.494757-6 2.182539+2 5.507235-6 2.232781+2 5.512594-6 2.234668+2 5.522352-6 2.208519+2 5.528838-6 2.171215+2 5.532633-6 2.142595+2 5.538860-6 2.085740+2 5.545851-6 2.008910+2 5.551691-6 1.935861+2 5.559199-6 1.832541+2 5.565498-6 1.739806+2 5.571797-6 1.643460+2 5.575007-6 1.593523+2 5.584637-6 1.442830+2 5.597611-6 1.244649+2 5.624506-6 8.857934+1 5.644599-6 6.804330+1 5.658205-6 5.720611+1 5.665312-6 5.242997+1 5.675973-6 4.626651+1 5.686633-6 4.114426+1 5.702726-6 3.500034+1 5.713503-6 3.172343+1 5.722367-6 2.942062+1 5.728565-6 2.798530+1 5.736539-6 2.631895+1 5.743992-6 2.491887+1 5.751771-6 2.359652+1 5.766832-6 2.136859+1 5.779612-6 1.975582+1 5.793334-6 1.824935+1 5.813487-6 1.637065+1 5.833137-6 1.483539+1 5.852201-6 1.356005+1 5.870615-6 1.248404+1 5.906345-6 1.072027+1 5.939842-6 9.343667+0 6.003966-6 7.158349+0 6.065794-6 5.358367+0 6.107243-6 4.267113+0 6.137110-6 3.545076+0 6.157338-6 3.097297+0 6.191414-6 2.451399+0 6.200016-6 2.315953+0 6.209484-6 2.182075+0 6.217831-6 2.078124+0 6.226930-6 1.980595+0 6.236214-6 1.898573+0 6.244949-6 1.837783+0 6.252924-6 1.796106+0 6.262833-6 1.762378+0 6.269509-6 1.750626+0 6.279044-6 1.748613+0 6.285174-6 1.756218+0 6.293054-6 1.776004+0 6.302382-6 1.814045+0 6.311127-6 1.864873+0 6.319418-6 1.928356+0 6.327140-6 2.003549+0 6.334217-6 2.089421+0 6.340972-6 2.190631+0 6.347305-6 2.307227+0 6.353242-6 2.440650+0 6.358808-6 2.592146+0 6.364027-6 2.762634+0 6.368919-6 2.952625+0 6.373505-6 3.162181+0 6.377805-6 3.390914+0 6.381836-6 3.638012+0 6.385615-6 3.902294+0 6.389158-6 4.182268+0 6.392479-6 4.476204+0 6.395593-6 4.782198+0 6.399881-6 5.256788+0 6.403735-6 5.741608+0 6.407239-6 6.235265+0 6.414911-6 7.515276+0 6.425394-6 9.785392+0 6.444868-6 1.605246+1 6.454342-6 2.029078+1 6.462122-6 2.444696+1 6.469555-6 2.902937+1 6.476864-6 3.414409+1 6.486620-6 4.193071+1 6.492721-6 4.735367+1 6.495973-6 5.041302+1 6.504509-6 5.897365+1 6.511830-6 6.687457+1 6.522684-6 7.937096+1 6.530126-6 8.833083+1 6.533784-6 9.280910+1 6.539424-6 9.975923+1 6.546470-6 1.084306+2 6.553299-6 1.167068+2 6.560237-6 1.248548+2 6.566334-6 1.316955+2 6.569652-6 1.352585+2 6.578292-6 1.438943+2 6.585594-6 1.503360+2 6.588660-6 1.527759+2 6.596291-6 1.580980+2 6.602551-6 1.616096+2 6.607424-6 1.637802+2 6.614401-6 1.659996+2 6.619983-6 1.670086+2 6.623133-6 1.672764+2 6.633575-6 1.666284+2 6.641124-6 1.647421+2 6.648441-6 1.618543+2 6.655508-6 1.581577+2 6.663941-6 1.527134+2 6.669001-6 1.489765+2 6.677366-6 1.421547+2 6.680155-6 1.397300+2 6.688083-6 1.325124+2 6.696011-6 1.249428+2 6.705922-6 1.152193+2 6.711868-6 1.093520+2 6.727725-6 9.403219+1 6.735752-6 8.664930+1 6.755257-6 7.030196+1 6.786999-6 4.951457+1 6.795250-6 4.530517+1 6.803501-6 4.154995+1 6.816735-6 3.639850+1 6.831228-6 3.184676+1 6.836673-6 3.039581+1 6.844840-6 2.845590+1 6.864856-6 2.474760+1 6.882395-6 2.251473+1 6.891005-6 2.170907+1 6.899615-6 2.107214+1 6.907963-6 2.060196+1 6.916310-6 2.026432+1 6.924246-6 2.005540+1 6.930198-6 1.996422+1 6.939126-6 1.992242+1 6.948054-6 1.998135+1 6.959356-6 2.017657+1 6.970658-6 2.047704+1 6.985026-6 2.096113+1 7.023013-6 2.237523+1 7.037962-6 2.285053+1 7.046375-6 2.307877+1 7.058995-6 2.336180+1 7.071614-6 2.357161+1 7.094800-6 2.377233+1 7.115455-6 2.376450+1 7.136110-6 2.359191+1 7.155745-6 2.327595+1 7.167512-6 2.301446+1 7.187538-6 2.244586+1 7.202290-6 2.193276+1 7.217041-6 2.134971+1 7.238966-6 2.038409+1 7.256109-6 1.957915+1 7.323664-6 1.653769+1 7.339790-6 1.594025+1 7.353756-6 1.548292+1 7.375922-6 1.488376+1 7.393988-6 1.451855+1 7.412054-6 1.426766+1 7.430120-6 1.412905+1 7.441955-6 1.409508+1 7.451716-6 1.409737+1 7.474495-6 1.418854+1 7.520450-6 1.452620+1 7.538516-6 1.462219+1 7.556582-6 1.465651+1 7.565615-6 1.464578+1 7.579164-6 1.459295+1 7.592714-6 1.449749+1 7.610780-6 1.431273+1 7.628846-6 1.408001+1 7.680895-6 1.335513+1 7.709472-6 1.304583+1 7.734560-6 1.285882+1 7.753230-6 1.276479+1 7.863754-6 1.243325+1 7.968154-6 1.203648+1 8.087705-6 1.168700+1 8.147740-6 1.148654+1 8.182006-6 1.132852+1 8.229044-6 1.103052+1 8.269518-6 1.068814+1 8.294579-6 1.043941+1 8.373711-6 9.590952+0 8.387863-6 9.460160+0 8.429155-6 9.207754+0 8.449800-6 9.187476+0 8.470446-6 9.258359+0 8.482057-6 9.341523+0 8.493667-6 9.456177+0 8.512787-6 9.710222+0 8.524259-6 9.897363+0 8.555026-6 1.048930+1 8.575479-6 1.091222+1 8.595932-6 1.131375+1 8.616385-6 1.165649+1 8.626612-6 1.179592+1 8.643815-6 1.197231+1 8.655156-6 1.204530+1 8.673108-6 1.208831+1 8.685652-6 1.206705+1 8.698197-6 1.200672+1 8.718650-6 1.183579+1 8.738840-6 1.159830+1 8.759485-6 1.130944+1 8.851630-6 9.971118+0 8.925637-6 9.210434+0 8.969575-6 8.927375+0 8.993850-6 8.831455+0 9.013514-6 8.788065+0 9.035483-6 8.776360+0 9.052564-6 8.792640+0 9.085518-6 8.875133+0 9.145330-6 9.090159+0 9.167299-6 9.148287+0 9.190302-6 9.179434+0 9.210706-6 9.177608+0 9.231110-6 9.148652+0 9.255177-6 9.085401+0 9.345122-6 8.761347+0 9.385227-6 8.659693+0 9.432325-6 8.588422+0 9.712800-6 8.301181+0 9.761171-6 8.241787+0 9.821058-6 8.136924+0 9.859648-6 8.043172+0 9.897864-6 7.928979+0 9.979550-6 7.634918+0 1.008432-5 7.253998+0 1.017563-5 6.980383+0 1.029566-5 6.688142+0 1.060694-5 6.056389+0 1.109175-5 5.187774+0 1.167300-5 4.210835+0 1.199970-5 3.687858+0 1.226752-5 3.265387+0 1.239687-5 3.061027+0 1.259789-5 2.748193+0 1.266720-5 2.661326+0 1.272251-5 2.612131+0 1.276946-5 2.587820+0 1.281262-5 2.579477+0 1.286362-5 2.583460+0 1.295318-5 2.605835+0 1.300655-5 2.614626+0 1.307111-5 2.611250+0 1.314217-5 2.587934+0 1.316560-5 2.576378+0 1.330785-5 2.481994+0 1.340571-5 2.407044+0 1.379919-5 2.113401+0 1.394711-5 2.020528+0 1.405340-5 1.963708+0 1.413495-5 1.928424+0 1.418350-5 1.912512+0 1.425170-5 1.899251+0 1.430481-5 1.898319+0 1.434494-5 1.903943+0 1.440523-5 1.922946+0 1.448279-5 1.963625+0 1.468235-5 2.097919+0 1.480000-5 2.164780+0 1.500175-5 2.273218+0 1.514419-5 2.373137+0 1.519490-5 2.415982+0 1.529141-5 2.509420+0 1.542248-5 2.662661+0 1.562407-5 2.959804+0 1.575309-5 3.195002+0 1.590446-5 3.524547+0 1.611518-5 4.086511+0 1.627050-5 4.589219+0 1.646000-5 5.323550+0 1.666610-5 6.291252+0 1.682435-5 7.177061+0 1.699034-5 8.266500+0 1.711283-5 9.191569+0 1.723148-5 1.019973+1 1.746576-5 1.256879+1 1.761110-5 1.433704+1 1.777141-5 1.660183+1 1.792531-5 1.914579+1 1.805654-5 2.166256+1 1.820455-5 2.495712+1 1.841572-5 3.062479+1 1.855634-5 3.517817+1 1.870343-5 4.079586+1 1.884133-5 4.702337+1 1.897252-5 5.399539+1 1.909182-5 6.141374+1 1.920544-5 6.963691+1 1.931197-5 7.858150+1 1.941183-5 8.826697+1 1.951852-5 1.002805+2 1.961101-5 1.123670+2 1.967552-5 1.218823+2 1.978286-5 1.400885+2 1.989279-5 1.625159+2 1.995635-5 1.776456+2 2.001595-5 1.935577+2 2.009104-5 2.164178+2 2.017329-5 2.458054+2 2.021933-5 2.646501+2 2.030564-5 3.057516+2 2.038116-5 3.495197+2 2.044725-5 3.957311+2 2.050507-5 4.441199+2 2.055856-5 4.974547+2 2.059994-5 5.458161+2 2.063867-5 5.979632+2 2.070223-5 7.012451+2 2.075413-5 8.056400+2 2.079305-5 8.980590+2 2.084414-5 1.040366+3 2.101276-5 1.708834+3 2.111570-5 2.292267+3 2.118552-5 2.794337+3 2.121306-5 3.026736+3 2.124060-5 3.284942+3 2.128108-5 3.723253+3 2.130132-5 3.974385+3 2.132157-5 4.250801+3 2.137947-5 5.210388+3 2.142450-5 6.168275+3 2.148502-5 7.810118+3 2.154437-5 9.855820+3 2.159053-5 1.173951+4 2.164658-5 1.430865+4 2.165276-5 1.460598+4 2.170095-5 1.697072+4 2.171823-5 1.782263+4 2.174292-5 1.902334+4 2.175879-5 1.977595+4 2.178462-5 2.095086+4 2.180095-5 2.165225+4 2.182429-5 2.258417+4 2.185007-5 2.349843+4 2.185759-5 2.373907+4 2.188232-5 2.443938+4 2.190949-5 2.503354+4 2.193078-5 2.536041+4 2.195696-5 2.558657+4 2.196696-5 2.562063+4 2.202260-5 2.528035+4 2.204587-5 2.487963+4 2.206961-5 2.432480+4 2.209529-5 2.357195+4 2.211755-5 2.280461+4 2.213186-5 2.226142+4 2.215585-5 2.127533+4 2.217912-5 2.024271+4 2.219857-5 1.933580+4 2.222356-5 1.812743+4 2.224994-5 1.682191+4 2.227632-5 1.550765+4 2.230599-5 1.404465+4 2.232907-5 1.293425+4 2.238182-5 1.054353+4 2.240078-5 9.747791+3 2.242242-5 8.886675+3 2.245487-5 7.694776+3 2.249366-5 6.432720+3 2.253624-5 5.249479+3 2.266503-5 2.803562+3 2.269236-5 2.462233+3 2.271968-5 2.168410+3 2.274700-5 1.915912+3 2.280164-5 1.512558+3 2.285629-5 1.213304+3 2.289196-5 1.059807+3 2.290385-5 1.014624+3 2.301660-5 7.000510+2 2.307486-5 6.012859+2 2.308169-5 5.921115+2 2.312951-5 5.410888+2 2.315132-5 5.251587+2 2.319298-5 5.066756+2 2.321193-5 5.031215+2 2.323222-5 5.024236+2 2.324878-5 5.040753+2 2.326120-5 5.065334+2 2.328916-5 5.155212+2 2.331429-5 5.271509+2 2.334840-5 5.471292+2 2.344964-5 6.192695+2 2.348129-5 6.409147+2 2.353051-5 6.695162+2 2.355340-5 6.800051+2 2.357524-5 6.880932+2 2.359709-5 6.942006+2 2.362499-5 6.990616+2 2.364777-5 7.006167+2 2.366486-5 7.004135+2 2.369049-5 6.980486+2 2.371612-5 6.934430+2 2.377072-5 6.776402+2 2.383177-5 6.538854+2 2.392190-5 6.167203+2 2.396354-5 6.015523+2 2.401129-5 5.869515+2 2.404364-5 5.789673+2 2.409279-5 5.697710+2 2.414195-5 5.637725+2 2.426610-5 5.581486+2 2.438241-5 5.559658+2 2.444797-5 5.522722+2 2.452795-5 5.430271+2 2.459394-5 5.305033+2 2.465013-5 5.160537+2 2.468921-5 5.039724+2 2.473132-5 4.892027+2 2.478377-5 4.685559+2 2.482842-5 4.493541+2 2.489221-5 4.200891+2 2.494855-5 3.932944+2 2.501287-5 3.626717+2 2.511575-5 3.160523+2 2.526376-5 2.587304+2 2.537152-5 2.254154+2 2.547821-5 1.986464+2 2.557903-5 1.778481+2 2.567354-5 1.613460+2 2.576215-5 1.478636+2 2.592829-5 1.263351+2 2.622709-5 9.564724+1 2.668395-5 5.876855+1 2.680054-5 5.036188+1 2.688406-5 4.467183+1 2.705958-5 3.435901+1 2.709356-5 3.275924+1 2.712194-5 3.155514+1 2.714841-5 3.055134+1 2.717049-5 2.980879+1 2.719121-5 2.919451+1 2.721068-5 2.869427+1 2.723766-5 2.812857+1 2.726228-5 2.774714+1 2.729133-5 2.746756+1 2.730525-5 2.740024+1 2.733530-5 2.740378+1 2.735801-5 2.754162+1 2.739139-5 2.795328+1 2.741919-5 2.848135+1 2.745041-5 2.926634+1 2.747675-5 3.007782+1 2.749650-5 3.076997+1 2.752614-5 3.193152+1 2.757658-5 3.420339+1 2.770090-5 4.081676+1 2.775810-5 4.402352+1 2.778697-5 4.561561+1 2.782691-5 4.775202+1 2.786050-5 4.946725+1 2.789644-5 5.119978+1 2.793679-5 5.300001+1 2.798495-5 5.492748+1 2.803463-5 5.665268+1 2.808032-5 5.800234+1 2.813759-5 5.938632+1 2.818982-5 6.037249+1 2.825839-5 6.131352+1 2.834654-5 6.203334+1 2.842492-5 6.231050+1 2.853062-5 6.228780+1 2.865771-5 6.184115+1 2.878873-5 6.106250+1 2.896541-5 5.968074+1 2.914797-5 5.798920+1 2.926144-5 5.684477+1 2.947333-5 5.457808+1 2.963774-5 5.274102+1 2.982649-5 5.058575+1 3.011272-5 4.731134+1 3.052371-5 4.286117+1 3.080000-5 4.028187+1 3.097531-5 3.895555+1 3.112600-5 3.808322+1 3.127412-5 3.751696+1 3.141313-5 3.725772+1 3.163753-5 3.722418+1 3.189544-5 3.732061+1 3.199545-5 3.749178+1 3.206643-5 3.778282+1 3.211227-5 3.809175+1 3.215669-5 3.851240+1 3.219971-5 3.906091+1 3.224139-5 3.975186+1 3.228177-5 4.059840+1 3.232089-5 4.161249+1 3.236020-5 4.285412+1 3.239549-5 4.418676+1 3.243106-5 4.576746+1 3.246551-5 4.755729+1 3.249888-5 4.956654+1 3.253122-5 5.180594+1 3.256254-5 5.428679+1 3.259288-5 5.702117+1 3.265173-5 6.342322+1 3.270679-5 7.103052+1 3.275846-5 7.999865+1 3.280690-5 9.046016+1 3.285231-5 1.025561+2 3.289489-5 1.164187+2 3.293480-5 1.321615+2 3.297222-5 1.498700+2 3.300730-5 1.695948+2 3.304019-5 1.913465+2 3.307102-5 2.150938+2 3.309993-5 2.407649+2 3.315243-5 2.974059+2 3.317625-5 3.280634+2 3.322091-5 3.954269+2 3.337318-5 7.543916+2 3.342610-5 9.407998+2 3.348820-5 1.210959+3 3.353867-5 1.476427+3 3.356527-5 1.634166+3 3.361605-5 1.971160+3 3.365732-5 2.280523+3 3.369859-5 2.621750+3 3.378629-5 3.447207+3 3.380563-5 3.645913+3 3.386367-5 4.271338+3 3.389543-5 4.628332+3 3.394621-5 5.212005+3 3.398753-5 5.690301+3 3.402365-5 6.103884+3 3.405383-5 6.441534+3 3.409262-5 6.859123+3 3.411792-5 7.118090+3 3.415113-5 7.437864+3 3.419082-5 7.784224+3 3.423767-5 8.133466+3 3.427765-5 8.373113+3 3.429837-5 8.474259+3 3.433787-5 8.620976+3 3.437495-5 8.701535+3 3.441598-5 8.724789+3 3.444902-5 8.693236+3 3.446658-5 8.658479+3 3.452769-5 8.444375+3 3.456015-5 8.275315+3 3.459628-5 8.046500+3 3.461950-5 7.878824+3 3.465927-5 7.558778+3 3.469907-5 7.203057+3 3.473232-5 6.884326+3 3.477507-5 6.453237+3 3.481714-5 6.013921+3 3.485921-5 5.568200+3 3.490278-5 5.108121+3 3.493667-5 4.756203+3 3.501921-5 3.940391+3 3.504887-5 3.666424+3 3.511658-5 3.087505+3 3.518877-5 2.547842+3 3.529219-5 1.917576+3 3.540085-5 1.423530+3 3.544091-5 1.279432+3 3.548134-5 1.152137+3 3.553241-5 1.014654+3 3.557370-5 9.204016+2 3.564390-5 7.896998+2 3.566226-5 7.608860+2 3.575006-5 6.486208+2 3.579405-5 6.058583+2 3.583805-5 5.705037+2 3.589219-5 5.356995+2 3.592605-5 5.181528+2 3.595356-5 5.059957+2 3.599484-5 4.909181+2 3.603612-5 4.791879+2 3.607601-5 4.706067+2 3.610593-5 4.657206+2 3.615081-5 4.605329+2 3.619569-5 4.575082+2 3.626106-5 4.561032+2 3.636712-5 4.586887+2 3.657738-5 4.682833+2 3.664512-5 4.702118+2 3.673724-5 4.711558+2 3.683316-5 4.700952+2 3.692698-5 4.673252+2 3.708270-5 4.598122+2 3.717881-5 4.536242+2 3.730848-5 4.432177+2 3.745209-5 4.282562+2 3.751177-5 4.208080+2 3.761412-5 4.062967+2 3.774439-5 3.849448+2 3.779795-5 3.754229+2 3.790200-5 3.561600+2 3.807365-5 3.239259+2 3.831221-5 2.831148+2 3.840250-5 2.697842+2 3.854339-5 2.515548+2 3.870956-5 2.337483+2 3.891422-5 2.161623+2 3.902806-5 2.079080+2 3.928789-5 1.917650+2 4.002434-5 1.552171+2 4.023673-5 1.464068+2 4.037442-5 1.416954+2 4.048768-5 1.387468+2 4.058438-5 1.370849+2 4.067951-5 1.363485+2 4.077804-5 1.366084+2 4.087674-5 1.379324+2 4.096000-5 1.398379+2 4.104172-5 1.423339+2 4.118221-5 1.477601+2 4.148146-5 1.613086+2 4.161117-5 1.668262+2 4.176726-5 1.725442+2 4.192500-5 1.771334+2 4.208804-5 1.806930+2 4.225347-5 1.833032+2 4.254485-5 1.862557+2 4.310463-5 1.892256+2 4.390883-5 1.916197+2 4.714069-5 1.993004+2 4.933110-5 2.066998+2 5.195535-5 2.186785+2 5.481500-5 2.340192+2 5.521976-5 2.370476+2 5.561043-5 2.420030+2 5.593200-5 2.481949+2 5.646945-5 2.603015+2 5.673850-5 2.649599+2 5.702416-5 2.679990+2 5.771687-5 2.715233+2 5.822575-5 2.754063+2 5.871568-5 2.795331+2 5.905928-5 2.817020+2 6.011760-5 2.861603+2 6.100084-5 2.917814+2 6.210681-5 3.017968+2 6.265398-5 3.086347+2 6.387266-5 3.265124+2 6.513267-5 3.425160+2 6.800875-5 3.750275+2 7.039872-5 4.013773+2 7.265511-5 4.253885+2 7.520557-5 4.506578+2 7.777374-5 4.735880+2 8.052910-5 4.942124+2 8.341612-5 5.107326+2 8.609938-5 5.207550+2 8.887894-5 5.247170+2 9.090213-5 5.226056+2 9.282122-5 5.162305+2 9.472143-5 5.054642+2 9.636071-5 4.920119+2 9.781621-5 4.767286+2 9.909658-5 4.664408+2 9.947094-5 4.668206+2 1.008895-4 4.872383+2 1.020569-4 5.174141+2 1.030683-4 5.497278+2 1.040434-4 5.873392+2 1.049954-4 6.321166+2 1.056408-4 6.685166+2 1.064139-4 7.205971+2 1.071519-4 7.815397+2 1.076907-4 8.352166+2 1.082157-4 8.972954+2 1.086770-4 9.621053+2 1.092665-4 1.063574+3 1.097622-4 1.171440+3 1.100826-4 1.256428+3 1.102927-4 1.320745+3 1.106989-4 1.470529+3 1.110098-4 1.615884+3 1.112892-4 1.778279+3 1.114542-4 1.892730+3 1.117042-4 2.099686+3 1.119453-4 2.347968+3 1.120256-4 2.443699+3 1.123014-4 2.832617+3 1.124392-4 3.068183+3 1.125771-4 3.336020+3 1.127150-4 3.640004+3 1.128528-4 3.984085+3 1.130596-4 4.583886+3 1.134659-4 6.095334+3 1.137554-4 7.468239+3 1.139558-4 8.564274+3 1.141895-4 9.982350+3 1.145042-4 1.208294+4 1.147489-4 1.380864+4 1.148554-4 1.456686+4 1.149571-4 1.528657+4 1.150932-4 1.623394+4 1.152639-4 1.737481+4 1.153829-4 1.812582+4 1.155463-4 1.907626+4 1.156791-4 1.976596+4 1.157987-4 2.031205+4 1.159032-4 2.072499+4 1.160647-4 2.123448+4 1.162063-4 2.154250+4 1.163707-4 2.172868+4 1.164573-4 2.175060+4 1.167218-4 2.149076+4 1.168451-4 2.120494+4 1.169889-4 2.074653+4 1.171382-4 2.013810+4 1.172661-4 1.951955+4 1.174081-4 1.874033+4 1.175457-4 1.790643+4 1.176681-4 1.711246+4 1.178254-4 1.603693+4 1.179653-4 1.504664+4 1.181051-4 1.404068+4 1.182624-4 1.290892+4 1.183848-4 1.204061+4 1.186887-4 9.982908+3 1.188133-4 9.196056+3 1.190512-4 7.809046+3 1.193082-4 6.497605+3 1.198897-4 4.248112+3 1.201462-4 3.538389+3 1.202928-4 3.197366+3 1.204394-4 2.897309+3 1.205860-4 2.633545+3 1.207045-4 2.443864+3 1.209602-4 2.095256+3 1.212430-4 1.788357+3 1.215531-4 1.524711+3 1.218217-4 1.346203+3 1.221165-4 1.198264+3 1.224192-4 1.100895+3 1.226444-4 1.069928+3 1.228800-4 1.082975+3 1.230294-4 1.119349+3 1.231818-4 1.182133+3 1.233177-4 1.262214+3 1.233967-4 1.320038+3 1.234953-4 1.404605+3 1.235946-4 1.504287+3 1.236645-4 1.583659+3 1.237824-4 1.735456+3 1.239168-4 1.936817+3 1.240230-4 2.118116+3 1.244850-4 3.144620+3 1.245580-4 3.342251+3 1.247798-4 4.000495+3 1.248524-4 4.233946+3 1.251360-4 5.221558+3 1.252642-4 5.702418+3 1.254698-4 6.507427+3 1.256184-4 7.107164+3 1.257409-4 7.606832+3 1.258821-4 8.182771+3 1.260366-4 8.804893+3 1.261694-4 9.325530+3 1.263304-4 9.928946+3 1.264914-4 1.049103+4 1.266466-4 1.098290+4 1.267747-4 1.134480+4 1.269195-4 1.169948+4 1.270342-4 1.193549+4 1.271805-4 1.217411+4 1.273376-4 1.234826+4 1.274297-4 1.240969+4 1.276063-4 1.244218+4 1.277307-4 1.239827+4 1.278606-4 1.229518+4 1.279977-4 1.212592+4 1.281542-4 1.186212+4 1.282821-4 1.159601+4 1.284534-4 1.117752+4 1.286010-4 1.076970+4 1.287915-4 1.019305+4 1.289916-4 9.546925+3 1.290583-4 9.326026+3 1.293632-4 8.308376+3 1.296121-4 7.499257+3 1.300600-4 6.177604+3 1.304306-4 5.263863+3 1.306502-4 4.806043+3 1.308127-4 4.506249+3 1.309694-4 4.247136+3 1.312101-4 3.901520+3 1.313937-4 3.676553+3 1.315078-4 3.551781+3 1.318291-4 3.254112+3 1.322170-4 2.980069+3 1.324450-4 2.852320+3 1.327767-4 2.699802+3 1.330695-4 2.590483+3 1.333600-4 2.499916+3 1.335480-4 2.448789+3 1.338228-4 2.382602+3 1.341683-4 2.310695+3 1.346096-4 2.232268+3 1.354143-4 2.113672+3 1.366809-4 1.960049+3 1.380326-4 1.821113+3 1.387926-4 1.752828+3 1.398411-4 1.670426+3 1.407989-4 1.607479+3 1.415042-4 1.569110+3 1.423958-4 1.530614+3 1.432411-4 1.503593+3 1.438875-4 1.487731+3 1.447000-4 1.471509+3 1.472000-4 1.432098+3 1.496686-4 1.403668+3 1.518000-4 1.386504+3 1.579919-4 1.352411+3 1.620000-4 1.327818+3 1.670764-4 1.289788+3 1.744455-4 1.230893+3 1.846078-4 1.149717+3 1.978246-4 1.050504+3 2.150220-4 9.355692+2 2.250000-4 8.753798+2 2.310995-4 8.386392+2 2.374498-4 8.002690+2 2.389719-4 7.958310+2 2.411078-4 7.964373+2 2.430291-4 7.963356+2 2.445494-4 7.903967+2 2.480991-4 7.660020+2 2.500000-4 7.596729+2 2.523238-4 7.596599+2 2.545000-4 7.610874+2 2.621440-4 7.555152+2 2.692485-4 7.444338+2 2.772746-4 7.296505+2 2.870000-4 7.102180+2 2.968395-4 6.896264+2 3.055556-4 6.705249+2 3.150919-4 6.459708+2 3.206347-4 6.358276+2 3.276448-4 6.170328+2 3.298340-4 6.140133+2 3.330766-4 6.133946+2 3.374637-4 6.137650+2 3.513348-4 6.038195+2 3.747991-4 5.746664+2 3.892447-4 5.528058+2 4.008423-4 5.321705+2 4.093269-4 5.218788+2 4.240000-4 5.007678+2 4.433813-4 4.656685+2 4.579112-4 4.359741+2 4.705577-4 4.071838+2 4.850091-4 3.705064+2 4.959542-4 3.409852+2 5.008848-4 3.269742+2 5.043307-4 3.157095+2 5.124203-4 2.887015+2 5.184561-4 2.713924+2 5.211949-4 2.626846+2 5.257812-4 2.466874+2 5.308844-4 2.290446+2 5.363265-4 2.107886+2 5.400000-4 1.979943+2 5.432503-4 1.862489+2 5.465000-4 1.743367+2 5.524977-4 1.530788+2 5.553750-4 1.438335+2 5.580000-4 1.363040+2 5.604035-4 1.303885+2 5.623413-4 1.264371+2 5.650000-4 1.223993+2 5.670482-4 1.205207+2 5.691330-4 1.198304+2 5.714980-4 1.206691+2 5.737047-4 1.231225+2 5.760391-4 1.275870+2 5.778069-4 1.323081+2 5.805500-4 1.420104+2 5.832000-4 1.542024+2 5.864435-4 1.729608+2 5.901864-4 1.998635+2 5.991009-4 2.856105+2 6.037786-4 3.413053+2 6.068339-4 3.809410+2 6.084600-4 4.029485+2 6.114170-4 4.443779+2 6.132500-4 4.708452+2 6.170480-4 5.271616+2 6.205000-4 5.795573+2 6.217485-4 5.986875+2 6.250000-4 6.487495+2 6.268400-4 6.771321+2 6.300000-4 7.257715+2 6.354136-4 8.081799+2 6.400000-4 8.764908+2 6.455000-4 9.559330+2 6.531306-4 1.060929+3 6.606934-4 1.158509+3 6.678024-4 1.243903+3 6.755561-4 1.329883+3 6.835000-4 1.410580+3 6.945000-4 1.511490+3 7.021500-4 1.575362+3 7.124467-4 1.654335+3 7.268285-4 1.753161+3 7.388324-4 1.826024+3 7.515947-4 1.894980+3 7.663126-4 1.964020+3 7.864320-4 2.045271+3 8.041845-4 2.103460+3 8.246126-4 2.156355+3 8.438204-4 2.191464+3 8.611909-4 2.242961+3 8.631123-4 2.260909+3 8.673726-4 2.319624+3 8.716084-4 2.402615+3 8.737535-4 2.449706+3 8.796476-4 2.560311+3 8.819707-4 2.582488+3 8.840737-4 2.587352+3 8.861567-4 2.577413+3 8.888624-4 2.544997+3 8.969869-4 2.390308+3 8.991784-4 2.355255+3 9.013258-4 2.329546+3 9.052696-4 2.307196+3 9.095597-4 2.316300+3 9.157800-4 2.373487+3 9.183579-4 2.407816+3 9.236029-4 2.491981+3 9.300993-4 2.610454+3 9.357057-4 2.697658+3 9.385283-4 2.725896+3 9.406030-4 2.738031+3 9.428557-4 2.742988+3 9.455621-4 2.739220+3 9.540831-4 2.699492+3 9.569968-4 2.691359+3 9.627429-4 2.696605+3 9.697411-4 2.732318+3 9.793704-4 2.793440+3 9.944694-4 2.868231+3 1.015401-3 2.945161+3 1.044119-3 3.028562+3 1.082019-3 3.112709+3 1.123898-3 3.181561+3 1.160710-3 3.219812+3 1.210377-3 3.239656+3 1.228122-3 3.263201+3 1.242077-3 3.301679+3 1.261527-3 3.383034+3 1.275949-3 3.431918+3 1.299211-3 3.482787+3 1.334004-3 3.533344+3 1.372461-3 3.572158+3 1.426326-3 3.606970+3 1.476640-3 3.625855+3 1.556043-3 3.639496+3 1.592780-3 3.658804+3 1.642628-3 3.668550+3 1.709388-3 3.659571+3 1.729407-3 3.662335+3 1.780360-3 3.687956+3 1.841434-3 3.690921+3 1.906293-3 3.682188+3 2.005953-3 3.659787+3 2.103064-3 3.629164+3 2.220000-3 3.580421+3 2.340858-3 3.524062+3 2.472643-3 3.452608+3 2.606720-3 3.373737+3 2.770627-3 3.272800+3 2.922680-3 3.166318+3 3.073974-3 3.054105+3 3.220097-3 2.935738+3 3.347245-3 2.825420+3 3.469864-3 2.709744+3 3.572175-3 2.603212+3 3.665109-3 2.496490+3 3.743186-3 2.396698+3 3.803585-3 2.310562+3 3.859780-3 2.219825+3 3.908724-3 2.128554+3 3.946689-3 2.046394+3 3.981812-3 1.957406+3 4.009380-3 1.876614+3 4.068700-3 1.692729+3 4.084859-3 1.656052+3 4.099362-3 1.634885+3 4.109015-3 1.628132+3 4.118910-3 1.627699+3 4.129040-3 1.634047+3 4.138699-3 1.646161+3 4.148030-3 1.662903+3 4.164315-3 1.701556+3 4.204573-3 1.817317+3 4.218529-3 1.853714+3 4.231819-3 1.883595+3 4.246771-3 1.911330+3 4.279578-3 1.956507+3 4.312087-3 1.999142+3 4.331708-3 2.032914+3 4.350723-3 2.074448+3 4.373020-3 2.134809+3 4.396528-3 2.210095+3 4.434810-3 2.343810+3 4.455335-3 2.411887+3 4.471292-3 2.459814+3 4.493422-3 2.517499+3 4.519088-3 2.571926+3 4.551190-3 2.624670+3 4.590533-3 2.672826+3 4.629636-3 2.707837+3 4.680010-3 2.738682+3 4.727259-3 2.755335+3 4.776350-3 2.760233+3 4.817588-3 2.753270+3 4.898512-3 2.718216+3 4.917034-3 2.714814+3 4.937541-3 2.718740+3 4.966439-3 2.741753+3 4.989156-3 2.773593+3 5.053590-3 2.889347+3 5.077779-3 2.927206+3 5.106033-3 2.962881+3 5.141167-3 2.995985+3 5.180037-3 3.022446+3 5.231717-3 3.047697+3 5.297814-3 3.070277+3 5.354569-3 3.083285+3 5.448162-3 3.095462+3 5.615181-3 3.095184+3 5.779297-3 3.075647+3 5.867692-3 3.056849+3 5.943129-3 3.034511+3 6.081898-3 2.978231+3 6.146551-3 2.964459+3 6.289192-3 2.978444+3 6.376607-3 2.971471+3 6.506252-3 2.948537+3 6.726862-3 2.960310+3 6.928273-3 2.939970+3 7.157918-3 2.901293+3 7.507716-3 2.831125+3 7.993418-3 2.722029+3 8.505258-3 2.604424+3 9.213012-3 2.441268+3 1.020352-2 2.226495+3 1.097860-2 2.072480+3 1.196224-2 1.893218+3 1.306644-2 1.713297+3 1.416900-2 1.553114+3 1.469561-2 1.482163+3 1.530675-2 1.403407+3 1.584893-2 1.336146+3 1.637314-2 1.273061+3 1.684380-2 1.217482+3 1.725794-2 1.168836+3 1.760293-2 1.127780+3 1.789617-2 1.092032+3 1.814471-2 1.060624+3 1.836116-2 1.031730+3 1.853955-2 1.006095+3 1.869560-2 9.814297+2 1.881861-2 9.594972+2 1.891711-2 9.395366+2 1.906359-2 9.051833+2 1.925024-2 8.596542+2 1.933081-2 8.450428+2 1.940727-2 8.371472+2 1.947483-2 8.359094+2 1.954747-2 8.404036+2 1.963373-2 8.518401+2 1.982397-2 8.851927+2 1.989722-2 8.964069+2 2.002498-2 9.110052+2 2.012082-2 9.181044+2 2.022290-2 9.229271+2 2.036266-2 9.263961+2 2.050904-2 9.274783+2 2.069322-2 9.264004+2 2.089507-2 9.230511+2 2.111339-2 9.175658+2 2.162719-2 8.995807+2 2.196687-2 8.849328+2 2.252975-2 8.571565+2 2.305900-2 8.269880+2 2.330053-2 8.114838+2 2.348659-2 7.984242+2 2.366066-2 7.848722+2 2.380889-2 7.718260+2 2.401875-2 7.505000+2 2.428914-2 7.227744+2 2.441076-2 7.142351+2 2.452523-2 7.100593+2 2.465182-2 7.095109+2 2.531713-2 7.226626+2 2.582994-2 7.385706+2 2.606517-2 7.417937+2 2.644744-2 7.410900+2 2.698777-2 7.344291+2 2.752408-2 7.247818+2 2.826117-2 7.091872+2 2.953317-2 6.793540+2 3.130711-2 6.364148+2 3.382404-2 5.790361+2 3.725100-2 5.104943+2 4.052059-2 4.540895+2 4.435707-2 3.976761+2 4.945997-2 3.368457+2 5.310259-2 3.009888+2 5.781226-2 2.616890+2 6.552715-2 2.112834+2 7.745130-2 1.575899+2 8.758508-2 1.264190+2 9.919850-2 1.005454+2 1.080061-1 8.541474+1 1.120263-1 7.939796+1 1.154670-1 7.458363+1 1.205671-1 6.785494+1 1.240967-1 6.329344+1 1.254679-1 6.146921+1 1.265422-1 5.997626+1 1.274653-1 5.860706+1 1.282152-1 5.739354+1 1.292369-1 5.552989+1 1.309616-1 5.220099+1 1.314836-1 5.146466+1 1.320488-1 5.098545+1 1.326570-1 5.087634+1 1.333514-1 5.117924+1 1.350515-1 5.249352+1 1.360500-1 5.294464+1 1.373801-1 5.307944+1 1.393920-1 5.275259+1 1.420496-1 5.190832+1 1.459073-1 5.034614+1 1.507117-1 4.823838+1 1.587831-1 4.466719+1 1.703722-1 3.990874+1 1.882480-1 3.372188+1 2.166806-1 2.635414+1 2.578037-1 1.926580+1 3.056824-1 1.408631+1 3.804262-1 9.355528+0 4.997468-1 5.568835+0 6.938251-1 2.959780+0 1.120601+0 1.164600+0 1.696098+0 5.156023-1 2.814822+0 1.888472-1 6.755256+0 3.294702-2 2.039158+1 3.617934-3 6.158159+1 3.966972-4 1.859734+2 4.349694-5 5.616308+2 4.769343-6 1.995262+3 3.778856-7 6.309573+3 3.778856-8 1.995262+4 3.778856-9 6.309573+4 3.77886-10 1.000000+5 1.50439-10 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.634000-6 1.258900-6 4.174500-6 1.584900-6 6.616200-6 1.995300-6 1.048600-5 2.511900-6 1.661900-5 3.162300-6 2.633900-5 3.981100-6 4.174500-5 5.011900-6 6.616100-5 6.309600-6 1.048600-4 7.943300-6 1.661900-4 1.000000-5 2.633800-4 1.258900-5 4.174300-4 1.584900-5 6.612600-4 1.995300-5 1.047400-3 2.511900-5 1.659200-3 3.162300-5 2.628600-3 3.981100-5 4.164900-3 5.011900-5 6.599500-3 6.309600-5 1.045700-2 7.943300-5 1.654500-2 1.000000-4 2.616700-2 1.258900-4 4.138000-2 1.584900-4 6.527400-2 1.995300-4 1.027800-1 2.511900-4 1.611500-1 3.162300-4 2.511400-1 3.981100-4 3.875100-1 5.011900-4 5.867900-1 6.309600-4 8.691800-1 7.943300-4 1.248200+0 1.000000-3 1.732900+0 1.258900-3 2.336600+0 1.584900-3 3.087900+0 1.995300-3 4.039400+0 2.511900-3 5.220000+0 3.162300-3 6.652300+0 3.981100-3 8.348100+0 5.011900-3 1.031200+1 6.309600-3 1.252900+1 7.943300-3 1.502500+1 1.000000-2 1.785000+1 1.258900-2 2.095900+1 1.584900-2 2.421400+1 1.995300-2 2.739800+1 2.511900-2 3.038200+1 3.162300-2 3.321100+1 3.981100-2 3.571400+1 5.011900-2 3.773500+1 6.309600-2 3.911600+1 7.943300-2 3.979700+1 1.000000-1 3.980400+1 1.258900-1 3.917500+1 1.584900-1 3.792600+1 1.995300-1 3.629000+1 2.511900-1 3.426500+1 3.162300-1 3.203800+1 3.981100-1 2.968200+1 5.011900-1 2.727400+1 6.309600-1 2.487300+1 7.943300-1 2.252600+1 1.000000+0 2.026100+1 1.258900+0 1.810000+1 1.584900+0 1.605900+1 1.995300+0 1.415200+1 2.511900+0 1.239100+1 3.162300+0 1.077900+1 3.981100+0 9.321100+0 5.011900+0 8.014400+0 6.309600+0 6.854000+0 7.943300+0 5.833900+0 1.000000+1 4.943100+0 1.258900+1 4.171400+0 1.584900+1 3.507200+0 1.995300+1 2.939000+0 2.511900+1 2.455400+0 3.162300+1 2.045800+0 3.981100+1 1.700400+0 5.011900+1 1.410200+0 6.309600+1 1.167100+0 7.943300+1 9.642100-1 1.000000+2 7.952600-1 1.258900+2 6.549100-1 1.584900+2 5.385900-1 1.995300+2 4.423600-1 2.511900+2 3.629000-1 3.162300+2 2.973900-1 3.981100+2 2.434600-1 5.011900+2 1.991200-1 6.309600+2 1.627200-1 7.943300+2 1.328600-1 1.000000+3 1.084000-1 1.258900+3 8.837700-2 1.584900+3 7.200400-2 1.995300+3 5.862600-2 2.511900+3 4.770500-2 3.162300+3 3.879600-2 3.981100+3 3.153300-2 5.011900+3 2.561700-2 6.309600+3 2.080000-2 7.943300+3 1.688100-2 1.000000+4 1.369400-2 1.258900+4 1.110400-2 1.584900+4 8.999600-3 1.995300+4 7.291300-3 2.511900+4 5.905100-3 3.162300+4 4.780600-3 3.981100+4 3.868800-3 5.011900+4 3.129900-3 6.309600+4 2.531200-3 7.943300+4 2.046400-3 1.000000+5 1.654000-3 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976774-4 5.011872-4 5.005106-4 6.309573-4 6.298945-4 7.943282-4 7.926650-4 1.000000-3 9.974049-4 1.258925-3 1.254878-3 1.584893-3 1.578558-3 1.995262-3 1.985337-3 2.511886-3 2.496305-3 3.162278-3 3.137801-3 3.981072-3 3.942800-3 5.011872-3 4.952036-3 6.309573-3 6.216050-3 7.943282-3 7.797369-3 1.000000-2 9.772603-3 1.258925-2 1.223498-2 1.584893-2 1.529954-2 1.995262-2 1.910601-2 2.511886-2 2.381979-2 3.162278-2 2.963805-2 3.981072-2 3.678986-2 5.011872-2 4.555002-2 6.309573-2 5.624674-2 7.943282-2 6.926423-2 1.000000-1 8.500704-2 1.258925-1 1.040080-1 1.584893-1 1.269387-1 1.995262-1 1.542196-1 2.511886-1 1.869731-1 3.162278-1 2.258070-1 3.981072-1 2.719082-1 5.011872-1 3.264565-1 6.309573-1 3.908231-1 7.943282-1 4.667039-1 1.000000+0 5.559187-1 1.258925+0 6.611709-1 1.584893+0 7.854824-1 1.995262+0 9.324933-1 2.511886+0 1.107014+0 3.162278+0 1.314697+0 3.981072+0 1.562655+0 5.011872+0 1.859528+0 6.309573+0 2.215757+0 7.943282+0 2.644184+0 1.000000+1 3.160803+0 1.258925+1 3.785005+0 1.584893+1 4.540086+0 1.995262+1 5.455364+0 2.511886+1 6.566146+0 3.162278+1 7.916156+0 3.981072+1 9.558649+0 5.011872+1 1.155950+1 6.309573+1 1.399925+1 7.943282+1 1.697685+1 1.000000+2 2.061431+1 1.258925+2 2.506163+1 1.584893+2 3.050306+1 1.995262+2 3.716674+1 2.511886+2 4.533167+1 3.162278+2 5.534426+1 3.981072+2 6.762900+1 5.011872+2 8.271235+1 6.309573+2 1.012419+2 7.943282+2 1.240178+2 1.000000+3 1.520264+2 1.258925+3 1.864903+2 1.584893+3 2.289182+2 1.995262+3 2.811763+2 2.511886+3 3.455587+2 3.162278+3 4.249277+2 3.981072+3 5.228160+2 5.011872+3 6.435767+2 6.309573+3 7.926365+2 7.943282+3 9.766719+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88202-10 1.995262-5 1.090640-9 2.511886-5 1.728519-9 3.162278-5 2.739544-9 3.981072-5 4.341920-9 5.011872-5 6.881444-9 6.309573-5 1.090603-8 7.943282-5 1.727703-8 1.000000-4 2.737451-8 1.258925-4 4.337667-8 1.584893-4 6.869284-8 1.995262-4 1.087731-7 2.511886-4 1.721419-7 3.162278-4 2.721908-7 3.981072-4 4.297600-7 5.011872-4 6.766457-7 6.309573-4 1.062881-6 7.943282-4 1.663218-6 1.000000-3 2.595133-6 1.258925-3 4.046971-6 1.584893-3 6.335188-6 1.995262-3 9.924948-6 2.511886-3 1.558107-5 3.162278-3 2.447656-5 3.981072-3 3.827162-5 5.011872-3 5.983616-5 6.309573-3 9.352363-5 7.943282-3 1.459136-4 1.000000-2 2.273967-4 1.258925-2 3.542715-4 1.584893-2 5.493929-4 1.995262-2 8.466097-4 2.511886-2 1.299069-3 3.162278-2 1.984722-3 3.981072-2 3.020857-3 5.011872-2 4.568701-3 6.309573-2 6.848993-3 7.943282-2 1.016860-2 1.000000-1 1.499296-2 1.258925-1 2.188457-2 1.584893-1 3.155065-2 1.995262-1 4.530663-2 2.511886-1 6.421557-2 3.162278-1 9.042074-2 3.981072-1 1.261990-1 5.011872-1 1.747307-1 6.309573-1 2.401342-1 7.943282-1 3.276243-1 1.000000+0 4.440813-1 1.258925+0 5.977546-1 1.584893+0 7.994108-1 1.995262+0 1.062769+0 2.511886+0 1.404873+0 3.162278+0 1.847581+0 3.981072+0 2.418417+0 5.011872+0 3.152345+0 6.309573+0 4.093817+0 7.943282+0 5.299099+0 1.000000+1 6.839197+0 1.258925+1 8.804249+0 1.584893+1 1.130885+1 1.995262+1 1.449726+1 2.511886+1 1.855272+1 3.162278+1 2.370662+1 3.981072+1 3.025207+1 5.011872+1 3.855922+1 6.309573+1 4.909649+1 7.943282+1 6.245597+1 1.000000+2 7.938569+1 1.258925+2 1.008309+2 1.584893+2 1.279863+2 1.995262+2 1.623595+2 2.511886+2 2.058570+2 3.162278+2 2.608835+2 3.981072+2 3.304782+2 5.011872+2 4.184749+2 6.309573+2 5.297155+2 7.943282+2 6.703104+2 1.000000+3 8.479736+2 1.258925+3 1.072435+3 1.584893+3 1.355975+3 1.995262+3 1.714086+3 2.511886+3 2.166328+3 3.162278+3 2.737350+3 3.981072+3 3.458256+3 5.011872+3 4.368296+3 6.309573+3 5.516937+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 3.850000-6 6.200943+6 3.960000-6 6.301800+6 4.168694-6 6.431918+6 4.415704-6 6.531256+6 4.600000-6 6.569523+6 4.600000-6 9.279399+6 4.640000-6 9.329615+6 4.700000-6 9.383753+6 4.841724-6 9.488770+6 5.011872-6 9.598189+6 5.069907-6 9.630069+6 5.270000-6 9.713455+6 5.432503-6 9.764403+6 5.600000-6 9.799455+6 5.888437-6 9.836020+6 5.956621-6 9.840599+6 6.237348-6 9.833901+6 6.280000-6 9.830651+6 6.280000-6 2.071469+7 6.531306-6 1.947569+7 6.606934-6 1.911529+7 7.079458-6 1.717817+7 7.200000-6 1.675831+7 7.585776-6 1.556376+7 7.852356-6 1.485664+7 8.035261-6 1.441203+7 8.200000-6 1.404747+7 8.609938-6 1.323147+7 8.810489-6 1.287041+7 9.332543-6 1.203481+7 9.440609-6 1.187567+7 9.500000-6 1.178856+7 1.000000-5 1.112732+7 1.011579-5 1.098360+7 1.071519-5 1.029483+7 1.109175-5 9.887909+6 1.135011-5 9.633100+6 1.150000-5 9.488050+6 1.202264-5 9.000344+6 1.216186-5 8.875662+6 1.273503-5 8.379126+6 1.284000-5 8.291120+6 1.284000-5 9.448877+6 1.288250-5 9.407614+6 1.290000-5 9.390809+6 1.310000-5 9.195422+6 1.350000-5 8.836546+6 1.364583-5 8.708305+6 1.412538-5 8.301784+6 1.420000-5 8.242793+6 1.445440-5 8.040918+6 1.453000-5 7.980321+6 1.453000-5 8.659121+6 1.462177-5 8.582303+6 1.479108-5 8.446169+6 1.480000-5 8.439134+6 1.500000-5 8.285558+6 1.513561-5 8.181043+6 1.531087-5 8.052232+6 1.548817-5 7.920768+6 1.566751-5 7.792810+6 1.584893-5 7.669749+6 1.610000-5 7.500508+6 1.621810-5 7.425540+6 1.659587-5 7.186950+6 1.678804-5 7.072137+6 1.710000-5 6.894097+6 1.717908-5 6.851446+6 1.737801-5 6.744329+6 1.757924-5 6.636456+6 1.770000-5 6.574869+6 1.800000-5 6.429495+6 1.819701-5 6.340275+6 1.840772-5 6.246433+6 1.850000-5 6.205161+6 1.870000-5 6.120481+6 1.883649-5 6.065480+6 1.905461-5 5.980740+6 1.920000-5 5.928068+6 1.927525-5 5.901970+6 1.950000-5 5.823465+6 1.972423-5 5.746213+6 1.980000-5 5.721924+6 2.041738-5 5.543513+6 2.065380-5 5.486258+6 2.070000-5 5.475010+6 2.090000-5 5.426196+6 2.113489-5 5.373670+6 2.150000-5 5.303280+6 2.190000-5 5.237967+6 2.213095-5 5.205376+6 2.270000-5 5.137353+6 2.317395-5 5.102701+6 2.350000-5 5.085887+6 2.371374-5 5.078369+6 2.400000-5 5.074880+6 2.426610-5 5.074111+6 2.483133-5 5.088132+6 2.511886-5 5.103869+6 2.540973-5 5.125755+6 2.600160-5 5.180936+6 2.610000-5 5.191341+6 2.650000-5 5.240747+6 2.730000-5 5.365803+6 2.751000-5 5.404561+6 2.751000-5 2.182881+7 2.754229-5 2.175863+7 2.786121-5 2.109141+7 2.818383-5 2.046141+7 2.884032-5 1.937656+7 2.917427-5 1.888070+7 2.951209-5 1.841560+7 3.019952-5 1.761425+7 3.054921-5 1.724979+7 3.090295-5 1.690985+7 3.162278-5 1.633308+7 3.198895-5 1.607746+7 3.235937-5 1.583867+7 3.273407-5 1.561799+7 3.300000-5 1.548245+7 3.350000-5 1.525561+7 3.427678-5 1.495820+7 3.507519-5 1.472085+7 3.548134-5 1.461948+7 3.589219-5 1.453714+7 3.590900-5 1.453413+7 3.672823-5 1.440936+7 3.758374-5 1.432353+7 3.801894-5 1.429607+7 3.850000-5 1.428141+7 3.900000-5 1.427147+7 3.935501-5 1.427392+7 4.027170-5 1.430301+7 4.073803-5 1.432573+7 4.101000-5 1.434072+7 4.101000-5 2.084176+7 4.150000-5 2.069560+7 4.180000-5 2.061502+7 4.216965-5 2.051142+7 4.220000-5 2.050337+7 4.265795-5 2.037371+7 4.330000-5 2.021671+7 4.415704-5 2.003939+7 4.518559-5 1.984752+7 4.570882-5 1.977205+7 4.623810-5 1.970976+7 4.650000-5 1.968031+7 4.677351-5 1.964736+7 4.841724-5 1.951720+7 4.900000-5 1.948478+7 5.000000-5 1.943860+7 5.080000-5 1.942518+7 5.128614-5 1.942044+7 5.188000-5 1.942386+7 5.248075-5 1.942142+7 5.308844-5 1.942988+7 5.400000-5 1.944677+7 5.432503-5 1.945724+7 5.500000-5 1.947266+7 5.580000-5 1.949800+7 5.623413-5 1.951081+7 5.688529-5 1.953639+7 5.754399-5 1.955477+7 5.821032-5 1.958174+7 5.888437-5 1.960514+7 5.956621-5 1.963243+7 6.095369-5 1.967186+7 6.165950-5 1.968861+7 6.220000-5 1.970498+7 6.237348-5 1.970622+7 6.279000-5 1.971108+7 6.279000-5 2.010730+7 6.309573-5 2.010722+7 6.382635-5 2.009506+7 6.405000-5 2.009163+7 6.456542-5 2.008551+7 6.531306-5 2.006061+7 6.683439-5 1.999604+7 6.760830-5 1.994976+7 6.839116-5 1.989169+7 6.918310-5 1.983726+7 7.000000-5 1.976269+7 7.161434-5 1.959509+7 7.244360-5 1.949283+7 7.328245-5 1.937588+7 7.413102-5 1.926181+7 7.500000-5 1.912575+7 7.585776-5 1.897746+7 7.673615-5 1.883073+7 7.762471-5 1.866240+7 7.943282-5 1.829784+7 8.000000-5 1.817297+7 8.035261-5 1.809640+7 8.128305-5 1.788115+7 8.222426-5 1.766932+7 8.230000-5 1.765257+7 8.317638-5 1.744132+7 8.413951-5 1.719815+7 8.511380-5 1.695892+7 8.609938-5 1.670302+7 8.650000-5 1.659404+7 8.810489-5 1.617042+7 8.912509-5 1.588934+7 9.015711-5 1.559631+7 9.120108-5 1.530962+7 9.225714-5 1.500819+7 9.332543-5 1.469748+7 9.400000-5 1.450659+7 9.500000-5 1.421479+7 9.549926-5 1.406597+7 9.660509-5 1.374502+7 9.800000-5 1.333516+7 9.950000-5 1.289499+7 1.000000-4 1.274553+7 1.011579-4 1.240895+7 1.023293-4 1.206762+7 1.035142-4 1.171990+7 1.040000-4 1.158139+7 1.050000-4 1.129222+7 1.060000-4 1.100018+7 1.071519-4 1.067653+7 1.080000-4 1.043799+7 1.100000-4 9.881149+6 1.110000-4 9.609302+6 1.122018-4 9.283072+6 1.128000-4 9.126176+6 1.143000-4 8.736025+6 1.150000-4 8.554759+6 1.161449-4 8.268911+6 1.174898-4 7.939386+6 1.190000-4 7.577350+6 1.205000-4 7.229850+6 1.220000-4 6.891794+6 1.230269-4 6.666318+6 1.240000-4 6.461360+6 1.253700-4 6.177992+6 1.273503-4 5.786046+6 1.290000-4 5.475692+6 1.303167-4 5.237119+6 1.303500-4 5.231107+6 1.303500-4 6.074125+6 1.307000-4 6.043556+6 1.313000-4 5.993032+6 1.318257-4 5.957609+6 1.323000-4 5.929964+6 1.330000-4 5.898609+6 1.333521-4 5.885075+6 1.340000-4 5.866671+6 1.350000-4 5.843141+6 1.358000-4 5.829218+6 1.364583-4 5.818113+6 1.365000-4 5.817653+6 1.373000-4 5.797428+6 1.380384-4 5.774747+6 1.387000-4 5.749644+6 1.395000-4 5.711955+6 1.400000-4 5.682142+6 1.403000-4 5.663350+6 1.411000-4 5.602578+6 1.412538-4 5.588895+6 1.419000-4 5.533080+6 1.423900-4 5.484335+6 1.423900-4 6.029403+6 1.428894-4 5.999250+6 1.430000-4 5.991321+6 1.435700-4 5.955974+6 1.436000-4 5.953841+6 1.440000-4 5.928791+6 1.445440-4 5.897305+6 1.447000-4 5.886852+6 1.458000-4 5.827908+6 1.471000-4 5.762850+6 1.472000-4 5.758332+6 1.479108-4 5.723729+6 1.480000-4 5.719861+6 1.485000-4 5.694356+6 1.487000-4 5.683765+6 1.495000-4 5.639693+6 1.500000-4 5.611042+6 1.502000-4 5.599266+6 1.510000-4 5.547527+6 1.513561-4 5.522228+6 1.518000-4 5.491238+6 1.520000-4 5.475568+6 1.525000-4 5.434611+6 1.532000-4 5.373239+6 1.540000-4 5.298780+6 1.548817-4 5.211750+6 1.550000-4 5.199394+6 1.555000-4 5.145646+6 1.560000-4 5.089274+6 1.565000-4 5.033327+6 1.575000-4 4.916941+6 1.584893-4 4.799886+6 1.585000-4 4.798606+6 1.600000-4 4.615051+6 1.615000-4 4.431848+6 1.621810-4 4.349209+6 1.635000-4 4.193502+6 1.640590-4 4.127008+6 1.659587-4 3.909389+6 1.660000-4 3.904832+6 1.678804-4 3.698338+6 1.698244-4 3.495610+6 1.717908-4 3.300139+6 1.720000-4 3.280032+6 1.735900-4 3.130448+6 1.740000-4 3.093007+6 1.757924-4 2.933773+6 1.770000-4 2.831860+6 1.778279-4 2.764185+6 1.780000-4 2.750390+6 1.790000-4 2.670003+6 1.800000-4 2.592168+6 1.819701-4 2.446420+6 1.820000-4 2.444294+6 1.826000-4 2.401531+6 1.835000-4 2.338791+6 1.840772-4 2.299440+6 1.865000-4 2.143577+6 1.900000-4 1.937087+6 1.905461-4 1.907107+6 1.930000-4 1.779122+6 1.940000-4 1.729839+6 1.950000-4 1.681833+6 1.972423-4 1.580665+6 1.980000-4 1.548701+6 2.000000-4 1.467718+6 2.020000-4 1.392518+6 2.041738-4 1.316210+6 2.065380-4 1.240765+6 2.113489-4 1.104677+6 2.120000-4 1.088147+6 2.137962-4 1.044969+6 2.153900-4 1.008692+6 2.162719-4 9.894984+5 2.170000-4 9.742685+5 2.180000-4 9.539478+5 2.187762-4 9.386957+5 2.205000-4 9.060795+5 2.213095-4 8.914781+5 2.220000-4 8.792858+5 2.231500-4 8.602537+5 2.240000-4 8.466237+5 2.250000-4 8.310995+5 2.255000-4 8.235254+5 2.264644-4 8.092941+5 2.270000-4 8.015455+5 2.280000-4 7.875574+5 2.285000-4 7.808565+5 2.290868-4 7.731622+5 2.291400-4 7.724700+5 2.300000-4 7.614737+5 2.307000-4 7.527712+5 2.317395-4 7.401833+5 2.323000-4 7.336950+5 2.335000-4 7.201701+5 2.340000-4 7.146976+5 2.344229-4 7.101544+5 2.350000-4 7.041956+5 2.358000-4 6.961373+5 2.365000-4 6.892563+5 2.371374-4 6.831402+5 2.373000-4 6.815929+5 2.380000-4 6.750500+5 2.390000-4 6.659690+5 2.398833-4 6.581779+5 2.400000-4 6.571720+5 2.407000-4 6.515013+5 2.418600-4 6.423699+5 2.423000-4 6.390068+5 2.440000-4 6.264205+5 2.454709-4 6.161399+5 2.458000-4 6.139672+5 2.465000-4 6.094532+5 2.480000-4 6.001353+5 2.483133-4 5.982512+5 2.486200-4 5.964790+5 2.486200-4 9.225667+5 2.490000-4 9.197227+5 2.500000-4 9.124129+5 2.511886-4 9.039820+5 2.520000-4 8.985476+5 2.540973-4 8.851656+5 2.560000-4 8.736202+5 2.570396-4 8.677398+5 2.600160-4 8.524595+5 2.630268-4 8.381383+5 2.644700-4 8.321562+5 2.650000-4 8.300270+5 2.691535-4 8.142143+5 2.722701-4 8.044799+5 2.754229-4 7.952431+5 2.785000-4 7.873495+5 2.786121-4 7.870679+5 2.818383-4 7.792137+5 2.830000-4 7.769048+5 2.851018-4 7.728047+5 2.870000-4 7.692475+5 2.884032-4 7.669768+5 2.900000-4 7.648308+5 2.930000-4 7.610289+5 2.951209-4 7.584399+5 2.985383-4 7.553392+5 3.000000-4 7.540244+5 3.015000-4 7.526798+5 3.019952-4 7.523201+5 3.030000-4 7.517191+5 3.050000-4 7.508655+5 3.054921-4 7.506332+5 3.090295-4 7.489894+5 3.100000-4 7.486925+5 3.126079-4 7.476669+5 3.162278-4 7.469378+5 3.198895-4 7.462273+5 3.235937-4 7.458028+5 3.240000-4 7.457046+5 3.292600-4 7.455356+5 3.292600-4 8.662782+5 3.311311-4 8.642249+5 3.320000-4 8.631561+5 3.340000-4 8.609177+5 3.358400-4 8.592657+5 3.388442-4 8.567538+5 3.390000-4 8.566399+5 3.400000-4 8.558507+5 3.427678-4 8.534980+5 3.430000-4 8.533233+5 3.470000-4 8.499591+5 3.500000-4 8.471516+5 3.507519-4 8.464607+5 3.530000-4 8.444596+5 3.548134-4 8.428155+5 3.550000-4 8.426604+5 3.600000-4 8.384600+5 3.650000-4 8.344614+5 3.672823-4 8.326268+5 3.680000-4 8.320964+5 3.690000-4 8.314496+5 3.758374-4 8.268570+5 3.801894-4 8.241103+5 3.850000-4 8.210995+5 3.935501-4 8.159174+5 3.981072-4 8.130707+5 4.000000-4 8.118365+5 4.000700-4 8.117915+5 4.008700-4 8.113094+5 4.008700-4 8.554431+5 4.027170-4 8.541714+5 4.073803-4 8.511629+5 4.100000-4 8.493549+5 4.120975-4 8.478675+5 4.168694-4 8.444527+5 4.216965-4 8.411537+5 4.240000-4 8.394748+5 4.265795-4 8.375191+5 4.315191-4 8.338820+5 4.365158-4 8.303485+5 4.415704-4 8.264469+5 4.466836-4 8.224602+5 4.518559-4 8.185500+5 4.570882-4 8.142119+5 4.623810-4 8.099576+5 4.677351-4 8.058555+5 4.700000-4 8.039578+5 4.731513-4 8.013040+5 4.786301-4 7.966023+5 4.841724-4 7.919897+5 4.954502-4 7.820224+5 5.011872-4 7.772123+5 5.069907-4 7.722611+5 5.122700-4 7.673517+5 5.122700-4 8.395624+5 5.126000-4 8.385031+5 5.128614-4 8.378602+5 5.135000-4 8.363010+5 5.145000-4 8.342526+5 5.150000-4 8.334212+5 5.155000-4 8.325988+5 5.168000-4 8.308305+5 5.190000-4 8.285046+5 5.220000-4 8.258927+5 5.248075-4 8.237548+5 5.260000-4 8.228570+5 5.280000-4 8.215971+5 5.280200-4 8.215876+5 5.280200-4 8.690972+5 5.283000-4 8.692396+5 5.295000-4 8.691916+5 5.300000-4 8.690725+5 5.308844-4 8.690324+5 5.315000-4 8.689407+5 5.330000-4 8.690437+5 5.340000-4 8.693743+5 5.345000-4 8.695149+5 5.360000-4 8.703892+5 5.370318-4 8.713358+5 5.374000-4 8.716867+5 5.385000-4 8.730849+5 5.385800-4 8.731858+5 5.400000-4 8.754681+5 5.415000-4 8.785764+5 5.432503-4 8.832045+5 5.435000-4 8.839991+5 5.450000-4 8.891599+5 5.457000-4 8.919867+5 5.465000-4 8.954593+5 5.473000-4 8.994121+5 5.485000-4 9.058714+5 5.490000-4 9.089003+5 5.503000-4 9.174526+5 5.507000-4 9.203551+5 5.522000-4 9.321847+5 5.537300-4 9.462962+5 5.550000-4 9.592792+5 5.559043-4 9.696021+5 5.565000-4 9.766573+5 5.580000-4 9.959496+5 5.595000-4 1.017409+6 5.608000-4 1.037907+6 5.623413-4 1.064696+6 5.630000-4 1.077084+6 5.640000-4 1.096325+6 5.650000-4 1.116970+6 5.658000-4 1.133835+6 5.680000-4 1.184940+6 5.688529-4 1.205838+6 5.700000-4 1.235447+6 5.708000-4 1.257408+6 5.730000-4 1.320283+6 5.758000-4 1.407511+6 5.780000-4 1.481795+6 5.790000-4 1.516772+6 5.800000-4 1.552981+6 5.807000-4 1.579305+6 5.821032-4 1.632445+6 5.830000-4 1.667554+6 5.850000-4 1.748023+6 5.872000-4 1.839086+6 5.880000-4 1.873567+6 5.888437-4 1.909638+6 5.900000-4 1.960948+6 5.923000-4 2.063018+6 5.930000-4 2.095044+6 5.950000-4 2.186392+6 5.956621-4 2.217267+6 5.973000-4 2.292425+6 5.990000-4 2.372521+6 6.000000-4 2.418637+6 6.025596-4 2.539399+6 6.050000-4 2.652707+6 6.080000-4 2.789334+6 6.084600-4 2.810520+6 6.095369-4 2.857929+6 6.100000-4 2.878651+6 6.115000-4 2.945010+6 6.130000-4 3.009300+6 6.150000-4 3.094175+6 6.162600-4 3.145551+6 6.165950-4 3.158791+6 6.190000-4 3.255877+6 6.200000-4 3.292466+6 6.220000-4 3.367242+6 6.237348-4 3.430554+6 6.250000-4 3.474046+6 6.280000-4 3.574291+6 6.320000-4 3.695395+6 6.350000-4 3.776811+6 6.370000-4 3.828651+6 6.382635-4 3.858785+6 6.390000-4 3.876458+6 6.430000-4 3.965897+6 6.437300-4 3.980923+6 6.456542-4 4.017343+6 6.480000-4 4.062203+6 6.500000-4 4.093407+6 6.531306-4 4.142797+6 6.550000-4 4.169411+6 6.589600-4 4.217462+6 6.606934-4 4.235759+6 6.630000-4 4.260193+6 6.650000-4 4.277821+6 6.700000-4 4.314436+6 6.720000-4 4.326284+6 6.760830-4 4.344012+6 6.780000-4 4.352359+6 6.800000-4 4.358473+6 6.839116-4 4.365046+6 6.850000-4 4.366861+6 6.890000-4 4.373488+6 6.918310-4 4.371777+6 7.000000-4 4.366809+6 7.079458-4 4.347608+6 7.120000-4 4.337900+6 7.161434-4 4.325043+6 7.244360-4 4.291936+6 7.265700-4 4.283487+6 7.328245-4 4.255311+6 7.350000-4 4.245530+6 7.413102-4 4.212704+6 7.498942-4 4.164313+6 7.585776-4 4.116489+6 7.673615-4 4.060490+6 7.762471-4 4.005158+6 7.852356-4 3.950490+6 7.943282-4 3.889368+6 8.000000-4 3.852074+6 8.128305-4 3.769958+6 8.200000-4 3.723239+6 8.222426-4 3.708047+6 8.413951-4 3.582110+6 8.511380-4 3.520791+6 8.609938-4 3.458156+6 8.709636-4 3.393968+6 8.810489-4 3.330909+6 8.912509-4 3.268944+6 8.988200-4 3.222866+6 8.988200-4 3.288978+6 8.989000-4 3.290027+6 8.994000-4 3.291438+6 9.000000-4 3.293973+6 9.007000-4 3.298068+6 9.015711-4 3.304751+6 9.027000-4 3.315620+6 9.035000-4 3.324615+6 9.042000-4 3.333135+6 9.050000-4 3.343355+6 9.056000-4 3.351139+6 9.063000-4 3.360164+6 9.069000-4 3.367670+6 9.075000-4 3.374847+6 9.083000-4 3.383730+6 9.090000-4 3.390736+6 9.098000-4 3.397745+6 9.104000-4 3.402295+6 9.111000-4 3.406800+6 9.120108-4 3.411427+6 9.130000-4 3.414963+6 9.140000-4 3.417139+6 9.150600-4 3.418127+6 9.165000-4 3.417704+6 9.185000-4 3.414628+6 9.200000-4 3.410750+6 9.210000-4 3.408214+6 9.225714-4 3.403076+6 9.240000-4 3.398483+6 9.280000-4 3.383902+6 9.332543-4 3.363011+6 9.335000-4 3.362013+6 9.390000-4 3.337106+6 9.440609-4 3.312073+6 9.500000-4 3.280549+6 9.549926-4 3.252730+6 9.561200-4 3.246301+6 9.561200-4 3.412417+6 9.660509-4 3.361534+6 9.772372-4 3.306255+6 9.780000-4 3.302558+6 9.800000-4 3.292973+6 9.885531-4 3.250662+6 1.000000-3 3.194235+6 1.011579-3 3.137797+6 1.030000-3 3.049352+6 1.035142-3 3.024691+6 1.047129-3 2.968596+6 1.054200-3 2.936373+6 1.059254-3 2.913227+6 1.071519-3 2.858433+6 1.083927-3 2.802962+6 1.096478-3 2.748462+6 1.110000-3 2.691801+6 1.122018-3 2.642412+6 1.135011-3 2.588717+6 1.148154-3 2.535773+6 1.150000-3 2.528434+6 1.161449-3 2.482674+6 1.188502-3 2.379823+6 1.190000-3 2.374330+6 1.202264-3 2.330105+6 1.210000-3 2.302629+6 1.216186-3 2.280618+6 1.230269-3 2.231473+6 1.236600-3 2.209429+6 1.236600-3 2.348311+6 1.244515-3 2.320334+6 1.245000-3 2.318637+6 1.273503-3 2.222407+6 1.285000-3 2.185476+6 1.288250-3 2.175162+6 1.303167-3 2.127698+6 1.318257-3 2.081366+6 1.333521-3 2.035523+6 1.348963-3 1.990823+6 1.350000-3 1.987877+6 1.380384-3 1.904219+6 1.396368-3 1.862053+6 1.412538-3 1.820930+6 1.428894-3 1.780227+6 1.445440-3 1.740522+6 1.462177-3 1.700971+6 1.470000-3 1.682972+6 1.479108-3 1.662233+6 1.513561-3 1.587395+6 1.531087-3 1.550942+6 1.548817-3 1.515046+6 1.554000-3 1.504639+6 1.554000-3 1.522477+6 1.570000-3 1.491050+6 1.584893-3 1.462498+6 1.603245-3 1.428506+6 1.621810-3 1.395379+6 1.640590-3 1.362938+6 1.659587-3 1.331075+6 1.678804-3 1.300035+6 1.695000-3 1.274569+6 1.698244-3 1.269559+6 1.717908-3 1.239508+6 1.728800-3 1.223351+6 1.728800-3 1.244651+6 1.730000-3 1.242876+6 1.737801-3 1.231420+6 1.745000-3 1.220993+6 1.757924-3 1.202527+6 1.778279-3 1.174339+6 1.798871-3 1.146647+6 1.800000-3 1.145159+6 1.850000-3 1.081660+6 1.862087-3 1.066989+6 1.883649-3 1.041433+6 1.905461-3 1.016471+6 1.927525-3 9.920965+5 1.949845-3 9.683692+5 1.950000-3 9.682075+5 1.972423-3 9.450915+5 2.000000-3 9.176246+5 2.018366-3 9.000282+5 2.065380-3 8.567432+5 2.089296-3 8.359168+5 2.110000-3 8.185047+5 2.113489-3 8.155993+5 2.137962-3 7.956433+5 2.162719-3 7.762206+5 2.187762-3 7.571946+5 2.220000-3 7.335693+5 2.238721-3 7.202481+5 2.264644-3 7.024204+5 2.290868-3 6.849591+5 2.300000-3 6.790153+5 2.344229-3 6.511420+5 2.371374-3 6.349021+5 2.398833-3 6.190025+5 2.454709-3 5.885068+5 2.483133-3 5.737711+5 2.511886-3 5.594385+5 2.540973-3 5.452993+5 2.570396-3 5.315504+5 2.600160-3 5.181697+5 2.650000-3 4.969063+5 2.660725-3 4.925059+5 2.691535-3 4.801296+5 2.722701-3 4.679158+5 2.754229-3 4.559110+5 2.786121-3 4.442285+5 2.818383-3 4.328726+5 2.884032-3 4.110935+5 2.900000-3 4.060519+5 2.917427-3 4.006489+5 2.951209-3 3.903889+5 2.985383-3 3.804157+5 3.000000-3 3.762019+5 3.019952-3 3.705590+5 3.054921-3 3.609566+5 3.090295-3 3.516126+5 3.126079-3 3.425285+5 3.150000-3 3.366551+5 3.198895-3 3.251085+5 3.235937-3 3.167582+5 3.300000-3 3.028270+5 3.311311-3 3.004533+5 3.349654-3 2.926118+5 3.388442-3 2.849856+5 3.400000-3 2.827714+5 3.427678-3 2.775674+5 3.467369-3 2.703564+5 3.507519-3 2.633245+5 3.548134-3 2.564375+5 3.589219-3 2.496993+5 3.630781-3 2.431331+5 3.672823-3 2.367506+5 3.715352-3 2.305230+5 3.758374-3 2.244648+5 3.801894-3 2.185609+5 3.845918-3 2.128255+5 3.900000-3 2.060307+5 3.935501-3 2.017154+5 3.981072-3 1.963563+5 4.000000-3 1.941919+5 4.027170-3 1.911469+5 4.073803-3 1.860795+5 4.120975-3 1.811395+5 4.134300-3 1.797778+5 4.134300-3 4.195756+5 4.140000-3 4.180615+5 4.168694-3 4.105531+5 4.216965-3 3.983409+5 4.261100-3 3.875984+5 4.265795-3 3.865536+5 4.365158-3 3.653049+5 4.366900-3 3.649475+5 4.366900-3 5.168275+5 4.415704-3 5.030912+5 4.466836-3 4.888424+5 4.490000-3 4.825750+5 4.500000-3 4.797667+5 4.518559-3 4.746054+5 4.570882-3 4.604658+5 4.623810-3 4.467213+5 4.677351-3 4.336112+5 4.841724-3 3.965203+5 4.897788-3 3.848911+5 4.954502-3 3.736039+5 4.968600-3 3.708291+5 4.968600-3 4.337416+5 5.000000-3 4.268031+5 5.011872-3 4.242193+5 5.050000-3 4.160567+5 5.069907-3 4.120185+5 5.128614-3 4.004113+5 5.188000-3 3.891268+5 5.248075-3 3.781734+5 5.308844-3 3.674281+5 5.370318-3 3.570000+5 5.432503-3 3.468154+5 5.495409-3 3.368425+5 5.500000-3 3.361309+5 5.559043-3 3.271675+5 5.623413-3 3.177712+5 5.688529-3 3.086347+5 5.821032-3 2.909594+5 5.956621-3 2.743355+5 6.025596-3 2.663974+5 6.095369-3 2.586950+5 6.148800-3 2.530068+5 6.148800-3 2.684020+5 6.165950-3 2.665782+5 6.237348-3 2.591689+5 6.309573-3 2.519152+5 6.340000-3 2.489488+5 6.400000-3 2.432263+5 6.456542-3 2.379680+5 6.500000-3 2.340367+5 6.523300-3 2.319579+5 6.523300-3 2.416539+5 6.531306-3 2.409289+5 6.606934-3 2.342299+5 6.683439-3 2.277293+5 6.700000-3 2.263573+5 6.740000-3 2.230825+5 6.839116-3 2.152933+5 6.900000-3 2.106648+5 6.918310-3 2.092990+5 7.079458-3 1.977873+5 7.161434-3 1.922928+5 7.300000-3 1.834696+5 7.328245-3 1.817430+5 7.413102-3 1.766796+5 7.500000-3 1.716772+5 7.585776-3 1.669366+5 7.650000-3 1.635074+5 7.673615-3 1.622693+5 7.762471-3 1.576962+5 7.852356-3 1.532609+5 7.943282-3 1.489542+5 8.000000-3 1.463610+5 8.128305-3 1.407148+5 8.222426-3 1.367749+5 8.317638-3 1.329514+5 8.413951-3 1.292011+5 8.500000-3 1.259771+5 8.511380-3 1.255559+5 8.709636-3 1.185022+5 8.810489-3 1.151348+5 8.912509-3 1.118569+5 9.015711-3 1.086776+5 9.225714-3 1.025594+5 9.332543-3 9.963924+4 9.440609-3 9.680193+4 9.500000-3 9.529285+4 9.549926-3 9.405050+4 9.660509-3 9.137525+4 9.885531-3 8.625851+4 1.000000-2 8.381528+4 1.011579-2 8.144134+4 1.023293-2 7.913841+4 1.035142-2 7.688772+4 1.040000-2 7.599087+4 1.059254-2 7.255362+4 1.060000-2 7.242506+4 1.071519-2 7.047590+4 1.080000-2 6.908861+4 1.083927-2 6.845645+4 1.096478-2 6.649156+4 1.109175-2 6.457651+4 1.122018-2 6.270892+4 1.135011-2 6.089817+4 1.148154-2 5.914036+4 1.161449-2 5.743633+4 1.174898-2 5.578261+4 1.188502-2 5.417760+4 1.202264-2 5.261610+4 1.230269-2 4.963317+4 1.244515-2 4.820699+4 1.258925-2 4.682444+4 1.273503-2 4.548131+4 1.303167-2 4.290371+4 1.318257-2 4.166517+4 1.319400-2 4.157296+4 1.333521-2 4.045661+4 1.348963-2 3.928505+4 1.350000-2 3.920811+4 1.364583-2 3.814890+4 1.380384-2 3.704275+4 1.396368-2 3.596741+4 1.400000-2 3.572934+4 1.412538-2 3.492162+4 1.416900-2 3.464680+4 1.428894-2 3.390631+4 1.445440-2 3.291641+4 1.496236-2 3.012541+4 1.500000-2 2.993240+4 1.513561-2 2.925043+4 1.520000-2 2.893435+4 1.531087-2 2.840155+4 1.548817-2 2.757750+4 1.566751-2 2.677570+4 1.584893-2 2.599832+4 1.603245-2 2.524389+4 1.621810-2 2.450941+4 1.640590-2 2.379681+4 1.650000-2 2.345091+4 1.678804-2 2.242939+4 1.698244-2 2.177383+4 1.717908-2 2.113700+4 1.737801-2 2.051972+4 1.757924-2 1.991910+4 1.778279-2 1.933561+4 1.798871-2 1.876844+4 1.800000-2 1.873802+4 1.840772-2 1.768441+4 1.850000-2 1.745781+4 1.862087-2 1.716703+4 1.883649-2 1.666534+4 1.905461-2 1.617682+4 1.927525-2 1.570295+4 1.946200-2 1.531633+4 1.946200-2 3.571861+4 1.949845-2 3.554963+4 1.972423-2 3.452779+4 1.985000-2 3.397593+4 2.000000-2 3.330028+4 2.018366-2 3.249830+4 2.041738-2 3.151412+4 2.065380-2 3.055993+4 2.089296-2 2.963434+4 2.113489-2 2.873531+4 2.137962-2 2.786377+4 2.162719-2 2.701894+4 2.187762-2 2.620015+4 2.213095-2 2.540584+4 2.238721-2 2.463495+4 2.264644-2 2.388789+4 2.290868-2 2.315152+4 2.300000-2 2.290250+4 2.317395-2 2.243787+4 2.371374-2 2.107456+4 2.400000-2 2.039784+4 2.426610-2 1.979499+4 2.450300-2 1.927760+4 2.450300-2 2.751968+4 2.454709-2 2.739739+4 2.480000-2 2.671086+4 2.483133-2 2.662437+4 2.511886-2 2.584860+4 2.529400-2 2.538371+4 2.529400-2 2.928430+4 2.540973-2 2.893954+4 2.550000-2 2.867444+4 2.553000-2 2.859060+4 2.600160-2 2.731598+4 2.630268-2 2.654106+4 2.640000-2 2.629723+4 2.691535-2 2.506694+4 2.722701-2 2.435182+4 2.754229-2 2.365759+4 2.770000-2 2.332044+4 2.786121-2 2.298674+4 2.800000-2 2.270492+4 2.818383-2 2.233872+4 2.820000-2 2.230660+4 2.851018-2 2.169767+4 2.900000-2 2.078320+4 2.917427-2 2.046796+4 2.951209-2 1.987530+4 3.000000-2 1.906157+4 3.019952-2 1.874232+4 3.054921-2 1.820069+4 3.126079-2 1.716527+4 3.150000-2 1.683600+4 3.162278-2 1.667043+4 3.198895-2 1.618841+4 3.273407-2 1.526593+4 3.300000-2 1.495443+4 3.388442-2 1.398034+4 3.467369-2 1.318547+4 3.507519-2 1.280239+4 3.548134-2 1.243075+4 3.589219-2 1.207013+4 3.630781-2 1.171804+4 3.672823-2 1.137597+4 3.715352-2 1.104188+4 3.758374-2 1.071778+4 3.801894-2 1.040312+4 3.845918-2 1.009792+4 3.890451-2 9.800534+3 3.935501-2 9.511896+3 3.981072-2 9.232000+3 4.027170-2 8.959152+3 4.120975-2 8.437735+3 4.168694-2 8.188784+3 4.216965-2 7.947022+3 4.265795-2 7.712561+3 4.365158-2 7.264610+3 4.415704-2 7.050510+3 4.472100-2 6.821928+3 4.518559-2 6.641395+3 4.570882-2 6.446049+3 4.623810-2 6.256600+3 4.786301-2 5.714915+3 4.800000-2 5.672294+3 4.841724-2 5.545052+3 4.897788-2 5.380325+3 4.900000-2 5.373968+3 4.954502-2 5.219589+3 5.011872-2 5.063720+3 5.069907-2 4.912605+3 5.128614-2 4.765962+3 5.188000-2 4.623792+3 5.248075-2 4.485941+3 5.308844-2 4.352299+3 5.370318-2 4.222704+3 5.500000-2 3.966488+3 5.559043-2 3.856669+3 5.623413-2 3.741636+3 5.688529-2 3.630077+3 5.754399-2 3.521893+3 5.821032-2 3.416050+3 5.956621-2 3.214027+3 6.025596-2 3.117551+3 6.165950-2 2.933378+3 6.237348-2 2.845510+3 6.309573-2 2.759798+3 6.456542-2 2.596158+3 6.531306-2 2.518017+3 6.606934-2 2.442206+3 6.683439-2 2.368702+3 6.760830-2 2.297456+3 6.839116-2 2.228394+3 6.998420-2 2.096529+3 7.079458-2 2.033614+3 7.161434-2 1.972571+3 7.244360-2 1.913229+3 7.498942-2 1.745306+3 7.500000-2 1.744652+3 7.585776-2 1.692423+3 7.852356-2 1.543222+3 7.943282-2 1.496492+3 8.035261-2 1.451191+3 8.128305-2 1.407288+3 8.317638-2 1.323502+3 8.609938-2 1.207221+3 8.709636-2 1.170791+3 8.810489-2 1.135478+3 9.120108-2 1.035459+3 9.225714-2 1.004067+3 9.332543-2 9.736429+2 9.549926-2 9.154590+2 9.660509-2 8.877074+2 9.772372-2 8.607912+2 9.885531-2 8.347043+2 1.011580-1 7.849180+2 1.023293-1 7.610725+2 1.035142-1 7.379627+2 1.059254-1 6.938480+2 1.071519-1 6.727928+2 1.096478-1 6.326038+2 1.109175-1 6.134329+2 1.161449-1 5.424073+2 1.188502-1 5.100851+2 1.216186-1 4.795866+2 1.244515-1 4.509375+2 1.273503-1 4.240184+2 1.288250-1 4.111763+2 1.303167-1 3.987296+2 1.318257-1 3.866607+2 1.322100-1 3.836683+2 1.322100-1 1.541953+3 1.333521-1 1.508306+3 1.344000-1 1.478327+3 1.353000-1 1.455885+3 1.364583-1 1.422314+3 1.365000-1 1.421125+3 1.380384-1 1.384853+3 1.385000-1 1.374231+3 1.396368-1 1.345301+3 1.400000-1 1.336237+3 1.425000-1 1.276072+3 1.428894-1 1.267539+3 1.445440-1 1.232128+3 1.500000-1 1.124785+3 1.513561-1 1.099319+3 1.548817-1 1.036770+3 1.584893-1 9.777972+2 1.603245-1 9.495860+2 1.621810-1 9.221914+2 1.640590-1 8.955903+2 1.678804-1 8.446781+2 1.698244-1 8.205201+2 1.757924-1 7.521304+2 1.778279-1 7.306312+2 1.819701-1 6.894637+2 1.862087-1 6.506260+2 1.883649-1 6.320509+2 1.905461-1 6.140078+2 1.927525-1 5.964024+2 1.972423-1 5.626993+2 2.000000-1 5.433074+2 2.018366-1 5.309083+2 2.089296-1 4.865690+2 2.113489-1 4.726308+2 2.137962-1 4.591009+2 2.162719-1 4.459593+2 2.213095-1 4.207979+2 2.264644-1 3.970637+2 2.290868-1 3.857739+2 2.317395-1 3.748065+2 2.371374-1 3.538173+2 2.398833-1 3.437703+2 2.426610-1 3.340094+2 2.454709-1 3.245270+2 2.511886-1 3.063648+2 2.570396-1 2.892326+2 2.630268-1 2.730611+2 2.691535-1 2.577969+2 2.722701-1 2.504971+2 2.754229-1 2.434058+2 2.786121-1 2.365245+2 2.818383-1 2.299163+2 2.884032-1 2.172526+2 2.917427-1 2.111858+2 2.951209-1 2.052921+2 2.985383-1 1.995633+2 3.019952-1 1.939949+2 3.054921-1 1.885822+2 3.090295-1 1.833209+2 3.126079-1 1.782066+2 3.162278-1 1.732353+2 3.198895-1 1.684078+2 3.235937-1 1.637780+2 3.273407-1 1.592769+2 3.349654-1 1.506476+2 3.388442-1 1.465185+2 3.427678-1 1.425031+2 3.467369-1 1.385979+2 3.507519-1 1.348000+2 3.548134-1 1.311064+2 3.589219-1 1.275144+2 3.672823-1 1.206234+2 3.715352-1 1.173225+2 3.758374-1 1.141121+2 3.801894-1 1.110383+2 3.845918-1 1.080499+2 3.890451-1 1.051422+2 3.935501-1 1.023131+2 3.981072-1 9.956141+1 4.000000-1 9.844942+1 4.027170-1 9.688391+1 4.073803-1 9.428296+1 4.120975-1 9.175206+1 4.168694-1 8.928920+1 4.216965-1 8.689262+1 4.265795-1 8.456293+1 4.315191-1 8.229746+1 4.365158-1 8.009293+1 4.415705-1 7.799006+1 4.466836-1 7.594257+1 4.518559-1 7.394895+1 4.570882-1 7.200773+1 4.623810-1 7.011760+1 4.677351-1 6.827739+1 4.731513-1 6.648638+1 4.786301-1 6.474599+1 4.897788-1 6.140727+1 4.954502-1 5.980322+1 5.000000-1 5.858200+1 5.011872-1 5.826927+1 5.128614-1 5.531963+1 5.188000-1 5.390141+1 5.248075-1 5.251959+1 5.308844-1 5.117329+1 5.370318-1 4.986250+1 5.432503-1 4.858617+1 5.495409-1 4.734665+1 5.623413-1 4.496198+1 5.688529-1 4.381517+1 5.754399-1 4.271925+1 5.821032-1 4.165078+1 5.888437-1 4.060908+1 5.956621-1 3.959410+1 6.000000-1 3.896749+1 6.025596-1 3.860451+1 6.095369-1 3.763989+1 6.165950-1 3.670063+1 6.237348-1 3.578500+1 6.309573-1 3.489269+1 6.382635-1 3.402455+1 6.456542-1 3.317837+1 6.531306-1 3.235329+1 6.606935-1 3.156537+1 6.683439-1 3.079668+1 6.760830-1 3.004684+1 6.839117-1 2.931531+1 6.918310-1 2.860253+1 6.998420-1 2.790711+1 7.079458-1 2.722861+1 7.161434-1 2.656664+1 7.244360-1 2.592111+1 7.328245-1 2.529201+1 7.413102-1 2.467960+1 7.498942-1 2.408210+1 7.585776-1 2.351134+1 7.673615-1 2.295415+1 7.852356-1 2.188025+1 8.000000-1 2.104838+1 8.035261-1 2.085665+1 8.222427-1 1.988153+1 8.317638-1 1.941137+1 8.413951-1 1.895235+1 8.511380-1 1.850426+1 8.609938-1 1.806813+1 8.709636-1 1.765124+1 8.810489-1 1.724472+1 8.912509-1 1.684758+1 9.015711-1 1.645959+1 9.120108-1 1.608074+1 9.225714-1 1.571065+1 9.332543-1 1.534935+1 9.440609-1 1.499646+1 9.549926-1 1.465229+1 9.660509-1 1.431610+1 9.772372-1 1.398873+1 9.885531-1 1.367566+1 1.000000+0 1.336970+1 1.011579+0 1.307061+1 1.023293+0 1.277819+1 1.035142+0 1.249274+1 1.047129+0 1.221390+1 1.059254+0 1.194133+1 1.071519+0 1.167491+1 1.083927+0 1.141442+1 1.096478+0 1.115976+1 1.109175+0 1.091087+1 1.122018+0 1.066775+1 1.135011+0 1.043002+1 1.148154+0 1.019762+1 1.161449+0 9.970735+0 1.174898+0 9.748928+0 1.188502+0 9.532074+0 1.202264+0 9.320700+0 1.216186+0 9.118615+0 1.230269+0 8.920920+0 1.244515+0 8.727612+0 1.250000+0 8.654885+0 1.258925+0 8.538529+0 1.273503+0 8.353545+0 1.303167+0 7.996027+0 1.318257+0 7.823087+0 1.333521+0 7.654003+0 1.348963+0 7.489158+0 1.364583+0 7.331709+0 1.380384+0 7.177569+0 1.412538+0 6.879106+0 1.428894+0 6.734569+0 1.479108+0 6.319393+0 1.500000+0 6.158254+0 1.513561+0 6.057026+0 1.531087+0 5.930501+0 1.548817+0 5.810059+0 1.603245+0 5.463238+0 1.659587+0 5.137237+0 1.678804+0 5.033083+0 1.698244+0 4.931059+0 1.717908+0 4.831110+0 1.737801+0 4.733565+0 1.757924+0 4.640459+0 1.778279+0 4.549202+0 1.840772+0 4.286184+0 1.862087+0 4.201972+0 1.883649+0 4.119415+0 1.905461+0 4.038479+0 1.927525+0 3.959254+0 1.949845+0 3.881584+0 1.972423+0 3.805736+0 1.995262+0 3.731376+0 2.000000+0 3.716632+0 2.018366+0 3.660360+0 2.065380+0 3.522445+0 2.089296+0 3.455449+0 2.113489+0 3.389755+0 2.137962+0 3.325311+0 2.162719+0 3.262090+0 2.187762+0 3.200155+0 2.213095+0 3.139408+0 2.238721+0 3.079818+0 2.264644+0 3.021594+0 2.290868+0 2.964472+0 2.317395+0 2.909912+0 2.371374+0 2.803846+0 2.398833+0 2.752272+0 2.426610+0 2.701669+0 2.454709+0 2.651995+0 2.483133+0 2.603236+0 2.511886+0 2.555437+0 2.540973+0 2.508524+0 2.570396+0 2.462475+0 2.600160+0 2.417449+0 2.630268+0 2.373251+0 2.660725+0 2.330971+0 2.722701+0 2.248702+0 2.754229+0 2.208663+0 2.786121+0 2.169355+0 2.818383+0 2.130745+0 2.851018+0 2.092824+0 2.884032+0 2.055625+0 2.917427+0 2.019096+0 2.951209+0 1.983218+0 3.000000+0 1.933415+0 3.019952+0 1.913640+0 3.054921+0 1.880643+0 3.126079+0 1.816382+0 3.162278+0 1.785079+0 3.198895+0 1.754316+0 3.235937+0 1.724096+0 3.273407+0 1.694398+0 3.311311+0 1.665210+0 3.349654+0 1.636564+0 3.388442+0 1.608415+0 3.427678+0 1.580752+0 3.467369+0 1.553674+0 3.507519+0 1.527061+0 3.548134+0 1.501591+0 3.630781+0 1.451946+0 3.672823+0 1.427743+0 3.715352+0 1.403943+0 3.758374+0 1.380549+0 3.801894+0 1.357546+0 3.845918+0 1.334926+0 3.890451+0 1.312711+0 3.935501+0 1.290870+0 4.000000+0 1.260651+0 4.027170+0 1.248323+0 4.073803+0 1.227635+0 4.120975+0 1.207291+0 4.168694+0 1.187798+0 4.265795+0 1.149772+0 4.315191+0 1.131218+0 4.365158+0 1.112964+0 4.415704+0 1.095012+0 4.466836+0 1.077349+0 4.518559+0 1.059972+0 4.570882+0 1.042897+0 4.623810+0 1.026101+0 4.677351+0 1.009576+0 4.731513+0 9.933814-1 4.786301+0 9.774477-1 4.841724+0 9.617695-1 4.897788+0 9.467419-1 5.011872+0 9.174036-1 5.069907+0 9.030771-1 5.128614+0 8.889745-1 5.188000+0 8.750984-1 5.248075+0 8.614385-1 5.308844+0 8.479923-1 5.370318+0 8.347732-1 5.432503+0 8.217631-1 5.495409+0 8.089563-1 5.559043+0 7.963988-1 5.623413+0 7.840371-1 5.688529+0 7.718673-1 5.754399+0 7.601873-1 5.956621+0 7.262150-1 6.025596+0 7.152316-1 6.095369+0 7.044145-1 6.165950+0 6.937656-1 6.237348+0 6.832777-1 6.309573+0 6.729483-1 6.382635+0 6.627881-1 6.456542+0 6.527834-1 6.531306+0 6.429301-1 6.606934+0 6.332627-1 6.683439+0 6.237409-1 6.760830+0 6.143625-1 6.839116+0 6.053505-1 7.161434+0 5.706228-1 7.244360+0 5.622568-1 7.328245+0 5.540135-1 7.413102+0 5.458945-1 7.498942+0 5.378944-1 7.585776+0 5.300116-1 7.673615+0 5.222544-1 7.762471+0 5.146123-1 7.852356+0 5.070826-1 8.000000+0 4.951791-1 8.035261+0 4.924100-1 8.128305+0 4.852341-1 8.222427+0 4.783412-1 8.609938+0 4.517490-1 8.709636+0 4.453353-1 8.810489+0 4.390126-1 8.912509+0 4.327822-1 9.015711+0 4.266401-1 9.225714+0 4.146162-1 9.332543+0 4.087389-1 9.440609+0 4.029459-1 9.549926+0 3.972352-1 9.660509+0 3.916056-1 9.885531+0 3.806263-1 1.000000+1 3.752530-1 1.011579+1 3.700865-1 1.047129+1 3.550169-1 1.059254+1 3.501316-1 1.071519+1 3.453136-1 1.083927+1 3.405633-1 1.122018+1 3.267017-1 1.135011+1 3.222126-1 1.161449+1 3.134205-1 1.174898+1 3.091150-1 1.202264+1 3.006811-1 1.230269+1 2.925067-1 1.244515+1 2.885036-1 1.258925+1 2.846472-1 1.288250+1 2.770914-1 1.300000+1 2.741676-1 1.303167+1 2.733893-1 1.318257+1 2.697365-1 1.333521+1 2.661341-1 1.400000+1 2.514348-1 1.412538+1 2.488334-1 1.445440+1 2.422403-1 1.462177+1 2.390097-1 1.500000+1 2.319963-1 1.531087+1 2.265300-1 1.548817+1 2.235189-1 1.566751+1 2.206067-1 1.603245+1 2.148979-1 1.621810+1 2.120991-1 1.640590+1 2.093367-1 1.678804+1 2.039196-1 1.698244+1 2.012646-1 1.717908+1 1.986443-1 1.840772+1 1.836233-1 1.862087+1 1.812353-1 1.905461+1 1.765529-1 1.927525+1 1.742574-1 1.949845+1 1.719917-1 1.972423+1 1.697628-1 2.000000+1 1.671135-1 2.018366+1 1.654274-1 2.041738+1 1.633289-1 2.065380+1 1.612571-1 2.089296+1 1.592115-1 2.113489+1 1.571924-1 2.137962+1 1.551989-1 2.454709+1 1.331601-1 2.483133+1 1.314730-1 2.511886+1 1.298076-1 2.540973+1 1.281673-1 3.162278+1 1.009996-1 3.198895+1 9.974119-2 3.235937+1 9.852220-2 4.518559+1 6.898547-2 4.570882+1 6.814287-2 4.623810+1 6.732608-2 6.839116+1 4.469147-2 6.918310+1 4.415608-2 6.998420+1 4.363536-2 1.148154+2 2.620676-2 1.161449+2 2.589823-2 1.174898+2 2.559664-2 2.290868+2 1.297881-2 2.317395+2 1.282786-2 2.344229+2 1.267981-2 4.570882+2 6.468197-3 4.623810+2 6.393600-3 4.677351+2 6.320159-3 1.819701+3 1.617142-3 1.840772+3 1.598575-3 1.862087+3 1.580269-3 1.000000+5 2.939021-5 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 3.850000-6 3.850000-6 4.600000-6 3.850000-6 4.600000-6 4.069024-6 5.956621-6 4.106731-6 6.280000-6 4.112718-6 6.280000-6 5.251464-6 7.200000-6 5.035194-6 8.035261-6 4.876381-6 8.810489-6 4.761180-6 9.500000-6 4.679222-6 1.011579-5 4.620681-6 1.109175-5 4.548264-6 1.216186-5 4.490964-6 1.284000-5 4.463413-6 1.284000-5 5.489784-6 1.364583-5 5.461345-6 1.453000-5 5.462413-6 1.453000-5 6.173234-6 1.548817-5 6.227450-6 1.621810-5 6.297245-6 1.717908-5 6.430939-6 1.819701-5 6.628161-6 1.920000-5 6.879710-6 1.980000-5 7.056896-6 2.070000-5 7.356484-6 2.190000-5 7.813424-6 2.350000-5 8.497736-6 2.610000-5 9.656637-6 2.751000-5 1.024343-5 2.751000-5 2.323500-5 3.162278-5 2.115296-5 3.507519-5 1.941907-5 3.672823-5 1.866944-5 3.900000-5 1.775877-5 4.101000-5 1.707695-5 4.101000-5 2.454224-5 4.415704-5 2.285846-5 4.677351-5 2.159499-5 4.900000-5 2.064200-5 5.128614-5 1.977393-5 5.400000-5 1.887720-5 5.688529-5 1.807268-5 5.956621-5 1.745394-5 6.237348-5 1.691641-5 6.279000-5 1.684688-5 6.279000-5 1.775218-5 6.531306-5 1.726730-5 6.839116-5 1.678091-5 7.161434-5 1.638159-5 7.500000-5 1.606419-5 7.943282-5 1.576390-5 8.511380-5 1.550986-5 9.225714-5 1.532600-5 1.000000-4 1.523869-5 1.080000-4 1.524067-5 1.174898-4 1.534752-5 1.273503-4 1.557507-5 1.303500-4 1.566765-5 1.303500-4 3.158423-5 1.313000-4 3.348969-5 1.323000-4 3.576629-5 1.333521-4 3.842591-5 1.365000-4 4.704191-5 1.373000-4 4.912785-5 1.380384-4 5.093741-5 1.387000-4 5.244780-5 1.395000-4 5.412319-5 1.403000-4 5.563965-5 1.412538-4 5.724133-5 1.419000-4 5.821721-5 1.423900-4 5.885411-5 1.423900-4 6.640589-5 1.447000-4 7.044215-5 1.487000-4 7.767122-5 1.502000-4 8.015841-5 1.525000-4 8.340105-5 1.540000-4 8.513088-5 1.565000-4 8.740603-5 1.585000-4 8.883050-5 1.635000-4 9.155045-5 1.740000-4 9.598058-5 1.840772-4 9.963921-5 1.950000-4 1.030270-4 2.041738-4 1.053557-4 2.137962-4 1.070438-4 2.213095-4 1.076242-4 2.285000-4 1.074390-4 2.358000-4 1.064429-4 2.440000-4 1.044271-4 2.486200-4 1.029198-4 2.486200-4 1.181291-4 2.600160-4 1.155678-4 2.754229-4 1.111317-4 2.985383-4 1.040233-4 3.126079-4 1.002962-4 3.240000-4 9.765087-5 3.292600-4 9.657316-5 3.292600-4 1.117778-4 3.400000-4 1.088602-4 3.600000-4 1.040098-4 3.690000-4 1.021075-4 3.850000-4 9.936252-5 4.008700-4 9.715033-5 4.008700-4 1.038082-4 4.216965-4 1.015561-4 4.415704-4 9.996487-5 4.677351-4 9.845148-5 4.954502-4 9.748326-5 5.122700-4 9.709304-5 5.122700-4 1.057738-4 5.155000-4 1.053079-4 5.260000-4 1.051937-4 5.280200-4 1.052360-4 5.280200-4 1.105585-4 5.360000-4 1.114758-4 5.415000-4 1.128410-4 5.457000-4 1.145396-4 5.490000-4 1.164181-4 5.522000-4 1.187670-4 5.565000-4 1.227909-4 5.608000-4 1.276799-4 5.688529-4 1.382511-4 5.758000-4 1.474610-4 5.821032-4 1.549878-4 5.880000-4 1.610550-4 5.950000-4 1.669147-4 6.000000-4 1.702838-4 6.080000-4 1.745153-4 6.165950-4 1.777804-4 6.280000-4 1.807334-4 6.437300-4 1.831456-4 6.650000-4 1.848700-4 7.000000-4 1.860148-4 7.852356-4 1.865800-4 8.988200-4 1.863821-4 8.988200-4 1.893577-4 9.027000-4 1.915584-4 9.098000-4 1.968740-4 9.140000-4 1.987329-4 9.225714-4 2.003443-4 9.390000-4 2.018269-4 9.561200-4 2.024190-4 9.561200-4 2.094465-4 1.054200-3 2.138173-4 1.161449-3 2.175397-4 1.236600-3 2.196984-4 1.236600-3 2.323092-4 1.513561-3 2.412765-4 1.554000-3 2.424632-4 1.554000-3 2.455050-4 1.728800-3 2.509356-4 1.728800-3 2.558558-4 2.113489-3 2.672326-4 2.540973-3 2.775644-4 3.054921-3 2.878666-4 3.715352-3 2.984800-4 4.134300-3 3.041336-4 4.134300-3 4.353651-4 4.366900-3 4.354967-4 4.366900-3 4.638797-4 4.968600-3 4.640606-4 4.968600-3 4.980260-4 6.148800-3 5.035743-4 6.148800-3 5.213610-4 6.523300-3 5.245499-4 6.523300-3 5.399946-4 8.709636-3 5.602008-4 1.122018-2 5.785114-4 1.428894-2 5.958810-4 1.800000-2 6.120099-4 1.946200-2 6.172719-4 1.946200-2 7.301446-4 2.450300-2 7.350952-4 2.450300-2 7.761398-4 2.529400-2 7.770983-4 2.529400-2 8.302043-4 3.507519-2 8.502966-4 4.800000-2 8.689939-4 6.683439-2 8.878377-4 9.225714-2 9.050558-4 1.288250-1 9.212337-4 1.322100-1 9.224137-4 1.322100-1 8.488854-4 3.162278-1 8.541514-4 9.015711-1 8.569061-4 1.000000+5 8.569836-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.850000-6 0.0 2.486200-4 0.0 2.486200-4 1.690868-9 2.540973-4 1.711805-9 2.570396-4 1.719560-9 2.644700-4 1.726184-9 2.691535-4 1.723377-9 2.754229-4 1.711099-9 2.830000-4 1.680245-9 2.951209-4 1.621829-9 3.292600-4 1.441721-9 3.292600-4 4.441793-9 3.340000-4 4.308188-9 3.430000-4 4.099034-9 3.600000-4 3.658141-9 3.690000-4 3.444486-9 3.801894-4 3.222108-9 3.850000-4 3.134044-9 3.935501-4 2.987064-9 4.008700-4 2.872180-9 4.008700-4 3.330562-9 4.120975-4 3.178961-9 4.265795-4 3.011786-9 4.365158-4 2.908245-9 4.518559-4 2.770802-9 4.677351-4 2.647923-9 4.841724-4 2.542499-9 5.011872-4 2.451807-9 5.122700-4 2.401338-9 5.122700-4 1.228462-8 5.126000-4 1.219221-8 5.135000-4 1.202532-8 5.145000-4 1.188876-8 5.155000-4 1.180041-8 5.168000-4 1.173203-8 5.190000-4 1.169890-8 5.220000-4 1.172147-8 5.260000-4 1.180249-8 5.280200-4 1.187441-8 5.280200-4 1.382190-8 5.315000-4 1.409047-8 5.330000-4 1.425864-8 5.345000-4 1.447170-8 5.360000-4 1.473601-8 5.374000-4 1.503742-8 5.385800-4 1.533687-8 5.400000-4 1.575488-8 5.415000-4 1.627342-8 5.435000-4 1.710343-8 5.450000-4 1.783107-8 5.465000-4 1.866614-8 5.485000-4 1.995087-8 5.503000-4 2.128170-8 5.522000-4 2.286757-8 5.537300-4 2.429369-8 5.550000-4 2.554143-8 5.565000-4 2.713375-8 5.580000-4 2.881078-8 5.595000-4 3.056789-8 5.623413-4 3.410091-8 5.708000-4 4.503437-8 5.730000-4 4.774425-8 5.758000-4 5.101312-8 5.790000-4 5.443463-8 5.807000-4 5.614754-8 5.830000-4 5.828559-8 5.850000-4 6.000329-8 5.888437-4 6.293541-8 5.930000-4 6.561943-8 5.956621-4 6.708058-8 6.000000-4 6.905561-8 6.025596-4 7.005518-8 6.080000-4 7.170171-8 6.130000-4 7.279620-8 6.200000-4 7.386422-8 6.280000-4 7.465498-8 6.430000-4 7.549158-8 6.630000-4 7.597167-8 7.244360-4 7.615806-8 8.413951-4 7.565859-8 8.988200-4 7.530965-8 8.988200-4 7.478685-8 9.050000-4 7.404024-8 9.120108-4 7.317152-8 9.225714-4 7.268096-8 9.500000-4 7.216843-8 9.561200-4 7.211030-8 9.561200-4 9.152728-8 9.800000-4 9.339703-8 1.035142-3 9.661685-8 1.122018-3 1.006031-7 1.236600-3 1.038359-7 1.236600-3 1.398062-7 1.445440-3 1.498303-7 1.554000-3 1.547111-7 1.554000-3 1.616456-7 1.728800-3 1.705170-7 1.728800-3 1.861363-7 2.018366-3 2.023194-7 2.300000-3 2.167971-7 2.786121-3 2.389580-7 3.150000-3 2.537315-7 3.589219-3 2.698224-7 4.027170-3 2.844162-7 4.134300-3 2.877589-7 4.134300-3 3.187190-7 4.366900-3 3.215119-7 4.366900-3 6.931288-5 4.500000-3 6.949983-5 4.677351-3 6.914291-5 4.968600-3 6.890102-5 4.968600-3 7.024066-5 5.370318-3 7.014807-5 6.148800-3 6.959475-5 6.148800-3 7.775662-5 6.523300-3 7.831731-5 6.523300-3 7.990268-5 8.222426-3 8.226383-5 9.660509-3 8.385223-5 1.148154-2 8.560254-5 1.428894-2 8.779430-5 1.778279-2 8.989338-5 1.946200-2 9.072204-5 1.946200-2 4.625082-3 2.018366-2 4.623586-3 2.371374-2 4.574227-3 2.450300-2 4.560811-3 2.450300-2 6.979611-3 2.529400-2 7.003141-3 2.529400-2 7.340951-3 3.054921-2 7.430370-3 3.758374-2 7.508497-3 5.069907-2 7.581493-3 7.244360-2 7.637294-3 1.288250-1 7.677025-3 1.322100-1 7.677979-3 1.322100-1 9.184174-2 1.621810-1 9.268771-2 2.213095-1 9.363015-2 3.467369-1 9.463294-2 6.165950-1 9.572317-2 1.023293+0 9.643383-2 1.000000+5 9.641575-2 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 3.850000-6 0.0 4.600000-6 7.500000-7 4.600000-6 5.309764-7 4.700000-6 6.266875-7 5.069907-6 9.841768-7 5.956621-6 1.849890-6 6.280000-6 2.167282-6 6.280000-6 1.028536-6 6.606934-6 1.435581-6 7.200000-6 2.164806-6 7.852356-6 2.944531-6 8.609938-6 3.821725-6 9.500000-6 4.820778-6 1.071519-5 6.141840-6 1.216186-5 7.670896-6 1.284000-5 8.376587-6 1.284000-5 7.350216-6 1.364583-5 8.184485-6 1.453000-5 9.067587-6 1.453000-5 8.356766-6 1.566751-5 9.425357-6 1.678804-5 1.041593-5 1.800000-5 1.141387-5 1.927525-5 1.237418-5 2.070000-5 1.334352-5 2.213095-5 1.422322-5 2.650000-5 1.667122-5 2.751000-5 1.726657-5 2.751000-5 4.275002-6 2.917427-5 6.760122-6 3.350000-5 1.330956-5 3.590900-5 1.687574-5 3.801894-5 1.988448-5 4.027170-5 2.295890-5 4.101000-5 2.393305-5 4.101000-5 1.646776-5 4.415704-5 2.129858-5 4.677351-5 2.517852-5 5.000000-5 2.975065-5 5.308844-5 3.392683-5 5.688529-5 3.881261-5 6.165950-5 4.461620-5 6.279000-5 4.594312-5 6.279000-5 4.503782-5 6.839116-5 5.161025-5 7.500000-5 5.893581-5 8.511380-5 6.960394-5 1.035142-4 8.828455-5 1.290000-4 1.133750-4 1.303500-4 1.146824-4 1.303500-4 9.876577-5 1.318257-4 9.716359-5 1.333521-4 9.492619-5 1.365000-4 8.945809-5 1.380384-4 8.710099-5 1.395000-4 8.537681-5 1.411000-4 8.409041-5 1.423900-4 8.353589-5 1.423900-4 7.598411-5 1.447000-4 7.425785-5 1.487000-4 7.102878-5 1.502000-4 7.004159-5 1.520000-4 6.925212-5 1.540000-4 6.886912-5 1.560000-4 6.901633-5 1.585000-4 6.966950-5 1.621810-4 7.129703-5 1.678804-4 7.439547-5 1.780000-4 8.049246-5 1.865000-4 8.605835-5 1.972423-4 9.360753-5 2.065380-4 1.006833-4 2.153900-4 1.081556-4 2.231500-4 1.154982-4 2.307000-4 1.234782-4 2.390000-4 1.332472-4 2.483133-4 1.452891-4 2.486200-4 1.457002-4 2.486200-4 1.304892-4 2.600160-4 1.444465-4 2.818383-4 1.727373-4 3.054921-4 2.033876-4 3.292600-4 2.326854-4 3.292600-4 2.174778-4 3.600000-4 2.559865-4 3.850000-4 2.856343-4 4.008700-4 3.037168-4 4.008700-4 2.970585-4 4.415704-4 3.416027-4 5.011872-4 4.038460-4 5.122700-4 4.151746-4 5.122700-4 4.064840-4 5.280200-4 4.227721-4 5.280200-4 4.174477-4 5.400000-4 4.275975-4 5.490000-4 4.325616-4 5.565000-4 4.336819-4 5.658000-4 4.316287-4 5.807000-4 4.272385-4 5.900000-4 4.270552-4 6.000000-4 4.296472-4 6.130000-4 4.363766-4 6.280000-4 4.471920-4 6.550000-4 4.707166-4 7.161434-4 5.298172-4 8.988200-4 7.123626-4 8.988200-4 7.093875-4 9.130000-4 7.145364-4 9.390000-4 7.371008-4 9.561200-4 7.536289-4 9.561200-4 7.465820-4 1.236600-3 1.016798-3 1.236600-3 1.004151-3 1.554000-3 1.311382-3 1.554000-3 1.308333-3 1.728800-3 1.477694-3 1.728800-3 1.472758-3 2.900000-3 2.614753-3 4.134300-3 3.829879-3 4.134300-3 3.698616-3 4.366900-3 3.931082-3 4.366900-3 3.833707-3 4.968600-3 4.435638-3 4.968600-3 4.400333-3 6.148800-3 5.575631-3 6.148800-3 5.549682-3 6.523300-3 5.920433-3 6.523300-3 5.903403-3 1.757924-2 1.687904-2 1.946200-2 1.875401-2 1.946200-2 1.410677-2 2.450300-2 1.920709-2 2.450300-2 1.674725-2 2.529400-2 1.751376-2 2.529400-2 1.712284-2 3.801894-2 2.965152-2 9.332543-2 8.476017-2 1.322100-1 1.236096-1 1.322100-1 3.951938-2 1.353000-1 4.249238-2 1.365000-1 4.370956-2 1.396368-1 4.668808-2 1.445440-1 5.147786-2 1.548817-1 6.149403-2 2.162719-1 1.218470-1 4.315191-1 3.356252-1 1.698244+0 1.600970+0 1.000000+5 9.999990+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.322100-1 1.158285+3 1.344000-1 1.111112+3 1.353000-1 1.095148+3 1.365000-1 1.068780+3 1.385000-1 1.035282+3 1.425000-1 9.618800+2 1.500000-1 8.508160+2 1.678804-1 6.416979+2 1.905461-1 4.688107+2 2.264644-1 3.047962+2 2.786121-1 1.825801+2 3.198895-1 1.304311+2 3.758374-1 8.870470+1 4.365158-1 6.245930+1 4.954502-1 4.677068+1 5.688529-1 3.436719+1 6.531306-1 2.544527+1 7.498942-1 1.898696+1 8.609938-1 1.428044+1 9.772372-1 1.107642+1 1.202264+0 7.385483+0 1.348963+0 5.932853+0 1.531087+0 4.696572+0 1.737801+0 3.748617+0 1.995262+0 2.954964+0 2.290868+0 2.347572+0 2.630268+0 1.879382+0 3.019952+0 1.515408+0 3.507519+0 1.209286+0 4.120975+0 9.560467-1 4.841724+0 7.616155-1 5.688529+0 6.112346-1 6.760830+0 4.865110-1 8.128305+0 3.842525-1 1.000000+1 2.971600-1 1.244515+1 2.284664-1 1.548817+1 1.770072-1 2.000000+1 1.323400-1 2.540973+1 1.015084-1 3.198895+1 7.899459-2 4.570882+1 5.396874-2 6.918310+1 3.497138-2 1.161449+2 2.051105-2 2.317395+2 1.015962-2 4.623810+2 5.063696-3 1.840772+3 1.266062-3 1.000000+5 2.327700-5 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.322100-1 8.245300-4 1.000000+5 8.245300-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.322100-1 1.197200-1 1.000000+5 1.197200-1 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.322100-1 1.166547-2 1.000000+5 9.999988+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.529400-2 3.900592+3 2.550000-2 3.822789+3 2.640000-2 3.603860+3 2.691535-2 3.496170+3 2.770000-2 3.316180+3 2.900000-2 3.076680+3 3.589219-2 2.091669+3 3.981072-2 1.717255+3 4.900000-2 1.138944+3 5.500000-2 8.976880+2 6.237348-2 6.901514+2 7.500000-2 4.635300+2 8.810489-2 3.242359+2 1.011580-1 2.371577+2 1.188502-1 1.636731+2 1.428894-1 1.064057+2 1.905461-1 5.381705+1 2.754229-1 2.243055+1 3.349654-1 1.418458+1 4.027170-1 9.278187+0 4.731513-1 6.442883+0 5.432503-1 4.744932+0 6.309573-1 3.431543+0 7.328245-1 2.500204+0 8.511380-1 1.835351+0 9.660509-1 1.422264+0 1.188502+0 9.478401-1 1.333521+0 7.609274-1 1.513561+0 6.018974-1 1.717908+0 4.800540-1 1.949845+0 3.856577-1 2.238721+0 3.060300-1 2.570396+0 2.446973-1 2.951209+0 1.970704-1 3.427678+0 1.570768-1 4.000000+0 1.252600-1 4.677351+0 1.003069-1 5.495409+0 8.037685-2 6.531306+0 6.388187-2 7.852356+0 5.038347-2 9.660509+0 3.891099-2 1.202264+1 2.987596-2 1.500000+1 2.305400-2 1.949845+1 1.709239-2 2.511886+1 1.290180-2 3.198895+1 9.915287-3 4.570882+1 6.774117-3 6.918310+1 4.389612-3 1.148154+2 2.605108-3 2.290868+2 1.290120-3 4.570882+2 6.429933-4 1.819701+3 1.607593-4 1.000000+5 2.921700-6 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.529400-2 1.175800-3 1.000000+5 1.175800-3 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.529400-2 9.539300-3 1.000000+5 9.539300-3 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.529400-2 1.457890-2 1.000000+5 9.999999+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.450300-2 8.242078+3 2.480000-2 8.055800+3 2.511886-2 7.831500+3 2.600160-2 7.218800+3 2.820000-2 5.940500+3 3.467369-2 3.551700+3 3.845918-2 2.721800+3 4.623810-2 1.681600+3 5.754399-2 9.360500+2 7.244360-2 4.992800+2 9.332543-2 2.476600+2 1.862087-1 3.602800+1 2.317395-1 1.969900+1 2.691535-1 1.310729+1 3.162278-1 8.510268+0 3.672823-1 5.740465+0 4.216965-1 4.020008+0 4.786301-1 2.919942+0 5.432503-1 2.136752+0 6.095369-1 1.620256+0 6.839117-1 1.238074+0 7.673615-1 9.530736-1 8.709636-1 7.196452-1 9.440609-1 6.055751-1 1.023293+0 5.132507-1 1.148154+0 4.084970-1 1.273503+0 3.347612-1 1.428894+0 2.704727-1 1.659587+0 2.066525-1 1.905461+0 1.624289-1 2.162719+0 1.311887-1 2.483133+0 1.047108-1 2.851018+0 8.419934-2 3.311311+0 6.699690-2 3.845918+0 5.370464-2 4.518559+0 4.264431-2 5.308844+0 3.411758-2 6.309573+0 2.707528-2 7.585776+0 2.132428-2 9.225714+0 1.668190-2 1.122018+1 1.314361-2 1.400000+1 1.011500-2 1.840772+1 7.387856-3 2.454709+1 5.358609-3 3.198895+1 4.016113-3 4.570882+1 2.743840-3 6.918310+1 1.777972-3 1.161449+2 1.042804-3 2.317395+2 5.165194-4 4.623810+2 2.574427-4 1.840772+3 6.436875-5 1.000000+5 1.183400-6 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.450300-2 8.721400-4 1.000000+5 8.721400-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.450300-2 1.263700-2 1.000000+5 1.263700-2 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.450300-2 1.099386-2 1.000000+5 9.999999+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.946200-2 2.040228+4 1.985000-2 1.942088+4 2.264644-2 1.354758+4 2.818383-2 7.319551+3 3.162278-2 5.248955+3 3.672823-2 3.393343+3 4.623810-2 1.710512+3 5.754399-2 8.818287+2 7.161434-2 4.503888+2 9.120108-2 2.126113+2 1.678804-1 3.158421+1 2.113489-1 1.550092+1 2.511886-1 9.154059+0 2.917427-1 5.848068+0 3.349654-1 3.895454+0 3.801894-1 2.703031+0 4.265795-1 1.951829+0 4.786301-1 1.419303+0 5.308844-1 1.072651+0 5.888437-1 8.160546-1 6.531306-1 6.250492-1 7.244360-1 4.821651-1 8.035261-1 3.746095-1 9.225714-1 2.701005-1 9.772372-1 2.369056-1 1.035142+0 2.092400-1 1.109175+0 1.815998-1 1.202264+0 1.551742-1 1.318257+0 1.306940-1 1.479108+0 1.063331-1 1.778279+0 7.667897-2 2.018366+0 6.166865-2 2.317395+0 4.903062-2 2.660725+0 3.927585-2 3.054921+0 3.168573-2 3.548134+0 2.529922-2 4.168694+0 2.001204-2 4.897788+0 1.595060-2 5.754399+0 1.280789-2 6.839116+0 1.019933-2 8.222427+0 8.059416-3 1.011579+1 6.235509-3 1.258925+1 4.796096-3 1.566751+1 3.717186-3 2.018366+1 2.787723-3 2.540973+1 2.160087-3 3.235937+1 1.660281-3 4.623810+1 1.134592-3 6.998420+1 7.353616-4 1.174898+2 4.313806-4 2.344229+2 2.136919-4 4.677351+2 1.065164-4 1.862087+3 2.663317-5 1.000000+5 4.953400-7 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.946200-2 8.148800-4 1.000000+5 8.148800-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.946200-2 8.029100-3 1.000000+5 8.029100-3 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.946200-2 1.061802-2 1.000000+5 9.999999+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.523300-3 9.695921+3 6.740000-3 9.254800+3 6.900000-3 8.998400+3 7.079458-3 8.700735+3 7.328245-3 8.341468+3 7.943282-3 7.456517+3 8.511380-3 6.802872+3 9.015711-3 6.265938+3 9.885531-3 5.446782+3 1.060000-2 4.912920+3 1.135011-2 4.407399+3 1.380384-2 3.200742+3 1.531087-2 2.677652+3 1.778279-2 2.057607+3 2.065380-2 1.564083+3 2.317395-2 1.260459+3 2.754229-2 9.032663+2 3.300000-2 6.303780+2 3.890451-2 4.502139+2 4.623810-2 3.135134+2 5.500000-2 2.160600+2 6.456542-2 1.520537+2 7.585776-2 1.061151+2 9.120108-2 6.981962+1 1.109175-1 4.440398+1 1.400000-1 2.569840+1 2.691535-1 5.436038+0 3.273407-1 3.434323+0 3.935501-1 2.244187+0 4.677351-1 1.516973+0 5.370318-1 1.116296+0 6.237348-1 8.065457-1 7.244360-1 5.870350-1 8.511380-1 4.204055-1 9.660509-1 3.256436-1 1.188502+0 2.169857-1 1.333521+0 1.741983-1 1.513561+0 1.378059-1 1.717908+0 1.099101-1 1.949845+0 8.829423-2 2.238721+0 7.006030-2 2.570396+0 5.601840-2 2.951209+0 4.511515-2 3.427678+0 3.595892-2 4.000000+0 2.867500-2 4.677351+0 2.296323-2 5.495409+0 1.840042-2 6.531306+0 1.462469-2 7.852356+0 1.153395-2 9.660509+0 8.907860-3 1.202264+1 6.839352-3 1.500000+1 5.277600-3 1.949845+1 3.912783-3 2.511886+1 2.953579-3 3.198895+1 2.269855-3 4.570882+1 1.550814-3 6.918310+1 1.004875-3 1.161449+2 5.893943-4 2.317395+2 2.919333-4 4.623810+2 1.455050-4 1.840772+3 3.638081-5 1.000000+5 6.688600-7 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.523300-3 9.094800-4 1.000000+5 9.094800-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.523300-3 1.178300-4 1.000000+5 1.178300-4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.523300-3 5.495990-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.148800-3 1.539518+4 6.340000-3 1.500304+4 6.700000-3 1.419470+4 6.918310-3 1.368753+4 7.650000-3 1.211720+4 8.000000-3 1.143180+4 8.511380-3 1.047231+4 9.549926-3 8.821357+3 1.000000-2 8.214560+3 1.080000-2 7.265300+3 1.273503-2 5.470599+3 1.364583-2 4.823531+3 1.603245-2 3.548116+3 1.737801-2 3.023476+3 2.018366-2 2.222780+3 2.213095-2 1.827054+3 2.553000-2 1.336978+3 2.917427-2 9.889408+2 3.273407-2 7.576336+2 3.758374-2 5.462331+2 4.365158-2 3.799357+2 5.069907-2 2.621425+2 5.956621-2 1.743752+2 7.079458-2 1.117531+2 8.609938-2 6.692660+1 1.059254-1 3.859053+1 2.213095-1 5.315857+0 2.722701-1 3.062158+0 3.235937-1 1.946653+0 3.801894-1 1.284806+0 4.365158-1 9.060675-1 5.011872-1 6.437485-1 5.688529-1 4.740874-1 6.382635-1 3.615260-1 7.161434-1 2.776416-1 8.222427-1 2.040259-1 9.015711-1 1.669793-1 9.772372-1 1.410238-1 1.096478+0 1.119488-1 1.230269+0 8.948423-2 1.380384+0 7.211782-2 1.603245+0 5.498322-2 1.840772+0 4.312954-2 2.089296+0 3.477157-2 2.398833+0 2.769993-2 2.754229+0 2.223137-2 3.198895+0 1.765687-2 3.715352+0 1.413043-2 4.365158+0 1.120216-2 5.128614+0 8.947885-3 6.095369+0 7.089921-3 7.328245+0 5.575912-3 8.810489+0 4.418620-3 1.071519+1 3.475769-3 1.318257+1 2.715258-3 1.678804+1 2.052533-3 2.089296+1 1.603428-3 2.540973+1 1.291088-3 3.235937+1 9.923807-4 4.623810+1 6.781344-4 6.998420+1 4.395311-4 1.174898+2 2.578380-4 2.344229+2 1.277218-4 4.677351+2 6.366498-5 1.862087+3 1.591842-5 1.000000+5 2.960600-7 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.148800-3 8.136700-4 1.000000+5 8.136700-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.148800-3 2.118900-4 1.000000+5 2.118900-4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.148800-3 5.123240-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 4.968600-3 6.291246+4 5.050000-3 6.071393+4 5.370318-3 5.496474+4 5.688529-3 4.977312+4 6.400000-3 4.036000+4 7.161434-3 3.261050+4 8.317638-3 2.432557+4 8.810489-3 2.164664+4 1.023293-2 1.588039+4 1.109175-2 1.333602+4 1.303167-2 9.327758+3 1.428894-2 7.548628+3 1.650000-2 5.386120+3 1.883649-2 3.907786+3 2.089296-2 3.024971+3 2.426610-2 2.070694+3 2.800000-2 1.427800+3 3.198895-2 1.002518+3 3.630781-2 7.116742+2 4.168694-2 4.863409+2 4.800000-2 3.274688+2 5.559043-2 2.154805+2 6.531306-2 1.351208+2 7.852356-2 7.860723+1 9.660509-2 4.237598+1 1.244515-1 1.974591+1 1.927525-1 5.253197+0 2.371374-1 2.821655+0 2.818383-1 1.692950+0 3.273407-1 1.095332+0 3.758374-1 7.382826-1 4.265795-1 5.180462-1 4.786301-1 3.779796-1 5.370318-1 2.777434-1 6.025596-1 2.056594-1 6.683439-1 1.580832-1 7.413102-1 1.223396-1 8.709636-1 8.288531-2 9.332543-1 7.060335-2 9.885531-1 6.213171-2 1.059254+0 5.371622-2 1.148154+0 4.569677-2 1.250000+0 3.883390-2 1.380384+0 3.236852-2 1.757924+0 2.105402-2 2.000000+0 1.685348-2 2.290868+0 1.344390-2 2.630268+0 1.076297-2 3.019952+0 8.678576-3 3.507519+0 6.925329-3 4.120975+0 5.475001-3 4.841724+0 4.361555-3 5.688529+0 3.500360-3 6.760830+0 2.786141-3 8.128305+0 2.200509-3 1.000000+1 1.701700-3 1.244515+1 1.308330-3 1.531087+1 1.027212-3 1.972423+1 7.697852-4 2.511886+1 5.886424-4 3.198895+1 4.523740-4 4.570882+1 3.090634-4 6.918310+1 2.002768-4 1.161449+2 1.174650-4 2.317395+2 5.818095-5 4.623810+2 2.899846-5 1.840772+3 7.250515-6 1.000000+5 1.333000-7 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 4.968600-3 6.982300-4 1.000000+5 6.982300-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.968600-3 7.813700-5 1.000000+5 7.813700-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 4.968600-3 4.192233-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.366900-3 1.518800+5 4.490000-3 1.422504+5 4.623810-3 1.310414+5 5.248075-3 9.370483+4 5.688529-3 7.507039+4 6.500000-3 5.153560+4 7.413102-3 3.531027+4 8.317638-3 2.513726+4 9.015711-3 1.972267+4 1.096478-2 1.078700+4 1.230269-2 7.492112+3 1.400000-2 4.955160+3 1.678804-2 2.734014+3 1.927525-2 1.723511+3 2.187762-2 1.122704+3 2.540973-2 6.714990+2 3.000000-2 3.763872+2 3.548134-2 2.080253+2 4.265795-2 1.076156+2 5.188000-2 5.300672+1 6.531306-2 2.286228+1 1.273503-1 1.965514+0 1.548817-1 9.625183-1 1.819701-1 5.384119-1 2.113489-1 3.161087-1 2.454709-1 1.869672-1 2.818383-1 1.159184-1 3.198895-1 7.535617-2 3.589219-1 5.130999-2 4.027170-1 3.520113-2 4.466836-1 2.525408-2 4.954502-1 1.824773-2 5.432503-1 1.375312-2 5.956621-1 1.043775-2 6.456542-1 8.265993-3 7.079458-1 6.379775-3 8.035261-1 4.515896-3 8.609938-1 3.728910-3 9.120108-1 3.199649-3 9.549926-1 2.847560-3 1.000000+0 2.550696-3 1.047129+0 2.300764-3 1.109175+0 2.037596-3 1.174898+0 1.817342-3 1.258925+0 1.596204-3 1.364583+0 1.382297-3 1.531087+0 1.132865-3 1.840772+0 8.181795-4 2.065380+0 6.719829-4 2.371374+0 5.349741-4 2.722701+0 4.290970-4 3.162278+0 3.405902-4 3.672823+0 2.724086-4 4.315191+0 2.158402-4 5.069907+0 1.723167-4 6.025596+0 1.364659-4 7.244360+0 1.072729-4 8.609938+0 8.619450-5 1.047129+1 6.774563-5 1.300000+1 5.232000-5 1.621810+1 4.047826-5 2.041738+1 3.118180-5 2.540973+1 2.447373-5 3.198895+1 1.904579-5 4.570882+1 1.301192-5 6.918310+1 8.431619-6 1.161449+2 4.945363-6 2.317395+2 2.449384-6 4.623810+2 1.220854-6 1.840772+3 3.052547-7 1.000000+5 5.612000-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.366900-3 5.320800-4 1.000000+5 5.320800-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.366900-3 2.350900-4 1.000000+5 2.350900-4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.366900-3 3.599730-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.134300-3 2.397978+5 4.261100-3 2.200857+5 4.415704-3 2.010754+5 4.954502-3 1.471271+5 5.432503-3 1.135399+5 6.237348-3 7.625839+4 6.839116-3 5.820049+4 7.673615-3 4.124383+4 8.500000-3 3.014700+4 1.040000-2 1.598646+4 1.188502-2 1.038076+4 1.318257-2 7.396030+3 1.548817-2 4.317184+3 1.757924-2 2.805310+3 1.972423-2 1.886012+3 2.300000-2 1.100952+3 2.691535-2 6.289383+2 3.162278-2 3.511770+2 3.715352-2 1.945267+2 4.415704-2 1.025321+2 5.308844-2 5.140548+1 6.760830-2 2.058205+1 1.244515-1 2.017188+0 1.500000-1 9.979357-1 1.757924-1 5.529335-1 2.018366-1 3.329781-1 2.290868-1 2.105182-1 2.570396-1 1.396799-1 2.884032-1 9.335224-2 3.198895-1 6.541572-2 3.548134-1 4.617375-2 3.935501-1 3.284618-2 4.315191-1 2.443882-2 4.731513-1 1.830990-2 5.188000-1 1.381662-2 5.688529-1 1.050514-2 6.095369-1 8.601383-3 6.606935-1 6.859344-3 7.244360-1 5.337319-3 8.609938-1 3.380576-3 9.120108-1 2.919699-3 9.660509-1 2.540088-3 1.011579+0 2.286943-3 1.071519+0 2.020676-3 1.135011+0 1.797063-3 1.216186+0 1.572365-3 1.318257+0 1.355684-3 1.862087+0 7.375207-4 2.089296+0 6.062650-4 2.398833+0 4.829589-4 2.754229+0 3.875927-4 3.198895+0 3.078236-4 3.715352+0 2.463408-4 4.365158+0 1.952882-4 5.128614+0 1.559908-4 6.095369+0 1.236047-4 7.328245+0 9.720603-5 8.810489+0 7.703275-5 1.071519+1 6.059491-5 1.318257+1 4.733558-5 1.678804+1 3.578332-5 2.089296+1 2.795280-5 2.540973+1 2.250814-5 3.198895+1 1.751557-5 4.623810+1 1.182186-5 6.998420+1 7.662528-6 1.174898+2 4.495033-6 2.344229+2 2.226690-6 4.677351+2 1.109890-6 1.862087+3 2.775164-7 1.000000+5 5.161400-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.134300-3 5.337500-4 1.000000+5 5.337500-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.134300-3 3.419300-7 1.000000+5 3.419300-7 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.134300-3 3.600208-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.728800-3 2.130044+4 1.972423-3 1.853414+4 2.113489-3 1.730144+4 2.220000-3 1.636706+4 2.650000-3 1.325986+4 3.019952-3 1.128836+4 3.235937-3 1.030518+4 4.027170-3 7.605151+3 4.466836-3 6.532805+3 5.248075-3 5.121973+3 6.095369-3 4.046766+3 6.839116-3 3.361624+3 8.222426-3 2.473073+3 9.885531-3 1.800771+3 1.188502-2 1.298073+3 1.428894-2 9.269557+2 1.698244-2 6.703665+2 2.018366-2 4.810215+2 2.400000-2 3.422440+2 2.851018-2 2.421542+2 3.388442-2 1.698763+2 4.027170-2 1.182863+2 4.800000-2 8.125100+1 5.688529-2 5.608628+1 6.839116-2 3.724204+1 8.317638-2 2.391788+1 1.035142-1 1.445468+1 1.303167-1 8.441829+0 2.630268-1 1.585896+0 3.198895-1 1.000719+0 3.890451-1 6.362869-1 4.623810-1 4.298683-1 5.308844-1 3.161404-1 6.165950-1 2.282798-1 7.161434-1 1.660403-1 8.413951-1 1.188148-1 9.549926-1 9.195634-2 1.161449+0 6.261713-2 1.303167+0 5.020462-2 1.479108+0 3.966255-2 1.678804+0 3.158643-2 1.905461+0 2.534283-2 2.187762+0 2.008612-2 2.511886+0 1.604078-2 2.884032+0 1.290273-2 3.349654+0 1.027157-2 3.890451+0 8.238124-3 4.570882+0 6.545020-3 5.370318+0 5.239114-3 6.382635+0 4.159822-3 7.673615+0 3.277746-3 9.332543+0 2.565201-3 1.135011+1 2.022048-3 1.412538+1 1.561421-3 1.862087+1 1.137424-3 2.483133+1 8.254153-4 3.198895+1 6.264415-4 4.570882+1 4.279823-4 6.918310+1 2.773370-4 1.161449+2 1.626640-4 2.317395+2 8.056713-5 4.623810+2 4.015640-5 1.840772+3 1.004036-5 1.000000+5 1.845900-7 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.728800-3 5.384400-4 1.000000+5 5.384400-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.728800-3 1.083200-6 1.000000+5 1.083200-6 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.728800-3 1.189277-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.554000-3 1.783829+4 1.695000-3 1.772670+4 1.883649-3 1.731202+4 2.018366-3 1.687838+4 2.187762-3 1.623940+4 2.371374-3 1.551406+4 2.511886-3 1.493512+4 2.722701-3 1.405177+4 2.900000-3 1.333070+4 3.150000-3 1.232392+4 3.507519-3 1.105181+4 3.758374-3 1.024350+4 4.120975-3 9.175487+3 4.570882-3 8.056538+3 5.000000-3 7.143680+3 5.688529-3 5.949851+3 6.237348-3 5.185363+3 7.079458-3 4.253100+3 7.852356-3 3.589428+3 8.810489-3 2.952328+3 9.885531-3 2.409082+3 1.109175-2 1.952473+3 1.258925-2 1.537141+3 1.428894-2 1.200477+3 1.621810-2 9.303316+2 1.850000-2 7.081920+2 2.113489-2 5.331768+2 2.400000-2 4.037220+2 2.754229-2 2.964572+2 3.150000-2 2.177720+2 3.630781-2 1.559576+2 4.168694-2 1.119280+2 4.786301-2 7.981423+1 5.623413-2 5.338870+1 6.606934-2 3.545135+1 7.943282-2 2.202760+1 9.660509-2 1.318461+1 1.244515-1 6.725719+0 2.113489-1 1.628979+0 2.691535-1 8.580036-1 3.198895-1 5.464047-1 3.758374-1 3.612107-1 4.365158-1 2.478074-1 5.011872-1 1.763249-1 5.688529-1 1.300026-1 6.382635-1 9.921141-2 7.161434-1 7.623094-2 8.222427-1 5.604464-2 9.015711-1 4.588051-2 9.772372-1 3.875296-2 1.096478+0 3.076285-2 1.230269+0 2.459029-2 1.380384+0 1.981658-2 1.603245+0 1.510726-2 1.840772+0 1.185023-2 2.089296+0 9.552674-3 2.398833+0 7.609052-3 2.754229+0 6.106512-3 3.198895+0 4.849797-3 3.715352+0 3.881126-3 4.365158+0 3.076841-3 5.128614+0 2.457714-3 6.095369+0 1.947400-3 7.328245+0 1.531511-3 8.810489+0 1.213650-3 1.071519+1 9.546726-4 1.318257+1 7.457885-4 1.678804+1 5.637811-4 2.089296+1 4.404071-4 2.540973+1 3.546209-4 3.235937+1 2.725642-4 4.623810+1 1.862633-4 6.998420+1 1.207196-4 1.174898+2 7.082086-5 2.344229+2 3.508223-5 4.677351+2 1.748651-5 1.862087+3 4.372359-6 1.000000+5 8.131900-8 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.554000-3 5.020800-4 1.000000+5 5.020800-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.554000-3 7.465600-7 1.000000+5 7.465600-7 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.554000-3 1.051173-3 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.236600-3 1.388814+5 1.380384-3 1.238607+5 1.531087-3 1.103257+5 1.730000-3 9.489640+4 1.905461-3 8.392197+4 2.065380-3 7.521371+4 2.290868-3 6.492036+4 2.722701-3 5.003425+4 2.985383-3 4.330798+4 3.467369-3 3.384607+4 3.845918-3 2.837755+4 4.500000-3 2.149072+4 5.011872-3 1.763474+4 5.688529-3 1.388906+4 6.531306-3 1.060761+4 7.300000-3 8.485600+3 8.317638-3 6.485101+3 9.660509-3 4.719382+3 1.109175-2 3.488061+3 1.258925-2 2.624289+3 1.416900-2 1.999590+3 1.584893-2 1.537004+3 1.800000-2 1.132500+3 2.041738-2 8.314040+2 2.317395-2 6.054085+2 2.630268-2 4.380228+2 3.019952-2 3.055206+2 3.467369-2 2.115427+2 4.027170-2 1.409458+2 4.623810-2 9.621465+1 5.370318-2 6.315896+1 6.309573-2 3.984590+1 7.498942-2 2.413994+1 9.120108-2 1.356982+1 1.161449-1 6.605094+0 1.396368-1 3.796725+0 2.000000-1 1.284513+0 2.426610-1 7.213709-1 2.818383-1 4.645153-1 3.273407-1 3.012131-1 3.758374-1 2.033515-1 4.315191-1 1.383258-1 4.897788-1 9.791492-2 5.495409-1 7.205209-2 6.165950-1 5.346958-2 6.839117-1 4.116304-2 7.585776-1 3.190137-2 8.511380-1 2.411724-2 9.120108-1 2.051527-2 9.772372-1 1.757581-2 1.047129+0 1.518204-2 1.135011+0 1.290337-2 1.230269+0 1.104595-2 1.348963+0 9.313881-3 1.717908+0 6.049022-3 1.949845+0 4.855853-3 2.213095+0 3.926880-3 2.540973+0 3.138013-3 2.917427+0 2.525816-3 3.388442+0 2.011997-3 3.935501+0 1.614574-3 4.623810+0 1.283462-3 5.432503+0 1.027917-3 6.456542+0 8.165544-4 7.762471+0 6.437077-4 9.549926+0 4.969153-4 1.174898+1 3.866346-4 1.462177+1 2.989533-4 1.927525+1 2.180127-4 2.511886+1 1.624476-4 3.198895+1 1.248383-4 4.570882+1 8.529179-5 6.918310+1 5.526875-5 1.161449+2 3.241657-5 2.317395+2 1.605591-5 4.623810+2 8.002674-6 1.840772+3 2.000897-6 1.000000+5 3.678700-8 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.236600-3 4.329300-4 1.000000+5 4.329300-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.236600-3 7.120500-7 1.000000+5 7.120500-7 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.236600-3 8.029580-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 9.561200-4 1.661165+5 9.800000-4 1.778781+5 1.030000-3 1.913860+5 1.083927-3 1.971334+5 1.110000-3 1.994372+5 1.122018-3 1.996957+5 1.148154-3 1.981951+5 1.216186-3 1.927110+5 1.285000-3 1.861088+5 1.350000-3 1.792228+5 1.445440-3 1.688060+5 1.531087-3 1.593089+5 1.621810-3 1.494733+5 1.745000-3 1.367725+5 1.862087-3 1.255809+5 2.018366-3 1.119263+5 2.162719-3 1.008816+5 2.300000-3 9.135480+4 2.511886-3 7.858580+4 2.722701-3 6.810559+4 2.917427-3 5.985920+4 3.235937-3 4.889087+4 3.507519-3 4.152990+4 3.845918-3 3.417085+4 4.216965-3 2.795142+4 4.570882-3 2.329341+4 5.069907-3 1.830120+4 5.559043-3 1.466048+4 6.165950-3 1.134423+4 6.839116-3 8.706795+3 7.500000-3 6.840280+3 8.413951-3 5.022501+3 9.332543-3 3.774327+3 1.035142-2 2.818422+3 1.161449-2 2.022123+3 1.318257-2 1.390982+3 1.500000-2 9.411800+2 1.698244-2 6.412052+2 1.927525-2 4.300389+2 2.187762-2 2.862194+2 2.483133-2 1.891575+2 2.851018-2 1.194486+2 3.273407-2 7.487765+1 3.801894-2 4.479370+1 4.472100-2 2.544885+1 5.308844-2 1.389631+1 6.456542-2 6.912563+0 8.709636-2 2.350955+0 1.396368-1 4.262044-1 1.698244-1 2.113077-1 2.000000-1 1.183528-1 2.398833-1 6.268102-2 2.754229-1 3.896044-2 3.126079-1 2.537616-2 3.548134-1 1.665326-2 3.981072-1 1.143765-2 4.415705-1 8.212908-3 4.897788-1 5.940220-3 5.370318-1 4.483614-3 5.888437-1 3.406802-3 6.456542-1 2.607155-3 7.079458-1 2.015938-3 7.852356-1 1.521246-3 9.440609-1 9.322857-4 9.885531-1 8.294586-4 1.035142+0 7.439004-4 1.083927+0 6.721271-4 1.135011+0 6.111393-4 1.202264+0 5.466522-4 1.303167+0 4.721970-4 1.428894+0 4.029922-4 1.513561+0 3.656269-4 1.862087+0 2.535981-4 2.065380+0 2.124487-4 2.371374+0 1.691243-4 2.722701+0 1.356472-4 3.162278+0 1.076639-4 3.672823+0 8.610949-5 4.315191+0 6.822738-5 5.069907+0 5.446944-5 6.025596+0 4.313631-5 7.244360+0 3.390882-5 8.609938+0 2.724652-5 1.047129+1 2.141477-5 1.300000+1 1.653900-5 1.640590+1 1.262787-5 2.065380+1 9.731066-6 2.540973+1 7.736255-6 3.198895+1 6.020332-6 4.570882+1 4.113066-6 6.918310+1 2.665305-6 1.161449+2 1.563262-6 2.317395+2 7.742837-7 4.623810+2 3.859207-7 1.840772+3 9.649227-8 1.000000+5 1.774000-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 9.561200-4 3.467800-4 1.000000+5 3.467800-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.561200-4 4.709800-7 1.000000+5 4.709800-7 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.561200-4 6.088690-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 8.988200-4 6.611221+4 8.989000-4 6.764280+4 8.994000-4 7.206000+4 9.000000-4 7.819680+4 9.007000-4 8.648520+4 9.027000-4 1.162230+5 9.035000-4 1.301490+5 9.042000-4 1.429746+5 9.050000-4 1.581030+5 9.056000-4 1.695612+5 9.063000-4 1.828632+5 9.069000-4 1.940280+5 9.075000-4 2.048574+5 9.083000-4 2.185998+5 9.090000-4 2.298486+5 9.098000-4 2.416944+5 9.104000-4 2.498652+5 9.111000-4 2.585850+5 9.120108-4 2.686838+5 9.130000-4 2.781510+5 9.140000-4 2.863050+5 9.150600-4 2.936103+5 9.165000-4 3.017364+5 9.185000-4 3.104724+5 9.210000-4 3.187356+5 9.240000-4 3.264912+5 9.280000-4 3.349812+5 9.335000-4 3.444060+5 9.390000-4 3.510954+5 9.440609-4 3.546790+5 9.500000-4 3.562668+5 9.780000-4 3.538770+5 1.000000-3 3.527280+5 1.071519-3 3.417066+5 1.135011-3 3.300218+5 1.202264-3 3.162663+5 1.288250-3 2.978004+5 1.380384-3 2.778989+5 1.470000-3 2.590866+5 1.570000-3 2.390712+5 1.678804-3 2.187282+5 1.778279-3 2.016651+5 1.972423-3 1.723219+5 2.110000-3 1.544868+5 2.264644-3 1.366984+5 2.511886-3 1.133865+5 2.691535-3 9.950527+4 2.985383-3 8.099113+4 3.235937-3 6.861176+4 3.548134-3 5.632213+4 3.900000-3 4.567554+4 4.265795-3 3.718263+4 4.677351-3 2.990915+4 5.128614-3 2.389607+4 5.623413-3 1.897444+4 6.237348-3 1.452811+4 6.839116-3 1.138711+4 7.585776-3 8.598008+3 8.500000-3 6.262980+3 9.332543-3 4.798064+3 1.040000-2 3.500250+3 1.174898-2 2.432694+3 1.319400-2 1.707119+3 1.500000-2 1.143564+3 1.698244-2 7.693856+2 1.905461-2 5.289360+2 2.137962-2 3.612381+2 2.400000-2 2.447706+2 2.754229-2 1.527984+2 3.162278-2 9.442470+1 3.630781-2 5.792335+1 4.216965-2 3.385548+1 4.954502-2 1.883958+1 5.956621-2 9.562160+0 7.498942-2 4.060618+0 1.288250-1 5.357288-1 1.584893-1 2.480627-1 1.862087-1 1.372634-1 2.137962-1 8.323571-2 2.426610-1 5.301224-2 2.722701-1 3.541541-2 3.054921-1 2.382646-2 3.427678-1 1.614732-2 3.801894-1 1.145997-2 4.168694-1 8.507385-3 4.570882-1 6.365370-3 5.011872-1 4.798160-3 5.495409-1 3.643264-3 6.025596-1 2.785433-3 6.531306-1 2.216829-3 6.998420-1 1.833044-3 7.585776-1 1.478391-3 8.317638-1 1.164913-3 9.120108-1 9.201448-4 9.660509-1 7.998107-4 1.011579+0 7.197282-4 1.071519+0 6.357466-4 1.135011+0 5.653053-4 1.216186+0 4.946068-4 1.318257+0 4.265128-4 1.840772+0 2.368326-4 2.065380+0 1.945354-4 2.371374+0 1.548652-4 2.722701+0 1.242147-4 3.162278+0 9.859447-5 3.672823+0 7.885794-5 4.315191+0 6.248199-5 5.069907+0 4.988198-5 6.025596+0 3.950391-5 7.244360+0 3.105321-5 8.709636+0 2.459613-5 1.059254+1 1.933974-5 1.318257+1 1.489946-5 1.678804+1 1.126304-5 2.089296+1 8.798406-6 2.540973+1 7.084736-6 3.235937+1 5.445308-6 4.623810+1 3.721239-6 6.998420+1 2.411871-6 1.174898+2 1.414839-6 2.344229+2 7.008767-7 4.677351+2 3.493543-7 1.862087+3 8.735181-8 1.000000+5 1.624600-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 8.988200-4 3.344100-4 1.000000+5 3.344100-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.988200-4 4.930100-8 1.000000+5 4.930100-8 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 8.988200-4 5.643607-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 5.280200-4 4.750956+4 5.283000-4 4.778490+4 5.295000-4 4.830258+4 5.340000-4 4.934046+4 5.385000-4 5.010684+4 5.435000-4 5.075898+4 5.457000-4 5.129160+4 5.473000-4 5.190546+4 5.490000-4 5.284824+4 5.507000-4 5.416224+4 5.522000-4 5.568624+4 5.537300-4 5.764454+4 5.550000-4 5.961438+4 5.565000-4 6.239340+4 5.580000-4 6.570420+4 5.595000-4 6.960360+4 5.608000-4 7.350120+4 5.623413-4 7.880729+4 5.640000-4 8.542560+4 5.658000-4 9.376020+4 5.680000-4 1.057536+5 5.700000-4 1.185210+5 5.790000-4 2.008380+5 5.821032-4 2.389859+5 5.850000-4 2.789016+5 5.872000-4 3.117750+5 5.900000-4 3.566076+5 5.923000-4 3.956628+5 5.950000-4 4.438392+5 5.973000-4 4.866708+5 6.000000-4 5.387646+5 6.025596-4 5.896804+5 6.050000-4 6.393240+5 6.080000-4 7.012860+5 6.100000-4 7.429260+5 6.130000-4 8.052420+5 6.162600-4 8.720716+5 6.190000-4 9.269280+5 6.220000-4 9.849900+5 6.250000-4 1.040478+6 6.280000-4 1.093038+6 6.320000-4 1.158120+6 6.350000-4 1.203192+6 6.390000-4 1.258224+6 6.437300-4 1.316228+6 6.480000-4 1.362546+6 6.531306-4 1.411095+6 6.589600-4 1.457856+6 6.650000-4 1.497078+6 6.720000-4 1.532358+6 6.800000-4 1.560210+6 6.890000-4 1.579164+6 7.000000-4 1.588842+6 7.120000-4 1.588224+6 7.265700-4 1.576937+6 7.413102-4 1.557285+6 7.585776-4 1.525914+6 7.852356-4 1.468739+6 8.128305-4 1.404239+6 8.511380-4 1.312520+6 8.912509-4 1.218269+6 9.332543-4 1.124101+6 9.885531-4 1.009511+6 1.054200-3 8.876090+5 1.122018-3 7.775640+5 1.210000-3 6.566280+5 1.288250-3 5.660582+5 1.412538-3 4.511815+5 1.513561-3 3.781231+5 1.640590-3 3.050344+5 1.800000-3 2.366160+5 1.950000-3 1.886298+5 2.187762-3 1.348713+5 2.371374-3 1.059238+5 2.660725-3 7.436536+4 2.917427-3 5.561954+4 3.235937-3 3.984448+4 3.589219-3 2.831137+4 3.935501-3 2.077567+4 4.415704-3 1.399348+4 4.897788-3 9.732040+3 5.432503-3 6.724936+3 6.095369-3 4.425831+3 6.918310-3 2.768159+3 7.852356-3 1.715533+3 8.912509-3 1.053671+3 1.011579-2 6.416073+2 1.135011-2 4.057478+2 1.273503-2 2.549147+2 1.428894-2 1.591778+2 1.621810-2 9.418744+1 1.862087-2 5.273537+1 2.137962-2 2.930463+1 2.483133-2 1.538640+1 2.917427-2 7.627534+0 3.467369-2 3.568350+0 4.216965-2 1.496851+0 5.754399-2 3.727237-1 8.035261-2 8.347036-2 1.035142-1 2.712638-2 1.513561-1 5.081535-3 1.678804-1 3.245261-3 1.883649-1 1.987487-3 2.113489-1 1.226236-3 2.454709-1 6.592706-4 2.722701-1 4.317946-4 3.019952-1 2.847740-4 3.349654-1 1.894277-4 3.715352-1 1.269390-4 4.365158-1 6.880985-5 4.731513-1 5.095849-5 5.128614-1 3.799369-5 5.495409-1 2.973041-5 5.821032-1 2.436996-5 6.237348-1 1.933649-5 7.328245-1 1.137531-5 7.852356-1 9.118433-6 8.317638-1 7.636236-6 8.709636-1 6.664541-6 9.120108-1 5.852457-6 9.549926-1 5.175874-6 9.885531-1 4.744914-6 1.035142+0 4.257369-6 1.083927+0 3.847783-6 1.135011+0 3.499186-6 1.202264+0 3.130024-6 1.303167+0 2.703161-6 1.428894+0 2.306027-6 1.513561+0 2.091662-6 1.862087+0 1.450560-6 2.065380+0 1.215464-6 2.371374+0 9.677292-7 2.722701+0 7.760821-7 3.126079+0 6.267643-7 3.630781+0 5.010088-7 4.265795+0 3.967495-7 5.011872+0 3.165742-7 5.956621+0 2.505773-7 7.161434+0 1.968756-7 8.609938+0 1.558648-7 1.059254+1 1.208095-7 1.303167+1 9.434231-8 1.640590+1 7.223737-8 2.065380+1 5.566917-8 2.540973+1 4.425640-8 3.198895+1 3.444062-8 4.570882+1 2.352939-8 6.918310+1 1.524717-8 1.161449+2 8.943062-9 2.317395+2 4.429386-9 4.623810+2 2.207685-9 1.840772+3 5.51999-10 1.000000+5 1.01480-11 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 5.280200-4 2.026000-4 1.000000+5 2.026000-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.280200-4 4.750000-8 1.000000+5 4.750000-8 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.280200-4 3.253725-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 5.122700-4 7.221071+4 5.126000-4 7.145472+4 5.135000-4 7.007808+4 5.145000-4 6.894344+4 5.155000-4 6.819392+4 5.168000-4 6.758856+4 5.190000-4 6.721728+4 5.220000-4 6.724392+4 5.260000-4 6.767664+4 5.280000-4 6.812824+4 5.300000-4 6.888488+4 5.315000-4 6.974072+4 5.330000-4 7.091872+4 5.345000-4 7.248664+4 5.360000-4 7.451152+4 5.374000-4 7.687184+4 5.385800-4 7.925645+4 5.400000-4 8.265200+4 5.415000-4 8.692880+4 5.432503-4 9.291081+4 5.450000-4 1.000776+5 5.465000-4 1.072704+5 5.485000-4 1.185256+5 5.503000-4 1.304480+5 5.522000-4 1.450456+5 5.550000-4 1.706984+5 5.630000-4 2.742480+5 5.650000-4 3.073920+5 5.680000-4 3.623192+5 5.708000-4 4.188960+5 5.730000-4 4.666456+5 5.758000-4 5.312416+5 5.780000-4 5.847152+5 5.807000-4 6.532416+5 5.830000-4 7.138864+5 5.850000-4 7.681080+5 5.880000-4 8.514480+5 5.900000-4 9.081280+5 5.930000-4 9.940080+5 5.956621-4 1.070575+6 5.990000-4 1.165816+6 6.025596-4 1.265140+6 6.050000-4 1.331072+6 6.084600-4 1.420730+6 6.115000-4 1.495160+6 6.150000-4 1.575328+6 6.190000-4 1.659440+6 6.237348-4 1.748747+6 6.280000-4 1.820136+6 6.320000-4 1.879816+6 6.370000-4 1.945256+6 6.430000-4 2.011288+6 6.480000-4 2.056744+6 6.550000-4 2.106896+6 6.630000-4 2.146912+6 6.700000-4 2.169232+6 6.780000-4 2.183184+6 6.890000-4 2.187920+6 7.000000-4 2.181160+6 7.161434-4 2.156952+6 7.350000-4 2.112392+6 7.585776-4 2.042312+6 7.852356-4 1.954343+6 8.200000-4 1.835568+6 8.609938-4 1.697414+6 9.015711-4 1.566700+6 9.549926-4 1.406906+6 1.011579-3 1.254484+6 1.071519-3 1.111381+6 1.150000-3 9.504880+5 1.230269-3 8.125360+5 1.318257-3 6.861902+5 1.445440-3 5.434819+5 1.548817-3 4.532384+5 1.698244-3 3.524683+5 1.850000-3 2.771672+5 2.018366-3 2.153955+5 2.220000-3 1.623552+5 2.454709-3 1.194941+5 2.691535-3 8.963117+4 2.985383-3 6.436621+4 3.300000-3 4.638528+4 3.672823-3 3.243846+4 4.073803-3 2.276894+4 4.500000-3 1.609960+4 5.011872-3 1.098438+4 5.688529-3 6.941308+3 6.456542-3 4.344069+3 7.328245-3 2.692959+3 8.317638-3 1.654107+3 9.500000-3 9.821760+2 1.071519-2 6.074972+2 1.202264-2 3.810312+2 1.350000-2 2.366512+2 1.520000-2 1.444472+2 1.717908-2 8.625304+1 1.949845-2 5.021509+1 2.238721-2 2.763147+1 2.600160-2 1.435417+1 3.054921-2 7.032901+0 3.630781-2 3.247995+0 4.415704-2 1.342413+0 5.956621-2 3.440504-1 8.128305-2 8.339798-2 1.188502-1 1.497175-2 1.380384-1 7.659534-3 1.621810-1 3.753519-3 1.778279-1 2.514180-3 1.927525-1 1.782890-3 2.454709-1 6.467872-4 2.722701-1 4.217519-4 2.985383-1 2.904674-4 3.273407-1 2.016855-4 3.548134-1 1.475424-4 3.890451-1 1.040138-4 4.216965-1 7.716510-5 4.570882-1 5.768799-5 4.897788-1 4.526320-5 5.248075-1 3.574083-5 5.623413-1 2.841116-5 6.025596-1 2.276782-5 6.531306-1 1.771487-5 7.328245-1 1.248642-5 8.035261-1 9.504336-6 8.810489-1 7.288180-6 9.772372-1 5.448178-6 1.011579+0 4.975914-6 1.047129+0 4.574730-6 1.083927+0 4.229202-6 1.122018+0 3.929042-6 1.174898+0 3.585192-6 1.244515+0 3.224647-6 1.333521+0 2.860095-6 1.513561+0 2.323134-6 1.905461+0 1.548042-6 2.113489+0 1.298601-6 2.426610+0 1.035142-6 2.786121+0 8.311138-7 3.198895+0 6.719914-7 3.715352+0 5.377685-7 4.365158+0 4.263229-7 5.128614+0 3.405362-7 6.095369+0 2.698317-7 7.328245+0 2.122062-7 8.810489+0 1.681642-7 1.071519+1 1.322878-7 1.303167+1 1.047494-7 1.640590+1 8.020395-8 2.065380+1 6.180811-8 2.540973+1 4.913696-8 3.198895+1 3.823888-8 4.570882+1 2.612451-8 6.918310+1 1.692885-8 1.161449+2 9.928779-9 2.317395+2 4.917907-9 4.623810+2 2.451206-9 1.840772+3 6.12877-10 1.000000+5 1.12680-11 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 5.122700-4 1.980200-4 1.000000+5 1.980200-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.122700-4 1.173100-7 1.000000+5 1.173100-7 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.122700-4 3.141327-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.008700-4 4.413369+4 5.248075-4 3.481963+4 5.688529-4 3.251712+4 6.095369-4 3.043273+4 7.328245-4 2.539641+4 8.000000-4 2.313360+4 9.440609-4 1.919164+4 1.035142-3 1.719055+4 1.202264-3 1.423858+4 1.350000-3 1.222582+4 1.584893-3 9.816824+3 1.862087-3 7.799767+3 2.162719-3 6.258970+3 2.540973-3 4.908296+3 3.090295-3 3.624956+3 3.715352-3 2.706587+3 4.518559-3 1.970179+3 5.500000-3 1.421090+3 6.606934-3 1.040040+3 8.000000-3 7.450720+2 9.660509-3 5.320300+2 1.161449-2 3.800909+2 1.396368-2 2.695346+2 1.678804-2 1.897256+2 2.018366-2 1.325461+2 2.426610-2 9.188388+1 2.917427-2 6.320197+1 3.507519-2 4.313370+1 4.168694-2 2.993231+1 5.011872-2 2.011560+1 6.025596-2 1.341391+1 7.244360-2 8.877858+0 8.709636-2 5.834070+0 1.071519-1 3.609595+0 1.364583-1 2.044287+0 2.722701-1 3.960953-1 3.388442-1 2.371115-1 4.027170-1 1.591892-1 4.786301-1 1.077836-1 5.623413-1 7.547966-2 6.456542-1 5.600023-2 7.498942-1 4.083068-2 8.709636-1 2.998595-2 9.885531-1 2.325242-2 1.202264+0 1.585852-2 1.348963+0 1.274008-2 1.531087+0 1.008629-2 1.737801+0 8.050285-3 1.972423+0 6.471040-3 2.264644+0 5.137845-3 2.600160+0 4.110653-3 3.000000+0 3.287800-3 3.467369+0 2.641823-3 4.027170+0 2.122281-3 4.731513+0 1.688881-3 5.559043+0 1.353988-3 6.606934+0 1.076655-3 8.000000+0 8.419400-4 9.885531+0 6.472179-4 1.230269+1 4.973753-4 1.531087+1 3.852096-4 1.972423+1 2.886803-4 2.511886+1 2.207459-4 3.198895+1 1.696416-4 4.570882+1 1.159044-4 6.918310+1 7.510345-5 1.161449+2 4.405085-5 2.317395+2 2.181820-5 4.623810+2 1.087443-5 1.840772+3 2.719015-6 1.000000+5 4.998900-8 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.008700-4 2.262000-4 1.000000+5 2.262000-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.008700-4 1.175700-8 1.000000+5 1.175700-8 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.008700-4 1.746582-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.292600-4 1.207426+5 3.340000-4 1.154940+5 3.430000-4 1.077440+5 3.470000-4 1.040080+5 3.530000-4 9.810440+4 3.680000-4 8.437740+4 4.000700-4 6.416436+4 4.100000-4 5.954960+4 4.365158-4 4.964978+4 4.623810-4 4.227858+4 4.786301-4 3.858770+4 4.954502-4 3.540612+4 5.150000-4 3.237120+4 5.370318-4 2.960344+4 5.623413-4 2.703886+4 5.900000-4 2.477300+4 6.200000-4 2.278900+4 6.500000-4 2.119240+4 6.850000-4 1.970614+4 7.244360-4 1.837818+4 7.762471-4 1.699581+4 8.413951-4 1.563067+4 9.225714-4 1.430960+4 1.303167-3 1.045421+4 1.479108-3 9.257711+3 1.678804-3 8.145539+3 1.927525-3 7.025247+3 2.162719-3 6.167938+3 2.454709-3 5.307696+3 2.818383-3 4.468481+3 3.198895-3 3.786890+3 3.630781-3 3.186806+3 4.120975-3 2.662704+3 4.677351-3 2.208611+3 5.308844-3 1.818561+3 6.025596-3 1.486239+3 6.839116-3 1.205588+3 7.673615-3 9.903426+2 8.709636-3 7.920932+2 9.885531-3 6.290123+2 1.122018-2 4.958585+2 1.273503-2 3.882576+2 1.445440-2 3.019481+2 1.640590-2 2.332023+2 1.883649-2 1.745791+2 2.162719-2 1.296711+2 2.483133-2 9.558085+1 2.851018-2 6.993414+1 3.273407-2 5.080247+1 3.801894-2 3.565675+1 4.415704-2 2.483432+1 5.128614-2 1.717184+1 6.025596-2 1.145535+1 7.161434-2 7.368450+0 8.609938-2 4.567586+0 1.071519-1 2.567702+0 2.426610-1 2.909088-1 2.951209-1 1.738358-1 3.507519-1 1.111489-1 4.073803-1 7.596541-2 4.677351-1 5.383722-2 5.308844-1 3.953299-2 6.025596-1 2.924260-2 6.760830-1 2.239490-2 7.585776-1 1.726906-2 8.709636-1 1.274086-2 9.549926-1 1.047967-2 1.035142+0 8.895526-3 1.174898+0 6.929657-3 1.303167+0 5.686979-3 1.479108+0 4.504364-3 1.698244+0 3.517360-3 1.927525+0 2.823157-3 2.213095+0 2.238679-3 2.540973+0 1.788876-3 2.917427+0 1.439817-3 3.388442+0 1.146919-3 3.935501+0 9.203812-4 4.623810+0 7.316298-4 5.432503+0 5.859572-4 6.456542+0 4.654710-4 7.762471+0 3.669438-4 9.440609+0 2.873071-4 1.161449+1 2.234536-4 1.445440+1 1.727019-4 1.905461+1 1.258998-4 2.511886+1 9.260083-5 3.198895+1 7.116536-5 4.570882+1 4.861968-5 6.918310+1 3.150570-5 1.161449+2 1.847924-5 2.317395+2 9.152519-6 4.623810+2 4.561833-6 1.840772+3 1.140630-6 1.000000+5 2.097000-8 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.292600-4 2.056600-4 1.000000+5 2.056600-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.292600-4 2.296600-8 1.000000+5 2.296600-8 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.292600-4 1.235770-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.486200-4 3.260877+5 2.754229-4 2.844474+5 2.870000-4 2.670796+5 3.015000-4 2.497568+5 3.500000-4 2.087924+5 3.758374-4 1.932982+5 4.786301-4 1.508712+5 5.559043-4 1.288434+5 6.382635-4 1.105742+5 7.244360-4 9.539739+4 8.222426-4 8.172249+4 9.440609-4 6.844581+4 1.071519-3 5.774722+4 1.230269-3 4.760595+4 1.428894-3 3.827987+4 1.640590-3 3.106348+4 1.883649-3 2.503817+4 2.187762-3 1.967756+4 2.570396-3 1.505374+4 3.000000-3 1.155324+4 3.467369-3 8.952713+3 3.981072-3 6.973307+3 4.570882-3 5.395850+3 5.248075-3 4.146232+3 6.025596-3 3.163063+3 6.918310-3 2.394650+3 7.852356-3 1.843302+3 9.015711-3 1.375375+3 1.035142-2 1.018265+3 1.188502-2 7.481438+2 1.364583-2 5.454777+2 1.566751-2 3.946486+2 1.798871-2 2.833194+2 2.065380-2 2.018599+2 2.371374-2 1.427266+2 2.722701-2 1.001663+2 3.126079-2 6.978280+1 3.589219-2 4.826761+1 4.120975-2 3.315775+1 4.786301-2 2.191102+1 5.623413-2 1.391432+1 6.606934-2 8.767907+0 7.943282-2 5.129856+0 9.772372-2 2.783571+0 1.244515-1 1.350337+0 1.972423-1 3.382818-1 2.426610-1 1.825071-1 2.884032-1 1.099089-1 3.349654-1 7.133065-2 3.845918-1 4.821288-2 4.365158-1 3.391830-2 4.897788-1 2.480506-2 5.495409-1 1.826824-2 6.095369-1 1.396252-2 6.760830-1 1.074413-2 7.498942-1 8.322890-3 8.709636-1 5.801007-3 9.332543-1 4.941989-3 9.885531-1 4.349224-3 1.059254+0 3.760183-3 1.148154+0 3.198878-3 1.250000+0 2.718500-3 1.380384+0 2.265791-3 1.737801+0 1.503630-3 1.972423+0 1.207807-3 2.264644+0 9.591300-4 2.600160+0 7.673564-4 3.000000+0 6.136700-4 3.467369+0 4.930977-4 4.073803+0 3.896136-4 4.786301+0 3.102126-4 5.623413+0 2.488370-4 6.683439+0 1.979651-4 8.035261+0 1.562798-4 9.885531+0 1.208082-4 1.230269+1 9.283684-5 1.531087+1 7.190080-5 1.972423+1 5.388260-5 2.511886+1 4.120244-5 3.198895+1 3.166501-5 4.570882+1 2.163334-5 6.918310+1 1.401860-5 1.161449+2 8.222049-6 2.317395+2 4.072455-6 4.623810+2 2.029801-6 1.840772+3 5.075084-7 1.000000+5 9.330500-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.486200-4 1.459500-4 1.000000+5 1.459500-4 1 97000 7 7 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.486200-4 4.783800-9 1.000000+5 4.783800-9 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.486200-4 1.026652-4 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.423900-4 5.450681+5 1.430000-4 5.673280+5 1.436000-4 5.943280+5 1.440000-4 6.156480+5 1.447000-4 6.586680+5 1.471000-4 8.457310+5 1.480000-4 9.235240+5 1.487000-4 9.834480+5 1.495000-4 1.049420+6 1.502000-4 1.103472+6 1.510000-4 1.159444+6 1.518000-4 1.208348+6 1.525000-4 1.244644+6 1.532000-4 1.274756+6 1.540000-4 1.301696+6 1.548817-4 1.322671+6 1.555000-4 1.332324+6 1.565000-4 1.340184+6 1.575000-4 1.339896+6 1.585000-4 1.333020+6 1.600000-4 1.313408+6 1.615000-4 1.286244+6 1.635000-4 1.243032+6 1.660000-4 1.183864+6 1.698244-4 1.091842+6 1.740000-4 9.948160+5 1.780000-4 9.068160+5 1.820000-4 8.240160+5 1.865000-4 7.375240+5 1.930000-4 6.263320+5 2.120000-4 3.947516+5 2.220000-4 3.167292+5 2.317395-4 2.597287+5 2.400000-4 2.222068+5 2.483133-4 1.922051+5 2.560000-4 1.700276+5 2.630268-4 1.535756+5 2.691535-4 1.417098+5 2.754229-4 1.315761+5 2.818383-4 1.229818+5 2.884032-4 1.157460+5 2.951209-4 1.097040+5 3.019952-4 1.047040+5 3.090295-4 1.006081+5 3.162278-4 9.729196+4 3.240000-4 9.451880+4 3.320000-4 9.236920+4 3.427678-4 9.035882+4 3.548134-4 8.901558+4 3.672823-4 8.834757+4 3.801894-4 8.818656+4 4.027170-4 8.864484+4 4.700000-4 9.095800+4 5.069907-4 9.153229+4 5.432503-4 9.135856+4 5.800000-4 9.051840+4 6.200000-4 8.899120+4 6.606934-4 8.692664+4 7.079458-4 8.409754+4 7.585776-4 8.074915+4 8.128305-4 7.696813+4 8.709636-4 7.287315+4 9.332543-4 6.854491+4 1.011579-3 6.332956+4 1.096478-3 5.806207+4 1.190000-3 5.275960+4 1.288250-3 4.775858+4 1.412538-3 4.220534+4 1.531087-3 3.762727+4 1.678804-3 3.276944+4 1.850000-3 2.809516+4 2.018366-3 2.431388+4 2.220000-3 2.062132+4 2.454709-3 1.719909+4 2.722701-3 1.415303+4 3.019952-3 1.155566+4 3.349654-3 9.363654+3 3.715352-3 7.529963+3 4.140000-3 5.949200+3 4.570882-3 4.760483+3 5.069907-3 3.743159+3 5.623413-3 2.921275+3 6.237348-3 2.263283+3 6.918310-3 1.740961+3 7.673615-3 1.329906+3 8.511380-3 1.009035+3 9.549926-3 7.367413+2 1.071519-2 5.339234+2 1.202264-2 3.841062+2 1.348963-2 2.742453+2 1.513561-2 1.941714+2 1.698244-2 1.364698+2 1.927525-2 9.186334+1 2.187762-2 6.138153+1 2.483133-2 4.072387+1 2.851018-2 2.582691+1 3.273407-2 1.625239+1 3.801894-2 9.761768+0 4.415704-2 5.819147+0 5.248075-2 3.177836+0 6.309573-2 1.654013+0 8.035261-2 6.957099-1 1.428894-1 8.749498-2 1.757924-1 4.173335-2 2.089296-1 2.267914-2 2.426610-1 1.346178-2 2.786121-1 8.377576-3 3.162278-1 5.462326-3 3.548134-1 3.727564-3 3.981072-1 2.561865-3 4.415705-1 1.840046-3 4.897788-1 1.330823-3 5.432503-1 9.696430-4 5.956621-1 7.370833-4 6.456542-1 5.843241-4 7.079458-1 4.514305-4 8.035261-1 3.199529-4 8.609938-1 2.644924-4 9.120108-1 2.271435-4 9.549926-1 2.022616-4 1.000000+0 1.812500-4 1.047129+0 1.635316-4 1.109175+0 1.448540-4 1.174898+0 1.292048-4 1.258925+0 1.134766-4 1.364583+0 9.824709-5 1.531087+0 8.048921-5 1.840772+0 5.812841-5 2.065380+0 4.773936-5 2.371374+0 3.800257-5 2.722701+0 3.047929-5 3.162278+0 2.419125-5 3.672823+0 1.934834-5 4.315191+0 1.533034-5 5.069907+0 1.223896-5 6.025596+0 9.692617-6 7.244360+0 7.619196-6 8.709636+0 6.035064-6 1.059254+1 4.745286-6 1.303167+1 3.705567-6 1.640590+1 2.837383-6 2.065380+1 2.186617-6 2.540973+1 1.738354-6 3.162278+1 1.369716-6 4.518559+1 9.355269-7 6.839116+1 6.060844-7 1.148154+2 3.554170-7 2.290868+2 1.760174-7 4.570882+2 8.772386-8 1.819701+3 2.193336-8 1.000000+5 3.98610-10 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.423900-4 1.423900-4 1.000000+5 1.423900-4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.423900-4 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.303500-4 8.430185+5 1.307000-4 8.751240+5 1.313000-4 9.298800+5 1.323000-4 1.036344+6 1.340000-4 1.248888+6 1.350000-4 1.383618+6 1.358000-4 1.491474+6 1.365000-4 1.583088+6 1.373000-4 1.681974+6 1.380384-4 1.765572+6 1.387000-4 1.832790+6 1.395000-4 1.903242+6 1.403000-4 1.960938+6 1.411000-4 2.005782+6 1.419000-4 2.038134+6 1.428894-4 2.062127+6 1.435700-4 2.069399+6 1.445440-4 2.068525+6 1.458000-4 2.051292+6 1.472000-4 2.016138+6 1.485000-4 1.973160+6 1.500000-4 1.915890+6 1.520000-4 1.832976+6 1.550000-4 1.705344+6 1.584893-4 1.561878+6 1.635000-4 1.372236+6 1.678804-4 1.222349+6 1.720000-4 1.094094+6 1.780000-4 9.288000+5 1.972423-4 5.589999+5 2.041738-4 4.738424+5 2.113489-4 4.043225+5 2.162719-4 3.653416+5 2.220000-4 3.272130+5 2.280000-4 2.941728+5 2.344229-4 2.652146+5 2.400000-4 2.445108+5 2.454709-4 2.275479+5 2.511886-4 2.128084+5 2.570396-4 2.003942+5 2.630268-4 1.900396+5 2.691535-4 1.815068+5 2.754229-4 1.745763+5 2.818383-4 1.690459+5 2.884032-4 1.647269+5 2.951209-4 1.614420+5 3.030000-4 1.587402+5 3.126079-4 1.567117+5 3.240000-4 1.555758+5 3.388442-4 1.554267+5 3.600000-4 1.566438+5 4.120975-4 1.609196+5 4.415704-4 1.621889+5 4.731513-4 1.623355+5 5.011872-4 1.614646+5 5.308844-4 1.596110+5 5.688529-4 1.562153+5 6.025596-4 1.525195+5 6.382635-4 1.480642+5 6.850000-4 1.417314+5 7.328245-4 1.350379+5 7.852356-4 1.276271+5 8.511380-4 1.185331+5 9.200000-4 1.095450+5 1.000000-3 9.984120+4 1.083927-3 9.064635+4 1.188502-3 8.046860+4 1.288250-3 7.202338+4 1.412538-3 6.297859+4 1.548817-3 5.464138+4 1.698244-3 4.708451+4 1.883649-3 3.949459+4 2.089296-3 3.284649+4 2.300000-3 2.748642+4 2.511886-3 2.320864+4 2.754229-3 1.933487+4 3.054921-3 1.562979+4 3.400000-3 1.244796+4 3.758374-3 9.985821+3 4.168694-3 7.894656+3 4.570882-3 6.365023+3 5.069907-3 4.958820+3 5.623413-3 3.835620+3 6.237348-3 2.945268+3 6.918310-3 2.245458+3 7.673615-3 1.700073+3 8.511380-3 1.278052+3 9.549926-3 9.235461+2 1.071519-2 6.622900+2 1.202264-2 4.713494+2 1.348963-2 3.328482+2 1.513561-2 2.330203+2 1.698244-2 1.618922+2 1.905461-2 1.116743+2 2.162719-2 7.367195+1 2.454709-2 4.823875+1 2.786121-2 3.135652+1 3.162278-2 2.024044+1 3.630781-2 1.246211+1 4.168694-2 7.619283+0 4.897788-2 4.257497+0 5.821032-2 2.264258+0 6.998420-2 1.144944+0 1.318257-1 1.075542-1 1.603245-1 5.211394-2 1.883649-1 2.890496-2 2.162719-1 1.756124-2 2.454709-1 1.119881-2 2.754229-1 7.490417-3 3.090295-1 5.047144-3 3.427678-1 3.562748-3 3.801894-1 2.533402-3 4.168694-1 1.883612-3 4.570882-1 1.409952-3 5.011872-1 1.062833-3 5.495409-1 8.070812-4 6.000000-1 6.252198-4 6.531306-1 4.923943-4 7.161434-1 3.828974-4 8.609938-1 2.353927-4 9.120108-1 2.034166-4 9.660509-1 1.770629-4 1.011579+0 1.594765-4 1.071519+0 1.409522-4 1.135011+0 1.253664-4 1.216186+0 1.096833-4 1.318257+0 9.455334-5 1.883649+0 5.040709-5 2.113489+0 4.146056-5 2.426610+0 3.304665-5 2.786121+0 2.653649-5 3.235937+0 2.108774-5 3.758374+0 1.688517-5 4.415704+0 1.339314-5 5.188000+0 1.070377-5 6.165950+0 8.485805-6 7.413102+0 6.676976-6 8.912509+0 5.293569-6 1.083927+1 4.165700-6 1.333521+1 3.255346-6 1.717908+1 2.429701-6 2.137962+1 1.899383-6 2.540973+1 1.569055-6 3.198895+1 1.221050-6 4.570882+1 8.342087-7 6.918310+1 5.405647-7 1.161449+2 3.170532-7 2.317395+2 1.570328-7 4.623810+2 7.827113-8 1.840772+3 1.956999-8 1.000000+5 3.59800-10 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.303500-4 1.303500-4 1.000000+5 1.303500-4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.303500-4 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.453000-5 6.788009+5 1.480000-5 6.660820+5 1.548817-5 6.400531+5 1.610000-5 6.219735+5 1.659587-5 6.109956+5 1.717908-5 6.029490+5 1.770000-5 5.997255+5 1.819701-5 6.002907+5 1.870000-5 6.044946+5 1.920000-5 6.122329+5 1.980000-5 6.260055+5 2.041738-5 6.453200+5 2.090000-5 6.639357+5 2.150000-5 6.914671+5 2.213095-5 7.256431+5 2.270000-5 7.611048+5 2.350000-5 8.183722+5 2.426610-5 8.813579+5 2.511886-5 9.609550+5 2.610000-5 1.064640+6 2.730000-5 1.208814+6 2.917427-5 1.470608+6 3.235937-5 2.003793+6 3.427678-5 2.364077+6 3.590900-5 2.683863+6 3.758374-5 3.016801+6 3.935501-5 3.369104+6 4.073803-5 3.640759+6 4.220000-5 3.921358+6 4.415704-5 4.283414+6 4.623810-5 4.651071+6 4.841724-5 5.017623+6 5.080000-5 5.398352+6 5.308844-5 5.742606+6 5.580000-5 6.119826+6 5.821032-5 6.424420+6 6.095369-5 6.730268+6 6.309573-5 6.932396+6 6.531306-5 7.101997+6 6.760830-5 7.231902+6 7.000000-5 7.316911+6 7.244360-5 7.351022+6 7.500000-5 7.330934+6 7.762471-5 7.254635+6 8.035261-5 7.123111+6 8.317638-5 6.940723+6 8.609938-5 6.711763+6 8.912509-5 6.439644+6 9.225714-5 6.128479+6 9.500000-5 5.838135+6 9.800000-5 5.507723+6 1.011579-4 5.150732+6 1.040000-4 4.825232+6 1.071519-4 4.464305+6 1.100000-4 4.142638+6 1.128000-4 3.834170+6 1.161449-4 3.479459+6 1.190000-4 3.190799+6 1.220000-4 2.903265+6 1.253700-4 2.601324+6 1.290000-4 2.302230+6 1.330000-4 2.004465+6 1.365000-4 1.769955+6 1.400000-4 1.558264+6 1.440000-4 1.342635+6 1.480000-4 1.153080+6 1.520000-4 9.871093+5 1.560000-4 8.421185+5 1.600000-4 7.158203+5 1.640590-4 6.047987+5 1.678804-4 5.143903+5 1.717908-4 4.344051+5 1.757924-4 3.640597+5 1.790000-4 3.150849+5 1.826000-4 2.671030+5 1.865000-4 2.225379+5 1.905461-4 1.834433+5 1.940000-4 1.550800+5 1.980000-4 1.272301+5 2.020000-4 1.040403+5 2.065380-4 8.257982+4 2.170000-4 4.871484+4 2.205000-4 4.122170+4 2.231500-4 3.657405+4 2.250000-4 3.380165+4 2.270000-4 3.120534+4 2.291400-4 2.885388+4 2.307000-4 2.739729+4 2.323000-4 2.611343+4 2.340000-4 2.496746+4 2.358000-4 2.398237+4 2.373000-4 2.332871+4 2.390000-4 2.275912+4 2.407000-4 2.235911+4 2.423000-4 2.212669+4 2.440000-4 2.202195+4 2.458000-4 2.205904+4 2.480000-4 2.229410+4 2.500000-4 2.267279+4 2.520000-4 2.319404+4 2.540973-4 2.387947+4 2.570396-4 2.505460+4 2.600160-4 2.646514+4 2.644700-4 2.892405+4 2.786121-4 3.857535+4 2.851018-4 4.350928+4 2.900000-4 4.731289+4 2.951209-4 5.131101+4 3.000000-4 5.510192+4 3.054921-4 5.930062+4 3.100000-4 6.266260+4 3.162278-4 6.715115+4 3.235937-4 7.220718+4 3.311311-4 7.707999+4 3.390000-4 8.179814+4 3.470000-4 8.617505+4 3.550000-4 9.015185+4 3.650000-4 9.461242+4 3.758374-4 9.878558+4 3.850000-4 1.017802+5 3.981072-4 1.053582+5 4.100000-4 1.079225+5 4.240000-4 1.101154+5 4.365158-4 1.114906+5 4.518559-4 1.124917+5 4.677351-4 1.128276+5 4.841724-4 1.125400+5 5.069907-4 1.113037+5 5.308844-4 1.092483+5 5.559043-4 1.064319+5 5.821032-4 1.029781+5 6.165950-4 9.798739+4 6.456542-4 9.359105+4 6.839116-4 8.771662+4 7.244360-4 8.159912+4 7.673615-4 7.538299+4 8.128305-4 6.918870+4 8.609938-4 6.312216+4 9.120108-4 5.725009+4 9.772372-4 5.055448+4 1.047129-3 4.432750+4 1.122018-3 3.860219+4 1.202264-3 3.340135+4 1.303167-3 2.800806+4 1.412538-3 2.331110+4 1.531087-3 1.926055+4 1.659587-3 1.580430+4 1.798871-3 1.288282+4 1.949845-3 1.043524+4 2.137962-3 8.143414+3 2.344229-3 6.308023+3 2.570396-3 4.851391+3 2.818383-3 3.705757+3 3.090295-3 2.811468+3 3.388442-3 2.118162+3 3.715352-3 1.585054+3 4.073803-3 1.178320+3 4.518559-3 8.377937+2 5.011872-3 5.911277+2 5.495409-3 4.306203+2 6.025596-3 3.116560+2 6.683439-3 2.147078+2 7.413102-3 1.468570+2 8.413951-3 9.157620+1 9.440609-3 5.919843+1 1.059254-2 3.800131+1 1.188502-2 2.422417+1 1.333521-2 1.533141+1 1.496236-2 9.623091+0 1.698244-2 5.718467+0 1.927525-2 3.372833+0 2.238721-2 1.792996+0 2.600160-2 9.455820-1 3.019952-2 4.950520-1 3.589219-2 2.326361-1 4.415704-2 9.318883-2 6.165950-2 2.110669-2 9.332543-2 3.332673-3 1.188502-1 1.141483-3 1.380384-1 5.921533-4 1.548817-1 3.596098-4 1.757924-1 2.093341-4 2.018366-1 1.168944-4 2.290868-1 6.892861-5 2.570396-1 4.293273-5 2.884032-1 2.693894-5 3.198895-1 1.783838-5 3.548134-1 1.189923-5 3.935501-1 7.999075-6 4.315191-1 5.658993-6 4.731513-1 4.030886-6 5.248075-1 2.773405-6 5.688529-1 2.087706-6 6.025596-1 1.713409-6 6.456542-1 1.366424-6 6.998420-1 1.057985-6 7.673615-1 7.960197-7 8.000000-1 7.012200-7 8.511380-1 5.730285-7 8.912509-1 4.957587-7 9.332543-1 4.317690-7 9.660509-1 3.914268-7 1.000000+0 3.568800-7 1.035142+0 3.274565-7 1.071519+0 3.021908-7 1.109175+0 2.803073-7 1.161449+0 2.553288-7 1.216186+0 2.340991-7 1.303167+0 2.071658-7 1.412538+0 1.811171-7 1.500000+0 1.643700-7 1.905461+0 1.078371-7 2.113489+0 9.044420-8 2.426610+0 7.209035-8 2.786121+0 5.788772-8 3.235937+0 4.600139-8 3.758374+0 3.683419-8 4.415704+0 2.921650-8 5.188000+0 2.334960-8 6.165950+0 1.851102-8 7.413102+0 1.456502-8 8.912509+0 1.154710-8 1.083927+1 9.087222-9 1.333521+1 7.101370-9 1.698244+1 5.370303-9 2.113489+1 4.196601-9 2.540973+1 3.422768-9 3.198895+1 2.663619-9 4.570882+1 1.819803-9 6.918310+1 1.179185-9 1.148154+2 6.99820-10 2.290868+2 3.46575-10 4.570882+2 1.72732-10 1.819701+3 4.31861-11 1.000000+5 7.84870-13 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.453000-5 1.453000-5 1.000000+5 1.453000-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.453000-5 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 1.284000-5 1.157757+6 1.310000-5 1.120768+6 1.364583-5 1.060996+6 1.412538-5 1.019226+6 1.462177-5 9.857199+5 1.513561-5 9.601583+5 1.566751-5 9.432262+5 1.610000-5 9.359134+5 1.659587-5 9.340929+5 1.710000-5 9.390540+5 1.757924-5 9.498537+5 1.800000-5 9.640094+5 1.850000-5 9.863089+5 1.905461-5 1.017737+6 1.972423-5 1.064734+6 2.041738-5 1.123564+6 2.113489-5 1.195035+6 2.190000-5 1.282926+6 2.270000-5 1.387434+6 2.371374-5 1.538089+6 2.483133-5 1.727106+6 2.650000-5 2.051813+6 3.019952-5 2.926608+6 3.198895-5 3.404902+6 3.350000-5 3.823709+6 3.507519-5 4.265088+6 3.672823-5 4.725162+6 3.850000-5 5.208276+6 4.027170-5 5.672348+6 4.220000-5 6.154973+6 4.415704-5 6.618779+6 4.650000-5 7.137831+6 4.900000-5 7.651477+6 5.188000-5 8.196967+6 5.432503-5 8.617025+6 5.688529-5 9.006464+6 5.956621-5 9.352594+6 6.220000-5 9.623683+6 6.456542-5 9.800288+6 6.683439-5 9.904663+6 6.918310-5 9.945241+6 7.161434-5 9.919028+6 7.413102-5 9.824060+6 7.673615-5 9.658684+6 7.943282-5 9.424312+6 8.230000-5 9.118494+6 8.511380-5 8.775477+6 8.810489-5 8.374951+6 9.120108-5 7.929508+6 9.400000-5 7.507614+6 9.660509-5 7.105607+6 9.950000-5 6.654585+6 1.023293-4 6.213373+6 1.050000-4 5.799636+6 1.080000-4 5.342767+6 1.110000-4 4.900116+6 1.143000-4 4.435265+6 1.174898-4 4.010950+6 1.205000-4 3.634067+6 1.240000-4 3.226927+6 1.273503-4 2.870223+6 1.303167-4 2.581289+6 1.340000-4 2.255726+6 1.365000-4 2.054369+6 1.400000-4 1.797564+6 1.440000-4 1.537975+6 1.480000-4 1.311557+6 1.513561-4 1.144412+6 1.550000-4 9.838815+5 1.584893-4 8.486464+5 1.621810-4 7.234566+5 1.660000-4 6.113282+5 1.698244-4 5.146363+5 1.735900-4 4.327325+5 1.770000-4 3.686077+5 1.800000-4 3.192582+5 1.835000-4 2.691749+5 1.865000-4 2.319827+5 1.900000-4 1.944874+5 1.940000-4 1.584247+5 1.980000-4 1.286231+5 2.020000-4 1.042259+5 2.120000-4 6.215225+4 2.153900-4 5.276110+4 2.180000-4 4.687819+4 2.205000-4 4.222392+4 2.220000-4 3.985272+4 2.240000-4 3.714451+4 2.255000-4 3.543078+4 2.270000-4 3.397084+4 2.285000-4 3.274918+4 2.300000-4 3.175087+4 2.317395-4 3.085441+4 2.335000-4 3.021249+4 2.350000-4 2.986108+4 2.365000-4 2.967699+4 2.380000-4 2.964911+4 2.398833-4 2.981899+4 2.418600-4 3.022266+4 2.440000-4 3.089592+4 2.465000-4 3.196124+4 2.490000-4 3.329313+4 2.520000-4 3.519823+4 2.560000-4 3.817944+4 2.650000-4 4.625419+4 2.722701-4 5.364436+4 2.785000-4 6.027842+4 2.830000-4 6.514791+4 2.884032-4 7.101116+4 2.930000-4 7.596025+4 2.985383-4 8.180602+4 3.050000-4 8.838997+4 3.100000-4 9.328369+4 3.162278-4 9.912507+4 3.235937-4 1.056380+5 3.311311-4 1.117907+5 3.400000-4 1.183370+5 3.500000-4 1.249120+5 3.600000-4 1.306611+5 3.690000-4 1.350931+5 3.801894-4 1.397488+5 3.935501-4 1.442204+5 4.073803-4 1.476740+5 4.216965-4 1.501490+5 4.365158-4 1.516530+5 4.518559-4 1.522259+5 4.677351-4 1.519266+5 4.841724-4 1.508294+5 5.069907-4 1.483430+5 5.308844-4 1.449267+5 5.559043-4 1.405752+5 5.821032-4 1.354585+5 6.165950-4 1.282870+5 6.531306-4 1.205081+5 6.918310-4 1.123137+5 7.328245-4 1.039411+5 7.762471-4 9.555039+4 8.222426-4 8.728410+4 8.810489-4 7.770358+4 9.440609-4 6.866032+4 1.011579-3 6.024026+4 1.083927-3 5.248701+4 1.161449-3 4.543164+4 1.245000-3 3.904594+4 1.348963-3 3.253958+4 1.462177-3 2.689117+4 1.603245-3 2.145475+4 1.737801-3 1.748510+4 1.883649-3 1.415880+4 2.065380-3 1.104355+4 2.264644-3 8.549687+3 2.483133-3 6.571329+3 2.722701-3 5.016011+3 3.000000-3 3.747492+3 3.311311-3 2.762713+3 3.630781-3 2.064079+3 4.000000-3 1.508257+3 4.415704-3 1.087000+3 4.841724-3 7.960810+2 5.128614-3 6.522572+2 5.623413-3 4.703427+2 6.237348-3 3.229633+2 7.328245-3 1.785756+2 8.128305-3 1.212444+2 9.015711-3 8.172595+1 1.011579-2 5.233979+1 1.135011-2 3.328885+1 1.273503-2 2.101802+1 1.412538-2 1.380232+1 1.584893-2 8.584966+0 1.798871-2 5.052744+0 2.065380-2 2.810693+0 2.371374-2 1.552004+0 2.754229-2 8.091631-1 3.162278-2 4.405440-1 3.758374-2 2.043705-1 4.623810-2 8.060687-2 5.370318-2 4.095369-2 7.943282-2 6.924160-3 9.549926-2 3.019965-3 1.023293-1 2.220219-3 1.216186-1 1.033334-3 1.500000-1 4.016200-4 1.640590-1 2.712198-4 1.819701-1 1.735366-4 2.137962-1 8.760930-5 2.371374-1 5.680180-5 2.630268-1 3.709941-5 2.884032-1 2.558729-5 3.162278-1 1.776971-5 3.467369-1 1.243024-5 3.758374-1 9.151296-6 4.073803-1 6.781680-6 4.415705-1 5.061454-6 4.786301-1 3.803627-6 5.248075-1 2.766509-6 5.623413-1 2.192531-6 6.025596-1 1.748870-6 6.456542-1 1.408155-6 6.918310-1 1.141402-6 7.498942-1 8.999271-7 8.035261-1 7.374355-7 8.511380-1 6.217931-7 9.015711-1 5.277936-7 9.440609-1 4.659461-7 9.885531-1 4.143003-7 1.035142+0 3.714443-7 1.083927+0 3.355377-7 1.135011+0 3.050619-7 1.202264+0 2.728716-7 1.303167+0 2.357368-7 1.428894+0 2.012363-7 1.513561+0 1.826044-7 1.862087+0 1.266515-7 2.065380+0 1.060975-7 2.371374+0 8.445899-8 2.722701+0 6.773885-8 3.162278+0 5.376407-8 3.672823+0 4.300127-8 4.315191+0 3.407116-8 5.069907+0 2.720046-8 6.025596+0 2.154180-8 7.244360+0 1.693354-8 8.709636+0 1.341260-8 1.059254+1 1.054645-8 1.303167+1 8.235468-9 1.640590+1 6.305982-9 2.065380+1 4.859618-9 2.540973+1 3.863350-9 3.198895+1 3.006466-9 4.570882+1 2.054038-9 6.918310+1 1.330958-9 1.161449+2 7.80655-10 2.317395+2 3.86663-10 4.623810+2 1.92718-10 1.840772+3 4.81862-11 1.000000+5 8.85900-13 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 1.284000-5 1.284000-5 1.000000+5 1.284000-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 1.284000-5 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.279000-5 3.962120+5 6.309573-5 3.915277+5 6.382635-5 3.775777+5 7.000000-5 2.675420+5 7.244360-5 2.365437+5 7.500000-5 2.101120+5 7.762471-5 1.880067+5 8.035261-5 1.692267+5 8.317638-5 1.532416+5 8.650000-5 1.378164+5 9.015711-5 1.239747+5 9.500000-5 1.092442+5 1.000000-4 9.711280+4 1.060000-4 8.552140+4 1.122018-4 7.606838+4 1.174898-4 6.957571+4 1.240000-4 6.312420+4 1.303167-4 5.811630+4 1.380384-4 5.321444+4 1.479108-4 4.828309+4 1.621810-4 4.280381+4 1.819701-4 3.712937+4 2.041738-4 3.244300+4 2.722701-4 2.346100+4 3.507519-4 1.752808+4 4.265795-4 1.385886+4 5.011872-4 1.135359+4 6.025596-4 8.968123+3 7.161434-4 7.135049+3 8.511380-4 5.634718+3 1.000000-3 4.491300+3 1.188502-3 3.498648+3 1.445440-3 2.614645+3 1.757924-3 1.938770+3 2.187762-3 1.376804+3 2.754229-3 9.527506+2 3.548134-3 6.303176+2 4.518559-3 4.215209+2 5.623413-3 2.907017+2 6.918310-3 2.028766+2 8.413951-3 1.433679+2 1.000000-2 1.048668+2 1.174898-2 7.724119+1 1.513561-2 4.808786+1 1.840772-2 3.285206+1 2.264644-2 2.177504+1 3.000000-2 1.234807+1 3.589219-2 8.538695+0 4.120975-2 6.387937+0 4.897788-2 4.404072+0 5.821032-2 3.013544+0 7.079458-2 1.944817+0 8.609938-2 1.245546+0 1.035142-1 8.135760-1 1.333521-1 4.484742-1 2.264644-1 1.273099-1 2.951209-1 6.802267-2 3.589219-1 4.308331-2 4.216965-1 2.977085-2 4.954502-1 2.072385-2 5.754399-1 1.490597-2 6.606935-1 1.107139-2 7.673615-1 8.081693-3 8.912509-1 5.941906-3 1.011579+0 4.614322-3 1.216186+0 3.220891-3 1.380384+0 2.534132-3 1.548817+0 2.051273-3 1.757924+0 1.638237-3 2.000000+0 1.312500-3 2.290868+0 1.047101-3 2.630268+0 8.382427-4 3.019952+0 6.758209-4 3.507519+0 5.392943-4 4.120975+0 4.263561-4 4.841724+0 3.396472-4 5.688529+0 2.725810-4 6.760830+0 2.169656-4 8.128305+0 1.713565-4 1.000000+1 1.325200-4 1.244515+1 1.018839-4 1.548817+1 7.893766-5 2.000000+1 5.901900-5 2.540973+1 4.526847-5 3.198895+1 3.522832-5 4.570882+1 2.406798-5 6.918310+1 1.559565-5 1.161449+2 9.147266-6 2.317395+2 4.530666-6 4.623810+2 2.258203-6 1.840772+3 5.646144-7 1.000000+5 1.038000-8 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.279000-5 6.279000-5 1.000000+5 6.279000-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.279000-5 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 4.101000-5 6.501040+6 4.180000-5 6.210880+6 4.330000-5 5.658060+6 4.841724-5 4.167507+6 5.188000-5 3.428785+6 5.500000-5 2.889040+6 5.888437-5 2.346430+6 7.413102-5 1.135966+6 8.222426-5 8.254471+5 9.332543-5 5.633116+5 1.364583-4 1.810103+5 1.584893-4 1.164567+5 1.819701-4 7.806034+4 2.041738-4 5.631116+4 2.264644-4 4.225490+4 2.483133-4 3.296246+4 2.691535-4 2.671512+4 2.900000-4 2.214340+4 3.126079-4 1.846442+4 3.358400-4 1.563176+4 3.600000-4 1.339962+4 3.850000-4 1.163384+4 4.120975-4 1.015889+4 4.415704-4 8.921050+3 4.731513-4 7.891139+3 5.069907-4 7.033101+3 5.432503-4 6.311682+3 5.888437-4 5.607507+3 6.382635-4 5.017044+3 7.000000-4 4.450540+3 7.852356-4 3.867221+3 9.120108-4 3.250485+3 1.348963-3 2.088821+3 1.603245-3 1.708026+3 1.883649-3 1.405618+3 2.187762-3 1.164880+3 2.540973-3 9.584774+2 2.951209-3 7.828863+2 3.427678-3 6.346253+2 3.935501-3 5.191319+2 4.518559-3 4.216773+2 5.069907-3 3.525057+2 5.821032-3 2.816672+2 6.606934-3 2.277486+2 7.585776-3 1.791921+2 8.709636-3 1.398691+2 1.000000-2 1.083114+2 1.148154-2 8.303544+1 1.348963-2 6.043097+1 1.757924-2 3.556650+1 2.000000-2 2.727533+1 2.238721-2 2.138671+1 2.540973-2 1.614303+1 2.917427-2 1.177957+1 3.388442-2 8.316075+0 3.935501-2 5.826667+0 4.570882-2 4.051494+0 5.370318-2 2.718261+0 6.309573-2 1.810207+0 7.585776-2 1.128116+0 9.332543-2 6.571397-1 1.161449-1 3.684910-1 2.290868-1 6.011800-2 2.818383-1 3.479152-2 3.349654-1 2.220323-2 3.935501-1 1.470792-2 4.518559-1 1.040524-2 5.128614-1 7.626476-3 5.821032-1 5.629536-3 6.531306-1 4.302137-3 7.328245-1 3.310511-3 8.511380-1 2.376874-3 9.332543-1 1.951331-3 1.011579+0 1.653278-3 1.148154+0 1.286106-3 1.273503+0 1.053823-3 1.428894+0 8.511685-4 1.659587+0 6.501387-4 1.883649+0 5.211748-4 2.137962+0 4.206757-4 2.454709+0 3.355178-4 2.818383+0 2.695762-4 3.273407+0 2.143531-4 3.801894+0 1.717323-4 4.466836+0 1.362894-4 5.248075+0 1.089800-4 6.237348+0 8.644298-5 7.498942+0 6.804906-5 9.015711+0 5.397499-5 1.083927+1 4.308601-5 1.333521+1 3.367050-5 1.698244+1 2.546277-5 2.113489+1 1.989773-5 2.540973+1 1.622805-5 3.235937+1 1.247358-5 4.623810+1 8.523777-6 6.998420+1 5.524648-6 1.174898+2 3.240866-6 2.344229+2 1.605442-6 4.677351+2 8.002319-7 1.862087+3 2.000911-7 1.000000+5 3.721300-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 4.101000-5 4.101000-5 1.000000+5 4.101000-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 4.101000-5 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.751000-5 1.642425+7 2.818383-5 1.491978+7 2.951209-5 1.254926+7 3.090295-5 1.063230+7 3.273407-5 8.710276+6 3.548134-5 6.646598+6 5.248075-5 1.813882+6 5.754399-5 1.345445+6 6.237348-5 1.043665+6 6.683439-5 8.453253+5 7.161434-5 6.897688+5 7.585776-5 5.858046+5 8.035261-5 5.004516+5 8.511380-5 4.302494+5 9.015711-5 3.722820+5 9.549926-5 3.242412+5 1.011579-4 2.842202+5 1.080000-4 2.464948+5 1.150000-4 2.164884+5 1.230269-4 1.896350+5 1.318257-4 1.667833+5 1.412538-4 1.477157+5 1.513561-4 1.317360+5 1.621810-4 1.182492+5 1.757924-4 1.049584+5 1.950000-4 9.075280+4 2.187762-4 7.777656+4 2.511886-4 6.514914+4 4.466836-4 3.200106+4 5.432503-4 2.495561+4 6.500000-4 1.972648+4 7.673615-4 1.575455+4 9.015711-4 1.257334+4 1.059254-3 9.960776+3 1.244515-3 7.829982+3 1.445440-3 6.218089+3 1.698244-3 4.813888+3 2.000000-3 3.684474+3 2.371374-3 2.767802+3 2.786121-3 2.095617+3 3.311311-3 1.542969+3 3.845918-3 1.175052+3 4.466836-3 8.885209+2 5.188000-3 6.668315+2 6.025596-3 4.965211+2 6.918310-3 3.753823+2 8.000000-3 2.774864+2 9.225714-3 2.047190+2 1.083927-2 1.439619+2 1.244515-2 1.056963+2 1.412538-2 7.908594+1 1.584893-2 6.036950+1 1.798871-2 4.454144+1 2.065380-2 3.172840+1 2.371374-2 2.243373+1 2.722701-2 1.574450+1 3.126079-2 1.096902+1 3.589219-2 7.587235+0 4.168694-2 5.050148+0 4.841724-2 3.335520+0 5.688529-2 2.117126+0 6.683439-2 1.333293+0 8.035261-2 7.795960-1 9.885531-2 4.228182-1 1.288250-1 1.914598-1 2.000000-1 5.113400-2 2.454709-1 2.780028-2 2.917427-1 1.675238-2 3.388442-1 1.088013-2 3.890451-1 7.359610-3 4.415705-1 5.181412-3 5.000000-1 3.700200-3 5.623413-1 2.711982-3 6.237348-1 2.076101-3 6.918310-1 1.600244-3 7.673615-1 1.241748-3 8.709636-1 9.153716-4 9.332543-1 7.798838-4 9.885531-1 6.863800-4 1.059254+0 5.934505-4 1.148154+0 5.048722-4 1.250000+0 4.290500-4 1.380384+0 3.575941-4 1.737801+0 2.373091-4 1.972423+0 1.906173-4 2.264644+0 1.513616-4 2.600160+0 1.210986-4 3.000000+0 9.684900-5 3.467369+0 7.782090-5 4.073803+0 6.148923-5 4.786301+0 4.895788-5 5.623413+0 3.927088-5 6.683439+0 3.124199-5 8.035261+0 2.466370-5 9.885531+0 1.906551-5 1.230269+1 1.465126-5 1.531087+1 1.134727-5 1.972423+1 8.503612-6 2.511886+1 6.502521-6 3.198895+1 4.997256-6 4.570882+1 3.414152-6 6.918310+1 2.212353-6 1.161449+2 1.297585-6 2.317395+2 6.427046-7 4.623810+2 3.203376-7 1.840772+3 8.009393-8 1.000000+5 1.472500-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.751000-5 2.751000-5 1.000000+5 2.751000-5 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.751000-5 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.600000+1 0.0 0.0 0.0 4.600000-6 2.709876+6 4.640000-6 2.751960+6 4.841724-6 2.893727+6 5.011872-6 2.996975+6 5.270000-6 3.129256+6 5.600000-6 3.262384+6 5.888437-6 3.351863+6 6.237348-6 3.435934+6 6.606934-6 3.501061+6 7.079458-6 3.553353+6 7.585776-6 3.582745+6 8.200000-6 3.589344+6 8.810489-6 3.568835+6 9.440609-6 3.524995+6 1.011579-5 3.457399+6 1.071519-5 3.381440+6 1.135011-5 3.286455+6 1.202264-5 3.174107+6 1.273503-5 3.043772+6 1.350000-5 2.892968+6 1.420000-5 2.749192+6 1.500000-5 2.581524+6 1.584893-5 2.403967+6 1.659587-5 2.250760+6 1.737801-5 2.095370+6 1.840772-5 1.901436+6 1.950000-5 1.711700+6 2.070000-5 1.523544+6 2.190000-5 1.356252+6 2.350000-5 1.164008+6 2.540973-5 9.752091+5 2.786121-5 7.850001+5 3.054921-5 6.277962+5 3.427678-5 4.710413+5 3.801894-5 3.608904+5 4.150000-5 2.862248+5 4.518559-5 2.268655+5 4.841724-5 1.867193+5 5.248075-5 1.477541+5 5.688529-5 1.160032+5 6.165950-5 9.047383+4 6.839116-5 6.516785+4 7.585776-5 4.656682+4 8.413951-5 3.302085+4 9.225714-5 2.414109+4 1.000000-4 1.821896+4 1.071519-4 1.422931+4 1.161449-4 1.059220+4 1.290000-4 7.146680+3 1.500000-4 4.043720+3 1.584893-4 3.302367+3 1.678804-4 2.690595+3 1.757924-4 2.299179+3 1.840772-4 1.979109+3 1.905461-4 1.778490+3 1.972423-4 1.606767+3 2.000000-4 1.545008+3 2.065380-4 1.434251+3 2.137962-4 1.332792+3 2.213095-4 1.246535+3 2.290868-4 1.173085+3 2.371374-4 1.110491+3 2.454709-4 1.057155+3 2.540973-4 1.011762+3 2.630268-4 9.732213+2 2.722701-4 9.406240+2 2.851018-4 9.051053+2 2.985383-4 8.773177+2 3.126079-4 8.592615+2 3.311311-4 8.436588+2 3.548134-4 8.314497+2 4.027170-4 8.160669+2 4.518559-4 7.917238+2 4.954502-4 7.678218+2 5.385800-4 7.407186+2 5.821032-4 7.115058+2 6.237348-4 6.824603+2 6.760830-4 6.454805+2 7.328245-4 6.059726+2 7.943282-4 5.648405+2 8.609938-4 5.230562+2 9.332543-4 4.812399+2 1.011579-3 4.399645+2 1.096478-3 3.997027+2 1.202264-3 3.555391+2 1.318257-3 3.138656+2 1.445440-3 2.750724+2 1.584893-3 2.394405+2 1.737801-3 2.070492+2 1.927525-3 1.744563+2 2.238721-3 1.355214+2 2.398833-3 1.199480+2 2.570396-3 1.052015+2 2.786121-3 8.962851+1 3.388442-3 5.992501+1 3.801894-3 4.696241+1 4.216965-3 3.745914+1 4.570882-3 3.124773+1 5.069907-3 2.457112+1 5.623413-3 1.918251+1 6.237348-3 1.486916+1 6.918310-3 1.144381+1 7.673615-3 8.747026+0 8.511380-3 6.640380+0 9.549926-3 4.851652+0 1.071519-2 3.518380+0 1.202264-2 2.532791+0 1.348963-2 1.809527+0 1.513561-2 1.281969+0 1.698244-2 9.015369-1 1.927525-2 6.072288-1 2.187762-2 4.059621-1 2.483133-2 2.694729-1 2.851018-2 1.709856-1 3.273407-2 1.076488-1 3.801894-2 6.468844-2 4.415704-2 3.857889-2 5.248075-2 2.107801-2 6.309573-2 1.097622-2 8.035261-2 4.619974-3 1.445440-1 5.582203-4 1.778279-1 2.664292-4 2.113489-1 1.448682-4 2.454709-1 8.603674-5 2.818383-1 5.357657-5 3.198895-1 3.495913-5 3.589219-1 2.387680-5 4.027170-1 1.642625-5 4.466836-1 1.181066-5 4.954502-1 8.552059-6 5.432503-1 6.458057-6 5.956621-1 4.910682-6 6.456542-1 3.894905-6 7.079458-1 3.011406-6 8.035261-1 2.137346-6 8.609938-1 1.768765-6 9.120108-1 1.520302-6 9.549926-1 1.354596-6 1.000000+0 1.214500-6 1.047129+0 1.096183-6 1.109175+0 9.712131-7 1.174898+0 8.663211-7 1.258925+0 7.607683-7 1.364583+0 6.585304-7 1.531087+0 5.393238-7 1.840772+0 3.894836-7 2.065380+0 3.198845-7 2.371374+0 2.546446-7 2.722701+0 2.042316-7 3.162278+0 1.620971-7 3.672823+0 1.296485-7 4.315191+0 1.027255-7 5.069907+0 8.201033-8 6.025596+0 6.494756-8 7.244360+0 5.105400-8 8.709636+0 4.043880-8 1.059254+1 3.179608-8 1.303167+1 2.482975-8 1.640590+1 1.901285-8 2.065380+1 1.465138-8 2.540973+1 1.164783-8 3.162278+1 9.177793-9 4.518559+1 6.268657-9 6.839116+1 4.061200-9 1.148154+2 2.381572-9 2.290868+2 1.179429-9 4.570882+2 5.87814-10 1.819701+3 1.46964-10 1.000000+5 2.67100-12 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.600000+1 0.0 0.0 0.0 4.600000-6 4.600000-6 1.000000+5 4.600000-6 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.600000+1 0.0 0.0 0.0 4.600000-6 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.700000+1 0.0 0.0 0.0 3.850000-6 6.200943+6 3.960000-6 6.301800+6 4.168694-6 6.431918+6 4.415704-6 6.531256+6 4.700000-6 6.589740+6 5.069907-6 6.603272+6 5.432503-6 6.569273+6 5.956621-6 6.472088+6 6.531306-6 6.324694+6 7.200000-6 6.123120+6 7.852356-6 5.910279+6 8.609938-6 5.650972+6 9.332543-6 5.396395+6 1.000000-5 5.154426+6 1.071519-5 4.892529+6 1.150000-5 4.602204+6 1.216186-5 4.358398+6 1.290000-5 4.088058+6 1.364583-5 3.819514+6 1.445440-5 3.537976+6 1.531087-5 3.252739+6 1.621810-5 2.967127+6 1.717908-5 2.686583+6 1.819701-5 2.415438+6 1.927525-5 2.156440+6 2.065380-5 1.866823+6 2.213095-5 1.603814+6 2.400000-5 1.330314+6 2.600160-5 1.098415+6 2.884032-5 8.499528+5 3.162278-5 6.723780+5 3.507519-5 5.132203+5 3.900000-5 3.859776+5 4.216965-5 3.108189+5 4.570882-5 2.470574+5 5.000000-5 1.896030+5 5.400000-5 1.499022+5 5.821032-5 1.184794+5 6.405000-5 8.707337+4 7.161434-5 6.018872+4 8.000000-5 4.137834+4 8.810489-5 2.964516+4 9.660509-5 2.141612+4 1.071519-4 1.472882+4 1.333521-4 6.573499+3 1.412538-4 5.342597+3 1.479108-4 4.549233+3 1.513561-4 4.210857+3 1.584893-4 3.636437+3 1.659587-4 3.163883+3 1.717908-4 2.865349+3 1.778279-4 2.607597+3 1.840772-4 2.385232+3 1.905461-4 2.193663+3 1.972423-4 2.028990+3 2.000000-4 1.969608+3 2.065380-4 1.866852+3 2.137962-4 1.773549+3 2.213095-4 1.695114+3 2.290868-4 1.629219+3 2.371374-4 1.573935+3 2.483133-4 1.513975+3 2.600160-4 1.466861+3 2.722701-4 1.429977+3 2.884032-4 1.394903+3 3.198895-4 1.347157+3 4.000000-4 1.267152+3 4.168694-4 1.248783+3 4.570882-4 1.198851+3 5.011872-4 1.142393+3 5.432503-4 1.087851+3 5.888437-4 1.028438+3 6.382635-4 9.658369+2 6.918310-4 9.010080+2 7.498942-4 8.346041+2 8.128305-4 7.679895+2 8.810489-4 7.022135+2 9.660509-4 6.292094+2 1.059254-3 5.594626+2 1.161449-3 4.937013+2 1.273503-3 4.324504+2 1.396368-3 3.760634+2 1.548817-3 3.188602+2 1.717908-3 2.684019+2 1.905461-3 2.242328+2 2.113489-3 1.859006+2 2.344229-3 1.529523+2 2.600160-3 1.249132+2 2.884032-3 1.012911+2 3.198895-3 8.155471+1 3.548134-3 6.518976+1 3.935501-3 5.173070+1 4.365158-3 4.075037+1 4.841724-3 3.186693+1 5.370318-3 2.473755+1 5.956621-3 1.906364+1 6.606934-3 1.458558+1 7.328245-3 1.107951+1 8.128305-3 8.357846+0 9.015711-3 6.261885+0 1.011579-2 4.508943+0 1.135011-2 3.222701+0 1.273503-2 2.285505+0 1.412538-2 1.665714+0 1.584893-2 1.162728+0 1.778279-2 8.055645-1 2.018366-2 5.337844-1 2.290868-2 3.511607-1 2.600160-2 2.292922-1 2.951209-2 1.486524-1 3.388442-2 9.192376-2 3.890451-2 5.642641-2 4.518559-2 3.300022-2 5.308844-2 1.837990-2 6.309573-2 9.747664-3 8.035261-2 3.973902-3 1.303167-1 6.552829-4 1.584893-1 3.175730-4 1.862087-1 1.761112-4 2.137962-1 1.069730-4 2.426610-1 6.820065-5 2.722701-1 4.560748-5 3.054921-1 3.072671-5 3.388442-1 2.168949-5 3.758374-1 1.542324-5 4.120975-1 1.146739-5 4.518559-1 8.583967-6 4.954502-1 6.471132-6 5.432503-1 4.914195-6 5.888437-1 3.887841-6 6.382635-1 3.098392-6 6.918310-1 2.486324-6 7.498942-1 2.007879-6 8.609938-1 1.403709-6 9.120108-1 1.216018-6 9.660509-1 1.060610-6 1.011579+0 9.563500-7 1.071519+0 8.459716-7 1.148154+0 7.357781-7 1.230269+0 6.443886-7 1.333521+0 5.557914-7 1.840772+0 3.144735-7 2.065380+0 2.583533-7 2.371374+0 2.056775-7 2.722701+0 1.649548-7 3.126079+0 1.332271-7 3.630781+0 1.064947-7 4.265795+0 8.433218-8 5.011872+0 6.728982-8 5.956621+0 5.326167-8 7.161434+0 4.184823-8 8.609938+0 3.313104-8 1.047129+1 2.603909-8 1.288250+1 2.032708-8 1.603245+1 1.576527-8 2.041738+1 1.198595-8 2.540973+1 9.406932-9 3.198895+1 7.320577-9 4.570882+1 5.001449-9 6.918310+1 3.240855-9 1.161449+2 1.900852-9 2.317395+2 9.41525-10 4.623810+2 4.69262-10 1.840772+3 1.17335-10 1.000000+5 2.15710-12 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.700000+1 0.0 0.0 0.0 3.850000-6 3.850000-6 1.000000+5 3.850000-6 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.700000+1 0.0 0.0 0.0 3.850000-6 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 6.280000-6 1.088404+7 6.531306-6 9.663057+6 8.035261-6 4.980048+6 9.500000-6 2.936720+6 1.109175-5 1.815339+6 1.288250-5 1.148546+6 1.479108-5 7.581197+5 1.678804-5 5.215049+5 1.883649-5 3.737174+5 2.113489-5 2.697360+5 2.317395-5 2.091510+5 2.540973-5 1.632298+5 2.754229-5 1.321976+5 3.019952-5 1.046600+5 3.300000-5 8.421360+4 3.589219-5 6.905541+4 3.900000-5 5.715740+4 4.265795-5 4.696220+4 4.677351-5 3.866277+4 5.128614-5 3.207917+4 5.623413-5 2.682052+4 6.165950-5 2.258086+4 6.683439-5 1.953741+4 7.328245-5 1.667543+4 8.128305-5 1.405733+4 9.015711-5 1.193622+4 1.035142-4 9.684284+3 1.150000-4 8.309920+3 1.303167-4 6.979670+3 1.445440-4 6.086144+3 1.659587-4 5.112132+3 2.000000-4 4.052000+3 2.344229-4 3.296697+3 3.126079-4 2.247023+3 4.315191-4 1.470101+3 5.128614-4 1.164528+3 7.413102-4 6.996541+2 8.511380-4 5.743760+2 1.083927-3 4.035013+2 1.333521-3 2.958565+2 1.621810-3 2.191384+2 2.018366-3 1.554754+2 2.570396-3 1.055572+2 3.126079-3 7.667873+1 5.688529-3 2.809671+1 6.309573-3 2.351403+1 7.762471-3 1.632492+1 9.440609-3 1.148243+1 1.148154-2 8.015307+0 1.396368-2 5.551878+0 1.698244-2 3.815554+0 2.041738-2 2.661028+0 2.454709-2 1.842109+0 2.951209-2 1.265248+0 3.548134-2 8.623397-1 4.265795-2 5.832002-1 5.128614-2 3.913783-1 6.165950-2 2.606661-1 7.498942-2 1.678242-1 9.225714-2 1.044442-1 1.096478-1 6.989793-2 1.445440-1 3.642053-2 2.691535-1 8.307455-3 3.349654-1 4.972102-3 4.000000-1 3.301500-3 4.731513-1 2.259120-3 5.495409-1 1.622297-3 6.309573-1 1.203094-3 7.328245-1 8.771427-4 8.413951-1 6.599782-4 9.660509-1 5.001977-4 1.202264+0 3.262105-4 1.364583+0 2.564090-4 1.531087+0 2.073353-4 1.737801+0 1.654624-4 1.972423+0 1.330205-4 2.264644+0 1.056395-4 2.600160+0 8.451723-5 3.000000+0 6.758900-5 3.467369+0 5.430965-5 4.073803+0 4.291184-5 4.786301+0 3.416592-5 5.623413+0 2.740611-5 6.683439+0 2.180352-5 8.035261+0 1.721217-5 9.885531+0 1.330496-5 1.230269+1 1.022507-5 1.531087+1 7.918933-6 1.972423+1 5.934502-6 2.511886+1 4.537949-6 3.198895+1 3.487461-6 4.570882+1 2.382624-6 6.918310+1 1.543922-6 1.148154+2 9.162764-7 2.290868+2 4.537780-7 4.570882+2 2.261612-7 1.819701+3 5.654558-8 1.000000+5 1.027600-9 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 6.280000-6 6.280000-6 1.000000+5 6.280000-6 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 6.280000-6 0.0 1.000000+5 1.000000+5 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.303300-7 1.025500+0 1.311520-6 1.025800+0 1.676650-6 1.026100+0 2.103560-6 1.026600+0 2.965530-6 1.027100+0 4.034670-6 1.027500+0 5.053380-6 1.028100+0 6.880080-6 1.028750+0 9.303300-6 1.029500+0 1.273180-5 1.030100+0 1.601180-5 1.031000+0 2.190960-5 1.032000+0 2.997780-5 1.033200+0 4.199380-5 1.034000+0 5.155130-5 1.035300+0 6.997360-5 1.036640+0 9.303300-5 1.038200+0 1.255510-4 1.039700+0 1.631160-4 1.041500+0 2.170240-4 1.043800+0 3.012370-4 1.046400+0 4.191140-4 1.048300+0 5.218090-4 1.051200+0 7.078220-4 1.054080+0 9.303300-4 1.057700+0 1.268100-3 1.061100+0 1.649470-3 1.065100+0 2.183700-3 1.070400+0 3.046480-3 1.076200+0 4.210210-3 1.080600+0 5.257860-3 1.087100+0 7.084100-3 1.093710+0 9.303300-3 1.102600+0 1.289930-2 1.110700+0 1.682400-2 1.120600+0 2.250670-2 1.133300+0 3.129620-2 1.147500+0 4.321290-2 1.158200+0 5.370300-2 1.174100+0 7.177060-2 1.190110+0 9.303300-2 1.205100+0 1.157710-1 1.227500+0 1.549090-1 1.250000+0 2.003000-1 1.280300+0 2.705780-1 1.307700+0 3.425880-1 1.343000+0 4.460950-1 1.382200+0 5.732740-1 1.411700+0 6.760840-1 1.455800+0 8.385660-1 1.500000+0 1.009000+0 1.562500+0 1.256550+0 1.641100+0 1.570180+0 1.706900+0 1.829320+0 1.811600+0 2.229800+0 1.937200+0 2.692170+0 2.000000+0 2.919000+0 2.044000+0 3.077000+0 2.163500+0 3.493630+0 2.372600+0 4.176210+0 2.686300+0 5.101530+0 3.000000+0 5.935000+0 3.500000+0 7.132000+0 4.000000+0 8.214000+0 5.000000+0 1.011000+1 6.000000+0 1.171000+1 7.000000+0 1.316000+1 8.000000+0 1.447000+1 9.000000+0 1.568000+1 1.000000+1 1.679000+1 1.100000+1 1.782000+1 1.200000+1 1.879000+1 1.300000+1 1.969000+1 1.400000+1 2.053000+1 1.500000+1 2.132000+1 1.600000+1 2.207000+1 1.800000+1 2.341000+1 2.000000+1 2.461000+1 2.200000+1 2.571000+1 2.400000+1 2.671000+1 2.600000+1 2.763000+1 2.800000+1 2.847000+1 3.000000+1 2.924000+1 4.000000+1 3.239000+1 5.000000+1 3.474000+1 6.000000+1 3.656000+1 8.000000+1 3.924000+1 1.000000+2 4.113000+1 1.500000+2 4.410000+1 2.000000+2 4.586000+1 3.000000+2 4.792000+1 4.000000+2 4.909000+1 5.000000+2 4.987000+1 6.000000+2 5.042000+1 8.000000+2 5.115000+1 1.000000+3 5.163000+1 1.500000+3 5.230000+1 2.000000+3 5.268000+1 3.000000+3 5.307000+1 4.000000+3 5.332000+1 5.000000+3 5.345000+1 6.000000+3 5.355000+1 8.000000+3 5.368000+1 1.000000+4 5.376000+1 1.500000+4 5.385000+1 2.000000+4 5.392000+1 3.000000+4 5.397000+1 4.000000+4 5.402000+1 5.000000+4 5.404000+1 6.000000+4 5.405000+1 8.000000+4 5.406000+1 1.000000+5 5.407000+1 1 97000 7 8 2.470000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.701340-7 2.090400+0 1.317200-6 2.094700+0 1.707950-6 2.099900+0 2.272190-6 2.106600+0 3.160800-6 2.114000+0 4.373370-6 2.119500+0 5.444820-6 2.127900+0 7.384200-6 2.136250+0 9.701340-6 2.147000+0 1.330120-5 2.156900+0 1.727670-5 2.169000+0 2.305680-5 2.184500+0 3.204980-5 2.201800+0 4.434180-5 2.214800+0 5.524640-5 2.234200+0 7.431620-5 2.253680+0 9.701340-5 2.281500+0 1.358840-4 2.307000+0 1.784830-4 2.338200+0 2.399860-4 2.377400+0 3.323510-4 2.410200+0 4.226950-4 2.446800+0 5.376910-4 2.485900+0 6.769830-4 2.532900+0 8.663960-4 2.556430+0 9.701340-4 2.611900+0 1.237040-3 2.660400+0 1.495530-3 2.745300+0 2.001700-3 2.809000+0 2.424180-3 2.904500+0 3.122950-3 3.000000+0 3.898000-3 3.125000+0 5.025900-3 3.234400+0 6.114720-3 3.425800+0 8.232170-3 3.569300+0 9.980030-3 3.784700+0 1.282450-2 4.000000+0 1.588000-2 4.250000+0 1.961270-2 4.625000+0 2.547330-2 5.000000+0 3.156000-2 5.500000+0 3.990760-2 6.000000+0 4.836000-2 6.750000+0 6.092250-2 7.000000+0 6.505000-2 8.000000+0 8.116000-2 9.000000+0 9.653000-2 1.000000+1 1.111000-1 1.100000+1 1.248000-1 1.200000+1 1.377000-1 1.300000+1 1.499000-1 1.400000+1 1.614000-1 1.500000+1 1.723000-1 1.600000+1 1.826000-1 1.800000+1 2.016000-1 2.000000+1 2.189000-1 2.200000+1 2.346000-1 2.400000+1 2.490000-1 2.600000+1 2.622000-1 2.800000+1 2.745000-1 3.000000+1 2.858000-1 4.000000+1 3.324000-1 5.000000+1 3.673000-1 6.000000+1 3.947000-1 8.000000+1 4.355000-1 1.000000+2 4.649000-1 1.500000+2 5.129000-1 2.000000+2 5.425000-1 3.000000+2 5.784000-1 4.000000+2 5.997000-1 5.000000+2 6.142000-1 6.000000+2 6.248000-1 8.000000+2 6.393000-1 1.000000+3 6.490000-1 1.500000+3 6.633000-1 2.000000+3 6.714000-1 3.000000+3 6.802000-1 4.000000+3 6.855000-1 5.000000+3 6.887000-1 6.000000+3 6.909000-1 8.000000+3 6.939000-1 1.000000+4 6.958000-1 1.500000+4 6.983000-1 2.000000+4 6.998000-1 3.000000+4 7.012000-1 4.000000+4 7.022000-1 5.000000+4 7.027000-1 6.000000+4 7.030000-1 8.000000+4 7.034000-1 1.000000+5 7.037000-1 1 97000 7 8 2.470000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 97000 7 9 2.470000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.700000+1 1.000000+5 9.700000+1 5.000000+5 9.695600+1 1.000000+6 9.689500+1 1.375000+6 9.683880+1 1.500000+6 9.681200+1 1.875000+6 9.670820+1 2.000000+6 9.666800+1 2.375000+6 9.652860+1 2.500000+6 9.648700+1 2.875000+6 9.632870+1 3.000000+6 9.627100+1 3.437500+6 9.604760+1 3.812500+6 9.584180+1 4.000000+6 9.574300+1 4.500000+6 9.545210+1 4.875000+6 9.520960+1 5.000000+6 9.513300+1 5.468700+6 9.480170+1 6.015600+6 9.438650+1 6.500000+6 9.400970+1 6.753900+6 9.380330+1 7.000000+6 9.361100+1 7.875000+6 9.288980+1 9.000000+6 9.193400+1 1.000000+7 9.105100+1 1.250000+7 8.881900+1 1.500000+7 8.649900+1 1.750000+7 8.417000+1 2.000000+7 8.180700+1 2.250000+7 7.941120+1 2.500000+7 7.703800+1 2.875000+7 7.359270+1 3.000000+7 7.248800+1 3.500000+7 6.827490+1 4.000000+7 6.445800+1 4.500000+7 6.100490+1 4.750000+7 5.938980+1 5.000000+7 5.785100+1 5.750000+7 5.356500+1 6.000000+7 5.224800+1 6.750000+7 4.856570+1 7.000000+7 4.743300+1 8.000000+7 4.333100+1 9.000000+7 3.985100+1 1.000000+8 3.686200+1 1.125000+8 3.361340+1 1.218800+8 3.142200+1 1.250000+8 3.072900+1 1.359400+8 2.841420+1 1.437500+8 2.685760+1 1.453100+8 2.655510+1 1.500000+8 2.566400+1 1.625000+8 2.340920+1 1.750000+8 2.138560+1 1.812500+8 2.046720+1 2.000000+8 1.807600+1 2.171900+8 1.633120+1 2.289100+8 1.537270+1 2.394500+8 1.466040+1 2.500000+8 1.407600+1 2.625000+8 1.352440+1 2.859400+8 1.264940+1 3.000000+8 1.211000+1 3.125000+8 1.158920+1 3.500000+8 1.015300+1 3.812500+8 9.282310+0 3.937500+8 8.939860+0 4.000000+8 8.759800+0 4.125000+8 8.377270+0 4.234400+8 8.031470+0 4.750000+8 6.533780+0 5.000000+8 5.973400+0 5.125000+8 5.741100+0 5.343800+8 5.396540+0 5.630900+8 5.031180+0 6.000000+8 4.656400+0 6.500000+8 4.253430+0 7.000000+8 3.939100+0 7.625000+8 3.622320+0 7.875000+8 3.496670+0 8.000000+8 3.431400+0 8.250000+8 3.295130+0 8.468800+8 3.173090+0 8.851600+8 2.961510+0 9.500000+8 2.632500+0 1.000000+9 2.415900+0 1.062500+9 2.194090+0 1.117200+9 2.035980+0 1.186000+9 1.874190+0 1.243500+9 1.763670+0 1.250000+9 1.752470+0 1.307700+9 1.661490+0 1.376400+9 1.572050+0 1.458800+9 1.486160+0 1.500000+9 1.450400+0 1.562500+9 1.403830+0 2.000000+9 1.180800+0 2.139200+9 1.116220+0 2.272600+9 1.054260+0 2.357800+9 1.015260+0 2.522900+9 9.419080-1 2.677700+9 8.766610-1 2.750000+9 8.475340-1 2.890900+9 7.931830-1 3.086500+9 7.234170-1 3.325700+9 6.467080-1 3.535000+9 5.869740-1 3.718100+9 5.398450-1 4.038600+9 4.676850-1 4.278900+9 4.211590-1 4.639500+9 3.615690-1 5.000000+9 3.122300-1 5.375000+9 2.696280-1 5.703100+9 2.383160-1 6.277300+9 1.940250-1 6.708000+9 1.676620-1 7.354000+9 1.363200-1 8.000000+9 1.123200-1 9.000000+9 8.520530-2 1.00000+10 6.632000-2 1.27030+10 3.734820-2 1.55700+10 2.281980-2 2.15420+10 1.032590-2 3.13500+10 4.096250-3 1.00000+11 2.299200-4 1.68570+11 6.326080-5 3.34410+11 1.176950-5 1.39060+12 3.681470-7 1.17920+13 2.156690-9 1.00000+14 1.28990-11 3.16230+15 3.16230-15 1.00000+17 7.45150-19 1 97000 7 0 2.470000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.22600-11 1.000000+2 1.226000-9 1.000000+3 1.226000-7 1.000000+4 1.226000-5 1.000000+5 1.226000-3 5.000000+5 3.065000-2 1.000000+6 1.226000-1 1.375000+6 2.294030-1 1.500000+6 2.719000-1 1.875000+6 4.182390-1 2.000000+6 4.730000-1 2.375000+6 6.537780-1 2.500000+6 7.192000-1 2.875000+6 9.288020-1 3.000000+6 1.002700+0 3.437500+6 1.274070+0 3.812500+6 1.520940+0 4.000000+6 1.648900+0 4.500000+6 2.000920+0 4.875000+6 2.270520+0 5.000000+6 2.360500+0 5.468700+6 2.695670+0 6.015600+6 3.082210+0 6.500000+6 3.420600+0 6.753900+6 3.596210+0 7.000000+6 3.766000+0 7.875000+6 4.361740+0 9.000000+6 5.109600+0 1.000000+7 5.758900+0 1.250000+7 7.409600+0 1.500000+7 9.100300+0 1.750000+7 1.074100+1 2.000000+7 1.236000+1 2.250000+7 1.391540+1 2.500000+7 1.540800+1 2.875000+7 1.755360+1 3.000000+7 1.824500+1 3.500000+7 2.088250+1 4.000000+7 2.333100+1 4.500000+7 2.560670+1 4.750000+7 2.669660+1 5.000000+7 2.776300+1 5.750000+7 3.085470+1 6.000000+7 3.185700+1 6.750000+7 3.476980+1 7.000000+7 3.571500+1 8.000000+7 3.933000+1 9.000000+7 4.269000+1 1.000000+8 4.577200+1 1.125000+8 4.918750+1 1.218800+8 5.145580+1 1.250000+8 5.215800+1 1.359400+8 5.442980+1 1.437500+8 5.591310+1 1.453100+8 5.619540+1 1.500000+8 5.703300+1 1.625000+8 5.913110+1 1.750000+8 6.107830+1 1.812500+8 6.199670+1 2.000000+8 6.458800+1 2.171900+8 6.676100+1 2.289100+8 6.816000+1 2.394500+8 6.935480+1 2.500000+8 7.050800+1 2.625000+8 7.180680+1 2.859400+8 7.406540+1 3.000000+8 7.530400+1 3.125000+8 7.632000+1 3.500000+8 7.898600+1 3.812500+8 8.085200+1 3.937500+8 8.151190+1 4.000000+8 8.183600+1 4.125000+8 8.243430+1 4.234400+8 8.293310+1 4.750000+8 8.495240+1 5.000000+8 8.578000+1 5.125000+8 8.615730+1 5.343800+8 8.678390+1 5.630900+8 8.753820+1 6.000000+8 8.841100+1 6.500000+8 8.944190+1 7.000000+8 9.034800+1 7.625000+8 9.131410+1 7.875000+8 9.165710+1 8.000000+8 9.182500+1 8.250000+8 9.212260+1 8.468800+8 9.237660+1 8.851600+8 9.277250+1 9.500000+8 9.334110+1 1.000000+9 9.371100+1 1.062500+9 9.409680+1 1.117200+9 9.437980+1 1.186000+9 9.467140+1 1.243500+9 9.488560+1 1.250000+9 9.490740+1 1.307700+9 9.508730+1 1.376400+9 9.527460+1 1.458800+9 9.546580+1 1.500000+9 9.555500+1 1.562500+9 9.566810+1 2.000000+9 9.627200+1 2.139200+9 9.639340+1 2.272600+9 9.648770+1 2.357800+9 9.653990+1 2.522900+9 9.663580+1 2.677700+9 9.670010+1 2.750000+9 9.672790+1 2.890900+9 9.677470+1 3.086500+9 9.682070+1 3.325700+9 9.687310+1 3.535000+9 9.690110+1 3.718100+9 9.691930+1 4.038600+9 9.694910+1 4.278900+9 9.696550+1 4.639500+9 9.697720+1 5.000000+9 9.698800+1 5.375000+9 9.698970+1 5.703100+9 9.699110+1 6.277300+9 9.699330+1 6.708000+9 9.699490+1 7.354000+9 9.699700+1 8.000000+9 9.699900+1 9.000000+9 9.699950+1 1.00000+10 9.700000+1 1.27030+10 9.700000+1 1.55700+10 9.700000+1 2.15420+10 9.700000+1 3.13500+10 9.700000+1 1.00000+11 9.700000+1 1.68570+11 9.700000+1 3.34410+11 9.700000+1 1.39060+12 9.700000+1 1.17920+13 9.700000+1 1.00000+14 9.700000+1 3.16230+15 9.700000+1 1.00000+17 9.700000+1 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.605102-6 0.0 1.609053-6 1.316140-6 1.613004-6 2.604277-6 1.616955-6 4.756926-6 1.620905-6 8.020830-6 1.624856-6 1.248436-5 1.628807-6 1.793770-5 1.632758-6 2.379148-5 1.636708-6 2.912929-5 1.640659-6 3.292246-5 1.644610-6 3.434857-5 1.648561-6 3.308102-5 1.652512-6 2.941055-5 1.656462-6 2.413689-5 1.664364-6 1.278791-5 1.668315-6 8.255428-6 1.672265-6 4.919644-6 1.676216-6 2.706337-6 1.680167-6 1.374308-6 1.684118-6 0.0 2.304586-6 0.0 2.310258-6 6.570093-7 2.315930-6 1.300040-6 2.321603-6 2.374630-6 2.327275-6 4.003952-6 2.332948-6 6.232118-6 2.338620-6 8.954397-6 2.344293-6 1.187657-5 2.349965-6 1.454117-5 2.355638-6 1.643470-5 2.361310-6 1.714660-5 2.366982-6 1.651385-5 2.372655-6 1.468157-5 2.378327-6 1.204899-5 2.389672-6 6.383649-6 2.395345-6 4.121061-6 2.401017-6 2.455858-6 2.406690-6 1.350987-6 2.412362-6 6.860464-7 2.418034-6 0.0 2.531286-6 0.0 2.540631-6 3.398655+0 2.543746-6 4.517169+0 2.549977-6 8.250979+0 2.556207-6 1.391228+1 2.563217-6 2.283423+1 2.574132-6 4.001479+1 2.581519-6 5.093561+1 2.587931-6 5.733125+1 2.594018-6 5.942774+1 2.600829-6 5.635127+1 2.607330-6 4.913863+1 2.617745-6 3.296844+1 2.624742-6 2.218087+1 2.630973-6 1.431920+1 2.637203-6 8.533217+0 2.643434-6 4.694193+0 2.651222-6 1.788873+0 2.655894-6 0.0 2.826968-6 0.0 2.833926-6 2.428634-6 2.840884-6 4.805597-6 2.847842-6 8.777816-6 2.854801-6 1.480060-5 2.861759-6 2.303702-5 2.868717-6 3.309992-5 2.875675-6 4.390172-5 2.882634-6 5.375143-5 2.889592-6 6.075086-5 2.896550-6 6.338241-5 2.903508-6 6.104344-5 2.910466-6 5.427042-5 2.920904-6 3.914713-5 2.931341-6 2.359715-5 2.938299-6 1.523350-5 2.945258-6 9.078076-6 2.952216-6 4.993924-6 2.957075-6 3.278532-6 2.971632-6 8.910379+0 2.978911-6 1.627554+1 2.986189-6 2.744279+1 2.994377-6 4.504184+1 3.007129-6 7.893150+1 3.015758-6 1.004735+2 3.023760-6 1.134305+2 3.030863-6 1.169251+2 3.038220-6 1.113229+2 3.045725-6 9.739065+1 3.057183-6 6.749921+1 3.066252-6 4.375306+1 3.073531-6 2.824545+1 3.080809-6 1.683227+1 3.088088-6 9.259568+0 3.099005-6 2.353820+0 3.102645-6 0.0 3.595316-6 0.0 3.604165-6 6.79327-15 3.613015-6 1.34420-14 3.621864-6 2.45529-14 3.630714-6 4.13996-14 3.639563-6 6.44382-14 3.648412-6 9.25857-14 3.657262-6 1.22800-13 3.666111-6 1.50351-13 3.674961-6 1.69930-13 3.683810-6 1.77291-13 3.692659-6 1.70748-13 3.696000-6 1.63596-13 3.696150-6 1.541652-7 3.697497-6 1.940540-7 3.698832-6 2.431009-7 3.700156-6 3.031684-7 3.701902-6 4.042381-7 3.703629-6 5.350808-7 3.705194-6 6.877577-7 3.706883-6 8.986039-7 3.708552-6 1.166492-6 3.710201-6 1.504765-6 3.711832-6 1.929361-6 3.713443-6 2.459200-6 3.715035-6 3.116608-6 3.716609-6 3.927777-6 3.718165-6 4.923260-6 3.719702-6 6.138495-6 3.721724-6 8.172171-6 3.723715-6 1.078377-5 3.725675-6 1.410883-5 3.727365-6 1.772854-5 3.729503-6 2.356587-5 3.731605-6 3.102034-5 3.733670-6 4.045008-5 3.735699-6 5.226996-5 3.737693-6 6.695596-5 3.739651-6 8.504903-5 3.741576-6 1.071583-4 3.743467-6 1.339637-4 3.745756-6 1.746699-4 3.748154-6 2.292467-4 3.750518-6 2.980148-4 3.752826-6 3.829319-4 3.755082-6 4.866261-4 3.757285-6 6.119111-4 3.760143-6 8.177004-4 3.762228-6 1.005138-3 3.765266-6 1.347176-3 3.768199-6 1.772004-3 3.771031-6 2.290415-3 3.773764-6 2.912720-3 3.776402-6 3.648430-3 3.779786-6 4.822679-3 3.783013-6 6.230499-3 3.786093-6 7.883211-3 3.789030-6 9.786745-3 3.793186-6 1.311186-2 3.797058-6 1.698078-2 3.801061-6 2.187652-2 3.805473-6 2.846085-2 3.810121-6 3.688192-2 3.814842-6 4.711370-2 3.820940-6 6.293748-2 3.828889-6 8.789085-2 3.837514-6 1.197742-1 3.867566-6 2.425099-1 3.881094-6 2.864412-1 3.896818-6 3.208453-1 3.915628-6 3.421754-1 3.949549-6 3.547178-1 4.171875-6 3.836192-1 4.192412-6 5.304848-1 4.202680-6 6.511012-1 4.213591-6 8.488825-1 4.225062-6 1.136652+0 4.254966-6 2.028582+0 4.266400-6 2.237297+0 4.275503-6 2.294827+0 4.286937-6 2.190564+0 4.297825-6 1.952371+0 4.303848-6 1.797805+0 4.325112-6 2.057290+0 4.335734-6 2.549626+0 4.346761-6 3.540644+0 4.357661-6 5.025073+0 4.389298-6 1.046185+1 4.400552-6 1.169947+1 4.410332-6 1.206496+1 4.420614-6 1.159622+1 4.432231-6 1.012811+1 4.462322-6 4.770462+0 4.472914-6 3.228704+0 4.483507-6 2.094397+0 4.494099-6 1.342372+0 4.515284-6 4.252640-1 4.549205-6 4.432487-1 4.585067-6 4.932651-1 4.640000-6 5.908485-1 4.685010-6 6.246043-1 4.750014-6 6.396347-1 4.779243-6 6.912889-1 4.802243-6 7.762848-1 4.807704-6 8.035316-1 4.832586-6 1.264478+0 4.845648-6 1.620784+0 4.857492-6 2.049182+0 4.882898-6 3.222475+0 4.903112-6 4.146747+0 4.916333-6 4.480314+0 4.926780-6 4.540124+0 4.940000-6 4.281883+0 4.952966-6 3.754168+0 4.985208-6 2.068683+0 4.997041-6 1.579631+0 5.008875-6 1.220273+0 5.020708-6 9.825131-1 5.044376-6 7.048719-1 5.052558-6 7.124336-1 5.077430-6 8.779809-1 5.091421-6 1.035150+0 5.103857-6 1.234447+0 5.118501-6 1.543130+0 5.152048-6 2.322409+0 5.166718-6 2.509748+0 5.179278-6 2.535043+0 5.194435-6 2.394020+0 5.210029-6 2.135700+0 5.228368-6 1.777899+0 5.242442-6 1.585252+0 5.252315-6 1.511546+0 5.266216-6 1.506379+0 5.279693-6 1.583128+0 5.298851-6 1.730145+0 5.321536-6 1.866111+0 5.342396-6 1.861917+0 5.359581-6 1.818158+0 5.386789-6 3.263064+0 5.399981-6 4.475994+0 5.413247-6 6.331633+0 5.427927-6 9.161525+0 5.466825-6 1.799788+1 5.482813-6 2.006051+1 5.494757-6 2.041302+1 5.508106-6 1.936209+1 5.524655-6 1.635453+1 5.559199-6 8.356545+0 5.571797-6 6.005031+0 5.584637-6 4.216541+0 5.597611-6 2.991418+0 5.623419-6 1.422026+0 5.686633-6 1.033921+0 5.713503-6 9.094927-1 5.736539-6 8.488953-1 5.779612-6 8.130846-1 6.157338-6 8.747977-1 6.191414-6 9.143838-1 6.217831-6 9.884254-1 6.244949-6 1.121421+0 6.319418-6 1.622641+0 6.358808-6 1.774313+0 6.423065-6 1.831744+0 6.442549-6 1.840862+0 6.475006-6 3.092723+0 6.490863-6 4.117495+0 6.506720-6 5.658386+0 6.524435-6 8.042210+0 6.569652-6 1.533098+1 6.587846-6 1.714416+1 6.602551-6 1.762143+1 6.618183-6 1.693959+1 6.635433-6 1.495853+1 6.680155-6 7.705266+0 6.696011-6 5.607674+0 6.711868-6 4.063576+0 6.727725-6 3.038334+0 6.759439-6 1.782932+0 6.831228-6 1.771827+0 6.864856-6 1.890457+0 6.891005-6 2.076660+0 6.916310-6 2.367348+0 6.970658-6 3.198948+0 6.985026-6 3.366351+0 7.001528-6 3.454548+0 7.023013-6 3.418134+0 7.094800-6 2.988099+0 7.136110-6 2.858937+0 7.167512-6 2.608996+0 7.238966-6 1.963062+0 7.273251-6 1.796685+0 7.307537-6 1.713917+0 7.353756-6 1.726698+0 7.393988-6 1.786612+0 7.441955-6 1.975994+0 7.502384-6 2.255661+0 7.520450-6 2.278436+0 7.556582-6 2.191439+0 7.628846-6 1.853555+0 7.664978-6 1.805465+0 7.709472-6 1.859550+0 7.771900-6 1.976664+0 7.886763-6 1.906921+0 8.147740-6 1.868070+0 8.355419-6 1.654477+0 8.387863-6 1.642970+0 8.449800-6 1.747809+0 8.493667-6 1.950881+0 8.555026-6 2.361294+0 8.575479-6 2.458319+0 8.595932-6 2.500022+0 8.626612-6 2.436592+0 8.685652-6 2.076936+0 8.718650-6 1.870546+0 8.759485-6 1.713766+0 8.812733-6 1.628266+0 8.925637-6 1.617787+0 9.013514-6 1.689645+0 9.123361-6 1.926853+0 9.167299-6 1.931557+0 9.277146-6 1.735076+0 9.345122-6 1.741901+0 9.432325-6 1.793654+0 9.761171-6 1.751174+0 1.002682-5 1.599159+0 1.266720-5 1.539717+0 1.286362-5 1.645152+0 1.300655-5 1.713582+0 1.440523-5 1.685851+0 1.475248-5 1.783872+0 1.920544-5 1.628678+0 2.090983-5 1.623070+0 2.101276-5 3.812779+0 2.106423-5 5.622453+0 2.111570-5 8.366039+0 2.116717-5 1.211805+1 2.132157-5 2.610951+1 2.137947-5 2.944795+1 2.143227-5 3.033745+1 2.148502-5 3.748285+1 2.153778-5 4.246021+1 2.159053-5 5.186046+1 2.164658-5 6.973629+1 2.170095-5 9.589595+1 2.185759-5 1.951324+2 2.191559-5 2.186483+2 2.196696-5 2.244386+2 2.202575-5 2.114571+2 2.207972-5 1.840585+2 2.222356-5 8.520591+1 2.227632-5 5.580935+1 2.232907-5 3.426667+1 2.238182-5 2.018169+1 2.248733-5 3.712637+0 2.263771-5 5.985734+0 2.269236-5 6.550185+0 2.274700-5 6.764334+0 2.280164-5 6.579218+0 2.285629-5 6.038693+0 2.290385-5 5.409016+0 2.301660-5 5.426785+0 2.307486-5 6.231086+0 2.312951-5 7.868520+0 2.319957-5 1.142583+1 2.336174-5 2.170842+1 2.342503-5 2.433130+1 2.348129-5 2.531901+1 2.353883-5 2.460369+1 2.362499-5 2.140929+1 2.371612-5 1.738218+1 2.377072-5 1.555875+1 2.383177-5 1.446818+1 2.389283-5 1.416231+1 2.411737-5 1.471288+1 2.414195-5 1.480499+1 2.426610-5 1.429815+1 2.442130-5 1.302086+1 2.454774-5 1.107933+1 2.473132-5 7.306235+0 2.482842-5 5.187146+0 2.489221-5 4.122102+0 2.494855-5 3.344070+0 2.497767-5 3.023055+0 2.501287-5 2.713699+0 2.505449-5 2.415566+0 2.511575-5 2.131002+0 2.518284-5 1.958565+0 2.526376-5 1.869742+0 2.622709-5 1.955318+0 2.688406-5 2.058416+0 2.702283-5 2.164031+0 2.712194-5 2.361205+0 2.721068-5 2.698769+0 2.729133-5 3.183878+0 2.739139-5 4.032822+0 2.763522-5 6.561526+0 2.775810-5 7.494911+0 2.789644-5 8.054885+0 2.813759-5 8.250938+0 3.080000-5 7.499989+0 3.353352-5 7.316341+0 3.369859-5 1.673289+1 3.378629-5 2.525196+1 3.386883-5 3.732210+1 3.395536-5 5.469848+1 3.419898-5 1.134822+2 3.428972-5 1.271749+2 3.437051-5 1.308574+2 3.444902-5 1.257078+2 3.453488-5 1.110685+2 3.477507-5 5.290617+1 3.485921-5 3.649731+1 3.493667-5 2.522955+1 3.501921-5 1.728961+1 3.518428-5 7.727188+0 3.550669-5 8.560019+0 3.575006-5 9.778106+0 3.592605-5 1.128449+1 3.619569-5 1.474185+1 3.634605-5 1.601133+1 3.648485-5 1.615990+1 3.692698-5 1.439909+1 3.730848-5 1.324300+1 3.751177-5 1.197842+1 3.779795-5 9.753280+0 3.804130-5 8.469495+0 3.821560-5 8.042911+0 3.854339-5 7.878054+0 4.023673-5 8.275683+0 4.058438-5 8.718224+0 4.087674-5 9.697088+0 4.128831-5 1.143196+1 4.161117-5 1.212824+1 4.310463-5 1.249812+1 4.933110-5 1.373829+1 5.561043-5 1.564191+1 5.660381-5 1.664101+1 5.771687-5 1.647258+1 6.210681-5 1.752824+1 6.513267-5 1.868487+1 7.265511-5 2.021348+1 8.052910-5 2.078495+1 9.090213-5 2.000295+1 1.030683-4 1.747098+1 1.120256-4 1.496429+1 1.128528-4 1.596391+1 1.134043-4 1.782382+1 1.136301-4 1.892720+1 1.141895-4 3.536338+1 1.144692-4 4.760987+1 1.147489-4 6.506227+1 1.150932-4 9.456803+1 1.158423-4 1.682217+2 1.162063-4 1.905400+2 1.164573-4 1.946388+2 1.167385-4 1.856165+2 1.170387-4 1.627771+2 1.178254-4 8.012184+1 1.181051-4 5.633840+1 1.183848-4 3.881298+1 1.186645-4 2.715748+1 1.192239-4 1.285969+1 1.207045-4 1.296339+1 1.221165-4 1.352206+1 1.236645-4 1.283756+1 1.238750-4 1.269196+1 1.244850-4 2.188045+1 1.248154-4 3.060859+1 1.251360-4 4.368571+1 1.254698-4 6.238786+1 1.263532-4 1.205525+2 1.266885-4 1.339074+2 1.270008-4 1.367001+2 1.272993-4 1.299512+2 1.276829-4 1.097124+2 1.284534-4 5.745879+1 1.287534-4 4.089897+1 1.290583-4 2.853133+1 1.293632-4 2.035698+1 1.299730-4 1.048144+1 1.324450-4 1.181038+1 1.338228-4 1.262489+1 1.354143-4 1.239449+1 1.387926-4 1.144083+1 1.415042-4 1.151702+1 1.438875-4 1.209982+1 1.518000-4 1.190143+1 1.579919-4 1.097443+1 1.744455-4 7.628846+0 1.846078-4 5.989224+0 1.947547-4 4.726094+0 2.032237-4 3.928608+0 2.120202-4 3.305959+0 2.213095-4 2.827969+0 2.310995-4 2.484063+0 2.360950-4 2.405066+0 2.374498-4 2.482706+0 2.389719-4 2.716139+0 2.405600-4 2.985596+0 2.416593-4 3.018234+0 2.430291-4 2.819550+0 2.450504-4 2.430359+0 2.459362-4 2.373520+0 2.470658-4 2.433402+0 2.505812-4 3.049452+0 2.523238-4 3.188116+0 2.772746-4 3.136584+0 3.055556-4 3.281301+0 3.127823-4 3.362345+0 3.158966-4 3.571653+0 3.199328-4 4.265256+0 3.214080-4 4.333030+0 3.233370-4 4.123021+0 3.258428-4 3.780076+0 3.281841-4 3.734243+0 3.330766-4 4.057059+0 3.513348-4 4.251597+0 3.868172-4 4.558752+0 3.940974-4 4.782552+0 4.008423-4 4.804466+0 4.093269-4 4.972743+0 4.907576-4 5.517191+0 4.959542-4 5.741581+0 5.020265-4 6.327909+0 5.043307-4 6.356052+0 5.099920-4 6.117171+0 5.140383-4 6.428162+0 5.184561-4 6.824556+0 5.281587-4 6.472902+0 5.465000-4 7.044819+0 5.553750-4 7.731092+0 5.623413-4 8.658942+0 5.691330-4 9.976624+0 5.778069-4 1.228394+1 5.872486-4 1.553244+1 6.217485-4 2.975743+1 6.400000-4 3.558363+1 6.606934-4 3.992264+1 6.835000-4 4.259751+1 7.268285-4 4.447933+1 8.041845-4 4.399208+1 8.631123-4 4.258418+1 8.716084-4 4.463596+1 8.819707-4 5.082737+1 8.861567-4 5.076866+1 8.969869-4 4.443025+1 9.052696-4 4.330078+1 9.268608-4 4.612982+1 9.385283-4 4.990062+1 9.455621-4 4.913977+1 9.569968-4 4.632113+1 1.160710-3 4.128526+1 1.210377-3 4.016043+1 1.242077-3 4.115339+1 1.523289-3 3.418845+1 1.729407-3 3.060363+1 2.103064-3 2.480718+1 2.472643-3 2.049219+1 2.922680-3 1.668820+1 3.469864-3 1.340301+1 4.019964-3 1.105219+1 4.039492-3 1.156710+1 4.049665-3 1.205876+1 4.059542-3 1.283721+1 4.070226-3 1.408858+1 4.093372-3 1.802517+1 4.118910-3 2.265722+1 4.138699-3 2.457721+1 4.168694-3 2.479437+1 4.231819-3 2.385165+1 4.279578-3 2.435455+1 4.299221-3 2.550308+1 4.350723-3 3.093896+1 4.383889-3 3.225268+1 4.877808-3 2.733369+1 4.937541-3 2.823164+1 5.005656-3 2.999201+1 5.180037-3 2.897170+1 6.001015-3 2.313287+1 6.121742-3 2.301595+1 6.247766-3 2.306442+1 6.471737-3 2.209531+1 6.670687-3 2.184454+1 7.645369-3 1.791906+1 8.710207-3 1.477280+1 9.830400-3 1.231002+1 1.144231-2 9.770637+0 1.306644-2 7.969779+0 1.469561-2 6.636098+0 1.684380-2 5.361758+0 1.899788-2 4.446811+0 1.913831-2 4.549177+0 1.922926-2 4.870689+0 1.930516-2 5.419699+0 1.940727-2 6.574884+0 1.954747-2 8.320557+0 1.963373-2 9.061425+0 1.976221-2 9.541288+0 2.022290-2 9.356405+0 2.305900-2 7.506192+0 2.401875-2 7.030799+0 2.423133-2 7.205309+0 2.441076-2 7.842767+0 2.465182-2 8.948633+0 2.485991-2 9.357840+0 2.522594-2 9.758012+0 2.559394-2 1.029659+1 3.072898-2 7.887157+0 3.467369-2 6.544313+0 3.963921-2 5.297004+0 4.435707-2 4.424300+0 5.100653-2 3.530291+0 5.781226-2 2.879064+0 6.552715-2 2.341690+0 7.425759-2 1.904073+0 8.408277-2 1.547623+0 9.521235-2 1.257774+0 1.080061-1 1.018347+0 1.225165-1 8.246763-1 1.292369-1 7.613967-1 1.299052-1 7.872152-1 1.303450-1 8.426458-1 1.307255-1 9.352124-1 1.311071-1 1.084004+0 1.314836-1 1.289424+0 1.322752-1 1.855265+0 1.330426-1 2.377428+0 1.336406-1 2.639104+0 1.344602-1 2.787634+0 1.373801-1 2.753970+0 1.587831-1 2.212535+0 1.830776-1 1.779439+0 2.076428-1 1.468856+0 2.360176-1 1.209684+0 2.683125-1 9.977398-1 3.056824-1 8.238951-1 3.495237-1 6.802235-1 3.981072-1 5.673118-1 4.577464-1 4.703121-1 5.256511-1 3.936500-1 6.042964-1 3.317412-1 6.938251-1 2.823301-1 7.943282-1 2.428992-1 9.128416-1 2.097380-1 1.120601+0 1.685887-1 1.286622+0 1.438007-1 1.477239+0 1.226574-1 1.696098+0 1.046228-1 1.956757+0 8.876914-2 2.341267+0 7.218866-2 2.688134+0 6.157459-2 3.086391+0 5.252114-2 3.543651+0 4.479883-2 4.068655+0 3.821196-2 4.671441+0 3.259357-2 5.363532+0 2.780126-2 6.158159+0 2.371358-2 7.070513+0 2.022691-2 8.173860+0 1.712293-2 9.760024+0 1.395636-2 1.000000+1 2.924581-2 1 97000 7 0 2.470000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.665200+1 2.157891-6-9.348167+1 2.412362-6-8.892899+1 2.488842-6-8.380795+1 2.520348-6-7.806818+1 2.532405-6-7.255831+1 2.558349-6-5.857567+1 2.564580-6-5.721947+1 2.571832-6-5.922947+1 2.578501-6-6.537637+1 2.587360-6-7.991402+1 2.594018-6-9.381425+1 2.600481-6-8.734024+1 2.609032-6-7.361736+1 2.615445-6-6.760374+1 2.623428-6-6.544344+1 2.631751-6-6.811920+1 2.664075-6-8.559238+1 2.699352-6-9.280097+1 2.739760-6-9.687549+1 2.868717-6-8.718147+1 2.917425-6-7.932131+1 2.943518-6-7.069747+1 2.954342-6-6.403749+1 2.963253-6-5.532023+1 2.971632-6-4.806414+1 2.979821-6-3.969236+1 2.988691-6-3.228030+1 2.994377-6-2.983350+1 2.997164-6-2.981910+1 3.001656-6-3.146923+1 3.004442-6-3.376434+1 3.008025-6-3.845670+1 3.013000-6-4.760018+1 3.020023-6-6.635309+1 3.029275-6-9.691464+1 3.033519-6-8.132982+1 3.039672-6-6.042980+1 3.046471-6-4.179125+1 3.051695-6-3.177936+1 3.055391-6-2.673422+1 3.058078-6-2.438141+1 3.062158-6-2.259115+1 3.065229-6-2.234929+1 3.071711-6-2.497787+1 3.080013-6-3.195166+1 3.090590-6-4.269863+1 3.102190-6-5.266710+1 3.106962-6-5.754332+1 3.118304-6-6.396774+1 3.143787-6-7.192988+1 3.194076-6-7.942539+1 3.298437-6-8.574643+1 3.564113-6-9.099001+1 4.323342-6-9.699899+1 4.372881-6-9.499614+1 4.397296-6-9.703585+1 4.442328-6-8.811509+1 4.481520-6-8.838155+1 4.573013-6-9.285491+1 4.897649-6-9.658000+1 4.985208-6-9.324932+1 5.161763-6-9.648570+1 5.279693-6-9.746646+1 5.363851-6-9.471242+1 5.435000-6-9.022829+1 5.466825-6-9.442906+1 5.481377-6-9.713670+1 5.524655-6-8.499929+1 5.557322-6-8.234399+1 5.665312-6-8.938030+1 5.939842-6-9.345000+1 6.430975-6-9.728460+1 6.533784-6-9.212339+1 6.577332-6-9.649110+1 6.586978-6-9.699490+1 6.644782-6-8.599989+1 6.688083-6-8.458431+1 6.816735-6-9.078896+1 6.985026-6-9.259919+1 7.323664-6-9.248145+1 8.655156-6-9.322798+1 1.500175-5-9.651925+1 1.841572-5-9.057132+1 1.967552-5-8.396422+1 2.030564-5-7.656456+1 2.063867-5-6.925561+1 2.084414-5-6.160319+1 2.101276-5-5.060410+1 2.118552-5-3.675307+1 2.128108-5-3.176601+1 2.139072-5-2.807601+1 2.142450-5-2.498518+1 2.143227-5-2.356517+1 2.144175-5-2.170402+1 2.146880-5-1.836266+1 2.149821-5-1.569146+1 2.151800-5-1.326896+1 2.153283-5-1.092362+1 2.154437-5-8.471480+0 2.156745-5-4.387084+0 2.157899-5-2.205127+0 2.158476-5-9.669283-1 2.159053-5 5.981043-1 2.164328-5 1.160089+1 2.164658-5 1.254570+1 2.165276-5 1.379260+1 2.170095-5 2.025422+1 2.171016-5 2.080930+1 2.171823-5 2.083395+1 2.173234-5 2.013048+1 2.174292-5 1.907247+1 2.175879-5 1.672169+1 2.177466-5 1.355141+1 2.178462-5 1.111016+1 2.179333-5 8.605902+0 2.180095-5 6.150035+0 2.181428-5 1.234337+0 2.182429-5-3.012823+0 2.183179-5-6.555717+0 2.183741-5-9.444854+0 2.184585-5-1.424224+1 2.185218-5-1.839594+1 2.185759-5-2.262316+1 2.189314-5-4.748517+1 2.190607-5-5.851158+1 2.192111-5-7.233301+1 2.195171-5-9.832713+1 2.196696-5-8.226855+1 2.202260-5-3.498467+1 2.203166-5-2.729104+1 2.204587-5-1.690407+1 2.206622-5-3.264920+0 2.206961-5-9.419607-1 2.207529-5 3.379628+0 2.207972-5 6.282962+0 2.208802-5 1.107021+1 2.209529-5 1.480859+1 2.210801-5 2.059257+1 2.211755-5 2.439773+1 2.213186-5 2.936130+1 2.215585-5 3.592057+1 2.217912-5 4.006162+1 2.219857-5 4.180843+1 2.221731-5 4.168849+1 2.226313-5 3.583240+1 2.227632-5 3.281147+1 2.232330-5 2.163716+1 2.232907-5 1.970758+1 2.238182-5 5.096078+0 2.238842-5 3.011388+0 2.240078-5-1.719401-1 2.242242-5-5.137409+0 2.245487-5-1.236378+1 2.247110-5-1.630236+1 2.248327-5-1.978024+1 2.249366-5-2.359414+1 2.250942-5-2.764245+1 2.254719-5-3.480574+1 2.260227-5-4.233093+1 2.269236-5-5.053257+1 2.319957-5-8.042907+1 2.332616-5-8.171885+1 2.346810-5-7.571128+1 2.359709-5-6.932388+1 2.371612-5-6.820100+1 2.396354-5-7.256078+1 2.414195-5-7.289434+1 2.468921-5-7.029507+1 2.501287-5-7.453640+1 2.557903-5-8.132227+1 2.761631-5-9.387886+1 2.865771-5-9.173131+1 3.127412-5-9.653690+1 3.194623-5-9.830209+1 3.280690-5-9.052175+1 3.322091-5-8.224159+1 3.342610-5-7.436572+1 3.352927-5-6.707921+1 3.361605-5-5.941771+1 3.369859-5-5.264950+1 3.380563-5-4.252895+1 3.389543-5-3.569714+1 3.395536-5-3.311515+1 3.400067-5-3.339917+1 3.405383-5-3.641385+1 3.409262-5-4.033510+1 3.415113-5-4.887102+1 3.419382-5-5.805438+1 3.427024-5-7.850915+1 3.433498-5-9.863211+1 3.439053-5-7.947109+1 3.446658-5-5.541986+1 3.453488-5-3.741090+1 3.456015-5-3.210155+1 3.459628-5-2.610735+1 3.464273-5-2.029838+1 3.467374-5-1.747290+1 3.469907-5-1.582942+1 3.473232-5-1.457243+1 3.475369-5-1.437880+1 3.476438-5-1.452092+1 3.483817-5-1.774297+1 3.485921-5-1.937624+1 3.492820-5-2.508255+1 3.504887-5-3.679776+1 3.518005-5-4.776256+1 3.523392-5-5.300181+1 3.536011-5-6.003737+1 3.557370-5-6.753175+1 3.595356-5-7.540715+1 3.626106-5-7.694282+1 3.683316-5-7.497118+1 3.779795-5-7.541522+1 3.902806-5-8.159500+1 4.118221-5-8.734926+1 4.390883-5-8.580609+1 5.688529-5-8.564603+1 7.520557-5-8.119708+1 9.282122-5-7.754333+1 9.947094-5-7.862306+1 1.056408-4-7.066394+1 1.086770-4-6.347274+1 1.102927-4-5.705268+1 1.114542-4-4.974909+1 1.120256-4-4.435923+1 1.125771-4-3.739630+1 1.130596-4-2.911611+1 1.133354-4-2.289786+1 1.134659-4-1.924541+1 1.135878-4-1.505673+1 1.136301-4-1.297863+1 1.136505-4-1.185919+1 1.136887-4-1.024079+1 1.137554-4-7.839940+0 1.138556-4-4.680448+0 1.140727-4 1.639471+0 1.141311-4 3.499872+0 1.141603-4 4.520841+0 1.141895-4 5.732014+0 1.144692-4 1.546097+1 1.145042-4 1.688208+1 1.147876-4 2.510462+1 1.148554-4 2.635716+1 1.150932-4 2.835608+1 1.152144-4 2.716495+1 1.153072-4 2.500277+1 1.153829-4 2.252440+1 1.154824-4 1.828058+1 1.155463-4 1.489776+1 1.156102-4 1.079865+1 1.156791-4 5.859023+0 1.157308-4 1.957901+0 1.157696-4-1.181983+0 1.157987-4-3.688233+0 1.158423-4-7.765570+0 1.158750-4-1.121969+1 1.159032-4-1.468778+1 1.160890-4-3.523376+1 1.161583-4-4.447527+1 1.162352-4-5.535829+1 1.163908-4-7.541399+1 1.164573-4-6.483762+1 1.167218-4-2.918959+1 1.167698-4-2.280395+1 1.168451-4-1.414240+1 1.169529-4-2.732177+0 1.169709-4-7.913509-1 1.170062-4 3.363399+0 1.170387-4 6.600392+0 1.170955-4 1.157774+1 1.171382-4 1.493176+1 1.172661-4 2.382153+1 1.173622-4 2.918553+1 1.174769-4 3.354341+1 1.176157-4 3.611762+1 1.177468-4 3.694375+1 1.178254-4 3.608390+1 1.180352-4 3.213270+1 1.183542-4 2.077106+1 1.183848-4 1.923250+1 1.186645-4 7.537807+0 1.186887-4 6.339517+0 1.187340-4 4.481732+0 1.188133-4 1.579039+0 1.190512-4-6.563700+0 1.191376-4-9.780504+0 1.192023-4-1.263016+1 1.192367-4-1.470532+1 1.193082-4-1.787043+1 1.194738-4-2.329823+1 1.197064-4-2.915426+1 1.201462-4-3.756293+1 1.207045-4-4.563245+1 1.218217-4-5.772024+1 1.230294-4-7.037258+1 1.233967-4-7.553497+1 1.238359-4-6.667231+1 1.240230-4-6.105080+1 1.244850-4-4.989408+1 1.248524-4-3.954604+1 1.251715-4-3.203019+1 1.254426-4-2.893753+1 1.255750-4-2.865580+1 1.257409-4-3.044496+1 1.259342-4-3.486013+1 1.261201-4-4.162285+1 1.262519-4-4.840344+1 1.266303-4-7.599332+1 1.267747-4-6.285989+1 1.269629-4-4.642261+1 1.270342-4-3.930900+1 1.272574-4-2.055219+1 1.272993-4-1.642214+1 1.273711-4-1.083030+1 1.274297-4-6.760017+0 1.276063-4 4.742738+0 1.276318-4 6.490885+0 1.276829-4 9.378926+0 1.277756-4 1.374279+1 1.278606-4 1.703946+1 1.279977-4 2.121097+1 1.281542-4 2.441166+1 1.282821-4 2.581253+1 1.284069-4 2.592068+1 1.286772-4 2.263690+1 1.290250-4 1.459484+1 1.290583-4 1.350495+1 1.293632-4 5.228240+0 1.294182-4 3.599472+0 1.295145-4 1.270259+0 1.298034-4-5.124214+0 1.298882-4-7.186713+0 1.299518-4-9.016802+0 1.300078-4-1.106725+1 1.301123-4-1.371251+1 1.303174-4-1.761223+1 1.306502-4-2.233639+1 1.312101-4-2.796253+1 1.318291-4-3.239527+1 1.327767-4-3.701854+1 1.341683-4-4.079257+1 1.387926-4-4.782131+1 1.432411-4-5.177703+1 1.555000-4-5.375936+1 2.180000-4-6.044936+1 2.422650-4-6.276436+1 2.545000-4-6.365512+1 3.513348-4-6.736576+1 4.705577-4-7.275809+1 5.363265-4-8.014763+1 5.955240-4-9.311934+1 6.217485-4-9.217450+1 7.124467-4-7.291521+1 7.864320-4-6.276545+1 8.631123-4-5.699508+1 9.095597-4-5.691101+1 9.455621-4-5.355005+1 9.697411-4-5.124874+1 1.015401-3-4.681255+1 1.123898-3-4.052735+1 1.210377-3-3.791162+1 1.242077-3-3.776082+1 1.275949-3-3.526159+1 1.372461-3-3.162445+1 1.523289-3-2.826985+1 1.685590-3-2.575368+1 1.906293-3-2.316620+1 2.220000-3-2.128303+1 2.606720-3-2.058202+1 3.073974-3-2.118988+1 3.469864-3-2.300326+1 3.743186-3-2.549952+1 3.908724-3-2.825667+1 4.009380-3-3.130864+1 4.059542-3-3.425786+1 4.118910-3-3.965929+1 4.148030-3-3.987168+1 4.218529-3-3.473897+1 4.264379-3-3.344659+1 4.312087-3-3.405658+1 4.361809-3-3.502205+1 4.396528-3-3.337006+1 4.455335-3-2.895712+1 4.519088-3-2.606840+1 4.629636-3-2.320909+1 4.776350-3-2.118433+1 4.877808-3-2.093167+1 4.952455-3-2.166025+1 4.989156-3-2.116478+1 5.077779-3-1.833539+1 5.180037-3-1.640013+1 5.354569-3-1.431265+1 5.615181-3-1.231883+1 5.867692-3-1.115991+1 6.041607-3-1.091187+1 6.146551-3-1.107212+1 6.330603-3-9.836456+0 6.537524-3-9.381853+0 6.726862-3-8.207328+0 7.040428-3-7.117956+0 7.507716-3-6.097060+0 7.993418-3-5.409542+0 8.710207-3-4.783898+0 9.479598-3-4.450172+0 1.052416-2-4.292793+0 1.196224-2-4.392598+0 1.416900-2-4.940588+0 1.584893-2-5.630854+0 1.725794-2-6.509321+0 1.814471-2-7.412330+0 1.869560-2-8.374499+0 1.899788-2-9.337282+0 1.920619-2-1.063726+1 1.936802-2-1.184080+1 1.947483-2-1.207366+1 1.960288-2-1.145616+1 1.982397-2-9.701757+0 2.002498-2-8.702006+0 2.036266-2-7.785001+0 2.089507-2-6.978591+0 2.162719-2-6.404952+0 2.252975-2-6.152903+0 2.330053-2-6.296747+0 2.380889-2-6.703572+0 2.410806-2-7.295379+0 2.441076-2-8.202241+0 2.458583-2-8.238478+0 2.492903-2-7.437707+0 2.531713-2-6.983449+0 2.582994-2-5.699139+0 2.623902-2-5.041373+0 2.698777-2-4.271736+0 2.795158-2-3.607804+0 2.917427-2-3.018437+0 3.023757-2-2.646826+0 3.198895-2-2.216954+0 3.382404-2-1.910061+0 3.646982-2-1.623336+0 3.860375-2-1.476268+0 4.183062-2-1.356367+0 4.621991-2-1.298105+0 5.100653-2-1.303904+0 6.291492-2-1.453739+0 9.919850-2-2.115812+0 1.120263-1-2.439791+0 1.205671-1-2.781340+0 1.254679-1-3.125142+0 1.282152-1-3.476304+0 1.297171-1-3.845061+0 1.316522-1-4.623777+0 1.322752-1-4.687856+0 1.332344-1-4.412827+0 1.347332-1-3.733825+0 1.360500-1-3.360309+0 1.382906-1-2.991053+0 1.420496-1-2.620048+0 1.483956-1-2.258628+0 1.553071-1-2.009922+0 1.659735-1-1.777128+0 1.782900-1-1.617972+0 1.991707-1-1.469617+0 2.263638-1-1.385074+0 2.793121-1-1.344714+0 7.294624-1-1.451572+0 2.235892+0-1.488777+0 6.755256+0-1.500348+0 1.000000+1-1.498775+0 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 6.598343-2 1.142105-6 1.211832-1 1.181234-6 1.419949-1 1.217917-6 1.643247-1 1.284549-6 2.130646-1 1.343112-6 2.663551-1 1.419490-6 3.548256-1 1.463075-6 4.165410-1 1.501211-6 4.787741-1 1.563780-6 6.007298-1 1.634038-6 7.750528-1 1.667571-6 8.743794-1 1.692720-6 9.578540-1 1.730445-6 1.098716+0 1.789929-6 1.363137+0 1.837803-6 1.626632+0 1.894077-6 2.011329+0 1.930514-6 2.310458+0 1.964674-6 2.636608+0 1.996699-6 2.990493+0 2.026722-6 3.372509+0 2.054869-6 3.782361+0 2.081256-6 4.219951+0 2.105995-6 4.686275+0 2.129187-6 5.181818+0 2.150930-6 5.706529+0 2.171313-6 6.260164+0 2.190423-6 6.842317+0 2.208339-6 7.452421+0 2.225134-6 8.089762+0 2.240880-6 8.753615+0 2.255642-6 9.443659+0 2.269481-6 1.015973+1 2.282456-6 1.090012+1 2.306783-6 1.249485+1 2.328068-6 1.415912+1 2.346694-6 1.588024+1 2.362991-6 1.764131+1 2.377251-6 1.942381+1 2.389728-6 2.120947+1 2.400646-6 2.298028+1 2.410199-6 2.471840+1 2.418558-6 2.640721+1 2.433186-6 2.981521+1 2.444157-6 3.283529+1 2.452385-6 3.542503+1 2.464728-6 3.996281+1 2.470899-6 4.259181+1 2.477070-6 4.551356+1 2.483167-6 4.873751+1 2.489264-6 5.235841+1 2.495361-6 5.645436+1 2.501458-6 6.112705+1 2.507555-6 6.651270+1 2.513652-6 7.279927+1 2.519749-6 8.025312+1 2.525846-6 8.925825+1 2.531943-6 1.003699+2 2.538040-6 1.143807+2 2.544137-6 1.323902+2 2.547185-6 1.433370+2 2.550234-6 1.558629+2 2.553282-6 1.702115+2 2.556331-6 1.866486+2 2.560000-6 2.096045+2 2.562428-6 2.269393+2 2.565476-6 2.513965+2 2.571573-6 3.104417+2 2.583647-6 4.740602+2 2.588861-6 5.655387+2 2.592040-6 6.272731+2 2.595218-6 6.931414+2 2.601574-6 8.350446+2 2.602369-6 8.535086+2 2.607931-6 9.850356+2 2.610116-6 1.036938+3 2.614287-6 1.134289+3 2.617515-6 1.206401+3 2.620644-6 1.272042+3 2.623872-6 1.333899+3 2.627000-6 1.386799+3 2.629781-6 1.426983+3 2.633022-6 1.464624+3 2.636734-6 1.494383+3 2.639912-6 1.507728+3 2.641019-6 1.509659+3 2.644176-6 1.507358+3 2.646506-6 1.498256+3 2.652721-6 1.444304+3 2.654704-6 1.418575+3 2.659367-6 1.343754+3 2.661825-6 1.297195+3 2.665140-6 1.227993+3 2.668367-6 1.154941+3 2.671496-6 1.080261+3 2.674277-6 1.011814+3 2.677182-6 9.392995+2 2.681031-6 8.433300+2 2.684209-6 7.655275+2 2.687785-6 6.809287+2 2.690566-6 6.180147+2 2.696922-6 4.860971+2 2.699107-6 4.450379+2 2.701193-6 4.080176+2 2.704868-6 3.480368+2 2.708443-6 2.960787+2 2.711601-6 2.553033+2 2.714942-6 2.171462+2 2.718248-6 1.841164+2 2.722598-6 1.472074+2 2.726881-6 1.173544+2 2.731098-6 9.339646+1 2.737299-6 6.625890+1 2.743357-6 4.709478+1 2.751230-6 3.004857+1 2.758875-6 1.934689+1 2.766282-6 1.257954+1 2.773460-6 8.253675+0 2.780416-6 5.478839+0 2.783812-6 4.498046+0 2.787155-6 3.725378+0 2.790446-6 3.126418+0 2.792066-6 2.884265+0 2.793673-6 2.675593+0 2.795268-6 2.497902+0 2.796850-6 2.348951+0 2.798420-6 2.226730+0 2.799977-6 2.129426+0 2.801135-6 2.071928+0 2.802667-6 2.014468+0 2.804192-6 1.977630+0 2.805704-6 1.960332+0 2.808705-6 1.980109+0 2.811660-6 2.066088+0 2.814568-6 2.211478+0 2.820293-6 2.662671+0 2.825840-6 3.295377+0 2.856736-6 1.013790+1 2.865552-6 1.322370+1 2.873816-6 1.668714+1 2.881564-6 2.051833+1 2.888828-6 2.470928+1 2.895637-6 2.925360+1 2.902022-6 3.414669+1 2.928433-6 6.379152+1 2.936831-6 7.808887+1 2.944450-6 9.438363+1 2.951117-6 1.122172+2 2.956950-6 1.315437+2 2.962054-6 1.522318+2 2.966520-6 1.740544+2 2.970428-6 1.967026+2 2.973848-6 2.198145+2 2.976840-6 2.430111+2 2.982076-6 2.916185+2 2.986002-6 3.361042+2 2.988948-6 3.748291+2 2.993366-6 4.429429+2 3.001473-6 6.058888+2 3.012541-6 9.302455+2 3.019158-6 1.193375+3 3.022798-6 1.362938+3 3.027371-6 1.601960+3 3.031088-6 1.817629+3 3.034804-6 2.052009+3 3.042238-6 2.571985+3 3.043167-6 2.641199+3 3.049671-6 3.145465+3 3.052226-6 3.350359+3 3.057104-6 3.745284+3 3.060879-6 4.048527+3 3.064537-6 4.334785+3 3.068312-6 4.616609+3 3.072000-6 4.873167+3 3.075222-6 5.077908+3 3.078228-6 5.249414+3 3.079868-6 5.334192+3 3.084224-6 5.525703+3 3.087625-6 5.638445+3 3.091587-6 5.725983+3 3.095294-6 5.763410+3 3.098007-6 5.763114+3 3.101703-6 5.725284+3 3.104291-6 5.673691+3 3.109601-6 5.506526+3 3.112568-6 5.379921+3 3.116570-6 5.175813+3 3.120529-6 4.941244+3 3.123991-6 4.714359+3 3.126882-6 4.512479+3 3.130599-6 4.240618+3 3.134734-6 3.927852+3 3.138869-6 3.610757+3 3.143050-6 3.292078+3 3.146302-6 3.049216+3 3.153736-6 2.523061+3 3.158730-6 2.199930+3 3.161169-6 2.052496+3 3.166744-6 1.742846+3 3.172825-6 1.449457+3 3.189381-6 8.705660+2 3.192983-6 7.814286+2 3.196558-6 7.036988+2 3.200105-6 6.360556+2 3.203624-6 5.772617+2 3.207115-6 5.261788+2 3.210579-6 4.817757+2 3.217454-6 4.091795+2 3.224221-6 3.537151+2 3.230882-6 3.107232+2 3.237439-6 2.768008+2 3.243894-6 2.495141+2 3.250247-6 2.271431+2 3.256502-6 2.084764+2 3.262659-6 1.926563+2 3.268719-6 1.790686+2 3.274685-6 1.672651+2 3.286431-6 1.476209+2 3.297809-6 1.320818+2 3.308832-6 1.194963+2 3.319510-6 1.091128+2 3.329855-6 1.004164+2 3.339876-6 9.304094+1 3.349584-6 8.671728+1 3.358989-6 8.124293+1 3.377211-6 7.212740+1 3.394293-6 6.500439+1 3.410309-6 5.930728+1 3.425323-6 5.466655+1 3.439399-6 5.082800+1 3.452595-6 4.760959+1 3.477338-6 4.238637+1 3.498987-6 3.851668+1 3.517931-6 3.556488+1 3.534507-6 3.326148+1 3.563514-6 2.974644+1 3.585270-6 2.746448+1 3.617903-6 2.449398+1 3.668507-6 2.070985+1 3.722419-6 1.750452+1 3.830243-6 1.273232+1 3.880959-6 1.100725+1 4.058463-6 6.060260+0 4.096000-6 5.102109+0 4.117053-6 4.574107+0 4.131917-6 4.199678+0 4.144924-6 3.868363+0 4.156304-6 3.574167+0 4.176220-6 3.046825+0 4.191157-6 2.640944+0 4.202359-6 2.333921+0 4.210761-6 2.105716+0 4.217063-6 1.938141+0 4.221789-6 1.815813+0 4.232422-6 1.556789+0 4.241832-6 1.354861+0 4.246393-6 1.269201+0 4.251606-6 1.182910+0 4.256820-6 1.110360+0 4.259426-6 1.079622+0 4.265291-6 1.024719+0 4.268549-6 1.003017+0 4.277672-6 9.762753-1 4.279546-6 9.769280-1 4.281684-6 9.801632-1 4.288099-6 1.005214+0 4.292110-6 1.031922+0 4.296119-6 1.066443+0 4.300968-6 1.117871+0 4.305583-6 1.175946+0 4.311558-6 1.263740+0 4.317728-6 1.369911+0 4.320029-6 1.414041+0 4.326138-6 1.545939+0 4.329804-6 1.637883+0 4.340556-6 1.991851+0 4.343406-6 2.115349+0 4.350982-6 2.532660+0 4.353833-6 2.731696+0 4.357005-6 2.986487+0 4.361083-6 3.373795+0 4.364961-6 3.814460+0 4.369658-6 4.458538+0 4.374833-6 5.330776+0 4.391702-6 9.678053+0 4.395615-6 1.107678+1 4.401286-6 1.339614+1 4.405848-6 1.552013+1 4.408741-6 1.698744+1 4.413574-6 1.964397+1 4.417543-6 2.201116+1 4.425328-6 2.710153+1 4.429195-6 2.982161+1 4.432781-6 3.243644+1 4.436647-6 3.533565+1 4.441183-6 3.881072+1 4.446094-6 4.261414+1 4.450732-6 4.619238+1 4.455445-6 4.975937+1 4.459114-6 5.245151+1 4.463530-6 5.555286+1 4.468312-6 5.868971+1 4.470991-6 6.032728+1 4.475884-6 6.305999+1 4.479808-6 6.498377+1 4.483167-6 6.642411+1 4.487976-6 6.813203+1 4.491513-6 6.910926+1 4.493719-6 6.959599+1 4.500338-6 7.048080+1 4.505339-6 7.057852+1 4.508519-6 7.039094+1 4.510903-6 7.012666+1 4.514480-6 6.953875+1 4.518057-6 6.873177+1 4.521697-6 6.770023+1 4.526474-6 6.605212+1 4.531081-6 6.418237+1 4.537996-6 6.094715+1 4.543375-6 5.815371+1 4.546065-6 5.668923+1 4.552117-6 5.328023+1 4.554135-6 5.212034+1 4.564894-6 4.589061+1 4.571618-6 4.207864+1 4.581033-6 3.701686+1 4.596991-6 2.950444+1 4.608000-6 2.523045+1 4.613804-6 2.327714+1 4.620175-6 2.135870+1 4.626346-6 1.971026+1 4.632325-6 1.829371+1 4.643909-6 1.598929+1 4.654769-6 1.426369+1 4.664950-6 1.294261+1 4.674495-6 1.190519+1 4.692392-6 1.033713+1 4.708052-6 9.240067+0 4.735456-6 7.686073+0 4.776563-6 5.801458+0 4.797116-6 4.951693+0 4.807393-6 4.539930+0 4.817669-6 4.137468+0 4.829527-6 3.689445+0 4.853243-6 2.897170+0 4.859172-6 2.736517+0 4.865102-6 2.598319+0 4.871031-6 2.487168+0 4.875477-6 2.424536+0 4.879163-6 2.387848+0 4.881887-6 2.370401+0 4.900958-6 2.523298+0 4.902459-6 2.558610+0 4.912962-6 2.913851+0 4.915119-6 3.011088+0 4.924966-6 3.563375+0 4.932250-6 4.085496+0 4.946293-6 5.341944+0 4.953939-6 6.140316+0 4.960201-6 6.836258+0 4.964770-6 7.359595+0 4.970929-6 8.073965+0 4.973732-6 8.398773+0 4.979359-6 9.042184+0 4.984986-6 9.663767+0 4.988550-6 1.004056+1 4.992770-6 1.046492+1 4.997740-6 1.092823+1 5.008994-6 1.179663+1 5.013120-6 1.204225+1 5.020998-6 1.239032+1 5.025359-6 1.251189+1 5.029315-6 1.257749+1 5.032777-6 1.260004+1 5.035806-6 1.259338+1 5.041107-6 1.252377+1 5.045083-6 1.242486+1 5.048065-6 1.232562+1 5.054774-6 1.202906+1 5.057010-6 1.190926+1 5.066013-6 1.133465+1 5.069014-6 1.111441+1 5.078017-6 1.038683+1 5.081018-6 1.012667+1 5.093022-6 9.034223+0 5.096999-6 8.663646+0 5.108929-6 7.564253+0 5.120000-6 6.602417+0 5.135046-6 5.457221+0 5.141312-6 5.050392+0 5.147595-6 4.688995+0 5.160203-6 4.112631+0 5.163355-6 4.000312+0 5.172811-6 3.739366+0 5.175964-6 3.677248+0 5.180692-6 3.606583+0 5.185420-6 3.561940+0 5.187362-6 3.550832+0 5.191004-6 3.540849+0 5.194191-6 3.543194+0 5.199768-6 3.570344+0 5.203951-6 3.608176+0 5.207089-6 3.645295+0 5.214147-6 3.752111+0 5.223244-6 3.925324+0 5.235852-6 4.196767+0 5.250036-6 4.486962+0 5.261068-6 4.662696+0 5.264220-6 4.701316+0 5.273676-6 4.781345+0 5.276839-6 4.795538+0 5.282374-6 4.804975+0 5.286526-6 4.799396+0 5.292753-6 4.771637+0 5.298980-6 4.722499+0 5.308690-6 4.610002+0 5.311927-6 4.564677+0 5.324874-6 4.358241+0 5.354005-6 3.879887+0 5.363716-6 3.750441+0 5.374541-6 3.632294+0 5.386785-6 3.530308+0 5.393881-6 3.484097+0 5.406693-6 3.417651+0 5.438494-6 3.285661+0 5.448176-6 3.241822+0 5.468705-6 3.134941+0 5.481823-6 3.058019+0 5.511391-6 2.871566+0 5.547297-6 2.636282+0 5.567284-6 2.500964+0 5.588917-6 2.349238+0 5.604011-6 2.240718+0 5.627536-6 2.071287+0 5.681990-6 1.718501+0 5.719196-6 1.518810+0 5.736333-6 1.428356+0 5.751925-6 1.342089+0 5.766112-6 1.258893+0 5.779085-6 1.178916+0 5.791713-6 1.098405+0 5.805028-6 1.012355+0 5.817650-6 9.317246-1 5.849951-6 7.447160-1 5.858688-6 7.021689-1 5.871700-6 6.473845-1 5.877786-6 6.256780-1 5.886149-6 6.003269-1 5.891705-6 5.865682-1 5.898664-6 5.731239-1 5.906243-6 5.638240-1 5.912584-6 5.609666-1 5.919543-6 5.639835-1 5.926503-6 5.748963-1 5.933463-6 5.958263-1 5.937741-6 6.149003-1 5.941885-6 6.388598-1 5.945900-6 6.681230-1 5.949790-6 7.031270-1 5.953558-6 7.443177-1 5.958976-6 8.184561-1 5.964116-6 9.083427-1 5.967604-6 9.822543-1 5.972723-6 1.113155+0 5.975750-6 1.205000+0 5.978707-6 1.306479+0 5.981571-6 1.417074+0 5.984346-6 1.536913+0 5.989638-6 1.804567+0 5.994605-6 2.109394+0 6.001560-6 2.640397+0 6.023651-6 5.451451+0 6.031874-6 7.097998+0 6.036685-6 8.257504+0 6.044579-6 1.052157+1 6.050623-6 1.259678+1 6.055250-6 1.440849+1 6.061863-6 1.736488+1 6.068572-6 2.084415+1 6.075187-6 2.478801+1 6.079518-6 2.766306+1 6.092511-6 3.776886+1 6.099281-6 4.395062+1 6.104684-6 4.934034+1 6.113877-6 5.942611+1 6.117875-6 6.415920+1 6.131065-6 8.111550+1 6.135880-6 8.774799+1 6.145073-6 1.008978+2 6.151400-6 1.101994+2 6.156931-6 1.184037+2 6.161551-6 1.252494+2 6.167490-6 1.339600+2 6.172742-6 1.414982+2 6.178404-6 1.493647+2 6.185049-6 1.581254+2 6.191269-6 1.657425+2 6.199114-6 1.743617+2 6.206299-6 1.811237+2 6.213153-6 1.864351+2 6.220013-6 1.905416+2 6.226503-6 1.932494+2 6.232667-6 1.947301+2 6.239273-6 1.951265+2 6.250375-6 1.930678+2 6.256609-6 1.904826+2 6.263544-6 1.864896+2 6.268003-6 1.833491+2 6.275215-6 1.774154+2 6.280033-6 1.729276+2 6.286357-6 1.664937+2 6.294487-6 1.574830+2 6.301958-6 1.486629+2 6.309429-6 1.395139+2 6.321102-6 1.249675+2 6.324370-6 1.209082+2 6.339311-6 1.028609+2 6.342202-6 9.951390+1 6.362438-6 7.797494+1 6.381708-6 6.108431+1 6.399587-6 4.870995+1 6.413733-6 4.098370+1 6.420724-6 3.776242+1 6.427660-6 3.491446+1 6.441424-6 3.016490+1 6.454973-6 2.646733+1 6.468310-6 2.357282+1 6.481438-6 2.128192+1 6.494362-6 1.944114+1 6.507083-6 1.793583+1 6.519606-6 1.668213+1 6.544260-6 1.469048+1 6.568144-6 1.317666+1 6.591281-6 1.197318+1 6.613696-6 1.098587+1 6.635409-6 1.015766+1 6.656445-6 9.451176+0 6.700000-6 8.215586+0 6.869590-6 4.717986+0 7.002870-6 2.625904+0 7.021974-6 2.353901+0 7.039885-6 2.105003+0 7.056676-6 1.878017+0 7.072417-6 1.672022+0 7.087175-6 1.486320+0 7.101010-6 1.320412+0 7.113981-6 1.174001+0 7.137541-6 9.395708-1 7.148228-6 8.521050-1 7.158247-6 7.852369-1 7.167641-6 7.397845-1 7.176447-6 7.166756-1 7.184703-6 7.168500-1 7.192443-6 7.411529-1 7.200000-6 7.929057-1 7.206501-6 8.644659-1 7.209690-6 9.102356-1 7.212779-6 9.620756-1 7.215771-6 1.019935+0 7.218670-6 1.083739+0 7.221479-6 1.153393+0 7.224199-6 1.228780+0 7.226835-6 1.309762+0 7.231862-6 1.487868+0 7.235419-6 1.634442+0 7.242526-6 1.985161+0 7.253096-6 2.674789+0 7.269642-6 4.272471+0 7.278626-6 5.476047+0 7.285637-6 6.614902+0 7.293197-6 8.065934+0 7.299909-6 9.570392+0 7.308540-6 1.183645+1 7.316833-6 1.440164+1 7.323626-6 1.681057+1 7.330808-6 1.967996+1 7.344518-6 2.614102+1 7.352670-6 3.062407+1 7.357072-6 3.324723+1 7.368153-6 4.048017+1 7.375083-6 4.544964+1 7.378777-6 4.823250+1 7.389859-6 5.710048+1 7.396789-6 6.300130+1 7.408922-6 7.385162+1 7.414779-6 7.926216+1 7.421046-6 8.512411+1 7.428083-6 9.174024+1 7.433961-6 9.724496+1 7.441518-6 1.042214+2 7.446669-6 1.088680+2 7.453430-6 1.147759+2 7.461664-6 1.215897+2 7.471570-6 1.290777+2 7.480370-6 1.349408+2 7.484716-6 1.375251+2 7.493498-6 1.420587+2 7.501732-6 1.454175+2 7.507011-6 1.470939+2 7.514569-6 1.488280+2 7.520850-6 1.496667+2 7.524490-6 1.499031+2 7.537128-6 1.493323+2 7.546501-6 1.475770+2 7.551985-6 1.460614+2 7.560983-6 1.428611+2 7.571087-6 1.383285+2 7.579526-6 1.338992+2 7.590376-6 1.275204+2 7.604048-6 1.187057+2 7.610559-6 1.143166+2 7.624231-6 1.049342+2 7.644944-6 9.091003+1 7.663800-6 7.897385+1 7.687817-6 6.552318+1 7.725623-6 4.877205+1 7.743961-6 4.244218+1 7.762300-6 3.709633+1 7.780639-6 3.258366+1 7.795439-6 2.945545+1 7.817316-6 2.553484+1 7.838534-6 2.240387+1 7.849607-6 2.099606+1 7.877122-6 1.808330+1 7.896415-6 1.648930+1 7.915709-6 1.523094+1 7.925355-6 1.472018+1 7.935002-6 1.428455+1 7.947011-6 1.384263+1 7.959914-6 1.348488+1 7.968341-6 1.331236+1 7.976768-6 1.318468+1 7.986442-6 1.308915+1 7.996116-6 1.304298+1 8.005790-6 1.304032+1 8.015464-6 1.307494+1 8.034812-6 1.323012+1 8.082132-6 1.380836+1 8.108006-6 1.406277+1 8.134929-6 1.417494+1 8.154604-6 1.413157+1 8.170248-6 1.401638+1 8.183974-6 1.385760+1 8.204563-6 1.352673+1 8.225152-6 1.310310+1 8.247641-6 1.256706+1 8.286052-6 1.159084+1 8.318136-6 1.083444+1 8.351636-6 1.018450+1 8.378915-6 9.774218+0 8.399337-6 9.527658+0 8.419760-6 9.320304+0 8.460605-6 8.975444+0 8.587509-6 8.065792+0 8.739345-6 7.214676+0 8.787383-6 6.936532+0 8.824183-6 6.687707+0 8.860267-6 6.405359+0 8.886632-6 6.176736+0 8.921857-6 5.852082+0 9.025216-6 4.941593+0 9.089848-6 4.487461+0 9.141797-6 4.175682+0 9.165425-6 4.055354+0 9.176919-6 4.005232+0 9.190791-6 3.954858+0 9.211213-6 3.906951+0 9.233103-6 3.900909+0 9.257317-6 3.962868+0 9.268654-6 4.019978+0 9.279991-6 4.095920+0 9.287362-6 4.155422+0 9.298419-6 4.259294+0 9.309476-6 4.379841+0 9.328870-6 4.626671+0 9.370688-6 5.252998+0 9.393362-6 5.595182+0 9.416036-6 5.898755+0 9.421704-6 5.965253+0 9.438710-6 6.136365+0 9.446110-6 6.196144+0 9.457210-6 6.267757+0 9.468311-6 6.316933+0 9.477916-6 6.341142+0 9.492324-6 6.346017+0 9.506732-6 6.314965+0 9.519666-6 6.259103+0 9.526377-6 6.220697+0 9.548937-6 6.051707+0 9.571496-6 5.836037+0 9.581764-6 5.727618+0 9.616615-6 5.338206+0 9.675005-6 4.712402+0 9.700456-6 4.477967+0 9.728423-6 4.256524+0 9.748208-6 4.125030+0 9.772085-6 3.996054+0 9.795961-6 3.900984+0 9.819838-6 3.840182+0 9.831776-6 3.822236+0 9.843714-6 3.812081+0 9.867591-6 3.812565+0 9.891467-6 3.834803+0 9.939220-6 3.907114+0 9.965219-6 3.939179+0 9.989747-6 3.952426+0 1.000201-5 3.951155+0 1.002041-5 3.938704+0 1.003880-5 3.914023+0 1.005860-5 3.875523+0 1.008248-5 3.816760+0 1.016445-5 3.590943+0 1.021050-5 3.490149+0 1.027311-5 3.388662+0 1.035797-5 3.272123+0 1.045996-5 3.124040+0 1.051475-5 3.035941+0 1.056944-5 2.935290+0 1.061293-5 2.842967+0 1.066271-5 2.725245+0 1.076546-5 2.478663+0 1.078848-5 2.430307+0 1.082532-5 2.361584+0 1.087196-5 2.289750+0 1.091017-5 2.241083+0 1.107375-5 2.063695+0 1.124707-5 1.857744+0 1.142038-5 1.649420+0 1.175840-5 1.263862+0 1.190000-5 1.116952+0 1.220092-5 8.365466-1 1.244515-5 6.431720-1 1.266452-5 5.004822-1 1.293955-5 3.634988-1 1.301968-5 3.330086-1 1.318749-5 2.857284-1 1.321847-5 2.794406-1 1.327301-5 2.703578-1 1.333521-5 2.632041-1 1.346859-5 2.595742-1 1.361528-5 2.744833-1 1.380384-5 3.239553-1 1.383531-5 3.358642-1 1.389832-5 3.631733-1 1.408994-5 4.745212-1 1.426292-5 6.133116-1 1.443590-5 7.924349-1 1.457428-5 9.682178-1 1.474725-5 1.231040+0 1.496442-5 1.552852+0 1.502987-5 1.600899+0 1.529491-5 1.481110+0 1.551999-5 1.262828+0 1.570970-5 1.084770+0 1.586247-5 9.487743-1 1.603245-5 8.075469-1 1.617405-5 6.999690-1 1.640774-5 5.476642-1 1.652458-5 4.862596-1 1.660792-5 4.498489-1 1.675156-5 4.035444-1 1.689598-5 3.809127-1 1.691928-5 3.798122-1 1.703589-5 3.864319-1 1.714355-5 4.126052-1 1.717232-5 4.232261-1 1.730274-5 4.926974-1 1.742993-5 5.982558-1 1.755316-5 7.421409-1 1.767253-5 9.270764-1 1.800874-5 1.756615+0 1.811387-5 2.134622+0 1.821572-5 2.568452+0 1.831439-5 3.061317+0 1.841001-5 3.617035+0 1.859228-5 4.931961+0 1.867918-5 5.698239+0 1.884755-5 7.489781+0 1.900540-5 9.613750+0 1.954412-5 2.202334+1 1.976560-5 3.094399+1 1.986667-5 3.619873+1 1.996026-5 4.191809+1 2.006184-5 4.925250+1 2.013135-5 5.508257+1 2.020896-5 6.252070+1 2.028172-5 7.054178+1 2.036619-5 8.137790+1 2.047384-5 9.813815+1 2.054206-5 1.108963+2 2.058274-5 1.194574+2 2.065312-5 1.362701+2 2.070000-5 1.491135+2 2.076528-5 1.696641+2 2.084126-5 1.984596+2 2.090775-5 2.292745+2 2.096592-5 2.619281+2 2.101682-5 2.961536+2 2.106373-5 3.336178+2 2.110033-5 3.676894+2 2.113443-5 4.039587+2 2.116427-5 4.398146+2 2.121648-5 5.133159+2 2.125564-5 5.787762+2 2.130704-5 6.801761+2 2.146533-5 1.124771+3 2.153140-5 1.379752+3 2.163713-5 1.903211+3 2.169000-5 2.242816+3 2.171643-5 2.440815+3 2.174287-5 2.662357+3 2.176930-5 2.911669+3 2.180895-5 3.348066+3 2.185990-5 4.043841+3 2.190469-5 4.807587+3 2.200441-5 7.118862+3 2.205209-5 8.532930+3 2.207624-5 9.317341+3 2.210835-5 1.041780+4 2.213327-5 1.130623+4 2.217041-5 1.265809+4 2.219988-5 1.372828+4 2.222472-5 1.460834+4 2.225029-5 1.547507+4 2.227492-5 1.625615+4 2.229680-5 1.689228+4 2.232294-5 1.756648+4 2.235355-5 1.821577+4 2.237965-5 1.863442+4 2.239318-5 1.879852+4 2.241967-5 1.901008+4 2.243498-5 1.906435+4 2.248937-5 1.884992+4 2.250811-5 1.863232+4 2.254885-5 1.792372+4 2.256815-5 1.748528+4 2.258962-5 1.692903+4 2.260343-5 1.653731+4 2.262784-5 1.578776+4 2.265338-5 1.493978+4 2.267472-5 1.419334+4 2.270214-5 1.319917+4 2.272909-5 1.220256+4 2.275603-5 1.120394+4 2.278635-5 1.009779+4 2.280992-5 9.262133+3 2.286381-5 7.474825+3 2.289347-5 6.581807+3 2.294190-5 5.281311+3 2.297958-5 4.409956+3 2.300765-5 3.839254+3 2.304610-5 3.160884+3 2.310160-5 2.372864+3 2.315710-5 1.776739+3 2.322075-5 1.279364+3 2.324739-5 1.118163+3 2.328717-5 9.189449+2 2.337908-5 6.049009+2 2.339222-5 5.731721+2 2.344590-5 4.704673+2 2.345306-5 4.597313+2 2.350318-5 4.015595+2 2.351075-5 3.951665+2 2.352398-5 3.853553+2 2.356368-5 3.656550+2 2.358089-5 3.612371+2 2.359071-5 3.597263+2 2.360790-5 3.587237+2 2.362130-5 3.592896+2 2.363045-5 3.603024+2 2.364495-5 3.628684+2 2.366891-5 3.694068+2 2.369789-5 3.804587+2 2.373515-5 3.982521+2 2.379944-5 4.329185+2 2.383695-5 4.522765+2 2.385303-5 4.598496+2 2.390661-5 4.803594+2 2.392626-5 4.856773+2 2.396376-5 4.921174+2 2.398824-5 4.936163+2 2.400220-5 4.935224+2 2.402664-5 4.917547+2 2.404820-5 4.885909+2 2.408621-5 4.797422+2 2.410284-5 4.747291+2 2.414012-5 4.614904+2 2.419794-5 4.373025+2 2.435482-5 3.707670+2 2.439727-5 3.560765+2 2.443211-5 3.454528+2 2.446772-5 3.358771+2 2.454215-5 3.194570+2 2.457691-5 3.130930+2 2.465330-5 3.009701+2 2.490716-5 2.665299+2 2.512500-5 2.397727+2 2.526900-5 2.250735+2 2.543195-5 2.113044+2 2.554342-5 2.032020+2 2.584713-5 1.843611+2 2.630268-5 1.606721+2 2.660049-5 1.474616+2 2.718047-5 1.260136+2 2.750000-5 1.161675+2 2.832413-5 9.534094+1 3.037386-5 6.044803+1 3.098576-5 5.333704+1 3.121856-5 5.100722+1 3.144424-5 4.898914+1 3.165580-5 4.734791+1 3.185415-5 4.607874+1 3.203719-5 4.520023+1 3.220897-5 4.469760+1 3.229086-5 4.458757+1 3.244703-5 4.463673+1 3.259360-5 4.498709+1 3.292081-5 4.619795+1 3.307024-5 4.643422+1 3.335888-5 4.620697+1 3.344935-5 4.632893+1 3.349247-5 4.650506+1 3.353425-5 4.677640+1 3.357472-5 4.715484+1 3.361393-5 4.765109+1 3.365191-5 4.827494+1 3.368870-5 4.903559+1 3.372435-5 4.994196+1 3.375888-5 5.100293+1 3.379233-5 5.222754+1 3.382473-5 5.362522+1 3.385613-5 5.520587+1 3.391695-5 5.902723+1 3.397397-5 6.374527+1 3.402743-5 6.946677+1 3.407755-5 7.630544+1 3.412454-5 8.437633+1 3.416859-5 9.378852+1 3.420988-5 1.046374+2 3.424860-5 1.169974+2 3.428489-5 1.309161+2 3.431892-5 1.464104+2 3.435624-5 1.666322+2 3.438073-5 1.820313+2 3.440876-5 2.020325+2 3.443505-5 2.233644+2 3.445969-5 2.459011+2 3.450589-5 2.957275+2 3.458170-5 4.033949+2 3.470525-5 6.709235+2 3.475788-5 8.291372+2 3.481425-5 1.033731+3 3.485098-5 1.188380+3 3.490338-5 1.440068+3 3.493482-5 1.609227+3 3.498429-5 1.903303+3 3.500078-5 2.008870+3 3.509186-5 2.656445+3 3.511195-5 2.812763+3 3.517223-5 3.305592+3 3.520522-5 3.587350+3 3.526510-5 4.111479+3 3.529022-5 4.332906+3 3.532611-5 4.647305+3 3.534918-5 4.846419+3 3.539012-5 5.189791+3 3.543139-5 5.517490+3 3.546803-5 5.787546+3 3.550521-5 6.036590+3 3.552396-5 6.151275+3 3.556754-5 6.386059+3 3.560855-5 6.562220+3 3.563243-5 6.643256+3 3.567613-5 6.748184+3 3.571506-5 6.792905+3 3.575832-5 6.788002+3 3.579314-5 6.742742+3 3.582678-5 6.665072+3 3.587624-5 6.493677+3 3.591197-5 6.330829+3 3.595811-5 6.077658+3 3.598047-5 5.939641+3 3.600284-5 5.792870+3 3.603094-5 5.597499+3 3.606782-5 5.325681+3 3.610338-5 5.050843+3 3.615810-5 4.612659+3 3.620097-5 4.264064+3 3.624919-5 3.874295+3 3.628670-5 3.577446+3 3.637242-5 2.935858+3 3.640323-5 2.721664+3 3.647356-5 2.271434+3 3.654388-5 1.879048+3 3.664824-5 1.404818+3 3.674879-5 1.061365+3 3.678145-5 9.710883+2 3.682064-5 8.750223+2 3.686400-5 7.830148+2 3.688734-5 7.391810+2 3.694846-5 6.412259+2 3.699348-5 5.828435+2 3.703851-5 5.344992+2 3.708354-5 4.948504+2 3.712857-5 4.626861+2 3.715729-5 4.455758+2 3.720038-5 4.242363+2 3.724898-5 4.055324+2 3.729349-5 3.925747+2 3.732877-5 3.846751+2 3.737596-5 3.768198+2 3.742486-5 3.713250+2 3.748901-5 3.671578+2 3.758306-5 3.649877+2 3.772916-5 3.649296+2 3.782804-5 3.642084+2 3.790740-5 3.624214+2 3.802340-5 3.577323+2 3.813465-5 3.514582+2 3.842944-5 3.331249+2 3.862276-5 3.235893+2 3.910000-5 3.051817+2 3.972132-5 2.786958+2 3.984915-5 2.740934+2 4.010679-5 2.662990+2 4.057229-5 2.557512+2 4.089393-5 2.500061+2 4.137354-5 2.429904+2 4.174826-5 2.385253+2 4.220000-5 2.340926+2 4.268784-5 2.303428+2 4.333737-5 2.266828+2 4.418029-5 2.236602+2 4.486845-5 2.223036+2 4.599175-5 2.217810+2 4.648410-5 2.221605+2 4.750204-5 2.239315+2 4.842105-5 2.263838+2 4.979065-5 2.315794+2 5.136831-5 2.392906+2 5.321047-5 2.502710+2 5.680637-5 2.754053+2 5.714739-5 2.788268+2 5.758805-5 2.855410+2 5.801670-5 2.949671+2 5.832000-5 3.021457+2 5.853126-5 3.065159+2 5.877069-5 3.103181+2 5.904048-5 3.130850+2 5.983519-5 3.183449+2 6.017452-5 3.219289+2 6.086229-5 3.310192+2 6.156231-5 3.396607+2 6.267345-5 3.516025+2 6.971140-5 4.398576+2 7.267727-5 4.784908+2 7.573113-5 5.176501+2 7.926767-5 5.609248+2 8.247909-5 5.964534+2 8.555434-5 6.257708+2 8.887894-5 6.512861+2 9.180906-5 6.674727+2 9.428193-5 6.750229+2 9.606491-5 6.767680+2 9.830400-5 6.735591+2 1.000006-4 6.663404+2 1.019088-4 6.531024+2 1.035894-4 6.363187+2 1.048905-4 6.209139+2 1.060188-4 6.163617+2 1.073875-4 6.380974+2 1.084147-4 6.682436+2 1.095283-4 7.097513+2 1.103002-4 7.451136+2 1.109905-4 7.829557+2 1.118724-4 8.428534+2 1.126175-4 9.076372+2 1.131979-4 9.711418+2 1.136645-4 1.033891+3 1.141147-4 1.108275+3 1.145567-4 1.200110+3 1.149732-4 1.311499+3 1.152995-4 1.423164+3 1.155927-4 1.549228+3 1.158988-4 1.716410+3 1.160008-4 1.782329+3 1.162863-4 2.000761+3 1.164291-4 2.132126+3 1.165718-4 2.280929+3 1.167146-4 2.449335+3 1.168574-4 2.639581+3 1.170715-4 2.970823+3 1.172856-4 3.363553+3 1.176255-4 4.127837+3 1.180591-4 5.371311+3 1.183128-4 6.232167+3 1.186751-4 7.597167+3 1.189650-4 8.755596+3 1.190284-4 9.010998+3 1.192430-4 9.865997+3 1.194174-4 1.053598+4 1.195535-4 1.103276+4 1.197002-4 1.153372+4 1.198724-4 1.206411+4 1.200432-4 1.251644+4 1.201064-4 1.266293+4 1.202762-4 1.299505+4 1.204250-4 1.320705+4 1.206129-4 1.336214+4 1.206889-4 1.338797+4 1.209669-4 1.329834+4 1.210462-4 1.322024+4 1.212622-4 1.289361+4 1.214292-4 1.253393+4 1.215526-4 1.221376+4 1.217112-4 1.174181+4 1.218508-4 1.127794+4 1.219674-4 1.086163+4 1.221174-4 1.029591+4 1.222623-4 9.725443+3 1.224435-4 8.993993+3 1.226337-4 8.221583+3 1.226971-4 7.966239+3 1.230143-4 6.731445+3 1.230655-4 6.541339+3 1.234241-4 5.308807+3 1.240958-4 3.538678+3 1.243355-4 3.075816+3 1.245391-4 2.743337+3 1.247593-4 2.438692+3 1.250565-4 2.103805+3 1.253861-4 1.813007+3 1.257537-4 1.561972+3 1.261929-4 1.332854+3 1.266953-4 1.140582+3 1.270749-4 1.043296+3 1.274150-4 1.000370+3 1.276856-4 1.005452+3 1.278857-4 1.037100+3 1.280707-4 1.091145+3 1.282205-4 1.154474+3 1.282672-4 1.178099+3 1.283852-4 1.246317+3 1.284852-4 1.314244+3 1.286294-4 1.429122+3 1.287843-4 1.575864+3 1.292939-4 2.237679+3 1.296313-4 2.825891+3 1.297595-4 3.078310+3 1.299834-4 3.552979+3 1.301192-4 3.858945+3 1.303335-4 4.363546+3 1.304879-4 4.738804+3 1.306151-4 5.051972+3 1.307725-4 5.440285+3 1.309433-4 5.856838+3 1.311242-4 6.284690+3 1.312483-4 6.565630+3 1.314068-4 6.904367+3 1.315756-4 7.234146+3 1.316347-4 7.340837+3 1.318370-4 7.666030+3 1.319238-4 7.784907+3 1.322196-4 8.085499+3 1.323508-4 8.163623+3 1.325779-4 8.215242+3 1.326808-4 8.203702+3 1.328558-4 8.135342+3 1.329898-4 8.043312+3 1.330993-4 7.944230+3 1.332429-4 7.784106+3 1.334276-4 7.533733+3 1.335860-4 7.285475+3 1.337839-4 6.941322+3 1.339918-4 6.551947+3 1.340611-4 6.418117+3 1.344174-4 5.720720+3 1.347023-4 5.178283+3 1.352614-4 4.235542+3 1.355824-4 3.790849+3 1.357430-4 3.596546+3 1.359891-4 3.333573+3 1.361500-4 3.183069+3 1.363613-4 3.008977+3 1.365662-4 2.863021+3 1.368760-4 2.679198+3 1.372100-4 2.521506+3 1.375675-4 2.388645+3 1.379451-4 2.278491+3 1.384695-4 2.162291+3 1.389747-4 2.078368+3 1.393497-4 2.028377+3 1.400321-4 1.955142+3 1.404192-4 1.920318+3 1.415889-4 1.831496+3 1.428463-4 1.754767+3 1.445475-4 1.677370+3 1.462177-4 1.623989+3 1.485000-4 1.574615+3 1.510620-4 1.538965+3 1.536000-4 1.515975+3 1.631700-4 1.452248+3 1.685807-4 1.409243+3 1.757924-4 1.345365+3 1.842454-4 1.269623+3 1.972438-4 1.158782+3 2.176946-4 1.005031+3 2.306362-4 9.197477+2 2.369586-4 8.789983+2 2.393904-4 8.622526+2 2.437521-4 8.281460+2 2.467235-4 8.036939+2 2.481500-4 7.958861+2 2.498502-4 7.924100+2 2.538417-4 7.964222+2 2.556901-4 7.962623+2 2.590080-4 7.914463+2 2.650000-4 7.780123+2 2.767922-4 7.491095+2 2.921628-4 7.108269+2 3.037538-4 6.832885+2 3.153229-4 6.557971+2 3.353199-4 6.067269+2 3.382861-4 6.022761+2 3.416832-4 6.006739+2 3.464626-4 6.002335+2 3.589911-4 5.912799+2 3.851484-4 5.606637+2 4.039402-4 5.333952+2 4.124242-4 5.210519+2 4.203469-4 5.128433+2 4.365195-4 4.925962+2 4.588496-4 4.575546+2 4.743142-4 4.296931+2 4.897788-4 3.982472+2 5.021307-4 3.699107+2 5.142964-4 3.387849+2 5.220969-4 3.177925+2 5.310338-4 2.936684+2 5.405524-4 2.695935+2 5.446575-4 2.586241+2 5.471130-4 2.515158+2 5.505625-4 2.410008+2 5.553054-4 2.260265+2 5.573500-4 2.194400+2 5.615000-4 2.057572+2 5.660000-4 1.904643+2 5.696900-4 1.778005+2 5.800000-4 1.450925+2 5.829421-4 1.375121+2 5.853625-4 1.322219+2 5.880000-4 1.276324+2 5.905409-4 1.245614+2 5.934981-4 1.229048+2 5.965287-4 1.236280+2 5.994492-4 1.269103+2 6.023639-4 1.329579+2 6.049481-4 1.408084+2 6.067472-4 1.477234+2 6.093888-4 1.601023+2 6.130960-4 1.820287+2 6.167585-4 2.089610+2 6.253734-4 2.926831+2 6.287487-4 3.327737+2 6.335000-4 3.951323+2 6.366050-4 4.390856+2 6.385000-4 4.669692+2 6.413025-4 5.094667+2 6.430000-4 5.358324+2 6.460458-4 5.840778+2 6.480000-4 6.155191+2 6.515000-4 6.724224+2 6.561000-4 7.476191+2 6.610331-4 8.277465+2 6.657500-4 9.029979+2 6.709530-4 9.837226+2 6.780000-4 1.088371+3 6.845731-4 1.180436+3 6.914678-4 1.270967+3 6.965000-4 1.332986+3 7.040000-4 1.418776+3 7.135000-4 1.516973+3 7.237624-4 1.611622+3 7.297873-4 1.662349+3 7.414123-4 1.751584+3 7.543404-4 1.839647+3 7.680000-4 1.921748+3 7.838728-4 2.004310+3 7.969478-4 2.062498+3 8.162681-4 2.136542+3 8.346701-4 2.194677+3 8.542853-4 2.243498+3 8.906762-4 2.304969+3 8.951589-4 2.330335+3 8.997568-4 2.376295+3 9.043273-4 2.441834+3 9.066742-4 2.479281+3 9.124775-4 2.557723+3 9.149242-4 2.575206+3 9.172950-4 2.579832+3 9.197092-4 2.572081+3 9.220470-4 2.554435+3 9.302229-4 2.465237+3 9.324618-4 2.447265+3 9.353000-4 2.434089+3 9.390390-4 2.433865+3 9.455290-4 2.470002+3 9.538313-4 2.553353+3 9.627673-4 2.670098+3 9.661610-4 2.717060+3 9.723913-4 2.789995+3 9.763468-4 2.818626+3 9.788014-4 2.828330+3 9.819798-4 2.833179+3 9.917684-4 2.829879+3 9.962902-4 2.836946+3 1.000513-3 2.851653+3 1.026242-3 2.979219+3 1.048717-3 3.064407+3 1.079509-3 3.157330+3 1.109341-3 3.228964+3 1.143159-3 3.288434+3 1.177888-3 3.327687+3 1.212691-3 3.347625+3 1.248968-3 3.346404+3 1.255770-3 3.352645+3 1.264148-3 3.370446+3 1.277163-3 3.418773+3 1.298487-3 3.509634+3 1.312926-3 3.555699+3 1.335609-3 3.603960+3 1.371485-3 3.654511+3 1.413587-3 3.694535+3 1.461358-3 3.724734+3 1.518621-3 3.748311+3 1.612598-3 3.764741+3 1.643378-3 3.781388+3 1.680226-3 3.792169+3 1.729103-3 3.791488+3 1.782435-3 3.782014+3 1.857105-3 3.807534+3 1.921985-3 3.805390+3 2.006781-3 3.791958+3 2.101389-3 3.766430+3 2.210097-3 3.725591+3 2.328825-3 3.674213+3 2.447654-3 3.615170+3 2.581177-3 3.539559+3 2.733408-3 3.448849+3 2.888075-3 3.347560+3 3.046386-3 3.235034+3 3.200622-3 3.116353+3 3.352486-3 2.991349+3 3.479866-3 2.877587+3 3.600089-3 2.760410+3 3.704503-3 2.649403+3 3.792892-3 2.545569+3 3.866729-3 2.448359+3 3.935501-3 2.344586+3 3.989158-3 2.252764+3 4.036821-3 2.158827+3 4.069252-3 2.084556+3 4.102063-3 1.996641+3 4.127761-3 1.916547+3 4.185532-3 1.723534+3 4.201878-3 1.684223+3 4.209230-3 1.671849+3 4.218891-3 1.661561+3 4.227587-3 1.658538+3 4.238250-3 1.663083+3 4.248431-3 1.675575+3 4.258613-3 1.695187+3 4.276723-3 1.743621+3 4.316848-3 1.872938+3 4.332864-3 1.918512+3 4.341352-3 1.939423+3 4.357259-3 1.971936+3 4.375347-3 1.998936+3 4.406945-3 2.029285+3 4.440144-3 2.060854+3 4.453998-3 2.080422+3 4.471034-3 2.112386+3 4.491805-3 2.163729+3 4.519022-3 2.247624+3 4.559686-3 2.385299+3 4.590170-3 2.478816+3 4.611747-3 2.534766+3 4.637229-3 2.589517+3 4.665586-3 2.638256+3 4.706965-3 2.692805+3 4.746586-3 2.732260+3 4.802226-3 2.772341+3 4.855855-3 2.795843+3 4.905157-3 2.803628+3 4.947766-3 2.798238+3 5.047068-3 2.758113+3 5.066261-3 2.759699+3 5.083232-3 2.768241+3 5.111529-3 2.798432+3 5.163555-3 2.888231+3 5.191735-3 2.938349+3 5.216811-3 2.976651+3 5.243616-3 3.009660+3 5.283085-3 3.045684+3 5.329596-3 3.075483+3 5.382399-3 3.099450+3 5.441266-3 3.118166+3 5.509125-3 3.132308+3 5.602588-3 3.142712+3 5.781444-3 3.141055+3 5.885311-3 3.129352+3 6.059507-3 3.094156+3 6.194631-3 3.048855+3 6.281799-3 3.011541+3 6.345999-3 2.996515+3 6.524245-3 3.005814+3 6.711741-3 2.973384+3 6.830510-3 2.978499+3 6.937243-3 2.981566+3 7.104223-3 2.964933+3 7.362452-3 2.921128+3 7.803555-3 2.829429+3 8.347616-3 2.705117+3 8.874712-3 2.583689+3 9.580794-3 2.422509+3 1.034398-2 2.257705+3 1.125253-2 2.077352+3 1.224363-2 1.898843+3 1.333282-2 1.723352+3 1.396354-2 1.630643+3 1.462178-2 1.539833+3 1.524594-2 1.458066+3 1.593071-2 1.372617+3 1.653897-2 1.299831+3 1.703433-2 1.242165+3 1.748672-2 1.190204+3 1.785572-2 1.147456+3 1.819701-2 1.107398+3 1.848737-2 1.072206+3 1.871412-2 1.043290+3 1.889188-2 1.019239+3 1.905461-2 9.955315+2 1.919681-2 9.726202+2 1.931254-2 9.515069+2 1.940284-2 9.328786+2 1.953515-2 9.019966+2 1.971216-2 8.600483+2 1.979532-2 8.453566+2 1.986424-2 8.380793+2 1.992157-2 8.360537+2 1.999080-2 8.385001+2 2.008009-2 8.482721+2 2.030659-2 8.859787+2 2.044366-2 9.042811+2 2.052551-2 9.119382+2 2.062210-2 9.182734+2 2.073230-2 9.228089+2 2.087598-2 9.257993+2 2.103744-2 9.265638+2 2.141017-2 9.218404+2 2.187154-2 9.087164+2 2.245174-2 8.858593+2 2.306501-2 8.569665+2 2.338438-2 8.401673+2 2.391939-2 8.087522+2 2.415504-2 7.930798+2 2.435712-2 7.780725+2 2.450998-2 7.652083+2 2.473129-2 7.436534+2 2.501827-2 7.150683+2 2.514455-2 7.063584+2 2.526458-2 7.019993+2 2.539598-2 7.013373+2 2.609302-2 7.145596+2 2.660984-2 7.294715+2 2.688884-2 7.324185+2 2.730549-2 7.306639+2 2.784868-2 7.235127+2 2.882380-2 7.049852+2 2.968781-2 6.859560+2 3.128228-2 6.488786+2 3.316043-2 6.058648+2 3.603128-2 5.456827+2 3.871601-2 4.958162+2 4.170398-2 4.464845+2 4.538352-2 3.941905+2 4.926597-2 3.479301+2 5.300136-2 3.101193+2 5.758541-2 2.707472+2 6.554504-2 2.172535+2 7.768059-2 1.613780+2 9.124076-2 1.209190+2 9.952568-2 1.030585+2 1.078176-1 8.854152+1 1.125049-1 8.144144+1 1.164294-1 7.596714+1 1.220974-1 6.864248+1 1.244222-1 6.576267+1 1.263449-1 6.339092+1 1.278750-1 6.147839+1 1.291562-1 5.982686+1 1.302418-1 5.835258+1 1.311287-1 5.705178+1 1.318327-1 5.591953+1 1.329809-1 5.384076+1 1.343493-1 5.134756+1 1.349306-1 5.057789+1 1.355477-1 5.011823+1 1.360897-1 5.004385+1 1.367223-1 5.028201+1 1.385708-1 5.160090+1 1.394991-1 5.199442+1 1.400671-1 5.210463+1 1.408878-1 5.213226+1 1.418676-1 5.202848+1 1.442371-1 5.145159+1 1.468543-1 5.053885+1 1.507260-1 4.896973+1 1.553604-1 4.700116+1 1.617228-1 4.429143+1 1.727841-1 3.986627+1 1.904580-1 3.384198+1 2.113990-1 2.822261+1 2.407155-1 2.238308+1 2.851018-1 1.644818+1 3.530307-1 1.106153+1 4.370659-1 7.392912+0 5.761650-1 4.358633+0 8.709636-1 1.959452+0 1.286622+0 9.151227-1 1.947381+0 4.043400-1 3.556850+0 1.221888-1 1.070165+1 1.354352-2 3.231848+1 1.485123-3 9.760024+1 1.628398-4 2.947480+2 1.785501-5 8.901248+2 1.957763-6 3.162278+3 1.551179-7 1.000000+4 1.551179-8 3.162278+4 1.551179-9 1.000000+5 1.55118-10 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.654200-6 1.258900-6 4.206500-6 1.584900-6 6.666900-6 1.995300-6 1.056600-5 2.511900-6 1.674600-5 3.162300-6 2.654100-5 3.981100-6 4.206500-5 5.011900-6 6.666800-5 6.309600-6 1.056600-4 7.943300-6 1.674600-4 1.000000-5 2.654000-4 1.258900-5 4.206300-4 1.584900-5 6.663100-4 1.995300-5 1.055300-3 2.511900-5 1.671700-3 3.162300-5 2.648400-3 3.981100-5 4.196100-3 5.011900-5 6.648800-3 6.309600-5 1.053500-2 7.943300-5 1.666600-2 1.000000-4 2.635300-2 1.258900-4 4.166700-2 1.584900-4 6.570000-2 1.995300-4 1.033900-1 2.511900-4 1.619700-1 3.162300-4 2.520500-1 3.981100-4 3.881300-1 5.011900-4 5.857800-1 6.309600-4 8.629300-1 7.943300-4 1.232200+0 1.000000-3 1.703000+0 1.258900-3 2.291900+0 1.584900-3 3.033500+0 1.995300-3 3.979900+0 2.511900-3 5.159800+0 3.162300-3 6.590000+0 3.981100-3 8.290300+0 5.011900-3 1.027300+1 6.309600-3 1.251600+1 7.943300-3 1.503400+1 1.000000-2 1.788200+1 1.258900-2 2.104200+1 1.584900-2 2.433900+1 1.995300-2 2.756900+1 2.511900-2 3.059700+1 3.162300-2 3.345900+1 3.981100-2 3.598700+1 5.011900-2 3.803500+1 6.309600-2 3.944100+1 7.943300-2 4.014000+1 1.000000-1 4.011600+1 1.258900-1 3.948300+1 1.584900-1 3.827500+1 1.995300-1 3.663100+1 2.511900-1 3.460000+1 3.162300-1 3.235300+1 3.981100-1 2.997900+1 5.011900-1 2.754900+1 6.309600-1 2.512900+1 7.943300-1 2.276000+1 1.000000+0 2.047200+1 1.258900+0 1.828600+1 1.584900+0 1.622000+1 1.995300+0 1.429900+1 2.511900+0 1.251900+1 3.162300+0 1.089100+1 3.981100+0 9.417000+0 5.011900+0 8.096700+0 6.309600+0 6.924800+0 7.943300+0 5.893800+0 1.000000+1 4.993800+0 1.258900+1 4.214100+0 1.584900+1 3.543100+0 1.995300+1 2.969100+0 2.511900+1 2.480500+0 3.162300+1 2.066700+0 3.981100+1 1.717800+0 5.011900+1 1.424600+0 6.309600+1 1.179100+0 7.943300+1 9.740600-1 1.000000+2 8.033800-1 1.258900+2 6.616000-1 1.584900+2 5.440900-1 1.995300+2 4.468800-1 2.511900+2 3.666100-1 3.162300+2 3.004300-1 3.981100+2 2.459500-1 5.011900+2 2.011600-1 6.309600+2 1.643800-1 7.943300+2 1.342200-1 1.000000+3 1.095100-1 1.258900+3 8.928000-2 1.584900+3 7.273900-2 1.995300+3 5.922500-2 2.511900+3 4.819200-2 3.162300+3 3.919200-2 3.981100+3 3.185500-2 5.011900+3 2.587800-2 6.309600+3 2.101200-2 7.943300+3 1.705300-2 1.000000+4 1.383400-2 1.258900+4 1.121700-2 1.584900+4 9.091500-3 1.995300+4 7.365800-3 2.511900+4 5.965400-3 3.162300+4 4.829400-3 3.981100+4 3.908300-3 5.011900+4 3.161900-3 6.309600+4 2.557100-3 7.943300+4 2.067300-3 1.000000+5 1.670900-3 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510166-4 3.162278-4 3.159557-4 3.981072-4 3.976777-4 5.011872-4 5.005114-4 6.309573-4 6.298966-4 7.943282-4 7.926691-4 1.000000-3 9.974111-4 1.258925-3 1.254884-3 1.584893-3 1.578567-3 1.995262-3 1.985326-3 2.511886-3 2.496279-3 3.162278-3 3.137800-3 3.981072-3 3.942675-3 5.011872-3 4.951924-3 6.309573-3 6.216010-3 7.943282-3 7.797108-3 1.000000-2 9.771929-3 1.258925-2 1.223451-2 1.584893-2 1.529891-2 1.995262-2 1.910513-2 2.511886-2 2.381855-2 3.162278-2 2.963688-2 3.981072-2 3.678872-2 5.011872-2 4.554883-2 6.309573-2 5.624435-2 7.943282-2 6.926076-2 1.000000-1 8.502705-2 1.258925-1 1.040124-1 1.584893-1 1.269144-1 1.995262-1 1.541948-1 2.511886-1 1.868822-1 3.162278-1 2.257494-1 3.981072-1 2.718551-1 5.011872-1 3.264087-1 6.309573-1 3.907427-1 7.943282-1 4.665922-1 1.000000+0 5.558932-1 1.258925+0 6.611977-1 1.584893+0 7.855145-1 1.995262+0 9.325216-1 2.511886+0 1.107078+0 3.162278+0 1.314785+0 3.981072+0 1.562781+0 5.011872+0 1.859668+0 6.309573+0 2.216127+0 7.943282+0 2.644476+0 1.000000+1 3.160995+0 1.258925+1 3.785155+0 1.584893+1 4.540322+0 1.995262+1 5.455622+0 2.511886+1 6.566394+0 3.162278+1 7.916244+0 3.981072+1 9.559138+0 5.011872+1 1.155984+1 6.309573+1 1.399943+1 7.943282+1 1.697708+1 1.000000+2 2.061455+1 1.258925+2 2.506179+1 1.584893+2 3.050328+1 1.995262+2 3.716678+1 2.511886+2 4.533196+1 3.162278+2 5.534465+1 3.981072+2 6.762914+1 5.011872+2 8.271255+1 6.309573+2 1.012421+2 7.943282+2 1.240182+2 1.000000+3 1.520277+2 1.258925+3 1.864904+2 1.584893+3 2.289171+2 1.995262+3 2.811746+2 2.511886+3 3.455637+2 3.162278+3 4.249324+2 3.981072+3 5.228149+2 5.011872+3 6.435786+2 6.309573+3 7.926432+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88195-10 1.995262-5 1.090622-9 2.511886-5 1.728491-9 3.162278-5 2.739507-9 3.981072-5 4.341877-9 5.011872-5 6.881397-9 6.309573-5 1.090597-8 7.943282-5 1.727633-8 1.000000-4 2.737290-8 1.258925-4 4.337368-8 1.584893-4 6.868404-8 1.995262-4 1.087529-7 2.511886-4 1.720896-7 3.162278-4 2.720612-7 3.981072-4 4.294561-7 5.011872-4 6.758294-7 6.309573-4 1.060754-6 7.943282-4 1.659166-6 1.000000-3 2.588941-6 1.258925-3 4.041034-6 1.584893-3 6.325781-6 1.995262-3 9.936441-6 2.511886-3 1.560767-5 3.162278-3 2.447760-5 3.981072-3 3.839652-5 5.011872-3 5.994802-5 6.309573-3 9.356374-5 7.943282-3 1.461744-4 1.000000-2 2.280709-4 1.258925-2 3.547402-4 1.584893-2 5.500176-4 1.995262-2 8.474957-4 2.511886-2 1.300312-3 3.162278-2 1.985898-3 3.981072-2 3.021994-3 5.011872-2 4.569893-3 6.309573-2 6.851386-3 7.943282-2 1.017206-2 1.000000-1 1.497295-2 1.258925-1 2.188018-2 1.584893-1 3.157496-2 1.995262-1 4.533139-2 2.511886-1 6.430643-2 3.162278-1 9.047837-2 3.981072-1 1.262521-1 5.011872-1 1.747785-1 6.309573-1 2.402147-1 7.943282-1 3.277360-1 1.000000+0 4.441068-1 1.258925+0 5.977277-1 1.584893+0 7.993787-1 1.995262+0 1.062741+0 2.511886+0 1.404808+0 3.162278+0 1.847493+0 3.981072+0 2.418291+0 5.011872+0 3.152204+0 6.309573+0 4.093446+0 7.943282+0 5.298807+0 1.000000+1 6.839005+0 1.258925+1 8.804099+0 1.584893+1 1.130861+1 1.995262+1 1.449700+1 2.511886+1 1.855247+1 3.162278+1 2.370653+1 3.981072+1 3.025158+1 5.011872+1 3.855888+1 6.309573+1 4.909631+1 7.943282+1 6.245575+1 1.000000+2 7.938545+1 1.258925+2 1.008307+2 1.584893+2 1.279860+2 1.995262+2 1.623594+2 2.511886+2 2.058567+2 3.162278+2 2.608831+2 3.981072+2 3.304780+2 5.011872+2 4.184747+2 6.309573+2 5.297152+2 7.943282+2 6.703100+2 1.000000+3 8.479723+2 1.258925+3 1.072435+3 1.584893+3 1.355976+3 1.995262+3 1.714088+3 2.511886+3 2.166323+3 3.162278+3 2.737345+3 3.981072+3 3.458257+3 5.011872+3 4.368294+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.710000-6 1.054726+7 5.860000-6 9.788720+6 6.700000-6 6.461880+6 7.700000-6 4.229880+6 8.810489-6 2.828501+6 9.020000-6 2.640197+6 9.020000-6 4.946930+6 9.120108-6 4.787114+6 9.440609-6 4.372291+6 9.772372-6 4.007645+6 1.011579-5 3.687306+6 1.047129-5 3.409447+6 1.078000-5 3.203394+6 1.078000-5 4.534441+6 1.083927-5 4.472779+6 1.085000-5 4.462518+6 1.087000-5 4.444130+6 1.100000-5 4.337118+6 1.122018-5 4.169536+6 1.148154-5 3.991781+6 1.161449-5 3.909211+6 1.190000-5 3.751152+6 1.202264-5 3.689216+6 1.230269-5 3.562151+6 1.244515-5 3.503252+6 1.273503-5 3.396942+6 1.290000-5 3.342728+6 1.318257-5 3.261354+6 1.333521-5 3.222160+6 1.364583-5 3.153465+6 1.380384-5 3.123390+6 1.410000-5 3.076297+6 1.428894-5 3.050758+6 1.450000-5 3.027900+6 1.480000-5 3.001904+6 1.496236-5 2.991882+6 1.531087-5 2.977640+6 1.550000-5 2.974481+6 1.584893-5 2.975575+6 1.592100-5 2.976233+6 1.603245-5 2.979390+6 1.659587-5 3.005974+6 1.717908-5 3.056254+6 1.737801-5 3.076922+6 1.778279-5 3.127329+6 1.819701-5 3.185918+6 1.840772-5 3.219656+6 1.862087-5 3.256585+6 1.905461-5 3.334244+6 1.980000-5 3.491527+6 2.018366-5 3.579629+6 2.070000-5 3.708541+6 2.150000-5 3.924211+6 2.162719-5 3.960992+6 2.290868-5 4.359103+6 2.317395-5 4.447289+6 2.426610-5 4.833238+6 2.510000-5 5.149137+6 2.510000-5 3.588650+7 2.520000-5 3.487422+7 2.560000-5 3.215458+7 2.600160-5 2.992038+7 2.630268-5 2.848523+7 2.650000-5 2.766655+7 2.690000-5 2.613607+7 2.750000-5 2.426694+7 2.754229-5 2.415416+7 2.818383-5 2.258172+7 2.900000-5 2.102154+7 2.917427-5 2.074650+7 2.985383-5 1.977161+7 3.054921-5 1.898421+7 3.090295-5 1.863416+7 3.150000-5 1.814428+7 3.230000-5 1.758879+7 3.311311-5 1.717590+7 3.350000-5 1.701021+7 3.388442-5 1.685883+7 3.400000-5 1.681709+7 3.507519-5 1.653370+7 3.570000-5 1.641653+7 3.630781-5 1.632392+7 3.715352-5 1.625856+7 3.758374-5 1.623948+7 3.879000-5 1.622254+7 3.879000-5 2.710404+7 3.900000-5 2.674536+7 3.910000-5 2.657887+7 3.935501-5 2.619934+7 3.940000-5 2.613486+7 3.981072-5 2.560822+7 4.000000-5 2.537627+7 4.073803-5 2.463071+7 4.120975-5 2.425001+7 4.150000-5 2.402843+7 4.220000-5 2.358152+7 4.229500-5 2.352354+7 4.330000-5 2.302194+7 4.365158-5 2.288410+7 4.450000-5 2.257967+7 4.466836-5 2.253056+7 4.500000-5 2.243241+7 4.598600-5 2.218519+7 4.623810-5 2.213653+7 4.731513-5 2.194784+7 4.800000-5 2.184271+7 4.900000-5 2.173783+7 5.069907-5 2.161532+7 5.128614-5 2.158131+7 5.188000-5 2.155999+7 5.400000-5 2.152542+7 5.432503-5 2.152191+7 5.500000-5 2.152123+7 5.623413-5 2.152344+7 5.754399-5 2.155510+7 5.821032-5 2.156552+7 5.956621-5 2.158170+7 6.025596-5 2.159819+7 6.088000-5 2.161653+7 6.088000-5 2.206459+7 6.095369-5 2.206605+7 6.165950-5 2.206568+7 6.290000-5 2.204775+7 6.400000-5 2.204187+7 6.450000-5 2.203043+7 6.500000-5 2.202036+7 6.531306-5 2.200899+7 6.683439-5 2.196630+7 6.800000-5 2.191705+7 6.918310-5 2.185255+7 7.000000-5 2.179396+7 7.079458-5 2.174158+7 7.161434-5 2.167607+7 7.244360-5 2.159313+7 7.328245-5 2.151299+7 7.413102-5 2.142057+7 7.500000-5 2.130894+7 7.585776-5 2.120364+7 7.673615-5 2.108305+7 7.762471-5 2.094394+7 7.852356-5 2.080798+7 7.943282-5 2.065658+7 8.000000-5 2.055023+7 8.150000-5 2.027828+7 8.222426-5 2.013759+7 8.413951-5 1.973276+7 8.511380-5 1.951806+7 8.609938-5 1.928514+7 8.709636-5 1.905595+7 8.810489-5 1.881290+7 9.015711-5 1.829464+7 9.120108-5 1.802394+7 9.332543-5 1.744902+7 9.440609-5 1.715063+7 9.500000-5 1.697738+7 9.549926-5 1.683406+7 9.660509-5 1.652406+7 9.772372-5 1.620224+7 9.800000-5 1.611891+7 1.000000-4 1.553523+7 1.010000-4 1.524122+7 1.011579-4 1.519275+7 1.030000-4 1.464445+7 1.040000-4 1.434558+7 1.059254-4 1.376257+7 1.060000-4 1.374068+7 1.071519-4 1.339468+7 1.090000-4 1.283795+7 1.100000-4 1.253855+7 1.122018-4 1.188616+7 1.128000-4 1.171085+7 1.135011-4 1.150099+7 1.150000-4 1.106933+7 1.161449-4 1.074349+7 1.180000-4 1.022081+7 1.190000-4 9.944778+6 1.205000-4 9.534043+6 1.216186-4 9.233239+6 1.220000-4 9.133553+6 1.240000-4 8.616354+6 1.244515-4 8.501398+6 1.250000-4 8.364372+6 1.260000-4 8.114479+6 1.273503-4 7.792027+6 1.280000-4 7.638774+6 1.296600-4 7.252660+6 1.296600-4 8.106365+6 1.299000-4 8.088860+6 1.303167-4 8.050195+6 1.308000-4 8.008280+6 1.314000-4 7.960448+6 1.315000-4 7.952681+6 1.320000-4 7.914101+6 1.327000-4 7.863830+6 1.333521-4 7.819873+6 1.335000-4 7.811245+6 1.340000-4 7.779042+6 1.343000-4 7.760792+6 1.350000-4 7.715989+6 1.358000-4 7.659968+6 1.365000-4 7.609938+6 1.373000-4 7.547258+6 1.380384-4 7.486065+6 1.387000-4 7.427830+6 1.390000-4 7.398404+6 1.396368-4 7.335569+6 1.400000-4 7.296047+6 1.403000-4 7.263119+6 1.412538-4 7.149719+6 1.423000-4 7.015821+6 1.424700-4 6.992117+6 1.424700-4 7.550381+6 1.428894-4 7.517382+6 1.430000-4 7.508653+6 1.433000-4 7.484429+6 1.436000-4 7.456770+6 1.440000-4 7.423275+6 1.445000-4 7.382512+6 1.458000-4 7.273156+6 1.462177-4 7.237533+6 1.465000-4 7.213569+6 1.471300-4 7.161726+6 1.472000-4 7.155901+6 1.480000-4 7.085671+6 1.485000-4 7.041316+6 1.487000-4 7.022820+6 1.496236-4 6.937018+6 1.500000-4 6.901493+6 1.505000-4 6.851419+6 1.513561-4 6.763848+6 1.520000-4 6.697168+6 1.528000-4 6.606051+6 1.535000-4 6.524742+6 1.540000-4 6.464243+6 1.545000-4 6.402032+6 1.555000-4 6.272356+6 1.560000-4 6.205175+6 1.565000-4 6.138465+6 1.566751-4 6.113953+6 1.570000-4 6.068965+6 1.575000-4 5.999272+6 1.580000-4 5.927265+6 1.585000-4 5.855526+6 1.595000-4 5.709874+6 1.600000-4 5.635857+6 1.610000-4 5.490215+6 1.620000-4 5.343351+6 1.621810-4 5.316623+6 1.627000-4 5.241053+6 1.640590-4 5.043053+6 1.645800-4 4.968982+6 1.650000-4 4.908517+6 1.670000-4 4.630379+6 1.678804-4 4.511851+6 1.690000-4 4.363547+6 1.698244-4 4.257271+6 1.720000-4 3.987827+6 1.740000-4 3.754838+6 1.757924-4 3.556396+6 1.760000-4 3.534304+6 1.778279-4 3.343471+6 1.780000-4 3.326204+6 1.798871-4 3.142012+6 1.800000-4 3.131302+6 1.835000-4 2.816285+6 1.840772-4 2.767936+6 1.865000-4 2.572185+6 1.880000-4 2.459125+6 1.900000-4 2.317212+6 1.915000-4 2.215758+6 1.927525-4 2.134883+6 1.940000-4 2.058218+6 1.955000-4 1.970079+6 1.972423-4 1.873219+6 1.980000-4 1.832757+6 1.995262-4 1.754152+6 2.018366-4 1.643012+6 2.020000-4 1.635583+6 2.060000-4 1.465313+6 2.065380-4 1.444179+6 2.089296-4 1.354716+6 2.100000-4 1.317617+6 2.113489-4 1.272648+6 2.150000-4 1.161341+6 2.162719-4 1.125706+6 2.190000-4 1.055394+6 2.220000-4 9.860922+5 2.238721-4 9.470135+5 2.240900-4 9.426130+5 2.250000-4 9.246151+5 2.270000-4 8.870426+5 2.280000-4 8.692155+5 2.290868-4 8.508838+5 2.307000-4 8.252434+5 2.308600-4 8.227769+5 2.323000-4 8.012248+5 2.330000-4 7.911288+5 2.340000-4 7.771121+5 2.344229-4 7.713536+5 2.350000-4 7.637702+5 2.358000-4 7.535198+5 2.373000-4 7.350244+5 2.380000-4 7.267865+5 2.390000-4 7.154107+5 2.400000-4 7.045277+5 2.407000-4 6.972366+5 2.423000-4 6.813603+5 2.426610-4 6.778975+5 2.440000-4 6.654263+5 2.445000-4 6.609214+5 2.454709-4 6.523938+5 2.458000-4 6.496874+5 2.473000-4 6.378693+5 2.483133-4 6.302785+5 2.490000-4 6.252245+5 2.505000-4 6.147285+5 2.511886-4 6.100681+5 2.515800-4 6.075899+5 2.515800-4 9.439099+5 2.520000-4 9.403035+5 2.530000-4 9.319131+5 2.540000-4 9.237574+5 2.540973-4 9.229810+5 2.550000-4 9.160021+5 2.560000-4 9.084852+5 2.570396-4 9.009044+5 2.573000-4 8.990913+5 2.580000-4 8.943161+5 2.600160-4 8.810675+5 2.620000-4 8.688109+5 2.630268-4 8.629003+5 2.640000-4 8.576341+5 2.645000-4 8.549948+5 2.650000-4 8.524507+5 2.680000-4 8.379702+5 2.691535-4 8.327292+5 2.722701-4 8.203922+5 2.730000-4 8.176707+5 2.754229-4 8.096371+5 2.786121-4 8.007528+5 2.818383-4 7.926216+5 2.850000-4 7.862537+5 2.851018-4 7.860531+5 2.884032-4 7.798501+5 2.917427-4 7.750820+5 2.951209-4 7.708245+5 2.980000-4 7.683256+5 2.985383-4 7.678778+5 3.000000-4 7.667455+5 3.019952-4 7.650239+5 3.030000-4 7.643418+5 3.054921-4 7.629916+5 3.090295-4 7.619803+5 3.100000-4 7.617297+5 3.126079-4 7.615084+5 3.157400-4 7.615674+5 3.162278-4 7.615687+5 3.200000-4 7.617312+5 3.221870-4 7.622433+5 3.235937-4 7.625486+5 3.240000-4 7.626001+5 3.273407-4 7.634500+5 3.311311-4 7.644547+5 3.320000-4 7.646310+5 3.349654-4 7.657920+5 3.350000-4 7.658036+5 3.378700-4 7.668565+5 3.378700-4 9.155771+5 3.381000-4 9.143804+5 3.388442-4 9.088740+5 3.390000-4 9.079301+5 3.395000-4 9.049809+5 3.403000-4 9.012467+5 3.410000-4 8.985991+5 3.422000-4 8.950848+5 3.427678-4 8.938030+5 3.433000-4 8.925804+5 3.448000-4 8.899634+5 3.467369-4 8.875277+5 3.470000-4 8.871969+5 3.500000-4 8.845994+5 3.507519-4 8.841054+5 3.548134-4 8.813495+5 3.550000-4 8.812256+5 3.589219-4 8.789958+5 3.600000-4 8.783573+5 3.630781-4 8.766786+5 3.650000-4 8.755354+5 3.672823-4 8.741886+5 3.700000-4 8.726349+5 3.715352-4 8.718535+5 3.758374-4 8.694750+5 3.801894-4 8.670645+5 3.820000-4 8.661119+5 3.845918-4 8.649303+5 3.850000-4 8.647251+5 3.890451-4 8.628162+5 3.935501-4 8.604924+5 3.981072-4 8.580920+5 4.073803-4 8.541377+5 4.100000-4 8.529319+5 4.107600-4 8.526358+5 4.115800-4 8.522665+5 4.115800-4 8.958553+5 4.120975-4 8.955745+5 4.168694-4 8.930951+5 4.216965-4 8.907546+5 4.265795-4 8.875912+5 4.315191-4 8.845848+5 4.365158-4 8.816894+5 4.518559-4 8.715177+5 4.623810-4 8.633882+5 4.677351-4 8.595220+5 4.786301-4 8.507581+5 4.841724-4 8.464113+5 4.850000-4 8.456502+5 5.011872-4 8.315341+5 5.069907-4 8.267955+5 5.128614-4 8.219232+5 5.150000-4 8.200575+5 5.188000-4 8.165846+5 5.248075-4 8.112683+5 5.308844-4 8.057746+5 5.309800-4 8.056878+5 5.309800-4 9.073526+5 5.312500-4 9.032379+5 5.316000-4 8.986822+5 5.319000-4 8.953370+5 5.323500-4 8.910493+5 5.328000-4 8.874888+5 5.333000-4 8.841439+5 5.337000-4 8.818647+5 5.342000-4 8.793765+5 5.348000-4 8.768141+5 5.354000-4 8.746303+5 5.361000-4 8.724553+5 5.370318-4 8.700280+5 5.380000-4 8.678659+5 5.395000-4 8.650932+5 5.400000-4 8.643180+5 5.407000-4 8.632444+5 5.423000-4 8.611253+5 5.440000-4 8.591721+5 5.466300-4 8.565946+5 5.477300-4 8.557069+5 5.477300-4 9.215280+5 5.477600-4 9.205655+5 5.482000-4 9.177707+5 5.486500-4 9.153748+5 5.490000-4 9.137597+5 5.491000-4 9.133224+5 5.495409-4 9.116723+5 5.497000-4 9.110790+5 5.500000-4 9.101558+5 5.504000-4 9.089207+5 5.511000-4 9.070949+5 5.515000-4 9.062216+5 5.518000-4 9.056362+5 5.530000-4 9.037601+5 5.535600-4 9.030652+5 5.541000-4 9.025086+5 5.550000-4 9.017903+5 5.553000-4 9.016109+5 5.565000-4 9.011214+5 5.568000-4 9.010789+5 5.585000-4 9.011270+5 5.590000-4 9.012933+5 5.600000-4 9.017713+5 5.615000-4 9.029417+5 5.623413-4 9.038713+5 5.630000-4 9.046694+5 5.645000-4 9.070134+5 5.650000-4 9.079775+5 5.660000-4 9.101085+5 5.678000-4 9.147953+5 5.696900-4 9.211715+5 5.700000-4 9.223675+5 5.710000-4 9.265193+5 5.720000-4 9.311833+5 5.730000-4 9.362547+5 5.735000-4 9.390715+5 5.754399-4 9.510736+5 5.770000-4 9.624966+5 5.780000-4 9.705195+5 5.785000-4 9.748596+5 5.800000-4 9.888979+5 5.815000-4 1.004419+6 5.821032-4 1.011138+6 5.829400-4 1.020880+6 5.843000-4 1.037946+6 5.860000-4 1.061471+6 5.880000-4 1.092537+6 5.888437-4 1.106893+6 5.900000-4 1.127044+6 5.920000-4 1.165423+6 5.950000-4 1.229816+6 5.978000-4 1.297746+6 5.985000-4 1.315655+6 6.000000-4 1.356282+6 6.025596-4 1.429947+6 6.030000-4 1.443504+6 6.050000-4 1.506375+6 6.080000-4 1.607092+6 6.090000-4 1.642345+6 6.095369-4 1.661640+6 6.100000-4 1.678621+6 6.115000-4 1.733843+6 6.130000-4 1.791679+6 6.140000-4 1.830332+6 6.162600-4 1.921754+6 6.165950-4 1.935351+6 6.190000-4 2.035995+6 6.200000-4 2.077639+6 6.220000-4 2.164984+6 6.237348-4 2.239930+6 6.250000-4 2.297104+6 6.280000-4 2.431167+6 6.309573-4 2.563925+6 6.310000-4 2.565916+6 6.335000-4 2.677241+6 6.343000-4 2.712391+6 6.370000-4 2.832064+6 6.382635-4 2.885478+6 6.400000-4 2.961163+6 6.430000-4 3.086237+6 6.456542-4 3.192057+6 6.460000-4 3.206187+6 6.492500-4 3.328880+6 6.500000-4 3.356872+6 6.515000-4 3.409785+6 6.540000-4 3.496143+6 6.550000-4 3.529067+6 6.580000-4 3.623636+6 6.590000-4 3.653469+6 6.606934-4 3.700934+6 6.630000-4 3.766686+6 6.670000-4 3.865510+6 6.685000-4 3.900874+6 6.700000-4 3.933215+6 6.740000-4 4.014741+6 6.760830-4 4.050375+6 6.780000-4 4.083507+6 6.800000-4 4.114878+6 6.839116-4 4.169552+6 6.860700-4 4.196349+6 6.890000-4 4.227890+6 6.930000-4 4.265359+6 6.950000-4 4.281070+6 7.000000-4 4.314138+6 7.079458-4 4.345440+6 7.080000-4 4.345654+6 7.161434-4 4.356014+6 7.190000-4 4.356278+6 7.244360-4 4.350732+6 7.260000-4 4.349124+6 7.328245-4 4.335863+6 7.350000-4 4.329696+6 7.413102-4 4.307312+6 7.500000-4 4.276885+6 7.521360-4 4.266394+6 7.585776-4 4.235091+6 7.673615-4 4.193043+6 7.852356-4 4.089029+6 7.943282-4 4.033713+6 8.000000-4 3.997238+6 8.035261-4 3.974837+6 8.128305-4 3.916726+6 8.200000-4 3.870457+6 8.222426-4 3.856145+6 8.317638-4 3.792921+6 8.413951-4 3.730636+6 8.609938-4 3.604243+6 8.709636-4 3.539735+6 8.810489-4 3.476414+6 9.015711-4 3.348681+6 9.120108-4 3.284141+6 9.225714-4 3.220709+6 9.262000-4 3.198757+6 9.262000-4 3.261668+6 9.265000-4 3.264414+6 9.275000-4 3.270291+6 9.285000-4 3.277587+6 9.292000-4 3.283412+6 9.300000-4 3.290711+6 9.308000-4 3.298525+6 9.315000-4 3.305718+6 9.322000-4 3.313142+6 9.330000-4 3.321762+6 9.337000-4 3.329289+6 9.345000-4 3.337728+6 9.353000-4 3.345846+6 9.362000-4 3.354426+6 9.370000-4 3.361428+6 9.378000-4 3.367766+6 9.388000-4 3.374645+6 9.396000-4 3.379269+6 9.407000-4 3.384349+6 9.418000-4 3.387984+6 9.430000-4 3.390423+6 9.440609-4 3.391152+6 9.445000-4 3.391499+6 9.458000-4 3.390914+6 9.473000-4 3.388851+6 9.490000-4 3.385099+6 9.515000-4 3.377696+6 9.549926-4 3.365118+6 9.550000-4 3.365090+6 9.600000-4 3.343928+6 9.660509-4 3.316653+6 9.700000-4 3.298006+6 9.750000-4 3.272745+6 9.772372-4 3.260811+6 9.830000-4 3.230388+6 9.867400-4 3.209792+6 9.867400-4 3.375812+6 1.000000-3 3.310023+6 1.011579-3 3.254757+6 1.015000-3 3.238300+6 1.023293-3 3.199394+6 1.035142-3 3.144297+6 1.038000-3 3.131288+6 1.040000-3 3.121789+6 1.047129-3 3.087741+6 1.071519-3 2.976321+6 1.083927-3 2.921142+6 1.090000-3 2.894031+6 1.100000-3 2.849446+6 1.110000-3 2.805752+6 1.122018-3 2.754099+6 1.130000-3 2.720237+6 1.135011-3 2.699102+6 1.161449-3 2.589686+6 1.188502-3 2.483325+6 1.190000-3 2.477650+6 1.202264-3 2.431240+6 1.216186-3 2.380235+6 1.230269-3 2.330351+6 1.244515-3 2.280555+6 1.258925-3 2.230930+6 1.272900-3 2.184431+6 1.272900-3 2.323130+6 1.273503-3 2.321078+6 1.288250-3 2.271387+6 1.303167-3 2.222845+6 1.318257-3 2.174305+6 1.333521-3 2.126252+6 1.348963-3 2.079330+6 1.364583-3 2.033543+6 1.380384-3 1.988469+6 1.396368-3 1.944222+6 1.412538-3 1.901214+6 1.428894-3 1.858743+6 1.450000-3 1.805695+6 1.462177-3 1.776167+6 1.470000-3 1.757442+6 1.496236-3 1.696601+6 1.500000-3 1.688152+6 1.513561-3 1.658242+6 1.531087-3 1.620812+6 1.548817-3 1.583773+6 1.566751-3 1.547256+6 1.570000-3 1.540685+6 1.584893-3 1.511005+6 1.603245-3 1.475642+6 1.609900-3 1.463125+6 1.609900-3 1.480182+6 1.640590-3 1.424516+6 1.650000-3 1.407899+6 1.659587-3 1.391273+6 1.678804-3 1.358395+6 1.698244-3 1.326388+6 1.717908-3 1.294983+6 1.730000-3 1.276248+6 1.770000-3 1.217185+6 1.778279-3 1.205447+6 1.788700-3 1.190907+6 1.788700-3 1.211262+6 1.798871-3 1.197218+6 1.800000-3 1.195674+6 1.806000-3 1.187510+6 1.819701-3 1.169015+6 1.832530-3 1.151814+6 1.840772-3 1.140974+6 1.862087-3 1.113699+6 1.883649-3 1.087140+6 1.905461-3 1.061291+6 1.927525-3 1.035959+6 1.949845-3 1.011224+6 1.950000-3 1.011056+6 1.972423-3 9.870858+5 2.000000-3 9.582643+5 2.041738-3 9.168244+5 2.065380-3 8.944956+5 2.089296-3 8.727786+5 2.137962-3 8.309179+5 2.150000-3 8.210399+5 2.151200-3 8.200558+5 2.162719-3 8.106524+5 2.187762-3 7.907516+5 2.220000-3 7.660323+5 2.238721-3 7.521395+5 2.264644-3 7.335202+5 2.290868-3 7.154101+5 2.300000-3 7.092674+5 2.344229-3 6.804250+5 2.350000-3 6.767941+5 2.371374-3 6.635531+5 2.426610-3 6.304720+5 2.454709-3 6.145931+5 2.511886-3 5.841016+5 2.540973-3 5.694775+5 2.570396-3 5.551562+5 2.600160-3 5.411644+5 2.630268-3 5.274846+5 2.650000-3 5.187960+5 2.660725-3 5.141362+5 2.691535-3 5.011017+5 2.722701-3 4.884138+5 2.754229-3 4.760486+5 2.818383-3 4.521190+5 2.851018-3 4.405803+5 2.861270-3 4.370467+5 2.884032-3 4.293556+5 2.900000-3 4.240565+5 2.917427-3 4.183469+5 2.951209-3 4.075970+5 3.019952-3 3.869645+5 3.090295-3 3.671587+5 3.126079-3 3.576594+5 3.162278-3 3.484277+5 3.198895-3 3.394118+5 3.235937-3 3.306492+5 3.311311-3 3.137212+5 3.388442-3 2.975297+5 3.427678-3 2.897599+5 3.467369-3 2.821975+5 3.507519-3 2.748472+5 3.548134-3 2.676751+5 3.589219-3 2.606693+5 3.600000-3 2.588646+5 3.630781-3 2.538082+5 3.715352-3 2.405816+5 3.758374-3 2.342404+5 3.845918-3 2.220952+5 3.890451-3 2.162519+5 3.900000-3 2.150287+5 3.935501-3 2.105674+5 3.981072-3 2.050009+5 4.000000-3 2.027262+5 4.120975-3 1.890035+5 4.168694-3 1.839733+5 4.248100-3 1.760304+5 4.248100-3 4.087414+5 4.315191-3 3.931558+5 4.365158-3 3.820786+5 4.415704-3 3.712802+5 4.420000-3 3.703793+5 4.466836-3 3.602096+5 4.492200-3 3.548622+5 4.492200-3 4.928422+5 4.500000-3 4.908129+5 4.550000-3 4.780865+5 4.623810-3 4.605825+5 4.731513-3 4.366994+5 4.786301-3 4.252515+5 4.841724-3 4.134972+5 4.850000-3 4.117734+5 4.897788-3 4.014599+5 4.900000-3 4.009907+5 4.954502-3 3.896639+5 5.011872-3 3.782179+5 5.069907-3 3.669715+5 5.103800-3 3.606191+5 5.103800-3 4.229537+5 5.128614-3 4.174235+5 5.188000-3 4.045888+5 5.248075-3 3.932410+5 5.308844-3 3.822249+5 5.370318-3 3.713968+5 5.432503-3 3.608624+5 5.495409-3 3.505445+5 5.500000-3 3.498080+5 5.688529-3 3.212065+5 5.754399-3 3.119943+5 5.821032-3 3.030560+5 5.888437-3 2.943191+5 5.956621-3 2.857918+5 6.025596-3 2.775185+5 6.095369-3 2.694858+5 6.237348-3 2.540231+5 6.309573-3 2.466415+5 6.350900-3 2.425545+5 6.350900-3 2.572225+5 6.382635-3 2.540913+5 6.531306-3 2.401353+5 6.606934-3 2.333669+5 6.683439-3 2.267969+5 6.732500-3 2.227012+5 6.732500-3 2.319323+5 6.795000-3 2.267611+5 6.800000-3 2.263547+5 6.918310-3 2.170427+5 6.920000-3 2.169128+5 7.079458-3 2.051078+5 7.161434-3 1.993852+5 7.244360-3 1.938231+5 7.300000-3 1.902095+5 7.328245-3 1.884102+5 7.413102-3 1.831597+5 7.498942-3 1.780648+5 7.500000-3 1.780033+5 7.585776-3 1.731154+5 7.762471-3 1.635806+5 7.800000-3 1.616551+5 7.852356-3 1.590043+5 8.000000-3 1.518631+5 8.035261-3 1.502253+5 8.128305-3 1.460027+5 8.150000-3 1.450398+5 8.317638-3 1.379158+5 8.413951-3 1.340347+5 8.511380-3 1.302658+5 8.609938-3 1.265951+5 8.709636-3 1.230346+5 8.810489-3 1.195530+5 8.912509-3 1.161467+5 8.944300-3 1.151142+5 9.000000-3 1.133358+5 9.015711-3 1.128411+5 9.120108-3 1.096285+5 9.225714-3 1.064943+5 9.332543-3 1.034550+5 9.660509-3 9.484519+4 9.885531-3 8.952499+4 1.000000-2 8.698293+4 1.011579-2 8.451743+4 1.023293-2 8.212269+4 1.035142-2 7.980036+4 1.047129-2 7.754057+4 1.059254-2 7.534914+4 1.071519-2 7.320485+4 1.083927-2 7.111022+4 1.096478-2 6.907722+4 1.100000-2 6.852194+4 1.109175-2 6.710135+4 1.120000-2 6.547005+4 1.122018-2 6.517088+4 1.148154-2 6.146590+4 1.150000-2 6.121586+4 1.161449-2 5.969148+4 1.174898-2 5.796995+4 1.190000-2 5.612172+4 1.202264-2 5.468080+4 1.216186-2 5.310559+4 1.230269-2 5.157582+4 1.244515-2 5.008937+4 1.273503-2 4.724484+4 1.288250-2 4.588745+4 1.318257-2 4.329500+4 1.333521-2 4.205164+4 1.348963-2 4.084472+4 1.350000-2 4.076549+4 1.364583-2 3.966173+4 1.396368-2 3.740161+4 1.400000-2 3.715511+4 1.412538-2 3.632099+4 1.428894-2 3.526759+4 1.445440-2 3.423943+4 1.450000-2 3.396357+4 1.462177-2 3.324243+4 1.479108-2 3.227597+4 1.500000-2 3.113421+4 1.513561-2 3.042406+4 1.531087-2 2.953980+4 1.548817-2 2.868231+4 1.566751-2 2.785115+4 1.584893-2 2.704471+4 1.603245-2 2.625898+4 1.621810-2 2.549578+4 1.659587-2 2.403854+4 1.678804-2 2.333995+4 1.698244-2 2.266121+4 1.717908-2 2.199888+4 1.737801-2 2.135637+4 1.757924-2 2.073326+4 1.778279-2 2.012867+4 1.798871-2 1.954125+4 1.800000-2 1.950975+4 1.819701-2 1.896966+4 1.840772-2 1.841520+4 1.850000-2 1.817934+4 1.854900-2 1.805549+4 1.862087-2 1.787597+4 1.883649-2 1.735131+4 1.950000-2 1.586924+4 1.972423-2 1.540714+4 1.992900-2 1.500160+4 1.992900-2 3.485008+4 1.995262-2 3.474656+4 2.000000-2 3.454021+4 2.018366-2 3.375661+4 2.030000-2 3.327256+4 2.041738-2 3.276911+4 2.065380-2 3.178695+4 2.089296-2 3.083439+4 2.113489-2 2.990873+4 2.120000-2 2.966623+4 2.162719-2 2.811086+4 2.187762-2 2.724866+4 2.190000-2 2.717333+4 2.213095-2 2.642439+4 2.238721-2 2.562617+4 2.290868-2 2.410263+4 2.300000-2 2.384891+4 2.317395-2 2.336500+4 2.344229-2 2.264460+4 2.371374-2 2.194617+4 2.398833-2 2.126938+4 2.426610-2 2.061388+4 2.511886-2 1.876605+4 2.524200-2 1.851763+4 2.524200-2 2.649292+4 2.555000-2 2.570754+4 2.570396-2 2.531085+4 2.600160-2 2.456763+4 2.604700-2 2.445696+4 2.604700-2 2.819504+4 2.630268-2 2.751531+4 2.650000-2 2.700657+4 2.660725-2 2.673905+4 2.691535-2 2.597901+4 2.722701-2 2.524131+4 2.725000-2 2.518806+4 2.754229-2 2.452916+4 2.760000-2 2.440332+4 2.786121-2 2.383646+4 2.818383-2 2.316196+4 2.851018-2 2.250711+4 2.884032-2 2.186757+4 2.900000-2 2.156752+4 2.917427-2 2.124367+4 2.951209-2 2.063456+4 3.000000-2 1.979814+4 3.019952-2 1.946698+4 3.054921-2 1.890503+4 3.126079-2 1.782950+4 3.162278-2 1.731538+4 3.198895-2 1.681654+4 3.235937-2 1.633246+4 3.273407-2 1.586262+4 3.311311-2 1.540489+4 3.388442-2 1.452885+4 3.427678-2 1.410982+4 3.467369-2 1.370286+4 3.507519-2 1.330796+4 3.548134-2 1.292212+4 3.589219-2 1.254781+4 3.600000-2 1.245212+4 3.650000-2 1.202151+4 3.715352-2 1.148707+4 3.758374-2 1.115308+4 3.801894-2 1.082897+4 3.845918-2 1.051254+4 3.890451-2 1.020367+4 3.900000-2 1.013910+4 3.935501-2 9.903792+3 3.981072-2 9.612913+3 4.027170-2 9.330830+3 4.073803-2 9.055258+3 4.120975-2 8.788010+3 4.168694-2 8.528761+3 4.265795-2 8.033554+3 4.315191-2 7.796783+3 4.365158-2 7.567113+3 4.466836-2 7.128365+3 4.518559-2 6.918862+3 4.623810-2 6.518143+3 4.677351-2 6.326757+3 4.731513-2 6.141131+3 4.786301-2 5.958810+3 4.800000-2 5.914403+3 4.954502-2 5.443814+3 5.011872-2 5.282279+3 5.069907-2 5.125654+3 5.128614-2 4.972724+3 5.188000-2 4.824465+3 5.248075-2 4.680726+3 5.300000-2 4.561263+3 5.370318-2 4.406049+3 5.559043-2 4.024439+3 5.623413-2 3.904893+3 5.688529-2 3.788931+3 5.754399-2 3.676382+3 5.821032-2 3.566822+3 5.888437-2 3.460571+3 5.956621-2 3.357159+3 6.025596-2 3.256398+3 6.237348-2 2.972298+3 6.382635-2 2.796951+3 6.456542-2 2.713283+3 6.531306-2 2.632165+3 6.760830-2 2.401944+3 6.918310-2 2.259721+3 7.000000-2 2.190519+3 7.161434-2 2.062214+3 7.328245-2 1.940414+3 7.413102-2 1.882125+3 7.673615-2 1.717039+3 7.762471-2 1.665360+3 7.852356-2 1.615265+3 8.035261-2 1.519039+3 8.128305-2 1.473095+3 8.222426-2 1.428533+3 8.317638-2 1.385344+3 8.413951-2 1.343477+3 8.511380-2 1.302887+3 8.609938-2 1.263543+3 8.709636-2 1.225411+3 9.015711-2 1.117900+3 9.332543-2 1.019913+3 9.440609-2 9.892322+2 9.500000-2 9.729160+2 9.660509-2 9.304141+2 9.772372-2 9.021789+2 1.000000-1 8.482949+2 1.023293-1 7.976538+2 1.035142-1 7.734933+2 1.047129-1 7.500695+2 1.071519-1 7.053646+2 1.096478-1 6.633658+2 1.122019-1 6.239077+2 1.135011-1 6.050830+2 1.150000-1 5.843215+2 1.161449-1 5.690478+2 1.174898-1 5.518056+2 1.188502-1 5.350936+2 1.230269-1 4.879345+2 1.273503-1 4.449876+2 1.288250-1 4.315410+2 1.318257-1 4.058745+2 1.333521-1 3.936266+2 1.348963-1 3.817503+2 1.356300-1 3.762814+2 1.356300-1 1.492962+3 1.380384-1 1.429870+3 1.390000-1 1.405731+3 1.396368-1 1.388328+3 1.400000-1 1.378535+3 1.412538-1 1.350099+3 1.425000-1 1.322630+3 1.445440-1 1.274794+3 1.462177-1 1.237398+3 1.470000-1 1.220441+3 1.500000-1 1.161463+3 1.531088-1 1.104512+3 1.540000-1 1.088912+3 1.548817-1 1.073225+3 1.566751-1 1.042277+3 1.603245-1 9.830432+2 1.678804-1 8.745212+2 1.698244-1 8.493363+2 1.717908-1 8.250936+2 1.737801-1 8.015443+2 1.778279-1 7.564527+2 1.819701-1 7.139067+2 1.862087-1 6.737888+2 1.883649-1 6.545868+2 1.927525-1 6.178149+2 1.949845-1 6.002138+2 1.972423-1 5.831185+2 2.018366-1 5.503815+2 2.041738-1 5.347110+2 2.089296-1 5.047011+2 2.113489-1 4.903395+2 2.162719-1 4.628490+2 2.187762-1 4.496893+2 2.213095-1 4.369052+2 2.264644-1 4.124205+2 2.290868-1 4.006990+2 2.300000-1 3.967270+2 2.317395-1 3.893185+2 2.398833-1 3.570944+2 2.426610-1 3.469589+2 2.454709-1 3.371123+2 2.483133-1 3.275460+2 2.511886-1 3.182534+2 2.540973-1 3.092312+2 2.570396-1 3.004657+2 2.600160-1 2.919499+2 2.630268-1 2.837565+2 2.691535-1 2.680585+2 2.722701-1 2.605441+2 2.754229-1 2.532407+2 2.786121-1 2.461429+2 2.818383-1 2.392444+2 2.851018-1 2.325402+2 2.884032-1 2.260243+2 2.917427-1 2.196920+2 2.951209-1 2.135416+2 2.985383-1 2.075663+2 3.000000-1 2.050823+2 3.019952-1 2.017588+2 3.054921-1 1.961141+2 3.126079-1 1.854641+2 3.162278-1 1.803585+2 3.198895-1 1.753988+2 3.235937-1 1.705763+2 3.273407-1 1.658884+2 3.349654-1 1.568964+2 3.388442-1 1.525882+2 3.427678-1 1.483995+2 3.467369-1 1.443259+2 3.507519-1 1.403645+2 3.548134-1 1.365130+2 3.589219-1 1.327675+2 3.630781-1 1.291802+2 3.672823-1 1.256902+2 3.715352-1 1.222983+2 3.801894-1 1.157972+2 3.845918-1 1.126796+2 3.890451-1 1.096462+2 3.935501-1 1.066954+2 3.981072-1 1.038256+2 4.000000-1 1.026659+2 4.027170-1 1.010332+2 4.073803-1 9.831603+1 4.120975-1 9.567285+1 4.168694-1 9.310087+1 4.216965-1 9.064058+1 4.265795-1 8.824810+1 4.365158-1 8.365406+1 4.415705-1 8.144775+1 4.466836-1 7.930402+1 4.518559-1 7.721686+1 4.570882-1 7.518485+1 4.623810-1 7.320646+1 4.677351-1 7.128046+1 4.731513-1 6.940655+1 4.786301-1 6.761526+1 4.841724-1 6.587352+1 4.897788-1 6.417674+1 4.954502-1 6.252381+1 5.011872-1 6.091379+1 5.128614-1 5.781731+1 5.233200-1 5.523844+1 5.248075-1 5.488521+1 5.308844-1 5.347552+1 5.370318-1 5.210266+1 5.432503-1 5.076663+1 5.495409-1 4.949043+1 5.559043-1 4.824645+1 5.623413-1 4.703400+1 5.688529-1 4.585213+1 5.754399-1 4.470000+1 5.821032-1 4.357686+1 5.888437-1 4.248207+1 5.956621-1 4.141486+1 6.000000-1 4.075745+1 6.025596-1 4.037691+1 6.095369-1 3.936579+1 6.165950-1 3.838128+1 6.237348-1 3.742175+1 6.309573-1 3.650457+1 6.382635-1 3.560990+1 6.456542-1 3.473720+1 6.531306-1 3.388594+1 6.606935-1 3.305559+1 6.683439-1 3.224568+1 6.760830-1 3.145715+1 6.839117-1 3.068816+1 6.918310-1 2.993814+1 6.998420-1 2.920812+1 7.079458-1 2.849592+1 7.161434-1 2.780111+1 7.244360-1 2.713690+1 7.328245-1 2.648895+1 7.413102-1 2.585648+1 7.498942-1 2.523946+1 7.585776-1 2.463795+1 7.673615-1 2.405107+1 7.852356-1 2.291900+1 7.943282-1 2.237312+1 8.035261-1 2.184029+1 8.222427-1 2.081465+1 8.317638-1 2.033020+1 8.413951-1 1.985704+1 8.511380-1 1.939553+1 8.609938-1 1.894502+1 8.709636-1 1.850503+1 8.810489-1 1.807591+1 8.912509-1 1.765676+1 9.015711-1 1.724735+1 9.120108-1 1.684743+1 9.225714-1 1.645680+1 9.332543-1 1.607637+1 9.440609-1 1.571309+1 9.549926-1 1.535803+1 9.660509-1 1.501186+1 9.772372-1 1.467372+1 9.885531-1 1.434322+1 1.000000+0 1.402058+1 1.011579+0 1.370526+1 1.023293+0 1.339702+1 1.035142+0 1.309573+1 1.047129+0 1.280178+1 1.059254+0 1.251447+1 1.071519+0 1.223392+1 1.083927+0 1.196011+1 1.096478+0 1.169243+1 1.109175+0 1.143074+1 1.122018+0 1.117492+1 1.135011+0 1.092832+1 1.148154+0 1.068776+1 1.161449+0 1.045255+1 1.174898+0 1.022255+1 1.188502+0 9.997709+0 1.202264+0 9.777940+0 1.216186+0 9.562992+0 1.230269+0 9.352785+0 1.244515+0 9.147342+0 1.250000+0 9.070070+0 1.258925+0 8.946462+0 1.273503+0 8.750917+0 1.288250+0 8.564345+0 1.303167+0 8.381761+0 1.318257+0 8.203173+0 1.333521+0 8.028400+0 1.348963+0 7.857456+0 1.364583+0 7.690260+0 1.380384+0 7.526631+0 1.396368+0 7.366514+0 1.412538+0 7.209795+0 1.428894+0 7.056611+0 1.445440+0 6.907124+0 1.462177+0 6.764542+0 1.479108+0 6.624903+0 1.500000+0 6.458762+0 1.513561+0 6.354355+0 1.531087+0 6.223362+0 1.584893+0 5.846379+0 1.621810+0 5.608561+0 1.659587+0 5.386006+0 1.678804+0 5.278205+0 1.698244+0 5.172583+0 1.717908+0 5.069115+0 1.737801+0 4.967786+0 1.757924+0 4.868539+0 1.798871+0 4.675982+0 1.840772+0 4.491576+0 1.862087+0 4.404197+0 1.883649+0 4.318518+0 1.905461+0 4.234505+0 1.927525+0 4.152242+0 1.949845+0 4.071591+0 1.972423+0 3.992536+0 1.995262+0 3.915074+0 2.000000+0 3.899312+0 2.065380+0 3.691754+0 2.089296+0 3.620410+0 2.113489+0 3.550445+0 2.137962+0 3.483594+0 2.162719+0 3.418001+0 2.187762+0 3.353740+0 2.213095+0 3.290702+0 2.238721+0 3.228873+0 2.264644+0 3.168255+0 2.344229+0 2.993281+0 2.371374+0 2.937318+0 2.398833+0 2.882403+0 2.426610+0 2.829904+0 2.454709+0 2.778361+0 2.483133+0 2.727828+0 2.511886+0 2.678220+0 2.540973+0 2.629522+0 2.570396+0 2.581730+0 2.600160+0 2.534844+0 2.691535+0 2.399340+0 2.722701+0 2.355947+0 2.754229+0 2.313337+0 2.786121+0 2.272575+0 2.818383+0 2.232530+0 2.851018+0 2.193246+0 2.884032+0 2.154656+0 2.917427+0 2.116754+0 2.951209+0 2.079532+0 3.000000+0 2.027683+0 3.126079+0 1.903227+0 3.162278+0 1.869914+0 3.198895+0 1.837185+0 3.235937+0 1.805838+0 3.273407+0 1.775027+0 3.311311+0 1.744741+0 3.349654+0 1.715017+0 3.388442+0 1.685804+0 3.427678+0 1.657101+0 3.467369+0 1.628907+0 3.630781+0 1.520930+0 3.672823+0 1.495158+0 3.715352+0 1.469822+0 3.758374+0 1.445555+0 3.801894+0 1.421689+0 3.845918+0 1.398217+0 3.890451+0 1.375166+0 3.935501+0 1.352500+0 4.000000+0 1.321141+0 4.027170+0 1.308308+0 4.265795+0 1.204174+0 4.315191+0 1.184428+0 4.365158+0 1.165007+0 4.415704+0 1.146395+0 4.466836+0 1.128080+0 4.518559+0 1.110059+0 4.570882+0 1.092351+0 4.623810+0 1.074930+0 4.677351+0 1.057793+0 4.731513+0 1.040942+0 5.011872+0 9.606918-1 5.069907+0 9.454502-1 5.128614+0 9.304506-1 5.188000+0 9.160698-1 5.248075+0 9.019110-1 5.308844+0 8.879714-1 5.370318+0 8.742673-1 5.432503+0 8.607778-1 5.495409+0 8.475010-1 5.559043+0 8.344394-1 5.956621+0 7.602446-1 6.025596+0 7.485739-1 6.095369+0 7.370826-1 6.165950+0 7.260522-1 6.237348+0 7.151869-1 6.309573+0 7.044842-1 6.382635+0 6.939572-1 6.456542+0 6.835899-1 6.531306+0 6.733810-1 6.606934+0 6.633326-1 7.079458+0 6.061555-1 7.161434+0 5.971456-1 7.244360+0 5.882697-1 7.328245+0 5.797415-1 7.498942+0 5.630541-1 7.585776+0 5.548914-1 7.673615+0 5.468586-1 7.762471+0 5.389437-1 7.852356+0 5.311462-1 7.943282+0 5.234672-1 8.511380+0 4.797003-1 8.609938+0 4.727701-1 8.709636+0 4.659613-1 8.810489+0 4.592505-1 8.912509+0 4.527968-1 9.120108+0 4.401601-1 9.225714+0 4.339747-1 9.332543+0 4.278845-1 9.440609+0 4.218811-1 9.549926+0 4.159639-1 9.660509+0 4.101339-1 1.047129+1 3.715753-1 1.059254+1 3.663713-1 1.071519+1 3.612559-1 1.083927+1 3.562115-1 1.100000+1 3.500177-1 1.122018+1 3.418480-1 1.135011+1 3.371898-1 1.148154+1 3.326015-1 1.161449+1 3.280766-1 1.174898+1 3.236147-1 1.188502+1 3.192168-1 1.300000+1 2.869664-1 1.303167+1 2.861382-1 1.318257+1 2.822521-1 1.333521+1 2.784298-1 1.364583+1 2.709394-1 1.380384+1 2.673585-1 1.428894+1 2.568973-1 1.445440+1 2.535065-1 1.462177+1 2.501623-1 1.479108+1 2.468643-1 1.621810+1 2.220127-1 1.678804+1 2.133525-1 1.717908+1 2.077823-1 1.737801+1 2.050519-1 1.798871+1 1.970743-1 1.800000+1 1.969356-1 1.819701+1 1.945447-1 1.840772+1 1.920476-1 1.862087+1 1.895828-1 1.883649+1 1.871552-1 2.000000+1 1.750177-1 2.018366+1 1.732371-1 2.162719+1 1.603539-1 2.264644+1 1.523205-1 2.290868+1 1.503758-1 2.344229+1 1.465606-1 2.371374+1 1.447192-1 2.400000+1 1.428248-1 2.426610+1 1.411075-1 2.454709+1 1.393377-1 2.630268+1 1.291803-1 2.660725+1 1.275609-1 2.754229+1 1.228235-1 2.818383+1 1.197677-1 3.054921+1 1.096588-1 3.126079+1 1.069305-1 3.162278+1 1.055919-1 3.198895+1 1.042969-1 3.235937+1 1.030178-1 3.349654+1 9.927904-2 3.388442+1 9.806433-2 3.507519+1 9.451086-2 4.000000+1 8.215922-2 4.265795+1 7.671364-2 4.415704+1 7.394058-2 4.570882+1 7.130465-2 4.731513+1 6.876271-2 4.786301+1 6.793646-2 5.069907+1 6.395184-2 5.128614+1 6.318391-2 5.308844+1 6.093593-2 5.821032+1 5.533431-2 6.382635+1 5.024765-2 6.683439+1 4.788245-2 7.079458+1 4.511653-2 7.413102+1 4.301930-2 7.585776+1 4.200835-2 8.035261+1 3.958377-2 8.128305+1 3.911599-2 8.222427+1 3.865405-2 8.413951+1 3.774655-2 9.120108+1 3.473932-2 9.885531+1 3.197168-2 1.071519+2 2.942454-2 1.083927+2 2.908091-2 1.202264+2 2.616337-2 1.333521+2 2.353854-2 1.348963+2 2.326379-2 1.396368+2 2.245875-2 1.513561+2 2.068700-2 1.531087+2 2.044573-2 1.548817+2 2.020726-2 1.566751+2 1.997160-2 1.659587+2 1.883510-2 1.757924+2 1.776327-2 1.883649+2 1.655729-2 1.905461+2 1.636569-2 2.213095+2 1.406764-2 2.660725+2 1.167733-2 2.691535+2 1.154224-2 2.786121+2 1.114629-2 3.019952+2 1.027442-2 3.054921+2 1.015560-2 3.090295+2 1.003815-2 3.126079+2 9.922065-3 3.311311+2 9.361752-3 3.507519+2 8.833081-3 3.758374+2 8.237936-3 3.801894+2 8.143107-3 4.415704+2 7.005235-3 5.308844+2 5.820636-3 5.370318+2 5.753649-3 5.559043+2 5.557285-3 6.025596+2 5.124775-3 6.095369+2 5.065815-3 6.165950+2 5.007534-3 6.237348+2 4.949924-3 6.606934+2 4.671793-3 6.998420+2 4.409290-3 7.498942+2 4.113683-3 1.496236+3 2.059372-3 1.513561+3 2.035761-3 1.757924+3 1.752343-3 4.216965+3 7.294436-4 4.265795+3 7.210807-4 4.415704+3 6.965632-4 4.786301+3 6.425487-4 4.841724+3 6.351827-4 4.897788+3 6.279013-4 4.954502+3 6.207033-4 5.248075+3 5.859377-4 5.559043+3 5.531193-4 5.956621+3 5.161545-4 2.371374+4 1.296210-4 2.398833+4 1.281370-4 1.000000+5 3.073032-5 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.710000-6 5.710000-6 9.020000-6 5.710000-6 9.020000-6 7.253439-6 9.772372-6 7.295831-6 1.078000-5 7.397010-6 1.078000-5 8.390058-6 1.202264-5 8.502771-6 1.603245-5 8.984681-6 1.819701-5 9.195071-6 2.070000-5 9.362515-6 2.317395-5 9.468812-6 2.510000-5 9.524418-6 2.510000-5 2.286515-5 2.818383-5 2.067823-5 3.150000-5 1.829266-5 3.350000-5 1.697517-5 3.507519-5 1.604622-5 3.630781-5 1.538670-5 3.758374-5 1.477552-5 3.879000-5 1.425850-5 3.879000-5 2.410720-5 3.940000-5 2.339573-5 4.000000-5 2.276112-5 4.073803-5 2.205427-5 4.150000-5 2.139056-5 4.229500-5 2.075428-5 4.365158-5 1.979236-5 4.500000-5 1.894718-5 4.623810-5 1.825042-5 4.800000-5 1.737197-5 4.900000-5 1.692696-5 5.128614-5 1.601103-5 5.400000-5 1.510040-5 5.623413-5 1.447051-5 5.821032-5 1.398712-5 6.088000-5 1.343215-5 6.088000-5 1.439567-5 6.450000-5 1.367116-5 6.683439-5 1.327413-5 7.000000-5 1.282663-5 7.328245-5 1.245714-5 7.673615-5 1.215090-5 8.000000-5 1.192690-5 8.413951-5 1.170981-5 8.810489-5 1.155466-5 9.440609-5 1.138927-5 1.011579-4 1.129039-5 1.090000-4 1.125299-5 1.180000-4 1.129417-5 1.273503-4 1.142574-5 1.296600-4 1.147264-5 1.296600-4 2.391929-5 1.299000-4 2.448058-5 1.303167-4 2.533622-5 1.315000-4 2.794675-5 1.350000-4 3.606068-5 1.365000-4 3.938240-5 1.373000-4 4.105337-5 1.387000-4 4.374213-5 1.400000-4 4.595299-5 1.412538-4 4.785412-5 1.424700-4 4.941312-5 1.424700-4 5.629361-5 1.462177-4 6.305080-5 1.487000-4 6.728579-5 1.513561-4 7.132581-5 1.535000-4 7.411021-5 1.555000-4 7.627798-5 1.580000-4 7.846280-5 1.610000-4 8.055010-5 1.650000-4 8.270093-5 1.740000-4 8.680047-5 1.972423-4 9.644348-5 2.100000-4 1.010969-4 2.162719-4 1.029642-4 2.240900-4 1.046830-4 2.308600-4 1.054273-4 2.373000-4 1.053861-4 2.440000-4 1.045385-4 2.505000-4 1.029645-4 2.515800-4 1.026333-4 2.515800-4 1.162786-4 2.600160-4 1.144673-4 2.722701-4 1.108029-4 2.917427-4 1.040593-4 3.054921-4 9.923729-5 3.200000-4 9.487683-5 3.350000-4 9.100619-5 3.378700-4 9.034542-5 3.378700-4 1.079280-4 3.403000-4 1.059163-4 3.433000-4 1.043189-4 3.470000-4 1.029117-4 3.589219-4 9.949947-5 3.715352-4 9.642067-5 3.850000-4 9.366390-5 3.981072-4 9.148724-5 4.115800-4 8.954286-5 4.115800-4 9.573031-5 4.265795-4 9.396154-5 4.365158-4 9.294628-5 4.518559-4 9.170350-5 4.677351-4 9.068662-5 4.850000-4 8.986823-5 5.188000-4 8.882567-5 5.309800-4 8.858683-5 5.309800-4 9.937717-5 5.319000-4 9.830458-5 5.333000-4 9.732359-5 5.354000-4 9.654476-5 5.395000-4 9.593643-5 5.477300-4 9.572418-5 5.477300-4 1.024108-4 5.491000-4 1.017524-4 5.518000-4 1.012713-4 5.568000-4 1.013090-4 5.623413-4 1.020822-4 5.660000-4 1.030171-4 5.710000-4 1.049596-4 5.754399-4 1.074514-4 5.800000-4 1.108685-4 5.843000-4 1.147895-4 5.900000-4 1.208790-4 6.030000-4 1.360340-4 6.100000-4 1.434792-4 6.165950-4 1.495023-4 6.237348-4 1.548613-4 6.310000-4 1.591873-4 6.400000-4 1.631901-4 6.500000-4 1.663046-4 6.630000-4 1.689321-4 6.800000-4 1.709129-4 7.000000-4 1.721514-4 7.413102-4 1.731135-4 8.413951-4 1.734461-4 9.262000-4 1.732908-4 9.262000-4 1.759906-4 9.330000-4 1.801624-4 9.388000-4 1.836395-4 9.445000-4 1.856219-4 9.515000-4 1.867247-4 9.750000-4 1.882330-4 9.867400-4 1.885402-4 9.867400-4 1.955128-4 1.071519-3 1.992945-4 1.190000-3 2.030653-4 1.272900-3 2.052991-4 1.272900-3 2.175623-4 1.609900-3 2.274711-4 1.609900-3 2.303579-4 1.788700-3 2.355340-4 1.788700-3 2.401668-4 2.187762-3 2.512011-4 2.660725-3 2.619153-4 3.162278-3 2.713827-4 3.758374-3 2.806140-4 4.248100-3 2.869870-4 4.248100-3 4.079896-4 4.492200-3 4.083020-4 4.492200-3 4.338093-4 5.011872-3 4.351878-4 5.103800-3 4.351963-4 5.103800-3 4.674655-4 5.308844-3 4.678184-4 6.350900-3 4.725193-4 6.350900-3 4.891626-4 6.732500-3 4.921433-4 6.732500-3 5.065060-4 8.912509-3 5.252333-4 1.150000-2 5.427592-4 1.462177-2 5.591849-4 1.862087-2 5.751357-4 1.992900-2 5.794707-4 1.992900-2 6.818563-4 2.524200-2 6.867718-4 2.524200-2 7.234554-4 2.604700-2 7.243128-4 2.604700-2 7.734847-4 3.548134-2 7.912960-4 4.786301-2 8.078423-4 6.531306-2 8.245303-4 9.015711-2 8.405652-4 1.230269-1 8.548002-4 1.356300-1 8.589653-4 1.356300-1 7.908817-4 3.235937-1 7.957506-4 9.120108-1 7.982869-4 1.000000+5 7.983589-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.710000-6 0.0 2.515800-4 0.0 2.515800-4 1.620298-9 2.573000-4 1.636258-9 2.630268-4 1.641257-9 2.691535-4 1.637686-9 2.786121-4 1.618894-9 2.851018-4 1.598017-9 2.917427-4 1.567604-9 3.030000-4 1.505007-9 3.378700-4 1.313612-9 3.378700-4 5.219069-9 3.381000-4 5.189299-9 3.390000-4 5.032796-9 3.395000-4 4.959547-9 3.403000-4 4.863536-9 3.410000-4 4.792844-9 3.422000-4 4.693872-9 3.433000-4 4.619861-9 3.448000-4 4.538015-9 3.470000-4 4.441139-9 3.507519-4 4.308285-9 3.600000-4 4.028547-9 3.715352-4 3.710620-9 3.801894-4 3.493940-9 3.890451-4 3.299299-9 3.981072-4 3.121161-9 4.100000-4 2.907156-9 4.115800-4 2.883100-9 4.115800-4 3.363622-9 4.216965-4 3.216036-9 4.365158-4 3.026739-9 4.518559-4 2.861068-9 4.677351-4 2.715346-9 4.850000-4 2.581161-9 5.011872-4 2.478205-9 5.188000-4 2.382737-9 5.309800-4 2.328515-9 5.309800-4 1.567443-8 5.312500-4 1.522389-8 5.316000-4 1.472616-8 5.319000-4 1.436242-8 5.323500-4 1.389982-8 5.328000-4 1.352114-8 5.333000-4 1.317161-8 5.337000-4 1.293882-8 5.342000-4 1.269069-8 5.348000-4 1.244357-8 5.354000-4 1.224213-8 5.361000-4 1.205241-8 5.370318-4 1.185703-8 5.380000-4 1.170479-8 5.395000-4 1.153993-8 5.407000-4 1.145279-8 5.423000-4 1.137849-8 5.440000-4 1.133613-8 5.466300-4 1.132482-8 5.477300-4 1.134367-8 5.477300-4 1.411610-8 5.477600-4 1.407991-8 5.486500-4 1.391991-8 5.497000-4 1.381220-8 5.515000-4 1.374208-8 5.535600-4 1.379377-8 5.553000-4 1.391894-8 5.568000-4 1.408206-8 5.590000-4 1.441183-8 5.600000-4 1.459637-8 5.615000-4 1.492550-8 5.630000-4 1.531656-8 5.650000-4 1.594814-8 5.660000-4 1.630629-8 5.678000-4 1.704287-8 5.700000-4 1.811174-8 5.710000-4 1.865714-8 5.730000-4 1.987424-8 5.754399-4 2.158816-8 5.770000-4 2.282998-8 5.785000-4 2.410849-8 5.800000-4 2.549061-8 5.821032-4 2.754857-8 5.843000-4 2.986838-8 5.860000-4 3.176374-8 5.900000-4 3.649429-8 5.978000-4 4.601500-8 6.000000-4 4.860261-8 6.030000-4 5.198305-8 6.050000-4 5.412207-8 6.090000-4 5.807534-8 6.130000-4 6.159918-8 6.165950-4 6.435862-8 6.200000-4 6.664739-8 6.237348-4 6.881805-8 6.280000-4 7.089651-8 6.335000-4 7.298217-8 6.382635-4 7.432804-8 6.430000-4 7.535946-8 6.500000-4 7.642404-8 6.590000-4 7.726144-8 6.740000-4 7.804710-8 6.950000-4 7.847458-8 7.521360-4 7.861106-8 8.709636-4 7.804695-8 9.262000-4 7.767221-8 9.262000-4 7.808736-8 9.407000-4 7.931212-8 9.550000-4 7.963923-8 9.867400-4 7.966504-8 9.867400-4 1.021466-7 1.040000-3 1.070665-7 1.090000-3 1.105876-7 1.130000-3 1.126246-7 1.272900-3 1.180653-7 1.272900-3 1.591781-7 1.609900-3 1.778511-7 1.609900-3 1.855337-7 1.788700-3 1.961520-7 1.788700-3 2.134145-7 2.000000-3 2.272982-7 2.290868-3 2.450603-7 2.660725-3 2.650924-7 3.019952-3 2.830347-7 3.507519-3 3.042456-7 3.935501-3 3.210678-7 4.248100-3 3.323835-7 4.248100-3 3.714436-7 4.492200-3 3.747625-7 4.492200-3 7.082735-5 4.786301-3 7.365985-5 4.850000-3 7.393866-5 5.103800-3 7.381290-5 5.103800-3 7.508701-5 5.888437-3 7.470402-5 6.350900-3 7.432266-5 6.350900-3 8.303986-5 6.732500-3 8.362175-5 6.732500-3 8.532316-5 8.609938-3 8.801353-5 1.035142-2 8.998171-5 1.190000-2 9.151103-5 1.479108-2 9.387635-5 1.850000-2 9.620620-5 1.992900-2 9.691954-5 1.992900-2 4.804547-3 2.065380-2 4.805334-3 2.426610-2 4.752203-3 2.524200-2 4.735027-3 2.524200-2 7.309466-3 2.604700-2 7.333253-3 2.604700-2 7.686941-3 3.054921-2 7.772387-3 3.845918-2 7.869943-3 5.188000-2 7.949711-3 7.413102-2 8.011826-3 1.230269-1 8.054867-3 1.356300-1 8.059952-3 1.356300-1 9.402340-2 1.603245-1 9.480122-2 2.317395-1 9.595891-2 3.801894-1 9.710278-2 6.309573-1 9.810665-2 1.035142+0 9.884749-2 1.000000+5 9.880785-2 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.710000-6 0.0 9.020000-6 3.310000-6 9.020000-6 1.766561-6 9.120108-6 1.867524-6 9.440609-6 2.169375-6 9.772372-6 2.476541-6 1.047129-5 3.109337-6 1.078000-5 3.382990-6 1.078000-5 2.389942-6 1.087000-5 2.478747-6 1.190000-5 3.410677-6 1.333521-5 4.677323-6 1.603245-5 7.047769-6 1.819701-5 9.001939-6 2.070000-5 1.133748-5 2.426610-5 1.476389-5 2.510000-5 1.557558-5 2.510000-5 2.234846-6 2.520000-5 2.416666-6 2.600160-5 3.763746-6 2.650000-5 4.607589-6 2.818383-5 7.505604-6 3.090295-5 1.219611-5 3.230000-5 1.455174-5 3.400000-5 1.733201-5 3.570000-5 1.999683-5 3.758374-5 2.280822-5 3.879000-5 2.453150-5 3.879000-5 1.468280-5 3.940000-5 1.600427-5 4.000000-5 1.723888-5 4.073803-5 1.868376-5 4.150000-5 2.010944-5 4.229500-5 2.154072-5 4.365158-5 2.385922-5 4.500000-5 2.605282-5 4.623810-5 2.798768-5 4.800000-5 3.062803-5 5.128614-5 3.527511-5 5.500000-5 4.019346-5 5.821032-5 4.422320-5 6.088000-5 4.744785-5 6.088000-5 4.648433-5 6.683439-5 5.356026-5 7.413102-5 6.175706-5 8.413951-5 7.242970-5 1.011579-4 8.986751-5 1.280000-4 1.165622-4 1.296600-4 1.181874-4 1.296600-4 1.057407-4 1.327000-4 1.019717-4 1.365000-4 9.711760-5 1.387000-4 9.495787-5 1.403000-4 9.385797-5 1.423000-4 9.307950-5 1.424700-4 9.305688-5 1.424700-4 8.617639-5 1.472000-4 8.242470-5 1.500000-4 8.067049-5 1.520000-4 7.978227-5 1.545000-4 7.925443-5 1.570000-4 7.933796-5 1.595000-4 7.992817-5 1.627000-4 8.116790-5 1.690000-4 8.442182-5 1.840772-4 9.303347-5 1.995262-4 1.022123-4 2.113489-4 1.098076-4 2.190000-4 1.153479-4 2.270000-4 1.219101-4 2.340000-4 1.285008-4 2.407000-4 1.356400-4 2.490000-4 1.456001-4 2.515800-4 1.489467-4 2.515800-4 1.352998-4 2.620000-4 1.480686-4 2.786121-4 1.699218-4 3.100000-4 2.121834-4 3.320000-4 2.402809-4 3.378700-4 2.475233-4 3.378700-4 2.299368-4 3.410000-4 2.355138-4 3.470000-4 2.440839-4 3.715352-4 2.751108-4 3.981072-4 3.066168-4 4.115800-4 3.220343-4 4.115800-4 3.158463-4 4.518559-4 3.601495-4 5.150000-4 4.260810-4 5.309800-4 4.423908-4 5.309800-4 4.315872-4 5.342000-4 4.372643-4 5.440000-4 4.482471-4 5.477300-4 4.519945-4 5.477300-4 4.453051-4 5.541000-4 4.528952-4 5.660000-4 4.629666-4 5.754399-4 4.679669-4 5.843000-4 4.694807-4 6.100000-4 4.664618-4 6.220000-4 4.682507-4 6.343000-4 4.734230-4 6.500000-4 4.836190-4 6.740000-4 5.035703-4 7.244360-4 5.514953-4 9.262000-4 7.528315-4 9.262000-4 7.501313-4 9.418000-4 7.568631-4 9.660509-4 7.781560-4 9.867400-4 7.981201-4 9.867400-4 7.911250-4 1.230269-3 1.026015-3 1.272900-3 1.067483-3 1.272900-3 1.055179-3 1.609900-3 1.382251-3 1.609900-3 1.379357-3 1.788700-3 1.552970-3 1.788700-3 1.548320-3 3.090295-3 2.819846-3 4.248100-3 3.960781-3 4.248100-3 3.839739-3 4.492200-3 4.083523-3 4.492200-3 3.987563-3 5.103800-3 4.594791-3 5.103800-3 4.561247-3 6.350900-3 5.804058-3 6.350900-3 5.778698-3 6.732500-3 6.156735-3 6.732500-3 6.140671-3 1.883649-2 1.816423-2 1.992900-2 1.925261-2 1.992900-2 1.444260-2 2.524200-2 1.982020-2 2.524200-2 1.720908-2 2.604700-2 1.798943-2 2.604700-2 1.758657-2 3.845918-2 2.979336-2 9.015711-2 8.128466-2 1.356300-1 1.267111-1 1.356300-1 4.081572-2 1.396368-1 4.468518-2 1.445440-1 4.940065-2 1.603245-1 6.473136-2 2.317395-1 1.349864-1 5.233200-1 4.247567-1 3.467369+0 3.367758+0 1.000000+5 9.999990+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.356300-1 1.116681+3 1.390000-1 1.053218+3 1.400000-1 1.032672+3 1.425000-1 9.926820+2 1.470000-1 9.167280+2 1.540000-1 8.205640+2 1.698244-1 6.423629+2 2.600160-1 2.239585+2 3.054921-1 1.510986+2 3.589219-1 1.026952+2 4.168694-1 7.226775+1 4.731513-1 5.403731+1 5.432503-1 3.965081+1 6.237348-1 2.931166+1 7.161434-1 2.183165+1 8.222427-1 1.638498+1 9.332543-1 1.268295+1 1.122018+0 8.828402+0 1.273503+0 6.912823+0 1.445440+0 5.454250+0 1.621810+0 4.427890+0 1.840772+0 3.546060+0 2.113489+0 2.803126+0 2.398833+0 2.275663+0 2.754229+0 1.826355+0 3.198895+0 1.450397+0 3.715352+0 1.160373+0 4.365158+0 9.197340-1 5.128614+0 7.345659-1 6.095369+0 5.819077-1 7.244360+0 4.644197-1 8.810489+0 3.625663-1 1.083927+1 2.812197-1 1.364583+1 2.138964-1 1.798871+1 1.555808-1 2.344229+1 1.157106-1 3.162278+1 8.336002-2 4.415704+1 5.837137-2 6.683439+1 3.779992-2 1.071519+2 2.322859-2 1.883649+2 1.307182-2 3.758374+2 6.503969-3 7.498942+2 3.247788-3 5.956621+3 4.075292-4 1.000000+5 2.426400-5 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.356300-1 7.679400-4 1.000000+5 7.679400-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.356300-1 1.229900-1 1.000000+5 1.229900-1 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.356300-1 1.187206-2 1.000000+5 9.999988+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.604700-2 3.738078+3 2.650000-2 3.616400+3 2.725000-2 3.452720+3 2.760000-2 3.385360+3 2.851018-2 3.190697+3 3.000000-2 2.934080+3 3.650000-2 2.058740+3 4.027170-2 1.709710+3 5.069907-2 1.084880+3 5.754399-2 8.353912+2 6.531306-2 6.406471+2 7.852356-2 4.300511+2 9.500000-2 2.814320+2 1.150000-1 1.820636+2 1.412538-1 1.128957+2 3.054921-1 1.829196+1 3.715352-1 1.163297+1 4.415705-1 7.856030+0 5.128614-1 5.627647+0 5.956621-1 4.063080+0 6.918310-1 2.954522+0 8.035261-1 2.164429+0 9.225714-1 1.634643+0 1.071519+0 1.216589+0 1.258925+0 8.899201-1 1.428894+0 7.016939-1 1.584893+0 5.811062-1 1.798871+0 4.648239-1 2.065380+0 3.669685-1 2.344229+0 2.975332-1 2.691535+0 2.385072-1 3.126079+0 1.892089-1 3.630781+0 1.512078-1 4.265795+0 1.197157-1 5.011872+0 9.550922-2 5.956621+0 7.558275-2 7.079458+0 6.026461-2 8.609938+0 4.700347-2 1.059254+1 3.642590-2 1.318257+1 2.806083-2 1.678804+1 2.120516-2 2.162719+1 1.593668-2 2.754229+1 1.221161-2 3.507519+1 9.392821-3 5.308844+1 6.055792-3 8.413951+1 3.751278-3 1.566751+2 1.984957-3 3.126079+2 9.865422-4 6.237348+2 4.921878-4 4.954502+3 6.173209-5 1.000000+5 3.056500-6 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.604700-2 1.095200-3 1.000000+5 1.095200-3 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.604700-2 1.000100-2 1.000000+5 1.000100-2 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.604700-2 1.495080-2 1.000000+5 9.999999+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.524200-2 7.975282+3 2.555000-2 7.791600+3 2.660725-2 7.103200+3 2.754229-2 6.529700+3 2.851018-2 6.023700+3 3.507519-2 3.607600+3 3.845918-2 2.855300+3 4.731513-2 1.666000+3 5.956621-2 9.011900+2 7.413102-2 4.971600+2 9.660509-2 2.395900+2 1.819701-1 4.122400+1 2.300000-1 2.164100+1 2.691535-1 1.412669+1 3.162278-1 9.183839+0 3.672823-1 6.200675+0 4.216965-1 4.346214+0 4.786301-1 3.159682+0 5.432503-1 2.314110+0 6.095369-1 1.755875+0 6.683439-1 1.415996+0 7.498942-1 1.090282+0 8.413951-1 8.453477-1 9.549926-1 6.432487-1 1.035142+0 5.443355-1 1.135011+0 4.530884-1 1.258925+0 3.713840-1 1.412538+0 3.001058-1 1.659587+0 2.247134-1 1.905461+0 1.766205-1 2.162719+0 1.425873-1 2.454709+0 1.159236-1 2.818383+0 9.317836-2 3.311311+0 7.282296-2 3.845918+0 5.836033-2 4.518559+0 4.633320-2 5.308844+0 3.706255-2 6.309573+0 2.940585-2 7.585776+0 2.315899-2 9.225714+0 1.811270-2 1.135011+1 1.407312-2 1.428894+1 1.072218-2 1.862087+1 7.914715-3 2.400000+1 5.964000-3 3.235937+1 4.300874-3 4.731513+1 2.870147-3 7.413102+1 1.795439-3 1.333521+2 9.822360-4 2.660725+2 4.874964-4 5.308844+2 2.430104-4 4.216965+3 3.045676-5 1.000000+5 1.283400-6 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.524200-2 8.086300-4 1.000000+5 8.086300-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.524200-2 1.328700-2 1.000000+5 1.328700-2 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.524200-2 1.114637-2 1.000000+5 9.999999+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 1.992900-2 1.984848+4 2.030000-2 1.896824+4 2.120000-2 1.687792+4 2.190000-2 1.541676+4 2.300000-2 1.349740+4 2.900000-2 7.029240+3 3.273407-2 4.953746+3 3.801894-2 3.200632+3 4.731513-2 1.669788+3 5.888437-2 8.611532+2 7.328245-2 4.401498+2 9.660509-2 1.867791+2 1.678804-1 3.331199+1 2.113489-1 1.636850+1 2.511886-1 9.673494+0 2.917427-1 6.185367+0 3.349654-1 4.120747+0 3.801894-1 2.859945+0 4.265795-1 2.065597+0 4.786301-1 1.502413+0 5.370318-1 1.101083+0 6.000000-1 8.225179-1 6.683439-1 6.243112-1 7.413102-1 4.824633-1 8.709636-1 3.262456-1 9.332543-1 2.777239-1 9.885531-1 2.443023-1 1.059254+0 2.111512-1 1.135011+0 1.837188-1 1.230269+0 1.572825-1 1.348963+0 1.326710-1 1.737801+0 8.451976-2 1.995262+0 6.655334-2 2.264644+0 5.385764-2 2.600160+0 4.308909-2 3.000000+0 3.447000-2 3.467369+0 2.769077-2 4.027170+0 2.223965-2 4.731513+0 1.769499-2 5.559043+0 1.418440-2 6.606934+0 1.127652-2 7.943282+0 8.898028-3 9.660509+0 6.971738-3 1.188502+1 5.426320-3 1.479108+1 4.196725-3 1.883649+1 3.182692-3 2.454709+1 2.369593-3 3.388442+1 1.667325-3 5.128614+1 1.074141-3 8.128305+1 6.649489-4 1.513561+2 3.516758-4 3.019952+2 1.747468-4 6.025596+2 8.716260-5 4.786301+3 1.093140-5 1.000000+5 5.228400-7 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 1.992900-2 7.592400-4 1.000000+5 7.592400-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.992900-2 8.362600-3 1.000000+5 8.362600-3 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 1.992900-2 1.080716-2 1.000000+5 9.999999+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.732500-3 9.231060+3 7.328245-3 8.279971+3 7.585776-3 7.940215+3 8.150000-3 7.183740+3 8.810489-3 6.482254+3 9.332543-3 5.965343+3 1.023293-2 5.188612+3 1.100000-2 4.662120+3 1.190000-2 4.112260+3 1.428894-2 3.050092+3 1.584893-2 2.551747+3 1.850000-2 1.943576+3 2.187762-2 1.428549+3 2.426610-2 1.175271+3 2.851018-2 8.609497+2 3.388442-2 6.106128+2 4.027170-2 4.290252+2 4.800000-2 2.969240+2 5.688529-2 2.062157+2 6.760830-2 1.412158+2 8.035261-2 9.597699+1 9.660509-2 6.309618+1 1.188502-1 3.904804+1 1.531088-1 2.153505+1 2.630268-1 5.972981+0 3.235937-1 3.677420+0 3.935501-1 2.343352+0 4.677351-1 1.586181+0 5.370318-1 1.168410+0 6.237348-1 8.450357-1 7.244360-1 6.155666-1 8.511380-1 4.411647-1 9.660509-1 3.418510-1 1.188502+0 2.278221-1 1.333521+0 1.829138-1 1.513561+0 1.447154-1 1.717908+0 1.154519-1 1.972423+0 9.093204-2 2.238721+0 7.354068-2 2.570396+0 5.879838-2 2.951209+0 4.736313-2 3.427678+0 3.774313-2 4.000000+0 3.009000-2 4.677351+0 2.409245-2 5.495409+0 1.930222-2 6.531306+0 1.533807-2 7.852356+0 1.209705-2 9.549926+0 9.473935-3 1.174898+1 7.370701-3 1.462177+1 5.698193-3 1.862087+1 4.319850-3 2.426610+1 3.215624-3 3.349654+1 2.261633-3 5.069907+1 1.456684-3 8.128305+1 8.909158-4 1.513561+2 4.711771-4 3.019952+2 2.341378-4 6.025596+2 1.167796-4 4.786301+3 1.464533-5 1.000000+5 7.005100-7 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.732500-3 8.530100-4 1.000000+5 8.530100-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.732500-3 1.263700-4 1.000000+5 1.263700-4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.732500-3 5.753120-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.350900-3 1.466800+4 6.531306-3 1.434303+4 6.920000-3 1.354840+4 7.300000-3 1.274256+4 8.035261-3 1.134997+4 8.511380-3 1.049985+4 9.332543-3 9.183828+3 1.035142-2 7.854357+3 1.109175-2 7.036784+3 1.318257-2 5.235944+3 1.412538-2 4.618582+3 1.659587-2 3.400329+3 1.800000-2 2.895180+3 2.089296-2 2.132817+3 2.300000-2 1.738956+3 2.650000-2 1.276690+3 3.054921-2 9.261476+2 3.427678-2 7.094782+2 3.900000-2 5.228540+2 4.518559-2 3.661495+2 5.300000-2 2.467340+2 6.237348-2 1.635409+2 7.413102-2 1.048954+2 9.015711-2 6.289018+1 1.135011-1 3.415297+1 2.089296-1 6.657584+0 2.691535-1 3.418667+0 2.951209-1 2.671204+0 3.507519-1 1.706946+0 4.073803-1 1.166192+0 4.677351-1 8.262846-1 5.308844-1 6.066568-1 6.025596-1 4.487117-1 6.760830-1 3.436392-1 7.585776-1 2.649962-1 8.709636-1 1.955238-1 9.549926-1 1.608311-1 1.035142+0 1.365247-1 1.174898+0 1.063572-1 1.303167+0 8.729169-2 1.479108+0 6.915230-2 1.698244+0 5.401580-2 1.949845+0 4.250595-2 2.213095+0 3.435559-2 2.540973+0 2.745101-2 2.917427+0 2.209941-2 3.388442+0 1.760110-2 3.935501+0 1.412107-2 4.623810+0 1.122348-2 5.432503+0 8.987001-3 6.456542+0 7.137386-3 7.762471+0 5.626609-3 9.440609+0 4.404573-3 1.161449+1 3.425297-3 1.445440+1 2.646931-3 1.862087+1 1.980134-3 2.426610+1 1.473963-3 3.349654+1 1.036729-3 5.069907+1 6.676927-4 8.035261+1 4.132592-4 1.513561+2 2.159739-4 3.019952+2 1.073194-4 6.025596+2 5.353067-5 4.786301+3 6.713182-6 1.000000+5 3.211000-7 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.350900-3 7.643800-4 1.000000+5 7.643800-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.350900-3 2.271900-4 1.000000+5 2.271900-4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.350900-3 5.359330-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.103800-3 6.233465+4 5.188000-3 5.909938+4 5.500000-3 5.376120+4 5.888437-3 4.777111+4 6.531306-3 3.972996+4 7.079458-3 3.412205+4 8.128305-3 2.609391+4 8.810489-3 2.222372+4 1.059254-2 1.516915+4 1.150000-2 1.268524+4 1.350000-2 8.879800+3 1.479108-2 7.194093+3 1.698244-2 5.199626+3 1.950000-2 3.717656+3 2.162719-2 2.876910+3 2.511886-2 1.968075+3 2.917427-2 1.333007+3 3.311311-2 9.516180+2 3.715352-2 6.968688+2 4.265795-2 4.763384+2 4.954502-2 3.130653+2 5.754399-2 2.042895+2 6.760830-2 1.280915+2 8.128305-2 7.452937+1 1.000000-1 4.019640+1 1.318257-1 1.748956+1 1.949845-1 5.360843+0 2.483133-1 2.605151+0 2.917427-1 1.621329+0 3.388442-1 1.051509+0 3.890451-1 7.104465-1 4.415705-1 4.997015-1 4.954502-1 3.654157-1 5.559043-1 2.691459-1 6.165950-1 2.057640-1 6.839117-1 1.583906-1 7.585776-1 1.227468-1 8.709636-1 8.793496-2 9.332543-1 7.489697-2 9.885531-1 6.590576-2 1.059254+0 5.697647-2 1.148154+0 4.846994-2 1.250000+0 4.119250-2 1.380384+0 3.433960-2 1.757924+0 2.234536-2 2.000000+0 1.788288-2 2.264644+0 1.453064-2 2.600160+0 1.162522-2 3.000000+0 9.299500-3 3.467369+0 7.470601-3 4.027170+0 5.999995-3 4.731513+0 4.773916-3 5.559043+0 3.826674-3 6.606934+0 3.042245-3 7.943282+0 2.400512-3 9.660509+0 1.880894-3 1.188502+1 1.463982-3 1.479108+1 1.132192-3 1.883649+1 8.586567-4 2.454709+1 6.392810-4 3.388442+1 4.498047-4 5.128614+1 2.897812-4 8.222427+1 1.772708-4 1.531087+2 9.377242-5 3.054921+2 4.659967-5 6.095369+2 2.324494-5 4.841724+3 2.915240-6 1.000000+5 1.410500-7 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.103800-3 6.541500-4 1.000000+5 6.541500-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.103800-3 8.245800-5 1.000000+5 8.245800-5 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.103800-3 4.367192-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.492200-3 1.379800+5 4.786301-3 1.238388+5 4.850000-3 1.203691+5 5.308844-3 9.485865+4 5.821032-3 7.369380+4 6.683439-3 4.991604+4 7.585776-3 3.464554+4 8.317638-3 2.643170+4 9.120108-3 2.006236+4 1.120000-2 1.065668+4 1.230269-2 7.923328+3 1.428894-2 4.911808+3 1.678804-2 2.900226+3 1.862087-2 2.056607+3 2.162719-2 1.242887+3 2.570396-2 6.880963+2 3.019952-2 3.928456+2 3.589219-2 2.137128+2 4.315191-2 1.107221+2 5.248075-2 5.465544+1 6.760830-2 2.171527+1 1.288250-1 2.042959+0 1.566751-1 1.003295+0 1.862087-1 5.395530-1 2.187762-1 3.045455-1 2.511886-1 1.877722-1 2.851018-1 1.213409-1 3.235937-1 7.899603-2 3.630781-1 5.386208-2 4.073803-1 3.700398-2 4.518559-1 2.658149-2 5.011872-1 1.923187-2 5.495409-1 1.451229-2 6.025596-1 1.102983-2 6.531306-1 8.747192-3 7.161434-1 6.760051-3 7.943282-1 5.100189-3 8.609938-1 4.082433-3 9.120108-1 3.503853-3 9.549926-1 3.118784-3 1.000000+0 2.793962-3 1.047129+0 2.520371-3 1.109175+0 2.232227-3 1.174898+0 1.991026-3 1.258925+0 1.748836-3 1.364583+0 1.514586-3 1.531087+0 1.241452-3 1.862087+0 8.791012-4 2.089296+0 7.222045-4 2.371374+0 5.860053-4 2.722701+0 4.701011-4 3.162278+0 3.731748-4 3.672823+0 2.983891-4 4.315191+0 2.363782-4 5.069907+0 1.886873-4 6.025596+0 1.493915-4 7.161434+0 1.191712-4 8.709636+0 9.299361-5 1.071519+1 7.209837-5 1.333521+1 5.556218-5 1.737801+1 4.091324-5 2.290868+1 3.000887-5 3.054921+1 2.188185-5 4.000000+1 1.639200-5 5.821032+1 1.103746-5 9.120108+1 6.929774-6 1.659587+2 3.757761-6 3.311311+2 1.868450-6 6.606934+2 9.323971-7 5.248075+3 1.169610-7 1.000000+5 6.134700-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.492200-3 4.994100-4 1.000000+5 4.994100-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.492200-3 2.520200-4 1.000000+5 2.520200-4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.492200-3 3.740770-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.248100-3 2.327110+5 4.420000-3 2.099513+5 4.550000-3 1.933074+5 5.011872-3 1.487079+5 5.432503-3 1.186692+5 6.095369-3 8.533111+4 6.918310-3 5.895823+4 7.800000-3 4.120134+4 8.709636-3 2.939236+4 1.071519-2 1.531003+4 1.202264-2 1.054866+4 1.350000-2 7.221840+3 1.584893-2 4.226080+3 1.778279-2 2.856928+3 2.018366-2 1.846837+3 2.344229-2 1.093485+3 2.754229-2 6.161365+2 3.273407-2 3.300522+2 3.890451-2 1.752093+2 4.623810-2 9.230014+1 5.623413-2 4.430285+1 7.328245-2 1.625438+1 1.188502-1 2.586997+0 1.445440-1 1.237619+0 1.698244-1 6.789167-1 1.972423-1 3.916205-1 2.264644-1 2.374131-1 2.540973-1 1.574988-1 2.851018-1 1.052278-1 3.162278-1 7.370494-2 3.507519-1 5.199651-2 3.890451-1 3.696387-2 4.265795-1 2.748339-2 4.677351-1 2.057525-2 5.128614-1 1.551341-2 5.623413-1 1.178429-2 6.095369-1 9.328086-3 6.606935-1 7.438690-3 7.244360-1 5.787756-3 8.609938-1 3.664959-3 9.120108-1 3.165016-3 9.660509-1 2.753373-3 1.011579+0 2.478987-3 1.071519+0 2.190396-3 1.135011+0 1.947984-3 1.216186+0 1.704394-3 1.318257+0 1.469643-3 1.883649+0 7.840570-4 2.113489+0 6.445854-4 2.398833+0 5.233028-4 2.754229+0 4.199997-4 3.198895+0 3.335582-4 3.715352+0 2.668661-4 4.365158+0 2.115227-4 5.128614+0 1.689341-4 6.095369+0 1.338264-4 7.328245+0 1.052389-4 8.912509+0 8.219518-5 1.100000+1 6.353600-5 1.380384+1 4.853180-5 1.819701+1 3.531673-5 2.371374+1 2.627534-5 3.198895+1 1.893325-5 4.570882+1 1.294255-5 7.079458+1 8.188154-6 1.202264+2 4.747623-6 2.213095+2 2.553484-6 4.415704+2 1.271626-6 1.757924+3 3.180132-7 1.000000+5 5.580100-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.248100-3 4.995200-4 1.000000+5 4.995200-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.248100-3 4.009900-7 1.000000+5 4.009900-7 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.248100-3 3.748179-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.788700-3 2.035476+4 2.065380-3 1.750653+4 2.162719-3 1.672247+4 2.300000-3 1.561070+4 2.818383-3 1.224081+4 3.162278-3 1.061599+4 3.427678-3 9.531132+3 4.168694-3 7.259959+3 4.623810-3 6.237562+3 5.432503-3 4.891385+3 6.309573-3 3.865690+3 7.161434-3 3.151554+3 8.511380-3 2.363576+3 1.023293-2 1.721370+3 1.216186-2 1.267209+3 1.445440-2 9.250312+2 1.737801-2 6.553769+2 2.065380-2 4.705370+2 2.426610-2 3.429991+2 2.851018-2 2.483983+2 3.388442-2 1.745161+2 4.027170-2 1.216802+2 4.800000-2 8.369540+1 5.754399-2 5.642301+1 6.918310-2 3.750164+1 8.413951-2 2.409724+1 1.035142-1 1.495388+1 1.333521-1 8.275115+0 1.678804-1 4.801587+0 2.570396-1 1.747906+0 3.198895-1 1.046845+0 3.890451-1 6.667363-1 4.623810-1 4.510592-1 5.308844-1 3.320581-1 6.165950-1 2.400068-1 7.161434-1 1.747155-1 8.413951-1 1.251180-1 9.549926-1 9.687630-2 1.161449+0 6.597934-2 1.303167+0 5.290543-2 1.479108+0 4.180031-2 1.678804+0 3.329912-2 1.927525+0 2.619444-2 2.187762+0 2.115946-2 2.511886+0 1.689568-2 2.884032+0 1.359355-2 3.349654+0 1.082033-2 3.890451+0 8.676018-3 4.570882+0 6.891795-3 5.370318+0 5.515779-3 6.382635+0 4.378466-3 7.673615+0 3.449968-3 9.332543+0 2.699516-3 1.148154+1 2.098428-3 1.445440+1 1.599407-3 1.862087+1 1.196522-3 2.400000+1 9.015900-4 3.235937+1 6.501732-4 4.731513+1 4.338924-4 7.413102+1 2.714198-4 1.348963+2 1.467505-4 2.691535+2 7.284284-5 5.370318+2 3.631290-5 4.265795+3 4.551525-6 1.000000+5 1.940200-7 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.788700-3 5.112200-4 1.000000+5 5.112200-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.788700-3 1.223400-6 1.000000+5 1.223400-6 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.788700-3 1.276257-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.609900-3 1.705690+4 1.840772-3 1.651522+4 1.950000-3 1.635388+4 2.089296-3 1.597469+4 2.238721-3 1.547892+4 2.454709-3 1.471391+4 2.600160-3 1.417758+4 2.900000-3 1.305742+4 3.090295-3 1.235244+4 3.427678-3 1.117078+4 3.715352-3 1.028205+4 4.000000-3 9.464300+3 4.500000-3 8.203340+3 4.900000-3 7.356480+3 5.370318-3 6.491410+3 6.025596-3 5.508548+3 6.606934-3 4.795253+3 7.500000-3 3.929380+3 8.317638-3 3.313741+3 9.332543-3 2.723430+3 1.059254-2 2.175050+3 1.190000-2 1.755742+3 1.333521-2 1.414500+3 1.513561-2 1.103827+3 1.717908-2 8.547659+2 1.950000-2 6.569480+2 2.213095-2 5.015029+2 2.511886-2 3.801400+2 2.851018-2 2.862332+2 3.235937-2 2.141640+2 3.758374-2 1.508383+2 4.265795-2 1.114407+2 4.954502-2 7.735573+1 5.821032-2 5.180867+1 6.918310-2 3.344300+1 8.317638-2 2.080329+1 1.023293-1 1.210045+1 1.348963-1 5.817336+0 2.290868-1 1.420452+0 2.818383-1 8.232444-1 3.349654-1 5.260070-1 3.935501-1 3.487501-1 4.518559-1 2.469194-1 5.128614-1 1.811504-1 5.821032-1 1.339014-1 6.606935-1 9.973460-2 7.585776-1 7.282899-2 8.413951-1 5.794740-2 9.225714-1 4.761863-2 1.000000+0 4.035071-2 1.135011+0 3.139074-2 1.273503+0 2.515427-2 1.445440+0 1.988575-2 1.659587+0 1.551057-2 1.905461+0 1.219086-2 2.162719+0 9.841591-3 2.483133+0 7.853195-3 2.851018+0 6.314339-3 3.311311+0 5.023279-3 3.845918+0 4.025625-3 4.518559+0 3.196052-3 5.308844+0 2.556600-3 6.309573+0 2.028430-3 7.585776+0 1.597503-3 9.225714+0 1.249379-3 1.135011+1 9.707754-4 1.428894+1 7.396220-4 1.840772+1 5.530871-4 2.371374+1 4.168783-4 3.162278+1 3.041565-4 4.415704+1 2.129794-4 6.683439+1 1.379187-4 1.071519+2 8.475349-5 1.883649+2 4.769367-5 3.758374+2 2.373112-5 7.498942+2 1.185020-5 5.956621+3 1.486962-6 1.000000+5 8.853100-8 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.609900-3 4.779900-4 1.000000+5 4.779900-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.609900-3 8.445400-7 1.000000+5 8.445400-7 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.609900-3 1.131065-3 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.272900-3 1.386991+5 1.396368-3 1.236642+5 1.570000-3 1.085924+5 1.730000-3 9.637080+4 1.927525-3 8.400080+4 2.089296-3 7.532866+4 2.350000-3 6.377440+4 2.722701-3 5.105959+4 3.019952-3 4.346498+4 3.388442-3 3.599276+4 3.845918-3 2.908354+4 4.365158-3 2.327856+4 4.897788-3 1.890936+4 5.688529-3 1.428442+4 6.382635-3 1.143042+4 7.244360-3 8.887580+3 8.413951-3 6.536677+3 9.660509-3 4.878601+3 1.083927-2 3.798568+3 1.216186-2 2.941184+3 1.400000-2 2.134056+3 1.603245-2 1.554201+3 1.840772-2 1.116002+3 2.089296-2 8.180485+2 2.371374-2 5.956942+2 2.722701-2 4.184037+2 3.126079-2 2.916592+2 3.600000-2 2.002194+2 4.120975-2 1.387712+2 4.786301-2 9.173990+1 5.623413-2 5.828187+1 6.531306-2 3.797636+1 7.852356-2 2.223476+1 9.660509-2 1.207411+1 1.230269-1 5.866049+0 1.972423-1 1.423527+0 2.426610-1 7.687240-1 2.884032-1 4.631655-1 3.349654-1 3.006435-1 3.845918-1 2.031663-1 4.365158-1 1.428520-1 4.897788-1 1.044052-1 5.495409-1 7.687976-2 6.165950-1 5.704380-2 6.839117-1 4.390298-2 7.943282-1 3.024821-2 8.609938-1 2.492634-2 9.225714-1 2.126221-2 9.772372-1 1.873172-2 1.047129+0 1.621027-2 1.135011+0 1.378616-2 1.244515+0 1.154157-2 1.380384+0 9.534325-3 1.717908+0 6.453986-3 1.972423+0 5.079645-3 2.238721+0 4.108113-3 2.570396+0 3.284542-3 2.951209+0 2.645675-3 3.427678+0 2.108300-3 4.000000+0 1.680800-3 4.677351+0 1.345761-3 5.495409+0 1.078204-3 6.531306+0 8.567719-4 7.852356+0 6.757331-4 9.549926+0 5.292227-4 1.174898+1 4.117289-4 1.462177+1 3.182992-4 1.862087+1 2.413063-4 2.400000+1 1.818400-4 3.235937+1 1.311263-4 4.786301+1 8.645292-5 7.585776+1 5.345143-5 1.396368+2 2.857231-5 2.786121+2 1.418796-5 5.559043+2 7.073791-6 4.415704+3 8.867913-7 1.000000+5 3.913000-8 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.272900-3 4.107000-4 1.000000+5 4.107000-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.272900-3 8.066800-7 1.000000+5 8.066800-7 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.272900-3 8.613933-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 9.867400-4 1.660201+5 1.038000-3 1.877671+5 1.083927-3 1.972805+5 1.100000-3 1.985385+5 1.110000-3 1.989744+5 1.130000-3 1.986608+5 1.190000-3 1.949228+5 1.244515-3 1.904331+5 1.303167-3 1.849806+5 1.380384-3 1.770921+5 1.470000-3 1.675788+5 1.566751-3 1.573129+5 1.659587-3 1.475750+5 1.770000-3 1.365200+5 1.905461-3 1.239886+5 2.041738-3 1.123326+5 2.220000-3 9.905800+4 2.371374-3 8.904787+4 2.600160-3 7.600336+4 2.818383-3 6.579813+4 3.019952-3 5.778663+4 3.311311-3 4.823821+4 3.630781-3 4.001106+4 3.981072-3 3.289732+4 4.415704-3 2.620068+4 4.841724-3 2.123164+4 5.370318-3 1.663749+4 5.888437-3 1.329888+4 6.531306-3 1.026484+4 7.244360-3 7.861798+3 8.035261-3 5.978953+3 8.944300-3 4.471146+3 9.885531-3 3.386777+3 1.109175-2 2.442127+3 1.244515-2 1.747203+3 1.412538-2 1.198412+3 1.603245-2 8.148854+2 1.819701-2 5.495456+2 2.065380-2 3.676709+2 2.317395-2 2.535143+2 2.630268-2 1.672974+2 3.019952-2 1.055250+2 3.467369-2 6.606882+1 4.027170-2 3.948731+1 4.731513-2 2.251325+1 5.688529-2 1.174907+1 7.000000-2 5.602520+0 1.380384-1 4.852594-1 1.698244-1 2.314262-1 2.018366-1 1.256917-1 2.398833-1 6.878252-2 2.754229-1 4.275954-2 3.126079-1 2.785221-2 3.507519-1 1.899135-2 3.935501-1 1.304406-2 4.365158-1 9.366439-3 4.841724-1 6.773779-3 5.308844-1 5.109740-3 5.821032-1 3.880426-3 6.382635-1 2.968504-3 6.918310-1 2.366206-3 7.585776-1 1.838208-3 8.035261-1 1.573897-3 8.709636-1 1.261375-3 9.225714-1 1.084088-3 9.660509-1 9.661583-4 1.011579+0 8.669940-4 1.059254+0 7.831212-4 1.122018+0 6.946069-4 1.188502+0 6.203221-4 1.273503+0 5.454917-4 1.396368+0 4.635288-4 1.513561+0 4.036006-4 1.840772+0 2.856379-4 2.065380+0 2.344844-4 2.344229+0 1.901260-4 2.691535+0 1.524056-4 3.126079+0 1.208997-4 3.630781+0 9.661729-5 4.265795+0 7.649435-5 5.011872+0 6.102714-5 5.956621+0 4.829439-5 7.079458+0 3.850622-5 8.511380+0 3.046870-5 1.047129+1 2.360217-5 1.300000+1 1.822700-5 1.621810+1 1.409785-5 2.018366+1 1.100143-5 2.660725+1 8.100567-6 3.507519+1 6.001520-6 5.308844+1 3.869420-6 8.413951+1 2.396941-6 1.566751+2 1.268300-6 3.126079+2 6.303904-7 6.237348+2 3.144872-7 4.954502+3 3.944416-8 1.000000+5 1.953000-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 9.867400-4 3.303200-4 1.000000+5 3.303200-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.867400-4 5.368000-7 1.000000+5 5.368000-7 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 9.867400-4 6.558832-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 9.262000-4 6.291123+4 9.265000-4 6.746160+4 9.275000-4 7.934100+4 9.285000-4 9.262200+4 9.292000-4 1.026258+5 9.300000-4 1.146894+5 9.308000-4 1.272576+5 9.315000-4 1.386006+5 9.322000-4 1.501662+5 9.330000-4 1.635090+5 9.337000-4 1.751592+5 9.345000-4 1.882998+5 9.353000-4 2.011086+5 9.362000-4 2.149518+5 9.370000-4 2.266218+5 9.378000-4 2.376150+5 9.388000-4 2.502996+5 9.396000-4 2.595546+5 9.407000-4 2.709852+5 9.418000-4 2.809500+5 9.430000-4 2.902710+5 9.445000-4 2.999190+5 9.458000-4 3.067398+5 9.473000-4 3.131874+5 9.490000-4 3.190350+5 9.515000-4 3.256638+5 9.550000-4 3.325332+5 9.600000-4 3.398466+5 9.660509-4 3.464729+5 9.700000-4 3.496284+5 9.750000-4 3.522678+5 9.830000-4 3.537564+5 1.015000-3 3.500592+5 1.040000-3 3.479802+5 1.122018-3 3.345987+5 1.190000-3 3.215340+5 1.273503-3 3.042081+5 1.364583-3 2.849752+5 1.462177-3 2.646855+5 1.566751-3 2.439411+5 1.698244-3 2.196713+5 1.806000-3 2.015431+5 2.000000-3 1.725474+5 2.150000-3 1.535874+5 2.300000-3 1.367496+5 2.540973-3 1.142396+5 2.754229-3 9.814803+4 3.019952-3 8.174457+4 3.311311-3 6.763815+4 3.589219-3 5.692924+4 3.981072-3 4.526139+4 4.365158-3 3.664091+4 4.841724-3 2.866441+4 5.308844-3 2.288173+4 5.888437-3 1.762851+4 6.531306-3 1.347471+4 7.161434-3 1.054537+4 8.000000-3 7.795320+3 9.015711-3 5.574878+3 1.011579-2 4.001348+3 1.122018-2 2.948233+3 1.244515-2 2.158789+3 1.396368-2 1.515714+3 1.566751-2 1.056231+3 1.757924-2 7.308057+2 1.972423-2 5.021539+2 2.213095-2 3.427919+2 2.511886-2 2.236480+2 2.884032-2 1.392190+2 3.311311-2 8.595447+1 3.845918-2 5.057287+1 4.518559-2 2.832923+1 5.248075-2 1.643006+1 6.382635-2 7.986587+0 8.317638-2 2.981063+0 1.333521-1 5.107686-1 1.603245-1 2.582694-1 1.883649-1 1.432480-1 2.162719-1 8.708200-2 2.454709-1 5.555462-2 2.786121-1 3.570405-2 3.126079-1 2.404205-2 3.467369-1 1.695612-2 3.845918-1 1.204770-2 4.168694-1 9.291922-3 4.570882-1 6.953148-3 5.011872-1 5.240000-3 5.495409-1 3.977751-3 6.025596-1 3.041389-3 6.531306-1 2.420829-3 6.998420-1 2.002246-3 7.585776-1 1.615797-3 8.317638-1 1.273774-3 9.440609-1 9.248171-4 9.885531-1 8.283422-4 1.035142+0 7.469692-4 1.096478+0 6.611635-4 1.161449+0 5.891519-4 1.250000+0 5.125720-4 1.364583+0 4.377735-4 1.531087+0 3.583475-4 1.840772+0 2.588460-4 2.065380+0 2.125119-4 2.344229+0 1.723095-4 2.691535+0 1.381211-4 3.126079+0 1.095670-4 3.630781+0 8.756255-5 4.265795+0 6.932662-5 5.011872+0 5.530886-5 5.956621+0 4.376887-5 7.079458+0 3.489828-5 8.511380+0 2.761408-5 1.047129+1 2.138990-5 1.303167+1 1.647163-5 1.621810+1 1.277650-5 2.000000+1 1.007400-5 2.630268+1 7.433807-6 3.507519+1 5.439198-6 5.308844+1 3.506798-6 8.413951+1 2.172330-6 1.548817+2 1.163003-6 3.090295+2 5.779957-7 6.165950+2 2.883314-7 4.897788+3 3.616269-8 1.000000+5 1.770000-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 9.262000-4 3.132600-4 1.000000+5 3.132600-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.262000-4 9.919600-8 1.000000+5 9.919600-8 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.262000-4 6.128408-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 5.477300-4 6.582119+4 5.477600-4 6.488280+4 5.482000-4 6.244200+4 5.486500-4 6.040740+4 5.491000-4 5.869728+4 5.497000-4 5.682912+4 5.504000-4 5.514672+4 5.511000-4 5.380956+4 5.518000-4 5.277288+4 5.530000-4 5.146620+4 5.541000-4 5.062116+4 5.553000-4 4.997586+4 5.568000-4 4.944408+4 5.590000-4 4.899684+4 5.623413-4 4.872999+4 5.650000-4 4.880400+4 5.678000-4 4.922454+4 5.700000-4 4.989588+4 5.720000-4 5.084340+4 5.735000-4 5.181444+4 5.754399-4 5.345296+4 5.770000-4 5.513112+4 5.785000-4 5.708712+4 5.800000-4 5.940822+4 5.815000-4 6.213960+4 5.829400-4 6.517799+4 5.843000-4 6.845700+4 5.860000-4 7.316940+4 5.880000-4 7.965480+4 5.900000-4 8.727240+4 5.920000-4 9.613800+4 5.950000-4 1.120020+5 5.985000-4 1.348098+5 6.050000-4 1.907556+5 6.090000-4 2.344152+5 6.115000-4 2.652360+5 6.140000-4 2.986926+5 6.165950-4 3.360963+5 6.190000-4 3.730686+5 6.220000-4 4.220916+5 6.250000-4 4.740582+5 6.280000-4 5.286276+5 6.310000-4 5.854404+5 6.343000-4 6.498540+5 6.370000-4 7.035960+5 6.400000-4 7.638120+5 6.430000-4 8.239380+5 6.460000-4 8.832360+5 6.492500-4 9.460231+5 6.515000-4 9.881820+5 6.550000-4 1.051074+6 6.590000-4 1.118352+6 6.630000-4 1.180242+6 6.670000-4 1.236546+6 6.700000-4 1.275180+6 6.740000-4 1.321932+6 6.780000-4 1.363584+6 6.839116-4 1.416369+6 6.890000-4 1.454256+6 6.950000-4 1.490718+6 7.000000-4 1.515018+6 7.080000-4 1.543710+6 7.161434-4 1.561641+6 7.260000-4 1.571550+6 7.350000-4 1.572156+6 7.500000-4 1.562094+6 7.673615-4 1.538924+6 7.852356-4 1.506433+6 8.128305-4 1.446712+6 8.413951-4 1.380133+6 8.810489-4 1.286590+6 9.225714-4 1.191531+6 9.700000-4 1.089126+6 1.023293-3 9.833322+5 1.090000-3 8.651760+5 1.161449-3 7.549276+5 1.244515-3 6.460091+5 1.318257-3 5.639637+5 1.428894-3 4.621133+5 1.548817-3 3.763361+5 1.659587-3 3.133783+5 1.819701-3 2.434606+5 1.972423-3 1.941476+5 2.151200-3 1.509266+5 2.371374-3 1.130391+5 2.570396-3 8.843463+4 2.884032-3 6.179475+4 3.162278-3 4.603872+4 3.507519-3 3.284877+4 3.935501-3 2.236439+4 4.315191-3 1.634125+4 4.841724-3 1.095376+4 5.432503-3 7.279799+3 6.025596-3 5.005070+3 6.683439-3 3.420111+3 7.500000-3 2.222664+3 8.511380-3 1.373080+3 9.660509-3 8.403274+2 1.083927-2 5.338354+2 1.216186-2 3.368290+2 1.364583-2 2.111743+2 1.531087-2 1.315935+2 1.737801-2 7.771149+1 2.000000-2 4.299162+1 2.317395-2 2.292891+1 2.691535-2 1.201530+1 3.162278-2 5.946662+0 3.801894-2 2.640794+0 4.731513-2 9.987477-1 8.609938-2 6.879161-2 1.071519-1 2.605491-2 1.273503-1 1.218719-2 1.500000-1 5.972369-3 1.717908-1 3.330085-3 1.927525-1 2.041411-3 2.162719-1 1.259711-3 2.426610-1 7.827193-4 2.722701-1 4.899361-4 3.019952-1 3.235477-4 3.349654-1 2.150940-4 3.715352-1 1.439881-4 4.120975-1 9.704756-5 4.518559-1 6.880181-5 4.954502-1 4.911309-5 5.370318-1 3.665566-5 5.688529-1 2.992944-5 6.000000-1 2.496790-5 6.382635-1 2.048015-5 6.918310-1 1.596487-5 8.912509-1 7.438661-6 9.225714-1 6.686863-6 9.549926-1 5.979480-6 9.885531-1 5.377183-6 1.023293+0 4.872463-6 1.059254+0 4.455263-6 1.096478+0 4.107443-6 1.135011+0 3.814039-6 1.174898+0 3.563330-6 1.230269+0 3.279638-6 1.318257+0 2.920941-6 1.428894+0 2.576899-6 1.500000+0 2.395095-6 1.678804+0 1.967054-6 1.949845+0 1.510438-6 2.187762+0 1.243912-6 2.511886+0 9.932475-7 2.884032+0 7.990883-7 3.349654+0 6.360689-7 3.890451+0 5.100285-7 4.570882+0 4.051412-7 5.370318+0 3.242469-7 6.382635+0 2.573942-7 7.673615+0 2.028108-7 9.332543+0 1.586926-7 1.148154+1 1.233610-7 1.445440+1 9.402254-8 1.862087+1 7.033657-8 2.426610+1 5.235655-8 3.349654+1 3.682464-8 5.069907+1 2.371728-8 8.128305+1 1.450578-8 1.513561+2 7.671753-9 3.019952+2 3.812105-9 6.025596+2 1.901454-9 4.786301+3 2.38457-10 1.000000+5 1.14060-11 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 5.477300-4 1.893400-4 1.000000+5 1.893400-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.477300-4 5.015900-8 1.000000+5 5.015900-8 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.477300-4 3.583398-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 5.309800-4 1.016648+5 5.312500-4 9.779520+4 5.316000-4 9.355680+4 5.319000-4 9.048320+4 5.323500-4 8.660240+4 5.328000-4 8.344800+4 5.333000-4 8.055360+4 5.337000-4 7.863416+4 5.342000-4 7.659488+4 5.348000-4 7.457000+4 5.354000-4 7.292248+4 5.361000-4 7.137160+4 5.370318-4 6.977262+4 5.380000-4 6.851640+4 5.395000-4 6.714072+4 5.407000-4 6.639656+4 5.423000-4 6.573576+4 5.440000-4 6.532256+4 5.466300-4 6.510856+4 5.490000-4 6.531128+4 5.515000-4 6.598864+4 5.535600-4 6.699688+4 5.550000-4 6.799800+4 5.565000-4 6.934384+4 5.585000-4 7.169408+4 5.600000-4 7.393048+4 5.615000-4 7.662408+4 5.630000-4 7.982552+4 5.645000-4 8.358240+4 5.660000-4 8.795280+4 5.678000-4 9.408160+4 5.696900-4 1.016682+5 5.710000-4 1.076808+5 5.730000-4 1.181648+5 5.754399-4 1.332837+5 5.780000-4 1.521904+5 5.821032-4 1.897022+5 5.888437-4 2.725928+5 5.920000-4 3.208904+5 5.950000-4 3.723472+5 5.978000-4 4.250704+5 6.000000-4 4.695288+5 6.030000-4 5.342160+5 6.050000-4 5.797656+5 6.080000-4 6.514464+5 6.100000-4 7.012464+5 6.130000-4 7.785944+5 6.162600-4 8.655421+5 6.190000-4 9.403760+5 6.220000-4 1.023288+6 6.250000-4 1.106392+6 6.280000-4 1.188808+6 6.310000-4 1.269640+6 6.335000-4 1.335208+6 6.370000-4 1.423480+6 6.400000-4 1.495248+6 6.430000-4 1.563056+6 6.460000-4 1.626552+6 6.500000-4 1.704440+6 6.540000-4 1.774648+6 6.580000-4 1.837448+6 6.630000-4 1.906184+6 6.685000-4 1.970192+6 6.740000-4 2.023088+6 6.800000-4 2.069472+6 6.860700-4 2.105456+6 6.930000-4 2.134704+6 7.000000-4 2.153280+6 7.080000-4 2.163488+6 7.190000-4 2.163360+6 7.328245-4 2.147830+6 7.500000-4 2.113744+6 7.673615-4 2.067940+6 7.943282-4 1.983802+6 8.222426-4 1.890588+6 8.609938-4 1.759853+6 9.015711-4 1.627788+6 9.549926-4 1.465176+6 1.011579-3 1.309331+6 1.071519-3 1.162477+6 1.135011-3 1.025853+6 1.230269-3 8.537487+5 1.303167-3 7.439099+5 1.412538-3 6.081495+5 1.531087-3 4.941178+5 1.640590-3 4.107198+5 1.819701-3 3.083182+5 1.972423-3 2.449642+5 2.187762-3 1.806948+5 2.371374-3 1.417648+5 2.650000-3 1.006048+5 2.900000-3 7.564920+4 3.235937-3 5.307565+4 3.548134-3 3.913079+4 3.935501-3 2.759403+4 4.415704-3 1.854893+4 4.841724-3 1.341438+4 5.370318-3 9.259999+3 6.095369-3 5.832222+3 6.918310-3 3.638135+3 7.852356-3 2.248298+3 9.000000-3 1.325184+3 1.023293-2 7.981416+2 1.150000-2 4.995456+2 1.288250-2 3.146082+2 1.450000-2 1.930488+2 1.621810-2 1.208628+2 1.862087-2 6.732921+1 2.113489-2 3.912174+1 2.426610-2 2.147746+1 2.818383-2 1.113266+1 3.311311-2 5.444041+0 3.981072-2 2.384096+0 5.011872-2 8.414550-1 8.128305-2 9.329939-2 1.096478-1 2.418230-2 1.288250-1 1.176694-2 1.500000-1 6.004859-3 1.717908-1 3.321171-3 1.949845-1 1.923762-3 2.187762-1 1.179067-3 2.426610-1 7.639233-4 2.691535-1 4.984439-4 2.985383-1 3.276011-4 3.273407-1 2.273474-4 3.548134-1 1.663287-4 3.845918-1 1.225680-4 4.168694-1 9.098862-5 4.466836-1 7.092252-5 4.841724-1 5.342941-5 5.233200-1 4.096349-5 5.623413-1 3.228340-5 6.095369-1 2.490364-5 6.606935-1 1.934771-5 7.244360-1 1.460283-5 7.852356-1 1.149055-5 9.015711-1 7.684594-6 9.440609-1 6.758308-6 9.772372-1 6.168022-6 1.011579+0 5.659050-6 1.047129+0 5.218939-6 1.096478+0 4.717453-6 1.148154+0 4.293326-6 1.216186+0 3.846465-6 1.303167+0 3.397903-6 1.428894+0 2.905543-6 1.513561+0 2.639275-6 1.905461+0 1.759253-6 2.137962+0 1.446813-6 2.426610+0 1.175297-6 2.786121+0 9.438961-7 3.235937+0 7.500810-7 3.758374+0 6.004462-7 4.415704+0 4.761839-7 5.188000+0 3.805073-7 6.165950+0 3.015871-7 7.328245+0 2.408084-7 8.912509+0 1.880786-7 1.100000+1 1.453900-7 1.380384+1 1.110567-7 1.800000+1 8.181300-8 2.344229+1 6.089233-8 3.126079+1 4.441857-8 4.265795+1 3.186278-8 6.382635+1 2.086881-8 9.885531+1 1.327787-8 1.757924+2 7.377569-9 3.507519+2 3.669508-9 6.998420+2 1.831774-9 5.559043+3 2.29817-10 1.000000+5 1.27680-11 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 5.309800-4 1.848900-4 1.000000+5 1.848900-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.309800-4 1.214400-7 1.000000+5 1.214400-7 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.309800-4 3.459686-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.115800-4 4.358875+4 5.370318-4 3.412644+4 5.888437-4 3.142943+4 7.585776-4 2.444371+4 8.317638-4 2.214586+4 9.772372-4 1.845309+4 1.083927-3 1.629527+4 1.258925-3 1.348971+4 1.412538-3 1.158860+4 1.659587-3 9.292038+3 1.972423-3 7.257962+3 2.344229-3 5.622542+3 2.754229-3 4.401372+3 3.311311-3 3.304623+3 4.000000-3 2.445980+3 4.897788-3 1.758399+3 5.956621-3 1.267881+3 7.161434-3 9.251073+2 8.609938-3 6.699599+2 1.035142-2 4.815572+2 1.244515-2 3.436134+2 1.500000-2 2.422240+2 1.798871-2 1.710787+2 2.162719-2 1.193410+2 2.600160-2 8.261068+1 3.126079-2 5.673877+1 3.758374-2 3.866140+1 4.466836-2 2.678786+1 5.370318-2 1.797489+1 6.456542-2 1.196848+1 7.762471-2 7.909740+0 9.440609-2 5.056180+0 1.174898-1 3.041549+0 1.531088-1 1.629872+0 2.722701-1 4.170048-1 3.388442-1 2.500958-1 4.027170-1 1.681431-1 4.786301-1 1.139976-1 5.623413-1 7.992057-2 6.456542-1 5.934469-2 7.498942-1 4.330210-2 8.810489-1 3.108545-2 1.000000+0 2.412909-2 1.216186+0 1.646726-2 1.364583+0 1.323925-2 1.531087+0 1.071126-2 1.737801+0 8.551199-3 2.000000+0 6.711802-3 2.264644+0 5.453106-3 2.600160+0 4.362780-3 3.000000+0 3.490200-3 3.467369+0 2.803814-3 4.027170+0 2.251894-3 4.731513+0 1.791745-3 5.559043+0 1.436200-3 6.606934+0 1.141758-3 7.943282+0 9.009621-4 9.660509+0 7.059263-4 1.188502+1 5.494397-4 1.479108+1 4.249388-4 1.883649+1 3.222704-4 2.426610+1 2.430183-4 3.349654+1 1.709202-4 5.069907+1 1.100816-4 8.128305+1 6.732906-5 1.513561+2 3.560855-5 3.019952+2 1.769418-5 6.025596+2 8.825683-6 4.786301+3 1.106825-6 1.000000+5 5.294000-8 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.115800-4 2.167100-4 1.000000+5 2.167100-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.115800-4 1.275900-8 1.000000+5 1.275900-8 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.115800-4 1.948572-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.378700-4 1.487206+5 3.381000-4 1.474332+5 3.388442-4 1.416265+5 3.395000-4 1.375062+5 3.403000-4 1.334748+5 3.410000-4 1.305588+5 3.422000-4 1.265662+5 3.433000-4 1.236478+5 3.448000-4 1.205018+5 3.470000-4 1.169120+5 3.500000-4 1.130586+5 3.650000-4 9.794200+4 3.820000-4 8.330580+4 4.100000-4 6.563560+4 4.365158-4 5.431989+4 4.623810-4 4.592267+4 4.850000-4 4.017140+4 5.011872-4 3.681735+4 5.188000-4 3.376677+4 5.400000-4 3.075880+4 5.650000-4 2.791180+4 5.900000-4 2.561140+4 6.200000-4 2.337340+4 6.500000-4 2.157100+4 6.760830-4 2.028575+4 7.079458-4 1.899487+4 7.500000-4 1.763536+4 8.035261-4 1.627875+4 8.709636-4 1.494773+4 9.549926-4 1.367119+4 1.380384-3 9.786167+3 1.584893-3 8.567864+3 1.800000-3 7.527720+3 2.065380-3 6.491526+3 2.344229-3 5.617541+3 2.660725-3 4.825909+3 3.019952-3 4.116040+3 3.467369-3 3.430982+3 3.935501-3 2.882076+3 4.500000-3 2.377500+3 5.069907-3 1.989642+3 5.754399-3 1.634957+3 6.531306-3 1.333440+3 7.413102-3 1.079484+3 8.511380-3 8.499918+2 9.660509-3 6.775206+2 1.096478-2 5.363631+2 1.244515-2 4.215401+2 1.412538-2 3.289472+2 1.621810-2 2.490468+2 1.862087-2 1.870729+2 2.113489-2 1.429143+2 2.426610-2 1.057470+2 2.786121-2 7.766059+1 3.198895-2 5.661785+1 3.715352-2 3.988717+1 4.315191-2 2.788344+1 5.011872-2 1.935123+1 5.888437-2 1.296054+1 7.000000-2 8.363580+0 8.511380-2 5.053791+0 1.047129-1 2.939284+0 2.426610-1 3.168292-1 2.985383-1 1.841305-1 3.548134-1 1.179949-1 4.120975-1 8.079906-2 4.731513-1 5.736179-2 5.370318-1 4.218673-2 6.095369-1 3.125484-2 6.839117-1 2.396834-2 7.673615-1 1.850657-2 8.709636-1 1.401618-2 9.549926-1 1.153290-2 1.035142+0 9.792206-3 1.174898+0 7.628953-3 1.303167+0 6.260889-3 1.479108+0 4.959423-3 1.698244+0 3.873677-3 1.949845+0 3.048282-3 2.213095+0 2.463864-3 2.540973+0 1.968645-3 2.917427+0 1.584767-3 3.388442+0 1.262173-3 3.935501+0 1.012616-3 4.623810+0 8.048103-4 5.432503+0 6.444547-4 6.456542+0 5.118396-4 7.762471+0 4.034950-4 9.440609+0 3.158635-4 1.161449+1 2.456360-4 1.445440+1 1.898180-4 1.862087+1 1.419978-4 2.400000+1 1.070000-4 3.235937+1 7.716277-5 4.731513+1 5.149412-5 7.413102+1 3.221247-5 1.333521+2 1.762288-5 2.660725+2 8.746169-6 5.308844+2 4.359822-6 4.216965+3 5.464273-7 1.000000+5 2.302600-8 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.378700-4 1.985900-4 1.000000+5 1.985900-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.378700-4 2.535700-8 1.000000+5 2.535700-8 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.378700-4 1.392546-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.515800-4 3.363200+5 2.645000-4 3.084419+5 2.730000-4 2.931070+5 2.850000-4 2.763660+5 3.054921-4 2.499847+5 3.548134-4 2.088841+5 3.801894-4 1.937549+5 5.308844-4 1.374448+5 6.165950-4 1.169508+5 7.000000-4 1.012644+5 8.000000-4 8.633960+4 9.120108-4 7.323700+4 1.035142-3 6.200973+4 1.188502-3 5.129572+4 1.364583-3 4.209402+4 1.566751-3 3.428352+4 1.800000-3 2.769528+4 2.089296-3 2.185675+4 2.426610-3 1.710120+4 2.851018-3 1.302381+4 3.311311-3 1.003678+4 3.845918-3 7.678568+3 4.466836-3 5.829620+3 5.128614-3 4.489144+3 5.956621-3 3.355255+3 6.800000-3 2.574240+3 7.762471-3 1.961829+3 8.810489-3 1.502865+3 1.011579-2 1.115494+3 1.161449-2 8.216756+2 1.333521-2 6.006117+2 1.531087-2 4.356527+2 1.757924-2 3.136445+2 2.018366-2 2.240945+2 2.317395-2 1.588381+2 2.660725-2 1.117372+2 3.054921-2 7.803017+1 3.507519-2 5.410653+1 4.073803-2 3.610992+1 4.731513-2 2.390952+1 5.559043-2 1.521499+1 6.456542-2 9.930144+0 7.673615-2 6.024054+0 9.332543-2 3.392376+0 1.122019-1 1.962313+0 2.018366-1 3.377191-1 2.483133-1 1.825784-1 2.951209-1 1.101644-1 3.427678-1 7.162529-2 3.935501-1 4.849760-2 4.466836-1 3.417690-2 5.011872-1 2.503280-2 5.623413-1 1.846417-2 6.237348-1 1.413339-2 6.918310-1 1.089171-2 7.673615-1 8.449441-3 8.709636-1 6.225982-3 9.332543-1 5.303346-3 9.885531-1 4.666948-3 1.059254+0 4.034817-3 1.148154+0 3.432489-3 1.250000+0 2.917100-3 1.380384+0 2.431713-3 1.757924+0 1.582247-3 2.000000+0 1.266300-3 2.264644+0 1.028971-3 2.600160+0 8.232287-4 3.000000+0 6.585200-4 3.467369+0 5.290073-4 4.027170+0 4.248690-4 4.731513+0 3.380521-4 5.559043+0 2.709755-4 6.606934+0 2.154264-4 7.943282+0 1.699832-4 9.660509+0 1.331881-4 1.188502+1 1.036614-4 1.479108+1 8.017421-5 1.883649+1 6.080265-5 2.454709+1 4.526885-5 3.388442+1 3.185250-5 5.128614+1 2.051990-5 8.128305+1 1.270365-5 1.531087+2 6.640222-6 3.054921+2 3.299813-6 6.095369+2 1.646025-6 4.841724+3 2.064387-7 1.000000+5 9.988300-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.515800-4 1.409300-4 1.000000+5 1.409300-4 1 98000 7 7 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.515800-4 4.547500-9 1.000000+5 4.547500-9 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.515800-4 1.106455-4 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.424700-4 5.582643+5 1.428894-4 5.829157+5 1.436000-4 6.243760+5 1.462177-4 8.156608+5 1.471300-4 8.898108+5 1.480000-4 9.609200+5 1.487000-4 1.017336+6 1.496236-4 1.089287+6 1.505000-4 1.153464+6 1.513561-4 1.211066+6 1.520000-4 1.250396+6 1.528000-4 1.293896+6 1.535000-4 1.326900+6 1.545000-4 1.365572+6 1.555000-4 1.394324+6 1.565000-4 1.413700+6 1.575000-4 1.424464+6 1.585000-4 1.427580+6 1.595000-4 1.424080+6 1.610000-4 1.408912+6 1.627000-4 1.380636+6 1.645800-4 1.340541+6 1.670000-4 1.281160+6 1.698244-4 1.207806+6 1.740000-4 1.100168+6 1.780000-4 1.002696+6 1.840772-4 8.677349+5 1.900000-4 7.513320+5 1.972423-4 6.287133+5 2.190000-4 3.760472+5 2.290868-4 3.032857+5 2.380000-4 2.543220+5 2.454709-4 2.216587+5 2.540973-4 1.913747+5 2.620000-4 1.692364+5 2.691535-4 1.529440+5 2.754229-4 1.410975+5 2.818383-4 1.309580+5 2.884032-4 1.223394+5 2.951209-4 1.150719+5 3.019952-4 1.089990+5 3.090295-4 1.039749+5 3.162278-4 9.986585+4 3.240000-4 9.638960+4 3.320000-4 9.365400+4 3.390000-4 9.182680+4 3.470000-4 9.025800+4 3.550000-4 8.913440+4 3.672823-4 8.807171+4 3.801894-4 8.758515+4 3.981072-4 8.761097+4 4.265795-4 8.850363+4 4.786301-4 9.032790+4 5.150000-4 9.094560+4 5.500000-4 9.091840+4 5.821032-4 9.035471+4 6.200000-4 8.912120+4 6.606934-4 8.729501+4 7.000000-4 8.516800+4 7.500000-4 8.208640+4 8.035261-4 7.853957+4 8.609938-4 7.462373+4 9.225714-4 7.041125+4 1.000000-3 6.528960+4 1.071519-3 6.080334+4 1.161449-3 5.556179+4 1.258925-3 5.041436+4 1.380384-3 4.473366+4 1.500000-3 3.987608+4 1.650000-3 3.467876+4 1.800000-3 3.030540+4 1.972423-3 2.612982+4 2.187762-3 2.191051+4 2.426610-3 1.821889+4 2.691535-3 1.502854+4 2.951209-3 1.258169+4 3.235937-3 1.047060+4 3.548134-3 8.662039+3 3.900000-3 7.085440+3 4.315191-3 5.675791+3 4.786301-3 4.488997+3 5.308844-3 3.524246+3 5.888437-3 2.746361+3 6.531306-3 2.124758+3 7.244360-3 1.632107+3 8.035261-3 1.244965+3 9.000000-3 9.188160+2 1.000000-2 6.878800+2 1.109175-2 5.141334+2 1.244515-2 3.691995+2 1.412538-2 2.545735+2 1.659587-2 1.573345+2 1.854900-2 1.120306+2 2.041738-2 8.282620+1 2.290868-2 5.719861+1 2.600160-2 3.775873+1 3.019952-2 2.300148+1 3.507519-2 1.390711+1 4.073803-2 8.344945+0 4.786301-2 4.772829+0 5.754399-2 2.499456+0 7.000000-2 1.245676+0 9.440609-2 4.260232-1 1.396368-1 1.043786-1 1.737801-1 4.787711-2 2.089296-1 2.502236-2 2.426610-1 1.486914-2 2.786121-1 9.261490-3 3.162278-1 6.043227-3 3.548134-1 4.126796-3 3.981072-1 2.838093-3 4.415705-1 2.039606-3 4.897788-1 1.475943-3 5.432503-1 1.075891-3 5.956621-1 8.181690-4 6.456542-1 6.488239-4 7.079458-1 5.014479-4 8.035261-1 3.555883-4 8.609938-1 2.940400-4 9.120108-1 2.525757-4 9.549926-1 2.249426-4 1.000000+0 2.016000-4 1.047129+0 1.819083-4 1.109175+0 1.611411-4 1.174898+0 1.437352-4 1.258925+0 1.262395-4 1.364583+0 1.093050-4 1.531087+0 8.955943-5 1.862087+0 6.340843-5 2.089296+0 5.208994-5 2.371374+0 4.226255-5 2.722701+0 3.389813-5 3.162278+0 2.690544-5 3.672823+0 2.151366-5 4.315191+0 1.704276-5 5.069907+0 1.360443-5 6.025596+0 1.077182-5 7.161434+0 8.592533-6 8.709636+0 6.704889-6 1.071519+1 5.198344-6 1.333521+1 4.006125-6 1.717908+1 2.988909-6 2.264644+1 2.191344-6 2.818383+1 1.723512-6 3.507519+1 1.359256-6 5.308844+1 8.763483-7 8.413951+1 5.428585-7 1.566751+2 2.872488-7 3.126079+2 1.427719-7 6.237348+2 7.122549-8 4.954502+3 8.933349-9 1.000000+5 4.42310-10 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.424700-4 1.424700-4 1.000000+5 1.424700-4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.424700-4 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.296600-4 8.537046+5 1.299000-4 8.899680+5 1.308000-4 1.009326+6 1.314000-4 1.092450+6 1.320000-4 1.177482+6 1.327000-4 1.277328+6 1.335000-4 1.391208+6 1.343000-4 1.503348+6 1.350000-4 1.598598+6 1.358000-4 1.702734+6 1.365000-4 1.788588+6 1.373000-4 1.879566+6 1.380384-4 1.955766+6 1.387000-4 2.017146+6 1.396368-4 2.092086+6 1.403000-4 2.136378+6 1.412538-4 2.187264+6 1.423000-4 2.226126+6 1.433000-4 2.247702+6 1.445000-4 2.255544+6 1.458000-4 2.244990+6 1.472000-4 2.215854+6 1.485000-4 2.176224+6 1.500000-4 2.119812+6 1.520000-4 2.033496+6 1.540000-4 1.940928+6 1.570000-4 1.800126+6 1.620000-4 1.577880+6 1.678804-4 1.347416+6 1.740000-4 1.142040+6 1.800000-4 9.707820+5 2.018366-4 5.509580+5 2.089296-4 4.667682+5 2.162719-4 3.980229+5 2.220000-4 3.547230+5 2.280000-4 3.171828+5 2.344229-4 2.842400+5 2.400000-4 2.606322+5 2.454709-4 2.412251+5 2.511886-4 2.242826+5 2.570396-4 2.099190+5 2.630268-4 1.978332+5 2.691535-4 1.877569+5 2.754229-4 1.794495+5 2.818383-4 1.726954+5 2.884032-4 1.673002+5 2.951209-4 1.630845+5 3.030000-4 1.594992+5 3.100000-4 1.572936+5 3.200000-4 1.553568+5 3.320000-4 1.543764+5 3.467369-4 1.544357+5 3.700000-4 1.559484+5 4.216965-4 1.602375+5 4.518559-4 1.615947+5 4.841724-4 1.617575+5 5.150000-4 1.607826+5 5.500000-4 1.585668+5 5.821032-4 1.557040+5 6.200000-4 1.515768+5 6.606934-4 1.465685+5 7.079458-4 1.402980+5 7.585776-4 1.333123+5 8.200000-4 1.248876+5 8.810489-4 1.167369+5 9.549926-4 1.074002+5 1.035142-3 9.807967+4 1.122018-3 8.890773+4 1.216186-3 8.007079+4 1.333521-3 7.047133+4 1.450000-3 6.231780+4 1.603245-3 5.334025+4 1.778279-3 4.501942+4 1.950000-3 3.842976+4 2.137962-3 3.260701+4 2.371374-3 2.689568+4 2.630268-3 2.201115+4 2.917427-3 1.787717+4 3.235937-3 1.441046+4 3.600000-3 1.145448+4 4.000000-3 9.058440+3 4.466836-3 7.025064+3 4.954502-3 5.493241+3 5.495409-3 4.263515+3 6.095369-3 3.284801+3 6.795000-3 2.479223+3 7.498942-3 1.907518+3 8.317638-3 1.438590+3 9.225714-3 1.077568+3 1.023293-2 8.016496+2 1.148154-2 5.723425+2 1.288250-2 4.056340+2 1.462177-2 2.757032+2 1.659587-2 1.864346+2 1.840772-2 1.344875+2 2.018366-2 9.974794+1 2.238721-2 7.075281+1 2.511886-2 4.795510+1 3.000000-2 2.610769+1 3.467369-2 1.577987+1 4.027170-2 9.303239+0 4.677351-2 5.438619+0 5.559043-2 2.903944+0 6.456542-2 1.674989+0 8.222426-2 6.820189-1 1.273503-1 1.333267-1 1.548817-1 6.465317-2 1.819701-1 3.586246-2 2.113489-1 2.089612-2 2.398833-1 1.331789-2 2.691535-1 8.900360-3 3.019952-1 5.990642-3 3.349654-1 4.224004-3 3.715352-1 2.999604-3 4.073803-1 2.227106-3 4.466836-1 1.664485-3 4.897788-1 1.252603-3 5.370318-1 9.495161-4 5.888437-1 7.252849-4 6.382635-1 5.770683-4 6.998420-1 4.478541-4 7.673615-1 3.502709-4 8.709636-1 2.511297-4 9.225714-1 2.172906-4 9.660509-1 1.945781-4 1.011579+0 1.752479-4 1.071519+0 1.548895-4 1.135011+0 1.377633-4 1.216186+0 1.205332-4 1.318257+0 1.039168-4 1.659587+0 6.919682-5 1.927525+0 5.326569-5 2.187762+0 4.301557-5 2.483133+0 3.498653-5 2.851018+0 2.813201-5 3.311311+0 2.238056-5 3.845918+0 1.793575-5 4.518559+0 1.423974-5 5.308844+0 1.139065-5 6.309573+0 9.037407-6 7.585776+0 7.117417-6 9.225714+0 5.566692-6 1.135011+1 4.325284-6 1.428894+1 3.295288-6 1.862087+1 2.432493-6 2.426610+1 1.810612-6 3.349654+1 1.273447-6 5.069907+1 8.202107-7 8.128305+1 5.016528-7 1.513561+2 2.653103-7 3.019952+2 1.318348-7 6.025596+2 6.575827-8 4.786301+3 8.246656-9 1.000000+5 3.94440-10 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.296600-4 1.296600-4 1.000000+5 1.296600-4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.296600-4 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.078000-5 1.331047+6 1.083927-5 1.306690+6 1.087000-5 1.296470+6 1.100000-5 1.264083+6 1.148154-5 1.163135+6 1.190000-5 1.093769+6 1.230269-5 1.040421+6 1.273503-5 9.946237+5 1.318257-5 9.585966+5 1.364583-5 9.310979+5 1.410000-5 9.124577+5 1.450000-5 9.021848+5 1.496236-5 8.967046+5 1.550000-5 8.978820+5 1.603245-5 9.061934+5 1.659587-5 9.217663+5 1.717908-5 9.447059+5 1.778279-5 9.751394+5 1.840772-5 1.013286+6 1.905461-5 1.059436+6 1.980000-5 1.120507+6 2.070000-5 1.204992+6 2.162719-5 1.303372+6 2.290868-5 1.457395+6 2.426610-5 1.641807+6 2.650000-5 1.988141+6 3.090295-5 2.794991+6 3.311311-5 3.238070+6 3.507519-5 3.638211+6 3.715352-5 4.060729+6 3.900000-5 4.428253+6 4.120975-5 4.850494+6 4.365158-5 5.291285+6 4.623810-5 5.728716+6 4.900000-5 6.160322+6 5.188000-5 6.572517+6 5.500000-5 6.979750+6 5.821032-5 7.351976+6 6.165950-5 7.691523+6 6.500000-5 7.955778+6 6.800000-5 8.130163+6 7.079458-5 8.233420+6 7.328245-5 8.277511+6 7.585776-5 8.276826+6 7.852356-5 8.227061+6 8.150000-5 8.115506+6 8.413951-5 7.973133+6 8.709636-5 7.772409+6 9.015711-5 7.524630+6 9.332543-5 7.231074+6 9.660509-5 6.895533+6 1.000000-4 6.524136+6 1.030000-4 6.180165+6 1.060000-4 5.824537+6 1.090000-4 5.462437+6 1.122018-4 5.075296+6 1.150000-4 4.740252+6 1.180000-4 4.386981+6 1.205000-4 4.099316+6 1.240000-4 3.711091+6 1.273503-4 3.359400+6 1.303167-4 3.066027+6 1.340000-4 2.725913+6 1.365000-4 2.510663+6 1.400000-4 2.231085+6 1.440000-4 1.942549+6 1.480000-4 1.685184+6 1.520000-4 1.456413+6 1.560000-4 1.254179+6 1.600000-4 1.076549+6 1.640590-4 9.189854+5 1.678804-4 7.891527+5 1.720000-4 6.671350+5 1.760000-4 5.647023+5 1.800000-4 4.763610+5 1.840772-4 3.990227+5 1.880000-4 3.351858+5 1.915000-4 2.859649+5 1.955000-4 2.376397+5 1.995262-4 1.965164+5 2.020000-4 1.745510+5 2.060000-4 1.437024+5 2.100000-4 1.179487+5 2.150000-4 9.191862+4 2.240900-4 5.875431+4 2.280000-4 4.896424+4 2.307000-4 4.348667+4 2.330000-4 3.955860+4 2.350000-4 3.664835+4 2.373000-4 3.383538+4 2.390000-4 3.209547+4 2.407000-4 3.062273+4 2.426610-4 2.923253+4 2.445000-4 2.820751+4 2.458000-4 2.763447+4 2.473000-4 2.711954+4 2.490000-4 2.671369+4 2.505000-4 2.650227+4 2.520000-4 2.641943+4 2.540000-4 2.649494+4 2.560000-4 2.676644+4 2.580000-4 2.721722+4 2.600160-4 2.783713+4 2.620000-4 2.859520+4 2.650000-4 2.999118+4 2.680000-4 3.165113+4 2.722701-4 3.439486+4 2.851018-4 4.447707+4 2.917427-4 5.033224+4 2.980000-4 5.603223+4 3.030000-4 6.062394+4 3.090295-4 6.611793+4 3.157400-4 7.211213+4 3.221870-4 7.771235+4 3.273407-4 8.205171+4 3.349654-4 8.820207+4 3.427678-4 9.411442+4 3.507519-4 9.972327+4 3.589219-4 1.049727+5 3.672823-4 1.098177+5 3.758374-4 1.142249+5 3.845918-4 1.181732+5 3.935501-4 1.216530+5 4.107600-4 1.273252+5 4.216965-4 1.301995+5 4.365158-4 1.330864+5 4.518559-4 1.349848+5 4.677351-4 1.359469+5 4.841724-4 1.360486+5 5.069907-4 1.351271+5 5.248075-4 1.338579+5 5.495409-4 1.312292+5 5.754399-4 1.276786+5 6.025596-4 1.233860+5 6.309573-4 1.185829+5 6.606934-4 1.133097+5 7.000000-4 1.062170+5 7.413102-4 9.888649+4 7.852356-4 9.138739+4 8.317638-4 8.391306+4 8.810489-4 7.658335+4 9.440609-4 6.811567+4 1.011579-3 6.011936+4 1.083927-3 5.268578+4 1.161449-3 4.585721+4 1.244515-3 3.965602+4 1.348963-3 3.321557+4 1.462177-3 2.760539+4 1.584893-3 2.278787+4 1.717908-3 1.868506+4 1.862087-3 1.521952+4 2.041738-3 1.194755+4 2.238721-3 9.310220+3 2.454709-3 7.200702+3 2.691535-3 5.528672+3 2.951209-3 4.214979+3 3.235937-3 3.191993+3 3.548134-3 2.401145+3 3.890451-3 1.794344+3 4.315191-3 1.283172+3 4.731513-3 9.459502+2 5.248075-3 6.648925+2 5.821032-3 4.638470+2 6.531306-3 3.085936+2 7.244360-3 2.123601+2 8.035261-3 1.451452+2 8.912509-3 9.852000+1 1.000000-2 6.357013+1 1.122018-2 4.066003+1 1.273503-2 2.467356+1 1.479108-2 1.355676+1 1.698244-2 7.765584+0 1.883649-2 5.081472+0 2.089296-2 3.294228+0 2.344229-2 2.019955+0 2.660725-2 1.170733+0 3.507519-2 3.512155-1 4.315191-2 1.412148-1 5.559043-2 4.599364-2 9.332543-2 4.601269-3 1.188502-1 1.579618-3 1.380384-1 8.205408-4 1.548817-1 4.987905-4 1.778279-1 2.768073-4 2.041738-1 1.548123-4 2.317395-1 9.142560-5 2.600160-1 5.702701-5 2.917427-1 3.583665-5 3.235937-1 2.376621-5 3.589219-1 1.587732-5 3.981072-1 1.068886-5 4.365158-1 7.570028-6 4.786301-1 5.398236-6 5.308844-1 3.719829-6 5.754399-1 2.805050-6 6.025596-1 2.396794-6 6.456542-1 1.912007-6 6.998420-1 1.480837-6 8.035261-1 9.678308-7 8.511380-1 8.027997-7 8.912509-1 6.947808-7 9.332543-1 6.052921-7 9.660509-1 5.488514-7 1.000000+0 5.005000-7 1.035142+0 4.593001-7 1.071519+0 4.239032-7 1.109175+0 3.932304-7 1.161449+0 3.582031-7 1.216186+0 3.284204-7 1.303167+0 2.906348-7 1.412538+0 2.540885-7 1.500000+0 2.305900-7 1.927525+0 1.483277-7 2.162719+0 1.220627-7 2.454709+0 9.921755-8 2.818383+0 7.973198-8 3.273407+0 6.339628-8 3.801894+0 5.077770-8 4.466836+0 4.029137-8 5.248075+0 3.221265-8 6.237348+0 2.554459-8 7.498942+0 2.010802-8 9.120108+0 1.571951-8 1.122018+1 1.220863-8 1.428894+1 9.173994-9 1.840772+1 6.860238-9 2.371374+1 5.170761-9 3.162278+1 3.772673-9 4.415704+1 2.641723-9 6.683439+1 1.710714-9 1.071519+2 1.051269-9 1.883649+2 5.91577-10 3.758374+2 2.94351-10 1.496236+3 7.35469-11 2.371374+4 4.63086-12 1.000000+5 1.09810-12 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.078000-5 1.078000-5 1.000000+5 1.078000-5 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.078000-5 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 9.020000-6 2.306733+6 9.120108-6 2.230974+6 9.440609-6 2.062287+6 9.772372-6 1.920075+6 1.011579-5 1.800750+6 1.047129-5 1.701585+6 1.085000-5 1.617710+6 1.122018-5 1.553534+6 1.161449-5 1.501767+6 1.202264-5 1.462992+6 1.244515-5 1.436090+6 1.290000-5 1.420058+6 1.333521-5 1.415529+6 1.380384-5 1.420925+6 1.428894-5 1.436402+6 1.480000-5 1.462224+6 1.531087-5 1.496758+6 1.592100-5 1.548248+6 1.659587-5 1.616816+6 1.737801-5 1.710032+6 1.819701-5 1.822080+6 1.905461-5 1.953960+6 2.018366-5 2.148431+6 2.150000-5 2.402408+6 2.317395-5 2.764151+6 2.917427-5 4.321500+6 3.150000-5 4.983341+6 3.350000-5 5.551964+6 3.570000-5 6.164519+6 3.758374-5 6.666388+6 3.981072-5 7.225479+6 4.220000-5 7.784634+6 4.466836-5 8.314310+6 4.731513-5 8.829204+6 5.069907-5 9.421009+6 5.400000-5 9.923322+6 5.754399-5 1.038034+7 6.095369-5 1.073413+7 6.400000-5 1.096424+7 6.683439-5 1.110346+7 6.918310-5 1.116244+7 7.161434-5 1.116570+7 7.413102-5 1.110821+7 7.673615-5 1.099002+7 7.943282-5 1.081088+7 8.222426-5 1.056776+7 8.511380-5 1.026087+7 8.810489-5 9.898850+6 9.120108-5 9.486029+6 9.440609-5 9.021750+6 9.772372-5 8.511919+6 1.010000-4 7.992292+6 1.040000-4 7.507491+6 1.071519-4 6.991974+6 1.100000-4 6.527148+6 1.128000-4 6.077662+6 1.161449-4 5.554962+6 1.190000-4 5.123101+6 1.220000-4 4.686861+6 1.250000-4 4.272872+6 1.280000-4 3.883677+6 1.315000-4 3.461111+6 1.350000-4 3.072014+6 1.390000-4 2.669128+6 1.430000-4 2.310356+6 1.465000-4 2.029864+6 1.500000-4 1.777841+6 1.540000-4 1.522458+6 1.580000-4 1.299424+6 1.620000-4 1.105172+6 1.650000-4 9.762293+5 1.690000-4 8.244520+5 1.720000-4 7.245263+5 1.760000-4 6.079262+5 1.798871-4 5.106390+5 1.835000-4 4.325889+5 1.865000-4 3.758963+5 1.900000-4 3.181488+5 1.940000-4 2.619751+5 1.980000-4 2.148710+5 2.020000-4 1.755704+5 2.065380-4 1.391405+5 2.190000-4 7.389091+4 2.220000-4 6.405491+4 2.250000-4 5.600221+4 2.270000-4 5.152810+4 2.290868-4 4.755510+4 2.308600-4 4.469452+4 2.323000-4 4.269563+4 2.340000-4 4.068483+4 2.358000-4 3.893997+4 2.373000-4 3.776706+4 2.390000-4 3.672534+4 2.407000-4 3.596837+4 2.423000-4 3.549791+4 2.440000-4 3.523705+4 2.458000-4 3.520997+4 2.473000-4 3.536923+4 2.490000-4 3.573517+4 2.511886-4 3.647378+4 2.530000-4 3.729363+4 2.550000-4 3.839820+4 2.573000-4 3.990214+4 2.600160-4 4.196261+4 2.640000-4 4.545603+4 2.754229-4 5.749777+4 2.818383-4 6.500104+4 2.884032-4 7.312007+4 2.951209-4 8.180600+4 3.000000-4 8.829549+4 3.054921-4 9.502672+4 3.090295-4 9.929650+4 3.162278-4 1.077703+5 3.235937-4 1.160691+5 3.311311-4 1.240933+5 3.388442-4 1.317516+5 3.467369-4 1.389635+5 3.548134-4 1.456613+5 3.630781-4 1.517916+5 3.715352-4 1.573160+5 3.801894-4 1.622114+5 3.890451-4 1.664694+5 4.073803-4 1.735576+5 4.216965-4 1.777741+5 4.365158-4 1.806269+5 4.518559-4 1.821748+5 4.677351-4 1.825108+5 4.841724-4 1.817550+5 5.128614-4 1.787441+5 5.370318-4 1.750512+5 5.623413-4 1.701561+5 5.888437-4 1.642896+5 6.165950-4 1.577269+5 6.456542-4 1.505986+5 6.839116-4 1.410918+5 7.244360-4 1.311930+5 7.673615-4 1.211327+5 8.128305-4 1.111083+5 8.609938-4 1.012972+5 9.120108-4 9.181849+4 9.772372-4 8.102582+4 1.047129-3 7.102392+4 1.122018-3 6.183838+4 1.202264-3 5.349183+4 1.288250-3 4.598496+4 1.396368-3 3.825929+4 1.513561-3 3.159538+4 1.640590-3 2.591367+4 1.798871-3 2.050348+4 1.972423-3 1.609924+4 2.162719-3 1.256487+4 2.344229-3 1.005334+4 2.511886-3 8.258797+3 2.722701-3 6.520911+3 2.951209-3 5.116043+3 3.235937-3 3.848858+3 3.548134-3 2.874528+3 3.890451-3 2.132415+3 4.315191-3 1.512711+3 4.897788-3 9.862300+2 5.432503-3 6.900778+2 6.025596-3 4.793695+2 6.606934-3 3.445441+2 7.328245-3 2.359326+2 8.128305-3 1.604278+2 9.015711-3 1.083489+2 1.000000-2 7.269797+1 1.122018-2 4.626447+1 1.273503-2 2.791465+1 1.462177-2 1.596241+1 1.678804-2 9.091464+0 1.862087-2 5.922139+0 2.065380-2 3.815422+0 2.317395-2 2.321814+0 2.951209-2 8.061903-1 3.548134-2 3.574768-1 4.168694-2 1.743156-1 5.188000-2 6.513134-2 9.772372-2 3.710111-3 1.161449-1 1.709214-3 1.348963-1 8.791357-4 1.531088-1 5.041766-4 1.737801-1 2.912884-4 1.972423-1 1.695585-4 2.213095-1 1.043775-4 2.454709-1 6.789340-5 2.722701-1 4.447607-5 3.000000-1 3.014900-5 3.273407-1 2.141004-5 3.548134-1 1.570430-5 3.845918-1 1.159154-5 4.216965-1 8.255859-6 4.570882-1 6.178707-6 4.954502-1 4.657347-6 5.370318-1 3.536220-6 5.754399-1 2.810830-6 6.095369-1 2.333975-6 6.531306-1 1.882028-6 7.079458-1 1.475906-6 7.673615-1 1.166142-6 8.035261-1 1.021518-6 8.511380-1 8.616295-7 9.015711-1 7.316332-7 9.440609-1 6.460740-7 9.885531-1 5.746017-7 1.035142+0 5.152655-7 1.083927+0 4.655142-7 1.135011+0 4.232602-7 1.202264+0 3.786044-7 1.303167+0 3.270787-7 1.428894+0 2.792060-7 1.513561+0 2.533546-7 1.883649+0 1.722736-7 2.113489+0 1.416080-7 2.398833+0 1.149680-7 2.754229+0 9.226835-8 3.198895+0 7.327534-8 3.715352+0 5.862496-8 4.365158+0 4.646684-8 5.128614+0 3.711070-8 6.095369+0 2.939842-8 7.244360+0 2.346256-8 8.810489+0 1.831722-8 1.083927+1 1.420709-8 1.364583+1 1.080634-8 1.800000+1 7.854300-9 2.344229+1 5.845890-9 3.126079+1 4.264299-9 4.265795+1 3.058966-9 6.382635+1 2.003442-9 9.885531+1 1.274666-9 1.757924+2 7.08275-10 3.507519+2 3.52282-10 6.998420+2 1.75855-10 5.559043+3 2.20628-11 1.000000+5 1.22580-12 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 9.020000-6 9.020000-6 1.000000+5 9.020000-6 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 9.020000-6 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.088000-5 4.480620+5 6.165950-5 4.378579+5 6.290000-5 4.155120+5 6.450000-5 3.859800+5 6.683439-5 3.445859+5 7.500000-5 2.340460+5 7.852356-5 2.018501+5 8.222426-5 1.752633+5 8.609938-5 1.533682+5 9.015711-5 1.352164+5 9.500000-5 1.181304+5 1.000000-4 1.042348+5 1.060000-4 9.110100+4 1.122018-4 8.044446+4 1.190000-4 7.126080+4 1.260000-4 6.384200+4 1.333521-4 5.770093+4 1.412538-4 5.247590+4 1.500000-4 4.787400+4 1.620000-4 4.292620+4 1.778279-4 3.793052+4 1.995262-4 3.281006+4 2.238721-4 2.859145+4 3.507519-4 1.699353+4 4.168694-4 1.383219+4 5.069907-4 1.088044+4 6.095369-4 8.606650+3 7.161434-4 6.967009+3 8.609938-4 5.428571+3 1.023293-3 4.263481+3 1.230269-3 3.269614+3 1.496236-3 2.445237+3 1.832530-3 1.794568+3 2.264644-3 1.288889+3 2.851018-3 8.922000+2 3.630781-3 6.017026+2 4.623810-3 4.026125+2 5.754399-3 2.778026+2 7.079458-3 1.940015+2 8.609938-3 1.371721+2 1.047129-2 9.626459+1 1.273503-2 6.703599+1 1.548817-2 4.631579+1 1.862087-2 3.246496+1 2.238721-2 2.259152+1 2.818383-2 1.422433+1 3.273407-2 1.046115+1 3.935501-2 7.110250+0 4.731513-2 4.794712+0 5.688529-2 3.207738+0 6.918310-2 2.075881+0 8.317638-2 1.368191+0 1.035142-1 8.262979-1 1.333521-1 4.569547-1 1.678804-1 2.650471-1 2.570396-1 9.644823-2 3.198895-1 5.775660-2 3.890451-1 3.677969-2 4.623810-1 2.487888-2 5.308844-1 1.831302-2 6.165950-1 1.323453-2 7.161434-1 9.633049-3 8.413951-1 6.897893-3 9.549926-1 5.340738-3 1.161449+0 3.637295-3 1.303167+0 2.916583-3 1.479108+0 2.304439-3 1.678804+0 1.835876-3 1.927525+0 1.444159-3 2.187762+0 1.166433-3 2.483133+0 9.487015-4 2.851018+0 7.628496-4 3.311311+0 6.068987-4 3.845918+0 4.863706-4 4.518559+0 3.861429-4 5.308844+0 3.088795-4 6.309573+0 2.450650-4 7.585776+0 1.930011-4 9.225714+0 1.509560-4 1.135011+1 1.172924-4 1.428894+1 8.935858-5 1.840772+1 6.682202-5 2.371374+1 5.036593-5 3.162278+1 3.674733-5 4.415704+1 2.573211-5 6.683439+1 1.666324-5 1.083927+2 1.011951-5 1.905461+2 5.695420-6 3.801894+2 2.833999-6 1.513561+3 7.081669-7 2.398833+4 4.458951-8 1.000000+5 1.069600-8 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.088000-5 6.088000-5 1.000000+5 6.088000-5 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.088000-5 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 3.879000-5 1.088150+7 3.910000-5 1.034850+7 3.940000-5 9.894760+6 4.000000-5 9.103400+6 4.073803-5 8.306277+6 4.150000-5 7.631960+6 4.229500-5 7.039295+6 4.330000-5 6.416680+6 4.450000-5 5.805100+6 4.598600-5 5.183617+6 4.800000-5 4.508060+6 5.128614-5 3.669946+6 6.025596-5 2.241031+6 7.762471-5 1.020723+6 8.709636-5 7.187057+5 1.059254-4 4.005206+5 1.462177-4 1.539740+5 1.720000-4 9.578180+4 1.972423-4 6.462929+4 2.220000-4 4.634120+4 2.454709-4 3.516733+4 2.691535-4 2.749887+4 2.917427-4 2.233553+4 3.126079-4 1.880475+4 3.350000-4 1.592746+4 3.600000-4 1.349312+4 3.850000-4 1.163874+4 4.120975-4 1.009724+4 4.365158-4 9.007497+3 4.677351-4 7.911823+3 5.011872-4 7.000483+3 5.370318-4 6.241371+3 5.754399-4 5.603538+3 6.237348-4 4.981477+3 6.760830-4 4.460442+3 7.413102-4 3.961286+3 8.317638-4 3.444871+3 9.660509-4 2.899458+3 1.412538-3 1.892840+3 1.678804-3 1.549342+3 1.972423-3 1.276390+3 2.290868-3 1.058368+3 2.660725-3 8.712973+2 3.090295-3 7.119919+2 3.589219-3 5.773497+2 4.120975-3 4.723669+2 4.731513-3 3.836976+2 5.432503-3 3.093280+2 6.237348-3 2.474451+2 7.079458-3 2.002447+2 8.035261-3 1.609058+2 9.120108-3 1.284280+2 1.035142-2 1.018061+2 1.174898-2 8.015915+1 1.348963-2 6.128828+1 1.621810-2 4.240686+1 1.840772-2 3.273499+1 2.089296-2 2.500890+1 2.398833-2 1.849533+1 2.754229-2 1.357530+1 3.235937-2 9.383551+0 3.758374-2 6.607835+0 4.365158-2 4.617433+0 5.128614-2 3.113399+0 6.025596-2 2.083348+0 7.161434-2 1.343902+0 8.709636-2 8.111204-1 1.071519-1 4.715627-1 1.462177-1 2.068918-1 2.317395-1 6.086693-2 2.851018-1 3.532035-2 3.388442-1 2.259047-2 3.981072-1 1.499491-2 4.570882-1 1.062676-2 5.248075-1 7.587582-3 5.956621-1 5.613408-3 6.683439-1 4.298916-3 7.498942-1 3.314707-3 8.609938-1 2.445608-3 9.440609-1 2.010425-3 1.023293+0 1.705268-3 1.161449+0 1.327617-3 1.288250+0 1.088788-3 1.462177+0 8.618284-4 1.678804+0 6.727884-4 1.927525+0 5.290937-4 2.187762+0 4.273575-4 2.511886+0 3.412370-4 2.884032+0 2.745474-4 3.349654+0 2.185421-4 3.890451+0 1.752358-4 4.570882+0 1.391950-4 5.370318+0 1.114031-4 6.382635+0 8.843528-5 7.673615+0 6.968083-5 9.332543+0 5.452384-5 1.148154+1 4.238339-5 1.445440+1 3.230380-5 1.862087+1 2.416635-5 2.400000+1 1.821000-5 3.235937+1 1.313215-5 4.731513+1 8.763613-6 7.413102+1 5.482089-6 1.333521+2 2.999088-6 2.660725+2 1.488505-6 5.308844+2 7.419797-7 4.216965+3 9.299463-8 1.000000+5 3.918700-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 3.879000-5 3.879000-5 1.000000+5 3.879000-5 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 3.879000-5 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.510000-5 3.073736+7 2.520000-5 2.968632+7 2.560000-5 2.680976+7 2.600160-5 2.441502+7 2.630268-5 2.285756+7 2.690000-5 2.025952+7 2.750000-5 1.813308+7 2.818383-5 1.614632+7 2.900000-5 1.421504+7 2.985383-5 1.257254+7 3.090295-5 1.093842+7 3.230000-5 9.228000+6 3.400000-5 7.639600+6 3.630781-5 6.050710+6 3.935501-5 4.581397+6 4.500000-5 2.911524+6 5.128614-5 1.884310+6 5.623413-5 1.395337+6 6.095369-5 1.079543+6 6.531306-5 8.717311+5 7.000000-5 7.080480+5 7.500000-5 5.798240+5 8.000000-5 4.845160+5 8.511380-5 4.106912+5 9.015711-5 3.545582+5 9.549926-5 3.080931+5 1.011579-4 2.694836+5 1.071519-4 2.372589+5 1.135011-4 2.101951+5 1.216186-4 1.831322+5 1.303167-4 1.607574+5 1.400000-4 1.414732+5 1.500000-4 1.259328+5 1.621810-4 1.112374+5 1.757924-4 9.862350+4 1.927525-4 8.661350+4 2.162719-4 7.423751+4 2.483133-4 6.219221+4 2.985383-4 4.957856+4 4.315191-4 3.167914+4 5.308844-4 2.444859+4 6.382635-4 1.927133+4 7.521360-4 1.547596+4 8.810489-4 1.243686+4 1.035142-3 9.878811+3 1.216186-3 7.785699+3 1.412538-3 6.194056+3 1.659587-3 4.805548+3 1.949845-3 3.700643+3 2.290868-3 2.828852+3 2.691535-3 2.146445+3 3.198895-3 1.583936+3 3.758374-3 1.183702+3 4.365158-3 8.966762+2 5.069907-3 6.742738+2 5.888437-3 5.031322+2 6.795000-3 3.773619+2 7.852356-3 2.798948+2 9.015711-3 2.088951+2 1.071519-2 1.436298+2 1.230269-2 1.056951+2 1.412538-2 7.718818+1 1.584893-2 5.900341+1 1.798871-2 4.359526+1 2.065380-2 3.109808+1 2.371374-2 2.201412+1 2.722701-2 1.546744+1 3.126079-2 1.078890+1 3.589219-2 7.472647+0 4.120975-2 5.140490+0 4.786301-2 3.401947+0 5.623413-2 2.163765+0 6.531306-2 1.411454+0 7.852356-2 8.275026-1 9.660509-2 4.500108-1 1.230269-1 2.189802-1 2.018366-1 4.974050-2 2.483133-1 2.689710-2 2.951209-1 1.623125-2 3.427678-1 1.055440-2 3.935501-1 7.147120-3 4.466836-1 5.036850-3 5.011872-1 3.689422-3 5.623413-1 2.721680-3 6.237348-1 2.083629-3 6.918310-1 1.605997-3 7.673615-1 1.246111-3 8.709636-1 9.184333-4 9.332543-1 7.824260-4 9.885531-1 6.885873-4 1.059254+0 5.953486-4 1.148154+0 5.064825-4 1.250000+0 4.304300-4 1.380384+0 3.588038-4 1.757924+0 2.334638-4 2.000000+0 1.868400-4 2.264644+0 1.518156-4 2.600160+0 1.214610-4 3.000000+0 9.716300-5 3.467369+0 7.805392-5 4.027170+0 6.268858-5 4.731513+0 4.987877-5 5.559043+0 3.998174-5 6.606934+0 3.178515-5 7.943282+0 2.508172-5 9.660509+0 1.965192-5 1.188502+1 1.529525-5 1.479108+1 1.182911-5 1.883649+1 8.971284-6 2.454709+1 6.679286-6 3.388442+1 4.699685-6 5.128614+1 3.027696-6 8.128305+1 1.874359-6 1.513561+2 9.912843-7 3.019952+2 4.925724-7 6.025596+2 2.456874-7 4.786301+3 3.081160-8 1.000000+5 1.473700-9 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.510000-5 2.510000-5 1.000000+5 2.510000-5 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.510000-5 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.710000-6 1.054726+7 5.860000-6 9.788720+6 6.700000-6 6.461880+6 7.700000-6 4.229880+6 8.810489-6 2.828501+6 1.011579-5 1.886556+6 1.161449-5 1.267085+6 1.364583-5 8.032434+5 1.584893-5 5.300430+5 1.862087-5 3.412765+5 2.150000-5 2.321280+5 2.426610-5 1.688621+5 2.754229-5 1.219508+5 3.054921-5 9.406424+4 3.388442-5 7.309028+4 3.715352-5 5.881319+4 4.073803-5 4.762834+4 4.466836-5 3.884476+4 4.900000-5 3.188260+4 5.432503-5 2.579016+4 5.956621-5 2.149320+4 6.531306-5 1.804254+4 7.244360-5 1.493258+4 7.943282-5 1.271270+4 8.810489-5 1.069013+4 9.800000-5 9.008300+3 1.122018-4 7.315609+3 1.244515-4 6.272815+3 1.412538-4 5.234204+3 1.566751-4 4.544854+3 1.798871-4 3.794497+3 2.113489-4 3.088144+3 2.786121-4 2.146367+3 4.073803-4 1.296808+3 5.011872-4 9.889802+2 6.382635-4 7.103362+2 8.222426-4 5.002355+2 9.660509-4 3.968575+2 1.230269-3 2.780198+2 1.513561-3 2.034566+2 1.883649-3 1.450333+2 2.371374-3 1.007327+2 2.861270-3 7.441200+1 3.126079-3 6.407014+1 5.069907-3 2.862494+1 6.095369-3 2.094674+1 7.498942-3 1.458756+1 9.225714-3 1.008114+1 1.122018-2 7.057327+0 1.364583-2 4.902791+0 1.659587-2 3.379567+0 1.995262-2 2.363818+0 2.398833-2 1.641457+0 2.884032-2 1.131359+0 3.467369-2 7.730175-1 4.168694-2 5.240858-1 5.011872-2 3.525245-1 6.025596-2 2.353390-1 7.328245-2 1.518765-1 9.015711-2 9.474682-2 1.071519-1 6.354541-2 1.396368-1 3.412188-2 2.691535-1 7.211051-3 3.349654-1 4.324027-3 4.000000-1 2.875500-3 4.731513-1 1.970437-3 5.495409-1 1.416687-3 6.309573-1 1.051659-3 7.328245-1 7.674661-4 8.413951-1 5.780038-4 9.660509-1 4.384408-4 1.202264+0 2.860308-4 1.364583+0 2.248436-4 1.531087+0 1.818242-4 1.737801+0 1.451422-4 2.000000+0 1.139400-4 2.264644+0 9.258808-5 2.600160+0 7.407375-5 3.000000+0 5.925100-5 3.467369+0 4.759847-5 4.027170+0 3.822868-5 4.731513+0 3.041661-5 5.559043+0 2.438129-5 6.606934+0 1.938324-5 7.943282+0 1.529504-5 9.660509+0 1.198435-5 1.188502+1 9.327371-6 1.479108+1 7.213810-6 1.883649+1 5.470809-6 2.454709+1 4.073167-6 3.388442+1 2.865976-6 5.128614+1 1.846356-6 8.222427+1 1.129477-6 1.531087+2 5.974663-7 3.054921+2 2.969113-7 6.095369+2 1.481056-7 4.841724+3 1.857436-8 1.000000+5 8.98710-10 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.710000-6 5.710000-6 1.000000+5 5.710000-6 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.710000-6 0.0 1.000000+5 1.000000+5 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.535530-7 1.025500+0 1.344260-6 1.025800+0 1.718500-6 1.026100+0 2.156070-6 1.026600+0 3.039560-6 1.027100+0 4.135380-6 1.027500+0 5.179520-6 1.028100+0 7.051820-6 1.028750+0 9.535530-6 1.029500+0 1.304960-5 1.030100+0 1.641150-5 1.031000+0 2.245650-5 1.032000+0 3.072610-5 1.033200+0 4.304210-5 1.034000+0 5.283820-5 1.035300+0 7.172030-5 1.036640+0 9.535530-5 1.038200+0 1.286850-4 1.039700+0 1.671880-4 1.041500+0 2.224410-4 1.043800+0 3.087560-4 1.046400+0 4.295770-4 1.048300+0 5.348340-4 1.051200+0 7.254910-4 1.054080+0 9.535530-4 1.057700+0 1.299750-3 1.061100+0 1.690640-3 1.065100+0 2.238210-3 1.070400+0 3.122520-3 1.076200+0 4.315300-3 1.080600+0 5.389100-3 1.087100+0 7.260930-3 1.093710+0 9.535530-3 1.102600+0 1.322140-2 1.110700+0 1.724400-2 1.120600+0 2.306880-2 1.133300+0 3.207800-2 1.147500+0 4.429270-2 1.158200+0 5.504490-2 1.174100+0 7.356340-2 1.190110+0 9.535530-2 1.205100+0 1.186580-1 1.227500+0 1.587680-1 1.250000+0 2.053000-1 1.280300+0 2.773950-1 1.307700+0 3.513380-1 1.343000+0 4.577440-1 1.382200+0 5.886570-1 1.411700+0 6.945960-1 1.455800+0 8.621620-1 1.500000+0 1.038000+0 1.562500+0 1.293280+0 1.641100+0 1.616260+0 1.706900+0 1.882630+0 1.811600+0 2.293210+0 1.952900+0 2.823620+0 2.000000+0 2.997000+0 2.044000+0 3.158000+0 2.163500+0 3.582460+0 2.372600+0 4.277850+0 2.686300+0 5.220330+0 3.000000+0 6.068000+0 3.500000+0 7.281170+0 4.000000+0 8.377000+0 5.000000+0 1.030000+1 6.000000+0 1.191000+1 7.000000+0 1.338000+1 8.000000+0 1.471000+1 9.000000+0 1.593000+1 1.000000+1 1.706000+1 1.100000+1 1.811000+1 1.200000+1 1.909000+1 1.300000+1 2.001000+1 1.400000+1 2.087000+1 1.500000+1 2.167000+1 1.600000+1 2.243000+1 1.800000+1 2.380000+1 2.000000+1 2.502000+1 2.200000+1 2.613000+1 2.400000+1 2.715000+1 2.600000+1 2.809000+1 2.800000+1 2.894000+1 3.000000+1 2.973000+1 4.000000+1 3.294000+1 5.000000+1 3.533000+1 6.000000+1 3.719000+1 8.000000+1 3.992000+1 1.000000+2 4.184000+1 1.500000+2 4.486000+1 2.000000+2 4.666000+1 3.000000+2 4.875000+1 4.000000+2 4.995000+1 5.000000+2 5.073000+1 6.000000+2 5.130000+1 8.000000+2 5.204000+1 1.000000+3 5.252000+1 1.500000+3 5.321000+1 2.000000+3 5.360000+1 3.000000+3 5.399000+1 4.000000+3 5.424000+1 5.000000+3 5.438000+1 6.000000+3 5.448000+1 8.000000+3 5.461000+1 1.000000+4 5.469000+1 1.500000+4 5.479000+1 2.000000+4 5.485000+1 3.000000+4 5.491000+1 4.000000+4 5.495000+1 5.000000+4 5.497000+1 6.000000+4 5.499000+1 8.000000+4 5.500000+1 1.000000+5 5.501000+1 1 98000 7 8 2.510000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.800900-7 2.090400+0 1.330720-6 2.094700+0 1.725480-6 2.099900+0 2.295510-6 2.106600+0 3.193240-6 2.114000+0 4.418250-6 2.119500+0 5.500690-6 2.127900+0 7.459980-6 2.136250+0 9.800900-6 2.147000+0 1.343770-5 2.156900+0 1.745400-5 2.169000+0 2.329340-5 2.184500+0 3.237870-5 2.201800+0 4.479680-5 2.214800+0 5.581330-5 2.234200+0 7.507880-5 2.253680+0 9.800900-5 2.281500+0 1.372790-4 2.307000+0 1.803150-4 2.338200+0 2.424490-4 2.377400+0 3.357620-4 2.410200+0 4.270320-4 2.446800+0 5.432090-4 2.485900+0 6.839300-4 2.532900+0 8.752870-4 2.556430+0 9.800900-4 2.611900+0 1.249740-3 2.660400+0 1.510880-3 2.745300+0 2.022250-3 2.809000+0 2.449080-3 2.904500+0 3.155020-3 3.000000+0 3.938000-3 3.125000+0 5.077380-3 3.234400+0 6.177210-3 3.425800+0 8.315950-3 3.569300+0 1.008130-2 3.784700+0 1.295400-2 4.000000+0 1.604000-2 4.250000+0 1.981020-2 4.625000+0 2.573040-2 5.000000+0 3.188000-2 5.500000+0 4.031400-2 6.000000+0 4.885000-2 6.750000+0 6.152490-2 7.000000+0 6.569000-2 8.000000+0 8.196000-2 9.000000+0 9.748000-2 1.000000+1 1.122000-1 1.100000+1 1.260000-1 1.200000+1 1.391000-1 1.300000+1 1.513000-1 1.400000+1 1.630000-1 1.500000+1 1.740000-1 1.600000+1 1.844000-1 1.800000+1 2.036000-1 2.000000+1 2.210000-1 2.200000+1 2.368000-1 2.400000+1 2.514000-1 2.600000+1 2.647000-1 2.800000+1 2.771000-1 3.000000+1 2.885000-1 4.000000+1 3.355000-1 5.000000+1 3.707000-1 6.000000+1 3.984000-1 8.000000+1 4.395000-1 1.000000+2 4.691000-1 1.500000+2 5.174000-1 2.000000+2 5.473000-1 3.000000+2 5.834000-1 4.000000+2 6.048000-1 5.000000+2 6.194000-1 6.000000+2 6.300000-1 8.000000+2 6.446000-1 1.000000+3 6.543000-1 1.500000+3 6.686000-1 2.000000+3 6.768000-1 3.000000+3 6.856000-1 4.000000+3 6.909000-1 5.000000+3 6.941000-1 6.000000+3 6.963000-1 8.000000+3 6.993000-1 1.000000+4 7.012000-1 1.500000+4 7.037000-1 2.000000+4 7.053000-1 3.000000+4 7.066000-1 4.000000+4 7.076000-1 5.000000+4 7.081000-1 6.000000+4 7.085000-1 8.000000+4 7.088000-1 1.000000+5 7.091000-1 1 98000 7 8 2.510000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 98000 7 9 2.510000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.800000+1 1.000000+5 9.800000+1 5.000000+5 9.796200+1 1.000000+6 9.790200+1 1.375000+6 9.784230+1 1.500000+6 9.781500+1 1.875000+6 9.771220+1 2.000000+6 9.767300+1 2.375000+6 9.753670+1 2.500000+6 9.749600+1 2.875000+6 9.733270+1 3.000000+6 9.728300+1 3.437500+6 9.706550+1 3.812500+6 9.686520+1 4.000000+6 9.676900+1 4.437500+6 9.651830+1 4.812500+6 9.628660+1 5.000000+6 9.617400+1 5.500000+6 9.583390+1 5.875000+6 9.556440+1 6.437500+6 9.514510+1 7.000000+6 9.471500+1 7.875000+6 9.402420+1 9.000000+6 9.311600+1 1.000000+7 9.227100+1 1.250000+7 9.013400+1 1.500000+7 8.788100+1 1.750000+7 8.556300+1 2.000000+7 8.318200+1 2.250000+7 8.074500+1 2.500000+7 7.831400+1 2.875000+7 7.476270+1 3.000000+7 7.362400+1 3.437500+7 6.979100+1 3.500000+7 6.926610+1 4.000000+7 6.531500+1 4.500000+7 6.174320+1 4.750000+7 6.007640+1 5.000000+7 5.849100+1 5.750000+7 5.409700+1 6.000000+7 5.275300+1 6.750000+7 4.901360+1 7.000000+7 4.786800+1 8.000000+7 4.373700+1 9.000000+7 4.025300+1 1.000000+8 3.727200+1 1.125000+8 3.403910+1 1.218800+8 3.185880+1 1.250000+8 3.116900+1 1.359400+8 2.886210+1 1.437500+8 2.730870+1 1.453100+8 2.700340+1 1.500000+8 2.611100+1 1.625000+8 2.384280+1 1.718800+8 2.228120+1 1.750000+8 2.179250+1 2.000000+8 1.839400+1 2.171900+8 1.657410+1 2.289100+8 1.557240+1 2.394500+8 1.482920+1 2.500000+8 1.422600+1 2.625000+8 1.366560+1 2.859400+8 1.279170+1 3.000000+8 1.225300+1 3.125000+8 1.172970+1 3.500000+8 1.028000+1 3.812500+8 9.403390+0 3.937500+8 9.060350+0 4.000000+8 8.879900+0 4.125000+8 8.497590+0 4.234400+8 8.152580+0 4.500000+8 7.324390+0 5.000000+8 6.079400+0 5.234400+8 5.655040+0 5.507800+8 5.258730+0 5.877000+8 4.836980+0 6.000000+8 4.716500+0 6.437500+8 4.348110+0 6.750000+8 4.132250+0 6.812500+8 4.093020+0 7.000000+8 3.983200+0 7.625000+8 3.666110+0 7.875000+8 3.540850+0 8.000000+8 3.476200+0 8.250000+8 3.340890+0 8.468800+8 3.219980+0 8.851600+8 3.009780+0 1.000000+9 2.462100+0 1.062500+9 2.235530+0 1.125000+9 2.051430+0 1.141100+9 2.009900+0 1.206900+9 1.860030+0 1.280200+9 1.725620+0 1.312500+9 1.675390+0 1.355700+9 1.615320+0 1.438200+9 1.520540+0 1.500000+9 1.463700+0 1.562500+9 1.416480+0 2.000000+9 1.197700+0 2.139200+9 1.134480+0 2.272600+9 1.073380+0 2.357800+9 1.034770+0 2.522900+9 9.618200-1 2.677700+9 8.966570-1 2.750000+9 8.674930-1 2.890900+9 8.129520-1 3.086500+9 7.427390-1 3.325700+9 6.652880-1 3.535000+9 6.048050-1 3.718100+9 5.569820-1 4.038600+9 4.835830-1 4.278900+9 4.361440-1 4.639500+9 3.752500-1 5.000000+9 3.247100-1 5.375000+9 2.809740-1 5.703100+9 2.487630-1 6.277300+9 2.030870-1 6.708000+9 1.758260-1 7.354000+9 1.433300-1 8.000000+9 1.183700-1 9.000000+9 9.007280-2 1.00000+10 7.030000-2 1.27030+10 3.982020-2 1.70630+10 1.960030-2 2.16210+10 1.103890-2 2.93940+10 5.212940-3 3.41010+10 3.620420-3 1.00000+11 2.548800-4 1.68570+11 7.072060-5 3.34410+11 1.330030-5 1.39060+12 4.251760-7 1.17920+13 2.570680-9 1.00000+14 1.58590-11 3.16230+15 4.09026-15 1.00000+17 1.01460-18 1 98000 7 0 2.510000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.23500-11 1.000000+2 1.235000-9 1.000000+3 1.235000-7 1.000000+4 1.235000-5 1.000000+5 1.235000-3 5.000000+5 3.087500-2 1.000000+6 1.235000-1 1.375000+6 2.310730-1 1.500000+6 2.738000-1 1.875000+6 4.205530-1 2.000000+6 4.754000-1 2.375000+6 6.560000-1 2.500000+6 7.212000-1 2.875000+6 9.295030-1 3.000000+6 1.002800+0 3.437500+6 1.271380+0 3.812500+6 1.514330+0 4.000000+6 1.639500+0 4.437500+6 1.938070+0 4.812500+6 2.198370+0 5.000000+6 2.328800+0 5.500000+6 2.674850+0 5.875000+6 2.932180+0 6.437500+6 3.313870+0 7.000000+6 3.690100+0 7.875000+6 4.265470+0 9.000000+6 4.995800+0 1.000000+7 5.643600+0 1.250000+7 7.290500+0 1.500000+7 8.994200+0 1.750000+7 1.064700+1 2.000000+7 1.226400+1 2.250000+7 1.381300+1 2.500000+7 1.530700+1 2.875000+7 1.747780+1 3.000000+7 1.818100+1 3.437500+7 2.053180+1 3.500000+7 2.085420+1 4.000000+7 2.333200+1 4.500000+7 2.563590+1 4.750000+7 2.673980+1 5.000000+7 2.782000+1 5.750000+7 3.095160+1 6.000000+7 3.196700+1 6.750000+7 3.491670+1 7.000000+7 3.587400+1 8.000000+7 3.953500+1 9.000000+7 4.293800+1 1.000000+8 4.605900+1 1.125000+8 4.951760+1 1.218800+8 5.181540+1 1.250000+8 5.252700+1 1.359400+8 5.483100+1 1.437500+8 5.633730+1 1.453100+8 5.662430+1 1.500000+8 5.747600+1 1.625000+8 5.961220+1 1.718800+8 6.111100+1 1.750000+8 6.159420+1 2.000000+8 6.514700+1 2.171900+8 6.732410+1 2.289100+8 6.872140+1 2.394500+8 6.991110+1 2.500000+8 7.107000+1 2.625000+8 7.237770+1 2.859400+8 7.465830+1 3.000000+8 7.591000+1 3.125000+8 7.693480+1 3.500000+8 7.962600+1 3.812500+8 8.152640+1 3.937500+8 8.220210+1 4.000000+8 8.253400+1 4.125000+8 8.314770+1 4.234400+8 8.365930+1 4.500000+8 8.479020+1 5.000000+8 8.655900+1 5.234400+8 8.726000+1 5.507800+8 8.800360+1 5.877000+8 8.893770+1 6.000000+8 8.923500+1 6.437500+8 9.022420+1 6.750000+8 9.082080+1 6.812500+8 9.092470+1 7.000000+8 9.120000+1 7.625000+8 9.181380+1 7.875000+8 9.202800+1 8.000000+8 9.214600+1 8.250000+8 9.242220+1 8.468800+8 9.271970+1 8.851600+8 9.322430+1 1.000000+9 9.463100+1 1.062500+9 9.517340+1 1.125000+9 9.556860+1 1.141100+9 9.564890+1 1.206900+9 9.591950+1 1.280200+9 9.613310+1 1.312500+9 9.620460+1 1.355700+9 9.628700+1 1.438200+9 9.642810+1 1.500000+9 9.652200+1 1.562500+9 9.662500+1 2.000000+9 9.725000+1 2.139200+9 9.738480+1 2.272600+9 9.750610+1 2.357800+9 9.756230+1 2.522900+9 9.766450+1 2.677700+9 9.773140+1 2.750000+9 9.776100+1 2.890900+9 9.780950+1 3.086500+9 9.785780+1 3.325700+9 9.790300+1 3.535000+9 9.792660+1 3.718100+9 9.794600+1 4.038600+9 9.796560+1 4.278900+9 9.797160+1 4.639500+9 9.798010+1 5.000000+9 9.798800+1 5.375000+9 9.798970+1 5.703100+9 9.799110+1 6.277300+9 9.799330+1 6.708000+9 9.799490+1 7.354000+9 9.799700+1 8.000000+9 9.799900+1 9.000000+9 9.799950+1 1.00000+10 9.800000+1 1.27030+10 9.800000+1 1.70630+10 9.800000+1 2.16210+10 9.800000+1 2.93940+10 9.800000+1 3.41010+10 9.800000+1 1.00000+11 9.800000+1 1.68570+11 9.800000+1 3.34410+11 9.800000+1 1.39060+12 9.800000+1 1.17920+13 9.800000+1 1.00000+14 9.800000+1 3.16230+15 9.800000+1 1.00000+17 9.800000+1 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.768169-6 0.0 1.772521-6 1.176906-6 1.776873-6 2.328772-6 1.781225-6 4.253693-6 1.785577-6 7.172310-6 1.789929-6 1.116364-5 1.794282-6 1.604008-5 1.798634-6 2.127459-5 1.802986-6 2.604772-5 1.807338-6 2.943961-5 1.811690-6 3.071485-5 1.816042-6 2.958139-5 1.820394-6 2.629922-5 1.824746-6 2.158346-5 1.833451-6 1.143508-5 1.837803-6 7.382090-6 1.842155-6 4.399197-6 1.846507-6 2.420035-6 1.850859-6 1.228920-6 1.855211-6 0.0 2.477070-6 0.0 2.483167-6 7.486393-7 2.489264-6 1.481351-6 2.495361-6 2.705808-6 2.501458-6 4.562365-6 2.507555-6 7.101283-6 2.513652-6 1.020323-5 2.519749-6 1.353294-5 2.525846-6 1.656916-5 2.531943-6 1.872677-5 2.538040-6 1.953796-5 2.544137-6 1.881696-5 2.550234-6 1.672914-5 2.560000-6 1.172818-5 2.568525-6 7.273947-6 2.574622-6 4.695807-6 2.580719-6 2.798365-6 2.582505-6 2.430201-6 2.592040-6 3.088255+0 2.595218-6 4.104615+0 2.601574-6 7.497415+0 2.607931-6 1.264167+1 2.615082-6 2.074877+1 2.626218-6 3.636023+1 2.633754-6 4.628365+1 2.640297-6 5.209516+1 2.646506-6 5.400019+1 2.653455-6 5.120469+1 2.660088-6 4.465078+1 2.670714-6 2.995743+1 2.677853-6 2.015508+1 2.684209-6 1.301142+1 2.690566-6 7.753876+0 2.696922-6 4.265471+0 2.704868-6 1.625495+0 2.709635-6 0.0 2.997783-6 0.0 3.009774-6 4.303822-6 3.012541-6 5.285739-6 3.019938-6 9.671583-6 3.032946-6 7.051828+0 3.034804-6 8.048952+0 3.042238-6 1.470206+1 3.049671-6 2.478968+1 3.058033-6 4.068727+1 3.071056-6 7.130050+1 3.079868-6 9.075978+1 3.088040-6 1.024641+2 3.095294-6 1.056209+2 3.102807-6 1.005603+2 3.110472-6 8.797498+1 3.130599-6 4.143968+1 3.138869-6 2.551469+1 3.146302-6 1.520493+1 3.153736-6 8.364356+0 3.164885-6 2.126253+0 3.168602-6 0.0 3.650537-6 0.0 3.659522-6 5.45015-15 3.668507-6 1.07843-14 3.677493-6 1.96985-14 3.686478-6 3.32143-14 3.695463-6 5.16979-14 3.704449-6 7.42802-14 3.713434-6 9.85208-14 3.722419-6 1.20625-13 3.731405-6 1.36332-13 3.740390-6 1.42238-13 3.749375-6 1.36989-13 3.758361-6 1.21789-13 3.767346-6 9.99511-14 3.785317-6 5.29549-14 3.794302-6 3.41858-14 3.803287-6 2.03723-14 3.812273-6 1.12070-14 3.821258-6 5.69102-15 3.830243-6 0.0 4.235967-6 0.0 4.251606-6 1.009332-1 4.256820-6 1.341508-1 4.267246-6 2.450374-1 4.278324-6 4.275043-1 4.288750-6 6.606078-1 4.307267-6 1.176744+0 4.320029-6 1.512685+0 4.329804-6 1.695893+0 4.341187-6 1.763376+0 4.351613-6 1.686747+0 4.362956-6 1.468217+0 4.371757-6 1.256660+0 4.392914-6 1.477035+0 4.404005-6 1.950907+0 4.414601-6 2.807826+0 4.425927-6 4.203468+0 4.459114-6 9.372631+0 4.469873-6 1.044170+1 4.479808-6 1.077870+1 4.490252-6 1.034407+1 4.501446-6 9.082884+0 4.532616-6 4.026495+0 4.543375-6 2.599365+0 4.554135-6 1.549036+0 4.564894-6 8.521378-1 4.581033-6 2.166174-1 4.586412-6 9.959348-7 4.593488-6 0.0 4.817669-6 0.0 4.829527-6 1.544436-2 4.841385-6 3.056012-2 4.853243-6 5.582057-2 4.865102-6 9.412150-2 4.876960-6 1.466050-1 4.900958-6 5.432830-1 4.913712-6 8.463553-1 4.925952-6 1.235393+0 4.946293-6 2.072858+0 4.972982-6 3.213888+0 4.985736-6 3.532316+0 4.997740-6 3.596002+0 5.010494-6 3.376570+0 5.023249-6 2.912219+0 5.057010-6 1.289504+0 5.069014-6 8.324590-1 5.081018-6 4.960860-1 5.093022-6 2.737840-1 5.112589-6 6.157354-2 5.117030-6 1.257416-2 5.122379-6 1.678912-2 5.128781-6 5.273411-2 5.141312-6 1.276120-1 5.147595-6 1.676215-1 5.160203-6 2.901706-1 5.172811-6 4.673598-1 5.187362-6 7.416198-1 5.221558-6 1.470354+0 5.235852-6 1.666358+0 5.250036-6 1.703056+0 5.264220-6 1.593936+0 5.276839-6 1.417312+0 5.298980-6 1.017381+0 5.311927-6 8.392608-1 5.324874-6 7.458269-1 5.337821-6 7.376024-1 5.354005-6 8.300487-1 5.363716-6 9.054104-1 5.378308-6 9.785182-1 5.389610-6 1.050886+0 5.406693-6 1.068381+0 5.448176-6 9.721032-1 5.468705-6 9.433656-1 5.547297-6 9.294217-1 5.637275-6 8.687587-1 5.673739-6 8.814229-1 5.707065-6 9.342342-1 5.736333-6 9.575481-1 5.787094-6 8.899441-1 5.838181-6 8.303595-1 6.070366-6 7.628014-1 6.100249-6 2.168220+0 6.115190-6 3.332382+0 6.131065-6 5.250150+0 6.146474-6 7.799993+0 6.191269-6 1.672449+1 6.207128-6 1.870851+1 6.221364-6 1.928782+1 6.236093-6 1.848692+1 6.251756-6 1.625981+1 6.294487-6 7.644950+0 6.309429-6 5.182154+0 6.324370-6 3.368805+0 6.339311-6 2.164630+0 6.369194-6 6.896360-1 7.039885-6 5.601643-1 7.317811-6 5.175221-1 7.353835-6 1.727924+0 7.371847-6 2.730314+0 7.390985-6 4.381250+0 7.408922-6 6.485486+0 7.462695-6 1.421955+1 7.483312-6 1.611223+1 7.501732-6 1.663375+1 7.518770-6 1.605376+1 7.537128-6 1.439861+1 7.590376-6 7.664098+0 7.606001-6 6.035933+0 7.624231-6 4.610171+0 7.642503-6 3.579738+0 7.652269-6 3.204497+0 7.676188-6 2.067449+0 7.678049-6 1.971371+0 7.725623-6 1.167673+0 7.743961-6 9.157793-1 7.762300-6 7.298003-1 7.780639-6 6.057879-1 7.817316-6 4.525675-1 7.838534-6 4.501639-1 7.877122-6 5.200246-1 7.896415-6 5.791977-1 7.915709-6 6.700459-1 7.935002-6 7.950878-1 7.959914-6 1.004443+0 7.996116-6 1.340404+0 8.015464-6 1.481119+0 8.034812-6 1.574047+0 8.054160-6 1.613667+0 8.082132-6 1.582375+0 8.108006-6 1.511571+0 8.134929-6 1.392373+0 8.170248-6 1.188301+0 8.225152-6 7.998153-1 8.247641-6 6.911224-1 8.266476-6 6.273449-1 8.286052-6 5.948090-1 8.303249-6 5.938026-1 8.344779-6 6.458805-1 8.378915-6 7.263855-1 8.399337-6 7.504413-1 8.440182-6 7.458509-1 8.481027-6 7.079721-1 8.522233-6 6.879856-1 8.696291-6 6.666789-1 8.787383-6 6.142511-1 8.906256-6 4.664563-1 8.932538-6 4.480195-1 8.965671-6 4.478419-1 9.003264-6 4.756584-1 9.089848-6 5.735776-1 9.155187-6 6.089240-1 9.165425-6 6.105703-1 9.211213-6 6.844079-1 9.233103-6 7.416002-1 9.257317-6 8.399685-1 9.287362-6 1.016546+0 9.348014-6 1.439694+0 9.370688-6 1.550715+0 9.393362-6 1.596043+0 9.421704-6 1.540752+0 9.446110-6 1.416881+0 9.519666-6 9.092553-1 9.548937-6 7.588804-1 9.571496-6 6.825199-1 9.616615-6 5.859177-1 9.700456-6 5.671139-1 9.748208-6 5.905722-1 9.795961-6 6.445677-1 9.843714-6 7.481133-1 9.891467-6 8.681713-1 9.915344-6 9.097673-1 9.939220-6 9.260044-1 9.965219-6 9.120559-1 1.000201-5 8.496525-1 1.005860-5 7.342296-1 1.008248-5 7.060560-1 1.010636-5 6.970616-1 1.023299-5 7.524916-1 1.051475-5 7.088261-1 1.063493-5 6.538916-1 1.071154-5 6.204128-1 1.078848-5 6.272950-1 1.091017-5 6.733746-1 1.107375-5 6.782517-1 1.220092-5 6.299518-1 1.361528-5 6.158418-1 1.502987-5 6.429563-1 1.675156-5 7.239021-1 1.867918-5 8.738602-1 2.076528-5 1.108877+0 2.137313-5 1.190548+0 2.147853-5 3.158263+0 2.153140-5 4.790796+0 2.158427-5 7.263798+0 2.163713-5 1.064000+1 2.179573-5 2.313255+1 2.184860-5 2.592433+1 2.189381-5 2.684797+1 2.195433-5 3.426652+1 2.200441-5 3.872234+1 2.205702-5 4.691064+1 2.211624-5 6.329450+1 2.217041-5 8.549143+1 2.232829-5 1.700969+2 2.238753-5 1.905217+2 2.243498-5 1.962591+2 2.249295-5 1.868014+2 2.255312-5 1.613975+2 2.270214-5 7.465695+1 2.275603-5 4.930470+1 2.280992-5 3.090371+1 2.286381-5 1.901428+1 2.297159-5 5.125269+0 2.304610-5 5.898578+0 2.310160-5 6.101396+0 2.315710-5 5.940537+0 2.324739-5 5.037806+0 2.327404-5 4.722568+0 2.337908-5 4.884028+0 2.339222-5 4.976861+0 2.344590-5 5.791498+0 2.350318-5 7.577097+0 2.356967-5 1.089414+1 2.373515-5 2.133577+1 2.379944-5 2.411784+1 2.385303-5 2.523385+1 2.391375-5 2.467638+1 2.398824-5 2.215315+1 2.412910-5 1.636256+1 2.419794-5 1.471672+1 2.427990-5 1.422104+1 2.457691-5 1.463334+1 2.500911-5 1.271803+1 2.617566-5 1.091694+1 2.750000-5 9.565204+0 2.900000-5 8.736083+0 3.121856-5 8.218204+0 3.407755-5 8.197418+0 3.482932-5 8.270875+0 3.500078-5 1.656979+1 3.509186-5 2.407033+1 3.517759-5 3.469336+1 3.526510-5 4.947316+1 3.552396-5 1.021067+2 3.562337-5 1.140509+2 3.571038-5 1.162957+2 3.579314-5 1.106515+2 3.588416-5 9.669503+1 3.611524-5 4.915404+1 3.620097-5 3.480832+1 3.628670-5 2.429430+1 3.637242-5 1.738241+1 3.654388-5 9.125622+0 3.671027-5 9.588834+0 3.699348-5 1.101579+1 3.715729-5 1.248614+1 3.748901-5 1.641855+1 3.760411-5 1.716545+1 3.772916-5 1.718809+1 3.813465-5 1.573791+1 3.862276-5 1.565004+1 3.905404-5 1.536341+1 3.972132-5 1.461681+1 4.268784-5 1.424832+1 4.842105-5 1.509585+1 5.714739-5 1.761576+1 5.853126-5 1.883452+1 5.983519-5 1.881528+1 6.971140-5 2.173886+1 7.926767-5 2.343817+1 8.887894-5 2.365559+1 1.000006-4 2.219797+1 1.141147-4 1.849299+1 1.160008-4 1.789754+1 1.168574-4 1.853856+1 1.175775-4 2.034303+1 1.177693-4 2.099168+1 1.183490-4 3.286865+1 1.186389-4 4.164885+1 1.189650-4 5.627489+1 1.192902-4 7.580048+1 1.201064-4 1.321521+2 1.204250-4 1.454772+2 1.206889-4 1.489065+2 1.209845-4 1.424537+2 1.212903-4 1.261376+2 1.221174-4 6.489151+1 1.224072-4 4.743628+1 1.226971-4 3.456450+1 1.229870-4 2.599184+1 1.235667-4 1.543247+1 1.253861-4 1.524711+1 1.270749-4 1.567068+1 1.286897-4 1.531903+1 1.293351-4 2.258098+1 1.296600-4 2.887049+1 1.299834-4 3.830808+1 1.303335-4 5.232569+1 1.312483-4 9.526204+1 1.315995-4 1.051991+2 1.319238-4 1.073255+2 1.322402-4 1.022550+2 1.326310-4 8.774529+1 1.334276-4 4.967821+1 1.337839-4 3.622299+1 1.340611-4 2.828261+1 1.343778-4 2.226154+1 1.350112-4 1.489598+1 1.375675-4 1.509418+1 1.396626-4 1.588842+1 1.445475-4 1.525197+1 1.536000-4 1.429423+1 1.631700-4 1.207859+1 1.757924-4 8.956259+0 1.842454-4 7.267698+0 1.939903-4 5.723141+0 2.041739-4 4.506532+0 2.142897-4 3.630020+0 2.238721-4 3.039110+0 2.340000-4 2.606245+0 2.437521-4 2.355706+0 2.455333-4 2.394809+0 2.467235-4 2.518562+0 2.487551-4 2.940350+0 2.504419-4 3.281918+0 2.518455-4 3.400165+0 2.650000-4 3.234457+0 2.852119-4 3.208746+0 3.153229-4 3.436895+0 3.272332-4 3.591776+0 3.304485-4 3.796147+0 3.353199-4 4.610989+0 3.370314-4 4.696046+0 3.433000-4 4.399430+0 4.039402-4 4.973729+0 4.124242-4 5.324582+0 5.181429-4 6.116130+0 5.220969-4 6.365129+0 5.281690-4 6.929751+0 5.380000-4 6.973577+0 5.458988-4 7.437692+0 5.573500-4 7.201572+0 5.696900-4 7.547535+0 5.800000-4 8.274528+0 5.880000-4 9.281057+0 5.965287-4 1.090090+1 6.067472-4 1.366590+1 6.200000-4 1.847906+1 6.515000-4 3.165590+1 6.709530-4 3.781340+1 6.965000-4 4.265657+1 7.297873-4 4.525222+1 7.969478-4 4.574814+1 8.951589-4 4.343323+1 9.043273-4 4.509575+1 9.149242-4 4.984965+1 9.197092-4 4.970921+1 9.324618-4 4.524776+1 9.538313-4 4.595973+1 9.661610-4 4.780899+1 9.763468-4 4.995841+1 9.962902-4 4.742018+1 1.248968-3 4.064994+1 1.277163-3 4.217780+1 1.592068-3 3.420333+1 1.782435-3 3.083908+1 2.210097-3 2.446402+1 2.581177-3 2.031664+1 3.046386-3 1.653713+1 3.600089-3 1.333614+1 4.136817-3 1.111139+1 4.158017-3 1.155748+1 4.177162-3 1.257183+1 4.188176-3 1.365657+1 4.209230-3 1.674993+1 4.238250-3 2.177155+1 4.258613-3 2.397955+1 4.281322-3 2.473639+1 4.375347-3 2.380945+1 4.417487-3 2.455655+1 4.453998-3 2.735335+1 4.491805-3 3.076696+1 4.519022-3 3.153366+1 5.006044-3 2.728202+1 5.066261-3 2.794006+1 5.143512-3 3.001227+1 5.329596-3 2.888515+1 6.194631-3 2.292894+1 6.320232-3 2.274611+1 6.438571-3 2.289439+1 6.711741-3 2.190237+1 6.879245-3 2.166423+1 7.803555-3 1.803448+1 8.874712-3 1.491381+1 9.924731-3 1.259266+1 1.125253-2 1.041959+1 1.276901-2 8.577835+0 1.462178-2 6.957886+0 1.653897-2 5.740846+0 1.905461-2 4.593861+0 1.953515-2 4.479505+0 1.964119-2 4.661699+0 1.971216-2 4.986540+0 1.979532-2 5.657959+0 2.002294-2 8.363553+0 2.014014-2 9.240356+0 2.025599-2 9.553336+0 2.103744-2 9.121361+0 2.391939-2 7.339789+0 2.482471-2 6.966039+0 2.501827-2 7.263625+0 2.539598-2 8.866616+0 2.561379-2 9.287099+0 2.600360-2 9.728440+0 2.637961-2 1.022018+1 3.128228-2 7.970034+0 3.603128-2 6.407860+0 4.170398-2 5.086759+0 4.744693-2 4.139929+0 5.300136-2 3.460081+0 6.025158-2 2.809395+0 6.863488-2 2.267928+0 7.768059-2 1.848339+0 8.762235-2 1.512737+0 9.952568-2 1.224263+0 1.125049-1 9.975930-1 1.278750-1 8.057300-1 1.323963-1 7.647288-1 1.331902-1 7.858667-1 1.336718-1 8.383824-1 1.341070-1 9.375083-1 1.344983-1 1.084562+0 1.349306-1 1.315972+0 1.363971-1 2.316792+0 1.370993-1 2.624462+0 1.377780-1 2.758628+0 1.394991-1 2.777592+0 1.617228-1 2.226697+0 1.853072-1 1.810366+0 2.113990-1 1.482862+0 2.407155-1 1.219721+0 2.725998-1 1.013638+0 3.091307-1 8.433969-1 3.530307-1 6.983542-1 4.007657-1 5.862629-1 4.562051-1 4.931071-1 5.266990-1 4.103828-1 6.069110-1 3.451690-1 6.968855-1 2.940082-1 8.276592-1 2.433090-1 9.520766-1 2.105767-1 1.173413+0 1.675269-1 1.347258+0 1.428638-1 1.546860+0 1.218315-1 1.776032+0 1.038956-1 2.039158+0 8.860025-2 2.341267+0 7.555663-2 2.688134+0 6.443327-2 3.086391+0 5.494748-2 3.556850+0 4.666672-2 4.068655+0 3.995978-2 4.671441+0 3.407695-2 5.363532+0 2.906018-2 6.158159+0 2.478197-2 7.070513+0 2.113360-2 8.118035+0 1.802234-2 9.320751+0 1.536911-2 9.760024+0 1.457453-2 1.000000+1 3.056271-2 1 98000 7 0 2.510000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.769018+1 2.225134-6-9.457862+1 2.477070-6-9.002419+1 2.550234-6-8.467154+1 2.578433-6-7.853497+1 2.610116-6-6.305529+1 2.617515-6-6.187552+1 2.625436-6-6.458760+1 2.633357-6-7.260981+1 2.641019-6-8.493031+1 2.646506-6-9.507942+1 2.653100-6-8.906931+1 2.662653-6-7.574689+1 2.670714-6-7.006926+1 2.677853-6-6.937279+1 2.689870-6-7.375786+1 2.718248-6-8.753893+1 2.758875-6-9.453357+1 2.808705-6-9.762253+1 2.944450-6-8.739247+1 2.988948-6-7.970348+1 3.009774-6-7.244865+1 3.019548-6-6.598895+1 3.027371-6-5.943777+1 3.034804-6-5.366417+1 3.043167-6-4.609771+1 3.052226-6-3.939858+1 3.058033-6-3.718579+1 3.062708-6-3.760267+1 3.067092-6-3.972146+1 3.072000-6-4.501179+1 3.077052-6-5.322325+1 3.085367-6-7.320244+1 3.093683-6-9.778215+1 3.103599-6-6.672475+1 3.111234-6-4.809078+1 3.116570-6-3.918432+1 3.120529-6-3.449759+1 3.125643-6-3.095272+1 3.129670-6-3.016692+1 3.136802-6-3.243633+1 3.146302-6-3.985421+1 3.158730-6-5.052057+1 3.168602-6-5.834120+1 3.176550-6-6.427055+1 3.196558-6-7.186856+1 3.237439-6-7.935801+1 3.319510-6-8.566624+1 3.534507-6-9.108138+1 4.394488-6-9.756812+1 4.442838-6-9.600724+1 4.466318-6-9.761434+1 4.510903-6-8.940341+1 4.552117-6-8.950784+1 4.654769-6-9.371320+1 4.968876-6-9.685076+1 5.057010-6-9.367010+1 5.232700-6-9.613621+1 5.858688-6-9.750039+1 6.009892-6-9.776001+1 6.112564-6-9.211662+1 6.161551-6-9.036898+1 6.197206-6-9.527117+1 6.209681-6-9.842768+1 6.260572-6-8.638628+1 6.294487-6-8.442650+1 6.420724-6-9.165273+1 6.869590-6-9.547675+1 7.274352-6-9.758404+1 7.423605-6-9.150592+1 7.473788-6-9.614445+1 7.484716-6-9.813172+1 7.551985-6-8.782961+1 7.606001-6-8.656239+1 7.877122-6-9.317689+1 9.421704-6-9.525961+1 1.586247-5-9.896665+1 1.915339-5-9.397184+1 2.036619-5-8.743315+1 2.096592-5-7.952535+1 2.125564-5-7.185469+1 2.138628-5-6.557404+1 2.153140-5-5.636367+1 2.169000-5-4.573383+1 2.186838-5-3.873437+1 2.189381-5-3.574716+1 2.191710-5-3.272870+1 2.198563-5-2.684728+1 2.204716-5-1.775894+1 2.206401-5-1.420247+1 2.207624-5-1.221635+1 2.210376-5-8.229246+0 2.210835-5-7.456532+0 2.211624-5-5.691014+0 2.212243-5-4.703450+0 2.213327-5-3.418941+0 2.216580-5-3.433544-1 2.217041-5 2.403779-1 2.217907-5 6.335563-1 2.218664-5 6.312094-1 2.219988-5 7.020966-2 2.220982-5-7.436136-1 2.222472-5-2.524824+0 2.223963-5-4.892601+0 2.225029-5-6.986169+0 2.225962-5-9.166661+0 2.227492-5-1.340353+1 2.228742-5-1.750533+1 2.230383-5-2.389566+1 2.232097-5-3.226852+1 2.236815-5-6.088845+1 2.239318-5-8.012596+1 2.242523-5-1.030936+2 2.243498-5-9.437881+1 2.249631-5-4.786723+1 2.250811-5-4.011280+1 2.255312-5-1.378395+1 2.256114-5-9.815118+0 2.256815-5-6.699991+0 2.258042-5-1.844866+0 2.258962-5 1.380483+0 2.260343-5 5.644185+0 2.261723-5 9.326033+0 2.262784-5 1.174492+1 2.263713-5 1.351598+1 2.265338-5 1.591497+1 2.266557-5 1.712607+1 2.267472-5 1.768429+1 2.268843-5 1.788019+1 2.269535-5 1.760477+1 2.272909-5 1.399752+1 2.274256-5 1.228748+1 2.274930-5 1.117077+1 2.276277-5 7.978422+0 2.278635-5 3.526545+0 2.279813-5 1.142556+0 2.280403-5-2.115016-1 2.280992-5-1.894443+0 2.286381-5-1.453664+1 2.287766-5-1.790861+1 2.295624-5-3.294615+1 2.297159-5-3.693403+1 2.298721-5-4.089035+1 2.302688-5-4.739739+1 2.310160-5-5.548854+1 2.351075-5-8.426261+1 2.364495-5-8.912188+1 2.376372-5-8.742768+1 2.398824-5-7.691914+1 2.412910-5-7.678423+1 2.439727-5-8.169060+1 2.699907-5-8.824321+1 3.237019-5-9.798647+1 3.318710-5-1.001619+2 3.412454-5-9.304860+1 3.454632-5-8.545563+1 3.475788-5-7.774479+1 3.500078-5-6.067208+1 3.511195-5-5.183811+1 3.520522-5-4.591037+1 3.527850-5-4.362680+1 3.532611-5-4.443294+1 3.539012-5-4.823726+1 3.545233-5-5.477947+1 3.550521-5-6.335560+1 3.560984-5-8.776704+1 3.563243-5-9.430068+1 3.566528-5-1.002626+2 3.573148-5-8.136700+1 3.581166-5-6.058503+1 3.588416-5-4.534206+1 3.592333-5-3.921871+1 3.598047-5-3.299943+1 3.603094-5-2.956206+1 3.606782-5-2.821985+1 3.610338-5-2.803416+1 3.619025-5-3.129168+1 3.628670-5-3.836182+1 3.640323-5-4.787628+1 3.654388-5-5.814863+1 3.661820-5-6.361391+1 3.682064-5-7.190248+1 3.720038-5-8.046224+1 3.751265-5-8.211156+1 3.808118-5-8.134713+1 4.089393-5-8.519208+1 5.136831-5-8.775230+1 6.086229-5-8.691098+1 9.606491-5-7.609346+1 1.060188-4-7.659747+1 1.118724-4-6.871822+1 1.145567-4-6.130441+1 1.158988-4-5.432935+1 1.167146-4-4.722062+1 1.172856-4-3.997515+1 1.176255-4-3.390250+1 1.177693-4-2.994702+1 1.178808-4-2.667715+1 1.183128-4-1.756513+1 1.186389-4-9.553925+0 1.186751-4-8.528500+0 1.189288-4-3.524578+0 1.189650-4-2.723436+0 1.190284-4-1.855215+0 1.192186-4-3.245251-1 1.192430-4-9.999959-2 1.192902-4-5.277371-2 1.193344-4-2.387181-1 1.194174-4-1.038867+0 1.194900-4-2.162608+0 1.195535-4-3.450968+0 1.196091-4-4.809033+0 1.196577-4-6.176004+0 1.197002-4-7.512278+0 1.197747-4-1.018056+1 1.198724-4-1.438088+1 1.199682-4-1.943856+1 1.200770-4-2.681163+1 1.203208-4-4.611263+1 1.204554-4-5.936733+1 1.206129-4-7.378302+1 1.206889-4-6.531527+1 1.210174-4-3.391363+1 1.212622-4-1.445767+1 1.212903-4-1.238861+1 1.213429-4-9.013917+0 1.213889-4-6.407950+0 1.214292-4-4.335202+0 1.214997-4-1.104327+0 1.215526-4 1.023655+0 1.216319-4 3.785173+0 1.217112-4 6.062866+0 1.217620-4 7.275743+0 1.218508-4 8.937632+0 1.219175-4 9.791479+0 1.219674-4 1.019689+1 1.220424-4 1.037477+1 1.220799-4 1.021942+1 1.222623-4 7.919208+0 1.223348-4 6.802906+0 1.223710-4 6.068836+0 1.224435-4 3.961951+0 1.225703-4 1.004894+0 1.226337-4-5.865835-1 1.226654-4-1.491574+0 1.226971-4-2.615452+0 1.229870-4-1.115207+1 1.230655-4-1.355935+1 1.234954-4-2.430989+1 1.236158-4-2.859427+1 1.238623-4-3.439196+1 1.243355-4-4.178190+1 1.250565-4-4.957585+1 1.266953-4-6.179662+1 1.280707-4-7.252383+1 1.282672-4-7.472686+1 1.286897-4-6.815512+1 1.296151-4-5.179938+1 1.300581-4-4.418269+1 1.303883-4-4.198831+1 1.306151-4-4.336765+1 1.308615-4-4.753433+1 1.310720-4-5.354710+1 1.312161-4-5.994083+1 1.315153-4-7.512538+1 1.318900-4-5.138372+1 1.322790-4-2.726653+1 1.323508-4-2.359000+1 1.325779-4-1.292496+1 1.326310-4-1.077903+1 1.326808-4-9.017936+0 1.327741-4-6.175445+0 1.328558-4-4.092466+0 1.329273-4-2.542558+0 1.329898-4-1.381659+0 1.330993-4 2.273011-1 1.331814-4 1.081333+0 1.332429-4 1.514920+0 1.333353-4 1.792256+0 1.333814-4 1.724127+0 1.335860-4 1.886496-1 1.336651-4-5.646383-1 1.337047-4-1.066764+0 1.337839-4-2.525182+0 1.339225-4-4.561671+0 1.340264-4-6.287684+0 1.340611-4-7.070003+0 1.344174-4-1.383777+1 1.349320-4-2.199116+1 1.350972-4-2.556978+1 1.354219-4-2.989855+1 1.359891-4-3.476507+1 1.368760-4-3.967041+1 1.379451-4-4.354446+1 1.396626-4-4.670769+1 1.445475-4-5.096593+1 1.510620-4-5.289283+1 1.873689-4-5.590776+1 2.518455-4-6.399314+1 3.464626-4-6.848384+1 4.897788-4-7.412354+1 5.615000-4-8.161661+1 6.229854-4-9.487044+1 6.480000-4-9.425207+1 7.414123-4-7.361990+1 7.969478-4-6.532673+1 8.734334-4-5.839198+1 9.172950-4-5.733189+1 9.390390-4-5.723197+1 9.763468-4-5.372958+1 1.000513-3-5.147397+1 1.048717-3-4.681110+1 1.143159-3-4.110414+1 1.237262-3-3.794845+1 1.277163-3-3.784411+1 1.312926-3-3.519610+1 1.413587-3-3.146456+1 1.566386-3-2.809165+1 1.761623-3-2.535466+1 2.006781-3-2.264346+1 2.328825-3-2.098309+1 2.733408-3-2.043760+1 3.200622-3-2.117028+1 3.600089-3-2.307226+1 3.866729-3-2.557630+1 4.036821-3-2.851480+1 4.136817-3-3.185379+1 4.188176-3-3.547587+1 4.234296-3-3.949853+1 4.258613-3-3.972208+1 4.341352-3-3.406402+1 4.393526-3-3.287444+1 4.482331-3-3.437164+1 4.519022-3-3.303366+1 4.590170-3-2.833347+1 4.665586-3-2.551791+1 4.802226-3-2.258342+1 4.947766-3-2.097374+1 5.028336-3-2.111700+1 5.097440-3-2.164572+1 5.143512-3-2.061152+1 5.216811-3-1.829121+1 5.329596-3-1.625399+1 5.509125-3-1.419456+1 5.781444-3-1.219615+1 6.059507-3-1.099052+1 6.240184-3-1.074918+1 6.345999-3-1.091533+1 6.524245-3-9.771028+0 6.671809-3-9.456671+0 6.777955-3-9.106489+0 6.937243-3-8.154768+0 7.237278-3-7.140438+0 7.635748-3-6.264808+0 8.190687-3-5.466006+0 8.874712-3-4.865906+0 9.580794-3-4.530195+0 1.080300-2-4.334310+0 1.224363-2-4.428277+0 1.396354-2-4.807459+0 1.593071-2-5.515969+0 1.748672-2-6.389206+0 1.848737-2-7.308650+0 1.905461-2-8.188540+0 1.940284-2-9.132363+0 1.960778-2-1.019749+1 1.982828-2-1.180851+1 1.995539-2-1.204552+1 2.010788-2-1.117925+1 2.030659-2-9.658014+0 2.052551-2-8.636395+0 2.087598-2-7.735981+0 2.141017-2-6.956524+0 2.219468-2-6.365591+0 2.306501-2-6.113483+0 2.391939-2-6.231102+0 2.450998-2-6.661060+0 2.482471-2-7.248701+0 2.514455-2-8.182259+0 2.532626-2-8.227750+0 2.569323-2-7.415146+0 2.609302-2-6.944594+0 2.660984-2-5.688495+0 2.708697-2-4.976635+0 2.784868-2-4.249639+0 2.882380-2-3.612589+0 3.019952-2-2.993423+0 3.184219-2-2.499430+0 3.392072-2-2.089401+0 3.603128-2-1.813641+0 3.871601-2-1.589778+0 4.170398-2-1.448691+0 4.538352-2-1.371499+0 5.113873-2-1.350784+0 6.025158-2-1.440627+0 9.541984-2-2.032261+0 1.125049-1-2.408512+0 1.220974-1-2.739640+0 1.278750-1-3.084821+0 1.311287-1-3.439886+0 1.329809-1-3.840855+0 1.350906-1-4.649012+0 1.357939-1-4.697764+0 1.367223-1-4.415868+0 1.381399-1-3.789398+0 1.394991-1-3.406735+0 1.418676-1-3.026334+0 1.455653-1-2.669459+0 1.507260-1-2.368307+0 1.589265-1-2.065285+0 1.686239-1-1.851307+0 1.853072-1-1.643445+0 2.022199-1-1.529575+0 2.306844-1-1.437189+0 2.851018-1-1.393241+0 7.587141-1-1.494240+0 2.341267+0-1.528306+0 7.070513+0-1.539642+0 1.000000+1-1.537756+0 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.882035-2 1.182289-6 1.265303-1 1.229569-6 1.524294-1 1.273893-6 1.808992-1 1.315447-6 2.118456-1 1.354404-6 2.451474-1 1.390926-6 2.806592-1 1.457266-6 3.576365-1 1.487359-6 3.987315-1 1.515572-6 4.416755-1 1.568470-6 5.339220-1 1.614756-6 6.292554-1 1.655257-6 7.262629-1 1.690695-6 8.232805-1 1.721703-6 9.188736-1 1.748835-6 1.012620+0 1.796316-6 1.199934+0 1.831927-6 1.362825+0 1.858635-6 1.501419+0 1.898698-6 1.738530+0 1.953076-6 2.123042+0 1.996024-6 2.496184+0 2.034200-6 2.894339+0 2.071737-6 3.356089+0 2.106929-6 3.864411+0 2.139921-6 4.426463+0 2.170850-6 5.046179+0 2.199847-6 5.727343+0 2.227032-6 6.473880+0 2.252517-6 7.289867+0 2.276409-6 8.179542+0 2.298809-6 9.147307+0 2.319808-6 1.019774+1 2.339495-6 1.133558+1 2.357951-6 1.256576+1 2.375254-6 1.389338+1 2.391476-6 1.532374+1 2.406683-6 1.686229+1 2.420940-6 1.851470+1 2.434307-6 2.028679+1 2.446837-6 2.218455+1 2.458585-6 2.421417+1 2.469598-6 2.638198+1 2.479923-6 2.869452+1 2.489603-6 3.115852+1 2.498677-6 3.378097+1 2.507185-6 3.656921+1 2.515161-6 3.953098+1 2.522638-6 4.267445+1 2.529648-6 4.600815+1 2.536220-6 4.954101+1 2.542381-6 5.328259+1 2.548157-6 5.724356+1 2.553572-6 6.143637+1 2.560000-6 6.715372+1 2.567870-6 7.557061+1 2.576236-6 8.690389+1 2.583556-6 9.976533+1 2.589961-6 1.142966+2 2.595566-6 1.305058+2 2.600470-6 1.482358+2 2.604761-6 1.671822+2 2.608515-6 1.869430+2 2.611801-6 2.070786+2 2.614675-6 2.271640+2 2.619392-6 2.657568+2 2.627215-6 3.476595+2 2.635963-6 4.695891+2 2.641283-6 5.603255+2 2.644526-6 6.215653+2 2.647768-6 6.869140+2 2.654253-6 8.277396+2 2.655064-6 8.460688+2 2.660739-6 9.766835+2 2.662968-6 1.028253+3 2.667224-6 1.125037+3 2.670744-6 1.201573+3 2.673710-6 1.262172+3 2.676889-6 1.321801+3 2.679184-6 1.360716+3 2.682463-6 1.409295+3 2.685494-6 1.445878+3 2.687085-6 1.461599+3 2.690885-6 1.488723+3 2.693760-6 1.499018+3 2.697717-6 1.498294+3 2.700095-6 1.489531+3 2.706436-6 1.436637+3 2.708459-6 1.411283+3 2.712890-6 1.343037+3 2.715625-6 1.293240+3 2.718086-6 1.244185+3 2.721250-6 1.176237+3 2.723787-6 1.118624+3 2.726637-6 1.051546+3 2.729016-6 9.942660+2 2.732076-6 9.198691+2 2.735319-6 8.412189+2 2.738561-6 7.639133+2 2.742209-6 6.798117+2 2.745047-6 6.172371+2 2.751532-6 4.859408+2 2.754972-6 4.238002+2 2.760473-6 3.359800+2 2.764250-6 2.838972+2 2.767010-6 2.499566+2 2.769870-6 2.182730+2 2.773547-6 1.824592+2 2.777633-6 1.486348+2 2.781718-6 1.204272+2 2.786621-6 9.300031+1 2.793546-6 6.404133+1 2.809086-6 2.743358+1 2.811237-6 2.443387+1 2.815505-6 1.948712+1 2.819707-6 1.570728+1 2.823843-6 1.283830+1 2.827915-6 1.068590+1 2.831923-6 9.102226+0 2.835868-6 7.973915+0 2.839751-6 7.212891+0 2.962086-6 3.494582+1 2.969732-6 4.036411+1 2.976900-6 4.662653+1 2.983620-6 5.374134+1 2.989920-6 6.171492+1 2.995827-6 7.056505+1 3.001364-6 8.032727+1 3.006555-6 9.105576+1 3.011421-6 1.028202+2 3.015984-6 1.157000+2 3.020261-6 1.297767+2 3.024271-6 1.451256+2 3.028031-6 1.618080+2 3.031555-6 1.798638+2 3.034859-6 1.993070+2 3.037957-6 2.201222+2 3.043765-6 2.673181+2 3.048847-6 3.193964+2 3.053293-6 3.752115+2 3.057184-6 4.334151+2 3.066175-6 6.091671+2 3.077545-6 9.373458+2 3.084058-6 1.190967+3 3.089677-6 1.452942+3 3.092013-6 1.573986+3 3.095809-6 1.785960+3 3.099605-6 2.016330+3 3.107197-6 2.527430+3 3.108146-6 2.595463+3 3.114789-6 3.091138+3 3.117398-6 3.292543+3 3.122380-6 3.680740+3 3.126236-6 3.978809+3 3.129972-6 4.260170+3 3.133828-6 4.537149+3 3.137564-6 4.787329+3 3.140886-6 4.990424+3 3.143955-6 5.158891+3 3.145631-6 5.242148+3 3.150079-6 5.430143+3 3.153553-6 5.540713+3 3.157600-6 5.626415+3 3.161386-6 5.662835+3 3.164157-6 5.662251+3 3.167932-6 5.624650+3 3.170575-6 5.573641+3 3.175845-6 5.414442+3 3.178659-6 5.300374+3 3.181790-6 5.152059+3 3.183803-6 5.045903+3 3.187376-6 4.839099+3 3.189936-6 4.678439+3 3.193595-6 4.434239+3 3.197417-6 4.165365+3 3.202096-6 3.824678+3 3.205891-6 3.544675+3 3.210162-6 3.231783+3 3.213483-6 2.993385+3 3.221798-6 2.430502+3 3.223152-6 2.344674+3 3.232634-6 1.799615+3 3.239066-6 1.489210+3 3.256043-6 8.926104+2 3.259945-6 7.954321+2 3.263846-6 7.106092+2 3.267748-6 6.368499+2 3.271649-6 5.728934+2 3.275551-6 5.175390+2 3.279452-6 4.696682+2 3.283354-6 4.282577+2 3.287255-6 3.923875+2 3.295058-6 3.341107+2 3.302861-6 2.895152+2 3.310665-6 2.547028+2 3.318468-6 2.269150+2 3.326271-6 2.042426+2 3.332226-6 1.895534+2 3.338088-6 1.768453+2 3.349628-6 1.557942+2 3.360808-6 1.392195+2 3.371639-6 1.258388+2 3.382131-6 1.148253+2 3.392295-6 1.056177+2 3.402142-6 9.781926+1 3.411681-6 9.114009+1 3.420922-6 8.536316+1 3.438826-6 7.575460+1 3.455611-6 6.825619+1 3.471347-6 6.226481+1 3.486099-6 5.738770+1 3.499930-6 5.335549+1 3.512896-6 4.997603+1 3.537207-6 4.449498+1 3.558480-6 4.043784+1 3.577093-6 3.734485+1 3.593380-6 3.493223+1 3.621882-6 3.125294+1 3.643258-6 2.886617+1 3.675323-6 2.576154+1 3.716513-6 2.242661+1 3.762139-6 1.939479+1 3.835141-6 1.557085+1 3.941356-6 1.148143+1 4.121479-6 6.337773+0 4.163695-6 5.238484+0 4.180933-6 4.797158+0 4.196017-6 4.409256+0 4.209215-6 4.066035+0 4.232312-6 3.451090+0 4.249634-6 2.974847+0 4.262626-6 2.610943+0 4.272370-6 2.337934+0 4.279678-6 2.136175+0 4.285159-6 1.988386+0 4.289269-6 1.880490+0 4.301602-6 1.579499+0 4.312189-6 1.360574+0 4.317483-6 1.269326+0 4.320130-6 1.228944+0 4.322777-6 1.192287+0 4.325424-6 1.159504+0 4.331380-6 1.100541+0 4.334689-6 1.076927+0 4.343953-6 1.046190+0 4.345855-6 1.046265+0 4.348027-6 1.048935+0 4.354541-6 1.072829+0 4.358615-6 1.099137+0 4.362686-6 1.133402+0 4.367610-6 1.184545+0 4.372297-6 1.242158+0 4.378363-6 1.328632+0 4.385886-6 1.454464+0 4.393170-6 1.599943+0 4.396892-6 1.686385+0 4.407811-6 2.014667+0 4.411757-6 2.173570+0 4.417279-6 2.448626+0 4.421056-6 2.681537+0 4.424381-6 2.923507+0 4.429404-6 3.367822+0 4.433579-6 3.822846+0 4.437973-6 4.401161+0 4.443457-6 5.290527+0 4.452332-6 7.201761+0 4.462490-6 1.025125+1 4.465404-6 1.131837+1 4.471165-6 1.369846+1 4.475800-6 1.588065+1 4.478739-6 1.738936+1 4.483648-6 2.012289+1 4.487680-6 2.256064+1 4.495845-6 2.798718+1 4.500731-6 3.150510+1 4.504899-6 3.463162+1 4.509790-6 3.840855+1 4.514278-6 4.193626+1 4.518830-6 4.552871+1 4.523331-6 4.904715+1 4.528155-6 5.272706+1 4.533588-6 5.668401+1 4.538614-6 6.009752+1 4.541977-6 6.221687+1 4.546948-6 6.506554+1 4.550933-6 6.707527+1 4.554346-6 6.858344+1 4.559231-6 7.037818+1 4.562824-6 7.141084+1 4.565066-6 7.192833+1 4.572688-6 7.294725+1 4.575847-6 7.303436+1 4.580361-6 7.282549+1 4.583262-6 7.249014+1 4.588466-6 7.151403+1 4.592495-6 7.044867+1 4.597782-6 6.867885+1 4.602881-6 6.661965+1 4.610045-6 6.324383+1 4.615510-6 6.037506+1 4.618243-6 5.886935+1 4.624391-6 5.536073+1 4.626440-6 5.416595+1 4.637370-6 4.774198+1 4.644202-6 4.380647+1 4.653765-6 3.857632+1 4.669284-6 3.110632+1 4.685110-6 2.500532+1 4.694500-6 2.209577+1 4.703303-6 1.979824+1 4.711555-6 1.797561+1 4.719292-6 1.651708+1 4.733798-6 1.430842+1 4.746492-6 1.280277+1 4.758202-6 1.166592+1 4.777035-6 1.018447+1 4.791612-6 9.235323+0 4.813478-6 8.014149+0 4.835412-6 6.940567+0 4.847314-6 6.396767+0 4.859216-6 5.870565+0 4.871118-6 5.357369+0 4.883019-6 4.855681+0 4.886876-6 4.695903+0 4.898904-6 4.209490+0 4.922961-6 3.337833+0 4.928975-6 3.157175+0 4.934989-6 2.999231+0 4.941393-6 2.861499+0 4.946195-6 2.782558+0 4.949319-6 2.743948+0 4.952173-6 2.718246+0 4.972153-6 2.847097+0 4.973675-6 2.882434+0 4.984331-6 3.245907+0 4.988518-6 3.446812+0 4.997271-6 3.976443+0 5.003069-6 4.408515+0 5.019986-6 6.009336+0 5.025847-6 6.662843+0 5.032724-6 7.475213+0 5.037742-6 8.088959+0 5.043353-6 8.784930+0 5.046746-6 9.205856+0 5.052074-6 9.859177+0 5.057402-6 1.049341+1 5.061017-6 1.090739+1 5.065299-6 1.137528+1 5.070341-6 1.188856+1 5.081758-6 1.286124+1 5.085945-6 1.314086+1 5.093937-6 1.354577+1 5.098361-6 1.369372+1 5.102375-6 1.377985+1 5.105887-6 1.381762+1 5.108960-6 1.382210+1 5.114338-6 1.376708+1 5.118371-6 1.367499+1 5.121397-6 1.357859+1 5.128203-6 1.328142+1 5.130472-6 1.315935+1 5.139606-6 1.256590+1 5.142650-6 1.233622+1 5.151784-6 1.157221+1 5.154829-6 1.129760+1 5.167007-6 1.013898+1 5.171447-6 9.704762+0 5.184767-6 8.418022+0 5.197099-6 7.308781+0 5.212570-6 6.116684+0 5.219359-6 5.681996+0 5.232143-6 5.028646+0 5.235339-6 4.900293+0 5.244927-6 4.599924+0 5.248123-6 4.527689+0 5.252917-6 4.444760+0 5.257711-6 4.391367+0 5.261597-6 4.368814+0 5.264997-6 4.363557+0 5.267973-6 4.369482+0 5.273179-6 4.401894+0 5.277085-6 4.443084+0 5.280013-6 4.482541+0 5.286603-6 4.594641+0 5.296076-6 4.799380+0 5.311139-6 5.176491+0 5.324366-6 5.494560+0 5.336413-6 5.725111+0 5.339573-6 5.772215+0 5.349051-6 5.874850+0 5.352268-6 5.895910+0 5.357899-6 5.915754+0 5.362123-6 5.916694+0 5.368458-6 5.896823+0 5.374793-6 5.853599+0 5.385549-6 5.736019+0 5.398333-6 5.547383+0 5.427920-6 5.080947+0 5.439977-6 4.931610+0 5.452540-6 4.815114+0 5.465103-6 4.736021+0 5.483313-6 4.669629+0 5.528668-6 4.567099+0 5.538482-6 4.536529+0 5.579741-6 4.370075+0 5.623771-6 4.166445+0 5.664422-6 3.965323+0 5.708666-6 3.746405+0 5.731155-6 3.655896+0 5.751646-6 3.595353+0 5.766083-6 3.565386+0 5.818017-6 3.493364+0 5.838458-6 3.449502+0 5.859454-6 3.381957+0 5.876761-6 3.309136+0 5.901009-6 3.187507+0 5.921447-6 3.075300+0 6.005546-6 2.623747+0 6.038083-6 2.461880+0 6.073404-6 2.288147+0 6.108725-6 2.113645+0 6.175600-6 1.781088+0 6.210409-6 1.607778+0 6.242475-6 1.448180+0 6.277494-6 1.274486+0 6.308170-6 1.123971+0 6.332698-6 1.005885+0 6.354184-6 9.051541-1 6.369522-6 8.354491-1 6.388803-6 7.513306-1 6.415536-6 6.434457-1 6.450625-6 5.236299-1 6.461550-6 4.927719-1 6.476888-6 4.554772-1 6.484557-6 4.396570-1 6.492226-6 4.258359-1 6.499895-6 4.141147-1 6.507564-6 4.046235-1 6.515233-6 3.975421-1 6.522902-6 3.931277-1 6.530571-6 3.917481-1 6.538240-6 3.939246-1 6.542046-6 3.965397-1 6.545733-6 4.001797-1 6.549305-6 4.048559-1 6.552765-6 4.105821-1 6.556117-6 4.173725-1 6.562510-6 4.342042-1 6.568457-6 4.552409-1 6.573365-6 4.772812-1 6.578697-6 5.069080-1 6.583701-6 5.410358-1 6.586087-6 5.597651-1 6.590708-6 6.011800-1 6.595041-6 6.469211-1 6.599103-6 6.967522-1 6.602911-6 7.503860-1 6.606481-6 8.074917-1 6.609828-6 8.677049-1 6.616103-6 1.000463+0 6.621594-6 1.141262+0 6.626399-6 1.286555+0 6.630603-6 1.433064+0 6.634282-6 1.577936+0 6.640719-6 1.874137+0 6.645547-6 2.137001+0 6.660032-6 3.187755+0 6.676425-6 5.014911+0 6.686670-6 6.625301+0 6.696916-6 8.699960+0 6.703063-6 1.020864+1 6.709210-6 1.194335+1 6.716382-6 1.428517+1 6.725603-6 1.786016+1 6.732775-6 2.112921+1 6.741996-6 2.602797+1 6.749229-6 3.046419+1 6.757476-6 3.620275+1 6.762424-6 4.000926+1 6.770726-6 4.702673+1 6.779028-6 5.484461+1 6.796670-6 7.405279+1 6.798616-6 7.637496+1 6.813274-6 9.498588+1 6.818625-6 1.021960+2 6.828840-6 1.163867+2 6.836716-6 1.275450+2 6.843601-6 1.373153+2 6.849352-6 1.453966+2 6.856746-6 1.555571+2 6.863976-6 1.651024+2 6.870397-6 1.731327+2 6.878072-6 1.820334+2 6.887213-6 1.914270+2 6.895386-6 1.985182+2 6.900887-6 2.025166+2 6.908468-6 2.069232+2 6.916382-6 2.100877+2 6.923933-6 2.116926+2 6.931873-6 2.118745+2 6.933522-6 2.117198+2 6.945894-6 2.085078+2 6.953119-6 2.050342+2 6.959436-6 2.011086+2 6.966973-6 1.954360+2 6.974418-6 1.888949+2 6.983370-6 1.799884+2 6.992722-6 1.697246+2 7.003182-6 1.574323+2 7.011484-6 1.473171+2 7.024456-6 1.313418+2 7.028088-6 1.269037+2 7.044692-6 1.072627+2 7.050399-6 1.008651+2 7.061296-6 8.930641+1 7.076862-6 7.449382+1 7.116121-6 4.660936+1 7.122067-6 4.349511+1 7.133866-6 3.805898+1 7.145480-6 3.357402+1 7.156913-6 2.988226+1 7.168168-6 2.684194+1 7.179247-6 2.433032+1 7.190152-6 2.224410+1 7.200887-6 2.049826+1 7.222022-6 1.774847+1 7.242497-6 1.571281+1 7.262331-6 1.414302+1 7.281546-6 1.288841+1 7.300160-6 1.185621+1 7.318193-6 1.098744+1 7.353131-6 9.576169+0 7.385885-6 8.490730+0 7.416797-6 7.619579+0 7.445381-6 6.916507+0 7.499358-6 5.791752+0 7.688281-6 2.837863+0 7.735511-6 2.230248+0 7.770934-6 1.813449+0 7.797501-6 1.523210+0 7.817427-6 1.318966+0 7.832371-6 1.174159+0 7.854787-6 9.724161-1 7.865995-6 8.795635-1 7.877203-6 7.929011-1 7.906286-6 6.032352-1 7.915980-6 5.539854-1 7.925674-6 5.135024-1 7.935369-6 4.832595-1 7.945063-6 4.651063-1 7.954758-6 4.613646-1 7.959605-6 4.657798-1 7.966876-6 4.814452-1 7.974146-6 5.094458-1 7.977572-6 5.274537-1 7.982481-6 5.592222-1 7.986163-6 5.880469-1 7.988924-6 6.126986-1 7.993066-6 6.549096-1 7.997208-6 7.038828-1 8.001669-6 7.648585-1 8.005842-6 8.303128-1 8.012304-6 9.494065-1 8.018746-6 1.092078+0 8.027474-6 1.329217+0 8.061048-6 2.883905+0 8.073073-6 3.781263+0 8.085738-6 4.991147+0 8.095628-6 6.161113+0 8.100573-6 6.830658+0 8.111699-6 8.569705+0 8.120353-6 1.017078+1 8.131480-6 1.259295+1 8.135188-6 1.350003+1 8.152719-6 1.854702+1 8.162854-6 2.209901+1 8.172478-6 2.595107+1 8.183676-6 3.106520+1 8.194529-6 3.671114+1 8.204492-6 4.251659+1 8.210470-6 4.629142+1 8.231982-6 6.166924+1 8.239211-6 6.743836+1 8.254302-6 8.033662+1 8.260953-6 8.633516+1 8.267302-6 9.220291+1 8.275447-6 9.988517+1 8.285248-6 1.092653+2 8.290804-6 1.145989+2 8.300256-6 1.236051+2 8.310447-6 1.330778+2 8.317274-6 1.391943+2 8.326746-6 1.472527+2 8.335842-6 1.543967+2 8.345329-6 1.610868+2 8.354775-6 1.668472+2 8.366693-6 1.726586+2 8.374368-6 1.754624+2 8.393569-6 1.790255+2 8.399943-6 1.790910+2 8.414019-6 1.772853+2 8.424423-6 1.742972+2 8.430510-6 1.719398+2 8.440497-6 1.671772+2 8.444575-6 1.649375+2 8.451712-6 1.606464+2 8.461079-6 1.543776+2 8.470111-6 1.477607+2 8.482566-6 1.379402+2 8.494524-6 1.280159+2 8.509921-6 1.149514+2 8.512120-6 1.130857+2 8.532230-6 9.638130+1 8.540378-6 8.991508+1 8.555932-6 7.827286+1 8.574016-6 6.612272+1 8.616017-6 4.430961+1 8.627380-6 3.990477+1 8.638743-6 3.607269+1 8.650202-6 3.274006+1 8.658797-6 3.056013+1 8.671688-6 2.775031+1 8.684580-6 2.542675+1 8.694598-6 2.391163+1 8.704616-6 2.261662+1 8.721553-6 2.084962+1 8.742256-6 1.926257+1 8.792588-6 1.710598+1 8.801161-6 1.689667+1 8.834212-6 1.635710+1 8.846134-6 1.624180+1 8.872959-6 1.608216+1 8.925092-6 1.592254+1 8.955396-6 1.575624+1 8.981519-6 1.549748+1 8.992789-6 1.534682+1 9.009692-6 1.507653+1 9.026596-6 1.475701+1 9.050054-6 1.424696+1 9.074490-6 1.366138+1 9.149295-6 1.186894+1 9.174598-6 1.134682+1 9.199901-6 1.088441+1 9.248549-6 1.014843+1 9.280926-6 9.743835+0 9.329720-6 9.204633+0 9.386354-6 8.599842+0 9.425933-6 8.149047+0 9.452656-6 7.825193+0 9.492172-6 7.324967+0 9.589788-6 6.152468+0 9.622544-6 5.836693+0 9.654074-6 5.579894+0 9.675497-6 5.428807+0 9.733111-6 5.083731+0 9.780248-6 4.820585+0 9.797363-6 4.720711+0 9.840153-6 4.453249+0 9.916322-6 3.965518+0 9.925984-6 3.914279+0 9.954971-6 3.798094+0 9.965138-6 3.774860+0 9.985118-6 3.763293+0 9.989546-6 3.767581+0 1.001395-5 3.841449+0 1.002006-5 3.873982+0 1.003836-5 4.006745+0 1.005181-5 4.137694+0 1.006465-5 4.287844+0 1.008601-5 4.585946+0 1.013599-5 5.426442+0 1.015430-5 5.738827+0 1.016040-5 5.838509+0 1.018481-5 6.199421+0 1.019091-5 6.277573+0 1.020922-5 6.476030+0 1.022157-5 6.576134+0 1.023336-5 6.644303+0 1.024515-5 6.684966+0 1.025447-5 6.697613+0 1.026846-5 6.685037+0 1.028244-5 6.636488+0 1.029464-5 6.567085+0 1.030685-5 6.475134+0 1.033125-5 6.235281+0 1.035566-5 5.941679+0 1.039247-5 5.450896+0 1.044784-5 4.736477+0 1.046612-5 4.530250+0 1.050000-5 4.204819+0 1.052499-5 4.017510+0 1.055070-5 3.873919+0 1.057903-5 3.772648+0 1.059176-5 3.745388+0 1.060450-5 3.728481+0 1.061677-5 3.721088+0 1.064437-5 3.730782+0 1.073187-5 3.850389+0 1.075735-5 3.865006+0 1.077079-5 3.864071+0 1.079094-5 3.850738+0 1.081110-5 3.823671+0 1.083771-5 3.770196+0 1.085930-5 3.716151+0 1.094255-5 3.489309+0 1.097473-5 3.414832+0 1.099943-5 3.365245+0 1.103579-5 3.302070+0 1.116735-5 3.109222+0 1.122068-5 3.027256+0 1.129529-5 2.895709+0 1.135106-5 2.777880+0 1.138832-5 2.689139+0 1.145082-5 2.529181+0 1.152785-5 2.339366+0 1.156881-5 2.253590+0 1.160134-5 2.195392+0 1.164170-5 2.134771+0 1.168184-5 2.084515+0 1.182987-5 1.927928+0 1.195914-5 1.781744+0 1.202264-5 1.708307+0 1.245000-5 1.228661+0 1.280000-5 8.884995-1 1.308066-5 6.664707-1 1.336025-5 4.983792-1 1.364622-5 3.846871-1 1.374698-5 3.590753-1 1.381416-5 3.472244-1 1.388145-5 3.396211-1 1.391492-5 3.374310-1 1.394555-5 3.363606-1 1.398210-5 3.362620-1 1.401779-5 3.374194-1 1.405691-5 3.401326-1 1.412538-5 3.485973-1 1.421722-5 3.676180-1 1.431798-5 3.989589-1 1.447636-5 4.709082-1 1.462177-5 5.630475-1 1.474904-5 6.666936-1 1.508578-5 1.054044+0 1.529312-5 1.382764+0 1.551725-5 1.749449+0 1.560178-5 1.822044+0 1.581516-5 1.745858+0 1.604532-5 1.506010+0 1.623712-5 1.305593+0 1.643725-5 1.106901+0 1.660339-5 9.530935-1 1.668451-5 8.825903-1 1.684422-5 7.540144-1 1.699895-5 6.446474-1 1.714883-5 5.565099-1 1.729404-5 4.916312-1 1.743470-5 4.518502-1 1.756212-5 4.391082-1 1.757097-5 4.391475-1 1.770298-5 4.558106-1 1.778279-5 4.820727-1 1.783087-5 5.044932-1 1.795476-5 5.876082-1 1.807478-5 7.072985-1 1.819104-5 8.659991-1 1.830368-5 1.066406+0 1.841279-5 1.311297+0 1.862090-5 1.945919+0 1.881620-5 2.793598+0 1.892506-5 3.400092+0 1.909518-5 4.587675+0 1.925962-5 6.072779+0 1.941900-5 7.907073+0 1.970310-5 1.249179+1 2.008128-5 2.271222+1 2.029277-5 3.175594+1 2.037485-5 3.621583+1 2.047568-5 4.263135+1 2.062489-5 5.450808+1 2.071849-5 6.381570+1 2.076662-5 6.929309+1 2.084516-5 7.943535+1 2.094770-5 9.541161+1 2.100068-5 1.051529+2 2.109691-5 1.261194+2 2.118421-5 1.497810+2 2.126217-5 1.758857+2 2.132744-5 2.025337+2 2.138593-5 2.312870+2 2.143711-5 2.613170+2 2.148188-5 2.922933+2 2.153200-5 3.334461+2 2.155535-5 3.553997+2 2.161535-5 4.215879+2 2.166034-5 4.821433+2 2.171940-5 5.787554+2 2.181642-5 7.884156+2 2.192381-5 1.109935+3 2.210640-5 1.959602+3 2.213863-5 2.171666+3 2.217086-5 2.412455+3 2.222722-5 2.920790+3 2.225943-5 3.273328+3 2.230774-5 3.906585+3 2.235447-5 4.659374+3 2.244756-5 6.632954+3 2.248964-5 7.736391+3 2.255405-5 9.635951+3 2.256049-5 9.836397+3 2.261042-5 1.142154+4 2.264132-5 1.240393+4 2.266737-5 1.321111+4 2.269393-5 1.399738+4 2.271919-5 1.469528+4 2.274163-5 1.526236+4 2.276844-5 1.586137+4 2.279967-5 1.643216+4 2.282629-5 1.679691+4 2.284009-5 1.693832+4 2.286711-5 1.711645+4 2.289339-5 1.716076+4 2.290782-5 1.713046+4 2.293450-5 1.697335+4 2.295450-5 1.677178+4 2.299270-5 1.619890+4 2.302006-5 1.565079+4 2.304028-5 1.518108+4 2.306627-5 1.450742+4 2.308711-5 1.391918+4 2.310414-5 1.341301+4 2.312649-5 1.272108+4 2.315522-5 1.179954+4 2.318270-5 1.090099+4 2.321019-5 1.000169+4 2.324110-5 9.006565+3 2.326515-5 8.255358+3 2.332011-5 6.649713+3 2.333901-5 6.141298+3 2.335704-5 5.679163+3 2.338882-5 4.922383+3 2.342493-5 4.153387+3 2.346077-5 3.485001+3 2.348709-5 3.052055+3 2.351523-5 2.640483+3 2.354337-5 2.278542+3 2.365921-5 1.227027+3 2.371737-5 9.064751+2 2.373757-5 8.197614+2 2.375652-5 7.484830+2 2.377546-5 6.861272+2 2.379571-5 6.285340+2 2.380298-5 6.100047+2 2.385386-5 5.085210+2 2.386112-5 4.976838+2 2.387384-5 4.806946+2 2.391200-5 4.435144+2 2.392922-5 4.327924+2 2.393904-5 4.281791+2 2.394764-5 4.249820+2 2.396269-5 4.211530+2 2.397397-5 4.196537+2 2.399090-5 4.194093+2 2.400783-5 4.213229+2 2.402883-5 4.262873+2 2.404599-5 4.321371+2 2.407574-5 4.452628+2 2.416150-5 4.933098+2 2.420010-5 5.144382+2 2.421753-5 5.230376+2 2.427197-5 5.442186+2 2.429235-5 5.495174+2 2.431966-5 5.541266+2 2.434033-5 5.556808+2 2.437161-5 5.549023+2 2.439726-5 5.515836+2 2.442240-5 5.461839+2 2.445565-5 5.361834+2 2.447564-5 5.288440+2 2.451732-5 5.111071+2 2.458238-5 4.796099+2 2.471084-5 4.189297+2 2.477877-5 3.929655+2 2.483332-5 3.758473+2 2.488269-5 3.628925+2 2.497513-5 3.434185+2 2.511599-5 3.199324+2 2.549031-5 2.669890+2 2.563777-5 2.502020+2 2.578345-5 2.360082+2 2.587561-5 2.280303+2 2.606179-5 2.137286+2 2.625170-5 2.009612+2 2.678962-5 1.705464+2 2.704304-5 1.585576+2 2.744568-5 1.420357+2 2.774322-5 1.315055+2 2.810892-5 1.201823+2 2.851018-5 1.093238+2 2.886624-5 1.008309+2 3.071452-5 6.798978+1 3.175942-5 5.517908+1 3.221640-5 5.078468+1 3.246039-5 4.877996+1 3.268914-5 4.714232+1 3.290359-5 4.586042+1 3.310150-5 4.494387+1 3.328723-5 4.436945+1 3.346153-5 4.413771+1 3.362511-5 4.424047+1 3.377862-5 4.463490+1 3.415258-5 4.615094+1 3.428703-5 4.641987+1 3.440700-5 4.639852+1 3.465739-5 4.604393+1 3.474740-5 4.614932+1 3.479030-5 4.631465+1 3.483187-5 4.657025+1 3.487213-5 4.692591+1 3.491114-5 4.739052+1 3.494892-5 4.797230+1 3.498553-5 4.867910+1 3.502099-5 4.951864+1 3.505535-5 5.049867+1 3.508863-5 5.162717+1 3.515311-5 5.441382+1 3.521356-5 5.792460+1 3.527024-5 6.224354+1 3.532337-5 6.746169+1 3.537318-5 7.367366+1 3.541988-5 8.097240+1 3.546366-5 8.944311+1 3.550470-5 9.915705+1 3.554318-5 1.101661+2 3.557925-5 1.224985+2 3.561307-5 1.361565+2 3.564477-5 1.511155+2 3.567450-5 1.673251+2 3.570236-5 1.847112+2 3.572849-5 2.031792+2 3.577747-5 2.443327+2 3.582033-5 2.885070+2 3.589064-5 3.811761+2 3.601936-5 6.359838+2 3.607774-5 7.976502+2 3.613615-5 9.938832+2 3.617565-5 1.147890+3 3.620302-5 1.265216+3 3.623038-5 1.391485+3 3.627486-5 1.616108+3 3.631934-5 1.864763+3 3.641386-5 2.469221+3 3.643471-5 2.615210+3 3.649725-5 3.075598+3 3.653148-5 3.338856+3 3.658621-5 3.769734+3 3.661564-5 4.003366+3 3.665999-5 4.352988+3 3.669937-5 4.656215+3 3.673101-5 4.891515+3 3.675000-5 5.027948+3 3.677577-5 5.206254+3 3.680960-5 5.426166+3 3.685003-5 5.664203+3 3.690034-5 5.916052+3 3.694343-5 6.087132+3 3.696576-5 6.158183+3 3.700624-5 6.254646+3 3.704829-5 6.309147+3 3.709252-5 6.315281+3 3.712812-5 6.282285+3 3.714706-5 6.251226+3 3.721379-5 6.070502+3 3.724872-5 5.934696+3 3.727598-5 5.810954+3 3.731494-5 5.609789+3 3.733998-5 5.467007+3 3.736502-5 5.315018+3 3.739271-5 5.137638+3 3.742906-5 4.892559+3 3.747579-5 4.562357+3 3.752027-5 4.238558+3 3.756475-5 3.911646+3 3.761478-5 3.546985+3 3.765370-5 3.269874+3 3.774266-5 2.672882+3 3.775240-5 2.611388+3 3.789846-5 1.800410+3 3.799671-5 1.380130+3 3.807406-5 1.118029+3 3.812400-5 9.782747+2 3.818458-5 8.367220+2 3.822326-5 7.608381+2 3.826057-5 6.972821+2 3.828798-5 6.561167+2 3.832910-5 6.023630+2 3.837022-5 5.572501+2 3.839273-5 5.358517+2 3.843940-5 4.980567+2 3.846696-5 4.794885+2 3.850887-5 4.558800+2 3.854391-5 4.399068+2 3.858937-5 4.235141+2 3.861707-5 4.155770+2 3.863884-5 4.102796+2 3.870215-5 3.987900+2 3.875268-5 3.928935+2 3.882487-5 3.878855+2 3.897164-5 3.837323+2 3.908046-5 3.814692+2 3.916134-5 3.789229+2 3.927715-5 3.735450+2 3.939976-5 3.660533+2 3.967317-5 3.478735+2 3.984745-5 3.381347+2 4.031034-5 3.172367+2 4.054471-5 3.057798+2 4.097198-5 2.852294+2 4.109757-5 2.801424+2 4.126683-5 2.741458+2 4.155137-5 2.659193+2 4.184282-5 2.591418+2 4.217991-5 2.526330+2 4.269645-5 2.446061+2 4.338279-5 2.365749+2 4.393750-5 2.317713+2 4.458185-5 2.278375+2 4.543044-5 2.246267+2 4.654043-5 2.226226+2 4.784175-5 2.231924+2 4.852396-5 2.243419+2 4.958332-5 2.271289+2 5.120000-5 2.336717+2 5.300228-5 2.434962+2 5.506499-5 2.575839+2 5.824549-5 2.829347+2 5.888437-5 2.888053+2 5.922415-5 2.931422+2 5.958076-5 2.995315+2 6.041100-5 3.195616+2 6.063811-5 3.240877+2 6.092854-5 3.282417+2 6.185070-5 3.363178+2 6.220308-5 3.407185+2 6.340389-5 3.580620+2 6.553600-5 3.854559+2 7.350185-5 5.047542+2 7.675371-5 5.568094+2 7.973080-5 6.038205+2 8.258545-5 6.479484+2 8.572794-5 6.939025+2 8.846325-5 7.307088+2 9.150000-5 7.671691+2 9.482079-5 8.006070+2 9.832076-5 8.263499+2 1.011579-4 8.378614+2 1.031673-4 8.410334+2 1.050781-4 8.379150+2 1.073442-4 8.266970+2 1.091969-4 8.098202+2 1.107777-4 7.887362+2 1.121264-4 7.689341+2 1.130737-4 7.658435+2 1.142626-4 7.889532+2 1.152995-4 8.293351+2 1.161647-4 8.746811+2 1.168154-4 9.176064+2 1.174912-4 9.736991+2 1.181070-4 1.039984+3 1.186911-4 1.123855+3 1.191119-4 1.203999+3 1.194857-4 1.295916+3 1.197860-4 1.389637+3 1.199662-4 1.456959+3 1.204091-4 1.669693+3 1.205567-4 1.759353+3 1.208520-4 1.974421+3 1.211240-4 2.222626+3 1.213688-4 2.494285+3 1.216451-4 2.863036+3 1.224170-4 4.267303+3 1.225056-4 4.461346+3 1.228431-4 5.246607+3 1.231432-4 5.981890+3 1.232088-4 6.144005+3 1.234274-4 6.678839+3 1.235828-4 7.047895+3 1.237536-4 7.435343+3 1.239052-4 7.757603+3 1.241001-4 8.133437+3 1.242625-4 8.406723+3 1.244653-4 8.688900+3 1.246377-4 8.870985+3 1.248205-4 9.000704+3 1.249643-4 9.054574+3 1.251598-4 9.057452+3 1.252975-4 9.010411+3 1.255290-4 8.841385+3 1.256749-4 8.679200+3 1.257980-4 8.511270+3 1.259386-4 8.287030+3 1.260482-4 8.090514+3 1.262049-4 7.780629+3 1.263685-4 7.426353+3 1.265563-4 6.990721+3 1.267438-4 6.535644+3 1.269407-4 6.048563+3 1.270064-4 5.886189+3 1.273439-4 5.070549+3 1.276065-4 4.479124+3 1.283235-4 3.162244+3 1.286292-4 2.745497+3 1.288752-4 2.467356+3 1.291997-4 2.168015+3 1.295921-4 1.888559+3 1.300299-4 1.654143+3 1.305225-4 1.454758+3 1.311286-4 1.267537+3 1.316031-4 1.155361+3 1.319670-4 1.093494+3 1.323188-4 1.062207+3 1.325886-4 1.064300+3 1.328255-4 1.090031+3 1.330174-4 1.130292+3 1.331736-4 1.177487+3 1.332630-4 1.210742+3 1.333684-4 1.256131+3 1.335063-4 1.325993+3 1.335977-4 1.379048+3 1.341164-4 1.785677+3 1.346013-4 2.325438+3 1.348549-4 2.662033+3 1.349952-4 2.861369+3 1.352426-4 3.231477+3 1.353993-4 3.474779+3 1.355744-4 3.751389+3 1.356990-4 3.949216+3 1.358936-4 4.256038+3 1.360866-4 4.552609+3 1.361731-4 4.681314+3 1.364033-4 5.005696+3 1.365581-4 5.204899+3 1.366873-4 5.356539+3 1.368649-4 5.540249+3 1.371819-4 5.784917+3 1.373132-4 5.851622+3 1.375519-4 5.917489+3 1.376597-4 5.923468+3 1.378432-4 5.900016+3 1.379894-4 5.852015+3 1.381845-4 5.750183+3 1.383942-4 5.597460+3 1.386093-4 5.401721+3 1.387760-4 5.228342+3 1.390313-4 4.936756+3 1.394188-4 4.464595+3 1.398250-4 3.976158+3 1.403300-4 3.434084+3 1.406402-4 3.152354+3 1.408000-4 3.023682+3 1.410410-4 2.850231+3 1.413415-4 2.666531+3 1.416524-4 2.510313+3 1.421097-4 2.331600+3 1.427209-4 2.162485+3 1.433957-4 2.036388+3 1.440094-4 1.956853+3 1.446469-4 1.897427+3 1.454277-4 1.844785+3 1.458258-4 1.823055+3 1.473313-4 1.754556+3 1.489062-4 1.696394+3 1.512836-4 1.633415+3 1.540000-4 1.588252+3 1.572000-4 1.556128+3 1.627000-4 1.526303+3 1.663660-4 1.507566+3 1.731257-4 1.463550+3 1.772499-4 1.430822+3 1.850915-4 1.363708+3 1.944000-4 1.282109+3 2.072028-4 1.174970+3 2.252620-4 1.040164+3 2.383015-4 9.537272+2 2.446064-4 9.131630+2 2.474067-4 8.939299+2 2.523063-4 8.555175+2 2.553732-4 8.301264+2 2.568562-4 8.219924+2 2.586075-4 8.184586+2 2.633592-4 8.231871+2 2.646579-4 8.228504+2 2.683971-4 8.174442+2 2.750000-4 8.027783+2 2.952802-4 7.532033+2 3.139687-4 7.095767+2 3.255940-4 6.836861+2 3.512662-4 6.280013+2 3.551575-4 6.245406+2 3.617185-4 6.240881+2 3.758374-4 6.143635+2 4.020108-4 5.850660+2 4.213884-4 5.581079+2 4.293970-4 5.470071+2 4.380952-4 5.385324+2 4.520747-4 5.222652+2 4.726479-4 4.924128+2 4.867183-4 4.691082+2 5.033133-4 4.383849+2 5.169629-4 4.097272+2 5.261791-4 3.883842+2 5.382672-4 3.575726+2 5.468261-4 3.343919+2 5.566701-4 3.080777+2 5.665000-4 2.831109+2 5.707207-4 2.716875+2 5.735837-4 2.633031+2 5.797000-4 2.441340+2 5.821032-4 2.363259+2 5.848000-4 2.274114+2 5.898240-4 2.103410+2 5.943179-4 1.947000+2 5.978030-4 1.826022+2 6.074974-4 1.519453+2 6.101218-4 1.452068+2 6.130014-4 1.390047+2 6.161310-4 1.339843+2 6.191476-4 1.311639+2 6.215041-4 1.305460+2 6.239002-4 1.315076+2 6.269326-4 1.352475+2 6.300500-4 1.422995+2 6.321094-4 1.488744+2 6.352482-4 1.620033+2 6.384982-4 1.797241+2 6.418342-4 2.024103+2 6.463733-4 2.406697+2 6.533741-4 3.160326+2 6.582500-4 3.793797+2 6.625614-4 4.417565+2 6.654983-4 4.871191+2 6.672488-4 5.150984+2 6.707492-4 5.728135+2 6.733746-4 6.173553+2 6.760830-4 6.641271+2 6.792388-4 7.193068+2 6.820000-4 7.678710+2 6.839857-4 8.028035+2 6.865550-4 8.478469+2 6.892223-4 8.942486+2 6.918310-4 9.391119+2 6.967500-4 1.021896+3 7.032956-4 1.127640+3 7.100000-4 1.229886+3 7.182730-4 1.346864+3 7.244360-4 1.427148+3 7.344371-4 1.545295+3 7.422060-4 1.627796+3 7.500000-4 1.702809+3 7.542888-4 1.740873+3 7.662580-4 1.837079+3 7.709283-4 1.871143+3 7.814336-4 1.941856+3 7.962251-4 2.030558+3 8.107429-4 2.106008+3 8.239782-4 2.165101+3 8.395046-4 2.225663+3 8.591371-4 2.291426+3 8.785166-4 2.342756+3 8.948067-4 2.374283+3 9.120108-4 2.396766+3 9.277677-4 2.436285+3 9.326598-4 2.474168+3 9.401062-4 2.558601+3 9.456008-4 2.613079+3 9.483798-4 2.627065+3 9.504848-4 2.629588+3 9.529008-4 2.623994+3 9.554464-4 2.609867+3 9.647326-4 2.539434+3 9.669163-4 2.530211+3 9.692500-4 2.526278+3 9.730200-4 2.532859+3 9.800541-4 2.577711+3 9.879270-4 2.652948+3 9.995085-4 2.785397+3 1.008755-3 2.882519+3 1.013214-3 2.910713+3 1.016263-3 2.921464+3 1.031026-3 2.938505+3 1.038333-3 2.964033+3 1.048650-3 3.015655+3 1.065369-3 3.091093+3 1.091060-3 3.179689+3 1.122019-3 3.263118+3 1.151170-3 3.326699+3 1.194119-3 3.402564+3 1.233741-3 3.449986+3 1.263928-3 3.466971+3 1.293317-3 3.467692+3 1.299660-3 3.475270+3 1.309546-3 3.500012+3 1.344460-3 3.645408+3 1.359316-3 3.691078+3 1.382930-3 3.740618+3 1.418330-3 3.790080+3 1.462935-3 3.834322+3 1.504874-3 3.862717+3 1.560001-3 3.889348+3 1.615615-3 3.903925+3 1.676568-3 3.913254+3 1.707750-3 3.929963+3 1.745948-3 3.940156+3 1.799549-3 3.934959+3 1.852342-3 3.922916+3 1.904377-3 3.943228+3 1.959162-3 3.947334+3 2.045969-3 3.936812+3 2.140080-3 3.911969+3 2.256511-3 3.869233+3 2.368162-3 3.821161+3 2.496570-3 3.756147+3 2.626486-3 3.682970+3 2.774351-3 3.595200+3 2.922680-3 3.495712+3 3.081414-3 3.383982+3 3.249905-3 3.257233+3 3.399601-3 3.133821+3 3.537936-3 3.012798+3 3.667005-3 2.889711+3 3.779382-3 2.772934+3 3.868121-3 2.672472+3 3.944715-3 2.576990+3 4.019690-3 2.472194+3 4.079788-3 2.376479+3 4.132296-3 2.280560+3 4.173585-3 2.193212+3 4.209688-3 2.103222+3 4.237570-3 2.021173+3 4.254374-3 1.965714+3 4.307962-3 1.781751+3 4.320535-3 1.748566+3 4.334946-3 1.722253+3 4.348618-3 1.711654+3 4.358881-3 1.713749+3 4.369562-3 1.724981+3 4.380892-3 1.746080+3 4.398734-3 1.794299+3 4.430579-3 1.900585+3 4.447815-3 1.954839+3 4.464613-3 1.999144+3 4.480732-3 2.031899+3 4.499741-3 2.058448+3 4.512573-3 2.070117+3 4.571900-3 2.102103+3 4.585781-3 2.116015+3 4.603802-3 2.143531+3 4.625878-3 2.193402+3 4.650000-3 2.265574+3 4.702569-3 2.445814+3 4.721857-3 2.506038+3 4.741021-3 2.558820+3 4.765994-3 2.616631+3 4.795597-3 2.671186+3 4.836500-3 2.728519+3 4.886287-3 2.779941+3 4.940075-3 2.819016+3 4.983105-3 2.838988+3 5.037517-3 2.850248+3 5.081036-3 2.846758+3 5.143984-3 2.821194+3 5.188281-3 2.804170+3 5.207516-3 2.804935+3 5.224930-3 2.812600+3 5.254888-3 2.842717+3 5.290334-3 2.899733+3 5.339757-3 2.986747+3 5.362980-3 3.021134+3 5.392216-3 3.056017+3 5.428757-3 3.088470+3 5.477463-3 3.119063+3 5.535558-3 3.144459+3 5.600106-3 3.163736+3 5.672602-3 3.177888+3 5.765280-3 3.187335+3 5.924644-3 3.184814+3 6.116941-3 3.159674+3 6.231470-3 3.134716+3 6.376446-3 3.088182+3 6.505488-3 3.033478+3 6.561022-3 3.021655+3 6.703568-3 3.029314+3 6.801139-3 3.018968+3 6.939340-3 2.992441+3 7.118127-3 2.998789+3 7.292738-3 2.984266+3 7.547713-3 2.941848+3 7.864320-3 2.876976+3 8.426069-3 2.750232+3 9.047117-3 2.606760+3 9.606786-3 2.478563+3 1.039599-2 2.306194+3 1.133113-2 2.118209+3 1.217752-2 1.963353+3 1.328405-2 1.780550+3 1.445440-2 1.609247+3 1.513144-2 1.518440+3 1.573677-2 1.441361+3 1.639542-2 1.361379+3 1.697022-2 1.294389+3 1.747205-2 1.237173+3 1.792410-2 1.186367+3 1.831935-2 1.141865+3 1.866231-2 1.102427+3 1.891749-2 1.072180+3 1.916482-2 1.041526+3 1.936126-2 1.015614+3 1.949187-2 9.971434+2 1.964736-2 9.730588+2 1.977041-2 9.514394+2 1.986593-2 9.324191+2 2.000566-2 9.008116+2 2.019719-2 8.570648+2 2.028142-2 8.432350+2 2.034405-2 8.371277+2 2.041841-2 8.352797+2 2.049392-2 8.392577+2 2.058470-2 8.501850+2 2.077919-2 8.819517+2 2.091552-2 9.003518+2 2.099538-2 9.081210+2 2.107867-2 9.140592+2 2.119036-2 9.192974+2 2.133352-2 9.228520+2 2.150000-2 9.241297+2 2.187171-2 9.203526+2 2.214861-2 9.138123+2 2.270743-2 8.950033+2 2.332543-2 8.688562+2 2.398992-2 8.363181+2 2.453672-2 8.057953+2 2.479562-2 7.896594+2 2.502883-2 7.735803+2 2.520723-2 7.596654+2 2.545551-2 7.369268+2 2.575835-2 7.074794+2 2.588366-2 6.985181+2 2.600393-2 6.934570+2 2.612952-2 6.919057+2 2.634147-2 6.946396+2 2.686763-2 7.045973+2 2.730508-2 7.170410+2 2.755532-2 7.211080+2 2.793452-2 7.213506+2 2.836598-2 7.171760+2 2.903419-2 7.066131+2 2.993987-2 6.887179+2 3.138428-2 6.570421+2 3.353244-2 6.091621+2 3.602940-2 5.572558+2 3.907812-2 5.006418+2 4.231723-2 4.475849+2 4.656992-2 3.886047+2 5.134592-2 3.346190+2 5.610206-2 2.902727+2 6.114227-2 2.514777+2 6.956489-2 2.014282+2 8.234268-2 1.496783+2 9.314867-2 1.198847+2 1.015032-1 1.023601+2 1.102356-1 8.751931+1 1.145704-1 8.113988+1 1.187522-1 7.547483+1 1.222561-1 7.102679+1 1.273956-1 6.484616+1 1.294032-1 6.247875+1 1.310196-1 6.055136+1 1.324069-1 5.884754+1 1.335673-1 5.734620+1 1.344932-1 5.605196+1 1.352244-1 5.493081+1 1.364246-1 5.285793+1 1.378372-1 5.042180+1 1.385320-1 4.959606+1 1.389470-1 4.931156+1 1.394525-1 4.919260+1 1.400897-1 4.935457+1 1.422228-1 5.074322+1 1.432672-1 5.110813+1 1.439818-1 5.118886+1 1.448644-1 5.115760+1 1.471188-1 5.072036+1 1.500000-1 4.980480+1 1.540598-1 4.824776+1 1.591454-1 4.616887+1 1.667086-1 4.308887+1 1.796132-1 3.821862+1 1.966451-1 3.278386+1 2.234145-1 2.621309+1 2.670061-1 1.901785+1 3.198895-1 1.364237+1 3.992906-1 9.009756+0 5.208280-1 5.437124+0 7.397117-1 2.766963+0 1.173413+0 1.128259+0 1.776032+0 4.995962-1 2.947480+0 1.830038-1 6.752287+0 3.503755-2 2.039158+1 3.844521-3 6.158159+1 4.215366-4 1.859734+2 4.622046-5 5.616308+2 5.067970-6 1.995262+3 4.015465-7 6.309573+3 4.015465-8 1.995262+4 4.015465-9 6.309573+4 4.01546-10 1.000000+5 1.59859-10 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.607300-6 1.258900-6 4.132400-6 1.584900-6 6.549300-6 1.995300-6 1.038000-5 2.511900-6 1.645100-5 3.162300-6 2.607300-5 3.981100-6 4.132300-5 5.011900-6 6.549200-5 6.309600-6 1.038000-4 7.943300-6 1.645100-4 1.000000-5 2.607200-4 1.258900-5 4.132100-4 1.584900-5 6.545700-4 1.995300-5 1.036800-3 2.511900-5 1.642300-3 3.162300-5 2.601900-3 3.981100-5 4.122500-3 5.011900-5 6.532300-3 6.309600-5 1.035100-2 7.943300-5 1.637600-2 1.000000-4 2.589700-2 1.258900-4 4.095000-2 1.584900-4 6.458700-2 1.995300-4 1.016800-1 2.511900-4 1.593700-1 3.162300-4 2.482400-1 3.981100-4 3.827700-1 5.011900-4 5.782900-1 6.309600-4 8.528500-1 7.943300-4 1.219500+0 1.000000-3 1.687100+0 1.258900-3 2.272900+0 1.584900-3 3.012100+0 1.995300-3 3.956900+0 2.511900-3 5.136800+0 3.162300-3 6.571000+0 3.981100-3 8.280100+0 5.011900-3 1.027700+1 6.309600-3 1.254000+1 7.943300-3 1.509000+1 1.000000-2 1.795600+1 1.258900-2 2.114900+1 1.584900-2 2.448000+1 1.995300-2 2.774800+1 2.511900-2 3.082300+1 3.162300-2 3.371200+1 3.981100-2 3.626400+1 5.011900-2 3.833600+1 6.309600-2 3.976500+1 7.943300-2 4.048000+1 1.000000-1 4.049700+1 1.258900-1 3.988800+1 1.584900-1 3.863100+1 1.995300-1 3.698000+1 2.511900-1 3.493500+1 3.162300-1 3.267100+1 3.981100-1 3.027100+1 5.011900-1 2.782100+1 6.309600-1 2.537700+1 7.943300-1 2.298200+1 1.000000+0 2.067000+1 1.258900+0 1.846400+1 1.584900+0 1.638100+1 1.995300+0 1.443600+1 2.511900+0 1.263800+1 3.162300+0 1.099400+1 3.981100+0 9.506600+0 5.011900+0 8.173500+0 6.309600+0 6.990500+0 7.943300+0 5.949500+0 1.000000+1 5.041100+0 1.258900+1 4.254000+0 1.584900+1 3.576600+0 1.995300+1 2.997100+0 2.511900+1 2.503900+0 3.162300+1 2.086300+0 3.981100+1 1.734000+0 5.011900+1 1.438000+0 6.309600+1 1.190200+0 7.943300+1 9.832500-1 1.000000+2 8.109600-1 1.258900+2 6.678400-1 1.584900+2 5.492200-1 1.995300+2 4.511000-1 2.511900+2 3.700700-1 3.162300+2 3.032600-1 3.981100+2 2.482700-1 5.011900+2 2.030600-1 6.309600+2 1.659300-1 7.943300+2 1.354900-1 1.000000+3 1.105400-1 1.258900+3 9.012200-2 1.584900+3 7.342500-2 1.995300+3 5.978400-2 2.511900+3 4.864700-2 3.162300+3 3.956200-2 3.981100+3 3.215600-2 5.011900+3 2.612200-2 6.309600+3 2.121000-2 7.943300+3 1.721400-2 1.000000+4 1.396400-2 1.258900+4 1.132300-2 1.584900+4 9.177200-3 1.995300+4 7.435300-3 2.511900+4 6.021600-3 3.162300+4 4.875000-3 3.981100+4 3.945200-3 5.011900+4 3.191700-3 6.309600+4 2.581200-3 7.943300+4 2.086800-3 1.000000+5 1.686600-3 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976775-4 5.011872-4 5.005111-4 6.309573-4 6.298961-4 7.943282-4 7.926681-4 1.000000-3 9.974061-4 1.258925-3 1.254877-3 1.584893-3 1.578564-3 1.995262-3 1.985319-3 2.511886-3 2.496267-3 3.162278-3 3.137743-3 3.981072-3 3.942634-3 5.011872-3 4.951859-3 6.309573-3 6.215908-3 7.943282-3 7.797169-3 1.000000-2 9.771717-3 1.258925-2 1.223424-2 1.584893-2 1.529855-2 1.995262-2 1.910458-2 2.511886-2 2.381750-2 3.162278-2 2.963597-2 3.981072-2 3.678791-2 5.011872-2 4.554969-2 6.309573-2 5.624237-2 7.943282-2 6.925711-2 1.000000-1 8.501457-2 1.258925-1 1.039915-1 1.584893-1 1.269150-1 1.995262-1 1.542220-1 2.511886-1 1.869328-1 3.162278-1 2.257610-1 3.981072-1 2.718670-1 5.011872-1 3.263780-1 6.309573-1 3.907455-1 7.943282-1 4.666460-1 1.000000+0 5.559210-1 1.258925+0 6.612938-1 1.584893+0 7.855337-1 1.995262+0 9.326178-1 2.511886+0 1.107209+0 3.162278+0 1.314928+0 3.981072+0 1.562901+0 5.011872+0 1.859758+0 6.309573+0 2.216000+0 7.943282+0 2.644635+0 1.000000+1 3.161224+0 1.258925+1 3.785354+0 1.584893+1 4.540500+0 1.995262+1 5.455767+0 2.511886+1 6.566546+0 3.162278+1 7.916624+0 3.981072+1 9.559095+0 5.011872+1 1.155983+1 6.309573+1 1.399962+1 7.943282+1 1.697729+1 1.000000+2 2.061471+1 1.258925+2 2.506188+1 1.584893+2 3.050322+1 1.995262+2 3.716728+1 2.511886+2 4.533221+1 3.162278+2 5.534481+1 3.981072+2 6.762936+1 5.011872+2 8.271275+1 6.309573+2 1.012423+2 7.943282+2 1.240183+2 1.000000+3 1.520280+2 1.258925+3 1.864929+2 1.584893+3 2.289146+2 1.995262+3 2.811765+2 2.511886+3 3.455614+2 3.162278+3 4.249285+2 3.981072+3 5.228163+2 5.011872+3 6.435840+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88199-10 1.995262-5 1.090633-9 2.511886-5 1.728509-9 3.162278-5 2.739530-9 3.981072-5 4.341904-9 5.011872-5 6.881426-9 6.309573-5 1.090600-8 7.943282-5 1.727676-8 1.000000-4 2.737390-8 1.258925-4 4.337554-8 1.584893-4 6.868955-8 1.995262-4 1.087653-7 2.511886-4 1.721229-7 3.162278-4 2.721457-7 3.981072-4 4.296529-7 5.011872-4 6.761385-7 6.309573-4 1.061268-6 7.943282-4 1.660132-6 1.000000-3 2.593897-6 1.258925-3 4.048778-6 1.584893-3 6.329579-6 1.995262-3 9.943220-6 2.511886-3 1.561979-5 3.162278-3 2.453423-5 3.981072-3 3.843774-5 5.011872-3 6.001342-5 6.309573-3 9.366510-5 7.943282-3 1.461134-4 1.000000-2 2.282829-4 1.258925-2 3.550178-4 1.584893-2 5.503853-4 1.995262-2 8.480416-4 2.511886-2 1.301366-3 3.162278-2 1.986809-3 3.981072-2 3.022806-3 5.011872-2 4.569036-3 6.309573-2 6.853361-3 7.943282-2 1.017571-2 1.000000-1 1.498543-2 1.258925-1 2.190102-2 1.584893-1 3.157435-2 1.995262-1 4.530422-2 2.511886-1 6.425583-2 3.162278-1 9.046679-2 3.981072-1 1.262401-1 5.011872-1 1.748092-1 6.309573-1 2.402119-1 7.943282-1 3.276823-1 1.000000+0 4.440790-1 1.258925+0 5.976317-1 1.584893+0 7.993595-1 1.995262+0 1.062645+0 2.511886+0 1.404678+0 3.162278+0 1.847349+0 3.981072+0 2.418171+0 5.011872+0 3.152114+0 6.309573+0 4.093574+0 7.943282+0 5.298647+0 1.000000+1 6.838776+0 1.258925+1 8.803900+0 1.584893+1 1.130843+1 1.995262+1 1.449686+1 2.511886+1 1.855232+1 3.162278+1 2.370615+1 3.981072+1 3.025162+1 5.011872+1 3.855890+1 6.309573+1 4.909612+1 7.943282+1 6.245553+1 1.000000+2 7.938529+1 1.258925+2 1.008307+2 1.584893+2 1.279861+2 1.995262+2 1.623590+2 2.511886+2 2.058564+2 3.162278+2 2.608830+2 3.981072+2 3.304778+2 5.011872+2 4.184745+2 6.309573+2 5.297150+2 7.943282+2 6.703100+2 1.000000+3 8.479720+2 1.258925+3 1.072433+3 1.584893+3 1.355979+3 1.995262+3 1.714086+3 2.511886+3 2.166325+3 3.162278+3 2.737349+3 3.981072+3 3.458255+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.780000-6 1.080370+7 5.821032-6 1.061335+7 5.900000-6 1.021906+7 6.760830-6 6.719982+6 7.762471-6 4.426706+6 8.912509-6 2.940668+6 9.610000-6 2.362589+6 9.610000-6 5.217024+6 9.630000-6 5.155556+6 9.660509-6 5.099211+6 9.690000-6 5.065775+6 1.000000-5 4.645395+6 1.011579-5 4.505569+6 1.023293-5 4.371145+6 1.050000-5 4.094538+6 1.085000-5 3.780722+6 1.122018-5 3.500331+6 1.154000-5 3.293351+6 1.154000-5 4.911989+6 1.160000-5 4.841463+6 1.161449-5 4.828066+6 1.174898-5 4.711164+6 1.202264-5 4.487961+6 1.244515-5 4.197713+6 1.245000-5 4.194711+6 1.280000-5 3.994360+6 1.288250-5 3.951159+6 1.324700-5 3.779991+6 1.333521-5 3.742312+6 1.364583-5 3.623506+6 1.380384-5 3.569419+6 1.412538-5 3.472755+6 1.428894-5 3.428817+6 1.462177-5 3.351753+6 1.480000-5 3.315311+6 1.500000-5 3.280435+6 1.531087-5 3.233447+6 1.550000-5 3.210465+6 1.584893-5 3.176137+6 1.590000-5 3.171463+6 1.603245-5 3.162384+6 1.650000-5 3.139752+6 1.698244-5 3.135911+6 1.717908-5 3.137758+6 1.750000-5 3.147604+6 1.778279-5 3.160611+6 1.800000-5 3.174725+6 1.850000-5 3.215097+6 1.862087-5 3.227188+6 1.883649-5 3.251767+6 1.927525-5 3.303778+6 2.000000-5 3.413780+6 2.018366-5 3.444572+6 2.070000-5 3.540534+6 2.113489-5 3.628235+6 2.153200-5 3.715632+6 2.187762-5 3.796862+6 2.238721-5 3.919682+6 2.330000-5 4.167692+6 2.371374-5 4.287739+6 2.454709-5 4.546281+6 2.511886-5 4.734974+6 2.544000-5 4.843334+6 2.544000-5 3.778326+7 2.551000-5 3.691605+7 2.580000-5 3.457186+7 2.600160-5 3.315136+7 2.610000-5 3.249056+7 2.655000-5 2.989699+7 2.700000-5 2.778240+7 2.755000-5 2.567246+7 2.800000-5 2.426662+7 2.818383-5 2.373738+7 2.851018-5 2.291341+7 2.884032-5 2.214405+7 2.951209-5 2.083732+7 3.040000-5 1.949047+7 3.126079-5 1.850440+7 3.150000-5 1.826271+7 3.162278-5 1.815208+7 3.273407-5 1.729518+7 3.349654-5 1.687340+7 3.427678-5 1.651425+7 3.507519-5 1.625376+7 3.589219-5 1.606114+7 3.630781-5 1.597689+7 3.801894-5 1.581593+7 3.900000-5 1.578627+7 4.002000-5 1.582688+7 4.002000-5 2.716326+7 4.027170-5 2.669436+7 4.080000-5 2.585741+7 4.130000-5 2.521217+7 4.200000-5 2.448771+7 4.220000-5 2.431855+7 4.265795-5 2.395079+7 4.315191-5 2.361192+7 4.350000-5 2.339282+7 4.365158-5 2.331020+7 4.415704-5 2.305535+7 4.420000-5 2.303434+7 4.518559-5 2.264040+7 4.650000-5 2.225219+7 4.677351-5 2.219334+7 4.731513-5 2.208186+7 4.800000-5 2.196396+7 4.954502-5 2.177776+7 5.011872-5 2.172586+7 5.150000-5 2.166953+7 5.188000-5 2.165722+7 5.248075-5 2.164636+7 5.370318-5 2.163761+7 5.500000-5 2.167089+7 5.559043-5 2.168547+7 5.800000-5 2.178536+7 5.888437-5 2.184560+7 5.900000-5 2.185192+7 6.025596-5 2.191411+7 6.237348-5 2.206483+7 6.285000-5 2.208712+7 6.285000-5 2.255135+7 6.309573-5 2.256189+7 6.350000-5 2.257778+7 6.382635-5 2.259010+7 6.456542-5 2.262176+7 6.531306-5 2.265727+7 6.606934-5 2.266947+7 6.770000-5 2.270824+7 6.839116-5 2.272969+7 7.000000-5 2.272108+7 7.079458-5 2.272303+7 7.161434-5 2.272869+7 7.413102-5 2.265397+7 7.500000-5 2.259816+7 7.673615-5 2.249819+7 7.800000-5 2.237935+7 7.943282-5 2.225315+7 8.035261-5 2.213756+7 8.150000-5 2.199908+7 8.222426-5 2.191456+7 8.511380-5 2.146916+7 8.609938-5 2.128078+7 8.810489-5 2.091181+7 8.912509-5 2.068604+7 9.015711-5 2.046421+7 9.120108-5 2.024590+7 9.150000-5 2.017883+7 9.332543-5 1.973856+7 9.440609-5 1.948729+7 9.549926-5 1.919417+7 9.660509-5 1.890622+7 9.772372-5 1.862293+7 9.800000-5 1.854248+7 1.010000-4 1.770592+7 1.011579-4 1.765783+7 1.035142-4 1.696501+7 1.040000-4 1.682763+7 1.071519-4 1.587776+7 1.083927-4 1.548684+7 1.100000-4 1.500127+7 1.128000-4 1.412929+7 1.135011-4 1.390184+7 1.161449-4 1.308880+7 1.190000-4 1.221326+7 1.202264-4 1.183414+7 1.220000-4 1.131333+7 1.230269-4 1.100379+7 1.250000-4 1.043960+7 1.280000-4 9.598610+6 1.288250-4 9.368184+6 1.303167-4 8.969330+6 1.315000-4 8.668296+6 1.344800-4 7.920746+6 1.344800-4 8.718435+6 1.348963-4 8.669178+6 1.350000-4 8.656008+6 1.360000-4 8.527876+6 1.370000-4 8.415274+6 1.378000-4 8.333360+6 1.380384-4 8.309226+6 1.387000-4 8.240495+6 1.395400-4 8.156255+6 1.400000-4 8.110823+6 1.402000-4 8.092202+6 1.410000-4 8.015734+6 1.415000-4 7.966834+6 1.418000-4 7.936017+6 1.427000-4 7.839170+6 1.435000-4 7.750820+6 1.443000-4 7.659404+6 1.450000-4 7.575211+6 1.452000-4 7.550079+6 1.462177-4 7.412879+6 1.470000-4 7.303059+6 1.480000-4 7.157288+6 1.481700-4 7.131101+6 1.481700-4 7.658825+6 1.484000-4 7.634864+6 1.490000-4 7.571241+6 1.491000-4 7.559049+6 1.500000-4 7.458915+6 1.513561-4 7.314208+6 1.520000-4 7.246618+6 1.525000-4 7.195757+6 1.531087-4 7.130463+6 1.535000-4 7.089689+6 1.540000-4 7.037727+6 1.545000-4 6.984878+6 1.548817-4 6.943996+6 1.555000-4 6.881204+6 1.560000-4 6.827087+6 1.563000-4 6.794783+6 1.566751-4 6.752951+6 1.570000-4 6.716965+6 1.572000-4 6.694374+6 1.580000-4 6.601597+6 1.584893-4 6.544169+6 1.587000-4 6.520067+6 1.590000-4 6.484221+6 1.595000-4 6.423788+6 1.600000-4 6.361053+6 1.603245-4 6.320350+6 1.605000-4 6.298236+6 1.615000-4 6.167431+6 1.621810-4 6.077028+6 1.623000-4 6.061145+6 1.631000-4 5.951692+6 1.640590-4 5.818900+6 1.643000-4 5.785267+6 1.656400-4 5.594169+6 1.659587-4 5.548132+6 1.670000-4 5.399457+6 1.678804-4 5.273522+6 1.685000-4 5.184942+6 1.698244-4 4.995946+6 1.705000-4 4.903217+6 1.717908-4 4.726943+6 1.720000-4 4.698441+6 1.730000-4 4.563793+6 1.757924-4 4.205386+6 1.760000-4 4.179906+6 1.780000-4 3.937601+6 1.798871-4 3.723324+6 1.800000-4 3.710845+6 1.819701-4 3.496351+6 1.835000-4 3.340844+6 1.840772-4 3.283958+6 1.850000-4 3.194715+6 1.850800-4 3.187034+6 1.865000-4 3.053373+6 1.880000-4 2.918732+6 1.900000-4 2.749585+6 1.905461-4 2.705183+6 1.915000-4 2.628952+6 1.940000-4 2.440536+6 1.956200-4 2.326757+6 1.960100-4 2.300180+6 1.980000-4 2.169330+6 1.995262-4 2.074777+6 2.018366-4 1.940957+6 2.020000-4 1.931778+6 2.041738-4 1.814277+6 2.050000-4 1.772171+6 2.060000-4 1.722615+6 2.080000-4 1.628344+6 2.089296-4 1.587308+6 2.090000-4 1.584260+6 2.100000-4 1.541531+6 2.137962-4 1.392276+6 2.162719-4 1.304888+6 2.170000-4 1.280986+6 2.220000-4 1.131984+6 2.238721-4 1.082466+6 2.240000-4 1.079199+6 2.250000-4 1.054517+6 2.264644-4 1.020024+6 2.284300-4 9.766176+5 2.290868-4 9.628082+5 2.300000-4 9.440748+5 2.308000-4 9.283536+5 2.315000-4 9.150122+5 2.317395-4 9.105366+5 2.330000-4 8.875176+5 2.344229-4 8.627483+5 2.350000-4 8.529933+5 2.359100-4 8.383766+5 2.371374-4 8.196226+5 2.380000-4 8.069541+5 2.390000-4 7.927463+5 2.405000-4 7.723182+5 2.407000-4 7.696795+5 2.420000-4 7.530033+5 2.426610-4 7.448116+5 2.430000-4 7.407617+5 2.435000-4 7.349084+5 2.450000-4 7.179422+5 2.450600-4 7.172903+5 2.465000-4 7.021697+5 2.483133-4 6.842295+5 2.485000-4 6.824981+5 2.500000-4 6.689839+5 2.515000-4 6.562008+5 2.530000-4 6.441304+5 2.535000-4 6.402313+5 2.540973-4 6.356987+5 2.545200-4 6.327026+5 2.550000-4 6.293744+5 2.560000-4 6.226606+5 2.573000-4 6.142343+5 2.575000-4 6.129828+5 2.590000-4 6.038799+5 2.595000-4 6.009524+5 2.600160-4 5.980233+5 2.603600-4 5.961743+5 2.603600-4 9.256943+5 2.610000-4 9.209324+5 2.620000-4 9.137011+5 2.630268-4 9.066774+5 2.647000-4 8.956618+5 2.650000-4 8.937470+5 2.660725-4 8.870797+5 2.670000-4 8.816363+5 2.691535-4 8.696993+5 2.710000-4 8.602976+5 2.722701-4 8.541264+5 2.750000-4 8.422309+5 2.754229-4 8.405088+5 2.786121-4 8.287416+5 2.800000-4 8.241998+5 2.818383-4 8.185376+5 2.830000-4 8.151304+5 2.851018-4 8.095770+5 2.900000-4 7.993582+5 2.917427-4 7.963769+5 2.951209-4 7.914706+5 2.985383-4 7.874858+5 3.019952-4 7.844010+5 3.054921-4 7.819136+5 3.080000-4 7.807118+5 3.090295-4 7.802463+5 3.126079-4 7.791797+5 3.130000-4 7.790741+5 3.162278-4 7.785960+5 3.180000-4 7.788905+5 3.198895-4 7.792039+5 3.200000-4 7.792191+5 3.235937-4 7.803045+5 3.240000-4 7.803828+5 3.300000-4 7.826574+5 3.311311-4 7.831097+5 3.320000-4 7.834526+5 3.360000-4 7.855675+5 3.388442-4 7.870763+5 3.390000-4 7.871442+5 3.427678-4 7.891737+5 3.430000-4 7.892884+5 3.467369-4 7.915433+5 3.470000-4 7.916785+5 3.507519-4 7.939428+5 3.527600-4 7.950660+5 3.527600-4 9.435216+5 3.530500-4 9.420575+5 3.536000-4 9.374304+5 3.542000-4 9.334091+5 3.548134-4 9.300868+5 3.550000-4 9.292463+5 3.556000-4 9.266253+5 3.567000-4 9.230237+5 3.579000-4 9.201221+5 3.589219-4 9.182922+5 3.590000-4 9.181483+5 3.600000-4 9.167971+5 3.610000-4 9.155494+5 3.630781-4 9.138721+5 3.637000-4 9.133248+5 3.650000-4 9.125359+5 3.672823-4 9.113688+5 3.680000-4 9.110089+5 3.715352-4 9.096060+5 3.758374-4 9.077563+5 3.780000-4 9.067821+5 3.801894-4 9.059803+5 3.845918-4 9.039933+5 3.890451-4 9.019635+5 3.935501-4 8.997170+5 3.950000-4 8.990416+5 4.027170-4 8.962226+5 4.073803-4 8.948386+5 4.120975-4 8.929739+5 4.168694-4 8.914304+5 4.280000-4 8.866594+5 4.286300-4 8.864514+5 4.286300-4 9.294846+5 4.315191-4 9.282807+5 4.350000-4 9.262408+5 4.365158-4 9.253258+5 4.466836-4 9.195894+5 4.570882-4 9.125512+5 4.623810-4 9.092596+5 4.677351-4 9.052791+5 4.786301-4 8.971884+5 4.850000-4 8.918898+5 4.954502-4 8.836964+5 5.000000-4 8.798057+5 5.069907-4 8.737442+5 5.080000-4 8.728854+5 5.128614-4 8.688647+5 5.188000-4 8.640655+5 5.300000-4 8.542080+5 5.308844-4 8.534594+5 5.370318-4 8.480268+5 5.432503-4 8.420163+5 5.500000-4 8.356389+5 5.559043-4 8.302485+5 5.561300-4 8.300359+5 5.561300-4 9.330423+5 5.562000-4 9.314180+5 5.565000-4 9.265302+5 5.568000-4 9.223483+5 5.572000-4 9.176345+5 5.575000-4 9.145980+5 5.579000-4 9.111116+5 5.584500-4 9.070727+5 5.590000-4 9.037548+5 5.597000-4 9.002446+5 5.603000-4 8.977327+5 5.609000-4 8.955806+5 5.617000-4 8.931370+5 5.623413-4 8.915074+5 5.628000-4 8.903285+5 5.638000-4 8.881637+5 5.650000-4 8.859428+5 5.665000-4 8.835351+5 5.687000-4 8.805550+5 5.688529-4 8.803777+5 5.710000-4 8.778634+5 5.727800-4 8.760459+5 5.732000-4 8.756223+5 5.739300-4 8.749885+5 5.739300-4 9.410347+5 5.739600-4 9.399575+5 5.744000-4 9.367666+5 5.748500-4 9.340584+5 5.753000-4 9.317317+5 5.754399-4 9.311022+5 5.755000-4 9.308333+5 5.757000-4 9.299765+5 5.762000-4 9.281108+5 5.770000-4 9.256388+5 5.777000-4 9.238592+5 5.785000-4 9.223226+5 5.797000-4 9.204745+5 5.800000-4 9.201095+5 5.810000-4 9.191440+5 5.821032-4 9.183589+5 5.822000-4 9.182874+5 5.825000-4 9.181411+5 5.840000-4 9.177258+5 5.848000-4 9.177217+5 5.858000-4 9.178661+5 5.870000-4 9.183663+5 5.872000-4 9.184734+5 5.888437-4 9.198349+5 5.890000-4 9.199644+5 5.900000-4 9.211258+5 5.908000-4 9.221754+5 5.923000-4 9.247012+5 5.925000-4 9.251084+5 5.940000-4 9.284636+5 5.950800-4 9.313731+5 5.958000-4 9.334939+5 5.970000-4 9.376251+5 5.980000-4 9.414124+5 5.993000-4 9.470913+5 6.000000-4 9.504153+5 6.007000-4 9.541105+5 6.025596-4 9.648994+5 6.040000-4 9.746777+5 6.050000-4 9.820912+5 6.057000-4 9.877355+5 6.073000-4 1.001773+6 6.090000-4 1.018404+6 6.095369-4 1.024160+6 6.107000-4 1.037170+6 6.123000-4 1.056781+6 6.140000-4 1.079879+6 6.157000-4 1.105519+6 6.165950-4 1.120190+6 6.180000-4 1.143920+6 6.200000-4 1.181307+6 6.230000-4 1.243847+6 6.237348-4 1.260220+6 6.260000-4 1.314507+6 6.263700-4 1.324005+6 6.290000-4 1.393889+6 6.309573-4 1.449595+6 6.320000-4 1.481331+6 6.335000-4 1.527730+6 6.350000-4 1.576877+6 6.370000-4 1.644457+6 6.382635-4 1.689608+6 6.400000-4 1.752727+6 6.410000-4 1.790553+6 6.430000-4 1.867316+6 6.441400-4 1.912939+6 6.456542-4 1.973731+6 6.460000-4 1.988048+6 6.470000-4 2.029673+6 6.490000-4 2.113388+6 6.500000-4 2.156554+6 6.515000-4 2.220720+6 6.531306-4 2.292588+6 6.540000-4 2.330295+6 6.565000-4 2.441867+6 6.590000-4 2.552229+6 6.600000-4 2.597429+6 6.606934-4 2.627652+6 6.615000-4 2.663460+6 6.630000-4 2.730311+6 6.640000-4 2.773781+6 6.660000-4 2.861152+6 6.670000-4 2.904064+6 6.683439-4 2.961177+6 6.685000-4 2.967907+6 6.700000-4 3.030152+6 6.720000-4 3.112801+6 6.730000-4 3.152409+6 6.760830-4 3.273630+6 6.790000-4 3.380421+6 6.800000-4 3.416419+6 6.820000-4 3.484813+6 6.839116-4 3.548505+6 6.850000-4 3.582590+6 6.881100-4 3.676801+6 6.890000-4 3.702651+6 6.918310-4 3.779636+6 6.930000-4 3.809866+6 6.950000-4 3.857971+6 6.985000-4 3.937942+6 7.020000-4 4.006620+6 7.040000-4 4.043353+6 7.060000-4 4.076535+6 7.079458-4 4.106191+6 7.100000-4 4.137711+6 7.150000-4 4.198699+6 7.161434-4 4.211017+6 7.205000-4 4.250299+6 7.244360-4 4.280547+6 7.260000-4 4.289937+6 7.328245-4 4.321786+6 7.413102-4 4.338487+6 7.498942-4 4.335686+6 7.500000-4 4.335651+6 7.585776-4 4.317016+6 7.650000-4 4.298112+6 7.673615-4 4.289201+6 7.690000-4 4.282992+6 7.852356-4 4.212012+6 7.943282-4 4.161979+6 8.000000-4 4.131281+6 8.035261-4 4.112366+6 8.128305-4 4.054225+6 8.222426-4 3.996738+6 8.317638-4 3.936560+6 8.413951-4 3.873392+6 8.511380-4 3.811135+6 8.609938-4 3.746978+6 8.700000-4 3.689704+6 8.709636-4 3.683359+6 8.810489-4 3.618025+6 8.912509-4 3.553780+6 9.015711-4 3.488376+6 9.120108-4 3.424186+6 9.225714-4 3.358535+6 9.332543-4 3.294040+6 9.440609-4 3.228979+6 9.500000-4 3.194038+6 9.600700-4 3.136081+6 9.600700-4 3.195225+6 9.605000-4 3.198096+6 9.618000-4 3.205069+6 9.624000-4 3.209068+6 9.631000-4 3.214256+6 9.638000-4 3.219979+6 9.646000-4 3.227041+6 9.654000-4 3.234584+6 9.661000-4 3.241485+6 9.669000-4 3.249584+6 9.677000-4 3.257756+6 9.685000-4 3.265848+6 9.692000-4 3.272758+6 9.700000-4 3.280333+6 9.708000-4 3.287302+6 9.715000-4 3.292950+6 9.723000-4 3.298829+6 9.733000-4 3.305229+6 9.740000-4 3.309061+6 9.750000-4 3.313584+6 9.760000-4 3.317016+6 9.772372-4 3.319832+6 9.785000-4 3.321232+6 9.792700-4 3.321203+6 9.800000-4 3.321233+6 9.815000-4 3.319722+6 9.835000-4 3.315924+6 9.850000-4 3.312073+6 9.880000-4 3.302662+6 9.885531-4 3.300636+6 9.915000-4 3.289548+6 9.950000-4 3.275372+6 1.000000-3 3.254052+6 1.006000-3 3.226940+6 1.011579-3 3.200264+6 1.012000-3 3.198268+6 1.019000-3 3.163194+6 1.023293-3 3.140922+6 1.024000-3 3.137275+6 1.024000-3 3.275959+6 1.031000-3 3.244494+6 1.035142-3 3.225611+6 1.040700-3 3.200702+6 1.047129-3 3.171088+6 1.050000-3 3.158033+6 1.059254-3 3.115683+6 1.071519-3 3.061469+6 1.080000-3 3.023629+6 1.083927-3 3.006092+6 1.096478-3 2.951199+6 1.110000-3 2.892744+6 1.122018-3 2.842107+6 1.153000-3 2.716572+6 1.161449-3 2.683632+6 1.163700-3 2.674973+6 1.170000-3 2.650734+6 1.174898-3 2.631735+6 1.190000-3 2.574595+6 1.202264-3 2.528210+6 1.230269-3 2.427484+6 1.244515-3 2.376861+6 1.258925-3 2.327393+6 1.273503-3 2.276715+6 1.303167-3 2.178794+6 1.315900-3 2.138529+6 1.315900-3 2.272508+6 1.330000-3 2.227785+6 1.333521-3 2.216780+6 1.350000-3 2.165407+6 1.364583-3 2.120844+6 1.380384-3 2.074197+6 1.400000-3 2.018174+6 1.412538-3 1.983439+6 1.428894-3 1.939535+6 1.430000-3 1.936585+6 1.445440-3 1.896065+6 1.450000-3 1.884351+6 1.470000-3 1.833849+6 1.479108-3 1.811493+6 1.513561-3 1.730074+6 1.531087-3 1.690855+6 1.548817-3 1.652605+6 1.566751-3 1.615075+6 1.570000-3 1.608418+6 1.584893-3 1.578013+6 1.621810-3 1.505153+6 1.650000-3 1.453038+6 1.659587-3 1.435878+6 1.673600-3 1.411242+6 1.673600-3 1.427337+6 1.690000-3 1.399312+6 1.698244-3 1.385269+6 1.757924-3 1.288886+6 1.778279-3 1.258243+6 1.800000-3 1.226802+6 1.819701-3 1.199174+6 1.840772-3 1.170705+6 1.850000-3 1.158567+6 1.856300-3 1.150375+6 1.856300-3 1.169827+6 1.860000-3 1.165017+6 1.862087-3 1.162319+6 1.883649-3 1.134565+6 1.905461-3 1.107416+6 1.927525-3 1.080755+6 2.000000-3 9.998131+5 2.018366-3 9.807090+5 2.041738-3 9.569974+5 2.065380-3 9.336356+5 2.104000-3 8.973483+5 2.113489-3 8.887448+5 2.150000-3 8.565647+5 2.162719-3 8.457826+5 2.187762-3 8.250824+5 2.220000-3 7.995499+5 2.238721-3 7.851033+5 2.264644-3 7.657456+5 2.290868-3 7.467071+5 2.300000-3 7.402510+5 2.317395-3 7.281778+5 2.344229-3 7.100430+5 2.371374-3 6.924051+5 2.398833-3 6.752259+5 2.400000-3 6.745103+5 2.426610-3 6.584476+5 2.454709-3 6.420012+5 2.483133-3 6.256902+5 2.570396-3 5.793753+5 2.630268-3 5.505689+5 2.660725-3 5.367555+5 2.691535-3 5.232344+5 2.722701-3 5.099506+5 2.754229-3 4.969043+5 2.786121-3 4.841987+5 2.851018-3 4.598280+5 2.884032-3 4.481503+5 2.897850-3 4.433965+5 2.917427-3 4.367938+5 2.951209-3 4.255900+5 2.985383-3 4.146397+5 3.019952-3 4.039449+5 3.054921-3 3.935268+5 3.070000-3 3.891553+5 3.126079-3 3.734730+5 3.150000-3 3.670746+5 3.162278-3 3.638380+5 3.198895-3 3.544375+5 3.220000-3 3.491817+5 3.235937-3 3.452862+5 3.273407-3 3.363264+5 3.311311-3 3.275308+5 3.349654-3 3.189859+5 3.388442-3 3.106758+5 3.400000-3 3.082569+5 3.467369-3 2.946957+5 3.507519-3 2.870060+5 3.548134-3 2.794741+5 3.589219-3 2.721491+5 3.630781-3 2.650245+5 3.650000-3 2.618114+5 3.672823-3 2.580570+5 3.715352-3 2.512762+5 3.758374-3 2.446780+5 3.801894-3 2.382176+5 3.845918-3 2.319391+5 3.900000-3 2.245159+5 3.935501-3 2.198286+5 4.027170-3 2.083443+5 4.073803-3 2.028227+5 4.120975-3 1.974417+5 4.168694-3 1.921852+5 4.216965-3 1.870717+5 4.315191-3 1.771948+5 4.365158-3 1.724600+5 4.369600-3 1.720471+5 4.369600-3 3.937420+5 4.466836-3 3.722334+5 4.500000-3 3.652793+5 4.518559-3 3.614643+5 4.535000-3 3.581267+5 4.570882-3 3.514189+5 4.623810-3 3.418232+5 4.625500-3 3.415229+5 4.625500-3 4.726129+5 4.650000-3 4.675521+5 4.677351-3 4.619910+5 4.731513-3 4.512879+5 4.800000-3 4.371699+5 4.841724-3 4.288969+5 4.897788-3 4.178343+5 4.902800-3 4.168547+5 4.954502-3 4.064035+5 5.000000-3 3.968925+5 5.011872-3 3.944594+5 5.069907-3 3.828260+5 5.128614-3 3.715406+5 5.150000-3 3.675361+5 5.188000-3 3.605649+5 5.247200-3 3.500686+5 5.247200-3 4.101810+5 5.248075-3 4.099992+5 5.280000-3 4.033692+5 5.380000-3 3.844673+5 5.432503-3 3.752767+5 5.500000-3 3.639202+5 5.559043-3 3.543040+5 5.623413-3 3.442114+5 5.688529-3 3.344107+5 5.754399-3 3.248655+5 5.821032-3 3.155227+5 5.888437-3 3.064016+5 5.900000-3 3.048748+5 6.025596-3 2.888755+5 6.095369-3 2.805026+5 6.165950-3 2.723727+5 6.237348-3 2.644881+5 6.309573-3 2.568190+5 6.382635-3 2.493741+5 6.456542-3 2.421463+5 6.531306-3 2.351361+5 6.564600-3 2.320916+5 6.564600-3 2.464909+5 6.594000-3 2.435469+5 6.606934-3 2.423293+5 6.642000-3 2.390709+5 6.683439-3 2.354401+5 6.760830-3 2.287951+5 6.800000-3 2.255321+5 6.850000-3 2.214642+5 6.918310-3 2.160606+5 6.953100-3 2.133750+5 6.953100-3 2.221834+5 7.000000-3 2.185600+5 7.019000-3 2.171165+5 7.079458-3 2.126161+5 7.161434-3 2.067286+5 7.244360-3 2.010070+5 7.328245-3 1.953938+5 7.350000-3 1.939743+5 7.500000-3 1.845621+5 7.585776-3 1.794863+5 7.673615-3 1.744750+5 7.762471-3 1.696044+5 7.800000-3 1.676070+5 8.000000-3 1.574860+5 8.035261-3 1.557860+5 8.128305-3 1.514170+5 8.222426-3 1.471790+5 8.317638-3 1.430534+5 8.413951-3 1.390429+5 8.511380-3 1.351179+5 8.609938-3 1.313092+5 8.709636-3 1.276142+5 8.810489-3 1.240273+5 8.912509-3 1.205196+5 9.015711-3 1.171081+5 9.120108-3 1.137785+5 9.225714-3 1.105419+5 9.332543-3 1.074002+5 9.440609-3 1.043346+5 9.500000-3 1.027021+5 9.549926-3 1.013585+5 9.660509-3 9.846297+4 9.772372-3 9.565365+4 9.800000-3 9.497787+4 9.885531-3 9.292634+4 1.000000-2 9.028101+4 1.011579-2 8.771493+4 1.023293-2 8.521927+4 1.047129-2 8.044719+4 1.059254-2 7.816912+4 1.071519-2 7.595956+4 1.083927-2 7.381300+4 1.096478-2 7.172740+4 1.109175-2 6.968543+4 1.122018-2 6.769184+4 1.135011-2 6.575242+4 1.148154-2 6.387188+4 1.150000-2 6.361400+4 1.161449-2 6.203266+4 1.188502-2 5.850444+4 1.190000-2 5.831763+4 1.202264-2 5.681476+4 1.216186-2 5.517573+4 1.230269-2 5.358663+4 1.244515-2 5.204107+4 1.258925-2 5.053930+4 1.273503-2 4.908244+4 1.288250-2 4.766997+4 1.303167-2 4.630057+4 1.318257-2 4.497101+4 1.333521-2 4.368172+4 1.348963-2 4.243139+4 1.350000-2 4.234929+4 1.364583-2 4.121594+4 1.380384-2 4.003167+4 1.396368-2 3.888237+4 1.400000-2 3.862793+4 1.412538-2 3.775651+4 1.428894-2 3.666064+4 1.445440-2 3.559838+4 1.462177-2 3.456853+4 1.479108-2 3.356610+4 1.496236-2 3.259066+4 1.500000-2 3.238113+4 1.513561-2 3.164206+4 1.531087-2 3.072214+4 1.548817-2 2.983046+4 1.566751-2 2.896271+4 1.584893-2 2.812073+4 1.610000-2 2.701176+4 1.621810-2 2.651190+4 1.640590-2 2.574312+4 1.659587-2 2.499690+4 1.678804-2 2.427070+4 1.698244-2 2.356617+4 1.717908-2 2.288320+4 1.737801-2 2.221820+4 1.757924-2 2.157333+4 1.778279-2 2.094407+4 1.798871-2 2.033165+4 1.800000-2 2.029882+4 1.840772-2 1.916171+4 1.862087-2 1.860326+4 1.883649-2 1.805902+4 1.905461-2 1.753146+4 1.949845-2 1.651821+4 1.995262-2 1.556651+4 2.000000-2 1.547181+4 2.018366-2 1.511238+4 2.040900-2 1.468536+4 2.040900-2 3.404642+4 2.041738-2 3.400992+4 2.065380-2 3.300191+4 2.089296-2 3.202432+4 2.113489-2 3.107626+4 2.137962-2 3.015544+4 2.140000-2 3.008049+4 2.150000-2 2.970792+4 2.162719-2 2.924285+4 2.187762-2 2.835429+4 2.213095-2 2.749330+4 2.238721-2 2.665836+4 2.290868-2 2.506173+4 2.300000-2 2.479590+4 2.317395-2 2.429997+4 2.371374-2 2.284630+4 2.400000-2 2.211135+4 2.426610-2 2.145694+4 2.454709-2 2.079454+4 2.483133-2 2.015254+4 2.511886-2 1.952947+4 2.540973-2 1.892600+4 2.600160-2 1.777527+4 2.600700-2 1.776524+4 2.600700-2 2.547366+4 2.630268-2 2.478038+4 2.682400-2 2.355682+4 2.682400-2 2.715437+4 2.713000-2 2.638726+4 2.722701-2 2.615731+4 2.730000-2 2.598364+4 2.754229-2 2.541806+4 2.786121-2 2.469991+4 2.818383-2 2.400261+4 2.851018-2 2.332542+4 2.860000-2 2.314496+4 2.884032-2 2.266707+4 2.917427-2 2.202610+4 2.951209-2 2.140346+4 2.985383-2 2.079863+4 3.019952-2 2.020426+4 3.054921-2 1.962650+4 3.070000-2 1.938467+4 3.126079-2 1.851427+4 3.150000-2 1.815987+4 3.162278-2 1.798153+4 3.198895-2 1.746402+4 3.235937-2 1.696024+4 3.273407-2 1.647136+4 3.311311-2 1.599684+4 3.349654-2 1.553446+4 3.388442-2 1.508571+4 3.427678-2 1.465132+4 3.467369-2 1.422919+4 3.507519-2 1.381959+4 3.548134-2 1.342175+4 3.589219-2 1.303538+4 3.630781-2 1.266038+4 3.672823-2 1.229402+4 3.715352-2 1.193845+4 3.758374-2 1.159346+4 3.801894-2 1.125874+4 3.845918-2 1.093173+4 3.890451-2 1.061430+4 3.900000-2 1.054786+4 3.935501-2 1.030457+4 3.981072-2 1.000375+4 4.000000-2 9.882456+3 4.027170-2 9.710855+3 4.168694-2 8.880664+3 4.216965-2 8.620467+3 4.265795-2 8.366457+3 4.300000-2 8.194720+3 4.315191-2 8.120025+3 4.365158-2 7.880987+3 4.415704-2 7.649146+3 4.466836-2 7.424234+3 4.623810-2 6.788706+3 4.677351-2 6.589447+3 4.800000-2 6.162601+3 4.897788-2 5.848000+3 4.900000-2 5.841148+3 4.954502-2 5.674730+3 5.011872-2 5.506633+3 5.128614-2 5.185312+3 5.188000-2 5.031755+3 5.248075-2 4.882807+3 5.432503-2 4.459653+3 5.559043-2 4.198306+3 5.623413-2 4.073562+3 5.688529-2 3.952609+3 5.754399-2 3.835315+3 5.821032-2 3.721574+3 5.888437-2 3.611256+3 5.956621-2 3.504269+3 6.025596-2 3.400335+3 6.095369-2 3.298865+3 6.165950-2 3.199962+3 6.237348-2 3.104091+3 6.309573-2 3.011152+3 6.382635-2 2.921050+3 6.760830-2 2.509859+3 6.839116-2 2.434541+3 6.918310-2 2.361523+3 7.000000-2 2.289359+3 7.161434-2 2.155331+3 7.328245-2 2.028060+3 7.413102-2 1.967312+3 7.498942-2 1.908258+3 7.585776-2 1.851007+3 7.673615-2 1.795460+3 8.035261-2 1.589068+3 8.128305-2 1.541366+3 8.222426-2 1.495125+3 8.317638-2 1.450004+3 8.413951-2 1.406228+3 8.709636-2 1.282723+3 8.810489-2 1.244049+3 8.912509-2 1.206553+3 9.015711-2 1.170207+3 9.120108-2 1.134976+3 9.225714-2 1.100821+3 9.549926-2 1.004434+3 9.660509-2 9.742511+2 9.772372-2 9.449323+2 1.000000-1 8.888924+2 1.023293-1 8.358884+2 1.035142-1 8.105983+2 1.047129-1 7.860705+2 1.059254-1 7.622963+2 1.071519-1 7.392429+2 1.083927-1 7.168965+2 1.122019-1 6.538909+2 1.150000-1 6.124220+2 1.161449-1 5.964988+2 1.188502-1 5.610954+2 1.216186-1 5.278257+2 1.230269-1 5.118742+2 1.258925-1 4.813994+2 1.273503-1 4.668609+2 1.288250-1 4.527678+2 1.298900-1 4.429555+2 1.303167-1 4.391071+2 1.318257-1 4.258643+2 1.348963-1 4.005818+2 1.364583-1 3.885177+2 1.380384-1 3.768198+2 1.391100-1 3.691636+2 1.391100-1 1.447743+3 1.396368-1 1.434518+3 1.408500-1 1.404706+3 1.413000-1 1.392271+3 1.423000-1 1.370290+3 1.435000-1 1.338959+3 1.445440-1 1.316389+3 1.462177-1 1.281331+3 1.479108-1 1.243576+3 1.496236-1 1.206935+3 1.500000-1 1.199077+3 1.513561-1 1.172888+3 1.584893-1 1.047622+3 1.603245-1 1.017551+3 1.621810-1 9.883427+2 1.659587-1 9.324286+2 1.678804-1 9.056745+2 1.737801-1 8.299841+2 1.757924-1 8.061924+2 1.778279-1 7.830866+2 1.798871-1 7.607991+2 1.819701-1 7.391489+2 1.840772-1 7.181176+2 1.862087-1 6.976871+2 1.883649-1 6.778532+2 1.927525-1 6.398677+2 1.949845-1 6.216840+2 2.018366-1 5.701874+2 2.041738-1 5.539926+2 2.113489-1 5.081284+2 2.162719-1 4.797045+2 2.187762-1 4.660969+2 2.213095-1 4.528770+2 2.238721-1 4.400335+2 2.290868-1 4.154317+2 2.317395-1 4.036552+2 2.344229-1 3.922140+2 2.371374-1 3.811077+2 2.426610-1 3.598442+2 2.454709-1 3.496628+2 2.483133-1 3.397717+2 2.511886-1 3.301611+2 2.570396-1 3.117503+2 2.630268-1 2.943691+2 2.691535-1 2.779637+2 2.722701-1 2.702442+2 2.754229-1 2.627479+2 2.818383-1 2.483943+2 2.851018-1 2.415167+2 2.869080-1 2.378254+2 2.884032-1 2.348298+2 2.900000-1 2.316896+2 2.951209-1 2.220160+2 2.985383-1 2.158752+2 3.000000-1 2.133220+2 3.090295-1 1.984572+2 3.126079-1 1.929702+2 3.198895-1 1.824482+2 3.235937-1 1.774662+2 3.273407-1 1.726224+2 3.311311-1 1.679160+2 3.349654-1 1.633385+2 3.388442-1 1.588906+2 3.402400-1 1.573322+2 3.427678-1 1.545647+2 3.467369-1 1.503638+2 3.507519-1 1.462776+2 3.548134-1 1.423027+2 3.589219-1 1.384363+2 3.630781-1 1.346750+2 3.672823-1 1.310163+2 3.715352-1 1.274572+2 3.801894-1 1.207287+2 3.845918-1 1.175049+2 3.890451-1 1.143679+2 3.935501-1 1.113158+2 3.981072-1 1.083465+2 4.000000-1 1.071464+2 4.027170-1 1.054568+2 4.120975-1 9.990786+1 4.216965-1 9.466053+1 4.265795-1 9.214138+1 4.315191-1 8.973030+1 4.318900-1 8.955293+1 4.365158-1 8.738253+1 4.415705-1 8.509931+1 4.466836-1 8.287596+1 4.518559-1 8.071141+1 4.570882-1 7.860372+1 4.623810-1 7.655123+1 4.677351-1 7.455245+1 4.731513-1 7.260678+1 4.786301-1 7.071206+1 4.841724-1 6.886835+1 4.897788-1 6.707283+1 4.954502-1 6.535779+1 5.069907-1 6.206250+1 5.128614-1 6.047787+1 5.248075-1 5.743039+1 5.308844-1 5.596485+1 5.370318-1 5.453678+1 5.495409-1 5.179232+1 5.559043-1 5.047261+1 5.623413-1 4.918659+1 5.688529-1 4.795839+1 5.732700-1 4.715054+1 5.754399-1 4.676187+1 5.821032-1 4.559714+1 5.888437-1 4.446195+1 5.956621-1 4.335510+1 6.025596-1 4.227647+1 6.095369-1 4.122473+1 6.165950-1 4.019938+1 6.237348-1 3.919958+1 6.309573-1 3.822516+1 6.382635-1 3.727642+1 6.456542-1 3.636899+1 6.531306-1 3.548368+1 6.606935-1 3.462026+1 6.683439-1 3.377841+1 6.760830-1 3.295887+1 6.839117-1 3.215938+1 6.918310-1 3.137932+1 6.998420-1 3.061823+1 7.079458-1 2.987660+1 7.161434-1 2.915297+1 7.244360-1 2.844688+1 7.328245-1 2.775827+1 7.413102-1 2.709943+1 7.498942-1 2.645629+1 7.585776-1 2.582860+1 7.673615-1 2.521585+1 7.762471-1 2.461767+1 7.852356-1 2.403500+1 7.943282-1 2.346687+1 8.035261-1 2.291261+1 8.128305-1 2.237144+1 8.222427-1 2.184307+1 8.317638-1 2.132719+1 8.511380-1 2.033189+1 8.609938-1 1.986178+1 8.709636-1 1.940297+1 8.810489-1 1.895490+1 8.912509-1 1.851726+1 9.015711-1 1.809018+1 9.120108-1 1.767408+1 9.225714-1 1.726761+1 9.332543-1 1.687085+1 9.440609-1 1.648349+1 9.549926-1 1.610503+1 9.660509-1 1.573531+1 9.772372-1 1.538193+1 9.885531-1 1.503750+1 1.000000+0 1.470093+1 1.011579+0 1.437194+1 1.023293+0 1.405049+1 1.035142+0 1.373625+1 1.047129+0 1.342959+1 1.059254+0 1.313003+1 1.071519+0 1.283769+1 1.083927+0 1.255185+1 1.109175+0 1.199916+1 1.122018+0 1.173203+1 1.135011+0 1.147084+1 1.148154+0 1.121566+1 1.161449+0 1.096630+1 1.174898+0 1.072285+1 1.188502+0 1.048484+1 1.202264+0 1.025223+1 1.216186+0 1.002967+1 1.230269+0 9.812002+0 1.244515+0 9.599680+0 1.250000+0 9.519858+0 1.258925+0 9.392150+0 1.273503+0 9.189132+0 1.288250+0 8.990576+0 1.303167+0 8.796605+0 1.318257+0 8.606822+0 1.333521+0 8.421144+0 1.364583+0 8.061935+0 1.380384+0 7.892127+0 1.396368+0 7.726019+0 1.412538+0 7.563884+0 1.428894+0 7.405163+0 1.445440+0 7.249781+0 1.479108+0 6.949171+0 1.500000+0 6.772202+0 1.513561+0 6.661027+0 1.531087+0 6.521578+0 1.548817+0 6.388582+0 1.566751+0 6.258343+0 1.640590+0 5.764987+0 1.659587+0 5.647861+0 1.678804+0 5.533114+0 1.698244+0 5.420734+0 1.717908+0 5.310793+0 1.737801+0 5.203154+0 1.757924+0 5.100441+0 1.778279+0 4.999808+0 1.819701+0 4.805082+0 1.840772+0 4.710583+0 1.862087+0 4.617945+0 1.905461+0 4.438112+0 1.927525+0 4.350873+0 1.949845+0 4.265478+0 1.972423+0 4.181823+0 1.995262+0 4.101923+0 2.000000+0 4.085654+0 2.018366+0 4.023579+0 2.044000+0 3.939693+0 2.065380+0 3.871847+0 2.113489+0 3.725838+0 2.137962+0 3.654919+0 2.187762+0 3.517103+0 2.213095+0 3.450180+0 2.238721+0 3.384621+0 2.264644+0 3.320352+0 2.290868+0 3.258866+0 2.317395+0 3.198548+0 2.344229+0 3.139532+0 2.371374+0 3.081606+0 2.426610+0 2.968941+0 2.454709+0 2.914168+0 2.511886+0 2.807635+0 2.540973+0 2.755854+0 2.570396+0 2.705101+0 2.600160+0 2.655319+0 2.630268+0 2.607714+0 2.660725+0 2.560985+0 2.691535+0 2.515237+0 2.722701+0 2.470308+0 2.786121+0 2.382842+0 2.818383+0 2.340282+0 2.884032+0 2.257428+0 2.917427+0 2.217122+0 2.951209+0 2.177537+0 2.985383+0 2.138714+0 3.019952+0 2.100613+0 3.054921+0 2.064240+0 3.090295+0 2.028632+0 3.126079+0 1.993638+0 3.162278+0 1.959247+0 3.235937+0 1.892236+0 3.273407+0 1.859599+0 3.349654+0 1.796004+0 3.388442+0 1.765037+0 3.427678+0 1.734605+0 3.467369+0 1.704741+0 3.507519+0 1.675413+0 3.548134+0 1.647345+0 3.589219+0 1.619853+0 3.630781+0 1.592818+0 3.672823+0 1.566236+0 3.758374+0 1.514395+0 3.801894+0 1.489124+0 3.890451+0 1.439840+0 3.935501+0 1.415821+0 4.000000+0 1.382590+0 4.027170+0 1.369002+0 4.073803+0 1.346216+0 4.120975+0 1.324403+0 4.168694+0 1.303025+0 4.216965+0 1.281992+0 4.265795+0 1.261299+0 4.365158+0 1.220909+0 4.415704+0 1.201204+0 4.570882+0 1.143976+0 4.623810+0 1.125519+0 4.677351+0 1.107360+0 4.731513+0 1.089518+0 4.786301+0 1.071976+0 4.841724+0 1.055150+0 4.897788+0 1.038648+0 4.954502+0 1.022403+0 5.011872+0 1.006413+0 5.188000+0 9.599285-1 5.248075+0 9.449169-1 5.432503+0 9.012768-1 5.495409+0 8.871873-1 5.559043+0 8.733186-1 5.623413+0 8.596856-1 5.688529+0 8.462754-1 5.754399+0 8.334249-1 5.821032+0 8.208182-1 5.888437+0 8.084022-1 5.956621+0 7.961744-1 6.165950+0 7.605892-1 6.237348+0 7.490858-1 6.382635+0 7.265980-1 6.456542+0 7.156124-1 6.531306+0 7.047930-1 6.683439+0 6.836706-1 6.760830+0 6.733552-1 6.839116+0 6.634462-1 6.918310+0 6.537174-1 7.000000+0 6.439448-1 7.161434+0 6.253791-1 7.413102+0 5.982695-1 7.498942+0 5.894975-1 7.673615+0 5.723375-1 7.762471+0 5.639486-1 7.852356+0 5.556830-1 8.035261+0 5.395355-1 8.128305+0 5.316443-1 8.222427+0 5.240685-1 8.317638+0 5.166283-1 8.413951+0 5.092938-1 8.609938+0 4.949357-1 8.912509+0 4.741541-1 9.015711+0 4.674232-1 9.332543+0 4.477985-1 9.440609+0 4.414438-1 9.549926+0 4.351795-1 9.885531+0 4.169374-1 1.000000+1 4.110324-1 1.011579+1 4.053528-1 1.023293+1 3.997714-1 1.035142+1 3.942672-1 1.059254+1 3.834848-1 1.096478+1 3.678621-1 1.100000+1 3.664442-1 1.135011+1 3.528768-1 1.148154+1 3.480202-1 1.161449+1 3.432305-1 1.216186+1 3.247434-1 1.230269+1 3.202819-1 1.244515+1 3.159759-1 1.258925+1 3.117281-1 1.273503+1 3.075505-1 1.303167+1 2.993624-1 1.333521+1 2.913927-1 1.348963+1 2.874876-1 1.380384+1 2.798340-1 1.396368+1 2.760839-1 1.400000+1 2.752448-1 1.428894+1 2.687343-1 1.445440+1 2.651345-1 1.513561+1 2.512285-1 1.531087+1 2.478698-1 1.548817+1 2.446335-1 1.566751+1 2.414397-1 1.600000+1 2.357401-1 1.621810+1 2.321369-1 1.640590+1 2.291162-1 1.659587+1 2.261350-1 1.698244+1 2.202883-1 1.717908+1 2.174220-1 1.757924+1 2.118006-1 1.800000+1 2.061778-1 1.840772+1 2.009924-1 1.949845+1 1.882691-1 1.995262+1 1.834110-1 2.000000+1 1.829179-1 2.018366+1 1.810672-1 2.041738+1 1.787629-1 2.065380+1 1.764883-1 2.113489+1 1.720381-1 2.137962+1 1.698553-1 2.187762+1 1.655724-1 2.200000+1 1.645511-1 2.238721+1 1.613975-1 2.264644+1 1.593497-1 2.290868+1 1.573279-1 2.344229+1 1.533612-1 2.371374+1 1.514161-1 2.540973+1 1.402639-1 2.630268+1 1.350029-1 2.660725+1 1.333284-1 2.691535+1 1.316747-1 2.722701+1 1.300417-1 2.754229+1 1.284332-1 2.800000+1 1.261649-1 2.851018+1 1.237259-1 2.884032+1 1.221955-1 2.917427+1 1.206840-1 2.951209+1 1.191913-1 3.090295+1 1.134028-1 3.126079+1 1.120005-1 3.630781+1 9.528577-2 3.801894+1 9.066520-2 3.845918+1 8.956411-2 3.890451+1 8.847641-2 3.935501+1 8.740429-2 3.981072+1 8.634537-2 4.027170+1 8.529928-2 4.073803+1 8.426585-2 4.120975+1 8.324496-2 4.168694+1 8.223643-2 4.216965+1 8.124019-2 4.365158+1 7.832330-2 4.415704+1 7.737468-2 5.128614+1 6.604858-2 5.188000+1 6.524969-2 5.432503+1 6.214958-2 5.495409+1 6.140829-2 5.559043+1 6.067607-2 5.623413+1 5.995260-2 5.688529+1 5.923907-2 5.754399+1 5.853414-2 5.821032+1 5.783759-2 5.888437+1 5.714933-2 5.956621+1 5.646928-2 6.025596+1 5.579731-2 6.095369+1 5.513334-2 6.165950+1 5.447727-2 6.531306+1 5.131234-2 6.606934+1 5.070189-2 8.128305+1 4.088187-2 8.222427+1 4.039601-2 8.609938+1 3.850965-2 8.709636+1 3.805741-2 8.810489+1 3.761059-2 8.912509+1 3.716902-2 9.015711+1 3.673267-2 9.120108+1 3.630213-2 9.225714+1 3.587665-2 9.332543+1 3.545616-2 9.440609+1 3.504060-2 9.549926+1 3.462991-2 9.660509+1 3.422403-2 9.772372+1 3.382292-2 9.885531+1 3.342650-2 1.000000+2 3.303473-2 1.059254+2 3.114376-2 1.071519+2 3.077883-2 1.083927+2 3.041836-2 1.428894+2 2.292704-2 1.462177+2 2.239331-2 1.548817+2 2.111270-2 1.566751+2 2.086763-2 1.584893+2 2.062539-2 1.621810+2 2.014941-2 1.659587+2 1.968441-2 1.678804+2 1.945597-2 1.698244+2 1.923018-2 1.717908+2 1.900727-2 1.737801+2 1.878694-2 1.778279+2 1.835394-2 1.798871+2 1.814119-2 1.840772+2 1.772306-2 1.883649+2 1.731457-2 1.905461+2 1.711387-2 1.927525+2 1.691550-2 1.972423+2 1.652562-2 2.113489+2 1.540913-2 2.137962+2 1.523061-2 2.660725+2 1.220576-2 2.722701+2 1.192463-2 2.951209+2 1.099070-2 3.126079+2 1.037128-2 3.162278+2 1.025165-2 3.235937+2 1.001653-2 3.311311+2 9.786811-3 3.349654+2 9.673937-3 3.388442+2 9.562363-3 3.427678+2 9.452136-3 3.467369+2 9.343180-3 3.548134+2 9.129023-3 3.589219+2 9.023793-3 3.672823+2 8.816956-3 3.758374+2 8.614861-3 3.801894+2 8.515557-3 3.845918+2 8.417397-3 3.935501+2 8.224460-3 4.216965+2 7.671790-3 4.265795+2 7.583385-3 5.308844+2 6.084491-3 5.432503+2 5.945084-3 5.888437+2 5.481838-3 6.237348+2 5.174246-3 6.309573+2 5.114830-3 6.456542+2 4.998047-3 6.606934+2 4.883931-3 6.683439+2 4.827855-3 6.760830+2 4.772423-3 6.839116+2 4.717652-3 6.918310+2 4.663509-3 1.412538+3 2.279857-3 1.428894+3 2.253693-3 1.462177+3 2.202262-3 1.496236+3 2.152003-3 1.513561+3 2.127306-3 1.531087+3 2.102892-3 1.566751+3 2.054901-3 1.678804+3 1.917403-3 1.698244+3 1.895402-3 2.113489+3 1.522203-3 2.162719+3 1.487473-3 2.344229+3 1.372041-3 4.954502+3 6.489660-4 5.011872+3 6.415341-4 5.128614+3 6.269249-4 5.248075+3 6.126485-4 5.308844+3 6.056328-4 5.370318+3 5.986973-4 5.432503+3 5.918425-4 5.495409+3 5.850661-4 4.623810+4 6.950008-5 8.912509+4 3.605102-5 9.015711+4 3.563825-5 9.225714+4 3.482684-5 1.000000+5 3.212963-5 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.780000-6 5.780000-6 9.610000-6 5.780000-6 9.610000-6 7.875541-6 9.690000-6 7.866257-6 1.050000-5 7.898087-6 1.154000-5 7.984355-6 1.154000-5 9.156039-6 1.245000-5 9.201689-6 1.480000-5 9.415980-6 1.800000-5 9.731332-6 2.070000-5 9.931743-6 2.371374-5 1.007796-5 2.544000-5 1.013434-5 2.544000-5 2.347801-5 2.851018-5 2.144873-5 3.162278-5 1.928804-5 3.349654-5 1.805298-5 3.507519-5 1.709857-5 3.630781-5 1.641009-5 3.801894-5 1.556097-5 3.900000-5 1.512640-5 4.002000-5 1.471347-5 4.002000-5 2.527496-5 4.080000-5 2.430411-5 4.130000-5 2.374995-5 4.220000-5 2.285027-5 4.315191-5 2.201140-5 4.420000-5 2.118032-5 4.518559-5 2.048354-5 4.677351-5 1.949284-5 4.800000-5 1.880805-5 5.011872-5 1.777963-5 5.188000-5 1.704162-5 5.370318-5 1.636467-5 5.559043-5 1.574650-5 5.800000-5 1.506882-5 6.025596-5 1.452686-5 6.285000-5 1.399991-5 6.285000-5 1.500553-5 6.606934-5 1.436315-5 6.839116-5 1.395776-5 7.161434-5 1.348794-5 7.500000-5 1.309540-5 7.800000-5 1.281624-5 8.222426-5 1.251136-5 8.609938-5 1.230421-5 9.150000-5 1.209450-5 9.800000-5 1.193259-5 1.040000-4 1.184443-5 1.128000-4 1.179582-5 1.220000-4 1.182946-5 1.315000-4 1.194670-5 1.344800-4 1.200117-5 1.344800-4 2.320730-5 1.360000-4 2.596180-5 1.380384-4 2.996857-5 1.402000-4 3.441480-5 1.418000-4 3.757172-5 1.427000-4 3.927045-5 1.435000-4 4.070013-5 1.443000-4 4.204476-5 1.452000-4 4.345512-5 1.462177-4 4.493743-5 1.470000-4 4.597105-5 1.481700-4 4.733854-5 1.481700-4 5.428624-5 1.545000-4 6.483311-5 1.572000-4 6.895481-5 1.595000-4 7.201607-5 1.623000-4 7.513002-5 1.656400-4 7.799791-5 1.698244-4 8.073441-5 1.760000-4 8.402313-5 1.960100-4 9.366721-5 2.100000-4 9.994880-5 2.170000-4 1.027746-4 2.250000-4 1.054523-4 2.317395-4 1.070641-4 2.380000-4 1.078602-4 2.435000-4 1.079141-4 2.500000-4 1.072074-4 2.560000-4 1.058044-4 2.603600-4 1.043890-4 2.603600-4 1.190839-4 2.691535-4 1.168446-4 2.818383-4 1.125217-4 3.126079-4 1.008391-4 3.240000-4 9.703543-5 3.360000-4 9.353883-5 3.470000-4 9.074429-5 3.527600-4 8.945079-5 3.527600-4 1.071642-4 3.550000-4 1.051297-4 3.579000-4 1.034561-4 3.630781-4 1.015246-4 3.758374-4 9.808566-5 3.890451-4 9.507878-5 4.073803-4 9.168312-5 4.168694-4 9.020356-5 4.286300-4 8.865286-5 4.286300-4 9.478719-5 4.466836-4 9.280522-5 4.677351-4 9.112069-5 4.850000-4 9.007077-5 5.188000-4 8.865136-5 5.561300-4 8.784975-5 5.561300-4 9.850764-5 5.568000-4 9.757089-5 5.579000-4 9.659796-5 5.597000-4 9.569949-5 5.628000-4 9.499532-5 5.688529-4 9.459853-5 5.739300-4 9.456100-5 5.739300-4 1.012923-4 5.748500-4 1.007183-4 5.770000-4 1.001164-4 5.810000-4 9.986891-5 5.870000-4 1.003791-4 5.925000-4 1.015568-4 5.970000-4 1.031302-4 6.007000-4 1.049142-4 6.050000-4 1.076194-4 6.095369-4 1.112335-4 6.140000-4 1.154734-4 6.200000-4 1.220124-4 6.320000-4 1.357890-4 6.382635-4 1.423765-4 6.441400-4 1.478338-4 6.515000-4 1.535622-4 6.590000-4 1.581938-4 6.670000-4 1.619767-4 6.760830-4 1.651290-4 6.881100-4 1.679357-4 7.040000-4 1.701508-4 7.260000-4 1.717236-4 7.650000-4 1.727333-4 8.709636-4 1.730595-4 9.600700-4 1.728896-4 9.600700-4 1.755552-4 9.661000-4 1.790661-4 9.723000-4 1.829641-4 9.772372-4 1.850064-4 9.850000-4 1.865511-4 1.006000-3 1.881536-4 1.024000-3 1.887105-4 1.024000-3 1.949085-4 1.096478-3 1.984080-4 1.230269-3 2.036643-4 1.315900-3 2.060262-4 1.315900-3 2.184079-4 1.621810-3 2.276186-4 1.673600-3 2.290385-4 1.673600-3 2.319077-4 1.856300-3 2.371168-4 1.856300-3 2.417819-4 2.264644-3 2.530205-4 2.754229-3 2.640713-4 3.273407-3 2.737397-4 3.935501-3 2.838583-4 4.369600-3 2.894762-4 4.369600-3 4.090524-4 4.625500-3 4.096029-4 4.625500-3 4.352896-4 5.011872-3 4.372376-4 5.247200-3 4.373754-4 5.247200-3 4.695440-4 6.564600-3 4.750840-4 6.564600-3 4.923327-4 6.953100-3 4.948219-4 6.953100-3 5.091752-4 9.120108-3 5.275672-4 1.188502-2 5.460489-4 1.513561-2 5.627792-4 1.905461-2 5.782599-4 2.040900-2 5.826841-4 2.040900-2 6.828012-4 2.600700-2 6.877481-4 2.600700-2 7.227902-4 2.682400-2 7.236589-4 2.682400-2 7.726837-4 3.715352-2 7.912600-4 5.011872-2 8.076958-4 6.918310-2 8.246992-4 9.225714-2 8.388479-4 1.288250-1 8.540113-4 1.391100-1 8.572150-4 1.391100-1 7.898626-4 3.311311-1 7.947229-4 9.660509-1 7.972815-4 1.000000+5 7.973014-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.780000-6 0.0 2.603600-4 0.0 2.603600-4 1.594499-9 2.660725-4 1.604381-9 2.722701-4 1.603107-9 2.800000-4 1.588228-9 2.900000-4 1.553911-9 2.985383-4 1.513785-9 3.090295-4 1.454844-9 3.200000-4 1.390216-9 3.430000-4 1.263591-9 3.527600-4 1.213185-9 3.527600-4 5.493017-9 3.530500-4 5.451352-9 3.536000-4 5.326398-9 3.542000-4 5.214062-9 3.550000-4 5.093329-9 3.556000-4 5.015259-9 3.567000-4 4.901324-9 3.579000-4 4.801888-9 3.590000-4 4.727629-9 3.610000-4 4.619670-9 3.637000-4 4.504272-9 3.680000-4 4.355034-9 3.758374-4 4.112611-9 3.845918-4 3.860609-9 3.935501-4 3.623277-9 4.027170-4 3.411366-9 4.120975-4 3.214770-9 4.168694-4 3.121196-9 4.286300-4 2.913176-9 4.286300-4 3.433741-9 4.365158-4 3.316677-9 4.466836-4 3.177810-9 4.570882-4 3.050880-9 4.677351-4 2.935178-9 4.786301-4 2.828016-9 4.850000-4 2.771012-9 5.000000-4 2.650308-9 5.128614-4 2.560054-9 5.308844-4 2.450761-9 5.500000-4 2.357825-9 5.561300-4 2.331952-9 5.561300-4 1.612823-8 5.562000-4 1.594294-8 5.565000-4 1.539246-8 5.568000-4 1.492218-8 5.572000-4 1.439457-8 5.575000-4 1.405705-8 5.579000-4 1.367361-8 5.584500-4 1.323647-8 5.590000-4 1.288663-8 5.597000-4 1.252837-8 5.603000-4 1.228259-8 5.609000-4 1.208156-8 5.617000-4 1.186685-8 5.628000-4 1.164443-8 5.638000-4 1.149568-8 5.650000-4 1.136493-8 5.665000-4 1.125490-8 5.688529-4 1.116070-8 5.710000-4 1.112558-8 5.739300-4 1.114659-8 5.739300-4 1.399913-8 5.739600-4 1.395754-8 5.748500-4 1.376969-8 5.757000-4 1.365427-8 5.770000-4 1.356732-8 5.777000-4 1.354313-8 5.800000-4 1.358748-8 5.825000-4 1.378079-8 5.840000-4 1.396006-8 5.858000-4 1.424195-8 5.872000-4 1.451319-8 5.890000-4 1.493590-8 5.908000-4 1.544674-8 5.925000-4 1.602026-8 5.940000-4 1.660041-8 5.958000-4 1.740066-8 5.980000-4 1.854431-8 6.000000-4 1.974793-8 6.025596-4 2.153125-8 6.050000-4 2.349331-8 6.073000-4 2.558182-8 6.095369-4 2.778387-8 6.107000-4 2.900293-8 6.123000-4 3.075108-8 6.140000-4 3.269410-8 6.180000-4 3.753539-8 6.263700-4 4.802674-8 6.290000-4 5.119937-8 6.320000-4 5.465639-8 6.350000-4 5.790071-8 6.382635-4 6.115624-8 6.410000-4 6.365709-8 6.441400-4 6.625897-8 6.470000-4 6.838430-8 6.500000-4 7.037018-8 6.540000-4 7.262513-8 6.565000-4 7.386310-8 6.615000-4 7.586341-8 6.670000-4 7.752801-8 6.730000-4 7.880343-8 6.800000-4 7.981941-8 6.890000-4 8.060075-8 7.040000-4 8.127550-8 7.260000-4 8.161161-8 8.000000-4 8.155677-8 9.600700-4 8.056402-8 9.600700-4 8.099542-8 9.750000-4 8.230590-8 9.885531-4 8.264455-8 1.024000-3 8.272587-8 1.024000-3 1.047298-7 1.040700-3 1.068670-7 1.071519-3 1.101202-7 1.174898-3 1.188177-7 1.202264-3 1.208895-7 1.230269-3 1.228686-7 1.273503-3 1.248491-7 1.315900-3 1.265842-7 1.315900-3 1.710930-7 1.531087-3 1.846193-7 1.673600-3 1.930273-7 1.673600-3 2.014608-7 1.856300-3 2.131165-7 1.856300-3 2.322033-7 2.113489-3 2.503222-7 2.400000-3 2.689622-7 2.786121-3 2.913622-7 3.162278-3 3.112925-7 3.589219-3 3.313390-7 4.073803-3 3.519780-7 4.369600-3 3.636109-7 4.369600-3 4.032432-7 4.625500-3 4.071046-7 4.625500-3 7.478544-5 4.731513-3 7.640772-5 4.841724-3 7.783849-5 4.902800-3 7.846525-5 4.954502-3 7.875707-5 5.247200-3 7.851598-5 5.247200-3 7.968751-5 5.688529-3 7.950475-5 6.564600-3 7.884923-5 6.564600-3 8.835201-5 6.642000-3 8.822399-5 6.953100-3 8.865213-5 6.953100-3 9.047768-5 8.709636-3 9.312021-5 1.023293-2 9.495582-5 1.190000-2 9.675264-5 1.500000-2 9.945758-5 1.883649-2 1.019814-4 2.040900-2 1.028324-4 2.040900-2 4.994085-3 2.238721-2 4.972837-3 2.600700-2 4.909387-3 2.600700-2 7.645108-3 2.682400-2 7.672593-3 2.682400-2 8.044002-3 3.198895-2 8.143971-3 4.027170-2 8.246571-3 5.248075-2 8.324519-3 7.413102-2 8.391222-3 1.216186-1 8.443697-3 1.391100-1 8.451700-3 1.391100-1 9.624956-2 1.678804-1 9.711773-2 2.371374-1 9.822884-2 3.981072-1 9.951854-2 6.606935-1 1.005969-1 1.035142+0 1.012739-1 1.000000+5 1.012120-1 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.780000-6 0.0 9.610000-6 3.830000-6 9.610000-6 1.734459-6 9.630000-6 1.764571-6 9.660509-6 1.798224-6 9.690000-6 1.823743-6 1.023293-5 2.348829-6 1.085000-5 2.928430-6 1.154000-5 3.555645-6 1.154000-5 2.383961-6 1.161449-5 2.461527-6 1.245000-5 3.248311-6 1.364583-5 4.343561-6 1.800000-5 8.268668-6 2.070000-5 1.076826-5 2.371374-5 1.363578-5 2.544000-5 1.530566-5 2.544000-5 1.961991-6 2.551000-5 2.087702-6 2.610000-5 3.047378-6 2.700000-5 4.531894-6 2.851018-5 7.061448-6 3.162278-5 1.233474-5 3.349654-5 1.544356-5 3.507519-5 1.797662-5 3.630781-5 1.989772-5 3.801894-5 2.245797-5 4.002000-5 2.530653-5 4.002000-5 1.474504-5 4.027170-5 1.533087-5 4.080000-5 1.649589-5 4.130000-5 1.755005-5 4.220000-5 1.934973-5 4.315191-5 2.114051-5 4.420000-5 2.301968-5 4.518559-5 2.470205-5 4.677351-5 2.728067-5 4.800000-5 2.919195-5 5.011872-5 3.233909-5 5.248075-5 3.567143-5 5.559043-5 3.984393-5 5.900000-5 4.418416-5 6.285000-5 4.885009-5 6.285000-5 4.784447-5 6.839116-5 5.443340-5 7.500000-5 6.190460-5 8.222426-5 6.971290-5 9.660509-5 8.464331-5 1.220000-4 1.101705-4 1.344800-4 1.224788-4 1.344800-4 1.112727-4 1.370000-4 1.090991-4 1.418000-4 1.042283-4 1.443000-4 1.022552-4 1.462177-4 1.012803-4 1.481700-4 1.008315-4 1.481700-4 9.388376-5 1.548817-4 8.945194-5 1.580000-4 8.792451-5 1.605000-4 8.731041-5 1.631000-4 8.722330-5 1.659587-4 8.772947-5 1.705000-4 8.936025-5 1.800000-4 9.400612-5 2.020000-4 1.055714-4 2.137962-4 1.122733-4 2.240000-4 1.188471-4 2.317395-4 1.246754-4 2.390000-4 1.310809-4 2.465000-4 1.388062-4 2.535000-4 1.470399-4 2.603600-4 1.559710-4 2.603600-4 1.412745-4 2.691535-4 1.523073-4 2.851018-4 1.738211-4 3.180000-4 2.190282-4 3.390000-4 2.462693-4 3.527600-4 2.633080-4 3.527600-4 2.455903-4 3.556000-4 2.508844-4 3.610000-4 2.587813-4 3.801894-4 2.831365-4 4.073803-4 3.156939-4 4.286300-4 3.399742-4 4.286300-4 3.338394-4 4.677351-4 3.766115-4 5.370318-4 4.488565-4 5.561300-4 4.682779-4 5.561300-4 4.576062-4 5.590000-4 4.630055-4 5.688529-4 4.742432-4 5.739300-4 4.793579-4 5.739300-4 4.726237-4 5.797000-4 4.798115-4 5.925000-4 4.909271-4 6.025596-4 4.965445-4 6.123000-4 4.984855-4 6.400000-4 4.958735-4 6.531306-4 4.983817-4 6.670000-4 5.049457-4 6.850000-4 5.175962-4 7.150000-4 5.438302-4 7.852356-4 6.122237-4 9.600700-4 7.870999-4 9.600700-4 7.844338-4 9.772372-4 7.921484-4 1.006000-3 8.177636-4 1.024000-3 8.352068-4 1.024000-3 8.289867-4 1.303167-3 1.097348-3 1.315900-3 1.109747-3 1.315900-3 1.097321-3 1.673600-3 1.444368-3 1.673600-3 1.441491-3 1.856300-3 1.618970-3 1.856300-3 1.614286-3 3.198895-3 2.926106-3 4.369600-3 4.079760-3 4.369600-3 3.960144-3 4.625500-3 4.215490-3 4.625500-3 4.115425-3 5.247200-3 4.731309-3 5.247200-3 4.697968-3 6.564600-3 6.010667-3 6.564600-3 5.983915-3 6.953100-3 6.369626-3 6.953100-3 6.353447-3 1.949845-2 1.881636-2 2.040900-2 1.972348-2 2.040900-2 1.473211-2 2.600700-2 2.040987-2 2.600700-2 1.763910-2 2.682400-2 1.842775-2 2.682400-2 1.800731-2 3.935501-2 3.032231-2 8.709636-2 7.784842-2 1.391100-1 1.298011-1 1.391100-1 4.207058-2 1.423000-1 4.510541-2 1.435000-1 4.633112-2 1.462177-1 4.887782-2 1.513561-1 5.392314-2 1.659587-1 6.808986-2 2.371374-1 1.381154-1 5.248075-1 4.238745-1 2.630268+0 2.528256+0 1.000000+5 9.999990+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.391100-1 1.078579+3 1.408500-1 1.047520+3 1.413000-1 1.038094+3 1.423000-1 1.022676+3 1.435000-1 9.989980+2 1.462177-1 9.578579+2 1.500000-1 8.967600+2 1.584893-1 7.863965+2 1.778279-1 5.904161+2 2.691535-1 2.124403+2 3.198895-1 1.401393+2 3.715352-1 9.829121+1 4.265795-1 7.131176+1 4.897788-1 5.209148+1 5.623413-1 3.832168+1 6.382635-1 2.911983+1 7.328245-1 2.174285+1 8.511380-1 1.596956+1 9.660509-1 1.238251+1 1.202264+0 8.075469+0 1.364583+0 6.348198+0 1.531087+0 5.133475+0 1.737801+0 4.095561+0 1.972423+0 3.291653+0 2.264644+0 2.613470+0 2.600160+0 2.089913+0 3.019952+0 1.653260+0 3.507519+0 1.318621+0 4.073803+0 1.059539+0 4.786301+0 8.436996-1 5.688529+0 6.660584-1 6.760830+0 5.299594-1 8.128305+0 4.184255-1 1.000000+1 3.235000-1 1.230269+1 2.520717-1 1.531087+1 1.950793-1 2.000000+1 1.439600-1 2.630268+1 1.062474-1 3.801894+1 7.135579-2 5.432503+1 4.891252-2 8.609938+1 3.030762-2 1.548817+2 1.661592-2 2.951209+2 8.650342-3 5.888437+2 4.314401-3 2.344229+3 1.079762-3 1.000000+5 2.528900-5 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.391100-1 7.668100-4 1.000000+5 7.668100-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.391100-1 1.263000-1 1.000000+5 1.263000-1 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.391100-1 1.204319-2 1.000000+5 9.999987+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.682400-2 3.597543+3 2.713000-2 3.509266+3 2.860000-2 3.218040+3 2.951209-2 3.038839+3 3.070000-2 2.849560+3 3.198895-2 2.648267+3 3.388442-2 2.382737+3 3.801894-2 1.937375+3 4.216965-2 1.590979+3 5.248075-2 1.032011+3 6.025596-2 7.757168+2 6.760830-2 6.091866+2 8.222426-2 3.986718+2 1.000000-1 2.576740+2 1.216186-1 1.648222+2 1.496236-1 1.018239+2 2.754229-1 2.420326+1 3.427678-1 1.456968+1 4.120975-1 9.577963+0 4.897788-1 6.511424+0 5.732700-1 4.614283+0 6.683439-1 3.326079+0 7.762471-1 2.434675+0 9.015711-1 1.794811+0 1.035142+0 1.364995+0 1.230269+0 9.755829-1 1.396368+0 7.680824-1 1.566751+0 6.220087-1 1.778279+0 4.969915-1 2.018366+0 3.999984-1 2.317395+0 3.180159-1 2.660725+0 2.546560-1 3.054921+0 2.053377-1 3.548134+0 1.638676-1 4.120975+0 1.317417-1 4.841724+0 1.049577-1 5.754399+0 8.290450-2 6.839116+0 6.599885-2 8.222427+0 5.213332-2 1.011579+1 4.032290-2 1.258925+1 3.100606-2 1.566751+1 2.401496-2 2.065380+1 1.755295-2 2.722701+1 1.293481-2 3.890451+1 8.800924-3 5.623413+1 5.963603-3 9.015711+1 3.653735-3 1.698244+2 1.912473-3 3.388442+2 9.511971-4 6.760830+2 4.747555-4 5.370318+3 5.955505-5 1.000000+5 3.196900-6 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.682400-2 1.093700-3 1.000000+5 1.093700-3 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.682400-2 1.047600-2 1.000000+5 1.047600-2 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.682400-2 1.525430-2 1.000000+5 9.999999+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.600700-2 7.708419+3 2.630268-2 7.552674+3 2.722701-2 6.982700+3 2.851018-2 6.249400+3 2.985383-2 5.607700+3 3.630781-2 3.458900+3 4.000000-2 2.706700+3 4.900000-2 1.599000+3 6.095369-2 8.950000+2 7.673615-2 4.796400+2 9.660509-2 2.549300+2 1.862087-1 4.150700+1 2.344229-1 2.210000+1 2.722701-1 1.475875+1 3.273407-1 9.055638+0 3.801894-1 6.132670+0 4.365158-1 4.310976+0 4.954502-1 3.142822+0 5.623413-1 2.308541+0 6.309573-1 1.756541+0 6.998420-1 1.383663+0 7.852356-1 1.068977+0 8.912509-1 8.110930-1 9.772372-1 6.663310-1 1.059254+0 5.651239-1 1.161449+0 4.712696-1 1.288250+0 3.869158-1 1.445440+0 3.130348-1 1.698244+0 2.344768-1 1.927525+0 1.881767-1 2.213095+0 1.492789-1 2.540973+0 1.192744-1 2.951209+0 9.426554-2 3.427678+0 7.509410-2 4.000000+0 5.985900-2 4.677351+0 4.794175-2 5.559043+0 3.780942-2 6.531306+0 3.050882-2 7.852356+0 2.405459-2 9.549926+0 1.883714-2 1.161449+1 1.485643-2 1.445440+1 1.147577-2 1.840772+1 8.698918-3 2.371374+1 6.552929-3 3.126079+1 4.846698-3 4.415704+1 3.348379-3 6.606934+1 2.194140-3 1.071519+2 1.331984-3 2.113489+2 6.668263-4 4.216965+2 3.321349-4 1.678804+3 8.301866-5 1.000000+5 1.391700-6 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.600700-2 8.035500-4 1.000000+5 8.035500-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.600700-2 1.395000-2 1.000000+5 1.395000-2 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.600700-2 1.125345-2 1.000000+5 9.999999+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.040900-2 1.936106+4 2.140000-2 1.708384+4 2.371374-2 1.288428+4 2.600160-2 9.931055+3 2.951209-2 6.962239+3 3.311311-2 4.994920+3 3.900000-2 3.098132+3 4.800000-2 1.672012+3 6.025596-2 8.406550+2 7.413102-2 4.454488+2 9.772372-2 1.893137+2 1.678804-1 3.510815+1 2.113489-1 1.727101+1 2.371374-1 1.217319+1 2.900000-1 6.661574+0 3.349654-1 4.357954+0 3.801894-1 3.023427+0 4.265795-1 2.184060+0 4.786301-1 1.588836+0 5.370318-1 1.164618+0 5.956621-1 8.869879-1 6.606935-1 6.801204-1 7.943282-1 4.287018-1 8.609938-1 3.527878-1 9.225714-1 3.005981-1 9.772372-1 2.646463-1 1.047129+0 2.289435-1 1.135011+0 1.946873-1 1.244515+0 1.630067-1 1.380384+0 1.346843-1 1.737801+0 8.931728-2 1.972423+0 7.174391-2 2.264644+0 5.696933-2 2.600160+0 4.556678-2 3.019952+0 3.605654-2 3.507519+0 2.875803-2 4.073803+0 2.310774-2 4.786301+0 1.840095-2 5.688529+0 1.452635-2 6.760830+0 1.155808-2 8.128305+0 9.125635-3 1.000000+1 7.055300-3 1.230269+1 5.497564-3 1.531087+1 4.254665-3 1.995262+1 3.148078-3 2.630268+1 2.317101-3 3.801894+1 1.556174-3 5.495409+1 1.053985-3 8.709636+1 6.531911-4 1.584893+2 3.539739-4 3.162278+2 1.759565-4 6.309573+2 8.778736-5 5.011872+3 1.100985-5 1.000000+5 5.515500-7 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.040900-2 7.587400-4 1.000000+5 7.587400-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.040900-2 8.704100-3 1.000000+5 8.704100-3 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.040900-2 1.094616-2 1.000000+5 9.999999+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 6.953100-3 8.808355+3 7.161434-3 8.463362+3 7.350000-3 8.208840+3 7.500000-3 7.988900+3 7.800000-3 7.620340+3 8.511380-3 6.756823+3 9.120108-3 6.166702+3 9.549926-3 5.775003+3 1.150000-2 4.371320+3 1.258925-2 3.779021+3 1.479108-2 2.904980+3 1.640590-2 2.430585+3 1.905461-2 1.868155+3 2.213095-2 1.420183+3 2.483133-2 1.144515+3 2.951209-2 8.201452+2 3.548134-2 5.683007+2 4.216965-2 3.989674+2 5.011872-2 2.776077+2 5.956621-2 1.915051+2 7.000000-2 1.343792+2 8.317638-2 9.139183+1 1.000000-1 6.009180+1 1.230269-1 3.720686+1 1.603245-1 1.998754+1 2.630268-1 6.210646+0 3.235937-1 3.830769+0 3.935501-1 2.445252+0 4.677351-1 1.657492+0 5.370318-1 1.222197+0 6.237348-1 8.848146-1 7.244360-1 6.450913-1 8.511380-1 4.626581-1 9.660509-1 3.586577-1 1.188502+0 2.391374-1 1.333521+0 1.920005-1 1.513561+0 1.518715-1 1.717908+0 1.211033-1 1.949845+0 9.728460-2 2.238721+0 7.720713-2 2.570396+0 6.171842-2 2.985383+0 4.880691-2 3.467369+0 3.890372-2 4.027170+0 3.124163-2 4.731513+0 2.486436-2 5.623413+0 1.961956-2 6.683439+0 1.560274-2 8.035261+0 1.231336-2 9.885531+0 9.515496-3 1.216186+1 7.411639-3 1.513561+1 5.733687-3 1.949845+1 4.296194-3 2.540973+1 3.200279-3 3.630781+1 2.174151-3 5.128614+1 1.506917-3 8.128305+1 9.328071-4 1.428894+2 5.231296-4 2.660725+2 2.785194-4 5.308844+2 1.388632-4 2.113489+3 3.473441-5 1.000000+5 7.334600-7 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 6.953100-3 8.568700-4 1.000000+5 8.568700-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.953100-3 1.347000-4 1.000000+5 1.347000-4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 6.953100-3 5.961530-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.564600-3 1.439932+4 6.594000-3 1.409691+4 6.642000-3 1.384287+4 6.850000-3 1.347603+4 7.244360-3 1.273646+4 8.035261-3 1.128616+4 8.413951-3 1.065908+4 8.912509-3 9.851066+3 1.011579-2 8.187253+3 1.122018-2 6.979351+3 1.161449-2 6.598752+3 1.364583-2 5.009364+3 1.462177-2 4.420680+3 1.717908-2 3.257606+3 1.862087-2 2.778495+3 2.162719-2 2.045913+3 2.371374-2 1.683359+3 2.730000-2 1.239370+3 3.150000-2 8.982080+2 3.507519-2 7.010720+2 4.027170-2 5.063033+2 4.677351-2 3.528123+2 5.432503-2 2.439275+2 6.382635-2 1.626423+2 7.585776-2 1.045241+2 9.225714-2 6.281972+1 1.150000-1 3.512349+1 2.290868-1 5.598066+0 2.818383-1 3.243411+0 3.349654-1 2.071996+0 3.890451-1 1.414440+0 4.466836-1 1.000960+0 5.128614-1 7.136183-1 5.821032-1 5.271828-1 6.531306-1 4.031600-1 7.328245-1 3.104402-1 8.511380-1 2.230684-1 9.332543-1 1.832130-1 1.011579+0 1.552824-1 1.148154+0 1.208451-1 1.273503+0 9.903749-2 1.445440+0 7.833478-2 1.678804+0 5.986042-2 1.905461+0 4.801311-2 2.187762+0 3.805483-2 2.511886+0 3.038713-2 2.884032+0 2.443577-2 3.349654+0 1.944317-2 3.890451+0 1.558740-2 4.570882+0 1.238504-2 5.432503+0 9.757707-3 6.382635+0 7.865819-3 7.673615+0 6.196067-3 9.332543+0 4.847585-3 1.135011+1 3.820042-3 1.428894+1 2.909339-3 1.800000+1 2.231900-3 2.344229+1 1.660152-3 3.090295+1 1.227539-3 4.365158+1 8.478544-4 6.531306+1 5.554626-4 1.059254+2 3.371289-4 2.113489+2 1.667963-4 4.216965+2 8.308105-5 1.678804+3 2.076664-5 1.000000+5 3.481100-7 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.564600-3 7.703500-4 1.000000+5 7.703500-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.564600-3 2.415200-4 1.000000+5 2.415200-4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.564600-3 5.552730-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.247200-3 6.011244+4 5.280000-3 5.900679+4 5.380000-3 5.672252+4 5.821032-3 4.971805+4 6.683439-3 3.889303+4 7.161434-3 3.416474+4 8.222426-3 2.612110+4 9.015711-3 2.174054+4 1.096478-2 1.448340+4 1.190000-2 1.211284+4 1.400000-2 8.428920+3 1.548817-2 6.670673+3 1.757924-2 4.949183+3 2.018366-2 3.536525+3 2.238721-2 2.734724+3 2.600160-2 1.869414+3 3.019952-2 1.265406+3 3.427678-2 9.029303+2 3.890451-2 6.404720+2 4.466836-2 4.373672+2 5.128614-2 2.967389+2 5.956621-2 1.935936+2 7.000000-2 1.212964+2 8.413951-2 7.062859+1 1.035142-1 3.811577+1 2.018366-1 5.109992+0 2.454709-1 2.851184+0 2.884032-1 1.774901+0 3.349654-1 1.151110+0 3.845918-1 7.775805-1 4.365158-1 5.467118-1 4.897788-1 3.995969-1 5.495409-1 2.941340-1 6.095369-1 2.247055-1 6.760830-1 1.728394-1 7.498942-1 1.338348-1 8.709636-1 9.320673-2 9.332543-1 7.937744-2 9.885531-1 6.984543-2 1.059254+0 6.038490-2 1.148154+0 5.137542-2 1.250000+0 4.366741-2 1.380384+0 3.640286-2 1.757924+0 2.367543-2 2.000000+0 1.895161-2 2.290868+0 1.511834-2 2.630268+0 1.210000-2 3.054921+0 9.581243-3 3.548134+0 7.646128-3 4.120975+0 6.147221-3 4.841724+0 4.897725-3 5.754399+0 3.868427-3 6.839116+0 3.079584-3 8.222427+0 2.432626-3 1.011579+1 1.881543-3 1.258925+1 1.446769-3 1.566751+1 1.120529-3 2.065380+1 8.190551-4 2.722701+1 6.035464-4 3.935501+1 4.056550-4 5.688529+1 2.749346-4 9.015711+1 1.704885-4 1.698244+2 8.923972-5 3.388442+2 4.438412-5 6.760830+2 2.215291-5 5.370318+3 2.778880-6 1.000000+5 1.491700-7 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.247200-3 6.568800-4 1.000000+5 6.568800-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.247200-3 8.651000-5 1.000000+5 8.651000-5 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.247200-3 4.503810-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.625500-3 1.310900+5 4.731513-3 1.279032+5 4.841724-3 1.238438+5 4.902800-3 1.213400+5 4.954502-3 1.187393+5 5.500000-3 8.999120+4 5.900000-3 7.421840+4 6.683439-3 5.228361+4 7.585776-3 3.635414+4 8.413951-3 2.684201+4 9.332543-3 1.969052+4 1.150000-2 1.035416+4 1.350000-2 6.231240+3 1.496236-2 4.477834+3 1.778279-2 2.543903+3 2.113489-2 1.428254+3 2.454709-2 8.584730+2 2.818383-2 5.331144+2 3.273407-2 3.161156+2 3.845918-2 1.788530+2 4.623810-2 9.257307+1 5.688529-2 4.378422+1 7.413102-2 1.667596+1 1.047129-1 4.707122+0 1.258925-1 2.377045+0 1.396368-1 1.630048+0 1.603245-1 9.929445-1 1.883649-1 5.612593-1 2.371374-1 2.498618-1 2.722701-1 1.548091-1 3.090295-1 1.005428-1 3.467369-1 6.840182-2 3.890451-1 4.687437-2 4.315191-1 3.358628-2 4.786301-1 2.423280-2 5.308844-1 1.761038-2 5.821032-1 1.335184-2 6.237348-1 1.091172-2 6.839117-1 8.403712-3 7.498942-1 6.519697-3 8.035261-1 5.409068-3 8.609938-1 4.468992-3 9.120108-1 3.836365-3 9.549926-1 3.415266-3 1.000000+0 3.060015-3 1.047129+0 2.760751-3 1.109175+0 2.445455-3 1.174898+0 2.181408-3 1.258925+0 1.916124-3 1.364583+0 1.659307-3 1.513561+0 1.387808-3 1.840772+0 9.816031-4 2.044000+0 8.204919-4 2.344229+0 6.539859-4 2.691535+0 5.240151-4 3.126079+0 4.154144-4 3.630781+0 3.318982-4 4.216965+0 2.671345-4 4.954502+0 2.130609-4 5.888437+0 1.684589-4 7.000000+0 1.342000-4 8.413951+0 1.061360-4 1.035142+1 8.216336-5 1.303167+1 6.237370-5 1.621810+1 4.836815-5 2.137962+1 3.539000-5 2.800000+1 2.629300-5 4.027170+1 1.777632-5 5.821032+1 1.205418-5 9.332543+1 7.389396-6 1.778279+2 3.824554-6 3.548134+2 1.902799-6 1.412538+3 4.752100-7 8.912509+4 7.516750-9 1.000000+5 6.699500-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.625500-3 5.022100-4 1.000000+5 5.022100-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.625500-3 2.685600-4 1.000000+5 2.685600-4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.625500-3 3.854730-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.369600-3 2.216949+5 4.535000-3 2.004683+5 4.731513-3 1.808001+5 4.897788-3 1.649174+5 5.248075-3 1.365705+5 5.754399-3 1.053073+5 6.531306-3 7.302921+4 7.244360-3 5.388280+4 8.000000-3 4.001526+4 8.810489-3 2.979970+4 9.800000-3 2.133732+4 1.109175-2 1.443444+4 1.244515-2 9.938432+3 1.400000-2 6.759420+3 1.659587-2 3.825084+3 1.905461-2 2.386697+3 2.150000-2 1.571112+3 2.483133-2 9.471091+2 2.917427-2 5.327968+2 3.427678-2 2.971862+2 4.027170-2 1.645339+2 4.800000-2 8.576520+1 5.888437-2 3.985660+1 7.585776-2 1.528971+1 1.230269-1 2.444177+0 1.500000-1 1.159422+0 1.737801-1 6.712238-1 1.927525-1 4.590762-1 2.317395-1 2.362950-1 2.630268-1 1.507939-1 2.951209-1 1.009877-1 3.273407-1 7.092211-2 3.630781-1 5.017248-2 4.000000-1 3.656162-2 4.415705-1 2.666904-2 4.841724-1 2.002066-2 5.308844-1 1.513732-2 5.821032-1 1.153318-2 6.237348-1 9.461212-3 6.760830-1 7.558725-3 7.413102-1 5.892495-3 8.709636-1 3.850716-3 9.225714-1 3.329595-3 9.660509-1 2.980154-3 1.011579+0 2.683067-3 1.071519+0 2.370751-3 1.135011+0 2.108562-3 1.216186+0 1.845157-3 1.318257+0 1.591122-3 1.840772+0 8.829285-4 2.065380+0 7.253441-4 2.371374+0 5.774202-4 2.722701+0 4.629498-4 3.162278+0 3.672419-4 3.672823+0 2.935799-4 4.265795+0 2.364239-4 5.011872+0 1.886614-4 5.956621+0 1.492373-4 7.161434+0 1.172224-4 8.609938+0 9.277339-5 1.059254+1 7.188264-5 1.348963+1 5.388120-5 1.698244+1 4.128551-5 2.238721+1 3.024792-5 2.884032+1 2.290698-5 4.120975+1 1.560603-5 6.025596+1 1.046040-5 9.660509+1 6.416053-6 1.883649+2 3.245457-6 3.758374+2 1.615426-6 1.496236+3 4.035845-7 1.000000+5 6.027300-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.369600-3 5.018500-4 1.000000+5 5.018500-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.369600-3 4.340000-7 1.000000+5 4.340000-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.369600-3 3.867316-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.856300-3 1.945166+4 2.113489-3 1.693241+4 2.300000-3 1.550098+4 2.786121-3 1.236852+4 3.273407-3 1.012607+4 3.548134-3 9.092294+3 4.315191-3 6.926324+3 4.800000-3 5.926520+3 5.688529-3 4.586365+3 6.800000-3 3.460860+3 7.673615-3 2.842699+3 9.015711-3 2.171023+3 1.083927-2 1.579687+3 1.303167-2 1.137900+3 1.548817-2 8.294126+2 1.840772-2 5.996392+2 2.162719-2 4.398531+2 2.540973-2 3.205009+2 3.019952-2 2.266485+2 3.589219-2 1.590574+2 4.300000-2 1.089254+2 5.128614-2 7.470435+1 6.095369-2 5.125109+1 7.328245-2 3.403198+1 8.810489-2 2.243370+1 1.059254-1 1.469045+1 1.364583-1 8.130167+0 2.722701-1 1.593992+0 3.388442-1 9.579360-1 4.027170-1 6.450667-1 4.786301-1 4.380609-1 5.623413-1 3.075200-1 6.382635-1 2.343330-1 7.498942-1 1.671549-1 8.810489-1 1.201297-1 1.011579+0 9.102459-2 1.216186+0 6.354021-2 1.364583+0 5.109297-2 1.548817+0 4.048793-2 1.757924+0 3.232751-2 2.000000+0 2.589896-2 2.290868+0 2.066464-2 2.630268+0 1.653839-2 3.054921+0 1.309396-2 3.548134+0 1.044927-2 4.120975+0 8.400755-3 4.841724+0 6.693148-3 5.754399+0 5.286654-3 6.839116+0 4.208540-3 8.222427+0 3.324361-3 1.011579+1 2.571276-3 1.258925+1 1.977111-3 1.566751+1 1.531341-3 2.041738+1 1.133891-3 2.691535+1 8.352023-4 3.890451+1 5.612183-4 5.623413+1 3.802791-4 8.912509+1 2.357644-4 1.659587+2 1.248426-4 3.311311+2 6.208097-5 6.606934+2 3.098201-5 5.248075+3 3.886185-6 1.000000+5 2.038600-7 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.856300-3 5.176800-4 1.000000+5 5.176800-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.856300-3 1.361000-6 1.000000+5 1.361000-6 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.856300-3 1.337259-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.673600-3 1.609474+4 1.860000-3 1.568996+4 2.041738-3 1.538951+4 2.187762-3 1.502563+4 2.371374-3 1.447531+4 2.570396-3 1.384305+4 2.754229-3 1.322867+4 3.019952-3 1.234084+4 3.220000-3 1.167224+4 3.589219-3 1.051167+4 3.900000-3 9.650280+3 4.216965-3 8.833267+3 4.731513-3 7.680128+3 5.150000-3 6.887780+3 5.688529-3 6.009895+3 6.309573-3 5.183183+3 6.918310-3 4.511212+3 7.800000-3 3.737600+3 8.709636-3 3.117388+3 9.660509-3 2.613573+3 1.096478-2 2.088816+3 1.230269-2 1.691189+3 1.380384-2 1.360117+3 1.566751-2 1.062074+3 1.778279-2 8.229619+2 2.018366-2 6.330135+2 2.300000-2 4.793200+2 2.600160-2 3.666940+2 2.951209-2 2.762916+2 3.349654-2 2.068606+2 3.845918-2 1.498225+2 4.415704-2 1.077604+2 5.188000-2 7.278931+1 6.025596-2 5.019621+1 7.161434-2 3.244525+1 8.709636-2 1.961982+1 1.059254-1 1.176487+1 2.187762-1 1.724572+0 2.754229-1 9.433832-1 3.311311-1 5.863233-1 3.890451-1 3.892590-1 4.518559-1 2.680610-1 5.128614-1 1.968410-1 5.821032-1 1.456191-1 6.606935-1 1.085410-1 7.413102-1 8.367523-2 8.317638-1 6.483081-2 9.120108-1 5.320854-2 9.885531-1 4.504141-2 1.122018+0 3.501920-2 1.258925+0 2.804486-2 1.428894+0 2.215411-2 1.640590+0 1.726276-2 1.862087+0 1.382844-2 2.113489+0 1.115641-2 2.426610+0 8.891524-3 2.786121+0 7.137098-3 3.235937+0 5.668533-3 3.758374+0 4.536737-3 4.365158+0 3.657523-3 5.188000+0 2.875700-3 6.165950+0 2.278446-3 7.413102+0 1.792270-3 8.912509+0 1.420432-3 1.100000+1 1.097700-3 1.400000+1 8.245800-4 1.757924+1 6.344862-4 2.290868+1 4.713019-4 2.951209+1 3.571144-4 4.168694+1 2.464068-4 6.165950+1 1.632257-4 1.000000+2 9.898000-5 1.972423+2 4.950717-5 3.935501+2 2.464944-5 1.566751+3 6.159644-6 1.000000+5 9.634100-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.673600-3 4.834900-4 1.000000+5 4.834900-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.673600-3 9.409400-7 1.000000+5 9.409400-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.673600-3 1.189169-3 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.315900-3 1.339788+5 1.430000-3 1.224105+5 1.659587-3 1.030278+5 1.927525-3 8.528757+4 2.104000-3 7.593193+4 2.400000-3 6.302680+4 2.660725-3 5.396560+4 3.070000-3 4.325680+4 3.388442-3 3.683037+4 3.935501-3 2.863007+4 4.365158-3 2.387243+4 5.000000-3 1.869020+4 5.688529-3 1.468209+4 6.382635-3 1.176575+4 7.328245-3 8.947418+3 8.317638-3 6.907046+3 9.440609-3 5.294331+3 1.071519-2 4.029976+3 1.230269-2 2.968238+3 1.412538-2 2.168043+3 1.621810-2 1.570536+3 1.862087-2 1.128505+3 2.113489-2 8.276922+2 2.400000-2 6.023680+2 2.754229-2 4.239286+2 3.162278-2 2.957473+2 3.672823-2 1.985730+2 4.265795-2 1.322559+2 4.954502-2 8.741084+1 5.821032-2 5.550371+1 6.918310-2 3.384562+1 8.222426-2 2.048754+1 1.023293-1 1.074695+1 1.396368-1 4.253844+0 2.041738-1 1.363861+0 2.511886-1 7.381890-1 2.985383-1 4.457871-1 3.467369-1 2.900145-1 3.981072-1 1.964493-1 4.518559-1 1.384558-1 5.069907-1 1.014192-1 5.623413-1 7.711622-2 6.309573-1 5.731892-2 6.998420-1 4.418668-2 8.317638-1 2.896070-2 8.912509-1 2.458144-2 9.549926-1 2.100437-2 1.011579+0 1.853952-2 1.083927+0 1.607204-2 1.174898+0 1.370660-2 1.288250+0 1.151828-2 1.445440+0 9.349636-3 1.757924+0 6.601175-3 1.995262+0 5.305903-3 2.290868+0 4.216254-3 2.630268+0 3.374413-3 3.054921+0 2.671807-3 3.548134+0 2.132242-3 4.120975+0 1.714245-3 4.841724+0 1.365735-3 5.754399+0 1.078769-3 6.839116+0 8.587672-4 8.222427+0 6.783458-4 1.011579+1 5.246783-4 1.258925+1 4.034412-4 1.566751+1 3.124836-4 2.065380+1 2.283997-4 2.722701+1 1.683022-4 3.935501+1 1.131153-4 5.688529+1 7.666843-5 9.120108+1 4.698158-5 1.717908+2 2.459537-5 3.427678+2 1.223410-5 6.839116+2 6.106499-6 5.432503+3 7.660537-7 1.000000+5 4.159800-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.315900-3 4.160400-4 1.000000+5 4.160400-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.315900-3 8.815300-7 1.000000+5 8.815300-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.315900-3 8.989785-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-3 1.386834+5 1.040700-3 1.490053+5 1.071519-3 1.622316+5 1.110000-3 1.722167+5 1.153000-3 1.817390+5 1.190000-3 1.875026+5 1.230269-3 1.905468+5 1.258925-3 1.893169+5 1.330000-3 1.830520+5 1.400000-3 1.761516+5 1.470000-3 1.689360+5 1.548817-3 1.608362+5 1.650000-3 1.504784+5 1.757924-3 1.398005+5 1.883649-3 1.280775+5 2.000000-3 1.180472+5 2.162719-3 1.052907+5 2.317395-3 9.469338+4 2.454709-3 8.618313+4 2.691535-3 7.346487+4 2.917427-3 6.353584+4 3.150000-3 5.493800+4 3.467369-3 4.543352+4 3.758374-3 3.852945+4 4.120975-3 3.165206+4 4.570882-3 2.518536+4 5.011872-3 2.039366+4 5.559043-3 1.596808+4 6.095369-3 1.275554+4 6.760830-3 9.838595+3 7.500000-3 7.527720+3 8.317638-3 5.723643+3 9.225714-3 4.319885+3 1.023293-2 3.238748+3 1.150000-2 2.323412+3 1.303167-2 1.613491+3 1.479108-2 1.105308+3 1.678804-2 7.507060+2 1.905461-2 5.057201+2 2.162719-2 3.380318+2 2.426610-2 2.329065+2 2.786121-2 1.478563+2 3.235937-2 8.959609+1 3.715352-2 5.601009+1 4.365158-2 3.211772+1 5.188000-2 1.755630+1 6.309573-2 8.780497+0 8.035261-2 3.697764+0 1.445440-1 4.475787-1 1.757924-1 2.229527-1 2.041738-1 1.316770-1 2.511886-1 6.416697-2 2.884032-1 4.003112-2 3.273407-1 2.617125-2 3.672823-1 1.791442-2 4.120975-1 1.235438-2 4.623810-1 8.588202-3 5.128614-1 6.236645-3 5.623413-1 4.725182-3 6.095369-1 3.729195-3 6.683439-1 2.869294-3 7.328245-1 2.222938-3 8.035261-1 1.732175-3 8.609938-1 1.431936-3 9.120108-1 1.229762-3 9.549926-1 1.095103-3 1.000000+0 9.814258-4 1.047129+0 8.855935-4 1.109175+0 7.845548-4 1.174898+0 6.998788-4 1.258925+0 6.147493-4 1.364583+0 5.322808-4 1.531087+0 4.360639-4 1.840772+0 3.148198-4 2.044000+0 2.631533-4 2.344229+0 2.097513-4 2.691535+0 1.680670-4 3.126079+0 1.332354-4 3.630781+0 1.064479-4 4.216965+0 8.567513-5 4.954502+0 6.833162-5 5.888437+0 5.402699-5 7.000000+0 4.304000-5 8.413951+0 3.403926-5 1.035142+1 2.635114-5 1.303167+1 2.000447-5 1.640590+1 1.530912-5 2.187762+1 1.106250-5 2.851018+1 8.268816-6 4.073803+1 5.631671-6 5.956621+1 3.774076-6 9.549926+1 2.314448-6 1.840772+2 1.184312-6 3.672823+2 5.893841-7 1.462177+3 1.472284-7 9.225714+4 2.328961-9 1.000000+5 2.148700-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-3 3.351200-4 1.000000+5 3.351200-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-3 6.025000-7 1.000000+5 6.025000-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.024000-3 6.882775-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 9.600700-4 5.914396+4 9.605000-4 6.445200+4 9.618000-4 7.877640+4 9.624000-4 8.615880+4 9.631000-4 9.528720+4 9.638000-4 1.049424+5 9.646000-4 1.164888+5 9.654000-4 1.285050+5 9.661000-4 1.393128+5 9.669000-4 1.518666+5 9.677000-4 1.644834+5 9.685000-4 1.770096+5 9.692000-4 1.877922+5 9.700000-4 1.997820+5 9.708000-4 2.113218+5 9.715000-4 2.209602+5 9.723000-4 2.313900+5 9.733000-4 2.434632+5 9.740000-4 2.512560+5 9.750000-4 2.614242+5 9.760000-4 2.704854+5 9.772372-4 2.802423+5 9.785000-4 2.887020+5 9.800000-4 2.970618+5 9.815000-4 3.038796+5 9.835000-4 3.111300+5 9.850000-4 3.155244+5 9.880000-4 3.224970+5 9.915000-4 3.287364+5 9.950000-4 3.337950+5 1.000000-3 3.396180+5 1.006000-3 3.446226+5 1.012000-3 3.475224+5 1.019000-3 3.486540+5 1.080000-3 3.428772+5 1.163700-3 3.289386+5 1.230269-3 3.160725+5 1.303167-3 3.011612+5 1.380384-3 2.851877+5 1.479108-3 2.651163+5 1.584893-3 2.445184+5 1.690000-3 2.252352+5 1.800000-3 2.065674+5 1.905461-3 1.901382+5 2.113489-3 1.618074+5 2.264644-3 1.443129+5 2.454709-3 1.251417+5 2.722701-3 1.033672+5 2.917427-3 9.044342+4 3.235937-3 7.334160+4 3.507519-3 6.195134+4 3.845918-3 5.069801+4 4.216965-3 4.122235+4 4.650000-3 3.283854+4 5.128614-3 2.596098+4 5.688529-3 2.008425+4 6.237348-3 1.588345+4 6.918310-3 1.211093+4 7.673615-3 9.164871+3 8.511380-3 6.887401+3 9.549926-3 4.973723+3 1.083927-2 3.443173+3 1.230269-2 2.360560+3 1.400000-2 1.590414+3 1.584893-2 1.079040+3 1.800000-2 7.184880+2 2.041738-2 4.763715+2 2.300000-2 3.207138+2 2.600160-2 2.119699+2 2.951209-2 1.372470+2 3.388442-2 8.476649+1 3.935501-2 4.990638+1 4.623810-2 2.797410+1 5.559043-2 1.432281+1 6.760830-2 6.974401+0 8.413951-2 3.094109+0 9.549926-2 1.925122+0 1.122019-1 1.043277+0 1.258925-1 6.778812-1 1.348963-1 5.257322-1 1.584893-1 2.929945-1 2.018366-1 1.213109-1 2.317395-1 7.405511-2 2.630268-1 4.744781-2 2.951209-1 3.187343-2 3.311311-1 2.155776-2 3.672823-1 1.527146-2 4.027170-1 1.131450-2 4.415705-1 8.443860-3 4.841724-1 6.345864-3 5.308844-1 4.803935-3 5.821032-1 3.663576-3 6.309573-1 2.908901-3 6.839117-1 2.324815-3 7.413102-1 1.873203-3 8.128305-1 1.474274-3 9.015711-1 1.132863-3 9.549926-1 9.808640-4 1.000000+0 8.798025-4 1.059254+0 7.751266-4 1.122018+0 6.880945-4 1.188502+0 6.147278-4 1.288250+0 5.292885-4 1.412538+0 4.496800-4 1.531087+0 3.909095-4 1.819701+0 2.879350-4 2.044000+0 2.359347-4 2.344229+0 1.880703-4 2.691535+0 1.506946-4 3.090295+0 1.215815-4 3.589219+0 9.708390-5 4.168694+0 7.809686-5 4.897788+0 6.225536-5 5.821032+0 4.919757-5 6.918310+0 3.918458-5 8.317638+0 3.096618-5 1.023293+1 2.396209-5 1.273503+1 1.843247-5 1.600000+1 1.412700-5 2.137962+1 1.017744-5 2.800000+1 7.561500-6 4.027170+1 5.112100-6 5.888437+1 3.425068-6 9.440609+1 2.100017-6 1.798871+2 1.087077-6 3.589219+2 5.409010-7 1.428894+3 1.350935-7 9.015711+4 2.136967-9 1.000000+5 1.926600-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 9.600700-4 3.169000-4 1.000000+5 3.169000-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.600700-4 1.038700-7 1.000000+5 1.038700-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.600700-4 6.430661-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 5.739300-4 6.604619+4 5.739600-4 6.499500+4 5.744000-4 6.218520+4 5.748500-4 5.986602+4 5.753000-4 5.792778+4 5.757000-4 5.648490+4 5.762000-4 5.496852+4 5.770000-4 5.305332+4 5.777000-4 5.175894+4 5.785000-4 5.061684+4 5.797000-4 4.935360+4 5.810000-4 4.840758+4 5.825000-4 4.768578+4 5.848000-4 4.704096+4 5.870000-4 4.670994+4 5.900000-4 4.654440+4 5.925000-4 4.663764+4 5.950800-4 4.701725+4 5.970000-4 4.754688+4 5.993000-4 4.853316+4 6.007000-4 4.935756+4 6.025596-4 5.076817+4 6.040000-4 5.213478+4 6.057000-4 5.409834+4 6.073000-4 5.632680+4 6.090000-4 5.915142+4 6.107000-4 6.248940+4 6.123000-4 6.615600+4 6.140000-4 7.065300+4 6.157000-4 7.583640+4 6.180000-4 8.405100+4 6.200000-4 9.242640+4 6.230000-4 1.073784+5 6.260000-4 1.254882+5 6.335000-4 1.862790+5 6.370000-4 2.227362+5 6.400000-4 2.581542+5 6.430000-4 2.973210+5 6.460000-4 3.401052+5 6.490000-4 3.863184+5 6.515000-4 4.272888+5 6.540000-4 4.703178+5 6.565000-4 5.152116+5 6.590000-4 5.617434+5 6.615000-4 6.096540+5 6.640000-4 6.586320+5 6.670000-4 7.183560+5 6.700000-4 7.785180+5 6.730000-4 8.384640+5 6.760830-4 8.991619+5 6.790000-4 9.550560+5 6.820000-4 1.010622+6 6.850000-4 1.063698+6 6.881100-4 1.115729+6 6.918310-4 1.173611+6 6.950000-4 1.219050+6 6.985000-4 1.264890+6 7.020000-4 1.306626+6 7.060000-4 1.349274+6 7.100000-4 1.386888+6 7.150000-4 1.427298+6 7.205000-4 1.464036+6 7.260000-4 1.493496+6 7.328245-4 1.521040+6 7.413102-4 1.543394+6 7.500000-4 1.554810+6 7.585776-4 1.557877+6 7.690000-4 1.553094+6 7.852356-4 1.535018+6 8.035261-4 1.504722+6 8.222426-4 1.466620+6 8.511380-4 1.401268+6 8.912509-4 1.307536+6 9.332543-4 1.211683+6 9.885531-4 1.093204+6 1.050000-3 9.739080+5 1.122018-3 8.503536+5 1.190000-3 7.489980+5 1.258925-3 6.598809+5 1.350000-3 5.600916+5 1.450000-3 4.694856+5 1.584893-3 3.742390+5 1.698244-3 3.117503+5 1.862087-3 2.421210+5 2.041738-3 1.868208+5 2.220000-3 1.464216+5 2.454709-3 1.085745+5 2.660725-3 8.488669+4 2.985383-3 5.925766+4 3.273407-3 4.411932+4 3.650000-3 3.091206+4 4.073803-3 2.140039+4 4.500000-3 1.523478+4 5.011872-3 1.046942+4 5.623413-3 6.953731+3 6.237348-3 4.778573+3 6.918310-3 3.263881+3 7.800000-3 2.082930+3 8.810489-3 1.309039+3 1.000000-2 8.008740+2 1.135011-2 4.858136+2 1.273503-2 3.062466+2 1.428894-2 1.918453+2 1.610000-2 1.174110+2 1.862087-2 6.400989+1 2.137962-2 3.570774+1 2.483133-2 1.882229+1 2.917427-2 9.368719+0 3.467369-2 4.401511+0 4.216965-2 1.854695+0 5.623413-2 5.150935-1 7.498942-2 1.423518-1 9.015711-2 6.199829-2 1.035142-1 3.345098-2 1.161449-1 2.013213-2 1.298900-1 1.238204-2 1.513561-1 6.454382-3 1.757924-1 3.376407-3 1.949845-1 2.178339-3 2.162719-1 1.415480-3 2.426610-1 8.832908-4 2.869080-1 4.494278-4 3.198895-1 2.914888-4 3.548134-1 1.943335-4 3.935501-1 1.305391-4 4.315191-1 9.227940-5 4.731513-1 6.568837-5 5.308844-1 4.326268-5 5.623413-1 3.531019-5 5.956621-1 2.902342-5 6.237348-1 2.501021-5 6.683439-1 2.016532-5 7.498942-1 1.421480-5 8.709636-1 9.045566-6 9.225714-1 7.570281-6 9.549926-1 6.761148-6 9.885531-1 6.073512-6 1.023293+0 5.498681-6 1.047129+0 5.173012-6 1.083927+0 4.754792-6 1.122018+0 4.404412-6 1.161449+0 4.107103-6 1.202264+0 3.851211-6 1.288250+0 3.421854-6 1.364583+0 3.121103-6 1.500000+0 2.705004-6 1.659587+0 2.266855-6 1.927525+0 1.739537-6 2.137962+0 1.459921-6 2.454709+0 1.164268-6 2.818383+0 9.350554-7 3.273407+0 7.430906-7 3.801894+0 5.950625-7 4.415704+0 4.799969-7 5.248075+0 3.775902-7 6.237348+0 2.993339-7 7.498942+0 2.355731-7 9.015711+0 1.867849-7 1.100000+1 1.464300-7 1.396368+1 1.103243-7 1.757924+1 8.463579-8 2.290868+1 6.286836-8 2.951209+1 4.763656-8 4.216965+1 3.246892-8 6.165950+1 2.177409-8 9.885531+1 1.336003-8 1.927525+2 6.759988-9 3.845918+2 3.365209-9 1.531087+3 8.40855-10 1.000000+5 1.28510-11 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 5.739300-4 1.904700-4 1.000000+5 1.904700-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.739300-4 5.179000-8 1.000000+5 5.179000-8 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 5.739300-4 3.834082-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 5.561300-4 1.030064+5 5.562000-4 1.014480+5 5.565000-4 9.684240+4 5.568000-4 9.294240+4 5.572000-4 8.860400+4 5.575000-4 8.584880+4 5.579000-4 8.273680+4 5.584500-4 7.921192+4 5.590000-4 7.640704+4 5.597000-4 7.354832+4 5.603000-4 7.159352+4 5.609000-4 6.999728+4 5.617000-4 6.829304+4 5.628000-4 6.652232+4 5.638000-4 6.532864+4 5.650000-4 6.426848+4 5.665000-4 6.335240+4 5.687000-4 6.254568+4 5.710000-4 6.214384+4 5.732000-4 6.207464+4 5.755000-4 6.232104+4 5.777000-4 6.290912+4 5.800000-4 6.398400+4 5.822000-4 6.555736+4 5.840000-4 6.732200+4 5.858000-4 6.958680+4 5.872000-4 7.173952+4 5.890000-4 7.506856+4 5.908000-4 7.910216+4 5.923000-4 8.306160+4 5.940000-4 8.827520+4 5.958000-4 9.471600+4 5.980000-4 1.040224+5 6.000000-4 1.139928+5 6.025596-4 1.290962+5 6.050000-4 1.461952+5 6.090000-4 1.805656+5 6.165950-4 2.700817+5 6.200000-4 3.211504+5 6.230000-4 3.717712+5 6.263700-4 4.347175+5 6.290000-4 4.881360+5 6.320000-4 5.533904+5 6.350000-4 6.229088+5 6.382635-4 7.028734+5 6.410000-4 7.729552+5 6.441400-4 8.561242+5 6.470000-4 9.337760+5 6.500000-4 1.016392+6 6.531306-4 1.102942+6 6.565000-4 1.195312+6 6.600000-4 1.289120+6 6.630000-4 1.366808+6 6.660000-4 1.441280+6 6.685000-4 1.500488+6 6.720000-4 1.578672+6 6.760830-4 1.662321+6 6.800000-4 1.734824+6 6.839116-4 1.799772+6 6.890000-4 1.873720+6 6.930000-4 1.923960+6 6.985000-4 1.982680+6 7.040000-4 2.030424+6 7.100000-4 2.071400+6 7.161434-4 2.102565+6 7.244360-4 2.129728+6 7.328245-4 2.142920+6 7.413102-4 2.145080+6 7.500000-4 2.138808+6 7.650000-4 2.114728+6 7.852356-4 2.066498+6 8.035261-4 2.012789+6 8.317638-4 1.920955+6 8.700000-4 1.793168+6 9.120108-4 1.656169+6 9.700000-4 1.480584+6 1.031000-3 1.314308+6 1.096478-3 1.156663+6 1.170000-3 1.003816+6 1.258925-3 8.488604+5 1.333521-3 7.398562+5 1.428894-3 6.226082+5 1.570000-3 4.883968+5 1.690000-3 4.009536+5 1.862087-3 3.063377+5 2.018366-3 2.434241+5 2.220000-3 1.840568+5 2.426610-3 1.408305+5 2.691535-3 1.022972+5 2.951209-3 7.648402+4 3.273407-3 5.474121+4 3.630781-3 3.887667+4 4.027170-3 2.741078+4 4.518559-3 1.843105+4 5.011872-3 1.279685+4 5.559043-3 8.826513+3 6.237348-3 5.796931+3 7.079458-3 3.616970+3 8.035261-3 2.235768+3 9.120108-3 1.369421+3 1.023293-2 8.702931+2 1.150000-2 5.456256+2 1.288250-2 3.441711+2 1.445440-2 2.143014+2 1.621810-2 1.326389+2 1.840772-2 7.775406+1 2.113489-2 4.307112+1 2.426610-2 2.368616+1 2.818383-2 1.230034+1 3.311311-2 6.026818+0 3.981072-2 2.644880+0 4.954502-2 9.857529-1 7.328245-2 1.666869-1 8.317638-2 9.393447-2 1.188502-1 1.882988-2 1.380384-1 9.658513-3 1.513561-1 6.433725-3 1.819701-1 2.887622-3 2.018366-1 1.853870-3 2.238721-1 1.198499-3 2.483133-1 7.801144-4 2.851018-1 4.440941-4 3.126079-1 3.070359-4 3.402400-1 2.202519-4 3.672823-1 1.644122-4 3.981072-1 1.216892-4 4.318900-1 9.047472-5 4.677351-1 6.827449-5 5.069907-1 5.173437-5 5.688529-1 3.515523-5 6.165950-1 2.700050-5 6.683439-1 2.089101-5 7.161434-1 1.687700-5 7.673615-1 1.372326-5 8.222427-1 1.124345-5 8.810489-1 9.274545-6 9.225714-1 8.198644-6 9.660509-1 7.289854-6 1.011579+0 6.526593-6 1.059254+0 5.885655-6 1.109175+0 5.341926-6 1.174898+0 4.767870-6 1.258925+0 4.194159-6 1.364583+0 3.633559-6 1.513561+0 3.040658-6 1.840772+0 2.150633-6 2.044000+0 1.797729-6 2.344229+0 1.433018-6 2.691535+0 1.148176-6 3.090295+0 9.263073-7 3.589219+0 7.396565-7 4.168694+0 5.949946-7 4.897788+0 4.743031-7 5.821032+0 3.748182-7 6.918310+0 2.985369-7 8.317638+0 2.359202-7 1.023293+1 1.825570-7 1.273503+1 1.404286-7 1.600000+1 1.076300-7 2.113489+1 7.854301-8 2.754229+1 5.864898-8 3.981072+1 3.942797-8 5.754399+1 2.672982-8 9.225714+1 1.638244-8 1.737801+2 8.577896-9 3.467369+2 4.267037-9 6.918310+2 2.130041-9 5.495409+3 2.67217-10 1.000000+5 1.46780-11 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 5.561300-4 1.843900-4 1.000000+5 1.843900-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.561300-4 1.273000-7 1.000000+5 1.273000-7 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.561300-4 3.716127-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.286300-4 4.303313+4 5.754399-4 3.217995+4 6.237348-4 2.980246+4 8.128305-4 2.272998+4 9.225714-4 1.973817+4 1.047129-3 1.705119+4 1.174898-3 1.480210+4 1.350000-3 1.239348+4 1.548817-3 1.030918+4 1.778279-3 8.512718+3 2.113489-3 6.638752+3 2.570396-3 4.960573+3 3.126079-3 3.672773+3 3.801894-3 2.698934+3 4.623810-3 1.968433+3 5.559043-3 1.452743+3 6.760830-3 1.043831+3 8.128305-3 7.589150+2 9.772372-3 5.476534+2 1.188502-2 3.840822+2 1.445440-2 2.671290+2 1.737801-2 1.883381+2 2.089296-2 1.317648+2 2.511886-2 9.147620+1 3.019952-2 6.301023+1 3.630781-2 4.305848+1 4.315191-2 2.991546+1 5.188000-2 2.013052+1 6.237348-2 1.344143+1 7.498942-2 8.907521+0 9.120108-2 5.709804+0 1.122019-1 3.538482+0 1.445440-1 1.955085+0 2.722701-1 4.388541-1 3.388442-1 2.636905-1 4.027170-1 1.775356-1 4.786301-1 1.205334-1 5.623413-1 8.460208-2 6.531306-1 6.135763-2 7.585776-1 4.483112-2 8.810489-1 3.298056-2 1.000000+0 2.561090-2 1.216186+0 1.748627-2 1.380384+0 1.375912-2 1.548817+0 1.113657-2 1.757924+0 8.892070-3 2.000000+0 7.123696-3 2.290868+0 5.683469-3 2.630268+0 4.548611-3 3.054921+0 3.601427-3 3.548134+0 2.874060-3 4.120975+0 2.310662-3 4.841724+0 1.841010-3 5.754399+0 1.454099-3 6.839116+0 1.157589-3 8.222427+0 9.143727-4 1.011579+1 7.072419-4 1.258925+1 5.438263-4 1.566751+1 4.212077-4 2.065380+1 3.078698-4 2.722701+1 2.268592-4 3.935501+1 1.524816-4 5.688529+1 1.033440-4 9.120108+1 6.332923-5 1.717908+2 3.315350-5 3.427678+2 1.649042-5 6.839116+2 8.231214-6 5.432503+3 1.032617-6 1.000000+5 5.607200-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.286300-4 2.211500-4 1.000000+5 2.211500-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.286300-4 1.415700-8 1.000000+5 1.415700-8 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.286300-4 2.074658-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.527600-4 1.484556+5 3.530500-4 1.468244+5 3.536000-4 1.418770+5 3.542000-4 1.375012+5 3.548134-4 1.338110+5 3.556000-4 1.299314+5 3.567000-4 1.257180+5 3.579000-4 1.221312+5 3.590000-4 1.195198+5 3.610000-4 1.158280+5 3.637000-4 1.120488+5 3.680000-4 1.073452+5 3.801894-4 9.595209+4 3.950000-4 8.359660+4 4.280000-4 6.367500+4 4.570882-4 5.212420+4 4.850000-4 4.378560+4 5.080000-4 3.841760+4 5.300000-4 3.432840+4 5.500000-4 3.132320+4 5.727800-4 2.853625+4 6.000000-4 2.585940+4 6.309573-4 2.343129+4 6.606934-4 2.155388+4 6.918310-4 1.995992+4 7.244360-4 1.861246+4 7.585776-4 1.746837+4 8.035261-4 1.625487+4 8.609938-4 1.502491+4 9.332543-4 1.381669+4 1.035142-3 1.251966+4 1.445440-3 9.257284+3 1.659587-3 8.109698+3 1.883649-3 7.133227+3 2.150000-3 6.190600+3 2.426610-3 5.396972+3 2.754229-3 4.641314+3 3.126079-3 3.962167+3 3.548134-3 3.357331+3 4.027170-3 2.824666+3 4.570882-3 2.359115+3 5.188000-3 1.955818+3 5.888437-3 1.609475+3 6.683439-3 1.314448+3 7.500000-3 1.086118+3 8.413951-3 8.923133+2 9.500000-3 7.203380+2 1.071519-2 5.787922+2 1.216186-2 4.566068+2 1.380384-2 3.577115+2 1.566751-2 2.783176+2 1.798871-2 2.100345+2 2.065380-2 1.572470+2 2.371374-2 1.168016+2 2.722701-2 8.610419+1 3.126079-2 6.300841+1 3.630781-2 4.456446+1 4.216965-2 3.127394+1 4.897788-2 2.178544+1 5.754399-2 1.464419+1 6.839116-2 9.492436+0 8.222426-2 5.930483+0 1.023293-1 3.361691+0 1.380384-1 1.529862+0 2.426610-1 3.450538-1 2.985383-1 2.009908-1 3.548134-1 1.290172-1 4.120975-1 8.846378-2 4.731513-1 6.287255-2 5.370318-1 4.628229-2 6.095369-1 3.431812-2 6.918310-1 2.565764-2 7.762471-1 1.983741-2 8.709636-1 1.541949-2 9.549926-1 1.269262-2 1.035142+0 1.078127-2 1.174898+0 8.404730-3 1.303167+0 6.898035-3 1.479108+0 5.461137-3 1.698244+0 4.262964-3 1.927525+0 3.421464-3 2.213095+0 2.713644-3 2.540973+0 2.167956-3 2.917427+0 1.744108-3 3.388442+0 1.388589-3 3.935501+0 1.113882-3 4.623810+0 8.855120-4 5.495409+0 6.980038-4 6.456542+0 5.629505-4 7.762471+0 4.436550-4 9.440609+0 3.472586-4 1.148154+1 2.737671-4 1.428894+1 2.113920-4 1.800000+1 1.621700-4 2.344229+1 1.206216-4 3.126079+1 8.809122-5 4.415704+1 6.085838-5 6.606934+1 3.987946-5 1.083927+2 2.392410-5 2.137962+2 1.197934-5 4.265795+2 5.967127-6 1.698244+3 1.491575-6 1.000000+5 2.529400-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.527600-4 2.020300-4 1.000000+5 2.020300-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.527600-4 2.841400-8 1.000000+5 2.841400-8 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.527600-4 1.507016-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.603600-4 3.295200+5 2.750000-4 3.006089+5 2.851018-4 2.840812+5 3.162278-4 2.452816+5 3.672823-4 2.052363+5 3.935501-4 1.904077+5 5.370318-4 1.383199+5 6.200000-4 1.185604+5 7.079458-4 1.020942+5 8.035261-4 8.784753+4 9.120108-4 7.503457+4 1.035142-3 6.362138+4 1.174898-3 5.355321+4 1.333521-3 4.477081+4 1.531087-3 3.655353+4 1.757924-3 2.962227+4 2.041738-3 2.340386+4 2.371374-3 1.834855+4 2.754229-3 1.427858+4 3.198895-3 1.103126+4 3.715352-3 8.461240+3 4.315191-3 6.441349+3 5.011872-3 4.865160+3 5.754399-3 3.727561+3 6.606934-3 2.835782+3 7.585776-3 2.140980+3 8.709636-3 1.604485+3 1.000000-2 1.192952+3 1.148154-2 8.802891+2 1.318257-2 6.446538+2 1.513561-2 4.684941+2 1.737801-2 3.378567+2 2.000000-2 2.404280+2 2.290868-2 1.717578+2 2.630268-2 1.210737+2 3.019952-2 8.472196+1 3.467369-2 5.885840+1 4.027170-2 3.936106+1 4.677351-2 2.611438+1 5.432503-2 1.720118+1 6.309573-2 1.125355+1 7.498942-2 6.844012+0 9.120108-2 3.864016+0 1.083927-1 2.318515+0 2.162719-1 2.944302-1 2.630268-1 1.652817-1 3.090295-1 1.034628-1 3.548134-1 6.970908-2 4.027170-1 4.885373-2 4.570882-1 3.448533-2 5.128614-1 2.529741-2 5.754399-1 1.868904-2 6.382635-1 1.432746-2 7.079458-1 1.105704-2 7.852356-1 8.589563-3 8.709636-1 6.689037-3 9.332543-1 5.697084-3 9.885531-1 5.013230-3 1.059254+0 4.334378-3 1.148154+0 3.687731-3 1.250000+0 3.134400-3 1.380384+0 2.612893-3 1.757924+0 1.698934-3 1.972423+0 1.392556-3 2.264644+0 1.106118-3 2.630268+0 8.686631-4 3.019952+0 6.999372-4 3.507519+0 5.582453-4 4.073803+0 4.485572-4 4.786301+0 3.571925-4 5.688529+0 2.819861-4 6.760830+0 2.243720-4 8.128305+0 1.771437-4 1.000000+1 1.369600-4 1.244515+1 1.052676-4 1.548817+1 8.150181-5 2.018366+1 6.032519-5 2.660725+1 4.441877-5 3.845918+1 2.983967-5 5.559043+1 2.021439-5 8.810489+1 1.253009-5 1.621810+2 6.712234-6 3.235937+2 3.337129-6 6.456542+2 1.665166-6 5.128614+3 2.088551-7 1.000000+5 1.070700-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.603600-4 1.456700-4 1.000000+5 1.456700-4 1 99000 7 7 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.603600-4 4.479300-9 1.000000+5 4.479300-9 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.603600-4 1.146855-4 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.481700-4 5.277242+5 1.484000-4 5.388760+5 1.491000-4 5.696520+5 1.500000-4 6.164920+5 1.525000-4 7.749520+5 1.535000-4 8.443120+5 1.545000-4 9.138520+5 1.555000-4 9.816160+5 1.563000-4 1.033256+6 1.572000-4 1.087396+6 1.580000-4 1.131228+6 1.587000-4 1.165728+6 1.595000-4 1.200388+6 1.605000-4 1.236312+6 1.615000-4 1.263984+6 1.623000-4 1.280360+6 1.631000-4 1.291864+6 1.643000-4 1.300872+6 1.656400-4 1.300597+6 1.670000-4 1.291412+6 1.685000-4 1.273200+6 1.705000-4 1.239540+6 1.730000-4 1.188612+6 1.760000-4 1.121724+6 1.800000-4 1.031516+6 1.850000-4 9.240320+5 1.905461-4 8.146866+5 1.960100-4 7.174953+5 2.018366-4 6.253974+5 2.264644-4 3.568798+5 2.350000-4 2.993776+5 2.450600-4 2.470370+5 2.540973-4 2.107688+5 2.620000-4 1.854740+5 2.691535-4 1.667348+5 2.754229-4 1.530148+5 2.830000-4 1.392568+5 2.900000-4 1.288552+5 2.951209-4 1.224353+5 3.019952-4 1.151643+5 3.090295-4 1.090852+5 3.162278-4 1.040553+5 3.240000-4 9.974160+4 3.320000-4 9.629200+4 3.390000-4 9.394440+4 3.470000-4 9.188240+4 3.550000-4 9.035560+4 3.650000-4 8.903640+4 3.780000-4 8.805400+4 3.935501-4 8.763455+4 4.120975-4 8.781074+4 4.954502-4 9.057028+4 5.308844-4 9.107891+4 5.688529-4 9.094384+4 6.025596-4 9.025847+4 6.382635-4 8.905515+4 6.760830-4 8.736865+4 7.161434-4 8.523177+4 7.673615-4 8.214240+4 8.222426-4 7.858224+4 8.810489-4 7.464464+4 9.500000-4 7.004160+4 1.023293-3 6.529608+4 1.110000-3 6.000360+4 1.202264-3 5.481195+4 1.303167-3 4.967545+4 1.412538-3 4.471426+4 1.548817-3 3.934764+4 1.698244-3 3.434488+4 1.850000-3 3.007156+4 2.041738-3 2.560726+4 2.264644-3 2.144451+4 2.483133-3 1.818880+4 2.722701-3 1.533371+4 3.019952-3 1.256094+4 3.349654-3 1.021068+4 3.715352-3 8.237815+3 4.120975-3 6.596877+3 4.570882-3 5.243710+3 5.069907-3 4.136972+3 5.623413-3 3.239974+3 6.237348-3 2.519173+3 6.918310-3 1.944771+3 7.673615-3 1.490706+3 8.511380-3 1.135019+3 9.440609-3 8.584627+2 1.059254-2 6.246821+2 1.188502-2 4.510387+2 1.333521-2 3.232128+2 1.500000-2 2.282034+2 1.678804-2 1.624029+2 1.883649-2 1.139298+2 2.137962-2 7.655414+1 2.426610-2 5.104528+1 2.754229-2 3.379461+1 3.162278-2 2.138751+1 3.630781-2 1.343692+1 4.216965-2 8.060484+0 4.954502-2 4.612879+0 5.956621-2 2.417761+0 7.328245-2 1.161816+0 8.912509-2 5.771465-1 1.023293-1 3.504052-1 1.288250-1 1.515763-1 1.496236-1 8.897000-2 1.757924-1 5.051820-2 2.371374-1 1.784518-2 2.754229-1 1.068230-2 3.126079-1 6.969006-3 3.507519-1 4.758737-3 3.935501-1 3.272293-3 4.365158-1 2.351388-3 4.841724-1 1.701290-3 5.370318-1 1.239943-3 5.888437-1 9.426178-4 6.382635-1 7.469586-4 6.998420-1 5.769236-4 7.673615-1 4.487256-4 8.035261-1 3.964605-4 8.609938-1 3.279479-4 9.120108-1 2.817870-4 9.549926-1 2.510211-4 1.000000+0 2.250300-4 1.047129+0 2.030986-4 1.109175+0 1.799501-4 1.174898+0 1.605312-4 1.258925+0 1.409946-4 1.364583+0 1.220651-4 1.531087+0 9.998118-5 1.840772+0 7.218341-5 2.065380+0 5.929290-5 2.371374+0 4.720077-5 2.722701+0 3.784232-5 3.162278+0 3.001811-5 3.672823+0 2.399704-5 4.265795+0 1.932537-5 5.011872+0 1.542142-5 5.956621+0 1.219849-5 7.161434+0 9.582028-6 8.609938+0 7.583267-6 1.059254+1 5.875679-6 1.348963+1 4.404218-6 1.698244+1 3.374661-6 2.238721+1 2.472500-6 2.884032+1 1.872475-6 4.120975+1 1.275583-6 6.025596+1 8.550313-7 9.660509+1 5.244500-7 1.883649+2 2.652799-7 3.758374+2 1.320371-7 1.496236+3 3.298893-8 1.000000+5 4.92670-10 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.481700-4 1.481700-4 1.000000+5 1.481700-4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.481700-4 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.344800-4 7.976885+5 1.348963-4 8.462942+5 1.360000-4 9.701460+5 1.370000-4 1.089330+6 1.378000-4 1.186482+6 1.387000-4 1.296096+6 1.395400-4 1.396895+6 1.402000-4 1.473954+6 1.410000-4 1.563666+6 1.418000-4 1.648152+6 1.427000-4 1.735644+6 1.435000-4 1.805592+6 1.443000-4 1.867446+6 1.452000-4 1.926678+6 1.462177-4 1.980123+6 1.470000-4 2.011458+6 1.480000-4 2.039640+6 1.490000-4 2.055348+6 1.500000-4 2.059782+6 1.513561-4 2.050275+6 1.525000-4 2.030748+6 1.540000-4 1.992816+6 1.555000-4 1.944702+6 1.570000-4 1.889844+6 1.590000-4 1.810722+6 1.621810-4 1.680333+6 1.659587-4 1.529452+6 1.717908-4 1.317315+6 1.780000-4 1.121628+6 1.850800-4 9.328141+5 2.080000-4 5.260926+5 2.162719-4 4.373337+5 2.240000-4 3.732084+5 2.300000-4 3.332454+5 2.359100-4 3.006364+5 2.426610-4 2.700929+5 2.483133-4 2.490542+5 2.540973-4 2.310720+5 2.600160-4 2.157886+5 2.660725-4 2.028886+5 2.722701-4 1.920899+5 2.786121-4 1.831426+5 2.851018-4 1.758238+5 2.917427-4 1.699317+5 2.985383-4 1.652847+5 3.054921-4 1.617166+5 3.130000-4 1.589526+5 3.200000-4 1.571880+5 3.311311-4 1.555977+5 3.430000-4 1.550574+5 3.600000-4 1.555266+5 4.350000-4 1.614042+5 4.677351-4 1.626225+5 5.000000-4 1.625340+5 5.308844-4 1.613823+5 5.650000-4 1.591074+5 6.025596-4 1.556540+5 6.456542-4 1.508237+5 6.918310-4 1.450299+5 7.413102-4 1.384257+5 8.000000-4 1.304148+5 8.609938-4 1.222388+5 9.225714-4 1.142624+5 1.000000-3 1.048578+5 1.083927-3 9.551298+4 1.174898-3 8.638619+4 1.273503-3 7.762043+4 1.400000-3 6.789960+4 1.513561-3 6.042832+4 1.659587-3 5.231352+4 1.850000-3 4.371912+4 2.041738-3 3.683964+4 2.238721-3 3.118962+4 2.454709-3 2.624363+4 2.722701-3 2.145198+4 3.054921-3 1.699323+4 3.400000-3 1.357212+4 3.758374-3 1.091715+4 4.168694-3 8.656796+3 4.623810-3 6.811584+3 5.128614-3 5.318942+3 5.688529-3 4.123941+3 6.309573-3 3.174271+3 7.000000-3 2.424438+3 7.762471-3 1.841004+3 8.609938-3 1.387383+3 9.549926-3 1.038505+3 1.071519-2 7.471129+2 1.202264-2 5.333265+2 1.348963-2 3.777608+2 1.513561-2 2.653878+2 1.698244-2 1.850443+2 1.905461-2 1.281028+2 2.162719-2 8.481360+1 2.454709-2 5.571782+1 2.786121-2 3.633360+1 3.162278-2 2.352712+1 3.630781-2 1.453537+1 4.216965-2 8.558482+0 4.954502-2 4.798122+0 5.888437-2 2.560027+0 7.161434-2 1.246614+0 8.810489-2 5.771256-1 1.023293-1 3.291997-1 1.273503-1 1.442534-1 1.445440-1 9.038527-2 1.659587-1 5.468259-2 1.927525-1 3.196052-2 2.317395-1 1.657523-2 2.630268-1 1.062557-2 2.951209-1 7.141876-3 3.273407-1 5.029651-3 3.630781-1 3.567041-3 4.027170-1 2.549099-3 4.415705-1 1.904321-3 4.841724-1 1.432292-3 5.308844-1 1.084817-3 5.821032-1 8.277732-4 6.309573-1 6.579702-4 6.918310-1 5.101859-4 7.585776-1 3.986676-4 8.709636-1 2.772022-4 9.225714-1 2.397966-4 9.660509-1 2.146976-4 1.011579+0 1.933445-4 1.071519+0 1.708739-4 1.135011+0 1.519884-4 1.216186+0 1.329981-4 1.318257+0 1.146748-4 1.840772+0 6.361656-5 2.065380+0 5.226271-5 2.371374+0 4.160374-5 2.722701+0 3.335510-5 3.126079+0 2.692712-5 3.630781+0 2.151410-5 4.216965+0 1.731584-5 4.954502+0 1.381014-5 5.888437+0 1.091920-5 7.000000+0 8.698700-6 8.413951+0 6.879638-6 1.035142+1 5.325866-6 1.303167+1 4.043076-6 1.621810+1 3.135249-6 2.137962+1 2.293996-6 2.800000+1 1.704300-6 4.027170+1 1.152260-6 5.888437+1 7.720009-7 9.440609+1 4.733389-7 1.798871+2 2.450283-7 3.589219+2 1.219146-7 1.428894+3 3.045063-8 9.015711+4 4.81663-10 1.000000+5 4.34260-10 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.344800-4 1.344800-4 1.000000+5 1.344800-4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.344800-4 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.154000-5 1.618638+6 1.160000-5 1.584845+6 1.202264-5 1.457591+6 1.245000-5 1.353402+6 1.280000-5 1.283013+6 1.324700-5 1.209069+6 1.364583-5 1.155683+6 1.412538-5 1.104780+6 1.462177-5 1.064228+6 1.500000-5 1.040741+6 1.550000-5 1.018089+6 1.603245-5 1.003298+6 1.650000-5 9.972043+5 1.698244-5 9.967985+5 1.750000-5 1.002480+6 1.800000-5 1.013421+6 1.862087-5 1.033822+6 1.927525-5 1.062908+6 2.000000-5 1.103469+6 2.070000-5 1.150475+6 2.153200-5 1.215594+6 2.238721-5 1.292652+6 2.330000-5 1.385101+6 2.454709-5 1.527941+6 2.600160-5 1.716923+6 2.800000-5 2.012431+6 3.349654-5 2.989207+6 3.589219-5 3.458798+6 3.801894-5 3.880735+6 4.027170-5 4.324478+6 4.220000-5 4.695480+6 4.415704-5 5.058806+6 4.677351-5 5.521734+6 4.954502-5 5.984929+6 5.248075-5 6.443500+6 5.559043-5 6.893155+6 5.900000-5 7.346325+6 6.237348-5 7.747277+6 6.531306-5 8.050171+6 6.839116-5 8.316588+6 7.161434-5 8.532522+6 7.413102-5 8.650541+6 7.673615-5 8.724236+6 7.943282-5 8.750140+6 8.222426-5 8.724682+6 8.511380-5 8.643837+6 8.810489-5 8.505860+6 9.120108-5 8.312616+6 9.440609-5 8.066474+6 9.772372-5 7.768226+6 1.010000-4 7.436368+6 1.040000-4 7.106368+6 1.071519-4 6.740229+6 1.100000-4 6.395924+6 1.128000-4 6.047821+6 1.161449-4 5.625020+6 1.190000-4 5.263929+6 1.220000-4 4.889284+6 1.250000-4 4.522645+6 1.280000-4 4.166636+6 1.315000-4 3.768636+6 1.350000-4 3.393605+6 1.380384-4 3.088723+6 1.415000-4 2.765308+6 1.450000-4 2.463957+6 1.490000-4 2.150989+6 1.531087-4 1.863788+6 1.566751-4 1.641082+6 1.603245-4 1.436604+6 1.640590-4 1.249856+6 1.678804-4 1.080534+6 1.720000-4 9.206207+5 1.760000-4 7.854809+5 1.800000-4 6.678452+5 1.840772-4 5.639248+5 1.880000-4 4.775576+5 1.915000-4 4.105798+5 1.956200-4 3.424903+5 1.995262-4 2.873426+5 2.020000-4 2.566205+5 2.060000-4 2.130996+5 2.100000-4 1.763691+5 2.137962-4 1.470015+5 2.170000-4 1.258640+5 2.220000-4 9.863379+4 2.315000-4 6.260389+4 2.350000-4 5.350861+4 2.380000-4 4.717401+4 2.407000-4 4.249852+4 2.430000-4 3.920625+4 2.450000-4 3.681530+4 2.465000-4 3.528924+4 2.485000-4 3.358620+4 2.500000-4 3.254185+4 2.515000-4 3.168441+4 2.530000-4 3.100292+4 2.545200-4 3.048118+4 2.560000-4 3.012667+4 2.575000-4 2.991259+4 2.590000-4 2.983570+4 2.610000-4 2.993202+4 2.630268-4 3.024352+4 2.650000-4 3.073599+4 2.670000-4 3.140905+4 2.691535-4 3.231164+4 2.722701-4 3.390866+4 2.754229-4 3.582874+4 2.800000-4 3.906991+4 2.951209-4 5.233054+4 3.019952-4 5.905221+4 3.080000-4 6.503693+4 3.130000-4 7.003644+4 3.180000-4 7.500860+4 3.235937-4 8.048411+4 3.300000-4 8.657086+4 3.360000-4 9.205028+4 3.427678-4 9.796325+4 3.507519-4 1.045561+5 3.589219-4 1.108271+5 3.672823-4 1.167148+5 3.758374-4 1.221688+5 3.845918-4 1.271516+5 3.935501-4 1.316383+5 4.073803-4 1.376298+5 4.168694-4 1.411376+5 4.315191-4 1.454709+5 4.466836-4 1.486863+5 4.623810-4 1.508130+5 4.786301-4 1.519111+5 4.954502-4 1.520668+5 5.188000-4 1.513033+5 5.370318-4 1.498953+5 5.559043-4 1.477979+5 5.821032-4 1.440683+5 6.095369-4 1.394971+5 6.382635-4 1.342911+5 6.683439-4 1.285180+5 7.079458-4 1.207320+5 7.498942-4 1.125673+5 7.943282-4 1.042030+5 8.413951-4 9.583448+4 8.912509-4 8.759175+4 9.440609-4 7.959248+4 1.011579-3 7.043785+4 1.083927-3 6.188761+4 1.161449-3 5.399810+4 1.244515-3 4.680423+4 1.333521-3 4.031611+4 1.445440-3 3.362392+4 1.566751-3 2.784400+4 1.698244-3 2.290351+4 1.840772-3 1.872028+4 2.000000-3 1.510499+4 2.187762-3 1.188789+4 2.398833-3 9.228145+3 2.630268-3 7.113155+3 2.884032-3 5.447592+3 3.162278-3 4.144338+3 3.467369-3 3.131492+3 3.801894-3 2.349563+3 4.168694-3 1.750144+3 4.518559-3 1.343661+3 5.011872-3 9.486330+2 5.688529-3 6.144628+2 6.309573-3 4.278539+2 7.019000-3 2.928302+2 7.762471-3 2.031148+2 8.609938-3 1.384528+2 9.660509-3 8.974421+1 1.083927-2 5.771662+1 1.216186-2 3.684152+1 1.364583-2 2.334915+1 1.548817-2 1.402786+1 1.757924-2 8.362493+0 1.995262-2 4.949009+0 2.290868-2 2.770407+0 2.630268-2 1.539450+0 3.054921-2 8.086462-1 3.630781-2 3.815762-1 4.415704-2 1.615921-1 6.760830-2 2.461849-2 9.772372-2 4.795201-3 1.188502-1 1.999909-3 1.303167-1 1.331880-3 1.445440-1 8.510154-4 1.621810-1 5.211445-4 1.840772-1 3.061795-4 2.290868-1 1.233544-4 2.570396-1 7.694985-5 2.884032-1 4.834722-5 3.198895-1 3.205374-5 3.548134-1 2.140813-5 3.935501-1 1.440802-5 4.315191-1 1.020288-5 4.731513-1 7.274023-6 5.248075-1 5.009464-6 5.688529-1 3.773401-6 6.025596-1 3.098197-6 6.456542-1 2.471751-6 6.998420-1 1.914607-6 8.035261-1 1.251663-6 8.511380-1 1.038339-6 8.912509-1 8.987006-7 9.332543-1 7.830106-7 9.660509-1 7.100420-7 1.000000+0 6.475300-7 1.035142+0 5.942641-7 1.071519+0 5.485038-7 1.109175+0 5.088512-7 1.161449+0 4.635670-7 1.216186+0 4.250566-7 1.303167+0 3.761642-7 1.412538+0 3.288437-7 1.500000+0 2.984100-7 1.905461+0 1.957127-7 2.113489+0 1.641618-7 2.426610+0 1.308357-7 2.786121+0 1.050224-7 3.235937+0 8.341371-8 3.758374+0 6.675882-8 4.365158+0 5.382045-8 5.188000+0 4.231590-8 6.165950+0 3.352830-8 7.413102+0 2.637347-8 8.912509+0 2.090203-8 1.096478+1 1.621556-8 1.380384+1 1.233588-8 1.717908+1 9.584534-9 2.264644+1 7.024377-9 2.917427+1 5.321097-9 4.168694+1 3.625940-9 6.095369+1 2.431048-9 9.772372+1 1.491358-9 1.905461+2 7.54494-10 3.801894+2 3.75571-10 1.513561+3 9.38378-11 1.000000+5 1.41770-12 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.154000-5 1.154000-5 1.000000+5 1.154000-5 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.154000-5 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 9.610000-6 2.854435+6 9.630000-6 2.807192+6 9.660509-6 2.772326+6 9.690000-6 2.759402+6 1.000000-5 2.540640+6 1.023293-5 2.401392+6 1.050000-5 2.264383+6 1.085000-5 2.114016+6 1.122018-5 1.985760+6 1.161449-5 1.875404+6 1.202264-5 1.785185+6 1.244515-5 1.712765+6 1.288250-5 1.656077+6 1.333521-5 1.613731+6 1.380384-5 1.584696+6 1.428894-5 1.568201+6 1.480000-5 1.563709+6 1.531087-5 1.570647+6 1.590000-5 1.590976+6 1.650000-5 1.623643+6 1.717908-5 1.673499+6 1.778279-5 1.728126+6 1.850000-5 1.804407+6 1.927525-5 1.899686+6 2.018366-5 2.026896+6 2.113489-5 2.176698+6 2.238721-5 2.397477+6 2.371374-5 2.658377+6 2.580000-5 3.117744+6 3.126079-5 4.526767+6 3.349654-5 5.146308+6 3.589219-5 5.810080+6 3.801894-5 6.386543+6 4.027170-5 6.970180+6 4.265795-5 7.554489+6 4.518559-5 8.134520+6 4.800000-5 8.728337+6 5.150000-5 9.400468+6 5.500000-5 1.000415+7 5.888437-5 1.058669+7 6.237348-5 1.103074+7 6.531306-5 1.133228+7 6.839116-5 1.156928+7 7.161434-5 1.172901+7 7.413102-5 1.178500+7 7.673615-5 1.177763+7 7.943282-5 1.170525+7 8.222426-5 1.156713+7 8.511380-5 1.135929+7 8.810489-5 1.107908+7 9.150000-5 1.069784+7 9.440609-5 1.032836+7 9.772372-5 9.861337+6 1.010000-4 9.361496+6 1.040000-4 8.881771+6 1.071519-4 8.362213+6 1.100000-4 7.881463+6 1.128000-4 7.403246+6 1.161449-4 6.834462+6 1.190000-4 6.357556+6 1.220000-4 5.868087+6 1.250000-4 5.393435+6 1.280000-4 4.938148+6 1.315000-4 4.437058+6 1.350000-4 3.970702+6 1.380384-4 3.593865+6 1.415000-4 3.196541+6 1.450000-4 2.830235+6 1.490000-4 2.454224+6 1.520000-4 2.199873+6 1.560000-4 1.894557+6 1.600000-4 1.625529+6 1.640590-4 1.386881+6 1.678804-4 1.190450+6 1.717908-4 1.014478+6 1.757924-4 8.579337+5 1.798871-4 7.200228+5 1.835000-4 6.149360+5 1.865000-4 5.380945+5 1.900000-4 4.590875+5 1.940000-4 3.813817+5 1.980000-4 3.156074+5 2.018366-4 2.623113+5 2.050000-4 2.246525+5 2.090000-4 1.841311+5 2.137962-4 1.446370+5 2.250000-4 8.298457+4 2.284300-4 7.079288+4 2.308000-4 6.383076+4 2.330000-4 5.833359+4 2.350000-4 5.407892+4 2.371374-4 5.025210+4 2.390000-4 4.747748+4 2.405000-4 4.559503+4 2.420000-4 4.400619+4 2.435000-4 4.269317+4 2.450000-4 4.163893+4 2.465000-4 4.082738+4 2.483133-4 4.014885+4 2.500000-4 3.979408+4 2.515000-4 3.968665+4 2.535000-4 3.982588+4 2.550000-4 4.012697+4 2.573000-4 4.088905+4 2.595000-4 4.192895+4 2.620000-4 4.344218+4 2.647000-4 4.542865+4 2.670000-4 4.737508+4 2.710000-4 5.123350+4 2.851018-4 6.806279+4 2.917427-4 7.697372+4 2.985383-4 8.638127+4 3.019952-4 9.118743+4 3.054921-4 9.600226+4 3.090295-4 1.008413+5 3.126079-4 1.056887+5 3.162278-4 1.105287+5 3.198895-4 1.153452+5 3.235937-4 1.201228+5 3.311311-4 1.295003+5 3.388442-4 1.385456+5 3.467369-4 1.471539+5 3.548134-4 1.552350+5 3.630781-4 1.627148+5 3.715352-4 1.695373+5 3.801894-4 1.756651+5 3.890451-4 1.810792+5 4.073803-4 1.903343+5 4.168694-4 1.943313+5 4.315191-4 1.990042+5 4.466836-4 2.021245+5 4.623810-4 2.037747+5 4.786301-4 2.040771+5 4.954502-4 2.031835+5 5.188000-4 2.009679+5 5.370318-4 1.983196+5 5.623413-4 1.935099+5 5.888437-4 1.874651+5 6.165950-4 1.805029+5 6.456542-4 1.728089+5 6.839116-4 1.623890+5 7.244360-4 1.514381+5 7.673615-4 1.402481+5 8.128305-4 1.290146+5 8.609938-4 1.179484+5 9.120108-4 1.072000+5 9.792700-4 9.454303+4 1.047129-3 8.348761+4 1.122018-3 7.293402+4 1.202264-3 6.327187+4 1.273503-3 5.588688+4 1.364583-3 4.784673+4 1.479108-3 3.962955+4 1.621810-3 3.172801+4 1.757924-3 2.594542+4 1.905461-3 2.107697+4 2.065380-3 1.699594+4 2.264644-3 1.319274+4 2.483133-3 1.016870+4 2.917427-3 6.372273+3 3.198895-3 4.847268+3 3.507519-3 3.661249+3 3.758374-3 2.949679+3 4.073803-3 2.269171+3 4.466836-3 1.668412+3 4.897788-3 1.217728+3 5.432503-3 8.480819+2 6.456542-3 4.586748+2 7.161434-3 3.152285+2 8.000000-3 2.095782+2 8.912509-3 1.396122+2 9.885531-3 9.391648+1 1.109175-2 6.000260+1 1.244515-2 3.804584+1 1.396368-2 2.394947+1 1.566751-2 1.497179+1 1.778279-2 8.862250+0 2.018366-2 5.206615+0 2.290868-2 3.036852+0 2.630268-2 1.674197+0 3.054921-2 8.715405-1 3.589219-2 4.280453-1 4.315191-2 1.884384-1 6.382635-2 3.253124-2 8.912509-2 7.209751-3 1.188502-1 1.951261-3 1.303167-1 1.290432-3 1.445440-1 8.183720-4 1.603245-1 5.225579-4 1.798871-1 3.197558-4 2.213095-1 1.337248-4 2.454709-1 8.702497-5 2.722701-1 5.703622-5 3.000000-1 3.868800-5 3.273407-1 2.748260-5 3.589219-1 1.929464-5 3.890451-1 1.425304-5 4.216965-1 1.060031-5 4.570882-1 7.938146-6 4.954502-1 5.986021-6 5.370318-1 4.543868-6 5.754399-1 3.610333-6 6.095369-1 2.997075-6 6.531306-1 2.416852-6 6.998420-1 1.961649-6 7.585776-1 1.548770-6 8.035261-1 1.312551-6 8.511380-1 1.107127-6 9.015711-1 9.400937-7 9.440609-1 8.301551-7 9.885531-1 7.383190-7 1.035142+0 6.620839-7 1.083927+0 5.981870-7 1.135011+0 5.439332-7 1.202264+0 4.865999-7 1.303167+0 4.204061-7 1.428894+0 3.588578-7 1.513561+0 3.256098-7 1.862087+0 2.257925-7 2.065380+0 1.891522-7 2.371374+0 1.505575-7 2.722701+0 1.207121-7 3.162278+0 9.576217-8 3.672823+0 7.655620-8 4.265795+0 6.165270-8 5.011872+0 4.919769-8 5.956621+0 3.891779-8 7.161434+0 3.056900-8 8.609938+0 2.419246-8 1.059254+1 1.874498-8 1.333521+1 1.424177-8 1.659587+1 1.105243-8 2.200000+1 8.042200-9 2.851018+1 6.048705-9 4.073803+1 4.119610-9 5.956621+1 2.760733-9 9.549926+1 1.693044-9 1.840772+2 8.66330-10 3.672823+2 4.31134-10 1.462177+3 1.07700-10 4.623810+4 3.39881-12 1.000000+5 1.57180-12 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 9.610000-6 9.610000-6 1.000000+5 9.610000-6 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 9.610000-6 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.285000-5 4.642380+5 6.309573-5 4.624497+5 6.350000-5 4.573460+5 6.456542-5 4.391176+5 6.606934-5 4.121365+5 6.770000-5 3.829120+5 7.000000-5 3.439080+5 7.800000-5 2.399400+5 8.150000-5 2.084940+5 8.511380-5 1.825654+5 8.912509-5 1.596854+5 9.332543-5 1.406447+5 9.800000-5 1.237396+5 1.035142-4 1.079779+5 1.100000-4 9.352580+4 1.161449-4 8.275930+4 1.230269-4 7.319476+4 1.303167-4 6.522765+4 1.380384-4 5.859311+4 1.462177-4 5.304191+4 1.548817-4 4.834689+4 1.659587-4 4.357469+4 1.819701-4 3.826754+4 2.018366-4 3.332458+4 2.238721-4 2.923326+4 2.660725-4 2.375717+4 4.027170-4 1.450630+4 5.128614-4 1.077708+4 6.165950-4 8.524602+3 7.328245-4 6.798785+3 8.810489-4 5.298941+3 1.059254-3 4.096397+3 1.258925-3 3.195209+3 1.513561-3 2.432972+3 1.840772-3 1.807173+3 2.290868-3 1.285309+3 2.884032-3 8.905603+2 3.672823-3 6.010947+2 4.677351-3 4.025495+2 5.821032-3 2.780464+2 7.161434-3 1.943574+2 8.709636-3 1.375737+2 1.047129-2 9.869530+1 1.273503-2 6.866701+1 1.531087-2 4.845569+1 1.862087-2 3.315666+1 2.317395-2 2.152483+1 3.162278-2 1.153458+1 3.758374-2 8.100160+0 4.216965-2 6.365139+0 4.954502-2 4.506316+0 5.888437-2 3.089016+0 7.161434-2 1.998237+0 8.810489-2 1.249653+0 1.059254-1 8.177964-1 1.364583-1 4.522721-1 2.691535-1 9.102163-2 3.349654-1 5.467036-2 4.027170-1 3.584308-2 4.786301-1 2.433375-2 5.623413-1 1.707922-2 6.531306-1 1.238640-2 7.585776-1 9.050061-3 8.810489-1 6.657932-3 1.000000+0 5.170300-3 1.216186+0 3.530247-3 1.380384+0 2.777693-3 1.548817+0 2.248183-3 1.757924+0 1.795126-3 2.000000+0 1.438100-3 2.290868+0 1.147300-3 2.630268+0 9.182299-4 3.054921+0 7.270545-4 3.548134+0 5.802134-4 4.120975+0 4.664709-4 4.841724+0 3.716527-4 5.754399+0 2.935471-4 6.839116+0 2.336923-4 8.222427+0 1.845904-4 1.011579+1 1.427774-4 1.258925+1 1.097854-4 1.566751+1 8.503253-5 2.065380+1 6.215226-5 2.722701+1 4.579873-5 3.935501+1 3.078225-5 5.688529+1 2.086331-5 9.015711+1 1.293736-5 1.678804+2 6.851554-6 3.349654+2 3.407355-6 6.683439+2 1.700573-6 5.308844+3 2.133164-7 1.000000+5 1.132000-8 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.285000-5 6.285000-5 1.000000+5 6.285000-5 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.285000-5 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 4.002000-5 1.133638+7 4.027170-5 1.084896+7 4.080000-5 9.981120+6 4.130000-5 9.295000+6 4.200000-5 8.495500+6 4.265795-5 7.876356+6 4.350000-5 7.211000+6 4.420000-5 6.744040+6 4.518559-5 6.185923+6 4.650000-5 5.569400+6 4.800000-5 4.993240+6 5.011872-5 4.338490+6 5.370318-5 3.500458+6 6.309573-5 2.134663+6 7.943282-5 1.044784+6 8.912509-5 7.357121+5 1.083927-4 4.102694+5 1.531087-4 1.475517+5 1.819701-4 8.914133+4 2.089296-4 5.997482+4 2.344229-4 4.338673+4 2.600160-4 3.264195+4 2.818383-4 2.631159+4 3.054921-4 2.135156+4 3.311311-4 1.745755+4 3.548134-4 1.478784+4 3.801894-4 1.260654+4 4.073803-4 1.082617+4 4.365158-4 9.371601+3 4.623810-4 8.360841+3 4.954502-4 7.343376+3 5.308844-4 6.498086+3 5.688529-4 5.794989+3 6.095369-4 5.204328+3 6.606934-4 4.627376+3 7.161434-4 4.145150+3 7.852356-4 3.682976+3 8.709636-4 3.248213+3 1.000000-3 2.770020+3 1.513561-3 1.741272+3 1.819701-3 1.405433+3 2.113489-3 1.173078+3 2.454709-3 9.722087+2 2.851018-3 7.999413+2 3.311311-3 6.531637+2 3.801894-3 5.378885+2 4.365158-3 4.398869+2 5.011872-3 3.571395+2 5.623413-3 2.979397+2 6.456542-3 2.378987+2 7.328245-3 1.921777+2 8.413951-3 1.510529+2 9.660509-3 1.178487+2 1.135011-2 8.760017+1 1.303167-2 6.746847+1 1.500000-2 5.133454+1 1.717908-2 3.914398+1 1.949845-2 3.017382+1 2.187762-2 2.363695+1 2.511886-2 1.749817+1 2.884032-2 1.285656+1 3.311311-2 9.379312+0 3.845918-2 6.614120+0 4.466836-2 4.628307+0 5.248075-2 3.125893+0 6.165950-2 2.095161+0 7.328245-2 1.354046+0 8.912509-2 8.190475-1 1.083927-1 4.919138-1 1.479108-1 2.167296-1 2.344229-1 6.415070-2 2.884032-1 3.732663-2 3.427678-1 2.392695-2 4.027170-1 1.591476-2 4.623810-1 1.129811-2 5.308844-1 8.080602-3 6.025596-1 5.987394-3 6.839117-1 4.472989-3 7.673615-1 3.455832-3 8.709636-1 2.618988-3 9.549926-1 2.155869-3 1.035142+0 1.831050-3 1.174898+0 1.427471-3 1.303167+0 1.171639-3 1.479108+0 9.275330-4 1.698244+0 7.240501-4 1.927525+0 5.811226-4 2.213095+0 4.608685-4 2.540973+0 3.681974-4 2.917427+0 2.962291-4 3.388442+0 2.358392-4 3.935501+0 1.891761-4 4.623810+0 1.503952-4 5.495409+0 1.185537-4 6.456542+0 9.561511-5 7.762471+0 7.535093-5 9.440609+0 5.897900-5 1.148154+1 4.649721-5 1.428894+1 3.590333-5 1.800000+1 2.754400-5 2.344229+1 2.048707-5 3.090295+1 1.514973-5 4.365158+1 1.046310-5 6.531306+1 6.854885-6 1.059254+2 4.160459-6 2.113489+2 2.058436-6 4.216965+2 1.025307-6 1.678804+3 2.562733-7 1.000000+5 4.296000-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 4.002000-5 4.002000-5 1.000000+5 4.002000-5 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 4.002000-5 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.544000-5 3.293993+7 2.551000-5 3.204888+7 2.580000-5 2.960516+7 2.610000-5 2.741684+7 2.655000-5 2.465756+7 2.700000-5 2.237388+7 2.755000-5 2.005272+7 2.818383-5 1.786722+7 2.884032-5 1.600527+7 2.951209-5 1.441615+7 3.040000-5 1.268460+7 3.150000-5 1.096528+7 3.273407-5 9.435639+6 3.427678-5 7.939057+6 3.630781-5 6.448197+6 3.900000-5 5.018760+6 4.365158-5 3.413640+6 5.011872-5 2.145453+6 5.559043-5 1.524108+6 6.025596-5 1.175012+6 6.531306-5 9.124135+5 7.000000-5 7.390760+5 7.500000-5 6.035000+5 8.035261-5 4.968238+5 8.511380-5 4.250948+5 9.015711-5 3.660319+5 9.549926-5 3.172467+5 1.011579-4 2.767956+5 1.071519-4 2.431069+5 1.135011-4 2.148956+5 1.202264-4 1.911046+5 1.288250-4 1.672086+5 1.380384-4 1.473690+5 1.480000-4 1.306464+5 1.584893-4 1.168041+5 1.698244-4 1.049660+5 1.850000-4 9.264320+4 2.041738-4 8.086815+4 2.317395-4 6.848686+4 2.691535-4 5.674402+4 4.466836-4 3.067776+4 5.432503-4 2.402512+4 6.531306-4 1.894622+4 7.673615-4 1.528012+4 9.015711-4 1.223131+4 1.059254-3 9.717355+3 1.244515-3 7.659051+3 1.445440-3 6.093634+3 1.698244-3 4.727525+3 2.000000-3 3.625367+3 2.344229-3 2.780655+3 2.754229-3 2.108441+3 3.273407-3 1.555178+3 3.845918-3 1.161784+3 4.466836-3 8.797460+2 5.188000-3 6.613090+2 6.025596-3 4.933206+2 6.918310-3 3.737392+2 8.000000-3 2.770054+2 9.225714-3 2.047887+2 1.096478-2 1.407960+2 1.258925-2 1.036120+2 1.445440-2 7.567879+1 1.621810-2 5.783333+1 1.840772-2 4.272244+1 2.113489-2 3.047253+1 2.426610-2 2.157387+1 2.786121-2 1.516118+1 3.198895-2 1.057745+1 3.672823-2 7.327649+0 4.216965-2 5.041696+0 4.897788-2 3.337566+0 5.754399-2 2.123663+0 6.760830-2 1.340688+0 8.128305-2 7.861730-1 1.000000-1 4.277665-1 1.318257-1 1.879109-1 2.041738-1 5.087550-2 2.511886-1 2.755548-2 2.985383-1 1.665153-2 3.467369-1 1.084090-2 3.981072-1 7.349303-3 4.518559-1 5.184464-3 5.069907-1 3.800834-3 5.688529-1 2.806226-3 6.309573-1 2.150032-3 6.998420-1 1.658356-3 7.762471-1 1.287587-3 8.709636-1 9.755229-4 9.332543-1 8.309593-4 9.885531-1 7.312568-4 1.059254+0 6.322473-4 1.148154+0 5.379355-4 1.250000+0 4.572300-4 1.380384+0 3.811484-4 1.757924+0 2.478393-4 1.995262+0 1.992074-4 2.290868+0 1.583081-4 2.630268+0 1.266939-4 3.019952+0 1.020939-4 3.507519+0 8.142848-5 4.073803+0 6.543006-5 4.786301+0 5.210285-5 5.688529+0 4.113228-5 6.760830+0 3.272739-5 8.128305+0 2.583949-5 1.000000+1 1.997700-5 1.230269+1 1.556639-5 1.531087+1 1.204702-5 2.000000+1 8.890200-6 2.630268+1 6.561082-6 3.801894+1 4.406582-6 5.432503+1 3.020635-6 8.609938+1 1.871612-6 1.566751+2 1.014113-6 3.126079+2 5.040492-7 6.237348+2 2.514708-7 4.954502+3 3.153605-8 1.000000+5 1.561700-9 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.544000-5 2.544000-5 1.000000+5 2.544000-5 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.544000-5 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 1.080370+7 5.821032-6 1.061335+7 5.900000-6 1.021906+7 6.760830-6 6.719982+6 7.762471-6 4.426706+6 8.912509-6 2.940668+6 1.011579-5 2.035531+6 1.174898-5 1.328089+6 1.364583-5 8.735072+5 1.584893-5 5.785883+5 1.883649-5 3.626995+5 2.187762-5 2.437359+5 2.511886-5 1.700962+5 2.851018-5 1.232142+5 3.162278-5 9.521461+4 3.507519-5 7.407064+4 3.900000-5 5.772140+4 4.315191-5 4.582034+4 4.731513-5 3.738517+4 5.188000-5 3.070065+4 5.800000-5 2.437460+4 6.382635-5 2.014668+4 7.079458-5 1.652487+4 7.800000-5 1.382264+4 8.609938-5 1.161732+4 9.660509-5 9.564963+3 1.071519-4 8.090314+3 1.230269-4 6.522958+3 1.400000-4 5.381300+3 1.548817-4 4.657261+3 1.757924-4 3.918786+3 2.290868-4 2.763013+3 4.027170-4 1.297787+3 5.069907-4 9.599028+2 6.309573-4 7.119559+2 8.413951-4 4.781790+2 9.772372-4 3.859475+2 1.244515-3 2.707639+2 1.531087-3 1.983728+2 1.883649-3 1.441365+2 2.344229-3 1.021093+2 2.897850-3 7.261320+1 3.235937-3 6.033870+1 5.128614-3 2.807198+1 6.165950-3 2.055670+1 7.585776-3 1.433044+1 9.332543-3 9.913883+0 1.135011-2 6.946869+0 1.380384-2 4.830663+0 1.678804-2 3.333223+0 2.018366-2 2.333687+0 2.426610-2 1.621999+0 2.884032-2 1.145328+0 3.467369-2 7.835084-1 4.168694-2 5.318427-1 5.011872-2 3.582187-1 6.025596-2 2.394674-1 7.328245-2 1.547644-1 9.015711-2 9.669836-2 1.071519-1 6.493982-2 1.396368-1 3.494303-2 2.691535-1 7.425262-3 3.349654-1 4.460826-3 4.027170-1 2.925621-3 4.731513-1 2.038436-3 5.559043-1 1.430907-3 6.382635-1 1.063730-3 7.413102-1 7.773468-4 8.511380-1 5.861826-4 9.885531-1 4.350679-4 1.188502+0 3.038612-4 1.364583+0 2.336268-4 1.531087+0 1.888295-4 1.737801+0 1.506674-4 1.972423+0 1.211234-4 2.264644+0 9.618930-5 2.600160+0 7.693666-5 3.019952+0 6.087717-5 3.507519+0 4.855377-5 4.073803+0 3.901343-5 4.786301+0 3.106630-5 5.688529+0 2.452540-5 6.760830+0 1.951422-5 8.128305+0 1.540726-5 1.000000+1 1.191200-5 1.216186+1 9.409883-6 1.513561+1 7.279506-6 1.949845+1 5.454528-6 2.540973+1 4.063074-6 3.630781+1 2.760263-6 5.188000+1 1.890213-6 8.222427+1 1.170272-6 1.462177+2 6.487676-7 2.722701+2 3.454899-7 5.432503+2 1.722672-7 2.162719+3 4.309511-8 1.000000+5 9.31200-10 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 5.780000-6 1.000000+5 5.780000-6 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.780000-6 0.0 1.000000+5 1.000000+5 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 9.767770-7 1.025500+0 1.377000-6 1.025800+0 1.760350-6 1.026100+0 2.208580-6 1.026600+0 3.113590-6 1.027100+0 4.236100-6 1.027500+0 5.305670-6 1.028100+0 7.223570-6 1.028750+0 9.767770-6 1.029500+0 1.336750-5 1.030100+0 1.681120-5 1.031000+0 2.300340-5 1.032000+0 3.147450-5 1.033200+0 4.409040-5 1.034000+0 5.412500-5 1.035300+0 7.346710-5 1.036640+0 9.767770-5 1.038200+0 1.318190-4 1.039700+0 1.712600-4 1.041500+0 2.278590-4 1.043800+0 3.162760-4 1.046400+0 4.400390-4 1.048300+0 5.478610-4 1.051200+0 7.431610-4 1.054080+0 9.767770-4 1.057700+0 1.331410-3 1.061100+0 1.731820-3 1.065100+0 2.292720-3 1.070400+0 3.198570-3 1.076200+0 4.420390-3 1.080600+0 5.520340-3 1.087100+0 7.437760-3 1.093710+0 9.767770-3 1.102600+0 1.354340-2 1.110700+0 1.766420-2 1.120600+0 2.363100-2 1.133300+0 3.286010-2 1.147500+0 4.537280-2 1.158200+0 5.638720-2 1.174100+0 7.535680-2 1.190110+0 9.767770-2 1.205100+0 1.215440-1 1.227500+0 1.626250-1 1.250000+0 2.103000-1 1.280300+0 2.842340-1 1.307700+0 3.601540-1 1.343000+0 4.695600-1 1.382200+0 6.043950-1 1.411700+0 7.136310-1 1.455800+0 8.865530-1 1.500000+0 1.068000+0 1.562500+0 1.331160+0 1.641100+0 1.663310+0 1.706900+0 1.936530+0 1.811600+0 2.356780+0 1.937200+0 2.839390+0 2.000000+0 3.076000+0 2.044000+0 3.241000+0 2.163500+0 3.675610+0 2.372600+0 4.385610+0 2.686300+0 5.343970+0 3.000000+0 6.203000+0 3.500000+0 7.430900+0 4.000000+0 8.541000+0 5.000000+0 1.049000+1 6.000000+0 1.211000+1 7.000000+0 1.360000+1 8.000000+0 1.495000+1 9.000000+0 1.619000+1 1.000000+1 1.734000+1 1.100000+1 1.840000+1 1.200000+1 1.940000+1 1.300000+1 2.033000+1 1.400000+1 2.120000+1 1.500000+1 2.202000+1 1.600000+1 2.279000+1 1.800000+1 2.418000+1 2.000000+1 2.542000+1 2.200000+1 2.656000+1 2.400000+1 2.760000+1 2.600000+1 2.855000+1 2.800000+1 2.942000+1 3.000000+1 3.022000+1 4.000000+1 3.349000+1 5.000000+1 3.593000+1 6.000000+1 3.782000+1 8.000000+1 4.060000+1 1.000000+2 4.256000+1 1.500000+2 4.563000+1 2.000000+2 4.746000+1 3.000000+2 4.959000+1 4.000000+2 5.081000+1 5.000000+2 5.161000+1 6.000000+2 5.218000+1 8.000000+2 5.293000+1 1.000000+3 5.342000+1 1.500000+3 5.412000+1 2.000000+3 5.452000+1 3.000000+3 5.491000+1 4.000000+3 5.517000+1 5.000000+3 5.531000+1 6.000000+3 5.541000+1 8.000000+3 5.554000+1 1.000000+4 5.562000+1 1.500000+4 5.572000+1 2.000000+4 5.579000+1 3.000000+4 5.584000+1 4.000000+4 5.589000+1 5.000000+4 5.592000+1 6.000000+4 5.593000+1 8.000000+4 5.594000+1 1.000000+5 5.595000+1 1 99000 7 8 2.520000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 9.900450-7 2.090400+0 1.344240-6 2.094700+0 1.743000-6 2.099900+0 2.318820-6 2.106600+0 3.225670-6 2.114000+0 4.463130-6 2.119500+0 5.556570-6 2.127900+0 7.535750-6 2.136250+0 9.900450-6 2.147000+0 1.357420-5 2.156900+0 1.763130-5 2.169000+0 2.353000-5 2.184500+0 3.270760-5 2.201800+0 4.525190-5 2.214800+0 5.638030-5 2.234200+0 7.584140-5 2.253680+0 9.900450-5 2.281500+0 1.386730-4 2.307000+0 1.821460-4 2.338200+0 2.449110-4 2.377400+0 3.391710-4 2.410200+0 4.313690-4 2.446800+0 5.487250-4 2.485900+0 6.908750-4 2.532900+0 8.841770-4 2.556430+0 9.900450-4 2.611900+0 1.262440-3 2.660400+0 1.526240-3 2.745300+0 2.042820-3 2.809000+0 2.473990-3 2.904500+0 3.187110-3 3.000000+0 3.978000-3 3.125000+0 5.128790-3 3.234400+0 6.239530-3 3.425800+0 8.399280-3 3.569300+0 1.018190-2 3.784700+0 1.308290-2 4.000000+0 1.620000-2 4.250000+0 2.000970-2 4.625000+0 2.599430-2 5.000000+0 3.221000-2 5.500000+0 4.072900-2 6.000000+0 4.935000-2 6.750000+0 6.216150-2 7.000000+0 6.637000-2 8.000000+0 8.280000-2 9.000000+0 9.848000-2 1.000000+1 1.133000-1 1.100000+1 1.273000-1 1.200000+1 1.405000-1 1.300000+1 1.529000-1 1.400000+1 1.646000-1 1.500000+1 1.757000-1 1.600000+1 1.862000-1 1.800000+1 2.056000-1 2.000000+1 2.232000-1 2.200000+1 2.392000-1 2.400000+1 2.539000-1 2.600000+1 2.674000-1 2.800000+1 2.798000-1 3.000000+1 2.914000-1 4.000000+1 3.388000-1 5.000000+1 3.744000-1 6.000000+1 4.023000-1 8.000000+1 4.438000-1 1.000000+2 4.736000-1 1.500000+2 5.223000-1 2.000000+2 5.524000-1 3.000000+2 5.888000-1 4.000000+2 6.103000-1 5.000000+2 6.250000-1 6.000000+2 6.357000-1 8.000000+2 6.504000-1 1.000000+3 6.601000-1 1.500000+3 6.745000-1 2.000000+3 6.827000-1 3.000000+3 6.916000-1 4.000000+3 6.969000-1 5.000000+3 7.001000-1 6.000000+3 7.023000-1 8.000000+3 7.053000-1 1.000000+4 7.072000-1 1.500000+4 7.098000-1 2.000000+4 7.113000-1 3.000000+4 7.127000-1 4.000000+4 7.136000-1 5.000000+4 7.142000-1 6.000000+4 7.145000-1 8.000000+4 7.149000-1 1.000000+5 7.152000-1 1 99000 7 8 2.520000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 99000 7 9 2.520000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 9.900000+1 1.000000+5 9.900000+1 5.000000+5 9.896100+1 1.000000+6 9.890300+1 1.375000+6 9.884370+1 1.500000+6 9.881700+1 1.875000+6 9.871680+1 2.000000+6 9.867800+1 2.375000+6 9.854240+1 2.500000+6 9.850200+1 2.875000+6 9.834170+1 3.000000+6 9.829300+1 3.437500+6 9.807780+1 3.812500+6 9.787930+1 4.000000+6 9.778400+1 4.500000+6 9.750290+1 4.875000+6 9.726970+1 5.000000+6 9.719600+1 5.500000+6 9.685940+1 5.875000+6 9.659240+1 6.437500+6 9.617670+1 7.000000+6 9.575000+1 8.000000+6 9.496330+1 9.000000+6 9.416200+1 1.000000+7 9.332200+1 1.250000+7 9.119300+1 1.500000+7 8.894300+1 1.750000+7 8.662700+1 2.000000+7 8.424000+1 2.250000+7 8.179160+1 2.500000+7 7.934300+1 2.875000+7 7.575250+1 3.000000+7 7.459800+1 3.437500+7 7.070010+1 4.000000+7 6.613400+1 4.500000+7 6.248490+1 4.750000+7 6.078280+1 5.000000+7 5.916500+1 5.750000+7 5.468990+1 6.000000+7 5.332300+1 6.750000+7 4.952490+1 7.000000+7 4.836300+1 8.000000+7 4.418200+1 9.000000+7 4.066700+1 1.000000+8 3.767300+1 1.125000+8 3.444080+1 1.250000+8 3.158100+1 1.359400+8 2.928710+1 1.437500+8 2.773880+1 1.453100+8 2.743730+1 1.500000+8 2.654500+1 1.617200+8 2.440810+1 1.750000+8 2.220280+1 1.753900+8 2.214200+1 1.918000+8 1.977000+1 2.000000+8 1.872600+1 2.218800+8 1.639310+1 2.341800+8 1.538490+1 2.447300+8 1.468880+1 2.500000+8 1.439500+1 2.625000+8 1.382250+1 2.859400+8 1.294160+1 3.000000+8 1.240000+1 3.125000+8 1.187190+1 3.500000+8 1.040600+1 3.812500+8 9.523680+0 3.937500+8 9.180320+0 4.000000+8 9.000300+0 4.125000+8 8.619010+0 4.234400+8 8.274710+0 4.500000+8 7.455990+0 5.000000+8 6.189300+0 5.250000+8 5.727460+0 5.437500+8 5.439780+0 5.718800+8 5.078270+0 6.000000+8 4.778500+0 6.437500+8 4.398560+0 6.812500+8 4.138480+0 7.000000+8 4.026900+0 7.625000+8 3.708980+0 8.000000+8 3.520300+0 8.359400+8 3.326240+0 8.660200+8 3.160960+0 9.138700+8 2.906210+0 9.500000+8 2.727680+0 1.000000+9 2.507100+0 1.062500+9 2.275760+0 1.141100+9 2.043000+0 1.206900+9 1.887520+0 1.250000+9 1.801500+0 1.280200+9 1.747670+0 1.355700+9 1.632900+0 1.407300+9 1.568690+0 1.469100+9 1.504290+0 1.500000+9 1.476700+0 1.562500+9 1.428900+0 1.671900+9 1.362690+0 1.959000+9 1.232250+0 2.000000+9 1.214600+0 2.139200+9 1.152770+0 2.272600+9 1.092590+0 2.357800+9 1.054370+0 2.522900+9 9.818710-1 2.677700+9 9.168230-1 2.750000+9 8.876340-1 2.890900+9 8.329270-1 3.086500+9 7.622940-1 3.325700+9 6.841300-1 3.535000+9 6.229200-1 3.718100+9 5.744160-1 4.038600+9 4.997990-1 4.278900+9 4.514590-1 4.639500+9 3.892730-1 5.000000+9 3.375400-1 5.375000+9 2.926740-1 5.703100+9 2.595640-1 6.277300+9 2.124950-1 6.708000+9 1.843250-1 7.354000+9 1.506530-1 8.000000+9 1.247100-1 9.000000+9 9.519450-2 1.00000+10 7.449700-2 1.27030+10 4.244330-2 1.70630+10 2.103200-2 2.16210+10 1.190530-2 2.93940+10 5.656980-3 3.41010+10 3.939590-3 1.00000+11 2.826600-4 1.68570+11 7.910860-5 3.34410+11 1.504350-5 1.39060+12 4.917720-7 1.17920+13 3.070260-9 1.00000+14 1.95480-11 3.16230+15 5.30950-15 1.00000+17 1.38800-18 1 99000 7 0 2.520000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.21800-11 1.000000+2 1.218000-9 1.000000+3 1.218000-7 1.000000+4 1.218000-5 1.000000+5 1.218000-3 5.000000+5 3.045000-2 1.000000+6 1.218000-1 1.375000+6 2.278650-1 1.500000+6 2.700000-1 1.875000+6 4.147940-1 2.000000+6 4.689000-1 2.375000+6 6.472780-1 2.500000+6 7.117000-1 2.875000+6 9.175510-1 3.000000+6 9.900000-1 3.437500+6 1.255600+0 3.812500+6 1.496200+0 4.000000+6 1.620300+0 4.500000+6 1.959730+0 4.875000+6 2.218800+0 5.000000+6 2.305400+0 5.500000+6 2.649290+0 5.875000+6 2.905080+0 6.437500+6 3.284380+0 7.000000+6 3.658500+0 8.000000+6 4.312570+0 9.000000+6 4.959600+0 1.000000+7 5.605500+0 1.250000+7 7.247600+0 1.500000+7 8.953500+0 1.750000+7 1.060900+1 2.000000+7 1.223300+1 2.250000+7 1.378850+1 2.500000+7 1.529200+1 2.875000+7 1.748410+1 3.000000+7 1.819500+1 3.437500+7 2.056960+1 4.000000+7 2.339700+1 4.500000+7 2.572440+1 4.750000+7 2.683970+1 5.000000+7 2.793100+1 5.750000+7 3.109350+1 6.000000+7 3.211900+1 6.750000+7 3.509880+1 7.000000+7 3.606600+1 8.000000+7 3.976400+1 9.000000+7 4.320100+1 1.000000+8 4.635400+1 1.125000+8 4.984490+1 1.250000+8 5.288600+1 1.359400+8 5.522280+1 1.437500+8 5.675450+1 1.453100+8 5.704670+1 1.500000+8 5.791400+1 1.617200+8 5.996030+1 1.750000+8 6.210970+1 1.753900+8 6.216940+1 1.918000+8 6.458150+1 2.000000+8 6.570700+1 2.218800+8 6.845300+1 2.341800+8 6.988450+1 2.447300+8 7.105970+1 2.500000+8 7.163500+1 2.625000+8 7.295160+1 2.859400+8 7.525380+1 3.000000+8 7.651800+1 3.125000+8 7.755070+1 3.500000+8 8.026600+1 3.812500+8 8.220220+1 3.937500+8 8.289210+1 4.000000+8 8.323100+1 4.125000+8 8.385570+1 4.234400+8 8.437620+1 4.500000+8 8.552530+1 5.000000+8 8.733500+1 5.250000+8 8.810960+1 5.437500+8 8.863720+1 5.718800+8 8.937500+1 6.000000+8 9.005700+1 6.437500+8 9.099600+1 6.812500+8 9.170710+1 7.000000+8 9.205000+1 7.625000+8 9.305360+1 8.000000+8 9.358600+1 8.359400+8 9.402870+1 8.660200+8 9.436960+1 9.138700+8 9.484220+1 9.500000+8 9.516280+1 1.000000+9 9.554800+1 1.062500+9 9.595130+1 1.141100+9 9.635720+1 1.206900+9 9.664570+1 1.250000+9 9.680490+1 1.280200+9 9.691090+1 1.355700+9 9.713420+1 1.407300+9 9.727330+1 1.469100+9 9.741790+1 1.500000+9 9.748800+1 1.562500+9 9.760530+1 1.671900+9 9.780020+1 1.959000+9 9.818450+1 2.000000+9 9.822800+1 2.139200+9 9.835300+1 2.272600+9 9.845070+1 2.357800+9 9.850490+1 2.522900+9 9.860460+1 2.677700+9 9.867230+1 2.750000+9 9.870160+1 2.890900+9 9.875120+1 3.086500+9 9.880060+1 3.325700+9 9.885710+1 3.535000+9 9.888790+1 3.718100+9 9.890830+1 4.038600+9 9.894170+1 4.278900+9 9.896030+1 4.639500+9 9.897420+1 5.000000+9 9.898700+1 5.375000+9 9.898880+1 5.703100+9 9.899040+1 6.277300+9 9.899280+1 6.708000+9 9.899450+1 7.354000+9 9.899690+1 8.000000+9 9.899900+1 9.000000+9 9.899950+1 1.00000+10 9.900000+1 1.27030+10 9.900000+1 1.70630+10 9.900000+1 2.16210+10 9.900000+1 2.93940+10 9.900000+1 3.41010+10 9.900000+1 1.00000+11 9.900000+1 1.68570+11 9.900000+1 3.34410+11 9.900000+1 1.39060+12 9.900000+1 1.17920+13 9.900000+1 1.00000+14 9.900000+1 3.16230+15 9.900000+1 1.00000+17 9.900000+1 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 1.938760-6 0.0 1.943532-6 1.067230-6 1.948304-6 2.111754-6 1.953076-6 3.857291-6 1.957848-6 6.503923-6 1.962620-6 1.012330-5 1.967392-6 1.454531-5 1.972164-6 1.929201-5 1.976936-6 2.362033-5 1.981708-6 2.669613-5 1.986480-6 2.785253-5 1.991252-6 2.682470-5 1.996024-6 2.384839-5 2.000796-6 1.957209-5 2.010340-6 1.036945-5 2.015112-6 6.694153-6 2.019884-6 3.989236-6 2.024656-6 2.194512-6 2.029428-6 1.114397-6 2.034200-6 0.0 2.634798-6 0.0 2.644526-6 3.081165+0 2.647768-6 4.095192+0 2.654253-6 7.480202+0 2.660739-6 1.261265+1 2.667224-6 1.963149+1 2.687085-6 4.617740+1 2.693760-6 5.197558+1 2.700095-6 5.387623+1 2.707185-6 5.108716+1 2.713902-6 4.456912+1 2.732076-6 2.010884+1 2.738561-6 1.298157+1 2.745047-6 7.736089+0 2.751532-6 4.255689+0 2.762487-6 6.724801-1 2.764502-6 4.396778-6 2.767010-6 3.488192-6 2.773547-6 1.918883-6 2.781718-6 7.312522-7 2.786621-6 0.0 3.084421-6 0.0 3.097707-6 6.992159+0 3.099605-6 7.980846+0 3.107197-6 1.457767+1 3.114789-6 2.457995+1 3.123329-6 4.034306+1 3.136630-6 7.069735+1 3.145631-6 8.999204+1 3.153977-6 1.015974+2 3.161386-6 1.047275+2 3.169060-6 9.970971+1 3.176469-6 8.806722+1 3.198300-6 3.918874+1 3.205891-6 2.529890+1 3.213483-6 1.507636+1 3.221075-6 8.293659+0 3.234446-6 1.007417+0 3.236259-6 7.520776-5 3.240437-6 8.015791-5 3.248240-6 8.363012-5 3.256043-6 8.054396-5 3.263846-6 7.160728-5 3.275551-6 5.165281-5 3.287255-6 3.113534-5 3.295058-6 2.009989-5 3.302861-6 1.197810-5 3.310665-6 6.589249-6 3.318468-6 3.346093-6 3.326271-6 0.0 3.707387-6 0.0 3.716513-6 5.76145-15 3.725638-6 1.14003-14 3.734763-6 2.08236-14 3.743888-6 3.51115-14 3.753014-6 5.46508-14 3.762139-6 7.85230-14 3.771264-6 1.04148-13 3.780389-6 1.27515-13 3.789515-6 1.44119-13 3.798640-6 1.50362-13 3.807765-6 1.44813-13 3.816891-6 1.28746-13 3.826016-6 1.05660-13 3.844266-6 5.59796-14 3.853392-6 3.61385-14 3.862517-6 2.15359-14 3.871642-6 1.18471-14 3.880767-6 6.01609-15 3.889893-6 0.0 4.301602-6 0.0 4.320130-6 1.196697-1 4.322777-6 1.365909-1 4.333365-6 2.494945-1 4.344615-6 4.352804-1 4.355203-6 6.726239-1 4.374007-6 1.198148+0 4.386966-6 1.540200+0 4.396892-6 1.726740+0 4.408452-6 1.795449+0 4.418730-6 1.723054+0 4.430106-6 1.504293+0 4.440885-6 1.228549+0 4.462660-6 1.463484+0 4.473927-6 1.953607+0 4.484691-6 2.831613+0 4.495845-6 4.198679+0 4.529608-6 9.476650+0 4.540235-6 1.056973+1 4.550933-6 1.093690+1 4.561543-6 1.049589+1 4.572688-6 9.254705+0 4.604580-6 4.085598+0 4.615510-6 2.637521+0 4.626440-6 1.571775+0 4.637370-6 8.646475-1 4.653765-6 2.197983-1 4.659230-6 2.276685-6 4.674774-6 6.037326-7 4.680264-6 0.0 4.835344-6 0.0 4.835412-6 3.14495-14 4.859216-6 2.53881-11 4.871118-6 4.63576-11 4.883019-6 7.81405-11 4.886876-6 9.21877-11 4.898904-6 1.580570-2 4.910933-6 3.127513-2 4.922961-6 5.712658-2 4.934989-6 9.632336-2 4.947796-6 1.541558-1 4.972153-6 5.594625-1 4.984331-6 8.440071-1 4.997271-6 1.252243+0 5.013004-6 1.885114+0 5.045223-6 3.276095+0 5.058163-6 3.601186+0 5.070341-6 3.666783+0 5.083281-6 3.443696+0 5.096220-6 2.970591+0 5.130472-6 1.316032+0 5.142650-6 8.495847-1 5.154829-6 5.062918-1 5.167007-6 2.810774-1 5.191364-6 1.562077-2 5.193791-6 1.755791-2 5.200406-6 5.526697-2 5.212570-6 1.286619-1 5.219359-6 1.723112-1 5.232143-6 2.979043-1 5.244927-6 4.793133-1 5.257711-6 7.170419-1 5.288800-6 1.397214+0 5.298650-6 1.572243+0 5.311139-6 1.713516+0 5.324366-6 1.733855+0 5.339573-6 1.606881+0 5.352268-6 1.421692+0 5.374793-6 1.025250+0 5.385549-6 8.787105-1 5.398333-6 7.843085-1 5.411117-6 7.724597-1 5.427920-6 8.654665-1 5.439977-6 9.522195-1 5.465103-6 1.083583+0 5.483313-6 1.097104+0 5.528668-6 9.939908-1 5.641079-6 9.571042-1 5.708666-6 9.109168-1 5.751646-6 9.454417-1 5.766083-6 9.805901-1 5.809825-6 1.015259+0 5.848927-6 9.541808-1 5.901009-6 8.749065-1 5.965198-6 8.430262-1 6.680523-6 6.669126-1 6.745820-6 6.535174-1 6.779028-6 2.135573+0 6.795632-6 3.362865+0 6.813274-6 5.384226+0 6.830584-6 8.108910+0 6.879171-6 1.734553+1 6.897592-6 1.955704+1 6.913736-6 2.017301+1 6.929988-6 1.933495+1 6.947494-6 1.696951+1 6.994880-6 7.916599+0 7.011484-6 5.323016+0 7.028088-6 3.413441+0 7.044692-6 2.145452+0 7.077900-6 5.927703-1 7.925674-6 4.723188-1 8.036907-6 4.624091-1 8.075848-6 6.334165-1 8.095628-6 7.784842-1 8.115408-6 9.995839-1 8.135188-6 1.302836+0 8.170250-6 1.981512+0 8.198514-6 3.415657+0 8.210470-6 3.958531+0 8.231982-6 5.289423+0 8.256720-6 7.397062+0 8.278927-6 9.773867+0 8.333424-6 1.622669+1 8.355886-6 1.774085+1 8.374368-6 1.799920+1 8.395887-6 1.689221+1 8.414019-6 1.503524+1 8.473122-6 6.736079+0 8.492010-6 4.583239+0 8.512120-6 2.896112+0 8.532230-6 1.776398+0 8.572450-6 4.664264-1 8.595017-6 5.193447-1 8.616017-6 5.972314-1 8.638743-6 7.152294-1 8.694598-6 1.086617+0 8.721553-6 1.264526+0 8.742256-6 1.351282+0 8.864017-6 1.612538+0 8.903496-6 1.681666+0 8.925092-6 1.659418+0 8.955396-6 1.522480+0 9.026596-6 1.077223+0 9.050054-6 9.557803-1 9.074490-6 8.671900-1 9.112548-6 7.745668-1 9.280926-6 7.445214-1 9.329720-6 7.188602-1 9.386354-6 6.617988-1 9.492172-6 4.992361-1 9.529475-6 4.712105-1 9.562858-6 4.775436-1 9.602600-6 5.185328-1 9.675497-6 6.208187-1 9.733111-6 6.700277-1 9.797363-6 6.843235-1 9.916322-6 6.744410-1 9.965138-6 7.553827-1 9.989546-6 8.268783-1 1.002006-5 9.749112-1 1.004325-5 1.127551+0 1.011158-5 1.675204+0 1.013599-5 1.819240+0 1.016040-5 1.884530+0 1.019091-5 1.828012+0 1.021371-5 1.708006+0 1.029464-5 1.071608+0 1.030685-5 9.850164-1 1.033125-5 8.513683-1 1.035566-5 7.573261-1 1.040448-5 6.384217-1 1.044784-5 6.240971-1 1.050000-5 6.502376-1 1.052499-5 6.755452-1 1.055070-5 7.163836-1 1.060450-5 8.511625-1 1.065357-5 9.920235-1 1.068092-5 1.044652+0 1.070640-5 1.064275+0 1.074461-5 1.035222+0 1.083771-5 8.478509-1 1.085930-5 8.263677-1 1.090995-5 8.303343-1 1.099943-5 8.670319-1 1.129529-5 8.127692-1 1.147944-5 7.155149-1 1.156881-5 7.318040-1 1.168184-5 7.786381-1 1.182987-5 7.857148-1 1.308066-5 7.219609-1 1.462177-5 7.014612-1 1.623712-5 7.324781-1 1.807478-5 8.228904-1 2.008128-5 9.851591-1 2.181642-5 1.182438+0 2.192381-5 3.091695+0 2.197751-5 4.665374+0 2.203121-5 7.047868+0 2.208491-5 1.030349+1 2.224600-5 2.243900+1 2.230774-5 2.539638+1 2.233180-5 2.596503+1 2.235447-5 2.929000+1 2.241709-5 3.589352+1 2.244756-5 3.872077+1 2.249565-5 4.582701+1 2.255405-5 6.045512+1 2.261042-5 8.143137+1 2.277391-5 1.618602+2 2.283433-5 1.810510+2 2.288760-5 1.857882+2 2.294353-5 1.769416+2 2.299730-5 1.566037+2 2.315522-5 7.205322+1 2.321019-5 4.835568+1 2.326515-5 3.115242+1 2.332011-5 1.992809+1 2.338882-5 1.145464+1 2.343004-5 6.043514+0 2.348709-5 5.884011+0 2.354337-5 5.397573+0 2.362129-5 4.457410+0 2.373757-5 4.878836+0 2.379571-5 5.930185+0 2.385386-5 7.989732+0 2.391799-5 1.146490+1 2.409745-5 2.358708+1 2.416150-5 2.647589+1 2.420976-5 2.747694+1 2.427938-5 2.660422+1 2.437161-5 2.303292+1 2.447564-5 1.841285+1 2.451732-5 1.713872+1 2.456308-5 1.615313+1 2.462266-5 1.561589+1 2.490087-5 1.591409+1 2.538489-5 1.365955+1 2.606179-5 1.220977+1 2.704304-5 1.071052+1 2.810892-5 9.651098+0 2.952901-5 8.806025+0 3.175942-5 8.202190+0 3.498553-5 8.155438+0 3.614142-5 8.283331+0 3.631934-5 1.625677+1 3.641386-5 2.346514+1 3.650281-5 3.367246+1 3.659645-5 4.843657+1 3.685864-5 9.804693+1 3.695644-5 1.096244+2 3.704352-5 1.127475+2 3.712812-5 1.084105+2 3.722325-5 9.555617+1 3.747579-5 4.770264+1 3.756475-5 3.398473+1 3.765370-5 2.395618+1 3.774266-5 1.738424+1 3.792058-5 9.606941+0 3.818458-5 1.091767+1 3.832910-5 1.213796+1 3.858937-5 1.544363+1 3.875268-5 1.729658+1 3.884572-5 1.787230+1 3.897164-5 1.794223+1 3.939976-5 1.642052+1 4.021042-5 1.611030+1 4.072534-5 1.522334+1 4.269645-5 1.462197+1 4.654043-5 1.481288+1 5.300228-5 1.640301+1 5.958076-5 1.880860+1 6.063811-5 1.982370+1 6.185070-5 1.985449+1 7.350185-5 2.381991+1 8.258545-5 2.580290+1 9.150000-5 2.639405+1 1.031673-4 2.517461+1 1.168154-4 2.152145+1 1.199662-4 2.046064+1 1.211240-4 2.117200+1 1.219187-4 2.303298+1 1.225056-4 3.159258+1 1.228431-4 3.919445+1 1.231432-4 4.884991+1 1.234695-4 6.289830+1 1.243246-4 1.056321+2 1.246377-4 1.154927+2 1.249310-4 1.182499+2 1.252677-4 1.122225+2 1.255718-4 1.000841+2 1.264063-4 5.502949+1 1.267438-4 4.063648+1 1.270064-4 3.212172+1 1.273064-4 2.563039+1 1.279196-4 1.760583+1 1.300299-4 1.717977+1 1.319670-4 1.751148+1 1.335063-4 1.700207+1 1.341655-4 2.219851+1 1.345195-4 2.708959+1 1.348549-4 3.414490+1 1.352426-4 4.548963+1 1.361731-4 7.709471+1 1.365581-4 8.471382+1 1.368649-4 8.619145+1 1.372032-4 8.222807+1 1.376075-4 7.128553+1 1.384426-4 4.229807+1 1.387760-4 3.296042+1 1.390902-4 2.639909+1 1.394635-4 2.146237+1 1.400760-4 1.624186+1 1.427209-4 1.613957+1 1.454277-4 1.687579+1 1.512836-4 1.584161+1 1.603246-4 1.448674+1 1.812372-4 9.280345+0 1.911535-4 7.276204+0 2.018672-4 5.609053+0 2.098182-4 4.659470+0 2.187000-4 3.848345+0 2.288738-4 3.173008+0 2.383015-4 2.741205+0 2.474067-4 2.462229+0 2.523063-4 2.366480+0 2.540531-4 2.405334+0 2.553732-4 2.538593+0 2.575271-4 2.985510+0 2.592550-4 3.331647+0 2.607500-4 3.454456+0 2.750000-4 3.316154+0 2.952802-4 3.345560+0 3.255940-4 3.639226+0 3.419754-4 3.874795+0 3.452796-4 4.082089+0 3.504183-4 4.930778+0 3.521819-4 5.023622+0 3.586906-4 4.730587+0 4.213884-4 5.399604+0 4.315418-4 5.778088+0 5.432010-4 6.605263+0 5.500000-4 7.105285+0 5.549008-4 7.430624+0 5.630552-4 7.402774+0 5.721391-4 7.900832+0 5.848000-4 7.695159+0 5.978030-4 8.088409+0 6.074974-4 8.794844+0 6.161310-4 9.901697+0 6.239002-4 1.139476+1 6.321094-4 1.353307+1 6.418342-4 1.681604+1 6.625614-4 2.565310+1 6.839857-4 3.459606+1 7.032956-4 4.040035+1 7.244360-4 4.423762+1 7.542888-4 4.661863+1 8.107429-4 4.713994+1 9.277677-4 4.421912+1 9.372193-4 4.548052+1 9.483798-4 4.921873+1 9.554464-4 4.846932+1 9.669163-4 4.568069+1 9.995085-4 4.756602+1 1.013214-3 4.976916+1 1.038333-3 4.762828+1 1.293317-3 4.114905+1 1.322293-3 4.264493+1 1.651602-3 3.433470+1 1.852342-3 3.090116+1 2.256511-3 2.491928+1 2.626486-3 2.076357+1 3.081414-3 1.701735+1 3.537936-3 1.424534+1 4.173585-3 1.144855+1 4.254374-3 1.116689+1 4.285906-3 1.179923+1 4.304992-3 1.299032+1 4.320535-3 1.467575+1 4.369562-3 2.173277+1 4.390016-3 2.336438+1 4.418113-3 2.406242+1 4.528559-3 2.363976+1 4.560252-3 2.460798+1 4.625878-3 2.970614+1 4.659086-3 3.080808+1 5.167769-3 2.723104+1 5.224930-3 2.832702+1 5.290334-3 2.995549+1 5.535558-3 2.838055+1 6.376446-3 2.281839+1 6.505488-3 2.239967+1 6.663032-3 2.260877+1 6.902903-3 2.165318+1 7.118127-3 2.137328+1 8.241678-3 1.726379+1 9.606786-3 1.373504+1 1.087051-2 1.140268+1 1.217752-2 9.586411+0 1.388353-2 7.839760+0 1.573677-2 6.451157+0 1.792410-2 5.265058+0 1.993730-2 4.469418+0 2.008005-2 4.583266+0 2.016960-2 4.895589+0 2.024990-2 5.453801+0 2.034405-2 6.451541+0 2.052273-2 8.523279+0 2.061932-2 9.205675+0 2.077919-2 9.573082+0 2.453672-2 7.311753+0 2.555362-2 6.881745+0 2.575835-2 7.135391+0 2.600393-2 8.113318+0 2.619917-2 8.884249+0 2.653214-2 9.314088+0 2.705932-2 1.008236+1 2.755532-2 1.001273+1 3.175388-2 8.087675+0 3.602940-2 6.658763+0 4.118659-2 5.401650+0 4.656992-2 4.443380+0 5.369850-2 3.534289+0 6.114227-2 2.863766+0 6.956489-2 2.318095+0 7.894104-2 1.882121+0 8.933015-2 1.533534+0 1.015032-1 1.241331+0 1.145704-1 1.014471+0 1.310196-1 8.119858-1 1.357926-1 7.693061-1 1.366465-1 7.927448-1 1.371477-1 8.496758-1 1.375964-1 9.547861-1 1.380579-1 1.135296+0 1.385320-1 1.400175+0 1.397408-1 2.216122+0 1.403419-1 2.517248+0 1.411194-1 2.719837+0 1.422228-1 2.777692+0 1.667086-1 2.200849+0 1.911717-1 1.787440+0 2.134582-1 1.513961+0 2.439507-1 1.239650+0 2.792778-1 1.015366+0 3.198895-1 8.355246-1 3.671585-1 6.891375-1 4.171988-1 5.796503-1 4.786301-1 4.843831-1 5.485038-1 4.082691-1 6.340293-1 3.431362-1 7.397117-1 2.881581-1 8.648273-1 2.436600-1 1.012308+0 2.079773-1 1.173413+0 1.757052-1 1.347258+0 1.498053-1 1.547595+0 1.276566-1 1.776032+0 1.088962-1 2.059849+0 9.180950-2 2.451607+0 7.506062-2 2.814822+0 6.399629-2 3.231848+0 5.456291-2 3.710658+0 4.652005-2 4.260405+0 3.966275-2 4.891600+0 3.381625-2 5.616308+0 2.883156-2 6.464687+0 2.451337-2 7.403736+0 2.095817-2 8.500626+0 1.786883-2 9.760024+0 1.523487-2 1.000000+1 3.196973-2 1 99000 7 0 2.520000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.870751+1 2.276409-6-9.556205+1 2.529648-6-9.098962+1 2.604761-6-8.536810+1 2.631599-6-7.926957+1 2.662968-6-6.421516+1 2.670744-6-6.306338+1 2.679184-6-6.630377+1 2.686383-6-7.311699+1 2.697073-6-9.030140+1 2.700095-6-9.613082+1 2.706823-6-9.004069+1 2.715625-6-7.764860+1 2.724823-6-7.120659+1 2.732076-6-7.030199+1 2.745047-6-7.518601+1 2.773547-6-8.856114+1 2.815505-6-9.552360+1 2.839751-6-9.766306+1 2.983620-6-9.089435+1 3.043765-6-8.291352+1 3.072197-6-7.452348+1 3.082971-6-6.827239+1 3.092013-6-6.079016+1 3.099605-6-5.506736+1 3.108146-6-4.756739+1 3.117398-6-4.092809+1 3.124990-6-3.860950+1 3.130921-6-4.020147+1 3.135696-6-4.409970+1 3.141953-6-5.321211+1 3.145631-6-6.103968+1 3.152560-6-7.833721+1 3.159730-6-9.876194+1 3.169868-6-6.789035+1 3.177637-6-4.930622+1 3.181790-6-4.246183+1 3.187376-6-3.596633+1 3.192027-6-3.278941+1 3.196535-6-3.172606+1 3.204942-6-3.482540+1 3.213483-6-4.140861+1 3.223152-6-4.975710+1 3.236259-6-5.971599+1 3.242388-6-6.448402+1 3.259945-6-7.172624+1 3.295058-6-7.901199+1 3.371639-6-8.581972+1 3.558480-6-9.138396+1 4.465404-6-9.852793+1 4.514278-6-9.707033+1 4.536560-6-9.871280+1 4.583262-6-9.019108+1 4.624391-6-9.033806+1 4.719292-6-9.443728+1 5.041483-6-9.768215+1 5.130472-6-9.443395+1 5.298650-6-9.697353+1 5.731155-6-9.691050+1 6.634282-6-9.856901+1 6.752528-6-9.461003+1 6.839220-6-8.985268+1 6.879171-6-9.385767+1 6.905109-6-9.885758+1 6.955416-6-8.740951+1 6.994880-6-8.513025+1 7.133866-6-9.271255+1 7.499358-6-9.618611+1 8.040358-6-9.877084+1 8.282190-6-9.302255+1 8.335842-6-9.743693+1 8.352849-6-9.866614+1 8.424423-6-8.724876+1 8.473122-6-8.553827+1 8.638743-6-9.296600+1 9.797363-6-9.644201+1 1.021371-5-9.610350+1 1.623712-5-1.001737+2 1.957413-5-9.533734+1 2.084516-5-8.859028+1 2.143711-5-8.067303+1 2.171940-5-7.304202+1 2.190263-5-6.365672+1 2.213863-5-4.812535+1 2.230774-5-4.087414+1 2.233180-5-3.805386+1 2.234703-5-3.599499+1 2.242889-5-3.003299+1 2.248964-5-2.177996+1 2.249565-5-2.061426+1 2.255061-5-1.244043+1 2.255405-5-1.172533+1 2.256049-5-1.079553+1 2.260558-5-6.668950+0 2.261042-5-6.103896+0 2.261949-5-5.727358+0 2.262743-5-5.733872+0 2.264132-5-6.283654+0 2.265174-5-7.074794+0 2.266737-5-8.798363+0 2.268299-5-1.106587+1 2.269393-5-1.302519+1 2.271187-5-1.712609+1 2.273201-5-2.298634+1 2.274884-5-2.904614+1 2.276844-5-3.809660+1 2.281678-5-6.541835+1 2.284009-5-8.214422+1 2.287362-5-1.043218+2 2.289863-5-8.536534+1 2.293450-5-6.123867+1 2.294938-5-5.066940+1 2.299730-5-2.333060+1 2.300592-5-1.920440+1 2.302006-5-1.338246+1 2.303161-5-9.267410+0 2.304028-5-6.494977+0 2.305327-5-2.781440+0 2.306627-5 4.808633-1 2.307739-5 2.885854+0 2.308711-5 4.648560+0 2.310414-5 7.042802+0 2.311691-5 8.259416+0 2.312649-5 8.827849+0 2.314086-5 9.050671+0 2.314804-5 8.802909+0 2.318270-5 5.401235+0 2.319644-5 3.816313+0 2.320332-5 2.781590+0 2.321019-5 1.331063+0 2.321706-5-1.795685-1 2.324110-5-4.287027+0 2.325313-5-6.479160+0 2.325914-5-7.723074+0 2.326515-5-9.268452+0 2.333901-5-2.480306+1 2.340943-5-3.664606+1 2.343004-5-4.130793+1 2.345199-5-4.610693+1 2.351523-5-5.471531+1 2.365921-5-6.877256+1 2.387384-5-8.561627+1 2.399936-5-9.042793+1 2.409745-5-8.950838+1 2.434033-5-7.753126+1 2.447564-5-7.686885+1 2.471084-5-8.154993+1 2.678962-5-8.763413+1 3.359621-5-9.917250+1 3.440700-5-1.014301+2 3.541988-5-9.439831+1 3.589064-5-8.610564+1 3.609904-5-7.812503+1 3.627486-5-6.647878+1 3.651324-5-4.990143+1 3.661564-5-4.674702+1 3.668249-5-4.859098+1 3.675000-5-5.362424+1 3.682862-5-6.353166+1 3.693545-5-8.535093+1 3.700624-5-1.026483+2 3.709252-5-8.027803+1 3.714706-5-6.653417+1 3.723211-5-4.933927+1 3.727598-5-4.315743+1 3.733998-5-3.694929+1 3.739271-5-3.384913+1 3.745242-5-3.256597+1 3.754251-5-3.528967+1 3.765370-5-4.273816+1 3.775240-5-5.037100+1 3.792058-5-6.205339+1 3.799671-5-6.731278+1 3.822326-5-7.595238+1 3.854391-5-8.231151+1 3.897164-5-8.216955+1 4.338279-5-8.723699+1 5.506499-5-8.936201+1 6.400000-5-8.817273+1 1.031673-4-7.421806+1 1.121264-4-7.438327+1 1.130737-4-7.475136+1 1.174912-4-6.809250+1 1.194857-4-6.213993+1 1.208520-4-5.409928+1 1.216451-4-4.607329+1 1.219055-4-4.154443+1 1.222024-4-3.630429+1 1.225056-4-3.162612+1 1.228431-4-2.560480+1 1.231432-4-2.118344+1 1.234274-4-1.906108+1 1.235089-4-1.903526+1 1.236475-4-2.002969+1 1.237536-4-2.148049+1 1.239052-4-2.454821+1 1.240636-4-2.913845+1 1.242625-4-3.738803+1 1.245614-4-5.440074+1 1.248205-4-7.213956+1 1.250210-4-5.717973+1 1.252154-4-4.375692+1 1.252975-4-3.832103+1 1.255718-4-2.299540+1 1.256749-4-1.867382+1 1.257980-4-1.454163+1 1.258718-4-1.244655+1 1.259386-4-1.080595+1 1.260482-4-8.710278+0 1.261377-4-7.490217+0 1.262049-4-6.867817+0 1.262552-4-6.575604+0 1.263307-4-6.457587+0 1.263685-4-6.581430+0 1.265563-4-8.349288+0 1.266688-4-9.743982+0 1.267438-4-1.132868+1 1.269736-4-1.542497+1 1.274238-4-2.516976+1 1.278441-4-3.277818+1 1.280513-4-3.757002+1 1.284440-4-4.295193+1 1.291997-4-4.967006+1 1.305225-4-5.750408+1 1.328255-4-6.911980+1 1.332630-4-7.282945+1 1.349321-4-5.171724+1 1.352983-4-5.000282+1 1.356370-4-5.227065+1 1.359381-4-5.744202+1 1.361387-4-6.352218+1 1.364033-4-7.300828+1 1.368445-4-5.274137+1 1.372496-4-3.473215+1 1.375519-4-2.421635+1 1.376597-4-2.124720+1 1.378432-4-1.750775+1 1.379894-4-1.539289+1 1.380984-4-1.423906+1 1.382490-4-1.327615+1 1.383942-4-1.314002+1 1.386927-4-1.493488+1 1.390313-4-1.880028+1 1.396198-4-2.670408+1 1.400385-4-3.155923+1 1.402172-4-3.423665+1 1.408000-4-3.891114+1 1.416524-4-4.295882+1 1.433957-4-4.773145+1 1.458258-4-5.019464+1 1.512836-4-5.281871+1 1.663660-4-5.386793+1 2.050986-4-5.756861+1 2.607500-4-6.443531+1 3.617185-4-6.893792+1 5.033133-4-7.399185+1 5.821032-4-8.142313+1 6.300500-4-9.218826+1 6.596244-4-9.666935+1 6.892223-4-9.307622+1 7.662580-4-7.449479+1 8.239782-4-6.554642+1 8.948067-4-5.879843+1 9.456008-4-5.683169+1 9.730200-4-5.694440+1 1.013214-3-5.313429+1 1.091060-3-4.622812+1 1.194119-3-4.051653+1 1.283267-3-3.760418+1 1.322293-3-3.735686+1 1.359316-3-3.469307+1 1.462935-3-3.089474+1 1.615615-3-2.752460+1 1.799549-3-2.485482+1 1.871323-3-2.423404+1 2.045969-3-2.223707+1 2.368162-3-2.051146+1 2.774351-3-1.989152+1 3.249905-3-2.054314+1 3.667005-3-2.235135+1 3.944715-3-2.468992+1 4.132296-3-2.755015+1 4.237570-3-3.051019+1 4.296260-3-3.382579+1 4.348618-3-3.838788+1 4.380892-3-3.898052+1 4.464613-3-3.348940+1 4.512573-3-3.231069+1 4.571900-3-3.303521+1 4.615637-3-3.390558+1 4.650000-3-3.281552+1 4.721857-3-2.826832+1 4.795597-3-2.546869+1 4.940075-3-2.233377+1 5.081036-3-2.077635+1 5.167769-3-2.086867+1 5.240730-3-2.142478+1 5.290334-3-2.032247+1 5.362980-3-1.807748+1 5.477463-3-1.606170+1 5.672602-3-1.390969+1 5.924644-3-1.208661+1 6.231470-3-1.075987+1 6.427020-3-1.043786+1 6.561022-3-1.064090+1 6.750273-3-9.496451+0 6.971000-3-9.062511+0 7.183292-3-7.898242+0 7.547713-3-6.816749+0 8.043939-3-5.899212+0 8.634754-3-5.209685+0 9.332543-3-4.717771+0 9.957592-3-4.485144+0 1.133113-2-4.332788+0 1.270757-2-4.460212+0 1.445440-2-4.858140+0 1.639542-2-5.557485+0 1.792410-2-6.403654+0 1.891749-2-7.288701+0 1.949187-2-8.138872+0 1.986593-2-9.106969+0 2.008005-2-1.018448+1 2.031045-2-1.181359+1 2.041841-2-1.204669+1 2.055078-2-1.146762+1 2.077919-2-9.739673+0 2.099538-2-8.700757+0 2.133352-2-7.813357+0 2.187171-2-6.998680+0 2.270743-2-6.351693+0 2.371688-2-6.062967+0 2.453672-2-6.157154+0 2.520723-2-6.584274+0 2.555362-2-7.166032+0 2.594757-2-8.223528+0 2.612952-2-8.157424+0 2.653214-2-7.335857+0 2.686763-2-6.951529+0 2.741711-2-5.670927+0 2.793452-2-4.944824+0 2.867649-2-4.269842+0 2.993987-2-3.508547+0 3.138428-2-2.928950+0 3.292305-2-2.508687+0 3.515632-2-2.101460+0 3.796117-2-1.781909+0 4.118659-2-1.570101+0 4.502363-2-1.450659+0 4.959811-2-1.402865+0 5.610206-2-1.426977+0 7.239370-2-1.645879+0 1.057336-1-2.225270+0 1.187522-1-2.543264+0 1.273956-1-2.879856+0 1.324069-1-3.226337+0 1.352244-1-3.590809+0 1.368324-1-4.014750+0 1.385320-1-4.663200+0 1.391976-1-4.723391+0 1.400897-1-4.495268+0 1.418435-1-3.761767+0 1.432672-1-3.398418+0 1.459138-1-3.014371+0 1.500000-1-2.661934+0 1.566952-1-2.320637+0 1.622495-1-2.131386+0 1.748246-1-1.868027+0 1.911717-1-1.682780+0 2.134582-1-1.552124+0 2.439507-1-1.475306+0 3.198895-1-1.444542+0 7.819184-1-1.536846+0 2.451607+0-1.568493+0 7.403736+0-1.579676+0 1.000000+1-1.577474+0 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 71 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 5.234069-2 1.088078-6 7.644682-2 1.151396-6 9.897569-2 1.210819-6 1.252034-1 1.266586-6 1.553529-1 1.319753-6 1.899652-1 1.369597-6 2.284434-1 1.416326-6 2.708588-1 1.460134-6 3.171241-1 1.501204-6 3.671109-1 1.539707-6 4.206542-1 1.575804-6 4.775556-1 1.641371-6 6.005016-1 1.698998-6 7.338940-1 1.725139-6 8.044346-1 1.774153-6 9.548326-1 1.817041-6 1.109068+0 1.854568-6 1.265230+0 1.887404-6 1.420890+0 1.916136-6 1.574011+0 1.941276-6 1.723954+0 1.985271-6 2.023271+0 2.018267-6 2.284327+0 2.048000-6 2.553110+0 2.080136-6 2.882528+0 2.127679-6 3.459072+0 2.164159-6 3.997910+0 2.200638-6 4.644434+0 2.221484-6 5.074025+0 2.250627-6 5.758980+0 2.277950-6 6.505988+0 2.303564-6 7.321786+0 2.327578-6 8.211019+0 2.350091-6 9.178092+0 2.371197-6 1.022758+1 2.390983-6 1.136422+1 2.409533-6 1.259295+1 2.426924-6 1.391886+1 2.443228-6 1.534726+1 2.458512-6 1.688361+1 2.472842-6 1.853355+1 2.486276-6 2.030293+1 2.498870-6 2.219776+1 2.510677-6 2.422425+1 2.521746-6 2.638877+1 2.532124-6 2.869780+1 2.541852-6 3.115793+1 2.550973-6 3.377595+1 2.560000-6 3.672464+1 2.567540-6 3.951475+1 2.575055-6 4.265130+1 2.582101-6 4.597737+1 2.588706-6 4.950227+1 2.594898-6 5.323615+1 2.600704-6 5.719037+1 2.606146-6 6.137815+1 2.611248-6 6.581513+1 2.616032-6 7.051982+1 2.620516-6 7.551348+1 2.628925-6 8.686364+1 2.636282-6 9.974921+1 2.642720-6 1.142985+2 2.648353-6 1.305024+2 2.653282-6 1.481884+2 2.657594-6 1.670423+2 2.661368-6 1.866595+2 2.664670-6 2.066043+2 2.667559-6 2.264597+2 2.672299-6 2.645169+2 2.682068-6 3.680835+2 2.690329-6 4.858857+2 2.694399-6 5.545710+2 2.697707-6 6.153520+2 2.701015-6 6.802255+2 2.707631-6 8.200648+2 2.708457-6 8.382685+2 2.714246-6 9.680012+2 2.716520-6 1.019227+3 2.720862-6 1.115368+3 2.724221-6 1.186643+3 2.727477-6 1.251578+3 2.730837-6 1.312839+3 2.734093-6 1.365305+3 2.736987-6 1.405235+3 2.740360-6 1.442749+3 2.744223-6 1.472592+3 2.747531-6 1.486209+3 2.748683-6 1.488277+3 2.751969-6 1.486487+3 2.754394-6 1.477870+3 2.760863-6 1.425613+3 2.762926-6 1.400530+3 2.767779-6 1.327389+3 2.770337-6 1.281783+3 2.773787-6 1.213917+3 2.777146-6 1.142195+3 2.780403-6 1.068809+3 2.783297-6 1.001497+3 2.786320-6 9.301373+2 2.790326-6 8.356295+2 2.793634-6 7.589583+2 2.797355-6 6.755362+2 2.800249-6 6.134609+2 2.806865-6 4.831952+2 2.809139-6 4.426184+2 2.811310-6 4.060188+2 2.815135-6 3.466885+2 2.818856-6 2.952588+2 2.822076-6 2.556390+2 2.825933-6 2.138736+2 2.828944-6 1.853277+2 2.833246-6 1.501830+2 2.836011-6 1.307929+2 2.840524-6 1.039241+2 2.845764-6 7.912544+1 2.852752-6 5.465148+1 2.863233-6 3.113861+1 2.873714-6 1.767224+1 2.880701-6 1.208046+1 2.887688-6 8.224506+0 2.898169-6 4.590975+0 2.901663-6 3.788300+0 2.905156-6 3.143078+0 2.908650-6 2.635145+0 2.910397-6 2.427437+0 2.913017-6 2.168752+0 2.914327-6 2.061806+0 2.915637-6 1.969019+0 2.917384-6 1.866423+0 2.918694-6 1.804697+0 2.919615-6 1.768841+0 2.920368-6 1.744065+0 2.921496-6 1.714330+0 2.922625-6 1.693303+0 2.924371-6 1.677430+0 2.926992-6 1.690206+0 2.929612-6 1.745011+0 2.933106-6 1.880419+0 2.936599-6 2.084011+0 2.943586-6 2.686260+0 2.950574-6 3.539447+0 2.957561-6 4.640196+0 2.964548-6 5.992356+0 2.971536-6 7.606124+0 2.978523-6 9.497838+0 2.989209-6 1.298255+1 2.999227-6 1.699234+1 3.008619-6 2.152677+1 3.017424-6 2.659732+1 3.025679-6 3.222403+1 3.053851-6 6.092935+1 3.059829-6 6.987926+1 3.065433-6 7.966010+1 3.072000-6 9.329154+1 3.075613-6 1.020346+2 3.080231-6 1.148030+2 3.084560-6 1.287413+2 3.088619-6 1.439262+2 3.092424-6 1.604178+2 3.095991-6 1.782536+2 3.099335-6 1.974445+2 3.102471-6 2.179722+2 3.108349-6 2.644515+2 3.113493-6 3.156418+2 3.117994-6 3.704047+2 3.121932-6 4.274152+2 3.131031-6 5.990950+2 3.142540-6 9.183996+2 3.149132-6 1.164458+3 3.154866-6 1.420488+3 3.157251-6 1.538848+3 3.161127-6 1.746123+3 3.165003-6 1.971391+3 3.172755-6 2.471182+3 3.173724-6 2.537712+3 3.180507-6 3.022451+3 3.183172-6 3.219424+3 3.188260-6 3.599102+3 3.192196-6 3.890656+3 3.196012-6 4.165895+3 3.200000-6 4.440330+3 3.203764-6 4.681683+3 3.207155-6 4.880446+3 3.210289-6 5.045351+3 3.212000-6 5.126861+3 3.216543-6 5.310958+3 3.220090-6 5.419288+3 3.224222-6 5.503318+3 3.228088-6 5.539113+3 3.230917-6 5.538649+3 3.234772-6 5.501977+3 3.237471-6 5.452127+3 3.243009-6 5.290829+3 3.246103-6 5.168754+3 3.248190-6 5.074727+3 3.251245-6 4.921591+3 3.254213-6 4.757210+3 3.258028-6 4.526759+3 3.261420-6 4.307476+3 3.264690-6 4.086498+3 3.269657-6 3.739874+3 3.273533-6 3.465719+3 3.277893-6 3.159402+3 3.281285-6 2.926050+3 3.289037-6 2.420756+3 3.294245-6 2.110605+3 3.296789-6 1.969134+3 3.302603-6 1.672078+3 3.309606-6 1.363911+3 3.323075-6 9.156682+2 3.327897-6 7.959054+2 3.331513-6 7.180613+2 3.336938-6 6.182765+2 3.342362-6 5.361036+2 3.346475-6 4.837360+2 3.350589-6 4.386562+2 3.354702-6 3.998167+2 3.358816-6 3.662862+2 3.362929-6 3.372496+2 3.367042-6 3.120025+2 3.375269-6 2.705656+2 3.383496-6 2.382213+2 3.391723-6 2.123652+2 3.399950-6 1.912236+2 3.408176-6 1.735927+2 3.416403-6 1.586469+2 3.424630-6 1.458076+2 3.432857-6 1.346574+2 3.441084-6 1.248866+2 3.449310-6 1.162591+2 3.457537-6 1.085907+2 3.465764-6 1.017350+2 3.473991-6 9.557417+1 3.482218-6 9.001173+1 3.498671-6 8.037671+1 3.506898-6 7.618177+1 3.522956-6 6.896292+1 3.538009-6 6.315944+1 3.552123-6 5.840835+1 3.565354-6 5.445895+1 3.590162-6 4.811853+1 3.611869-6 4.347902+1 3.630862-6 3.997394+1 3.647482-6 3.725957+1 3.676566-6 3.315376+1 3.698379-6 3.051223+1 3.731099-6 2.710225+1 3.773083-6 2.347520+1 3.819403-6 2.021928+1 3.884252-6 1.660173+1 3.949102-6 1.374609+1 4.001338-6 1.185819+1 4.184165-6 6.519279+0 4.229872-6 5.311927+0 4.247012-6 4.867691+0 4.262009-6 4.477188+0 4.275132-6 4.131662+0 4.298097-6 3.512691+0 4.315321-6 3.033658+0 4.328239-6 2.668020+0 4.337927-6 2.393990+0 4.345193-6 2.191613+0 4.350643-6 2.043418+0 4.360861-6 1.779313+0 4.373038-6 1.501396+0 4.377741-6 1.408866+0 4.383115-6 1.315470+0 4.385802-6 1.274186+0 4.388490-6 1.236749+0 4.391177-6 1.203316+0 4.397223-6 1.143386+0 4.400582-6 1.119540+0 4.409987-6 1.089305+0 4.411919-6 1.089680+0 4.414123-6 1.092766+0 4.420736-6 1.118299+0 4.424872-6 1.145837+0 4.429005-6 1.181385+0 4.434004-6 1.233984+0 4.440498-6 1.315985+0 4.448448-6 1.434726+0 4.453654-6 1.523233+0 4.459952-6 1.643933+0 4.463731-6 1.725713+0 4.474816-6 2.030396+0 4.478822-6 2.176378+0 4.484428-6 2.428769+0 4.488262-6 2.642851+0 4.491638-6 2.865891+0 4.495978-6 3.209666+0 4.499187-6 3.512227+0 4.502715-6 3.899671+0 4.507177-6 4.484128+0 4.512186-6 5.285294+0 4.519552-6 6.791690+0 4.531924-6 1.038697+1 4.535036-6 1.153103+1 4.540887-6 1.396515+1 4.545594-6 1.619871+1 4.548579-6 1.774371+1 4.553565-6 2.054422+1 4.557659-6 2.304274+1 4.559589-6 2.427972+1 4.565896-6 2.856776+1 4.569608-6 3.124797+1 4.573688-6 3.430496+1 4.578475-6 3.800784+1 4.583012-6 4.159421+1 4.587434-6 4.511866+1 4.592087-6 4.881243+1 4.596816-6 5.249687+1 4.599277-6 5.436810+1 4.605741-6 5.906534+1 4.610377-6 6.217997+1 4.612803-6 6.370633+1 4.617851-6 6.662194+1 4.621227-6 6.835463+1 4.632405-6 7.268172+1 4.636122-6 7.360256+1 4.638485-6 7.404805+1 4.646536-6 7.474407+1 4.650150-6 7.464834+1 4.653429-6 7.434964+1 4.658809-6 7.344212+1 4.664850-6 7.184880+1 4.669895-6 7.010079+1 4.674761-6 6.810175+1 4.681933-6 6.469024+1 4.687483-6 6.175439+1 4.690258-6 6.021402+1 4.696502-6 5.662574+1 4.698583-6 5.540411+1 4.709684-6 4.883727+1 4.717669-6 4.421992+1 4.727882-6 3.865777+1 4.757440-6 2.584221+1 4.768627-6 2.235515+1 4.777269-6 2.011523+1 4.785841-6 1.823307+1 4.792967-6 1.689025+1 4.807209-6 1.469611+1 4.819671-6 1.318759+1 4.830575-6 1.209614+1 4.849657-6 1.054097+1 4.863968-6 9.575987+0 4.885436-6 8.331388+0 4.906961-6 7.235273+0 4.919039-6 6.660939+0 4.931117-6 6.105634+0 4.943195-6 5.564684+0 4.955692-6 5.018979+0 4.967890-6 4.504121+0 4.992285-6 3.578132+0 4.998384-6 3.384586+0 5.004483-6 3.214189+0 5.011377-6 3.055730+0 5.014825-6 2.992440+0 5.018272-6 2.941164+0 5.022711-6 2.894569+0 5.042975-6 3.022039+0 5.044519-6 3.058358+0 5.049923-6 3.218931+0 5.053976-6 3.374726+0 5.057762-6 3.548538+0 5.060540-6 3.693828+0 5.069690-6 4.279330+0 5.075886-6 4.768156+0 5.092078-6 6.366208+0 5.100382-6 7.331897+0 5.106664-6 8.106115+0 5.114406-6 9.087878+0 5.119825-6 9.777850+0 5.125631-6 1.050508+1 5.131437-6 1.120611+1 5.132861-6 1.137239+1 5.140334-6 1.219811+1 5.145230-6 1.268710+1 5.156210-6 1.359558+1 5.160468-6 1.386784+1 5.168596-6 1.425045+1 5.174877-6 1.441767+1 5.178461-6 1.446222+1 5.181597-6 1.447106+1 5.187085-6 1.442009+1 5.191201-6 1.432810+1 5.194288-6 1.423014+1 5.201234-6 1.392458+1 5.203549-6 1.379829+1 5.213467-6 1.313659+1 5.216773-6 1.287817+1 5.225383-6 1.213594+1 5.228253-6 1.187067+1 5.240605-6 1.066673+1 5.243623-6 1.036434+1 5.254189-6 9.310187+0 5.266603-6 8.131051+0 5.283365-6 6.749063+0 5.290672-6 6.248414+0 5.297151-6 5.863760+0 5.303630-6 5.537669+0 5.306870-6 5.397093+0 5.316589-6 5.065860+0 5.319828-6 4.985351+0 5.324688-6 4.891937+0 5.329547-6 4.830360+0 5.333433-6 4.803077+0 5.336832-6 4.794452+0 5.342782-6 4.811420+0 5.347244-6 4.848756+0 5.350590-6 4.889251+0 5.358120-6 5.014291+0 5.369413-6 5.268426+0 5.386344-6 5.716681+0 5.396492-6 5.974243+0 5.399897-6 6.052871+0 5.410111-6 6.254332+0 5.413482-6 6.307498+0 5.418999-6 6.378554+0 5.426569-6 6.442197+0 5.431776-6 6.462936+0 5.435682-6 6.466425+0 5.444469-6 6.438787+0 5.447398-6 6.419553+0 5.459133-6 6.301160+0 5.472091-6 6.116849+0 5.501831-6 5.662182+0 5.513463-6 5.523032+0 5.524872-6 5.419844+0 5.536281-6 5.348368+0 5.553102-6 5.288148+0 5.605954-6 5.199157+0 5.626284-6 5.141818+0 5.687173-6 4.904355+0 5.773108-6 4.536095+0 5.797545-6 4.460019+0 5.821751-6 4.419981+0 5.840713-6 4.413578+0 5.892632-6 4.435880+0 5.915892-6 4.418049+0 5.933189-6 4.382016+0 5.951797-6 4.322315+0 5.960470-6 4.288371+0 6.004059-6 4.087434+0 6.046892-6 3.892001+0 6.083475-6 3.749360+0 6.164173-6 3.479612+0 6.228160-6 3.254897+0 6.292147-6 3.010529+0 6.356268-6 2.755370+0 6.420389-6 2.497569+0 6.482373-6 2.251348+0 6.544357-6 2.012617+0 6.683055-6 1.507341+0 6.732313-6 1.331358+0 6.782025-6 1.151286+0 6.824234-6 9.975884-1 6.848308-6 9.108839-1 6.864879-6 8.520897-1 6.883306-6 7.879098-1 6.900249-6 7.303347-1 6.917191-6 6.744693-1 6.934133-6 6.206890-1 6.951076-6 5.694261-1 7.008145-6 4.221681-1 7.018845-6 4.001122-1 7.035788-6 3.694734-1 7.044259-6 3.562199-1 7.052730-6 3.443892-1 7.061201-6 3.340078-1 7.069672-6 3.251012-1 7.078144-6 3.177016-1 7.086615-6 3.118576-1 7.095086-6 3.076481-1 7.103557-6 3.051979-1 7.112028-6 3.046966-1 7.120500-6 3.064195-1 7.127912-6 3.100507-1 7.135059-6 3.157603-1 7.142414-6 3.243112-1 7.147940-6 3.328341-1 7.154384-6 3.454365-1 7.158620-6 3.555085-1 7.161797-6 3.641078-1 7.166562-6 3.788690-1 7.171327-6 3.961186-1 7.175562-6 4.137969-1 7.181916-6 4.450253-1 7.188269-6 4.827716-1 7.194028-6 5.235545-1 7.201060-6 5.832757-1 7.206333-6 6.363836-1 7.214243-6 7.318428-1 7.222154-6 8.498732-1 7.229443-6 9.827733-1 7.238296-6 1.182139+0 7.247150-6 1.432510+0 7.256003-6 1.746038+0 7.264857-6 2.137532+0 7.273710-6 2.624901+0 7.309125-6 6.023112+0 7.322405-6 8.186800+0 7.335686-6 1.105551+1 7.346753-6 1.410842+1 7.357820-6 1.787843+1 7.366120-6 2.124373+1 7.375048-6 2.543746+1 7.385226-6 3.101272+1 7.394819-6 3.710513+1 7.400667-6 4.123970+1 7.406514-6 4.570328+1 7.414885-6 5.267477+1 7.423255-6 6.033517+1 7.443035-6 8.107557+1 7.460771-6 1.024063+2 7.466625-6 1.098783+2 7.478893-6 1.259729+2 7.484978-6 1.340686+2 7.494147-6 1.462396+2 7.502289-6 1.568606+2 7.510795-6 1.675856+2 7.517655-6 1.758334+2 7.526148-6 1.853896+2 7.532914-6 1.923715+2 7.543923-6 2.023016+2 7.552045-6 2.083307+2 7.561063-6 2.135895+2 7.569689-6 2.171067+2 7.577280-6 2.189276+2 7.586216-6 2.195156+2 7.592431-6 2.189360+2 7.606210-6 2.148497+2 7.614866-6 2.104247+2 7.623256-6 2.048964+2 7.632489-6 1.975585+2 7.641438-6 1.893720+2 7.649392-6 1.813641+2 7.657063-6 1.731271+2 7.668710-6 1.599367+2 7.677801-6 1.493106+2 7.692006-6 1.326064+2 7.695983-6 1.279808+2 7.714165-6 1.075803+2 7.720415-6 1.009588+2 7.732347-6 8.902394+1 7.746113-6 7.654146+1 7.769678-6 5.859625+1 7.794438-6 4.424498+1 7.804080-6 3.977513+1 7.813571-6 3.591354+1 7.822914-6 3.258341+1 7.832111-6 2.971342+1 7.841164-6 2.723885+1 7.858988-6 2.322469+1 7.876255-6 2.020259+1 7.892982-6 1.788689+1 7.909186-6 1.607412+1 7.924884-6 1.462245+1 7.940092-6 1.343402+1 7.954824-6 1.244134+1 7.983367-6 1.084731+1 8.010127-6 9.637440+0 8.035214-6 8.681326+0 8.058733-6 7.903381+0 8.102832-6 6.674066+0 8.175181-6 5.098472+0 8.234266-6 4.074520+0 8.322893-6 2.807551+0 8.367207-6 2.259464+0 8.411521-6 1.759720+0 8.432225-6 1.543301+0 8.452929-6 1.339434+0 8.473633-6 1.150836+0 8.504689-6 9.069216-1 8.515041-6 8.395194-1 8.524539-6 7.854648-1 8.539472-6 7.183162-1 8.546938-6 6.942117-1 8.554404-6 6.773055-1 8.562675-6 6.678399-1 8.568877-6 6.677101-1 8.573529-6 6.718240-1 8.577018-6 6.774018-1 8.582252-6 6.899589-1 8.587486-6 7.077729-1 8.592097-6 7.280263-1 8.595405-6 7.452807-1 8.598299-6 7.622994-1 8.603364-6 7.965135-1 8.618560-6 9.346094-1 8.626160-6 1.024496+0 8.635816-6 1.159301+0 8.655088-6 1.496812+0 8.675930-6 1.955695+0 8.680430-6 2.065496+0 8.696357-6 2.475958+0 8.703047-6 2.655125+0 8.710386-6 2.853381+0 8.718299-6 3.066355+0 8.725326-6 3.252188+0 8.734360-6 3.482627+0 8.742347-6 3.674658+0 8.750578-6 3.857364+0 8.759217-6 4.028771+0 8.767098-6 4.164012+0 8.775711-6 4.286098+0 8.783286-6 4.369604+0 8.792830-6 4.441701+0 8.801978-6 4.476040+0 8.808942-6 4.480172+0 8.818722-6 4.456547+0 8.829342-6 4.398043+0 8.847318-6 4.251475+0 8.862301-6 4.130508+0 8.871361-6 4.083755+0 8.877684-6 4.073072+0 8.884449-6 4.089316+0 8.889629-6 4.125932+0 8.893859-6 4.174342+0 8.899411-6 4.267098+0 8.905210-6 4.404708+0 8.906549-6 4.443025+0 8.917120-6 4.844841+0 8.921745-6 5.082979+0 8.926854-6 5.396583+0 8.929631-6 5.591039+0 8.934432-6 5.970231+0 8.937807-6 6.271627+0 8.944045-6 6.910501+0 8.948832-6 7.478361+0 8.959403-6 8.997735+0 8.969974-6 1.092803+1 8.996924-6 1.809738+1 9.008543-6 2.235572+1 9.016335-6 2.565496+1 9.023472-6 2.900527+1 9.034176-6 3.464285+1 9.043542-6 4.019433+1 9.044880-6 4.103507+1 9.067400-6 5.695931+1 9.071315-6 6.005994+1 9.090572-6 7.660833+1 9.097711-6 8.322941+1 9.112543-6 9.763044+1 9.123054-6 1.082064+2 9.129320-6 1.145861+2 9.138274-6 1.237192+2 9.145470-6 1.310061+2 9.153289-6 1.387980+2 9.163726-6 1.488630+2 9.171864-6 1.563361+2 9.178495-6 1.621170+2 9.189226-6 1.707650+2 9.199718-6 1.782280+2 9.206914-6 1.827022+2 9.217100-6 1.880479+2 9.223138-6 1.906369+2 9.244956-6 1.961607+2 9.253214-6 1.966434+2 9.266418-6 1.955932+2 9.276740-6 1.932654+2 9.287048-6 1.897035+2 9.293674-6 1.868066+2 9.304538-6 1.811237+2 9.314735-6 1.748543+2 9.323252-6 1.690261+2 9.334203-6 1.608851+2 9.344618-6 1.526200+2 9.355033-6 1.440026+2 9.360571-6 1.393278+2 9.368879-6 1.322538+2 9.377186-6 1.251654+2 9.401629-6 1.047929+2 9.435964-6 7.915094+1 9.456691-6 6.607901+1 9.493885-6 4.760591+1 9.512981-6 4.046481+1 9.524248-6 3.691315+1 9.535515-6 3.380521+1 9.551172-6 3.014818+1 9.562915-6 2.785353+1 9.580529-6 2.503104+1 9.598683-6 2.277921+1 9.610840-6 2.158281+1 9.619394-6 2.086981+1 9.632144-6 1.998003+1 9.648591-6 1.909474+1 9.660926-6 1.859326+1 9.670177-6 1.829393+1 9.684054-6 1.794839+1 9.697931-6 1.770397+1 9.709636-6 1.755867+1 9.721341-6 1.745478+1 9.779116-6 1.716264+1 9.798613-6 1.702266+1 9.817507-6 1.682444+1 9.842143-6 1.645695+1 9.863252-6 1.604256+1 9.886505-6 1.549104+1 9.909970-6 1.485409+1 9.933404-6 1.416245+1 9.972804-6 1.294100+1 1.000529-5 1.193507+1 1.010828-5 9.130885+0 1.013954-5 8.457977+0 1.016877-5 7.917649+0 1.018709-5 7.622466+0 1.020543-5 7.358977+0 1.022647-5 7.093429+0 1.024954-5 6.841868+0 1.028218-5 6.543431+0 1.032787-5 6.200589+0 1.040000-5 5.724732+0 1.044232-5 5.438541+0 1.052875-5 4.786932+0 1.057875-5 4.375420+0 1.063241-5 3.961575+0 1.064923-5 3.855172+0 1.068289-5 3.707147+0 1.069429-5 3.683025+0 1.072035-5 3.690804+0 1.074654-5 3.800699+0 1.075309-5 3.845553+0 1.077273-5 4.022814+0 1.078686-5 4.189025+0 1.080371-5 4.426776+0 1.082424-5 4.766231+0 1.085550-5 5.353787+0 1.088177-5 5.866454+0 1.089822-5 6.173218+0 1.090753-5 6.336354+0 1.093430-5 6.742997+0 1.094087-5 6.825274+0 1.096057-5 7.023295+0 1.097294-5 7.107386+0 1.098475-5 7.157314+0 1.099655-5 7.177341+0 1.100608-5 7.171966+0 1.102037-5 7.129079+0 1.103467-5 7.046923+0 1.104776-5 6.940344+0 1.106086-5 6.807385+0 1.108705-5 6.477941+0 1.111325-5 6.091248+0 1.112832-5 5.855408+0 1.116909-5 5.218517+0 1.120204-5 4.750708+0 1.122407-5 4.479267+0 1.123373-5 4.372693+0 1.125156-5 4.197475+0 1.127905-5 3.983885+0 1.130654-5 3.838537+0 1.132387-5 3.779875+0 1.134120-5 3.744120+0 1.135315-5 3.731300+0 1.137109-5 3.727441+0 1.138902-5 3.738258+0 1.147149-5 3.850195+0 1.150542-5 3.867865+0 1.151998-5 3.864212+0 1.155274-5 3.830459+0 1.159018-5 3.755286+0 1.163644-5 3.632064+0 1.171653-5 3.421723+0 1.177149-5 3.309120+0 1.189468-5 3.113097+0 1.196805-5 2.992754+0 1.204425-5 2.839883+0 1.209659-5 2.711789+0 1.212461-5 2.635981+0 1.218614-5 2.459722+0 1.227150-5 2.228758+0 1.231618-5 2.130571+0 1.234856-5 2.071841+0 1.238232-5 2.021064+0 1.242571-5 1.968454+0 1.256419-5 1.838268+0 1.259825-5 1.805438+0 1.274588-5 1.646397+0 1.290000-5 1.469862+0 1.300947-5 1.347227+0 1.324167-5 1.108422+0 1.346982-5 9.044824-1 1.386093-5 6.314027-1 1.409582-5 5.222902-1 1.425988-5 4.724190-1 1.440102-5 4.490676-1 1.453465-5 4.443828-1 1.464059-5 4.534628-1 1.474073-5 4.733754-1 1.479108-5 4.878550-1 1.489529-5 5.276105-1 1.512712-5 6.614153-1 1.530046-5 8.067019-1 1.544539-5 9.632170-1 1.566139-5 1.259351+0 1.588822-5 1.655041+0 1.611504-5 2.037335+0 1.617900-5 2.088004+0 1.641738-5 1.977717+0 1.659331-5 1.776008+0 1.683901-5 1.493023+0 1.700962-5 1.306101+0 1.716718-5 1.142732+0 1.732106-5 9.939424-1 1.747012-5 8.626664-1 1.761835-5 7.474377-1 1.775443-5 6.578571-1 1.788996-5 5.873416-1 1.802125-5 5.403446-1 1.814844-5 5.186138-1 1.821574-5 5.181228-1 1.827165-5 5.242255-1 1.831767-5 5.340292-1 1.839101-5 5.592660-1 1.850664-5 6.254885-1 1.861866-5 7.246701-1 1.873152-5 8.651038-1 1.883231-5 1.030324+0 1.893415-5 1.241266+0 1.903281-5 1.494004+0 1.939757-5 2.973182+0 1.956592-5 4.041106+0 1.972375-5 5.341556+0 1.987172-5 6.894115+0 2.014049-5 1.082806+1 2.058434-5 2.242174+1 2.076682-5 3.024770+1 2.092720-5 3.949608+1 2.106816-5 5.017565+1 2.119205-5 6.224692+1 2.130093-5 7.561988+1 2.139972-5 9.069269+1 2.148830-5 1.073106+2 2.156180-5 1.239736+2 2.162798-5 1.418176+2 2.168589-5 1.602037+2 2.175379-5 1.859588+2 2.178090-5 1.977965+2 2.181969-5 2.165965+2 2.188758-5 2.559426+2 2.195104-5 3.023095+2 2.197669-5 3.243559+2 2.203397-5 3.820255+2 2.206261-5 4.159224+2 2.209125-5 4.536992+2 2.215084-5 5.464511+2 2.224224-5 7.329430+2 2.240647-5 1.242949+3 2.251597-5 1.762204+3 2.257717-5 2.151979+3 2.260850-5 2.390140+3 2.268937-5 3.167170+3 2.274766-5 3.912553+3 2.285781-5 5.859951+3 2.290855-5 7.006959+3 2.296978-5 8.566184+3 2.298903-5 9.084236+3 2.303155-5 1.024972+4 2.306014-5 1.103118+4 2.308553-5 1.170842+4 2.310186-5 1.212969+4 2.312762-5 1.276309+4 2.315035-5 1.328069+4 2.317543-5 1.379668+4 2.319723-5 1.419000+4 2.323003-5 1.467063+4 2.325565-5 1.494284+4 2.328549-5 1.513658+4 2.331186-5 1.519246+4 2.333384-5 1.515505+4 2.335995-5 1.501230+4 2.337874-5 1.484507+4 2.342054-5 1.429158+4 2.344106-5 1.393571+4 2.345708-5 1.362361+4 2.347997-5 1.313071+4 2.349469-5 1.278798+4 2.351893-5 1.218596+4 2.353561-5 1.174940+4 2.355749-5 1.115482+4 2.358563-5 1.036536+4 2.361362-5 9.565808+3 2.364162-5 8.765935+3 2.367311-5 7.880998+3 2.369760-5 7.212932+3 2.375359-5 5.784429+3 2.377283-5 5.331867+3 2.379120-5 4.920396+3 2.382357-5 4.246432+3 2.385506-5 3.654771+3 2.388256-5 3.190010+3 2.391134-5 2.754169+3 2.395868-5 2.144675+3 2.406623-5 1.193584+3 2.408097-5 1.103115+3 2.412518-5 8.791937+2 2.414544-5 7.980737+2 2.418413-5 6.758138+2 2.419245-5 6.545802+2 2.420701-5 6.213530+2 2.421794-5 5.995441+2 2.425071-5 5.486467+2 2.426610-5 5.315215+2 2.427177-5 5.262014+2 2.428516-5 5.156003+2 2.429520-5 5.093583+2 2.431026-5 5.025210+2 2.432532-5 4.984463+2 2.433714-5 4.969918+2 2.435654-5 4.975399+2 2.437238-5 5.003401+2 2.439318-5 5.066765+2 2.441991-5 5.182806+2 2.447149-5 5.471892+2 2.452744-5 5.804715+2 2.454148-5 5.881809+2 2.460131-5 6.147531+2 2.462483-5 6.216674+2 2.464729-5 6.261343+2 2.467908-5 6.287765+2 2.471186-5 6.270327+2 2.474021-5 6.220782+2 2.477871-5 6.108078+2 2.481951-5 5.941919+2 2.488063-5 5.632558+2 2.490802-5 5.481110+2 2.503999-5 4.768492+2 2.512084-5 4.412637+2 2.515063-5 4.301566+2 2.522354-5 4.070558+2 2.524602-5 4.009303+2 2.532075-5 3.830187+2 2.573438-5 3.069353+2 2.588682-5 2.845238+2 2.599336-5 2.713151+2 2.615000-5 2.549645+2 2.637738-5 2.355064+2 2.673506-5 2.101595+2 2.700602-5 1.934838+2 2.736022-5 1.744522+2 2.756798-5 1.646410+2 2.785773-5 1.524219+2 2.813513-5 1.420420+2 2.843606-5 1.319705+2 2.888200-5 1.188924+2 2.931577-5 1.079463+2 3.024301-5 8.882815+1 3.221998-5 6.045218+1 3.276800-5 5.473215+1 3.328710-5 5.010683+1 3.353942-5 4.817674+1 3.377598-5 4.660452+1 3.399775-5 4.537384+1 3.421210-5 4.444340+1 3.440057-5 4.387312+1 3.458045-5 4.359063+1 3.474926-5 4.360785+1 3.490959-5 4.391829+1 3.505637-5 4.445675+1 3.532940-5 4.580690+1 3.541902-5 4.618859+1 3.550695-5 4.645359+1 3.559226-5 4.657876+1 3.574512-5 4.648199+1 3.595484-5 4.607657+1 3.603910-5 4.606183+1 3.611817-5 4.626494+1 3.619237-5 4.674312+1 3.622775-5 4.709958+1 3.626201-5 4.754074+1 3.632841-5 4.871662+1 3.639065-5 5.029544+1 3.644901-5 5.231147+1 3.650371-5 5.479980+1 3.655845-5 5.802524+1 3.660308-5 6.133818+1 3.664816-5 6.545951+1 3.669042-5 7.019194+1 3.673004-5 7.556093+1 3.676718-5 8.158395+1 3.680888-5 8.972506+1 3.683464-5 9.561217+1 3.686525-5 1.035998+2 3.692263-5 1.220493+2 3.697284-5 1.427759+2 3.701677-5 1.652850+2 3.705522-5 1.890101+2 3.708885-5 2.133741+2 3.714404-5 2.619322+2 3.722291-5 3.540202+2 3.734728-5 5.709187+2 3.741618-5 7.392269+2 3.747919-5 9.291198+2 3.752564-5 1.093270+3 3.759992-5 1.401073+3 3.762985-5 1.541239+3 3.765977-5 1.690650+3 3.775778-5 2.241548+3 3.777940-5 2.374696+3 3.784426-5 2.794767+3 3.787975-5 3.035067+3 3.794499-5 3.487823+3 3.797485-5 3.696476+3 3.801752-5 3.992050+3 3.805180-5 4.224323+3 3.808998-5 4.473938+3 3.813066-5 4.725390+3 3.816678-5 4.932606+3 3.820995-5 5.156138+3 3.826222-5 5.385205+3 3.830375-5 5.530270+3 3.834815-5 5.645623+3 3.839249-5 5.717387+3 3.840821-5 5.732093+3 3.849780-5 5.707703+3 3.854007-5 5.633620+3 3.859365-5 5.485859+3 3.863121-5 5.349284+3 3.867972-5 5.137248+3 3.870323-5 5.021704+3 3.874326-5 4.808524+3 3.877217-5 4.643550+3 3.881012-5 4.415828+3 3.884671-5 4.187137+3 3.890502-5 3.811620+3 3.895114-5 3.511528+3 3.900303-5 3.177536+3 3.904338-5 2.924313+3 3.913563-5 2.380848+3 3.916051-5 2.244808+3 3.927413-5 1.691891+3 3.937919-5 1.286349+3 3.946643-5 1.024942+3 3.952579-5 8.828619+2 3.956189-5 8.092868+2 3.959800-5 7.446301+2 3.962564-5 7.007302+2 3.966375-5 6.475418+2 3.970557-5 5.980835+2 3.972985-5 5.732466+2 3.977143-5 5.366311+2 3.981189-5 5.073977+2 3.984012-5 4.902810+2 3.987873-5 4.706840+2 3.990566-5 4.593085+2 3.996310-5 4.403316+2 4.000087-5 4.310846+2 4.007316-5 4.187155+2 4.009404-5 4.161466+2 4.019732-5 4.076319+2 4.047332-5 3.949391+2 4.058361-5 3.884570+2 4.080659-5 3.725812+2 4.106755-5 3.547395+2 4.161009-5 3.255511+2 4.206129-5 3.006394+2 4.230861-5 2.885755+2 4.253984-5 2.793088+2 4.279475-5 2.710860+2 4.315191-5 2.619581+2 4.339787-5 2.567395+2 4.392177-5 2.476304+2 4.419141-5 2.438205+2 4.470747-5 2.378302+2 4.518854-5 2.334437+2 4.590904-5 2.285193+2 4.659934-5 2.254369+2 4.757357-5 2.233148+2 4.841724-5 2.228480+2 4.915200-5 2.233138+2 4.979983-5 2.244084+2 5.100653-5 2.279889+2 5.229256-5 2.333015+2 5.343967-5 2.392815+2 5.522670-5 2.509044+2 5.700000-5 2.644484+2 6.012245-5 2.924401+2 6.068674-5 2.980161+2 6.098497-5 3.016518+2 6.139480-5 3.084014+2 6.186022-5 3.192644+2 6.239172-5 3.332751+2 6.263801-5 3.386298+2 6.284401-5 3.421066+2 6.315119-5 3.457764+2 6.391344-5 3.532087+2 6.458309-5 3.632908+2 6.532900-5 3.753913+2 6.770242-5 4.089582+2 7.244360-5 4.885849+2 7.500422-5 5.341737+2 7.807904-5 5.908669+2 8.150000-5 6.552294+2 8.465694-5 7.147967+2 8.823865-5 7.808639+2 9.120108-5 8.335248+2 9.450977-5 8.888850+2 9.772372-5 9.372664+2 1.011579-4 9.807092+2 1.048398-4 1.016989+3 1.074842-4 1.033696+3 1.098353-4 1.041712+3 1.122018-4 1.040295+3 1.139159-4 1.032412+3 1.156779-4 1.016531+3 1.171297-4 9.961761+2 1.185010-4 9.694643+2 1.195820-4 9.468267+2 1.206073-4 9.407018+2 1.206939-4 9.415995+2 1.215337-4 9.649006+2 1.221934-4 1.002565+3 1.228329-4 1.057386+3 1.232851-4 1.110712+3 1.236906-4 1.173353+3 1.239257-4 1.218405+3 1.243833-4 1.331353+3 1.246883-4 1.431257+3 1.248408-4 1.490551+3 1.251458-4 1.631441+3 1.254509-4 1.806885+3 1.256796-4 1.964254+3 1.259222-4 2.157224+3 1.263659-4 2.581314+3 1.266710-4 2.922519+3 1.270146-4 3.344702+3 1.273233-4 3.744494+3 1.276239-4 4.136343+3 1.278290-4 4.396745+3 1.279923-4 4.595614+3 1.281683-4 4.798327+3 1.283717-4 5.013086+3 1.285352-4 5.167356+3 1.287248-4 5.322095+3 1.288961-4 5.436718+3 1.290693-4 5.525790+3 1.292376-4 5.584437+3 1.294659-4 5.617253+3 1.295508-4 5.615261+3 1.297859-4 5.569034+3 1.299336-4 5.509708+3 1.301155-4 5.405755+3 1.303106-4 5.258971+3 1.305227-4 5.062744+3 1.306972-4 4.877224+3 1.309299-4 4.604042+3 1.310462-4 4.459468+3 1.312837-4 4.155004+3 1.316667-4 3.661898+3 1.325008-4 2.728779+3 1.327759-4 2.487939+3 1.329262-4 2.371265+3 1.332375-4 2.161113+3 1.335630-4 1.982033+3 1.340868-4 1.762725+3 1.346987-4 1.580230+3 1.353326-4 1.439466+3 1.362545-4 1.278520+3 1.367522-4 1.208770+3 1.371876-4 1.165105+3 1.375128-4 1.150306+3 1.377842-4 1.154739+3 1.379747-4 1.169274+3 1.381631-4 1.194393+3 1.382925-4 1.218452+3 1.384031-4 1.243681+3 1.390172-4 1.468520+3 1.391905-4 1.558824+3 1.394282-4 1.701341+3 1.401883-4 2.283296+3 1.405135-4 2.574544+3 1.408107-4 2.849900+3 1.410412-4 3.062750+3 1.412546-4 3.253747+3 1.414724-4 3.437681+3 1.415699-4 3.514980+3 1.417948-4 3.678134+3 1.418498-4 3.714350+3 1.421636-4 3.888463+3 1.423121-4 3.949420+3 1.425306-4 4.011570+3 1.427175-4 4.037839+3 1.428987-4 4.039522+3 1.430950-4 4.015729+3 1.432590-4 3.976654+3 1.434698-4 3.903211+3 1.437252-4 3.784475+3 1.438955-4 3.690851+3 1.441509-4 3.534927+3 1.445517-4 3.270612+3 1.453620-4 2.758482+3 1.457908-4 2.535153+3 1.461110-4 2.395539+3 1.463564-4 2.303740+3 1.468547-4 2.153391+3 1.474681-4 2.020869+3 1.483618-4 1.895789+3 1.489544-4 1.841001+3 1.496773-4 1.794368+3 1.504463-4 1.761841+3 1.514601-4 1.733997+3 1.548000-4 1.663480+3 1.579873-4 1.616874+3 1.619531-4 1.584035+3 1.680000-4 1.560476+3 1.714232-4 1.547919+3 1.779032-4 1.513763+3 1.819701-4 1.485308+3 1.888690-4 1.429992+3 1.956110-4 1.372029+3 2.055136-4 1.286696+3 2.180694-4 1.183410+3 2.372256-4 1.044053+3 2.477500-4 9.747254+2 2.548768-4 9.279273+2 2.609409-4 8.837134+2 2.662413-4 8.431211+2 2.680370-4 8.336357+2 2.696456-4 8.292835+2 2.715910-4 8.292050+2 2.780347-4 8.369712+2 2.840000-4 8.338300+2 2.951209-4 8.194118+2 3.127767-4 7.921063+2 3.260000-4 7.711288+2 3.436957-4 7.432833+2 3.570685-4 7.195553+2 3.658652-4 7.027516+2 3.689000-4 6.997985+2 3.775672-4 7.001314+2 3.944892-4 6.893889+2 4.230428-4 6.573649+2 4.386904-4 6.345340+2 4.473170-4 6.225714+2 4.561561-4 6.139082+2 4.731513-4 5.928199+2 4.932222-4 5.618713+2 5.109347-4 5.303970+2 5.283065-4 4.954499+2 5.452841-4 4.562447+2 5.605830-4 4.155472+2 5.684895-4 3.924681+2 5.805312-4 3.572268+2 5.903845-4 3.298152+2 5.961997-4 3.130010+2 6.010000-4 2.977286+2 6.067500-4 2.780598+2 6.090000-4 2.700895+2 6.120162-4 2.591870+2 6.170713-4 2.403580+2 6.212500-4 2.244127+2 6.252500-4 2.091569+2 6.330000-4 1.813828+2 6.362109-4 1.713547+2 6.395682-4 1.623379+2 6.427500-4 1.555608+2 6.456542-4 1.512049+2 6.484325-4 1.489507+2 6.507817-4 1.486936+2 6.540918-4 1.511959+2 6.566272-4 1.556019+2 6.594868-4 1.633983+2 6.619209-4 1.725560+2 6.648114-4 1.866083+2 6.677487-4 2.045503+2 6.722782-4 2.396070+2 6.775399-4 2.916395+2 6.850000-4 3.856096+2 6.888118-4 4.419399+2 6.928736-4 5.071987+2 6.961882-4 5.637798+2 7.000000-4 6.317442+2 7.040000-4 7.054983+2 7.060000-4 7.430201+2 7.090000-4 7.997855+2 7.120000-4 8.567902+2 7.170000-4 9.513410+2 7.220000-4 1.044076+3 7.260000-4 1.116236+3 7.300000-4 1.186210+3 7.365429-4 1.295475+3 7.418438-4 1.379060+3 7.500000-4 1.498683+3 7.560000-4 1.579270+3 7.620000-4 1.653232+3 7.703609-4 1.745917+3 7.791178-4 1.832382+3 7.871382-4 1.903289+3 7.981981-4 1.989794+3 8.100941-4 2.071732+3 8.229669-4 2.149223+3 8.351285-4 2.212987+3 8.511380-4 2.286121+3 8.655766-4 2.343042+3 8.854748-4 2.409509+3 9.059836-4 2.463536+3 9.249433-4 2.499160+3 9.426041-4 2.520460+3 9.609040-4 2.550562+3 9.661368-4 2.577593+3 9.732125-4 2.629216+3 9.792769-4 2.666521+3 9.822523-4 2.674605+3 9.869347-4 2.670038+3 9.956879-4 2.630304+3 9.990671-4 2.619590+3 1.002287-3 2.617561+3 1.008211-3 2.636680+3 1.015066-3 2.685823+3 1.038039-3 2.899500+3 1.046232-3 2.964909+3 1.053778-3 3.001176+3 1.067301-3 3.043418+3 1.084295-3 3.135093+3 1.099843-3 3.211103+3 1.124000-3 3.296846+3 1.150000-3 3.366272+3 1.185945-3 3.443376+3 1.225453-3 3.506912+3 1.269142-3 3.559499+3 1.299882-3 3.575554+3 1.335142-3 3.572410+3 1.342821-3 3.579314+3 1.352130-3 3.599631+3 1.365910-3 3.651679+3 1.388695-3 3.746379+3 1.404648-3 3.793859+3 1.432608-3 3.848299+3 1.467869-3 3.891635+3 1.513562-3 3.930440+3 1.569008-3 3.964099+3 1.623163-3 3.983579+3 1.742771-3 3.998716+3 1.780376-3 4.013651+3 1.826995-3 4.015218+3 1.906176-3 3.992031+3 1.947213-3 3.999785+3 1.979818-3 4.010917+3 2.035870-3 4.012637+3 2.124556-3 3.996866+3 2.216282-3 3.969434+3 2.323688-3 3.929545+3 2.449566-3 3.877073+3 2.583300-3 3.807421+3 2.719337-3 3.729265+3 2.869541-3 3.636012+3 3.037479-3 3.524433+3 3.211469-3 3.403712+3 3.375893-3 3.276268+3 3.534338-3 3.147178+3 3.684117-3 3.014633+3 3.804450-3 2.899451+3 3.917489-3 2.782150+3 4.007297-3 2.679403+3 4.091052-3 2.571980+3 4.164310-3 2.466175+3 4.213386-3 2.386141+3 4.264103-3 2.291994+3 4.302487-3 2.209345+3 4.338254-3 2.118253+3 4.366176-3 2.033692+3 4.395375-3 1.932234+3 4.427817-3 1.818262+3 4.442253-3 1.776554+3 4.454550-3 1.749986+3 4.466836-3 1.734113+3 4.471005-3 1.731443+3 4.481500-3 1.731123+3 4.493233-3 1.741542+3 4.502594-3 1.757459+3 4.518559-3 1.797452+3 4.564591-3 1.950521+3 4.581036-3 1.999282+3 4.591937-3 2.026499+3 4.608260-3 2.058730+3 4.628382-3 2.084843+3 4.641808-3 2.095096+3 4.673805-3 2.105015+3 4.707342-3 2.114820+3 4.719944-3 2.124496+3 4.737811-3 2.147719+3 4.751199-3 2.173457+3 4.773012-3 2.230301+3 4.811131-3 2.359138+3 4.833800-3 2.439251+3 4.855679-3 2.510446+3 4.874429-3 2.564091+3 4.897788-3 2.620815+3 4.927982-3 2.679622+3 4.965880-3 2.736391+3 5.010001-3 2.786453+3 5.057155-3 2.825857+3 5.100093-3 2.850644+3 5.150270-3 2.867253+3 5.196020-3 2.870611+3 5.240527-3 2.861653+3 5.321852-3 2.825389+3 5.341679-3 2.822378+3 5.358355-3 2.825428+3 5.375538-3 2.835062+3 5.406144-3 2.868739+3 5.495438-3 3.017242+3 5.521478-3 3.052381+3 5.552269-3 3.085070+3 5.593579-3 3.117191+3 5.651580-3 3.148463+3 5.705382-3 3.168930+3 5.766905-3 3.185202+3 5.841731-3 3.197584+3 5.930587-3 3.205030+3 6.113488-3 3.200537+3 6.302675-3 3.174729+3 6.415856-3 3.150191+3 6.515278-3 3.122365+3 6.641822-3 3.074210+3 6.726670-3 3.039158+3 6.781953-3 3.027281+3 6.935761-3 3.032157+3 7.036133-3 3.019065+3 7.171104-3 2.993691+3 7.358971-3 2.997567+3 7.546751-3 2.979415+3 7.864320-3 2.923304+3 8.317638-3 2.826312+3 8.903819-3 2.693474+3 9.688355-3 2.514695+3 1.062080-2 2.311618+3 1.152137-2 2.132604+3 1.247416-2 1.960898+3 1.361099-2 1.776843+3 1.424392-2 1.683721+3 1.494175-2 1.587351+3 1.555517-2 1.507556+3 1.627043-2 1.419054+3 1.690015-2 1.345052+3 1.751729-2 1.275340+3 1.801372-2 1.220260+3 1.845082-2 1.172334+3 1.883973-2 1.129382+3 1.916640-2 1.092582+3 1.943190-2 1.061651+3 1.966311-2 1.033422+3 1.983948-2 1.010551+3 2.000998-2 9.866450+2 2.015615-2 9.638157+2 2.027373-2 9.429467+2 2.036767-2 9.241273+2 2.054100-2 8.849883+2 2.066666-2 8.574866+2 2.075034-2 8.434012+2 2.082051-2 8.360385+2 2.089296-2 8.335476+2 2.095907-2 8.358335+2 2.105641-2 8.457650+2 2.132681-2 8.871778+2 2.146155-2 9.025026+2 2.154757-2 9.092383+2 2.164601-2 9.145581+2 2.177457-2 9.186893+2 2.192684-2 9.208249+2 2.210376-2 9.208528+2 2.250943-2 9.147274+2 2.298556-2 9.010935+2 2.364558-2 8.759772+2 2.433587-2 8.450458+2 2.494692-2 8.139718+2 2.526547-2 7.961934+2 2.552843-2 7.803592+2 2.576140-2 7.649585+2 2.593356-2 7.522475+2 2.619655-2 7.295686+2 2.651394-2 6.996421+2 2.664226-2 6.902271+2 2.676255-2 6.845773+2 2.688164-2 6.822570+2 2.710117-2 6.839791+2 2.766020-2 6.940885+2 2.810864-2 7.060917+2 2.837362-2 7.101406+2 2.875707-2 7.102703+2 2.930280-2 7.046388+2 2.998645-2 6.936374+2 3.084765-2 6.770915+2 3.223970-2 6.477562+2 3.388947-2 6.123682+2 3.677104-2 5.539503+2 3.954517-2 5.033541+2 4.257715-2 4.539761+2 4.724041-2 3.896120+2 5.231447-2 3.331341+2 5.605426-2 2.982278+2 6.096128-2 2.594751+2 6.954925-2 2.070734+2 8.250076-2 1.533911+2 9.377139-2 1.218772+2 1.059721-1 9.726556+1 1.146339-1 8.366289+1 1.194488-1 7.709968+1 1.234515-1 7.206010+1 1.293512-1 6.514633+1 1.316605-1 6.253723+1 1.335485-1 6.040198+1 1.350637-1 5.865608+1 1.363433-1 5.712542+1 1.374437-1 5.572527+1 1.382923-1 5.454919+1 1.394531-1 5.273298+1 1.413327-1 4.960844+1 1.420745-1 4.875295+1 1.427473-1 4.837780+1 1.434347-1 4.839987+1 1.444660-1 4.894667+1 1.458409-1 4.980013+1 1.468675-1 5.014544+1 1.476128-1 5.022984+1 1.485401-1 5.019727+1 1.508285-1 4.976490+1 1.536150-1 4.892758+1 1.576855-1 4.744141+1 1.623258-1 4.562043+1 1.719764-1 4.183982+1 1.856055-1 3.696694+1 2.077864-1 3.048399+1 2.330184-1 2.490970+1 2.758840-1 1.837162+1 3.365327-1 1.273967+1 4.181321-1 8.479593+0 5.432503-1 5.153194+0 7.659134-1 2.659654+0 1.173413+0 1.161024+0 1.776032+0 5.143907-1 2.947480+0 1.885041-1 6.752287+0 3.610039-2 2.039158+1 3.961383-3 6.158159+1 4.343515-4 1.859734+2 4.762559-5 5.616308+2 5.222040-6 1.995262+3 4.137537-7 6.309573+3 4.137537-8 1.995262+4 4.137537-9 6.309573+4 4.13754-10 1.000000+5 1.64718-10 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 71 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 1.000000-6 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 72 0 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.552900-6 1.258900-6 4.046100-6 1.584900-6 6.412600-6 1.995300-6 1.016300-5 2.511900-6 1.610800-5 3.162300-6 2.552900-5 3.981100-6 4.046000-5 5.011900-6 6.412500-5 6.309600-6 1.016300-4 7.943300-6 1.610700-4 1.000000-5 2.552800-4 1.258900-5 4.045800-4 1.584900-5 6.409100-4 1.995300-5 1.015200-3 2.511900-5 1.608100-3 3.162300-5 2.547700-3 3.981100-5 4.036600-3 5.011900-5 6.396100-3 6.309600-5 1.013500-2 7.943300-5 1.603500-2 1.000000-4 2.535900-2 1.258900-4 4.010000-2 1.584900-4 6.325000-2 1.995300-4 9.958000-2 2.511900-4 1.561100-1 3.162300-4 2.432000-1 3.981100-4 3.753200-1 5.011900-4 5.697000-1 6.309600-4 8.422300-1 7.943300-4 1.206500+0 1.000000-3 1.671300+0 1.258900-3 2.254500+0 1.584900-3 2.990100+0 1.995300-3 3.932800+0 2.511900-3 5.112600+0 3.162300-3 6.549900+0 3.981100-3 8.267300+0 5.011900-3 1.027800+1 6.309600-3 1.255900+1 7.943300-3 1.513000+1 1.000000-2 1.803600+1 1.258900-2 2.124500+1 1.584900-2 2.458500+1 1.995300-2 2.791600+1 2.511900-2 3.103500+1 3.162300-2 3.396100+1 3.981100-2 3.654200+1 5.011900-2 3.863000+1 6.309600-2 4.008800+1 7.943300-2 4.082200+1 1.000000-1 4.086200+1 1.258900-1 4.024700+1 1.584900-1 3.903200+1 1.995300-1 3.732600+1 2.511900-1 3.526600+1 3.162300-1 3.298500+1 3.981100-1 3.056500+1 5.011900-1 2.809400+1 6.309600-1 2.562700+1 7.943300-1 2.321000+1 1.000000+0 2.087600+1 1.258900+0 1.864800+1 1.584900+0 1.654500+1 1.995300+0 1.458000+1 2.511900+0 1.276500+1 3.162300+0 1.110500+1 3.981100+0 9.602100+0 5.011900+0 8.255700+0 6.309600+0 7.060700+0 7.943300+0 6.009300+0 1.000000+1 5.091700+0 1.258900+1 4.296700+0 1.584900+1 3.612600+0 1.995300+1 3.027200+0 2.511900+1 2.529100+0 3.162300+1 2.107200+0 3.981100+1 1.751400+0 5.011900+1 1.452500+0 6.309600+1 1.202100+0 7.943300+1 9.931400-1 1.000000+2 8.191100-1 1.258900+2 6.745600-1 1.584900+2 5.547400-1 1.995300+2 4.556300-1 2.511900+2 3.737900-1 3.162300+2 3.063100-1 3.981100+2 2.507600-1 5.011900+2 2.051000-1 6.309600+2 1.676000-1 7.943300+2 1.368500-1 1.000000+3 1.116500-1 1.258900+3 9.102800-2 1.584900+3 7.416300-2 1.995300+3 6.038500-2 2.511900+3 4.913600-2 3.162300+3 3.995900-2 3.981100+3 3.247900-2 5.011900+3 2.638500-2 6.309600+3 2.142400-2 7.943300+3 1.738700-2 1.000000+4 1.410400-2 1.258900+4 1.143700-2 1.584900+4 9.269500-3 1.995300+4 7.510000-3 2.511900+4 6.082200-3 3.162300+4 4.924000-3 3.981100+4 3.984900-3 5.011900+4 3.223800-3 6.309600+4 2.607200-3 7.943300+4 2.107800-3 1.000000+5 1.703600-3 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 9.999973-7 1.258925-6 1.258921-6 1.584893-6 1.584886-6 1.995262-6 1.995251-6 2.511886-6 2.511869-6 3.162278-6 3.162250-6 3.981072-6 3.981028-6 5.011872-6 5.011804-6 6.309573-6 6.309464-6 7.943282-6 7.943109-6 1.000000-5 9.999726-6 1.258925-5 1.258882-5 1.584893-5 1.584824-5 1.995262-5 1.995153-5 2.511886-5 2.511714-5 3.162278-5 3.162004-5 3.981072-5 3.980638-5 5.011872-5 5.011184-5 6.309573-5 6.308483-5 7.943282-5 7.941555-5 1.000000-4 9.997263-5 1.258925-4 1.258492-4 1.584893-4 1.584206-4 1.995262-4 1.994175-4 2.511886-4 2.510165-4 3.162278-4 3.159556-4 3.981072-4 3.976774-4 5.011872-4 5.005102-4 6.309573-4 6.298928-4 7.943282-4 7.926640-4 1.000000-3 9.974044-4 1.258925-3 1.254879-3 1.584893-3 1.578560-3 1.995262-3 1.985312-3 2.511886-3 2.496254-3 3.162278-3 3.137722-3 3.981072-3 3.942594-3 5.011872-3 4.951793-3 6.309573-3 6.215810-3 7.943282-3 7.797028-3 1.000000-2 9.771867-3 1.258925-2 1.223397-2 1.584893-2 1.529746-2 1.995262-2 1.910399-2 2.511886-2 2.381651-2 3.162278-2 2.963482-2 3.981072-2 3.678592-2 5.011872-2 4.554838-2 6.309573-2 5.624015-2 7.943282-2 6.924461-2 1.000000-1 8.499102-2 1.258925-1 1.039825-1 1.584893-1 1.268131-1 1.995262-1 1.542033-1 2.511886-1 1.869108-1 3.162278-1 2.257379-1 3.981072-1 2.718356-1 5.011872-1 3.263506-1 6.309573-1 3.907042-1 7.943282-1 4.665398-1 1.000000+0 5.558767-1 1.258925+0 6.611668-1 1.584893+0 7.854972-1 1.995262+0 9.326452-1 2.511886+0 1.107171+0 3.162278+0 1.314887+0 3.981072+0 1.562879+0 5.011872+0 1.859743+0 6.309573+0 2.215962+0 7.943282+0 2.644602+0 1.000000+1 3.161196+0 1.258925+1 3.785311+0 1.584893+1 4.540471+0 1.995262+1 5.455734+0 2.511886+1 6.566513+0 3.162278+1 7.916597+0 3.981072+1 9.559217+0 5.011872+1 1.155980+1 6.309573+1 1.399959+1 7.943282+1 1.697726+1 1.000000+2 2.061469+1 1.258925+2 2.506185+1 1.584893+2 3.050319+1 1.995262+2 3.716726+1 2.511886+2 4.533218+1 3.162278+2 5.534482+1 3.981072+2 6.762934+1 5.011872+2 8.271272+1 6.309573+2 1.012421+2 7.943282+2 1.240182+2 1.000000+3 1.520279+2 1.258925+3 1.864929+2 1.584893+3 2.289144+2 1.995262+3 2.811764+2 2.511886+3 3.455611+2 3.162278+3 4.249282+2 3.981072+3 5.228161+2 5.011872+3 6.435840+2 6.309573+3 7.926434+2 7.943282+3 9.766721+2 1.000000+4 1.203939+3 1.258925+4 1.484752+3 1.584893+4 1.831801+3 1.995262+4 2.260845+3 2.511886+4 2.791404+3 3.162278+4 3.447714+3 3.981072+4 4.259668+3 5.011872+4 5.264588+3 6.309573+4 6.508469+3 7.943282+4 8.048389+3 1.000000+5 9.955317+3 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 72 10 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 2.74027-12 1.258925-6 4.34302-12 1.584893-6 6.88322-12 1.995262-6 1.09092-11 2.511886-6 1.72898-11 3.162278-6 2.74024-11 3.981072-6 4.34298-11 5.011872-6 6.88313-11 6.309573-6 1.09090-10 7.943282-6 1.72895-10 1.000000-5 2.74017-10 1.258925-5 4.34283-10 1.584893-5 6.88200-10 1.995262-5 1.090636-9 2.511886-5 1.728513-9 3.162278-5 2.739536-9 3.981072-5 4.341911-9 5.011872-5 6.881434-9 6.309573-5 1.090601-8 7.943282-5 1.727688-8 1.000000-4 2.737416-8 1.258925-4 4.337603-8 1.584893-4 6.869097-8 1.995262-4 1.087686-7 2.511886-4 1.721308-7 3.162278-4 2.721637-7 3.981072-4 4.297891-7 5.011872-4 6.770045-7 6.309573-4 1.064543-6 7.943282-4 1.664209-6 1.000000-3 2.595602-6 1.258925-3 4.046227-6 1.584893-3 6.333370-6 1.995262-3 9.950006-6 2.511886-3 1.563208-5 3.162278-3 2.455603-5 3.981072-3 3.847807-5 5.011872-3 6.007912-5 6.309573-3 9.376358-5 7.943282-3 1.462541-4 1.000000-2 2.281334-4 1.258925-2 3.552805-4 1.584893-2 5.514712-4 1.995262-2 8.486295-4 2.511886-2 1.302354-3 3.162278-2 1.987961-3 3.981072-2 3.024792-3 5.011872-2 4.570342-3 6.309573-2 6.855580-3 7.943282-2 1.018821-2 1.000000-1 1.500898-2 1.258925-1 2.191005-2 1.584893-1 3.167621-2 1.995262-1 4.532291-2 2.511886-1 6.427787-2 3.162278-1 9.048982-2 3.981072-1 1.262716-1 5.011872-1 1.748367-1 6.309573-1 2.402531-1 7.943282-1 3.277884-1 1.000000+0 4.441233-1 1.258925+0 5.977586-1 1.584893+0 7.993960-1 1.995262+0 1.062617+0 2.511886+0 1.404715+0 3.162278+0 1.847391+0 3.981072+0 2.418192+0 5.011872+0 3.152129+0 6.309573+0 4.093611+0 7.943282+0 5.298680+0 1.000000+1 6.838804+0 1.258925+1 8.803943+0 1.584893+1 1.130846+1 1.995262+1 1.449689+1 2.511886+1 1.855235+1 3.162278+1 2.370618+1 3.981072+1 3.025150+1 5.011872+1 3.855893+1 6.309573+1 4.909615+1 7.943282+1 6.245556+1 1.000000+2 7.938531+1 1.258925+2 1.008307+2 1.584893+2 1.279861+2 1.995262+2 1.623590+2 2.511886+2 2.058565+2 3.162278+2 2.608829+2 3.981072+2 3.304778+2 5.011872+2 4.184745+2 6.309573+2 5.297152+2 7.943282+2 6.703100+2 1.000000+3 8.479721+2 1.258925+3 1.072433+3 1.584893+3 1.355979+3 1.995262+3 1.714086+3 2.511886+3 2.166325+3 3.162278+3 2.737349+3 3.981072+3 3.458256+3 5.011872+3 4.368288+3 6.309573+3 5.516930+3 7.943282+3 6.966610+3 1.000000+4 8.796061+3 1.258925+4 1.110450+4 1.584893+4 1.401713+4 1.995262+4 1.769178+4 2.511886+4 2.232746+4 3.162278+4 2.817506+4 3.981072+4 3.555105+4 5.011872+4 4.485414+4 6.309573+4 5.658727+4 7.943282+4 7.138443+4 1.000000+5 9.004468+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 0 0.0 0.0 0.0 0.0 0.0 5.850000-6 1.106644+7 5.888437-6 1.091387+7 5.956621-6 1.057701+7 6.606934-6 7.698918+6 7.500000-6 5.254620+6 8.511380-6 3.615465+6 9.700000-6 2.474560+6 1.018000-5 2.156977+6 1.018000-5 5.614269+6 1.022000-5 5.497018+6 1.023293-5 5.469292+6 1.071519-5 4.795596+6 1.097000-5 4.498308+6 1.122018-5 4.243137+6 1.135011-5 4.119471+6 1.161449-5 3.894456+6 1.202264-5 3.594557+6 1.229000-5 3.425053+6 1.229000-5 5.363072+6 1.230269-5 5.347154+6 1.240000-5 5.230659+6 1.244515-5 5.184026+6 1.273503-5 4.924086+6 1.288250-5 4.804573+6 1.290000-5 4.790763+6 1.318257-5 4.583156+6 1.333521-5 4.481789+6 1.364583-5 4.294887+6 1.380384-5 4.209511+6 1.412538-5 4.051624+6 1.427100-5 3.987708+6 1.462177-5 3.849193+6 1.479108-5 3.790240+6 1.513561-5 3.682682+6 1.531087-5 3.635392+6 1.566751-5 3.550208+6 1.584893-5 3.513205+6 1.621810-5 3.447540+6 1.630000-5 3.435376+6 1.678804-5 3.373590+6 1.730000-5 3.332232+6 1.737801-5 3.327441+6 1.785000-5 3.309681+6 1.800000-5 3.306725+6 1.840772-5 3.308243+6 1.870000-5 3.314225+6 1.900000-5 3.326183+6 1.927525-5 3.341073+6 1.950000-5 3.357042+6 2.000000-5 3.399006+6 2.070000-5 3.480232+6 2.089296-5 3.505548+6 2.137962-5 3.579095+6 2.190000-5 3.665542+6 2.213095-5 3.708132+6 2.300000-5 3.882406+6 2.400000-5 4.117148+6 2.426610-5 4.184115+6 2.500000-5 4.382604+6 2.577000-5 4.604649+6 2.577000-5 4.009727+7 2.580000-5 3.967602+7 2.587000-5 3.871594+7 2.610000-5 3.660935+7 2.615000-5 3.617306+7 2.645000-5 3.383947+7 2.691535-5 3.086361+7 2.740000-5 2.837766+7 2.754229-5 2.775212+7 2.786121-5 2.643524+7 2.800000-5 2.592793+7 2.818383-5 2.528293+7 2.830000-5 2.489109+7 2.888200-5 2.319170+7 2.917427-5 2.246983+7 2.951209-5 2.169768+7 3.019952-5 2.038377+7 3.120000-5 1.891050+7 3.162278-5 1.842067+7 3.235937-5 1.767656+7 3.311311-5 1.708360+7 3.350000-5 1.681673+7 3.507519-5 1.603771+7 3.548134-5 1.590354+7 3.570000-5 1.583917+7 3.589219-5 1.578386+7 3.715352-5 1.550283+7 3.801894-5 1.540864+7 3.845918-5 1.537551+7 3.981072-5 1.534087+7 4.000000-5 1.534508+7 4.027170-5 1.535753+7 4.073803-5 1.537941+7 4.127000-5 1.541132+7 4.127000-5 2.727870+7 4.140000-5 2.699073+7 4.175000-5 2.632457+7 4.220000-5 2.561529+7 4.265795-5 2.501586+7 4.315191-5 2.447464+7 4.330000-5 2.432097+7 4.400000-5 2.372633+7 4.415704-5 2.361496+7 4.466836-5 2.327652+7 4.470000-5 2.325689+7 4.518559-5 2.299963+7 4.550000-5 2.284109+7 4.570882-5 2.275176+7 4.650000-5 2.243729+7 4.786301-5 2.206486+7 4.800000-5 2.203869+7 4.841724-5 2.195774+7 4.897788-5 2.185607+7 4.954502-5 2.176984+7 5.069907-5 2.166415+7 5.128614-5 2.163291+7 5.150000-5 2.162046+7 5.432503-5 2.158976+7 5.495409-5 2.161646+7 5.500000-5 2.161879+7 5.623413-5 2.166041+7 5.821032-5 2.179510+7 5.900000-5 2.185902+7 6.095369-5 2.202097+7 6.165950-5 2.209352+7 6.237348-5 2.216387+7 6.485000-5 2.239897+7 6.485000-5 2.287982+7 6.531306-5 2.292684+7 6.606934-5 2.298903+7 6.620000-5 2.299762+7 6.760830-5 2.309582+7 6.900000-5 2.320532+7 6.918310-5 2.321749+7 7.079458-5 2.329247+7 7.150000-5 2.333112+7 7.244360-5 2.338626+7 7.500000-5 2.344601+7 7.585776-5 2.345272+7 7.800000-5 2.343972+7 7.900000-5 2.341228+7 8.035261-5 2.335180+7 8.128305-5 2.331436+7 8.150000-5 2.329994+7 8.222426-5 2.325321+7 8.413951-5 2.309889+7 8.511380-5 2.299905+7 8.709636-5 2.276939+7 8.810489-5 2.263264+7 8.912509-5 2.247763+7 9.015711-5 2.232507+7 9.120108-5 2.214899+7 9.332543-5 2.176230+7 9.440609-5 2.154395+7 9.549926-5 2.130689+7 9.660509-5 2.107343+7 9.772372-5 2.081432+7 9.800000-5 2.074595+7 1.000000-4 2.026424+7 1.011579-4 1.996766+7 1.035142-4 1.934867+7 1.040000-4 1.921521+7 1.060000-4 1.864935+7 1.071519-4 1.831344+7 1.090000-4 1.776580+7 1.096478-4 1.756638+7 1.100000-4 1.745944+7 1.122018-4 1.678271+7 1.128000-4 1.659493+7 1.135011-4 1.636847+7 1.150000-4 1.589947+7 1.161449-4 1.553525+7 1.174898-4 1.510354+7 1.182100-4 1.487936+7 1.190000-4 1.462521+7 1.202264-4 1.422676+7 1.213000-4 1.389028+7 1.220000-4 1.366554+7 1.244515-4 1.288665+7 1.252500-4 1.263414+7 1.273503-4 1.197904+7 1.280000-4 1.178549+7 1.288250-4 1.152678+7 1.315000-4 1.073731+7 1.318257-4 1.063895+7 1.350000-4 9.738210+6 1.380384-4 8.914533+6 1.392900-4 8.582065+6 1.392900-4 9.333128+6 1.396368-4 9.278326+6 1.402000-4 9.188910+6 1.413000-4 9.027173+6 1.415000-4 8.999320+6 1.420000-4 8.926196+6 1.428894-4 8.802620+6 1.439000-4 8.671586+6 1.447000-4 8.573074+6 1.450000-4 8.536322+6 1.454000-4 8.484542+6 1.462177-4 8.379112+6 1.472000-4 8.254159+6 1.480000-4 8.151317+6 1.482000-4 8.126822+6 1.490000-4 8.023714+6 1.500000-4 7.881324+6 1.510000-4 7.735526+6 1.520000-4 7.585749+6 1.531087-4 7.409584+6 1.538900-4 7.279110+6 1.538900-4 7.781010+6 1.540000-4 7.767480+6 1.541000-4 7.754347+6 1.547000-4 7.672975+6 1.550000-4 7.634944+6 1.555000-4 7.569051+6 1.560000-4 7.507762+6 1.566751-4 7.420797+6 1.569700-4 7.383771+6 1.570000-4 7.380060+6 1.584893-4 7.196331+6 1.585000-4 7.195102+6 1.589000-4 7.146944+6 1.600000-4 7.019755+6 1.603245-4 6.979814+6 1.610000-4 6.898342+6 1.620000-4 6.781003+6 1.620200-4 6.778628+6 1.630000-4 6.661136+6 1.640000-4 6.542915+6 1.640590-4 6.535801+6 1.643000-4 6.505627+6 1.648000-4 6.442447+6 1.655000-4 6.353184+6 1.663000-4 6.250966+6 1.670000-4 6.161183+6 1.678804-4 6.044679+6 1.680000-4 6.028601+6 1.690000-4 5.890838+6 1.698244-4 5.776860+6 1.700000-4 5.753112+6 1.705000-4 5.683120+6 1.714000-4 5.558682+6 1.717908-4 5.503765+6 1.720000-4 5.474188+6 1.725000-4 5.403416+6 1.740000-4 5.192122+6 1.757924-4 4.946517+6 1.760000-4 4.917823+6 1.778279-4 4.668894+6 1.798871-4 4.402300+6 1.800000-4 4.388277+6 1.819701-4 4.142895+6 1.820000-4 4.139313+6 1.840772-4 3.894648+6 1.850000-4 3.789434+6 1.880000-4 3.467846+6 1.883649-4 3.430743+6 1.900000-4 3.267744+6 1.915000-4 3.125263+6 1.950000-4 2.817406+6 1.972423-4 2.635508+6 1.990000-4 2.503143+6 2.000000-4 2.430473+6 2.020000-4 2.291834+6 2.041738-4 2.150511+6 2.060000-4 2.040713+6 2.065380-4 2.009230+6 2.100000-4 1.819649+6 2.120000-4 1.719474+6 2.137962-4 1.636399+6 2.153300-4 1.568855+6 2.170000-4 1.499338+6 2.187762-4 1.429584+6 2.190000-4 1.421073+6 2.213095-4 1.338123+6 2.264644-4 1.175380+6 2.267700-4 1.166607+6 2.300000-4 1.080547+6 2.317395-4 1.038220+6 2.330000-4 1.009265+6 2.340000-4 9.874793+5 2.365800-4 9.347815+5 2.371374-4 9.240363+5 2.390000-4 8.895685+5 2.400000-4 8.719884+5 2.405000-4 8.636323+5 2.407000-4 8.603435+5 2.430000-4 8.241809+5 2.450000-4 7.951110+5 2.454709-4 7.885600+5 2.458000-4 7.841272+5 2.465000-4 7.749167+5 2.483133-4 7.520709+5 2.485000-4 7.498333+5 2.500000-4 7.324586+5 2.501000-4 7.313327+5 2.520000-4 7.107191+5 2.535000-4 6.958894+5 2.540973-4 6.901930+5 2.550000-4 6.818347+5 2.560000-4 6.728860+5 2.565700-4 6.679295+5 2.575000-4 6.600804+5 2.580000-4 6.559768+5 2.593900-4 6.455424+5 2.600160-4 6.410029+5 2.610000-4 6.341230+5 2.620000-4 6.273696+5 2.628000-4 6.221747+5 2.635000-4 6.177671+5 2.643000-4 6.129752+5 2.660725-4 6.030139+5 2.680000-4 5.933064+5 2.690000-4 5.885210+5 2.691535-4 5.878158+5 2.691700-4 5.877438+5 2.691700-4 9.110338+5 2.700000-4 9.057663+5 2.722701-4 8.919953+5 2.730000-4 8.878449+5 2.750000-4 8.770606+5 2.754229-4 8.748777+5 2.778000-4 8.636559+5 2.800000-4 8.539762+5 2.807000-4 8.511317+5 2.818383-4 8.466891+5 2.830000-4 8.425175+5 2.840000-4 8.391517+5 2.880000-4 8.268822+5 2.884032-4 8.257859+5 2.900000-4 8.218723+5 2.930000-4 8.151875+5 2.951209-4 8.107663+5 2.985383-4 8.058911+5 3.000000-4 8.040827+5 3.019952-4 8.016726+5 3.020000-4 8.016684+5 3.054921-4 7.988712+5 3.090295-4 7.965338+5 3.100000-4 7.959799+5 3.150000-4 7.946436+5 3.155800-4 7.945307+5 3.162278-4 7.943573+5 3.180000-4 7.941773+5 3.198895-4 7.943885+5 3.216200-4 7.945935+5 3.235937-4 7.948112+5 3.240000-4 7.948501+5 3.260000-4 7.953390+5 3.273407-4 7.959807+5 3.280000-4 7.962739+5 3.311311-4 7.979345+5 3.320000-4 7.983613+5 3.350000-4 8.002873+5 3.388442-4 8.028365+5 3.390000-4 8.029266+5 3.400000-4 8.036056+5 3.404700-4 8.038939+5 3.467369-4 8.087655+5 3.480000-4 8.096799+5 3.500000-4 8.109942+5 3.507519-4 8.115649+5 3.548134-4 8.151215+5 3.550000-4 8.152667+5 3.600000-4 8.188861+5 3.630781-4 8.215061+5 3.672823-4 8.243462+5 3.680600-4 8.249380+5 3.680600-4 9.741602+5 3.683500-4 9.725450+5 3.689000-4 9.673674+5 3.694000-4 9.636325+5 3.699000-4 9.605249+5 3.707000-4 9.566261+5 3.715352-4 9.535475+5 3.725000-4 9.507212+5 3.736000-4 9.482945+5 3.748000-4 9.463645+5 3.762000-4 9.447503+5 3.780000-4 9.433856+5 3.785000-4 9.430268+5 3.801894-4 9.422991+5 3.815000-4 9.415850+5 3.850000-4 9.403361+5 3.890451-4 9.393593+5 3.981072-4 9.362201+5 4.000000-4 9.356696+5 4.027170-4 9.348568+5 4.100000-4 9.327325+5 4.120975-4 9.322956+5 4.200000-4 9.300100+5 4.216965-4 9.296520+5 4.265795-4 9.278198+5 4.315191-4 9.261730+5 4.365158-4 9.247247+5 4.415704-4 9.224435+5 4.430000-4 9.217877+5 4.461100-4 9.205219+5 4.461100-4 9.622418+5 4.466836-4 9.619618+5 4.518559-4 9.591711+5 4.550300-4 9.571868+5 4.623810-4 9.529334+5 4.677351-4 9.496269+5 4.731513-4 9.459188+5 4.786301-4 9.421106+5 4.841724-4 9.380374+5 4.850000-4 9.373686+5 4.954502-4 9.292970+5 5.011872-4 9.247808+5 5.069907-4 9.202701+5 5.128614-4 9.156325+5 5.150000-4 9.138313+5 5.188000-4 9.107192+5 5.308844-4 9.005110+5 5.370318-4 8.951757+5 5.400000-4 8.924867+5 5.432503-4 8.894481+5 5.495409-4 8.836701+5 5.500000-4 8.832266+5 5.559043-4 8.775806+5 5.623413-4 8.712730+5 5.650000-4 8.687385+5 5.754399-4 8.590262+5 5.800000-4 8.544965+5 5.816200-4 8.528758+5 5.816200-4 9.565230+5 5.817000-4 9.545712+5 5.819500-4 9.500924+5 5.821032-4 9.477006+5 5.822500-4 9.454511+5 5.825500-4 9.414563+5 5.829000-4 9.374154+5 5.834000-4 9.326381+5 5.838500-4 9.290247+5 5.843000-4 9.259642+5 5.847000-4 9.235876+5 5.850000-4 9.220126+5 5.852000-4 9.209770+5 5.858000-4 9.182814+5 5.864000-4 9.159670+5 5.871000-4 9.136406+5 5.879000-4 9.113484+5 5.890000-4 9.086766+5 5.900000-4 9.066047+5 5.910000-4 9.047845+5 5.925000-4 9.024023+5 5.945000-4 8.996736+5 5.970000-4 8.967353+5 6.000000-4 8.937231+5 6.005200-4 8.932866+5 6.005200-4 9.589188+5 6.006000-4 9.578917+5 6.010000-4 9.547450+5 6.014000-4 9.521020+5 6.018000-4 9.498094+5 6.023000-4 9.473755+5 6.025596-4 9.462824+5 6.027000-4 9.457154+5 6.032000-4 9.439454+5 6.040000-4 9.415604+5 6.047000-4 9.398488+5 6.050000-4 9.392244+5 6.055000-4 9.382741+5 6.065000-4 9.366920+5 6.075000-4 9.355501+5 6.085000-4 9.346535+5 6.090000-4 9.343071+5 6.100000-4 9.338301+5 6.110000-4 9.335581+5 6.115000-4 9.335023+5 6.125300-4 9.336406+5 6.135000-4 9.337388+5 6.150000-4 9.344806+5 6.165950-4 9.357407+5 6.185000-4 9.380803+5 6.190000-4 9.388710+5 6.200000-4 9.406165+5 6.220000-4 9.449471+5 6.240000-4 9.506547+5 6.260000-4 9.578766+5 6.278000-4 9.658446+5 6.280000-4 9.668016+5 6.292000-4 9.730937+5 6.300000-4 9.776251+5 6.309573-4 9.835794+5 6.328000-4 9.961912+5 6.330000-4 9.976944+5 6.345000-4 1.009781+6 6.365000-4 1.027858+6 6.370000-4 1.032795+6 6.382635-4 1.046012+6 6.385000-4 1.048579+6 6.400000-4 1.065941+6 6.415000-4 1.084996+6 6.435000-4 1.113253+6 6.445000-4 1.128773+6 6.456542-4 1.147166+6 6.458000-4 1.149567+6 6.480000-4 1.188587+6 6.485400-4 1.198958+6 6.500000-4 1.227504+6 6.515000-4 1.259363+6 6.531306-4 1.295650+6 6.540000-4 1.316349+6 6.565000-4 1.378959+6 6.590000-4 1.447039+6 6.606934-4 1.496072+6 6.615000-4 1.520695+6 6.633000-4 1.576927+6 6.640000-4 1.599802+6 6.670000-4 1.701763+6 6.683439-4 1.749017+6 6.700000-4 1.810644+6 6.730000-4 1.925901+6 6.760830-4 2.050149+6 6.790000-4 2.172151+6 6.820000-4 2.301061+6 6.850000-4 2.432284+6 6.880000-4 2.564585+6 6.910000-4 2.696726+6 6.940000-4 2.827465+6 6.970000-4 2.955724+6 7.000000-4 3.080299+6 7.030000-4 3.199037+6 7.040000-4 3.238395+6 7.060000-4 3.313258+6 7.079458-4 3.385013+6 7.080000-4 3.387039+6 7.090000-4 3.422068+6 7.120000-4 3.524902+6 7.150000-4 3.618317+6 7.170000-4 3.678378+6 7.190000-4 3.734407+6 7.220000-4 3.814636+6 7.260000-4 3.907229+6 7.280000-4 3.950658+6 7.300000-4 3.990343+6 7.328245-4 4.041557+6 7.350000-4 4.077121+6 7.400000-4 4.150374+6 7.413102-4 4.164734+6 7.450000-4 4.205422+6 7.480000-4 4.234361+6 7.498942-4 4.249573+6 7.500000-4 4.250422+6 7.540000-4 4.276816+6 7.560000-4 4.287398+6 7.585776-4 4.297621+6 7.620000-4 4.311264+6 7.673615-4 4.318594+6 7.690000-4 4.320863+6 7.730000-4 4.321828+6 7.762471-4 4.318906+6 7.770000-4 4.318235+6 7.852356-4 4.302566+6 7.943282-4 4.269849+6 7.950000-4 4.267448+6 8.035261-4 4.231350+6 8.100000-4 4.199796+6 8.225300-4 4.132641+6 8.280000-4 4.100721+6 8.317638-4 4.077250+6 8.413951-4 4.018086+6 8.500000-4 3.966401+6 8.511380-4 3.959187+6 8.609938-4 3.893711+6 8.810489-4 3.765591+6 8.850000-4 3.741130+6 8.912509-4 3.699412+6 9.120108-4 3.565968+6 9.225714-4 3.501047+6 9.332543-4 3.435311+6 9.440609-4 3.368305+6 9.549926-4 3.302360+6 9.700000-4 3.215129+6 9.850000-4 3.129332+6 9.885531-4 3.108896+6 9.943600-4 3.075912+6 9.943600-4 3.131735+6 9.949000-4 3.134854+6 9.963000-4 3.141274+6 9.974000-4 3.148011+6 9.981000-4 3.152977+6 9.988000-4 3.158374+6 9.996000-4 3.165021+6 1.000000-3 3.168396+6 1.000500-3 3.172988+6 1.001200-3 3.179424+6 1.002000-3 3.186916+6 1.002700-3 3.193476+6 1.003500-3 3.200881+6 1.004300-3 3.208049+6 1.005200-3 3.215704+6 1.006000-3 3.222040+6 1.007000-3 3.229208+6 1.008000-3 3.235447+6 1.009000-3 3.240691+6 1.010000-3 3.244927+6 1.011000-3 3.248176+6 1.011579-3 3.249364+6 1.012400-3 3.251148+6 1.013500-3 3.252305+6 1.015000-3 3.252450+6 1.016500-3 3.251218+6 1.018000-3 3.248884+6 1.020200-3 3.243963+6 1.023293-3 3.235012+6 1.028000-3 3.218889+6 1.030000-3 3.211302+6 1.033000-3 3.199678+6 1.035142-3 3.190649+6 1.040000-3 3.170433+6 1.045000-3 3.148192+6 1.050000-3 3.124965+6 1.059254-3 3.078995+6 1.061800-3 3.066149+6 1.061800-3 3.218412+6 1.071519-3 3.174322+6 1.076000-3 3.154415+6 1.083927-3 3.118282+6 1.096478-3 3.062547+6 1.110000-3 3.003289+6 1.124000-3 2.941788+6 1.148154-3 2.839678+6 1.150000-3 2.832113+6 1.161449-3 2.786027+6 1.170000-3 2.752390+6 1.173000-3 2.740541+6 1.174898-3 2.732961+6 1.190000-3 2.672565+6 1.202264-3 2.625194+6 1.210000-3 2.595780+6 1.216186-3 2.573264+6 1.244515-3 2.472787+6 1.258925-3 2.422388+6 1.273503-3 2.372257+6 1.303167-3 2.270636+6 1.333521-3 2.174170+6 1.350000-3 2.123388+6 1.359600-3 2.093885+6 1.359600-3 2.224355+6 1.369000-3 2.195158+6 1.380384-3 2.160602+6 1.412538-3 2.067685+6 1.420000-3 2.046925+6 1.428894-3 2.022268+6 1.445440-3 1.976978+6 1.462177-3 1.932379+6 1.479108-3 1.888770+6 1.500000-3 1.836879+6 1.513561-3 1.804392+6 1.531087-3 1.763763+6 1.548817-3 1.723767+6 1.566751-3 1.684407+6 1.570000-3 1.677418+6 1.584893-3 1.645577+6 1.621810-3 1.570279+6 1.659587-3 1.498739+6 1.675900-3 1.469222+6 1.698244-3 1.429818+6 1.717908-3 1.395658+6 1.737801-3 1.362352+6 1.739000-3 1.360384+6 1.739000-3 1.375416+6 1.757924-3 1.344925+6 1.770000-3 1.326020+6 1.778279-3 1.313212+6 1.800000-3 1.280501+6 1.819701-3 1.251542+6 1.840772-3 1.221701+6 1.862087-3 1.192354+6 1.883649-3 1.163738+6 1.905461-3 1.135889+6 1.925800-3 1.110623+6 1.925800-3 1.129252+6 1.927525-3 1.127131+6 1.950000-3 1.099908+6 1.972423-3 1.073750+6 1.995262-3 1.047936+6 2.018366-3 1.022754+6 2.030000-3 1.010299+6 2.041738-3 9.979729+5 2.070000-3 9.690781+5 2.130000-3 9.116307+5 2.137962-3 9.044060+5 2.150000-3 8.936435+5 2.162719-3 8.824000+5 2.187762-3 8.608262+5 2.213095-3 8.396634+5 2.220000-3 8.340333+5 2.238721-3 8.189456+5 2.290868-3 7.789172+5 2.317395-3 7.596742+5 2.350000-3 7.370142+5 2.371374-3 7.226204+5 2.400000-3 7.038564+5 2.426610-3 6.869810+5 2.449500-3 6.728478+5 2.483133-3 6.528764+5 2.500000-3 6.431995+5 2.511886-3 6.364869+5 2.540973-3 6.205084+5 2.570396-3 6.049682+5 2.600160-3 5.896543+5 2.630268-3 5.746742+5 2.660725-3 5.600965+5 2.691535-3 5.458051+5 2.786121-3 5.052678+5 2.800000-3 4.997139+5 2.818383-3 4.924910+5 2.851018-3 4.798987+5 2.900000-3 4.618321+5 2.917427-3 4.556456+5 2.934720-3 4.496199+5 2.951209-3 4.439880+5 3.019952-3 4.215005+5 3.070000-3 4.060934+5 3.090295-3 4.000539+5 3.126079-3 3.897230+5 3.162278-3 3.796749+5 3.235937-3 3.602594+5 3.273407-3 3.509350+5 3.300000-3 3.444939+5 3.311311-3 3.418083+5 3.349654-3 3.328941+5 3.400000-3 3.216450+5 3.427678-3 3.156988+5 3.467369-3 3.074597+5 3.507519-3 2.994310+5 3.548134-3 2.916011+5 3.589219-3 2.839869+5 3.630781-3 2.765751+5 3.650000-3 2.732247+5 3.672823-3 2.692942+5 3.758374-3 2.552197+5 3.845918-3 2.419298+5 3.890451-3 2.355678+5 3.900000-3 2.342367+5 3.935501-3 2.293697+5 4.000000-3 2.208961+5 4.027170-3 2.174441+5 4.040000-3 2.158254+5 4.073803-3 2.116410+5 4.216965-3 1.951412+5 4.265795-3 1.899428+5 4.315191-3 1.848923+5 4.415704-3 1.751927+5 4.466836-3 1.704934+5 4.492700-3 1.681772+5 4.492700-3 3.772911+5 4.518559-3 3.722857+5 4.600000-3 3.571069+5 4.623810-3 3.531137+5 4.731513-3 3.358549+5 4.760800-3 3.313806+5 4.760800-3 4.555806+5 4.780000-3 4.524825+5 4.786301-3 4.516869+5 4.800000-3 4.491394+5 4.841724-3 4.415283+5 4.850000-3 4.400420+5 4.897788-3 4.311479+5 4.940000-3 4.235193+5 4.954502-3 4.208313+5 5.000000-3 4.125620+5 5.011872-3 4.104458+5 5.069907-3 3.989822+5 5.128614-3 3.872169+5 5.150000-3 3.830473+5 5.188000-3 3.757888+5 5.248075-3 3.647021+5 5.370318-3 3.435222+5 5.392600-3 3.397848+5 5.392600-3 3.989819+5 5.445000-3 3.882266+5 5.480000-3 3.815389+5 5.495409-3 3.788790+5 5.559043-3 3.681726+5 5.623413-3 3.577651+5 5.688529-3 3.476588+5 5.754399-3 3.377561+5 5.821032-3 3.281473+5 5.888437-3 3.187589+5 6.000000-3 3.039119+5 6.095369-3 2.919711+5 6.165950-3 2.835631+5 6.237348-3 2.753204+5 6.309573-3 2.673264+5 6.382635-3 2.595689+5 6.456542-3 2.520413+5 6.531306-3 2.447389+5 6.606934-3 2.376279+5 6.683439-3 2.307288+5 6.784000-3 2.220322+5 6.784000-3 2.357631+5 6.814000-3 2.329382+5 6.839116-3 2.307780+5 6.890000-3 2.264869+5 6.918310-3 2.242050+5 7.000000-3 2.177592+5 7.161434-3 2.057304+5 7.179700-3 2.044304+5 7.179700-3 2.128408+5 7.244360-3 2.082328+5 7.249000-3 2.079062+5 7.328245-3 2.024436+5 7.413102-3 1.968156+5 7.500000-3 1.913019+5 7.585776-3 1.860428+5 7.600000-3 1.851872+5 7.673615-3 1.808451+5 7.852356-3 1.708712+5 7.943282-3 1.660890+5 8.035261-3 1.614474+5 8.128305-3 1.569230+5 8.317638-3 1.482623+5 8.413951-3 1.441247+5 8.609938-3 1.361291+5 8.709636-3 1.322973+5 8.810489-3 1.285849+5 8.912509-3 1.249654+5 9.000000-3 1.219647+5 9.225714-3 1.146863+5 9.332543-3 1.114621+5 9.440609-3 1.082897+5 9.500000-3 1.066020+5 9.549926-3 1.052089+5 9.660509-3 1.022107+5 9.885531-3 9.644584+4 1.000000-2 9.369276+4 1.011579-2 9.102081+4 1.023293-2 8.842569+4 1.035142-2 8.590629+4 1.047129-2 8.346294+4 1.071519-2 7.878092+4 1.083927-2 7.654579+4 1.090000-2 7.548546+4 1.096478-2 7.437970+4 1.109175-2 7.227987+4 1.120000-2 7.054161+4 1.122018-2 7.022414+4 1.148154-2 6.628969+4 1.150000-2 6.602212+4 1.161449-2 6.439527+4 1.170000-2 6.321481+4 1.174898-2 6.254880+4 1.190000-2 6.055803+4 1.202264-2 5.899965+4 1.216186-2 5.729449+4 1.244515-2 5.403901+4 1.258925-2 5.248074+4 1.273503-2 5.096965+4 1.303167-2 4.808076+4 1.318257-2 4.669675+4 1.333521-2 4.535489+4 1.348963-2 4.405311+4 1.364583-2 4.279116+4 1.380384-2 4.156755+4 1.396368-2 4.037444+4 1.412538-2 3.921761+4 1.445440-2 3.698461+4 1.450000-2 3.668972+4 1.462177-2 3.591525+4 1.479108-2 3.487706+4 1.500000-2 3.364655+4 1.531087-2 3.192908+4 1.548817-2 3.100320+4 1.566751-2 3.010246+4 1.584893-2 2.922634+4 1.603245-2 2.837679+4 1.640590-2 2.675381+4 1.659587-2 2.597936+4 1.678804-2 2.522826+4 1.680000-2 2.518250+4 1.698244-2 2.449919+4 1.737801-2 2.309874+4 1.757924-2 2.242747+4 1.778279-2 2.177627+4 1.798871-2 2.114081+4 1.819701-2 2.052494+4 1.840772-2 1.992748+4 1.862087-2 1.934641+4 1.883649-2 1.878312+4 1.905461-2 1.823465+4 1.927525-2 1.770240+4 1.950000-2 1.718159+4 1.972423-2 1.668311+4 1.995262-2 1.619506+4 2.041738-2 1.526300+4 2.065380-2 1.481635+4 2.089296-2 1.438306+4 2.089400-2 1.438122+4 2.089400-2 3.313859+4 2.104000-2 3.258579+4 2.113489-2 3.223359+4 2.118000-2 3.206807+4 2.137962-2 3.128863+4 2.162719-2 3.035839+4 2.187762-2 2.945615+4 2.213095-2 2.857845+4 2.238721-2 2.770648+4 2.264644-2 2.686084+4 2.290868-2 2.603982+4 2.317395-2 2.524381+4 2.344229-2 2.448362+4 2.371374-2 2.374649+4 2.398833-2 2.303196+4 2.400000-2 2.300226+4 2.454709-2 2.163623+4 2.511886-2 2.032581+4 2.540973-2 1.970106+4 2.570396-2 1.909528+4 2.600160-2 1.850751+4 2.650000-2 1.757608+4 2.660725-2 1.738398+4 2.679200-2 1.705984+4 2.679200-2 2.451051+4 2.691535-2 2.423378+4 2.722701-2 2.355412+4 2.725000-2 2.350508+4 2.754229-2 2.286493+4 2.762200-2 2.269434+4 2.762200-2 2.615016+4 2.786121-2 2.558837+4 2.805000-2 2.515697+4 2.818383-2 2.486387+4 2.830000-2 2.461342+4 2.851018-2 2.416381+4 2.884032-2 2.348097+4 2.917427-2 2.281807+4 2.930000-2 2.257544+4 2.940000-2 2.238675+4 2.951209-2 2.217567+4 3.000000-2 2.128852+4 3.019952-2 2.093986+4 3.054921-2 2.035393+4 3.070000-2 2.010564+4 3.090295-2 1.977381+4 3.126079-2 1.920755+4 3.162278-2 1.865797+4 3.198895-2 1.812449+4 3.235937-2 1.760118+4 3.311311-2 1.660076+4 3.349654-2 1.612261+4 3.400000-2 1.552402+4 3.427678-2 1.520825+4 3.467369-2 1.477064+4 3.500000-2 1.442419+4 3.507519-2 1.434595+4 3.548134-2 1.393454+4 3.589219-2 1.353440+4 3.630781-2 1.314574+4 3.672823-2 1.276827+4 3.715352-2 1.240193+4 3.758374-2 1.204634+4 3.801894-2 1.170118+4 3.845918-2 1.136354+4 3.890451-2 1.103380+4 3.935501-2 1.071386+4 4.027170-2 1.009759+4 4.073803-2 9.803252+3 4.120975-2 9.517349+3 4.168694-2 9.239944+3 4.216965-2 8.969434+3 4.265795-2 8.705560+3 4.315191-2 8.449621+3 4.365158-2 8.201170+3 4.415704-2 7.960195+3 4.466836-2 7.726428+3 4.518559-2 7.499672+3 4.623810-2 7.065725+3 4.677351-2 6.858505+3 4.731513-2 6.657513+3 4.841724-2 6.272956+3 4.897788-2 6.089303+3 4.954502-2 5.911127+3 5.011872-2 5.737369+3 5.069907-2 5.568840+3 5.128614-2 5.404286+3 5.188000-2 5.244579+3 5.248075-2 5.089553+3 5.300000-2 4.960648+3 5.308844-2 4.939001+3 5.495409-2 4.511633+3 5.500000-2 4.501783+3 5.559043-2 4.377623+3 5.754399-2 3.999350+3 5.888437-2 3.765917+3 6.000000-2 3.585987+3 6.025596-2 3.546416+3 6.095369-2 3.441230+3 6.165950-2 3.339129+3 6.200000-2 3.291380+3 6.237348-2 3.239911+3 6.309573-2 3.143509+3 6.382635-2 3.049556+3 6.456542-2 2.958477+3 6.606934-2 2.784413+3 6.800000-2 2.581293+3 6.918310-2 2.466275+3 6.998420-2 2.392428+3 7.161434-2 2.251434+3 7.244360-2 2.184090+3 7.328245-2 2.118733+3 7.413102-2 2.055358+3 7.498942-2 1.993912+3 7.585776-2 1.934325+3 7.673615-2 1.876555+3 7.852356-2 1.765851+3 7.943282-2 1.713012+3 8.128305-2 1.611762+3 8.222426-2 1.563451+3 8.317638-2 1.516341+3 8.413951-2 1.470678+3 8.609938-2 1.383510+3 8.709636-2 1.341881+3 8.810489-2 1.301498+3 8.912509-2 1.262346+3 9.015711-2 1.224394+3 9.120108-2 1.187602+3 9.332543-2 1.117343+3 9.549926-2 1.051258+3 9.885531-2 9.594947+2 1.000000-1 9.305946+2 1.011580-1 9.025781+2 1.023293-1 8.753737+2 1.035142-1 8.489757+2 1.047129-1 8.233853+2 1.059254-1 7.985558+2 1.083927-1 7.511311+2 1.096478-1 7.285001+2 1.122019-1 6.852942+2 1.135011-1 6.646731+2 1.161449-1 6.253037+2 1.174898-1 6.065048+2 1.202264-1 5.706138+2 1.216186-1 5.534028+2 1.230269-1 5.367167+2 1.303167-1 4.606404+2 1.318257-1 4.467793+2 1.333521-1 4.333419+2 1.364583-1 4.076834+2 1.380384-1 3.954381+2 1.396368-1 3.835659+2 1.426800-1 3.622978+2 1.426800-1 1.399324+3 1.428894-1 1.393699+3 1.431550-1 1.392552+3 1.445440-1 1.360198+3 1.460000-1 1.327413+3 1.462177-1 1.321997+3 1.473000-1 1.295516+3 1.479108-1 1.283112+3 1.496236-1 1.249193+3 1.500000-1 1.241912+3 1.531088-1 1.179781+3 1.548817-1 1.146290+3 1.566751-1 1.113755+3 1.640590-1 9.926294+2 1.659587-1 9.644755+2 1.678804-1 9.369280+2 1.698244-1 9.101834+2 1.737801-1 8.589731+2 1.757924-1 8.344614+2 1.798871-1 7.875258+2 1.819701-1 7.650612+2 1.840772-1 7.432406+2 1.862087-1 7.222071+2 1.883649-1 7.017714+2 1.927525-1 6.626525+2 1.949845-1 6.439219+2 2.000000-1 6.044616+2 2.018366-1 5.908610+2 2.041738-1 5.741701+2 2.065380-1 5.579534+2 2.089296-1 5.421968+2 2.113489-1 5.268868+2 2.213095-1 4.699304+2 2.238721-1 4.566844+2 2.264644-1 4.438131+2 2.290868-1 4.313059+2 2.317395-1 4.191528+2 2.371374-1 3.958716+2 2.398833-1 3.847326+2 2.426610-1 3.739081+2 2.454709-1 3.633889+2 2.483133-1 3.531669+2 2.511886-1 3.432348+2 2.540973-1 3.335896+2 2.570396-1 3.242165+2 2.600160-1 3.151076+2 2.630268-1 3.062554+2 2.660725-1 2.976376+2 2.691535-1 2.892631+2 2.722701-1 2.811253+2 2.786121-1 2.657230+2 2.818383-1 2.583421+2 2.851018-1 2.511746+2 2.884032-1 2.442078+2 2.917427-1 2.374350+2 2.951209-1 2.308515+2 2.985383-1 2.244547+2 3.000000-1 2.217952+2 3.019952-1 2.182363+2 3.054921-1 2.121906+2 3.090295-1 2.063301+2 3.126079-1 2.006317+2 3.162278-1 1.950911+2 3.198895-1 1.897041+2 3.235937-1 1.844660+2 3.273407-1 1.793748+2 3.311311-1 1.744244+2 3.349654-1 1.696168+2 3.388442-1 1.650205+2 3.467369-1 1.562086+2 3.507519-1 1.519814+2 3.548134-1 1.478689+2 3.589219-1 1.438679+2 3.630781-1 1.399754+2 3.715352-1 1.325166+2 3.801894-1 1.254563+2 3.845918-1 1.221209+2 3.890451-1 1.188805+2 3.935501-1 1.157266+2 3.981072-1 1.126578+2 4.027170-1 1.096722+2 4.073803-1 1.067659+2 4.120975-1 1.039369+2 4.168694-1 1.011830+2 4.216965-1 9.850225+1 4.229500-1 9.782277+1 4.315191-1 9.335251+1 4.365158-1 9.087974+1 4.415705-1 8.847834+1 4.518559-1 8.394741+1 4.570882-1 8.176997+1 4.623810-1 7.964998+1 4.677351-1 7.758508+1 4.731513-1 7.557468+1 4.786301-1 7.361676+1 4.841724-1 7.170974+1 4.897788-1 6.985227+1 4.954502-1 6.804415+1 5.000000-1 6.664196+1 5.011872-1 6.628299+1 5.069907-1 6.456991+1 5.128614-1 6.293432+1 5.188000-1 6.134349+1 5.248075-1 5.979305+1 5.308844-1 5.828240+1 5.370318-1 5.680997+1 5.432503-1 5.537551+1 5.495409-1 5.397733+1 5.559043-1 5.261542+1 5.623413-1 5.128816+1 5.688529-1 4.999470+1 5.754399-1 4.873562+1 5.821032-1 4.750832+1 5.888437-1 4.633385+1 5.956621-1 4.518860+1 6.025596-1 4.407459+1 6.095369-1 4.298813+1 6.165950-1 4.192919+1 6.237348-1 4.089641+1 6.309573-1 3.988927+1 6.382635-1 3.890744+1 6.456542-1 3.795120+1 6.531306-1 3.701859+1 6.683439-1 3.522181+1 6.760830-1 3.437321+1 6.804800-1 3.390472+1 6.839117-1 3.354559+1 6.918310-1 3.273794+1 6.998420-1 3.195161+1 7.079458-1 3.118421+1 7.161434-1 3.043528+1 7.181900-1 3.025244+1 7.244360-1 2.970486+1 7.328245-1 2.899217+1 7.413102-1 2.829694+1 7.498942-1 2.761841+1 7.585776-1 2.695681+1 7.673615-1 2.631111+1 7.717400-1 2.599778+1 7.762471-1 2.568672+1 7.852356-1 2.508267+1 7.943282-1 2.449285+1 8.035261-1 2.391784+1 8.128305-1 2.335753+1 8.317638-1 2.227602+1 8.413951-1 2.175422+1 8.511380-1 2.124471+1 8.609938-1 2.074714+1 8.709636-1 2.026175+1 8.810489-1 1.978906+1 8.912509-1 1.933666+1 9.015711-1 1.889463+1 9.120108-1 1.846272+1 9.225714-1 1.804069+1 9.332543-1 1.762953+1 9.440609-1 1.722821+1 9.549926-1 1.683623+1 9.660509-1 1.645393+1 9.772372-1 1.608034+1 9.885531-1 1.571546+1 1.000000+0 1.535934+1 1.011579+0 1.501724+1 1.023293+0 1.468276+1 1.035142+0 1.435587+1 1.047129+0 1.403624+1 1.059254+0 1.372420+1 1.071519+0 1.341945+1 1.083927+0 1.312145+1 1.096478+0 1.283056+1 1.109175+0 1.254611+1 1.122018+0 1.226799+1 1.135011+0 1.199600+1 1.148154+0 1.173031+1 1.161449+0 1.147056+1 1.174898+0 1.121665+1 1.188502+0 1.096838+1 1.202264+0 1.072594+1 1.216186+0 1.048899+1 1.230269+0 1.025733+1 1.244515+0 1.003622+1 1.250000+0 9.953029+0 1.258925+0 9.819927+0 1.273503+0 9.608941+0 1.288250+0 9.402507+0 1.303167+0 9.200518+0 1.318257+0 9.002940+0 1.348963+0 8.620969+0 1.364583+0 8.436214+0 1.380384+0 8.255550+0 1.396368+0 8.078820+0 1.412538+0 7.909862+0 1.428894+0 7.744451+0 1.445440+0 7.582989+0 1.479108+0 7.270130+0 1.500000+0 7.085971+0 1.513561+0 6.970408+0 1.531087+0 6.825323+0 1.548817+0 6.683250+0 1.566751+0 6.544281+0 1.603245+0 6.281840+0 1.659587+0 5.908979+0 1.698244+0 5.672807+0 1.717908+0 5.558330+0 1.737801+0 5.446320+0 1.757924+0 5.336624+0 1.778279+0 5.229263+0 1.819701+0 5.026258+0 1.840772+0 4.928054+0 1.862087+0 4.831770+0 1.883649+0 4.737367+0 1.905461+0 4.644817+0 1.927525+0 4.554077+0 1.949845+0 4.465141+0 1.972423+0 4.378080+0 1.995262+0 4.292770+0 2.000000+0 4.275406+0 2.018366+0 4.209198+0 2.044000+0 4.121686+0 2.065380+0 4.050904+0 2.113489+0 3.899033+0 2.137962+0 3.825247+0 2.213095+0 3.612180+0 2.238721+0 3.543854+0 2.264644+0 3.476916+0 2.290868+0 3.411276+0 2.317395+0 3.346944+0 2.344229+0 3.285346+0 2.371374+0 3.224881+0 2.426610+0 3.107635+0 2.454709+0 3.050620+0 2.540973+0 2.885791+0 2.570396+0 2.832870+0 2.600160+0 2.780995+0 2.630268+0 2.730098+0 2.660725+0 2.680185+0 2.691535+0 2.632380+0 2.722701+0 2.585429+0 2.786121+0 2.494311+0 2.851018+0 2.406405+0 2.917427+0 2.321606+0 2.951209+0 2.280349+0 2.985383+0 2.239883+0 3.000000+0 2.222935+0 3.019952+0 2.200151+0 3.054921+0 2.161178+0 3.090295+0 2.123865+0 3.126079+0 2.087197+0 3.198895+0 2.015983+0 3.273407+0 1.947200+0 3.388442+0 1.848409+0 3.427678+0 1.816618+0 3.467369+0 1.785419+0 3.507519+0 1.754775+0 3.548134+0 1.724690+0 3.589219+0 1.695868+0 3.630781+0 1.667527+0 3.715352+0 1.612439+0 3.801894+0 1.559169+0 3.935501+0 1.482554+0 4.000000+0 1.447822+0 4.027170+0 1.433620+0 4.073803+0 1.409800+0 4.120975+0 1.386403+0 4.168694+0 1.363971+0 4.216965+0 1.341902+0 4.365158+0 1.278019+0 4.466836+0 1.237129+0 4.623810+0 1.178239+0 4.677351+0 1.159246+0 4.731513+0 1.140586+0 4.786301+0 1.122238+0 4.841724+0 1.104205+0 4.897788+0 1.086913+0 4.954502+0 1.069891+0 5.128614+0 1.020569+0 5.248075+0 9.889576-1 5.495409+0 9.286476-1 5.559043+0 9.141591-1 5.623413+0 8.999177-1 5.688529+0 8.859065-1 5.754399+0 8.721288-1 5.821032+0 8.589096-1 5.888437+0 8.458908-1 6.095369+0 8.081286-1 6.237348+0 7.838952-1 6.531306+0 7.375909-1 6.606934+0 7.264529-1 6.683439+0 7.154984-1 6.760830+0 7.047154-1 6.839116+0 6.941064-1 6.918310+0 6.839113-1 7.000000+0 6.736707-1 7.328245+0 6.352600-1 7.498942+0 6.167947-1 7.852356+0 5.814621-1 7.943282+0 5.729528-1 8.035261+0 5.645794-1 8.128305+0 5.563331-1 8.222427+0 5.482157-1 8.317638+0 5.404096-1 8.413951+0 5.327148-1 8.511380+0 5.251295-1 8.912509+0 4.959442-1 9.120108+0 4.819656-1 9.549926+0 4.551819-1 9.772372+0 4.423750-1 9.885531+0 4.361117-1 1.000000+1 4.299425-1 1.011579+1 4.240036-1 1.023293+1 4.181464-1 1.035142+1 4.123704-1 1.100000+1 3.832623-1 1.122018+1 3.742212-1 1.174898+1 3.540293-1 1.202264+1 3.443618-1 1.216186+1 3.396303-1 1.230269+1 3.349677-1 1.244515+1 3.304683-1 1.258925+1 3.260296-1 1.273503+1 3.216502-1 1.400000+1 2.878746-1 1.412538+1 2.848835-1 1.462177+1 2.735880-1 1.479108+1 2.699287-1 1.496236+1 2.663203-1 1.500000+1 2.655394-1 1.513561+1 2.627627-1 1.531087+1 2.593203-1 1.548817+1 2.559227-1 1.566751+1 2.525700-1 1.778279+1 2.185482-1 1.800000+1 2.155379-1 1.862087+1 2.073479-1 1.883649+1 2.046429-1 1.905461+1 2.019746-1 1.927525+1 1.993433-1 1.949845+1 1.968007-1 1.972423+1 1.942908-1 2.000000+1 1.913063-1 2.018366+1 1.893665-1 2.041738+1 1.869512-1 2.238721+1 1.687549-1 2.290868+1 1.644895-1 2.400000+1 1.561956-1 2.426610+1 1.542933-1 2.483133+1 1.503992-1 2.540973+1 1.466052-1 2.600160+1 1.429099-1 2.660725+1 1.393857-1 2.691535+1 1.376564-1 2.722701+1 1.359485-1 2.754229+1 1.342618-1 2.884032+1 1.277381-1 2.917427+1 1.261573-1 3.090295+1 1.185426-1 3.162278+1 1.156278-1 3.311311+1 1.100160-1 3.349654+1 1.086562-1 3.388442+1 1.073136-1 3.589219+1 1.008456-1 3.801894+1 9.477101-2 3.890451+1 9.248378-2 3.935501+1 9.136095-2 4.000000+1 8.979872-2 4.027170+1 8.915748-2 4.168694+1 8.595640-2 4.365158+1 8.186665-2 4.415704+1 8.087532-2 4.570882+1 7.797541-2 4.623810+1 7.703210-2 4.677351+1 7.610051-2 5.011872+1 7.074285-2 5.495409+1 6.418496-2 5.688529+1 6.191730-2 5.754399+1 6.117937-2 5.888437+1 5.972978-2 5.956621+1 5.901916-2 6.000000+1 5.857564-2 6.237348+1 5.626022-2 6.606934+1 5.299237-2 6.683439+1 5.236211-2 6.918310+1 5.051727-2 6.998420+1 4.991690-2 7.079458+1 4.932383-2 7.673615+1 4.536503-2 7.762471+1 4.482622-2 8.709636+1 3.977855-2 9.120108+1 3.794274-2 9.332543+1 3.705687-2 9.549926+1 3.619168-2 9.660509+1 3.576728-2 9.772372+1 3.534785-2 1.023293+2 3.371877-2 1.035142+2 3.332339-2 1.109175+2 3.104655-2 1.122018+2 3.068259-2 1.174898+2 2.926970-2 1.188502+2 2.892679-2 1.216186+2 2.825309-2 1.333521+2 2.571164-2 1.348963+2 2.541054-2 1.531087+2 2.232277-2 1.603245+2 2.130395-2 1.640590+2 2.081211-2 1.678804+2 2.033164-2 1.698244+2 2.009579-2 1.717908+2 1.986270-2 1.737801+2 1.963230-2 1.819701+2 1.873712-2 1.840772+2 1.851979-2 2.018366+2 1.686945-2 2.041738+2 1.667377-2 2.065380+2 1.648039-2 2.344229+2 1.449634-2 2.371374+2 1.432828-2 2.426610+2 1.399803-2 2.660725+2 1.275139-2 2.691535+2 1.260360-2 3.054921+2 1.108683-2 3.198895+2 1.058494-2 3.273407+2 1.034257-2 3.349654+2 1.010576-2 3.388442+2 9.989481-3 3.427678+2 9.874541-3 3.467369+2 9.760922-3 3.630781+2 9.319373-3 3.672823+2 9.212146-3 4.027170+2 8.397567-3 4.073803+2 8.300944-3 4.120975+2 8.205441-3 4.677351+2 7.224989-3 4.731513+2 7.141889-3 4.841724+2 6.978562-3 5.308844+2 6.361762-3 5.370318+2 6.288605-3 1.216186+3 2.766494-3 1.273503+3 2.641834-3 1.303167+3 2.581627-3 1.333521+3 2.522793-3 1.348963+3 2.493890-3 1.364583+3 2.465321-3 1.380384+3 2.437078-3 1.445440+3 2.327304-3 1.462177+3 2.300643-3 1.603245+3 2.098058-3 1.621810+3 2.074022-3 1.640590+3 2.050263-3 1.862087+3 1.806245-3 1.883649+3 1.785557-3 1.927525+3 1.744891-3 2.113489+3 1.591279-3 2.137962+3 1.573055-3 1.000000+5 3.357030-5 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 0 0.0 0.0 0.0 0.0 0.0 5.850000-6 5.850000-6 1.018000-5 5.850000-6 1.018000-5 8.516433-6 1.023293-5 8.497336-6 1.122018-5 8.510876-6 1.229000-5 8.576413-6 1.229000-5 9.918368-6 1.273503-5 9.916459-6 1.427100-5 9.989242-6 2.000000-5 1.044190-5 2.300000-5 1.061678-5 2.577000-5 1.072565-5 2.577000-5 2.404235-5 2.830000-5 2.249525-5 3.350000-5 1.909171-5 3.570000-5 1.776757-5 3.715352-5 1.697791-5 3.845918-5 1.633610-5 4.027170-5 1.554453-5 4.127000-5 1.516403-5 4.127000-5 2.652122-5 4.175000-5 2.584574-5 4.265795-5 2.473864-5 4.330000-5 2.405242-5 4.415704-5 2.323731-5 4.518559-5 2.235864-5 4.650000-5 2.137930-5 4.800000-5 2.040351-5 4.954502-5 1.952793-5 5.150000-5 1.855913-5 5.432503-5 1.739526-5 5.623413-5 1.672902-5 5.900000-5 1.589869-5 6.165950-5 1.523655-5 6.485000-5 1.458714-5 6.485000-5 1.564348-5 6.900000-5 1.483623-5 7.244360-5 1.428757-5 7.585776-5 1.385301-5 7.900000-5 1.353196-5 8.222426-5 1.326622-5 8.709636-5 1.296409-5 9.120108-5 1.277748-5 9.800000-5 1.256659-5 1.060000-4 1.242158-5 1.150000-4 1.235565-5 1.252500-4 1.237547-5 1.350000-4 1.247492-5 1.392900-4 1.254500-5 1.392900-4 2.274452-5 1.402000-4 2.413090-5 1.415000-4 2.620453-5 1.428894-4 2.862026-5 1.462177-4 3.461497-5 1.472000-4 3.633441-5 1.482000-4 3.800676-5 1.500000-4 4.079671-5 1.510000-4 4.219821-5 1.520000-4 4.347300-5 1.531087-4 4.476196-5 1.538900-4 4.558854-5 1.538900-4 5.257433-5 1.570000-4 5.737463-5 1.620200-4 6.523130-5 1.648000-4 6.913447-5 1.670000-4 7.184083-5 1.700000-4 7.491125-5 1.725000-4 7.698419-5 1.760000-4 7.944004-5 1.820000-4 8.301221-5 2.065380-4 9.604245-5 2.190000-4 1.021897-4 2.267700-4 1.055404-4 2.340000-4 1.080460-4 2.407000-4 1.096241-4 2.465000-4 1.102819-4 2.520000-4 1.102305-4 2.580000-4 1.093877-4 2.643000-4 1.077345-4 2.691700-4 1.059406-4 2.691700-4 1.217423-4 2.778000-4 1.191893-4 2.900000-4 1.145888-4 3.162278-4 1.038042-4 3.280000-4 9.941121-5 3.404700-4 9.539784-5 3.550000-4 9.142590-5 3.680600-4 8.849511-5 3.680600-4 1.064164-4 3.699000-4 1.045097-4 3.715352-4 1.033178-4 3.748000-4 1.017537-4 3.815000-4 9.960427-5 3.890451-4 9.768745-5 4.027170-4 9.464218-5 4.120975-4 9.275761-5 4.265795-4 9.039673-5 4.430000-4 8.820657-5 4.461100-4 8.785213-5 4.461100-4 9.383054-5 4.677351-4 9.170804-5 4.850000-4 9.044308-5 5.188000-4 8.869255-5 5.500000-4 8.772476-5 5.816200-4 8.725632-5 5.816200-4 9.770896-5 5.825500-4 9.642169-5 5.838500-4 9.538496-5 5.858000-4 9.455017-5 5.890000-4 9.393501-5 5.945000-4 9.359767-5 6.005200-4 9.356160-5 6.005200-4 1.002628-4 6.018000-4 9.951721-5 6.040000-4 9.894363-5 6.085000-4 9.873547-5 6.135000-4 9.914987-5 6.190000-4 1.001930-4 6.240000-4 1.017526-4 6.280000-4 1.035375-4 6.328000-4 1.064094-4 6.382635-4 1.106819-4 6.435000-4 1.156758-4 6.515000-4 1.244233-4 6.633000-4 1.375605-4 6.700000-4 1.442315-4 6.760830-4 1.494814-4 6.820000-4 1.538067-4 6.880000-4 1.574492-4 6.970000-4 1.616971-4 7.060000-4 1.647761-4 7.170000-4 1.673962-4 7.328245-4 1.696860-4 7.560000-4 1.713599-4 7.950000-4 1.723118-4 9.120108-4 1.725457-4 9.943600-4 1.723746-4 9.943600-4 1.750122-4 1.000500-3 1.784829-4 1.008000-3 1.830793-4 1.013500-3 1.851262-4 1.020200-3 1.863918-4 1.040000-3 1.880391-4 1.061800-3 1.887777-4 1.061800-3 1.959141-4 1.202264-3 2.016882-4 1.273503-3 2.043351-4 1.359600-3 2.066304-4 1.359600-3 2.192951-4 1.675900-3 2.288354-4 1.739000-3 2.305552-4 1.739000-3 2.333787-4 1.925800-3 2.387205-4 1.925800-3 2.434176-4 2.371374-3 2.554409-4 2.851018-3 2.661422-4 3.400000-3 2.763565-4 4.073803-3 2.865710-4 4.492700-3 2.920073-4 4.492700-3 4.089502-4 4.760800-3 4.110500-4 4.760800-3 4.364309-4 5.069907-3 4.386454-4 5.392600-3 4.388161-4 5.392600-3 4.714671-4 5.559043-3 4.714753-4 6.784000-3 4.769728-4 6.784000-3 4.942380-4 7.179700-3 4.966907-4 7.179700-3 5.110426-4 9.500000-3 5.303121-4 1.216186-2 5.477730-4 1.531087-2 5.639557-4 1.927525-2 5.795956-4 2.089400-2 5.849148-4 2.089400-2 6.823482-4 2.679200-2 6.877367-4 2.679200-2 7.209352-4 2.762200-2 7.217860-4 2.762200-2 7.704598-4 3.801894-2 7.885625-4 5.308844-2 8.067755-4 7.328245-2 8.233384-4 1.011580-1 8.389062-4 1.396368-1 8.529724-4 1.426800-1 8.538715-4 1.426800-1 7.875872-4 3.311311-1 7.923159-4 9.332543-1 7.948708-4 1.000000+5 7.949021-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.850000-6 0.0 2.691700-4 0.0 2.691700-4 1.569087-9 2.754229-4 1.571730-9 2.818383-4 1.562069-9 2.900000-4 1.537823-9 3.020000-4 1.484638-9 3.100000-4 1.441033-9 3.280000-4 1.331973-9 3.500000-4 1.211049-9 3.630781-4 1.144741-9 3.680600-4 1.121733-9 3.680600-4 5.833908-9 3.683500-4 5.782460-9 3.689000-4 5.627063-9 3.694000-4 5.510873-9 3.699000-4 5.410981-9 3.707000-4 5.279487-9 3.715352-4 5.168609-9 3.725000-4 5.065094-9 3.736000-4 4.968564-9 3.748000-4 4.882743-9 3.762000-4 4.799893-9 3.785000-4 4.688587-9 3.815000-4 4.570555-9 3.890451-4 4.319997-9 4.027170-4 3.913084-9 4.120975-4 3.659349-9 4.216965-4 3.437675-9 4.315191-4 3.234210-9 4.365158-4 3.136755-9 4.430000-4 3.020421-9 4.461100-4 2.970454-9 4.461100-4 3.525794-9 4.550300-4 3.389384-9 4.677351-4 3.218757-9 4.786301-4 3.088593-9 4.850000-4 3.018448-9 5.011872-4 2.861001-9 5.150000-4 2.740895-9 5.308844-4 2.624261-9 5.432503-4 2.544615-9 5.623413-4 2.441546-9 5.816200-4 2.356236-9 5.816200-4 1.658842-8 5.817000-4 1.635966-8 5.819500-4 1.584005-8 5.822500-4 1.530280-8 5.825500-4 1.484283-8 5.829000-4 1.438013-8 5.834000-4 1.384012-8 5.838500-4 1.343814-8 5.843000-4 1.310497-8 5.847000-4 1.285191-8 5.852000-4 1.258082-8 5.858000-4 1.231078-8 5.864000-4 1.208963-8 5.871000-4 1.187983-8 5.879000-4 1.168755-8 5.890000-4 1.148570-8 5.900000-4 1.134887-8 5.910000-4 1.124502-8 5.925000-4 1.113488-8 5.945000-4 1.104656-8 5.970000-4 1.099752-8 6.005200-4 1.101771-8 6.005200-4 1.395049-8 6.010000-4 1.380497-8 6.018000-4 1.364528-8 6.027000-4 1.352817-8 6.040000-4 1.345112-8 6.055000-4 1.343322-8 6.065000-4 1.345675-8 6.090000-4 1.362894-8 6.110000-4 1.386108-8 6.135000-4 1.426798-8 6.150000-4 1.458550-8 6.165950-4 1.498125-8 6.185000-4 1.554676-8 6.200000-4 1.606740-8 6.220000-4 1.687034-8 6.240000-4 1.781233-8 6.260000-4 1.890264-8 6.280000-4 2.015013-8 6.300000-4 2.156120-8 6.309573-4 2.230498-8 6.330000-4 2.399361-8 6.345000-4 2.536105-8 6.370000-4 2.780348-8 6.385000-4 2.938274-8 6.400000-4 3.103738-8 6.415000-4 3.276359-8 6.445000-4 3.642106-8 6.480000-4 4.084956-8 6.540000-4 4.861008-8 6.590000-4 5.483136-8 6.615000-4 5.776821-8 6.640000-4 6.055661-8 6.670000-4 6.368193-8 6.700000-4 6.655232-8 6.730000-4 6.915896-8 6.760830-4 7.156071-8 6.790000-4 7.358010-8 6.820000-4 7.540994-8 6.850000-4 7.700282-8 6.880000-4 7.837496-8 6.910000-4 7.954460-8 6.970000-4 8.135744-8 7.040000-4 8.277951-8 7.120000-4 8.376988-8 7.220000-4 8.446516-8 7.400000-4 8.500759-8 7.730000-4 8.515204-8 8.850000-4 8.461045-8 9.943600-4 8.381312-8 9.943600-4 8.426065-8 1.011000-3 8.571907-8 1.023293-3 8.604674-8 1.061800-3 8.615679-8 1.061800-3 1.143410-7 1.076000-3 1.160072-7 1.174898-3 1.246841-7 1.216186-3 1.280752-7 1.258925-3 1.316494-7 1.273503-3 1.327590-7 1.359600-3 1.366084-7 1.359600-3 1.849483-7 1.513561-3 1.957247-7 1.739000-3 2.103220-7 1.739000-3 2.194919-7 1.925800-3 2.324899-7 1.925800-3 2.537237-7 2.238721-3 2.770976-7 2.540973-3 2.979660-7 2.934720-3 3.222673-7 3.273407-3 3.415761-7 3.672823-3 3.619615-7 4.216965-3 3.871720-7 4.492700-3 3.988487-7 4.492700-3 4.385005-7 4.760800-3 4.434785-7 4.760800-3 7.835437-5 4.800000-3 7.919584-5 4.850000-3 8.046948-5 4.954502-3 8.257480-5 5.011872-3 8.353120-5 5.069907-3 8.380751-5 5.392600-3 8.353633-5 5.392600-3 8.465218-5 5.821032-3 8.449390-5 6.784000-3 8.369812-5 6.784000-3 9.382389-5 6.839116-3 9.369300-5 7.179700-3 9.414319-5 7.179700-3 9.610735-5 9.000000-3 9.895722-5 1.122018-2 1.016352-4 1.244515-2 1.029775-4 1.531087-2 1.056072-4 1.927525-2 1.083761-4 2.089400-2 1.093235-4 2.089400-2 5.170902-3 2.137962-2 5.177485-3 2.454709-2 5.132797-3 2.679200-2 5.090286-3 2.679200-2 7.992281-3 2.762200-2 8.021962-3 2.762200-2 8.411818-3 3.235937-2 8.510815-3 4.073803-2 8.624012-3 5.500000-2 8.720943-3 7.673615-2 8.791616-3 1.230269-1 8.847597-3 1.426800-1 8.858285-3 1.426800-1 9.842038-2 1.462177-1 9.866707-2 1.819701-1 9.959375-2 2.483133-1 1.006068-1 3.630781-1 1.015987-1 6.237348-1 1.028595-1 9.772372-1 1.036371-1 1.000000+5 1.036785-1 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 0 0.0 0.0 0.0 0.0 0.0 5.850000-6 0.0 1.018000-5 4.330000-6 1.018000-5 1.663567-6 1.022000-5 1.720208-6 1.023293-5 1.735594-6 1.071519-5 2.218676-6 1.097000-5 2.468714-6 1.161449-5 3.085893-6 1.229000-5 3.713587-6 1.229000-5 2.371632-6 1.244515-5 2.536357-6 1.333521-5 3.398277-6 1.427100-5 4.281758-6 1.630000-5 6.154075-6 1.950000-5 9.093962-6 2.213095-5 1.155817-5 2.577000-5 1.504435-5 2.577000-5 1.727648-6 2.587000-5 1.900629-6 2.615000-5 2.342055-6 2.691535-5 3.561759-6 2.786121-5 5.088793-6 2.951209-5 7.802595-6 3.311311-5 1.377429-5 3.548134-5 1.758835-5 3.715352-5 2.017561-5 3.845918-5 2.212308-5 4.073803-5 2.537542-5 4.127000-5 2.610597-5 4.127000-5 1.474878-5 4.175000-5 1.590426-5 4.220000-5 1.692360-5 4.265795-5 1.791931-5 4.330000-5 1.924758-5 4.415704-5 2.091973-5 4.518559-5 2.282695-5 4.650000-5 2.512070-5 4.841724-5 2.825836-5 5.069907-5 3.175658-5 5.150000-5 3.294087-5 5.500000-5 3.785260-5 5.900000-5 4.310131-5 6.237348-5 4.729573-5 6.485000-5 5.026286-5 6.485000-5 4.920652-5 7.150000-5 5.707097-5 7.900000-5 6.546804-5 9.015711-5 7.733783-5 1.100000-4 9.761805-5 1.392900-4 1.267450-4 1.392900-4 1.165455-4 1.420000-4 1.149374-4 1.482000-4 1.101932-4 1.510000-4 1.088018-4 1.538900-4 1.083015-4 1.538900-4 1.013157-4 1.620200-4 9.678870-5 1.655000-4 9.546252-5 1.680000-4 9.508690-5 1.705000-4 9.515339-5 1.740000-4 9.589312-5 1.778279-4 9.722921-5 1.850000-4 1.003646-4 2.065380-4 1.104955-4 2.190000-4 1.168103-4 2.267700-4 1.212296-4 2.340000-4 1.259540-4 2.407000-4 1.310759-4 2.465000-4 1.362181-4 2.520000-4 1.417695-4 2.580000-4 1.486123-4 2.643000-4 1.565655-4 2.691700-4 1.632294-4 2.691700-4 1.474261-4 2.800000-4 1.615779-4 3.000000-4 1.895599-4 3.260000-4 2.258799-4 3.480000-4 2.547524-4 3.680600-4 2.795638-4 3.680600-4 2.616377-4 3.707000-4 2.668169-4 3.762000-4 2.749620-4 3.981072-4 3.024602-4 4.265795-4 3.361794-4 4.461100-4 3.582549-4 4.461100-4 3.522759-4 4.954502-4 4.056068-4 5.650000-4 4.775352-4 5.816200-4 4.943613-4 5.816200-4 4.838945-4 5.847000-4 4.897360-4 5.945000-4 5.008913-4 6.005200-4 5.069474-4 6.005200-4 5.002432-4 6.065000-4 5.077571-4 6.200000-4 5.195300-4 6.309573-4 5.257236-4 6.415000-4 5.277956-4 6.700000-4 5.257020-4 6.820000-4 5.281178-4 6.970000-4 5.352216-4 7.170000-4 5.495196-4 7.500000-4 5.788680-4 8.511380-4 6.784625-4 9.943600-4 8.219016-4 9.943600-4 8.192635-4 1.012400-3 8.275034-4 1.045000-3 8.566281-4 1.061800-3 8.729361-4 1.061800-3 8.657715-4 1.359600-3 1.152833-3 1.359600-3 1.140120-3 1.739000-3 1.508234-3 1.739000-3 1.505402-3 1.925800-3 1.686847-3 1.925800-3 1.682129-3 3.349654-3 3.073807-3 4.492700-3 4.200294-3 4.492700-3 4.083312-3 4.760800-3 4.349307-3 4.760800-3 4.246015-3 5.392600-3 4.870248-3 5.392600-3 4.836481-3 6.784000-3 6.223329-3 6.784000-3 6.195938-3 7.179700-3 6.588866-3 7.179700-3 6.572550-3 1.995262-2 1.926194-2 2.089400-2 2.019976-2 2.089400-2 1.504075-2 2.570396-2 1.990727-2 2.679200-2 2.101398-2 2.679200-2 1.807878-2 2.762200-2 1.887825-2 2.762200-2 1.843972-2 4.027170-2 3.086059-2 8.413951-2 7.450323-2 1.426800-1 1.329678-1 1.426800-1 4.347204-2 1.428894-1 4.368605-2 1.431550-1 4.382404-2 1.462177-1 4.676296-2 1.479108-1 4.843835-2 1.531088-1 5.340321-2 1.927525-1 9.215433-2 3.019952-1 2.000384-1 8.609938-1 7.567298-1 1.000000+5 9.999990+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+0 0.0 0.0 0.0 1.426800-1 1.037026+3 1.428894-1 1.032804+3 1.431550-1 1.033425+3 1.460000-1 9.864900+2 1.473000-1 9.624860+2 1.500000-1 9.245200+2 1.659587-1 7.215351+2 1.840772-1 5.582510+2 2.722701-1 2.139428+2 3.349654-1 1.298620+2 3.801894-1 9.637147+1 4.415705-1 6.823386+1 5.069907-1 4.996490+1 5.821032-1 3.688626+1 6.683439-1 2.743069+1 7.717400-1 2.030687+1 8.810489-1 1.549599+1 1.000000+0 1.204615+1 1.230269+0 8.049268+0 1.396368+0 6.337905+0 1.566751+0 5.132902+0 1.778279+0 4.101595+0 2.018366+0 3.301709+0 2.317395+0 2.625458+0 2.660725+0 2.102492+0 3.054921+0 1.695393+0 3.548134+0 1.352986+0 4.120975+0 1.087615+0 4.841724+0 8.662280-1 5.754399+0 6.841690-1 6.839116+0 5.445158-1 8.222427+0 4.300620-1 1.000000+1 3.372800-1 1.230269+1 2.627763-1 1.513561+1 2.061394-1 1.927525+1 1.563785-1 2.600160+1 1.121025-1 3.801894+1 7.434314-2 5.495409+1 5.034916-2 8.709636+1 3.120371-2 1.531087+2 1.751085-2 3.054921+2 8.697190-3 1.216186+3 2.170266-3 1.000000+5 2.633800-5 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+0 0.0 0.0 0.0 1.426800-1 7.644300-4 1.000000+5 7.644300-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.426800-1 1.297100-1 1.000000+5 1.297100-1 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+0 0.0 0.0 0.0 1.426800-1 1.220557-2 1.000000+5 9.999987+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+0 0.0 0.0 0.0 2.762200-2 3.455822+3 2.805000-2 3.348731+3 2.940000-2 3.100640+3 3.019952-2 2.951913+3 3.198895-2 2.682884+3 3.507519-2 2.268230+3 3.845918-2 1.924103+3 4.216965-2 1.617503+3 5.300000-2 1.031570+3 6.025596-2 7.923174+2 6.800000-2 6.155720+2 8.222426-2 4.086790+2 9.885531-2 2.716672+2 1.202264-1 1.742286+2 1.479108-1 1.079106+2 2.113489-1 4.682540+1 2.630268-1 2.818577+1 3.054921-1 1.975480+1 3.630781-1 1.328547+1 4.365158-1 8.768947+0 5.128614-1 6.138762+0 5.956621-1 4.439109+0 6.918310-1 3.234466+0 8.035261-1 2.373483+0 9.225714-1 1.794584+0 1.083927+0 1.306753+0 1.258925+0 9.780712-1 1.428894+0 7.710902-1 1.603245+0 6.252880-1 1.819701+0 5.002832-1 2.065380+0 4.031642-1 2.371374+0 3.209013-1 2.722701+0 2.572315-1 3.126079+0 2.076330-1 3.630781+0 1.658894-1 4.216965+0 1.334953-1 4.954502+0 1.064357-1 5.888437+0 8.415494-2 7.000000+0 6.702300-2 8.511380+0 5.223701-2 1.035142+1 4.102160-2 1.273503+1 3.200041-2 1.566751+1 2.512598-2 2.041738+1 1.859448-2 2.754229+1 1.335536-2 4.000000+1 8.932700-3 5.888437+1 5.941767-3 9.549926+1 3.600276-3 1.678804+2 2.023032-3 3.349654+2 1.005569-3 1.333521+3 2.510440-4 1.000000+5 3.341200-6 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+0 0.0 0.0 0.0 2.762200-2 1.090100-3 1.000000+5 1.090100-3 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.762200-2 1.097200-2 1.000000+5 1.097200-2 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+0 0.0 0.0 0.0 2.762200-2 1.555990-2 1.000000+5 9.999999+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.000000+0 0.0 0.0 0.0 2.679200-2 7.450665+3 2.725000-2 7.213700+3 2.830000-2 6.613800+3 2.930000-2 6.081900+3 3.070000-2 5.454100+3 3.801894-2 3.222300+3 4.168694-2 2.551400+3 5.069907-2 1.538400+3 6.309573-2 8.617300+2 7.943282-2 4.628500+2 1.011580-1 2.389000+2 1.883649-1 4.313200+1 2.371374-1 2.303300+1 2.818383-1 1.448854+1 3.311311-1 9.466344+0 3.845918-1 6.423490+0 4.415705-1 4.523994+0 5.011872-1 3.303812+0 5.688529-1 2.431108+0 6.382635-1 1.852390+0 7.181900-1 1.412339+0 7.943282-1 1.124996+0 8.709636-1 9.197251-1 9.549926-1 7.574602-1 1.047129+0 6.289147-1 1.188502+0 4.907206-1 1.318257+0 4.031058-1 1.500000+0 3.179452-1 1.717908+0 2.495049-1 1.949845+0 2.004055-1 2.238721+0 1.590562-1 2.570396+0 1.271554-1 2.951209+0 1.023666-1 3.427678+0 8.154739-2 4.000000+0 6.499800-2 4.677351+0 5.204114-2 5.559043+0 4.103907-2 6.606934+0 3.261397-2 7.943282+0 2.572300-2 9.549926+0 2.043316-2 1.174898+1 1.589264-2 1.462177+1 1.228349-2 1.862087+1 9.310165-3 2.426610+1 6.926820-3 3.162278+1 5.189372-3 4.415704+1 3.629624-3 6.683439+1 2.350040-3 1.122018+2 1.377016-3 2.065380+2 7.399908-4 4.120975+2 3.683903-4 1.640590+3 9.207010-5 1.000000+5 1.507900-6 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.000000+0 0.0 0.0 0.0 2.679200-2 7.969500-4 1.000000+5 7.969500-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.679200-2 1.463700-2 1.000000+5 1.463700-2 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.000000+0 0.0 0.0 0.0 2.679200-2 1.135805-2 1.000000+5 9.999998+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 6.000000+0 0.0 0.0 0.0 2.089400-2 1.875737+4 2.118000-2 1.818143+4 2.213095-2 1.617452+4 2.317395-2 1.423488+4 2.400000-2 1.294824+4 3.054921-2 6.566925+3 3.548134-2 4.257891+3 3.935501-2 3.148333+3 4.954502-2 1.588806+3 6.200000-2 8.066080+2 7.673615-2 4.197711+2 1.023293-1 1.722622+2 1.678804-1 3.697471+1 2.113489-1 1.820939+1 2.511886-1 1.077812+1 2.951209-1 6.668408+0 3.388442-1 4.449477+0 3.845918-1 3.092025+0 4.365158-1 2.164982+0 4.897788-1 1.577434+0 5.495409-1 1.158024+0 6.095369-1 8.829079-1 6.760830-1 6.780243-1 7.498942-1 5.242728-1 8.709636-1 3.644621-1 9.332543-1 3.101797-1 9.885531-1 2.728197-1 1.059254+0 2.357992-1 1.135011+0 2.051899-1 1.230269+0 1.757002-1 1.348963+0 1.482222-1 1.737801+0 9.437285-2 1.972423+0 7.579474-2 2.264644+0 6.018553-2 2.600160+0 4.813268-2 3.000000+0 3.847000-2 3.467369+0 3.089531-2 4.027170+0 2.480842-2 4.731513+0 1.973838-2 5.623413+0 1.557298-2 6.683439+0 1.238247-2 8.035261+0 9.770600-3 9.772372+0 7.655762-3 1.202264+1 5.959619-3 1.479108+1 4.671732-3 1.883649+1 3.541882-3 2.483133+1 2.602701-3 3.349654+1 1.879629-3 4.623810+1 1.332490-3 6.998420+1 8.634408-4 1.188502+2 5.003657-4 2.371374+2 2.479415-4 4.731513+2 1.235527-4 1.883649+3 3.090247-5 1.000000+5 5.812000-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 6.000000+0 0.0 0.0 0.0 2.089400-2 7.570500-4 1.000000+5 7.570500-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.089400-2 9.051600-3 1.000000+5 9.051600-3 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 6.000000+0 0.0 0.0 0.0 2.089400-2 1.108535-2 1.000000+5 9.999999+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 8.000000+0 0.0 0.0 0.0 7.179700-3 8.410412+3 7.413102-3 8.051690+3 7.600000-3 7.814220+3 7.852356-3 7.492918+3 8.035261-3 7.292420+3 8.709636-3 6.525258+3 9.500000-3 5.816980+3 1.023293-2 5.218403+3 1.090000-2 4.740260+3 1.161449-2 4.319845+3 1.244515-2 3.876331+3 1.531087-2 2.765384+3 1.698244-2 2.313981+3 1.972423-2 1.778697+3 2.290868-2 1.352211+3 2.570396-2 1.089763+3 3.054921-2 7.808748+2 3.630781-2 5.537091+2 4.315191-2 3.889786+2 5.128614-2 2.707705+2 6.095369-2 1.868892+2 7.244360-2 1.279675+2 8.609938-2 8.698228+1 1.047129-1 5.572099+1 1.303167-1 3.359023+1 1.737801-1 1.710747+1 2.630268-1 6.453483+0 3.235937-1 3.987889+0 3.935501-1 2.549942+0 4.677351-1 1.730926+0 5.370318-1 1.277692+0 6.309573-1 9.035413-1 7.328245-1 6.596778-1 8.609938-1 4.737456-1 9.772372-1 3.676254-1 1.202264+0 2.453267-1 1.364583+0 1.928992-1 1.548817+0 1.527957-1 1.757924+0 1.220001-1 2.000000+0 9.773598-2 2.290868+0 7.796909-2 2.630268+0 6.239130-2 3.019952+0 5.027281-2 3.507519+0 4.009538-2 4.073803+0 3.221363-2 4.786301+0 2.564358-2 5.688529+0 2.024344-2 6.760830+0 1.610357-2 8.128305+0 1.271249-2 9.885531+0 9.965653-3 1.216186+1 7.760998-3 1.500000+1 6.068500-3 1.905461+1 4.615494-3 2.540973+1 3.349896-3 3.589219+1 2.303748-3 5.011872+1 1.615860-3 7.673615+1 1.036133-3 1.333521+2 5.872653-4 2.660725+2 2.913249-4 5.308844+2 1.452882-4 2.113489+3 3.635695-5 1.000000+5 7.673100-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 8.000000+0 0.0 0.0 0.0 7.179700-3 8.598900-4 1.000000+5 8.598900-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.179700-3 1.438500-4 1.000000+5 1.438500-4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 8.000000+0 0.0 0.0 0.0 7.179700-3 6.175960-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.000000+1 0.0 0.0 0.0 6.784000-3 1.373092+4 6.814000-3 1.340951+4 6.890000-3 1.312461+4 7.244360-3 1.255011+4 7.585776-3 1.196134+4 8.413951-3 1.060219+4 8.912509-3 9.845667+3 9.549926-3 8.932808+3 1.047129-2 7.812930+3 1.170000-2 6.590560+3 1.380384-2 4.989597+3 1.479108-2 4.410546+3 1.737801-2 3.262183+3 1.883649-2 2.786803+3 2.187762-2 2.058393+3 2.400000-2 1.694382+3 2.754229-2 1.259478+3 3.198895-2 9.017394+2 3.589219-2 6.924529+2 4.073803-2 5.147281+2 4.731513-2 3.595102+2 5.500000-2 2.486000+2 6.456542-2 1.664786+2 7.673615-2 1.072624+2 9.332543-2 6.464392+1 1.161449-1 3.640637+1 2.317395-1 5.831212+0 2.851018-1 3.387644+0 3.388442-1 2.168970+0 3.981072-1 1.441176+0 4.570882-1 1.022239+0 5.248075-1 7.305136-1 5.956621-1 5.408630-1 6.683439-1 4.144929-1 7.498942-1 3.198090-1 8.609938-1 2.361176-1 9.440609-1 1.941928-1 1.023293+0 1.648040-1 1.161449+0 1.284079-1 1.303167+0 1.030784-1 1.479108+0 8.161076-2 1.698244+0 6.370419-2 1.927525+0 5.112964-2 2.213095+0 4.055466-2 2.540973+0 3.239729-2 2.917427+0 2.606036-2 3.388442+0 2.074758-2 3.935501+0 1.664193-2 4.623810+0 1.322558-2 5.495409+0 1.042393-2 6.531306+0 8.279928-3 7.852356+0 6.527396-3 9.549926+0 5.109855-3 1.174898+1 3.974412-3 1.462177+1 3.071788-3 1.862087+1 2.328291-3 2.400000+1 1.753500-3 3.090295+1 1.330413-3 4.365158+1 9.188366-4 6.606934+1 5.947673-4 1.109175+2 3.484545-4 2.041738+2 1.872262-4 4.073803+2 9.320040-5 1.621810+3 2.329125-5 1.000000+5 3.771000-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.000000+1 0.0 0.0 0.0 6.784000-3 7.734200-4 1.000000+5 7.734200-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.784000-3 2.575600-4 1.000000+5 2.575600-4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.000000+1 0.0 0.0 0.0 6.784000-3 5.753020-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.100000+1 0.0 0.0 0.0 5.392600-3 5.919713+4 5.445000-3 5.700908+4 5.480000-3 5.587567+4 5.821032-3 5.062230+4 6.165950-3 4.581260+4 6.918310-3 3.727286+4 7.673615-3 3.060108+4 8.609938-3 2.442116+4 9.332543-3 2.079385+4 1.109175-2 1.452268+4 1.202264-2 1.218341+4 1.412538-2 8.513426+3 1.566751-2 6.700949+3 1.778279-2 4.975332+3 2.041738-2 3.558209+3 2.264644-2 2.752684+3 2.600160-2 1.939681+3 3.000000-2 1.338096+3 3.427678-2 9.396191+2 3.935501-2 6.466418+2 4.518559-2 4.418991+2 5.188000-2 3.000381+2 6.025596-2 1.959224+2 7.161434-2 1.188951+2 8.709636-2 6.692449+1 1.059254-1 3.740302+1 2.018366-1 5.395128+0 2.483133-1 2.912722+0 2.917427-1 1.815486+0 3.388442-1 1.178821+0 3.890451-1 7.971623-1 4.415705-1 5.610292-1 5.000000-1 4.004705-1 5.623413-1 2.933702-1 6.237348-1 2.244628-1 6.918310-1 1.729025-1 7.673615-1 1.340715-1 8.709636-1 9.872009-2 9.332543-1 8.406235-2 9.885531-1 7.396254-2 1.059254+0 6.394263-2 1.148154+0 5.440410-2 1.250000+0 4.624523-2 1.380384+0 3.855517-2 1.757924+0 2.507483-2 1.995262+0 2.015255-2 2.290868+0 1.601200-2 2.630268+0 1.281283-2 3.019952+0 1.032420-2 3.507519+0 8.234119-3 4.073803+0 6.615517-3 4.786301+0 5.266295-3 5.688529+0 4.157276-3 6.760830+0 3.307117-3 8.128305+0 2.610772-3 9.772372+0 2.075704-3 1.202264+1 1.615773-3 1.479108+1 1.266664-3 1.862087+1 9.729100-4 2.400000+1 7.327400-4 3.090295+1 5.559478-4 4.365158+1 3.839526-4 6.606934+1 2.485319-4 1.109175+2 1.456052-4 2.065380+2 7.732751-5 4.120975+2 3.849647-5 1.640590+3 9.621170-6 1.000000+5 1.575800-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.100000+1 0.0 0.0 0.0 5.392600-3 6.588800-4 1.000000+5 6.588800-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.392600-3 9.105700-5 1.000000+5 9.105700-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.100000+1 0.0 0.0 0.0 5.392600-3 4.642663-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.300000+1 0.0 0.0 0.0 4.760800-3 1.242000+5 4.850000-3 1.232190+5 4.940000-3 1.213520+5 5.011872-3 1.193262+5 5.069907-3 1.163783+5 5.688529-3 8.571548+4 6.165950-3 6.864902+4 7.000000-3 4.798960+4 7.852356-3 3.449212+4 8.810489-3 2.459094+4 9.660509-3 1.865424+4 1.190000-2 9.812400+3 1.412538-2 5.697444+3 1.548817-2 4.235293+3 1.840772-2 2.405489+3 2.213095-2 1.298808+3 2.650000-2 7.026280+2 3.162278-2 3.807108+2 3.758374-2 2.074271+2 4.518559-2 1.076652+2 5.559043-2 5.107450+1 7.244360-2 1.951609+1 1.230269-1 2.825231+0 1.548817-1 1.225289+0 1.819701-1 6.877376-1 2.041738-1 4.577009-1 2.951209-1 1.277783-1 3.311311-1 8.674499-2 3.715352-1 5.930197-2 4.120975-1 4.238898-2 4.570882-1 3.050437-2 5.069907-1 2.210875-2 5.559043-1 1.671101-2 6.025596-1 1.315871-2 6.531306-1 1.044215-2 7.161434-1 8.075531-3 7.943282-1 6.097233-3 8.609938-1 4.883658-3 9.120108-1 4.193344-3 9.549926-1 3.733681-3 1.000000+0 3.345755-3 1.047129+0 3.018850-3 1.109175+0 2.674350-3 1.174898+0 2.385766-3 1.258925+0 2.095733-3 1.364583+0 1.814819-3 1.513561+0 1.517784-3 1.840772+0 1.073467-3 2.044000+0 8.972642-4 2.344229+0 7.151186-4 2.691535+0 5.729070-4 3.090295+0 4.621684-4 3.589219+0 3.690327-4 4.168694+0 2.968125-4 4.897788+0 2.365308-4 5.821032+0 1.869165-4 6.918310+0 1.488296-4 8.317638+0 1.175992-4 1.011579+1 9.227247-5 1.244515+1 7.192080-5 1.513561+1 5.719434-5 1.927525+1 4.338766-5 2.600160+1 3.110391-5 3.801894+1 2.062683-5 5.495409+1 1.396963-5 8.709636+1 8.657519-6 1.531087+2 4.858480-6 3.054921+2 2.413068-6 1.216186+3 6.021500-7 1.000000+5 7.307500-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.300000+1 0.0 0.0 0.0 4.760800-3 5.041500-4 1.000000+5 5.041500-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.760800-3 2.862300-4 1.000000+5 2.862300-4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.300000+1 0.0 0.0 0.0 4.760800-3 3.970420-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.400000+1 0.0 0.0 0.0 4.492700-3 2.091139+5 4.600000-3 1.980866+5 4.780000-3 1.832699+5 4.786301-3 1.829941+5 5.370318-3 1.335600+5 5.888437-3 1.029632+5 6.683439-3 7.144375+4 7.500000-3 5.089878+4 8.413951-3 3.600399+4 9.332543-3 2.617343+4 1.148154-2 1.360019+4 1.303167-2 9.012668+3 1.450000-2 6.349080+3 1.698244-2 3.739105+3 1.927525-2 2.427813+3 2.187762-2 1.566872+3 2.540973-2 9.263028+2 2.951209-2 5.432485+2 3.500000-2 2.931642+2 4.120975-2 1.611106+2 4.897788-2 8.493864+1 6.025596-2 3.908948+1 7.943282-2 1.376307+1 1.135011-1 3.564551+0 1.428894-1 1.497425+0 1.659587-1 8.575229-1 1.927525-1 4.948331-1 2.113489-1 3.547006-1 2.454709-1 2.081396-1 2.818383-1 1.279751-1 3.126079-1 8.961724-2 3.467369-1 6.320835-2 3.845918-1 4.491693-2 4.216965-1 3.338039-2 4.623810-1 2.497513-2 5.069907-1 1.881748-2 5.559043-1 1.428127-2 6.025596-1 1.129268-2 6.531306-1 8.996702-3 7.161434-1 6.992459-3 8.709636-1 4.164834-3 9.225714-1 3.600890-3 9.660509-1 3.222848-3 1.011579+0 2.901560-3 1.071519+0 2.563860-3 1.135011+0 2.280351-3 1.216186+0 1.995531-3 1.318257+0 1.720895-3 1.840772+0 9.549647-4 2.065380+0 7.844832-4 2.371374+0 6.244254-4 2.722701+0 5.005451-4 3.126079+0 4.040338-4 3.630781+0 3.227963-4 4.216965+0 2.597649-4 4.954502+0 2.071191-4 5.888437+0 1.637537-4 7.000000+0 1.304200-4 8.511380+0 1.016477-4 1.035142+1 7.982324-5 1.273503+1 6.226935-5 1.566751+1 4.889167-5 2.041738+1 3.618244-5 2.754229+1 2.598776-5 4.027170+1 1.725713-5 5.956621+1 1.142324-5 9.772372+1 6.841611-6 1.717908+2 3.845623-6 3.427678+2 1.911820-6 1.364583+3 4.773718-7 1.000000+5 6.501500-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.400000+1 0.0 0.0 0.0 4.492700-3 5.030000-4 1.000000+5 5.030000-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.492700-3 4.703900-7 1.000000+5 4.703900-7 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.400000+1 0.0 0.0 0.0 4.492700-3 3.989230-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.600000+1 0.0 0.0 0.0 1.925800-3 1.862957+4 2.041738-3 1.738049+4 2.220000-3 1.590218+4 2.350000-3 1.500650+4 2.511886-3 1.388749+4 2.917427-3 1.162359+4 3.400000-3 9.610900+3 3.672823-3 8.668179+3 4.518559-3 6.496100+3 5.069907-3 5.483736+3 5.888437-3 4.374468+3 7.000000-3 3.331200+3 7.852356-3 2.764767+3 9.332543-3 2.072254+3 1.122018-2 1.508185+3 1.333521-2 1.109535+3 1.584893-2 8.093503+2 1.883649-2 5.855269+2 2.238721-2 4.202243+2 2.650000-2 3.016900+2 3.126079-2 2.165122+2 3.715352-2 1.519370+2 4.415704-2 1.058164+2 5.248075-2 7.315170+1 6.237348-2 5.020709+1 7.498942-2 3.335432+1 9.120108-2 2.142803+1 1.122019-1 1.330846+1 1.445440-1 7.372051+0 2.065380-1 3.177225+0 2.660725-1 1.752373+0 3.311311-1 1.055045+0 3.981072-1 6.932734-1 4.731513-1 4.710544-1 5.559043-1 3.307974-1 6.456542-1 2.400569-1 7.498942-1 1.754526-1 8.810489-1 1.261253-1 1.000000+0 9.797992-2 1.216186+0 6.691509-2 1.380384+0 5.265216-2 1.548817+0 4.261412-2 1.757924+0 3.402603-2 2.000000+0 2.725799-2 2.290868+0 2.174411-2 2.630268+0 1.739969-2 3.019952+0 1.402033-2 3.507519+0 1.118209-2 4.073803+0 8.984060-3 4.786301+0 7.151772-3 5.688529+0 5.645681-3 6.760830+0 4.491134-3 8.128305+0 3.545472-3 9.885531+0 2.779283-3 1.216186+1 2.164466-3 1.496236+1 1.697419-3 1.905461+1 1.287216-3 2.540973+1 9.342414-4 3.589219+1 6.424922-4 5.011872+1 4.506436-4 7.762471+1 2.855431-4 1.348963+2 1.618718-4 2.691535+2 8.030944-5 5.370318+2 4.005308-5 2.137962+3 1.002349-5 1.000000+5 2.140000-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.600000+1 0.0 0.0 0.0 1.925800-3 5.234400-4 1.000000+5 5.234400-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.925800-3 1.519600-6 1.000000+5 1.519600-6 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.600000+1 0.0 0.0 0.0 1.925800-3 1.400840-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.800000+1 0.0 0.0 0.0 1.739000-3 1.503139+4 2.030000-3 1.462203+4 2.130000-3 1.447728+4 2.290868-3 1.411623+4 2.483133-3 1.359783+4 2.660725-3 1.309634+4 2.818383-3 1.263110+4 3.090295-3 1.181284+4 3.273407-3 1.126484+4 3.548134-3 1.045308+4 3.935501-3 9.434240+3 4.216965-3 8.756839+3 4.623810-3 7.859026+3 5.150000-3 6.877500+3 5.623413-3 6.120038+3 6.382635-3 5.124450+3 7.000000-3 4.470040+3 7.943282-3 3.674061+3 8.810489-3 3.104542+3 9.885531-3 2.556980+3 1.120000-2 2.053280+3 1.244515-2 1.695193+3 1.412538-2 1.336328+3 1.603245-2 1.044948+3 1.819701-2 8.107993+2 2.065380-2 6.244954+2 2.344229-2 4.775700+2 2.691535-2 3.536180+2 3.054921-2 2.666235+2 3.500000-2 1.954940+2 4.073803-2 1.371490+2 4.731513-2 9.592575+1 5.559043-2 6.474580+1 6.606934-2 4.212562+1 7.852356-2 2.720297+1 9.549926-2 1.643847+1 1.216186-1 8.738881+0 2.264644-1 1.697698+0 2.818383-1 9.599879-1 3.388442-1 5.981466-1 3.981072-1 3.980649-1 4.570882-1 2.826652-1 5.188000-1 2.078980-1 5.888437-1 1.540304-1 6.683439-1 1.149799-1 7.498942-1 8.875623-2 8.413951-1 6.885237-2 9.225714-1 5.658431-2 1.000000+0 4.795622-2 1.135011+0 3.732367-2 1.273503+0 2.991479-2 1.445440+0 2.364623-2 1.659587+0 1.843358-2 1.883649+0 1.477521-2 2.137962+0 1.193016-2 2.454709+0 9.513462-3 2.851018+0 7.502528-3 3.273407+0 6.069716-3 3.801894+0 4.860396-3 4.466836+0 3.856291-3 5.248075+0 3.082614-3 6.237348+0 2.443598-3 7.498942+0 1.922666-3 9.120108+0 1.502280-3 1.122018+1 1.166525-3 1.412538+1 8.880591-4 1.800000+1 6.720500-4 2.290868+1 5.127774-4 2.917427+1 3.932856-4 4.168694+1 2.679825-4 6.237348+1 1.754037-4 1.023293+2 1.051237-4 1.819701+2 5.843839-5 3.630781+2 2.906577-5 1.445440+3 7.259544-6 1.000000+5 1.047400-7 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.800000+1 0.0 0.0 0.0 1.739000-3 4.889100-4 1.000000+5 4.889100-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.739000-3 1.049400-6 1.000000+5 1.049400-6 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.800000+1 0.0 0.0 0.0 1.739000-3 1.249041-3 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 1.900000+1 0.0 0.0 0.0 1.359600-3 1.304692+5 1.462177-3 1.208018+5 1.698244-3 1.015864+5 1.995262-3 8.278012+4 2.162719-3 7.434642+4 2.500000-3 6.048080+4 2.800000-3 5.091040+4 3.162278-3 4.213586+4 3.467369-3 3.625896+4 4.073803-3 2.761818+4 4.518559-3 2.301074+4 5.128614-3 1.830559+4 5.821032-3 1.443903+4 6.531306-3 1.157142+4 7.585776-3 8.596229+3 8.609938-3 6.629986+3 9.660509-3 5.204942+3 1.109175-2 3.863390+3 1.273503-2 2.843261+3 1.479108-2 2.020757+3 1.698244-2 1.461810+3 1.950000-2 1.048800+3 2.238721-2 7.467832+2 2.570396-2 5.275581+2 2.951209-2 3.698644+2 3.400000-2 2.551204+2 3.935501-2 1.724196+2 4.518559-2 1.182893+2 5.248075-2 7.804672+1 6.165950-2 4.949570+1 7.328245-2 3.014292+1 8.810489-2 1.762096+1 1.083927-1 9.557922+0 2.018366-1 1.495077+0 2.660725-1 6.661071-1 2.985383-1 4.736377-1 3.467369-1 3.083328-1 3.981072-1 2.089520-1 4.518559-1 1.473153-1 5.069907-1 1.079409-1 5.688529-1 7.968020-2 6.382635-1 5.926054-2 7.943282-1 3.430423-2 8.609938-1 2.826429-2 9.225714-1 2.410687-2 9.772372-1 2.123662-2 1.047129+0 1.837822-2 1.135011+0 1.563415-2 1.244515+0 1.309407-2 1.380384+0 1.081627-2 1.717908+0 7.316427-3 1.949845+0 5.873067-3 2.238721+0 4.660440-3 2.570396+0 3.724986-3 2.985383+0 2.945196-3 3.467369+0 2.347511-3 4.027170+0 1.884992-3 4.731513+0 1.499771-3 5.623413+0 1.183341-3 6.683439+0 9.408606-4 8.035261+0 7.424018-4 9.772372+0 5.817148-4 1.202264+1 4.528333-4 1.479108+1 3.549778-4 1.883649+1 2.691267-4 2.483133+1 1.977604-4 3.311311+1 1.446101-4 4.570882+1 1.024856-4 6.918310+1 6.639674-5 1.174898+2 3.847027-5 2.344229+2 1.906061-5 4.677351+2 9.497438-6 1.862087+3 2.375344-6 1.000000+5 4.416200-8 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 1.900000+1 0.0 0.0 0.0 1.359600-3 4.225500-4 1.000000+5 4.225500-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.359600-3 9.607500-7 1.000000+5 9.607500-7 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 1.900000+1 0.0 0.0 0.0 1.359600-3 9.360893-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.100000+1 0.0 0.0 0.0 1.061800-3 1.522633+5 1.076000-3 1.583226+5 1.124000-3 1.696335+5 1.173000-3 1.781630+5 1.210000-3 1.819967+5 1.216186-3 1.832133+5 1.244515-3 1.868081+5 1.273503-3 1.882737+5 1.303167-3 1.854796+5 1.333521-3 1.831820+5 1.412538-3 1.758842+5 1.479108-3 1.693025+5 1.584893-3 1.587103+5 1.698244-3 1.475055+5 1.800000-3 1.377960+5 1.927525-3 1.263473+5 2.070000-3 1.145660+5 2.238721-3 1.020275+5 2.400000-3 9.159040+4 2.570396-3 8.173723+4 2.818383-3 6.952304+4 3.070000-3 5.946040+4 3.311311-3 5.139565+4 3.672823-3 4.176157+4 4.000000-3 3.496724+4 4.415704-3 2.821612+4 4.841724-3 2.296340+4 5.370318-3 1.805287+4 5.888437-3 1.448640+4 6.531306-3 1.121904+4 7.244360-3 8.625490+3 8.035261-3 6.582395+3 8.912509-3 4.988181+3 1.000000-2 3.636352+3 1.122018-2 2.629316+3 1.244515-2 1.950773+3 1.380384-2 1.438678+3 1.548817-2 1.018532+3 1.757924-2 6.910039+2 1.995262-2 4.649966+2 2.238721-2 3.222524+2 2.511886-2 2.219951+2 2.851018-2 1.463941+2 3.311311-2 8.877554+1 3.801894-2 5.553129+1 4.466836-2 3.187177+1 5.308844-2 1.744189+1 6.456542-2 8.735705+0 8.128305-2 3.840782+0 1.462177-1 4.671228-1 1.757924-1 2.433149-1 2.213095-1 1.087169-1 2.570396-1 6.483732-2 2.951209-1 4.053504-2 3.311311-1 2.758859-2 3.715352-1 1.891121-2 4.168694-1 1.306039-2 4.677351-1 9.091548-3 5.188000-1 6.611067-3 5.688529-1 5.015026-3 6.165950-1 3.963035-3 6.760830-1 3.052397-3 7.413102-1 2.367252-3 8.035261-1 1.904178-3 8.609938-1 1.575101-3 9.120108-1 1.353423-3 9.549926-1 1.205695-3 1.000000+0 1.080907-3 1.047129+0 9.756263-4 1.109175+0 8.645250-4 1.174898+0 7.713250-4 1.258925+0 6.775278-4 1.364583+0 5.865417-4 1.531087+0 4.803693-4 1.840772+0 3.467871-4 2.065380+0 2.848491-4 2.371374+0 2.267347-4 2.722701+0 1.817525-4 3.126079+0 1.467088-4 3.630781+0 1.172126-4 4.216965+0 9.432423-5 4.954502+0 7.520579-5 5.888437+0 5.946089-5 7.000000+0 4.735600-5 8.511380+0 3.690877-5 1.035142+1 2.898442-5 1.273503+1 2.261020-5 1.566751+1 1.775329-5 2.041738+1 1.313835-5 2.754229+1 9.436211-6 4.027170+1 6.266164-6 6.000000+1 4.116700-6 9.772372+1 2.484291-6 1.737801+2 1.380155-6 3.467369+2 6.862076-7 1.380384+3 1.713551-7 1.000000+5 2.360800-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.100000+1 0.0 0.0 0.0 1.061800-3 3.396200-4 1.000000+5 3.396200-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.061800-3 6.818900-7 1.000000+5 6.818900-7 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.100000+1 0.0 0.0 0.0 1.061800-3 7.214981-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.200000+1 0.0 0.0 0.0 9.943600-4 5.582244+4 9.949000-4 6.198060+4 9.963000-4 7.625880+4 9.974000-4 8.914740+4 9.981000-4 9.801900+4 9.988000-4 1.073124+5 9.996000-4 1.184040+5 1.000500-3 1.313580+5 1.001200-3 1.416648+5 1.002000-3 1.535706+5 1.002700-3 1.639842+5 1.003500-3 1.757844+5 1.004300-3 1.873380+5 1.005200-3 1.999140+5 1.006000-3 2.106144+5 1.007000-3 2.232228+5 1.008000-3 2.348874+5 1.009000-3 2.455422+5 1.010000-3 2.551734+5 1.011000-3 2.638020+5 1.012400-3 2.743044+5 1.013500-3 2.813700+5 1.015000-3 2.895432+5 1.016500-3 2.963052+5 1.018000-3 3.019314+5 1.020200-3 3.086250+5 1.023293-3 3.158834+5 1.028000-3 3.241596+5 1.033000-3 3.309018+5 1.040000-3 3.377544+5 1.045000-3 3.408744+5 1.050000-3 3.426582+5 1.059254-3 3.433297+5 1.110000-3 3.389598+5 1.148154-3 3.329441+5 1.202264-3 3.238665+5 1.273503-3 3.101458+5 1.350000-3 2.947746+5 1.445440-3 2.755360+5 1.548817-3 2.552822+5 1.659587-3 2.347083+5 1.770000-3 2.155938+5 1.905461-3 1.942918+5 2.041738-3 1.747887+5 2.220000-3 1.529436+5 2.371374-3 1.367695+5 2.570396-3 1.183214+5 2.818383-3 9.965513+4 3.019952-3 8.711409+4 3.349654-3 7.054348+4 3.650000-3 5.885760+4 4.027170-3 4.742489+4 4.415704-3 3.849573+4 4.897788-3 3.017703+4 5.370318-3 2.415293+4 6.000000-3 1.830816+4 6.531306-3 1.472571+4 7.328245-3 1.086929+4 8.128305-3 8.203832+3 9.000000-3 6.181860+3 1.011579-2 4.431235+3 1.150000-2 3.044940+3 1.303167-2 2.092092+3 1.479108-2 1.417436+3 1.678804-2 9.517918+2 1.905461-2 6.337332+2 2.162719-2 4.184772+2 2.454709-2 2.742173+2 2.786121-2 1.784012+2 3.198895-2 1.107324+2 3.672823-2 6.822709+1 4.265795-2 4.006122+1 5.011872-2 2.239808+1 6.025596-2 1.142809+1 7.498942-2 5.094822+0 1.396368-1 5.049254-1 1.640590-1 2.789409-1 1.862087-1 1.759865-1 2.213095-1 9.481124-2 2.540973-1 5.823159-2 2.884032-1 3.753392-2 3.235937-1 2.535898-2 3.589219-1 1.794111-2 3.981072-1 1.278862-2 4.365158-1 9.535676-3 4.786301-1 7.159972-3 5.248075-1 5.415425-3 5.754399-1 4.127034-3 6.237348-1 3.275030-3 6.804800-1 2.569370-3 7.413102-1 2.042755-3 8.128305-1 1.607930-3 9.440609-1 1.099448-3 9.885531-1 9.841275-4 1.035142+0 8.870010-4 1.096478+0 7.848918-4 1.161449+0 6.994288-4 1.244515+0 6.136614-4 1.348963+0 5.307017-4 1.531087+0 4.258582-4 1.840772+0 3.074340-4 2.065380+0 2.525312-4 2.371374+0 2.010082-4 2.722701+0 1.611232-4 3.126079+0 1.300534-4 3.630781+0 1.039074-4 4.216965+0 8.361855-5 4.954502+0 6.667066-5 5.888437+0 5.271287-5 7.000000+0 4.198100-5 8.413951+0 3.319658-5 1.023293+1 2.605788-5 1.258925+1 2.031904-5 1.548817+1 1.594914-5 2.018366+1 1.179841-5 2.722701+1 8.470974-6 4.000000+1 5.595200-6 5.956621+1 3.677263-6 9.772372+1 2.202305-6 1.717908+2 1.237917-6 3.427678+2 6.154267-7 1.364583+3 1.536647-7 1.000000+5 2.092800-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.200000+1 0.0 0.0 0.0 9.943600-4 3.203500-4 1.000000+5 3.203500-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.943600-4 1.089200-7 1.000000+5 1.089200-7 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.200000+1 0.0 0.0 0.0 9.943600-4 6.739011-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.400000+1 0.0 0.0 0.0 6.005200-4 6.563220+4 6.006000-4 6.467220+4 6.010000-4 6.186060+4 6.014000-4 5.955222+4 6.018000-4 5.759364+4 6.023000-4 5.557662+4 6.027000-4 5.423130+4 6.032000-4 5.281176+4 6.040000-4 5.098536+4 6.047000-4 4.976028+4 6.055000-4 4.865790+4 6.065000-4 4.760004+4 6.075000-4 4.680678+4 6.090000-4 4.597440+4 6.110000-4 4.528716+4 6.135000-4 4.480158+4 6.165950-4 4.453905+4 6.190000-4 4.453980+4 6.220000-4 4.483770+4 6.240000-4 4.527408+4 6.260000-4 4.595604+4 6.278000-4 4.682034+4 6.292000-4 4.768398+4 6.309573-4 4.904227+4 6.330000-4 5.105304+4 6.345000-4 5.286198+4 6.365000-4 5.576754+4 6.385000-4 5.930232+4 6.400000-4 6.241500+4 6.415000-4 6.596580+4 6.435000-4 7.143240+4 6.458000-4 7.887720+4 6.480000-4 8.728320+4 6.500000-4 9.612420+4 6.531306-4 1.124909+5 6.633000-4 1.903567+5 6.670000-4 2.289954+5 6.700000-4 2.644794+5 6.730000-4 3.036324+5 6.760830-4 3.475897+5 6.790000-4 3.924720+5 6.820000-4 4.417686+5 6.850000-4 4.939668+5 6.880000-4 5.487210+5 6.910000-4 6.056160+5 6.940000-4 6.641400+5 6.970000-4 7.237260+5 7.000000-4 7.837380+5 7.030000-4 8.435160+5 7.060000-4 9.024060+5 7.090000-4 9.597300+5 7.120000-4 1.015062+6 7.150000-4 1.067880+6 7.190000-4 1.133766+6 7.220000-4 1.179534+6 7.260000-4 1.235454+6 7.300000-4 1.285566+6 7.350000-4 1.340304+6 7.400000-4 1.386858+6 7.450000-4 1.425912+6 7.500000-4 1.458180+6 7.560000-4 1.488828+6 7.620000-4 1.511682+6 7.690000-4 1.529754+6 7.770000-4 1.541208+6 7.852356-4 1.544461+6 7.950000-4 1.540218+6 8.100000-4 1.523436+6 8.280000-4 1.493244+6 8.511380-4 1.445677+6 8.850000-4 1.367940+6 9.225714-4 1.280828+6 9.700000-4 1.175274+6 1.030000-3 1.052220+6 1.096478-3 9.303500+5 1.170000-3 8.125860+5 1.244515-3 7.095310+5 1.333521-3 6.053210+5 1.420000-3 5.206746+5 1.531087-3 4.310089+5 1.675900-3 3.412256+5 1.800000-3 2.815680+5 1.972423-3 2.184141+5 2.150000-3 1.708986+5 2.350000-3 1.316040+5 2.600160-3 9.712648+4 2.851018-3 7.310416+4 3.162278-3 5.274321+4 3.507519-3 3.774500+4 3.900000-3 2.660208+4 4.315191-3 1.891433+4 4.800000-3 1.311582+4 5.370318-3 8.844664+3 6.000000-3 5.947506+3 6.606934-3 4.188318+3 7.413102-3 2.735247+3 8.413951-3 1.696868+3 9.549926-3 1.043381+3 1.083927-2 6.360524+2 1.216186-2 4.027003+2 1.364583-2 2.533046+2 1.531087-2 1.583656+2 1.737801-2 9.383571+1 1.972423-2 5.524058+1 2.290868-2 2.929834+1 2.660725-2 1.542073+1 3.126079-2 7.667155+0 3.758374-2 3.421699+0 4.623810-2 1.369026+0 1.023293-1 3.989154-2 1.202264-1 1.959712-2 1.364583-1 1.127887-2 1.566751-1 6.231210-3 1.798871-1 3.467961-3 2.113489-1 1.765278-3 2.398833-1 1.045918-3 2.691535-1 6.544254-4 3.019952-1 4.125389-4 3.349654-1 2.743119-4 3.715352-1 1.836982-4 4.216965-1 1.135408-4 4.570882-1 8.406588-5 4.954502-1 6.265868-5 5.308844-1 4.900804-5 5.688529-1 3.860902-5 6.918310-1 2.002592-5 7.413102-1 1.597509-5 7.852356-1 1.330901-5 8.317638-1 1.116327-5 8.709636-1 9.755564-6 9.120108-1 8.576835-6 9.549926-1 7.591711-6 1.000000+0 6.770407-6 1.047129+0 6.086729-6 1.096478+0 5.511910-6 1.148154+0 5.022130-6 1.216186+0 4.501826-6 1.318257+0 3.893046-6 1.513561+0 3.071369-6 1.840772+0 2.172385-6 2.044000+0 1.815627-6 2.344229+0 1.447106-6 2.691535+0 1.159306-6 3.090295+0 9.351920-7 3.589219+0 7.467348-7 4.168694+0 6.005987-7 4.897788+0 4.786185-7 5.821032+0 3.782170-7 6.918310+0 3.011613-7 8.317638+0 2.379691-7 1.011579+1 1.867146-7 1.244515+1 1.455304-7 1.513561+1 1.157359-7 1.927525+1 8.779469-8 2.600160+1 6.293877-8 3.801894+1 4.173724-8 5.495409+1 2.826706-8 8.709636+1 1.751820-8 1.531087+2 9.830778-9 3.054921+2 4.882787-9 1.216186+3 1.218433-9 1.000000+5 1.47870-11 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.400000+1 0.0 0.0 0.0 6.005200-4 1.914700-4 1.000000+5 1.914700-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 6.005200-4 5.386700-8 1.000000+5 5.386700-8 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.400000+1 0.0 0.0 0.0 6.005200-4 4.089961-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.500000+1 0.0 0.0 0.0 5.816200-4 1.036472+5 5.817000-4 1.017752+5 5.819500-4 9.754560+4 5.822500-4 9.320960+4 5.825500-4 8.952640+4 5.829000-4 8.584880+4 5.834000-4 8.158960+4 5.838500-4 7.844176+4 5.843000-4 7.584600+4 5.847000-4 7.388200+4 5.852000-4 7.178464+4 5.858000-4 6.970064+4 5.864000-4 6.799664+4 5.871000-4 6.638080+4 5.879000-4 6.489864+4 5.890000-4 6.333712+4 5.900000-4 6.227104+4 5.910000-4 6.145336+4 5.925000-4 6.056856+4 5.945000-4 5.982504+4 5.970000-4 5.934976+4 6.000000-4 5.926664+4 6.025596-4 5.960283+4 6.050000-4 6.034192+4 6.065000-4 6.104416+4 6.085000-4 6.233224+4 6.100000-4 6.360360+4 6.115000-4 6.517216+4 6.135000-4 6.778688+4 6.150000-4 7.018744+4 6.165950-4 7.320266+4 6.185000-4 7.749584+4 6.200000-4 8.146320+4 6.220000-4 8.764480+4 6.240000-4 9.495280+4 6.260000-4 1.035168+5 6.280000-4 1.134664+5 6.300000-4 1.249336+5 6.328000-4 1.437976+5 6.370000-4 1.789128+5 6.445000-4 2.646152+5 6.485400-4 3.238676+5 6.515000-4 3.731632+5 6.540000-4 4.186160+5 6.565000-4 4.674600+5 6.590000-4 5.195648+5 6.615000-4 5.747872+5 6.640000-4 6.328872+5 6.670000-4 7.060960+5 6.700000-4 7.826120+5 6.730000-4 8.618320+5 6.760830-4 9.452964+5 6.790000-4 1.025392+6 6.820000-4 1.108040+6 6.850000-4 1.190072+6 6.880000-4 1.270600+6 6.910000-4 1.348800+6 6.940000-4 1.423944+6 6.970000-4 1.495520+6 7.000000-4 1.562960+6 7.040000-4 1.646120+6 7.080000-4 1.721256+6 7.120000-4 1.788416+6 7.170000-4 1.861640+6 7.220000-4 1.923728+6 7.280000-4 1.984880+6 7.328245-4 2.024485+6 7.400000-4 2.069488+6 7.480000-4 2.102720+6 7.540000-4 2.117648+6 7.620000-4 2.126736+6 7.730000-4 2.123856+6 7.852356-4 2.106764+6 8.035261-4 2.065939+6 8.225300-4 2.012619+6 8.500000-4 1.924344+6 8.850000-4 1.807856+6 9.332543-4 1.651363+6 9.850000-4 1.495776+6 1.050000-3 1.320184+6 1.110000-3 1.177104+6 1.174898-3 1.040901+6 1.258925-3 8.897804+5 1.350000-3 7.544488+5 1.428894-3 6.556897+5 1.570000-3 5.149560+5 1.698244-3 4.182757+5 1.840772-3 3.350216+5 2.018366-3 2.581919+5 2.187762-3 2.042231+5 2.426610-3 1.498698+5 2.660725-3 1.130216+5 2.951209-3 8.166166+4 3.273407-3 5.854094+4 3.630781-3 4.164957+4 4.027170-3 2.941505+4 4.466836-3 2.061894+4 4.954502-3 1.435372+4 5.559043-3 9.521202+3 6.309573-3 6.004282+3 7.161434-3 3.749916+3 8.128305-3 2.320332+3 9.225714-3 1.422730+3 1.047129-2 8.647549+2 1.190000-2 5.184112+2 1.333521-2 3.264163+2 1.500000-2 2.010712+2 1.680000-2 1.253480+2 1.905461-2 7.366597+1 2.187762-2 4.079566+1 2.540973-2 2.133805+1 2.951209-2 1.107742+1 3.467369-2 5.426951+0 4.168694-2 2.381967+0 5.248075-2 8.433753-1 9.015711-2 7.259588-2 1.364583-1 1.139332-2 1.531088-1 6.851132-3 1.757924-1 3.769238-3 2.000000-1 2.170815-3 2.238721-1 1.349105-3 2.511886-1 8.362377-4 2.851018-1 4.985922-4 3.090295-1 3.609237-4 3.349654-1 2.629886-4 3.589219-1 2.018728-4 3.890451-1 1.493632-4 4.229500-1 1.101366-4 4.570882-1 8.357168-5 4.954502-1 6.316428-5 5.370318-1 4.804519-5 5.888437-1 3.532897-5 6.382635-1 2.718890-5 6.839117-1 2.186874-5 7.244360-1 1.834693-5 7.762471-1 1.496488-5 8.317638-1 1.229950-5 8.912509-1 1.016416-5 9.332543-1 8.998578-6 9.772372-1 8.014209-6 1.023293+0 7.187533-6 1.071519+0 6.492438-6 1.122018+0 5.901066-6 1.188502+0 5.274773-6 1.288250+0 4.549562-6 1.412538+0 3.871754-6 1.513561+0 3.439810-6 1.840772+0 2.433048-6 2.044000+0 2.033478-6 2.344229+0 1.620618-6 2.691535+0 1.298372-6 3.090295+0 1.047445-6 3.589219+0 8.363575-7 4.168694+0 6.726760-7 4.897788+0 5.360559-7 5.821032+0 4.236075-7 6.918310+0 3.373075-7 8.317638+0 2.665308-7 1.011579+1 2.091173-7 1.244515+1 1.629988-7 1.513561+1 1.296215-7 1.927525+1 9.832966-8 2.600160+1 7.049226-8 3.801894+1 4.674600-8 5.495409+1 3.165960-8 8.709636+1 1.962055-8 1.531087+2 1.101088-8 3.054921+2 5.468769-9 1.216186+3 1.364668-9 1.000000+5 1.65610-11 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.500000+1 0.0 0.0 0.0 5.816200-4 1.837200-4 1.000000+5 1.837200-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.816200-4 1.337000-7 1.000000+5 1.337000-7 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.500000+1 0.0 0.0 0.0 5.816200-4 3.977663-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.700000+1 0.0 0.0 0.0 4.461100-4 4.171995+4 6.500000-4 2.870640+4 8.317638-4 2.218559+4 9.225714-4 1.976553+4 1.071519-3 1.662533+4 1.190000-3 1.462390+4 1.380384-3 1.210251+4 1.570000-3 1.019216+4 1.819701-3 8.313902+3 2.162719-3 6.487403+3 2.600160-3 4.935445+3 3.126079-3 3.724234+3 3.845918-3 2.691280+3 4.731513-3 1.928332+3 5.754399-3 1.396963+3 7.000000-3 1.003612+3 8.413951-3 7.301017+2 1.011579-2 5.269937+2 1.216186-2 3.775363+2 1.462177-2 2.684814+2 1.757924-2 1.894813+2 2.113489-2 1.327048+2 2.540973-2 9.221971+1 3.054921-2 6.358300+1 3.672823-2 4.349096+1 4.365158-2 3.024019+1 5.248075-2 2.036616+1 6.309573-2 1.361068+1 7.673615-2 8.798379+0 9.332543-2 5.642701+0 1.161449-1 3.407219+0 1.531088-1 1.785417+0 2.691535-1 4.738832-1 3.349654-1 2.851680-1 4.027170-1 1.872446-1 4.786301-1 1.273024-1 5.623413-1 8.945876-2 6.531306-1 6.494173-2 7.585776-1 4.748753-2 8.912509-1 3.415504-2 1.011579+0 2.654932-2 1.230269+0 1.813995-2 1.396368+0 1.428377-2 1.566751+0 1.156826-2 1.778279+0 9.242827-3 2.018366+0 7.438991-3 2.317395+0 5.914256-3 2.660725+0 4.735413-3 3.054921+0 3.817903-3 3.548134+0 3.046733-3 4.120975+0 2.449134-3 4.841724+0 1.950671-3 5.754399+0 1.540719-3 6.839116+0 1.226178-3 8.222427+0 9.684318-4 1.000000+1 7.595300-4 1.230269+1 5.917644-4 1.500000+1 4.690800-4 1.905461+1 3.567662-4 2.540973+1 2.589307-4 3.589219+1 1.780772-4 5.011872+1 1.248979-4 7.762471+1 7.914197-5 1.348963+2 4.486410-5 2.691535+2 2.225826-5 5.370318+2 1.110129-5 2.137962+3 2.777995-6 1.000000+5 5.931100-8 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.700000+1 0.0 0.0 0.0 4.461100-4 2.257400-4 1.000000+5 2.257400-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.461100-4 1.577900-8 1.000000+5 1.577900-8 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.700000+1 0.0 0.0 0.0 4.461100-4 2.203542-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 2.900000+1 0.0 0.0 0.0 3.680600-4 1.492222+5 3.683500-4 1.473844+5 3.689000-4 1.417818+5 3.694000-4 1.376574+5 3.699000-4 1.341572+5 3.707000-4 1.296240+5 3.715352-4 1.258748+5 3.725000-4 1.224180+5 3.736000-4 1.192612+5 3.748000-4 1.165212+5 3.762000-4 1.139442+5 3.785000-4 1.105960+5 3.815000-4 1.071494+5 3.981072-4 9.226210+4 4.120975-4 8.138857+4 4.430000-4 6.354420+4 4.550300-4 5.837509+4 4.850000-4 4.807300+4 5.150000-4 4.028480+4 5.400000-4 3.528280+4 5.623413-4 3.173453+4 5.850000-4 2.882960+4 6.100000-4 2.623320+4 6.382635-4 2.385813+4 6.700000-4 2.170800+4 7.000000-4 2.005960+4 7.328245-4 1.859484+4 7.673615-4 1.735234+4 8.035261-4 1.629509+4 8.511380-4 1.516815+4 9.120108-4 1.402264+4 9.885531-4 1.289972+4 1.096478-3 1.169482+4 1.513561-3 8.741828+3 1.737801-3 7.662631+3 1.972423-3 6.743781+3 2.238721-3 5.892216+3 2.540973-3 5.107704+3 2.900000-3 4.365140+3 3.300000-3 3.714380+3 3.758374-3 3.132608+3 4.265795-3 2.634433+3 4.841724-3 2.199210+3 5.495409-3 1.822321+3 6.165950-3 1.526126+3 7.000000-3 1.246008+3 7.852356-3 1.030233+3 8.912509-3 8.294884+2 1.011579-2 6.629669+2 1.148154-2 5.260428+2 1.303167-2 4.144800+2 1.479108-2 3.243329+2 1.678804-2 2.520222+2 1.927525-2 1.899185+2 2.213095-2 1.419893+2 2.540973-2 1.053419+2 2.917427-2 7.757234+1 3.349654-2 5.670928+1 3.890451-2 4.007361+1 4.518559-2 2.809659+1 5.308844-2 1.901541+1 6.237348-2 1.277138+1 7.413102-2 8.272284+0 9.015711-2 5.015535+0 1.122019-1 2.843215+0 2.511886-1 3.429576-1 3.054921-1 2.065081-1 3.630781-1 1.329197-1 4.216965-1 9.136173-2 4.841724-1 6.508232-2 5.495409-1 4.801316-2 6.165950-1 3.664700-2 6.998420-1 2.743957-2 7.852356-1 2.124263-2 8.810489-1 1.653192-2 9.660509-1 1.362615-2 1.071519+0 1.106689-2 1.216186+0 8.646792-3 1.364583+0 6.961738-3 1.566751+0 5.411474-3 1.778279+0 4.323823-3 2.018366+0 3.479273-3 2.317395+0 2.766029-3 2.660725+0 2.214709-3 3.054921+0 1.785639-3 3.548134+0 1.424978-3 4.120975+0 1.145484-3 4.841724+0 9.123433-4 5.754399+0 7.205914-4 6.839116+0 5.735079-4 8.222427+0 4.529558-4 1.000000+1 3.552400-4 1.230269+1 2.767676-4 1.513561+1 2.171141-4 1.949845+1 1.625736-4 2.660725+1 1.151342-4 3.890451+1 7.639536-5 5.688529+1 5.114541-5 9.120108+1 3.134114-5 1.603245+2 1.759985-5 3.198895+2 8.744901-6 1.273503+3 2.182692-6 1.000000+5 2.774000-8 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 2.900000+1 0.0 0.0 0.0 3.680600-4 2.054900-4 1.000000+5 2.054900-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.680600-4 3.188400-8 1.000000+5 3.188400-8 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 2.900000+1 0.0 0.0 0.0 3.680600-4 1.625381-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.000000+1 0.0 0.0 0.0 2.691700-4 3.232900+5 2.830000-4 2.970405+5 2.951209-4 2.780749+5 3.260000-4 2.416092+5 3.801894-4 2.013961+5 4.100000-4 1.856512+5 5.370318-4 1.406982+5 6.200000-4 1.207544+5 7.079458-4 1.041365+5 8.035261-4 8.973308+4 9.120108-4 7.676393+4 1.035142-3 6.517894+4 1.174898-3 5.494058+4 1.333521-3 4.598902+4 1.531087-3 3.759299+4 1.757924-3 3.049785+4 2.018366-3 2.456668+4 2.317395-3 1.965801+4 2.691535-3 1.532720+4 3.126079-3 1.186386+4 3.630781-3 9.116672+3 4.216965-3 6.953801+3 4.841724-3 5.379190+3 5.559043-3 4.133267+3 6.456542-3 3.081777+3 7.328245-3 2.387591+3 8.317638-3 1.838163+3 9.549926-3 1.372109+3 1.096478-2 1.016407+3 1.258925-2 7.471265+2 1.445440-2 5.449849+2 1.659587-2 3.945172+2 1.905461-2 2.834855+2 2.187762-2 2.021363+2 2.511886-2 1.430145+2 2.884032-2 1.004388+2 3.311311-2 7.003174+1 3.845918-2 4.701463+1 4.466836-2 3.131076+1 5.188000-2 2.069729+1 6.095369-2 1.315137+1 7.244360-2 8.022563+0 8.709636-2 4.698896+0 1.047129-1 2.733488+0 2.065380-1 3.609950-1 2.540973-1 1.958032-1 3.000000-1 1.207608-1 3.467369-1 7.977685-2 3.981072-1 5.410145-2 4.518559-1 3.817430-2 5.128614-1 2.714364-2 5.754399-1 2.005385-2 6.382635-1 1.537409-2 7.079458-1 1.186488-2 7.852356-1 9.216732-3 8.709636-1 7.175970-3 9.332543-1 6.110930-3 9.885531-1 5.376923-3 1.059254+0 4.648609-3 1.148154+0 3.955183-3 1.250000+0 3.362002-3 1.380384+0 2.802925-3 1.757924+0 1.822671-3 1.995262+0 1.464964-3 2.290868+0 1.164157-3 2.630268+0 9.315472-4 3.019952+0 7.505486-4 3.507519+0 5.986062-4 4.073803+0 4.809346-4 4.786301+0 3.828429-4 5.688529+0 3.022231-4 6.760830+0 2.404137-4 8.128305+0 1.897896-4 9.885531+0 1.487815-4 1.202264+1 1.174662-4 1.479108+1 9.207977-5 1.883649+1 6.981024-5 2.483133+1 5.129832-5 3.388442+1 3.659032-5 4.677351+1 2.594548-5 7.079458+1 1.681639-5 1.216186+2 9.632679-6 2.426610+2 4.774309-6 4.841724+2 2.379458-6 1.927525+3 5.952097-7 1.000000+5 1.145500-8 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.000000+1 0.0 0.0 0.0 2.691700-4 1.504700-4 1.000000+5 1.504700-4 1 100000 7 7 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.691700-4 4.421700-9 1.000000+5 4.421700-9 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.000000+1 0.0 0.0 0.0 2.691700-4 1.186956-4 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.200000+1 0.0 0.0 0.0 1.538900-4 5.019002+5 1.541000-4 5.104640+5 1.547000-4 5.309320+5 1.555000-4 5.632720+5 1.566751-4 6.194405+5 1.589000-4 7.441960+5 1.600000-4 8.098800+5 1.610000-4 8.693440+5 1.620000-4 9.268920+5 1.630000-4 9.808880+5 1.640000-4 1.030060+6 1.648000-4 1.065276+6 1.655000-4 1.092636+6 1.663000-4 1.119812+6 1.670000-4 1.139960+6 1.680000-4 1.162892+6 1.690000-4 1.179128+6 1.700000-4 1.189324+6 1.714000-4 1.194240+6 1.725000-4 1.191660+6 1.740000-4 1.180856+6 1.757924-4 1.159419+6 1.778279-4 1.127455+6 1.800000-4 1.088060+6 1.820000-4 1.049388+6 1.850000-4 9.900040+5 1.900000-4 8.930720+5 1.950000-4 8.022400+5 2.000000-4 7.185920+5 2.065380-4 6.202512+5 2.153300-4 5.081758+5 2.317395-4 3.555443+5 2.400000-4 3.011000+5 2.483133-4 2.574075+5 2.580000-4 2.173468+5 2.660725-4 1.908971+5 2.730000-4 1.722148+5 2.800000-4 1.564580+5 2.880000-4 1.416572+5 2.951209-4 1.308890+5 3.019952-4 1.222902+5 3.090295-4 1.150312+5 3.162278-4 1.089594+5 3.240000-4 1.036880+5 3.320000-4 9.941080+4 3.404700-4 9.591373+4 3.500000-4 9.298960+4 3.600000-4 9.081600+4 3.715352-4 8.916619+4 3.850000-4 8.807960+4 4.000000-4 8.760200+4 4.200000-4 8.771880+4 5.011872-4 9.039260+4 5.400000-4 9.100600+4 5.800000-4 9.091320+4 6.165950-4 9.020632+4 6.531306-4 8.899421+4 7.000000-4 8.689720+4 7.500000-4 8.418840+4 8.035261-4 8.092634+4 8.609938-4 7.722367+4 9.225714-4 7.319014+4 9.885531-4 6.889899+4 1.071519-3 6.372113+4 1.161449-3 5.846496+4 1.258925-3 5.324724+4 1.369000-3 4.795534+4 1.500000-3 4.243560+4 1.621810-3 3.798180+4 1.778279-3 3.309274+4 1.950000-3 2.860924+4 2.137962-3 2.457181+4 2.350000-3 2.087112+4 2.630268-3 1.702753+4 2.917427-3 1.400463+4 3.235937-3 1.143068+4 3.589219-3 9.259637+3 4.000000-3 7.370480+3 4.466836-3 5.793391+3 5.000000-3 4.490880+3 5.559043-3 3.506966+3 6.165950-3 2.733594+3 6.839116-3 2.115674+3 7.585776-3 1.625702+3 8.413951-3 1.240818+3 9.332543-3 9.408025+2 1.035142-2 7.086785+2 1.161449-2 5.134173+2 1.303167-2 3.691336+2 1.462177-2 2.634479+2 1.640590-2 1.866890+2 1.840772-2 1.313858+2 2.089296-2 8.858846+1 2.371374-2 5.925598+1 2.691535-2 3.934771+1 3.090295-2 2.498053+1 3.548134-2 1.574282+1 4.120975-2 9.473898+0 4.841724-2 5.438638+0 5.754399-2 2.977750+0 6.918310-2 1.554005+0 9.120108-2 5.803068-1 1.396368-1 1.265853-1 1.737801-1 5.831998-2 2.089296-1 3.058155-2 2.426610-1 1.821293-2 2.786121-1 1.136466-2 3.162278-1 7.426600-3 3.548134-1 5.077946-3 3.981072-1 3.496741-3 4.415705-1 2.516263-3 4.897788-1 1.823252-3 5.432503-1 1.330670-3 5.956621-1 1.012896-3 6.456542-1 8.037668-4 7.079458-1 6.215926-4 8.035261-1 4.411681-4 8.609938-1 3.650553-4 9.120108-1 3.137490-4 9.549926-1 2.795371-4 1.000000+0 2.506200-4 1.047129+0 2.262111-4 1.109175+0 2.004547-4 1.174898+0 1.788488-4 1.258925+0 1.571022-4 1.364583+0 1.359998-4 1.531087+0 1.113759-4 1.840772+0 8.040660-5 2.065380+0 6.604666-5 2.371374+0 5.257169-5 2.722701+0 4.214116-5 3.126079+0 3.401545-5 3.630781+0 2.717661-5 4.216965+0 2.187024-5 4.954502+0 1.743784-5 5.888437+0 1.378632-5 7.000000+0 1.098000-5 8.413951+0 8.682411-6 1.023293+1 6.815317-6 1.258925+1 5.314386-6 1.548817+1 4.171434-6 2.000000+1 3.117600-6 2.722701+1 2.215543-6 4.000000+1 1.463400-6 5.956621+1 9.617824-7 9.660509+1 5.828693-7 1.698244+2 3.275708-7 3.388442+2 1.628406-7 1.348963+3 4.065703-8 1.000000+5 5.47370-10 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.200000+1 0.0 0.0 0.0 1.538900-4 1.538900-4 1.000000+5 1.538900-4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.200000+1 0.0 0.0 0.0 1.538900-4 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.300000+1 0.0 0.0 0.0 1.392900-4 7.510631+5 1.396368-4 7.856307+5 1.402000-4 8.388540+5 1.413000-4 9.471780+5 1.420000-4 1.019172+6 1.428894-4 1.112129+6 1.439000-4 1.218294+6 1.447000-4 1.301148+6 1.454000-4 1.371762+6 1.462177-4 1.451016+6 1.472000-4 1.540194+6 1.482000-4 1.622520+6 1.490000-4 1.681284+6 1.500000-4 1.744878+6 1.510000-4 1.796946+6 1.520000-4 1.837290+6 1.531087-4 1.868612+6 1.540000-4 1.884138+6 1.550000-4 1.892148+6 1.560000-4 1.891242+6 1.570000-4 1.882608+6 1.585000-4 1.857684+6 1.600000-4 1.821672+6 1.620200-4 1.761278+6 1.643000-4 1.683630+6 1.670000-4 1.586604+6 1.705000-4 1.461456+6 1.760000-4 1.278024+6 1.820000-4 1.101234+6 1.883649-4 9.391418+5 1.972423-4 7.524288+5 2.120000-4 5.288352+5 2.190000-4 4.531530+5 2.267700-4 3.864678+5 2.330000-4 3.435642+5 2.400000-4 3.043128+5 2.454709-4 2.790376+5 2.520000-4 2.539584+5 2.580000-4 2.349708+5 2.635000-4 2.204148+5 2.691535-4 2.078537+5 2.754229-4 1.963302+5 2.818383-4 1.867392+5 2.884032-4 1.788488+5 2.951209-4 1.724515+5 3.019952-4 1.673617+5 3.100000-4 1.629498+5 3.180000-4 1.598490+5 3.280000-4 1.573866+5 3.390000-4 1.560060+5 3.507519-4 1.555788+5 3.672823-4 1.560850+5 4.415704-4 1.619030+5 4.731513-4 1.631851+5 5.069907-4 1.632257+5 5.400000-4 1.621002+5 5.754399-4 1.597957+5 6.125300-4 1.564533+5 6.531306-4 1.520441+5 7.000000-4 1.462998+5 7.500000-4 1.397454+5 8.035261-4 1.325732+5 8.609938-4 1.249163+5 9.332543-4 1.156338+5 1.011579-3 1.061852+5 1.096478-3 9.678805+4 1.190000-3 8.745300+4 1.303167-3 7.752365+4 1.412538-3 6.917992+4 1.548817-3 6.031871+4 1.717908-3 5.122145+4 1.862087-3 4.482357+4 2.041738-3 3.825410+4 2.290868-3 3.108425+4 2.570396-3 2.501131+4 2.900000-3 1.971474+4 3.235937-3 1.574139+4 3.630781-3 1.231845+4 4.040000-3 9.732960+3 4.518559-3 7.538249+3 5.011872-3 5.907167+3 5.559043-3 4.594825+3 6.165950-3 3.548027+3 6.839116-3 2.719945+3 7.585776-3 2.070656+3 8.413951-3 1.565264+3 9.440609-3 1.137877+3 1.047129-2 8.480500+2 1.174898-2 6.070467+2 1.318257-2 4.311458+2 1.479108-2 3.038964+2 1.659587-2 2.126352+2 1.862087-2 1.477180+2 2.104000-2 9.960752+1 2.371374-2 6.719934+1 2.691535-2 4.397257+1 3.054921-2 2.856900+1 3.507519-2 1.771386+1 4.027170-2 1.090387+1 4.677351-2 6.397636+0 5.495409-2 3.575518+0 6.237348-2 2.250998+0 7.585776-2 1.090112+0 1.202264-1 1.958614-1 1.364583-1 1.227358-1 1.640590-1 6.272674-2 1.949845-1 3.367882-2 2.290868-1 1.895955-2 2.600160-1 1.215391-2 2.917427-1 8.168082-3 3.235937-1 5.750784-3 3.589219-1 4.077078-3 3.981072-1 2.912177-3 4.365158-1 2.174518-3 4.786301-1 1.634479-3 5.248075-1 1.236789-3 5.754399-1 9.425920-4 6.165950-1 7.731468-4 6.683439-1 6.176358-4 7.328245-1 4.813905-4 8.709636-1 3.053271-4 9.225714-1 2.640430-4 9.660509-1 2.363545-4 1.011579+0 2.128134-4 1.071519+0 1.880604-4 1.135011+0 1.672720-4 1.216186+0 1.463805-4 1.318257+0 1.262290-4 1.840772+0 7.003986-5 2.065380+0 5.753648-5 2.371374+0 4.579722-5 2.722701+0 3.671181-5 3.126079+0 2.963362-5 3.630781+0 2.367533-5 4.216965+0 1.905213-5 4.954502+0 1.519063-5 5.888437+0 1.201030-5 7.000000+0 9.565400-6 8.511380+0 7.455144-6 1.035142+1 5.854556-6 1.273503+1 4.567094-6 1.566751+1 3.585911-6 2.041738+1 2.653752-6 2.754229+1 1.906053-6 4.027170+1 1.265742-6 6.000000+1 8.315400-7 9.772372+1 5.017948-7 1.717908+2 2.820480-7 3.427678+2 1.402209-7 1.364583+3 3.501268-8 1.000000+5 4.76850-10 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.300000+1 0.0 0.0 0.0 1.392900-4 1.392900-4 1.000000+5 1.392900-4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.300000+1 0.0 0.0 0.0 1.392900-4 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.500000+1 0.0 0.0 0.0 1.229000-5 1.938019+6 1.240000-5 1.868586+6 1.244515-5 1.847110+6 1.290000-5 1.685773+6 1.333521-5 1.559801+6 1.380384-5 1.450961+6 1.427100-5 1.363133+6 1.479108-5 1.285861+6 1.531087-5 1.225138+6 1.584893-5 1.176768+6 1.630000-5 1.146035+6 1.678804-5 1.121399+6 1.730000-5 1.103802+6 1.785000-5 1.093161+6 1.840772-5 1.090120+6 1.900000-5 1.094478+6 1.950000-5 1.103776+6 2.000000-5 1.117775+6 2.070000-5 1.144672+6 2.137962-5 1.178440+6 2.213095-5 1.223871+6 2.300000-5 1.286384+6 2.400000-5 1.370773+6 2.500000-5 1.467582+6 2.610000-5 1.587359+6 2.754229-5 1.764404+6 2.917427-5 1.990055+6 3.589219-5 3.132603+6 3.845918-5 3.620875+6 4.073803-5 4.058517+6 4.315191-5 4.518145+6 4.570882-5 4.992384+6 4.841724-5 5.473226+6 5.150000-5 5.993540+6 5.500000-5 6.551129+6 5.821032-5 7.028697+6 6.165950-5 7.506236+6 6.531306-5 7.967571+6 6.900000-5 8.372268+6 7.244360-5 8.685523+6 7.585776-5 8.926774+6 7.900000-5 9.079616+6 8.222426-5 9.164050+6 8.511380-5 9.179469+6 8.810489-5 9.138249+6 9.120108-5 9.036439+6 9.440609-5 8.872113+6 9.772372-5 8.646841+6 1.011579-4 8.362894+6 1.040000-4 8.093113+6 1.071519-4 7.761359+6 1.100000-4 7.436678+6 1.128000-4 7.099770+6 1.161449-4 6.680684+6 1.190000-4 6.312346+6 1.220000-4 5.918866+6 1.252500-4 5.491322+6 1.280000-4 5.133701+6 1.315000-4 4.689712+6 1.350000-4 4.262351+6 1.380384-4 3.907570+6 1.415000-4 3.524875+6 1.450000-4 3.163970+6 1.490000-4 2.785085+6 1.531087-4 2.432472+6 1.566751-4 2.155313+6 1.603245-4 1.898550+6 1.640590-4 1.662711+6 1.678804-4 1.447567+6 1.720000-4 1.242525+6 1.760000-4 1.067539+6 1.800000-4 9.141434+5 1.840772-4 7.779285+5 1.883649-4 6.541960+5 1.915000-4 5.749460+5 1.950000-4 4.964675+5 1.990000-4 4.183933+5 2.020000-4 3.671678+5 2.060000-4 3.075852+5 2.100000-4 2.568154+5 2.137962-4 2.157395+5 2.170000-4 1.858167+5 2.213095-4 1.516016+5 2.264644-4 1.185652+5 2.371374-4 7.181252+4 2.405000-4 6.186501+4 2.430000-4 5.567969+4 2.458000-4 4.985483+4 2.483133-4 4.552773+4 2.500000-4 4.306184+4 2.520000-4 4.055901+4 2.540973-4 3.838997+4 2.560000-4 3.679511+4 2.575000-4 3.577039+4 2.593900-4 3.475139+4 2.610000-4 3.410709+4 2.628000-4 3.361363+4 2.643000-4 3.337351+4 2.660725-4 3.327661+4 2.680000-4 3.338488+4 2.700000-4 3.371428+4 2.722701-4 3.433330+4 2.750000-4 3.538915+4 2.778000-4 3.678672+4 2.807000-4 3.852894+4 2.840000-4 4.082690+4 2.900000-4 4.570146+4 3.020000-4 5.724363+4 3.090295-4 6.463602+4 3.150000-4 7.107535+4 3.216200-4 7.823628+4 3.280000-4 8.504593+4 3.350000-4 9.234005+4 3.400000-4 9.741040+4 3.480000-4 1.052137+5 3.550000-4 1.116515+5 3.630781-4 1.185895+5 3.715352-4 1.253128+5 3.801894-4 1.316068+5 3.890451-4 1.374225+5 4.000000-4 1.437491+5 4.120975-4 1.498749+5 4.216965-4 1.540129+5 4.365158-4 1.592071+5 4.466836-4 1.619865+5 4.623810-4 1.651424+5 4.786301-4 1.671272+5 4.954502-4 1.680206+5 5.188000-4 1.680249+5 5.370318-4 1.670279+5 5.559043-4 1.652053+5 5.821032-4 1.616479+5 6.125300-4 1.565338+5 6.382635-4 1.517003+5 6.683439-4 1.456201+5 7.079458-4 1.372804+5 7.498942-4 1.284191+5 7.943282-4 1.192409+5 8.413951-4 1.099771+5 8.912509-4 1.007839+5 9.440609-4 9.180399+4 1.011579-3 8.146705+4 1.083927-3 7.176795+4 1.161449-3 6.277777+4 1.244515-3 5.454597+4 1.333521-3 4.709292+4 1.445440-3 3.937561+4 1.566751-3 3.268369+4 1.698244-3 2.694075+4 1.840772-3 2.205414+4 2.041738-3 1.690035+4 2.238721-3 1.324539+4 2.449500-3 1.036012+4 2.660725-3 8.200812+3 2.917427-3 6.275964+3 3.235937-3 4.611186+3 3.589219-3 3.361838+3 3.935501-3 2.521360+3 4.315191-3 1.878765+3 4.731513-3 1.390899+3 5.188000-3 1.023065+3 5.623413-3 7.774905+2 6.237348-3 5.420119+2 6.918310-3 3.750065+2 7.673615-3 2.576658+2 8.609938-3 1.686343+2 9.660509-3 1.095455+2 1.071519-2 7.379767+1 1.202264-2 4.723581+1 1.348963-2 3.001693+1 1.531087-2 1.808588+1 1.737801-2 1.081256+1 1.972423-2 6.416552+0 2.238721-2 3.780755+0 2.570396-2 2.107308+0 3.000000-2 1.087207+0 3.548134-2 5.256717-1 4.315191-2 2.233657-1 6.382635-2 3.979862-2 1.023293-1 4.921919-3 1.202264-1 2.407275-3 1.333521-1 1.528527-3 1.496236-1 9.315991-4 1.698244-1 5.445446-4 1.949845-1 3.056031-4 2.290868-1 1.565635-4 2.570396-1 9.774270-5 2.884032-1 6.145849-5 3.198895-1 4.076914-5 3.548134-1 2.724232-5 3.935501-1 1.834394-5 4.315191-1 1.299746-5 4.731513-1 9.271838-6 5.248075-1 6.389033-6 5.688529-1 4.814452-6 6.025596-1 3.954085-6 6.456542-1 3.155883-6 6.998420-1 2.445752-6 8.035261-1 1.600225-6 8.511380-1 1.327911-6 8.912509-1 1.149592-6 9.332543-1 1.001807-6 9.660509-1 9.085677-7 1.000000+0 8.286700-7 1.035142+0 7.605723-7 1.071519+0 7.020553-7 1.109175+0 6.513367-7 1.161449+0 5.934000-7 1.216186+0 5.441169-7 1.303167+0 4.815337-7 1.412538+0 4.209493-7 1.500000+0 3.819800-7 1.905461+0 2.504904-7 2.113489+0 2.101296-7 2.426610+0 1.674583-7 2.786121+0 1.343851-7 3.198895+0 1.085981-7 3.715352+0 8.686523-8 4.365158+0 6.884322-8 5.128614+0 5.497501-8 6.095369+0 4.353369-8 7.328245+0 3.421977-8 8.912509+0 2.671372-8 1.100000+1 2.064300-8 1.400000+1 1.550500-8 1.778279+1 1.177411-8 2.238721+1 9.089853-9 2.884032+1 6.881244-9 4.168694+1 4.630666-9 6.237348+1 3.030896-9 1.035142+2 1.795172-9 1.840772+2 9.98083-10 3.672823+2 4.96468-10 1.462177+3 1.24001-10 1.000000+5 1.80990-12 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.500000+1 0.0 0.0 0.0 1.229000-5 1.229000-5 1.000000+5 1.229000-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.500000+1 0.0 0.0 0.0 1.229000-5 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 3.600000+1 0.0 0.0 0.0 1.018000-5 3.457292+6 1.022000-5 3.363962+6 1.023293-5 3.343892+6 1.071519-5 2.931088+6 1.097000-5 2.754342+6 1.135011-5 2.535567+6 1.161449-5 2.409164+6 1.202264-5 2.245787+6 1.230269-5 2.152511+6 1.273503-5 2.033613+6 1.318257-5 1.936618+6 1.364583-5 1.858767+6 1.412538-5 1.798111+6 1.462177-5 1.753162+6 1.513561-5 1.722855+6 1.566751-5 1.706219+6 1.621810-5 1.702560+6 1.678804-5 1.711395+6 1.737801-5 1.732393+6 1.800000-5 1.766118+6 1.870000-5 1.816758+6 1.927525-5 1.867527+6 2.000000-5 1.942134+6 2.089296-5 2.049234+6 2.190000-5 2.188436+6 2.300000-5 2.360804+6 2.426610-5 2.583241+6 2.580000-5 2.884161+6 2.818383-5 3.409813+6 3.311311-5 4.656944+6 3.570000-5 5.353465+6 3.801894-5 5.975477+6 4.027170-5 6.567716+6 4.265795-5 7.171771+6 4.518559-5 7.776676+6 4.800000-5 8.409802+6 5.128614-5 9.097440+6 5.500000-5 9.805779+6 5.900000-5 1.049780+7 6.237348-5 1.101509+7 6.606934-5 1.150003+7 6.918310-5 1.183721+7 7.244360-5 1.210444+7 7.500000-5 1.224617+7 7.800000-5 1.233887+7 8.128305-5 1.234910+7 8.413951-5 1.227708+7 8.709636-5 1.212887+7 9.015711-5 1.190875+7 9.332543-5 1.161551+7 9.660509-5 1.124430+7 1.000000-4 1.080075+7 1.035142-4 1.029419+7 1.060000-4 9.909939+6 1.090000-4 9.419928+6 1.122018-4 8.873848+6 1.150000-4 8.386419+6 1.182100-4 7.822481+6 1.213000-4 7.278306+6 1.244515-4 6.727766+6 1.280000-4 6.123789+6 1.315000-4 5.553611+6 1.350000-4 5.012480+6 1.380384-4 4.567945+6 1.415000-4 4.093246+6 1.450000-4 3.650563+6 1.490000-4 3.190593+6 1.520000-4 2.875974+6 1.560000-4 2.494861+6 1.600000-4 2.156166+6 1.640590-4 1.853274+6 1.678804-4 1.601924+6 1.717908-4 1.375009+6 1.757924-4 1.171700+6 1.800000-4 9.866327+5 1.840772-4 8.322442+5 1.880000-4 7.039197+5 1.915000-4 6.042313+5 1.950000-4 5.170880+5 1.990000-4 4.312819+5 2.020000-4 3.755217+5 2.060000-4 3.112161+5 2.100000-4 2.569727+5 2.137962-4 2.136256+5 2.187762-4 1.671767+5 2.300000-4 9.671996+4 2.340000-4 8.050077+4 2.365800-4 7.201692+4 2.390000-4 6.531988+4 2.407000-4 6.128493+4 2.430000-4 5.663511+4 2.450000-4 5.329061+4 2.465000-4 5.117669+4 2.485000-4 4.884622+4 2.501000-4 4.735648+4 2.520000-4 4.598830+4 2.535000-4 4.519514+4 2.550000-4 4.463840+4 2.565700-4 4.429313+4 2.580000-4 4.417706+4 2.600160-4 4.431246+4 2.620000-4 4.476170+4 2.643000-4 4.564030+4 2.660725-4 4.655696+4 2.690000-4 4.848094+4 2.722701-4 5.116158+4 2.754229-4 5.419864+4 2.800000-4 5.925358+4 2.930000-4 7.642145+4 3.000000-4 8.666396+4 3.054921-4 9.488101+4 3.090295-4 1.001827+5 3.155800-4 1.099433+5 3.198895-4 1.162828+5 3.235937-4 1.216551+5 3.273407-4 1.270004+5 3.311311-4 1.323013+5 3.388442-4 1.427020+5 3.467369-4 1.527282+5 3.548134-4 1.622644+5 3.630781-4 1.712116+5 3.715352-4 1.794901+5 3.801894-4 1.870408+5 3.890451-4 1.938261+5 4.027170-4 2.027553+5 4.120975-4 2.083282+5 4.216965-4 2.131107+5 4.365158-4 2.187920+5 4.518559-4 2.227164+5 4.677351-4 2.249751+5 4.841724-4 2.257071+5 5.128614-4 2.244665+5 5.308844-4 2.225240+5 5.495409-4 2.195423+5 5.754399-4 2.141546+5 6.025596-4 2.074423+5 6.309573-4 1.998220+5 6.606934-4 1.913412+5 7.000000-4 1.798072+5 7.413102-4 1.677879+5 7.852356-4 1.553947+5 8.317638-4 1.429487+5 8.810489-4 1.306793+5 9.440609-4 1.164585+5 1.011579-3 1.029493+5 1.083927-3 9.034133+4 1.161449-3 7.876406+4 1.244515-3 6.822604+4 1.333521-3 5.873298+4 1.445440-3 4.894391+4 1.566751-3 4.048019+4 1.698244-3 3.324940+4 1.862087-3 2.635357+4 2.018366-3 2.136332+4 2.213095-3 1.668101+4 2.426610-3 1.292506+4 2.660725-3 9.937206+3 2.951209-3 7.334725+3 3.273407-3 5.383411+3 3.589219-3 4.062051+3 3.758374-3 3.516613+3 4.073803-3 2.708789+3 4.466836-3 1.993974+3 4.897788-3 1.457189+3 5.821032-3 7.996479+2 6.531306-3 5.323268+2 7.249000-3 3.656595+2 8.035261-3 2.503933+2 8.912509-3 1.698913+2 9.885531-3 1.145052+2 1.109175-2 7.330137+1 1.244515-2 4.656662+1 1.396368-2 2.936775+1 1.584893-2 1.754630+1 1.798871-2 1.040069+1 2.041738-2 6.118710+0 2.317395-2 3.573130+0 2.660725-2 1.972159+0 3.090295-2 1.027932+0 3.630781-2 5.056231-1 4.365158-2 2.229904-1 6.095369-2 4.998231-2 1.000000-1 5.378500-3 1.174898-1 2.595455-3 1.318257-1 1.551511-3 1.479108-1 9.369809-4 1.659587-1 5.700623-4 1.862087-1 3.492535-4 2.213095-1 1.689838-4 2.454709-1 1.100201-4 2.722701-1 7.214323-5 3.000000-1 4.895900-5 3.273407-1 3.479630-5 3.589219-1 2.444064-5 3.890451-1 1.805988-5 4.216965-1 1.343162-5 4.570882-1 1.005732-5 4.954502-1 7.584084-6 5.370318-1 5.759546-6 5.754399-1 4.578464-6 6.095369-1 3.801992-6 6.531306-1 3.066277-6 7.079458-1 2.404984-6 7.673615-1 1.900366-6 8.035261-1 1.664634-6 8.511380-1 1.403702-6 9.015711-1 1.191588-6 9.440609-1 1.052031-6 9.885531-1 9.355082-7 1.035142+0 8.388377-7 1.083927+0 7.578520-7 1.135011+0 6.891161-7 1.202264+0 6.165052-7 1.303167+0 5.326977-7 1.428894+0 4.547783-7 1.513561+0 4.126709-7 1.862087+0 2.861050-7 2.065380+0 2.397155-7 2.371374+0 1.908173-7 2.722701+0 1.529578-7 3.126079+0 1.234614-7 3.630781+0 9.863659-8 4.216965+0 7.937487-8 4.954502+0 6.328719-8 5.888437+0 5.003763-8 7.000000+0 3.985100-8 8.413951+0 3.151195-8 1.023293+1 2.473568-8 1.258925+1 1.928864-8 1.531087+1 1.534309-8 1.972423+1 1.149314-8 2.691535+1 8.142665-9 3.935501+1 5.404282-9 5.754399+1 3.619069-9 9.332543+1 2.192015-9 1.640590+2 1.231308-9 3.273407+2 6.11920-10 1.303167+3 1.52757-10 1.000000+5 1.98660-12 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 3.600000+1 0.0 0.0 0.0 1.018000-5 1.018000-5 1.000000+5 1.018000-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 3.600000+1 0.0 0.0 0.0 1.018000-5 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.100000+1 0.0 0.0 0.0 6.485000-5 4.808480+5 6.531306-5 4.773839+5 6.620000-5 4.635480+5 6.760830-5 4.395497+5 6.918310-5 4.117526+5 7.150000-5 3.719480+5 8.150000-5 2.419600+5 8.511380-5 2.109536+5 8.912509-5 1.835387+5 9.332543-5 1.607673+5 9.800000-5 1.406396+5 1.035142-4 1.219595+5 1.100000-4 1.049076+5 1.174898-4 8.980329+4 1.244515-4 7.892191+4 1.318257-4 6.984332+4 1.396368-4 6.227974+4 1.480000-4 5.590360+4 1.569700-4 5.049201+4 1.678804-4 4.530042+4 1.819701-4 4.009938+4 2.000000-4 3.502580+4 2.213095-4 3.053700+4 2.483133-4 2.635861+4 3.311311-4 1.851614+4 4.265795-4 1.360962+4 5.432503-4 1.007341+4 6.760830-4 7.601164+3 8.035261-4 6.042497+3 9.549926-4 4.772579+3 1.150000-3 3.673480+3 1.380384-3 2.818643+3 1.659587-3 2.141686+3 2.018366-3 1.587593+3 2.483133-3 1.147774+3 3.126079-3 7.941624+2 3.935501-3 5.455725+2 4.954502-3 3.721370+2 6.165950-3 2.568601+2 7.585776-3 1.794352+2 9.225714-3 1.269239+2 1.096478-2 9.288590+1 1.333521-2 6.460654+1 1.566751-2 4.761556+1 1.927525-2 3.187944+1 2.398833-2 2.070570+1 3.198895-2 1.163795+1 3.801894-2 8.178360+0 4.265795-2 6.428106+0 5.011872-2 4.553864+0 6.000000-2 3.074551+0 7.244360-2 2.022974+0 8.912509-2 1.266529+0 1.059254-1 8.520578-1 1.380384-1 4.595903-1 2.691535-1 9.557348-2 3.349654-1 5.751390-2 4.027170-1 3.776552-2 4.786301-1 2.567429-2 5.623413-1 1.804124-2 6.531306-1 1.309664-2 7.585776-1 9.576700-3 8.912509-1 6.888046-3 1.011579+0 5.354200-3 1.230269+0 3.658232-3 1.396368+0 2.880521-3 1.566751+0 2.332937-3 1.778279+0 1.864086-3 2.018366+0 1.500257-3 2.317395+0 1.192678-3 2.660725+0 9.549488-4 3.054921+0 7.699418-4 3.548134+0 6.144310-4 4.120975+0 4.939165-4 4.841724+0 3.933866-4 5.754399+0 3.107126-4 6.839116+0 2.472858-4 8.222427+0 1.953082-4 1.000000+1 1.531700-4 1.230269+1 1.193378-4 1.500000+1 9.459800-5 1.905461+1 7.194813-5 2.540973+1 5.221820-5 3.589219+1 3.591159-5 5.011872+1 2.518804-5 7.762471+1 1.596081-5 1.333521+2 9.154332-6 2.660725+2 4.541416-6 5.308844+2 2.264778-6 2.113489+3 5.667341-7 1.000000+5 1.196100-8 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.100000+1 0.0 0.0 0.0 6.485000-5 6.485000-5 1.000000+5 6.485000-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.100000+1 0.0 0.0 0.0 6.485000-5 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.300000+1 0.0 0.0 0.0 4.127000-5 1.186738+7 4.140000-5 1.156958+7 4.175000-5 1.087312+7 4.220000-5 1.011696+7 4.265795-5 9.461084+6 4.330000-5 8.688360+6 4.400000-5 7.999320+6 4.470000-5 7.419060+6 4.550000-5 6.861120+6 4.650000-5 6.279020+6 4.786301-5 5.629932+6 4.954502-5 4.987120+6 5.150000-5 4.389080+6 5.432503-5 3.709777+6 6.606934-5 2.031865+6 8.128305-5 1.068794+6 9.120108-5 7.527697+5 1.096478-4 4.347580+5 1.584893-4 1.462917+5 1.900000-4 8.620940+4 2.187762-4 5.751943+4 2.454709-4 4.158784+4 2.730000-4 3.103520+4 2.985383-4 2.442465+4 3.235937-4 1.981997+4 3.507519-4 1.620168+4 3.780000-4 1.353500+4 4.027170-4 1.169220+4 4.315191-4 1.004071+4 4.623810-4 8.690695+3 4.954502-4 7.582687+3 5.308844-4 6.666446+3 5.650000-4 5.976120+3 6.025596-4 5.372988+3 6.456542-4 4.826230+3 7.000000-4 4.290000+3 7.585776-4 3.845397+3 8.317638-4 3.417984+3 9.225714-4 3.015709+3 1.059254-3 2.573018+3 1.566751-3 1.662510+3 1.883649-3 1.344003+3 2.187762-3 1.123025+3 2.540973-3 9.317441+2 2.951209-3 7.674635+2 3.427678-3 6.272678+2 3.935501-3 5.170405+2 4.518559-3 4.232302+2 5.188000-3 3.439089+2 5.821032-3 2.870899+2 6.683439-3 2.294101+2 7.585776-3 1.854723+2 8.709636-3 1.459333+2 1.000000-2 1.139091+2 1.148154-2 8.806119+1 1.333521-2 6.612751+1 1.737801-2 3.945207+1 1.972423-2 3.061904+1 2.137962-2 2.593898+1 2.398833-2 2.028192+1 2.722701-2 1.535716+1 3.198895-2 1.068194+1 3.715352-2 7.566723+0 4.315191-2 5.318312+0 5.011872-2 3.710557+0 5.888437-2 2.499270+0 6.998420-2 1.623153+0 8.413951-2 1.016304+0 1.035142-1 5.954322-1 1.364583-1 2.889619-1 2.371374-1 6.753627-2 2.917427-1 3.940324-2 3.467369-1 2.531393-2 4.073803-1 1.687165-2 4.677351-1 1.199824-2 5.370318-1 8.596048-3 6.095369-1 6.379367-3 6.918310-1 4.772753-3 7.762471-1 3.692192-3 8.709636-1 2.871840-3 9.549926-1 2.364988-3 1.047129+0 1.963695-3 1.188502+0 1.532118-3 1.318257+0 1.258404-3 1.500000+0 9.923800-4 1.717908+0 7.786130-4 1.949845+0 6.253022-4 2.238721+0 4.962215-4 2.570396+0 3.966148-4 2.951209+0 3.192097-4 3.427678+0 2.542837-4 4.000000+0 2.026800-4 4.677351+0 1.622739-4 5.559043+0 1.279664-4 6.606934+0 1.016962-4 7.943282+0 8.020930-5 9.549926+0 6.371440-5 1.174898+1 4.955652-5 1.462177+1 3.830262-5 1.862087+1 2.903130-5 2.400000+1 2.186500-5 3.090295+1 1.658885-5 4.365158+1 1.145685-5 6.606934+1 7.416122-6 1.109175+2 4.344833-6 2.018366+2 2.361999-6 4.027170+2 1.175659-6 1.603245+3 2.937829-7 1.000000+5 4.702100-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.300000+1 0.0 0.0 0.0 4.127000-5 4.127000-5 1.000000+5 4.127000-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.300000+1 0.0 0.0 0.0 4.127000-5 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 4.400000+1 0.0 0.0 0.0 2.577000-5 3.549262+7 2.587000-5 3.408116+7 2.615000-5 3.145188+7 2.645000-5 2.902236+7 2.691535-5 2.589524+7 2.740000-5 2.324860+7 2.786121-5 2.114772+7 2.830000-5 1.944828+7 2.888200-5 1.753654+7 2.951209-5 1.580479+7 3.019952-5 1.422258+7 3.120000-5 1.234620+7 3.235937-5 1.062642+7 3.350000-5 9.273720+6 3.507519-5 7.796388+6 3.715352-5 6.323846+6 4.000000-5 4.876080+6 4.466836-5 3.337164+6 5.069907-5 2.176005+6 5.623413-5 1.543002+6 6.095369-5 1.187662+6 6.606934-5 9.205911+5 7.079458-5 7.450432+5 7.585776-5 6.072325+5 8.035261-5 5.151946+5 8.511380-5 4.396805+5 9.015711-5 3.776071+5 9.549926-5 3.264200+5 1.011579-4 2.840564+5 1.071519-4 2.488615+5 1.135011-4 2.194775+5 1.202264-4 1.947726+5 1.288250-4 1.700404+5 1.380384-4 1.495801+5 1.480000-4 1.323708+5 1.584893-4 1.181520+5 1.698244-4 1.060231+5 1.850000-4 9.343600+4 2.041738-4 8.147552+4 2.300000-4 6.963040+4 2.660725-4 5.793131+4 4.518559-4 3.050414+4 5.500000-4 2.388724+4 6.606934-4 1.887471+4 7.762471-4 1.523507+4 9.120108-4 1.220455+4 1.071519-3 9.702773+3 1.258925-3 7.652386+3 1.462177-3 6.091123+3 1.717908-3 4.726851+3 2.018366-3 3.639838+3 2.371374-3 2.782035+3 2.786121-3 2.110463+3 3.311311-3 1.557179+3 3.890451-3 1.163447+3 4.518559-3 8.811840+2 5.248075-3 6.625853+2 6.095369-3 4.944697+2 7.000000-3 3.745950+2 8.035261-3 2.820477+2 9.332543-3 2.055527+2 1.109175-2 1.414422+2 1.273503-2 1.041534+2 1.462177-2 7.612338+1 1.640590-2 5.819869+1 1.862087-2 4.302005+1 2.137962-2 3.070560+1 2.454709-2 2.175187+1 2.818383-2 1.529532+1 3.235937-2 1.067779+1 3.758374-2 7.177491+0 4.315191-2 4.939066+0 5.011872-2 3.270480+0 5.888437-2 2.081733+0 6.918310-2 1.314673+0 8.317638-2 7.713974-1 1.023293-1 4.200273-1 1.380384-1 1.725340-1 2.089296-1 5.020154-2 2.570396-1 2.724622-2 3.019952-1 1.705272-2 3.507519-1 1.111526-2 4.027170-1 7.543503-3 4.570882-1 5.326612-3 5.128614-1 3.908409-3 5.754399-1 2.888092-3 6.382635-1 2.214425-3 7.079458-1 1.709138-3 7.852356-1 1.327826-3 8.709636-1 1.034095-3 9.332543-1 8.807680-4 9.885531-1 7.750538-4 1.059254+0 6.701124-4 1.148154+0 5.701771-4 1.250000+0 4.846700-4 1.380384+0 4.040513-4 1.757924+0 2.627393-4 1.995262+0 2.111755-4 2.290868+0 1.678075-4 2.630268+0 1.342791-4 3.019952+0 1.081912-4 3.507519+0 8.628724-5 4.073803+0 6.932440-5 4.786301+0 5.518521-5 5.688529+0 4.356396-5 6.760830+0 3.465516-5 8.128305+0 2.735837-5 9.885531+0 2.144602-5 1.216186+1 1.670177-5 1.500000+1 1.306000-5 1.905461+1 9.932613-6 2.540973+1 7.208995-6 3.589219+1 4.957734-6 5.011872+1 3.477308-6 7.762471+1 2.203416-6 1.348963+2 1.249036-6 2.691535+2 6.196917-7 5.370318+2 3.090608-7 2.137962+3 7.734279-8 1.000000+5 1.651300-9 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 4.400000+1 0.0 0.0 0.0 2.577000-5 2.577000-5 1.000000+5 2.577000-5 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 4.400000+1 0.0 0.0 0.0 2.577000-5 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 73 0 91 0.0 5.800000+1 0.0 0.0 0.0 5.850000-6 1.106644+7 5.888437-6 1.091387+7 5.956621-6 1.057701+7 6.606934-6 7.698918+6 7.500000-6 5.254620+6 8.511380-6 3.615465+6 9.700000-6 2.474560+6 1.122018-5 1.635640+6 1.288250-5 1.112211+6 1.513561-5 7.147740+5 1.800000-5 4.482740+5 2.089296-5 3.020431+5 2.426610-5 2.045997+5 2.800000-5 1.420738+5 3.162278-5 1.049122+5 3.548134-5 7.932329+4 3.981072-5 6.045306+4 4.415704-5 4.765872+4 4.897788-5 3.784528+4 5.495409-5 2.953385+4 6.095369-5 2.379186+4 6.760830-5 1.931620+4 7.500000-5 1.579288+4 8.222426-5 1.330270+4 9.120108-5 1.104975+4 1.011579-4 9.243357+3 1.150000-4 7.482840+3 1.273503-4 6.361020+3 1.450000-4 5.213600+3 1.603245-4 4.499635+3 1.798871-4 3.826898+3 4.027170-4 1.281555+3 5.128614-4 9.321483+2 6.309573-4 7.024244+2 8.609938-4 4.569979+2 1.000000-3 3.689560+2 1.258925-3 2.635703+2 1.548817-3 1.932895+2 1.905461-3 1.405961+2 2.371374-3 9.970061+1 2.934720-3 7.081740+1 5.370318-3 2.597080+1 6.237348-3 2.016347+1 7.673615-3 1.407035+1 9.440609-3 9.744090+0 1.148154-2 6.834606+0 1.396368-2 4.757292+0 1.698244-2 3.285514+0 2.041738-2 2.302017+0 2.454709-2 1.601183+0 2.917427-2 1.131386+0 3.507519-2 7.746589-1 4.216965-2 5.263391-1 5.069907-2 3.548756-1 6.095369-2 2.373539-1 7.413102-2 1.536192-1 8.810489-2 1.039285-1 1.096478-1 6.284662-2 1.445440-1 3.300716-2 2.570396-1 8.506808-3 3.198895-1 5.114291-3 3.890451-1 3.268532-3 4.623810-1 2.218059-3 5.308844-1 1.636849-3 6.165950-1 1.186174-3 7.161434-1 8.658786-4 8.317638-1 6.369404-4 9.549926-1 4.832075-4 1.216186+0 3.017827-4 1.380384+0 2.373414-4 1.548817+0 1.919870-4 1.757924+0 1.533061-4 2.000000+0 1.228100-4 2.290868+0 9.795038-5 2.630268+0 7.838351-5 3.019952+0 6.316765-5 3.507519+0 5.037945-5 4.073803+0 4.047599-5 4.786301+0 3.222101-5 5.688529+0 2.543541-5 6.760830+0 2.023400-5 8.128305+0 1.597303-5 9.885531+0 1.252115-5 1.216186+1 9.751634-6 1.500000+1 7.625000-6 1.905461+1 5.799374-6 2.540973+1 4.209032-6 3.589219+1 2.894669-6 5.011872+1 2.030225-6 7.762471+1 1.286476-6 1.348963+2 7.292761-7 2.691535+2 3.618131-7 5.370318+2 1.804457-7 2.137962+3 4.515740-8 1.000000+5 9.64110-10 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 73 11 91 0.0 5.800000+1 0.0 0.0 0.0 5.850000-6 5.850000-6 1.000000+5 5.850000-6 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 73 10 91 0.0 5.800000+1 0.0 0.0 0.0 5.850000-6 0.0 1.000000+5 1.000000+5 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 74 0 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.025120+0 1.000000-6 1.025500+0 1.409740-6 1.025800+0 1.802210-6 1.026100+0 2.261090-6 1.026600+0 3.187610-6 1.027100+0 4.336810-6 1.027500+0 5.431810-6 1.028100+0 7.395310-6 1.028750+0 1.000000-5 1.029500+0 1.368530-5 1.030100+0 1.721090-5 1.031000+0 2.355030-5 1.032000+0 3.222280-5 1.033200+0 4.513870-5 1.034000+0 5.541190-5 1.035300+0 7.521380-5 1.036640+0 1.000000-4 1.038200+0 1.349530-4 1.039700+0 1.753310-4 1.041500+0 2.332770-4 1.043800+0 3.237960-4 1.046400+0 4.505010-4 1.048300+0 5.608860-4 1.051200+0 7.608300-4 1.054080+0 1.000000-3 1.057700+0 1.363060-3 1.061100+0 1.772990-3 1.065100+0 2.347230-3 1.070400+0 3.274610-3 1.076200+0 4.525470-3 1.080600+0 5.651570-3 1.087100+0 7.614580-3 1.093710+0 1.000000-2 1.102600+0 1.386550-2 1.110700+0 1.808430-2 1.120600+0 2.419320-2 1.133300+0 3.364070-2 1.147500+0 4.645260-2 1.158200+0 5.773070-2 1.174100+0 7.714990-2 1.190110+0 1.000000-1 1.205100+0 1.244300-1 1.227500+0 1.664810-1 1.250000+0 2.153000-1 1.280300+0 2.910840-1 1.307700+0 3.690110-1 1.343000+0 4.814830-1 1.382200+0 6.203510-1 1.411700+0 7.330160-1 1.455800+0 9.115620-1 1.500000+0 1.099000+0 1.562500+0 1.370630+0 1.641100+0 1.712790+0 1.706900+0 1.993470+0 1.811600+0 2.423760+0 1.952900+0 2.976300+0 2.000000+0 3.157000+0 2.044000+0 3.325000+0 2.163500+0 3.767450+0 2.372600+0 4.490230+0 2.686300+0 5.465710+0 3.000000+0 6.339000+0 3.500000+0 7.583390+0 4.000000+0 8.707000+0 5.000000+0 1.068000+1 6.000000+0 1.231000+1 7.000000+0 1.382000+1 8.000000+0 1.519000+1 9.000000+0 1.645000+1 1.000000+1 1.761000+1 1.100000+1 1.870000+1 1.200000+1 1.971000+1 1.300000+1 2.065000+1 1.400000+1 2.154000+1 1.500000+1 2.237000+1 1.600000+1 2.315000+1 1.800000+1 2.457000+1 2.000000+1 2.583000+1 2.200000+1 2.699000+1 2.400000+1 2.804000+1 2.600000+1 2.901000+1 2.800000+1 2.990000+1 3.000000+1 3.071000+1 4.000000+1 3.404000+1 5.000000+1 3.652000+1 6.000000+1 3.845000+1 8.000000+1 4.128000+1 1.000000+2 4.328000+1 1.500000+2 4.640000+1 2.000000+2 4.826000+1 3.000000+2 5.043000+1 4.000000+2 5.167000+1 5.000000+2 5.248000+1 6.000000+2 5.306000+1 8.000000+2 5.383000+1 1.000000+3 5.433000+1 1.500000+3 5.504000+1 2.000000+3 5.544000+1 3.000000+3 5.584000+1 4.000000+3 5.610000+1 5.000000+3 5.625000+1 6.000000+3 5.635000+1 8.000000+3 5.648000+1 1.000000+4 5.656000+1 1.500000+4 5.667000+1 2.000000+4 5.674000+1 3.000000+4 5.679000+1 4.000000+4 5.684000+1 5.000000+4 5.686000+1 6.000000+4 5.687000+1 8.000000+4 5.688000+1 1.000000+5 5.690000+1 1 100000 7 8 2.570000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 74 10 0 0.0 0.0 0.0 0.0 0.0 1.022000+0 0.0 1.000000+5 4.999949+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 75 0 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 0.0 2.085810+0 1.000000-6 2.090400+0 1.357750-6 2.094700+0 1.760530-6 2.099900+0 2.342140-6 2.106600+0 3.258110-6 2.114000+0 4.508010-6 2.119500+0 5.612440-6 2.127900+0 7.611530-6 2.136250+0 1.000000-5 2.147000+0 1.371070-5 2.156900+0 1.780860-5 2.169000+0 2.376660-5 2.184500+0 3.303640-5 2.201800+0 4.570690-5 2.214800+0 5.694720-5 2.234200+0 7.660400-5 2.253680+0 1.000000-4 2.281500+0 1.400670-4 2.307000+0 1.839780-4 2.338200+0 2.473730-4 2.377400+0 3.425810-4 2.410200+0 4.357050-4 2.446800+0 5.542420-4 2.485900+0 6.978210-4 2.532900+0 8.930670-4 2.556430+0 1.000000-3 2.611900+0 1.275130-3 2.660400+0 1.541590-3 2.745300+0 2.063370-3 2.809000+0 2.498890-3 2.904500+0 3.219180-3 3.000000+0 4.018000-3 3.125000+0 5.180270-3 3.234400+0 6.302020-3 3.425800+0 8.483040-3 3.569300+0 1.028310-2 3.784700+0 1.321240-2 4.000000+0 1.636000-2 4.250000+0 2.020730-2 4.625000+0 2.625160-2 5.000000+0 3.253000-2 5.500000+0 4.113470-2 6.000000+0 4.984000-2 6.750000+0 6.277090-2 7.000000+0 6.702000-2 8.000000+0 8.362000-2 9.000000+0 9.945000-2 1.000000+1 1.144000-1 1.100000+1 1.286000-1 1.200000+1 1.419000-1 1.300000+1 1.544000-1 1.400000+1 1.662000-1 1.500000+1 1.774000-1 1.600000+1 1.880000-1 1.800000+1 2.076000-1 2.000000+1 2.254000-1 2.200000+1 2.415000-1 2.400000+1 2.563000-1 2.600000+1 2.699000-1 2.800000+1 2.825000-1 3.000000+1 2.942000-1 4.000000+1 3.420000-1 5.000000+1 3.779000-1 6.000000+1 4.060000-1 8.000000+1 4.479000-1 1.000000+2 4.780000-1 1.500000+2 5.271000-1 2.000000+2 5.574000-1 3.000000+2 5.940000-1 4.000000+2 6.157000-1 5.000000+2 6.304000-1 6.000000+2 6.412000-1 8.000000+2 6.559000-1 1.000000+3 6.657000-1 1.500000+3 6.802000-1 2.000000+3 6.884000-1 3.000000+3 6.973000-1 4.000000+3 7.027000-1 5.000000+3 7.058000-1 6.000000+3 7.081000-1 8.000000+3 7.111000-1 1.000000+4 7.130000-1 1.500000+4 7.156000-1 2.000000+4 7.171000-1 3.000000+4 7.185000-1 4.000000+4 7.194000-1 5.000000+4 7.200000-1 6.000000+4 7.203000-1 8.000000+4 7.207000-1 1.000000+5 7.210000-1 1 100000 7 8 2.570000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 100000 7 9 2.570000+2 9707042 2 0.0 0.0 0.0 75 10 0 0.0 0.0 0.0 0.0 0.0 2.044000+0 5.110000-1 1.000000+5 4.999949+4 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 93941 0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+2 1.000000+5 1.000000+2 5.000000+5 9.996100+1 1.000000+6 9.990300+1 1.375000+6 9.984530+1 1.500000+6 9.981900+1 1.875000+6 9.972010+1 2.000000+6 9.968200+1 2.375000+6 9.954870+1 2.500000+6 9.950900+1 2.875000+6 9.935030+1 3.000000+6 9.930200+1 3.437500+6 9.908930+1 3.812500+6 9.889320+1 4.000000+6 9.879900+1 4.500000+6 9.852090+1 4.875000+6 9.828990+1 5.000000+6 9.821700+1 5.500000+6 9.788370+1 5.875000+6 9.761920+1 6.437500+6 9.720720+1 7.000000+6 9.678400+1 8.000000+6 9.600300+1 9.000000+6 9.520700+1 1.000000+7 9.437200+1 1.250000+7 9.225100+1 1.500000+7 9.000700+1 1.750000+7 8.769400+1 2.000000+7 8.530400+1 2.250000+7 8.284520+1 2.500000+7 8.038000+1 2.875000+7 7.675400+1 3.000000+7 7.558500+1 3.437500+7 7.162610+1 4.000000+7 6.697300+1 4.500000+7 6.324760+1 4.750000+7 6.150950+1 5.000000+7 5.985800+1 5.750000+7 5.529530+1 6.000000+7 5.390400+1 6.750000+7 5.004450+1 7.000000+7 4.886500+1 8.000000+7 4.462600+1 9.000000+7 4.107600+1 1.000000+8 3.806500+1 1.125000+8 3.483020+1 1.250000+8 3.198100+1 1.359400+8 2.970100+1 1.437500+8 2.816000+1 1.453100+8 2.786220+1 1.500000+8 2.697200+1 1.617200+8 2.483570+1 1.750000+8 2.261400+1 1.753900+8 2.255240+1 1.938500+8 1.986330+1 2.000000+8 1.906600+1 2.218800+8 1.664470+1 2.341800+8 1.559650+1 2.447300+8 1.487400+1 2.500000+8 1.457100+1 2.625000+8 1.398500+1 2.859400+8 1.309580+1 3.000000+8 1.254900+1 3.125000+8 1.201380+1 3.500000+8 1.052700+1 3.875000+8 9.470570+0 4.000000+8 9.118400+0 4.125000+8 8.739050+0 4.234400+8 8.396390+0 4.425800+8 7.795310+0 4.500000+8 7.572520+0 5.000000+8 6.301400+0 5.250000+8 5.827340+0 5.437500+8 5.529940+0 5.718800+8 5.154200+0 6.000000+8 4.842500+0 6.250000+8 4.606180+0 6.625000+8 4.309580+0 7.000000+8 4.070700+0 7.750000+8 3.690060+0 8.000000+8 3.564100+0 8.359400+8 3.371410+0 8.660200+8 3.207060+0 9.138700+8 2.952840+0 9.500000+8 2.773690+0 1.000000+9 2.550900+0 1.089800+9 2.224990+0 1.165000+9 2.012950+0 1.243500+9 1.837660+0 1.250000+9 1.824970+0 1.307700+9 1.722500+0 1.376400+9 1.622280+0 1.438200+9 1.549090+0 1.500000+9 1.489600+0 1.562500+9 1.441260+0 1.617200+9 1.405910+0 2.000000+9 1.231300+0 2.139200+9 1.170860+0 2.272600+9 1.111600+0 2.357800+9 1.073800+0 2.522900+9 1.001800+0 2.677700+9 9.369270-1 2.750000+9 9.077390-1 2.890900+9 8.529090-1 3.086500+9 7.819210-1 3.325700+9 7.031510-1 3.535000+9 6.412530-1 3.718100+9 5.921160-1 4.038600+9 5.163060-1 4.278900+9 4.671120-1 4.639500+9 4.036460-1 5.000000+9 3.507300-1 5.375000+9 3.047360-1 5.703100+9 2.707220-1 6.277300+9 2.222480-1 6.708000+9 1.931570-1 7.354000+9 1.582890-1 8.000000+9 1.313400-1 9.000000+9 1.005740-1 1.00000+10 7.892300-2 1.27030+10 4.523130-2 1.55700+10 2.802870-2 1.85560+10 1.849010-2 2.46860+10 9.345290-3 3.41010+10 4.288390-3 1.00000+11 3.136100-4 1.68570+11 8.854290-5 3.34410+11 1.702820-5 1.39060+12 5.694370-7 1.17920+13 3.673770-9 1.00000+14 2.41590-11 3.16230+15 6.91834-15 1.00000+17 1.90810-18 1 100000 7 0 2.570000+2 9707045 2 0.0 0.0 0.0 93942 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.000000+1 1.20100-11 1.000000+2 1.201000-9 1.000000+3 1.201000-7 1.000000+4 1.201000-5 1.000000+5 1.201000-3 5.000000+5 3.002500-2 1.000000+6 1.201000-1 1.375000+6 2.247220-1 1.500000+6 2.663000-1 1.875000+6 4.092480-1 2.000000+6 4.627000-1 2.375000+6 6.387760-1 2.500000+6 7.024000-1 2.875000+6 9.059340-1 3.000000+6 9.776000-1 3.437500+6 1.240340+0 3.812500+6 1.478570+0 4.000000+6 1.601600+0 4.500000+6 1.938710+0 4.875000+6 2.196300+0 5.000000+6 2.282400+0 5.500000+6 2.624160+0 5.875000+6 2.878280+0 6.437500+6 3.255100+0 7.000000+6 3.627000+0 8.000000+6 4.278100+0 9.000000+6 4.922900+0 1.000000+7 5.566600+0 1.250000+7 7.203100+0 1.500000+7 8.910300+0 1.750000+7 1.056700+1 2.000000+7 1.219900+1 2.250000+7 1.376100+1 2.500000+7 1.527200+1 2.875000+7 1.748380+1 3.000000+7 1.820200+1 3.437500+7 2.059980+1 4.000000+7 2.345300+1 4.500000+7 2.580170+1 4.750000+7 2.692740+1 5.000000+7 2.802900+1 5.750000+7 3.122100+1 6.000000+7 3.225700+1 6.750000+7 3.526390+1 7.000000+7 3.624000+1 8.000000+7 3.997300+1 9.000000+7 4.344200+1 1.000000+8 4.662500+1 1.125000+8 5.014530+1 1.250000+8 5.321800+1 1.359400+8 5.559180+1 1.437500+8 5.715300+1 1.453100+8 5.745140+1 1.500000+8 5.833700+1 1.617200+8 6.042780+1 1.750000+8 6.262160+1 1.753900+8 6.268240+1 1.938500+8 6.542380+1 2.000000+8 6.627000+1 2.218800+8 6.902430+1 2.341800+8 7.045630+1 2.447300+8 7.162970+1 2.500000+8 7.220400+1 2.625000+8 7.352480+1 2.859400+8 7.585660+1 3.000000+8 7.712500+1 3.125000+8 7.816520+1 3.500000+8 8.090400+1 3.875000+8 8.323240+1 4.000000+8 8.392600+1 4.125000+8 8.456380+1 4.234400+8 8.509490+1 4.425800+8 8.595120+1 4.500000+8 8.626640+1 5.000000+8 8.810900+1 5.250000+8 8.889740+1 5.437500+8 8.943420+1 5.718800+8 9.018870+1 6.000000+8 9.087700+1 6.250000+8 9.142790+1 6.625000+8 9.219390+1 7.000000+8 9.289800+1 7.750000+8 9.410430+1 8.000000+8 9.446400+1 8.359400+8 9.491550+1 8.660200+8 9.526300+1 9.138700+8 9.574450+1 9.500000+8 9.607120+1 1.000000+9 9.646400+1 1.089800+9 9.702970+1 1.165000+9 9.740120+1 1.243500+9 9.772760+1 1.250000+9 9.775140+1 1.307700+9 9.794670+1 1.376400+9 9.815010+1 1.438200+9 9.830770+1 1.500000+9 9.845300+1 1.562500+9 9.857790+1 1.617200+9 9.868330+1 2.000000+9 9.920600+1 2.139200+9 9.933300+1 2.272600+9 9.943250+1 2.357800+9 9.948770+1 2.522900+9 9.958940+1 2.677700+9 9.965880+1 2.750000+9 9.968880+1 2.890900+9 9.973970+1 3.086500+9 9.979080+1 3.325700+9 9.984920+1 3.535000+9 9.988130+1 3.718100+9 9.990270+1 4.038600+9 9.993770+1 4.278900+9 9.995730+1 4.639500+9 9.997220+1 5.000000+9 9.998600+1 5.375000+9 9.998800+1 5.703100+9 9.998960+1 6.277300+9 9.999230+1 6.708000+9 9.999410+1 7.354000+9 9.999670+1 8.000000+9 9.999900+1 9.000000+9 9.999950+1 1.00000+10 1.000000+2 1.27030+10 1.000000+2 1.55700+10 1.000000+2 1.85560+10 1.000000+2 2.46860+10 1.000000+2 3.41010+10 1.000000+2 1.00000+11 1.000000+2 1.68570+11 1.000000+2 3.34410+11 1.000000+2 1.39060+12 1.000000+2 1.17920+13 1.000000+2 1.00000+14 1.000000+2 3.16230+15 1.000000+2 1.00000+17 1.000000+2 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 93943 0 0.0 0.0 0.0 0.0 0.0 1.000000-6 0.0 2.117256-6 0.0 2.122468-6 8.478011-7 2.127679-6 1.677565-6 2.132890-6 3.064209-6 2.138102-6 5.166677-6 2.143313-6 8.041890-6 2.148525-6 1.155470-5 2.153736-6 1.532546-5 2.158947-6 1.876385-5 2.164159-6 2.120725-5 2.169370-6 2.212588-5 2.174581-6 2.130938-5 2.179793-6 1.894502-5 2.185004-6 1.554795-5 2.195427-6 8.237425-6 2.200638-6 5.317795-6 2.205850-6 3.169025-6 2.211061-6 1.743307-6 2.216272-6 8.852705-7 2.221484-6 0.0 2.687784-6 0.0 2.697707-6 3.067397+0 2.701015-6 4.076893+0 2.707631-6 7.446779+0 2.714246-6 1.255629+1 2.721689-6 2.060864+1 2.733279-6 3.611466+1 2.741122-6 4.597106+1 2.747932-6 5.174333+1 2.754394-6 5.363548+1 2.761626-6 5.085887+1 2.768530-6 4.434922+1 2.779589-6 2.975510+1 2.787018-6 2.001896+1 2.793634-6 1.292355+1 2.800249-6 7.701508+0 2.806865-6 4.236663+0 2.815135-6 1.614517+0 2.820096-6 0.0 2.838777-6 0.0 2.849258-6 1.719133-6 2.852752-6 2.284909-6 2.859739-6 4.173573-6 2.866726-6 7.037217-6 2.873714-6 1.095337-5 2.884194-6 1.830283-5 2.894675-6 2.555710-5 2.901663-6 2.888510-5 2.908650-6 3.013632-5 2.915637-6 2.902422-5 2.922625-6 2.580386-5 2.933106-6 1.861322-5 2.943586-6 1.121970-5 2.950574-6 7.243045-6 2.957561-6 4.316337-6 2.964548-6 2.374452-6 2.971536-6 1.205773-6 2.978523-6 0.0 3.149499-6 0.0 3.163065-6 6.914030+0 3.165003-6 7.891671+0 3.172755-6 1.441478+1 3.180507-6 2.430530+1 3.189229-6 3.989228+1 3.202810-6 6.990740+1 3.212000-6 8.898650+1 3.220523-6 1.004622+2 3.228088-6 1.035573+2 3.235924-6 9.859558+1 3.243917-6 8.625614+1 3.256121-6 5.978214+1 3.265780-6 3.875084+1 3.273533-6 2.501620+1 3.281285-6 1.490786+1 3.289037-6 8.200938+0 3.300665-6 2.084712+0 3.304541-6 0.0 3.342362-6 0.0 3.354702-6 5.660975-6 3.358816-6 7.524031-6 3.367042-6 1.374326-5 3.375269-6 2.317302-5 3.383496-6 3.606861-5 3.391723-6 5.182391-5 3.399950-6 6.873608-5 3.408176-6 8.415758-5 3.416403-6 9.511644-5 3.424630-6 9.923661-5 3.432857-6 9.557453-5 3.441084-6 8.497015-5 3.449310-6 6.973399-5 3.465764-6 3.694560-5 3.473991-6 2.385080-5 3.482218-6 1.421337-5 3.490444-6 7.818890-6 3.498671-6 3.970519-6 3.506898-6 0.0 3.763818-6 0.0 3.773083-6 6.86177-15 3.782347-6 1.35775-14 3.791611-6 2.48005-14 3.800875-6 4.18170-14 3.810139-6 6.50879-14 3.819403-6 9.35192-14 3.828668-6 1.24038-13 3.837932-6 1.51867-13 3.847196-6 1.71643-13 3.856460-6 1.79078-13 3.865724-6 1.72470-13 3.874988-6 1.53333-13 3.884252-6 1.25839-13 3.902781-6 6.66705-14 3.912045-6 4.30401-14 3.921309-6 2.56488-14 3.930573-6 1.41096-14 3.939837-6 7.16503-15 3.949102-6 0.0 4.366992-6 0.0 4.385802-6 1.218365-1 4.388490-6 1.390641-1 4.399238-6 2.540119-1 4.410659-6 4.431618-1 4.421408-6 6.848027-1 4.440498-6 1.219842+0 4.453654-6 1.568087+0 4.463731-6 1.758005+0 4.475467-6 1.827958+0 4.485901-6 1.754250+0 4.497661-6 1.525436+0 4.510018-6 1.198928+0 4.530857-6 1.420319+0 4.532591-6 1.460573+0 4.543692-6 1.951696+0 4.554624-6 2.849363+0 4.565896-6 4.231442+0 4.599277-6 9.489423+0 4.611034-6 1.070263+1 4.621227-6 1.109918+1 4.633228-6 1.055820+1 4.646536-6 8.977058+0 4.676382-6 4.136971+0 4.687483-6 2.670688+0 4.698583-6 1.591541+0 4.709684-6 8.755219-1 4.727882-6 1.605488-1 4.731885-6 3.808687-6 4.735067-6 3.192018-6 4.746253-6 1.755955-6 4.763033-6 4.463710-7 4.768627-6 0.0 4.906903-6 0.0 4.906961-6 2.60404-14 4.931117-6 2.48822-11 4.943195-6 4.54363-11 4.955692-6 7.80653-11 4.967890-6 1.618783-2 4.980088-6 3.203124-2 4.992285-6 5.850768-2 5.004483-6 9.865200-2 5.018272-6 1.622800-1 5.042975-6 5.758331-1 5.056174-6 8.916672-1 5.069690-6 1.328082+0 5.084891-6 1.945239+0 5.106664-6 2.918663+0 5.119825-6 3.403377+0 5.132861-6 3.679714+0 5.143661-6 3.712983+0 5.157758-6 3.431097+0 5.170781-6 2.932015+0 5.203549-6 1.340581+0 5.216773-6 8.408001-1 5.228253-6 5.157363-1 5.240605-6 2.880341-1 5.264755-6 2.484430-2 5.265308-6 2.153234-2 5.270487-6 5.112427-2 5.283365-6 1.295591-1 5.290672-6 1.769542-1 5.303630-6 3.055035-1 5.316589-6 4.909757-1 5.329547-6 7.338112-1 5.360630-6 1.419153+0 5.372340-6 1.624264+0 5.386344-6 1.759349+0 5.396492-6 1.774801+0 5.410111-6 1.678890+0 5.426569-6 1.435007+0 5.447398-6 1.071350+0 5.459133-6 9.144139-1 5.472091-6 8.218412-1 5.485050-6 8.115745-1 5.530577-6 1.080156+0 5.536281-6 1.110838+0 5.553102-6 1.136500+0 5.605954-6 1.029222+0 5.751166-6 9.685266-1 5.782210-6 9.541091-1 5.821751-6 9.962532-1 5.840713-6 1.043338+0 5.885253-6 1.069931+0 5.960470-6 9.268275-1 6.017893-6 8.817561-1 6.732313-6 7.012668-1 7.386891-6 5.817412-1 7.423255-6 2.101364+0 7.441929-6 3.411120+0 7.460771-6 5.433927+0 7.478893-6 8.078186+0 7.532914-6 1.769154+1 7.553086-6 1.995845+1 7.571268-6 2.056957+1 7.588561-6 1.973185+1 7.608341-6 1.722206+1 7.636963-6 1.210062+1 7.659619-6 8.032098+0 7.677801-6 5.374648+0 7.695983-6 3.418172+0 7.714165-6 2.119194+0 7.750529-6 5.289432-1 8.589422-6 4.330004-1 8.633469-6 6.600720-1 8.653828-6 8.347397-1 8.675930-6 1.125347+0 8.698732-6 1.539648+0 8.760497-6 2.866535+0 8.783286-6 3.170841+0 8.803814-6 3.252611+0 8.825123-6 3.115004+0 8.847318-6 2.764224+0 8.906549-6 1.466829+0 8.929631-6 1.062794+0 8.948832-6 8.093229-1 8.969974-6 6.235701-1 9.000572-6 4.593003-1 9.012258-6 7.658778-1 9.044880-6 1.784819+0 9.067400-6 2.962633+0 9.090572-6 4.849651+0 9.112543-6 7.286993+0 9.178495-6 1.632976+1 9.203668-6 1.858987+1 9.223138-6 1.933849+1 9.246297-6 1.868054+1 9.269528-6 1.661898+1 9.334203-6 8.004113+0 9.355033-6 5.617685+0 9.377186-6 3.695571+0 9.399340-6 2.382460+0 9.441727-6 8.550848-1 9.443648-6 7.891748-1 9.456691-6 7.780067-1 9.493885-6 8.310844-1 9.512981-6 8.772302-1 9.598683-6 1.182635+0 9.648591-6 1.468697+0 9.697931-6 1.785987+0 9.721341-6 1.876489+0 9.743853-6 1.895288+0 9.768149-6 1.824802+0 9.798613-6 1.647344+0 9.863252-6 1.165436+0 9.886505-6 1.022636+0 9.909970-6 9.037071-1 9.972804-6 6.768366-1 1.004300-5 5.390125-1 1.006241-5 5.092342-1 1.009397-5 4.885077-1 1.012318-5 4.957553-1 1.015621-5 5.318124-1 1.026191-5 7.097743-1 1.030899-5 7.547106-1 1.040000-5 7.739868-1 1.064177-5 7.451036-1 1.069429-5 8.436811-1 1.072035-5 9.296945-1 1.075309-5 1.109772+0 1.077787-5 1.294040+0 1.085550-5 1.987471+0 1.088177-5 2.147321+0 1.090753-5 2.206439+0 1.094087-5 2.119310+0 1.096507-5 1.966357+0 1.104776-5 1.230032+0 1.106086-5 1.125197+0 1.108705-5 9.632198-1 1.111325-5 8.491392-1 1.116563-5 7.046326-1 1.123373-5 7.328509-1 1.127905-5 8.026384-1 1.132387-5 9.262940-1 1.138902-5 1.135708+0 1.141651-5 1.197727+0 1.144400-5 1.230356+0 1.148230-5 1.202306+0 1.156366-5 1.030622+0 1.161364-5 9.733497-1 1.167200-5 9.830476-1 1.177149-5 1.006838+0 1.196805-5 9.662692-1 1.209659-5 8.980677-1 1.218614-5 8.284712-1 1.223127-5 8.113006-1 1.231618-5 8.345264-1 1.246090-5 9.047802-1 1.274588-5 8.969952-1 1.409582-5 8.203660-1 1.566139-5 7.961058-1 1.747012-5 8.310028-1 1.939757-5 9.298555-1 2.162798-5 1.120999+0 2.224224-5 1.188119+0 2.235173-5 3.034045+0 2.240647-5 4.555622+0 2.246122-5 6.859325+0 2.251597-5 1.000734+1 2.260850-5 1.669787+1 2.268937-5 2.218913+1 2.274375-5 2.458005+1 2.280183-5 3.188359+1 2.285781-5 3.707540+1 2.291380-5 4.501819+1 2.296978-5 5.760594+1 2.303155-5 7.858534+1 2.319723-5 1.525863+2 2.325878-5 1.705128+2 2.331342-5 1.750229+2 2.336683-5 1.676701+2 2.342609-5 1.472151+2 2.358563-5 6.942658+1 2.364162-5 4.716871+1 2.369760-5 3.072479+1 2.375359-5 1.963386+1 2.382357-5 1.079176+1 2.386556-5 5.181822+0 2.394834-5 4.182502+0 2.403102-5 4.585298+0 2.406623-5 4.850558+0 2.412518-5 6.113106+0 2.418413-5 8.468729+0 2.425537-5 1.277370+1 2.441991-5 2.509226+1 2.448254-5 2.854913+1 2.454148-5 3.002776+1 2.460131-5 2.954729+1 2.471186-5 2.506971+1 2.483059-5 1.976551+1 2.490802-5 1.781337+1 2.498216-5 1.727023+1 2.522354-5 1.714120+1 2.545196-5 1.591439+1 2.571418-5 1.448546+1 2.615000-5 1.344595+1 2.736022-5 1.121270+1 2.843606-5 9.976742+0 2.974192-5 9.050660+0 3.134500-5 8.417205+0 3.377598-5 8.055210+0 3.732431-5 8.276757+0 3.747529-5 8.299200+0 3.765977-5 1.590551+1 3.775778-5 2.277696+1 3.785002-5 3.250777+1 3.794499-5 4.619451+1 3.821898-5 9.388187+1 3.832081-5 1.049042+2 3.840821-5 1.079704+2 3.850352-5 1.031892+2 3.860197-5 9.080543+1 3.885890-5 4.612570+1 3.895114-5 3.311381+1 3.904338-5 2.359904+1 3.913563-5 1.740353+1 3.932011-5 1.038227+1 3.950172-5 1.159638+1 3.966375-5 1.342629+1 4.000087-5 1.794518+1 4.009404-5 1.863163+1 4.023849-5 1.878211+1 4.080659-5 1.698732+1 4.146483-5 1.670257+1 4.206129-5 1.561702+1 4.419141-5 1.493306+1 4.757357-5 1.507311+1 5.343967-5 1.649239+1 6.139480-5 1.946396+1 6.263801-5 2.071250+1 6.391344-5 2.079798+1 7.807904-5 2.615690+1 8.823865-5 2.852122+1 9.772372-5 2.907788+1 1.074842-4 2.797325+1 1.206939-4 2.430989+1 1.243833-4 2.315598+1 1.254509-4 2.375837+1 1.260637-4 2.477716+1 1.266710-4 3.035601+1 1.270146-4 3.520756+1 1.273233-4 4.146892+1 1.276802-4 5.129844+1 1.285352-4 7.880617+1 1.288961-4 8.578764+1 1.291896-4 8.726138+1 1.295199-4 8.338724+1 1.298222-4 7.571251+1 1.306972-4 4.512013+1 1.310462-4 3.545981+1 1.313177-4 2.973383+1 1.316667-4 2.501591+1 1.322649-4 1.988868+1 1.346987-4 1.923161+1 1.371876-4 1.933116+1 1.383659-4 1.887512+1 1.390620-4 2.236357+1 1.394282-4 2.565433+1 1.397798-4 3.045931+1 1.401883-4 3.822174+1 1.411071-4 5.840475+1 1.414954-4 6.360958+1 1.418498-4 6.466678+1 1.422251-4 6.155143+1 1.425766-4 5.551475+1 1.434698-4 3.541265+1 1.438104-4 2.916355+1 1.441509-4 2.455164+1 1.445517-4 2.114267+1 1.452034-4 1.767089+1 1.489544-4 1.743113+1 1.510249-4 1.791416+1 1.579873-4 1.640452+1 1.680000-4 1.448143+1 1.851399-4 1.000666+1 1.956110-4 7.753190+0 2.055136-4 6.093798+0 2.153300-4 4.842441+0 2.247599-4 3.949986+0 2.340000-4 3.312557+0 2.443106-4 2.818165+0 2.548768-4 2.496898+0 2.609409-4 2.386408+0 2.627510-4 2.433431+0 2.644775-4 2.637822+0 2.680370-4 3.381442+0 2.696456-4 3.515177+0 2.840000-4 3.412243+0 3.044402-4 3.486368+0 3.260000-4 3.710893+0 3.570685-4 4.183330+0 3.606132-4 4.411759+0 3.658652-4 5.272912+0 3.676756-4 5.374645+0 3.745156-4 5.088630+0 4.386904-4 5.833357+0 4.494272-4 6.224565+0 5.684895-4 7.099806+0 5.805312-4 7.892595+0 5.903845-4 7.913259+0 5.989996-4 8.368973+0 6.120162-4 8.194479+0 6.252500-4 8.587672+0 6.362109-4 9.408982+0 6.456542-4 1.070743+1 6.540918-4 1.246189+1 6.648114-4 1.558364+1 6.790191-4 2.114915+1 7.120000-4 3.572852+1 7.300000-4 4.148859+1 7.500000-4 4.545657+1 7.791178-4 4.799789+1 8.351285-4 4.842153+1 9.661368-4 4.521341+1 9.843372-4 4.841723+1 1.002287-3 4.610262+1 1.038039-3 4.818084+1 1.053778-3 4.940877+1 1.335142-3 4.162643+1 1.365910-3 4.307031+1 1.718848-3 3.436453+1 1.926138-3 3.093335+1 2.323688-3 2.511453+1 2.719337-3 2.075878+1 3.211469-3 1.684545+1 3.804450-3 1.350923+1 4.375009-3 1.123281+1 4.406648-3 1.167100+1 4.427817-3 1.267896+1 4.448252-3 1.456312+1 4.493233-3 2.034186+1 4.518559-3 2.250301+1 4.554872-3 2.355282+1 4.662189-3 2.339192+1 4.693644-3 2.413179+1 4.737811-3 2.700000+1 4.773012-3 2.935790+1 4.811131-3 3.041816+1 5.057155-3 2.904425+1 5.300537-3 2.714196+1 5.358355-3 2.790926+1 5.423913-3 2.971375+1 5.521478-3 2.958691+1 6.415856-3 2.352389+1 6.726670-3 2.214431+1 6.892512-3 2.231576+1 7.136177-3 2.142073+1 7.312548-3 2.129214+1 8.480813-3 1.715555+1 9.688355-3 1.407172+1 1.109973-2 1.146224+1 1.247416-2 9.591446+0 1.424392-2 7.827263+0 1.627043-2 6.364347+0 1.845082-2 5.231643+0 2.044041-2 4.484410+0 2.057963-2 4.641964+0 2.066666-2 4.993559+0 2.075034-2 5.619837+0 2.099147-2 8.324709+0 2.112057-2 9.240559+0 2.126117-2 9.552927+0 2.526547-2 7.236637+0 2.629468-2 6.801735+0 2.651394-2 7.008905+0 2.670885-2 7.666473+0 2.695381-2 8.692027+0 2.719589-2 9.138239+0 2.766020-2 9.720860+0 2.797169-2 1.005023+1 3.348916-2 7.734311+0 3.789818-2 6.398270+0 4.366943-2 5.121983+0 4.857621-2 4.325146+0 5.605426-2 3.436755+0 6.372770-2 2.793412+0 7.250420-2 2.261846+0 8.250076-2 1.829866+0 9.377139-2 1.480964+0 1.059721-1 1.210107+0 1.194488-1 9.925627-1 1.363433-1 7.975493-1 1.394531-1 7.750882-1 1.401926-1 7.999263-1 1.406848-1 8.563370-1 1.410779-1 9.429022-1 1.414548-1 1.072172+0 1.418961-1 1.285980+0 1.427473-1 1.833083+0 1.435877-1 2.347471+0 1.443293-1 2.625393+0 1.453247-1 2.755198+0 1.762039-1 2.092146+0 2.011871-1 1.715030+0 2.330184-1 1.378765+0 2.647037-1 1.142114+0 3.000000-1 9.525682-1 3.365327-1 8.081730-1 3.822875-1 6.777401-1 4.365158-1 5.680301-1 4.981845-1 4.791673-1 5.698771-1 4.061398-1 6.575514-1 3.433319-1 7.659134-1 2.895922-1 8.861352-1 2.481367-1 1.120601+0 1.937290-1 1.286622+0 1.651723-1 1.477239+0 1.408250-1 1.696098+0 1.200667-1 1.947381+0 1.023682-1 2.235892+0 8.727861-2 2.567148+0 7.441329-2 2.947480+0 6.344438-2 3.403145+0 5.375902-2 4.068655+0 4.373133-2 4.671441+0 3.728510-2 5.363532+0 3.178908-2 6.158159+0 2.710321-2 7.070513+0 2.310805-2 8.118035+0 1.970180-2 9.320751+0 1.679765-2 9.760024+0 1.592806-2 1.000000+1 3.342445-2 1 100000 7 0 2.570000+2 9707042 2 0.0 0.0 0.0 93944 0 0.0 0.0 0.0 0.0 0.0 1.000000-6-9.972413+1 2.327578-6-9.655658+1 2.582101-6-9.199870+1 2.657594-6-8.641020+1 2.684568-6-8.038287+1 2.716520-6-6.541143+1 2.725849-6-6.445179+1 2.733279-6-6.749203+1 2.741122-6-7.553652+1 2.751311-6-9.143662+1 2.754394-6-9.723399+1 2.761257-6-9.101343+1 2.771199-6-7.777649+1 2.779589-6-7.213320+1 2.787018-6-7.143771+1 2.800249-6-7.623464+1 2.828944-6-8.942234+1 2.870220-6-9.625568+1 2.926992-6-9.966231+1 3.072000-6-8.947386+1 3.117994-6-8.189182+1 3.140220-6-7.436266+1 3.149499-6-6.816108+1 3.165003-6-5.657245+1 3.173724-6-4.915659+1 3.183172-6-4.259172+1 3.190924-6-4.029914+1 3.196981-6-4.187331+1 3.201856-6-4.572791+1 3.209063-6-5.615990+1 3.217735-6-7.575640+1 3.226397-6-9.977153+1 3.237471-6-6.745544+1 3.244712-6-5.094621+1 3.251245-6-4.075219+1 3.256121-6-3.611533+1 3.261420-6-3.393764+1 3.265780-6-3.404521+1 3.272564-6-3.658581+1 3.281285-6-4.307711+1 3.294245-6-5.349883+1 3.304541-6-6.115421+1 3.313573-6-6.733353+1 3.336938-6-7.520616+1 3.383496-6-8.252753+1 3.482218-6-8.876001+1 3.763818-6-9.409133+1 4.535036-6-9.953706+1 4.583992-6-9.801514+1 4.608638-6-9.945221+1 4.656298-6-9.095151+1 4.698583-6-9.139060+1 4.792967-6-9.538555+1 5.112857-6-9.861555+1 5.203549-6-9.532104+1 5.372340-6-9.784186+1 6.083475-6-9.783525+1 7.238296-6-9.945041+1 7.388692-6-9.546751+1 7.488450-6-9.020517+1 7.532914-6-9.437285+1 7.562829-6-9.983940+1 7.614866-6-8.869145+1 7.657063-6-8.606562+1 7.813571-6-9.394768+1 8.411521-6-9.848979+1 8.710386-6-9.966352+1 8.969974-6-9.951987+1 9.126396-6-9.231263+1 9.178495-6-9.582639+1 9.212138-6-9.992227+1 9.282630-6-8.858318+1 9.334203-6-8.630540+1 9.524248-6-9.387003+1 9.798613-6-9.509826+1 1.090370-5-9.766442+1 1.700962-5-1.011180+2 2.014049-5-9.623347+1 2.130093-5-8.988453+1 2.188758-5-8.199632+1 2.217281-5-7.407518+1 2.237910-5-6.293613+1 2.257717-5-5.027530+1 2.272336-5-4.323332+1 2.277503-5-3.795821+1 2.283898-5-3.396220+1 2.290855-5-2.625764+1 2.297678-5-1.721419+1 2.298903-5-1.601337+1 2.303155-5-1.274295+1 2.304237-5-1.247467+1 2.306014-5-1.300571+1 2.307465-5-1.409987+1 2.308553-5-1.526158+1 2.310186-5-1.751879+1 2.312762-5-2.226797+1 2.315035-5-2.799125+1 2.317543-5-3.626180+1 2.319373-5-4.443148+1 2.323864-5-6.729380+1 2.329971-5-1.056414+2 2.332456-5-8.827895+1 2.336307-5-6.421716+1 2.337874-5-5.469057+1 2.342609-5-3.003704+1 2.344106-5-2.383040+1 2.345708-5-1.832038+1 2.347016-5-1.447449+1 2.347997-5-1.192518+1 2.349469-5-8.593152+0 2.350941-5-5.804060+0 2.351893-5-4.286693+0 2.353561-5-2.215881+0 2.354811-5-1.148100+0 2.355749-5-6.357476-1 2.357156-5-3.952429-1 2.357860-5-5.752575-1 2.358563-5-1.157233+0 2.361362-5-3.389474+0 2.362762-5-4.766907+0 2.363462-5-5.679057+0 2.364861-5-8.314064+0 2.368560-5-1.402615+1 2.377283-5-3.089328+1 2.384457-5-4.243111+1 2.388256-5-5.094239+1 2.395868-5-6.242806+1 2.414544-5-8.173476+1 2.427177-5-9.040351+1 2.439318-5-9.224277+1 2.453262-5-8.579196+1 2.464729-5-7.915384+1 2.477871-5-7.689204+1 2.503999-5-8.178704+1 2.673506-5-8.738023+1 3.482973-5-1.002850+2 3.574512-5-1.023385+2 3.680888-5-9.504584+1 3.724826-5-8.722469+1 3.744204-5-7.989903+1 3.786083-5-5.360914+1 3.796091-5-5.068308+1 3.803123-5-5.219741+1 3.811887-5-5.818908+1 3.818710-5-6.617981+1 3.830204-5-8.809969+1 3.837242-5-1.041367+2 3.852364-5-6.891295+1 3.861757-5-5.223596+1 3.867972-5-4.510418+1 3.874326-5-4.037176+1 3.881012-5-3.793560+1 3.885890-5-3.824580+1 3.893961-5-4.103315+1 3.904338-5-4.768356+1 3.916051-5-5.616896+1 3.932011-5-6.634993+1 3.942951-5-7.294048+1 3.966375-5-8.055077+1 3.996310-5-8.400991+1 4.058361-5-8.335003+1 4.339787-5-8.763186+1 5.343967-5-9.079111+1 6.458309-5-9.028318+1 8.823865-5-8.128625+1 1.098353-4-7.191785+1 1.185010-4-7.154842+1 1.206939-4-7.258597+1 1.236906-4-6.670340+1 1.251458-4-6.053931+1 1.259222-4-5.484093+1 1.263659-4-4.967301+1 1.273912-4-3.929909+1 1.277331-4-3.836807+1 1.279923-4-4.024338+1 1.282520-4-4.422624+1 1.285039-4-5.073329+1 1.288270-4-6.305309+1 1.289970-4-7.057570+1 1.295508-4-4.535724+1 1.298222-4-3.552130+1 1.300767-4-2.910186+1 1.302343-4-2.639083+1 1.303870-4-2.487985+1 1.306130-4-2.411361+1 1.309687-4-2.616010+1 1.313177-4-3.046209+1 1.317346-4-3.618276+1 1.322484-4-4.245052+1 1.326383-4-4.684526+1 1.335630-4-5.245257+1 1.353326-4-5.891931+1 1.377842-4-6.650902+1 1.384031-4-7.092928+1 1.398578-4-5.942066+1 1.402956-4-5.842454+1 1.407264-4-6.120848+1 1.410817-4-6.691848+1 1.412546-4-7.091959+1 1.418181-4-5.499090+1 1.423121-4-4.107096+1 1.426571-4-3.385482+1 1.429701-4-2.998203+1 1.432590-4-2.824779+1 1.434698-4-2.827941+1 1.438104-4-2.988513+1 1.453620-4-4.250499+1 1.463564-4-4.678238+1 1.483618-4-5.085150+1 1.510249-4-5.280473+1 1.619531-4-5.451949+1 1.888690-4-5.519606+1 2.715910-4-6.532319+1 5.109347-4-7.248373+1 5.927584-4-7.914566+1 6.330000-4-8.582153+1 6.790191-4-9.663049+1 7.060000-4-9.598086+1 7.981981-4-7.365881+1 8.655766-4-6.376323+1 9.426041-4-5.738863+1 9.843372-4-5.655509+1 1.008211-3-5.655070+1 1.050075-3-5.282409+1 1.067301-3-5.175303+1 1.099843-3-4.812017+1 1.185945-3-4.253264+1 1.299882-3-3.799257+1 1.365910-3-3.731037+1 1.404648-3-3.463578+1 1.513562-3-3.085055+1 1.683931-3-2.734859+1 1.878042-3-2.479262+1 1.979818-3-2.369992+1 2.216282-3-2.172627+1 2.583300-3-2.036189+1 3.037479-3-2.017366+1 3.534338-3-2.132240+1 3.917489-3-2.347391+1 4.164310-3-2.611386+1 4.302487-3-2.878041+1 4.375009-3-3.121037+1 4.427817-3-3.455767+1 4.481500-3-3.867473+1 4.511311-3-3.852031+1 4.591937-3-3.342916+1 4.641808-3-3.230343+1 4.707342-3-3.308927+1 4.751199-3-3.388791+1 4.786618-3-3.278660+1 4.874429-3-2.768328+1 4.965880-3-2.475587+1 5.100093-3-2.215802+1 5.240527-3-2.084643+1 5.321852-3-2.112229+1 5.390064-3-2.152201+1 5.445264-3-2.015901+1 5.521478-3-1.797661+1 5.651580-3-1.588923+1 5.841731-3-1.391612+1 6.113488-3-1.204452+1 6.415856-3-1.076811+1 6.641822-3-1.039516+1 6.781953-3-1.059007+1 6.987152-3-9.436970+0 7.204115-3-9.042871+0 7.358971-3-8.160648+0 7.691581-3-7.094345+0 8.110778-3-6.251606+0 8.660544-3-5.520224+0 9.450801-3-4.893307+0 1.030860-2-4.559815+0 1.152137-2-4.419615+0 1.304325-2-4.537652+0 1.494175-2-4.956171+0 1.690015-2-5.654020+0 1.845082-2-6.509840+0 1.943190-2-7.392023+0 2.000998-2-8.265787+0 2.036767-2-9.231275+0 2.057963-2-1.034255+1 2.082051-2-1.192728+1 2.092863-2-1.200815+1 2.107952-2-1.118230+1 2.132681-2-9.444996+0 2.154757-2-8.542291+0 2.192684-2-7.660930+0 2.250943-2-6.886038+0 2.327735-2-6.336875+0 2.433587-2-6.034555+0 2.526547-2-6.137783+0 2.593356-2-6.541877+0 2.629468-2-7.090454+0 2.670885-2-8.190274+0 2.688164-2-8.207766+0 2.729822-2-7.388248+0 2.766020-2-6.981100+0 2.823203-2-5.695786+0 2.875707-2-4.979784+0 2.960282-2-4.252742+0 3.084765-2-3.541777+0 3.223970-2-3.001484+0 3.388947-2-2.561094+0 3.604239-2-2.181187+0 3.891905-2-1.854326+0 4.146443-2-1.676791+0 4.451393-2-1.552694+0 4.857621-2-1.479415+0 5.433563-2-1.463556+0 6.647975-2-1.583927+0 1.016450-1-2.142060+0 1.194488-1-2.518287+0 1.293512-1-2.854873+0 1.350637-1-3.196829+0 1.382923-1-3.554700+0 1.400015-1-3.928784+0 1.420745-1-4.681639+0 1.428894-1-4.733541+0 1.440041-1-4.387857+0 1.453247-1-3.845942+0 1.468675-1-3.448190+0 1.495733-1-3.063730+0 1.536150-1-2.718337+0 1.597059-1-2.402656+0 1.683188-1-2.128298+0 1.808825-1-1.893861+0 2.011871-1-1.695652+0 2.245604-1-1.583450+0 2.647037-1-1.508881+0 3.664904-1-1.499173+0 8.091014-1-1.580339+0 2.451607+0-1.608726+0 7.403736+0-1.620284+0 1.000000+1-1.617998+0 1 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/EPDL97Parser.py0000644000000000000000000006770714741736366016753 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging __doc__ =\ """ The 1997 release of the Evaluated Photon Data Library (EPDL97) This module parses the EPDL97.DAT that can be downloaded from: http://www-nds.iaea.org/epdl97/libsall.htm EPDL contains complete information for particle transport for atomic number Z = 1-100. The incident photon energy range goes down to 1 eV. The original units are in barns and MeV. The specific data are: - Coherent scattering a) integrated cross section b) form factor c) real and imaginary anomalous scattering factors d) average energy of the scattered photon (MeV) - Incoherent scattering a) integrated cross section b) scattering function c) average energy of the scattered photon and recoil electron (MeV) - Total photoelectric reaction a) integrated cross section b) average energy of the residual atom, i.e. local deposition (MeV) c) average energy of the secondary photons and electrons (MeV) - Photoelectric reaction, by subshell a) integrated cross section b) average energy of the residual atom, i.e. local deposition (MeV) c) average energy of the secondary photons and electrons (MeV) - Pair production cross section a) integrated cross section b) average energy of the secondary electron and positron (MeV) - Triplet production reaction a) integrated cross section b) average energy of the secondary electron and positron (MeV) Photoelectric data are only for photo-ionization. Photo-excitation data is distributed in the separated library EXDL (the Evaluation eXcitation Data Library). Edges are consistant between EADL, EEDL and EPDL. The data are organized in blocks with headers. The first line of the header: Columns Format Definition 1-3 I3 Z - atomic number 4-6 I3 A - mass number (in all cases=0 for elemental data) 8-9 I2 Yi - incident particle designator (7 is photon) 11-12 I2 Yo - outgoing particle designator (0, no particle 7, photon 8, positron 9, electron) 14-24 E11.4 AW - atomic mass (amu) 26-31 I6 Date of evaluation (YYMMDD) 32 I1 Iflag - Interpolation flag: = 0 or 2, linear in x and y = 3, logarithmic in x, linear in y = 4, linear in x, logarithmic in y = 5, logarithmic in x and y The second line of the header: Columns Format Definition 1-2 I2 C - reaction descriptor = 71, coherent scattering = 72, incoherent scattering = 73, photoelectric effect = 74, pair production = 75, triplet production = 93, whole atom parameters 3-5 I2 I - reaction property: = 0, integrated cross section = 10, avg. energy of Yo = 11, avg. energy to the residual atom = 941, form factor = 942, scattering function = 943, imaginary anomalous scatt. factor = 944, real anomalous scatt. factor 6-8 I3 S - reaction modifier: = 0 no X1 field data required = 91 X1 field data required 22-32 #11.4 X1 - subshell designator 0 if S is 0 if S is 91, subshell designator Summary of the EPDL Data Base -------------------------------------------------------------------------- Yi C S X1 Yo I Data Types -------------------------------------------------------------------------- Coherent scattering -------------------------------------------------------------------------- 7 71 0 0. 0 0 integrated coherent cross section 7 93 0 0. 0 941 form factor 7 93 0 0. 0 943 imaginary anomalous scatt. factor 7 93 0 0. 0 943 real anomalous scatt. factor 7 71 0 0. 7 10 avg. energy of the scattered photon -------------------------------------------------------------------------- Incoherent scattering -------------------------------------------------------------------------- 7 72 0 0. 0 0 integrated incoherent cross section 7 72 0 0. 0 942 scattering function 7 72 0 0. 7 10 avg. energy of the scattered photon 7 72 0 0. 9 10 avg. energy of the recoil electron -------------------------------------------------------------------------- Photoelectric -------------------------------------------------------------------------- 7 73 0 0. 0 0 integrated photoelectric cross section 7 73 0 0. 0 11 avg. energy to the residual atom 7 73 0 0. 7 10 avg. energy of the secondary photons 7 73 0 0. 9 10 avg. energy of the secondary electrons -------------------------------------------------------------------------- Photoelectric (by subshell) -------------------------------------------------------------------------- 7 73 91 * 0 0 integrated photoelectric cross section 7 73 91 * 0 11 avg. energy to the residual atom 7 73 91 * 7 10 avg. energy of the secondary photons 7 73 91 * 9 10 avg. energy of the secondary electrons -------------------------------------------------------------------------- Pair production -------------------------------------------------------------------------- 7 74 0 0. 0 0 integrated pair production cross section 7 74 0 0. 8 10 avg. energy of the secondary positron 7 74 0 0. 9 10 avg. energy of the secondary electron -------------------------------------------------------------------------- Triplet production -------------------------------------------------------------------------- 7 75 0 0. 0 0 integrated triplet production cross section 7 75 0 0. 8 10 avg. energy of the secondary positron 7 75 0 0. 9 10 avg. energy of the secondary electron --------------------------------------------------------------------------- Yi C S X1 Yo I Data Types -------------------------------------------------------------------------- * -> Subshell designator Data sorted in ascending order Z -> C -> S -> X1 -> Yo -> I """ import numpy Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] #Translation from EADL index to actual shell (Table VI) import EADLSubshells SHELL_LIST = EADLSubshells getSubshellFromValue = EADLSubshells.getSubshellFromValue getValueFromSubshell = EADLSubshells.getValueFromSubshell _logger = logging.getLogger(__name__) AVOGADRO_NUMBER = 6.02214179E23 #Read the EPDL library # Try to find it in the local directory EPDL = os.path.join(os.path.dirname(__file__), 'EPDL97.DAT') if not os.path.exists(EPDL): from PyMca5 import PyMcaDataDir EPDL = os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'EPDL97', 'EPDL97.DAT') infile = open(EPDL, 'rb') EPDL97_DATA = infile.read() infile.close() #speed up sequential access LAST_INDEX = -1 #properly write exponential notation EPDL97_DATA = EPDL97_DATA.replace('-', 'E-') EPDL97_DATA = EPDL97_DATA.replace('+', 'E+') #get rid of tabs if any EPDL97_DATA = EPDL97_DATA.replace('\t', ' ') #get rid of carriage returns if any EPDL97_DATA = EPDL97_DATA.replace('\r\n', '\n') EPDL97_DATA = EPDL97_DATA.split('\n') #Now I have a huge list with all the lines EPDL97_ATOMIC_WEIGHTS = None def getParticle(value): """ Returns one of ['none', 'photon', 'positron', 'electron'] following the convention: 0 = no particle 7 = photon 8 = positron 9 = electron) """ if value == 7: return 'photon' if value == 0: return 'none' if value == 9: return 'electron' if value == 8: return 'positron' raise ValueError('Invalid particle code') def getInterpolationType(value): """ Returns one of ['lin-lin', 'log-lin', 'lin-log', 'log-log'] following the convention: 0 or 2, linear in x and y -> returns lin-lin 3, logarithmic in x, linear in y -> returns log-lin 4, linear in x, logarithmic in y -> returns lin-log 5, logarithmic in x and y -> returns log-log """ if value in [0, 2]: return 'lin-lin' if value == 3: return 'log-lin' if value == 4: return 'lin-log' if value == 5: return 'log-log' raise ValueError('Invalid interpolation flag') def getReactionFromCode(value): """ The input value must be one of: 71, 72, 73, 74, 75 Returns one of coherent, incoherent, photoelectric, pair, triplet according to the integer EPDL97 code of the reaction: 71 <-> coherent scattering 72 <-> incoherent scattering 73 <-> photoelectric effect 74 <-> pair production 75 <-> triplet production 93 <-> whole atom parameters """ if value == 71: return 'coherent' if value == 72: return 'incoherent' if value in [73, 93]: return 'photoelectric' if value == 74: return 'pair' if value == 75: return 'triplet' raise ValueError('Invalid reaction descriptor code') def getReactionPropertyFromCode(value): """ The input value must be one of: 0, 10, 11, 941, 942, 943, 944 according to the integer EPDL97 code of the reaction property: 0 <-> integrated cross section 10 <-> avg. energy of secondary particle Yo 11 <-> avg. energy to the residual atom 941 <-> form factor 942 <-> scattering function 943 <-> imaginary anomalous scatt. factor 944 <-> real anomalous scatt. factor """ if value == 0: return 'cross_section' if value == 10: return 'secondary_particle_energy' if value == 11: return 'atom_energy_transfer' if value == 941: return 'form_factor' if value == 942: return 'scattering_function' if value == 943: return 'imaginary_anomalous_scattering_factor' if value == 944: return 'real_anomalous_scattering_factor' raise ValueError('Invalid reaction property descriptor code') def getCodeFromReaction(text): """ The input text must be one of: coherent, incoherent, photoelectric, subshell_photoelectric, pair, triplet Returns the integer EPDL97 code of the reaction: 71 <-> coherent scattering 72 <-> incoherent scattering 73 <-> photoelectric effect 74 <-> pair production 75 <-> triplet production 93 <-> whole atom parameters """ tmp = text.lower() if 'coherent' in tmp: return 71 if 'incoherent' in tmp: return 72 if 'photo' in tmp: return 73 if 'pair' in tmp: return 74 if 'triplet' in tmp: return 75 raise ValueError('Invalid reaction') def parseHeader0(line): """ Columns Format Definition 1-3 I3 Z - atomic number 4-6 I3 A - mass number (in all cases=0 for elemental data) 8-9 I2 Yi - incident particle designator (7 is photon) 11-12 I2 Yo - outgoing particle designator (0, no particle 7, photon 8, positron 9, electron) 14-24 E11.4 AW - atomic mass (amu) 26-31 I6 Date of evaluation (YYMMDD) 32 I1 Iflag - Interpolation flag: = 0 or 2, linear in x and y = 3, logarithmic in x, linear in y = 4, linear in x, logarithmic in y = 5, logarithmic in x and y """ item0 = line[0:6] items = line[6:].split() Z = int(item0[0:3]) A = int(item0[3:6]) Yi = int(items[0]) Yo = int(items[1]) AW = float(items[2]) Date = items[3] Iflag = int(items[4]) ddict={} ddict['atomic_number'] = Z ddict['mass_number'] = A ddict['atomic_mass'] = AW ddict['incident_particle'] = getParticle(Yi) ddict['incident_particle_value'] = Yi ddict['outgoing_particle'] = getParticle(Yo) ddict['outgoing_particle_value'] = Yo ddict['date'] = Date ddict['interpolation_type'] = getInterpolationType(Iflag) ddict['interpolation_flag'] = Iflag ddict['Z'] = Z ddict['A'] = A ddict['Yi'] = Yi ddict['Yo'] = Yo ddict['AW'] = AW return ddict def parseHeader1(line): """ The second line of the header: Columns Format Definition 1-2 I2 C - reaction descriptor = 71, coherent scattering = 72, incoherent scattering = 73, photoelectric effect = 74, pair production = 75, triplet production = 93, whole atom parameters 3-5 I2 I - reaction property: = 0, integrated cross section = 10, avg. energy of Yo = 11, avg. energy to the residual atom = 941, form factor = 942, scattering function = 943, imaginary anomalous scatt. factor = 944, real anomalous scatt. factor 6-8 I3 S - reaction modifier: = 0 no X1 field data required = 91 X1 field data required 22-32 #11.4 X1 - subshell designator 0 if S is 0 if S is 91, subshell designator """ item0 = line[0:6] items = line[6:].split() C = int(item0[0:2]) I = int(item0[2:6]) S = int(items[0]) #there seems to be some dummy number in between X1 = float(items[2]) ddict={} ddict['reaction_code'] = C ddict['reaction'] = getReactionFromCode(C) ddict['reaction_property'] = getReactionPropertyFromCode(I) ddict['reaction_property_code'] = I ddict['C'] = C ddict['I'] = I ddict['S'] = S ddict['X1'] = X1 if S == 91: ddict['subshell_code'] = X1 if X1 != 0.0: ddict['subshell'] = getSubshellFromValue(X1) else: ddict['subshell'] = 'none' elif (S == 0) and (X1 == 0.0): ddict['subshell_code'] = 0 ddict['subshell'] = 'none' else: _logger.error("Inconsistent data") _logger.error("X1 = %s; S = %s", X1, S) sys.exit(1) return ddict def parseHeader(line0, line1): #print("line0 = ", line0) #print("line1 = ", line1) ddict = parseHeader0(line0) ddict.update(parseHeader1(line1)) return ddict if 0: ddict = parseHeader0(EPDL97_DATA[0]) for key in ddict.keys(): _logger.info("%s: %s", key, ddict[key]) if 0: ddict = parseHeader1(EPDL97_DATA[1]) for key in ddict.keys(): _logger.info("%s: %s", key, ddict[key]) def getDataLineIndex(lines, z, Yi, C, S, X1, Yo, I, getmode=True): global LAST_INDEX if (z < 1) or (z>100): raise ValueError("Invalid atomic number") nlines = len(lines) i = LAST_INDEX while i < (nlines-1): i += 1 line = lines[i] if len(line.split()) < 4: continue try: ddict = parseHeader(lines[i], lines[i+1]) except Exception: _logger.error("Error with lines") _logger.error(lines[i]) _logger.error(lines[i+1]) _logger.error(sys.exc_info()) raise if 0: _logger.info("%s, %s", ddict['Z'], z) _logger.info("%s, %s", ddict['Yi'], Yi) _logger.info("%s, %s", ddict['C'], C) _logger.info("%s, %s", ddict['S'], S) _logger.info("%s, %s", ddict['X1'], X1) _logger.info("%s, %s", ddict['Yo'], Yo) _logger.info("%s, %s", ddict['I'], I) if ddict['Z'] == z: _logger.debug("Z found") if ddict['Yi'] == Yi: _logger.debug("Yi found") if ddict['C'] == C: _logger.debug("C found") if ddict['S'] == S: _logger.debug("S found with X1 = %s", ddict['X1']) _logger.debug("Requested X1 = %s", X1) _logger.debug(lines[i]) _logger.debug(lines[i+1]) if ddict['X1'] == X1: if ddict['Yo'] == Yo: if ddict['I'] == I: _logger.debug("FOUND!") _logger.debug(lines[i]) _logger.debug(lines[i+1]) LAST_INDEX = i - 1 if getmode: return i, ddict['interpolation_type'] else: return i i += 1 if LAST_INDEX > 0: _logger.debug("REPEATING") LAST_INDEX = -1 return getDataLineIndex(lines, z, Yi, C, S, X1, Yo, I, getmode=getmode) if getmode: return -1, 'lin-lin' else: return -1 def getActualDataFromLinesAndOffset(lines, index): data_begin = index + 2 data_end = index + 2 while len(lines[data_end].split()) == 2: data_end += 1 _logger.debug("COMPLETE DATA SET") _logger.debug(lines[index:data_end]) _logger.debug("END DATA SET") _logger.debug(lines[data_end]) _logger.debug("ADDITIONAL LINE") ndata = data_end - data_begin energy = numpy.zeros((ndata,), numpy.float64) value = numpy.zeros((ndata,), numpy.float64) for i in range(ndata): t = lines[data_begin+i].split() energy[i] = float(t[0]) value[i] = float(t[1]) #print "OBTAINED INDEX = ", index #print lines[index:index+10] return energy, value def getAtomicWeights(): global EPDL97_ATOMIC_WEIGHTS if EPDL97_ATOMIC_WEIGHTS is None: lines = EPDL97_DATA i = 1 EPDL97_ATOMIC_WEIGHTS = numpy.zeros((len(Elements),), numpy.float64) for line in lines: if line.startswith('%3d000 ' % i): ddict0 = parseHeader0(line) EPDL97_ATOMIC_WEIGHTS[i-1] = ddict0['atomic_mass'] i += 1 return EPDL97_ATOMIC_WEIGHTS * 1 def getTotalCoherentCrossSection(z, lines=None, getmode=False): #Yi C S X1 Yo I #7 71 0 0. 0 0 if lines is None: lines = EPDL97_DATA index, mode = getDataLineIndex(lines, z, 7, 71, 0, 0., 0, 0, getmode=True) if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value def getTotalIncoherentCrossSection(z, lines=None, getmode=False): #Yi C S X1 Yo I #7 72 0 0. 0 0 if lines is None: lines = EPDL97_DATA index, mode = getDataLineIndex(lines, z, 7, 72, 0, 0., 0, 0, getmode=True) if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value def getTotalPhotoelectricCrossSection(z, lines=None, getmode=False): #Yi C S X1 Yo I #7 73 0 0. 0 0 if lines is None: lines = EPDL97_DATA index, mode = getDataLineIndex(lines, z, 7, 73, 0, 0., 0, 0, getmode=True) if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value def getPartialPhotoelectricCrossSection(z, shell, lines=None, getmode=False): #Yi C S X1 Yo I #7 73 91 1. 0 0 K Shell #7 73 91 2. 0 0 L Shell #7 73 91 3. 0 0 L1 Shell #7 73 91 4. 0 0 L23 Shell #7 73 91 5. 0 0 L2 Shell #7 73 91 6. 0 0 L3 Shell #7 73 91 7. 0 0 M Shell #7 73 91 8. 0 0 M1 Shell #7 73 91 9. 0 0 M23 Shell #7 73 91 10. 0 0 M2 Shell #7 73 91 11. 0 0 M3 Shell #7 73 91 12. 0 0 M45 Shell #7 73 91 13. 0 0 M4 Shell #7 73 91 14. 0 0 M5 Shell #7 73 91 15. 0 0 N Shell #7 73 91 16. 0 0 N1 Shell #7 73 91 17. 0 0 N23 Shell #7 73 91 18. 0 0 N2 Shell #7 73 91 19. 0 0 N3 Shell #7 73 91 20. 0 0 N45 Shell #7 73 91 21. 0 0 N4 Shell #7 73 91 22. 0 0 N5 Shell #7 73 91 23. 0 0 N67 Shell #7 73 91 24. 0 0 N6 Shell #7 73 91 25. 0 0 N7 Shell #cleanup shell name X1 = getValueFromSubshell(shell) if lines is None: lines = EPDL97_DATA index, mode = getDataLineIndex(lines, z, 7, 73, 91, X1, 0, 0, getmode=True) if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value def getTotalPairCrossSection(z, lines=None, getmode=False): #Yi C S X1 Yo I #7 74 0 0. 0 0 index, mode = getDataLineIndex(lines, z, 7, 74, 0, 0., 0, 0, getmode=True) if lines is None: lines = EPDL97_DATA if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value def getTotalTripletCrossSection(z, lines=None, getmode=False): #Yi C S X1 Yo I #7 75 0 0. 0 0 index, mode = getDataLineIndex(lines, z, 7, 75, 0, 0., 0, 0, getmode=True) if lines is None: lines = EPDL97_DATA if index < 0: raise IOError("Requested data not found") energy, value = getActualDataFromLinesAndOffset(lines, index) if getmode: return energy, value, mode else: return energy, value if __name__ == "__main__": if len(sys.argv) > 1: Z = int(sys.argv[1]) else: Z = 82 energy, value, mode = getTotalCoherentCrossSection(Z, EPDL97_DATA, getmode=True) _logger.info("TOTAL COHERENT %s", mode) for i in range(len(energy)): if energy[i] > 0.010: if energy[i] < 0.020: _logger.info("%s, %s", energy[i], value[i]) energy, value, mode = getTotalIncoherentCrossSection(Z, EPDL97_DATA , getmode=True) _logger.info("TOTAL INCOHERENT %s", mode) for i in range(len(energy)): if energy[i] > 0.010: if energy[i] < 0.020: _logger.info("%s, %s", energy[i], value[i]) energy, value, mode = getTotalPhotoelectricCrossSection(Z, EPDL97_DATA, getmode=True) _logger.info("TOTAL PHOTOELECTRIC %s", mode) for i in range(len(energy)): if energy[i] > 0.010: if energy[i] < 0.020: _logger.info("%s, %s", energy[i], value[i]) energy, value, mode = getTotalPairCrossSection(Z, EPDL97_DATA, getmode=True) _logger.info(" TOTAL PAIR %s", mode) for i in range(len(energy)): if energy[i] > 0.010: if energy[i] < 0.020: _logger.info("%s, %s", energy[i], value[i]) energy, value, mode = getPartialPhotoelectricCrossSection(Z, 'L1', EPDL97_DATA, getmode=True) _logger.info("L1 SHELL PARTIAL PHOTOELECTRIC IDX") for i in range(len(energy)): if energy[i] > 0.010: if energy[i] < 0.020: _logger.info("%s, %s, %s", energy[i], value[i], mode) energy, value, mode = getPartialPhotoelectricCrossSection(Z, 'K', EPDL97_DATA, getmode=True) _logger.info("K SHELL PARTIAL PHOTOELECTRIC") for i in range(len(energy)): if energy[i] > 0.088: if energy[i] < 0.090: _logger.info("%s, %s, %s", energy[i], value[i], mode) _logger.info("atomic weight = %s", getAtomicWeights()[Z-1]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEADLBindingEnergies.py0000644000000000000000000001007614741736366022012 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfile with EADL97 binding energies in keV" import os import sys import EADLParser Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a conversion to specfile format of \n' text += '#U01 directly extracted EADL97 Binding energies.\n' text += '#U02 EADL itself can be found at:\n' text += '#U03 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '#U04 The code used to generate this file has been:\n' text += '#U05 %s\n' % os.path.basename(__file__) text += '#U06\n' text += '\n' return text if __name__ == "__main__": if len(sys.argv) > 1: fname = sys.argv[1] else: fname = "EADL97_BindingEnergies.dat" if os.path.exists(fname): os.remove(fname) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) shells = EADLParser.getBaseShellList() LONG_LABEL = True for i in range(1,101): print(i, Elements[i-1]) if i == 1: text = '#S 1 Binding energies in keV\n' label_text = "" n = 0 for label in shells: if LONG_LABEL: label_text += " "+label.replace(' ','') else: label_text += ' %s' % label.replace(' ','').split("(")[0] n += 1 text += '#N %d\n' % n text += '#L Z' + label_text text += '\n' outfile.write(text) text = "%d" % i ddict = EADLParser.getBindingEnergies(i) for shell in shells: text += ' %.7E' % (ddict[shell] * 1000.) text += '\n' outfile.write(text) outfile.write("\n") outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEADLShellConstants.py0000644000000000000000000001771014741736366021724 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfiles with EADL97 shell constans" import os import EADLParser Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a conversion to specfile format of \n' text += '#U01 directly extracted EADL97 Shell constants.\n' text += '#U02 EADL itself can be found at:\n' text += '#U03 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '#U04 The code used to generate this file has been:\n' text += '#U05 %s\n' % os.path.basename(__file__) text += '#U06\n' text += '\n' return text if __name__ == "__main__": #K Shell fname = "EADL97_KShellConstants.dat" if os.path.exists(fname): os.remove(fname) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) for i in range(1,101): #for i in range(82,83): print("%d %s" % (i, Elements[i-1])) if i == 1: text = '#S 1 K Shell Fluorescence Yields\n' label_text = "" n = 1 label_text += ' omegaK' n += 1 text += '#N %d\n' % n text += '#L Z' + label_text text += '\n' outfile.write(text) text = "%d" % i ddict = EADLParser.getFluorescenceYields(i) value = ddict.get('K (1s1/2)', 0.0) text += ' %.4E' % (value) text += '\n' outfile.write(text) outfile.write("\n") outfile.close() #L Shell fname = "EADL97_LShellConstants.dat" if os.path.exists(fname): os.remove(fname) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) shell_list = ['L1 (2s1/2)', 'L2 (2p1/2)', 'L3 (2p3/2)'] for nshell in range(1,4): shell = shell_list[nshell-1] for i in range(1,101): #for i in range(82,83): print("%d %s" % (i, Elements[i-1])) if i == 1: text = '#S %s %s x-ray data\n' % (shell[1], shell[0:2]) label_text = "" n = 1 if nshell == 1: label_text += ' f12 f13 omegaL1' n += 3 elif nshell == 2: label_text += ' f23 omegaL2' n += 2 else: label_text += ' omegaL3' n += 1 text += '#N %d\n' % n text += '#L Z' + label_text text += '\n' outfile.write(text) text = "%d" % i ddict = EADLParser.getFluorescenceYields(i) ddict.update(EADLParser.getLShellCosterKronigYields(i)) omega = ddict.get(shell, 0.0) if nshell == 1: f12 = ddict.get('f12', 0.0) f13 = ddict.get('f13', 0.0) text += ' %.4E %.4E %.4E\n' % (f12, f13, omega) elif nshell == 2: f23 = ddict.get('f23', 0.0) text += ' %.4E %.4E\n' % (f23, omega) elif nshell == 3: text += ' %.4E\n' % (omega) outfile.write(text) outfile.write("\n") outfile.close() #M Shell fname = "EADL97_MShellConstants.dat" if os.path.exists(fname): os.remove(fname) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) shell_list = ['M1 (3s1/2)', 'M2 (3p1/2)', 'M3 (3p3/2)', 'M4 (3d3/2)', 'M5 (3d5/2)'] for nshell in range(1,6): shell = shell_list[nshell-1] for i in range(1,101): #for i in range(82,83): print("%d %s" % (i, Elements[i-1])) if i == 1: text = '#S %s %s x-ray data\n' % (shell[1], shell[0:2]) label_text = "" n = 1 if nshell == 1: label_text += ' f12 f13 f14 f15 omegaM1' n += 5 elif nshell == 2: label_text += ' f23 f24 f25 omegaM2' n += 4 elif nshell == 3: label_text += ' f34 f35 omegaM3' n += 3 elif nshell == 4: label_text += ' f45 omegaM4' n += 2 else: label_text += ' omegaM5' n += 1 text += '#N %d\n' % n text += '#L Z' + label_text text += '\n' outfile.write(text) text = "%d" % i ddict = EADLParser.getFluorescenceYields(i) ddict.update(EADLParser.getMShellCosterKronigYields(i)) omega = ddict.get(shell, 0.0) if nshell == 1: f12 = ddict.get('f12', 0.0) f13 = ddict.get('f13', 0.0) f14 = ddict.get('f14', 0.0) f15 = ddict.get('f15', 0.0) text += ' %.4E %.4E %.4E %.4E %.4E\n' % (f12, f13, f14, f15, omega) elif nshell == 2: f23 = ddict.get('f23', 0.0) f24 = ddict.get('f24', 0.0) f25 = ddict.get('f25', 0.0) text += ' %.4E %.4E %.4E %.4E\n' % (f23, f24, f25, omega) elif nshell == 3: f34 = ddict.get('f34', 0.0) f35 = ddict.get('f35', 0.0) text += ' %.4E %.4E %.4E\n' % (f34, f35, omega) elif nshell == 4: f45 = ddict.get('f45', 0.0) text += ' %.4E %.4E\n' % (f45, omega) else: text += ' %.4E\n' % (omega) outfile.write(text) outfile.write("\n") outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEADLShellNonradiativeRates.py0000644000000000000000000001773014741736366023374 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfiles with EADL97 shell transition probabilities" import os import sys import EADLParser Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a conversion to specfile format of \n' text += '#U01 directly extracted EADL97 nonradiative transition probabilities.\n' text += '#U02 EADL itself can be found at:\n' text += '#U03 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '#U04 The code used to generate this file has been:\n' text += '#U05 %s\n' % os.path.basename(__file__) text += '#U06\n' text += '\n' return text if __name__ == "__main__": shellList = EADLParser.getBaseShellList() workingShells = ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5'] for shell in workingShells: fname = "EADL97_%sShellNonradiativeRates.dat" % shell[0] print("fname = %s" % fname) if shell in ['K', 'L1', 'M1']: if os.path.exists(fname): os.remove(fname) nscan = 0 outfile = open(fname, 'wb') tmpText = getHeader(fname) if sys.version < '3.0': outfile.write(tmpText) else: outfile.write(tmpText.encode('UTF-8')) nscan += 1 for i in range(1,101): print("Z = %d, Element = %s" % (i, Elements[i-1])) element = Elements[i-1] ddict = {} for key0 in shellList: tmpKey = key0.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue for key1 in shellList: tmpKey = key1.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue key = "%s-%s%s" % (shell, key0.split()[0], key1.split()[0]) if shell in [key0.split()[0], key1.split()[0]]: continue ddict[key] = [0.0, 0.0] try: ddict = EADLParser.getNonradiativeTransitionProbabilities(\ Elements.index(element)+1, shell=shell) print("%s Shell nonradiative emission probabilities " % shell) except IOError: #This happens when reading elements not presenting the transitions pass #continue if i == 1: #generate the labels nTransitions = 0 tmpText = '#L Z TOTAL' for key0 in workingShells: tmpKey = key0.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue for key1 in shellList: tmpKey = key1.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue key = "%s-%s%s" % (shell, key0.split()[0], key1.split()[0]) tmpText += ' %s' % (key) nTransitions += 1 text = '#S %d %s-Shell nonradiative rates\n' % (nscan, shell) text += '#N %d\n' % (2 + nTransitions) text += tmpText + '\n' else: text = '' # this loop calculates the totals, because it cannot be deduced from the subset # transitions written in the file total = 0.0 for key0 in shellList: tmpKey = key0.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue for key1 in shellList: tmpKey = key1.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue key = "%s-%s%s" % (shell, key0.split()[0], key1.split()[0]) total += ddict.get(key, [0.0, 0.0])[0] text += '%d %.7E' % (i, total) for key0 in workingShells: tmpKey = key0.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue for key1 in shellList: tmpKey = key1.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue key = "%s-%s%s" % (shell, key0.split()[0], key1.split()[0]) valueToWrite = ddict.get(key, [0.0, 0.0])[0] if valueToWrite == 0.0: text += ' 0.0' else: text += ' %.7E' % valueToWrite text += '\n' if sys.version < '3.0': outfile.write(text) else: outfile.write(text.encode('UTF-8')) if sys.version < '3.0': outfile.write('\n') else: outfile.write('\n'.encode('UTF-8')) if sys.version < '3.0': outfile.write('\n') else: outfile.write('\n'.encode('UTF-8')) outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEADLShellRadiativeRates.py0000644000000000000000000001321614741736366022654 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfiles with EADL97 shell transition probabilities" import os import sys import EADLParser Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a conversion to specfile format of \n' text += '#U01 directly extracted EADL97 radiative transition probabilities.\n' text += '#U02 EADL itself can be found at:\n' text += '#U03 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '#U04 The code used to generate this file has been:\n' text += '#U05 %s\n' % os.path.basename(__file__) text += '#U06\n' text += '\n' return text if __name__ == "__main__": shellList = EADLParser.getBaseShellList() workingShells = ['K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5'] for shell in workingShells: fname = "EADL97_%sShellRadiativeRates.dat" % shell[0] print("fname = %s" % fname) if shell in ['K', 'L1', 'M1']: if os.path.exists(fname): os.remove(fname) nscan = 0 outfile = open(fname, 'wb') if sys.version < '3.0': outfile.write(getHeader(fname)) else: outfile.write(getHeader(fname).encode('UTF-8')) nscan += 1 for i in range(1,101): print("Z = %d, Element = %s" % (i, Elements[i-1])) element = Elements[i-1] try: ddict = EADLParser.getRadiativeTransitionProbabilities(\ Elements.index(element)+1, shell=shell) print("%s Shell radiative emission probabilities " % shell) except IOError: #print "IOError" #continue pass for key in shellList: if key not in ddict: ddict[key] = [0.0, 0.0] if i == 1: text = '#S %d %s emission rates\n' % (nscan, shell) text += '#N %d\n' % (2+len(shellList)-1) #generate the labels text += '#L Z TOTAL' for key in shellList: tmpKey = key.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue text += ' %s%s' % (shell, tmpKey) text += '\n' else: text = '' total = 0.0 for key in shellList: total += ddict[key][0] text += '%d %.7E' % (i, total) for key in shellList: tmpKey = key.split()[0] if tmpKey in workingShells: if workingShells.index(tmpKey) <= workingShells.index(shell): continue text += ' %.7E' % ddict[key][0] text += '\n' if sys.version < '3.0': outfile.write(text) else: outfile.write(text.encode('UTF-8')) if sys.version < '3.0': outfile.write('\n') else: outfile.write('\n'.encode('UTF-8')) if sys.version < '3.0': outfile.write('\n') else: outfile.write('\n'.encode('UTF-8')) outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEPDL97CrossSections.py0000644000000000000000000003227514741736366021763 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfile from all EPL97 cross sections in keV and barn" import os import sys import EADLSubshells import EPDL97Parser as EPDLParser Elements = EPDLParser.Elements AVOGADRO_NUMBER = EPDLParser.AVOGADRO_NUMBER import numpy log = numpy.log exp = numpy.exp getTotalCoherentCrossSection = EPDLParser.getTotalCoherentCrossSection getTotalIncoherentCrossSection = EPDLParser.getTotalIncoherentCrossSection getTotalPhotoelectricCrossSection = EPDLParser.getTotalPhotoelectricCrossSection getPartialPhotoelectricCrossSection = EPDLParser.getPartialPhotoelectricCrossSection getTotalPairCrossSection = EPDLParser.getTotalPairCrossSection getTotalTripletCrossSection = EPDLParser.getTotalTripletCrossSection def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a direct conversion to specfile format of \n' text += '#U01 the original EPDL97 photoelectric cross sections contained\n' text += '#U02 in the EPDL97.DAT file from the library.\n' text += '#U03 EPDL97 itself can be found at:\n' text += '#U04 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '#U05\n' text += '#U06 The command used to generate this file has been:\n' if len(sys.argv) > 3: text += '#U07 %s %s %s %s\n' % (os.path.basename(__file__),\ sys.argv[1], sys.argv[2], sys.argv[3]) else: text += '#U07 %s %s %s\n' % (os.path.basename(__file__),\ sys.argv[1], sys.argv[2]) text += '\n' return text if __name__ == "__main__": if len(sys.argv) < 3: print("Usage:") print("python EPDL97GenerateCrossSections SPEC_output_filename barns_flag [short_output_flag]") sys.exit(0) SHORT_OUTPUT_FLAG = 0 if len(sys.argv) > 3: SHORT_OUTPUT_FLAG = int(sys.argv[3]) fname = sys.argv[1] if os.path.exists(fname): os.remove(fname) if int(sys.argv[2]): BARNS = True else: BARNS = False print("BARNS = %s" % BARNS) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) shells = EADLSubshells.SHELL_LIST bad_shells = ['L (', 'L23', 'M (', 'M23', 'M45', 'N (', 'N23', 'N45', 'N67', 'O (', 'O23', 'O45', 'O67', 'O89', 'P (', 'P23', 'P45', 'P67', 'P89', 'P101', 'Q (', 'Q23', 'Q45', 'Q67'] LONG_LABELS = True #find the first element for which EPDL has N1 or P1 shell attenuation data if SHORT_OUTPUT_FLAG: testShell = "N1" else: testShell = "P1" z = 0 i = 0 while z == 0: i += 1 try: dummy = getPartialPhotoelectricCrossSection(i, testShell, getmode=True) z = i except IOError: pass firstNonZeroPhotoelectric = z for i in range(1, 101): print("i = %d element = %s" % (i, Elements[i-1])) #coherent energy_cohe, value_cohe, mode_cohe = getTotalCoherentCrossSection(i, getmode=True) #incoherent energy_incohe, value_incohe, mode_incohe = getTotalIncoherentCrossSection(i, getmode=True) #photoelectric energy_photo, value_photo, mode_photo = getTotalPhotoelectricCrossSection(i, getmode=True) #check to see the energies: #for j in range(10): # print energy_cohe[j], energy_incohe[j], energy_photo[j] #to select an appropriate energy grid as close as possible to the original #while keeping in mind the PyMca goals, I use the coherent energy grid till #the non-zero first value of the photoelectric cross section. At that point, #I use the photoelectric energy grid. energy = numpy.concatenate((energy_cohe[energy_cohe=energy_photo[0]] = value_photo[:] #convert to keV and cut at 500 keV energy *= 1000. indices = numpy.nonzero(energy<=500.) energy = energy[indices] photo = photo[indices] cohe = cohe[indices] incohe = incohe[indices] #I cut at 500 keV, I do not need to take the pair production total = photo + cohe + incohe #now I am ready to write a Specfile ele = Elements[i-1] text = '#S %d %s\n' % (i, ele) text += '#N %d\n' % (7+len(photo_label_list)) labels = '#L PhotonEnergy[keV]' labels += ' Rayleigh(coherent)[barn/atom]' labels += ' Compton(incoherent)[barn/atom]' labels += ' CoherentPlusIncoherent[barn/atom]' labels += ' Photoelectric[barn/atom]' if LONG_LABELS: for label in photo_long_label_list: labels += " "+label.replace(" ","")+"[barn/atom]" else: for label in photo_label_list: labels += " "+label+"[barn/atom]" labels += " AllOthers[barn/atom]" labels += ' TotalCrossSection[barn/atom]\n' if not BARNS: labels = labels.replace("barn/atom", "cm2/g") factor = (1.0E-24*AVOGADRO_NUMBER)/EPDLParser.getAtomicWeights()[i-1] else: factor = 1.0 text += labels if 0: fformat = "%g %g %g %g %g" else: fformat = "%.7E %.6E %.6E %.6E %.6E" outfile.write(text) cohe *= factor incohe *= factor photo *= factor total *= factor for n in range(len(energy)): if energy[n] == (1000. * energy_photo[0]): # one additional line line = fformat % (energy[n], cohe[n], incohe[n], cohe[n]+incohe[n], 0.0) for l in photo_label_list: line += " 0." line += " 0.0 %.6E\n" % (cohe[n]+incohe[n]) outfile.write(line) line = fformat % (energy[n], cohe[n], incohe[n], cohe[n]+incohe[n], photo[n]) d = 0.0 for l in photo_label_list: a = photo_dict[l]['value'][n] * factor #this tiny modification saves 20 Mbytes ... if a > 0.0: line += " %.6E" % a else: line += " 0." d += a restOfShells = photo[n]-d if (i < firstNonZeroPhotoelectric) or (restOfShells < 1.0E-7): line += " 0.0 %.6E\n" % (total[n]) else: line += " %.6E %.6E\n" % (restOfShells, total[n]) outfile.write(line) outfile.write('\n') outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/GenerateEPDL97TotalCrossSections.py0000644000000000000000000001701114741736366022756 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfile from EPL97 total cross sections in keV and barn" import os import sys import EPDL97Parser as EPDLParser Elements = EPDLParser.Elements AVOGADRO_NUMBER = EPDLParser.AVOGADRO_NUMBER import numpy log = numpy.log exp = numpy.exp getTotalCoherentCrossSection = EPDLParser.getTotalCoherentCrossSection getTotalIncoherentCrossSection = EPDLParser.getTotalIncoherentCrossSection getTotalPhotoelectricCrossSection = EPDLParser.getTotalPhotoelectricCrossSection getTotalPairCrossSection = EPDLParser.getTotalPairCrossSection getTotalTripletCrossSection = EPDLParser.getTotalTripletCrossSection def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a direct conversion to specfile format of \n' text += '#U01 the original EPDL97 total cross sections contained in the\n' text += '#U02 EPDL97.DAT from the library.\n' text += '#U03 EPDL97 itself can be found at:\n' text += '#U04 http://www-nds.iaea.org/epdl97/libsall.htm\n' text += '\n' return text if __name__ == "__main__": if len(sys.argv) < 3: print("Usage:") print("python EPDLGenerateTotalCrossSections SPEC_output_filename barns_flag") sys.exit(0) fname = sys.argv[1] if os.path.exists(fname): os.remove(fname) if int(sys.argv[2]): BARNS = True else: BARNS = False print("BARNS = %s" % BARNS) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) for i in range(1, 101): print("i = %d element = %s" % (i, Elements[i-1])) #coherent energy_cohe, value_cohe, mode_cohe = getTotalCoherentCrossSection(i, getmode=True) #incoherent energy_incohe, value_incohe, mode_incohe = getTotalIncoherentCrossSection(i, getmode=True) #photoelectric energy_photo, value_photo, mode_photo = getTotalPhotoelectricCrossSection(i, getmode=True) #check to see the energies: #for j in range(10): # print energy_cohe[j], energy_incohe[j], energy_photo[j] #to select an appropriate energy grid as close as possible to the original #while keeping in mind the PyMca goals, I use the coherent energy grid till #the non-zero first value of the photoelectric cross section. At that point, #I use the photoelectric energy grid. energy = numpy.concatenate((energy_cohe[energy_cohe=energy_photo[0]] = value_photo[:] #convert to keV and cut at 500 keV energy *= 1000. indices = numpy.nonzero(energy<=500.) energy = energy[indices] photo = photo[indices] cohe = cohe[indices] incohe = incohe[indices] #I cut at 500 keV, I do not need to take the pair production total = photo + cohe + incohe #now I am ready to write a Specfile ele = Elements[i-1] text = '#S %d %s\n' % (i, ele) text += '#N 5\n' labels = '#L PhotonEnergy[keV]' labels += ' Rayleigh(coherent)[barn/atom]' labels += ' Compton(incoherent)[barn/atom]' labels += ' CoherentPlusIncoherent[barn/atom]' labels += ' Photoelectric[barn/atom]' labels += ' TotalCrossSection[barn/atom]\n' if not BARNS: labels = labels.replace("barn/atom", "cm2/g") factor = (1.0E-24*AVOGADRO_NUMBER)/EPDLParser.getAtomicWeights()[i-1] else: factor = 1.0 text += labels if 0: fformat = "%g %g %g %g %g %g\n" else: fformat = "%.6E %.6E %.6E %.6E %.6E %.6E\n" outfile.write(text) for n in range(len(energy)): line = fformat % (energy[n], cohe[n] * factor, incohe[n] * factor, (cohe[n]+incohe[n]) * factor, photo[n] * factor, total[n] * factor) outfile.write(line) outfile.write('\n') outfile.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/LICENSE0000644000000000000000000000313714741736366015310 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __doc__=""" These Python modules have been developed by V.A. Sole, from the European Synchrotron Radiation Facility (ESRF) to make the EADL and EPDL97 libraries easily accessible from Python. """ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/EPDL97/__init__.py0000644000000000000000000000466514741736366016423 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ These modules allow to parse the Evaluated Photon Data Library files. The modules to use are: EADLParser EPDL97Parser The converted files used by PyMca can be obtained using the scripts: - GenerateEADLBindingEnergies.py - GenerateEADLShellConstants.py - GenerateEADLShellNonradiativeRates.py - GenerateEADLShellRadiativeRates.py - GenerateEPDL97CrossSections.py - GenerateEPDL97TotalCrossSections.py Those scripts can be found in your EPDL97 installation directory: .. code-block:: python import os from PyMca5 import EPDL97 print(os.path.dirname(EPDL97.__file__)) """ __version__ = '1.0' # The parsing modules # force the import here in order to see the available # modules when doing from PyMca5 import EADL97 # followed by dir(EADL97) in an interactive session. from . import EADLParser, EADLSubshells, EPDL97Parser ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.707766 pymca5-5.9.4/src/PyMca5/PyMca/0000755000000000000000000000000014741736404014375 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMca/__init__.py0000644000000000000000000000570414741736366016523 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import glob __doc__ = """ This is a convenience module to make all the available modules accessible for use in python programs without having to know the underlying structure of the repository. This allows to type: .. code-block:: python from PyMca5.PyMca import HDF5Widget instead of: .. code-block:: python from PyMca5.PyMcaGui.io.hdf5 import HDF5Widget """ def getPackages(directory): """ Identify the different packages present in a directory by recursevily looking for the presence of the __init__.py file in the different subdirectories. :param directory: Directory path :type directory: string :return: List of packages. :return type: List (default is an empty list) """ packages = [] fileList = glob.glob(os.path.join(directory, "*", "__init__.py")) for fileName in fileList: dirName = os.path.dirname(fileName) packages.append(dirName) packages += getPackages(dirName) return packages # this is the package level directory PyMca5 baseDirectory = os.path.dirname(os.path.dirname(__file__)) __path__ += [baseDirectory] for directory in ["PyMcaCore", "PyMcaGraph", "PyMcaGui", "PyMcaIO", "PyMcaMath", "PyMcaMisc", "PyMcaPhysics"]: tmpDir = os.path.join(baseDirectory, directory) if os.path.exists(os.path.join(tmpDir, "__init__.py")): __path__ += [tmpDir] __path__ += getPackages(tmpDir) ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.715766 pymca5-5.9.4/src/PyMca5/PyMcaCore/0000755000000000000000000000000014741736404015206 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/DataObject.py0000644000000000000000000001512314741736366017571 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy class DataObject(object): ''' Simple container of an array and associated information. Basically it has the members: info: A dictionary data: An array, usually 2D, 3D, ... In the past also incorporated selection methods. Now each different data source implements its selection methods. Plotting routines may add additional members x: A list containing arrays to be considered axes y: A list of data to be considered as signals m: A list containing the monitor data ''' GETINFO_DEPRECATION_WARNING = True GETDATA_DEPRECATION_WARNING = True SELECT_DEPRECATION_WARNING = True def __init__(self): ''' Default Constructor ''' self.info = {} self.data = numpy.array([]) # all the following methods are here for compatibility purposes # they are obsolete and bound to disappear. def getInfo(self): """ Deprecated method """ if DataObject.GETINFO_DEPRECATION_WARNING: print("DEPRECATION WARNING: DataObject.getInfo()") DataObject.GETINFO_DEPRECATION_WARNING = False return self.info def getData(self): """ Deprecated method """ if DataObject.GETDATA_DEPRECATION_WARNING: print("DEPRECATION WARNING: DataObject.getData()") DataObject.GETDATA_DEPRECATION_WARNING = False return self.data def select(self, selection=None): """ Deprecated method """ if DataObject.SELECT_DEPRECATION_WARNING: print("DEPRECATION WARNING: DataObject.select(selection=None)") DataObject.SELECT_DEPRECATION_WARNING = False dataObject = DataObject() dataObject.info = self.info dataObject.info['selection'] = selection if selection is None: dataObject.data = self.data return dataObject if type(selection) == dict: #dataObject.data = self.data #should I set it to none??? dataObject.data = None if 'rows' in selection: dataObject.x = None dataObject.y = None dataObject.m = None if 'x' in selection['rows']: for rownumber in selection['rows']['x']: if rownumber is None: continue if dataObject.x is None: dataObject.x = [] dataObject.x.append(self.data[rownumber, :]) if 'y' in selection['rows']: for rownumber in selection['rows']['y']: if rownumber is None: continue if dataObject.y is None: dataObject.y = [] dataObject.y.append(self.data[rownumber, :]) if 'm' in selection['rows']: for rownumber in selection['rows']['m']: if rownumber is None: continue if dataObject.m is None: dataObject.m = [] dataObject.m.append(self.data[rownumber, :]) elif ('cols' in selection) or ('columns' in selection): if 'cols' in selection: key = 'cols' else: key = 'columns' dataObject.x = None dataObject.y = None dataObject.m = None if 'x' in selection[key]: for rownumber in selection[key]['x']: if rownumber is None: continue if dataObject.x is None: dataObject.x = [] dataObject.x.append(self.data[:, rownumber]) if 'y' in selection[key]: for rownumber in selection[key]['y']: if rownumber is None: continue if dataObject.y is None: dataObject.y = [] dataObject.y.append(self.data[:, rownumber]) if 'm' in selection[key]: for rownumber in selection[key]['m']: if rownumber is None: continue if dataObject.m is None: dataObject.m = [] dataObject.m.append(self.data[:, rownumber]) if dataObject.x is None: if 'Channel0' in dataObject.info: ch0 = int(dataObject.info['Channel0']) else: ch0 = 0 dataObject.x = [numpy.arange(ch0, ch0 + len(dataObject.y[0])).astype(numpy.float64)] if not ("selectiontype" in dataObject.info): dataObject.info["selectiontype"] = "%dD" % len(dataObject.y) return dataObject ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/EdfFileDataSource.py0000644000000000000000000002516114741736366021045 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from . import DataObject from PyMca5.PyMcaIO import EdfFile import types import sys import os import numpy import logging SOURCE_TYPE = "EdfFile" _logger = logging.getLogger(__name__) class EdfFileDataSource(object): def __init__(self,nameInput, fastedf=False): if type(nameInput) == list: nameList = nameInput else: nameList = [nameInput] if sys.version < '3.0': stringTypes = [types.StringType, types.UnicodeType] else: stringTypes = [type("a"), type(eval('b"a"'))] for name in nameList: if type(name) not in stringTypes: raise TypeError("Constructor needs string as first argument") self.sourceName = nameInput self.sourceType = SOURCE_TYPE self.__sourceNameList = nameList #this is to be added #self._fastedf = True self._fastedf = fastedf if fastedf: _logger.warning("fastedf is unsafe!") self.refresh() def refresh(self): self._sourceObjectList=[] for name in self.__sourceNameList: self._sourceObjectList.append(EdfFile.EdfFile(name, access='rb', fastedf=self._fastedf)) self.__lastKeyInfo = {} def getSourceInfo(self): """ Returns information about the EdfFile object created by SetSource, to give application possibility to know about it before loading. Returns a dictionary with the key "KeyList" (list of all available keys in this source). Each element in "KeyList" has the form 'n1.n2' where n1 is the source number and n2 image number in file starting at 1. """ return self.__getSourceInfo() def __getSourceInfo(self): SourceInfo={} SourceInfo["SourceType"]=SOURCE_TYPE SourceInfo["KeyList"]=[] i = 0 for sourceObject in self._sourceObjectList: i+=1 nimages = sourceObject.GetNumImages() for n in range(nimages): SourceInfo["KeyList"].append("%d.%d" % (i,n+1)) SourceInfo["Size"]=len(SourceInfo["KeyList"]) return SourceInfo def getKeyInfo(self,key): if key in self.getSourceInfo()['KeyList']: return self.__getKeyInfo(key) else: #should we raise a KeyError? _logger.debug("Error key not in list ") return {} def __getKeyInfo(self,key): try: index,image = key.split(".") index = int(index)-1 image = int(image)-1 except Exception: #should we rise an error? _logger.debug("Error trying to interpret key = %s", key) return {} sourceObject = self._sourceObjectList[index] info= sourceObject.GetStaticHeader(image) info.update(sourceObject.GetHeader(image)) info["SourceType"] = SOURCE_TYPE #doubts about if refer to the list or to the individual file info["SourceName"] = self.sourceName info["Key"] = key #specific info of interest info['FileName'] = sourceObject.FileName info["rows"] = info['Dim_2'] info["cols"] = info['Dim_1'] info["type"] = info['DataType'] if 'MCA start ch' in info: info['Channel0'] = int(info['MCA start ch']) else: info['Channel0'] = 0 if not ( 'McaCalib' in info): if ('MCA a' in info) and\ ('MCA b' in info) and\ ('MCA c' in info): info['McaCalib'] = [float(info['MCA a']), float(info['MCA b']), float(info['MCA c'])] else: info['McaCalib'] = [ 0.0, 1.0, 0.0] else: if type(info['McaCalib']) in [type(" ")]: info['McaCalib'] = info['McaCalib'].replace("[","") info['McaCalib'] = info['McaCalib'].replace("]","") cala, calb, calc = info['McaCalib'].split(",") info['McaCalib'] = [float(cala), float(calb), float(calc)] self.__lastKeyInfo[key] = os.path.getmtime(sourceObject.FileName) return info def getDataObject(self,key,selection=None): """ selection: a dictionary with the keys pos and size: (x), (x,y) or (x,y,z) tuples defining a roi If not defined, takes full array """ sourcekeys = self.getSourceInfo()['KeyList'] #a key corresponds to an image key_split= key.split(".") image_key= key_split[0]+"."+key_split[1] if image_key not in sourcekeys: #if image_key == "0.0": # #this is in fact a special selection: The SUM # pass #else: raise KeyError("Key %s not in source keys" % image_key) #create data object data = DataObject.DataObject() data.info = self.__getKeyInfo(image_key) data.info ['selection'] = selection data.info['selectiontype'] = "2D" index = key_split[0] image = key_split[1] index = int(index)-1 image = int(image)-1 MCAIMP = 0 if len(key_split) == 4: _logger.debug("mca like selection") #print data.info if 1: MCAIMP = 1 if key_split[2].upper() == 'R': pos = (0, int(key_split[3])) size = (int(data.info['Dim_1']), 1) elif key_split[2].upper() == 'C': pos = (int(key_split[3]), 0) size = (1,int(data.info['Dim_2'])) data.info['selectiontype'] = "1D" else: _logger.debug("mca like selection not yet implemented") pos = None size = None data.info['selectiontype'] = "1D" elif selection is None: pos = None size = None else: if "pos" in selection: data.info["pos"]=selection['pos'] else: data.info['pos']=None if "size" in selection: data.info["size"]=selection['size'] else: data.info['size']=None pos = data.info['pos'] size = data.info['size'] sourceObject = self._sourceObjectList[index] data.data=sourceObject.GetData(image,Pos=pos,Size=size) data.info['rows'], data.info['cols'] = data.data.shape[0:2] if data.info['selectiontype'] == "1D": if MCAIMP: data.y = [numpy.ravel(data.data[:]).astype(numpy.float64)] else: if key_split[2].upper() == 'C': data.y=[data.data[:,int(key_split[3])-1].astype(numpy.float64)] elif key_split[2].upper() == 'R': data.y=[data.data[int(key_split[3])-1, :].astype(numpy.float64)] else: raise ValueError("Unknown key %s" % key) ch0 = int(data.info['Channel0']) data.x = [ch0+numpy.arange(len(data.y[0])).astype(numpy.float64)] data.m = None data.data = None #print "data.x.shape ", data.x[0].shape #print "data.y.shape ", data.y[0].shape return data def isUpdated(self, sourceName, key): #sourceName is redundant? index,image = key.split(".") index = int(index)-1 lastmodified = os.path.getmtime(self.__sourceNameList[index]) if lastmodified != self.__lastKeyInfo[key]: self.__lastKeyInfo[key] = lastmodified return True else: return False source_types = { SOURCE_TYPE: EdfFileDataSource} def DataSource(name="", source_type=SOURCE_TYPE): try: sourceClass = source_types[source_type] except KeyError: #ERROR invalid source type raise TypeError("Invalid Source Type, source type should be one of %s" %\ source_types.keys()) return sourceClass(name) if __name__ == "__main__": import time try: sourcename=sys.argv[1] key =sys.argv[2] except Exception: _logger.error("Usage: EdfFileDataSource ") sys.exit() #one can use this: obj = EdfFileDataSource(sourcename) #or this: obj = DataSource(sourcename) #data = obj.getData(key,selection={'pos':(10,10),'size':(40,40)}) #data = obj.getDataObject(key,selection={'pos':None,'size':None}) t0 = time.time() data = obj.getDataObject(key,selection=None) print("elapsed = ",time.time() - t0) print("info = ",data.info) if data.data is not None: print("data shape = ",data.data.shape) print(numpy.ravel(data.data)[0:10]) else: print(data.y[0].shape) print(numpy.ravel(data.y[0])[0:10]) data = obj.getDataObject('1.1',selection=None) r = int(key.split('.')[-1]) print(" data[%d,0:10] = " % (r-1),data.data[r-1 ,0:10]) print(" data[0:10,%d] = " % (r-1),data.data[0:10, r-1]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/EdfFileLayer.py0000644000000000000000000004562614741736366020077 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ EdfFileData.py Data derived class to access Edf files """ ################################################################################ import logging #import fast_EdfFile as EdfFile from PyMca5.PyMcaIO import EdfFile ################################################################################ _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFile" class EdfFileLayer(object): """ Specializes Data class in order to access Edf files. Interface: Data class interface. """ def __init__(self,refresh_interval=None,info={},fastedf=None): """ See Data.__init__ """ info["Class"]="EdfFileData" #Data.__init__(self,refresh_interval,info) self.SourceName= None self.SourceInfo= None if fastedf is None:fastedf =0 self.fastedf = fastedf self.GetData = self.LoadSource def GetPageInfo(self,index={}): if 'SourceName' in index: self.SetSource(index['SourceName']) if 'Key' in index: info=self.GetData(index['Key']) return info[0] def AppendPage(self,info={}, array=None): return info,array def SetSource (self,source_name=None, source_obj = None): """ Sets a new source for data retrieving, an edf file. If the file exists, self.Source will be the EdfFile object associated to this file. Parameters: source_name: name of the edf file """ if source_name==self.SourceName: return 1 if (type(source_name) != type([])):source_name = [source_name] if (source_name is not None): if source_obj is not None: self.Source= source_obj else: if (type(source_name) == type([])): _logger.debug("List of files") self.Source=[] for name in source_name: try: self.Source.append(EdfFile.EdfFile(name,fastedf=self.fastedf)) except Exception: # _logger.info("EdfFileLayer.SetSource: Error trying to read EDF file %s", name) self.Source.append( None) else: try: self.Source = EdfFile.EdfFile(source_name, fastedf=self.fastedf) except Exception: # _logger.info("EdfFileLayer.SetSource: Error trying to read EDF file") self.Source=None else: self.Source=None self.SourceInfo= None if self.Source is None: self.SourceName= None return 0 else: self.SourceName="" for name in source_name: if self.SourceName != "":self.SourceName+="|" self.SourceName+= name return 1 def GetPageArray(self,index=0): """ Returns page's data (NumPy array) Parameters: index: Either an integer meaning the sequencial position of the page or a dictionary that logically index the page based on keys of the page's Info dictionary. """ index=self.GetPageListIndex(index) if index is None or index >= len(self.Pages): return None return self.Pages[index].Array def GetPageListIndex(self,index): """ Converts a physical or logical index, into a physical one """ try: index = int(index) except Exception: pass if type(index) is not type({}): return index for i in range(self.GetNumberPages()): found = 1 for key in index.keys(): if key not in self.Pages[i].Info.keys() or self.Pages[i].Info[key] != index[key]: found=0 break if found: return i return None def GetSourceInfo (self,key=None): """ Returns information about the EdfFile object created by SetSource, to give application possibility to know about it before loading. Returns a dictionary with the keys "Size" (number of possible keys to this source) and "KeyList" (list of all available keys in this source). Each element in "KeyList" is an integer meaning the index of the array in the file. """ if self.SourceName == None: return None if type(self.Source) == type([]): enumtype = 1 else: enumtype = 0 if not enumtype: if key is None: source_info={} if self.SourceInfo is None: NumImages=self.Source.GetNumImages() self.SourceInfo={} self.SourceInfo["Size"]=NumImages self.SourceInfo["KeyList"]=range(NumImages) source_info.update(self.SourceInfo) return source_info else: NumImages=self.Source.GetNumImages() source_info={} source_info["Size"]=NumImages source_info["KeyList"]=range(NumImages) return source_info else: if key is None: source_info={} self.SourceInfo={} self.SourceInfo["Size"] = 0 self.SourceInfo["KeyList"]= [] for source in self.Source: NumImages=source.GetNumImages() self.SourceInfo["Size"] += NumImages for imagenumber in range(NumImages): self.SourceInfo["KeyList"].append('%d.%d' % (self.Source.index(source)+1, imagenumber+1)) source_info.update(self.SourceInfo) return source_info else: try: index,image = key.split(".") index = int(index)-1 image = int(image)-1 except Exception: _logger.error("Error trying to interpret key = %s", key) return {} source = self.Source[index] NumImages=source.GetNumImages() source_info={} source_info["Size"]=NumImages source_info["KeyList"]=[] for imagenumber in range(NumImages): source_info.append('%d.%d' % (index+1,imagenumber+1)) return source_info def LoadSource(self,key_list="ALL",append=0,invalidate=1,pos=None,size=None): """ Creates a given number of pages, getting data from the actual source (set by SetSource) Parameters: key_list: list of all keys to be read from source. It is a list of keys, meaning the indexes to be read from the file. It can be also one integer, if only one array is to be read. append: If non-zero appends to the end of page list. Otherwise, initializes the page list invalidate: if non-zero performas an invalidade call after loading pos and size: (x), (x,y) or (x,y,z) tuples defining a roi If not defined, takes full array Stored in page's info """ #AS if append==0: Data.Delete(self) #numimages=self.Source.GetNumImages() sourceinfo = self.GetSourceInfo() numimages=sourceinfo['Size'] if key_list == "ALL": key_list=sourceinfo['KeyList'] elif type(key_list) != type([]): key_list=[key_list] #AS elif type(key_list) is types.IntType: key_list=[key_list] if pos is not None: edf_pos=list(pos) for i in range(len(edf_pos)): if edf_pos[i]=="ALL":edf_pos[i]=0 else: edf_pos=None if size is not None: edf_size=list(size) for i in range(len(edf_size)): if edf_size[i]=="ALL":edf_size[i]=0 else: edf_size=None output = [] for key0 in key_list: f = 1 sumrequested = 0 if type(key0) == type({}): if 'Key' in key0: key = key0['Key'] if type(key0) == type(''): if len(key0.split(".")) == 2: f,i = key0.split(".") f=int(f) i=int(i) if (i==0): if f == 0:sumrequested=1 else:i=1 key = "%d.%d" % (f,i) else: i=int(key0) if i < len(sourceinfo['KeyList']): key = sourceinfo['KeyList'][i] f,i = key.split(".") f=int(f) i=int(i) else: key = "%d.%d" % (f,i) else: i = key0 if i >= numimages: raise IndexError("EdfFileData: index out of bounds") imgcount =0 f=0 for source in self.Source: f+=1 n = source.GetNumImages() if i < (imgcount+n): i = i - imgcount break imgcount += n i+=1 key = "%d.%d" % (f,i) if key == "0.0":sumrequested=1 info={} info["SourceType"]=SOURCE_TYPE info["SourceName"]=self.SourceName info["Key"]=key info["Source"]=self.Source info["pos"]=pos info["size"]=size if not sumrequested: info.update(self.Source[f-1].GetStaticHeader(i-1)) info.update(self.Source[f-1].GetHeader(i-1)) if info["DataType"]=="UnsignedShort":array=self.Source[f-1].GetData(i-1,"SignedLong",Pos=edf_pos,Size=edf_size) elif info["DataType"]=="UnsignedLong":array=self.Source[f-1].GetData(i-1,"DoubleValue",Pos=edf_pos,Size=edf_size) else: array=self.Source[f-1].GetData(i-1,Pos=edf_pos,Size=edf_size) if 'Channel0' in info: info['Channel0'] = int(float(info['Channel0'])) elif 'MCA start ch' in info: info['Channel0'] = int(float(info['MCA start ch'])) else: info['Channel0'] = 0 if not ('McaCalib' in info): if 'MCA a' in info and 'MCA b' in info and 'MCA c' in info: info['McaCalib'] = [float(info['MCA a']), float(info['MCA b']), float(info['MCA c'])] else: # this is not correct, I assume info # is the same for all sources f=1 i=1 info.update(self.Source[f-1].GetStaticHeader(i-1)) info.update(self.Source[f-1].GetHeader(i-1)) if 'Channel0' in info: info['Channel0'] = int(float(info['Channel0'])) elif 'MCA start ch' in info: info['Channel0'] = int(float(info['MCA start ch'])) else: info['Channel0'] = 0 if not ('McaCalib' in info): if 'MCA a' in info and 'MCA b' in info and 'MCA c' in info: info['McaCalib'] = [float(info['MCA a']), float(info['MCA b']), float(info['MCA c'])] f=0 for source in self.Source: for i in range(source.GetNumImages()): if info["DataType"]=="UnsignedShort":array0=source.GetData(i,"SignedLong",Pos=edf_pos, Size=edf_size) elif info["DataType"]=="UnsignedLong":array0=source.GetData(i,"DoubleValue",Pos=edf_pos, Size=edf_size) else: array0=source.GetData(i,Pos=edf_pos,Size=edf_size) if (f==0) and (i==0): array = 1 * array0 else: array += array0 f+=1 if 'McaCalib' in info: if type(info['McaCalib']) == type(" "): info['McaCalib'] = info['McaCalib'].replace("[","") info['McaCalib'] = info['McaCalib'].replace("]","") cala, calb, calc = info['McaCalib'].split(",") info['McaCalib'] = [float(cala), float(calb), float(calc)] output.append([info,array]) #AS self.AppendPage(info,array) if len(output) == 1: return output[0] else: return output #AS if invalidate: self.Invalidate() def LoadSourceSingle(self,key_list="ALL",append=0,invalidate=1,pos=None,size=None): """ Creates a given number of pages, getting data from the actual source (set by SetSource) Parameters: key_list: list of all keys to be read from source. It is a list of keys, meaning the indexes to be read from the file. It can be also one integer, if only one array is to be read. append: If non-zero appends to the end of page list. Otherwise, initializes the page list invalidate: if non-zero performas an invalidade call after loading pos and size: (x), (x,y) or (x,y,z) tuples defining a roi If not defined, takes full array Stored in page's info """ #AS if append==0: Data.Delete(self) numimages=self.Source.GetNumImages() if key_list == "ALL": key_list=range(numimages) elif type(key_list) != type([]): key_list=[key_list] #AS elif type(key_list) is types.IntType: key_list=[key_list] if pos is not None: edf_pos=list(pos) for i in range(len(edf_pos)): if edf_pos[i]=="ALL":edf_pos[i]=0 else: edf_pos=None if size is not None: edf_size=list(size) for i in range(len(edf_size)): if edf_size[i]=="ALL":edf_size[i]=0 else: edf_size=None output = [] for key in key_list: if type(key) == type({}): if 'Key' in key: key = key['Key'] if type(key) == type(''): i=int(key) else: i = key if i >= numimages: raise IndexError("EdfFileData: index out of bounds") info={} info["SourceType"]=SOURCE_TYPE info["SourceName"]=self.SourceName info["Key"]=i info["Source"]=self.Source info["pos"]=pos info["size"]=size info.update(self.Source.GetStaticHeader(i)) info.update(self.Source.GetHeader(i)) if info["DataType"]=="UnsignedShort":array=self.Source.GetData(i,"SignedLong",Pos=edf_pos,Size=edf_size) elif info["DataType"]=="UnsignedLong":array=self.Source.GetData(i,"DoubleValue",Pos=edf_pos,Size=edf_size) else: array=self.Source.GetData(i,Pos=edf_pos,Size=edf_size) if 'MCA start ch' in info: info['Channel0'] = int(info['MCA start ch']) else: info['Channel0'] = 0 if not ('McaCalib' in info): if 'MCA a' in info and 'MCA b' in info and 'MCA c' in info: info['McaCalib'] = [float(info['MCA a']), float(info['MCA b']), float(info['MCA c'])] output.append([info,array]) #AS self.AppendPage(info,array) if len(output) == 1: return output[0] else: return output #AS if invalidate: self.Invalidate() ################################################################################ #EXAMPLE CODE: if __name__ == "__main__": import sys,time try: filename=sys.argv[1] key=sys.argv[2] fast = int(sys.argv[3]) obj=EdfFileLayer(fastedf=fast) if not obj.SetSource([filename]): _logger.error("ERROR: cannot open file %s" % filename) sys.exit() #obj.LoadSource(key) except Exception: _logger.error("Usage: EdfFileData.py ") sys.exit() print(obj.GetSourceInfo()) for i in range(1): #this works obj.LoadSource("%d" % i) print("Full") e=time.time() info,data = obj.LoadSource(key) print("elapsed = ",time.time()-e) print("selection") e=time.time() info,data = obj.LoadSource(key,pos=(0,0),size=(90,0)) print("elapsed = ",time.time()-e) print(info) #print obj.GetPageInfo("%d" % i) #print obj.GetPageInfo(i) #print obj.GetPageInfo({'Key':i}) #print obj.GetPageArray(i) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/EventHandler.py0000644000000000000000000002372114741736366020153 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ This module implements an event handler class. This a communication system between objects based on a pattern observer / producer. The producer generates events, and the observer are listening to events. The event handler is designed to manage this communication. The communication is completely synchronous. (This is differnet to the X mainloop where callbacks are not interrupted.) The events have a hierarchy which is specified by a fullname just like other python classes (i.e The callback of the NewDataEvent.XNewDataEvent event is called when its parent the NewDataEvent is fired and also when the XNewDataEvent is fired). The pattern should be the following: Class1 sends events. It will be responsible to create them in the beginning with: myevent = eh.create("myevent") and later send the event with eh.event (myevent, arg1, arg2, ...) Class2 receives events. It will be responsible to register its interest in the events and specify the methods to be called The Main program should create the eventhandler eh = Eventhandler() and pass it to the constructor of the classes Class1(eh=eh) Class2(eh=eh) Some conventions: * All the registered events should have public documented methods as alternatives. The classes should not rely on the fact that an eventhandler is passed * The eventhandler argument should be a keyword called eh and defaults to None and should not be necessary. You should forsee that the functionality can be used via std callbacks (i.e in the constructor selectcb=select), overriding std methods (i.e. select() or simple methods in your class to set a callback or provide the information directly (i.e SetSelectCB(), GetSelection) Events: Classes derived from the Event class Full event names: A string with the event name fully specified (i.e. a.b.c) """ __version__ = '0.1Beta' import logging _logger = logging.getLogger(__name__) class Event(object): pass class OneEvent(object): def __init__(self, parent = None, event = None): self.parent = parent self.event = event self.callbacks = [] self.creator = None self.created = 0 class EventHandler(object): def __init__(self): self.callbacks = {} self.fulldict = {} self.rootevent = OneEvent(event = Event) self.events = {} def _create(self, fulleventstr, myid = None): try: return self.fulldict[fulleventstr] except KeyError: try: idx = fulleventstr.rindex(".") + 1 parentstr = fulleventstr[:idx-1] parent = self._create(parentstr) except ValueError: parent = self.rootevent idx = 0 #event = new.classobj(fulleventstr[idx:], (parent.event,), globals()) event = type(fulleventstr[idx:], (parent.event,), globals()) self.fulldict[fulleventstr] = OneEvent(event = event, parent = parent) return self.fulldict[fulleventstr] def create(self, fulleventstr, myid = None): """ Create the event. This call will take a full classname a.b.c and create the event calls and all the parent classes if necessary. It returns the eventclassobject which can be used to fire the event later. It is no error to create the class after registering for it, but it is an error to fire an event before creating it. Normally the event producer is responsible for creating it """ oe = self._create(fulleventstr, myid = myid) oe.creator = myid oe.created = 1 self.preparefastevents() return oe.event def register(self, fulleventstr, callback, myid = None, source = None): """ Register the event a.b.c with callback . You have to specify the full name of the event class as it might be created during this call. A later create call with the same event will just confirm this creation. You can specify an id for yourself and an id for the source you would like to listen to. The source restrictions are not yet implemented because of performance considerations. """ oe = self._create(fulleventstr) oe.callbacks.append((callback, myid, source)) self.preparefastevents() return oe.event def unregister(self, fulleventstr, callback, myid = None): """ Unregister the callback from the eventclass a.b.c. The id has to be specified if it has been specified on registering the callback """ try: oe = self.fulldict[fulleventstr] for cb, regid, source in oe.callbacks: if cb == callback and regid == myid: oe.callbacks.remove((cb, myid, source)) except KeyError: # there is no such event pass self.preparefastevents() def dumptostr(self, fullname, cbflag = 1): s = "%s: " % fullname try: oe = self.fulldict[fullname] except KeyError: return s + "undefined\n" if oe.created == 0: creator = "" elif oe.creator is None: creator = "creator not specified" else: creator = "created by " + oe.creator s = s + "(%s)\n" % creator if cbflag: for cb, regid, source in oe.callbacks: try: cbname = cb.__name__ except AttributeError: cbname = "%s" % cb s = s + " %s" % cbname if regid: s = s + " (reg by: %s)" % str(regid) if source: s = s + " (only: %s)" % str(source) s = s + "\n" return s def dumpalltostr(self): s = "" for fullname in self.fulldict.keys(): s = s + self.dumptostr(fullname) return s def preparefastevents(self): """ calculate the callback functions for all possible events """ self.events = {} self.callbacks = {} for fullev, oe in self.fulldict.items(): events = fullev.split(".") self.events[events[-1]] = oe.event # only for our callers cbs = [x[0] for x in self.fulldict[fullev].callbacks] for i in range(len(events)): evname = ".".join(events[:i+1]) ev = self.fulldict[evname].event try: self.callbacks[ev] = self.callbacks[ev] + cbs except Exception: self.callbacks[ev] = cbs def event(self, event, *args, **kw): """ Fire the event with arguments and keywords """ if event in self.callbacks.keys(): for cb in self.callbacks[event]: cb(*args, **kw) else: _logger.warning("Warning: missing event: %s", event) def getfullevents(self): """ return a list with fully specified event names (a.b.c) """ return self.fulldict.keys() def getevents(self): """ return a list with name item tuples. """ evdict = {} for fullev in self.fulldict.keys(): events = fullev.split(".") dict = evdict for i in range(len(events)): evname = events[i] if not (evname in dict): dict[evname] = {} dict = dict[evname] return self._dict2tup(evdict) def _dict2tup(self, dict): li = [] for key, item in dict.items(): if item == {}: li.append((key, 0)) else: li.append((key, self._dict2tup(item))) return li def test(eh = None): """EventHandler class test function""" def callback1(data, more=None): print('Hi callback 1 (Data) with data : %s and %s' % (data, more)) def callback2(data, more=None): print('Hi callback 2 (XData) with data : %s and %s' % (data, more)) def callback3(data, more=None): print('Hi callback 3 (Ydata) with data : %s and %s' % (data, more)) if eh is None: eh = EventHandler() NewDataEvent = eh.create("NewDataEvent") XNewDataEvent = eh.create("NewDataEvent.XNewDataEvent") YNewDataEvent = eh.create("NewDataEvent.YNewDataEvent") eh.register("NewDataEvent", callback1) eh.register("NewDataEvent.XNewDataEvent" , callback2) eh.register("NewDataEvent.YNewDataEvent" , callback3) print("%s" % eh.getevents()) eh.event(XNewDataEvent, "this is data for 2") eh.event(NewDataEvent, "this is data for 1,2,3", more=[1,2,3]) eh.event(eh.events["YNewDataEvent"], "more for 3") try: eh.event("XNewDataEvent", "this is data again") except KeyError: print("Error: String as Event has been detected sucessfully") eh.unregister("NewDataEvent", callback1) eh.event(NewDataEvent, "this is data again again") if __name__ == '__main__': test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/HtmlIndex.py0000644000000000000000000002120614741736366017464 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging import os import sys import time from . import PyMcaLogo _logger = logging.getLogger(__name__) class HtmlIndex(object): def __init__(self, htmldir): if htmldir is None: htmldir = "/tmp/HTML" self.htmldir = htmldir def isHtml(self, x): if len(x) < 5: return 0 if x[-5:] == ".html": return 1 def isHtmlDir(self, x): if len(x) < 7: return 0 if x[-7:] == "HTMLDIR": return 1 def getHeader(self,addlink=None): link= [ ['http://www.esrf.fr', 'ESRF home'], ['http://www.esrf.fr/computing/bliss/', 'BLISS home'], ] if addlink is not None: for item in addlink: link.append(item) text ="" text+= "" text+= "" text+= "PyMCA : Advanced Fit Results" text+= "" text+= "" text+= "

" text+= "" text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= "
" text+= " PyMCA : Advanced Fit Results" text+= " " text+= " " logofile = self.htmldir + "/" + "PyMcaLogo.png" if not os.path.exists(logofile): try: import qt pixmap = qt.QPixmap(PyMcaLogo.PyMcaLogo) pixmap.save(logofile,"PNG") except Exception: pass text+= " " % "PyMcaLogo.png" text+= "
" text+= " " text+= " " text+= " " text+= " " text+= "
" text+= "  " for name in link: text+= "|  %s  "%(tuple(name)) text+= " " text+= "
" text+= "
" text+= "
" text+= "
" return text def getFooter(self): now = time.time() text ="" text+= "
" text+= "" text+= " " text+= " " text+= " " text+= " " text+= " " % time.ctime(now) text+= " " if sys.platform == 'win32': try: user = os.environ['USERNAME'] text+= " %s" % user except Exception: text +="" else: try: user = os.getlogin() text+= " %s" % user except Exception: text +="" text+= " " text+= "
created: %slast modified: %s by" % time.ctime(now) #text+= " papillon@esrf.fr
" text+= "
" text+= "" text+= "" return text def getBody(self, htmldir=None): if htmldir is None:htmldir = self.htmldir dirlist = filter(self.isHtmlDir, os.listdir(htmldir)) filelist = [] for directory in dirlist: fulldir = os.path.join(self.htmldir,directory) filelist += filter(self.isHtml, os.listdir(fulldir)) #I have a list of directories and of indexes for directory in dirlist: fulldir = os.path.join(htmldir,directory) index = os.path.join(fulldir,"index.html") if os.path.exists(index): try: os.remove(index) except Exception: _logger.error("getBody cannot delete file %s", index) continue def _getHtmlFileList(self, directory): return filter(self.isHtml, os.listdir(directory)) def _getHtmlDirList(self, directory): return filter(self.isHtmlDir, os.listdir(directory)) def buildIndex(self, directory=None): if directory is None: directory = self.htmldir index = os.path.join(directory, "index.html") if os.path.exists(index): try: os.remove(index) except Exception: _logger.error("buildindex cannot delete file %s", index) return filelist = self._getHtmlFileList(directory) text = "" text += self.getHeader() for ffile in filelist: text +="%s
" % (ffile, ffile.split(".html")[0]) text += self.getFooter() if sys.version_info < (3,): fformat = 'wb' else: fformat = 'w' ffile = open(index, fformat) ffile.write(text) ffile.close() def buildRecursiveIndex(self, directory=None): if directory is None: directory = self.htmldir index = os.path.join(directory, "index.html") if os.path.exists(index): try: os.remove(index) except Exception: _logger.error("cannot delete file %s", index) return directorylist = self._getHtmlDirList(directory) text = "" text += self.getHeader() for ffile in directorylist: fulldir = os.path.join(directory, ffile) self.buildIndex(fulldir) fileroot = ffile.split('_HTMLDIR')[0] link = "./" + ffile + "/index.html" text +="%s
" % (link, fileroot) text += self.getFooter() if sys.version_info < (3,): fformat = 'wb' else: fformat = 'w' ffile = open(index, fformat) ffile.write(text) ffile.close() if __name__ == "__main__": if len(sys.argv) > 1: a = HtmlIndex(sys.argv[1]) else: print("Trying /tmp/HTML as input directory") a = HtmlIndex('/tmp/HTML') a.buildRecursiveIndex() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/LegacyPyMcaBatchBuildOutput.py0000644000000000000000000002453114741736366023075 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy import logging from PyMca5.PyMcaIO import EdfFile _logger = logging.getLogger(__name__) class PyMcaBatchBuildOutput(object): def __init__(self, inputdir=None, outputdir=None): self.inputDir = inputdir self.outputDir = outputdir def buildOutput(self, inputdir=None, outputdir=None, delete=None): if inputdir is None:inputdir = self.inputDir if inputdir is None:inputdir = os.getcwd() if outputdir is None: outputdir = self.outputDir if outputdir is None: outputdir = inputdir if delete is None: if outputdir == inputdir: delete = True _logger.debug("delete option = %s", delete) allfiles = os.listdir(inputdir) partialedflist = [] partialdatlist = [] partialconlist = [] for filename in allfiles: if filename.endswith('000000_partial.edf'):partialedflist.append(filename) elif filename.endswith('000000_partial.dat'):partialdatlist.append(filename) elif filename.endswith('000000_partial_concentrations.txt'):partialconlist.append(filename) #IMAGES edfoutlist = [] for filename in partialedflist: _logger.debug("Dealing with filename %s", filename) edflist = self.getIndexedFileList(os.path.join(inputdir, filename)) i = 0 for edfname in edflist: edf = EdfFile.EdfFile(edfname, access='rb', fastedf = 0) nImages = edf.GetNumImages() #get always the last image data0 = edf.GetData(nImages-1) data0[data0<0] = 0 if i == 0: header = edf.GetHeader(0) data = data0.copy() else: data += data0 del edf i += 1 edfname = filename.replace('_000000_partial.edf',".edf") edfoutname = os.path.join(outputdir, edfname) _logger.debug("Dealing with output filename %s", edfoutname) if os.path.exists(edfoutname): _logger.debug("Output file already exists, trying to delete it") os.remove(edfoutname) edfout = EdfFile.EdfFile(edfoutname, access="wb") edfout.WriteImage (header , data, Append=0) del edfout edfoutlist.append(edfoutname) if delete: for filename in edflist: try: os.remove(filename) except Exception: _logger.warning("Cannot delete file %s" % filename) #DAT IMAGES datoutlist = [] for filename in partialdatlist: edflist = self.getIndexedFileList(os.path.join(inputdir, filename)) first = True for edfname in edflist: f = open(edfname) lines = f.readlines() f.close() j = 1 while (not len( lines[-j].replace("\n",""))): j += 1 if first: first = False labels = lines[0].replace("\n","").split(" ") nlabels = len(labels) nrows = len(lines) - j data = numpy.zeros((nrows, nlabels), numpy.double) inputdata = numpy.zeros((nrows, nlabels), numpy.double) chisqIndex = labels.index('chisq') for i in range(nrows): inputdata[i, :] = [float(x) for x in lines[i+1].split()] if inputdata[i, chisqIndex] < 0.0: inputdata[i, chisqIndex] = 0.0 data += inputdata outfilename = os.path.join(outputdir, filename.replace("_000000_partial","")) if os.path.exists(outfilename): os.remove(outfilename) outfile=open(outfilename,'w+') outfile.write('%s' % lines[0]) line="" for row in range(nrows): #line = "%d" % inputdata[row, 0] for col in range(nlabels): if col == 0 : line += "%d" % inputdata[row, col] elif col == 1 : line += " %d" % inputdata[row, col] else: line += " %g" % data[row, col] line += "\n" outfile.write("%s" % line) line ="" outfile.write("\n") outfile.close() datoutlist.append(outfilename) if delete: for filename in edflist: os.remove(filename) #CONCENTRATIONS outconlist = [] for filename in partialconlist: edflist = self.getIndexedFileList(os.path.join(inputdir, filename)) i = 0 for edfname in edflist: edf = open(edfname, 'rb') if i == 0: outfilename = os.path.join(outputdir, filename.replace("_000000_partial","")) if os.path.exists(outfilename): os.remove(outfilename) outfile = open(outfilename,'wb') lines = edf.readlines() for line in lines: outfile.write(line) edf.close() i += 1 outfile.close() outconlist.append(outfilename) if delete: for filename in edflist: os.remove(filename) return edfoutlist, datoutlist, outconlist def getIndexedFileList(self, filename, begin=None,end=None, skip = None, fileindex=0): name = os.path.basename(filename) n = len(name) i = 1 numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8','9'] while (i <= n): c = name[n-i:n-i+1] if c in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break i += 1 suffix = name[n-i+1:] if len(name) == len(suffix): #just one file, one should use standard widget #and not this one. self.loadFileList(filename, fileindex=fileindex) else: nchain = [] while (i<=n): c = name[n-i:n-i+1] if c not in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break else: nchain.append(c) i += 1 number = "" nchain.reverse() for c in nchain: number += c fformat = "%" + "0%dd" % len(number) if (len(number) + len(suffix)) == len(name): prefix = "" else: prefix = name[0:n-i+1] prefix = os.path.join(os.path.dirname(filename),prefix) if not os.path.exists(prefix + number + suffix): _logger.error("Internal error in EDFStack") _logger.error("file should exist: %s " % (prefix + number + suffix)) return i = 0 if begin is None: begin = 0 testname = prefix+fformat % begin+suffix while not os.path.exists(prefix+ fformat % begin+suffix): begin += 1 testname = prefix+fformat % begin+suffix if len(testname) > len(filename):break i = begin else: i = begin if not os.path.exists(prefix+fformat % i+suffix): raise ValueError("Invalid start index file = %s" % \ (prefix+fformat % i+suffix)) f = prefix+fformat % i+suffix filelist = [] while os.path.exists(f): filelist.append(f) i += 1 if end is not None: if i > end: break f = prefix+fformat % i+suffix return filelist if __name__ == "__main__": import sys if len(sys.argv) < 2: print("Usage:") print("python PyMcaBatchBuildOutput.py directory") sys.exit(0) directory = sys.argv[1] w = PyMcaBatchBuildOutput(directory) w.buildOutput() """ allfiles = os.listdir(directory) edflist = [] datlist = [] for filename in allfiles: if filename.endswith('000000_partial.edf'):edflist.append(filename) elif filename.endswith('000000_partial.dat'):datlist.append(filename) for filename in edflist: print w.getIndexedFileList(os.path.join(directory, filename)) """ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/LegacyStackROIBatch.py0000644000000000000000000003631114741736366021301 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Module to calculate a set of ROIs on a stack of data. """ import os import numpy from PyMca5.PyMcaIO import ConfigDict import time import logging _logger = logging.getLogger(__name__) class StackROIBatch(object): def __init__(self): self._config = {} def setConfiguration(self, configuration): self._config["ROI"] = configuration["ROI"] def getConfiguration(self): return self._config def setConfigurationFile(self, ffile): if not os.path.exists(ffile): raise IOError("File <%s> does not exists" % ffile) configuration = ConfigDict.ConfigDict() configuration.read(ffile) self.setConfiguration(configuration) def batchROIMultipleSpectra(self, x=None, y=None, configuration=None, net=True, xAtMinMax=False, index=None, xLabel=None): """ This method performs the actual fit. The y keyword is the only mandatory input argument. :param x: 1D array containing the x axis (usually the channels) of the spectra. :param y: 3D array containing the data, usually [nrows, ncolumns, nchannels] :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow) :param net: 0 Means no subtraction, 1 Calculate :param xAtMinMax: if True, calculate X at maximum and minimum Y . Default is false. :param index: Index of dimension where to apply the ROIs. :param xLabel: Type of ROI to be used. :return: A dictionary with the images and the image names as keys. """ if y is None: raise RuntimeError("y keyword argument is mandatory!") if hasattr(y, "info") and hasattr(y, "data"): data = y.data mcaIndex = y.info.get("McaIndex", -1) else: data = y mcaIndex = -1 if index is None: index = mcaIndex if index < 0: index = len(data.shape) - 1 #workaround a problem with h5py try: if index in [0]: testException = data[0:1] else: if len(data.shape) == 2: testException = data[0:1,-1] elif len(data.shape) == 3: testException = data[0:1,0:1,-1] except AttributeError: txt = "%s" % type(data) if 'h5py' in txt: _logger.info("Implementing h5py workaround") import h5py data = h5py.Dataset(data.id) else: raise # make sure to get x data if x is None: x = numpy.arange(data.shape[index]).astype(numpy.float32) if configuration is not None: self.setConfiguration(configuration) # read the current configuration config = self.getConfiguration() # start the work roiList0 = config["ROI"]["roilist"] if type(roiList0) not in [type([]), type((1,))]: roiList0 = [roiList0] # operate only on compatible ROIs roiList = [] for roi in roiList0: if roi.upper() == "ICR": roiList.append(roi) roiType = config["ROI"]["roidict"][roi]["type"] if xLabel is None: roiList.append(roi) elif xLabel.lower() == roiType.lower(): roiList.append(roi) else: _logger.info("ROI <%s> ignored") # only usual spectra case supported if index != (len(data.shape) - 1): raise IndexError("Only stacks of spectra supported") if len(data.shape) != 3: txt = "For the time being only " txt += "three dimensional arrays supported" raise NotImplemented(txt) if len(data.shape) != 3: txt = "For the time being only " txt += "three dimensional arrays supported" raise NotImplemented(txt) totalSpectra = 1 for i in range(len(data.shape)): if i != index: totalSpectra *= data.shape[i] if x.size != data.shape[index]: raise NotImplemented("All the spectra should share same X axis") jStep = min(1000, data.shape[1]) nRois = len(roiList) idx = [None] * nRois xw = [None] * nRois iXMinList = [None] * nRois iXMaxList = [None] * nRois nRows = data.shape[0] nColumns = data.shape[1] if xAtMinMax: results = numpy.zeros((nRois * 4, nRows, nColumns), numpy.float64) names = [None] * 4 * nRois else: results = numpy.zeros((nRois * 2, nRows, nColumns), numpy.float64) names = [None] * 2 * nRois for i in range(0, data.shape[0]): if i == 0: chunk = numpy.zeros((jStep, data.shape[index]), numpy.float64) xData = x jStart = 0 while jStart < data.shape[1]: jEnd = min(jStart + jStep, data.shape[1]) chunk[:(jEnd - jStart)] = data[i, jStart: jEnd] for j, roi in enumerate(roiList): if i == 0: roiType = config["ROI"]["roidict"][roi]["type"] roiLine = roi roiFrom = config["ROI"]["roidict"][roi]["from"] roiTo = config["ROI"]["roidict"][roi]["to"] if roiLine == "ICR": xw[j] = xData idx[j] = numpy.arange(len(xData)) iXMinList[j] = idx[j][0] iXMaxList[j] = idx[j][-1] else: idx[j] = numpy.nonzero((roiFrom <= xData) & (xData <= roiTo))[0] if len(idx): xw[j] = xData[idx[j]] iXMinList[j] = numpy.argmin(xw[j]) iXMaxList[j] = numpy.argmax(xw[j]) else: xw[j] = None names[j] = "ROI " + roiLine names[j + nRois] = "ROI "+ roiLine + " Net" if xAtMinMax: names[j + 2 * nRois] = "ROI "+ roiLine + (" %s at Max." % roiType) names[j + 3 * nRois] = "ROI "+ roiLine + (" %s at Min." % roiType) if xw[j] is None: # no points in the ROI rawSum = 0.0 netSum = 0.0 else: tmpArray = chunk[:(jEnd - jStart), idx[j]] rawSum = tmpArray.sum(axis=-1, dtype=numpy.float64) deltaX = xw[j][iXMaxList[j]] - xw[j][iXMinList[j]] left = tmpArray[:, iXMinList[j]] right = tmpArray[:, iXMaxList[j]] deltaY = right - left if abs(deltaX) > 0.0: slope = deltaY / float(deltaX) background = left * len(xw[j])+ slope * \ (xw[j] - xw[j][iXMinList[j]]).sum(dtype=numpy.float64) netSum = rawSum - background else: netSum = 0.0 results[j][i,:(jEnd - jStart)] = rawSum results[j + nRois][i,:(jEnd - jStart)] = netSum if xAtMinMax: if xw[j] is None: # what can be the Min and the Max when there is nothing in the ROI? _logger.warning("No Min. Max for ROI <%s>. Empty ROI" % roiLine) else: # maxImage results[j + 2 * nRois][i, :(jEnd - jStart)] = \ xw[j][numpy.argmax(tmpArray, axis=1)] # minImage results[j + 3 * nRois][i, :(jEnd - jStart)] = \ xw[j][numpy.argmin(tmpArray, axis=1)] jStart = jEnd outputDict = {'images':results, 'names':names} return outputDict def getFileListFromPattern(pattern, begin, end, increment=None): if type(begin) == type(1): begin = [begin] if type(end) == type(1): end = [end] if len(begin) != len(end): raise ValueError(\ "Begin list and end list do not have same length") if increment is None: increment = [1] * len(begin) elif type(increment) == type(1): increment = [increment] if len(increment) != len(begin): raise ValueError(\ "Increment list and begin list do not have same length") fileList = [] if len(begin) == 1: for j in range(begin[0], end[0] + increment[0], increment[0]): fileList.append(pattern % (j)) elif len(begin) == 2: for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): fileList.append(pattern % (j, k)) elif len(begin) == 3: raise ValueError("Cannot handle three indices yet.") for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): for l in range(begin[2], end[2] + increment[2], increment[2]): fileList.append(pattern % (j, k, l)) else: raise ValueError("Cannot handle more than three indices.") return fileList if __name__ == "__main__": import glob import sys from PyMca5.PyMca import EDFStack from PyMca5.PyMca import ArraySave import getopt _logger.setLevel(logging.DEBUG) options = '' longoptions = ['cfg=', 'outdir=', 'tif=', #'listfile=', 'filepattern=', 'begin=', 'end=', 'increment=', "outfileroot="] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: _logger.error(sys.exc_info()[1]) sys.exit(1) fileRoot = "" outputDir = None fileindex = 0 filepattern=None begin = None end = None increment=None tif=0 for opt, arg in opts: if opt in ('--cfg'): configurationFile = arg elif opt in '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt in '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt in '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt in '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt in '--outdir': outputDir = arg elif opt in '--outfileroot': fileRoot = arg elif opt in ['--tif', '--tiff']: tif = int(arg) if filepattern is not None: if (begin is None) or (end is None): raise ValueError(\ "A file pattern needs at least a set of begin and end indices") if filepattern is not None: fileList = getFileListFromPattern(filepattern, begin, end, increment=increment) else: fileList = args if len(fileList): dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32) else: print("OPTIONS:", longoptions) sys.exit(0) if outputDir is None: print("RESULTS WILL NOT BE SAVED: No output directory specified") t0 = time.time() worker = StackROIBatch() worker.setConfigurationFile(configurationFile) result = worker.batchROIMultipleSpectra(y=dataStack) if outputDir is not None: imageNames = result['names'] images = result['images'] nImages = images.shape[0] if fileRoot in [None, ""]: fileRoot = "images" if not os.path.exists(outputDir): os.mkdir(outputDir) imagesDir = os.path.join(outputDir, "IMAGES") if not os.path.exists(imagesDir): os.mkdir(imagesDir) imageList = [None] * (nImages) fileImageNames = [None] * (nImages) j = 0 for i in range(nImages): name = imageNames[i].replace(" ", "-") fileImageNames[j] = name imageList[j] = images[i] j += 1 fileName = os.path.join(imagesDir, fileRoot+".edf") ArraySave.save2DArrayListAsEDF(imageList, fileName, labels=fileImageNames) fileName = os.path.join(imagesDir, fileRoot+".csv") ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=True, labels=fileImageNames) if tif: i = 0 for i in range(len(fileImageNames)): label = fileImageNames[i] fileName = os.path.join(imagesDir, fileRoot + fileImageNames[i] + ".tif") ArraySave.save2DArrayListAsMonochromaticTiff([imageList[i]], fileName, labels=[label], dtype=numpy.float32) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/LoggingLevel.py0000644000000000000000000000736214741736366020155 0ustar00rootroot #!/usr/bin/env python #/*########################################################################## # Copyright (C) 2018-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """Module for parsing command line options related to the logging level.""" __author__ = "P. Knobel" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging DEFAULT_LOGGING_LEVEL = logging.WARNING def getLoggingLevel(opts): """Find logging level from the output of `getopt.getopt()`. This level can be specified via one of two long options: --debug or --logging. If both are specified, --logging overrules --debug. When specifying the level with --logging, the level can be specified explicitly as a string (debug, info, warning, error, critical), or as an integer in the range 0--4, in increasing order of verbosity (0 is "critical", 4 is "debug"). The option --debug only allows to chose between the default logging level (--debug=0) or debugging mode with maximum verbosity (--debug=1). :param opts: Command line options as a list of 2-tuples of strings (e.g. ``[('--logging', 'debug'), ('--cfg', 'config.ini')]``). :returns: logging level :rtype: int""" logging_level = None for opt, arg in opts: if opt == '--logging': levels_dict = { # Explicit args 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, # int args sorted by increasing verbosity '0': logging.CRITICAL, '1': logging.ERROR, '2': logging.WARNING, '3': logging.INFO, '4': logging.DEBUG} logging_level = levels_dict.get(arg.lower()) if logging_level is None: raise ValueError("Unknown logging level <%s>" % arg) # if --logging is specified, ignore --debug return logging_level if opt == '--debug': # simpler option to choose between the default logging or DEBUG if arg.lower() in ["0", 0, "false"]: logging_level = DEFAULT_LOGGING_LEVEL elif arg.lower() in ["1", 1, "true"]: logging_level = logging.DEBUG else: raise ValueError("Incorrect debug parameter <%s> (should be 0 or 1)" % arg) if logging_level is None: return DEFAULT_LOGGING_LEVEL return logging_level ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/McaStackExport.py0000644000000000000000000002636614741736366020474 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import posixpath import h5py import logging _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaIO import NexusUtils HAS_NEXUS_UTILS = True except Exception: # this should only happen if somebody uses this module out of the distribution HAS_NEXUS_UTILS = False _logger.info("PyMca5.PyMcaIO.NexusUtils could not be imported") if sys.version_info < (3,): strdtype = h5py.special_dtype(vlen=unicode) else: strdtype = h5py.special_dtype(vlen=str) def exportStackList(stackList, filename, channels=None, calibration=None): if hasattr(stackList, "data") and hasattr(stackList, "info"): stackList = [stackList] if isinstance(filename, h5py.File): h5 = filename _exportStackList(stackList, h5, channels=channels, calibration=calibration) else: h5 = h5py.File(filename, "w-") try: if HAS_NEXUS_UTILS: NexusUtils.nxRootInit(h5) _exportStackList(stackList, h5, channels=channels, calibration=calibration) finally: h5.close() def _exportStackList(stackList, h5, path=None, channels=None, calibration=None): if path is None: # initialize the entry entryName = "stack" else: entryName = path if entryName not in h5 and HAS_NEXUS_UTILS: NexusUtils.nxEntryInit(h5, entryName) if calibration is None: calibration = [None] * len(stackList) if channels is None: channels = [None] * len(stackList) entry = h5.require_group(entryName) att = "NX_class" if att not in entry.attrs: entry.attrs[att] = u"NXentry" instrumentName = "instrument" instrument = entry.require_group(instrumentName) if att not in instrument.attrs: instrument.attrs[att] = u"NXinstrument" # save all the stacks dataTargets = [] i = 0 for stack in stackList: detectorName = "detector_%02d" % i detector = instrument.require_group(detectorName) if att not in detector.attrs: detector.attrs[att] = u"NXdetector" detectorPath = posixpath.join("/", entryName, instrumentName, detectorName) exportStack(stack, h5, detectorPath, channels=channels[i], calibration=calibration[i]) dataPath = posixpath.join(detectorPath, "data") dataTargets.append(dataPath) i += 1 # create NXdata measurement = entry.require_group("measurement") if att not in measurement.attrs: measurement.attrs[att] = u"NXdata" att = "default" if att not in entry.attrs: entry.attrs[att] = u"measurement" i = 0 auxiliary = [] for target in dataTargets: name = posixpath.basename(posixpath.dirname(target)) measurement[name] = h5py.SoftLink(target) if i == 0: measurement.attrs["signal"] = name else: auxiliary.append(name) if len(auxiliary): measurement.attrs["auxiliary_signals"] = numpy.array(auxiliary, dtype=strdtype) h5.flush() return entryName def exportStack(stack, h5object, path, channels=None, calibration=None): """ Exports the stack to the given HDF5 file object and path """ h5g = h5object.require_group(path) # destination should be an NXdetector group att = "NX_class" if att not in h5g.attrs: h5g.attrs[att] = u"NXdetector" elif h5g.attrs[att] != u"NXdetector": _logger.warning("Invalid destination NXclass %s" % h5g.attrs[att]) # put the data themselves if hasattr(stack, "data") and hasattr(stack, "info"): data = stack.data elif hasattr(stack, "shape") and hasattr(stack, "dtype"): # numpy like object received data = stack else: raise TypeError("Unrecognized stack object received") dataset = h5g.require_dataset("data", shape=data.shape, dtype=data.dtype) dataset[:] = data # support a simple array of data if hasattr(stack, "info"): info = stack.info else: info = {} # provide a hint for the data type mcaIndex = info.get('McaIndex', -1) if mcaIndex < 0: mcaIndex = len(data.shape) + mcaIndex if len(data.shape) > 1: if mcaIndex == 0: if len(data.shape) == 3: dataset.attrs["interpretation"] = u"image" else: dataset.attrs["interpretation"] = u"spectrum" # get the calibration if calibration is None: calibration = info.get('McaCalib', [0.0, 1.0, 0.0]) h5g["calibration"] = numpy.asarray(calibration) # get the time for key in ["McaLiveTime", "live_time"]: if key in info and info[key] is not None: # TODO: live time can actually be elapsed time!!! h5g["live_time"] = numpy.asarray(info[key]) for key in ["preset_time", "elapsed_time"]: if key in info and info[key] is not None: h5g[key] = numpy.asarray(info[key]) # get the channels if channels is None: if hasattr(stack, "x"): if hasattr(stack.x, "__len__"): if len(stack.x): channels = stack.x[0] if channels is not None: h5g["channels"] = numpy.asarray(channels) # the positioners posKey = "positioners" if posKey in info and info[posKey] is not None: posGroupPath = posixpath.join(posixpath.dirname(path), posKey) posGroup = h5object.require_group(posGroupPath) att = "NX_class" if att not in posGroup.attrs: posGroup.attrs[att] = u"NXcollection" for key in info[posKey]: if key not in posGroup: posGroup[key] = numpy.asarray(info[posKey][key]) # the scales for the common rectangular map case if "xScale" in info and "yScale" in info: xScale = info["xScale"] yScale = info["yScale"] ndims = len(data.shape) if ndims == 3 and (mcaIndex in [0, 2, -1]): # TODO: Possibility to label the X and Y axes # TODO: Possibility to set the title # labels and title should be provided map_ = h5g.require_group("map") att = "NX_class" if att not in map_.attrs: map_.attrs[att] = u"NXdata" map_.attrs["signal"] = u"data" map_["data"] = h5py.SoftLink(dataset.name) map_.attrs["signal"] = u"data" dim0_name = "dim0" dim1_name = "dim1" dim2_name = "dim2" if mcaIndex == 0: # image stack -> n_frame, n_rows, n_columns dim0_long_name = "channels" dim1_long_name = "y" dim2_long_name = "x" dim1 = map_.require_dataset(dim1_name, shape=(data.shape[1],), dtype=numpy.float32) dim2 = map_.require_dataset(dim2_name, shape=(data.shape[2],), dtype=numpy.float32) map_[dim0_name] = h5py.SoftLink(h5g["channels"].name) dim0 = map_[dim0_name] dim1[:] = yScale[0] + yScale[1] * numpy.arange(len(dim1)) dim2[:] = xScale[0] + xScale[1] * numpy.arange(len(dim2)) dim1.attrs["long_name"] = dim1_long_name dim2.attrs["long_name"] = dim2_long_name else: # spectrum stack -> n_rows, n_columns, n_channels dim0_long_name = "y" dim1_long_name = "x" dim2_long_name = "channels" dim1 = map_.require_dataset(dim1_name, shape=(data.shape[1],), dtype=numpy.float32) dim0 = map_.require_dataset(dim0_name, shape=(data.shape[0],), dtype=numpy.float32) dim0[:] = yScale[0] + yScale[1] * numpy.arange(len(dim0)) dim1[:] = xScale[0] + xScale[1] * numpy.arange(len(dim1)) if "channels" in h5g: map_[dim2_name] = h5py.SoftLink(h5g["channels"].name) else: map_[dim2_name] = numpy.arange(data.shape[-1], dtype=numpy.float32) dim2 = map_[dim2_name] dim0.attrs["long_name"] = dim0_long_name dim1.attrs["long_name"] = dim1_long_name axes = [dim0_name, dim1_name, dim2_name] map_.attrs["axes"] = numpy.array(axes, dtype=strdtype) # set the default detector plot att = "default" if att not in h5g.attrs: h5g.attrs[att] = u"map" # should make use of standard HDF5 scales and labeling # instead of (or in addition to) the NeXus approach? USE_HDF5_SCALES = False if USE_HDF5_SCALES: dim0.make_scale(dim0_long_name) dim1.make_scale(dim1_long_name) dim2.make_scale(dim2_long_name) #dataset.dims[0].label = dim0_name #dataset.dims[1].label = dim1_name #dataset.dims[2].label = dim2_name dataset.dims[0].attach_scale(dim0) dataset.dims[1].attach_scale(dim1) dataset.dims[2].attach_scale(dim2) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/McaStackView.py0000644000000000000000000005325714741736366020124 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging import numbers import itertools _logger = logging.getLogger(__name__) def sliceNormalize(slc, n): """ Slice with positive integers :param slice slc: :param int n: :returns slice: """ start, stop, step = slc.indices(n) if slc.stop is None and step < 0: stop = None return slice(start, stop, step) def sliceLen(slc, n): """ Length after slicing range(n) :param slice slc: :param int n: :returns int: """ start, stop, step = slc.indices(n) if step < 0: one = -1 else: one = 1 return max(0, (stop - start + step - one) // step) def sliceReverse(slc, n): """ Returns slice that yields same items in reversed order :param slice slc: :param int n: :returns slice: """ start, stop, step = slc.indices(n) if step < 0: one = 1 else: one = -1 stop = (stop-start+one)//step*step+start start += one if start == -1: start = None return slice(stop, start, -step) def sliceComplement(slc, n): """ Returns indices not in slice :param slice slc: :param int n: :returns list(int): """ lst1 = list(range(n)) lst2 = lst1[slc] return [i for i in lst1 if i not in lst2] def chunkIndexGen(start, stop, step): """ Index equivalent to list(range(start, stop, sign(step))) but given in chunks of "step" items (last chunk may have less items) :param start: :param stop: :param step: :returns generator(tuple): generates (index(slice), nElements(int)) """ if step is None: step = 1 if not isinstance(start, numbers.Integral): raise TypeError('{} object cannot be interpreted as an integer' .format(type(start))) if not isinstance(stop, numbers.Integral): raise TypeError('{} object cannot be interpreted as an integer' .format(type(stop))) if not isinstance(step, numbers.Integral): raise TypeError('{} object cannot be interpreted as an integer' .format(type(step))) if step < 0: func = max one = -1 else: func = min one = 1 for a in range(start, stop, step): b = func(a+step, stop) n = abs(b-a) if b == -1: b = None yield slice(a, b, one), n def possitive_index(i, n): _logger.warning("Use positive_index") return positive_index(i, n) def positive_index(i, n): """ :param int i: :param int n: """ if i < 0: return i + max((-i)//n, 1)*n else: return i def chunkIndexParameters(shape, nChunksMax, chunkAxes=None, axesOrder=None, chunkAxesSlice=None, defaultOrder='C'): """ :param tuple(int) chunkAxes: dimensions that define the chunk :param tuple(int) axesOrder: order of other dimensions to be sliced :param tuple(slice) chunkAxesSlice: slice chunk dimensions :param str defaultOrder: 'C' (last index varies the fastest, default) 'F' (first index varies the fastest) :returns tuple: """ # Check whether dimensions are compatible ndim = len(shape) if chunkAxes is None: chunkAxes = tuple() chunkAxes = tuple(positive_index(i, ndim) for i in chunkAxes) if chunkAxesSlice is None: chunkAxesSlice = (slice(None),)*len(chunkAxes) else: if len(chunkAxes) != len(chunkAxesSlice): raise ValueError('Chunk slicing does not correspond with chunk dimensions') aAxesOrder = list(range(ndim)) if defaultOrder == 'C': aAxesOrder = aAxesOrder[::-1] aAxesOrder = tuple(i for i in aAxesOrder if i not in chunkAxes) if axesOrder is None: axesOrder = aAxesOrder else: axesOrder = tuple(positive_index(i, ndim) for i in axesOrder) if list(sorted((axesOrder))) != list(sorted((aAxesOrder))): raise ValueError('axesOrder and chunkAxes do not correspond') nChunksMax = max(nChunksMax, 1) return nChunksMax, chunkAxes, axesOrder, chunkAxesSlice def chunkIndexProduct(chunkIndex, chunkAxes, axesOrder): """ Iterator over the cartesian product of chunkIndex :param list(list(slice,int)) chunkIndex: :param tuple chunkAxes: :param tuple axesOrder: :returns generator: index(tuple), shape(tuple), nChunks(int) """ axes = chunkAxes+axesOrder[::-1] ndim = len(axes) idxData = [None]*ndim chunkShape = [None]*ndim for idxChunk in itertools.product(*chunkIndex): nChunks = 1 for axis, (idx, n) in zip(axes, idxChunk): idxData[axis] = idx chunkShape[axis] = n if axis in axesOrder: nChunks *= n yield tuple(idxData), tuple(chunkShape), nChunks def fullChunkIndex(shape, nChunksMax, **kwargs): """ Returns a chunk index generator + chunk info :param tuple shape: array shape to be sliced :param int nChunksMax: maximal number of chunks :param **kwargs: see chunkIndexParameters :returns tuple: chunkIndexGenerator(generates tuples: (index(tuple), shape(tuple), nChunks(int))), chunkAxes(tuple), axesOrder(tuple), nChunksMax(may differ from input nChunksMax) """ nChunksMax, chunkAxes, axesOrder, chunkAxesSlice = chunkIndexParameters(shape, nChunksMax, **kwargs) # List of indices for each chunkAxes dimension chunkIndex1 = [] for axis, idx in zip(chunkAxes, chunkAxesSlice): nAxis = shape[axis] idxAxis = [(idx, sliceLen(idx, nAxis))] chunkIndex1.append(idxAxis) # List of indices of each axesOrder dimension nItems = 1 nBuffer = 1 chunkIndex2 = [] for axis in axesOrder: nAxis = shape[axis] nItemsNew = nItems*nAxis if nItemsNew <= nChunksMax: idxAxis = [(slice(None), nAxis)] nBuffer *= nAxis #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, 1, nAxis)) elif nItems > nChunksMax: idxAxis = list(chunkIndexGen(0, nAxis, 1)) #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, len(idxAxis), 1)) else: # Axis will be split in pieces with length "step" step = nChunksMax//nItems # We have "n" such pieces (last piece can have smaller length) n = (nAxis//step) + int(bool(nAxis % step)) # Maximize the length of the last piece # example: nAxis=51 and step=40 -> step = 26 step = (nAxis//n) + int(bool(nAxis % n)) nBuffer *= step idxAxis = list(chunkIndexGen(0, nAxis, step)) #print('Axis {} (size={}): {}x{} chunks'.format(axis, nAxis, len(idxAxis), step)) nItems = nItemsNew chunkIndex2.append(idxAxis) # Prepare for cartesian product (last one is the inner loop) chunkIndex = chunkIndex1 + chunkIndex2[::-1] chunkIndex = chunkIndexProduct(chunkIndex, chunkAxes, axesOrder) return chunkIndex, chunkAxes, axesOrder, nBuffer def intListIndexAxis(shape, axes): """ Get int-list dimension after indexing :param tuple shape: shape to be indexed :param list axes: dimensions with int-list index :returns int or None: int-list dimension after indexing """ nLst = len(axes) if nLst == 0: axis = None elif nLst == 1: axis = axes[0] else: if all(numpy.diff(sorted(axes)) == 1): axis = min(axes) else: axis = 0 return axis def maskedChunkIndex(shape, nChunksMax, mask=None, **kwargs): """ Returns a chunk index generator + chunk info :param tuple shape: array shape to be sliced :param int nChunksMax: maximal number of chunks :param array or tuple(list(int)) mask: mask in axesOrder dimensions (bool array or list of indices) :param **kwargs: see chunkIndexParameters :returns tuple: chunkIndexGenerator(generates tuples: (index(tuple), shape(tuple), nChunks(int))), chunkAxes(tuple), axesOrder(tuple), nChunksMax(may differ from input nChunksMax) """ full = mask is None if not full: full = mask.all() if full: return fullChunkIndex(shape, nChunksMax, **kwargs) kwargs['defaultOrder'] = 'F' nChunksMax, chunkAxes, axesOrder, chunkAxesSlice = chunkIndexParameters(shape, nChunksMax, **kwargs) if len(axesOrder) != mask.ndim: raise ValueError('Mask does not have the correct dimensions') # Index for chunkAxes dimensions ndim = len(shape) idxAxis = [slice(None)]*ndim chunkShape = list(shape) for axis, idx in zip(chunkAxes, chunkAxesSlice): nAxis = shape[axis] idxAxis[axis] = idx chunkShape[axis] = sliceLen(idx, nAxis) # Shape after indexing (to be modified for each chunk) chunkShape = [s for i, s in enumerate(chunkShape) if i not in axesOrder] lstAxis = intListIndexAxis(shape, axesOrder) if lstAxis is not None: chunkShape.insert(lstAxis, None) # Index for axesOrder dimensions if isinstance(mask, (list, tuple)): maskIndex = mask else: maskIndex = mask.nonzero() nAxis = len(maskIndex[0]) nChunks = (nAxis//nChunksMax) + int(bool(nAxis % nChunksMax)) chunkIndex = [None]*nChunks for i, (idx, nidx) in enumerate(chunkIndexGen(0, nAxis, nChunksMax)): for axis, ind in zip(axesOrder, maskIndex): idxAxis[axis] = ind[idx] chunkShape[lstAxis] = nidx chunkIndex[i] = tuple(idxAxis), tuple(chunkShape), nidx return chunkIndex, chunkAxes, axesOrder, nChunksMax def izipChunkItems(*iterables): """ Zip iterators but making sure next is called on all items when StopIteration occurs """ bloop = [True] # because of python 2 #bloop = True def _next(it): #nonlocal bloop try: return next(it) except StopIteration: bloop[0] = False #bloop = False return None while bloop[0]: ret = tuple(_next(it) for it in iterables) if bloop[0]: yield ret def chunks_in_memory(shape, dtype, axis=-1, margin=0.01, maximal=None): """ Number of chunks that fit into memory (with a margin) :param tuple shape: nD array :param dtype: :param axis: axes contibuting to one chunk :param margin: :param maximal: :returns: number of slices that fit in memory """ try: from psutil import virtual_memory except ImportError: try: from PyMca5.PyMcaMisc.PhysicalMemory import getAvailablePhysicalMemoryOrNone as getMem except ImportError: from PyMca5.PyMcaMisc.PhysicalMemory import getPhysicalMemoryOrNone as getMem nbytes_mem = getMem() else: nbytes_mem = virtual_memory().available if nbytes_mem is None: return maximal shape_slice = list(shape) if isinstance(axis, (tuple, list)): for ax in axis: shape_slice.pop(ax) else: shape_slice.pop(axis) if not shape_slice: raise ValueError('Required: len(axis)= 1 # Transpose so that chunkAxes are first after which we can reshape # the chunk to nMca x nChan and yield it if masked: # Chunks always have dimension 2 lstAxis = intListIndexAxis(data.shape, axesOrder) if lstAxis == 0: transposeAxes = (0, 1) else: transposeAxes = (1, 0) h5pyMultiList = not self._isNdarray and len(axesOrder) > 1 else: transposeAxes = axesOrderSorted + chunkAxes h5pyMultiList = False itransposeAxes = tuple(numpy.argsort(transposeAxes).tolist()) # Yield key, value pairs: # value: nMca x nChan chunk of buffer # key: index applied to data and resulting shape # keyType == 'all': including mcaAxis # keyType == 'select': excluding mcaAxis post_copy = self._prepareAccess() buffer = self._buffer for idxChunk, idxShape, nMca in chunkGenerator: value = buffer[:nMca, :] if h5pyMultiList: h5pyMultiListGet(data, value, idxChunk, axesOrder) else: value[()] = numpy.transpose(data[idxChunk], transposeAxes)\ .reshape(nMca, nChan) if keyType == 'select': if masked: key = tuple(idxChunk[i] for i in axesOrderSorted),\ (nMca,) else: key = tuple(idxChunk[i] for i in axesOrderSorted),\ tuple(idxShape[i] for i in axesOrderSorted) else: key = idxChunk, idxShape yield key, value if post_copy: if h5pyMultiList: h5pyMultiListSet(data, value, idxChunk, axesOrder) else: idxShape = tuple(idxShape[i] for i in transposeAxes) data[idxChunk] = numpy.transpose(value.reshape(idxShape), itransposeAxes) class FullView(MaskedView): """ View of MCA stack with MCA channel slice which allows iteration over chunks of spectra """ def __init__(self, data, **kwargs): """ :param array data: nD array (numpy.ndarray or h5py.Dataset) :param **kwargs: see MaskedView """ super(FullView, self).__init__(data, mask=None, **kwargs) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/NexusDataSource.py0000644000000000000000000007752114741736366020660 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy try: # try to import hdf5plugin import hdf5plugin except Exception: # but do not crash just because of it pass import h5py from operator import itemgetter import re import posixpath import logging phynx = h5py if sys.version_info >= (3,): basestring = str from . import DataObject from . import NexusTools SOURCE_TYPE = "HDF5" try: from silx.io import open as silxh5open logging.getLogger("silx.io.fabioh5").setLevel(logging.CRITICAL) except Exception: silxh5open = None _logger = logging.getLogger(__name__) def h5open(filename): try: # try to open as usual using h5py return h5py.File(filename, "r") except Exception: try: if h5py.version.hdf5_version_tuple < (1, 10): # no reason to try SWMR mode raise elif h5py.is_hdf5(filename): _logger.info("Cannot open %s. Trying in SWMR mode" % filename) return h5py.File(filename, "r", libver='latest', swmr=True) else: raise except Exception: if silxh5open: try: _logger.info("Trying to open %s using silx" % filename) return silxh5open(filename) except Exception: _logger.info("Cannot open %s using silx" % filename) # give back the original error return h5py.File(filename, "r") #sorting method def h5py_sorting(object_list): sorting_list = ['start_time', 'end_time', 'name'] n = len(object_list) if n < 2: return object_list # This implementation only sorts entries if posixpath.dirname(object_list[0].name) != "/": return object_list names = list(object_list[0].keys()) sorting_key = None for key in sorting_list: if key in names: sorting_key = key break if sorting_key is None: if 'name' in sorting_list: sorting_key = 'name' else: return object_list try: if sorting_key != 'name': sorting_list = [(o[sorting_key][()], o) for o in object_list] sorted_list = sorted(sorting_list, key=itemgetter(0)) return [x[1] for x in sorted_list] if sorting_key == 'name': sorting_list = [(_get_number_list(o.name),o) for o in object_list] sorting_list.sort() return [x[1] for x in sorting_list] except Exception: #The only way to reach this point is to have different #structures among the different entries. In that case #defaults to the unfiltered case _logger.warning("Default ordering") _logger.warning("Probably all entries do not have the key %s", sorting_key) return object_list def _get_number_list(txt): rexpr = '[/a-zA-Z:-]' nbs= [float(w) for w in re.split(rexpr, txt) if w not in ['',' ']] return nbs def get_family_pattern(filelist): name1 = filelist[0] name2 = filelist[1] if name1 == name2: return name1 i0=0 for i in range(len(name1)): if i >= len(name2): break elif name1[i] == name2[i]: pass else: break i0 = i for i in range(i0,len(name1)): if i >= len(name2): break elif name1[i] != name2[i]: pass else: break i1 = i if i1 > 0: delta=1 while (i1-delta): if (name2[(i1-delta)] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']): delta = delta + 1 else: if delta > 1: delta = delta -1 break fmt = '%dd' % delta if delta > 1: fmt = "%0" + fmt else: fmt = "%" + fmt rootname = name1[0:(i1-delta)]+fmt+name2[i1:] else: rootname = name1[0:] return rootname def _to_slice_mode(single_idx, shape): assert len(shape) > 1 if len(shape) == 2: return [single_idx] reference = single_idx slice_index = [None] * (len(shape) - 1) for i in range(len(shape)-1): v = 1 for j in range(i+1, len(shape)-1): v *= shape[j] slice_index[i] = reference // v reference = reference % v return slice_index def _to_index_mode(slice_idx, shape): assert len(shape) > 1 assert len(slice_idx) == (len(shape) - 1) if len(shape) == 2: return slice_idx[0] single_index = 0 for i in range(len(slice_idx)): v = 1 for j in range(i+1, len(shape) - 1): v *= shape[j] single_index += v * slice_idx[i] return single_index class NexusDataSource(object): def __init__(self,nameInput): if type(nameInput) == type([]): nameList = nameInput else: nameList = [nameInput] self.sourceName = [] for name in nameList: if not isinstance(name, basestring): if not isinstance(name, h5py.File): text = "Constructor needs string as first argument" raise TypeError(text) else: self.sourceName.append(name.file) continue self.sourceName.append(name) self.sourceType = SOURCE_TYPE self.__sourceNameList = self.sourceName self._sourceObjectList=[] self.refresh() def refresh(self): for instance in self._sourceObjectList: instance.close() self._sourceObjectList=[] FAMILY = False for name in self.__sourceNameList: if isinstance(name, h5py.File): self._sourceObjectList.append(name) continue if not os.path.exists(name): if '%' in name: phynxInstance = h5py.File(name, 'r', driver='family') elif name.startswith("tiled") or name.startswith("http"): _logger.debug("trying silx source") else: raise IOError("File %s does not exists" % name) try: phynxInstance = h5open(name) except IOError: if 'FAMILY DRIVER' in sys.exc_info()[1].args[0].upper(): FAMILY = True else: raise except TypeError: try: phynxInstance = h5open(name) except IOError: if 'FAMILY DRIVER' in sys.exc_info()[1].args[0].upper(): FAMILY = True else: raise if FAMILY and (len(self._sourceObjectList) > 0): txt = "Mixing segmented and non-segmented HDF5 files not supported yet" raise IOError(txt) elif FAMILY: break phynxInstance._sourceName = name self._sourceObjectList.append(phynxInstance) if FAMILY: pattern = get_family_pattern(self.__sourceNameList) if '%' in pattern: phynxInstance = h5py.File(pattern, 'r', driver='family') else: raise IOError("Cannot read set of HDF5 files") self.sourceName = [pattern] self.__sourceNameList = [pattern] self._sourceObjectList=[phynxInstance] phynxInstance._sourceName = pattern self.__lastKeyInfo = {} def getSourceInfo(self): """ Returns a dictionary with the key "KeyList" (list of all available keys in this source). Each element in "KeyList" has the form 'n1.n2' where n1 is the source number and n2 entry number in file both starting at 1. """ return self.__getSourceInfo() def __getSourceInfo(self): SourceInfo={} SourceInfo["SourceType"]=SOURCE_TYPE SourceInfo["KeyList"]=[] i = 0 for sourceObject in self._sourceObjectList: i+=1 nEntries = len(sourceObject["/"].keys()) for n in range(nEntries): SourceInfo["KeyList"].append("%d.%d" % (i,n+1)) SourceInfo["Size"]=len(SourceInfo["KeyList"]) return SourceInfo def getKeyInfo(self, key): if key in self.getSourceInfo()['KeyList']: return self.__getKeyInfo(key) else: #should we raise a KeyError? _logger.debug("Error key not in list ") return {} def __getKeyInfo(self,key): try: index, entry = key.split(".") index = int(index)-1 entry = int(entry)-1 except Exception: #should we rise an error? _logger.debug("Error trying to interpret key = %s", key) return {} sourceObject = self._sourceObjectList[index] info = {} info["SourceType"] = SOURCE_TYPE #doubts about if refer to the list or to the individual file info["SourceName"] = self.sourceName[index] info["Key"] = key #specific info of interest info['FileName'] = sourceObject.name return info def getDataObject(self, key, selection=None): """ key: a string of the form %d.%d indicating the file and the entry starting by 1. selection: a dictionary generated via QNexusWidget """ _logger.debug("getDataObject selection = %s", selection) if selection is not None: if 'sourcename' in selection: filename = selection['sourcename'] entry = selection['entry'] fileIndex = self.__sourceNameList.index(filename) phynxFile = self._sourceObjectList[fileIndex] if entry == "/": entryIndex = 0 else: entryIndex = list(phynxFile["/"].keys()).index(entry[1:]) else: key_split = key.split(".") fileIndex = int(key_split[0])-1 phynxFile = self._sourceObjectList[fileIndex] entryIndex = int(key_split[1])-1 entry = phynxFile["/"].keys()[entryIndex] actual_key = "%d.%d" % (fileIndex+1, entryIndex+1) if actual_key != key: if entry != "/": _logger.warning("selection keys do not match") else: #Probably I should find the acual entry following h5py_ordering output #and search for an NXdata plot. sourcekeys = self.getSourceInfo()['KeyList'] #a key corresponds to an image key_split= key.split(".") actual_key= "%d.%d" % (int(key_split[0]), int(key_split[1])) if actual_key not in sourcekeys: raise KeyError("Key %s not in source keys" % actual_key) raise NotImplemented("Direct NXdata plot not implemented yet") #create data object output = DataObject.DataObject() output.x = None output.y = None output.m = None output.data = None output.info = self.__getKeyInfo(actual_key) try: output.info["title"] = NexusTools.getTitle(phynxFile, entry) except Exception: txt = "Error reading title for path <%s>" _logger.warning(txt) output.info["title"] = "" output.info['selection'] = selection if entry != "/": try: positioners = NexusTools.getPositionersGroup(phynxFile, entry) if positioners is not None: output.info['MotorNames'] = [] output.info['MotorValues'] = [] for key in positioners.keys(): if positioners[key].dtype in [object, numpy.object_]: # not a standard value _logger.info("Skipping object key %s" % key) continue output.info['MotorNames'].append(key) value = positioners[key][()] if hasattr(value, "size"): if value.size > 1: if hasattr(value, "flat"): value = value.flat[0] output.info['MotorValues'].append(value) except Exception: # I cannot affort to fail here for something probably not used _logger.debug("Error reading positioners\n%s", sys.exc_info()) if "mca" in selection: # this should go somewhere else h5File = phynxFile mcaPath = entry + selection["mcalist"][selection["mca"][0]] mcaObjectPaths = NexusTools.getMcaObjectPaths(phynxFile, mcaPath) mcaData = h5File[mcaObjectPaths['counts']] output.info['selectiontype'] = "1D" try: for key in list(mcaObjectPaths.keys()): if key == "counts": continue mcaDatasetObjectPath = mcaObjectPaths[key] dataset = None if mcaDatasetObjectPath in h5File: dataset = h5File[mcaDatasetObjectPath][()] elif "::" in mcaDatasetObjectPath: fileName, path = mcaDatasetObjectPath.split() if os.path.exists(fileName): with h5open(fileName) as h5: if path in h5: dataset = h5[path][()] if dataset is None: _logger.debug("Broken link? Ignoring key %s = %s", key, mcaDatasetObjectPath) del mcaObjectPaths[key] else: mcaObjectPaths[key] = dataset if "channels" in mcaObjectPaths: mcaChannels = mcaObjectPaths["channels"] del mcaObjectPaths["channels"] else: mcaChannels = numpy.arange(mcaData.shape[-1]).astype(numpy.float32) if "calibration" in mcaObjectPaths: mcaCalibration = mcaObjectPaths["calibration"] del mcaObjectPaths["calibration"] else: mcaCalibration = numpy.array([0.0, 1.0, 0.0]) output.info["McaCalib"] = mcaCalibration if "preset_time" in mcaObjectPaths: output.info["McaPresetTime"]= mcaObjectPaths["preset_time"] del mcaObjectPaths["preset_time"] if "elapsed_time" in mcaObjectPaths: output.info["McaRealTime"]= mcaObjectPaths["elapsed_time"] del mcaObjectPaths["elapsed_time"] if "live_time" in mcaObjectPaths: output.info["McaLiveTime"]= mcaObjectPaths["live_time"] del mcaObjectPaths["live_time"] del mcaObjectPaths if selection['mcaselectiontype'].lower() in ["avg", "average", "sum"]: divider = 1.0 if len(mcaData.shape) > 1: divider *= mcaData.shape[0] mcaData = numpy.sum(mcaData, axis=0, dtype=numpy.float32) while len(mcaData.shape) > 1: divider *= mcaData.shape[0] mcaData = mcaData.sum(axis=0) if selection['mcaselectiontype'].lower() != "sum": mcaData /= divider else: mcaData = mcaData[()] divider = 1.0 if "McaLiveTime" in output.info: if numpy.isscalar(output.info["McaLiveTime"]): # it is already a single number pass else: output.info["McaLiveTime"] = \ output.info["McaLiveTime"].sum() if selection['mcaselectiontype'].lower() != "sum": output.info["McaLiveTime"] /= divider elif selection['mcaselectiontype'].lower().startswith("index") or \ selection['mcaselectiontype'].lower().startswith("slice"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') re_items = exp.findall(selection['mcaselectiontype'].lower()) if selection['mcaselectiontype'].lower().startswith("index"): assert(len(re_items) == 1) single_idx = int(re_items[0]) slice_idx = _to_slice_mode(single_idx, mcaData.shape) else: assert(len(re_items) == len(mcaData.shape) - 1) slice_idx = [int(re_item) for re_item in re_items] single_idx = _to_index_mode(slice_idx, mcaData.shape) # care for self consistency assert(_to_index_mode(slice_idx, mcaData.shape) == single_idx) if len(mcaData.shape) > 1: for idx in slice_idx: mcaData = mcaData[idx] mcaData = numpy.array(mcaData, dtype=numpy.float32) else: mcaData = mcaData[()] if "McaLiveTime" in output.info: if numpy.isscalar(output.info["McaLiveTime"]): # it is already a single number pass elif output.info["McaLiveTime"].shape == 1: if output.info["McaLiveTime"].shape[0] == 1: output.info["McaLiveTime"] = output.info["McaLiveTime"][0] else: output.info["McaLiveTime"] = output.info["McaLiveTime"][single_idx] else: # convert the single index to slice output.info["McaLiveTime"] = \ output.info["McaLiveTime"].flatten()[single_idx] if "MotorNames" in output.info: for idx in range(len(output.info["MotorNames"])): value = output.info["MotorValues"][idx] output.info['MotorValues'][idx] = value[single_idx] except Exception: # import traceback _logger.error("%s", sys.exc_info()) # print(("%s " % value) + ''.join(traceback.format_tb(trace))) return output output.x = [mcaChannels] output.y = [mcaData] return output elif selection['selectiontype'].upper() in ["SCAN", "MCA"]: output.info['selectiontype'] = "1D" elif selection['selectiontype'] == "3D": output.info['selectiontype'] = "3D" elif selection['selectiontype'] == "2D": output.info['selectiontype'] = "2D" output.info['imageselection'] = True else: raise TypeError("Unsupported selection type %s" %\ selection['selectiontype']) if 'LabelNames' in selection: output.info['LabelNames'] = selection['LabelNames'] elif 'aliaslist' in selection: output.info['LabelNames'] = selection['aliaslist'] else: output.info['LabelNames'] = selection['cntlist'] for cnt in ['y', 'x', 'm']: if not cnt in selection: continue if not len(selection[cnt]): continue path = entry + selection['cntlist'][selection[cnt][0]] # get the data data = phynxFile[path] totalElements = 1 for dim in data.shape: totalElements *= dim if totalElements < 2.0E7: try: data = phynxFile[path][()] except MemoryError: data = phynxFile[path] pass # get the selection if any selectionTypeKey = cnt + "selectiontype" if selection[selectionTypeKey][0].startswith("index") or \ selection[selectionTypeKey][0].startswith("slice"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') re_items = exp.findall(selection[selectionTypeKey][0].lower()) if selection[selectionTypeKey][0].lower().startswith("index"): assert(len(re_items) == 1) single_idx = int(re_items[0]) slice_idx = _to_slice_mode(single_idx, data.shape) else: assert(len(re_items) == len(data.shape) - 1) slice_idx = [int(re_item) for re_item in re_items] single_idx = _to_index_mode(slice_idx, data.shape) # care for self consistency assert(_to_index_mode(slice_idx, data.shape) == single_idx) if output.info['selectiontype'] in ["1D", "MCA"]: if len(data.shape) > 1: for idx in slice_idx: data = data[idx] data = numpy.array(data, dtype=numpy.float32) else: data = data[()] else: data = data[single_idx] if output.info['selectiontype'] in ["1D", "MCA"]: if (len(data.shape) > 1) and ('mcaselectiontype' in selection): mcaselectiontype = selection['mcaselectiontype'].lower() nSpectra = 1.0 for iDummy in data.shape[:-1]: # we might be working with an HDF5 dataset here if hasattr(data, "sum"): data = data.sum(axis=0, dtype=numpy.float64) else: tmpSum = numpy.zeros(data.shape[1:], dtype=numpy.float64) for i in range(iDummy): tmpSum += data[i] data = tmpSum tmpSum = None nSpectra *= iDummy if mcaselectiontype == "sum": # sum already calculated _logger.debug("SUM") elif mcaselectiontype in ["avg", "average"]: # calculate the average _logger.debug("AVERAGE") data /= nSpectra elif selection['mcaselectiontype'].lower().startswith("index") or \ selection['mcaselectiontype'].lower().startswith("slice"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') re_items = exp.findall(selection['mcaselectiontype'].lower()) if selection['mcaselectiontype'].lower().startswith("index"): assert(len(re_items) == 1) single_idx = int(re_items[0]) slice_idx = _to_slice_mode(single_idx, data.shape) else: assert(len(re_items) == len(data.shape) - 1) slice_idx = [int(re_item) for re_item in re_items] single_idx = _to_index_mode(slice_idx, data.shape) # care for self consistency assert(_to_index_mode(slice_idx, data.shape) == single_idx) if len(data.shape) > 1: for idx in slice_idx: data = data[idx] data = numpy.array(mcaData, dtype=numpy.float32) else: data = mcaData[()] else: _logger.warning("Unsupported selection type %s", mcaselectiontype) _logger.warning("Calculating average") data /= nSpectra elif len(data.shape) == 2: if min(data.shape) == 1: data = numpy.ravel(data) else: raise TypeError("%s selection is not 1D" % cnt.upper()) elif len(data.shape) > 2: raise TypeError("%s selection is not 1D" % cnt.upper()) if cnt == 'y': if output.info['selectiontype'] == "2D": output.data = data else: output.y = [data] elif cnt == 'x': #there can be more than one X except for 1D if output.info['selectiontype'] == "1D": if len(selection[cnt]) > 1: raise TypeError("%s selection is not 1D" % cnt.upper()) if output.x is None: output.x = [data] if len(selection[cnt]) > 1: # TODO: if the selection for the additional axes is not complete # this will not work. for xidx in range(1, len(selection[cnt])): path = entry + selection['cntlist'][selection[cnt][xidx]] data = phynxFile[path][()] output.x.append(data) elif cnt == 'm': #only one monitor output.m = [data] # SCAN specific to handle asynchronous writing if output.info['selectiontype'] in ["1D"]: if output.y: length = ylength = output.y[0].size delta = 0 if output.x: xlength = output.x[0].size delta = abs(ylength - xlength) length = min(length, xlength) if output.m: mlength = output.m[0].size delta = max(delta, ylength - mlength) length = min(length, mlength) if delta > 1: _logger.warning("Stripping last %d points" % delta) elif delta == 1: _logger.info("Stripping last point of selection") if delta > 0: for i in range(len(output.y)): output.y[i] = output.y[i][:length] if output.x: for i in range(len(output.x)): output.x[i] = output.x[i][:length] if output.m: for i in range(len(output.m)): output.m[i] = output.m[i][:length] # MCA specific if selection['selectiontype'].upper() == "MCA": if not 'Channel0' in output.info: output.info['Channel0'] = 0 """" elif selection['selectiontype'].upper() in ["BATCH"]: #assume already digested output.x = None output.y = None output.m = None output.data = None entryGroup = phynxFile[entry] output.info['Channel0'] = 0 for key in ['y', 'x', 'm', 'data']: if key not in selection: continue if type(selection[key]) != type([]): selection[key] = [selection[key]] if not len(selection[key]): continue for cnt in selection[key]: dataset = entryGroup[cnt] if cnt == 'y': if output.y is None: output.y = [dataset] else: output.y.append(dataset) elif cnt == 'x': if output.x is None: output.x = [dataset] else: output.x.append(dataset) elif cnt == 'm': if output.m is None: output.m = [dataset] else: output.m.append(dataset) elif cnt == 'data': if output.data is None: output.data = [dataset] else: output.data.append(dataset) """ return output def isUpdated(self, sourceName, key): #sourceName is redundant? index, entry = key.split(".") index = int(index)-1 lastmodified = os.path.getmtime(self.__sourceNameList[index]) if lastmodified != self.__lastKeyInfo[key]: self.__lastKeyInfo[key] = lastmodified return True else: return False source_types = { SOURCE_TYPE: NexusDataSource} def DataSource(name="", source_type=SOURCE_TYPE): try: sourceClass = source_types[source_type] except KeyError: #ERROR invalid source type raise TypeError("Invalid Source Type, source type should be one of %s" %\ source_types.keys()) return sourceClass(name) if __name__ == "__main__": import time try: sourcename=sys.argv[1] key =sys.argv[2] except Exception: print("Usage: NexusDataSource ") sys.exit() #one can use this: obj = NexusDataSource(sourcename) #or this: obj = DataSource(sourcename) #data = obj.getData(key,selection={'pos':(10,10),'size':(40,40)}) #data = obj.getDataObject(key,selection={'pos':None,'size':None}) t0 = time.time() data = obj.getDataObject(key,selection=None) print("elapsed = ",time.time() - t0) print("info = ",data.info) if data.data is not None: print("data shape = ",data.data.shape) print(numpy.ravel(data.data)[0:10]) else: print(data.y[0].shape) print(numpy.ravel(data.y[0])[0:10]) data = obj.getDataObject('1.1',selection=None) r = int(key.split('.')[-1]) print(" data[%d,0:10] = " % (r-1),data.data[r-1 ,0:10]) print(" data[0:10,%d] = " % (r-1),data.data[0:10, r-1]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/NexusTools.py0000644000000000000000000006530214741736366017720 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2018-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os from operator import itemgetter import re import posixpath try: # try to import hdf5plugin if hdf5plugin not in sys.modules: import hdf5plugin except Exception: # but do not crash just because of it pass import h5py from h5py import File, Dataset, Group try: from silx.io import is_dataset, is_group except Exception: def is_dataset(something): return False def is_group(something): return False import logging _logger = logging.getLogger(__name__) def isGroup(item): if isinstance(item, Group): return True elif hasattr(item, "keys"): return True elif is_group(item): return True else: return False def isDataset(item): if isinstance(item, Dataset): return True elif is_dataset(item): return True else: return False #sorting method def h5py_sorting(object_list): sorting_list = ['start_time', 'end_time', 'name'] n = len(object_list) if n < 2: return object_list # we have received items, not values # perform a first sort based on received names # this solves a problem with Eiger data where all the # external data have the same posixName. Without this sorting # they arrive "unsorted" object_list.sort() try: posixNames = [item[1].name for item in object_list] except AttributeError: # Typical of broken external links _logger.debug("HDF5Widget: Cannot get posixNames") return object_list # This implementation only sorts entries if posixpath.dirname(posixNames[0]) != "/": return object_list sorting_key = None if hasattr(object_list[0][1], "items"): for key in sorting_list: if key in [x[0] for x in object_list[0][1].items()]: sorting_key = key break if sorting_key is None: if 'name' in sorting_list: sorting_key = 'name' else: return object_list try: if sorting_key != 'name': sorting_list = [(o[1][sorting_key][()], o) for o in object_list] sorted_list = sorted(sorting_list, key=itemgetter(0)) return [x[1] for x in sorted_list] if sorting_key == 'name': sorting_list = [(_get_number_list(o[1].name),o) for o in object_list] sorting_list.sort() return [x[1] for x in sorting_list] except Exception: #The only way to reach this point is to have different #structures among the different entries. In that case #defaults to the unfiltered case _logger.warning("Default ordering. " "Probably all entries do not have the key %s", sorting_key) return object_list def _get_number_list(txt): rexpr = '[/a-zA-Z:-]' nbs= [float(w) for w in re.split(rexpr, txt) if w not in ['',' ']] return nbs def getEntryName(path, h5file=None): """ Retrieve the top level name (not h5py object) associated to a given path despite being or not an NXentry group. """ entry_name = path candidate = posixpath.dirname(entry_name) while len(candidate) > 1: entry_name = candidate candidate = posixpath.dirname(entry_name) if h5file is not None: if entry_name not in h5file["/"]: # dealing with a external link? items_list = list(h5file["/"].items()) for key, group in items_list: if not isGroup(group): continue if group.name == entry_name: link = h5file.get(key, getlink=True) if isinstance(link, h5py.ExternalLink): _logger.info("Dealing with external link") _logger.info("External filename = <%s>" % link.filename) _logger.info("External path = <%s>" % link.path) entry_name = "/" + key break return entry_name def getTitle(h5file, path): """ Retrieve the title associated to the entry asoociated to the provided path It returns an emptry string of not title is found """ entry = h5file[getEntryName(path, h5file=h5file)] title = '' if isGroup(entry) and "title" in entry: title = entry["title"][()] if hasattr(title, "dtype"): _logger.warning("entry title should be a string not an array") if hasattr(title, "__len__"): if len(title) == 1: title = title[0] if hasattr(title, "decode"): title = title.decode("utf-8") return title def getNXdataList(h5file, path, objects=False): """ Retrieve the hdf5 group names down a given path where the NXclass attribute is set to "NXdata". If groups is False (default) it returns the dataset names. If groups is True it returns the actual objects. """ return getNXClassList(h5file, path, classes=["NXdata", b"NXdata"], objects=objects) def getNXClassList(h5file, path, classes, objects=False): """ Retrieve the hdf5 group names down a given path where the NXclass attribute is set to one of the items in the classes list. If objects is False (default) it returns the group names. If objects is True it returns the actual HDF5 group objects. """ pathList =[] def visit_function(name, obj): if isGroup(obj): append = False forget = False namebased = False for key, value in obj.attrs.items(): if key in ["NX_class", b"NX_class"]: if value in classes: append = True else: forget = True if append: if objects: pathList.append(obj) else: pathList.append(obj.name) if hasattr(h5file[path], "visititems"): # prevent errors dealing with toplevel datasets h5file[path].visititems(visit_function) return pathList def _correct_entry_path(path, entry_in, entry_out): if entry_in in path: if path.index(entry_in) == 0: return entry_out + path[len(entry_in):] return path def sanitizeFilePath(h5file, path, entry=None): """ This deals with the ESRF case of having a top-level entry being an external link to another top-level entry but with different name """ try: h5file[path] except KeyError: if entry is None: # this can still fail # the case where it fails is when two external links point to two different # files with the same entry name. Easily found at ESRF with top level master path = _correct_entry_path(path, getEntryName(path), getEntryName(path, h5file)) else: path = _correct_entry_path(path, getEntryName(path), entry) return path def getMcaList(h5file, path, dataset=False, ignore=None): """ Retrieve the hdf5 dataset names down a given path where the interpretation attribute is set to "spectrum". It also considers as eligible datasets, those whose last dimension is more than 1 and their name or parent group name start by mca. If dataset is False (default) it returns the dataset names. If dataset is True it returns the actual datasets. Apparently visititems ignores links. The following situation would not work: Actual dataset in /entry/detector/data with no interpretation attribute set and link to it named /entry/measurement/mca """ _logger.debug("Received path %s" % path) # deal with ESRF external links with different names from the targets correct_entry_path = False entry_path = getEntryName(path) entry_file = getEntryName(path, h5file=h5file) _logger.debug("Associated entry name from path %s" % entry_path) _logger.debug("Associated entry name from file %s" % entry_file) if entry_path: if entry_path != entry_file: path = _correct_entry_path(path, entry_path, entry_file) correct_entry_path = True _logger.debug("Finally used path %s" % path) if ignore is None: ignore = ["channels", "calibration", "live_time", "preset_time", "elapsed_time", "i0", "it", "i0_to_flux_factor", "it_to_flux_factor", "time", "energy"] datasetList =[] def visit_function(name, obj): if is_dataset(obj): append = False forget = False namebased = False for key, value in obj.attrs.items(): if key == "interpretation": if value in ["spectrum", b"spectrum"]: append = True else: forget = True if (not append) and (not forget): #support (risky) name based solutions too. # the dataset name starts with MCA or # the parent group starts with MCA if posixpath.basename(name).lower().startswith("mca") or \ posixpath.basename(posixpath.dirname(name)).lower().startswith("mca"): append = True namebased = True if append: # an actual MCA spectrum will have more than one channel if (not namebased) and ("measurement" in name): # ALBA sets the interpretation attribute to spectrum # to every counter in the measurement group if len(obj.shape) == 1: # I have to figure out if in fact it is just a # misuse of the interpretation attribute posnames = getScannedPositioners(h5file, path) for motor in posnames: if h5file[motor].size == obj.size: append = False if append: # perform some name filtering if posixpath.basename(obj.name).lower() in ignore: append = False if append: # the measurement group if len(obj.shape) > 0: if obj.shape[-1] > 1: if dataset: datasetList.append(obj) else: name = obj.name name = sanitizeFilePath(h5file, name) datasetList.append(name) if hasattr(h5file[path], "visititems"): # prevent errors dealing with toplevel datasets h5file[path].visititems(visit_function) return datasetList def getMcaObjectPaths(h5file, mcaPath): """ Given an h5py instance and the path to a dataset, try to retrieve all the paths with associated information needed to build an McaSpectrumObject. McaSpectrumObject is a DataObject where data are the counts and the info part contains the information below - live_time - preset_time - elapsed_time - counts - channels - calibration The information below will be read but is not used as it does not belong to the detector but to a yet-to-be-defined PyMca XRF application definition. Please do not rely on it. - i0 - it - i0_to_flux_factor - it_to_flux_factor """ if not mcaPath.startswith("/"): # this is needed in order to avoid posixpath to return # an empty string mcaPath = "/" + mcaPath mca = {} mca["counts"] = mcaPath mca["target"] = mcaPath mcaKeys = ["channels", "calibration", "live_time", "preset_time", "elapsed_time", "i0", "it", "i0_to_flux_factor", "it_to_flux_factor"] # This initialization is not needed (at least for the time being) #mca["channels"] = None #mca["live_time"] = None #mca["elapsed_time"] = None #mca["preset_time"]= None #mca["calibration"] = [0.0, 1.0, 0.0] #mca["i0"] = None #mca["it"] = None #mca["i0_to_flux_factor"] = 1.0 #mca["it_to_flux_factor"] = 1.0 _logger.info("Input path <%s>" % (mcaPath,)) # check entry entry_item = getEntryName(mcaPath) entry_file = getEntryName(mcaPath, h5file=h5file) if entry_item != entry_file: mcaPath = _correct_entry_path(mcaPath, entry_item, entry_file) _logger.info("Used path <%s>" % (mcaPath,)) # look at the same level as the dataset parentPath = posixpath.dirname(mcaPath) searchPaths =[parentPath] # look at a container group named info at the same level if "info" in h5file[parentPath]: infoPath = posixpath.join(parentPath, "info") searchPaths.append(infoPath) # look at one level higher if the container is an NXdetector detectorPath = posixpath.dirname(parentPath) nxClass = "" obj = h5file[detectorPath] for key, value in obj.attrs.items(): if key in ["NX_class", b"NX_class"]: if value in ["NXdetector", b"NXdetector"]: searchPaths.append(detectorPath) # look for the relevant information in those groups for path in searchPaths: group = h5file[path] items_list = list(group.items()) for key, item in items_list: baseKey = posixpath.basename(key) if (baseKey in mcaKeys) and (key != mcaPath): if baseKey not in mca: mca[baseKey] = sanitizeFilePath(h5file, item.name) if len(mca) == 2: # we found nothing # check if we are dealing with a soft link basename = posixpath.basename(mcaPath) link = h5file[parentPath].get(basename, getlink=True) if hasattr(link, "path"): if hasattr(link, "filename"): # external link filename = link.filename if os.path.exists(filename): # it should always exist h5file = File(filename, "r") mca = getMcaObjectPaths(h5file, link.path) keys = list(mca.keys()) for key in keys: mca[key] = filename + "::" + mca[key] else: # soft link mca = getMcaObjectPaths(h5file, link.path) mca["counts"] = mcaPath return mca def getNXClassGroups(h5file, path, classes, single=False): """ Retrieve the hdf5 groups inside a given path where the NX_class attribute matches one of the items in the classes list. """ groups = [] items_list = list(h5file[path].items()) if ("NXentry" in classes) or (b"NXentry" in classes): items_list = h5py_sorting(items_list) for key, group in items_list: if not isGroup(group): continue for attr in group.attrs: if attr in ["NX_class", b"NX_class"]: if group.attrs[attr] in classes: groups.append(group) if single: break link = h5file.get(key, getlink=True) if isinstance(link, h5py.ExternalLink): _logger.info("External filename = <%s>" % link.filename) _logger.info("External file path = <%s>" % link.path) return groups def getPositionersGroup(h5file, path): """ Retrieve the positioners group associated to a path retrieving them from the same entry. It assumes they are either in: - NXentry/NXinstrument/positioners or - NXentry/measurement/pre_scan_snapshot """ entry_path = getEntryName(path, h5file=h5file) instrument = getNXClassGroups(h5file, entry_path, ["NXinstrument", b"NXinstrument"], single=True) positioners = None if len(instrument): instrument = instrument[0] for key in instrument.keys(): if key in ["positioners", b"positioners"]: positioners = instrument[key] if not isGroup(positioners): positioners = None if positioners is None: # sardana stores the positioners inside measurement/pre_scan_snapshot entry = h5file[entry_path] sardana = "measurement/pre_scan_snapshot" if sardana in entry: group = entry[sardana] if isGroup(group): positioners = group return positioners def getStartingPositionersGroup(h5file, path): """ Retrieve the start positioners group associated to a path retrieving them from the same entry. It assumes they are either in: - NXentry/NXinstrument/positioners_start or - NXentry/NXinstrument/positioners or - NXentry/measurement/pre_scan_snapshot """ entry_path = getEntryName(path, h5file=h5file) instrument = getNXClassGroups(h5file, entry_path, ["NXinstrument", b"NXinstrument"], single=True) positioners = None if len(instrument): instrument = instrument[0] for key in instrument.keys(): if key in ["positioners_start", b"positioners_start"]: positioners = instrument[key] if not isGroup(positioners): positioners = None if positioners is None: positioners = getPositionersGroup(h5file, path) return positioners def getStartingPositionerValues(h5file, path): """ Retrieve the start positioners names, values and units associated to a path retrieving them from the same entry. It assumes they are either in: - NXentry/NXinstrument/positioners_start or - NXentry/NXinstrument/positioners or - NXentry/measurement/pre_scan_snapshot """ nxpositioners = getStartingPositionersGroup(h5file, path) positions = list() if nxpositioners is None: return positions for name, dset in nxpositioners.items(): if not isinstance(dset, h5py.Dataset): continue idx = (0,) * dset.ndim positions.append((name, dset[idx], dset.attrs.get("units", ""))) return positions def getMeasurementGroup(h5file, path): """ Retrieve the measurement group associated to a path retrieving them from the same entry. It looks for: - A group named measurement at the entry level - The NXdata group at the entry level with the greater number of datasets """ if path in ["/", b"/", "", b""]: raise ValueError("path cannot be the toplevel root") entry_path = getEntryName(path, h5file=h5file) entry = h5file[entry_path] if hasattr(entry, "items"): items_list = entry.items() else: # we have received a top level dataset return None measurement = None for key, group in items_list: if key in ["measurement", b"measurement"]: if isGroup(group): measurement = group if measurement is None: # try to get the default NXdata groups as measurement group default = None for attr in entry.attrs: if attr in ["default", b"default"]: default = entry.attrs[attr] # hdf5 stores in utf-8 the paths if we got bytes, they need to be converted if hasattr(default, "decode"): default = default.decode() if default is None: # get the NXdata group just behind entry that contains more items inside # and take it as measurement group nxdatas = getNXClassGroups(h5file, entry_path, ["NXdata", b"NXdata"], single=False) if len(nxdatas): measurement = nxdatas[0] nitems = len(measurement) for group in nxdatas: if len(group) > nitems: measurement = group nitems = len(measurement) else: # default could be anything ... crashes should be prevented if default in entry: group = entry[default] if isGroup(group): measurement = group return measurement def getInstrumentGroup(h5file, path): entry_name = getEntryName(path, h5file=h5file) groups = getNXClassGroups(h5file, entry_name, ["NXinstrument", b"NXinstrument"] , single=False) n = len(groups) if n == 0: return None else: if n > 1: _logger.warning("More than one instrument associated to the same entry") return groups[0] def getScannedPositioners(h5file, path): """ Try to retrieve the positioners (aka. motors) that were moved. For that: - Look for datasets present at measurement and positioners groups - Look for positioners with more than one single value - Look for datasets present at measurement and title """ entry_name = getEntryName(path, h5file=h5file) try: title = getTitle(h5file, path) except Exception: _logger.warning("Error getting title from entry <%s>" % entry_name) title = "" measurement = getMeasurementGroup(h5file, entry_name) scanned = [] if measurement is not None: positioners = getPositionersGroup(h5file, entry_name) if positioners is not None: priorityPositioners = False if priorityPositioners: counters = [key for key, item in measurement.items() if isDataset(item)] scanned = [item.name for key, item in positioners.items() if key in counters] else: motors = [key for key, item in positioners.items() if isDataset(item)] scanned = [item.name for key, item in measurement.items() if key in motors] if len(scanned) > 1: # check that motors are not duplicated without reason scanned = [item.name for key, item in measurement.items() if \ (key in motors) and \ (hasattr(item, "size") and (item.size > 1))] if not len(scanned): # look for datasets with more than one single value inside positioners scanned = [item.name for key, item in positioners.items() if \ isDataset(item) and \ (hasattr(item, "size") and (item.size > 1))] if len(title) and hasattr(title, "split"): if not len(scanned) or "fscan " in title: tokens = title.split() scanned = scanned + [item.name for key, item in measurement.items() if \ isDataset(item) and \ (key in tokens)] # provide proper sorting if len(scanned) > 1 and sys.version_info > (3, 3): # sort irrespective of capital or lower case scanned.sort(key=str.casefold) if len(title) and hasattr(title, "split"): indices = [] tokens = title.split() offset = len(tokens) + len(scanned) for key in scanned: short = posixpath.basename(key) if short in tokens: indices.append((tokens.index(short), key)) else: indices.append((offset + scanned.index(key), key)) indices.sort() scanned = [key for idx, key in indices] return scanned if __name__ == "__main__": import h5py try: sourcename=sys.argv[1] except Exception: print("Usage: NexusTools ") sys.exit() try: from silx.io import open as h5open h5 = h5open(sourcename) except Exception: h5 = h5py.File(sourcename, 'r') entries = getNXClassGroups(h5, "/", ["NXentry", b"NXentry"], single=False) print("entries = ", entries) if not len(entries): entries = [item for name, item in h5["/"].items() if isGroup(item)] for entry in entries: if "title" in entry: print("Entry title = %s" % entry["title"][()]) measurement = getMeasurementGroup(h5, entry.name) if measurement is None: print("No measurement") else: print("Measurement name = %s " % measurement.name) instrument = getInstrumentGroup(h5, entry.name) if instrument is None: print("No instrument") else: print("Instrument name = %s " % instrument.name) positioners = getPositionersGroup(h5, entry.name) if positioners is None: print("No positioners") else: print("Positioners name = %s " % positioners.name) scanned = getScannedPositioners(h5, entry.name) if len(scanned): for i in range(len(scanned)): print("Scanned motors %d = %s" % (i, scanned[i])) else: print("Unknown scanned motors") mca = getMcaList(h5, entry.name, dataset=False) if len(mca): for i in range(len(mca)): print("MCA dataset %d = %s" % (i, mca[i])) info = getMcaObjectPaths(h5, mca[i]) for key in info: print('mca["%s"] = %s' % (key, info[key])) else: print("No MCA found") ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/Plugin1DBase.py0000644000000000000000000004454414741736366020020 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2018 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ A 1D plugin is a module that can be added to the PyMca 1D window in order to perform user defined operations of the plotted 1D data. Plugins can be automatically installed provided they are in the appropriate place: - In the user home directory (POSIX systems): *${HOME}/.pymca/plugins* or *${HOME}/PyMca/plugins* (older PyMca installation) - In *"My Documents\\\\PyMca\\\\plugins"* (Windows) Plugins inherit the :class:`Plugin1DBase` class and implement the methods: - :meth:`Plugin1DBase.getMethods` - :meth:`Plugin1DBase.getMethodToolTip` (optional but convenient) - :meth:`Plugin1DBase.getMethodPixmap` (optional) - :meth:`Plugin1DBase.applyMethod` and modify the static module variable :const:`MENU_TEXT` and the static module function :func:`getPlugin1DInstance` according to the defined plugin. Optionally, plugins may also implement :meth:`Plugin1DBase.activeCurveChanged` to react to data selection in the plot. These plugins will be compatible with any 1D-plot window that implements the Plot1D interface. The plot window interface is described in the Plot1DBase class. The main items are reproduced here and can be directly accessed as plugin methods. - :meth:`Plugin1DBase.addCurve` - :meth:`Plugin1DBase.getActiveCurve` - :meth:`Plugin1DBase.getAllCurves` - :meth:`Plugin1DBase.getGraphXLimits` - :meth:`Plugin1DBase.getGraphYLimits` - :meth:`Plugin1DBase.getGraphTitle` - :meth:`Plugin1DBase.getGraphXLabel` - :meth:`Plugin1DBase.getGraphYLabel` - :meth:`Plugin1DBase.removeCurve` - :meth:`Plugin1DBase.setActiveCurve` - :meth:`Plugin1DBase.setGraphTitle` - :meth:`Plugin1DBase.setGraphXLimits` - :meth:`Plugin1DBase.setGraphYLimits` - :meth:`Plugin1DBase.setGraphXLabel` - :meth:`Plugin1DBase.setGraphYLabel` A simple plugin example, normalizing each curve to its maximum and vertically shifting the curves. .. code-block:: python from PyMca5 import Plugin1DBase class Shifting(Plugin1DBase.Plugin1DBase): def getMethods(self, plottype=None): return ["Shift"] def getMethodToolTip(self, methodName): if methodName != "Shift": raise InvalidArgument("Method %s not valid" % methodName) return "Subtract minimum, normalize to maximum, and shift up by 0.1" def applyMethod(self, methodName): if methodName != "Shift": raise ValueError("Method %s not valid" % methodName) allCurves = self.getAllCurves() increment = 0.1 for i in range(len(allCurves)): x, y, legend, info = allCurves[i][:4] delta = float(y.max() - y.min()) if delta < 1.0e-15: delta = 1.0 y = (y - y.min())/delta + i * increment if i == (len(allCurves) - 1): replot = True else: replot = False if i == 0: replace = True else: replace = False self.addCurve(x, y, legend=legend + " %.2f" % (i * increment), info=info, replace=replace, replot=replot) MENU_TEXT="Simple Shift Example" def getPlugin1DInstance(plotWindow, **kw): ob = Shifting(plotWindow) return ob """ import weakref try: from numpy import argsort, nonzero, take except ImportError: print("WARNING: numpy not present") def merge_info_params(info, params): """Return a copy of dictionary`info` updated with the content of dictionary `params`. If keys don't overlap, this will effectively concatenate info and params. :param dict info: Dictionary of custom curve metadata :param dict params: Dictionary of standard curve metadata (*xlabel, ylabel, linestyle...*)""" # TODO. much more keys and values to fix (see McaWindow) info_params = info.copy() info_params.update(params) # xlabel and ylabel default to None in *silx*, # PyMca plugins expect a string if info_params.get("xlabel", None) is None: info_params["xlabel"] = "X" if info_params.get("ylabel", None) is None: info_params["ylabel"] = "Y" return info_params class Plugin1DBase(object): def __init__(self, plotWindow, **kw): """ plotWindow is the object instantiating the plugin. Unless one knows what (s)he is doing, only a proxy should be used. I pass the actual instance to keep all doors open. The plot window can be a legacy PyMca plot, in which case :attr:`_legacy` is set to *True*, or a :class:`PluginsToolButton` acting as proxy for a *silx* PlotWindow. """ self._plotWindow = weakref.proxy(plotWindow) self._legacy = False """ In the transition phase from PyMca plot to silx plot, the plot window could be a legacy PyMca plot, in which case :attr:`_legacy` is set to *True*, or a :class:`PluginsToolButton` acting as proxy for a *silx* PlotWindow (*legacy=False*). But now we don't expect to see PyMca plots any longer. """ # PyMcaGraph.Plot has a PLUGINS_DIR class attribute, # PluginsToolButton does not if hasattr(plotWindow, "PLUGINS_DIR"): self._legacy = True # Window related functions def windowTitle(self): name = self._plotWindow.windowTitle() return name # fixme: should we support **kw? def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, **kw): """ Add the 1D curve given by x an y to the graph. :param x: The data corresponding to the x axis :type x: list or numpy.ndarray :param y: The data corresponding to the y axis :type y: list or numpy.ndarray :param legend: The legend to be associated to the curve :type legend: string or None :param info: Dictionary of information associated to the curve :type info: dict or None :param replace: Flag to indicate if already existing curves are to be deleted :type replace: boolean default False :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True :param kw: Additional keywords recognized by the plot window. Beware that the keywords recognized by *silx* and *PyMca* plot windows may differ. """ if self._legacy: return self._plotWindow.addCurve(x, y, legend=legend, info=info, replace=replace, replot=replot, **kw) else: # fill = info.get("plot_fill", False) if info is not None else False # fill = kw.get("fill", fill) # linewidth = kw.get("linewidth", None) return self._plotWindow.addCurve(x, y, legend=legend, info=info, replace=replace, resetzoom=replot, # fill=fill, linewidth=linewidth, # Fixme: are these needed? **kw) def getActiveCurve(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the active curve or list ``[x, y, legend, info]`` :rtype: string or list Function to access the graph currently active curve. It returns None in case of not having an active curve. Default output has the form:: xvalues, yvalues, legend, dict where dict is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. If just_legend is True: The legend of the active curve (or None) is returned. """ curve = self._plotWindow.getActiveCurve(just_legend=just_legend) # silx specific: when there is only one curve, get it, even if not active # (PyMca's getActiveCurve already does this) if curve is None and not self._legacy: if len(self.getAllCurves(just_legend=True)) == 1: curve = self._plotWindow.getCurve() if self._legacy or just_legend or curve is None: return curve # silx PlotWindow x, y, legend, info, params = curve return x, y, legend, merge_info_params(info, params) def getAllCurves(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the curves or list ``[[x, y, legend, info], ...]`` :rtype: list of strings or list of curves It returns an empty list in case of not having any curve. If just_legend is *False*, it returns a list of the form:: [[xvalues0, yvalues0, legend0, dict0], [xvalues1, yvalues1, legend1, dict1], [...], [xvaluesn, yvaluesn, legendn, dictn]] If just_legend is *True*, it returns a list of the form:: [legend0, legend1, ..., legendn] """ all_curves = [] for curve in self._plotWindow.getAllCurves(just_legend=just_legend): if just_legend or self._legacy: all_curves.append(curve) else: x, y, legend, info, params = curve all_curves.append([x, y, legend, merge_info_params(info, params)]) return all_curves def getCurve(self, legend): curve = self._plotWindow.getCurve(legend) if self._legacy or curve is None: return curve # silx PlotWindow x, y, legend, info, params = curve return x, y, legend, merge_info_params(info, params) def getMonotonicCurves(self): """ Convenience method that calls :meth:`getAllCurves` and makes sure that all of the X values are strictly increasing. It returns a list of the form:: [[xvalues0, yvalues0, legend0, dict0], [xvalues1, yvalues1, legend1, dict1], [...], [xvaluesn, yvaluesn, legendn, dictn]] """ allCurves = [] for curve in self.getAllCurves(): x, y, legend, info = curve[0:4] # Sort idx = argsort(x, kind='mergesort') xproc = take(x, idx) yproc = take(y, idx) # Ravel, Increase xproc = xproc.ravel() idx = nonzero((xproc[1:] > xproc[:-1]))[0] xproc = take(xproc, idx) yproc = take(yproc, idx) allCurves.append([xproc, yproc, legend, info]) return allCurves def getGraphXLimits(self): """ Get the graph X limits. :return: Two floats with the X axis limits """ return self._plotWindow.getGraphXLimits() def getGraphYLimits(self): """ Get the graph Y (left) limits. :return: Two floats with the Y (left) axis limits """ return self._plotWindow.getGraphYLimits() def getGraphTitle(self): """ :return: The graph title :rtype: string """ return self._plotWindow.getGraphTitle() def getGraphXLabel(self): """ :return: The graph X axis label :rtype: string """ return self._plotWindow.getGraphXLabel() def getGraphXTitle(self): print("getGraphXTitle deprecated, use getGraphXLabel") return self._plotWindow.getGraphXLabel() def getGraphYLabel(self): """ :return: The graph Y axis label :rtype: string """ return self._plotWindow.getGraphYLabel() def getGraphYTitle(self): print("getGraphYTitle deprecated, use getGraphYLabel") return self._plotWindow.getGraphYLabel() def setGraphXLimits(self, xmin, xmax, replot=False): """ Set the graph X limits. :param xmin: minimum value of the axis :type xmin: float :param xmax: minimum value of the axis :type xmax: float :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default False """ if self._legacy: return self._plotWindow.setGraphXLimits(xmin, xmax, replot=replot) return self._plotWindow.setGraphXLimits(xmin, xmax) # TODO: support param axis='right'? def setGraphYLimits(self, ymin, ymax, replot=False): """ Set the graph Y (left) limits. :param ymin: minimum value of the axis :type ymin: float :param ymax: minimum value of the axis :type ymax: float :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default False """ if self._legacy: return self._plotWindow.setGraphYLimits(ymin, ymax, replot=replot) return self._plotWindow.setGraphYLimits(ymin, ymax) def removeCurve(self, legend, replot=True): """ Remove the curve associated to the supplied legend from the graph. The graph will be updated if replot is true. :param legend: The legend associated to the curve to be deleted :type legend: string or None :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ if self._legacy: self._plotWindow.removeCurve(legend, replot=replot) return self._plotWindow.removeCurve(legend) def setActiveCurve(self, legend): """ Funtion to request the plot window to set the curve with the specified legend as the active curve. :param legend: The legend associated to the curve :type legend: string """ return self._plotWindow.setActiveCurve(legend) def setGraphTitle(self, title): """ :param title: The title to be set :type title: string """ return self._plotWindow.setGraphTitle(title) def setGraphXTitle(self, title): print("setGraphXTitle deprecated, use setGraphXLabel") self.setGraphXLabel(title) def setGraphXLabel(self, title): """ :param title: The title to be associated to the X axis :type title: string """ if self._legacy: return self._plotWindow.setGraphXTitle(title) return self._plotWindow.setGraphXLabel(title) def setGraphYTitle(self, title): print("setGraphYTitle deprecated, use setGraphYLabel") self.setGraphYLabel(title) def setGraphYLabel(self, title): """ :param title: The title to be associated to the X axis :type title: string """ if self._legacy: return self._plotWindow.setGraphYTitle(title) return self._plotWindow.setGraphYLabel(title) # Methods to be implemented by the plugin def getMethods(self, plottype=None): """ :param plottype: string or None for the case the plugin only support one type of plots. Implemented values "SCAN", "MCA" or None :return: A list with the NAMES associated to the callable methods that are applicable to the specified type plot. The list can be empty. :rtype: list[string] """ print("getMethods not implemented") return [] def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. :param name: The method for which a tooltip is asked :rtype: string """ return None def getMethodPixmap(self, name): """ :param name: The method for which a pixmap is asked :rtype: QPixmap or None """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ print("applyMethod not implemented") return def activeCurveChanged(self, prev, new): """A plugin may implement this method which is called when the active curve changes in the plot. :param prev: Legend of the previous active curve, or None if no curve was active. :param new: Legend of the new active curve, or None if no curve is currently active. """ pass MENU_TEXT = "Plugin1D Base" """This is the name of the plugin, as it appears in the plugins menu.""" def getPlugin1DInstance(plotWindow, **kw): """ This function will be called by the plot window instantiating and calling the plugins. It passes itself as first argument, but the default implementation of the base class only keeps a weak reference to prevent circular references. """ ob = Plugin1DBase(plotWindow) return ob ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/Plugin2DBase.py0000644000000000000000000001062014741736366020005 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2018 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ A 2D plugin is a module that can be added to the PyMca 2D window in order to perform user defined operations of the plotted 2D data. Plugins can be automatically installed provided they are in the appropriate place: - In the user home directory (POSIX systems): *${HOME}/.pymca/plugins* or *${HOME}/PyMca/plugins* (older PyMca installation) - In *"My Documents\\\\PyMca\\\\plugins"* (Windows) A plugin inherits the :class:`Plugin2DBase` class and implements the methods: - :meth:`Plugin2DBase.getMethods` - :meth:`Plugin2DBase.getMethodToolTip` (optional but convenient) - :meth:`Plugin2DBase.getMethodPixmap` (optional) - :meth:`Plugin2DBase.applyMethod` and modifies the static module variable :const:`MENU_TEXT` and the static module function :func:`getPlugin2DInstance` according to the defined plugin. It may also optionally implement :meth:`Plugin2DBase.activeImageChanged`. """ __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import weakref class Plugin2DBase(object): def __init__(self, plotWindow, **kw): """ plotWindow is the plot on which the plugin operates. """ self._plotWindow = weakref.proxy(plotWindow) # Methods to be implemented by the plugin def getMethods(self, plottype=None): """ :return: A list with the NAMES associated to the callable methods that are applicable to the specified type plot. The list can be empty. :rtype: list[string] """ print("getMethods not implemented") return [] def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. :param name: The method for which a tooltip is asked :rtype: string """ return None def getMethodPixmap(self, name): """ :param name: The method for which a pixmap is asked :rtype: QPixmap or None """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ print("applyMethod not implemented") return def activeImageChanged(self, prev, new): """A plugin may implement this method which is called when the active image changes in the plot. :param prev: Legend of the previous active image, or None if no image was active. :param new: Legend of the new active curve, or None if no image is currently active. """ pass MENU_TEXT = "Plugin2D Base" """This is the name of the plugin, as it appears in the plugins menu.""" def getPlugin2DInstance(plotWindow, **kw): """ This function will be called by the plot window instantiating and calling the plugins. It passes itself as first argument, but the default implementation of the base class only keeps a weak reference to prevent circular references. """ ob = Plugin2DBase(plotWindow) return ob ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/PyMcaBatchBuildOutput.py0000644000000000000000000003436014741736366021751 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy import logging import shutil import re import itertools from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaIO import TiffIO from PyMca5.PyMcaCore import NexusTools try: import h5py except ImportError: h5py = None _logger = logging.getLogger(__name__) class PyMcaBatchBuildOutput(object): def __init__(self, inputdir=None, outputdir=None): self.inputDir = inputdir self.outputDir = outputdir def buildOutput(self, inputdir=None, basename=None, outputdir=None, delete=None): """ :returns: 3 lists of merged filenames: .edf filenames, .dat filenames and .h5 filenames """ if inputdir is None: inputdir = self.inputDir if inputdir is None: inputdir = os.getcwd() if not os.path.isdir(inputdir): return [], [], [] if outputdir is None: outputdir = self.outputDir if outputdir is None: outputdir = inputdir if delete is None: if outputdir == inputdir: delete = True _logger.debug("delete option = %s", delete) allfiles = os.listdir(inputdir) partialList = {'edf': {'ext': '.edf', 'list': []}, 'tif': {'ext': '.tif', 'list': []}, 'dat': {'ext': '.dat', 'list': []}, 'csv': {'ext': '.csv', 'list': []}, 'h5': {'ext': '.h5', 'list': []}, 'cfg': {'ext': '.cfg', 'list': []}, 'conc': {'ext': '_concentrations.txt', 'list': []} } for filepath in allfiles: filename = os.path.basename(filepath) for typ, value in partialList.items(): if basename: if not filename.startswith(basename): continue if filename.endswith('000000_partial' + value['ext']): value['list'].append(filename) outListH5 = self._merge(inputdir, outputdir, delete, partialList['h5']['list'], self._mergeH5) outListEdf = self._merge(inputdir, outputdir, delete, partialList['edf']['list'], self._mergeEdf) outListDat = self._merge(inputdir, outputdir, delete, partialList['dat']['list'], self._mergeDat) self._merge(inputdir, outputdir, delete, partialList['tif']['list'], self._mergeTif) self._merge(inputdir, outputdir, delete, partialList['csv']['list'], self._mergeCsv) self._merge(inputdir, outputdir, delete, partialList['conc']['list'], self._mergeConcTxt) self._merge(inputdir, outputdir, delete, partialList['cfg']['list'], self._mergeCfg) return outListEdf, outListDat, outListH5 def _merge(self, inputdir, outputdir, delete, partialList, func): """ The images to be merged already have the final size but are filled with NaN's """ outList = [] for filename in partialList: parts = self.getPartialFileList(os.path.join(inputdir, filename)) outfilename = parts[0].replace("_000000_partial", "") _logger.debug("Merging %s (%d parts)", outfilename, len(parts)) outfilename = os.path.join(outputdir, outfilename) try: func(parts, outfilename) except Exception: _logger.error("Error merging %s\n: %s", outfilename, sys.exc_info()[1]) continue outList.append(outfilename) if delete: for filename in parts: try: os.remove(filename) except Exception: _logger.warning("Cannot delete file %s" % filename) return outList def _mergeH5(self, parts, outfilename): shutil.copy(parts[0], outfilename) with h5py.File(outfilename, mode='a') as fout: for entry in NexusTools.getNXClassGroups(fout, '/', [u'NXentry']): for process in NexusTools.getNXClassGroups(fout, entry.name, [u'NXprocess']): for results in NexusTools.getNXClassGroups(fout, process.name, [u'NXcollection']): for dataout in NexusTools.getNXClassGroups(fout, results.name, [u'NXdata']): for part in parts[1:]: with h5py.File(part, mode='r') as fin: try: datain = fin[dataout.name] except KeyError: _logger.error('%s does not have %s', part, repr(dataout.name)) continue for datasetname in dataout: self._fillPartial(dataout[datasetname], datain[datasetname], maxdims=2) def _mergeCfg(self, parts, outfilename): # They should be all the same so pick the first one shutil.copy(parts[0], outfilename) return outfilename def _mergeEdf(self, parts, outfilename): for i, edfname in enumerate(parts): edf = EdfFile.EdfFile(edfname, access='rb', fastedf=0) nImages = edf.GetNumImages() if i == 0: images = [edf.GetData(j).copy() for j in range(nImages)] headers = [{'Title': edf.GetHeader(j)['Title']} for j in range(nImages)] else: headersi = [{'Title': edf.GetHeader(j)['Title']} for j in range(nImages)] for header, img in zip(headers, images): k = headersi.index(header) self._fillPartial(img, edf.GetData(k)) del edf if os.path.exists(outfilename): _logger.debug("Output file already exists, trying to delete it") os.remove(outfilename) edfout = EdfFile.EdfFile(outfilename, access="ab") for i, (img, header) in enumerate(zip(images, headers)): edfout.WriteImage(header, img, Append=i > 0) del edfout def _mergeTif(self, parts, outfilename): for i, tifname in enumerate(parts): tif = TiffIO.TiffIO(tifname, mode='rb') nImages = tif.getNumberOfImages() if i == 0: images = [tif.getData(j).copy() for j in range(nImages)] headers = [{'Title': tif.getInfo(j)['info']['Title']} for j in range(nImages)] else: headersi = [{'Title': tif.getInfo(j)['info']['Title']} for j in range(nImages)] for header, img in zip(headers, images): k = headersi.index(header) self._fillPartial(img, tif.getData(k)) del tif if os.path.exists(outfilename): _logger.debug("Output file already exists, trying to delete it") os.remove(outfilename) for i, (img, header) in enumerate(zip(images, headers)): # TODO: there must be a better way if i == 0: tifout = TiffIO.TiffIO(outfilename, mode="wb+") elif i == 1: del tifout tifout = TiffIO.TiffIO(outfilename, mode="rb+") tifout.writeImage(img, info=header) del tifout def _fillPartial(self, output, input, maxdims=None): if output.shape != input.shape: _logger.error("Cannot merge array's with different shapes") return if maxdims is None: maxdims = output.ndim if output.ndim > maxdims: # This is meant to preserve memory when copying # h5py datasets idx = [slice(None)]*output.ndim shape = output.shape iterdims = sorted(numpy.argsort(shape)[:-maxdims]) iterlst = [list(range(shape[i])) for i in iterdims] for iteridx in itertools.product(*iterlst): for axis, i in zip(iterdims, iteridx): idx[axis] = i idxtpl = tuple(idx) bufferin = input[idxtpl] mask = ~numpy.isnan(bufferin) if mask.any(): bufferout = output[idxtpl] bufferout[mask] = bufferin[mask] output[idxtpl] = bufferout else: mask = ~numpy.isnan(input) if mask.any(): output[mask] = input[mask] def _mergeDat(self, parts, outfilename): self._mergeAscii(parts, outfilename, ' ') def _mergeCsv(self, parts, outfilename): self._mergeAscii(parts, outfilename, ';') def _mergeAscii(self, parts, outfilename, separator): first = True for specname in parts: f = open(specname) lines = f.readlines() f.close() j = 1 while not len(lines[-j].replace("\n", "")): j += 1 if first: first = False labels = lines[0].replace("\n", "").split(separator) nlabels = len(labels) nrows = len(lines) - j data = numpy.zeros((nrows, nlabels), numpy.double) inputdata = numpy.zeros((nrows, nlabels), numpy.double) colSelect = list(range(nlabels)) else: labelsi = lines[0].replace("\n", "").split(separator) colSelect = [labels.index(label) for label in labelsi] for i in range(nrows): inputdata[i, colSelect] = [float(x) for x in lines[i+1].split(separator)] self._fillPartial(data, inputdata) if os.path.exists(outfilename): os.remove(outfilename) outfile = open(outfilename, 'w+') outfile.write("%s\n" % separator.join(labels)) for row in range(nrows): line = "" for col in range(nlabels): if col == 0: line += "%d" % inputdata[row, col] elif col == 1: line += separator + "%d" % inputdata[row, col] else: line += separator + "%g" % data[row, col] outfile.write("%s\n" % line) outfile.write("\n") outfile.close() def _mergeConcTxt(self, parts, outfilename): for i, infilename in enumerate(parts): ffile = open(infilename, 'rb') if i == 0: if os.path.exists(outfilename): os.remove(outfilename) outfile = open(outfilename, 'wb') lines = ffile.readlines() for line in lines: outfile.write(line) ffile.close() outfile.close() @staticmethod def getPartialFileList(filename, begin=None, end=None, skip=None): # Decempose filename, for example "/tmp/base_000000_partial.ext" name, ext = os.path.splitext(os.path.basename(filename)) m = re.search(r"^(.+?)(\d+)([^\d]+)$", name) if not m: return [filename] prefix, number, suffix = m.groups() prefix = os.path.join(os.path.dirname(filename), prefix) suffix += ext # Prepare iteration over "/tmp/base_{:d}_partial.ext" fformat = prefix + "{{:0{}d}}".format(len(number)) + suffix if begin is None: i = 0 while not os.path.exists(fformat.format(i)): i += 1 else: i = begin if not skip: skip = [] # Find all "/tmp/base_{:d}_partial.ext" filelist = [] while os.path.exists(fformat.format(i)) or i in skip: if i not in skip: filelist.append(fformat.format(i)) i += 1 if end is not None: if i > end: break return filelist if __name__ == "__main__": import sys if len(sys.argv) < 2: print("Usage:") print("python PyMcaBatchBuildOutput.py directory") sys.exit(0) directory = sys.argv[1] w = PyMcaBatchBuildOutput(directory) w.buildOutput() """ allfiles = os.listdir(directory) edflist = [] datlist = [] for filename in allfiles: if filename.endswith('000000_partial.edf'):edflist.append(filename) elif filename.endswith('000000_partial.dat'):datlist.append(filename) for filename in edflist: print w.getPartialFileList(os.path.join(directory, filename)) """ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/PyMcaDirs.py0000644000000000000000000000743014741736366017426 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging _logger = logging.getLogger(__name__) inputDir = None outputDir = None openFilter = None saveFilter = None nativeFileDialogs = False class __ModuleWrapper: def __init__(self, wrapped): self.__dict__["_ModuleWrapper__wrapped"] = wrapped def __getattr__(self, name): _logger.debug("getting %s", name) if name == "inputDir": if self.__wrapped.__dict__[name] is None: if self.__wrapped.__dict__['outputDir'] is not None: value = self.__wrapped.__dict__['outputDir'] else: value = os.getcwd() if not os.path.isdir(value): value = os.getcwd() self.__setattr__('inputDir', value) elif name == "outputDir": if self.__wrapped.__dict__[name] is None: if self.__wrapped.__dict__['inputDir'] is not None: value = self.__wrapped.__dict__['inputDir'] else: value = os.getcwd() if not os.path.isdir(value): value = os.getcwd() self.__setattr__('outputDir', value) _logger.debug("got %s %s", name, getattr(self.__wrapped, name)) return getattr(self.__wrapped, name) def __setattr__(self, name, value): _logger.debug("setting %s %s", name, value) if name == "inputDir": if os.path.isdir(value): self.__wrapped.__dict__[name]=value else: if not len("%s" % value): self.__wrapped.__dict__[name] = os.getcwd() else: raise ValueError("Non-existing directory <%s>" % value) elif name == "outputDir": if os.path.isdir(value): self.__wrapped.__dict__[name]=value else: if not len("%s" % value): self.__wrapped.__dict__[name] = os.getcwd() else: raise ValueError("Non-existing directory <%s>" % value) elif name in ["nativeFileDialogs", "openFilter", "saveFilter"]: self.__wrapped.__dict__[name]=value elif name.startswith("__"): self.__dict__[name]=value else: raise AttributeError("Invalid attribute %s" % name) #self.__wrapped.__dict__[name]=value sys.modules[__name__]=__ModuleWrapper(sys.modules[__name__]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/PyMcaLogo.py0000644000000000000000000001327514741736366017431 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" PyMcaLogo = [ "55 68 8 1", " c blue", ". c #07070707fcfc0000", "X c #3b3b3b3bfdfd0000", "o c #8c8c8c8cfdfd0000", "O c #babababafbfb0000", "+ c #e0e0e0e0fdfd0000", "@ c #f7f7f7f7fdfd0000", "# c white", "#######################################################", "#######################################################", "#######################################################", "###########################O+##########################", "#####################OO####.o###@o@####################", "#####################oX####+@###+.+####################", "################@@#########oO#########+################", "################Xo####XX##+ X##+XO###@.o###############", "################O+###@..###o+##O o####O+###############", "#################OXO##++###O+###+###oX#################", "###########@O@###o o##@Xo@o .@OXo###X.@###+O###########", "###########O O####+@+#O OO .@o .#@+@+####XX###########", "############+#oO###X o@XX##+@#OXo@X O##@oO@@###########", "#############+ X###X X##@+###@+##@. o##O X#############", "##############O++o++o@#O. X#+. X@#+O#oo@O+#############", "########+o@#####X X####X OX o###+ O#####Oo########", "########O.+Oo###o.o@OO#X +o O@O+@XX+##+o@oX########", "###########X +@O@##X o+X.o#@X.o+. O##+O#o o##########", "###########Oo#X o#+ .#########o X#@. o+o@##########", "##############X o##. X#########+ o#@. O#############", "#######@######@O###OXo+##########OXo@##++######@#######", "#######.o@Xo#Oo+#OXo@##############OXo@#Oo+@Xo#Xo######", "#######o++.X#. o+. X#############+. X#. o+ X#oO######", "##########+@#X.OO X#############O X#o.O#+@#########", "################@X o#############@X o################", "#############oX+#@OO###############@O+##oX+############", "#######O@+Xo#. o##oXO#############@oo+##. o+.o#+@######", "#######.o+.X#oX+#O O############X X##oXO+.X#.o######", "#######+@#@######o o############. +#####@##+@######", "##############o.O+. .O############X X#X.O#############", "###########++#X o#+o+OXX+######OXo@Oo@@. o@O###########", "###########X.++o+###@. X#@OO#+ o####Oo@o o##########", "########OX@oX@##OXO#+ .@X oO X##oX@##OX+OX########", "########+X@#####X X##X oO X@X .O#+ O#####OX########", "##############+@OXO@+#O+#+. X#@O+@+#XX++@#############", "#############+.X###X o####OXX+###@. O##+.X#############", "#############@Xo###X o#oo##@##+o+@. o##@Xo#############", "###########+X+#####@o@O +O.X#o X#+O######oX###########", "###########+o+###O.O##+XX@o .@O.o###XX@###Oo###########", "#################o o######@oO#######X.@################", "################+@+##@XX###+@##+.o##@@+################", "################Xo###@.X##+ X##O.o###@.o###############", "################O+####@@##@Xo###+#####O@###############", "#####################oo#########+X+#####@@@@@@@@@@@@@@#", "#o X#####oo####Xo###+X+####+ @", "#OXXXXXXXXXXXXXX###########oO##########+XXXXXXXXXXXXXX@", "#######################################################", "#######################################################", "#+OOOOOOOOOOO@####OoooO#O@#OOOOOOOOO+#####OOOOOOOOOOOO#", "##@o .ooXX O###o.O+OXX.@#@o ooo. XO####O XooX. X#", "###O .####O.O##O o####o @##@ +##+. .+####. O###@XX#", "###O .###@#oO##X o#####X@##@ +###X o####. O####@o#", "###O .##+O#+O##X .O####o@##@ +###o X####. O##++#O#", "###O .##oO#####o XO######@ +###X o####. O##o+###", "###O .#+.O#####+. X+####@ +##O. .+####. O#O.+###", "###O X. O######O. .O###@ ooX. XO#####. XX +###", "###O .#O.O#######@o. O##@ OX .+######. O@o.+###", "###O .##oO#####+###+o X##@ ++. X######. O##o+###", "###O .##+O##O+#o#####O. .##@ +#O o#####. O##O+###", "###O .###@##X@#X+#####X X##@ +##o .O####. O##@@###", "###O .#####o.##.X@####o O##@ +##@X X@###. O#######", "###o oOOoX X##..XO##O.o###O O###+. X@#+ o#######", "#+oooooooooooO##o#+oXXXO###Ooooooo@##OooooOoooooo+#####", "#######################################################", "#######################################################", "#oXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX#", "#o...................................................X#", "#######################################################" ] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/PyMcaMatplotlibSave.py0000644000000000000000000006060714741736366021460 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy import logging from matplotlib import cm from matplotlib import __version__ as matplotlib_version from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from matplotlib.colors import LinearSegmentedColormap, LogNorm, Normalize from matplotlib.ticker import MaxNLocator, AutoLocator _logger = logging.getLogger(__name__) colordict = {} colordict['blue'] = '#0000ff' colordict['red'] = '#ff0000' colordict['green'] = '#00ff00' colordict['black'] = '#000000' colordict['white'] = '#ffffff' colordict['pink'] = '#ff66ff' colordict['brown'] = '#a52a2a' colordict['orange'] = '#ff9900' colordict['violet'] = '#6600ff' colordict['grey'] = '#808080' colordict['yellow'] = '#ffff00' colordict['darkgreen'] = 'g' colordict['darkbrown'] = '#660000' colordict['magenta'] = 'm' colordict['cyan'] = 'c' colordict['bluegreen'] = '#33ffff' colorlist = [colordict['black'], colordict['red'], colordict['blue'], colordict['green'], colordict['pink'], colordict['brown'], colordict['cyan'], colordict['orange'], colordict['violet'], colordict['bluegreen'], colordict['grey'], colordict['magenta'], colordict['darkgreen'], colordict['darkbrown'], colordict['yellow']] class PyMcaMatplotlibSave(FigureCanvas): def __init__(self, size = (7,3.5), logx = False, logy = False, legends = True, bw = False): self.fig = Figure(figsize=size) #in inches FigureCanvas.__init__(self, self.fig) self._logX = logx self._logY = logy self._bw = bw self._legend = legends self._legendList = [] self._dataCounter = 0 if not legends: if self._logY: ax = self.fig.add_axes([.15, .15, .75, .8]) else: ax = self.fig.add_axes([.15, .15, .75, .75]) else: if self._logY: ax = self.fig.add_axes([.15, .15, .7, .8]) else: ax = self.fig.add_axes([.15, .15, .7, .8]) ax.set_axisbelow(True) self.ax = ax if self._logY: self._axFunction = ax.semilogy else: self._axFunction = ax.plot if self._bw: self.colorList = ['k'] #only black self.styleList = ['-', ':', '-.', '--'] self.nColors = 1 else: self.colorList = colorlist self.styleList = ['-', '-.', ':'] self.nColors = len(colorlist) self.nStyles = len(self.styleList) self.colorIndex = 0 self.styleIndex = 0 self.xmin = None self.xmax = None self.ymin = None self.ymax = None self.limitsSet = False def setLimits(self, xmin, xmax, ymin, ymax): self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.limitsSet = True def _filterData(self, x, y): index = numpy.flatnonzero((self.xmin <= x) & (x <= self.xmax)) x = numpy.take(x, index) y = numpy.take(y, index) index = len(index) if index: index = numpy.flatnonzero((self.ymin <= y) & (y <= self.ymax)) index = len(index) return index def _getColorAndStyle(self): color = self.colorList[self.colorIndex] style = self.styleList[self.styleIndex] self.colorIndex += 1 if self.colorIndex >= self.nColors: self.colorIndex = 0 self.styleIndex += 1 if self.styleIndex >= self.nStyles: self.styleIndex = 0 return color, style def addDataToPlot(self, x, y, legend = None, color = None, linewidth = None, linestyle = None, **kw): n = max(x.shape) if self.limitsSet is not None: n = self._filterData(x, y) if n == 0: #nothing to plot _logger.debug("nothing to plot") return style = None if color is None: color, style = self._getColorAndStyle() if linestyle is None: if style is None: style = '-' else: style = linestyle if linewidth is None:linewidth = 1.0 self._axFunction( x, y, linestyle = style, color=color, linewidth = linewidth, **kw) self._dataCounter += 1 if legend is None: #legend = "%02d" % self._dataCounter #01, 02, 03, ... legend = "%c" % (96+self._dataCounter) #a, b, c, .. self._legendList.append(legend) def setXLabel(self, label): self.ax.set_xlabel(label) def setYLabel(self, label): self.ax.set_ylabel(label) def setTitle(self, title): self.ax.set_title(title) def plotLegends(self): if not self._legend:return if not len(self._legendList):return loc = (1.01, 0.0) labelsep = 0.015 drawframe = True fontproperties = FontProperties(size=10) if len(self._legendList) > 14: drawframe = False if matplotlib_version < '0.99.0': fontproperties = FontProperties(size=8) loc = (1.05, -0.2) else: if len(self._legendList) < 18: #drawframe = True loc = (1.01, 0.0) elif len(self._legendList) < 25: loc = (1.05, 0.0) fontproperties = FontProperties(size=8) elif len(self._legendList) < 28: loc = (1.05, 0.0) fontproperties = FontProperties(size=6) else: loc = (1.05, -0.1) fontproperties = FontProperties(size=6) if matplotlib_version < '0.99.0': legend = self.ax.legend(self._legendList, loc = loc, prop = fontproperties, labelsep = labelsep, pad = 0.15) else: legend = self.ax.legend(self._legendList, loc = loc, prop = fontproperties, labelspacing = labelsep, borderpad = 0.15) legend.draw_frame(drawframe) def saveFile(self, filename, format=None): if format is None: format = filename[-3:] if format.upper() not in ['EPS', 'PNG', 'SVG']: raise ValueError("Unknown format %s" % format) if os.path.exists(filename): os.remove(filename) if self.limitsSet: self.ax.set_ylim(self.ymin, self.ymax) self.ax.set_xlim(self.xmin, self.xmax) #self.plotLegends() self.print_figure(filename) return class PyMcaMatplotlibSaveImage: def __init__(self, imageData=None, fileName=None, dpi=300, size=(5, 5), xaxis='off', yaxis='off', xlabel='', ylabel='', nxlabels=0, nylabels=0, colorbar=None, title='', interpolation='nearest', colormap=None, linlogcolormap='linear', origin='lower', contour='off', contourlabels='on', contourlabelformat='%.3f', contourlevels=10, contourlinewidth=10, xorigin=0.0, yorigin=0.0, xpixelsize=1.0, ypixelsize=1.0, xlimits=None, ylimits=None, vlimits=None, extent=None): self.figure = Figure(figsize=size) #in inches self.canvas = FigureCanvas(self.figure) self.imageData = imageData self.pixmapImage = None self.config={'xaxis':xaxis, 'yaxis':yaxis, 'title':title, 'xlabel':xlabel, 'ylabel':ylabel, 'nxlabels':nxlabels, 'nylabels':nylabels, 'colorbar':colorbar, 'colormap':colormap, 'linlogcolormap':linlogcolormap, 'interpolation':interpolation, 'origin':origin, 'contour':contour, 'contourlabels':contourlabels, 'contourlabelformat':contourlabelformat, 'contourlevels':contourlevels, 'contourlinewidth':contourlinewidth, 'xpixelsize':xpixelsize, 'ypixelsize':ypixelsize, 'xorigin':xorigin, 'yorigin':yorigin, 'zoomxmin':None, 'zoomxmax':None, 'zoomymin':None, 'zoomymax':None, 'valuemin':None, 'valuemax':None, 'xlimits':xlimits, 'ylimits':ylimits, 'vlimits':vlimits, 'extent':extent} #generate own colormaps cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__redCmap = LinearSegmentedColormap('red',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__greenCmap = LinearSegmentedColormap('green',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))} self.__blueCmap = LinearSegmentedColormap('blue',cdict,256) # Temperature as defined in spslut cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.25, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (0.25, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))} #Do I really need as many colors? self.__temperatureCmap = LinearSegmentedColormap('temperature', cdict, 65536) #reversed gray cdict = {'red': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0))} self.__reversedGrayCmap = LinearSegmentedColormap('yerg', cdict, 256) if fileName is not None: self.saveImage(fileName) def setImage(self, image=None): self.imageData = image def setParameters(self, ddict): self.config.update(ddict) def saveImage(self, filename): self.figure.clear() if (self.imageData is None) and\ (self.pixmapImage is None): return # The axes self.axes = self.figure.add_axes([.15, .15, .75, .8]) if self.config['xaxis'] == 'off': self.axes.xaxis.set_visible(False) else: self.axes.xaxis.set_visible(True) nLabels = self.config['nxlabels'] if nLabels not in ['Auto', 'auto', '0', 0]: self.axes.xaxis.set_major_locator(MaxNLocator(nLabels)) else: self.axes.xaxis.set_major_locator(AutoLocator()) if self.config['yaxis'] == 'off': self.axes.yaxis.set_visible(False) else: self.axes.yaxis.set_visible(True) if nLabels not in ['Auto', 'auto', '0', 0]: self.axes.yaxis.set_major_locator(MaxNLocator(nLabels)) else: self.axes.yaxis.set_major_locator(AutoLocator()) if self.pixmapImage is not None: self._savePixmapFigure(filename) return interpolation = self.config['interpolation'] origin = self.config['origin'] cmap = self.__temperatureCmap ccmap = cm.gray if self.config['colormap'] in ['grey','gray']: cmap = cm.gray ccmap = self.__temperatureCmap elif self.config['colormap'] in ['yarg','yerg']: cmap = self.__reversedGrayCmap ccmap = self.__temperatureCmap elif self.config['colormap']=='jet': cmap = cm.jet elif self.config['colormap']=='hot': cmap = cm.hot elif self.config['colormap']=='cool': cmap = cm.cool elif self.config['colormap']=='copper': cmap = cm.copper elif self.config['colormap']=='spectral': cmap = cm.spectral elif self.config['colormap']=='hsv': cmap = cm.hsv elif self.config['colormap']=='rainbow': cmap = cm.gist_rainbow elif self.config['colormap']=='red': cmap = self.__redCmap elif self.config['colormap']=='green': cmap = self.__greenCmap elif self.config['colormap']=='blue': cmap = self.__blueCmap elif self.config['colormap']=='temperature': cmap = self.__temperatureCmap elif self.config['colormap'] == 'paired': cmap = cm.Paired elif self.config['colormap'] == 'paired_r': cmap = cm.Paired_r elif self.config['colormap'] == 'pubu': cmap = cm.PuBu elif self.config['colormap'] == 'pubu_r': cmap = cm.PuBu_r elif self.config['colormap'] == 'rdbu': cmap = cm.RdBu elif self.config['colormap'] == 'rdbu_r': cmap = cm.RdBu_r elif self.config['colormap'] == 'gist_earth': cmap = cm.gist_earth elif self.config['colormap'] == 'gist_earth_r': cmap = cm.gist_earth_r elif self.config['colormap'] == 'blues': cmap = cm.Blues elif self.config['colormap'] == 'blues_r': cmap = cm.Blues_r elif self.config['colormap'] == 'ylgnbu': cmap = cm.YlGnBu elif self.config['colormap'] == 'ylgnbu_r': cmap = cm.YlGnBu_r else: _logger.warning("Unsupported colormap %s", self.config['colormap']) _logger.warning("Defaulting to grayscale.") if self.config['extent'] is None: h, w = self.imageData.shape x0 = self.config['xorigin'] y0 = self.config['yorigin'] w = w * self.config['xpixelsize'] h = h * self.config['ypixelsize'] if origin == 'upper': extent = (x0, w+x0, h+y0, y0) else: extent = (x0, w+x0, y0, h+y0) else: extent = self.config['extent'] vlimits = self.__getValueLimits() if vlimits is None: imageData = self.imageData vmin = self.imageData.min() vmax = self.imageData.max() else: vmin = min(vlimits[0], vlimits[1]) vmax = max(vlimits[0], vlimits[1]) imageData = self.imageData.clip(vmin,vmax) if self.config['linlogcolormap'] != 'linear': if vmin <= 0: if vmax > 0: vmin = min(imageData[imageData>0]) else: vmin = 0.0 vmax = 1.0 self._image = self.axes.imshow(imageData.clip(vmin,vmax), interpolation=interpolation, origin=origin, cmap=cmap, extent=extent, norm=LogNorm(vmin, vmax)) else: self._image = self.axes.imshow(imageData, interpolation=interpolation, origin=origin, cmap=cmap, extent=extent, norm=Normalize(vmin, vmax)) ylim = self.axes.get_ylim() if self.config['colorbar'] is not None: barorientation = self.config['colorbar'] self._colorbar = self.figure.colorbar(self._image, orientation=barorientation) #contour plot if self.config['contour'] != 'off': dataMin = imageData.min() dataMax = imageData.max() ncontours = int(self.config['contourlevels']) contourlinewidth = int(self.config['contourlinewidth'])/10. levels = (numpy.arange(ncontours)) *\ (dataMax - dataMin)/float(ncontours) if self.config['contour'] == 'filled': self._contour = self.axes.contourf(imageData, levels, origin=origin, cmap=ccmap, extent=extent) else: self._contour = self.axes.contour(imageData, levels, origin=origin, cmap=ccmap, linewidths=contourlinewidth, extent=extent) if self.config['contourlabels'] != 'off': self.axes.clabel(self._contour, fontsize=9, inline=1, fmt=self.config['contourlabelformat']) if 0 and self.config['colorbar'] is not None: if barorientation == 'horizontal': barorientation = 'vertical' else: barorientation = 'horizontal' self._ccolorbar=self.figure.colorbar(self._contour, orientation=barorientation, extend='both') self.__postImage(ylim, filename) def setPixmapImage(self, image=None, bgr=False): if bgr: self.pixmapImage = image * 1 self.pixmapImage[:,:,0] = image[:,:,2] self.pixmapImage[:,:,2] = image[:,:,0] else: self.pixmapImage = image def _savePixmapFigure(self, filename): interpolation = self.config['interpolation'] origin = self.config['origin'] if self.config['extent'] is None: h= self.pixmapImage.shape[0] w= self.pixmapImage.shape[1] x0 = self.config['xorigin'] y0 = self.config['yorigin'] w = w * self.config['xpixelsize'] h = h * self.config['ypixelsize'] if origin == 'upper': extent = (x0, w+x0, h+y0, y0) else: extent = (x0, w+x0, y0, h+y0) else: extent = self.config['extent'] self._image = self.axes.imshow(self.pixmapImage, interpolation=interpolation, origin=origin, extent=extent) ylim = self.axes.get_ylim() self.__postImage(ylim, filename) def __getValueLimits(self): if (self.config['valuemin'] is not None) and\ (self.config['valuemax'] is not None) and\ (self.config['valuemin'] != self.config['valuemax']): vlimits = (self.config['valuemin'], self.config['valuemax']) elif self.config['vlimits'] is not None: vlimits = self.config['vlimits'] else: vlimits = None return vlimits def __postImage(self, ylim, filename): self.axes.set_title(self.config['title']) self.axes.set_xlabel(self.config['xlabel']) self.axes.set_ylabel(self.config['ylabel']) origin = self.config['origin'] if (self.config['zoomxmin'] is not None) and\ (self.config['zoomxmax'] is not None)and\ (self.config['zoomxmax'] != self.config['zoomxmin']): xlimits = (self.config['zoomxmin'], self.config['zoomxmax']) elif self.config['xlimits'] is not None: xlimits = self.config['xlimits'] else: xlimits = None if (self.config['zoomymin'] is not None) and\ (self.config['zoomymax'] is not None) and\ (self.config['zoomymax'] != self.config['zoomymin']): ylimits = (self.config['zoomymin'], self.config['zoomymax']) elif self.config['ylimits'] is not None: ylimits = self.config['ylimits'] else: ylimits = None if ylimits is None: self.axes.set_ylim(ylim[0],ylim[1]) else: ymin = min(ylimits) ymax = max(ylimits) if origin == "lower": self.axes.set_ylim(ymin, ymax) else: self.axes.set_ylim(ymax, ymin) if xlimits is not None: xmin = min(xlimits) xmax = max(xlimits) self.axes.set_xlim(xmin, xmax) self.canvas.print_figure(filename) if __name__ == "__main__": import sys if len(sys.argv) < 2: a=numpy.arange(1200.) a.shape = 20, 60 PyMcaMatplotlibSaveImage(a, "filename.png", colormap="rainbow") print("Image filename.png saved") else: w=PyMcaMatplotlibSave(legends=True) x = numpy.arange(1200.) w.setLimits(0, 1200., 0, 12000.) if len(sys.argv) > 2: n = int(sys.argv[2]) else: n = 14 for i in range(n): y = x * i w.addDataToPlot(x,y, legend="%d" % i) #w.setTitle('title') w.setXLabel('Channel') w.setYLabel('Counts') w.plotLegends() w.saveFile("filename.png") print("Plot filename.png saved") sys.exit(0) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/RedisTools.py0000644000000000000000000004263314741736366017666 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from collections import OrderedDict import logging _logger = logging.getLogger(__name__) from bliss.config import get_sessions_list try: from blissdata.settings import scan as rdsscan from blissdata.data.node import get_node, get_nodes except ImportError: _logger.info("Trying deprecated access to Redis") from bliss.config.settings import scan as rdsscan from bliss.data.node import get_node, get_nodes _NODE_TYPES = [ "channel", "lima", "node_ref_channel", "scan", "scan_group"] def get_node_list(node, node_type=None, name=None, db_name=None, dimension=None, filter=None, unique=False, reverse=False, ignore_underscore=True): """ Return list of nodes matching the given filter """ if not hasattr(node, "name"): input_node = get_node(node) else: input_node = node if hasattr(input_node, "walk"): if reverse: iterator = input_node.walk_from_last else: iterator = input_node.walk else: if reverse: iterator = input_node.iterator.walk_from_last else: iterator = input_node.iterator.walk if node_type: if hasattr(node_type, "lower"): node_type = node_type.lower() if node_type not in _NODE_TYPES: _logger.warning("Node type %s ignored" % node_type) node_type = None output_list = [] # walk not waiting if node_type or name or db_name or dimension: for node in iterator(wait=False, include_filter=filter): if ignore_underscore and hasattr(node.name, "startswith") and node.name.startswith("_"): continue if not _check_dimension(node, dimension): continue if node_type and (node.type == node_type): output_list.append(node) elif name and (node.name == name): output_list.append(node) elif db_name and node.db_name == db_name: output_list.append(node) else: output_list.append(node) if unique and len(output_list): break else: for node in iterator(wait=False, include_filter=filter): #print(node.name, node.db_name, node) if ignore_underscore and hasattr(node.name, "startswith") and node.name.startswith("_"): continue output_list.append(node) if unique: break return output_list def _check_dimension(node, dimension=None): if dimension is None: return True elif not hasattr(node, "shape"): return False elif len(node.shape) == dimension: return True else: return False def get_session_scan_list(session, filename=None): """ Returns a sorted list of actual scans. Last scan is last. """ nodes = list(_get_session_scans(session)) try: nodes = sorted(nodes, key=lambda k: k.info["start_timestamp"]) except KeyError: # slower but safe method if _logger.getEffectiveLevel() == logging.DEBUG: for node in nodes: if "start_timestamp" not in node.info: _logger.debug("start_timestamp missing in <%s>" % node.name) break nodes = [node for node in nodes if "start_timestamp" in node.info] nodes = sorted(nodes, key=lambda k: k.info["start_timestamp"]) if filename: nodes = [node for node in nodes if scan_info(node)["filename"] == filename] return nodes def _get_session_scans(session): if hasattr(session, "name"): session_node = session session_name = session.name else: session_node = get_node(session) session_name = session db_names = rdsscan( f"{session_name}:*_children_list", count=1000000, connection=session_node.db_connection, ) # we are interested on actual scans, therefore we do not take scans # whose name starts by underscore return ( node for node in get_nodes( *(db_name.replace("_children_list", "") for db_name in db_names) ) if node is not None and node.type == "scan" and \ hasattr(node.name, "startswith") and not node.name.startswith("_") ) def get_session_last_scan(session): return get_session_scan_list(session)[-1] def get_session_filename(session): """ Return filename associated to last session scan or an empty string """ try: info = get_session_last_scan(session).info.get_all() except Exception: _logger.warning("Error reading info from last scan") _logger.warning("attempting slower method") info = {} scan_list = get_session_scan_list(session) scan_list.reverse() for scan in scan_list: try: info = scan.info.get_all() except Exception: info = {} if "filename" in info: break return info.get("filename", "") def get_scan_list(session_node): return get_node_list(session_node, node_type="scan", filter="scan") def get_data_channels(node, unique=False): return get_node_list(node, node_type="channel", filter="channel", dimension=0, unique=unique) def get_spectrum_nodes(node, dimension=1, unique=False): return get_node_list(node, node_type="channel", filter="channel", dimension=1, unique=unique) def get_spectra(node, unique=False): spectra_nodes = get_spectrum_nodes(node, unique=unique) if len(spectra_nodes): return [spectra_node.get_as_array(0, -1) for spectra_node in spectra_nodes] else: return [] def get_filename(session_node): scan_list = get_scan_list(session_node) filename = "" if len(scan_list): info = scan_info(scan_list[-1]) if "filename" in info: filename = info["filename"] return filename def get_filenames(node): filenames = [] if node.type == "scan": info = scan_info(node) if "filename" in info: filenames.append(info["filename"]) else: scan_list = get_scan_list(node) for scan in scan_list: info = scan_info(scan) if "filename" in info: filename = info["filename"] if filename not in filenames: filenames.append(filename) return filenames def get_last_spectrum_instances(session_node, offset=None): sc = get_scan_list(session_node) sc.reverse() spectra = OrderedDict() if offset is None: if len(sc) > 10: start = 10 else: start = 0 else: start = offset for scan in sc: sp = get_spectra(scan) names = [(x, x.name) for x in sp] for obj, name in names: if name not in spectra: print("adding name ", obj.db_name, " scan = ", scan.name) spectra[name] = (obj, scan) return spectra def shortnamemap(names, separator=":"): """ Map full Redis names to short (but still unique) names :param list(str) names: :param str separator: :returns dict: """ if not names: return {} names = set(names) parts = [name.split(separator) for name in names] nparts = max(map(len, parts)) parts = [([""] * (nparts - len(lst))) + lst for lst in parts] ret = {} for i in reversed(range(-nparts, 0)): joinednames = [separator.join(s for s in lst[i:] if s) for lst in parts] newnames = joinednames + list(ret.values()) selection = [ (idx, (separator.join(s for s in lst if s), name)) for idx, (name, lst) in enumerate(zip(joinednames, parts)) if newnames.count(name) == 1 ] if selection: idx, tuples = list(zip(*selection)) ret.update(tuples) parts = [lst for j, lst in enumerate(parts) if j not in idx] return ret def get_scan_data(scan_node, unique=False, top_master=False): data_channels = get_data_channels(scan_node, unique=unique) if top_master: try: top_master, channels = \ next(iter(scan_node.info["acquisition_chain"].items())) if "scalars" in channels: _logger.info("Taking only scalar data from top master") data_channels = [x for x in data_channels \ if x.name in channels["scalars"]] except Exception: _logger.warning("Cannot perform top_master filtering") names = shortnamemap(x.name for x in data_channels) result = {} i = 0 for channel in data_channels: # names :mon and :det from ID10 are badly mapped if channel.name not in names and channel.name.startswith(":"): short_name = names[channel.name[1:]] else: short_name = names[channel.name] result[short_name] = channel.get_as_array(0, -1) i += 1 return result def scan_info(scan_node): """ See https://gitlab.esrf.fr/bliss/bliss/-/blob/master/bliss/data/display.py def collect_channels_info(self, scan_info): #------------- scan_info example ------------------------------------------------------- # session_name = scan_info.get('session_name') # ex: 'test_session' # user_name = scan_info.get('user_name') # ex: 'pguillou' # filename = scan_info.get('filename') # ex: '/mnt/c/tmp/test_session/data.h5' # node_name = scan_info.get('node_name') # ex: 'test_session:mnt:c:tmp:183_ascan' # start_time = scan_info.get('start_time') # ex: datetime.datetime(2019, 3, 18, 15, 28, 17, 83204) # start_time_str = scan_info.get('start_time_str') # ex: 'Mon Mar 18 15:28:17 2019' # start_timestamp = scan_info.get('start_timestamp') # ex: 1552919297.0832036 # save = scan_info.get('save') # ex: True # sleep_time = scan_info.get('sleep_time') # ex: None # title = scan_info.get('title') # ex: 'ascan roby 0 10 10 0.01' # scan_type = scan_info.get('type') # ex: ^ # start = scan_info.get('start') # ex: ^ = [0] # stop = scan_info.get('stop') # ex: ^ = [10] # npoints = scan_info.get('npoints') # ex: ^ = 10 # count_time = scan_info.get('count_time') # ex: ^ = 0.01 # total_acq_time = scan_info.get('total_acq_time') # ex: 0.1 ( = npoints * count_time ) # scan_nb = scan_info.get('scan_nb') # ex: 183 # positioners_dial = scan_info.get('positioners_dial') # ex: {'bad': 0.0, 'calc_mot1': 20.0, 'roby': 20.0, ... } # positioners = scan_info.get('positioners') # ex: {'bad': 0.0, 'calc_mot1': 20.0, 'roby': 10.0, ...} # acquisition_chain = scan_info.get('acquisition_chain') # ex: {'axis': # { # 'master' : {'scalars': ['axis:roby'], 'spectra': [], 'images': [] }, # 'scalars': ['timer:elapsed_time', 'diode:diode'], # 'spectra': [], # 'images' : [] # } # } # master, channels = next(iter(scan_info["acquisition_chain"].items())) # master = axis # channels = {'master': {'scalars': ['axis:roby'], # 'scalars_units': {'axis:roby': None}, # 'spectra': [], # 'images': [], # 'display_names': {'axis:roby': 'roby'} # }, # 'scalars': ['timer:elapsed_time', # 'timer:epoch', # 'lima_simulator2:bpm:x', # 'simulation_diode_sampling_controller:diode'], # # 'scalars_units': {'timer:elapsed_time': 's', # 'timer:epoch': 's', # 'lima_simulator2:bpm:x': 'px', # 'simulation_diode_sampling_controller:diode': None}, # 'spectra': [], # 'images': [], # 'display_names': {'timer:elapsed_time': 'elapsed_time', # 'timer:epoch': 'epoch', # 'lima_simulator2:bpm:x': 'x', # 'simulation_diode_sampling_controller:diode': 'diode'}} # ONLY MANAGE THE FIRST ACQUISITION BRANCH (multi-top-masters scan are ignored) top_master, channels = next(iter(scan_info["acquisition_chain"].items())) """ return scan_node.info.get_all() if __name__ == "__main__": import sys # get the available sessions scan_number = None reference = None _logger.setLevel(logging.DEBUG) if len(sys.argv) > 1: sessions = [sys.argv[1]] if len(sys.argv) > 2: scan_number = sys.argv[2] else: sessions = get_sessions_list() for session_name in sessions: print("SESSION <%s>" % session_name) #connection = client.get_redis_connection(db=1) #while not DataNode.exists(session_name, None, connection): # gevent.sleep(1) # get node session_node = get_node(session_name) if not session_node: print("\tNot Available") continue scans = get_session_scan_list(session_node) for scan in scans: filenames = get_filenames(scan) nFiles = len(filenames) if not nFiles: filename = "No FILE" else: if nFiles > 1: print("WARNING, more than one file associated to scan") filename = filenames[-1] sInfo = scan_info(scan) print(list(sInfo.keys())) title = sInfo.get("title", "No COMMAND") if scan_number: if scan.name.startswith("161"): reference = scan else: print("\t%s %s %s" % (scan.name, filename, title)) if len(sessions) == 1: if reference: scan = reference else: scan = scans[-1] print("SCAN = %s" % scan) print("NAME = %s" % scan.name) print("TITLE = %s" % scan_info(scan).get("title", "No COMMAND")) print("ACQUISITION_CHAIN = ", scan_info(scan).get("acquisition_chain", None)) #for master in scan_info(scan)["acquisition_chain"]: # print(" master = ", master) # print(" channels = ", list(scan_info(scan)[master].keys())) top_master, channels = next(iter(scan.info["acquisition_chain"].items())) print("N counters devices = ", len(channels["spectra"])) print("N Mca devices = ", len(channels["spectra"])) print(top_master) print(channels) sys.exit(0) counters = get_data_channels(scan) #for counter in counters: # print(counter.name, counter.short_name, counter.dtype, counter.type, counter.info, counter.get_as_array(0, -1)) print(get_scan_data(scan)) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/SPSLayer.py0000644000000000000000000002674714741736366017251 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ SPSLayer.py Data derived class to access spec shared memory """ import numpy ################################################################################ #from Data import * from PyMca5.PyMcaIO import spswrap as sps ################################################################################ SOURCE_TYPE = "SPS" class SPSLayer(object): """ Specializes Data class to access Spec shared memory. Interface: Data class interface. """ def __init__(self,refresh_interval=None,info={}): """ See Data.__init__ """ self.EdfObj=None info["Class"]="SPSData" #Data.__init__(self,refresh_interval,info) self.SourceName= None self.SourceInfo= None self.GetData = self.LoadSource def GetPageInfo(self,index={}): if 'SourceName' in index: self.SetSource(index['SourceName']) if 'Key' in index: info=self.GetData(index['Key']) return info[0] def AppendPage(self,scan_info, scan_data): return scan_info,scan_data def SetSource (self,source_name=None): """ Sets a new source for data retrieving, an spec version. If spec exists, self.Source will be this spec name. Parameters: source_name: name of spec version """ if source_name==self.SourceName: return 1 if (source_name != None) and (source_name in sps.getspeclist()): self.SourceName=source_name self.Source=self.SourceName return 1 else: self.SourceName=None self.Source=None return 0 def GetSourceInfo (self, key=None): """ Returns information about the Spec version set by SetSource, to give application possibility to know about it before loading. Returns a dictionary with the keys "Size" (number of possible keys to this source) and "KeyList" (list of all available keys in this source). Each element in "KeyList" is an shared memory array name. If key is set as an array name, returns information about it. """ if self.SourceName is not None: if key is None: return self.__GetSourceInfo() elif key in sps.getarraylist(self.SourceName): return self.__GetArrayInfo(key) return None def __GetSourceInfo(self): arraylist= [] for array in sps.getarraylist(self.SourceName): arrayinfo= sps.getarrayinfo(self.SourceName, array) arraytype= arrayinfo[2] arrayflag= arrayinfo[3] if arrayflag in (sps.IS_ARRAY, sps.IS_MCA, sps.IS_IMAGE) and arraytype!=sps.STRING: arraylist.append(array) source_info={} source_info["Size"]=len(arraylist) source_info["KeyList"]=arraylist return source_info def __GetArrayInfo(self,array): info={} info["SourceType"]=SOURCE_TYPE info["SourceName"]=self.SourceName info["Key"]=array info["Source"]=self.Source arrayinfo=sps.getarrayinfo (self.SourceName,array) info["rows"]=arrayinfo[0] info["cols"]=arrayinfo[1] info["type"]=arrayinfo[2] info["flag"]=arrayinfo[3] counter=sps.updatecounter (self.SourceName,array) info["updatecounter"]=counter envdict={} keylist=sps.getkeylist (self.SourceName,array+"_ENV") for i in keylist: val=sps.getenv(self.SourceName,array+"_ENV",i) envdict[i]=val info["envdict"]=envdict calibarray= array + "_PARAM" if calibarray in sps.getarraylist(self.SourceName): try: data= sps.getdata(self.SourceName, calibarray) updc= sps.updatecounter(self.SourceName, calibarray) info["EnvKey"]= calibarray info["McaCalib"]= data.tolist()[0] info["env_updatecounter"]= updc except Exception: pass if array in ["XIA_DATA", "XIA_BASELINE"]: envarray= "XIA_DET" if envarray in sps.getarraylist(self.SourceName): try: data= sps.getdata(self.SourceName, envarray) updc= sps.updatecounter(self.SourceName, envarray) info["EnvKey"]= envarray info["Detectors"]= data.tolist()[0] info["env_updatecounter"]= updc except Exception: pass return info def LoadSource(self,key_list="ALL",append=0,invalidate=1,row="ALL",col="ALL"): """ Creates a given number of pages, getting data from the actual source (set by SetSource) Parameters: key_list: list of all keys to be read from source. It is a list of string, shared memory array names, to be read from the file. It can be also one single string, if only one array is to be read. append: If non-zero appends to the end of page list. Otherwise, initializes the page list invalidate: if non-zero performas an invalidade call after loading row: If set to an integer, loads a single row (0-based indexed) col: If set to an integer, loads a single column (0-based indexed) """ #AS if append==0: Data.Delete(self) if type(key_list) == type(" "): key_list=(key_list,) output =[] if self.SourceName in sps.getspeclist(): if key_list == "ALL": key_list = sps.getarraylist(self.SourceName) for array in key_list: if array in sps.getarraylist(self.SourceName): info = self.__GetArrayInfo(array) info["row"] = row info["col"] = col if info["row"]!="ALL": data= sps.getdatarow(self.SourceName, array,info["row"]) if data is not None: data=numpy.reshape(data,(1, data.shape[0])) elif info["col"]!="ALL": data= sps.getdatacol(self.SourceName, array, info["col"]) if data is not None: data=numpy.reshape(data, (data.shape[0], 1)) else: data=sps.getdata (self.SourceName, array) #self.AppendPage(info,data) output.append([info,data]) if len(output) == 1: return output[0] else: return output #AS if invalidate: self.Invalidate() def __RefreshPageOrig (source_obj,self,page): """ Virtual method, implements seeking for changes in data. Returns non-zero if the page was changed. If not implemented in the derived class, this class doesn't support dinamic changes monitoring. As pages can be copied to different Data objects, and can store the original RefreshPage method for updating, source_obj refers to the object that was origin of the page data, while self indicates the object that actually owns the page with index page. It was done this way because if it is stored the reference to the unbound method, python doesn't allow you to call it with an object of different data type. Important: Derived classes shall update the page: self.Pages[page] but not: source_obj.Pages[page] """ if (self.GetItemPageInfo("SourceType",page)==SOURCE_TYPE): specname=self.GetItemPageInfo("SourceName",page) arrayname=self.GetItemPageInfo("Key",page) updatecounter=self.GetItemPageInfo("updatecounter",page) if (updatecounter!=None) and (arrayname!=None) and (specname!=None): if specname in sps.getspeclist(): if arrayname in sps.getarraylist(specname): counter=sps.updatecounter (specname,arrayname) if (counter != updatecounter): info=self.GetPageInfo(page) info.update(self.__GetArrayInfo(arrayname)) if info["row"]!="ALL": data= sps.getdatarow(specname,arrayname,info["row"]) elif info["col"]!="ALL": data= sps.getdatacol(specname,arrayname,info["col"]) else: data=sps.getdata (specname,arrayname) self.Pages[page].Array=data return 1 infoname= self.GetItemPageInfo("EnvKey") infoupdc= self.GetItemPageInfo("env_updatecounter") if (infoupdc!=None) and (infoname!=None) and (specname!=None): if infoname in sps.getarraylist(specname): counter= sps.updatecounter(specname,infoname) if (counter!=infoupdc): info= self.GetPageInfo(page) info.update(self.__GetArrayInfo(arrayname)) return 1 return 0 def RefreshPage(self,sourcename,key): specname = sourcename arrayname= key if not sps.specrunning(specname): return 0 if sps.isupdated(specname,arrayname): return 1 else: return 0 ################################################################################ #EXEMPLE CODE: if __name__ == "__main__": import sys,time try: obj=SPSLayer() specname=sys.argv[1] arrayname=sys.argv[2] obj.SetSource(specname) obj.LoadSource(arrayname) while(1): time.sleep(1) print(obj.RefreshPage(specname,arrayname)) except Exception: print("Usage: SPSLayer.py ") sys.exit() for i in range (obj.GetNumberPages()): print(obj.GetPageInfo(i)) print(obj.GetPageArray(i)) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/SpecFileDataSource.py0000644000000000000000000011106314741736366021236 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import types import logging import time from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaIO import specfilewrapper as specfile _logger = logging.getLogger(__name__) SOURCE_TYPE = "SpecFile" # Scan types # ---------- SF_EMPTY = 0 # empty scan SF_SCAN = 1 # non-empty scan SF_MESH = 2 # mesh scan SF_MCA = 4 # single mca SF_NMCA = 8 # multi mca (more than 1 mca per acq) SF_UMCA = 16 # mca number does not match pts number class SpecFileDataSource(object): Error= "SpecFileDataError" def __init__(self, nameInput): if type(nameInput) == type([]): nameList = nameInput else: nameList = [nameInput] if len(nameList) > 1: #who knows if one day will make selections thru several files... raise TypeError("Constructor needs string as first argument") if sys.version < '3.0': testTypes = [types.StringType, types.UnicodeType] else: testTypes = [type("")] for name in nameList: if type(name) not in testTypes: raise TypeError("Constructor needs string as first argument") self.sourceName = nameInput self.sourceType = SOURCE_TYPE self.__sourceNameList = nameList self.__source_info_cached = None self.refresh() def refresh(self): self._sourceObjectList = [] self.__fileHeaderList = [] #for name in self.__sourceNameList: # if not os.path.exists(name): # raise ValueError("File %s does not exists" % name) for name in self.__sourceNameList: self._sourceObjectList.append(specfile.Specfile(name)) self.__fileHeaderList.append(False) self.__lastKeyInfo = {} def getSourceInfo(self): """ Returns information about the specfile object created by the constructor to give application possibility to know about it before loading. Returns a dictionary with the key "KeyList" (list of all available keys in this source). Each element in "KeyList" has the form 'n1.n2' where n1 is the scan number and n2 the order number in file starting at 1. """ return self.__getSourceInfo() def __getSourceInfo(self): scanlist=self.__getScanList() source_info={} source_info["Size"] = len(scanlist) source_info["KeyList"] = scanlist source_info["SourceType"] = SOURCE_TYPE HAS_CACHED_INFO = False if self.__source_info_cached: if self.__source_info_cached["SourceName"] == self.__sourceNameList[0]: HAS_CACHED_INFO = True num_mca = [] num_pts = [] commands = [] sf_type = [] for i in scanlist: CACHE_INDEX = None if HAS_CACHED_INFO: if i in self.__source_info_cached["KeyList"]: if i != self.__source_info_cached["KeyList"][-1]: # information in cache and it was not the last scan # at that time. We can use the cached information self.__fileHeaderList[0] = self.__source_info_cached["FileHeader"] CACHE_INDEX = self.__source_info_cached["KeyList"].index(i) if CACHE_INDEX is not None: # it can be 0 and still use the cache num_mca.append(self.__source_info_cached["NumMca"][CACHE_INDEX]) num_pts.append(self.__source_info_cached["NumPts"][CACHE_INDEX]) commands.append(self.__source_info_cached["Commands"][CACHE_INDEX]) continue sel=self._sourceObjectList[0].select(i) if self.__fileHeaderList[0] == False: try: self.__fileHeaderList[0] = sel.fileheader('') except Exception: _logger.debug("getSourceInfo %s", sys.exc_info()[1]) self.__fileHeaderList[0] = None try: n = sel.nbmca() except Exception: n = 0 num_mca.append(n) try: n = sel.lines() except Exception: n= 0 num_pts.append(n) try: n = sel.command() except Exception: n= "" commands.append(n) source_info["SourceName"] = self.__sourceNameList[0] source_info["FileHeader"] = self.__fileHeaderList[0] source_info["NumMca"] = num_mca source_info["NumPts"] = num_pts source_info["Commands"] = commands source_info["ScanType"] = list(map(self.__getScanType, num_pts, num_mca, commands)) self.__source_info_cached = source_info return source_info def __getScanList(self): aux= self._sourceObjectList[0].list().split(",") newlistcount=[] newlist=[] for i in aux: if not (":" in i): start_index=end_index=int(i) else: s= i.split(":") start_index=int(s[0]) end_index=int(s[1]) for j in range(start_index,end_index+1): newlist.append(j) newlistcount.append(newlist.count(j)) for i in range(len(newlist)): newlist[i]="%d.%d" % (newlist[i],newlistcount[i]) return newlist def __getScanType(self, num_pts, num_mca, command): stype= SF_EMPTY if num_pts>0: if command is None: stype= SF_SCAN elif "mesh" in command: stype= SF_MESH else: stype= SF_SCAN if num_mca%num_pts: stype+= SF_UMCA elif num_mca==num_pts: stype+= SF_MCA elif num_mca>0: stype+= SF_NMCA else: if num_mca==1: stype= SF_MCA elif num_mca>1: stype= SF_NMCA return stype def getKeyInfo (self, key): """ If key given returns information of a perticular key. """ fileName = self.__sourceNameList[0] key_type= self.__getKeyType(key) if key_type=="scan": scan_key= key elif key_type=="mca": (scan_key, mca_no)=self.__getMcaPars(key) key_info = self.__getScanInfo(scan_key) if os.path.exists(fileName): self.__lastKeyInfo[key] = os.path.getmtime(fileName) else: self.__lastKeyInfo[key] = key_info["Lines"] + \ key_info["NbMca"] return key_info def __getKeyType (self,key): count= key.count('.') if (count==1): return "scan" elif (count==2) or (count==3): return "mca" else: raise KeyError("SpecFileDataSource: Invalid key") def __getScanInfo(self, scankey): index = 0 sourceObject = self._sourceObjectList[index] scandata= sourceObject.select(scankey) info={} info["SourceType"] = SOURCE_TYPE #doubts about if refer to the list or to the individual file info["SourceName"] = self.sourceName info["Key"] = scankey info['FileName'] = self.__sourceNameList[index] if self.__fileHeaderList[index] == False: try: self.__fileHeaderList[index] = scandata.fileheader('') except Exception: _logger.debug("getScanInfo %s", sys.exc_info()[1]) self.__fileHeaderList[index] = None info["FileHeader"] = self.__fileHeaderList[index] try: info["Number"] = scandata.number() except Exception: info["Number"] = None try: info["Order"] = scandata.order() except Exception: info["Order"] = None try: info["Cols"] = scandata.cols() except Exception: info["Cols"] = 0 try: info["Lines"] = scandata.lines() except Exception: info["Lines"] = 0 try: info["Date"] = scandata.date() except Exception: info["Date"] = None if hasattr(scandata, "allmotors"): try: info["MotorNames"] = scandata.allmotors() except Exception: info["MotorNames"] = None else: try: info["MotorNames"] = sourceObject.allmotors() except Exception: info["MotorNames"] = None try: info["MotorValues"] = scandata.allmotorpos() except Exception: info["MotorValues"] = None try: info["LabelNames"] = scandata.alllabels() except Exception: info["LabelNames"] = [] try: info["Command"] = scandata.command() except Exception: info["Command"] = None try: info["Header"] = scandata.header("") except Exception: info["Header"] = None try: info["NbMca"] = scandata.nbmca() except Exception: info["NbMca"] = 0 try: info["hkl"] = scandata.hkl() except Exception: info["hkl"] = None if info["NbMca"]: if info["Lines"] > 0 and info["NbMca"] % info["Lines"] == 0: info["NbMcaDet"]= info["NbMca"] // info["Lines"] else: info["NbMcaDet"]= info["NbMca"] info["ScanType"]= self.__getScanType(info["Lines"], info["NbMca"], info["Command"]) return info def __getMcaInfo(self, mcano, scandata, info=None): if info is None: info = {} mcainfo= {} if "NbMcaDet" in info: det= info["NbMcaDet"] if info["Lines"]>0: mcainfo["McaPoint"]= int(mcano/info["NbMcaDet"])+(mcano%info["NbMcaDet"]>0) mcainfo["McaDet"]= mcano-((mcainfo["McaPoint"]-1)*info["NbMcaDet"]) try: mcainfo["LabelValues"]= scandata.dataline(mcainfo["McaPoint"]) except Exception: mcainfo["LabelValues"]= None else: mcainfo["McaPoint"]= 0 mcainfo["McaDet"]= mcano mcainfo["LabelValues"]= None calib= scandata.header("@CALIB") mcainfo["McaCalib"]=[0.0,1.0,0.0] if len(calib): if len(calib) == info["NbMcaDet"]: calib = [calib[mcainfo["McaDet"]-1]] else: _logger.debug("Number of calibrations does not match number of MCAs") if len(calib) == 1: pass else: raise ValueError("Number of calibrations does not match number of MCAs") ctxt= calib[0].split() if len(ctxt)==4: #try: if 1: cval= [ float(ctxt[1]), float(ctxt[2]), float(ctxt[3]) ] mcainfo["McaCalib"]= cval else: #except Exception: mcainfo["McaCalib"]=[0.0,1.0,0.0] ctime= scandata.header("@CTIME") if len(ctime): if len(ctime) == info["NbMcaDet"]: ctime = [ctime[mcainfo["McaDet"]-1]] else: _logger.debug("Number of counting times does not match number of MCAs") if len(ctime) == 1: pass else: raise ValueError("Number of counting times does not match number of MCAs") ctxt= ctime[0].split() if len(ctxt)==4: try: mcainfo["McaPresetTime"]= float(ctxt[1]) mcainfo["McaLiveTime"]= float(ctxt[2]) mcainfo["McaRealTime"]= float(ctxt[3]) except Exception: pass chann = scandata.header("@CHANN") if len(chann): if len(chann) == info["NbMcaDet"]: chann = [chann[mcainfo["McaDet"] - 1]] else: _logger.debug("Number of @CHANN information does not match number of MCAs") if len(chann) == 1: pass else: raise ValueError("Number of @CHANN information does not match number of MCAs") ctxt= chann[0].split() if len(ctxt)==5: mcainfo['Channel0'] = float(ctxt[2]) else: mcainfo['Channel0'] = 0.0 else: mcainfo['Channel0'] = 0.0 return mcainfo def __getMcaPars(self,key): index = 0 nums= key.split('.') size = len(nums) sel_key = nums[0] + "." + nums[1] if size==3: mca_no=int(nums[2]) elif size==4: sel=self._sourceObjectList[index].select(sel_key) try: lines = sel.lines() except Exception: lines=0 if nums[3]==0: mca_no=int(nums[2]) else: mca_no=((int(nums[3])-1)*lines)+int(nums[2]) else: raise KeyError("SpecFileData: Invalid key") return (sel_key,mca_no) def getDataObject(self,key,selection=None): """ Parameters: * key: key to be read from source. It is a string using the following formats: "s.o": loads all counter values (s=scan number, o=order) - if ScanType==SCAN: in a 2D array (mot*cnts) - if ScanType==MESH: in a 3D array (mot1*mot2*cnts) - if ScanType==MCA: single MCA in 1D array (0:channels) "s.o.n": loads a single MCA in a 1D array (0:channels) - if ScanType==NMCA: n is the MCA number from 1 to N - if ScanType==SCAN+MCA: n is the scan point number (from 1) - if ScanType==MESH+MCA: n is the scan point number (from 1) "s.o.p.n": loads a single MCA in a 1D array (0:channels) - if ScanType==SCAN+NMCA: p is the point number in the scan n is the MCA device number - if ScanType==MESH+MCA: p is first motor index n is second motor index "s.o.MCA": loads all MCA in an array - if ScanType==SCAN+MCA: 2D array (pts*mca) - if ScanType==NMCA: 2D array (mca_det*mca) - if ScanType==MESH+MCA: 3D array (pts_mot1*pts_mot2*mca) - if ScanType==SCAN+NMCA: 3D array (pts_mot1*mca_det*mca) - if ScanType==MESH+NMCA: creates N data page, one for each MCA device, with a 3D array (pts_mot1*pts_mot2*mca) """ key_type= self.__getKeyType(key) if key_type=="scan": scan_key= key elif key_type=="mca": (scan_key, mca_no)=self.__getMcaPars(key) if self.__source_info_cached is None: sourceinfo = self.getSourceInfo() sourcekeys = sourceinfo['KeyList'] else: sourceinfo = self.__source_info_cached sourcekeys = sourceinfo['KeyList'] if scan_key not in sourcekeys: sourceinfo = self.getSourceInfo() sourcekeys = sourceinfo['KeyList'] if scan_key not in sourcekeys: raise KeyError("Key %s not in source keys" % key) mca3D = False _logger.debug("SELECTION = %s", selection) _logger.debug("key_type = %s", key_type) if key_type == "scan": if selection is not None: if 'mcalist' in selection: mca3D = True if (key_type=="scan") and (not mca3D): output = self._getScanData(key, raw = True) output.x = None output.y = None output.m = None output.info['selection'] = selection if selection is None: output.info['selectiontype'] = "2D" return output elif type(selection) != type({}): #I only understand index selections raise TypeError("Only selections of type {x:[],y:[],m:[]} understood") else: if 'x' in selection: indexlist = [] for labelindex in selection['x']: if labelindex != 0: if 'cntlist' in selection: label = selection['cntlist'][labelindex] else: label = output.info['LabelNames'][labelindex] else: label = output.info['LabelNames'][labelindex] if label not in output.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = output.info['LabelNames'].index(label) if output.x is None: output.x = [] output.x.append(output.data[:, index]) indexlist.append(index) output.info['selection']['x'] = indexlist if 'y' in selection: indexlist = [] for labelindex in selection['y']: if 'cntlist' in selection: label = selection['cntlist'][labelindex] else: label = output.info['LabelNames'][labelindex] if label not in output.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = output.info['LabelNames'].index(label) if output.y is None: output.y = [] output.y.append(output.data[:, index]) indexlist.append(index) output.info['selection']['y'] = indexlist if 'm' in selection: indexlist = [] for labelindex in selection['m']: if 'cntlist' in selection: label = selection['cntlist'][labelindex] else: label = output.info['LabelNames'][labelindex] if label not in output.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = output.info['LabelNames'].index(label) if output.m is None: output.m = [] output.m.append(output.data[:, index]) indexlist.append(index) output.info['selection']['m'] = indexlist output.info['selection']['cntlist'] = output.info['LabelNames'] output.info['selectiontype'] = "1D" if output.x is not None: output.info['selectiontype'] = "%dD" % len(output.x) output.data = None elif key_type=="mca": output = self._getMcaData(key) selectiontype = "1D" if selection is not None: selectiontype = selection.get('selectiontype', "1D") output.info['selectiontype'] = selectiontype if output.info['selectiontype'] not in ['2D', '3D', 'STACK']: ch0 = int(output.info['Channel0']) output.x = [numpy.arange(ch0, ch0 + len(output.data)).astype(numpy.float64)] output.y = [output.data[:].astype(numpy.float64)] output.m = None output.data = None else: output.x = None output.y = None output.m = None output.data = None npoints = output.info['NbMca'] // output.info['NbMcaDet'] index = 0 scan_obj = self._sourceObjectList[index].select(scan_key) SPECFILE = True if isinstance(self._sourceObjectList[index], specfile.specfilewrapper): SPECFILE = False for i in range(npoints): if SPECFILE: wmca_no= mca_no + output.info['NbMcaDet'] * i mcaData= scan_obj.mca(wmca_no) else: mca_key = '%s.%d' % (scan_key, mca_no) mcaData = self._getMcaData(mca_key).data if i == 0: nChannels = mcaData.shape[0] output.data = numpy.zeros((npoints, nChannels), numpy.float32) output.data[i,:] = mcaData #I have all the MCA data ready for image plot if selectiontype == 'STACK': output.data.shape = 1, npoints, -1 shape = output.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i+1,) output.info[key] = shape[i] output.info["SourceType"] = "SpecFileStack" output.info["SourceName"] = self.sourceName output.info["Size"] = shape[0] * shape[1] output.info["NumberOfFiles"] = 1 output.info["FileIndex"] = 1 elif (key_type=="scan") and mca3D: output = self._getScanData(key, raw = True) output.x = None output.y = None output.m = None #get the number of counters in the scan if 'cntlist' in selection: ncounters = len(selection['cntlist']) else: ncounters = output.info['LabelNames'] # For the time being assume only one mca can be selected detectorNumber = selection['y'][0] - ncounters #read the first mca data of the first point mca_key = '%s.%d.%d' % (key, 1+detectorNumber, 1) mcaData = self._getMcaData(mca_key) ch0 = int(mcaData.info['Channel0']) calib = mcaData.info['McaCalib'] nChannels = float(mcaData.data.shape[0]) channels = numpy.arange(nChannels) + ch0 #apply the calibration channels = calib[0] + calib[1] * channels +\ calib[2] * channels * channels ones =numpy.ones(nChannels) #get the different x components xselection = selection.get('x', []) if len(xselection) != 2: raise ValueError("You have to select two X axes") indexlist = [] for labelindex in xselection: if labelindex != 0: if 'cntlist' in selection: label = selection['cntlist'][labelindex] else: label = output.info['LabelNames'][labelindex] else: label = output.info['LabelNames'][labelindex] if label not in output.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = output.info['LabelNames'].index(label) if output.x is None: output.x = [] output.x.append(output.data[:, index]) indexlist.append(index) npoints = output.x[0].shape[0] output.info['selection'] = selection output.info['selection']['x'] = indexlist for i in range(len(output.x)): output.x[i] = numpy.outer(output.x[i], ones).flatten() tmp = numpy.outer(channels, numpy.ones(float(npoints))).flatten() output.x.append(tmp) output.y = [numpy.zeros(nChannels * npoints,numpy.float64)] for i in range(npoints): mca_key = '%s.%d.%d' % (key, 1+detectorNumber, 1) mcaData = self._getMcaData(mca_key) output.y[0][(i*nChannels):((i+1)*nChannels)] = mcaData.data[:] if 'm' in selection: indexlist = [] for labelindex in selection['m']: if 'cntlist' in selection: label = selection['cntlist'][labelindex] else: label = output.info['LabelNames'][labelindex] if label not in output.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = output.info['LabelNames'].index(label) if output.m is None: output.m = [] output.m.append(output.data[:, index]) indexlist.append(index) output.info['selection']['m'] = indexlist if output.m is not None: output.m[0] = numpy.outer(output.m[0], ones).flatten() output.info['selection']['cntlist'] = output.info['LabelNames'] output.info['selectiontype'] = "3D" output.info['LabelNames'] = selection['cntlist'] + selection['mcalist'] output.data = None return output def _getScanData(self, scan_key, raw=False): index = 0 scan_obj = self._sourceObjectList[index].select(scan_key) scan_info= self.__getScanInfo(scan_key) scan_info["Key"] = scan_key scan_info["FileInfo"] = self.__getFileInfo() scan_type = scan_info["ScanType"] scan_data = None if scan_type&SF_SCAN: try: scan_data= numpy.transpose(scan_obj.data()).copy() except Exception: raise IOError("SF_SCAN read failed") elif scan_type&SF_MESH: try: if raw: try: scan_data= numpy.transpose(scan_obj.data()).copy() except Exception: raise IOError("SF_MESH read failed") else: scan_array = scan_obj.data() (mot1,mot2,cnts) = self.__getMeshSize(scan_array) scan_data = numpy.zeros((mot1,mot2,cnts), numpy.float64) for idx in range(mot2): scan_data[:,idx,:] = numpy.transpose(scan_array[:,idx*mot1:(idx+1)*mot1]).copy() scan_data = numpy.transpose(scan_data).copy() except Exception: raise IOError("SF_MESH read failed") elif scan_type&SF_MCA: try: scan_data = scan_obj.mca(1) except Exception: raise IOError("SF_MCA read failed") elif scan_type&SF_NMCA: try: scan_data = scan_obj.mca(1) except Exception: raise IOError("SF_NMCA read failed") if scan_data is not None: #create data object dataObject = DataObject.DataObject() #data.info = self.__getKeyInfo(key) dataObject.info = scan_info dataObject.data = scan_data return dataObject else: raise TypeError("getData unknown type") def _getMcaData(self, key): index = 0 key_split= key.split(".") scan_key= key_split[0]+"."+key_split[1] scan_info = {} scan_info["Key"]= key scan_info["FileInfo"] = self.__getFileInfo() scan_obj = self._sourceObjectList[index].select(scan_key) scan_info.update(self.__getScanInfo(scan_key)) scan_type= scan_info["ScanType"] scan_data= None mca_range= [] # for each dim., (name, length, values or None) if len(key_split)==3: if scan_type&SF_NMCA or scan_type&SF_MCA: try: mca_no= int(key_split[2]) scan_data= scan_obj.mca(mca_no) except Exception: raise IOError("Single MCA read failed") if scan_data is not None: scan_info.update(self.__getMcaInfo(mca_no, scan_obj, scan_info)) dataObject = DataObject.DataObject() dataObject.info = scan_info dataObject.data = scan_data return dataObject elif len(key_split) == 4: if scan_type == SF_SCAN + SF_NMCA: try: mca_no = (int(key_split[2])-1) * scan_info["NbMcaDet"] + \ int(key_split[3]) scan_data = scan_obj.mca(mca_no) except Exception: raise IOError("SF_SCAN+SF_NMCA read failed") elif scan_type == SF_MESH + SF_MCA: try: #scan_array= scan_obj.data() #(mot1,mot2,cnts)= self.__getMeshSize(scan_array) #mca_no= 1 + int(key_split[2]) + int(key_split[3])*mot1 mca_no = (int(key_split[2])-1) * scan_info["NbMcaDet"] + \ int(key_split[3]) _logger.debug("try to read mca number = %s", mca_no) _logger.debug("total number of mca = %s", scan_info["NbMca"]) scan_data = scan_obj.mca(mca_no) except Exception: raise IOError("SF_MESH+SF_MCA read failed") elif scan_type & SF_NMCA or scan_type & SF_MCA: try: mca_no = (int(key_split[2])-1) * scan_info["NbMcaDet"] + \ int(key_split[3]) scan_data = scan_obj.mca(mca_no) except Exception: raise IOError("SF_MCA or SF_NMCA read failed") else: raise TypeError("Unknown scan type!!!!!!!!!!!!!!!!") if scan_data is not None: scan_info.update(self.__getMcaInfo(mca_no, scan_obj, scan_info)) dataObject = DataObject.DataObject() dataObject.info = scan_info dataObject.data = scan_data return dataObject def __getFileInfo(self): index = 0 source = self._sourceObjectList[index] file_info={} try: file_info["Title"] = source.title() except Exception: file_info["Title"] = None try: file_info["User"] = source.user() except Exception: file_info["User"] = None try: file_info["Date"] = source.date() except Exception: file_info["Date"] = None try: file_info["Epoch"] = source.epoch() except Exception: file_info["Epoch"] = None try: file_info["ScanNo"] = source.scanno() except Exception: file_info["ScanNo"] = None return file_info def __getMeshSize(self, scan_array): """ Given the scandata array, return the size tuple of the mesh """ mot2_array = scan_array[1] mot2_max = mot2_array.shape[0] mot1_idx = 1 while mot1_idx < mot2_max and mot2_array[mot1_idx] == mot2_array[0]: mot1_idx+=1 mot2_idx = scan_array.shape[1] // mot1_idx cnts_idx = scan_array.shape[0] return (mot1_idx, mot2_idx, cnts_idx) def __getScanMotorRange(self, info, obj): name = info["LabelNames"][0] values = obj.datacol(1) length = values.shape[0] return (name, values, length) def __getMeshMotorRange(self, info, obj): return () def isUpdated(self, sourceName, key): #sourceName is redundant because only the first file is retained. index = 0 if not os.path.exists(self.__sourceNameList[index]): if _logger.getEffectiveLevel() == logging.DEBUG: t0 = time.time() # bliss case if self.__source_info_cached is None: return False sourcekeys = self.__source_info_cached['KeyList'] if key not in sourcekeys: return False if key != sourcekeys[-1]: # not the last key and only last scan is supposed to change return False # check the source might have changed respect to what is # available for this module key_info = self.__getScanInfo(key) npoints = key_info['Lines'] nmca = key_info["NbMca"] if (npoints > self.__source_info_cached["NumPts"][-1]) or \ (nmca > self.__source_info_cached["NumMca"][-1]): return True # the problem that remains is if there are new scans taken after the last # one was finished. That is supposed to be handled by the isUpdated method if present if hasattr(self._sourceObjectList[0], "isUpdated"): if self._sourceObjectList[0].isUpdated(): return True if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("Update check took %s seconds", time.time() - t0) return False lastmodified = os.path.getmtime(self.__sourceNameList[index]) if key not in self.__lastKeyInfo.keys(): #nothing has been read??? self.__lastKeyInfo[key] = lastmodified return False if lastmodified != self.__lastKeyInfo[key]: # do not update the __lastKeyInfo because until # refresh is not called data will not be updated return True else: return False source_types = { SOURCE_TYPE: SpecFileDataSource} def DataSource(name="", source_type=SOURCE_TYPE): try: sourceClass = source_types[source_type] except KeyError: #ERROR invalid source type raise TypeError("Invalid Source Type, source type should be one of %s" % source_types.keys()) return sourceClass(name) if __name__ == "__main__": if len(sys.argv) not in [2,3,4]: print("Usage: %s []") sys.exit() filename= sys.argv[1] sf = SpecFileDataSource(filename) sf = DataSource(filename) if len(sys.argv)==2: import time for i in range(2): t0 = time.time() info = sf.getSourceInfo() print("getSourceInfo %d elapsed = " % i, time.time() - t0) print("Filename :", sf.sourceName) print("Number of scans :", info["Size"]) print("S# - command - pts - mca - type") for (s,c,p,m,t) in zip(info["KeyList"],info["Commands"],info["NumPts"],info["NumMca"],info["ScanType"]): print(s,"-",c,"-",p,"-",m,"-",t) print("KeyList = ",info["KeyList"]) if len(sys.argv)==3: t0 = time.time() dataObject = sf.getDataObject(sys.argv[2]) t0 = time.time() - t0 info= dataObject.info data= dataObject.data print("Filename :", info['SourceName']) print("Loaded key :", info["Key"]) print("Header :") for i,v in info.items(): print("-", i, ":", v) print("Data Shape :", data.shape) print("read time = ",t0) if len(sys.argv)==4: t0 = time.time() label = sys.argv[3] dataObject = sf.getDataObject(sys.argv[2], selection={'x':[label], 'y':[label], 'm':[label]}) t0 = time.time() - t0 info= dataObject.info #print dataObject.x print(dataObject.y) #print dataObject.x ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/SpecFileLayer.py0000644000000000000000000006143614741736366020270 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ SpecFileLayer.py Data derived class to access spec files """ ################################################################################ import numpy from PyMca5.PyMcaIO import specfilewrapper as specfile ################################################################################ SOURCE_TYPE = "SpecFile" # Scan types # ---------- SF_EMPTY= 0 # empty scan SF_SCAN = 1 # non-empty scan SF_MESH = 2 # mesh scan SF_MCA = 4 # single mca SF_NMCA = 8 # multi mca (more than 1 mca per acq) SF_UMCA = 16 # mca number does not match pts number class SpecFileLayer(object): """ Specializes Data class to access Spec files. Interface: Data class interface. """ Error= "SpecFileDataError" def __init__(self,refresh_interval=None,info={}): """ See Data.__init__ """ info["Class"]="SpecFileData" #Data.__init__(self,refresh_interval,info) self.SourceName= None self.SourceInfo= None self.GetData = self.LoadSource def GetPageInfo(self,index={}): if 'SourceName' in index: self.SetSource(index['SourceName']) if 'Key' in index: info=self.GetData(index['Key']) return info[0] def AppendPage(self,scan_info, scan_data): return scan_info,scan_data def SetSource (self,source_name=None,source_obj=None): """ Sets a new source for data retrieving, an specfile. If the file exists, self.Source will be the Specfile object associated to this file. Parameters: source_name: name of the specfile """ if source_name==self.SourceName: return 1 if source_name is not None: if source_obj is not None: self.Source= source_obj else: try: self.Source= specfile.Specfile(source_name) except Exception: self.Source= None else: self.Source= None self.SourceInfo= None if self.Source is None: self.SourceName= None return 0 else: self.SourceName= source_name return 1 def Refresh(self): self.SourceInfo= None if self.Source is not None: self.Source.update() #AS Data.Refresh(self) def RefreshPage(source_obj,self,page): return 0 def GetSourceInfo (self, key=None): """ Returns information about the Specfile object created by SetSource, to give application possibility to know about it before loading. Returns a dictionary with the keys "Size" (number of possible keys(to this source) and "KeyList" (list of all available keys in this source). Each element in "KeyList" is an string in the format "x.y" where x is the number of scan and y is the order. "x.y" works as the key to retrieve the information of this scan. There's also the key "NumMca" in the returned dictionary, which value is a list of numbers of mcas, for each value of "KeyList". If key given returns information of a perticular key instead. """ if self.SourceName == None: return None if key is None: if self.SourceInfo is None: self.SourceInfo= self.__GetSourceInfo() return self.SourceInfo else: key_type= self.__GetKeyType(key) if key_type=="scan": scan_key= key elif key_type=="mca": (scan_key, mca_no)=self.__GetMcaPars(key) return self.__GetScanInfo(scan_key) def LoadSource(self,key_list="ALL",append=0,invalidate=1): """ Creates a given number of pages, getting data from the actual source (set by SetSource). Parameters: * key_list: list of all keys to be read from source. It is a list of strings using the following formats: "ALL": creates one data page for each scan. valid for ScanType==SCAN or MESH or MCA "s.o": loads all counter values (s=scan number, o=order) - if ScanType==SCAN: in a 2D array (mot*cnts) - if ScanType==MESH: in a 3D array (mot1*mot2*cnts) - if ScanType==MCA: single MCA in 1D array (0:channels) "s.o.n": loads a single MCA in a 1D array (0:channels) - if ScanType==NMCA: n is the MCA number from 1 to N - if ScanType==SCAN+MCA: n is the scan point number (from 1) - if ScanType==MESH+MCA: n is the scan point number (from 1) "s.o.p.n": loads a single MCA in a 1D array (0:channels) - if ScanType==SCAN+NMCA: p is the point number in the scan n is the MCA device number - NOT TRUE: Just follow previous. if ScanType==MESH+MCA: p is first motor index n is second motor index "s.o.MCA": loads all MCA in an array - if ScanType==SCAN+MCA: 2D array (pts*mca) - if ScanType==NMCA: 2D array (mca_det*mca) - if ScanType==MESH+MCA: 3D array (pts_mot1*pts_mot2*mca) - if ScanType==SCAN+NMCA: 3D array (pts_mot1*mca_det*mca) - if ScanType==MESH+NMCA: creates N data page, one for each MCA device, with a 3D array (pts_mot1*pts_mot2*mca) * append: if non-zero, appends to the end of the page list, Otherwise, initializes the page list * invalidate: if non-zero performs an invalidade call after loading """ #AS if append==0: Data.Delete(self) if key_list == "ALL": key_list=self.__GetScanList() if type(key_list)==type(" "): key_list=[key_list] file_info= self.__GetFileInfo() output=[] for key in key_list: key_type= self.__GetKeyType(key) if key_type=="scan": output.append(self.__LoadScanData(key,file_info)) elif key_type=="mca": output.append(self.__LoadMcaData(key,file_info)) if len(output) == 1: return output[0] else: return output #AS if invalidate: self.Invalidate() def __LoadScanData(self, scan_key, file_info={}): scan_obj = self.Source.select(scan_key) scan_info = self.__GetScanInfo(scan_key,scan_obj) scan_info["Key"] = scan_key scan_info["FileInfo"] = file_info scan_type = scan_info["ScanType"] scan_data = None if scan_type&SF_SCAN: try: scan_data = numpy.transpose(scan_obj.data()).copy() except Exception: raise IOError("SF_SCAN read failed") elif scan_type&SF_MESH: try: scan_array= scan_obj.data() (mot1,mot2,cnts)= self.__GetMeshSize(scan_array) scan_data= numpy.zeros((mot1,mot2,cnts), numpy.float64) for idx in range(mot2): scan_data[:,idx,:]= numpy.transpose(scan_array[:,idx*mot1:(idx+1)*mot1]).copy() scan_data= numpy.transpose(scan_data).copy() except Exception: raise IOError("SF_MESH read failed") elif scan_type&SF_MCA: return self.AppendPage(scan_info, scan_data) elif scan_type&SF_NMCA: return self.AppendPage(scan_info, scan_data) if scan_data is not None: return self.AppendPage(scan_info, scan_data) else: raise IOError("LoadScanData unknown type") def __GetMeshSize(self, scan_array): """ Given the scandata array, return the size tuple of the mesh """ mot2_array = scan_array[1] mot2_max = mot2_array.shape[0] mot1_idx = 1 while mot1_idx < mot2_max and mot2_array[mot1_idx] == mot2_array[0]: mot1_idx+=1 mot2_idx = scan_array.shape[1] // mot1_idx cnts_idx = scan_array.shape[0] return (mot1_idx, mot2_idx, cnts_idx) def __GetScanMotorRange(self, info, obj): name= info["LabelNames"][0] values= obj.datacol(1) length= values.shape[0] return (name, values, length) def __GetMeshMotorRange(self, info, obj): return () def __LoadMcaData(self, key, file_info={}): key_split= key.split(".") scan_key= key_split[0]+"."+key_split[1] scan_obj= self.Source.select(scan_key) scan_info= self.__GetScanInfo(scan_key,scan_obj) scan_info["Key"]= key scan_info["FileInfo"]= file_info scan_type= scan_info["ScanType"] scan_data= None mca_range= [] # for each dim., (name, length, values or None) if key_split[2]=="MCA": if scan_type==SF_SCAN+SF_MCA or scan_type==SF_MCA: try: mca_length= scan_obj.mca(1).shape[0] scan_data= numpy.zeros((scan_info["NbMca"], mca_length), numpy.float64) for idx in range(scan_info["NbMca"]): scan_data[idx]= scan_obj.mca(idx+1) idx= 0 if scan_type==SF_SCAN+SF_MCA: mca_range[idx]= self.__GetScanMotorRange(scan_info, scan_obj) idx+=1 mca_range[idx]= ("Channels", mca_length, None) scan_info["McaRange"]= mca_range return self.AppendPage(scan_info, scan_data) except Exception: raise IOError("SF_SCAN+SF_MCA read failed") elif scan_type==SF_NMCA: try: mca_length= scan_obj.mca(1).shape[0] mca_det= scan_info["NbMcaDet"] scan_data= numpy.zeros((mca_det, mca_length), numpy.float64) for idx in range(mca_det): scan_data[idx]= scan_obj.mca(idx+1) mca_range[0]= ("McaDet", mca_det, None) mca_range[1]= ("Channels", mca_length, None) scan_info["McaRange"]= mca_range return self.AppendPage(scan_info, scan_data) except Exception: raise IOError("SF_NMCA read failed") elif scan_type==SF_MESH+SF_MCA: try: scan_array= scan_obj.data() (mot1,mot2,cnts)= self.__GetMeshSize(scan_array) mca_length= scan_obj.mca(1).shape[0] scan_data= numpy.zeros((mot1,mot2,mca_length), numpy.float64) for idx1 in range(mot1): for idx2 in range(mot2): mca_no= 1 + idx1 + idx2*mot1 scan_data[idx1,idx2,:]= scan_obj.mca(mca_no) return self.AppendPage(scan_info, scan_data) except Exception: raise IOError("SF_MESH+SF_MCA read failed") elif scan_type==SF_SCAN+SF_NMCA: try: mca_length= scan_obj.mca(1).shape[0] nbdet= scan_info["NbMcaDet"] nbpts= scan_info["Lines"] scan_data= numpy.zeros((nbpts, nbdet, mca_length), numpy.float64) for idx in range(nbpts): for idy in range(nbdet): scan_data[idx,idy,:]= scan_obj.mca(1+idx*nbdet+idy) mca_range=[0,0,0] mca_range[0]= self.__GetScanMotorRange(scan_info, scan_obj) mca_range[1]= ("McaDet", nbdet, None) mca_range[2]= ("Channels", mca_length, None) scan_info["McaRange"]= mca_range return self.AppendPage(scan_info, scan_data) except Exception: raise IOError("SF_SCAN+SF_NMCA read failed") elif scan_type==SF_MESH+SF_NMCA: raise IOError("SF_MESH+SF_NMCA not yet implemented") scan_data= None elif len(key_split)==3: if scan_type&SF_NMCA or scan_type&SF_MCA: #if scan_type==SF_NMCA or \ # scan_type==SF_SCAN+SF_MCA or \ # scan_type==SF_MESH+SF_MCA: try: mca_no= int(key_split[2]) scan_data= scan_obj.mca(mca_no) except Exception: raise IOError("Single MCA read failed") if scan_data is not None: scan_info.update(self.__GetMcaInfo(mca_no, scan_obj, scan_info)) return self.AppendPage(scan_info, scan_data) elif len(key_split)==4: if int(key_split[3]) > scan_info["NbMcaDet"]: raise IOError(\ "Asked to read Mca %d having % d mca " % \ (int(key_split[3]), scan_info["NbMcaDet"])) if scan_type==SF_SCAN+SF_NMCA: try: mca_no= (int(key_split[2])-1)*scan_info["NbMcaDet"] + int(key_split[3]) scan_data= scan_obj.mca(mca_no) except Exception: raise IOError("SF_SCAN+SF_NMCA read failed") elif scan_type==SF_MESH+SF_MCA: try: scan_array= scan_obj.data() (mot1,mot2,cnts)= self.__GetMeshSize(scan_array) #mca_no= 1 + int(key_split[2]) + int(key_split[3])*mot1 mca_no= (int(key_split[2])-1)*scan_info["NbMcaDet"] + int(key_split[3]) scan_data= scan_obj.mca(mca_no) except Exception: raise IOError("SF_MESH+SF_MCA read failed") elif scan_type&SF_NMCA or scan_type&SF_MCA: try: mca_no= (int(key_split[2])-1)*scan_info["NbMcaDet"] + int(key_split[3]) scan_data= scan_obj.mca(mca_no) except Exception: raise IOError("SF_SCAN+SF_NMCA read failed") else: print("Unknown scan!!!!!!!!!!!!!!!!") raise IOError("Unknown scan!!!!!!!!!!!!!!!!") if scan_data is not None: scan_info.update(self.__GetMcaInfo(mca_no, scan_obj, scan_info)) return self.AppendPage(scan_info, scan_data) def __GetFileInfo(self): file_info={} try: file_info["Title"] = self.Source.title() except Exception: file_info["Title"] = None try: file_info["User"] = self.Source.user() except Exception: file_info["User"] = None try: file_info["Date"] = self.Source.date() except Exception: file_info["Date"] = None try: file_info["Epoch"] = self.Source.epoch() except Exception: file_info["Epoch"] = None try: file_info["ScanNo"] = self.Source.scanno() except Exception: file_info["ScanNo"] = None try: file_info["List"] = list except Exception: file_info["List"] = None return file_info def __GetSourceInfo(self): scanlist=self.__GetScanList() source_info={} source_info["Size"]=len(scanlist) source_info["KeyList"]=scanlist num_mca=[] num_pts=[] commands=[] sf_type=[] for i in scanlist: sel=self.Source.select(i) try: n= sel.nbmca() except Exception: n= 0 num_mca.append(n) try: n= sel.lines() except Exception: n= 0 num_pts.append(n) try: n= sel.command() except Exception: n= "" commands.append(n) source_info["NumMca"]=num_mca source_info["NumPts"]=num_pts source_info["Commands"]= commands source_info["ScanType"]= map(self.__GetScanType, num_pts, num_mca, commands) return source_info def __GetScanType(self, num_pts, num_mca, command): type= SF_EMPTY if num_pts>0: if command is None: type= SF_SCAN elif command.find("mesh") != -1: type= SF_MESH else: type= SF_SCAN if num_mca%num_pts: type += SF_UMCA elif num_mca==num_pts: type += SF_MCA elif num_mca>0: type += SF_NMCA else: if num_mca==1: type = SF_MCA elif num_mca>1: type = SF_NMCA return type def __GetScanList(self): aux = self.Source.list().split(",") newlistcount=[] newlist=[] for i in aux: if i.find(":") == -1: start_index = end_index = int(i) else: s = i.split(":") start_index = int(s[0]) end_index = int(s[1]) for j in range(start_index, end_index+1): newlist.append(j) newlistcount.append(newlist.count(j)) for i in range(len(newlist)): newlist[i]="%d.%d" % (newlist[i],newlistcount[i]) return newlist def __GetKeyType (self,key): count = key.count('.') if (count==1): return "scan" elif (count==2) or (count==3): return "mca" else: raise KeyError("SpecFileData: Invalid key %s" % key) def __GetScanInfo(self, scankey, scandata=None): if scandata is None: scandata = self.Source.select(scankey) info={} info["SourceType"] = SOURCE_TYPE info["SourceName"] =self.SourceName info["Key"] =scankey info["Source"] =self.Source try: info["Number"] = scandata.number() except Exception: info["Number"] = None try: info["Order"] = scandata.order() except Exception: info["Order"] = None try: info["Cols"] = scandata.cols() except Exception: info["Cols"] = 0 try: info["Lines"] = scandata.lines() except Exception: info["Lines"] = 0 try: info["Date"] = scandata.date() except Exception: info["Date"] = None try: info["MotorNames"] = self.Source.allmotors() except Exception: info["MotorNames"] = None try: info["MotorValues"] = scandata.allmotorpos() except Exception: info["MotorValues"] = None try: info["LabelNames"] = scandata.alllabels() except Exception: info["LabelNames"] = None try: info["Command"] = scandata.command() except Exception: info["Command"] = None try: info["Header"] = scandata.header("") except Exception: info["Header"] = None try: info["NbMca"] = scandata.nbmca() except Exception: info["NbMca"] = 0 try: info["hkl"] = scandata.hkl() except Exception: info["hkl"] = None if info["NbMca"]: if info["Lines"]>0 and info["NbMca"]%info["Lines"]==0: info["NbMcaDet"]= info["NbMca"] // info["Lines"] else: info["NbMcaDet"]= info["NbMca"] info["ScanType"]= self.__GetScanType(info["Lines"], info["NbMca"], info["Command"]) return info def __GetMcaInfo(self, mcano, scandata, info=None): if info is None: info = {} mcainfo= {} if "NbMcaDet" in info: det= info["NbMcaDet"] if info["Lines"]>0: mcainfo["McaPoint"]= int(mcano/info["NbMcaDet"])+(mcano%info["NbMcaDet"]>0) mcainfo["McaDet"]= mcano-((mcainfo["McaPoint"]-1)*info["NbMcaDet"]) try: mcainfo["LabelValues"]= scandata.dataline(mcainfo["McaPoint"]) except Exception: mcainfo["LabelValues"]= None else: mcainfo["McaPoint"]= 0 mcainfo["McaDet"]= mcano mcainfo["LabelValues"]= None # TODO: This implementation seems to ignore the case of having different # detectors in the same same scan calib= scandata.header("@CALIB") mcainfo["McaCalib"]=[0.0,1.0,0.0] if len(calib): # TODO: Instead of 0, one should use the index of the MCA detector # requested. ctxt= calib[0].split() if len(ctxt)==4: try: cval= [ float(ctxt[1]), float(ctxt[2]), float(ctxt[3]) ] mcainfo["McaCalib"]= cval except Exception: mcainfo["McaCalib"]=[0.0,1.0,0.0] # TODO: This implementation seems to ignore the case of having different # detectors in the same scan, and the fact one can have more than one # measurement in a single scan (different McaLiveTime) ctime= scandata.header("@CTIME") if len(ctime): ctxt= ctime[0].split() if len(ctxt)==4: try: mcainfo["McaPresetTime"]= float(ctxt[1]) mcainfo["McaLiveTime"]= float(ctxt[2]) mcainfo["McaRealTime"]= float(ctxt[3]) except Exception: pass chann = scandata.header("@CHANN") if len(chann): ctxt= chann[0].split() if len(ctxt)==5: mcainfo['Channel0'] = float(ctxt[2]) else: mcainfo['Channel0'] = 0.0 else: mcainfo['Channel0'] = 0.0 return mcainfo def __GetMcaPars(self,key): nums = key.split('.') size = len(nums) sel_key = nums[0] + "." + nums[1] if size == 3: mca_no = int(nums[2]) elif size == 4: sel = self.Source.select(sel_key) try: lines = sel.lines() except Exception: lines=0 if nums[3]==0: mca_no = int(nums[2]) else: mca_no=((int(nums[3]) - 1) * lines) + int(nums[2]) else: raise KeyError("SpecFileData: Invalid key %s" % key) return (sel_key,mca_no) ################################################################################ #EXEMPLE CODE: if __name__ == "__main__": import sys,time if len(sys.argv) not in [2,3]: print("Usage: %s []") sys.exit() filename= sys.argv[1] sf= SpecFileLayer() if not sf.SetSource(filename): print("ERROR: cannot open file %s" % filename) sys.exit() if len(sys.argv)==2: info= sf.GetSourceInfo() print("Filename :", sf.SourceName) print("Number of scans :", info["Size"]) print("S# - command - pts - mca - type") for (s,c,p,m,t) in zip(info["KeyList"],info["Commands"],info["NumPts"],info["NumMca"],info["ScanType"]): print(s,"-",c,"-",p,"-",m,"-",t) print("KeyList = ",info["KeyList"]) #print info['Channel0'] if len(sys.argv)==3: info, data = sf.LoadSource(sys.argv[2]) print("Filename :", sf.SourceName) print("Loaded key :", info["Key"]) print("Header :") for i,v in info.items(): print("-", i, ":", v) print("Data Shape :", data.shape) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/SpsDataSource.py0000644000000000000000000004045514741736366020317 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy import logging from . import DataObject from PyMca5.PyMcaIO import spswrap as sps _logger = logging.getLogger(__name__) SOURCE_TYPE = 'SPS' class SpsDataSource(object): def __init__(self, name): if not isinstance(name, str): raise TypeError("Constructor needs string as first argument") self.name = name self.sourceName = name self.sourceType = SOURCE_TYPE def refresh(self): pass def getSourceInfo(self): """ Returns information about the Spec version in self.name to give application possibility to know about it before loading. Returns a dictionary with the key "KeyList" (list of all available keys in this source). Each element in "KeyList" is an shared memory array name. """ return self.__getSourceInfo() def getKeyInfo(self, key): if key in self.getSourceInfo()['KeyList']: return self.__getArrayInfo(key) else: return {} def getDataObject(self, key_list, selection=None): if type(key_list) not in [type([])]: nolist = True key_list = [key_list] else: output = [] nolist = False if self.name in sps.getspeclist(): sourcekeys = self.getSourceInfo()['KeyList'] for key in key_list: #a key corresponds to an array name if key not in sourcekeys: raise KeyError("Key %s not in source keys" % key) #array = key #create data object data = DataObject.DataObject() data.info = self.__getArrayInfo(key) data.info['selection'] = selection data.data = sps.getdata(self.name, key) if nolist: if selection is not None: scantest = (data.info['flag'] & sps.TAG_SCAN) == sps.TAG_SCAN if ((key in ["SCAN_D"]) or scantest) \ and 'cntlist' in selection: data.x = None data.y = None data.m = None if 'nopts' in data.info: nopts = data.info['nopts'] elif 'nopts' in data.info['envdict']: nopts = int(data.info['envdict']['nopts']) + 1 else: nopts = data.info['rows'] if not 'LabelNames' in data.info: data.info['LabelNames'] =\ selection['cntlist'] * 1 newMemoryProblem = len(data.info['LabelNames']) != len(selection['cntlist']) # check the current information is up-to-date # (new HKL handling business) actualLabelSelection = {'x':[], 'y':[], 'm':[]} for tmpKey in ['x', 'y', 'm']: if tmpKey in selection: for labelIndex in selection[tmpKey]: actualLabelSelection[tmpKey].append( \ selection['cntlist'][labelIndex]) if 'x' in selection: for labelindex in selection['x']: #label = selection['cntlist'][labelindex] label = data.info['LabelNames'][labelindex] if label not in data.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = data.info['LabelNames'].index(label) if data.x is None: data.x = [] data.x.append(data.data[:nopts, index]) if 'y' in selection: #for labelindex in selection['y']: for label in actualLabelSelection['y']: #label = data.info['LabelNames'][labelindex] if label not in data.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = data.info['LabelNames'].index(label) if data.y is None: data.y = [] data.y.append(data.data[:nopts, index]) if 'm' in selection: #for labelindex in selection['m']: for label in actualLabelSelection['m']: #label = data.info['LabelNames'][labelindex] if label not in data.info['LabelNames']: raise ValueError("Label %s not in scan labels" % label) index = data.info['LabelNames'].index(label) if data.m is None: data.m = [] data.m.append(data.data[:nopts, index]) data.info['selectiontype'] = "1D" data.info['scanselection'] = True if newMemoryProblem: newSelection = copy.deepcopy(selection) for tmpKey in ['x', 'y', 'm']: if tmpKey in selection: for i in range(len(selection[tmpKey])): if tmpKey == "x": label = data.info['LabelNames'][selection[tmpKey][i]] else: label = selection['cntlist'][selection[tmpKey][i]] newSelection[tmpKey][i] = data.info['LabelNames'].index(label) data.info['selection'] = newSelection data.info['selection']['cntlist'] = data.info['LabelNames'] selection = newSelection data.data = None return data if (key in ["XIA_DATA"]) and 'XIA' in selection: if selection["XIA"]: if 'Detectors' in data.info: for i in range(len(selection['rows']['y'])): selection['rows']['y'][i] = \ data.info['Detectors'].index(selection['rows']['y'][i]) + 1 del selection['XIA'] return data.select(selection) else: if data.data is not None: data.info['selectiontype'] = "%dD" % len(data.data.shape) if data.info['selectiontype'] == "2D": data.info["imageselection"] = True return data else: output.append(data.select(selection)) return output else: return None def __getSourceInfo(self): arraylist = [] sourcename = self.name for array in sps.getarraylist(sourcename): arrayinfo = sps.getarrayinfo(sourcename, array) arraytype = arrayinfo[2] arrayflag = arrayinfo[3] if arraytype != sps.STRING: if (arrayflag & sps.TAG_ARRAY) == sps.TAG_ARRAY: arraylist.append(array) continue _logger.debug("array not added %s", array) source_info = {} source_info["Size"] = len(arraylist) source_info["KeyList"] = arraylist return source_info def __getArrayInfo(self, array): info = {} info["SourceType"] = SOURCE_TYPE info["SourceName"] = self.name info["Key"] = array arrayinfo = sps.getarrayinfo(self.name, array) info["rows"] = arrayinfo[0] info["cols"] = arrayinfo[1] info["type"] = arrayinfo[2] info["flag"] = arrayinfo[3] counter = sps.updatecounter(self.name, array) info["updatecounter"] = counter envdict = {} keylist = sps.getkeylist(self.name, array + "_ENV") for i in keylist: val = sps.getenv(self.name, array + "_ENV", i) envdict[i] = val info["envdict"] = envdict scantest = (info['flag'] & sps.TAG_SCAN) == sps.TAG_SCAN metadata = None if (array in ["SCAN_D"]) or scantest: # try to get new style SCAN_D metadata metadata = sps.getmetadata(self.name, array) if metadata is not None: motors, metadata = metadata #info["LabelNames"] = metadata["allcounters"].split(";") labels = list(motors.keys()) try: labels = [(int(x),x) for x in labels] except Exception: _logger.warning("SpsDataSource error reverting to old behavior") labels = [(x, x) for x in labels] labels.sort() if len(labels): info["LabelNames"] = [motors[x[1]] for x in labels] if len(metadata["allmotorm"]): info["MotorNames"] = metadata["allmotorm"].split(";") info["MotorValues"] = [float(x) \ for x in metadata["allpositions"].split(";")] info["nopts"] = int(metadata["npts"]) supplied_info = sps.getinfo(self.name, array) if len(supplied_info): info["nopts"] = int(supplied_info[0]) if 'hkl' in metadata: if len(metadata["hkl"]): info['hkl'] = [float(x) \ for x in metadata["hkl"].split(";")] # current SCAN if 'scanno' in metadata: envdict["scanno"] = int(metadata["scanno"]) # current SPEC file and title for key in ["datafile", "title"]: if key in metadata: envdict[key] = metadata[key] # put any missing information if "selectedcounters" in metadata: info["selectedcounters"] = [x \ for x in metadata["selectedcounters"].split()] # do not confuse with unhandled keys ... #for key in metadata: # if key not in info: # info[key] = metadata[key] if (metadata is None) and ((array in ["SCAN_D"]) or scantest): # old style SCAN_D metadata if 'axistitles' in info["envdict"]: info["LabelNames"] = self._buildLabelsList(info['envdict']['axistitles']) if 'H' in info["envdict"]: if 'K' in info["envdict"]: if 'L' in info["envdict"]: info['hkl'] = [envdict['H'], envdict['K'], envdict['L']] calibarray = array + "_PARAM" if calibarray in sps.getarraylist(self.name): try: data = sps.getdata(self.name, calibarray) updc = sps.updatecounter(self.name, calibarray) info["EnvKey"] = calibarray # data is an array info["McaCalib"] = data.tolist()[0] info["env_updatecounter"] = updc except Exception: # Some of our C modules return NULL without setting # an exception ... pass if array in ["XIA_DATA", "XIA_BASELINE"]: envarray = "XIA_DET" if envarray in sps.getarraylist(self.name): try: data = sps.getdata(self.name, envarray) updc = sps.updatecounter(self.name, envarray) info["EnvKey"] = envarray info["Detectors"] = data.tolist()[0] info["env_updatecounter"] = updc except Exception: pass return info def _buildLabelsList(self, instr): _logger.debug('SpsDataSource : building counter list') state = 0 llist = [''] for letter in instr: if state == 0: if letter == ' ': state = 1 elif letter == '{': state = 2 else: llist[-1] = llist[-1] + letter elif state == 1: if letter == ' ': pass elif letter == '{': state = 2 llist.append('') else: llist.append(letter) state = 0 elif state == 2: if letter == '}': state = 0 else: llist[-1] = llist[-1] + letter try: llist.remove('') except ValueError: pass return llist def isUpdated(self, sourceName, key): if sps.specrunning(sourceName): if sps.isupdated(sourceName, key): return True #return True if its environment is updated envkey = key + "_ENV" if envkey in sps.getarraylist(sourceName): if sps.isupdated(sourceName, envkey): return True return False source_types = {SOURCE_TYPE: SpsDataSource} # TODO object is a builtins def DataSource(name="", object=None, copy=True, source_type=SOURCE_TYPE): try: sourceClass = source_types[source_type] except KeyError: # ERROR invalid source type raise TypeError("Invalid Source Type, source type should be one of %s" % source_types.keys()) return sourceClass(name, object, copy) def main(): import sys try: specname = sys.argv[1] arrayname = sys.argv[2] obj = DataSource(specname) data = obj.getData(arrayname) print("info = ", data.info) except Exception: # give usage instructions print("Usage: SpsDataSource ") sys.exit() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/StackBase.py0000644000000000000000000016067114741736366017442 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ Base class to handle stacks. """ from PyMca5.PyMcaCore import DataObject import numpy import time import os import sys import glob import logging logger = logging.getLogger(__name__) PLUGINS_DIR = None try: import PyMca5 if os.path.exists(os.path.join(os.path.dirname(__file__), "PyMcaPlugins")): from PyMca5 import PyMcaPlugins PLUGINS_DIR = os.path.dirname(PyMcaPlugins.__file__) else: directory = os.path.dirname(__file__) while True: if os.path.exists(os.path.join(directory, "PyMcaPlugins")): PLUGINS_DIR = os.path.join(directory, "PyMcaPlugins") break directory = os.path.dirname(directory) if len(directory) < 5: break userPluginsDirectory = PyMca5.getDefaultUserPluginsDirectory() PYMCA_PLUGINS_DIR = PLUGINS_DIR if userPluginsDirectory is not None: if PLUGINS_DIR is None: PLUGINS_DIR = userPluginsDirectory else: PLUGINS_DIR = [PLUGINS_DIR, userPluginsDirectory] except Exception: PYMCA_PLUGINS_DIR = None pass class StackBase(object): def __init__(self): self._stack = DataObject.DataObject() self._stack.x = None self._stackImageData = None self._selectionMask = None self._finiteData = True self._ROIDict = {'name': "ICR", 'type': "CHANNEL", 'calibration': [0, 1.0, 0.0], 'from': 0, 'to': -1} self._ROIImageDict = {'ROI': None, 'Maximum': None, 'Minimum': None, 'Left': None, 'Middle': None, 'Right': None, 'Background': None} self.__ROIImageCalculationIsUsingSuppliedEnergyAxis = False self._ROIImageList = [] self._ROIImageNames = [] self.__pluginDirList = [] self.pluginList = [] self.pluginInstanceDict = {} self.getPlugins() # beyond 5 million elements, iterate to calculate the sums # preventing huge intermediate use of memory when calculating # the sums. self._dynamicLimit = 5.0E6 self._tryNumpy = True def setPluginDirectoryList(self, dirlist): for directory in dirlist: if not os.path.exists(directory): raise IOError("Directory:\n%s\ndoes not exist." % directory) self.__pluginDirList = dirlist def getPluginDirectoryList(self): return self.__pluginDirList def getPlugins(self): """ Import or reloads all the available plugins. It returns the number of plugins loaded. """ if PLUGINS_DIR is not None: if self.__pluginDirList == []: if type(PLUGINS_DIR) == type([]): self.__pluginDirList = PLUGINS_DIR else: self.__pluginDirList = [PLUGINS_DIR] self.pluginList = [] for directory in self.__pluginDirList: if directory is None: continue if not os.path.exists(directory): raise IOError("Directory:\n%s\ndoes not exist." % directory) fileList = glob.glob(os.path.join(directory, "*.py")) targetMethod = 'getStackPluginInstance' # prevent unnecessary imports moduleList = [] for fname in fileList: # in Python 3, rb implies bytes and not strings f = open(fname, 'r') lines = f.readlines() f.close() f = None for line in lines: if line.startswith("def"): if line.split(" ")[1].startswith(targetMethod): moduleList.append(fname) break for module in moduleList: try: pluginName = os.path.basename(module)[:-3] if directory == PYMCA_PLUGINS_DIR: plugin = "PyMcaPlugins." + pluginName else: plugin = pluginName if directory not in sys.path: sys.path.insert(0, directory) if pluginName in self.pluginList: idx = self.pluginList.index(pluginName) del self.pluginList[idx] if plugin in self.pluginInstanceDict.keys(): del self.pluginInstanceDict[plugin] if plugin in sys.modules: if hasattr(sys.modules[plugin], targetMethod): if sys.version < '3.0': reload(sys.modules[plugin]) else: import imp imp.reload(sys.modules[plugin]) else: try: __import__(plugin) except Exception: if directory == PYMCA_PLUGINS_DIR: plugin = "PyMca5.PyMcaPlugins." + pluginName __import__(plugin) else: raise if hasattr(sys.modules[plugin], targetMethod): self.pluginInstanceDict[plugin] = \ sys.modules[plugin].getStackPluginInstance(self) self.pluginList.append(plugin) except Exception: logger.debug("Problem importing module %s", plugin) if logger.getEffectiveLevel() == logging.DEBUG: raise return len(self.pluginList) def setStack(self, stack, mcaindex=2, fileindex=None): #unfortunaly python 3 reports #isinstance(stack, DataObject.DataObject) as false #for DataObject derived classes like OmnicMap!!!! if id(stack) == id(self._stack): # just updated pass elif hasattr(stack, "shape") and\ hasattr(stack, "dtype"): # array like self._stack.x = None self._stack.data = stack self._stack.info['SourceName'] = "Data of unknown origin" elif isinstance(stack, DataObject.DataObject) or\ ("DataObject.DataObject" in ("%s" % type(stack))) or\ ("QStack" in ("%s" % type(stack))) or\ ("Map" in ("%s" % type(stack)))or\ ("Stack" in ("%s" % type(stack))) or\ (hasattr(stack, "data") and hasattr(stack, "info")): self._stack = stack self._stack.info['SourceName'] = stack.info.get('SourceName', "Data of unknown origin") else: self._stack.x = None self._stack.data = stack self._stack.info['SourceName'] = "Data of unknown origin" info = self._stack.info mcaIndex = info.get('McaIndex', mcaindex) if (mcaIndex < 0) and (len(self._stack.data.shape) == 3): mcaIndex = len(self._stack.data.shape) + mcaIndex fileIndex = info.get('FileIndex', fileindex) if fileIndex is None: if mcaIndex == 2: fileIndex = 0 elif mcaIndex == 0: fileIndex = 1 else: fileIndex = 0 for i in range(3): if i not in [mcaIndex, fileIndex]: otherIndex = i break self.mcaIndex = mcaIndex self.fileIndex = fileIndex self.otherIndex = otherIndex self._stack.info['McaCalib'] = info.get('McaCalib', [0.0, 1.0, 0.0]) self._stack.info['Channel0'] = info.get('Channel0', 0.0) self._stack.info['McaIndex'] = mcaIndex self._stack.info['FileIndex'] = fileIndex self._stack.info['OtherIndex'] = otherIndex self.stackUpdated(info.get("positioners", None)) def stackUpdated(self, positioners=None): """ Recalculates the different images associated to the stack """ self._tryNumpy = True if hasattr(self._stack.data, "size"): if self._stack.data.size > self._dynamicLimit: self._tryNumpy = False else: # is not a numpy ndarray in any case self._tryNumpy = False previousStackImageSize = None if self._stackImageData is not None: previousStackImageSize = self._stackImageData.size mcaMax = None if self._tryNumpy and isinstance(self._stack.data, numpy.ndarray): self._stackImageData = numpy.sum(self._stack.data, axis=self.mcaIndex, dtype=numpy.float64) #original ICR mca logger.debug("(self.otherIndex, self.fileIndex) = (%d, %d)", self.otherIndex, self.fileIndex) i = max(self.otherIndex, self.fileIndex) j = min(self.otherIndex, self.fileIndex) mcaData0 = numpy.sum(numpy.sum(self._stack.data, axis=i, dtype=numpy.float64), j) # max MCA if self.mcaIndex == -1 or (self.mcaIndex == (len(self._stack.data.shape) - 1)): mcaMax = numpy.nanmax(numpy.nanmax(self._stack.data, axis=0), axis=0) elif self.mcaIndex == 0: mcaMax = numpy.nanmax(numpy.nanmax(self._stack.data, axis=-1), axis=-1) else: logger.info("Unsupported index for max spectrum calculation") else: t0 = time.time() shape = self._stack.data.shape if self.mcaIndex in [2, -1]: self._stackImageData = numpy.zeros((shape[0], shape[1]), dtype=numpy.float64) mcaData0 = numpy.zeros((shape[2],), numpy.float64) if hasattr(numpy, "NINF"): mcaMax = mcaData0 + numpy.NINF else: mcaMax = mcaData0 - numpy.inf step = 1 for i in range(shape[0]): tmpData = self._stack.data[i:i+step,:,:] numpy.add(self._stackImageData[i:i+step,:], numpy.sum(tmpData, 2), self._stackImageData[i:i+step,:]) tmpData.shape = step*shape[1], shape[2] tmpMax = numpy.nanmax(tmpData, axis=0) numpy.add(mcaData0, numpy.sum(tmpData, 0), mcaData0) mcaMax =numpy.max([mcaMax, tmpMax], axis=0) elif self.mcaIndex == 0: self._stackImageData = numpy.zeros((shape[1], shape[2]), dtype=numpy.float64) mcaData0 = numpy.zeros((shape[0],), numpy.float64) if hasattr(numpy, "NINF"): mcaMax = mcaData0 + numpy.NINF else: mcaMax = mcaData0 - numpy.inf step = 1 for i in range(shape[0]): tmpData = self._stack.data[i:i+step,:,:] tmpData.shape = tmpData.shape[1:] numpy.add(self._stackImageData, tmpData, self._stackImageData) mcaData0[i] = tmpData.sum() mcaMax[i] = numpy.nanmax(tmpData) else: raise ValueError("Unhandled case 1D index = %d" % self.mcaIndex) logger.debug("Print dynamic loading elapsed = %f", time.time() - t0) logger.debug("__stackImageData.shape = %s", self._stackImageData.shape) if previousStackImageSize: if previousStackImageSize != self._stackImageData.size: self._clearPositioners() calib = self._stack.info.get('McaCalib', [0.0, 1.0, 0.0]) dataObject = DataObject.DataObject() dataObject.info = {"McaCalib": calib, "selectiontype": "1D", "SourceName": "Stack", "Key": "SUM"} if "McaLiveTime" in self._stack.info: if hasattr(self._stack.info["McaLiveTime"], "sum"): dataObject.info["McaLiveTime"] = \ self._stack.info["McaLiveTime"].sum() else: print("Not an array. Skipping time information") #del dataObject.info["McaLiveTime"] if not hasattr(self._stack, 'x'): self._stack.x = None if self._stack.x in [None, []]: self._stack.x = [numpy.arange(len(mcaData0)).astype(numpy.float64)+\ self._stack.info.get('Channel0', 0.0)] # for the time being it can only contain one axis dataObject.x = [self._stack.x[0]] dataObject.y = [mcaData0] #store the original spectrum self._mcaData0 = dataObject #store the original max spectrum self._mcaMax = mcaMax #add the original image self.showOriginalImage() #add the mca goodData = numpy.isfinite(self._mcaData0.y[0].sum()) if goodData: self._finiteData = True self.showOriginalMca() else: self._finiteData = False self.handleNonFiniteData() #calculate the ROIs self._ROIDict = {'name': "ICR", 'type': "CHANNEL", 'calibration': calib, 'from': dataObject.x[0][0], 'to': dataObject.x[0][-1]} self.updateROIImages() if positioners is not None: try: self.setPositioners(positioners) except Exception: logging.error("Error setting positioners. Ignoring them") self._clearPositioners() for key in self.pluginInstanceDict.keys(): self.pluginInstanceDict[key].stackUpdated() def getStackOriginalCurve(self): # TODO: Make sure copies are returned x = self._mcaData0.x[0] y = self._mcaData0.y[0] legend = "Stack SUM" info = self._mcaData0.info return [x, y, legend, info] def isStackFinite(self): """ Returns True if stack does not contain inf or nans Returns False if stack is not finite """ return self._finiteData def handleNonFiniteData(self): text = "Your data contain infinite values or nans.\n" text += "Pixels containing those values will be ignored." logger.info(text) def updateROIImages(self, ddict=None): if ddict is None: updateROIDict = False ddict = self._ROIDict else: updateROIDict = True xw = ddict['calibration'][0] + \ ddict['calibration'][1] * self._mcaData0.x[0] + \ ddict['calibration'][2] * (self._mcaData0.x[0] ** 2) if ddict["name"] == "ICR": i1 = 0 i2 = self._stack.data.shape[self.mcaIndex] imiddle = int(0.5 * (i1 + i2)) pos = 0.5 * (ddict['from'] + ddict['to']) if ddict["type"].upper() != "CHANNEL": imiddle = max(numpy.nonzero(xw <= pos)[0]) elif ddict["type"].upper() != "CHANNEL": #energy like ROI if xw[0] < xw[-1]: i1 = numpy.nonzero(ddict['from'] <= xw)[0] if len(i1): i1 = min(i1) else: logger.debug("updateROIImages: nothing to be made") return i2 = numpy.nonzero(xw <= ddict['to'])[0] if len(i2): i2 = max(i2) + 1 else: logger.debug("updateROIImages: nothing to be made") return pos = 0.5 * (ddict['from'] + ddict['to']) imiddle = max(numpy.nonzero(xw <= pos)[0]) else: i2 = numpy.nonzero(ddict['from'] <= xw)[0] if len(i2): i2 = max(i2) else: logger.debug("updateROIImages: nothing to be made") return i1 = numpy.nonzero(xw <= ddict['to'])[0] if len(i1): i1 = min(i1) + 1 else: logger.debug("updateROIImages: nothing to be made") return pos = 0.5 * (ddict['from'] + ddict['to']) imiddle = min(numpy.nonzero(xw <= pos)[0]) else: i1 = numpy.nonzero(ddict['from'] <= self._mcaData0.x[0])[0] if len(i1): if self._mcaData0.x[0][0] > self._mcaData0.x[0][-1]: i1 = max(i1) else: i1 = min(i1) else: i1 = 0 i1 = max(i1, 0) i2 = numpy.nonzero(self._mcaData0.x[0] <= ddict['to'])[0] if len(i2): if self._mcaData0.x[0][0] > self._mcaData0.x[0][-1]: i2 = min(i2) else: i2 = max(i2) else: i2 = 0 i2 = min(i2 + 1, self._stack.data.shape[self.mcaIndex]) pos = 0.5 * (ddict['from'] + ddict['to']) if self._mcaData0.x[0][0] > self._mcaData0.x[0][-1]: imiddle = min(numpy.nonzero(self._mcaData0.x[0] <= pos)[0]) else: imiddle = max(numpy.nonzero(self._mcaData0.x[0] <= pos)[0]) xw = self._mcaData0.x[0] self._ROIImageDict = self.calculateROIImages(i1, i2, imiddle, energy=xw) if updateROIDict: self._ROIDict.update(ddict) roiKeys = ['ROI', 'Maximum', 'Minimum', 'Left', 'Middle', 'Right', 'Background'] nImages = len(roiKeys) imageList = [None] * nImages for i in range(nImages): key = roiKeys[i] imageList[i] = self._ROIImageDict[key] title = "%s" % ddict["name"] if ddict["name"] == "ICR": cursor = "Energy" if abs(ddict['calibration'][0]) < 1.0e-5: if abs(ddict['calibration'][1] - 1) < 1.0e-5: if abs(ddict['calibration'][2]) < 1.0e-5: cursor = "Channel" elif ddict["type"].upper() == "CHANNEL": cursor = "Channel" else: cursor = ddict["type"] imageNames = [title, '%s Maximum' % title, '%s Minimum' % title, '%s %.6g' % (cursor, xw[i1]), '%s %.6g' % (cursor, xw[imiddle]), '%s %.6g' % (cursor, xw[(i2 - 1)]), '%s Background' % title] if self.__ROIImageCalculationIsUsingSuppliedEnergyAxis: imageNames[1] = "%s %s at Max." % (title, cursor) imageNames[2] = "%s %s at Min." % (title, cursor) self.showROIImageList(imageList, image_names=imageNames) def showOriginalImage(self): logger.debug("showOriginalImage to be implemented") def showOriginalMca(self): logger.debug("showOriginalMca to be implemented") def showROIImageList(self, imageList, image_names=None): self._ROIImageList = imageList self._ROIImageNames = image_names self._stackROIImageListUpdated() def _stackROIImageListUpdated(self): for key in self.pluginInstanceDict.keys(): self.pluginInstanceDict[key].stackROIImageListUpdated() def getStackROIImagesAndNames(self): return self._ROIImageList, self._ROIImageNames def getStackOriginalImage(self): return self._stackImageData def calculateMcaDataObject(self, normalize=False, mask=None, mcamax=False): #original ICR mca if self._stackImageData is None: return if mask is None: selectionMask = self._selectionMask else: selectionMask = mask mcaData = None mcaMax = None goodData = numpy.isfinite(self._mcaData0.y[0].sum()) logger.debug("Stack data is not finite") if (selectionMask is None) and goodData: if mcamax: # return the default maximum MCA spectrum dataObject = copy.deepcopy(self._mcaData0) dataObject.y = [self._mcaMax] return DataObject elif normalize: logger.debug("Case 1") npixels = self._stackImageData.shape[0] *\ self._stackImageData.shape[1] * 1.0 dataObject = DataObject.DataObject() dataObject.info.update(self._mcaData0.info) dataObject.x = [self._mcaData0.x[0]] dataObject.y = [self._mcaData0.y[0] / float(npixels)] if "McaLiveTime" in dataObject.info: dataObject.info["McaLiveTime"] /= float(npixels) else: logger.debug("Case 2") dataObject = self._mcaData0 return dataObject #deal with NaN and inf values if selectionMask is None: if (self._ROIImageDict["ROI"] is not None) and\ (self.mcaIndex != 0): actualSelectionMask = numpy.isfinite(self._ROIImageDict["ROI"]) else: actualSelectionMask = numpy.isfinite(self._stackImageData) else: if (self._ROIImageDict["ROI"] is not None) and\ (self.mcaIndex != 0): actualSelectionMask = selectionMask * numpy.isfinite(self._ROIImageDict["ROI"]) else: actualSelectionMask = selectionMask * numpy.isfinite(self._stackImageData) npixels = actualSelectionMask.sum() if (npixels == 0) and goodData: if mcamax: # return the default maximum MCA spectrum dataObject = copy.deepcopy(self._mcaData0) dataObject.y = [self._mcaMax] return DataObject elif normalize: logger.debug("Case 3") npixels = self._stackImageData.shape[0] * self._stackImageData.shape[1] * 1.0 dataObject = DataObject.DataObject() dataObject.info.update(self._mcaData0.info) dataObject.x = [self._mcaData0.x[0]] dataObject.y = [self._mcaData0.y[0] / float(npixels)] if "McaLiveTime" in dataObject.info: dataObject.info["McaLiveTime"] /= float(npixels) else: logger.debug("Case 4") dataObject = self._mcaData0 return dataObject mcaData = numpy.zeros(self._mcaData0.y[0].shape, dtype=numpy.float64) n_nonselected = self._stackImageData.shape[0] *\ self._stackImageData.shape[1] - npixels if mcamax: # we cannot calculate the maximum without using the actually selected pixels arrayMask = (actualSelectionMask > 0) elif goodData: if n_nonselected < npixels: arrayMask = (actualSelectionMask == 0) else: arrayMask = (actualSelectionMask > 0) else: arrayMask = (actualSelectionMask > 0) logger.debug("Reached MCA calculation") cleanMask = numpy.nonzero(arrayMask) logger.debug("self.fileIndex, self.mcaIndex = %d , %d", self.fileIndex, self.mcaIndex) t0 = time.time() if len(cleanMask[0]) and len(cleanMask[1]): logger.debug("USING MASK") cleanMask = numpy.array(cleanMask).transpose() if self.fileIndex == 2: if self.mcaIndex == 0: if isinstance(self._stack.data, numpy.ndarray): logger.debug("In memory case 0") for r, c in cleanMask: tmpData = self._stack.data[:, r, c] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: logger.debug("Dynamic loading case 0") #no other choice than to read all images #for the time being, one by one rMin = cleanMask[0][0] rMax = cleanMask[-1][0] cMin = cleanMask[:, 1].min() cMax = cleanMask[:, 1].max() #rMin, cMin = cleanMask.min(axis=0) #rMax, cMax = cleanMask.max(axis=0) tmpMask = arrayMask[rMin:(rMax+1),cMin:(cMax+1)] tmpData = numpy.zeros((1, rMax-rMin+1,cMax-cMin+1)) mcaMax = numpy.zeros((self._stack.data.shape[0],), dtype=numpy.float64) for i in range(self._stack.data.shape[0]): tmpData[0:1,:,:] = self._stack.data[i:i+1,rMin:(rMax+1),cMin:(cMax+1)] #multiplication is faster than selection mcaData[i] = (tmpData[0]*tmpMask).sum(dtype=numpy.float64) if mcamax: mcaMax[i] = numpy.max(tmpData[0][tmpMask]) elif self.mcaIndex == 1: if isinstance(self._stack.data, numpy.ndarray): for r, c in cleanMask: tmpData = self._stack.data[r,:,c] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: raise IndexError("Dynamic loading case 1") else: raise IndexError("Wrong combination of indices. Case 0") elif self.fileIndex == 1: if self.mcaIndex == 0: if isinstance(self._stack.data, numpy.ndarray): logger.debug("In memory case 2") for r, c in cleanMask: tmpData = self._stack.data[:, r, c] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: logger.debug("Dynamic loading case 2") #no other choice than to read all images #for the time being, one by one if 1: rMin = cleanMask[0][0] rMax = cleanMask[-1][0] cMin = cleanMask[:, 1].min() cMax = cleanMask[:, 1].max() #rMin, cMin = cleanMask.min(axis=0) #rMax, cMax = cleanMask.max(axis=0) tmpMask = arrayMask[rMin:(rMax + 1), cMin:(cMax + 1)] tmpData = numpy.zeros((1, rMax - rMin + 1, cMax - cMin + 1)) mcaMax = numpy.zeros((self._stack.data.shape[0],), dtype=numpy.float64) for i in range(self._stack.data.shape[0]): tmpData[0:1, :, :] = self._stack.data[i:i + 1, rMin:(rMax + 1), cMin:(cMax + 1)] # multiplication is faster than selection mcaData[i] = (tmpData[0] * tmpMask).sum(dtype=numpy.float64) # Multiplication does not work with negative data # because zero it's already a maximum if mcamax: mcaMax[i] = numpy.max(tmpData[0][tmpMask]) if 0: tmpData = numpy.zeros((1, self._stack.data.shape[1], self._stack.data.shape[2])) for i in range(self._stack.data.shape[0]): tmpData[0:1, :, :] = self._stack.data[i:i + 1,:,:] #multiplication is faster than selection #tmpData[arrayMask].sum() in my machine mcaData[i] = (tmpData[0] * arrayMask).sum(dtype=numpy.float64) elif self.mcaIndex == 2: if isinstance(self._stack.data, numpy.ndarray): logger.debug("In memory case 3") for r, c in cleanMask: tmpData = self._stack.data[r, c, :] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: logger.debug("Dynamic loading case 3") #try to minimize access to the file row_list = [] row_dict = {} for r, c in cleanMask: if mcaMax is None: self._stack.data[r, c, :] if r not in row_list: row_list.append(r) row_dict[r] = [] row_dict[r].append(c) for r in row_list: tmpMcaData = self._stack.data[r:r + 1, row_dict[r], :] tmpMcaData.shape = -1, mcaData.shape[0] mcaData += numpy.sum(tmpMcaData, axis=0, dtype=numpy.float64) if mcamax: mcaMax = numpy.max([mcaMax, numpy.max(tmpMcaData, axis=0)], axis=0) else: raise IndexError("Wrong combination of indices. Case 1") elif self.fileIndex == 0: if self.mcaIndex == 1: if isinstance(self._stack.data, numpy.ndarray): logger.debug("In memory case 4") for r, c in cleanMask: tmpData = self._stack.data[r, :, c] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: raise IndexError("Dynamic loading case 4") elif self.mcaIndex in [2, -1]: if isinstance(self._stack.data, numpy.ndarray): logger.debug("In memory case 5") for r, c in cleanMask: tmpData = self._stack.data[r, c, :] mcaData += tmpData if mcamax: if mcaMax is None: mcaMax = tmpData else: mcaMax = numpy.max([mcaMax, tmpData], axis=0) else: logger.debug("Dynamic loading case 5") #try to minimize access to the file row_list = [] row_dict = {} for r, c in cleanMask: if mcaMax is None: mcaMax = self._stack.data[r, c, :] if r not in row_list: row_list.append(r) row_dict[r] = [] row_dict[r].append(c) for r in row_list: tmpMcaData = self._stack.data[r:r + 1, row_dict[r], :] tmpMcaData.shape = -1, mcaData.shape[0] mcaData += tmpMcaData.sum(axis=0, dtype=numpy.float64) if mcamax: mcaMax = numpy.max([mcaMax, numpy.max(tmpMcaData, axis=0)], axis=0) else: raise IndexError("Wrong combination of indices. Case 2") else: raise IndexError("File index undefined") else: logger.debug("NOT USING MASK !") if mcamax: calib = self._stack.info['McaCalib'] dataObject = DataObject.DataObject() dataObject.info = {"McaCalib": calib, "selectiontype": "1D", "SourceName": "Stack", "Key": "Selection"} dataObject.x = [self._mcaData0.x[0]] dataObject.y = [mcaMax] return dataObject logger.debug("Mca sum elapsed = %f", time.time() - t0) if goodData: if n_nonselected < npixels: mcaData = self._mcaData0.y[0] - mcaData if normalize: mcaData = mcaData / float(npixels) calib = self._stack.info['McaCalib'] dataObject = DataObject.DataObject() dataObject.info = {"McaCalib": calib, "selectiontype": "1D", "SourceName": "Stack", "Key": "Selection"} if "McaLiveTime" in self._stack.info: selectedPixels = actualSelectionMask > 0 liveTime = self._stack.info["McaLiveTime"][:] liveTime.shape = actualSelectionMask.shape liveTime = liveTime[selectedPixels].sum() if normalize: liveTime = liveTime / float(npixels) dataObject.info["McaLiveTime"] = liveTime dataObject.x = [self._mcaData0.x[0]] dataObject.y = [mcaData] return dataObject def calculateROIImages(self, index1, index2, imiddle=None, energy=None): logger.debug("Calculating ROI images") i1 = min(index1, index2) i2 = max(index1, index2) if imiddle is None: imiddle = int(0.5 * (i1 + i2)) if energy is None: energy = self._mcaData0.x[0] if i1 == i2: dummy = numpy.zeros(self._stackImageData.shape, numpy.float64) imageDict = {'ROI': dummy, 'Maximum': dummy, 'Minimum': dummy, 'Left': dummy, 'Middle': dummy, 'Right': dummy, 'Background': dummy} return imageDict isUsingSuppliedEnergyAxis = False if self.fileIndex == 0: if self.mcaIndex == 1: leftImage = self._stack.data[:, i1, :] middleImage = self._stack.data[:, imiddle, :] rightImage = self._stack.data[:, i2 - 1, :] dataImage = self._stack.data[:, i1:i2, :] background = 0.5 * (i2 - i1) * (leftImage + rightImage) roiImage = numpy.sum(dataImage, axis=1, dtype=numpy.float64) maxImage = energy[(numpy.argmax(dataImage, axis=1) + i1)] minImage = energy[(numpy.argmin(dataImage, axis=1) + i1)] isUsingSuppliedEnergyAxis = True else: t0 = time.time() if self._tryNumpy and\ isinstance(self._stack.data, numpy.ndarray): leftImage = self._stack.data[:, :, i1] middleImage = self._stack.data[:, :, imiddle] rightImage = self._stack.data[:, :, i2 - 1] dataImage = self._stack.data[:, :, i1:i2] background = 0.5 * (i2 - i1) * (leftImage + rightImage) roiImage = numpy.sum(dataImage, axis=2, dtype=numpy.float64) maxImage = energy[numpy.argmax(dataImage, axis=2) + i1] minImage = energy[numpy.argmin(dataImage, axis=2) + i1] isUsingSuppliedEnergyAxis = True logger.debug("Case 1 ROI image calculation elapsed = %f ", time.time() - t0) else: shape = self._stack.data.shape roiImage = numpy.zeros(self._stackImageData.shape, numpy.float64) background = roiImage * 1 leftImage = roiImage * 1 middleImage = roiImage * 1 rightImage = roiImage * 1 maxImage = numpy.zeros(self._stackImageData.shape, numpy.uint) minImage = numpy.zeros(self._stackImageData.shape, numpy.uint) step = 1 for i in range(shape[0]): tmpData = self._stack.data[i:i+step,:, i1:i2] * 1 numpy.add(roiImage[i:i+step,:], numpy.sum(tmpData, axis=2,dtype=numpy.float64), roiImage[i:i+step,:]) minImage[i:i + step,:] = i1 + numpy.argmin(tmpData, axis=2) maxImage[i:i + step, :] = i1 + numpy.argmax(tmpData, axis=2) leftImage[i:i + step, :] += tmpData[:, :, 0] middleImage[i:i + step, :] += tmpData[:, :, imiddle - i1] rightImage[i:i + step, :] += tmpData[:, :, -1] background = 0.5 * (i2 - i1) * (leftImage + rightImage) isUsingSuppliedEnergyAxis = True minImage = energy[minImage] maxImage = energy[maxImage] logger.debug("2 Dynamic ROI image calculation elapsed = %f ", time.time() - t0) elif self.fileIndex == 1: if self.mcaIndex == 0: t0 = time.time() if isinstance(self._stack.data, numpy.ndarray) and\ self._tryNumpy: leftImage = self._stack.data[i1, :, :] middleImage= self._stack.data[imiddle, :, :] rightImage = self._stack.data[i2 - 1, :, :] dataImage = self._stack.data[i1:i2, :, :] # this calculation is very slow but it is extremely useful # for XANES studies if 1: maxImage = energy[numpy.argmax(dataImage, axis=0) + i1] minImage = energy[numpy.argmin(dataImage, axis=0) + i1] else: # this is slower, but uses less memory maxImage = numpy.zeros(leftImage.shape, numpy.int32) minImage = numpy.zeros(leftImage.shape, numpy.int32) for i in range(i1, i2): tmpData = self._stack.data[i] tmpData.shape = leftImage.shape if i == i1: minImageData = tmpData * 1.0 maxImageData = tmpData * 1.0 minImage[:,:] = i1 maxImage[:,:] = i1 else: tmpIndex = numpy.where(tmpData < minImageData) minImage[tmpIndex] = i minImageData[tmpIndex] = tmpData[tmpIndex] tmpIndex = numpy.where(tmpData > maxImageData) maxImage[tmpIndex] = i maxImageData[tmpIndex] = tmpData[tmpIndex] minImage = energy[minImage] maxImage = energy[maxImage] isUsingSuppliedEnergyAxis = True background = 0.5 * (i2 - i1) * (leftImage + rightImage) roiImage = numpy.sum(dataImage, axis=0, dtype=numpy.float64) logger.debug("Case 3 ROI image calculation elapsed = %f ", time.time() - t0) else: shape = self._stack.data.shape roiImage = numpy.zeros(self._stackImageData.shape, numpy.float64) background = roiImage * 1 leftImage = roiImage * 1 middleImage = roiImage * 1 rightImage = roiImage * 1 maxImage = numpy.zeros(roiImage.shape, numpy.int32) minImage = numpy.zeros(roiImage.shape, numpy.int32) istep = 1 for i in range(i1, i2): tmpData = self._stack.data[i:i + istep] tmpData.shape = roiImage.shape if i == i1: minImageData = tmpData * 1.0 maxImageData = tmpData * 1.0 minImage[:,:] = i1 maxImage[:,:] = i1 else: tmpIndex = numpy.where(tmpData < minImageData) minImage[tmpIndex] = i minImageData[tmpIndex] = tmpData[tmpIndex] tmpIndex = numpy.where(tmpData > maxImageData) maxImage[tmpIndex] = i maxImageData[tmpIndex] = tmpData[tmpIndex] numpy.add(roiImage, tmpData, roiImage) if (i == i1): leftImage = tmpData elif (i == imiddle): middleImage = tmpData elif i == (i2 - 1): rightImage = tmpData # the used approach is twice slower than argmax, but it # requires much less memory isUsingSuppliedEnergyAxis = True minImage = energy[minImage] maxImage = energy[maxImage] if i2 > i1: background = (leftImage + rightImage) * 0.5 * (i2 - i1) logger.debug("Case 4 Dynamic ROI elapsed = %f", time.time() - t0) else: t0 = time.time() if self._tryNumpy and\ isinstance(self._stack.data, numpy.ndarray): leftImage = self._stack.data[:, :, i1] middleImage = self._stack.data[:, :, imiddle] rightImage = self._stack.data[:, :, i2 - 1] dataImage = self._stack.data[:, :, i1:i2] background = 0.5 * (i2 - i1) * (leftImage + rightImage) roiImage = numpy.sum(dataImage, axis=2, dtype=numpy.float64) maxImage = energy[numpy.argmax(dataImage, axis=2) + i1] minImage = energy[numpy.argmin(dataImage, axis=2) + i1] isUsingSuppliedEnergyAxis = True logger.debug("Case 5 ROI Image elapsed = %f", time.time() - t0) else: shape = self._stack.data.shape roiImage = numpy.zeros(self._stackImageData.shape, numpy.float64) background = roiImage * 1 leftImage = roiImage * 1 middleImage = roiImage * 1 rightImage = roiImage * 1 maxImage = roiImage * 1 minImage = roiImage * 1 step = 1 for i in range(shape[0]): tmpData = self._stack.data[i:i+step,:, i1:i2] * 1 numpy.add(roiImage[i:i+step,:], numpy.sum(tmpData, axis=2, dtype=numpy.float64), roiImage[i:i+step,:]) numpy.add(minImage[i:i+step,:], numpy.min(tmpData, 2), minImage[i:i+step,:]) numpy.add(maxImage[i:i+step,:], numpy.max(tmpData, 2), maxImage[i:i+step,:]) leftImage[i:i+step, :] += tmpData[:, :, 0] middleImage[i:i+step, :] += tmpData[:, :, imiddle-i1] rightImage[i:i+step, :] += tmpData[:, :,-1] background = 0.5*(i2-i1)*(leftImage+rightImage) logger.debug("Case 6 Dynamic ROI image calculation elapsed = %f", time.time() - t0) else: #self.fileIndex = 2 t0 = time.time() if self.mcaIndex == 0: leftImage = self._stack.data[i1] middleImage = self._stack.data[imiddle] rightImage = self._stack.data[i2 - 1] background = 0.5 * (i2 - i1) * (leftImage + rightImage) dataImage = self._stack.data[i1:i2] roiImage = numpy.sum(dataImage, axis=0, dtype=numpy.float64) minImage = energy[numpy.argmin(dataImage, axis=0) + i1] maxImage = energy[numpy.argmax(dataImage, axis=0) + i1] isUsingSuppliedEnergyAxis = True logger.debug("Case 7 Default ROI image calculation elapsed = %f", time.time() - t0) else: leftImage = self._stack.data[:, i1, :] middleImage = self._stack.data[:, imiddle, :] rightImage = self._stack.data[:, i2 - 1, :] background = 0.5 * (i2 - i1) * (leftImage + rightImage) dataImage = self._stack.data[:, i1:i2, :] roiImage = numpy.sum(dataImage, axis=1, dtype=numpy.float64) minImage = energy[numpy.argmin(dataImage, axis=1) + i1] maxImage = energy[numpy.argmax(dataImage, axis=1) + i1] isUsingSuppliedEnergyAxis = True logger.debug("Case 8 Default ROI image calculation elapsed = %f", time.time() - t0) imageDict = {'ROI': roiImage, 'Maximum': maxImage, 'Minimum': minImage, 'Left': leftImage, 'Middle': middleImage, 'Right': rightImage, 'Background': background} self.__ROIImageCalculationIsUsingSuppliedEnergyAxis = isUsingSuppliedEnergyAxis logger.debug("ROI images calculated") return imageDict def setSelectionMask(self, mask): logger.debug("setSelectionMask called") goodData = numpy.isfinite(self._mcaData0.y[0].sum()) if goodData: self._selectionMask = mask else: if (self._ROIImageDict["ROI"] is not None) and\ (self.mcaIndex != 0): self._selectionMask = mask * numpy.isfinite(self._ROIImageDict["ROI"]) else: self._selectionMask = mask * numpy.isfinite(self._stackImageData) for key in self.pluginInstanceDict.keys(): self.pluginInstanceDict[key].selectionMaskUpdated() def getSelectionMask(self): logger.debug("getSelectionMask called") return self._selectionMask def addImage(self, image, name, info=None, replace=False, replot=True): """ Add image data to the RGB correlator """ print("Add image data not implemented") def removeImage(self, name, replace=True): """ Remove image data from the RGB correlator """ print("Remove image data not implemented") def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True): """ Add the 1D curve given by x an y to the graph. """ print("addCurve not implemented") return None def removeCurve(self, legend, replot=True): """ Remove the curve associated to the supplied legend from the graph. The graph will be updated if replot is true. """ print("removeCurve not implemented") return None def getGraphXLabel(self): print("getGraphXLabel not implemented") return None def getGraphYLabel(self): print("getGraphYLabel not implemented") return None def getActiveCurve(self): """ Function to access the currently active curve. It returns None in case of not having an active curve. Default output has the form: xvalues, yvalues, legend, dict where dict is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. If just_legend is True: The legend of the active curve (or None) is returned. """ logger.debug("getActiveCurve default implementation") info = {} info['xlabel'] = 'Channel' info['ylabel'] = 'Counts' legend = 'ICR Spectrum' return self._mcaData0.x[0], self._mcaData0.y[0], legend, info def getGraphXLimits(self): logger.debug("getGraphXLimits default implementation") return self._mcaData0.x[0].min(), self._mcaData0.x[0].max() def getGraphYLimits(self): logger.debug("getGraphYLimits default implementation") return self._mcaData0.y[0].min(), self._mcaData0.y[0].max() def getStackDataObject(self): return self._stack def getStackData(self): return self._stack.data def getStackInfo(self): return self._stack.info def setPositioners(self, positioners, copy=True): """Updates the "positioners" field in the stack info, after checking that the provided positioners have the proper number of values. :param dict positioners: Dictionary of positioners. The keys are the motor names. The values should preferably be arrays with the same number of values as there are stack pixels. Scalars are accepted if the positioner has a constant value. :param bool copy: If *True* (default), store a copy of the data. If *False*, store the original data whenever it is possible. If the dictionary contains lists, they need to be converted to numpy arrays and a copy is mandatory. :raise: TypeError if positioners is not a dict or if any positioner is not a scalar, list or numpy array. :raise: RuntimeError if any positioner is a list and copy=False """ if not hasattr(positioners, "items"): raise TypeError("Dictionary expected for positioners") npixels = self.getStackOriginalImage().size stackPositioners = {} for motorName, motorValues in positioners.items(): if numpy.isscalar(motorValues) or \ (hasattr(motorValues, "ndim") and motorValues.ndim == 0): stackPositioners[motorName] = motorValues elif hasattr(motorValues, "size"): # numpy array numMotorValues = motorValues.size if numMotorValues == npixels: stackPositioners[motorName] = numpy.array(motorValues, copy=copy) elif hasattr(motorValues, "__len__") and numpy.isscalar(motorValues[0]): # list: convert to numpy array before storing in info numMotorValues = len(motorValues) if numMotorValues == npixels: stackPositioners[motorName] = numpy.array(motorValues) else: raise TypeError( "Wrong type for positioner %s. " % motorName + "Valid types are numpy arrays, scalars or list of scalars.") if len(stackPositioners) != len(positioners): ignored_motors = list(set(positioners.keys()) - set(stackPositioners.keys())) logger.debug("Ignored motors due to mismatch in number of values: %s", ', '.join(ignored_motors)) self._stack.info["positioners"] = stackPositioners def _clearPositioners(self): """Removes the "positioners" field in the stack info""" if "positioners" in self._stack.info: self._stack.info["positioners"] = {} def getPositionersFromIndex(self, index): """Return the value of all positioners for the spectrum identified by its 1D index. If positioners are stored as 1D arrays ``a``, the value returned is simply ``a[index]``. If positioners are stored as 2D arrays, the index is applied to the flattened array. :param int index: Index of spectrum for which the the positioners value is to be returned. :return: dictionary of positioners values whose keys are the motor name :rtype: dict """ positioners = self._stack.info.get("positioners", {}) positionersAtIdx = {} if index >= self.getStackOriginalImage().size or index < 0: raise IndexError("index out of bounds") for motorName, motorValues in positioners.items(): # assert numpy.isscalar(motorValues) or hasattr(motorValues, "shape") if numpy.isscalar(motorValues): positionersAtIdx[motorName] = motorValues elif len(motorValues.shape) == 1: positionersAtIdx[motorName] = motorValues[index] else: positionersAtIdx[motorName] = motorValues.reshape((-1,))[index] return positionersAtIdx def test(): #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): stackData[:, :, i] = a * i stack = StackBase() stack.setStack(stackData, mcaindex=2) print("This should be 0 = %f" % stack.calculateROIImages(0, 0)['ROI'].sum()) print("This should be 0 = %f" % stack.calculateROIImages(0, 1)['ROI'].sum()) print("%f should be = %f" %\ (stackData[:, :, 0:10].sum(), stack.calculateROIImages(0, 10)['ROI'].sum())) if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/StackPluginBase.py0000644000000000000000000002230714741736366020612 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ A Stack plugin is a module that will be automatically added to the PyMca stack windows in order to perform user defined operations on the data stack. Plugins can be automatically installed provided they are in the appropriate place: - In the user home directory (POSIX systems): *${HOME}/.pymca/plugins* or *${HOME}/PyMca/plugins* (older PyMca installation) - In *"My Documents\\\\PyMca\\\\plugins"* (Windows) It has to inherit the :class:`StackPluginBase` class and implement the following methods: - :meth:`StackPluginBase.getMethods` - :meth:`StackPluginBase.getMethodToolTip` (optional but convenient) - :meth:`StackPluginBase.getMethodPixmap` (optional) - :meth:`StackPluginBase.applyMethod` and modify the static module variable :const:`MENU_TEXT` and the static module function :func:`getStackPluginInstance` according to the defined plugin. The plugin class has access to following inherited methods: - :meth:`StackPluginBase.addImage` - :meth:`StackPluginBase.getActiveCurve` - :meth:`StackPluginBase.getGraphXLabel` - :meth:`StackPluginBase.getGraphXLimits` - :meth:`StackPluginBase.getGraphYLabel` - :meth:`StackPluginBase.getGraphYLimits` - :meth:`StackPluginBase.getStackData` - :meth:`StackPluginBase.getStackDataObject` - :meth:`StackPluginBase.getStackDataObjectList` - :meth:`StackPluginBase.getStackInfo` - :meth:`StackPluginBase.getStackOriginalCurve` - :meth:`StackPluginBase.getStackOriginalImage` - :meth:`StackPluginBase.getStackROIImagesAndNames` - :meth:`StackPluginBase.getStackSelectionMask` - :meth:`StackPluginBase.isStackFinite` - :meth:`StackPluginBase.removeImage` - :meth:`StackPluginBase.replaceImage` - :meth:`StackPluginBase.setStack` - :meth:`StackPluginBase.setStackSelectionMask` - :meth:`StackPluginBase.stackClosed` These plugins will be compatible with any stack window that provides the following methods: #data related - :meth:`getStackDataObject` - :meth:`getStackData` - :meth:`getStackInfo` - :meth:`setStack` - :meth:`getStackROIImagesAndNames` - :meth:`isStackFinite` - :meth:`getStackOriginalCurve` - :meth:`getStackOriginalImage` #mask related - :meth:`setStackSelectionMask` - :meth:`getStackSelectionMask` #displayed curves - :meth:`getActiveCurve` - :meth:`getGraphXLimits` - :meth:`getGraphYLimits` - :meth:`getGraphXLabel` - :meth:`getGraphYLabel` #images - :meth:`addImage` - :meth:`removeImage` - :meth:`replaceImage` #information method - :meth:`stackUpdated` - :meth:`selectionMaskUpdated` - :meth:`stackClosed` """ import weakref import logging pluginBaseLogger = logging.getLogger(__name__) class StackPluginBase(object): def __init__(self, stackWindow, **kw): """ stackWindow is the object instantiating the plugin. Unless one knows what (s)he is doing, only a proxy should be used. I pass the actual instance to keep all doors open. """ self._stackWindow = weakref.proxy(stackWindow) pass #stack related functions def isStackFinite(self): return self._stackWindow.isStackFinite() def getStackROIImagesAndNames(self): return self._stackWindow.getStackROIImagesAndNames() def getStackDataObject(self): return self._stackWindow.getStackDataObject() def getStackDataObjectList(self): return self._stackWindow.getStackDataObjectList() def getStackData(self): return self._stackWindow.getStackData() def getStackOriginalCurve(self): return self._stackWindow.getStackOriginalCurve() def getStackOriginalImage(self): return self._stackWindow.getStackOriginalImage() def getStackInfo(self): return self._stackWindow.getStackInfo() def getStackSelectionMask(self): return self._stackWindow.getSelectionMask() def setStackSelectionMask(self, mask, instance_id=None): if instance_id is None: instance_id = id(self) return self._stackWindow.setSelectionMask(mask, instance_id=instance_id) def setStack(self, *var, **kw): return self._stackWindow.setStack(*var, **kw) def addImage(self, image, name): return self._stackWindow.addImage(image, name) def removeImage(self, name): return self._stackWindow.removeImage(name) def replaceImage(self, image, name): return self._stackWindow.replaceImage(image, name) #Plot window related functions def getActiveCurve(self): """ Function to access the currently active curve. It returns None in case of not having an active curve. Output has the form:: xvalues, yvalues, legend, dict where dict is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. """ return self._stackWindow.getActiveCurve() def getGraphXLimits(self): """ Get the graph X limits. """ return self._stackWindow.getGraphXLimits() def getGraphYLimits(self): """ Get the graph Y limits. """ return self._stackWindow.getGraphYLimits() def getGraphXLabel(self): """ Get the graph X label """ return self._stackWindow.getGraphXLabel() def getGraphYLabel(self): """ Get the graph Y label """ return self._stackWindow.getGraphYLabel() def stackUpdated(self): pluginBaseLogger.debug("stackUpdated(self) not implemented") def stackROIImageListUpdated(self): pluginBaseLogger.debug("stackROIImageListUpdated(self) not implemented") return def stackClosed(self): """ This method is called when the stack widget is closed. You can implement this to shut down the plugin (close widgets...). By default, widgets referenced as self.widget and self._widget are closed. """ if hasattr(self, "widget") and self.widget is not None: self.widget.close() if hasattr(self, "_widget") and self._widget is not None: self._widget.close() def selectionMaskUpdated(self): pluginBaseLogger.debug("selectionMaskUpdated(self) not implemented") #Methods to be implemented by the plugin def getMethods(self): """ A list with the NAMES associated to the callable methods that are applicable to the specified stack. """ pluginBaseLogger.debug("BASE STACK getMethods not implemented") return [] def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return None def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ pluginBaseLogger.debug("applyMethod not implemented") return MENU_TEXT = "StackPluginBase" """This is the name of the plugin, as it appears in the plugins menu.""" def getStackPluginInstance(stackWindow, **kw): """ This function will be called by the stack window instantiating and calling the plugins. It passes itself as first argument, but the default implementation of the base class only keeps a weak reference to prevent circular references. """ ob = StackPluginBase(stackWindow) return ob ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/StackROIBatch.py0000644000000000000000000004355314741736366020162 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Module to calculate a set of ROIs on a stack of data. """ import os import numpy import logging import copy from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaIO.OutputBuffer import OutputBuffer as OutputBufferBase from PyMca5.PyMcaCore import McaStackView _logger = logging.getLogger(__name__) class OutputBuffer(OutputBufferBase): def __init__(self, saveResiduals=False, saveFit=False, saveData=False, diagnostics=False, saveFOM=False, **kwargs): super(OutputBuffer, self).__init__(**kwargs) self.fileProcessDefault = 'roi_sum' class StackROIBatch(object): def __init__(self): self.config = ConfigDict.ConfigDict() def setConfiguration(self, configuration): self.config = ConfigDict.ConfigDict() self.config.update(configuration) def getConfiguration(self): return copy.deepcopy(self.config) def setConfigurationFile(self, ffile): configuration = ConfigDict.ConfigDict() configuration.read(ffile) self.setConfiguration(configuration) def batchROIMultipleSpectra(self, x=None, y=None, configuration=None, net=True, xAtMinMax=False, index=None, xLabel=None, outbuffer=None, save=True, **outbufferinitargs): """ This method performs the actual fit. The y keyword is the only mandatory input argument. :param x: 1D array containing the x axis (usually the channels) of the spectra. :param y: 3D array containing the data, usually [nrows, ncolumns, nchannels] :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow) :param net: 0 Means no subtraction, 1 Calculate :param xAtMinMax: if True, calculate X at maximum and minimum Y. Default is false. :param index: Index of dimension where to apply the ROIs. :param xLabel: Type of ROI to be used. :param outbuffer: :param save: set to False to postpone saving the in-memory buffers :return OutputBuffer: """ data, x, index = self._parseData(x=x, y=y, index=index) roiList, config = self._prepareRoiList(configuration=configuration, xLabel=xLabel) # Calculation needs buffer for memory allocation (memory or H5) if outbuffer is None: outbuffer = OutputBuffer(**outbufferinitargs) with outbuffer.Context(save=save): outbuffer['configuration'] = config self._extractRois(data, x, index, roiList=roiList, roiDict=config["ROI"]["roidict"], outbuffer=outbuffer, xAtMinMax=xAtMinMax) return outbuffer def _extractRois(self, data, x, mcaAxis, roiList=None, roiDict=None, outbuffer=None, xAtMinMax=False): nRois = len(roiList) nRows = data.shape[0] nColumns = data.shape[1] if xAtMinMax: roiShape = (nRois * 4, nRows, nColumns) names = [None] * 4 * nRois else: roiShape = (nRois * 2, nRows, nColumns) names = [None] * 2 * nRois # Helper variables for roi calculation idx = [None] * nRois # indices along axis=index for each ROI xw = [None] * nRois # x-values for each ROI iXMinList = [None] * nRois # min(xw) for each ROI iXMaxList = [None] * nRois # max(xw) for each ROI def idxraw(i): return i def idxnet(i): return i + nRois def idxmax(i): return i + 2 * nRois def idxmin(i): return i + 3 * nRois for j, roi in enumerate(roiList): if roi == "ICR": xw[j] = x idx[j] = numpy.arange(len(x)) iXMinList[j] = idx[j][0] iXMaxList[j] = idx[j][-1] else: roiFrom = roiDict[roi]["from"] roiTo = roiDict[roi]["to"] idx[j] = numpy.nonzero((roiFrom <= x) & (x <= roiTo))[0] if len(idx[j]): xw[j] = x[idx[j]] iXMinList[j] = numpy.argmin(xw[j]) iXMaxList[j] = numpy.argmax(xw[j]) else: xw[j] = None names[idxraw(j)] = "ROI " + roi names[idxnet(j)] = "ROI " + roi + " Net" if xAtMinMax: roiType = roiDict[roi]["type"] names[idxmax(j)] = "ROI " + roi + (" %s at Max." % roiType) names[idxmin(j)] = "ROI " + roi + (" %s at Min." % roiType) # Allocate memory for result roidtype = numpy.float64 results = outbuffer.allocateMemory('roisum', shape=roiShape, dtype=roidtype, labels=names, dataAttrs=None, groupAttrs={'default': True}, memtype='ram') # Allocate memory of partial result nMca = 2, 'MB' _logger.debug('Process spectra in chunks of {}'.format(nMca)) datastack = McaStackView.FullView(data, mcaAxis=mcaAxis, nMca=nMca) for (resultidx, resultshape), chunk in datastack.items(keyType='select'): for j, roi in enumerate(roiList): # Calculate ROI sum if xw[j] is None: # no points in the ROI rawSum = 0.0 netSum = 0.0 else: roichunk = numpy.asarray(chunk[:, idx[j]], dtype=numpy.float64) rawSum = roichunk.sum(axis=1, dtype=numpy.float64) deltaX = xw[j][iXMaxList[j]] - xw[j][iXMinList[j]] left = roichunk[:, iXMinList[j]] right = roichunk[:, iXMaxList[j]] deltaY = right - left if abs(deltaX) > 0.0: slope = deltaY / float(deltaX) background = left * len(xw[j]) + slope * \ (xw[j] - xw[j][iXMinList[j]]).sum(dtype=numpy.float64) netSum = rawSum - background else: netSum = 0.0 rawSum = rawSum.reshape(resultshape) netSum = netSum.reshape(resultshape) results[idxraw(j)][resultidx] = rawSum # ROI sum results[idxnet(j)][resultidx] = netSum # ROI sum minus linear background # Calculate x-value of the minimum and maximum within the ROI if xAtMinMax: if xw[j] is None: # what can be the Min and the Max when there is nothing in the ROI? _logger.warning("No Min. Max for ROI <%s>. Empty ROI" % roi) else: maxImage = xw[j][numpy.argmax(roichunk, axis=1)] results[idxmax(j)][resultidx] = maxImage.reshape(resultshape) minImage = xw[j][numpy.argmin(roichunk, axis=1)] results[idxmin(j)][resultidx] = minImage.reshape(resultshape) def _parseData(self, x=None, y=None, index=None): if y is None: raise RuntimeError("y keyword argument is mandatory!") if hasattr(y, "info") and hasattr(y, "data"): data = y.data mcaIndex = y.info.get("McaIndex", -1) else: data = y mcaIndex = -1 if index is None: index = mcaIndex if index < 0: index = len(data.shape) - 1 #workaround a problem with h5py try: if index in [0]: testException = data[0:1] else: if len(data.shape) == 2: testException = data[0:1, -1] elif len(data.shape) == 3: testException = data[0:1, 0:1, -1] except AttributeError: txt = "%s" % type(data) if 'h5py' in txt: _logger.info("Implementing h5py workaround") import h5py data = h5py.Dataset(data.id) else: raise # only usual spectra case supported if index != (len(data.shape) - 1): raise IndexError("Only stacks of spectra supported") if len(data.shape) != 3: txt = "For the time being only " txt += "three dimensional arrays supported" raise NotImplementedError(txt) if len(data.shape) != 3: txt = "For the time being only " txt += "three dimensional arrays supported" raise NotImplementedError(txt) # make sure to get x data if x is None: x = numpy.arange(data.shape[index]).astype(numpy.float32) elif x.size != data.shape[index]: raise NotImplementedError("All the spectra should share same X axis") #data = numpy.transpose(data, (1,0,2)) return data, x, index def _prepareRoiList(self, configuration=None, xLabel=None): # read the current configuration if configuration is not None: self.setConfiguration(configuration) config = self.getConfiguration() # prepare roi list roiList0 = config["ROI"]["roilist"] if type(roiList0) not in [type([]), type((1,))]: roiList0 = [roiList0] # operate only on compatible ROIs roiList = [] roiDict = config["ROI"]["roidict"] for roi in roiList0: roiType = roiDict[roi]["type"] if xLabel is None: roiList.append(roi) elif roi.upper() == "ICR": roiList.append(roi) elif xLabel.lower() == roiType.lower(): roiList.append(roi) else: _logger.info("ROI <%s> ignored") return roiList, config def getFileListFromPattern(pattern, begin, end, increment=None): if type(begin) == type(1): begin = [begin] if type(end) == type(1): end = [end] if len(begin) != len(end): raise ValueError(\ "Begin list and end list do not have same length") if increment is None: increment = [1] * len(begin) elif type(increment) == type(1): increment = [increment] if len(increment) != len(begin): raise ValueError(\ "Increment list and begin list do not have same length") fileList = [] if len(begin) == 1: for j in range(begin[0], end[0] + increment[0], increment[0]): fileList.append(pattern % (j)) elif len(begin) == 2: for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): fileList.append(pattern % (j, k)) elif len(begin) == 3: raise ValueError("Cannot handle three indices yet.") for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): for l in range(begin[2], end[2] + increment[2], increment[2]): fileList.append(pattern % (j, k, l)) else: raise ValueError("Cannot handle more than three indices.") return fileList def prepareDataStack(fileList): if (not os.path.exists(fileList[0])) and \ os.path.exists(fileList[0].split("::")[0]): # odo convention to get a dataset form an HDF5 fname, dataPath = fileList[0].split("::") # compared to the ROI imaging tool, this way of reading puts data # into memory while with the ROI imaging tool, there is a check. if 0: import h5py h5 = h5py.File(fname, "r") dataStack = h5[dataPath][:] h5.close() else: from PyMca5.PyMcaIO import HDF5Stack1D # this way reads information associated to the dataset (if present) if dataPath.startswith("/"): pathItems = dataPath[1:].split("/") else: pathItems = dataPath.split("/") if len(pathItems) > 1: scanlist = ["/" + pathItems[0]] selection = {"y":"/" + "/".join(pathItems[1:])} else: selection = {"y":dataPath} scanlist = None print(selection) print("scanlist = ", scanlist) dataStack = HDF5Stack1D.HDF5Stack1D([fname], selection, scanlist=scanlist) else: from PyMca5.PyMca import EDFStack dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32) return dataStack def main(): import glob import sys import getopt _logger.setLevel(logging.DEBUG) options = '' longoptions = ['cfg=', 'outdir=', 'tif=', 'edf=', 'csv=', 'h5=', 'dat=', 'filepattern=', 'begin=', 'end=', 'increment=', 'outroot=', 'outentry=', 'outprocess=', 'overwrite=', 'multipage='] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: _logger.error(sys.exc_info()[1]) sys.exit(1) outputDir = None outputRoot = "" fileEntry = "" fileProcess = "" filepattern = None begin = None end = None increment = None tif = 0 edf = 0 csv = 0 h5 = 1 dat = 0 overwrite = 1 multipage = 0 for opt, arg in opts: if opt in ('--cfg'): configurationFile = arg elif opt in '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt in '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt in '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt in '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt in '--outdir': outputDir = arg elif opt == '--outroot': outputRoot = arg elif opt == '--outentry': fileEntry = arg elif opt == '--outprocess': fileProcess = arg elif opt in ('--tif', '--tiff'): tif = int(arg) elif opt == '--edf': edf = int(arg) elif opt == '--csv': csv = int(arg) elif opt == '--h5': h5 = int(arg) elif opt == '--dat': dat = int(arg) elif opt == '--overwrite': overwrite = int(arg) elif opt == '--multipage': multipage = int(arg) if filepattern is not None: if (begin is None) or (end is None): raise ValueError( "A file pattern needs at least a set of begin and end indices") if filepattern is not None: fileList = getFileListFromPattern(filepattern, begin, end, increment=increment) else: fileList = args if len(fileList): dataStack = prepareDataStack(fileList) else: print("OPTIONS:", longoptions) sys.exit(0) if outputDir is None: print("RESULTS WILL NOT BE SAVED: No output directory specified") worker = StackROIBatch() worker.setConfigurationFile(configurationFile) outbuffer = OutputBuffer(outputDir=outputDir, outputRoot=outputRoot, fileEntry=fileEntry, fileProcess=fileProcess, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, multipage=multipage, overwrite=overwrite) with outbuffer.saveContext(): worker.batchROIMultipleSpectra(y=dataStack, outbuffer=outbuffer) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/XiaCorrect.py0000644000000000000000000003374614741736366017647 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon - ESRF Software group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from . import XiaEdf import sys import os import time __version__="$Revision: 1.11 $" def defaultErrorCB(message): print(message) def defaultLogCB(message, verbose_level=None, verbose_ask=None): if verbose_level is None: print(message) elif verbose_level <= verbose_ask: print(message) def defaultDoneCB(nbdone, total): pass def checkCB(log_cb=None, done_cb=None, error_cb=None): if log_cb is None: log_cb= defaultLogCB if done_cb is None: done_cb= defaultDoneCB if error_cb is None: error_cb= defaultErrorCB return (log_cb, done_cb, error_cb) def parseFiles(filelist, verbose=0, keep_sum=0, log_cb=None, done_cb=None, error_cb=None): (log_cb, done_cb, error_cb)= checkCB(log_cb, done_cb, error_cb) log_cb("Checking xia files ...") xiafiles= [] for file in filelist: xf= XiaEdf.XiaFilename(file) if xf.isValid(): log_cb(" - Parsing %s (OK - %s)"%(file, xf.getType()), 1, verbose) if not keep_sum: if not xf.isSum(): xiafiles.append(xf) else: xiafiles.append(xf) else: log_cb(" - Parsing %s (Not Xia)"%file, 1, verbose) if len(xiafiles): log_cb("Sorting xia files ...") xiafiles.sort() groupfiles= [] group= None for xf in xiafiles: if group is None: group= [ xf ] else: if xf.isGroupedWith(group[0]): group.append(xf) else: groupfiles.append(group) group= [ xf ] if group is not None: groupfiles.append(group) grouperrors= [] for group in groupfiles: if group[0].isScan(): if not group[-1].isStat(): stat= group[0].findStatFile() if stat is not None: log_cb(" - Find stat file for group <%s>"%stat.get(), 1, verbose) group.append(stat) else: error_cb("XiaCorrect ERROR: no stat file in current group <%s>"%group[0].get()) grouperrors.append(group) for group in grouperrors: groupfiles.remove(group) if not len(groupfiles): error_cb("XiaCorrect ERROR: No valid XIA group files") return None return groupfiles else: error_cb("XiaCorrect ERROR: No XIA files found.") return None def correctFiles(xiafiles, deadtime=1, livetime=0, sums=None, avgflag=0, outdir=None, outname="corr", force=0, \ verbose=0, log_cb=None, done_cb=None, error_cb=None): (log_cb, done_cb, error_cb)= checkCB(log_cb, done_cb, error_cb) processed= 0 saved= 0 total= 0 errors= 0 tps= time.time() done_cb(0, total) total= len(xiafiles) log_cb("Correcting xia files ...") for group in xiafiles: if not group[0].isScan(): file= group[0] name= file.get() log_cb("Working on %s"%name, 1, verbose) try: xia= XiaEdf.XiaEdfCountFile(name) file.setDirectory(outdir) file.appendPrefix(outname) name= file.get() if sums is not None: err= xia.sum(sums, deadtime, livetime, avgflag) file.setType("sum", -1) else: err= xia.correct(deadtime, livetime) if len(err): error_cb(" - WARNING: in %s"%name) for msg in err: error_cb(" * " + msg) log_cb(" - Saving %s"%name) xia.save(name, force) saved += 1 except XiaEdf.XiaEdfError: errors += 1 log_cb(sys.exc_info()[1]) else: groupfiles= [ file.get() for file in group ] name= groupfiles[-1] log_cb("Reading %s"%name, 1, verbose) try: xia= XiaEdf.XiaEdfScanFile(name, groupfiles[:-1]) except XiaEdf.XiaEdfError: xia= None errors += 1 error_cb(sys.exc_info()[1]) if xia is not None: for file in group: file.setDirectory(outdir) file.appendPrefix(outname) if sums is None: for file in group[:-1]: det= file.getDetector() if det is not None: log_cb("Working on detector #%02d"%det, 1, verbose) try: err= xia.correct(det, deadtime, livetime) name= file.get() if len(err): error_cb(" - WARNING: in %s"%name) for msg in err: error_cb(" * " + msg) log_cb(" - Saving %s"%name) xia.save(name, force) saved += 1 except XiaEdf.XiaEdfError: errors += 1 error_cb(sys.exc_info()[1]) else: log_cb("Working on group %s"%name, 1, verbose) file= group[-1] for isum in range(len(sums)): try: err= xia.sum(sums[isum], deadtime, livetime, avgflag) file.setType("sum", isum+1) name= file.get() if len(err): error_cb(" - WARNING: in %s"%name) for msg in err: error_cb(" * " + msg) log_cb(" - Saving %s"%name) xia.save(name, force) saved += 1 except XiaEdf.XiaEdfError: errors += 1 error_cb(sys.exc_info()[1]) processed += 1 done_cb(processed, total) done_cb(total, total) log_cb("\n* %d groups processed and %d files saved in %.2f sec"%(processed, saved, time.time()-tps)) if not errors: log_cb("* No errors found") else: log_cb("* %d errors found"%errors) log_cb("\n") def parseArguments(): import getopt, os.path prog= os.path.basename(sys.argv[0]) long = ["help", "input=", "output=", "force", "verbose", "deadtime", "livetime", "sum=", "avg", "name=", "parsing"] short= ["h", "i:", "o:", "f", "v", "d", "l", "s:", "a", "n:", "p"] try: opts, args= getopt.getopt(sys.argv[1:], " ".join(short), long) except getopt.error: print("XiaCorrect ERROR: Cannot parse command line arguments") print("\t%s" % sys.exc_info()[1]) sys.exit(0) parsing= 0 options= {"input": [], "files": [], "output": None, "force": 0, "name": "corr", "verbose": 0, "deadtime": 0, "livetime": 0, "sums": None, "avgflag": 0, "parsing": 0} for opt, arg in opts: if opt in ("-h", "--help"): printHelp() sys.exit(0) if opt in ("-i", "--input"): options["input"].append(os.path.normpath(arg)) if opt in ("-o", "--output"): options["output"]= os.path.normpath(arg) if opt in ("-f", "--force"): options["force"]= 1 if opt in ("-v", "--verbose"): options["verbose"]= 1 if opt in ("-d", "--deadtime"): options["deadtime"]= 1 if opt in ("-l", "--livetime"): options["livetime"]= 1 if opt in ("-n", "--name"): options["name"]= str(arg) if opt in ("-s", "--sum"): if options["sums"] is None: options["sums"]= [] try: ssum= [ int(det) for det in arg.split(",") ] if ssum[0]==-1: ssum= [] options["sums"].append(ssum) except Exception: print("XiaCorrect ERROR: Cannot parse sum detectors") print("\t%s"%arg) sys.exit(0) if opt in ("-a", "--avg"): options["avgflag"]= 1 if opt in ("-p", "--parsing"): options["parsing"]= 1 for iinput in options["input"]: if not os.path.isdir(iinput): print("XiaCorrect WARNING: Input directory <%s> is not valid"%\ iinput) files= [ os.path.join(iinput, file) for file in os.listdir(iinput) ] if not len(files): print("XiaCorrect WARNING: Input directory <%s> is empty"%\ (iinput, prog)) else: options["files"]+= files if len(args): options["files"]+= args if not len(options["files"]): print("XiaCorrect ERROR: No input datafiles") sys.exit(0) if not options["parsing"]: if not options["deadtime"] and not options["livetime"] and options["sums"] is None: print("XiaCorrect ERROR: Must have at least deadtime, livetime or sum options") sys.exit(0) if options["output"] is not None: if not os.path.isdir(options["output"]): print("XiaCorrect ERROR: output directory is not valid") sys.exit(0) return options def printHelp(): prog= os.path.basename(sys.argv[0]) msg= """ %s [-h] [-v] [-f] [-d] [-l] [-a] [-s ] [-i ] [-o ] [] Options: [-h]/[--help] Print help message [-v]/[--verbose] Switch ON verbose mode [-f]/[--force] Force writing output files if they already exists [-d]/[--deadtime] Perform deadtime correction [-l]/[--livetime] Perform livetime normalization [-s]/[--sum] Sum given detectors. if detector list is set to (-1), all detectors are used: %s -s 2,4,8 --> will sum detectors 2,4 and 8 %s -s -1 --> will sum ALL detectors Several sums can be added: -s 2,4,6,7 -s 8,9,10,11 [-a]/[--avg] Sum(s) are averaged. Need <-s> to specify list of detectors: -s 2,3,4 -a --> will average detectors 2,3 and 4 [-i]/[--input] Specify input directory: all files in this directory which appears to be xia edf files are processed. Several [-i] options can be added: %s -d -i /tmp -i /data/opidXX [-o]/[--output] Specify output directories. If not specified, output files are saved in the same place as input file. [-n]/[--name] String to be appended to prefix for output filename. Default is \"corr\". [] Specify one or several input files. Wildcards can be used: %s -l file1.edf file2.edf /tmp/test*.edf Minimum options to work: [-l] , [-d] or [-s] [-i input] or """%(prog, prog, prog, prog, prog) print(msg) def mainCommandLine(): options= parseArguments() files= parseFiles(options["files"], options["verbose"]) if files is not None: if options["parsing"]: for group in files: print("FileGroup:") for file in group: print(" - ", file.get()) else: correctFiles(files, options["deadtime"], options["livetime"], options["sums"], options["avgflag"], \ options["output"], options["name"], options["force"], options["verbose"]) def mainGUI(app=None): from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.pymca import XiaCorrectWizard if app is None: app= qt.QApplication(sys.argv) wid= XiaCorrectWizard.XiaCorrectWizard() ret= wid.exec() if ret==qt.QDialog.Accepted: options= wid.get() files= parseFiles(options["files"], options["verbose"]) if files is not None: correctFiles(files, options["deadtime"], options["livetime"], options["sums"], options["avgflag"], \ options["output"], options["name"], options["force"], options["verbose"]) if __name__=="__main__": import sys if len(sys.argv)==1: mainGUI() else: mainCommandLine() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/XiaEdf.py0000644000000000000000000006134614741736366016741 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os, os.path import numpy from PyMca5.PyMcaIO import EdfFile XiaStatIndex= { "det": 0, "evt": 1, "icr": 2, "ocr": 3, "lt" : 4, "dt" : 5 } XiaStatNb= len(XiaStatIndex.keys()) XiaStatLabels= ["xdet", "xevt", "xicr", "xocr", "xlt", "xdt"] if sys.version_info > (3,): def cmp(first, second): if first < second: result = -1 elif second < first: result = 1 else: result = 0 return result def checkEdfForRead(filename): if not os.path.isfile(filename): raise XiaEdfError("Cannot find file <%s>"%filename) else: try: if os.path.getsize(filename)==0: raise XiaEdfError("File <%s> has a null size "%filename) except Exception: raise XiaEdfError("Cannot open file <%s>"%filename) def openEdf(filename, read=0, write=0, force=0): if read: checkEdfForRead(filename) if write: checkEdfForWrite(filename, force) try: edf= EdfFile.EdfFile(filename) except Exception: raise XiaEdfError("Cannot open EDF file <%s>"%filename) return edf def checkEdfForWrite(filename, force=0): if os.path.isfile(filename): if not force: raise XiaEdfError("<%s> already exist. Abort saving."%filename) else: os.remove(filename) if os.path.isfile(filename): raise XiaEdfError("Cannot remove <%s>. Abort saving."%filename) class XiaEdfError(Exception): def __init__(self, message): self.msg= message def __str__(self): return "XiaEdf ERROR: %s"%self.msg class XiaEdfCountFile: def __init__(self, filename): self.filename= filename self.edf= openEdf(filename, read=1) self.reset() def reset(self): self.data= None self.header= None try: self.__readStat() except Exception: raise XiaEdfError("Cannot parse header in <%s>"%filename) def __readStat(self): self.header= self.edf.GetHeader(0) self.nbDet= int(self.header.get("xnb", 0)) if not self.nbDet: self.detList= [] self.statArray= None return self.nbDet self.detList= range(self.nbDet) det= self.header.get("xdet", None) if det is not None: dets= det.split() if len(dets)==self.nbDet: self.detList= list(map(int, dets)) self.statArray = numpy.zeros(XiaStatNb*self.nbDet, numpy.int64) idx= 0 for det in self.detList: self.statArray[idx+XiaStatIndex["det"]]= int(self.header.get("xdet%02d"%det, det)) self.statArray[idx+XiaStatIndex["evt"]]= int(self.header.get("xevt%02d"%det, 0)) self.statArray[idx+XiaStatIndex["icr"]]= int(self.header.get("xicr%02d"%det, 1)) self.statArray[idx+XiaStatIndex["ocr"]]= int(self.header.get("xocr%02d"%det, 1)) self.statArray[idx+XiaStatIndex["lt"]]= int(self.header.get("xlt%02d"%det, 1)) self.statArray[idx+XiaStatIndex["dt"]]= int(self.header.get("xdt%02d"%det, 0)) idx += 6 def __getData(self): self.__readData() return self.data def __readData(self): if self.data is None: try: self.data= self.edf.GetData(0) except Exception: raise XiaEdfError("Cannot read data in <%s>"%self.filename) def getDetList(self): return self.detList def getData(self, detector=-1): # --- WARNING: first index is channels data= self.__getData() if detector==-1: return data[1:] else: if detector not in self.detList: return None idx= self.detList.index(detector) return data[idx+1] def getStat(self, detector=-1): if detector==-1: return self.statArray else: if detector not in self.detList: return None idx= self.detList.index(detector) return self.statArray[(idx*XiaStatNb):((idx+1)*XiaStatNb)] def correct(self, deadtime=1, livetime=0): message= [] corrflag= int(self.header.get("xcorr", 0)) if livetime and corrflag&2: raise XiaEdfError("<%s> seems already livetime corrected"%self.filename) if deadtime and corrflag&1: raise XiaEdfError("<%s> seems already deadtime corrected"%self.filename) self.__readData() self.data= self.data.astype(numpy.float64) if livetime: lvt= numpy.zeros((self.nbDet,1), numpy.float64) derr= [] for idx in range(len(self.detList)): lvt[idx]= self.statArray[idx*XiaStatNb + XiaStatIndex["lt"]] / 1000.0 if lvt[idx]==0.: lvt[idx]= 1. derr.append("#%02d"%self.detList[idx]) if len(derr): message.append("Null livetime on det %s"% " ".join(derr)) self.data[1:,:]= self.data[1:,:] / lvt self.header["xcorr"]= corrflag|2 if deadtime: rate= numpy.zeros((self.nbDet,1), numpy.float64) for idx in range(len(self.detList)): derr= [] try: rate[idx]= float(self.statArray[idx*XiaStatNb + XiaStatIndex["icr"]]) / \ float(self.statArray[idx*XiaStatNb + XiaStatIndex["ocr"]]) except Exception: rate[idx]= 1. derr.append("#%02d"%idx) if len(derr): message.append("Null OCR on det %s" % " ".join(derr)) self.data[1:,:]= self.data[1:,:] * rate self.header["xcorr"]= corrflag|1 return message def sum(self, sums=[], deadtime=0, livetime=0, average=0): message= [] if not len(sums): return message self.__readData() if deadtime or livetime: message+= self.correct(deadtime, livetime) else: self.data= self.data.astype(numpy.float64) sumdata= numpy.zeros((len(sums), self.data.shape[1]), numpy.float64) for idx in range(len(sums)): if not len(sums[idx]): sumdata[idx,:] = numpy.sum(self.data[1:,], 0) xdet= self.detList else: mask= numpy.zeros((self.nbDet+1,1), numpy.int64) xdet= [] for det in sums[idx]: if det in self.detList: detidx= self.detList.index(det) mask[detidx+1]= 1 xdet.append(det) sumdata[idx,:]= numpy.sum(self.data*mask, 0) self.header["xcorr%d"%idx] = self.header.get("xcorr", 0) self.header["xdet%d"%idx] = " ".join([str(det) for det in xdet]) if average: self.data= sumdata / len(xdet) else: self.data= sumdata for key in self.header.keys(): if key[0]=='x': try: det= int(key[-2:]) del self.header[key] except Exception: pass dataflag= int(self.header.get("xdata", 0)) self.header["xdata"]= dataflag | (1<<2) self.header["xnb"]= len(sums) return message def save(self, filename, force=0): edf= openEdf(filename, write=1, force=force) self.__readData() edf.WriteImage(self.header, self.data) class XiaEdfScanFile: def __init__(self, statfile, detfiles): self.statfile= statfile self.detfiles= detfiles self.detector= None self.data= None self.header= None checkEdfForRead(self.statfile) for file in self.detfiles: checkEdfForRead(file) try: self.__readStat() except Exception: raise XiaEdfError("Cannot parse header in <%s>"%self.statfile) def __readStat(self): edf= openEdf(self.statfile) header= edf.GetHeader(0) self.nbDet= int(header.get("xnb", 0)) if not self.nbDet: self.detList= [] self.statArray= None return self.nbDet self.detList= range(self.nbDet) det= header.get("xdet", None) if det is not None: dets= det.split() if len(dets)==self.nbDet: self.detList= list(map(int, dets)) self.statArray= edf.GetData(0) return self.nbDet def __readData(self, detector): if detector!=self.detector: self.detector= None self.data= None self.header= None #try: if 1: if detector in self.detList: idx= self.detList.index(detector) if idx < len(self.detfiles): file= self.detfiles[idx] edf= openEdf(self.detfiles[idx]) header= edf.GetHeader(0) xdet= int(header.get("xdet", -1)) if xdet==-1 or xdet==detector: self.data= edf.GetData(0) self.header= header self.detector= xdet if self.data is None: for file in self.detfiles: edf= openEdf(file) header= edf.GetHeader(0) xdet= int(header.get("xdet", -1)) if xdet==detector: self.data= edf.GetData(0) self.header= header self.detector= xdet break else: #except Exception: raise XiaEdfError("Cannot read data on det #%02d in <%s>"%(detector, file)) if self.data is None: raise XiaEdfError("Cannot read data on det #%02d"%detector) def getDetList(self): return self.detList def getData(self, detector): self.__readData(detector) return self.data def getStat(self, detector=-1): if detector==-1: return self.statArray else: if detector not in self.detList: return None idx= self.detList.index(detector) return self.statArray[:,(idx*XiaStatNb):((idx+1)*XiaStatNb)] def correct(self, detector, deadtime=1, livetime=0): message= [] if detector!=self.detector: self.__readData(detector) corrflag= int(self.header.get("xcorr", 0)) if livetime and corrflag&2: raise XiaEdfError("det #%02d seems already livetime corrected"%detector) if deadtime and corrflag&1: raise XiaEdfError("det #%02d seems already deadtime corrected"%detector) self.data= self.data.astype(numpy.float64) idx= self.detList.index(detector) pts= self.statArray.shape[0] if livetime: lvt= numpy.zeros((pts, 1), numpy.float64) lvt[:,0]= self.statArray[:,((XiaStatNb*idx)+XiaStatIndex["lt"])] / 1000.0 perr= self.__checkNullLivetime(lvt, pts) if len(perr): message.append("Null livetime on det #%02d points %s"%(detector, self.__pointRange(perr))) self.data= self.data / lvt self.header["xcorr"]= corrflag|2 if deadtime: rate= numpy.zeros((self.statArray.shape[0], 1), numpy.float64) count= numpy.zeros((self.statArray.shape[0], 2), numpy.float64) count[:,0]= self.statArray[:, (XiaStatNb*idx)+XiaStatIndex["ocr"]] count[:,1]= self.statArray[:, (XiaStatNb*idx)+XiaStatIndex["icr"]] perr= self.__checkNullCount(count, pts) if len(perr): message.append("Null ICR|OCR on det #%02d points %s"%(detector, self.__pointRange(perr))) perr= [] for ipt in range(pts): if count[ipt,0]>0 and count[ipt,1]>0: rate[ipt,0]= count[ipt,1]/count[ipt,0] else: rate[ipt,0]= 1. perr.append(ipt) if len(perr): message.append("No DeadTime correction perfomed on det #%02d points %s"%(detector, self.__pointRange(perr))) self.data= self.data * rate self.header["xcorr"]= corrflag|1 return message def __checkNullCount(self, count, pts): perr= [] check= numpy.sum(numpy.greater(count,0.), 1) for ipt in range(pts): if check[ipt]!=2: perr.append(ipt) if (ipt!=0 and check[ipt-1]==2) and (ipt!=pts-1 and check[ipt+1]==2): count[ipt,:]= (count[ipt-1,:]+count[ipt+1,:])/2. elif (ipt!=0 and check[ipt-1]==2): count[ipt,:]= count[ipt-1,:] elif (ipt!=pts-1 and check[ipt+1]==2): count[ipt,:]= count[ipt+1,:] else: count[ipt,:]= -1 return perr def __checkNullLivetime(self, lvt, pts): perr= [] check= numpy.greater(lvt, 0.) for ipt in range(pts): if check[ipt]==0: perr.append(ipt) if (ipt!=0 and check[ipt-1]==1) and (ipt!=pts-1 and check[ipt+1]==1): lvt[ipt,0]= (lvt[ipt+1]+lvt[ipt-1])/2. elif (ipt!=0 and check[ipt-1]==1): lvt[ipt,0]= lvt[ipt-1,0] elif (ipt!=pts-1 and check[ipt+1]==1): lvt[ipt,0]= lvt[ipt+1,0] else: lvt[ipt,0]= 1. return perr def __pointRange(self, ptlist): nb= len(ptlist) ptdiff= [] for idx in range(nb-1): ptdiff.append(((ptlist[idx+1]-ptlist[idx])==1)) ptdiff.append(0) ptrange= [] curr= None for idx in range(nb): if ptdiff[idx]: if curr is None: curr= ptlist[idx] else: if curr is None: ptrange.append(str(ptlist[idx])) else: ptrange.append("%d-%d"%(curr,ptlist[idx])) curr= None return "["+ ",".join(ptrange)+"]" def sum(self, detectors=[], deadtime=0, livetime=0, average=0): message= [] if not len(detectors): sumdet= self.detList else: sumdet= [ det for det in detectors if det in self.detList ] sumdata= None for det in sumdet: if deadtime or livetime: message+= self.correct(det, deadtime, livetime) else: self.__readData(det) self.data= self.data.astype(numpy.float64) if sumdata is None: sumdata= self.data * 1.0 else: sumdata= sumdata + self.data if average: self.data= sumdata / len(sumdet) else: self.data= sumdata dataflag= int(self.header.get("xdata", 0)) self.header["xdata"]= dataflag | (1<<2) self.header["xnb"]= 1 self.header["xdet"]= " ".join([str(det) for det in sumdet]) return message def save(self, filename, force=0): if self.data is None: raise XiaEdfError("Cannot save. No data loaded.") edf= openEdf(filename, write=1, force=force) edf.WriteImage(self.header, self.data) class XiaFilename: def __init__(self, filename=None): self.__reset() if filename is not None: self.__parseFilename(filename) def setType(self, type, det=None): self.type= type self.det= det def getType(self): return self.type def isValid(self): return self.type is not None def isCount(self): return (self.type=="ct" or (self.type=="sum" and self.det==-1)) def isScan(self): return (self.type=="det" or self.type=="st" or (self.type=="sum" and self.det>0)) def isSum(self): return (self.type=="sum") def isStat(self): return (self.type=="st") def findStatFile(self): xf= XiaFilename(self.get()) xf.setType("st") if os.path.isfile(xf.get()): return xf else: return None def isGroupedWith(self, other): if (self.isScan() and other.isScan()) or (self.isCount() and other.isCount()): file1= "%s/%s"%(self.dir is None and "." or self.dir, self.prefix is None and "" or self.prefix) file2= "%s/%s"%(other.dir is None and "." or other.dir, other.prefix is None and "" or other.prefix) res= cmp(file1, file2) if res!=0: return 0 res= cmp(self.index, other.index) if res!=0: return 0 file1= "%s.%s"%(self.suffix is None and "" or self.suffix, self.ext is None and "" or self.ext) file2= "%s.%s"%(other.suffix is None and "" or other.suffix, other.ext is None and "" or other.ext) res= cmp(file1, file2) if res!=0: return 0 return 1 else: return 0 def setDirectory(self, dirname): if dirname is None: self.dir= "." else: self.dir= dirname def appendPrefix(self, name): if self.prefix is None: self.prefix= name elif name is not None: self.prefix= "%s_%s"%(self.prefix, name) def getDetector(self): if self.type!="det": return None else: return self.det def set(self, filename): self.__reset() if filename is not None: self.__parseFilename(filename) def get(self): self.__createFilename() return self.file def __reset(self): self.file= None # --- full filename self.dir = None # --- directory self.type= None # --- file type = "ct", "st", "det" self.index= [] # --- file indexes self.suffix= None # --- suffix self.det= None # --- if type=="det", detector number def __parseFilename(self, filename): self.file= os.path.basename(filename) self.dir= os.path.dirname(filename) if not len(self.dir): self.dir= "." fileext= os.path.splitext(self.file) if len(fileext[1]): self.ext= fileext[1][1:] filelist= fileext[0].split("_") xiaidx= 0 for xiaidx in range(len(filelist)): if filelist[xiaidx][0:3]=="xia": break xiaidx += 1 if xiaidx==len(filelist): self.type= None self.prefix= fileext[0] else: self.prefix= "_".join(filelist[0:xiaidx]) try: self.index= list(map(int, filelist[xiaidx+1:])) except Exception: self.suffix= "_".join(filelist[xiaidx+1:]) type= filelist[xiaidx][3:] if type=="ct" or type=="st": self.type= type elif type[0]=='S': self.type= "sum" if type[1]=='N': self.det= -1 else: try: self.det= int(type[1]) except Exception: self.type= None else: try: self.type= "det" self.det= int(type) except Exception: self.type= None def __createFilename(self): if self.prefix is None or self.type is None: self.file= None else: self.file= "%s/%s"%(self.dir, self.prefix) xia= None if self.type=="ct": xia= "xiact" elif self.type=="st": xia= "xiast" elif self.type=="sum": if self.det==-1: xia= "xiaSN" else: xia= "xiaS%01d"%self.det elif self.type=="det": xia= "xia%02d"%self.det elif self.type is not None: xia= "xia%s"%self.type if xia is not None: self.file= "%s_%s"%(self.file, xia) for idx in self.index: self.file= "%s_%04d"%(self.file, idx) if self.suffix is not None: self.file= "%s_%s"%(self.file, self.suffix) if self.ext is not None: self.file= "%s.%s"%(self.file, self.ext) def __cmp__(self, other): # this was only working under python2 file1= "%s/%s"%(self.dir is None and "." or self.dir, self.prefix is None and "" or self.prefix) file2= "%s/%s"%(other.dir is None and "." or other.dir, other.prefix is None and "" or other.prefix) res= cmp(file1, file2) if res!=0: return res res= cmp(self.ext, other.ext) if res!=0: return res res= cmp(self.index, other.index) if res!=0: return res res= cmp(self.type, other.type) if res!=0: return res if self.type=="det" or self.type=="sum": res= cmp(self.det, other.det) if res!=0: return res file1= "%s.%s"%(self.suffix is None and "" or self.suffix, self.ext is None and "" or self.ext) file2= "%s.%s"%(other.suffix is None and "" or other.suffix, other.ext is None and "" or other.ext) return cmp(file1, file2) def __lt__(self, other): # this is needed under python3 file1= "%s/%s"%(self.dir is None and "." or self.dir, self.prefix is None and "" or self.prefix) file2= "%s/%s"%(other.dir is None and "." or other.dir, other.prefix is None and "" or other.prefix) return file1 < file2 def testScan(): x= XiaEdfScanFile("data/test_xiast_0000_0000_0000.edf", ["data/test_xia00_0000_0000_0000.edf", "data/test_xia01_0000_0000_0000.edf", "data/test_xia02_0000_0000_0000.edf", "data/test_xia03_0000_0000_0000.edf", "data/test_xia04_0000_0000_0000.edf", "data/test_xia05_0000_0000_0000.edf", "data/test_xia06_0000_0000_0000.edf", "data/test_xia07_0000_0000_0000.edf", "data/test_xia08_0000_0000_0000.edf", "data/test_xia09_0000_0000_0000.edf", "data/test_xia10_0000_0000_0000.edf", "data/test_xia11_0000_0000_0000.edf", ]) x.sum([1,10]) print(x.header) x.save("test_sum.edf") #for det in [1, 2, 3, 4, 5, 6]: # x.correct(det, livetime=1) # x.save(det, "scan_corr_xia%02d.edf"%det) def testAcq(infile, outfile=None): print("Reading ", infile) x= XiaEdfCountFile(infile) #print "DeadTime Correction ..." #x.correct() x.sum([1,10]) if outfile is not None: print(x.header) print("Saving %s" % outfile) x.save(outfile) if __name__=="__main__": import sys testScan() sys.exit(0) if len(sys.argv)<2: print("%s []" % sys.argv[0]) sys.exit(0) else: infile= sys.argv[1] outfile= len(sys.argv)>=3 and sys.argv[2] or None testAcq(infile, outfile) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaCore/__init__.py0000644000000000000000000000000014741736366017314 0ustar00rootroot././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.719766 pymca5-5.9.4/src/PyMca5/PyMcaData/0000755000000000000000000000000014741736404015167 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/EXAFS_Cu.dat0000644000000000000000000006651514741736366017202 0ustar00rootroot#F D:/Cu-EXAFS.dat #D Mon Jun 04 14:15:57 2012 #S 1 cu.dat 1.1 Column 2 #D Mon Jun 04 14:15:57 2012 #N 2 #L Column 1 Column 2 8002.894 0.5249888 8007.32 0.5236315 8011.75 0.5225714 8016.183 0.5218208 8020.621 0.5207962 8025.062 0.5200812 8029.507 0.5189023 8033.955 0.518247 8038.408 0.5174832 8042.862 0.5163729 8047.322 0.5156916 8051.784 0.5147099 8056.249 0.5140327 8060.717 0.5130494 8100.171 0.5058498 8145.276 0.4974594 8190.697 0.4893574 8236.507 0.4815498 8282.821 0.4740914 8329.766 0.4664946 8377.449 0.4588794 8425.936 0.451215 8475.238 0.4437138 8525.308 0.4360756 8576.049 0.4284512 8576.304 0.4284365 8576.56 0.4283843 8576.814 0.4282949 8577.069 0.4282861 8577.325 0.4283102 8577.579 0.4283116 8577.836 0.4282802 8578.09 0.4282368 8578.347 0.4282321 8578.601 0.4281985 8578.856 0.4281856 8579.112 0.4280165 8579.367 0.428111 8579.624 0.4280418 8579.878 0.4281375 8580.134 0.4280752 8580.39 0.4280996 8580.645 0.4280889 8580.9 0.4281009 8581.156 0.4280057 8581.411 0.4278349 8581.667 0.427756 8581.922 0.4277539 8582.178 0.4276694 8582.433 0.427461 8582.688 0.4274982 8582.943 0.4273823 8583.2 0.4274152 8583.455 0.4273388 8583.711 0.4273756 8583.966 0.4272783 8584.222 0.4272597 8584.478 0.4271484 8584.733 0.4272674 8584.989 0.4270131 8585.245 0.427358 8585.501 0.4273539 8585.757 0.4273249 8586.012 0.4270785 8586.269 0.4268913 8586.523 0.4269325 8586.779 0.4271896 8587.035 0.4272136 8587.291 0.4273095 8587.547 0.4273235 8587.802 0.427208 8588.059 0.4271069 8588.313 0.4271477 8588.569 0.4271724 8588.826 0.4269993 8589.081 0.4270321 8589.337 0.4270093 8590.104 0.4269061 8592.666 0.4265189 8595.227 0.4261186 8597.79 0.4256906 8600.354 0.4253151 8600.481 0.4253406 8600.738 0.4252528 8600.994 0.4251855 8601.251 0.4252552 8601.508 0.4251225 8601.764 0.4251553 8602.021 0.4250227 8602.277 0.425074 8602.534 0.4249597 8602.79 0.4249927 8603.047 0.4248601 8603.304 0.4249195 8603.56 0.4247155 8603.816 0.4247934 8604.073 0.4247711 8604.33 0.4246939 8604.587 0.4247267 8604.844 0.4246495 8605.1 0.4245803 8605.356 0.4246681 8605.613 0.4246543 8605.87 0.4246136 8606.127 0.4245467 8606.384 0.4245429 8606.642 0.4244945 8606.897 0.4244171 8607.153 0.4244868 8607.411 0.4243261 8607.668 0.4242957 8607.925 0.4243024 8608.182 0.4242068 8608.438 0.4240932 8608.694 0.4241811 8608.951 0.4240958 8609.208 0.4240718 8609.465 0.4240028 8609.723 0.4240359 8609.979 0.4239772 8610.236 0.4239633 8610.493 0.4239617 8610.75 0.4238825 8611.008 0.4238892 8611.263 0.4237675 8611.521 0.423654 8611.777 0.4237705 8612.035 0.4236228 8616.663 0.4230305 8621.811 0.4222323 8626.963 0.4214732 8632.118 0.420785 8637.279 0.4200108 8642.443 0.4193673 8647.612 0.418664 8652.786 0.417765 8657.964 0.4169372 8663.146 0.4162114 8668.331 0.4155076 8673.521 0.414727 8678.715 0.4141129 8683.912 0.4132699 8689.113 0.4126185 8694.318 0.4119003 8699.527 0.4111162 8704.739 0.4103368 8709.956 0.4097188 8715.176 0.4090274 8720.399 0.4082357 8725.628 0.4075502 8730.859 0.4067771 8736.095 0.4060899 8741.333 0.4054607 8746.576 0.4047494 8751.824 0.4040345 8757.075 0.4033779 8757.206 0.4033448 8757.468 0.4033008 8757.731 0.4031909 8757.994 0.4032325 8758.256 0.4032325 8758.521 0.4031056 8758.782 0.4031666 8759.045 0.4031228 8759.308 0.4030716 8759.57 0.402908 8759.833 0.4029009 8760.096 0.402918 8760.359 0.4028522 8760.621 0.4028936 8760.885 0.4027767 8761.147 0.4027693 8761.41 0.4027181 8761.674 0.4026842 8761.935 0.4027012 8762.199 0.4026602 8762.461 0.4026016 8762.725 0.4025409 8762.987 0.4024825 8763.25 0.4024655 8763.513 0.4024219 8763.775 0.4022929 8764.039 0.4023005 8764.302 0.4023663 8764.564 0.4022304 8764.827 0.4022985 8765.091 0.402189 8765.353 0.4023426 8765.615 0.4021457 8765.879 0.4021726 8766.142 0.4021387 8766.405 0.4020976 8766.668 0.4020466 8766.932 0.4021245 8767.194 0.4020227 8767.458 0.4019718 8767.72 0.4019721 8767.983 0.401841 8770.614 0.4016733 8773.247 0.4013295 8775.88 0.4008462 8778.515 0.4005984 8781.15 0.4002286 8781.282 0.4001696 8781.547 0.4000688 8781.81 0.4001271 8782.073 0.4000963 8782.337 0.4000992 8782.601 0.4000226 8782.864 0.3999892 8783.127 0.4000066 8783.392 0.3998962 8783.654 0.3998365 8783.919 0.3998467 8784.183 0.3997386 8784.446 0.3997706 8784.71 0.3997855 8784.974 0.3996535 8785.237 0.3998133 8785.501 0.3996643 8785.766 0.3995541 8786.029 0.3995957 8786.292 0.3996397 8786.557 0.399498 8786.821 0.3995564 8787.085 0.3993717 8787.349 0.3994637 8787.612 0.3992958 8787.876 0.3993301 8788.14 0.3992273 8788.403 0.399329 8788.668 0.3992453 8788.932 0.3992292 8789.196 0.3992634 8789.46 0.3990957 8789.724 0.3990555 8789.987 0.3990057 8790.252 0.3989196 8790.516 0.3990405 8790.78 0.3989573 8791.044 0.3989145 8791.308 0.3987398 8791.571 0.3986731 8791.836 0.3985996 8792.101 0.3987685 8793.552 0.3985118 8797.516 0.3980725 8801.481 0.3974728 8805.451 0.3971331 8809.421 0.3965805 8813.396 0.3960565 8817.374 0.3956318 8821.353 0.3951189 8825.336 0.3947386 8829.321 0.3941493 8833.311 0.3937088 8837.303 0.3930958 8841.298 0.3926783 8845.296 0.3922836 8849.299 0.3918999 8853.303 0.3914784 8857.311 0.3910068 8861.324 0.390491 8865.339 0.3901307 8869.358 0.3896419 8873.381 0.3892525 8877.406 0.3889619 8881.438 0.3884693 8885.471 0.3881655 8889.508 0.3878311 8893.55 0.3875303 8897.597 0.3870862 8901.646 0.3868619 8905.701 0.3865654 8909.758 0.3863341 8913.82 0.3861934 8917.888 0.3859483 8921.96 0.3859503 8926.035 0.3858188 8930.115 0.3858696 8934.2 0.3860282 8938.29 0.3862608 8938.836 0.3864349 8940.883 0.3866715 8942.932 0.3870033 8944.979 0.387192 8947.03 0.3877359 8949.082 0.3881717 8951.135 0.3887879 8953.188 0.3896388 8953.326 0.3897751 8953.6 0.3898505 8953.874 0.3899644 8954.146 0.3900147 8954.423 0.3901763 8954.697 0.3903057 8954.971 0.3905057 8955.244 0.3906286 8955.519 0.3906947 8955.793 0.3908086 8956.066 0.3910744 8956.341 0.3912358 8956.615 0.3913338 8956.89 0.3915336 8957.164 0.3917108 8957.437 0.3918561 8957.713 0.392113 8957.986 0.3922266 8958.261 0.3923723 8958.536 0.3926129 8958.81 0.3927652 8959.084 0.3930219 8959.358 0.3932944 8959.634 0.3934812 8959.907 0.3937378 8960.183 0.3939722 8960.457 0.3941177 8960.731 0.3944382 8961.005 0.3946314 8961.279 0.3949199 8961.555 0.3951292 8961.829 0.3954656 8962.104 0.3958248 8962.379 0.3960817 8962.654 0.3962911 8962.929 0.396771 8963.203 0.3970028 8963.479 0.397276 8963.753 0.3976539 8964.028 0.3979272 8964.302 0.3982255 8964.577 0.3985786 8964.854 0.399107 8965.126 0.3994758 8965.402 0.3999889 8965.677 0.4003327 8965.952 0.4009032 8966.228 0.4013138 8966.503 0.401914 8966.777 0.4024435 8967.052 0.4028934 8967.327 0.4034875 8967.603 0.4040497 8967.878 0.4047085 8968.153 0.4054062 8968.429 0.4060082 8968.703 0.4066355 8968.979 0.4074724 8969.254 0.4081555 8969.528 0.4090507 8969.805 0.409889 8970.079 0.4108406 8970.354 0.4116963 8970.63 0.4127138 8970.905 0.4137232 8971.181 0.4148071 8971.457 0.415973 8971.732 0.4171889 8972.007 0.4186331 8972.283 0.4199424 8972.559 0.4213251 8972.834 0.4230776 8973.109 0.4247253 8973.384 0.4266207 8973.66 0.4285032 8973.937 0.4306514 8974.213 0.4329617 8974.488 0.4356467 8974.764 0.4383385 8975.039 0.4413854 8975.315 0.4447642 8975.591 0.4485911 8975.866 0.4528653 8976.142 0.4579183 8976.418 0.4632914 8976.694 0.4695695 8976.971 0.4768403 8977.246 0.4855136 8977.522 0.4960385 8977.797 0.5081937 8978.074 0.5229037 8978.35 0.5410136 8978.626 0.5634328 8978.901 0.5923289 8979.178 0.6275938 8979.454 0.671039 8979.729 0.7264798 8980.006 0.7947653 8980.283 0.879519 8980.56 0.9748746 8980.835 1.080868 8981.11 1.193872 8981.388 1.303977 8981.664 1.410339 8981.94 1.498387 8982.217 1.568111 8982.492 1.619171 8982.77 1.651143 8983.045 1.668186 8983.322 1.67319 8983.598 1.670749 8983.875 1.663615 8984.151 1.655194 8984.429 1.648006 8984.704 1.644611 8984.98 1.646567 8985.258 1.654574 8985.535 1.668721 8985.811 1.688981 8986.087 1.713222 8986.364 1.740571 8986.641 1.769836 8986.917 1.800013 8987.195 1.830328 8987.473 1.859468 8987.748 1.889266 8988.024 1.920627 8988.302 1.953865 8988.579 1.989283 8988.854 2.026803 8989.132 2.066449 8989.409 2.110703 8989.687 2.157959 8989.963 2.210173 8990.241 2.263403 8990.518 2.321083 8990.795 2.381135 8991.072 2.444279 8991.349 2.510028 8991.626 2.573843 8991.903 2.639534 8992.18 2.705535 8992.457 2.771694 8992.735 2.835429 8993.012 2.89252 8993.288 2.949837 8993.566 3.001288 8993.844 3.046998 8994.122 3.087652 8994.399 3.117243 8994.675 3.140208 8994.953 3.156743 8995.23 3.165836 8995.509 3.165415 8995.785 3.15624 8996.063 3.147644 8996.342 3.130107 8996.617 3.109306 8996.896 3.087536 8997.173 3.065324 8997.451 3.042392 8997.729 3.018211 8998.007 2.996118 8998.284 2.975632 8998.563 2.957396 8998.839 2.943389 8999.117 2.930398 8999.396 2.920997 8999.674 2.916455 8999.951 2.914693 9000.229 2.916338 9000.506 2.923376 9000.784 2.933669 9001.062 2.948675 9001.34 2.96699 9001.618 2.98744 9001.897 3.012396 9002.175 3.039438 9002.453 3.068918 9002.73 3.096709 9003.008 3.124087 9003.287 3.150747 9003.564 3.174077 9003.844 3.191875 9004.122 3.203609 9004.401 3.209324 9004.678 3.210978 9004.956 3.205565 9005.234 3.195006 9005.513 3.181499 9005.792 3.162553 9006.069 3.142458 9006.35 3.119543 9006.627 3.096911 9006.905 3.074783 9007.184 3.052691 9007.462 3.031955 9007.741 3.011644 9008.02 2.991952 9008.299 2.975952 9008.576 2.959886 9008.855 2.944306 9009.134 2.929843 9009.412 2.914308 9009.69 2.901043 9009.969 2.885977 9010.248 2.873458 9010.527 2.861649 9010.806 2.847792 9011.085 2.836903 9011.363 2.826335 9011.643 2.817797 9011.922 2.810233 9012.2 2.804271 9012.479 2.800103 9012.759 2.796892 9013.038 2.796108 9013.315 2.796287 9013.597 2.798174 9013.874 2.799566 9014.153 2.802327 9014.434 2.806065 9014.711 2.809894 9014.991 2.814287 9015.27 2.819836 9015.55 2.825238 9015.828 2.830566 9016.108 2.837565 9016.387 2.844509 9016.667 2.85231 9016.947 2.860564 9017.225 2.869151 9017.505 2.879311 9017.784 2.888437 9018.763 2.929258 9019.74 2.972758 9020.719 3.017536 9021.697 3.060015 9022.678 3.100506 9023.657 3.139866 9024.638 3.176523 9025.618 3.205176 9026.598 3.221362 9027.578 3.221683 9028.56 3.202403 9029.542 3.168515 9030.522 3.127135 9031.505 3.082111 9032.487 3.037455 9033.471 2.99659 9034.454 2.963425 9035.437 2.938926 9036.42 2.921733 9037.405 2.911642 9038.389 2.908655 9039.372 2.911822 9040.358 2.919837 9041.344 2.930373 9042.329 2.941385 9043.314 2.950625 9044.3 2.954915 9045.287 2.952504 9046.273 2.948876 9047.261 2.946483 9048.248 2.948045 9049.235 2.955837 9050.224 2.968523 9051.212 2.981804 9052.201 2.992521 9053.189 2.999899 9054.179 3.002068 9055.169 3.002769 9056.158 3.002841 9057.148 3.008686 9058.139 3.019699 9059.129 3.03339 9060.12 3.049927 9061.112 3.067277 9062.104 3.082877 9063.096 3.096183 9064.088 3.10511 9065.081 3.114847 9066.073 3.125115 9067.066 3.135619 9068.06 3.147713 9069.055 3.16282 9070.048 3.178078 9071.043 3.193528 9072.037 3.20628 9073.031 3.214532 9074.027 3.21688 9075.023 3.212257 9076.019 3.201274 9077.016 3.184394 9078.012 3.162789 9079.01 3.141276 9080.007 3.113785 9081.004 3.089346 9082.002 3.066678 9083 3.04381 9083.998 3.022952 9084.997 3.00396 9085.996 2.986064 9086.996 2.970591 9087.995 2.958768 9088.995 2.950525 9089.996 2.944005 9090.995 2.936195 9091.997 2.925727 9092.999 2.911789 9094 2.893466 9095.002 2.874466 9096.005 2.854958 9097.007 2.838273 9098.01 2.823626 9099.013 2.814143 9100.016 2.80921 9101.02 2.809734 9102.023 2.814981 9103.028 2.824328 9104.033 2.83759 9105.037 2.853973 9106.043 2.871631 9107.048 2.890495 9108.055 2.908499 9109.06 2.925674 9110.066 2.941887 9110.211 2.945434 9110.499 2.948531 9110.785 2.953124 9111.074 2.956863 9111.361 2.959908 9111.648 2.963161 9111.937 2.966423 9112.224 2.970096 9112.512 2.972578 9112.8 2.975267 9113.088 2.977244 9113.375 2.979541 9113.664 2.982565 9113.952 2.983947 9114.239 2.985156 9114.527 2.987063 9114.815 2.987433 9115.104 2.989053 9115.392 2.989744 9115.681 2.991047 9115.968 2.990922 9116.256 2.991206 9116.544 2.990673 9116.832 2.991249 9117.12 2.99092 9117.408 2.990912 9117.697 2.991283 9117.984 2.990459 9118.273 2.990742 9118.562 2.990414 9118.851 2.990174 9119.139 2.990573 9119.427 2.990449 9119.716 2.990732 9120.004 2.990608 9120.293 2.991387 9120.581 2.992398 9120.868 2.992069 9121.157 2.99419 9121.447 2.995905 9121.736 2.996804 9122.023 2.998318 9122.744 3.005399 9123.756 3.018985 9123.901 3.02103 9124.189 3.025734 9124.478 3.030128 9124.767 3.035846 9125.056 3.042638 9125.345 3.049382 9125.633 3.055829 9125.923 3.062348 9126.211 3.070324 9126.5 3.078362 9126.79 3.085346 9127.078 3.093151 9127.368 3.102053 9127.655 3.10979 9127.945 3.116302 9128.235 3.124945 9128.524 3.133059 9128.813 3.141272 9129.103 3.14809 9129.391 3.156288 9129.68 3.162518 9129.97 3.168265 9130.26 3.174324 9130.549 3.180523 9130.838 3.184892 9131.127 3.189314 9131.417 3.195356 9131.706 3.197538 9131.996 3.200761 9132.285 3.203599 9132.574 3.206194 9132.865 3.209552 9133.154 3.209378 9133.444 3.211734 9133.733 3.211813 9134.023 3.211386 9134.313 3.211357 9135.326 3.208819 9136.487 3.204103 9137.645 3.194428 9138.806 3.183764 9139.964 3.170374 9141.126 3.156726 9142.287 3.139268 9143.449 3.119815 9144.611 3.096688 9145.772 3.071558 9146.936 3.043884 9148.098 3.015079 9149.262 2.984711 9150.425 2.952893 9151.589 2.922102 9152.754 2.890396 9153.92 2.858823 9155.083 2.828652 9156.25 2.80079 9157.416 2.775996 9158.582 2.75625 9159.749 2.742003 9160.916 2.734737 9162.085 2.733941 9163.251 2.739655 9164.42 2.75233 9165.589 2.769688 9166.758 2.791029 9167.926 2.815951 9169.097 2.84172 9170.267 2.867212 9171.437 2.889872 9172.607 2.909915 9173.779 2.926933 9174.95 2.939865 9176.121 2.948524 9177.294 2.955205 9178.467 2.958317 9179.64 2.958825 9180.813 2.957587 9181.986 2.954998 9183.16 2.950299 9184.335 2.947157 9185.51 2.943728 9186.685 2.941182 9187.859 2.939296 9189.035 2.937522 9190.212 2.936049 9191.389 2.934094 9192.565 2.932251 9193.742 2.929636 9194.92 2.924516 9196.098 2.920356 9197.276 2.916399 9198.453 2.912647 9199.633 2.913224 9200.812 2.916493 9201.991 2.924049 9203.172 2.934585 9204.353 2.948059 9205.531 2.964057 9206.713 2.980502 9207.895 2.995898 9209.075 3.007558 9210.257 3.015586 9211.439 3.0213 9212.622 3.023369 9213.805 3.024181 9214.986 3.022851 9216.172 3.020501 9217.355 3.016528 9218.539 3.011472 9219.724 3.004491 9220.908 2.996707 9222.093 2.985517 9223.279 2.974068 9224.466 2.960916 9225.65 2.946722 9226.836 2.929646 9228.023 2.914723 9229.211 2.898742 9230.397 2.881371 9231.585 2.865406 9232.772 2.849895 9233.962 2.836905 9235.15 2.822658 9236.339 2.811536 9237.528 2.801807 9238.718 2.793748 9239.906 2.788564 9241.098 2.784372 9242.288 2.78308 9243.479 2.782729 9244.669 2.78409 9245.86 2.786786 9247.052 2.788725 9248.243 2.791038 9249.436 2.793123 9250.629 2.793664 9251.82 2.794065 9253.015 2.795345 9254.208 2.795493 9255.402 2.796288 9256.595 2.797498 9257.79 2.798779 9258.983 2.801523 9260.18 2.802228 9261.373 2.802862 9262.569 2.805939 9263.766 2.808043 9264.96 2.810478 9266.155 2.813972 9267.353 2.817829 9268.55 2.821934 9269.747 2.825153 9270.943 2.829023 9272.142 2.832333 9273.338 2.836059 9274.537 2.838643 9275.734 2.840801 9276.935 2.842529 9278.133 2.844619 9279.332 2.846521 9280.532 2.848087 9281.73 2.850184 9282.931 2.850906 9284.132 2.851479 9285.331 2.853655 9286.532 2.853867 9287.734 2.856143 9288.936 2.856354 9290.137 2.858025 9291.339 2.859015 9292.54 2.860176 9293.743 2.861093 9294.945 2.860888 9296.148 2.862659 9297.352 2.862699 9298.555 2.863177 9299.757 2.862191 9300.961 2.861741 9302.165 2.8583 9303.37 2.854873 9304.575 2.849605 9305.779 2.845446 9306.983 2.840161 9308.188 2.83415 9309.395 2.829734 9310.601 2.822574 9311.807 2.818469 9313.012 2.81089 9314.221 2.806518 9315.426 2.799766 9316.633 2.7937 9317.841 2.788551 9319.049 2.784041 9320.257 2.779017 9321.464 2.774954 9322.672 2.772326 9323.88 2.769203 9325.088 2.767983 9326.297 2.7658 9327.507 2.765423 9328.717 2.764344 9329.925 2.762873 9331.136 2.761798 9332.346 2.760199 9333.556 2.758584 9334.766 2.755754 9335.977 2.751806 9337.188 2.746887 9338.398 2.743279 9339.61 2.737893 9340.822 2.73305 9342.034 2.727347 9343.246 2.723461 9344.458 2.719803 9345.67 2.717831 9346.882 2.71559 9348.096 2.71523 9349.31 2.715598 9350.523 2.715984 9351.735 2.716935 9352.949 2.717677 9354.164 2.718127 9355.379 2.718577 9356.592 2.718589 9357.808 2.718601 9359.022 2.718659 9360.237 2.718544 9361.452 2.719659 9362.667 2.720464 9363.883 2.721287 9364.188 2.721737 9364.491 2.72175 9364.796 2.721597 9365.1 2.722047 9365.403 2.721685 9365.708 2.721697 9366.011 2.721336 9366.315 2.722351 9366.619 2.722509 9366.924 2.722357 9367.228 2.723017 9367.531 2.723093 9367.836 2.723525 9368.14 2.723244 9368.444 2.723612 9368.748 2.723834 9369.052 2.724056 9369.356 2.724278 9369.66 2.724418 9369.965 2.724576 9370.27 2.724945 9370.573 2.724874 9370.877 2.724804 9371.182 2.725172 9371.486 2.725184 9371.792 2.72526 9372.095 2.725564 9372.398 2.72585 9372.704 2.725926 9373.007 2.726422 9373.313 2.726059 9373.617 2.72672 9373.921 2.726732 9374.226 2.727082 9374.53 2.726509 9374.833 2.727527 9375.138 2.728023 9375.444 2.728017 9375.747 2.727799 9376.052 2.728168 9376.356 2.728014 9376.661 2.728091 9376.966 2.728312 9377.27 2.728471 9377.575 2.728235 9377.879 2.728731 9378.185 2.728789 9378.488 2.728425 9378.793 2.728921 9379.098 2.730088 9379.401 2.729393 9379.707 2.730036 9380.011 2.730304 9380.316 2.729476 9380.62 2.730047 9380.926 2.730592 9381.229 2.730711 9381.534 2.730419 9381.839 2.730334 9382.144 2.73041 9382.448 2.731576 9382.753 2.731238 9383.059 2.730938 9383.362 2.73128 9383.669 2.731329 9383.973 2.730965 9384.276 2.730774 9384.582 2.731583 9384.888 2.731154 9385.191 2.731625 9385.496 2.73181 9385.803 2.731291 9386.107 2.731769 9386.259 2.731953 9387.784 2.732561 9389.309 2.731747 9390.834 2.731474 9392.359 2.731815 9393.886 2.730984 9395.412 2.730173 9396.938 2.729956 9398.466 2.728412 9399.993 2.727823 9401.521 2.725582 9403.048 2.724018 9404.576 2.721453 9406.104 2.718988 9407.634 2.715823 9409.162 2.711572 9410.691 2.708416 9412.221 2.704032 9413.752 2.700306 9415.282 2.69599 9416.812 2.691164 9418.343 2.686607 9419.876 2.682818 9421.406 2.679737 9422.938 2.677399 9424.471 2.674861 9426.004 2.672744 9427.536 2.671494 9429.069 2.670426 9430.604 2.6689 9432.137 2.666979 9433.67 2.666123 9435.206 2.665387 9436.741 2.664 9438.275 2.662633 9439.81 2.661118 9441.346 2.659623 9442.882 2.656891 9444.418 2.654928 9445.955 2.652786 9447.492 2.650211 9449.03 2.647973 9450.566 2.644774 9452.105 2.642743 9453.643 2.639411 9455.183 2.636798 9456.723 2.634703 9458.261 2.632846 9459.801 2.631613 9461.34 2.629725 9462.88 2.628313 9464.421 2.627073 9465.962 2.626006 9467.504 2.624537 9469.045 2.622845 9470.587 2.621518 9472.129 2.619834 9473.671 2.61881 9475.214 2.618229 9476.758 2.617165 9478.302 2.616074 9479.845 2.615624 9481.389 2.614866 9482.933 2.614514 9484.478 2.614376 9486.025 2.614276 9487.57 2.614082 9489.116 2.614454 9490.663 2.614499 9492.209 2.615379 9493.756 2.61517 9495.303 2.61547 9496.852 2.61546 9498.399 2.615195 9499.948 2.614661 9501.497 2.614961 9503.045 2.61535 9504.595 2.615343 9506.146 2.615352 9507.695 2.614718 9509.247 2.614653 9510.798 2.613803 9512.348 2.612885 9513.9 2.611463 9514.056 2.611736 9514.367 2.611472 9514.677 2.610471 9514.988 2.610825 9515.297 2.610506 9515.607 2.609821 9515.919 2.610146 9516.229 2.609747 9516.539 2.608968 9516.851 2.608972 9517.161 2.608552 9517.472 2.608556 9517.782 2.608167 9518.093 2.607551 9518.403 2.606808 9518.712 2.606416 9519.023 2.606587 9519.335 2.605853 9519.646 2.604827 9519.956 2.6042 9520.267 2.604247 9520.578 2.604253 9520.888 2.603661 9521.198 2.603176 9521.51 2.602791 9521.821 2.601941 9522.131 2.601073 9522.442 2.600945 9522.752 2.600654 9523.065 2.600121 9523.375 2.599603 9523.686 2.599613 9523.996 2.598589 9524.307 2.598022 9524.618 2.597693 9524.93 2.59683 9525.241 2.596641 9525.551 2.595809 9525.863 2.595491 9526.173 2.594516 9526.483 2.594327 9526.796 2.593349 9527.106 2.593532 9527.419 2.592556 9527.728 2.592965 9528.039 2.591614 9529.596 2.588455 9531.151 2.586142 9532.708 2.5845 9534.265 2.581263 9535.82 2.579335 9535.977 2.578886 9536.289 2.578984 9536.601 2.578611 9536.913 2.578268 9537.225 2.577531 9537.535 2.577915 9537.848 2.577141 9538.158 2.576715 9538.47 2.576305 9538.782 2.575774 9539.094 2.575605 9539.406 2.574939 9539.717 2.574757 9540.029 2.574415 9540.34 2.573654 9540.652 2.573641 9540.965 2.572991 9541.275 2.572481 9541.589 2.572531 9541.9 2.572537 9542.212 2.571715 9542.523 2.571318 9542.835 2.5709 9543.147 2.570887 9543.459 2.570124 9543.771 2.570251 9544.083 2.570151 9544.395 2.569638 9544.706 2.569256 9545.018 2.568697 9545.331 2.56742 9545.643 2.568145 9545.955 2.567935 9546.267 2.568161 9546.579 2.567793 9546.892 2.567393 9547.202 2.566629 9547.515 2.566077 9547.826 2.56635 9549.076 2.564996 9550.95 2.563506 9552.823 2.561567 9554.698 2.559923 9556.573 2.558667 9558.45 2.557059 9560.326 2.555245 9562.204 2.554156 9564.082 2.552279 9565.961 2.55057 9567.84 2.548528 9569.719 2.54653 9571.6 2.544914 9573.481 2.542534 9575.364 2.54165 9577.247 2.539505 9579.128 2.537815 9581.014 2.53634 9582.897 2.53411 9584.783 2.531821 9586.67 2.529626 9588.556 2.528416 9590.444 2.526664 9592.332 2.525759 9594.22 2.523718 9596.11 2.522179 9598.001 2.521489 9599.891 2.520005 9601.782 2.518413 9603.676 2.517621 9605.569 2.516724 9607.463 2.515633 9609.357 2.514336 9611.252 2.513418 9613.148 2.512676 9615.046 2.511308 9616.944 2.510622 9618.842 2.509058 9620.743 2.508642 9622.643 2.507519 9624.543 2.506836 9626.446 2.505614 9628.348 2.504106 9630.251 2.504027 9632.155 2.50279 9634.061 2.50131 9635.966 2.500212 9637.873 2.499006 9639.78 2.498456 9641.688 2.496459 9643.597 2.495301 9645.508 2.492892 9647.418 2.492069 9649.331 2.49072 9651.243 2.488966 9653.156 2.487112 9655.07 2.485717 9656.985 2.484244 9658.903 2.482879 9660.819 2.480958 9662.737 2.479245 9664.655 2.477157 9666.575 2.475451 9666.736 2.474906 9667.055 2.47449 9667.377 2.474186 9667.695 2.474076 9668.015 2.473683 9668.336 2.473329 9668.655 2.472762 9668.977 2.472599 9669.296 2.472422 9669.617 2.472323 9669.938 2.472477 9670.259 2.472256 9670.577 2.471718 9670.897 2.471168 9671.219 2.470817 9671.539 2.47042 9671.859 2.470222 9672.179 2.470224 9672.5 2.469675 9672.82 2.469384 9673.141 2.469211 9673.461 2.469013 9673.782 2.468348 9674.104 2.467578 9674.425 2.467183 9674.745 2.466788 9675.064 2.466031 9675.385 2.46573 9675.706 2.465966 9676.026 2.466061 9676.348 2.465516 9676.669 2.465646 9676.99 2.465823 9677.31 2.465732 9677.631 2.465536 9677.952 2.465561 9678.272 2.46589 9678.595 2.465018 9678.916 2.464985 9679.236 2.464894 9679.558 2.46407 9679.877 2.464386 9680.199 2.463609 9680.52 2.46353 9680.841 2.462974 9681.163 2.462628 9681.483 2.462491 9681.806 2.462412 9682.126 2.461857 9682.448 2.461767 9682.769 2.461677 9683.09 2.461436 9683.411 2.460881 9683.732 2.460432 9684.055 2.460655 9684.375 2.460206 9684.698 2.459837 9685.019 2.459689 9685.341 2.459067 9685.662 2.459463 9685.983 2.458981 9686.305 2.458856 9686.626 2.458246 9686.947 2.457995 9687.269 2.458021 9687.593 2.457527 9687.913 2.457125 9688.235 2.456792 9688.557 2.456645 9688.878 2.456348 9689.201 2.455625 9689.522 2.455638 9689.844 2.454892 9690.165 2.454573 9690.488 2.454391 9690.811 2.454142 9691.132 2.453902 9691.454 2.453402 9691.775 2.453832 9692.098 2.453674 9692.419 2.453401 9692.742 2.452566 9693.064 2.45211 9693.387 2.452299 9693.709 2.452406 9694.031 2.451962 9694.354 2.451092 9694.675 2.451141 9694.998 2.450619 9695.32 2.450611 9695.643 2.449757 9695.965 2.449898 9696.288 2.449534 9696.609 2.449115 9696.933 2.449131 9697.256 2.448666 9697.577 2.448327 9697.901 2.448593 9698.223 2.448482 9698.545 2.44811 9698.868 2.447931 9699.19 2.447331 9699.514 2.447517 9699.836 2.446986 9700.16 2.446864 9700.48 2.446605 9700.804 2.446472 9701.127 2.445987 9701.449 2.446229 9701.773 2.446121 9702.096 2.445488 9702.419 2.445584 9702.741 2.445792 9703.064 2.445057 9703.388 2.444879 9703.711 2.444395 9704.034 2.444535 9704.356 2.444051 9704.681 2.443805 9705.003 2.443616 9705.325 2.443167 9705.649 2.443114 9705.972 2.442653 9706.297 2.442329 9706.619 2.442208 9706.942 2.441828 9707.266 2.441696 9707.589 2.441315 9707.913 2.441286 9708.235 2.440973 9708.56 2.441169 9708.884 2.440417 9709.207 2.43998 9709.531 2.440334 9709.854 2.439797 9710.178 2.439575 9710.501 2.43879 9710.824 2.438761 9711.148 2.438641 9711.473 2.438454 9711.796 2.438132 9712.12 2.438203 9712.443 2.437645 9712.767 2.437604 9713.091 2.437418 9713.414 2.437287 9713.739 2.436291 9714.063 2.436261 9714.387 2.436075 9714.71 2.435889 9715.033 2.435601 9715.359 2.435236 9715.683 2.435678 9716.007 2.434662 9716.331 2.434846 9716.979 2.433992 9719.249 2.432492 9721.521 2.430417 9723.794 2.42897 9726.068 2.42726 9728.345 2.425335 9730.621 2.423978 9732.899 2.422601 9735.18 2.420899 9737.462 2.419202 9739.743 2.417334 9742.028 2.415361 9744.313 2.413274 9746.601 2.413217 9748.89 2.412519 9751.18 2.410779 9753.472 2.409316 9755.765 2.407975 9758.059 2.406896 9760.354 2.404723 9762.652 2.403556 9764.95 2.401745 9767.252 2.400688 9769.554 2.399386 9771.857 2.398079 9774.161 2.395976 9776.469 2.394323 9778.777 2.39288 9781.085 2.39109 9783.396 2.389275 9785.709 2.388031 9788.023 2.386814 9790.339 2.385083 9792.656 2.383199 9794.975 2.382793 9797.295 2.380872 9799.615 2.37907 9801.938 2.37695 9804.264 2.37537 9806.591 2.373952 9808.918 2.371987 9811.248 2.370198 9813.579 2.369147 9815.91 2.366951 9818.244 2.365879 9820.58 2.364227 9822.919 2.362621 9825.257 2.360694 9827.597 2.358914 9828.1 2.358837 9830.774 2.356851 9833.454 2.354689 9836.136 2.352947 9838.817 2.35111 9841.503 2.348927 9844.189 2.347152 9846.879 2.345471 9849.57 2.343398 9852.264 2.341678 9854.958 2.339568 9857.655 2.337643 9860.354 2.335152 9863.055 2.333986 9865.759 2.332127 9868.464 2.330136 9871.171 2.328152 9873.88 2.326087 9876.592 2.324378 9879.305 2.322538 9882.021 2.320753 9884.737 2.31928 9887.456 2.317849 9890.179 2.315599 9892.901 2.314264 9895.627 2.312761 9898.354 2.31109 9901.083 2.309253 9903.814 2.307422 9906.549 2.306022 9909.283 2.304456 9912.02 2.302554 9914.759 2.300828 9917.5 2.298976 9920.244 2.297728 9922.989 2.295886 9925.735 2.29418 9928.483 2.292394 9931.235 2.290698 9933.987 2.289377 9936.741 2.287191 9939.499 2.285261 9942.257 2.28363 9945.018 2.281959 9947.778 2.279918 9950.543 2.278504 9953.309 2.276929 9956.076 2.275114 9958.846 2.273629 9961.617 2.271824 9964.391 2.270231 9967.165 2.26831 9969.943 2.266602 9972.721 2.264979 9975.502 2.263324 9978.284 2.262075 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/EXAFS_Ge.dat0000644000000000000000000005111014741736366017147 0ustar00rootroot10800 0.0709745 10805 0.0693439 10810 0.067777 10815 0.0661401 10820 0.064484 10825 0.0629618 10830 0.0613566 10835 0.0598025 10840 0.0584204 10845 0.0568535 10850 0.0553439 10855 0.0539045 10860 0.0525159 10865 0.0510828 10870 0.0495477 10875 0.0480892 10880 0.0464395 10885 0.0449554 10890 0.0434713 10895 0.0419873 10900 0.0404777 10905 0.0389872 10910 0.037535 10915 0.0361592 10920 0.0346051 10925 0.0331911 10930 0.0316178 10935 0.0301847 10940 0.0287707 10945 0.0275159 10950 0.0262611 10955 0.0248535 10960 0.0234394 10965 0.0221337 10970 0.0207898 10975 0.0195159 10980 0.018172 10985 0.0168089 10990 0.0154458 10995 0.0140573 11000 0.012828 11005 0.011414 11010 0.010242 11015 0.00899362 11020 0.00784071 11025 0.00662416 11029.9 0.00554141 11034.6 0.00445858 11039.2 0.00345859 11043.6 0.00264326 11047.8 0.00189809 11051.8 0.00120379 11055.6 0.00078344 11059.3 0.000445858 11062.8 0.000216551 11066.1 5.73268E-05 11069.2 0 11072.2 0.000222929 11075 0.000662409 11077.6 0.0013949 11080 0.00242671 11082.2 0.00381523 11084.3 0.00543306 11086.2 0.00773881 11087.9 0.0100573 11089.4 0.0132356 11090.8 0.0165987 11091.9 0.020312 11092.9 0.0242802 11093.8 0.0282739 11094.4 0.0320382 11094.9 0.0350637 11095.2 0.0372357 11095.5 0.0396943 11095.8 0.0422739 11096.1 0.0451274 11096.4 0.0481592 11096.7 0.0516688 11097 0.055363 11097.3 0.0594012 11097.6 0.0639808 11097.9 0.0692547 11098.2 0.0749618 11098.5 0.0814522 11098.8 0.0887197 11099.1 0.0970127 11099.4 0.107089 11099.7 0.118382 11100 0.131809 11100.3 0.147452 11100.6 0.166962 11100.9 0.18986 11101.2 0.217376 11101.5 0.252771 11101.8 0.300535 11102.1 0.360446 11102.4 0.440025 11102.7 0.545866 11103 0.683925 11103.3 0.862526 11103.6 1.04817 11103.9 1.22549 11104.2 1.36655 11104.5 1.46262 11104.8 1.51989 11105.1 1.55224 11105.4 1.58035 11105.7 1.60852 11106 1.63041 11106.3 1.6365 11106.6 1.62373 11106.9 1.60041 11107.2 1.57483 11107.5 1.54875 11107.8 1.51803 11108.1 1.4855 11108.4 1.4524 11108.7 1.42245 11109 1.39692 11109.3 1.37483 11109.6 1.35737 11109.9 1.34212 11110.2 1.32958 11110.5 1.32026 11110.8 1.31451 11111.1 1.31212 11111.4 1.31132 11111.7 1.31006 11112 1.30725 11112.3 1.30268 11112.6 1.29747 11112.9 1.2921 11113.2 1.28688 11113.5 1.28125 11113.8 1.27415 11114.1 1.26426 11114.4 1.25141 11114.7 1.2345 11115 1.21381 11115.3 1.18956 11115.6 1.16245 11115.9 1.13229 11116.2 1.10314 11116.5 1.07512 11116.8 1.04918 11117.1 1.02658 11117.4 1.00823 11117.7 0.994446 11118 0.986641 11118.3 0.983259 11118.6 0.983304 11118.9 0.985677 11119.2 0.988984 11119.5 0.99288 11119.8 0.997195 11120.1 1.00144 11120.4 1.0058 11120.7 1.00974 11121 1.013 11121.3 1.01553 11121.6 1.01688 11122 1.01725 11122.3 1.01674 11122.6 1.01547 11123 1.01415 11123.3 1.01294 11123.6 1.0121 11124 1.01176 11124.3 1.01197 11124.7 1.01273 11125 1.01398 11125.4 1.01533 11125.7 1.01696 11126.1 1.01863 11126.5 1.0202 11126.8 1.02162 11127.2 1.02301 11127.6 1.0243 11128 1.02564 11128.3 1.02669 11128.7 1.02745 11129.1 1.02767 11129.5 1.02713 11129.9 1.02548 11130.3 1.02254 11130.7 1.01847 11131.1 1.01289 11131.5 1.00627 11131.9 0.999003 11132.3 0.992154 11132.7 0.985785 11133.1 0.980911 11133.5 0.977267 11134 0.975782 11134.4 0.975938 11134.8 0.977492 11135.2 0.97992 11135.7 0.982934 11136.1 0.986066 11136.5 0.98908 11137 0.991772 11137.4 0.994099 11137.9 0.995834 11138.3 0.997173 11138.8 0.998243 11139.3 0.999006 11139.7 0.99964 11140.2 1.0003 11140.7 1.00071 11141.1 1.00079 11141.6 1.00087 11142.1 1.00066 11142.6 1.00037 11143 1.0002 11143.5 1.00002 11144 0.999815 11144.5 0.999396 11145 0.999101 11145.5 0.998799 11146 0.998469 11146.5 0.998681 11147 0.999493 11147.5 1.00065 11148 1.00221 11148.5 1.004 11149.1 1.00629 11149.6 1.00888 11150.1 1.01194 11150.6 1.01555 11151.2 1.01906 11151.7 1.02267 11152.2 1.02607 11152.8 1.02878 11153.3 1.03042 11153.9 1.0307 11154.4 1.02953 11155 1.02664 11155.5 1.02255 11156.1 1.01736 11156.6 1.01227 11157.2 1.00722 11157.8 1.00288 11158.4 0.999455 11158.9 0.996831 11159.5 0.994692 11160.1 0.992817 11160.7 0.991008 11161.3 0.989399 11161.8 0.987777 11162.4 0.985968 11163 0.984257 11163.6 0.982618 11164.2 0.981188 11164.8 0.980239 11165.4 0.97976 11166 0.979801 11166.7 0.980509 11167.3 0.981659 11167.9 0.983418 11168.5 0.985964 11169.2 0.98924 11169.8 0.99296 11170.4 0.997348 11171 1.00241 11171.7 1.00753 11172.3 1.01263 11173 1.01784 11173.6 1.02281 11174.3 1.02732 11174.9 1.03104 11175.6 1.03373 11176.2 1.03545 11176.9 1.03628 11177.6 1.0362 11178.2 1.03509 11178.9 1.03354 11179.6 1.03142 11180.2 1.02936 11180.9 1.0274 11181.6 1.02576 11182.3 1.02436 11183 1.0231 11183.7 1.02171 11184.4 1.02029 11185.1 1.01888 11185.8 1.01735 11186.5 1.01585 11187.2 1.01436 11187.9 1.01307 11188.6 1.01197 11189.3 1.01107 11190 1.00989 11190.8 1.00845 11191.5 1.00642 11192.2 1.00365 11193 1.00019 11193.7 0.996448 11194.4 0.992833 11195.2 0.989757 11195.9 0.987542 11196.7 0.98595 11197.4 0.985445 11198.2 0.985712 11198.9 0.986641 11199.7 0.988159 11200.4 0.990108 11201.2 0.992424 11202 0.994807 11202.7 0.997341 11203.5 0.999573 11204.3 1.00116 11205.1 1.00171 11205.9 1.00103 11206.6 0.99868 11207.4 0.99469 11208.2 0.989148 11209 0.982604 11209.8 0.97532 11210.6 0.968113 11211.4 0.96124 11212.2 0.955283 11213.1 0.950229 11213.9 0.94648 11214.7 0.943826 11215.5 0.94216 11216.3 0.941168 11217.1 0.940709 11218 0.940425 11218.8 0.939683 11219.6 0.940099 11220.5 0.94102 11221.3 0.940652 11222.2 0.940841 11223 0.941994 11223.9 0.94383 11224.7 0.946368 11225.6 0.949628 11226.4 0.953239 11227.3 0.956919 11228.2 0.960919 11229 0.965162 11229.9 0.969714 11230.8 0.974425 11231.7 0.979373 11232.5 0.984187 11233.4 0.989187 11234.3 0.994054 11235.2 0.998843 11236.1 1.00299 11237 1.00645 11237.9 1.009 11238.8 1.01039 11239.7 1.01092 11240.6 1.01082 11241.5 1.01029 11242.4 1.00957 11243.4 1.00903 11244.3 1.00829 11245.2 1.00783 11246.1 1.00768 11247 1.00746 11248 1.00722 11248.9 1.00629 11249.9 1.00448 11250.8 1.00227 11251.7 0.999675 11252.7 0.997132 11253.6 0.995011 11254.6 0.993053 11255.6 0.991231 11256.5 0.989357 11257.5 0.987148 11258.4 0.984352 11259.4 0.980915 11260.4 0.977229 11261.4 0.97338 11262.3 0.969671 11263.3 0.966101 11264.3 0.962617 11265.3 0.959448 11266.3 0.95625 11267.3 0.953146 11268.3 0.949973 11269.3 0.946932 11270.3 0.944084 11271.3 0.941536 11272.3 0.939262 11273.3 0.937416 11274.3 0.935829 11275.3 0.934198 11276.4 0.932938 11277.4 0.931799 11278.4 0.930846 11279.4 0.930215 11280.5 0.929846 11281.5 0.929316 11282.5 0.928398 11283.6 0.927255 11284.6 0.925588 11285.7 0.923908 11286.7 0.922452 11287.8 0.921704 11288.8 0.921618 11289.9 0.92259 11291 0.924658 11292 0.927581 11293.1 0.931209 11294.2 0.934983 11295.3 0.938487 11296.3 0.941488 11297.4 0.943966 11298.5 0.945762 11299.6 0.946942 11300.7 0.947301 11301.8 0.946876 11302.9 0.945789 11304 0.944368 11305.1 0.942855 11306.2 0.94162 11307.3 0.940951 11308.4 0.940835 11309.5 0.941359 11310.6 0.942434 11311.7 0.943927 11312.9 0.945641 11314 0.947404 11315.1 0.949171 11316.3 0.950879 11317.4 0.952492 11318.5 0.954127 11319.7 0.955676 11320.8 0.956992 11322 0.958743 11323.1 0.960804 11324.3 0.96237 11325.4 0.964345 11326.6 0.965451 11327.8 0.966509 11328.9 0.966418 11330.1 0.96556 11331.3 0.963664 11332.5 0.961504 11333.6 0.958435 11334.8 0.954939 11336 0.951391 11337.2 0.948632 11338.4 0.945151 11339.6 0.942432 11340.8 0.940031 11342 0.938163 11343.2 0.936652 11344.4 0.935336 11345.6 0.933666 11346.8 0.932125 11348 0.929137 11349.2 0.927017 11350.5 0.923989 11351.7 0.92081 11352.9 0.917716 11354.1 0.915041 11355.4 0.909099 11356.6 0.907727 11357.9 0.904106 11359.1 0.900773 11360.3 0.897494 11361.6 0.894216 11362.9 0.890492 11364.1 0.888767 11365.4 0.88598 11366.6 0.883518 11367.9 0.881912 11369.2 0.880958 11370.4 0.880501 11371.7 0.880285 11373 0.88058 11374.2 0.881195 11375.5 0.882873 11376.8 0.885188 11378.1 0.887634 11379.4 0.889588 11380.7 0.891777 11382 0.89355 11383.3 0.89585 11384.6 0.897857 11385.9 0.899601 11387.2 0.90136 11388.5 0.902561 11389.8 0.904394 11391.2 0.906141 11392.5 0.907528 11393.8 0.908472 11395.1 0.909094 11396.5 0.909653 11397.8 0.909668 11399.1 0.909638 11400.5 0.90939 11401.8 0.908834 11403.2 0.908354 11404.5 0.90781 11405.9 0.907288 11407.2 0.906627 11408.6 0.905804 11410 0.904585 11411.3 0.903142 11412.7 0.901695 11414.1 0.900455 11415.4 0.899277 11416.8 0.898468 11418.2 0.897872 11419.6 0.897654 11421 0.897509 11422.3 0.897343 11423.7 0.897055 11425.1 0.896344 11426.5 0.89525 11427.9 0.894028 11429.3 0.89262 11430.7 0.891025 11432.1 0.889429 11433.6 0.887978 11435 0.886668 11436.4 0.885531 11437.8 0.884601 11439.2 0.883363 11440.7 0.882163 11442.1 0.881011 11443.5 0.879984 11445 0.878822 11446.4 0.877557 11447.9 0.876116 11449.3 0.874208 11450.8 0.872311 11452.2 0.870305 11453.7 0.86812 11455.1 0.865758 11456.6 0.863252 11458.1 0.860646 11459.5 0.858223 11461 0.855924 11462.5 0.853822 11463.9 0.852174 11465.4 0.850812 11466.9 0.849615 11468.4 0.848503 11469.9 0.847407 11471.4 0.846168 11472.9 0.844859 11474.4 0.843255 11475.9 0.842329 11477.4 0.840783 11478.9 0.839583 11480.4 0.838765 11481.9 0.838393 11483.4 0.838762 11484.9 0.839482 11486.5 0.840675 11488 0.841955 11489.5 0.84329 11491 0.845159 11492.6 0.846402 11494.1 0.847668 11495.7 0.848695 11497.2 0.849368 11498.8 0.849534 11500.3 0.849592 11501.9 0.849444 11503.4 0.849193 11505 0.848948 11506.5 0.848545 11508.1 0.848284 11509.7 0.848245 11511.2 0.848079 11512.8 0.848143 11514.4 0.84799 11516 0.84793 11517.6 0.847579 11519.2 0.8472 11520.7 0.846791 11522.3 0.845936 11523.9 0.844908 11525.5 0.843699 11527.1 0.842461 11528.7 0.841189 11530.3 0.839853 11531.9 0.838555 11533.6 0.837682 11535.2 0.836348 11536.8 0.83515 11538.4 0.833645 11540.1 0.832332 11541.7 0.830967 11543.3 0.829624 11544.9 0.828343 11546.6 0.826875 11548.2 0.825521 11549.9 0.823931 11551.5 0.822495 11553.2 0.820973 11554.8 0.819574 11556.5 0.818469 11558.1 0.81689 11559.8 0.815671 11561.5 0.814426 11563.1 0.812933 11564.8 0.811544 11566.5 0.810083 11568.2 0.8085 11569.8 0.806912 11571.5 0.805552 11573.2 0.804282 11574.9 0.803008 11576.6 0.801818 11578.3 0.800736 11580 0.799754 11581.7 0.799147 11583.4 0.798448 11585.1 0.798138 11586.8 0.7976 11588.5 0.797195 11590.3 0.796559 11592 0.796329 11593.7 0.79578 11595.4 0.795234 11597.2 0.794658 11598.9 0.794121 11600.6 0.793339 11602.4 0.792512 11604.1 0.791695 11605.8 0.790953 11607.6 0.79015 11609.3 0.789494 11611.1 0.788989 11612.9 0.788715 11614.6 0.788639 11616.4 0.788624 11618.1 0.788619 11619.9 0.78855 11621.7 0.788383 11623.5 0.788352 11625.2 0.787783 11627 0.787363 11628.8 0.787078 11630.6 0.786715 11632.4 0.786264 11634.2 0.785874 11636 0.785362 11637.8 0.784927 11639.6 0.784391 11641.4 0.783992 11643.2 0.783378 11645 0.78282 11646.8 0.782234 11648.6 0.781451 11650.5 0.78068 11652.3 0.779875 11654.1 0.778948 11655.9 0.778143 11657.8 0.777083 11659.6 0.776043 11661.4 0.774855 11663.3 0.773815 11665.1 0.772619 11667 0.771475 11668.8 0.770265 11670.7 0.768973 11672.5 0.76772 11674.4 0.766397 11676.3 0.76504 11678.1 0.763755 11680 0.762078 11681.9 0.760597 11683.8 0.759264 11685.6 0.757811 11687.5 0.7565 11689.4 0.755126 11691.3 0.753884 11693.2 0.752797 11695.1 0.75147 11697 0.7503 11698.9 0.749237 11700.8 0.748208 11702.7 0.747103 11704.6 0.745608 11706.5 0.744238 11708.4 0.743431 11710.3 0.742369 11712.3 0.741383 11714.2 0.740416 11716.1 0.739667 11718 0.738986 11720 0.738432 11721.9 0.737895 11723.8 0.737349 11725.8 0.736899 11727.7 0.736235 11729.7 0.73571 11731.6 0.735243 11733.6 0.734722 11735.5 0.734191 11737.5 0.733615 11739.5 0.733246 11741.4 0.732616 11743.4 0.732143 11745.4 0.731501 11747.4 0.730787 11749.3 0.730196 11751.3 0.72953 11753.3 0.728841 11755.3 0.728253 11757.3 0.727464 11759.3 0.726717 11761.3 0.725916 11763.3 0.725284 11765.3 0.724509 11767.3 0.72382 11769.3 0.723051 11771.3 0.722422 11773.3 0.721674 11775.3 0.720886 11777.4 0.719967 11779.4 0.719273 11781.4 0.718466 11783.4 0.717627 11785.5 0.716965 11787.5 0.716167 11789.6 0.715378 11791.6 0.714603 11793.6 0.713597 11795.7 0.71248 11797.7 0.711773 11799.8 0.710604 11801.9 0.709637 11803.9 0.708846 11806 0.707962 11808 0.706996 11810.1 0.705991 11812.2 0.704854 11814.3 0.703757 11816.4 0.702803 11818.4 0.701723 11820.5 0.701796 11822.6 0.699663 11824.7 0.698597 11826.8 0.697511 11828.9 0.696389 11831 0.695257 11833.1 0.694162 11835.2 0.693043 11837.3 0.691881 11839.4 0.690638 11841.5 0.689515 11843.7 0.688346 11845.8 0.687372 11847.9 0.686285 11850 0.685264 11852.2 0.684225 11854.3 0.68322 11856.4 0.682202 11858.6 0.681267 11860.7 0.680434 11862.9 0.679524 11865 0.678742 11867.2 0.677882 11869.3 0.676941 11871.5 0.676041 11873.6 0.675287 11875.8 0.674518 11878 0.673788 11880.1 0.673164 11882.3 0.672399 11884.5 0.671799 11886.7 0.671015 11888.9 0.670269 11891.1 0.669588 11893.2 0.668932 11895.4 0.668242 11897.6 0.667673 11899.8 0.666924 11902 0.666283 11904.2 0.665503 11906.4 0.664797 11908.6 0.663975 11910.9 0.663349 11913.1 0.662558 11915.3 0.66181 11917.5 0.661087 11919.7 0.660196 11922 0.659283 11924.2 0.658418 11926.4 0.657574 11928.7 0.656776 11930.9 0.65586 11933.2 0.655053 11935.4 0.654188 11937.7 0.653299 11939.9 0.652468 11942.2 0.651589 11944.4 0.65056 11946.7 0.649542 11949 0.648679 11951.2 0.647722 11953.5 0.646826 11955.8 0.64585 11958 0.64493 11960.3 0.644015 11962.6 0.643006 11964.9 0.642 11967.2 0.64106 11969.5 0.640066 11971.8 0.63908 11974.1 0.638023 11976.4 0.637023 11978.7 0.636068 11981 0.635192 11983.3 0.63413 11985.6 0.633148 11987.9 0.63218 11990.2 0.631273 11992.6 0.630139 11994.9 0.629191 11997.2 0.628161 11999.6 0.627092 12001.9 0.626041 12004.2 0.625132 12006.6 0.624173 12008.9 0.623269 12011.3 0.622329 12013.6 0.621356 12016 0.620418 12018.3 0.619542 12020.7 0.618666 12023 0.617792 12025.4 0.616848 12027.8 0.615993 12030.1 0.614905 12032.5 0.614053 12034.9 0.613177 12037.3 0.612383 12039.7 0.611565 12042 0.610769 12044.4 0.609943 12046.8 0.609087 12049.2 0.608294 12051.6 0.607681 12054 0.606888 12056.4 0.606057 12058.8 0.605266 12061.3 0.604448 12063.7 0.603678 12066.1 0.602948 12068.5 0.602144 12070.9 0.601578 12073.3 0.600482 12075.8 0.599578 12078.2 0.598846 12080.7 0.598034 12083.1 0.597152 12085.5 0.596272 12088 0.59575 12090.4 0.594629 12092.9 0.593704 12095.3 0.59286 12097.8 0.591869 12100.2 0.590959 12102.7 0.590082 12105.2 0.589113 12107.6 0.588224 12110.1 0.587208 12112.6 0.586266 12115.1 0.585385 12117.5 0.584353 12120 0.583431 12122.5 0.582639 12125 0.581573 12127.5 0.580564 12130 0.579808 12132.5 0.578611 12135 0.57765 12137.5 0.576888 12140 0.576285 12142.5 0.575041 12145 0.574038 12147.6 0.573144 12150.1 0.572083 12152.6 0.570974 12155.1 0.57004 12157.7 0.56914 12160.2 0.568162 12162.7 0.567145 12165.3 0.566097 12167.8 0.564936 12170.3 0.563995 12172.9 0.563058 12175.5 0.562305 12178 0.561343 12180.6 0.560539 12183.1 0.55911 12185.7 0.558366 12188.2 0.557378 12190.8 0.556469 12193.4 0.55561 12196 0.554807 12198.5 0.553826 12201.1 0.552867 12203.7 0.552022 12206.3 0.551093 12208.9 0.550185 12211.5 0.549191 12214.1 0.548325 12216.7 0.546994 12219.3 0.547146 12221.9 0.545701 12224.5 0.544847 12227.1 0.543904 12229.7 0.543134 12232.3 0.542242 12235 0.541376 12237.6 0.540541 12240.2 0.539643 12242.8 0.538694 12245.5 0.537828 12248.1 0.536987 12250.7 0.536166 12253.4 0.535344 12256 0.534433 12258.7 0.53349 12261.3 0.532554 12264 0.531643 12266.6 0.530975 12269.3 0.530064 12272 0.529255 12274.6 0.52835 12277.3 0.52751 12280 0.526535 12282.7 0.52607 12285.3 0.524771 12288 0.523815 12290.7 0.522866 12293.4 0.522025 12296.1 0.52107 12298.8 0.520191 12301.5 0.519274 12304.2 0.518299 12306.9 0.517325 12309.6 0.516344 12312.3 0.515433 12315 0.514439 12317.7 0.513427 12320.4 0.512554 12323.1 0.511459 12325.9 0.51049 12328.6 0.509465 12331.3 0.508592 12334.1 0.507624 12336.8 0.506694 12339.5 0.505758 12342.3 0.504771 12345 0.503841 12347.8 0.502924 12350.5 0.502 12353.3 0.501159 12356.1 0.500134 12358.8 0.499248 12361.6 0.498318 12364.3 0.497529 12367.1 0.496382 12369.9 0.495439 12372.7 0.494446 12375.4 0.49372 12378.2 0.49286 12381 0.491949 12383.8 0.491076 12386.6 0.490127 12389.4 0.489217 12392.2 0.488338 12395 0.487484 12397.8 0.486529 12400.6 0.485669 12403.4 0.48486 12406.2 0.484025 12409 0.483013 12411.8 0.48214 12414.7 0.481318 12417.5 0.480401 12420.3 0.479643 12423.2 0.478637 12426 0.477611 12428.8 0.476924 12431.7 0.476121 12434.5 0.475338 12437.3 0.474484 12440.2 0.47356 12443 0.472701 12445.9 0.471815 12448.8 0.470943 12451.6 0.469974 12454.5 0.469051 12457.4 0.468153 12460.2 0.467306 12463.1 0.466726 12466 0.46535 12468.9 0.464637 12471.7 0.463656 12474.6 0.462739 12477.5 0.461726 12480.4 0.460815 12483.3 0.459873 12486.2 0.458994 12489.1 0.457987 12492 0.457083 12494.9 0.45614 12497.8 0.455248 12500.7 0.454344 12503.6 0.453401 12506.6 0.452357 12509.5 0.451344 12512.4 0.450376 12515.3 0.449478 12518.3 0.448567 12521.2 0.447516 12524.1 0.446573 12527.1 0.445669 12530 0.444739 12533 0.44379 12535.9 0.442822 12538.9 0.441962 12541.8 0.441 12544.8 0.440127 12547.7 0.439255 12550.7 0.438255 12553.7 0.437611 12556.6 0.436631 12559.6 0.435688 12562.6 0.434739 12565.6 0.433898 12568.6 0.432955 12571.5 0.431987 12574.5 0.431045 12577.5 0.43021 12580.5 0.429236 12583.5 0.428287 12586.5 0.427439 12589.5 0.426567 12592.5 0.425681 12595.5 0.424834 12598.6 0.423796 12601.6 0.422898 12604.6 0.421943 12607.6 0.421083 12610.6 0.420465 12613.7 0.419344 12616.7 0.418344 12619.7 0.417459 12622.8 0.416541 12625.8 0.415841 12628.9 0.414904 12631.9 0.414064 12634.9 0.41328 12638 0.412267 12641.1 0.411293 12644.1 0.410363 12647.2 0.409439 12650.3 0.408459 12653.3 0.407586 12656.4 0.406866 12659.5 0.405866 12662.6 0.404949 12665.6 0.404108 12668.7 0.40321 12671.8 0.402229 12674.9 0.401325 12678 0.400433 12681.1 0.399223 12684.2 0.398796 12687.3 0.397745 12690.4 0.396739 12693.5 0.395853 12696.6 0.394866 12699.7 0.393879 12702.8 0.392968 12705.9 0.392529 12709.1 0.391478 12712.2 0.390382 12715.3 0.389478 12718.5 0.388586 12721.6 0.387618 12724.7 0.386675 12727.9 0.385809 12731 0.384745 12734.2 0.383599 12737.3 0.382924 12740.5 0.382006 12743.6 0.381134 12746.8 0.380197 12749.9 0.379197 12753.1 0.378261 12756.3 0.377318 12759.4 0.376331 12762.6 0.375382 12765.8 0.37456 12769 0.373618 12772.2 0.372643 12775.4 0.371497 12778.5 0.370478 12781.7 0.36958 12784.9 0.368643 12788.1 0.367694 12791.3 0.366771 12794.5 0.365828 12797.7 0.364898 12801 0.363892 12804.2 0.36293 12807.4 0.362503 12810.6 0.360994 12813.8 0.360172 12817.1 0.35914 12820.3 0.358217 12823.5 0.357312 12826.8 0.356363 12830 0.355414 12833.2 0.354541 12836.5 0.353643 12839.7 0.352713 12843 0.351809 12846.2 0.350917 12849.5 0.350013 12852.7 0.349121 12856 0.348217 12859.3 0.347306 12862.5 0.346369 12865.8 0.34542 12869.1 0.344573 12872.4 0.343675 12875.6 0.342662 12878.9 0.341777 12882.2 0.340898 12885.5 0.339962 12888.8 0.338974 12892.1 0.337943 12895.4 0.337076 12898.7 0.336153 12902 0.335357 12905.3 0.334452 12908.6 0.333503 12911.9 0.332516 12915.3 0.331611 12918.6 0.330834 12921.9 0.329841 12925.2 0.329006 12928.6 0.32807 12931.9 0.327172 12935.2 0.326325 12938.6 0.325427 12941.9 0.32456 12945.2 0.323529 12948.6 0.322541 12952 0.321662 12955.3 0.320739 12958.7 0.31979 12962 0.31886 12965.4 0.317803 12968.7 0.316802 12972.1 0.31593 12975.5 0.314981 12978.9 0.314019 12982.2 0.313102 12985.6 0.31228 12989 0.311287 12992.4 0.310338 12995.8 0.309497 12999.2 0.308529 13002.6 0.307688 13006 0.306739 13009.4 0.305631 13012.8 0.304624 13016.2 0.303764 13019.6 0.302771 13023 0.301847 13026.4 0.300923 13029.8 0.300083 13033.3 0.299134 13036.7 0.298236 13040.1 0.29735 13043.6 0.296471 13047 0.29549 13050.5 0.294376 13053.9 0.293777 13057.3 0.292822 13060.8 0.29193 13064.2 0.291025 13067.7 0.290013 13071.2 0.28921 13074.6 0.288389 13078.1 0.287389 13081.5 0.286503 13085 0.285599 13088.5 0.284611 13092 0.283554 13095.4 0.282586 13098.9 0.281694 13102.4 0.280764 ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.723766 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/0000755000000000000000000000000014741736404015733 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/AdvancedAlignmentScanPlugin.html0000644000000000000000000002647214741736366024173 0ustar00rootroot

Alignment plug-in Documentation

Contents


1. Usage and Description
2. Methods used by the plug-in

Synopsis

Due to uncertainties in the experimental set-up, recorded data might be shifted unrelated to physical effects probed in the experiment. The present plug-in calculates this shift and corrects the data using a variety of different methods.

1. Usage and Description

Data that is subject to a shift must be loaded into the plot window of the main application. The plug-in offers two ways to treat the data: a shortcut options called 'Perform FFT Shift' calculates the shift and directly corrects the data and the 'Show Alignment Window' option showing a window that allows for specification of the shift and alignment methods as well as offering the possibility to safe calculated shifts respectively load previously calculated shifts from a file. It is also possible to enter shift values by hand.

Once the Alignment Window is opened, the alignment method and the shift method must be specified. The alignment method specifies how the shift is calculated while the shift method determines how the shift is applied to the data.

The table shows three columns: The first one shows the plot legend of the data that will be corrected by the shift method. The second column shows the plot legend from which the shift is calculated. The third column shows the shift values calculated by the alignment method in units of the plot windows x-axis. While columns one and two can not be edited, shift values can be entered by hand. Another way of setting the shift values is to load them from a existing *.shift file using the Load button.

Once the shift values are set, they can either be directly applied to the data present in the plot window using the Apply button or the data can be stored in memory. The latter options allow to use a reference signal recorded during the experiment to determine the shift and then apply the shift values to a different set of data.

Notice: In order to match different sets of data to another, as necessary in the case of a reference signal, the order in which the data is added to the plot window is crucial. If one switches between two sets of data where one set aligns the other one it is highly encouraged to consult the table in the Alignment window to check if every element in the two different sets of data is assigned to its correct counterpart before applying the shift.

If the data in the plot window is zoomed in to a distinct feature, only the visible data range is used to calculate the shift.

up

2. Methods used by the plug-in

Alignment methods are used to calculate the shift. Present methods include FFT, MAX, FIT and FIT DRV.
FFT
Uses the Fourier Transform of the curves to calculate their cross-correlation. The maximum of the correlation is determined and yields the shift value. This method is the default option. Since it is not affected by the peak shape, it is fast and numerically robust. Notice: the shifts are given in real space values.
MAX
Determines the maximum of each curve. The shift is given by the differences in the x-position of the maxima. Notice that this method is highly vulnerable to noise in the data and spikes.
FIT
This method subtracts a background from the data using the SNIP algorithm (c.f. plug-in section, Background subtraction tools) and searches for peaks in the data. For every curve, the single most pronounced feature is selected. The peak is fitted by a Gaussian model. The shifts are then given by differences in the x-offsets of the fitted Gaussians.
FIT DRV
Uses the same procedure as the FIT method. However the fit is applied to the first derivative of the data. This method is only recommended for X-ray absorption data.
Shift methods are used to apply the calculated shift to the data. Present methods include 'Shift x-range' and 'Inverse FFT shift'.
Shift x-range
This method takes the x-range of the respective curve and adds the calculated shift value to every point.
Inverse FFT shift
Takes the Fourier Transform of a curve and multiplies the shift as a phase factor. The multiplication of a phase factor in Fourier space translates to a shift in the x-range in real space. The shifted data is given by the inverse Fourier transform. Notice: In the process, the data needs to have a equidistant x-range. If this is not the case, the data will be interpolated on a equidistant x-range. Due to the cyclic nature of the Fourier transform, this method is recommended for data that has linear background.

up ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/Display-HOWTO.html0000644000000000000000000001077614741736366021146 0ustar00rootroot

Data Display HOWTOs

HOWTO - Display data from SPEC
HOWTO - Display data from Specfile format files
HOWTO - Display data from EDF files
HOWTO - Display data from raw ASCII files
HOWTO - Display data from HFD5 files

Display SPEC data

PyMCA can display SPEC shared memory arrays.
Just select File-Open-SPS and select the name of the SPEC session you're interested on. Then select the array to display and the columns or rows to be displayed. You can also do that selecting the SPS tab of the source selection widget.
 

Display Specfile format data

Select File-Open-Specfile (or select the Specfile tab of the source selection widget) and browse your directories for the desired file. A list of scans will be presented showing the number of points and the number of MCAs in each of them. To select a scan just click on it. If it contains just one MCA you can then click the ADD button to add that MCA to the MCA graphics window. If it contains several MCA you will have to select the MCA tab and select the different MCAs to be plotted (click, CTRL-Click and Shift-Click supported) then click on ADD, REMOVE, REPLACE depending on the desired operation. Specfile SCAN data can be shown on the SCAN window. To do so, select the SCAN tab, select the x counter, the y(s) counters and click ADD.
 

Display ESRF Data Format (EDF) Files

Select File-Open-Edffile (or select the Edffile tab of the source selection widget) and browse your directories for the desired file. The first image of the file will be presented. Horizontal or Vertical selections can be made either a) clicking on the image or b) selecting the appropriate row or column on the bottom combo selection boxes and clicking the ADD, REMOVE, REPLACE buttons.

Multiple image EDF files are supported. Just select the appropriate image in the combo box.

Display Raw ASCII data

Single MCA raw ASCII data are handled in the same way as Specfile format files. Please refer to the Display Specfile information.

Display HDF5 file data

A simple analogy of an HDF5 file is that of the file system on a hard disk. A hard disk can contain files that can be into folders that in turn may contain other folders. An HDF5 file contains datasets (your data) that can be arranged into groups that in turn may contain other groups. The analogy goes till the point that you can create links between datasets or groups and that to access a dataset or a group you have to provide the path to it.

Obviously, from a graphical user interface point of view, the logical access to an HDF5 should be provided by something similar to a file browser. The HDF5 file browser used in PyMca is based on a contribution by Darren Dale.

The data in an HDF5 file provide information about their size and type but they do not provide information about what they represent. Therefore, the approach followed by PyMca to properly visualize the data is cumbersome (at least when used for first time) but simple. The approach is based on creating a selection table with the datasets of interest. This can be achieved by double clicking the relevant datasets or via a right-button mouse click. The nice feature is that the table provides a context menu (right-button mouse click) allowing the user to save or load selection tables therefore reducing the need to repetitively browse the file. In addition, the selection table is saved among the PyMca settings (File Menu -> Save ->PyMca Configuration or File Menu -> Save Default Settings).

Once the datasets of user interest are in the table, he can select what datasets are to be used as axes (first table column containing checkboxes), as signals (second column containing checkboxes) and eventually as monitor (third column with checkboxes). The only selection that is mandatory to generate a plot is the one corresponding to the signal. In case of selection of several axes, the order in which the check boxes were selected determines the dataset to be used as first, second or third axis. For a simple 1D plot, one would select the dataset to be used as abscissas under "Axes" and the dataset to be used as ordinates as "Signal".

././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.723766 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/0000755000000000000000000000000014741736404016700 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula1.png0000644000000000000000000000305714741736366021110 0ustar00rootrootPNG  IHDR7νRPLTE_AWf0[WL"_-W l:C0[DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_filesimage004.gifwb&8wWw\\"@0w-w"qi[h[y YH$Tw"q;E:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_files\image004.gif$q"$$i[;dy&0[ ""Uw%wN7W|ffh["W|9W|D"_tRNS < pHYsodIDATx ;d3/CmKj[Xp:{e*Jpt @4K礙㐁=ך+pI sa EZnslR d/ AW}d#~$ 89D@.+8~_7wu󜒵阹 X6'Lm|6\(v P6(¨NKͥK;qΡA1PQ-R(paap=8g41b.Ad*W8.Zp恜plY5; inGdBA1thz[ AW3v`-AzZ']Q.Gw nKkw3ʣ*,?UȄg+K˾ĚZo^1d2ؤOkP{ܺ T  rO}nIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula2.png0000644000000000000000000000256014741736366021107 0ustar00rootrootPNG  IHDR'PLTE_AWfWL"_-W l:CDXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_filesimage006.gif TWwD00r@bwBl BD-w"$i[h[ YH$Tw"$;E:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_files\image006.gif$$"$$i[;dy+uq ""Uw%wN7W|ff:1554"W|9W|D"tRNS < pHYsod IDATxՕ D3=ijdӍe"q@ 0ڎKj},^ty:"}br @G[z!.r rs2﹨5f.s:,JwOk)0YgfS`)EGvCayMDpWRBxź,E_0˩1K##d QeUJĜ.>]\ +A+{r!+ޓAڰ^aN̩/N^`F^ڋnyw?IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula3.png0000644000000000000000000000350414741736366021107 0ustar00rootrootPNG  IHDR>"ifdPLTE_AWfWL"_-W l:CDXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_filesimage008.gifwb&8wWw\\E@0w-w"%i[h[ YH$Tw"%;E:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_files\image008.gif$%"$$i[;dy+uq ""Uw%wN7W|ff:1787"W|9W|D"Ɉ,tRNS < pHYsodIDATx홉v EttpD֜V+I;^4`thˀ XOɬ{$NM;ɴws$ϔٓN6&VP~h=VD OXTG б ᎗;m܉wgR"J~zH;{H;'0;˭`Q^S-FT'0|4\1O?"p.TzZ 2vjӑ/mG\"G޼Zg*'DdEdbȯr,x%E޴\>f_B?p}1zpQ=7М|me?V:yIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula4.png0000644000000000000000000000326414741736366021113 0ustar00rootrootPNG  IHDR-{5OPLTE_AWfWL"_-W l:CDXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_filesimage010.gif TWwD00r@bw*IJ IA-w"# i[h[ YH$Tw"# ;E:\segfs\bliss\source\applications\PyMca\HTML\PyMCA_files\image010.gif$# "$ $i[;dy+uq """Uw%wN7W|ffZ]1jw"W|9W|D"}tRNS < pHYsodNIDATx홁n D!nfƚB0c;Z)O0U0ꦶg{W\B`/]nϗ`jܮ$[CW bzNVgZ F3DFs L!޳04LS0A|Lz+"Ec-!_ 4J2\CKQ6GJ 6.acaqm9%طx4důg " WW4p-1a KUZ e2?GrooRƄG7!R9m|#|ܝEA栫Gy3:;pNʚ)o yA9jrsk\HTutn/}~ÖpwAͲ($mj搪ƠŐZ{?%ֹ /,Q,L !K:7錱!#ھ u`Єi0"V SpcưicpcxIs%&TIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula5.png0000644000000000000000000000273514741736366021116 0ustar00rootrootPNG  IHDR+`!PLTE_AWfWL"_-W l5>DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\IMAGESimage012.gif TWwD00r@bwb&: ;;-w"$i[h[ YH$Tw"$;E:\segfs\bliss\source\applications\PyMca\HTML\IMAGES\image012.gifw"$$"$$i[;dy+uq """Uw%wN7W|ffZ]1jw"W|9W|D"dtRNS < pHYsodwIDATx 0 E_V`̨q$)V8Ё.a!_z1Lk/y1rQX $ws։ #ѹon :&v$\4HYI$Ï R7ɐE/eIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula6.png0000644000000000000000000000306314741736366021112 0ustar00rootrootPNG  IHDRy;hPLTE_AWfWL"_-W l5>DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\IMAGESimage014.gif TWwD00r@bw#j 9<-w"i[h[ YH$Tw";E:\segfs\bliss\source\applications\PyMca\HTML\IMAGES\image014.gifw"$"$$i[;dy+uq ""Uw%wN7W|ff:1452"W|9W|D"PP)tRNS < pHYsodIDATx嗁 E˺ ׋H]dъEݶE. .ULC}}-y-PGr#߁=r :`vkɔȯO:MCJhhv-':2!YDҋ`s vxnkFF60 1G-'dΐσUp3KKV3 ,YQkФDEX\*g( Y5W=Œ5z1 T;TJ-lȐ/ q=Uq'~NhM V^xݔ4꤮\~B94FsɇTcPfh٥\|tC94};|̽N=zF-[`'~mɣk-~mLnt (룉,YcC^󩂧溦|շ{K%/?X8IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula7.png0000644000000000000000000000357714741736366021125 0ustar00rootrootPNG  IHDR21nPLTE_AWfWL"_-W l5>DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\IMAGESimage016.gif8wb&8wWw\\E@0w-w" i[h[5 YH$Tw" ;E:\segfs\bliss\source\applications\PyMca\HTML\IMAGES\image016.gifw"$ "$$i[;dy+uq """Uw%wN7W|ffZ]1jw"W|9W|D"í @tRNS < pHYsodIDATx r#! E/=h1T\Fv/3+cCN(fd[ _dn!#BdT$¾Y,Bz0i4] )M"S/2ܧ4Muk# ^1,Zɝ>QlhV&EFF%\jb٬uB? w-=al^&n`+2β}ZT-Gsf5(D"N.΁LV@o,w42lg`lOȲ  iRW-_p|N؈IR ٹwhplrtOM*2)~AGT4*'gl`w8Szco2hV23"#oɲ C,dUۥ=P%W-MR{}Ȕ(†5VO)b~8ߊ LmS?m7&@ʶ})ى+Ñ p`^@ǜl)}|MBÜ'Pp!ydQ}e%oLrȐ)}/2:RX2h!;jxn"r%؄@ v+!/2DV5,{ƷBm8\/D$92lPEaW:2&lQzJo**Sq Y1gK @(RDEqeCzSLo8N@mr曛N}"sq&f78i/j鯚IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula8.png0000644000000000000000000000252114741736366021112 0ustar00rootrootPNG  IHDR`(6M PLTE_AWfWL"_-W l5>DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\IMAGESimage018.gif TWwD00r@bwb&<P =?-w"i[h[ YH$Tw";E:\segfs\bliss\source\applications\PyMca\HTML\IMAGES\image018.gifw"$"$$i[;dy+uq ""Uw%wN7W|ff:3058"W|9W|D"l BtRNS < pHYsodIDATx͖ ^Ī-Y4=Ge3!l)&x޻+Ux+~q^ "oʝ!`ϐ7M6C5%>]@~2/ᶿSNA\jAJ|.t@L&# %H\K I_" :r-AM]K{IkQ8v<'\3_:@Ι ?&=/IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/Formula9.png0000644000000000000000000000330614741736366021115 0ustar00rootrootPNG  IHDR+PLTE_AWfWL"_-W l5>DXGOpenwH fE:\segfs\bliss\source\applications\PyMca\HTML\IMAGESimage020.gif8wb&8wWw\\>@0w-w"$i[h[ YH$Tw"$;E:\segfs\bliss\source\applications\PyMca\HTML\IMAGES\image020.gifw"$$"$$i[;dy& ""Uw%wN7W|ff:95,"W|9W|D"tRNS < pHYsod`IDATxZ0 $ӎ M6 uT ve9 h}76hK $gM[⣟P l}:Jmm(j|"K{sf˘BⵝfޮDnE&Wmx bUKx`~ `{'"[ ~xiKùl b9uD_a\ʂⲶvdI} `@gs Yi ReuHEu{Ee9#ezGkCA:} />H7gC&GY%5WHXq2y(f::$:J8 R + kr{wI 49:D)Y2\l׭mRj]}>RM|ex/9̳x٢O ]tKDy m1i*uTgȑ$7RTkDOv( 6KT2:T5TبLke,tR@LdT{23XK<]܅Hn_P" rζiK} :VqL6JlJL4׮KV<m,N tR^nމqZXDzs2HdHD(Y6rt%qR9Z2')%JzkzW 5 3{JꜪ:ڗccl\T==GHLͻl~Q>>9? )/ >diݲjIP*g )M+>%Ǽv!1y2%ʍSdO^8CUiψAWM$ZTV,Vg0g=P, :Y%MF@ >Ҡk+gZ+)בŋP$|Y h2^ʤrk2*Xp-f;'2ؙo`;VN}tڊmċۚ ̛;|5bGv2ݺVH;v!쉚(ZΧvhʪ5+Zk';././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/image010.gif0000644000000000000000000000140414741736366020700 0ustar00rootrootGIF89a 1w1!Software: Microsoft Office!,-c Aڋ޼0扦ze Qd/)rLWѓz VIʮN2:5د KAgVm_qt7Ux6ח!GEH7&fhy8hE)V9JJwy9ixY zȚ )׉S s꠹e씦ZͶ썖c%~.t jR~8FyoU?"7}2Y Y]z8;&ÐGkLc16f<zބtYc +s~@$]A‘4i1ؼ3 JT MQ*ѧ<~U,6ld13B,P8=|/'c,G`v8~`z9R9`\CdBiǟUIx&Ɯm=;#q{ wcѨM:f#?YM>L"K;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/image012.gif0000644000000000000000000000102314741736366020677 0ustar00rootrootGIF89a1w1!Software: Microsoft Office!,+ً޼ H9*ʶ+Lי,>9 () LȪ ʢTj~Oصq^zVnxZ W#◧FxtVH(X6vyA!) y:y3jWxHȐ[+JRQ qH$ :L| ͬ|gZt +=InWݛZK͞NL;~nln_9u}J`4YSaZX6[I⥈r8 "󏢊Ah<2^Ln(vyՄd /t!b;{-& OT"5U9\z0Pc2jVϴicDj M4]=BDpu2!a6nx5l c8[yzV d̑4-DCqIN4$wn%lPi"9ZsVBjPkI$ő@zr: -;^JaQ?fj0%).3#M]xEϖkik_pPZ۰qE|e@7v<ƙu|㺷1KW~ ;lbA+ZJ16hԺ&9NεA?|\ڙow|T潫^*#V8>BF黻EG{qGW1^yf)7v]d je Wu]LeWyA嵢%sȎ!O.3&"D6^Z: }H#o5I*/Xv2*`Sv"NZiYZf6ecWӜttٙ&ilцxi+9dQh c(NT D& CvJ֙iujQz,]:%g;zIAbvZJkeڊJ%*)ڳ*[~:lt< [ mhÃb+v&c-['nZɼUo'p譯q5L}Wlq;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/IMAGES/image018.gif0000644000000000000000000000057014741736366020713 0ustar00rootrootGIF89ae/w1!Software: Microsoft Office!,`(ׄkin)oyH.0*"Ԫi\,E3;Raxz&WZP!^ JHwXSD9idBKnwFm/5*-=Xl&8֔NJϕwT"~bgwU¸ONT(=W-AҮ˺׃Ukn\#! EbՋ`]I" r l x1ULVxb86v3cI˜2bBKTz]λ;Vf-0=ihx@) HdR얊NONT^X&Y;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/MCA-HOWTO.html0000644000000000000000000001322714741736366020133 0ustar00rootroot

MCA HOWTOs

HOWTO - Display MCA spectra in energy instead of channels 
HOWTO - Calibrate MCA spectra 
HOWTO - Define a ROI 
HOWTO - Fit MCA Spectra 
HOWTO - Simple fit 
HOWTO - Advanced fit 


Display MCA spectra in energy instead of channels 



At the calibration combo box below the Mca graphics window, select Internal. If the spectra in the graphics window have an energy calibration associated (either they were already calibrated or they have been calibrated by PyMca), each spectrum will be shown with its corresponding calibration. 

The default options of the calibration combo box are: 
None - Spectra are shown against channel number. 
Original - Each spectrum is shown with the energy calibration it came with. 
Internal - Each spectrum is shown with the energy calibration it came with unless it has been recalibrated in PyMca. 

Other options will be present in case the user has previously decided to perform an energy calibration. Selecting any of these non default options will plot all the spectra with the same selected energy calibration. 

Calibrate MCA spectra 


Select the spectrum to calibrate by clicking on its legend. 
Click on calibrate. 
If you want to enter a calibration by hand or to copy a calibration from other curve, click edit. The rest should be more or less self-explanatory. 
If you want to calculate a new calibration from the data themselves, click compute. You will be presented a new graph window with the selected spectrum. 
The program offers to you the possibility to search automatically for peaks (you should give an estimation of the FWHM of the peaks) or to enter a peak with the mouse by selecting the manual search icon. 
Found or entered peaks will be denoted by vertical markers on the graph. To enter the associated energy to that peak just click on the marker. Do that for all the peaks you would like to use. 
Once you have finished click OK to validate the calibration or Cancel to disregard it. Back to the main application, select the appropriate option in the calibration combo box. 

Define a ROI 


A table of Regions of Interest (ROIs) may be seen below the MCA graph. A default ROI named ICR is always present. 
The Raw counts contains the total counts between the markers. 
The Net counts contains the Raw counts minus the counts under an imaginary background line going from the spectrum point at the beginning of the ROI to the spectrum point at the ending of the ROI. To define a new ROI just click the "ADD ROI" button and move the blue markers (click and move) to the appropriate position(s). 

Fit MCA Spectra 


Select the spectrum to be fitted by clicking on its legend. 
Select the region to be fitted by zooming with the mouse. 
Click on the Fit Icon. Select "Simple" or "Advanced" depending on the type of fit to be performed. 

Simple Fit 


PyMca automatically searches for peaks in the spectrum, divides the spectrum in several regions depending on the separation among peaks and on the FWHM specified in the configuration and presents all the results in a table. 
Peaks for which the calculated area presents potential problems are underlined in red. 
WARNING:
If you are interested on the peak areas, the fit has to be made with the calibration set to None. If not, the calculated areas need to be divided by the value shown besides B: of the used energy calibration in order to get the actual areas. 
If you are interested on peak FWHM in energy, the fit has to be made with the calibration set to an option different from None. 

Advanced Fit 


This is PyMca main reason of being. The initial goal of PyMca was to supply an interactive tool to set up the configuration file of a program for batch fitting of multiple spectra. 

The expected procedure is: 
- select an active curve 
- calibrate it if not already calibrated 
- select internal calibration 
- zoom to the desired fitting region 
- click fit icon 
- select advanced 
- configure 
- fit 

The "Configure" button opens a dialog box with several tabs. 
The FIT tab allows to specify convergence criteria. 
The PEAKS tab allows the user to select the elements and lines (K, L1, L2, L3) to be considered. Elements with selected lines are shown in yellow. 
The PEAKS SHAPE allows fine tuning of the HYPERMET function describing the peaks. 
The ATTENUATORS tab allows to take into account absorbers that could modify the peak ratios of the elements as seen by the detector. 

It is convenient to SAVE the final configuration in a file for using it in other session or in batch mode. 

The "Tools" button shows a popup menu offering to print the table or to generate a detailed HTML report. The report can be visualized by any web browser. A detailed description of the fitting function(s) and most of the algorithms used can be found here ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/Menu.html0000644000000000000000000000305214741736366017534 0ustar00rootroot

Main Menu

File
Mca Tools
Window
Help

File

Open - Offers the user to select the source of input data: Specfile, EDF file or SPEC shared memory.
Save - Not yet implemented.
Save as - Not yet implemented.
Print - Prints the graphics window.
Quit - Closes the application.

Mca Tools

Hide Source - Hides the source selection widget allowing the use of a larger graphics display.
Show Source - Shows a previously hidden source selection widget.
Elements Info - Shows a periodic table to get X-ray properties of the elements.
Identify Peaks - Shows table of Elements with emission lines close to a given energy.
Batch fitting - Calls the batch fitting tool.
PyMCA Post-batch - Calls a visual correlator. Only available under PyQt4.
ROI Imaging - Opens a stack of to perform ROI imaging. It needs PyQwt5.

Window

Allows customization of the way the MCA and SCAN windows are presented. By default the SCAN window is hidden.
 

Help

Main Menu - You already know, don't you?
Data Display HOWTO - Data display related information.
MCA HOWTO - Common MCA operations information.
About - Shows the PyMca version.
About Qt - Shows the Qt version used. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/N4f.png0000644000000000000000000000154614741736366017105 0ustar00rootrootPNG  IHDR8M 0PLTE/ݠ{tRNS2TDvf"݋"^IDATH TAh`.]ܦ[S{K"2 8WxRcjתWWw=</*2/c9Ӝ\r5Ǧzw!ꂎmCPV _2̅`S1"g$0A?/*ޔkѪQ G$(+:X4`$ FJ s i :.;(3.4_nV\N [Q2VZT st L l晘6.4yC[iRa֝{(]z{+K6Ɛ85*NJ?-[ c|*at:S}3ѱd Continuum/background Models

PyMCA X-Ray Spectrum Analysis in Python

V. A. Sol and E. Papillon.

European Syncrothon Radiation Facility (ESRF), 38043 Grenoble Cedex.

 

1. Introduction

 

Up to date most, if not all, spectrum fitting for X-ray fluorescence measurements at the ESRF (ID13, ID18F, ID21, ID22) has been performed using externally supplied software (generally based on the AXIL software developed at the University of Antwerp, Belgium). Whilst this software is fairly robust and reliable, we have very little influence over its development and consequently its direct integration into our control system and subsequent data analysis routines is not straightforward. A further limitation is that we can not distribute that software to our user community.

 

A versatile non-linear least-squares fitting application had been already developed as part of the tools of the BLISS group at the ESRF and had been used among others by the NewPlot visualization package. That fitting application, based on the Levenberg-Marquardt algorithm, is implemented entirely in Python, thus ensuring a high level of platform compatibility and straightforward integration with the ESRF control system. The logical step to follow was to write a dedicated function to describe the x-ray fluorescence spectra and feed that function to the fitting module.

 

The need to have an easy way to setup the configuration parameters of the fit, led to the development of a complete visualization and data analysis tool, PyMCA, that relies on Qt and Qwt to build its graphical interface and plotting routines. Nevertheless, the fitting code can run in prompt/batch mode fully independent of any graphical package, and its output file, can be used by other python module (also GUI independent) to automatically generate a fully detailed HTML report that can be visualized by any browser.

 

2. Algorithms

2.1 Continuum/background Models

 

The continuum is modeled in two possible ways: estimation or fitting. In the former the estimated background is subtracted from the experimental data prior to the least-squares fitting of the fluorescence peaks. In the fitting mode the continuum is described by an analytical function which enters into the least-squares fitting algorithm.

 

For the time being PyMCA implements one of each of the models. Background can be estimated thru an iterative smoothing procedure in which the content of each channel is compared against the average of the content of its neighbours at a distance of i channels. If the content is above the average, it is replaced by the average. In order to speed up the procedure, i can be taken as a fraction of the peaks full-width-half-maximum (FWHM) at the beginning of the iterative process, being one at the end of it. The only analytical function currently supported to describe the background is a linear polynomial that can also be used in conjunction with the stripping procedure.

 

2.2 Peak Shape Model

 

The following is drawn primarily from a description of Least-Squares fitting of XRF spectra in [1]

 

The response function of most solid-state detectors is predominantly Gaussian. In certain instances it may be necessary to resort to more complicated models such as Voigt or Hypermet [2] functions.

 

A Gaussian peak is characterized by three parameters: the position, width, and height or area. It is desirable to describe the peak in terms of its area rather than its height because the area is directly related to the number of x-ray photons detected, while the height depends on the spectrometer resolution. The first approximation to the profile of a single peak is then given by:

(1)

 

where A is the peak area (counts ), s the width of the Gaussian expressed in channels and x0 the location of the peak maximum. The FWHM is related to s by FWHM = 2.355 s.

 

In Equation (1) the peak area is a linear parameter; the width and position are non-linear parameters. This implies that a nonlinear least-squares procedure is required to find optimum values for the latter two parameters. Linear least-squares fitting method can be used assuming the position and width of the peak are know with high accuracy from calibration.

 

To describe part of a measured spectrum, the fitting function must contain a number of such functions, one for each peak. For 10 elements and 2 peaks (Ka and Kb) per element we would need to optimize 60 parameters. It is highly unlikely that such a nonlinear least-squares fit will terminate successfully at the global minimum. To overcome this problem the fitting function can be written in a different way as shown in the next paragraph.

 

2.3 FWHM and Position of peaks

 

The first step is to abandon the idea of optimizing peak and position of all peaks independently. The energies of the X-ray fluorescence lines are typically known with an accuracy of l eV or better. The pattern of peaks observed in the spectrum is directly related to the elements present in the sample.

 

Based on these elements we can predict all of the X-ray lines that constitute the spectrum and their energies. The peak fitting function is therefore written in terms of energy rather than channel number.

 

Defining ZERO as the energy of channel 0 and expressing the spectrum GAIN in eV/channel, the energy of channel i is given by:

 

(2)

 

and the normalized Gaussian peak can be written as:

 

(3)

 

with Ej the energy (in eV) of the x-ray line and s the peak width given by:

 

 

(4)

 

 

In this equation NOISE is the electronic contribution to the peak width (typical 80-100 eV FWHM) with the factor 2.3548 to convert to s units, FANO is the Fano factor (~0.114) and 3.85 the energy required to produce an electron-hole pair in silicon.

 

The least squares fit optimizes ZERO, GAIN, NOISE and FANO for the entire spectrum (fitting region), thus for all peaks simultaneously. One can, after the fit, calculate the position of the peak (using eq. 2) and the width of the peak using eq. 4. (s in sigma of the peak in eV!!!), convert to channels via the factor GAIN and to FWHM via the factor 2.3548.

 

2.4 Element Line Groups

 

A further simplification that can be applied to reduce the number of fitting parameters is to model entire elements rather than single peaks. Some lines can be considered as being grouped together such as the Ka1, Ka2 doublets or even all K lines of an element. A single area parameter A representing the total number of counts in the line group can then be fitted.

 

The spectrum of an element can then be represented by:

 

(5)

 

where G are the Gaussians for the various lines with energy Ej and Rj the relative intensities of the lines. The summation runs over all lines in the group (Np ) with SRj=1. The transition probabilities of all lines originating from a vacancy in the same (sub-)shell (K, LI , LII ...) are constants, independent of the excitation. However, the relative intensities depend on the absorption in the sample and in the detector windows. To take this into account, the x-ray attenuation must be included in Equation (5). The relative intensity ratios are obtained by multiplying the transition probabilities with an absorption correction term:

 

(6)

 

The absorption correction term Ta (E), used in the equation (6) includes the x-ray attenuation in all layers and windows between the sample surface and the active area of the detector.

 

2.5 Sum and Escape Peaks

 

The escape fraction f is defined as the number of counts in the escape peak Ne divided by the number of detected counts (escape + parent). Assuming normal incidence to the detector and escape only from the front surface, the following formula can be derived for the escape fraction (Reed S.J.B., Ware N.G., .J. Phys. E 5 (1972) 582)

 

(7)

 

where mI and mK are the mass attenuation coefficients of silicon for the impinging and the Si K x-ray fluorescence radiation respectively.; wK is the K-shell fluorescence yield and r the K-shell jump ratio of silicon. The calculated escape fraction is in very good agreement with the experimentally determined values for impinging photons up to 15keV. The area, relative to the area of the parent peak can be calculated from the escape fraction:

 

(8)

 

Si escape peaks can be modeled by a Gaussian at energy 1.742 keV below the parent peak. Including the escape peaks, the description of the fluorescence of element becomes

 

(9)

 

where G represents the Gaussian fitting function and Nesc the energy of the escaped photon.

 

So they are not fitted as truly independent peak, but they are part of the multiplet. For spectra obtained with a Ge detector one needs to account in a similar way for both the Ge-Ka and the Ge-Kb escape peaks for elements above arsenic.

 

Summing correction is performed by using a very intuitive approach. Since any of the peaks can be detected simultaneously with any of the other peaks, one can calculate the summing contribution of channel i, simply shifting the whole calculated spectrum by i channels and multiplying it by the calculated content of the channel times a fitted parameter. This is then repeated for all the points of the spectrum. The physical meaning of that parameter, for a time acquisition of one second, could be interpreted as the minimum time, measured in seconds, needed by the acquisition system to distinguish two photons individually and not consider them as simultaneous.

 

3. Conclusion

 

Despite being at its early stages, PyMca and its fitting engine already implement most of the needs of x-ray fluorescence spectroscopy. It is fast (~1 second per complex spectrum with < 1 GHz processors), portable (it already runs on Solaris, Linux and Windows) and can be freely distributed. Current developments are focused on the implementation of alternative continuum algorithms.

 

References

 

[1] R.E. Van Grieken, A.A. Markowicz. Handbook of X-ray Spectrometry, Chapter 4: Spectrum Evaluation, Ed. Marcel Dekker, New York 1993.

 

[2] G.W. Phillips and K.W. Marlow, NIM 137 (1976) 525 536.

././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA.pdf0000644000000000000000000013124414741736366017353 0ustar00rootroot%PDF-1.4 % 240 0 obj<> endobj xref 240 13 0000000016 00000 n 0000001007 00000 n 0000000556 00000 n 0000001244 00000 n 0000001478 00000 n 0000001948 00000 n 0000002669 00000 n 0000002915 00000 n 0000003155 00000 n 0000003232 00000 n 0000006343 00000 n 0000006783 00000 n 0000000827 00000 n trailer <<87ea97f3be504741b0f097a0118f3cff>]>> startxref 0 %%EOF 242 0 obj<>stream xb``` <001.;*0s4O H|IEk{/9*NLX‚E s|```q*T2RL @JaR @$ec*a%Sӷl3vxf1M: `@l Ģ L(0/ endstream endobj 252 0 obj<>/W[1 1 1]/Type/XRef/Index[29 211]>>stream xbbe`b``Ń3  endstream endobj 241 0 obj<>>>/LastModified(D:20041019154705)/MarkInfo<>>> endobj 243 0 obj<>/ProcSet[/PDF/Text]/ExtGState<>>>/StructParents 0>> endobj 244 0 obj<> endobj 245 0 obj<> endobj 246 0 obj<> endobj 247 0 obj<> endobj 248 0 obj<> endobj 249 0 obj<>stream HWnH|W#H w.:EnxZbKMrfo&)RvDKϥN짟^|x}y_y<`w/~yz1ֻz+_fqwq=y,R7 ,a;ceIC#JXQ'u+XbJyQF,ry4/tC]>g[}MQu:п~ us:v5<=n{^DumHQSmk]EŊ;y!TĶ( ubۇOK^_ZY՛R2ߑn'n{xCՁpb( 8T.T[Vu#nt5y sx{+P|{Dle9@Q~lafP=՝ZbVՊ\h]D'PeNKϿZ4ܾne#E׷RTg&y'~]l]6sb Ã%Rdz1]o膜>|\Fʊ5"u ;ˌ%1syP,+قu}Ӕȶ#͋:D㼠NWQ%UA7'9_߳S>e0d&K.gwl;bX쨣l pQj&`ͳ~%}S߇HX^DѢzC٦g*I, /QbV$C'QP`Q^#iL9!06)WR@툞zeNU'GTTg{)B|Q)-ZB2+u1~olPڍֽ^QSwPBh(DNY cCGjP1'M-BV7wAyq[l*/W@:8l:70];I~z+:K~ DP;3#7\/ Z Wu*10C/ժ(Jsޛ'fꂴikt>QR3}M{bko* RUe7yņmb?}rzQ_MV&'&O@EǛSS?ԷEY!4OA@B#tAJ&k O6QxR-B=6ݯxhyD>mD%DӦ)w".BPtF2*f>%2;f%hvf45%a6e^)*6ڜQhhVD3p'f0.ү&:o @hE>_Y%$uqihAa$Y<4vzO3aAUR"pjX#;xp%Z˜8Vq!؜d)ny>I}#Ξ̶$edJڞ|kgg&^lju.`ȹU._FZ8[s(ˈ~axJ?0"bPh(鱽 2˔F] ட^4HXlU_YK#yh(y8g5+\)JlDv44x>ѫ\r/+܇잷8ĺ }|x"4u )LFZЈ.nqÖ4f*i#lM IEg]@ޙ@FA9g 4[wA>QM횞Gvp &̜SN"6}k,'0oLp z+O/vG7dvrCE)Q>E5A*ԖlUB9THk]Wl#ȩn섺YWn*D55K)!uVf92ĵcf/OM\;8Vȶ7jz5mJz7xzWx>]h^nM]ٓl=6'?EďqU cI lY !^uuׅ\ShuȬti1r٫՚.M~vv͸mOP(Ll46w1\>3;/4ʼo%IQf1&g7Cg! xATdOE\^mpL& x=K/N* C;k87YoFj-S4 [K$"ueڈ ,Lˡ7O\x\ Tl9i$om`^(B%Fԡny' I &c?y)wgOMqJ"mUs*,d3@*H˄9mJʤU팃Q> endobj 251 0 obj<> endobj 1 0 obj<> endobj 2 0 obj<>/ProcSet[/PDF/Text]/ExtGState<>>> endobj 3 0 obj<>stream HWk6_r"E-bit7f$hYV+9z!eˎ"ApcQ"qpo?߯ZH-'Dea"w[qO:CXP#\DaEGPxRne= s! R;'R.XK[au{;Qbc4x)]u$]U?Uк/Šm]u#~/ͧb]{0 '֯,wOp~!CY U3A$Ihr[Qy'?\-Il4ԩ9pɤ8g0ܡmz:6Bܷ~IlX':q"Dvv(ۮp<4wx]EHR\5v"mBkAV:̴*U;E W j ]y(6hJ|B|M1Gyp(9)|}ە`b^&A]@d+;ʂ^ci:np~5=<1gm's'#VraWf9b(T@bc;[p eRSͣ]YJAӁ q+m_><j; J/Q#/ J &\hʾ./O4,'SOPE#<)*" Ai(o1ʵYv5N{@^ AkyJ}FnAsr!C&Sl2@6#y #V}};]T[g_3VNٖ✮GuR3)잩~pObG4:y:5\JW MY>_PRyK# HNQH>Db SIPi>;`B%s- 4( JQ0/@Q [&xx`4'l@yϽS Ou(!Ajx 9I~t=*LG$}?-Tp*I iڳx+ MݩLS|!Z/_O)nѕ"VH^IMF[S2ܕouTv^Om6ז$TA{}%S7,Qd7[bB9R|!C>tkvu*%H@ _f I/3>S$7oPhjsegE;6S:e".šO97aOD3Mr=;YPɣֽBow‰]Q7gЪmpUV}q=?OMwFtHlesR&>~}'?2)g\;{}-? NA4Q4S qp ^5c^JD6M /-`@?cufkU~kwsOOl󧑁DB> 1䁟VҀ减KL)xɍ& 0~5M]St~΀$oB[>1eC9YUdPgɈ ruURɰhԋxdusԥU8svDb}1y"/O'a`L0#T0q*؁FDoOp0sI9)bhcvۭ(tޘ-1Ҹ|Sr3_sRQs`%8J;0# -ͬy(jgQ>lG}up(F^wx;)SXes!-l]m:'7ݭ %\IS[ }U"vyawGGR:H[]q\&ASpatGlĈX`qKXf>t}yh<6K)1~,b7:%3 %3xOʺdjpa$ zbH śq]X47 _xƈ0g?빖Nls-2>A3>s!8 hz+ҕ)JD} =TwN@(jׁ xň493iyIĩ":PCBJ}AN}g?!(3{|O_hm03h?:9Ҿc~{Iga9)ˏ6{٢ td 4`r(6ؤdw|!'ب%'˽KCcDS8|,irMR殖weAAѫBz(6޽#hM] dn`| @0P9N#z Ln'Z|u鈣"i^g_1I(^pfto( 2h㧝ku!HQUJxn&*b6iYfHrhQruU#]cZFՙ^wgyQo밌b$xKa)0[LU<%qJW 'B@$>ݠ^|,&+ZmBS˕_}}Z\Fք}?\@ endstream endobj 4 0 obj<> endobj 5 0 obj<>/ProcSet[/PDF/Text]/ExtGState<>>> endobj 6 0 obj<>stream HWn}WLކpRq4N#@>P2m3Gʥ3Cl4'6{m[n/B373!Y)2g.-,[2vŊ2,Y|)60l,K,S})GM-{VvXMZ&Rūܰ]4ULT)x*55n۪*YժowK%g_^a\dGI>RhIi|}k}ZPBG|,nBL|?W [~o0:rQa;)dd&S5Y#2_TK)ʿgTjkQTŒH}ѽ˅O~<Ίޜp^.AgE5-ޛԹByT1`״OH+ 725E"ȧc)jDh#ЏP)m|&'.-RjT:ttեBũ-6`2\)+o4x"\z@3<~eԺ&״VBh_dͯd&xȂ~@Yjj<@)BH;'JA=d!@LmUc)\y3hI命˳I0iu[X< Xz`B5̈i') נ秙鎘}n_;4h=1Ōi&΂-kٟ{#ea1X-hߏRUK m 퓥N?hN %Wấ_7Gz'#i$=;1n'K Bʯס *85,8*.Hab0q0lN4epf($ؠ5^kH!&: l G$XF吷<__`o?t|ʾ4˷tN^)w+Ɨ"?AmyWW嚹 eb09L۽Mܔf3t5iEV0M;ݔ~j(JM5զ\=]I7araR@dTib;!pqvk~ƨY=|cܞs W(Ρ$L)YxȷzX'ueiyޮv1۬Q:/5dZ`~ںe]j8mY fdA! i^ uUv=>%8!]VI01fE?$t@;_ei Ԁb;B's/0 uДơ7IjK8Sp*B_Gm5`,qqs\Rw>KpS}ܢq[$tJP]H@7aCC!˦Q^hb9ce0WmX:1Li@o˾"ؠljg'c<7ܴ>:⻎¯>Ln'+y E% ZKG:E;>K{RAVW^rț [О&މXw}VweTN}ˁ 8eo exvoB6b1^oolQHAGǑf#ǸHYEq4V¥_AZ|]:wfؑPi;YDE|و g`Q5M0_cZ& a\n:P2ytxHO,K$HR [m˶Q`x;?7,>\WkOTm)k]!cm߅`qHzزQ7뀆.eo78Es͇¾lIW_W4Gy4C|E49~iX H@dS bRAAsd:

Sum Rules Tool Documentation

Contents


1. Usage
2. Theory
3. Keyboard Shortcuts

Synopsis

The present tool serves the purpose to evaluate XMCD data according to a 1995 paper of Chen et. al. (Phys. Rev. Lett. 75, 152 (1995) and a 2009 paper of Krishnamurthy et al. (Phys. Rev. B, 79(1), 014426), c.f. Theory). To apply it, the user has to contribute a x-ray magnetic circular dichroism (XMCD) spectrum as well as a x-ray absorption spectrum of a sample.

The tool offers a graphical user interface that allows data preprocessing, background subtraction and integration of the data in an interactive manner. Results can be exported in the usual *.spec file format.

1. Usage

Open a *.spec data file by selecting 'File -> Open Spec File'. A Dialog opens displaying the file system on the left hand side and two selection frames on the right. Once a *.spec file is selected, the top right frame shows the scans in the file. Notice that the scan also can be an analysis file with the analyzed data divided into scans. If you used the XLD/XMCD Plugin of PyMca, the typical analysis file includes one or more scans that correspond to each analysis stored in the file. Once a scan has been selected, the bottom frame on the left shows the counters. One must define the counters used as x-axis as well as the XAS counter resp. the XMCD counter.

Once the selection is done, the program has the information required to perform the analysis. Click "Open" to load the data. The empty plot window in the top part of the application typically shows the XMCD spectrum in blue and the XAS spectrum in red. The bottom part of the window contains three tabs titled 'ELEMENT', 'BACKGROUND' and 'INTEGRATION'.

The analysis starts by specifying the sample in the first tab 'ELEMENT' (Shortcut: F2). From the drop down menu in the bottom left select the electron shell and the element and set the electron occupation of the outer shell. From the drop down menus in the bottom right select the absorption edges probed in the experiment. The edge values can be defined more precisely later on and the values selected in the 'ELEMENTS' tab mainly tell the program how many edges to consider.

The next step in the analysis is the sustraction of a background from the XAS spectrum. Switch to the 'BACKGROUND' tab (Shortcut: F3). A click on the estimate button (shortcut: CRTL+E), located in the middle right part of the programm, tells it to guess initial values for certain markers relevant to the background subtraction. The markers divide the XAS spectrum in three regions: pre-edge, post-edge and the region containing the absorption edges.

The model itself consists of one or two Gaussian error functions whose turning points coincide with the absorption edges. Slide the markers to the absorption edges by clicking and dragging the markers labeled 'Edge 1' and as the case may be 'Edge 2'. Every change done in this way automatically updates the model. Pre- and Post-edge regions define the constant model offsets before and after the steps by calculating the arithmetic mean over the data points inside the respective regions. Set the markers 'Pre Edge Min', 'Pre Edge Max', 'Post Edge Min', 'Post Edge Max' accordingly. Two values are missing to entirely define the module: the step width and, in case of a two-step model, the ratio between the two steps. These values can be adjusted in the bottom right corner of the 'BACKGROUND' tab. If the cursor is inside the according the selection boxes, one can use the up and down arrow keys on the keyboard to adjust the values.

Notice that the model is not fitted but only adjusted by eye. The user is encouraged to alter the quantities defining the background module during an analysis to validate the reliability of the method.

For the final step of the analysis switch to the 'INTEGRATION' tab (shortcut: F4). The plot window shows three curves: the corrected XAS absorption spectrum and the cumulative integral of both the XMCD and the XAS spectra. In the top left corner of the tab one can find markers corresponding to the integrals used to calculate the orbital and the spin magnetic moment. The latter values are displayed on the top right corner of the tab. Click the estimate button to assign an initial value to the markers. Markers p and q acts on the integral of the XMCD spectrum, marker r acts on the integral of the XAS spectrum (c.f. Section Theory for the equations).

up

2. Theory

3d samples

We use equations (1) and (2) from Chen et. al. to obtain the equations used by the present application. The orbital angular momentum is calculated using

Orbital angular momentum

while the spin angular momentum is given by

Spin angular momentum

where the n define the maximal and average electron occupation of the 3d shell. The latter is given by

Maximal occupation of 3d electron shell

The ration of the above expressions simplifies to

Ration of orbital and spin angular momentum

Both equations for orbital and spin magnetic moment the parameter p, q and r which are obtained from the integrals certain features of the absorption and the difference spectra. Following the paper of Chen et. al., we treat the case of a 3d material. The parameter r is given by the integral over the whole range of the absorption spectrum:

Integral r

Here a factor 2 is introduced by the way the XAS absorption spectrum is calculated. Instead of summation over both polarizations, the application assumes the XAS absorption is calculated as the mean of the differently polarized spectra.
Integral p considers the L3 absorption edge feature of the difference (XMCD) spectrum

Integral p

while intergral q considers the L2 absorption edge feature in the same spectrum

Integral q

The μs are given by the absorption spectrum recorded at different polarizations. Thus in the last three equations, the expression in parentheses is either the XAS spectrum (r: +) or the XMCD spectrum (p,q: -).

4f samples

In case of 4f samples, the present application uses equations (2) and (3) from Krishnamurthy et. al.. The orbital angular momentum is calculated using

Orbital angular momentum

while the spin angular momentum is given by

Spin angular momentum

where the N_4f define the number of holes in the 4f shell. For 3d and 4f shells, the maximal occupation is

Maximal occupation of 4f electron shell

The equations used to calculate the magnetic moments thus reduce to

Maximal occupation of 3d and 4f electron shells

and

Maximal occupation of 3d and 4f electron shells

The ratio of both moments is calculated the ratio of the two latter equations. Both equations for orbital and spin magnetic moment are derived by assuming

Integral r

and

Integral p

where p is the integral of the XMCD spectrum up to the first absorption edge and q is the integral of the XMCD spectrum over the second absorption edge. The μ_0 is given by the integral of the mean of the XAS spectrum obtained from spectra recorded with different polarizations.

The application uses the method magneticMoment in the class Calculations of SumRulesTool.py.

up

3. Keyboard Shortcuts

Shortcut Purpose Describtion
F1 Shows help file Opens a browser that displays this document.
F2, F3, F4 Switch tabs Switches to tabs ELEMENT, BACKGROUND resp. INTEGRATION
<CTRL>+E Estimate Trigger estimation of marker position. Only available on Background and Integration tab
<CTRL> + O Open data file Opens a file dialog to select a *.spec or *.dat file as input data.
<CRTL> + L Opens analysis file Opens a file dialog to open a previously saved analysis file
<CRTL> + S Save current analysis Saves recent changes to a previously saved analysis file. If the analysis has not been saved yet, a file dialog opens to specify the save location in the file system.
<CRTL> +
<SHIFT> + S
Save analysis as Saves current analysis in different analysis file.
<CRTL> + D Save data Saves data produced during the analysis. The save procedure produces one file containing two parts. In the first part all raw data on which the analysis was based is saved, i.e. the x-range, the XAS and XMCD spectrum, and the background model applied to the XAS spectrum before integration. Also, the corrected XAS and XMCD spectra are saved. The second part contains the integrated data.
<CRTL> +
<SHIFT> + D
Save analysis as Same as the above, but allows the user to select a different file in which the data is written.

up ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/XMCDInfotext.html0000644000000000000000000010627214741736366021114 0ustar00rootroot

XLD/XMCD Analysis HOWTO

Contents


1. Usage
2. Description
   2.1 Top row
   2.2 Options window
      2.2.1 Normalization
      2.2.2 Interpolation
      2.2.3 Motor selection
   2.3 Table
   2.4 Analysis window
3. Extend the automatic assignment
   3.1 Edit the experiments dictionary
   3.2 Edit the drop down menu
   3.3 Edit the selectExperiment function

Synopsis

Xray linear dichroism (XLD) and Xray magnetic circular dichroism (XMCD) measurements as performed at Beamlines ID08 and ID12 of the ESRF probe the sample with x-rays of two different polarizations. From two spectra with different polarizations, one calculates the difference spectrum (the XLD/XMCD spectrum) as well as the average spectrum (XAS spectrum). The present plug-in aims to ease the evaluation process.

To assign the recorded spectra into two groups (labeled 'A' and 'B') depending on their polarization, the plug-in displays meta data obtained from the spec file and provides methods to automate the assignment process. A separate plot window allows a preview on calculated XLD/XMCD spectra. Several options relevant to the treatment of the data can be specified and saved. The results of an analysis can be exported into spec-files.

up

1. Usage

From the open spec-File, select the relevant scans in the scan selection window on the left side of your PyMca session. Assign the relevant counters to the respective axes and load the scans in the plot window on the right. Load the plug-in from the plug-in menu (gearbox item in the top row of the plot window). Notice that if one selects a section of the data by zooming in before starting the plug-in, only the data within that energy range is used for the analysis.

The selected spectra now appears in the table of the plug-in. Per default, the spectra remain unassigned as indicated by the drop down menu showing the entry 'Generic dichroism'. Either one selects an existing experiment from the drop down menu (which also provides automatic division of spectra into groups) or does all settings by hand using the options menu. The options menu also allows to determine if and when a normalization is applied to the spectra and the specifics of the interpolation carried out during the calculation.
If all necessary information is displayed in the table, the assignment of spectra to either group 'A' or 'B' can be done by right-clicking on the table. A context menu appears offering several ways to assign a selected spectrum a group.

Once a selection is made, the result of calculations is displayed immediately in the analysis window. An average is calculated on the spectra that belong to groups 'A' and 'B' (curves labeled avg_A resp. avg_B). The difference spectrum (curve labeled XMCD) is calculated as Avg(B)- Avg(A). The XAS spectrum is calculated as the average of both groups: (Avg(A) + Avg(B))/2
The finished analysis can be saved in a spec file using the Save Button in the top button row of the analysis window.

up

2. Description

The plug-in consists of four elements: the top row of buttons, the table listing the spectra and the analysis window. Another important element is the options window.

2.1 Top row

The top row contains the following buttons in order from left to right: the Update Button, the Options Button and the Experiment Selection.
Update Button
Loads plots from the main window of the PyMca session into the plug-in. Notice: If the plot window of the main application is zoomed in or out, only the data within the zoomed in energy range is considered for analysis. After zooming in or out in the main application, the spectra in the plug-in should be updated.
Options Button
Allows to specify the plug-in behavior during the analysis. For information in can be found in section 2.2.
Experiment Selection:
The options for the experiments carried out at beamlines ID08 and ID12 are embedded in the plug-in. Selecting one of the experiments sets these options and divides the spectra automatically into groups 'A' and 'B'. A new experimental configuration can be added using the 'Add new configuration' option. A window will open and ask the user to name the configuration. Once accepted, an option window is opened and can be used to define the experimental configuration. This can be done by either loading an existing configuration or by specifying it by hand. The new experimental configuration can now be selected in the drop down menu and remains there until the end of the PyMca session. It sets all options as specified, however the spectra assignment into groups has still to be done by hand.

up

2.2 Options Window

With the Options Window, the user can control the details of the analysis and determine the information shown in the table. A configuration made in the Options Window can be saved and an existing configuration can be loaded. Notice that once the 'OK' button is clicked, the analysis is immediately recalculated.

The saved options are stored in a config file. If the result of a XLD/XMCD analysis is saved a spec file, the current configuration is automatically saved in a separate file.

up

2.2.1 Normalization

One can select if and when a normalization is applied, the normalization method can be specified. Either no normalization is applied at all or it is applied before performing the averages over groups 'A' and 'B'. The third option is to perform the normalization after averaging over both groups.

The following table explains the various normalization methods in detail.
Option Explanation
(y-min(y))
/trapz(max(y)-min(y),x)
Default selection. Subtracts the minimum value as offset from the spectrum and normalizes it to its integral
y/max(y) Normalizes the curve to its maximum value
(y-min(y))
/(max(y)-min(y))
Subtracts the minimum value as offset from the spectrum and normalizes to the resulting maximum, effectively putting all spectral values between zero and one
(y-min(y))
/sum(max(y)-min(y))
Similar to the default options, but uses the summation over all spectral values instead of the integral

up

2.2.2 Interpolation

The plug-in performs an interpolation of the spectra selected to be used in the analysis before calculation averages and differences. In the "Interpolation x-range" section the user can select, which energy range is used for interpolation. To guarantee numerical stability of the interpolation, the spectra are cleaned up before being copied from the main application to the plug-in. The clean up process consists of sorting the data with respect to the energy (i.e. x) range as well as removing energies that have been measured twice.

One can chose between selecting one of the energy ranges that actually have been measured or let the plug-in determine a equidistant energy range, which might be beneficial for further analysis such as Savitzky-Golay smoothing. Options that conserve at least one measured energy range are 'First curve in sequence' or 'Active curve' (i.e. taking the active curve in the plot window of the main application).

up

2.2.3 Motor Selection

The drop down menus allow to select the motors positions to be shown in the plug-in table. Notice that all motors in the drop down menu are not hard coded in the plug-in but are obtained dynamically from meta data in the spec file. Motor names are treated case sensitive by the plug-in.
Motors for ID08 are:
phaseD, PhaseD, oxPS, magnet
Motors for ID12 are:
Phase, PhaseA, BRUKER, CRYO, OXFORD
Notice that ID12 also uses different counters to differ between polarizations.

up

2.3 Table

The table, positioned beneath the top row, shows the spectra that are included in the XLD/XMCD analysis. The table shows the group to which a curve is assigned, the curves' legend, the scan number and the counter of a spectrum. The remaining columns display settings of various physical or virtual motors that were recorded during the course of the measurement and stored in the meta data of the spec file. Every column of the table can be used to sort it with respect to the values in this column by double clicking the right top corner of the respective header section.

Right click on the table provides the user with a context menu with the following options:
Perform Analysis
Although most calculation is triggered automatically upon selection of a set of scans, selecting this option forces the plug-in to recalculate the XLD/XMCD spectrum.
Set as A resp. Set as B
Assigns a scan selected in the table to the respective group and triggers a recalculation of the XLD/XMCD Analysis.
Enter sequence
Opens a window and allows to enter a sequence of letters ('A', 'B', 'D'). The spectra in the table are sorted after their scan number and assigned into groups 'A' and 'B' based on the sequence, 'D' leaves a spectrum unselected. If no scan number is present, the spectra remain unsorted. The length of the sequence does not need to match the number of spectra. If the length of the sequence is smaller than the number of spectra, the plug-in assumes the entered sequence as a pattern and repeats it.
Remove selection
Removes a scan from the selection, effectively setting its group to 'D'
Invert selection
Selects scans in the table that are not selected yet and deselects the selected scans.
Remove curves
Removes curves from the table and the plot window in the main application.

up

2.4 Analysis Window

The analysis window beneath the table shows the result of the XLD/XMCD analysis. Four curves are displayed: the arithmetic averages over groups A and B, the XAS spectrum (an arithmetic average over the averages of groups A and B) and the difference spectrum (group B - group A) called the XMCD spectrum.

Notice that the XMCD spectrum usually is not in the same order of magnitude as the average spectra and the XAS spectrum. Thus, the XMCD spectrum is plotted to the secondary y axis on the right. In order to hide individual spectra, one can right-click on the legend and select 'Hide curve'.

In the analysis window behaves exactly like the plot window of the main application. The plot can be zoomed and the spectra can be manipulated using the usual tools of PyMca. Only the save routine has been modified to the specific demands of XLD/XMCD analysis.
Save routine
The save icon in the analysis window allows the users to save all results of the XLD/XMCD analysis at once in a single spec file. The data is divided into multiple columns. The first column contains the energy range over which the analysis is carried out, followed by the averages over groups 'A' and 'B'. The last two columns are occupied by the XLD/XMCD spectra.
The save dialog also allows to enter a comment that will be written in the spec file. If multiple datasets are analyzed consecutively, the results can be still saved in a single spec file by selecting the 'Append to existing file' option. Every individual scan is saved in a separate file, too. Therefore, the original file name is extended by an underscore and the number of scans already present in the file to which the analysis is appended to.
Along with the data, the configuration from the options menu is also saved under the same file name, but with the extension 'cfg'.
Buttons Add, Add all, Replace and Replace All
Allow to push the resulting spectra from the plug-in window to the plot window of the main application. While 'Add' and 'Replace' only affect the active curve in the plug-in plot window, 'Add all' and 'Replace all' copy all curves from the analysis to the main application. Notice: If one plans to compare two or more analyzed spectra by consecutively pushing them to the main window, the spectra should be renamed beforehand. The name for each analyzed spectrum remains the same (avg_A, avg_B, XMCD, XAS) and moving spectra of the same name to the plot window in the main application just replaces them there.

up

3. Extend the automatic assignment

The scope of this paragraph is to explain the additions to the source code necessary to make to define a new experiment. The paragraph assumes entry level knowledge of the Python programming language.

Data measured on beamline ID08 or ID12 of the ESRF can automatically be assigned to one of groups 'A' or 'B', as long as it is saved in spec files. By selecting one of the experiments from the drop down menu in the top row, the XLD/XMCD plug-in sets the motors resp. counters controlling the polarization in the options menu. This displays the respective values in the plug-ins table. To achieve the automatic assignment, the plug-in reads the displayed values and guesses the affiliation of a spectrum based on a set of rules.

up

3.1 Edit the experiments dictionary

The experiments dictionary contains the settings specific to an experiments. The options concern the normalization settings and method, the interpolation settings and most importantly the motors on which the assignment depends.

The following code fragment shows the exemplary entry 'Generic Dichroism' in the experiments dictionary.
self.experimentsDict = {
    'Generic Dichroism': {
          'xrange': 0,
          'normalization': 0,
          'normalizationMethod': 'offsetAndArea',
          'motor0': '',
          'motor1': '',
          'motor2': '',
          'motor3': '',
          'motor4': ''
    },
    ...
}
Notice that every experiment is represented by a dictionary itself, with the different options as keys and the respective settings as values. Valid values for each option, as well as the necessary types are shown in the following table.
Option Type Values: Explanation
xrange Int 0: First curve in sequence
1: Active curve
2: Equidistant x-range
normalization Int 0: No normalization
1: Normalize after average
2: Normalize before average
normalizationMethod String OffsetAndArea: Subtracts minimum and normalizes to the integral, OffsetAndCounts: Subtracts minimum and normalizes to the sum, OffsetAndMaximum: Subtracts minimum and normalizes to the maximum NormToMaximum: Normalizes to the maximum
motor0,
motor1,
motor2,
motor3,
motor4
String Assumes knowledge of the motor settings in the experimental apparatus. If unsure, consult the Motor Info plug-in or a Beamline Scientist.
Notice that up to five motors can be specified, however no motor must be specified. If a motor is not needed, just set the variable to an empty string.

up

3.2 Edit the drop down menu

Now that a new experiment is present in the experiments dictionary, it can be added into the selection of the drop down menu. The drop down menu itself is a QComboBox whose items are added using the addItem member function. The explicit code to do so (at least in the initial version of this program) looks as follows:
self.expCBox.addItems(
    ['Generic Dichroism',
    'ID08: XLD 9 Tesla Magnet',
    'ID08: XLD 5 Tesla Magnet',
    'ID08: XMCD 9 Tesla Magnet',
    'ID08: XMCD 5 Tesla Magnet',
    'ID12: XLD (quater wave plate)',
    'ID12: XMCD (Flipper)',
    'ID12: XMCD',
    'Add new configuration'])
It is important, that the registered string is the exact key of the experiment in the experiments dictionary. New experiments should be added above the 'Add new configuration' option.
up

3.3 Edit the selectExperiment function

The selectExperiment function is called every time a item from the drop down menu is selected. In the process, the selected option is passed on to the function as a string. Based on this string, the function then sets the options as defined in the experiments dictionary. This triggers the table of the plug-in to display the information, especially if motors are present in the options.

In a second step, the function reads all values shown in the tables motor columns (that is columns 4 to 8). If needed (as in case of two of the ID12 experiments), the counter column (no. 3) might as well be read out. The code fragment below shows the updating of the table and the readout.
self.updateTree()
values0 = numpy.array(
    self.list.getColumn(4, convertType=float))
values1 = numpy.array(
    self.list.getColumn(5, convertType=float))
values2 = numpy.array(
    self.list.getColumn(6, convertType=float))
values3 = numpy.array(
    self.list.getColumn(7, convertType=float))
values4 = numpy.array(
    self.list.getColumn(8, convertType=float))
The table function getColumn returns the entries of a table column as a list while conserving the current order of the table rows. The type of the list elements can be specified using the convertType option. The numpy Arrays values0 to values4 now contain different motor positions, each values array has the length of the number of scans in question

The next section consists of a succession of if/else statements to determine the specific experiment. Within such a statement, the values from the table are reduced to a single vector named 'values' that determines the affiliation of a spectrum to groups 'A' or 'B'. This array contains numerical values for every spectrum. The second step here is to set a pivot element (or threshold value), so that if the value for a spectrum is above this value, the spectrum belongs to group 'A' and below to group 'B'. New assignment routines must be implemented here as a new elif block.

In case of the XLD experiment of ID08, the decision process is shown in the code fragment below.
if exp.startswith('ID08: XLD'):
    values = values0
    mask = numpy.where(numpy.isfinite(values))[0]
    minmax = values.take(mask)
    if len(minmax):
        vmin = minmax.min()
        vmax = minmax.max()
        vpivot = .5 * (vmax + vmin)
    else:
        values = numpy.array(
            [float('NaN')]*numOfSpectra)
In this case, the motor 'PhaseD' (or 'phaseD', depending on the magnet) determines the polarization on the sample and is thus set in the options dictionary. All motor positions are then contained in numpy array 'values0'. Since no further calculations are needed, we can directly assign 'values0' to 'values'. The pivot element in this case is calculated as the average between maximal and minimal values in 'values'.

The last step of the assignment processes is to loop though the 'values' array and check if the element is above or below threshold, as shown in the next code fragement.
seq = ''
for x in values:
    if str(x) == 'nan':
        seq += 'D'
    elif x>vpivot:
        seq += 'A'
    else:
        seq += 'B'
self.list.setSelectionToSequence(seq)
Notice that not-a-number float values in the 'values' array are set to the dummy identifier 'D' and thus are ignored in the selection. The resulting sequence of this procedure is then passed on to the table function setToSequence, which assigns the selection. Once a selection is made, a recalculation is triggered automatically.

up ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/aM4.png0000644000000000000000000000075014741736366017073 0ustar00rootrootPNG  IHDRc0PLTE/ݠ{tRNSDfv2"T?LXIDAT(K@_z]0`vDɟMPpq̢:tu(AQ 7$}}IsџԞ∶+u_ hVa@OOCS[7JyjDD(0ZJKw"&,v!)<B`Ų; OT]y//mz`qYQ*#֐YV'[>y9Mp'7"?ab-cƥȢZ$S/x"jfI 9Gz:"h\۹g6LKLmHW],_I6l9Mem_b7`b=0/> 6`aq}׽XC(Tbr ?r-6p>z2 `kq"Ե.,҂Fd9ˣ `7)_T}TL"!puД3:k'F=l:` Zܧ30BgsF%rFUw0`]KV ;]O8׆F浄' C05!.`߂d/ɒs ]+SE,>~cx(IY%O dkLbU8 h3^qWl`;l%TnÞ;W.vJUZCUBj,ŪC~ <@@ 3{B ç P9:9A H /{x*ޛtĘ@BWPPQN0S+׾Q$'7O1jsC|_H咴{Qܡ@&Yq` UKu2j0 [#Pb#}R_SقވX`}pYpG 2ްҝsh;oZY bD0.suݹ5gj7p|?8dltOPpچmcA'Ws\o/捸v(h`]dp2I؍DJw)*.3vR-dZOou?U*2 ()1\Nuʷ:ҭj*] #zuhi,~LYJRTR v2A'!"YHǛJwy); #K lBCy2\v4Z1EьYzsJyQ~DSAT[1~n+j9B2CS@Ez wjܝ_ 6TqMc$ ;#9el‰ȋ4r G&$MS]p#HQZ&>!:O˸J=CoACJKhXzٜ7i?X>GSX)}D>MѮ[uݷiv)svlcAAIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/mOrb_K.png0000644000000000000000000000153714741736366017627 0ustar00rootrootPNG  IHDR!yi.0PLTE/ݠ{tRNSfvD2"TݻIDATH UMOQ=Wfq.PæSMܘie"[0t#ݎ$5ĭ1M )żs9h!:-ڐhVnނ5 ؂ W$6VeU( ηCT5Rs.A1kӜV uPL\` ,&a8&uGЩG ҒZSM I(mH wnJǬ~ť٤gRS>LOV`..rP_r9Q2zڥw l Z ` @2}حMP1h *E ^ML &>hiZG6P3:PP*T6rqm@[slYbCJØgjg.mN׬Uʾ[[LȻJȥjO <0I 2)s) s&1 S<F0Jnչ) nE ,[0ZNaYrzcq qƣ7hy|!ƻjEyybygJϰ5}d_ő^M4U-4(0/N0(6bIoT?{Ǻep3CÌ&KB30daP Efo&B!6@lw;RwIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/mOverM.png0000644000000000000000000000161114741736366017654 0ustar00rootrootPNG  IHDR+F>M0PLTE/ݠ{tRNSfvD2"TݻIDATH VkPdik07I6ݐ:' 2'KzՓ-P؆@AED!^̃Ƀ0m66y/MuC~>KxY_ /W_d}^⹗{[Ղ?C֠;T.CsJ3؉#ԺSs5C8,V!q$\`ToaT6$.4&4ELh#U2CgOT}ՙj m\h-@?⬁g̡Q0L}J-onus@fX)+k " ir3.Q ( Hޏ"6}ӧZ~cbOT/NT6U^1XU/W-yզl-Pf$ s~*vL,:n4<cN9Ou'0v~J9hY#d@l=e n1^rޯ&DC\{MASJa&.X\GQ!dMXo)X*7Rβ$j(՗*⽹* p9&؟0`WE5] \y@ő(~"]q X=<Z>t{+չֲ@-ס+R::!gNO[l /}bX0H!MDlxm%'i"B2V= M,cjA늽G;7,I'5x[0 *ɴ KxPY:Փͽ)E*\*e앍N9Ъek=OTl:QySv_#5 Fjt45uZk쿍+}iƾIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/mSpin_K.png0000644000000000000000000000203314741736366020006 0ustar00rootrootPNG  IHDR&޹0PLTE/ݠ{tRNSfvD2"TݻIDATX VKkQ&L҉>jLbKEB[߈8E]I+bvƎu""nGD$q! 룺pa?Т.x&̝I|;|'ss,Ԣ -,Eqf6'WqF᧝#NlSUԝ?  kC#3WNJ϶ͧ(x*+1Ѭi4<lQVM: YĻ+3KM)lr=Z$?܄VQ'Y0tЮЇWqZfuKGꂏw߃jyaR4)Kӛ%*:{s(b JtHG 1ExmTqQV (HAHf SD;MBR|7kl߿]zXe8 ͩh LXtɈ7rr E!f,φҖ*MU|״ս3t?W0'#hyϥы{|7n#g9h\#R!)ٕ0 GV t.7\<߉كeuL?KӞfl-?MA7I9U/ݝSoC\f2?hW~8hcIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/mu.png0000644000000000000000000000042614741736366017073 0ustar00rootrootPNG  IHDR"JA0PLTE/ݠ{tRNST2"D݉fv>IDATc`(N+P9"l7[jժu0SfT`0a`}c``)```T00M0" 7@ P 0&T C~J ؿ0E`:}7: zTr["dN0IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/nMax.png0000644000000000000000000000062714741736366017360 0ustar00rootrootPNG  IHDROWB0PLTE/ݠ{tRNSTvfD"ݻ2IDAT(c` 009%PPB.W?`e``T2q  T!AiBP8+d@V?`7``_CHd?0H1뤄l`8 Q (j5*K&FZ (1 $"qog`q`x!y[0HL=d`J Y62Lf`Nc"79QpA:vPlXԸKIDATH UKhQ=if&bQn BgQJŠ4 t@(7Yt  (]T7ivוDhYPZ;ɻIӻ=sn޼y|BiGGVOqޓMˡƤ͇fVo͇fgC;}}tWS9&D~4 Lg7y ?lIY-^9_fnkw*us;&]b+ vBn:Y(>2`j`Ѷ%Y3p8#,>4"QGQܥrsadht&(3¢b=voD@+"\;9m8IC`&Z[3hX)# T\S:ٹFt] d:A q}zmp: (F@ b?}aioXOWm :U $ .X֎{pOKe8Ri)GכRIa̤[6hsH%(Nr[n8HV$Z7Vn+*^;u5۩At׏T ݪk=j<IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/qInt.png0000644000000000000000000000165314741736366017370 0ustar00rootrootPNG  IHDR+9_0PLTE/ݠ{tRNSvfT"D2\#IDATH KhQL&14];E6"A,Ɔb bZVPrЅE#A]ԅЀP>֍b ]H]ZE#3ŜsGSKQkR8"HrH r8BJrzVGH7qBFLy$`\p;ܟ nw#뮥}L3>o[NA"B%WmS=}ƴIodF|ی{YQcWCl>aeId wˆbL)ñ6S.+R~2۪eu *nqXWWQ|}[40k0؏P|VV t8TMb\-@dy Q MT@ r$?~I,:[{1bQj T۵,~G0̡&cy6r}GzgʱjZssᛇJNafϛqQwƙ;xu v-ez2ӠlNئ7s.fʫզ̲ޒFĄXsԸ54-W_r_-|r]n&8>*yOd _InԈ,o M;Go[m t9)<6z5DEb/;!N_gY{|IRxOQ$aC>fNHl2бx첌цi)p}2# y$^D=Tv'4Vp|P`vO>_T`S IENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/rInt.png0000644000000000000000000000176514741736366017375 0ustar00rootrootPNG  IHDR+qu0PLTE/ݠ{tRNSfvD"T2,؝eIDATX VMhA~dwMPҖ!&4Ş`<Ez(؀BQۋP!HABkoEbb-x/VEkEꛝd3bv;vvvv@dp\ @]B¬C 'B-+LO[b(tiXDEgC1)n\`*v2a[_!w|w,*T)XVJ#o_o7F|9[<ҫ#*{1 u>l@aR a;FЫFJmsN`iE__Ek)ʑĜ U.!)+xsd&2sx lx1pYR9C] C&Xpury\&96f>dA~\.fpTBĊ\̀c5( Ƚ pBP|eWO` FO pd x S^(V~9T^8s<;qz󠭯T=rYo$Z>dWmf(] _LoɏuЊ;fdѝj<[u FkʺUjqx5ek/ǥ\AEEv Dj  m> H}bPPW7ZAs$^94MWIyz+Xi yw H:Qk:L±xEg ijj ~ oZ a|~M!ԁEUl T;_@~zUIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/sz.png0000644000000000000000000000307214741736366017106 0ustar00rootrootPNG  IHDR*ը0PLTE/ݠ{tRNSvT2f"D@p%IDATX W}hE6ݻ|QJ9mbrڂ 74B,l kQzGU{m ֲƨZ<sR3תDRBDJ%W|3ssG f߼y;3v?HX,Ltps1ꄰL/^O2gJQ+2·u= њR?B I\J 3hUt0kE7B) Bڳ2B9d BHJ^aC1`d8&VSo$d=)@I, ;l-edvijZ`=Zh77/d9F/DR23 RH ABma1qDٶ@ E@S 0&teaHpK ԙW;:qpW\ {9DʤL8]!NAgAX791U8- ;9S4=}LRAz]D-8~*>Ȭ7cN!<%/{Syl!Sܬ-Dpd F#CP{ NyY 15R/x4= 0K(b9h!>n2dR{|I<1 5` qr+ey{Σ@.]z]}Sc`<R朆Ϙ*T 6Aq|Döx> GI;tLiB. >Mp@9œp_(]^HPVZutY%c=pɄ >"Τ9#MPI 6ӏsþP;L록3fwn :fMyHDo1ڲ456hGwz`šV*HR1 `+`+R%bR'joF#Gyk@ad/\Cn'NOQm%pVN%Mm74SLH+.շo klC*+/y2Wgm%/WJWn*{2y F-g K3)28WPܾɻ"IG#FlGx}bt!k4F @\ăL''D >x7@x@-;$x5' ~e i=S.SSVEY8X 1~EV2(<v=A%2[{vE 2~.'7'I 67税YA*|B* *Ar-zǥUQ/}U >_jBA V5tCaYIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/KShellRatesScofieldHS.dat0000644000000000000000000003771314741736366021770 0ustar00rootroot#U00 #U01 Adaptation from table II of the reference: #U02 #U03 J.H. Scofield, "Relativistic Hartree-Slater Values for #U04 K and L X-ray Emission Rates", Atomic Data and Nuclear #U05 Data Tables 14 (1964) 121 - 137 #U06 #U07 The TOTAL column is taken from the reference. The individual #U08 shells of the reference are divided by the total in order to #U09 directly get probabilities and missing values are interpolated. #U10 #S1 K x-ray emission rates #N 17 #L Z TOTAL KL1 KL2 KL3 KM1 KM2 KM3 KM4 KM5 KN1 KN2 KN3 KN45 KO23 KO45 KP23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1.949e-005 9.9538e-011 0.33299 0.66701 0 0 0 0 0 0 0 0 0 0 0 0 6 0.0001033 1.4521e-010 0.33398 0.66602 0 0 0 0 0 0 0 0 0 0 0 0 7 0.0003305 2.4327e-010 0.33404 0.66596 0 0 0 0 0 0 0 0 0 0 0 0 8 0.0008232 4.0816e-010 0.33431 0.66569 0 0 0 0 0 0 0 0 0 0 0 0 9 0.001758 6.6553e-010 0.33447 0.66553 0 0 0 0 0 0 0 0 0 0 0 0 10 0.00337 1.0534e-009 0.33472 0.66528 0 0 0 0 0 0 0 0 0 0 0 0 11 0.005756 1.7894e-009 0.33461 0.66539 3.1619e-011 0 0 0 0 0 0 0 0 0 0 0 12 0.00911 2.9857e-009 0.3348 0.6652 1.7673e-010 0 0 0 0 0 0 0 0 0 0 0 13 0.013824 4.8033e-009 0.33276 0.66117 4.1305e-010 0.0020327 0.0040365 0 0 0 0 0 0 0 0 0 14 0.020239 7.4607e-009 0.32956 0.65368 7.7078e-010 0.0056178 0.011147 0 0 0 0 0 0 0 0 0 15 0.028752 1.1164e-008 0.3252 0.64483 1.3077e-009 0.010048 0.019929 0 0 0 0 0 0 0 0 0 16 0.039804 1.6355e-008 0.32057 0.63486 2.0852e-009 0.014948 0.02962 0 0 0 0 0 0 0 0 0 17 0.053952 2.3354e-008 0.31547 0.62463 3.1695e-009 0.02011 0.039795 0 0 0 0 0 0 0 0 0 18 0.071682 3.2644e-008 0.31054 0.61382 4.6874e-009 0.025418 0.050222 0 0 0 0 0 0 0 0 0 19 0.093274 4.5029e-008 0.30695 0.60574 7.0759e-009 0.029311 0.058001 0 0 1.7583e-010 0 0 0 0 0 0 20 0.11939 6.1312e-008 0.30405 0.59972 1.0386e-008 0.032331 0.063908 0 0 8.1414e-010 0 0 0 0 0 0 21 0.15004 8.2644e-008 0.30325 0.59717 1.4463e-008 0.033458 0.066116 1.053e-006 1.5529e-006 1.1397e-009 0 0 0 0 0 0 22 0.18598 1.1023e-007 0.30272 0.59522 1.9841e-008 0.034305 0.067749 2.7637e-006 4.0649e-006 1.5324e-009 0 0 0 0 0 0 23 0.228 1.4473e-007 0.30219 0.59385 2.6622e-008 0.034956 0.06899 5.2192e-006 7.6753e-006 2e-009 0 0 0 0 0 0 24 0.27603 1.8875e-007 0.30251 0.59415 3.4743e-008 0.034779 0.068544 9.2745e-006 1.3549e-005 9.6368e-010 0 0 0 0 0 0 25 0.33189 2.4285e-007 0.30221 0.59086 4.61e-008 0.036006 0.070897 1.2685e-005 1.841e-005 3.2541e-009 0 0 0 0 0 0 26 0.39641 3.1029e-007 0.30171 0.59055 5.9282e-008 0.036301 0.071391 1.786e-005 2.5983e-005 4.0363e-009 0 0 0 0 0 0 27 0.46901 3.9019e-007 0.3017 0.58976 7.5692e-008 0.036631 0.071854 2.4093e-005 3.5181e-005 5.0106e-009 0 0 0 0 0 0 28 0.55147 4.896e-007 0.30137 0.58933 9.5562e-008 0.036865 0.072352 3.1552e-005 4.5877e-005 6.1109e-009 0 0 0 0 0 0 29 0.64291 6.1129e-007 0.30207 0.58951 1.1884e-007 0.036615 0.071706 4.1375e-005 5.9729e-005 2.7998e-009 0 0 0 0 0 0 30 0.74686 7.5382e-007 0.3018 0.58779 1.4862e-007 0.037316 0.072972 5.0478e-005 7.2972e-005 8.9575e-009 0 0 0 0 0 0 31 0.86417 9.2227e-007 0.30121 0.58553 1.863e-007 0.038071 0.074406 6.052e-005 8.7367e-005 1.4696e-008 0.00021709 0.00041427 0 0 0 0 32 0.99511 1.1255e-006 0.30047 0.58285 2.3012e-007 0.03879 0.075871 7.1248e-005 0.0001028 2.1204e-008 0.00063309 0.0012149 0 0 0 0 33 1.1427 1.3565e-006 0.2993 0.58023 2.8355e-007 0.039557 0.077188 8.2702e-005 0.00011911 2.923e-008 0.0012051 0.0023174 0 0 0 0 34 1.3049 1.6246e-006 0.29811 0.57706 3.4639e-007 0.04031 0.078703 9.495e-005 0.00013656 3.9083e-008 0.0019113 0.0036784 0 0 0 0 35 1.487 1.9368e-006 0.29725 0.57365 4.2166e-007 0.040956 0.079894 0.00010774 0.00015468 5.1111e-008 0.0027304 0.005259 0 0 0 0 36 1.6866 2.3004e-006 0.29585 0.57036 5.0989e-007 0.041621 0.081167 0.00012131 0.00017378 6.5811e-008 0.0036582 0.0070377 0 0 0 0 37 1.9058 2.7233e-006 0.29489 0.56721 6.1391e-007 0.042239 0.08238 0.00013574 0.00019414 8.6578e-008 0.0044023 0.0085423 0 0 0 0 38 2.1441 3.2089e-006 0.29384 0.56435 7.3692e-007 0.042909 0.083627 0.00015112 0.00021548 1.1287e-007 0.0050605 0.0098458 0 0 0 0 39 2.4048 3.7716e-006 0.29316 0.5618 8.7742e-007 0.043538 0.084789 0.00016717 0.00023786 1.4263e-007 0.0055348 0.010766 2.3786e-006 0 0 0 40 2.6879 4.4272e-006 0.29242 0.55954 1.0417e-006 0.044123 0.08594 0.00018416 0.00026154 1.7709e-007 0.0059488 0.01157 6.2502e-006 0 0 0 41 2.994 5.1437e-006 0.29192 0.55746 1.2325e-006 0.044724 0.087076 0.00020174 0.00028558 2.1577e-007 0.0062225 0.012091 1.3861e-005 0 0 0 42 3.3277 5.9801e-006 0.29149 0.55534 1.4545e-006 0.045257 0.088079 0.00021967 0.00031073 2.6265e-007 0.0065571 0.012712 2.1186e-005 0 0 0 43 3.6865 6.9171e-006 0.29106 0.55337 1.7062e-006 0.045789 0.088973 0.00023871 0.00033691 3.1737e-007 0.006871 0.013319 3.0273e-005 0 0 0 44 4.0749 8.0002e-006 0.29056 0.55142 1.9951e-006 0.046259 0.090063 0.00025841 0.00036369 3.8038e-007 0.007156 0.013865 4.1179e-005 0 0 0 45 4.4921 9.1939e-006 0.29029 0.54963 2.3152e-006 0.046749 0.090826 0.00027893 0.00039135 4.519e-007 0.007413 0.014359 5.4073e-005 0 0 0 46 4.9403 1.0566e-005 0.29006 0.54795 2.6922e-006 0.047204 0.091695 0.00029998 0.00041981 5.3236e-007 0.0076109 0.014675 7.1049e-005 0 0 0 47 5.4224 1.2098e-005 0.28972 0.54606 3.1167e-006 0.047617 0.092578 0.00032181 0.00044906 6.3071e-007 0.0078931 0.015251 8.6308e-005 0 0 0 48 5.9368 1.3829e-005 0.28955 0.54406 3.6046e-006 0.048039 0.093316 0.00034446 0.00047938 7.4619e-007 0.0082199 0.015867 0.00010224 0 0 0 49 6.4922 1.5742e-005 0.28927 0.54219 4.1434e-006 0.048366 0.093959 0.00036752 0.00050984 8.7798e-007 0.0085179 0.016481 0.00011953 0.00019901 0 0 50 7.0894 1.7872e-005 0.28874 0.54024 4.7535e-006 0.048805 0.094648 0.00039114 0.00054165 1.0283e-006 0.00883 0.017082 0.00013739 0.00056281 0 0 51 7.7262 2.0256e-005 0.28837 0.53843 5.436e-006 0.049054 0.095131 0.00041547 0.00057337 1.2011e-006 0.0091248 0.017667 0.00015622 0.0010574 0 0 52 8.3971 2.2925e-005 0.2882 0.5359 6.2165e-006 0.049422 0.095867 0.00044063 0.00060617 1.4053e-006 0.00942 0.018268 0.0001759 0.0016708 0 0 53 9.1212 2.5863e-005 0.28779 0.53392 7.0715e-006 0.049665 0.096369 0.00046595 0.00063917 1.6226e-006 0.0097027 0.018824 0.00019603 0.0023879 0 0 54 9.89 2.912e-005 0.28736 0.53185 8.0182e-006 0.04995 0.096866 0.00049242 0.00067341 1.8807e-006 0.0099697 0.019373 0.00021709 0.0032053 0 0 55 10.71 3.2678e-005 0.28664 0.53032 9.0846e-006 0.050231 0.097288 0.00051912 0.00070772 2.1661e-006 0.010233 0.019896 0.00023902 0.003884 0 0 56 11.574 3.6719e-005 0.28684 0.52789 1.0273e-005 0.050456 0.097803 0.0005469 0.00074302 2.4883e-006 0.010497 0.020433 0.00026179 0.0044754 0 0 57 12.489 4.1158e-005 0.28666 0.52608 1.1595e-005 0.050687 0.09825 0.00057573 0.00077912 2.8586e-006 0.010754 0.020947 0.00028586 0.0049165 2.2901e-006 0 58 13.438 4.6137e-005 0.28649 0.52536 1.3089e-005 0.051048 0.098896 0.00060722 0.00081781 3.2296e-006 0.01082 0.021037 0.00029914 0.0045541 0 0 59 14.457 1.003e-005 0.28706 0.52363 1.472e-005 0.051325 0.09933 0.00063776 0.00085634 3.6591e-006 0.01095 0.021305 0.00031819 0.0045653 0 0 60 15.519 5.7544e-005 0.28675 0.5226 1.6542e-005 0.051616 0.099881 0.00066952 0.0008957 4.137e-006 0.011077 0.021523 0.00033702 0.0045687 0 0 61 16.642 6.4115e-005 0.28723 0.52097 1.8568e-005 0.051857 0.10035 0.00070184 0.00093559 4.6629e-006 0.011195 0.021752 0.00035573 0.0045668 0 0 62 17.828 7.1346e-005 0.28718 0.51995 2.0753e-005 0.052108 0.10079 0.00073422 0.0009754 5.2444e-006 0.011302 0.021931 0.00037468 0.0045489 0 0 63 19.069 7.9293e-005 0.28738 0.51866 2.3232e-005 0.052338 0.10127 0.00076828 0.0010163 5.8893e-006 0.011401 0.022131 0.00039437 0.0045363 0 0 64 20.383 8.7965e-005 0.28749 0.5171 2.5904e-005 0.052544 0.10165 0.00080165 0.0010563 6.6232e-006 0.011549 0.022421 0.000418 0.0048423 2.5266e-006 0 65 21.75 9.7563e-005 0.28781 0.51632 2.8873e-005 0.052781 0.10207 0.00083724 0.0010988 7.3793e-006 0.011582 0.022437 0.00043356 0.0044965 0 0 66 23.184 0.00010805 0.28813 0.51501 3.2134e-005 0.053011 0.10248 0.00087302 0.0011409 8.2428e-006 0.011672 0.022602 0.00045376 0.0044729 0 0 67 24.703 0.00011946 0.28863 0.5137 3.5704e-005 0.053191 0.10282 0.00090878 0.0011824 9.185e-006 0.011743 0.02275 0.00047362 0.0044447 0 0 68 26.278 0.00013205 0.28883 0.5126 3.9615e-005 0.053391 0.1032 0.00094528 0.0012254 1.0225e-005 0.011835 0.022871 0.00049395 0.0044219 0 0 69 27.928 0.00014573 0.28932 0.51132 4.3935e-005 0.053567 0.10355 0.0009829 0.0012676 1.1351e-005 0.011888 0.022988 0.00051454 0.0043971 0 0 70 29.656 0.00016051 0.28965 0.51018 4.8624e-005 0.053749 0.10386 0.0010217 0.0013117 1.2611e-005 0.01197 0.023132 0.00053547 0.0043701 0 0 71 31.466 0.0001767 0.28983 0.5088 5.374e-005 0.053899 0.10424 0.0010583 0.0013538 1.4015e-005 0.012045 0.023327 0.00055997 0.0046367 2.4439e-006 0 72 33.358 0.00019455 0.29018 0.50752 5.9326e-005 0.054049 0.10432 0.0010972 0.001397 1.5558e-005 0.012141 0.023532 0.00058546 0.0048983 6.2863e-006 0 73 35.342 0.00021363 0.29031 0.5062 6.5419e-005 0.054157 0.10469 0.0011346 0.0014374 1.726e-005 0.012252 0.02374 0.00061174 0.0051554 1.1431e-005 0 74 37.396 0.00021847 0.29067 0.50487 7.2067e-005 0.054284 0.10482 0.0011739 0.0014815 1.912e-005 0.012354 0.02396 0.00063938 0.0054097 1.7916e-005 0 75 39.552 0.00025738 0.29101 0.50338 7.9388e-005 0.054383 0.10518 0.0012136 0.001522 2.1136e-005 0.012439 0.02417 0.00066722 0.0056558 2.5738e-005 0 76 41.793 0.00028186 0.29144 0.502 8.7096e-005 0.054507 0.10528 0.0012514 0.0015649 2.3377e-005 0.012538 0.024406 0.00069581 0.0058981 3.4982e-005 0 77 44.121 0.0003087 0.2917 0.50067 9.5646e-005 0.0546 0.10562 0.0012919 0.0016069 2.5838e-005 0.012647 0.024637 0.00072528 0.0060243 5.1291e-005 0 78 46.547 0.00033794 0.29218 0.49928 0.00010506 0.054676 0.1057 0.001332 0.0016478 2.8509e-005 0.01274 0.024857 0.00075408 0.006299 6.1229e-005 0 79 49.076 0.00036943 0.29261 0.4978 0.00011513 0.054752 0.10596 0.0013734 0.0016892 3.1441e-005 0.012837 0.025084 0.0007845 0.0065205 7.4986e-005 0 80 51.691 0.00040355 0.29289 0.49641 0.00012613 0.054845 0.10621 0.0014142 0.0017314 3.4648e-005 0.012923 0.025323 0.00081638 0.0067903 8.6668e-005 0 81 54.416 0.00044068 0.2933 0.49489 0.00013819 0.05491 0.1064 0.0014555 0.0017715 3.815e-005 0.013029 0.025544 0.00084718 0.0070751 9.9419e-005 6.2114e-005 82 57.258 0.00048063 0.29376 0.49338 0.00015107 0.054962 0.10654 0.0014985 0.0018128 4.1951e-005 0.013099 0.025761 0.00088023 0.0073527 0.0001123 0.00017343 83 60.2 0.00052492 0.29419 0.49186 0.00016512 0.055 0.10665 0.0015399 0.0018538 4.6097e-005 0.013189 0.02598 0.00091197 0.0076412 0.00012542 0.00032459 84 63.239 0.00057085 0.29459 0.49036 0.00018043 0.055045 0.10674 0.0015813 0.0018944 5.0601e-005 0.013267 0.026202 0.00094403 0.0079223 0.00013884 0.00051234 85 66.41 0.00062189 0.29499 0.48878 0.00019681 0.055082 0.10691 0.0016248 0.0019334 5.5564e-005 0.013341 0.026412 0.00097726 0.0081915 0.00015224 0.00073182 86 69.692 0.00067727 0.29544 0.48715 0.00021466 0.0551 0.10704 0.0016673 0.0019715 6.0839e-005 0.013416 0.026632 0.0010102 0.0084659 0.00016602 0.00098434 87 73.088 0.0007361 0.29594 0.48558 0.00023396 0.055111 0.10713 0.0017089 0.0020113 6.6769e-005 0.013491 0.026844 0.0010439 0.0087292 0.00018019 0.0011931 88 76.582 0.00080045 0.29642 0.48406 0.00025489 0.055131 0.10721 0.0017524 0.0020501 7.2994e-005 0.013554 0.027056 0.0010786 0.0089969 0.00019496 0.0013763 89 80.213 0.00087019 0.29696 0.48247 0.00027751 0.055128 0.10734 0.0017965 0.0020882 7.9913e-005 0.013614 0.027265 0.0011133 0.0092629 0.00020982 0.0015272 90 83.972 0.00094555 0.29748 0.48087 0.00030189 0.055113 0.10754 0.0018399 0.0021245 8.741e-005 0.013671 0.027473 0.0011468 0.009515 0.00022484 0.0016684 91 87.81 0.0010272 0.29814 0.47944 0.00032855 0.05513 0.10762 0.0018848 0.0021626 9.5547e-005 0.013734 0.027685 0.0011821 0.0097028 0.00023528 0.001624 92 91.782 0.0011146 0.29875 0.47798 0.00035737 0.05512 0.10776 0.0019285 0.0021998 0.00010438 0.013783 0.027881 0.001217 0.0099039 0.00024776 0.0016583 93 95.895 0.0012097 0.29939 0.47646 0.00038792 0.055102 0.10793 0.001973 0.0022358 0.00011387 0.013828 0.028083 0.0012514 0.010094 0.00026007 0.0016873 94 100.1 0.0013138 0.30011 0.47505 0.0004216 0.055088 0.108 0.0020181 0.0022718 0.00012428 0.013877 0.028293 0.0012868 0.01025 0.00027054 0.0016245 95 104.45 0.0014245 0.3008 0.47351 0.00045857 0.055057 0.10818 0.0020631 0.0023072 0.00013556 0.01391 0.028481 0.0013221 0.010426 0.00028261 0.0016438 96 108.94 0.0015449 0.30155 0.47193 0.00049754 0.055014 0.10823 0.0021076 0.0023408 0.0001477 0.013944 0.028677 0.0013568 0.010621 0.0002965 0.0017487 97 113.56 0.0016741 0.30223 0.47043 0.00053982 0.054951 0.1084 0.0021531 0.0023742 0.00016089 0.013975 0.028867 0.0013923 0.010779 0.00030822 0.001763 98 118.28 0.0018152 0.30309 0.46897 0.00058589 0.054903 0.10847 0.0021982 0.0024078 0.00017526 0.014001 0.029049 0.0014271 0.010906 0.00031873 0.0016824 99 123.16 0.0019666 0.30392 0.46736 0.00063495 0.054823 0.10864 0.0022434 0.0024359 0.00019065 0.014014 0.029239 0.0014623 0.011051 0.00033047 0.0016913 100 128.15 0.0021311 0.30472 0.46586 0.00068826 0.054749 0.1087 0.0022887 0.0024737 0.00020741 0.014031 0.029419 0.0014967 0.01119 0.00034179 0.001698 101 133.3 0.0023106 0.30555 0.46429 0.00074643 0.054651 0.10885 0.0023331 0.0024981 0.0002258 0.014036 0.029595 0.0015311 0.011328 0.00035409 0.0017029 102 138.56 0.0024971 0.30651 0.46268 0.00080903 0.054546 0.10891 0.0023816 0.002526 0.00024538 0.014037 0.02977 0.0015654 0.011453 0.00036518 0.0017068 103 143.98 0.0027087 0.30733 0.46103 0.0008765 0.054416 0.10904 0.0024239 0.0025559 0.0002667 0.014029 0.029941 0.0015995 0.011599 0.00037852 0.0018058 104 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 105 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 106 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 107 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 108 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 109 149.54 0.0029289 0.3082 0.4594 0.00094888 0.054272 0.10913 0.0024675 0.0025812 0.00028955 0.014009 0.030111 0.001633 0.011736 0.00039253 0.0019011 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/LShellRatesCampbell.dat0000644000000000000000000006774014741736366021530 0ustar00rootroot #S 1 L1 Subshell X-ray emission rates. #U0 File: AP0L1R.DAT received by courtesy of J.L. Campbell #U1 #U2 X-ray emission rates for determining relative x-ray line intensities. #U3 #U4 Reference: J.L.Campbell and J.X.Wang. Interpolated Dirac-Fock values of L #U5 subshell X-ray emission rates including overlap and exchange effects. At.Data #U6 Nucl.Data Tables 43 (1989) 281-291. #U7 #N 10 #L Z L1L3 L1M2 L1M3 L1N2 L1N3 L1O23 L1P23 L1M45 L1N45 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 18 8.559E-2 3.125E-1 6.019E-1 0 0 0 0 0 0 19 6.223E-2 3.205E-1 6.173E-1 0 0 0 0 0 0 20 4.786E-2 3.260E-1 6.261E-1 0 0 0 0 0 0 21 3.998E-2 3.295E-1 6.304E-1 0 0 0 0 8.738E-5 0 22 3.401E-2 3.329E-1 6.329E-1 0 0 0 0 2.113E-4 0 23 2.955E-2 3.350E-1 6.351E-1 0 0 0 0 3.738E-4 0 24 2.667E-2 3.365E-1 6.362E-1 0 0 0 0 6.452E-4 0 25 2.331E-2 3.390E-1 6.368E-1 0 0 0 0 8.210E-4 0 26 2.102E-2 3.403E-1 6.375E-1 0 0 0 0 1.108E-3 0 27 1.914E-2 3.419E-1 6.375E-1 0 0 0 0 1.441E-3 0 28 1.757E-2 3.437E-1 6.369E-1 0 0 0 0 1.820E-3 0 29 1.669E-2 3.452E-1 6.358E-1 0 0 0 0 2.337E-3 0 30 1.552E-2 3.465E-1 6.352E-1 0 0 0 0 2.714E-3 0 31 1.448E-2 3.479E-1 6.345E-1 0 0 0 0 3.092E-3 0 32 1.326E-2 3.411E-1 6.187E-1 8.346E-3 1.523E-2 0 0 3.372E-3 0 33 1.227E-2 3.362E-1 6.068E-1 1.454E-2 2.652E-2 0 0 3.683E-3 0 34 1.139E-2 3.298E-1 5.950E-1 2.121E-2 3.852E-2 0 0 3.982E-3 0 35 1.064E-2 3.246E-1 5.817E-1 2.807E-2 5.076E-2 0 0 4.265E-3 0 36 9.979E-3 3.189E-1 5.685E-1 3.509E-2 6.301E-2 0 0 4.528E-3 0 37 9.460E-3 3.151E-1 5.588E-1 3.995E-2 7.188E-2 0 0 4.824E-3 0 38 9.045E-3 3.129E-1 5.507E-1 4.376E-2 7.844E-2 0 0 5.128E-3 0 39 8.727E-3 3.117E-1 5.458E-1 4.611E-2 8.219E-2 0 0 5.458E-3 0 40 8.475E-3 3.113E-1 5.412E-1 4.805E-2 8.518E-2 0 0 5.791E-3 6.392E-5 41 8.304E-3 3.117E-1 5.382E-1 4.913E-2 8.644E-2 0 0 6.155E-3 1.358E-4 42 8.143E-3 3.112E-1 5.345E-1 5.074E-2 8.878E-2 0 0 6.504E-3 1.981E-4 43 8.032E-3 3.113E-1 5.304E-1 5.226E-2 9.091E-2 0 0 6.860E-3 2.707E-4 44 7.964E-3 3.112E-1 5.268E-1 5.367E-2 9.279E-2 0 0 7.222E-3 3.537E-4 45 7.920E-3 3.113E-1 5.230E-1 5.498E-2 9.474E-2 0 0 7.598E-3 4.475E-4 46 7.915E-3 3.117E-1 5.206E-1 5.582E-2 9.543E-2 0 0 7.988E-3 5.702E-4 47 7.938E-3 3.113E-1 5.164E-1 5.755E-2 9.777E-2 0 0 8.372E-3 6.687E-4 48 7.983E-3 3.108E-1 5.122E-1 5.934E-2 1.002E-1 0 0 8.753E-3 7.658E-4 49 8.062E-3 3.102E-1 5.077E-1 6.110E-2 1.029E-1 0 0 9.176E-3 8.695E-4 50 8.108E-3 3.076E-1 5.013E-1 6.241E-2 1.049E-1 5.205E-3 0 9.501E-3 9.647E-4 51 8.203E-3 3.064E-1 4.956E-1 6.377E-2 1.059E-1 9.128E-3 0 9.898E-3 1.065E-3 52 8.307E-3 3.047E-1 4.899E-1 6.490E-2 1.073E-1 1.350E-2 0 1.028E-2 1.162E-3 53 8.445E-3 3.032E-1 4.835E-1 6.608E-2 1.086E-1 1.828E-2 0 1.067E-2 1.262E-3 54 8.602E-3 3.017E-1 4.774E-1 6.703E-2 1.096E-1 2.336E-2 0 1.106E-2 1.359E-3 55 8.786E-3 3.008E-1 4.715E-1 6.814E-2 1.107E-1 2.716E-2 0 1.146E-2 1.460E-3 56 8.999E-3 3.001E-1 4.663E-1 6.919E-2 1.117E-1 3.026E-2 0 1.189E-2 1.565E-3 57 9.253E-3 2.997E-1 4.613E-1 7.047E-2 1.129E-1 3.232E-2 0 1.234E-2 1.674E-3 58 9.598E-3 3.019E-1 4.610E-1 7.088E-2 1.125E-1 2.945E-2 0 1.290E-2 1.733E-3 59 9.933E-3 3.032E-1 4.583E-1 7.160E-2 1.127E-1 2.902E-2 0 1.344E-2 1.816E-3 60 1.032E-2 3.044E-1 4.556E-1 7.234E-2 1.128E-1 2.864E-2 0 1.400E-2 1.903E-3 61 1.072E-2 3.056E-1 4.532E-1 7.296E-2 1.127E-1 2.826E-2 0 1.457E-2 1.988E-3 62 1.117E-2 3.070E-1 4.504E-1 7.365E-2 1.127E-1 2.787E-2 0 1.515E-2 2.075E-3 63 1.166E-2 3.085E-1 4.476E-1 7.425E-2 1.126E-1 2.748E-2 0 1.575E-2 2.162E-3 64 1.216E-2 3.091E-1 4.435E-1 7.505E-2 1.126E-1 2.901E-2 0 1.632E-2 2.272E-3 65 1.273E-2 3.118E-1 4.417E-1 7.551E-2 1.121E-1 2.678E-2 0 1.702E-2 2.348E-3 66 1.334E-2 3.131E-1 4.390E-1 7.624E-2 1.119E-1 2.639E-2 0 1.766E-2 2.445E-3 67 1.399E-2 3.147E-1 4.360E-1 7.677E-2 1.116E-1 2.603E-2 0 1.834E-2 2.542E-3 68 1.467E-2 3.165E-1 4.327E-1 7.736E-2 1.114E-1 2.568E-2 0 1.903E-2 2.642E-3 69 1.544E-2 3.181E-1 4.296E-1 7.813E-2 1.110E-1 2.535E-2 0 1.975E-2 2.747E-3 70 1.624E-2 3.199E-1 4.264E-1 7.865E-2 1.105E-1 2.508E-2 0 2.046E-2 2.853E-3 71 1.708E-2 3.211E-1 4.218E-1 7.933E-2 1.103E-1 2.629E-2 0 2.117E-2 2.979E-3 72 1.797E-2 3.218E-1 4.174E-1 8.019E-2 1.101E-1 2.753E-2 0 2.189E-2 3.108E-3 73 1.894E-2 3.228E-1 4.130E-1 8.088E-2 1.098E-1 2.867E-2 0 2.262E-2 3.244E-3 74 1.995E-2 3.242E-1 4.082E-1 8.163E-2 1.095E-1 2.976E-2 0 2.337E-2 3.390E-3 75 2.104E-2 3.253E-1 4.032E-1 8.245E-2 1.094E-1 3.085E-2 0 2.414E-2 3.539E-3 76 2.221E-2 3.271E-1 3.980E-1 8.323E-2 1.091E-1 3.181E-2 0 2.491E-2 3.696E-3 77 2.349E-2 3.278E-1 3.936E-1 8.427E-2 1.090E-1 3.222E-2 0 2.576E-2 3.865E-3 78 2.482E-2 3.289E-1 3.885E-1 8.495E-2 1.086E-1 3.352E-2 0 2.657E-2 4.034E-3 79 2.622E-2 3.306E-1 3.831E-1 8.567E-2 1.082E-1 3.452E-2 0 2.741E-2 4.208E-3 80 2.772E-2 3.320E-1 3.780E-1 8.643E-2 1.077E-1 3.577E-2 0 2.801E-2 4.388E-3 81 2.937E-2 3.330E-1 3.725E-1 8.714E-2 1.072E-1 3.705E-2 0 2.914E-2 4.578E-3 82 3.098E-2 3.338E-1 3.665E-1 8.777E-2 1.066E-1 3.827E-2 1.348E-3 2.998E-2 4.761E-3 83 3.282E-2 3.350E-1 3.602E-1 8.864E-2 1.058E-1 3.932E-2 2.384E-3 3.087E-2 4.965E-3 84 3.467E-2 3.358E-1 3.544E-1 8.937E-2 1.049E-1 4.037E-2 3.566E-3 3.177E-2 5.170E-3 85 3.677E-2 3.371E-1 3.479E-1 9.000E-2 1.040E-1 4.129E-2 4.853E-3 3.263E-2 5.378E-3 86 3.891E-2 3.381E-1 3.414E-1 9.081E-2 1.031E-1 4.221E-2 6.237E-3 3.362E-2 5.591E-3 87 4.122E-2 3.390E-1 3.352E-1 9.166E-2 1.022E-1 4.315E-2 7.208E-3 3.459E-2 5.821E-3 88 4.363E-2 3.404E-1 3.288E-1 9.240E-2 1.012E-1 4.401E-2 7.974E-3 3.558E-2 6.057E-3 89 4.625E-2 3.418E-1 3.223E-1 9.317E-2 1.002E-1 4.486E-2 8.554E-3 3.661E-2 6.299E-3 90 4.904E-2 3.430E-1 3.158E-1 9.404E-2 9.912E-2 4.577E-2 9.082E-3 3.762E-2 6.553E-3 91 5.201E-2 3.448E-1 3.098E-1 9.494E-2 9.807E-2 4.623E-2 8.658E-3 3.873E-2 6.821E-3 92 5.517E-2 3.467E-1 3.031E-1 9.571E-2 9.693E-2 4.682E-2 8.692E-3 3.986E-2 7.092E-3 93 5.857E-2 3.481E-1 2.962E-1 9.653E-2 9.591E-2 4.734E-2 9.005E-3 4.102E-2 7.379E-3 94 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 95 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 96 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 97 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 98 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 99 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 100 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 101 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 102 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 103 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 104 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 105 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 106 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 107 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 108 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 109 6.215E-2 3.500E-1 2.894E-1 9.730E-2 9.462E-2 4.782E-2 8.834E-3 4.216E-2 7.670E-3 #S 2 L2 Subshell X-ray emission rates. #U0 File: AP0L2R.DAT received by courtesy of J.L. Campbell #U1 #U2 X-ray emission rates for determining relative x-ray line intensities. #U3 #U4 Reference: J.L.Campbell and J.X.Wang. Interpolated Dirac-Fock values of L #U5 subshell X-ray emission rates including overlap and exchange effects. At.Data #U6 Nucl.Data Tables 43 (1989) 281-291. #U7 #N 8 #L Z L2M1 L2M4 L2N1 L2N4 L2O1 L2O4 L2P1 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 18 1 0 0 0 0 0 0 19 1 0 0 0 0 0 0 20 1 0 0 0 0 0 0 21 1 0 0 0 0 0 0 22 1 0 0 0 0 0 0 23 1 0 0 0 0 0 0 24 1 0 0 0 0 0 0 25 1 0 0 0 0 0 0 26 8.246E-2 9.103E-1 7.201E-3 0 0 0 0 27 6.939E-2 9.248E-1 5.859E-3 0 0 0 0 28 5.949E-2 9.358E-1 4.745E-3 0 0 0 0 29 5.044E-2 9.481E-1 1.433E-3 0 0 0 0 30 4.609E-2 9.507E-1 3.200E-3 0 0 0 0 31 4.277E-2 9.535E-1 3.745E-3 0 0 0 0 32 4.033E-2 9.557E-1 3.967E-3 0 0 0 0 33 3.837E-2 9.575E-1 4.108E-3 0 0 0 0 34 3.684E-2 9.589E-1 4.226E-3 0 0 0 0 35 3.556E-2 9.601E-1 4.358E-3 0 0 0 0 36 3.451E-2 9.610E-1 4.489E-3 0 0 0 0 37 3.355E-2 9.617E-1 4.797E-3 0 0 0 0 38 3.271E-2 9.622E-1 5.060E-3 0 0 0 0 39 3.195E-2 9.629E-1 5.151E-3 0 0 0 0 40 3.078E-2 9.492E-1 4.977E-3 1.503E-2 0 0 0 41 2.978E-2 9.356E-1 5.005E-3 2.899E-2 5.843E-4 0 0 42 2.905E-2 9.266E-1 5.066E-3 3.901E-2 2.411E-4 0 0 43 2.829E-2 9.170E-1 5.076E-3 4.935E-2 2.353E-4 0 0 44 2.758E-2 9.073E-1 5.066E-3 5.985E-2 2.266E-4 0 0 45 2.708E-2 8.969E-1 5.067E-3 7.074E-2 2.182E-4 0 0 46 2.646E-2 8.841E-1 4.999E-3 8.418E-2 2.071E-4 0 0 47 2.606E-2 8.758E-1 5.019E-3 9.295E-2 2.144E-4 0 0 48 2.567E-2 8.681E-1 5.036E-3 1.006E-1 5.098E-4 0 0 49 2.526E-2 8.611E-1 5.063E-3 1.080E-1 5.971E-4 0 0 50 2.493E-2 8.546E-1 5.113E-3 1.147E-1 6.448E-4 0 0 51 2.455E-2 8.491E-1 5.156E-3 1.205E-1 6.840E-4 0 0 52 2.426E-2 8.439E-1 5.203E-3 1.259E-1 7.266E-4 0 0 53 2.398E-2 8.391E-1 5.240E-3 1.309E-1 7.786E-4 0 0 54 2.373E-2 8.348E-1 5.277E-3 1.353E-1 8.440E-4 0 0 55 2.349E-2 8.306E-1 5.319E-3 1.397E-1 9.086E-4 0 0 56 2.325E-2 8.262E-1 5.356E-3 1.441E-1 9.706E-4 0 1.592E-4 57 2.299E-2 8.228E-1 5.380E-3 1.477E-1 1.016E-3 0 1.768E-4 58 2.292E-2 8.241E-1 5.368E-3 1.465E-1 9.519E-4 0 1.444E-4 59 2.286E-2 8.229E-1 5.389E-3 1.477E-1 9.428E-4 0 1.382E-4 60 2.275E-2 8.222E-1 5.391E-3 1.486E-1 9.350E-4 0 1.325E-4 61 2.271E-2 8.215E-1 5.401E-3 1.493E-1 9.261E-4 0 1.275E-4 62 2.261E-2 8.209E-1 5.399E-3 1.501E-1 9.171E-4 0 1.231E-4 63 2.253E-2 8.206E-1 5.398E-3 1.505E-1 9.091E-4 0 1.191E-4 64 2.244E-2 8.186E-1 5.421E-3 1.524E-1 9.444E-4 0 1.359E-4 65 2.241E-2 8.195E-1 5.406E-3 1.517E-1 8.949E-4 0 1.124E-4 66 2.237E-2 8.190E-1 5.422E-3 1.522E-1 8.878E-4 0 1.094E-4 67 2.237E-2 8.183E-1 5.426E-3 1.529E-1 8.822E-4 0 1.068E-4 68 2.230E-2 8.180E-1 5.426E-3 1.533E-1 8.755E-4 0 1.039E-4 69 2.230E-2 8.172E-1 5.444E-3 1.540E-1 8.697E-4 0 1.013E-4 70 2.228E-2 8.168E-1 5.447E-3 1.545E-1 8.628E-4 0 9.834E-5 71 2.223E-2 8.155E-1 5.456E-3 1.558E-1 8.908E-4 0 1.101E-4 72 2.219E-2 8.139E-1 5.484E-3 1.574E-1 9.210E-4 0 1.160E-4 73 2.207E-2 8.094E-1 5.476E-3 1.584E-1 9.466E-4 3.552E-3 1.194E-4 74 2.204E-2 8.062E-1 5.497E-3 1.599E-1 9.771E-4 5.281E-3 1.221E-4 75 2.195E-2 8.032E-1 5.508E-3 1.610E-1 1.007E-3 7.192E-3 1.242E-4 76 2.188E-2 7.998E-1 5.525E-3 1.623E-1 1.039E-3 9.291E-3 1.258E-4 77 2.178E-2 7.953E-1 5.532E-3 1.632E-1 1.063E-3 1.313E-2 0 78 2.175E-2 7.927E-1 5.559E-3 1.640E-1 1.092E-3 1.485E-2 5.624E-5 79 2.168E-2 7.893E-1 5.581E-3 1.649E-1 1.118E-3 1.741E-2 5.656E-5 80 2.166E-2 7.867E-1 5.597E-3 1.656E-1 1.149E-3 1.915E-2 1.296E-4 81 2.165E-2 7.836E-1 5.621E-3 1.668E-1 1.179E-3 2.098E-2 1.577E-4 82 2.160E-2 7.809E-1 5.649E-3 1.678E-1 1.211E-3 2.273E-2 1.788E-4 83 2.160E-2 7.781E-1 5.672E-3 1.688E-1 1.239E-3 2.436E-2 1.967E-4 84 2.153E-2 7.756E-1 5.701E-3 1.698E-1 1.270E-3 2.590E-2 2.133E-4 85 2.154E-2 7.728E-1 5.725E-3 1.710E-1 1.301E-3 2.741E-2 2.289E-4 86 2.154E-2 7.702E-1 5.755E-3 1.721E-1 1.333E-3 2.883E-2 2.434E-4 87 2.155E-2 7.676E-1 5.789E-3 1.732E-1 1.365E-3 3.027E-2 2.645E-4 88 2.153E-2 7.651E-1 5.817E-3 1.742E-1 1.395E-3 3.168E-2 2.846E-4 89 2.155E-2 7.623E-1 5.851E-3 1.755E-1 1.425E-3 3.305E-2 3.026E-4 90 2.156E-2 7.599E-1 5.879E-3 1.765E-1 1.454E-3 3.438E-2 3.193E-4 91 2.157E-2 7.579E-1 5.911E-3 1.778E-1 1.478E-3 3.504E-2 3.151E-4 92 2.160E-2 7.558E-1 5.945E-3 1.789E-1 1.507E-3 3.592E-2 3.219E-4 93 2.163E-2 7.537E-1 5.977E-3 1.801E-1 1.533E-3 3.678E-2 3.324E-4 94 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 95 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 96 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 97 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 98 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 99 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 100 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 101 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 102 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 103 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 104 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 105 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 106 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 107 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 108 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 109 2.169E-2 7.519E-1 6.010E-3 1.811E-1 1.557E-3 3.738E-2 3.333E-4 #S 3 L3 Subshell X-ray emission rates. #U0 File: AP0L3R.DAT received by courtesy of J.L. Campbell #U1 #U2 X-ray emission rates for determining relative x-ray line intensities. #U3 #U4 Reference: J.L.Campbell and J.X.Wang. Interpolated Dirac-Fock values of L #U5 subshell X-ray emission rates including overlap and exchange effects. At.Data #U6 Nucl.Data Tables 43 (1989) 281-291. #U7 #N 10 #L Z L3M1 L3M4 L3M5 L3N1 L3N4 L3N5 L3O1 L3O45 L3P1 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 19 1 0 0 0 0 0 0 0 0 20 1 0 0 0 0 0 0 0 0 21 1 0 0 0 0 0 0 0 0 22 1 0 0 0 0 0 0 0 0 23 1 0 0 0 0 0 0 0 0 24 1 0 0 0 0 0 0 0 0 25 1 0 0 0 0 0 0 0 0 26 8.581E-2 9.302E-2 8.137E-1 7.437E-3 0 0 0 0 0 27 7.263E-2 9.457E-2 8.268E-1 6.042E-3 0 0 0 0 0 28 6.288E-2 9.575E-2 8.364E-1 4.982E-3 0 0 0 0 0 29 5.377E-2 9.734E-2 8.474E-1 1.535E-3 0 0 0 0 0 30 4.935E-2 9.732E-2 8.499E-1 3.474E-3 0 0 0 0 0 31 4.616E-2 9.740E-2 8.524E-1 4.072E-3 0 0 0 0 0 32 4.384E-2 9.744E-2 8.545E-1 4.251E-3 0 0 0 0 0 33 4.204E-2 9.758E-2 8.559E-1 4.523E-3 0 0 0 0 0 34 4.067E-2 9.760E-2 8.570E-1 4.720E-3 0 0 0 0 0 35 3.954E-2 9.762E-2 8.580E-1 4.879E-3 0 0 0 0 0 36 3.865E-2 9.762E-2 8.587E-1 5.003E-3 0 0 0 0 0 37 3.789E-2 9.755E-2 8.593E-1 5.304E-3 0 0 0 0 0 38 3.722E-2 9.762E-2 8.596E-1 5.569E-3 0 0 0 0 0 39 3.665E-2 9.758E-2 8.601E-1 5.714E-3 0 0 0 0 0 40 3.569E-2 9.607E-2 8.468E-1 5.723E-3 1.515E-3 1.341E-2 7.861E-4 0 0 41 3.490E-2 9.471E-2 8.356E-1 5.767E-3 2.925E-3 2.578E-2 3.226E-4 0 0 42 3.429E-2 9.381E-2 8.272E-1 5.884E-3 3.924E-3 3.461E-2 3.170E-4 0 0 43 3.372E-2 9.283E-2 8.185E-1 5.965E-3 4.954E-3 4.370E-2 3.081E-4 0 0 44 3.320E-2 9.182E-2 8.097E-1 6.039E-3 5.999E-3 5.293E-2 3.003E-4 0 0 45 3.293E-2 9.084E-2 8.001E-1 6.089E-3 7.100E-3 6.265E-2 2.909E-4 0 0 46 3.263E-2 8.961E-2 7.892E-1 6.091E-3 8.442E-3 7.400E-2 0 0 0 47 3.237E-2 8.862E-2 7.815E-1 6.163E-3 9.295E-3 8.181E-2 2.635E-4 0 0 48 3.213E-2 8.780E-2 7.746E-1 6.235E-3 1.002E-2 8.859E-2 6.283E-4 0 0 49 3.199E-2 8.704E-2 7.680E-1 6.345E-3 1.074E-2 9.513E-2 7.559E-4 0 0 50 3.183E-2 8.632E-2 7.624E-1 6.467E-3 1.137E-2 1.009E-1 8.068E-4 0 0 51 3.171E-2 8.564E-2 7.573E-1 6.576E-3 1.192E-2 1.060E-1 8.927E-4 0 0 52 3.165E-2 8.514E-2 7.525E-1 6.697E-3 1.243E-2 1.106E-1 9.687E-4 0 0 53 3.158E-2 8.457E-2 7.482E-1 6.818E-3 1.289E-2 1.149E-1 1.036E-3 0 0 54 3.158E-2 8.412E-2 7.442E-1 6.946E-3 1.331E-2 1.187E-1 1.100E-3 0 0 55 3.162E-2 8.378E-2 7.403E-1 7.065E-3 1.370E-2 1.224E-1 1.200E-3 0 0 56 3.169E-2 8.346E-2 7.362E-1 7.176E-3 1.409E-2 1.259E-1 1.301E-3 0 2.123E-4 57 3.175E-2 8.305E-2 7.326E-1 7.300E-3 1.444E-2 1.293E-1 1.381E-3 0 2.383E-4 58 3.205E-2 8.335E-2 7.335E-1 7.356E-3 1.432E-2 1.279E-1 1.304E-3 0 1.971E-4 59 3.227E-2 8.328E-2 7.324E-1 7.446E-3 1.441E-2 1.287E-1 1.305E-3 0 1.903E-4 60 3.246E-2 8.288E-2 7.322E-1 7.528E-3 1.443E-2 1.290E-1 1.301E-3 0 1.842E-4 61 3.275E-2 8.280E-2 7.314E-1 7.612E-3 1.449E-2 1.295E-1 1.302E-3 0 1.794E-4 62 3.308E-2 8.293E-2 7.304E-1 7.727E-3 1.453E-2 1.299E-1 1.306E-3 0 1.753E-4 63 3.333E-2 8.261E-2 7.302E-1 7.796E-3 1.454E-2 1.301E-1 1.306E-3 0 1.710E-4 64 3.360E-2 8.259E-2 7.282E-1 7.914E-3 1.469E-2 1.315E-1 1.371E-3 0 1.970E-4 65 3.399E-2 8.263E-2 7.287E-1 7.995E-3 1.461E-2 1.306E-1 1.316E-3 0 1.650E-4 66 3.437E-2 8.256E-2 7.280E-1 8.104E-3 1.463E-2 1.309E-1 1.321E-3 0 1.624E-4 67 3.474E-2 8.259E-2 7.277E-1 8.214E-3 1.466E-2 1.306E-1 1.328E-3 0 1.602E-4 68 3.510E-2 8.238E-2 7.270E-1 8.319E-3 1.464E-2 1.311E-1 1.331E-3 0 1.576E-4 69 3.546E-2 8.250E-2 7.261E-1 8.425E-3 1.469E-2 1.313E-1 1.339E-3 0 1.554E-4 70 3.591E-2 8.226E-2 7.256E-1 8.530E-3 1.469E-2 1.315E-1 1.344E-3 0 1.528E-4 71 3.625E-2 8.222E-2 7.240E-1 8.659E-3 1.480E-2 1.325E-1 1.404E-3 0 1.737E-4 72 3.674E-2 8.201E-2 7.225E-1 8.789E-3 1.490E-2 1.334E-1 1.467E-3 0 1.851E-4 73 3.698E-2 8.156E-2 7.185E-1 8.903E-3 1.497E-2 1.341E-1 1.528E-3 3.231E-3 1.920E-4 74 3.740E-2 8.134E-2 7.155E-1 9.043E-3 1.506E-2 1.351E-1 1.594E-3 4.798E-3 1.971E-4 75 3.776E-2 8.098E-2 7.126E-1 9.163E-3 1.514E-2 1.359E-1 1.657E-3 6.525E-3 2.006E-4 76 3.810E-2 8.073E-2 7.095E-1 9.308E-3 1.522E-2 1.368E-1 1.732E-3 8.427E-3 2.038E-4 77 3.850E-2 8.026E-2 7.058E-1 9.422E-3 1.526E-2 1.373E-1 1.794E-3 1.161E-2 0 78 3.889E-2 7.995E-2 7.032E-1 9.569E-3 1.531E-2 1.379E-1 1.861E-3 1.327E-2 9.227E-5 79 3.933E-2 7.962E-2 6.999E-1 9.717E-3 1.537E-2 1.385E-1 1.924E-3 1.551E-2 9.384E-5 80 3.973E-2 7.937E-2 6.972E-1 9.873E-3 1.542E-2 1.391E-1 1.998E-3 1.712E-2 2.191E-4 81 4.017E-2 7.900E-2 6.945E-1 1.003E-2 1.547E-2 1.397E-1 2.072E-3 1.882E-2 2.725E-4 82 4.068E-2 7.870E-2 6.918E-1 1.018E-2 1.551E-2 1.402E-1 2.151E-3 2.041E-2 3.180E-4 83 4.112E-2 7.852E-2 6.891E-1 1.034E-2 1.556E-2 1.409E-1 2.236E-3 2.191E-2 3.547E-4 84 4.166E-2 7.826E-2 6.867E-1 1.051E-2 1.561E-2 1.413E-1 2.318E-3 2.325E-2 3.890E-4 85 4.216E-2 7.789E-2 6.840E-1 1.068E-2 1.566E-2 1.422E-1 2.409E-3 2.457E-2 4.208E-4 86 4.269E-2 7.765E-2 6.818E-1 1.084E-2 1.570E-2 1.426E-1 2.495E-3 2.582E-2 4.512E-4 87 4.325E-2 7.742E-2 6.791E-1 1.101E-2 1.577E-2 1.433E-1 2.582E-3 2.706E-2 4.937E-4 88 4.373E-2 7.716E-2 6.765E-1 1.121E-2 1.581E-2 1.441E-1 2.667E-3 2.827E-2 5.364E-4 89 4.435E-2 7.685E-2 6.742E-1 1.137E-2 1.585E-2 1.446E-1 2.754E-3 2.945E-2 5.760E-4 90 4.491E-2 7.659E-2 6.719E-1 1.155E-2 1.589E-2 1.451E-1 2.836E-3 3.056E-2 6.150E-4 91 4.552E-2 7.641E-2 6.700E-1 1.173E-2 1.596E-2 1.459E-1 2.904E-3 3.101E-2 6.139E-4 92 4.617E-2 7.616E-2 6.677E-1 1.191E-2 1.600E-2 1.467E-1 2.971E-3 3.176E-2 6.348E-4 93 4.682E-2 7.596E-2 6.659E-1 1.212E-2 1.605E-2 1.470E-1 3.058E-3 3.244E-2 6.588E-4 94 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 95 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 96 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 97 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 98 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 99 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 100 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 101 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 102 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 103 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 104 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 105 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 106 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 107 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 108 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 109 4.747E-2 7.578E-2 6.642E-1 1.230E-2 1.609E-2 1.476E-1 3.141E-3 3.281E-2 6.679E-4 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/LShellRatesScofieldHS.dat0000644000000000000000000015677114741736366021777 0ustar00rootroot #S 1 L1 x-ray emission rates #N 20 #L Z TOTAL L1L2 L1L3 L1M1 L1M2 L1M3 L1M4 L1M5 L1N1 L1N2 L1N3 L1N4 L1N5 L1N67 L1O1 L1O2 L1O3 L1O45 L1P23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 9.49e-008 0.33298 0.66702 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3.61e-007 0.33241 0.66759 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 9.32e-007 0.33155 0.66845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2.002e-006 0.33067 0.66933 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 3.84e-006 0.33073 0.66927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 6.77e-006 0.32939 0.67061 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 8.84e-006 0.32805 0.67195 8.0995e-013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 1.104e-005 0.32609 0.67391 9.058e-012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 1.4897e-005 0.29133 0.60818 3.3631e-011 0.034168 0.066322 0 0 0 0 0 0 0 0 0 0 0 0 0 14 2.368e-005 0.21622 0.45608 7.4747e-011 0.11149 0.21622 0 0 0 0 0 0 0 0 0 0 0 0 0 15 4.17e-005 0.14269 0.29017 1.2566e-010 0.19305 0.3741 0 0 0 0 0 0 0 0 0 0 0 0 0 16 7.764e-005 0.088099 0.19062 1.7646e-010 0.24601 0.47527 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0.00013897 0.055911 0.12377 2.353e-010 0.28064 0.53968 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0.00023745 0.03685 0.080438 3.0406e-010 0.30238 0.58033 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0.00037516 0.026016 0.059708 4.2648e-010 0.3132 0.60108 0 0 1.3568e-011 0 0 0 0 0 0 0 0 0 0 20 0.0005582 0.019348 0.045503 6.0014e-010 0.32067 0.61448 0 0 6.1985e-011 0 0 0 0 0 0 0 0 0 0 21 0.00076138 0.015498 0.037564 8.419e-010 0.3256 0.62124 3.9665e-005 5.9104e-005 8.7342e-011 0 0 0 0 0 0 0 0 0 0 22 0.0010101 0.012771 0.031679 1.1583e-009 0.32966 0.62566 9.4443e-005 0.00014057 1.1781e-010 0 0 0 0 0 0 0 0 0 0 23 0.0013113 0.010676 0.0273 1.5709e-009 0.33249 0.62913 0.00016472 0.00024479 1.5557e-010 0 0 0 0 0 0 0 0 0 0 24 0.0016322 0.0092511 0.024506 2.1075e-009 0.33451 0.63104 0.0002806 0.00041661 7.5969e-011 0 0 0 0 0 0 0 0 0 0 25 0.0020968 0.0077736 0.021318 2.7708e-009 0.33717 0.63286 0.00035148 0.0005246 2.5705e-010 0 0 0 0 0 0 0 0 0 0 26 0.0025954 0.0067426 0.019226 3.6102e-009 0.33906 0.6338 0.00047006 0.00070123 3.2326e-010 0 0 0 0 0 0 0 0 0 0 27 0.0031765 0.0058869 0.017346 4.6592e-009 0.34094 0.63434 0.00060758 0.00088461 4.0295e-010 0 0 0 0 0 0 0 0 0 0 28 0.0038475 0.0051982 0.016166 5.9519e-009 0.34256 0.63418 0.00076413 0.0011332 4.9643e-010 0 0 0 0 0 0 0 0 0 0 29 0.0045466 0.0046848 0.015242 7.544e-009 0.34421 0.63343 0.00097874 0.0014494 2.2874e-010 0 0 0 0 0 0 0 0 0 0 30 0.0054958 0.0041486 0.014102 9.4254e-009 0.34572 0.63321 0.0011354 0.0016831 7.3875e-010 0 0 0 0 0 0 0 0 0 0 31 0.0066451 0.0036418 0.013047 1.1648e-008 0.34537 0.62904 0.0012867 0.0018209 1.2084e-009 0.0020767 0.0037171 0 0 0 0 0 0 0 0 32 0.0080434 0.0032076 0.012072 1.4173e-008 0.34301 0.62163 0.0014297 0.0021135 1.7406e-009 0.0059303 0.010605 0 0 0 0 0 0 0 0 33 0.0097209 0.0028084 0.011192 1.7179e-008 0.33947 0.61208 0.0015534 0.0023146 2.3763e-009 0.010966 0.019607 0 0 0 0 0 0 0 0 34 0.011699 0.0024788 0.010428 2.0599e-008 0.33421 0.60174 0.0016838 0.0024959 3.0856e-009 0.016881 0.030087 0 0 0 0 0 0 0 0 35 0.014031 0.002188 0.0097497 2.4446e-008 0.32927 0.5894 0.001796 0.0026726 4.0552e-009 0.023376 0.04155 0 0 0 0 0 0 0 0 36 0.016764 0.0019327 0.0091623 2.893e-008 0.3239 0.57622 0.0019028 0.0028334 5.1418e-009 0.030362 0.053685 0 0 0 0 0 0 0 0 37 0.019838 0.001724 0.0086905 3.4228e-008 0.31959 0.56609 0.0020214 0.0029792 6.7548e-009 0.035639 0.063263 0 0 0 1.9559e-010 0 0 0 0 38 0.023307 0.0015446 0.0083108 4.0417e-008 0.31664 0.55735 0.002141 0.0031879 8.7099e-009 0.039988 0.070837 0 0 0 7.8518e-010 0 0 0 0 39 0.027112 0.0013942 0.0077862 4.758e-008 0.31499 0.55142 0.0022721 0.003386 1.0955e-008 0.042933 0.075797 1.0696e-005 1.5897e-005 0 1.0659e-009 0 0 0 0 40 0.03137 0.0012656 0.0078069 5.6105e-008 0.31368 0.54607 0.0024068 0.0035831 1.358e-008 0.045394 0.079727 2.6586e-005 3.9529e-005 0 1.3548e-009 0 0 0 0 41 0.036002 0.0011555 0.0076524 6.6108e-008 0.3136 0.54248 0.0025499 0.003797 1.6555e-008 0.046859 0.081774 5.6386e-005 8.3607e-005 0 6.8052e-010 0 0 0 0 42 0.041207 0.0010581 0.007523 7.7414e-008 0.31281 0.53826 0.0026913 0.004009 2.0166e-008 0.048754 0.084694 8.2025e-005 0.00012182 0 8.1539e-010 0 0 0 0 43 0.046948 0.00097128 0.0074337 9.0525e-008 0.31247 0.53421 0.002835 0.0042259 2.4282e-008 0.05046 0.087117 0.00011204 0.00016657 0 9.6063e-010 0 0 0 0 44 0.053277 0.00089532 0.0073953 1.0549e-007 0.31233 0.53044 0.0029844 0.0044466 2.9281e-008 0.051992 0.089157 0.00014622 0.00021773 0 1.1187e-009 0 0 0 0 45 0.060182 0.00082749 0.0073776 2.2931e-008 0.31239 0.52674 0.0031372 0.0046775 3.4894e-008 0.053338 0.091057 0.00018444 0.00027583 0 1.2944e-009 0 0 0 0 46 0.067699 0.00076663 0.0074004 1.4225e-007 0.31271 0.52438 0.003297 0.0049188 3.2349e-008 0.054211 0.09173 0.00023634 0.00035008 0 0 0 0 0 0 47 0.076097 0.00071225 0.0074378 1.6426e-007 0.31249 0.52039 0.0034535 0.0051513 4.8885e-008 0.05585 0.093827 0.00027596 0.00041132 0 1.6952e-009 0 0 0 0 48 0.085261 0.0006615 0.0075064 1.8883e-007 0.31222 0.51607 0.0036125 0.0053835 5.7823e-008 0.057588 0.096176 0.0003155 0.0004715 0 4.9026e-009 0 0 0 0 49 0.095345 0.00061671 0.007583 2.1711e-007 0.31181 0.51078 0.0037758 0.0056322 6.8173e-008 0.059154 0.098484 0.0003566 0.0005349 0 7.2579e-009 0.00050134 0.00076984 0 0 50 0.10658 0.0005733 0.0076753 2.4771e-007 0.31058 0.50575 0.0039221 0.005855 7.985e-008 0.060708 0.1004 0.00039597 0.00059676 0 9.6646e-009 0.0013878 0.00216 0 0 51 0.11885 0.00053513 0.0077829 2.8187e-007 0.30963 0.49979 0.0040808 0.0060917 9.3395e-008 0.062179 0.10223 0.00043584 0.00065882 0 1.2453e-008 0.0025663 0.0040135 0 0 52 0.13236 0.00049939 0.0079026 3.1958e-007 0.30824 0.4941 0.0042384 0.0063236 1.0879e-007 0.063462 0.10381 0.00047521 0.00071924 0 1.5714e-008 0.0039891 0.0062404 0 0 53 0.14638 0.00046865 0.0080887 3.6413e-007 0.30811 0.48573 0.0044133 0.0065926 1.2639e-007 0.065037 0.10575 0.00051716 0.00078428 0 1.9539e-008 0.0056635 0.0088402 0 0 54 0.16302 0.00043676 0.008226 4.0916e-007 0.30549 0.48154 0.0045516 0.0068029 1.4538e-007 0.065882 0.10655 0.00055392 0.00084162 0 2.374e-008 0.0074899 0.011637 0 0 55 0.18033 0.00040982 0.0084181 4.6194e-007 0.30445 0.47581 0.0047137 0.0070428 1.6748e-007 0.067046 0.10775 0.00059393 0.00090448 0 2.9835e-008 0.0088839 0.01398 0 0 56 0.19886 0.0003852 0.0086393 5.2298e-007 0.30373 0.47018 0.0048879 0.0073017 1.926e-007 0.068239 0.10897 0.00063512 0.00096953 0 3.7061e-008 0.010113 0.015941 0 0 57 0.21864 0.0003627 0.0089006 5.8545e-007 0.30324 0.46515 0.0050678 0.0075696 2.2091e-007 0.069476 0.11018 0.00067784 0.0010364 0 4.496e-008 0.011027 0.017289 1.2807e-005 0 58 0.23831 0.00034325 0.0092359 6.672e-007 0.30549 0.4641 0.0052915 0.0079099 2.5135e-007 0.069909 0.10982 0.00070077 0.0010717 4.7837e-007 4.8257e-008 0.010268 0.015862 0 0 59 0.25938 0.00032578 0.0096038 7.518e-007 0.30496 0.46226 0.0055209 0.0082544 2.8684e-007 0.070823 0.1103 0.00073522 0.0011258 8.5204e-007 5.4746e-008 0.010317 0.015769 0 0 60 0.28313 0.00030834 0.0099601 8.4766e-007 0.30763 0.45845 0.0057288 0.0085649 3.2494e-007 0.071345 0.1102 0.00076608 0.0011761 1.3209e-006 6.1809e-008 0.010299 0.015576 0 0 61 0.30774 0.00029245 0.010366 9.521e-007 0.30903 0.45558 0.0059563 0.0089101 3.6719e-007 0.072009 0.11016 0.0007997 0.0012283 1.9042e-006 6.9539e-008 0.010301 0.01537 0 0 62 0.33394 0.0002779 0.01081 1.0691e-006 0.31024 0.45278 0.0061928 0.0092532 4.1624e-007 0.072678 0.1102 0.00083369 0.0012817 2.6172e-006 7.8158e-008 0.010271 0.015182 0 0 63 0.36174 0.00026455 0.011306 1.1998e-006 0.31182 0.44977 0.0064328 0.0096201 4.6995e-007 0.073312 0.11002 0.00086802 0.0013352 3.4555e-006 8.7632e-008 0.010256 0.014983 0 0 64 0.39222 0.00025165 0.011805 1.3411e-006 0.31233 0.44567 0.0066621 0.009969 5.3032e-007 0.074092 0.11014 0.00091021 0.0014048 4.2069e-006 1.0249e-007 0.010912 0.015833 1.3003e-005 0 65 0.42254 0.00024022 0.012378 1.5052e-006 0.31477 0.44398 0.006939 0.01039 5.964e-007 0.07455 0.10958 0.00093956 0.0014508 5.6563e-006 1.0958e-007 0.010224 0.014555 0 0 66 0.45583 0.00022925 0.012987 1.6804e-006 0.31634 0.44095 0.0071956 0.010771 6.691e-007 0.075247 0.10925 0.00097843 0.0015093 7.0201e-006 1.2197e-007 0.010201 0.014325 0 0 67 0.4909 0.00021919 0.013648 1.8761e-006 0.31799 0.43797 0.0073538 0.011183 7.4964e-007 0.075779 0.10898 0.0010165 0.0015706 8.576e-006 1.3587e-007 0.010185 0.014096 0 0 68 0.52812 0.00020961 0.014334 2.0829e-006 0.31963 0.43475 0.0077445 0.011607 8.3883e-007 0.076309 0.10869 0.0010547 0.0016322 1.0376e-005 1.511e-007 0.010149 0.01388 0 0 69 0.56737 0.00020058 0.015105 2.3265e-006 0.32131 0.43147 0.0080371 0.012038 9.3767e-007 0.077022 0.10822 0.0010945 0.0016973 1.2408e-005 1.6779e-007 0.010135 0.01366 0 0 70 0.60871 0.00019221 0.015902 2.5956e-006 0.32314 0.42828 0.0082305 0.012469 1.0481e-006 0.077541 0.10777 0.0011368 0.0017627 1.472e-005 1.8564e-007 0.01012 0.013438 0 0 71 0.65376 0.00018401 0.016749 2.8757e-006 0.32412 0.42386 0.0086117 0.012895 1.1686e-006 0.078163 0.10753 0.0011854 0.0018401 1.6979e-005 2.1415e-007 0.010707 0.014118 1.2252e-005 0 72 0.70143 0.00017635 0.017635 3.1792e-006 0.32519 0.41929 0.0088962 0.01333 1.3016e-006 0.078982 0.10721 0.0012346 0.0019218 1.9389e-005 2.4664e-007 0.011291 0.014784 3.1365e-005 0 73 0.75202 0.00016928 0.01859 3.5106e-006 0.32619 0.41488 0.0092019 0.013763 1.4494e-006 0.079652 0.10691 0.0012872 0.0020066 2.2074e-005 2.8324e-007 0.011861 0.015399 5.6914e-005 0 74 0.80489 0.00016251 0.019618 3.8887e-006 0.3275 0.41 0.0095044 0.014226 1.6151e-006 0.080384 0.1066 0.0013443 0.0020972 2.4848e-005 3.2427e-007 0.012449 0.016002 8.8832e-005 0 75 0.86128 0.00015605 0.020713 4.2843e-006 0.32858 0.40521 0.009811 0.014687 1.788e-006 0.081158 0.10635 0.0014014 0.0021909 2.7982e-005 3.7038e-007 0.013016 0.016557 0.00012748 0 76 0.9204 0.00015004 0.021882 4.7262e-006 0.33029 0.39982 0.010126 0.015156 1.9883e-006 0.08192 0.10604 0.0014613 0.0022892 3.1182e-005 4.2155e-007 0.013581 0.017069 0.00017297 0 77 0.98147 0.00014458 0.023159 5.2167e-006 0.33114 0.39533 0.010464 0.01567 2.211e-006 0.082835 0.10586 0.0015263 0.0023944 3.4744e-005 4.7684e-007 0.013959 0.017229 0.0002536 0 78 1.0476 0.00013908 0.024475 5.7464e-006 0.33219 0.39041 0.010786 0.016151 2.4437e-006 0.083619 0.10538 0.0015903 0.0025 3.8469e-005 5.4219e-007 0.014586 0.017822 0.00030259 0 79 1.1172 0.000134 0.025886 6.3105e-006 0.33387 0.38489 0.011126 0.016658 2.7122e-006 0.084408 0.105 0.0016568 0.0026092 4.2428e-005 6.1315e-007 0.015109 0.018224 0.00037147 0 80 1.1907 0.000129 0.027378 6.9369e-006 0.33509 0.3796 0.011472 0.017166 2.9981e-006 0.085241 0.10447 0.0017258 0.002721 4.661e-005 6.9537e-007 0.015738 0.018787 0.00042915 0 81 1.2674 0.00012434 0.029035 7.6216e-006 0.33611 0.37398 0.011827 0.017697 3.3138e-006 0.086 0.10399 0.0017981 0.0028404 5.1205e-005 7.8741e-007 0.016372 0.019346 0.00049391 0.00032427 82 1.3494 0.00011983 0.03068 8.374e-006 0.33718 0.36831 0.012176 0.018223 3.6534e-006 0.086778 0.1033 0.0018712 0.0029568 5.595e-005 8.8927e-007 0.017 0.019883 0.00055876 0.00089446 83 1.4361 0.00011545 0.032518 9.1219e-006 0.33842 0.36209 0.012534 0.018752 4.0317e-006 0.087528 0.10264 0.0019462 0.0030847 6.0998e-005 1.0027e-006 0.017631 0.020388 0.000626 0.0016559 84 1.5273 0.00011138 0.034375 1.0018e-005 0.33917 0.35619 0.012899 0.019296 4.4393e-006 0.088328 0.10188 0.0020232 0.0032149 6.6328e-005 1.1262e-006 0.018255 0.020887 0.00069406 0.0025863 85 1.6241 0.00010732 0.036451 1.096e-005 0.34049 0.34973 0.013269 0.019826 4.8888e-006 0.088971 0.10104 0.0021058 0.0033433 7.1916e-005 1.2684e-006 0.018841 0.021304 0.00076411 0.0036697 86 1.725 0.00010354 0.03861 1.2e-005 0.34146 0.3432 0.013653 0.020406 5.374e-006 0.089741 0.10018 0.0021856 0.0034783 7.7799e-005 1.4203e-006 0.019479 0.021682 0.00083654 0.0048987 87 1.8314 9.9762e-005 0.040898 1.3105e-005 0.34237 0.33691 0.014039 0.020968 5.8972e-006 0.090533 0.09927 0.0022715 0.0036202 8.409e-005 1.5944e-006 0.020094 0.02206 0.00091298 0.0058536 88 1.9434 9.6172e-005 0.043326 1.4305e-005 0.34373 0.33035 0.014439 0.02156 6.4835e-006 0.091233 0.098282 0.0023619 0.0037666 9.0615e-005 1.7855e-006 0.020686 0.022384 0.0009926 0.0066791 89 2.0606 9.2738e-005 0.045957 1.5626e-005 0.34504 0.32369 0.01485 0.022178 7.1337e-006 0.09201 0.0973 0.0024507 0.0039211 9.7543e-005 1.9945e-006 0.021256 0.022711 0.0010749 0.0073521 90 2.183 8.9465e-005 0.048741 1.7041e-005 0.34631 0.317 0.015254 0.022767 7.8333e-006 0.092809 0.096244 0.002547 0.004077 0.00010486 2.2263e-006 0.021897 0.022996 0.0011603 0.0079753 91 2.3102 8.6312e-005 0.051727 1.8613e-005 0.34802 0.31079 0.015713 0.023418 8.5706e-006 0.09367 0.095185 0.0026491 0.004242 0.0001125 2.4716e-006 0.022379 0.023028 0.0012246 0.0077265 92 2.4444 8.3168e-005 0.0549 2.0332e-005 0.34977 0.30395 0.016159 0.024095 9.4091e-006 0.0945 0.09405 0.0027532 0.00441 0.00012048 2.7491e-006 0.022909 0.023114 0.0013009 0.0078464 93 2.5845 8.021e-005 0.05831 2.2171e-005 0.35133 0.29716 0.016638 0.024763 1.0331e-005 0.095339 0.092901 0.0028594 0.0045889 0.00012885 3.0528e-006 0.023409 0.023138 0.0013775 0.0079436 94 2.7312 7.7292e-005 0.061914 2.4202e-005 0.35332 0.29035 0.017099 0.025447 1.1314e-005 0.096184 0.091644 0.0029694 0.0047708 0.00013767 3.3795e-006 0.023872 0.023103 0.0014462 0.0076266 95 2.8867 7.441e-005 0.065715 2.6362e-005 0.35508 0.28337 0.017563 0.026154 1.2402e-005 0.096962 0.090276 0.0030831 0.0049537 0.00014653 3.7413e-006 0.024353 0.023037 0.0015277 0.0076696 96 3.0508 7.1588e-005 0.069752 2.8714e-005 0.35663 0.27599 0.018061 0.026845 1.357e-005 0.097745 0.088829 0.0031959 0.0051462 0.00015602 4.1301e-006 0.024846 0.022978 0.0016192 0.0080897 97 3.2211 6.8796e-005 0.074104 3.1293e-005 0.35826 0.26854 0.018565 0.027568 1.484e-005 0.098723 0.08733 0.0033187 0.0053428 0.00016578 4.5636e-006 0.025302 0.022849 0.0017044 0.008109 98 3.3997 6.6094e-005 0.078713 3.4062e-005 0.36033 0.2612 0.01909 0.028297 1.6207e-005 0.099421 0.085802 0.0034444 0.0055475 0.0001759 5.0299e-006 0.025738 0.02262 0.0017796 0.0077272 99 3.5877 6.33e-005 0.083591 3.7099e-005 0.36207 0.25364 0.019595 0.029044 1.7727e-005 0.10006 0.084177 0.0035705 0.0057558 0.00018619 5.5467e-006 0.026173 0.02241 0.0018703 0.0077236 100 3.7871 6.0495e-005 0.088723 4.0348e-005 0.36387 0.24584 0.020121 0.029786 1.9329e-005 0.10087 0.082385 0.0037021 0.0059703 0.00019699 6.0997e-006 0.02659 0.022154 0.0019593 0.0077104 101 3.9971 5.7817e-005 0.094068 4.3857e-005 0.36576 0.23792 0.02064 0.030522 2.109e-005 0.10157 0.080558 0.0038353 0.006187 0.00020815 6.7299e-006 0.02702 0.021841 0.0020515 0.0076805 102 4.2202 5.521e-005 0.099994 4.7651e-005 0.36728 0.22984 0.02116 0.031254 2.3008e-005 0.10236 0.078668 0.0039713 0.0064072 0.00021918 7.3929e-006 0.027392 0.021515 0.0021468 0.0076536 103 4.4557 5.2518e-005 0.10593 5.1732e-005 0.36875 0.22152 0.021703 0.032004 2.5047e-005 0.10302 0.076756 0.0041116 0.006632 0.00023094 8.1021e-006 0.027807 0.021164 0.0022533 0.0079899 104 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 105 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 106 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 107 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 108 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 109 4.7036 4.9813e-005 0.11247 5.6149e-005 0.37015 0.21303 0.022239 0.032741 2.7277e-005 0.10354 0.074624 0.0042542 0.0068672 0.0002428 8.9082e-006 0.028191 0.020814 0.0023663 0.0083341 #S 2 L2 x-ray emission rates #N 22 #L Z TOTAL L2L3 L2M1 L2M2 L2M3 L2M4 L2M5 L2N1 L2N2 L2N3 L2N4 L2N5 L2N6 L2O1 L2O2 L2O3 L2O4 L2P1 L2P23 L2P4 L2Q1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 3.03e-023 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1.55e-021 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2.65e-020 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2.55e-019 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1.69e-018 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 8.7e-018 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1.92e-007 2.3281e-010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 1.15e-006 1.5913e-010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 2.69e-006 2.394e-010 0.99999 2.4349e-012 1.0929e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 4.9002e-006 4.0815e-010 0.99996 1.2816e-011 3.8774e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 7.9807e-006 7.0295e-010 0.99991 4.1726e-011 8.8589e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1.2102e-005 1.1981e-009 0.99983 1.0825e-010 0.00016691 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 1.7505e-005 1.988e-009 0.99972 2.4336e-010 0.00027821 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 2.4311e-005 3.2414e-009 0.99957 4.9773e-010 0.00043191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 3.5465e-005 4.7935e-009 0.97561 8.4027e-010 0.00056112 0 0 0.023826 0 0 0 0 0 0 0 0 0 0 0 0 0 20 5.1485e-005 6.7787e-009 0.92843 1.3013e-009 0.00067981 0 0 0.070894 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0.00013763 5.0354e-009 0.45195 9.6639e-010 0.00040036 0.51299 3.9964e-008 0.034659 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0.00028714 4.6318e-009 0.27617 8.7065e-010 0.0002901 0.70278 7.0348e-008 0.020756 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0.00052057 4.7064e-009 0.19056 8.6443e-010 0.00023436 0.79528 1.0066e-007 0.013927 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0.00092382 4.7737e-009 0.13033 8.2375e-010 0.00018402 0.86597 1.3639e-007 0.003518 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0.0013434 5.7315e-009 0.11091 9.8255e-010 0.00018088 0.88132 1.7195e-007 0.0075924 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0.0019948 6.567e-009 0.090033 1.0828e-009 0.00016693 0.90383 2.1455e-007 0.0059654 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0.0028547 7.6714e-009 0.075138 1.2085e-009 0.00015693 0.91987 2.6412e-007 0.0048341 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0.0039704 9.0167e-009 0.063973 1.3626e-009 0.00014961 0.9319 3.1987e-007 0.0039795 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0.0054931 1.0468e-008 0.053795 1.4873e-009 0.00013927 0.94483 3.8594e-007 0.0012361 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0.0071504 1.2671e-008 0.048808 1.7482e-009 0.00014125 0.9482 4.5732e-007 0.002853 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0.0091228 1.5346e-008 0.044942 2.0827e-009 0.0001436 0.95146 5.404e-007 0.0034529 1.4908e-011 8.5061e-007 0 0 0 0 0 0 0 0 0 0 0 32 0.011426 1.873e-008 0.042098 2.4856e-009 0.00014879 0.95399 6.3366e-007 0.0037634 5.1638e-011 2.5381e-006 0 0 0 0 0 0 0 0 0 0 0 33 0.014099 2.2909e-008 0.039789 2.9718e-009 0.00015462 0.95607 7.3762e-007 0.0039789 1.1703e-010 4.9648e-006 0 0 0 0 0 0 0 0 0 0 0 34 0.017186 2.793e-008 0.037938 3.561e-009 0.00016176 0.95775 8.5535e-007 0.0041371 2.2053e-010 8.088e-006 0 0 0 0 0 0 0 0 0 0 0 35 0.020706 3.4e-008 0.036414 4.2548e-009 0.00016951 0.95913 9.8521e-007 0.0042693 3.7235e-010 1.1977e-005 0 0 0 0 0 0 0 0 0 0 0 36 0.024722 4.1259e-008 0.035151 5.0967e-009 0.00017798 0.96028 1.1326e-006 0.0043767 5.9461e-010 1.6625e-005 0 0 0 0 0 0 0 0 0 0 0 37 0.029294 4.8133e-008 0.034069 3.7892e-009 0.00018673 0.96095 1.2938e-006 0.0046392 8.5342e-010 2.0994e-005 0 0 0 0.00012972 0 0 0 0 0 0 0 38 0.034431 6.07e-008 0.033138 7.1737e-009 0.00019662 0.96133 1.4754e-006 0.004888 1.1588e-009 2.5122e-005 0 0 0 0.00042113 0 0 0 0 0 0 0 39 0.039831 7.4062e-008 0.032638 8.5862e-009 0.00020888 0.95653 1.6896e-006 0.0050864 1.5089e-009 2.8872e-005 0.0050312 9.1134e-009 0 0.00047199 0 0 0 0 0 0 0 40 0.047303 8.7098e-008 0.031203 9.8937e-009 0.00021563 0.95132 1.8667e-006 0.00508 1.8625e-009 3.1499e-005 0.01167 2.3889e-008 0 0.00047989 0 0 0 0 0 0 0 41 0.055096 9.2565e-008 0.029222 1.1525e-008 0.00022325 0.94199 2.0873e-006 0.0050675 2.2688e-009 3.3941e-005 0.023268 5.3724e-008 0 0.00019784 0 0 0 0 0 0 0 42 0.063786 2.8847e-008 0.029521 1.342e-008 0.00023359 0.93281 2.3203e-006 0.0050952 2.7592e-009 3.6842e-005 0.032107 8.3718e-008 0 0.0001944 0 0 0 0 0 0 0 43 0.073586 1.4541e-007 0.028756 1.5492e-008 0.00024189 0.92409 2.5684e-006 0.0050961 3.3294e-009 3.9682e-005 0.041584 1.2163e-007 0 0.0001889 0 0 0 0 0 0 0 44 0.084492 1.7161e-007 0.028062 1.799e-008 0.0002521 0.91488 2.8405e-006 0.0050893 4.0004e-009 4.2608e-005 0.051484 1.6925e-007 0 0.00018345 0 0 0 0 0 0 0 45 0.096648 2.0176e-007 0.027419 2.0694e-008 0.00026177 0.90535 3.1351e-006 0.0050803 4.7595e-009 4.5423e-005 0.061667 2.2556e-007 0 0.00017693 0 0 0 0 0 0 0 46 0.11045 2.363e-007 0.026735 2.363e-008 0.0002707 0.8936 3.4404e-006 0.0050157 5.5589e-009 4.7713e-005 0.074331 3.0149e-007 0 0 0 0 0 0 0 0 0 47 0.12524 2.7626e-007 0.026189 2.7147e-008 0.00028185 0.88548 3.3056e-006 0.0050302 6.6032e-009 5.1101e-005 0.082799 3.7527e-007 0 0.00016368 0 0 0 0 0 0 0 48 0.14145 3.2308e-007 0.025733 3.1036e-008 0.00029268 0.87805 4.1499e-006 0.0050477 7.8473e-009 5.479e-005 0.09042 4.5528e-007 0 0.00039943 0 0 0 0 0 0 0 49 0.15924 3.7743e-007 0.025308 3.5419e-008 0.00030332 0.87104 4.5404e-006 0.005068 9.2316e-009 5.8718e-005 0.097717 5.4636e-007 0 0.0005024 8.164e-011 4.597e-007 0 0 0 0 0 50 0.17858 4.3902e-007 0.024919 4.0374e-008 0.00031526 0.86459 4.9333e-006 0.0050957 1.0919e-008 6.2717e-005 0.10443 6.4396e-007 0 0.00057397 2.6095e-010 1.3551e-006 0 0 0 0 0 51 0.19969 5.1079e-007 0.024538 4.5971e-008 0.00032701 0.85883 5.4084e-006 0.0051229 1.282e-008 6.7104e-005 0.11047 7.5617e-007 0 0.00063398 5.5586e-010 2.6391e-006 0 0 0 0 0 52 0.22252 5.9322e-007 0.024223 5.2131e-008 0.0003393 0.85343 5.9322e-006 0.0051592 1.501e-008 7.1456e-005 0.11608 8.7185e-007 0 0.00068804 9.9319e-010 4.3143e-006 0 0 0 0 0 53 0.24726 6.8752e-007 0.023942 5.9046e-008 0.00035225 0.84848 6.4708e-006 0.0051888 1.7512e-008 7.6436e-005 0.12121 1.003e-006 0 0.00073727 1.6096e-009 6.3899e-006 0 0 0 0 0 54 0.27396 7.7018e-007 0.023689 6.7162e-008 0.00036538 0.84391 7.0083e-006 0.0052233 2.0368e-008 8.1033e-005 0.12593 1.1425e-006 0 0.00078332 2.4456e-009 8.8698e-006 0 0 0 0 0 55 0.30291 7.1639e-007 0.02344 7.5601e-008 0.00037866 0.83953 7.6261e-006 0.0052557 2.3605e-008 8.6165e-005 0.1304 1.2974e-006 0 0.0008567 3.3013e-009 1.1192e-005 2.7632e-005 0 0 0 0 56 0.33413 1.0535e-006 0.023195 8.5297e-008 0.00039236 0.83501 8.2902e-006 0.0052914 2.7295e-008 9.1282e-005 0.13498 1.4665e-006 0 0.00092779 4.3097e-009 1.3348e-005 9.0684e-005 0 0 0 0 57 0.36849 1.2103e-006 0.022931 9.6067e-008 0.00040571 0.83041 8.9554e-006 0.0052945 3.1479e-008 9.6338e-005 0.13867 1.6445e-006 0 0.00097966 5.3189e-009 1.5116e-005 0.0010828 0.00010339 0 0 0 58 0.40258 1.3985e-006 0.022877 1.088e-007 0.00042302 0.83213 9.7869e-006 0.0053008 3.5521e-008 0.00010035 0.13811 1.786e-006 1.4208e-005 0.00092653 5.5641e-009 1.4482e-005 0 8.6443e-005 0 0 0 59 0.43936 1.6092e-006 0.022806 1.2268e-007 0.00043996 0.83075 1.0652e-005 0.0053145 4.0741e-008 0.00010515 0.13952 1.9642e-006 2.4126e-005 0.0009218 6.3046e-009 1.5045e-005 0 8.4213e-005 0 0 0 60 0.47961 1.8473e-006 0.022685 1.3803e-007 0.00045641 0.82984 1.1551e-005 0.0053168 4.6079e-008 0.00010988 0.14053 2.1476e-006 3.6071e-005 0.00091741 7.1099e-009 1.5533e-005 0 8.1941e-005 0 0 0 61 0.52229 2.1253e-006 0.022612 1.5489e-007 0.000462 0.82904 1.2503e-005 0.0052059 5.227e-008 0.00011469 0.14149 2.355e-006 4.9972e-005 0.00091137 7.9649e-009 1.6026e-005 0 7.9649e-005 0 0 0 62 0.56807 2.4293e-006 0.021459 1.7269e-007 0.00049078 0.82912 1.3537e-005 0.0053162 5.8971e-008 0.00011953 0.14241 2.5701e-006 6.6013e-005 0.00090481 8.9073e-009 1.6494e-005 0 7.7631e-005 0 0 0 63 0.61739 1.7979e-006 0.022417 1.9437e-007 0.0005086 0.82768 1.461e-005 0.0053127 6.6409e-008 0.0001244 0.14286 2.7859e-006 8.3902e-005 0.00089733 9.9452e-009 1.7007e-005 0 7.548e-005 0 0 0 64 0.67024 3.1481e-006 0.02229 2.1634e-007 0.00052518 0.82507 1.5666e-005 0.0052369 7.5047e-008 0.0001298 0.14472 3.0586e-006 9.7875e-005 0.0009325 1.1832e-008 1.865e-005 0.00086386 8.6386e-005 0 0 0 65 0.72369 3.5927e-006 0.022289 2.432e-007 0.00054443 0.82632 1.6996e-005 0.00532 8.4152e-008 0.00013459 0.14426 3.2887e-006 0.00012657 0.00088574 1.2326e-008 1.7825e-005 0 7.1854e-005 0 0 0 66 0.78215 4.0913e-006 0.022234 2.7105e-007 0.00056383 0.82593 1.8411e-005 0.0052548 9.4356e-008 0.00013974 0.14473 3.5543e-006 0.00015112 0.00087963 1.368e-008 1.8283e-005 0 7.0064e-005 0 0 0 67 0.84283 4.651e-006 0.021511 3.0255e-007 0.00058375 0.82579 1.9814e-005 0.0053392 1.0583e-007 0.00014522 0.14546 3.8561e-006 0.00017845 0.00087562 1.5187e-008 1.8746e-005 0 6.8578e-005 0 0 0 68 0.90937 4.6076e-006 0.022158 3.365e-007 0.00060261 0.82475 2.1223e-005 0.0053334 1.1766e-007 0.00015043 0.14582 4.1567e-006 0.00020751 0.00086983 1.6825e-008 1.9244e-005 0 6.6969e-005 0 0 0 69 0.97794 5.9717e-006 0.022138 3.7426e-007 0.00062274 0.82418 2.2905e-005 0.005348 1.3191e-007 0.00015594 0.14633 4.489e-006 0.00023948 0.00086509 1.8611e-008 1.9633e-005 0 6.5546e-005 0 0 0 70 1.0513 6.7628e-006 0.022115 4.1471e-007 0.00064299 0.82371 2.454e-005 0.005355 1.4743e-007 0.00016151 0.14676 4.8414e-006 0.00027365 0.00085985 2.064e-008 2.0165e-005 0 6.4108e-005 0 0 0 71 1.1303 7.6354e-006 0.022057 4.5918e-007 0.00066268 0.82193 2.6277e-005 0.0053616 1.6456e-007 0.00016757 0.14784 5.2377e-006 0.00030435 0.00088917 2.4154e-008 2.203e-005 0.00064852 7.5646e-005 0 0 0 72 1.2133 8.5715e-006 0.021519 5.0358e-007 0.00068243 0.82006 2.8187e-005 0.0053819 1.8297e-007 0.0001739 0.14918 5.6786e-006 0.00033544 0.00091979 2.8105e-008 2.3984e-005 0.001594 8.3408e-005 0 0 0 73 1.3032 9.6685e-006 0.021938 5.6093e-007 0.00070135 0.81722 3.008e-005 0.0053867 2.0411e-007 0.00018017 0.15032 6.131e-006 0.00036679 0.00094843 3.2689e-008 2.5936e-005 0.0027778 8.9318e-005 0 0 0 74 1.3972 1.0879e-005 0.0219 6.1907e-007 0.00072142 0.81446 3.2135e-005 0.0054035 2.2687e-007 0.0001868 0.15158 6.6345e-006 0.00040007 0.00097835 3.7789e-008 2.7984e-005 0.004194 9.4114e-005 0 0 0 75 1.4966 1.2227e-005 0.021448 6.8153e-007 0.000741 0.81182 3.4277e-005 0.0054188 2.519e-007 0.00019357 0.15294 7.1494e-006 0.00043297 0.0010076 4.3565e-008 3.0134e-005 0.0058064 9.8087e-005 0 0 0 76 1.6032 1.3723e-005 0.021769 7.4852e-007 0.00076037 0.8084 3.649e-005 0.005433 2.7945e-007 0.00020023 0.15413 7.7347e-006 0.00046658 0.0010355 4.9964e-008 3.2249e-005 0.0076099 0.00010124 0 0 0 77 1.7183 1.5306e-005 0.021649 8.2639e-007 0.00077925 0.80428 3.8817e-005 0.0054414 3.0902e-007 0.00020718 0.15509 8.3221e-006 0.00049933 0.0010528 5.6334e-008 3.3638e-005 0.0109 0 0 0 0 78 1.8359 1.7158e-005 0.021625 9.042e-007 0.00079962 0.80125 4.1343e-005 0.0054633 3.4262e-007 0.00021407 0.15638 8.9876e-006 0.0005349 0.0010834 6.4819e-008 3.6168e-005 0.01249 4.6517e-005 0 0 0 79 1.9617 1.9167e-005 0.021563 9.9404e-007 0.00081614 0.79778 4.3942e-005 0.00548 3.7876e-007 0.00022175 0.15752 9.6856e-006 0.00056992 0.0010787 7.3406e-008 3.8436e-005 0.014809 4.7255e-005 0 0 0 80 2.0935 2.14e-005 0.021543 1.0891e-006 0.00083927 0.79485 4.6716e-005 0.005498 4.1892e-007 0.00022881 0.15859 1.0413e-005 0.00060569 0.0011393 8.407e-008 4.1128e-005 0.01648 0.00010934 0 0 0 81 2.2315 2.393e-005 0.02151 1.1965e-006 0.00086041 0.79185 4.9653e-005 0.0055165 4.6157e-007 0.00023661 0.15998 1.1158e-005 0.00064217 0.0011692 9.59e-008 4.3962e-005 0.01797 0.00013413 3.482e-007 0 0 82 2.3714 2.6735e-005 0.021506 1.3115e-006 0.00088302 0.79067 5.2838e-005 0.0055536 5.1446e-007 0.00024542 0.16151 1.206e-005 0.00068103 0.0012031 1.0922e-007 4.685e-005 0.017458 0.00015392 1.0289e-006 0 0 83 2.5316 2.9704e-005 0.021449 1.4339e-006 0.00090179 0.78566 5.5932e-005 0.0055616 5.6485e-007 0.00025241 0.16235 1.2877e-005 0.00071653 0.0012285 1.2364e-007 4.981e-005 0.021567 0.00017064 2.0066e-006 0 0 84 2.6914 3.3105e-005 0.021402 1.5717e-006 0.00092331 0.78286 5.9374e-005 0.0055882 6.205e-007 0.00026083 0.16348 1.3859e-005 0.000755 0.0012596 1.4045e-007 5.3281e-005 0.023111 0.00018726 3.2771e-006 0 0 85 2.8602 3.685e-005 0.021397 1.7167e-006 0.00094468 0.78001 6.2967e-005 0.0056115 6.8526e-007 0.00026921 0.16467 1.4859e-005 0.00077267 0.0012901 1.5873e-007 5.6604e-005 0.024648 0.00020348 4.8248e-006 0 0 86 3.038 4.0981e-005 0.021396 1.8795e-006 0.00096642 0.77715 6.6721e-005 0.0056386 7.5378e-007 0.00027781 0.1659 1.5931e-005 0.00083245 0.0013232 1.7939e-007 5.9973e-005 0.026103 0.00021922 6.682e-006 0 0 87 3.2227 4.5552e-005 0.021379 2.0542e-006 0.00098985 0.7745 7.0748e-005 0.005666 8.316e-007 0.00028671 0.16694 1.7066e-005 0.00087225 0.0013529 2.0231e-007 6.3332e-005 0.027554 0.00024141 6.6404e-006 0 8.4401e-006 88 3.4177 5.0618e-005 0.021388 2.2442e-006 0.0010094 0.77186 7.4962e-005 0.0056938 9.1289e-007 0.00029552 0.16795 1.8287e-005 0.00091289 0.001384 2.2764e-007 6.715e-005 0.028996 0.00026333 1.0124e-005 0 2.6889e-005 89 3.6226 5.6202e-005 0.021393 2.4513e-006 0.0010324 0.76878 7.9362e-005 0.0057224 1.0048e-006 0.00030475 0.16921 1.9571e-005 0.00095235 0.0014133 2.5562e-007 7.0695e-005 0.030392 0.0002835 1.1566e-005 0.00023712 3.2711e-005 90 3.8371 6.2365e-005 0.021396 2.6843e-006 0.0010555 0.76594 8.3918e-005 0.0057491 1.105e-006 0.00031378 0.17018 2.0927e-005 0.00099294 0.0014412 2.8667e-007 7.4666e-005 0.031743 0.00030231 1.2979e-005 0.00058586 3.7216e-005 91 4.0575 6.9254e-005 0.021417 2.9328e-006 0.0010795 0.76402 8.8971e-005 0.0057843 1.215e-006 0.0003236 0.17153 2.2378e-005 0.0010327 0.0014664 3.2039e-007 7.788e-005 0.032483 0.00030068 1.2865e-005 0.00025213 3.3272e-005 92 4.2882 7.6955e-005 0.021454 3.1948e-006 0.001103 0.76185 9.4211e-005 0.0058182 1.3339e-006 0.00033347 0.17256 2.3926e-005 0.0010727 0.0014948 3.5679e-007 8.1619e-005 0.033417 0.00030782 1.3455e-005 0.00025488 3.3324e-005 93 4.53 8.521e-005 0.021479 3.4879e-006 0.001128 0.75961 9.978e-005 0.0058543 1.4658e-006 0.00034349 0.17373 2.5585e-005 0.0011126 0.001521 3.9735e-007 8.521e-005 0.034305 0.00031413 1.3996e-005 0.00025585 3.3289e-005 94 4.7805 9.4551e-005 0.021525 3.8071e-006 0.0011526 0.75787 0.00010564 0.0058927 1.6086e-006 0.00035394 0.17488 2.734e-005 0.0011547 0.0015459 4.4138e-007 8.8693e-005 0.034954 0.00031126 1.3722e-005 0 2.8365e-005 95 5.0433 0.00010489 0.021573 4.164e-006 0.0011778 0.75586 0.00011183 0.0059307 1.7667e-006 0.00036444 0.17588 2.9187e-005 0.0011956 0.0015704 4.9174e-007 9.24e-005 0.03575 0.00031666 1.4177e-005 0 2.8156e-005 96 5.3199 0.00011598 0.021617 4.549e-006 0.001203 0.7534 0.00011824 0.0059588 1.9361e-006 0.00037482 0.17688 3.1147e-005 0.001235 0.0015978 5.4513e-007 9.6431e-005 0.03673 0.00033102 1.5508e-005 0.00025076 3.3027e-005 97 5.6062 0.00012861 0.021672 4.9588e-006 0.0012272 0.75131 0.00012504 0.0060112 2.1226e-006 0.00038564 0.17802 3.3231e-005 0.0012754 0.0016214 6.0647e-007 0.00010025 0.037458 0.00033588 1.5982e-005 0.0002474 3.2928e-005 98 5.9011 0.00014252 0.021742 5.4058e-006 0.001254 0.74969 0.00013218 0.0060497 2.3385e-006 0.00039704 0.17912 3.5468e-005 0.001315 0.0016455 6.7106e-007 0.00010388 0.037993 0.00033163 1.5506e-005 0 2.7554e-005 99 6.2109 0.00015779 0.021817 5.909e-006 0.00128 0.74772 0.00013975 0.0060861 2.56e-006 0.00040832 0.18017 3.7821e-005 0.0013557 0.00166 7.4386e-007 0.00010788 0.038674 0.00033618 1.5924e-005 0 2.7355e-005 100 6.5273 0.0001748 0.021908 6.4499e-006 0.0013084 0.74641 0.00014799 0.0061434 2.8036e-006 0.00042024 0.18139 4.0338e-005 0.0013957 0.0016868 8.2423e-007 0.00011199 0.038469 0.00034103 1.6347e-005 0 2.7194e-005 101 6.8664 0.0001934 0.021977 7.0488e-006 0.001334 0.74391 0.00015627 0.006175 3.0729e-006 0.00043167 0.18219 4.2963e-005 0.0014345 0.00172 9.1023e-007 0.00011593 0.039919 0.0003453 1.6734e-005 0 2.7001e-005 102 7.2153 0.00021413 0.02205 7.692e-006 0.001361 0.7419 0.0001652 0.0062229 3.3678e-006 0.0004435 0.18322 4.5736e-005 0.0014719 0.0017449 1.0076e-006 0.00012002 0.040636 0.00034981 1.713e-005 0 2.6846e-005 103 7.5795 0.00023696 0.022139 8.3911e-006 0.0013893 0.73963 0.00017455 0.0062669 3.6942e-006 0.00045518 0.18418 4.8816e-005 0.0015107 0.0017693 1.1149e-006 0.00012455 0.041428 0.00036348 1.8682e-005 0.00021703 3.2733e-005 104 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 105 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 106 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 107 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 108 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 109 7.899 0.00026409 0.022395 9.2417e-006 0.0014268 0.74301 0.00018572 0.0063553 4.0765e-006 0.00039625 0.17888 5.2285e-005 0.0015597 0.0018091 1.2419e-006 0.00013014 0.042537 0.00038106 2.0395e-005 0.00054184 3.7245e-005 #S 3 L3 x-ray emission rates #N 22 #L Z TOTAL L3M1 L3M2 L3M3 L3M4 L3M5 L3N1 L3N2 L3N3 L3N4 L3N5 L3N6 L3N7 L3O1 L3O2 L3O3 L3O45 L3P1 L3P23 L3P45 L3Q1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1.93e-007 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 1.15e-006 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 2.11e-006 0.99999 7.0141e-006 6.9193e-006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 4.9502e-006 0.99996 1.9312e-005 1.905e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 8.0707e-006 0.99991 4.411e-005 4.3491e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1.2302e-005 0.99984 8.2913e-005 8.1287e-005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 1.7805e-005 0.99973 0.0001376 0.00013536 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 2.481e-005 0.99958 0.00021322 0.00020919 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 3.6282e-005 0.97569 0.00027562 0.00027176 0 0 0.023758 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 5.2775e-005 0.92847 0.00033349 0.00032781 0 0 0.070867 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0.00013888 0.46081 0.00019945 0.00019585 0.050617 0.45289 0.035281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0.00028762 0.2844 0.00014568 0.00014255 0.069883 0.62408 0.021347 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0.00051963 0.19783 0.00011835 0.00011566 0.079287 0.70819 0.014453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0.00091635 0.13674 9.3414e-005 9.1122e-005 0.086757 0.77263 0.0036886 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0.0013321 0.11688 9.2332e-005 8.933e-005 0.088204 0.7867 0.0080322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0.0019731 0.095533 8.5144e-005 8.261e-005 0.090617 0.80735 0.0063351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0.0028172 0.080256 8.022e-005 7.7736e-005 0.09236 0.82208 0.0051469 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0.0039018 0.068968 7.6888e-005 7.4325e-005 0.093803 0.83295 0.0041263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0.005387 0.058474 7.184e-005 6.9241e-005 0.095415 0.84463 0.0013403 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0.0070058 0.053242 7.2654e-005 6.9942e-005 0.095635 0.84787 0.0031117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 0.0089321 0.049372 7.4339e-005 7.1428e-005 0.095834 0.85086 0.0037841 4.467e-007 4.2095e-007 0 0 0 0 0 0 0 0 0 0 0 0 32 0.011182 0.046503 7.6909e-005 7.369e-005 0.096047 0.85316 0.0041406 1.3236e-006 1.252e-006 0 0 0 0 0 0 0 0 0 0 0 0 33 0.01379 0.044235 7.9768e-005 7.6867e-005 0.096229 0.85497 0.004409 2.5816e-006 2.4438e-006 0 0 0 0 0 0 0 0 0 0 0 0 34 0.01678 0.04249 8.3431e-005 7.9855e-005 0.096363 0.85636 0.0046185 4.2073e-006 3.9928e-006 0 0 0 0 0 0 0 0 0 0 0 0 35 0.0202 0.04109 8.7625e-005 8.3665e-005 0.096487 0.85744 0.0047971 6.2377e-006 5.8912e-006 0 0 0 0 0 0 0 0 0 0 0 0 36 0.024082 0.039947 9.2185e-005 8.7618e-005 0.096587 0.85832 0.0049498 8.5957e-006 8.1804e-006 0 0 0 0 0 0 0 0 0 0 0 0 37 0.028507 0.039008 9.6819e-005 9.2258e-005 0.096608 0.85874 0.0052864 1.0769e-005 1.0278e-005 0 0 0 0 0.00014768 0 0 0 0 0 0 0 38 0.033502 0.038207 0.00010208 9.7011e-005 0.096712 0.85877 0.0056057 1.2805e-005 1.2268e-005 0 0 0 0 0.00048356 0 0 0 0 0 0 0 39 0.039297 0.037357 0.00010688 0.00010154 0.096192 0.85504 0.0057842 1.4454e-005 1.3869e-005 0.00049368 0.0043643 0 0 0.0005344 0 0 0 0 0 0 0 40 0.045792 0.036644 0.00011181 0.00010613 0.09565 0.8495 0.0059268 1.6051e-005 1.5374e-005 0.001164 0.010308 0 0 0.00055905 0 0 0 0 0 0 0 41 0.053306 0.03585 0.0001165 0.00011031 0.094549 0.84044 0.0059468 1.724e-005 1.649e-005 0.0023149 0.020411 0 0 0.00023262 0 0 0 0 0 0 0 42 0.061585 0.035236 0.00012146 0.00011496 0.093855 0.833 0.0060405 1.8673e-005 1.7862e-005 0.0031924 0.028173 0 0 0.00023058 0 0 0 0 0 0 0 43 0.070889 0.034646 0.00012654 0.00011962 0.092962 0.82523 0.006094 2.0172e-005 1.9326e-005 0.004129 0.036423 0 0 0.00022571 0 0 0 0 0 0 0 44 0.081269 0.034121 0.00013166 0.00012428 0.09204 0.81704 0.0061401 2.1656e-005 2.0672e-005 0.0051065 0.045035 0 0 0.00022149 0 0 0 0 0 0 0 45 0.09277 0.033632 0.0001369 0.00012935 0.091086 0.80845 0.0061766 2.3068e-005 2.199e-005 0.0061227 0.054005 0 0 0.00021559 0 0 0 0 0 0 0 46 0.10572 0.033202 0.00014189 0.00013338 0.089959 0.79837 0.0061675 2.4311e-005 2.3081e-005 0.0073689 0.064608 0 0 0 0 0 0 0 0 0 0 47 0.11962 0.032854 0.00014797 0.00013877 0.089114 0.79083 0.0062363 2.5999e-005 2.4745e-005 0.0082009 0.072228 0 0 0.0002023 0 0 0 0 0 0 0 48 0.13483 0.032559 0.00015352 0.00014388 0.088406 0.78394 0.006319 2.7812e-005 2.6477e-005 0.0089371 0.078987 0 0 0.00049988 0 0 0 0 0 0 0 49 0.15151 0.03234 0.00015972 0.00014916 0.087648 0.77748 0.0064086 2.97e-005 2.8314e-005 0.0096492 0.08547 0 0 0.00063426 2.508e-007 2.211e-007 0 0 0 0 0 50 0.16953 0.032148 0.00016576 0.00015514 0.087007 0.77156 0.0065063 3.1676e-005 3.0261e-005 0.010293 0.091372 0 0 0.00073145 7.1965e-007 6.4886e-007 0 0 0 0 0 51 0.18913 0.032042 0.00017237 0.00016074 0.086397 0.76615 0.0066093 3.3734e-005 3.2253e-005 0.010876 0.096707 0 0 0.00081585 1.3906e-006 1.2637e-006 0 0 0 0 0 52 0.21033 0.03195 0.00017877 0.00016688 0.085866 0.76119 0.0067133 3.5896e-005 3.4375e-005 0.011406 0.10156 0 0 0.00089384 2.2489e-006 2.0587e-006 0 0 0 0 0 53 0.23314 0.031912 0.00018572 0.00017328 0.085355 0.75661 0.0068284 3.8088e-005 3.6501e-005 0.011898 0.10599 0 0 0.00096807 3.307e-006 3.041e-006 0 0 0 0 0 54 0.25774 0.031893 0.00019322 0.00017964 0.084893 0.75232 0.0069412 4.0351e-005 3.8761e-005 0.012338 0.11011 0 0 0.0010387 4.5783e-006 4.2291e-006 0 0 0 0 0 55 0.28429 0.031904 0.00020015 0.00018608 0.084456 0.74818 0.0070597 4.2562e-005 4.1155e-005 0.012769 0.11397 0 0 0.0011467 5.6281e-006 5.3115e-006 0 3.6934e-005 0 0 0 56 0.31284 0.031965 0.00020777 0.00019275 0.084036 0.74414 0.0071761 4.507e-005 4.3472e-005 0.01317 0.11763 0 0 0.0012562 6.6487e-006 6.329e-006 0 0.00012275 0 0 0 57 0.34382 0.031993 0.00021523 0.00019923 0.083532 0.73963 0.0072916 4.7408e-005 4.5954e-005 0.013524 0.12099 0 0 0.0013437 7.4748e-006 7.1549e-006 0.0010325 0.00014135 0 0 0 58 0.37473 0.03229 0.0002247 0.00020762 0.083794 0.74107 0.007352 4.9369e-005 4.7501e-005 0.01345 0.12009 2.2309e-006 1.2783e-005 0.0012809 7.2052e-006 6.8316e-006 0 0.00011955 0 0 0 59 0.40838 0.032519 0.00023361 0.00021573 0.083746 0.73951 0.0074441 5.1668e-005 4.9709e-005 0.013566 0.12121 3.82e-006 2.1818e-005 0.0012905 7.4686e-006 7.0768e-006 0 0.00011754 0 0 0 60 0.44518 0.032706 0.00024238 0.00022351 0.083338 0.73903 0.0075251 5.3687e-005 5.189e-005 0.013613 0.12175 5.6832e-006 3.2571e-005 0.0012939 7.7048e-006 7.278e-006 0 0.00011546 0 0 0 61 0.48374 0.032951 0.00025158 0.00023173 0.083308 0.73799 0.0076073 5.6021e-005 5.3954e-005 0.013685 0.12238 7.9174e-006 4.5272e-005 0.0013003 7.9174e-006 7.4833e-006 0 0.0001137 0 0 0 62 0.52388 0.033271 0.00026151 0.00024051 0.083416 0.73681 0.0077117 5.8219e-005 5.631e-005 0.013744 0.12293 1.0479e-005 5.9746e-005 0.0013075 8.1698e-006 7.7117e-006 0 0.00011205 0 0 0 63 0.5677 0.033521 0.00027092 0.0002489 0.083143 0.73631 0.0077858 6.0419e-005 5.8482e-005 0.013775 0.1233 1.3387e-005 7.6097e-005 0.0013106 8.3847e-006 7.8915e-006 0 0.00011009 0 0 0 64 0.61466 0.033759 0.00028016 0.00025705 0.082973 0.73374 0.0078906 6.2799e-005 6.0847e-005 0.013926 0.12462 1.5667e-005 8.9318e-005 0.0013764 9.1596e-006 8.6878e-006 0.00079719 0.00012739 0 0 0 65 0.66157 0.034191 0.00029128 0.00026679 0.083135 0.73461 0.007981 6.4997e-005 6.3032e-005 0.013861 0.12395 2.0406e-005 0.00011518 0.0013241 8.8275e-006 8.2984e-006 0 0.00010717 0 0 0 66 0.71264 0.034548 0.0003017 0.00027616 0.083072 0.73389 0.0080826 6.7355e-005 6.5251e-005 0.013892 0.12419 2.4416e-005 0.00013794 0.0013303 9.0368e-006 8.4896e-006 0 0.0001058 0 0 0 67 0.76653 0.034911 0.00031245 0.00028557 0.082971 0.73317 0.0081797 6.9795e-005 6.7708e-005 0.01392 0.12446 2.8831e-005 0.00016281 0.0013372 9.2625e-006 8.6755e-006 0 0.00010463 0 0 0 68 0.82429 0.035267 0.00032295 0.0002948 0.082859 0.73275 0.0082859 7.2062e-005 7e-005 0.013915 0.12447 3.3726e-005 0.00018986 0.001343 9.4627e-006 8.8561e-006 0 0.00010336 0 0 0 69 0.88397 0.035635 0.00033418 0.00030476 0.082922 0.73193 0.008394 7.4437e-005 7.2401e-005 0.013937 0.12467 3.9029e-005 0.00021935 0.0013519 9.6836e-006 9.0501e-006 0 0.00010238 0 0 0 70 0.94751 0.036095 0.00034511 0.00031451 0.082743 0.73139 0.0084959 7.6833e-005 7.4828e-005 0.013942 0.12475 4.4854e-005 0.00025108 0.0013594 9.8996e-006 9.2453e-006 0 0.00010132 0 0 0 71 1.0157 0.036427 0.00035639 0.0003239 0.0826 0.72951 0.0086144 7.9351e-005 7.748e-005 0.014019 0.12552 5.0013e-005 0.00028058 0.0014216 1.0731e-005 1.0042e-005 0.00057101 0.0001208 0 0 0 72 1.0876 0.03687 0.00036686 0.00033376 0.082383 0.72728 0.0087348 8.1923e-005 8.0176e-005 0.014104 0.12633 5.5351e-005 0.00031077 0.0014867 1.1493e-005 1.0941e-005 0.0014205 0.0001347 0 0 0 73 1.163 0.03723 0.00037746 0.00034307 0.082113 0.72483 0.0088648 8.4521e-005 8.2973e-005 0.014196 0.12725 6.0962e-005 0.00034221 0.0015537 1.2381e-005 1.1866e-005 0.0024935 0.00014608 0 0 0 74 1.2434 0.037637 0.00038844 0.00035305 0.081869 0.72219 0.0089992 8.7097e-005 8.5328e-005 0.014275 0.12811 6.6589e-005 0.00037396 0.0016197 1.327e-005 1.2707e-005 0.0037637 0.0001557 0 0 0 75 1.3287 0.038007 0.00039964 0.00036201 0.081583 0.7195 0.0091217 8.9636e-005 8.8658e-005 0.01436 0.12892 7.2402e-005 0.00040641 0.0016866 1.4149e-005 1.3622e-005 0.0052081 0.00016399 0 0 0 76 1.4178 0.03837 0.00041051 0.00037171 0.081255 0.71663 0.0092611 9.2258e-005 9.1624e-005 0.014438 0.12978 7.8434e-005 0.00044013 0.0017542 1.5024e-005 1.4601e-005 0.0068277 0.00017133 0 0 0 77 1.5128 0.038407 0.00042109 0.00038142 0.080912 0.71327 0.0093935 9.4794e-005 9.4596e-005 0.01451 0.13056 8.4482e-005 0.00047397 0.0018066 1.5667e-005 1.5204e-005 0.0095653 0 0 0 0 78 1.6123 0.039197 0.00043167 0.00039073 0.080566 0.71014 0.0095327 9.7373e-005 9.7622e-005 0.014581 0.1313 9.0737e-005 0.00050857 0.0018792 1.6622e-005 1.625e-005 0.011071 8.0628e-005 0 0 0 79 1.7171 0.039602 0.00044261 0.00040068 0.080194 0.70701 0.0096675 9.9879e-005 0.00010064 0.014647 0.13203 9.7141e-005 0.00054395 0.0019452 1.7471e-005 1.7239e-005 0.013104 8.2757e-005 0 0 0 80 1.8254 0.040047 0.00045416 0.00041088 0.079929 0.70397 0.0098227 0.00010255 0.00010387 0.01472 0.13285 0.00010387 0.00058071 0.0020215 1.8462e-005 1.8407e-005 0.014655 0.00019393 0 0 0 81 1.9398 0.040468 0.000465 0.00042066 0.079596 0.70111 0.0099702 0.00010511 0.00010707 0.01479 0.13357 0.00011068 0.00061862 0.0020982 1.9487e-005 1.959e-005 0.01629 0.00024023 3.5829e-007 0 0 82 2.0597 0.040977 0.00047628 0.00043064 0.079283 0.69816 0.010123 0.00010769 0.00011036 0.014857 0.13434 0.00011764 0.00065689 0.0021751 2.0537e-005 2.0877e-005 0.017867 0.00027771 1.0099e-006 0 0 83 2.1846 0.041426 0.00048796 0.00044127 0.079008 0.69532 0.010286 0.00011027 0.00011371 0.014923 0.13508 0.00012483 0.00069624 0.0022567 2.1606e-005 2.2201e-005 0.019363 0.00031264 1.9088e-006 0 0 84 2.3153 0.041939 0.0004993 0.00045135 0.078695 0.69279 0.010448 0.00011282 0.00011714 0.014988 0.13562 0.00013217 0.00073642 0.0023367 2.2632e-005 2.3539e-005 0.020732 0.00034683 3.0493e-006 0 0 85 2.4527 0.042442 0.00051086 0.00046193 0.078402 0.68984 0.010609 0.0001153 0.0001206 0.015044 0.13658 0.00013984 0.0007775 0.0024218 2.3688e-005 2.4911e-005 0.022098 0.0003808 4.444e-006 0 0 86 2.5945 0.042975 0.00052264 0.00047292 0.078126 0.68722 0.01078 0.00011794 0.00012411 0.015109 0.13721 0.00014762 0.00081981 0.0025053 2.4745e-005 2.6325e-005 0.023396 0.00041472 6.0512e-006 0 0 87 2.743 0.043528 0.00053408 0.00048377 0.077833 0.68464 0.010937 0.0001203 0.0001276 0.015166 0.1378 0.0001553 0.00086255 0.0025884 2.5774e-005 2.7779e-005 0.024681 0.00046117 7.4005e-006 0 1.6114e-005 88 2.8995 0.044042 0.00054561 0.00049422 0.07753 0.68184 0.01114 0.00012278 0.0001314 0.015209 0.13864 0.00016348 0.00090567 0.0026729 2.6798e-005 2.9246e-005 0.025935 0.00050836 8.6566e-006 0 5.1836e-005 89 3.0609 0.044627 0.00055767 0.0005054 0.077264 0.6792 0.011304 0.00012512 0.00013525 0.015257 0.13917 0.00017152 0.00094905 0.0027606 2.7835e-005 3.0775e-005 0.027148 0.00055277 9.7356e-006 0.00019961 0 90 3.2308 0.04519 0.0005692 0.00051659 0.076977 0.67661 0.011483 0.00012752 0.00013897 0.01529 0.13959 0.00017983 0.00099665 0.0028476 2.8847e-005 3.2314e-005 0.028321 0.00059551 1.0771e-005 0.00049678 0 91 3.4036 0.045834 0.00058145 0.00052827 0.076772 0.67459 0.011664 0.00012986 0.00014279 0.015366 0.14044 0.00018833 0.0010401 0.0029263 2.9704e-005 3.3641e-005 0.028852 0.0005979 1.0695e-005 0.0002086 6.6166e-005 92 3.5856 0.046435 0.00059348 0.00053993 0.076528 0.67241 0.011853 0.00013192 0.0001467 0.015395 0.14112 0.00019718 0.0010877 0.0030064 3.0594e-005 3.5057e-005 0.02959 0.00061774 1.11e-005 0.00020889 6.685e-005 93 3.7727 0.047102 0.00060567 0.00055212 0.076338 0.67034 0.01206 0.00013412 0.00015082 0.015453 0.14154 0.00020595 0.0011345 0.0030906 3.1463e-005 3.6526e-005 0.030297 0.00063668 1.1451e-005 0.00020754 6.7405e-005 94 3.9664 0.047776 0.00061819 0.00056449 0.076139 0.66861 0.012253 0.00013639 0.0001548 0.015505 0.14219 0.00021505 0.0011824 0.0031691 3.2246e-005 3.7868e-005 0.030708 0.00063634 1.1244e-005 0 5.7961e-005 95 4.1705 0.048435 0.00063014 0.00057643 0.07601 0.66659 0.012445 0.00013835 0.00015897 0.015538 0.14267 0.00022395 0.0012301 0.003249 3.3018e-005 3.93e-005 0.031315 0.00065316 1.1533e-005 0 5.8051e-005 96 4.3827 0.049102 0.00064207 0.00058867 0.075752 0.6642 0.012618 0.0001401 0.00016314 0.015561 0.14329 0.00023319 0.00128 0.0033335 3.3792e-005 4.0842e-005 0.032058 0.00068907 1.2412e-005 0.00019645 6.8679e-005 97 4.6007 0.049797 0.00065425 0.00060122 0.075424 0.66229 0.012824 0.00014194 0.00016737 0.015585 0.14389 0.00024257 0.0013281 0.0034125 3.4495e-005 4.232e-005 0.032582 0.00070424 1.2694e-005 0.00019128 6.912e-005 98 4.8243 0.050536 0.00066745 0.00061439 0.075244 0.66082 0.013038 0.00014385 0.00017184 0.015629 0.14427 0.00025226 0.0013784 0.0034927 3.5155e-005 4.3695e-005 0.032896 0.00070062 1.2333e-005 0 5.8205e-005 99 5.0604 0.051241 0.00067781 0.00062643 0.075092 0.65884 0.01322 0.00014524 0.00017607 0.015651 0.14485 0.00026184 0.0014287 0.0035708 3.5768e-005 4.5174e-005 0.033357 0.00071535 1.2548e-005 0 5.8216e-005 100 5.3023 0.051977 0.00069026 0.00063934 0.074873 0.65707 0.013428 0.00014692 0.00018049 0.015691 0.14522 0.00027158 0.0014805 0.0036493 3.6361e-005 4.6678e-005 0.033797 0.00073176 1.2768e-005 0 5.7522e-005 101 5.5539 0.05272 0.00070221 0.0006536 0.074723 0.65522 0.01363 0.00014818 0.0001851 0.015701 0.14566 0.00028143 0.0015323 0.0037289 3.6893e-005 4.8183e-005 0.03421 0.00074543 1.2982e-005 0 5.8338e-005 102 5.8144 0.053488 0.00071375 0.00066731 0.074471 0.65338 0.013828 0.00014946 0.00018953 0.01572 0.14619 0.00029152 0.001584 0.0038061 3.739e-005 4.9704e-005 0.034604 0.00076018 1.3174e-005 0 5.8304e-005 103 6.0859 0.054224 0.00072463 0.00068026 0.07427 0.65134 0.014016 0.00015035 0.00019406 0.015741 0.14657 0.00030152 0.0016349 0.0038844 3.7858e-005 5.1266e-005 0.035147 0.00079364 1.4065e-005 0.00015232 7.1477e-005 104 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 105 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 106 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 107 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 108 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 109 6.3663 0.054977 0.00073513 0.00069271 0.074141 0.6492 0.0142 0.00015127 0.0001987 0.015755 0.14687 0.0003118 0.0016886 0.0039631 3.8296e-005 5.3092e-005 0.035704 0.00082937 1.4954e-005 0.00039379 8.1209e-005 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/McaTheory.cfg0000644000000000000000000000464614741736366017564 0ustar00rootroot [attenuators] kapton = 0, -, 0.0, 0.0 atmosphere = 0, -, 0.0, 0.0 Matrix = 0, MULTILAYER, 0.0, 0.0, 45.0, 45.0 deadlayer = 0, Si1, 2.33, 0.002 absorber = 0, -, 0.0, 0.0 window = 0, -, 0.0, 0.0 contact = 0, Au1, 19.37, 1e-06 Detector = 0, Si1, 2.33, 0.5 Filter 6 = 0, -, 0.0, 0.0 Filter 7 = 0, -, 0.0, 0.0 [peaks] [fit] deltachi = 0.001 continuum = 0 hypermetflag = 1 stripconstant = 1.0 exppolorder = 6 energy = None stripwidth = 1 stripfilterwidth = 1 sumflag = 0 stripflag = 0 linearfitflag = 0 use_limit = 0 linpolorder = 5 xmax = 1130 maxiter = 10 xmin = 83 stripiterations = 20000 escapeflag = 1 [concentrations] distance = 10.0 area = 30.0 flux = 10000000000.0 time = 1.0 useattenuators = 1 usematrix = 0 [detector] noise = 0.1 fixednoise = 0 fixedgain = 0 deltafano = 0.114 fixedfano = 0 sum = 1e-8 deltasum = 1e-8 fano = 0.114 fixedsum = 0 fixedzero = 0 zero = -0.0118 deltazero = 0.1 gain = 0.0174 deltagain = 0.001 deltanoise = 0.05 detele = Si ethreshold = 0.020 ithreshold = 1.0E-07 nthreshold = 4 [peakshape] lt_arearatio = 0.02 fixedlt_arearatio = 0 st_arearatio = 0.05 deltalt_arearatio = 0.015 deltalt_sloperatio = 7.0 deltastep_heightratio = 5e-05 st_sloperatio = 0.5 lt_sloperatio = 10.0 fixedlt_sloperatio = 0 deltast_arearatio = 0.03 fixedst_sloperatio = 0 fixedst_arearatio = 0 deltast_sloperatio = 0.49 step_heightratio = 0.0001 fixedstep_heightratio = 0 [materials] [materials.Kapton] Comment = Kapton 100 HN 25 micron density=1.42 g/cm3 Density = 1.42 Thickness = 0.0025 CompoundFraction = 0.628772, 0.066659, 0.304569 CompoundList = C1, N1, O1 [materials.Teflon] Comment = Teflon density=2.2 g/cm3 Density = 2.2 CompoundFraction = 0.240183, 0.759817 CompoundList = C1, F1 [materials.Gold] Comment = Gold CompoundFraction = 1.0 CompoundList = Au Density = 19.37 Thickness = 1e-06 [materials.Air] Comment = Dry Air (Near sea level) density=0.001204790 g/cm3 Thickness = 1.0 Density = 0.00120479 CompoundFraction = 0.000124, 0.755267, 0.231780, 0.012827, 3.20E-6 CompoundList = C1, N1, O1, Ar1, Kr1 [materials.Water] Comment = Water density=1.0 g/cm3 CompoundFraction = 1.0 CompoundList = H2O1 Density = 1.0 [materials.Viton] Comment = Viton Fluoroelastomer density=1.8 g/cm3 Density = 1.8 CompoundFraction = 0.009417, 0.280555, 0.710028 CompoundList = H1, C1, F1 [materials.Mylar] Comment = Mylar (Polyethylene Terephthalate) density=1.40 g/cm3 Density = 1.4 CompoundFraction = 0.041959, 0.625017, 0.333025 CompoundList = H1, C1, O1 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/PyMcaSplashImage.png0000644000000000000000000073007614741736366021050 0ustar00rootrootPNG  IHDR,br pHYsodIDATxLYeu~~M"@ŦH$R%We?ɿK" "Dݍ7^Vd͈{=笹c1s[[[R %m /^1vZmmm !~X]'4B^~}||ܶW_}U7N&Z84zGmۊFN Q<^|__O//1r (!eYoiιjE?ɟtz}}9Gfӻ-%4B 㯟=L&B ~ӟ7Bvֿm[yvvF0ǽ;;;4PZ~i\۶XQѽgϞmrZB?ZY"ٳgׯF! ,a/lF4MJa4ڂmGr @s}m:`,Kz)RJ)!BkV)FZ|9"c0;5!sNRv`H)vZkDJ$qܴ]i"P(#aB1Ttq[("ʺfںs@+ DJ !RP6Z3Νs, 1u][kB9k1cB1ƔRBHZ&I"`QJWU]Y(!c?1Rd\UUER %eGu`mZJr><L$NFaa`8%euUUy4Mrt׵Rb1R]Ӷm[1svv~zppg}EٳQVU9cJif{{{0pCMQr:fY /~$QQ<|4q1Mh!w}_޿Rl4%L&oBq2tRMeS"ZCiq2nnn4GGxL)ˢ( 66M$͜Ie?Zk B2_} cҾﻮgxJkzM ðں$%RRdyEtww*J)$MSc B(fӶmuY! !mDl>AJyCQJ(RJa7MR*bTBH!ڶZc90B*眵. C5B( 9! RRJL1Fi"x0$RRJ !$)%Bt"0XgBsBcQF,t!Zk~[+B\c9#BsN1@0ct~~E9g)1Y$qs`QBh^a-B 9I!ERFJi[k aX%< "t:kۖ2jqMK 2JOƣۛ3J0#4BR(G94`Z9UQbww"xg8gL9(D*eu]j5R ,BXg2Fa1F kCrFk%AX)RQ}wqqѾDI4EaJ!,#,/_a1~}^$_xnECapww4K?~^RGdgg*kontMQlmof|;W77iaB(yGkh/_ j駟FIL)[,2ִMeUYGc(owv}3..Σ(RJIZPE4RZ- )g:1ic_d۶G0 (MU7XquUY;zѧiºjuNYQ0a]7Q}O!:|@ b7I80a8뺾 rc2 C%d(tA(0B`A>ecu]%QJ㱵 xK4IҺ)eRhιGR#eYn϶ *z2cVcJ@aS AI)! %A4b€q 180BF< #X%qш$F!ij$edX?w4MƘ`mgMU_?}:o%D/>88Oz-)__?|( C¨?Hڿ~葔txpxuu}kzQ_7~16 $Y.^z1{uM)mfow3VUUUpWݻ] /^ F/^ (g&rʼn蕔ɓ's)eQ<ς `DxBe/ޞ']%I" իWqxRRw"I/8ffSe5M`ʲfY&\fƘrvƸkVUU1V)M˗}8ڮs !ڶEi0,"bkVJv]۶Q3ƔB2cG@RB(BPi6PJ1Bq! z!!uZR*vscc c $I]ιb+c RJ)P#CB7_6˲Zk=c9S0y-2m,G %!9)%1""Rs@ ,"psssssSUd2N$|~IQU]ƣƸ:Jqwk (6]ˢ$WU4MvZp5F* kt``<4FaSRu (ujZQBQs`VsV p2e)DBh<+10 8g,M FoKc5L A0 9pN* #LFP(Xeq4t2ݛNgUUC!d6[V;[J4zk-0A⻻9MQݾ[9t2B`B>`&Y4mJqvss4/ao7îm)g;ۻl O>'r^m6^Ͽ<:ɓϲxڮ0JnooT{;mf2dY xJǾ8"QL fg8k %#JJ)jk #PZyxZ)%}vBZ !Ƅ@j%#"cB[Ԣ(0\VapaFQDuYk8RP Bcio!9 BDZ:!wB56`ZEQdU:QUUZgcҢ((}DQt~~u%d:}e $bsssj$Km|)p8!Z+πPFB aqNUΗs B2LbC BHa !Ƹ핱u (z) !YmM۶wM[wPJY5J!z`0NZp1DR Bbs&sM1ӯ5u]gYl8ei4M]q ZkӶ5!XA C p8n8$i1fRRJ97y)aJcuRZVJ`uY#5eF\sf1Ø4bkh%k2)cIF)Qd@h!p6dQ!$SJi)%Qa"so3%6Sv7ߛNA8 $(0(NB9Fi$_>}u̳XO[PJww 򣣣˫+W@gY,JO>D+9N8!QzOǏQEv1|Փ'Of!ujLRBtyyUUf7wdz2&sBİ 㜯׫,, ǏH)'۳_^om.w F{c]'Ml6$IRamomUU5_QR7-hkkk\z%d{{( k g* Q'k &D[~#Ua,5F[k(Za[kƘ((':}y۶i}9k)s)1V7MMk())mNJiΓXB {!/c@RJs6b@|i#I!R!h1Z]5uR94cR㜇aEQ:UٔǏ8Xk1*?#_ccϋkШ ] 8PiӺBB !1IXk$8RzEƈSØ1t5!XUYYKvolI)FrL1F f5u1!,zU׵sW`  "a1V*:J(F" [csJ* 21RcՌ1kLUUι$I<35 BA!\EQJ)'''F8%|{1>SJt:RFa4Ζv:]^^a9;?l6iB|~;d`cU,˴֟|!,˜sR}%e^/4=988x^r9㜇qqY6ιOJ !d\VEaٚN#c|~^,WWW{{eY*=9O!`0x}z6t%h4*r6B}Apvvx2b |}r$ c,!H1zssSM$p.JbVU9/c|~~N)\| )%Y>7=acn"MӢ(q{ߦфBhr`4ɴVa1#Xc z[,pRJuFhlEs{! 躞RRCk-oo r!$ڍ;{W8u]۶]׭|gg(gRF@/^lm8W e|A^Y|(bl6zt6j\D7ucgI#l^Myp8ALƣ:8̳`/h8j&ѪmYY<(&z<`'Q]YBqC%֪mjθ֚, b0!k Fcd/`R0R14cS9LaCkk<)pI v]$AmL^ـisx5)cl4imsQi9^ֆaA:h3B Dw]o% c<=F9`gmcKRJORU. H)3ƨc) !כ1Ac4!d2EAL&ƘyQAņREDw}{ Y; m!_؟=F:b n0>=yL-8$`0tLǓ뺮/xMM\]^C8DJyttX(eZkJG}$zݶ˗/ǓiqO&$I̋i0Ɗ{!c, 8 !EQ8߿aڃ<χ1EQxn{{˻@19(Y;$a`uBJ),KtnTW ~(1DqƨRj5Fkc!4X!:\FJ)!zk-i[B)kƘ^Hvu7 r8N{A$!{^Z뜵 !^lVJYbZo haB<:q)]y7:yc̛{??8Y׷mt};7׃a*Nc lmiRJ].A)4 #;w9ǑqBDcT*$iģ0M3LYYp4tI'Il@HKIK\Hp~w{=ڞ=7(r"H)eڶ ҡ1"!ۮ"6"B4 "H(l#Q0tV1J3۳YB0VkC77x VJ )&)!/ n6lkpxqgie7tr}}$qEEYy~~vy\;:L&_|p4jy>8;1_}~0OVѨk[x_hmY8]QJ$=Y A<>?~& oFQ䥺A h-8Lk(MPf?c)5B6Im4X}uq,IN+%1œh-E8È3kÈ2T/@"D]_(%!pŭYGγABز,_z5@5gUU1Fm4 B1`Xt]WΎ˗]yACk! rF\k9Bf3 ?COzFKzi<˲뛭3؋>|(D۳gFI4I{(F˗/0}M0xӿv}K1ͩu]Z뺮(LιT}ڲ,¾Lu ex9Zyd6%(}b$iZk?/,OʲY{ժm zA>֙d !=z٬bIUj2qFVz=BlO?mIY}EaXWp4ZcuRҫBp]WQ%:ʲ(74$a"dA()!cBs"  1 D3b!D@!PH]B5ʘ֊ csq]} b)%A: 6#k-}cV0^qxWB5Z<:֭m{S ?!Q:tu:՟sv0Y˲o!ƨ,`(6VƘ'Em5NoS:ܬ7<;<<ַmok@۶OOOc8:: uUuh<_]]EQT7T)':I6YvssX.˪[]hkk=~XI$JkDaF]m[?l2k*xtjk$9==ߏ={$I|YYQܵMYJ=wqOi|/V7p4ɓ''_OgϞq=S: Cg{98£O?$ CaeR8(^fvkkvzv:΢(o1߾L&Mǫ^( Fu]{0PZ%I)mJXUZkp8lNDk1QJQ0"~f9jNiE)im!"kҖ)QƭgxSJo? ;J)r0 QLZ4Y9kG  ` GXƲ<8B᏾CQJ ?̥Ll6JcT=gc\l6jֳ*ݶ!Am:0Ak !BI_ȕRa81ȾyU( ?ჇuUa)&Zi%e^,t2vLjP욮ZSFQ&$!hT7m 4B!L0@xs1@E11QFQ Y; AUSG,Kb3N!p#XUgsn8;;3?b h8x ^z<7.x@k1ެq1=::mMBm ggM!hlUMei4Qic^~ X7N9cÝNO?w1Ap˲Alk8Ϗ5"MSFg?f<~g{$,Oo۶nl6?r}76]GII B7E1L8nuY]\5mey4Am7&sjoooY;g1[[[a1;Jׯ߿ x\7-&K*(XoVi`D :?c!JrBx1bmv4!9ǃ1橕B@t #$`ZGX~Z@fPB29AߴDdGQt{{uJ)YM(kc64ͼ0!TJgh5Ro|;NMm."EԏBxR7֏0jRA f3kcj[Sot8 ! w( m֖'HCcsRd$N0uSfi !*Ibi]yYcmc,!sZ.zQ뇏L~_I۳'oX,gg|_1WeެA1i*۶SRկ~f{c۫kpv\M'S(~чa:< 윭f<#~Zmp`Bf3B _}1 FUU2/jclGB'[i_]]iں9gXJ`ӵ&34ȇb2ci_z5SJ6m ?s/0inoooK1BJ<ϥQ.$IRB4ɔRD).Jg{!Bjc!  PJ'JIL]k @A(m(Bxww{<}$|Z?4"Mq|SEkA<9sӶ A!JI?52V5Lf3 TkӶ] X op5~d2f3ci (#¦kyI)֔_)mo6E״iUC[kB)̈́XF޶sBJjnk2BB1RFQ2)0 <89?-68vv8L$9gqa1ގݓ'}ݝh::6MgeU\_omoi^-:WO(RʔEQNӿ;th>2al4^fidjLɓ~q\-5ߌ:dmp8jmu5jk{6J"{7/x/K6 R-RJsqpK)ꫯPH*mPcq|' @u]kcZ?>&ߵ|K{|c߿ ox3[ 4A]1 Cc-Ǐ1W)M)ea-eY*@%fS BRiz0 +M777Q0 RJ xahfSXYTZAq\Vs7B7YB0{@ԶYm{[߆8A 9q(.j%6! ^g'/9gcyc bDZj8~gGrwwz00^xqttr<GQof׵ZkJ>{k`J*MeY )ݻ5ۺ`eYj8z*A)5N0u=Ͳ4Z!].?BEgR9Mg+)}'﫪8|4㻻OFN&QeQ!|>.(6ZOyuE[[ی|ug}XpS Xk뺞&wwIwj6!Gp8/ft:n\>|! Wluvvں??FQԶ-&a1wvvڶzf* C/IyMͫ .O{iOHʳE`qRI4DR0v!(gB+oJ1aƤi:)}bJk\.(Ò~ɗ!ϯ{ ћ.CG2iiToY߉oSLR !DQd2Z7M1mQwh 8/Zk1L%<$F몄gmθ40~Pkh8<==dCBp]#1FUUJz:$)eZG)J,寯(FTDGՃ<дM3fZ(j:総޳qDi ctYڮ݋Hi8VZ %OB,$Nsuxz*/\6YIw1=h8<@BK_w _$iM;;< WuqB'(lۆ`)8akAG[[9X\EY!B{]Z@i{CFuZ1XEEA`:/d!UF)9nbl6}OR²,-緙Y9͋H8ݝ)eC1FֺR*%\)rGށbSZWuZBeY-WKPބ"p(G0B!`wwZ`0ZuE!O3\]]ó/^\\\)E,Zneی`pyyɓ!;;;/zQGl<>9ǣԻvi'> UUEC!WO_?FcRe>/ #BH)]ϛ$QEr||1!˫ 6~駳ZQRZHtZ!^|᣺n<#,(z-k˲?pos2p0FceYDQףѐٳ((Az|2l;3|x||jy+*]ǾR{nևd#B~G&I!?BQFBHs. 8)%] \W[[t:[,i~\29B(MӺ5YĒ(N6MB3o^tcu9w{{'j7ZkLBBRMcl[7}/!@rZ〃 ,DRFUڄa XoN:K:-s):IidIL(NF!㜒0բk$F8N{y>i<w~7?٩:ҦG~sctww˗8Rusww7Ҧ8βB`Φyכ5YJ1Im@jެg.dfY_|eu77QC84mngw8I?O&]߯7tm!Ջ/=~\8|M=aO??>lOf/^ۉD~A4M3]!#$󽽽x LJ<}իW>@Xd2(%ӟ)i(L&>twg>L&>S*ӏ~h<>wlen0%U]vwwGI!D!`p޺90IUuoƧ_xp`F2T*ZS0Q{V 8P usV )}3lH m |xp^SJA?'?IB'|#Qe}? ֫W/jXO<9Z8/..>|F*q|zzooO>y]HsaA!:tiڮ˲9A/F)z)$~gRJ1 )!ιnW:BR*ebcZoo Kk 97mqUuPJ\.lk3P^pďx۳7BB|ʅRJ{Mz;1?,jk5;}:lzYM4MI^ Bf?,K1BRl@("0Of(#t]FWn6!c9ׯo؊p0l6Ŧpx~S !L(3ƭZh2bDRVqa8A#%`:eY!c;[[6ѣQ$lx{{Gh8g>!$q\.9^zeݹǫx0Xk BX￿^0ƻ;W?~ER g秿;cM;O(:>>LuxtS*p8Du}=N7MR)@fn>NMxss{~VYxXLgcL1&j}rzZ_]t!\,[[>,BF/8zoor{{Uw޾gEQB8Bkm8)!GPJwwo&Kӟ9[[Sa׵}/߿?L!Q,4DO>(z8aH=WWW^ń\\ cko=Sky`$BZB(oA0aay%2ipXE'$0 ck&4J)q|LkM!Mz![')ٙ6:BҲZ0lDaumoSRL1"΁j0"@@ۦie|&!BIN )e~߇=lh;?:<ۿ軻; EXqYֺ<ByZ-y}s$r<M/fgR:8^-V$ xD)B۶gYg< R)`G!ktJqciSn(`NF@87B (%uawvv1Jݝz}l0 ݽ/_]^^=y{~UwTzikƘ`_z\y!_bo>_ffO "~Ճ|+J4WUʲ pyyELSOr}Yŋ ojYI4ooo sZ,6Esw7~XZk4 @*S(&^5c|>Bm}K(o{cu1SGF7%40ΕR*aEòWas1Ƙu">5cvQx;h41D'y}01f0a s~Чuz:)G_1},;xAxѓP^J_wg8I EQ'{R^[݊OA m! N)$Qu>8Z!!BPU|m4Mlf<VU/)FQl&i31so\'EQ2B m_EQɲo^{x\ BAT]ך1ִuf^⭍RBTB m,ƔRapT+iRkJz5JюGf֬+e/r4z/˲|>1^L&''scφA_~l6_lc`PǏ1RR( ~_ )=zXW}MǞ ?۟=y1.(Zqѯհ0xw%0 O>;??Roov}p^C [z_r6-aap8Rf^. gjl\Ν5~'z3∳П۽y7w]wy&!!HY,Dyvvv}dQn>pM`僇71&N뫲,,/YBʪ.!-/_Lt>Gq0Y-A21~!!l0nU]/,ˍBHC,B% y !䝆aVJŘZwLo%!c<#N7Do1SGB޸`;د6ߎxV#c -׷uz44oݛ9gJ{guIVN)6X߶R qcvOZ0LFcPJy -0 4BahZ[!b)UDmgREUj|$D/VsT&_4eI&iF9w:{iKF*ݷU,Dwg${LJ2ei:F>ngw;{=ݖR|GQƢ\Jysssޡz4 dܶmU>{l2> l6Oѣ[f9<Fkuvv3!j\.b]^p{w8̤ZkN@JeYYI僡6v0_MQ?Ymݽ`ĄA4O2/j2UE!gA\- y.&ov8#eUa~y׀'I[V=7GGZ+{^``n$M=xWsveFr^-~p.`;- eP*Ap}}d_|Cq~~ݶM"˲iTGGG_6Mݶ2LWՋ/Z{~~~tttuuѿz,#ofi55&cytt4d\%ictm'p4nR*]7ujAEayMR*cL@{}q۶Zƃ 2]k㼡 YqEYuSu4~2<2<2|:űaJkBIƚקR8I: HĻ=v|#A>AO5,lY"/vʲ4L#B @kX,pO{q΅}*П=%0ӭmBs0MSpGGGZI)V)|^oyVrnZ[Bvo14vH=6/yWWR uZ2i///ڶeA (.V֪`B^o's`LYaIm !^=N'~)R(7)Q͉!R`34u1Wg<{ km0J"= "\U%"?99۽̲dgg>ͶNs_O(LeYj:;;h8|AǏ 7M3 >z8Oi˫+f?8V+gofӼOOOo_VAl6ʯ]O?ޱ9Y!g:gB޵m8c1n8M(׬F/V+zFI&$ C?aN)CFлQ!hqFk4¸گ>ͲTQc !7wa~'=qc A8 (2 G#YFAvmDaJ(%Vu pU1 )cD:ms "?", 1~OsC6뀶oR:!RZ+ BB2`uMۮkeޒ5l9A> Ӷ`0l֫sg7{7ٟw^^.P=|Zy/Ro=5 +|G}}]]]J|j~ɦ*rn( ۶L&]!0!8 CW׫( A v~ mv~{1x@)H}u]' Uh !q­2 !EgA$Bk)~%t8Ȭڐsg֊Q1 !#BWWip@a%qb!A(p]__gYﻇ6UZޚimt{՗?o-Wpzur,˅NNN}= O/..躞3n^__UU#Ec jqPJ)z)ǟ|{|^kgh(TQEQTe^]]iv}}ӧ޲/DE!BJ0F!=M9C- aRF @zp44pYYk,I onn&|>m)eتmBW~^Rb øiBcg/&1! !X'>z|0g[3m6&`!rٔͦ Gr9ȇz$IuBJΙϺ\vi}o}.(5^$cwZk 8I ֔`8a dimc:o2ԓ$񚠱 tӶF;wjm!k5(R/OBz9[܋aclۖz GGk_!B #8 OWEUדBXh8)2 .ڮݽj|gV^tWҷzB1O7t2IYT}2"6Y;/" c@YA`BB*@I I:x0ЮkԦ땃$@h#8`<B LQ,ENp(]ߴmM mZ YUQQruqZN_Ym0~}~vt>rZoؔt:M]e[[rpQBN&#ܽG77w)/?~ͳl2˷~/~4Q<͖?ÇR電x2G7{NtRaUvMӵ:qQWzͶVE'gvppp|0 x]#Fb~˳DIFeQ4!QJHRʶm[[csjŃA8oH Ti۶ڴm5V`Zo5"Pf(0L%QWu'q6Q! !!Jr)fSv$|>GF,"(ض^8#1ʶw0TJ]׷Yj%!Rw4ˌ1B)ƹTJ( 0yFXak! Ȏ2?SmYa_k}UB*TA$J ֔4$ٔ=,֓E~ @&ۜv_f/##f蜏)s!R2!tg= !|R Bdxی3"ahۆ}4M~GF8%,'7OS)Fk,F/ qF(7uq Vahb? )1o\kyݜ:g\UuJYJuyyusd?\_޾{s~vʢ,bgficzFcN݋"H)㺮wpd)U䔤9yR&k(|f%o߾UUTbj11-,}0Yk3;4Rt#T T&q _J)jsMdQ0ɳ狶BU9fFs61&lYi,>E~Y7VgO>{/^|ɋf缩y1ƻ'Om{:63JiLIk峾ͿBPB1c1X!BAR!u1cu]|<>*A{UƏ#S1nC1VAw !YV0\o;Ӆ~'OիBHN(5VcϽ(,J´X,;;+ ]RcCk:8;zu6Z[s\ 匱 c!d#F._m8#BPN.z+/tZcbM]!ڦSzi>%g4F8z.uF( H޽ׯy/~7o4CG zM]W]A,s菾뛿jw?BX,}{(ֹyui\n0Bk??w7770m~ӟ2S44shf؏wwvX,yn]QOX'#iĐ8BzU뷯 e@,*% Di15@뺞zzuYQcuc"e1IE^J;v5{# c a`d?(,XLaӶ`QKJ|\NӴl `%t5lA'`Qcv? ÉRճJ㧟~Az6nnnni 1ADI1 1izYÇ_*ww &sE_oN01*Bp %KЏc0+~`)%&I44ЄbBhaY[gʢ(ۺR=ER8Bi(yno_8ger6݇w9{:?>dYyoٓ'ORUY?_@[u |6 xu]7a^zx<.KX1~/ӧ??+Uɓw_W?u]׋m|і7~7|o(ŋ\w0mh=WUus˿jN)={ÇweYzg! p8 )e4ۆMGx>t!~/*1!0bIpFyuRʸZwCG1fism3c<M $>}t8c6MӋ/B=ʈ)UUB 3kcRX>}]BGdz̥y*RʧhKR,+P]Q!*7[yγ! R}J)~݊VJ yc "y?ڇx|~g?߾}}z?mwofw.tu}N޻__\_O1JMHno?f<ٟ}WWW\qbLcr> L*U1`!y"B>m-8GF21\`Dg/ڥs~4c RZVLz'6M'=yr]UNc<Ãh>B1)޼~CQB4rS~ ي))'ę+UXRks˜LZSL)!|sYUHk!Ƙ)eߑ@ۨ X Ѥ8f˲T l% 0!.+@ʅgGmVU جׯAcZk +Fk] w@g u  0B/*ڶU,K Tw]\\x\k}~~iЩ,hm H^JDYPYJ_s.%D73uq'BĘi1CRJa&!hqE5 ̆p)*inW%&|s.8nwheB+5 qɅ1B؜ cL(!a41 `!,B\{ֺIrF( 2A1CT30wXEB1O>g`aMIXfA&kf~KHf0fB> /΂j1}SI|wZˋz(wCӴ޽l6͢9M'0 !(Qqz\.1FPUU9gFUU{!q)%Ej-8?:Pߝ@ E9}(&B 1QcaD0a4`B(eYR!iRJrF[m]QژsTc<!"IB)eB'|N a lGcJ)BY1 rYHq.oڅs^H ;:9}? 4)`o!h2` zaؤN'_X4Mbz4Oi˗>rR BO!>B9Z9Cv΁Ff $=ң]+z*9ޚi׋Ju݉1^1,7~\>qէ pZH>^ImRj c\k=Or^*nm[ Օ:J)x ༬,5H)W%!b\7몪UUWZ(%4:0#}ʢU;RzSNU`%3ƅQcBcYP*ć.8NBq8g7bu]N]2 >LZ Qp 1RIR fURfBFPHQ)u]!ƘݍiE,IDATApQ~\IUp""u8.8NJv[8Me]QFߏBBQ!'g(g)#B&,ˢAp`))yֺ(ky#L  &@].IAEwm"WB>繪*(IKbݻw~ 0`k#0l {ӧp0u vB?4-7o,+8d]pժ:4͔R74\˶mV)4sws8RRZB?4Xc^!RJ ]? #F8)S]}LiT`̬sS֔l* %tg|UIH黬#"BE& ʊQf9ϓR+, %k3KNz1zcӧO~r\i?9Γj=d^J(aPy֔iR墮믿ŋnr[yt^WUU%#EQm6)M3OB1a_哛Mksd>Ø,eU8WUR:|xi)ǔǮ( 9S?Nq!S&J][q1f*Fx"PVM!#TBǮWES„e]?[諸f焍wrq)0".^$8!rM8K(aB10Um qj{p82ÿ䜯nWvo179-o?!~ 8UU~WWB_02%B7RrfDx YCB}GwǓ(v}:,DaXvǺnqѺnYKU@R38CĠ{I^p!;JiYMۂ}hE])x(hB aƐʲ,b)}=}sVe 7j5gs~q~pPJɯ-;Raop8O? Z \!a2)!F crDJȅ\dB ڸvrs% 8 C]YmQzd8b)γRxbN(c,,SƔb&!&ƹq1#JyZPJ) !3ҜsRm\"Jǘi 6 F8B!|qu50ҳHrw 3 \1z ǙxJ\L miD[۶?|$D6Р(=8m aAU*"#9GM)]^^=?s&V)UUpZ7mO_$ =RSY*Ť97M#cR"nw\isc}8@p{ e |}&asv~}4=}|q*OB֘,˪,rPTp͗_VE{(03yN |M1"wwwϟqJ̳1˪ 1gDM@u;LpF2cL`qF8<3tڇSv>eQQP< Q@uUy>[()aDhۏ#FD~wRbDqSB)08%D9GcB JcF0d7m;M:$USgSB3J\n>zaNY.}Be1\m4liynsʩ{Ŕ2Ꚁ?T7(s)%_7nX,OcQpw_Vnr(޻.sc[81Ɯ|`E)UkyJ0 TuUY뺮)rZ[JYGzRj !#!.RfY3„P)KJY1F"Ƹ(Be1qN:P0 1jDz[Bw1ĺSq///йuucuUI%gu(eƅ҅p:fsvvoۅsu])UYnz{S@8sYV<__T5,Vwշw #8eY`Y=1fa5MswwW5,JnI[ceDլ)B>ñf*Iʅjw8:"!DX,D㯅o2J)g84~](qZWm8> Cwq~&BTĿ3t:m:R"BXӴ}B 1DOdz&Zޜ!4Fk4C(Rosn͌q]!Í9hFu(B9PHeJ%;6'Oo1?Ǟ '/몼\sus)Z*1Qnz&#s$nڔv=:ƅ(+6;)eƹm2_~k=_]]pncz]0 ~oyTs(}]ք`jz7o޶(~kjXUJCf㬧B 9k]hMU4uX "2iC>wۭ†h)!DTrkcgcJ(A ^TLn:c܊ 06Ɣʲ!̳ƑsQ7MP>i jB DEY1.ny֔qbBz:tS-W+UT4(*  BQ9S!bLOdyzp]7 aՓϟ>}>TUW1΀堍<.L0c:R,P6,ʲ,:dbRn6gZsX`_xf9??9 R>|o߂b4MPF>z}D?ZTլ'1!nZ{ )p@S=O={&|MQsY,ŦﻢbL4Cחs+,0m & !ΣN!ʪ|uY441,c̔SJy6`9EBHJq5#`y̥$b931H]8g`b Ό`FHJ=p&dѻ.7Zo~s~~z=y\_;7?d@ZO\EQy)48m֛JIcZl}AJ)oBxZ[~_E OEJiݞPxpm@)Nﶔo_BqYPvqqe]@2B1QU711B a9cN/ǜy˪w7 jFBucMJqFBRUu8y|u](YPV50ƹafŔ3˜k\h!E )`cHA*/캮].qt;R SJ~TW :}>c6 !bدV˦i}iR?9D31Fכ0 \0lQ,^~͸R1fH Eߣv*o<[ۖRq'7Os ,JEU攵ւߩI1cRk\U79#^|<FK)uU$gϖ )#xXTe]J*KB9[RԵRo_p.2NRj)z' eYim0> `k2baJP(K)%̇֗/_~x\]__OӔs Wk¾<;8|= 4S,(ȧ  .@ =(`7O41&8A!`3ƌєғ7!Bx,>vY5xBpEQW8뇾(hiʲb(;RdRB߽[4^ %0Ʀ(&8^\T7ilvgpΙ1#zYV1"㜗JgyJ1RJaw}S:[omUwE9. E9THRMc\,Zmkc@A#,ƄRGV=,x?I(9?s!ƌ!L}HИQa'FYYPURv hB$t.&\6ɸi猰X2** 921%y !!;Ju.7*k<"`bYp{t)ucaY;Nn+d2ʽOpraW3eusnUIUZ몪aWwС0Ɣ!;BN! r(ň0bZguXb~mUU4a@U$O b vK;N!U'0;;(X_-FI#r.C0`*ŔbƐ0@Ge>m.b`9EsyuS19>`\88G|qq7ۺ\ŋ1FyrcC[X)4Wˌ2dy)FHO9qQJ9O}n#Fx6ZesɅfRRN)&͍(ٟgS`ZS%1/.ڶZ˙RRpF%ez0"q^K(CTp^W%ByZŋƙQYUq_<lX,ݑ1mT}e]Q0a\JYjm((e֙LBLSׯίNgnsaN'nziן}ƘqlR~Sk7\\\^M \a\. +eu4x\HsТ9)P}12B6Z!r.0\H!QF9#ج ܘP,TY5&va'Q1 L5.gXcJ#MDJ930M1$B1Uy q,!N"ɿiQByݶ `xwUUŦ]4Ƙ??v !G%:`v\X,@ e +:bXksӶ퇲Rز,zϧilքkz1N^F~R<-zaB4eUEmJƸsB$l+p-=kmC1Z1% c| ]4*zbTJ9繠z95SYPk&Jnn^Nô\.?s7!J .Ɖs^_K9NsRW7Sma<#2k#BN!jc\LPjm99~ˢpVUn&SI)e;!0ϟC\ًE&*kmS |m\1dmMJ(c~Xa0 mNJ_.m?Rpq~G.˜saZcq'}UzApGфCƔeLva e!8a[oBhl&cLx8s&X?8|,rtDȇ8LƤuFB9%b,T=3BT2L #FB8-pJ(Դ6:S~i6q Юj9 1?4!z_5dGƹ;t )icO}"Τ˪!JU\]]v{ʸT4LR}SUQE1JU8:c]Ly?hm(g%Rn,CFX*x \.hc,|{(ꪁkH8礔>|k4YZιaT8yـa\v}s`~|G4۶! O]7%dZE=ݝNP{r8ڶGRDu{Z.SJۜ3xB!F!іRP2J;n\ΓyxqIcNN)e>gPB<0ޅˣ1c,괔r|?㠩+ uC!rf s 18B:xPU9a}BQ.){XUV!DƄwPc-**}xx Nzm7~ӟf1>;;˗`B/w~g4LFJj˶YFRJq0 2"DbB>f0!!pBJ1fBu( H(Eĕ,#ԟs0naS.YbBJU􄲨jƔUy˲Tyvqgt*cYT8匆aBTUL]H>%T/M !|Hqn ,cr>8 f3i\w]?@/%,bRTҳi.kY/6H!ylKPBڹ1H !1f48!L>srBpn~n4͏~,5d< (ȼIk}:u4i%ŋۂaX@" Kg4y8xN~tL ep F !SR¤j0\h119cbĈl61:SJEQV+1 ( SJeQu "!b%(KN/KrV;!lZ*)JP岮uݶEYCuT4bgǎ"$\7j2'(cH~BBAdfml:oo{&8 ͢>TbʌXexPN( )D۴ks!"v_^\])vz?bB_}(c]ߕu5NsX{<{̇~J;C QmvH7>Z\Hںq7L6TH)c.S79Wz#&:r;"„PVUuF؇hYpcqƜwy18 9?aAqyuA ' ^rY c<,IEy?p&#L({xy)S98ʪ>̳Y,ׯ_ !M&]^]WuSRacJ 9cjIPQ0&%b$hkЛ*Psmrw-8!OSQβCl'>| nیPQR*8ljc\yu!DJysg˜*E PXڔRBS/i!pA豔2!DYVł}6L)B]c(c)%kR=`ՒssNiYo6^o(Rexx#.xqIgSֹ a,gL?YGSF$cΙq9 CU!i더zϘf˘Ȅ.k.d(q2ct*眔;c\e}?@XP1m,gg>cl]( \ !-1V ?(c !PR0c. cq!!bnkD(>Ƭ)TeN;fYn`Ì#L0a(PB)E5#(PEN+3FrFsFDH %g=M4pƤevU8>&"Ad4͌sLx|bC9G3Oe-SJp~니v7[F1)I#B0n~eLI}fN%,EQ ZkOjϵ2 8@A/0^)%PaA5cgP!c~=,A?<_jɓ'RʛPJVt]Whf1Y۾꺕J1!(JnQnRƌbL0R%s(3,RLNB jF SRl[*4M9aL-aRJ4~Q!KTEm<*d#\rFyDHBH5i.k09%%y`kgMF$f̅dSF>KªPR<(' vvޖ)pFRp O欐/r 1jBL2dDf{)K}L9Ę2·dfYy6B󋫲.sX\F8CώPv{wcy<Ĺ1*%s0e5r=Oe )d R! onhRaRgmvum۾!B @ Z?<<|t;~'qуR{{{R>p( {9$c_q!UEIl`SmXZ3ϳPb>rJ) x8lc!B0ŘB}vx]iBJ,g˨BimcpYf;c9(tOS۶݃[1&D)qIٮ;9kg7WWYHYe~{? /a@(Yơq.edmƜ1t2z֖PJ\ !S*02$UR>!tgB4͔2geeSat]W0L) I)]__É:g.KsFs윣~RC V8T"hλW@ FZ /nCg?Y۶_>O +? !4ش1?яRu]k4h堊/\u]yh3Ɯ0?.sbc)'cL!bv>E\gm1c .~5U/:ժFkyJQc>2c !EΈs2gD!Fk_m[W |'ι1̜@r粨 X {JP*FRZu]V)iJZ/1R)dA%dЏ1eyBqns1* ,3eB1s)l}@ň YzP)qS6iֺnuK8Na.r0zv>dBs̉2N(,#\SU(XBh?s\k^m֛p~8~׿Y.!S*8NJa3B 9WS?ۘ1BJm=SƘ!L|2pHu1ӡ;%qF *EQQqJ9g(GC E_|hMY)8ѪPalR2*dDUH%D B)T8۔)Ϭq'7eQ7oatuha೶\Hmwvhz 1~[?xV덏!esg1!UM"pĘyReY(=9S*YC)Yk3JZ!}ypL0J1b {Bu2D(KVUJ9 8+.P4iy_~ufXjx胠@I|?ɮrL|l_p(? !# ~i(8aL8 )۷oO# cr],ȹ!-j11O8N1a蛺N)i~ _"dZoc|bH)%tZc罧9焐!?Q0RH)%B1b1&H}Ew:.YrfngcƹC0H{LyLhm؇$D]j@<R lRǘơr8YWU8O)q.1N9;qBe"b)cxS·* B0e9K)9CXBn8x<_|y8pWU~'8̈́ k,nֆ 1zm>P%cB%d&a?|zRROaA vEl{Bօh VE!H[J)TU] ŋ'0췜acJi iý`\nSJRN` !L 4eq{{[ӧOw{1/͙n- @Xb 2)EpT!xDո<޻u6C9euU3SADlfp !BsWW/^iGǴ}}P]\\H)q;DrekA8$K)b1O?NUUu]`pK(TUՌv!X)a)|eU1B(p{뜟E"u<3.(e}7 mP1ıV5ƚ{F9:ߕ- g5d,% gۮ\YO!x !gD9ukL^xhxuUzUΆ`ȈPlH!ebHȇDʘLR&qB2sA1\6 gls># ?c5cMhj"bL0SBq[֛%B;BXVϞ\QBT)ebU783ƥRWWWOǾ뎇g̻`]˷oQš!e|`B뭏1.$b6^[o|v!(YZIw]w{K1;ML"t8migES($[mNaRqFm=cYZ9(TpsN14BB#:WR )B*BpmY %덱o2BEQ0&ɿw]Wu-!@˜øޜaϲ,1z`3‹\]7uU1< 3%a$"c ! @x<1`Z'O뺾\BkhhQ*vpJr=}UuY䔦i(G) H+gi LS",l|>dDBLSk]8 =*BhFHCuaJxc )i)eŔH)? >bJ(de-:HCmw!&& ƌHXMB)gcD ~RB=%zs~sBS.T!GHfY4mRqJY Q (=#gT 6u:s6gcw@9R2}8eU^]^b6,"hֳ2u}u("Tc┦@`9x:H>M4BuSI)S)^Ja!^JJXN2B !TQ2s^k i`n!9~Ћvnsbn`uuu?}A: a>,K%A88bf?j^tcҾ!ϡ?'njBj']WuQr603l <c#F0B`7Ƅ yqu5Oڇ@)1c0>l֫[FY!4 BQᜋ1CA!DRHJH9ci0 {ORHkX(JC?()q@)MqZK)Q/kklU7_Pc7MZku. 0V[Rap#0kںm\Ur,JJ(嬍QSJ9=ңbV 8'J(gL06Vs0]׷bsvf!Z?|PEJR6 C^I9=%yL \1&1!. 1c}7և !˄fsfaq@3 cL (] s~͚3UFWmKYJ-$} ?(Pnc^BxT ֻ a^byP9O0n0eU5u.gB5 fcr]Sa1hvu]_\\H!t {$c2 r{qq뤔ಪ099E(á`mN)ĐssF*l c !0n{}}B} ^A0xuuu<!dw¯ }v81c4e0&4=TZonPvX>} ݻt:Oa!h]wh],8S:' L 1 L(=vCSVT5aCRJ=4ӄֳJ)꺮ZS7m!=Gtm#79)qBq;a˫i\(* Dև(S)n\emjJpCI ibVऔ|l8EEB]w޴M^uYm;eXpR1JcB 0ʤ{DAIwj1=Q͛7ժ:o63ƍseY#BB>8W~9gC(ǔgD18hL(ʜ1c2l.cE!J3 Y_VSK)$cRPFrܖ|YBbC„(w(SIa.f#fB0"f?3nϘBR6ƻ{1*aO.Bq09_\Blsө}{Z-t0!{o`ȜOz\ktY2w]̋Ϟ UQr) (gUӬsyjvaBB㱣\PEhR)Q B\^]dw3XYU͓gw[xϋ6I #ܥlMJ)떓TQ.DAuSbC)0r8yrJ84e^V`4;+ Nѥq'Qe,Ƥ 1FBmH!m{u}g/s)kJgD0vbS?挍 zdO\apFc缱! Us:u6U]NH(&=NP(UU|˩;=K}ӈSJZGmiQGD]?tN6fy16ϙ"Qߝb՗6b&~0.ը W%Ghfq u)zE BJC1U<^RI)m?h{U*8HKû%YcD"(t80Fh%*'77www8RΡ9e=k01R֘3c,t~~nf{竢t>?ytHжmU1Cy?x@ˏqVywn\„+8PrJ=%PLjXc8в(SF޹o&brq&RLIijc BIJE!y{l}rQʤ*\2$$$\k0RWJ*>[.Z+U`*4OzrQ(`{bmz)R Q\ %D9#0!e=*J='js)}m?ۜ3tqn|D8cJpx3AR-x[U$C,p[9Rq{uq.Fw^ >| sJaS(!*!1)1J1N9* ʂUHj& CO>vzC977OS ̓R8o!Djc>$vw(Z(!NɢH)C,g.8о۟o IcqWW$(nDRRzN`eUk6PQYbVؐ~we}E̾}{+%͛ݡl &Q?^>QH9!3օʪaeLʢv[k g<OC:Ni)!?w- # P!mR R[@%UQ:k %XJi Gunk99!`1i2X3ey0Bv7!$2?{2yQ&eY>}t^/_...@ G=>"YӧpEt:}g?QIc̢ms8N3c 뛢(L 􏪪D0c %|9APוr3J# a)e&gB(Ô],)eE!1x<⌄\.kB0 )g19((e1e/PJT!Hk8 QkۦBJi3U] !qEQ TE ,3,CgiPBey/DBŘ&= 0j)] "ׅz. 65%XY2Mx8v;0@{#ăWaJr9RJ@svv<RcLU}7 c|}J(#&h$Sac8MJqJ))bXPJRJW8PsJ!18Mbr],s)wtBw~Z0k1nuU>.zZe6'sAH1c7eU*>w9.sEUӨ pf4S ,.j$rJ'?,MLеxQ!SVfVn4 HpK_%vnjK3钩3"zk5>EXfDxu1NYU4ceFy#D0Div6@h f`LKXkCEѢZ;R&`,FF2ݫoʲD^vZ |Z}twC1Jb)];D{fU0.8M(% n7ˢ)p>\Aan{M3x5(䋂 Ƀ"b?~Vƃ0i2ôX0)v}q?-6"*\> H"$jӍz{9+Dy8_RQu{>R<a2󳧟|ֹa^ݼ9>XY/{yq9s1WUB9Z,g˺\d@BX^8g]!F[Ωwp} .v;]y^X6#)Ą1Xku.yZ(c\\戃zǮ2/& `aݻUU )vYFi|ߎE_!znZ8Ͽ/ p:{C1@!M3>dRĘi¿ß6Mj[t](7]zΤR( XicDŽ1& ~Qc2nw!0ZE"` B} )\D 7|RpF1Y+2-V"Hp:eGyVZk0@b 5 #1S6i~ZiTք|4&=.Ѝm1z.K( | @b ˢ;RBx@8.!x19kuU"( tyq5cU} B & qX& q.DX5M!1*mvs~>jΜ A8s}ywEɮvmSRJ1Lp<*<ew1E=͊qi[Gf{ 1ݛe>f PZ_\^?~tqxET۶뺔RQoިEUU}s4)^ȦY0!zE,)1K(=<}?E. !~b ?0F޿m>{ٝBrN1;흱VSJ)J-E!s#蝋)1)%Bea,Kᬧr&sN(uK &:(J)A矿{.J-V?cQzLC.Re^sUUh1wcS!t{1Md5cOpL)%F8c4Q88u]bFO1yfBBJD@8A0L$轇'RX`hE+(1n>}f}vvs{s s.m~l2>sP3 :+bӟ4;Y^LR90gg777u! UU=|Ziʼ3h?c,%7Ma^y{7 cr.Bzo&ceaoon t8UUäs.q 2TarP=CxǦis]1!bK))`7`uZkTR.T:4&$m OV !t'ct#0JwP9+Iy!=zbRnўU?N.$¹5$B"!8; ĪV490j)!Tx!pOG5La&D,*=@vSn:' F BS*!F)y^8뇎10tPL% 6ɣ;)ݮ;|Bpk fƆ( CӬC7ab :r.Y_B6^Y1jiL\)A+&|\LԴk. c} 2 8WaPI&EQPF^TW%ԏs6?y A()]_]ӸZ51;gO!q Ym; cJ@pg_P1ˢ0@2M4N)tn)D16ne7yyX7nAwV-SNpg 3uQ" $X焐<akXP, JYYU N攒n^{n㲪ٺcDYBz7Bl6??{p397 C֝dHC>s94M')c{3ēSSJ&#ɓ<O~6M+\\˒~ڬxy^#v(Jo_UU1~ZgƸ,qy|^ǼU˒=u];kq!~G0R tnM 2cLQ1%Y $mx$\rUe\]7tRyiڻ.䂃7i0+$pĐar! ox8Rބ0u ӜRїey۞aTP(Dɓ˲8n0)D \4UYlj4l)9~nY/߾{3/s @bC(7۝sn RBlvG2M=,meʍ)eazet:5M'_ɈqJcj9{s}w6ETzUӀ@^[ta FJFg)*11 "g,Ɣ\ 1yo+F8>DPJ Z缫i!οԲL|gaBR)&g<"o&i2FzJ)ussB!Asן}Y~r=z]v1e2m|[9~2cF~c],=RF8!H(j];gҺmTvsr(o,+J%T/x8`sC?19rL&JF^ -!Al!)tgRʅBĘ禐QŹ"eя=35OϧC!Enn8 )ooosXf9j YPiZUƎ]lʂnB]]'oXVRqal̥J폧d}]\0r,A: hu& Yk˪H1\)8mj^hJ1۬bjY.v@)Ɣڶň`Lb.DQ)},fQgQ]?PVH!RbLqx.eYKӈt2;mR M]Q R( US Iu,ŶYKK]؟}ͫBEU jU^aLCNB}q^_RSWUu|:UUYŋO5J-eUyfTeA Ϊi˂3zV.K M?uv KVFc!`ՔN1(x(A1A8 BA.heQ"(yC qs{BQ]?TU%e֯s8zѣpUevRp)֚{AXL)q_|+eY>}Rj|!j(/..C~<NJyk-W3Ms۟ܶq7oB433!&})Zk >SL1&\\'qBEQÀ ."cu4弢"$s6hO糔r)t: ^Ke\ OC'O$>f$/_L~_ Zs{ut, R,˾eއac ]w)CجגKkMQuU"LQUE ї'o1e֫Rp!94'eEEQVMac_3r[yo)WZަ5UUUn!e:ڦr'8qV/5 ]QVch#LF<"D^oeʲ:4W㛛cMXcuSqF26]0 HVzN(MݵeSUS(4t`ÃDŽ|ѡ(e0?z|cyVR APr3@)Ab BpH)3 Ӽt]ò,43( ?aCB]bR~g>HeY_O/BZ[?Y)my^WҼ1Řb`^yQ>D;ƹ1(|}x0 n?B?gp}f8 )?[b)eZ-BhzcX"BY'>Xk9Zf)bYLsRL34 B,Ϋ AdYm]RӧO4~12/Re~1"rVwMӼ,˷|bd`znbjqn)2KJv9 !e|0jI1pW;nRKAWRpL9~R:)2Q 6&@(-˼٬ CQI=xQ2F9,LR)EURj`EH`T./$ ”14BnCkc Аֆ0@z$۴lsk!cPvnkg6kVjV4^l׫d8RV 7,1`~8 ##BQwW^v!}z B![MP* YhM(es&` hՔeɶU]Wj!V+)yX !dO<Q1!>Dc\0D .S)ռ`LP%ć; O'ʫkG$Cp EvB7Rض0UU{Eu:ϧ~l$Apja+גI)Jsii6z_%{6UT]_]X1mSeANn1#USwS _L`4ve!.6/>wJ֮ڲ,B UUW1(ʬeY1c_jpH6RpD <1FEN?~ѣq3TJ[8")%''?ɼ]q,vs粪RyL~{{x<`0;Ǐ轧`=ij)UQ?Rp<!D?{n^kknQ3xEymU!8",Reh,c 2Ŕs"R:1){0F<&ﬦP1!?tI!2˲ DcutCO3($ad]nV !A1XRS A@j +ʊ0BPLeD^n]7_g)sLDMc@F)Bɺ]3PR+%A(BX./vFkl^E纩6hƅq|( c`c"H}xL|FvQzGCb(>h坓 w*:}[oJb(qN(ֻD!t'9!"4Lf9 mU 9"g C1 2^7uQF Y2RXmSRtzUR0ǡ+ 0Ue4u)2-RS\bT06eA1dqJ?v{}}t})vC;<iè"Ŕ0EQdDpZ)#Bhʇ轇&u^JޙL!U,jg]ɢYǻqB9hzqCei>[V,?y.8iZRw/_G?Ϥ,c?bH*sT@kR~w]ǹ\{cj7S?e}U7WחDJ bqF3Ї!Ey^;i`!c4!8y*ʂ3[ Pj dT]7ĘU%iGku]y_VuQ)nq> .?RF([Vs314MF+fHFM'?f:bycoZ &q۶a`]0Le!*!R\6%XqBA E R!áέ6[*)#Uh[(PB%jb\y:9 )+ư51,) AxR$UuusQ$#u Ykc<8D l1RЇjcSƨ|^W\"B4x˗/YYCw(r/VV8ݪFIF*$gc̴,>D R !eRRJyq/ Z=},K 'b˺pkkc>ca/"EAN ?z Vo A/J4 EcR]2Q4ڪ,%˲iFɇwuS189We 0SL Ǿ(qXx)xp0% @D0L8(J)Jhy7˴LR1CJ)akCz!DB y}B6 ng*1F.]Ci>4MGG_ΗEgroW#gwQ{cC~`ۅ(%0Si41/?qu}Ϲ.AkA(yBpYe) L˲e !]ٌGv;c ALQJUUEic1潷K_02׶mYV~1:0F;0n1V8U]jk-e0G. ޾=MSy˜ }_7m`g)E AJpF A%E5zE*#8ĸ4'Hu<ce! {8, dbURE M+%_˦K)8gQJQzY5mUMZ5?쫨9G8nYw7W0*/wFOSzjUUR^^'|r(UY\_]Z#fIAa mVbnSWwbgUyCJ˲U}}}iYc/vg/_yxtsA,G  )޼XWbNukтL |FhֵYyWWܗpu}!q9ø!~fbQ߾zM(AH3C,rUӬqMS# 9jWBF`JZ30, 1JU!8믟,.1Jr^fHU^(89N$! bJ|Er.Jy`y1>`y˜)q6XH nTHrA έӅ4!L $k-XJᬯjmUQT<ͺJΙrF),LPt[wǷVˋ֪ Z$S Χ3b>>m=}bgZ)al 6OQU㦩j^|v)0RJ0"Xn_֔2fV 8C1FsA!#)(rX1"ǔyR:RBw:!˦i?8=cL<;Z s&[{U>,Ri!]=~e7xxxիW SB?cCY6ˢ|HeU:!A,@Fg9H1$N6+n%8cSLq`2WE1B $姧crBJ0_-뺾^ }?S۶F-qRQ %n{Q7MJBHqQϟ_]]8R!yk BijF Dss U%x}}A0Z5 mAR݆ܖbWE h1mUB8Y%%h5 F䂫yM쌍Vgs  0Lj8ŘgOW۵wZr0n& G8R:B1ج|JԜռL޻%OtFYئ]ɢr6Ǐ6u1vE9g ~_rqqA0O0/;sTUYռzxXΧe.!g?)UYRJtlW-Ƙ2jBH)g9y>M? kݬ)fu`: C a^oq4GՃs.c9qJ)ev&L|^lLZUC&=>ȇ/__I)ݫZڴ^߿}}ɓW^!L9MSVEoy؝ZmEkrAs1PBĹz!ZkZkc a*Shݻbn8!qcni!!$'8b rᄌ1LӔCw|1F۲* ݓ^~ӪƮ(k9DU I.>|x}}K1) RC^0g1;Q3t6EÈ>4jYE2'%6`VKVeU6+)h)`!cviz!XJsR% )'w! ضL)`Ę]m+D(Z{b|xxVUr2 4\_9gWJݴA~ww'SR, B dD9lG4M!*on!mr.ZR>R nMp&% )xg֫UerN_]^4Mm֤eJdUӼlL=EQ !a <>1SYU!Vv0Y<0UU}BSJXlj=BYr!!fvi`[|4͙`'PR'OMf^׿ϞqBH.bsUU}7![נ ;44yyw1{=`߇ah9û苐z>cxxŹ?KY 0]i@9c9pu}xR:h4/J)s׷JŢlYb8O pY-{v L htt:Mӄ1>jQw ib)myY\Ȯכ (+ #EBȧ ؟~Fk=vM)]8ߗ VȢ(yY6͢&D[k#1%ZJ:%97cQ}RFR\\\dS VJ!11Į뜵pcuCΦsέ1{U9}H"ν#]N@4Ͳ,m*mբ1ojy{}/]]iR FeV8\fBP[ Z&ƈQ CA< i0 B)򢪊'OJIחJz`Պ_Sd4mR/sLʘ"O!d]^\]fyzVyo/޾}#Q lZۢlf~(fZoRPUգǏ-^rw]fE2JUTe! ?8xuƭ+og0eQ㩨PJHjgzGEܴ}L{R3_aw>u4/,IscU·qVmuR}?~/4N}qs!TH()ԢmYUU~'7_Mlo~ ax<)i( vbN'q6cr+i% BZ|EQ!dv@9߳\tZ|;O<9Oi2cY|/Xڬ&s5ض_BV=NYWv1L)m;LklbJLp2"4Zwqqʢ4F3ƪ2J!0b 14M Ϙ8@[y@C R- F3VE] B%2dQ^^^oElZ%Zg)UU+c11VSX nմYpozn9 GUlq [ٮEB B,(t$yQie/ w>P1el^ovfcvw_|x8+Θ{WP cyVE L\qZo~܏r׷!ٙix۽x*!a^/l,#.A#廈1?MV͹)C|eUUj5(n?7SbϴUDJ?Ό8 q(!HQ`˲4fBCn'eɥp!B !07qBY.ZCL!D cUU^oPJwwwZnw>./6M!޼y<N Z8?!1a8Qp8 QSɲDLeγ~#E4Ç{^H?l; q!BTլ)KX/di\ ª]OGV1ngNeY]={4xg?ۿO_(J,K]UQ!n{x[g;}_%hyQyQ98:kaOO %@g,t> !jRZj\:|<߼ys<a, _aZ..vP,^۶]%o.PӴy&XyKLzQHkm4M!AV6T51Rz, a!&)WH9vRJ D)cH)Cd˿LJO<.Bp @kD8xsF+u q60Nww4!D<2s @u!%J,+,"TU8jc(3%1֝ yo.RV-X n(G},^6RTqR MZwc`w 4 N F3Lvsa뺮&Fwuu]7cDB\eфm1|Gu۴+Be<&(DQfZs"%eB)9{x#,v~D0qs 1ubP e )iNJrٌН1̔k H)L(Bj}lB}n1"Llkەs|8R/UJR:M4MMdNfYRPsڢ,ynW{Y!yYQH8]\(=y Yo42/"1ƙWʀRuia$aZ!0@ZUU Y?O~ĈmncQJ30,JaԌipyy_J)UeQ>/~˼XP^3atuS|b-H2RO?/念:( 'mS)X5cW!&YCQ՜s.aB>*iF8gM*m ä~̋d@FJ6u ReYigY#@eYEv|  HIp@z1ƈp.t>P*"na7oe?RJ rݮ @c )zr1Ɵ<ի )OC]WY}qy4/^~z:De]5 htXS* $BVK1(CL)_v1p^BU΋}ĸ/B|8ˢ_}YV>?PUEe!n Յ\Լn䔒fu:7nRYJ_,~/˫K<@Y3ƌsZYJYӴ{q2@1gB,rTu]bB Lcv)羗L+< !Ƙ31eysj à>ݝN’xs$!Qh-Oq41&8mwy_z }QyS ,m/ J0<0?~rQ0 aiއ_t8 EJB)_H,,jT`9Ĵ,}n !L!)&E;Ņȹ !k=DH+9;35Χ0~ݫR2/aj$cC5x~fz ˿˧Oy!ufYJpYTL_\$DOЏ|_w[ƹx?}|{99!MUǿKR(~j5}W}a~76o˗/M[q˪KBZkk\J(+TJ!\l6ww{q!d@J2-c 6sQ1ƪ9yQH^B?lNМЧO^__[k/_E1nB=<<8礔19cb9F0drC PO}YJĿߤ&2߉ |.R9P!`ZUQHwn^1,+J&nw:Nqy;^o{J4p1^f8ehvMfɃqZ>}Vu&pnn6z].Mp:xi~_ϧinWe!e~ծO+@SW)Byv]@RĘ2S v>k 4[(H m4kD*k!L RHRB5/Ϟ>ެג~)) YhYnw>C_o2rRmdcTjQ&p5m#1V*@RJڶ]ReZeO֞C4EYXgswRhmY<7uB 1 À)206E8 Se1xoCca .JcLEaB ژva޾`Za$a^~n)#?Ͽw۷jOH!UPo{fyz]/ːO -J z﻾/2sL:F! !2Ƅ,9XM)cBY٢}epuuFqt>d!s__0ƺ3#l^JFkXV)%Eӷ~; 4-eYe|^#f]X-˒'ky9 j˅Rz>&2 ^Te2,ZF1(S B,ڇ|cZsshgkB:BSHA|6z0ƘP2F@ټJ! B"H8L(mQk=/sN)5'zq^en A?$y=J u)vMߝs`~˼@OӲB0cLfKY!,p<8BzbǻK)AÄy'"q]"b)YkH޻.`ϝ}}ZvWz^rR\tzs:y+JjRj1Bn1&p滻;!s&JWUɓ7opʌY!?wAJ%p[) LKpnq|$KY4mkoZo֧gmEYM3Ӣʺٸ1CŋE!5 /o77WRpH3Ffz|{o?? nLEQ}]mZBR:MCӴJ)mL۶Q)1nVk::4N{heC6)tp#s"ӹ[(_ϟ!}1W8m2<, c|Yz-̖TCeisad6C@Bc~PۅYQafS=TUs |OlVJjQ>E !Fk 4z{ qTUjc!)HÇ`P]n<c#ʢmb|ljPJZ۶] !D1&2TUm41 a,B{w۴vY={p؇bJRvz1BCI] lSSUwo_~ɇR~ǏwJ z@z٬ZӢ]x: %c߶H0-Iz{#4.M3͋! aRZ(lR-컎  nonBѻ)+)8)COj;vo7Mi^ӳ޽}烻y`L)xw'LU}uyQW8 ~/ U\8tfݝymՍiRNz#+woo<}o߼I/D"DrLYqT@L1&,s!뛫i쎇-FV2 |rs&Ob5eOn@u%߽y}J?:ko*oV/nHNkE)[!hn6k8Q..XU6&~&1R99EBw|j8mYՔf?$UCf@s6SieLb|ss9?N R O^|;!=SSJ2#qPr`a2)WJ1~qvΑtBHYVi!y,K޿ݻw?4y32(E!ßi)!t_~YEc͉<0<{.rtg? (֚RB)VNbA0!IJ!eC>cCl]iZ<^Schmyl<*ew10%5ZJS\4#0 CY;umƤrN+DfB!l6wI9vc0ɩBpɓuϧ $ei_|!BpwO+@syww4x]^^imꪬZr> n7EUo߼1JcqӉR?՗AZ!nb >xxQl3Up4^f 0 !Wͷ}[)obkA'V-un HrM!^喯1Rbք_~գG!ϭu>bۮ,sѲ(! .J)C9湮q% !x!yQ` !BJťLWWz Ny>|AI2*թ PiP@ݜ9($T*SLAF0|lwŌd!bzxxFA_|rVJ5m;Ͽ曲,7 bY,04e`7{=!D^0 0!=^Jy||l(}a>z]Qk fĀ?p8TJ! 0"#ט";w8sm1Dc|L)ɯdQX0ER*0ȗRbJ@]g0MyjeQ]]]mxTJp(8B1Kk]7M]U^:6Yz=.%FZñ1{( ?>>fM&L1L>X4HIJ(x {0"E1Ԫkӹ裏6|>E4u)8::L[x4EqΙE'q%j*84Y.`Q&EnY\p]\4!?1A:kSJ6][)m7Z -ۮ9n֮mWUyr|O߿;8C ߿y[7m"K AUQqD`dYV{ qVyq½RkQԅmǢ^䯗 ϶fx7S |Ǣd\gDZܾ}s֌RJˬ8{?ߏk꺮?䳺mprɲBu~hڶBie֠(+ fuvvc2rr|lZYeɻ`TW?|4hkW7ˮG=-8t:6U1V˛dԵXs( Fa\ϩa)8JıFGce1Jvm[Y:V7hz^&#"j94u>a/X..)Mo^Oǡ%l7-FAFapyq>( )@*PC˜BUדR7Ml,˖JqΛqq<)S !\m6@Rt-WZ(UeUW5A@ "GS!i,!?oDonn0<ov+RJexqu}tt0VR4ksVUq< CDZz޽{`6h2<׶~/v0 0<9>|m8@sEEA/ ױi~B-ff{%J6ƑXdH͍Eؑ9Geb>mxԋ#ʬ뚦|g4ڶ}vvf:`BBQh>dy$zG0 ð!T8x" nW%a,F0t3{={r0Â^<5YQ6MW7MŶ .86{s- )%`\{3`駟B  glzm0 $^]]V<ϟ>}*Ҵ, BnfR%J)ۦR3Ds2!lҶm0S8#FB*T@, Y\t]Gյq=)Bu\tS˫.='kYu]7u˳} Znd+gyn;qr{8M뛅8MӘKWa1"(I(Ի]rsL۷EQ$ijh``2GeYXϟZqRNSBh:"4ЦJx ieu0Cc61&wxU@ZLjM&B NڲYu]k4F;Z(BkƲ,/[!Rr)HʎR*q(eMEYvM$syY k'dSdC][_zG77jl6;rѶz,k*^/@0dE)I(A"|mȳᰯMzN9Cۢ eL᭣JnN] ޕe2(i-ʊ⣏>J vx6u=Rt:}οom<ʪQADO^_* v=/0 2PjXnc+s(c﹔au{{3y >wKiA ,٬fu]"8^/GGGYz}`*dzMv+);b 5ԪZѠ$n7O?25uYW/qLy&c^:6`o.K;l,q0'Ļ,+q]yؖRBf(0^|A(FIy2MQmV7Eۦ Jo%lj[qz8VxqoWh!Bזe],FBH )ƌ9ٖ$1 j"0jAd燾uSA(%WWc' H(Jv[0\!5Bs!. ,MʸP9X UTuEY&ᣢ(z~$I׊ hAu]EQ-+L_AeJm|߯ڀe(zxxu]7& 1uV]UAdyfu @f$Zt^e R&2mZUUC(˲b?g&c˼>°,(Ky}mWŏϟ;5(198 !4Z;my;m6kcl1xe[UUAs˲˲40!yƲ,(PRǶ PZtJ4kiE)nnߥ(-.>}v^SƶO^/>u{c||tK8['F0KS!&1 Btxn/ {9ʱson)Zub(^~'Oѭ֣(2#0>)ˋxcփvK)/$1dwf :E& mfUs'O!hx)a~ )DL"bˎst],iڮi75%*JhR ޹,;sB !zqoVTU3A hB;ZCLl6Xi97b,߽{WUeYz:"۲(- D;" \[’s3i8?y/__-ݽ1fAA?FB¶W_߶M6{y4]vQok*1 zf /^UE mjb>. yAmӝdi\.{{?>>߾}w}p}(trz~6U 8=;iʺVBDAzz^O&ӷ޽x\s޽Vʱ?ztqqYzo_Szy@)!Ъ*sF|Faf. 8BAo[ϱ:}.Mvyj% ""+yU5=W+7v]qwnWKmۼmygbo鯕W7,t2Kl0)&qg?xݪ0 !ZC?PJ))ǩz2iUEQ(5M}?+r?Fڥ8fB꺵,[J%N]\R0&YEfIٖWT: YVJPeUeY1ѓ>B1 0ly'u4'!it7oޘi$˪dEONN@x𡩍0`n!m !ڮ3`w^]_ |&Rznnnڶm[uS&d0ƥƟ~# D?X& {n5s".u\๮eYߺClE\8Sm۔h$_LReJu]Bj'*˥eeiveYB)cee !V "D z! cvd muRb丞T zUY5sڎ.,jś7o֫ 缬4M>CzPeQj*Q (ˆS=뺪(.//=K(覽4D<)R`0APeYRʦ&˲}'O= Cs2S؆1fVBW?3x!!RRkM5T<)Դ NBtjS6֠(\nItJj6EZw ˪" c̶aaB ByQ!L!v]WfT8q hFI9wpoދラŐt }w8?8;;L&I@em|0{=LyC۵pZ?==>>1 o90~v4Yʼ:lp  8, qN0 >N*Y7-|MTv}(91,rqKIJhUU1ˊ8f݋jGR: J!u]MeQugYGxXx25{BͲjǶ-ˊ{FP`w-U]kcے\@m{ߺuRfEY/N|y8?ڛπㄡGQEY2u`H G漻soʪ2o5XGGوH vfsqu!0Nk׶߿DZ뺄1b888H\)Ũi(MAPuӴbL!B(QQU%iN,;hԶRpDeUecHs80;r BMەU z0eY%!v]BEǎSgM0 ODJiێ8&;4a'H)m۵mg^F7&Ҫ?ZoB]י Bh>McJhT׵Mjj`*pC- !lt~," M!L) 7HUc1ʹĈM>HJٵm0"7gWeQו~va8m777eYn۫+0ư+՗_}F7ot:}xtصM]W@C nn{??g{msp8:Inn6Mz~mZu,)/W;0ZeVuttTұBjޛyZڦۃ9"@=!y/^S^]׋,+2& <BH1XJ}v~\7~GَcٕRWWWhۼ1Y^eQc7˕1!0?!BmÅp.a!VI d;v۶YQ@궁>_˥Bkضm7mUUfW`Y cF1!a$RZ 7n˲Z%IZ1#1G}L)m^L!7`-2QA3qj֚Q& 2Ǝ_ze{ ǑRj!h +IngRk4 ]?33aBl۶ZZ :SQ[ |w]C0r]h$ eMc{aiֶ-ﺶmmƴYbe#" q]#٧f?;RX,0200PJ90Er #eߋ{xuue1Њ quQ_ܺ}g0e5ʲ\_k%/_'cmَB-abD \ʶI߳l󽽽^x4J+JclYgUu4p7¶mڦ],qqgo6g~ sҲMrz~IEMc{AG#WWWWM,Wqm˞NΛr7q1Fン&y+4b,㺬n˪(RzZI uޝzm[k7S_};λma)w5"wtwX~u!tdQ[,W^F0BŊ"6ϲjz^<˗QZ!R(.w]FcUJiyfr(j n0\86;@IRkJJ1¶B(Dج UU{_UuӉKjYI"B Ⴧ`̲,WǏWuMݴm; I5MkB:M[YEap[2Cf>L!dY8B`jC,zeMSIb/]5N}um6)yU`=WSB4A>B@QJǶM\KiM(ݥŜf` HVER̄(R$]KӜQ29BJө7F5x }^[]8MӺi]׵ÄSQ4( AC߁RB (6 cl4GCfa-Z\_SBo^0ڮޮ̢\Q8pl2;˺<7Mv||wVU9zfs붔}7 Cl۶m Ȳ['s"`\V{??{wo0&Z+ql`rXM)%5MC-D:BH-qxTWx<),M[\]i(̲t<7]{Ij, A/SJڌmڶ6=J ()e~n6UYvsʲ$β{GT5]۶W7_=?߾ubY8f7؎Yo7[cZ.(* $VU=LHd 責 TFQf[vuZ!cN^0ǕB!BP)F7#}ܬ1a)DXk]5ܴ()ڶ ii];??Zkm>x04Ѕ 8`<۶0:<<\.UUqoݺe8 Y^߹uTF}wO=|trtKtjؗ*DՔo_Ai=|ilͿ7ff˫ʥG(=ױ-&8Y4Mӧk]ǹa3tABx/ȱ]%58 cŬȅR\B8Bʛ+scRbB˪A4˜t-KJBb}5,K#ϿT+ !RBj@P7k-m|:% u]mx@)!Rj fTV xj۶[u:==^,4\d34M04T VZnOm[0FU!euG'әUUEɓz-ֳbh1%xZ6eն"Mv;_zm3{ЏO߿Kvˋ,~Oɧ l A 86u{]\@EaEL$漳m;0 5A~ٳ{.M./8Ș"pK-ʪmjn<Dz߽{>f,ww-fyk8RX "EQQfQy0 ~E3|׽~9±m[FiM]q.$m]vġg(˿˫kv&e&~?wu]NucI(@Zm̱~d e0iEQmwl23dB6Yf3ӯ8i Z/~s5!BZ:gv  FUr\mfVUvJ!fJ \ݽZF) !,UEw1Mc6x8viZLI۵'<F/:P3)!^ێ+( 6ŕ] jr>8v{~Emx^U7aWUm[AVkƬdbۖ)Mʶxr pZ?z,KڶmR&ѣhtr9go=z%;m;޽kڮii]Q$R@[!`0|i7u}h8tWf@,kJhZכMԋ!:"ϴ¶m0]dIUEeil2QD0ʳ\kelxt^'fmyv]`ޣpx{ø'*UY7o ˛$IVAֶe;}}yy֭W/Džn=AS#4l7}u12k/1Ż]y^9B eN] (MM%ˆXڬ[.꺙vx.&R9an " iy*02˲5,o$u4Kf9HJIL*ɓlRƽ^^an.)96php*cB:AOӲ*5ĸgMn|~!NJimfYF1)iq9p&Ͽܼ6w˲8cUY0ƀ֘ʘ hPu/u4QMF㫫( Mcclٸ״ƘRjz s{>c|J4MONN޾}_v]qߟa>xRzzzf2u۶uj0eY<}E.(Ltm/e{N/ k[jױ47Dt2B WoEո(J+`M{]WWWAV+4uS>::{!HHBpŦɸu8??mۣ[~O'޿{w||< uݺA=z$=F("ެ\ǏpΧ`0X-o>}ZE3 /B899Z'DJi8(R)۶JVUmv'g(Y9fD; xp)ʪfI87]9^hu]'In( uܲ\/bm06nG=b}gͦ:}2_JkPUUUWlF5>\LE$w14M=3u]bƼnUUVjմMΜ!&hnoyJn{˕y6MfC@*/?kb)%P )PJQTw@J4yyz2Ks &dZH!fiF$s3|mk9)BzK]{ٳ9fQT 4˵yWu0,(,8Ob%(9_vv⦮z)$ϲ^?&EtR֪mj`8("'ϲl^8h0r!fYV?_@ o_ŚY-Mض(iڢٳg4Ɠp0Z.odASWGGGD)յbq#Z "IӬI4\ (0ܬ1.du\ȶ4s]_iEۮJF1NhuAݾw BS r=Y 5VZC` FU n*B0.K.9;; ҈AUU cq$y̺cL֫ hMz~UՌZJjs2Z0?(t!H(6e_Ƙj#d ֜MI׏sƘˤf2WESnhd~_ !5Ji3[_3YGB ,'NssuRJ1Jiy޶- !a?01!d|Gڐ%LI6hA8R۶}TUcloo/Ӊ1A ,J>bm^sl4smsTm[/Whܽ{W+y@*ѫW0ƫ8Ĺݻw>~< ^+$f,z}}mRWB0 .0 ϻN~-( s_.2BDZzK1}muf1M<ǭj^&{{op]ϲ,/JHHF\?<<ggg2`eu۶m4-(bq||LYn"ߥ$^yF5u٬toϵf8)Aks5Ђj6J~G/Um}_߿w ~?M^??zw]ueiAӴ8f<)O>ym?PR, xe6DscRkS8\Uudž\^`00ut] q]w@0uiJ)lvIrn(ͳ,Ͷ^ĥQnCh!C3JwYڶ0 IѴwm<,J{qL γԱmzOপڦZ,6͠?TJWe~ow?U$uw8}BgFo޾}֛ׯ~bq!mo6kJI4NTUuvvf(z}ս{ceijrJ+MӤY^U2+ۆ -J) .\%es.)!)}K LX'ed1& !VSU|?D;zc,/[=mەeFRzVu%sy3p?99i֜vi]1[L׿w|?trr0^/eѣx|\Apv~>LauIJӴ^gm{14BTi0&?WRdbmWMdE׻@(^׵!4 0WuGmbd4Bʽcŗ_,ǣìÃiwlDZ߿Z~׶t6޾yc޲m;ńғuocz!&2\ajԌ`۶m===}^oE>m2O4Z_^^x<6UeQg c "dٖJwI1EjTMdEu8Z˶̚ !aLJ!*z ΅-7-dF)LKRw'-xI6.ư%Ll6Äk@ɸK) ߧC(ʲ0wr,Il6z(&I]7qqql<ib]AШQ 5&4˜R8ʹeQ&8L !?WTYQu9ڱ-hBIʘeR JHQeK)lˆ 1Fis !VU%1jmxe5uc;cl&UJ=Bp7AV`@)I{qqA).ho>`oo`:NǏ,~tj:{Tٳ'Oxh4l믿mY֋/>yGzΝ;Ilꌱ C . v///!Dw=XTB)ì['|6?=}ݼ*c7d2Y-mSHN o]-"$OL QVY2ƪzya!ٶŅe}ߋОu54%F7˅:eu]:n4\\_OӶݻSBHvJ ɥ~.c9?}eكa{{`/lI_}!TW!ad&Vo-6Fm>}jv]ׅaش|M(J, C)DxKE j~l6[XE.q]m;"LҔZf]MŅif۵fy0fZ=3< e[Y!BsC2[(8> PPE4Ϟ=c.KuǏmn6]\\0Ʈ>\)u}}mܡRJc3R#njaVUm0zg3oOu\_O)bmRR0yahms]bZɶmՇ,988(ʪАYqľ8Ixl@îyuOƘ8Bfɮ+iI"JiUmj9͵ReIEߗJ;1jpqyz}u^.:^,T:𼦩2kڳ+f1ܬ{??5uyzϟ=k xm XSl:Mv;/ ((6az=۶<ϯh4Z,e풭UUB󃫫+qvi0.!?n`0RM3LApܵ]D\$Vu?^Qމ^XWo-2<˓dǻay7R ׫(+UUdya [*ꢮs iZuuqytt^^]VE^AXUY^Ej{Q,㏅jE!,"G!f\ס_]]A˜ L_z3Ny+)Ul6!9)rmPBi>9 :<< /0JiLpY̱!y^aTUf6iu})jM 'uh[$;vcmo߾=ϗD8 .ya0_^]\ ,W@Oz#O|ۺ˥A';cۮşxcP1/˿Zaڦ3>nv4;clnsu]QO JО֬MseYGO.21!D6gyV!L*Bۮiǵ@U)̳B( Xi4븖 Rq@4MS7*__<PmoqڶCq1*DZ! BJ0 ݮZ)k[Cޔm)m|6]*8:!@0z]Ν;ш`da G}d8fmfGGGmK)&TI)o߾sqqv|6Eq__TjM?'nۖ`,`!Xzf .9-yvmɭ[gѨ`d[`u[,n..7[O:A%@ݽsR,H#ڶe6)`eI]WMWSJW7*ʲ`rl˴{,k\f(q%Y6 Cq~h1޾}{8TUYF߶_h7˛?l2z4Xrt뙒pl7sC^]/&ә]Vu$#u$Iu ̧TAj Ūm7L!vSVaۢ(v{g䤢(Vu}yu8mqblw]Z'OqnBشr2Su]Wb4}{K6f~onO>cdMBdT _7+)$1[mw-眇a,sJ!`|1:uul۶0fYDu]sRFi6EC!ZȺ*1F~,}ϗRh&b`WS͗ KJV:T׵]z(SRe8;20P5Բm.jFJEqX(J#Xץmױ$,<_mx4R]y]=\y.wϾF8?d캞`l;oju~~~}};wF&M2vck~v~nސϟ?O zhEQahr\Ȧᄰv `!]i!YUUivGk+[-Zo6(-s5]q\h!1)( owVUUWJ$ˌ(_\A4|,3㣣#CqVG$ nmflbtF2rϸY,m*es9̳s=TvZiy5u \>>Nvwߛ}\Q,Iߛ%Á.vÎonBkZ ^JA)?ӳs0ThcJ&X,Lڶm!>ɓׯ_zj2l6sw1,Fރ{c4) mwB]qA)cRJo[u$UQbB?PRٖBBXq p0e a x2xC/gIZEeQ^H0a"NMc;7evYucz..7۝eYUUe x!J 5m;/.?x&PJKCHXw#bD EPUv~?&2rviVWuo,G* Pi3&~fpqLY6PHI-kOM\~o?i*N, ^N(V1JX{{{sow]7͊j0%B#(2Yee^msO)eevIk( q,ZsnG¸] b̌Rv8"s]oYl6;0F((VJ߶`6*!ĔAȅB6dr!b2RF~G=RZ[C Y6풇=DjaU5G'Apsx{jQ___c5'ONO.jKƞ:9կ~-,{iRLVY0 TmTy60 D\ .xvaN*˲7ܦiWG_˲כ RJyvv!t]wݚAqy_|e1Zv%.\^]^ l=0!뻮ԕmَPJ fr6yu|0. ˶cgV&гg>|ỷo/i-7AL&!]]__?˺L&͆w}qluf뙥au^W-b\f7-Wbj) RٶH(@24B$Q@'Y Fq!BI۶e- B'su_Io999>>6ۦiF_~i-i'A4II8o9H n-ˊ02L~~>M|>?Uz]6+\k`.Jj,Moݺ_PONNDYGCSSռm;IȬ ϿR)%b)!Ɩf`&<.B)mylQms almۊ{G)l6cT׵DfC hq!i; Ï?1cu8?,O?GV2;or,+%:ư!CDz8o 99 pꫯ 9$/n{t|txt"ho6w]7%®k' A}yqqzn>aڶR:]_]Y54%|*\3b>!t}Ȳ#*n߾y^UՓT> lr]vbVi0&l.SJ( (*!e^U!q)eu]eRBв,V[7~R5RaJvo_/$I9iA[w!D!R BTuqλVl6fWիWR۶a^$~-!ٳgeY.no߾5O;w1w޽u߿؏}yyiR(B|_zWU&Y)۶6=>vڬ9݄~0cy͍h]wLD$JZ.~a~x&,hȔRSX?b8N4?&BGQ]u]gX6Z)p]W%cQZqi@3!V!в,]!&M15&{uMlA\\\dgƹozL@'˲<Ϟ?4(1u,sϱA[cDz)F.CR0f1FR!ײ 7ezmPJ |7I,o4Mׯ_@۶sxrulkDgmMytt@k`\wonv>{~;v^zGRo~;wA1,JYS5#vWN?u ,oFRj$(BrUz1 kY04(ba|rrn߾ 9|覩mf5MC0n!\̦0!a Qv][Uq#1mӘOm///'b K<ό0e];Ltb|5!G5Ir[~֮EHYZ >}=Kfچqy䰧5{.T%Sg׾}yL=2b?8<8 v{/~_o7C޶ϟ=s=g^oVm"V*$/GbNjEQ^X|Ԓ2Zv4 8B(#J,A˻ݣǏm\כu0P)zAYVZ`Z7mN{YeUB>}e9!y6q_\\z<˗f!q(ɋi׿e`+s(/4vđ{` |ܿs֕|0`8y^6M;-?uVpf,^~v Nz?ZoևRM/Wk .bm㸯_fIE]7@l(麮ȳ8 NFQh5JEX{A^I>@@1E۴iuWBȪjD,c.ϣ8XVOD]7]=xA.SŃz~0mǘc%N…,#`YϏwݣGF|>?~8 6Mv~CUUe=B!d8$1(0I<y!1BaZe Ð<ϳ,NB UU[ل]Dq_w]'lxڶ`f<Ҷ.mgVn{uRY9/(pY1f۶Oi ڶj<;?|,ryzvo\vkmx<]&(rEgY8EE<ZDljolf?6γ~,z}޽n,&ז 9}/fcY;^Z붱 qS7YZfIm!㪩0EYOh~9眹RJtaVnZbt)EQ ioccrεT.ߟgkufL0Z^SUl6gu]3J1B0ϲll>;<< 4I^仌98=o %ey'0wz99>Zi-Jʮsl><8}\icryyu-p\_&I"UgJuUoQ)uտ<~꺪y `\^^VMg ѕeXҤi. zRJ0uYIBݝn P[P7bNWB?"ϟC!Dwj(4Ҫ;!~!x~y+Vx4F`${m:.J2JVMIR%qjb{{TcNvy^0!iP EF,_Ñ Bɲx,Bac"1+z㺮:1*I0n` ȋ*f1my׶ <&{4Vb1^^:!5p\/I{Em[7퓧ϕֶRZ[p m^VeyLj)E_\/}1ÇNTMJT2!d׉xupp8-+p]5eY((q,r<==T]v|H)-`#m"ƣÇ7[%#Bh4"*ӏK)8RڦLcjF7uӶ-cs맱?žYVfpZh4TuØ}+92BWd+ }",R"1ƋŢ:u,k^VUl6"m_6땔PJv-`(!aa0F;If(c},l6[~' $/կ~%w]^^qmf}BLS󪪺FY1tBN{4Mhw*)F$|p8:.nuC0A\T'7V"4Of۷o]׵G,eӧv< ݶ{w|xu>PRdyFuQUufyﯖt7ɓ'Q9Y3Qt~~asꄸwї_~3K|R3͛x"-auUa+Ji]'l9J򢰦m[N˲< CZjMõK kC)e'vm&jjnviǘ9G cUU^]][T!a8;!,K!D0gϞ1ƞ>}`K$Inojoo/->BKU1ƮtE踖i.[&ŋZJ^y[О ɲ1ln0&N)4MVMXLn e?sۀY1mD1H4u{JDn갺m<߇R0Bru,7<}lʤT]'0J@ p6Rj?-e3KzJE: v_׵] #!"JI %uXs(\FJ 1)EVdQN&ê.F~y2Fcd'\ǵgM])) DmwHH{ڶy>\+/ݻw_|KI'K^7Ȋ 8ˋAu]x ]_v[ Nbu˥%UZM$޶<ˋ^7ooo8Nz+Z;뺓rX #)^oNj[KFlm6 xa9@#TJ |GR,(#0@5X9hFIܴjqm0F~_BJ Hin4RGSٽI#2deqh 1_̅s¦ F]F(u\`ꦩ2aZceUCBH86zPZJ[uReU*-j1ɤ<"`R1?uFQd=z{e0\]]y'B$IEJ{tt_o6?8s-\Jytt;xftu]vTUl6EP]5bvxYz vSR(;}BQhOvsal/>`R6hwN0BZc!uZ^!ֺ*+{X٘m !:N&{b1AX!8L>[`08999ȲvA0 ;:<|M{n{Lv|2 x9٬>!}tX/,`0~o ^oZEQd mR*8}[ڼ`vxq?l -b6@cR е7AʨB`e&B,{ RIa2긎hauvs{ UEr][bY,fq |ё7ARF{Cm]X(!D/lZ.Z7/Vk@4u㝠M&|6M{(a%Y 0՚16_,$q\( +ƚo??JoZ?x!GYCB!Z-Id+`V>9 iW.:VU!0 _H)10Jm; !(D֌іs;`l|@)Bkm~֢ԵMei[`mK)u<ڭ.:cuO>d0!&y'~)s\!Ϟ=;>:J2B)h2Ƕ^ vu=4r^?2LFJ骬=߭ʺij pRzww$ ]yU9R-N$SZu\.Ӥf+]m&Jje0e,Bh8f6^a4q8_NNNDZ`0OUU-RO&{P_u@J9N1"n mYyv;<<ڂ0Ʈq\%@+sV޾}:Lm漍b8ɛ7=ǛgJCNeYLozcet&]\׫͏^y~\ʪE1uSQĩ1u=b ObJh4޿wZ`0(&IG_nh&1GH1ѣǼn~vEa4ᄉPZi\.ˏcmz=۶m'GvGaUJ8N\}~vvOt暷"(ͫW={.D7j<*mv?RJ#oo xy;)BHu}}>Banv#R1 Jml9(.|B6T ;ʜϟhGQX- By^HӉ*4}haDHF#{WW Ɯ0:llcUUQL ZA _J ك঩l9YӴ$)a$x>p<ͷ_OSXqo޼m1|m۳{TNJ9B?t:<2!}2CRZ8yZEq\UU'1{EzM^<!y1cnD!D`( @1;q8Y,-y*-SJAHD)m[}s b >Їv-ad2qb*''6 ǶT9ab],+n۫ qrm6|_V96"!TAgm[ѣG6*u?_}뺃@aj[^yg3rPP-ym(_xqqqyu]_|-aB@hM))9 )(c1TH)P6FHB &D(I A5m~(JvG1 ެ1!ymݪJXmDaqGQUWT-M Gc.˕.s~_|( aAv 1Zo&A)h@ m6nFi*:!]vbb h^u\\^^/ۏ?zUSaVJM{߼'cιww]q!BJUe~/٬Wn$}Aٳ'yp Rey~xxn< Io9^իpef c@Auc'A?˲01qI)WJb2eiͳm6TeY,f v4?aק?⮯8eciVuUc?x`aTյ:UUƓ,FyYL8UUAж1Z.N0BBi(UJ)cxWT8/K8v$I9 BXV5BB;:UU-R6 B pnīfʪj*cmm~UQ.//oJci;>>VZi6 Ca[]Fo~SfZJ蒮 z=Jzfm~h4R&IS/xfۻhFQԶU9khg~_hm)k7u(~8*Ѿ5? paD4 PSs0ƣ$v 躮Ҧc"PZPynYVAcd=:Zah42cȫzX)@4L At:' ,k* C(Btͻ{PJN\[sm`XDI*nTumo&r'qx\ެS񦩻{;˲"meq,l7υM#dG6j4QB_z=8)U!֗Wg(Z$IPR+޽{Z(l6i:h]JiZLYsXUuRQ| ( #1¤mݒs]qzMm;Bh$eY2JBRZt@i[!(ʢ(uDZ몦iO0,ڶE8M;Ŵfb(srrbp!REQ]WZ/>ZV;G0A&<뺶 J46)&~8O!/=Y,_.W67MӶUUg}" ] ZbVueEYvsPW5#0j<7@YQ9n':xaqG QWESR(FXtJ//ﺌq:)Wwv B Yo5eUQviQYoۦJɮ;9:jc4sA=#s"l'1z\dE._|1R6/&n޽oj޶vٶM ܬlNƾ+%n !dE'`8FV(NDyQu~]7њb훓c RvozTݻruwơVJk3ͼ074滛ۻޠ_55`4q]!dV0"W5G6FhaTy˫GrۜC0vv7I4&(^7w?nZ {v>:>朗uEDAT_W;O>4wJ ˺0בL{9嗗w=jqPtjyA0-*KBp?+5h: viû(N1R QF(6XJ$8<8Y.B*}#X}˔0uS3Bl]qas{$âr\T:wim;>>ˋ޽{Slu^db0Gq\ڄbfUUjm}ooom[E!iڶRn۶/~yY*-lwoVu]I)X+V)y}~sw[KAdGŜ|~6hC`OJ QF1\)!Ě0FC+~NJe'5ZkFi'@H{i"DBF! !㨩xt{{khλwg4eYZ*5Fh0%iPJ^n &IbJ| ) &#Bh82 IV2:R uuYDžmmW? 4pXiOssw7?f޼yhq'.yS7軻^?o>SJjE1j<'{R)%uX7繌0 ښޅu??1''eQ78::`p2C8I0,(JiFY^-+!e,S1oB|ˣ$nbT5BXh\a"1DQ~xo/^|$\.fi/ B|/~AןN[3麮K=e>uB0\o(c bqvn{nɴ֋-^ bEpRV2u\Ͳ&t19Y7Q4 Zk9Z(0`7Nyyji[ Y f6F`ԞS|'yyQD'߻n^f +Rɉ( DMUՖ\.mbUUc(0( ɲmt^o9Ƙ{٬Ҟu5NY=фlw9cb(cZ+ PFu]mpw)(Z=/ &d8Klv&)u(I6=zFI]7? <ϳ7,zX,_-s\uD_CY@+۶m煡61JBc]5-^zc:I{`LRm{yyn 6g1=88ȲLp]ˊ<#)$q1믿voo*++CKj1wb~xx0mi]}c1yÏ77W7yyEû( PeV,+DJ벬ҘBfl.lNtЪm2ay57MTZFq9qRJ@t]9E!]ZBv6PzzF<*cjref,K)eu$iO)ZzכuQZl6BB'|駟~joo_Ji%tXC!?|(򪪎|>}󼛛O>͛76N*,2mǂ֜ocYcA "'"1ƻ]f#Jkի}m:)Bagġk*`d ^u]Ly[=ь1s|ߧ!°k4!RJ5#Ҋn;l/`pu}cGVqk]Ƙ ƀviE~o>{벴f-6[-EQ(`L#ARJk`H4M۶f<0L'kBh׉l /2XD`GQ&Jڔ0@v; 0PBl6[n륩ݪby;ájڦw zt?``k ;~E]]`²<6bAMr)!do0H~Eu8~"蚺u]q0( 7Wiz)`26_,V%84V84M't( AWzLf4!n-i8&Dm 8?R̗,-lwͪ, !].:v܏m/>Bt]u""m޽{Jrq}뺱O>iba'xl֟4Mgvn٪ f$d2guXpOӦinoo<ϳk)5fX8=FlԴ뷳iO-0S?.ˋ ?0qR>Q0B;aq;c RkG>BC00J|׫ʺ4cq}߯]Ɯ0 F1oErBwo߾ʼ~ւY+m BP18IRs VeI)buUR N0d APv:@ɎRy')u=Ѧȋr?y0^8O(޾}-N˛P0NTG.^ ZMl[aázoeyzm)̡B$=u]'MSax|zʲG1D`Ap|tr~uEauG1&4,/VUviX(}?bkۯ]]!J#\3uC<)-&Q]WM]֫4N Jz0:?믿|GQ/Ņ:WplhUU`p{{Ex<ɲ|9rM߽{||!r=6M{?;]~uM0ey!ƴ-O$˲(̋2nwH0Dw}w3?<>"R; @h D,VKMw??%I6lQv h-?b񇤟___U󥝣ESk l6OZBFq:ރ8/:l`y^c3& wefn22٢ieIe5~FqLPAfXˏ7`&Vl༳PێځBc鄐 lC[U]~y5a[=&xL em!8D;v㜯k:UUۑ"A@)ˊ*cL'D4RzI>|xr|26Rp$F~(yeE!TRn=ϿziJ fy>-Vp^[j>GQTnO<ÌYH,˂0TJy!ya3:nG=7AGqTem~IY#c֪(x\UYwGO͗)8ny7Lu]4em%k„<c^-B@J)#4vN$ M]"12qW}GiqxxANӳ|n=4͋sI4֬zwwW׵'''  nm(|ˋ2ϳi8i4PKT*EaӶu8(YVyaaD40RIމmvF#)J ,:#c.u<_y%:wwwQR8?X,uӼ|͛7j.,H)JtjUfAp(,KBۣ(oRz}}m'Pj?ڶ=??Yeo߾UUUUUal.!B=؟i͍-<DŽqX,r= Dr([L1l[m=Od'0D6=Rʪ(Rm@T 65cL():>>[vo):9m@(l604yr!s8JJaR*E qQPJ5 1Aܳ,˓^}Jt,#@`;#rJaDZֺ]㪬?~} M_: 8@Ɯ|o,777v"tyyy||lu~E LCURXɂͩ8[PJ%s!$ csF#d<u|XyX(ec`8N:;8y| Izy|vPj`L:%ʺZE\Pm'$MR2!$b(4m[:몪?i:NE^m2-M7 F*+p$IY&&: ZxX,6M]O.-E1xrm8}cmQ!iZ;Bm:;;M%@<ڹ{$ tZM׳`dO[xY>c2߆Ub"\ǵ+=}i2h;m-g֫Q:Zk`Z1ݻwBHYB]]WuYm6Nu"Mr^mkM6.~Q>a7עM]J)<󌷍Vsъbyġ]Ryh#:nvke]`zTkŻiiQ`dVYx8綫ʺiZ[Bfaerfm'IpcXT&%:M⯿j:@|+;Hq#vvO)? د:9v@ڟ2Z9E? |h0@4M=oBۺo0y>fC(G[M&u<+>s>x GU54e8y*G~ Ǯ u7Z#`mGUUU?1y׻v"+7+aڸq]' bRʸ+Z7|Ѷd2cBV*|s]/ms}}$nFc p<1gy\7,++tV^oM0ƤM3[RJ(Z+hbϔ2F0%%H7o;;="!I|o)GQ!$2^ף7}ga:M*ѽ^:\Z $I517I<+Ku4+E8'*B+ Bim (cBdt{wǥ*2+(Jq#k`&\2LIUUAH)RJ%1(J)%Di{V : eQ*_O޻w~o2ƬRq7oތc{Ss΅x_=99Fvh1FJ˲<99z4aq۶Fbx=lY˶bۣa(#),KtZޫW,qBxvvF)]RʳK[ك2P㺔./NL빌2˵i;eTa1FKIb: qJϭ1v|rE^Ewm7$I=zaY6 /A\.|>bḞjhe_B0.//V"ϲFtmʎ3JVA෼S$q1BqHm6I]sߦOa^ <4&vk ʦd^A n:ݯc˲0nFI(IUQ5MK&Vj2;m7߄a]^^>}򸪪|fu\o4E9}sttZҎ֛(0Ji]Wà16uc=ׁEajeSWʪFMumGMyv*%Q[U$I7͗_}_(^eiڣ5Myd:6L nG/>i(75UMȋ|0%idiZ|6m 7wq]Xګbܶ-]ӶA!Dm!D fXDaq1sBi]7!.,GEqbZCʲ8匱wEQn4tgBMuqi-E,~υ(^onޟ ^zn;hNth !CGl6zvg?0N-7 !ԆQzVJiݻw@pۍǣm}?sZnG@YYzA`0޽rf U'k>[maNB]s| DR"F)%R 8̲zPRmuSzNTJ9-ne^ !,Ns~}sc]f6"Ix84l69)\,F+lsQ*40JxAx*mQ A~QggvҲ`Ю cna]הR 9ku=#3e۷Bqd|dm9/,u>xX;looo1AaiY5EY֭]@cY pbiP,X6 B7 U7$IDQYdZ-:b2y`!d1ƖsephWm1UzcnK K۪m`M1Rtz~qqvvf(I<@h4hN)1B[ sN(Uݤi/ϋ0=!do16ܻwhڮz9Ucm,c8DSu)޽Lb[)ղRJG}dWO>}d2MZT1_^R:1\HBR !B)J0Baj쏆JYvybLjclR֦kL뺌Һ)8Sc?~|~~DmFhx}}{^Q-AwR(눮cveDa*uXSiGQ( h i?S6uuBJ SIӞ*M{|4GA[1FlwB΅R*֛Mf :>:qw ߿?wvٱ4ZF)e؟?=:#u0 mڀh|{7zGJiJr~',_VgHkv#L)mBRi2&BJh<Beu0|q1(eYbqt/muUʲOu4mݴmr8F^͛w9BHs!&IQAs)eQ\\_-gim$l7GG*!ʨjBmAUv=? 0dv1⦮5-emwF,˥}?cs1AAK)1!R"ƔJf$z^YVX, yQ^g%;rky ۴TёX}x<6 c4xoolm?'pU՛͖RfYmmUU^2I|h4B":]qlU]yEQ4eUz=aM&T$z^ml6lءzƟ B!z&/|C³-RIRk[Ƙd2i~F+{fB 6u82XUJic,{-Ftlŋei12 dh4ZׁftR%t*ۋf6uYbg(ob]׳k+ p I,u3M0M>x4M8,N6 m-q\鳪}Lݝzo޼F?X/繶{]_\B)MaX׵4J뺷oA`.ʲNJ˫0Dl8ijp-Âᤔ߷|0s낶bEa,jѾ۵֚P 1Cۉs\x `aLR”)v]ǂmOaSaTNICB{qbdW.=zq.ZJC=߷˛kB:^\ǣb2ljR铮u᠏FS Emq%: v\a0mFU~ u R]L.SJ̭JvM|]EQF4T0jܻ!{}E$&qLMS//_O/^8==~VX,:9t{{Fq)cQZ)ٽT۶–myQB6<ϋ U]A6u`RQbjj<$ `q] eATeMJG((r !lv2ӟlmxEG!du~V(eҴ`0\dYIp4 eT}~qA) Fmf3$)r6[PlQ _J Dar73@F eoۦmeɓ'׿( 0Ȧj%`YK4Y}>nC1ffkJm˲!=z0X{;kÁeum?b;;;[-ׄ`v;3lť  |,˻~~~N)_VVeN-0?xXI%:A0AٳFJI ]GǑRRj\cl GRvRJ*i69#1@J5p7KBH/Nv-c36zƈ byxxGqqkf9>>lB|w{{ttkqwwvpp0ͳ,}n-yBzvnh˴?oJx-~ )oy;m8QJ 6 LUJWMm5~RJM۶ )H3B6:o46u>2 EPelZi>&d6oݝTjK6\!"7ejZWϟ?ӟTW%߿Vclql"v\$q2 y{ij9Zv#Z Bw2" t]1@&/srhUѤNʴ7hZEq O>)D3r] c q'qPFKB cQZuQ(÷ALJ~xyye t PfR7]K A_ [Bq֑ˤߧ1e ~*A|U]Ql{2$5&jm=?UuXYU]>G2CLw?(߽{u â^ ,B(p=?/8Q( s??ƀ1BTq!m!Ē? !4u6VmL)˶;ÔUU#C14HZy!m튢Ɣa渫*⺮童8aX'zu]Yш2CVUjœ,S0<=>{Ia "$"AC(:C!B#J> 꺎PJ f#{|[M qܦn1#KhD(׽ WzγbD(=Bi !IDt|0|<{䱔z8Hs˺TjӶ:\ʺmB`f7m8BvrnWK )-m[BPvֹUEQ#)5c{6σ(9 )8c$2YK)x9l6EQk}l6a䟟3FUF]kya۶@1n #d2ʪ|YEq㫫g_v2* GIoy1JUn!D7 )Fzmڮj\<\!/.&a; Q, 8J0 K)^jfBX-ƈKڬ}_-Wv< $I9ֽW_aGaΣGVkujJt* BGֱdJ)KBh/rR*%yaR96*Ij׸{{{Rkt(tZeEvo_if h`sv\?O4=88X̗{=ƟRIaUA!ENm6(l \ca*)m=cc{40Vժ̋z i\#BH"lB(2u|ϓBH!MS5UM(bb.Bh:ʦiw L<[1Y'0& BndYDvR60ƂH+Xm_3ò6l6>|AB>|x{{gim6h4u;"n, n0YaL X.޽3FctO>'uZ,(>h]5@g0g IAۮ6i-%"G!Fj;yTm"<鏖jz|>GrqY׾iNG@}mTUibx9cDvQ\ ZAy!r]džXy*8o-bz=k,c^۟LYQWxuӸi&)RmFo%F DP.{^/)!9.1¨TQNJ jeUUy'6˴2uNVMSnA(3\LPS;ߜM!0jٹ%@X׵6\b-JB} BPpKMB `(q&j;Q:7u=$S~Q?#h[TU0Q׫Bebrγ,HX,뺦UUub\j0npUUf=6l)s>L1+ c oGGz|~vvO "{k4/ Ã^_~]U5[j-4M-XۍjZ.UUY-L&~!I۪(Z,֑^}ߟ?cmZHfcU@?~mmPR h`ֽ~<F;):빁xhm@Zs\u]0Fk%* :!q+!L8pP>(p^e)W_z=u+B]hz=jcc !$v]5UuF0BecBcc(QkЫJmӺuQV"J=fdZR8l(vm;L0!ZkƀbxXVDn`!jZViZ٩h41%J+JIgqc<2B\E饽<υz:ر(0bLHI3IPe!"m'ĝЭ9eUwBBBIsҺny.iɧǣrQQ o0Nk  %y?ûa&˥M o٬Cg$I"10HtY xATB <7PR;!ﻎl)uFQ$a^A, sm˕wx|ů~+v/~^z$ })%1F`Ҵ׶m4w3x*$͋0\׳Y^v]11fyj/ld$43lmi#|ǘثc~YY۶iZ.KZ9m] u]y.%hZH);)8&-/˲+I=``vYjʲM)S3{ &I(8R Npuuoǡ`KF u]R &[9p0Ru]mF7nscͦk!+n6 i[o7aٌFm^1J)F\9ӟ۶]w۷YYUUƒqNr(! `B1#M cc $STJRAUyot[Zø<{9'k6ϓ$IF{N982lhr?BDMB*KmUS7:P=US59ce2cfDbWuēcS;/>Xޭ0&iV헃62NeJ1,8U]_\\q 0`lIh6E]11&@'j躎`Z()nDk89w݀1ye{!$6cUC244(J&9|w]WpPRr>8~bY$O< a|i<g޺J*˲Y*T~:E~w8==.\u]*VUUUO<)b?OS\ !FZ몪Wyyx~駯ZY_|o~jŋu]gɤkaȟO?,IXV AHcbZ{uu%RJ!dPZ%-i/B&Y   kw`DӴJiJHEZ8RZk1Qa %JL8FeYƨ5O5 MyIOΤ˿kI)?d2&lk׿r\,&^l7LzNb#& `$Y $j!yqΌqcAS i %ι4˼~2`HeбiR%Bm,˓$GB)1"P: RYy4wwj=MJa眐R!YiGyl{)nV)9B$I6I/+&ԃ!ibQe` \yfC)̦ڔR}o_\\<}$_l?6WU4w/B@)]׵!d2i#' ,Ճa:,x1Ln<}x$C1ʴ"(#ڮi(;V*MS1f6ZkTRJp[kvhvM[1#)ޛ,I,-cLr]\\+C RQm"SZ4! R*C1??0jIFqNS缇 v4Ɓ6?9ˊ|6M&~=0fi>mr!el\fYH98<_.x<m?wBü~l֛Rx`JJB>+G޾k4N?C!O7(v:P]ס( ʯu0{ aBk% ރpe!)n{7C%m4MNO<6uVlj8{C)N\Mje9&8_,A@Ę~qTiKm=FzGL*'YK&.N|Ģy0JJ)8rGc,:o}yr46MSg:WxƌGG./#q>t]'!\'9OO>c < !v fB-C`tnڻHUՐ7xvv /|8Vp&~o> _ҙ8FPdѶM&hTGl>cpE2$Y_כ^.zӯ|+OVWM(qX.97 6ɧ~NgRW6Mf[kzwwX[7MwpL&EQP>c cׯ^z4ZXb`k\):#Rܪ¯z?XR*,´"ݏ~ VH4iՄg{G12]!x~rG|1.2d:Lk]_kciio|ŋ$!C߅>8cR?==}4xtC.4MS7M4BP<_.iH)4Ùt(< nGye!OV$6P^x$//0P~1[|gι[A1zE.4#ڶ50xcs·_,bg."%ƈ d49?;mwt^ǜI9l:z5R,K0AZ!$tCgYZnhA awƘ$MFq$@*I0!W|F JbN F0Nd2B{Eakd<=99٬7}B4D!,+v딵UNfCceh~Ƶh{ ogZ+u㛛$NwO>yYaFf=VY諸}W5~3ۦ$@D]o7Iyxp5MrNT) QW1mVtZ#Lڶ}N(/ `a/dY2IqCeYv{clv46d2%fYn j>ŋ~ի~ ,Qs?3|7_)Gzc8h圗e%#!d\c<m#˲te{ً/>䓰jַ|{^B4M^|˳4sVkUMH`0mBsaruy9L&}km!$Ihn4 Qqn0hB!ڬW_[iuX}O0!0Ix,?,ZHg$͊Ykq1t?c!j0L&pz!8M0 #R"HH*eBL'>RbXn%@Dy<wY9#_aHd:M1Vk$æ#"/v!X)E`2!AR Y C&Z}򥳺9 uj-d"Ҷm{Wue%g0a Q%ɈSf~X`LO8&I5ѨmSe۶e9*QU]UM}y ˲`=`Da)cB,r.1is뜔Cde{¯8!}DbaL8@ǗW{,R1VM$OիW??G_tZwpZI%0tgYQ2!KJqfj<kmu]fۅc1b^P6}PzSDQW ]r50[FeѨL4,yC*ڮ c1ij)t:>lֹFzu~ZM!n6\ջfQRV|ֶhT6MC0b灔0L&Q!F9ћoӺ::"???&ǃ6KSz3իBLa^ssx<&xd2&m qqzI%I"Ű泱5J Yg$Mm8g@"SL CMQ1gU]!„2yI_.=9kMUDql{u}͢,˷zɣֺPG/^d,L]WuUFqw]E(eey'޻p$Iruy'sh鬅fYn% CeYx蝳<vAzey1ڬ7agіRYJw 2p e:-(JҘa88J kx`DAǾ=ZWu40BAQ<@ǪH*ݶ-"t4ʱU?&x<O^4N(ƘQzDQ,.D!u}}1ݶ|4R&wwwFGpu0؇~_nۖ1 4S|_~nY\L_k++|1歷o$Ir8y着24GmdY!qԶo'`gYC$R(R)a e6a3:L,SL~|a,&Y/gƘy2!F@LH)C$B*kc4ch8LgZv0d2޿!8Jx8`<u!8 jL(malQF!,e9 /JuYd}^^\l6|sd4iCtTT">m9gZkl]}9VM}?c?Jr9M#(GeQdy>΢(_k̓'O*MVUvt2qumxN=wNkT#o@;]s7xus?y${,u]K Lu"Z;XXg~4 4f_׵AKDGi^\V]ft}gRN=@ oDu}Wr6ζ]ڬr{n) K4{{o{)QxY!Ҽl0ƜPw^clu)E7Pw x@&N|SՔm4ȳhA k7M}4lo"N"B1D"45D:H)a4|jZP0I GQ{Q 4RDqH~5Dzhj&MJ xxZ7s.ϋl>Ode㇏4_h4NsP]8=?{VwlfF.{/ZJ%y;o!=L'R$Y^!"Ƙ4˂c! A%ֺȬ5ag(N"qF 201m2ƌżdv1-FEɃgg$US[%aFqXBCml/m@T5 dZAh|\qL('Gqj#Y<Wt^^ !~^^=@&㻻qRݮ4/hCEE#1qEJIv>|(g,*VjM)oAdbߏci٩qCgi^d<EUR'a%#Rap8:ں|TeE ƴ .ˑjZ!/u@(=mÈJc7[L}4=gpXO#=LrvP@Dh$Fk2? FXJѣcoZ!go}yWвѸ<9=OFI`"Ճ^i鼵uOG? t)!}7P5C99༳ֱ:}ލ'#-B@{{H! gyQ9$J Ј..g[c7|h E=IY9?=;w~⫈!F)``6M.jcCEQH)}&1OS${q]UsUH9ty_yǣeY^\\Jӓm41ڶ9'4mxWݝB f<)"u>rE0A BRQR<4bLn-zJx<z腈mV2Ib@&9M}4ʨ48CDZ5ZzCw!}/~FMcVut8_WՃm\H;I9!YkzY,N8uulc)_glu]#4D @XP:N^̧!Q}@0AqG9t}8*'Gri]7_\\en.Iscc!GOvC4BTn]Dsjͣ!!\O eU՞]ӶM7 B x<.FS%Y#E9k BigXR:M?z0fa<[Z*%EлA @F1_]]65kn0F̦i29zJCEQ$I(xGɓ'ϟi1Ac}x2ͦ"+CQqn蕔m#4E Iw=wko);МOכUq?sIJ*!r@F}MAL$1E7M3N UژJ<6Mc8z֖)%8h;r;tۅG=z!GndRK%>q) t:Ig9AE\ FcL9m:ʺi҄8)#]V4ӮkB!BI]7''c d^3=(q h*8<~0L~Gh!#iv`,u8ÔbD@u0ff  !'j>==3ʴVh9g)"lfm꺪v4Z=~89ggg"H}< PB,o(J!TG~' )C+ɒ,˝}{ژ,+ymBG0PJCߵ~ #L<<0QY$ͪVpqAA*Xw~`, MA9cp@0#~ ^MgQY mC?#B$~xyמ<[oWŏNo?'oY9cN1xF_F2QRթg Ifg4"{ĠqbD1fձ0JL'nIR՟ju}x4Fk m4_EftBlbŐBݎA|Afs }o8眵sA@K)9c.O B.wt]GYjJ)gQ0}8€ K4m&pBubSd(ŎX)ZaPZ^8(kpXc]k."l.@(VZ;ujeb (ڂ[7O4Z+$'iZB8~󹳞1JZ[m5.aTҐ)iE2ixD~~r66Y{$ JIkm/Tt yx J2ƅ'gBʦm۶m4MBhf]qbT(鼯۾i{TFHٴ0Ia7:֔8N ,7 e,.+Z1;6^ֽK'x Y2%Bۛm0!fӹD3KeI|զzx9M3Vhjg bqեDp0o,M1G>~q^^ne}rv~VL7?@QxxbvW~~ߨOkp4gI8|[_\=y[Mg³n6237^jŃ#me,.y^](,mBi  '(.򔐱sx X+u*5z*<7 ?B|E`0+E B0D@x_D!(x@Aj목Z)E) @Q0i>%AʤTX$>MRc48I!x:6bJY00Q& !d2$iB(B’$BƓi$A zU\d|g&Oސ4_1_M_Dwyֺ|q*AgtWbA(/_ûj+?ks˯8gw뽤wzUW7ìv~rWNj@/N<>;owozX޸%׿Ū^lOo+Ƥ0t'-6OnQPZ ttS<7dOdcSg(>[h{=OArT*M9Qꜻ/ݬ>t !.|ߞO.0s$Vk0~ !\,f_.(}ss3_LǣK#q' _uF!E1 }Oh:afϾx޻JsןfOz置<w pr^"DcnpaL,R/W^}_yOɚbI#5J2OUqZ8 `??*GQFSJx:.˲(0ƿ W @x@h<|RW뫶zo={Xv%EpR1!@3MwpX,YѯV+93 ?Y#@(w"x3cZ8Q!,1BhPxz8.//JfY.os`1DۼBXq}'IZy%4Ci5p <9vwq [UcLTJ;yҺA2OzFEiѶ=N%%uZTe$xDD1ֆ< ÏKC&9~E*MSeM{48O&BY*P6xb#A#o 4C[Ջ\o_ 1 %?{ց?߾_el$J|??O[ksV4IJi9x,p: `]3P3{_e]h7,4x6/Çf9==fJɓE1LCvڦkqGB= C$*X۴micJ}Gq V y<"JB ,WGcjcM(N^u)š&;k16ic;1۶{JDJ/@:|?|/g?~׿^4TuDTrsz((Ia[9F<#i%{Z罖  zbgR}9 $#<؁A2ԱAi/2Q/ƃM. R2KmA1DT 2ieOF8;;(uT\Y)4ul|P|0)ʡ2?'o~wG\-;St__/|kgFku׵0 0ǣ0 M])v1uÀ qha|Yai?YXvɗ?C_ &1׾G՘ױot~o?Go߹[_oן6Iz#iCC#`CR / Bsy끇0/5ax(7mz(0[";@ZxkFz <Ԁ`06?Olv+i?+ᯬnYC ݌ޭ$1ʲL+UE{%dPYīolp80B1 QuM`=MZ8f? _,r.!j(:y^RQ^t]G<˲monn7I2!;Q,mz2yVu,h~4*Ntfbq̓t8$I9!mGvm;#v<S {vf6zGydq9"&Rwvvj:}ߗEq{{=Noa< ?rYnQB8K۾e1>|V @:^__Ř1:1?xÔTV@l6m1ƤRI X\Ebd~L&G˿?VGw ܟ7??o[ "W?O~ 7~?O~O}~ k 8w/o΃k gvǿ?GKp߀,_%5"d!4q)e,r3()t#O 3󢐃bX#blF@(Or-GZ^;A<m  ʜy' Kkh(A;(bҘc+j>.^_33jl#ٳ[[b8Ddk%L(zw1 Y/E9d L t4qlZSBh Cc@(r9Xupg"9秧^ ?$4M{իWwwwx?LP4\.FR1Ryh!CF#e|*>C1VLa:k-_x> C$IXB1*nX,N1&9GITZkF|\9eQYG㢫>&qiv2Yhyw;뺞 1Y pC&Iblv)@tb v͐&yߋb8R !Rj뭵ֻdr8T_׾oGQn1t"tOJDk4mQڸ$Ino///4M1ZE SR+ZJy??;;l|~Oo˿G?/ O7K:|3._݀"=.ooQ}?xt3уǟ_/FqޛiJxٴh?=PN6d4t%F#B @ ,PހAJq֎1\{S!`RJV$f*Ncma0Pk뽍"Cz ǠxbZlN<8YHWɿuFmv?g̟o.CeV^S{/}!RGG}Կo61y罷ƤiR GιN,qv;aQfDZ (1#u9X48YeYŋ}!(T,0caz cW= !z1@ٌ3XhOsJ;! 8NOl[[O>~筷(zB!scsn:;$o&sb!<z0tYugea9 ?bPUӎʉtXzЮ׳9$o[[oGM㻻n?FQ2(:ȃBinYg9P)uV+-qY4M9eIBmyMGDY핖4i:ksw=T0/SJ5M69{hT8nnnbEQ7HaVJ))UFq/A+˲zfցryvv1 CtBxBqh4ۦ:1b!<;{ǻgד~ F{aÃ$.gcɤ@:cV0L: uJ3n$k*PkmD,ݶg)Rn1h&^Jym}TQ*譁VǠ9eaZ#B$X `hPau$J;Ġ|2@RI9rL9H o'~*IР@DE^3!NB\M}Zkݏ1gιCYӠ VE^U.֥i퐴!4/.//o'1&p&C7]aIA:Jо=E FI_Iv9y@t]'a6ևɢ:Fe~8Nf3x\:$tM[nhYmB7"%DPy4JB<[."=En,qNwmų9'Z o)c:B_vG,8ų/NNNŒF&P10d!zU2y^]߭68̓m^ P+m,.m[g,#B(|"Ocl:k":Sh/:5*=Dyn{piLQE9Bnˇʚ(š-,K):Rr,tPCh͋m[)x<E!Դ1&ăw-^n4\Psu:I){s{X}zSt QQ!0CQ Hr#`!PH"kQ %= ` y;@)@TGGZۀ`A@ ce`9 @k9p~h tsہ!_:!8T@ Pv Fз`wO8(eFA1m@aJ#p܂ YH #رq@Fz HJc1@ pZ}y5 y3 11{O)T8ԃsϟ___iϟQZk\.p}}Ѩ Q/K'ǶQի<ϓ8DG)iBOo^x|q~J Z~ %<\quB')1G{gL$VJaʋTi4BxK ) ",궱/nB?K;h Bc)gu]gF.+jbPZv ѣqFaIWTxȧz3EQ0F0ƃ1J`5icM ; $G8OjS#ym,t]m?>'8{numҨ(uV\è}:jñYiUGuwUU&|,%xf>lWw,v{H!p_==&77g 8h]KaJ B`f8)i8dVjZ82j*pFy<f'Lk.N/f1u j5"DF=DY2Q$\ ?vpLVe/sƂX..$lP08 B1$a84!h@) 4Hݡ57˲vG9=={ooN&bgY8 ?t: +puQ B_`C5c,g7SaH)4Z/NO㱮uyڿz+rz@Q~O0veiV0F4a>SJA B$q:EŤmC#|<8vΜ"yCu'Bb캡~;OqPW! rIϲ ~ 0sw臇W- 59@h<8O6MumUsN4'V}kP9B%C()E!TelكE]R$΄eqۡm{X7xwPJm)-"9Mvbܶ=D8xo!i4ai:Jy? U]?|PheN64ԍ㰾j6IW^'~_!!;_0dYM&c]q<:!Dc³$ 1ZAryiN'd0֛*y7_vOըYGx}X-?~܋@=y@#81uZfrGEFg9㋔v75k;cg%FYQYkRЪ+S.n(󻻻Q*9qO9)xߋ/9T=~͡i$)C1kk8sVk`n&etwSe #B47i/N>/͡"Qh`LZ<$И̿߶s 59g&L,%z9d4M&v<PJI5@9l<ϟ?N)ځF\=XVg0 ̳2dTvf2nnt:`I31ӧO|_jl`xȋr΢(NeU6bQYu]nYcNNi׵Q]SNxU`8q"AgF`ĨV!&ʾu (BcuĄ6]|?\]^ JK 8P78;弅D"d )" Rc(!`ཱི. xuhE<3ڰ(.GqN$6nZ#Xu]? *n!uq5MEd2~}߷ma&ϲV/^Rv]!j6()0Q%EBbnno`"}$,Ϥ0Lbq"R2Fg&GqRIţG6&30 y^YM&N(afyׅq0pAZcCk,"j]y\Mf:gj4Z'cḇgxcrss#lATU~ţ$M(bBcb6LFj6[U3(Gv$upiuUI9 c7 t:ox=X`7u"٬~"N)裏ngI(!8ޯ74R鸌:۶KVcE۶B(b> nawwwEQ@ACLe? :iUU$I=zϳ,!4+VDE.Oî&Y8:q8!{A,㯌Fb8=>{Fl%}=5A@I'u+yAr۶=U^f(k}I??<==zxB/ C(!xI GMLk]M4(8YgHHiu[W(}߇!@Y)TGCvlcOP?(= ]gnȃiar<"Ǐme13ƸS&0u.YlaIiJX)BO uf?ϧI}8J),o.˲,+ڶ eYڶ z?c2/8eC4Mf$f9g6h?կ}{v +B݊ e~yf=VK=:yQO )r< p[u%iߴQ9ڂ^DEY 㬒CD eLi3F@Jp<~?xww/ΙduM(묳Blq:WǝI1B)i"EFx_<xy!U}|ѫW/NNnJqo9׷mq̵} hcx[pEXE\YGcX/cBBPQ6(勾! Bh)4Ƹon~}7,RtM[o>suQyc,ٮ7/=+qsscQH8>1[ov^{4-M<p$,ys!21A]!{i___7MSUMpc Bid4/<0% qh4r΅ƪ- 3~0xl6RʻFcd<[_FIDQiUUtqqaL&q= ~{{rA?NRPgY":=oKϞoHQ%)Rk~f;+c"<'@p5w[ c쟳!j(JbA]$I8a1EI)!=b\XߢH"x<`Cu]Qٳ4R8˲3BHŃeYɓ'E#4J½2!TJGn:w}7 ,؄AƘK0_WC`8I?== ȗ$IЧiBE(> R0 5 C_MI\.ˢ@2BB,N`OJtYq*tjTy=q !65u];g6!>}+臷~{Ew߽nNia.jyv:3;(<;nb9իWٶ奵뺾m=X"ZY!vCXQN8!g$bjm$ Wb B 1BEQUnJi`c*TݔR>aSʮZ7M7NyݿVEEQ{oˮ?ۊ؎ [#G2= r{1B9].۶ eEBGSJBsZk羴:cYmYy=9;͡X]]*5Iq-m`MjSrdH"EEz$_M@0L ]Ś+3of)3y+"ڀ@܈'vaTٳg.֔,"t2MSA4R*y^TS}d#ON 2K!c`tʅ5Z 9V#"A׻$FJ&@i`-H8Bʁ  X168,b2ڢyQ G4Քք3ouUUU,XC( c!q uTU%וּY~@rʠƘɚlXUdRzC "XQ Px][_J)!FuGk|<QI ;,4K0vւq+OxP58W">i98csJJI~4;gͦF"/nonIl&M)cB`_x,ñ18ۮfyimʪFc(I&UnI$:mir~nKv}aL(ńeBX紵yFњR:CCm5ݣ6۱<+?TU) ($i2֤Y >ĘR2 )%jspN9c:)%„1DA(M]k%92kx?N8c]ʲ[TRec}7mX00EҴ(kZ.VvgGʴ2@7\pqIhꣵ6KӲ,8((!>!v+"1DJٽebyP%&@ɲ aReUMplIDAT6?=;>H) h=vdR o$!YO!P,!0(`hڞ3bO FJ)k5`\Xk,0$ !lEǡs1B 0@ʘ@*#a=1L1!}[dɤm<ϭ2Hбәp1ֹ8u]0PJ\pgBXUUtv:Y j4Isaqv.bGsiBFRRZ)h5FvֶmlBG9hE__0 I""7(nGWxոq>@4 1 C+ǘI19A/#1,Ko~~cٳgͦ(n>7{CTá~7/ڮJz6Evzrr{{kY*msd/s|T#F)9yJ Fc/ 1:&\Fpc_nZ)5;ӫ(;J)02Qcp&󾏶{ܕen>O%0xgggm{DFM]ߞ0[H&0Lr;h-$e!ֺb7=w2 2Ry1d90M|F3Էëׇcc|z{8\_(yH*B[mn %tC=ɪ:FI$޹8eTUUUpBVHc86lL&}M3k]"DtBm'xӋ #(VrUe5HS!fy"aM&\U L(q꣏?ʊ0E -%хs0B(!x&IV „"h S)s!K0Bۭ_$q^!}[J)"Xkm !\0JA$0t:T3rA9" iRXsnZ=}4.ql۶,tzrrryy(N=2tXL72]G|4M֋Ţm(W|ϣ(xϒiY8糉JkB \WcbL$p^i ¸| !RE!L&({gFCT,} \u,/H=~0]cLiO`uCd$IV(=ƗuX$/R!s&,cr\ RJ4zβ{/ q !v;qWu]wuuyT'VgXd󜝝VǏeɓtBx~G͘DZV"|>5N_<|1VZۀ1fggyꕔR$97PJJmFk (g}_TĶ9~N%M1Da|~/`Ǔ;:7,nMesʚZl??*r>zѣGW^u]PFK_i4˲dB\}>xtmƘ˗/C14GaQdj軇~WErL(6z<={봶eO|1apl[Jid:tۥ mM!3,!CFx:3iy]JU5-*F EQ4urD1EQt]7JM')B@1*e`ΓQk=eYD35YQ#(hx,bZpUUє& pPJuZ-c;1vW'ۍ.1>qG[" .Q@9gqYV8Q@z Yޏ_{qQ]8ͮPJq!ֺ8F(27,C0 Y0L19SeY4܍g9%@!q7HSFW n[Wf<>Z,~ͳW]""0`sc?LivT$mL!伉!cuC\EkL c,x wM !Xs!kq1F[-6O.-W'f$RFݬ+B|xy}=_Hxic4Gi%'I=cxW7T޸6!xQ17\^^?$8kׯ_E1 ~-͆9'$Yw5ODUTk4˔u"Ik#UQ ~\Dg$J`] `1 ahrvqqݯ+Q< 4yoT1 lT=`m99k>2q8meAyogOnü,vb|&Ir80~ɴ{R&8L1I2DnevM9LxǿB4ƚwzi0`F4ZrRY B w0eA0Jߍ>Y$:R2RFa)%_z+.^Q1ҔncyEPږe~ֆ`,Kn˲Lʑ2)(%I 9;=u! !(RѸz}I5'i6L(iYzZ-onnYFIPU[R)(쬬(NE2l6Ƴ[^]]E;Q3#.">~9gf Dd6[lvJ)'ǏHo !`cy}{/~gUuݱ\.J%Aa۶޺rrwAfa7C۝ӆ zxy)ǎWe !={oLSUUnnn ?lETem/_\\#pYV8&Ir}}E)v[,Ô9&(]-3www4Bqsxl,CRE}-ZojA c-e)"4KkwN a}(*aJ@Du٤l6yx|Mv/ ku9΢Pq)!&"bFpWup1Iӻ,M)&?fUU8Gb,mV':x+ZE9eQ~TB Bè &PS5 0NzkB5༖ !lʲ4zDIFcY`㎠)uy*hԔs&H1BʲgXfqZ<͎ pR;5BW OD ٶ2bl?ɏR@;`AiadX,~ J|yJXs#j%y)e?1) L,Xwq̅Xo(\̆bHf3i(OaL!uWfx' C:c4*`R\ a|8JS.u :!ċ/dG,e ŸXȄ${ӏ>RKB)zL& N$wlxl0 [D{￿nOi; !=cl쇪Q96X@ h!kMs<,x!4F_Dg?ǏgY)f:cDň"8I;o*ˉR(z;dzUߏm;M°A1jD ^;`@ uǦL!dIHp.qǮ}pǪ)siٴiL7̠tM]C) ZB+HR^74,+(e38@z1_ݭopFkNISfj 2xo3iJ#!0H#0 yBsBx20tè,M% FkUucCsZ9E N|qi|7t.=99NXamXQdd= !j2իWq<v*rjnnnEex؄vf@֡[kBbZLSY]!m1$jʲv{ ey/^0J)uBEÆx.|T16ΔRwww)(^w=M8pO(ńNTh8i:u8l%v|>n6BzF$t:;#3(( AsY"R޹]dniYkW}]ըmȧV)%@91Vpׯ^m74Ckmd*DӼ[aN߯;cT۶Bn!D/_SL*-UE $4]3rqc"JEbGzaf6Ç~ Bp+'}/ Bes.2&I{X&aTk}qqO"EFnw'y"U*sH*3z>su]e6:sb=BE9۱0늲꤁V!ϲP7RJD(T*1ͳR)D$1u]s0Ƴy>}f4M瓪e8EQuK˲ԉ%8rVKSMuQ6q}w!zvvru$Tivh̦qˋ˗>RJ볳k&d2l-ع@c,i*''';*IIҵMtJŋo}[^k}swwZm7Z !VB/. Օ1j:ɲO>y1(B yѳLJُ vuzRw!}?"f͍ѣG:p%0pO 0FQ%Z[2Q8o84-80F"1>!!c"^}^R+4Z.5x)DXdY/GyU" J/# :%wq'͠!$I@{f-IQ)֓7?{C!~# \zqRJ 7/{sFR@beb`N!g}>f䍼;4H/( 4MӶn!YQMytYm, G} fRNnyطԜsQVE4Zo}߿{V RJBpE1?/D$n>-'eٴ"i9F9ih<ɀh.q&edֻ^]];|is}}Z_N<69Ob\7MJ(z2D'X!(29 ; XB& dzK Y:"k) C,MsM^LDd1f@ѣG,L&'mۊ$ !դ뺼Huqp=z| @ oC&yI]sEDk> Ci9,-xٍJ y$r\]|zb/Wa 4{v/@{3-OٟL k3 A<ќ2@0 crF4nF p3D afbl#dOR"IZʘ"fF)R/-N,:osB$wis< DK@ Qds&uo? lT;B0BP!v}+E"RJ s9w]$i*r}}M0)bzlQmXk"g9煵{19?pW$ )"|u}ùNgR`NQnwj2IfO 򼠔eYz8Dy4Mw?0Bg''F!ϲ,|Ţmv7cgIs%xRJVP!8K3pzv2ⶩyeM]ST%h5˂"#8o)FD?xf:ѳ<ʲǺqY7uvzwx 0B&5 xFQ yR`wo\h3X49ly^Ł`B֌RJ) _(vm]ׇ!j9&m{yyI)skƘ~Z.׷Q=CH>==nG)ݨXfYsDᘥuu!Դ|>Z{< ]!,B`$Ga]4T*MS!(e{)eu]߮gg¶k!8˲kcWڤi42*;s{{;onnj)㌱IBԄacQG4(˲4M9(;8==X D9z1iEf-*eYMZygB8Fꨎn' G lnoTdy"0c$%u'<E}]bƄR&˛2/$891RӲ$,W)?{dG?~ŅjHSу//}x>+7wWFb>0)l$ ˲٢|>ϲ 6ϕ<Ç8{]? !_^{J1'"Jc=MO>׾F)쨅\,ة>|O?R!T<˗BpPɾtKҋ/pN'{^bu/G.}sBǻh;ˇu25_8B Gc|yydy~X4]2`造zz~7Ѽ^?_WV`;s8[_PygAY JėݮkmRzZ9!7_= 8yl8[<8=8կ~_Ugg|:)?ɏ(?;c ]oݧ<[T)o_?--%$K7E #w[i"YrZԇ#d۫j5eVuׯ^1#D;`D뺮7-b}f8 Ƣ)xD0Or1_+>'R[qR///)"MM=*ӏ?9_ r ׯkwR؃e^|GZmn e7$XJ F`CNo~ַ6oۿ')!.(@3]wBz:A/rͫ @}0$bRI1BZ{yǦl$EVι{+F'[`A ~uUxSH R#_5@0Z?,Kg"c<a8q@OL~97ˮ뺶TFv;H4䦔Ftzuuuzz}o,{y,mOi;}߿:F};߹81qZ,ǶGXZZKBe@4P&1fh3BWWWq `pI)0eYYzޤYgK),0*%T˒tߟeY,b~w( k\w2OAx*d כ%H2b]N绻~I!,͓뺠"K"OӢn6&JPի]\\\}Yά֨*c=WVnUVbz8T%F!y/3f^j6f3H4M_z%ܟ?"' @Q% @PB"Dm Es 8( K%}۶}wC_ ?[q?PJ0TO;`Xep(UE|=`Rʨfom VcWD4Z!lbY6Wd7M\</}?VJ9c$<߼NNNQy9Gh4tZ=~@Y̧j1C#:L }$%.q.5] 4/^?~iNH<2LHw}ᇟxWJ\#@}QT0b)6 !d2Z8F[Z-V9ƨ)太1˒qTC0iUU/^Or C\__sۡcg3kmEQFro B}ߗe.Bm$1WzP{/'?Btv RJe_\IePJYIB)@` ԭ";9eþβ` )C` s C1>` ZJI:qAf/sct€b C:Bֆs9@J1!H{BHG,(>-\4c 1"Sf @ ٳ5ʯ|C)s~[6$B#J)F1 B 4 ! !diԱ6uT0I8|;jǟ|~ϋ"-CmltyTx' Ƙso|z}yyOߓӕ"|+777yGx8=WU/WVc(s)e"!P`"T0 y1bn-!l֣wVpQdhJAOA$IWcSͳg~;?9c4̲lrs{SiUUh9:cR'`"ԇ,K,1rR"IJ>tn&8XΗU!8y;0t]+l6mիWLJy~viZcL{RJ9NڶM \H10)4M7GYt^;99i6FDWBH{ζz3 BȅPRz2t]< !~|n| B1+ƸÇ_#tH16ƫ4`q@006I 2#+r.9F8k+sVPJ1m,Bغc'a =d DB!M Qp`b, %eA1@."!|pٽY00 Fn<9&x@PJ4A+˿ `*YcXkmta;Ba(>VD4K~81BZ(+Sa$ZXUMui^/Xdwrrr}}}qqѶR;Z{w{'Q++]ik˅1?/6-!#buB7Ǐ{YU]&F+JgTK齯CHWhkERN)g\kx(X4UxAଵ1OK`|A&=u]/(K0(is26cYVj0Z)1C0tlU)# Ue)i9MTuwj8N13%d6Zcew}7 }ƀS A0F9J|:kz6y1AQiv;hn+"Ͳc]ow[ŋ4MQ#ٳO>|"e9%hF< ZkH B>!9wlkcn-f\$@@!]S @01RJ;űF{!ps\9 _ !PBڨ0YZk9!lv<}%;O)L&ιs%PLvms8r., Oim6tzqqɢ">7F '|_~z8i!'N[L1rX" :gSJ0z@YkL1  #SBzPpc!ARJ'h3fFzhdsHP3b0bCagE h֊T! { N8VtV0'Yc5 88=` !YBQuW~7Hc5hƘHC F/Bu]c1c?ުm:x#1"cD":yn3UQy׷c4KDgC7˼teTD, _WbYRż̋PE׵i,.M8c HQ]ץiQ̻(%%&h:&Q*g-M ")Ƴ HEcc%~2-DZOm#$/1NWUYVGJEUVj{A@ߵ G xRBL*t:i366:Һ닪.I)ǦmՓ&Y !ޭaWWe(Rɗ/_>DVeQnSU/_BU,+cCSy ]={H,̈́Hb BrٳR43z$Ř 9Y;9Rc8˅Xm\k 8~z60N!jJ)q9̃ooo/..~dv) ?!Fںk/\ J:yuMs<ՆQ!oY,ָ$!HO(p^A R&B8,HcBpcHR\YM)i[J)B(/nP\dm'P(x܍1^tޖ9 ΗZv.+KL"| Z.W HS`y>hmus:'2 !M>~ތR%B$<9Gb6|l:gy c87hm!ushO" !~k3 "9D[K):@{BF0|H0" 5@ >MY!R*B0M+@!t|p>b (#P{}!{ A}!~%@Gg s!8pP]8j"|#}ރC/|K ޛ|*6ZΛ$I!㨔G)H4c Q={O(SJ1BýUf0Ƅ$ID`8Ku8t>'?"M(?RZ)cRjxT4)xβ,DFl6c8;l6CB(eZrΧiZ׍iZQ6׿C#`md"ALp̚d(D0B} ċ9*\|px 92QƩuP/LTv~+|8C@юt" Wh.B"@>@v 6?FA "a:Bq= &` sbpg>zcݜ_| WaLi6~!|&ӡkĨ> !1s(XOOO&Gm8u>LG/۶%߫C1Rj)$]V|r>A@ΆQR`2fׯm1Ru$46xAū뛪>y^N!|fKBjSM}> J8GVUel'i&Ȃ':Bp7 !ڶR2@@ qP1Rj?lӦi..qy^pY[qUia^z|)'Ϟ=ϟ?oۖi'j?nvraB8)nM)BvZY5iv{G7 cL)c=ph&dag0ec]1!ެ1Y 0?t:(/_RJ! !|"ًHWJ"mxO>|]2^|YUvFm{vvu} _Hvm~z$9`pTLE1h#c,9gB<r۶Be^IY U)ҮiI$8j1ƓZGg ~~zaQ:x5@@#j&8hwLj6Ji/GI!Dڮ#VU%˲b.RqB({ ̦WWWYZ5uMO&U4eYE6-!0OV PO}gիWgggFQ?<4'OGkJkuqq>UY;ڶΪs3 ]Y7R>c"w}e.Bw<cxJdWWWBj{{^9p8i14>__ #aȊ\xc[ }/sBЏi":N "}xG+^psko W85yޮ՜! l>bj>R0}Br/!į#=?x<a$Z[Hm2<@q0m@;פqc['IDbNӔr)cX,=99 Oyap /}6ZQJj1L>SI1v82$bbHٳg>]ܹ>ZE;<á|yssh:B"WW78૲těF4xCpf8H3'oa2Ӿ뭵M׮˘ 0c9뇘zc"0u]WBI5Yt]05v]K8Q`i$:OvÔJUfU'iZhZB  4+Due9fmˇۮlmb5Q 1Dx#Xϟd_מZ}gY\^PyQǨ<l۪NOO6Ma4'5uK\ "RFpHm󫫫n#x>Dyթ IK10VJ4eB[A!K<︿Jӟ4I!lEc1獒޲j[Y5BdGi,o4Vq-ŊcL l!&uzDti{_9c\F>+eoww1&l]`ǜc~t xG#&#/_rbn~,V~CR"h3W,>ad1:MӾoil}l9O"~2biDG,]ik˲GZE+wqUǿK7'Gޞ^z}H^_,_|IRpj*j '|4̻M1uB9Y7wg$1|[tRZkDDa[,Wagq!Șx4>r$fzX*P?cP!J88{d2iN*UM'" H)±cO|>_}?gO.>|2֛ȗn3MӈO'ijOSNcLQՊ1>LnwC<5y?~xa{j}tڲM3cn4{ggWonVl:ɳL;AIa2$)H 1RbR>zyoW_Oa[o70*;"H9ϸJBitn7&'BEW8r(Fe1}c 拀@J[LlXowM݊,n:Bhm׋$Y^,ZnPZB&U@79kmۋt9@Z벨4}oM^[ynRb׻qzv-e "@!B\QJc:Mrr]_"D&fq&c7^oándzwnQ4˴1:aH7 0!FAJk!8^1{Pc9*,A㮔ٳgwByG?h XE38JR&YEVTd(Z4,y~<}b^]v>10@psw[N'a)tswX$z!!"@ʂEZgUB(-a]^^O?,4M׻}^TtYNT1Gz\n8BĶ&2o}|B`HY#JwwłsqlQ{톲,ۮ{~_94f{8Ϲ8d2999裏bd`?a8O>99iE1 Cuai^__q$eA)l6q6 iѾ5z>==9AɓsR2BHvcHJywwZFPtflqn_[YJ|~~z~{wtݖeX+R}8ʲ6H =2Bp`2&M eDJ 3RF(#zz{woR\4- xa 1QL)&Yv|Gc@ ME=JF%h\9<g fA6\I6ѨRY}A @g1cጱL8$M{)u%Pr*}[%RVn fzz4z]o6@6C{~~BU6MF?S+bX|2Vf$I61JmaRj*0ΚO?O?y1<Ϊ?q00^|,^_]Zjq90_DyYe0HEt΃anoo 1t]Wn+~=cs>Nonn\ж0<;6sH`5Y\.gxWŋ/"k~v\,Vׯ_Et:e| 8օalLymvot!;[Ux$ vpec(-- &hj&P8h" Vt,IzSUݺsΙgycM]UG8"#oVs^ZRjd4_fe %zKj|P)+0\m*Da RP4MN ;mǒB1N :^@ hoql&5-AAk-DsSn!BmhI%AP0 vQ;(i$}MXEE7}nFF)!t)a`)F)-7&PR9g߆9>b1".5`hqYg-NLJiQVH !y mjr](oִ,)eRJ8(ԣ|J4Mul@p9Fݻw_xZ_VNL6IAE(6Y.iJۭc[eR,4Ã˲*9e烆%#Բm!Z)v0!QQl Y<.yC/_ j!FOee[Nj%T+]խaVB_s9r,}n gV+˲ `j•m]&}=(q AӲow/0d0c[hud6BI۶q M˲,ʲ̲,,@8at٬VhRUEZk4Pk|لn]MU !<۩ZhhXvmsZu #$~lz9u]"g:AEQau̶ Yt:U8?;NvWWsЄm[z'O4m{$Q Jmun۔RT0XUiۮ;+?C4Ma$IeYze`0| 2Mm{۶88a\Fw[xx Q4M ?%lg:x#*൛;>I.+2˶ѳ;Z6TBR|QZ-)p9LrcO" zu7 tr֫u5uZF>hd͞,K؏LJvCRJ(yӅ1‹,G\/Ȁx.y$JtZkeYȷz(*4n~刔r$I2ϕRoF8==uڶB$xp8ľ15UUEAg hqNgYD;,8- !JGQTY0TJ)َ,^8Ǐ7M^YgC)5 _*4ˬt]vd;;H;릕2u#ikBNӋ<-iD4`0P@քqB|>zX{oVwbw=a鴮kZ;,mF+ev$ᰮih-4qşX3-o~:FbC)ֶm֭[Um'cnqQu]RЦ 7I5H˱щ'vJ)% wCm%o R!;˥Rj0 MlyUaQZ#K8A?("z=$.s1mp8V čc: %~wx^׵Rh mSJ!qO~rxx^o8n?O+8cfk2*cE #( v,%u:sx[eG.SdЭ$i/J[:9;uVEoF>|(jjy\*rM,lMkWl1Nj!ʊ0Jtt6apbf-sypmfDZGf<w:l[v^`kiAXUv>(%f#c۲cJ'?I0^x-N>y齦;B)u\Vo1n5MM{Zᤉн{,CJ`0xr-T ~ӫ"ۆ[hD;ͧi Wu09ȋBlF,v%dPn2C##4ySUm_}КjE)5*^\@^lb\)4Դ74\ ~< 1z^(j(h2_V+ 7 jLǒmkv[1BH6E8 EUU6ұ=7˥/_d u̓/l[nq<qm:a4z/l6˲1t:gk4}i1Fa1nggg,u>}vnE0 z\Fav{nSUj:DUm4˲A[U3qmǪfZNFG(J*P,˪*G12!&Tc,DdpZٶ}^xQh_Dm[fg,sq\!TYm#MB]BHQmq<x4B|辏% McASh2!6NlbmUa٬,% Ax|ŋQQJK˲.g!3,+n*I93a0,Zf'?4j:,[Jp84?p8CMb^xAwp,L\nP0ŋt:l~^a'z8aoF1MixW'2=[bitivpڦIUcY&0LĂx#&vl@#r\_upl?a;%ȚϬn[ RF EBж`a4Mp2͏s3wuPI))L ReV]Tg y ]Z,nVkaM(֮csJ?;,(//.aY!GI@x3ZZvv;>$t{t2ݱL\87Px]^F#+ݜmK!nXeRBZy[S&DgY˳axc[e۔4#4M!^1볶m(/^|ow<䣡ј{ GjmZ!47en mYUeU)ܹ}u5,SJe?R-n4`)eY$j8N]WB6< &f,s^g%,+Kfp<۫ZVP4u]IbFӈfۉQeY1pRJE+[퟽ˮDk!uXI)m[(R &eSOvضE(4DFc,$L.LnEFgEB aq4!xo B4bImD;~oBh()g*cҶ=52dQƂJ6[RNF֔%3MYה2ne01s ,DzT6asʴYݬTUQ6UYh*ʠ6ۮ6Vj?|a'`cNYWxԪ`4pgornմ_Jya߳^ A̡XVmn6s["n?~~~ɹ{QEQ\U'ISBfRB.s)eϊB(Ua[ƓIػ}N؉&EU=~rC1]rv0gDa0(e]VN+aUuI{^@)izqqϗEiF8(2LYuSrΚujUŵj:V¶X]eJ4UyZpfVɦ-.J.sPr,` G7yq8ZZai,,nDkXp<[ (;aZ zՓg/fb/Ӷ'ܹs'MS,[faZJ8ϖo|?_ge a!AsT<~,׫fIJq[  [* 6۴u=NeYjx[oei׾5JZj`@1R J0baіci)@׿$"Ki)TTڪ-(Bh`(%aB ݂QPhZ)T@4  @Bg@ZS\-J8D׍npn߬_=tG)A8P 3h4,Dil:̴ 5IDAT8}eq㹄Pv#JB<<}׵-p=lE^^;/^ 2\-l6#bf?FarL wGGG{{{hYc&~8mTAt:|>G-=z۷=1 Xhxt$Z/|~qzqq 0PQ !5lӉMkN8U]Ǐy>UlfZȺ)} );jm˲PPa=ʌm)RJt=㗟ԧ8Zkfp/G16hmq(*p͒t2 #Jy$ض]5erΈci`}ZwB! $ C!pؿ|׍8N *C0Dq쪪FKt0$¶yplf8x]q]R Bk]UUʃ4M7MEeYx n.4TJ0M: RbJn)T^(T 4%U@SB rh\U`.( dY2-H̀&&7($00jU`P9PG-6lr 8v4P U&жu J mLNCgQoqxKK(eh&iѶZ+ Tk$ ҽ(22}6 !ven:A_eYvuq Ԕ)Sdk9;B{Q !ɵTi:I)Te鄶e()HVJi+  H5G߻wogg!*TM!ZREwBxhOԂ Nsv]R:ϱr}HFUax `.niz;8ɉGdà?Yx^^^bH, c{,˺'q.h1ihJ-ɲRD#(PՊf#Ui-D3`tхJ*YՕɨ .KQp09`)RԂRZa8PaP Q-1E[ɡh (^,j Bۆ1hF_&@ogRuG`x\LǾZmix#Ϛj Zkq"m6D|;p0f}J98ڮeQ!s3: H瞟{g[.gm۽^A}3g?;<+_3epq\ŕrŸuzze" h :ruۥ~ӟv*n(bFQ߿}zol6k_2qx\.{^6˺v4p3 [!d4ږQd9V:;կztZԆiWefㅁ{eUI&꺬NݎyL'g0brjpjrjrf0"ښ2(%}צ\j2ă~wwh.sRd7{=48)U{=x<똨n z5(,T Mwֶe'Goq(p4mz띷-f-EQxxj5ҀmF4c J*Qjp`0 ÎI5?<'OdYf:nw0G!ԗ;AIܐ %W5Pi UMa;q, Bq Rv;]!ޣ4HvmFQT)d3ˆT V2"攡G9p6{@.FD$9Uru>SYPjT.d1 xFR BLJ2".Ω) ذ Y4e4j&Fc$-_? 4UJZn$}^nA0֊}ײ8!H3HF4PE{ed˖i[eQ7M %qljxV54fiӠgիnԾȢ(P\l6[.~!c\yh4*ٙNBio[)em ryttիCN&]x<|Q\\\W˯|kgg?bUM$7Iym[3F$Lc|~zϯ.<|p6!nݢFRCY.&73v8EҲ Ɖ \g)٦xo&m]Y(tlSi1+ #EGh4}idT R6 ,n0ofrP4#J闾d2ywONNFt~WMь,ѷ)b^zALl6gϞaC~iȞ],~izFAn=CG>[?V$̥RFl*mj0BRRðpUY5ETyYy.2I\uf3:f?6k@^&(`L=hgPj~۾Z)nZ%5h e=*_.i@ P$ߖ,0MS=U tQA%(AQ[ju~FC²v4q[{P2ʘAljlƽ#u]o۲,u[ms=r(eXԐ6MZ¶hZH&eY_]/.l՚yAqEwӴ3x<}.%<97ðE]gxttf:ކA*ϱE$ l3H') qӶz;݉p\a#|M-¨{5[\^꺽C mɊBpp=+'a,lhz\Zfd۷zx[guܺo;MUd#]wxؙWjD+P-3=(=[̶d+yfdog:6hՅYPɕl몸j`SV~'Ɩ9.A3F.0ľrXa8>KB (ũΝ;x2ò/Ɋx }R?nʪf(ro4mpV/_ή8ux;ӽ{BI$=z;$.Zz8R-XƛtggWQ1Ƃ0u]-B2v\|46RL[4M[aYJj)c[HI@*?3[̨zy U m=rʀ*b2j“}wòOHZ)PRE(ҐW`*O$lv'@oY>hـV.6P _?|@R%jˆ )TvCuS^^c;JJ b$$Iɹ1r}%}SmQ0qC_Dy nA(y.b a6(e٫W\t4a=>!`LDJ+T!#v%s qoWUo3.z`]^^($38KJW0o\n7tVJ)tZГtDz݃[w(M-cA,/QRRaA`yQw}֭[|%cɍmΒcZ=s3:mm:K7T۬Wη%h9EQLNںhb:z; (%LL>|{p8 *MS$4XEt0qZk= ʺjV)8Bn1o9!A)R 0ð@4hB1KhՀ&S,z5g(aN#JIbЊ?{0Ȼv>قB\r!rj PG@ ^0vQp `0_Fp JT!$朷eI(Y),_ \q QI7e5M4 c67y#=ϋ(I` lu$ & !ia#ιee2x2yYɋb2*QBa!^I12!ppٳ8qA2dlxQ7; nO`07ooZ.YYК޹w`ӋoXf.Ҭi*0lJJ4tNa\"\lUT$MrypWͺQؙL;9zdY3AnM7Iⵦi6m0B~, \qtL6mFrZy4MqlˈKjoZ) Ӹ8?ElJkM\\\Y|ܲ;yUx( j^ZeFEQ|l8.V`1V#|73:^i~Oh4B9Ke`4lr6_hB ӏ:{,l6A? +Xob [G|q 4Mc^e_}n[xdQb'"mk;R ֲ*˲,*L+%U-lS°V4 4QRsʴ@I` 5?~g@KX`^_/eP JN)5]>ӿ?ACE!( D^Q`g=i '~J '!EE]r%CZ`\fX@`V{^B9@])~ պd7'p؎j')! VJRNQ88;s|||-9mۢn1H#3 _K^!p!%znl6䟫Sq?,˫vEuvnGGGqޘeYN&?,OGx1CQøF޼s-BtQYYۛS!>-xf{0ueDhER̗r)RV3M^y^<{2n9 `0L&j= UUmݶu]B4m[#M6xL q' 䆡:¨hXOoomY>mWё8ٖMmVZ=B`0Dѽw9cm2^Ǔѣp]O*ՠDw7d298[,Kk 8 Q'lrv<B$in2lKhUvR¿- plY᭨C5_EAtgfu4-ssAYmU;lӯ~kiq\x8϶mMUUMHF#D(„PZcUQ˪lV׫ztƥDV{N$Uoo"pHh 4).,4~x 7`TWg>pRbޟ7W?/v{=^n g 'ȋ__GpL17 8߈ u۶9hEVڬ@֔(5":Lk4I,;99t6qvg8鍀 I˲M^ \UU -4Movd8iE1ϑӜӧO%1v޽۷o/m7d2أa:zF4bӄ.]^^"IbwwO&W肀G,˳__J4w||UeY1/pvrlӱL,k$@YD ^L*J!cٶiڶ)$JzFUUM fYV7 oFQdcq`oGֵͪu0±yoв,0)hRQ NTV7Tiql8gZ+fLSQz!<FE!偘q[r0cBk.Jhnu]c76JBzikJUUw{_Sdc\7I=t:`̲l\n67B!6|n*.4͕j qq*h 0LM@J-t\(`fEV4ՏN`TYU?DaÍw|(  +WC?_8Sv"{S}-o'?h^7ھf[.E v[OQDmm*PqV(Q] zuTnʎ'cö붡S΢nJx]Z_7e)!(2 {eeX,>nMnj!Z)E;W2)ZNuJZA4Yne&gUS !3]םfwA*k'8Ϟ=3MFm}pcǐ^XA:Q İ9c7n <ϫ&i,ˢЪælw ۳,wh&NױM˴!r0|W9(m8:NATij&LjeYFPe?8m+ ͯ.O<JA4َ6r.,{X Fse2N4\{xx "?_qStee gM ?Яn\Nc'~s[wLg_COFv:WV}??NI(PA"R_fJ @6d4zp">-%PJ"͛`$i86JPҶm0W:7n@ PWBﶭD,P i4㠯_^iG(l6 c4ڶ]7M$QÒ|TVggg840d@WiV zYSy4@C,ˀ1  {ǜ3˲vƓ0 __ȶؙLv<)1h ncTeYvqqqku&cm6M嘖TfoWUO|b~uevYמuD)e#h4?x~>ϟ`go8V֝;mJ(y&I ;QS E0RPn$mQUJW+˲"~N=᭶m1OOz=0///4b1wDZ3}ByJAYeQX)Ոmy~ ui#mM* enI#;ZetOƱM)UP Z*!8yZif&kF6_mhG?*߳GQ _BQoO6zп,zv:R4& H zsoAX !`fCw:x( `hc2z\g۞+Ǿ{o+v2RPBbAMmyͦ.+y[I)wk^|)MBiʌW'O?"&I?ǑB+ ZUiRe^8Ի0 mS !z8DZa~ystttcD%,}6N:-cc w Im`FV{Ѵmʶ0Ikn٠b^WuOmyUmvx޽?EvbaF\BBɍt:ӌR~%hBdY&aMbwwWnѴ{;ܮW;iomTUQUe[w-x۷4=$)֭[u]hx~~~fq&JӳیiG$K*3xJ? E,  lA_ 4 Pf۶a0LyֺqjVrc1db@PaZHINжm%7CDMy2Du]{X,3G)X,#4MӰqeT׵i[WK4 ðeC<<<,JQ9YlܿGs2A'Xn),DQ DmaY^Ҡ㸪ncKЍn n,ҹ"TVUwRY-Ղ& iN+3 h$0A*AIL$`1 jJጚ(iB<;^8!@"CW$AK98!o|\+ 4R1\?RED B4p,XGܲ˲4R*IR!$Gфײ, qTVZmIYEK"\EmVTao6Xn&Ie߯b:?g>D۶RzX,ߋi !Vd2I[<$ih4 !8G HvUU3ٳgB4^,lg2^o7Dhilʲ48k۲Pd̶ ZJi % /! "Ǯeen'˲w?-vk7~, )X4ÜMKVZj5pimJ`VUjmm[ȵ8 C_FFM˜FzB~h9] M0C(̤ ǣT ׵A ;*d<ͲLp=_iAl/orTJX}~vqeR(Jj %& P `@уs?[OޠeYky'ǿA'Rk4hR# 2Ԉ5 `f]6ryThdJFqB N*$(%x)i4q[UU2k!}Ǖ[7+BzV)JsJʶmӺ /޻M6ggg/WvyY\zFu!d2Zv/àVRJ9N0¶ݳsTGUU958y˗nW^Ǩ 0fʯoMiwɉeY#uqݶmRn7BS u zYNGj4\\#'iݻw1&l6EQaKL?<<,{{_|i6saLP @JbBR*In<$%SFxg&b}&7#C$TAeGșo~q =DV#o&8!L)/s}SNbO|94Rw;զZپl`dAwBo|?KP(,++ DRqG6=8i֢E[:u˲6dqz86G˲|+L-1,ˀ6M5wyN?(t{ 5y.//n/ˢ~ǧw],Z:F#oJ,ojfR={*˺(? z}BQK!\5׶ГUE0Bl$RP UYq|֡ҵ|Fʺ(zݨ* Lir^u[/+iDQR]^^z=)$¶m 땔z1_;amiMwX,mׯklӺBgW/=zGѳg0mp///{A^hVM۶NKʄVHf3u:n||ɭ%6 4l,B*fP41iUJ)ն!Q!D#tZE4ac&'$(0;($ɪJRE^Ç(988@cH ,wDS}8\%Z -4F8!!~kZ 8ǿ@oߘ\G(`ڪ(jFr *G{?{~ɽ;IMn뢩bM{?PBh ,K”eR)!hZ )[Ƶ Jb/Vݢl^qe]BLTQ6hYV#eqx^eSe z^EQmv;N1㦪8β,^fch4jj6P).qhu@*z?@$weSa h}Jh"ʹ"?JޞZHv;:p'׽z{]FQtέݝzͺ0çOmxAtj㸩ncqX,tӄO4ul}hЌvw7۵eB d>[~sou:=)*jPЉ"Ѷwap[!tZ/r^3fLvժ*Kv%I2˲ۆ1fNYir^,oi-17Mk Jkl|g"˼Ĉ`/} q'GZ~؉k-ڃ^069+TE9 ̮7%ABᛟVKcݯ۠]kXL hV A .?٢\C TMJsʐ0V eYI`"3@dK)ZF#(~~@J9Ni7IEQʬ !ݮa~(y4! mv=ضM8lnW4eLm`gg[(+Z69 'AҲ,,ք˦=;;m;I6EQF#Tm;/wwwWMEiw} =s=oX0fREen2p0vJ< Bflörwg2vSƈr߿^,oo-q0 -"(dwwP 8}?fMñ|4mܺ}˲= rfYVx V+)"o^_.W^46 {wt|ܴYV8xw.;0<{0808>=;<=MP̓p8j-vwwV6p۷zgjB~n6/f#t:;;;J˯~?=ǑmJ(b :$ql6l HfV7Mn蘄]G$7'DblʐLd}~yxOi D"-lu]7Lw?:O2ܘyE n?S?G &&5]peZ\MbQl5ڎ8Ҋ-]@~%Ji#ZyT,۶)gWk<[xo눦Mu:A$,vʼ i|i๓d\?z6>?Y3^-v=-Eyr=r4gVVUci0M |zu4z^Qex\:Drvu-hB mkYEQH)߿qqѶ-7$I r-Va0xjB﫫+u˺c wYuStPK71<-rTnۋ3C wBk] $C.vGh/e7]&׍hjh1KKlB ~tC~WU&tłuBz8|+ pVbx\qS/l[QۖApNZrU] \IN@&B{w8Nm#ТcZF6)?)jmhJKjE 06/0 î4͢*6~TJaKd*+0`"d jԣUF?yx:uqy}p+MS˲sz-uxKL Jg_ܾ}wZ9w9qN14_~$d%&h44v⬮[qvww˲ BpضǏ)4 m[ٰ?l-A(𷛵c26<+}DSվD_9eۖɸextCu]kP2 ;鴪* yR̅h0Uh @ֶ4^o<(S_Lvh4gggUǹ Ae~*m[bjjd֡]uqz(lB,)ia؞+??7 c>߻wo0eJ0􏎎ڶnt{=˲ l6uQA8^B,fwd+(j:Di)z26uI}}nS^f{TjjpbN)b~HvˋR*8֔pcyYV* EUwt%Dm^41l+l(Rʍ9J)7d</{gmslG4Ͳ Z/^ܿt:E3G)b2hJp2zpO&E+EZZ~hi`iX,ʺ QMv:f3Oo*)̾gYGJ~ >4/% [wʯ 8^\\4M:礕eK Nh5q=PN3\dM ]Fs3`B(*k :=U  , àY3 5=('i1u]Ѵiq $Ǎ7`ix**Ԇa)?RJJER+=B/4y鬖s&Alu]|yA]6t:kTn 1WeE7(4F6A$X ۺE;99ۿ;)[oܹsj6[yDLB O)طz /_R޹s(%WU(Z-EV!0 hL-mȒr:VMWelpZ/ǧPPkfM(gQyyqeXi jzg:.6M}8YUM+)ϞzfnфDQ9e-VKƺufd$ [w;LQ0원{ڶM0d$l1 )eGCZQTUfnFvqnm˪ |Pժۣ[4fݝZnq~aY8}\.1oTm8Ϋ[a{lSUSZaYAxy7l& rЏԦc+oЫ>ƊX+ T(@tA8Z4aUC{(V[v,J 6(M9EU2f(A(7P4`2|8nڶ-HFk#!)eYVuz!uI FIm~{j}0d8aXUЗ2c4Mn @(7]wbDYx8]...ʲp?Jr:BxONNNOORa9h4Lc;SJ${.7h/>$sNޣ1ƚF 00 7eyDk۶?FA-pqQxRE3>(ccB&)4?@4F}Kյ B` F$SȐ*@fPvn8Rt=+&aK)4KJ9c\ uVYj J)/BkljRXVRjPuYY^9icnf:]0 ?_9Gx4w{H /"[%t<"7.{a,MneYewH)UJ#fI(E];;T)GKMQ%2yMrL˳j.ʲL$AxDZ~,-泥eQB ,˺}b9/|o:2 5,Iq WEMXlF-*IԶ?.bwwg\6m 4-h8cf׍Wq,͒M9u{h,n 48dif4MSnFi.0jiֱa~Q aTuTڶ$eYM} (B^W@ɇ~wEaqCrw6I0D~nZl hZ)A yib)FQQHŚi:; PTɓ'BHl%֌Q!DIs޽ʋ( $/~><7 C۶(%M]ძ6UJ=}y N'c%~uu5 4|;>(S'5]9!`[߰#Uŕxk |sx_5?2 ~]i;uqhP (H@41RB]d-BJL*5WkS??Ӛ8U7Ts."@_ X4&M˛F6t:M9]"L&j|Em۶M[*tBoQv4M<DH4m&Nj(B!KP3lx,Ɠa^#$pqtԃA?MqQy..n1BH xa0 :;w޽֥lhV=|A7(њe4~ $i.&KrhУ:zd8+rp<7+r5zy^7[ttӚR)M;vhJ:^o0UO'; &:{iw]aM-y{ 3>}O} P^ .0 (LӼPJ @9o6v`lYybacZ.qWy4M:GGG2v<'AX᳧rvC]V;qp;jqq4z=ͶmA!v-ln߾ juyy8#_{Gaq|xn#de Q3:^+S@2F?v]jqi&Zu]jc.3p/ܲ )ʶm ٳgD..ghZbYV׻Z-Kö^V1q?!1PT+r6! zJF,p9[ё >}j/?z=8RV ۶TM"C(^kZnYA&,J/mg4AtӢ(x真g A' kbrΩ& 0@i@ Q(Ѡ`iڶٶ ,4M_~NKUuUWu{=v{l# K$+$0ƬX23H܀.BH,ʌN߷o⍌)Q(3Y~, FFa5KR0%""_%!jV!% !5QJh JZemRrmrwF?yBR!$5aĈ0xG "HIM$ q5&I2SfzqdiخuB!lfvM2F23M+L0%kJn}0Im^__CuJ]vkfՒ16Xcݵ{u~}ɤj*Tq]LX(o8B$I3ò0yQ [%Bu0'_TU0Z lRaI۵J+ at-JL$1-,Kyl:M%f"$˲`xrh^ul+/l0~k_Sgn6N4%}AhjF hRo2(H*eZe[BRF^Aտ)%k`cL&@܎PJQRRr˶5R5MSiA0J !Z S(Sr&0JIJtŠ2qRJaQAFH+eesJ /;Qba+ R ry90hӴ?[. 8!˶9甂ySUP*J0J Yai$uc:.3G8q'튢!dY0AU 2T{o۶z]v}bz4 X 0KGonʲP#s0mMcZ׵֘ A&ɋo.*ȳ~iVUxnU5RkmH!) X\.7$>y:<8.Ra4ͺ`4A7A}49mpo}*ւn~~~!~ //z3BS AK!m>j0dJ!Hʲ{~B |4]__C{ 9X\Ocg ض_)}ҷ!ދ M]<{$`PsS7O $pƺ[B4lZ# R+l*i mۖmQIքP˲l(ƣxEQ;(0F{ֶ-/@! Z@)H1)u1)ӢZkHl*R >j>~1etQ0 J}L P%L<a <B( B^|p,a{~[?9 90xu~ѣGͭUQj BkǶ0dFӶ]r!lyQiFaێ2RsA:i7;1RjVdE=菺N`B`ktql72ߕuE <)x"˗Xxł2ZTu$a}4 !Ri@ nNg @w` n.!̣sz}; ! ŋsP/b` N]\x,888xuEF#۶'IB[Kf}yH>88R"jo[7=ּ \vJ Bl]eYR+OΡ$ s_#hj$3>>aJ)vm ohZcJuR$(Pr $@M[J!g"L 4 K)Iܕ$ SHY5 )&nJcljNJɻQ4uԛSJ}bx(k0d$Ifc뺤!ATJ9δMǡQܰ(,fA+mZфaRz1^76J\_}_R Ӱ0r,l0Fmov[Na ) EgNxx~p||f^$Fj4]UKMk)FR릩f.TFd\GTEQz#$6 #{U]EcYjdZH7KhfgggyV\oo[4]1ӶݶQҺ:f=:: R!OH4FQ/N&iY7-M?>>>vgں_uggG$IlF Pe>}խ"z+aZ\.=zynYymrT)? 0I5g_|12PJɘ1}h<σ/^:J^yLmv]rlSw ~'S;,s fn6 +-Mx)Q?IXdY .=Qv]0[P/]FXm&N RLO~sE:^]my WUAS`^0H0ޠoF fè bm۽^/hŋxL)]V`}Va(y} n4}|>_ׄ]]ן}l2/0q>0cS.Z)Lr0ٶK 1QaLچ'IfFez0Ndyi{nFcai^gp8òinZdYVBĶm!aXUU12,EOv;`0O&YE@ R $I!VJ '3@ﺮ5۔5]˶m.9眡1iF!A1c]W;WA__u_Ū <{7(8==-R:2[~~\BOu]- CHXa!8//_E!DSd5cFgcBc˲xS?9ۢ<4&aX 8ۢNS]׆avekFmr.$y]yוyAmboPJ>3.E n۲|WRQʎL+/]R :ISr}_#D+2OU]k~vs~?tضeZ0%k鸮if`пRZ_0Nl7t龔*z<{?r!?xdgٳw-,ń2ʤHTm״MFֺ(U)h7)XwkqlT[֖H+1!UոKDhfE0J:E !Tww ʌd4MUUQUEmtVUu{+)aIaej6 3 c˴ fj4{}0eFUEQPy(anr>Rn[v>;;{c,Pԃ0 (eYr{;|DZrL: îybB]x.]޷2,RI)7bZ}am}AH#_ضSU5j:ev 3L6 FΊl2i1JVBɦm]e[Ie5LR;)j;d`!LnYEW!Kެ<ϥp-yTpmVJ[%bٴ]fqq pU7eUw\Pf(h}X Kziq0TMfY^UGe50FUUl~)$gYZA$-@K'''i3ftn7; :Krۭ$I|?!8w%x<h}dZoPbH& {(X?K U(!o?@Vꕟq.Z#qˢq.mqoM3l1,[#VJ !=?hRffӴR!X)iHNJA)R|) `= \J)%!2 +4 R@FQHU<7wZYq\m0c`€QY5UlOl>99nRűye]'I¹HD(l\דRv7 ) z.2Sr_DknYOQd@[e?v&3 ;lM8RǏz>Zn8NNj s^|bX-8޼~z6 VU60ͺMSgY΋`ܶO0Y׾c;[eNȼ:!)5R)Jc`00!;TmcqnM] ˺0R鴮z~MY\ !빐/cBv.a~q__*foMӄY3h˵8˲4MW%Do9 aM ARat>YfRru]yދ/fYi.k l6~~/·D[tZJ !%@"ZcguZmisg<*Ri6c,+:FcbRs$!' $`1Ym~ a-!HC #4BaMo3} ^ж-$umna"XP2ƪ&xu-TD`0EYQn|6C)_F\4`\.aH>;;aBmlׅZM1~ї_~4> qp_cH2s][V߿:88< 0^|wjݎC)%o( RBZgyb;>{skXV^:=9ܶmhS?<0}???l aр*`;E,A#/.._Ż[qQwz+8"/R[.,&6MQ3 1 eM'<+)-ӁB$i0ȇ ,43qs{v4[!Dba ( B[]|;, qTbxoo x~7~ñ<= P6aVrbMUQ1:߱ T׵aX&|u5:<<4L["-vڶ bxtte縯.^r)4 5h\ ]t:NEQ@tn:e\4Ɋ=Xҷ-B(MӮv>?;;> /, ///G0NWU!LEQzu᫬ڶm!`oX)En08bqvvVWa ^  0/IDATGi!-C;==6C?t4c C)j})?Q?X~aL7@Pz[N~R¥J AB()aX BPsiY4`0J-! ߏ ʴCt&ɎCza #$BM!r?_myPUJ r7MmY6cc_$m `j%QfR h􇇇ul[CCť#LܬVAv 6nG?(Ƕ}'ÓD+znIuף_b@m*#TP>xl1 t뇥T)?sKSjhT7B`+?qo(^еemGBAٯvmB@!8WJB1"1X .E#aOk|o &H#?*0,Fx B<0gC(!PJFyjثGN988` .,x|q1nQ85|^kNכ EQ4R*˲(ʲJu^VH뺪4ͳzQ||xH(ڬJ*Jm~X׵2M*vF&)D !֔ axcD3$R%%h0mwK궥%Ij6aFݴx:}4'O<+)aZ 4ZJeYQY{ᷔEi(czvzYoVU]77VmA[+N((j^o7x,Pqqoo?\Li7ݻ?<_~nR9r j9Jo0ܡc?EH*CW _04&a4h5% !337Pa0)`j0R9")x]M4F{} +F#20v\wۙ)"1P#}?wX+5?|+kj=#].s΅eR 01`4 }!(2 VTU6\k?|/_Xͥr~;߬7GGwfe=LTz2GQijyGQ.Xeَ\`fyUU̠YY~ov4(^7ׯ.v1ߣӶ>{!0 v<8+'z tg!`0)feeYyf\îu<ϧFh\pmiQ%8eƸn3LCj }ecHYB*"$M\}߰m0 s8Nm۾|vy^$ifY6Lʲïo6˲ {sp8S(OEQyy^? h(t8m}uu}ppͦx7us}vO9}t:Oba@r0}JَqL^?3і>A *"D6Z}OBB`JBJʘPPF䟠>`FRKFF+mX1NihvDa/(iDT)B(4Q*B„1IUuLxӴdU-SR)ӄ)065&ÖFٴUSSJ(3;-*bRcu'B FcB J iE&XkL]G0VRo?)1!8kýJiEpF`Zi5-Cm[˲i`$&cD U3 iZ5 o_iEiZ)n^Tj0OWp5,Iuz v+Dwx7˲n=ہ @hUYn`߶ONlpٮ!c9˲ _ t7Ak|2Rmy;_{OjvEFbNx\[]l6pz^Y xts޴˗/<`>-ӳv cSM3wۭŊ4Y'5,1BLZh!%Y;!Dyp)e0 "/^8:: sGa9&e" L{KhC¨0*jeYaK)FF4M?gϞ1 aD(l^J)2xZF gzX[ussåzxLl2 6[f] ^>j\^4Mӵb^?}f.K˗/{qY8=BH]K߱Em] L'#(%4FJ)Z^4RaOZkLH۶6 .r2̗+E`xZāWVWۭP`&HaHK5"XJ/7omwǣu{\#4E nh4rh(`K/Z.'''0ÚᷡUoЦi|Ut뺺.,k >`4?li?G(צi4Wi>{m`w]Wl6Nci?~1@/:`~O7olvk۶mۻ3ˋ=s21]R׵ԊPgy3j 8yƹ0 4-Ђ[ye8|JzA CJrvgZi ]4losdM\5IaPv^]Ni3kǶ'1!DW]RQe09>Nwl6ͲܶmO]"\.A<)b>_yQU.<eYMf'$5 aڴ빆i_^]UU%^,VM5u mUs?VuӶTULƹ7mEYVse\HJp5Z,Ji$ ~;g,ER)!yMm^7ug0į{~YQu>[ӴIi4Mws3?⽽=d:@QfYݴBXF6-u_>:5-u]e$Iamv`B m7rqrrrvv6(l0}}DH"^{|!D{ϟNo:Gmknb+c>kӧO{`0|\.|_) 77m۾y:MӯCc*o}3anoo裏Ҷm3 Syy˗gggq<8{57d6vJMMb5CB"LZafFS!C*Mc\ Tb4h|YuS̶m8 ye!3J5֔QB Bai&VHdz}cQ0D:Jkieb (mS3mۺ#,RؖZ#E)b(*$ N{eVwRr5?'4SM(&&"BT!5Q0jbb(̄ƚX\cb  ! l4M&=3 RR*!id:^}!󽲬<ύB, QSǟ}6ۛu:i8IM07MM}~˜PڴmYU4m9J˥ebA2)lAv]1cF܋0RGQNOOͲX+~]Wi>!8 I4쬮0 e 9>>'OE鸮TJJj.˪ۢ(ǟ|b&z0cxLBn:!!!l8풄2cZiք6*}QeJf{BnØer^.M׺gXj<'us)eB骺qOtu&LJ5 @i*4,i0>.2M0@4MK,۶,q=g>!~& bӧOhuer4 kYo8UUA`YV׶޼;c=_SJ!1z})%(J0~X7Oϙ'mR$Fi]WiT]h.&+ۤl7EU42)뢑e#ZTB՝9:Yuj%EдjF]VMZYY7 B PRUUMeeyPjƆNsqE뮭E[mum۴iImCJiVqo6pxrr`ZCg7~DQ뺮!%To6M:mi>gY$ _{gHmnv:B,Ku5Vs b#8 ڍ,goooݾ~A|_훛qp$n|7!t{{B^zezz|z(n(ʳ#e//'i` ! '| |/ulA;`ahN]׳^b0--#ދ/FuczjE )0\sL&Wt4n6;xyfFi|4eX,u}? i0t<]׽yf?X]d)!D!\^^qm[0~1>x1 Fw?g/o/d,/^OږcDucZ1FFR uQaHqƘջgI~eDB^?0t: 5b&%CcCJF(I8@!mHJdkr+϶zWDŭZ!BcDI0>57ȶ JmJBB=P!Bu:X"$A8/׋՛0 ~5BфaJ"^EF (+"Hÿ+ZkJ$ `p !|q༵M,ʲۦjvDqf R:pmKr0j˪NYR!Dnnnp۶u)e/^xS{k@ @Ƙ0 L4M0b<'21̢(Jk[mږ47QG`'PU|SQ9Kv(I7WqMmۺ<[,GGG~駟Vu}pp0ٛYK!rjO9L2 "<+\lvwww=rk\< ^nva?_::F .Tx<جaYRJ1"ds,`ckD0,]Ճs8J))#)3"D'%g”RJ!6(lZ27 VםZ9: C!p8w꺩j8Y~]sM0F:ƨm92L(%!`fTH!.* êl%YP5u UMi}WtK34 4/ zBCl 4`%RID)@{nQR+[Mg]D<=:؛mk3lөqެ,˛`t &f3گ~/(M&lYDH-Lׯ_9v>;cyi6I4 cyYX;6k $Ju=o#i۶ϟ?NJBJZSûۛ,1(;;;i?G0M,k^C)蟠kwtt:ݬwkފl6 lB?3Pv\CB@b'|2LONNvdـmz6 ~$1۶0rMM]IR%Iǭ,KbxjrFݖ4mYY@jupppzzz}}PXqS}9s!WW˽=7./.?Sr?BY!Z m8:9ཧQUi: %oBKekۄ,-L!Dt؞3vSLATlEzLQM)JHWVM)Z8׋URJ-TUi fl7m}? {nɹ<؛!ن m;n񇜞S5EbAVB~ N]E,F tm6k<6 (*sWS-W]˕d5mT &" \ۆh!D]6nHl:UaϿ,VuI)OOOd۬mF Bh-4Hv Y2%Q XE]^^BVXjZmq^gX|<>zm9 Vta@P ~j {]ܼW_x!D1<>{JS(q|Gl͛7પ`zvv춯_/w|a۶|!󬺮T~p B4͋ rh\v]g,ϳxTU%Jx<,kݞO>hooZ$BްW!BHG l?}u c*B<0fNʲ J*<At>1b@@]m۠u~oyzZ94;サXe>d1=Gv,˚я~~+8u`aHZkm2qY;ضE!`eض%ts)UB˺8j* )erL0?s8}tVjz ?/0Ƈ ?u'eY__u̴;[_[-;l!vx<- w:@ݿ{xx HB+E!r”TUگOVUTZk`0H*@ض)ygg?( xA~"`tcd Foo&KX(fD)Bx^"J*%TaZbo|LqQZIENDB`././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/Scofield1973.dict0000644000000000000000000347110114741736366020126 0ustar00rootroot [Ru] JL1 = 1.12282589206 JL3 = 3.4414753385 JL2 = 1.35763502084 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.83580000e+00 2.85850000e+00 2.96900000e+00 2.99280000e+00 3.00000000e+00 3.20090000e+00 3.22650000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.20660000e+01 2.22420000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 8.97240000e+04 4.61000000e+04 2.64840000e+04 1.25340000e+04 1.23110000e+04 1.12960000e+04 1.10920000e+04 1.10310000e+04 9.50020000e+03 9.32530000e+03 5.57950000e+03 3.18780000e+03 1.97930000e+03 9.02970000e+02 4.78740000e+02 1.43490000e+02 5.88120000e+01 4.30890000e+01 4.20100000e+01 1.60020000e+01 6.19450000e+00 2.93450000e+00 1.58550000e+00 5.96750000e-01 2.79360000e-01 7.10850000e-02 2.74400000e-02 7.55220000e-03 3.16930000e-03 1.67360000e-03 1.01810000e-03 4.89180000e-04 2.90040000e-04 1.23720000e-04] M = [ 8.71600000e+05 3.37400000e+05 1.66840000e+05 6.91530000e+04 6.77560000e+04 6.14800000e+04 6.02350000e+04 5.98630000e+04 5.06630000e+04 4.96310000e+04 2.83850000e+04 1.57580000e+04 9.68540000e+03 4.44830000e+03 2.41450000e+03 7.84010000e+02 3.49220000e+02 2.64410000e+02 2.58490000e+02 1.10160000e+02 4.81420000e+01 2.52090000e+01 1.48140000e+01 6.37160000e+00 3.30120000e+00 9.97800000e-01 4.29310000e-01 1.34230000e-01 6.09180000e-02 3.39890000e-02 2.15960000e-02 1.10760000e-02 6.88080000e-03 3.16640000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.92340000e+05 1.72830000e+05 2.60900000e+05 2.60760000e+05 2.21440000e+05 2.56840000e+05 1.50620000e+05 8.47300000e+04 5.25680000e+04 2.43240000e+04 1.32420000e+04 4.30450000e+03 1.91620000e+03 1.45030000e+03 1.41780000e+03 6.03630000e+02 2.63540000e+02 1.37880000e+02 8.09630000e+01 3.47800000e+01 1.80030000e+01 5.43280000e+00 2.33540000e+00 7.29670000e-01 3.30960000e-01 1.84620000e-01 1.17300000e-01 6.01720000e-02 3.73910000e-02 1.72150000e-02] M5 = [ 3.16490000e+05 9.80960000e+04 4.00840000e+04 1.26880000e+04 1.23490000e+04 1.08540000e+04 1.05620000e+04 1.04750000e+04 8.38520000e+03 8.15750000e+03 3.83780000e+03 1.71110000e+03 8.68350000e+02 2.88660000e+02 1.19960000e+02 2.31690000e+01 6.96600000e+00 4.59420000e+00 4.44110000e+00 1.23330000e+00 3.55120000e-01 1.34570000e-01 6.08660000e-02 1.74560000e-02 6.67960000e-03 1.20210000e-03 3.73940000e-04 7.96330000e-05 2.91790000e-05 1.42110000e-05 8.12210000e-06 3.73800000e-06 2.14370000e-06 9.14630000e-07] M4 = [ 2.17080000e+05 6.77730000e+04 2.78370000e+04 8.86970000e+03 8.63460000e+03 7.59470000e+03 7.39180000e+03 7.33150000e+03 5.87630000e+03 5.71770000e+03 2.70230000e+03 1.21100000e+03 6.17380000e+02 2.06860000e+02 8.65520000e+01 1.69570000e+01 5.16030000e+00 3.41880000e+00 3.30620000e+00 9.32230000e-01 2.72870000e-01 1.04850000e-01 4.79970000e-02 1.40390000e-02 5.45390000e-03 1.01310000e-03 3.18720000e-04 6.73650000e-05 2.38260000e-05 1.11690000e-05 6.25410000e-06 2.59630000e-06 1.43080000e-06 5.30730000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.13360000e+04 9.21540000e+04 7.68160000e+04 7.54420000e+04 4.31400000e+04 2.33970000e+04 1.39870000e+04 6.03500000e+03 3.08010000e+03 8.70430000e+02 3.44930000e+02 2.50160000e+02 2.43700000e+02 9.04040000e+01 3.42830000e+01 1.60260000e+01 8.57780000e+00 3.18890000e+00 1.48140000e+00 3.73010000e-01 1.43250000e-01 3.91160000e-02 1.63590000e-02 8.61950000e-03 5.23830000e-03 2.51150000e-03 1.49050000e-03 6.36450000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.92340000e+05 1.72830000e+05 1.69570000e+05 1.68610000e+05 1.44620000e+05 1.41750000e+05 7.88670000e+04 4.21460000e+04 2.49360000e+04 1.05580000e+04 5.31170000e+03 1.46030000e+03 5.66440000e+02 4.07690000e+02 3.96910000e+02 1.43570000e+02 5.30090000e+01 2.42230000e+01 1.27090000e+01 4.56680000e+00 2.06240000e+00 4.92010000e-01 1.82020000e-01 4.76000000e-02 1.95680000e-02 1.02830000e-02 6.28420000e-03 3.07920000e-03 1.86200000e-03 8.28570000e-04] M3 = [ 1.84010000e+05 9.08340000e+04 5.10600000e+04 2.35960000e+04 2.31640000e+04 2.12030000e+04 2.08100000e+04 2.06920000e+04 1.77450000e+04 1.74090000e+04 1.02790000e+04 5.79260000e+03 3.55680000e+03 1.59350000e+03 8.32660000e+02 2.42660000e+02 9.73240000e+01 7.07490000e+01 6.89310000e+01 2.55940000e+01 9.64200000e+00 4.46370000e+00 2.36360000e+00 8.59700000e-01 3.91240000e-01 9.43480000e-02 3.50500000e-02 9.21740000e-03 3.79770000e-03 1.99760000e-03 1.22190000e-03 5.99030000e-04 3.62520000e-04 1.61890000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.96460000e+04 2.86150000e+04 1.91870000e+04 1.36450000e+04 7.73130000e+03 4.85000000e+03 1.97380000e+03 1.00480000e+03 7.92450000e+02 7.77230000e+02 3.69650000e+02 1.76240000e+02 9.76270000e+01 5.96760000e+01 2.70240000e+01 1.44590000e+01 4.56780000e+00 2.01010000e+00 6.42950000e-01 2.95040000e-01 1.65720000e-01 1.05780000e-01 5.45820000e-02 3.40390000e-02 1.57500000e-02] JK = 6.36962946124 M1 = [ 6.42970000e+04 3.45950000e+04 2.13710000e+04 1.14650000e+04 1.12980000e+04 1.05330000e+04 1.03790000e+04 1.03320000e+04 9.15720000e+03 9.02120000e+03 5.98590000e+03 3.85590000e+03 2.66360000e+03 1.45630000e+03 8.96570000e+02 3.57740000e+02 1.80960000e+02 1.42550000e+02 1.39800000e+02 6.63970000e+01 3.16770000e+01 1.75710000e+01 1.07560000e+01 4.88370000e+00 2.61850000e+00 8.30150000e-01 3.66130000e-01 1.17320000e-01 5.38980000e-02 3.02920000e-02 1.93420000e-02 9.98120000e-03 6.22470000e-03 2.87940000e-03] all other = [ 8.67990000e+04 3.74750000e+04 1.99770000e+04 8.98460000e+03 8.81810000e+03 8.06540000e+03 7.91510000e+03 7.87020000e+03 6.74960000e+03 6.62270000e+03 3.94340000e+03 2.27430000e+03 1.43810000e+03 6.87130000e+02 3.82800000e+02 1.29200000e+02 5.88430000e+01 4.48520000e+01 4.38720000e+01 1.90270000e+01 8.43450000e+00 4.45670000e+00 2.63580000e+00 1.14330000e+00 5.95580000e-01 1.81390000e-01 7.83590000e-02 2.46090000e-02 1.11900000e-02 6.25110000e-03 3.97490000e-03 2.04060000e-03 1.26870000e-03 5.84570000e-04] total = [ 9.58390000e+05 3.74870000e+05 1.86810000e+05 7.81380000e+04 2.68910000e+05 2.42370000e+05 3.29050000e+05 3.28500000e+05 2.78850000e+05 3.13100000e+05 1.82950000e+05 1.02760000e+05 6.36920000e+04 2.94590000e+04 1.60390000e+04 5.21770000e+03 2.32420000e+03 1.75960000e+03 1.12080000e+04 5.15150000e+03 2.35220000e+03 1.26490000e+03 7.55670000e+02 3.31280000e+02 1.73300000e+02 5.29230000e+01 2.28520000e+01 7.16600000e+00 3.25750000e+00 1.82080000e+00 1.15920000e+00 5.96880000e-01 3.72160000e-01 1.72360000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.48820000e+03 4.41870000e+03 2.03210000e+03 1.09740000e+03 6.57260000e+02 2.88980000e+02 1.51400000e+02 4.63110000e+01 2.00090000e+01 6.27750000e+00 2.85440000e+00 1.59590000e+00 1.01630000e+00 5.23590000e-01 3.26620000e-01 1.51400000e-01] [Ru.binding] K = 22.0876 L1 = 3.2041 M5 = 0.29 M4 = 0.2945 M1 = 0.5742 L3 = 2.8386 M3 = 0.4593 M2 = 0.4822 L2 = 2.972 [Re] JL1 = 1.13221165895 JL3 = 2.54531519448 JL2 = 1.35618377501 energy = [ 1.00000000e+00 1.50000000e+00 1.89050000e+00 1.90570000e+00 1.95980000e+00 1.97550000e+00 2.00000000e+00 2.35810000e+00 2.37690000e+00 2.67530000e+00 2.69670000e+00 2.91020000e+00 2.93350000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.05270000e+01 1.06120000e+01 1.19820000e+01 1.20780000e+01 1.25000000e+01 1.26000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 7.18130000e+01 7.23880000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.95023764713 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.54390000e+05 5.69570000e+05 5.74010000e+05 5.67620000e+05 3.74100000e+05 3.66170000e+05 2.65850000e+05 2.60130000e+05 2.12670000e+05 2.08150000e+05 1.95960000e+05 8.57730000e+04 4.35210000e+04 2.44990000e+04 9.57490000e+03 4.49200000e+03 3.76090000e+03 3.65840000e+03 2.39250000e+03 2.32610000e+03 2.06000000e+03 2.00260000e+03 1.07250000e+03 3.72720000e+02 7.99470000e+01 2.60370000e+01 1.07690000e+01 5.20520000e+00 2.53610000e+00 2.45640000e+00 1.64570000e+00 6.74190000e-01 1.36030000e-01 4.51370000e-02 1.02760000e-02 3.86670000e-03 1.90570000e-03 1.10820000e-03 5.01010000e-04 2.87530000e-04 1.19330000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.02790000e+05 3.08650000e+05 2.64860000e+05 2.59360000e+05 1.89370000e+05 1.85350000e+05 1.51750000e+05 1.48520000e+05 1.39880000e+05 6.23090000e+04 3.19990000e+04 1.81930000e+04 7.22660000e+03 3.43540000e+03 2.88500000e+03 2.80770000e+03 1.85040000e+03 1.79990000e+03 1.59740000e+03 1.55370000e+03 8.41760000e+02 2.98630000e+02 6.61730000e+01 2.21120000e+01 9.34420000e+00 4.60040000e+00 2.28370000e+00 2.21370000e+00 1.49880000e+00 6.28610000e-01 1.31940000e-01 4.47270000e-02 1.03020000e-02 3.83610000e-03 1.85120000e-03 1.04940000e-03 4.59760000e-04 2.52410000e-04 9.71670000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.63910000e+04 2.61200000e+04 1.74160000e+04 1.24990000e+04 9.25780000e+03 5.62570000e+03 3.73870000e+03 3.39600000e+03 3.34530000e+03 2.65190000e+03 2.61150000e+03 2.44390000e+03 2.40650000e+03 1.70680000e+03 9.49620000e+02 3.99360000e+02 2.10020000e+02 1.25590000e+02 8.16850000e+01 5.30130000e+01 5.19960000e+01 4.07330000e+01 2.34350000e+01 8.39140000e+00 4.01010000e+00 1.42390000e+00 6.95850000e-01 4.06920000e-01 2.66640000e-01 1.41420000e-01 8.89710000e-02 4.08580000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31600000e+05 1.09850000e+05 1.08520000e+05 9.56010000e+04 9.42870000e+04 9.06690000e+04 5.48290000e+04 3.54780000e+04 2.42730000e+04 1.28380000e+04 7.58820000e+03 6.69800000e+03 6.56850000e+03 4.86260000e+03 4.76650000e+03 4.37150000e+03 4.28420000e+03 2.73580000e+03 1.26620000e+03 4.03160000e+02 1.72440000e+02 8.75930000e+01 4.98460000e+01 2.83780000e+01 2.76730000e+01 2.01700000e+01 9.90660000e+00 2.70190000e+00 1.08230000e+00 3.08950000e-01 1.32560000e-01 7.11310000e-02 4.38710000e-02 2.14930000e-02 1.29000000e-02 5.59610000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.42420000e+04 4.00770000e+04 3.97600000e+04 3.87880000e+04 2.57560000e+04 1.78970000e+04 1.28640000e+04 7.25960000e+03 4.49580000e+03 4.00850000e+03 3.93740000e+03 2.98750000e+03 2.93290000e+03 2.70730000e+03 2.65730000e+03 1.75530000e+03 8.58330000e+02 2.95330000e+02 1.33660000e+02 7.10390000e+01 4.19910000e+01 2.48410000e+01 2.42660000e+01 1.80760000e+01 9.32930000e+00 2.78960000e+00 1.19190000e+00 3.69890000e-01 1.66730000e-01 9.22470000e-02 5.80250000e-02 2.91650000e-02 1.77460000e-02 7.84770000e-03] total = [ 1.19360000e+06 5.31060000e+05 3.24650000e+05 4.73470000e+05 8.69790000e+05 9.71840000e+05 1.16350000e+06 8.38450000e+05 9.53090000e+05 7.15080000e+05 7.45550000e+05 6.23820000e+05 6.38580000e+05 6.06770000e+05 3.04800000e+05 1.75710000e+05 1.11050000e+05 5.32510000e+04 2.98460000e+04 2.60950000e+04 6.64200000e+04 4.80370000e+04 6.51470000e+04 5.98510000e+04 6.77640000e+04 4.36020000e+04 2.04690000e+04 6.91380000e+03 3.15980000e+03 1.71080000e+03 1.03310000e+03 6.26980000e+02 3.10370000e+03 2.37980000e+03 1.32950000e+03 4.48010000e+02 2.05890000e+02 6.98970000e+01 3.33920000e+01 1.92910000e+01 1.25560000e+01 6.62150000e+00 4.16190000e+00 1.91490000e+00] JM2 = 1.04261061699 JM3 = 1.13672848709 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.49050000e+03 1.91570000e+03 1.08060000e+03 3.67760000e+02 1.69710000e+02 5.78340000e+01 2.76900000e+01 1.60250000e+01 1.04460000e+01 5.52120000e+00 3.47620000e+00 1.60330000e+00] JM1 = 1.02366067135 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.54390000e+05 5.69570000e+05 6.76800000e+05 8.76280000e+05 6.38970000e+05 7.57130000e+05 5.65080000e+05 5.98240000e+05 5.00100000e+05 5.17100000e+05 4.91410000e+05 2.46080000e+05 1.41390000e+05 8.90860000e+04 4.25250000e+04 2.37500000e+04 2.07480000e+04 2.03170000e+04 1.47450000e+04 1.44370000e+04 1.31800000e+04 1.29040000e+04 8.11220000e+03 3.74550000e+03 1.24400000e+03 5.64270000e+02 3.04330000e+02 1.83330000e+02 1.11050000e+02 1.08600000e+02 8.21240000e+01 4.39740000e+01 1.41510000e+01 6.37430000e+00 2.12330000e+00 1.00280000e+00 5.74060000e-01 3.70690000e-01 1.93040000e-01 1.20160000e-01 5.45180000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.08640000e+04 2.94570000e+04 4.69520000e+04 4.32320000e+04 5.14910000e+04 3.33470000e+04 1.57160000e+04 5.32850000e+03 2.43870000e+03 1.32120000e+03 7.98070000e+02 4.84440000e+02 4.73800000e+02 3.58610000e+02 1.92340000e+02 6.20170000e+01 2.79580000e+01 9.32140000e+00 4.40620000e+00 2.52430000e+00 1.63140000e+00 8.50690000e-01 5.30240000e-01 2.41060000e-01] JM4 = 1.11732717093 JM5 = 1.45840135531 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.81050000e+04 1.68630000e+04 1.64660000e+04 1.05650000e+04 4.83540000e+03 1.54450000e+03 6.66690000e+02 3.43330000e+02 1.98350000e+02 1.15000000e+02 1.12240000e+02 8.27560000e+01 4.18490000e+01 1.21490000e+01 5.10890000e+00 1.55950000e+00 6.97190000e-01 3.83910000e-01 2.40780000e-01 1.20510000e-01 7.31540000e-02 3.22950000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.08640000e+04 2.94570000e+04 2.88470000e+04 2.63680000e+04 2.58210000e+04 1.59370000e+04 6.87260000e+03 2.02040000e+03 8.24970000e+02 4.06080000e+02 2.25930000e+02 1.26110000e+02 1.22880000e+02 8.86780000e+01 4.27050000e+01 1.13220000e+01 4.46820000e+00 1.25620000e+00 5.35040000e-01 2.85930000e-01 1.75910000e-01 8.61010000e-02 5.16430000e-02 2.24050000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.20300000e+03 6.84430000e+03 4.00840000e+03 1.76360000e+03 9.47040000e+02 5.71790000e+02 3.73800000e+02 2.43330000e+02 2.38680000e+02 1.87180000e+02 1.07780000e+02 3.85460000e+01 1.83810000e+01 6.50580000e+00 3.17400000e+00 1.85450000e+00 1.21470000e+00 6.44080000e-01 4.05440000e-01 1.86360000e-01] all other = [ 1.19360000e+06 5.31060000e+05 3.24650000e+05 3.19080000e+05 3.00220000e+05 2.95040000e+05 2.87220000e+05 1.99480000e+05 1.95950000e+05 1.50010000e+05 1.47310000e+05 1.23730000e+05 1.21480000e+05 1.15360000e+05 5.87220000e+04 3.43200000e+04 2.19610000e+04 1.07260000e+04 6.09630000e+03 5.34680000e+03 5.23880000e+03 3.83600000e+03 3.75800000e+03 3.43910000e+03 3.36900000e+03 2.14300000e+03 1.00670000e+03 3.41340000e+02 1.56780000e+02 8.53030000e+01 5.17060000e+01 3.14940000e+01 3.08070000e+01 2.33610000e+01 1.25800000e+01 4.08290000e+00 1.84750000e+00 6.18580000e-01 2.92940000e-01 1.67960000e-01 1.08570000e-01 5.65940000e-02 3.52580000e-02 1.60090000e-02] [Re.binding] K = 71.885 L1 = 12.5126 M5 = 1.8924 M4 = 1.9618 M1 = 2.9131 L3 = 10.5379 M3 = 2.3604 M2 = 2.678 L2 = 11.9938 [Ra] JL1 = 1.13319729412 JL3 = 2.38071930198 JL2 = 1.38053669576 energy = [ 1.00000000e+00 1.04800000e+00 1.05640000e+00 1.19010000e+00 1.19970000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.10760000e+00 3.13250000e+00 3.25530000e+00 3.28130000e+00 3.76960000e+00 3.79980000e+00 4.00000000e+00 4.47850000e+00 4.51430000e+00 4.79530000e+00 4.83370000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.54400000e+01 1.55630000e+01 1.85430000e+01 1.86920000e+01 1.92320000e+01 1.93860000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.04340000e+02 1.05170000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.347430256 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.80110000e+05 3.04380000e+05 2.98280000e+05 2.09810000e+05 2.05240000e+05 1.77650000e+05 1.28290000e+05 1.25360000e+05 1.05750000e+05 1.03420000e+05 9.39330000e+04 5.45650000e+04 2.24430000e+04 1.09290000e+04 2.78710000e+03 2.52150000e+03 2.45250000e+03 1.32580000e+03 1.28880000e+03 1.16450000e+03 1.13190000e+03 1.01270000e+03 2.30810000e+02 7.83800000e+01 3.34410000e+01 1.65600000e+01 5.42590000e+00 2.28020000e+00 1.93420000e+00 1.87530000e+00 4.79120000e-01 1.62430000e-01 3.78160000e-02 1.43600000e-02 7.14740000e-03 4.16060000e-03 1.88990000e-03 1.07800000e-03 4.41040000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.39650000e+05 1.52350000e+05 1.49240000e+05 1.30130000e+05 9.49000000e+04 9.27740000e+04 7.79810000e+04 7.63120000e+04 6.96190000e+04 4.10400000e+04 1.72530000e+04 8.54640000e+03 2.25230000e+03 2.04300000e+03 1.98860000e+03 1.09150000e+03 1.06180000e+03 9.61920000e+02 9.35630000e+02 8.39370000e+02 1.98940000e+02 6.96370000e+01 3.04650000e+01 1.54110000e+01 5.22720000e+00 2.25680000e+00 1.92410000e+00 1.86730000e+00 4.96490000e-01 1.72840000e-01 4.10750000e-02 1.55640000e-02 7.66970000e-03 4.39320000e-03 1.92520000e-03 1.08040000e-03 4.17660000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.46980000e+04 1.40270000e+04 1.09620000e+04 7.09970000e+03 4.92040000e+03 2.39660000e+03 2.27110000e+03 2.23760000e+03 1.60530000e+03 1.58070000e+03 1.49580000e+03 1.47290000e+03 1.38640000e+03 6.12420000e+02 3.32910000e+02 2.04180000e+02 1.35600000e+02 6.98650000e+01 4.12250000e+01 3.72470000e+01 3.65420000e+01 1.54500000e+01 7.62150000e+00 2.82510000e+00 1.41970000e+00 8.46040000e-01 5.61600000e-01 3.02230000e-01 1.91410000e-01 8.79310000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.08550000e+04 7.48960000e+04 6.30440000e+04 6.22000000e+04 5.57870000e+04 5.49580000e+04 5.15380000e+04 3.66760000e+04 2.05330000e+04 1.26400000e+04 4.88830000e+03 4.55520000e+03 4.46700000e+03 2.88010000e+03 2.82230000e+03 2.62430000e+03 2.57120000e+03 2.37270000e+03 8.04530000e+02 3.59080000e+02 1.88300000e+02 1.09870000e+02 4.61650000e+01 2.33020000e+01 2.04450000e+01 1.99480000e+01 6.64670000e+00 2.73570000e+00 8.04800000e-01 3.50280000e-01 1.89380000e-01 1.17070000e-01 5.73130000e-02 3.42200000e-02 1.46420000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.32910000e+04 2.19220000e+04 2.17480000e+04 2.10780000e+04 1.64570000e+04 1.04900000e+04 7.02140000e+03 3.09160000e+03 2.90570000e+03 2.85600000e+03 1.93770000e+03 1.90310000e+03 1.78390000e+03 1.75170000e+03 1.63070000e+03 6.18610000e+02 2.98610000e+02 1.66440000e+02 1.02140000e+02 4.65030000e+01 2.50030000e+01 2.22040000e+01 2.17140000e+01 8.00480000e+00 3.57090000e+00 1.16810000e+00 5.43220000e-01 3.07070000e-01 1.96040000e-01 1.00240000e-01 6.17360000e-02 2.77610000e-02] total = [ 2.32270000e+06 2.13310000e+06 2.13270000e+06 1.70530000e+06 1.71400000e+06 1.10260000e+06 6.03790000e+05 2.46120000e+05 2.27140000e+05 6.03150000e+05 5.08660000e+05 7.38520000e+05 5.07670000e+05 5.78170000e+05 5.09370000e+05 3.83300000e+05 3.98860000e+05 3.43940000e+05 3.52080000e+05 3.24860000e+05 2.07790000e+05 1.01540000e+05 5.76390000e+04 2.02610000e+04 1.87960000e+04 4.47480000e+04 2.78370000e+04 3.84300000e+04 3.57740000e+04 4.05390000e+04 3.74090000e+04 1.31590000e+04 6.15690000e+03 3.39170000e+03 2.07560000e+03 9.51260000e+02 5.17930000e+02 4.61330000e+02 2.00560000e+03 8.05350000e+02 3.80530000e+02 1.34080000e+02 6.56160000e+01 3.85490000e+01 2.53850000e+01 1.35640000e+01 8.57330000e+00 3.94410000e+00] JM2 = 1.04059483433 JM3 = 1.13886973822 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1554.2 633.76 301.67 107.07 52.624 31.015 20.476 10.983 6.9594 3.2116] JM1 = 1.02366691865 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.80110000e+05 3.04380000e+05 5.37930000e+05 3.62160000e+05 4.35330000e+05 3.82680000e+05 2.86240000e+05 3.03620000e+05 2.61440000e+05 2.71140000e+05 2.50200000e+05 1.59700000e+05 7.78180000e+04 4.40570000e+04 1.54160000e+04 1.42970000e+04 1.40020000e+04 8.84040000e+03 8.65680000e+03 8.03050000e+03 7.86330000e+03 7.24190000e+03 2.46530000e+03 1.13860000e+03 6.22830000e+02 3.79580000e+02 1.73190000e+02 9.40670000e+01 8.37540000e+01 8.19470000e+01 3.10770000e+01 1.42630000e+01 4.87690000e+00 2.34310000e+00 1.35730000e+00 8.83270000e-01 4.63600000e-01 2.89520000e-01 1.31190000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.63380000e+04 1.61930000e+04 2.70270000e+04 2.51930000e+04 3.01770000e+04 2.78620000e+04 9.89740000e+03 4.64730000e+03 2.56470000e+03 1.57110000e+03 7.20680000e+02 3.92550000e+02 3.49670000e+02 3.42150000e+02 1.30090000e+02 5.97960000e+01 2.04820000e+01 9.85560000e+00 5.71720000e+00 3.72540000e+00 1.95970000e+00 1.22600000e+00 5.56690000e-01] JM4 = 1.45189320961 JM5 = 2.65541075988 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.11740000e+04 1.05040000e+04 1.03190000e+04 9.45290000e+03 3.32520000e+03 1.52330000e+03 8.18370000e+02 4.88500000e+02 2.14040000e+02 1.12130000e+02 9.91310000e+01 9.68630000e+01 3.45560000e+01 1.50970000e+01 4.83070000e+00 2.22160000e+00 1.24800000e+00 7.93520000e-01 4.03950000e-01 2.48260000e-01 1.11210000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.63380000e+04 1.61930000e+04 1.58520000e+04 1.46880000e+04 1.43760000e+04 1.32070000e+04 4.08170000e+03 1.72090000e+03 8.68560000e+02 4.92900000e+02 1.99330000e+02 9.81090000e+01 8.57070000e+01 8.35570000e+01 2.69810000e+01 1.08890000e+01 3.13950000e+00 1.35320000e+00 7.27790000e-01 4.48480000e-01 2.18820000e-01 1.30700000e-01 5.59150000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.48220000e+03 5.20270000e+03 2.49050000e+03 1.40320000e+03 8.77780000e+02 5.89660000e+02 3.07310000e+02 1.82310000e+02 1.64840000e+02 1.61730000e+02 6.85550000e+01 3.38100000e+01 1.25120000e+01 6.28080000e+00 3.74140000e+00 2.48340000e+00 1.33690000e+00 8.47040000e-01 3.89570000e-01] all other = [ 2.32270000e+06 2.13310000e+06 2.13270000e+06 1.70530000e+06 1.71400000e+06 1.10260000e+06 6.03790000e+05 2.46120000e+05 2.27140000e+05 2.23040000e+05 2.04280000e+05 2.00580000e+05 1.45510000e+05 1.42840000e+05 1.26690000e+05 9.70560000e+04 9.52390000e+04 8.25040000e+04 8.09490000e+04 7.46600000e+04 4.80900000e+04 2.37200000e+04 1.35820000e+04 4.84550000e+03 4.49890000e+03 4.40760000e+03 2.80400000e+03 2.74660000e+03 2.55110000e+03 2.49890000e+03 2.30440000e+03 7.96160000e+02 3.70930000e+02 2.04150000e+02 1.24990000e+02 5.73910000e+01 3.13170000e+01 2.79050000e+01 2.73070000e+01 1.04170000e+01 4.79960000e+00 1.64790000e+00 7.93540000e-01 4.60220000e-01 2.99710000e-01 1.57450000e-01 9.83900000e-02 4.45820000e-02] [Ra.binding] K = 104.4397 L1 = 19.2513 M5 = 3.1107 M4 = 3.2585 M1 = 4.8001 L3 = 15.455 M3 = 3.7734 M2 = 4.483 L2 = 18.5617 [Rb] JL1 = 1.12108819735 JL3 = 3.91433773327 JL2 = 1.36345664368 energy = [ 1.00000000e+00 1.50000000e+00 1.80320000e+00 1.81760000e+00 1.86530000e+00 1.88020000e+00 2.00000000e+00 2.04610000e+00 2.06250000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.51440000e+01 1.52650000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 6.05110000e+04 2.76760000e+04 1.86580000e+04 1.83330000e+04 1.73120000e+04 1.70070000e+04 1.48000000e+04 1.40520000e+04 1.37990000e+04 5.61350000e+03 2.66800000e+03 1.45580000e+03 8.72300000e+02 3.77410000e+02 1.92420000e+02 5.38630000e+01 5.22330000e+01 5.09090000e+01 2.10920000e+01 5.40990000e+00 2.01480000e+00 9.27620000e-01 4.90130000e-01 1.78460000e-01 8.15850000e-02 2.00240000e-02 7.55520000e-03 2.01800000e-03 8.32880000e-04 4.34920000e-04 2.62770000e-04 1.25140000e-04 7.36400000e-05 3.11640000e-05] M = [ 4.23500000e+05 1.60420000e+05 1.01810000e+05 9.98020000e+04 9.35590000e+04 9.17110000e+04 7.85500000e+04 7.41740000e+04 7.26980000e+04 2.78470000e+04 1.30850000e+04 7.21450000e+03 4.41150000e+03 2.01180000e+03 1.08620000e+03 3.49050000e+02 3.39750000e+02 3.32180000e+02 1.54260000e+02 4.81000000e+01 2.08300000e+01 1.08220000e+01 6.31520000e+00 2.68460000e+00 1.37780000e+00 4.08850000e-01 1.73750000e-01 5.34640000e-02 2.40250000e-02 1.33240000e-02 8.43490000e-03 4.31290000e-03 2.67960000e-03 1.23860000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.22280000e+05 3.03640000e+05 4.52680000e+05 3.98300000e+05 3.76980000e+05 4.33930000e+05 1.70160000e+05 8.08110000e+04 4.46740000e+04 2.73170000e+04 1.24200000e+04 6.68500000e+03 2.13560000e+03 2.07840000e+03 2.03190000e+03 9.40410000e+02 2.91930000e+02 1.26050000e+02 6.53500000e+01 3.80780000e+01 1.61520000e+01 8.27680000e+00 2.45200000e+00 1.04060000e+00 3.19770000e-01 1.43590000e-01 7.96080000e-02 5.03940000e-02 2.57680000e-02 1.60100000e-02 7.40300000e-03] M5 = [ 1.17210000e+05 3.30240000e+04 1.79950000e+04 1.75200000e+04 1.60610000e+04 1.56350000e+04 1.26810000e+04 1.17320000e+04 1.14160000e+04 3.04730000e+03 1.05320000e+03 4.50060000e+02 2.21160000e+02 7.00540000e+01 2.80490000e+01 5.06900000e+00 4.86550000e+00 4.70200000e+00 1.46330000e+00 2.47420000e-01 6.91430000e-02 2.55950000e-02 1.13020000e-02 3.15360000e-03 1.18610000e-03 2.09160000e-04 6.40730000e-05 1.34070000e-05 4.83700000e-06 2.31940000e-06 1.34980000e-06 6.07210000e-07 3.59940000e-07 1.53530000e-07] M4 = [ 8.02640000e+04 2.27300000e+04 1.24160000e+04 1.20900000e+04 1.10860000e+04 1.07940000e+04 8.76200000e+03 8.10910000e+03 7.89160000e+03 2.11860000e+03 7.35800000e+02 3.15740000e+02 1.55720000e+02 4.96420000e+01 1.99910000e+01 3.65870000e+00 3.51290000e+00 3.39570000e+00 1.06720000e+00 1.83550000e-01 5.20280000e-02 1.94910000e-02 8.75310000e-03 2.49000000e-03 9.49030000e-04 1.70720000e-04 5.27020000e-05 1.08700000e-05 3.80570000e-06 1.77600000e-06 9.72340000e-07 4.12840000e-07 2.18750000e-07 8.08860000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.53310000e+05 1.36050000e+05 1.29330000e+05 1.26910000e+05 4.72260000e+04 2.11460000e+04 1.10600000e+04 6.41910000e+03 2.65500000e+03 1.31330000e+03 3.51560000e+02 3.40610000e+02 3.31730000e+02 1.34330000e+02 3.35340000e+01 1.23010000e+01 5.60940000e+00 2.94440000e+00 1.06320000e+00 4.83580000e-01 1.17570000e-01 4.41720000e-02 1.17440000e-02 4.83470000e-03 2.52100000e-03 1.52540000e-03 7.25740000e-04 4.27740000e-04 1.80670000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.22280000e+05 3.03640000e+05 2.99370000e+05 2.62250000e+05 2.47650000e+05 2.42600000e+05 8.83860000e+04 3.90280000e+04 2.02120000e+04 1.16370000e+04 4.74870000e+03 2.32370000e+03 6.08690000e+02 5.89410000e+02 5.73780000e+02 2.28620000e+02 5.55170000e+01 1.99100000e+01 8.90380000e+00 4.59360000e+00 1.61010000e+00 7.14340000e-01 1.65590000e-01 6.02200000e-02 1.54500000e-02 6.29300000e-03 3.29290000e-03 2.00410000e-03 9.81490000e-04 5.94280000e-04 2.68070000e-04] M3 = [ 1.19510000e+05 5.34970000e+04 3.57540000e+04 3.51180000e+04 3.31210000e+04 3.25250000e+04 2.82270000e+04 2.67740000e+04 2.62810000e+04 1.05180000e+04 4.93720000e+03 2.66760000e+03 1.58530000e+03 6.76720000e+02 3.41240000e+02 9.34440000e+01 9.05660000e+01 8.82300000e+01 3.59570000e+01 8.96710000e+00 3.26410000e+00 1.47370000e+00 7.65350000e-01 2.70600000e-01 1.20720000e-01 2.81520000e-02 1.02780000e-02 2.64670000e-03 1.07970000e-03 5.65600000e-04 3.45110000e-04 1.68910000e-04 1.02630000e-04 4.61420000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.44130000e+04 3.45510000e+04 2.06360000e+04 1.34030000e+04 9.26130000e+03 5.01620000e+03 3.04800000e+03 1.17540000e+03 1.14840000e+03 1.12640000e+03 5.77460000e+02 2.02880000e+02 9.38410000e+01 5.08370000e+01 3.05400000e+01 1.34780000e+01 7.07890000e+00 2.16880000e+00 9.36250000e-01 2.92570000e-01 1.32470000e-01 7.37940000e-02 4.68640000e-02 2.40610000e-02 1.49880000e-02 6.95420000e-03] JK = 6.82389297768 M1 = [ 4.60020000e+04 2.34900000e+04 1.69830000e+04 1.67410000e+04 1.59790000e+04 1.57500000e+04 1.40800000e+04 1.35060000e+04 1.33100000e+04 6.54960000e+03 3.69070000e+03 2.32530000e+03 1.57700000e+03 8.37940000e+02 5.04520000e+02 1.93010000e+02 1.88570000e+02 1.84950000e+02 9.46750000e+01 3.32920000e+01 1.54300000e+01 8.37520000e+00 5.03960000e+00 2.22990000e+00 1.17340000e+00 3.60290000e-01 1.55800000e-01 4.87750000e-02 2.21040000e-02 1.23190000e-02 7.82470000e-03 4.01780000e-03 2.50270000e-03 1.16110000e-03] all other = [ 2.61010000e+04 1.18190000e+04 8.03960000e+03 7.90400000e+03 7.47790000e+03 7.35080000e+03 6.43090000e+03 6.11890000e+03 6.01310000e+03 2.57620000e+03 1.29890000e+03 7.49890000e+02 4.73790000e+02 2.25880000e+02 1.25560000e+02 4.21730000e+01 4.10870000e+01 4.02020000e+01 1.91260000e+01 6.13400000e+00 2.69860000e+00 1.41630000e+00 8.32490000e-01 3.57240000e-01 1.84420000e-01 5.52100000e-02 2.35610000e-02 7.28070000e-03 3.27850000e-03 1.82040000e-03 1.15340000e-03 5.90520000e-04 3.67220000e-04 1.70140000e-04] total = [ 4.49600000e+05 1.72240000e+05 1.09850000e+05 4.29990000e+05 4.04670000e+05 5.51750000e+05 4.83280000e+05 4.57270000e+05 5.12640000e+05 2.00590000e+05 9.51940000e+04 5.26390000e+04 3.22030000e+04 1.46580000e+04 7.89680000e+03 2.52680000e+03 2.45930000e+03 1.67820000e+04 8.35710000e+03 2.76940000e+03 1.23430000e+03 6.51660000e+02 3.84040000e+02 1.65020000e+02 8.51190000e+01 2.53960000e+01 1.08050000e+01 3.32680000e+00 1.49580000e+00 8.30280000e-01 5.26260000e-01 2.69800000e-01 1.68030000e-01 7.80300000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.43780000e+04 7.24330000e+03 2.42330000e+03 1.08480000e+03 5.74070000e+02 3.38820000e+02 1.45820000e+02 7.52800000e+01 2.24800000e+01 9.56750000e+00 2.94630000e+00 1.32490000e+00 7.35530000e-01 4.66270000e-01 2.39130000e-01 1.48980000e-01 6.92190000e-02] [Rb.binding] K = 15.1593 L1 = 2.0481 M5 = 0.1175 M4 = 0.1192 M1 = 0.3133 L3 = 1.805 M3 = 0.2373 M2 = 0.2467 L2 = 1.8671 [Rn] JL1 = 1.13301816115 JL3 = 2.40096300051 JL2 = 1.37484709227 energy = [ 1.00000000e+00 1.07290000e+00 1.08150000e+00 1.50000000e+00 2.00000000e+00 2.88590000e+00 2.90900000e+00 3.00000000e+00 3.01840000e+00 3.04260000e+00 3.51420000e+00 3.54230000e+00 4.00000000e+00 4.14430000e+00 4.17750000e+00 4.44740000e+00 4.48300000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.46040000e+01 1.47210000e+01 1.50000000e+01 1.73800000e+01 1.75190000e+01 1.80390000e+01 1.81840000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 9.87570000e+01 9.95470000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.44474404713 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.30970000e+05 3.47430000e+05 3.41140000e+05 3.34010000e+05 2.30420000e+05 2.25370000e+05 1.59690000e+05 1.44220000e+05 1.40950000e+05 1.18380000e+05 1.15800000e+05 8.43580000e+04 4.89820000e+04 1.99430000e+04 9.66030000e+03 2.67880000e+03 2.60550000e+03 2.44040000e+03 1.45480000e+03 1.41420000e+03 1.27450000e+03 1.23880000e+03 8.81250000e+02 1.99090000e+02 6.71950000e+01 2.85410000e+01 1.40830000e+01 4.59010000e+00 2.01780000e+00 1.95600000e+00 1.92170000e+00 4.01380000e-01 1.35590000e-01 3.14490000e-02 1.19900000e-02 5.93100000e-03 3.45210000e-03 1.56260000e-03 8.98010000e-04 3.64470000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.32150000e+05 1.66800000e+05 1.63330000e+05 1.17080000e+05 1.05980000e+05 1.03620000e+05 8.67690000e+04 8.49080000e+04 6.27580000e+04 3.67950000e+04 1.53090000e+04 7.53550000e+03 2.15120000e+03 2.09380000e+03 1.96410000e+03 1.18530000e+03 1.15300000e+03 1.04170000e+03 1.01320000e+03 7.26690000e+02 1.70530000e+02 5.92900000e+01 2.58060000e+01 1.30020000e+01 4.38370000e+00 1.97570000e+00 1.91710000e+00 1.88450000e+00 4.11670000e-01 1.42690000e-01 3.37350000e-02 1.28350000e-02 6.26700000e-03 3.58390000e-03 1.56720000e-03 8.76620000e-04 3.39080000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.62580000e+04 1.39210000e+04 1.07350000e+04 6.93050000e+03 4.77480000e+03 2.41450000e+03 2.37880000e+03 2.29690000e+03 1.73540000e+03 1.70880000e+03 1.61470000e+03 1.59000000e+03 1.32010000e+03 5.78260000e+02 3.12760000e+02 1.91120000e+02 1.26510000e+02 6.48650000e+01 3.92940000e+01 3.85490000e+01 3.81300000e+01 1.41920000e+01 6.96690000e+00 2.56520000e+00 1.28330000e+00 7.62460000e-01 5.05040000e-01 2.71130000e-01 1.71530000e-01 7.87760000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.51430000e+04 7.28610000e+04 6.89100000e+04 6.79980000e+04 6.08090000e+04 5.99140000e+04 4.87320000e+04 3.47760000e+04 1.92700000e+04 1.17980000e+04 4.82410000e+03 4.73060000e+03 4.51650000e+03 3.12270000e+03 3.06010000e+03 2.84030000e+03 2.78290000e+03 2.17580000e+03 7.31080000e+02 3.24260000e+02 1.69260000e+02 9.84050000e+01 4.11170000e+01 2.14870000e+01 2.09630000e+01 2.06710000e+01 5.85700000e+00 2.40090000e+00 7.03100000e-01 3.05620000e-01 1.64930000e-01 1.01930000e-01 4.99160000e-02 2.98140000e-02 1.27930000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.53530000e+04 2.41350000e+04 2.39600000e+04 2.11710000e+04 1.60640000e+04 1.00630000e+04 6.64890000e+03 3.04640000e+03 2.99380000e+03 2.87290000e+03 2.06870000e+03 2.03160000e+03 1.90040000e+03 1.86590000e+03 1.49650000e+03 5.58960000e+02 2.67060000e+02 1.47750000e+02 9.01250000e+01 4.06750000e+01 2.25110000e+01 2.20100000e+01 2.17300000e+01 6.88260000e+00 3.04950000e+00 9.89240000e-01 4.58080000e-01 2.57940000e-01 1.64290000e-01 8.37520000e-02 5.14870000e-02 2.30950000e-02] total = [ 2.14300000e+06 1.88330000e+06 1.89460000e+06 9.97720000e+05 5.45010000e+05 2.41920000e+05 7.68550000e+05 5.68940000e+05 5.59580000e+05 8.80660000e+05 5.51160000e+05 6.24980000e+05 4.63390000e+05 4.23760000e+05 4.40610000e+05 3.78640000e+05 3.87720000e+05 2.97870000e+05 1.90400000e+05 9.27050000e+04 5.25290000e+04 1.97300000e+04 4.73710000e+04 4.51130000e+04 3.02470000e+04 4.15850000e+04 3.87090000e+04 4.38580000e+04 3.43260000e+04 1.20040000e+04 5.59800000e+03 3.07510000e+03 1.87770000e+03 8.57750000e+02 4.82120000e+02 2.14290000e+03 2.12500000e+03 7.41180000e+02 3.49120000e+02 1.22240000e+02 5.95890000e+01 3.49090000e+01 2.29430000e+01 1.22320000e+01 7.72390000e+00 3.55290000e+00] JM2 = 1.03976307344 JM3 = 1.13393569925 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1671.2 1659.1 587.51 278.72 98.232 48.069 28.243 18.606 9.9551 6.3009 2.9072] JM1 = 1.02398056201 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.30970000e+05 3.47430000e+05 3.41140000e+05 6.66160000e+05 3.97210000e+05 4.73850000e+05 3.49630000e+05 3.19110000e+05 3.37920000e+05 2.90090000e+05 3.00840000e+05 2.30940000e+05 1.47350000e+05 7.15160000e+04 4.04170000e+04 1.51150000e+04 1.48030000e+04 1.40910000e+04 9.56690000e+03 9.36790000e+03 8.67160000e+03 8.49080000e+03 6.60040000e+03 2.23790000e+03 1.03060000e+03 5.62470000e+02 3.42130000e+02 1.55630000e+02 8.72860000e+01 8.53950000e+01 8.43370000e+01 2.77450000e+01 1.26960000e+01 4.32270000e+00 2.07190000e+00 1.19750000e+00 7.78290000e-01 4.07920000e-01 2.54610000e-01 1.15370000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.80470000e+04 2.67150000e+04 1.77360000e+04 2.93330000e+04 2.73640000e+04 3.27490000e+04 2.56820000e+04 9.06270000e+03 4.24060000e+03 2.33310000e+03 1.42590000e+03 6.51880000e+02 3.66530000e+02 3.58620000e+02 3.54200000e+02 1.16860000e+02 5.35470000e+01 1.82620000e+01 8.76520000e+00 5.07310000e+00 3.30130000e+00 1.73390000e+00 1.08400000e+00 4.92190000e-01] JM4 = 1.57378748347 JM5 = 3.17687665344 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.19710000e+04 1.13070000e+04 1.10830000e+04 8.59290000e+03 2.98620000e+03 1.35720000e+03 7.23930000e+02 4.29730000e+02 1.86780000e+02 1.00950000e+02 9.86190000e+01 9.73190000e+01 2.97100000e+01 1.29010000e+01 4.09730000e+00 1.87740000e+00 1.05060000e+00 6.66600000e-01 3.38370000e-01 2.07590000e-01 9.27720000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.80470000e+04 2.67150000e+04 1.77360000e+04 1.73630000e+04 1.60570000e+04 1.57170000e+04 1.20970000e+04 3.69530000e+03 1.55210000e+03 7.80700000e+02 4.41740000e+02 1.77860000e+02 9.08310000e+01 8.85440000e+01 8.72690000e+01 2.38710000e+01 9.60150000e+00 2.75780000e+00 1.18780000e+00 6.37710000e-01 3.92890000e-01 1.91780000e-01 1.14640000e-01 4.91430000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.95010000e+03 4.99250000e+03 2.38130000e+03 1.33130000e+03 8.28510000e+02 5.54430000e+02 2.87240000e+02 1.74760000e+02 1.71460000e+02 1.69610000e+02 6.32820000e+01 3.10440000e+01 1.14070000e+01 5.70010000e+00 3.38480000e+00 2.24180000e+00 1.20370000e+00 7.61820000e-01 3.50280000e-01] all other = [ 2.14300000e+06 1.88330000e+06 1.89460000e+06 9.97720000e+05 5.45010000e+05 2.41920000e+05 2.37590000e+05 2.21510000e+05 2.18440000e+05 2.14510000e+05 1.53950000e+05 1.51130000e+05 1.13760000e+05 1.04650000e+05 1.02690000e+05 8.85460000e+04 8.68830000e+04 6.69300000e+04 4.30500000e+04 2.11890000e+04 1.21120000e+04 4.61470000e+03 4.52100000e+03 4.30740000e+03 2.94410000e+03 2.88380000e+03 2.67290000e+03 2.61810000e+03 2.04350000e+03 7.03380000e+02 3.26850000e+02 1.79500000e+02 1.09700000e+02 5.02410000e+01 2.83020000e+01 2.76930000e+01 2.73530000e+01 9.05970000e+00 4.16170000e+00 1.42270000e+00 6.83500000e-01 3.95580000e-01 2.57300000e-01 1.34970000e-01 8.42960000e-02 3.81940000e-02] [Rn.binding] K = 98.8554 L1 = 18.0575 M5 = 2.8888 M4 = 3.0214 M1 = 4.4518 L3 = 14.6183 M3 = 3.5177 M2 = 4.1485 L2 = 17.3974 [Rh] JL1 = 1.12321551263 JL3 = 3.37396580991 JL2 = 1.35458307652 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.00140000e+00 3.02540000e+00 3.14850000e+00 3.17370000e+00 3.38800000e+00 3.41520000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.31690000e+01 2.33550000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 9.33870000e+04 4.88070000e+04 2.83200000e+04 1.19440000e+04 1.19310000e+04 1.17180000e+04 1.07020000e+04 1.05080000e+04 9.03710000e+03 8.87060000e+03 6.09150000e+03 3.50130000e+03 2.18500000e+03 1.00420000e+03 5.35300000e+02 1.61930000e+02 6.67870000e+01 4.20120000e+01 4.09610000e+01 1.83220000e+01 7.13090000e+00 3.39130000e+00 1.83790000e+00 6.94910000e-01 3.26410000e-01 8.35050000e-02 3.23410000e-02 8.93750000e-03 3.75910000e-03 1.98660000e-03 1.21040000e-03 5.82760000e-04 3.45480000e-04 1.47610000e-04] M = [ 9.51890000e+05 3.70130000e+05 1.83360000e+05 6.59120000e+04 6.58340000e+04 6.45010000e+04 5.82210000e+04 5.70390000e+04 4.81880000e+04 4.72040000e+04 3.12910000e+04 1.73890000e+04 1.06970000e+04 4.91920000e+03 2.67240000e+03 8.69040000e+02 3.87530000e+02 2.55610000e+02 2.49890000e+02 1.22440000e+02 5.35750000e+01 2.80820000e+01 1.65170000e+01 7.11480000e+00 3.69090000e+00 1.11820000e+00 4.81960000e-01 1.51030000e-01 6.86330000e-02 3.83240000e-02 2.43650000e-02 1.25010000e-02 7.76660000e-03 3.57160000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.79110000e+05 1.60900000e+05 2.42770000e+05 2.07070000e+05 2.40460000e+05 1.63360000e+05 9.18740000e+04 5.71020000e+04 2.65060000e+04 1.44540000e+04 4.71040000e+03 2.09990000e+03 1.38460000e+03 1.35360000e+03 6.62820000e+02 2.89820000e+02 1.51800000e+02 8.92300000e+01 3.83950000e+01 1.99010000e+01 6.02030000e+00 2.59240000e+00 8.11830000e-01 3.68750000e-01 2.05860000e-01 1.30880000e-01 6.71650000e-02 4.17390000e-02 1.92050000e-02] M5 = [ 3.55370000e+05 1.11440000e+05 4.59280000e+04 1.21290000e+04 1.21100000e+04 1.17870000e+04 1.02900000e+04 1.00130000e+04 7.99780000e+03 7.78040000e+03 4.47590000e+03 2.00720000e+03 1.02340000e+03 3.42490000e+02 1.43010000e+02 2.78570000e+01 8.42500000e+00 4.52750000e+00 4.37690000e+00 1.50210000e+00 4.34270000e-01 1.65040000e-01 7.48230000e-02 2.15370000e-02 8.26270000e-03 1.49500000e-03 4.66420000e-04 9.98020000e-05 3.64420000e-05 1.75760000e-05 1.01410000e-05 4.69760000e-06 2.64630000e-06 1.11120000e-06] M4 = [ 2.43820000e+05 7.70380000e+04 3.19190000e+04 8.49710000e+03 8.48400000e+03 8.25880000e+03 7.21600000e+03 7.02310000e+03 5.61740000e+03 5.46570000e+03 3.15530000e+03 1.42240000e+03 7.28640000e+02 2.45840000e+02 1.03370000e+02 2.04310000e+01 6.25550000e+00 3.38530000e+00 3.27400000e+00 1.13850000e+00 3.34700000e-01 1.29010000e-01 5.92070000e-02 1.73880000e-02 6.77420000e-03 1.26290000e-03 3.98150000e-04 8.43690000e-05 2.99590000e-05 1.40850000e-05 7.84540000e-06 3.26850000e-06 1.82060000e-06 7.15000000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.49440000e+04 7.19770000e+04 7.06830000e+04 4.72570000e+04 2.56940000e+04 1.53860000e+04 6.68900000e+03 3.42860000e+03 9.76140000e+02 3.88680000e+02 2.40740000e+02 2.34540000e+02 1.02560000e+02 3.90690000e+01 1.83250000e+01 9.83460000e+00 3.67090000e+00 1.71030000e+00 4.32740000e-01 1.66700000e-01 4.56900000e-02 1.91510000e-02 1.01010000e-02 6.14760000e-03 2.95180000e-03 1.75310000e-03 7.48940000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.79110000e+05 1.60900000e+05 1.57830000e+05 1.35090000e+05 1.32420000e+05 8.63300000e+04 4.62670000e+04 2.74120000e+04 1.16730000e+04 5.89340000e+03 1.63030000e+03 6.35080000e+02 3.88670000e+02 3.78400000e+02 1.61890000e+02 6.00040000e+01 2.74980000e+01 1.44600000e+01 5.21360000e+00 2.36020000e+00 5.65250000e-01 2.09610000e-01 5.49610000e-02 2.26230000e-02 1.18930000e-02 7.27180000e-03 3.56300000e-03 2.15400000e-03 9.58130000e-04] M3 = [ 1.92810000e+05 9.66120000e+04 5.47230000e+04 2.24200000e+04 2.23960000e+04 2.19850000e+04 2.00270000e+04 1.96540000e+04 1.68260000e+04 1.65080000e+04 1.12200000e+04 6.35770000e+03 3.92090000e+03 1.76850000e+03 9.28610000e+02 2.72850000e+02 1.10050000e+02 6.83880000e+01 6.66330000e+01 2.91530000e+01 1.10350000e+01 5.12570000e+00 2.72130000e+00 9.93660000e-01 4.53450000e-01 1.09830000e-01 4.09720000e-02 1.07870000e-02 4.45080000e-03 2.34320000e-03 1.43450000e-03 7.02530000e-04 4.25580000e-04 1.89680000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.73620000e+04 2.97700000e+04 1.99130000e+04 1.43040000e+04 8.14370000e+03 5.13200000e+03 2.10400000e+03 1.07620000e+03 7.55200000e+02 7.40700000e+02 3.98380000e+02 1.90740000e+02 1.05980000e+02 6.49350000e+01 2.95110000e+01 1.58300000e+01 5.02230000e+00 2.21610000e+00 7.11180000e-01 3.26970000e-01 1.83870000e-01 1.17460000e-01 6.06500000e-02 3.78320000e-02 1.74980000e-02] JK = 6.31247773952 M1 = [ 6.64980000e+04 3.62300000e+04 2.24700000e+04 1.09220000e+04 1.09130000e+04 1.07530000e+04 9.98670000e+03 9.83970000e+03 8.70920000e+03 8.57960000e+03 6.34870000e+03 4.10050000e+03 2.83880000e+03 1.55820000e+03 9.62130000e+02 3.85970000e+02 1.96010000e+02 1.37300000e+02 1.34650000e+02 7.23270000e+01 3.46410000e+01 1.92710000e+01 1.18240000e+01 5.38730000e+00 2.89600000e+00 9.22110000e-01 4.07790000e-01 1.31120000e-01 6.03570000e-02 3.39620000e-02 2.17020000e-02 1.12080000e-02 6.99100000e-03 3.23250000e-03] all other = [ 1.01010000e+05 4.32760000e+04 2.29530000e+04 8.99190000e+03 8.98210000e+03 8.81370000e+03 8.01560000e+03 7.86450000e+03 6.72400000e+03 6.59620000e+03 4.49340000e+03 2.58490000e+03 1.63250000e+03 7.79140000e+02 4.33890000e+02 1.46400000e+02 6.66930000e+01 4.44130000e+01 4.34410000e+01 2.15840000e+01 9.57730000e+00 5.06470000e+00 2.99770000e+00 1.30220000e+00 6.79150000e-01 2.07320000e-01 8.97130000e-02 2.82380000e-02 1.28580000e-02 7.18860000e-03 4.57380000e-03 2.34900000e-03 1.46040000e-03 6.72450000e-04] total = [ 1.05290000e+06 4.13410000e+05 2.06310000e+05 7.49040000e+04 7.48170000e+04 2.52430000e+05 2.27140000e+05 3.07680000e+05 2.61980000e+05 2.94260000e+05 1.99140000e+05 1.11850000e+05 6.94310000e+04 3.22040000e+04 1.75600000e+04 5.72580000e+03 2.55410000e+03 1.68460000e+03 1.06340000e+04 5.56640000e+03 2.54960000e+03 1.37530000e+03 8.23550000e+02 3.61990000e+02 1.89770000e+02 5.81350000e+01 2.51550000e+01 7.90840000e+00 3.60050000e+00 2.01450000e+00 1.28340000e+00 6.61260000e-01 4.12380000e-01 1.90920000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.98710000e+03 4.75950000e+03 2.19670000e+03 1.19030000e+03 7.14800000e+02 3.15180000e+02 1.65500000e+02 5.07890000e+01 2.19910000e+01 6.91730000e+00 3.15030000e+00 1.76310000e+00 1.12360000e+00 5.79240000e-01 3.61410000e-01 1.67470000e-01] [Rh.binding] K = 23.1922 L1 = 3.3914 M5 = 0.3179 M4 = 0.323 M1 = 0.6161 L3 = 3.0044 M3 = 0.4946 M2 = 0.5203 L2 = 3.1516 [Be] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 3.18420000e+02 9.61080000e+01 4.02290000e+01 1.14780000e+01 4.62360000e+00 2.26450000e+00 1.25770000e+00 4.92890000e-01 2.36880000e-01 6.18580000e-02 2.36860000e-02 6.07510000e-03 2.30460000e-03 1.08520000e-03 5.86390000e-04 2.22240000e-04 1.04980000e-04 2.71870000e-05 1.06100000e-05 2.95000000e-06 1.25210000e-06 6.71900000e-07 4.17510000e-07 2.10720000e-07 1.31490000e-07 6.30900000e-08] L1 = [ 3.18420000e+02 9.61080000e+01 4.02290000e+01 1.14780000e+01 4.62360000e+00 2.26450000e+00 1.25770000e+00 4.92890000e-01 2.36880000e-01 6.18580000e-02 2.36860000e-02 6.07510000e-03 2.30460000e-03 1.08520000e-03 5.86390000e-04 2.22240000e-04 1.04980000e-04 2.71870000e-05 1.06100000e-05 2.95000000e-06 1.25210000e-06 6.71900000e-07 4.17510000e-07 2.10720000e-07 1.31490000e-07 6.30900000e-08] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 9.03140000e+03 2.68100000e+03 1.11080000e+03 3.12740000e+02 1.25210000e+02 6.10680000e+01 3.38070000e+01 1.31990000e+01 6.32890000e+00 1.64720000e+00 6.29610000e-01 1.61150000e-01 6.10570000e-02 2.87240000e-02 1.55470000e-02 5.89150000e-03 2.78270000e-03 7.20980000e-04 2.81530000e-04 7.83310000e-05 3.32810000e-05 1.78610000e-05 1.10950000e-05 5.59010000e-06 3.47620000e-06 1.64510000e-06] K = [ 8.71300000e+03 2.58490000e+03 1.07060000e+03 3.01260000e+02 1.20580000e+02 5.88030000e+01 3.25500000e+01 1.27070000e+01 6.09200000e+00 1.58540000e+00 6.05920000e-01 1.55080000e-01 5.87520000e-02 2.76390000e-02 1.49600000e-02 5.66930000e-03 2.67770000e-03 6.93800000e-04 2.70920000e-04 7.53810000e-05 3.20290000e-05 1.71890000e-05 1.06780000e-05 5.37940000e-06 3.34470000e-06 1.58200000e-06] [Be.binding] K = 0.1184 L1 = 0.0082 [Ba] JL1 = 1.13194293577 JL3 = 2.84826287149 JL2 = 1.33527497002 energy = [ 1.00000000e+00 1.05590000e+00 1.06430000e+00 1.13130000e+00 1.14030000e+00 1.27240000e+00 1.28260000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.23790000e+00 5.27990000e+00 5.62480000e+00 5.66990000e+00 5.95540000e+00 6.00000000e+00 6.00310000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.74150000e+01 3.77140000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.77969018933 M5 = [ 9.43490000e+05 8.31290000e+05 8.15780000e+05 7.04630000e+05 6.91060000e+05 5.30610000e+05 5.20180000e+05 3.43980000e+05 1.53300000e+05 4.48590000e+04 1.77590000e+04 8.39120000e+03 7.15500000e+03 6.96150000e+03 5.59370000e+03 5.44070000e+03 4.58300000e+03 4.46490000e+03 4.45670000e+03 1.59870000e+03 7.02480000e+02 1.49130000e+02 4.77620000e+01 9.18600000e+00 3.67760000e+00 3.55740000e+00 2.78290000e+00 1.09190000e+00 5.06970000e-01 1.51170000e-01 5.94840000e-02 1.12740000e-02 3.60670000e-03 7.89280000e-04 2.90880000e-04 1.41540000e-04 8.17240000e-05 3.78120000e-05 2.16310000e-05 9.27920000e-06] M4 = [ 6.44530000e+05 5.69120000e+05 5.58680000e+05 4.83730000e+05 4.74560000e+05 3.65350000e+05 3.58280000e+05 2.38620000e+05 1.07210000e+05 3.17530000e+04 1.26800000e+04 6.03500000e+03 5.15350000e+03 5.01540000e+03 4.03870000e+03 3.92940000e+03 3.31560000e+03 3.23100000e+03 3.22510000e+03 1.16910000e+03 5.18270000e+02 1.12050000e+02 3.64280000e+01 7.17880000e+00 2.91770000e+00 2.82390000e+00 2.21850000e+00 8.85270000e-01 4.17090000e-01 1.27380000e-01 5.10540000e-02 9.96810000e-03 3.23290000e-03 7.05830000e-04 2.56180000e-04 1.21740000e-04 6.82250000e-05 2.89440000e-05 1.58570000e-05 6.12910000e-06] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.20800000e+04 5.16960000e+04 3.39950000e+04 1.77790000e+04 1.07460000e+04 7.13790000e+03 6.54100000e+03 6.44360000e+03 5.71760000e+03 5.63160000e+03 5.12600000e+03 5.05290000e+03 5.04790000e+03 2.87250000e+03 1.82450000e+03 7.71870000e+02 4.07300000e+02 1.58810000e+02 9.31870000e+01 9.13870000e+01 7.90920000e+01 4.53270000e+01 2.84790000e+01 1.34540000e+01 7.42920000e+00 2.47590000e+00 1.12760000e+00 3.76290000e-01 1.77020000e-01 1.00930000e-01 6.50530000e-02 3.38900000e-02 2.11940000e-02 9.76460000e-03] M3 = [ 0.00000000e+00 0.00000000e+00 2.46370000e+05 2.32700000e+05 2.31070000e+05 2.01580000e+05 1.99270000e+05 1.57490000e+05 9.86820000e+04 4.52340000e+04 2.43180000e+04 1.45380000e+04 1.30160000e+04 1.27700000e+04 1.09620000e+04 1.07510000e+04 9.53010000e+03 9.35640000e+03 9.34440000e+03 4.50580000e+03 2.48560000e+03 7.95360000e+02 3.39410000e+02 9.68890000e+01 4.78280000e+01 4.66120000e+01 3.85220000e+01 1.85420000e+01 1.01180000e+01 3.84660000e+00 1.80650000e+00 4.58250000e-01 1.75730000e-01 4.77850000e-02 2.00010000e-02 1.06080000e-02 6.50800000e-03 3.19270000e-03 1.93030000e-03 8.51710000e-04] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.84530000e+04 8.98620000e+04 8.90960000e+04 7.29550000e+04 4.83640000e+04 2.34390000e+04 1.30560000e+04 7.99910000e+03 7.19530000e+03 7.06480000e+03 6.10370000e+03 5.99150000e+03 5.34040000e+03 5.24730000e+03 5.24080000e+03 2.60170000e+03 1.46820000e+03 4.89830000e+02 2.15640000e+02 6.45140000e+01 3.27340000e+01 3.19340000e+01 2.65930000e+01 1.31890000e+01 7.38470000e+00 2.93130000e+00 1.42620000e+00 3.86740000e-01 1.55380000e-01 4.47250000e-02 1.92880000e-02 1.03860000e-02 6.40350000e-03 3.12950000e-03 1.87160000e-03 8.09950000e-04] total = [ 1.94610000e+06 1.72350000e+06 1.93900000e+06 1.70380000e+06 1.77350000e+06 1.41130000e+06 1.44920000e+06 1.02420000e+06 5.27020000e+05 1.96810000e+05 9.55050000e+04 5.38910000e+04 4.77800000e+04 1.36090000e+05 1.16740000e+05 1.55880000e+05 1.38090000e+05 1.56310000e+05 1.56080000e+05 7.52180000e+04 4.17450000e+04 1.40220000e+04 6.36830000e+03 2.05730000e+03 1.10390000e+03 6.38020000e+03 5.46330000e+03 3.03740000e+03 1.85410000e+03 8.40540000e+02 4.50250000e+02 1.42820000e+02 6.31740000e+01 2.04240000e+01 9.45940000e+00 5.35190000e+00 3.43460000e+00 1.78320000e+00 1.11450000e+00 5.14380000e-01] JM2 = 1.04090855734 JM3 = 1.12503626342 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.30100000e+03 4.54960000e+03 2.55290000e+03 1.56640000e+03 7.14650000e+02 3.84100000e+02 1.22300000e+02 5.41760000e+01 1.75370000e+01 8.12820000e+00 4.60170000e+00 2.95480000e+00 1.53570000e+00 9.60650000e-01 4.43980000e-01] JM1 = 1.026854673 M = [ 1.58800000e+06 1.40040000e+06 1.62080000e+06 1.42110000e+06 1.49510000e+06 1.18740000e+06 1.22890000e+06 8.64750000e+05 4.41540000e+05 1.63060000e+05 7.85590000e+04 4.41010000e+04 3.90610000e+04 3.82550000e+04 3.24160000e+04 3.17440000e+04 2.78950000e+04 2.73530000e+04 2.73150000e+04 1.27480000e+04 6.99900000e+03 2.31820000e+03 1.04660000e+03 3.36570000e+02 1.80340000e+02 1.76310000e+02 1.49210000e+02 7.90360000e+01 4.69050000e+01 2.05100000e+01 1.07720000e+01 3.34210000e+00 1.46560000e+00 4.70290000e-01 2.16850000e-01 1.22190000e-01 7.81150000e-02 4.02790000e-02 2.50330000e-02 1.14420000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.92900000e+04 7.70270000e+04 1.16990000e+05 1.03880000e+05 1.22760000e+05 1.22580000e+05 5.95000000e+04 3.30850000e+04 1.11380000e+04 5.06170000e+03 1.63550000e+03 8.77460000e+02 8.57880000e+02 7.26260000e+02 3.85040000e+02 2.28640000e+02 1.00030000e+02 5.25420000e+01 1.62970000e+01 7.14410000e+00 2.29140000e+00 1.05650000e+00 5.95470000e-01 3.80770000e-01 1.96460000e-01 1.22160000e-01 5.58960000e-02] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.16290000e+04 3.74890000e+04 3.67220000e+04 3.66700000e+04 1.73060000e+04 9.24760000e+03 2.85730000e+03 1.19950000e+03 3.39740000e+02 1.68170000e+02 1.63930000e+02 1.35690000e+02 6.59350000e+01 3.63870000e+01 1.41690000e+01 6.80960000e+00 1.81450000e+00 7.22370000e-01 2.06050000e-01 8.84870000e-02 4.74260000e-02 2.91780000e-02 1.42310000e-02 8.50100000e-03 3.67960000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.92900000e+04 7.70270000e+04 7.53610000e+04 6.63890000e+04 6.51480000e+04 6.50620000e+04 2.93990000e+04 1.54070000e+04 4.54750000e+03 1.85220000e+03 5.00630000e+02 2.41180000e+02 2.34850000e+02 1.92970000e+02 9.10390000e+01 4.89820000e+01 1.82780000e+01 8.48280000e+00 2.11580000e+00 8.04170000e-01 2.16690000e-01 9.04420000e-02 4.78660000e-02 2.93390000e-02 1.43790000e-02 8.68200000e-03 3.82990000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.08870000e+04 2.08460000e+04 1.27950000e+04 8.43030000e+03 3.73330000e+03 2.01010000e+03 7.95100000e+02 4.68110000e+02 4.59100000e+02 3.97600000e+02 2.28060000e+02 1.43270000e+02 6.75800000e+01 3.72500000e+01 1.23670000e+01 5.61760000e+00 1.86870000e+00 8.77600000e-01 5.00170000e-01 3.22250000e-01 1.67850000e-01 1.04980000e-01 4.83870000e-02] all other = [ 3.58090000e+05 3.23110000e+05 3.18210000e+05 2.82780000e+05 2.78410000e+05 2.23860000e+05 2.20270000e+05 1.59410000e+05 8.54790000e+04 3.37430000e+04 1.69460000e+04 9.78970000e+03 8.71910000e+03 8.54710000e+03 7.29360000e+03 7.14880000e+03 6.31600000e+03 6.19810000e+03 6.19000000e+03 2.96980000e+03 1.66050000e+03 5.66010000e+02 2.60000000e+02 8.52480000e+01 4.60780000e+01 4.50610000e+01 3.82150000e+01 2.03920000e+01 1.21680000e+01 5.35970000e+00 2.82810000e+00 8.83100000e-01 3.88680000e-01 1.25200000e-01 5.78490000e-02 3.26380000e-02 2.08820000e-02 1.07780000e-02 6.70170000e-03 3.06630000e-03] [Ba.binding] K = 37.4522 L1 = 5.9614 M5 = 0.7903 M4 = 0.8066 M1 = 1.2737 L3 = 5.2432 M3 = 1.0569 M2 = 1.1324 L2 = 5.6305 [Bi] JL1 = 1.13253565441 JL3 = 2.4387254902 JL2 = 1.36896179329 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.58300000e+00 2.60370000e+00 2.69520000e+00 2.71670000e+00 3.00000000e+00 3.16360000e+00 3.18890000e+00 3.68980000e+00 3.71930000e+00 3.97300000e+00 4.00000000e+00 4.00480000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.34110000e+01 1.35190000e+01 1.50000000e+01 1.57530000e+01 1.58790000e+01 1.63700000e+01 1.65020000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 9.08090000e+01 9.15360000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.58934108527 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.72290000e+05 3.98110000e+05 3.90320000e+05 3.04110000e+05 2.63220000e+05 2.57480000e+05 1.70810000e+05 1.66980000e+05 1.39270000e+05 1.36710000e+05 1.36270000e+05 7.14060000e+04 4.10940000e+04 1.65730000e+04 7.96420000e+03 2.93160000e+03 2.85140000e+03 1.98270000e+03 1.66790000e+03 1.62150000e+03 1.45510000e+03 1.41450000e+03 7.08650000e+02 1.57960000e+02 5.28220000e+01 2.22800000e+01 1.09340000e+01 3.53510000e+00 2.14840000e+00 2.08210000e+00 1.47160000e+00 3.04540000e-01 1.02330000e-01 2.36000000e-02 8.97630000e-03 4.43600000e-03 2.58140000e-03 1.16670000e-03 6.74390000e-04 2.71470000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.50030000e+05 2.17160000e+05 1.89390000e+05 1.85420000e+05 1.24320000e+05 1.21590000e+05 1.01060000e+05 9.94070000e+04 9.90840000e+04 5.28450000e+04 3.08320000e+04 1.26570000e+04 6.17640000e+03 2.32370000e+03 2.26150000e+03 1.58470000e+03 1.33850000e+03 1.30210000e+03 1.17130000e+03 1.13920000e+03 5.79800000e+02 1.34040000e+02 4.61230000e+01 1.99190000e+01 9.97470000e+00 3.33240000e+00 2.05500000e+00 1.99340000e+00 1.42320000e+00 3.07590000e-01 1.05910000e-01 2.48450000e-02 9.41060000e-03 4.58030000e-03 2.61330000e-03 1.13960000e-03 6.34450000e-04 2.46360000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.88100000e+04 1.87230000e+04 1.37690000e+04 1.04620000e+04 6.61990000e+03 4.51380000e+03 2.64560000e+03 2.60650000e+03 2.14090000e+03 1.94800000e+03 1.91820000e+03 1.80830000e+03 1.78060000e+03 1.21830000e+03 5.27780000e+02 2.83270000e+02 1.72080000e+02 1.13380000e+02 5.77000000e+01 4.25870000e+01 4.17760000e+01 3.37230000e+01 1.24220000e+01 6.05360000e+00 2.20670000e+00 1.09680000e+00 6.48730000e-01 4.28390000e-01 2.29160000e-01 1.44730000e-01 6.64630000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.48180000e+04 7.83930000e+04 7.73660000e+04 6.88520000e+04 6.80010000e+04 6.78510000e+04 4.52920000e+04 3.17630000e+04 1.74130000e+04 1.05640000e+04 5.25900000e+03 5.15720000e+03 3.98220000e+03 3.52090000e+03 3.45070000e+03 3.19370000e+03 3.12940000e+03 1.89930000e+03 6.29100000e+02 2.76380000e+02 1.43240000e+02 8.28090000e+01 3.43080000e+01 2.31540000e+01 2.25860000e+01 1.71420000e+01 4.80810000e+00 1.95870000e+00 5.69650000e-01 2.46810000e-01 1.32990000e-01 8.21460000e-02 4.02480000e-02 2.40570000e-02 1.03620000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.90220000e+04 2.78010000e+04 2.76350000e+04 2.76050000e+04 2.04520000e+04 1.55500000e+04 9.39480000e+03 6.08070000e+03 3.27190000e+03 3.21480000e+03 2.54920000e+03 2.28190000e+03 2.24070000e+03 2.08920000e+03 2.05100000e+03 1.30460000e+03 4.76160000e+02 2.24120000e+02 1.22620000e+02 7.41520000e+01 3.30320000e+01 2.30290000e+01 2.25110000e+01 1.74790000e+01 5.44900000e+00 2.39010000e+00 7.65790000e-01 3.52030000e-01 1.97260000e-01 1.25210000e-01 6.35440000e-02 3.90050000e-02 1.74080000e-02] total = [ 1.88370000e+06 8.52140000e+05 4.63610000e+05 2.63490000e+05 6.31090000e+05 6.37510000e+05 8.75480000e+05 7.08900000e+05 6.18700000e+05 7.00790000e+05 4.89680000e+05 5.08960000e+05 4.34600000e+05 4.46620000e+05 4.45320000e+05 2.60130000e+05 1.65880000e+05 8.04080000e+04 4.54210000e+04 2.12160000e+04 5.17400000e+04 3.90470000e+04 3.42610000e+04 4.69020000e+04 4.35430000e+04 4.93140000e+04 3.02130000e+04 1.04200000e+04 4.83140000e+03 2.64240000e+03 1.60820000e+03 7.31160000e+02 5.16000000e+02 2.36810000e+03 1.88150000e+03 6.52310000e+02 3.05070000e+02 1.05870000e+02 5.13160000e+01 2.99430000e+01 1.96240000e+01 1.04290000e+01 6.57660000e+00 3.02490000e+00] JM2 = 1.03937265153 JM3 = 1.1326814288 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1863.3 1485.8 522.63 245.92 85.826 41.738 24.416 16.035 8.549 5.4027 2.4921] JM1 = 1.0276576162 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.72290000e+05 3.98110000e+05 6.40350000e+05 5.21270000e+05 4.52600000e+05 5.37720000e+05 3.73530000e+05 3.94960000e+05 3.36990000e+05 3.50570000e+05 3.49530000e+05 2.03760000e+05 1.29700000e+05 6.26570000e+04 3.52990000e+04 1.64320000e+04 1.60920000e+04 1.22400000e+04 1.07570000e+04 1.05330000e+04 9.71760000e+03 9.51470000e+03 5.71070000e+03 1.92500000e+03 8.82720000e+02 4.80140000e+02 2.91250000e+02 1.31910000e+02 9.29740000e+01 9.09480000e+01 7.12390000e+01 2.32910000e+01 1.06110000e+01 3.59060000e+00 1.71400000e+00 9.88000000e-01 6.40940000e-01 3.35260000e-01 2.09100000e-01 9.47500000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.09620000e+04 2.32230000e+04 2.03460000e+04 3.32760000e+04 3.09680000e+04 3.70010000e+04 2.28070000e+04 7.91490000e+03 3.67990000e+03 2.01510000e+03 1.22720000e+03 5.58290000e+02 3.94070000e+02 3.85520000e+02 3.02210000e+02 9.90700000e+01 4.51880000e+01 1.53140000e+01 7.31940000e+00 4.22420000e+00 2.74340000e+00 1.43770000e+00 8.98100000e-01 4.07780000e-01] JM4 = 1.37328041913 JM5 = 2.39511935937 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.33550000e+04 1.25930000e+04 1.23180000e+04 7.53780000e+03 2.53280000e+03 1.13220000e+03 5.97780000e+02 3.52200000e+02 1.51330000e+02 1.04040000e+02 1.01610000e+02 7.81910000e+01 2.35390000e+01 1.01310000e+01 3.18200000e+00 1.44830000e+00 8.06920000e-01 5.10340000e-01 2.57960000e-01 1.57850000e-01 7.02900000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.09620000e+04 2.32230000e+04 2.03460000e+04 1.99220000e+04 1.83750000e+04 1.79880000e+04 1.04660000e+04 3.16920000e+03 1.32210000e+03 6.61090000e+02 3.72380000e+02 1.48910000e+02 9.91450000e+01 9.66360000e+01 7.27030000e+01 1.97240000e+01 7.89300000e+00 2.25410000e+00 9.68160000e-01 5.19190000e-01 3.19760000e-01 1.56170000e-01 9.34670000e-02 4.01900000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.69520000e+03 4.80330000e+03 2.21290000e+03 1.22560000e+03 7.56220000e+02 5.02630000e+02 2.58050000e+02 1.90890000e+02 1.87270000e+02 1.51310000e+02 5.58070000e+01 2.71640000e+01 9.87820000e+00 4.90290000e+00 2.89810000e+00 1.91330000e+00 1.02360000e+00 6.46780000e-01 2.97300000e-01] all other = [ 1.88370000e+06 8.52140000e+05 4.63610000e+05 2.63490000e+05 2.58800000e+05 2.39410000e+05 2.35130000e+05 1.87630000e+05 1.66090000e+05 1.63060000e+05 1.16160000e+05 1.14000000e+05 9.76100000e+04 9.60590000e+04 9.57870000e+04 5.63690000e+04 3.61830000e+04 1.77500000e+04 1.01230000e+04 4.78440000e+03 4.68720000e+03 3.58430000e+03 3.15720000e+03 3.09260000e+03 2.85740000e+03 2.79880000e+03 1.69470000e+03 5.80510000e+02 2.68800000e+02 1.47200000e+02 8.97710000e+01 4.09620000e+01 2.89540000e+01 2.83290000e+01 2.22310000e+01 7.32290000e+00 3.35030000e+00 1.13890000e+00 5.45060000e-01 3.14650000e-01 2.04320000e-01 1.06980000e-01 6.67650000e-02 3.02640000e-02] [Bi.binding] K = 90.8995 L1 = 16.3869 M5 = 2.5856 M4 = 2.6979 M1 = 3.977 L3 = 13.4246 M3 = 3.1667 M2 = 3.6935 L2 = 15.7685 [Bk] JL1 = 1.13200031551 JL3 = 2.29221159477 JL2 = 1.40335612181 energy = [ 1.00000000e+00 1.23530000e+00 1.24520000e+00 1.50000000e+00 1.55340000e+00 1.56580000e+00 1.73120000e+00 1.74510000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.12930000e+00 4.16230000e+00 4.36210000e+00 4.39700000e+00 4.96310000e+00 5.00000000e+00 5.00280000e+00 6.00000000e+00 6.14480000e+00 6.19400000e+00 6.53050000e+00 6.58280000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.94400000e+01 1.95960000e+01 2.00000000e+01 2.44830000e+01 2.46790000e+01 2.53230000e+01 2.55250000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.32370000e+02 1.33430000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.9245667686 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.21980000e+05 2.05840000e+05 2.01540000e+05 1.48040000e+05 1.45080000e+05 1.44860000e+05 8.56230000e+04 7.95750000e+04 7.78260000e+04 6.69170000e+04 6.53630000e+04 3.62740000e+04 1.80890000e+04 4.80630000e+03 1.98400000e+03 1.92990000e+03 1.79760000e+03 8.82330000e+02 8.57630000e+02 7.82490000e+02 7.60540000e+02 4.25390000e+02 1.48180000e+02 6.44380000e+01 3.23970000e+01 1.08500000e+01 4.63790000e+00 1.59890000e+00 1.55150000e+00 9.98310000e-01 3.44400000e-01 8.14980000e-02 3.11710000e-02 1.54590000e-02 9.00070000e-03 4.10950000e-03 2.34690000e-03 9.53070000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.40580000e+05 1.09380000e+05 1.07380000e+05 1.07230000e+05 6.51340000e+04 6.07900000e+04 5.93990000e+04 5.08770000e+04 4.97790000e+04 2.81360000e+04 1.43360000e+04 3.95980000e+03 1.67650000e+03 1.63220000e+03 1.52380000e+03 7.64280000e+02 7.43560000e+02 6.80300000e+02 6.61770000e+02 3.76870000e+02 1.35800000e+02 6.07190000e+01 3.12510000e+01 1.08720000e+01 4.78600000e+00 1.71010000e+00 1.66100000e+00 1.08380000e+00 3.85300000e-01 9.37020000e-02 3.60020000e-02 1.77480000e-02 1.02220000e-02 4.57440000e-03 2.55180000e-03 9.97370000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.63470000e+03 7.45760000e+03 5.34570000e+03 2.77420000e+03 1.74820000e+03 1.72270000e+03 1.65880000e+03 1.13400000e+03 1.11670000e+03 1.06260000e+03 1.04640000e+03 7.62510000e+02 4.24950000e+02 2.65300000e+02 1.78720000e+02 9.41250000e+01 5.64860000e+01 2.93390000e+01 2.87930000e+01 2.18320000e+01 1.10110000e+01 4.21040000e+00 2.16090000e+00 1.30690000e+00 8.76550000e-01 4.77570000e-01 3.04130000e-01 1.39980000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.17500000e+04 6.14610000e+04 4.57140000e+04 4.38080000e+04 4.31690000e+04 3.90070000e+04 3.84010000e+04 2.63630000e+04 1.66450000e+04 6.73670000e+03 3.61530000e+03 3.54510000e+03 3.37130000e+03 2.02360000e+03 1.98260000e+03 1.85530000e+03 1.81740000e+03 1.19000000e+03 5.45490000e+02 2.91780000e+02 1.72970000e+02 7.44210000e+01 3.82260000e+01 1.63910000e+01 1.59990000e+01 1.12200000e+01 4.70120000e+00 1.41050000e+00 6.19650000e-01 3.36010000e-01 2.07940000e-01 1.01770000e-01 6.06120000e-02 2.56670000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.52700000e+04 1.44590000e+04 1.43260000e+04 1.14340000e+04 8.23860000e+03 4.02950000e+03 2.40230000e+03 2.36300000e+03 2.26510000e+03 1.46650000e+03 1.44110000e+03 1.36150000e+03 1.33770000e+03 9.27990000e+02 4.70240000e+02 2.71590000e+02 1.71300000e+02 8.12810000e+01 4.50350000e+01 2.12320000e+01 2.07810000e+01 1.51570000e+01 6.98020000e+00 2.37380000e+00 1.12980000e+00 6.47900000e-01 4.18020000e-01 2.16950000e-01 1.34620000e-01 6.11880000e-02] total = [ 3.21150000e+06 2.21190000e+06 2.31840000e+06 1.61570000e+06 1.50520000e+06 1.50000000e+06 1.22010000e+06 1.22200000e+06 9.17420000e+05 3.76210000e+05 1.94260000e+05 1.80360000e+05 3.99000000e+05 3.64430000e+05 4.97770000e+05 3.74320000e+05 4.29070000e+05 4.28260000e+05 2.70680000e+05 2.54230000e+05 2.64380000e+05 2.31710000e+05 2.36800000e+05 1.46490000e+05 8.38440000e+04 2.99480000e+04 1.53690000e+04 3.52290000e+04 3.31880000e+04 1.93080000e+04 2.70960000e+04 2.53560000e+04 2.87030000e+04 1.90530000e+04 9.11770000e+03 5.09830000e+03 3.15510000e+03 1.46990000e+03 8.10000000e+02 3.82590000e+02 1.50150000e+03 1.12310000e+03 5.42870000e+02 1.96990000e+02 9.83110000e+01 5.85530000e+01 3.89300000e+01 2.10410000e+01 1.33630000e+01 6.15540000e+00] JM2 = 1.03992447784 JM3 = 1.14626522761 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1127. 849.05 415.05 152.32 76.526 45.806 30.572 16.61 10.584 4.8917] JM1 = 1.02196711406 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.21980000e+05 2.05840000e+05 3.42120000e+05 2.57420000e+05 3.14210000e+05 3.13550000e+05 1.96470000e+05 1.84170000e+05 1.95670000e+05 1.71260000e+05 1.77500000e+05 1.09670000e+05 6.26540000e+04 2.23070000e+04 1.14260000e+04 1.11930000e+04 1.06170000e+04 6.27070000e+03 6.14150000e+03 5.74230000e+03 5.62380000e+03 3.68280000e+03 1.72470000e+03 9.53830000e+02 5.86630000e+02 2.71550000e+02 1.49170000e+02 7.02720000e+01 6.87860000e+01 5.02920000e+01 2.34220000e+01 8.17000000e+00 3.97740000e+00 2.32400000e+00 1.52170000e+00 8.04970000e-01 5.04270000e-01 2.28790000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.01730000e+04 1.89050000e+04 1.08600000e+04 1.88220000e+04 1.76170000e+04 2.11240000e+04 1.40840000e+04 6.78670000e+03 3.80750000e+03 2.36050000e+03 1.10150000e+03 6.07480000e+02 2.87080000e+02 2.81030000e+02 2.05660000e+02 9.59460000e+01 3.35440000e+01 1.63640000e+01 9.57940000e+00 6.28320000e+00 3.33270000e+00 2.09180000e+00 9.51570000e-01] JM4 = 1.36588645282 JM5 = 2.2122421823 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.19360000e+03 7.70820000e+03 7.60930000e+03 5.08720000e+03 2.45280000e+03 1.36430000e+03 8.35920000e+02 3.79850000e+02 2.04480000e+02 9.34060000e+01 9.13470000e+01 6.58660000e+01 2.96050000e+01 9.81010000e+00 4.60770000e+00 2.62230000e+00 1.68370000e+00 8.69410000e-01 5.38100000e-01 2.43750000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.01730000e+04 1.89050000e+04 1.08600000e+04 1.06280000e+04 9.90920000e+03 9.69500000e+03 6.11390000e+03 2.63240000e+03 1.35030000e+03 7.75990000e+02 3.19660000e+02 1.59540000e+02 6.63440000e+01 6.47090000e+01 4.48840000e+01 1.83800000e+01 5.38560000e+00 2.33880000e+00 1.26020000e+00 7.76940000e-01 3.78820000e-01 2.25230000e-01 9.55790000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.82010000e+03 2.88290000e+03 1.70150000e+03 1.09290000e+03 7.48560000e+02 4.02030000e+02 2.43460000e+02 1.27330000e+02 1.24970000e+02 9.49070000e+01 4.79610000e+01 1.83480000e+01 9.41700000e+00 5.69690000e+00 3.82250000e+00 2.08450000e+00 1.32850000e+00 6.12250000e-01] all other = [ 3.21150000e+06 2.21190000e+06 2.31840000e+06 1.61570000e+06 1.50520000e+06 1.50000000e+06 1.22010000e+06 1.22200000e+06 9.17420000e+05 3.76210000e+05 1.94260000e+05 1.80360000e+05 1.77020000e+05 1.58600000e+05 1.55650000e+05 1.16900000e+05 1.14860000e+05 1.14710000e+05 7.42120000e+04 7.00570000e+04 6.87190000e+04 6.04540000e+04 5.92950000e+04 3.68210000e+04 2.11900000e+04 7.64110000e+03 3.94300000e+03 3.86320000e+03 3.66660000e+03 2.17780000e+03 2.13340000e+03 1.99610000e+03 1.95530000e+03 1.28580000e+03 6.06310000e+02 3.36920000e+02 2.07960000e+02 9.67600000e+01 5.33520000e+01 2.52360000e+01 2.47050000e+01 1.80940000e+01 8.45660000e+00 2.96070000e+00 1.44410000e+00 8.44590000e-01 5.53580000e-01 2.93010000e-01 1.83600000e-01 8.33050000e-02] [Bk.binding] K = 132.506 L1 = 25.3479 M5 = 4.1334 M4 = 4.3664 M1 = 6.537 L3 = 19.4596 M3 = 4.968 M2 = 6.151 L2 = 24.5079 [Br] JL1 = 1.10986739179 JL3 = 4.31988164708 JL2 = 1.40705216234 energy = [ 1.00000000e+00 1.50000000e+00 1.55200000e+00 1.56440000e+00 1.60060000e+00 1.61340000e+00 1.76750000e+00 1.78170000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.34220000e+01 1.35300000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 5.19110000e+04 2.29430000e+04 2.13090000e+04 2.09410000e+04 1.99170000e+04 1.95700000e+04 1.59550000e+04 1.56690000e+04 1.20000000e+04 4.41900000e+03 2.06110000e+03 1.10980000e+03 6.58100000e+02 2.80240000e+02 1.41170000e+02 5.55010000e+01 5.40920000e+01 3.87040000e+01 1.49540000e+01 3.76920000e+00 1.38750000e+00 6.33340000e-01 3.32410000e-01 1.19850000e-01 5.45200000e-02 1.32120000e-02 4.95090000e-03 1.31150000e-03 5.38830000e-04 2.80620000e-04 1.69230000e-04 8.02860000e-05 4.72350000e-05 1.99540000e-05] M = [ 3.32000000e+05 1.25340000e+05 1.15270000e+05 1.13030000e+05 1.06830000e+05 1.04740000e+05 8.35050000e+04 8.18590000e+04 6.12440000e+04 2.16310000e+04 1.01420000e+04 5.58490000e+03 3.41160000e+03 1.55310000e+03 8.37270000e+02 3.67130000e+02 3.58970000e+02 2.68220000e+02 1.18270000e+02 3.67490000e+01 1.58660000e+01 8.22070000e+00 4.78650000e+00 2.02710000e+00 1.03720000e+00 3.06050000e-01 1.29570000e-01 3.96740000e-02 1.77770000e-02 9.84110000e-03 6.22340000e-03 3.17960000e-03 1.97530000e-03 9.14250000e-04] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.06270000e+05 3.60500000e+05 5.55350000e+05 4.48550000e+05 5.09270000e+05 3.86440000e+05 1.39590000e+05 6.57500000e+04 3.61620000e+04 2.20310000e+04 9.97370000e+03 5.35150000e+03 2.33360000e+03 2.28140000e+03 1.70170000e+03 7.47050000e+02 2.30840000e+02 9.69550000e+01 5.13350000e+01 2.98370000e+01 1.26050000e+01 6.43890000e+00 1.89660000e+00 8.01790000e-01 2.45150000e-01 1.09770000e-01 6.07450000e-02 3.84120000e-02 1.96240000e-02 1.21930000e-02 5.64430000e-03] M5 = [ 8.15780000e+04 2.23030000e+04 1.99100000e+04 1.93860000e+04 1.79580000e+04 1.74840000e+04 1.28400000e+04 1.24950000e+04 8.38740000e+03 1.96030000e+03 6.66260000e+02 2.81340000e+02 1.36900000e+02 4.26780000e+01 1.68760000e+01 4.82920000e+00 4.66650000e+00 2.99130000e+00 8.54900000e-01 1.42600000e-01 3.92160000e-02 1.44060000e-02 6.35870000e-03 1.76420000e-03 6.59450000e-04 1.15050000e-04 3.50680000e-05 7.26440000e-06 2.62350000e-06 1.27520000e-06 7.26810000e-07 3.35730000e-07 1.91220000e-07 8.30490000e-08] M4 = [ 5.58300000e+04 1.53340000e+04 1.36950000e+04 1.33360000e+04 1.23570000e+04 1.20320000e+04 8.84610000e+03 8.60920000e+03 5.78780000e+03 1.36050000e+03 4.64500000e+02 1.96900000e+02 9.61380000e+01 3.01540000e+01 1.19900000e+01 3.46020000e+00 3.34440000e+00 2.15060000e+00 6.20520000e-01 1.05210000e-01 2.95110000e-02 1.09740000e-02 4.89880000e-03 1.38170000e-03 5.23710000e-04 9.34580000e-05 2.86870000e-05 5.88400000e-06 2.04790000e-06 9.45460000e-07 5.24700000e-07 2.16430000e-07 1.16050000e-07 4.45790000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.94490000e+05 1.53540000e+05 1.50560000e+05 1.11430000e+05 3.76030000e+04 1.65980000e+04 8.58870000e+03 4.94370000e+03 2.01990000e+03 9.89610000e+02 3.77410000e+02 3.67550000e+02 2.60620000e+02 9.85000000e+01 2.42240000e+01 8.79650000e+00 3.98140000e+00 2.07770000e+00 7.43760000e-01 3.36170000e-01 8.08800000e-02 3.01920000e-02 7.96530000e-03 3.26510000e-03 1.69700000e-03 1.02590000e-03 4.86430000e-04 2.86030000e-04 1.20820000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.06270000e+05 3.60500000e+05 3.60850000e+05 2.95010000e+05 2.88940000e+05 2.12490000e+05 7.05290000e+04 3.07630000e+04 1.57740000e+04 9.01170000e+03 3.63640000e+03 1.76390000e+03 6.63120000e+02 6.45540000e+02 4.55270000e+02 1.69320000e+02 4.05670000e+01 1.20590000e+01 6.40480000e+00 3.28750000e+00 1.14370000e+00 5.04670000e-01 1.15980000e-01 4.19590000e-02 1.07050000e-02 4.35030000e-03 2.27330000e-03 1.38120000e-03 6.77050000e-04 4.10850000e-04 1.84800000e-04] M3 = [ 1.01900000e+05 4.42220000e+04 4.10140000e+04 4.02940000e+04 3.82870000e+04 3.76070000e+04 3.05480000e+04 2.99910000e+04 2.28620000e+04 8.28800000e+03 3.82260000e+03 2.04000000e+03 1.20070000e+03 5.05050000e+02 2.51830000e+02 9.75750000e+01 9.50570000e+01 6.76440000e+01 2.57100000e+01 6.31060000e+00 2.27320000e+00 1.01850000e+00 5.25860000e-01 1.84370000e-01 8.16330000e-02 1.88850000e-02 6.85610000e-03 1.75510000e-03 7.14430000e-04 3.73480000e-04 2.27550000e-04 1.11570000e-04 6.76430000e-05 3.04410000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.97660000e+04 6.25170000e+04 3.14620000e+04 1.83890000e+04 1.17990000e+04 8.07550000e+03 4.31750000e+03 2.59800000e+03 1.29310000e+03 1.26830000e+03 9.85810000e+02 4.79230000e+02 1.66050000e+02 7.60990000e+01 4.09480000e+01 2.44720000e+01 1.07180000e+01 5.59810000e+00 1.69970000e+00 7.29630000e-01 2.26480000e-01 1.02150000e-01 5.67740000e-02 3.60040000e-02 1.84600000e-02 1.14960000e-02 5.33870000e-03] JK = 6.9946614012 M1 = [ 4.07820000e+04 2.05430000e+04 1.93410000e+04 1.90690000e+04 1.83100000e+04 1.80510000e+04 1.53160000e+04 1.50950000e+04 1.22070000e+04 5.60310000e+03 3.12780000e+03 1.95680000e+03 1.31980000e+03 6.94990000e+02 4.15400000e+02 2.05770000e+02 2.01810000e+02 1.56730000e+02 7.61300000e+01 2.64210000e+01 1.21360000e+01 6.54350000e+00 3.91700000e+00 1.71980000e+00 8.99900000e-01 2.73750000e-01 1.17690000e-01 3.65940000e-02 1.65190000e-02 9.18480000e-03 5.82540000e-03 2.98710000e-03 1.86020000e-03 8.63730000e-04] all other = [ 1.53690000e+04 6.87560000e+03 6.40420000e+03 6.29830000e+03 6.00380000e+03 5.90410000e+03 4.86650000e+03 4.78410000e+03 3.72340000e+03 1.48770000e+03 7.50940000e+02 4.34520000e+02 2.75910000e+02 1.32570000e+02 7.42200000e+01 3.40820000e+01 3.33620000e+01 2.52830000e+01 1.15540000e+01 3.74300000e+00 1.65510000e+00 8.71030000e-01 5.12760000e-01 2.20310000e-01 1.13750000e-01 3.40120000e-02 1.44920000e-02 4.46600000e-03 2.00740000e-03 1.11330000e-03 7.04950000e-04 3.60780000e-04 2.24440000e-04 1.04180000e-04] total = [ 3.47370000e+05 1.32220000e+05 1.21670000e+05 5.25600000e+05 4.73330000e+05 6.66000000e+05 5.36920000e+05 5.95910000e+05 4.51410000e+05 1.62710000e+05 7.66430000e+04 4.21810000e+04 2.57180000e+04 1.16590000e+04 6.26300000e+03 2.73480000e+03 1.91290000e+04 1.46880000e+04 6.87210000e+03 2.25400000e+03 9.95700000e+02 5.24110000e+02 3.07610000e+02 1.31380000e+02 6.74890000e+01 1.99970000e+01 8.47150000e+00 2.59430000e+00 1.16280000e+00 6.44150000e-01 4.07770000e-01 2.08800000e-01 1.30010000e-01 6.04220000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64560000e+04 1.26920000e+04 5.99520000e+03 1.98270000e+03 8.81230000e+02 4.63690000e+02 2.72470000e+02 1.16520000e+02 5.98990000e+01 1.77600000e+01 7.52570000e+00 2.30500000e+00 1.03320000e+00 5.72450000e-01 3.62430000e-01 1.85640000e-01 1.15620000e-01 5.37590000e-02] [Br.binding] K = 13.4356 L1 = 1.7693 M5 = 0.0784 M4 = 0.0796 M1 = 0.2515 L3 = 1.5536 M3 = 0.1848 M2 = 0.1919 L2 = 1.6022 [H] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] total = [ 1.14140000e+01 2.93160000e+00 1.11060000e+00 2.80640000e-01 1.05250000e-01 4.90690000e-02 2.62740000e-02 9.81630000e-03 4.55820000e-03 1.12800000e-03 4.18160000e-04 1.03160000e-04 3.82280000e-05 1.77090000e-05 9.45510000e-06 3.52260000e-06 1.64420000e-06 4.17650000e-07 1.61060000e-07 4.41380000e-08 1.85810000e-08 9.92720000e-09 6.15780000e-09 3.11760000e-09 1.96070000e-09 9.73180000e-10] K = [ 1.14140000e+01 2.93160000e+00 1.11060000e+00 2.80640000e-01 1.05250000e-01 4.90690000e-02 2.62740000e-02 9.81630000e-03 4.55820000e-03 1.12800000e-03 4.18160000e-04 1.03160000e-04 3.82280000e-05 1.77090000e-05 9.45510000e-06 3.52260000e-06 1.64420000e-06 4.17650000e-07 1.61060000e-07 4.41380000e-08 1.85810000e-08 9.92720000e-09 6.15780000e-09 3.11760000e-09 1.96070000e-09 9.73180000e-10] [H.binding] K = 0.0136 [P] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.12830000e+00 2.14530000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 5.64720000e+02 1.65060000e+02 6.62860000e+01 5.42220000e+01 5.28370000e+01 1.73610000e+01 6.45230000e+00 2.93880000e+00 1.52830000e+00 5.34240000e-01 2.32740000e-01 4.98220000e-02 1.63480000e-02 3.33730000e-03 1.07500000e-03 4.46620000e-04 2.18300000e-04 7.10140000e-05 2.99900000e-05 6.46880000e-06 2.25900000e-06 5.50460000e-07 2.15490000e-07 1.08610000e-07 6.40150000e-08 2.94850000e-08 1.69910000e-08 7.00570000e-09] M = [ 5.27660000e+03 1.98000000e+03 9.67710000e+02 8.27170000e+02 8.10660000e+02 3.42270000e+02 1.59820000e+02 8.73790000e+01 5.29230000e+01 2.36100000e+01 1.24780000e+01 3.81210000e+00 1.61100000e+00 4.66760000e-01 1.90920000e-01 9.47630000e-02 5.32620000e-02 2.13450000e-02 1.04750000e-02 2.88020000e-03 1.16450000e-03 3.37020000e-04 1.46250000e-04 7.94360000e-05 4.96850000e-05 2.51720000e-05 1.56590000e-05 7.36930000e-06] L = [ 9.29710000e+04 3.15690000e+04 1.44420000e+04 1.21760000e+04 1.19120000e+04 4.69460000e+03 2.08480000e+03 1.10230000e+03 6.51590000e+02 2.81640000e+02 1.45740000e+02 4.32000000e+01 1.79630000e+01 5.11700000e+00 2.07480000e+00 1.02420000e+00 5.73560000e-01 2.28770000e-01 1.12010000e-01 3.06890000e-02 1.23860000e-02 3.57930000e-03 1.55210000e-03 8.42650000e-04 5.26870000e-04 2.66740000e-04 1.65760000e-04 7.77480000e-05] L2 = [ 1.87930000e+04 5.34130000e+03 2.10610000e+03 1.71510000e+03 1.67040000e+03 5.38490000e+02 1.97890000e+02 8.94940000e+01 4.63090000e+01 1.60800000e+01 6.97580000e+00 1.48420000e+00 4.85320000e-01 9.86920000e-02 3.17190000e-02 1.31570000e-02 6.42090000e-03 2.09470000e-03 8.84750000e-04 1.90880000e-04 6.66880000e-05 1.62900000e-05 6.39270000e-06 3.22330000e-06 1.90080000e-06 8.80110000e-07 5.08110000e-07 2.10910000e-07] L3 = [ 3.68990000e+04 1.04550000e+04 4.11220000e+03 3.34690000e+03 3.25940000e+03 1.04720000e+03 3.83610000e+02 1.73000000e+02 8.92930000e+01 3.08670000e+01 1.33360000e+01 2.81100000e+00 9.11860000e-01 1.82850000e-01 5.80380000e-02 2.38100000e-02 1.15080000e-02 3.66860000e-03 1.52400000e-03 3.19030000e-04 1.09390000e-04 2.63200000e-05 1.03840000e-05 5.36030000e-06 3.24890000e-06 1.58220000e-06 9.66360000e-07 4.40520000e-07] M3 = [ 1.10900000e+03 3.23060000e+02 1.29410000e+02 1.05800000e+02 1.03090000e+02 3.37520000e+01 1.24770000e+01 5.66600000e+00 2.93930000e+00 1.02270000e+00 4.43710000e-01 9.40990000e-02 3.06270000e-02 6.16390000e-03 1.96030000e-03 8.05110000e-04 3.89360000e-04 1.24380000e-04 5.17090000e-05 1.08320000e-05 3.71460000e-06 8.95310000e-07 3.54210000e-07 1.82750000e-07 1.10820000e-07 5.43810000e-08 3.33630000e-08 1.55810000e-08] L1 = [ 3.72790000e+04 1.57730000e+04 8.22370000e+03 7.11370000e+03 6.98180000e+03 3.10880000e+03 1.50330000e+03 8.39770000e+02 5.15990000e+02 2.34690000e+02 1.25430000e+02 3.89050000e+01 1.65660000e+01 4.83550000e+00 1.98500000e+00 9.87280000e-01 5.55630000e-01 2.23010000e-01 1.09600000e-01 3.01790000e-02 1.22100000e-02 3.53670000e-03 1.53530000e-03 8.34060000e-04 5.21720000e-04 2.64280000e-04 1.64290000e-04 7.70960000e-05] JK = 9.77389833115 M1 = [ 3.60290000e+03 1.49190000e+03 7.72020000e+02 6.67150000e+02 6.54730000e+02 2.91160000e+02 1.40890000e+02 7.87750000e+01 4.84560000e+01 2.20530000e+01 1.18010000e+01 3.66820000e+00 1.56400000e+00 4.57260000e-01 1.87890000e-01 9.35110000e-02 5.26540000e-02 2.11490000e-02 1.03940000e-02 2.86290000e-03 1.15850000e-03 3.35580000e-04 1.45680000e-04 7.91440000e-05 4.95100000e-05 2.50890000e-05 1.56090000e-05 7.34670000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 9.82480000e+04 3.35490000e+04 1.54100000e+04 1.30030000e+04 1.27090000e+05 5.74090000e+04 2.68840000e+04 1.46450000e+04 8.81850000e+03 3.89200000e+03 2.03640000e+03 6.11210000e+02 2.55500000e+02 7.30990000e+01 2.96860000e+01 1.46640000e+01 8.21310000e+00 3.27610000e+00 1.60310000e+00 4.38910000e-01 1.77060000e-01 5.11330000e-02 2.21640000e-02 1.20320000e-02 7.52280000e-03 3.81290000e-03 2.37020000e-03 1.11240000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.14370000e+05 5.23720000e+04 2.46390000e+04 1.34550000e+04 8.11400000e+03 3.58680000e+03 1.87820000e+03 5.64190000e+02 2.35920000e+02 6.75150000e+01 2.74200000e+01 1.35450000e+01 7.58620000e+00 3.02600000e+00 1.48060000e+00 4.05340000e-01 1.63510000e-01 4.72170000e-02 2.04660000e-02 1.11090000e-02 6.94630000e-03 3.52100000e-03 2.18880000e-03 1.02730000e-03] [P.binding] K = 2.1304 L1 = 0.1872 M1 = 0.0172 L3 = 0.1382 M3 = 0.0083 M2 = 0.0084 L2 = 0.1392 [Os] JL1 = 1.13214242229 JL3 = 2.53230442143 JL2 = 1.3577698592 energy = [ 1.00000000e+00 1.50000000e+00 1.96870000e+00 1.98440000e+00 2.00000000e+00 2.04250000e+00 2.05880000e+00 2.44920000e+00 2.46880000e+00 2.78800000e+00 2.81030000e+00 3.00000000e+00 3.02860000e+00 3.05280000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.08650000e+01 1.09520000e+01 1.24120000e+01 1.25110000e+01 1.29420000e+01 1.30450000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 7.40240000e+01 7.46170000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.90592277487 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.39070000e+05 3.91280000e+05 5.43270000e+05 5.45850000e+05 3.58040000e+05 3.50420000e+05 2.51700000e+05 2.46250000e+05 2.07110000e+05 2.01870000e+05 1.97570000e+05 9.12980000e+04 4.65060000e+04 2.62580000e+04 1.03060000e+04 4.85100000e+03 3.64290000e+03 3.54360000e+03 2.28740000e+03 2.22390000e+03 1.97310000e+03 1.91810000e+03 1.16420000e+03 4.06070000e+02 8.75480000e+01 2.86110000e+01 1.18630000e+01 5.74530000e+00 2.48430000e+00 2.40640000e+00 1.82170000e+00 7.47820000e-01 1.51370000e-01 5.02120000e-02 1.14770000e-02 4.32250000e-03 2.13110000e-03 1.23940000e-03 5.59830000e-04 3.22090000e-04 1.32700000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.36450000e+04 2.53680000e+05 2.48390000e+05 1.79530000e+05 1.75710000e+05 1.47190000e+05 1.43440000e+05 1.41270000e+05 6.63240000e+04 3.42240000e+04 1.95310000e+04 7.78880000e+03 3.71630000e+03 2.80560000e+03 2.73030000e+03 1.77690000e+03 1.72850000e+03 1.53680000e+03 1.49470000e+03 9.15920000e+02 3.26230000e+02 7.26880000e+01 2.43820000e+01 1.03320000e+01 5.09780000e+00 2.25350000e+00 2.18470000e+00 1.66620000e+00 7.00430000e-01 1.47560000e-01 5.00210000e-02 1.15780000e-02 4.31780000e-03 2.08620000e-03 1.18360000e-03 5.19130000e-04 2.84600000e-04 1.10790000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.51920000e+04 1.76710000e+04 1.26910000e+04 9.43990000e+03 5.76070000e+03 3.84000000e+03 3.28970000e+03 3.24070000e+03 2.55110000e+03 2.51220000e+03 2.35340000e+03 2.31740000e+03 1.76100000e+03 9.82680000e+02 4.14740000e+02 2.18670000e+02 1.31020000e+02 8.53590000e+01 5.15580000e+01 5.05690000e+01 4.26770000e+01 2.46030000e+01 8.84110000e+00 4.23540000e+00 1.50880000e+00 7.38880000e-01 4.32680000e-01 2.83780000e-01 1.50670000e-01 9.48320000e-02 4.35470000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.26090000e+05 1.05370000e+05 1.04070000e+05 9.33230000e+04 9.17960000e+04 9.05240000e+04 5.64150000e+04 3.66650000e+04 2.51920000e+04 1.33780000e+04 7.93450000e+03 6.49180000e+03 6.36620000e+03 4.66860000e+03 4.57620000e+03 4.20220000e+03 4.11820000e+03 2.87780000e+03 1.33690000e+03 4.27870000e+02 1.83640000e+02 9.35290000e+01 5.33320000e+01 2.76530000e+01 2.69670000e+01 2.16460000e+01 1.06550000e+01 2.91640000e+00 1.17050000e+00 3.35020000e-01 1.43910000e-01 7.72650000e-02 4.76640000e-02 2.33500000e-02 1.40070000e-02 6.07310000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.20830000e+04 3.86550000e+04 3.83190000e+04 3.80220000e+04 2.60050000e+04 1.83580000e+04 1.32450000e+04 7.53820000e+03 4.69240000e+03 3.90330000e+03 3.83420000e+03 2.88630000e+03 2.83360000e+03 2.61920000e+03 2.57090000e+03 1.84780000e+03 9.08420000e+02 3.14830000e+02 1.43190000e+02 7.63750000e+01 4.52730000e+01 2.45760000e+01 2.40090000e+01 1.95720000e+01 1.01330000e+01 3.04560000e+00 1.30530000e+00 4.06770000e-01 1.83790000e-01 1.01850000e-01 6.41350000e-02 3.22830000e-02 1.96610000e-02 8.70370000e-03] total = [ 1.26960000e+06 5.65410000e+05 3.16630000e+05 4.50230000e+05 6.97180000e+05 8.35410000e+05 9.26570000e+05 8.06890000e+05 9.16600000e+05 6.82080000e+05 7.10970000e+05 6.09220000e+05 5.95690000e+05 6.10650000e+05 3.20330000e+05 1.85050000e+05 1.17100000e+05 5.62200000e+04 3.15430000e+04 2.53990000e+04 6.43180000e+04 4.60240000e+04 6.24900000e+04 5.74910000e+04 6.50880000e+04 4.57190000e+04 2.15450000e+04 7.29700000e+03 3.34070000e+03 1.81110000e+03 1.09470000e+03 6.11200000e+02 2.99850000e+03 2.49950000e+03 1.39170000e+03 4.70840000e+02 2.16880000e+02 7.38230000e+01 3.53300000e+01 2.04350000e+01 1.33120000e+01 7.02640000e+00 4.41800000e+00 2.03260000e+00] JM2 = 1.0423557354 JM3 = 1.13596648862 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40070000e+03 2.00710000e+03 1.12730000e+03 3.85420000e+02 1.78320000e+02 6.09380000e+01 2.92310000e+01 1.69380000e+01 1.10510000e+01 5.84720000e+00 3.68300000e+00 1.69870000e+00] JM1 = 1.02511373365 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.39070000e+05 3.91280000e+05 5.43270000e+05 6.39490000e+05 6.11720000e+05 7.24900000e+05 5.36600000e+05 5.68120000e+05 4.86280000e+05 4.75420000e+05 4.92570000e+05 2.57710000e+05 1.48440000e+05 9.36660000e+04 4.47730000e+04 2.50340000e+04 2.01330000e+04 1.97150000e+04 1.41700000e+04 1.38740000e+04 1.26850000e+04 1.24190000e+04 8.56670000e+03 3.96030000e+03 1.31770000e+03 5.98490000e+02 3.23120000e+02 1.94810000e+02 1.08520000e+02 1.06140000e+02 8.73830000e+01 4.68390000e+01 1.51020000e+01 6.81140000e+00 2.27360000e+00 1.07520000e+00 6.16010000e-01 3.98000000e-01 2.07380000e-01 1.29110000e-01 5.85670000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.94440000e+04 2.81130000e+04 4.49510000e+04 4.14470000e+04 4.93790000e+04 3.48620000e+04 1.65080000e+04 5.61390000e+03 2.57420000e+03 1.39640000e+03 8.44340000e+02 4.71550000e+02 4.61210000e+02 3.79950000e+02 2.04030000e+02 6.59160000e+01 2.97570000e+01 9.94230000e+00 4.70600000e+00 2.69850000e+00 1.74500000e+00 9.10490000e-01 5.67630000e-01 2.58000000e-01] JM4 = 1.10912007278 JM5 = 1.42194359347 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.74190000e+04 1.62460000e+04 1.58630000e+04 1.11070000e+04 5.13940000e+03 1.64930000e+03 7.15180000e+02 3.69350000e+02 2.13890000e+02 1.13370000e+02 1.10670000e+02 8.95710000e+01 4.54140000e+01 1.32430000e+01 5.58390000e+00 1.71100000e+00 7.66580000e-01 4.22730000e-01 2.65410000e-01 1.33010000e-01 8.08160000e-02 3.57180000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.94440000e+04 2.81130000e+04 2.75320000e+04 2.52020000e+04 2.46780000e+04 1.68080000e+04 7.25920000e+03 2.14480000e+03 8.78230000e+02 4.33230000e+02 2.41410000e+02 1.22290000e+02 1.19160000e+02 9.49830000e+01 4.58200000e+01 1.21840000e+01 4.81570000e+00 1.35710000e+00 5.78590000e-01 3.09340000e-01 1.90340000e-01 9.31540000e-02 5.58530000e-02 2.42050000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.83800000e+03 6.94680000e+03 4.10960000e+03 1.81970000e+03 9.80750000e+02 5.93860000e+02 3.89040000e+02 2.35890000e+02 2.31390000e+02 1.95400000e+02 1.12790000e+02 4.04890000e+01 1.93570000e+01 6.87430000e+00 3.36080000e+00 1.96640000e+00 1.28920000e+00 6.84330000e-01 4.30960000e-01 1.98080000e-01] all other = [ 1.26960000e+06 5.65410000e+05 3.16630000e+05 3.11170000e+05 3.05890000e+05 2.92140000e+05 2.87080000e+05 1.95170000e+05 1.91700000e+05 1.45480000e+05 1.42850000e+05 1.22930000e+05 1.20270000e+05 1.18080000e+05 6.26180000e+04 3.66070000e+04 2.34300000e+04 1.14480000e+04 6.50880000e+03 5.26610000e+03 5.15970000e+03 3.74120000e+03 3.66500000e+03 3.35850000e+03 3.28990000e+03 2.29010000e+03 1.07660000e+03 3.65420000e+02 1.68060000e+02 9.15170000e+01 5.55130000e+01 3.11200000e+01 3.04420000e+01 2.51110000e+01 1.35360000e+01 4.40110000e+00 1.99410000e+00 6.69020000e-01 3.17230000e-01 1.82040000e-01 1.17730000e-01 6.14070000e-02 3.82630000e-02 1.73690000e-02] [Os.binding] K = 74.0983 L1 = 12.9548 M5 = 1.9706 M4 = 2.0445 M1 = 3.0316 L3 = 10.8761 M3 = 2.4517 M2 = 2.7908 L2 = 12.4244 [Es] JL1 = 1.13158902361 JL3 = 2.27478119275 JL2 = 1.40897601528 energy = [ 1.00000000e+00 1.02300000e+00 1.03110000e+00 1.31460000e+00 1.32510000e+00 1.50000000e+00 1.67310000e+00 1.68650000e+00 1.85980000e+00 1.87470000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.36430000e+00 4.39920000e+00 4.62030000e+00 4.65730000e+00 5.00000000e+00 5.24130000e+00 5.28320000e+00 6.00000000e+00 6.56080000e+00 6.61330000e+00 6.96350000e+00 7.01930000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.03850000e+01 2.05490000e+01 2.59880000e+01 2.61960000e+01 2.68660000e+01 2.70810000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.39340000e+02 1.40460000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.8305508728 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.06720000e+05 1.91580000e+05 1.87570000e+05 1.56920000e+05 1.38600000e+05 1.35620000e+05 9.41600000e+04 7.21290000e+04 7.05320000e+04 6.07570000e+04 5.93280000e+04 3.98600000e+04 2.00140000e+04 5.37050000e+03 2.02030000e+03 1.89130000e+03 1.83970000e+03 8.05960000e+02 7.83390000e+02 7.15990000e+02 6.95910000e+02 4.82020000e+02 1.68800000e+02 7.37060000e+01 3.71730000e+01 1.25100000e+01 5.36540000e+00 1.53120000e+00 1.48600000e+00 1.16140000e+00 4.01980000e-01 9.54590000e-02 3.65670000e-02 1.81460000e-02 1.05670000e-02 4.82330000e-03 2.75300000e-03 1.11510000e-03] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.29630000e+05 1.15270000e+05 1.02840000e+05 1.00830000e+05 7.16690000e+04 5.54230000e+04 5.41500000e+04 4.65770000e+04 4.55660000e+04 3.10790000e+04 1.59400000e+04 4.44490000e+03 1.72050000e+03 1.61380000e+03 1.57120000e+03 7.06640000e+02 6.87490000e+02 6.30100000e+02 6.12950000e+02 4.29600000e+02 1.55760000e+02 6.99630000e+01 3.61420000e+01 1.26440000e+01 5.58820000e+00 1.66470000e+00 1.61710000e+00 1.27390000e+00 4.54760000e-01 1.11150000e-01 4.28400000e-02 2.11640000e-02 1.22100000e-02 5.47630000e-03 3.06000000e-03 1.20060000e-03] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.77760000e+03 7.35590000e+03 5.34910000e+03 2.83460000e+03 1.71050000e+03 1.65180000e+03 1.62770000e+03 1.04860000e+03 1.03260000e+03 9.83520000e+02 9.68490000e+02 7.93830000e+02 4.44780000e+02 2.78970000e+02 1.88500000e+02 9.97680000e+01 6.01020000e+01 2.78120000e+01 2.72970000e+01 2.33890000e+01 1.18550000e+01 4.56600000e+00 2.35510000e+00 1.42940000e+00 9.61180000e-01 5.25290000e-01 3.35010000e-01 1.54290000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.82930000e+04 4.71970000e+04 4.05550000e+04 3.99510000e+04 3.61370000e+04 3.55700000e+04 2.75640000e+04 1.75350000e+04 7.18650000e+03 3.61520000e+03 3.44980000e+03 3.38290000e+03 1.87170000e+03 1.83370000e+03 1.71790000e+03 1.68270000e+03 1.28750000e+03 5.93580000e+02 3.18900000e+02 1.89670000e+02 8.20190000e+01 4.22860000e+01 1.55990000e+01 1.52280000e+01 1.24880000e+01 5.25230000e+00 1.58250000e+00 6.96570000e-01 3.78040000e-01 2.34010000e-01 1.14480000e-01 6.81350000e-02 2.88140000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.38580000e+04 1.31560000e+04 1.30390000e+04 1.14480000e+04 8.31630000e+03 4.21410000e+03 2.40240000e+03 2.31030000e+03 2.27280000e+03 1.38070000e+03 1.35690000e+03 1.28400000e+03 1.26170000e+03 1.00340000e+03 5.14740000e+02 2.99720000e+02 1.90310000e+02 9.11690000e+01 5.08720000e+01 2.10900000e+01 2.06460000e+01 1.73230000e+01 8.03660000e+00 2.75780000e+00 1.31960000e+00 7.59450000e-01 4.91210000e-01 2.55740000e-01 1.59000000e-01 7.24380000e-02] total = [ 3.25290000e+06 3.14140000e+06 3.19420000e+06 2.14070000e+06 2.24360000e+06 1.76230000e+06 1.41140000e+06 1.40510000e+06 1.14580000e+06 1.14680000e+06 9.99820000e+05 4.10150000e+05 2.11700000e+05 1.72580000e+05 3.76100000e+05 3.42460000e+05 4.65260000e+05 3.97310000e+05 3.53280000e+05 4.04470000e+05 2.93880000e+05 2.33240000e+05 2.42380000e+05 2.12980000e+05 2.17550000e+05 1.57440000e+05 9.02640000e+04 3.23990000e+04 1.54820000e+04 1.47390000e+04 3.35280000e+04 1.78030000e+04 2.50840000e+04 2.35050000e+04 2.65980000e+04 2.04890000e+04 9.88430000e+03 5.54390000e+03 3.43950000e+03 1.60890000e+03 8.89300000e+02 3.67780000e+02 1.40880000e+03 1.20490000e+03 5.83740000e+02 2.13170000e+02 1.06900000e+02 6.38860000e+01 4.25790000e+01 2.30780000e+01 1.46760000e+01 6.76310000e+00] JM2 = 1.03918710341 JM3 = 1.14489923007 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1048.8 902.55 442.2 163.46 82.584 49.622 33.211 18.103 11.551 5.3417] JM1 = 1.02145741384 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.06720000e+05 1.91580000e+05 3.17190000e+05 2.72180000e+05 2.41440000e+05 2.94750000e+05 2.13030000e+05 1.68110000e+05 1.78490000e+05 1.56630000e+05 1.62280000e+05 1.17310000e+05 6.71540000e+04 2.40510000e+04 1.14690000e+04 1.09170000e+04 1.06940000e+04 5.81360000e+03 5.69410000e+03 5.33150000e+03 5.22170000e+03 3.99640000e+03 1.87770000e+03 1.04130000e+03 6.41790000e+02 2.98110000e+02 1.64210000e+02 6.76980000e+01 6.62740000e+01 5.56360000e+01 2.60010000e+01 9.11300000e+00 4.45060000e+00 2.60620000e+00 1.70920000e+00 9.05810000e-01 5.67960000e-01 2.57850000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.90890000e+04 9.94250000e+03 1.73850000e+04 1.62950000e+04 1.95370000e+04 1.50810000e+04 7.33920000e+03 4.13090000e+03 2.56780000e+03 1.20350000e+03 6.65780000e+02 2.75520000e+02 2.69740000e+02 2.26550000e+02 1.06070000e+02 3.72650000e+01 1.82390000e+01 1.07020000e+01 7.03100000e+00 3.73680000e+00 2.34780000e+00 1.06880000e+00] JM4 = 1.35858202418 JM5 = 2.17927917488 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.65580000e+03 7.21420000e+03 7.12680000e+03 5.48810000e+03 2.70690000e+03 1.51620000e+03 9.33830000e+02 4.28140000e+02 2.31890000e+02 9.25890000e+01 9.05670000e+01 7.55000000e+01 3.41570000e+01 1.14120000e+01 5.38640000e+00 3.07540000e+00 1.97930000e+00 1.02510000e+00 6.35640000e-01 2.88650000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.90890000e+04 9.94250000e+03 9.72950000e+03 9.08110000e+03 8.88420000e+03 6.65070000e+03 2.87380000e+03 1.47850000e+03 8.51680000e+02 3.52100000e+02 1.76260000e+02 6.26820000e+01 6.11440000e+01 4.98300000e+01 2.04670000e+01 6.01760000e+00 2.61730000e+00 1.41110000e+00 8.70080000e-01 4.24030000e-01 2.51920000e-01 1.06730000e-01] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.52560000e+03 2.94200000e+03 1.75850000e+03 1.13620000e+03 7.82280000e+02 4.23240000e+02 2.57630000e+02 1.20250000e+02 1.18030000e+02 1.01220000e+02 5.14450000e+01 1.98360000e+01 1.02350000e+01 6.21520000e+00 4.18160000e+00 2.28770000e+00 1.46020000e+00 6.73420000e-01] all other = [ 3.25290000e+06 3.14140000e+06 3.19420000e+06 2.14070000e+06 2.24360000e+06 1.76230000e+06 1.41140000e+06 1.40510000e+06 1.14580000e+06 1.14680000e+06 9.99820000e+05 4.10150000e+05 2.11700000e+05 1.72580000e+05 1.69380000e+05 1.50880000e+05 1.48070000e+05 1.25130000e+05 1.11840000e+05 1.09730000e+05 8.08530000e+04 6.51370000e+04 6.38870000e+04 5.63510000e+04 5.52670000e+04 4.01280000e+04 2.31100000e+04 8.34850000e+03 4.01300000e+03 3.82150000e+03 3.74420000e+03 2.04670000e+03 2.00490000e+03 1.87840000e+03 1.84010000e+03 1.41160000e+03 6.67450000e+02 3.71740000e+02 2.29890000e+02 1.07300000e+02 5.93160000e+01 2.45660000e+01 2.40520000e+01 2.02080000e+01 9.47840000e+00 3.33410000e+00 1.63130000e+00 9.56110000e-01 6.27660000e-01 3.32820000e-01 2.08740000e-01 9.47620000e-02] [Es.binding] K = 139.4815 L1 = 26.8925 M5 = 4.3686 M4 = 4.6249 M1 = 6.9705 L3 = 20.4058 M3 = 5.2465 M2 = 6.5673 L2 = 26.0139 [Hg] JL1 = 1.13207624095 JL3 = 2.48028298179 JL2 = 1.36420689833 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.29810000e+00 2.31650000e+00 2.39240000e+00 2.41150000e+00 2.83390000e+00 2.85660000e+00 3.00000000e+00 3.27130000e+00 3.29750000e+00 3.53560000e+00 3.56390000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.22740000e+01 1.23720000e+01 1.42410000e+01 1.43550000e+01 1.48190000e+01 1.49380000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 8.33200000e+01 8.39870000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.7288683436 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.53280000e+04 4.58290000e+05 4.54030000e+05 3.01920000e+05 2.95400000e+05 2.58110000e+05 2.02850000e+05 1.98370000e+05 1.64310000e+05 1.60790000e+05 1.16070000e+05 5.99990000e+04 3.42250000e+04 1.36320000e+04 6.49240000e+03 3.21960000e+03 3.13160000e+03 1.91350000e+03 1.86030000e+03 1.66170000e+03 1.61530000e+03 1.59170000e+03 5.63100000e+02 1.23790000e+02 4.09990000e+01 1.71700000e+01 8.37920000e+00 2.68680000e+00 2.28740000e+00 2.21640000e+00 1.11190000e+00 2.27960000e-01 7.61760000e-02 1.75430000e-02 6.62880000e-03 3.27270000e-03 1.90400000e-03 8.61290000e-04 4.97510000e-04 2.00660000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.68830000e+04 2.15810000e+05 2.11280000e+05 1.85250000e+05 1.46290000e+05 1.43120000e+05 1.18040000e+05 1.16030000e+05 8.47300000e+04 4.43450000e+04 2.55540000e+04 1.03710000e+04 5.01130000e+03 2.51980000e+03 2.45230000e+03 1.51360000e+03 1.47240000e+03 1.31820000e+03 1.28210000e+03 1.26370000e+03 4.57170000e+02 1.04070000e+02 3.54280000e+01 1.51780000e+01 7.55310000e+00 2.50010000e+00 2.13810000e+00 2.07360000e+00 1.06060000e+00 2.26750000e-01 7.75570000e-02 1.81390000e-02 6.80660000e-03 3.30250000e-03 1.87970000e-03 8.25790000e-04 4.53930000e-04 1.77040000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.09520000e+04 1.84670000e+04 1.32610000e+04 1.01270000e+04 6.28880000e+03 4.23990000e+03 2.90470000e+03 2.86170000e+03 2.18820000e+03 2.15470000e+03 2.02610000e+03 1.99500000e+03 1.97900000e+03 1.11670000e+03 4.78260000e+02 2.54770000e+02 1.53860000e+02 1.00890000e+02 5.09620000e+01 4.61980000e+01 4.53160000e+01 2.96120000e+01 1.07930000e+01 5.22170000e+00 1.88470000e+00 9.30760000e-01 5.48120000e-01 3.60870000e-01 1.92400000e-01 1.21330000e-01 5.57100000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.06440000e+05 1.01080000e+05 8.93580000e+04 8.82090000e+04 7.81440000e+04 7.70280000e+04 6.24350000e+04 4.16850000e+04 2.89600000e+04 1.56570000e+04 9.40310000e+03 5.75370000e+03 5.64220000e+03 3.97600000e+03 3.89700000e+03 3.59530000e+03 3.52310000e+03 3.48600000e+03 1.64390000e+03 5.36660000e+02 2.33490000e+02 1.20120000e+02 6.90430000e+01 2.83580000e+01 2.49740000e+01 2.43590000e+01 1.40790000e+01 3.90850000e+00 1.58220000e+00 4.57210000e-01 1.97310000e-01 1.06160000e-01 6.55350000e-02 3.20890000e-02 1.92170000e-02 8.30460000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.43810000e+04 3.20650000e+04 3.18290000e+04 2.74810000e+04 1.97390000e+04 1.46670000e+04 8.61520000e+03 5.48420000e+03 3.52650000e+03 3.46450000e+03 2.52330000e+03 2.47750000e+03 2.30180000e+03 2.25950000e+03 2.23780000e+03 1.12540000e+03 4.01590000e+02 1.86260000e+02 1.00800000e+02 6.04330000e+01 2.65750000e+01 2.36350000e+01 2.30970000e+01 1.39310000e+01 4.27500000e+00 1.85650000e+00 5.87890000e-01 2.68180000e-01 1.49560000e-01 9.46050000e-02 4.78450000e-02 2.92700000e-02 1.30100000e-02] total = [ 1.60490000e+06 7.20090000e+05 3.90530000e+05 2.87670000e+05 3.77940000e+05 7.21320000e+05 7.79310000e+05 6.97130000e+05 7.89290000e+05 7.01890000e+05 5.67410000e+05 5.90630000e+05 5.00100000e+05 5.12170000e+05 3.89580000e+05 2.26100000e+05 1.43690000e+05 6.93210000e+04 3.90300000e+04 2.28990000e+04 5.67960000e+04 3.88790000e+04 5.30390000e+04 4.90550000e+04 5.55340000e+04 5.48950000e+04 2.62780000e+04 8.98920000e+03 4.14180000e+03 2.25650000e+03 1.36930000e+03 6.19660000e+02 5.53790000e+02 2.61880000e+03 1.65650000e+03 5.70200000e+02 2.64750000e+02 9.11300000e+01 4.39220000e+01 2.55300000e+01 1.66870000e+01 8.84220000e+00 5.56840000e+00 2.56120000e+00] JM2 = 1.04092278952 JM3 = 1.13219915941 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2077.1 1322.3 461.36 215.32 74.481 36. 20.971 13.733 7.2972 4.6046 2.1237] JM1 = 1.02413517297 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.53280000e+04 4.58290000e+05 5.20920000e+05 5.17730000e+05 6.13120000e+05 5.44440000e+05 4.38490000e+05 4.64080000e+05 3.92560000e+05 4.06630000e+05 3.09190000e+05 1.79030000e+05 1.13530000e+05 5.45640000e+04 3.06310000e+04 1.79240000e+04 1.75520000e+04 1.21150000e+04 1.18620000e+04 1.09030000e+04 1.06750000e+04 1.05580000e+04 4.90630000e+03 1.64440000e+03 7.50940000e+02 4.07130000e+02 2.46300000e+02 1.11080000e+02 9.92330000e+01 9.70620000e+01 5.97950000e+01 1.94320000e+01 8.81410000e+00 2.96550000e+00 1.40970000e+00 8.10410000e-01 5.24800000e-01 2.74020000e-01 1.70770000e-01 7.74030000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.43700000e+04 2.33730000e+04 3.78550000e+04 3.50940000e+04 4.18630000e+04 4.13730000e+04 1.99750000e+04 6.86850000e+03 3.17100000e+03 1.72930000e+03 1.04990000e+03 4.75380000e+02 4.24870000e+02 4.15600000e+02 2.56420000e+02 8.35290000e+01 3.79300000e+01 1.27770000e+01 6.08050000e+00 3.49940000e+00 2.26840000e+00 1.18670000e+00 7.40480000e-01 3.36300000e-01] JM4 = 1.08039427716 JM5 = 1.31379705913 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.49680000e+04 1.40510000e+04 1.37280000e+04 1.35590000e+04 6.46780000e+03 2.11880000e+03 9.35300000e+02 4.89320000e+02 2.86140000e+02 1.21580000e+02 1.07670000e+02 1.05130000e+02 6.23180000e+01 1.85040000e+01 7.89360000e+00 2.45370000e+00 1.10890000e+00 6.15110000e-01 3.87800000e-01 1.95410000e-01 1.19140000e-01 5.28640000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.43700000e+04 2.33730000e+04 2.28870000e+04 2.10440000e+04 2.06030000e+04 2.03760000e+04 8.97870000e+03 2.69970000e+03 1.11580000e+03 5.54800000e+02 3.11130000e+02 1.23590000e+02 1.08380000e+02 1.05630000e+02 6.00380000e+01 1.61510000e+01 6.42930000e+00 1.82650000e+00 7.81770000e-01 4.18710000e-01 2.57780000e-01 1.26080000e-01 7.54790000e-02 3.25570000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.53210000e+03 7.43820000e+03 4.52820000e+03 2.05000000e+03 1.11990000e+03 6.85210000e+02 4.52670000e+02 2.30210000e+02 2.08820000e+02 2.04850000e+02 1.34070000e+02 4.88750000e+01 2.36070000e+01 8.49710000e+00 4.18980000e+00 2.46560000e+00 1.62280000e+00 8.65190000e-01 5.45860000e-01 2.50880000e-01] all other = [ 1.60490000e+06 7.20090000e+05 3.90530000e+05 2.87670000e+05 2.82620000e+05 2.63040000e+05 2.58390000e+05 1.79400000e+05 1.76160000e+05 1.57460000e+05 1.28910000e+05 1.26550000e+05 1.07530000e+05 1.05540000e+05 8.03880000e+04 4.70720000e+04 3.01620000e+04 1.47570000e+04 8.39930000e+03 4.97500000e+03 4.87400000e+03 3.39070000e+03 3.32140000e+03 3.05810000e+03 2.99550000e+03 2.96330000e+03 1.39700000e+03 4.76350000e+02 2.19800000e+02 1.20080000e+02 7.30600000e+01 3.32030000e+01 2.96910000e+01 2.90470000e+01 1.79650000e+01 5.88410000e+00 2.68090000e+00 9.06490000e-01 4.31920000e-01 2.48680000e-01 1.61190000e-01 8.42800000e-02 5.25460000e-02 2.38310000e-02] [Hg.binding] K = 83.403 L1 = 14.834 M5 = 2.3005 M4 = 2.3948 M1 = 3.5392 L3 = 12.2862 M3 = 2.8368 M2 = 3.2745 L2 = 14.2548 [Ge] JL1 = 1.10863318796 JL3 = 4.01611079706 JL2 = 1.34611440103 energy = [ 1.00000000e+00 1.22150000e+00 1.23130000e+00 1.25420000e+00 1.26430000e+00 1.40100000e+00 1.41220000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.10560000e+01 1.11440000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 3.96310000e+04 2.61530000e+04 2.57070000e+04 2.47030000e+04 2.42790000e+04 1.93540000e+04 1.90100000e+04 1.65760000e+04 8.36130000e+03 2.94280000e+03 1.33470000e+03 7.04150000e+02 4.10840000e+02 1.70600000e+02 8.43230000e+01 6.10510000e+01 5.94950000e+01 2.23950000e+01 8.47780000e+00 2.07960000e+00 7.51710000e-01 3.38590000e-01 1.75920000e-01 6.26330000e-02 2.81520000e-02 6.70660000e-03 2.48730000e-03 6.51060000e-04 2.65660000e-04 1.37660000e-04 8.27650000e-05 3.91120000e-05 2.29630000e-05 9.65970000e-06] M = [ 2.22550000e+05 1.38120000e+05 1.35480000e+05 1.29580000e+05 1.27100000e+05 9.89880000e+04 9.70720000e+04 8.36850000e+04 4.07480000e+04 1.43340000e+04 6.70750000e+03 3.68810000e+03 2.24980000e+03 1.02140000e+03 5.49270000e+02 4.14690000e+02 4.05510000e+02 1.75160000e+02 7.69730000e+01 2.37760000e+01 1.02130000e+01 5.26880000e+00 3.05600000e+00 1.28660000e+00 6.54500000e-01 1.91550000e-01 8.06100000e-02 2.44970000e-02 1.09280000e-02 6.03340000e-03 3.80940000e-03 1.94370000e-03 1.20770000e-03 5.60070000e-04] L = [ 0.00000000e+00 0.00000000e+00 4.29520000e+05 4.71730000e+05 6.83500000e+05 5.84020000e+05 6.60460000e+05 5.73590000e+05 2.84350000e+05 1.00560000e+05 4.68120000e+04 2.55710000e+04 1.55060000e+04 6.97400000e+03 3.72660000e+03 2.80610000e+03 2.74340000e+03 1.17690000e+03 5.14190000e+02 1.57670000e+02 6.74360000e+01 3.46920000e+01 2.00830000e+01 8.42940000e+00 4.28390000e+00 1.25040000e+00 5.25420000e-01 1.59420000e-01 7.10650000e-02 3.92260000e-02 2.47630000e-02 1.26340000e-02 7.85000000e-03 3.64060000e-03] M5 = [ 4.28910000e+04 2.23120000e+04 2.17280000e+04 2.04310000e+04 1.98930000e+04 1.40690000e+04 1.36920000e+04 1.11370000e+04 4.05030000e+03 9.09430000e+02 3.01400000e+02 1.24790000e+02 5.97190000e+01 1.81260000e+01 7.03310000e+00 4.57140000e+00 4.41700000e+00 1.21500000e+00 3.40070000e-01 5.53860000e-02 1.50580000e-02 5.47600000e-03 2.39850000e-03 6.57900000e-04 2.43950000e-04 4.19680000e-05 1.26900000e-05 2.60670000e-06 9.37800000e-07 4.53210000e-07 2.59020000e-07 1.18020000e-07 6.93390000e-08 2.87750000e-08] M4 = [ 2.93380000e+04 1.52920000e+04 1.48920000e+04 1.40060000e+04 1.36390000e+04 9.65600000e+03 9.39820000e+03 7.64930000e+03 2.79090000e+03 6.29780000e+02 2.09550000e+02 8.70570000e+01 4.17910000e+01 1.27570000e+01 4.97550000e+00 3.24180000e+00 3.13290000e+00 8.68340000e-01 2.46700000e-01 4.08200000e-02 1.12520000e-02 4.13730000e-03 1.83130000e-03 5.10480000e-04 1.91700000e-04 3.36820000e-05 1.02400000e-05 2.07720000e-06 7.18430000e-07 3.31160000e-07 1.82050000e-07 7.60330000e-08 4.03520000e-08 1.48320000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.07890000e+05 1.99180000e+05 1.95110000e+05 1.66780000e+05 7.92200000e+04 2.57490000e+04 1.10970000e+04 5.64860000e+03 3.20960000e+03 1.28520000e+03 6.20610000e+02 4.45160000e+02 4.33500000e+02 1.59380000e+02 5.92090000e+01 1.42220000e+01 5.08390000e+00 2.27470000e+00 1.17640000e+00 4.15490000e-01 1.85970000e-01 4.40350000e-02 1.62780000e-02 4.24460000e-03 1.72810000e-03 8.97570000e-04 5.39370000e-04 2.55200000e-04 1.49470000e-04 6.31530000e-05] L3 = [ 0.00000000e+00 0.00000000e+00 4.29520000e+05 4.71730000e+05 4.75610000e+05 3.84840000e+05 3.76840000e+05 3.21670000e+05 1.51380000e+05 4.84650000e+04 2.06860000e+04 1.04490000e+04 5.89940000e+03 2.33720000e+03 1.11860000e+03 7.98970000e+02 7.77800000e+02 2.82130000e+02 1.03290000e+02 2.42210000e+01 8.48670000e+00 3.73180000e+00 1.90020000e+00 6.53310000e-01 2.85860000e-01 6.48140000e-02 2.32670000e-02 5.88730000e-03 2.38350000e-03 1.24050000e-03 7.55090000e-04 3.69000000e-04 2.24590000e-04 1.00880000e-04] M3 = [ 7.72860000e+04 5.06360000e+04 4.97600000e+04 4.77860000e+04 4.69530000e+04 3.72960000e+04 3.66240000e+04 3.18710000e+04 1.59260000e+04 5.53240000e+03 2.48540000e+03 1.30130000e+03 7.54390000e+02 3.09880000e+02 1.51790000e+02 1.09430000e+02 1.06600000e+02 3.95790000e+01 1.47610000e+01 3.53410000e+00 1.25230000e+00 5.54560000e-01 2.83350000e-01 9.80520000e-02 4.30740000e-02 9.82170000e-03 3.53610000e-03 8.97020000e-04 3.63450000e-04 1.89700000e-04 1.15520000e-04 5.65870000e-05 3.43580000e-05 1.54970000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.85020000e+04 8.51350000e+04 5.37530000e+04 2.63430000e+04 1.50290000e+04 9.47340000e+03 6.39700000e+03 3.35160000e+03 1.98740000e+03 1.56200000e+03 1.53210000e+03 7.35390000e+02 3.51690000e+02 1.19230000e+02 5.38650000e+01 2.86860000e+01 1.70060000e+01 7.36060000e+00 3.81200000e+00 1.14160000e+00 4.85880000e-01 1.49290000e-01 6.69530000e-02 3.70880000e-02 2.34690000e-02 1.20090000e-02 7.47590000e-03 3.47660000e-03] JK = 7.2396363076 M1 = [ 3.34040000e+04 2.37240000e+04 2.33950000e+04 2.26500000e+04 2.23340000e+04 1.86120000e+04 1.83480000e+04 1.64510000e+04 9.61950000e+03 4.31930000e+03 2.37650000e+03 1.47080000e+03 9.83110000e+02 5.10040000e+02 3.01150000e+02 2.36400000e+02 2.31870000e+02 1.11100000e+02 5.31480000e+01 1.80660000e+01 8.18220000e+00 4.36600000e+00 2.59250000e+00 1.12470000e+00 5.82840000e-01 1.74950000e-01 7.45640000e-02 2.29450000e-02 1.02970000e-02 5.70520000e-03 3.61070000e-03 1.84780000e-03 1.15030000e-03 5.34870000e-04] all other = [ 5.00200000e+03 3.40910000e+03 3.35640000e+03 3.23740000e+03 3.18710000e+03 2.60110000e+03 2.56010000e+03 2.26880000e+03 1.25250000e+03 5.20810000e+02 2.72310000e+02 1.62560000e+02 1.05770000e+02 5.30170000e+01 3.05270000e+01 2.37210000e+01 2.32480000e+01 1.08540000e+01 5.08840000e+00 1.69290000e+00 7.58090000e-01 4.01690000e-01 2.37380000e-01 1.02360000e-01 5.29040000e-02 1.58050000e-02 6.72020000e-03 2.06320000e-03 9.24980000e-04 5.12210000e-04 3.24070000e-04 1.65840000e-04 1.03280000e-04 4.81680000e-05] total = [ 2.27550000e+05 1.41520000e+05 5.68360000e+05 6.04540000e+05 8.13780000e+05 6.85610000e+05 7.60090000e+05 6.59540000e+05 3.26350000e+05 1.15410000e+05 5.37910000e+04 2.94220000e+04 1.78620000e+04 8.04840000e+03 4.30640000e+03 3.24450000e+03 2.34890000e+04 1.09050000e+04 4.99610000e+03 1.61010000e+03 7.04530000e+02 3.67010000e+02 2.14080000e+02 9.06140000e+01 4.62470000e+01 1.35590000e+01 5.70600000e+00 1.73320000e+00 7.73130000e-01 4.27030000e-01 2.69820000e-01 1.37920000e-01 8.58450000e-02 3.99470000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.03170000e+04 9.54190000e+03 4.39980000e+03 1.42690000e+03 6.26120000e+02 3.26640000e+02 1.90700000e+02 8.07960000e+01 4.12550000e+01 1.21010000e+01 5.09320000e+00 1.54720000e+00 6.90210000e-01 3.81250000e-01 2.40920000e-01 1.23170000e-01 7.66840000e-02 3.56980000e-02] [Ge.binding] K = 11.0667 L1 = 1.4024 M5 = 0.0382 M4 = 0.0388 M1 = 0.1793 L3 = 1.2228 M3 = 0.125 M2 = 0.1294 L2 = 1.2555 [Gd] JL1 = 1.13176068087 JL3 = 2.69403501009 JL2 = 1.34309853394 energy = [ 1.00000000e+00 1.19850000e+00 1.20800000e+00 1.23040000e+00 1.24020000e+00 1.50000000e+00 1.54020000e+00 1.55260000e+00 1.68560000e+00 1.69910000e+00 1.86330000e+00 1.87820000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 7.23520000e+00 7.29310000e+00 7.93930000e+00 8.00000000e+00 8.00290000e+00 8.34300000e+00 8.40980000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.02620000e+01 5.06650000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.42264266097 M5 = [ 0.00000000e+00 0.00000000e+00 3.81110000e+05 9.35090000e+05 9.72440000e+05 6.16390000e+05 5.76390000e+05 5.64820000e+05 4.57220000e+05 4.47840000e+05 3.54180000e+05 3.46920000e+05 2.94070000e+05 9.18400000e+04 3.79200000e+04 1.85120000e+04 1.01100000e+04 5.33880000e+03 5.19350000e+03 3.86460000e+03 3.76310000e+03 3.75830000e+03 3.24750000e+03 3.15750000e+03 1.70300000e+03 3.81820000e+02 1.26990000e+02 2.56400000e+01 8.02170000e+00 3.22220000e+00 3.15380000e+00 3.05230000e+00 1.52250000e+00 4.65570000e-01 1.86330000e-01 3.62740000e-02 1.17940000e-02 2.62670000e-03 9.78520000e-04 4.79380000e-04 2.77270000e-04 1.25720000e-04 7.36420000e-05 2.97210000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.44990000e+05 4.26470000e+05 3.99250000e+05 3.91370000e+05 3.17970000e+05 3.11550000e+05 2.47130000e+05 2.42050000e+05 2.05760000e+05 6.53900000e+04 2.72980000e+04 1.34470000e+04 7.39880000e+03 3.93930000e+03 3.83360000e+03 2.86350000e+03 2.78910000e+03 2.78560000e+03 2.41160000e+03 2.34570000e+03 1.27570000e+03 2.92170000e+02 9.88510000e+01 2.05170000e+01 6.56300000e+00 2.68610000e+00 2.63030000e+00 2.54740000e+00 1.28980000e+00 4.05020000e-01 1.65480000e-01 3.33270000e-02 1.10200000e-02 2.46360000e-03 9.00970000e-04 4.32510000e-04 2.44240000e-04 1.04500000e-04 5.71220000e-05 2.18600000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.27550000e+04 3.98590000e+04 2.23520000e+04 1.40550000e+04 9.56010000e+03 6.88660000e+03 4.86170000e+03 4.78860000e+03 4.07240000e+03 4.01340000e+03 4.01060000e+03 3.70240000e+03 3.64580000e+03 2.59540000e+03 1.13320000e+03 6.12260000e+02 2.46990000e+02 1.26060000e+02 7.36310000e+01 7.26970000e+01 7.12950000e+01 4.69830000e+01 2.27330000e+01 1.27810000e+01 4.39440000e+00 2.04310000e+00 6.99870000e-01 3.34470000e-01 1.92760000e-01 1.25040000e-01 6.55970000e-02 4.11170000e-02 1.89110000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.89150000e+05 1.68200000e+05 1.66550000e+05 1.45360000e+05 1.43520000e+05 1.29600000e+05 6.45680000e+04 3.64760000e+04 2.25790000e+04 1.49340000e+04 9.58430000e+03 9.40060000e+03 7.63850000e+03 7.49650000e+03 7.48980000e+03 6.75480000e+03 6.62150000e+03 4.26360000e+03 1.43890000e+03 6.37090000e+02 1.90980000e+02 7.84280000e+01 3.86620000e+01 3.80200000e+01 3.70620000e+01 2.14910000e+01 8.39740000e+00 4.02160000e+00 1.05280000e+00 4.11450000e-01 1.14260000e-01 4.83760000e-02 2.58120000e-02 1.58520000e-02 7.76940000e-03 4.68240000e-03 2.05440000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.08280000e+04 6.35330000e+04 6.29910000e+04 5.82260000e+04 3.19280000e+04 1.90110000e+04 1.22040000e+04 8.29590000e+03 5.46790000e+03 5.36950000e+03 4.41330000e+03 4.33560000e+03 4.33190000e+03 3.92930000e+03 3.85620000e+03 2.54250000e+03 9.06310000e+02 4.17370000e+02 1.32570000e+02 5.68680000e+01 2.90480000e+01 2.85910000e+01 2.79060000e+01 1.66440000e+01 6.83790000e+00 3.41090000e+00 9.63860000e-01 3.97410000e-01 1.18080000e-01 5.18630000e-02 2.82230000e-02 1.75680000e-02 8.68350000e-03 5.23460000e-03 2.28450000e-03] total = [ 5.95740000e+05 4.23950000e+05 7.98570000e+05 1.33800000e+06 1.61410000e+06 1.31400000e+06 1.23240000e+06 1.39790000e+06 1.15620000e+06 1.20600000e+06 9.82140000e+05 1.00730000e+06 8.75040000e+05 3.35290000e+05 1.64790000e+05 9.37860000e+04 5.87700000e+04 3.61610000e+04 9.74190000e+04 7.82370000e+04 1.05080000e+05 1.04990000e+05 9.47020000e+04 1.07180000e+05 6.93830000e+04 2.37600000e+04 1.09450000e+04 3.59930000e+03 1.61690000e+03 8.64650000e+02 8.52020000e+02 4.62020000e+03 2.95450000e+03 1.37280000e+03 7.47260000e+02 2.43090000e+02 1.09260000e+02 3.60430000e+01 1.69060000e+01 9.64680000e+00 6.22600000e+00 3.25210000e+00 2.03700000e+00 9.38460000e-01] JM2 = 1.04307213285 JM3 = 1.13429081467 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.78710000e+03 2.43750000e+03 1.14410000e+03 6.26040000e+02 2.04850000e+02 9.22910000e+01 3.05090000e+01 1.43280000e+01 8.18360000e+00 5.28630000e+00 2.76540000e+00 1.73420000e+00 8.00410000e-01] JM1 = 1.02561752907 M = [ 0.00000000e+00 0.00000000e+00 3.81110000e+05 9.35090000e+05 1.21740000e+06 1.04290000e+06 9.75640000e+05 1.14530000e+06 9.43400000e+05 9.96780000e+05 8.10200000e+05 8.38240000e+05 7.27510000e+05 2.76080000e+05 1.34760000e+05 7.63020000e+04 4.76250000e+04 2.91920000e+04 2.85860000e+04 2.28520000e+04 2.23980000e+04 2.23760000e+04 2.00460000e+04 1.96270000e+04 1.23800000e+04 4.15240000e+03 1.89260000e+03 6.16710000e+02 2.75940000e+02 1.47250000e+02 1.45090000e+02 1.41860000e+02 8.79300000e+01 3.88390000e+01 2.05660000e+01 6.48060000e+00 2.87480000e+00 9.37300000e-01 4.36590000e-01 2.47700000e-01 1.58980000e-01 8.22800000e-02 5.11650000e-02 2.33020000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.20030000e+04 4.98780000e+04 7.72770000e+04 7.72190000e+04 6.98050000e+04 8.27980000e+04 5.39570000e+04 1.85550000e+04 8.56400000e+03 2.82010000e+03 1.26740000e+03 6.77810000e+02 6.67910000e+02 6.53070000e+02 4.05300000e+02 1.79300000e+02 9.50220000e+01 2.99660000e+01 1.32950000e+01 4.33520000e+00 2.01980000e+00 1.14630000e+00 7.36230000e-01 3.81380000e-01 2.37360000e-01 1.08220000e-01] JM4 = 1.20635276532 JM5 = 1.88364193891 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.84050000e+04 2.83950000e+04 2.59760000e+04 2.53770000e+04 1.63280000e+04 5.30530000e+03 2.31370000e+03 6.88040000e+02 2.83960000e+02 1.41430000e+02 1.39130000e+02 1.35680000e+02 7.95740000e+01 3.19050000e+01 1.56680000e+01 4.32960000e+00 1.76410000e+00 5.17790000e-01 2.26090000e-01 1.22630000e-01 7.60680000e-02 3.74730000e-02 2.25570000e-02 9.82140000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.20030000e+04 4.98780000e+04 4.88720000e+04 4.88250000e+04 4.38290000e+04 4.29370000e+04 2.67770000e+04 8.19770000e+03 3.43030000e+03 9.63370000e+02 3.81020000e+02 1.83180000e+02 1.80050000e+02 1.75360000e+02 1.00040000e+02 3.81780000e+01 1.80100000e+01 4.61490000e+00 1.78330000e+00 4.89550000e-01 2.06110000e-01 1.09610000e-01 6.73100000e-02 3.29580000e-02 1.98590000e-02 8.67770000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.44830000e+04 1.08510000e+04 5.05240000e+03 2.82000000e+03 1.16870000e+03 6.02400000e+02 3.53200000e+02 3.48730000e+02 3.42030000e+02 2.25680000e+02 1.09220000e+02 6.13440000e+01 2.10220000e+01 9.74750000e+00 3.32780000e+00 1.58760000e+00 9.14080000e-01 5.92850000e-01 3.10950000e-01 1.94950000e-01 8.97180000e-02] all other = [ 5.95740000e+05 4.23950000e+05 4.17460000e+05 4.02880000e+05 3.96670000e+05 2.71130000e+05 2.56770000e+05 2.52580000e+05 2.12790000e+05 2.09240000e+05 1.71940000e+05 1.69020000e+05 1.47520000e+05 5.92100000e+04 3.00330000e+04 1.74840000e+04 1.11450000e+04 6.96900000e+03 6.82990000e+03 5.50630000e+03 5.40060000e+03 5.39560000e+03 4.85230000e+03 4.75440000e+03 3.04540000e+03 1.05240000e+03 4.88300000e+02 1.62530000e+02 7.36040000e+01 3.95930000e+01 3.90200000e+01 3.81610000e+01 2.37800000e+01 1.05870000e+01 5.63530000e+00 1.78940000e+00 7.96820000e-01 2.60950000e-01 1.21820000e-01 6.92050000e-02 4.44670000e-02 2.30360000e-02 1.43350000e-02 6.53240000e-03] [Gd.binding] K = 50.3123 L1 = 8.3513 M5 = 1.1996 M4 = 1.2316 M1 = 1.8652 L3 = 7.2424 M3 = 1.5418 M2 = 1.6873 L2 = 7.9473 [Ga] JL1 = 1.11063254906 JL3 = 3.83149448345 JL2 = 1.29864065581 energy = [ 1.00000000e+00 1.12090000e+00 1.12990000e+00 1.14930000e+00 1.15850000e+00 1.28950000e+00 1.29980000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.03210000e+01 1.04040000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 3.58110000e+04 2.81910000e+04 2.77140000e+04 2.67170000e+04 2.62610000e+04 2.07450000e+04 2.03780000e+04 1.46830000e+04 7.31440000e+03 2.53610000e+03 1.13950000e+03 5.96980000e+02 3.46330000e+02 1.42550000e+02 7.00020000e+01 6.32060000e+01 6.15930000e+01 1.83940000e+01 6.91470000e+00 1.68020000e+00 6.03610000e-01 2.70670000e-01 1.40390000e-01 4.96650000e-02 2.22420000e-02 5.26730000e-03 1.94680000e-03 5.07440000e-04 2.06640000e-04 1.06980000e-04 6.41910000e-05 3.03280000e-05 1.77580000e-05 7.46180000e-06] M = [ 1.92840000e+05 1.47070000e+05 1.44290000e+05 1.38520000e+05 1.35900000e+05 1.04910000e+05 1.02900000e+05 7.24410000e+04 3.52460000e+04 1.23900000e+04 5.79600000e+03 3.18560000e+03 1.94230000e+03 8.80930000e+02 4.73340000e+02 4.33270000e+02 4.23700000e+02 1.50720000e+02 6.61550000e+01 2.03890000e+01 8.74140000e+00 4.50280000e+00 2.60860000e+00 1.09460000e+00 5.56350000e-01 1.62320000e-01 6.81700000e-02 2.06630000e-02 9.20420000e-03 5.07680000e-03 3.20370000e-03 1.63400000e-03 1.01530000e-03 4.71150000e-04] L = [ 0.00000000e+00 0.00000000e+00 4.26260000e+05 5.33700000e+05 7.37820000e+05 6.40790000e+05 7.25550000e+05 5.14510000e+05 2.54580000e+05 8.93420000e+04 4.14220000e+04 2.25790000e+04 1.36720000e+04 6.13770000e+03 3.27500000e+03 2.99500000e+03 2.92820000e+03 1.03200000e+03 4.50080000e+02 1.37640000e+02 5.87430000e+01 3.01690000e+01 1.74400000e+01 7.30300000e+00 3.70480000e+00 1.07800000e+00 4.52030000e-01 1.36800000e-01 6.08870000e-02 3.35790000e-02 2.11860000e-02 1.08040000e-02 6.71300000e-03 3.11540000e-03] M5 = [ 3.33700000e+04 2.29260000e+04 2.23260000e+04 2.10940000e+04 2.05400000e+04 1.43170000e+04 1.39340000e+04 8.50920000e+03 3.06130000e+03 6.78500000e+02 2.22860000e+02 9.15990000e+01 4.35640000e+01 1.31010000e+01 5.05410000e+00 4.41140000e+00 4.26250000e+00 8.61100000e-01 2.41120000e-01 3.89100000e-02 1.05260000e-02 3.81270000e-03 1.66720000e-03 4.55010000e-04 1.68340000e-04 2.88190000e-05 8.67850000e-06 1.78100000e-06 6.41290000e-07 3.07070000e-07 1.78070000e-07 8.09360000e-08 4.66500000e-08 1.99150000e-08] M4 = [ 2.28290000e+04 1.57010000e+04 1.52910000e+04 1.44490000e+04 1.40710000e+04 9.81820000e+03 9.55600000e+03 5.84410000e+03 2.10900000e+03 4.69650000e+02 1.54830000e+02 6.38490000e+01 3.04590000e+01 9.21150000e+00 3.57030000e+00 3.11820000e+00 3.01320000e+00 6.18090000e-01 1.74630000e-01 2.86240000e-02 7.84530000e-03 2.87530000e-03 1.26900000e-03 3.52250000e-04 1.31850000e-04 2.30280000e-05 6.98040000e-06 1.40860000e-06 4.86950000e-07 2.24650000e-07 1.22630000e-07 5.07960000e-08 2.72960000e-08 9.99220000e-09] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.06650000e+05 2.18300000e+05 2.13800000e+05 1.47820000e+05 6.99280000e+04 2.24260000e+04 9.58600000e+03 4.85150000e+03 2.74440000e+03 1.09160000e+03 5.24420000e+02 4.72180000e+02 4.59820000e+02 1.33520000e+02 4.93060000e+01 1.17470000e+01 4.17670000e+00 1.86150000e+00 9.59730000e-01 3.37390000e-01 1.50510000e-01 3.54470000e-02 1.30600000e-02 3.39200000e-03 1.37780000e-03 7.14960000e-04 4.28990000e-04 2.02850000e-04 1.18800000e-04 5.00980000e-05] L3 = [ 0.00000000e+00 0.00000000e+00 4.26260000e+05 5.33700000e+05 5.31170000e+05 4.22500000e+05 4.13720000e+05 2.85090000e+05 1.33490000e+05 4.22740000e+04 1.79040000e+04 8.99640000e+03 5.05830000e+03 1.99160000e+03 9.48680000e+02 8.53120000e+02 8.30520000e+02 2.37390000e+02 8.64290000e+01 2.01160000e+01 7.01420000e+00 3.07340000e+00 1.56070000e+00 5.34370000e-01 2.33140000e-01 5.26200000e-02 1.88400000e-02 4.75420000e-03 1.92240000e-03 9.99660000e-04 6.08660000e-04 2.97340000e-04 1.80750000e-04 8.14420000e-05] M3 = [ 6.97290000e+04 5.46840000e+04 5.37440000e+04 5.17820000e+04 5.08850000e+04 4.00590000e+04 3.93400000e+04 2.82190000e+04 1.39360000e+04 4.77270000e+03 2.12530000e+03 1.10540000e+03 6.37370000e+02 2.59640000e+02 1.26410000e+02 1.13990000e+02 1.11040000e+02 3.26310000e+01 1.20910000e+01 2.86990000e+00 1.01130000e+00 4.46050000e-01 2.27200000e-01 7.82620000e-02 3.42770000e-02 7.77750000e-03 2.79200000e-03 7.06360000e-04 2.85850000e-04 1.48940000e-04 9.07150000e-05 4.44130000e-05 2.70180000e-05 1.22070000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.80270000e+04 8.16030000e+04 5.11650000e+04 2.46430000e+04 1.39330000e+04 8.73080000e+03 5.86920000e+03 3.05450000e+03 1.80180000e+03 1.66970000e+03 1.63790000e+03 6.61080000e+02 3.14350000e+02 1.05770000e+02 4.75520000e+01 2.52340000e+01 1.49190000e+01 6.43120000e+00 3.32110000e+00 9.89920000e-01 4.20130000e-01 1.28650000e-01 5.75870000e-02 3.18640000e-02 2.01490000e-02 1.03040000e-02 6.41340000e-03 2.98390000e-03] JK = 7.3145409199 M1 = [ 3.11050000e+04 2.55670000e+04 2.52160000e+04 2.44780000e+04 2.41400000e+04 1.99740000e+04 1.96910000e+04 1.51850000e+04 8.82550000e+03 3.93320000e+03 2.15350000e+03 1.32770000e+03 8.84590000e+02 4.56430000e+02 2.68310000e+02 2.48550000e+02 2.43790000e+02 9.82110000e+01 4.67330000e+01 1.57710000e+01 7.10810000e+00 3.77940000e+00 2.23810000e+00 9.65910000e-01 4.99530000e-01 1.49230000e-01 6.34150000e-02 1.94460000e-02 8.71050000e-03 4.82040000e-03 3.04850000e-03 1.55910000e-03 9.70430000e-04 4.51450000e-04] all other = [ 3.06430000e+03 2.48180000e+03 2.44500000e+03 2.36790000e+03 2.33260000e+03 1.90240000e+03 1.87350000e+03 1.41880000e+03 7.97810000e+02 3.41150000e+02 1.82090000e+02 1.10360000e+02 7.29440000e+01 3.70120000e+01 2.15240000e+01 1.99110000e+01 1.95230000e+01 7.75860000e+00 3.66210000e+00 1.22550000e+00 5.49910000e-01 2.91600000e-01 1.72360000e-01 7.42950000e-02 3.83740000e-02 1.14440000e-02 4.85940000e-03 1.48900000e-03 6.66720000e-04 3.68940000e-04 2.33350000e-04 1.19410000e-04 7.43960000e-05 3.47760000e-05] total = [ 1.95910000e+05 1.49550000e+05 5.73000000e+05 6.74590000e+05 8.76050000e+05 7.47610000e+05 8.30320000e+05 5.88370000e+05 2.90620000e+05 1.02070000e+05 4.74000000e+04 2.58750000e+04 1.56870000e+04 7.05570000e+03 3.76980000e+03 3.44820000e+03 2.52220000e+04 9.76280000e+03 4.46030000e+03 1.42670000e+03 6.21860000e+02 3.23000000e+02 1.88020000e+02 7.93400000e+01 4.04060000e+01 1.18040000e+01 4.95610000e+00 1.50130000e+00 6.68610000e-01 3.68930000e-01 2.32970000e-01 1.19010000e-01 7.40680000e-02 3.44820000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.18510000e+04 8.57240000e+03 3.94040000e+03 1.26750000e+03 5.53830000e+02 2.88030000e+02 1.67790000e+02 7.08680000e+01 3.61070000e+01 1.05520000e+01 4.43110000e+00 1.34230000e+00 5.97850000e-01 3.29910000e-01 2.08340000e-01 1.06450000e-01 6.62660000e-02 3.08610000e-02] [Ga.binding] K = 10.3312 L1 = 1.2908 M5 = 0.0269 M4 = 0.0274 M1 = 0.1578 L3 = 1.122 M3 = 0.1073 M2 = 0.111 L2 = 1.1504 [Pr] JL1 = 1.13093440698 JL3 = 2.78465057654 JL2 = 1.33759810988 energy = [ 1.00000000e+00 1.22710000e+00 1.23690000e+00 1.32460000e+00 1.33520000e+00 1.47900000e+00 1.49090000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.94820000e+00 5.99580000e+00 6.00000000e+00 6.43670000e+00 6.48820000e+00 6.79380000e+00 6.84820000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.19730000e+01 4.23090000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.64355740893 M5 = [ 1.20380000e+06 7.19990000e+05 7.06100000e+05 5.95970000e+05 5.84160000e+05 4.53830000e+05 4.44770000e+05 4.37940000e+05 1.99860000e+05 5.98530000e+04 2.40810000e+04 1.15260000e+04 6.38260000e+03 6.20940000e+03 6.19460000e+03 4.85600000e+03 4.72290000e+03 4.02020000e+03 3.90910000e+03 2.25160000e+03 1.00100000e+03 2.17170000e+02 7.05750000e+01 1.38280000e+01 4.24210000e+00 3.47550000e+00 3.36250000e+00 1.67940000e+00 7.84990000e-01 2.36260000e-01 9.35580000e-02 1.79150000e-02 5.76750000e-03 1.27060000e-03 4.67720000e-04 2.29110000e-04 1.33540000e-04 6.08880000e-05 3.46260000e-05 1.46410000e-05] M4 = [ 8.35010000e+05 4.94720000e+05 4.85350000e+05 4.10880000e+05 4.02880000e+05 3.13830000e+05 3.07600000e+05 3.02930000e+05 1.39880000e+05 4.24570000e+04 1.72530000e+04 8.32210000e+03 4.63760000e+03 4.51310000e+03 4.50240000e+03 3.53820000e+03 3.44230000e+03 2.93580000e+03 2.85560000e+03 1.65500000e+03 7.42700000e+02 1.64290000e+02 5.42360000e+01 1.09020000e+01 3.41430000e+00 2.80770000e+00 2.71810000e+00 1.37570000e+00 6.52850000e-01 2.01440000e-01 8.13260000e-02 1.60680000e-02 5.25030000e-03 1.15680000e-03 4.22650000e-04 2.00600000e-04 1.12250000e-04 4.83280000e-05 2.64820000e-05 1.00980000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.39540000e+04 5.37910000e+04 3.64300000e+04 1.95930000e+04 1.20140000e+04 8.04710000e+03 5.82660000e+03 5.73930000e+03 5.73180000e+03 5.01650000e+03 4.94080000e+03 4.52370000e+03 4.45460000e+03 3.28890000e+03 2.10270000e+03 9.00500000e+02 4.79610000e+02 1.89490000e+02 9.52710000e+01 8.47230000e+01 8.30870000e+01 5.50040000e+01 3.47660000e+01 1.65760000e+01 9.21620000e+00 3.10810000e+00 1.42670000e+00 4.80790000e-01 2.27510000e-01 1.30220000e-01 8.41400000e-02 4.39480000e-02 2.75070000e-02 1.26630000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 2.22650000e+05 2.05810000e+05 2.04120000e+05 1.77830000e+05 1.75700000e+05 1.74080000e+05 1.10940000e+05 5.23760000e+04 2.86850000e+04 1.73810000e+04 1.15430000e+04 1.13230000e+04 1.13040000e+04 9.53400000e+03 9.34980000e+03 8.34680000e+03 8.18330000e+03 5.53160000e+03 3.08720000e+03 1.00870000e+03 4.36670000e+02 1.27010000e+02 5.11320000e+01 4.38050000e+01 4.26950000e+01 2.48390000e+01 1.36500000e+01 5.24400000e+00 2.48120000e+00 6.37010000e-01 2.46050000e-01 6.74430000e-02 2.83880000e-02 1.50550000e-02 9.24740000e-03 4.54140000e-03 2.73860000e-03 1.20850000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.68470000e+04 7.87850000e+04 7.81010000e+04 7.75640000e+04 5.26200000e+04 2.67910000e+04 1.52720000e+04 9.51800000e+03 6.45510000e+03 6.33810000e+03 6.32810000e+03 5.37830000e+03 5.27920000e+03 4.73950000e+03 4.65120000e+03 3.20020000e+03 1.83220000e+03 6.26870000e+02 2.80740000e+02 8.59130000e+01 3.59520000e+01 3.10090000e+01 3.02560000e+01 1.80310000e+01 1.01840000e+01 4.09530000e+00 2.01130000e+00 5.53930000e-01 2.24730000e-01 6.54640000e-02 2.84330000e-02 1.53770000e-02 9.50810000e-03 4.66570000e-03 2.80070000e-03 1.21460000e-03] total = [ 2.47400000e+06 1.50950000e+06 1.70430000e+06 1.46580000e+06 1.52710000e+06 1.22640000e+06 1.25900000e+06 1.24260000e+06 6.45730000e+05 2.43220000e+05 1.18560000e+05 6.71170000e+04 4.28420000e+04 1.19300000e+05 1.19210000e+05 9.98880000e+04 1.33610000e+05 1.19220000e+05 1.34830000e+05 9.14900000e+04 5.09160000e+04 1.72680000e+04 7.87960000e+03 2.56220000e+03 1.14280000e+03 9.97580000e+02 5.62990000e+03 3.62110000e+03 2.23780000e+03 1.02130000e+03 5.50120000e+02 1.76100000e+02 7.83650000e+01 2.55260000e+01 1.18790000e+01 6.74190000e+00 4.33560000e+00 2.25610000e+00 1.41110000e+00 6.50800000e-01] JM2 = 1.04182016646 JM3 = 1.12904935409 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.65450000e+03 3.01330000e+03 1.87590000e+03 8.62310000e+02 4.66290000e+02 1.49930000e+02 6.68370000e+01 2.18050000e+01 1.01560000e+01 5.76840000e+00 3.71210000e+00 1.93390000e+00 1.21080000e+00 5.59270000e-01] JM1 = 1.02658186562 M = [ 2.03880000e+06 1.21470000e+06 1.41410000e+06 1.21270000e+06 1.27800000e+06 1.02430000e+06 1.06010000e+06 1.04630000e+06 5.39730000e+05 2.01070000e+05 9.73050000e+04 5.47940000e+04 3.48450000e+04 3.41230000e+04 3.40610000e+04 2.83230000e+04 2.77350000e+04 2.45660000e+04 2.40540000e+04 1.59270000e+04 8.76580000e+03 2.91750000e+03 1.32180000e+03 4.27140000e+02 1.90010000e+02 1.65820000e+02 1.62120000e+02 1.00930000e+02 6.00380000e+01 2.63530000e+01 1.38840000e+01 4.33300000e+00 1.90850000e+00 6.16120000e-01 2.85220000e-01 1.61080000e-01 1.03140000e-01 5.32640000e-02 3.31070000e-02 1.51110000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.73340000e+04 7.73270000e+04 6.50090000e+04 9.94470000e+04 8.89350000e+04 1.05170000e+05 7.17950000e+04 4.00380000e+04 1.36270000e+04 6.22400000e+03 2.02500000e+03 9.03280000e+02 7.88470000e+02 7.70900000e+02 4.80420000e+02 2.86030000e+02 1.25670000e+02 6.62310000e+01 2.06730000e+01 9.10400000e+00 2.93830000e+00 1.36020000e+00 7.68590000e-01 4.92280000e-01 2.54380000e-01 1.58210000e-01 7.22940000e-02] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.58320000e+04 3.24640000e+04 3.17350000e+04 2.14070000e+04 1.16140000e+04 3.65140000e+03 1.55590000e+03 4.48770000e+02 1.81480000e+02 1.55730000e+02 1.51820000e+02 8.89980000e+01 4.94770000e+01 1.94810000e+01 9.43890000e+00 2.55000000e+00 1.02410000e+00 2.95270000e-01 1.27620000e-01 6.86950000e-02 4.23920000e-02 2.07590000e-02 1.24330000e-02 5.40090000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.73340000e+04 7.73270000e+04 6.50090000e+04 6.36150000e+04 5.64710000e+04 5.53340000e+04 3.63890000e+04 1.91110000e+04 5.74990000e+03 2.36450000e+03 6.48670000e+02 2.52530000e+02 2.15250000e+02 2.09630000e+02 1.20020000e+02 6.49430000e+01 2.44440000e+01 1.14160000e+01 2.87700000e+00 1.10040000e+00 2.98640000e-01 1.25080000e-01 6.63110000e-02 4.06740000e-02 1.99320000e-02 1.20230000e-02 5.28400000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.81050000e+04 1.40000000e+04 9.31290000e+03 4.22550000e+03 2.30350000e+03 9.27520000e+02 4.69280000e+02 4.17490000e+02 4.09450000e+02 2.71400000e+02 1.71620000e+02 8.17400000e+01 4.53760000e+01 1.52460000e+01 6.97950000e+00 2.34440000e+00 1.10750000e+00 6.33580000e-01 4.09210000e-01 2.13690000e-01 1.33750000e-01 6.16090000e-02] all other = [ 4.35240000e+05 2.94760000e+05 2.90170000e+05 2.53160000e+05 2.49120000e+05 2.02140000e+05 1.98820000e+05 1.96320000e+05 1.06010000e+05 4.21530000e+04 2.12600000e+04 1.23230000e+04 7.99750000e+03 7.83900000e+03 7.82540000e+03 6.55620000e+03 6.42540000e+03 5.71830000e+03 5.60370000e+03 3.76670000e+03 2.11270000e+03 7.23870000e+02 3.33700000e+02 1.10050000e+02 4.95180000e+01 4.32880000e+01 4.23340000e+01 2.65040000e+01 1.58520000e+01 7.01060000e+00 3.71190000e+00 1.16620000e+00 5.15620000e-01 1.67130000e-01 7.75290000e-02 4.38530000e-02 2.81010000e-02 1.45250000e-02 9.03260000e-03 4.12630000e-03] [Pr.binding] K = 42.0148 L1 = 6.8006 M5 = 0.9347 M4 = 0.9559 M1 = 1.4805 L3 = 5.9542 M3 = 1.2283 M2 = 1.3259 L2 = 6.4431 [Pt] JL1 = 1.13206801107 JL3 = 2.50929229238 JL2 = 1.36151500106 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.12660000e+00 2.14360000e+00 2.21020000e+00 2.22790000e+00 2.63420000e+00 2.65530000e+00 3.00000000e+00 3.01960000e+00 3.04380000e+00 3.27190000e+00 3.29810000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.15550000e+01 1.16470000e+01 1.33010000e+01 1.34070000e+01 1.38550000e+01 1.39650000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 7.85770000e+01 7.92060000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.81963152191 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.60410000e+04 4.94660000e+05 4.95930000e+05 3.29380000e+05 3.22320000e+05 2.30540000e+05 2.26420000e+05 2.21470000e+05 1.82530000e+05 1.78630000e+05 1.02990000e+05 5.29130000e+04 3.00680000e+04 1.18810000e+04 5.62780000e+03 3.42540000e+03 3.33200000e+03 2.09350000e+03 2.03530000e+03 1.81210000e+03 1.76150000e+03 1.36550000e+03 4.79700000e+02 1.04440000e+02 3.43630000e+01 1.43200000e+01 6.96180000e+00 2.38420000e+00 2.30970000e+00 2.21990000e+00 9.15020000e-01 1.86410000e-01 6.20620000e-02 1.42390000e-02 5.37170000e-03 2.65030000e-03 1.54160000e-03 6.96630000e-04 4.01910000e-04 1.63690000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.93110000e+04 2.34380000e+05 2.29480000e+05 1.65260000e+05 1.62360000e+05 1.58870000e+05 1.30360000e+05 1.28290000e+05 7.50800000e+04 3.90660000e+04 2.24240000e+04 9.01030000e+03 4.32680000e+03 2.65910000e+03 2.58780000e+03 1.64080000e+03 1.59610000e+03 1.42410000e+03 1.38510000e+03 1.07920000e+03 3.87400000e+02 8.72560000e+01 2.94870000e+01 1.25650000e+01 6.22600000e+00 2.19520000e+00 2.12850000e+00 2.04790000e+00 8.64860000e-01 1.83550000e-01 6.25010000e-02 1.45430000e-02 5.44010000e-03 2.63390000e-03 1.49670000e-03 6.57190000e-04 3.60670000e-04 1.41850000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.30380000e+04 1.81790000e+04 1.30160000e+04 9.80840000e+03 6.03070000e+03 4.04390000e+03 3.09110000e+03 3.04520000e+03 2.36310000e+03 2.32700000e+03 2.18400000e+03 2.15060000e+03 1.87070000e+03 1.04920000e+03 4.46080000e+02 2.36410000e+02 1.42220000e+02 9.29600000e+01 4.87940000e+01 4.78600000e+01 4.67170000e+01 2.70390000e+01 9.78630000e+00 4.71130000e+00 1.68930000e+00 8.30770000e-01 4.87850000e-01 3.20570000e-01 1.70550000e-01 1.07450000e-01 4.93370000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.14950000e+05 9.81650000e+04 9.71730000e+04 9.59470000e+04 8.47910000e+04 8.35970000e+04 5.94660000e+04 3.91050000e+04 2.70850000e+04 1.44960000e+04 8.65220000e+03 6.11070000e+03 5.99240000e+03 4.30920000e+03 4.22380000e+03 3.88790000e+03 3.81000000e+03 3.17310000e+03 1.48560000e+03 4.80250000e+02 2.07550000e+02 1.06240000e+02 6.08250000e+01 2.62750000e+01 2.56260000e+01 2.48360000e+01 1.22780000e+01 3.38460000e+00 1.36430000e+00 3.92370000e-01 1.68940000e-01 9.07980000e-02 5.60330000e-02 2.74450000e-02 1.64480000e-02 7.12320000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.79940000e+04 3.50910000e+04 3.48250000e+04 2.67670000e+04 1.91500000e+04 1.39580000e+04 8.08060000e+03 5.08560000e+03 3.70890000e+03 3.64340000e+03 2.69850000e+03 2.64930000e+03 2.45520000e+03 2.41000000e+03 2.03860000e+03 1.01350000e+03 3.56450000e+02 1.63700000e+02 8.79510000e+01 5.24320000e+01 2.40860000e+01 2.35340000e+01 2.28610000e+01 1.19090000e+01 3.61670000e+00 1.56030000e+00 4.90130000e-01 2.22520000e-01 1.23700000e-01 7.80700000e-02 3.93680000e-02 2.40440000e-02 1.06680000e-02] total = [ 1.43230000e+06 6.39740000e+05 3.46440000e+05 3.02810000e+05 3.83580000e+05 7.72780000e+05 8.28490000e+05 7.51430000e+05 8.51040000e+05 6.33370000e+05 6.23280000e+05 6.49110000e+05 5.46790000e+05 5.60310000e+05 3.53550000e+05 2.04820000e+05 1.29950000e+05 6.25040000e+04 3.51310000e+04 2.41060000e+04 6.04890000e+04 4.22970000e+04 5.75880000e+04 5.31090000e+04 6.01230000e+04 5.00760000e+04 2.38030000e+04 8.10960000e+03 3.72440000e+03 2.02410000e+03 1.22580000e+03 5.81310000e+02 2.80170000e+03 2.70290000e+03 1.52090000e+03 5.18820000e+02 2.40020000e+02 8.21440000e+01 3.94500000e+01 2.28740000e+01 1.49250000e+01 7.89320000e+00 4.96680000e+00 2.28490000e+00] JM2 = 1.04144204852 JM3 = 1.13256058449 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.23310000e+03 2.14980000e+03 1.22330000e+03 4.22290000e+02 1.96320000e+02 6.74820000e+01 3.24920000e+01 1.88770000e+01 1.23390000e+01 6.54210000e+00 4.12440000e+00 1.90220000e+00] JM1 = 1.02472612886 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.60410000e+04 4.94660000e+05 5.55240000e+05 5.63770000e+05 6.66750000e+05 4.93960000e+05 4.85940000e+05 5.14280000e+05 4.32770000e+05 4.48380000e+05 2.82480000e+05 1.63250000e+05 1.03340000e+05 4.94990000e+04 2.77360000e+04 1.89950000e+04 1.86010000e+04 1.31050000e+04 1.28310000e+04 1.17630000e+04 1.15170000e+04 9.52700000e+03 4.41540000e+03 1.47450000e+03 6.71510000e+02 3.63300000e+02 2.19400000e+02 1.03730000e+02 1.01460000e+02 9.86810000e+01 5.30060000e+01 1.71580000e+01 7.76040000e+00 2.60060000e+00 1.23300000e+00 7.07630000e-01 4.57710000e-01 2.38720000e-01 1.48700000e-01 6.74340000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.68810000e+04 2.56360000e+04 4.12730000e+04 3.81450000e+04 4.54710000e+04 3.79450000e+04 1.81630000e+04 6.21870000e+03 2.86110000e+03 1.55620000e+03 9.42880000e+02 4.47340000e+02 4.37550000e+02 4.25610000e+02 2.29050000e+02 7.43070000e+01 3.36430000e+01 1.12860000e+01 5.35650000e+00 3.07710000e+00 1.99220000e+00 1.04080000e+00 6.49160000e-01 2.94960000e-01] JM4 = 1.07209037501 JM5 = 1.26673491628 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.61690000e+04 1.51130000e+04 1.47620000e+04 1.21700000e+04 5.77230000e+03 1.87260000e+03 8.20000000e+02 4.26140000e+02 2.47950000e+02 1.10390000e+02 1.07770000e+02 1.04580000e+02 5.33060000e+01 1.56860000e+01 6.65260000e+00 2.05310000e+00 9.23850000e-01 5.10940000e-01 3.21460000e-01 1.61540000e-01 9.83190000e-02 4.35560000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.68810000e+04 2.56360000e+04 2.51040000e+04 2.30330000e+04 2.25520000e+04 1.85890000e+04 8.07710000e+03 2.41120000e+03 9.91810000e+02 4.91330000e+02 2.74670000e+02 1.15090000e+02 1.12150000e+02 1.08580000e+02 5.25660000e+01 1.40600000e+01 5.57710000e+00 1.57810000e+00 6.74140000e-01 3.60750000e-01 2.22040000e-01 1.08630000e-01 6.50850000e-02 2.81470000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.15710000e+03 7.18610000e+03 4.31330000e+03 1.93480000e+03 1.04920000e+03 6.38780000e+02 4.20250000e+02 2.21860000e+02 2.17630000e+02 2.12450000e+02 1.23180000e+02 4.45610000e+01 2.14130000e+01 7.65530000e+00 3.75860000e+00 2.20540000e+00 1.44870000e+00 7.70650000e-01 4.85750000e-01 2.23260000e-01] all other = [ 1.43230000e+06 6.39740000e+05 3.46440000e+05 3.02810000e+05 2.97540000e+05 2.78120000e+05 2.73250000e+05 1.87660000e+05 1.84300000e+05 1.39410000e+05 1.37330000e+05 1.34830000e+05 1.14020000e+05 1.11930000e+05 7.10660000e+04 4.15660000e+04 2.66110000e+04 1.30050000e+04 7.39500000e+03 5.11090000e+03 5.00740000e+03 3.55660000e+03 3.48400000e+03 3.20020000e+03 3.13470000e+03 2.60370000e+03 1.22520000e+03 4.16480000e+02 1.91800000e+02 1.04540000e+02 6.35030000e+01 3.02400000e+01 2.95820000e+01 2.87790000e+01 1.55370000e+01 5.06750000e+00 2.30210000e+00 7.74900000e-01 3.68300000e-01 2.11670000e-01 1.37030000e-01 7.15500000e-02 4.45940000e-02 2.02330000e-02] [Pt.binding] K = 78.6555 L1 = 13.8684 M5 = 2.1287 M4 = 2.2124 M1 = 3.2752 L3 = 11.5662 M3 = 2.6368 M2 = 3.0226 L2 = 13.3141 [Pu] JL1 = 1.1326415758 JL3 = 2.31953672661 JL2 = 1.39503003072 energy = [ 1.00000000e+00 1.10490000e+00 1.11370000e+00 1.36990000e+00 1.38090000e+00 1.50000000e+00 1.53520000e+00 1.54750000e+00 2.00000000e+00 3.00000000e+00 3.77240000e+00 3.80260000e+00 3.97350000e+00 4.00000000e+00 4.00530000e+00 4.54490000e+00 4.58130000e+00 5.00000000e+00 5.54460000e+00 5.58900000e+00 5.90590000e+00 5.95320000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.80510000e+01 1.81960000e+01 2.00000000e+01 2.23520000e+01 2.25310000e+01 2.31370000e+01 2.33220000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.22440000e+02 1.23420000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.06509865669 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.65260000e+05 2.33270000e+05 2.29200000e+05 2.28420000e+05 1.65660000e+05 1.62090000e+05 1.26490000e+05 9.30130000e+04 9.09810000e+04 7.79180000e+04 7.61420000e+04 7.44250000e+04 3.11870000e+04 1.54320000e+04 4.04540000e+03 2.14300000e+03 2.08440000e+03 1.49800000e+03 1.01170000e+03 9.83360000e+02 8.94610000e+02 8.69530000e+02 3.50260000e+02 1.21000000e+02 5.22960000e+01 2.61640000e+01 8.69890000e+00 3.69860000e+00 1.70530000e+00 1.65420000e+00 7.89330000e-01 2.70950000e-01 6.37760000e-02 2.43350000e-02 1.20570000e-02 7.06640000e-03 3.20610000e-03 1.81400000e-03 7.49500000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.63300000e+05 1.66950000e+05 1.21690000e+05 1.19270000e+05 9.44440000e+04 7.04050000e+04 6.88030000e+04 5.85560000e+04 5.73000000e+04 5.60910000e+04 2.41870000e+04 1.21890000e+04 3.31110000e+03 1.78490000e+03 1.73760000e+03 1.26070000e+03 8.60990000e+02 8.37620000e+02 7.64110000e+02 7.43260000e+02 3.07500000e+02 1.09760000e+02 4.87300000e+01 2.49400000e+01 8.60330000e+00 3.76400000e+00 1.77990000e+00 1.72830000e+00 8.43760000e-01 2.98100000e-01 7.19460000e-02 2.75150000e-02 1.35200000e-02 7.85140000e-03 3.46460000e-03 1.93470000e-03 7.56920000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.11050000e+04 1.08580000e+04 7.36320000e+03 5.27490000e+03 2.66360000e+03 1.90670000e+03 1.87870000e+03 1.57560000e+03 1.27500000e+03 1.25550000e+03 1.19270000e+03 1.17440000e+03 7.13940000e+02 3.94330000e+02 2.44770000e+02 1.64070000e+02 8.57830000e+01 5.11910000e+01 3.17770000e+01 3.11820000e+01 1.95830000e+01 9.80340000e+00 3.70940000e+00 1.89000000e+00 1.13720000e+00 7.59970000e-01 4.12260000e-01 2.62010000e-01 1.20500000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.73200000e+04 5.81980000e+04 4.94300000e+04 4.87310000e+04 4.39410000e+04 4.32680000e+04 4.26150000e+04 2.43550000e+04 1.52920000e+04 6.09610000e+03 3.89450000e+03 3.81900000e+03 3.01820000e+03 2.27680000e+03 2.23090000e+03 2.08370000e+03 2.04130000e+03 1.05140000e+03 4.77820000e+02 2.53970000e+02 1.49790000e+02 6.39490000e+01 3.26610000e+01 1.76490000e+01 1.72250000e+01 9.49720000e+00 3.95650000e+00 1.17950000e+00 5.16590000e-01 2.79760000e-01 1.73270000e-01 8.47420000e-02 5.05310000e-02 2.14640000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.76360000e+04 1.66360000e+04 1.64940000e+04 1.63690000e+04 1.12080000e+04 7.92150000e+03 3.73860000e+03 2.55430000e+03 2.51200000e+03 2.05230000e+03 1.60770000e+03 1.57950000e+03 1.48880000e+03 1.46250000e+03 8.18230000e+02 4.07800000e+02 2.32630000e+02 1.45350000e+02 6.80000000e+01 3.72930000e+01 2.14970000e+01 2.10340000e+01 1.23390000e+01 5.62120000e+00 1.88650000e+00 8.90780000e-01 5.08200000e-01 3.26990000e-01 1.68760000e-01 1.04420000e-01 4.73290000e-02] total = [ 2.85050000e+06 2.39120000e+06 2.50690000e+06 1.69350000e+06 1.68930000e+06 1.43240000e+06 1.36690000e+06 1.37050000e+06 8.03280000e+05 3.28610000e+05 1.94340000e+05 4.56030000e+05 4.05490000e+05 5.62060000e+05 5.64420000e+05 4.12980000e+05 4.71960000e+05 3.79320000e+05 2.91080000e+05 3.02900000e+05 2.64250000e+05 2.70220000e+05 2.65040000e+05 1.30340000e+05 7.45220000e+04 2.64720000e+04 1.64050000e+04 3.80520000e+04 2.94510000e+04 2.18110000e+04 3.04270000e+04 2.84300000e+04 3.22010000e+04 1.69830000e+04 8.04530000e+03 4.47500000e+03 2.75850000e+03 1.27780000e+03 7.01200000e+02 4.06460000e+02 1.65230000e+03 1.00900000e+03 4.85380000e+02 1.74250000e+02 8.63560000e+01 5.11810000e+01 3.39180000e+01 1.82560000e+01 1.15740000e+01 5.32880000e+00] JM2 = 1.04060739316 JM3 = 1.14281563272 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1254.5 773.52 376.09 136.32 67.947 40.443 26.89 14.543 9.2475 4.2717] JM1 = 1.02259224219 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.65260000e+05 2.33270000e+05 3.92500000e+05 3.95380000e+05 2.87350000e+05 3.48680000e+05 2.79130000e+05 2.12850000e+05 2.26150000e+05 1.97050000e+05 2.04310000e+05 2.00360000e+05 9.82990000e+04 5.61100000e+04 1.98550000e+04 1.22830000e+04 1.20320000e+04 9.40480000e+03 7.03220000e+03 6.88680000e+03 6.42390000e+03 6.29090000e+03 3.24140000e+03 1.51070000e+03 8.32390000e+02 5.10310000e+02 2.35030000e+02 1.28610000e+02 7.44080000e+01 7.28230000e+01 4.30520000e+01 1.99500000e+01 6.91100000e+00 3.34920000e+00 1.95070000e+00 1.27520000e+00 6.72430000e-01 4.20710000e-01 1.90800000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.19830000e+04 1.68800000e+04 1.24030000e+04 2.12130000e+04 1.98340000e+04 2.37820000e+04 1.26360000e+04 6.01570000e+03 3.35520000e+03 2.07130000e+03 9.60830000e+02 5.27590000e+02 3.05930000e+02 2.99430000e+02 1.77280000e+02 8.22880000e+01 2.85670000e+01 1.38700000e+01 8.09260000e+00 5.29810000e+00 2.80110000e+00 1.75570000e+00 7.98240000e-01] JM4 = 1.38612542849 JM5 = 2.3465575795 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.07310000e+03 8.53600000e+03 8.41460000e+03 4.48820000e+03 2.11280000e+03 1.15980000e+03 7.03610000e+02 3.15930000e+02 1.68440000e+02 9.49420000e+01 9.28220000e+01 5.34400000e+01 2.37870000e+01 7.78880000e+00 3.63210000e+00 2.05720000e+00 1.31790000e+00 6.76760000e-01 4.17700000e-01 1.88680000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.19830000e+04 1.68800000e+04 1.24030000e+04 1.21400000e+04 1.12980000e+04 1.10550000e+04 5.36140000e+03 2.29990000e+03 1.17350000e+03 6.71450000e+02 2.75010000e+02 1.36620000e+02 7.22450000e+01 7.04540000e+01 3.81540000e+01 1.55520000e+01 4.53310000e+00 1.96390000e+00 1.05720000e+00 6.52540000e-01 3.17960000e-01 1.89270000e-01 8.05880000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.31220000e+03 2.78670000e+03 1.60300000e+03 1.02190000e+03 6.96260000e+02 3.69900000e+02 2.22530000e+02 1.38740000e+02 1.36160000e+02 8.56900000e+01 4.29490000e+01 1.62450000e+01 8.27370000e+00 4.97820000e+00 3.32770000e+00 1.80630000e+00 1.14880000e+00 5.28970000e-01] all other = [ 2.85050000e+06 2.39120000e+06 2.50690000e+06 1.69350000e+06 1.68930000e+06 1.43240000e+06 1.36690000e+06 1.37050000e+06 8.03280000e+05 3.28610000e+05 1.94340000e+05 1.90780000e+05 1.72220000e+05 1.69560000e+05 1.69040000e+05 1.25630000e+05 1.23290000e+05 1.00180000e+05 7.82320000e+04 7.67460000e+04 6.71960000e+04 6.59150000e+04 6.46820000e+04 3.20370000e+04 1.84120000e+04 6.61670000e+03 4.12110000e+03 4.03760000e+03 3.16590000e+03 2.37560000e+03 2.32710000e+03 2.17250000e+03 2.12800000e+03 1.10490000e+03 5.18830000e+02 2.87350000e+02 1.76850000e+02 8.19160000e+01 4.49980000e+01 2.61190000e+01 2.55660000e+01 1.51600000e+01 7.05050000e+00 2.45190000e+00 1.19030000e+00 6.94300000e-01 4.54170000e-01 2.39690000e-01 1.49990000e-01 6.80400000e-02] [Pu.binding] K = 122.5667 L1 = 23.1603 M5 = 3.7762 M4 = 3.9774 M1 = 5.9118 L3 = 18.0695 M3 = 4.5495 M2 = 5.5502 L2 = 22.3744 [C] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 2.02800000e+03 6.55640000e+02 2.86990000e+02 8.64100000e+01 3.61610000e+01 1.82170000e+01 1.03450000e+01 4.18640000e+00 2.05700000e+00 5.56200000e-01 2.17490000e-01 5.71940000e-02 2.20240000e-02 1.04790000e-02 5.70560000e-03 2.18590000e-03 1.04010000e-03 2.72550000e-04 1.07110000e-04 3.00150000e-05 1.27990000e-05 6.88440000e-06 4.28130000e-06 2.15960000e-06 1.34390000e-06 6.36980000e-07] L2 = [ 3.16670000e+01 6.92190000e+00 2.26040000e+00 4.55000000e-01 1.45130000e-01 5.92780000e-02 2.83410000e-02 8.73550000e-03 3.47180000e-03 6.41510000e-04 1.92300000e-04 3.51200000e-05 1.05520000e-05 4.17390000e-06 1.96670000e-06 6.06480000e-07 2.47200000e-07 5.03320000e-08 1.70050000e-08 3.97000000e-09 1.51620000e-09 7.50450000e-10 4.38420000e-10 1.98660000e-10 1.13810000e-10 4.87640000e-11] L3 = [ 6.29500000e+01 1.37440000e+01 4.48560000e+00 9.01870000e-01 2.86420000e-01 1.16760000e-01 5.57530000e-02 1.71360000e-02 6.79720000e-03 1.24740000e-03 3.71850000e-04 6.72930000e-05 2.00330000e-05 7.85400000e-06 3.66660000e-06 1.11690000e-06 4.48960000e-07 8.95950000e-08 2.98690000e-08 7.01570000e-09 2.74280000e-09 1.41180000e-09 8.52450000e-10 4.20890000e-10 2.62320000e-10 1.33020000e-10] L1 = [ 1.93340000e+03 6.34970000e+02 2.80250000e+02 8.50540000e+01 3.57300000e+01 1.80410000e+01 1.02610000e+01 4.16050000e+00 2.04680000e+00 5.54310000e-01 2.16930000e-01 5.70910000e-02 2.19930000e-02 1.04670000e-02 5.70000000e-03 2.18420000e-03 1.03940000e-03 2.72410000e-04 1.07060000e-04 3.00040000e-05 1.27950000e-05 6.88220000e-06 4.28000000e-06 2.15900000e-06 1.34350000e-06 6.36800000e-07] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 4.40730000e+04 1.39470000e+04 6.01780000e+03 1.78820000e+03 7.42730000e+02 3.72150000e+02 2.10320000e+02 8.45930000e+01 4.14050000e+01 1.11340000e+01 4.34080000e+00 1.13790000e+00 4.37410000e-01 2.07890000e-01 1.13100000e-01 4.32780000e-02 2.05780000e-02 5.39700000e-03 2.12090000e-03 5.94410000e-04 2.53540000e-04 1.36370000e-04 8.48180000e-05 4.27710000e-05 2.65900000e-05 1.25530000e-05] K = [ 4.20450000e+04 1.32910000e+04 5.73080000e+03 1.70180000e+03 7.06570000e+02 3.53930000e+02 1.99980000e+02 8.04060000e+01 3.93480000e+01 1.05780000e+01 4.12330000e+00 1.08070000e+00 4.15390000e-01 1.97410000e-01 1.07400000e-01 4.10920000e-02 1.95380000e-02 5.12440000e-03 2.01380000e-03 5.64400000e-04 2.40750000e-04 1.29480000e-04 8.05370000e-05 4.06120000e-05 2.52460000e-05 1.19160000e-05] [C.binding] K = 0.291 L2 = 0.009 L3 = 0.009 L1 = 0.0176 [Pb] JL1 = 1.13244126479 JL3 = 2.4526731945 JL2 = 1.36732922732 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.48610000e+00 2.50600000e+00 2.59200000e+00 2.61280000e+00 3.00000000e+00 3.05140000e+00 3.07580000e+00 3.54640000e+00 3.57480000e+00 3.82330000e+00 3.85390000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.30260000e+01 1.31300000e+01 1.50000000e+01 1.52360000e+01 1.53580000e+01 1.58410000e+01 1.59680000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 8.82630000e+01 8.89700000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.63465434647 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.65610000e+05 4.18410000e+05 4.10990000e+05 2.88540000e+05 2.75400000e+05 2.69410000e+05 1.80820000e+05 1.76780000e+05 1.47110000e+05 1.43940000e+05 1.29880000e+05 6.75140000e+04 3.86950000e+04 1.55530000e+04 7.45130000e+03 3.02340000e+03 2.94070000e+03 1.84520000e+03 1.74590000e+03 1.69730000e+03 1.52090000e+03 1.47840000e+03 6.57310000e+02 1.45840000e+02 4.86160000e+01 2.04570000e+01 1.00210000e+01 3.23110000e+00 2.19380000e+00 2.12590000e+00 1.34240000e+00 2.76950000e-01 9.28850000e-02 2.14710000e-02 8.12630000e-03 4.01470000e-03 2.33600000e-03 1.05950000e-03 6.10680000e-04 2.45730000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.82230000e+05 2.06780000e+05 1.97730000e+05 1.93580000e+05 1.31200000e+05 1.28330000e+05 1.06390000e+05 1.04390000e+05 9.44390000e+04 4.98950000e+04 2.89780000e+04 1.18590000e+04 5.76890000e+03 2.38620000e+03 2.32240000e+03 1.47170000e+03 1.39430000e+03 1.35630000e+03 1.21820000e+03 1.18480000e+03 5.36420000e+02 1.23380000e+02 4.23020000e+01 1.82210000e+01 9.10540000e+00 3.03260000e+00 2.08220000e+00 2.01970000e+00 1.29230000e+00 2.78300000e-01 9.56120000e-02 2.24780000e-02 8.46060000e-03 4.11380000e-03 2.34520000e-03 1.03080000e-03 5.68190000e-04 2.21140000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.95550000e+04 1.84430000e+04 1.35920000e+04 1.03590000e+04 6.51500000e+03 4.42350000e+03 2.72860000e+03 2.68830000e+03 2.08680000e+03 2.02470000e+03 1.99380000e+03 1.87800000e+03 1.84930000e+03 1.18460000e+03 5.11080000e+02 2.73620000e+02 1.65900000e+02 1.09140000e+02 5.54060000e+01 4.37530000e+01 4.29190000e+01 3.23200000e+01 1.18630000e+01 5.76730000e+00 2.09540000e+00 1.03930000e+00 6.13790000e-01 4.04900000e-01 2.16360000e-01 1.36570000e-01 6.27130000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.92750000e+04 8.18640000e+04 8.08000000e+04 7.18070000e+04 7.07690000e+04 6.60830000e+04 4.41540000e+04 3.08050000e+04 1.68230000e+04 1.01700000e+04 5.41680000e+03 5.31190000e+03 3.81300000e+03 3.66580000e+03 3.59280000e+03 3.32180000e+03 3.25500000e+03 1.81160000e+03 5.97230000e+02 2.61530000e+02 1.35220000e+02 7.80220000e+01 3.22330000e+01 2.37430000e+01 2.31600000e+01 1.60710000e+01 4.49240000e+00 1.82630000e+00 5.30210000e-01 2.29330000e-01 1.23510000e-01 7.62760000e-02 3.74090000e-02 2.23460000e-02 9.63740000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.05420000e+04 2.91510000e+04 2.89440000e+04 2.78730000e+04 2.01830000e+04 1.53010000e+04 9.14610000e+03 5.88570000e+03 3.35320000e+03 3.29450000e+03 2.44450000e+03 2.35900000e+03 2.31630000e+03 2.15720000e+03 2.11770000e+03 1.24320000e+03 4.50410000e+02 2.10940000e+02 1.14990000e+02 6.93400000e+01 3.07550000e+01 2.32210000e+01 2.26960000e+01 1.62230000e+01 5.03090000e+00 2.19930000e+00 7.02110000e-01 3.21840000e-01 1.80050000e-01 1.14150000e-01 5.79000000e-02 3.54810000e-02 1.58130000e-02] total = [ 1.78840000e+06 8.06620000e+05 4.38350000e+05 2.71220000e+05 5.32030000e+05 6.65380000e+05 8.35780000e+05 6.72480000e+05 6.43510000e+05 7.29560000e+05 5.14140000e+05 5.34490000e+05 4.55270000e+05 4.66540000e+05 4.27330000e+05 2.48470000e+05 1.58220000e+05 7.66000000e+04 4.32190000e+04 2.17530000e+04 5.33530000e+04 3.72300000e+04 3.57200000e+04 4.88410000e+04 4.52880000e+04 5.12860000e+04 2.88860000e+04 9.92890000e+03 4.59320000e+03 2.50880000e+03 1.52530000e+03 6.92360000e+02 5.28130000e+02 2.44770000e+03 1.80220000e+03 6.24380000e+02 2.91180000e+02 1.00790000e+02 4.87570000e+01 2.84120000e+01 1.86040000e+01 9.87800000e+00 6.22580000e+00 2.86350000e+00] JM2 = 1.03958065896 JM3 = 1.13371975571 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1931.1 1427.9 501.97 235.43 81.931 39.761 23.226 15.239 8.1156 5.1259 2.3643] JM1 = 1.02475454126 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.65610000e+05 4.18410000e+05 5.93220000e+05 4.95320000e+05 4.73120000e+05 5.62270000e+05 3.93880000e+05 4.16450000e+05 3.54460000e+05 3.67600000e+05 3.36720000e+05 1.95340000e+05 1.24140000e+05 5.98950000e+04 3.37000000e+04 1.69080000e+04 1.65580000e+04 1.16610000e+04 1.11900000e+04 1.09560000e+04 1.00960000e+04 9.88510000e+03 5.43310000e+03 1.82790000e+03 8.37020000e+02 4.54790000e+02 2.75630000e+02 1.24660000e+02 9.49930000e+01 9.29200000e+01 6.72490000e+01 2.19420000e+01 9.98140000e+00 3.37170000e+00 1.60700000e+00 9.25470000e-01 6.00020000e-01 3.13760000e-01 1.95580000e-01 8.86300000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.20490000e+04 2.22030000e+04 2.12980000e+04 3.47180000e+04 3.22700000e+04 3.85390000e+04 2.18630000e+04 7.55710000e+03 3.50470000e+03 1.91640000e+03 1.16580000e+03 5.29490000e+02 4.03950000e+02 3.95170000e+02 2.86300000e+02 9.36530000e+01 4.26530000e+01 1.44280000e+01 6.88480000e+00 3.96960000e+00 2.57640000e+00 1.34970000e+00 8.42620000e-01 3.82620000e-01] JM4 = 1.25609426193 JM5 = 1.96161787479 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.38660000e+04 1.30580000e+04 1.27680000e+04 7.17850000e+03 2.39030000e+03 1.06310000e+03 5.59620000e+02 3.28910000e+02 1.40830000e+02 1.05180000e+02 1.02720000e+02 7.25590000e+01 2.17440000e+01 9.33050000e+00 2.92150000e+00 1.32620000e+00 7.37760000e-01 4.66110000e-01 2.35520000e-01 1.43850000e-01 6.39770000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.20490000e+04 2.22030000e+04 2.12980000e+04 2.08530000e+04 1.92120000e+04 1.88080000e+04 9.96150000e+03 3.00770000e+03 1.25080000e+03 6.24160000e+02 3.51070000e+02 1.40090000e+02 1.02110000e+02 9.95260000e+01 6.82780000e+01 1.84720000e+01 7.37910000e+00 2.10460000e+00 9.02520000e-01 4.83790000e-01 2.97930000e-01 1.45670000e-01 8.71350000e-02 3.75070000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.96310000e+03 4.72260000e+03 2.15910000e+03 1.19080000e+03 7.32580000e+02 4.85860000e+02 2.48570000e+02 1.96650000e+02 1.92920000e+02 1.45460000e+02 5.34370000e+01 2.59430000e+01 9.40180000e+00 4.65610000e+00 2.74810000e+00 1.81240000e+00 9.68510000e-01 6.11640000e-01 2.81130000e-01] all other = [ 1.78840000e+06 8.06620000e+05 4.38350000e+05 2.71220000e+05 2.66420000e+05 2.46960000e+05 2.42560000e+05 1.77160000e+05 1.70390000e+05 1.67290000e+05 1.20260000e+05 1.18040000e+05 1.00810000e+05 9.89360000e+04 9.06070000e+04 5.31330000e+04 3.40830000e+04 1.67050000e+04 9.51930000e+03 4.84470000e+03 4.74630000e+03 3.36610000e+03 3.23250000e+03 3.16630000e+03 2.92220000e+03 2.86230000e+03 1.59000000e+03 5.43810000e+02 2.51520000e+02 1.37610000e+02 8.38600000e+01 3.82180000e+01 2.91900000e+01 2.85580000e+01 2.07210000e+01 6.81290000e+00 3.11280000e+00 1.05660000e+00 5.04800000e-01 2.91150000e-01 1.88950000e-01 9.89140000e-02 6.16930000e-02 2.79700000e-02] [Pb.binding] K = 88.3511 L1 = 15.8566 M5 = 2.4886 M4 = 2.5946 M1 = 3.8271 L3 = 13.039 M3 = 3.0545 M2 = 3.55 L2 = 15.2516 [Pa] JL1 = 1.13301729821 JL3 = 2.34943538269 JL2 = 1.38788691202 energy = [ 1.00000000e+00 1.20950000e+00 1.21920000e+00 1.36290000e+00 1.37380000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.43950000e+00 3.46700000e+00 3.61220000e+00 3.64110000e+00 4.00000000e+00 4.15490000e+00 4.18810000e+00 4.99810000e+00 5.00000000e+00 5.03810000e+00 5.33660000e+00 5.37930000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.67250000e+01 1.68590000e+01 2.00000000e+01 2.03840000e+01 2.05470000e+01 2.11190000e+01 2.12880000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.13120000e+02 1.14030000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.204345816 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.01210000e+05 2.63590000e+05 2.58210000e+05 2.04870000e+05 1.85080000e+05 1.81080000e+05 1.08970000e+05 1.08840000e+05 1.06440000e+05 9.03560000e+04 8.83310000e+04 6.38240000e+04 2.65240000e+04 1.30290000e+04 3.37160000e+03 2.31730000e+03 2.25390000e+03 1.23770000e+03 1.15690000e+03 1.12460000e+03 1.01980000e+03 9.91240000e+02 2.85710000e+02 9.78690000e+01 4.20310000e+01 2.09230000e+01 6.90380000e+00 2.91950000e+00 1.81610000e+00 1.76130000e+00 6.17640000e-01 2.10930000e-01 4.93790000e-02 1.87970000e-02 9.30450000e-03 5.45210000e-03 2.47510000e-03 1.40800000e-03 5.78800000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.90910000e+05 1.48330000e+05 1.35160000e+05 1.32440000e+05 8.12990000e+04 8.12090000e+04 7.94620000e+04 6.72160000e+04 6.57750000e+04 4.83500000e+04 2.04990000e+04 1.02490000e+04 2.74360000e+03 1.90340000e+03 1.85280000e+03 1.03370000e+03 9.68110000e+02 9.41800000e+02 8.56350000e+02 8.32970000e+02 2.48520000e+02 8.78620000e+01 3.87260000e+01 1.97060000e+01 6.73920000e+00 2.93010000e+00 1.85040000e+00 1.79620000e+00 6.50070000e-01 2.28220000e-01 5.46590000e-02 2.08070000e-02 1.01910000e-02 5.90500000e-03 2.59680000e-03 1.46220000e-03 5.65010000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.27560000e+04 1.09240000e+04 7.24930000e+03 5.10990000e+03 2.54010000e+03 2.07820000e+03 2.04770000e+03 1.48350000e+03 1.43010000e+03 1.40830000e+03 1.33550000e+03 1.31500000e+03 6.63370000e+02 3.63530000e+02 2.24290000e+02 1.49640000e+02 7.76680000e+01 4.60880000e+01 3.43980000e+01 3.37500000e+01 1.74510000e+01 8.67210000e+00 3.24750000e+00 1.64310000e+00 9.83790000e-01 6.55200000e-01 3.53970000e-01 2.24560000e-01 1.03210000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.34280000e+04 5.56270000e+04 5.55910000e+04 5.48660000e+04 4.93800000e+04 4.86360000e+04 3.93460000e+04 2.23820000e+04 1.39250000e+04 5.47650000e+03 4.20150000e+03 4.12000000e+03 2.68490000e+03 2.55830000e+03 2.50680000e+03 2.33650000e+03 2.28900000e+03 9.23060000e+02 4.15730000e+02 2.19500000e+02 1.28770000e+02 5.45440000e+01 2.76970000e+01 1.89910000e+01 1.85320000e+01 7.97660000e+00 3.30350000e+00 9.78390000e-01 4.27180000e-01 2.31030000e-01 1.43040000e-01 6.99900000e-02 4.18220000e-02 1.78000000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.02700000e+04 1.90760000e+04 1.89140000e+04 1.68510000e+04 1.09860000e+04 7.50260000e+03 3.41730000e+03 2.71880000e+03 2.67300000e+03 1.83870000e+03 1.76250000e+03 1.73130000e+03 1.62760000e+03 1.59840000e+03 7.14910000e+02 3.50500000e+02 1.97590000e+02 1.22340000e+02 5.64550000e+01 3.06530000e+01 2.18140000e+01 2.13380000e+01 9.97420000e+00 4.49620000e+00 1.48950000e+00 6.97960000e-01 3.96170000e-01 2.54020000e-01 1.30490000e-01 8.05830000e-02 3.63670000e-02] total = [ 2.66060000e+06 1.87760000e+06 1.87550000e+06 1.51070000e+06 1.51650000e+06 1.27140000e+06 6.98710000e+05 2.85710000e+05 2.09110000e+05 5.06510000e+05 4.50350000e+05 6.32480000e+05 5.00550000e+05 4.55040000e+05 5.19260000e+05 3.32960000e+05 3.32630000e+05 3.46470000e+05 3.00470000e+05 3.07440000e+05 2.35410000e+05 1.15390000e+05 6.57390000e+04 2.32520000e+04 1.75340000e+04 4.11950000e+04 2.58900000e+04 2.46180000e+04 3.41670000e+04 3.18530000e+04 3.60900000e+04 1.50030000e+04 7.06440000e+03 3.90840000e+03 2.39980000e+03 1.10560000e+03 6.04250000e+02 4.32600000e+02 1.81880000e+03 9.03810000e+02 4.31150000e+02 1.53270000e+02 7.54740000e+01 4.45290000e+01 2.94150000e+01 1.57730000e+01 9.98460000e+00 4.59460000e+00] JM2 = 1.04160779244 JM3 = 1.14113045007 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1395.5 702.28 338.09 121.18 59.974 35.517 23.529 12.671 8.0427 3.713 ] JM1 = 1.02319699138 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.01210000e+05 2.63590000e+05 4.49120000e+05 3.53200000e+05 3.20240000e+05 3.86950000e+05 2.45890000e+05 2.45640000e+05 2.61040000e+05 2.26030000e+05 2.34410000e+05 1.79300000e+05 8.76400000e+04 4.98160000e+04 1.75490000e+04 1.32190000e+04 1.29470000e+04 8.27860000e+03 7.87590000e+03 7.71280000e+03 7.17570000e+03 7.02670000e+03 2.83560000e+03 1.31550000e+03 7.22140000e+02 4.41380000e+02 2.02310000e+02 1.10290000e+02 7.88690000e+01 7.71770000e+01 3.66690000e+01 1.69110000e+01 5.81950000e+00 2.80780000e+00 1.63050000e+00 1.06360000e+00 5.59520000e-01 3.49830000e-01 1.58520000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40200000e+04 1.48900000e+04 1.41520000e+04 2.39170000e+04 2.23140000e+04 2.67490000e+04 1.12220000e+04 5.30700000e+03 2.94230000e+03 1.80870000e+03 8.34200000e+02 4.56170000e+02 3.26640000e+02 3.19650000e+02 1.52200000e+02 7.02940000e+01 2.42380000e+01 1.17140000e+01 6.81340000e+00 4.45080000e+00 2.34700000e+00 1.46990000e+00 6.67650000e-01] JM4 = 1.40441878539 JM5 = 2.4222179714 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00650000e+04 9.44920000e+03 9.30170000e+03 3.88310000e+03 1.80350000e+03 9.78630000e+02 5.88760000e+02 2.60860000e+02 1.37890000e+02 9.68190000e+01 9.46300000e+01 4.31030000e+01 1.90070000e+01 6.15160000e+00 2.84870000e+00 1.60590000e+00 1.02540000e+00 5.24270000e-01 3.23040000e-01 1.45240000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40200000e+04 1.48900000e+04 1.41520000e+04 1.38520000e+04 1.28650000e+04 1.25900000e+04 4.69520000e+03 1.99780000e+03 1.01350000e+03 5.77460000e+02 2.34940000e+02 1.16210000e+02 7.86530000e+01 7.66920000e+01 3.22020000e+01 1.30630000e+01 3.78720000e+00 1.63660000e+00 8.80090000e-01 5.43140000e-01 2.64830000e-01 1.57990000e-01 6.73930000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.85730000e+03 2.64400000e+03 1.50570000e+03 9.50140000e+02 6.42450000e+02 3.38400000e+02 2.02070000e+02 1.51170000e+02 1.48330000e+02 7.68940000e+01 3.82240000e+01 1.42990000e+01 7.22910000e+00 4.32740000e+00 2.88230000e+00 1.55790000e+00 9.88830000e-01 4.55010000e-01] all other = [ 2.66060000e+06 1.87760000e+06 1.87550000e+06 1.51070000e+06 1.51650000e+06 1.27140000e+06 6.98710000e+05 2.85710000e+05 2.09110000e+05 2.05300000e+05 1.86760000e+05 1.83350000e+05 1.47350000e+05 1.34810000e+05 1.32310000e+05 8.70680000e+04 8.69880000e+04 8.54260000e+04 7.44380000e+04 7.30280000e+04 5.61160000e+04 2.77520000e+04 1.59230000e+04 5.70260000e+03 4.31460000e+03 4.22710000e+03 2.72060000e+03 2.59000000e+03 2.53700000e+03 2.36260000e+03 2.31430000e+03 9.44780000e+02 4.41910000e+02 2.43950000e+02 1.49740000e+02 6.90540000e+01 3.77990000e+01 2.70930000e+01 2.65150000e+01 1.26530000e+01 5.85650000e+00 2.02340000e+00 9.78160000e-01 5.68800000e-01 3.71310000e-01 1.95510000e-01 1.22270000e-01 5.54180000e-02] [Pa.binding] K = 113.2336 L1 = 21.1402 M5 = 3.4429 M4 = 3.6158 M1 = 5.3419 L3 = 16.7419 M3 = 4.159 M2 = 5.0031 L2 = 20.4041 [Pd] JL1 = 1.1252526069 JL3 = 3.27526956522 JL2 = 1.34548854605 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.16740000e+00 3.19270000e+00 3.32940000e+00 3.35610000e+00 3.57670000e+00 3.60540000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.42980000e+01 2.44930000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 9.67450000e+04 5.14560000e+04 3.01700000e+04 1.28860000e+04 1.14080000e+04 1.12030000e+04 1.01820000e+04 9.99770000e+03 8.62960000e+03 8.47060000e+03 6.62490000e+03 3.83150000e+03 2.40240000e+03 1.11240000e+03 5.96200000e+02 1.82000000e+02 7.55310000e+01 4.10030000e+01 3.99800000e+01 2.08920000e+01 8.17440000e+00 3.90280000e+00 2.12150000e+00 8.05800000e-01 3.79740000e-01 9.76760000e-02 3.79610000e-02 1.05300000e-02 4.43850000e-03 2.34890000e-03 1.43310000e-03 6.91030000e-04 4.09770000e-04 1.75260000e-04] M = [ 1.03690000e+06 4.04710000e+05 2.00930000e+05 7.23730000e+04 6.29640000e+04 6.16860000e+04 5.53710000e+04 5.42440000e+04 4.60110000e+04 4.50700000e+04 3.43970000e+04 1.91340000e+04 1.17800000e+04 5.42480000e+03 2.94980000e+03 9.60650000e+02 4.28860000e+02 2.47330000e+02 2.41800000e+02 1.35720000e+02 5.94580000e+01 3.11960000e+01 1.83650000e+01 7.92250000e+00 4.11490000e+00 1.24960000e+00 5.39480000e-01 1.69430000e-01 7.70990000e-02 4.30880000e-02 2.74090000e-02 1.40680000e-02 8.74080000e-03 4.01690000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64990000e+05 1.50640000e+05 2.25810000e+05 1.94780000e+05 2.26840000e+05 1.76420000e+05 9.93290000e+04 6.18370000e+04 2.88090000e+04 1.57390000e+04 5.14290000e+03 2.29600000e+03 1.32400000e+03 1.29440000e+03 7.26320000e+02 3.18010000e+02 1.66770000e+02 9.81240000e+01 4.22900000e+01 2.19480000e+01 6.65580000e+00 2.87090000e+00 9.01090000e-01 4.09860000e-01 2.29020000e-01 1.45670000e-01 7.47940000e-02 4.64810000e-02 2.13750000e-02] M5 = [ 3.97210000e+05 1.25950000e+05 5.23150000e+04 1.39620000e+04 1.16200000e+04 1.13090000e+04 9.80190000e+03 9.53800000e+03 7.66150000e+03 7.45300000e+03 5.18820000e+03 2.33960000e+03 1.19840000e+03 4.03790000e+02 1.69400000e+02 3.32720000e+01 1.01210000e+01 4.46010000e+00 4.31190000e+00 1.81750000e+00 5.27580000e-01 2.01080000e-01 9.13660000e-02 2.63920000e-02 1.01510000e-02 1.85320000e-03 5.76920000e-04 1.23520000e-04 4.49510000e-05 2.17790000e-05 1.27240000e-05 5.76310000e-06 3.31820000e-06 1.36750000e-06] M4 = [ 2.72520000e+05 8.71040000e+04 3.63830000e+04 9.79110000e+03 8.15850000e+03 7.94170000e+03 6.88950000e+03 6.70520000e+03 5.39370000e+03 5.24780000e+03 3.66190000e+03 1.66030000e+03 8.54500000e+02 2.90320000e+02 1.22670000e+02 2.44540000e+01 7.53270000e+00 3.35130000e+00 3.24120000e+00 1.38120000e+00 4.07850000e-01 1.57700000e-01 7.25510000e-02 2.13890000e-02 8.35660000e-03 1.56310000e-03 4.94530000e-04 1.05220000e-04 3.75370000e-05 1.75840000e-05 9.75350000e-06 4.13210000e-06 2.23040000e-06 8.62810000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.80550000e+04 6.78900000e+04 6.66730000e+04 5.15450000e+04 2.79920000e+04 1.68730000e+04 7.38230000e+03 3.80180000e+03 1.09080000e+03 4.36630000e+02 2.32110000e+02 2.26130000e+02 1.15980000e+02 4.43750000e+01 2.08840000e+01 1.12370000e+01 4.21120000e+00 1.96780000e+00 5.00290000e-01 1.93310000e-01 5.31820000e-02 2.23400000e-02 1.18010000e-02 7.18960000e-03 3.45670000e-03 2.05490000e-03 8.78120000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.64990000e+05 1.50640000e+05 1.47760000e+05 1.26890000e+05 1.24380000e+05 9.42430000e+04 5.05680000e+04 2.99960000e+04 1.28590000e+04 6.51620000e+03 1.81410000e+03 7.09630000e+02 3.71140000e+02 3.61340000e+02 1.81940000e+02 6.76920000e+01 3.11100000e+01 1.63960000e+01 5.93120000e+00 2.69140000e+00 6.47090000e-01 2.40520000e-01 6.32300000e-02 2.60600000e-02 1.37090000e-02 8.38430000e-03 4.10800000e-03 2.48230000e-03 1.10430000e-03] M3 = [ 2.01620000e+05 1.02380000e+05 5.84840000e+04 2.42150000e+04 2.13530000e+04 2.09590000e+04 1.89960000e+04 1.86420000e+04 1.60170000e+04 1.57130000e+04 1.22040000e+04 6.95160000e+03 4.30610000e+03 1.95520000e+03 1.03160000e+03 3.05590000e+02 1.23930000e+02 6.61630000e+01 6.44660000e+01 3.30680000e+01 1.25750000e+01 5.86100000e+00 3.11970000e+00 1.14350000e+00 5.23270000e-01 1.27300000e-01 4.76100000e-02 1.25700000e-02 5.19460000e-03 2.73740000e-03 1.67610000e-03 8.20560000e-04 4.97430000e-04 2.21410000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.57860000e+04 3.06310000e+04 2.07690000e+04 1.49680000e+04 8.56760000e+03 5.42100000e+03 2.23800000e+03 1.14980000e+03 7.20730000e+02 7.06890000e+02 4.28410000e+02 2.05940000e+02 1.14770000e+02 7.04910000e+01 3.21480000e+01 1.72890000e+01 5.50840000e+00 2.43710000e+00 7.84680000e-01 3.61460000e-01 2.03510000e-01 1.30100000e-01 6.72300000e-02 4.19440000e-02 1.93930000e-02] JK = 6.26045474258 M1 = [ 6.87750000e+04 3.78200000e+04 2.35800000e+04 1.15200000e+04 1.04250000e+04 1.02720000e+04 9.50170000e+03 9.36140000e+03 8.30920000e+03 8.18540000e+03 6.71810000e+03 4.35060000e+03 3.01890000e+03 1.66320000e+03 1.03000000e+03 4.15340000e+02 2.11740000e+02 1.32350000e+02 1.29800000e+02 7.85650000e+01 3.77730000e+01 2.10740000e+01 1.29600000e+01 5.92540000e+00 3.19340000e+00 1.02120000e+00 4.52840000e-01 1.46100000e-01 6.73830000e-02 3.79630000e-02 2.42770000e-02 1.25470000e-02 7.82810000e-03 3.61800000e-03] all other = [ 1.17160000e+05 4.97040000e+04 2.61670000e+04 1.01510000e+04 8.91050000e+03 8.74080000e+03 7.89110000e+03 7.74010000e+03 6.62860000e+03 6.50080000e+03 5.03770000e+03 2.88780000e+03 1.81830000e+03 8.64440000e+02 4.80240000e+02 1.61460000e+02 7.34060000e+01 4.27900000e+01 4.18500000e+01 2.37120000e+01 1.05130000e+01 5.55800000e+00 3.28950000e+00 1.42920000e+00 7.45700000e-01 2.27900000e-01 9.87260000e-02 3.11260000e-02 1.41880000e-02 7.93720000e-03 5.05200000e-03 2.59520000e-03 1.61320000e-03 7.41930000e-04] total = [ 1.15400000e+06 4.54410000e+05 2.27100000e+05 8.25250000e+04 7.18750000e+04 2.35410000e+05 2.13900000e+05 2.87800000e+05 2.47420000e+05 2.78410000e+05 2.15850000e+05 1.21350000e+05 7.54360000e+04 3.50980000e+04 1.91690000e+04 6.26500000e+03 2.79830000e+03 1.61410000e+03 1.01050000e+04 5.99300000e+03 2.75950000e+03 1.49240000e+03 8.95500000e+02 3.94580000e+02 2.07280000e+02 6.37020000e+01 2.76200000e+01 8.70590000e+00 3.96980000e+00 2.22330000e+00 1.41730000e+00 7.30760000e-01 4.55800000e-01 2.10950000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.52690000e+03 5.10730000e+03 2.37150000e+03 1.28890000e+03 7.75720000e+02 3.42930000e+02 1.80470000e+02 5.55690000e+01 2.41110000e+01 7.60420000e+00 3.46860000e+00 1.94320000e+00 1.23920000e+00 6.39300000e-01 3.98960000e-01 1.84820000e-01] [Pd.binding] K = 24.3223 L1 = 3.5803 M5 = 0.3424 M4 = 0.3482 M1 = 0.6551 L3 = 3.1705 M3 = 0.5268 M2 = 0.5554 L2 = 3.3328 [Cd] JL1 = 1.14889529299 JL3 = 3.19589348538 JL2 = 1.34600457228 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.53180000e+00 3.56000000e+00 3.72730000e+00 3.75710000e+00 3.99040000e+00 4.00000000e+00 4.02240000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.66630000e+01 2.68760000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.02180000e+05 5.67310000e+04 3.39240000e+04 1.48520000e+04 1.03400000e+04 1.01540000e+04 9.14180000e+03 8.97520000e+03 7.80350000e+03 7.75990000e+03 7.65930000e+03 4.54110000e+03 2.87420000e+03 1.35030000e+03 7.31520000e+02 2.27390000e+02 9.55230000e+01 3.90380000e+01 3.80670000e+01 2.68530000e+01 1.06190000e+01 5.10920000e+00 2.79410000e+00 1.07090000e+00 5.07960000e-01 1.32050000e-01 5.16680000e-02 1.44400000e-02 6.11450000e-03 3.24740000e-03 1.98640000e-03 9.59180000e-04 5.70320000e-04 2.44180000e-04] M = [ 1.21650000e+06 4.80270000e+05 2.39360000e+05 8.66080000e+04 5.69760000e+04 5.58150000e+04 4.95610000e+04 4.85470000e+04 4.15180000e+04 4.12600000e+04 4.06660000e+04 2.29920000e+04 1.41780000e+04 6.54670000e+03 3.56680000e+03 1.16510000e+03 5.21290000e+02 2.31440000e+02 2.26260000e+02 1.65520000e+02 7.26830000e+01 3.82100000e+01 2.25320000e+01 9.74810000e+00 5.07520000e+00 1.54810000e+00 6.70570000e-01 2.11530000e-01 9.65200000e-02 5.40340000e-02 3.44050000e-02 1.76750000e-02 1.09830000e-02 5.04170000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.46140000e+05 1.30660000e+05 1.96910000e+05 1.70440000e+05 2.03290000e+05 1.98350000e+05 1.15810000e+05 7.21420000e+04 3.37870000e+04 1.85310000e+04 6.08970000e+03 2.72860000e+03 1.21170000e+03 1.18460000e+03 8.66550000e+02 3.80500000e+02 1.99990000e+02 1.17900000e+02 5.09740000e+01 2.65230000e+01 8.08110000e+00 3.49750000e+00 1.10270000e+00 5.02940000e-01 2.81510000e-01 1.79260000e-01 9.21220000e-02 5.72660000e-02 2.63020000e-02] M5 = [ 4.89070000e+05 1.58720000e+05 6.68960000e+04 1.82250000e+04 1.05260000e+04 1.02440000e+04 8.75470000e+03 8.51810000e+03 6.91940000e+03 6.86210000e+03 6.73070000e+03 3.12680000e+03 1.61570000e+03 5.51840000e+02 2.33720000e+02 4.66390000e+01 1.43490000e+01 4.30700000e+00 4.16430000e+00 2.61370000e+00 7.65020000e-01 2.93230000e-01 1.33830000e-01 3.89210000e-02 1.50460000e-02 2.76650000e-03 8.63310000e-04 1.85520000e-04 6.81680000e-05 3.33460000e-05 1.92280000e-05 8.68600000e-06 5.13910000e-06 2.16320000e-06] M4 = [ 3.35580000e+05 1.09870000e+05 4.65870000e+04 1.28060000e+04 7.42490000e+03 7.22720000e+03 6.18330000e+03 6.01730000e+03 4.89510000e+03 4.85480000e+03 4.76250000e+03 2.22490000e+03 1.15550000e+03 3.98080000e+02 1.69870000e+02 3.44290000e+01 1.07300000e+01 3.26910000e+00 3.16220000e+00 1.99710000e+00 5.95000000e-01 2.31500000e-01 1.07020000e-01 3.17870000e-02 1.24890000e-02 2.35530000e-03 7.50050000e-04 1.60550000e-04 5.72040000e-05 2.68130000e-05 1.50280000e-05 6.33020000e-06 3.42650000e-06 1.34810000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.88040000e+04 5.96870000e+04 5.93570000e+04 5.85990000e+04 3.33850000e+04 2.02310000e+04 8.93490000e+03 4.64030000e+03 1.35060000e+03 5.45760000e+02 2.15980000e+02 2.10440000e+02 1.46880000e+02 5.66980000e+01 2.68600000e+01 1.45290000e+01 5.48770000e+00 2.57910000e+00 6.61970000e-01 2.57350000e-01 7.13270000e-02 3.00950000e-02 1.59440000e-02 9.73400000e-03 4.69290000e-03 2.79470000e-03 1.19560000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.46140000e+05 1.30660000e+05 1.28110000e+05 1.10760000e+05 1.10100000e+05 1.08570000e+05 5.98590000e+04 3.57420000e+04 1.54510000e+04 7.89100000e+03 2.22510000e+03 8.78040000e+02 3.38510000e+02 3.29590000e+02 2.27600000e+02 8.53140000e+01 3.94250000e+01 2.08690000e+01 7.59900000e+00 3.46450000e+00 8.39260000e-01 3.13410000e-01 8.28210000e-02 3.42210000e-02 1.80240000e-02 1.10300000e-02 5.40390000e-03 3.26210000e-03 1.45180000e-03] M3 = [ 2.17330000e+05 1.14050000e+05 6.61880000e+04 2.79850000e+04 1.92360000e+04 1.88790000e+04 1.69370000e+04 1.66190000e+04 1.43860000e+04 1.43030000e+04 1.41110000e+04 8.23050000e+03 5.14030000e+03 2.36430000e+03 1.25950000e+03 3.79110000e+02 1.55400000e+02 6.18520000e+01 6.02680000e+01 4.20590000e+01 1.61430000e+01 7.57390000e+00 4.05220000e+00 1.49660000e+00 6.88540000e-01 1.68940000e-01 6.35100000e-02 1.68680000e-02 6.99290000e-03 3.68880000e-03 2.25800000e-03 1.10710000e-03 6.70720000e-04 2.98550000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.38370000e+04 3.11760000e+04 2.25670000e+04 1.61690000e+04 9.40150000e+03 5.99960000e+03 2.51400000e+03 1.30480000e+03 6.57170000e+02 6.44550000e+02 4.92070000e+02 2.38490000e+02 1.33710000e+02 8.25020000e+01 3.78880000e+01 2.04790000e+01 6.57980000e+00 2.92670000e+00 9.48530000e-01 4.38620000e-01 2.47550000e-01 1.58500000e-01 8.20250000e-02 5.12090000e-02 2.36550000e-02] JK = 6.14798628387 M1 = [ 7.23270000e+04 4.09030000e+04 2.57710000e+04 1.27400000e+04 9.44920000e+03 9.31030000e+03 8.54500000e+03 8.41800000e+03 7.51470000e+03 7.48070000e+03 7.40220000e+03 4.86900000e+03 3.39250000e+03 1.88210000e+03 1.17220000e+03 4.77570000e+02 2.45290000e+02 1.22970000e+02 1.20600000e+02 9.19940000e+01 4.45620000e+01 2.50020000e+01 1.54450000e+01 7.10990000e+00 3.85120000e+00 1.24200000e+00 5.53780000e-01 1.79870000e-01 8.32870000e-02 4.70380000e-02 3.01270000e-02 1.55940000e-02 9.73360000e-03 4.49540000e-03] all other = [ 1.54130000e+05 6.53830000e+04 3.43500000e+04 1.33040000e+04 8.96740000e+03 8.79460000e+03 7.86310000e+03 7.71080000e+03 6.64860000e+03 6.60940000e+03 6.51900000e+03 3.78870000e+03 2.38620000e+03 1.13590000e+03 6.32530000e+02 2.13850000e+02 9.76730000e+01 4.41580000e+01 4.31900000e+01 3.17940000e+01 1.41650000e+01 7.52240000e+00 4.46700000e+00 1.95130000e+00 1.02230000e+00 3.14670000e-01 1.36960000e-01 4.34340000e-02 1.98680000e-02 1.11390000e-02 7.09970000e-03 3.65200000e-03 2.27110000e-03 1.04410000e-03] total = [ 1.37060000e+06 5.45660000e+05 2.73720000e+05 9.99120000e+04 6.59440000e+04 2.10750000e+05 1.88090000e+05 2.53170000e+05 2.18610000e+05 2.51160000e+05 2.45530000e+05 1.42590000e+05 8.87060000e+04 4.14700000e+04 2.27300000e+04 7.46870000e+03 3.34750000e+03 1.48730000e+03 9.14390000e+03 6.88490000e+03 3.21730000e+03 1.74720000e+03 1.05160000e+03 4.66160000e+02 2.45780000e+02 7.60220000e+01 3.30960000e+01 1.04850000e+01 4.79610000e+00 2.69150000e+00 1.71810000e+00 8.86980000e-01 5.53460000e-01 2.55990000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.68990000e+03 5.82100000e+03 2.75000000e+03 1.50150000e+03 9.06710000e+02 4.03490000e+02 2.13160000e+02 6.60780000e+01 2.87910000e+01 9.12770000e+00 4.17680000e+00 2.34480000e+00 1.49730000e+00 7.73530000e-01 4.82940000e-01 2.23600000e-01] [Cd.binding] K = 26.6896 L1 = 3.9944 M5 = 0.4128 M4 = 0.42 M1 = 0.7555 L3 = 3.5353 M3 = 0.6126 M2 = 0.6479 L2 = 3.731 [Po] JL1 = 1.13292076842 JL3 = 2.42625960099 JL2 = 1.3711459443 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.68200000e+00 2.70340000e+00 2.80060000e+00 2.82300000e+00 3.00000000e+00 3.27810000e+00 3.30430000e+00 3.83710000e+00 3.86790000e+00 4.00000000e+00 4.12680000e+00 4.15990000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.38020000e+01 1.39130000e+01 1.50000000e+01 1.62820000e+01 1.64120000e+01 1.69130000e+01 1.70490000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 9.34060000e+01 9.41530000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.53995637517 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.70040000e+05 3.78290000e+05 3.70540000e+05 3.19120000e+05 2.51690000e+05 2.46190000e+05 1.61400000e+05 1.57770000e+05 1.43670000e+05 1.31890000e+05 1.29040000e+05 7.54690000e+04 4.36220000e+04 1.76400000e+04 8.50130000e+03 2.84370000e+03 2.76590000e+03 2.12740000e+03 1.59360000e+03 1.54910000e+03 1.39220000e+03 1.35330000e+03 7.62960000e+02 1.70850000e+02 5.73130000e+01 2.42310000e+01 1.19130000e+01 3.86210000e+00 2.10400000e+00 2.03920000e+00 1.61080000e+00 3.34390000e-01 1.12560000e-01 2.60090000e-02 9.90000000e-03 4.89420000e-03 2.84820000e-03 1.28850000e-03 7.42950000e-04 2.99620000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.07560000e+05 2.26410000e+05 1.81470000e+05 1.77680000e+05 1.17850000e+05 1.15240000e+05 1.04870000e+05 9.60310000e+04 9.40820000e+04 5.59830000e+04 3.27700000e+04 1.34990000e+04 6.60630000e+03 2.26380000e+03 2.20330000e+03 1.70410000e+03 1.28520000e+03 1.25020000e+03 1.12630000e+03 1.09550000e+03 6.25920000e+02 1.45440000e+02 5.02180000e+01 2.17450000e+01 1.09110000e+01 3.65650000e+00 2.02810000e+00 1.96760000e+00 1.56500000e+00 3.39460000e-01 1.17140000e-01 2.75520000e-02 1.04520000e-02 5.09240000e-03 2.90770000e-03 1.26870000e-03 7.07520000e-04 2.74500000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.78730000e+04 1.39180000e+04 1.05170000e+04 6.72430000e+03 4.60380000e+03 2.56570000e+03 2.52780000e+03 2.19420000e+03 1.87430000e+03 1.84560000e+03 1.74130000e+03 1.71460000e+03 1.25220000e+03 5.44520000e+02 2.93010000e+02 1.78330000e+02 1.17690000e+02 6.00420000e+01 4.14560000e+01 4.06670000e+01 3.51610000e+01 1.29960000e+01 6.34890000e+00 2.32210000e+00 1.15670000e+00 6.85130000e-01 4.52890000e-01 2.42550000e-01 1.53300000e-01 7.03860000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.11780000e+04 7.50870000e+04 7.40960000e+04 6.98870000e+04 6.60280000e+04 6.50620000e+04 4.64150000e+04 3.27580000e+04 1.80190000e+04 1.09670000e+04 5.10780000e+03 5.00890000e+03 4.15630000e+03 3.38220000e+03 3.31470000e+03 3.07090000e+03 3.00900000e+03 1.98930000e+03 6.61970000e+02 2.91790000e+02 1.51590000e+02 8.77990000e+01 3.64790000e+01 2.25830000e+01 2.20300000e+01 1.82640000e+01 5.14040000e+00 2.09850000e+00 6.11710000e-01 2.65320000e-01 1.43040000e-01 8.83680000e-02 4.32890000e-02 2.58690000e-02 1.11280000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.77150000e+04 2.73830000e+04 2.65180000e+04 2.63300000e+04 2.07190000e+04 1.57570000e+04 9.62730000e+03 6.27110000e+03 3.19380000e+03 3.13820000e+03 2.65530000e+03 2.20790000e+03 2.16820000e+03 2.02380000e+03 1.98690000e+03 1.36750000e+03 5.02790000e+02 2.37850000e+02 1.30610000e+02 7.92150000e+01 3.54410000e+01 2.28470000e+01 2.23350000e+01 1.88130000e+01 5.89590000e+00 2.59480000e+00 8.34800000e-01 3.84690000e-01 2.15900000e-01 1.37200000e-01 6.97320000e-02 4.28390000e-02 1.91450000e-02] total = [ 1.98190000e+06 8.99300000e+05 4.89760000e+05 2.56030000e+05 7.21510000e+05 6.10440000e+05 9.06080000e+05 7.44020000e+05 5.95080000e+05 6.74020000e+05 4.66530000e+05 4.84930000e+05 4.47540000e+05 4.14970000e+05 4.25110000e+05 2.72260000e+05 1.73800000e+05 8.43560000e+04 4.77050000e+04 2.07010000e+04 5.02260000e+04 4.10900000e+04 3.28550000e+04 4.50490000e+04 4.18520000e+04 4.74150000e+04 3.15770000e+04 1.09300000e+04 5.07820000e+03 2.78130000e+03 1.69450000e+03 7.71620000e+02 5.04300000e+02 2.28950000e+03 1.96610000e+03 6.81030000e+02 3.19350000e+02 1.11140000e+02 5.39730000e+01 3.15340000e+01 2.06860000e+01 1.10050000e+01 6.94300000e+00 3.19340000e+00] JM2 = 1.03944012175 JM3 = 1.13265443302 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1796.1 1548. 543.72 256.63 89.843 43.781 25.648 16.862 9.0001 5.6906 2.6251] JM1 = 1.02443550136 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.70040000e+05 3.78290000e+05 6.78100000e+05 5.45530000e+05 4.33150000e+05 5.15050000e+05 3.54340000e+05 3.74820000e+05 3.45810000e+05 3.20470000e+05 3.32380000e+05 2.12500000e+05 1.35430000e+05 6.55100000e+04 3.69500000e+04 1.59750000e+04 1.56440000e+04 1.28370000e+04 1.03430000e+04 1.01280000e+04 9.35460000e+03 9.15940000e+03 5.99790000e+03 2.02560000e+03 9.30170000e+02 5.06500000e+02 3.07520000e+02 1.39480000e+02 9.10180000e+01 8.90390000e+01 7.54140000e+01 2.47060000e+01 1.12720000e+01 3.82220000e+00 1.82700000e+00 1.05410000e+00 6.84210000e-01 3.58130000e-01 2.23460000e-01 1.01230000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99520000e+04 2.44390000e+04 1.94270000e+04 3.18990000e+04 2.97030000e+04 3.55180000e+04 2.37740000e+04 8.28480000e+03 3.86090000e+03 2.11740000e+03 1.29100000e+03 5.88270000e+02 3.84550000e+02 3.76220000e+02 3.18810000e+02 1.04740000e+02 4.78460000e+01 1.62490000e+01 7.77700000e+00 4.49250000e+00 2.91960000e+00 1.53120000e+00 9.56720000e-01 4.34390000e-01] JM4 = 1.48430640194 JM5 = 2.81806819513 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.28800000e+04 1.21460000e+04 1.18940000e+04 7.88520000e+03 2.67940000e+03 1.20430000e+03 6.37880000e+02 3.76740000e+02 1.62470000e+02 1.02950000e+02 1.00560000e+02 8.41840000e+01 2.54600000e+01 1.09900000e+01 3.46460000e+00 1.58040000e+00 8.81820000e-01 5.58300000e-01 2.82600000e-01 1.73080000e-01 7.71630000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99520000e+04 2.44390000e+04 1.94270000e+04 1.90200000e+04 1.75570000e+04 1.71860000e+04 1.10250000e+04 3.33750000e+03 1.39610000e+03 6.99460000e+02 3.94580000e+02 1.58140000e+02 9.62790000e+01 9.38470000e+01 7.73400000e+01 2.10400000e+01 8.43410000e+00 2.41320000e+00 1.03750000e+00 5.56590000e-01 3.42840000e-01 1.67410000e-01 1.00150000e-01 4.30210000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.43750000e+03 4.86390000e+03 2.26780000e+03 1.26060000e+03 7.80080000e+02 5.19650000e+02 2.67670000e+02 1.85320000e+02 1.81810000e+02 1.57290000e+02 5.82370000e+01 2.84220000e+01 1.03710000e+01 5.15910000e+00 3.05410000e+00 2.01840000e+00 1.08110000e+00 6.83490000e-01 3.14200000e-01] all other = [ 1.98190000e+06 8.99300000e+05 4.89760000e+05 2.56030000e+05 2.51470000e+05 2.32150000e+05 2.27990000e+05 1.98490000e+05 1.61930000e+05 1.58970000e+05 1.12190000e+05 1.10110000e+05 1.01730000e+05 9.44960000e+04 9.27280000e+04 5.97520000e+04 3.83780000e+04 1.88470000e+04 1.07560000e+04 4.72590000e+03 4.62990000e+03 3.81370000e+03 3.08450000e+03 3.02140000e+03 2.79460000e+03 2.73730000e+03 1.80510000e+03 6.19300000e+02 2.87090000e+02 1.57380000e+02 9.60200000e+01 4.38690000e+01 2.87290000e+01 2.81090000e+01 2.38370000e+01 7.86620000e+00 3.60370000e+00 1.22740000e+00 5.88150000e-01 3.39810000e-01 2.20790000e-01 1.15670000e-01 7.22070000e-02 3.27240000e-02] [Po.binding] K = 93.499 L1 = 16.9302 M5 = 2.6846 M4 = 2.8034 M1 = 4.131 L3 = 13.8163 M3 = 3.2813 M2 = 3.841 L2 = 16.2982 [Pm] JL1 = 1.13130755064 JL3 = 2.74749193165 JL2 = 1.33943675988 energy = [ 1.00000000e+00 1.03340000e+00 1.04170000e+00 1.05850000e+00 1.06700000e+00 1.34550000e+00 1.35630000e+00 1.46040000e+00 1.47210000e+00 1.50000000e+00 1.62400000e+00 1.63700000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 6.44520000e+00 6.49680000e+00 7.01240000e+00 7.06860000e+00 7.38780000e+00 7.44690000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.51800000e+01 4.55420000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.55399899477 M5 = [ 0.00000000e+00 0.00000000e+00 5.62900000e+05 1.14950000e+06 1.18900000e+06 6.60030000e+05 6.47090000e+05 5.37330000e+05 5.26530000e+05 5.01870000e+05 4.12020000e+05 4.03700000e+05 2.34470000e+05 7.15810000e+04 2.90890000e+04 1.40420000e+04 7.59670000e+03 5.94140000e+03 5.77990000e+03 4.43350000e+03 4.31190000e+03 3.69370000e+03 3.59150000e+03 2.78780000e+03 1.24850000e+03 2.74580000e+02 9.00820000e+01 1.78650000e+01 5.52480000e+00 3.34560000e+00 3.23720000e+00 2.20020000e+00 1.03270000e+00 3.12850000e-01 1.24410000e-01 2.39830000e-02 7.75210000e-03 1.71550000e-03 6.34170000e-04 3.11690000e-04 1.81220000e-04 8.17730000e-05 4.73180000e-05 1.94470000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.56770000e+05 4.55400000e+05 4.46600000e+05 3.71920000e+05 3.64560000e+05 3.47730000e+05 2.85990000e+05 2.80250000e+05 1.64280000e+05 5.08840000e+04 2.08810000e+04 1.01620000e+04 5.53640000e+03 4.34290000e+03 4.22630000e+03 3.25150000e+03 3.16330000e+03 2.71490000e+03 2.64070000e+03 2.05590000e+03 9.29900000e+02 2.08660000e+02 6.95810000e+01 1.41680000e+01 4.47570000e+00 2.73660000e+00 2.64970000e+00 1.81480000e+00 8.65220000e-01 2.68880000e-01 1.09070000e-01 2.17170000e-02 7.13040000e-03 1.58030000e-03 5.78310000e-04 2.75050000e-04 1.54420000e-04 6.68830000e-05 3.62170000e-05 1.43600000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.93440000e+04 3.82630000e+04 2.07970000e+04 1.28530000e+04 8.66190000e+03 6.19590000e+03 5.41460000e+03 5.33330000e+03 4.61240000e+03 4.54270000e+03 4.17350000e+03 4.10970000e+03 3.57480000e+03 2.29580000e+03 9.91020000e+02 5.30930000e+02 2.11560000e+02 1.07020000e+02 7.96400000e+01 7.81030000e+01 6.20820000e+01 3.93910000e+01 1.88940000e+01 1.05520000e+01 3.58660000e+00 1.65480000e+00 5.61330000e-01 2.66670000e-01 1.53090000e-01 9.90450000e-02 5.18250000e-02 3.24540000e-02 1.49350000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.09050000e+05 1.90160000e+05 1.88470000e+05 1.84210000e+05 1.64290000e+05 1.62270000e+05 1.18610000e+05 5.73200000e+04 3.17610000e+04 1.94050000e+04 1.27070000e+04 1.07040000e+04 1.05000000e+04 8.71960000e+03 8.55050000e+03 7.66580000e+03 7.51510000e+03 6.27970000e+03 3.53230000e+03 1.16940000e+03 5.10920000e+02 1.50440000e+02 6.10560000e+01 4.13730000e+01 4.03260000e+01 2.98370000e+01 1.64730000e+01 6.37200000e+00 3.02970000e+00 7.83970000e-01 3.04250000e-01 8.38360000e-02 3.53770000e-02 1.87890000e-02 1.15510000e-02 5.67010000e-03 3.41560000e-03 1.50560000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.01020000e+04 7.70950000e+04 7.23690000e+04 7.17440000e+04 5.48010000e+04 2.88810000e+04 1.67750000e+04 1.05760000e+04 7.09210000e+03 6.03300000e+03 5.92390000e+03 4.96430000e+03 4.87280000e+03 4.39370000e+03 4.31190000e+03 3.63560000e+03 2.10100000e+03 7.30840000e+02 3.31020000e+02 1.02830000e+02 4.34610000e+01 2.99840000e+01 2.92610000e+01 2.19580000e+01 1.24740000e+01 5.05940000e+00 2.50030000e+00 6.95740000e-01 2.84100000e-01 8.34160000e-02 3.63990000e-02 1.97400000e-02 1.22310000e-02 6.02160000e-03 3.62060000e-03 1.57380000e-03] total = [ 4.92460000e+05 4.63570000e+05 1.01970000e+06 1.59290000e+06 1.98260000e+06 1.39390000e+06 1.57680000e+06 1.33530000e+06 1.39170000e+06 1.33410000e+06 1.12390000e+06 1.15340000e+06 7.31370000e+05 2.77750000e+05 1.35770000e+05 7.70240000e+04 4.81450000e+04 3.99710000e+04 1.09820000e+05 9.04410000e+04 1.21140000e+05 1.08600000e+05 1.22860000e+05 1.02800000e+05 5.78950000e+04 1.96900000e+04 9.02180000e+03 2.94620000e+03 1.31750000e+03 9.35110000e+02 5.19360000e+03 4.04610000e+03 2.51310000e+03 1.15430000e+03 6.24300000e+02 2.01120000e+02 8.98420000e+01 2.94140000e+01 1.37310000e+01 7.80990000e+00 5.02950000e+00 2.62120000e+00 1.64030000e+00 7.56190000e-01] JM2 = 1.04223769939 JM3 = 1.1312145778 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.27930000e+03 3.34370000e+03 2.09420000e+03 9.69740000e+02 5.26800000e+02 1.70550000e+02 7.63390000e+01 2.50370000e+01 1.17000000e+01 6.65990000e+00 4.29220000e+00 2.23980000e+00 1.40310000e+00 6.47920000e-01] JM1 = 1.02624788682 M = [ 0.00000000e+00 0.00000000e+00 5.62900000e+05 1.14950000e+06 1.54580000e+06 1.11540000e+06 1.30270000e+06 1.09940000e+06 1.15970000e+06 1.11090000e+06 9.34660000e+05 9.67310000e+05 6.10420000e+05 2.29460000e+05 1.11360000e+05 6.28480000e+04 3.91280000e+04 3.24360000e+04 3.17630000e+04 2.59810000e+04 2.54410000e+04 2.26420000e+04 2.21690000e+04 1.83340000e+04 1.01070000e+04 3.37450000e+03 1.53250000e+03 4.96860000e+02 2.21540000e+02 1.57080000e+02 1.53580000e+02 1.17890000e+02 7.02360000e+01 3.09070000e+01 1.63160000e+01 5.11200000e+00 2.25800000e+00 7.31870000e-01 3.39660000e-01 1.92210000e-01 1.23160000e-01 6.36650000e-02 3.95740000e-02 1.80480000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.06680000e+04 5.83700000e+04 8.97340000e+04 8.06290000e+04 9.54660000e+04 8.01090000e+04 4.53410000e+04 1.54750000e+04 7.10040000e+03 2.32060000e+03 1.03790000e+03 7.36670000e+02 7.20280000e+02 5.53320000e+02 3.29980000e+02 1.45380000e+02 7.67900000e+01 2.40690000e+01 1.06310000e+01 3.44540000e+00 1.59910000e+00 9.05140000e-01 5.80370000e-01 3.00210000e-01 1.86750000e-01 8.52630000e-02] JM4 = 1.24464812606 JM5 = 2.19966779559 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.25970000e+04 2.96350000e+04 2.89640000e+04 2.41330000e+04 1.33990000e+04 4.26090000e+03 1.83150000e+03 5.35040000e+02 2.18210000e+02 1.48560000e+02 1.44850000e+02 1.07670000e+02 6.01500000e+01 2.38560000e+01 1.16210000e+01 3.16820000e+00 1.27980000e+00 3.71640000e-01 1.61310000e-01 8.70820000e-02 5.38500000e-02 2.64420000e-02 1.58640000e-02 6.90620000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.06680000e+04 5.83700000e+04 5.71370000e+04 5.09940000e+04 4.99660000e+04 4.13930000e+04 2.19790000e+04 6.65280000e+03 2.75930000e+03 7.63970000e+02 2.99260000e+02 2.00140000e+02 1.94920000e+02 1.42900000e+02 7.76100000e+01 2.93770000e+01 1.37760000e+01 3.49520000e+00 1.34240000e+00 3.66010000e-01 1.53650000e-01 8.15480000e-02 5.00430000e-02 2.45210000e-02 1.47820000e-02 6.48080000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.65370000e+04 1.45830000e+04 9.96280000e+03 4.56080000e+03 2.50960000e+03 1.02160000e+03 5.20430000e+02 3.87970000e+02 3.80500000e+02 3.02750000e+02 1.92220000e+02 9.21440000e+01 5.13930000e+01 1.74050000e+01 8.00890000e+00 2.70770000e+00 1.28420000e+00 7.36510000e-01 4.76470000e-01 2.49250000e-01 1.56110000e-01 7.18760000e-02] all other = [ 4.92460000e+05 4.63570000e+05 4.56780000e+05 4.43360000e+05 4.36810000e+05 2.78500000e+05 2.74070000e+05 2.35860000e+05 2.32030000e+05 2.23230000e+05 1.89200000e+05 1.86060000e+05 1.20950000e+05 4.82860000e+04 2.44100000e+04 1.41760000e+04 9.01730000e+03 7.53490000e+03 7.38510000e+03 6.08930000e+03 5.96740000e+03 5.33410000e+03 5.22680000e+03 4.35310000e+03 2.44690000e+03 8.41380000e+02 3.88860000e+02 1.28730000e+02 5.80710000e+01 4.13560000e+01 4.04440000e+01 3.11450000e+01 1.86600000e+01 8.27420000e+00 4.39030000e+00 1.38510000e+00 6.14260000e-01 1.99940000e-01 9.29890000e-02 5.26850000e-02 3.37960000e-02 1.74860000e-02 1.08760000e-02 4.96350000e-03] [Pm.binding] K = 45.2257 L1 = 7.3952 M5 = 1.0345 M4 = 1.0596 M1 = 1.6256 L3 = 6.4517 M3 = 1.3469 M2 = 1.4619 L2 = 7.0195 [Ho] JL1 = 1.13197707874 JL3 = 2.65231124339 JL2 = 1.34531700394 energy = [ 1.00000000e+00 1.35370000e+00 1.36460000e+00 1.39380000e+00 1.40500000e+00 1.50000000e+00 1.72680000e+00 1.74060000e+00 1.90890000e+00 1.92410000e+00 2.00000000e+00 2.10120000e+00 2.11800000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.05340000e+00 8.11790000e+00 8.92010000e+00 8.99150000e+00 9.35280000e+00 9.42770000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.56550000e+01 5.61010000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.29270670327 M5 = [ 0.00000000e+00 0.00000000e+00 3.68890000e+05 8.72580000e+05 8.82570000e+05 7.54430000e+05 5.22790000e+05 5.12130000e+05 4.02760000e+05 3.94400000e+05 3.56110000e+05 3.14730000e+05 3.08200000e+05 1.15880000e+05 4.84860000e+04 2.39320000e+04 1.31890000e+04 4.97980000e+03 4.86660000e+03 4.73410000e+03 3.40830000e+03 3.31430000e+03 2.88560000e+03 2.80550000e+03 2.27640000e+03 5.19640000e+02 1.75070000e+02 3.59690000e+01 1.13810000e+01 4.60970000e+00 2.97940000e+00 2.88410000e+00 2.19220000e+00 6.76690000e-01 2.72570000e-01 5.35830000e-02 1.75210000e-02 3.92670000e-03 1.46700000e-03 7.17080000e-04 4.15600000e-04 1.90340000e-04 1.10050000e-04 4.52940000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.28940000e+05 5.22600000e+05 3.63850000e+05 3.56550000e+05 2.81540000e+05 2.75790000e+05 2.49440000e+05 2.20810000e+05 2.16210000e+05 8.26900000e+04 3.50290000e+04 1.74530000e+04 9.69590000e+03 3.70930000e+03 3.62620000e+03 3.52900000e+03 2.55280000e+03 2.48330000e+03 2.16620000e+03 2.10700000e+03 1.71510000e+03 4.00410000e+02 1.37350000e+02 2.90440000e+01 9.40550000e+00 3.88430000e+00 2.53510000e+00 2.45580000e+00 1.87840000e+00 5.95950000e-01 2.45250000e-01 4.99550000e-02 1.66340000e-02 3.74980000e-03 1.37830000e-03 6.64960000e-04 3.75580000e-04 1.60690000e-04 8.85440000e-05 3.38660000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.81540000e+04 2.35900000e+04 1.51890000e+04 1.04510000e+04 7.58100000e+03 4.46180000e+03 4.40580000e+03 4.33960000e+03 3.62500000e+03 3.57000000e+03 3.30920000e+03 3.25850000e+03 2.90470000e+03 1.28320000e+03 6.98880000e+02 2.85290000e+02 1.46840000e+02 8.63470000e+01 6.65900000e+01 6.53070000e+01 5.53960000e+01 2.70330000e+01 1.52980000e+01 5.31940000e+00 2.49190000e+00 8.62020000e-01 4.14460000e-01 2.39780000e-01 1.56010000e-01 8.20440000e-02 5.14780000e-02 2.36650000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.75060000e+05 1.51390000e+05 1.49770000e+05 1.41560000e+05 1.30920000e+05 1.29230000e+05 7.21400000e+04 4.14380000e+04 2.59670000e+04 1.73330000e+04 8.82480000e+03 8.68330000e+03 8.51640000e+03 6.75870000e+03 6.62640000e+03 6.00660000e+03 5.88760000e+03 5.07370000e+03 1.74470000e+03 7.82320000e+02 2.38610000e+02 9.91230000e+01 4.92790000e+01 3.50650000e+01 3.41840000e+01 2.75750000e+01 1.08810000e+01 5.24820000e+00 1.38970000e+00 5.46870000e-01 1.53040000e-01 6.50360000e-02 3.47610000e-02 2.13620000e-02 1.04700000e-02 6.30980000e-03 2.75540000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.30920000e+04 5.90010000e+04 5.65160000e+04 5.60320000e+04 3.44030000e+04 2.11590000e+04 1.38400000e+04 9.54100000e+03 5.09140000e+03 5.01530000e+03 4.92550000e+03 3.96490000e+03 3.89190000e+03 3.54900000e+03 3.48310000e+03 3.02980000e+03 1.10650000e+03 5.17950000e+02 1.68190000e+02 7.32140000e+01 3.78060000e+01 2.74120000e+01 2.67610000e+01 2.18470000e+01 9.09120000e+00 4.57730000e+00 1.31350000e+00 5.46860000e-01 1.64410000e-01 7.27280000e-02 3.97620000e-02 2.48310000e-02 1.23230000e-02 7.44510000e-03 3.26350000e-03] total = [ 7.13610000e+05 3.96450000e+05 7.59010000e+05 1.24630000e+06 1.47930000e+06 1.59870000e+06 1.12620000e+06 1.27930000e+06 1.02900000e+06 1.07300000e+06 9.80770000e+05 8.79740000e+05 9.01870000e+05 3.98810000e+05 1.96900000e+05 1.12390000e+05 7.05820000e+04 3.35040000e+04 3.29260000e+04 8.73300000e+04 6.83430000e+04 9.19430000e+04 8.34160000e+04 9.44250000e+04 8.14300000e+04 2.83470000e+04 1.31370000e+04 4.34950000e+03 1.96230000e+03 1.05280000e+03 7.79620000e+02 4.12630000e+03 3.45870000e+03 1.61950000e+03 8.85770000e+02 2.90780000e+02 1.31450000e+02 4.36990000e+01 2.05980000e+01 1.17920000e+01 7.62740000e+00 3.99390000e+00 2.50390000e+00 1.15300000e+00] JM2 = 1.04275996113 JM3 = 1.13594388208 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.36400000e+03 2.82750000e+03 1.33910000e+03 7.36700000e+02 2.43480000e+02 1.10360000e+02 3.67810000e+01 1.73620000e+01 9.95090000e+00 6.44310000e+00 3.37950000e+00 2.12140000e+00 9.78840000e-01] JM1 = 1.02515515948 M = [ 0.00000000e+00 0.00000000e+00 3.68890000e+05 8.72580000e+05 1.11150000e+06 1.27700000e+06 8.86640000e+05 1.04370000e+06 8.35690000e+05 8.83060000e+05 8.06110000e+05 7.22970000e+05 7.47830000e+05 3.28700000e+05 1.61300000e+05 9.16420000e+04 5.73400000e+04 2.70670000e+04 2.65970000e+04 2.60450000e+04 2.03100000e+04 1.98860000e+04 1.79160000e+04 1.75420000e+04 1.50000000e+04 5.05440000e+03 2.31160000e+03 7.57100000e+02 3.39970000e+02 1.81930000e+02 1.34580000e+02 1.31590000e+02 1.08890000e+02 4.82780000e+01 2.56410000e+01 8.12610000e+00 3.61980000e+00 1.18710000e+00 5.55070000e-01 3.15690000e-01 2.02990000e-01 1.05190000e-01 6.54320000e-02 2.97630000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.50830000e+04 4.31550000e+04 6.72760000e+04 6.11770000e+04 7.26480000e+04 6.27900000e+04 2.20270000e+04 1.02360000e+04 3.39520000e+03 1.53260000e+03 8.22440000e+02 6.09100000e+02 5.95610000e+02 4.93130000e+02 2.19080000e+02 1.16480000e+02 3.69550000e+01 1.64680000e+01 5.40250000e+00 2.52700000e+00 1.43790000e+00 9.25020000e-01 4.79970000e-01 2.98840000e-01 1.36130000e-01] JM4 = 1.18695338201 JM5 = 1.91451633245 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.50200000e+04 2.30190000e+04 2.24900000e+04 1.92690000e+04 6.49600000e+03 2.87540000e+03 8.71850000e+02 3.64500000e+02 1.83150000e+02 1.31250000e+02 1.28030000e+02 1.03790000e+02 4.20700000e+01 2.08260000e+01 5.83290000e+00 2.39720000e+00 7.11170000e-01 3.12530000e-01 1.70240000e-01 1.05920000e-01 5.23940000e-02 3.16180000e-02 1.38150000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.50830000e+04 4.31550000e+04 4.22570000e+04 3.81580000e+04 3.73790000e+04 3.19880000e+04 9.95870000e+03 4.21530000e+03 1.19880000e+03 4.78210000e+02 2.31510000e+02 1.62840000e+02 1.58620000e+02 1.27100000e+02 4.88880000e+01 2.31970000e+01 6.00160000e+00 2.33290000e+00 6.44730000e-01 2.72330000e-01 1.45060000e-01 8.91310000e-02 4.36330000e-02 2.62630000e-02 1.14840000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.27790000e+04 1.15330000e+04 5.57270000e+03 3.14560000e+03 1.32460000e+03 6.89900000e+02 4.07780000e+02 3.15010000e+02 3.08960000e+02 2.62250000e+02 1.28120000e+02 7.24520000e+01 2.51200000e+01 1.17380000e+01 4.04660000e+00 1.94210000e+00 1.12260000e+00 7.29970000e-01 3.83950000e-01 2.40950000e-01 1.10840000e-01] all other = [ 7.13610000e+05 3.96450000e+05 3.90130000e+05 3.73740000e+05 3.67740000e+05 3.21640000e+05 2.39590000e+05 2.35560000e+05 1.93280000e+05 1.89970000e+05 1.74670000e+05 1.56770000e+05 1.54040000e+05 7.01060000e+04 3.55960000e+04 2.07440000e+04 1.32420000e+04 6.43650000e+03 6.32890000e+03 6.20220000e+03 4.87930000e+03 4.78090000e+03 4.32240000e+03 4.23490000e+03 3.63990000e+03 1.26480000e+03 5.89110000e+02 1.97200000e+02 8.96800000e+01 4.83950000e+01 3.59320000e+01 3.51440000e+01 2.91430000e+01 1.30290000e+01 6.95810000e+00 2.22280000e+00 9.94480000e-01 3.27690000e-01 1.53590000e-01 8.74800000e-02 5.63000000e-02 2.92130000e-02 1.81840000e-02 8.27700000e-03] [Ho.binding] K = 55.711 L1 = 9.3622 M5 = 1.3551 M4 = 1.3952 M1 = 2.1033 L3 = 8.0614 M3 = 1.7285 M2 = 1.9108 L2 = 8.929 [Hf] JL1 = 1.13223262545 JL3 = 2.58342728298 JL2 = 1.35133111785 energy = [ 1.00000000e+00 1.50000000e+00 1.66690000e+00 1.68020000e+00 1.72380000e+00 1.73760000e+00 2.00000000e+00 2.09690000e+00 2.11370000e+00 2.35630000e+00 2.37520000e+00 2.57460000e+00 2.59520000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 9.54840000e+00 9.62490000e+00 1.00000000e+01 1.07530000e+01 1.08390000e+01 1.12380000e+01 1.13280000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 6.54380000e+01 6.59620000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.07894620454 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.23900000e+05 6.72390000e+05 6.79890000e+05 4.85630000e+05 4.28480000e+05 4.19530000e+05 3.14060000e+05 3.07400000e+05 2.49070000e+05 2.43820000e+05 1.63270000e+05 7.01310000e+04 3.52380000e+04 1.96970000e+04 7.60030000e+03 4.14790000e+03 4.03490000e+03 3.53300000e+03 2.73950000e+03 2.66360000e+03 2.34500000e+03 2.27980000e+03 8.29600000e+02 2.85120000e+02 6.02130000e+01 1.94040000e+01 7.96390000e+00 3.82660000e+00 2.69690000e+00 2.61150000e+00 1.19920000e+00 4.88230000e-01 9.75520000e-02 3.21940000e-02 7.28700000e-03 2.73490000e-03 1.34640000e-03 7.82120000e-04 3.55590000e-04 2.02990000e-04 8.55110000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.43090000e+05 3.40860000e+05 3.01380000e+05 2.95190000e+05 2.22010000e+05 2.17370000e+05 1.76530000e+05 1.72800000e+05 1.16860000e+05 5.08820000e+04 2.58430000e+04 1.45770000e+04 5.70800000e+03 3.14590000e+03 3.06150000e+03 2.68670000e+03 2.09220000e+03 2.03520000e+03 1.79540000e+03 1.74630000e+03 6.46680000e+02 2.26650000e+02 4.93750000e+01 1.63100000e+01 6.83410000e+00 3.34260000e+00 2.37630000e+00 2.30290000e+00 1.07840000e+00 4.49120000e-01 9.32150000e-02 3.13900000e-02 7.17310000e-03 2.65800000e-03 1.27860000e-03 7.28170000e-04 3.14810000e-04 1.75180000e-04 6.59890000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.04180000e+04 2.56660000e+04 1.67560000e+04 1.17790000e+04 8.67790000e+03 5.20040000e+03 3.74280000e+03 3.68680000e+03 3.42810000e+03 2.98240000e+03 2.93700000e+03 2.73940000e+03 2.69740000e+03 1.54510000e+03 8.52830000e+02 3.54700000e+02 1.85070000e+02 1.09980000e+02 7.11790000e+01 5.76900000e+01 5.65810000e+01 3.52130000e+01 2.01360000e+01 7.13220000e+00 3.38320000e+00 1.18960000e+00 5.77760000e-01 3.36480000e-01 2.19890000e-01 1.16220000e-01 7.30570000e-02 3.35580000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.49350000e+05 1.24600000e+05 1.23130000e+05 1.08070000e+05 1.06620000e+05 8.32160000e+04 4.97000000e+04 3.18410000e+04 2.16070000e+04 1.12580000e+04 7.37690000e+03 7.23450000e+03 6.58650000e+03 5.50310000e+03 5.39480000e+03 4.92770000e+03 4.82960000e+03 2.33410000e+03 1.06780000e+03 3.34730000e+02 1.41650000e+02 7.13860000e+01 4.03730000e+01 3.06980000e+01 2.99320000e+01 1.61870000e+01 7.89740000e+00 2.13050000e+00 8.47850000e-01 2.40250000e-01 1.02720000e-01 5.50260000e-02 3.39420000e-02 1.66130000e-02 9.99430000e-03 4.34030000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.12130000e+04 4.58100000e+04 4.54310000e+04 3.74110000e+04 2.43680000e+04 1.64770000e+04 1.16350000e+04 6.43030000e+03 4.35410000e+03 4.27660000e+03 3.92250000e+03 3.32000000e+03 3.25900000e+03 2.99550000e+03 2.94010000e+03 1.49330000e+03 7.18190000e+02 2.41810000e+02 1.07850000e+02 5.67070000e+01 3.32360000e+01 2.57140000e+01 2.51120000e+01 1.41270000e+01 7.22360000e+00 2.12680000e+00 8.99920000e-01 2.75960000e-01 1.23510000e-01 6.80140000e-02 4.26750000e-02 2.13440000e-02 1.29590000e-02 5.70990000e-03] total = [ 9.85300000e+05 4.38200000e+05 3.50990000e+05 5.69000000e+05 9.99150000e+05 1.14420000e+06 1.06340000e+06 9.43430000e+05 1.07390000e+06 8.25430000e+05 8.60960000e+05 7.14400000e+05 7.31590000e+05 5.21450000e+05 2.60140000e+05 1.49380000e+05 9.42230000e+04 4.49910000e+04 2.83840000e+04 7.33280000e+04 6.69180000e+04 5.47660000e+04 7.40070000e+04 6.77140000e+04 7.66680000e+04 3.73840000e+04 1.74400000e+04 5.84980000e+03 2.65940000e+03 1.43490000e+03 8.64130000e+02 6.78310000e+02 3.44510000e+03 2.07340000e+03 1.14940000e+03 3.83730000e+02 1.75240000e+02 5.90170000e+01 2.80500000e+01 1.61480000e+01 1.04860000e+01 5.51450000e+00 3.46270000e+00 1.59350000e+00] JM2 = 1.04304423149 JM3 = 1.1382932491 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.78180000e+03 1.68680000e+03 9.42750000e+02 3.17500000e+02 1.45510000e+02 4.91640000e+01 2.34110000e+01 1.34980000e+01 8.77620000e+00 4.62480000e+00 2.90850000e+00 1.34150000e+00] JM1 = 1.02406215006 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.23900000e+05 6.72390000e+05 8.22980000e+05 8.26490000e+05 7.29860000e+05 8.64060000e+05 6.60660000e+05 6.99110000e+05 5.79480000e+05 5.99090000e+05 4.26430000e+05 2.11840000e+05 1.21180000e+05 7.61930000e+04 3.61970000e+04 2.27670000e+04 2.22940000e+04 2.01570000e+04 1.66370000e+04 1.62900000e+04 1.48030000e+04 1.44930000e+04 6.84880000e+03 3.15060000e+03 1.04080000e+03 4.70280000e+02 2.52880000e+02 1.51960000e+02 1.19170000e+02 1.16540000e+02 6.78040000e+01 3.61940000e+01 1.15800000e+01 5.19450000e+00 1.72020000e+00 8.09390000e-01 4.62150000e-01 2.98020000e-01 1.54840000e-01 9.63880000e-02 4.37600000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.55300000e+04 4.17700000e+04 3.39840000e+04 5.36570000e+04 4.92110000e+04 5.85500000e+04 2.87870000e+04 1.34700000e+04 4.53240000e+03 2.06240000e+03 1.11340000e+03 6.70630000e+02 5.26460000e+02 5.14860000e+02 3.00040000e+02 1.60400000e+02 5.14050000e+01 2.30730000e+01 7.64630000e+00 3.60010000e+00 2.05700000e+00 1.32740000e+00 6.90730000e-01 4.30390000e-01 1.95760000e-01] JM4 = 1.14517339739 JM5 = 1.62112880709 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.03720000e+04 1.89050000e+04 1.84650000e+04 8.93420000e+03 4.02350000e+03 1.25780000e+03 5.36900000e+02 2.73920000e+02 1.57090000e+02 1.20380000e+02 1.17470000e+02 6.48310000e+01 3.25220000e+01 9.31480000e+00 3.88350000e+00 1.17280000e+00 5.20940000e-01 2.85620000e-01 1.78740000e-01 8.90150000e-02 5.39460000e-02 2.37100000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.55300000e+04 4.17700000e+04 3.39840000e+04 3.32850000e+04 3.03060000e+04 2.96810000e+04 1.34510000e+04 5.77020000e+03 1.67760000e+03 6.78750000e+02 3.32150000e+02 1.83900000e+02 1.38530000e+02 1.34970000e+02 7.16500000e+01 3.43170000e+01 9.01700000e+00 3.53870000e+00 9.88610000e-01 4.19800000e-01 2.24020000e-01 1.37860000e-01 6.74530000e-02 4.05290000e-02 1.76280000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.04030000e+04 6.40130000e+03 3.67640000e+03 1.59700000e+03 8.46790000e+02 5.07290000e+02 3.29640000e+02 2.67540000e+02 2.62420000e+02 1.63560000e+02 9.35640000e+01 3.30730000e+01 1.56510000e+01 5.48500000e+00 2.65930000e+00 1.54740000e+00 1.01080000e+00 5.34270000e-01 3.35910000e-01 1.54430000e-01] all other = [ 9.85300000e+05 4.38200000e+05 3.50990000e+05 3.45100000e+05 3.26760000e+05 3.21240000e+05 2.36950000e+05 2.13570000e+05 2.09840000e+05 1.64770000e+05 1.61850000e+05 1.34930000e+05 1.32500000e+05 9.50270000e+04 4.83060000e+04 2.82000000e+04 1.80300000e+04 8.79390000e+03 5.61610000e+03 5.50310000e+03 4.99130000e+03 4.14430000e+03 4.06030000e+03 3.70020000e+03 3.62500000e+03 1.74840000e+03 8.18980000e+02 2.76550000e+02 1.26640000e+02 6.86950000e+01 4.15440000e+01 3.26730000e+01 3.19580000e+01 1.87000000e+01 1.00400000e+01 3.24030000e+00 1.46050000e+00 4.86020000e-01 2.29280000e-01 1.31120000e-01 8.46360000e-02 4.40390000e-02 2.74270000e-02 1.24630000e-02] [Hf.binding] K = 65.5038 L1 = 11.2489 M5 = 1.6685 M4 = 1.7256 M1 = 2.5772 L3 = 9.558 M3 = 2.099 M2 = 2.3586 L2 = 10.7637 [K] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.57970000e+00 3.60840000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 5.03460000e+03 1.63350000e+03 6.98470000e+02 1.97850000e+02 1.11900000e+02 1.09030000e+02 7.77820000e+01 3.69480000e+01 1.98470000e+01 7.27000000e+00 3.27630000e+00 7.45090000e-01 2.54470000e-01 5.45580000e-02 1.80780000e-02 7.65400000e-03 3.79470000e-03 1.26060000e-03 5.40570000e-04 1.19570000e-04 4.23910000e-05 1.05240000e-05 4.16340000e-06 2.11420000e-06 1.25350000e-06 5.81400000e-07 3.36720000e-07 1.39280000e-07] M = [ 2.35960000e+04 8.63890000e+03 4.11910000e+03 1.40420000e+03 8.70540000e+02 8.51850000e+02 6.43110000e+02 3.47960000e+02 2.09450000e+02 9.29750000e+01 4.90690000e+01 1.50690000e+01 6.41700000e+00 1.88820000e+00 7.81680000e-01 3.91680000e-01 2.21860000e-01 9.00030000e-02 4.45790000e-02 1.24500000e-02 5.08380000e-03 1.48890000e-03 6.50360000e-04 3.54590000e-04 2.22260000e-04 1.12750000e-04 7.00740000e-05 3.28060000e-05] L = [ 2.39410000e+05 8.31340000e+04 3.84470000e+04 1.26920000e+04 7.77960000e+03 7.60900000e+03 5.70810000e+03 3.04850000e+03 1.81700000e+03 7.95880000e+02 4.16490000e+02 1.26310000e+02 5.34600000e+01 1.56120000e+01 6.43670000e+00 3.21690000e+00 1.81890000e+00 7.36140000e-01 3.64060000e-01 1.01460000e-01 4.14070000e-02 1.21170000e-02 5.29070000e-03 2.88410000e-03 1.80740000e-03 9.16700000e-04 5.69630000e-04 2.66460000e-04] L2 = [ 5.84770000e+04 1.78860000e+04 7.40140000e+03 2.02710000e+03 1.13290000e+03 1.10320000e+03 7.81690000e+02 3.66130000e+02 1.94630000e+02 7.03650000e+01 3.14730000e+01 7.07400000e+00 2.40100000e+00 5.11280000e-01 1.68770000e-01 7.12890000e-02 3.52810000e-02 1.16920000e-02 5.00510000e-03 1.10870000e-03 3.93090000e-04 9.76040000e-05 3.86050000e-05 1.96040000e-05 1.16350000e-05 5.40540000e-06 3.13190000e-06 1.30200000e-06] L3 = [ 1.14340000e+05 3.48070000e+04 1.43530000e+04 3.91000000e+03 2.17970000e+03 2.12240000e+03 1.50140000e+03 7.00710000e+02 3.71280000e+02 1.33460000e+02 5.93980000e+01 1.32070000e+01 4.44080000e+00 9.30260000e-01 3.02770000e-01 1.26280000e-01 6.17790000e-02 2.00670000e-02 8.44610000e-03 1.80170000e-03 6.24890000e-04 1.52300000e-04 6.05640000e-05 3.13310000e-05 1.89630000e-05 9.26340000e-06 5.65190000e-06 2.58530000e-06] M3 = [ 9.85020000e+03 3.18120000e+03 1.35560000e+03 3.81870000e+02 2.15410000e+02 2.09860000e+02 1.49480000e+02 7.07440000e+01 3.78750000e+01 1.37930000e+01 6.18640000e+00 1.38840000e+00 4.69720000e-01 9.90690000e-02 3.23590000e-02 1.35280000e-02 6.62790000e-03 2.15750000e-03 9.08990000e-04 1.94540000e-04 6.75510000e-05 1.64820000e-05 6.55050000e-06 3.38900000e-06 2.05400000e-06 1.00510000e-06 6.13290000e-07 2.80970000e-07] L1 = [ 6.65960000e+04 3.04400000e+04 1.66930000e+04 6.75490000e+03 4.46710000e+03 4.38340000e+03 3.42500000e+03 1.98170000e+03 1.25110000e+03 5.92050000e+02 3.25610000e+02 1.06030000e+02 4.66180000e+01 1.41710000e+01 5.96520000e+00 3.01930000e+00 1.72180000e+00 7.04380000e-01 3.50610000e-01 9.85480000e-02 4.03890000e-02 1.18670000e-02 5.19150000e-03 2.83310000e-03 1.77680000e-03 9.02030000e-04 5.60840000e-04 2.62570000e-04] JK = 8.97649883418 M1 = [ 8.71110000e+03 3.82430000e+03 2.06500000e+03 8.24490000e+02 5.43230000e+02 5.32970000e+02 4.15850000e+02 2.40270000e+02 1.51730000e+02 7.19120000e+01 3.96060000e+01 1.29360000e+01 5.69280000e+00 1.73460000e+00 7.31240000e-01 3.70490000e-01 2.11440000e-01 8.65840000e-02 4.31300000e-02 1.21360000e-02 4.97380000e-03 1.46190000e-03 6.39650000e-04 3.49090000e-04 2.18950000e-04 1.11160000e-04 6.91240000e-05 3.23860000e-05] all other = [ 2.12510000e+02 9.29100000e+01 5.02320000e+01 2.00190000e+01 1.31850000e+01 1.29360000e+01 1.00910000e+01 5.82910000e+00 3.68060000e+00 1.74440000e+00 9.60690000e-01 3.13730000e-01 1.38210000e-01 4.21220000e-02 1.77600000e-02 8.99860000e-03 5.13570000e-03 2.10320000e-03 1.04770000e-03 2.94810000e-04 1.20830000e-04 3.55250000e-05 1.55550000e-05 8.49780000e-06 5.33850000e-06 2.72140000e-06 1.70360000e-06 8.19690000e-07] total = [ 2.63220000e+05 9.18660000e+04 4.26170000e+04 1.41160000e+04 8.66340000e+03 7.77670000e+04 5.99650000e+04 3.35810000e+04 2.07150000e+04 9.46350000e+03 5.07290000e+03 1.58350000e+03 6.78610000e+02 2.00280000e+02 8.29400000e+01 4.15450000e+01 2.35200000e+01 9.53040000e+00 4.71550000e+00 1.31430000e+00 5.36010000e-01 1.56770000e-01 6.84370000e-02 3.73050000e-02 2.33830000e-02 1.18650000e-02 7.38040000e-03 3.45570000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.92930000e+04 5.36040000e+04 3.01790000e+04 1.86850000e+04 8.57290000e+03 4.60640000e+03 1.44180000e+03 6.18590000e+02 1.82730000e+02 7.57040000e+01 3.79280000e+01 2.14740000e+01 8.70220000e+00 4.30580000e+00 1.20010000e+00 4.89400000e-01 1.43130000e-01 6.24800000e-02 3.40580000e-02 2.13480000e-02 1.08330000e-02 6.73900000e-03 3.15560000e-03] [K.binding] K = 3.5833 L1 = 0.3712 M1 = 0.0405 L3 = 0.2986 M3 = 0.0235 M2 = 0.0238 L2 = 0.3017 [He] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 4.01770000e+02 1.08880000e+02 4.32220000e+01 1.11710000e+01 4.23410000e+00 2.02580000e+00 1.09910000e+00 4.11030000e-01 1.94100000e-01 4.87480000e-02 1.82860000e-02 4.56790000e-03 1.70510000e-03 7.94530000e-04 4.25940000e-04 1.59650000e-04 7.48410000e-05 1.91610000e-05 7.42770000e-06 2.04880000e-06 8.66210000e-07 4.63530000e-07 2.87600000e-07 1.44870000e-07 9.02750000e-08 4.31470000e-08] K = [ 4.01770000e+02 1.08880000e+02 4.32220000e+01 1.11710000e+01 4.23410000e+00 2.02580000e+00 1.09910000e+00 4.11030000e-01 1.94100000e-01 4.87480000e-02 1.82860000e-02 4.56790000e-03 1.70510000e-03 7.94530000e-04 4.25940000e-04 1.59650000e-04 7.48410000e-05 1.91610000e-05 7.42770000e-06 2.04880000e-06 8.66210000e-07 4.63530000e-07 2.87600000e-07 1.44870000e-07 9.02750000e-08 4.31470000e-08] [He.binding] K = 0.0234 [Md] JL1 = 1.13095784737 JL3 = 2.25852312916 JL2 = 1.41510238908 energy = [ 1.00000000e+00 1.02750000e+00 1.03580000e+00 1.09890000e+00 1.10770000e+00 1.40230000e+00 1.41350000e+00 1.50000000e+00 1.80580000e+00 1.82030000e+00 2.00000000e+00 2.00160000e+00 2.01760000e+00 3.00000000e+00 4.00000000e+00 4.61140000e+00 4.64830000e+00 4.89230000e+00 4.93150000e+00 5.00000000e+00 5.53360000e+00 5.57790000e+00 6.00000000e+00 7.00570000e+00 7.06180000e+00 7.42630000e+00 7.48570000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.13600000e+01 2.15310000e+01 2.75790000e+01 2.78000000e+01 2.84980000e+01 2.87260000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.46620000e+02 1.47800000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.73819888066 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.88390000e+05 1.77930000e+05 1.74260000e+05 1.68270000e+05 1.29650000e+05 1.26850000e+05 1.03090000e+05 6.51380000e+04 6.36860000e+04 5.50000000e+04 5.36980000e+04 4.38120000e+04 2.21220000e+04 5.98350000e+03 2.26190000e+03 1.80290000e+03 1.75390000e+03 7.34850000e+02 7.14260000e+02 6.53820000e+02 6.35470000e+02 5.44150000e+02 1.91580000e+02 8.39750000e+01 4.24850000e+01 1.43650000e+01 6.18190000e+00 1.46490000e+00 1.42190000e+00 1.34560000e+00 4.67230000e-01 1.11340000e-01 4.27150000e-02 2.12110000e-02 1.23540000e-02 5.63690000e-03 3.21550000e-03 1.29590000e-03] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17900000e+05 1.25500000e+05 9.66820000e+04 9.47930000e+04 7.83400000e+04 5.03250000e+04 4.91640000e+04 4.24950000e+04 4.15690000e+04 3.43460000e+04 1.76720000e+04 4.96620000e+03 1.93680000e+03 1.55390000e+03 1.51290000e+03 6.52320000e+02 6.34670000e+02 5.82660000e+02 5.66820000e+02 4.87750000e+02 1.77940000e+02 8.03020000e+01 4.16310000e+01 1.46440000e+01 6.49800000e+00 1.61890000e+00 1.57290000e+00 1.49120000e+00 5.34470000e-01 1.31290000e-01 5.07590000e-02 2.51310000e-02 1.45220000e-02 6.52880000e-03 3.65440000e-03 1.44050000e-03] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.97860000e+03 7.22720000e+03 5.37590000e+03 2.87640000e+03 1.75460000e+03 1.55920000e+03 1.53670000e+03 9.67960000e+02 9.53230000e+02 9.08740000e+02 8.94860000e+02 8.22880000e+02 4.64220000e+02 2.92310000e+02 1.98210000e+02 1.05440000e+02 6.37600000e+01 2.63480000e+01 2.58610000e+01 2.49830000e+01 1.27270000e+01 4.93800000e+00 2.56010000e+00 1.55960000e+00 1.05150000e+00 5.76500000e-01 3.68240000e-01 1.69710000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.51290000e+04 4.84940000e+04 3.74650000e+04 3.68970000e+04 3.34160000e+04 3.28870000e+04 2.87720000e+04 1.84720000e+04 7.64550000e+03 3.86960000e+03 3.29280000e+03 3.22890000e+03 1.72900000e+03 1.69380000e+03 1.58840000e+03 1.55580000e+03 1.38920000e+03 6.44230000e+02 3.47540000e+02 2.07380000e+02 9.01250000e+01 4.66320000e+01 1.48360000e+01 1.44850000e+01 1.38560000e+01 5.84910000e+00 1.76960000e+00 7.80430000e-01 4.23900000e-01 2.62450000e-01 1.28350000e-01 7.63370000e-02 3.22440000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.25360000e+04 1.19430000e+04 1.18360000e+04 1.11870000e+04 8.33070000e+03 4.37670000e+03 2.53770000e+03 2.22170000e+03 2.18600000e+03 1.29930000e+03 1.27710000e+03 1.21010000e+03 1.18920000e+03 1.08080000e+03 5.61050000e+02 3.29580000e+02 2.10650000e+02 1.01940000e+02 5.72890000e+01 2.09660000e+01 2.05280000e+01 1.97420000e+01 9.22810000e+00 3.19600000e+00 1.53760000e+00 8.88130000e-01 5.75900000e-01 3.00800000e-01 1.87380000e-01 8.55750000e-02] total = [ 3.17690000e+06 3.02120000e+06 3.10750000e+06 3.00110000e+06 3.04600000e+06 2.05270000e+06 2.15100000e+06 1.91520000e+06 1.31180000e+06 1.30490000e+06 1.06920000e+06 1.06740000e+06 1.06760000e+06 4.46170000e+05 2.30350000e+05 1.64960000e+05 3.50270000e+05 3.21300000e+05 4.32830000e+05 4.29900000e+05 3.33200000e+05 3.81620000e+05 3.17900000e+05 2.13360000e+05 2.21550000e+05 1.95270000e+05 1.99380000e+05 1.69030000e+05 9.71440000e+04 3.49570000e+04 1.67460000e+04 1.41380000e+04 3.19310000e+04 1.64080000e+04 2.32190000e+04 2.17780000e+04 2.46300000e+04 2.21030000e+04 1.06970000e+04 6.01150000e+03 3.74070000e+03 1.75760000e+03 9.74450000e+02 3.53780000e+02 1.32250000e+03 1.27780000e+03 6.24950000e+02 2.30210000e+02 1.16010000e+02 6.95720000e+01 4.64870000e+01 2.52720000e+01 1.60920000e+01 7.41990000e+00] JM2 = 1.03838582677 JM3 = 1.14531812725 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 976.13 944.7 468.45 174.97 88.892 53.631 36.001 19.691 12.583 5.8223] JM1 = 1.02104778 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.88390000e+05 1.77930000e+05 2.92150000e+05 2.93770000e+05 2.26330000e+05 2.76770000e+05 2.29930000e+05 1.52930000e+05 1.62280000e+05 1.42850000e+05 1.47970000e+05 1.25340000e+05 7.19720000e+04 2.58480000e+04 1.23610000e+04 1.04310000e+04 1.02180000e+04 5.38350000e+03 5.27310000e+03 4.94380000e+03 4.84220000e+03 4.32480000e+03 2.03900000e+03 1.13370000e+03 7.00360000e+02 3.26510000e+02 1.80360000e+02 6.52330000e+01 6.38690000e+01 6.14180000e+01 2.88060000e+01 1.01460000e+01 4.97160000e+00 2.91790000e+00 1.91670000e+00 1.01780000e+00 6.38830000e-01 2.90270000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.80810000e+04 9.10190000e+03 1.60620000e+04 1.50670000e+04 1.80570000e+04 1.62310000e+04 7.92410000e+03 4.46810000e+03 2.78660000e+03 1.31220000e+03 7.28220000e+02 2.64600000e+02 2.59090000e+02 2.49170000e+02 1.17080000e+02 4.13420000e+01 2.03030000e+01 1.19410000e+01 7.85880000e+00 4.18550000e+00 2.63260000e+00 1.19950000e+00] JM4 = 1.34712107065 JM5 = 2.12336323957 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.15600000e+03 6.74660000e+03 6.66970000e+03 5.97820000e+03 2.97790000e+03 1.67670000e+03 1.03880000e+03 4.81350000e+02 2.62380000e+02 9.18980000e+01 8.99100000e+01 8.63390000e+01 3.93300000e+01 1.32500000e+01 6.28520000e+00 3.60070000e+00 2.32280000e+00 1.20660000e+00 7.49660000e-01 3.41270000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.80810000e+04 9.10190000e+03 8.90610000e+03 8.32040000e+03 8.13920000e+03 7.21160000e+03 3.12920000e+03 1.61430000e+03 9.31860000e+02 3.86840000e+02 1.94160000e+02 5.91920000e+01 5.77460000e+01 5.51580000e+01 2.27230000e+01 6.70310000e+00 2.91990000e+00 1.57520000e+00 9.71320000e-01 4.73130000e-01 2.80890000e-01 1.18820000e-01] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.24810000e+03 3.04110000e+03 1.81710000e+03 1.17710000e+03 8.15920000e+02 4.44030000e+02 2.71680000e+02 1.13510000e+02 1.11430000e+02 1.07670000e+02 5.50290000e+01 2.13900000e+01 1.10980000e+01 6.76550000e+00 4.56460000e+00 2.50580000e+00 1.60200000e+00 7.39410000e-01] all other = [ 3.17690000e+06 3.02120000e+06 3.10750000e+06 3.00110000e+06 3.04600000e+06 2.05270000e+06 2.15100000e+06 1.91520000e+06 1.31180000e+06 1.30490000e+06 1.06920000e+06 1.06740000e+06 1.06760000e+06 4.46170000e+05 2.30350000e+05 1.64960000e+05 1.61880000e+05 1.43360000e+05 1.40670000e+05 1.36140000e+05 1.06870000e+05 1.04850000e+05 8.79760000e+04 6.04340000e+04 5.92710000e+04 5.24180000e+04 5.14060000e+04 4.36840000e+04 2.51710000e+04 9.10870000e+03 4.38510000e+03 3.70710000e+03 3.63220000e+03 1.92300000e+03 1.88390000e+03 1.76720000e+03 1.73120000e+03 1.54760000e+03 7.33760000e+02 4.09620000e+02 2.53820000e+02 1.18860000e+02 6.58750000e+01 2.39460000e+01 2.34480000e+01 2.25510000e+01 1.06150000e+01 3.75190000e+00 1.84160000e+00 1.08180000e+00 7.11280000e-01 3.77930000e-01 2.37270000e-01 1.07790000e-01] [Md.binding] K = 146.7714 L1 = 28.5266 M5 = 4.616 M4 = 4.8972 M1 = 7.4337 L3 = 21.3815 M3 = 5.5392 M2 = 7.0127 L2 = 27.607 [Mg] energy = [ 1.00000000e+00 1.29320000e+00 1.30350000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 11.801222258 M = [ 9.70910000e+02 5.40470000e+02 5.30490000e+02 3.80980000e+02 1.89050000e+02 6.71060000e+01 3.12200000e+01 1.69660000e+01 1.02040000e+01 4.49360000e+00 2.34460000e+00 6.98310000e-01 2.89890000e-01 8.20460000e-02 3.30430000e-02 1.62130000e-02 9.03100000e-03 3.57220000e-03 1.73700000e-03 4.70630000e-04 1.88600000e-04 5.40310000e-05 2.33190000e-05 1.26330000e-05 7.88900000e-06 3.99830000e-06 2.49340000e-06 1.18770000e-06] L = [ 3.61750000e+04 1.81140000e+04 1.77260000e+04 1.20910000e+04 5.46850000e+03 1.75060000e+03 7.69070000e+02 4.02880000e+02 2.36170000e+02 1.00560000e+02 5.13750000e+01 1.48630000e+01 6.07870000e+00 1.69450000e+00 6.77090000e-01 3.30760000e-01 1.83680000e-01 7.23740000e-02 3.51130000e-02 9.48610000e-03 3.79650000e-03 1.08640000e-03 4.68560000e-04 2.53610000e-04 1.58290000e-04 8.00330000e-05 4.97410000e-05 2.33830000e-05] L2 = [ 5.62500000e+03 2.43890000e+03 2.37560000e+03 1.48890000e+03 5.59590000e+02 1.34760000e+02 4.76450000e+01 2.09250000e+01 1.05700000e+01 3.53170000e+00 1.48710000e+00 3.01120000e-01 9.57810000e-02 1.89450000e-02 5.97560000e-03 2.44460000e-03 1.18000000e-03 3.77260000e-04 1.57430000e-04 3.33360000e-05 1.15230000e-05 2.77580000e-06 1.08120000e-06 5.43930000e-07 3.18980000e-07 1.46890000e-07 8.49850000e-08 3.47430000e-08] L3 = [ 1.10840000e+04 4.79870000e+03 4.67370000e+03 2.92680000e+03 1.09790000e+03 2.63600000e+02 9.29750000e+01 4.07420000e+01 2.05370000e+01 6.83470000e+00 2.86790000e+00 5.76470000e-01 1.82050000e-01 3.54280000e-02 1.10480000e-02 4.47000000e-03 2.13780000e-03 6.71250000e-04 2.76020000e-04 5.68740000e-05 1.93170000e-05 4.61040000e-06 1.81260000e-06 9.29950000e-07 5.64660000e-07 2.74960000e-07 1.67800000e-07 7.69980000e-08] L1 = [ 1.94660000e+04 1.08760000e+04 1.06770000e+04 7.67570000e+03 3.81100000e+03 1.35220000e+03 6.28450000e+02 3.41210000e+02 2.05060000e+02 9.01970000e+01 4.70200000e+01 1.39850000e+01 5.80090000e+00 1.64010000e+00 6.60060000e-01 3.23840000e-01 1.80360000e-01 7.13260000e-02 3.46800000e-02 9.39590000e-03 3.76560000e-03 1.07900000e-03 4.65670000e-04 2.52140000e-04 1.57400000e-04 7.96110000e-05 4.94880000e-05 2.32710000e-05] M1 = [ 9.70910000e+02 5.40470000e+02 5.30490000e+02 3.80980000e+02 1.89050000e+02 6.71060000e+01 3.12200000e+01 1.69660000e+01 1.02040000e+01 4.49360000e+00 2.34460000e+00 6.98310000e-01 2.89890000e-01 8.20460000e-02 3.30430000e-02 1.62130000e-02 9.03100000e-03 3.57220000e-03 1.73700000e-03 4.70630000e-04 1.88600000e-04 5.40310000e-05 2.33190000e-05 1.26330000e-05 7.88900000e-06 3.99830000e-06 2.49340000e-06 1.18770000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 3.71460000e+04 1.86540000e+04 2.20140000e+05 1.61520000e+05 7.78860000e+04 2.65140000e+04 1.19500000e+04 6.34150000e+03 3.74530000e+03 1.60760000e+03 8.24660000e+02 2.39660000e+02 9.81830000e+01 2.73870000e+01 1.09410000e+01 5.34140000e+00 2.96500000e+00 1.16750000e+00 5.66150000e-01 1.52820000e-01 6.11230000e-02 1.74760000e-02 7.53390000e-03 4.08240000e-03 2.54830000e-03 1.28860000e-03 8.00990000e-04 3.76620000e-04] K = [ 0.00000000e+00 0.00000000e+00 2.01890000e+05 1.49050000e+05 7.22290000e+04 2.46960000e+04 1.11490000e+04 5.92160000e+03 3.49890000e+03 1.50250000e+03 7.70940000e+02 2.24100000e+02 9.18150000e+01 2.56100000e+01 1.02310000e+01 4.99440000e+00 2.77230000e+00 1.09160000e+00 5.29300000e-01 1.42860000e-01 5.71370000e-02 1.63360000e-02 7.04200000e-03 3.81620000e-03 2.38210000e-03 1.20460000e-03 7.48750000e-04 3.52050000e-04] [Mg.binding] M1 = 0.0069 K = 1.2945 L2 = 0.0566 L3 = 0.0562 L1 = 0.0895 [Mo] JL1 = 1.12184979839 JL3 = 3.58460782938 JL2 = 1.36329561018 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.51840000e+00 2.53860000e+00 2.62700000e+00 2.64800000e+00 2.84390000e+00 2.86660000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.99460000e+01 2.00000000e+01 2.01060000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 8.20050000e+04 4.06910000e+04 2.29180000e+04 1.38990000e+04 1.36530000e+04 1.26390000e+04 1.24120000e+04 1.05360000e+04 1.03430000e+04 9.30240000e+03 4.62670000e+03 2.60990000e+03 1.60430000e+03 7.20950000e+02 3.78120000e+02 1.11220000e+02 4.53990000e+01 4.50090000e+01 4.42580000e+01 1.20440000e+01 4.61230000e+00 2.16770000e+00 1.16390000e+00 4.34040000e-01 2.01840000e-01 5.07930000e-02 1.95210000e-02 5.32010000e-03 2.22130000e-03 1.16940000e-03 7.10510000e-04 3.40370000e-04 2.01330000e-04 8.56440000e-05] M = [ 7.23000000e+05 2.77820000e+05 1.36880000e+05 7.65910000e+04 7.50540000e+04 6.87890000e+04 6.74030000e+04 5.61500000e+04 5.50120000e+04 4.89410000e+04 2.31500000e+04 1.28250000e+04 7.86880000e+03 3.60530000e+03 1.95380000e+03 6.32580000e+02 2.83300000e+02 2.81130000e+02 2.76970000e+02 8.83900000e+01 3.85340000e+01 2.01350000e+01 1.18110000e+01 5.06400000e+00 2.61700000e+00 7.87170000e-01 3.37580000e-01 1.05050000e-01 4.75430000e-02 2.64810000e-02 1.68080000e-02 8.61300000e-03 5.35090000e-03 2.46560000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.22750000e+05 2.00560000e+05 3.02890000e+05 2.54540000e+05 2.94480000e+05 2.64690000e+05 1.27700000e+05 7.16300000e+04 4.41980000e+04 2.03570000e+04 1.10440000e+04 3.57090000e+03 1.59670000e+03 1.58440000e+03 1.56090000e+03 4.97080000e+02 2.16380000e+02 1.12930000e+02 6.61740000e+01 2.83300000e+01 1.46250000e+01 4.39110000e+00 1.88090000e+00 5.84960000e-01 2.64580000e-01 1.47330000e-01 9.35090000e-02 4.79220000e-02 2.97780000e-02 1.37270000e-02] M5 = [ 2.46790000e+05 7.46300000e+04 2.99800000e+04 1.39570000e+04 1.35860000e+04 1.20980000e+04 1.17740000e+04 9.22170000e+03 8.97190000e+03 7.66670000e+03 2.76550000e+03 1.21820000e+03 6.12430000e+02 2.00900000e+02 8.26850000e+01 1.56860000e+01 4.71410000e+00 4.66000000e+00 4.55660000e+00 8.13780000e-01 2.32460000e-01 8.75600000e-02 3.94070000e-02 1.12160000e-02 4.26990000e-03 7.63600000e-04 2.36890000e-04 5.02300000e-05 1.81700000e-05 8.79020000e-06 5.13520000e-06 2.30790000e-06 1.35540000e-06 5.66710000e-07] M4 = [ 1.69220000e+05 5.15080000e+04 2.07900000e+04 9.71750000e+03 9.46040000e+03 8.42910000e+03 8.20470000e+03 6.43480000e+03 6.26130000e+03 5.35500000e+03 1.94270000e+03 8.59900000e+02 4.34190000e+02 1.43500000e+02 5.94420000e+01 1.14320000e+01 3.47580000e+00 3.43630000e+00 3.36090000e+00 6.11840000e-01 1.77540000e-01 6.77770000e-02 3.08580000e-02 8.95140000e-03 3.45680000e-03 6.36840000e-04 1.99150000e-04 4.18450000e-05 1.48230000e-05 6.93100000e-06 3.81630000e-06 1.63410000e-06 8.68320000e-07 3.27660000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.06030000e+05 8.79760000e+04 8.64030000e+04 7.74600000e+04 3.57600000e+04 1.92310000e+04 1.13970000e+04 4.86370000e+03 2.46140000e+03 6.85250000e+02 2.71170000e+02 2.68770000e+02 2.64150000e+02 6.95000000e+01 2.61160000e+01 1.21240000e+01 6.45440000e+00 2.38000000e+00 1.09910000e+00 2.74040000e-01 1.04590000e-01 2.83470000e-02 1.18030000e-02 6.20030000e-03 3.76010000e-03 1.80500000e-03 1.06580000e-03 4.54620000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.22750000e+05 2.00560000e+05 1.96860000e+05 1.66560000e+05 1.63250000e+05 1.44970000e+05 6.57470000e+04 3.48460000e+04 2.04100000e+04 8.56620000e+03 4.27680000e+03 1.16000000e+03 4.50050000e+02 4.45970000e+02 4.38140000e+02 1.11720000e+02 4.09230000e+01 1.85900000e+01 9.70850000e+00 3.46460000e+00 1.55690000e+00 3.68490000e-01 1.35670000e-01 3.52900000e-02 1.44690000e-02 7.59450000e-03 4.63870000e-03 2.26550000e-03 1.37430000e-03 6.13200000e-04] M3 = [ 1.65760000e+05 7.96130000e+04 4.39870000e+04 2.63090000e+04 2.58300000e+04 2.38610000e+04 2.34220000e+04 1.98020000e+04 1.94300000e+04 1.74300000e+04 8.52990000e+03 4.75190000e+03 2.89110000e+03 1.27780000e+03 6.61190000e+02 1.89460000e+02 7.57890000e+01 7.51210000e+01 7.38400000e+01 1.94640000e+01 7.26320000e+00 3.33930000e+00 1.75870000e+00 6.34650000e-01 2.87210000e-01 6.86510000e-02 2.53630000e-02 6.63100000e-03 2.72580000e-03 1.43230000e-03 8.74630000e-04 4.28910000e-04 2.59920000e-04 1.16440000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.48220000e+04 4.22600000e+04 2.61940000e+04 1.75530000e+04 1.23910000e+04 6.92690000e+03 4.30540000e+03 1.72560000e+03 8.75440000e+02 8.69700000e+02 8.58630000e+02 3.15860000e+02 1.49340000e+02 8.22130000e+01 5.00110000e+01 2.24860000e+01 1.19680000e+01 3.74860000e+00 1.64070000e+00 5.21320000e-01 2.38310000e-01 1.33540000e-01 8.51110000e-02 4.38510000e-02 2.73380000e-02 1.26590000e-02] JK = 6.49301407573 M1 = [ 5.92270000e+04 3.13800000e+04 1.92070000e+04 1.27080000e+04 1.25240000e+04 1.17620000e+04 1.15910000e+04 1.01560000e+04 1.00050000e+04 9.18720000e+03 5.28530000e+03 3.38510000e+03 2.32680000e+03 1.26220000e+03 7.72390000e+02 3.04780000e+02 1.53920000e+02 1.52910000e+02 1.50950000e+02 5.54570000e+01 2.62480000e+01 1.44730000e+01 8.81780000e+00 3.97510000e+00 2.12020000e+00 6.66320000e-01 2.92260000e-01 9.30070000e-02 4.25630000e-02 2.38640000e-02 1.52140000e-02 7.83980000e-03 4.88750000e-03 2.26270000e-03] all other = [ 6.32660000e+04 2.78150000e+04 1.49800000e+04 8.93260000e+03 8.77290000e+03 8.11120000e+03 7.96380000e+03 6.75340000e+03 6.62940000e+03 5.95990000e+03 3.00380000e+03 1.73770000e+03 1.10040000e+03 5.26270000e+02 2.93260000e+02 9.89550000e+01 4.53600000e+01 4.50220000e+01 4.43730000e+01 1.45270000e+01 6.42590000e+00 3.38920000e+00 2.00100000e+00 8.65410000e-01 4.49680000e-01 1.36290000e-01 5.86770000e-02 1.83440000e-02 8.31810000e-03 4.63850000e-03 2.94650000e-03 1.51150000e-03 9.39660000e-04 4.33600000e-04] total = [ 7.86270000e+05 3.05640000e+05 1.51860000e+05 8.55240000e+04 3.06570000e+05 2.77460000e+05 3.78260000e+05 3.17440000e+05 3.56120000e+05 3.19590000e+05 1.53850000e+05 8.61930000e+04 5.31670000e+04 2.44880000e+04 1.32910000e+04 4.30240000e+03 1.92530000e+03 1.25010000e+04 1.24890000e+04 4.37010000e+03 1.98490000e+03 1.06160000e+03 6.31830000e+02 2.75300000e+02 1.43480000e+02 4.35280000e+01 1.87180000e+01 5.83920000e+00 2.64610000e+00 1.47610000e+00 9.38540000e-01 4.82670000e-01 3.00840000e-01 1.39430000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.05900000e+04 1.06070000e+04 3.77010000e+03 1.72360000e+03 9.25190000e+02 5.51840000e+02 2.41040000e+02 1.25790000e+02 3.82130000e+01 1.64410000e+01 5.13090000e+00 2.32560000e+00 1.29760000e+00 8.25280000e-01 4.24620000e-01 2.64770000e-01 1.22810000e-01] [Mo.binding] K = 19.9658 L1 = 2.8467 M5 = 0.2369 M4 = 0.2404 M1 = 0.4942 L3 = 2.521 M3 = 0.3916 M2 = 0.4097 L2 = 2.6296 [Mn] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 6.50440000e+00 6.55650000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.77860000e+04 6.46680000e+03 3.00020000e+03 9.51120000e+02 4.01870000e+02 2.00860000e+02 1.12260000e+02 8.64220000e+01 8.42060000e+01 4.37300000e+01 2.06490000e+01 5.07490000e+00 1.82260000e+00 4.17160000e-01 1.44520000e-01 6.30680000e-02 3.19750000e-02 1.09630000e-02 4.80290000e-03 1.09910000e-03 3.98040000e-04 1.01300000e-04 4.06720000e-05 2.08710000e-05 1.24450000e-05 5.82880000e-06 3.39560000e-06 1.41830000e-06] M = [ 7.79750000e+04 2.93710000e+04 1.42980000e+04 5.01570000e+03 2.33470000e+03 1.27580000e+03 7.73640000e+02 6.18950000e+02 6.05420000e+02 3.47870000e+02 1.85720000e+02 5.83610000e+01 2.53160000e+01 7.65420000e+00 3.23440000e+00 1.64460000e+00 9.43170000e-01 3.89870000e-01 1.95790000e-01 5.59600000e-02 2.31900000e-02 6.91420000e-03 3.05070000e-03 1.67320000e-03 1.05240000e-03 5.35250000e-04 3.32620000e-04 1.54990000e-04] L = [ 6.58550000e+05 2.41860000e+05 1.14650000e+05 3.88090000e+04 1.76790000e+04 9.52800000e+03 5.72420000e+03 4.56290000e+03 4.46160000e+03 2.54260000e+03 1.34630000e+03 4.17680000e+02 1.79900000e+02 5.39740000e+01 2.27030000e+01 1.15230000e+01 6.59560000e+00 2.71940000e+00 1.36340000e+00 3.88770000e-01 1.60900000e-01 4.79130000e-02 2.11350000e-02 1.15890000e-02 7.28790000e-03 3.70620000e-03 2.30290000e-03 1.07290000e-03] M5 = [ 3.53970000e+03 8.20450000e+02 2.77920000e+02 5.64530000e+01 1.73380000e+01 6.77230000e+00 3.08550000e+00 2.17930000e+00 2.10560000e+00 8.88460000e-01 3.33800000e-01 5.40940000e-02 1.44670000e-02 2.21830000e-03 5.82860000e-04 2.06620000e-04 8.86100000e-05 2.35420000e-05 8.52660000e-06 1.41720000e-06 4.19540000e-07 8.49590000e-08 3.03210000e-08 1.45850000e-08 8.37570000e-09 3.80910000e-09 2.22070000e-09 9.71420000e-10] M4 = [ 2.40670000e+03 5.59350000e+02 1.89880000e+02 3.87020000e+01 1.19220000e+01 4.66890000e+00 2.14380000e+00 1.51620000e+00 1.46510000e+00 6.20140000e-01 2.33960000e-01 3.82490000e-02 1.03120000e-02 1.60350000e-03 4.26100000e-04 1.52480000e-04 6.60250000e-05 1.77870000e-05 6.52190000e-06 1.10060000e-06 3.27470000e-07 6.47020000e-08 2.21940000e-08 1.01030000e-08 5.56070000e-09 2.29380000e-09 1.23010000e-09 4.64520000e-10] L2 = [ 1.85800000e+05 6.30990000e+04 2.77960000e+04 8.26880000e+03 3.36700000e+03 1.64340000e+03 9.03770000e+02 6.91270000e+02 6.73130000e+02 3.44550000e+02 1.60330000e+02 3.85380000e+01 1.36830000e+01 3.09600000e+00 1.06360000e+00 4.62130000e-01 2.33580000e-01 7.97560000e-02 3.48540000e-02 7.94430000e-03 2.86990000e-03 7.31610000e-04 2.93660000e-04 1.50490000e-04 8.97470000e-05 4.21360000e-05 2.45220000e-05 1.03100000e-05] L3 = [ 3.62590000e+05 1.21930000e+05 5.34080000e+04 1.57560000e+04 6.37550000e+03 3.09600000e+03 1.69500000e+03 1.29380000e+03 1.25950000e+03 6.41260000e+02 2.96440000e+02 7.02780000e+01 2.46630000e+01 5.47210000e+00 1.84880000e+00 7.91510000e-01 3.94770000e-01 1.31690000e-01 5.64240000e-02 1.23890000e-02 4.36790000e-03 1.08180000e-03 4.33660000e-04 2.25200000e-04 1.36970000e-04 6.67790000e-05 4.06880000e-05 1.83620000e-05] M3 = [ 3.46450000e+04 1.24970000e+04 5.76530000e+03 1.81270000e+03 7.61120000e+02 3.78440000e+02 2.10550000e+02 1.61740000e+02 1.57560000e+02 8.13720000e+01 3.81650000e+01 9.24940000e+00 3.28410000e+00 7.36540000e-01 2.50520000e-01 1.07730000e-01 5.38890000e-02 1.80460000e-02 7.75160000e-03 1.70730000e-03 6.02800000e-04 1.49840000e-04 6.01500000e-05 3.12090000e-05 1.89710000e-05 9.27970000e-06 5.65460000e-06 2.56400000e-06] L1 = [ 1.10160000e+05 5.68300000e+04 3.34480000e+04 1.47840000e+04 7.93700000e+03 4.78850000e+03 3.12540000e+03 2.57780000e+03 2.52890000e+03 1.55680000e+03 8.89550000e+02 3.08870000e+02 1.41550000e+02 4.54060000e+01 1.97910000e+01 1.02690000e+01 5.96730000e+00 2.50800000e+00 1.27210000e+00 3.68440000e-01 1.53660000e-01 4.61000000e-02 2.04080000e-02 1.12130000e-02 7.06120000e-03 3.59730000e-03 2.23770000e-03 1.04420000e-03] JK = 7.83671666443 M1 = [ 1.95980000e+04 9.02680000e+03 5.06430000e+03 2.15680000e+03 1.14240000e+03 6.85030000e+02 4.45600000e+02 3.67090000e+02 3.60090000e+02 2.21260000e+02 1.26340000e+02 4.39450000e+01 2.01850000e+01 6.49660000e+00 2.83830000e+00 1.47340000e+00 8.57150000e-01 3.60820000e-01 1.83220000e-01 5.31510000e-02 2.21880000e-02 6.66290000e-03 2.94990000e-03 1.62110000e-03 1.02090000e-03 5.20140000e-04 3.23560000e-04 1.51010000e-04] all other = [ 1.36460000e+03 6.20860000e+02 3.46350000e+02 1.46880000e+02 7.80510000e+01 4.67610000e+01 3.04040000e+01 2.50440000e+01 2.45650000e+01 1.50910000e+01 8.61500000e+00 2.99660000e+00 1.37650000e+00 4.43050000e-01 1.93560000e-01 1.00600000e-01 5.85300000e-02 2.46420000e-02 1.25140000e-02 3.63070000e-03 1.51570000e-03 4.55240000e-04 2.01610000e-04 1.10830000e-04 6.98370000e-05 3.56450000e-05 2.22300000e-05 1.04880000e-05] total = [ 7.37890000e+05 2.71850000e+05 1.29300000e+05 4.39710000e+04 2.00920000e+04 1.08510000e+04 6.52830000e+03 5.20690000e+03 4.08050000e+04 2.48050000e+04 1.37080000e+04 4.51420000e+03 2.00140000e+03 6.16070000e+02 2.62030000e+02 1.33780000e+02 7.68450000e+01 3.18050000e+01 1.59750000e+01 4.56310000e+00 1.88920000e+00 5.62630000e-01 2.48140000e-01 1.36100000e-01 8.56220000e-02 4.35880000e-02 2.71120000e-02 1.26600000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.57140000e+04 2.18990000e+04 1.21670000e+04 4.03510000e+03 1.79480000e+03 5.54000000e+02 2.35900000e+02 1.20510000e+02 6.92480000e+01 2.86710000e+01 1.44040000e+01 4.11470000e+00 1.70360000e+00 5.07350000e-01 2.23750000e-01 1.22720000e-01 7.72120000e-02 3.93110000e-02 2.44540000e-02 1.14210000e-02] [Mn.binding] K = 6.5109 L1 = 0.7665 M5 = 0.0117 M4 = 0.0119 M1 = 0.0926 L3 = 0.6522 M3 = 0.0608 M2 = 0.0621 L2 = 0.663 [O] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 6.38730000e+03 2.12670000e+03 9.52650000e+02 2.98630000e+02 1.28260000e+02 6.57620000e+01 3.78610000e+01 1.56610000e+01 7.82780000e+00 2.17970000e+00 8.68240000e-01 2.33540000e-01 9.11790000e-02 4.37970000e-02 2.40170000e-02 9.29420000e-03 4.45290000e-03 1.17940000e-03 4.66490000e-04 1.31680000e-04 5.63760000e-05 3.03830000e-05 1.89200000e-05 9.55140000e-06 5.93870000e-06 2.80430000e-06] L2 = [ 3.57310000e+02 8.56780000e+01 2.99990000e+01 6.50790000e+00 2.13470000e+00 8.84240000e-01 4.27960000e-01 1.35600000e-01 5.51830000e-02 1.06070000e-02 3.25390000e-03 6.11080000e-04 1.86660000e-04 7.46480000e-05 3.54640000e-05 1.10700000e-05 4.54870000e-06 9.38740000e-07 3.19660000e-07 7.54930000e-08 2.90620000e-08 1.44680000e-08 8.47080000e-09 3.85800000e-09 2.20560000e-09 9.06590000e-10] L3 = [ 7.07830000e+02 1.69530000e+02 5.92960000e+01 1.28350000e+01 4.20410000e+00 1.73970000e+00 8.40880000e-01 2.64660000e-01 1.07400000e-01 2.05040000e-02 6.25210000e-03 1.16060000e-03 3.50950000e-04 1.39140000e-04 6.54710000e-05 2.01440000e-05 8.16120000e-06 1.64650000e-06 5.52440000e-07 1.30340000e-07 5.09790000e-08 2.62040000e-08 1.58310000e-08 7.76430000e-09 4.77190000e-09 2.24970000e-09] L1 = [ 5.32210000e+03 1.87150000e+03 8.63360000e+02 2.79290000e+02 1.21930000e+02 6.31390000e+01 3.65920000e+01 1.52610000e+01 7.66520000e+00 2.14860000e+00 8.58740000e-01 2.31770000e-01 9.06410000e-02 4.35830000e-02 2.39160000e-02 9.26300000e-03 4.44020000e-03 1.17690000e-03 4.65620000e-04 1.31470000e-04 5.62960000e-05 3.03420000e-05 1.88960000e-05 9.53980000e-06 5.93170000e-06 2.80120000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 1.21920000e+05 4.11160000e+04 1.84290000e+04 5.73940000e+03 2.45220000e+03 1.25370000e+03 7.19910000e+02 2.96700000e+02 1.47870000e+02 4.09620000e+01 1.62650000e+01 4.35990000e+00 1.69900000e+00 8.15090000e-01 4.46580000e-01 1.72620000e-01 8.26350000e-02 2.18580000e-02 8.63720000e-03 2.44150000e-03 1.04540000e-03 5.63460000e-04 3.50860000e-04 1.77080000e-04 1.10090000e-04 5.18920000e-05] K = [ 1.15530000e+05 3.89890000e+04 1.74760000e+04 5.44080000e+03 2.32390000e+03 1.18800000e+03 6.82050000e+02 2.81040000e+02 1.40040000e+02 3.87820000e+01 1.53970000e+01 4.12640000e+00 1.60780000e+00 7.71290000e-01 4.22570000e-01 1.63320000e-01 7.81820000e-02 2.06780000e-02 8.17070000e-03 2.30980000e-03 9.88990000e-04 5.33080000e-04 3.31940000e-04 1.67530000e-04 1.04150000e-04 4.90870000e-05] [O.binding] K = 0.5373 L2 = 0.0142 L3 = 0.0141 L1 = 0.0292 [S] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.45340000e+00 2.47310000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.16030000e+03 3.48010000e+02 1.41960000e+02 7.36380000e+01 7.17550000e+01 3.79870000e+01 1.43500000e+01 6.60440000e+00 3.46200000e+00 1.22490000e+00 5.38540000e-01 1.17170000e-01 3.88530000e-02 8.02750000e-03 2.60320000e-03 1.08660000e-03 5.32890000e-04 1.74350000e-04 7.39290000e-05 1.60480000e-05 5.62570000e-06 1.37740000e-06 5.40440000e-07 2.72930000e-07 1.61060000e-07 7.42970000e-08 4.28670000e-08 1.76900000e-08] M = [ 8.08210000e+03 2.98710000e+03 1.44290000e+03 8.52450000e+02 8.35030000e+02 5.04030000e+02 2.34290000e+02 1.27740000e+02 7.72470000e+01 3.44770000e+01 1.82130000e+01 5.58120000e+00 2.36630000e+00 6.89080000e-01 2.82890000e-01 1.40810000e-01 7.93190000e-02 3.19000000e-02 1.56960000e-02 4.33410000e-03 1.75690000e-03 5.10080000e-04 2.21720000e-04 1.20540000e-04 7.54400000e-05 3.82310000e-05 2.37740000e-05 1.11720000e-05] L = [ 1.21100000e+05 4.12880000e+04 1.89420000e+04 1.08120000e+04 1.05770000e+04 6.18850000e+03 2.75780000e+03 1.46180000e+03 8.66020000e+02 3.75730000e+02 1.95070000e+02 5.82080000e+01 2.43250000e+01 6.97550000e+00 2.84080000e+00 1.40700000e+00 7.89890000e-01 3.16260000e-01 1.55200000e-01 4.27320000e-02 1.72940000e-02 5.01370000e-03 2.17780000e-03 1.18360000e-03 7.40470000e-04 3.75050000e-04 2.33070000e-04 1.09240000e-04] L2 = [ 2.59810000e+04 7.52160000e+03 3.00630000e+03 1.53860000e+03 1.49840000e+03 7.84020000e+02 2.91720000e+02 1.33090000e+02 6.93460000e+01 2.43400000e+01 1.06480000e+01 2.29980000e+00 7.59520000e-01 1.56210000e-01 5.05260000e-02 2.10530000e-02 1.03140000e-02 3.36590000e-03 1.43240000e-03 3.10840000e-04 1.09010000e-04 2.67170000e-05 1.05080000e-05 5.32580000e-06 3.14010000e-06 1.45590000e-06 8.40650000e-07 3.48520000e-07] L3 = [ 5.09550000e+04 1.47000000e+04 5.85980000e+03 2.99280000e+03 2.91440000e+03 1.52170000e+03 5.64210000e+02 2.56630000e+02 1.33360000e+02 4.65850000e+01 2.02920000e+01 4.34070000e+00 1.42150000e+00 2.88120000e-01 9.19970000e-02 3.78910000e-02 1.83720000e-02 5.89010000e-03 2.45340000e-03 5.16410000e-04 1.77550000e-04 4.28980000e-05 1.69630000e-05 8.72470000e-06 5.29200000e-06 2.58410000e-06 1.57690000e-06 7.21070000e-07] M3 = [ 2.27540000e+03 6.80030000e+02 2.76650000e+02 1.43200000e+02 1.39530000e+02 7.37070000e+01 2.77410000e+01 1.27000000e+01 6.63900000e+00 2.33740000e+00 1.02330000e+00 2.20480000e-01 7.24940000e-02 1.47590000e-02 4.72320000e-03 1.94790000e-03 9.45410000e-04 3.03470000e-04 1.26620000e-04 2.66740000e-05 9.17690000e-06 2.21840000e-06 8.78130000e-07 4.53540000e-07 2.75010000e-07 1.34920000e-07 8.25740000e-08 3.83200000e-08] L1 = [ 4.41680000e+04 1.90660000e+04 1.00760000e+04 6.28060000e+03 6.16370000e+03 3.88280000e+03 1.90190000e+03 1.07210000e+03 6.63310000e+02 3.04800000e+02 1.64130000e+02 5.15680000e+01 2.21440000e+01 6.53120000e+00 2.69830000e+00 1.34800000e+00 7.61200000e-01 3.07010000e-01 1.51320000e-01 4.19050000e-02 1.70080000e-02 4.94410000e-03 2.15040000e-03 1.16950000e-03 7.32040000e-04 3.71010000e-04 2.30650000e-04 1.08170000e-04] JK = 9.43244170096 M1 = [ 4.64630000e+03 1.95900000e+03 1.02430000e+03 6.35610000e+02 6.23740000e+02 3.92340000e+02 1.92200000e+02 1.08430000e+02 6.71460000e+01 3.09150000e+01 1.66510000e+01 5.24350000e+00 2.25500000e+00 6.66300000e-01 2.75570000e-01 1.37770000e-01 7.78410000e-02 3.14220000e-02 1.54950000e-02 4.29130000e-03 1.74210000e-03 5.06480000e-04 2.20300000e-04 1.19810000e-04 7.50040000e-05 3.80220000e-05 2.36490000e-05 1.11160000e-05] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 1.29190000e+05 4.42750000e+04 2.03850000e+04 1.16640000e+04 1.10020000e+05 7.11690000e+04 3.36610000e+04 1.84900000e+04 1.11990000e+04 4.98640000e+03 2.62480000e+03 7.95860000e+02 3.34840000e+02 9.65700000e+01 3.94170000e+01 1.95410000e+01 1.09760000e+01 4.39600000e+00 2.15720000e+00 5.93360000e-01 2.40030000e-01 6.95430000e-02 3.01990000e-02 1.64100000e-02 1.02670000e-02 5.20530000e-03 3.23590000e-03 1.51800000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.86060000e+04 6.44770000e+04 3.06690000e+04 1.69000000e+04 1.02560000e+04 4.57620000e+03 2.41160000e+03 7.32070000e+02 3.08150000e+02 8.89060000e+01 3.62930000e+01 1.79930000e+01 1.01060000e+01 4.04790000e+00 1.98630000e+00 5.46300000e-01 2.20980000e-01 6.40200000e-02 2.77990000e-02 1.51060000e-02 9.45100000e-03 4.79210000e-03 2.97900000e-03 1.39750000e-03] [S.binding] K = 2.4559 L1 = 0.226 M1 = 0.0209 L3 = 0.1714 M3 = 0.0103 M2 = 0.0103 L2 = 0.1727 [W] JL1 = 1.13226375742 JL3 = 2.55814040189 JL2 = 1.35453965469 energy = [ 1.00000000e+00 1.50000000e+00 1.81420000e+00 1.82870000e+00 1.87920000e+00 1.89420000e+00 2.00000000e+00 2.26890000e+00 2.28710000e+00 2.56580000e+00 2.58640000e+00 2.79510000e+00 2.81750000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.01950000e+01 1.02770000e+01 1.15620000e+01 1.16550000e+01 1.20690000e+01 1.21660000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 6.96460000e+01 7.02030000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.99292830388 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.72600000e+05 5.99180000e+05 6.05320000e+05 5.46400000e+05 3.91630000e+05 3.83360000e+05 2.81160000e+05 2.75130000e+05 2.24200000e+05 2.19460000e+05 1.85120000e+05 8.03660000e+04 4.06430000e+04 2.28270000e+04 8.87840000e+03 4.15310000e+03 3.88440000e+03 3.77860000e+03 2.50260000e+03 2.43320000e+03 2.15090000e+03 2.09100000e+03 9.86260000e+02 3.41480000e+02 7.28780000e+01 2.36520000e+01 9.75750000e+00 4.70710000e+00 2.58900000e+00 2.50740000e+00 1.48390000e+00 6.06650000e-01 1.22000000e-01 4.04100000e-02 9.18190000e-03 3.45220000e-03 1.70080000e-03 9.84990000e-04 4.48010000e-04 2.55980000e-04 1.07150000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.13670000e+05 3.78140000e+05 2.76270000e+05 2.70550000e+05 1.99550000e+05 1.95340000e+05 1.59560000e+05 1.56170000e+05 1.32150000e+05 5.83910000e+04 2.98650000e+04 1.69280000e+04 6.69160000e+03 3.17010000e+03 2.96820000e+03 2.88860000e+03 1.92740000e+03 1.87480000e+03 1.66060000e+03 1.61520000e+03 7.72360000e+02 2.72910000e+02 6.01320000e+01 2.00170000e+01 8.43520000e+00 4.14390000e+00 2.31430000e+00 2.24320000e+00 1.34570000e+00 5.63090000e-01 1.17740000e-01 3.98280000e-02 9.14950000e-03 3.40150000e-03 1.63980000e-03 9.28900000e-04 4.06160000e-04 2.23350000e-04 8.54330000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.76540000e+04 2.57970000e+04 1.71760000e+04 1.22780000e+04 9.07340000e+03 5.48790000e+03 3.63660000e+03 3.50680000e+03 3.45440000e+03 2.75730000e+03 2.71520000e+03 2.53830000e+03 2.49940000e+03 1.65290000e+03 9.16980000e+02 3.84210000e+02 2.01550000e+02 1.20270000e+02 7.80970000e+01 5.45180000e+01 5.34720000e+01 3.88410000e+01 2.23020000e+01 7.95690000e+00 3.79310000e+00 1.34240000e+00 6.54690000e-01 3.82320000e-01 2.50290000e-01 1.32560000e-01 8.33940000e-02 3.83000000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.37350000e+05 1.14550000e+05 1.13170000e+05 9.95770000e+04 9.82200000e+04 8.80760000e+04 5.31550000e+04 3.42810000e+04 2.33750000e+04 1.23050000e+04 7.24770000e+03 6.91390000e+03 6.78030000e+03 5.06600000e+03 4.96600000e+03 4.54860000e+03 4.45780000e+03 2.59760000e+03 1.19770000e+03 3.79390000e+02 1.61710000e+02 8.19270000e+01 4.65270000e+01 2.91260000e+01 2.84020000e+01 1.87700000e+01 9.19850000e+00 2.49970000e+00 9.99160000e-01 2.84520000e-01 1.21930000e-01 6.53920000e-02 4.03240000e-02 1.97540000e-02 1.18630000e-02 5.14910000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.64900000e+04 4.19140000e+04 4.15760000e+04 3.84760000e+04 2.53010000e+04 1.74230000e+04 1.24640000e+04 6.98000000e+03 4.30100000e+03 4.11850000e+03 4.04530000e+03 3.09340000e+03 3.03670000e+03 2.79930000e+03 2.74750000e+03 1.66540000e+03 8.09850000e+02 2.76650000e+02 1.24610000e+02 6.59880000e+01 3.88950000e+01 2.51190000e+01 2.45350000e+01 1.66730000e+01 8.57830000e+00 2.55190000e+00 1.08680000e+00 3.35920000e-01 1.51070000e-01 8.34460000e-02 5.24310000e-02 2.63170000e-02 1.59980000e-02 7.06740000e-03] total = [ 1.12090000e+06 4.98380000e+05 3.33020000e+05 4.99950000e+05 9.07840000e+05 1.02240000e+06 1.19410000e+06 8.71870000e+05 9.91630000e+05 7.49970000e+05 7.82070000e+05 6.52570000e+05 6.68080000e+05 5.77800000e+05 2.89440000e+05 1.66650000e+05 1.05240000e+05 5.03870000e+04 2.82150000e+04 2.68230000e+04 6.86170000e+04 5.01580000e+04 6.79410000e+04 6.23300000e+04 7.05740000e+04 4.15030000e+04 1.94220000e+04 6.54550000e+03 2.98590000e+03 1.61470000e+03 9.74190000e+02 6.43410000e+02 3.21250000e+03 2.27220000e+03 1.26830000e+03 4.25920000e+02 1.95280000e+02 6.61230000e+01 3.15340000e+01 1.81960000e+01 1.18340000e+01 6.23490000e+00 3.91750000e+00 1.80260000e+00] JM2 = 1.04280171207 JM3 = 1.13735992751 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.58330000e+03 1.83520000e+03 1.03410000e+03 3.50590000e+02 1.61370000e+02 5.48380000e+01 2.62070000e+01 1.51470000e+01 9.86500000e+00 5.20910000e+00 3.27840000e+00 1.51210000e+00] JM1 = 1.02376756517 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.72600000e+05 5.99180000e+05 7.18990000e+05 9.24550000e+05 6.67900000e+05 7.91250000e+05 5.95260000e+05 6.30130000e+05 5.25260000e+05 5.43080000e+05 4.69620000e+05 2.34390000e+05 1.34490000e+05 8.46670000e+04 4.03430000e+04 2.25090000e+04 2.13920000e+04 2.09470000e+04 1.53470000e+04 1.50260000e+04 1.36980000e+04 1.34110000e+04 7.67450000e+03 3.53900000e+03 1.17330000e+03 5.31530000e+02 2.86380000e+02 1.72370000e+02 1.13670000e+02 1.11160000e+02 7.71130000e+01 4.12480000e+01 1.32480000e+01 5.95930000e+00 1.98120000e+00 9.34540000e-01 5.34500000e-01 3.44960000e-01 1.79490000e-01 1.11730000e-01 5.07090000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.23480000e+04 3.08770000e+04 4.90600000e+04 4.51100000e+04 5.37120000e+04 3.18250000e+04 1.49430000e+04 5.05380000e+03 2.30820000e+03 1.24890000e+03 7.53710000e+02 4.97870000e+02 4.86920000e+02 3.38200000e+02 1.81190000e+02 5.83020000e+01 2.62450000e+01 8.73270000e+00 4.12240000e+00 2.35970000e+00 1.52410000e+00 7.94240000e-01 4.94960000e-01 2.25070000e-01] JM4 = 1.12618963694 JM5 = 1.50126118551 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.88240000e+04 1.75110000e+04 1.71000000e+04 1.00180000e+04 4.54840000e+03 1.44400000e+03 6.20920000e+02 3.18830000e+02 1.83740000e+02 1.16700000e+02 1.13900000e+02 7.63790000e+01 3.85190000e+01 1.11320000e+01 4.66800000e+00 1.41980000e+00 6.33380000e-01 3.48270000e-01 2.18200000e-01 1.09060000e-01 6.61470000e-02 2.91670000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.23480000e+04 3.08770000e+04 3.02370000e+04 2.75990000e+04 2.70270000e+04 1.50900000e+04 6.49460000e+03 1.90150000e+03 7.73920000e+02 3.80190000e+02 2.11200000e+02 1.30090000e+02 1.26750000e+02 8.26950000e+01 3.97520000e+01 1.05080000e+01 4.13930000e+00 1.16130000e+00 4.94130000e-01 2.63940000e-01 1.62360000e-01 7.94800000e-02 4.76890000e-02 2.07120000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.58480000e+03 6.71690000e+03 3.89980000e+03 1.70820000e+03 9.13380000e+02 5.49910000e+02 3.58770000e+02 2.51080000e+02 2.46280000e+02 1.79130000e+02 1.02920000e+02 3.66610000e+01 1.74380000e+01 6.15160000e+00 2.99490000e+00 1.74750000e+00 1.14350000e+00 6.05700000e-01 3.81120000e-01 1.75190000e-01] all other = [ 1.12090000e+06 4.98380000e+05 3.33020000e+05 3.27350000e+05 3.08660000e+05 3.03370000e+05 2.69510000e+05 2.03970000e+05 2.00380000e+05 1.54720000e+05 1.51940000e+05 1.27310000e+05 1.25000000e+05 1.08180000e+05 5.50470000e+04 3.21580000e+04 2.05720000e+04 1.00440000e+04 5.70630000e+03 5.43150000e+03 5.32200000e+03 3.93430000e+03 3.85440000e+03 3.52270000e+03 3.45090000e+03 2.00390000e+03 9.40500000e+02 3.18480000e+02 1.46120000e+02 7.94350000e+01 4.81130000e+01 3.18750000e+01 3.11800000e+01 2.17110000e+01 1.16800000e+01 3.78380000e+00 1.70990000e+00 5.71370000e-01 2.70240000e-01 1.54810000e-01 1.00010000e-01 5.21070000e-02 3.24570000e-02 1.47410000e-02] [W.binding] K = 69.7152 L1 = 12.081 M5 = 1.816 M4 = 1.881 M1 = 2.7979 L3 = 10.2055 M3 = 2.2712 M2 = 2.5684 L2 = 11.5736 [Zn] JL1 = 1.11568601083 JL3 = 3.65468533232 JL2 = 1.27524595576 energy = [ 1.00000000e+00 1.02500000e+00 1.03320000e+00 1.04950000e+00 1.05790000e+00 1.18330000e+00 1.19280000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 9.61290000e+00 9.68990000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 3.21730000e+04 3.05370000e+04 3.00230000e+04 2.90330000e+04 2.85400000e+04 2.23370000e+04 2.19430000e+04 1.29260000e+04 6.35960000e+03 2.17280000e+03 9.67050000e+02 5.02980000e+02 2.90090000e+02 1.18330000e+02 6.56350000e+01 6.39590000e+01 5.77320000e+01 1.50090000e+01 5.60180000e+00 1.34810000e+00 4.81210000e-01 2.15190000e-01 1.11090000e-01 3.90950000e-02 1.74470000e-02 4.10840000e-03 1.51310000e-03 3.92920000e-04 1.59620000e-04 8.24580000e-05 4.94600000e-05 2.33110000e-05 1.36610000e-05 5.72930000e-06] M = [ 1.66320000e+05 1.56910000e+05 1.53980000e+05 1.48360000e+05 1.45580000e+05 1.11380000e+05 1.09260000e+05 6.24490000e+04 3.03730000e+04 1.06750000e+04 4.99220000e+03 2.74260000e+03 1.67130000e+03 7.57170000e+02 4.54020000e+02 4.44000000e+02 4.06510000e+02 1.29250000e+02 5.66590000e+01 1.74200000e+01 7.45370000e+00 3.83320000e+00 2.21770000e+00 9.28370000e-01 4.70990000e-01 1.36990000e-01 5.74090000e-02 1.73560000e-02 7.71910000e-03 4.25390000e-03 2.68300000e-03 1.36770000e-03 8.49880000e-04 3.94660000e-04] L = [ 0.00000000e+00 0.00000000e+00 4.23940000e+05 6.07290000e+05 8.18530000e+05 7.05320000e+05 8.02090000e+05 4.60100000e+05 2.26480000e+05 7.89110000e+04 3.64780000e+04 1.98450000e+04 1.19980000e+04 5.37510000e+03 3.20330000e+03 3.13180000e+03 2.86470000e+03 9.00610000e+02 3.92060000e+02 1.19550000e+02 5.09140000e+01 2.61020000e+01 1.50660000e+01 6.29400000e+00 3.18700000e+00 9.24360000e-01 3.86790000e-01 1.16750000e-01 5.18870000e-02 2.85880000e-02 1.80280000e-02 9.18940000e-03 5.70960000e-03 2.65160000e-03] M5 = [ 2.53320000e+04 2.33490000e+04 2.27390000e+04 2.15830000e+04 2.10160000e+04 1.44130000e+04 1.40280000e+04 6.34480000e+03 2.25910000e+03 4.94150000e+02 1.60780000e+02 6.55790000e+01 3.09920000e+01 9.17770000e+00 4.17590000e+00 4.03470000e+00 3.52130000e+00 5.99140000e-01 1.66720000e-01 2.66490000e-02 7.17210000e-03 2.59080000e-03 1.12910000e-03 3.07100000e-04 1.13140000e-04 1.93030000e-05 5.79760000e-06 1.18770000e-06 4.24940000e-07 2.05050000e-07 1.17850000e-07 5.36780000e-08 3.12840000e-08 1.34450000e-08] M4 = [ 1.73410000e+04 1.59870000e+04 1.55700000e+04 1.47800000e+04 1.43940000e+04 9.88130000e+03 9.61780000e+03 4.35940000e+03 1.55670000e+03 3.42040000e+02 1.11680000e+02 4.56910000e+01 2.16580000e+01 6.48050000e+00 2.96040000e+00 2.86080000e+00 2.49870000e+00 4.29610000e-01 1.20600000e-01 1.95760000e-02 5.33720000e-03 1.94880000e-03 8.57830000e-04 2.36950000e-04 8.84290000e-05 1.53500000e-05 4.63580000e-06 9.32000000e-07 3.22250000e-07 1.47760000e-07 8.10750000e-08 3.36110000e-08 1.79690000e-08 6.50990000e-09] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.04450000e+05 2.39930000e+05 2.34960000e+05 1.30630000e+05 6.11660000e+04 1.93850000e+04 8.22180000e+03 4.13800000e+03 2.33010000e+03 9.20390000e+02 5.01900000e+02 4.88750000e+02 4.40000000e+02 1.11040000e+02 4.07490000e+01 9.62850000e+00 3.40490000e+00 1.51140000e+00 7.76800000e-01 2.71800000e-01 1.20840000e-01 2.83060000e-02 1.03950000e-02 2.68950000e-03 1.09440000e-03 5.65160000e-04 3.38630000e-04 1.59810000e-04 9.36760000e-05 3.93250000e-05] L3 = [ 0.00000000e+00 0.00000000e+00 4.23940000e+05 6.07290000e+05 6.14070000e+05 4.65390000e+05 4.55740000e+05 2.52010000e+05 1.16910000e+05 3.65940000e+04 1.53910000e+04 7.69380000e+03 4.30730000e+03 1.68490000e+03 9.12670000e+02 8.88490000e+02 7.98890000e+02 1.98270000e+02 7.17730000e+01 1.65780000e+01 5.75200000e+00 2.51120000e+00 1.27160000e+00 4.33580000e-01 1.88600000e-01 4.23740000e-02 1.51320000e-02 3.80820000e-03 1.53370000e-03 7.98680000e-04 4.86380000e-04 2.37860000e-04 1.44280000e-04 6.53220000e-05] M3 = [ 6.25730000e+04 5.93450000e+04 5.83310000e+04 5.63810000e+04 5.54110000e+04 4.32210000e+04 4.24480000e+04 2.48400000e+04 1.21220000e+04 4.09410000e+03 1.80680000e+03 9.33310000e+02 5.35140000e+02 2.16150000e+02 1.19080000e+02 1.16000000e+02 1.04580000e+02 2.67260000e+01 9.83800000e+00 2.31450000e+00 8.10990000e-01 3.55680000e-01 1.80890000e-01 6.20310000e-02 2.70770000e-02 6.11410000e-03 2.18900000e-03 5.52060000e-04 2.23010000e-04 1.16230000e-04 7.07560000e-05 3.46490000e-05 2.10490000e-05 9.51470000e-06] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.11380000e+05 7.74580000e+04 4.84110000e+04 2.29320000e+04 1.28650000e+04 8.01290000e+03 5.36070000e+03 2.76990000e+03 1.78870000e+03 1.75460000e+03 1.62580000e+03 5.91310000e+02 2.79540000e+02 9.33440000e+01 4.17570000e+01 2.20790000e+01 1.30180000e+01 5.58860000e+00 2.87760000e+00 8.53680000e-01 3.61260000e-01 1.10250000e-01 4.92590000e-02 2.72250000e-02 1.72030000e-02 8.79170000e-03 5.47170000e-03 2.54690000e-03] JK = 7.38978897209 M1 = [ 2.89020000e+04 2.76980000e+04 2.73180000e+04 2.65840000e+04 2.62170000e+04 2.15300000e+04 2.12260000e+04 1.39790000e+04 8.07540000e+03 3.57170000e+03 1.94590000e+03 1.19500000e+03 7.93440000e+02 4.07040000e+02 2.62170000e+02 2.57150000e+02 2.38180000e+02 8.64890000e+01 4.09320000e+01 1.37110000e+01 6.14900000e+00 3.25780000e+00 1.92380000e+00 8.26700000e-01 4.26260000e-01 1.26730000e-01 5.36960000e-02 1.64090000e-02 7.33570000e-03 4.05480000e-03 2.56260000e-03 1.30970000e-03 8.15120000e-04 3.79400000e-04] all other = [ 1.74420000e+03 1.66850000e+03 1.64470000e+03 1.59870000e+03 1.57580000e+03 1.28470000e+03 1.26600000e+03 8.26710000e+02 4.72990000e+02 2.07600000e+02 1.13520000e+02 6.95940000e+01 4.61640000e+01 2.36590000e+01 1.52330000e+01 1.49410000e+01 1.38390000e+01 5.02350000e+00 2.37740000e+00 7.96420000e-01 3.57200000e-01 1.89240000e-01 1.11740000e-01 4.80790000e-02 2.47940000e-02 7.37290000e-03 3.12430000e-03 9.54900000e-04 4.26990000e-04 2.36080000e-04 1.49260000e-04 7.63880000e-05 4.76370000e-05 2.23520000e-05] total = [ 1.68070000e+05 1.58580000e+05 5.79560000e+05 7.57250000e+05 9.65680000e+05 8.17990000e+05 9.12620000e+05 5.23380000e+05 2.57330000e+05 8.97930000e+04 4.15840000e+04 2.26570000e+04 1.37160000e+04 6.15600000e+03 3.67250000e+03 2.71390000e+04 2.51360000e+04 8.70190000e+03 3.95680000e+03 1.25830000e+03 5.46070000e+02 2.82900000e+02 1.64330000e+02 6.91260000e+01 3.51240000e+01 1.02240000e+01 4.28290000e+00 1.29370000e+00 5.75250000e-01 3.17100000e-01 2.00110000e-01 1.02170000e-01 6.35790000e-02 2.96130000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.35480000e+04 2.18510000e+04 7.66700000e+03 3.50570000e+03 1.12060000e+03 4.87350000e+02 2.52780000e+02 1.46930000e+02 6.18550000e+01 3.14410000e+01 9.15480000e+00 3.83560000e+00 1.15870000e+00 5.15220000e-01 2.84020000e-01 1.79250000e-01 9.15350000e-02 5.69720000e-02 2.65450000e-02] [Zn.binding] K = 9.6225 L1 = 1.1845 M5 = 0.0164 M4 = 0.0168 M1 = 0.1375 L3 = 1.026 M3 = 0.0906 M2 = 0.0938 L2 = 1.0505 [elementslist] elements = H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md [Eu] JL1 = 1.13162272521 JL3 = 2.71319280976 JL2 = 1.34125264721 energy = [ 1.00000000e+00 1.13650000e+00 1.14560000e+00 1.16600000e+00 1.17540000e+00 1.46810000e+00 1.47990000e+00 1.50000000e+00 1.60270000e+00 1.61550000e+00 1.77560000e+00 1.78990000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 6.96160000e+00 7.01730000e+00 7.61750000e+00 7.67850000e+00 8.00000000e+00 8.01140000e+00 8.07560000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.85280000e+01 4.89160000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.46574375555 M5 = [ 0.00000000e+00 0.00000000e+00 4.77380000e+05 1.03860000e+06 1.07000000e+06 6.08550000e+05 5.96430000e+05 5.76430000e+05 4.86740000e+05 4.76830000e+05 3.75670000e+05 3.68010000e+05 2.73590000e+05 8.48110000e+04 3.48110000e+04 1.69290000e+04 9.21690000e+03 5.54600000e+03 5.39510000e+03 4.05570000e+03 3.94420000e+03 3.41550000e+03 3.39840000e+03 3.30420000e+03 1.54010000e+03 3.43160000e+02 1.13620000e+02 2.28050000e+01 7.10760000e+00 3.21950000e+00 3.11560000e+00 2.84700000e+00 1.34230000e+00 4.09170000e-01 1.63410000e-01 3.17080000e-02 1.02900000e-02 2.28680000e-03 8.51090000e-04 4.17120000e-04 2.41500000e-04 1.09060000e-04 6.38490000e-05 2.57940000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.01200000e+05 4.20760000e+05 4.12520000e+05 3.98910000e+05 3.37820000e+05 3.31060000e+05 2.61600000e+05 2.56270000e+05 1.91850000e+05 6.03280000e+04 2.50460000e+04 1.22850000e+04 6.73770000e+03 4.07920000e+03 3.96970000e+03 2.99440000e+03 2.91300000e+03 2.52730000e+03 2.51480000e+03 2.44610000e+03 1.15150000e+03 2.61970000e+02 8.82170000e+01 1.81930000e+01 5.79590000e+00 2.66750000e+00 2.58320000e+00 2.36490000e+00 1.13290000e+00 3.54510000e-01 1.44500000e-01 2.89910000e-02 9.56400000e-03 2.13200000e-03 7.78400000e-04 3.72940000e-04 2.10330000e-04 9.02460000e-05 4.92560000e-05 1.90780000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.52220000e+04 3.97350000e+04 2.18940000e+04 1.36760000e+04 9.26800000e+03 6.65600000e+03 5.04430000e+03 4.96850000e+03 4.24940000e+03 4.18510000e+03 3.86790000e+03 3.85730000e+03 3.79830000e+03 2.49500000e+03 1.08510000e+03 5.84670000e+02 2.34900000e+02 1.19540000e+02 7.49490000e+01 7.35030000e+01 6.96650000e+01 4.43690000e+01 2.14070000e+01 1.20090000e+01 4.11320000e+00 1.90750000e+00 6.51290000e-01 3.10630000e-01 1.78790000e-01 1.15870000e-01 6.07350000e-02 3.80590000e-02 1.75070000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.96730000e+05 1.88880000e+05 1.76040000e+05 1.74350000e+05 1.52050000e+05 1.50150000e+05 1.25600000e+05 6.21350000e+04 3.49040000e+04 2.15090000e+04 1.41750000e+04 9.95630000e+03 9.76580000e+03 7.99380000e+03 7.83830000e+03 7.08030000e+03 7.05510000e+03 6.91610000e+03 4.01140000e+03 1.34540000e+03 5.93080000e+02 1.76740000e+02 7.23010000e+01 3.91160000e+01 3.81280000e+01 3.55390000e+01 1.97110000e+01 7.67610000e+00 3.66740000e+00 9.56390000e-01 3.72910000e-01 1.03290000e-01 4.36770000e-02 2.32440000e-02 1.42980000e-02 7.00990000e-03 4.22390000e-03 1.85660000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.39570000e+04 6.65870000e+04 6.60030000e+04 5.70540000e+04 3.09360000e+04 1.82630000e+04 1.16550000e+04 7.88990000e+03 5.65650000e+03 5.55460000e+03 4.59520000e+03 4.51040000e+03 4.09670000e+03 4.08300000e+03 4.00700000e+03 2.39110000e+03 8.45290000e+02 3.87160000e+02 1.22060000e+02 5.21040000e+01 2.90480000e+01 2.83510000e+01 2.65180000e+01 1.51510000e+01 6.19800000e+00 3.08220000e+00 8.66500000e-01 3.56120000e-01 1.05390000e-01 4.61840000e-02 2.50950000e-02 1.56040000e-02 7.70120000e-03 4.63950000e-03 2.02170000e-03] total = [ 5.56640000e+05 4.38230000e+05 9.08980000e+05 1.45590000e+06 1.78210000e+06 1.29340000e+06 1.46550000e+06 1.41690000e+06 1.22090000e+06 1.27280000e+06 1.03330000e+06 1.06010000e+06 8.25040000e+05 3.15040000e+05 1.54530000e+05 8.78320000e+04 5.49860000e+04 3.73840000e+04 1.01430000e+05 8.21620000e+04 1.10200000e+05 9.95660000e+04 9.91850000e+04 1.12240000e+05 6.54460000e+04 2.23360000e+04 1.02720000e+04 3.36970000e+03 1.51160000e+03 8.78380000e+02 4.80100000e+03 4.52960000e+03 2.80380000e+03 1.29670000e+03 7.04480000e+02 2.28460000e+02 1.02480000e+02 3.37210000e+01 1.57920000e+01 9.00120000e+00 5.80510000e+00 3.02990000e+00 1.89730000e+00 8.74250000e-01] JM2 = 1.04250962405 JM3 = 1.13306015154 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.94220000e+03 3.72220000e+03 2.32140000e+03 1.08360000e+03 5.91650000e+02 1.92950000e+02 8.67390000e+01 2.85990000e+01 1.34080000e+01 7.64970000e+00 4.93760000e+00 2.58080000e+00 1.61790000e+00 7.46830000e-01] JM1 = 1.02593632053 M = [ 0.00000000e+00 0.00000000e+00 4.77380000e+05 1.03860000e+06 1.37120000e+06 1.02930000e+06 1.20570000e+06 1.16420000e+06 1.00060000e+06 1.05620000e+06 8.55910000e+05 8.85650000e+05 6.87830000e+05 2.60110000e+05 1.26700000e+05 7.16460000e+04 4.46760000e+04 3.02820000e+04 2.96540000e+04 2.38880000e+04 2.33910000e+04 2.09880000e+04 2.09090000e+04 2.04720000e+04 1.15890000e+04 3.88090000e+03 1.76670000e+03 5.74710000e+02 2.56840000e+02 1.49000000e+02 1.45680000e+02 1.36930000e+02 8.17050000e+01 3.60450000e+01 1.90670000e+01 5.99670000e+00 2.65640000e+00 8.64390000e-01 4.02120000e-01 2.27920000e-01 1.46230000e-01 7.56460000e-02 4.70350000e-02 2.14300000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.48200000e+04 5.26200000e+04 8.12710000e+04 7.35880000e+04 7.33050000e+04 8.69000000e+04 5.10460000e+04 1.74850000e+04 8.05560000e+03 2.64570000e+03 1.18720000e+03 6.89920000e+02 6.74580000e+02 6.34180000e+02 3.78900000e+02 1.67400000e+02 8.86150000e+01 2.78880000e+01 1.23550000e+01 4.02040000e+00 1.87070000e+00 1.06080000e+00 6.80920000e-01 3.52540000e-01 2.19390000e-01 1.00060000e-01] JM4 = 1.22405384985 JM5 = 2.07420760788 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.97580000e+04 2.72580000e+04 2.71430000e+04 2.65250000e+04 1.53370000e+04 4.94510000e+03 2.14390000e+03 6.33820000e+02 2.60560000e+02 1.42150000e+02 1.38620000e+02 1.29360000e+02 7.26080000e+01 2.90080000e+01 1.42080000e+01 3.90840000e+00 1.58790000e+00 4.64420000e-01 2.02350000e-01 1.09600000e-01 6.79140000e-02 3.34110000e-02 2.00950000e-02 8.73930000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.48200000e+04 5.26200000e+04 5.15130000e+04 4.63310000e+04 4.61610000e+04 4.52250000e+04 2.51200000e+04 7.65450000e+03 3.19500000e+03 8.93170000e+02 3.52140000e+02 1.86490000e+02 1.81640000e+02 1.68930000e+02 9.20890000e+01 3.50470000e+01 1.65010000e+01 4.21440000e+00 1.62530000e+00 4.45160000e-01 1.87210000e-01 9.95120000e-02 6.10940000e-02 2.99160000e-02 1.80320000e-02 7.88710000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.51490000e+04 1.05890000e+04 4.88570000e+03 2.71670000e+03 1.11870000e+03 5.74480000e+02 3.61270000e+02 3.54320000e+02 3.35890000e+02 2.14210000e+02 1.03340000e+02 5.79060000e+01 1.97650000e+01 9.14160000e+00 3.11080000e+00 1.48110000e+00 8.51680000e-01 5.51910000e-01 2.89210000e-01 1.81260000e-01 8.34380000e-02] all other = [ 5.56640000e+05 4.38230000e+05 4.31610000e+05 4.17220000e+05 4.10860000e+05 2.64050000e+05 2.59780000e+05 2.52680000e+05 2.20260000e+05 2.16620000e+05 1.77420000e+05 1.74420000e+05 1.37210000e+05 5.49390000e+04 2.78270000e+04 1.61860000e+04 1.03100000e+04 7.10140000e+03 6.95990000e+03 5.65350000e+03 5.54000000e+03 4.99040000e+03 4.97220000e+03 4.87210000e+03 2.81120000e+03 9.70130000e+02 4.49500000e+02 1.49360000e+02 6.75580000e+01 3.94660000e+01 3.85970000e+01 3.63060000e+01 2.17890000e+01 9.68800000e+00 5.15160000e+00 1.63280000e+00 7.25940000e-01 2.37260000e-01 1.10620000e-01 6.27900000e-02 4.03230000e-02 2.08800000e-02 1.29910000e-02 5.92280000e-03] [Eu.binding] K = 48.5761 L1 = 8.0195 M5 = 1.1376 M4 = 1.1672 M1 = 1.7774 L3 = 6.9686 M3 = 1.4696 M2 = 1.6043 L2 = 7.6251 [Zr] JL1 = 1.11924686192 JL3 = 3.73038516405 JL2 = 1.36719092675 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.22250000e+00 2.24030000e+00 2.31000000e+00 2.32850000e+00 2.51230000e+00 2.53240000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.79440000e+01 1.80880000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 7.35970000e+04 3.53540000e+04 1.95130000e+04 1.54780000e+04 1.52050000e+04 1.41930000e+04 1.39390000e+04 1.17210000e+04 1.15070000e+04 7.71440000e+03 3.76970000e+03 2.09860000e+03 1.27680000e+03 5.65240000e+02 2.93200000e+02 8.45870000e+01 4.79110000e+01 4.67020000e+01 3.37890000e+01 8.89120000e+00 3.36770000e+00 1.57000000e+00 8.37690000e-01 3.09440000e-01 1.42930000e-01 3.55760000e-02 1.35850000e-02 3.67330000e-03 1.52710000e-03 8.01140000e-04 4.85330000e-04 2.32250000e-04 1.36940000e-04 5.81760000e-05] M = [ 5.91300000e+05 2.25630000e+05 1.10860000e+05 8.50300000e+04 8.33340000e+04 7.71120000e+04 7.55690000e+04 6.22990000e+04 6.10440000e+04 3.95010000e+04 1.86350000e+04 1.03020000e+04 6.31060000e+03 2.88540000e+03 1.56140000e+03 5.04020000e+02 3.04000000e+02 2.97220000e+02 2.23490000e+02 7.00370000e+01 3.04550000e+01 1.58790000e+01 9.29580000e+00 3.97250000e+00 2.04740000e+00 6.12710000e-01 2.61700000e-01 8.11090000e-02 3.66040000e-02 2.03530000e-02 1.29050000e-02 6.60710000e-03 4.10480000e-03 1.89360000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.58330000e+05 2.33890000e+05 3.52780000e+05 2.94210000e+05 3.38900000e+05 2.23700000e+05 1.07280000e+05 5.98220000e+04 3.67900000e+04 1.68470000e+04 9.11080000e+03 2.93190000e+03 1.76570000e+03 1.72610000e+03 1.29690000e+03 4.05210000e+02 1.75840000e+02 9.15370000e+01 5.35230000e+01 2.28320000e+01 1.17530000e+01 3.51050000e+00 1.49830000e+00 4.63770000e-01 2.09160000e-01 1.16270000e-01 7.37170000e-02 3.77440000e-02 2.34520000e-02 1.08250000e-02] M5 = [ 1.87770000e+05 5.52510000e+04 2.18100000e+04 1.53330000e+04 1.49270000e+04 1.34570000e+04 1.30980000e+04 1.01060000e+04 9.83290000e+03 5.44920000e+03 1.93290000e+03 8.41000000e+02 4.18950000e+02 1.35610000e+02 5.52360000e+01 1.02820000e+01 4.80440000e+00 4.64350000e+00 3.01840000e+00 5.20220000e-01 1.47390000e-01 5.51560000e-02 2.46910000e-02 6.97400000e-03 2.62630000e-03 4.67560000e-04 1.44190000e-04 3.03300000e-05 1.10300000e-05 5.39860000e-06 3.08730000e-06 1.41020000e-06 8.11190000e-07 3.40970000e-07] M4 = [ 1.28690000e+05 3.80910000e+04 1.51020000e+04 1.06350000e+04 1.03540000e+04 9.33920000e+03 9.09120000e+03 7.02370000e+03 6.83470000e+03 3.79870000e+03 1.35480000e+03 5.92160000e+02 2.96190000e+02 9.65480000e+01 3.95690000e+01 7.46360000e+00 3.51140000e+00 3.39490000e+00 2.21590000e+00 3.89040000e-01 1.11890000e-01 4.24170000e-02 1.92010000e-02 5.52260000e-03 2.12470000e-03 3.87950000e-04 1.20740000e-04 2.52330000e-05 8.85560000e-06 4.11940000e-06 2.28540000e-06 9.55320000e-07 5.18650000e-07 1.97350000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.22940000e+05 1.01360000e+05 9.95310000e+04 6.41550000e+04 2.93330000e+04 1.56090000e+04 9.17530000e+03 3.86470000e+03 1.93810000e+03 5.31320000e+02 2.95440000e+02 2.87770000e+02 2.06260000e+02 5.26090000e+01 1.95840000e+01 9.02810000e+00 4.77940000e+00 1.74780000e+00 8.02350000e-01 1.98070000e-01 7.51230000e-02 2.02060000e-02 8.37510000e-03 4.38670000e-03 2.65460000e-03 1.27190000e-03 7.50060000e-04 3.18760000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.58330000e+05 2.33890000e+05 2.29840000e+05 1.92850000e+05 1.88990000e+05 1.19710000e+05 5.38770000e+04 2.83360000e+04 1.65040000e+04 6.84580000e+03 3.39160000e+03 9.07710000e+02 4.98890000e+02 4.85670000e+02 3.45780000e+02 8.55790000e+01 3.10930000e+01 1.40380000e+01 7.29640000e+00 2.58550000e+00 1.15610000e+00 2.71390000e-01 9.94320000e-02 2.57240000e-02 1.05190000e-02 5.51450000e-03 3.36650000e-03 1.64350000e-03 9.96450000e-04 4.46790000e-04] M3 = [ 1.47210000e+05 6.87780000e+04 3.73300000e+04 2.94420000e+04 2.89090000e+04 2.69410000e+04 2.64490000e+04 2.21540000e+04 2.17400000e+04 1.44470000e+04 6.95790000e+03 3.82980000e+03 2.30840000e+03 1.00630000e+03 5.15540000e+02 1.45140000e+02 8.12510000e+01 7.91590000e+01 5.68770000e+01 1.45160000e+01 5.36440000e+00 2.44890000e+00 1.28270000e+00 4.59160000e-01 2.06610000e-01 4.88660000e-02 1.79870000e-02 4.67410000e-03 1.91470000e-03 1.00480000e-03 6.13990000e-04 3.00520000e-04 1.82410000e-04 8.16950000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.03740000e+04 3.98340000e+04 2.40650000e+04 1.58770000e+04 1.11100000e+04 6.13700000e+03 3.78110000e+03 1.49290000e+03 9.71350000e+02 9.52700000e+02 7.44830000e+02 2.67020000e+02 1.25160000e+02 6.84710000e+01 4.14470000e+01 1.84990000e+01 9.79470000e+00 3.04110000e+00 1.32380000e+00 4.17840000e-01 1.90270000e-01 1.06370000e-01 6.76950000e-02 3.48290000e-02 2.17060000e-02 1.00590000e-02] JK = 6.60981716823 M1 = [ 5.40340000e+04 2.81610000e+04 1.71010000e+04 1.41420000e+04 1.39390000e+04 1.31830000e+04 1.29920000e+04 1.12950000e+04 1.11290000e+04 8.09150000e+03 4.61940000e+03 2.94020000e+03 2.01030000e+03 1.08170000e+03 6.57830000e+02 2.56540000e+02 1.66530000e+02 1.63320000e+02 1.27590000e+02 4.57210000e+01 2.14630000e+01 1.17620000e+01 7.13150000e+00 3.19140000e+00 1.69310000e+00 5.27410000e-01 2.29860000e-01 7.27060000e-02 3.31420000e-02 1.85370000e-02 1.18010000e-02 6.07200000e-03 3.78410000e-03 1.75320000e-03] all other = [ 4.54180000e+04 2.05250000e+04 1.12080000e+04 8.90320000e+03 8.74810000e+03 8.17460000e+03 8.03120000e+03 6.77740000e+03 6.65680000e+03 4.52360000e+03 2.29630000e+03 1.33350000e+03 8.46360000e+02 4.05910000e+02 2.26650000e+02 7.66900000e+01 4.70340000e+01 4.60170000e+01 3.49190000e+01 1.12820000e+01 4.98920000e+00 2.62990000e+00 1.55150000e+00 6.69800000e-01 3.47430000e-01 1.04910000e-01 4.50380000e-02 1.40240000e-02 6.34370000e-03 3.53210000e-03 2.24170000e-03 1.14920000e-03 7.14690000e-04 3.30500000e-04] total = [ 6.36720000e+05 2.46160000e+05 1.22060000e+05 9.39340000e+04 3.50410000e+05 3.19180000e+05 4.36380000e+05 3.63280000e+05 4.06600000e+05 2.67730000e+05 1.28210000e+05 7.14570000e+04 4.39470000e+04 2.01390000e+04 1.08990000e+04 3.51260000e+03 2.11670000e+03 1.39910000e+04 1.08090000e+04 3.66930000e+03 1.65570000e+03 8.81210000e+02 5.22410000e+02 2.26430000e+02 1.17520000e+02 3.54190000e+01 1.51670000e+01 4.70690000e+00 2.12630000e+00 1.18380000e+00 7.51720000e-01 3.86100000e-01 2.40570000e-01 1.11590000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.19210000e+04 9.25370000e+03 3.18280000e+03 1.44450000e+03 7.71160000e+02 4.58040000e+02 1.98960000e+02 1.03370000e+02 3.11910000e+01 1.33620000e+01 4.14800000e+00 1.87420000e+00 1.04360000e+00 6.62860000e-01 3.40600000e-01 2.12300000e-01 9.85370000e-02] [Zr.binding] K = 17.962 L1 = 2.5148 M5 = 0.1904 M4 = 0.1931 M1 = 0.4221 L3 = 2.2247 M3 = 0.3309 M2 = 0.345 L2 = 2.3123 [Er] JL1 = 1.13207948279 JL3 = 2.63825923607 JL2 = 1.34648042471 energy = [ 1.00000000e+00 1.41050000e+00 1.42170000e+00 1.45360000e+00 1.46520000e+00 1.50000000e+00 1.79440000e+00 1.80880000e+00 1.99020000e+00 2.00000000e+00 2.00610000e+00 2.18760000e+00 2.20510000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.33880000e+00 8.40550000e+00 9.26600000e+00 9.34020000e+00 9.70870000e+00 9.78650000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.75310000e+01 5.79910000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.24967989757 M5 = [ 0.00000000e+00 0.00000000e+00 3.50060000e+05 8.38160000e+05 8.44080000e+05 8.06590000e+05 5.03920000e+05 4.93600000e+05 3.84510000e+05 3.79570000e+05 3.76520000e+05 3.01410000e+05 2.95120000e+05 1.24620000e+05 5.24410000e+04 2.59700000e+04 1.43520000e+04 5.44110000e+03 4.71620000e+03 4.58790000e+03 3.26570000e+03 3.17550000e+03 2.77120000e+03 2.69430000e+03 2.49630000e+03 5.73100000e+02 1.93880000e+02 4.00590000e+01 1.27220000e+01 5.16690000e+00 2.92200000e+00 2.82870000e+00 2.46240000e+00 7.62430000e-01 3.07770000e-01 6.06990000e-02 1.98850000e-02 4.46550000e-03 1.66990000e-03 8.13480000e-04 4.73920000e-04 2.17390000e-04 1.24870000e-04 5.20600000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.15870000e+05 5.34860000e+05 3.51710000e+05 3.44610000e+05 2.69470000e+05 2.66060000e+05 2.63940000e+05 2.11920000e+05 2.07490000e+05 8.89080000e+04 3.79110000e+04 1.89590000e+04 1.05630000e+04 4.05990000e+03 3.52630000e+03 3.43170000e+03 2.45510000e+03 2.38830000e+03 2.08830000e+03 2.03120000e+03 1.88410000e+03 4.42610000e+02 1.52510000e+02 3.24470000e+01 1.05490000e+01 4.36960000e+00 2.50330000e+00 2.42520000e+00 2.11800000e+00 6.74240000e-01 2.78140000e-01 5.68670000e-02 1.89780000e-02 4.29010000e-03 1.57940000e-03 7.58720000e-04 4.30850000e-04 1.84540000e-04 1.02010000e-04 3.88700000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.65870000e+04 2.39960000e+04 1.55650000e+04 1.07370000e+04 7.80230000e+03 4.61130000e+03 4.26460000e+03 4.20050000e+03 3.48660000e+03 3.43360000e+03 3.18700000e+03 3.13830000e+03 3.00950000e+03 1.33460000e+03 7.28820000e+02 2.98620000e+02 1.54140000e+02 9.08310000e+01 6.46910000e+01 6.34440000e+01 5.83780000e+01 2.85680000e+01 1.62000000e+01 5.65430000e+00 2.65550000e+00 9.21600000e-01 4.43990000e-01 2.57200000e-01 1.67490000e-01 8.81680000e-02 5.53400000e-02 2.54360000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.70160000e+05 1.45880000e+05 1.44910000e+05 1.44290000e+05 1.26230000e+05 1.24590000e+05 7.45170000e+04 4.31050000e+04 2.71170000e+04 1.81550000e+04 9.29200000e+03 8.40390000e+03 8.24220000e+03 6.48790000e+03 6.36080000e+03 5.77500000e+03 5.66050000e+03 5.36090000e+03 1.85460000e+03 8.35030000e+02 2.56110000e+02 1.06800000e+02 5.32420000e+01 3.41390000e+01 3.32830000e+01 2.98570000e+01 1.18200000e+01 5.71430000e+00 1.51880000e+00 5.99040000e-01 1.68060000e-01 7.15070000e-02 3.82200000e-02 2.35060000e-02 1.15220000e-02 6.94290000e-03 3.02740000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.12490000e+04 6.06460000e+04 5.42830000e+04 5.38130000e+04 3.51520000e+04 2.18260000e+04 1.43820000e+04 9.96750000e+03 5.35120000e+03 4.87420000e+03 4.78700000e+03 3.82660000e+03 3.75610000e+03 3.43070000e+03 3.36700000e+03 3.20010000e+03 1.17870000e+03 5.54730000e+02 1.81430000e+02 7.93660000e+01 4.11320000e+01 2.70470000e+01 2.64070000e+01 2.38360000e+01 9.96120000e+00 5.03090000e+00 1.45110000e+00 6.06100000e-01 1.82940000e-01 8.11140000e-02 4.43890000e-02 2.77280000e-02 1.37980000e-02 8.34360000e-03 3.66190000e-03] total = [ 7.60230000e+05 3.87500000e+05 7.31300000e+05 1.20250000e+06 1.41840000e+06 1.68290000e+06 1.08990000e+06 1.23860000e+06 9.87120000e+05 1.03700000e+06 1.02940000e+06 8.45960000e+05 8.67070000e+05 4.21540000e+05 2.08600000e+05 1.19170000e+05 7.48950000e+04 3.55930000e+04 3.19400000e+04 8.42660000e+04 6.53630000e+04 8.80100000e+04 7.99670000e+04 9.05290000e+04 8.57990000e+04 2.99950000e+04 1.39310000e+04 4.62300000e+03 2.08910000e+03 1.12200000e+03 7.57570000e+02 3.97700000e+03 3.65100000e+03 1.70580000e+03 9.34850000e+02 3.07960000e+02 1.39500000e+02 4.64980000e+01 2.19530000e+01 1.25810000e+01 8.14440000e+00 4.26820000e+00 2.67660000e+00 1.23240000e+00] JM2 = 1.05053083718 JM3 = 1.13643453528 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.23620000e+03 2.97770000e+03 1.40630000e+03 7.75440000e+02 2.57280000e+02 1.16880000e+02 3.90610000e+01 1.84690000e+01 1.05970000e+01 6.86760000e+00 3.60540000e+00 2.26400000e+00 1.04460000e+00] JM1 = 1.02495389853 M = [ 0.00000000e+00 0.00000000e+00 3.50060000e+05 8.38160000e+05 1.05990000e+06 1.34150000e+06 8.55630000e+05 1.00840000e+06 7.99860000e+05 8.51780000e+05 8.45400000e+05 6.93840000e+05 7.17610000e+05 3.47190000e+05 1.70850000e+05 9.71650000e+04 6.08400000e+04 2.87550000e+04 2.57850000e+04 2.52490000e+04 1.95220000e+04 1.91140000e+04 1.72520000e+04 1.68910000e+04 1.59510000e+04 5.38360000e+03 2.46500000e+03 8.08660000e+02 3.63580000e+02 1.94740000e+02 1.31300000e+02 1.28390000e+02 1.16650000e+02 5.17860000e+01 2.75310000e+01 8.74180000e+00 3.89950000e+00 1.28140000e+00 5.99860000e-01 3.41380000e-01 2.19620000e-01 1.13890000e-01 7.08540000e-02 3.22160000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.29860000e+04 4.11360000e+04 6.42850000e+04 5.85400000e+04 6.95470000e+04 6.59780000e+04 2.32650000e+04 1.08380000e+04 3.60370000e+03 1.62960000e+03 8.75460000e+02 5.91160000e+02 5.78070000e+02 5.25380000e+02 2.33730000e+02 1.24410000e+02 3.95500000e+01 1.76490000e+01 5.80190000e+00 2.71740000e+00 1.54730000e+00 9.96140000e-01 5.17170000e-01 3.22040000e-01 1.46660000e-01] JM4 = 1.17954261954 JM5 = 1.88722580645 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40030000e+04 2.20980000e+04 2.15900000e+04 2.03440000e+04 6.94910000e+03 3.08430000e+03 9.41130000e+02 3.94850000e+02 1.99060000e+02 1.28870000e+02 1.25710000e+02 1.13080000e+02 4.59980000e+01 2.28310000e+01 6.42300000e+00 2.64730000e+00 7.88160000e-01 3.47100000e-01 1.89220000e-01 1.17930000e-01 5.84130000e-02 3.52800000e-02 1.54330000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.29860000e+04 4.11360000e+04 4.02830000e+04 3.64420000e+04 3.56960000e+04 3.37380000e+04 1.05840000e+04 4.49930000e+03 1.28530000e+03 5.14370000e+02 2.49520000e+02 1.57580000e+02 1.53500000e+02 1.37230000e+02 5.29250000e+01 2.51600000e+01 6.52990000e+00 2.54320000e+00 7.04400000e-01 2.97860000e-01 1.58640000e-01 9.75520000e-02 4.77510000e-02 2.87320000e-02 1.25510000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.22610000e+04 1.18970000e+04 5.73200000e+03 3.25430000e+03 1.37730000e+03 7.20420000e+02 4.26880000e+02 3.04710000e+02 2.98860000e+02 2.75070000e+02 1.34810000e+02 7.64150000e+01 2.65970000e+01 1.24590000e+01 4.30940000e+00 2.07240000e+00 1.19940000e+00 7.80660000e-01 4.11000000e-01 2.58020000e-01 1.18670000e-01] all other = [ 7.60230000e+05 3.87500000e+05 3.81240000e+05 3.64340000e+05 3.58420000e+05 3.41490000e+05 2.34230000e+05 2.30270000e+05 1.87260000e+05 1.85270000e+05 1.84030000e+05 1.52130000e+05 1.49460000e+05 7.43470000e+04 3.77570000e+04 2.20090000e+04 1.40550000e+04 6.83720000e+03 6.15480000e+03 6.03150000e+03 4.70500000e+03 4.61000000e+03 4.17490000e+03 4.09030000e+03 3.86970000e+03 1.34700000e+03 6.28150000e+02 2.10660000e+02 9.59290000e+01 5.18220000e+01 3.51080000e+01 3.43380000e+01 3.12340000e+01 1.39830000e+01 7.47560000e+00 2.39290000e+00 1.07220000e+00 3.54030000e-01 1.66150000e-01 9.46970000e-02 6.09890000e-02 3.16640000e-02 1.97120000e-02 8.96910000e-03] [Er.binding] K = 57.5881 L1 = 9.7184 M5 = 1.4119 M4 = 1.455 M1 = 2.1898 L3 = 8.3471 M3 = 1.7962 M2 = 1.9922 L2 = 9.2752 [Ni] JL1 = 1.11640535858 energy = [ 1.00000000e+00 1.00550000e+00 1.01360000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.29460000e+00 8.36100000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.61950000e+04 2.58760000e+04 2.54200000e+04 1.00970000e+04 4.84980000e+03 1.60900000e+03 7.02250000e+02 3.59770000e+02 2.04980000e+02 8.20960000e+01 7.30140000e+01 7.11460000e+01 3.95350000e+01 1.00580000e+01 3.69920000e+00 8.72960000e-01 3.08130000e-01 1.36390000e-01 6.99170000e-02 2.43540000e-02 1.07880000e-02 2.51140000e-03 9.18730000e-04 2.36630000e-04 9.56780000e-05 4.93190000e-05 2.95100000e-05 1.38780000e-05 8.10530000e-06 3.39490000e-06] M = [ 1.24020000e+05 1.22430000e+05 1.20160000e+05 4.67550000e+04 2.27840000e+04 8.01940000e+03 3.74940000e+03 2.05760000e+03 1.25220000e+03 5.65890000e+02 5.11690000e+02 5.00440000e+02 3.03210000e+02 9.60340000e+01 4.19480000e+01 1.28190000e+01 5.45930000e+00 2.79720000e+00 1.61150000e+00 6.71710000e-01 3.39450000e-01 9.80620000e-02 4.09160000e-02 1.23030000e-02 5.45450000e-03 3.00020000e-03 1.89020000e-03 9.62720000e-04 5.98200000e-04 2.78180000e-04] L = [ 8.34310000e+05 8.22510000e+05 9.35010000e+05 3.64700000e+05 1.76040000e+05 6.05610000e+04 2.78150000e+04 1.50720000e+04 9.08770000e+03 4.05670000e+03 3.66320000e+03 3.58170000e+03 2.15660000e+03 6.74790000e+02 2.92600000e+02 8.86840000e+01 3.75950000e+01 1.92020000e+01 1.10490000e+01 4.59260000e+00 2.31660000e+00 6.67490000e-01 2.78110000e-01 8.34970000e-02 3.70030000e-02 2.03470000e-02 1.28170000e-02 6.52730000e-03 4.05570000e-03 1.88580000e-03] M5 = [ 1.28700000e+04 1.26310000e+04 1.22930000e+04 3.12260000e+03 1.09030000e+03 2.32360000e+02 7.40780000e+01 2.97110000e+01 1.38580000e+01 4.03530000e+00 3.45260000e+00 3.33570000e+00 1.53430000e+00 2.57190000e-01 7.05270000e-02 1.10670000e-02 2.95170000e-03 1.05850000e-03 4.58870000e-04 1.23660000e-04 4.52720000e-05 7.64140000e-06 2.28510000e-06 4.64730000e-07 1.65990000e-07 8.01010000e-08 4.61020000e-08 2.10080000e-08 1.22040000e-08 5.22590000e-09] M4 = [ 8.78490000e+03 8.62220000e+03 8.39230000e+03 2.13870000e+03 7.48660000e+02 1.60180000e+02 5.12380000e+01 2.06110000e+01 9.63880000e+00 2.83580000e+00 2.42800000e+00 2.34620000e+00 1.08330000e+00 1.83340000e-01 5.07020000e-02 8.07430000e-03 2.17990000e-03 7.90340000e-04 3.45650000e-04 9.45970000e-05 3.50480000e-05 6.02090000e-06 1.80590000e-06 3.61070000e-07 1.24110000e-07 5.69210000e-08 3.11440000e-08 1.28170000e-08 6.85680000e-09 2.50290000e-09] L2 = [ 2.82880000e+05 2.78890000e+05 2.73230000e+05 1.00830000e+05 4.58450000e+04 1.41550000e+04 5.90900000e+03 2.93870000e+03 1.63940000e+03 6.38620000e+02 5.66250000e+02 5.51390000e+02 3.02160000e+02 7.48620000e+01 2.71230000e+01 6.30130000e+00 2.20360000e+00 9.70090000e-01 4.95360000e-01 1.71670000e-01 7.58030000e-02 1.75640000e-02 6.40760000e-03 1.64480000e-03 6.66750000e-04 3.43600000e-04 2.05670000e-04 9.65360000e-05 5.65510000e-05 2.36570000e-05] L3 = [ 5.51430000e+05 5.43620000e+05 5.32560000e+05 1.94520000e+05 8.77470000e+04 2.68170000e+04 1.11110000e+04 5.49250000e+03 3.04800000e+03 1.17690000e+03 1.04230000e+03 1.01470000e+03 5.52670000e+02 1.34820000e+02 4.82240000e+01 1.09660000e+01 3.76620000e+00 1.63190000e+00 8.21530000e-01 2.77730000e-01 1.20090000e-01 2.67330000e-02 9.49740000e-03 2.37730000e-03 9.55350000e-04 4.96350000e-04 3.01780000e-04 1.47970000e-04 8.98030000e-05 4.07920000e-05] M3 = [ 5.09540000e+04 5.03250000e+04 4.94290000e+04 1.94420000e+04 9.27270000e+03 3.04540000e+03 1.31920000e+03 6.71710000e+02 3.80690000e+02 1.51100000e+02 1.34220000e+02 1.30750000e+02 7.22060000e+01 1.80810000e+01 6.56470000e+00 1.51660000e+00 5.24490000e-01 2.28520000e-01 1.15470000e-01 3.92290000e-02 1.70160000e-02 3.80360000e-03 1.35410000e-03 3.39540000e-04 1.36870000e-04 7.11770000e-05 4.33040000e-05 2.11970000e-05 1.29030000e-05 5.84210000e-06] L1 = [ 0.00000000e+00 0.00000000e+00 1.29220000e+05 6.93550000e+04 4.24460000e+04 1.95880000e+04 1.07950000e+04 6.64080000e+03 4.40030000e+03 2.24120000e+03 2.05470000e+03 2.01560000e+03 1.30180000e+03 4.65100000e+02 2.17260000e+02 7.14170000e+01 3.16260000e+01 1.66000000e+01 9.73170000e+00 4.14320000e+00 2.12080000e+00 6.23200000e-01 2.62200000e-01 7.94740000e-02 3.53810000e-02 1.95070000e-02 1.23100000e-02 6.28280000e-03 3.90940000e-03 1.82140000e-03] JK = 7.55019793008 M1 = [ 2.52190000e+04 2.49730000e+04 2.46220000e+04 1.19540000e+04 6.82250000e+03 2.97240000e+03 1.60270000e+03 9.75790000e+02 6.43040000e+02 3.25820000e+02 2.98570000e+02 2.92860000e+02 1.88850000e+02 6.74540000e+01 3.15630000e+01 1.04110000e+01 4.62160000e+00 2.43040000e+00 1.42530000e+00 6.07910000e-01 3.11560000e-01 9.17330000e-02 3.86390000e-02 1.17260000e-02 5.22170000e-03 2.87960000e-03 1.81730000e-03 9.27610000e-04 5.77180000e-04 2.68930000e-04] all other = [ 1.60570000e+03 1.58950000e+03 1.56640000e+03 7.49140000e+02 4.24480000e+02 1.83670000e+02 9.93830000e+01 6.04280000e+01 3.97920000e+01 2.01480000e+01 1.84620000e+01 1.81090000e+01 1.16750000e+01 4.16910000e+00 1.95090000e+00 6.43530000e-01 2.85690000e-01 1.50230000e-01 8.82000000e-02 3.76270000e-02 1.92870000e-02 5.67950000e-03 2.39250000e-03 7.26140000e-04 3.23440000e-04 1.78440000e-04 1.12660000e-04 5.75860000e-05 3.59110000e-05 1.68820000e-05] total = [ 9.59940000e+05 9.46520000e+05 1.05670000e+06 4.12210000e+05 1.99250000e+05 6.87640000e+04 3.16640000e+04 1.71900000e+04 1.03800000e+04 4.64280000e+03 4.19340000e+03 3.16610000e+04 2.02260000e+04 6.80720000e+03 3.06850000e+03 9.63210000e+02 4.14820000e+02 2.13660000e+02 1.23570000e+02 5.16510000e+01 2.61270000e+01 7.54850000e+00 3.14760000e+00 9.45490000e-01 4.19050000e-01 2.30530000e-01 1.45310000e-01 7.40990000e-02 4.61020000e-02 2.14940000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.75600000e+04 1.77550000e+04 6.03220000e+03 2.73200000e+03 8.61060000e+02 3.71480000e+02 1.91510000e+02 1.10820000e+02 4.63490000e+01 2.34510000e+01 6.77730000e+00 2.82620000e+00 8.48960000e-01 3.76270000e-01 2.07010000e-01 1.30490000e-01 6.65510000e-02 4.14130000e-02 1.93130000e-02] [Ni.binding] K = 8.3029 L1 = 1.0065 M5 = 0.0147 M4 = 0.0149 M1 = 0.1187 L3 = 0.867 M3 = 0.0782 M2 = 0.0805 L2 = 0.885 [Na] energy = [ 1.00000000e+00 1.06290000e+00 1.07140000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 11.6311083779 M = [ 2.23060000e+02 1.93650000e+02 1.90090000e+02 8.55520000e+01 4.16390000e+01 1.44640000e+01 6.64020000e+00 3.57050000e+00 2.12930000e+00 9.25800000e-01 4.78560000e-01 1.40410000e-01 5.77670000e-02 1.61670000e-02 6.46490000e-03 3.15630000e-03 1.75160000e-03 6.89170000e-04 3.33910000e-04 8.99720000e-05 3.59350000e-05 1.02590000e-05 4.42010000e-06 2.39220000e-06 1.49360000e-06 7.57510000e-07 4.73260000e-07 2.27310000e-07] L = [ 2.46770000e+04 2.09450000e+04 2.05000000e+04 8.20160000e+03 3.69690000e+03 1.17740000e+03 5.14910000e+02 2.68620000e+02 1.56850000e+02 6.63390000e+01 3.37100000e+01 9.66350000e+00 3.92880000e+00 1.08630000e+00 4.31810000e-01 2.10050000e-01 1.16290000e-01 4.56210000e-02 2.20650000e-02 5.93230000e-03 2.36730000e-03 6.75150000e-04 2.90660000e-04 1.57150000e-04 9.80310000e-05 4.95430000e-05 3.07940000e-05 1.44910000e-05] L2 = [ 3.35610000e+03 2.74710000e+03 2.67580000e+03 8.65110000e+02 3.20090000e+02 7.54920000e+01 2.62970000e+01 1.14110000e+01 5.70700000e+00 1.87680000e+00 7.81470000e-01 1.55910000e-01 4.93470000e-02 9.64110000e-03 3.01770000e-03 1.22750000e-03 5.90150000e-04 1.87540000e-04 7.79640000e-05 1.64060000e-05 5.64990000e-06 1.35490000e-06 5.26280000e-07 2.64040000e-07 1.54790000e-07 7.10050000e-08 4.09320000e-08 1.67340000e-08] L3 = [ 6.62000000e+03 5.41700000e+03 5.27630000e+03 1.70280000e+03 6.29000000e+02 1.47960000e+02 5.14270000e+01 2.22670000e+01 1.11140000e+01 3.64210000e+00 1.51220000e+00 2.99540000e-01 9.38260000e-02 1.81010000e-02 5.60270000e-03 2.25470000e-03 1.07400000e-03 3.35540000e-04 1.37450000e-04 2.81770000e-05 9.54210000e-06 2.27030000e-06 8.90810000e-07 4.57590000e-07 2.77370000e-07 1.35710000e-07 8.25910000e-08 3.81660000e-08] L1 = [ 1.47010000e+04 1.27810000e+04 1.25480000e+04 5.63360000e+03 2.74780000e+03 9.53940000e+02 4.37180000e+02 2.34940000e+02 1.40030000e+02 6.08200000e+01 3.14170000e+01 9.20810000e+00 3.78560000e+00 1.05850000e+00 4.23190000e-01 2.06570000e-01 1.14630000e-01 4.50980000e-02 2.18500000e-02 5.88780000e-03 2.35210000e-03 6.71520000e-04 2.89240000e-04 1.56430000e-04 9.75990000e-05 4.93360000e-05 3.06710000e-05 1.44360000e-05] M1 = [ 2.23060000e+02 1.93650000e+02 1.90090000e+02 8.55520000e+01 4.16390000e+01 1.44640000e+01 6.64020000e+00 3.57050000e+00 2.12930000e+00 9.25800000e-01 4.78560000e-01 1.40410000e-01 5.77670000e-02 1.61670000e-02 6.46490000e-03 3.15630000e-03 1.75160000e-03 6.89170000e-04 3.33910000e-04 8.99720000e-05 3.59350000e-05 1.02590000e-05 4.42010000e-06 2.39220000e-06 1.49360000e-06 7.57510000e-07 4.73260000e-07 2.27310000e-07] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 2.49000000e+04 2.11390000e+04 2.45870000e+05 1.21850000e+05 5.79850000e+04 1.93020000e+04 8.58550000e+03 4.51610000e+03 2.64930000e+03 1.12590000e+03 5.73550000e+02 1.64820000e+02 6.70430000e+01 1.85280000e+01 7.35830000e+00 3.57710000e+00 1.97930000e+00 7.75900000e-01 3.75070000e-01 1.00740000e-01 4.01790000e-02 1.14490000e-02 4.93340000e-03 2.66740000e-03 1.66400000e-03 8.41090000e-04 5.22820000e-04 2.45970000e-04] K = [ 0.00000000e+00 0.00000000e+00 2.25180000e+05 1.13560000e+05 5.42470000e+04 1.81100000e+04 8.06400000e+03 4.24390000e+03 2.49030000e+03 1.05870000e+03 5.39360000e+02 1.55010000e+02 6.30560000e+01 1.74260000e+01 6.92000000e+00 3.36390000e+00 1.86130000e+00 7.29590000e-01 3.52670000e-01 9.47220000e-02 3.77750000e-02 1.07630000e-02 4.63830000e-03 2.50790000e-03 1.56440000e-03 7.90790000e-04 4.91550000e-04 2.31250000e-04] [Na.binding] M1 = 0.0051 K = 1.064 L2 = 0.0364 L3 = 0.0362 L1 = 0.0645 [Nb] JL1 = 1.12113811569 JL3 = 3.65888757502 JL2 = 1.36583154218 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.36670000e+00 2.38560000e+00 2.46430000e+00 2.48400000e+00 2.67380000e+00 2.69520000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.89290000e+01 1.90810000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 7.78000000e+04 3.79970000e+04 2.11930000e+04 1.46750000e+04 1.44150000e+04 1.34000000e+04 1.31610000e+04 1.11190000e+04 1.09160000e+04 8.48980000e+03 4.18590000e+03 2.34590000e+03 1.43460000e+03 6.39880000e+02 3.33770000e+02 9.72340000e+01 4.66370000e+01 4.54620000e+01 3.90960000e+01 1.03750000e+01 3.95130000e+00 1.84960000e+00 9.90000000e-01 3.67440000e-01 1.70290000e-01 4.26220000e-02 1.63290000e-02 4.43300000e-03 1.84660000e-03 9.70220000e-04 5.88730000e-04 2.81930000e-04 1.66420000e-04 7.07490000e-05] M = [ 6.54890000e+05 2.50760000e+05 1.23390000e+05 8.07740000e+04 7.91570000e+04 7.28970000e+04 7.14330000e+04 5.92000000e+04 5.80040000e+04 4.40410000e+04 2.08050000e+04 1.15140000e+04 7.05850000e+03 3.23060000e+03 1.74940000e+03 5.65570000e+02 2.93450000e+02 2.86900000e+02 2.51070000e+02 7.88080000e+01 3.43130000e+01 1.79100000e+01 1.04960000e+01 4.49280000e+00 2.31870000e+00 6.95730000e-01 2.97660000e-01 9.24680000e-02 4.17890000e-02 2.32570000e-02 1.47540000e-02 7.55680000e-03 4.69500000e-03 2.16460000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40130000e+05 2.16770000e+05 3.27310000e+05 2.73940000e+05 3.16430000e+05 2.44030000e+05 1.17280000e+05 6.55760000e+04 4.03910000e+04 1.85460000e+04 1.00440000e+04 3.23960000e+03 1.67840000e+03 1.64080000e+03 1.43530000e+03 4.49400000e+02 1.95320000e+02 1.01810000e+02 5.95970000e+01 2.54690000e+01 1.31290000e+01 3.93190000e+00 1.68120000e+00 5.21610000e-01 2.35590000e-01 1.31070000e-01 8.31480000e-02 4.25920000e-02 2.64660000e-02 1.22080000e-02] M5 = [ 2.15940000e+05 6.44430000e+04 2.56640000e+04 1.46560000e+04 1.42670000e+04 1.27820000e+04 1.24410000e+04 9.67300000e+03 9.41130000e+03 6.48900000e+03 2.32140000e+03 1.01630000e+03 5.08570000e+02 1.65730000e+02 6.78630000e+01 1.27540000e+01 4.76460000e+00 4.60520000e+00 3.76640000e+00 6.53370000e-01 1.85880000e-01 6.97930000e-02 3.13280000e-02 8.88280000e-03 3.35590000e-03 6.00520000e-04 1.85560000e-04 3.92950000e-05 1.43210000e-05 6.89700000e-06 3.95650000e-06 1.84040000e-06 1.03410000e-06 4.32170000e-07] M4 = [ 1.48040000e+05 4.44520000e+04 1.77840000e+04 1.01840000e+04 9.91520000e+03 8.88840000e+03 8.65200000e+03 6.73580000e+03 6.55450000e+03 4.52800000e+03 1.62890000e+03 7.16470000e+02 3.60050000e+02 1.18180000e+02 4.86990000e+01 9.27660000e+00 3.49750000e+00 3.38160000e+00 2.77120000e+00 4.89920000e-01 1.41540000e-01 5.38450000e-02 2.44480000e-02 7.06100000e-03 2.72280000e-03 4.98960000e-04 1.55730000e-04 3.25880000e-05 1.14630000e-05 5.37330000e-06 2.98690000e-06 1.24210000e-06 6.88750000e-07 2.75090000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.14430000e+05 9.45340000e+04 9.28380000e+04 7.07580000e+04 3.25170000e+04 1.73750000e+04 1.02440000e+04 4.34530000e+03 2.18890000e+03 6.04580000e+02 2.82920000e+02 2.75580000e+02 2.35930000e+02 6.05910000e+01 2.26630000e+01 1.04840000e+01 5.56590000e+00 2.04400000e+00 9.41120000e-01 2.33490000e-01 8.88360000e-02 2.39850000e-02 9.96430000e-03 5.22690000e-03 3.16650000e-03 1.51860000e-03 8.95960000e-04 3.81630000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.40130000e+05 2.16770000e+05 2.12890000e+05 1.79410000e+05 1.75820000e+05 1.31970000e+05 5.96620000e+04 3.15030000e+04 1.83950000e+04 7.67370000e+03 3.81590000e+03 1.02810000e+03 4.73690000e+02 4.61140000e+02 3.93470000e+02 9.79800000e+01 3.57460000e+01 1.61890000e+01 8.43470000e+00 2.99950000e+00 1.34460000e+00 3.16940000e-01 1.16410000e-01 3.01980000e-02 1.23650000e-02 6.48590000e-03 3.96050000e-03 1.93370000e-03 1.17300000e-03 5.24440000e-04] M3 = [ 1.56460000e+05 7.41140000e+04 4.06070000e+04 2.78480000e+04 2.73430000e+04 2.53690000e+04 2.49040000e+04 2.09590000e+04 2.05670000e+04 1.59010000e+04 7.72120000e+03 4.27590000e+03 2.58940000e+03 1.13660000e+03 5.85240000e+02 1.66240000e+02 7.84780000e+01 7.64590000e+01 6.55310000e+01 1.68520000e+01 6.25820000e+00 2.86710000e+00 1.50590000e+00 5.41250000e-01 2.44240000e-01 5.81230000e-02 2.14140000e-02 5.58110000e-03 2.29040000e-03 1.20320000e-03 7.34960000e-04 3.59840000e-04 2.18460000e-04 9.78550000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.77750000e+04 4.13070000e+04 2.51060000e+04 1.66980000e+04 1.17520000e+04 6.52670000e+03 4.03920000e+03 1.60700000e+03 9.21750000e+02 9.04050000e+02 8.05930000e+02 2.90830000e+02 1.36920000e+02 7.51390000e+01 4.55960000e+01 2.04260000e+01 1.08430000e+01 3.38150000e+00 1.47600000e+00 4.67430000e-01 2.13260000e-01 1.19360000e-01 7.60210000e-02 3.91400000e-02 2.43970000e-02 1.13020000e-02] JK = 6.54900599871 M1 = [ 5.66470000e+04 2.97530000e+04 1.81440000e+04 1.34100000e+04 1.32170000e+04 1.24560000e+04 1.22760000e+04 1.07140000e+04 1.05560000e+04 8.63330000e+03 4.94760000e+03 3.15920000e+03 2.16580000e+03 1.17010000e+03 7.13870000e+02 2.80060000e+02 1.60080000e+02 1.56990000e+02 1.39900000e+02 5.04390000e+01 2.37760000e+01 1.30700000e+01 7.94390000e+00 3.56810000e+00 1.89810000e+00 5.93890000e-01 2.59570000e-01 8.23820000e-02 3.76260000e-02 2.10710000e-02 1.34230000e-02 6.91190000e-03 4.30840000e-03 1.99530000e-03] all other = [ 5.36680000e+04 2.38220000e+04 1.28890000e+04 8.86880000e+03 8.71080000e+03 8.09350000e+03 7.94860000e+03 6.71980000e+03 6.59790000e+03 5.14960000e+03 2.60050000e+03 1.50560000e+03 9.53620000e+02 4.56020000e+02 2.54080000e+02 8.56860000e+01 4.53110000e+01 4.43260000e+01 3.89410000e+01 1.25550000e+01 5.54740000e+00 2.92290000e+00 1.72420000e+00 7.44530000e-01 3.86360000e-01 1.16820000e-01 5.02040000e-02 1.56580000e-02 7.09050000e-03 3.95060000e-03 2.50820000e-03 1.28610000e-03 7.99570000e-04 3.69220000e-04] total = [ 7.08560000e+05 2.74580000e+05 1.36280000e+05 8.96420000e+04 3.27990000e+05 2.97760000e+05 4.06690000e+05 3.39860000e+05 3.81030000e+05 2.93220000e+05 1.40690000e+05 7.85960000e+04 4.84030000e+04 2.22320000e+04 1.20470000e+04 3.89090000e+03 2.01710000e+03 1.32100000e+04 1.17340000e+04 4.01160000e+03 1.81480000e+03 9.68370000e+02 5.75280000e+02 2.50010000e+02 1.30030000e+02 3.93190000e+01 1.68720000e+01 5.24970000e+00 2.37520000e+00 1.32370000e+00 8.41100000e-01 4.32280000e-01 2.69390000e-01 1.24900000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.12380000e+04 1.00090000e+04 3.47080000e+03 1.57960000e+03 8.45720000e+02 5.03460000e+02 2.19310000e+02 1.14190000e+02 3.45740000e+01 1.48430000e+01 4.62000000e+00 2.09070000e+00 1.16540000e+00 7.40690000e-01 3.80840000e-01 2.37430000e-01 1.10160000e-01] [Nb.binding] K = 18.9482 L1 = 2.6765 M5 = 0.2118 M4 = 0.2148 M1 = 0.4561 L3 = 2.369 M3 = 0.3593 M2 = 0.3753 L2 = 2.4668 [Nd] JL1 = 1.13114609904 JL3 = 2.76542254883 JL2 = 1.33833573631 energy = [ 1.00000000e+00 1.00630000e+00 1.01430000e+00 1.28580000e+00 1.29610000e+00 1.39170000e+00 1.40290000e+00 1.50000000e+00 1.55070000e+00 1.56310000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 6.19430000e+00 6.24390000e+00 6.72100000e+00 6.77480000e+00 7.08720000e+00 7.14390000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.35590000e+01 4.39080000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.59854596671 M5 = [ 1.12200000e+06 1.21610000e+06 1.25780000e+06 6.88900000e+05 6.75490000e+05 5.65560000e+05 5.54270000e+05 4.70330000e+05 4.32180000e+05 4.23500000e+05 2.16770000e+05 6.55110000e+04 2.65070000e+04 1.27410000e+04 6.86990000e+03 6.15570000e+03 5.98850000e+03 4.63880000e+03 4.51150000e+03 3.85270000e+03 3.74620000e+03 2.50910000e+03 1.11940000e+03 2.44570000e+02 7.98580000e+01 1.57420000e+01 4.84890000e+00 3.41010000e+00 3.29940000e+00 1.92540000e+00 9.01710000e-01 2.72310000e-01 1.08060000e-01 2.07620000e-02 6.69750000e-03 1.47880000e-03 5.45170000e-04 2.67640000e-04 1.55900000e-04 7.05930000e-05 4.04610000e-05 1.68860000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 3.93240000e+05 4.74080000e+05 4.65010000e+05 3.90550000e+05 3.82880000e+05 3.23520000e+05 2.99380000e+05 2.93390000e+05 1.51700000e+05 4.65290000e+04 1.90050000e+04 9.20970000e+03 5.00000000e+03 4.48620000e+03 4.36570000e+03 3.39070000e+03 3.29880000e+03 2.82250000e+03 2.74540000e+03 1.84720000e+03 8.32200000e+02 1.85430000e+02 6.15240000e+01 1.24470000e+01 3.91540000e+00 2.77190000e+00 2.68370000e+00 1.58260000e+00 7.52680000e-01 2.33100000e-01 9.43350000e-02 1.87100000e-02 6.12860000e-03 1.35430000e-03 4.95160000e-04 2.35150000e-04 1.31810000e-04 5.70390000e-05 3.09890000e-05 1.22000000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.15850000e+04 3.73540000e+04 2.01910000e+04 1.24310000e+04 8.35260000e+03 5.96320000e+03 5.61470000e+03 5.53060000e+03 4.80910000e+03 4.73650000e+03 4.34400000e+03 4.27760000e+03 3.43090000e+03 2.19880000e+03 9.45250000e+02 5.04980000e+02 2.00360000e+02 1.01050000e+02 8.21300000e+01 8.05440000e+01 5.84800000e+01 3.70340000e+01 1.77110000e+01 9.86950000e+00 3.34140000e+00 1.53770000e+00 5.19920000e-01 2.46510000e-01 1.41340000e-01 9.13620000e-02 4.77620000e-02 2.99020000e-02 1.37630000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.15650000e+05 1.97700000e+05 1.96020000e+05 1.79640000e+05 1.70970000e+05 1.68900000e+05 1.14680000e+05 5.48490000e+04 3.02030000e+04 1.83780000e+04 1.19950000e+04 1.11110000e+04 1.08990000e+04 9.11500000e+03 8.93840000e+03 7.99650000e+03 7.83960000e+03 5.89990000e+03 3.30520000e+03 1.08710000e+03 4.72830000e+02 1.38380000e+02 5.59350000e+01 4.25660000e+01 4.14880000e+01 2.72530000e+01 1.50120000e+01 5.78710000e+00 2.74490000e+00 7.07490000e-01 2.73920000e-01 7.52810000e-02 3.17270000e-02 1.68370000e-02 1.03470000e-02 5.08080000e-03 3.06210000e-03 1.35050000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.34000000e+04 7.79080000e+04 7.54970000e+04 7.48370000e+04 5.36030000e+04 2.78520000e+04 1.60280000e+04 1.00460000e+04 6.70680000e+03 6.23780000e+03 6.12500000e+03 5.16530000e+03 5.07000000e+03 4.56160000e+03 4.47670000e+03 3.41410000e+03 1.96400000e+03 6.77540000e+02 3.05180000e+02 9.40930000e+01 3.95710000e+01 3.04850000e+01 2.97470000e+01 1.99190000e+01 1.12830000e+01 4.55680000e+00 2.24500000e+00 6.21480000e-01 2.52950000e-01 7.39810000e-02 3.22080000e-02 1.74420000e-02 1.07950000e-02 5.30630000e-03 3.18810000e-03 1.38400000e-03] total = [ 1.58510000e+06 1.67390000e+06 2.10210000e+06 1.44940000e+06 1.63800000e+06 1.39810000e+06 1.45690000e+06 1.26090000e+06 1.17350000e+06 1.20450000e+06 6.87440000e+05 2.60090000e+05 1.26980000e+05 7.19590000e+04 4.49440000e+04 4.13680000e+04 1.14400000e+05 9.50210000e+04 1.27170000e+05 1.13690000e+05 1.28600000e+05 9.70940000e+04 5.42870000e+04 1.84540000e+04 8.43730000e+03 2.74930000e+03 1.22790000e+03 9.65590000e+02 5.40590000e+03 3.82670000e+03 2.37330000e+03 1.08680000e+03 5.86490000e+02 1.88320000e+02 8.39650000e+01 2.74200000e+01 1.27800000e+01 7.26110000e+00 4.67270000e+00 2.43340000e+00 1.52240000e+00 7.01970000e-01] JM2 = 1.04205707746 JM3 = 1.13012280944 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.46180000e+03 3.17290000e+03 1.98370000e+03 9.15330000e+02 4.96030000e+02 1.60020000e+02 7.14800000e+01 2.33810000e+01 1.09080000e+01 6.20220000e+00 3.99420000e+00 2.08260000e+00 1.30430000e+00 6.02350000e-01] JM1 = 1.02641670217 M = [ 1.12200000e+06 1.21610000e+06 1.65100000e+06 1.16300000e+06 1.35620000e+06 1.15380000e+06 1.21660000e+06 1.05140000e+06 9.78020000e+05 1.01220000e+06 5.74110000e+05 2.14930000e+05 1.04170000e+05 5.87270000e+04 3.65350000e+04 3.36050000e+04 3.29090000e+04 2.71190000e+04 2.65550000e+04 2.35770000e+04 2.30850000e+04 1.71010000e+04 9.41960000e+03 3.13990000e+03 1.42440000e+03 4.61020000e+02 2.05320000e+02 1.61360000e+02 1.57760000e+02 1.09160000e+02 6.49840000e+01 2.85600000e+01 1.50620000e+01 4.70990000e+00 2.07740000e+00 6.72010000e-01 3.11490000e-01 1.76120000e-01 1.12790000e-01 5.82770000e-02 3.62240000e-02 1.65260000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.38860000e+04 6.15830000e+04 9.44250000e+04 8.45940000e+04 1.00110000e+05 7.59390000e+04 4.25910000e+04 1.45330000e+04 6.65230000e+03 2.16920000e+03 9.68860000e+02 7.61900000e+02 7.44940000e+02 5.15900000e+02 3.07400000e+02 1.35250000e+02 7.13600000e+01 2.23200000e+01 9.84400000e+00 3.18380000e+00 1.47580000e+00 8.34600000e-01 5.34850000e-01 2.76520000e-01 1.72000000e-01 7.85610000e-02] JM4 = 1.25580978553 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.41620000e+04 3.09860000e+04 3.02890000e+04 2.28000000e+04 1.24450000e+04 3.94600000e+03 1.68960000e+03 4.90470000e+02 1.99160000e+02 1.52040000e+02 1.48240000e+02 9.79850000e+01 5.46010000e+01 2.15770000e+01 1.04830000e+01 2.84500000e+00 1.14590000e+00 3.31570000e-01 1.43610000e-01 7.74160000e-02 4.78240000e-02 2.34510000e-02 1.40570000e-02 6.11340000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.38860000e+04 6.15830000e+04 6.02630000e+04 5.36080000e+04 5.25250000e+04 3.88630000e+04 2.05150000e+04 6.19210000e+03 2.55670000e+03 7.04570000e+02 2.75170000e+02 2.07500000e+02 2.02090000e+02 1.31080000e+02 7.10620000e+01 2.68220000e+01 1.25530000e+01 3.17410000e+00 1.21660000e+00 3.30940000e-01 1.38770000e-01 7.36090000e-02 4.51620000e-02 2.21300000e-02 1.33450000e-02 5.85820000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.72920000e+04 1.42760000e+04 9.63190000e+03 4.39510000e+03 2.40600000e+03 9.74120000e+02 4.94530000e+02 4.02360000e+02 3.94610000e+02 2.86840000e+02 1.81740000e+02 8.68460000e+01 4.83250000e+01 1.63010000e+01 7.48160000e+00 2.52130000e+00 1.19340000e+00 6.83580000e-01 4.41860000e-01 2.30940000e-01 1.44590000e-01 6.65890000e-02] all other = [ 4.63100000e+05 4.57810000e+05 4.51150000e+05 2.86390000e+05 2.81880000e+05 2.44280000e+05 2.40350000e+05 2.09500000e+05 1.95520000e+05 1.92290000e+05 1.13330000e+05 4.51590000e+04 2.28040000e+04 1.32320000e+04 8.40940000e+03 7.76290000e+03 7.60880000e+03 6.31910000e+03 6.19280000e+03 5.52360000e+03 5.41280000e+03 4.05380000e+03 2.27620000e+03 7.81280000e+02 3.60630000e+02 1.19150000e+02 5.36840000e+01 4.23200000e+01 4.13870000e+01 2.87620000e+01 1.72170000e+01 7.62470000e+00 4.04130000e+00 1.27230000e+00 5.63400000e-01 1.83000000e-01 8.50010000e-02 4.81200000e-02 3.08510000e-02 1.59550000e-02 9.92220000e-03 4.53050000e-03] [Nd.binding] K = 43.603 L1 = 7.0943 M5 = 0.9842 M4 = 1.0073 M1 = 1.5523 L3 = 6.2005 M3 = 1.2871 M2 = 1.3931 L2 = 6.7277 [Ne] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 1.60510000e+04 5.31370000e+03 2.39000000e+03 7.57250000e+02 3.29390000e+02 1.71030000e+02 9.94010000e+01 4.17350000e+01 2.10890000e+01 5.98980000e+00 2.42030000e+00 6.63440000e-01 2.62170000e-01 1.27010000e-01 7.00950000e-02 2.73750000e-02 1.31990000e-02 3.53120000e-03 1.40500000e-03 3.99330000e-04 1.71600000e-04 9.26900000e-05 5.77820000e-05 2.91890000e-05 1.81460000e-05 8.54810000e-06] L2 = [ 1.82140000e+03 4.58560000e+02 1.66790000e+02 3.84850000e+01 1.31550000e+01 5.63700000e+00 2.78330000e+00 9.00800000e-01 3.72310000e-01 7.34190000e-02 2.30090000e-02 4.44070000e-03 1.37850000e-03 5.57430000e-04 2.66960000e-04 8.43290000e-05 3.49140000e-05 7.30020000e-06 2.50430000e-06 5.97660000e-07 2.31330000e-07 1.15680000e-07 6.78240000e-08 3.09730000e-08 1.77780000e-08 7.26510000e-09] L3 = [ 3.59510000e+03 9.03480000e+02 3.28170000e+02 7.55540000e+01 2.57670000e+01 1.10200000e+01 5.43240000e+00 1.75340000e+00 7.20000000e-01 1.40940000e-01 4.38680000e-02 8.36540000e-03 2.56820000e-03 1.02850000e-03 4.87860000e-04 1.51660000e-04 6.18990000e-05 1.26190000e-05 4.26060000e-06 1.01070000e-06 3.96330000e-07 2.03650000e-07 1.23230000e-07 6.03860000e-08 3.70080000e-08 1.71680000e-08] L1 = [ 1.06340000e+04 3.95170000e+03 1.89510000e+03 6.43210000e+02 2.90470000e+02 1.54380000e+02 9.11850000e+01 3.90800000e+01 1.99970000e+01 5.77550000e+00 2.35350000e+00 6.50630000e-01 2.58220000e-01 1.25420000e-01 6.93400000e-02 2.71390000e-02 1.31030000e-02 3.51130000e-03 1.39820000e-03 3.97720000e-04 1.70980000e-04 9.23710000e-05 5.75910000e-05 2.90980000e-05 1.80910000e-05 8.52360000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 2.48200000e+05 8.92780000e+04 4.15840000e+04 1.35260000e+04 5.93950000e+03 3.09540000e+03 1.80310000e+03 7.58610000e+02 3.83690000e+02 1.09000000e+02 4.40060000e+01 1.20440000e+01 4.75360000e+00 2.30100000e+00 1.26910000e+00 4.95210000e-01 2.38630000e-01 6.37750000e-02 2.53570000e-02 7.20050000e-03 3.09850000e-03 1.67360000e-03 1.04340000e-03 5.27090000e-04 3.27670000e-04 1.54230000e-04] K = [ 2.32150000e+05 8.39640000e+04 3.91940000e+04 1.27690000e+04 5.61010000e+03 2.92440000e+03 1.70370000e+03 7.16870000e+02 3.62600000e+02 1.03010000e+02 4.15860000e+01 1.13800000e+01 4.49150000e+00 2.17390000e+00 1.19900000e+00 4.67840000e-01 2.25430000e-01 6.02440000e-02 2.39520000e-02 6.80120000e-03 2.92690000e-03 1.58090000e-03 9.85620000e-04 4.97910000e-04 3.09530000e-04 1.45680000e-04] [Ne.binding] K = 0.8582 L2 = 0.0201 L3 = 0.02 L1 = 0.0432 [Np] JL1 = 1.13288135593 JL3 = 2.32935703209 JL2 = 1.39294055436 energy = [ 1.00000000e+00 1.06970000e+00 1.07830000e+00 1.31890000e+00 1.32950000e+00 1.48010000e+00 1.49200000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.66370000e+00 3.69310000e+00 3.85500000e+00 3.88580000e+00 4.00000000e+00 4.41680000e+00 4.45220000e+00 5.00000000e+00 5.36160000e+00 5.40460000e+00 5.71520000e+00 5.76100000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.76070000e+01 1.77480000e+01 2.00000000e+01 2.16830000e+01 2.18570000e+01 2.24510000e+01 2.26310000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.19280000e+02 1.20230000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.11207519884 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.70670000e+05 2.41970000e+05 2.37030000e+05 2.20960000e+05 1.71400000e+05 1.67690000e+05 1.20340000e+05 9.80140000e+04 9.54780000e+04 8.16610000e+04 7.98170000e+04 7.08410000e+04 2.95710000e+04 1.45990000e+04 3.81090000e+03 2.19710000e+03 2.13710000e+03 1.40700000e+03 1.05740000e+03 1.02780000e+03 9.34070000e+02 9.07870000e+02 3.27580000e+02 1.12850000e+02 4.86730000e+01 2.43110000e+01 8.06260000e+00 3.42190000e+00 1.74130000e+00 1.68900000e+00 7.28180000e-01 2.49530000e-01 5.86290000e-02 2.23530000e-02 1.10720000e-02 6.48850000e-03 2.94450000e-03 1.66640000e-03 6.89330000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.71510000e+05 1.60180000e+05 1.25530000e+05 1.23040000e+05 8.99800000e+04 7.37480000e+04 7.20750000e+04 6.12000000e+04 5.98880000e+04 5.35440000e+04 2.29220000e+04 1.15200000e+04 3.11360000e+03 1.82150000e+03 1.77320000e+03 1.18090000e+03 8.94760000e+02 8.70460000e+02 7.93220000e+02 7.71580000e+02 2.86730000e+02 1.02020000e+02 4.51840000e+01 2.30820000e+01 7.93940000e+00 3.46640000e+00 1.80290000e+00 1.75050000e+00 7.74380000e-01 2.73010000e-01 6.57220000e-02 2.50960000e-02 1.23180000e-02 7.14830000e-03 3.15060000e-03 1.75860000e-03 6.86940000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16200000e+04 1.09940000e+04 7.31680000e+03 5.22720000e+03 2.62440000e+03 1.96130000e+03 1.93240000e+03 1.54610000e+03 1.32440000e+03 1.30420000e+03 1.23820000e+03 1.21930000e+03 6.97310000e+02 3.84090000e+02 2.37900000e+02 1.59230000e+02 8.30430000e+01 4.94650000e+01 3.26260000e+01 3.20130000e+01 1.88580000e+01 9.41740000e+00 3.55100000e+00 1.80500000e+00 1.08430000e+00 7.23760000e-01 3.92070000e-01 2.49020000e-01 1.14500000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.91220000e+04 5.73860000e+04 5.13300000e+04 5.06170000e+04 4.56430000e+04 4.49500000e+04 4.15350000e+04 2.36720000e+04 1.48290000e+04 5.88790000e+03 3.99110000e+03 3.91370000e+03 2.90430000e+03 2.36610000e+03 2.31830000e+03 2.16390000e+03 2.11980000e+03 1.00760000e+03 4.56530000e+02 2.42100000e+02 1.42540000e+02 6.06970000e+01 3.09410000e+01 1.80840000e+01 1.76480000e+01 8.96830000e+00 3.72890000e+00 1.10920000e+00 4.85320000e-01 2.62710000e-01 1.62690000e-01 7.95810000e-02 4.74730000e-02 2.01840000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.84660000e+04 1.74040000e+04 1.72530000e+04 1.66260000e+04 1.11670000e+04 7.78370000e+03 3.63450000e+03 2.60630000e+03 2.56280000e+03 1.98020000e+03 1.65690000e+03 1.62780000e+03 1.53300000e+03 1.50570000e+03 7.82940000e+02 3.88050000e+02 2.20520000e+02 1.37350000e+02 6.39640000e+01 3.49620000e+01 2.15940000e+01 2.11260000e+01 1.15030000e+01 5.22180000e+00 1.74490000e+00 8.21790000e-01 4.68040000e-01 3.00800000e-01 1.55000000e-01 9.58140000e-02 4.33790000e-02] total = [ 2.73070000e+06 2.42350000e+06 2.54110000e+06 1.74230000e+06 1.73890000e+06 1.40560000e+06 1.41000000e+06 1.39430000e+06 7.67220000e+05 3.14040000e+05 1.98750000e+05 4.65780000e+05 4.18590000e+05 5.81910000e+05 5.43190000e+05 4.25380000e+05 4.85910000e+05 3.63450000e+05 3.04120000e+05 3.16130000e+05 2.75410000e+05 2.81710000e+05 2.55350000e+05 1.25250000e+05 7.15390000e+04 2.53830000e+04 1.67660000e+04 3.90540000e+04 2.81870000e+04 2.26930000e+04 3.16100000e+04 2.95000000e+04 3.34200000e+04 1.63150000e+04 7.71100000e+03 4.28070000e+03 2.63510000e+03 1.21840000e+03 6.67700000e+02 4.14900000e+02 1.70610000e+03 9.73240000e+02 4.66980000e+02 1.67060000e+02 8.26140000e+01 4.88870000e+01 3.23620000e+01 1.73970000e+01 1.10230000e+01 5.07430000e+00] JM2 = 1.0394909904 JM3 = 1.14229629978 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1300.1 749.53 363.34 131.17 65.222 38.753 25.735 13.898 8.8316 4.0789] JM1 = 1.02287498638 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.70670000e+05 2.41970000e+05 4.08540000e+05 3.81140000e+05 2.96940000e+05 3.59850000e+05 2.67710000e+05 2.23090000e+05 2.36640000e+05 2.05910000e+05 2.13530000e+05 1.93540000e+05 9.46490000e+04 5.39590000e+04 1.90710000e+04 1.25770000e+04 1.23190000e+04 9.01850000e+03 7.29960000e+03 7.14860000e+03 6.66240000e+03 6.52430000e+03 3.10220000e+03 1.44350000e+03 7.94380000e+02 4.86510000e+02 2.23710000e+02 1.22260000e+02 7.58470000e+01 7.42280000e+01 4.08320000e+01 1.88910000e+01 6.52940000e+00 3.15950000e+00 1.83840000e+00 1.20090000e+00 6.32750000e-01 3.95730000e-01 1.79440000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.26310000e+04 1.61510000e+04 1.29450000e+04 2.20630000e+04 2.06010000e+04 2.47040000e+04 1.21620000e+04 5.77450000e+03 3.21360000e+03 1.98090000e+03 9.17080000e+02 5.02890000e+02 3.12580000e+02 3.05920000e+02 1.68570000e+02 7.81150000e+01 2.70550000e+01 1.31160000e+01 7.64450000e+00 5.00100000e+00 2.64160000e+00 1.65510000e+00 7.52320000e-01] JM4 = 1.39016698918 JM5 = 2.34354716981 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.39360000e+03 8.81810000e+03 8.69160000e+03 4.28720000e+03 2.00750000e+03 1.09730000e+03 6.63600000e+02 2.96600000e+02 1.57670000e+02 9.55180000e+01 9.33760000e+01 4.97760000e+01 2.20870000e+01 7.20390000e+00 3.35150000e+00 1.89520000e+00 1.21280000e+00 6.21890000e-01 3.83480000e-01 1.73010000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.26310000e+04 1.61510000e+04 1.29450000e+04 1.26700000e+04 1.17830000e+04 1.15300000e+04 5.13160000e+03 2.19660000e+03 1.11850000e+03 6.39040000e+02 2.61130000e+02 1.29550000e+02 7.43110000e+01 7.24650000e+01 3.60860000e+01 1.46860000e+01 4.27300000e+00 1.84970000e+00 9.95340000e-01 6.14340000e-01 2.99420000e-01 1.78300000e-01 7.59890000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.48260000e+03 2.74290000e+03 1.57030000e+03 9.97760000e+02 6.78230000e+02 3.59350000e+02 2.15670000e+02 1.42750000e+02 1.40080000e+02 8.27090000e+01 4.13420000e+01 1.55780000e+01 7.91450000e+00 4.75390000e+00 3.17380000e+00 1.72030000e+00 1.09330000e+00 5.03320000e-01] all other = [ 2.73070000e+06 2.42350000e+06 2.54110000e+06 1.74230000e+06 1.73890000e+06 1.40560000e+06 1.41000000e+06 1.39430000e+06 7.67220000e+05 3.14040000e+05 1.98750000e+05 1.95110000e+05 1.76620000e+05 1.73370000e+05 1.62060000e+05 1.28440000e+05 1.26050000e+05 9.57460000e+04 8.10270000e+04 7.94920000e+04 6.95010000e+04 6.81790000e+04 6.18100000e+04 3.06020000e+04 1.75800000e+04 6.31130000e+03 4.18850000e+03 4.10360000e+03 3.01710000e+03 2.44830000e+03 2.39830000e+03 2.23720000e+03 2.19140000e+03 1.05120000e+03 4.92990000e+02 2.72740000e+02 1.67710000e+02 7.75630000e+01 4.25560000e+01 2.64780000e+01 2.59160000e+01 1.43070000e+01 6.64260000e+00 2.30490000e+00 1.11740000e+00 6.51060000e-01 4.25600000e-01 2.24430000e-01 1.40400000e-01 6.36770000e-02] [Np.binding] K = 119.3952 L1 = 22.4738 M5 = 3.6674 M4 = 3.8588 M1 = 5.7209 L3 = 17.6247 M3 = 4.4212 M2 = 5.367 L2 = 21.7049 [Fr] JL1 = 1.13325807665 JL3 = 2.39093175444 JL2 = 1.37792100365 energy = [ 1.00000000e+00 1.13060000e+00 1.13970000e+00 1.50000000e+00 2.00000000e+00 2.99570000e+00 3.00000000e+00 3.01960000e+00 3.13560000e+00 3.16070000e+00 3.64060000e+00 3.66980000e+00 4.00000000e+00 4.30910000e+00 4.34360000e+00 4.61900000e+00 4.65600000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.50180000e+01 1.51390000e+01 1.79540000e+01 1.80980000e+01 1.86280000e+01 1.87780000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.01520000e+02 1.02330000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.39390083556 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.53380000e+05 3.21990000e+05 3.15430000e+05 2.19830000e+05 2.15030000e+05 1.68520000e+05 1.36010000e+05 1.32900000e+05 1.11870000e+05 1.09420000e+05 8.91240000e+04 5.17460000e+04 2.11730000e+04 1.02820000e+04 2.60960000e+03 2.59850000e+03 2.52740000e+03 1.38880000e+03 1.35000000e+03 1.21830000e+03 1.18420000e+03 9.45320000e+02 2.14490000e+02 7.26180000e+01 3.09130000e+01 1.52820000e+01 4.99380000e+00 2.09470000e+00 1.97560000e+00 1.91530000e+00 4.38830000e-01 1.48510000e-01 3.45090000e-02 1.30940000e-02 6.51530000e-03 3.79250000e-03 1.72300000e-03 9.84660000e-04 4.00910000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.85490000e+05 1.59380000e+05 1.56100000e+05 1.23570000e+05 1.00270000e+05 9.80310000e+04 8.22390000e+04 8.04800000e+04 6.62140000e+04 3.88740000e+04 1.62660000e+04 8.03100000e+03 2.10470000e+03 2.09600000e+03 2.04010000e+03 1.13740000e+03 1.10640000e+03 1.00100000e+03 9.73600000e+02 7.81440000e+02 1.84290000e+02 6.42970000e+01 2.80570000e+01 1.41650000e+01 4.79000000e+00 2.06360000e+00 1.94970000e+00 1.89200000e+00 4.52400000e-01 1.57150000e-01 3.72500000e-02 1.40930000e-02 6.93770000e-03 3.97070000e-03 1.73830000e-03 9.73970000e-04 3.76980000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.53070000e+04 1.38270000e+04 1.08540000e+04 7.02270000e+03 4.85090000e+03 2.34690000e+03 2.34150000e+03 2.30700000e+03 1.66910000e+03 1.64350000e+03 1.55420000e+03 1.53030000e+03 1.35360000e+03 5.95340000e+02 3.22820000e+02 1.97620000e+02 1.31020000e+02 6.73440000e+01 3.96620000e+01 3.82560000e+01 3.75310000e+01 1.48130000e+01 7.28960000e+00 2.69300000e+00 1.35030000e+00 8.03450000e-01 5.32760000e-01 2.86350000e-01 1.81260000e-01 8.32550000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.33400000e+04 7.37250000e+04 6.59020000e+04 6.50250000e+04 5.82390000e+04 5.73780000e+04 5.01140000e+04 3.57540000e+04 1.99060000e+04 1.22190000e+04 4.70110000e+03 4.68690000e+03 4.59610000e+03 2.99880000e+03 2.93870000e+03 2.73010000e+03 2.67480000e+03 2.27290000e+03 7.67300000e+02 3.41380000e+02 1.78610000e+02 1.04030000e+02 4.35890000e+01 2.19580000e+01 2.09590000e+01 2.04490000e+01 6.24250000e+00 2.56410000e+00 7.52620000e-01 3.27210000e-01 1.76820000e-01 1.09290000e-01 5.35140000e-02 3.19570000e-02 1.36930000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.46700000e+04 2.29980000e+04 2.28240000e+04 2.12370000e+04 1.62630000e+04 1.02780000e+04 6.83760000e+03 2.98270000e+03 2.97470000e+03 2.92360000e+03 2.00190000e+03 1.96610000e+03 1.84100000e+03 1.80770000e+03 1.56280000e+03 5.88370000e+02 2.82550000e+02 1.56890000e+02 9.59870000e+01 4.35120000e+01 2.33200000e+01 2.23530000e+01 2.18580000e+01 7.42590000e+00 3.30140000e+00 1.07540000e+00 4.98880000e-01 2.81560000e-01 1.79540000e-01 9.16660000e-02 5.64020000e-02 2.53310000e-02] total = [ 2.24810000e+06 1.79190000e+06 1.80240000e+06 1.04940000e+06 5.73970000e+05 2.34390000e+05 2.33620000e+05 6.83560000e+05 5.33210000e+05 8.08330000e+05 5.28890000e+05 6.01390000e+05 4.85940000e+05 4.02970000e+05 4.19530000e+05 3.60820000e+05 3.69280000e+05 3.11240000e+05 1.99010000e+05 9.70760000e+04 5.50550000e+04 1.93160000e+04 1.92540000e+04 4.60350000e+04 2.90140000e+04 3.99790000e+04 3.72060000e+04 4.21640000e+04 3.58340000e+04 1.25720000e+04 5.87230000e+03 3.23040000e+03 1.97480000e+03 9.03550000e+02 4.91360000e+02 4.71540000e+02 2.07190000e+03 7.72760000e+02 3.64610000e+02 1.28070000e+02 6.25470000e+01 3.66950000e+01 2.41400000e+01 1.28840000e+01 8.13980000e+00 3.74440000e+00] JM2 = 1.04109487059 JM3 = 1.13707954395 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1610.5 610.33 290.08 102.6 50.312 29.606 19.525 10.46 6.624 3.0565] JM1 = 1.02344659387 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.53380000e+05 3.21990000e+05 6.00930000e+05 3.79220000e+05 4.54470000e+05 3.65820000e+05 3.02180000e+05 3.20630000e+05 2.75350000e+05 2.85410000e+05 2.40520000e+05 1.53490000e+05 7.46450000e+04 4.22210000e+04 1.47450000e+04 1.46980000e+04 1.43940000e+04 9.19590000e+03 9.00470000e+03 8.34450000e+03 8.17060000e+03 6.91600000e+03 2.34980000e+03 1.08370000e+03 5.92090000e+02 3.60490000e+02 1.64230000e+02 8.90990000e+01 8.54930000e+01 8.36440000e+01 2.93730000e+01 1.34610000e+01 4.59280000e+00 2.20360000e+00 1.27530000e+00 8.29350000e-01 4.35000000e-01 2.71580000e-01 1.23060000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.71780000e+04 1.69450000e+04 2.81600000e+04 2.62500000e+04 3.14350000e+04 2.67470000e+04 9.47340000e+03 4.44030000e+03 2.44680000e+03 1.49720000e+03 6.85620000e+02 3.72990000e+02 3.57950000e+02 3.50240000e+02 1.23340000e+02 5.66000000e+01 1.93450000e+01 9.29530000e+00 5.38690000e+00 3.50780000e+00 1.84380000e+00 1.15310000e+00 5.23560000e-01] JM4 = 1.5159693179 JM5 = 0.996714876915 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.15710000e+04 1.08940000e+04 1.06940000e+04 8.98040000e+03 3.15090000e+03 1.43850000e+03 7.70060000e+02 4.58350000e+02 2.00030000e+02 1.04500000e+02 1.00010000e+02 9.77170000e+01 3.20540000e+01 1.39610000e+01 4.45050000e+00 2.04220000e+00 1.14550000e+00 7.27550000e-01 3.69840000e-01 2.27090000e-01 1.01610000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.71780000e+04 1.69450000e+04 1.65890000e+04 1.53560000e+04 1.50300000e+04 1.26480000e+04 3.88560000e+03 1.63470000e+03 8.23720000e+02 4.66790000e+02 1.88370000e+02 9.25710000e+01 8.82270000e+01 8.60100000e+01 2.53900000e+01 1.02300000e+01 2.94390000e+00 1.26780000e+00 6.81590000e-01 4.19970000e-01 2.04950000e-01 1.22460000e-01 5.24450000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.71060000e+03 5.11780000e+03 2.43680000e+03 1.36710000e+03 8.53060000e+02 5.72020000e+02 2.97210000e+02 1.75920000e+02 1.69710000e+02 1.66510000e+02 6.58920000e+01 3.24090000e+01 1.19510000e+01 5.98540000e+00 3.55980000e+00 2.36020000e+00 1.26900000e+00 8.03540000e-01 3.69510000e-01] all other = [ 2.24810000e+06 1.79190000e+06 1.80240000e+06 1.04940000e+06 5.73970000e+05 2.34390000e+05 2.33620000e+05 2.30180000e+05 2.11220000e+05 2.07400000e+05 1.49670000e+05 1.46920000e+05 1.20110000e+05 1.00790000e+05 9.89030000e+04 8.54780000e+04 8.38690000e+04 7.07250000e+04 4.55220000e+04 2.24300000e+04 1.28340000e+04 4.57060000e+03 4.55620000e+03 4.46370000e+03 2.87360000e+03 2.81480000e+03 2.61160000e+03 2.55810000e+03 2.17110000e+03 7.48690000e+02 3.48330000e+02 1.91500000e+02 1.17140000e+02 5.37070000e+01 2.92730000e+01 2.80960000e+01 2.74930000e+01 9.71660000e+00 4.46990000e+00 1.53150000e+00 7.36450000e-01 4.26700000e-01 2.77710000e-01 1.45780000e-01 9.10720000e-02 4.12630000e-02] [Fr.binding] K = 101.6196 L1 = 18.647 M5 = 2.9986 M4 = 3.1387 M1 = 4.6236 L3 = 15.0335 M3 = 3.6443 M2 = 4.3134 L2 = 17.9724 [Fe] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 7.07630000e+00 7.13300000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.04740000e+04 7.58690000e+03 3.56040000e+03 1.14650000e+03 4.89930000e+02 2.46950000e+02 1.38920000e+02 8.16220000e+01 7.95310000e+01 5.46160000e+01 2.59600000e+01 6.45690000e+00 2.33780000e+00 5.40710000e-01 1.88470000e-01 8.26540000e-02 4.20610000e-02 1.44960000e-02 6.37540000e-03 1.46700000e-03 5.32990000e-04 1.36210000e-04 5.48470000e-05 2.81620000e-05 1.68170000e-05 7.88310000e-06 4.60340000e-06 1.92180000e-06] M = [ 9.14000000e+04 3.44730000e+04 1.67960000e+04 5.90370000e+03 2.75360000e+03 1.50730000e+03 9.15250000e+02 5.80130000e+02 5.67430000e+02 4.12280000e+02 2.20390000e+02 6.94630000e+01 3.02080000e+01 9.16840000e+00 3.88450000e+00 1.97980000e+00 1.13760000e+00 4.71580000e-01 2.37330000e-01 6.80810000e-02 2.82780000e-02 8.45540000e-03 3.73670000e-03 2.05140000e-03 1.29100000e-03 6.56930000e-04 4.08210000e-04 1.90080000e-04] L = [ 7.49230000e+05 2.79710000e+05 1.33290000e+05 4.53350000e+04 2.07020000e+04 1.11770000e+04 6.72250000e+03 4.22940000e+03 4.13550000e+03 2.99090000e+03 1.58590000e+03 4.93530000e+02 2.13060000e+02 6.41530000e+01 2.70590000e+01 1.37640000e+01 7.89250000e+00 3.26320000e+00 1.63950000e+00 4.69140000e-01 1.94600000e-01 5.81090000e-02 2.56730000e-02 1.40910000e-02 8.86610000e-03 4.51090000e-03 2.80300000e-03 1.30490000e-03] M5 = [ 5.70770000e+03 1.34300000e+03 4.59810000e+02 9.50610000e+01 2.95850000e+01 1.16550000e+01 5.33540000e+00 2.62550000e+00 2.53660000e+00 1.54350000e+00 5.82560000e-01 9.56750000e-02 2.57900000e-02 3.98430000e-03 1.05250000e-03 3.74400000e-04 1.61330000e-04 4.30380000e-05 1.56580000e-05 2.61360000e-06 7.77790000e-07 1.57290000e-07 5.61870000e-08 2.70100000e-08 1.56370000e-08 7.14740000e-09 4.17680000e-09 1.82470000e-09] M4 = [ 3.88580000e+03 9.16990000e+02 3.14650000e+02 6.52870000e+01 2.03810000e+01 8.05140000e+00 3.71470000e+00 1.83280000e+00 1.77100000e+00 1.07990000e+00 4.09280000e-01 6.78390000e-02 1.84390000e-02 2.88800000e-03 7.71940000e-04 2.77500000e-04 1.20550000e-04 3.26650000e-05 1.20110000e-05 2.04130000e-06 6.08480000e-07 1.20900000e-07 4.13550000e-08 1.89690000e-08 1.03300000e-08 4.24670000e-09 2.27710000e-09 8.53770000e-10] L2 = [ 2.14220000e+05 7.44960000e+04 3.31710000e+04 9.98960000e+03 4.10180000e+03 2.01490000e+03 1.11340000e+03 6.45060000e+02 6.28130000e+02 4.27600000e+02 2.00130000e+02 4.86100000e+01 1.73770000e+01 3.96730000e+00 1.37130000e+00 5.98490000e-01 3.03550000e-01 1.04170000e-01 4.56790000e-02 1.04690000e-02 3.79400000e-03 9.70330000e-04 3.90210000e-04 2.00350000e-04 1.19750000e-04 5.61920000e-05 3.27260000e-05 1.37320000e-05] L3 = [ 4.18030000e+05 1.43910000e+05 6.36490000e+04 1.89980000e+04 7.74890000e+03 3.78580000e+03 2.08210000e+03 1.20080000e+03 1.16910000e+03 7.93210000e+02 3.68710000e+02 8.82800000e+01 3.11810000e+01 6.97650000e+00 2.37040000e+00 1.01900000e+00 5.09850000e-01 1.70840000e-01 7.34230000e-02 1.61950000e-02 5.72440000e-03 1.42210000e-03 5.71220000e-04 2.96730000e-04 1.80240000e-04 8.80010000e-05 5.37250000e-05 2.42260000e-05] M3 = [ 3.98570000e+04 1.46430000e+04 6.83000000e+03 2.17990000e+03 9.25380000e+02 4.63890000e+02 2.59700000e+02 1.51880000e+02 1.47960000e+02 1.01260000e+02 4.77940000e+01 1.17150000e+01 4.19130000e+00 9.50490000e-01 3.24810000e-01 1.40270000e-01 7.04190000e-02 2.36950000e-02 1.02100000e-02 2.26060000e-03 8.00450000e-04 1.99550000e-04 8.01450000e-05 4.16420000e-05 2.53350000e-05 1.23940000e-05 7.53570000e-06 3.42060000e-06] L1 = [ 1.16980000e+05 6.13020000e+04 3.64650000e+04 1.63480000e+04 8.85170000e+03 5.37610000e+03 3.52700000e+03 2.38350000e+03 2.33830000e+03 1.77010000e+03 1.01710000e+03 3.56640000e+02 1.64510000e+02 5.32090000e+01 2.33170000e+01 1.21460000e+01 7.07910000e+00 2.98820000e+00 1.52040000e+00 4.42480000e-01 1.85080000e-01 5.57160000e-02 2.47120000e-02 1.35930000e-02 8.56610000e-03 4.36670000e-03 2.71650000e-03 1.26700000e-03] JK = 7.73353751914 M1 = [ 2.14750000e+04 9.98290000e+03 5.63100000e+03 2.41690000e+03 1.28840000e+03 7.76770000e+02 5.07580000e+02 3.42160000e+02 3.35630000e+02 2.53780000e+02 1.45640000e+02 5.11270000e+01 2.36340000e+01 7.67040000e+00 3.36940000e+00 1.75630000e+00 1.02480000e+00 4.33310000e-01 2.20720000e-01 6.43490000e-02 2.69430000e-02 8.11940000e-03 3.60160000e-03 1.98160000e-03 1.24880000e-03 6.36640000e-04 3.96070000e-04 1.84740000e-04] all other = [ 1.44940000e+03 6.64980000e+02 3.73000000e+02 1.59240000e+02 8.51800000e+01 5.13060000e+01 3.35080000e+01 2.25810000e+01 2.21490000e+01 1.67450000e+01 9.60780000e+00 3.37250000e+00 1.55910000e+00 5.06030000e-01 2.22280000e-01 1.15990000e-01 6.76900000e-02 2.86260000e-02 1.45830000e-02 4.25210000e-03 1.78050000e-03 5.36640000e-04 2.38090000e-04 1.31050000e-04 8.26300000e-05 4.21970000e-05 2.63130000e-05 1.23990000e-05] total = [ 8.42080000e+05 3.14840000e+05 1.50450000e+05 5.13980000e+04 2.35410000e+04 1.27360000e+04 7.67130000e+03 4.83220000e+03 3.73700000e+04 2.81890000e+04 1.57050000e+04 5.21450000e+03 2.32270000e+03 7.19860000e+02 3.07520000e+02 1.57460000e+02 9.06630000e+01 3.76480000e+01 1.89550000e+01 5.43520000e+00 2.25570000e+00 6.73730000e-01 2.97630000e-01 1.63400000e-01 1.02870000e-01 5.23970000e-02 3.25940000e-02 1.52110000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.26450000e+04 2.47690000e+04 1.38890000e+04 4.64810000e+03 2.07780000e+03 6.46030000e+02 2.76350000e+02 1.41600000e+02 8.15650000e+01 3.38850000e+01 1.70640000e+01 4.89370000e+00 2.03110000e+00 6.06630000e-01 2.67980000e-01 1.47130000e-01 9.26270000e-02 4.71870000e-02 2.93560000e-02 1.37040000e-02] [Fe.binding] K = 7.0834 L1 = 0.843 M5 = 0.0127 M4 = 0.0129 M1 = 0.101 L3 = 0.7207 M3 = 0.0664 M2 = 0.0681 L2 = 0.7336 [Fm] JL1 = 1.13124530636 JL3 = 2.26659276708 JL2 = 1.41180255001 energy = [ 1.00000000e+00 1.06070000e+00 1.06920000e+00 1.35810000e+00 1.36900000e+00 1.50000000e+00 1.73860000e+00 1.75250000e+00 1.92970000e+00 1.94520000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.48710000e+00 4.52300000e+00 4.75530000e+00 4.79340000e+00 5.00000000e+00 5.38640000e+00 5.42960000e+00 6.00000000e+00 6.78030000e+00 6.83460000e+00 7.19180000e+00 7.24940000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.08700000e+01 2.10370000e+01 2.67730000e+01 2.69870000e+01 2.76710000e+01 2.78930000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.42940000e+02 1.44090000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.78330422246 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.97250000e+05 1.84570000e+05 1.80730000e+05 1.62590000e+05 1.34020000e+05 1.31130000e+05 9.85700000e+04 6.85450000e+04 6.70220000e+04 5.78080000e+04 5.64450000e+04 4.17730000e+04 2.10430000e+04 5.67150000e+03 2.13840000e+03 1.84630000e+03 1.79600000e+03 7.69690000e+02 7.48130000e+02 6.84310000e+02 6.65110000e+02 5.12410000e+02 1.79920000e+02 7.87110000e+01 3.97580000e+01 1.34110000e+01 5.76210000e+00 1.49780000e+00 1.45380000e+00 1.25070000e+00 4.33600000e-01 1.03150000e-01 3.95420000e-02 1.96290000e-02 1.14310000e-02 5.21690000e-03 2.97680000e-03 1.20250000e-03] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.23570000e+05 1.19690000e+05 9.96860000e+04 9.77370000e+04 7.49950000e+04 5.28140000e+04 5.15980000e+04 4.44890000e+04 4.35220000e+04 3.26850000e+04 1.67960000e+04 4.70130000e+03 1.82610000e+03 1.58330000e+03 1.54150000e+03 6.79010000e+02 6.60620000e+02 6.05990000e+02 5.89500000e+02 4.57950000e+02 1.66550000e+02 7.49880000e+01 3.88090000e+01 1.36140000e+01 6.02890000e+00 1.64180000e+00 1.59500000e+00 1.37900000e+00 4.93250000e-01 1.20870000e-01 4.66550000e-02 2.30750000e-02 1.33230000e-02 5.98250000e-03 3.34580000e-03 1.31570000e-03] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.36960000e+03 7.26240000e+03 5.36360000e+03 2.85750000e+03 1.73370000e+03 1.60490000e+03 1.58170000e+03 1.00760000e+03 9.92280000e+02 9.45560000e+02 9.31110000e+02 8.08640000e+02 4.54550000e+02 2.85680000e+02 1.93380000e+02 1.02600000e+02 6.19250000e+01 2.70720000e+01 2.65710000e+01 2.41830000e+01 1.22880000e+01 4.75000000e+00 2.45620000e+00 1.49350000e+00 1.00560000e+00 5.50450000e-01 3.51320000e-01 1.61860000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.66780000e+04 4.78090000e+04 3.89740000e+04 3.83840000e+04 3.47290000e+04 3.41810000e+04 2.81370000e+04 1.79970000e+04 7.41630000e+03 3.74120000e+03 3.36980000e+03 3.30440000e+03 1.79910000e+03 1.76250000e+03 1.65210000e+03 1.61830000e+03 1.33780000e+03 6.18590000e+02 3.33040000e+02 1.98390000e+02 8.60090000e+01 4.44220000e+01 1.52140000e+01 1.48530000e+01 1.31590000e+01 5.54490000e+00 1.67410000e+00 7.37610000e-01 4.00480000e-01 2.47930000e-01 1.21270000e-01 7.21490000e-02 3.04940000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.31840000e+04 1.25340000e+04 1.24250000e+04 1.13700000e+04 8.33410000e+03 4.29980000e+03 2.47090000e+03 2.26550000e+03 2.22890000e+03 1.33930000e+03 1.31630000e+03 1.24650000e+03 1.22490000e+03 1.04200000e+03 5.37700000e+02 3.14430000e+02 2.00310000e+02 9.64440000e+01 5.40060000e+01 2.10260000e+01 2.05850000e+01 1.84990000e+01 8.61450000e+00 2.96970000e+00 1.42490000e+00 8.21500000e-01 5.32020000e-01 2.77430000e-01 1.72660000e-01 7.87520000e-02] total = [ 3.16240000e+06 3.06980000e+06 3.11850000e+06 2.09590000e+06 2.19650000e+06 1.83830000e+06 1.36080000e+06 1.35410000e+06 1.10600000e+06 1.10660000e+06 1.04280000e+06 4.27890000e+05 2.20880000e+05 1.68690000e+05 3.62800000e+05 3.31630000e+05 4.48610000e+05 4.12840000e+05 3.43030000e+05 3.92800000e+05 3.05740000e+05 2.23080000e+05 2.31730000e+05 2.03920000e+05 2.08250000e+05 1.63110000e+05 9.36610000e+04 3.36700000e+04 1.61070000e+04 1.44340000e+04 3.27160000e+04 1.70980000e+04 2.41390000e+04 2.26370000e+04 2.56080000e+04 2.12810000e+04 1.02850000e+04 5.77510000e+03 3.58800000e+03 1.68200000e+03 9.31130000e+02 3.60690000e+02 1.36460000e+03 1.23950000e+03 6.04880000e+02 2.21580000e+02 1.11390000e+02 6.66840000e+01 4.45000000e+01 2.41550000e+01 1.53710000e+01 7.08510000e+00] JM2 = 1.03877532724 JM3 = 1.14508935079 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1011.5 922.08 456.01 169.17 85.709 51.602 34.587 18.885 12.059 5.578] JM1 = 1.02123381718 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.97250000e+05 1.84570000e+05 3.04300000e+05 2.82290000e+05 2.33700000e+05 2.85540000e+05 2.21370000e+05 1.60330000e+05 1.70190000e+05 1.49560000e+05 1.54940000e+05 1.21230000e+05 6.95330000e+04 2.49460000e+04 1.19100000e+04 1.06700000e+04 1.04520000e+04 5.59470000e+03 5.47990000e+03 5.13450000e+03 5.02890000e+03 4.15870000e+03 1.95730000e+03 1.08690000e+03 6.70650000e+02 3.12080000e+02 1.72140000e+02 6.64510000e+01 6.50580000e+01 5.84710000e+01 2.73740000e+01 9.61790000e+00 4.70490000e+00 2.75820000e+00 1.81030000e+00 9.60350000e-01 6.02450000e-01 2.73620000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.85760000e+04 9.51880000e+03 1.67150000e+04 1.56800000e+04 1.87940000e+04 1.56430000e+04 7.62770000e+03 4.29790000e+03 2.67570000e+03 1.25700000e+03 6.96450000e+02 2.69980000e+02 2.64340000e+02 2.37640000e+02 1.11460000e+02 3.92570000e+01 1.92460000e+01 1.13060000e+01 7.43430000e+00 3.95520000e+00 2.48640000e+00 1.13240000e+00] JM4 = 1.35274251425 JM5 = 2.15069061592 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.40050000e+03 6.98210000e+03 6.89890000e+03 5.70930000e+03 2.83870000e+03 1.59560000e+03 9.85270000e+02 4.54160000e+02 2.46740000e+02 9.22260000e+01 9.02210000e+01 8.07610000e+01 3.66620000e+01 1.22990000e+01 5.81970000e+00 3.32840000e+00 2.14460000e+00 1.11240000e+00 6.90430000e-01 3.13920000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.85760000e+04 9.51880000e+03 9.31450000e+03 8.69780000e+03 8.50870000e+03 6.93850000e+03 3.00050000e+03 1.54560000e+03 8.91210000e+02 3.69180000e+02 1.85050000e+02 6.09160000e+01 5.94240000e+01 5.24450000e+01 2.15740000e+01 6.35350000e+00 2.76550000e+00 1.49150000e+00 9.19660000e-01 4.48080000e-01 2.66110000e-01 1.12650000e-01] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.38600000e+03 2.99520000e+03 1.78850000e+03 1.15660000e+03 7.99180000e+02 4.33640000e+02 2.64660000e+02 1.16840000e+02 1.14690000e+02 1.04440000e+02 5.32240000e+01 2.06050000e+01 1.06610000e+01 6.48630000e+00 4.37000000e+00 2.39480000e+00 1.52980000e+00 7.05790000e-01] all other = [ 3.16240000e+06 3.06980000e+06 3.11850000e+06 2.09590000e+06 2.19650000e+06 1.83830000e+06 1.36080000e+06 1.35410000e+06 1.10600000e+06 1.10660000e+06 1.04280000e+06 4.27890000e+05 2.20880000e+05 1.68690000e+05 1.65550000e+05 1.47060000e+05 1.44310000e+05 1.30550000e+05 1.09320000e+05 1.07260000e+05 8.43640000e+04 6.27510000e+04 6.15450000e+04 5.43580000e+04 5.33100000e+04 4.18830000e+04 2.41270000e+04 8.72360000e+03 4.19690000e+03 3.76390000e+03 3.68790000e+03 1.98430000e+03 1.94390000e+03 1.82230000e+03 1.78520000e+03 1.47870000e+03 7.00110000e+02 3.90380000e+02 2.41650000e+02 1.12980000e+02 6.25330000e+01 2.42560000e+01 2.37490000e+01 2.13550000e+01 1.00340000e+01 3.53800000e+00 1.73380000e+00 1.01730000e+00 6.68350000e-01 3.54750000e-01 2.22610000e-01 1.01090000e-01] [Fm.binding] K = 143.0865 L1 = 27.6986 M5 = 4.4916 M4 = 4.7601 M1 = 7.199 L3 = 20.8907 M3 = 5.3918 M2 = 6.7871 L2 = 26.7999 [B] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 9.42740000e+02 2.95120000e+02 1.25930000e+02 3.70480000e+01 1.52760000e+01 7.60420000e+00 4.27140000e+00 1.70220000e+00 8.27580000e-01 2.20020000e-01 8.51550000e-02 2.21200000e-02 8.45550000e-03 4.00260000e-03 2.17130000e-03 8.27490000e-04 3.92290000e-04 1.02220000e-04 4.00300000e-05 1.11750000e-05 4.75520000e-06 2.55470000e-06 1.58790000e-06 8.00970000e-07 4.98810000e-07 2.37360000e-07] L2 = [ 4.36310000e+00 9.02020000e-01 2.88090000e-01 5.78240000e-02 1.81320000e-02 7.27690000e-03 3.43310000e-03 1.03660000e-03 4.07300000e-04 7.37250000e-05 2.18470000e-05 3.93340000e-06 1.17180000e-06 4.60780000e-07 2.16510000e-07 6.63280000e-08 2.68500000e-08 5.44080000e-09 1.82330000e-09 4.25260000e-10 1.60520000e-10 7.95470000e-11 4.60910000e-11 2.10540000e-11 1.21520000e-11 6.06140000e-12] L3 = [ 8.68430000e+00 1.79490000e+00 5.72720000e-01 1.14510000e-01 3.58440000e-02 1.43740000e-02 6.76620000e-03 2.03900000e-03 7.98840000e-04 1.43810000e-04 4.23510000e-05 7.57190000e-06 2.23570000e-06 8.72230000e-07 4.05080000e-07 1.22650000e-07 4.92880000e-08 9.74900000e-09 3.25280000e-09 7.58710000e-10 2.99460000e-10 1.52970000e-10 9.35380000e-11 4.64580000e-11 2.97190000e-11 1.69360000e-11] L1 = [ 9.29690000e+02 2.92430000e+02 1.25070000e+02 3.68750000e+01 1.52220000e+01 7.58260000e+00 4.26120000e+00 1.69910000e+00 8.26380000e-01 2.19810000e-01 8.50910000e-02 2.21080000e-02 8.45210000e-03 4.00120000e-03 2.17070000e-03 8.27300000e-04 3.92210000e-04 1.02200000e-04 4.00250000e-05 1.11740000e-05 4.75470000e-06 2.55450000e-06 1.58780000e-06 8.00900000e-07 4.98770000e-07 2.37340000e-07] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 2.20460000e+04 6.74890000e+03 2.85630000e+03 8.29020000e+02 3.38690000e+02 1.67550000e+02 9.37540000e+01 3.71700000e+01 1.80120000e+01 4.76670000e+00 1.84040000e+00 4.76800000e-01 1.81990000e-01 8.60630000e-02 4.66500000e-02 1.77570000e-02 8.43210000e-03 2.19680000e-03 8.60570000e-04 2.40330000e-04 1.02320000e-04 5.49700000e-05 3.41680000e-05 1.72220000e-05 1.07080000e-05 5.06010000e-06] K = [ 2.11030000e+04 6.45380000e+03 2.73030000e+03 7.91980000e+02 3.23410000e+02 1.59940000e+02 8.94830000e+01 3.54680000e+01 1.71850000e+01 4.54670000e+00 1.75520000e+00 4.54680000e-01 1.73540000e-01 8.20600000e-02 4.44780000e-02 1.69300000e-02 8.03980000e-03 2.09460000e-03 8.20540000e-04 2.29160000e-04 9.75620000e-05 5.24150000e-05 3.25800000e-05 1.64210000e-05 1.02090000e-05 4.82270000e-06] [B.binding] K = 0.1956 L2 = 0.0067 L3 = 0.0067 L1 = 0.0126 [F] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 1.03210000e+04 3.43480000e+03 1.54360000e+03 4.88160000e+02 2.11300000e+02 1.09170000e+02 6.31840000e+01 2.63470000e+01 1.32490000e+01 3.73010000e+00 1.49730000e+00 4.06840000e-01 1.59840000e-01 7.71150000e-02 4.24280000e-02 1.64960000e-02 7.92930000e-03 2.11090000e-03 8.37430000e-04 2.37210000e-04 1.01760000e-04 5.48990000e-05 3.42080000e-05 1.72740000e-05 1.07400000e-05 5.06520000e-06] L2 = [ 8.60190000e+02 2.12150000e+02 7.56610000e+01 1.70320000e+01 5.71270000e+00 2.40320000e+00 1.17470000e+00 3.75450000e-01 1.53740000e-01 2.99840000e-02 9.30950000e-03 1.77220000e-03 5.45710000e-04 2.19450000e-04 1.04680000e-04 3.28770000e-05 1.35580000e-05 2.81690000e-06 9.62550000e-07 2.28690000e-07 8.82380000e-08 4.40390000e-08 2.57900000e-08 1.17700000e-08 6.73690000e-09 2.75390000e-09] L3 = [ 1.70090000e+03 4.18900000e+02 1.49220000e+02 3.35200000e+01 1.12200000e+01 4.71270000e+00 2.30100000e+00 7.30640000e-01 2.98280000e-01 5.77570000e-02 1.78180000e-02 3.35240000e-03 1.02140000e-03 4.06990000e-04 1.92300000e-04 5.94730000e-05 2.41830000e-05 4.90460000e-06 1.65090000e-06 3.90550000e-07 1.52910000e-07 7.85800000e-08 4.75130000e-08 2.32780000e-08 1.42940000e-08 6.69190000e-09] L1 = [ 7.75970000e+03 2.80370000e+03 1.31880000e+03 4.37610000e+02 1.94370000e+02 1.02060000e+02 5.97080000e+01 2.52410000e+01 1.27970000e+01 3.64230000e+00 1.47020000e+00 4.01710000e-01 1.58270000e-01 7.64890000e-02 4.21310000e-02 1.64040000e-02 7.89160000e-03 2.10320000e-03 8.34820000e-04 2.36600000e-04 1.01520000e-04 5.47760000e-05 3.41340000e-05 1.72390000e-05 1.07190000e-05 5.05570000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 1.78170000e+05 6.23750000e+04 2.84960000e+04 9.07290000e+03 3.93130000e+03 2.02960000e+03 1.17380000e+03 4.88830000e+02 2.45480000e+02 6.89040000e+01 2.75960000e+01 7.47610000e+00 2.93230000e+00 1.41310000e+00 7.76870000e-01 3.01720000e-01 1.44920000e-01 3.85350000e-02 1.52740000e-02 4.33040000e-03 1.85750000e-03 1.00220000e-03 6.24460000e-04 3.15340000e-04 1.96010000e-04 9.23380000e-05] K = [ 1.67850000e+05 5.89410000e+04 2.69520000e+04 8.58480000e+03 3.72000000e+03 1.92040000e+03 1.11070000e+03 4.62480000e+02 2.32230000e+02 6.51740000e+01 2.60990000e+01 7.06930000e+00 2.77250000e+00 1.33600000e+00 7.34450000e-01 2.85220000e-01 1.36990000e-01 3.64240000e-02 1.44370000e-02 4.09320000e-03 1.75570000e-03 9.47300000e-04 5.90250000e-04 2.98070000e-04 1.85270000e-04 8.72730000e-05] [F.binding] K = 0.6884 L2 = 0.017 L3 = 0.017 L1 = 0.0359 [Sr] JL1 = 1.1182767624 JL3 = 3.86563431759 JL2 = 1.36800236502 energy = [ 1.00000000e+00 1.50000000e+00 1.94040000e+00 1.95590000e+00 2.00000000e+00 2.01020000e+00 2.02630000e+00 2.19810000e+00 2.21570000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.60510000e+01 1.61800000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 6.48930000e+04 3.01790000e+04 1.74460000e+04 1.71400000e+04 1.63100000e+04 1.61260000e+04 1.58400000e+04 1.31730000e+04 1.29340000e+04 6.27430000e+03 3.01010000e+03 1.65350000e+03 9.95820000e+02 4.34200000e+02 2.22680000e+02 6.29720000e+01 5.06990000e+01 4.94170000e+01 2.48240000e+01 6.42210000e+00 2.40550000e+00 1.11210000e+00 5.89570000e-01 2.15720000e-01 9.89600000e-02 2.44140000e-02 9.24350000e-03 2.47850000e-03 1.02520000e-03 5.36550000e-04 3.24590000e-04 1.54610000e-04 9.12060000e-05 3.86550000e-05] M = [ 4.75460000e+05 1.80470000e+05 9.54340000e+04 9.35460000e+04 8.84590000e+04 8.73360000e+04 8.56040000e+04 6.97170000e+04 6.83230000e+04 3.14130000e+04 1.47790000e+04 8.15500000e+03 4.98930000e+03 2.27720000e+03 1.23040000e+03 3.95990000e+02 3.27070000e+02 3.19780000e+02 1.75200000e+02 5.47220000e+01 2.37320000e+01 1.23440000e+01 7.21160000e+00 3.07120000e+00 1.57850000e+00 4.70010000e-01 1.99970000e-01 6.16810000e-02 2.77580000e-02 1.54070000e-02 9.75880000e-03 4.99230000e-03 3.10130000e-03 1.43260000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99970000e+05 2.79510000e+05 2.76840000e+05 4.15630000e+05 3.45070000e+05 3.96400000e+05 1.86630000e+05 8.91610000e+04 4.94140000e+04 3.02580000e+04 1.37930000e+04 7.43430000e+03 2.38060000e+03 1.96470000e+03 1.92070000e+03 1.04990000e+03 3.26640000e+02 1.41280000e+02 7.33490000e+01 4.27900000e+01 1.81860000e+01 9.33340000e+00 2.77270000e+00 1.17900000e+00 3.63180000e-01 1.63320000e-01 9.06270000e-02 5.73990000e-02 2.93630000e-02 1.82440000e-02 8.43090000e-03] M5 = [ 1.38430000e+05 3.95790000e+04 1.69880000e+04 1.65390000e+04 1.53430000e+04 1.50820000e+04 1.46810000e+04 1.11300000e+04 1.08300000e+04 3.73700000e+03 1.30280000e+03 5.60020000e+02 2.76470000e+02 8.82340000e+01 3.55380000e+01 6.48640000e+00 4.85640000e+00 4.69330000e+00 1.88250000e+00 3.20360000e-01 8.99600000e-02 3.34270000e-02 1.48810000e-02 4.14930000e-03 1.56370000e-03 2.76070000e-04 8.47270000e-05 1.77240000e-05 6.44790000e-06 3.13160000e-06 1.78170000e-06 8.28560000e-07 4.65630000e-07 1.94730000e-07] M4 = [ 9.48190000e+04 2.72550000e+04 1.17410000e+04 1.14320000e+04 1.06080000e+04 1.04290000e+04 1.01530000e+04 7.70610000e+03 7.49930000e+03 2.60030000e+03 9.11130000e+02 3.93350000e+02 1.94920000e+02 6.26210000e+01 2.53700000e+01 4.69050000e+00 3.52040000e+00 3.40310000e+00 1.37610000e+00 2.38290000e-01 6.78920000e-02 2.55410000e-02 1.14930000e-02 3.28330000e-03 1.25460000e-03 2.27060000e-04 7.03630000e-05 1.45710000e-05 5.08800000e-06 2.36810000e-06 1.32010000e-06 5.47630000e-07 2.99820000e-07 1.11690000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.43130000e+05 1.18540000e+05 1.16360000e+05 5.23090000e+04 2.36880000e+04 1.24560000e+04 7.25810000e+03 3.02260000e+03 1.50200000e+03 4.05250000e+02 3.24140000e+02 3.15700000e+02 1.55680000e+02 3.91470000e+01 1.44320000e+01 6.60520000e+00 3.47710000e+00 1.26090000e+00 5.75300000e-01 1.40580000e-01 5.29900000e-02 1.41420000e-02 5.83540000e-03 3.04750000e-03 1.84000000e-03 8.79460000e-04 5.18460000e-04 2.19260000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99970000e+05 2.79510000e+05 2.76840000e+05 2.72510000e+05 2.26530000e+05 2.21960000e+05 9.80540000e+04 4.36860000e+04 2.27250000e+04 1.31270000e+04 5.38880000e+03 2.64750000e+03 6.98560000e+02 5.56450000e+02 5.41700000e+02 2.63640000e+02 6.44340000e+01 2.32110000e+01 1.04140000e+01 5.38590000e+00 1.89480000e+00 8.42860000e-01 1.96220000e-01 7.15400000e-02 1.84050000e-02 7.50650000e-03 3.93030000e-03 2.39840000e-03 1.17150000e-03 7.09340000e-04 3.19640000e-04] M3 = [ 1.28660000e+05 5.84390000e+04 3.33480000e+04 3.27510000e+04 3.11330000e+04 3.07740000e+04 3.02180000e+04 2.50300000e+04 2.45670000e+04 1.17520000e+04 5.56500000e+03 3.02550000e+03 1.80650000e+03 7.76660000e+02 3.93750000e+02 1.08850000e+02 8.72750000e+01 8.50260000e+01 4.21410000e+01 1.05910000e+01 3.87520000e+00 1.75620000e+00 9.14670000e-01 3.24730000e-01 1.45290000e-01 3.40440000e-02 1.24630000e-02 3.21950000e-03 1.31580000e-03 6.89320000e-04 4.20400000e-04 2.06200000e-04 1.24930000e-04 5.61060000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.80730000e+04 3.62650000e+04 2.17860000e+04 1.42330000e+04 9.87370000e+03 5.38200000e+03 3.28480000e+03 1.27670000e+03 1.08410000e+03 1.06330000e+03 6.30550000e+02 2.23060000e+02 1.03640000e+02 5.63310000e+01 3.39270000e+01 1.50300000e+01 7.91530000e+00 2.43590000e+00 1.05450000e+00 3.30630000e-01 1.49980000e-01 8.36490000e-02 5.31600000e-02 2.73120000e-02 1.70160000e-02 7.89200000e-03] JK = 6.74554946936 M1 = [ 4.86580000e+04 2.50180000e+04 1.59110000e+04 1.56840000e+04 1.50650000e+04 1.49260000e+04 1.47120000e+04 1.26780000e+04 1.24930000e+04 7.04870000e+03 3.99010000e+03 2.52260000e+03 1.71550000e+03 9.15450000e+02 5.53080000e+02 2.13000000e+02 1.80720000e+02 1.77240000e+02 1.04970000e+02 3.71500000e+01 1.72930000e+01 9.41690000e+00 5.68100000e+00 2.52340000e+00 1.33140000e+00 4.11050000e-01 1.78110000e-01 5.59510000e-02 2.54050000e-02 1.41760000e-02 9.01070000e-03 4.63010000e-03 2.88440000e-03 1.33760000e-03] all other = [ 3.19780000e+04 1.46130000e+04 8.53960000e+03 8.39470000e+03 8.00160000e+03 7.91420000e+03 7.77910000e+03 6.51770000e+03 6.40450000e+03 3.23260000e+03 1.63890000e+03 9.49970000e+02 6.01910000e+02 2.88060000e+02 1.60610000e+02 5.41630000e+01 4.50410000e+01 4.40710000e+01 2.46190000e+01 7.92850000e+00 3.49700000e+00 1.83910000e+00 1.08270000e+00 4.65790000e-01 2.40920000e-01 7.23690000e-02 3.09530000e-02 9.59140000e-03 4.32610000e-03 2.40460000e-03 1.52450000e-03 7.80940000e-04 4.85700000e-04 2.25010000e-04] total = [ 5.07440000e+05 1.95080000e+05 1.03970000e+05 4.01910000e+05 3.75970000e+05 3.72090000e+05 5.09020000e+05 4.21300000e+05 4.71130000e+05 2.21270000e+05 1.05580000e+05 5.85190000e+04 3.58500000e+04 1.63590000e+04 8.82540000e+03 2.83070000e+03 2.33680000e+03 1.57630000e+04 9.15450000e+03 3.05180000e+03 1.36640000e+03 7.23180000e+02 4.27010000e+02 1.83970000e+02 9.51020000e+01 2.84700000e+01 1.21400000e+01 3.74750000e+00 1.68760000e+00 9.37670000e-01 5.94700000e-01 3.05070000e-01 1.90030000e-01 8.82100000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.34780000e+04 7.90480000e+03 2.66250000e+03 1.19790000e+03 6.35640000e+02 3.75920000e+02 1.62240000e+02 8.39490000e+01 2.51550000e+01 1.07300000e+01 3.31300000e+00 1.49220000e+00 8.29230000e-01 5.26010000e-01 2.69940000e-01 1.68200000e-01 7.81210000e-02] [Sr.binding] K = 16.0673 L1 = 2.2003 M5 = 0.143 M4 = 0.1449 M1 = 0.3504 L3 = 1.9423 M3 = 0.2695 M2 = 0.2804 L2 = 2.0122 [N] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 3.75080000e+03 1.23820000e+03 5.50930000e+02 1.69680000e+02 7.19670000e+01 3.66150000e+01 2.09400000e+01 8.58080000e+00 4.25740000e+00 1.16940000e+00 4.61670000e-01 1.22830000e-01 4.76360000e-02 2.27750000e-02 1.24460000e-02 4.79270000e-03 2.28850000e-03 6.02970000e-04 2.37720000e-04 6.68640000e-05 2.85740000e-05 1.53830000e-05 9.57210000e-06 4.83060000e-06 3.00460000e-06 1.42110000e-06] L2 = [ 1.23740000e+02 2.84420000e+01 9.73360000e+00 2.02370000e+00 6.46570000e-01 2.65900000e-01 1.28350000e-01 4.02370000e-02 1.62220000e-02 3.05590000e-03 9.26570000e-04 1.71680000e-04 5.20190000e-05 2.06880000e-05 9.78390000e-06 3.03820000e-06 1.24120000e-06 2.54980000e-07 8.63460000e-08 2.03480000e-08 7.77530000e-09 3.87900000e-09 2.25320000e-09 1.02140000e-09 5.84980000e-10 2.43620000e-10] L3 = [ 2.45580000e+02 5.63850000e+01 1.92750000e+01 4.00170000e+00 1.27720000e+00 5.24410000e-01 2.51920000e-01 7.87490000e-02 3.16650000e-02 5.92590000e-03 1.78620000e-03 3.27410000e-04 9.82170000e-05 3.87220000e-05 1.81660000e-05 5.55300000e-06 2.24550000e-06 4.49720000e-07 1.50660000e-07 3.53570000e-08 1.38780000e-08 7.09740000e-09 4.32210000e-09 2.12440000e-09 1.31270000e-09 6.28920000e-10] L1 = [ 3.38150000e+03 1.15340000e+03 5.21920000e+02 1.63660000e+02 7.00430000e+01 3.58250000e+01 2.05600000e+01 8.46190000e+00 4.20950000e+00 1.16040000e+00 4.58960000e-01 1.22330000e-01 4.74860000e-02 2.27160000e-02 1.24180000e-02 4.78410000e-03 2.28500000e-03 6.02270000e-04 2.37480000e-04 6.68080000e-05 2.85520000e-05 1.53720000e-05 9.56550000e-06 4.82740000e-06 3.00270000e-06 1.42020000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 7.69900000e+04 2.51520000e+04 1.10660000e+04 3.36660000e+03 1.41810000e+03 7.18050000e+02 4.09260000e+02 1.66780000e+02 8.24130000e+01 2.25020000e+01 8.85500000e+00 2.34770000e+00 9.08770000e-01 4.33960000e-01 2.36950000e-01 9.11370000e-02 4.34780000e-02 1.14390000e-02 4.51630000e-03 1.27020000e-03 5.42850000e-04 2.92280000e-04 1.81890000e-04 9.17700000e-05 5.70440000e-05 2.69110000e-05] K = [ 7.32390000e+04 2.39140000e+04 1.05160000e+04 3.19690000e+03 1.34610000e+03 6.81440000e+02 3.88330000e+02 1.58200000e+02 7.81560000e+01 2.13320000e+01 8.39340000e+00 2.22490000e+00 8.61130000e-01 4.11190000e-01 2.24500000e-01 8.63440000e-02 4.11900000e-02 1.08360000e-02 4.27860000e-03 1.20340000e-03 5.14280000e-04 2.76900000e-04 1.72320000e-04 8.69390000e-05 5.40400000e-05 2.54900000e-05] [N.binding] K = 0.4049 L2 = 0.0115 L3 = 0.0115 L1 = 0.0231 [Kr] JL1 = 1.11037811746 JL3 = 4.38818565401 JL2 = 1.41986225081 energy = [ 1.00000000e+00 1.50000000e+00 1.67170000e+00 1.68510000e+00 1.72670000e+00 1.74050000e+00 1.90050000e+00 1.91570000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.42660000e+01 1.43800000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 5.61720000e+04 2.52630000e+04 2.00030000e+04 1.96560000e+04 1.86270000e+04 1.83000000e+04 1.50190000e+04 1.47480000e+04 1.33630000e+04 4.99490000e+03 2.35170000e+03 1.27470000e+03 7.59870000e+02 3.26190000e+02 1.65320000e+02 5.38580000e+01 5.24920000e+01 4.58010000e+01 1.78150000e+01 4.52990000e+00 1.67740000e+00 7.68950000e-01 4.04930000e-01 1.46740000e-01 6.68420000e-02 1.63170000e-02 6.13500000e-03 1.63180000e-03 6.72350000e-04 3.50660000e-04 2.11490000e-04 1.00620000e-04 5.91470000e-05 2.50060000e-05] M = [ 3.75750000e+05 1.42080000e+05 1.08770000e+05 1.06640000e+05 1.00380000e+05 9.84070000e+04 7.90020000e+04 7.74370000e+04 6.94950000e+04 2.45910000e+04 1.15420000e+04 6.35940000e+03 3.88670000e+03 1.77090000e+03 9.55450000e+02 3.53240000e+02 3.45380000e+02 3.06550000e+02 1.35320000e+02 4.21250000e+01 1.82150000e+01 9.45070000e+00 5.50910000e+00 2.33760000e+00 1.19780000e+00 3.54480000e-01 1.50360000e-01 4.61540000e-02 2.07110000e-02 1.14750000e-02 7.26070000e-03 3.71100000e-03 2.30560000e-03 1.06640000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.95720000e+05 3.32690000e+05 5.19480000e+05 4.12610000e+05 4.69150000e+05 4.25640000e+05 1.54390000e+05 7.30000000e+04 4.02540000e+04 2.45700000e+04 1.11500000e+04 5.99230000e+03 2.20200000e+03 2.15270000e+03 1.90950000e+03 8.39610000e+02 2.60050000e+02 1.12090000e+02 5.80250000e+01 3.37680000e+01 1.42950000e+01 7.31390000e+00 2.16060000e+00 9.15200000e-01 2.80520000e-01 1.25790000e-01 6.96740000e-02 4.40810000e-02 2.25310000e-02 1.39990000e-02 6.47670000e-03] M5 = [ 9.83130000e+04 2.72890000e+04 1.90580000e+04 1.85560000e+04 1.70980000e+04 1.66450000e+04 1.23560000e+04 1.20240000e+04 1.03720000e+04 2.45840000e+03 8.42460000e+02 3.57890000e+02 1.75020000e+02 5.50070000e+01 2.18890000e+01 4.86040000e+00 4.69680000e+00 3.91740000e+00 1.12500000e+00 1.88980000e-01 5.25400000e-02 1.92640000e-02 8.53230000e-03 2.37270000e-03 8.89240000e-04 1.56230000e-04 4.77800000e-05 9.95330000e-06 3.57410000e-06 1.72680000e-06 1.00520000e-06 4.51150000e-07 2.63210000e-07 1.09070000e-07] M4 = [ 6.73070000e+04 1.87730000e+04 1.31290000e+04 1.27840000e+04 1.17830000e+04 1.14730000e+04 8.52610000e+03 8.29770000e+03 7.16200000e+03 1.70760000e+03 5.87940000e+02 2.50770000e+02 1.23070000e+02 3.89240000e+01 1.55770000e+01 3.49550000e+00 3.37870000e+00 2.82190000e+00 8.18570000e-01 1.39800000e-01 3.94000000e-02 1.47220000e-02 6.58800000e-03 1.86600000e-03 7.09570000e-04 1.27060000e-04 3.90940000e-05 8.04070000e-06 2.82060000e-06 1.30150000e-06 7.15440000e-07 2.99410000e-07 1.61610000e-07 6.32540000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.88700000e+05 1.41400000e+05 1.38710000e+05 1.24370000e+05 4.22480000e+04 1.87680000e+04 9.76660000e+03 5.64720000e+03 2.32150000e+03 1.14310000e+03 3.58510000e+02 3.49150000e+02 3.03470000e+02 1.15330000e+02 2.85790000e+01 1.04310000e+01 4.73890000e+00 2.48030000e+00 8.91750000e-01 4.04340000e-01 9.77910000e-02 3.66240000e-02 9.69930000e-03 3.98500000e-03 2.07430000e-03 1.25450000e-03 5.95770000e-04 3.50820000e-04 1.48180000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.95720000e+05 3.32690000e+05 3.30790000e+05 2.71200000e+05 2.65630000e+05 2.36980000e+05 7.90660000e+04 3.47100000e+04 1.78910000e+04 1.02630000e+04 4.16640000e+03 2.02990000e+03 6.25200000e+02 6.08620000e+02 5.27790000e+02 1.97280000e+02 4.75870000e+01 1.69900000e+01 7.57280000e+00 3.89710000e+00 1.36090000e+00 6.02150000e-01 1.38990000e-01 5.04140000e-02 1.28980000e-02 5.24800000e-03 2.74390000e-03 1.66860000e-03 8.17820000e-04 4.95410000e-04 2.23380000e-04] M3 = [ 1.10580000e+05 4.87550000e+04 3.84190000e+04 3.77400000e+04 3.57260000e+04 3.50880000e+04 2.86870000e+04 2.81620000e+04 2.54710000e+04 9.36280000e+03 4.35650000e+03 2.33940000e+03 1.38370000e+03 5.86360000e+02 2.94040000e+02 9.40430000e+01 9.16170000e+01 7.97510000e+01 3.05000000e+01 7.54640000e+00 2.73280000e+00 1.22910000e+00 6.36490000e-01 2.24090000e-01 9.95200000e-02 2.31380000e-02 8.42400000e-03 2.16330000e-03 8.81430000e-04 4.60860000e-04 2.81140000e-04 1.37740000e-04 8.35820000e-05 3.75890000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.47980000e+04 6.42830000e+04 3.30710000e+04 1.95220000e+04 1.25960000e+04 8.65950000e+03 4.66260000e+03 2.81930000e+03 1.21830000e+03 1.19500000e+03 1.07830000e+03 5.27000000e+02 1.83890000e+02 8.46670000e+01 4.57130000e+01 2.73910000e+01 1.20430000e+01 6.30740000e+00 1.92380000e+00 8.28160000e-01 2.57920000e-01 1.16560000e-01 6.48560000e-02 4.11580000e-02 2.11170000e-02 1.31520000e-02 6.10520000e-03] JK = 6.91147540984 M1 = [ 4.33770000e+04 2.19970000e+04 1.81640000e+04 1.79080000e+04 1.71440000e+04 1.69000000e+04 1.44140000e+04 1.42050000e+04 1.31270000e+04 6.06780000e+03 3.40320000e+03 2.13670000e+03 1.44510000e+03 7.64460000e+02 4.58630000e+02 1.96980000e+02 1.93190000e+02 1.74260000e+02 8.50670000e+01 2.97190000e+01 1.37130000e+01 7.41860000e+00 4.45250000e+00 1.96250000e+00 1.02980000e+00 3.14740000e-01 1.35710000e-01 4.23410000e-02 1.91510000e-02 1.06610000e-02 6.76630000e-03 3.47190000e-03 2.16240000e-03 1.00360000e-03] all other = [ 2.05490000e+04 9.23100000e+03 7.35460000e+03 7.23140000e+03 6.86590000e+03 6.75020000e+03 5.58770000e+03 5.49180000e+03 4.99890000e+03 1.99190000e+03 1.00130000e+03 5.77220000e+02 3.64100000e+02 1.73710000e+02 9.66020000e+01 3.72660000e+01 3.64670000e+01 3.25080000e+01 1.47400000e+01 4.73040000e+00 2.08120000e+00 1.09200000e+00 6.41590000e-01 2.75070000e-01 1.41880000e-01 4.23930000e-02 1.80650000e-02 5.57090000e-03 2.50550000e-03 1.39010000e-03 8.80370000e-04 4.50540000e-04 2.80190000e-04 1.29890000e-04] total = [ 3.96300000e+05 1.51310000e+05 1.16130000e+05 5.09600000e+05 4.39930000e+05 6.24640000e+05 4.97200000e+05 5.52080000e+05 5.00130000e+05 1.80970000e+05 8.55430000e+04 4.71910000e+04 2.88210000e+04 1.30950000e+04 7.04430000e+03 2.59250000e+03 1.79180000e+04 1.60760000e+04 7.59860000e+03 2.50240000e+03 1.11170000e+03 5.85420000e+02 3.44300000e+02 1.47490000e+02 7.59300000e+01 2.25760000e+01 9.58500000e+00 2.94310000e+00 1.32120000e+00 7.32640000e-01 4.64080000e-01 2.37780000e-01 1.48070000e-01 6.87880000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.53830000e+04 1.38280000e+04 6.60890000e+03 2.19550000e+03 9.79320000e+02 5.16850000e+02 3.04380000e+02 1.30590000e+02 6.72770000e+01 2.00190000e+01 8.50130000e+00 2.61090000e+00 1.17220000e+00 6.50100000e-01 4.11860000e-01 2.11090000e-01 1.31490000e-01 6.11150000e-02] [Kr.binding] K = 14.28 L1 = 1.9024 M5 = 0.0939 M4 = 0.0953 M1 = 0.2782 L3 = 1.6733 M3 = 0.2069 M2 = 0.2152 L2 = 1.7284 [Si] energy = [ 1.00000000e+00 1.50000000e+00 1.82670000e+00 1.84130000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.20220000e+02 6.29360000e+01 3.34080000e+01 3.25550000e+01 2.48580000e+01 6.34030000e+00 2.32220000e+00 1.04690000e+00 5.39960000e-01 1.86320000e-01 8.03770000e-02 1.69120000e-02 5.49200000e-03 1.10870000e-03 3.54780000e-04 1.46700000e-04 7.14070000e-05 2.30980000e-05 9.71460000e-06 2.08120000e-06 7.24250000e-07 1.75570000e-07 6.85160000e-08 3.44530000e-08 2.02940000e-08 9.31130000e-09 5.37430000e-09 2.21890000e-09] M = [ 3.30100000e+03 1.26540000e+03 7.82540000e+02 7.67310000e+02 6.25450000e+02 2.22980000e+02 1.04430000e+02 5.71620000e+01 3.46230000e+01 1.54150000e+01 8.12880000e+00 2.46960000e+00 1.03890000e+00 2.99070000e-01 1.21800000e-01 6.02560000e-02 3.37770000e-02 1.34830000e-02 6.59840000e-03 1.80590000e-03 7.28110000e-04 2.10040000e-04 9.09830000e-05 4.93700000e-05 3.08660000e-05 1.56330000e-05 9.72600000e-06 4.58670000e-06] L = [ 6.98000000e+04 2.36010000e+04 1.37990000e+04 1.35010000e+04 1.07570000e+04 3.47830000e+03 1.53940000e+03 8.11690000e+02 4.78670000e+02 2.06020000e+02 1.06210000e+02 3.12510000e+01 1.29260000e+01 3.65680000e+00 1.47590000e+00 7.26120000e-01 4.05490000e-01 1.61170000e-01 7.86600000e-02 2.14520000e-02 8.63440000e-03 2.48710000e-03 1.07650000e-03 5.83900000e-04 3.64860000e-04 1.84640000e-04 1.14750000e-04 5.38590000e-05] L2 = [ 1.31490000e+04 3.65990000e+03 1.92080000e+03 1.87070000e+03 1.42070000e+03 3.56050000e+02 1.29240000e+02 5.79140000e+01 2.97500000e+01 1.02110000e+01 4.38990000e+00 9.19070000e-01 2.97550000e-01 5.98750000e-02 1.91180000e-02 7.89280000e-03 3.85480000e-03 1.24620000e-03 5.24250000e-04 1.12470000e-04 3.91610000e-05 9.52690000e-06 3.72390000e-06 1.87490000e-06 1.10800000e-06 5.09890000e-07 2.96480000e-07 1.22020000e-07] L3 = [ 2.58490000e+04 7.17430000e+03 3.75940000e+03 3.66110000e+03 2.77860000e+03 6.93800000e+02 2.51080000e+02 1.12220000e+02 5.75140000e+01 1.96570000e+01 8.41680000e+00 1.74670000e+00 5.61300000e-01 1.11400000e-01 3.51590000e-02 1.43650000e-02 6.91160000e-03 2.19520000e-03 9.08790000e-04 1.89110000e-04 6.46330000e-05 1.55000000e-05 6.11730000e-06 3.15640000e-06 1.90470000e-06 9.34490000e-07 5.65660000e-07 2.58960000e-07] M3 = [ 4.32960000e+02 1.23380000e+02 6.53860000e+01 6.37110000e+01 4.86160000e+01 1.23260000e+01 4.50130000e+00 2.02350000e+00 1.04110000e+00 3.57690000e-01 1.53700000e-01 3.20630000e-02 1.03310000e-02 2.05610000e-03 6.49950000e-04 2.65740000e-04 1.28100000e-04 4.07050000e-05 1.68570000e-05 3.51260000e-06 1.20100000e-06 2.88650000e-07 1.14020000e-07 5.88620000e-08 3.56920000e-08 1.75690000e-08 1.07990000e-08 5.09730000e-09] L1 = [ 3.08010000e+04 1.27660000e+04 8.11890000e+03 7.96900000e+03 6.55750000e+03 2.42850000e+03 1.15910000e+03 6.41550000e+02 3.91410000e+02 1.76150000e+02 9.34080000e+01 2.85850000e+01 1.20670000e+01 3.48550000e+00 1.42160000e+00 7.03860000e-01 3.94730000e-01 1.57730000e-01 7.72270000e-02 2.11510000e-02 8.53060000e-03 2.46210000e-03 1.06670000e-03 5.78860000e-04 3.61850000e-04 1.83190000e-04 1.13880000e-04 5.34780000e-05] JK = 10.1831024551 M1 = [ 2.64780000e+03 1.07910000e+03 6.83740000e+02 6.71050000e+02 5.51970000e+02 2.04310000e+02 9.76070000e+01 5.40920000e+01 3.30420000e+01 1.48710000e+01 7.89470000e+00 2.42060000e+00 1.02310000e+00 2.95910000e-01 1.20800000e-01 5.98430000e-02 3.35780000e-02 1.34200000e-02 6.57180000e-03 1.80030000e-03 7.26180000e-04 2.09580000e-04 9.08000000e-05 4.92770000e-05 3.08100000e-05 1.56070000e-05 9.70980000e-06 4.57930000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 7.31010000e+04 2.48660000e+04 1.45820000e+04 1.48490000e+05 1.29420000e+05 4.55480000e+04 2.10540000e+04 1.13690000e+04 6.80220000e+03 2.97440000e+03 1.54640000e+03 4.59340000e+02 1.90750000e+02 5.41310000e+01 2.18680000e+01 1.07610000e+01 6.00990000e+00 2.38730000e+00 1.16470000e+00 3.17400000e-01 1.27690000e-01 3.67530000e-02 1.59030000e-02 8.62350000e-03 5.39350000e-03 2.73020000e-03 1.69730000e-03 7.96920000e-04] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.34220000e+05 1.18030000e+05 4.18470000e+04 1.94100000e+04 1.05000000e+04 6.28890000e+03 2.75300000e+03 1.43210000e+03 4.25620000e+02 1.76790000e+02 5.01750000e+01 2.02710000e+01 9.97490000e+00 5.57060000e+00 2.21260000e+00 1.07940000e+00 2.94140000e-01 1.18320000e-01 3.40560000e-02 1.47350000e-02 7.99020000e-03 4.99780000e-03 2.52990000e-03 1.57280000e-03 7.38480000e-04] [Si.binding] K = 1.8285 L1 = 0.1516 M1 = 0.0136 L3 = 0.108 M3 = 0.0065 M2 = 0.0066 L2 = 0.1087 [Sn] JL1 = 1.1286954724 JL3 = 3.02548349271 JL2 = 1.33063932449 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.92270000e+00 3.95410000e+00 4.00000000e+00 4.15690000e+00 4.19010000e+00 4.43620000e+00 4.47170000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.91560000e+01 2.93900000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.05870000e+05 6.15930000e+04 3.76650000e+04 1.69080000e+04 9.38860000e+03 9.21980000e+03 8.98030000e+03 8.22060000e+03 8.07030000e+03 7.06490000e+03 6.93390000e+03 5.31580000e+03 3.39510000e+03 1.61760000e+03 8.85700000e+02 2.80300000e+02 1.19160000e+02 3.72330000e+01 3.63100000e+01 3.40360000e+01 1.36020000e+01 6.59490000e+00 3.62810000e+00 1.40290000e+00 6.69760000e-01 1.75980000e-01 6.93230000e-02 1.95210000e-02 8.30690000e-03 4.42540000e-03 2.71140000e-03 1.31300000e-03 7.82780000e-04 3.35720000e-04] M = [ 1.40920000e+06 5.64040000e+05 2.82520000e+05 1.02680000e+05 5.15930000e+04 5.05380000e+04 4.90480000e+04 4.43820000e+04 4.34710000e+04 3.74610000e+04 3.66890000e+04 2.73780000e+04 1.69070000e+04 7.82670000e+03 4.27280000e+03 1.40040000e+03 6.27880000e+02 2.16880000e+02 2.12020000e+02 2.00010000e+02 8.80400000e+01 4.63720000e+01 2.73900000e+01 1.18830000e+01 6.20070000e+00 1.89980000e+00 8.25520000e-01 2.61640000e-01 1.19660000e-01 6.70960000e-02 4.27670000e-02 2.19920000e-02 1.36650000e-02 6.26640000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.23870000e+05 1.26500000e+05 1.13660000e+05 1.69540000e+05 1.49420000e+05 1.75220000e+05 1.33780000e+05 8.35470000e+04 3.93400000e+04 2.16600000e+04 7.15750000e+03 3.21660000e+03 1.11240000e+03 1.08760000e+03 1.02600000e+03 4.51790000e+02 2.37980000e+02 1.40560000e+02 6.09560000e+01 3.17950000e+01 9.73220000e+00 4.22600000e+00 1.33820000e+00 6.12040000e-01 3.43180000e-01 2.18760000e-01 1.12530000e-01 6.99410000e-02 3.20980000e-02] M5 = [ 5.90690000e+05 1.96710000e+05 8.40670000e+04 2.33590000e+04 9.52240000e+03 9.26650000e+03 8.90790000e+03 7.80580000e+03 7.59420000e+03 6.23260000e+03 6.06210000e+03 4.09810000e+03 2.13480000e+03 7.38710000e+02 3.15880000e+02 6.40220000e+01 1.99080000e+01 4.14780000e+00 4.01080000e+00 3.67830000e+00 1.08580000e+00 4.18570000e-01 1.91850000e-01 5.61570000e-02 2.18140000e-02 4.04220000e-03 1.27650000e-03 2.74890000e-04 1.00860000e-04 4.88380000e-05 2.82570000e-05 1.30880000e-05 7.40340000e-06 3.16450000e-06] M4 = [ 4.04980000e+05 1.36290000e+05 5.86160000e+04 1.64450000e+04 6.74940000e+03 6.56940000e+03 6.31700000e+03 5.54130000e+03 5.39220000e+03 4.43220000e+03 4.31190000e+03 2.92400000e+03 1.53120000e+03 5.34690000e+02 2.30440000e+02 4.74690000e+01 1.49600000e+01 3.18150000e+00 3.07790000e+00 2.82610000e+00 8.49650000e-01 3.32650000e-01 1.54510000e-01 4.62210000e-02 1.82580000e-02 3.47430000e-03 1.10910000e-03 2.38840000e-04 8.56090000e-05 4.04630000e-05 2.26060000e-05 9.49520000e-06 5.28960000e-06 1.93630000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.81860000e+04 5.26590000e+04 5.16680000e+04 3.92900000e+04 2.38940000e+04 1.06810000e+04 5.59440000e+03 1.65230000e+03 6.74620000e+02 2.01730000e+02 1.96580000e+02 1.83880000e+02 7.16010000e+01 3.41390000e+01 1.85620000e+01 7.06570000e+00 3.33970000e+00 8.65350000e-01 3.38440000e-01 9.44900000e-02 4.00430000e-02 2.12770000e-02 1.30160000e-02 6.29300000e-03 3.74240000e-03 1.60820000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.23870000e+05 1.26500000e+05 1.13660000e+05 1.11350000e+05 9.67610000e+04 9.48530000e+04 7.05250000e+04 4.21770000e+04 1.84200000e+04 9.46660000e+03 2.70010000e+03 1.07370000e+03 3.09650000e+02 3.01500000e+02 2.81440000e+02 1.06250000e+02 4.93670000e+01 2.62420000e+01 9.61640000e+00 4.40460000e+00 1.07500000e+00 4.03270000e-01 1.07110000e-01 4.43670000e-02 2.33970000e-02 1.43250000e-02 7.01850000e-03 4.23330000e-03 1.88320000e-03] M3 = [ 2.31110000e+05 1.25560000e+05 7.41860000e+04 3.19900000e+04 1.73540000e+04 1.70300000e+04 1.65710000e+04 1.51190000e+04 1.48330000e+04 1.29270000e+04 1.26800000e+04 9.63070000e+03 6.06220000e+03 2.82270000e+03 1.51770000e+03 4.64100000e+02 1.92230000e+02 5.78780000e+01 5.63980000e+01 5.27530000e+01 2.04310000e+01 9.64900000e+00 5.18850000e+00 1.93050000e+00 8.92890000e-01 2.20950000e-01 8.34840000e-02 2.23030000e-02 9.26820000e-03 4.89420000e-03 2.99910000e-03 1.47190000e-03 8.89580000e-04 3.95880000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.86960000e+04 2.39690000e+04 1.74760000e+04 1.02390000e+04 6.59910000e+03 2.80510000e+03 1.46830000e+03 6.01050000e+02 5.89500000e+02 5.60710000e+02 2.73930000e+02 1.54470000e+02 9.57520000e+01 4.42740000e+01 2.40500000e+01 7.79180000e+00 3.48430000e+00 1.13660000e+00 5.27630000e-01 2.98500000e-01 1.91420000e-01 9.92150000e-02 6.19660000e-02 2.86060000e-02] JK = 6.05429403202 M1 = [ 7.65010000e+04 4.38910000e+04 2.79830000e+04 1.39820000e+04 8.57820000e+03 8.45180000e+03 8.27170000e+03 7.69540000e+03 7.58050000e+03 6.80360000e+03 6.70120000e+03 5.40980000e+03 3.78390000e+03 2.11300000e+03 1.32310000e+03 5.44460000e+02 2.81630000e+02 1.14440000e+02 1.12220000e+02 1.06720000e+02 5.20710000e+01 2.93770000e+01 1.82270000e+01 8.44680000e+00 4.59800000e+00 1.49540000e+00 6.70330000e-01 2.19310000e-01 1.01890000e-01 5.76870000e-02 3.70050000e-02 1.91850000e-02 1.19800000e-02 5.52970000e-03] all other = [ 1.97250000e+05 8.42330000e+04 4.43100000e+04 1.71760000e+04 8.95580000e+03 8.78160000e+03 8.53520000e+03 7.76120000e+03 7.60940000e+03 6.60350000e+03 6.47360000e+03 4.89370000e+03 3.08200000e+03 1.46820000e+03 8.17990000e+02 2.76970000e+02 1.26630000e+02 4.47310000e+01 4.37490000e+01 4.13160000e+01 1.84520000e+01 9.81190000e+00 5.83760000e+00 2.55660000e+00 1.34260000e+00 4.15120000e-01 1.81270000e-01 5.77420000e-02 2.64860000e-02 1.48740000e-02 9.49070000e-03 4.88640000e-03 3.03870000e-03 1.39520000e-03] total = [ 1.60640000e+06 6.48270000e+05 3.26830000e+05 1.19860000e+05 6.05490000e+04 1.83190000e+05 1.84080000e+05 1.65800000e+05 2.20620000e+05 1.93480000e+05 2.18380000e+05 1.66060000e+05 1.03540000e+05 4.86350000e+04 2.67510000e+04 8.83490000e+03 3.97110000e+03 1.37400000e+03 8.31860000e+03 7.96750000e+03 3.71860000e+03 2.02500000e+03 1.22480000e+03 5.46000000e+02 2.89060000e+02 8.99670000e+01 3.93250000e+01 1.25230000e+01 5.74580000e+00 3.23100000e+00 2.06510000e+00 1.06760000e+00 6.66430000e-01 3.08060000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.97520000e+03 6.70010000e+03 3.16030000e+03 1.73080000e+03 1.05100000e+03 4.70600000e+02 2.49720000e+02 7.79200000e+01 3.40920000e+01 1.08650000e+01 4.98760000e+00 2.80580000e+00 1.79410000e+00 9.28220000e-01 5.79790000e-01 2.68300000e-01] [Sn.binding] K = 29.1857 L1 = 4.4406 M5 = 0.4945 M4 = 0.5035 M1 = 0.8692 L3 = 3.9266 M3 = 0.7103 M2 = 0.7535 L2 = 4.161 [Sm] JL1 = 1.13144454081 JL3 = 2.72997800492 JL2 = 1.34035812512 energy = [ 1.00000000e+00 1.08450000e+00 1.09320000e+00 1.11180000e+00 1.12070000e+00 1.40630000e+00 1.41760000e+00 1.50000000e+00 1.53070000e+00 1.54300000e+00 1.69890000e+00 1.71250000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 6.70100000e+00 6.75460000e+00 7.31120000e+00 7.36980000e+00 7.69580000e+00 7.75740000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.68360000e+01 4.72110000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.5097288289 M5 = [ 0.00000000e+00 0.00000000e+00 5.16630000e+05 1.09100000e+06 1.12720000e+06 6.33120000e+05 6.20610000e+05 5.38130000e+05 5.11030000e+05 5.00700000e+05 3.93170000e+05 3.85190000e+05 2.53480000e+05 7.80350000e+04 3.18550000e+04 1.54350000e+04 8.37730000e+03 5.73860000e+03 5.58250000e+03 4.23940000e+03 4.12300000e+03 3.54240000e+03 3.44440000e+03 3.08960000e+03 1.38850000e+03 3.07390000e+02 1.01310000e+02 2.02140000e+01 6.27560000e+00 3.28200000e+00 3.17590000e+00 2.50650000e+00 1.17910000e+00 3.58320000e-01 1.42800000e-01 2.76180000e-02 8.94470000e-03 1.98370000e-03 7.33210000e-04 3.61430000e-04 2.09530000e-04 9.45640000e-05 5.50790000e-05 2.23550000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.26650000e+05 4.37510000e+05 4.29000000e+05 3.72800000e+05 3.54300000e+05 3.47250000e+05 2.73400000e+05 2.67870000e+05 1.77770000e+05 5.54970000e+04 2.28950000e+04 1.11860000e+04 6.11460000e+03 4.20760000e+03 4.09460000e+03 3.11950000e+03 3.03480000e+03 2.61250000e+03 2.54110000e+03 2.28250000e+03 1.03610000e+03 2.34130000e+02 7.84560000e+01 1.60780000e+01 5.10070000e+00 2.70180000e+00 2.61620000e+00 2.07470000e+00 9.91520000e-01 3.09200000e-01 1.25730000e-01 2.51300000e-02 8.27070000e-03 1.83840000e-03 6.70750000e-04 3.20630000e-04 1.80440000e-04 7.81590000e-05 4.22840000e-05 1.66430000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.72230000e+04 3.91180000e+04 2.13730000e+04 1.32730000e+04 8.96820000e+03 6.42590000e+03 5.22490000e+03 5.14640000e+03 4.42600000e+03 4.35900000e+03 4.01140000e+03 3.95010000e+03 3.72110000e+03 2.39460000e+03 1.03770000e+03 5.57530000e+02 2.23070000e+02 1.13180000e+02 7.72480000e+01 7.57570000e+01 6.58100000e+01 4.18360000e+01 2.01260000e+01 1.12660000e+01 3.84370000e+00 1.77800000e+00 6.05090000e-01 2.88030000e-01 1.65570000e-01 1.07210000e-01 5.61470000e-02 3.51710000e-02 1.61810000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.02760000e+05 1.86990000e+05 1.82980000e+05 1.81280000e+05 1.57940000e+05 1.55980000e+05 1.21720000e+05 5.97290000e+04 3.33320000e+04 2.04500000e+04 1.34330000e+04 1.03200000e+04 1.01230000e+04 8.34630000e+03 8.18420000e+03 7.35260000e+03 7.20790000e+03 6.67330000e+03 3.76740000e+03 1.25540000e+03 5.51010000e+02 1.63230000e+02 6.65070000e+01 4.02230000e+01 3.92070000e+01 3.25960000e+01 1.80380000e+01 7.00100000e+00 3.33680000e+00 8.66810000e-01 3.37190000e-01 9.31560000e-02 3.93420000e-02 2.09210000e-02 1.28660000e-02 6.31280000e-03 3.80220000e-03 1.67350000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.69620000e+04 6.94070000e+04 6.88030000e+04 5.59530000e+04 2.98990000e+04 1.75140000e+04 1.11100000e+04 7.48600000e+03 5.83960000e+03 5.73420000e+03 4.77460000e+03 4.68650000e+03 4.23420000e+03 4.15550000e+03 3.86350000e+03 2.24360000e+03 7.86790000e+02 3.58350000e+02 1.12150000e+02 4.76340000e+01 2.95050000e+01 2.87950000e+01 2.41550000e+01 1.37610000e+01 5.60550000e+00 2.77890000e+00 7.77230000e-01 3.18400000e-01 9.38580000e-02 4.10320000e-02 2.22600000e-02 1.38290000e-02 6.81940000e-03 4.10290000e-03 1.78480000e-03] total = [ 5.23560000e+05 4.50470000e+05 9.60390000e+05 1.52090000e+06 1.87720000e+06 1.34170000e+06 1.51910000e+06 1.33550000e+06 1.27620000e+06 1.33030000e+06 1.07710000e+06 1.10520000e+06 7.76950000e+05 2.96080000e+05 1.44950000e+05 8.23090000e+04 5.14870000e+04 3.86450000e+04 1.05500000e+05 8.61710000e+04 1.15500000e+05 1.03770000e+05 1.17410000e+05 1.08840000e+05 6.15420000e+04 2.09830000e+04 9.63270000e+03 3.15280000e+03 1.41200000e+03 9.06070000e+02 4.99220000e+03 4.29690000e+03 2.65670000e+03 1.22410000e+03 6.63580000e+02 2.14490000e+02 9.60090000e+01 3.15130000e+01 1.47340000e+01 8.38950000e+00 5.40670000e+00 2.81990000e+00 1.76520000e+00 8.13560000e-01] JM2 = 1.04239147469 JM3 = 1.13222031751 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.10630000e+03 3.54340000e+03 2.20690000e+03 1.02560000e+03 5.58630000e+02 1.81520000e+02 8.14230000e+01 2.67750000e+01 1.25330000e+01 7.14210000e+00 4.60640000e+00 2.40580000e+00 1.50760000e+00 6.96020000e-01] JM1 = 1.02608857116 M = [ 0.00000000e+00 0.00000000e+00 5.16630000e+05 1.09100000e+06 1.45380000e+06 1.07060000e+06 1.25240000e+06 1.09790000e+06 1.04830000e+06 1.10620000e+06 8.93910000e+05 9.25060000e+05 6.48050000e+05 2.44530000e+05 1.18870000e+05 6.71490000e+04 4.18360000e+04 3.13300000e+04 3.06800000e+04 2.49060000e+04 2.43880000e+04 2.17530000e+04 2.12990000e+04 1.96300000e+04 1.08300000e+04 3.62140000e+03 1.64670000e+03 5.34740000e+02 2.38700000e+02 1.52960000e+02 1.49550000e+02 1.27140000e+02 7.58060000e+01 3.34000000e+01 1.76500000e+01 5.54050000e+00 2.45080000e+00 7.95930000e-01 3.69810000e-01 2.09430000e-01 1.34290000e-01 6.94520000e-02 4.31730000e-02 1.96790000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.76500000e+04 5.53980000e+04 8.53590000e+04 7.68650000e+04 9.10620000e+04 8.45420000e+04 4.80870000e+04 1.64580000e+04 7.56760000e+03 2.47920000e+03 1.11060000e+03 7.12710000e+02 6.96850000e+02 5.92710000e+02 3.53810000e+02 1.56090000e+02 8.25380000e+01 2.59230000e+01 1.14670000e+01 3.72400000e+00 1.73050000e+00 9.80450000e-01 6.29000000e-01 3.25540000e-01 2.02530000e-01 9.24340000e-02] JM4 = 1.23426918272 JM5 = 2.13197327236 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.11300000e+04 2.83670000e+04 2.77220000e+04 2.55230000e+04 1.43530000e+04 4.59510000e+03 1.98260000e+03 5.82750000e+02 2.38670000e+02 1.45270000e+02 1.41650000e+02 1.18110000e+02 6.61420000e+01 2.63290000e+01 1.28610000e+01 3.52190000e+00 1.42680000e+00 4.15810000e-01 1.80780000e-01 9.77790000e-02 6.05270000e-02 2.97600000e-02 1.78690000e-02 7.78200000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.76500000e+04 5.53980000e+04 5.42290000e+04 4.84980000e+04 4.75170000e+04 4.38750000e+04 2.34470000e+04 7.13930000e+03 2.97170000e+03 8.26770000e+02 3.24880000e+02 1.93150000e+02 1.88120000e+02 1.55510000e+02 8.46130000e+01 3.21160000e+01 1.50910000e+01 3.84150000e+00 1.47850000e+00 4.04030000e-01 1.69720000e-01 9.01680000e-02 5.53450000e-02 2.71170000e-02 1.63420000e-02 7.15510000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.58230000e+04 1.51440000e+04 1.02870000e+04 4.72340000e+03 2.61330000e+03 1.06970000e+03 5.47080000e+02 3.74290000e+02 3.67090000e+02 3.19080000e+02 2.03060000e+02 9.76440000e+01 5.45870000e+01 1.85600000e+01 8.56190000e+00 2.90410000e+00 1.38000000e+00 7.92510000e-01 5.13130000e-01 2.68660000e-01 1.68320000e-01 7.74970000e-02] all other = [ 5.23560000e+05 4.50470000e+05 4.43760000e+05 4.29860000e+05 4.23410000e+05 2.71070000e+05 2.66720000e+05 2.37600000e+05 2.27860000e+05 2.24130000e+05 1.83180000e+05 1.80110000e+05 1.28910000e+05 5.15430000e+04 2.60830000e+04 1.51600000e+04 9.65060000e+03 7.31430000e+03 7.16870000e+03 5.86730000e+03 5.74970000e+03 5.15010000e+03 5.04650000e+03 4.66510000e+03 2.62520000e+03 9.04290000e+02 4.18470000e+02 1.38790000e+02 6.26920000e+01 4.04030000e+01 3.95130000e+01 3.36570000e+01 2.01820000e+01 8.96140000e+00 4.76010000e+00 1.50560000e+00 6.68380000e-01 2.18000000e-01 1.01510000e-01 5.75690000e-02 3.69490000e-02 1.91270000e-02 1.18970000e-02 5.42650000e-03] [Sm.binding] K = 46.8832 L1 = 7.7035 M5 = 1.0856 M4 = 1.1129 M1 = 1.7006 L3 = 6.7077 M3 = 1.4077 M2 = 1.5322 L2 = 7.3185 [V] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.43420000e+00 5.47770000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.28700000e+04 4.51260000e+03 2.04500000e+03 6.26650000e+02 2.58510000e+02 1.27000000e+02 9.69440000e+01 9.44560000e+01 7.00830000e+01 2.68010000e+01 1.24790000e+01 2.98970000e+00 1.05620000e+00 2.37240000e-01 8.09370000e-02 3.49750000e-02 1.75980000e-02 5.96970000e-03 2.59670000e-03 5.87460000e-04 2.11300000e-04 5.33450000e-05 2.13230000e-05 1.09040000e-05 6.48610000e-06 3.02810000e-06 1.76340000e-06 7.33350000e-07] M = [ 5.56880000e+04 2.08630000e+04 1.01190000e+04 3.52540000e+03 1.63170000e+03 8.88110000e+02 7.06280000e+02 6.90920000e+02 5.37120000e+02 2.40640000e+02 1.28070000e+02 3.99590000e+01 1.72390000e+01 5.17090000e+00 2.16900000e+00 1.09850000e+00 6.27510000e-01 2.57830000e-01 1.28910000e-01 3.65710000e-02 1.50830000e-02 4.47110000e-03 1.96620000e-03 1.07620000e-03 6.76150000e-04 3.43580000e-04 2.13510000e-04 9.96340000e-05] L = [ 4.92230000e+05 1.76410000e+05 8.28650000e+04 2.77820000e+04 1.25930000e+04 6.76710000e+03 5.35950000e+03 5.24090000e+03 4.05700000e+03 1.79560000e+03 9.47620000e+02 2.92000000e+02 1.25130000e+02 3.72530000e+01 1.55770000e+01 7.86840000e+00 4.48670000e+00 1.83910000e+00 9.18080000e-01 2.59890000e-01 1.07050000e-01 3.17120000e-02 1.39390000e-02 7.62840000e-03 4.79180000e-03 2.43480000e-03 1.51280000e-03 7.05790000e-04] M5 = [ 1.08030000e+03 2.42640000e+02 8.01260000e+01 1.56160000e+01 4.67240000e+00 1.78980000e+00 1.25100000e+00 1.20880000e+00 8.15940000e-01 2.32600000e-01 8.61130000e-02 1.35360000e-02 3.57690000e-03 5.40190000e-04 1.40210000e-04 4.92370000e-05 2.09870000e-05 5.50790000e-06 1.98500000e-06 3.26260000e-07 9.65070000e-08 1.93730000e-08 6.91820000e-09 3.30500000e-09 1.93100000e-09 8.81270000e-10 5.16440000e-10 2.31940000e-10] M4 = [ 7.32720000e+02 1.64890000e+02 5.45490000e+01 1.06720000e+01 3.20060000e+00 1.23600000e+00 8.64880000e-01 8.35760000e-01 5.64730000e-01 1.61640000e-01 6.00830000e-02 9.52550000e-03 2.53640000e-03 3.88150000e-04 1.01860000e-04 3.60990000e-05 1.55130000e-05 4.13470000e-06 1.50270000e-06 2.51500000e-07 7.43030000e-08 1.46590000e-08 4.96590000e-09 2.27860000e-09 1.23460000e-09 5.08700000e-10 2.74300000e-10 1.11240000e-10] L2 = [ 1.34010000e+05 4.37570000e+04 1.89040000e+04 5.47680000e+03 2.19100000e+03 1.05620000e+03 8.01160000e+02 7.80150000e+02 5.75100000e+02 2.15790000e+02 9.91650000e+01 2.33270000e+01 8.16690000e+00 1.81350000e+00 6.15170000e-01 2.64830000e-01 1.32920000e-01 4.49300000e-02 1.95000000e-02 4.39620000e-03 1.57720000e-03 3.99220000e-04 1.59510000e-04 8.16350000e-05 4.86320000e-05 2.26520000e-05 1.32350000e-05 5.50030000e-06] L3 = [ 2.61380000e+05 8.47240000e+04 3.64280000e+04 1.04780000e+04 4.16850000e+03 2.00040000e+03 1.51460000e+03 1.47460000e+03 1.08480000e+03 4.04240000e+02 1.84650000e+02 4.28820000e+01 1.48510000e+01 3.23750000e+00 1.08100000e+00 4.58850000e-01 2.27390000e-01 7.51680000e-02 3.20140000e-02 6.96630000e-03 2.44370000e-03 6.02340000e-04 2.40790000e-04 1.24620000e-04 7.55920000e-05 3.70830000e-05 2.24870000e-05 1.02680000e-05] M3 = [ 2.51060000e+04 8.74460000e+03 3.94380000e+03 1.19980000e+03 4.92230000e+02 2.40690000e+02 1.83380000e+02 1.78640000e+02 1.32270000e+02 5.02250000e+01 2.32430000e+01 5.49790000e+00 1.92230000e+00 4.22720000e-01 1.41950000e-01 6.04690000e-02 3.00450000e-02 9.96260000e-03 4.25180000e-03 9.27750000e-04 3.25770000e-04 8.05190000e-05 3.22050000e-05 1.66840000e-05 1.01450000e-05 4.95900000e-06 3.01830000e-06 1.37450000e-06] L1 = [ 9.68430000e+04 4.79310000e+04 2.75340000e+04 1.18270000e+04 6.23310000e+03 3.71050000e+03 3.04380000e+03 2.98620000e+03 2.39710000e+03 1.17560000e+03 6.63800000e+02 2.25790000e+02 1.02110000e+02 3.22020000e+01 1.38800000e+01 7.14480000e+00 4.12640000e+00 1.71900000e+00 8.66570000e-01 2.48530000e-01 1.03030000e-01 3.07100000e-02 1.35390000e-02 7.42210000e-03 4.66760000e-03 2.37500000e-03 1.47710000e-03 6.90020000e-04] JK = 8.07564872224 M1 = [ 1.59000000e+04 7.19870000e+03 3.99520000e+03 1.67260000e+03 8.73140000e+02 5.17390000e+02 4.23840000e+02 4.15770000e+02 3.33390000e+02 1.63220000e+02 9.22030000e+01 3.14490000e+01 1.42550000e+01 4.51000000e+00 1.94590000e+00 1.00300000e+00 5.79830000e-01 2.41890000e-01 1.22050000e-01 3.50550000e-02 1.45450000e-02 4.33720000e-03 1.91260000e-03 1.04870000e-03 6.59510000e-04 3.35590000e-04 2.08730000e-04 9.75260000e-05] all other = [ 1.17460000e+03 5.26510000e+02 2.90910000e+02 1.21870000e+02 6.35390000e+01 3.76290000e+01 3.08200000e+01 3.02330000e+01 2.42390000e+01 1.18630000e+01 6.70130000e+00 2.28580000e+00 1.03610000e+00 3.27820000e-01 1.41600000e-01 7.29970000e-02 4.22050000e-02 1.76090000e-02 8.88590000e-03 2.55230000e-03 1.05910000e-03 3.15840000e-04 1.39320000e-04 7.64210000e-05 4.80940000e-05 2.45250000e-05 1.53000000e-05 7.24070000e-06] total = [ 5.49090000e+05 1.97800000e+05 9.32750000e+04 3.14290000e+04 1.42880000e+04 7.69290000e+03 6.09660000e+03 4.92340000e+04 3.95090000e+04 1.86410000e+04 1.02140000e+04 3.30870000e+03 1.45050000e+03 4.40570000e+02 1.85790000e+02 9.42730000e+01 5.39000000e+01 2.21560000e+01 1.10750000e+01 3.13850000e+00 1.29310000e+00 3.82850000e-01 1.68270000e-01 9.21050000e-02 5.78750000e-02 2.94300000e-02 1.83030000e-02 8.55540000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.32720000e+04 3.48910000e+04 1.65930000e+04 9.13140000e+03 2.97440000e+03 1.30710000e+03 3.97820000e+02 1.67900000e+02 8.52330000e+01 4.87440000e+01 2.00410000e+01 1.00190000e+01 2.83950000e+00 1.16990000e+00 3.46350000e-01 1.52230000e-01 8.33240000e-02 5.23590000e-02 2.66270000e-02 1.65620000e-02 7.74270000e-03] [V.binding] K = 5.4397 L1 = 0.6238 M5 = 0.0095 M4 = 0.0096 M1 = 0.0764 L3 = 0.5245 M3 = 0.0498 M2 = 0.0507 L2 = 0.5319 [Sc] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.46140000e+00 4.49710000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 8.69060000e+03 2.93950000e+03 1.29740000e+03 3.82630000e+02 1.54000000e+02 1.08120000e+02 1.05350000e+02 7.44070000e+01 4.05460000e+01 1.52010000e+01 6.96650000e+00 1.62520000e+00 5.65470000e-01 1.24120000e-01 4.17400000e-02 1.78550000e-02 8.91610000e-03 2.99320000e-03 1.29250000e-03 2.89190000e-04 1.03310000e-04 2.58650000e-05 1.02840000e-05 5.24520000e-06 3.11130000e-06 1.44900000e-06 8.41850000e-07 3.48990000e-07] M = [ 3.82720000e+04 1.42100000e+04 6.84430000e+03 2.35890000e+03 1.08460000e+03 8.04720000e+02 7.87310000e+02 5.88150000e+02 3.54820000e+02 1.58280000e+02 8.38830000e+01 2.59550000e+01 1.11300000e+01 3.30480000e+00 1.37790000e+00 6.94150000e-01 3.94860000e-01 1.61220000e-01 8.02290000e-02 2.25850000e-02 9.26890000e-03 2.73120000e-03 1.19700000e-03 6.53950000e-04 4.10350000e-04 2.08350000e-04 1.29470000e-04 6.05080000e-05] L = [ 3.51500000e+05 1.23800000e+05 5.76930000e+04 1.91750000e+04 8.65640000e+03 6.38490000e+03 6.24410000e+03 4.63980000e+03 2.77480000e+03 1.22250000e+03 6.42540000e+02 1.96530000e+02 8.37420000e+01 2.47090000e+01 1.02630000e+01 5.15770000e+00 2.92900000e+00 1.19320000e+00 5.92950000e-01 1.66570000e-01 6.82890000e-02 2.01120000e-02 8.81120000e-03 4.81270000e-03 3.01970000e-03 1.53290000e-03 9.52480000e-04 4.44890000e-04] M5 = [ 1.55070000e+02 3.34990000e+01 1.06940000e+01 1.99120000e+00 5.81880000e-01 3.64470000e-01 3.52200000e-01 2.23150000e-01 1.01090000e-01 2.81690000e-02 1.02010000e-02 1.56750000e-03 4.09800000e-04 6.07030000e-05 1.55460000e-05 5.40370000e-06 2.28570000e-06 5.93610000e-07 2.12290000e-07 3.47230000e-08 1.02160000e-08 2.05000000e-09 7.23510000e-10 3.48830000e-10 2.03660000e-10 9.34700000e-11 5.50130000e-11 2.75120000e-11] M4 = [ 1.04910000e+02 2.27070000e+01 7.26420000e+00 1.35550000e+00 3.99480000e-01 2.50520000e-01 2.42100000e-01 1.53590000e-01 6.97120000e-02 1.95020000e-02 7.08790000e-03 1.09830000e-03 2.89040000e-04 4.33750000e-05 1.12270000e-05 3.93610000e-06 1.67690000e-06 4.42170000e-07 1.59610000e-07 2.64060000e-08 7.76230000e-09 1.51810000e-09 5.15870000e-10 2.34610000e-10 1.27750000e-10 5.29230000e-11 2.92280000e-11 1.30390000e-11] L2 = [ 9.12660000e+04 2.88340000e+04 1.22070000e+04 3.43860000e+03 1.35160000e+03 9.41630000e+02 9.16950000e+02 6.42990000e+02 3.46230000e+02 1.27610000e+02 5.78580000e+01 1.33120000e+01 4.59200000e+00 9.99280000e-01 3.34480000e-01 1.42620000e-01 7.10800000e-02 2.37900000e-02 1.02530000e-02 2.28610000e-03 8.18790000e-04 2.05000000e-04 8.15460000e-05 4.15350000e-05 2.46490000e-05 1.15260000e-05 6.67590000e-06 2.78490000e-06] L3 = [ 1.78190000e+05 5.59640000e+04 2.35950000e+04 6.60510000e+03 2.58380000e+03 1.79660000e+03 1.74920000e+03 1.22420000e+03 6.56820000e+02 2.40560000e+02 1.08470000e+02 2.46640000e+01 8.42270000e+00 1.80130000e+00 5.93930000e-01 2.49900000e-01 1.23040000e-01 4.03150000e-02 1.70680000e-02 3.68080000e-03 1.28220000e-03 3.14410000e-04 1.25230000e-04 6.48540000e-05 3.94150000e-05 1.91890000e-05 1.17200000e-05 5.30420000e-06] M3 = [ 1.69840000e+04 5.71270000e+03 2.51110000e+03 7.35970000e+02 2.94740000e+02 2.06530000e+02 2.01190000e+02 1.41810000e+02 7.69940000e+01 2.86800000e+01 1.30710000e+01 3.01460000e+00 1.03580000e+00 2.23430000e-01 7.40190000e-02 3.12330000e-02 1.54110000e-02 5.06130000e-03 2.14670000e-03 4.63810000e-04 1.61940000e-04 3.97770000e-05 1.58700000e-05 8.20750000e-06 4.98640000e-06 2.43770000e-06 1.48440000e-06 6.77900000e-07] L1 = [ 8.20510000e+04 3.90020000e+04 2.18910000e+04 9.13170000e+03 4.72110000e+03 3.64670000e+03 3.57790000e+03 2.77260000e+03 1.77180000e+03 8.54310000e+02 4.76220000e+02 1.58550000e+02 7.07270000e+01 2.19080000e+01 9.33450000e+00 4.76520000e+00 2.73490000e+00 1.12910000e+00 5.65630000e-01 1.60610000e-01 6.61880000e-02 1.95930000e-02 8.60440000e-03 4.70630000e-03 2.95560000e-03 1.50220000e-03 9.34080000e-04 4.36810000e-04] JK = 8.37855788789 M1 = [ 1.23380000e+04 5.50190000e+03 3.01790000e+03 1.23690000e+03 6.34920000e+02 4.89460000e+02 4.80170000e+02 3.71550000e+02 2.37110000e+02 1.14350000e+02 6.38280000e+01 2.13130000e+01 9.52830000e+00 2.95720000e+00 1.26210000e+00 6.45050000e-01 3.70530000e-01 1.53160000e-01 7.67900000e-02 2.18320000e-02 9.00360000e-03 2.66560000e-03 1.17090000e-03 6.40500000e-04 4.02250000e-04 2.04460000e-04 1.27140000e-04 5.94810000e-05] all other = [ 9.48920000e+02 4.20090000e+02 2.29720000e+02 9.42870000e+01 4.83530000e+01 3.72670000e+01 3.65600000e+01 2.82840000e+01 1.80460000e+01 8.70210000e+00 4.85740000e+00 1.62200000e+00 7.25150000e-01 2.25300000e-01 9.61750000e-02 4.91600000e-02 2.82410000e-02 1.16750000e-02 5.85360000e-03 1.66430000e-03 6.86370000e-04 2.03230000e-04 8.93000000e-05 4.88780000e-05 3.07260000e-05 1.56530000e-05 9.76920000e-06 4.63960000e-06] total = [ 3.90720000e+05 1.38430000e+05 6.47670000e+04 2.16290000e+04 9.78940000e+03 7.22690000e+03 6.05510000e+04 4.69360000e+04 2.92500000e+04 1.35590000e+04 7.35660000e+03 2.33980000e+03 1.01430000e+03 3.03780000e+02 1.26970000e+02 6.40220000e+01 3.64260000e+01 1.48680000e+01 7.39500000e+00 2.07870000e+00 8.52110000e-01 2.50770000e-01 1.09850000e-01 6.00040000e-02 3.76560000e-02 1.91280000e-02 1.18950000e-02 5.56540000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.34830000e+04 4.16800000e+04 2.61020000e+04 1.21700000e+04 6.62530000e+03 2.11570000e+03 9.18720000e+02 2.75540000e+02 1.15240000e+02 5.81210000e+01 3.30740000e+01 1.35020000e+01 6.71590000e+00 1.88780000e+00 7.73860000e-01 2.27730000e-01 9.97510000e-02 5.44880000e-02 3.41960000e-02 1.73710000e-02 1.08030000e-02 5.05530000e-03] [Sc.binding] K = 4.4659 L1 = 0.4943 M5 = 0.007 M4 = 0.0071 M1 = 0.0609 L3 = 0.4088 M3 = 0.0391 M2 = 0.0396 L2 = 0.4137 [Sb] JL1 = 1.1298630137 JL3 = 2.97742756865 JL2 = 1.32935973851 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.12620000e+00 4.15930000e+00 4.38180000e+00 4.41690000e+00 4.66940000e+00 4.70680000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.04500000e+01 3.06940000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.07720000e+05 6.40060000e+04 3.95410000e+04 1.79730000e+04 9.61710000e+03 8.96320000e+03 8.80190000e+03 7.80950000e+03 7.66660000e+03 6.73300000e+03 6.60780000e+03 5.72690000e+03 3.67440000e+03 1.76260000e+03 9.70060000e+02 3.09770000e+02 1.32460000e+02 3.81350000e+01 3.63950000e+01 3.54950000e+01 1.53200000e+01 7.45610000e+00 4.11400000e+00 1.59780000e+00 7.65230000e-01 2.02140000e-01 7.98880000e-02 2.25500000e-02 9.63410000e-03 5.13920000e-03 3.15150000e-03 1.52910000e-03 9.12160000e-04 3.91910000e-04] M = [ 1.51260000e+06 6.09350000e+05 3.05840000e+05 1.11450000e+05 5.33040000e+04 4.91800000e+04 4.81730000e+04 4.20640000e+04 4.11990000e+04 3.56300000e+04 3.48940000e+04 2.97830000e+04 1.84050000e+04 8.52980000e+03 4.66160000e+03 1.53040000e+03 6.86920000e+02 2.19170000e+02 2.10100000e+02 2.05400000e+02 9.65880000e+01 5.09220000e+01 3.01020000e+01 1.30770000e+01 6.83140000e+00 2.09760000e+00 9.12890000e-01 2.89900000e-01 1.32780000e-01 7.45160000e-02 4.75220000e-02 2.44480000e-02 1.51910000e-02 6.96260000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16120000e+05 1.06260000e+05 1.58660000e+05 1.40300000e+05 1.64860000e+05 1.42550000e+05 8.98350000e+04 4.23100000e+04 2.33430000e+04 7.73560000e+03 3.48380000e+03 1.11340000e+03 1.06730000e+03 1.04350000e+03 4.90950000e+02 2.58900000e+02 1.53050000e+02 6.64730000e+01 3.47150000e+01 1.06500000e+01 4.63200000e+00 1.47000000e+00 6.73220000e-01 3.77810000e-01 2.40960000e-01 1.24010000e-01 7.70960000e-02 3.53570000e-02] M5 = [ 6.46020000e+05 2.17920000e+05 9.36950000e+04 2.62760000e+04 1.00860000e+04 9.07090000e+03 8.82670000e+03 7.37960000e+03 7.17940000e+03 5.92080000e+03 5.75860000e+03 4.66130000e+03 2.43750000e+03 8.48670000e+02 3.64650000e+02 7.44800000e+01 2.32790000e+01 4.33130000e+00 4.06850000e+00 3.93440000e+00 1.28410000e+00 4.96430000e-01 2.28020000e-01 6.69570000e-02 2.60580000e-02 4.84930000e-03 1.53470000e-03 3.30590000e-04 1.21080000e-04 5.89270000e-05 3.44080000e-05 1.56800000e-05 8.92690000e-06 3.72190000e-06] M4 = [ 4.42980000e+05 1.50990000e+05 6.53820000e+04 1.85170000e+04 7.16110000e+03 6.44600000e+03 6.27380000e+03 5.25250000e+03 5.11110000e+03 4.22190000e+03 4.10720000e+03 3.33010000e+03 1.75090000e+03 6.15330000e+02 2.66510000e+02 5.53440000e+01 1.75350000e+01 3.33710000e+00 3.13750000e+00 3.03560000e+00 1.00790000e+00 3.95830000e-01 1.84290000e-01 5.53250000e-02 2.19020000e-02 4.18770000e-03 1.34050000e-03 2.89800000e-04 1.04200000e-04 4.90900000e-05 2.73690000e-05 1.16110000e-05 6.36980000e-06 2.54480000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.45840000e+04 4.95930000e+04 4.86280000e+04 4.20770000e+04 2.59650000e+04 1.16190000e+04 6.11760000e+03 1.82090000e+03 7.46950000e+02 2.04920000e+02 1.95270000e+02 1.90290000e+02 8.01370000e+01 3.83320000e+01 2.08930000e+01 7.98390000e+00 3.78420000e+00 9.85200000e-01 3.86470000e-01 1.08290000e-01 4.59920000e-02 2.44730000e-02 1.49870000e-02 7.25580000e-03 4.31860000e-03 1.85750000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.16120000e+05 1.06260000e+05 1.04080000e+05 9.07050000e+04 8.89160000e+04 7.60150000e+04 4.57000000e+04 2.00100000e+04 1.03200000e+04 2.96150000e+03 1.18300000e+03 3.11660000e+02 2.96520000e+02 2.88720000e+02 1.18090000e+02 5.50080000e+01 2.93030000e+01 1.07710000e+01 4.94450000e+00 1.21130000e+00 4.55420000e-01 1.21260000e-01 5.02930000e-02 2.65380000e-02 1.62530000e-02 7.96260000e-03 4.81770000e-03 2.13520000e-03] M3 = [ 2.37890000e+05 1.31260000e+05 7.81940000e+04 3.40720000e+04 1.77680000e+04 1.65140000e+04 1.62050000e+04 1.43090000e+04 1.40370000e+04 1.22720000e+04 1.20360000e+04 1.03770000e+04 6.55630000e+03 3.07070000e+03 1.65870000e+03 5.11160000e+02 2.12790000e+02 5.87950000e+01 5.60230000e+01 5.45920000e+01 2.28740000e+01 1.08380000e+01 5.84210000e+00 2.18170000e+00 1.01160000e+00 2.51400000e-01 9.52290000e-02 2.55090000e-02 1.06140000e-02 5.60990000e-03 3.44010000e-03 1.68740000e-03 1.01940000e-03 4.53050000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.73130000e+04 2.44560000e+04 1.81700000e+04 1.06810000e+04 6.90560000e+03 2.95320000e+03 1.55390000e+03 5.96770000e+02 5.75540000e+02 5.64470000e+02 2.92720000e+02 1.65560000e+02 1.02850000e+02 4.77180000e+01 2.59860000e+01 8.45350000e+00 3.79010000e+00 1.24050000e+00 5.76940000e-01 3.26800000e-01 2.09720000e-01 1.08790000e-01 6.79600000e-02 3.13650000e-02] JK = 6.00378100423 M1 = [ 7.79900000e+04 4.51800000e+04 2.90280000e+04 1.46140000e+04 8.67250000e+03 8.18590000e+03 8.06520000e+03 7.31380000e+03 7.20450000e+03 6.48230000e+03 6.38450000e+03 5.68740000e+03 3.98610000e+03 2.23260000e+03 1.40170000e+03 5.79610000e+02 3.00850000e+02 1.14570000e+02 1.10470000e+02 1.08340000e+02 5.61020000e+01 3.17360000e+01 1.97330000e+01 9.17510000e+00 5.00660000e+00 1.63500000e+00 7.34900000e-01 2.41220000e-01 1.12300000e-01 6.36580000e-02 4.08680000e-02 2.12040000e-02 1.32440000e-02 6.11130000e-03] all other = [ 2.20910000e+05 9.48570000e+04 4.99940000e+04 1.94080000e+04 9.65600000e+03 8.94340000e+03 8.76880000e+03 7.70590000e+03 7.55460000e+03 6.57650000e+03 6.44670000e+03 5.53990000e+03 3.49010000e+03 1.66290000e+03 9.26640000e+02 3.13930000e+02 1.43570000e+02 4.68650000e+01 4.49600000e+01 4.39720000e+01 2.09400000e+01 1.11440000e+01 6.63110000e+00 2.90690000e+00 1.52770000e+00 4.73220000e-01 2.06920000e-01 6.60410000e-02 3.03290000e-02 1.70470000e-02 1.08820000e-02 5.60460000e-03 3.48530000e-03 1.59910000e-03] total = [ 1.73350000e+06 7.04210000e+05 3.55830000e+05 1.30860000e+05 6.29600000e+04 5.81240000e+04 1.73060000e+05 1.56030000e+05 2.07420000e+05 1.82500000e+05 2.06200000e+05 1.77870000e+05 1.11730000e+05 5.25030000e+04 2.89310000e+04 9.57990000e+03 4.31430000e+03 1.37940000e+03 1.32240000e+03 7.93940000e+03 3.98280000e+03 2.17520000e+03 1.31880000e+03 5.89160000e+02 3.12520000e+02 9.75940000e+01 4.27440000e+01 1.36450000e+01 6.27070000e+00 3.52970000e+00 2.25760000e+00 1.16790000e+00 7.29210000e-01 3.36970000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.64650000e+03 3.37430000e+03 1.85420000e+03 1.12900000e+03 5.06700000e+02 2.69450000e+02 8.43730000e+01 3.69920000e+01 1.18190000e+01 5.43440000e+00 3.06030000e+00 1.95820000e+00 1.01390000e+00 6.33430000e-01 2.93050000e-01] [Sb.binding] K = 30.4807 L1 = 4.6741 M5 = 0.5377 M4 = 0.5478 M1 = 0.9292 L3 = 4.1303 M3 = 0.7616 M2 = 0.8093 L2 = 4.3862 [Se] JL1 = 1.10924485441 JL3 = 4.23803930781 JL2 = 1.39279067489 energy = [ 1.00000000e+00 1.43710000e+00 1.44860000e+00 1.47990000e+00 1.49170000e+00 1.50000000e+00 1.63990000e+00 1.65310000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.26060000e+01 1.27070000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 4.77180000e+04 2.27530000e+04 2.23620000e+04 2.13440000e+04 2.09740000e+04 2.07200000e+04 1.69800000e+04 1.66770000e+04 1.07090000e+04 3.88440000e+03 1.79500000e+03 9.60020000e+02 5.66290000e+02 2.39180000e+02 1.19740000e+02 5.72360000e+01 5.57800000e+01 3.24840000e+01 1.24660000e+01 3.11430000e+00 1.13950000e+00 5.17900000e-01 2.70890000e-01 9.73650000e-02 4.40760000e-02 1.06200000e-02 3.96560000e-03 1.04640000e-03 4.29080000e-04 2.22990000e-04 1.34280000e-04 6.36910000e-05 3.74100000e-05 1.57760000e-05] M = [ 2.92030000e+05 1.22290000e+05 1.19930000e+05 1.13810000e+05 1.11610000e+05 1.10090000e+05 8.83210000e+04 8.65900000e+04 5.37210000e+04 1.89430000e+04 8.87450000e+03 4.88420000e+03 2.98220000e+03 1.35640000e+03 7.30630000e+02 3.81910000e+02 3.73430000e+02 2.33690000e+02 1.02930000e+02 3.19240000e+01 1.37600000e+01 7.12000000e+00 4.14070000e+00 1.75010000e+00 8.94160000e-01 2.63040000e-01 1.11140000e-01 3.39460000e-02 1.51880000e-02 8.40040000e-03 5.30960000e-03 2.71150000e-03 1.68470000e-03 7.80230000e-04] L = [ 0.00000000e+00 0.00000000e+00 4.15980000e+05 3.91540000e+05 5.94330000e+05 5.83930000e+05 4.88650000e+05 5.53930000e+05 3.49180000e+05 1.25770000e+05 5.89480000e+04 3.23460000e+04 1.96780000e+04 8.88790000e+03 4.76270000e+03 2.47710000e+03 2.42170000e+03 1.51080000e+03 6.62250000e+02 2.04130000e+02 8.76570000e+01 4.52400000e+01 2.62610000e+01 1.10710000e+01 5.64580000e+00 1.65800000e+00 6.99550000e-01 2.13350000e-01 9.53890000e-02 5.27360000e-02 3.33330000e-02 1.70210000e-02 1.05760000e-02 4.89860000e-03] M5 = [ 6.68680000e+04 2.07560000e+04 2.02110000e+04 1.88180000e+04 1.83220000e+04 1.79840000e+04 1.33010000e+04 1.29440000e+04 6.68850000e+03 1.54210000e+03 5.19820000e+02 2.18140000e+02 1.05590000e+02 3.26340000e+01 1.28220000e+01 4.77430000e+00 4.61340000e+00 2.25220000e+00 6.40510000e-01 1.06060000e-01 2.89940000e-02 1.06180000e-02 4.67470000e-03 1.29110000e-03 4.81920000e-04 8.36530000e-05 2.53990000e-05 5.25690000e-06 1.90400000e-06 9.13050000e-07 5.25100000e-07 2.38410000e-07 1.40860000e-07 5.82390000e-08] M4 = [ 4.57510000e+04 1.42570000e+04 1.38840000e+04 1.29310000e+04 1.25910000e+04 1.23600000e+04 9.15070000e+03 8.90580000e+03 4.61280000e+03 1.06940000e+03 3.62040000e+02 1.52480000e+02 7.40530000e+01 2.30260000e+01 9.09680000e+00 3.40860000e+00 3.29440000e+00 1.61610000e+00 4.63910000e-01 7.80080000e-02 2.17700000e-02 8.06480000e-03 3.58870000e-03 1.00880000e-03 3.81120000e-04 6.76360000e-05 2.07050000e-05 4.22470000e-06 1.46750000e-06 6.81200000e-07 3.73310000e-07 1.56910000e-07 8.36170000e-08 3.19580000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.99920000e+05 1.90720000e+05 1.67080000e+05 1.63770000e+05 9.95810000e+04 3.33710000e+04 1.46020000e+04 7.51370000e+03 4.30670000e+03 1.74750000e+03 8.52180000e+02 3.98010000e+02 3.87610000e+02 2.22560000e+02 8.36490000e+01 2.04140000e+01 7.37460000e+00 3.32520000e+00 1.73020000e+00 6.16610000e-01 2.77800000e-01 6.64850000e-02 2.47380000e-02 6.50110000e-03 2.65870000e-03 1.37980000e-03 8.33790000e-04 3.94860000e-04 2.31880000e-04 9.79250000e-05] L3 = [ 0.00000000e+00 0.00000000e+00 4.15980000e+05 3.91540000e+05 3.94410000e+05 3.93210000e+05 3.21560000e+05 3.14900000e+05 1.90030000e+05 6.26570000e+04 2.71010000e+04 1.38280000e+04 7.87080000e+03 3.15680000e+03 1.52460000e+03 7.04450000e+02 6.85780000e+02 3.90540000e+02 1.44510000e+02 3.43800000e+01 1.21620000e+01 5.38470000e+00 2.75670000e+00 9.55320000e-01 4.20380000e-01 9.61780000e-02 3.47060000e-02 8.83040000e-03 3.58380000e-03 1.86680000e-03 1.13660000e-03 5.56850000e-04 3.38530000e-04 1.51970000e-04] M3 = [ 9.34310000e+04 4.38840000e+04 4.31170000e+04 4.11190000e+04 4.03940000e+04 3.98950000e+04 3.25840000e+04 3.19920000e+04 2.03980000e+04 7.29030000e+03 3.33330000e+03 1.76780000e+03 1.03540000e+03 4.32170000e+02 2.14240000e+02 1.01290000e+02 9.86790000e+01 5.69850000e+01 2.15240000e+01 5.24030000e+00 1.87750000e+00 8.37960000e-01 4.31370000e-01 1.50360000e-01 6.64670000e-02 1.53060000e-02 5.54170000e-03 1.41430000e-03 5.74500000e-04 3.00210000e-04 1.83050000e-04 8.95750000e-05 5.44630000e-05 2.45350000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.52480000e+04 5.95710000e+04 2.97400000e+04 1.72460000e+04 1.10040000e+04 7.50080000e+03 3.98360000e+03 2.38590000e+03 1.37470000e+03 1.34830000e+03 8.97740000e+02 4.34100000e+02 1.49340000e+02 6.81200000e+01 3.65300000e+01 2.17740000e+01 9.49910000e+00 4.94760000e+00 1.49540000e+00 6.40110000e-01 1.98020000e-01 8.91460000e-02 4.94890000e-02 3.13620000e-02 1.60690000e-02 1.00060000e-02 4.64870000e-03] JK = 7.07592220915 M1 = [ 3.82640000e+04 2.06430000e+04 2.03550000e+04 1.96000000e+04 1.93250000e+04 1.91360000e+04 1.63060000e+04 1.60720000e+04 1.13130000e+04 5.15630000e+03 2.86440000e+03 1.78570000e+03 1.20090000e+03 6.29400000e+02 3.74730000e+02 2.15190000e+02 2.11060000e+02 1.40360000e+02 6.78380000e+01 2.33850000e+01 1.06920000e+01 5.74540000e+00 3.43010000e+00 1.50010000e+00 7.82750000e-01 2.36960000e-01 1.01580000e-01 3.14760000e-02 1.41810000e-02 7.87560000e-03 4.99140000e-03 2.55780000e-03 1.59260000e-03 7.39820000e-04] all other = [ 1.10920000e+04 5.41320000e+03 5.32520000e+03 5.09620000e+03 5.01300000e+03 4.95580000e+03 4.11580000e+03 4.04730000e+03 2.69000000e+03 1.08210000e+03 5.50260000e+02 3.21000000e+02 2.04930000e+02 9.95200000e+01 5.62840000e+01 3.07590000e+01 3.01200000e+01 1.94070000e+01 8.94450000e+00 2.92510000e+00 1.29970000e+00 6.85870000e-01 4.04430000e-01 1.74070000e-01 8.99410000e-02 2.69010000e-02 1.14570000e-02 3.52740000e-03 1.58440000e-03 8.78340000e-04 5.56040000e-04 2.84580000e-04 1.77100000e-04 8.23160000e-05] total = [ 3.03120000e+05 1.27710000e+05 5.41240000e+05 5.10450000e+05 7.10950000e+05 6.98980000e+05 5.81080000e+05 6.44560000e+05 4.05590000e+05 1.45790000e+05 6.83730000e+04 3.75510000e+04 2.28650000e+04 1.03440000e+04 5.54960000e+03 2.88980000e+03 2.04480000e+04 1.33910000e+04 6.20980000e+03 2.02410000e+03 8.92360000e+02 4.67300000e+02 2.73720000e+02 1.16570000e+02 5.97530000e+01 1.76430000e+01 7.45790000e+00 2.27770000e+00 1.01930000e+00 5.64090000e-01 3.56870000e-01 1.82630000e-01 1.13700000e-01 5.28640000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.76230000e+04 1.16270000e+04 5.43560000e+03 1.78520000e+03 7.89640000e+02 4.14250000e+02 2.42910000e+02 1.03570000e+02 5.31230000e+01 1.56950000e+01 6.63570000e+00 2.02690000e+00 9.07110000e-01 5.02070000e-01 3.17670000e-01 1.62610000e-01 1.01260000e-01 4.71030000e-02] [Se.binding] K = 12.6187 L1 = 1.6416 M5 = 0.0639 M4 = 0.0649 M1 = 0.2262 L3 = 1.4385 M3 = 0.1637 M2 = 0.1698 L2 = 1.4813 [Co] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 7.67310000e+00 7.73450000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.32900000e+04 8.79960000e+03 4.17690000e+03 1.36550000e+03 5.89850000e+02 2.99790000e+02 1.69730000e+02 7.71580000e+01 7.51830000e+01 6.73500000e+01 3.22220000e+01 8.10700000e+00 2.95860000e+00 6.91240000e-01 2.42480000e-01 1.06840000e-01 5.45710000e-02 1.89070000e-02 8.34510000e-03 1.93170000e-03 7.04270000e-04 1.80710000e-04 7.28890000e-05 3.74900000e-05 2.24300000e-05 1.05210000e-05 6.14620000e-06 2.56860000e-06] M = [ 1.06670000e+05 4.02410000e+04 1.96120000e+04 6.90130000e+03 3.22370000e+03 1.76710000e+03 1.07440000e+03 5.44460000e+02 5.32510000e+02 4.84750000e+02 2.59440000e+02 8.19830000e+01 3.57360000e+01 1.08840000e+01 4.62370000e+00 2.36420000e+00 1.35950000e+00 5.65180000e-01 2.85030000e-01 8.20550000e-02 3.41600000e-02 1.02430000e-02 4.53410000e-03 2.49160000e-03 1.56880000e-03 7.98700000e-04 4.96280000e-04 2.30930000e-04] L = [ 8.50000000e+05 3.20410000e+05 1.53700000e+05 5.25580000e+04 2.40790000e+04 1.30210000e+04 7.84090000e+03 3.93110000e+03 3.84370000e+03 3.49430000e+03 1.85520000e+03 5.78980000e+02 2.50520000e+02 7.56850000e+01 3.20060000e+01 1.63140000e+01 9.37140000e+00 3.88520000e+00 1.95590000e+00 5.61650000e-01 2.33490000e-01 6.99140000e-02 3.09360000e-02 1.69950000e-02 1.07000000e-02 5.44640000e-03 3.38420000e-03 1.57450000e-03] M5 = [ 8.74700000e+03 2.08970000e+03 7.22710000e+02 1.51800000e+02 4.78380000e+01 1.90160000e+01 8.81290000e+00 3.05160000e+00 2.94820000e+00 2.54790000e+00 9.65260000e-01 1.60310000e-01 4.35890000e-02 6.78200000e-03 1.80040000e-03 6.43590000e-04 2.77910000e-04 7.45680000e-05 2.72000000e-05 4.56880000e-06 1.36000000e-06 2.76600000e-07 9.87360000e-08 4.75650000e-08 2.73470000e-08 1.24420000e-08 7.24810000e-09 3.13010000e-09] M4 = [ 5.96280000e+03 1.42900000e+03 4.95390000e+02 1.04440000e+02 3.30220000e+01 1.31640000e+01 6.11610000e+00 2.13790000e+00 2.06580000e+00 1.78650000e+00 6.79760000e-01 1.13960000e-01 3.12470000e-02 4.93350000e-03 1.32550000e-03 4.78480000e-04 2.08650000e-04 5.67970000e-05 2.09790000e-05 3.58100000e-06 1.07140000e-06 2.13150000e-07 7.33580000e-08 3.34800000e-08 1.84240000e-08 7.60370000e-09 4.07360000e-09 1.50490000e-09] L2 = [ 2.46300000e+05 8.69930000e+04 3.91580000e+04 1.19430000e+04 4.94710000e+03 2.44500000e+03 1.35740000e+03 6.03590000e+02 5.87750000e+02 5.25080000e+02 2.47130000e+02 6.06340000e+01 2.18220000e+01 5.02620000e+00 1.74760000e+00 7.66060000e-01 3.89870000e-01 1.34450000e-01 5.91640000e-02 1.36330000e-02 4.95770000e-03 1.26760000e-03 5.12730000e-04 2.63820000e-04 1.57870000e-04 7.40280000e-05 4.32230000e-05 1.81100000e-05] L3 = [ 4.80670000e+05 1.67890000e+05 7.50580000e+04 2.26700000e+04 9.32400000e+03 4.58150000e+03 2.53100000e+03 1.11740000e+03 1.08780000e+03 9.70830000e+02 4.53650000e+02 1.09660000e+02 3.89790000e+01 8.79290000e+00 3.00400000e+00 1.29660000e+00 6.50730000e-01 2.19020000e-01 9.44150000e-02 2.09220000e-02 7.41370000e-03 1.85090000e-03 7.43000000e-04 3.85900000e-04 2.34380000e-04 1.14770000e-04 6.98900000e-05 3.16310000e-05] M3 = [ 4.53160000e+04 1.69630000e+04 7.99920000e+03 2.59050000e+03 1.11110000e+03 5.61430000e+02 3.16270000e+02 1.42720000e+02 1.39030000e+02 1.24420000e+02 5.90880000e+01 1.46420000e+01 5.27760000e+00 1.20810000e+00 4.15330000e-01 1.80170000e-01 9.07380000e-02 3.06840000e-02 1.32650000e-02 2.95060000e-03 1.04760000e-03 2.61880000e-04 1.05390000e-04 5.48140000e-05 3.33180000e-05 1.63210000e-05 9.92130000e-06 4.50210000e-06] L1 = [ 1.23030000e+05 6.55220000e+04 3.94850000e+04 1.79450000e+04 9.80770000e+03 5.99480000e+03 3.95250000e+03 2.21010000e+03 2.16810000e+03 1.99840000e+03 1.15450000e+03 4.08690000e+02 1.89720000e+02 6.18660000e+01 2.72550000e+01 1.42520000e+01 8.33080000e+00 3.53170000e+00 1.80240000e+00 5.27090000e-01 2.21120000e-01 6.67950000e-02 2.96800000e-02 1.63450000e-02 1.03070000e-02 5.25760000e-03 3.27110000e-03 1.52480000e-03] JK = 7.63834519573 M1 = [ 2.33530000e+04 1.09600000e+04 6.21810000e+03 2.68900000e+03 1.44190000e+03 8.73750000e+02 5.73430000e+02 3.19390000e+02 3.13280000e+02 2.88650000e+02 1.66480000e+02 5.89600000e+01 2.74240000e+01 8.97340000e+00 3.96280000e+00 2.07600000e+00 1.21370000e+00 5.15460000e-01 2.63370000e-01 7.71650000e-02 3.24060000e-02 9.79980000e-03 4.35560000e-03 2.39920000e-03 1.51300000e-03 7.71840000e-04 4.80200000e-04 2.23860000e-04] all other = [ 1.52980000e+03 7.07860000e+02 3.99100000e+02 1.71520000e+02 9.22990000e+01 5.58690000e+01 3.66430000e+01 2.03990000e+01 2.00090000e+01 1.84340000e+01 1.06300000e+01 3.76390000e+00 1.75080000e+00 5.72930000e-01 2.53020000e-01 1.32540000e-01 7.75850000e-02 3.29550000e-02 1.68400000e-02 4.93470000e-03 2.07250000e-03 6.26870000e-04 2.78660000e-04 1.53550000e-04 9.68910000e-05 4.95040000e-05 3.08730000e-05 1.45310000e-05] total = [ 9.58200000e+05 3.61360000e+05 1.73710000e+05 5.96310000e+04 2.73950000e+04 1.48440000e+04 8.95190000e+03 4.49600000e+03 3.43420000e+04 3.16180000e+04 1.78870000e+04 5.98220000e+03 2.67880000e+03 8.35520000e+02 3.58320000e+02 1.84040000e+02 1.06190000e+02 4.42440000e+01 2.23280000e+01 6.42700000e+00 2.67370000e+00 8.00840000e-01 3.54360000e-01 1.94750000e-01 1.22680000e-01 6.25230000e-02 3.88960000e-02 1.81440000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99460000e+04 2.76210000e+04 1.57610000e+04 5.31750000e+03 2.39080000e+03 7.48380000e+02 3.21440000e+02 1.65230000e+02 9.53850000e+01 3.97610000e+01 2.00710000e+01 5.77830000e+00 2.40400000e+00 7.20060000e-01 3.18620000e-01 1.75110000e-01 1.10310000e-01 5.62280000e-02 3.49850000e-02 1.63240000e-02] [Co.binding] K = 7.6807 L1 = 0.923 M5 = 0.0137 M4 = 0.0139 M1 = 0.1097 L3 = 0.7923 M3 = 0.0723 M2 = 0.0742 L2 = 0.8076 [Cm] JL1 = 1.13225243013 JL3 = 2.3012355114 JL2 = 1.40052707474 energy = [ 1.00000000e+00 1.19320000e+00 1.20270000e+00 1.49260000e+00 1.50000000e+00 1.50460000e+00 1.66620000e+00 1.67950000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.01070000e+00 4.04280000e+00 4.23250000e+00 4.26640000e+00 4.82360000e+00 4.86220000e+00 5.00000000e+00 5.94160000e+00 5.98910000e+00 6.00000000e+00 6.31900000e+00 6.36950000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.89730000e+01 1.91250000e+01 2.00000000e+01 2.37570000e+01 2.39470000e+01 2.45770000e+01 2.47740000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.29000000e+02 1.30030000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.96915272476 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.32920000e+05 2.14120000e+05 2.09710000e+05 1.53490000e+05 1.50170000e+05 1.38920000e+05 8.36750000e+04 8.18400000e+04 8.14290000e+04 7.03160000e+04 6.87000000e+04 3.45450000e+04 1.71750000e+04 4.54190000e+03 2.03410000e+03 1.97870000e+03 1.69310000e+03 9.23380000e+02 8.97530000e+02 8.18110000e+02 7.95160000e+02 3.99100000e+02 1.38640000e+02 6.01670000e+01 3.02000000e+01 1.00900000e+01 4.30540000e+00 1.63370000e+00 1.58510000e+00 9.24120000e-01 3.18280000e-01 7.51840000e-02 2.87330000e-02 1.42450000e-02 8.29350000e-03 3.78720000e-03 2.14300000e-03 8.79610000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.47550000e+05 1.13230000e+05 1.11000000e+05 1.03320000e+05 6.37120000e+04 6.22550000e+04 6.19290000e+04 5.32270000e+04 5.20820000e+04 2.67690000e+04 1.35880000e+04 3.73310000e+03 1.71050000e+03 1.66520000e+03 1.43200000e+03 7.95050000e+02 7.73490000e+02 7.07050000e+02 6.87790000e+02 3.52480000e+02 1.26620000e+02 5.64820000e+01 2.90170000e+01 1.00670000e+01 4.42240000e+00 1.73320000e+00 1.68320000e+00 9.98100000e-01 3.54100000e-01 8.58970000e-02 3.29520000e-02 1.62270000e-02 9.33840000e-03 4.17440000e-03 2.32680000e-03 9.08060000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01000000e+04 7.44480000e+03 5.33060000e+03 2.73940000e+03 1.79940000e+03 1.77300000e+03 1.63170000e+03 1.17930000e+03 1.16130000e+03 1.10440000e+03 1.08750000e+03 7.46470000e+02 4.14820000e+02 2.58460000e+02 1.73830000e+02 9.13200000e+01 5.47020000e+01 3.01310000e+01 2.95690000e+01 2.10700000e+01 1.06000000e+01 4.03910000e+00 2.06780000e+00 1.24840000e+00 8.36330000e-01 4.54980000e-01 2.89550000e-01 1.33230000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.32690000e+04 6.09530000e+04 4.55720000e+04 4.49180000e+04 4.47690000e+04 4.05790000e+04 3.99520000e+04 2.57150000e+04 1.62030000e+04 6.51920000e+03 3.70420000e+03 3.63240000e+03 3.25220000e+03 2.10440000e+03 2.06180000e+03 1.92830000e+03 1.88890000e+03 1.14260000e+03 5.22310000e+02 2.78810000e+02 1.64990000e+02 7.08070000e+01 3.63020000e+01 1.68000000e+01 1.63980000e+01 1.06220000e+01 4.44230000e+00 1.33000000e+00 5.83700000e-01 3.16380000e-01 1.95770000e-01 9.58260000e-02 5.70960000e-02 2.41970000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.60250000e+04 1.59820000e+04 1.51540000e+04 1.50140000e+04 1.13800000e+04 8.15640000e+03 3.93540000e+03 2.45110000e+03 2.41080000e+03 2.19520000e+03 1.51180000e+03 1.48550000e+03 1.40240000e+03 1.37770000e+03 8.90930000e+02 4.48900000e+02 2.58140000e+02 1.62320000e+02 7.66490000e+01 4.23240000e+01 2.13140000e+01 2.08590000e+01 1.41630000e+01 6.49870000e+00 2.20020000e+00 1.04440000e+00 5.97890000e-01 3.85280000e-01 1.99640000e-01 1.23770000e-01 5.61880000e-02] total = [ 3.08750000e+06 2.26140000e+06 2.37050000e+06 1.56100000e+06 1.56620000e+06 1.55620000e+06 1.26380000e+06 1.26630000e+06 8.78240000e+05 3.59930000e+05 1.85850000e+05 1.84690000e+05 4.14200000e+05 3.76970000e+05 5.17090000e+05 3.86380000e+05 4.41850000e+05 4.13060000e+05 2.65630000e+05 2.76320000e+05 2.75080000e+05 2.41890000e+05 2.47270000e+05 1.41050000e+05 8.07030000e+04 2.87630000e+04 1.57020000e+04 3.61340000e+04 3.22140000e+04 2.01110000e+04 2.81660000e+04 2.63360000e+04 2.98190000e+04 1.83530000e+04 8.74870000e+03 4.88410000e+03 3.01880000e+03 1.40360000e+03 7.72390000e+02 3.90310000e+02 1.54920000e+03 1.08400000e+03 5.23260000e+02 1.89220000e+02 9.42040000e+01 5.60130000e+01 3.71990000e+01 2.00780000e+01 1.27440000e+01 5.86880000e+00] JM2 = 1.04024394835 JM3 = 1.14356333144 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1167.1 823.29 401.88 146.9 73.599 43.969 29.308 15.899 10.123 4.6778] JM1 = 1.02224151474 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.32920000e+05 2.14120000e+05 3.57260000e+05 2.66720000e+05 3.24440000e+05 3.03190000e+05 1.92960000e+05 2.05040000e+05 2.04110000e+05 1.79280000e+05 1.85850000e+05 1.05850000e+05 6.04540000e+04 2.14690000e+04 1.16990000e+04 1.14600000e+04 1.02040000e+04 6.51400000e+03 6.37970000e+03 5.96030000e+03 5.83710000e+03 3.53160000e+03 1.65130000e+03 9.12060000e+02 5.60350000e+02 2.58930000e+02 1.42060000e+02 7.16120000e+01 7.00940000e+01 4.77780000e+01 2.22130000e+01 7.73040000e+00 3.75760000e+00 2.19320000e+00 1.43500000e+00 7.58420000e-01 4.74880000e-01 2.15400000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.07510000e+04 1.85130000e+04 1.13530000e+04 1.95890000e+04 1.83210000e+04 2.19680000e+04 1.35970000e+04 6.52090000e+03 3.65200000e+03 2.26110000e+03 1.05300000e+03 5.79850000e+02 2.93150000e+02 2.86960000e+02 1.95820000e+02 9.11950000e+01 3.18070000e+01 1.54920000e+01 9.05880000e+00 5.93710000e+00 3.14610000e+00 1.97380000e+00 8.97580000e-01] JM4 = 1.37170066584 JM5 = 2.24267691808 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.47740000e+03 7.96680000e+03 7.86280000e+03 4.88680000e+03 2.33410000e+03 1.29290000e+03 7.89700000e+02 3.57500000e+02 1.91830000e+02 9.38760000e+01 9.17980000e+01 6.14700000e+01 2.75380000e+01 9.08870000e+00 4.25860000e+00 2.41970000e+00 1.55190000e+00 8.00150000e-01 4.94770000e-01 2.23840000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.07510000e+04 1.85130000e+04 1.13530000e+04 1.11110000e+04 1.03540000e+04 1.01300000e+04 5.85440000e+03 2.51760000e+03 1.28930000e+03 7.39930000e+02 3.04260000e+02 1.51610000e+02 6.82530000e+01 6.65680000e+01 4.25510000e+01 1.73980000e+01 5.08900000e+00 2.20830000e+00 1.18950000e+00 7.33300000e-01 3.57630000e-01 2.12720000e-01 9.03450000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.97550000e+03 2.85570000e+03 1.66920000e+03 1.06980000e+03 7.31500000e+02 3.91270000e+02 2.36410000e+02 1.31020000e+02 1.28590000e+02 9.17980000e+01 4.62580000e+01 1.76300000e+01 9.02480000e+00 5.44960000e+00 3.65190000e+00 1.98830000e+00 1.26630000e+00 5.83390000e-01] all other = [ 3.08750000e+06 2.26140000e+06 2.37050000e+06 1.56100000e+06 1.56620000e+06 1.55620000e+06 1.26380000e+06 1.26630000e+06 8.78240000e+05 3.59930000e+05 1.85850000e+05 1.84690000e+05 1.81290000e+05 1.62850000e+05 1.59830000e+05 1.19660000e+05 1.17410000e+05 1.09870000e+05 7.26710000e+04 7.12850000e+04 7.09740000e+04 6.26180000e+04 6.14200000e+04 3.51980000e+04 2.02490000e+04 7.29440000e+03 4.00310000e+03 3.92260000e+03 3.49710000e+03 2.24370000e+03 2.19790000e+03 2.05500000e+03 2.01300000e+03 1.22450000e+03 5.76550000e+02 3.20020000e+02 1.97330000e+02 9.16770000e+01 5.04870000e+01 2.55470000e+01 2.50090000e+01 1.70830000e+01 7.97090000e+00 2.78430000e+00 1.35600000e+00 7.92410000e-01 5.18860000e-01 2.74400000e-01 1.71860000e-01 7.79630000e-02] [Cm.binding] K = 129.125 L1 = 24.602 M5 = 4.0147 M4 = 4.2367 M1 = 6.3253 L3 = 18.9921 M3 = 4.8284 M2 = 5.9475 L2 = 23.7804 [Cl] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.80210000e+00 2.82450000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.09030000e+03 6.44650000e+02 2.66780000e+02 9.09430000e+01 8.86150000e+01 7.27750000e+01 2.79040000e+01 1.29830000e+01 6.85870000e+00 2.45470000e+00 1.08880000e+00 2.40540000e-01 8.05810000e-02 1.68550000e-02 5.50410000e-03 2.30800000e-03 1.13610000e-03 3.73620000e-04 1.59020000e-04 3.47440000e-05 1.22270000e-05 3.00770000e-06 1.18290000e-06 5.98960000e-07 3.53700000e-07 1.63400000e-07 9.44120000e-08 3.89970000e-08] M = [ 1.19620000e+04 4.37850000e+03 2.09430000e+03 8.65250000e+02 8.47180000e+02 7.21950000e+02 3.33440000e+02 1.81200000e+02 1.09300000e+02 4.86520000e+01 2.57120000e+01 7.87820000e+00 3.34660000e+00 9.78190000e-01 4.02760000e-01 2.00940000e-01 1.13410000e-01 4.57490000e-02 2.25620000e-02 6.25440000e-03 2.54170000e-03 7.40120000e-04 3.22230000e-04 1.75360000e-04 1.09800000e-04 5.56610000e-05 3.46100000e-05 1.62400000e-05] L = [ 1.54580000e+05 5.29830000e+04 2.43640000e+04 9.65780000e+03 9.44690000e+03 7.99300000e+03 3.57440000e+03 1.89950000e+03 1.12760000e+03 4.90880000e+02 2.55600000e+02 7.67260000e+01 3.22110000e+01 9.29640000e+00 3.80200000e+00 1.88890000e+00 1.06310000e+00 4.27250000e-01 2.10230000e-01 5.81280000e-02 2.35890000e-02 6.86020000e-03 2.98510000e-03 1.62400000e-03 1.01660000e-03 5.15120000e-04 3.20090000e-04 1.49930000e-04] L2 = [ 3.48600000e+04 1.02830000e+04 4.15980000e+03 1.38660000e+03 1.35040000e+03 1.10480000e+03 4.16240000e+02 1.91560000e+02 1.00480000e+02 3.56310000e+01 1.57090000e+01 3.44080000e+00 1.14730000e+00 2.38730000e-01 7.77290000e-02 3.25300000e-02 1.59920000e-02 5.24750000e-03 2.23870000e-03 4.89080000e-04 1.72180000e-04 4.23990000e-05 1.66860000e-05 8.44890000e-06 5.00860000e-06 2.31580000e-06 1.34580000e-06 5.58730000e-07] L3 = [ 6.82940000e+04 2.00680000e+04 8.09440000e+03 2.68800000e+03 2.61760000e+03 2.13980000e+03 8.03230000e+02 3.68470000e+02 1.92720000e+02 6.79910000e+01 2.98410000e+01 6.47170000e+00 2.13890000e+00 4.38370000e-01 1.40840000e-01 5.82460000e-02 2.83220000e-02 9.12130000e-03 3.81170000e-03 8.05970000e-04 2.77900000e-04 6.72930000e-05 2.66820000e-05 1.37870000e-05 8.33490000e-06 4.07810000e-06 2.47930000e-06 1.13150000e-06] M3 = [ 4.09260000e+03 1.25750000e+03 5.18790000e+02 1.76180000e+02 1.71650000e+02 1.40860000e+02 5.38020000e+01 2.49510000e+01 1.31130000e+01 4.66880000e+00 2.06140000e+00 4.50850000e-01 1.49710000e-01 3.08420000e-02 9.93540000e-03 4.11530000e-03 2.00380000e-03 6.46150000e-04 2.70570000e-04 5.72950000e-05 1.97740000e-05 4.79390000e-06 1.90130000e-06 9.81690000e-07 5.95720000e-07 2.92020000e-07 1.78510000e-07 8.24050000e-08] L1 = [ 5.14300000e+04 2.26310000e+04 1.21090000e+04 5.58320000e+03 5.47890000e+03 4.74840000e+03 2.35500000e+03 1.33950000e+03 8.34410000e+02 3.87260000e+02 2.10050000e+02 6.68140000e+01 2.89250000e+01 8.61930000e+00 3.58340000e+00 1.79810000e+00 1.01880000e+00 4.12880000e-01 2.04170000e-01 5.68330000e-02 2.31390000e-02 6.75050000e-03 2.94170000e-03 1.60170000e-03 1.00320000e-03 5.08730000e-04 3.16270000e-04 1.48240000e-04] JK = 9.13323196807 M1 = [ 5.77880000e+03 2.47630000e+03 1.30880000e+03 5.98130000e+02 5.86910000e+02 5.08310000e+02 2.51730000e+02 1.43270000e+02 8.93240000e+01 4.15280000e+01 2.25620000e+01 7.18680000e+00 3.11630000e+00 9.30500000e-01 3.87320000e-01 1.94510000e-01 1.10270000e-01 4.47290000e-02 2.21330000e-02 6.16240000e-03 2.50970000e-03 7.32320000e-04 3.19140000e-04 1.73780000e-04 1.08850000e-04 5.52060000e-05 3.43370000e-05 1.61190000e-05] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 1.66550000e+05 5.73610000e+04 2.64580000e+04 1.05230000e+04 9.61090000e+04 8.65790000e+04 4.13290000e+04 2.28810000e+04 1.39630000e+04 6.26930000e+03 3.32060000e+03 1.01690000e+03 4.30540000e+02 1.25150000e+02 5.13350000e+01 2.55400000e+01 1.43840000e+01 5.78400000e+00 2.84630000e+00 7.86440000e-01 3.19010000e-01 9.27190000e-02 4.03340000e-02 2.19400000e-02 1.37350000e-02 6.96300000e-03 4.33090000e-03 2.03040000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.58150000e+04 7.78640000e+04 3.74210000e+04 2.08000000e+04 1.27260000e+04 5.72970000e+03 3.03930000e+03 9.32330000e+02 3.94980000e+02 1.14880000e+02 4.71300000e+01 2.34500000e+01 1.32070000e+01 5.31100000e+00 2.61350000e+00 7.22060000e-01 2.92880000e-01 8.51190000e-02 3.70260000e-02 2.01410000e-02 1.26090000e-02 6.39230000e-03 3.97620000e-03 1.86420000e-03] [Cl.binding] K = 2.8049 L1 = 0.2681 M1 = 0.0248 L3 = 0.2077 M3 = 0.0123 M2 = 0.0124 L2 = 0.2095 [Ca] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.01100000e+00 4.04320000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 6.89460000e+03 2.28720000e+03 9.94380000e+02 2.87380000e+02 1.14290000e+02 1.13270000e+02 1.10360000e+02 5.47720000e+01 2.96450000e+01 1.09900000e+01 4.99490000e+00 1.14990000e+00 3.96690000e-01 8.60700000e-02 2.87340000e-02 1.22280000e-02 6.08470000e-03 2.03160000e-03 8.74450000e-04 1.94480000e-04 6.92190000e-05 1.72590000e-05 6.84910000e-06 3.48330000e-06 2.06660000e-06 9.59790000e-07 5.56710000e-07 2.31050000e-07] M = [ 3.10080000e+04 1.14430000e+04 5.48430000e+03 1.87820000e+03 8.61140000e+02 8.54680000e+02 8.36240000e+02 4.66240000e+02 2.80900000e+02 1.24960000e+02 6.60640000e+01 2.03550000e+01 8.70100000e+00 2.56990000e+00 1.06750000e+00 5.36300000e-01 3.04410000e-01 1.23880000e-01 6.15010000e-02 1.72440000e-02 7.05880000e-03 2.07370000e-03 9.07290000e-04 4.95160000e-04 3.10540000e-04 1.57590000e-04 9.79400000e-05 4.58060000e-05] L = [ 2.91840000e+05 1.02030000e+05 4.73550000e+04 1.56830000e+04 7.06740000e+03 7.01330000e+03 6.85900000e+03 3.78220000e+03 2.25850000e+03 9.92230000e+02 5.20410000e+02 1.58530000e+02 6.73340000e+01 1.97690000e+01 8.18160000e+00 4.10050000e+00 2.32370000e+00 9.43560000e-01 4.67790000e-01 1.30900000e-01 5.35520000e-02 1.57190000e-02 6.87500000e-03 3.75140000e-03 2.35240000e-03 1.19370000e-03 7.41660000e-04 3.46690000e-04] L2 = [ 7.36250000e+04 2.28920000e+04 9.58200000e+03 2.66170000e+03 1.03670000e+03 1.02720000e+03 1.00030000e+03 4.89550000e+02 2.61970000e+02 9.56320000e+01 4.30680000e+01 9.79620000e+00 3.35260000e+00 7.21850000e-01 2.39960000e-01 1.01830000e-01 5.05730000e-02 1.68420000e-02 7.23420000e-03 1.60410000e-03 5.72640000e-04 1.42710000e-04 5.66460000e-05 2.88800000e-05 1.71220000e-05 7.95140000e-06 4.63770000e-06 1.93810000e-06] L3 = [ 1.43830000e+05 4.44880000e+04 1.85510000e+04 5.12330000e+03 1.98650000e+03 1.96830000e+03 1.91650000e+03 9.34510000e+02 4.98380000e+02 1.80840000e+02 8.10110000e+01 1.82200000e+01 6.17530000e+00 1.30730000e+00 4.28280000e-01 1.79410000e-01 8.80490000e-02 2.87230000e-02 1.21250000e-02 2.60310000e-03 9.04540000e-04 2.21290000e-04 8.80280000e-05 4.54350000e-05 2.75570000e-05 1.35110000e-05 8.17860000e-06 3.72030000e-06] M3 = [ 1.34870000e+04 4.45140000e+03 1.92800000e+03 5.53970000e+02 2.19290000e+02 2.17320000e+02 2.11720000e+02 1.04680000e+02 5.64600000e+01 2.08030000e+01 9.40500000e+00 2.14210000e+00 7.29930000e-01 1.55720000e-01 5.12210000e-02 2.15120000e-02 1.05760000e-02 3.45840000e-03 1.46160000e-03 3.14430000e-04 1.09490000e-04 2.68060000e-05 1.06660000e-05 5.52110000e-06 3.34870000e-06 1.63940000e-06 9.98950000e-07 4.55430000e-07] L1 = [ 7.43920000e+04 3.46510000e+04 1.92220000e+04 7.89770000e+03 4.04420000e+03 4.01780000e+03 3.94220000e+03 2.35810000e+03 1.49810000e+03 7.15760000e+02 3.96330000e+02 1.30510000e+02 5.78060000e+01 1.77400000e+01 7.51340000e+00 3.81930000e+00 2.18500000e+00 8.97990000e-01 4.48430000e-01 1.26690000e-01 5.20750000e-02 1.53550000e-02 6.73040000e-03 3.67710000e-03 2.30770000e-03 1.17220000e-03 7.28850000e-04 3.41030000e-04] JK = 8.56951364476 M1 = [ 1.06260000e+04 4.70410000e+03 2.56190000e+03 1.03690000e+03 5.27560000e+02 5.24090000e+02 5.14160000e+02 3.06790000e+02 1.94800000e+02 9.31680000e+01 5.16640000e+01 1.70630000e+01 7.57440000e+00 2.32810000e+00 9.87580000e-01 5.02560000e-01 2.87750000e-01 1.18390000e-01 5.91650000e-02 1.67350000e-02 6.88010000e-03 2.02960000e-03 8.89770000e-04 4.86160000e-04 3.05120000e-04 1.54990000e-04 9.63840000e-05 4.51190000e-05] all other = [ 8.13700000e+02 3.57980000e+02 1.94440000e+02 7.87960000e+01 4.00620000e+01 3.97980000e+01 3.90440000e+01 2.32890000e+01 1.47850000e+01 7.07120000e+00 3.92120000e+00 1.29500000e+00 5.74820000e-01 1.76910000e-01 7.50570000e-02 3.81990000e-02 2.18730000e-02 8.99990000e-03 4.49790000e-03 1.27230000e-03 5.23100000e-04 1.54330000e-04 6.76880000e-05 3.70090000e-05 2.32470000e-05 1.18450000e-05 7.39820000e-06 3.52420000e-06] total = [ 3.23670000e+05 1.13830000e+05 5.30340000e+04 1.76400000e+04 7.96860000e+03 7.90780000e+03 6.77660000e+04 3.99860000e+04 2.47300000e+04 1.14090000e+04 6.15000000e+03 1.93710000e+03 8.34880000e+02 2.48250000e+02 1.03290000e+02 5.19090000e+01 2.94620000e+01 1.19820000e+01 5.94420000e+00 1.66390000e+00 6.80340000e-01 1.99610000e-01 8.72860000e-02 4.76290000e-02 2.98720000e-02 1.51660000e-02 9.43080000e-03 4.41470000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.00320000e+04 3.57140000e+04 2.21760000e+04 1.02850000e+04 5.55960000e+03 1.75690000e+03 7.58270000e+02 2.25740000e+02 9.39640000e+01 4.72340000e+01 2.68120000e+01 1.09060000e+01 5.41040000e+00 1.51450000e+00 6.19210000e-01 1.81660000e-01 7.94360000e-02 4.33460000e-02 2.71860000e-02 1.38030000e-02 8.58380000e-03 4.01870000e-03] [Ca.binding] K = 4.015 L1 = 0.4341 M1 = 0.0532 L3 = 0.3552 M3 = 0.0336 M2 = 0.034 L2 = 0.3591 [Cf] JL1 = 1.13161126576 JL3 = 2.29138984853 JL2 = 1.40585571013 energy = [ 1.00000000e+00 1.27160000e+00 1.28180000e+00 1.50000000e+00 1.60940000e+00 1.62230000e+00 1.79160000e+00 1.80590000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.24290000e+00 4.27690000e+00 4.48710000e+00 4.52310000e+00 5.00000000e+00 5.09810000e+00 5.13890000e+00 6.00000000e+00 6.34700000e+00 6.39780000e+00 6.74110000e+00 6.79500000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.99070000e+01 2.00000000e+01 2.00660000e+01 2.52230000e+01 2.54250000e+01 2.60810000e+01 2.62900000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.35820000e+02 1.36910000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 3.87810600405 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.16880000e+05 1.99050000e+05 1.94920000e+05 1.51260000e+05 1.43550000e+05 1.40450000e+05 8.97430000e+04 7.58280000e+04 7.41580000e+04 6.38540000e+04 6.23670000e+04 3.80290000e+04 1.90300000e+04 5.08250000e+03 1.93780000e+03 1.90680000e+03 1.88500000e+03 8.43790000e+02 8.20160000e+02 7.48930000e+02 7.27920000e+02 4.53040000e+02 1.58230000e+02 6.89520000e+01 3.47210000e+01 1.16570000e+01 4.99110000e+00 1.56500000e+00 1.51870000e+00 1.07740000e+00 3.72290000e-01 8.82530000e-02 3.37800000e-02 1.67580000e-02 9.75810000e-03 4.45460000e-03 2.54330000e-03 1.03180000e-03] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.36120000e+05 1.11510000e+05 1.06340000e+05 1.04250000e+05 6.83260000e+04 5.80740000e+04 5.67420000e+04 4.87180000e+04 4.76660000e+04 2.95700000e+04 1.51220000e+04 4.19790000e+03 1.64540000e+03 1.61980000e+03 1.60190000e+03 7.35270000e+02 7.15350000e+02 6.55090000e+02 6.37250000e+02 4.02600000e+02 1.45520000e+02 6.52120000e+01 3.36250000e+01 1.17310000e+01 5.17450000e+00 1.68760000e+00 1.63920000e+00 1.17570000e+00 4.18830000e-01 1.02110000e-01 3.92950000e-02 1.93920000e-02 1.11780000e-02 5.00810000e-03 2.79610000e-03 1.09530000e-03] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.20340000e+03 7.42970000e+03 5.35250000e+03 2.80680000e+03 1.69990000e+03 1.68530000e+03 1.67500000e+03 1.09090000e+03 1.07420000e+03 1.02270000e+03 1.00710000e+03 7.78400000e+02 4.34940000e+02 2.72160000e+02 1.83600000e+02 9.69460000e+01 5.82900000e+01 2.85690000e+01 2.80380000e+01 2.26060000e+01 1.14290000e+01 4.38620000e+00 2.25660000e+00 1.36720000e+00 9.18170000e-01 5.01010000e-01 3.19280000e-01 1.47000000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.99580000e+04 4.65660000e+04 4.21870000e+04 4.15600000e+04 3.75520000e+04 3.69640000e+04 2.69670000e+04 1.70840000e+04 6.96040000e+03 3.53220000e+03 3.49190000e+03 3.46360000e+03 1.94680000e+03 1.90730000e+03 1.78600000e+03 1.74950000e+03 1.23830000e+03 5.69230000e+02 3.05150000e+02 1.81200000e+02 7.81570000e+01 4.02210000e+01 1.59920000e+01 1.56110000e+01 1.18420000e+01 4.97120000e+00 1.49470000e+00 6.57270000e-01 3.56560000e-01 2.20690000e-01 1.07980000e-01 6.42900000e-02 2.72060000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.45580000e+04 1.38010000e+04 1.36780000e+04 1.14600000e+04 8.28950000e+03 4.12290000e+03 2.35640000e+03 2.33390000e+03 2.31800000e+03 1.42330000e+03 1.39870000e+03 1.32260000e+03 1.29950000e+03 9.65420000e+02 4.92200000e+02 2.85460000e+02 1.80640000e+02 8.61190000e+01 4.78850000e+01 2.11600000e+01 2.07120000e+01 1.62100000e+01 7.49240000e+00 2.55950000e+00 1.22140000e+00 7.01670000e-01 4.53270000e-01 2.35620000e-01 1.46350000e-01 6.65950000e-02] total = [ 3.28490000e+06 2.18700000e+06 2.29230000e+06 1.68830000e+06 1.46380000e+06 1.45780000e+06 1.18700000e+06 1.18840000e+06 9.58040000e+05 3.92850000e+05 2.02740000e+05 1.76620000e+05 3.90230000e+05 3.53900000e+05 4.83010000e+05 3.82610000e+05 3.64320000e+05 4.16930000e+05 2.82070000e+05 2.43680000e+05 2.53320000e+05 2.22320000e+05 2.27160000e+05 1.51870000e+05 8.69970000e+04 3.11530000e+04 1.50520000e+04 3.44900000e+04 3.43680000e+04 1.85460000e+04 2.60730000e+04 2.44280000e+04 2.76430000e+04 1.97590000e+04 9.49670000e+03 5.31820000e+03 3.29510000e+03 1.53820000e+03 8.48890000e+02 3.75080000e+02 1.45460000e+03 1.16410000e+03 5.63040000e+02 2.04980000e+02 1.02540000e+02 6.11760000e+01 4.07220000e+01 2.20410000e+01 1.40070000e+01 6.45320000e+00] JM2 = 1.03956007879 JM3 = 1.14440601669 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1087.4 876.21 428.5 157.84 79.522 47.69 31.873 17.345 11.059 5.1129] JM1 = 1.02177042101 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.16880000e+05 1.99050000e+05 3.31050000e+05 2.62760000e+05 2.49890000e+05 3.04660000e+05 2.04640000e+05 1.76090000e+05 1.87020000e+05 1.63920000e+05 1.69880000e+05 1.13460000e+05 6.48780000e+04 2.31700000e+04 1.11720000e+04 1.10380000e+04 1.09440000e+04 6.04010000e+03 5.91580000e+03 5.53530000e+03 5.42120000e+03 3.83780000e+03 1.80010000e+03 9.96930000e+02 6.13780000e+02 2.84610000e+02 1.56560000e+02 6.89740000e+01 6.75200000e+01 5.29110000e+01 2.46840000e+01 8.63070000e+00 4.20840000e+00 2.46160000e+00 1.61310000e+00 8.54070000e-01 5.35260000e-01 2.42930000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.96180000e+04 1.96230000e+04 1.03950000e+04 1.80900000e+04 1.69570000e+04 2.03260000e+04 1.45750000e+04 7.06080000e+03 3.96760000e+03 2.46280000e+03 1.15170000e+03 6.36110000e+02 2.81230000e+02 2.75320000e+02 2.15900000e+02 1.00900000e+02 3.53620000e+01 1.72790000e+01 1.01270000e+01 6.64760000e+00 3.52950000e+00 2.21640000e+00 1.00860000e+00] JM4 = 1.36482057078 JM5 = 2.20943268033 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.91730000e+03 7.46670000e+03 7.37140000e+03 5.28700000e+03 2.57810000e+03 1.43910000e+03 8.84020000e+02 4.03400000e+02 2.17820000e+02 9.29850000e+01 9.09450000e+01 7.05400000e+01 3.18080000e+01 1.05830000e+01 4.98310000e+00 2.84050000e+00 1.82600000e+00 9.44260000e-01 5.84970000e-01 2.65310000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.96180000e+04 1.96230000e+04 1.03950000e+04 1.01730000e+04 9.49010000e+03 9.28460000e+03 6.38040000e+03 2.75120000e+03 1.41340000e+03 8.13260000e+02 3.35610000e+02 1.67750000e+02 6.44940000e+01 6.29080000e+01 4.73110000e+01 1.94030000e+01 5.69510000e+00 2.47510000e+00 1.33410000e+00 8.22530000e-01 4.00950000e-01 2.38300000e-01 1.01040000e-01] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.67010000e+03 2.90750000e+03 1.73150000e+03 1.11510000e+03 7.65520000e+02 4.12700000e+02 2.50540000e+02 1.23750000e+02 1.21460000e+02 9.80500000e+01 4.96910000e+01 1.90840000e+01 9.82050000e+00 5.95210000e+00 3.99910000e+00 2.18430000e+00 1.39310000e+00 6.42250000e-01] all other = [ 3.28490000e+06 2.18700000e+06 2.29230000e+06 1.68830000e+06 1.46380000e+06 1.45780000e+06 1.18700000e+06 1.18840000e+06 9.58040000e+05 3.92850000e+05 2.02740000e+05 1.76620000e+05 1.73350000e+05 1.54850000e+05 1.51960000e+05 1.19850000e+05 1.14430000e+05 1.12280000e+05 7.74380000e+04 6.75960000e+04 6.63020000e+04 5.84000000e+04 5.72790000e+04 3.84200000e+04 2.21190000e+04 7.98300000e+03 3.87990000e+03 3.83370000e+03 3.80130000e+03 2.11020000e+03 2.06710000e+03 1.93540000e+03 1.89590000e+03 1.34660000e+03 6.35780000e+02 3.53690000e+02 2.18520000e+02 1.01830000e+02 5.62210000e+01 2.48760000e+01 2.43550000e+01 1.91120000e+01 8.94720000e+00 3.13980000e+00 1.53380000e+00 8.98010000e-01 5.89060000e-01 3.12070000e-01 1.95630000e-01 8.87850000e-02] [Cf.binding] K = 135.9536 L1 = 26.1072 M5 = 4.2472 M4 = 4.4916 M1 = 6.7478 L3 = 19.9268 M3 = 5.1032 M2 = 6.3533 L2 = 25.2482 [Ce] JL1 = 1.13079629037 JL3 = 2.80463083923 JL2 = 1.33682207422 energy = [ 1.00000000e+00 1.16930000e+00 1.17860000e+00 1.25890000e+00 1.26900000e+00 1.40890000e+00 1.42020000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.70690000e+00 5.75260000e+00 6.00000000e+00 6.15940000e+00 6.20870000e+00 6.50760000e+00 6.55970000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 4.04200000e+01 4.07440000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.68880915438 M5 = [ 1.09700000e+06 7.53670000e+05 7.39280000e+05 6.28920000e+05 6.16560000e+05 4.77210000e+05 4.67730000e+05 4.06330000e+05 1.83440000e+05 5.45400000e+04 2.18130000e+04 1.04000000e+04 6.62350000e+03 6.44400000e+03 5.57110000e+03 5.08650000e+03 4.94710000e+03 4.19690000e+03 4.08110000e+03 2.01490000e+03 8.92340000e+02 1.92250000e+02 6.21730000e+01 1.21070000e+01 3.69890000e+00 3.54190000e+00 3.42650000e+00 1.46000000e+00 6.80910000e-01 2.04300000e-01 8.07310000e-02 1.54070000e-02 4.94970000e-03 1.08810000e-03 4.00380000e-04 1.95430000e-04 1.13690000e-04 5.22460000e-05 2.95960000e-05 1.27030000e-05] M4 = [ 7.51750000e+05 5.17090000e+05 5.07390000e+05 4.32900000e+05 4.24540000e+05 3.29450000e+05 3.22960000e+05 2.81470000e+05 1.28490000e+05 3.86630000e+04 1.56120000e+04 7.49770000e+03 4.79850000e+03 4.66960000e+03 4.04270000e+03 3.69460000e+03 3.59450000e+03 3.05520000e+03 2.97180000e+03 1.47840000e+03 6.60860000e+02 1.45090000e+02 4.76560000e+01 9.51690000e+00 2.96760000e+00 2.84380000e+00 2.75290000e+00 1.19180000e+00 5.64240000e-01 1.73500000e-01 6.98790000e-02 1.37530000e-02 4.48250000e-03 9.84700000e-04 3.59270000e-04 1.70600000e-04 9.53650000e-05 4.07800000e-05 2.25450000e-05 8.41530000e-06] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.64800000e+04 5.29500000e+04 3.55770000e+04 1.90040000e+04 1.15990000e+04 7.74530000e+03 6.05050000e+03 5.96000000e+03 5.50360000e+03 5.23640000e+03 5.15750000e+03 4.71320000e+03 4.64120000e+03 3.14810000e+03 2.00800000e+03 8.56610000e+02 4.54860000e+02 1.78930000e+02 8.96870000e+01 8.74260000e+01 8.57360000e+01 5.16540000e+01 3.25840000e+01 1.54880000e+01 8.59210000e+00 2.88620000e+00 1.32140000e+00 4.43850000e-01 2.09620000e-01 1.19830000e-01 7.73600000e-02 4.03710000e-02 2.52610000e-02 1.16320000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 2.30020000e+05 2.14220000e+05 2.12550000e+05 1.85270000e+05 1.83080000e+05 1.68460000e+05 1.07120000e+05 4.99420000e+04 2.72080000e+04 1.64130000e+04 1.20020000e+04 1.17740000e+04 1.06370000e+04 9.97980000e+03 9.78710000e+03 8.71740000e+03 8.54680000e+03 5.17590000e+03 2.87820000e+03 9.33950000e+02 4.02400000e+02 1.16330000e+02 4.66370000e+01 4.50930000e+01 4.39490000e+01 2.25870000e+01 1.23830000e+01 4.74090000e+00 2.23770000e+00 5.72200000e-01 2.20490000e-01 6.02760000e-02 2.53390000e-02 1.34300000e-02 8.24540000e-03 4.04890000e-03 2.44370000e-03 1.07830000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.04700000e+04 8.22580000e+04 8.15500000e+04 7.62890000e+04 5.12660000e+04 2.56780000e+04 1.45190000e+04 8.99870000e+03 6.68590000e+03 6.56470000e+03 5.95660000e+03 5.60470000e+03 5.50150000e+03 4.92780000e+03 4.83600000e+03 2.99370000e+03 1.70530000e+03 5.78670000e+02 2.57710000e+02 7.82720000e+01 3.25910000e+01 3.15570000e+01 3.07900000e+01 1.62850000e+01 9.17130000e+00 3.67210000e+00 1.79790000e+00 4.92590000e-01 1.99190000e-01 5.78000000e-02 2.50450000e-02 1.35250000e-02 8.35500000e-03 4.09360000e-03 2.45440000e-03 1.06360000e-03] total = [ 2.25730000e+06 1.57440000e+06 1.77570000e+06 1.53860000e+06 1.60250000e+06 1.28330000e+06 1.31750000e+06 1.16910000e+06 6.04840000e+05 2.27730000e+05 1.10520000e+05 6.25040000e+04 4.43980000e+04 1.24520000e+05 1.13080000e+05 1.05100000e+05 1.40500000e+05 1.25080000e+05 1.41440000e+05 8.59470000e+04 4.77120000e+04 1.61330000e+04 7.34960000e+03 2.38480000e+03 1.06210000e+03 1.03120000e+03 5.86630000e+03 3.42180000e+03 2.10480000e+03 9.58310000e+02 5.15250000e+02 1.64450000e+02 7.30370000e+01 2.37320000e+01 1.10260000e+01 6.25140000e+00 4.01740000e+00 2.08890000e+00 1.30620000e+00 6.02560000e-01] JM2 = 1.04153126219 JM3 = 1.12785823171 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.85810000e+03 2.85740000e+03 1.76900000e+03 8.10980000e+02 4.37680000e+02 1.40280000e+02 6.24070000e+01 2.03070000e+01 9.44290000e+00 5.35750000e+00 3.44510000e+00 1.79340000e+00 1.12250000e+00 5.18580000e-01] JM1 = 1.02665004286 M = [ 1.84870000e+06 1.27080000e+06 1.47670000e+06 1.27600000e+06 1.34410000e+06 1.07420000e+06 1.11180000e+06 9.85490000e+05 5.05890000e+05 1.87830000e+05 9.07510000e+04 5.10540000e+04 3.61600000e+04 3.54130000e+04 3.17110000e+04 2.96020000e+04 2.89880000e+04 2.56100000e+04 2.50770000e+04 1.48110000e+04 8.14480000e+03 2.70660000e+03 1.22480000e+03 3.95150000e+02 1.75580000e+02 1.70460000e+02 1.66650000e+02 9.31780000e+01 5.53840000e+01 2.42790000e+01 1.27780000e+01 3.98020000e+00 1.75050000e+00 5.64000000e-01 2.60760000e-01 1.47150000e-01 9.41700000e-02 4.86070000e-02 3.02110000e-02 1.37950000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.10310000e+04 7.41050000e+04 6.86960000e+04 1.04850000e+05 9.35560000e+04 1.10560000e+05 6.76450000e+04 3.76110000e+04 1.27580000e+04 5.81670000e+03 1.88820000e+03 8.41000000e+02 8.16520000e+02 7.98310000e+02 4.46850000e+02 2.65810000e+02 1.16610000e+02 6.13930000e+01 1.91230000e+01 8.40860000e+00 2.70830000e+00 1.25210000e+00 7.06880000e-01 4.52500000e-01 2.33710000e-01 1.45340000e-01 6.64430000e-02] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.76260000e+04 3.40080000e+04 3.32520000e+04 2.00170000e+04 1.07850000e+04 3.37300000e+03 1.42950000e+03 4.09760000e+02 1.65050000e+02 1.59630000e+02 1.55620000e+02 8.06860000e+01 4.47500000e+01 1.75540000e+01 8.48250000e+00 2.28120000e+00 9.13450000e-01 2.62430000e-01 1.13180000e-01 6.08370000e-02 3.75060000e-02 1.83420000e-02 1.09760000e-02 4.76230000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.10310000e+04 7.41050000e+04 6.86960000e+04 6.72230000e+04 5.95480000e+04 5.83540000e+04 3.39670000e+04 1.77950000e+04 5.32710000e+03 2.18330000e+03 5.96170000e+02 2.31320000e+02 2.23420000e+02 2.17580000e+02 1.09680000e+02 5.92350000e+01 2.22330000e+01 1.03610000e+01 2.60230000e+00 9.93300000e-01 2.68930000e-01 1.12510000e-01 5.96120000e-02 3.65570000e-02 1.79150000e-02 1.08100000e-02 4.75650000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.89570000e+04 1.36610000e+04 9.03090000e+03 4.05750000e+03 2.20390000e+03 8.82270000e+02 4.44630000e+02 4.33460000e+02 4.25120000e+02 2.56490000e+02 1.61820000e+02 7.68270000e+01 4.25490000e+01 1.42400000e+01 6.50190000e+00 2.17690000e+00 1.02640000e+00 5.86430000e-01 3.78440000e-01 1.97450000e-01 1.23550000e-01 5.69240000e-02] all other = [ 4.08630000e+05 3.03660000e+05 2.98970000e+05 2.62520000e+05 2.58380000e+05 2.09070000e+05 2.05670000e+05 1.83640000e+05 9.89460000e+04 3.99030000e+04 1.97740000e+04 1.14500000e+04 8.23720000e+03 8.07420000e+03 7.26370000e+03 6.79950000e+03 6.66410000e+03 5.91690000e+03 5.79850000e+03 3.49100000e+03 1.95600000e+03 6.69000000e+02 3.08110000e+02 1.01390000e+02 4.55630000e+01 4.42510000e+01 4.32750000e+01 2.43630000e+01 1.45590000e+01 6.43030000e+00 3.39990000e+00 1.06630000e+00 4.70720000e-01 1.52260000e-01 7.05370000e-02 3.98650000e-02 2.55320000e-02 1.31900000e-02 8.20250000e-03 3.74900000e-03] [Ce.binding] K = 40.4606 L1 = 6.5141 M5 = 0.886 M4 = 0.9054 M1 = 1.4103 L3 = 5.7126 M3 = 1.1704 M2 = 1.2602 L2 = 6.1655 [Xe] JM1 = 1.02476013618 JL1 = 1.13129414814 JL3 = 2.88371193813 JL2 = 1.33160344959 energy = [ 1.00000000e+00 1.12110000e+00 1.13010000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.76980000e+00 4.80800000e+00 5.00000000e+00 5.09900000e+00 5.13980000e+00 5.41200000e+00 5.45540000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.45240000e+01 3.48000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.19580000e+05 1.00080000e+05 9.92370000e+04 6.99360000e+04 4.48960000e+04 2.12370000e+04 1.16330000e+04 7.85400000e+03 7.71200000e+03 7.04830000e+03 6.73610000e+03 6.61260000e+03 5.86040000e+03 5.75120000e+03 4.58300000e+03 2.24290000e+03 1.25340000e+03 4.11000000e+02 1.78860000e+02 5.27010000e+01 3.41120000e+01 3.32750000e+01 2.15030000e+01 1.05850000e+01 5.89200000e+00 2.31860000e+00 1.12100000e+00 3.00830000e-01 1.20070000e-01 3.42890000e-02 1.47470000e-02 7.90150000e-03 4.86070000e-03 2.37080000e-03 1.41480000e-03 6.11370000e-04] M = [ 1.75060000e+06 1.37570000e+06 1.41950000e+06 7.57320000e+05 3.83550000e+05 1.40800000e+05 6.76330000e+04 4.28560000e+04 4.19750000e+04 3.78970000e+04 3.60040000e+04 3.52600000e+04 3.07940000e+04 3.01550000e+04 2.34690000e+04 1.09130000e+04 5.98120000e+03 1.97410000e+03 8.89070000e+02 2.85020000e+02 1.91550000e+02 1.87260000e+02 1.26060000e+02 6.66480000e+01 3.94910000e+01 1.72240000e+01 9.02720000e+00 2.78930000e+00 1.21950000e+00 3.89730000e-01 1.79270000e-01 1.00820000e-01 6.43930000e-02 3.31730000e-02 2.06130000e-02 9.43200000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.84870000e+04 9.24790000e+04 8.75150000e+04 1.31870000e+05 1.17050000e+05 1.38080000e+05 1.09600000e+05 5.20510000e+04 2.89180000e+04 9.67610000e+03 4.37860000e+03 1.40870000e+03 9.47320000e+02 9.26160000e+02 6.23800000e+02 3.30040000e+02 1.95620000e+02 8.53410000e+01 4.47240000e+01 1.38130000e+01 6.03620000e+00 1.92790000e+00 8.86550000e-01 4.98810000e-01 3.18620000e-01 1.64230000e-01 1.02100000e-01 4.67640000e-02] M5 = [ 8.15450000e+05 6.23410000e+05 6.11390000e+05 2.89870000e+05 1.27090000e+05 3.65890000e+04 1.43090000e+04 7.88370000e+03 7.67090000e+03 6.70240000e+03 6.26280000e+03 6.09200000e+03 5.09070000e+03 4.95090000e+03 3.54210000e+03 1.25490000e+03 5.46690000e+02 1.14290000e+02 3.62530000e+01 6.88360000e+00 3.83390000e+00 3.70810000e+00 2.06750000e+00 8.06350000e-01 3.72780000e-01 1.10480000e-01 4.32850000e-02 8.14540000e-03 2.59480000e-03 5.61100000e-04 2.07900000e-04 1.01760000e-04 5.86480000e-05 2.65810000e-05 1.56720000e-05 6.43460000e-06] M4 = [ 5.57730000e+05 4.27760000e+05 4.19660000e+05 2.00970000e+05 8.88390000e+04 2.58570000e+04 1.01930000e+04 5.64640000e+03 5.49540000e+03 4.80780000e+03 4.49520000e+03 4.37370000e+03 3.66050000e+03 3.56090000e+03 2.55570000e+03 9.14520000e+02 4.01810000e+02 8.54910000e+01 2.75120000e+01 5.34860000e+00 3.00650000e+00 2.90950000e+00 1.63790000e+00 6.49410000e-01 3.04500000e-01 9.23620000e-02 3.68410000e-02 7.13460000e-03 2.30180000e-03 5.00650000e-04 1.80640000e-04 8.53470000e-05 4.78430000e-05 2.04320000e-05 1.10270000e-05 4.19910000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.61920000e+04 4.18280000e+04 4.09690000e+04 3.24790000e+04 1.48540000e+04 7.90920000e+03 2.40150000e+03 9.99470000e+02 2.79430000e+02 1.78150000e+02 1.73630000e+02 1.10680000e+02 5.34440000e+01 2.93490000e+01 1.13440000e+01 5.42170000e+00 1.43140000e+00 5.66520000e-01 1.60430000e-01 6.86010000e-02 3.66620000e-02 2.25090000e-02 1.09480000e-02 6.52890000e-03 2.81910000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.84870000e+04 9.24790000e+04 8.75150000e+04 8.56750000e+04 7.52230000e+04 7.37340000e+04 5.73950000e+04 2.53120000e+04 1.32100000e+04 3.85800000e+03 1.55800000e+03 4.17020000e+02 2.61560000e+02 2.54700000e+02 1.59660000e+02 7.49500000e+01 4.01690000e+01 1.49010000e+01 6.88580000e+00 1.70530000e+00 6.45390000e-01 1.73070000e-01 7.20630000e-02 3.80940000e-02 2.33380000e-02 1.14380000e-02 6.91100000e-03 3.05610000e-03] M3 = [ 2.57850000e+05 2.24490000e+05 2.22060000e+05 1.47830000e+05 9.05330000e+04 4.06140000e+04 2.15890000e+04 1.43180000e+04 1.40490000e+04 1.27910000e+04 1.22000000e+04 1.19660000e+04 1.05500000e+04 1.03460000e+04 8.17200000e+03 3.89230000e+03 2.12970000e+03 6.71570000e+02 2.83790000e+02 7.99800000e+01 5.09240000e+01 4.96260000e+01 3.15280000e+01 1.50810000e+01 8.18980000e+00 3.09160000e+00 1.44470000e+00 3.63500000e-01 1.38720000e-01 3.75180000e-02 1.56560000e-02 8.29590000e-03 5.08820000e-03 2.49370000e-03 1.50840000e-03 6.66610000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.33770000e+04 1.97270000e+04 1.18860000e+04 7.79880000e+03 3.41660000e+03 1.82110000e+03 7.12220000e+02 5.07610000e+02 4.97840000e+02 3.53470000e+02 2.01640000e+02 1.26100000e+02 5.90960000e+01 3.24170000e+01 1.06760000e+01 4.82430000e+00 1.59440000e+00 7.45880000e-01 4.24050000e-01 2.72770000e-01 1.41840000e-01 8.86650000e-02 4.08890000e-02] JK = 5.86550151976 M1 = [ 0.00000000e+00 0.00000000e+00 6.71550000e+04 4.87110000e+04 3.21930000e+04 1.65040000e+04 9.90910000e+03 7.15410000e+03 7.04790000e+03 6.54780000e+03 6.30970000e+03 6.21510000e+03 5.63190000e+03 5.54630000e+03 4.61590000e+03 2.60840000e+03 1.64950000e+03 6.91750000e+02 3.62670000e+02 1.40110000e+02 9.96690000e+01 9.77430000e+01 6.93220000e+01 3.95260000e+01 2.47320000e+01 1.16110000e+01 6.38140000e+00 2.10970000e+00 9.55830000e-01 3.16860000e-01 1.48480000e-01 8.44380000e-02 5.43370000e-02 2.82610000e-02 1.76630000e-02 8.14340000e-03] all other = [ 2.99810000e+05 2.39790000e+05 2.36010000e+05 1.31450000e+05 6.99410000e+04 2.73900000e+04 1.36940000e+04 8.86830000e+03 8.69390000e+03 7.88410000e+03 7.50670000e+03 7.35820000e+03 6.46300000e+03 6.33440000e+03 4.98030000e+03 2.37770000e+03 1.32640000e+03 4.50470000e+02 2.06270000e+02 6.73910000e+01 4.55390000e+01 4.45350000e+01 3.01340000e+01 1.60500000e+01 9.56100000e+00 4.19960000e+00 2.21070000e+00 6.87660000e-01 3.01740000e-01 9.67910000e-02 4.46030000e-02 2.51230000e-02 1.60560000e-02 8.27920000e-03 5.14720000e-03 2.35710000e-03] total = [ 2.05040000e+06 1.61550000e+06 1.65550000e+06 8.88770000e+05 4.53490000e+05 1.68190000e+05 8.13270000e+04 5.17250000e+04 1.49160000e+05 1.38260000e+05 1.31030000e+05 1.74480000e+05 1.54310000e+05 1.74570000e+05 1.38050000e+05 6.53420000e+04 3.62260000e+04 1.21010000e+04 5.47390000e+03 1.76110000e+03 1.18440000e+03 6.94710000e+03 4.82000000e+03 2.67470000e+03 1.62540000e+03 7.33080000e+02 3.91040000e+02 1.23240000e+02 5.42990000e+01 1.74660000e+01 8.06430000e+00 4.55320000e+00 2.91800000e+00 1.51280000e+00 9.45100000e-01 4.36410000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.78910000e+03 4.04000000e+03 2.26190000e+03 1.38070000e+03 6.26310000e+02 3.35080000e+02 1.05950000e+02 4.67420000e+01 1.50520000e+01 6.95390000e+00 3.92850000e+00 2.51890000e+00 1.30720000e+00 8.17240000e-01 3.77850000e-01] [Xe.binding] K = 34.5584 L1 = 5.4175 M5 = 0.6774 M4 = 0.6909 M1 = 1.1222 L3 = 4.7745 M3 = 0.9265 M2 = 0.9896 L2 = 5.1041 [Lu] JL1 = 1.1322077591 JL3 = 2.59671457906 JL2 = 1.34991528532 energy = [ 1.00000000e+00 1.50000000e+00 1.59600000e+00 1.60880000e+00 1.64920000e+00 1.66240000e+00 2.00000000e+00 2.01410000e+00 2.03020000e+00 2.25620000e+00 2.27430000e+00 2.46910000e+00 2.48890000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 9.23370000e+00 9.30760000e+00 1.00000000e+01 1.03630000e+01 1.04460000e+01 1.08370000e+01 1.09240000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 6.33970000e+01 6.39050000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.12161522235 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.63310000e+05 7.19110000e+05 7.25210000e+05 4.57350000e+05 4.48970000e+05 4.39630000e+05 3.32260000e+05 3.25250000e+05 2.62660000e+05 2.57150000e+05 1.52810000e+05 6.54060000e+04 3.27450000e+04 1.82480000e+04 7.01410000e+03 4.28870000e+03 4.17190000e+03 3.24900000e+03 2.86660000e+03 2.78740000e+03 2.44880000e+03 2.38080000e+03 7.58820000e+02 2.59770000e+02 5.45690000e+01 1.75220000e+01 7.17280000e+00 3.43950000e+00 2.75310000e+00 2.66570000e+00 1.07470000e+00 4.36610000e-01 8.69550000e-02 2.86440000e-02 6.47100000e-03 2.42650000e-03 1.19420000e-03 6.92490000e-04 3.16090000e-04 1.80340000e-04 7.60500000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.65140000e+05 3.20520000e+05 3.14740000e+05 3.08300000e+05 2.34120000e+05 2.29260000e+05 1.85720000e+05 1.81800000e+05 1.09340000e+05 4.73880000e+04 2.39800000e+04 1.34860000e+04 5.25930000e+03 3.24060000e+03 3.15370000e+03 2.46640000e+03 2.18040000e+03 2.12100000e+03 1.86710000e+03 1.81610000e+03 5.90120000e+02 2.05960000e+02 4.46090000e+01 1.46780000e+01 6.13260000e+00 2.99280000e+00 2.40850000e+00 2.33390000e+00 9.62390000e-01 3.99850000e-01 8.26780000e-02 2.77790000e-02 6.33110000e-03 2.34240000e-03 1.12550000e-03 6.40790000e-04 2.76300000e-04 1.53830000e-04 5.79070000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.19580000e+04 2.52960000e+04 1.65000000e+04 1.15230000e+04 8.46290000e+03 5.05270000e+03 3.86840000e+03 3.81040000e+03 3.32270000e+03 3.10290000e+03 3.05570000e+03 2.84680000e+03 2.80320000e+03 1.49180000e+03 8.21150000e+02 3.40280000e+02 1.77090000e+02 1.05020000e+02 6.78490000e+01 5.93610000e+01 5.82190000e+01 3.34760000e+01 1.91030000e+01 6.74180000e+00 3.19010000e+00 1.11800000e+00 5.41900000e-01 3.15170000e-01 2.05780000e-01 1.08650000e-01 6.82720000e-02 3.13650000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.55370000e+05 1.29960000e+05 1.28450000e+05 1.12590000e+05 1.11100000e+05 8.09300000e+04 4.80130000e+04 3.06270000e+04 2.07260000e+04 1.07490000e+04 7.62500000e+03 7.47800000e+03 6.26870000e+03 5.73790000e+03 5.62510000e+03 5.13070000e+03 5.02870000e+03 2.20840000e+03 1.00640000e+03 3.13760000e+02 1.32300000e+02 6.64960000e+01 3.75290000e+01 3.15250000e+01 3.07370000e+01 1.50000000e+01 7.30150000e+00 1.96250000e+00 7.79270000e-01 2.20270000e-01 9.40640000e-02 5.03620000e-02 3.10590000e-02 1.51990000e-02 9.14900000e-03 3.97610000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.36550000e+04 4.79010000e+04 4.74960000e+04 3.68180000e+04 2.38020000e+04 1.59840000e+04 1.12230000e+04 6.15890000e+03 4.48010000e+03 4.40030000e+03 3.73750000e+03 3.44150000e+03 3.37830000e+03 3.10040000e+03 3.04290000e+03 1.41080000e+03 6.74850000e+02 2.25570000e+02 1.00130000e+02 5.24560000e+01 3.06580000e+01 2.60320000e+01 2.54220000e+01 1.29760000e+01 6.61460000e+00 1.93760000e+00 8.17170000e-01 2.49600000e-01 1.11450000e-01 6.12730000e-02 3.84040000e-02 1.91830000e-02 1.16350000e-02 5.12170000e-03] total = [ 9.22720000e+05 4.10680000e+05 3.60670000e+05 6.17970000e+05 1.05560000e+06 1.22120000e+06 9.99980000e+05 9.82450000e+05 1.11820000e+06 8.66520000e+05 9.03790000e+05 7.47880000e+05 7.66030000e+05 4.94230000e+05 2.46350000e+05 1.41260000e+05 8.90180000e+04 4.24570000e+04 2.92200000e+04 7.58760000e+04 6.29890000e+04 5.72510000e+04 7.72840000e+04 7.06010000e+04 7.99350000e+04 3.54110000e+04 1.65060000e+04 5.52190000e+03 2.50670000e+03 1.35100000e+03 8.12850000e+02 6.96870000e+02 3.56910000e+03 1.97810000e+03 1.09240000e+03 3.63660000e+02 1.65770000e+02 5.56800000e+01 2.64200000e+01 1.51920000e+01 9.85760000e+00 5.17930000e+00 3.25120000e+00 1.49630000e+00] JM2 = 1.04301112496 JM3 = 1.13817497074 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.88760000e+03 1.61500000e+03 8.98470000e+02 3.01650000e+02 1.37980000e+02 4.64860000e+01 2.20970000e+01 1.27240000e+01 8.26620000e+00 4.35190000e+00 2.73580000e+00 1.26190000e+00] JM1 = 1.02426859924 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.63310000e+05 7.19110000e+05 8.90360000e+05 7.77870000e+05 7.63710000e+05 9.03300000e+05 6.96340000e+05 7.36610000e+05 6.08870000e+05 6.29500000e+05 4.05190000e+05 2.01110000e+05 1.14860000e+05 7.21460000e+04 3.42340000e+04 2.35030000e+04 2.30140000e+04 1.90440000e+04 1.73290000e+04 1.69670000e+04 1.53940000e+04 1.50720000e+04 6.45990000e+03 2.96810000e+03 9.78790000e+02 4.41720000e+02 2.37280000e+02 1.42470000e+02 1.22080000e+02 1.19380000e+02 6.34890000e+01 3.38560000e+01 1.08120000e+01 4.84290000e+00 1.60070000e+00 7.52180000e-01 4.29130000e-01 2.76570000e-01 1.43620000e-01 8.93910000e-02 4.05970000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.72600000e+04 3.92800000e+04 3.56650000e+04 5.61450000e+04 5.14110000e+04 6.11450000e+04 2.73190000e+04 1.27740000e+04 4.28570000e+03 1.94720000e+03 1.04990000e+03 6.31830000e+02 5.41700000e+02 5.29750000e+02 2.82270000e+02 1.50730000e+02 4.82090000e+01 2.16070000e+01 7.14610000e+00 3.36010000e+00 1.91830000e+00 1.23710000e+00 6.43380000e-01 4.00810000e-01 1.82360000e-01] JM4 = 1.15687760515 JM5 = 1.71339451576 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.12150000e+04 1.96560000e+04 1.92010000e+04 8.41010000e+03 3.77710000e+03 1.17230000e+03 4.98220000e+02 2.53380000e+02 1.44970000e+02 1.22370000e+02 1.19400000e+02 5.96160000e+01 2.98280000e+01 8.50500000e+00 3.53570000e+00 1.06400000e+00 4.71590000e-01 2.58190000e-01 1.61400000e-01 8.02750000e-02 4.86080000e-02 2.13390000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.72600000e+04 3.92800000e+04 3.56650000e+04 3.49300000e+04 3.17560000e+04 3.11020000e+04 1.26810000e+04 5.42830000e+03 1.57240000e+03 6.34580000e+02 3.09880000e+02 1.71280000e+02 1.43030000e+02 1.39340000e+02 6.65620000e+01 3.18220000e+01 8.33600000e+00 3.26530000e+00 9.10290000e-01 3.86140000e-01 2.05960000e-01 1.26720000e-01 6.20110000e-02 3.72720000e-02 1.62290000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.08420000e+04 6.22800000e+03 3.56880000e+03 1.54100000e+03 8.14420000e+02 4.86680000e+02 3.15580000e+02 2.76300000e+02 2.71000000e+02 1.56090000e+02 8.90780000e+01 3.13680000e+01 1.48060000e+01 5.17180000e+00 2.50240000e+00 1.45410000e+00 9.48960000e-01 5.01090000e-01 3.14930000e-01 1.44790000e-01] all other = [ 9.22720000e+05 4.10680000e+05 3.60670000e+05 3.54660000e+05 3.36520000e+05 3.30870000e+05 2.22120000e+05 2.18730000e+05 2.14940000e+05 1.70180000e+05 1.67180000e+05 1.39010000e+05 1.36530000e+05 8.90370000e+04 4.52400000e+04 2.64000000e+04 1.68730000e+04 8.22330000e+03 5.71720000e+03 5.60230000e+03 4.66460000e+03 4.25710000e+03 4.17090000e+03 3.79530000e+03 3.71820000e+03 1.63180000e+03 7.63760000e+02 2.57410000e+02 1.17730000e+02 6.38010000e+01 3.85530000e+01 3.30940000e+01 3.23700000e+01 1.73310000e+01 9.29530000e+00 2.99430000e+00 1.34770000e+00 4.47580000e-01 2.10880000e-01 1.20500000e-01 7.77330000e-02 4.04260000e-02 2.51740000e-02 1.14430000e-02] [Lu.binding] K = 63.4607 L1 = 10.848 M5 = 1.5976 M4 = 1.6509 M1 = 2.4716 L3 = 9.2429 M3 = 2.0161 M2 = 2.2585 L2 = 10.3737 [Cs] JM1 = 1.02803180915 JL1 = 1.12902562697 JL3 = 2.90089546232 JL2 = 1.33918601829 JM2 = 1.04002617516 energy = [ 1.00000000e+00 1.05870000e+00 1.06710000e+00 1.19540000e+00 1.20500000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.00090000e+00 5.04090000e+00 5.35800000e+00 5.40090000e+00 5.67980000e+00 5.72530000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.59530000e+01 3.62400000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 0.00000000e+00 0.00000000e+00 1.03850000e+05 9.48240000e+04 9.40080000e+04 7.12650000e+04 4.66510000e+04 2.23460000e+04 1.23390000e+04 7.51660000e+03 7.51360000e+03 7.37750000e+03 6.40880000e+03 6.29120000e+03 5.59200000e+03 5.48780000e+03 4.90920000e+03 2.41870000e+03 1.35810000e+03 4.49250000e+02 1.96630000e+02 5.83830000e+01 3.34060000e+01 3.25880000e+01 2.39430000e+01 1.18300000e+01 6.60480000e+00 2.61040000e+00 1.26610000e+00 3.41540000e-01 1.36770000e-01 3.92150000e-02 1.69000000e-02 9.07050000e-03 5.58670000e-03 2.72740000e-03 1.62920000e-03 7.04570000e-04] M = [ 1.73660000e+06 1.53930000e+06 1.61720000e+06 1.27720000e+06 1.32320000e+06 8.09890000e+05 4.12000000e+05 1.51680000e+05 7.29430000e+04 4.09130000e+04 4.08950000e+04 4.00530000e+04 3.41480000e+04 3.34410000e+04 2.92980000e+04 2.86890000e+04 2.53570000e+04 1.18050000e+04 6.47550000e+03 2.14100000e+03 9.65420000e+02 3.09990000e+02 1.85820000e+02 1.81660000e+02 1.37260000e+02 7.26390000e+01 4.30750000e+01 1.88110000e+01 9.86970000e+00 3.05590000e+00 1.33810000e+00 4.28500000e-01 1.97350000e-01 1.11090000e-01 7.09860000e-02 3.65850000e-02 2.27360000e-02 1.03970000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.54830000e+04 8.20400000e+04 1.24820000e+05 1.10250000e+05 1.29810000e+05 1.16190000e+05 5.56800000e+04 3.09620000e+04 1.03900000e+04 4.71150000e+03 1.51890000e+03 9.11380000e+02 8.91040000e+02 6.73590000e+02 3.56740000e+02 2.11640000e+02 9.24600000e+01 4.85120000e+01 1.50150000e+01 6.57180000e+00 2.10340000e+00 9.68550000e-01 5.45420000e-01 3.48580000e-01 1.79760000e-01 1.11770000e-01 5.11650000e-02] M5 = [ 8.77880000e+05 7.67350000e+05 7.52830000e+05 5.74670000e+05 5.63470000e+05 3.16250000e+05 1.39880000e+05 4.05860000e+04 1.59630000e+04 7.51170000e+03 7.50720000e+03 7.30440000e+03 5.91660000e+03 5.75500000e+03 4.82870000e+03 4.69590000e+03 3.98370000e+03 1.41890000e+03 6.20840000e+02 1.30790000e+02 4.16880000e+01 7.96690000e+00 3.75510000e+00 3.63210000e+00 2.40320000e+00 9.40090000e-01 4.35550000e-01 1.29480000e-01 5.08390000e-02 9.60120000e-03 3.06510000e-03 6.65860000e-04 2.46730000e-04 1.20290000e-04 6.92580000e-05 3.18060000e-05 1.84800000e-05 7.77970000e-06] M4 = [ 6.00070000e+05 5.25690000e+05 5.15890000e+05 3.95000000e+05 3.87430000e+05 2.19170000e+05 9.77930000e+04 2.87010000e+04 1.13860000e+04 5.39480000e+03 5.39160000e+03 5.24730000e+03 4.25920000e+03 4.14400000e+03 3.48260000e+03 3.38770000e+03 2.87840000e+03 1.03580000e+03 4.57150000e+02 9.80510000e+01 3.17150000e+01 6.20820000e+00 2.96170000e+00 2.86640000e+00 1.90980000e+00 7.59660000e-01 3.57050000e-01 1.08670000e-01 4.34520000e-02 8.44930000e-03 2.73320000e-03 5.95600000e-04 2.15400000e-04 1.02100000e-04 5.73660000e-05 2.43430000e-05 1.31910000e-05 5.14100000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.45170000e+04 3.95880000e+04 3.87420000e+04 3.44680000e+04 1.60030000e+04 8.56210000e+03 2.62150000e+03 1.09620000e+03 3.08470000e+02 1.73010000e+02 1.68630000e+02 1.22690000e+02 5.94250000e+01 3.27160000e+01 1.26920000e+01 6.08290000e+00 1.61340000e+00 6.40440000e-01 1.82020000e-01 7.80010000e-02 4.17460000e-02 2.56560000e-02 1.24960000e-02 7.45810000e-03 3.22410000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.54830000e+04 8.20400000e+04 8.02980000e+04 7.06640000e+04 6.92610000e+04 6.13840000e+04 2.73340000e+04 1.42900000e+04 4.19280000e+03 1.70070000e+03 4.57380000e+02 2.51080000e+02 2.44490000e+02 1.75720000e+02 8.26980000e+01 4.44060000e+01 1.65220000e+01 7.65160000e+00 1.90170000e+00 7.21270000e-01 1.93890000e-01 8.08280000e-02 4.27520000e-02 2.61990000e-02 1.28400000e-02 7.75540000e-03 3.42510000e-03] M3 = [ 2.58620000e+05 2.46280000e+05 2.44600000e+05 2.12700000e+05 2.10320000e+05 1.53030000e+05 9.45420000e+04 4.29050000e+04 2.29310000e+04 1.36500000e+04 1.36450000e+04 1.33880000e+04 1.15590000e+04 1.13370000e+04 1.00230000e+04 9.82850000e+03 8.75330000e+03 4.19200000e+03 2.30350000e+03 7.31700000e+02 3.10730000e+02 8.81400000e+01 4.93420000e+01 4.80860000e+01 3.48950000e+01 1.67440000e+01 9.11470000e+00 3.45300000e+00 1.61760000e+00 4.08680000e-01 1.56340000e-01 4.23980000e-02 1.77210000e-02 9.39450000e-03 5.76230000e-03 2.82520000e-03 1.70890000e-03 7.54400000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.18090000e+04 2.03370000e+04 1.23430000e+04 8.10980000e+03 3.57530000e+03 1.91460000e+03 7.53010000e+02 4.87300000e+02 4.77920000e+02 3.75190000e+02 2.14610000e+02 1.34520000e+02 6.32460000e+01 3.47780000e+01 1.15000000e+01 5.21010000e+00 1.72750000e+00 8.09720000e-01 4.60920000e-01 2.96720000e-01 1.54420000e-01 9.65540000e-02 4.45160000e-02] JK = 5.82335958005 M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.79610000e+04 5.01670000e+04 3.31340000e+04 1.71390000e+04 1.03240000e+04 6.84000000e+03 6.83770000e+03 6.73610000e+03 6.00410000e+03 5.91380000e+03 5.37110000e+03 5.28940000e+03 4.83200000e+03 2.73940000e+03 1.73590000e+03 7.31240000e+02 3.84660000e+02 1.49290000e+02 9.63530000e+01 9.44920000e+01 7.41110000e+01 4.23640000e+01 2.65630000e+01 1.25100000e+01 6.89170000e+00 2.28760000e+00 1.03920000e+00 3.45620000e-01 1.62270000e-01 9.24030000e-02 5.95100000e-02 3.09770000e-02 1.93660000e-02 8.92540000e-03] all other = [ 3.28460000e+05 2.94500000e+05 2.89990000e+05 2.31820000e+05 2.28140000e+05 1.45100000e+05 7.75040000e+04 3.04690000e+04 1.52660000e+04 8.80370000e+03 8.79990000e+03 8.62650000e+03 7.40510000e+03 7.25830000e+03 6.39430000e+03 6.26680000e+03 5.56610000e+03 2.66160000e+03 1.48680000e+03 5.05730000e+02 2.31860000e+02 7.58590000e+01 4.57940000e+01 4.47830000e+01 3.39560000e+01 1.80990000e+01 1.07890000e+01 4.74380000e+00 2.50100000e+00 7.79120000e-01 3.42360000e-01 1.10040000e-01 5.07730000e-02 2.86200000e-02 1.83010000e-02 9.44090000e-03 5.86960000e-03 2.68660000e-03] total = [ 2.06500000e+06 1.83380000e+06 1.90720000e+06 1.50900000e+06 1.55130000e+06 9.54990000e+05 4.89500000e+05 1.82150000e+05 8.82090000e+04 4.97170000e+04 4.96950000e+04 1.44160000e+05 1.23590000e+05 1.65510000e+05 1.45940000e+05 1.64770000e+05 1.47110000e+05 7.01460000e+04 3.89240000e+04 1.30360000e+04 5.90880000e+03 1.90470000e+03 1.14300000e+03 6.65610000e+03 5.11910000e+03 2.85300000e+03 1.73670000e+03 7.85610000e+02 4.19950000e+02 1.32770000e+02 5.86150000e+01 1.89010000e+01 8.74080000e+00 4.94020000e+00 3.16820000e+00 1.64370000e+00 1.02710000e+00 4.74150000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.53860000e+03 4.27420000e+03 2.40550000e+03 1.47120000e+03 6.69590000e+02 3.59070000e+02 1.13920000e+02 5.03630000e+01 1.62600000e+01 7.52410000e+00 4.25510000e+00 2.73030000e+00 1.41790000e+00 8.86740000e-01 4.09900000e-01] [Cs.binding] K = 35.9885 L1 = 5.6855 M5 = 0.7328 M4 = 0.7476 M1 = 1.1966 L3 = 5.0059 M3 = 0.9906 M2 = 1.0597 L2 = 5.3634 [Cr] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.95170000e+00 5.99930000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.49150000e+04 5.32370000e+03 2.44130000e+03 7.61190000e+02 3.17820000e+02 1.57480000e+02 8.97900000e+01 8.74870000e+01 8.74550000e+01 3.37560000e+01 1.58300000e+01 3.84150000e+00 1.36830000e+00 3.10540000e-01 1.06680000e-01 4.63300000e-02 2.34000000e-02 7.98000000e-03 3.48370000e-03 7.92560000e-04 2.86030000e-04 7.25070000e-05 2.90530000e-05 1.48770000e-05 8.86120000e-06 4.14200000e-06 2.41450000e-06 1.00490000e-06] M = [ 6.52050000e+04 2.44570000e+04 1.18780000e+04 4.15240000e+03 1.92780000e+03 1.05150000e+03 6.51280000e+02 6.37090000e+02 6.36890000e+02 2.85950000e+02 1.52480000e+02 4.77750000e+01 2.06750000e+01 6.22940000e+00 2.62210000e+00 1.33140000e+00 7.62190000e-01 3.14160000e-01 1.57430000e-01 4.48370000e-02 1.85370000e-02 5.51150000e-03 2.42780000e-03 1.33030000e-03 8.36230000e-04 4.25130000e-04 2.64190000e-04 1.23190000e-04] L = [ 5.73310000e+05 2.07640000e+05 9.79770000e+04 3.29960000e+04 1.49890000e+04 8.06630000e+03 4.95210000e+03 4.84230000e+03 4.84080000e+03 2.14640000e+03 1.13470000e+03 3.50840000e+02 1.50730000e+02 4.50540000e+01 1.88960000e+01 9.56840000e+00 5.46660000e+00 2.24740000e+00 1.12440000e+00 3.19450000e-01 1.31900000e-01 3.91810000e-02 1.72510000e-02 9.44970000e-03 5.93930000e-03 3.01920000e-03 1.87590000e-03 8.74590000e-04] M5 = [ 2.23820000e+03 5.10250000e+02 1.70650000e+02 3.37530000e+01 1.02240000e+01 3.96430000e+00 1.87570000e+00 1.81230000e+00 1.81140000e+00 5.19140000e-01 1.93790000e-01 3.09140000e-02 8.21280000e-03 1.25080000e-03 3.26640000e-04 1.15250000e-04 4.92680000e-05 1.30100000e-05 4.70140000e-06 7.77200000e-07 2.30160000e-07 4.64360000e-08 1.65830000e-08 7.95120000e-09 4.61730000e-09 2.11160000e-09 1.25200000e-09 6.07190000e-10] M4 = [ 1.52370000e+03 3.48250000e+02 1.16700000e+02 2.32580000e+01 7.06780000e+00 2.74810000e+00 1.30340000e+00 1.25950000e+00 1.25880000e+00 3.62340000e-01 1.35790000e-01 2.18560000e-02 5.85230000e-03 9.02820000e-04 2.38410000e-04 8.49100000e-05 3.66330000e-05 9.81190000e-06 3.58160000e-06 6.01640000e-07 1.78260000e-07 3.52070000e-08 1.19680000e-08 5.47400000e-09 2.99320000e-09 1.23620000e-09 6.65320000e-10 2.82280000e-10] L2 = [ 1.59290000e+05 5.28810000e+04 2.30810000e+04 6.77630000e+03 2.73470000e+03 1.32660000e+03 7.45770000e+02 7.26200000e+02 7.25930000e+02 2.74610000e+02 1.27000000e+02 3.02010000e+01 1.06490000e+01 2.38730000e+00 8.15020000e-01 3.52510000e-01 1.77550000e-01 6.03190000e-02 2.62690000e-02 5.95480000e-03 2.14370000e-03 5.44610000e-04 2.18200000e-04 1.11750000e-04 6.65460000e-05 3.11110000e-05 1.81810000e-05 7.60160000e-06] L3 = [ 3.10630000e+05 1.02310000e+05 4.44090000e+04 1.29370000e+04 5.19070000e+03 2.50570000e+03 1.40300000e+03 1.36590000e+03 1.36540000e+03 5.12760000e+02 2.35650000e+02 5.52970000e+01 1.92800000e+01 4.24080000e+00 1.42450000e+00 6.07270000e-01 3.01920000e-01 1.00260000e-01 4.28270000e-02 9.36160000e-03 3.29210000e-03 8.13640000e-04 3.25490000e-04 1.68660000e-04 1.02560000e-04 5.01910000e-05 3.04180000e-05 1.38240000e-05] M3 = [ 2.90540000e+04 1.02950000e+04 4.69650000e+03 1.45310000e+03 6.03180000e+02 2.97410000e+02 1.68860000e+02 1.64500000e+02 1.64440000e+02 6.29940000e+01 2.93510000e+01 7.02880000e+00 2.47650000e+00 5.50000000e-01 1.85910000e-01 7.95620000e-02 3.96680000e-02 1.32180000e-02 5.65910000e-03 1.24080000e-03 4.36910000e-04 1.08310000e-04 4.33800000e-05 2.24960000e-05 1.36820000e-05 6.69040000e-06 4.07060000e-06 1.85250000e-06] L1 = [ 1.03390000e+05 5.24460000e+04 3.04870000e+04 1.32830000e+04 7.06360000e+03 4.23410000e+03 2.80340000e+03 2.75020000e+03 2.74950000e+03 1.35900000e+03 7.72030000e+02 2.65340000e+02 1.20810000e+02 3.84260000e+01 1.66570000e+01 8.60860000e+00 4.98710000e+00 2.08680000e+00 1.05530000e+00 3.04140000e-01 1.26470000e-01 3.78230000e-02 1.67070000e-02 9.16930000e-03 5.77020000e-03 2.93780000e-03 1.82730000e-03 8.53160000e-04] JK = 7.90819053048 M1 = [ 1.74740000e+04 7.97950000e+03 4.45310000e+03 1.88110000e+03 9.89460000e+02 5.89890000e+02 3.89450000e+02 3.82030000e+02 3.81930000e+02 1.88320000e+02 1.06970000e+02 3.68510000e+01 1.68160000e+01 5.36670000e+00 2.32890000e+00 1.20540000e+00 6.99030000e-01 2.92940000e-01 1.48280000e-01 4.28030000e-02 1.78140000e-02 5.33060000e-03 2.35540000e-03 1.29290000e-03 8.13680000e-04 4.14300000e-04 2.57700000e-04 1.20340000e-04] all other = [ 4.76040000e+02 2.15290000e+02 1.19600000e+02 5.06010000e+01 2.65760000e+01 1.58330000e+01 1.04490000e+01 1.02500000e+01 1.02470000e+01 5.05110000e+00 2.86870000e+00 9.88310000e-01 4.51000000e-01 1.43930000e-01 6.25280000e-02 3.23660000e-02 1.87720000e-02 7.86770000e-03 3.98280000e-03 1.14980000e-03 4.78580000e-04 1.43240000e-04 6.33150000e-05 3.47740000e-05 2.19040000e-05 1.11800000e-05 6.97860000e-06 3.30860000e-06] total = [ 6.38990000e+05 2.32310000e+05 1.09970000e+05 3.71990000e+04 1.69430000e+04 9.13370000e+03 5.61380000e+03 4.43950000e+04 4.43950000e+04 2.15760000e+04 1.18720000e+04 3.88050000e+03 1.70970000e+03 5.22790000e+02 2.21440000e+02 1.12710000e+02 6.45940000e+01 2.66430000e+01 1.33500000e+01 3.79830000e+00 1.56880000e+00 4.65850000e-01 2.05100000e-01 1.12380000e-01 7.06560000e-02 3.59500000e-02 2.23590000e-02 1.04460000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.89050000e+04 3.89070000e+04 1.91390000e+04 1.05820000e+04 3.48090000e+03 1.53780000e+03 4.71360000e+02 1.99860000e+02 1.01780000e+02 5.83460000e+01 2.40730000e+01 1.20640000e+01 3.43290000e+00 1.41790000e+00 4.21010000e-01 1.85360000e-01 1.01560000e-01 6.38590000e-02 3.24940000e-02 2.02120000e-02 9.44470000e-03] [Cr.binding] K = 5.9576 L1 = 0.6874 M5 = 0.0064 M4 = 0.0065 M1 = 0.0792 L3 = 0.5808 M3 = 0.0502 M2 = 0.0513 L2 = 0.5898 [Cu] JL1 = 1.11052454607 energy = [ 1.00000000e+00 1.08510000e+00 1.09380000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.93440000e+00 9.00590000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 2.87470000e+04 2.40340000e+04 2.36110000e+04 1.13120000e+04 5.49840000e+03 1.85110000e+03 8.15920000e+02 4.21220000e+02 2.41470000e+02 9.76020000e+01 6.83490000e+01 6.66020000e+01 4.73100000e+01 1.21670000e+01 4.50860000e+00 1.07440000e+00 3.81600000e-01 1.69690000e-01 8.72930000e-02 3.05650000e-02 1.35890000e-02 3.18160000e-03 1.16790000e-03 3.02000000e-04 1.22380000e-04 6.31740000e-05 3.78440000e-05 1.78190000e-05 1.04170000e-05 4.36790000e-06] M = [ 1.43000000e+05 1.17840000e+05 1.15620000e+05 5.36810000e+04 2.61040000e+04 9.17350000e+03 4.28850000e+03 2.35430000e+03 1.43380000e+03 6.48900000e+02 4.77110000e+02 4.66610000e+02 3.48080000e+02 1.10490000e+02 4.83640000e+01 1.48300000e+01 6.33160000e+00 3.25080000e+00 1.87610000e+00 7.84180000e-01 3.97090000e-01 1.15120000e-01 4.81410000e-02 1.45160000e-02 6.44590000e-03 3.54890000e-03 2.23720000e-03 1.14000000e-03 7.08350000e-04 3.29180000e-04] L = [ 9.71150000e+05 7.73820000e+05 8.74660000e+05 4.11720000e+05 2.00510000e+05 6.93540000e+04 3.19600000e+04 1.73490000e+04 1.04740000e+04 4.68400000e+03 3.43010000e+03 3.35370000e+03 2.49300000e+03 7.81920000e+02 3.39740000e+02 1.03290000e+02 4.38880000e+01 2.24590000e+01 1.29430000e+01 5.39380000e+00 2.72610000e+00 7.88080000e-01 3.29070000e-01 9.90620000e-02 4.39600000e-02 2.41980000e-02 1.52520000e-02 7.77060000e-03 4.82810000e-03 2.24360000e-03] M5 = [ 1.87480000e+04 1.42330000e+04 1.38530000e+04 4.61700000e+03 1.62720000e+03 3.51290000e+02 1.13170000e+02 4.54630000e+01 2.13420000e+01 6.30410000e+00 3.92020000e+00 3.78750000e+00 2.40690000e+00 4.06540000e-01 1.12330000e-01 1.77840000e-02 4.76400000e-03 1.71510000e-03 7.45400000e-04 2.01790000e-04 7.41520000e-05 1.25730000e-05 3.76790000e-06 7.68880000e-07 2.76030000e-07 1.32700000e-07 7.66970000e-08 3.49210000e-08 2.03710000e-08 8.83250000e-09] M4 = [ 1.28490000e+04 9.76180000e+03 9.50170000e+03 3.17560000e+03 1.12220000e+03 2.43230000e+02 7.86060000e+01 3.18340000e+01 1.49890000e+01 4.45170000e+00 2.77450000e+00 2.68110000e+00 1.70790000e+00 2.91350000e-01 8.11960000e-02 1.30500000e-02 3.54030000e-03 1.28810000e-03 5.65230000e-04 1.55380000e-04 5.77760000e-05 9.97610000e-06 3.00270000e-06 6.01530000e-07 2.07220000e-07 9.49850000e-08 5.21610000e-08 2.15410000e-08 1.15460000e-08 4.22220000e-09] L2 = [ 3.32220000e+05 2.62870000e+05 2.57400000e+05 1.15430000e+05 5.32270000e+04 1.66340000e+04 7.00270000e+03 3.50310000e+03 1.96340000e+03 7.70210000e+02 5.34090000e+02 5.20090000e+02 3.66300000e+02 9.16040000e+01 3.34050000e+01 7.82710000e+00 2.75260000e+00 1.21690000e+00 6.23410000e-01 2.17090000e-01 9.61900000e-02 2.24090000e-02 8.20210000e-03 2.11360000e-03 8.58690000e-04 4.42980000e-04 2.65250000e-04 1.24790000e-04 7.32120000e-05 3.06170000e-05] L3 = [ 6.38930000e+05 5.10950000e+05 5.00390000e+05 2.22900000e+05 1.01820000e+05 3.14610000e+04 1.31380000e+04 6.52980000e+03 3.63970000e+03 1.41460000e+03 9.77250000e+02 9.51360000e+02 6.67550000e+02 1.64280000e+02 5.91160000e+01 1.35490000e+01 4.67740000e+00 2.03450000e+00 1.02720000e+00 3.48770000e-01 1.51260000e-01 3.38280000e-02 1.20490000e-02 3.02420000e-03 1.21640000e-03 6.32620000e-04 3.85130000e-04 1.88650000e-04 1.14320000e-04 5.19350000e-05] M3 = [ 5.58670000e+04 4.66000000e+04 4.57700000e+04 2.17430000e+04 1.04890000e+04 3.49320000e+03 1.52740000e+03 7.83440000e+02 4.46640000e+02 1.78830000e+02 1.24740000e+02 1.21520000e+02 8.59900000e+01 2.17540000e+01 7.95330000e+00 1.85430000e+00 6.44960000e-01 2.82180000e-01 1.43040000e-01 4.88260000e-02 2.12480000e-02 4.77310000e-03 1.70390000e-03 4.28510000e-04 1.72970000e-04 9.00230000e-05 5.47840000e-05 2.68230000e-05 1.63210000e-05 7.38520000e-06] L1 = [ 0.00000000e+00 0.00000000e+00 1.16870000e+05 7.33930000e+04 4.54720000e+04 2.12580000e+04 1.18200000e+04 7.31600000e+03 4.87130000e+03 2.49920000e+03 1.91880000e+03 1.88220000e+03 1.45910000e+03 5.26040000e+02 2.47220000e+02 8.19110000e+01 3.64580000e+01 1.92070000e+01 1.12930000e+01 4.82800000e+00 2.47860000e+00 7.31840000e-01 3.08810000e-01 9.39240000e-02 4.18850000e-02 2.31230000e-02 1.46010000e-02 7.45710000e-03 4.64060000e-03 2.16110000e-03] JK = 7.40750204415 M1 = [ 2.67870000e+04 2.32070000e+04 2.28810000e+04 1.28330000e+04 7.36820000e+03 3.23460000e+03 1.75330000e+03 1.07230000e+03 7.09350000e+02 3.61710000e+02 2.77320000e+02 2.72020000e+02 2.10660000e+02 7.58760000e+01 3.57090000e+01 1.18700000e+01 5.29680000e+00 2.79590000e+00 1.64450000e+00 7.04430000e-01 3.62130000e-01 1.07140000e-01 4.52630000e-02 1.37840000e-02 6.15010000e-03 3.39550000e-03 2.14440000e-03 1.09530000e-03 6.81580000e-04 3.17420000e-04] all other = [ 6.30760000e+02 5.44250000e+02 5.36380000e+02 2.96260000e+02 1.68970000e+02 7.36430000e+01 4.01480000e+01 2.45160000e+01 1.62040000e+01 8.25630000e+00 6.32900000e+00 6.20780000e+00 4.80690000e+00 1.73090000e+00 8.14590000e-01 2.70800000e-01 1.20840000e-01 6.37830000e-02 3.75560000e-02 1.60900000e-02 8.27260000e-03 2.44800000e-03 1.03430000e-03 3.15030000e-04 1.40610000e-04 7.76640000e-05 4.90800000e-05 2.51130000e-05 1.56710000e-05 7.38140000e-06] total = [ 1.11480000e+06 8.92200000e+05 9.90810000e+05 4.65700000e+05 2.26790000e+05 7.86010000e+04 3.62890000e+04 1.97280000e+04 1.19240000e+04 5.34120000e+03 3.91360000e+03 2.89900000e+04 2.26260000e+04 7.71060000e+03 3.49050000e+03 1.10330000e+03 4.77090000e+02 2.46440000e+02 1.42830000e+02 5.98910000e+01 3.03640000e+01 8.80550000e+00 3.68030000e+00 1.10860000e+00 4.92150000e-01 2.71020000e-01 1.70930000e-01 8.72160000e-02 5.42680000e-02 2.52890000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.51640000e+04 1.97800000e+04 6.81640000e+03 3.10150000e+03 9.84900000e+02 4.26740000e+02 2.20660000e+02 1.27970000e+02 5.36970000e+01 2.72330000e+01 7.89990000e+00 3.30210000e+00 9.94730000e-01 4.41600000e-01 2.43190000e-01 1.53390000e-01 7.82800000e-02 4.87160000e-02 2.27090000e-02] [Cu.binding] K = 8.9433 L1 = 1.0862 M5 = 0.0098 M4 = 0.0101 M1 = 0.1213 L3 = 0.9375 M3 = 0.0779 M2 = 0.0805 L2 = 0.9586 [La] JL1 = 1.13058078303 JL3 = 2.82031776392 JL2 = 1.3357485735 energy = [ 1.00000000e+00 1.12160000e+00 1.13050000e+00 1.20380000e+00 1.21340000e+00 1.34940000e+00 1.36020000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 5.47810000e+00 5.52200000e+00 5.89680000e+00 5.94400000e+00 6.00000000e+00 6.23630000e+00 6.28620000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.89080000e+01 3.92200000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.73600824974 M5 = [ 1.01290000e+06 7.74180000e+05 7.59520000e+05 6.51770000e+05 6.39040000e+05 4.93160000e+05 4.83400000e+05 3.74310000e+05 1.67650000e+05 4.94750000e+04 1.96850000e+04 9.34550000e+03 6.83730000e+03 6.65200000e+03 5.30030000e+03 5.15530000e+03 4.98950000e+03 4.35900000e+03 4.23870000e+03 1.79560000e+03 7.92140000e+02 1.69430000e+02 5.45270000e+01 1.05530000e+01 3.60230000e+00 3.48480000e+00 3.21050000e+00 1.26340000e+00 5.87920000e-01 1.75850000e-01 6.93410000e-02 1.31870000e-02 4.22790000e-03 9.27250000e-04 3.41090000e-04 1.66200000e-04 9.65000000e-05 4.45790000e-05 2.52330000e-05 1.08640000e-05] M4 = [ 6.92050000e+05 5.31020000e+05 5.21140000e+05 4.48330000e+05 4.39700000e+05 3.40150000e+05 3.33510000e+05 2.59720000e+05 1.17370000e+05 3.50540000e+04 1.40700000e+04 6.72920000e+03 4.93920000e+03 4.80660000e+03 3.83840000e+03 3.73450000e+03 3.61570000e+03 3.16340000e+03 3.07700000e+03 1.31520000e+03 5.85500000e+02 1.27580000e+02 4.16920000e+01 8.27080000e+00 2.87500000e+00 2.78280000e+00 2.56750000e+00 1.02790000e+00 4.85420000e-01 1.48750000e-01 5.97670000e-02 1.17150000e-02 3.80920000e-03 8.34280000e-04 3.03740000e-04 1.44340000e-04 8.06490000e-05 3.43370000e-05 1.90340000e-05 7.11410000e-06] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.83250000e+04 5.25350000e+04 3.48870000e+04 1.84000000e+04 1.11720000e+04 7.43970000e+03 6.26820000e+03 6.17470000e+03 5.45350000e+03 5.37130000e+03 5.27610000e+03 4.89930000e+03 4.82450000e+03 3.00760000e+03 1.91480000e+03 8.13440000e+02 4.30640000e+02 1.68650000e+02 9.01750000e+01 8.84330000e+01 8.42680000e+01 4.84140000e+01 3.04800000e+01 1.44440000e+01 7.99420000e+00 2.67480000e+00 1.22140000e+00 4.08920000e-01 1.92740000e-01 1.10040000e-01 7.09830000e-02 3.70110000e-02 2.31520000e-02 1.06640000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 2.34970000e+05 2.20850000e+05 2.19230000e+05 1.91380000e+05 1.89130000e+05 1.62890000e+05 1.02970000e+05 4.75490000e+04 2.57440000e+04 1.54590000e+04 1.24420000e+04 1.22060000e+04 1.04160000e+04 1.02150000e+04 9.98350000e+03 9.07830000e+03 8.90090000e+03 4.83220000e+03 2.67650000e+03 8.62500000e+02 3.69870000e+02 1.06250000e+02 4.63870000e+01 4.52080000e+01 4.24210000e+01 2.04820000e+01 1.12030000e+01 4.27400000e+00 2.01230000e+00 5.12510000e-01 1.97020000e-01 5.37150000e-02 2.25520000e-02 1.19460000e-02 7.33090000e-03 3.59920000e-03 2.17390000e-03 9.59500000e-04] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.39490000e+04 8.52950000e+04 8.45820000e+04 7.47850000e+04 4.98860000e+04 2.45380000e+04 1.37750000e+04 8.48970000e+03 6.90560000e+03 6.78030000e+03 5.82480000e+03 5.71770000e+03 5.59390000e+03 5.10950000e+03 5.01430000e+03 2.79240000e+03 1.58340000e+03 5.32820000e+02 2.35910000e+02 7.11170000e+01 3.20990000e+01 3.13170000e+01 2.94630000e+01 1.46670000e+01 8.23620000e+00 3.28350000e+00 1.60260000e+00 4.36810000e-01 1.76060000e-01 5.08820000e-02 2.19970000e-02 1.18620000e-02 7.32060000e-03 3.58190000e-03 2.14490000e-03 9.28860000e-04] total = [ 2.09410000e+06 1.61850000e+06 1.82410000e+06 1.59380000e+06 1.66050000e+06 1.32710000e+06 1.36250000e+06 1.09870000e+06 5.66650000e+05 2.12200000e+05 1.03150000e+05 5.82810000e+04 4.60090000e+04 1.29760000e+05 1.10410000e+05 1.47480000e+05 1.44700000e+05 1.31030000e+05 1.48140000e+05 8.05390000e+04 4.46800000e+04 1.50590000e+04 6.85040000e+03 2.21800000e+03 1.06670000e+03 6.11860000e+03 5.80230000e+03 3.22730000e+03 1.97730000e+03 8.98090000e+02 4.82010000e+02 1.53380000e+02 6.79810000e+01 2.20340000e+01 1.02210000e+01 5.78890000e+00 3.71750000e+00 1.93160000e+00 1.20760000e+00 5.57170000e-01] JM2 = 1.04184966746 JM3 = 1.12703120173 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.07570000e+03 4.81590000e+03 2.70370000e+03 1.66610000e+03 7.61720000e+02 4.10280000e+02 1.31080000e+02 5.81880000e+01 1.88850000e+01 8.76730000e+00 4.96880000e+00 3.19290000e+00 1.66080000e+00 1.03920000e+00 4.80170000e-01] JM1 = 1.02667470424 M = [ 1.70490000e+06 1.30520000e+06 1.51560000e+06 1.32100000e+06 1.39190000e+06 1.11000000e+06 1.14890000e+06 9.24250000e+05 4.72760000e+05 1.75020000e+05 8.44460000e+04 4.74630000e+04 3.73920000e+04 3.66200000e+04 3.08330000e+04 3.01940000e+04 2.94590000e+04 2.66100000e+04 2.60550000e+04 1.37430000e+04 7.55230000e+03 2.50580000e+03 1.13260000e+03 3.64840000e+02 1.75140000e+02 1.71230000e+02 1.61930000e+02 8.58550000e+01 5.09920000e+01 2.23260000e+01 1.17380000e+01 3.64900000e+00 1.60260000e+00 5.15280000e-01 2.37940000e-01 1.34160000e-01 8.58120000e-02 4.42710000e-02 2.75150000e-02 1.25700000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.46960000e+04 7.24200000e+04 1.10270000e+05 1.08380000e+05 9.82050000e+04 1.15990000e+05 6.35070000e+04 3.52870000e+04 1.19260000e+04 5.42900000e+03 1.75830000e+03 8.45560000e+02 8.26700000e+02 7.81910000e+02 4.15030000e+02 2.46650000e+02 1.08060000e+02 5.68270000e+01 1.76640000e+01 7.75500000e+00 2.49260000e+00 1.15080000e+00 6.49160000e-01 4.15330000e-01 2.14400000e-01 1.33320000e-01 6.09760000e-02] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.94130000e+04 3.92790000e+04 3.56090000e+04 3.48100000e+04 1.86360000e+04 9.98500000e+03 3.10800000e+03 1.31030000e+03 3.73390000e+02 1.63650000e+02 1.59530000e+02 1.49770000e+02 7.30050000e+01 4.03870000e+01 1.57850000e+01 7.60690000e+00 2.03630000e+00 8.13030000e-01 2.32750000e-01 1.00170000e-01 5.37630000e-02 3.31100000e-02 1.61700000e-02 9.66780000e-03 4.18970000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.46960000e+04 7.24200000e+04 7.08530000e+04 6.91020000e+04 6.25970000e+04 6.13450000e+04 3.16270000e+04 1.65620000e+04 4.92480000e+03 2.01240000e+03 5.46810000e+02 2.31870000e+02 2.25790000e+02 2.11460000e+02 1.00010000e+02 5.39130000e+01 2.01760000e+01 9.38370000e+00 2.34860000e+00 8.94570000e-01 2.41630000e-01 1.00970000e-01 5.34680000e-02 3.27810000e-02 1.60650000e-02 9.69700000e-03 4.27200000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.98410000e+04 1.32440000e+04 8.74010000e+03 3.89280000e+03 2.10630000e+03 8.38140000e+02 4.50040000e+02 4.41380000e+02 4.20680000e+02 2.42020000e+02 1.52350000e+02 7.21020000e+01 3.98370000e+01 1.32790000e+01 6.04740000e+00 2.01820000e+00 9.49670000e-01 5.41930000e-01 3.49440000e-01 1.82160000e-01 1.13960000e-01 5.25140000e-02] all other = [ 3.89140000e+05 3.13300000e+05 3.08510000e+05 2.72890000e+05 2.68630000e+05 2.17080000e+05 2.13580000e+05 1.74490000e+05 9.38890000e+04 3.71870000e+04 1.87060000e+04 1.08180000e+04 8.61660000e+03 8.44630000e+03 7.16230000e+03 7.01980000e+03 6.85560000e+03 6.21810000e+03 6.09380000e+03 3.28900000e+03 1.84040000e+03 6.28130000e+02 2.88740000e+02 9.48360000e+01 4.59830000e+01 4.49690000e+01 4.25570000e+01 2.27290000e+01 1.35710000e+01 5.98470000e+00 3.16070000e+00 9.89020000e-01 4.35930000e-01 1.40710000e-01 6.50950000e-02 3.67570000e-02 2.35290000e-02 1.21490000e-02 7.55480000e-03 3.45470000e-03] [La.binding] K = 38.9472 L1 = 6.2425 M5 = 0.8471 M4 = 0.8649 M1 = 1.3507 L3 = 5.4836 M3 = 1.1227 M2 = 1.205 L2 = 5.9026 [Li] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] L = [ 3.72190000e+01 1.07300000e+01 4.32210000e+00 1.18860000e+00 4.66070000e-01 2.24830000e-01 1.22980000e-01 4.74120000e-02 2.25160000e-02 5.77240000e-03 2.18600000e-03 5.53400000e-04 2.08270000e-04 9.75560000e-05 5.25020000e-05 1.97860000e-05 9.30790000e-06 2.39540000e-06 9.30940000e-07 2.57610000e-07 1.09130000e-07 5.84980000e-08 3.63480000e-08 1.83880000e-08 1.15230000e-08 5.63600000e-09] L1 = [ 3.72190000e+01 1.07300000e+01 4.32210000e+00 1.18860000e+00 4.66070000e-01 2.24830000e-01 1.22980000e-01 4.74120000e-02 2.25160000e-02 5.77240000e-03 2.18600000e-03 5.53400000e-04 2.08270000e-04 9.75560000e-05 5.25020000e-05 1.97860000e-05 9.30790000e-06 2.39540000e-06 9.30940000e-07 2.57610000e-07 1.09130000e-07 5.84980000e-08 3.63480000e-08 1.83880000e-08 1.15230000e-08 5.63600000e-09] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 2.69090000e+03 7.64110000e+02 3.07970000e+02 8.35430000e+01 3.27300000e+01 1.57120000e+01 8.60320000e+00 3.30500000e+00 1.56740000e+00 4.01010000e-01 1.51690000e-01 3.84180000e-02 1.44570000e-02 6.77080000e-03 3.64420000e-03 1.37360000e-03 6.46460000e-04 1.66550000e-04 6.48080000e-05 1.79610000e-05 7.61560000e-06 4.08150000e-06 2.53380000e-06 1.27630000e-06 7.93890000e-07 3.76440000e-07] K = [ 2.65360000e+03 7.53380000e+02 3.03650000e+02 8.23540000e+01 3.22640000e+01 1.54870000e+01 8.48020000e+00 3.25760000e+00 1.54490000e+00 3.95230000e-01 1.49510000e-01 3.78650000e-02 1.42480000e-02 6.67330000e-03 3.59170000e-03 1.35380000e-03 6.37150000e-04 1.64150000e-04 6.38770000e-05 1.77040000e-05 7.50650000e-06 4.02300000e-06 2.49750000e-06 1.25790000e-06 7.82370000e-07 3.70800000e-07] [Li.binding] K = 0.0598 L1 = 0.0055 [Tl] JL1 = 1.13224718386 JL3 = 2.46573746247 JL2 = 1.36567564667 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.39120000e+00 2.41030000e+00 2.49110000e+00 2.51110000e+00 2.94160000e+00 2.96510000e+00 3.00000000e+00 3.40700000e+00 3.43430000e+00 3.67750000e+00 3.70700000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.26470000e+01 1.27480000e+01 1.47320000e+01 1.48500000e+01 1.50000000e+01 1.53240000e+01 1.54460000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 8.57670000e+01 8.64540000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.68357005474 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.70110000e+05 4.38760000e+05 4.32360000e+05 2.88280000e+05 2.82030000e+05 2.73080000e+05 1.91480000e+05 1.87230000e+05 1.55440000e+05 1.52100000e+05 1.22980000e+05 6.37200000e+04 3.64140000e+04 1.45730000e+04 6.96050000e+03 3.11920000e+03 3.03400000e+03 1.82770000e+03 1.77680000e+03 1.71480000e+03 1.58970000e+03 1.54530000e+03 6.08800000e+02 1.34460000e+02 4.46790000e+01 1.87560000e+01 9.17050000e+00 2.94870000e+00 2.24010000e+00 2.17070000e+00 1.22270000e+00 2.51460000e-01 8.41830000e-02 1.94230000e-02 7.34540000e-03 3.62770000e-03 2.11070000e-03 9.56020000e-04 5.51560000e-04 2.22010000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.18570000e+05 2.06520000e+05 2.02190000e+05 1.95970000e+05 1.38510000e+05 1.35490000e+05 1.12040000e+05 1.10030000e+05 8.96030000e+04 4.70800000e+04 2.72210000e+04 1.10990000e+04 5.38110000e+03 2.45150000e+03 2.38590000e+03 1.45260000e+03 1.41300000e+03 1.36470000e+03 1.26710000e+03 1.23240000e+03 4.95590000e+02 1.13400000e+02 3.87420000e+01 1.66430000e+01 8.29930000e+00 2.75570000e+00 2.10990000e+00 2.04640000e+00 1.17160000e+00 2.51400000e-01 8.61810000e-02 2.02080000e-02 7.59470000e-03 3.68890000e-03 2.10120000e-03 9.23300000e-04 5.08380000e-04 1.97960000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.02470000e+04 1.83530000e+04 1.34200000e+04 1.02510000e+04 6.40570000e+03 4.33270000e+03 2.81490000e+03 2.77330000e+03 2.10470000e+03 2.07260000e+03 2.03280000e+03 1.95050000e+03 1.92070000e+03 1.15070000e+03 4.94560000e+02 2.64130000e+02 1.59830000e+02 1.04980000e+02 5.31580000e+01 4.49560000e+01 4.40980000e+01 3.09490000e+01 1.13200000e+01 5.49000000e+00 1.98810000e+00 9.83910000e-01 5.80260000e-01 3.82410000e-01 2.04110000e-01 1.28780000e-01 5.91300000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.04330000e+05 1.03130000e+05 8.55140000e+04 8.44090000e+04 7.49010000e+04 7.38250000e+04 6.42170000e+04 4.29520000e+04 2.98780000e+04 1.62400000e+04 9.78470000e+03 5.58150000e+03 5.47340000e+03 3.81740000e+03 3.74140000e+03 3.64780000e+03 3.45550000e+03 3.38610000e+03 1.72640000e+03 5.66400000e+02 2.47250000e+02 1.27520000e+02 7.34360000e+01 3.02500000e+01 2.43490000e+01 2.37500000e+01 1.50510000e+01 4.19270000e+00 1.70090000e+00 4.92650000e-01 2.12840000e-01 1.14570000e-01 7.07440000e-02 3.47010000e-02 2.07350000e-02 8.95180000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.24930000e+04 3.05700000e+04 3.03500000e+04 2.77850000e+04 1.99120000e+04 1.50030000e+04 8.88390000e+03 5.68610000e+03 3.43800000e+03 3.37770000e+03 2.43930000e+03 2.39520000e+03 2.34060000e+03 2.22800000e+03 2.18710000e+03 1.18350000e+03 4.25530000e+02 1.98320000e+02 1.07720000e+02 6.47680000e+01 2.86040000e+01 2.34230000e+01 2.28920000e+01 1.50410000e+01 4.64000000e+00 2.02170000e+00 6.42800000e-01 2.93940000e-01 1.64180000e-01 1.03970000e-01 5.26600000e-02 3.22430000e-02 1.43500000e-02] total = [ 1.69550000e+06 7.62660000e+05 4.13960000e+05 2.79270000e+05 4.44450000e+05 6.93590000e+05 8.01230000e+05 6.69620000e+05 7.60200000e+05 7.39290000e+05 5.40000000e+05 5.61830000e+05 4.77070000e+05 4.88740000e+05 4.08330000e+05 2.37120000e+05 1.50840000e+05 7.29080000e+04 4.10890000e+04 2.23130000e+04 5.50180000e+04 3.72680000e+04 5.08960000e+04 4.96680000e+04 4.71390000e+04 5.33730000e+04 2.75710000e+04 9.45160000e+03 4.36330000e+03 2.38020000e+03 1.44570000e+03 6.55210000e+02 5.40720000e+02 2.53250000e+03 1.72740000e+03 5.96990000e+02 2.77750000e+02 9.58730000e+01 4.62940000e+01 2.69420000e+01 1.76260000e+01 9.34890000e+00 5.88990000e+00 2.70900000e+00] JM2 = 1.04042592593 JM3 = 1.13527075057 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2003.5 1373.6 481.52 225.24 78.149 37.849 22.078 14.472 7.6983 4.86 2.2415] JM1 = 1.02446181902 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.70110000e+05 4.38760000e+05 5.50920000e+05 4.94800000e+05 5.88550000e+05 5.72190000e+05 4.15500000e+05 4.39620000e+05 3.72950000e+05 3.86550000e+05 3.22940000e+05 1.87080000e+05 1.18770000e+05 5.72010000e+04 3.21450000e+04 1.74050000e+04 1.70440000e+04 1.16420000e+04 1.13990000e+04 1.11010000e+04 1.04910000e+04 1.02720000e+04 5.16500000e+03 1.73430000e+03 7.93110000e+02 4.30460000e+02 2.60650000e+02 1.17720000e+02 9.70780000e+01 9.49570000e+01 6.34360000e+01 2.06560000e+01 9.38290000e+00 3.16320000e+00 1.50560000e+00 8.66330000e-01 5.61340000e-01 2.93350000e-01 1.82810000e-01 8.28520000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.31660000e+04 2.23170000e+04 3.62550000e+04 3.54080000e+04 3.36600000e+04 4.01740000e+04 2.09150000e+04 7.20810000e+03 3.33500000e+03 1.82110000e+03 1.10680000e+03 5.01860000e+02 4.14210000e+02 4.05190000e+02 2.71040000e+02 8.84750000e+01 4.02350000e+01 1.35820000e+01 6.47220000e+00 3.72820000e+00 2.41820000e+00 1.26590000e+00 7.90130000e-01 3.58810000e-01] JM4 = 1.15519254891 JM5 = 1.59147061983 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.44020000e+04 1.41240000e+04 1.35430000e+04 1.32370000e+04 6.82070000e+03 2.25180000e+03 9.97490000e+02 5.23490000e+02 3.06900000e+02 1.30920000e+02 1.06390000e+02 1.03890000e+02 6.72750000e+01 2.00680000e+01 8.58610000e+00 2.67860000e+00 1.21330000e+00 6.73950000e-01 4.25350000e-01 2.14630000e-01 1.30970000e-01 5.81810000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.31660000e+04 2.23170000e+04 2.18530000e+04 2.12840000e+04 2.01160000e+04 1.96940000e+04 9.46500000e+03 2.85110000e+03 1.18200000e+03 5.88750000e+02 3.30660000e+02 1.31650000e+02 1.05190000e+02 1.02520000e+02 6.40580000e+01 1.72810000e+01 6.89150000e+00 1.96170000e+00 8.40440000e-01 4.50320000e-01 2.77280000e-01 1.35600000e-01 8.11430000e-02 3.49640000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.24210000e+03 4.62970000e+03 2.10520000e+03 1.15550000e+03 7.08890000e+02 4.69220000e+02 2.39300000e+02 2.02620000e+02 1.98770000e+02 1.39710000e+02 5.11250000e+01 2.47580000e+01 8.94150000e+00 4.41850000e+00 2.60390000e+00 1.71560000e+00 9.15720000e-01 5.78010000e-01 2.65670000e-01] all other = [ 1.69550000e+06 7.62660000e+05 4.13960000e+05 2.79270000e+05 2.74340000e+05 2.54830000e+05 2.50310000e+05 1.74820000e+05 1.71650000e+05 1.67110000e+05 1.24510000e+05 1.22210000e+05 1.04120000e+05 1.02180000e+05 8.53880000e+04 5.00340000e+04 3.20770000e+04 1.57070000e+04 8.94400000e+03 4.90820000e+03 4.80860000e+03 3.31010000e+03 3.24240000e+03 3.15930000e+03 2.98900000e+03 2.92770000e+03 1.49080000e+03 5.09100000e+02 2.35180000e+02 1.28600000e+02 7.82900000e+01 3.56350000e+01 2.94360000e+01 2.87980000e+01 1.93010000e+01 6.33410000e+00 2.89010000e+00 9.79150000e-01 4.67170000e-01 2.69210000e-01 1.74610000e-01 9.13520000e-02 5.69650000e-02 2.58310000e-02] [Tl.binding] K = 85.8527 L1 = 15.3391 M5 = 2.3936 M4 = 2.4936 M1 = 3.6812 L3 = 12.6596 M3 = 2.9445 M2 = 3.4104 L2 = 14.7472 [Tm] JL1 = 1.13212637835 JL3 = 2.62469757089 JL2 = 1.34760572388 energy = [ 1.00000000e+00 1.46810000e+00 1.47990000e+00 1.50000000e+00 1.51450000e+00 1.52660000e+00 1.86320000e+00 1.87810000e+00 2.00000000e+00 2.07360000e+00 2.09020000e+00 2.27610000e+00 2.29430000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.62920000e+00 8.69830000e+00 9.62020000e+00 9.69730000e+00 1.00000000e+01 1.00730000e+01 1.01540000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.94440000e+01 5.99200000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.20666431307 M5 = [ 0.00000000e+00 0.00000000e+00 3.33240000e+05 7.38850000e+05 8.04570000e+05 8.08690000e+05 4.86550000e+05 4.76530000e+05 4.04210000e+05 3.67470000e+05 3.59790000e+05 2.88860000e+05 2.82820000e+05 1.33620000e+05 5.65850000e+04 2.81210000e+04 1.55810000e+04 5.93370000e+03 4.57280000e+03 4.44830000e+03 3.12980000e+03 3.04330000e+03 2.73130000e+03 2.66190000e+03 2.58800000e+03 6.30670000e+02 2.14230000e+02 4.45110000e+01 1.41890000e+01 5.77780000e+00 2.86560000e+00 2.77420000e+00 2.75930000e+00 8.56980000e-01 3.46670000e-01 6.85950000e-02 2.25130000e-02 5.06580000e-03 1.89610000e-03 9.24180000e-04 5.38990000e-04 2.46950000e-04 1.41380000e-04 5.92430000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.04260000e+05 3.40180000e+05 3.33280000e+05 2.83410000e+05 2.58030000e+05 2.52720000e+05 2.03460000e+05 1.99210000e+05 9.53630000e+04 4.09300000e+04 2.05480000e+04 1.14820000e+04 4.43530000e+03 3.43090000e+03 3.33890000e+03 2.36190000e+03 2.29760000e+03 2.06530000e+03 2.01360000e+03 1.95860000e+03 4.88210000e+02 1.68950000e+02 3.61630000e+01 1.18050000e+01 4.90400000e+00 2.47200000e+00 2.39500000e+00 2.38240000e+00 7.61000000e-01 3.14680000e-01 6.45810000e-02 2.16010000e-02 4.89630000e-03 1.80580000e-03 8.65670000e-04 4.93030000e-04 2.11530000e-04 1.17450000e-04 4.45480000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.50970000e+04 2.44160000e+04 1.59120000e+04 1.10090000e+04 8.02300000e+03 4.75900000e+03 4.12930000e+03 4.06730000e+03 3.35470000e+03 3.30380000e+03 3.11390000e+03 3.07040000e+03 3.02340000e+03 1.38670000e+03 7.59210000e+02 3.12260000e+02 1.61620000e+02 9.54430000e+01 6.28590000e+01 6.16480000e+01 6.14490000e+01 3.01530000e+01 1.71360000e+01 6.00300000e+00 2.82630000e+00 9.84090000e-01 4.75060000e-01 2.75560000e-01 1.79600000e-01 9.46380000e-02 5.94230000e-02 2.73080000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.65430000e+05 1.47220000e+05 1.40610000e+05 1.39040000e+05 1.21740000e+05 1.20150000e+05 7.67920000e+04 4.47490000e+04 2.82720000e+04 1.89930000e+04 9.76870000e+03 8.13800000e+03 7.98130000e+03 6.23030000e+03 6.10800000e+03 5.65670000e+03 5.55410000e+03 5.44390000e+03 1.96840000e+03 8.89910000e+02 2.74470000e+02 1.14880000e+02 5.74300000e+01 3.32440000e+01 3.24110000e+01 3.22740000e+01 1.28180000e+01 6.21120000e+00 1.65710000e+00 6.55060000e-01 1.84240000e-01 7.84870000e-02 4.19740000e-02 2.58200000e-02 1.26580000e-02 7.62530000e-03 3.32090000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.82810000e+04 5.21300000e+04 5.16830000e+04 3.56230000e+04 2.24990000e+04 1.49280000e+04 1.03930000e+04 5.61710000e+03 4.74020000e+03 4.65560000e+03 3.69460000e+03 3.62660000e+03 3.37510000e+03 3.31790000e+03 3.25630000e+03 1.25350000e+03 5.93120000e+02 1.95410000e+02 8.58980000e+01 4.46770000e+01 2.66980000e+01 2.60680000e+01 2.59650000e+01 1.08970000e+01 5.52040000e+00 1.60050000e+00 6.70660000e-01 2.03240000e-01 9.03240000e-02 4.95040000e-02 3.09590000e-02 1.54240000e-02 9.33610000e-03 4.10190000e-03] total = [ 8.10250000e+05 3.79040000e+05 7.06080000e+05 1.10140000e+06 1.16000000e+06 1.36250000e+06 1.05590000e+06 1.20050000e+06 1.03130000e+06 9.47600000e+05 9.88180000e+05 8.13860000e+05 8.34020000e+05 4.44610000e+05 2.20690000e+05 1.26210000e+05 7.93740000e+04 3.77690000e+04 3.09990000e+04 8.13630000e+04 6.25450000e+04 8.42860000e+04 7.82470000e+04 7.67220000e+04 8.68590000e+04 3.16980000e+04 1.47550000e+04 4.90880000e+03 2.22200000e+03 1.19470000e+03 7.36460000e+02 3.83450000e+03 3.81560000e+03 1.79460000e+03 9.85360000e+02 3.25800000e+02 1.47910000e+02 4.94250000e+01 2.33730000e+01 1.34100000e+01 8.68770000e+00 4.55680000e+00 2.85850000e+00 1.31600000e+00] JM2 = 1.04282397636 JM3 = 1.13694478644 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.11430000e+03 3.09810000e+03 1.47500000e+03 8.15060000e+02 2.71550000e+02 1.23660000e+02 4.14370000e+01 1.96270000e+01 1.12750000e+01 7.31260000e+00 3.84260000e+00 2.41380000e+00 1.11360000e+00] JM1 = 1.02477084511 M = [ 0.00000000e+00 0.00000000e+00 3.33240000e+05 7.38850000e+05 8.04570000e+05 1.01300000e+06 8.26730000e+05 9.75240000e+05 8.34840000e+05 7.66110000e+05 8.09840000e+05 6.66190000e+05 6.88960000e+05 3.65810000e+05 1.80670000e+05 1.02880000e+05 6.44720000e+04 3.05140000e+04 2.50110000e+04 2.44910000e+04 1.87710000e+04 1.83790000e+04 1.69420000e+04 1.66180000e+04 1.62700000e+04 5.72740000e+03 2.62540000e+03 8.62810000e+02 3.88390000e+02 2.08230000e+02 1.28140000e+02 1.25300000e+02 1.24830000e+02 5.54860000e+01 2.95290000e+01 9.39380000e+00 4.19620000e+00 1.38150000e+00 6.47570000e-01 3.68830000e-01 2.37410000e-01 1.23180000e-01 7.66430000e-02 3.48350000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.10040000e+04 3.92360000e+04 6.14610000e+04 5.71950000e+04 5.60710000e+04 6.66370000e+04 2.45380000e+04 1.14610000e+04 3.82120000e+03 1.73110000e+03 9.31040000e+02 5.74010000e+02 5.61320000e+02 5.59230000e+02 2.49140000e+02 1.32750000e+02 4.22870000e+01 1.88980000e+01 6.22500000e+00 2.91930000e+00 1.66370000e+00 1.07170000e+00 5.56720000e-01 3.46720000e-01 1.57840000e-01] JM4 = 1.17456896552 JM5 = 1.86281131279 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.30360000e+04 2.17110000e+04 2.12500000e+04 2.07610000e+04 7.41580000e+03 3.30570000e+03 1.01430000e+03 4.27190000e+02 2.16020000e+02 1.26610000e+02 1.23520000e+02 1.23010000e+02 5.02200000e+01 2.49920000e+01 7.06270000e+00 2.91930000e+00 8.72250000e-01 3.84960000e-01 2.10150000e-01 1.31110000e-01 6.50310000e-02 3.93110000e-02 1.72170000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.10040000e+04 3.92360000e+04 3.84250000e+04 3.54850000e+04 3.48210000e+04 3.41070000e+04 1.12410000e+04 4.79450000e+03 1.37620000e+03 5.52490000e+02 2.68560000e+02 1.52540000e+02 1.48600000e+02 1.47950000e+02 5.72090000e+01 2.72490000e+01 7.09410000e+00 2.76820000e+00 7.68410000e-01 3.25270000e-01 1.73330000e-01 1.06600000e-01 5.21770000e-02 3.13840000e-02 1.36940000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.17690000e+04 5.88090000e+03 3.36020000e+03 1.43080000e+03 7.51400000e+02 4.46460000e+02 2.94860000e+02 2.89200000e+02 2.88270000e+02 1.41710000e+02 8.05100000e+01 2.81300000e+01 1.32110000e+01 4.58430000e+00 2.20910000e+00 1.28020000e+00 8.34000000e-01 4.39510000e-01 2.76020000e-01 1.26930000e-01] all other = [ 8.10250000e+05 3.79040000e+05 3.72850000e+05 3.62580000e+05 3.55430000e+05 3.49590000e+05 2.29140000e+05 2.25230000e+05 1.96450000e+05 1.81490000e+05 1.78340000e+05 1.47670000e+05 1.45060000e+05 7.87900000e+04 4.00160000e+04 2.33300000e+04 1.49030000e+04 7.25480000e+03 5.98810000e+03 5.86790000e+03 4.53790000e+03 4.44620000e+03 4.10930000e+03 4.03310000e+03 3.95130000e+03 1.43280000e+03 6.68990000e+02 2.24750000e+02 1.02490000e+02 5.54230000e+01 3.43090000e+01 3.35570000e+01 3.34330000e+01 1.49890000e+01 8.02170000e+00 2.57300000e+00 1.15460000e+00 3.82010000e-01 1.79520000e-01 1.02400000e-01 6.59890000e-02 3.42790000e-02 2.13420000e-02 9.70730000e-03] [Tm.binding] K = 59.5037 L1 = 10.0832 M5 = 1.4696 M4 = 1.516 M1 = 2.2783 L3 = 8.6378 M3 = 1.8651 M2 = 2.0757 L2 = 9.6299 [Th] JL1 = 1.13320428286 JL3 = 2.35993085759 JL2 = 1.38601764384 energy = [ 1.00000000e+00 1.16160000e+00 1.17090000e+00 1.31120000e+00 1.32170000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.33460000e+00 3.36130000e+00 3.49860000e+00 3.52660000e+00 4.00000000e+00 4.03180000e+00 4.06410000e+00 4.82790000e+00 4.86650000e+00 5.00000000e+00 5.15910000e+00 5.20040000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.62980000e+01 1.64280000e+01 1.97620000e+01 1.99200000e+01 2.00000000e+01 2.04820000e+01 2.06460000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.10140000e+02 1.11020000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.25138046528 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.09010000e+05 2.73930000e+05 2.68380000e+05 1.95990000e+05 1.91830000e+05 1.87690000e+05 1.14630000e+05 1.11980000e+05 1.03470000e+05 9.48150000e+04 9.26960000e+04 6.05580000e+04 2.51090000e+04 1.22980000e+04 3.16720000e+03 2.37860000e+03 2.31350000e+03 1.20900000e+03 1.17520000e+03 1.15860000e+03 1.06450000e+03 1.03470000e+03 2.66360000e+02 9.09750000e+01 3.89870000e+01 1.93740000e+01 6.37660000e+00 2.69160000e+00 1.85410000e+00 1.79790000e+00 5.67740000e-01 1.93560000e-01 4.52290000e-02 1.72030000e-02 8.56730000e-03 4.98790000e-03 2.26480000e-03 1.28960000e-03 5.29300000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.96550000e+05 1.42570000e+05 1.39760000e+05 1.36960000e+05 8.52360000e+04 8.33150000e+04 7.70990000e+04 7.03180000e+04 6.88120000e+04 4.57830000e+04 1.93570000e+04 9.65070000e+03 2.57070000e+03 1.94490000e+03 1.89320000e+03 1.00620000e+03 9.78820000e+02 9.65380000e+02 8.88970000e+02 8.64680000e+02 2.30980000e+02 8.13970000e+01 3.57870000e+01 1.81750000e+01 6.19740000e+00 2.68880000e+00 1.87400000e+00 1.81900000e+00 5.94470000e-01 2.08260000e-01 4.97500000e-02 1.89090000e-02 9.33720000e-03 5.35680000e-03 2.35290000e-03 1.32370000e-03 5.11810000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.33460000e+04 1.10040000e+04 7.21030000e+03 5.04850000e+03 2.49380000e+03 2.13860000e+03 2.10710000e+03 1.48520000e+03 1.46250000e+03 1.45130000e+03 1.38610000e+03 1.36480000e+03 6.46370000e+02 3.53240000e+02 2.17540000e+02 1.44900000e+02 7.50250000e+01 4.44380000e+01 3.53150000e+01 3.46490000e+01 1.67690000e+01 8.31260000e+00 3.10230000e+00 1.56600000e+00 9.36170000e-01 6.22780000e-01 3.36020000e-01 2.13040000e-01 9.78990000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.56180000e+04 5.77940000e+04 5.70170000e+04 5.43620000e+04 5.13090000e+04 5.05440000e+04 3.84540000e+04 2.17660000e+04 1.34890000e+04 5.27540000e+03 4.31020000e+03 4.22660000e+03 2.65880000e+03 2.60530000e+03 2.57890000e+03 2.42640000e+03 2.37720000e+03 8.82330000e+02 3.96210000e+02 2.08730000e+02 1.22240000e+02 5.16380000e+01 2.61700000e+01 1.94590000e+01 1.89880000e+01 7.51230000e+00 3.10510000e+00 9.17570000e-01 4.00210000e-01 2.16570000e-01 1.33920000e-01 6.55430000e-02 3.91110000e-02 1.66950000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.12190000e+04 2.08540000e+04 1.99450000e+04 1.97740000e+04 1.67790000e+04 1.08550000e+04 7.35430000e+03 3.30800000e+03 2.77630000e+03 2.72920000e+03 1.81720000e+03 1.78500000e+03 1.76900000e+03 1.67640000e+03 1.64630000e+03 6.81910000e+02 3.32590000e+02 1.86790000e+02 1.15290000e+02 5.29650000e+01 2.86650000e+01 2.19320000e+01 2.14510000e+01 9.27610000e+00 4.16710000e+00 1.37460000e+00 6.42490000e-01 3.64380000e-01 2.33170000e-01 1.19590000e-01 7.37880000e-02 3.32610000e-02] total = [ 2.54350000e+06 1.93320000e+06 1.93200000e+06 1.55430000e+06 1.56100000e+06 1.21320000e+06 6.66430000e+05 2.72520000e+05 2.14130000e+05 5.19260000e+05 4.65700000e+05 6.53210000e+05 4.79090000e+05 4.69540000e+05 5.35660000e+05 3.47830000e+05 3.62010000e+05 3.38740000e+05 3.13360000e+05 3.20690000e+05 2.26080000e+05 1.10740000e+05 6.30050000e+04 2.22400000e+04 1.79340000e+04 4.23230000e+04 2.56180000e+04 3.55070000e+04 3.50620000e+04 3.30620000e+04 3.74660000e+04 1.43720000e+04 6.75390000e+03 3.73110000e+03 2.28830000e+03 1.05230000e+03 5.74400000e+02 4.41880000e+02 1.87860000e+03 8.70180000e+02 4.13830000e+02 1.46680000e+02 7.20780000e+01 4.24680000e+01 2.80210000e+01 1.50080000e+01 9.49530000e+00 4.36900000e+00] JM2 = 1.04076704137 JM3 = 1.1408186736 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1446.2 679.05 325.71 116.36 57.454 33.97 22.478 12.089 7.6684 3.5397] JM1 = 1.02339162624 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.09010000e+05 2.73930000e+05 4.64930000e+05 3.38570000e+05 3.31590000e+05 4.00260000e+05 2.57660000e+05 2.73530000e+05 2.55790000e+05 2.36390000e+05 2.45170000e+05 1.72580000e+05 8.42970000e+04 4.78410000e+04 1.68150000e+04 1.35480000e+04 1.32700000e+04 8.17640000e+03 8.00680000e+03 7.92310000e+03 7.44240000e+03 7.28770000e+03 2.70800000e+03 1.25440000e+03 6.87830000e+02 4.19990000e+02 1.92200000e+02 1.04650000e+02 8.04340000e+01 7.87050000e+01 3.47190000e+01 1.59870000e+01 5.48940000e+00 2.64480000e+00 1.53500000e+00 1.00020000e+00 5.25770000e-01 3.28560000e-01 1.48900000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.47570000e+04 1.47750000e+04 2.48880000e+04 2.45540000e+04 2.31890000e+04 2.77980000e+04 1.07680000e+04 5.08090000e+03 2.81240000e+03 1.72670000e+03 7.94930000e+02 4.34100000e+02 3.33990000e+02 3.26830000e+02 1.44510000e+02 6.66360000e+01 2.29250000e+01 1.10640000e+01 6.43080000e+00 4.19630000e+00 2.21090000e+00 1.38410000e+00 6.28620000e-01] JM4 = 1.40264118531 JM5 = 2.42497548218 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.04260000e+04 1.02460000e+04 9.76860000e+03 9.61450000e+03 3.69460000e+03 1.70580000e+03 9.22600000e+02 5.53700000e+02 2.44400000e+02 1.28810000e+02 9.75250000e+01 9.53110000e+01 4.00690000e+01 1.76140000e+01 5.67910000e+00 2.62380000e+00 1.47830000e+00 9.42020000e-01 4.80930000e-01 2.96080000e-01 1.32960000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.47570000e+04 1.47750000e+04 1.44620000e+04 1.43080000e+04 1.34200000e+04 1.31330000e+04 4.48690000e+03 1.90240000e+03 9.63410000e+02 5.48220000e+02 2.22590000e+02 1.09920000e+02 8.09140000e+01 7.88920000e+01 3.03800000e+01 1.23040000e+01 3.56070000e+00 1.53740000e+00 8.27470000e-01 5.10000000e-01 2.48730000e-01 1.48440000e-01 6.33820000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.04980000e+03 2.58600000e+03 1.47270000e+03 9.26360000e+02 6.24810000e+02 3.27940000e+02 1.95370000e+02 1.55550000e+02 1.52630000e+02 7.40560000e+01 3.67180000e+01 1.36850000e+01 6.90230000e+00 4.12510000e+00 2.74420000e+00 1.48130000e+00 9.39620000e-01 4.32280000e-01] all other = [ 2.54350000e+06 1.93320000e+06 1.93200000e+06 1.55430000e+06 1.56100000e+06 1.21320000e+06 6.66430000e+05 2.72520000e+05 2.14130000e+05 2.10250000e+05 1.91770000e+05 1.88280000e+05 1.40520000e+05 1.37950000e+05 1.35390000e+05 9.01700000e+04 8.84740000e+04 8.29490000e+04 7.69710000e+04 7.55160000e+04 5.34980000e+04 2.64420000e+04 1.51640000e+04 5.42450000e+03 4.38530000e+03 4.29630000e+03 2.66690000e+03 2.61230000e+03 2.58540000e+03 2.43070000e+03 2.38090000e+03 8.96320000e+02 4.18690000e+02 2.30890000e+02 1.41600000e+02 6.52020000e+01 3.56500000e+01 2.74510000e+01 2.68640000e+01 1.19080000e+01 5.50330000e+00 1.89740000e+00 9.15920000e-01 5.32330000e-01 3.47120000e-01 1.82630000e-01 1.14180000e-01 5.17460000e-02] [Th.binding] K = 110.2496 L1 = 20.502 M5 = 3.3379 M4 = 3.5021 M1 = 5.1642 L3 = 16.3139 M3 = 4.0358 M2 = 4.8327 L2 = 19.7818 [Ti] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.93570000e+00 4.97520000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.06820000e+04 3.67960000e+03 1.64650000e+03 4.95210000e+02 2.01770000e+02 1.02530000e+02 9.98990000e+01 9.82930000e+01 5.39030000e+01 2.04170000e+01 9.43370000e+00 2.23060000e+00 7.81610000e-01 1.73670000e-01 5.88350000e-02 2.52910000e-02 1.26800000e-02 4.27790000e-03 1.85410000e-03 4.17270000e-04 1.49560000e-04 3.76140000e-05 1.49910000e-05 7.64900000e-06 4.55190000e-06 2.12130000e-06 1.23170000e-06 5.12680000e-07] M = [ 4.64480000e+04 1.73330000e+04 8.38090000e+03 2.90540000e+03 1.34030000e+03 7.54470000e+02 7.38100000e+02 7.28080000e+02 4.39780000e+02 1.96630000e+02 1.04450000e+02 3.24560000e+01 1.39620000e+01 4.16940000e+00 1.74280000e+00 8.80360000e-01 5.01860000e-01 2.05560000e-01 1.02540000e-01 2.89790000e-02 1.19220000e-02 3.52370000e-03 1.54700000e-03 8.45960000e-04 5.31140000e-04 2.69800000e-04 1.67650000e-04 7.82900000e-05] L = [ 4.18820000e+05 1.48550000e+05 6.95090000e+04 2.31960000e+04 1.04910000e+04 5.83840000e+03 5.70940000e+03 5.63050000e+03 3.37180000e+03 1.48910000e+03 7.84340000e+02 2.40810000e+02 1.02910000e+02 3.05070000e+01 1.27140000e+01 6.40650000e+00 3.64570000e+00 1.48980000e+00 7.42060000e-01 2.09270000e-01 8.60010000e-02 2.54020000e-02 1.11480000e-02 6.09460000e-03 3.82620000e-03 1.94320000e-03 1.20750000e-03 5.63690000e-04] M5 = [ 4.85560000e+02 1.07110000e+02 3.48230000e+01 6.63070000e+00 1.95090000e+00 7.92740000e-01 7.66010000e-01 7.49820000e-01 3.40960000e-01 9.63330000e-02 3.52830000e-02 5.47470000e-03 1.43980000e-03 2.15390000e-04 5.55500000e-05 1.94200000e-05 8.23720000e-06 2.15050000e-06 7.72900000e-07 1.26370000e-07 3.73200000e-08 7.46850000e-09 2.67530000e-09 1.27140000e-09 7.44290000e-10 3.38090000e-10 1.98140000e-10 9.34700000e-11] M4 = [ 3.28910000e+02 7.26910000e+01 2.36780000e+01 4.52400000e+00 1.34130000e+00 5.46380000e-01 5.28000000e-01 5.16870000e-01 2.35590000e-01 6.68240000e-02 2.45670000e-02 3.84410000e-03 1.01820000e-03 1.54300000e-04 4.02270000e-05 1.41810000e-05 6.07100000e-06 1.60860000e-06 5.82770000e-07 9.70570000e-08 2.86000000e-08 5.62590000e-09 1.90010000e-09 8.70970000e-10 4.72130000e-10 1.98220000e-10 1.07430000e-10 4.31950000e-11] L2 = [ 1.11530000e+05 3.57660000e+04 1.53020000e+04 4.37140000e+03 1.73350000e+03 8.66900000e+02 8.44180000e+02 8.30320000e+02 4.49680000e+02 1.67270000e+02 7.63580000e+01 1.77650000e+01 6.17470000e+00 1.35760000e+00 4.57490000e-01 1.96020000e-01 9.80340000e-02 3.29740000e-02 1.42600000e-02 3.19750000e-03 1.14840000e-03 2.88580000e-04 1.14960000e-04 5.86660000e-05 3.49410000e-05 1.62970000e-05 9.45990000e-06 3.95700000e-06] L3 = [ 2.17610000e+05 6.93400000e+04 2.95310000e+04 8.37980000e+03 3.30610000e+03 1.64660000e+03 1.60320000e+03 1.57670000e+03 8.50670000e+02 3.14340000e+02 1.42670000e+02 3.27870000e+01 1.12780000e+01 2.43550000e+00 8.08150000e-01 3.41540000e-01 1.68710000e-01 5.55220000e-02 2.35760000e-02 5.10710000e-03 1.78350000e-03 4.38830000e-04 1.75300000e-04 9.07890000e-05 5.50190000e-05 2.68990000e-05 1.64120000e-05 7.48080000e-06] M3 = [ 2.08570000e+04 7.14070000e+03 3.18100000e+03 9.50360000e+02 3.85190000e+02 1.94920000e+02 1.89890000e+02 1.86820000e+02 1.02050000e+02 3.83920000e+01 1.76360000e+01 4.11930000e+00 1.42910000e+00 3.11090000e-01 1.03750000e-01 4.39960000e-02 2.17780000e-02 7.18910000e-03 3.05780000e-03 6.63910000e-04 2.32530000e-04 5.72690000e-05 2.28740000e-05 1.18560000e-05 7.19190000e-06 3.52090000e-06 2.14540000e-06 9.75690000e-07] L1 = [ 8.96880000e+04 4.34470000e+04 2.46750000e+04 1.04450000e+04 5.45160000e+03 3.32490000e+03 3.26210000e+03 3.22350000e+03 2.07140000e+03 1.00750000e+03 5.65320000e+02 1.90250000e+02 8.54620000e+01 2.67130000e+01 1.14490000e+01 5.86890000e+00 3.37900000e+00 1.40130000e+00 7.04220000e-01 2.00960000e-01 8.30690000e-02 2.46750000e-02 1.08570000e-02 5.94520000e-03 3.73620000e-03 1.90000000e-03 1.18160000e-03 5.52250000e-04] JK = 8.21681329128 M1 = [ 1.40940000e+04 6.33260000e+03 3.49490000e+03 1.44870000e+03 7.50070000e+02 4.55670000e+02 4.47020000e+02 4.41700000e+02 2.83250000e+02 1.37660000e+02 7.73180000e+01 2.60970000e+01 1.17490000e+01 3.68430000e+00 1.58010000e+00 8.11040000e-01 4.67390000e-01 1.94090000e-01 9.76230000e-02 2.78970000e-02 1.15400000e-02 3.42880000e-03 1.50910000e-03 8.26450000e-04 5.19400000e-04 2.64160000e-04 1.64280000e-04 7.68020000e-05] all other = [ 1.06700000e+03 4.75150000e+02 2.61280000e+02 1.08420000e+02 5.60760000e+01 3.40500000e+01 3.34030000e+01 3.30050000e+01 2.11600000e+01 1.02820000e+01 5.77450000e+00 1.94920000e+00 8.77530000e-01 2.75170000e-01 1.18170000e-01 6.06600000e-02 3.49600000e-02 1.45190000e-02 7.30340000e-03 2.08710000e-03 8.63460000e-04 2.56570000e-04 1.12960000e-04 6.18900000e-05 3.89240000e-05 1.98390000e-05 1.23810000e-05 5.86850000e-06] total = [ 4.66340000e+05 1.66360000e+05 7.81510000e+04 2.62100000e+04 1.18880000e+04 6.62690000e+03 5.44520000e+04 5.42160000e+04 3.42430000e+04 1.59860000e+04 8.71870000e+03 2.79640000e+03 1.21900000e+03 3.67650000e+02 1.54360000e+02 7.80830000e+01 4.45350000e+01 1.82430000e+01 9.09630000e+00 2.56740000e+00 1.05510000e+00 3.11470000e-01 1.36670000e-01 7.47290000e-02 4.69270000e-02 2.38510000e-02 1.48320000e-02 6.93630000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.79710000e+04 4.78250000e+04 3.04110000e+04 1.42900000e+04 7.82410000e+03 2.52120000e+03 1.10120000e+03 3.32700000e+02 1.39790000e+02 7.07360000e+01 4.03530000e+01 1.65330000e+01 8.24440000e+00 2.32710000e+00 9.56350000e-01 2.82280000e-01 1.23860000e-01 6.77260000e-02 4.25310000e-02 2.16180000e-02 1.34450000e-02 6.28850000e-03] [Ti.binding] K = 4.9406 L1 = 0.5575 M5 = 0.0083 M4 = 0.0084 M1 = 0.0686 L3 = 0.4652 M3 = 0.0444 M2 = 0.0451 L2 = 0.4712 [Te] JL1 = 1.13051801149 JL3 = 2.94141869875 JL2 = 1.32968303632 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.33520000e+00 4.36990000e+00 4.61370000e+00 4.65070000e+00 4.90970000e+00 4.94900000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.17760000e+01 3.20300000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.09600000e+05 6.62100000e+04 4.14130000e+04 1.90450000e+04 1.02760000e+04 8.56720000e+03 8.41280000e+03 7.42660000e+03 7.29060000e+03 6.42290000e+03 6.30340000e+03 6.15280000e+03 3.96510000e+03 1.91500000e+03 1.05950000e+03 3.41330000e+02 1.46820000e+02 4.25980000e+01 3.55970000e+01 3.47190000e+01 1.72020000e+01 8.40410000e+00 4.65080000e+00 1.81430000e+00 8.71640000e-01 2.31470000e-01 9.17830000e-02 2.60100000e-02 1.11370000e-02 5.94860000e-03 3.65000000e-03 1.77540000e-03 1.05920000e-03 4.56060000e-04] M = [ 1.61570000e+06 6.56630000e+05 3.30550000e+05 1.20750000e+05 5.78150000e+04 4.69290000e+04 4.59670000e+04 3.99040000e+04 3.90820000e+04 3.39140000e+04 3.32130000e+04 3.23330000e+04 1.99950000e+04 9.27770000e+03 5.07520000e+03 1.66910000e+03 7.50020000e+02 2.39680000e+02 2.03630000e+02 1.99070000e+02 1.05750000e+02 5.58070000e+01 3.30160000e+01 1.43620000e+01 7.51100000e+00 2.31120000e+00 1.00740000e+00 3.20630000e-01 1.47020000e-01 8.25810000e-02 5.26880000e-02 2.71210000e-02 1.68510000e-02 7.71940000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.09580000e+05 9.94670000e+04 1.48920000e+05 1.31930000e+05 1.55260000e+05 1.51400000e+05 9.63850000e+04 4.53950000e+04 2.51060000e+04 8.34750000e+03 3.76600000e+03 1.20620000e+03 1.02490000e+03 1.00200000e+03 5.32630000e+02 2.81170000e+02 1.66360000e+02 7.23660000e+01 3.78360000e+01 1.16340000e+01 5.06800000e+00 1.61180000e+00 7.39180000e-01 4.15180000e-01 2.64920000e-01 1.36410000e-01 8.48130000e-02 3.88770000e-02] M5 = [ 7.03270000e+05 2.40260000e+05 1.04090000e+05 2.94530000e+04 1.13740000e+04 8.64920000e+03 8.41590000e+03 6.98180000e+03 6.79210000e+03 5.62750000e+03 5.47320000e+03 5.28090000e+03 2.77140000e+03 9.70800000e+02 4.19090000e+02 8.62640000e+01 2.70970000e+01 5.07660000e+00 3.98960000e+00 3.85830000e+00 1.51160000e+00 5.86080000e-01 2.69780000e-01 7.94650000e-02 3.09960000e-02 5.79010000e-03 1.83640000e-03 3.95650000e-04 1.45280000e-04 7.10650000e-05 4.14240000e-05 1.86630000e-05 1.08250000e-05 4.43120000e-06] M4 = [ 4.81390000e+05 1.66510000e+05 7.26590000e+04 2.07740000e+04 8.08470000e+03 6.16220000e+03 5.99740000e+03 4.98290000e+03 4.84860000e+03 4.02370000e+03 3.91430000e+03 3.77800000e+03 1.99370000e+03 7.05050000e+02 3.06860000e+02 6.42420000e+01 2.04620000e+01 3.92230000e+00 3.09360000e+00 2.99330000e+00 1.19010000e+00 4.68870000e-01 2.18810000e-01 6.59170000e-02 2.61610000e-02 5.02400000e-03 1.61250000e-03 3.49950000e-04 1.25850000e-04 5.92120000e-05 3.29460000e-05 1.41830000e-05 7.67470000e-06 3.06450000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.14990000e+04 4.67900000e+04 4.58620000e+04 4.47300000e+04 2.81120000e+04 1.26240000e+04 6.67980000e+03 2.00250000e+03 8.24830000e+02 2.27800000e+02 1.89200000e+02 1.84380000e+02 8.94620000e+01 4.29270000e+01 2.34570000e+01 8.99780000e+00 4.27670000e+00 1.11870000e+00 4.40130000e-01 1.23780000e-01 5.26830000e-02 2.80740000e-02 1.72000000e-02 8.34340000e-03 4.97040000e-03 2.13980000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.09580000e+05 9.94670000e+04 9.74160000e+04 8.51450000e+04 8.34640000e+04 8.13350000e+04 4.94440000e+04 2.16600000e+04 1.12200000e+04 3.24130000e+03 1.29990000e+03 3.44270000e+02 2.84170000e+02 2.76690000e+02 1.30900000e+02 6.11370000e+01 3.26330000e+01 1.20330000e+01 5.53590000e+00 1.36120000e+00 5.12890000e-01 1.36900000e-01 5.68500000e-02 3.00170000e-02 1.83800000e-02 9.00850000e-03 5.44870000e-03 2.41310000e-03] M3 = [ 2.45200000e+05 1.37140000e+05 8.23180000e+04 3.62210000e+04 1.90000000e+04 1.57310000e+04 1.54360000e+04 1.35560000e+04 1.32980000e+04 1.16590000e+04 1.14350000e+04 1.11520000e+04 7.07280000e+03 3.33160000e+03 1.80750000e+03 5.61370000e+02 2.34870000e+02 6.53320000e+01 5.42480000e+01 5.28630000e+01 2.55300000e+01 1.21350000e+01 6.55760000e+00 2.45780000e+00 1.14260000e+00 2.85140000e-01 1.08280000e-01 2.91350000e-02 1.21170000e-02 6.41080000e-03 3.93150000e-03 1.92770000e-03 1.16500000e-03 5.16680000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.59370000e+04 2.53330000e+04 1.88280000e+04 1.11120000e+04 7.20620000e+03 3.10380000e+03 1.64130000e+03 6.34150000e+02 5.51540000e+02 5.40940000e+02 3.12270000e+02 1.77110000e+02 1.10270000e+02 5.13350000e+01 2.80230000e+01 9.15400000e+00 4.11500000e+00 1.35120000e+00 6.29650000e-01 3.57090000e-01 2.29340000e-01 1.19060000e-01 7.43930000e-02 3.43240000e-02] JK = 5.95886001413 M1 = [ 7.62420000e+04 4.65120000e+04 3.00720000e+04 1.52530000e+04 9.08060000e+03 7.81960000e+03 7.70400000e+03 6.95690000e+03 6.85270000e+03 6.18080000e+03 6.08730000e+03 5.96920000e+03 4.19190000e+03 2.35530000e+03 1.48230000e+03 6.15910000e+02 3.20770000e+02 1.22750000e+02 1.06700000e+02 1.04640000e+02 6.03200000e+01 3.42130000e+01 2.13190000e+01 9.94460000e+00 5.43960000e+00 1.78370000e+00 8.03890000e-01 2.64740000e-01 1.23500000e-01 7.00920000e-02 4.50320000e-02 2.33850000e-02 1.46090000e-02 6.73910000e-03] all other = [ 2.45920000e+05 1.06270000e+05 5.61580000e+04 2.18510000e+04 1.08840000e+04 8.92520000e+03 8.75050000e+03 7.64550000e+03 7.49490000e+03 6.54460000e+03 6.41500000e+03 6.25210000e+03 3.94110000e+03 1.87800000e+03 1.04710000e+03 3.54960000e+02 1.62410000e+02 5.30260000e+01 4.51730000e+01 4.41790000e+01 2.37010000e+01 1.26170000e+01 7.50970000e+00 3.29650000e+00 1.73300000e+00 5.37620000e-01 2.35380000e-01 7.52580000e-02 3.46030000e-02 1.94630000e-02 1.24280000e-02 6.40440000e-03 3.98240000e-03 1.82600000e-03] total = [ 1.86160000e+06 7.62900000e+05 3.86710000e+05 1.42600000e+05 6.86990000e+04 5.58540000e+04 1.64290000e+05 1.47020000e+05 1.95490000e+05 1.72390000e+05 1.94890000e+05 1.89980000e+05 1.20320000e+05 5.65510000e+04 3.12290000e+04 1.03720000e+04 4.67840000e+03 1.49890000e+03 1.27370000e+03 7.58980000e+03 4.25440000e+03 2.33410000e+03 1.41710000e+03 6.34750000e+02 3.37310000e+02 1.05670000e+02 4.63730000e+01 1.48420000e+01 6.83100000e+00 3.84900000e+00 2.46340000e+00 1.27530000e+00 7.96430000e-01 3.67930000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.34450000e+03 3.59230000e+03 1.98450000e+03 1.21020000e+03 5.44730000e+02 2.90230000e+02 9.11850000e+01 4.00620000e+01 1.28340000e+01 5.91020000e+00 3.33180000e+00 2.13330000e+00 1.10540000e+00 6.90780000e-01 3.19510000e-01] [Te.binding] K = 31.8077 L1 = 4.9146 M5 = 0.5826 M4 = 0.5937 M1 = 0.9913 L3 = 4.3396 M3 = 0.8148 M2 = 0.8672 L2 = 4.6184 [Tb] JL1 = 1.13182833808 JL3 = 2.68170404611 JL2 = 1.34319384319 energy = [ 1.00000000e+00 1.24320000e+00 1.25320000e+00 1.27770000e+00 1.28800000e+00 1.50000000e+00 1.59520000e+00 1.60790000e+00 1.75200000e+00 1.76610000e+00 1.93460000e+00 1.95000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 7.49760000e+00 7.55760000e+00 8.00000000e+00 8.25290000e+00 8.31900000e+00 8.66600000e+00 8.73540000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.20180000e+01 5.24340000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.37834438047 M5 = [ 0.00000000e+00 0.00000000e+00 4.15460000e+05 9.48710000e+05 9.68490000e+05 6.58710000e+05 5.63180000e+05 5.51820000e+05 4.42250000e+05 4.33160000e+05 3.43480000e+05 3.36420000e+05 3.14920000e+05 9.94400000e+04 4.12600000e+04 2.02210000e+04 1.10760000e+04 5.18960000e+03 5.04830000e+03 4.14240000e+03 3.71560000e+03 3.61330000e+03 3.13010000e+03 3.04340000e+03 1.88130000e+03 4.24340000e+02 1.41750000e+02 2.87880000e+01 9.04110000e+00 3.64190000e+00 3.09740000e+00 2.99790000e+00 1.72460000e+00 5.29020000e-01 2.12180000e-01 4.14410000e-02 1.35000000e-02 3.01300000e-03 1.12350000e-03 5.50210000e-04 3.18190000e-04 1.44880000e-04 8.45550000e-05 3.42420000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.60210000e+05 4.55940000e+05 3.90660000e+05 3.82910000e+05 3.08020000e+05 3.01790000e+05 2.40060000e+05 2.35110000e+05 2.20190000e+05 7.08910000e+04 2.97290000e+04 1.47040000e+04 8.11700000e+03 3.84150000e+03 3.73840000e+03 3.07590000e+03 2.76270000e+03 2.68750000e+03 2.33270000e+03 2.26890000e+03 1.41180000e+03 3.25450000e+02 1.10630000e+02 2.31060000e+01 7.42180000e+00 3.04680000e+00 2.60030000e+00 2.51850000e+00 1.46650000e+00 4.62090000e-01 1.89250000e-01 3.82590000e-02 1.26810000e-02 2.84300000e-03 1.04140000e-03 5.00770000e-04 2.83010000e-04 1.20930000e-04 6.62610000e-05 2.53170000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.15090000e+04 4.04860000e+04 2.28190000e+04 1.44360000e+04 9.85890000e+03 7.12190000e+03 4.70980000e+03 4.63900000e+03 4.16220000e+03 3.92170000e+03 3.86220000e+03 3.57030000e+03 3.51570000e+03 2.69770000e+03 1.18280000e+03 6.40730000e+02 2.59480000e+02 1.32810000e+02 7.77530000e+01 7.06100000e+01 6.92480000e+01 4.97030000e+01 2.41190000e+01 1.35900000e+01 4.69010000e+00 2.18610000e+00 7.51300000e-01 3.59770000e-01 2.07610000e-01 1.34840000e-01 7.07770000e-02 4.43790000e-02 2.04080000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.85470000e+05 1.63190000e+05 1.61520000e+05 1.40930000e+05 1.39140000e+05 1.33560000e+05 6.71090000e+04 3.81080000e+04 2.36910000e+04 1.57230000e+04 9.28670000e+03 9.10860000e+03 7.92760000e+03 7.34350000e+03 7.20020000e+03 6.50480000e+03 6.37630000e+03 4.52620000e+03 1.53690000e+03 6.83460000e+02 2.06080000e+02 8.49590000e+01 4.20010000e+01 3.70180000e+01 3.60860000e+01 2.33990000e+01 9.17330000e+00 4.40370000e+00 1.15730000e+00 4.53320000e-01 1.26210000e-01 5.35020000e-02 2.85640000e-02 1.75460000e-02 8.59910000e-03 5.18270000e-03 2.27020000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.83090000e+04 6.13270000e+04 6.07900000e+04 5.89780000e+04 3.28480000e+04 1.97600000e+04 1.27570000e+04 8.70770000e+03 5.31900000e+03 5.22340000e+03 4.58400000e+03 4.26390000e+03 4.18530000e+03 3.80280000e+03 3.73210000e+03 2.70060000e+03 9.70550000e+02 4.49400000e+02 1.43790000e+02 6.19850000e+01 3.17770000e+01 2.81930000e+01 2.75200000e+01 1.82590000e+01 7.53380000e+00 3.76970000e+00 1.07070000e+00 4.42910000e-01 1.32120000e-01 5.81670000e-02 3.17030000e-02 1.97550000e-02 9.77790000e-03 5.89810000e-03 2.57840000e-03] total = [ 6.29700000e+05 4.16040000e+05 8.25030000e+05 1.34290000e+06 1.61670000e+06 1.39990000e+06 1.20500000e+06 1.36720000e+06 1.11960000e+06 1.16740000e+06 9.52450000e+05 9.76760000e+05 9.23160000e+05 3.55290000e+05 1.74840000e+05 9.96010000e+04 6.24600000e+04 3.50460000e+04 9.39830000e+04 8.14840000e+04 7.48440000e+04 1.00530000e+05 9.08530000e+04 1.02830000e+05 7.33090000e+04 2.52260000e+04 1.16410000e+04 3.83700000e+03 1.72600000e+03 9.24040000e+02 8.26760000e+02 4.44660000e+03 3.10930000e+03 1.45240000e+03 7.91790000e+02 2.58340000e+02 1.16330000e+02 3.84740000e+01 1.80760000e+01 1.03250000e+01 6.66890000e+00 3.48630000e+00 2.18430000e+00 1.00610000e+00] JM2 = 1.04269381922 JM3 = 1.13460580913 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.63820000e+03 2.55630000e+03 1.20740000e+03 6.61810000e+02 2.17260000e+02 9.80760000e+01 3.25080000e+01 1.52920000e+01 8.74450000e+00 5.65310000e+00 2.95990000e+00 1.85670000e+00 8.56870000e-01] JM1 = 1.02552364954 M = [ 0.00000000e+00 0.00000000e+00 4.15460000e+05 9.48710000e+05 1.22870000e+06 1.11460000e+06 9.53850000e+05 1.12020000e+06 9.13460000e+05 9.64770000e+05 7.85800000e+05 8.12970000e+05 7.68140000e+05 2.93110000e+05 1.43290000e+05 8.12320000e+04 5.07450000e+04 2.83470000e+04 2.77580000e+04 2.38920000e+04 2.20070000e+04 2.15490000e+04 1.93410000e+04 1.89360000e+04 1.32180000e+04 4.44000000e+03 2.02600000e+03 6.61250000e+02 2.96220000e+02 1.58220000e+02 1.41520000e+02 1.38370000e+02 9.45530000e+01 4.18170000e+01 2.21650000e+01 6.99780000e+00 3.10850000e+00 1.01550000e+00 4.73610000e-01 2.68930000e-01 1.72740000e-01 8.94200000e-02 5.56100000e-02 2.53160000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.96600000e+04 5.19090000e+04 4.75860000e+04 7.38380000e+04 6.68780000e+04 7.93500000e+04 5.68830000e+04 1.96750000e+04 9.09880000e+03 3.00370000e+03 1.35170000e+03 7.23780000e+02 6.47590000e+02 6.33220000e+02 4.33170000e+02 1.91900000e+02 1.01810000e+02 3.21700000e+01 1.42940000e+01 4.67030000e+00 2.17880000e+00 1.23760000e+00 7.95300000e-01 4.12210000e-01 2.56580000e-01 1.16930000e-01] JM4 = 1.20388710999 JM5 = 1.98305451399 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.72480000e+04 2.49640000e+04 2.43920000e+04 1.73260000e+04 5.68030000e+03 2.49230000e+03 7.45700000e+02 3.09090000e+02 1.54390000e+02 1.36410000e+02 1.33040000e+02 8.70830000e+01 3.50430000e+01 1.72550000e+01 4.78950000e+00 1.95710000e+00 5.76490000e-01 2.52260000e-01 1.37020000e-01 8.50800000e-02 4.19690000e-02 2.52850000e-02 1.10220000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.96600000e+04 5.19090000e+04 4.75860000e+04 4.65900000e+04 4.19140000e+04 4.10610000e+04 2.84920000e+04 8.76770000e+03 3.67970000e+03 1.03790000e+03 4.11670000e+02 1.98380000e+02 1.74110000e+02 1.69590000e+02 1.08520000e+02 4.15270000e+01 1.96290000e+01 5.04590000e+00 1.95370000e+00 5.37540000e-01 2.26560000e-01 1.20560000e-01 7.40450000e-02 3.62530000e-02 2.18370000e-02 9.53350000e-03] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.38980000e+04 1.10650000e+04 5.22670000e+03 2.92680000e+03 1.22010000e+03 6.30910000e+02 3.71010000e+02 3.37070000e+02 3.30590000e+02 2.37570000e+02 1.15330000e+02 6.49230000e+01 2.23350000e+01 1.03830000e+01 3.55630000e+00 1.70000000e+00 9.80040000e-01 6.36180000e-01 3.33990000e-01 2.09460000e-01 9.63790000e-02] all other = [ 6.29700000e+05 4.16040000e+05 4.09570000e+05 3.94190000e+05 3.88020000e+05 2.85250000e+05 2.51160000e+05 2.47010000e+05 2.06140000e+05 2.02670000e+05 1.66650000e+05 1.63790000e+05 1.55020000e+05 6.21860000e+04 3.15460000e+04 1.83690000e+04 1.17150000e+04 6.69950000e+03 6.56560000e+03 5.68330000e+03 5.25040000e+03 5.14480000e+03 4.63500000e+03 4.54140000e+03 3.20810000e+03 1.11080000e+03 5.16090000e+02 1.72130000e+02 7.80660000e+01 4.20400000e+01 3.76530000e+01 3.68260000e+01 2.52730000e+01 1.12680000e+01 6.00460000e+00 1.91070000e+00 8.52160000e-01 2.79650000e-01 1.30730000e-01 7.43300000e-02 4.77860000e-02 2.47690000e-02 1.54150000e-02 7.02180000e-03] [Tb.binding] K = 52.0699 L1 = 8.6747 M5 = 1.2445 M4 = 1.279 M1 = 1.9365 L3 = 7.5051 M3 = 1.5968 M2 = 1.7538 L2 = 8.2612 [Tc] JL1 = 1.12240915209 JL3 = 3.51162790698 JL2 = 1.36044312348 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.67480000e+00 2.69620000e+00 2.79520000e+00 2.81760000e+00 3.00000000e+00 3.01950000e+00 3.04370000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.09910000e+01 2.11590000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 8.59920000e+04 4.33760000e+04 2.46890000e+04 1.31880000e+04 1.29540000e+04 1.19390000e+04 1.17250000e+04 1.01510000e+04 9.99870000e+03 9.81500000e+03 5.09160000e+03 2.89050000e+03 1.78590000e+03 8.08590000e+02 4.26400000e+02 1.26610000e+02 5.15670000e+01 4.42180000e+01 4.31090000e+01 1.39150000e+01 5.35760000e+00 2.52810000e+00 1.36170000e+00 5.10150000e-01 2.38020000e-01 6.02310000e-02 2.32180000e-02 6.35320000e-03 2.65960000e-03 1.40260000e-03 8.52670000e-04 4.08820000e-04 2.42310000e-04 1.03230000e-04] M = [ 7.95400000e+05 3.06630000e+05 1.51370000e+05 7.27300000e+04 7.12650000e+04 6.49930000e+04 6.36800000e+04 5.42100000e+04 5.33120000e+04 5.22280000e+04 2.56740000e+04 1.42390000e+04 8.74350000e+03 4.01080000e+03 2.17520000e+03 7.05290000e+02 3.13810000e+02 2.73630000e+02 2.67510000e+02 9.88240000e+01 4.31360000e+01 2.25640000e+01 1.32480000e+01 5.68910000e+00 2.94380000e+00 8.87660000e-01 3.81320000e-01 1.18940000e-01 5.39040000e-02 3.00500000e-02 1.90830000e-02 9.78260000e-03 6.07770000e-03 2.79890000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.06830000e+05 1.85970000e+05 2.80820000e+05 2.40840000e+05 2.37130000e+05 2.74720000e+05 1.38560000e+05 7.79820000e+04 4.82480000e+04 2.22770000e+04 1.21070000e+04 3.92550000e+03 1.74440000e+03 1.52080000e+03 1.48680000e+03 5.48410000e+02 2.39080000e+02 1.24930000e+02 7.32870000e+01 3.14290000e+01 1.62470000e+01 4.89060000e+00 2.09860000e+00 6.54180000e-01 2.96310000e-01 1.65150000e-01 1.04870000e-01 5.37700000e-02 3.34130000e-02 1.53930000e-02] M5 = [ 2.80240000e+05 8.58220000e+04 3.47780000e+04 1.33020000e+04 1.29480000e+04 1.14550000e+04 1.11480000e+04 8.99190000e+03 8.79290000e+03 8.55440000e+03 3.26930000e+03 1.44890000e+03 7.31870000e+02 2.41670000e+02 9.99580000e+01 1.91360000e+01 5.71910000e+00 4.65690000e+00 4.50150000e+00 1.00550000e+00 2.88380000e-01 1.08960000e-01 4.91620000e-02 1.40470000e-02 5.36100000e-03 9.60560000e-04 2.98390000e-04 6.32580000e-05 2.30320000e-05 1.12860000e-05 6.52220000e-06 2.92090000e-06 1.73550000e-06 7.45010000e-07] M4 = [ 1.92220000e+05 5.92650000e+04 2.41360000e+04 9.28040000e+03 9.03450000e+03 7.99830000e+03 7.78500000e+03 6.28690000e+03 6.14860000e+03 5.98280000e+03 2.29930000e+03 1.02410000e+03 5.19600000e+02 1.72900000e+02 7.19880000e+01 1.39760000e+01 4.22690000e+00 3.44940000e+00 3.33550000e+00 7.58040000e-01 2.20930000e-01 8.46190000e-02 3.86310000e-02 1.12540000e-02 4.35850000e-03 8.06870000e-04 2.53130000e-04 5.34250000e-05 1.88700000e-05 8.80280000e-06 4.88170000e-06 2.05740000e-06 1.10370000e-06 4.33260000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.83560000e+04 8.33550000e+04 8.21570000e+04 8.06920000e+04 3.92730000e+04 2.12200000e+04 1.26520000e+04 5.42500000e+03 2.75740000e+03 7.73590000e+02 3.05010000e+02 2.60270000e+02 2.53550000e+02 7.94090000e+01 2.99780000e+01 1.39660000e+01 7.45490000e+00 2.76020000e+00 1.27850000e+00 3.20340000e-01 1.22640000e-01 3.33640000e-02 1.39220000e-02 7.32500000e-03 4.44690000e-03 2.13530000e-03 1.26270000e-03 5.39210000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.06830000e+05 1.85970000e+05 1.82470000e+05 1.57480000e+05 1.54970000e+05 1.51900000e+05 7.19140000e+04 3.83590000e+04 2.25830000e+04 9.52380000e+03 4.77410000e+03 1.30400000e+03 5.03500000e+02 4.28110000e+02 4.16780000e+02 1.26880000e+02 4.66640000e+01 2.12610000e+01 1.11290000e+01 3.98550000e+00 1.79540000e+00 4.26640000e-01 1.57460000e-01 4.10680000e-02 1.68600000e-02 8.85510000e-03 5.41000000e-03 2.64250000e-03 1.60310000e-03 7.14180000e-04] M3 = [ 1.75100000e+05 8.51850000e+04 4.74810000e+04 2.48970000e+04 2.44420000e+04 2.24770000e+04 2.20620000e+04 1.90250000e+04 1.87330000e+04 1.83810000e+04 9.38210000e+03 5.25770000e+03 3.21350000e+03 1.43000000e+03 7.43590000e+02 2.14890000e+02 8.57000000e+01 7.32140000e+01 7.13320000e+01 2.23710000e+01 8.38810000e+00 3.86990000e+00 2.04370000e+00 7.40430000e-01 3.36020000e-01 8.06760000e-02 2.98890000e-02 7.83790000e-03 3.22590000e-03 1.69550000e-03 1.03600000e-03 5.08240000e-04 3.07640000e-04 1.37690000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.21230000e+04 2.73770000e+04 1.84030000e+04 1.30130000e+04 7.32870000e+03 4.57580000e+03 1.84800000e+03 9.35860000e+02 8.32430000e+02 8.16450000e+02 3.42130000e+02 1.62440000e+02 8.97080000e+01 5.47030000e+01 2.46840000e+01 1.31730000e+01 4.14360000e+00 1.81850000e+00 5.79750000e-01 2.65520000e-01 1.48970000e-01 9.50140000e-02 4.89920000e-02 3.05470000e-02 1.41400000e-02] JK = 6.42911502501 M1 = [ 6.18550000e+04 3.29840000e+04 2.02900000e+04 1.20620000e+04 1.18870000e+04 1.11230000e+04 1.09610000e+04 9.75580000e+03 9.63810000e+03 9.49520000e+03 5.63120000e+03 3.61750000e+03 2.49260000e+03 1.35760000e+03 8.33310000e+02 3.30680000e+02 1.66590000e+02 1.48090000e+02 1.45230000e+02 6.07750000e+01 2.88810000e+01 1.59720000e+01 9.75460000e+00 4.41320000e+00 2.36010000e+00 7.44980000e-01 3.27660000e-01 1.04630000e-01 4.79770000e-02 2.69320000e-02 1.71830000e-02 8.86060000e-03 5.52490000e-03 2.55680000e-03] all other = [ 7.42530000e+04 3.23400000e+04 1.73320000e+04 8.96980000e+03 8.80570000e+03 8.09840000e+03 7.94930000e+03 6.86420000e+03 6.76030000e+03 6.63470000e+03 3.44930000e+03 1.99290000e+03 1.26130000e+03 6.03050000e+02 3.36030000e+02 1.13420000e+02 5.16340000e+01 4.51780000e+01 4.41930000e+01 1.66790000e+01 7.38620000e+00 3.89920000e+00 2.30420000e+00 9.98030000e-01 5.19250000e-01 1.57760000e-01 6.80380000e-02 2.13190000e-02 9.68070000e-03 5.40310000e-03 3.43400000e-03 1.76210000e-03 1.09560000e-03 5.05190000e-04] total = [ 8.69650000e+05 3.38970000e+05 1.68710000e+05 8.17000000e+04 2.86900000e+05 2.59070000e+05 3.52450000e+05 3.01910000e+05 2.97200000e+05 3.33580000e+05 1.67690000e+05 9.42130000e+04 5.82530000e+04 2.68910000e+04 1.46190000e+04 4.74430000e+03 2.10980000e+03 1.83960000e+03 1.18270000e+04 4.75410000e+03 2.16440000e+03 1.16050000e+03 6.91910000e+02 3.02370000e+02 1.57880000e+02 4.80580000e+01 2.07090000e+01 6.47720000e+00 2.93970000e+00 1.64150000e+00 1.04440000e+00 5.37430000e-01 3.35040000e-01 1.55230000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00280000e+04 4.09020000e+03 1.87480000e+03 1.00910000e+03 6.03070000e+02 2.64250000e+02 1.38170000e+02 4.21220000e+01 1.81610000e+01 5.68270000e+00 2.57980000e+00 1.44090000e+00 9.17020000e-01 4.72120000e-01 2.94450000e-01 1.36530000e-01] [Tc.binding] K = 21.0122 L1 = 3.0226 M5 = 0.263 M4 = 0.267 M1 = 0.5335 L3 = 2.6775 M3 = 0.4249 M2 = 0.4453 L2 = 2.798 [Ta] JL1 = 1.13228409511 JL3 = 2.57078122168 JL2 = 1.35290973985 energy = [ 1.00000000e+00 1.50000000e+00 1.73960000e+00 1.75350000e+00 1.80050000e+00 1.81490000e+00 2.00000000e+00 2.18190000e+00 2.19930000e+00 2.45950000e+00 2.47920000e+00 2.68320000e+00 2.70470000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 9.86900000e+00 9.94800000e+00 1.00000000e+01 1.11530000e+01 1.12420000e+01 1.16480000e+01 1.17410000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 6.75210000e+01 6.80620000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.03625985981 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.95000000e+05 6.33020000e+05 6.40320000e+05 5.15990000e+05 4.09560000e+05 4.00950000e+05 2.97120000e+05 2.90780000e+05 2.36290000e+05 2.31300000e+05 1.74130000e+05 7.51280000e+04 3.78750000e+04 2.12240000e+04 8.22080000e+03 4.01330000e+03 3.90390000e+03 3.83400000e+03 2.61820000e+03 2.54570000e+03 2.24580000e+03 2.18330000e+03 9.05330000e+02 3.12310000e+02 6.63080000e+01 2.14440000e+01 8.82400000e+00 4.24830000e+00 2.64290000e+00 2.55940000e+00 1.33540000e+00 5.44790000e-01 1.09210000e-01 3.61060000e-02 8.18830000e-03 3.07590000e-03 1.51490000e-03 8.77140000e-04 3.99410000e-04 2.27920000e-04 9.59470000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.26730000e+05 3.61280000e+05 2.88300000e+05 2.82350000e+05 2.10340000e+05 2.05930000e+05 1.67830000e+05 1.64260000e+05 1.24530000e+05 5.45750000e+04 2.78130000e+04 1.57250000e+04 6.18510000e+03 3.05510000e+03 2.97310000e+03 2.92070000e+03 2.00790000e+03 1.95320000e+03 1.72660000e+03 1.67940000e+03 7.07400000e+02 2.48930000e+02 5.45430000e+01 1.80870000e+01 7.60010000e+00 3.72550000e+00 2.34540000e+00 2.27320000e+00 1.20590000e+00 5.03410000e-01 1.04870000e-01 3.53950000e-02 8.10960000e-03 3.00990000e-03 1.44950000e-03 8.20490000e-04 3.58110000e-04 1.97240000e-04 7.50560000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.89930000e+04 2.58560000e+04 1.70280000e+04 1.20340000e+04 8.88110000e+03 5.34600000e+03 3.62230000e+03 3.56810000e+03 3.53300000e+03 2.86730000e+03 2.82360000e+03 2.63670000e+03 2.59630000e+03 1.59890000e+03 8.84760000e+02 3.69330000e+02 1.93220000e+02 1.15070000e+02 7.45930000e+01 5.60770000e+01 5.49990000e+01 3.70010000e+01 2.12020000e+01 7.53720000e+00 3.58410000e+00 1.26430000e+00 6.15340000e-01 3.58850000e-01 2.34710000e-01 1.24180000e-01 7.80910000e-02 3.58680000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.43280000e+05 1.19460000e+05 1.18040000e+05 1.03730000e+05 1.02330000e+05 8.55910000e+04 5.14270000e+04 3.30650000e+04 2.24900000e+04 1.17780000e+04 7.14000000e+03 7.00210000e+03 6.91330000e+03 5.27940000e+03 5.17530000e+03 4.73380000e+03 4.63950000e+03 2.46370000e+03 1.13160000e+03 3.56590000e+02 1.51440000e+02 7.65290000e+01 4.33710000e+01 2.99000000e+01 2.91550000e+01 1.74430000e+01 8.52920000e+00 2.30940000e+00 9.21070000e-01 2.61640000e-01 1.12000000e-01 6.00300000e-02 3.70100000e-02 1.81290000e-02 1.08940000e-02 4.73070000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.88130000e+04 4.38040000e+04 4.34490000e+04 3.79950000e+04 2.48630000e+04 1.69510000e+04 1.20490000e+04 6.70310000e+03 4.23360000e+03 4.15840000e+03 4.10990000e+03 3.20400000e+03 3.14520000e+03 2.89520000e+03 2.84160000e+03 1.57820000e+03 7.63150000e+02 2.58820000e+02 1.16010000e+02 6.12140000e+01 3.59800000e+01 2.54100000e+01 2.48170000e+01 1.53580000e+01 7.87730000e+00 2.33130000e+00 9.89630000e-01 3.04680000e-01 1.36690000e-01 7.53860000e-02 4.73140000e-02 2.37160000e-02 1.44010000e-02 6.35690000e-03] total = [ 1.05130000e+06 4.67430000e+05 3.41790000e+05 5.31010000e+05 9.50510000e+05 1.07910000e+06 1.13000000e+06 9.06510000e+05 1.03160000e+06 7.86550000e+05 8.20350000e+05 6.82690000e+05 6.99000000e+05 5.49500000e+05 2.74600000e+05 1.57860000e+05 9.96310000e+04 4.76330000e+04 2.75850000e+04 7.09150000e+04 7.01530000e+04 5.23930000e+04 7.08830000e+04 6.49360000e+04 7.35260000e+04 3.93980000e+04 1.84110000e+04 6.19100000e+03 2.81910000e+03 1.52280000e+03 9.17880000e+02 6.60510000e+02 3.32650000e+03 2.17100000e+03 1.20840000e+03 4.04490000e+02 1.85070000e+02 6.24970000e+01 2.97540000e+01 1.71490000e+01 1.11440000e+01 5.86610000e+00 3.68450000e+00 1.69560000e+00] JM2 = 1.04297247473 JM3 = 1.13799075576 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.68060000e+03 1.75980000e+03 9.88370000e+02 3.33830000e+02 1.53300000e+02 5.19490000e+01 2.47810000e+01 1.43050000e+01 9.30860000e+00 4.91040000e+00 3.08910000e+00 1.42490000e+00] JM1 = 1.02389078498 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.95000000e+05 6.33020000e+05 7.67040000e+05 8.77270000e+05 6.97850000e+05 8.26580000e+05 6.26920000e+05 6.63570000e+05 5.51650000e+05 5.70330000e+05 4.48100000e+05 2.23020000e+05 1.27740000e+05 8.03690000e+04 3.82330000e+04 2.20640000e+04 2.16060000e+04 2.13110000e+04 1.59770000e+04 1.56430000e+04 1.42380000e+04 1.39400000e+04 7.25360000e+03 3.34070000e+03 1.10560000e+03 5.00210000e+02 2.69230000e+02 1.61920000e+02 1.16370000e+02 1.13800000e+02 7.23430000e+01 3.86560000e+01 1.23920000e+01 5.56630000e+00 1.84690000e+00 8.70110000e-01 4.97230000e-01 3.20730000e-01 1.66790000e-01 1.03810000e-01 4.71270000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.39000000e+04 4.35030000e+04 3.23790000e+04 5.12850000e+04 4.70880000e+04 5.60490000e+04 3.02720000e+04 1.41920000e+04 4.78850000e+03 2.18280000e+03 1.17970000e+03 7.11240000e+02 5.11870000e+02 5.00600000e+02 3.18680000e+02 1.70550000e+02 5.47660000e+01 2.46180000e+01 8.17480000e+00 3.85400000e+00 2.20410000e+00 1.42270000e+00 7.40970000e-01 4.61680000e-01 2.09990000e-01] JM4 = 1.13528526791 JM5 = 1.55361479271 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.95780000e+04 1.81910000e+04 1.77650000e+04 9.47200000e+03 4.27900000e+03 1.34830000e+03 5.77740000e+02 2.95720000e+02 1.70010000e+02 1.18500000e+02 1.15640000e+02 7.04130000e+01 3.54140000e+01 1.01890000e+01 4.26020000e+00 1.29110000e+00 5.74760000e-01 3.15580000e-01 1.97520000e-01 9.85870000e-02 5.97440000e-02 2.63130000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.39000000e+04 4.35030000e+04 3.23790000e+04 3.17070000e+04 2.88970000e+04 2.83000000e+04 1.42330000e+04 6.12540000e+03 1.78730000e+03 7.25160000e+02 3.55570000e+02 1.97200000e+02 1.34230000e+02 1.30780000e+02 7.70240000e+01 3.69580000e+01 9.74050000e+00 3.82980000e+00 1.07220000e+00 4.55760000e-01 2.43330000e-01 1.49650000e-01 7.32700000e-02 4.39800000e-02 1.91210000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.98450000e+03 6.56670000e+03 3.78760000e+03 1.65290000e+03 8.79860000e+02 5.28370000e+02 3.44030000e+02 2.59140000e+02 2.54180000e+02 1.71240000e+02 9.81790000e+01 3.48370000e+01 1.65280000e+01 5.81140000e+00 2.82350000e+00 1.64510000e+00 1.07560000e+00 5.69120000e-01 3.57950000e-01 1.64550000e-01] all other = [ 1.05130000e+06 4.67430000e+05 3.41790000e+05 3.36010000e+05 3.17500000e+05 3.12090000e+05 2.52740000e+05 2.08660000e+05 2.05000000e+05 1.59630000e+05 1.56790000e+05 1.31040000e+05 1.28670000e+05 1.01400000e+05 5.15740000e+04 3.01190000e+04 1.92620000e+04 9.40010000e+03 5.52100000e+03 5.40980000e+03 5.33830000e+03 4.03690000e+03 3.95500000e+03 3.60950000e+03 3.53610000e+03 1.87250000e+03 8.77970000e+02 2.96900000e+02 1.36110000e+02 7.39030000e+01 4.47280000e+01 3.22680000e+01 3.15630000e+01 2.01590000e+01 1.08340000e+01 3.50320000e+00 1.58120000e+00 5.27230000e-01 2.49040000e-01 1.42540000e-01 9.20390000e-02 4.79280000e-02 2.98480000e-02 1.35610000e-02] [Ta.binding] K = 67.5884 L1 = 11.6598 M5 = 1.7414 M4 = 1.8023 M1 = 2.6859 L3 = 9.8788 M3 = 2.1841 M2 = 2.4619 L2 = 11.1637 [Yb] JL1 = 1.13213747403 JL3 = 2.61147470184 JL2 = 1.39253148068 energy = [ 1.00000000e+00 1.50000000e+00 1.52680000e+00 1.53910000e+00 1.57650000e+00 1.58910000e+00 1.93320000e+00 1.94870000e+00 2.00000000e+00 2.15910000e+00 2.17640000e+00 2.36670000e+00 2.38570000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 8.92460000e+00 8.99600000e+00 9.98310000e+00 1.00000000e+01 1.00630000e+01 1.04460000e+01 1.05300000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 6.13970000e+01 6.18890000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.16377192003 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.18360000e+05 7.73070000e+05 7.75640000e+05 4.70030000e+05 4.60310000e+05 4.29980000e+05 3.51310000e+05 3.43940000e+05 2.76920000e+05 2.71110000e+05 1.43000000e+05 6.09130000e+04 3.03820000e+04 1.68810000e+04 6.45920000e+03 4.43580000e+03 4.31500000e+03 3.00010000e+03 2.98240000e+03 2.91720000e+03 2.55730000e+03 2.48620000e+03 6.92630000e+02 2.36200000e+02 4.93480000e+01 1.57880000e+01 6.44620000e+00 3.08480000e+00 2.81020000e+00 2.72080000e+00 9.61000000e-01 3.89590000e-01 7.73370000e-02 2.54290000e-02 5.73350000e-03 2.14800000e-03 1.05670000e-03 6.11710000e-04 2.79760000e-04 1.59790000e-04 6.72940000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.93920000e+05 3.28830000e+05 3.22130000e+05 3.01240000e+05 2.46970000e+05 2.41880000e+05 1.95440000e+05 1.91310000e+05 1.02160000e+05 4.40820000e+04 2.22200000e+04 1.24560000e+04 4.83620000e+03 3.33960000e+03 3.25010000e+03 2.27290000e+03 2.25960000e+03 2.21100000e+03 1.94200000e+03 1.88890000e+03 5.37440000e+02 1.86770000e+02 4.02170000e+01 1.31810000e+01 5.49130000e+00 2.67380000e+00 2.44120000e+00 2.36540000e+00 8.56950000e-01 3.55200000e-01 7.31710000e-02 2.45300000e-02 5.57550000e-03 2.05940000e-03 9.88490000e-04 5.62780000e-04 2.42100000e-04 1.34740000e-04 5.09290000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.36730000e+04 2.48480000e+04 1.62230000e+04 1.12690000e+04 8.24400000e+03 4.90610000e+03 3.99980000e+03 3.93980000e+03 3.22880000e+03 3.21830000e+03 3.17970000e+03 2.95870000e+03 2.91340000e+03 1.43920000e+03 7.90010000e+02 3.26160000e+02 1.69270000e+02 1.00180000e+02 6.46100000e+01 6.10920000e+01 5.99160000e+01 3.17910000e+01 1.81040000e+01 6.36580000e+00 3.00460000e+00 1.04960000e+00 5.07700000e-01 2.94890000e-01 1.92370000e-01 1.01470000e-01 6.37340000e-02 2.92850000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.60870000e+05 1.48570000e+05 1.35550000e+05 1.34010000e+05 1.17440000e+05 1.15900000e+05 7.90520000e+04 4.63800000e+04 2.94390000e+04 1.98510000e+04 1.02550000e+04 7.88470000e+03 7.73280000e+03 5.98500000e+03 5.95990000e+03 5.86740000e+03 5.34330000e+03 5.23710000e+03 2.08650000e+03 9.47060000e+02 2.93700000e+02 1.23390000e+02 6.18490000e+01 3.48330000e+01 3.23790000e+01 3.15690000e+01 1.38780000e+01 6.74030000e+00 1.80500000e+00 7.15120000e-01 2.01640000e-01 8.60020000e-02 4.60190000e-02 2.83760000e-02 1.38820000e-02 8.36030000e-03 3.63680000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.60060000e+04 5.00670000e+04 4.96420000e+04 3.62400000e+04 2.31650000e+04 1.54670000e+04 1.08130000e+04 5.88760000e+03 4.61260000e+03 4.53040000e+03 3.56870000e+03 3.55470000e+03 3.50310000e+03 3.21000000e+03 3.15050000e+03 1.33080000e+03 6.33170000e+02 2.10130000e+02 9.28200000e+01 4.84520000e+01 2.82380000e+01 2.63650000e+01 2.57450000e+01 1.19010000e+01 6.04800000e+00 1.76250000e+00 7.40940000e-01 2.25420000e-01 1.00420000e-01 5.51240000e-02 3.45100000e-02 1.72160000e-02 1.04310000e-02 4.58760000e-03] total = [ 8.63880000e+05 3.84990000e+05 3.71030000e+05 6.83270000e+05 1.12000000e+06 1.31080000e+06 1.02320000e+06 1.16370000e+06 1.08810000e+06 9.09800000e+05 9.48720000e+05 7.83230000e+05 8.02460000e+05 4.68750000e+05 2.33140000e+05 1.33490000e+05 8.40310000e+04 4.00330000e+04 3.01010000e+04 7.86080000e+04 5.98780000e+04 8.33820000e+04 8.07620000e+04 7.36430000e+04 8.33740000e+04 3.34870000e+04 1.56100000e+04 5.20760000e+03 2.36070000e+03 1.27080000e+03 7.63910000e+02 7.16240000e+02 3.69850000e+03 1.88560000e+03 1.03770000e+03 3.44350000e+02 1.56660000e+02 5.24830000e+01 2.48610000e+01 1.42800000e+01 9.25830000e+00 4.86020000e+00 3.04990000e+00 1.40390000e+00] JM2 = 1.04277863267 JM3 = 1.13731430805 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99810000e+03 1.54490000e+03 8.55980000e+02 2.86340000e+02 1.30690000e+02 4.39110000e+01 2.08360000e+01 1.19840000e+01 7.77860000e+00 4.09130000e+00 2.57100000e+00 1.18600000e+00] JM1 = 1.02455217497 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.18360000e+05 7.73070000e+05 9.69560000e+05 7.98860000e+05 9.43310000e+05 8.79790000e+05 7.33840000e+05 7.75840000e+05 6.39860000e+05 6.61640000e+05 3.85300000e+05 1.90760000e+05 1.08780000e+05 6.82450000e+04 3.23440000e+04 2.42720000e+04 2.37680000e+04 1.80560000e+04 1.79750000e+04 1.76780000e+04 1.60110000e+04 1.56760000e+04 6.08660000e+03 2.79320000e+03 9.19560000e+02 4.14450000e+02 2.22420000e+02 1.33440000e+02 1.25090000e+02 1.22320000e+02 5.93890000e+01 3.16370000e+01 1.00840000e+01 4.51060000e+00 1.48790000e+00 6.98330000e-01 3.98080000e-01 2.56430000e-01 1.33090000e-01 8.28200000e-02 3.76270000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.91290000e+04 3.74450000e+04 6.10480000e+04 5.87950000e+04 5.37350000e+04 6.38810000e+04 2.58780000e+04 1.21050000e+04 4.04860000e+03 1.83690000e+03 9.89220000e+02 5.94720000e+02 5.57620000e+02 5.45300000e+02 2.65320000e+02 1.41520000e+02 4.51720000e+01 2.02170000e+01 6.67280000e+00 3.13350000e+00 1.78730000e+00 1.15200000e+00 5.98760000e-01 3.72960000e-01 1.69740000e-01] JM4 = 1.17035714286 JM5 = 1.84154920087 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.37690000e+04 2.21220000e+04 2.04460000e+04 1.99750000e+04 7.88550000e+03 3.53770000e+03 1.09130000e+03 4.61650000e+02 2.34100000e+02 1.33630000e+02 1.24460000e+02 1.21440000e+02 5.47540000e+01 2.73210000e+01 7.75570000e+00 3.21500000e+00 9.64010000e-01 4.26370000e-01 2.33100000e-01 1.45570000e-01 7.23010000e-02 4.37430000e-02 1.91800000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.91290000e+04 3.74450000e+04 3.72800000e+04 3.66730000e+04 3.32900000e+04 3.26060000e+04 1.19400000e+04 5.10350000e+03 1.47190000e+03 5.92560000e+02 2.88690000e+02 1.59300000e+02 1.47720000e+02 1.43910000e+02 6.17520000e+01 2.94680000e+01 7.69580000e+00 3.00880000e+00 8.36990000e-01 3.54670000e-01 1.89090000e-01 1.16320000e-01 5.69260000e-02 3.42280000e-02 1.49190000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.13000000e+04 6.05210000e+03 3.46430000e+03 1.48540000e+03 7.82700000e+02 4.66430000e+02 3.01800000e+02 2.85430000e+02 2.79960000e+02 1.48810000e+02 8.47310000e+01 2.97200000e+01 1.39930000e+01 4.87180000e+00 2.35240000e+00 1.36510000e+00 8.90080000e-01 4.69530000e-01 2.94990000e-01 1.35640000e-01] all other = [ 8.63880000e+05 3.84990000e+05 3.71030000e+05 3.64900000e+05 3.46970000e+05 3.41200000e+05 2.24290000e+05 2.20420000e+05 2.08260000e+05 1.75960000e+05 1.72880000e+05 1.43370000e+05 1.40830000e+05 8.34470000e+04 4.23770000e+04 2.47100000e+04 1.57870000e+04 7.68980000e+03 5.82810000e+03 5.71100000e+03 4.37770000e+03 4.35880000e+03 4.28920000e+03 3.89670000e+03 3.81770000e+03 1.52230000e+03 7.11640000e+02 2.39510000e+02 1.09360000e+02 5.92050000e+01 3.57450000e+01 3.35330000e+01 3.27990000e+01 1.60470000e+01 8.59770000e+00 2.76330000e+00 1.24230000e+00 4.11730000e-01 1.93740000e-01 1.10610000e-01 7.13170000e-02 3.70680000e-02 2.30800000e-02 1.04950000e-02] [Yb.binding] K = 61.4583 L1 = 10.4568 M5 = 1.5284 M4 = 1.5781 M1 = 2.3691 L3 = 8.9335 M3 = 1.9352 M2 = 2.1612 L2 = 9.9931 [Dy] JL1 = 1.13189553148 JL3 = 2.66670592739 JL2 = 1.34424257682 energy = [ 1.00000000e+00 1.29800000e+00 1.30840000e+00 1.33520000e+00 1.34590000e+00 1.50000000e+00 1.66040000e+00 1.67370000e+00 1.82950000e+00 1.84410000e+00 2.00000000e+00 2.01690000e+00 2.03300000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 7.77300000e+00 7.83520000e+00 8.00000000e+00 8.58250000e+00 8.65120000e+00 9.00530000e+00 9.07740000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 5.38180000e+01 5.42490000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 5.33600777415 M5 = [ 0.00000000e+00 0.00000000e+00 3.90860000e+05 9.09370000e+05 9.23630000e+05 7.03830000e+05 5.42130000e+05 5.31140000e+05 4.21790000e+05 4.13090000e+05 3.35990000e+05 3.28650000e+05 3.21850000e+05 1.07460000e+05 4.47610000e+04 2.20180000e+04 1.20980000e+04 5.02420000e+03 4.88740000e+03 4.54710000e+03 3.55810000e+03 3.46000000e+03 3.00500000e+03 2.92170000e+03 2.07160000e+03 4.70110000e+02 1.57730000e+02 3.22190000e+01 1.01570000e+01 4.10260000e+00 3.03790000e+00 2.94050000e+00 1.94690000e+00 5.99090000e-01 2.40800000e-01 4.71830000e-02 1.53990000e-02 3.44410000e-03 1.28550000e-03 6.28660000e-04 3.63820000e-04 1.66380000e-04 9.66980000e-05 3.95090000e-05] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.43450000e+05 4.88290000e+05 3.77100000e+05 3.69570000e+05 2.94520000e+05 2.88530000e+05 2.35320000e+05 2.30170000e+05 2.25420000e+05 7.66610000e+04 3.22950000e+04 1.60330000e+04 8.87970000e+03 3.73130000e+03 3.63120000e+03 3.38190000e+03 2.65520000e+03 2.58290000e+03 2.24760000e+03 2.18620000e+03 1.55770000e+03 3.61400000e+02 1.23420000e+02 2.59380000e+01 8.36540000e+00 3.44450000e+00 2.56750000e+00 2.48690000e+00 1.66190000e+00 5.25440000e-01 2.15720000e-01 4.37730000e-02 1.45420000e-02 3.26930000e-03 1.19950000e-03 5.77830000e-04 3.26520000e-04 1.39540000e-04 7.66190000e-05 2.91860000e-05] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.97910000e+04 2.32960000e+04 1.48120000e+04 1.01560000e+04 7.35370000e+03 4.55420000e+03 4.48580000e+03 4.31150000e+03 3.76980000e+03 3.71260000e+03 3.43680000e+03 3.38410000e+03 2.80060000e+03 1.23260000e+03 6.69550000e+02 2.72240000e+02 1.39740000e+02 8.19860000e+01 6.85620000e+01 6.72410000e+01 5.25050000e+01 2.55510000e+01 1.44280000e+01 4.99800000e+00 2.33550000e+00 8.05290000e-01 3.86400000e-01 2.23260000e-01 1.45130000e-01 7.62510000e-02 4.78270000e-02 2.19900000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.80160000e+05 1.57160000e+05 1.55510000e+05 1.37660000e+05 1.35810000e+05 1.34070000e+05 6.96510000e+04 3.97650000e+04 2.48210000e+04 1.65220000e+04 8.97730000e+03 8.80490000e+03 8.36950000e+03 7.04350000e+03 6.90590000e+03 6.24960000e+03 6.12600000e+03 4.79560000e+03 1.63880000e+03 7.31790000e+02 2.21940000e+02 9.18460000e+01 4.55340000e+01 3.60240000e+01 3.51180000e+01 2.54240000e+01 9.99980000e+00 4.81180000e+00 1.26930000e+00 4.98360000e-01 1.39110000e-01 5.90430000e-02 3.15400000e-02 1.93790000e-02 9.49710000e-03 5.72380000e-03 2.50350000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.56490000e+04 5.93820000e+04 5.88680000e+04 5.83580000e+04 3.36580000e+04 2.04730000e+04 1.33010000e+04 9.12140000e+03 5.16330000e+03 5.07070000e+03 4.83570000e+03 4.11060000e+03 4.03480000e+03 3.67290000e+03 3.60460000e+03 2.86300000e+03 1.03710000e+03 4.82870000e+02 1.55650000e+02 6.74240000e+01 3.46910000e+01 2.77940000e+01 2.71320000e+01 1.99900000e+01 8.28320000e+00 4.15760000e+00 1.18700000e+00 4.92580000e-01 1.47510000e-01 6.50990000e-02 3.55340000e-02 2.21680000e-02 1.09860000e-02 6.63230000e-03 2.90340000e-03] total = [ 6.70170000e+05 4.05950000e+05 7.90410000e+05 1.29300000e+06 1.54470000e+06 1.49510000e+06 1.16440000e+06 1.32200000e+06 1.07300000e+06 1.11900000e+06 9.32950000e+05 9.15110000e+05 9.38310000e+05 3.76780000e+05 1.85630000e+05 1.05860000e+05 6.64370000e+04 3.39610000e+04 9.05640000e+04 8.69610000e+04 7.14990000e+04 9.61120000e+04 8.70310000e+04 9.85100000e+04 7.72870000e+04 2.67580000e+04 1.23740000e+04 4.08770000e+03 1.84120000e+03 9.86820000e+02 8.02660000e+02 4.28300000e+03 3.27440000e+03 1.53470000e+03 8.38000000e+02 2.74240000e+02 1.23730000e+02 4.10250000e+01 1.93060000e+01 1.10400000e+01 7.13590000e+00 3.73340000e+00 2.33990000e+00 1.07770000e+00] JM2 = 1.04287045666 JM3 = 1.13534867743 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.49820000e+03 2.68330000e+03 1.27240000e+03 6.98730000e+02 2.30130000e+02 1.04100000e+02 3.45980000e+01 1.63030000e+01 9.33330000e+00 6.03850000e+00 3.16440000e+00 1.98570000e+00 9.16310000e-01] JM1 = 1.02535214346 M = [ 0.00000000e+00 0.00000000e+00 3.90860000e+05 9.09370000e+05 1.16710000e+06 1.19210000e+06 9.19230000e+05 1.08090000e+06 8.73470000e+05 9.22780000e+05 7.68350000e+05 7.53500000e+05 7.79490000e+05 3.10720000e+05 1.52100000e+05 8.63290000e+04 5.39750000e+04 2.74500000e+04 2.68800000e+04 2.54460000e+04 2.11370000e+04 2.06960000e+04 1.86120000e+04 1.82230000e+04 1.40890000e+04 4.74010000e+03 2.16540000e+03 7.07980000e+02 3.17530000e+02 1.69760000e+02 1.37990000e+02 1.34920000e+02 1.01530000e+02 4.49580000e+01 2.38530000e+01 7.54530000e+00 3.35640000e+00 1.09860000e+00 5.13030000e-01 2.91540000e-01 1.87370000e-01 9.70410000e-02 6.03560000e-02 2.74650000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.73040000e+04 5.54630000e+04 4.53010000e+04 7.04570000e+04 6.39440000e+04 7.59020000e+04 5.97790000e+04 2.08320000e+04 9.65640000e+03 3.19530000e+03 1.44000000e+03 7.71930000e+02 6.27890000e+02 6.13970000e+02 4.62430000e+02 2.05150000e+02 1.08950000e+02 3.44970000e+01 1.53500000e+01 5.02560000e+00 2.34760000e+00 1.33470000e+00 8.58150000e-01 4.45030000e-01 2.77040000e-01 1.26250000e-01] JM4 = 1.19466357309 JM5 = 1.94706244611 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.61010000e+04 2.39640000e+04 2.34140000e+04 1.82960000e+04 6.07460000e+03 2.67890000e+03 8.06820000e+02 3.35920000e+02 1.68270000e+02 1.33760000e+02 1.30470000e+02 9.51390000e+01 3.84250000e+01 1.89710000e+01 5.28950000e+00 2.16760000e+00 6.40780000e-01 2.80990000e-01 1.52850000e-01 9.50020000e-02 4.69290000e-02 2.82960000e-02 1.23490000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.73040000e+04 5.54630000e+04 4.53010000e+04 4.43550000e+04 3.99800000e+04 3.91640000e+04 3.02340000e+04 9.35520000e+03 3.94180000e+03 1.11640000e+03 4.44010000e+02 2.14470000e+02 1.68350000e+02 1.63980000e+02 1.17530000e+02 4.50920000e+01 2.13550000e+01 5.50740000e+00 2.13660000e+00 5.89190000e-01 2.48600000e-01 1.32350000e-01 8.13060000e-02 3.98050000e-02 2.39680000e-02 1.04920000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.33240000e+04 1.12480000e+04 5.40230000e+03 3.03570000e+03 1.27220000e+03 6.60030000e+02 3.89180000e+02 3.25780000e+02 3.19520000e+02 2.49760000e+02 1.21630000e+02 6.86250000e+01 2.37000000e+01 1.10460000e+01 3.79570000e+00 1.81800000e+00 1.04950000e+00 6.81840000e-01 3.58290000e-01 2.24780000e-01 1.03410000e-01] all other = [ 6.70170000e+05 4.05950000e+05 3.99550000e+05 3.83670000e+05 3.77580000e+05 3.02930000e+05 2.45220000e+05 2.41140000e+05 1.99560000e+05 1.96180000e+05 1.64600000e+05 1.61610000e+05 1.58810000e+05 6.60560000e+04 3.35280000e+04 1.95320000e+04 1.24630000e+04 6.51030000e+03 6.38010000e+03 6.05210000e+03 5.06100000e+03 4.95900000e+03 4.47570000e+03 4.38520000e+03 3.41950000e+03 1.18610000e+03 5.51770000e+02 1.84370000e+02 8.37290000e+01 4.51370000e+01 3.67810000e+01 3.59730000e+01 2.71580000e+01 1.21250000e+01 6.46820000e+00 2.06240000e+00 9.21210000e-01 3.02930000e-01 1.41800000e-01 8.06920000e-02 5.19040000e-02 2.69180000e-02 1.67540000e-02 7.62870000e-03] [Dy.binding] K = 53.8718 L1 = 9.0143 M5 = 1.2993 M4 = 1.3366 M1 = 2.0189 L3 = 7.7808 M3 = 1.6621 M2 = 1.8313 L2 = 8.5911 [I] JM1 = 1.02489941104 JL1 = 1.13102178582 JL3 = 2.9109895019 JL2 = 1.33035392489 energy = [ 1.00000000e+00 1.05460000e+00 1.06300000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 4.54980000e+00 4.58620000e+00 4.85280000e+00 4.89160000e+00 5.00000000e+00 5.15730000e+00 5.19850000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 3.31340000e+01 3.33990000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.10340000e+05 1.05210000e+05 1.04340000e+05 6.80750000e+04 4.31800000e+04 2.01290000e+04 1.09480000e+04 8.19830000e+03 8.05030000e+03 7.06930000e+03 6.93980000e+03 6.59480000e+03 6.13280000e+03 6.01850000e+03 4.26880000e+03 2.07530000e+03 1.15380000e+03 3.75060000e+02 1.62270000e+02 4.74470000e+01 3.48370000e+01 3.39800000e+01 1.92600000e+01 9.44490000e+00 5.24220000e+00 2.05390000e+00 9.89910000e-01 2.64260000e-01 1.05130000e-01 2.99120000e-02 1.28330000e-02 6.86530000e-03 4.21790000e-03 2.05490000e-03 1.22620000e-03 5.28880000e-04] M = [ 1.64280000e+06 1.46960000e+06 1.51610000e+06 7.05810000e+05 3.56400000e+05 1.30500000e+05 6.25970000e+04 4.48250000e+04 4.39050000e+04 3.78870000e+04 3.71050000e+04 3.50370000e+04 3.23050000e+04 3.16360000e+04 2.16830000e+04 1.00720000e+04 5.51480000e+03 1.81690000e+03 8.17350000e+02 2.61610000e+02 1.97450000e+02 1.93030000e+02 1.15570000e+02 6.10440000e+01 3.61420000e+01 1.57430000e+01 8.24200000e+00 2.54140000e+00 1.10940000e+00 3.53840000e-01 1.62470000e-01 9.13360000e-02 5.83040000e-02 3.00240000e-02 1.86560000e-02 8.54100000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.03760000e+05 9.32610000e+04 1.40030000e+05 1.34530000e+05 1.24140000e+05 1.46290000e+05 1.03040000e+05 4.86430000e+04 2.69630000e+04 8.99450000e+03 4.06370000e+03 1.30460000e+03 9.84970000e+02 9.62970000e+02 5.76880000e+02 3.04860000e+02 1.80550000e+02 7.86470000e+01 4.11700000e+01 1.26870000e+01 5.53550000e+00 1.76430000e+00 8.10190000e-01 4.55460000e-01 2.90770000e-01 1.49800000e-01 9.31410000e-02 4.26740000e-02] M5 = [ 7.59730000e+05 6.69480000e+05 6.56680000e+05 2.64230000e+05 1.15150000e+05 3.28790000e+04 1.27800000e+04 8.25420000e+03 8.03140000e+03 6.61010000e+03 6.43020000e+03 5.95980000e+03 5.35120000e+03 5.20430000e+03 3.13910000e+03 1.10590000e+03 4.79630000e+02 9.94930000e+01 3.14060000e+01 5.92390000e+00 3.91130000e+00 3.78280000e+00 1.77150000e+00 6.88890000e-01 3.17790000e-01 9.38940000e-02 3.67070000e-02 6.88230000e-03 2.18760000e-03 4.72080000e-04 1.74070000e-04 8.53930000e-05 4.95370000e-05 2.22370000e-05 1.31060000e-05 5.31910000e-06] M4 = [ 5.19840000e+05 4.58700000e+05 4.50090000e+05 1.83240000e+05 8.04300000e+04 2.32110000e+04 9.09510000e+03 5.89610000e+03 5.73840000e+03 4.73090000e+03 4.60320000e+03 4.26920000e+03 3.83680000e+03 3.73240000e+03 2.26150000e+03 8.04580000e+02 3.51850000e+02 7.42590000e+01 2.37750000e+01 4.58990000e+00 3.04990000e+00 2.95120000e+00 1.39910000e+00 5.52960000e-01 2.58670000e-01 7.81910000e-02 3.11100000e-02 5.99960000e-03 1.93060000e-03 4.20120000e-04 1.51080000e-04 7.11690000e-05 3.97320000e-05 1.71130000e-05 9.26370000e-06 3.53170000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.87260000e+04 4.81930000e+04 4.42100000e+04 4.33170000e+04 3.03130000e+04 1.37140000e+04 7.28120000e+03 2.19600000e+03 9.08950000e+02 2.52580000e+02 1.83510000e+02 1.78840000e+02 9.96180000e+01 4.79550000e+01 2.62700000e+01 1.01150000e+01 4.82120000e+00 1.26700000e+00 4.99950000e-01 1.41110000e-01 6.01920000e-02 3.21220000e-02 1.97010000e-02 9.56930000e-03 5.70570000e-03 2.45900000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.03760000e+05 9.32610000e+04 9.13030000e+04 8.63370000e+04 7.99320000e+04 7.83500000e+04 5.33770000e+04 2.34150000e+04 1.21820000e+04 3.54030000e+03 1.42470000e+03 3.79370000e+02 2.72540000e+02 2.65380000e+02 1.44740000e+02 6.77750000e+01 3.62490000e+01 1.34070000e+01 6.18190000e+00 1.52550000e+00 5.76080000e-01 1.54150000e-01 6.40890000e-02 3.38590000e-02 2.07380000e-02 1.01640000e-02 6.14570000e-03 2.71920000e-03] M3 = [ 2.52880000e+05 2.36160000e+05 2.33670000e+05 1.42750000e+05 8.64830000e+04 3.83980000e+04 2.02780000e+04 1.50010000e+04 1.47190000e+04 1.28540000e+04 1.26090000e+04 1.19560000e+04 1.10870000e+04 1.08720000e+04 7.61050000e+03 3.60530000e+03 1.96460000e+03 6.14800000e+02 2.58520000e+02 7.23860000e+01 5.25500000e+01 5.12100000e+01 2.84110000e+01 1.35470000e+01 7.33880000e+00 2.76050000e+00 1.28670000e+00 3.22420000e-01 1.22740000e-01 3.31150000e-02 1.37930000e-02 7.30370000e-03 4.47990000e-03 2.19560000e-03 1.32780000e-03 5.87680000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.46200000e+04 1.93540000e+04 1.15140000e+04 7.49980000e+03 3.25830000e+03 1.73010000e+03 6.72690000e+02 5.28930000e+02 5.18760000e+02 3.32520000e+02 1.89130000e+02 1.18030000e+02 5.51260000e+01 3.01670000e+01 9.89430000e+00 4.45950000e+00 1.46910000e+00 6.85910000e-01 3.89480000e-01 2.50330000e-01 1.30070000e-01 8.12890000e-02 3.74950000e-02] JK = 5.9141553999 M1 = [ 0.00000000e+00 0.00000000e+00 7.12920000e+04 4.75180000e+04 3.11500000e+04 1.58810000e+04 9.49590000e+03 7.47580000e+03 7.36510000e+03 6.62290000e+03 6.52360000e+03 6.25760000e+03 5.89810000e+03 5.80860000e+03 4.40280000e+03 2.48060000e+03 1.56490000e+03 6.53260000e+02 3.41380000e+02 1.31270000e+02 1.03100000e+02 1.01110000e+02 6.47260000e+01 3.68100000e+01 2.29850000e+01 1.07560000e+01 5.89760000e+00 1.94180000e+00 8.77460000e-01 2.89930000e-01 1.35520000e-01 7.70100000e-02 4.95170000e-02 2.57340000e-02 1.60800000e-02 7.41560000e-03] all other = [ 2.72230000e+05 2.45330000e+05 2.41490000e+05 1.18470000e+05 6.28060000e+04 2.45100000e+04 1.22300000e+04 8.89860000e+03 8.72400000e+03 7.57980000e+03 7.43020000e+03 7.03340000e+03 6.50740000e+03 6.37820000e+03 4.43710000e+03 2.11610000e+03 1.18030000e+03 4.00380000e+02 1.83260000e+02 5.98470000e+01 4.53670000e+01 4.43670000e+01 2.67570000e+01 1.42480000e+01 8.48600000e+00 3.72540000e+00 1.96000000e+00 6.08920000e-01 2.66900000e-01 8.54840000e-02 3.93480000e-02 2.21470000e-02 1.41490000e-02 7.29330000e-03 4.53500000e-03 2.07790000e-03] total = [ 1.91500000e+06 1.71490000e+06 1.75760000e+06 8.24290000e+05 4.19200000e+05 1.55010000e+05 7.48260000e+04 5.37240000e+04 1.56390000e+05 1.38730000e+05 1.84560000e+05 1.76600000e+05 1.62950000e+05 1.84300000e+05 1.29160000e+05 6.08310000e+04 3.36580000e+04 1.12120000e+04 5.06430000e+03 1.62610000e+03 1.22780000e+03 7.26140000e+03 4.53270000e+03 2.50020000e+03 1.51940000e+03 6.82760000e+02 3.63480000e+02 1.14210000e+02 5.02210000e+01 1.61140000e+01 7.42840000e+00 4.18990000e+00 2.68330000e+00 1.39020000e+00 8.68340000e-01 4.01040000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.06110000e+03 3.81350000e+03 2.12010000e+03 1.29420000e+03 5.84640000e+02 3.12110000e+02 9.83700000e+01 4.33090000e+01 1.39110000e+01 6.41630000e+00 3.62090000e+00 2.32010000e+00 1.20310000e+00 7.52010000e-01 3.47750000e-01] [I.binding] K = 33.1668 L1 = 5.1624 M5 = 0.6292 M4 = 0.6414 M1 = 1.0556 L3 = 4.5543 M3 = 0.8698 M2 = 0.9274 L2 = 4.8576 [U] JL1 = 1.1329136632 JL3 = 2.33938050516 JL2 = 1.39031097948 energy = [ 1.00000000e+00 1.02950000e+00 1.03770000e+00 1.26360000e+00 1.27370000e+00 1.42090000e+00 1.43230000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.55090000e+00 3.57930000e+00 3.73270000e+00 3.76260000e+00 4.00000000e+00 4.28490000e+00 4.31930000e+00 5.00000000e+00 5.17770000e+00 5.21910000e+00 5.52360000e+00 5.56790000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.71630000e+01 1.73010000e+01 2.00000000e+01 2.10260000e+01 2.11940000e+01 2.17770000e+01 2.19510000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.16170000e+02 1.17100000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.15641745946 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.85290000e+05 2.52430000e+05 2.47270000e+05 2.13180000e+05 1.78040000e+05 1.74190000e+05 1.14490000e+05 1.03330000e+05 1.00930000e+05 8.58850000e+04 8.39520000e+04 6.72760000e+04 2.80090000e+04 1.37960000e+04 3.58610000e+03 2.25600000e+03 2.19430000e+03 1.32040000e+03 1.10600000e+03 1.07510000e+03 9.76030000e+02 9.48670000e+02 3.06080000e+02 1.05150000e+02 4.52560000e+01 2.25660000e+01 7.46510000e+00 3.16260000e+00 1.77840000e+00 1.72480000e+00 6.71040000e-01 2.29560000e-01 5.38380000e-02 2.05100000e-02 1.01560000e-02 5.95130000e-03 2.70120000e-03 1.52940000e-03 6.32710000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.80830000e+05 1.53560000e+05 1.30290000e+05 1.27680000e+05 8.54920000e+04 7.73620000e+04 7.56090000e+04 6.40970000e+04 6.27220000e+04 5.09500000e+04 2.16930000e+04 1.08730000e+04 2.92450000e+03 1.86150000e+03 1.81210000e+03 1.10540000e+03 9.30670000e+02 9.05400000e+02 8.24200000e+02 8.01700000e+02 2.67090000e+02 9.47270000e+01 4.18540000e+01 2.13400000e+01 7.31890000e+00 3.18880000e+00 1.82650000e+00 1.77330000e+00 7.09930000e-01 2.49760000e-01 5.99720000e-02 2.28650000e-02 1.12110000e-02 6.50090000e-03 2.86210000e-03 1.59660000e-03 6.23160000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.21750000e+04 1.08730000e+04 7.26740000e+03 5.17060000e+03 2.58350000e+03 2.01870000e+03 1.98910000e+03 1.51530000e+03 1.37630000e+03 1.35530000e+03 1.28600000e+03 1.26630000e+03 6.80390000e+02 3.73840000e+02 2.31070000e+02 1.54420000e+02 8.03380000e+01 4.77650000e+01 3.35000000e+01 3.28700000e+01 1.81480000e+01 9.04040000e+00 3.39700000e+00 1.72270000e+00 1.03310000e+00 6.88850000e-01 3.72650000e-01 2.36540000e-01 1.08740000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.12240000e+04 5.66310000e+04 5.34400000e+04 5.26990000e+04 4.74490000e+04 4.67290000e+04 4.04000000e+04 2.30180000e+04 1.43750000e+04 5.68120000e+03 4.09390000e+03 4.01450000e+03 2.79320000e+03 2.46020000e+03 2.41060000e+03 2.24860000e+03 2.20290000e+03 9.64820000e+02 4.35840000e+02 2.30620000e+02 1.35530000e+02 5.75620000e+01 2.92870000e+01 1.85320000e+01 1.80850000e+01 8.46170000e+00 3.51140000e+00 1.04220000e+00 4.55540000e-01 2.46470000e-01 1.52620000e-01 7.46660000e-02 4.45580000e-02 1.89620000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.93500000e+04 1.82220000e+04 1.80650000e+04 1.68120000e+04 1.10850000e+04 7.64400000e+03 3.52670000e+03 2.66160000e+03 2.61700000e+03 1.90900000e+03 1.70870000e+03 1.67860000e+03 1.57940000e+03 1.55130000e+03 7.48550000e+02 3.68960000e+02 2.08840000e+02 1.29690000e+02 6.01170000e+01 3.27510000e+01 2.17000000e+01 2.12290000e+01 1.07160000e+01 4.84740000e+00 1.61280000e+00 7.57630000e-01 4.30760000e-01 2.76520000e-01 1.42270000e-01 8.78580000e-02 3.97330000e-02] total = [ 2.61380000e+06 2.48270000e+06 2.60350000e+06 1.80830000e+06 1.80560000e+06 1.45690000e+06 1.46190000e+06 1.33150000e+06 7.32290000e+05 2.99660000e+05 2.03810000e+05 4.85380000e+05 4.34010000e+05 6.06350000e+05 5.21340000e+05 4.39900000e+05 5.02220000e+05 3.47920000e+05 3.18130000e+05 3.31000000e+05 2.87590000e+05 2.94210000e+05 2.45230000e+05 1.20230000e+05 6.85980000e+04 2.43050000e+04 1.71430000e+04 4.01040000e+04 2.69990000e+04 2.36350000e+04 3.28600000e+04 3.06590000e+04 3.47340000e+04 1.56590000e+04 7.38340000e+03 4.09160000e+03 2.51540000e+03 1.16090000e+03 6.35370000e+02 4.23610000e+02 1.76070000e+03 9.38130000e+02 4.48890000e+02 1.60060000e+02 7.89860000e+01 4.66700000e+01 3.08610000e+01 1.65690000e+01 1.04930000e+01 4.82960000e+00] JM2 = 1.04045515984 JM3 = 1.14166856104 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1346.1 725.75 350.65 126.12 62.563 37.111 24.614 13.274 8.4299 3.8927] JM1 = 1.02301888105 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.85290000e+05 2.52430000e+05 4.28100000e+05 3.66740000e+05 3.08330000e+05 3.73100000e+05 2.56610000e+05 2.34130000e+05 2.48590000e+05 2.15650000e+05 2.23640000e+05 1.86310000e+05 9.10720000e+04 5.18580000e+04 1.83020000e+04 1.28920000e+04 1.26270000e+04 8.64330000e+03 7.58190000e+03 7.42500000e+03 6.91420000e+03 6.77080000e+03 2.96690000e+03 1.37850000e+03 7.57630000e+02 4.63550000e+02 2.12800000e+02 1.16150000e+02 7.73370000e+01 7.56820000e+01 3.87060000e+01 1.78780000e+01 6.16580000e+00 2.97920000e+00 1.73170000e+00 1.13040000e+00 5.95140000e-01 3.72080000e-01 1.68690000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.33110000e+04 1.54900000e+04 1.35340000e+04 2.29670000e+04 2.14450000e+04 2.57100000e+04 1.16950000e+04 5.53790000e+03 3.07590000e+03 1.89330000e+03 8.74890000e+02 4.79090000e+02 3.19490000e+02 3.12680000e+02 1.60210000e+02 7.41190000e+01 2.56130000e+01 1.23980000e+01 7.21840000e+00 4.71880000e+00 2.49040000e+00 1.55970000e+00 7.08840000e-01] JM4 = 1.39708762471 JM5 = 2.38153181885 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.72020000e+03 9.13370000e+03 8.99400000e+03 4.09030000e+03 1.90420000e+03 1.03690000e+03 6.25330000e+02 2.78260000e+02 1.47500000e+02 9.61450000e+01 9.39800000e+01 4.63350000e+01 2.04960000e+01 6.65900000e+00 3.09080000e+00 1.74510000e+00 1.11550000e+00 5.71160000e-01 3.51880000e-01 1.58570000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.33110000e+04 1.54900000e+04 1.35340000e+04 1.32470000e+04 1.23110000e+04 1.20480000e+04 4.91010000e+03 2.09580000e+03 1.06520000e+03 6.07710000e+02 2.47780000e+02 1.22750000e+02 7.64500000e+01 7.45470000e+01 3.41030000e+01 1.38560000e+01 4.02450000e+00 1.74060000e+00 9.36350000e-01 5.77900000e-01 2.81720000e-01 1.67830000e-01 7.15930000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.66860000e+03 2.69460000e+03 1.53790000e+03 9.73850000e+02 6.60300000e+02 3.48850000e+02 2.08840000e+02 1.46890000e+02 1.44150000e+02 7.97770000e+01 3.97660000e+01 1.49300000e+01 7.56640000e+00 4.53700000e+00 3.02540000e+00 1.63750000e+00 1.04000000e+00 4.78680000e-01] all other = [ 2.61380000e+06 2.48270000e+06 2.60350000e+06 1.80830000e+06 1.80560000e+06 1.45690000e+06 1.46190000e+06 1.33150000e+06 7.32290000e+05 2.99660000e+05 2.03810000e+05 2.00090000e+05 1.81580000e+05 1.78250000e+05 1.54600000e+05 1.31570000e+05 1.29120000e+05 9.13060000e+04 8.39970000e+04 8.24090000e+04 7.19330000e+04 7.05680000e+04 5.89230000e+04 2.91570000e+04 1.67400000e+04 6.00250000e+03 4.25140000e+03 4.16520000e+03 2.86650000e+03 2.51870000e+03 2.46720000e+03 2.29960000e+03 2.25250000e+03 9.97110000e+02 4.67000000e+02 2.58070000e+02 1.58550000e+02 7.32220000e+01 4.01270000e+01 2.67850000e+01 2.62200000e+01 1.34610000e+01 6.24020000e+00 2.16060000e+00 1.04590000e+00 6.08810000e-01 3.97700000e-01 2.09560000e-01 1.31050000e-01 5.94290000e-02] [U.binding] K = 116.2831 L1 = 21.7989 M5 = 3.5545 M4 = 3.7365 M1 = 5.5292 L3 = 17.1804 M3 = 4.2892 M2 = 5.1828 L2 = 21.0466 [Y] JL1 = 1.11857768221 JL3 = 3.80414198187 JL2 = 1.3686795304 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.07930000e+00 2.09600000e+00 2.15760000e+00 2.17490000e+00 2.35260000e+00 2.37150000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.69840000e+01 1.71200000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 6.92480000e+04 3.27390000e+04 1.78840000e+04 1.64110000e+04 1.61220000e+04 1.51090000e+04 1.48400000e+04 1.24120000e+04 1.21870000e+04 6.97480000e+03 3.37750000e+03 1.86770000e+03 1.13060000e+03 4.96740000e+02 2.56220000e+02 7.31890000e+01 4.92700000e+01 4.80250000e+01 2.90440000e+01 7.57810000e+00 2.85450000e+00 1.32530000e+00 7.04820000e-01 2.59120000e-01 1.19280000e-01 2.95850000e-02 1.12390000e-02 3.02590000e-03 1.25510000e-03 6.57800000e-04 3.98030000e-04 1.90060000e-04 1.12100000e-04 4.75840000e-05] M = [ 5.31270000e+05 2.02180000e+05 9.92170000e+04 8.99830000e+04 8.81950000e+04 8.19800000e+04 8.03460000e+04 6.58500000e+04 6.45280000e+04 3.52940000e+04 1.66270000e+04 9.18290000e+03 5.62150000e+03 2.56800000e+03 1.38860000e+03 4.47570000e+02 3.15230000e+02 3.08190000e+02 1.98230000e+02 6.20200000e+01 2.69330000e+01 1.40260000e+01 8.20300000e+00 3.49950000e+00 1.80110000e+00 5.37690000e-01 2.29210000e-01 7.08710000e-02 3.19390000e-02 1.77430000e-02 1.12440000e-02 5.75470000e-03 3.57490000e-03 1.65030000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.78830000e+05 2.54060000e+05 3.82700000e+05 3.18100000e+05 3.65860000e+05 2.04360000e+05 9.79510000e+04 5.44450000e+04 3.34050000e+04 1.52680000e+04 8.24350000e+03 2.64570000e+03 1.86110000e+03 1.81950000e+03 1.16860000e+03 3.64350000e+02 1.57860000e+02 8.20650000e+01 4.79300000e+01 2.04090000e+01 1.04900000e+01 3.12490000e+00 1.33130000e+00 4.11070000e-01 1.85130000e-01 1.02820000e-01 6.51540000e-02 3.33450000e-02 2.07180000e-02 9.56860000e-03] M5 = [ 1.61920000e+05 4.69710000e+04 1.83770000e+04 1.61310000e+04 1.57030000e+04 1.42390000e+04 1.38600000e+04 1.06040000e+04 1.03180000e+04 4.53460000e+03 1.59460000e+03 6.89600000e+02 3.41990000e+02 1.09930000e+02 4.45310000e+01 8.20860000e+00 4.83640000e+00 4.67420000e+00 2.39580000e+00 4.10300000e-01 1.15740000e-01 4.31630000e-02 1.92690000e-02 5.38870000e-03 2.03570000e-03 3.62140000e-04 1.11620000e-04 2.34780000e-05 8.45730000e-06 4.07540000e-06 2.38090000e-06 1.06620000e-06 6.31710000e-07 2.72200000e-07] M4 = [ 1.10940000e+05 3.23650000e+04 1.27150000e+04 1.11680000e+04 1.08730000e+04 9.86400000e+03 9.60240000e+03 7.35580000e+03 7.15810000e+03 3.15820000e+03 1.11640000e+03 4.84950000e+02 2.41450000e+02 7.81440000e+01 3.18460000e+01 5.94700000e+00 3.52000000e+00 3.40290000e+00 1.75500000e+00 3.06020000e-01 8.76110000e-02 3.30830000e-02 1.49310000e-02 4.28350000e-03 1.64190000e-03 2.98030000e-04 9.25190000e-05 1.92230000e-05 6.76970000e-06 3.15610000e-06 1.73280000e-06 7.40490000e-07 3.95530000e-07 1.54630000e-07] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.32850000e+05 1.09430000e+05 1.07440000e+05 5.79970000e+04 2.63850000e+04 1.39630000e+04 8.17660000e+03 3.42440000e+03 1.71000000e+03 4.65060000e+02 3.09190000e+02 3.01150000e+02 1.79600000e+02 4.54840000e+01 1.68500000e+01 7.74020000e+00 4.08610000e+00 1.48810000e+00 6.81020000e-01 1.67270000e-01 6.32480000e-02 1.69450000e-02 7.00770000e-03 3.66520000e-03 2.21560000e-03 1.06030000e-03 6.25120000e-04 2.64950000e-04] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.78830000e+05 2.54060000e+05 2.49850000e+05 2.08670000e+05 2.04490000e+05 1.08320000e+05 4.86090000e+04 2.54190000e+04 1.47430000e+04 6.08720000e+03 3.00350000e+03 7.97980000e+02 5.26490000e+02 5.12540000e+02 3.02590000e+02 7.44280000e+01 2.69270000e+01 1.21190000e+01 6.28370000e+00 2.21870000e+00 9.89500000e-01 2.31330000e-01 8.45520000e-02 2.18120000e-02 8.90810000e-03 4.66690000e-03 2.84840000e-03 1.39080000e-03 8.42640000e-04 3.78890000e-04] M3 = [ 1.37840000e+05 6.35250000e+04 3.41710000e+04 3.12920000e+04 3.07290000e+04 2.87570000e+04 2.82350000e+04 2.35230000e+04 2.30860000e+04 1.30630000e+04 6.23890000e+03 3.41290000e+03 2.04740000e+03 8.86430000e+02 4.51780000e+02 1.26050000e+02 8.41910000e+01 8.20220000e+01 4.90970000e+01 1.24350000e+01 4.57270000e+00 2.07990000e+00 1.08640000e+00 3.87290000e-01 1.73770000e-01 4.09150000e-02 1.50200000e-02 3.89200000e-03 1.59210000e-03 8.34390000e-04 5.09540000e-04 2.49740000e-04 1.51330000e-04 6.78430000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.39330000e+04 3.80370000e+04 2.29570000e+04 1.50630000e+04 1.04860000e+04 5.75680000e+03 3.53010000e+03 1.38260000e+03 1.02540000e+03 1.00580000e+03 6.86400000e+02 2.44430000e+02 1.14080000e+02 6.22050000e+01 3.75600000e+01 1.67020000e+01 8.81960000e+00 2.72630000e+00 1.18350000e+00 3.72310000e-01 1.69210000e-01 9.44870000e-02 6.00900000e-02 3.08940000e-02 1.92510000e-02 8.92470000e-03] JK = 6.67611463535 M1 = [ 5.13220000e+04 2.65840000e+04 1.60690000e+04 1.49820000e+04 1.47680000e+04 1.40110000e+04 1.38090000e+04 1.19540000e+04 1.17790000e+04 7.56350000e+03 4.30000000e+03 2.72770000e+03 1.86000000e+03 9.96730000e+02 6.04200000e+02 2.34180000e+02 1.73410000e+02 1.70070000e+02 1.15940000e+02 4.12910000e+01 1.93030000e+01 1.05450000e+01 6.37760000e+00 2.84340000e+00 1.50440000e+00 4.66530000e-01 2.02750000e-01 6.39110000e-02 2.90760000e-02 1.62440000e-02 1.03330000e-02 5.31310000e-03 3.31050000e-03 1.53440000e-03] all other = [ 3.82440000e+04 1.74110000e+04 9.53050000e+03 8.76120000e+03 8.61070000e+03 8.08240000e+03 7.94260000e+03 6.67910000e+03 6.56180000e+03 3.85270000e+03 1.95580000e+03 1.13520000e+03 7.19990000e+02 3.45010000e+02 1.92530000e+02 6.50620000e+01 4.63680000e+01 4.53670000e+01 2.95930000e+01 9.54620000e+00 4.21620000e+00 2.21990000e+00 1.30830000e+00 5.63830000e-01 2.92060000e-01 8.79630000e-02 3.76930000e-02 1.17080000e-02 5.28850000e-03 2.94210000e-03 1.86620000e-03 9.56380000e-04 5.94770000e-04 2.75280000e-04] total = [ 5.69520000e+05 2.19600000e+05 1.08750000e+05 9.87450000e+04 3.75640000e+05 3.44120000e+05 4.70990000e+05 3.90630000e+05 4.36950000e+05 2.43500000e+05 1.16530000e+05 6.47630000e+04 3.97470000e+04 1.81810000e+04 9.82460000e+03 3.15830000e+03 2.22270000e+03 1.48390000e+04 9.97460000e+03 3.34980000e+03 1.50670000e+03 7.99630000e+02 4.73050000e+02 2.04410000e+02 1.05880000e+02 3.18060000e+01 1.35910000e+01 4.20660000e+00 1.89730000e+00 1.05530000e+00 6.69690000e-01 3.43750000e-01 2.14160000e-01 9.93710000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.26660000e+04 8.57820000e+03 2.91390000e+03 1.31770000e+03 7.01320000e+02 4.15610000e+02 1.79940000e+02 9.33010000e+01 2.80550000e+01 1.19930000e+01 3.71300000e+00 1.67500000e+00 9.31750000e-01 5.91420000e-01 3.03700000e-01 1.89270000e-01 8.78760000e-02] [Y.binding] K = 17.0008 L1 = 2.355 M5 = 0.1665 M4 = 0.1687 M1 = 0.3859 L3 = 2.0814 M3 = 0.2999 M2 = 0.3123 L2 = 2.1598 [Ac] JL1 = 1.13412223062 JL3 = 2.37072346917 JL2 = 1.38319227024 energy = [ 1.00000000e+00 1.10420000e+00 1.11300000e+00 1.25000000e+00 1.26000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.22030000e+00 3.24610000e+00 3.37590000e+00 3.40300000e+00 3.89970000e+00 3.93090000e+00 4.00000000e+00 4.65110000e+00 4.68830000e+00 4.97500000e+00 5.00000000e+00 5.01480000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.58660000e+01 1.59930000e+01 1.91450000e+01 1.92990000e+01 1.98490000e+01 2.00000000e+01 2.00080000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.07210000e+02 1.08070000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.29726437036 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.38250000e+05 2.88560000e+05 2.82830000e+05 2.00560000e+05 1.96190000e+05 1.86900000e+05 1.21150000e+05 1.18360000e+05 1.00080000e+05 9.86790000e+04 9.78600000e+04 5.74840000e+04 2.37490000e+04 1.15990000e+04 2.97270000e+03 2.44850000e+03 2.38160000e+03 1.26600000e+03 1.23070000e+03 1.11340000e+03 1.08380000e+03 1.08220000e+03 2.48090000e+02 8.44920000e+01 3.61290000e+01 1.79230000e+01 5.88780000e+00 2.47900000e+00 1.89370000e+00 1.83630000e+00 5.22430000e-01 1.77430000e-01 4.13830000e-02 1.57280000e-02 7.83030000e-03 4.55860000e-03 2.07020000e-03 1.17930000e-03 4.83980000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.14340000e+05 1.45860000e+05 1.42910000e+05 1.36560000e+05 8.99150000e+04 8.78950000e+04 7.40290000e+04 7.30290000e+04 7.24450000e+04 4.33380000e+04 1.82790000e+04 9.08480000e+03 2.40730000e+03 1.99290000e+03 1.93980000e+03 1.04790000e+03 1.01940000e+03 9.24680000e+02 9.00690000e+02 8.99410000e+02 2.14500000e+02 7.53330000e+01 3.30390000e+01 1.67470000e+01 5.69690000e+00 2.46490000e+00 1.89890000e+00 1.84300000e+00 5.44160000e-01 1.89850000e-01 4.52340000e-02 1.71660000e-02 8.46820000e-03 4.85420000e-03 2.12970000e-03 1.19660000e-03 4.62240000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.41210000e+04 1.40100000e+04 1.10290000e+04 7.15950000e+03 4.98530000e+03 2.44600000e+03 2.20370000e+03 2.17120000e+03 1.54420000e+03 1.52050000e+03 1.43990000e+03 1.41890000e+03 1.41780000e+03 6.29390000e+02 3.43030000e+02 2.10830000e+02 1.40230000e+02 7.24240000e+01 4.28180000e+01 3.62670000e+01 3.55820000e+01 1.61020000e+01 7.96250000e+00 2.96150000e+00 1.49160000e+00 8.90270000e-01 5.91600000e-01 3.18780000e-01 2.02000000e-01 9.28110000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.81110000e+04 7.70820000e+04 6.03660000e+04 5.95510000e+04 5.34710000e+04 5.29680000e+04 5.26720000e+04 3.75550000e+04 2.11480000e+04 1.30610000e+04 5.07950000e+03 4.42980000e+03 4.34400000e+03 2.76690000e+03 2.71140000e+03 2.52330000e+03 2.47480000e+03 2.47220000e+03 8.42840000e+02 3.77340000e+02 1.98330000e+02 1.15940000e+02 4.88480000e+01 2.47060000e+01 1.99450000e+01 1.94620000e+01 7.07030000e+00 2.91590000e+00 8.59760000e-01 3.74590000e-01 2.02620000e-01 1.25280000e-01 6.13200000e-02 3.66030000e-02 1.56410000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.22200000e+04 2.09080000e+04 2.07980000e+04 2.07350000e+04 1.66360000e+04 1.06870000e+04 7.19470000e+03 3.19980000e+03 2.83970000e+03 2.79140000e+03 1.87620000e+03 1.84290000e+03 1.72910000e+03 1.69960000e+03 1.69800000e+03 6.49770000e+02 3.15280000e+02 1.76410000e+02 1.08570000e+02 4.96510000e+01 2.67830000e+01 2.20640000e+01 2.15780000e+01 8.62120000e+00 3.85920000e+00 1.26770000e+00 5.91010000e-01 3.34640000e-01 2.13890000e-01 1.09540000e-01 6.75200000e-02 3.03990000e-02] total = [ 2.43380000e+06 2.02970000e+06 2.02900000e+06 1.62740000e+06 1.63490000e+06 1.15730000e+06 6.34720000e+05 2.59110000e+05 2.20470000e+05 5.54730000e+05 4.86420000e+05 6.91440000e+05 4.88060000e+05 5.56240000e+05 5.34030000e+05 3.64970000e+05 3.79810000e+05 3.28170000e+05 3.38330000e+05 3.35910000e+05 2.16790000e+05 1.06080000e+05 6.02820000e+04 2.12350000e+04 1.83560000e+04 4.35170000e+04 2.67020000e+04 3.69340000e+04 3.43940000e+04 3.90070000e+04 3.89740000e+04 1.37600000e+04 6.45080000e+03 3.55850000e+03 2.18010000e+03 1.00080000e+03 5.45590000e+02 4.51450000e+02 1.94000000e+03 8.36990000e+02 3.96930000e+02 1.40280000e+02 6.87920000e+01 4.04730000e+01 2.66780000e+01 1.42720000e+01 9.02490000e+00 4.15220000e+00] JM2 = 1.04066087624 JM3 = 1.13969593902 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1498.2 655.84 313.54 111.66 55.004 32.469 21.46 11.526 7.3074 3.3727] JM1 = 1.03095956364 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.38250000e+05 2.88560000e+05 4.97170000e+05 3.46420000e+05 4.17210000e+05 4.00540000e+05 2.71430000e+05 2.88030000e+05 2.48480000e+05 2.59600000e+05 2.57720000e+05 1.66040000e+05 8.10230000e+04 4.59240000e+04 1.61050000e+04 1.39150000e+04 1.36280000e+04 8.50130000e+03 8.32480000e+03 7.73040000e+03 7.57780000e+03 7.56960000e+03 2.58460000e+03 1.19550000e+03 6.54740000e+02 3.99410000e+02 1.82510000e+02 9.92510000e+01 8.20690000e+01 8.03010000e+01 3.28600000e+01 1.51050000e+01 5.17560000e+00 2.49010000e+00 1.44380000e+00 9.40170000e-01 4.93840000e-01 3.08500000e-01 1.39800000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.55370000e+04 1.54660000e+04 2.59300000e+04 2.41730000e+04 2.89870000e+04 2.89650000e+04 1.03300000e+04 4.86100000e+03 2.68660000e+03 1.64760000e+03 7.57130000e+02 4.12910000e+02 3.41690000e+02 3.34360000e+02 1.37150000e+02 6.31400000e+01 2.16740000e+01 1.04450000e+01 6.06490000e+00 3.95470000e+00 2.08200000e+00 1.30290000e+00 5.91680000e-01] JM4 = 1.42148760331 JM5 = 2.51612464281 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.07900000e+04 1.01350000e+04 9.97140000e+03 9.96160000e+03 3.50810000e+03 1.61250000e+03 8.69240000e+02 5.20310000e+02 2.28810000e+02 1.20230000e+02 9.83020000e+01 9.60610000e+01 3.72280000e+01 1.63130000e+01 5.23950000e+00 2.41520000e+00 1.35870000e+00 8.64880000e-01 4.40910000e-01 2.71200000e-01 1.21640000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.55370000e+04 1.54660000e+04 1.51400000e+04 1.40380000e+04 1.37550000e+04 1.37390000e+04 4.28190000e+03 1.81010000e+03 9.15120000e+02 5.20040000e+02 2.10730000e+02 1.03890000e+02 8.32720000e+01 8.11870000e+01 2.86460000e+01 1.15800000e+01 3.34500000e+00 1.44300000e+00 7.76390000e-01 4.78470000e-01 2.33410000e-01 1.39350000e-01 5.95590000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.26070000e+03 5.26430000e+03 2.53970000e+03 1.43840000e+03 9.02210000e+02 6.07200000e+02 3.17580000e+02 1.88780000e+02 1.60120000e+02 1.57110000e+02 7.12760000e+01 3.52470000e+01 1.30900000e+01 6.58630000e+00 3.92980000e+00 2.61140000e+00 1.40760000e+00 8.92380000e-01 4.10480000e-01] all other = [ 2.43380000e+06 2.02970000e+06 2.02900000e+06 1.62740000e+06 1.63490000e+06 1.15730000e+06 6.34720000e+05 2.59110000e+05 2.20470000e+05 2.16480000e+05 1.97860000e+05 1.94270000e+05 1.41650000e+05 1.39030000e+05 1.33490000e+05 9.35390000e+04 9.17840000e+04 7.96860000e+04 7.87380000e+04 7.81820000e+04 5.07480000e+04 2.50550000e+04 1.43580000e+04 5.12990000e+03 4.44170000e+03 4.35160000e+03 2.73500000e+03 2.67900000e+03 2.49050000e+03 2.44210000e+03 2.43940000e+03 8.45220000e+02 3.94320000e+02 2.17230000e+02 1.33110000e+02 6.12110000e+01 3.34280000e+01 2.76820000e+01 2.70890000e+01 1.11450000e+01 5.14220000e+00 1.76920000e+00 8.53100000e-01 4.95230000e-01 3.22720000e-01 1.69660000e-01 1.06050000e-01 4.80550000e-02] [Ac.binding] K = 107.3156 L1 = 19.8691 M5 = 3.2235 M4 = 3.3793 M1 = 4.98 L3 = 15.8815 M3 = 3.9036 M2 = 4.6557 L2 = 19.1644 [Ag] JL1 = 1.12380624624 JL3 = 3.24808555777 JL2 = 1.34873048336 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.34650000e+00 3.37330000e+00 3.52470000e+00 3.55300000e+00 3.77990000e+00 3.81020000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.54650000e+01 2.56690000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 9.95310000e+04 5.41150000e+04 3.20290000e+04 1.38530000e+04 1.08560000e+04 1.06620000e+04 9.64420000e+03 9.46900000e+03 8.20410000e+03 8.05270000e+03 7.18190000e+03 4.17770000e+03 2.63220000e+03 1.22770000e+03 6.61560000e+02 2.03790000e+02 8.50940000e+01 3.99980000e+01 3.90020000e+01 2.37290000e+01 9.33400000e+00 4.47370000e+00 2.43920000e+00 9.30660000e-01 4.40020000e-01 1.13770000e-01 4.43720000e-02 1.23550000e-02 5.21910000e-03 2.76670000e-03 1.69040000e-03 8.15790000e-04 4.84230000e-04 2.07240000e-04] M = [ 1.12450000e+06 4.41290000e+05 2.19580000e+05 7.92590000e+04 5.98790000e+04 5.86610000e+04 5.23740000e+04 5.13050000e+04 4.37020000e+04 4.28060000e+04 3.77170000e+04 2.09990000e+04 1.29390000e+04 5.96660000e+03 3.24750000e+03 1.05920000e+03 4.73380000e+02 2.39200000e+02 2.33850000e+02 1.50060000e+02 6.58180000e+01 3.45670000e+01 2.03670000e+01 8.79880000e+00 4.57550000e+00 1.39260000e+00 6.02230000e-01 1.89550000e-01 8.63750000e-02 4.83140000e-02 3.07480000e-02 1.57890000e-02 9.81080000e-03 4.50580000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.56100000e+05 1.40220000e+05 2.11350000e+05 1.82110000e+05 2.11920000e+05 1.89330000e+05 1.07150000e+05 6.68380000e+04 3.12300000e+04 1.70950000e+04 5.60160000e+03 2.50550000e+03 1.26600000e+03 1.23770000e+03 7.94160000e+02 3.48220000e+02 1.82810000e+02 1.07670000e+02 4.64780000e+01 2.41530000e+01 7.34160000e+00 3.17220000e+00 9.97880000e-01 4.54510000e-01 2.54190000e-01 1.61770000e-01 8.30980000e-02 5.16440000e-02 2.37370000e-02] M5 = [ 4.41620000e+05 1.41660000e+05 5.93030000e+04 1.59890000e+04 1.10590000e+04 1.07630000e+04 9.26390000e+03 9.01400000e+03 7.28210000e+03 7.08370000e+03 5.98140000e+03 2.71180000e+03 1.39520000e+03 4.73330000e+02 1.99510000e+02 3.95020000e+01 1.20850000e+01 4.38430000e+00 4.23890000e+00 2.18570000e+00 6.37090000e-01 2.43500000e-01 1.10890000e-01 3.21420000e-02 1.23940000e-02 2.27010000e-03 7.07540000e-04 1.51520000e-04 5.53510000e-05 2.70600000e-05 1.57910000e-05 7.04360000e-06 4.17790000e-06 1.71460000e-06] M4 = [ 3.02960000e+05 9.80160000e+04 4.12720000e+04 1.12240000e+04 7.78250000e+03 7.57550000e+03 6.52670000e+03 6.35190000e+03 5.13900000e+03 5.00000000e+03 4.22680000e+03 1.92700000e+03 9.96320000e+02 3.40880000e+02 1.44740000e+02 2.90970000e+01 9.01590000e+00 3.31080000e+00 3.20230000e+00 1.66560000e+00 4.94000000e-01 1.91610000e-01 8.83670000e-02 2.61490000e-02 1.02460000e-02 1.92370000e-03 6.11050000e-04 1.30540000e-04 4.65160000e-05 2.17390000e-05 1.21050000e-05 5.17580000e-06 2.78400000e-06 1.03690000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.38350000e+04 6.36180000e+04 6.24700000e+04 5.56940000e+04 3.06030000e+04 1.85010000e+04 8.12830000e+03 4.20490000e+03 1.21540000e+03 4.88940000e+02 2.23780000e+02 2.18030000e+02 1.30710000e+02 5.02370000e+01 2.37210000e+01 1.27970000e+01 4.81490000e+00 2.25640000e+00 5.76380000e-01 2.23400000e-01 6.16890000e-02 2.59710000e-02 1.37390000e-02 8.37930000e-03 4.03440000e-03 2.40040000e-03 1.02630000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.56100000e+05 1.40220000e+05 1.37510000e+05 1.18500000e+05 1.16160000e+05 1.02360000e+05 5.48820000e+04 3.27480000e+04 1.41110000e+04 7.17940000e+03 2.01190000e+03 7.90530000e+02 3.54310000e+02 3.44960000e+02 2.03820000e+02 7.61120000e+01 3.50770000e+01 1.85270000e+01 6.72430000e+00 3.05860000e+00 7.38120000e-01 2.75010000e-01 7.24870000e-02 2.99130000e-02 1.57450000e-02 9.63270000e-03 4.71950000e-03 2.85040000e-03 1.26830000e-03] M3 = [ 2.09860000e+05 1.08140000e+05 6.22980000e+04 2.60700000e+04 2.02600000e+04 1.98850000e+04 1.79310000e+04 1.75950000e+04 1.51760000e+04 1.48870000e+04 1.32300000e+04 7.57620000e+03 4.71250000e+03 2.15360000e+03 1.14180000e+03 3.40960000e+02 1.39020000e+02 6.39620000e+01 6.23220000e+01 3.73620000e+01 1.42740000e+01 6.67500000e+00 3.56220000e+00 1.31070000e+00 6.01390000e-01 1.46920000e-01 5.50940000e-02 1.45880000e-02 6.03910000e-03 3.18460000e-03 1.94930000e-03 9.54770000e-04 5.79000000e-04 2.57610000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.32960000e+04 3.12710000e+04 2.16640000e+04 1.55890000e+04 8.99020000e+03 5.71060000e+03 2.37440000e+03 1.22610000e+03 6.87930000e+02 6.74720000e+02 4.59640000e+02 2.21870000e+02 1.24020000e+02 7.63420000e+01 3.49390000e+01 1.88380000e+01 6.02710000e+00 2.67380000e+00 8.63710000e-01 3.98630000e-01 2.24710000e-01 1.43760000e-01 7.43440000e-02 4.63930000e-02 2.14420000e-02] JK = 6.20432676784 M1 = [ 7.05720000e+04 3.93500000e+04 2.46740000e+04 1.21230000e+04 9.92190000e+03 9.77620000e+03 9.00780000e+03 8.87430000e+03 7.90000000e+03 7.78200000e+03 7.09690000e+03 4.60670000e+03 3.20310000e+03 1.77100000e+03 1.09990000e+03 4.45870000e+02 2.28160000e+02 1.27550000e+02 1.25080000e+02 8.51190000e+01 4.10790000e+01 2.29830000e+01 1.41660000e+01 6.49920000e+00 3.51150000e+00 1.12770000e+00 5.01440000e-01 1.62330000e-01 7.50150000e-02 4.23140000e-02 2.70810000e-02 1.40060000e-02 8.74060000e-03 4.03820000e-03] all other = [ 1.34900000e+05 5.71600000e+04 3.00380000e+04 1.16360000e+04 8.93930000e+03 8.76800000e+03 7.87930000e+03 7.72740000e+03 6.64010000e+03 6.51120000e+03 5.77580000e+03 3.30930000e+03 2.08190000e+03 9.90220000e+02 5.50620000e+02 1.85530000e+02 8.45100000e+01 4.33010000e+01 4.23510000e+01 2.73950000e+01 1.21690000e+01 6.44620000e+00 3.82110000e+00 1.66430000e+00 8.69980000e-01 2.66770000e-01 1.15820000e-01 3.66190000e-02 1.67200000e-02 9.36340000e-03 5.96370000e-03 3.06560000e-03 1.90590000e-03 8.76460000e-04] total = [ 1.25940000e+06 4.98450000e+05 2.49610000e+05 9.08950000e+04 6.88190000e+04 2.23530000e+05 2.00470000e+05 2.70380000e+05 2.32460000e+05 2.61240000e+05 2.32820000e+05 1.31460000e+05 8.18590000e+04 3.81870000e+04 2.08930000e+04 6.84640000e+03 3.06340000e+03 1.54850000e+03 9.60740000e+03 6.43370000e+03 2.98360000e+03 1.61690000e+03 9.71650000e+02 4.29290000e+02 2.25930000e+02 6.96640000e+01 3.02660000e+01 9.56430000e+00 4.36800000e+00 2.44880000e+00 1.56210000e+00 8.05930000e-01 5.02780000e-01 2.32620000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.09350000e+03 5.46210000e+03 2.55740000e+03 1.39300000e+03 8.39790000e+02 3.72350000e+02 1.96330000e+02 6.06630000e+01 2.63760000e+01 8.34030000e+00 3.81040000e+00 2.13690000e+00 1.36360000e+00 7.03980000e-01 4.39420000e-01 2.03500000e-01] [Ag.binding] K = 25.4903 L1 = 3.7837 M5 = 0.3765 M4 = 0.383 M1 = 0.704 L3 = 3.3499 M3 = 0.5685 M2 = 0.6003 L2 = 3.5283 [Ir] JL1 = 1.13187369945 JL3 = 2.52531006343 JL2 = 1.36035525749 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.04250000e+00 2.05880000e+00 2.12110000e+00 2.13800000e+00 2.53640000e+00 2.55670000e+00 2.89790000e+00 2.92110000e+00 3.00000000e+00 3.14430000e+00 3.16950000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.12030000e+01 1.12920000e+01 1.28470000e+01 1.29500000e+01 1.33880000e+01 1.34960000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 7.62740000e+01 7.68850000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.86590809922 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.55760000e+04 5.11490000e+05 5.17700000e+05 3.44610000e+05 3.37250000e+05 2.39530000e+05 2.34320000e+05 2.17690000e+05 1.92630000e+05 1.88520000e+05 9.69960000e+04 4.96240000e+04 2.81130000e+04 1.10740000e+04 5.22930000e+03 3.53650000e+03 3.44000000e+03 2.19080000e+03 2.12990000e+03 1.89300000e+03 1.84020000e+03 1.26170000e+03 4.41680000e+02 9.56980000e+01 3.13810000e+01 1.30450000e+01 6.32980000e+00 2.43420000e+00 2.35800000e+00 2.01270000e+00 8.27930000e-01 1.68130000e-01 5.58730000e-02 1.27950000e-02 4.82290000e-03 2.37870000e-03 1.38350000e-03 6.24910000e-04 3.60020000e-04 1.47380000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.16960000e+04 2.44650000e+05 2.39550000e+05 1.71270000e+05 1.67620000e+05 1.55920000e+05 1.37170000e+05 1.35100000e+05 7.05640000e+04 3.65780000e+04 2.09440000e+04 8.38200000e+03 4.01280000e+03 2.73430000e+03 2.66100000e+03 1.70930000e+03 1.66270000e+03 1.48100000e+03 1.44040000e+03 9.95030000e+02 3.55790000e+02 7.97030000e+01 2.68360000e+01 1.14030000e+01 5.63860000e+00 2.22450000e+00 2.15680000e+00 1.84880000e+00 7.78990000e-01 1.64720000e-01 5.59640000e-02 1.29880000e-02 4.85080000e-03 2.34610000e-03 1.33220000e-03 5.84620000e-04 3.20720000e-04 1.25310000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.43140000e+04 1.79060000e+04 1.28520000e+04 9.62620000e+03 5.89550000e+03 3.94210000e+03 3.19060000e+03 3.14320000e+03 2.45670000e+03 2.41910000e+03 2.26830000e+03 2.23350000e+03 1.81580000e+03 1.01590000e+03 4.30270000e+02 2.27470000e+02 1.36570000e+02 8.91180000e+01 5.01590000e+01 4.91980000e+01 4.46710000e+01 2.58040000e+01 9.30600000e+00 4.46910000e+00 1.59730000e+00 7.83840000e-01 4.59650000e-01 3.01750000e-01 1.60370000e-01 1.00990000e-01 4.63710000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.19560000e+05 1.01420000e+05 1.00150000e+05 9.58620000e+04 8.83810000e+04 8.71460000e+04 5.79320000e+04 3.78650000e+04 2.61330000e+04 1.39300000e+04 8.28850000e+03 6.30300000e+03 6.18100000e+03 4.48850000e+03 4.39960000e+03 4.04490000e+03 3.96390000e+03 3.02330000e+03 1.41000000e+03 4.53550000e+02 1.95350000e+02 9.97420000e+01 5.69900000e+01 2.69580000e+01 2.62900000e+01 2.32000000e+01 1.14450000e+01 3.14380000e+00 1.26450000e+00 3.62800000e-01 1.56030000e-01 8.38130000e-02 5.17130000e-02 2.53320000e-02 1.51890000e-02 6.58190000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.97750000e+04 3.84180000e+04 3.67500000e+04 3.64650000e+04 2.63800000e+04 1.87830000e+04 1.36070000e+04 7.81200000e+03 4.88910000e+03 3.80720000e+03 3.73990000e+03 2.79250000e+03 2.74150000e+03 2.53740000e+03 2.49060000e+03 1.94230000e+03 9.60070000e+02 3.35190000e+02 1.53200000e+02 8.20110000e+01 4.87520000e+01 2.43290000e+01 2.37690000e+01 2.11660000e+01 1.09920000e+01 3.32090000e+00 1.42790000e+00 4.46770000e-01 2.02350000e-01 1.12310000e-01 7.08030000e-02 3.56530000e-02 2.17550000e-02 9.64130000e-03] total = [ 1.35050000e+06 6.02200000e+05 3.25910000e+05 3.11260000e+05 3.81440000e+05 7.97970000e+05 8.50890000e+05 7.81470000e+05 8.85130000e+05 6.54120000e+05 6.81180000e+05 6.38890000e+05 5.72440000e+05 5.86900000e+05 3.36520000e+05 1.94710000e+05 1.23380000e+05 5.92830000e+04 3.32890000e+04 2.47530000e+04 6.25090000e+04 4.41370000e+04 6.00420000e+04 5.52650000e+04 6.25530000e+04 4.78480000e+04 2.26470000e+04 7.69340000e+03 3.52780000e+03 1.91480000e+03 1.15840000e+03 5.95860000e+02 2.89940000e+03 2.61820000e+03 1.45580000e+03 4.94370000e+02 2.28250000e+02 7.78970000e+01 3.73450000e+01 2.16270000e+01 1.41000000e+01 7.44940000e+00 4.68570000e+00 2.15570000e+00] JM2 = 1.04136855623 JM3 = 1.13264744648 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.31660000e+03 2.09630000e+03 1.17530000e+03 4.03570000e+02 1.87200000e+02 6.41530000e+01 3.08320000e+01 1.78890000e+01 1.16820000e+01 6.18730000e+00 3.89900000e+00 1.79830000e+00] JM1 = 1.02526028929 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.55760000e+04 5.11490000e+05 5.69400000e+05 5.89260000e+05 6.96350000e+05 5.12220000e+05 5.41870000e+05 5.07890000e+05 4.54930000e+05 4.71550000e+05 2.69780000e+05 1.55700000e+05 9.84220000e+04 4.70930000e+04 2.63620000e+04 1.95720000e+04 1.91650000e+04 1.36380000e+04 1.33530000e+04 1.22240000e+04 1.19690000e+04 9.03820000e+03 4.18340000e+03 1.39440000e+03 6.34240000e+02 3.42770000e+02 2.06830000e+02 1.06100000e+02 1.03770000e+02 9.28990000e+01 4.98470000e+01 1.61040000e+01 7.27340000e+00 2.43260000e+00 1.15190000e+00 6.60490000e-01 4.26980000e-01 2.22560000e-01 1.38610000e-01 6.28670000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.82670000e+04 2.68570000e+04 4.31210000e+04 3.97680000e+04 4.73780000e+04 3.63740000e+04 1.73180000e+04 5.91050000e+03 2.71490000e+03 1.47470000e+03 8.92580000e+02 4.59280000e+02 4.49220000e+02 4.02280000e+02 2.16260000e+02 7.00110000e+01 3.16510000e+01 1.05970000e+01 5.02250000e+00 2.88260000e+00 1.86510000e+00 9.73820000e-01 6.07230000e-01 2.75960000e-01] JM4 = 1.06631828264 JM5 = 1.22547066761 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.68210000e+04 1.56700000e+04 1.52980000e+04 1.16420000e+04 5.45420000e+03 1.75830000e+03 7.66320000e+02 3.96970000e+02 2.30430000e+02 1.11860000e+02 1.09200000e+02 9.68410000e+01 4.92280000e+01 1.44210000e+01 6.09810000e+00 1.87520000e+00 8.41990000e-01 4.64990000e-01 2.92240000e-01 1.46660000e-01 8.91850000e-02 3.94640000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.82670000e+04 2.68570000e+04 2.63000000e+04 2.40980000e+04 2.35960000e+04 1.76910000e+04 7.66080000e+03 2.27500000e+03 9.33850000e+02 4.61640000e+02 2.57660000e+02 1.18640000e+02 1.15610000e+02 1.01620000e+02 4.91060000e+01 1.30960000e+01 5.18560000e+00 1.46430000e+00 6.24930000e-01 3.34270000e-01 2.05710000e-01 1.00660000e-01 6.03300000e-02 2.61180000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.48400000e+03 7.04080000e+03 4.20330000e+03 1.87710000e+03 1.01470000e+03 6.16140000e+02 4.04500000e+02 2.28770000e+02 2.24410000e+02 2.03830000e+02 1.17930000e+02 4.24940000e+01 2.03680000e+01 7.25740000e+00 3.55560000e+00 2.08330000e+00 1.36720000e+00 7.26500000e-01 4.57720000e-01 2.10370000e-01] all other = [ 1.35050000e+06 6.02200000e+05 3.25910000e+05 3.11260000e+05 3.05870000e+05 2.86480000e+05 2.81490000e+05 1.92210000e+05 1.88770000e+05 1.41900000e+05 1.39320000e+05 1.31000000e+05 1.17510000e+05 1.15360000e+05 6.67380000e+04 3.90100000e+04 2.49630000e+04 1.21900000e+04 6.92770000e+03 5.18150000e+03 5.07660000e+03 3.64190000e+03 3.56760000e+03 3.27280000e+03 3.20590000e+03 2.43590000e+03 1.14490000e+03 3.88510000e+02 1.78680000e+02 9.73120000e+01 5.90370000e+01 3.04770000e+01 2.98130000e+01 2.67150000e+01 1.44050000e+01 4.68790000e+00 2.12630000e+00 7.14120000e-01 3.38920000e-01 1.94600000e-01 1.25910000e-01 6.56950000e-02 4.09360000e-02 1.85750000e-02] [Ir.binding] K = 76.3502 L1 = 13.4017 M5 = 2.0445 M4 = 2.1232 M1 = 3.1474 L3 = 11.2139 M3 = 2.539 M2 = 2.9008 L2 = 12.8595 [Am] JL1 = 1.13243460471 JL3 = 2.31028037383 JL2 = 1.39766975456 energy = [ 1.00000000e+00 1.14580000e+00 1.15500000e+00 1.42760000e+00 1.43900000e+00 1.50000000e+00 1.59700000e+00 1.60980000e+00 2.00000000e+00 3.00000000e+00 3.88780000e+00 3.91900000e+00 4.00000000e+00 4.09910000e+00 4.13190000e+00 4.68030000e+00 4.71780000e+00 5.00000000e+00 5.73760000e+00 5.78360000e+00 6.00000000e+00 6.10690000e+00 6.15580000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 1.85070000e+01 1.86550000e+01 2.00000000e+01 2.30430000e+01 2.32270000e+01 2.38450000e+01 2.40360000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.25680000e+02 1.26690000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.01747602069 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.51800000e+05 2.41730000e+05 2.23980000e+05 2.19340000e+05 1.59710000e+05 1.56260000e+05 1.32670000e+05 8.83360000e+04 8.64030000e+04 7.79620000e+04 7.41190000e+04 7.24240000e+04 3.28560000e+04 1.62940000e+04 4.28920000e+03 2.08870000e+03 2.03160000e+03 1.59330000e+03 9.67020000e+02 9.39960000e+02 8.55960000e+02 8.31950000e+02 3.74110000e+02 1.29590000e+02 5.61260000e+01 2.81260000e+01 9.37430000e+00 3.99280000e+00 1.66940000e+00 1.61960000e+00 8.54580000e-01 2.93840000e-01 6.92870000e-02 2.64590000e-02 1.31140000e-02 7.63420000e-03 3.48670000e-03 1.97220000e-03 8.14070000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.58380000e+05 1.17590000e+05 1.15260000e+05 9.89410000e+04 6.70560000e+04 6.55260000e+04 5.89000000e+04 5.58960000e+04 5.46950000e+04 2.54650000e+04 1.28760000e+04 3.51710000e+03 1.74790000e+03 1.70170000e+03 1.34450000e+03 8.27760000e+02 8.05300000e+02 7.35380000e+02 7.15330000e+02 3.29390000e+02 1.17950000e+02 5.24920000e+01 2.69170000e+01 9.31170000e+00 4.08240000e+00 1.75670000e+00 1.70590000e+00 9.18250000e-01 3.25090000e-01 7.86610000e-02 3.01290000e-02 1.48210000e-02 8.52220000e-03 3.80530000e-03 2.11930000e-03 8.32470000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.05980000e+04 7.40800000e+03 5.30950000e+03 2.70190000e+03 1.85270000e+03 1.82550000e+03 1.60400000e+03 1.22660000e+03 1.20790000e+03 1.14810000e+03 1.13050000e+03 7.30280000e+02 4.04580000e+02 2.51630000e+02 1.68940000e+02 8.85400000e+01 5.29380000e+01 3.09460000e+01 3.03670000e+01 2.03210000e+01 1.01980000e+01 3.87210000e+00 1.97760000e+00 1.19190000e+00 7.97480000e-01 4.33220000e-01 2.75510000e-01 1.26740000e-01] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.53710000e+04 5.92290000e+04 4.75100000e+04 4.68270000e+04 4.37040000e+04 4.22370000e+04 4.15850000e+04 2.50460000e+04 1.57510000e+04 6.30560000e+03 3.79870000e+03 3.72500000e+03 3.13450000e+03 2.18960000e+03 2.14530000e+03 2.00520000e+03 1.96440000e+03 1.09650000e+03 4.99760000e+02 2.66210000e+02 1.57260000e+02 6.73180000e+01 3.44480000e+01 1.72210000e+01 1.68080000e+01 1.00480000e+01 4.19420000e+00 1.25310000e+00 5.49370000e-01 2.97640000e-01 1.84150000e-01 9.01550000e-02 5.37370000e-02 2.28060000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.68200000e+04 1.62560000e+04 1.58830000e+04 1.57470000e+04 1.12900000e+04 8.04970000e+03 3.83820000e+03 2.50250000e+03 2.46120000e+03 2.12420000e+03 1.55930000e+03 1.53200000e+03 1.44530000e+03 1.41980000e+03 8.54330000e+02 4.28090000e+02 2.45160000e+02 1.53680000e+02 7.22250000e+01 3.97460000e+01 2.14040000e+01 2.09450000e+01 1.32250000e+01 6.04630000e+00 2.03800000e+00 9.64870000e-01 5.51410000e-01 3.54890000e-01 1.83620000e-01 1.13720000e-01 5.16030000e-02] total = [ 2.96770000e+06 2.33690000e+06 2.44990000e+06 1.63270000e+06 1.62800000e+06 1.49780000e+06 1.31940000e+06 1.32240000e+06 8.40380000e+05 3.43910000e+05 1.89660000e+05 4.37970000e+05 4.19210000e+05 3.91600000e+05 5.42250000e+05 4.00000000e+05 4.57290000e+05 3.95720000e+05 2.78350000e+05 2.89590000e+05 2.64560000e+05 2.53040000e+05 2.58710000e+05 1.35630000e+05 7.75810000e+04 2.75960000e+04 1.60500000e+04 3.70800000e+04 3.08510000e+04 2.09420000e+04 2.92700000e+04 2.73720000e+04 3.09970000e+04 1.76650000e+04 8.39100000e+03 4.67610000e+03 2.88640000e+03 1.33950000e+03 7.36080000e+02 3.98260000e+02 1.60000000e+03 1.04580000e+03 5.04120000e+02 1.81630000e+02 9.02180000e+01 5.35560000e+01 3.55260000e+01 1.91500000e+01 1.21470000e+01 5.59370000e+00] JM2 = 1.04038081552 JM3 = 1.143225 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1210.2 798.02 388.92 141.56 70.739 42.182 28.08 15.21 9.6779 4.4714] JM1 = 1.0224075245 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.51800000e+05 2.41730000e+05 2.23980000e+05 3.77720000e+05 2.77300000e+05 3.36890000e+05 2.90840000e+05 2.02900000e+05 2.15580000e+05 1.96820000e+05 1.88130000e+05 1.95050000e+05 1.02070000e+05 5.82800000e+04 2.06520000e+04 1.19910000e+04 1.17450000e+04 9.80040000e+03 6.77030000e+03 6.63050000e+03 6.18990000e+03 6.06190000e+03 3.38460000e+03 1.58000000e+03 8.71620000e+02 5.34920000e+02 2.46770000e+02 1.35210000e+02 7.29960000e+01 7.14450000e+01 4.53660000e+01 2.10570000e+01 7.31110000e+00 3.54840000e+00 2.06890000e+00 1.35270000e+00 7.14290000e-01 4.47060000e-01 2.02800000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.13580000e+04 1.77240000e+04 1.18650000e+04 2.03790000e+04 1.90700000e+04 2.28660000e+04 1.31180000e+04 6.26440000e+03 3.50140000e+03 2.16480000e+03 1.00620000e+03 5.53230000e+02 2.99460000e+02 2.93110000e+02 1.86370000e+02 8.66450000e+01 3.01500000e+01 1.46610000e+01 8.56370000e+00 5.60820000e+00 2.96910000e+00 1.86180000e+00 8.46700000e-01] JM4 = 1.38470377937 JM5 = 2.30923758304 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.76680000e+03 8.25650000e+03 8.14100000e+03 4.69040000e+03 2.22100000e+03 1.22490000e+03 7.45640000e+02 3.36210000e+02 1.79820000e+02 9.43950000e+01 9.22960000e+01 5.73330000e+01 2.56020000e+01 8.41610000e+00 3.93400000e+00 2.23170000e+00 1.42970000e+00 7.36060000e-01 4.54720000e-01 2.05650000e-01] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.13580000e+04 1.77240000e+04 1.18650000e+04 1.16120000e+04 1.08140000e+04 1.05810000e+04 5.60160000e+03 2.40690000e+03 1.23040000e+03 7.05070000e+02 2.89380000e+02 1.43980000e+02 7.02270000e+01 6.84890000e+01 4.03080000e+01 1.64560000e+01 4.80500000e+00 2.08340000e+00 1.12190000e+00 6.91560000e-01 3.37360000e-01 2.00740000e-01 8.53940000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 4.14440000e+03 2.82570000e+03 1.63640000e+03 1.04610000e+03 7.14050000e+02 3.80560000e+02 2.29430000e+02 1.34840000e+02 1.32330000e+02 8.87250000e+01 4.45880000e+01 1.69290000e+01 8.64370000e+00 5.21010000e+00 3.48700000e+00 1.89570000e+00 1.20640000e+00 5.55660000e-01] all other = [ 2.96770000e+06 2.33690000e+06 2.44990000e+06 1.63270000e+06 1.62800000e+06 1.49780000e+06 1.31940000e+06 1.32240000e+06 8.40380000e+05 3.43910000e+05 1.89660000e+05 1.86170000e+05 1.77490000e+05 1.67630000e+05 1.64530000e+05 1.22700000e+05 1.20410000e+05 1.04880000e+05 7.54480000e+04 7.40120000e+04 6.77330000e+04 6.49030000e+04 6.36630000e+04 3.35680000e+04 1.93000000e+04 6.94400000e+03 4.05970000e+03 3.97740000e+03 3.32560000e+03 2.30760000e+03 2.26050000e+03 2.11190000e+03 2.06870000e+03 1.16250000e+03 5.46630000e+02 3.03080000e+02 1.86700000e+02 8.66100000e+01 4.76390000e+01 2.58090000e+01 2.52640000e+01 1.60830000e+01 7.49210000e+00 2.61120000e+00 1.26980000e+00 7.41270000e-01 4.85010000e-01 2.56290000e-01 1.60450000e-01 7.27960000e-02] [Am.binding] K = 125.8091 L1 = 23.8693 M5 = 3.8917 M4 = 4.1032 M1 = 6.113 L3 = 18.5251 M3 = 4.685 M2 = 5.7434 L2 = 23.0659 [Al] energy = [ 1.00000000e+00 1.50000000e+00 1.54830000e+00 1.56070000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 5.34900000e+01 1.48980000e+01 1.34340000e+01 1.30880000e+01 5.77000000e+00 1.43480000e+00 5.18000000e-01 2.30930000e-01 1.18070000e-01 4.01800000e-02 1.71490000e-02 3.54570000e-03 1.14000000e-03 2.27660000e-04 7.23660000e-05 2.97640000e-05 1.44340000e-05 4.64010000e-06 1.94260000e-06 4.13660000e-07 1.43260000e-07 3.45810000e-08 1.34460000e-08 6.74680000e-09 3.96540000e-09 1.81970000e-09 1.04870000e-09 4.38050000e-10] M = [ 1.94140000e+03 7.59020000e+02 7.03620000e+02 6.90310000e+02 3.77610000e+02 1.34960000e+02 6.31890000e+01 3.44830000e+01 2.08380000e+01 9.25000000e+00 4.85770000e+00 1.46350000e+00 6.12010000e-01 1.74830000e-01 7.08340000e-02 3.49090000e-02 1.95110000e-02 7.75400000e-03 3.78300000e-03 1.03040000e-03 4.14180000e-04 1.19080000e-04 5.14880000e-05 2.79080000e-05 1.74410000e-05 8.83300000e-06 5.49930000e-06 2.60160000e-06] L = [ 5.10570000e+04 1.71700000e+04 1.57480000e+04 1.54090000e+04 7.79420000e+03 2.50760000e+03 1.10590000e+03 5.81340000e+02 3.41890000e+02 1.46420000e+02 7.51680000e+01 2.19370000e+01 9.02370000e+00 2.53440000e+00 1.01800000e+00 4.99030000e-01 2.77990000e-01 1.10010000e-01 5.35320000e-02 1.45310000e-02 5.83230000e-03 1.67440000e-03 7.23500000e-04 3.92000000e-04 2.44810000e-04 1.23830000e-04 7.69600000e-05 3.61510000e-05] L2 = [ 8.82780000e+03 2.39850000e+03 2.16020000e+03 2.10400000e+03 9.16090000e+02 2.25090000e+02 8.06590000e+01 3.57990000e+01 1.82440000e+01 6.18320000e+00 2.63180000e+00 5.41830000e-01 1.73780000e-01 3.46190000e-02 1.10180000e-02 4.53070000e-03 2.19680000e-03 7.06070000e-04 2.95890000e-04 6.30770000e-05 2.18790000e-05 5.30010000e-06 2.06790000e-06 1.03930000e-06 6.13200000e-07 2.81610000e-07 1.63410000e-07 6.70420000e-08] L3 = [ 1.73740000e+04 4.70830000e+03 4.23960000e+03 4.12910000e+03 1.79460000e+03 4.39450000e+02 1.57050000e+02 6.95390000e+01 3.53620000e+01 1.19350000e+01 5.06050000e+00 1.03350000e+00 3.29090000e-01 6.47000000e-02 2.02820000e-02 8.24820000e-03 3.95840000e-03 1.25060000e-03 5.15800000e-04 1.06790000e-04 3.63990000e-05 8.70160000e-06 3.42640000e-06 1.76770000e-06 1.06670000e-06 5.23230000e-07 3.16980000e-07 1.46160000e-07] M3 = [ 1.05310000e+02 2.92500000e+01 2.63700000e+01 2.56900000e+01 1.13030000e+01 2.79510000e+00 1.00610000e+00 4.47510000e-01 2.28270000e-01 7.73690000e-02 3.28970000e-02 6.74360000e-03 2.15220000e-03 4.24000000e-04 1.33210000e-04 5.42040000e-05 2.60250000e-05 8.22410000e-06 3.39470000e-06 7.03280000e-07 2.39860000e-07 5.74620000e-08 2.27040000e-08 1.17100000e-08 7.11230000e-09 3.51090000e-09 2.17000000e-09 1.04670000e-09] L1 = [ 2.48550000e+04 1.00630000e+04 9.34790000e+03 9.17570000e+03 5.08350000e+03 1.84310000e+03 8.68180000e+02 4.76000000e+02 2.88280000e+02 1.28310000e+02 6.74760000e+01 2.03620000e+01 8.52080000e+00 2.43510000e+00 9.86700000e-01 4.86250000e-01 2.71840000e-01 1.08050000e-01 5.27210000e-02 1.43610000e-02 5.77400000e-03 1.66040000e-03 7.18010000e-04 3.89200000e-04 2.43130000e-04 1.23030000e-04 7.64800000e-05 3.59380000e-05] JK = 10.7555771686 M1 = [ 1.78260000e+03 7.14870000e+02 6.63820000e+02 6.51530000e+02 3.60540000e+02 1.30730000e+02 6.16650000e+01 3.38050000e+01 2.04910000e+01 9.13250000e+00 4.80770000e+00 1.45320000e+00 6.08720000e-01 1.74170000e-01 7.06280000e-02 3.48250000e-02 1.94700000e-02 7.74110000e-03 3.77770000e-03 1.02920000e-03 4.13800000e-04 1.18990000e-04 5.14520000e-05 2.78890000e-05 1.74300000e-05 8.82770000e-06 5.49610000e-06 2.60010000e-06] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 5.29990000e+04 1.79290000e+04 1.64510000e+04 1.76940000e+05 1.01310000e+05 3.52380000e+04 1.60900000e+04 8.61230000e+03 5.11960000e+03 2.21840000e+03 1.14580000e+03 3.36680000e+02 1.38880000e+02 3.90800000e+01 1.57020000e+01 7.69680000e+00 4.28570000e+00 1.69500000e+00 8.24470000e-01 2.23620000e-01 8.97030000e-02 2.57350000e-02 1.11150000e-02 6.02110000e-03 3.76440000e-03 1.90450000e-03 1.18390000e-03 5.56240000e-04] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.60840000e+05 9.31390000e+04 3.25950000e+04 1.49210000e+04 7.99650000e+03 4.75690000e+03 2.06270000e+03 1.06570000e+03 3.13280000e+02 1.29240000e+02 3.63710000e+01 1.46130000e+01 7.16280000e+00 3.98820000e+00 1.57730000e+00 7.67150000e-01 2.08060000e-01 8.34570000e-02 2.39410000e-02 1.03400000e-02 5.60110000e-03 3.50220000e-03 1.77180000e-03 1.10150000e-03 5.17490000e-04] [Al.binding] K = 1.5499 L1 = 0.1191 M1 = 0.0102 L3 = 0.0807 M3 = 0.0049 M2 = 0.0049 L2 = 0.0812 [As] JL1 = 1.10871737923 JL3 = 4.14088912056 JL2 = 1.37454335009 energy = [ 1.00000000e+00 1.32690000e+00 1.33760000e+00 1.36440000e+00 1.37530000e+00 1.50000000e+00 1.51780000e+00 1.52990000e+00 2.00000000e+00 3.00000000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.18170000e+01 1.19120000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 4.36060000e+04 2.43570000e+04 2.39410000e+04 2.29300000e+04 2.25340000e+04 1.85920000e+04 1.81060000e+04 1.77840000e+04 9.49490000e+03 3.39230000e+03 1.55300000e+03 8.24990000e+02 4.84020000e+02 2.02720000e+02 1.00850000e+02 5.90760000e+01 5.75720000e+01 2.70700000e+01 1.03180000e+01 2.55450000e+00 9.29030000e-01 4.20380000e-01 2.19160000e-01 7.83980000e-02 3.53610000e-02 8.47100000e-03 3.15240000e-03 8.28350000e-04 3.38880000e-04 1.75990000e-04 1.05820000e-04 5.01280000e-05 2.94060000e-05 1.23820000e-05] M = [ 2.55570000e+05 1.29890000e+05 1.27390000e+05 1.21370000e+05 1.19040000e+05 9.62210000e+04 9.34700000e+04 9.16490000e+04 4.68990000e+04 1.65140000e+04 7.73170000e+03 4.25310000e+03 2.59570000e+03 1.17950000e+03 6.34840000e+02 3.97680000e+02 3.88860000e+02 2.02750000e+02 8.92010000e+01 2.76100000e+01 1.18810000e+01 6.13860000e+00 3.56560000e+00 1.50410000e+00 7.66480000e-01 2.25000000e-01 9.48770000e-02 2.89070000e-02 1.29150000e-02 7.13640000e-03 4.50830000e-03 2.30130000e-03 1.42990000e-03 6.62660000e-04] L = [ 0.00000000e+00 0.00000000e+00 4.24360000e+05 4.27400000e+05 6.36910000e+05 5.49980000e+05 5.33520000e+05 6.03930000e+05 3.15300000e+05 1.12690000e+05 5.26300000e+04 2.88160000e+04 1.75020000e+04 7.89050000e+03 4.22150000e+03 2.63410000e+03 2.57520000e+03 1.33630000e+03 5.84760000e+02 1.79790000e+02 7.70530000e+01 3.97040000e+01 2.30170000e+01 9.68230000e+00 4.92920000e+00 1.44320000e+00 6.07690000e-01 1.84860000e-01 8.25270000e-02 4.55900000e-02 2.87980000e-02 1.46990000e-02 9.13340000e-03 4.23290000e-03] M5 = [ 5.40180000e+04 2.15680000e+04 2.10020000e+04 1.96540000e+04 1.91360000e+04 1.42800000e+04 1.37190000e+04 1.33510000e+04 5.25080000e+03 1.19460000e+03 3.99320000e+02 1.66480000e+02 8.01380000e+01 2.45480000e+01 9.58380000e+00 4.69010000e+00 4.53180000e+00 1.66910000e+00 4.72320000e-01 7.71420000e-02 2.10920000e-02 7.69510000e-03 3.38050000e-03 9.29940000e-04 3.46180000e-04 5.98240000e-05 1.81120000e-05 3.73890000e-06 1.35170000e-06 6.46980000e-07 3.73800000e-07 1.68660000e-07 9.92660000e-08 4.10850000e-08] M4 = [ 3.69520000e+04 1.47970000e+04 1.44100000e+04 1.34880000e+04 1.31340000e+04 9.81010000e+03 9.42640000e+03 9.17440000e+03 3.61950000e+03 8.27790000e+02 2.77850000e+02 1.16250000e+02 5.61380000e+01 1.72980000e+01 6.78950000e+00 3.33690000e+00 3.22490000e+00 1.19530000e+00 3.41310000e-01 5.69790000e-02 1.57960000e-02 5.83010000e-03 2.58720000e-03 7.24350000e-04 2.72820000e-04 4.81770000e-05 1.47020000e-05 2.98930000e-06 1.03610000e-06 4.79980000e-07 2.62760000e-07 1.10290000e-07 5.85140000e-08 2.19000000e-08] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.04730000e+05 1.87690000e+05 1.82240000e+05 1.78570000e+05 8.87790000e+04 2.94130000e+04 1.27620000e+04 6.53270000e+03 3.72870000e+03 1.50350000e+03 7.29480000e+02 4.20520000e+02 4.09520000e+02 1.88940000e+02 7.06050000e+01 1.70960000e+01 6.14360000e+00 2.75960000e+00 1.43160000e+00 5.07910000e-01 2.28080000e-01 5.42970000e-02 2.01360000e-02 5.27120000e-03 2.15090000e-03 1.11870000e-03 6.73030000e-04 3.18560000e-04 1.86760000e-04 7.89170000e-05] L3 = [ 0.00000000e+00 0.00000000e+00 4.24360000e+05 4.27400000e+05 4.32180000e+05 3.62290000e+05 3.51280000e+05 3.43980000e+05 1.69930000e+05 5.52600000e+04 2.37380000e+04 1.20540000e+04 6.83370000e+03 2.72480000e+03 1.30990000e+03 7.49580000e+02 7.29710000e+02 3.32990000e+02 1.22570000e+02 2.89540000e+01 1.01940000e+01 4.49800000e+00 2.29660000e+00 7.92770000e-01 3.47870000e-01 7.92330000e-02 2.85170000e-02 7.23570000e-03 2.93280000e-03 1.52720000e-03 9.29540000e-04 4.54840000e-04 2.76880000e-04 1.24170000e-04] M3 = [ 8.51950000e+04 4.70700000e+04 4.62520000e+04 4.42660000e+04 4.34900000e+04 3.57690000e+04 3.48200000e+04 3.41900000e+04 1.80840000e+04 6.37170000e+03 2.88780000e+03 1.52180000e+03 8.86820000e+02 3.67250000e+02 1.80980000e+02 1.05230000e+02 1.02510000e+02 4.76630000e+01 1.78900000e+01 4.31970000e+00 1.53910000e+00 6.84280000e-01 3.51230000e-01 1.21890000e-01 5.37210000e-02 1.23100000e-02 4.44400000e-03 1.13100000e-03 4.58970000e-04 2.39460000e-04 1.45920000e-04 7.14790000e-05 4.34310000e-05 1.95920000e-05] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.13760000e+04 5.65940000e+04 2.80210000e+04 1.61300000e+04 1.02290000e+04 6.93950000e+03 3.66210000e+03 2.18210000e+03 1.46400000e+03 1.43600000e+03 8.14320000e+02 3.91590000e+02 1.33740000e+02 6.07150000e+01 3.24470000e+01 1.92880000e+01 8.38160000e+00 4.35330000e+00 1.30970000e+00 5.59030000e-01 1.72350000e-01 7.74430000e-02 4.29440000e-02 2.71950000e-02 1.39250000e-02 8.66970000e-03 4.02980000e-03] JK = 7.1609296852 M1 = [ 3.57980000e+04 2.20940000e+04 2.17860000e+04 2.10370000e+04 2.07430000e+04 1.77710000e+04 1.73980000e+04 1.71500000e+04 1.04500000e+04 4.72750000e+03 2.61370000e+03 1.62360000e+03 1.08860000e+03 5.67720000e+02 3.36630000e+02 2.25350000e+02 2.21030000e+02 1.25150000e+02 6.01800000e+01 2.06020000e+01 9.37560000e+00 5.02040000e+00 2.98930000e+00 1.30210000e+00 6.76780000e-01 2.04110000e-01 8.72480000e-02 2.69410000e-02 1.21140000e-02 6.71980000e-03 4.25590000e-03 2.17940000e-03 1.35690000e-03 6.30630000e-04] all other = [ 7.65560000e+03 4.40320000e+03 4.33310000e+03 4.16290000e+03 4.09630000e+03 3.43380000e+03 3.35200000e+03 3.29750000e+03 1.87450000e+03 7.63530000e+02 3.92840000e+02 2.31440000e+02 1.49010000e+02 7.33310000e+01 4.18880000e+01 2.73040000e+01 2.67470000e+01 1.46630000e+01 6.81740000e+00 2.24990000e+00 1.00400000e+00 5.31080000e-01 3.13570000e-01 1.35140000e-01 6.98480000e-02 2.08850000e-02 8.88940000e-03 2.73350000e-03 1.22670000e-03 6.79690000e-04 4.30170000e-04 2.20160000e-04 1.37050000e-04 6.38030000e-05] total = [ 2.63230000e+05 1.34290000e+05 5.56080000e+05 5.52940000e+05 7.60040000e+05 6.49640000e+05 6.30350000e+05 6.98880000e+05 3.64080000e+05 1.29970000e+05 6.07540000e+04 3.33000000e+04 2.02470000e+04 9.14330000e+03 4.89820000e+03 3.05910000e+03 2.19060000e+04 1.21220000e+04 5.57800000e+03 1.80970000e+03 7.94470000e+02 4.14990000e+02 2.42580000e+02 1.03000000e+02 5.26850000e+01 1.55010000e+01 6.53800000e+00 1.99130000e+00 8.89710000e-01 4.91900000e-01 3.11000000e-01 1.59060000e-01 9.90190000e-02 4.60560000e-02] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.89150000e+04 1.05690000e+04 4.89720000e+03 1.60000000e+03 7.04530000e+02 3.68610000e+02 2.15690000e+02 9.16750000e+01 4.69190000e+01 1.38120000e+01 5.82650000e+00 1.77480000e+00 7.93040000e-01 4.38490000e-01 2.77270000e-01 1.41840000e-01 8.83190000e-02 4.10970000e-02] [As.binding] K = 11.8291 L1 = 1.5193 M5 = 0.0505 M4 = 0.0513 M1 = 0.2021 L3 = 1.3282 M3 = 0.1438 M2 = 0.149 L2 = 1.3658 [Ar] energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.17440000e+00 3.19980000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 3.44280000e+03 1.08990000e+03 4.57910000e+02 1.27270000e+02 1.05970000e+02 1.03260000e+02 4.94420000e+01 2.32630000e+01 1.23920000e+01 4.48590000e+00 2.00610000e+00 4.49700000e-01 1.52140000e-01 3.22190000e-02 1.05970000e-02 4.46490000e-03 2.20540000e-03 7.29060000e-04 3.11450000e-04 6.84680000e-05 2.41900000e-05 5.97650000e-06 2.35620000e-06 1.19550000e-06 7.06670000e-07 3.27130000e-07 1.89180000e-07 7.81840000e-08] M = [ 1.71700000e+04 6.25170000e+03 2.97050000e+03 1.01240000e+03 8.69650000e+02 8.51160000e+02 4.64230000e+02 2.51280000e+02 1.51200000e+02 6.70390000e+01 3.53580000e+01 1.08240000e+01 4.60100000e+00 1.34810000e+00 5.56270000e-01 2.78040000e-01 1.57180000e-01 6.35690000e-02 3.14140000e-02 8.73920000e-03 3.55960000e-03 1.03940000e-03 4.53260000e-04 2.46880000e-04 1.54660000e-04 7.84320000e-05 4.87550000e-05 2.28560000e-05] L = [ 1.93840000e+05 6.68480000e+04 3.08190000e+04 1.01440000e+04 8.67430000e+03 8.48440000e+03 4.55080000e+03 2.42460000e+03 1.44220000e+03 6.29810000e+02 3.28800000e+02 9.92350000e+01 4.18370000e+01 1.21480000e+01 4.98880000e+00 2.48600000e+00 1.40240000e+00 5.65650000e-01 2.79040000e-01 7.74790000e-02 3.15260000e-02 9.19700000e-03 4.00880000e-03 2.18310000e-03 1.36740000e-03 6.93190000e-04 4.30730000e-04 2.01600000e-04] L2 = [ 4.56350000e+04 1.37070000e+04 5.60900000e+03 1.51370000e+03 1.25540000e+03 1.22260000e+03 5.77270000e+02 2.68040000e+02 1.41530000e+02 5.06790000e+01 2.25090000e+01 4.99610000e+00 1.68120000e+00 3.53920000e-01 1.16020000e-01 4.87800000e-02 2.40600000e-02 7.93440000e-03 3.38410000e-03 7.45620000e-04 2.63350000e-04 6.50960000e-05 2.57280000e-05 1.30690000e-05 7.72460000e-06 3.59060000e-06 2.07890000e-06 8.63160000e-07] L3 = [ 8.93110000e+04 2.67120000e+04 1.08950000e+04 2.92580000e+03 2.42490000e+03 2.36130000e+03 1.11140000e+03 5.14280000e+02 2.70720000e+02 9.64170000e+01 4.26200000e+01 9.36240000e+00 3.12180000e+00 6.46910000e-01 2.09180000e-01 8.68680000e-02 4.23690000e-02 1.37040000e-02 5.75070000e-03 1.22150000e-03 4.22540000e-04 1.02710000e-04 4.07180000e-05 2.09880000e-05 1.27410000e-05 6.22350000e-06 3.78590000e-06 1.72110000e-06] M3 = [ 6.73080000e+03 2.12230000e+03 8.88740000e+02 2.45730000e+02 2.04460000e+02 1.99200000e+02 9.50830000e+01 4.45740000e+01 2.36730000e+01 8.50360000e+00 3.78430000e+00 8.39500000e-01 2.81430000e-01 5.86680000e-02 1.90290000e-02 7.91690000e-03 3.86700000e-03 1.25270000e-03 5.26290000e-04 1.12030000e-04 3.87820000e-05 9.43170000e-06 3.74660000e-06 1.93520000e-06 1.17470000e-06 5.75370000e-07 3.51370000e-07 1.61660000e-07] L1 = [ 5.88910000e+04 2.64290000e+04 1.43150000e+04 5.70500000e+03 4.99390000e+03 4.90050000e+03 2.86210000e+03 1.64230000e+03 1.03000000e+03 4.82710000e+02 2.63670000e+02 8.48760000e+01 3.70340000e+01 1.11470000e+01 4.66360000e+00 2.35040000e+00 1.33600000e+00 5.44010000e-01 2.69910000e-01 7.55120000e-02 3.08400000e-02 9.02920000e-03 3.94240000e-03 2.14900000e-03 1.34690000e-03 6.83380000e-04 4.24870000e-04 1.99020000e-04] JK = 8.86660589486 M1 = [ 6.99600000e+03 3.03950000e+03 1.62380000e+03 6.39410000e+02 5.59220000e+02 5.48700000e+02 3.19700000e+02 1.83440000e+02 1.15130000e+02 5.40500000e+01 2.95680000e+01 9.53450000e+00 4.16750000e+00 1.25720000e+00 5.26650000e-01 2.65660000e-01 1.51110000e-01 6.15870000e-02 3.05770000e-02 8.55870000e-03 3.49660000e-03 1.02400000e-03 4.47150000e-04 2.43750000e-04 1.52780000e-04 7.75300000e-05 4.82140000e-05 2.26160000e-05] all other = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] total = [ 2.11010000e+05 7.31000000e+04 3.37900000e+04 1.11570000e+04 9.54390000e+03 8.46220000e+04 5.01110000e+04 2.79310000e+04 1.71190000e+04 7.76020000e+03 4.13430000e+03 1.27810000e+03 5.44390000e+02 1.59470000e+02 6.57260000e+01 3.28120000e+01 1.85280000e+01 7.47940000e+00 3.69070000e+00 1.02430000e+00 4.16600000e-01 1.21470000e-01 5.29320000e-02 2.88240000e-02 1.80550000e-02 9.15740000e-03 5.69590000e-03 2.66860000e-03] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.52870000e+04 4.50960000e+04 2.52550000e+04 1.55260000e+04 7.06330000e+03 3.77010000e+03 1.16810000e+03 4.97950000e+02 1.45970000e+02 6.01810000e+01 3.00480000e+01 1.69680000e+01 6.85020000e+00 3.38030000e+00 9.38050000e-01 3.81520000e-01 1.11230000e-01 4.84700000e-02 2.63940000e-02 1.65330000e-02 8.38580000e-03 5.21650000e-03 2.44410000e-03] [Ar.binding] K = 3.1776 L1 = 0.3134 M1 = 0.0289 L3 = 0.2471 M3 = 0.0144 M2 = 0.0146 L2 = 0.2494 [Au] JL1 = 1.13195464426 JL3 = 2.49574395642 JL2 = 1.36300441245 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 2.20960000e+00 2.22730000e+00 2.29840000e+00 2.31680000e+00 2.73120000e+00 2.75310000e+00 3.00000000e+00 3.14190000e+00 3.16700000e+00 3.40010000e+00 3.42740000e+00 4.00000000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.19090000e+01 1.20050000e+01 1.37630000e+01 1.38730000e+01 1.43290000e+01 1.44440000e+01 1.50000000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 8.09230000e+01 8.15710000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.77655354782 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.75510000e+04 4.75360000e+05 4.74550000e+05 3.15740000e+05 3.08940000e+05 2.43920000e+05 2.14570000e+05 2.09860000e+05 1.73410000e+05 1.69700000e+05 1.09350000e+05 5.63790000e+04 3.21100000e+04 1.27340000e+04 6.04810000e+03 3.32200000e+03 3.23130000e+03 2.00230000e+03 1.94660000e+03 1.73600000e+03 1.68760000e+03 1.47540000e+03 5.20120000e+02 1.13790000e+02 3.75650000e+01 1.56930000e+01 7.64390000e+00 2.44420000e+00 2.33550000e+00 2.26270000e+00 1.00950000e+00 2.06310000e-01 6.88150000e-02 1.58180000e-02 5.97230000e-03 2.94760000e-03 1.71480000e-03 7.75130000e-04 4.47840000e-04 1.81210000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.39950000e+04 2.25170000e+05 2.20460000e+05 1.74970000e+05 1.54290000e+05 1.50960000e+05 1.24190000e+05 1.22160000e+05 7.98410000e+04 4.16670000e+04 2.39600000e+04 9.67390000e+03 4.65950000e+03 2.58930000e+03 2.51990000e+03 1.57650000e+03 1.53360000e+03 1.37070000e+03 1.33310000e+03 1.16860000e+03 4.21140000e+02 9.53660000e+01 3.23470000e+01 1.38210000e+01 6.86310000e+00 2.26460000e+00 2.16660000e+00 2.10090000e+00 9.58540000e-01 2.04180000e-01 6.96820000e-02 1.62550000e-02 6.09040000e-03 2.95180000e-03 1.67880000e-03 7.37250000e-04 4.04930000e-04 1.57980000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.20060000e+04 1.83970000e+04 1.31130000e+04 9.97830000e+03 6.16300000e+03 4.14360000e+03 2.99690000e+03 2.95250000e+03 2.27440000e+03 2.23960000e+03 2.10400000e+03 2.07170000e+03 1.92510000e+03 1.08280000e+03 4.62100000e+02 2.45520000e+02 1.47990000e+02 9.68880000e+01 4.88140000e+01 4.74780000e+01 4.65700000e+01 2.83090000e+01 1.02820000e+01 4.96210000e+00 1.78510000e+00 8.79720000e-01 5.17330000e-01 3.40270000e-01 1.81220000e-01 1.14230000e-01 5.24470000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.10090000e+05 9.98740000e+04 9.32630000e+04 9.20740000e+04 8.14550000e+04 8.02990000e+04 6.07470000e+04 4.03870000e+04 2.80310000e+04 1.50740000e+04 9.02470000e+03 5.93050000e+03 5.81570000e+03 4.14020000e+03 4.05800000e+03 3.73960000e+03 3.66460000e+03 3.32740000e+03 1.56370000e+03 5.07960000e+02 2.20250000e+02 1.13030000e+02 6.48410000e+01 2.65540000e+01 2.56160000e+01 2.49840000e+01 1.31560000e+01 3.63940000e+00 1.47010000e+00 4.23810000e-01 1.82690000e-01 9.82380000e-02 6.06360000e-02 2.96960000e-02 1.77900000e-02 7.69460000e-03] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.60820000e+04 3.35900000e+04 3.33370000e+04 2.71080000e+04 1.94490000e+04 1.43130000e+04 8.34620000e+03 5.28320000e+03 3.61720000e+03 3.55340000e+03 2.60980000e+03 2.56240000e+03 2.37770000e+03 2.33400000e+03 2.13680000e+03 1.06870000e+03 3.78590000e+02 1.74720000e+02 9.42100000e+01 5.63240000e+01 2.46620000e+01 2.38560000e+01 2.33120000e+01 1.28880000e+01 3.93430000e+00 1.70290000e+00 5.37090000e-01 2.44420000e-01 1.36090000e-01 8.59880000e-02 4.34250000e-02 2.65440000e-02 1.17830000e-02] total = [ 1.51760000e+06 6.79270000e+05 3.68120000e+05 2.95730000e+05 3.68100000e+05 7.46350000e+05 7.94770000e+05 7.24700000e+05 8.19980000e+05 6.67020000e+05 5.95380000e+05 6.19800000e+05 5.23530000e+05 5.36340000e+05 3.71070000e+05 2.15240000e+05 1.36730000e+05 6.58440000e+04 3.70390000e+04 2.34960000e+04 5.86400000e+04 4.05670000e+04 5.52930000e+04 5.10630000e+04 5.78010000e+04 5.24920000e+04 2.50250000e+04 8.54100000e+03 3.92850000e+03 2.13760000e+03 1.29590000e+03 5.85560000e+02 5.67250000e+02 2.70950000e+03 1.58800000e+03 5.44120000e+02 2.52170000e+02 8.65520000e+01 4.16410000e+01 2.41730000e+01 1.57870000e+01 8.35690000e+00 5.26070000e+00 2.41980000e+00] JM2 = 1.04101582183 JM3 = 1.13147509314 K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.15470000e+03 1.27250000e+03 4.41600000e+02 2.05690000e+02 7.09250000e+01 3.42150000e+01 1.99050000e+01 1.30220000e+01 6.91200000e+00 4.35950000e+00 2.01060000e+00] JM1 = 1.02446851183 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.75510000e+04 4.75360000e+05 5.28550000e+05 5.40910000e+05 6.39490000e+05 5.18770000e+05 4.62120000e+05 4.88980000e+05 4.12640000e+05 4.27500000e+05 2.95450000e+05 1.71000000e+05 1.08390000e+05 5.19910000e+04 2.91590000e+04 1.84560000e+04 1.80730000e+04 1.26030000e+04 1.23400000e+04 1.13280000e+04 1.10910000e+04 1.00330000e+04 4.65640000e+03 1.55780000e+03 7.10400000e+02 3.84740000e+02 2.32560000e+02 1.04740000e+02 1.01450000e+02 9.92290000e+01 5.63200000e+01 1.82660000e+01 8.27360000e+00 2.77810000e+00 1.31890000e+00 7.57560000e-01 4.90290000e-01 2.55860000e-01 1.59410000e-01 7.22630000e-02] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.56290000e+04 2.44930000e+04 3.95530000e+04 3.66090000e+04 4.36480000e+04 3.96830000e+04 1.90620000e+04 6.53840000e+03 3.01310000e+03 1.64100000e+03 9.95310000e+02 4.49980000e+02 4.35910000e+02 4.26390000e+02 2.42430000e+02 7.88110000e+01 3.57340000e+01 1.20130000e+01 5.70900000e+00 3.28250000e+00 2.12650000e+00 1.11170000e+00 6.93530000e-01 3.15010000e-01] JM4 = 1.06487572855 JM5 = 1.24471646434 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.55670000e+04 1.45740000e+04 1.42370000e+04 1.27770000e+04 6.12270000e+03 1.99230000e+03 8.76280000e+02 4.56920000e+02 2.66520000e+02 1.12820000e+02 1.09000000e+02 1.06420000e+02 5.76650000e+01 1.70450000e+01 7.25010000e+00 2.24550000e+00 1.01270000e+00 5.60880000e-01 3.53240000e-01 1.77760000e-01 1.08280000e-01 4.79880000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.56290000e+04 2.44930000e+04 2.39870000e+04 2.20350000e+04 2.15750000e+04 1.94960000e+04 8.51730000e+03 2.55310000e+03 1.05250000e+03 5.22350000e+02 2.92480000e+02 1.15900000e+02 1.11680000e+02 1.08830000e+02 5.62090000e+01 1.50780000e+01 5.99150000e+00 1.69870000e+00 7.26390000e-01 3.88880000e-01 2.39390000e-01 1.17100000e-01 7.01310000e-02 3.02820000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.83610000e+03 7.40980000e+03 4.42190000e+03 1.99300000e+03 1.08430000e+03 6.61780000e+02 4.36310000e+02 2.21260000e+02 2.15230000e+02 2.11130000e+02 1.28560000e+02 4.66880000e+01 2.24930000e+01 8.06860000e+00 3.96990000e+00 2.33280000e+00 1.53390000e+00 8.16860000e-01 5.15120000e-01 2.36740000e-01] all other = [ 1.51760000e+06 6.79270000e+05 3.68120000e+05 2.95730000e+05 2.90550000e+05 2.70990000e+05 2.66220000e+05 1.83800000e+05 1.80490000e+05 1.48260000e+05 1.33260000e+05 1.30820000e+05 1.10890000e+05 1.08840000e+05 7.56210000e+04 4.42450000e+04 2.83370000e+04 1.38530000e+04 7.87940000e+03 5.03980000e+03 4.93760000e+03 3.47050000e+03 3.39960000e+03 3.12630000e+03 3.06230000e+03 2.77610000e+03 1.30710000e+03 4.44830000e+02 2.05040000e+02 1.11850000e+02 6.79860000e+01 3.08460000e+01 2.98870000e+01 2.92370000e+01 1.66690000e+01 5.44640000e+00 2.47750000e+00 8.35580000e-01 3.97630000e-01 2.28710000e-01 1.48150000e-01 7.74040000e-02 4.82490000e-02 2.18830000e-02] [Au.binding] K = 81.004 L1 = 14.3435 M5 = 2.2118 M4 = 2.3007 M1 = 3.4035 L3 = 11.9214 M3 = 2.7339 M2 = 3.145 L2 = 13.7769 [At] JL1 = 1.1329772699 JL3 = 2.41291759465 JL2 = 1.37290662268 energy = [ 1.00000000e+00 1.02160000e+00 1.02970000e+00 1.50000000e+00 2.00000000e+00 2.78290000e+00 2.80520000e+00 2.90840000e+00 2.93160000e+00 3.00000000e+00 3.39490000e+00 3.42210000e+00 3.98860000e+00 4.00000000e+00 4.02060000e+00 4.28490000e+00 4.31930000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.42000000e+01 1.43140000e+01 1.50000000e+01 1.68240000e+01 1.69590000e+01 1.74690000e+01 1.76090000e+01 2.00000000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 9.60550000e+01 9.68240000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] JK = 4.49463499726 M5 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.27720000e+05 3.59240000e+05 3.51750000e+05 3.32610000e+05 2.40760000e+05 2.35500000e+05 1.52550000e+05 1.51310000e+05 1.49100000e+05 1.24940000e+05 1.22220000e+05 7.97800000e+04 4.62640000e+04 1.87630000e+04 9.06610000e+03 2.75950000e+03 2.68400000e+03 2.27970000e+03 1.52260000e+03 1.48010000e+03 1.33210000e+03 1.29480000e+03 8.20450000e+02 1.84550000e+02 6.21000000e+01 2.63160000e+01 1.29620000e+01 4.21340000e+00 2.06040000e+00 1.99720000e+00 1.76070000e+00 3.66610000e-01 1.23630000e-01 2.86210000e-02 1.09030000e-02 5.39160000e-03 3.13790000e-03 1.42010000e-03 8.17270000e-04 3.30830000e-04] M4 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.36440000e+05 2.38250000e+05 1.73940000e+05 1.70320000e+05 1.11740000e+05 1.10850000e+05 1.09260000e+05 9.12710000e+04 8.93620000e+04 5.93100000e+04 3.47640000e+04 1.43850000e+04 7.05980000e+03 2.20630000e+03 2.14740000e+03 1.83050000e+03 1.23420000e+03 1.20060000e+03 1.08310000e+03 1.05350000e+03 6.74880000e+02 1.57590000e+02 5.46010000e+01 2.37050000e+01 1.19190000e+01 4.00640000e+00 2.00170000e+00 1.94210000e+00 1.71850000e+00 3.74090000e-01 1.29380000e-01 3.05090000e-02 1.15900000e-02 5.65330000e-03 3.23050000e-03 1.41060000e-03 7.88050000e-04 3.05240000e-04] M1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.70470000e+04 1.39840000e+04 1.06230000e+04 6.82880000e+03 4.69170000e+03 2.48870000e+03 2.45200000e+03 2.24620000e+03 1.80350000e+03 1.77590000e+03 1.67680000e+03 1.65110000e+03 1.28620000e+03 5.61320000e+02 3.02830000e+02 1.84680000e+02 1.22070000e+02 6.24330000e+01 4.03590000e+01 3.95920000e+01 3.66290000e+01 1.35860000e+01 6.65340000e+00 2.44160000e+00 1.21880000e+00 7.23030000e-01 4.78430000e-01 2.56530000e-01 1.62220000e-01 7.44890000e-02] M3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 8.80200000e+04 7.19380000e+04 7.15960000e+04 7.09800000e+04 6.33270000e+04 6.23950000e+04 4.73830000e+04 3.37760000e+04 1.86420000e+04 1.13800000e+04 4.96280000e+03 4.86670000e+03 4.33480000e+03 3.24950000e+03 3.18450000e+03 2.95320000e+03 2.89360000e+03 2.08130000e+03 6.95970000e+02 3.07730000e+02 1.60250000e+02 9.29950000e+01 3.87480000e+01 2.20270000e+01 2.14890000e+01 1.94400000e+01 5.48990000e+00 2.24580000e+00 6.56170000e-01 2.84910000e-01 1.53680000e-01 9.49560000e-02 4.65090000e-02 2.77870000e-02 1.19380000e-02] M2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.67930000e+04 2.65040000e+04 2.52970000e+04 2.51160000e+04 2.09710000e+04 1.59490000e+04 9.84750000e+03 6.45980000e+03 3.11870000e+03 3.06460000e+03 2.76330000e+03 2.13690000e+03 2.09860000e+03 1.96090000e+03 1.92530000e+03 1.43150000e+03 5.30400000e+02 2.52150000e+02 1.38990000e+02 8.45390000e+01 3.79870000e+01 2.26750000e+01 2.21680000e+01 2.02290000e+01 6.37330000e+00 2.81430000e+00 9.09170000e-01 4.19970000e-01 2.36090000e-01 1.50200000e-01 7.64570000e-02 4.70070000e-02 2.10370000e-02] total = [ 2.04150000e+06 1.96300000e+06 1.97550000e+06 9.47780000e+05 5.16930000e+05 2.48850000e+05 7.72120000e+05 5.84410000e+05 9.09300000e+05 7.80650000e+05 5.72580000e+05 6.48830000e+05 4.44590000e+05 4.68180000e+05 4.62190000e+05 3.96310000e+05 4.05900000e+05 2.84700000e+05 1.82050000e+05 8.84590000e+04 5.00760000e+04 2.02050000e+04 4.87530000e+04 4.33260000e+04 3.15280000e+04 4.32850000e+04 4.02550000e+04 4.56080000e+04 3.29340000e+04 1.14570000e+04 5.33340000e+03 2.92540000e+03 1.78430000e+03 8.13810000e+02 4.93010000e+02 2.21590000e+03 2.03710000e+03 7.10590000e+02 3.34040000e+02 1.16600000e+02 5.67300000e+01 3.31890000e+01 2.17920000e+01 1.16060000e+01 7.32520000e+00 3.36940000e+00] JM2 = 1.05306012281 JM3 = 1.13316916413 K = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1733.5 1595.6 565.29 267.57 93.98 45.891 26.923 17.718 9.4686 5.9899 2.7634] JM1 = 1.02419822866 M = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 5.27720000e+05 3.59240000e+05 6.88180000e+05 5.70860000e+05 4.14710000e+05 4.93840000e+05 3.36230000e+05 3.60550000e+05 3.55850000e+05 3.04830000e+05 3.16140000e+05 2.21430000e+05 1.41380000e+05 6.84660000e+04 3.86580000e+04 1.55360000e+04 1.52150000e+04 1.34550000e+04 9.94660000e+03 9.73960000e+03 9.00610000e+03 8.81830000e+03 6.29440000e+03 2.12980000e+03 9.79410000e+02 5.33930000e+02 3.24490000e+02 1.47390000e+02 8.91230000e+01 8.71880000e+01 7.97770000e+01 2.61900000e+01 1.19660000e+01 4.06600000e+00 1.94620000e+00 1.12390000e+00 7.29950000e-01 3.82330000e-01 2.38610000e-01 1.08100000e-01] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.89640000e+04 2.58160000e+04 1.85680000e+04 3.05940000e+04 2.85160000e+04 3.41130000e+04 2.47180000e+04 8.66660000e+03 4.04750000e+03 2.22330000e+03 1.35720000e+03 6.19460000e+02 3.75380000e+02 3.67260000e+02 3.36140000e+02 1.10660000e+02 5.06310000e+01 1.72310000e+01 8.25860000e+00 4.77530000e+00 3.10540000e+00 1.62980000e+00 1.01860000e+00 4.62490000e-01] JM4 = 1.55592820109 JM5 = 3.10275266225 L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.24150000e+04 1.17180000e+04 1.14800000e+04 8.23760000e+03 2.82960000e+03 1.27940000e+03 6.79960000e+02 4.02580000e+02 1.74270000e+02 1.01920000e+02 9.95620000e+01 9.05560000e+01 2.75150000e+01 1.19120000e+01 3.76920000e+00 1.72320000e+00 9.62900000e-01 6.10290000e-01 3.09350000e-01 1.89620000e-01 8.46400000e-02] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.89640000e+04 2.58160000e+04 1.85680000e+04 1.81790000e+04 1.67990000e+04 1.64430000e+04 1.15590000e+04 3.51290000e+03 1.47250000e+03 7.39280000e+02 4.17670000e+02 1.67780000e+02 9.35080000e+01 9.11500000e+01 8.21940000e+01 2.24210000e+01 9.00320000e+00 2.58110000e+00 1.11060000e+00 5.96070000e-01 3.67200000e-01 1.79270000e-01 1.07210000e-01 4.60030000e-02] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.18920000e+03 4.92160000e+03 2.32400000e+03 1.29560000e+03 8.04100000e+02 5.36910000e+02 2.77410000e+02 1.79950000e+02 1.76550000e+02 1.63390000e+02 6.07290000e+01 2.97160000e+01 1.08810000e+01 5.42470000e+00 3.21630000e+00 2.12790000e+00 1.14120000e+00 7.21820000e-01 3.31850000e-01] all other = [ 2.04150000e+06 1.96300000e+06 1.97550000e+06 9.47780000e+05 5.16930000e+05 2.48850000e+05 2.44400000e+05 2.25170000e+05 2.21110000e+05 2.09790000e+05 1.57880000e+05 1.54990000e+05 1.08360000e+05 1.07630000e+05 1.06340000e+05 9.14770000e+04 8.97620000e+04 6.32700000e+04 4.06690000e+04 1.99930000e+04 1.14180000e+04 4.66940000e+03 4.57450000e+03 4.05460000e+03 3.01340000e+03 2.95170000e+03 2.73300000e+03 2.67700000e+03 1.92140000e+03 6.60230000e+02 3.06430000e+02 1.68130000e+02 1.02660000e+02 4.69620000e+01 2.85120000e+01 2.78970000e+01 2.55420000e+01 8.44450000e+00 3.87400000e+00 1.32190000e+00 6.34240000e-01 3.66760000e-01 2.38420000e-01 1.24990000e-01 7.80430000e-02 3.53640000e-02] [At.binding] K = 96.1506 L1 = 17.487 M5 = 2.7857 M4 = 2.9113 M1 = 4.2892 L3 = 14.2142 M3 = 3.3983 M2 = 3.9926 L2 = 16.8411 [In] JL1 = 1.12595475553 JL3 = 3.10386875069 JL2 = 1.33643164815 energy = [ 1.00000000e+00 1.50000000e+00 2.00000000e+00 3.00000000e+00 3.72460000e+00 3.75440000e+00 3.93880000e+00 3.97030000e+00 4.00000000e+00 4.20990000e+00 4.24360000e+00 5.00000000e+00 6.00000000e+00 8.00000000e+00 1.00000000e+01 1.50000000e+01 2.00000000e+01 2.78940000e+01 2.81180000e+01 3.00000000e+01 4.00000000e+01 5.00000000e+01 6.00000000e+01 8.00000000e+01 1.00000000e+02 1.50000000e+02 2.00000000e+02 3.00000000e+02 4.00000000e+02 5.00000000e+02 6.00000000e+02 8.00000000e+02 1.00000000e+03 1.50000000e+03] M2 = [ 1.04170000e+05 5.91860000e+04 3.58060000e+04 1.58690000e+04 9.84570000e+03 9.66900000e+03 8.66360000e+03 8.50550000e+03 8.36000000e+03 7.42080000e+03 7.28330000e+03 4.92000000e+03 3.12850000e+03 1.48020000e+03 8.06200000e+02 2.52860000e+02 1.06860000e+02 3.81120000e+01 3.71670000e+01 3.02820000e+01 1.20380000e+01 5.81440000e+00 3.18930000e+00 1.22770000e+00 5.84250000e-01 1.52700000e-01 5.99490000e-02 1.68170000e-02 7.13910000e-03 3.79780000e-03 2.32490000e-03 1.12400000e-03 6.69390000e-04 2.86780000e-04] M = [ 1.31250000e+06 5.21110000e+05 2.60400000e+05 9.44130000e+04 5.41840000e+04 5.30780000e+04 4.68740000e+04 4.59130000e+04 4.50320000e+04 3.94180000e+04 3.86080000e+04 2.51160000e+04 1.54990000e+04 7.16590000e+03 3.90820000e+03 1.27870000e+03 5.72730000e+02 2.23980000e+02 2.18970000e+02 1.82140000e+02 8.00810000e+01 4.21390000e+01 2.48700000e+01 1.07750000e+01 5.61600000e+00 1.71690000e+00 7.44880000e-01 2.35580000e-01 1.07590000e-01 6.02820000e-02 3.84030000e-02 1.97390000e-02 1.22650000e-02 5.62730000e-03] L = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.34130000e+05 1.21760000e+05 1.82230000e+05 1.81070000e+05 1.59510000e+05 1.86340000e+05 1.24770000e+05 7.76970000e+04 3.64960000e+04 2.00540000e+04 6.60890000e+03 2.96510000e+03 1.16050000e+03 1.13450000e+03 9.43850000e+02 4.15010000e+02 2.18370000e+02 1.28850000e+02 5.57940000e+01 2.90670000e+01 8.87690000e+00 3.84830000e+00 1.21600000e+00 5.55360000e-01 3.11130000e-01 1.98220000e-01 1.01920000e-01 6.33440000e-02 2.90850000e-02] M5 = [ 5.39110000e+05 1.77010000e+05 7.51560000e+04 2.06750000e+04 1.00060000e+04 9.73770000e+03 8.26280000e+03 8.03910000e+03 7.83530000e+03 6.56470000e+03 6.38540000e+03 3.58790000e+03 1.86160000e+03 6.40030000e+02 2.72370000e+02 5.47780000e+01 1.69440000e+01 4.22740000e+00 4.08760000e+00 3.10850000e+00 9.13720000e-01 3.51220000e-01 1.60640000e-01 4.68710000e-02 1.81630000e-02 3.35270000e-03 1.05010000e-03 2.26600000e-04 8.33410000e-05 4.04610000e-05 2.32600000e-05 1.07380000e-05 6.16640000e-06 2.65750000e-06] M4 = [ 3.69720000e+05 1.22570000e+05 5.23740000e+04 1.45420000e+04 7.07500000e+03 6.88650000e+03 5.85060000e+03 5.69330000e+03 5.55000000e+03 4.65610000e+03 4.52990000e+03 2.55640000e+03 1.33330000e+03 4.62480000e+02 1.98330000e+02 4.05260000e+01 1.27020000e+01 3.22540000e+00 3.12010000e+00 2.38180000e+00 7.12820000e-01 2.78200000e-01 1.28910000e-01 3.84280000e-02 1.51390000e-02 2.86800000e-03 9.14870000e-04 1.96230000e-04 7.00710000e-05 3.29860000e-05 1.85560000e-05 7.77020000e-06 4.23690000e-06 1.61760000e-06] L2 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.28830000e+04 6.38870000e+04 5.60090000e+04 5.49730000e+04 3.63140000e+04 2.19790000e+04 9.79090000e+03 5.10430000e+03 1.49600000e+03 6.07560000e+02 2.08620000e+02 2.03280000e+02 1.64580000e+02 6.38070000e+01 3.03250000e+01 1.64450000e+01 6.23580000e+00 2.93910000e+00 7.57960000e-01 2.95560000e-01 8.22160000e-02 3.47650000e-02 1.84450000e-02 1.12730000e-02 5.44260000e-03 3.23390000e-03 1.38860000e-03] L3 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.34130000e+05 1.21760000e+05 1.19350000e+05 1.17190000e+05 1.03500000e+05 1.01460000e+05 6.50690000e+04 3.89280000e+04 1.68940000e+04 8.65560000e+03 2.45470000e+03 9.72240000e+02 3.23620000e+02 3.15090000e+02 2.53450000e+02 9.53430000e+01 4.41800000e+01 2.34360000e+01 8.56100000e+00 3.91220000e+00 9.51280000e-01 3.56050000e-01 9.43280000e-02 3.90250000e-02 2.05670000e-02 1.25890000e-02 6.16790000e-03 3.72140000e-03 1.65640000e-03] M3 = [ 2.25120000e+05 1.19880000e+05 7.01800000e+04 2.99650000e+04 1.82590000e+04 1.79190000e+04 1.59930000e+04 1.56910000e+04 1.54140000e+04 1.36300000e+04 1.33690000e+04 8.91610000e+03 5.59040000e+03 2.58720000e+03 1.38470000e+03 4.20120000e+02 1.73110000e+02 5.98190000e+01 5.82880000e+01 4.71820000e+01 1.81910000e+01 8.56310000e+00 4.59310000e+00 1.70270000e+00 7.85440000e-01 1.93530000e-01 7.29440000e-02 1.94320000e-02 8.06520000e-03 4.25630000e-03 2.60650000e-03 1.27910000e-03 7.73720000e-04 3.44520000e-04] L1 = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.99080000e+04 2.33830000e+04 1.67900000e+04 9.81160000e+03 6.29460000e+03 2.65810000e+03 1.38530000e+03 6.28210000e+02 6.16140000e+02 5.25820000e+02 2.55860000e+02 1.43860000e+02 8.89670000e+01 4.09980000e+01 2.22160000e+01 7.16760000e+00 3.19670000e+00 1.03940000e+00 4.81570000e-01 2.72120000e-01 1.74360000e-01 9.03050000e-02 5.63890000e-02 2.60400000e-02] JK = 6.10070683743 M1 = [ 7.43440000e+04 4.24530000e+04 2.68840000e+04 1.33620000e+04 8.99820000e+03 8.86560000e+03 8.10450000e+03 7.98370000e+03 7.87240000e+03 7.14700000e+03 7.03980000e+03 5.13600000e+03 3.58580000e+03 1.99590000e+03 1.24660000e+03 5.10450000e+02 2.63110000e+02 1.18600000e+02 1.16300000e+02 9.91910000e+01 4.82250000e+01 2.71320000e+01 1.67980000e+01 7.75880000e+00 4.21300000e+00 1.36450000e+00 6.10020000e-01 1.98910000e-01 9.22340000e-02 5.21540000e-02 3.34300000e-02 1.73170000e-02 1.08120000e-02 4.99180000e-03] all other = [ 1.74980000e+05 7.44110000e+04 3.91000000e+04 1.51420000e+04 8.96310000e+03 8.78950000e+03 7.81230000e+03 7.66010000e+03 7.52050000e+03 6.62630000e+03 6.49640000e+03 4.31220000e+03 2.71570000e+03 1.29320000e+03 7.20390000e+02 2.43720000e+02 1.11410000e+02 4.44790000e+01 4.35040000e+01 3.63200000e+01 1.62090000e+01 8.61340000e+00 5.12170000e+00 2.24030000e+00 1.17520000e+00 3.62650000e-01 1.58120000e-01 5.02630000e-02 2.30250000e-02 1.29210000e-02 8.23970000e-03 4.24060000e-03 2.63700000e-03 1.21160000e-03] total = [ 1.48740000e+06 5.95520000e+05 2.99500000e+05 1.09560000e+05 6.31470000e+04 1.96000000e+05 1.76440000e+05 2.35800000e+05 2.33630000e+05 2.05550000e+05 2.31440000e+05 1.54190000e+05 9.59120000e+04 4.49550000e+04 2.46830000e+04 8.13130000e+03 3.64930000e+03 1.42890000e+03 8.71730000e+03 7.37920000e+03 3.46480000e+03 1.88290000e+03 1.13580000e+03 5.05040000e+02 2.66820000e+02 8.27810000e+01 3.61120000e+01 1.14700000e+01 5.25480000e+00 2.95190000e+00 1.88550000e+00 9.74090000e-01 6.07920000e-01 2.81100000e-01] K = [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.32040000e+03 6.21690000e+03 2.95350000e+03 1.61380000e+03 9.77000000e+02 4.36230000e+02 2.30960000e+02 7.18250000e+01 3.13610000e+01 9.96850000e+00 4.56880000e+00 2.56750000e+00 1.64060000e+00 8.48200000e-01 5.29680000e-01 2.45170000e-01] [In.binding] K = 27.9221 L1 = 4.2141 M5 = 0.4529 M4 = 0.461 M1 = 0.8114 L3 = 3.7283 M3 = 0.6606 M2 = 0.6998 L2 = 3.9427 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/Steel.cfg0000644000000000000000000002624414741736366016743 0ustar00rootroot [attenuators] kapton = 0, -, 0.0, 0.0, 1.0 atmosphere = 1, Air, 0.0012048, 5.0, 1.0 Matrix = 1, SRM_1155, 1.0, 1.0, 45.0, 45.0, 0, 90.0 deadlayer = 0, Si1, 2.33, 0.002, 1.0 BeamFilter1 = 0, -, 0.0, 0.0, 1.0 BeamFilter0 = 1, Al1, 2.72, 0.11, 1.0 absorber = 0, -, 0.0, 0.0, 1.0 window = 1, Be1, 1.848, 0.002, 1.0 contact = 0, Au1, 19.37, 1e-06, 1.0 Filter 6 = 0, -, 0.0, 0.0, 1.0 Filter 7 = 0, -, 0.0, 0.0, 1.0 Detector = 1, Si1, 2.33, 0.035, 1.0 [peaks] Ni = K Mn = K Pb = L, M As = K Fe = Ka, Kb W = L1, L2, L3 V = K Cr = K Cu = K [fit] stripwidth = 1 linearfitflag = 0 xmin = 200 scatterflag = 1 snipwidth = 30 stripfilterwidth = 1 escapeflag = 1 exppolorder = 6 strategy = SingleLayerStrategy fitweight = 1 stripflag = 1 stripanchorsflag = 0 use_limit = 1 maxiter = 10 stripiterations = 20000 sumflag = 1 linpolorder = 5 stripalgorithm = 0 deltaonepeak = 0.01 deltachi = 0.001 continuum = 0 hypermetflag = 1 stripconstant = 1.0 strategyflag = 0 xmax = 1432 fitfunction = 0 energy = 16.0, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None stripanchorslist = 0, 0, 0, 0 energyscatter = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 energyweight = 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 energyflag = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 [multilayer] Layer3 = 0, -, 0.0, 0.0 Layer2 = 0, -, 0.0, 0.0 Layer1 = 0, -, 0.0, 0.0 Layer0 = 0, -, 0.0, 0.0 Layer7 = 0, -, 0.0, 0.0 Layer6 = 0, -, 0.0, 0.0 Layer5 = 0, -, 0.0, 0.0 Layer4 = 0, -, 0.0, 0.0 Layer9 = 0, -, 0.0, 0.0 Layer8 = 0, -, 0.0, 0.0 [tube] windowdensity = 1.848 anodedensity = 10.5 windowthickness = 0.0125 anodethickness = 0.0002 transmission = 0 alphax = 90.0 deltaplotting = 0.1 window = Be filter1thickness = 0.0 anode = Ag voltage = 30.0 filter1density = 0.000118 alphae = 90.0 filter1 = He [peakshape] lt_arearatio = 0.02 fixedlt_arearatio = 0 fixedeta_factor = 0 st_arearatio = 0.05 deltalt_arearatio = 0.015 deltaeta_factor = 0.02 deltalt_sloperatio = 7.0 deltastep_heightratio = 5e-05 st_sloperatio = 0.5 lt_sloperatio = 10.0 fixedlt_sloperatio = 0 deltast_arearatio = 0.03 eta_factor = 0.02 fixedst_sloperatio = 0 fixedst_arearatio = 0 deltast_sloperatio = 0.49 step_heightratio = 0.0001 fixedstep_heightratio = 0 [materials] [materials.Kapton] Comment = Kapton 100 HN 25 micron density=1.42 g/cm3 Thickness = 0.0025 Density = 1.42 CompoundFraction = 0.628772, 0.066659, 0.304569 CompoundList = C1, N1, O1 [materials.Teflon] Comment = Teflon density=2.2 g/cm3 Density = 2.2 CompoundFraction = 0.240183, 0.759817 CompoundList = C1, F1 [materials.Viton] Comment = Viton Fluoroelastomer density=1.8 g/cm3 Density = 1.8 CompoundFraction = 0.009417, 0.280555, 0.710028 CompoundList = H1, C1, F1 [materials.Gold] Comment = Gold CompoundFraction = 1.0 Thickness = 1e-06 Density = 19.37 CompoundList = Au [materials.Air] Comment = Dry Air (Near sea level) density=0.001204790 g/cm3 Thickness = 1.0 Density = 0.0012048 CompoundFraction = 0.000124, 0.75527, 0.23178, 0.012827, 3.2e-06 CompoundList = C1, N1, O1, Ar1, Kr1 [materials.Water] Comment = Water density=1.0 g/cm3 CompoundFraction = 1.0 Density = 1.0 CompoundList = H2O1 [materials.SRM_1155_COMPLETE] Comment = New Material Density = 1.0 Thickness = 1.0 CompoundFraction = 0.0445, 0.04, 0.5093, 0.02, 0.0175, 0.05, 18.37, 1.619, 64.314, 0.109, 12.35, 0.175, 0.01067, 2.26, 0.11, 0.001 CompoundList = C, N, Si, P, S, V, Cr, Mn, Fe, Co, Ni, Cu, As, Mo, W, Pb [materials.SRM_1155] Comment = New Material Density = 1.0 Thickness = 1.0 CompoundFraction = 0.1837, 0.654, 0.1235, 0.0226, 0.01619 CompoundList = Cr, Fe, Ni, Mo, Mn [materials.Goethite] Comment = Mineral FeO(OH) density from 3.3 to 4.3 density=4.3 g/cm3 CompoundFraction = 1.0 Thickness = 0.1 Density = 4.3 CompoundList = Fe1O2H1 [materials.Mylar] Comment = Mylar (Polyethylene Terephthalate) density=1.40 g/cm3 Density = 1.4 CompoundFraction = 0.041959, 0.625017, 0.333025 CompoundList = H1, C1, O1 [concentrations] usemultilayersecondary = 0 reference = Fe area = 0.5 usexrfmc = 0 useautotime = 0 flux = 202400000.0 time = 300.0 useattenuators = 1 usematrix = 0 mmolarflag = 0 distance = 2.1 [xrfmc] program = C:\Program Files (x86)\XMI-MSIM\bin\xmimsim-pymca.exe [xrfmc.setup] layer = 1 source_size_y = 0.0001 source_size_x = 0.0005 p_polarisation = 0.995 slit_width_y = 0.005 source_diverg_x = 0.0001 collimator_height = 0.0 histories = 50000 nmax_interaction = 4 collimator_diameter = 0.0 source_sample_distance = 100.0 source_diverg_y = 0.0001 slit_width_x = 0.005 slit_distance = 100.0 [detector] noise = 0.127439 fixednoise = 0 fixedgain = 0 deltafano = 0.114 fixedfano = 0 sum = 1e-10 deltasum = 1e-08 fano = 0.101156 fixedsum = 0 fixedzero = 0 zero = -0.00612446976449 deltazero = 0.1 deltanoise = 0.05 ignoreinputcalibration = 0 deltagain = 0.001 detele = Si nthreshold = 4 gain = 0.0119281593146 [fisx] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/Steel.spe0000644000000000000000000005044714741736366016775 0ustar00rootroot$SPEC_ID: $DATA: 0 2047 0. 9. 5. 5. 5. 8. 8. 7. 7. 1. 5. 14. 9. 3. 8. 7. 7. 7. 7. 2. 6. 4. 9. 1. 1. 3. 4. 3. 2. 2. 4. 1. 3. 0. 1. 3. 2. 4. 1. 5. 4. 3. 4. 7. 7. 6. 10. 12. 9. 9. 15. 15. 19. 23. 42. 33. 43. 46. 42. 58. 56. 50. 66. 65. 72. 84. 93. 65. 78. 67. 78. 90. 77. 84. 80. 79. 81. 89. 88. 84. 84. 65. 60. 78. 96. 68. 81. 71. 78. 85. 91. 77. 91. 74. 84. 86. 85. 71. 72. 75. 86. 68. 93. 88. 68. 67. 76. 67. 75. 80. 77. 99. 91. 69. 64. 75. 79. 86. 61. 88. 64. 73. 73. 78. 86. 65. 88. 77. 75. 86. 65. 84. 67. 73. 73. 80. 83. 83. 80. 75. 80. 54. 88. 80. 71. 78. 78. 82. 88. 94. 92. 83. 71. 67. 94. 76. 83. 83. 74. 73. 83. 86. 80. 63. 80. 88. 88. 78. 81. 99. 72. 60. 77. 72. 85. 67. 69. 79. 93. 74. 79. 83. 70. 92. 75. 74. 93. 93. 114. 123. 93. 124. 126. 119. 125. 131. 110. 98. 121. 110. 112. 111. 95. 92. 99. 94. 127. 93. 102. 89. 101. 104. 96. 88. 106. 101. 105. 80. 81. 91. 94. 105. 82. 84. 87. 99. 91. 92. 83. 116. 102. 114. 94. 84. 92. 123. 108. 94. 96. 123. 105. 107. 107. 114. 125. 126. 147. 141. 153. 120. 138. 135. 155. 147. 128. 120. 134. 123. 111. 99. 126. 109. 108. 122. 123. 121. 108. 105. 114. 133. 134. 109. 124. 125. 107. 120. 143. 125. 127. 136. 154. 133. 137. 127. 131. 118. 127. 114. 130. 120. 132. 132. 144. 149. 161. 173. 187. 159. 222. 222. 267. 317. 377. 409. 459. 454. 450. 478. 488. 457. 418. 449. 394. 348. 316. 263. 244. 204. 179. 166. 156. 142. 159. 137. 161. 149. 172. 152. 178. 143. 156. 163. 170. 160. 151. 139. 145. 173. 179. 157. 164. 165. 165. 195. 197. 201. 216. 230. 225. 224. 205. 244. 264. 251. 228. 244. 216. 226. 232. 209. 219. 202. 187. 202. 179. 180. 170. 203. 181. 185. 188. 207. 236. 226. 236. 242. 244. 244. 300. 302. 360. 405. 477. 571. 601. 642. 749. 834. 935. 917. 896. 924. 927. 913. 823. 714. 662. 597. 504. 480. 419. 391. 342. 324. 316. 299. 300. 310. 301. 332. 338. 380. 342. 427. 408. 377. 389. 412. 428. 388. 384. 407. 410. 443. 407. 424. 387. 430. 448. 429. 463. 537. 534. 631. 728. 879. 1086. 1466. 2072. 2906. 4117. 5871. 8186. 11427. 15373. 20436. 25999. 32716. 39830. 47224. 54623. 60777. 65967. 69332. 71327. 70393. 67692. 63898. 58124. 50500. 43645. 36117. 29095. 22911. 17660. 12964. 9504. 6877. 4778. 3330. 2212. 1620. 1237. 1022. 846. 702. 749. 743. 826. 909. 979. 1226. 1549. 1836. 2386. 3158. 3919. 4792. 6064. 7419. 8787. 10277. 11859. 13322. 14566. 15605. 16156. 16724. 16581. 16049. 15440. 14236. 13159. 11522. 9848. 8460. 7039. 5862. 4633. 3570. 2857. 2290. 1836. 1634. 1434. 1502. 1574. 1990. 2505. 3622. 4921. 7167. 10211. 14792. 20639. 28845. 38684. 51771. 67141. 83599. 102629. 122920. 143414. 161825. 179046. 190729. 199209. 202571. 200169. 191309. 179875. 163870. 145168. 125951. 105503. 86296. 68605. 53127. 40270. 29731. 21536. 15255. 10567. 7180. 4888. 3272. 2219. 1589. 1196. 907. 749. 680. 584. 634. 568. 599. 631. 668. 724. 755. 937. 1019. 1163. 1408. 1640. 1993. 2419. 3102. 3841. 5176. 6470. 7990. 10113. 12326. 14749. 17621. 20524. 23016. 25705. 28139. 29418. 30628. 31180. 30572. 29338. 27689. 25141. 22698. 19557. 16652. 13965. 11136. 8808. 6963. 5247. 3861. 3011. 2163. 1756. 1464. 1460. 1728. 2113. 2678. 3623. 4680. 6119. 7995. 9971. 12351. 14967. 17864. 20027. 22812. 24773. 26228. 27395. 27620. 27316. 26515. 24623. 22511. 20333. 18080. 14856. 12683. 10072. 8091. 6420. 4820. 3563. 2533. 1790. 1275. 825. 641. 412. 292. 214. 158. 130. 117. 91. 88. 73. 80. 79. 92. 113. 103. 119. 115. 157. 183. 201. 284. 291. 366. 378. 424. 482. 544. 625. 634. 740. 763. 749. 845. 909. 946. 1107. 1343. 1422. 1696. 1953. 2276. 2724. 3011. 3356. 3844. 4177. 4280. 4540. 4646. 4743. 4541. 4414. 4060. 3662. 3436. 2931. 2649. 2124. 1807. 1496. 1199. 915. 704. 556. 427. 340. 271. 206. 147. 138. 101. 91. 65. 47. 49. 49. 38. 25. 36. 34. 29. 24. 39. 34. 16. 25. 22. 38. 33. 33. 33. 32. 40. 53. 39. 43. 65. 83. 67. 86. 92. 93. 75. 77. 86. 70. 70. 64. 65. 42. 43. 35. 33. 32. 26. 12. 25. 15. 18. 21. 14. 19. 14. 15. 22. 10. 16. 22. 27. 13. 20. 19. 18. 16. 20. 21. 18. 18. 20. 16. 17. 14. 12. 26. 20. 16. 27. 24. 25. 22. 30. 30. 41. 52. 54. 75. 65. 90. 104. 110. 114. 127. 138. 132. 132. 171. 158. 157. 135. 143. 131. 110. 124. 106. 108. 118. 94. 75. 82. 69. 81. 72. 65. 69. 60. 64. 58. 58. 60. 69. 64. 62. 65. 55. 48. 66. 41. 36. 30. 27. 28. 24. 29. 25. 20. 13. 17. 12. 7. 19. 10. 15. 8. 11. 12. 15. 12. 15. 13. 13. 21. 18. 21. 22. 31. 28. 22. 26. 24. 33. 37. 45. 63. 55. 71. 76. 77. 78. 69. 86. 93. 85. 62. 77. 69. 61. 62. 45. 40. 45. 39. 51. 18. 29. 36. 37. 33. 24. 35. 32. 49. 33. 40. 40. 39. 58. 47. 49. 38. 45. 45. 40. 37. 24. 30. 27. 18. 29. 22. 18. 22. 19. 13. 24. 12. 16. 13. 17. 22. 26. 26. 32. 31. 31. 33. 35. 47. 51. 41. 50. 57. 60. 52. 73. 56. 52. 48. 54. 46. 40. 33. 37. 44. 35. 35. 46. 29. 37. 15. 31. 34. 36. 36. 41. 33. 48. 42. 49. 57. 67. 73. 84. 82. 94. 87. 96. 121. 139. 157. 164. 172. 198. 196. 197. 236. 222. 223. 233. 210. 215. 191. 158. 156. 140. 144. 102. 112. 97. 78. 71. 66. 44. 41. 30. 28. 31. 26. 23. 21. 25. 22. 26. 22. 27. 23. 20. 32. 35. 46. 48. 39. 41. 47. 56. 43. 55. 57. 64. 53. 67. 72. 75. 88. 80. 80. 78. 88. 77. 69. 84. 76. 72. 80. 74. 77. 82. 78. 68. 74. 88. 76. 89. 105. 79. 104. 105. 104. 139. 156. 188. 155. 182. 194. 242. 276. 275. 296. 312. 318. 349. 345. 336. 320. 271. 259. 261. 261. 233. 225. 189. 167. 145. 131. 92. 95. 74. 91. 45. 39. 37. 31. 32. 34. 24. 23. 18. 21. 14. 20. 19. 24. 22. 26. 25. 34. 23. 26. 40. 36. 43. 49. 37. 52. 59. 63. 65. 73. 79. 85. 98. 93. 108. 96. 113. 119. 103. 115. 97. 110. 102. 88. 80. 80. 71. 63. 56. 53. 48. 51. 48. 51. 35. 40. 46. 36. 45. 48. 55. 63. 39. 55. 65. 76. 74. 76. 69. 86. 107. 79. 92. 96. 84. 90. 99. 67. 67. 60. 47. 53. 37. 50. 37. 43. 42. 25. 34. 20. 27. 24. 21. 28. 19. 19. 29. 22. 20. 10. 18. 15. 20. 10. 21. 14. 20. 19. 21. 22. 14. 11. 12. 12. 18. 21. 25. 26. 24. 17. 24. 13. 30. 33. 29. 34. 31. 42. 23. 31. 35. 35. 37. 37. 36. 40. 33. 40. 35. 32. 32. 26. 33. 26. 28. 51. 41. 25. 31. 26. 31. 23. 29. 29. 29. 20. 29. 19. 16. 32. 30. 28. 29. 42. 20. 26. 41. 41. 33. 32. 33. 34. 43. 36. 40. 39. 33. 41. 30. 45. 39. 41. 46. 35. 38. 50. 53. 69. 70. 62. 68. 55. 64. 62. 70. 75. 90. 61. 63. 86. 69. 77. 77. 84. 89. 91. 94. 84. 88. 93. 78. 103. 101. 76. 88. 93. 99. 89. 84. 92. 86. 106. 107. 113. 93. 100. 101. 122. 127. 110. 117. 171. 153. 210. 185. 196. 218. 275. 263. 321. 327. 367. 385. 402. 436. 438. 474. 495. 539. 544. 546. 531. 542. 534. 515. 514. 517. 516. 512. 464. 442. 409. 395. 348. 351. 329. 287. 281. 245. 228. 213. 183. 170. 160. 137. 117. 103. 99. 75. 85. 73. 49. 53. 52. 46. 35. 24. 23. 31. 26. 21. 14. 16. 17. 8. 8. 10. 8. 8. 5. 7. 6. 7. 8. 6. 4. 5. 4. 4. 7. 6. 2. 5. 5. 5. 4. 4. 2. 4. 6. 0. 4. 7. 4. 1. 6. 5. 5. 6. 1. 5. 0. 6. 3. 7. 3. 3. 9. 2. 4. 2. 1. 5. 4. 6. 3. 4. 3. 3. 3. 1. 6. 4. 7. 5. 2. 4. 3. 7. 2. 5. 5. 6. 7. 5. 6. 2. 7. 4. 4. 7. 7. 4. 5. 5. 5. 9. 8. 2. 5. 6. 8. 5. 5. 3. 7. 8. 3. 6. 5. 5. 2. 2. 2. 2. 3. 8. 6. 4. 1. 3. 5. 6. 6. 2. 6. 7. 2. 3. 3. 1. 2. 5. 0. 8. 4. 5. 6. 1. 5. 3. 3. 6. 1. 5. 3. 4. 7. 2. 5. 3. 5. 0. 10. 1. 4. 6. 2. 2. 4. 4. 5. 3. 3. 4. 9. 7. 0. 4. 7. 4. 3. 3. 3. 1. 2. 3. 2. 8. 4. 6. 4. 5. 1. 3. 1. 3. 2. 2. 6. 2. 4. 7. 6. 5. 5. 1. 7. 2. 4. 4. 3. 3. 6. 4. 4. 4. 3. 5. 5. 1. 8. 3. 1. 7. 7. 4. 7. 4. 3. 2. 5. 6. 3. 2. 2. 2. 3. 5. 3. 6. 3. 2. 7. 7. 3. 5. 3. 2. 2. 6. 3. 7. 1. 3. 5. 5. 5. 2. 6. 6. 2. 8. 1. 6. 7. 3. 6. 2. 4. 5. 4. 6. 4. 1. 7. 5. 5. 6. 4. 3. 3. 7. 6. 6. 1. 7. 6. 9. 4. 5. 2. 3. 5. 5. 3. 6. 5. 5. 10. 6. 3. 4. 5. 6. 4. 3. 3. 6. 4. 2. 3. 6. 1. 2. 8. 7. 4. 5. 7. 3. 2. 4. 3. 1. 1. 4. 8. 2. 3. 4. 3. 0. 2. 4. 3. 5. 1. 5. 6. 6. 4. 4. 6. 3. 6. 3. 2. 7. 3. 3. 3. 0. 1. 4. 3. 2. 6. 2. 1. 5. 2. 2. 6. 4. 4. 2. 6. 3. 3. 3. 3. 1. 4. 6. 2. 3. 2. 8. 4. 3. 3. 4. 5. 5. 4. 4. 4. 5. 6. 2. 5. 3. 3. 2. 6. 2. 2. 5. 2. 2. 8. 3. 6. 5. 7. 9. 0. 3. 2. 6. 3. 2. 8. 2. 4. 4. 2. 6. 4. 5. 4. 1. 7. 4. 4. 7. 5. 1. 3. 8. 4. 2. 5. 3. 10. 5. 3. 5. 2. 6. 10. 2. 5. 5. 6. 5. 3. 5. 4. 5. 4. 2. 7. 5. 3. 4. 4. 1. 1. 3. 2. 7. 3. 5. 4. 1. 6. 2. 7. 9. 7. 13. 3. 5. 8. 8. 4. 3. 9. 3. 2. 5. 4. 4. 4. 4. 4. 7. 5. 2. 5. 4. 7. 3. 2. 6. 8. 7. 3. 4. 3. 5. 2. 6. 3. 10. 1. 6. 6. 5. 4. 7. 7. 5. 8. 5. 4. 3. 3. 5. 5. 5. 4. 7. 6. 4. 6. 4. 9. 6. 4. 1. 6. 3. 5. 6. 5. 3. 4. 3. 3. 6. 3. 3. 4. 1. 1. 6. 4. 1. 4. 5. 1. 11. 5. 5. 8. 5. 10. 6. 2. 5. 1. 3. 5. 2. 3. 2. 7. 2. 3. 6. 3. 4. 5. 2. 2. 2. 5. 1. 6. 4. 8. 4. 6. 3. 4. 5. 3. 4. 7. 5. 5. 5. 2. 4. 3. 3. 3. 2. 4. 6. 3. 2. 6. 7. 3. 5. 3. 2. 4. 4. 3. 0. 4. 4. 5. 2. 6. 1. 2. 4. 4. 4. 5. 3. 2. 5. 3. 1. 4. 6. 3. 4. 1. 8. 1. 2. 2. 2. 5. 5. 3. 2. 3. 7. 1. 4. 6. 2. 2. 1. 4. 7. 2. 3. 4. 7. 5. 4. 4. 3. 3. 3. 9. 7. 4. 3. 3. 3. 3. 5. 6. 5. 5. 3. 3. 4. 10. 8. 7. 4. 8. 5. 5. ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/XRFSpectrum.mca0000644000000000000000000017363114741736366020055 0ustar00rootroot# This is the simplest file format "recognized" by PyMca: Just a single # column of numbers as data. # # These comment lines you are reading are optional. # # WARNING: This format is not recommended if you have many datasets because # the data readout is not optimized at all. # # This dataset corresponds to a multi-element thin sample standard. # # If you want to analyze it, these are the experimental conditions: # # Excitation energy around 17.5 keV (In fact it is a monochromatized Mo tube) # Si detector 450 micron thickness and Be window of 8 micron. # For the sake of simplicity assume the sample is 100 micron water # and contains 500 ppm of Co. # Incident beam angle is 0.1 degrees and fluorescence beam angle is 90 degrees. # There is an air path between sample and detector window of 2 mm. # # Steps to perform the analysis: # # 1 - Calibrate the data. # This detector presented a huge energy offset and you will need more # than justone peak to calibrate. Main Co peak is found close to the # channel 1474. # 2 - Enter as much information as you know in the fit configuration. # 3 - Iteratively, identify peaks and perform fits. # 4 - When you are satisfied with the fit, perform a quantification using # an internal standard. # # If you want to keep going, you can: # # 5 - Make the necessary modifications to work in fundamental parameters method. # That means adjust tube flux, solid angle, acquisition time, ... just to # match the Co result. # 6 - Guess what would be the smallest amount of a given element (for instance # Sc) that you would be able to quantify under those conditions. Hint: Use # the "Matrix Spectrum" option. # 7 - Go to the McaAdvancedFit DETECTOR configuration tab, and change the # detector material from Si to Ge. Accept the new configuration and # perform a fit. Was it necessary that I specified the detector material # among the experimental conditions? # 0.00000000E+00 1.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.00000000E+00 1.00000000E+00 3.00000000E+00 1.00000000E+00 6.00000000E+00 5.00000000E+00 1.20000000E+01 2.20000000E+01 5.30000000E+01 1.08000000E+02 1.98000000E+02 3.60000000E+02 6.63000000E+02 1.10300000E+03 1.79600000E+03 3.12400000E+03 5.33100000E+03 8.66000000E+03 1.38260000E+04 2.16750000E+04 3.38410000E+04 5.12760000E+04 7.61260000E+04 1.10194000E+05 1.57431000E+05 2.20182000E+05 3.02740000E+05 4.06310000E+05 5.33020000E+05 6.88601000E+05 8.71069000E+05 1.07750600E+06 1.30413900E+06 1.55090500E+06 1.80322000E+06 2.05472700E+06 2.29033900E+06 2.50190200E+06 2.67826600E+06 2.80822500E+06 2.87885700E+06 2.88553500E+06 2.84030500E+06 2.73137800E+06 2.57394700E+06 2.37264200E+06 2.14100700E+06 1.89172900E+06 1.63596600E+06 1.38503900E+06 1.14917900E+06 9.35577000E+05 7.43365000E+05 5.81086000E+05 4.45540000E+05 3.33701000E+05 2.47522000E+05 1.80491000E+05 1.29085000E+05 9.17040000E+04 6.52750000E+04 4.61480000E+04 3.33470000E+04 2.42400000E+04 1.83680000E+04 1.36250000E+04 1.04410000E+04 8.31500000E+03 6.49000000E+03 5.23200000E+03 4.19400000E+03 3.22700000E+03 2.52700000E+03 2.01600000E+03 1.56700000E+03 1.19300000E+03 8.51000000E+02 6.36000000E+02 4.75000000E+02 3.16000000E+02 2.25000000E+02 1.58000000E+02 1.07000000E+02 9.40000000E+01 6.70000000E+01 4.70000000E+01 2.90000000E+01 2.10000000E+01 3.00000000E+01 2.40000000E+01 1.70000000E+01 1.20000000E+01 9.00000000E+00 1.20000000E+01 9.00000000E+00 5.00000000E+00 4.00000000E+00 6.00000000E+00 5.00000000E+00 4.00000000E+00 4.00000000E+00 1.00000000E+00 1.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2.00000000E+00 1.60000000E+01 4.70000000E+01 1.58000000E+02 3.04000000E+02 4.78000000E+02 6.40000000E+02 7.01000000E+02 7.37000000E+02 7.30000000E+02 7.08000000E+02 6.89000000E+02 6.77000000E+02 7.20000000E+02 7.06000000E+02 6.61000000E+02 6.70000000E+02 6.65000000E+02 6.72000000E+02 6.69000000E+02 6.89000000E+02 6.73000000E+02 5.99000000E+02 6.43000000E+02 6.31000000E+02 6.52000000E+02 6.49000000E+02 6.56000000E+02 5.65000000E+02 6.22000000E+02 6.14000000E+02 6.57000000E+02 5.91000000E+02 6.06000000E+02 6.33000000E+02 5.97000000E+02 5.92000000E+02 6.06000000E+02 5.92000000E+02 6.11000000E+02 6.08000000E+02 5.60000000E+02 5.71000000E+02 5.67000000E+02 6.03000000E+02 5.76000000E+02 5.71000000E+02 5.53000000E+02 5.50000000E+02 5.56000000E+02 5.85000000E+02 5.39000000E+02 5.65000000E+02 5.83000000E+02 5.84000000E+02 5.19000000E+02 5.16000000E+02 4.80000000E+02 5.28000000E+02 5.15000000E+02 5.33000000E+02 5.51000000E+02 5.42000000E+02 5.23000000E+02 5.40000000E+02 5.61000000E+02 5.19000000E+02 5.04000000E+02 4.92000000E+02 5.41000000E+02 5.51000000E+02 5.37000000E+02 4.97000000E+02 4.93000000E+02 5.06000000E+02 5.05000000E+02 5.06000000E+02 5.23000000E+02 4.98000000E+02 4.63000000E+02 4.78000000E+02 5.34000000E+02 5.30000000E+02 5.16000000E+02 5.03000000E+02 4.99000000E+02 4.87000000E+02 4.41000000E+02 4.76000000E+02 4.88000000E+02 4.81000000E+02 4.61000000E+02 4.67000000E+02 5.05000000E+02 5.07000000E+02 4.69000000E+02 5.42000000E+02 5.22000000E+02 5.04000000E+02 4.70000000E+02 4.38000000E+02 5.19000000E+02 4.82000000E+02 4.50000000E+02 4.78000000E+02 4.40000000E+02 4.49000000E+02 4.45000000E+02 4.87000000E+02 4.68000000E+02 5.01000000E+02 4.73000000E+02 4.80000000E+02 4.70000000E+02 4.64000000E+02 4.64000000E+02 4.63000000E+02 4.61000000E+02 4.40000000E+02 4.84000000E+02 4.19000000E+02 4.42000000E+02 4.60000000E+02 4.72000000E+02 4.00000000E+02 4.28000000E+02 4.09000000E+02 4.25000000E+02 4.31000000E+02 4.49000000E+02 4.37000000E+02 4.41000000E+02 4.24000000E+02 4.38000000E+02 4.17000000E+02 4.19000000E+02 3.86000000E+02 3.78000000E+02 3.96000000E+02 3.92000000E+02 4.05000000E+02 3.64000000E+02 4.05000000E+02 4.07000000E+02 3.79000000E+02 3.45000000E+02 3.60000000E+02 3.80000000E+02 3.76000000E+02 4.08000000E+02 3.77000000E+02 3.51000000E+02 3.43000000E+02 3.79000000E+02 3.71000000E+02 3.12000000E+02 3.90000000E+02 3.17000000E+02 3.56000000E+02 3.33000000E+02 3.48000000E+02 3.36000000E+02 3.54000000E+02 3.36000000E+02 3.19000000E+02 3.37000000E+02 3.29000000E+02 3.33000000E+02 3.17000000E+02 3.02000000E+02 3.31000000E+02 3.32000000E+02 3.10000000E+02 3.21000000E+02 3.05000000E+02 3.33000000E+02 2.82000000E+02 3.19000000E+02 3.11000000E+02 3.08000000E+02 3.02000000E+02 2.99000000E+02 3.37000000E+02 3.31000000E+02 3.15000000E+02 3.43000000E+02 3.14000000E+02 3.13000000E+02 3.04000000E+02 2.94000000E+02 3.28000000E+02 3.21000000E+02 3.02000000E+02 2.84000000E+02 3.55000000E+02 3.12000000E+02 2.85000000E+02 3.00000000E+02 3.46000000E+02 3.12000000E+02 3.36000000E+02 3.14000000E+02 3.18000000E+02 3.13000000E+02 2.95000000E+02 3.17000000E+02 3.05000000E+02 3.11000000E+02 3.09000000E+02 2.93000000E+02 3.33000000E+02 3.03000000E+02 3.37000000E+02 3.22000000E+02 2.89000000E+02 2.87000000E+02 3.24000000E+02 2.73000000E+02 2.88000000E+02 2.78000000E+02 2.82000000E+02 2.70000000E+02 2.62000000E+02 2.64000000E+02 2.84000000E+02 2.74000000E+02 2.80000000E+02 2.64000000E+02 2.49000000E+02 2.65000000E+02 2.49000000E+02 2.63000000E+02 2.50000000E+02 2.40000000E+02 2.46000000E+02 2.59000000E+02 2.47000000E+02 2.17000000E+02 2.48000000E+02 2.40000000E+02 2.41000000E+02 2.32000000E+02 2.21000000E+02 2.50000000E+02 2.22000000E+02 2.34000000E+02 2.35000000E+02 2.34000000E+02 2.13000000E+02 2.26000000E+02 2.21000000E+02 2.50000000E+02 2.26000000E+02 2.38000000E+02 2.38000000E+02 2.22000000E+02 2.14000000E+02 2.52000000E+02 2.29000000E+02 2.16000000E+02 2.30000000E+02 2.08000000E+02 2.28000000E+02 2.21000000E+02 2.44000000E+02 2.21000000E+02 2.11000000E+02 2.16000000E+02 2.37000000E+02 2.21000000E+02 2.29000000E+02 2.04000000E+02 2.32000000E+02 2.33000000E+02 2.32000000E+02 2.11000000E+02 2.29000000E+02 2.49000000E+02 2.53000000E+02 2.62000000E+02 2.76000000E+02 2.81000000E+02 2.68000000E+02 3.00000000E+02 3.13000000E+02 3.03000000E+02 3.03000000E+02 3.15000000E+02 3.51000000E+02 3.30000000E+02 3.36000000E+02 3.55000000E+02 3.70000000E+02 3.66000000E+02 3.20000000E+02 3.60000000E+02 3.52000000E+02 3.81000000E+02 3.62000000E+02 3.29000000E+02 3.33000000E+02 3.79000000E+02 3.52000000E+02 3.48000000E+02 3.28000000E+02 3.18000000E+02 3.26000000E+02 2.68000000E+02 2.98000000E+02 2.98000000E+02 3.10000000E+02 2.62000000E+02 2.86000000E+02 3.14000000E+02 3.08000000E+02 2.74000000E+02 2.49000000E+02 2.55000000E+02 2.30000000E+02 2.44000000E+02 2.75000000E+02 2.18000000E+02 2.23000000E+02 2.25000000E+02 2.52000000E+02 2.25000000E+02 2.15000000E+02 2.10000000E+02 2.43000000E+02 2.08000000E+02 2.32000000E+02 2.45000000E+02 2.25000000E+02 2.32000000E+02 2.25000000E+02 2.27000000E+02 2.59000000E+02 2.40000000E+02 2.40000000E+02 2.28000000E+02 2.31000000E+02 2.18000000E+02 2.16000000E+02 2.29000000E+02 2.62000000E+02 2.25000000E+02 2.19000000E+02 2.38000000E+02 2.18000000E+02 1.92000000E+02 2.20000000E+02 2.10000000E+02 2.18000000E+02 2.24000000E+02 2.26000000E+02 2.23000000E+02 2.21000000E+02 2.35000000E+02 2.68000000E+02 2.58000000E+02 2.37000000E+02 2.20000000E+02 2.09000000E+02 2.20000000E+02 2.45000000E+02 2.42000000E+02 2.34000000E+02 2.50000000E+02 2.36000000E+02 2.92000000E+02 2.88000000E+02 2.71000000E+02 3.07000000E+02 2.98000000E+02 3.07000000E+02 3.40000000E+02 3.49000000E+02 4.19000000E+02 4.12000000E+02 4.45000000E+02 4.67000000E+02 4.65000000E+02 4.95000000E+02 5.70000000E+02 5.78000000E+02 5.98000000E+02 6.33000000E+02 7.13000000E+02 7.10000000E+02 7.11000000E+02 7.58000000E+02 7.14000000E+02 7.23000000E+02 7.83000000E+02 8.26000000E+02 8.39000000E+02 8.16000000E+02 8.09000000E+02 7.66000000E+02 8.19000000E+02 7.97000000E+02 7.47000000E+02 7.36000000E+02 6.96000000E+02 7.52000000E+02 7.10000000E+02 6.55000000E+02 6.72000000E+02 6.89000000E+02 6.14000000E+02 6.52000000E+02 6.55000000E+02 5.91000000E+02 5.63000000E+02 5.52000000E+02 5.45000000E+02 5.45000000E+02 5.41000000E+02 5.14000000E+02 5.16000000E+02 4.76000000E+02 4.46000000E+02 4.25000000E+02 4.16000000E+02 4.47000000E+02 4.34000000E+02 4.13000000E+02 3.92000000E+02 3.63000000E+02 3.35000000E+02 3.57000000E+02 3.14000000E+02 3.21000000E+02 3.15000000E+02 2.55000000E+02 2.95000000E+02 2.71000000E+02 2.60000000E+02 2.56000000E+02 2.44000000E+02 2.43000000E+02 2.33000000E+02 2.53000000E+02 2.11000000E+02 2.28000000E+02 2.11000000E+02 2.24000000E+02 2.33000000E+02 2.31000000E+02 2.03000000E+02 2.23000000E+02 2.03000000E+02 1.99000000E+02 1.93000000E+02 1.97000000E+02 2.22000000E+02 1.72000000E+02 1.93000000E+02 2.18000000E+02 2.21000000E+02 2.17000000E+02 2.01000000E+02 1.87000000E+02 1.94000000E+02 1.93000000E+02 1.84000000E+02 1.89000000E+02 1.83000000E+02 1.90000000E+02 1.87000000E+02 2.00000000E+02 2.16000000E+02 1.81000000E+02 1.88000000E+02 1.74000000E+02 2.18000000E+02 1.91000000E+02 1.89000000E+02 1.76000000E+02 1.84000000E+02 1.58000000E+02 1.69000000E+02 1.75000000E+02 1.65000000E+02 1.79000000E+02 1.81000000E+02 1.69000000E+02 1.67000000E+02 1.70000000E+02 1.81000000E+02 1.79000000E+02 1.91000000E+02 1.67000000E+02 1.80000000E+02 1.81000000E+02 1.83000000E+02 1.95000000E+02 1.81000000E+02 2.15000000E+02 2.08000000E+02 1.81000000E+02 2.12000000E+02 2.31000000E+02 2.11000000E+02 2.39000000E+02 2.15000000E+02 2.38000000E+02 2.50000000E+02 2.75000000E+02 2.85000000E+02 3.02000000E+02 3.28000000E+02 3.29000000E+02 3.55000000E+02 3.81000000E+02 3.90000000E+02 4.31000000E+02 4.19000000E+02 4.58000000E+02 4.34000000E+02 4.65000000E+02 4.45000000E+02 4.38000000E+02 4.46000000E+02 4.11000000E+02 4.52000000E+02 4.66000000E+02 3.90000000E+02 3.74000000E+02 4.07000000E+02 3.73000000E+02 3.74000000E+02 3.50000000E+02 3.02000000E+02 3.12000000E+02 2.98000000E+02 2.92000000E+02 2.74000000E+02 2.53000000E+02 2.64000000E+02 2.18000000E+02 2.18000000E+02 2.28000000E+02 2.17000000E+02 2.24000000E+02 2.22000000E+02 2.29000000E+02 2.31000000E+02 2.37000000E+02 2.46000000E+02 2.40000000E+02 2.33000000E+02 2.64000000E+02 2.42000000E+02 2.70000000E+02 2.61000000E+02 2.31000000E+02 2.24000000E+02 2.42000000E+02 2.39000000E+02 2.74000000E+02 2.33000000E+02 2.48000000E+02 2.26000000E+02 2.91000000E+02 2.50000000E+02 2.56000000E+02 2.76000000E+02 2.43000000E+02 2.48000000E+02 2.37000000E+02 2.11000000E+02 2.03000000E+02 1.94000000E+02 1.94000000E+02 2.05000000E+02 1.79000000E+02 2.14000000E+02 1.99000000E+02 1.88000000E+02 1.97000000E+02 1.86000000E+02 1.86000000E+02 1.79000000E+02 2.03000000E+02 2.17000000E+02 1.94000000E+02 1.97000000E+02 1.75000000E+02 1.89000000E+02 1.72000000E+02 2.06000000E+02 1.78000000E+02 1.71000000E+02 2.04000000E+02 1.87000000E+02 1.74000000E+02 1.98000000E+02 1.94000000E+02 2.11000000E+02 1.87000000E+02 1.99000000E+02 1.78000000E+02 1.75000000E+02 1.93000000E+02 1.72000000E+02 2.03000000E+02 2.01000000E+02 1.75000000E+02 1.92000000E+02 1.89000000E+02 2.01000000E+02 1.70000000E+02 1.82000000E+02 1.72000000E+02 1.69000000E+02 1.51000000E+02 1.58000000E+02 1.63000000E+02 1.47000000E+02 1.44000000E+02 1.52000000E+02 1.44000000E+02 1.39000000E+02 1.45000000E+02 1.42000000E+02 1.71000000E+02 1.59000000E+02 1.59000000E+02 1.83000000E+02 1.61000000E+02 1.73000000E+02 1.76000000E+02 1.63000000E+02 1.82000000E+02 2.00000000E+02 1.96000000E+02 1.87000000E+02 2.40000000E+02 1.94000000E+02 2.47000000E+02 2.43000000E+02 2.51000000E+02 2.74000000E+02 2.55000000E+02 2.59000000E+02 2.74000000E+02 2.71000000E+02 2.84000000E+02 3.22000000E+02 3.26000000E+02 3.43000000E+02 3.49000000E+02 3.43000000E+02 3.46000000E+02 3.94000000E+02 3.90000000E+02 3.69000000E+02 4.18000000E+02 4.33000000E+02 4.45000000E+02 4.67000000E+02 4.88000000E+02 5.30000000E+02 4.45000000E+02 4.80000000E+02 5.01000000E+02 4.94000000E+02 4.71000000E+02 4.78000000E+02 5.21000000E+02 4.64000000E+02 4.51000000E+02 4.54000000E+02 3.98000000E+02 4.06000000E+02 3.70000000E+02 4.02000000E+02 3.56000000E+02 3.38000000E+02 3.16000000E+02 3.06000000E+02 2.85000000E+02 2.69000000E+02 2.64000000E+02 2.62000000E+02 2.77000000E+02 2.23000000E+02 2.35000000E+02 2.10000000E+02 2.32000000E+02 2.27000000E+02 1.93000000E+02 2.19000000E+02 2.19000000E+02 2.09000000E+02 2.07000000E+02 2.02000000E+02 2.28000000E+02 1.96000000E+02 2.03000000E+02 2.11000000E+02 2.18000000E+02 2.17000000E+02 2.09000000E+02 2.10000000E+02 2.20000000E+02 2.18000000E+02 2.07000000E+02 2.14000000E+02 1.81000000E+02 1.90000000E+02 1.98000000E+02 2.15000000E+02 1.94000000E+02 2.26000000E+02 1.75000000E+02 2.12000000E+02 2.05000000E+02 2.00000000E+02 2.08000000E+02 1.66000000E+02 2.14000000E+02 1.84000000E+02 2.21000000E+02 1.92000000E+02 1.83000000E+02 2.08000000E+02 1.86000000E+02 1.94000000E+02 2.10000000E+02 1.90000000E+02 2.04000000E+02 1.89000000E+02 2.01000000E+02 1.96000000E+02 1.78000000E+02 1.73000000E+02 1.69000000E+02 1.77000000E+02 1.73000000E+02 1.60000000E+02 1.58000000E+02 1.72000000E+02 1.62000000E+02 1.53000000E+02 1.64000000E+02 1.61000000E+02 1.47000000E+02 1.53000000E+02 1.68000000E+02 1.74000000E+02 1.58000000E+02 1.49000000E+02 1.69000000E+02 1.46000000E+02 1.36000000E+02 1.29000000E+02 1.47000000E+02 1.52000000E+02 1.57000000E+02 1.51000000E+02 1.28000000E+02 1.63000000E+02 1.30000000E+02 1.30000000E+02 1.39000000E+02 1.33000000E+02 1.24000000E+02 1.31000000E+02 1.27000000E+02 1.25000000E+02 1.38000000E+02 1.34000000E+02 1.31000000E+02 1.34000000E+02 1.17000000E+02 1.39000000E+02 1.31000000E+02 1.33000000E+02 1.29000000E+02 1.36000000E+02 1.41000000E+02 1.24000000E+02 1.22000000E+02 1.20000000E+02 1.38000000E+02 1.49000000E+02 1.36000000E+02 1.35000000E+02 1.34000000E+02 1.32000000E+02 1.24000000E+02 1.34000000E+02 1.54000000E+02 1.54000000E+02 1.47000000E+02 1.34000000E+02 1.39000000E+02 1.57000000E+02 1.44000000E+02 1.50000000E+02 1.54000000E+02 1.57000000E+02 1.48000000E+02 1.58000000E+02 1.97000000E+02 1.66000000E+02 2.01000000E+02 1.82000000E+02 2.34000000E+02 2.29000000E+02 2.62000000E+02 2.72000000E+02 2.96000000E+02 3.17000000E+02 2.96000000E+02 3.64000000E+02 3.56000000E+02 3.75000000E+02 4.10000000E+02 4.37000000E+02 4.65000000E+02 4.94000000E+02 5.15000000E+02 5.43000000E+02 5.81000000E+02 5.71000000E+02 5.56000000E+02 5.99000000E+02 6.07000000E+02 5.98000000E+02 5.76000000E+02 5.59000000E+02 5.70000000E+02 5.52000000E+02 5.27000000E+02 5.40000000E+02 4.88000000E+02 4.58000000E+02 4.42000000E+02 4.45000000E+02 4.03000000E+02 4.34000000E+02 3.71000000E+02 3.13000000E+02 3.13000000E+02 2.61000000E+02 2.76000000E+02 2.68000000E+02 2.59000000E+02 2.21000000E+02 2.11000000E+02 1.85000000E+02 1.62000000E+02 1.81000000E+02 1.66000000E+02 1.38000000E+02 1.46000000E+02 1.59000000E+02 1.68000000E+02 1.43000000E+02 1.34000000E+02 1.39000000E+02 1.28000000E+02 1.50000000E+02 1.34000000E+02 1.35000000E+02 1.36000000E+02 1.36000000E+02 1.28000000E+02 1.29000000E+02 1.26000000E+02 1.24000000E+02 1.34000000E+02 1.35000000E+02 1.18000000E+02 1.32000000E+02 1.27000000E+02 1.50000000E+02 1.23000000E+02 1.30000000E+02 1.17000000E+02 1.33000000E+02 1.28000000E+02 1.31000000E+02 1.50000000E+02 1.46000000E+02 1.43000000E+02 1.59000000E+02 1.48000000E+02 1.80000000E+02 1.88000000E+02 2.08000000E+02 1.96000000E+02 2.23000000E+02 2.38000000E+02 2.52000000E+02 2.66000000E+02 2.76000000E+02 2.98000000E+02 3.42000000E+02 3.53000000E+02 4.06000000E+02 4.40000000E+02 4.98000000E+02 4.79000000E+02 5.04000000E+02 5.26000000E+02 6.13000000E+02 6.25000000E+02 6.08000000E+02 6.67000000E+02 7.66000000E+02 7.30000000E+02 7.43000000E+02 7.79000000E+02 7.68000000E+02 7.45000000E+02 7.67000000E+02 7.68000000E+02 7.13000000E+02 7.15000000E+02 6.91000000E+02 6.63000000E+02 6.37000000E+02 6.21000000E+02 5.77000000E+02 5.18000000E+02 5.29000000E+02 4.37000000E+02 4.44000000E+02 4.09000000E+02 3.86000000E+02 3.51000000E+02 3.22000000E+02 3.03000000E+02 2.74000000E+02 2.47000000E+02 2.40000000E+02 2.15000000E+02 2.04000000E+02 1.97000000E+02 2.00000000E+02 1.65000000E+02 1.76000000E+02 1.56000000E+02 1.45000000E+02 1.40000000E+02 1.54000000E+02 1.24000000E+02 1.40000000E+02 1.38000000E+02 1.23000000E+02 1.28000000E+02 1.22000000E+02 1.33000000E+02 1.32000000E+02 1.41000000E+02 1.53000000E+02 1.46000000E+02 1.20000000E+02 1.39000000E+02 1.27000000E+02 1.41000000E+02 1.48000000E+02 1.21000000E+02 1.17000000E+02 1.35000000E+02 1.46000000E+02 1.31000000E+02 1.22000000E+02 1.24000000E+02 1.56000000E+02 1.26000000E+02 1.54000000E+02 1.46000000E+02 1.38000000E+02 1.37000000E+02 1.50000000E+02 1.42000000E+02 1.66000000E+02 1.67000000E+02 1.68000000E+02 2.19000000E+02 2.08000000E+02 2.52000000E+02 2.39000000E+02 2.74000000E+02 2.96000000E+02 3.29000000E+02 3.40000000E+02 3.50000000E+02 3.93000000E+02 4.64000000E+02 4.78000000E+02 5.16000000E+02 5.34000000E+02 6.37000000E+02 6.50000000E+02 6.86000000E+02 7.37000000E+02 7.56000000E+02 7.94000000E+02 7.95000000E+02 8.24000000E+02 9.20000000E+02 8.58000000E+02 8.98000000E+02 8.57000000E+02 9.27000000E+02 8.98000000E+02 9.63000000E+02 9.12000000E+02 9.03000000E+02 8.94000000E+02 8.58000000E+02 8.41000000E+02 7.88000000E+02 7.25000000E+02 6.96000000E+02 6.83000000E+02 6.15000000E+02 5.55000000E+02 5.33000000E+02 5.24000000E+02 4.82000000E+02 4.38000000E+02 3.78000000E+02 3.42000000E+02 3.35000000E+02 2.95000000E+02 2.87000000E+02 2.22000000E+02 2.48000000E+02 2.11000000E+02 2.22000000E+02 2.12000000E+02 1.78000000E+02 1.51000000E+02 1.69000000E+02 1.52000000E+02 1.27000000E+02 1.47000000E+02 1.46000000E+02 1.31000000E+02 1.29000000E+02 1.39000000E+02 1.10000000E+02 1.24000000E+02 1.34000000E+02 1.36000000E+02 1.33000000E+02 1.16000000E+02 1.25000000E+02 1.07000000E+02 1.39000000E+02 1.20000000E+02 1.18000000E+02 1.16000000E+02 1.24000000E+02 1.10000000E+02 1.38000000E+02 1.44000000E+02 1.26000000E+02 1.19000000E+02 1.52000000E+02 1.25000000E+02 1.37000000E+02 1.53000000E+02 1.34000000E+02 1.33000000E+02 1.37000000E+02 1.50000000E+02 1.52000000E+02 1.58000000E+02 1.75000000E+02 1.81000000E+02 1.77000000E+02 2.05000000E+02 2.19000000E+02 2.15000000E+02 2.40000000E+02 2.69000000E+02 3.04000000E+02 2.92000000E+02 3.42000000E+02 3.88000000E+02 4.48000000E+02 4.47000000E+02 5.27000000E+02 5.55000000E+02 6.50000000E+02 6.68000000E+02 6.72000000E+02 7.12000000E+02 7.68000000E+02 8.00000000E+02 9.45000000E+02 8.97000000E+02 9.32000000E+02 9.61000000E+02 1.03400000E+03 1.01300000E+03 1.04300000E+03 1.10300000E+03 1.12400000E+03 1.07800000E+03 1.06700000E+03 1.06200000E+03 1.03600000E+03 1.03100000E+03 9.87000000E+02 9.90000000E+02 9.97000000E+02 9.78000000E+02 8.68000000E+02 8.17000000E+02 7.82000000E+02 7.06000000E+02 7.20000000E+02 6.33000000E+02 5.88000000E+02 5.68000000E+02 4.99000000E+02 4.42000000E+02 4.17000000E+02 3.71000000E+02 3.62000000E+02 3.29000000E+02 2.96000000E+02 2.86000000E+02 2.68000000E+02 2.24000000E+02 2.07000000E+02 2.19000000E+02 1.97000000E+02 1.72000000E+02 1.78000000E+02 1.40000000E+02 1.42000000E+02 1.38000000E+02 1.37000000E+02 1.34000000E+02 1.15000000E+02 1.14000000E+02 1.31000000E+02 1.37000000E+02 1.03000000E+02 1.36000000E+02 1.14000000E+02 1.12000000E+02 1.25000000E+02 1.08000000E+02 1.19000000E+02 1.09000000E+02 1.29000000E+02 1.36000000E+02 1.14000000E+02 1.19000000E+02 1.28000000E+02 1.14000000E+02 1.13000000E+02 1.30000000E+02 1.14000000E+02 1.37000000E+02 1.30000000E+02 1.24000000E+02 1.33000000E+02 1.38000000E+02 1.51000000E+02 1.35000000E+02 1.49000000E+02 1.35000000E+02 1.81000000E+02 1.62000000E+02 1.83000000E+02 2.16000000E+02 2.18000000E+02 2.38000000E+02 2.40000000E+02 2.58000000E+02 2.98000000E+02 3.20000000E+02 3.16000000E+02 3.62000000E+02 4.18000000E+02 4.38000000E+02 4.81000000E+02 5.75000000E+02 6.05000000E+02 6.75000000E+02 7.05000000E+02 7.26000000E+02 7.49000000E+02 8.37000000E+02 9.07000000E+02 1.01300000E+03 1.01500000E+03 1.05300000E+03 1.09400000E+03 1.15400000E+03 1.21300000E+03 1.19400000E+03 1.21700000E+03 1.21700000E+03 1.29700000E+03 1.24000000E+03 1.34500000E+03 1.25100000E+03 1.28800000E+03 1.23000000E+03 1.21000000E+03 1.13300000E+03 1.06200000E+03 1.11900000E+03 1.04900000E+03 1.00500000E+03 9.56000000E+02 8.69000000E+02 8.68000000E+02 8.00000000E+02 7.66000000E+02 7.07000000E+02 6.48000000E+02 5.97000000E+02 5.42000000E+02 5.32000000E+02 5.08000000E+02 4.68000000E+02 4.02000000E+02 3.87000000E+02 3.33000000E+02 3.33000000E+02 2.68000000E+02 2.84000000E+02 2.76000000E+02 2.18000000E+02 2.39000000E+02 2.10000000E+02 2.11000000E+02 2.04000000E+02 2.01000000E+02 1.42000000E+02 1.50000000E+02 1.82000000E+02 1.67000000E+02 1.22000000E+02 1.30000000E+02 1.34000000E+02 1.40000000E+02 1.12000000E+02 1.30000000E+02 1.06000000E+02 1.16000000E+02 1.15000000E+02 1.10000000E+02 1.31000000E+02 1.32000000E+02 1.30000000E+02 1.10000000E+02 1.23000000E+02 1.06000000E+02 1.05000000E+02 1.21000000E+02 1.14000000E+02 1.09000000E+02 1.26000000E+02 1.20000000E+02 1.05000000E+02 1.16000000E+02 1.41000000E+02 1.49000000E+02 1.28000000E+02 1.59000000E+02 1.33000000E+02 1.30000000E+02 1.66000000E+02 1.69000000E+02 1.98000000E+02 2.06000000E+02 2.23000000E+02 2.28000000E+02 2.40000000E+02 2.59000000E+02 3.18000000E+02 3.31000000E+02 3.38000000E+02 3.82000000E+02 4.37000000E+02 4.49000000E+02 4.95000000E+02 5.39000000E+02 6.29000000E+02 6.45000000E+02 7.24000000E+02 7.54000000E+02 8.31000000E+02 8.23000000E+02 9.26000000E+02 1.03800000E+03 9.92000000E+02 1.05800000E+03 1.11900000E+03 1.17400000E+03 1.15000000E+03 1.24500000E+03 1.28600000E+03 1.36300000E+03 1.38500000E+03 1.36100000E+03 1.43900000E+03 1.46000000E+03 1.44700000E+03 1.39600000E+03 1.45100000E+03 1.30000000E+03 1.23300000E+03 1.35400000E+03 1.30800000E+03 1.20000000E+03 1.15600000E+03 1.05600000E+03 9.90000000E+02 9.83000000E+02 9.08000000E+02 8.51000000E+02 8.45000000E+02 7.94000000E+02 7.31000000E+02 6.83000000E+02 6.18000000E+02 5.65000000E+02 5.70000000E+02 5.11000000E+02 5.12000000E+02 4.71000000E+02 4.29000000E+02 4.19000000E+02 3.86000000E+02 3.53000000E+02 3.34000000E+02 3.36000000E+02 2.81000000E+02 2.75000000E+02 2.73000000E+02 2.52000000E+02 2.54000000E+02 2.41000000E+02 2.09000000E+02 2.45000000E+02 2.23000000E+02 1.77000000E+02 1.79000000E+02 1.80000000E+02 1.82000000E+02 1.77000000E+02 1.65000000E+02 1.53000000E+02 1.75000000E+02 1.49000000E+02 1.47000000E+02 1.44000000E+02 1.41000000E+02 1.32000000E+02 1.24000000E+02 1.32000000E+02 1.41000000E+02 1.08000000E+02 1.13000000E+02 1.23000000E+02 1.15000000E+02 1.20000000E+02 1.31000000E+02 1.25000000E+02 1.43000000E+02 1.26000000E+02 1.20000000E+02 1.36000000E+02 1.19000000E+02 1.20000000E+02 1.63000000E+02 1.46000000E+02 1.50000000E+02 1.54000000E+02 1.60000000E+02 1.65000000E+02 1.69000000E+02 1.98000000E+02 2.26000000E+02 2.56000000E+02 2.83000000E+02 3.01000000E+02 3.64000000E+02 3.74000000E+02 3.72000000E+02 4.28000000E+02 4.31000000E+02 5.12000000E+02 5.46000000E+02 6.06000000E+02 6.81000000E+02 7.02000000E+02 8.11000000E+02 8.90000000E+02 8.94000000E+02 9.35000000E+02 1.05400000E+03 1.07100000E+03 1.23400000E+03 1.21800000E+03 1.27300000E+03 1.34900000E+03 1.45400000E+03 1.53600000E+03 1.55900000E+03 1.56500000E+03 1.68800000E+03 1.56400000E+03 1.62100000E+03 1.66500000E+03 1.67800000E+03 1.66700000E+03 1.65800000E+03 1.56600000E+03 1.55200000E+03 1.53400000E+03 1.36300000E+03 1.40500000E+03 1.33900000E+03 1.39000000E+03 1.21100000E+03 1.13400000E+03 1.10700000E+03 1.02000000E+03 9.65000000E+02 9.15000000E+02 8.72000000E+02 7.72000000E+02 7.55000000E+02 7.03000000E+02 6.90000000E+02 5.71000000E+02 5.68000000E+02 4.86000000E+02 4.74000000E+02 4.32000000E+02 4.41000000E+02 4.49000000E+02 4.06000000E+02 4.04000000E+02 3.79000000E+02 3.69000000E+02 3.06000000E+02 3.29000000E+02 3.01000000E+02 3.19000000E+02 2.93000000E+02 2.79000000E+02 2.73000000E+02 2.79000000E+02 2.57000000E+02 2.60000000E+02 2.51000000E+02 2.31000000E+02 2.56000000E+02 2.58000000E+02 2.21000000E+02 1.94000000E+02 2.00000000E+02 2.07000000E+02 1.82000000E+02 1.86000000E+02 1.89000000E+02 1.56000000E+02 1.35000000E+02 1.62000000E+02 1.53000000E+02 1.38000000E+02 1.43000000E+02 1.48000000E+02 1.41000000E+02 1.21000000E+02 1.41000000E+02 1.39000000E+02 1.47000000E+02 1.43000000E+02 1.53000000E+02 1.23000000E+02 1.41000000E+02 1.39000000E+02 1.44000000E+02 1.69000000E+02 1.51000000E+02 1.82000000E+02 1.36000000E+02 1.95000000E+02 1.75000000E+02 1.82000000E+02 1.74000000E+02 2.22000000E+02 2.25000000E+02 2.48000000E+02 2.75000000E+02 2.99000000E+02 3.33000000E+02 3.62000000E+02 3.78000000E+02 4.38000000E+02 4.59000000E+02 5.33000000E+02 5.43000000E+02 6.10000000E+02 7.01000000E+02 7.41000000E+02 8.37000000E+02 9.07000000E+02 8.83000000E+02 1.00400000E+03 1.08300000E+03 1.12800000E+03 1.23300000E+03 1.28100000E+03 1.35100000E+03 1.44000000E+03 1.45700000E+03 1.56100000E+03 1.65500000E+03 1.69700000E+03 1.72000000E+03 1.73400000E+03 1.81500000E+03 1.90300000E+03 1.78700000E+03 1.80400000E+03 1.71200000E+03 1.77800000E+03 1.64200000E+03 1.66800000E+03 1.64600000E+03 1.64000000E+03 1.53400000E+03 1.40100000E+03 1.41700000E+03 1.27300000E+03 1.31100000E+03 1.18500000E+03 1.12800000E+03 1.02800000E+03 9.93000000E+02 8.35000000E+02 9.16000000E+02 8.31000000E+02 7.20000000E+02 6.60000000E+02 6.59000000E+02 5.60000000E+02 5.11000000E+02 5.16000000E+02 4.75000000E+02 4.49000000E+02 4.30000000E+02 4.32000000E+02 4.15000000E+02 3.72000000E+02 3.54000000E+02 3.42000000E+02 3.28000000E+02 3.15000000E+02 3.26000000E+02 2.84000000E+02 3.15000000E+02 3.18000000E+02 2.90000000E+02 3.34000000E+02 3.20000000E+02 3.23000000E+02 3.13000000E+02 3.10000000E+02 2.96000000E+02 2.86000000E+02 3.07000000E+02 2.98000000E+02 2.78000000E+02 3.07000000E+02 3.14000000E+02 2.74000000E+02 2.59000000E+02 2.69000000E+02 2.44000000E+02 2.65000000E+02 2.75000000E+02 2.36000000E+02 2.21000000E+02 2.41000000E+02 1.90000000E+02 1.95000000E+02 2.06000000E+02 1.73000000E+02 1.68000000E+02 1.55000000E+02 1.82000000E+02 1.45000000E+02 1.59000000E+02 1.63000000E+02 1.48000000E+02 1.59000000E+02 1.67000000E+02 1.80000000E+02 1.78000000E+02 1.77000000E+02 1.56000000E+02 1.91000000E+02 1.85000000E+02 2.07000000E+02 1.93000000E+02 2.11000000E+02 2.37000000E+02 2.43000000E+02 2.82000000E+02 3.10000000E+02 3.75000000E+02 4.08000000E+02 4.30000000E+02 4.58000000E+02 5.34000000E+02 4.93000000E+02 5.94000000E+02 6.54000000E+02 7.62000000E+02 7.33000000E+02 8.10000000E+02 8.75000000E+02 9.93000000E+02 1.07500000E+03 1.14600000E+03 1.18100000E+03 1.35900000E+03 1.30800000E+03 1.38500000E+03 1.54600000E+03 1.57200000E+03 1.72800000E+03 1.73300000E+03 1.81600000E+03 1.78300000E+03 1.94100000E+03 1.85700000E+03 2.00100000E+03 1.96400000E+03 1.98900000E+03 1.91200000E+03 1.94200000E+03 1.95400000E+03 1.94800000E+03 1.88300000E+03 1.88200000E+03 1.80200000E+03 1.67500000E+03 1.57100000E+03 1.64200000E+03 1.49400000E+03 1.46300000E+03 1.35400000E+03 1.29300000E+03 1.16700000E+03 1.10100000E+03 1.04100000E+03 9.57000000E+02 9.87000000E+02 8.86000000E+02 7.84000000E+02 7.15000000E+02 6.23000000E+02 5.84000000E+02 5.36000000E+02 4.80000000E+02 4.57000000E+02 4.59000000E+02 4.11000000E+02 3.34000000E+02 3.23000000E+02 3.44000000E+02 3.17000000E+02 3.06000000E+02 2.80000000E+02 2.84000000E+02 2.66000000E+02 2.66000000E+02 2.85000000E+02 2.79000000E+02 2.69000000E+02 2.76000000E+02 3.44000000E+02 3.37000000E+02 3.19000000E+02 3.32000000E+02 3.38000000E+02 3.71000000E+02 3.58000000E+02 3.51000000E+02 3.41000000E+02 3.62000000E+02 3.65000000E+02 3.14000000E+02 3.33000000E+02 3.95000000E+02 3.78000000E+02 3.61000000E+02 3.73000000E+02 3.65000000E+02 3.47000000E+02 3.40000000E+02 3.45000000E+02 3.48000000E+02 3.49000000E+02 3.42000000E+02 2.84000000E+02 3.18000000E+02 2.97000000E+02 3.27000000E+02 2.74000000E+02 2.71000000E+02 2.64000000E+02 2.46000000E+02 2.42000000E+02 2.26000000E+02 2.21000000E+02 1.97000000E+02 1.92000000E+02 1.93000000E+02 1.69000000E+02 1.83000000E+02 1.75000000E+02 1.82000000E+02 1.68000000E+02 1.52000000E+02 1.71000000E+02 1.59000000E+02 1.55000000E+02 1.49000000E+02 1.48000000E+02 1.52000000E+02 1.85000000E+02 1.63000000E+02 1.69000000E+02 1.47000000E+02 1.51000000E+02 1.53000000E+02 1.69000000E+02 1.40000000E+02 1.69000000E+02 1.74000000E+02 1.88000000E+02 1.58000000E+02 1.65000000E+02 1.68000000E+02 1.46000000E+02 1.80000000E+02 1.81000000E+02 1.68000000E+02 1.65000000E+02 1.47000000E+02 1.87000000E+02 1.76000000E+02 1.65000000E+02 1.60000000E+02 1.54000000E+02 1.60000000E+02 1.57000000E+02 1.63000000E+02 1.67000000E+02 1.32000000E+02 1.41000000E+02 1.40000000E+02 1.27000000E+02 1.55000000E+02 1.57000000E+02 1.34000000E+02 1.61000000E+02 1.20000000E+02 1.20000000E+02 1.32000000E+02 1.31000000E+02 1.22000000E+02 1.35000000E+02 1.18000000E+02 1.09000000E+02 1.18000000E+02 1.25000000E+02 1.36000000E+02 1.31000000E+02 1.16000000E+02 1.20000000E+02 1.06000000E+02 1.05000000E+02 1.15000000E+02 1.27000000E+02 1.24000000E+02 1.24000000E+02 1.12000000E+02 1.41000000E+02 1.24000000E+02 1.38000000E+02 1.23000000E+02 1.19000000E+02 1.32000000E+02 1.42000000E+02 1.38000000E+02 1.50000000E+02 1.55000000E+02 1.64000000E+02 1.45000000E+02 1.61000000E+02 2.01000000E+02 2.07000000E+02 1.91000000E+02 2.11000000E+02 1.85000000E+02 2.11000000E+02 2.28000000E+02 2.49000000E+02 2.38000000E+02 2.28000000E+02 2.58000000E+02 2.45000000E+02 2.98000000E+02 3.05000000E+02 3.03000000E+02 2.65000000E+02 3.15000000E+02 3.25000000E+02 3.43000000E+02 3.41000000E+02 3.31000000E+02 3.44000000E+02 3.46000000E+02 3.66000000E+02 3.25000000E+02 3.26000000E+02 3.37000000E+02 3.07000000E+02 3.53000000E+02 3.45000000E+02 3.36000000E+02 3.42000000E+02 2.77000000E+02 3.06000000E+02 3.15000000E+02 2.76000000E+02 2.46000000E+02 2.80000000E+02 2.74000000E+02 2.10000000E+02 2.08000000E+02 1.95000000E+02 1.86000000E+02 2.05000000E+02 1.84000000E+02 2.02000000E+02 1.91000000E+02 1.69000000E+02 1.41000000E+02 1.79000000E+02 1.42000000E+02 1.34000000E+02 1.36000000E+02 1.24000000E+02 1.09000000E+02 1.44000000E+02 1.20000000E+02 1.05000000E+02 1.35000000E+02 1.20000000E+02 1.13000000E+02 1.10000000E+02 1.17000000E+02 1.18000000E+02 1.20000000E+02 1.03000000E+02 1.05000000E+02 9.70000000E+01 1.03000000E+02 1.23000000E+02 1.05000000E+02 1.11000000E+02 1.03000000E+02 1.14000000E+02 1.11000000E+02 1.12000000E+02 1.11000000E+02 1.26000000E+02 1.11000000E+02 1.18000000E+02 1.14000000E+02 1.06000000E+02 1.02000000E+02 1.34000000E+02 1.03000000E+02 1.31000000E+02 1.03000000E+02 1.11000000E+02 1.18000000E+02 1.22000000E+02 1.21000000E+02 1.40000000E+02 1.36000000E+02 1.12000000E+02 1.07000000E+02 1.37000000E+02 1.33000000E+02 1.56000000E+02 1.15000000E+02 1.33000000E+02 1.01000000E+02 1.25000000E+02 1.44000000E+02 1.43000000E+02 1.23000000E+02 1.28000000E+02 1.34000000E+02 1.44000000E+02 1.51000000E+02 1.43000000E+02 1.29000000E+02 1.40000000E+02 1.54000000E+02 1.37000000E+02 1.68000000E+02 1.79000000E+02 1.57000000E+02 2.00000000E+02 1.91000000E+02 1.95000000E+02 2.27000000E+02 2.20000000E+02 2.25000000E+02 2.30000000E+02 2.32000000E+02 2.61000000E+02 2.70000000E+02 2.79000000E+02 3.30000000E+02 3.00000000E+02 3.46000000E+02 3.53000000E+02 3.83000000E+02 4.19000000E+02 4.47000000E+02 4.50000000E+02 4.99000000E+02 5.20000000E+02 5.38000000E+02 6.32000000E+02 6.18000000E+02 6.70000000E+02 7.09000000E+02 7.18000000E+02 7.87000000E+02 8.65000000E+02 9.04000000E+02 1.00100000E+03 9.60000000E+02 1.00900000E+03 1.07400000E+03 1.08700000E+03 1.11800000E+03 1.17700000E+03 1.17100000E+03 1.23400000E+03 1.33800000E+03 1.22700000E+03 1.30900000E+03 1.35500000E+03 1.30900000E+03 1.26100000E+03 1.28600000E+03 1.33300000E+03 1.28800000E+03 1.31900000E+03 1.27600000E+03 1.25600000E+03 1.29500000E+03 1.23600000E+03 1.21300000E+03 1.13600000E+03 1.20900000E+03 1.16900000E+03 1.11100000E+03 1.09900000E+03 1.06300000E+03 1.08200000E+03 1.04900000E+03 1.00700000E+03 1.01600000E+03 1.02400000E+03 1.01200000E+03 1.01100000E+03 1.07400000E+03 1.13400000E+03 1.04700000E+03 1.16000000E+03 1.18600000E+03 1.25100000E+03 1.25000000E+03 1.42300000E+03 1.49500000E+03 1.59500000E+03 1.56400000E+03 1.70900000E+03 1.84300000E+03 1.96600000E+03 2.17100000E+03 2.21900000E+03 2.38700000E+03 2.43700000E+03 2.61500000E+03 2.69200000E+03 2.77700000E+03 3.01200000E+03 3.04000000E+03 3.12700000E+03 3.22500000E+03 3.39000000E+03 3.43900000E+03 3.50300000E+03 3.48100000E+03 3.51500000E+03 3.57600000E+03 3.52100000E+03 3.56600000E+03 3.52200000E+03 3.48300000E+03 3.43400000E+03 3.45100000E+03 3.32300000E+03 3.21500000E+03 3.25700000E+03 3.05700000E+03 2.94400000E+03 2.93200000E+03 2.69600000E+03 2.61800000E+03 2.50700000E+03 2.34100000E+03 2.24800000E+03 2.05000000E+03 1.93900000E+03 1.83400000E+03 1.58500000E+03 1.52900000E+03 1.47100000E+03 1.32500000E+03 1.20200000E+03 1.09100000E+03 1.03500000E+03 9.31000000E+02 8.18000000E+02 7.64000000E+02 7.47000000E+02 6.56000000E+02 6.27000000E+02 5.20000000E+02 4.63000000E+02 4.26000000E+02 4.24000000E+02 3.20000000E+02 3.29000000E+02 3.06000000E+02 3.18000000E+02 2.58000000E+02 2.40000000E+02 2.24000000E+02 2.10000000E+02 1.87000000E+02 1.88000000E+02 1.56000000E+02 1.87000000E+02 1.51000000E+02 1.61000000E+02 1.77000000E+02 1.59000000E+02 1.53000000E+02 1.46000000E+02 1.32000000E+02 1.50000000E+02 1.31000000E+02 1.43000000E+02 1.43000000E+02 1.32000000E+02 1.43000000E+02 1.36000000E+02 1.34000000E+02 1.32000000E+02 1.27000000E+02 1.44000000E+02 1.37000000E+02 1.43000000E+02 1.32000000E+02 1.31000000E+02 1.58000000E+02 1.53000000E+02 1.37000000E+02 1.32000000E+02 1.31000000E+02 1.47000000E+02 1.54000000E+02 1.40000000E+02 1.40000000E+02 1.81000000E+02 1.36000000E+02 1.62000000E+02 1.64000000E+02 1.54000000E+02 1.62000000E+02 1.82000000E+02 1.70000000E+02 2.00000000E+02 2.06000000E+02 1.97000000E+02 2.27000000E+02 2.18000000E+02 2.42000000E+02 2.64000000E+02 2.80000000E+02 3.32000000E+02 3.40000000E+02 3.17000000E+02 3.55000000E+02 3.65000000E+02 4.63000000E+02 4.95000000E+02 5.25000000E+02 5.53000000E+02 5.64000000E+02 6.58000000E+02 7.23000000E+02 7.37000000E+02 8.44000000E+02 9.34000000E+02 1.02700000E+03 1.04600000E+03 1.14900000E+03 1.16000000E+03 1.25200000E+03 1.35000000E+03 1.47400000E+03 1.48500000E+03 1.62100000E+03 1.68400000E+03 1.84400000E+03 1.88000000E+03 1.90500000E+03 2.02000000E+03 2.10500000E+03 2.22200000E+03 2.26600000E+03 2.27500000E+03 2.42400000E+03 2.29200000E+03 2.42100000E+03 2.41700000E+03 2.49700000E+03 2.54300000E+03 2.53900000E+03 2.48400000E+03 2.39400000E+03 2.45700000E+03 2.32000000E+03 2.25700000E+03 2.37900000E+03 2.22000000E+03 2.11400000E+03 2.02000000E+03 1.87300000E+03 1.83000000E+03 1.80600000E+03 1.71600000E+03 1.56900000E+03 1.56100000E+03 1.39100000E+03 1.37200000E+03 1.27300000E+03 1.18200000E+03 1.12800000E+03 1.04300000E+03 9.15000000E+02 8.66000000E+02 8.16000000E+02 7.16000000E+02 7.10000000E+02 6.68000000E+02 5.70000000E+02 5.32000000E+02 5.16000000E+02 4.40000000E+02 3.99000000E+02 3.87000000E+02 3.45000000E+02 3.10000000E+02 2.85000000E+02 2.75000000E+02 2.39000000E+02 2.19000000E+02 2.21000000E+02 1.92000000E+02 1.64000000E+02 1.75000000E+02 1.68000000E+02 1.45000000E+02 1.54000000E+02 1.51000000E+02 1.34000000E+02 1.27000000E+02 1.08000000E+02 1.37000000E+02 1.17000000E+02 1.19000000E+02 1.29000000E+02 1.31000000E+02 1.40000000E+02 1.24000000E+02 1.13000000E+02 1.23000000E+02 1.17000000E+02 1.14000000E+02 1.50000000E+02 1.32000000E+02 1.41000000E+02 1.23000000E+02 1.53000000E+02 1.31000000E+02 1.56000000E+02 1.51000000E+02 1.64000000E+02 1.89000000E+02 1.57000000E+02 1.95000000E+02 1.55000000E+02 1.94000000E+02 1.60000000E+02 2.31000000E+02 2.12000000E+02 2.02000000E+02 2.23000000E+02 2.73000000E+02 2.59000000E+02 2.63000000E+02 2.78000000E+02 2.54000000E+02 2.81000000E+02 3.16000000E+02 3.36000000E+02 3.22000000E+02 3.38000000E+02 3.54000000E+02 3.44000000E+02 3.74000000E+02 3.56000000E+02 3.93000000E+02 3.77000000E+02 3.53000000E+02 3.96000000E+02 4.06000000E+02 4.42000000E+02 4.35000000E+02 4.01000000E+02 4.44000000E+02 4.52000000E+02 4.24000000E+02 4.00000000E+02 4.44000000E+02 4.27000000E+02 4.07000000E+02 3.91000000E+02 3.92000000E+02 3.90000000E+02 3.88000000E+02 3.66000000E+02 3.35000000E+02 3.45000000E+02 3.45000000E+02 3.21000000E+02 3.03000000E+02 3.28000000E+02 3.17000000E+02 3.27000000E+02 3.01000000E+02 2.79000000E+02 2.50000000E+02 2.57000000E+02 2.73000000E+02 2.57000000E+02 2.66000000E+02 2.08000000E+02 2.28000000E+02 2.26000000E+02 2.31000000E+02 2.11000000E+02 2.45000000E+02 1.83000000E+02 2.02000000E+02 2.03000000E+02 1.63000000E+02 1.93000000E+02 2.10000000E+02 2.13000000E+02 1.83000000E+02 2.03000000E+02 2.03000000E+02 1.98000000E+02 1.90000000E+02 1.86000000E+02 1.97000000E+02 1.46000000E+02 1.77000000E+02 2.16000000E+02 2.20000000E+02 2.01000000E+02 1.97000000E+02 1.74000000E+02 1.90000000E+02 2.02000000E+02 1.98000000E+02 2.06000000E+02 2.12000000E+02 1.96000000E+02 2.06000000E+02 2.55000000E+02 2.42000000E+02 2.76000000E+02 2.54000000E+02 2.54000000E+02 2.86000000E+02 3.14000000E+02 3.28000000E+02 3.47000000E+02 3.60000000E+02 3.85000000E+02 3.77000000E+02 3.90000000E+02 4.15000000E+02 4.57000000E+02 4.69000000E+02 5.31000000E+02 5.64000000E+02 5.91000000E+02 5.80000000E+02 6.24000000E+02 6.43000000E+02 7.07000000E+02 7.44000000E+02 7.55000000E+02 7.87000000E+02 8.01000000E+02 8.12000000E+02 8.21000000E+02 8.52000000E+02 9.20000000E+02 9.41000000E+02 9.13000000E+02 9.41000000E+02 9.07000000E+02 1.00200000E+03 1.01600000E+03 9.74000000E+02 9.95000000E+02 9.41000000E+02 9.43000000E+02 9.36000000E+02 9.59000000E+02 9.72000000E+02 9.29000000E+02 9.17000000E+02 8.83000000E+02 8.73000000E+02 8.43000000E+02 8.69000000E+02 8.30000000E+02 8.04000000E+02 7.58000000E+02 7.76000000E+02 7.48000000E+02 7.12000000E+02 6.81000000E+02 7.04000000E+02 6.46000000E+02 6.38000000E+02 6.05000000E+02 5.60000000E+02 5.85000000E+02 5.49000000E+02 5.65000000E+02 5.32000000E+02 5.24000000E+02 4.81000000E+02 4.97000000E+02 4.97000000E+02 5.11000000E+02 4.91000000E+02 4.95000000E+02 5.31000000E+02 5.07000000E+02 5.29000000E+02 5.35000000E+02 5.02000000E+02 5.60000000E+02 5.97000000E+02 6.16000000E+02 5.80000000E+02 6.07000000E+02 6.65000000E+02 6.07000000E+02 6.28000000E+02 6.49000000E+02 6.76000000E+02 6.70000000E+02 7.37000000E+02 7.40000000E+02 7.80000000E+02 7.81000000E+02 8.22000000E+02 8.21000000E+02 8.68000000E+02 9.05000000E+02 9.56000000E+02 9.43000000E+02 9.64000000E+02 9.90000000E+02 9.96000000E+02 9.29000000E+02 1.00200000E+03 1.08500000E+03 1.05700000E+03 1.11500000E+03 1.08100000E+03 1.06600000E+03 1.12700000E+03 1.07100000E+03 1.14100000E+03 1.09600000E+03 1.13000000E+03 1.08100000E+03 1.12500000E+03 1.03700000E+03 1.10000000E+03 1.05300000E+03 1.06000000E+03 1.01500000E+03 1.03800000E+03 1.01100000E+03 9.31000000E+02 9.46000000E+02 9.02000000E+02 8.26000000E+02 8.28000000E+02 8.04000000E+02 7.62000000E+02 7.78000000E+02 6.75000000E+02 6.92000000E+02 6.28000000E+02 5.79000000E+02 5.70000000E+02 5.67000000E+02 5.13000000E+02 5.22000000E+02 4.66000000E+02 4.47000000E+02 4.44000000E+02 3.85000000E+02 3.88000000E+02 3.82000000E+02 3.56000000E+02 3.13000000E+02 3.13000000E+02 2.87000000E+02 2.97000000E+02 2.81000000E+02 2.83000000E+02 2.17000000E+02 2.31000000E+02 2.48000000E+02 2.41000000E+02 1.86000000E+02 1.84000000E+02 2.32000000E+02 1.99000000E+02 1.68000000E+02 1.80000000E+02 1.95000000E+02 1.81000000E+02 1.84000000E+02 1.82000000E+02 1.77000000E+02 1.67000000E+02 1.61000000E+02 1.67000000E+02 1.81000000E+02 1.65000000E+02 1.62000000E+02 1.47000000E+02 1.51000000E+02 1.53000000E+02 1.60000000E+02 1.58000000E+02 1.69000000E+02 1.34000000E+02 1.60000000E+02 1.65000000E+02 1.45000000E+02 1.59000000E+02 1.32000000E+02 1.57000000E+02 1.48000000E+02 1.57000000E+02 1.45000000E+02 1.52000000E+02 1.52000000E+02 1.64000000E+02 1.30000000E+02 1.58000000E+02 1.45000000E+02 1.51000000E+02 1.51000000E+02 1.35000000E+02 1.35000000E+02 1.45000000E+02 1.39000000E+02 1.90000000E+02 1.45000000E+02 1.42000000E+02 1.56000000E+02 1.38000000E+02 1.20000000E+02 1.60000000E+02 1.27000000E+02 1.57000000E+02 1.41000000E+02 1.51000000E+02 1.44000000E+02 1.42000000E+02 1.13000000E+02 1.06000000E+02 1.41000000E+02 1.36000000E+02 1.39000000E+02 1.20000000E+02 1.66000000E+02 1.55000000E+02 1.24000000E+02 1.45000000E+02 1.39000000E+02 1.31000000E+02 1.39000000E+02 1.22000000E+02 1.24000000E+02 1.42000000E+02 1.20000000E+02 1.35000000E+02 1.34000000E+02 1.41000000E+02 1.25000000E+02 1.38000000E+02 1.36000000E+02 1.25000000E+02 1.40000000E+02 1.31000000E+02 1.21000000E+02 1.09000000E+02 1.32000000E+02 1.38000000E+02 1.29000000E+02 1.33000000E+02 1.34000000E+02 1.15000000E+02 1.56000000E+02 1.48000000E+02 1.50000000E+02 1.37000000E+02 1.52000000E+02 1.51000000E+02 1.30000000E+02 1.26000000E+02 1.59000000E+02 1.51000000E+02 1.31000000E+02 1.58000000E+02 1.58000000E+02 1.41000000E+02 1.53000000E+02 1.40000000E+02 1.43000000E+02 1.48000000E+02 1.51000000E+02 1.52000000E+02 1.48000000E+02 1.71000000E+02 1.39000000E+02 1.47000000E+02 1.36000000E+02 1.42000000E+02 1.46000000E+02 1.66000000E+02 1.41000000E+02 1.81000000E+02 1.93000000E+02 1.60000000E+02 1.68000000E+02 1.47000000E+02 1.54000000E+02 1.67000000E+02 1.56000000E+02 1.70000000E+02 1.48000000E+02 1.57000000E+02 1.60000000E+02 1.63000000E+02 1.47000000E+02 1.66000000E+02 1.58000000E+02 1.62000000E+02 1.63000000E+02 1.90000000E+02 1.67000000E+02 1.57000000E+02 1.60000000E+02 1.54000000E+02 1.68000000E+02 1.53000000E+02 1.59000000E+02 1.70000000E+02 1.51000000E+02 1.49000000E+02 1.70000000E+02 1.80000000E+02 1.71000000E+02 1.70000000E+02 1.62000000E+02 1.77000000E+02 1.51000000E+02 1.63000000E+02 1.78000000E+02 1.55000000E+02 1.50000000E+02 1.74000000E+02 1.82000000E+02 1.77000000E+02 1.61000000E+02 1.45000000E+02 2.02000000E+02 1.64000000E+02 1.80000000E+02 1.87000000E+02 1.52000000E+02 1.69000000E+02 1.91000000E+02 1.64000000E+02 1.72000000E+02 1.66000000E+02 1.67000000E+02 1.63000000E+02 1.62000000E+02 1.74000000E+02 1.81000000E+02 1.73000000E+02 1.71000000E+02 1.80000000E+02 1.66000000E+02 1.56000000E+02 1.57000000E+02 1.76000000E+02 1.56000000E+02 1.72000000E+02 1.49000000E+02 1.74000000E+02 1.69000000E+02 1.99000000E+02 1.47000000E+02 1.64000000E+02 1.90000000E+02 2.10000000E+02 1.78000000E+02 2.08000000E+02 1.79000000E+02 2.05000000E+02 1.81000000E+02 1.95000000E+02 2.01000000E+02 1.96000000E+02 2.23000000E+02 2.40000000E+02 1.93000000E+02 2.28000000E+02 2.44000000E+02 2.27000000E+02 2.62000000E+02 2.92000000E+02 2.67000000E+02 2.86000000E+02 3.14000000E+02 3.22000000E+02 3.43000000E+02 3.54000000E+02 3.35000000E+02 4.00000000E+02 4.09000000E+02 4.28000000E+02 4.39000000E+02 4.86000000E+02 5.70000000E+02 5.85000000E+02 5.66000000E+02 6.39000000E+02 7.30000000E+02 8.28000000E+02 8.10000000E+02 8.81000000E+02 8.91000000E+02 1.02000000E+03 1.01000000E+03 1.12900000E+03 1.22900000E+03 1.24000000E+03 1.35600000E+03 1.35700000E+03 1.44700000E+03 1.56600000E+03 1.62000000E+03 1.68000000E+03 1.82600000E+03 1.92700000E+03 1.99700000E+03 1.94900000E+03 2.18700000E+03 2.15500000E+03 2.27800000E+03 2.26400000E+03 2.35400000E+03 2.41700000E+03 2.41900000E+03 2.54500000E+03 2.55400000E+03 2.62500000E+03 2.53000000E+03 2.52000000E+03 2.62500000E+03 2.65700000E+03 2.70900000E+03 2.64200000E+03 2.55800000E+03 2.53500000E+03 2.56700000E+03 2.52600000E+03 2.48600000E+03 2.31800000E+03 2.36800000E+03 2.28200000E+03 2.25200000E+03 2.18500000E+03 2.13300000E+03 2.01800000E+03 1.94200000E+03 1.86300000E+03 1.86600000E+03 1.77200000E+03 1.67400000E+03 1.55700000E+03 1.41100000E+03 1.39400000E+03 1.36900000E+03 1.30300000E+03 1.20300000E+03 1.11300000E+03 1.06600000E+03 9.97000000E+02 9.17000000E+02 9.27000000E+02 8.73000000E+02 7.94000000E+02 7.63000000E+02 7.08000000E+02 6.95000000E+02 6.35000000E+02 5.59000000E+02 5.96000000E+02 5.32000000E+02 5.17000000E+02 4.58000000E+02 4.28000000E+02 4.22000000E+02 4.62000000E+02 4.06000000E+02 3.85000000E+02 3.95000000E+02 3.92000000E+02 3.76000000E+02 3.29000000E+02 3.42000000E+02 3.38000000E+02 3.50000000E+02 3.12000000E+02 3.06000000E+02 3.00000000E+02 3.03000000E+02 3.37000000E+02 3.07000000E+02 2.96000000E+02 2.59000000E+02 2.66000000E+02 2.82000000E+02 2.93000000E+02 2.91000000E+02 2.47000000E+02 2.87000000E+02 2.93000000E+02 2.81000000E+02 2.87000000E+02 2.94000000E+02 3.08000000E+02 3.16000000E+02 3.07000000E+02 3.21000000E+02 3.24000000E+02 2.94000000E+02 3.27000000E+02 3.03000000E+02 3.24000000E+02 3.25000000E+02 3.04000000E+02 3.70000000E+02 3.11000000E+02 3.19000000E+02 3.03000000E+02 3.48000000E+02 2.86000000E+02 3.56000000E+02 3.43000000E+02 3.23000000E+02 3.20000000E+02 2.98000000E+02 3.59000000E+02 3.84000000E+02 4.20000000E+02 3.87000000E+02 3.59000000E+02 3.50000000E+02 4.16000000E+02 4.01000000E+02 4.14000000E+02 4.17000000E+02 4.46000000E+02 4.07000000E+02 4.42000000E+02 4.14000000E+02 4.39000000E+02 4.87000000E+02 4.87000000E+02 4.35000000E+02 4.69000000E+02 5.14000000E+02 4.97000000E+02 4.53000000E+02 4.89000000E+02 4.52000000E+02 4.79000000E+02 5.01000000E+02 5.02000000E+02 4.78000000E+02 5.09000000E+02 4.93000000E+02 5.30000000E+02 4.97000000E+02 5.10000000E+02 5.46000000E+02 5.15000000E+02 4.83000000E+02 5.24000000E+02 5.37000000E+02 4.96000000E+02 4.91000000E+02 5.17000000E+02 5.72000000E+02 4.91000000E+02 5.04000000E+02 5.43000000E+02 4.80000000E+02 4.82000000E+02 4.89000000E+02 4.76000000E+02 5.72000000E+02 4.88000000E+02 5.34000000E+02 4.99000000E+02 5.06000000E+02 5.01000000E+02 4.58000000E+02 5.12000000E+02 5.13000000E+02 5.06000000E+02 5.53000000E+02 4.90000000E+02 5.56000000E+02 4.85000000E+02 5.05000000E+02 5.12000000E+02 5.11000000E+02 4.99000000E+02 5.26000000E+02 4.98000000E+02 5.41000000E+02 5.14000000E+02 5.15000000E+02 5.18000000E+02 5.33000000E+02 5.37000000E+02 5.38000000E+02 5.53000000E+02 5.50000000E+02 5.85000000E+02 5.68000000E+02 5.70000000E+02 5.79000000E+02 6.04000000E+02 5.80000000E+02 5.84000000E+02 6.40000000E+02 5.96000000E+02 5.64000000E+02 6.11000000E+02 6.38000000E+02 6.25000000E+02 6.55000000E+02 6.37000000E+02 6.28000000E+02 6.53000000E+02 6.47000000E+02 6.66000000E+02 6.80000000E+02 6.82000000E+02 6.99000000E+02 6.82000000E+02 6.96000000E+02 6.69000000E+02 7.18000000E+02 7.20000000E+02 6.80000000E+02 7.38000000E+02 7.27000000E+02 7.51000000E+02 7.27000000E+02 7.67000000E+02 7.74000000E+02 7.77000000E+02 7.45000000E+02 8.18000000E+02 7.39000000E+02 7.94000000E+02 7.80000000E+02 8.38000000E+02 8.22000000E+02 8.06000000E+02 8.67000000E+02 8.36000000E+02 8.37000000E+02 8.33000000E+02 8.62000000E+02 9.10000000E+02 9.07000000E+02 8.81000000E+02 9.09000000E+02 8.66000000E+02 8.25000000E+02 9.40000000E+02 9.14000000E+02 9.14000000E+02 8.86000000E+02 9.36000000E+02 9.18000000E+02 9.79000000E+02 9.63000000E+02 9.28000000E+02 1.00800000E+03 9.69000000E+02 9.37000000E+02 1.03800000E+03 9.74000000E+02 1.03400000E+03 1.04300000E+03 1.07400000E+03 1.02900000E+03 1.05700000E+03 1.09000000E+03 1.09100000E+03 1.08400000E+03 1.07700000E+03 1.12000000E+03 1.11000000E+03 1.10600000E+03 1.17400000E+03 1.15800000E+03 1.14400000E+03 1.16600000E+03 1.15300000E+03 1.15100000E+03 1.23300000E+03 1.16500000E+03 1.26900000E+03 1.19900000E+03 1.22700000E+03 1.23200000E+03 1.24200000E+03 1.24400000E+03 1.33900000E+03 1.32000000E+03 1.31000000E+03 1.34800000E+03 1.35800000E+03 1.42000000E+03 1.42300000E+03 1.40100000E+03 1.38000000E+03 1.43000000E+03 1.45500000E+03 1.42700000E+03 1.44500000E+03 1.47700000E+03 1.48100000E+03 1.61200000E+03 1.54800000E+03 1.56800000E+03 1.61100000E+03 1.63300000E+03 1.61800000E+03 1.56600000E+03 1.69300000E+03 1.59600000E+03 1.68800000E+03 1.71200000E+03 1.68600000E+03 1.69600000E+03 1.74300000E+03 1.74000000E+03 1.78800000E+03 1.81400000E+03 1.80200000E+03 1.74300000E+03 1.84800000E+03 1.83500000E+03 1.89100000E+03 1.94400000E+03 1.92800000E+03 1.98300000E+03 2.07400000E+03 2.03400000E+03 1.98300000E+03 2.06000000E+03 2.04500000E+03 2.06600000E+03 2.17000000E+03 2.12800000E+03 2.24500000E+03 2.25600000E+03 2.24500000E+03 2.31800000E+03 2.37000000E+03 2.32100000E+03 2.45200000E+03 2.34300000E+03 2.46800000E+03 2.43100000E+03 2.48300000E+03 2.43900000E+03 2.57300000E+03 2.52900000E+03 2.64800000E+03 2.62100000E+03 2.63400000E+03 2.71000000E+03 2.62000000E+03 2.71700000E+03 2.56800000E+03 2.77200000E+03 2.82000000E+03 2.85600000E+03 2.83800000E+03 2.81400000E+03 2.79100000E+03 2.89000000E+03 2.81000000E+03 2.95200000E+03 2.85200000E+03 2.84300000E+03 2.96800000E+03 2.92400000E+03 2.95200000E+03 2.98800000E+03 2.94200000E+03 3.15600000E+03 3.09700000E+03 3.07400000E+03 3.04800000E+03 3.11700000E+03 3.17900000E+03 3.12400000E+03 3.15500000E+03 3.25200000E+03 3.15800000E+03 3.18000000E+03 3.28400000E+03 3.26200000E+03 3.26200000E+03 3.34700000E+03 3.43500000E+03 3.35600000E+03 3.47700000E+03 3.36100000E+03 3.59700000E+03 3.51900000E+03 3.56300000E+03 3.68100000E+03 3.66600000E+03 3.68600000E+03 3.74100000E+03 3.81000000E+03 3.89900000E+03 3.82600000E+03 3.91400000E+03 3.88500000E+03 4.09800000E+03 4.14900000E+03 4.13600000E+03 4.18900000E+03 4.12800000E+03 4.25700000E+03 4.30900000E+03 4.39000000E+03 4.45600000E+03 4.57700000E+03 4.76100000E+03 4.72500000E+03 4.94500000E+03 4.81300000E+03 4.90300000E+03 5.03500000E+03 5.15800000E+03 5.12600000E+03 5.36300000E+03 5.28300000E+03 5.38700000E+03 5.49800000E+03 5.59800000E+03 5.76700000E+03 5.74300000E+03 5.88400000E+03 6.04100000E+03 6.07700000E+03 6.21800000E+03 6.36900000E+03 6.58900000E+03 6.71300000E+03 6.70500000E+03 6.83100000E+03 7.01200000E+03 6.97900000E+03 7.34600000E+03 7.33500000E+03 7.35800000E+03 7.61800000E+03 7.56100000E+03 7.95200000E+03 8.00900000E+03 8.22900000E+03 8.36700000E+03 8.44600000E+03 8.48500000E+03 8.66200000E+03 8.79700000E+03 9.07900000E+03 9.30500000E+03 9.35400000E+03 9.56600000E+03 9.74500000E+03 9.89700000E+03 1.02100000E+04 1.02010000E+04 1.03860000E+04 1.05320000E+04 1.07650000E+04 1.07830000E+04 1.09370000E+04 1.12650000E+04 1.12000000E+04 1.15580000E+04 1.18520000E+04 1.18510000E+04 1.22030000E+04 1.24340000E+04 1.25400000E+04 1.26210000E+04 1.28280000E+04 1.32350000E+04 1.33470000E+04 1.35400000E+04 1.39020000E+04 1.37720000E+04 1.41750000E+04 1.41700000E+04 1.42410000E+04 1.45330000E+04 1.48730000E+04 1.50260000E+04 1.53220000E+04 1.52280000E+04 1.55580000E+04 1.57480000E+04 1.58810000E+04 1.63410000E+04 1.61550000E+04 1.63760000E+04 1.68150000E+04 1.66220000E+04 1.70870000E+04 1.73410000E+04 1.72140000E+04 1.73440000E+04 1.75800000E+04 1.76530000E+04 1.79140000E+04 1.81500000E+04 1.82970000E+04 1.84250000E+04 1.85430000E+04 1.89060000E+04 1.87290000E+04 1.92650000E+04 1.89840000E+04 1.91320000E+04 1.93130000E+04 1.97260000E+04 1.95000000E+04 1.98700000E+04 1.98140000E+04 1.98750000E+04 2.00340000E+04 2.03290000E+04 2.03280000E+04 2.04720000E+04 2.06300000E+04 2.07860000E+04 2.08460000E+04 2.07220000E+04 2.10540000E+04 2.10480000E+04 2.10510000E+04 2.10530000E+04 2.14170000E+04 2.13460000E+04 2.13510000E+04 2.13480000E+04 2.15210000E+04 2.14840000E+04 2.15980000E+04 2.15880000E+04 2.15770000E+04 2.17200000E+04 2.17310000E+04 2.18800000E+04 2.17360000E+04 2.20560000E+04 2.20090000E+04 2.19360000E+04 2.21240000E+04 2.20110000E+04 2.19290000E+04 2.22640000E+04 2.16400000E+04 2.18670000E+04 2.20660000E+04 2.19100000E+04 2.17650000E+04 2.21470000E+04 2.22980000E+04 2.21300000E+04 2.20540000E+04 2.22370000E+04 2.19370000E+04 2.19940000E+04 2.21240000E+04 2.21280000E+04 2.19850000E+04 2.18620000E+04 2.22690000E+04 2.17620000E+04 2.18750000E+04 2.18050000E+04 2.18480000E+04 2.17240000E+04 2.19030000E+04 2.18110000E+04 2.17630000E+04 2.17120000E+04 2.15990000E+04 2.13440000E+04 2.16680000E+04 2.14900000E+04 2.14470000E+04 2.13320000E+04 2.13250000E+04 2.13300000E+04 2.11610000E+04 2.09910000E+04 2.07120000E+04 2.06680000E+04 2.07210000E+04 2.07910000E+04 2.05700000E+04 2.04160000E+04 2.04130000E+04 2.03960000E+04 2.02920000E+04 2.01580000E+04 2.00320000E+04 1.99350000E+04 1.96920000E+04 1.98860000E+04 1.97210000E+04 1.94600000E+04 1.91670000E+04 1.96670000E+04 1.89740000E+04 1.87170000E+04 1.87490000E+04 1.87880000E+04 1.82950000E+04 1.82340000E+04 1.80680000E+04 1.81850000E+04 1.80460000E+04 1.82350000E+04 1.80090000E+04 1.76330000E+04 1.72910000E+04 1.73160000E+04 1.70700000E+04 1.70840000E+04 1.70080000E+04 1.69900000E+04 1.65150000E+04 1.66210000E+04 1.64460000E+04 1.62550000E+04 1.62940000E+04 1.60950000E+04 1.60200000E+04 1.59680000E+04 1.59800000E+04 1.58410000E+04 1.58230000E+04 1.58050000E+04 1.59250000E+04 1.58710000E+04 1.58390000E+04 1.57380000E+04 1.57810000E+04 1.58630000E+04 1.58130000E+04 1.58240000E+04 1.61560000E+04 1.60870000E+04 1.62720000E+04 1.64310000E+04 1.65730000E+04 1.66560000E+04 1.67600000E+04 1.69750000E+04 1.69620000E+04 1.73950000E+04 1.71060000E+04 1.75420000E+04 1.77560000E+04 1.77420000E+04 1.80530000E+04 1.80550000E+04 1.83410000E+04 1.81400000E+04 1.86190000E+04 1.87200000E+04 1.89460000E+04 1.89700000E+04 1.90900000E+04 1.91690000E+04 1.89170000E+04 1.92640000E+04 1.89470000E+04 1.90080000E+04 1.90260000E+04 1.90560000E+04 1.87700000E+04 1.87260000E+04 1.84360000E+04 1.85670000E+04 1.81930000E+04 1.80230000E+04 1.79850000E+04 1.75890000E+04 1.74430000E+04 1.71790000E+04 1.67470000E+04 1.65560000E+04 1.59810000E+04 1.57240000E+04 1.55100000E+04 1.49050000E+04 1.42890000E+04 1.40060000E+04 1.35090000E+04 1.30230000E+04 1.25910000E+04 1.20740000E+04 1.14270000E+04 1.10860000E+04 1.05700000E+04 1.02740000E+04 9.69600000E+03 9.13100000E+03 8.61200000E+03 8.13200000E+03 7.68400000E+03 7.16300000E+03 6.77400000E+03 6.20700000E+03 5.97400000E+03 5.60500000E+03 5.18300000E+03 4.83300000E+03 4.43800000E+03 4.07600000E+03 3.84100000E+03 3.60900000E+03 3.30300000E+03 2.99000000E+03 2.70200000E+03 2.52200000E+03 2.25500000E+03 2.09800000E+03 1.93800000E+03 1.73100000E+03 1.64000000E+03 1.41200000E+03 1.27900000E+03 1.15400000E+03 1.02700000E+03 9.45000000E+02 8.56000000E+02 7.61000000E+02 6.94000000E+02 6.37000000E+02 6.20000000E+02 5.66000000E+02 4.68000000E+02 5.00000000E+02 4.49000000E+02 4.14000000E+02 3.93000000E+02 3.37000000E+02 2.90000000E+02 3.27000000E+02 2.74000000E+02 2.33000000E+02 2.58000000E+02 2.30000000E+02 2.28000000E+02 1.98000000E+02 2.05000000E+02 1.89000000E+02 1.65000000E+02 1.98000000E+02 1.60000000E+02 1.46000000E+02 1.76000000E+02 1.74000000E+02 1.34000000E+02 1.57000000E+02 1.60000000E+02 1.51000000E+02 1.34000000E+02 1.37000000E+02 1.35000000E+02 1.22000000E+02 1.04000000E+02 1.30000000E+02 1.13000000E+02 1.30000000E+02 1.26000000E+02 1.21000000E+02 1.22000000E+02 1.06000000E+02 1.25000000E+02 1.06000000E+02 1.19000000E+02 1.12000000E+02 1.32000000E+02 1.03000000E+02 1.07000000E+02 9.50000000E+01 8.70000000E+01 8.50000000E+01 1.06000000E+02 9.20000000E+01 9.20000000E+01 1.02000000E+02 9.00000000E+01 1.00000000E+02 8.50000000E+01 8.80000000E+01 8.20000000E+01 9.20000000E+01 7.70000000E+01 8.80000000E+01 9.30000000E+01 9.40000000E+01 7.30000000E+01 8.30000000E+01 8.50000000E+01 7.20000000E+01 7.40000000E+01 8.00000000E+01 8.80000000E+01 6.90000000E+01 9.20000000E+01 8.20000000E+01 8.80000000E+01 8.60000000E+01 6.50000000E+01 8.10000000E+01 8.20000000E+01 7.80000000E+01 6.20000000E+01 8.20000000E+01 7.70000000E+01 6.30000000E+01 8.90000000E+01 6.40000000E+01 6.90000000E+01 6.00000000E+01 7.90000000E+01 5.80000000E+01 5.40000000E+01 6.70000000E+01 6.30000000E+01 7.90000000E+01 6.90000000E+01 8.00000000E+01 6.70000000E+01 7.90000000E+01 5.80000000E+01 7.50000000E+01 6.50000000E+01 6.30000000E+01 8.10000000E+01 6.80000000E+01 5.90000000E+01 7.00000000E+01 6.10000000E+01 6.10000000E+01 7.70000000E+01 5.50000000E+01 7.00000000E+01 6.50000000E+01 6.70000000E+01 6.80000000E+01 5.70000000E+01 5.30000000E+01 4.90000000E+01 4.70000000E+01 4.60000000E+01 7.10000000E+01 5.90000000E+01 6.10000000E+01 4.50000000E+01 6.60000000E+01 5.00000000E+01 5.30000000E+01 6.40000000E+01 4.60000000E+01 6.70000000E+01 5.40000000E+01 6.20000000E+01 5.20000000E+01 6.80000000E+01 4.60000000E+01 5.30000000E+01 5.00000000E+01 4.40000000E+01 3.90000000E+01 3.90000000E+01 5.60000000E+01 3.50000000E+01 6.20000000E+01 5.50000000E+01 6.00000000E+01 5.40000000E+01 5.60000000E+01 5.00000000E+01 4.40000000E+01 4.40000000E+01 4.90000000E+01 5.30000000E+01 4.10000000E+01 4.70000000E+01 4.20000000E+01 6.10000000E+01 4.30000000E+01 3.80000000E+01 4.10000000E+01 5.00000000E+01 5.70000000E+01 4.90000000E+01 4.50000000E+01 4.80000000E+01 4.50000000E+01 4.90000000E+01 5.00000000E+01 4.30000000E+01 4.80000000E+01 3.90000000E+01 3.00000000E+01 3.80000000E+01 4.80000000E+01 5.10000000E+01 5.90000000E+01 4.10000000E+01 4.20000000E+01 3.50000000E+01 4.20000000E+01 3.00000000E+01 3.80000000E+01 4.70000000E+01 5.80000000E+01 4.60000000E+01 3.90000000E+01 4.80000000E+01 3.90000000E+01 3.30000000E+01 4.50000000E+01 4.20000000E+01 4.30000000E+01 4.60000000E+01 3.20000000E+01 3.80000000E+01 4.90000000E+01 4.40000000E+01 3.80000000E+01 3.80000000E+01 3.90000000E+01 4.50000000E+01 4.00000000E+01 2.70000000E+01 4.20000000E+01 3.20000000E+01 3.10000000E+01 4.30000000E+01 3.80000000E+01 3.70000000E+01 4.10000000E+01 3.40000000E+01 3.20000000E+01 3.40000000E+01 4.00000000E+01 4.50000000E+01 3.70000000E+01 4.10000000E+01 4.10000000E+01 4.30000000E+01 3.70000000E+01 3.80000000E+01 3.90000000E+01 2.60000000E+01 3.20000000E+01 4.40000000E+01 3.60000000E+01 2.70000000E+01 3.70000000E+01 3.20000000E+01 3.60000000E+01 3.00000000E+01 3.90000000E+01 3.50000000E+01 3.60000000E+01 3.70000000E+01 3.80000000E+01 4.30000000E+01 2.40000000E+01 3.10000000E+01 2.90000000E+01 2.70000000E+01 4.10000000E+01 3.10000000E+01 2.80000000E+01 2.20000000E+01 3.90000000E+01 3.30000000E+01 2.80000000E+01 2.40000000E+01 3.10000000E+01 3.10000000E+01 3.50000000E+01 4.70000000E+01 3.90000000E+01 3.00000000E+01 3.50000000E+01 2.90000000E+01 3.40000000E+01 3.10000000E+01 4.10000000E+01 3.30000000E+01 2.40000000E+01 3.20000000E+01 2.70000000E+01 4.80000000E+01 2.40000000E+01 2.50000000E+01 2.90000000E+01 2.80000000E+01 3.10000000E+01 3.50000000E+01 2.80000000E+01 2.60000000E+01 1.40000000E+01 3.10000000E+01 2.00000000E+01 3.50000000E+01 3.00000000E+01 3.90000000E+01 3.40000000E+01 2.30000000E+01 2.60000000E+01 2.30000000E+01 3.30000000E+01 2.40000000E+01 3.40000000E+01 3.30000000E+01 3.20000000E+01 3.30000000E+01 1.80000000E+01 1.90000000E+01 2.30000000E+01 2.40000000E+01 2.60000000E+01 3.00000000E+01 2.30000000E+01 2.80000000E+01 2.30000000E+01 2.50000000E+01 2.50000000E+01 2.10000000E+01 2.00000000E+01 2.30000000E+01 2.60000000E+01 2.10000000E+01 1.70000000E+01 1.70000000E+01 2.40000000E+01 2.40000000E+01 2.70000000E+01 2.50000000E+01 1.80000000E+01 2.20000000E+01 2.70000000E+01 1.50000000E+01 2.80000000E+01 1.80000000E+01 2.20000000E+01 2.20000000E+01 1.80000000E+01 1.40000000E+01 3.10000000E+01 7.00000000E+00 2.60000000E+01 2.00000000E+01 2.40000000E+01 2.20000000E+01 2.10000000E+01 2.30000000E+01 1.60000000E+01 2.40000000E+01 1.60000000E+01 1.90000000E+01 2.00000000E+01 2.20000000E+01 2.40000000E+01 1.90000000E+01 1.50000000E+01 1.00000000E+01 2.00000000E+01 2.30000000E+01 2.20000000E+01 1.90000000E+01 1.40000000E+01 1.40000000E+01 2.20000000E+01 1.90000000E+01 2.10000000E+01 2.80000000E+01 2.20000000E+01 9.00000000E+00 2.00000000E+01 1.50000000E+01 2.70000000E+01 1.80000000E+01 1.60000000E+01 2.70000000E+01 3.20000000E+01 1.30000000E+01 2.20000000E+01 2.70000000E+01 2.20000000E+01 1.70000000E+01 3.20000000E+01 2.10000000E+01 2.00000000E+01 2.50000000E+01 2.30000000E+01 2.00000000E+01 2.10000000E+01 3.00000000E+01 1.70000000E+01 1.60000000E+01 2.70000000E+01 2.20000000E+01 2.20000000E+01 2.70000000E+01 2.50000000E+01 2.60000000E+01 2.10000000E+01 2.60000000E+01 2.00000000E+01 1.90000000E+01 2.50000000E+01 1.70000000E+01 2.10000000E+01 2.20000000E+01 2.30000000E+01 1.50000000E+01 1.30000000E+01 2.00000000E+01 1.80000000E+01 1.70000000E+01 1.50000000E+01 1.00000000E+01 1.40000000E+01 1.00000000E+01 1.80000000E+01 1.20000000E+01 9.00000000E+00 7.00000000E+00 1.40000000E+01 1.30000000E+01 1.20000000E+01 1.70000000E+01 7.00000000E+00 6.00000000E+00 1.90000000E+01 8.00000000E+00 7.00000000E+00 8.00000000E+00 9.00000000E+00 8.00000000E+00 6.00000000E+00 4.00000000E+00 5.00000000E+00 8.00000000E+00 2.00000000E+00 6.00000000E+00 8.00000000E+00 1.00000000E+01 9.00000000E+00 7.00000000E+00 6.00000000E+00 4.00000000E+00 6.00000000E+00 9.00000000E+00 3.00000000E+00 2.00000000E+00 6.00000000E+00 5.00000000E+00 4.00000000E+00 5.00000000E+00 6.00000000E+00 8.00000000E+00 9.00000000E+00 4.00000000E+00 3.00000000E+00 9.00000000E+00 6.00000000E+00 5.00000000E+00 2.00000000E+00 3.00000000E+00 3.00000000E+00 3.00000000E+00 2.00000000E+00 3.00000000E+00 1.00000000E+00 4.00000000E+00 4.00000000E+00 1.00000000E+00 8.00000000E+00 1.00000000E+00 6.00000000E+00 4.00000000E+00 5.00000000E+00 4.00000000E+00 0.00000000E+00 3.00000000E+00 2.00000000E+00 4.00000000E+00 5.00000000E+00 5.00000000E+00 1.00000000E+00 4.00000000E+00 5.00000000E+00 5.00000000E+00 2.00000000E+00 3.00000000E+00 5.00000000E+00 2.00000000E+00 3.00000000E+00 5.00000000E+00 5.00000000E+00 3.00000000E+00 3.00000000E+00 ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7517662 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/0000755000000000000000000000000014741736404016611 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ac.mat0000644000000000000000000002252614741736366017655 0ustar00rootrootAc 1 89 1.000000 12 4 3 5 3 3 3 3 6 3 3 9 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0800E-03 1.0800E-03 1.1707E-03 1.2690E-03 1.2690E-03 1.5000E-03 2.0000E-03 3.0000E-03 3.2190E-03 3.2190E-03 3.2937E-03 3.3702E-03 3.3702E-03 3.6296E-03 3.9090E-03 3.9090E-03 4.0000E-03 4.6560E-03 4.6560E-03 5.0000E-03 5.0020E-03 5.0020E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.5871E-02 1.5871E-02 1.7403E-02 1.9083E-02 1.9083E-02 1.9458E-02 1.9840E-02 1.9840E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.0676E-01 1.0676E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3260E+01 1.6719E+02 1.5090E+01 1.3162E+01 1.3162E+01 1.3053E+01 1.2931E+01 1.2931E+01 1.2629E+01 1.1982E+01 1.0740E+01 1.0486E+01 1.0486E+01 1.0400E+01 1.0313E+01 1.0313E+01 1.0023E+01 9.7191E+00 9.7191E+00 9.6236E+00 8.9684E+00 8.9684E+00 8.6475E+00 8.6475E+00 8.6475E+00 7.8066E+00 6.4326E+00 5.3768E+00 3.6314E+00 3.4139E+00 3.4139E+00 3.0723E+00 2.7534E+00 2.7534E+00 2.6895E+00 2.6266E+00 2.6266E+00 2.6009E+00 1.5311E+00 1.0289E+00 7.3901E-01 5.5492E-01 3.4855E-01 2.4165E-01 2.1656E-01 2.1656E-01 1.2032E-01 7.1965E-02 4.8083E-02 3.4484E-02 2.5961E-02 2.0253E-02 1.6236E-02 1.3305E-02 1.1102E-02 9.4035E-03 8.0660E-03 6.1235E-03 5.4060E-03 4.8081E-03 3.8752E-03 3.5067E-03 3.3608E-03 2.2674E-03 2.0996E-03 1.8153E-03 1.5849E-03 1.3958E-03 1.1066E-03 8.9843E-04 8.6050E-04 7.4378E-04 5.3401E-04 4.0187E-04 2.2658E-04 1.4520E-04 1.0090E-04 7.4167E-05 5.6792E-05 4.4882E-05 3.6367E-05 3.0054E-05 2.5255E-05 2.1521E-05 1.8558E-05 1.6168E-05 1.4210E-05 1.1228E-05 9.0958E-06 7.5175E-06 6.3158E-06 5.3821E-06 4.6394E-06 4.0426E-06 2.2741E-06 1.4555E-06 1.0106E-06 5.6845E-07 3.6394E-07 1.6170E-07 9.0958E-08 4.0426E-08 2.2738E-08 1.4552E-08 1.0106E-08 5.6845E-09 3.6394E-09 1.6170E-09 9.0958E-10 4.0426E-10 2.2738E-10 1.4552E-10 1.0106E-10 5.6845E-11 3.6394E-11 1.6170E-11 9.0958E-12 4.0426E-12 2.2738E-12 1.4552E-12 1.0106E-12 5.6845E-13 3.6394E-13 INCOHERENT SCATTERING CROSS SECTION 4.8728E-03 5.7778E+10 4.8971E-03 5.3768E-03 5.3768E-03 5.9260E-03 6.5095E-03 6.5095E-03 7.9100E-03 1.0878E-02 1.6616E-02 1.7836E-02 1.7836E-02 1.8247E-02 1.8664E-02 1.8664E-02 2.0050E-02 2.1505E-02 2.1505E-02 2.1966E-02 2.5176E-02 2.5176E-02 2.6765E-02 2.6765E-02 2.6765E-02 3.1035E-02 3.8542E-02 4.5227E-02 5.8437E-02 6.0294E-02 6.0294E-02 6.3235E-02 6.6182E-02 6.6182E-02 6.6818E-02 6.7429E-02 6.7429E-02 6.7668E-02 8.0055E-02 8.7695E-02 9.2310E-02 9.4990E-02 9.7032E-02 9.6926E-02 9.6608E-02 9.6608E-02 9.3186E-02 8.8278E-02 8.3545E-02 7.9286E-02 7.5519E-02 7.2177E-02 6.9196E-02 6.6527E-02 6.4124E-02 6.1938E-02 5.9932E-02 5.6368E-02 5.4776E-02 5.3292E-02 5.0620E-02 4.9418E-02 4.8914E-02 4.4325E-02 4.3452E-02 4.1828E-02 4.0346E-02 3.8988E-02 3.6575E-02 3.4484E-02 3.4059E-02 3.2652E-02 2.9608E-02 2.7163E-02 2.2680E-02 1.9595E-02 1.7321E-02 1.5571E-02 1.4173E-02 1.3030E-02 1.2072E-02 1.1260E-02 1.0560E-02 9.9499E-03 9.4141E-03 8.9366E-03 8.5095E-03 7.7774E-03 7.1726E-03 6.6633E-03 6.2256E-03 5.8463E-03 5.5148E-03 5.2230E-03 4.1513E-03 3.4643E-03 2.9842E-03 2.3542E-03 1.9539E-03 1.3916E-03 1.0910E-03 7.7323E-04 6.0559E-04 5.0134E-04 4.2919E-04 3.3529E-04 2.7587E-04 1.9261E-04 1.4908E-04 1.0366E-04 8.0002E-05 6.5413E-05 5.5466E-05 4.2733E-05 3.4882E-05 2.4115E-05 1.8539E-05 1.2786E-05 9.8173E-06 7.9923E-06 6.7562E-06 5.1805E-06 4.2150E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.4564E+03 4.2975E+05 2.2846E+04 5.6102E+03 5.6898E+03 4.8839E+03 4.1911E+03 4.2760E+03 3.0691E+03 1.6836E+03 6.8729E+02 5.8543E+02 1.5258E+03 1.4061E+03 1.2961E+03 1.8818E+03 1.5559E+03 1.2868E+03 1.4947E+03 1.4165E+03 9.6555E+02 1.0250E+03 8.5997E+02 8.5918E+02 8.9658E+02 5.7508E+02 2.8144E+02 1.5990E+02 5.6315E+01 4.8649E+01 1.1791E+02 9.1779E+01 7.1434E+01 1.0083E+02 9.5938E+01 9.1329E+01 1.0510E+02 1.0348E+02 3.6500E+01 1.7112E+01 9.4379E+00 5.7827E+00 2.6553E+00 1.4473E+00 1.2114E+00 5.3079E+00 2.2202E+00 1.0528E+00 5.9188E-01 3.7216E-01 2.5313E-01 1.8247E-01 1.3753E-01 1.0735E-01 8.6174E-02 7.0771E-02 5.9231E-02 4.3410E-02 3.7853E-02 3.3342E-02 2.6540E-02 2.3940E-02 2.2924E-02 1.5486E-02 1.4373E-02 1.2507E-02 1.1014E-02 9.8012E-03 7.9662E-03 6.6554E-03 6.4166E-03 5.6791E-03 4.3357E-03 3.4696E-03 2.2669E-03 1.6584E-03 1.2979E-03 1.0616E-03 8.9578E-04 7.7376E-04 6.8013E-04 6.0638E-04 5.4670E-04 4.9736E-04 4.5625E-04 4.2123E-04 3.9126E-04 3.4218E-04 3.0399E-04 2.7348E-04 2.4842E-04 2.2754E-04 2.0990E-04 1.9478E-04 1.4313E-04 1.1308E-04 9.3451E-05 6.9339E-05 5.5121E-05 3.6447E-05 2.7216E-05 1.8062E-05 1.3515E-05 1.0799E-05 8.9923E-06 6.7349E-06 5.3848E-06 3.5863E-06 2.6897E-06 1.7921E-06 1.3438E-06 1.0748E-06 8.9552E-07 6.7164E-07 5.3715E-07 3.5810E-07 2.6871E-07 1.7905E-07 1.3430E-07 1.0743E-07 8.9525E-08 6.7137E-08 5.3715E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.2919E-04 6.8114E-04 1.3252E-03 2.0948E-03 2.9198E-03 4.5793E-03 6.1859E-03 6.5360E-03 7.7411E-03 1.0557E-02 1.3051E-02 1.8422E-02 2.2908E-02 2.6765E-02 3.0160E-02 3.3237E-02 3.6049E-02 3.8648E-02 4.1036E-02 4.3290E-02 4.5359E-02 4.7322E-02 4.9153E-02 5.0850E-02 5.3954E-02 5.6713E-02 5.9206E-02 6.1514E-02 6.3609E-02 6.5519E-02 6.7296E-02 7.4485E-02 7.9843E-02 8.3981E-02 9.0082E-02 9.4379E-02 1.0117E-01 1.0520E-01 1.0990E-01 1.1260E-01 1.1435E-01 1.1563E-01 1.1730E-01 1.1839E-01 1.1998E-01 1.2083E-01 1.2175E-01 1.2226E-01 1.2258E-01 1.2279E-01 1.2308E-01 1.2327E-01 1.2351E-01 1.2364E-01 1.2380E-01 1.2388E-01 1.2390E-01 1.2393E-01 1.2398E-01 1.2401E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0981E-08 2.6961E-06 9.4910E-06 3.8675E-05 7.6899E-05 1.1785E-04 1.5855E-04 1.9786E-04 2.3537E-04 2.7083E-04 3.0452E-04 3.3608E-04 3.6579E-04 3.9391E-04 4.2044E-04 4.4564E-04 4.9232E-04 5.3450E-04 5.7296E-04 6.0824E-04 6.4087E-04 6.7084E-04 6.9869E-04 8.1302E-04 8.9870E-04 9.6634E-04 1.0669E-03 1.1396E-03 1.2581E-03 1.3319E-03 1.4213E-03 1.4746E-03 1.5109E-03 1.5374E-03 1.5741E-03 1.5985E-03 1.6348E-03 1.6555E-03 1.6780E-03 1.6913E-03 1.6995E-03 1.7051E-03 1.7128E-03 1.7176E-03 1.7242E-03 1.7282E-03 1.7319E-03 1.7343E-03 1.7356E-03 1.7364E-03 1.7375E-03 1.7382E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ag.mat0000644000000000000000000002005014741736366017647 0ustar00rootrootAg 1 47 1.000000 5 7 3 3 9 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.3511E-03 3.3511E-03 3.4363E-03 3.5237E-03 3.5237E-03 3.6620E-03 3.8058E-03 3.8058E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.5514E-02 2.5514E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.8328E+00 4.4417E+01 8.7597E+00 7.4531E+00 7.0177E+00 6.1132E+00 5.8118E+00 5.8118E+00 5.7397E+00 5.6666E+00 5.6666E+00 5.5529E+00 5.4372E+00 5.4372E+00 5.2847E+00 4.5774E+00 3.9962E+00 3.1420E+00 2.5631E+00 1.6782E+00 1.1646E+00 8.2682E-01 8.2682E-01 6.5431E-01 4.2748E-01 3.0170E-01 2.2343E-01 1.3645E-01 9.2341E-02 4.4808E-02 2.6385E-02 1.7334E-02 1.2243E-02 9.1047E-03 7.0344E-03 5.5970E-03 4.5584E-03 3.7837E-03 3.1906E-03 2.7264E-03 2.0567E-03 1.8105E-03 1.6060E-03 1.2885E-03 1.1640E-03 1.1149E-03 7.4755E-04 6.9142E-04 5.9652E-04 5.1988E-04 4.5711E-04 3.6144E-04 2.9293E-04 2.8048E-04 2.4220E-04 1.7350E-04 1.3036E-04 7.3359E-05 4.6963E-05 3.2621E-05 2.3967E-05 1.8351E-05 1.4499E-05 1.1746E-05 9.7086E-06 8.1566E-06 6.9507E-06 5.9904E-06 5.2200E-06 4.5880E-06 3.6250E-06 2.9366E-06 2.4269E-06 2.0394E-06 1.7374E-06 1.4984E-06 1.3053E-06 7.3415E-07 4.6985E-07 3.2626E-07 1.8351E-07 1.1746E-07 5.2200E-08 2.9360E-08 1.3053E-08 7.3415E-09 4.6980E-09 3.2626E-09 1.8351E-09 1.1746E-09 5.2200E-10 2.9360E-10 1.3053E-10 7.3415E-11 4.6980E-11 3.2626E-11 1.8351E-11 1.1746E-11 5.2200E-12 2.9360E-12 1.3053E-12 7.3415E-13 4.6980E-13 3.2626E-13 1.8351E-13 1.1746E-13 INCOHERENT SCATTERING CROSS SECTION 4.9810E-03 3.8421E-03 1.8630E-03 9.1671E-03 1.3455E-02 2.1729E-02 2.4459E-02 2.4459E-02 2.5109E-02 2.5771E-02 2.5771E-02 2.6808E-02 2.7875E-02 2.7875E-02 2.9299E-02 3.6222E-02 4.2670E-02 5.4238E-02 6.3868E-02 8.1007E-02 9.2173E-02 1.0071E-01 1.0071E-01 1.0563E-01 1.1261E-01 1.1624E-01 1.1791E-01 1.1797E-01 1.1601E-01 1.0892E-01 1.0189E-01 9.5727E-02 9.0387E-02 8.5734E-02 8.1677E-02 7.8123E-02 7.4978E-02 7.2165E-02 6.9618E-02 6.7290E-02 6.3179E-02 6.1356E-02 5.9664E-02 5.6617E-02 5.5237E-02 5.4656E-02 4.9447E-02 4.8465E-02 4.6639E-02 4.4976E-02 4.3452E-02 4.0750E-02 3.8410E-02 3.7936E-02 3.6363E-02 3.2966E-02 3.0237E-02 2.5229E-02 2.1790E-02 1.9261E-02 1.7312E-02 1.5755E-02 1.4488E-02 1.3421E-02 1.2517E-02 1.1741E-02 1.1060E-02 1.0462E-02 9.9319E-03 9.4630E-03 8.6479E-03 7.9723E-03 7.4085E-03 6.9228E-03 6.4985E-03 6.1300E-03 5.8062E-03 4.6131E-03 3.8505E-03 3.3179E-03 2.6167E-03 2.1717E-03 1.5465E-03 1.2126E-03 8.5920E-04 6.7329E-04 5.5717E-04 4.7706E-04 3.7260E-04 3.0656E-04 2.1410E-04 1.6570E-04 1.1523E-04 8.8935E-05 7.2689E-05 6.1635E-05 4.7499E-05 3.8784E-05 2.6803E-05 2.0606E-05 1.4208E-05 1.0909E-05 8.8823E-06 7.5090E-06 5.7559E-06 4.6851E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.0288E+03 1.3562E+06 3.4272E+04 2.7831E+03 1.3935E+03 5.0748E+02 3.8287E+02 1.2684E+03 1.1918E+03 1.1199E+03 1.5409E+03 1.4023E+03 1.2762E+03 1.4622E+03 1.2997E+03 7.3415E+02 4.5701E+02 2.1321E+02 1.1663E+02 3.8220E+01 1.7100E+01 8.5976E+00 5.4466E+01 3.5920E+01 1.6654E+01 9.0275E+00 5.4249E+00 2.3962E+00 1.2612E+00 3.8890E-01 1.6894E-01 8.9166E-02 5.3395E-02 3.4927E-02 2.4386E-02 1.7900E-02 1.3672E-02 1.0783E-02 8.7204E-03 7.1974E-03 5.1765E-03 4.4992E-03 3.9648E-03 3.1442E-03 2.8071E-03 2.6708E-03 1.8021E-03 1.6775E-03 1.4643E-03 1.2919E-03 1.1519E-03 9.4010E-04 7.8774E-04 7.5983E-04 6.7405E-04 5.1925E-04 4.1938E-04 2.7864E-04 2.0651E-04 1.6324E-04 1.3460E-04 1.1434E-04 9.9263E-05 8.7651E-05 7.8439E-05 7.0958E-05 6.4761E-05 5.9513E-05 5.5097E-05 5.1262E-05 4.4998E-05 4.0085E-05 3.6138E-05 3.2894E-05 3.0181E-05 2.7881E-05 2.5904E-05 1.9121E-05 1.5152E-05 1.2545E-05 9.3346E-06 7.4308E-06 4.9207E-06 3.6786E-06 2.4442E-06 1.8301E-06 1.4627E-06 1.2182E-06 9.1280E-07 7.2968E-07 4.8627E-07 3.6456E-07 2.4297E-07 1.8222E-07 1.4577E-07 1.2143E-07 9.1057E-08 7.2856E-08 4.8571E-08 3.6423E-08 2.4280E-08 1.8211E-08 1.4571E-08 1.2143E-08 9.1057E-09 7.2856E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.6034E-04 2.4916E-04 4.7402E-04 7.5034E-04 1.0681E-03 1.7961E-03 2.6016E-03 2.7842E-03 3.4378E-03 5.1154E-03 6.7385E-03 1.0434E-02 1.3645E-02 1.6419E-02 1.8892E-02 2.1120E-02 2.3147E-02 2.5000E-02 2.6703E-02 2.8272E-02 2.9723E-02 3.1063E-02 3.2297E-02 3.3458E-02 3.5580E-02 3.7472E-02 3.9192E-02 4.0755E-02 4.2179E-02 4.3479E-02 4.4685E-02 4.9565E-02 5.3182E-02 5.5996E-02 6.0183E-02 6.3142E-02 6.7832E-02 7.0623E-02 7.3917E-02 7.5759E-02 7.6988E-02 7.7881E-02 7.9053E-02 7.9835E-02 8.0952E-02 8.1510E-02 8.2180E-02 8.2515E-02 8.2738E-02 8.2906E-02 8.3073E-02 8.3240E-02 8.3408E-02 8.3520E-02 8.3576E-02 8.3631E-02 8.3687E-02 8.3687E-02 8.3743E-02 8.3743E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0133E-07 3.0043E-06 1.0580E-05 4.3150E-05 8.5920E-05 1.3181E-04 1.7754E-04 2.2181E-04 2.6413E-04 3.0438E-04 3.4245E-04 3.7829E-04 4.1213E-04 4.4434E-04 4.7477E-04 5.0369E-04 5.5728E-04 6.0630E-04 6.5040E-04 6.9172E-04 7.2968E-04 7.6429E-04 7.9723E-04 9.3234E-04 1.0351E-03 1.1166E-03 1.2388E-03 1.3282E-03 1.4761E-03 1.5682E-03 1.6816E-03 1.7491E-03 1.7949E-03 1.8289E-03 1.8753E-03 1.9065E-03 1.9523E-03 1.9780E-03 2.0065E-03 2.0227E-03 2.0327E-03 2.0400E-03 2.0495E-03 2.0556E-03 2.0634E-03 2.0685E-03 2.0729E-03 2.0757E-03 2.0774E-03 2.0785E-03 2.0796E-03 2.0807E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Al.mat0000644000000000000000000001666214741736366017672 0ustar00rootrootAluminum 1 13 1.000000 2 5 93 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.5596E-03 1.5596E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 2.2565E+00 4.1540E+01 2.7999E+00 2.0400E+00 2.0146E+00 2.0146E+00 1.8382E+00 1.5226E+00 1.2954E+00 1.1155E+00 9.6375E-01 7.2293E-01 5.5129E-01 3.1359E-01 2.0458E-01 1.0954E-01 6.8588E-02 4.6782E-02 3.3859E-02 2.0047E-02 1.3235E-02 6.1222E-03 3.5042E-03 2.2630E-03 2.2630E-03 1.5798E-03 8.9345E-04 7.0690E-04 5.7316E-04 4.7408E-04 3.9863E-04 3.3983E-04 2.5541E-04 2.2453E-04 1.9893E-04 1.5931E-04 1.4380E-04 1.3769E-04 9.2068E-05 8.5122E-05 7.3397E-05 6.3945E-05 5.6216E-05 4.4435E-05 3.5979E-05 3.4439E-05 2.9715E-05 2.1281E-05 1.5994E-05 8.9970E-06 5.7584E-06 3.9996E-06 2.9372E-06 2.2498E-06 1.7773E-06 1.4396E-06 1.1899E-06 9.9969E-07 8.5193E-07 7.3453E-07 6.3990E-07 5.6245E-07 4.4438E-07 3.6001E-07 2.9752E-07 2.4998E-07 2.1295E-07 1.8362E-07 1.5996E-07 8.9970E-08 5.7584E-08 3.9996E-08 2.2498E-08 1.4394E-08 6.3968E-09 3.5979E-09 1.5994E-09 8.9970E-10 5.7584E-10 3.9974E-10 2.2498E-10 1.4394E-10 6.3968E-11 3.5979E-11 1.5994E-11 8.9970E-12 5.7584E-12 3.9974E-12 2.2498E-12 1.4394E-12 6.3968E-13 3.5979E-13 1.5994E-13 8.9970E-14 5.7584E-14 3.9974E-14 2.2498E-14 1.4394E-14 INCOHERENT SCATTERING CROSS SECTION 1.4271E-02 2.3109E-01 6.2020E-03 2.4775E-02 2.5935E-02 2.5935E-02 3.3747E-02 4.7317E-02 5.8098E-02 6.7874E-02 7.6958E-02 9.2916E-02 1.0579E-01 1.2651E-01 1.3709E-01 1.4644E-01 1.4943E-01 1.4959E-01 1.4831E-01 1.4389E-01 1.3878E-01 1.2673E-01 1.1680E-01 1.0873E-01 1.0873E-01 1.0207E-01 9.1621E-02 8.7427E-02 8.3743E-02 8.0475E-02 7.7538E-02 7.4870E-02 7.0199E-02 6.8141E-02 6.6240E-02 6.2829E-02 6.1289E-02 6.0642E-02 5.4817E-02 5.3719E-02 5.1679E-02 4.9817E-02 4.8107E-02 4.5086E-02 4.2519E-02 4.2005E-02 4.0289E-02 3.6513E-02 3.3457E-02 2.7899E-02 2.4105E-02 2.1304E-02 1.9148E-02 1.7427E-02 1.6021E-02 1.4842E-02 1.3845E-02 1.2983E-02 1.2231E-02 1.1573E-02 1.0986E-02 1.0461E-02 9.5617E-03 8.8184E-03 8.1890E-03 7.6533E-03 7.1869E-03 6.7784E-03 6.4191E-03 5.1000E-03 4.2586E-03 3.6693E-03 2.8926E-03 2.4016E-03 1.7101E-03 1.3410E-03 9.5036E-04 7.4435E-04 6.1624E-04 5.2763E-04 4.1202E-04 3.3903E-04 2.3681E-04 1.8322E-04 1.2740E-04 9.8340E-05 8.0395E-05 6.8186E-05 5.2518E-05 4.2876E-05 2.9640E-05 2.2788E-05 1.5715E-05 1.2064E-05 9.8250E-06 8.3051E-06 6.3677E-06 5.1803E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.1829E+03 5.5788E+05 7.5470E+03 4.0019E+02 3.6001E+02 3.9550E+03 2.2610E+03 7.8654E+02 3.5912E+02 1.9222E+02 1.1425E+02 4.9505E+01 2.5556E+01 7.5150E+00 3.1002E+00 8.7225E-01 3.5042E-01 1.7177E-01 9.5639E-02 3.7832E-02 1.8402E-02 4.9929E-03 2.0021E-03 9.9932E-04 9.9932E-04 5.7428E-04 2.4797E-04 1.7851E-04 1.3439E-04 1.0489E-04 8.4010E-05 6.8631E-05 4.8791E-05 4.2519E-05 3.7762E-05 3.0052E-05 2.6426E-05 2.4886E-05 1.6878E-05 1.5787E-05 1.3834E-05 1.2222E-05 1.0930E-05 9.0062E-06 7.6333E-06 7.3810E-06 6.5994E-06 5.1632E-06 4.2228E-06 2.8814E-06 2.1753E-06 1.7436E-06 1.4532E-06 1.2448E-06 1.0883E-06 9.6643E-07 8.6912E-07 7.8944E-07 7.2293E-07 6.6691E-07 6.1870E-07 5.7718E-07 5.0866E-07 4.5465E-07 4.1090E-07 3.7497E-07 3.4461E-07 3.1895E-07 2.9685E-07 2.2029E-07 1.7512E-07 1.4532E-07 1.0841E-07 8.6443E-08 5.7383E-08 4.2943E-08 2.8569E-08 2.1404E-08 1.7112E-08 1.4253E-08 1.0684E-08 8.5439E-09 5.6937E-09 4.2697E-09 2.8457E-09 2.1342E-09 1.7072E-09 1.4226E-09 1.0669E-09 8.5350E-10 5.6892E-10 4.2675E-10 2.8457E-10 2.1335E-10 1.7068E-10 1.4224E-10 1.0666E-10 8.5327E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 3.1337E-05 5.0597E-05 1.0263E-04 1.7079E-04 2.5267E-04 4.4866E-04 6.7472E-04 7.2717E-04 9.1748E-04 1.4189E-03 1.9184E-03 3.1024E-03 4.1537E-03 5.0978E-03 5.9370E-03 6.6936E-03 7.3766E-03 7.9993E-03 8.5640E-03 9.0818E-03 9.5617E-03 1.0008E-02 1.0428E-02 1.0818E-02 1.1537E-02 1.2180E-02 1.2760E-02 1.3289E-02 1.3773E-02 1.4220E-02 1.4633E-02 1.6340E-02 1.7612E-02 1.8619E-02 2.0130E-02 2.1210E-02 2.2944E-02 2.4016E-02 2.5266E-02 2.6002E-02 2.6493E-02 2.6828E-02 2.7297E-02 2.7609E-02 2.8056E-02 2.8301E-02 2.8569E-02 2.8725E-02 2.8814E-02 2.8881E-02 2.8948E-02 2.9015E-02 2.9082E-02 2.9127E-02 2.9149E-02 2.9172E-02 2.9194E-02 2.9194E-02 2.9216E-02 2.9216E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1192E-07 3.3215E-06 1.1707E-05 4.7808E-05 9.5237E-05 1.4628E-04 1.9721E-04 2.4663E-04 2.9417E-04 3.3926E-04 3.8211E-04 4.2251E-04 4.6090E-04 4.9728E-04 5.3187E-04 5.6491E-04 6.2628E-04 6.8231E-04 7.3386E-04 7.8140E-04 8.2560E-04 8.6667E-04 9.0528E-04 1.0664E-03 1.1912E-03 1.2919E-03 1.4461E-03 1.5608E-03 1.7552E-03 1.8806E-03 2.0387E-03 2.1364E-03 2.2047E-03 2.2565E-03 2.3279E-03 2.3748E-03 2.4484E-03 2.4909E-03 2.5377E-03 2.5645E-03 2.5824E-03 2.5935E-03 2.6091E-03 2.6203E-03 2.6337E-03 2.6426E-03 2.6516E-03 2.6560E-03 2.6582E-03 2.6605E-03 2.6627E-03 2.6649E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Am.mat0000644000000000000000000002255214741736366017666 0ustar00rootrootAm 1 95 1.000000 13 4 3 3 4 3 3 3 3 5 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1357E-03 1.1357E-03 1.2662E-03 1.4118E-03 1.4118E-03 1.5000E-03 1.6171E-03 1.6171E-03 2.0000E-03 3.0000E-03 3.8869E-03 3.8869E-03 4.0000E-03 4.0921E-03 4.0921E-03 4.3701E-03 4.6670E-03 4.6670E-03 5.0000E-03 5.7102E-03 5.7102E-03 6.0000E-03 6.1205E-03 6.1205E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.8504E-02 1.8504E-02 2.0000E-02 2.2944E-02 2.2944E-02 2.3355E-02 2.3773E-02 2.3773E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.2503E-01 1.2503E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4234E+01 6.3448E+01 1.5655E+01 1.4075E+01 1.4075E+01 1.3927E+01 1.3751E+01 1.3751E+01 1.3637E+01 1.3483E+01 1.3483E+01 1.2990E+01 1.1675E+01 1.0570E+01 1.0570E+01 1.0436E+01 1.0329E+01 1.0329E+01 1.0013E+01 9.6875E+00 9.6875E+00 9.3406E+00 8.6593E+00 8.6593E+00 8.4016E+00 8.2975E+00 8.2975E+00 6.9051E+00 5.7803E+00 3.9394E+00 3.1243E+00 3.1243E+00 2.8493E+00 2.4060E+00 2.4060E+00 2.3524E+00 2.2995E+00 2.2995E+00 1.6821E+00 1.1298E+00 8.1761E-01 6.1668E-01 3.8750E-01 2.6882E-01 1.8473E-01 1.8473E-01 1.3503E-01 8.0969E-02 5.4179E-02 3.8923E-02 2.9356E-02 2.2943E-02 1.8427E-02 1.5123E-02 1.2633E-02 1.0711E-02 9.1971E-03 6.9951E-03 6.1792E-03 5.4977E-03 4.4335E-03 4.0137E-03 3.8477E-03 2.6015E-03 2.4098E-03 2.0844E-03 1.8206E-03 1.6037E-03 1.2719E-03 1.0337E-03 9.9030E-04 8.5659E-04 6.1529E-04 4.6307E-04 2.6139E-04 1.6756E-04 1.1647E-04 8.5627E-05 6.5583E-05 5.1832E-05 4.1996E-05 3.4711E-05 2.9162E-05 2.4851E-05 2.1431E-05 1.8671E-05 1.6409E-05 1.2968E-05 1.0503E-05 8.6816E-06 7.2941E-06 6.2163E-06 5.3591E-06 4.6678E-06 2.6263E-06 1.6808E-06 1.1672E-06 6.5657E-07 4.2020E-07 1.8676E-07 1.0505E-07 4.6703E-08 2.6263E-08 1.6808E-08 1.1672E-08 6.5657E-09 4.2020E-09 1.8676E-09 1.0505E-09 4.6703E-10 2.6263E-10 1.6808E-10 1.1672E-10 6.5657E-11 4.2020E-11 1.8676E-11 1.0505E-11 4.6703E-12 2.6263E-12 1.6808E-12 1.1672E-12 6.5657E-13 4.2020E-13 INCOHERENT SCATTERING CROSS SECTION 4.3284E-03 5.6698E+01 2.4404E-03 5.1089E-03 5.1089E-03 5.8439E-03 6.6598E-03 6.6598E-03 7.1628E-03 7.8318E-03 7.8318E-03 9.9997E-03 1.5478E-02 1.9970E-02 1.9970E-02 2.0515E-02 2.0958E-02 2.0958E-02 2.2271E-02 2.3634E-02 2.3634E-02 2.5123E-02 2.8121E-02 2.8121E-02 2.9285E-02 2.9781E-02 2.9781E-02 3.6718E-02 4.3284E-02 5.6638E-02 6.3675E-02 6.3675E-02 6.6227E-02 7.0612E-02 7.0612E-02 7.1160E-02 7.1702E-02 7.1702E-02 7.8491E-02 8.5998E-02 9.0681E-02 9.3456E-02 9.5710E-02 9.5735E-02 9.4373E-02 9.4373E-02 9.2291E-02 8.7584E-02 8.2973E-02 7.8788E-02 7.5072E-02 7.1777E-02 6.8839E-02 6.6202E-02 6.3817E-02 6.1643E-02 5.9650E-02 5.6113E-02 5.4532E-02 5.3060E-02 5.0415E-02 4.9230E-02 4.8735E-02 4.4151E-02 4.3279E-02 4.1660E-02 4.0187E-02 3.8837E-02 3.6441E-02 3.4365E-02 3.3943E-02 3.2546E-02 2.9517E-02 2.7080E-02 2.2611E-02 1.9534E-02 1.7269E-02 1.5522E-02 1.4130E-02 1.2990E-02 1.2036E-02 1.1226E-02 1.0530E-02 9.9204E-03 9.3852E-03 8.9095E-03 8.4858E-03 7.7549E-03 7.1529E-03 6.6425E-03 6.2064E-03 5.8298E-03 5.4978E-03 5.2080E-03 4.1376E-03 3.4538E-03 2.9756E-03 2.3470E-03 1.9479E-03 1.3872E-03 1.0877E-03 7.7103E-04 6.0380E-04 4.9974E-04 4.2788E-04 3.3423E-04 2.7502E-04 1.9204E-04 1.4863E-04 1.0334E-04 7.9779E-05 6.5211E-05 5.5300E-05 4.2615E-05 3.4786E-05 2.4043E-05 1.8483E-05 1.2747E-05 9.7866E-06 7.9705E-06 6.7366E-06 5.1658E-06 4.2020E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.3536E+03 4.1353E+05 2.4733E+04 5.8868E+03 6.2560E+03 5.0871E+03 4.1376E+03 4.1897E+03 3.7115E+03 3.1862E+03 3.2457E+03 2.0822E+03 8.5205E+02 4.7025E+02 1.1006E+03 1.0386E+03 9.7470E+02 1.3756E+03 1.1717E+03 9.9823E+02 1.1632E+03 9.8039E+02 6.9819E+02 7.4006E+02 6.5558E+02 6.2362E+02 6.4988E+02 3.3597E+02 1.9221E+02 6.8382E+01 3.9791E+01 9.3827E+01 7.6435E+01 5.2501E+01 7.4998E+01 7.1567E+01 6.8333E+01 7.8788E+01 4.3755E+01 2.0790E+01 1.1585E+01 7.1504E+00 3.3175E+00 1.8238E+00 1.0007E+00 4.0980E+00 2.5916E+00 1.2490E+00 7.0974E-01 4.4994E-01 3.0822E-01 2.2353E-01 1.6932E-01 1.3270E-01 1.0689E-01 8.8030E-02 7.3842E-02 5.4320E-02 4.7446E-02 4.1861E-02 3.3383E-02 3.0103E-02 2.8815E-02 1.9494E-02 1.8097E-02 1.5744E-02 1.3860E-02 1.2333E-02 1.0024E-02 8.3694E-03 8.0671E-03 7.1353E-03 5.4449E-03 4.3557E-03 2.8394E-03 2.0748E-03 1.6216E-03 1.3253E-03 1.1177E-03 9.6454E-04 8.4735E-04 7.5518E-04 6.8060E-04 6.1916E-04 5.6762E-04 5.2402E-04 4.8660E-04 4.2541E-04 3.7784E-04 3.3968E-04 3.0846E-04 2.8245E-04 2.6065E-04 2.4177E-04 1.7755E-04 1.4023E-04 1.1585E-04 8.5949E-05 6.8308E-05 4.5142E-05 3.3696E-05 2.2370E-05 1.6741E-05 1.3374E-05 1.1134E-05 8.3421E-06 6.6698E-06 4.4424E-06 3.3299E-06 2.2190E-06 1.6640E-06 1.3310E-06 1.1090E-06 8.3174E-07 6.6524E-07 4.4349E-07 3.3250E-07 2.2172E-07 1.6630E-07 1.3302E-07 1.1085E-07 8.3149E-08 6.6524E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.7199E-04 7.5486E-04 1.4842E-03 2.3575E-03 3.2863E-03 5.1177E-03 6.8531E-03 7.2297E-03 8.5180E-03 1.1480E-02 1.4058E-02 1.9553E-02 2.4134E-02 2.8022E-02 3.1515E-02 3.4662E-02 3.7561E-02 4.0237E-02 4.2714E-02 4.5018E-02 4.7174E-02 4.9206E-02 5.1113E-02 5.2872E-02 5.6093E-02 5.8967E-02 6.1594E-02 6.3997E-02 6.6177E-02 6.8184E-02 7.0018E-02 7.7574E-02 8.3174E-02 8.7509E-02 9.3902E-02 9.8411E-02 1.0550E-01 1.0971E-01 1.1464E-01 1.1744E-01 1.1930E-01 1.2061E-01 1.2237E-01 1.2348E-01 1.2512E-01 1.2601E-01 1.2693E-01 1.2752E-01 1.2787E-01 1.2809E-01 1.2839E-01 1.2859E-01 1.2881E-01 1.2898E-01 1.2908E-01 1.2921E-01 1.2926E-01 1.2928E-01 1.2931E-01 1.2933E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0756E-08 2.6882E-06 9.4596E-06 3.8527E-05 7.6608E-05 1.1739E-04 1.5790E-04 1.9702E-04 2.3433E-04 2.6981E-04 3.0301E-04 3.3448E-04 3.6396E-04 3.9196E-04 4.1847E-04 4.4349E-04 4.8958E-04 5.3170E-04 5.6985E-04 6.0479E-04 6.3700E-04 6.6673E-04 6.9423E-04 8.0746E-04 8.9244E-04 9.5909E-04 1.0584E-03 1.1300E-03 1.2467E-03 1.3188E-03 1.4063E-03 1.4583E-03 1.4938E-03 1.5195E-03 1.5550E-03 1.5785E-03 1.6134E-03 1.6335E-03 1.6550E-03 1.6679E-03 1.6756E-03 1.6811E-03 1.6885E-03 1.6932E-03 1.6994E-03 1.7031E-03 1.7066E-03 1.7088E-03 1.7101E-03 1.7110E-03 1.7118E-03 1.7125E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ar.mat0000644000000000000000000001667614741736366017705 0ustar00rootrootArgon 1 18 1.000000 2 7 91 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.2029E-03 3.2029E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.0421E+00 5.3009E+01 3.6182E+00 2.8220E+00 2.5703E+00 2.0834E+00 1.9929E+00 1.9929E+00 1.6944E+00 1.4088E+00 1.2015E+00 9.2455E-01 7.4108E-01 4.5556E-01 3.0165E-01 1.6160E-01 1.0215E-01 7.0701E-02 5.1782E-02 3.1069E-02 2.0638E-02 9.6329E-03 5.5491E-03 3.5990E-03 3.5990E-03 2.5190E-03 1.4284E-03 1.1312E-03 9.1791E-04 7.5959E-04 6.3888E-04 5.4477E-04 4.0960E-04 3.6014E-04 3.1913E-04 2.5564E-04 2.3080E-04 2.2100E-04 1.4779E-04 1.3665E-04 1.1784E-04 1.0268E-04 9.0271E-05 7.1358E-05 5.7782E-05 5.5310E-05 4.7726E-05 3.4180E-05 2.5688E-05 1.4449E-05 9.2485E-06 6.4219E-06 4.7185E-06 3.6135E-06 2.8552E-06 2.3125E-06 1.9115E-06 1.6055E-06 1.3682E-06 1.1796E-06 1.0277E-06 9.0314E-07 7.1365E-07 5.7797E-07 4.7772E-07 4.0145E-07 3.4205E-07 2.9487E-07 2.5688E-07 1.4451E-07 9.2485E-08 6.4219E-08 3.6120E-08 2.3125E-08 1.0275E-08 5.7797E-09 2.5688E-09 1.4451E-09 9.2485E-10 6.4219E-10 3.6120E-10 2.3125E-10 1.0275E-10 5.7797E-11 2.5688E-11 1.4451E-11 9.2485E-12 6.4219E-12 3.6120E-12 2.3125E-12 1.0275E-12 5.7797E-13 2.5688E-13 1.4451E-13 9.2485E-14 6.4219E-14 3.6120E-14 2.3125E-14 INCOHERENT SCATTERING CROSS SECTION 7.0792E-03 3.6991E-03 2.2891E-03 1.4202E-02 2.2040E-02 3.7175E-02 4.0009E-02 4.0009E-02 5.0230E-02 6.0993E-02 6.9707E-02 8.2927E-02 9.2877E-02 1.1050E-01 1.2132E-01 1.3156E-01 1.3509E-01 1.3587E-01 1.3530E-01 1.3216E-01 1.2803E-01 1.1758E-01 1.0868E-01 1.0132E-01 1.0132E-01 9.5183E-02 8.5535E-02 8.1649E-02 7.8224E-02 7.5175E-02 7.2435E-02 6.9951E-02 6.5607E-02 6.3692E-02 6.1918E-02 5.8735E-02 5.7300E-02 5.6697E-02 5.1255E-02 5.0226E-02 4.8315E-02 4.6582E-02 4.5002E-02 4.2205E-02 3.9768E-02 3.9270E-02 3.7630E-02 3.4115E-02 3.1296E-02 2.6095E-02 2.2537E-02 1.9929E-02 1.7909E-02 1.6296E-02 1.4981E-02 1.3881E-02 1.2946E-02 1.2141E-02 1.1439E-02 1.0821E-02 1.0274E-02 9.7836E-03 8.9425E-03 8.2460E-03 7.6596E-03 7.1576E-03 6.7204E-03 6.3390E-03 6.0028E-03 4.7697E-03 3.9828E-03 3.4311E-03 2.7060E-03 2.2462E-03 1.5995E-03 1.2539E-03 8.8882E-04 6.9601E-04 5.7616E-04 4.9340E-04 3.8532E-04 3.1703E-04 2.2145E-04 1.7140E-04 1.1914E-04 9.1957E-05 7.5194E-05 6.3752E-05 4.9129E-05 4.0099E-05 2.7723E-05 2.1316E-05 1.4695E-05 1.1282E-05 9.1882E-06 7.7666E-06 5.9546E-06 4.8451E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.1808E+03 1.3090E+06 1.9479E+04 1.1018E+03 5.0938E+02 1.6824E+02 1.4038E+02 1.2729E+03 7.5541E+02 4.2104E+02 2.5808E+02 1.1698E+02 6.2320E+01 1.9266E+01 8.2068E+00 2.4029E+00 9.9088E-01 4.9461E-01 2.7934E-01 1.1275E-01 5.5642E-02 1.5437E-02 6.2802E-03 3.1655E-03 3.1655E-03 1.8316E-03 7.9792E-04 5.7610E-04 4.3446E-04 3.3932E-04 2.7210E-04 2.2278E-04 1.5874E-04 1.3806E-04 1.2212E-04 9.6989E-05 8.5867E-05 8.1239E-05 5.5039E-05 5.1395E-05 4.5008E-05 3.9783E-05 3.5565E-05 2.9234E-05 2.4708E-05 2.3879E-05 2.1314E-05 1.6618E-05 1.3554E-05 9.1972E-06 6.9194E-06 5.5310E-06 4.6009E-06 3.9346E-06 3.4356E-06 3.0482E-06 2.7391E-06 2.4859E-06 2.2748E-06 2.0969E-06 1.9447E-06 1.8135E-06 1.5964E-06 1.4265E-06 1.2889E-06 1.1754E-06 1.0803E-06 9.9932E-07 9.2967E-07 6.8938E-07 5.4767E-07 4.5436E-07 3.3873E-07 2.6999E-07 1.7924E-07 1.3408E-07 8.9168E-08 6.6797E-08 5.3395E-08 4.4486E-08 3.3346E-08 2.6668E-08 1.7773E-08 1.3322E-08 8.8791E-09 6.6586E-09 5.3260E-09 4.4381E-09 3.3285E-09 2.6622E-09 1.7758E-09 1.3314E-09 8.8761E-10 6.6571E-10 5.3260E-10 4.4381E-10 3.3285E-10 2.6622E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.2602E-05 6.8391E-05 1.3745E-04 2.2718E-04 3.3448E-04 5.9064E-04 8.8641E-04 9.5515E-04 1.2040E-03 1.8551E-03 2.4994E-03 4.0250E-03 5.3787E-03 6.5893E-03 7.6671E-03 8.6364E-03 9.5138E-03 1.0310E-02 1.1032E-02 1.1694E-02 1.2307E-02 1.2879E-02 1.3412E-02 1.3913E-02 1.4828E-02 1.5648E-02 1.6386E-02 1.7065E-02 1.7668E-02 1.8241E-02 1.8768E-02 2.0924E-02 2.2537E-02 2.3788E-02 2.5658E-02 2.6999E-02 2.9185E-02 3.0512E-02 3.2095E-02 3.3014E-02 3.3617E-02 3.4054E-02 3.4642E-02 3.5019E-02 3.5577E-02 3.5878E-02 3.6210E-02 3.6391E-02 3.6496E-02 3.6572E-02 3.6677E-02 3.6738E-02 3.6828E-02 3.6888E-02 3.6934E-02 3.6964E-02 3.6979E-02 3.6979E-02 3.6994E-02 3.7009E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0475E-07 3.1076E-06 1.0949E-05 4.4697E-05 8.9063E-05 1.3677E-04 1.8437E-04 2.3065E-04 2.7482E-04 3.1703E-04 3.5697E-04 3.9466E-04 4.3039E-04 4.6431E-04 4.9657E-04 5.2717E-04 5.8430E-04 6.3631E-04 6.8425E-04 7.2842E-04 7.6927E-04 8.0741E-04 8.4284E-04 9.9148E-04 1.1060E-03 1.1980E-03 1.3387E-03 1.4431E-03 1.6206E-03 1.7336E-03 1.8768E-03 1.9628E-03 2.0231E-03 2.0683E-03 2.1286E-03 2.1708E-03 2.2311E-03 2.2658E-03 2.3050E-03 2.3276E-03 2.3411E-03 2.3502E-03 2.3638E-03 2.3713E-03 2.3818E-03 2.3894E-03 2.3954E-03 2.3984E-03 2.4014E-03 2.4029E-03 2.4045E-03 2.4060E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/As.mat0000644000000000000000000001774014741736366017677 0ustar00rootrootAs 1 33 1.000000 5 4 3 3 9 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.3231E-03 1.3231E-03 1.3407E-03 1.3586E-03 1.3586E-03 1.5000E-03 1.5265E-03 1.5265E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.1867E-02 1.1867E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.5092E+00 9.0656E+01 6.3818E+00 5.3147E+00 5.3147E+00 5.3032E+00 5.2914E+00 5.2914E+00 5.1949E+00 5.1772E+00 5.1772E+00 4.8533E+00 4.2095E+00 3.6653E+00 3.2063E+00 2.8117E+00 2.1759E+00 1.7097E+00 1.3970E+00 1.3970E+00 1.0337E+00 7.0693E-01 3.9844E-01 2.5319E-01 1.7482E-01 1.2845E-01 7.8410E-02 5.3002E-02 2.5327E-02 1.4742E-02 9.6287E-03 6.7776E-03 5.0266E-03 3.8743E-03 3.0758E-03 2.5006E-03 2.0728E-03 1.7458E-03 1.4902E-03 1.1220E-03 9.8706E-04 8.7511E-04 7.0164E-04 6.3363E-04 6.0678E-04 4.0624E-04 3.7567E-04 3.2405E-04 2.8237E-04 2.4823E-04 1.9619E-04 1.5899E-04 1.5224E-04 1.3146E-04 9.4143E-05 7.0710E-05 3.9788E-05 2.5464E-05 1.7683E-05 1.2997E-05 9.9509E-06 7.8611E-06 6.3676E-06 5.2624E-06 4.4217E-06 3.7674E-06 3.2489E-06 2.8302E-06 2.4869E-06 1.9653E-06 1.5923E-06 1.3158E-06 1.1052E-06 9.4204E-07 8.1183E-07 7.0750E-07 3.9796E-07 2.5472E-07 1.7683E-07 9.9509E-08 6.3668E-08 2.8302E-08 1.5915E-08 7.0750E-09 3.9796E-09 2.5472E-09 1.7683E-09 9.9509E-10 6.3668E-10 2.8302E-10 1.5915E-10 7.0750E-11 3.9796E-11 2.5472E-11 1.7683E-11 9.9509E-12 6.3668E-12 2.8302E-12 1.5915E-12 7.0750E-13 3.9796E-13 2.5472E-13 1.7683E-13 9.9509E-14 6.3668E-14 INCOHERENT SCATTERING CROSS SECTION 5.8106E-03 2.9221E-02 2.1823E-03 9.0668E-03 9.0668E-03 9.2505E-03 9.4365E-03 9.4365E-03 1.0899E-02 1.1173E-02 1.1173E-02 1.6044E-02 2.5609E-02 3.4041E-02 4.1516E-02 4.8292E-02 6.0228E-02 7.0356E-02 7.8370E-02 7.8370E-02 8.9382E-02 1.0168E-01 1.1526E-01 1.2153E-01 1.2419E-01 1.2491E-01 1.2354E-01 1.2065E-01 1.1229E-01 1.0457E-01 9.7890E-02 9.2195E-02 8.7329E-02 8.3112E-02 7.9411E-02 7.6135E-02 7.3213E-02 7.0581E-02 6.8189E-02 6.3990E-02 6.2133E-02 6.0411E-02 5.7317E-02 5.5920E-02 5.5333E-02 5.0044E-02 4.9047E-02 4.7193E-02 4.5503E-02 4.3951E-02 4.1203E-02 3.8847E-02 3.8373E-02 3.6795E-02 3.3353E-02 3.0576E-02 2.5504E-02 2.2032E-02 1.9476E-02 1.7507E-02 1.5931E-02 1.4645E-02 1.3568E-02 1.2652E-02 1.1872E-02 1.1181E-02 1.0578E-02 1.0039E-02 9.5651E-03 8.7372E-03 8.0620E-03 7.4865E-03 6.9962E-03 6.5694E-03 6.1972E-03 5.8685E-03 4.6628E-03 3.8928E-03 3.3534E-03 2.6453E-03 2.1952E-03 1.5634E-03 1.2258E-03 8.6890E-04 6.8041E-04 5.6330E-04 4.8228E-04 3.7666E-04 3.0986E-04 2.1638E-04 1.6751E-04 1.1647E-04 8.9864E-05 7.3499E-05 6.2326E-05 4.8019E-05 3.9209E-05 2.7096E-05 2.0834E-05 1.4364E-05 1.1028E-05 8.9784E-06 7.5918E-06 5.8211E-06 4.7359E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.1156E+03 5.0613E+05 1.1004E+04 1.0867E+03 4.5270E+03 4.4841E+03 4.4410E+03 6.0775E+03 5.2206E+03 4.9924E+03 5.6482E+03 2.9266E+03 1.0449E+03 4.8838E+02 2.6766E+02 1.6277E+02 7.3491E+01 3.9370E+01 2.4299E+01 1.7780E+02 9.7420E+01 4.4836E+01 1.4541E+01 6.3861E+00 3.3357E+00 1.9500E+00 8.2791E-01 4.2344E-01 1.2467E-01 5.2544E-02 2.7149E-02 1.6003E-02 1.0342E-02 7.1513E-03 5.2083E-03 3.9539E-03 3.1038E-03 2.5006E-03 2.0569E-03 1.4726E-03 1.2788E-03 1.1269E-03 8.9310E-04 7.9591E-04 7.5645E-04 5.1105E-04 4.7621E-04 4.1637E-04 3.6773E-04 3.2812E-04 2.6825E-04 2.2570E-04 2.1799E-04 1.9408E-04 1.5017E-04 1.2161E-04 8.1504E-05 6.0775E-05 4.8268E-05 3.9948E-05 3.4033E-05 2.9620E-05 2.6204E-05 2.3487E-05 2.1276E-05 1.9444E-05 1.7900E-05 1.6582E-05 1.5441E-05 1.3576E-05 1.2105E-05 1.0924E-05 9.9509E-06 9.1391E-06 8.4479E-06 7.8522E-06 5.8082E-06 4.6073E-06 3.8180E-06 2.8430E-06 2.2651E-06 1.5015E-06 1.1229E-06 7.4632E-07 5.5888E-07 4.4675E-07 3.7208E-07 2.7884E-07 2.2297E-07 1.4854E-07 1.1141E-07 7.4238E-08 5.5671E-08 4.4538E-08 3.7111E-08 2.7827E-08 2.2265E-08 1.4838E-08 1.1133E-08 7.4206E-09 5.5655E-09 4.4522E-09 3.7103E-09 2.7827E-09 2.2257E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3079E-05 1.4642E-04 2.8466E-04 4.5921E-04 6.6485E-04 1.1491E-03 1.6944E-03 1.8182E-03 2.2656E-03 3.4423E-03 4.6073E-03 7.2944E-03 9.6616E-03 1.1735E-02 1.3592E-02 1.5264E-02 1.6783E-02 1.8158E-02 1.9412E-02 2.0561E-02 2.1614E-02 2.2595E-02 2.3511E-02 2.4371E-02 2.5938E-02 2.7337E-02 2.8615E-02 2.9772E-02 3.0825E-02 3.1798E-02 3.2698E-02 3.6347E-02 3.9072E-02 4.1194E-02 4.4345E-02 4.6580E-02 5.0141E-02 5.2263E-02 5.4738E-02 5.6161E-02 5.7093E-02 5.7760E-02 5.8653E-02 5.9231E-02 6.0067E-02 6.0526E-02 6.1016E-02 6.1281E-02 6.1442E-02 6.1562E-02 6.1715E-02 6.1804E-02 6.1940E-02 6.2013E-02 6.2085E-02 6.2125E-02 6.2149E-02 6.2165E-02 6.2189E-02 6.2197E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0235E-07 3.0364E-06 1.0698E-05 4.3670E-05 8.6970E-05 1.3351E-04 1.7989E-04 2.2482E-04 2.6790E-04 3.0882E-04 3.4756E-04 3.8413E-04 4.1861E-04 4.5149E-04 4.8260E-04 5.1226E-04 5.6716E-04 6.1723E-04 6.6313E-04 7.0533E-04 7.4439E-04 7.8072E-04 8.1424E-04 9.5490E-04 1.0618E-03 1.1470E-03 1.2764E-03 1.3705E-03 1.5272E-03 1.6253E-03 1.7466E-03 1.8198E-03 1.8696E-03 1.9066E-03 1.9572E-03 1.9910E-03 2.0408E-03 2.0698E-03 2.1003E-03 2.1188E-03 2.1300E-03 2.1373E-03 2.1477E-03 2.1550E-03 2.1638E-03 2.1686E-03 2.1735E-03 2.1767E-03 2.1791E-03 2.1799E-03 2.1815E-03 2.1823E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/At.mat0000644000000000000000000002206014741736366017667 0ustar00rootrootAt 1 85 1.000000 11 4 4 3 3 3 3 6 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0420E-03 1.0420E-03 1.5000E-03 2.0000E-03 2.7867E-03 2.7867E-03 2.8470E-03 2.9087E-03 2.9087E-03 3.0000E-03 3.4260E-03 3.4260E-03 4.0000E-03 4.0080E-03 4.0080E-03 4.1596E-03 4.3170E-03 4.3170E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.4213E-02 1.4213E-02 1.5000E-02 1.6785E-02 1.6785E-02 1.7135E-02 1.7493E-02 1.7493E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 9.5730E-02 9.5730E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3244E+01 1.0357E+04 1.6686E+01 1.3201E+01 1.3201E+01 1.2682E+01 1.2048E+01 1.1047E+01 1.1047E+01 1.0972E+01 1.0895E+01 1.0895E+01 1.0780E+01 1.0281E+01 1.0281E+01 9.6417E+00 9.6331E+00 9.6331E+00 9.4744E+00 9.3148E+00 9.3148E+00 8.6466E+00 7.7805E+00 6.3666E+00 5.2969E+00 3.7598E+00 3.7598E+00 3.5447E+00 3.1202E+00 3.1202E+00 3.0422E+00 2.9654E+00 2.9654E+00 2.5194E+00 1.4821E+00 9.9343E-01 7.0980E-01 5.3170E-01 3.3382E-01 2.4867E-01 2.4867E-01 2.3115E-01 1.1443E-01 6.8341E-02 4.5609E-02 3.2665E-02 2.4558E-02 1.9134E-02 1.5325E-02 1.2547E-02 1.0460E-02 8.8531E-03 7.5897E-03 5.7578E-03 5.0818E-03 4.5187E-03 3.6398E-03 3.2923E-03 3.1546E-03 2.1262E-03 1.9686E-03 1.7014E-03 1.4850E-03 1.3074E-03 1.0360E-03 8.4086E-04 8.0530E-04 6.9589E-04 4.9935E-04 3.7569E-04 2.1182E-04 1.3571E-04 9.4295E-05 6.9288E-05 5.3055E-05 4.1928E-05 3.3984E-05 2.8079E-05 2.3597E-05 2.0107E-05 1.7336E-05 1.5102E-05 1.3275E-05 1.0488E-05 8.4975E-06 7.0205E-06 5.8992E-06 5.0274E-06 4.3362E-06 3.7770E-06 2.1242E-06 1.3597E-06 9.4410E-07 5.3113E-07 3.3984E-07 1.5108E-07 8.4975E-08 3.7770E-08 2.1242E-08 1.3597E-08 9.4410E-09 5.3113E-09 3.3984E-09 1.5108E-09 8.4975E-10 3.7770E-10 2.1242E-10 1.3597E-10 9.4410E-11 5.3113E-11 3.3984E-11 1.5108E-11 8.4975E-12 3.7770E-12 2.1242E-12 1.3597E-12 9.4410E-13 5.3113E-13 3.3984E-13 INCOHERENT SCATTERING CROSS SECTION 3.4357E-03 9.3535E+03 1.7978E-03 3.6795E-03 3.6795E-03 6.5387E-03 9.7765E-03 1.4718E-02 1.4718E-02 1.5082E-02 1.5452E-02 1.5452E-02 1.5994E-02 1.8426E-02 1.8426E-02 2.1520E-02 2.1561E-02 2.1561E-02 2.2323E-02 2.3112E-02 2.3112E-02 2.6404E-02 3.0887E-02 3.9089E-02 4.6373E-02 5.8476E-02 5.8476E-02 6.0368E-02 6.4240E-02 6.4240E-02 6.4915E-02 6.5588E-02 6.5588E-02 7.0148E-02 8.3397E-02 9.1456E-02 9.6188E-02 9.8884E-02 1.0092E-01 1.0086E-01 1.0086E-01 1.0069E-01 9.6676E-02 9.1485E-02 8.6508E-02 8.2049E-02 7.8120E-02 7.4650E-02 7.1566E-02 6.8800E-02 6.6297E-02 6.4011E-02 6.1910E-02 5.8210E-02 5.6583E-02 5.5083E-02 5.2351E-02 5.1077E-02 5.0532E-02 4.5771E-02 4.4877E-02 4.3204E-02 4.1670E-02 4.0259E-02 3.7759E-02 3.5619E-02 3.5189E-02 3.3753E-02 3.0605E-02 2.8062E-02 2.3422E-02 2.0233E-02 1.7887E-02 1.6077E-02 1.4635E-02 1.3453E-02 1.2467E-02 1.1626E-02 1.0904E-02 1.0273E-02 9.7192E-03 9.2288E-03 8.7871E-03 8.0329E-03 7.4077E-03 6.8800E-03 6.4297E-03 6.0368E-03 5.6956E-03 5.3916E-03 4.2846E-03 3.5762E-03 3.0829E-03 2.4308E-03 2.0175E-03 1.4368E-03 1.1265E-03 7.9841E-04 6.2519E-04 5.1765E-04 4.4308E-04 3.4615E-04 2.8478E-04 1.9889E-04 1.5392E-04 1.0703E-04 8.2623E-05 6.7538E-05 5.7271E-05 4.4136E-05 3.6020E-05 2.4899E-05 1.9143E-05 1.3201E-05 1.0135E-05 8.2537E-06 6.9775E-06 5.3486E-06 4.3534E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.8533E+03 4.1510E+05 2.1115E+04 5.4260E+03 5.5407E+03 2.7182E+03 1.4824E+03 7.1152E+02 2.4208E+03 2.0139E+03 1.6757E+03 2.7830E+03 2.2387E+03 1.6037E+03 1.8558E+03 1.2659E+03 1.2596E+03 1.3358E+03 1.2213E+03 1.1167E+03 1.1655E+03 8.1648E+02 5.2195E+02 2.5369E+02 1.4359E+02 5.7816E+01 1.4225E+02 1.2424E+02 9.0969E+01 1.2707E+02 1.2090E+02 1.1503E+02 1.3298E+02 9.4439E+01 3.2866E+01 1.5294E+01 8.3885E+00 5.1163E+00 2.3339E+00 1.4270E+00 6.5445E+00 5.8418E+00 2.0379E+00 9.5787E-01 5.3474E-01 3.3439E-01 2.2648E-01 1.6269E-01 1.2226E-01 9.5184E-02 7.6232E-02 6.2491E-02 5.2229E-02 3.8209E-02 3.3296E-02 2.9311E-02 2.3304E-02 2.1007E-02 2.0109E-02 1.3571E-02 1.2598E-02 1.0967E-02 9.6618E-03 8.6006E-03 6.9918E-03 5.8418E-03 5.6325E-03 4.9862E-03 3.8103E-03 3.0514E-03 1.9952E-03 1.4612E-03 1.1443E-03 9.3664E-04 7.9096E-04 6.8312E-04 6.0082E-04 5.3572E-04 4.8323E-04 4.3993E-04 4.0351E-04 3.7253E-04 3.4615E-04 3.0285E-04 2.6909E-04 2.4205E-04 2.1994E-04 2.0150E-04 1.8589E-04 1.7250E-04 1.2682E-04 1.0023E-04 8.2824E-05 6.1487E-05 4.8868E-05 3.2321E-05 2.4133E-05 1.6020E-05 1.1991E-05 9.5787E-06 7.9755E-06 5.9766E-06 4.7779E-06 3.1833E-06 2.3858E-06 1.5897E-06 1.1922E-06 9.5356E-07 7.9440E-07 5.9594E-07 4.7664E-07 3.1776E-07 2.3829E-07 1.5885E-07 1.1913E-07 9.5299E-08 7.9411E-08 5.9565E-08 4.7664E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.1068E-04 6.4886E-04 1.2549E-03 1.9788E-03 2.7596E-03 4.3514E-03 5.9135E-03 6.2548E-03 7.4358E-03 1.0234E-02 1.2745E-02 1.8165E-02 2.2699E-02 2.6608E-02 3.0055E-02 3.3152E-02 3.5963E-02 3.8573E-02 4.0982E-02 4.3247E-02 4.5341E-02 4.7291E-02 4.9126E-02 5.0847E-02 5.3944E-02 5.6698E-02 5.9221E-02 6.1487E-02 6.3580E-02 6.5502E-02 6.7280E-02 7.4478E-02 7.9841E-02 8.3971E-02 9.0079E-02 9.4353E-02 1.0115E-01 1.0516E-01 1.0987E-01 1.1253E-01 1.1428E-01 1.1555E-01 1.1721E-01 1.1830E-01 1.1985E-01 1.2071E-01 1.2163E-01 1.2211E-01 1.2243E-01 1.2266E-01 1.2295E-01 1.2312E-01 1.2338E-01 1.2349E-01 1.2363E-01 1.2372E-01 1.2375E-01 1.2378E-01 1.2383E-01 1.2386E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3948E-08 2.7844E-06 9.8023E-06 3.9949E-05 7.9440E-05 1.2177E-04 1.6381E-04 2.0445E-04 2.4325E-04 2.8002E-04 3.1460E-04 3.4730E-04 3.7827E-04 4.0724E-04 4.3477E-04 4.6086E-04 5.0933E-04 5.5292E-04 5.9279E-04 6.2950E-04 6.6305E-04 6.9431E-04 7.2299E-04 8.4172E-04 9.3062E-04 1.0006E-03 1.1050E-03 1.1804E-03 1.3032E-03 1.3794E-03 1.4715E-03 1.5263E-03 1.5633E-03 1.5905E-03 1.6275E-03 1.6522E-03 1.6886E-03 1.7090E-03 1.7310E-03 1.7442E-03 1.7523E-03 1.7577E-03 1.7652E-03 1.7698E-03 1.7761E-03 1.7798E-03 1.7832E-03 1.7855E-03 1.7870E-03 1.7875E-03 1.7887E-03 1.7893E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Au.mat0000644000000000000000000002205214741736366017671 0ustar00rootroot Gold 1 79 1.000000 10 6 3 3 3 3 7 3 3 9 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.2057E-03 2.2057E-03 2.2480E-03 2.2911E-03 2.2911E-03 2.5069E-03 2.7430E-03 2.7430E-03 3.0000E-03 3.1478E-03 3.1478E-03 3.2834E-03 3.4249E-03 3.4249E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.1919E-02 1.1919E-02 1.2794E-02 1.3734E-02 1.3734E-02 1.4040E-02 1.4353E-02 1.4353E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 8.0725E-02 8.0725E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2266E+01 4.6931E+01 1.3368E+01 1.1808E+01 1.1267E+01 1.1025E+01 1.1025E+01 1.0975E+01 1.0924E+01 1.0924E+01 1.0678E+01 1.0411E+01 1.0411E+01 1.0111E+01 9.9397E+00 9.9397E+00 9.7873E+00 9.6309E+00 9.6309E+00 9.0072E+00 8.0319E+00 7.1880E+00 5.8458E+00 4.8369E+00 4.0817E+00 4.0817E+00 3.7906E+00 3.5099E+00 3.5099E+00 3.4251E+00 3.3418E+00 3.3418E+00 3.1797E+00 2.2417E+00 1.3230E+00 8.7993E-01 6.2402E-01 4.6718E-01 2.9354E-01 2.8920E-01 2.8920E-01 2.0240E-01 9.9459E-02 5.9314E-02 3.9529E-02 2.8254E-02 2.1196E-02 1.6483E-02 1.3180E-02 1.0777E-02 8.9763E-03 7.5916E-03 6.5045E-03 4.9292E-03 4.3477E-03 3.8631E-03 3.1084E-03 2.8113E-03 2.6939E-03 1.8137E-03 1.6788E-03 1.4503E-03 1.2655E-03 1.1138E-03 8.8208E-04 7.1575E-04 6.8548E-04 5.9232E-04 4.2488E-04 3.1950E-04 1.7999E-04 1.1530E-04 8.0105E-05 5.8856E-05 4.5067E-05 3.5619E-05 2.8853E-05 2.3848E-05 2.0042E-05 1.7076E-05 1.4725E-05 1.2826E-05 1.1273E-05 8.9094E-06 7.2156E-06 5.9620E-06 5.0111E-06 4.2682E-06 3.6812E-06 3.2073E-06 1.8042E-06 1.1545E-06 8.0166E-07 4.5097E-07 2.8865E-07 1.2829E-07 7.2156E-08 3.2073E-08 1.8039E-08 1.1545E-08 8.0166E-09 4.5097E-09 2.8865E-09 1.2829E-09 7.2156E-10 3.2073E-10 1.8039E-10 1.1545E-10 8.0166E-11 4.5097E-11 2.8865E-11 1.2829E-11 7.2156E-12 3.2073E-12 1.8039E-12 1.1545E-12 8.0166E-13 4.5097E-13 2.8865E-13 INCOHERENT SCATTERING CROSS SECTION 3.2684E-03 2.5356E-03 1.2062E-03 6.0660E-03 8.9552E-03 1.0142E-02 1.0142E-02 1.0384E-02 1.0631E-02 1.0631E-02 1.1849E-02 1.3165E-02 1.3165E-02 1.4590E-02 1.5400E-02 1.5400E-02 1.6128E-02 1.6877E-02 1.6877E-02 1.9907E-02 2.4992E-02 2.9871E-02 3.8768E-02 4.6290E-02 5.2405E-02 5.2405E-02 5.4808E-02 5.7235E-02 5.7235E-02 5.8012E-02 5.8795E-02 5.8795E-02 6.0354E-02 7.0535E-02 8.4263E-02 9.2274E-02 9.6829E-02 9.9367E-02 1.0114E-01 1.0117E-01 1.0117E-01 1.0077E-01 9.6462E-02 9.1112E-02 8.6056E-02 8.1573E-02 7.7645E-02 7.4174E-02 7.1077E-02 6.8303E-02 6.5804E-02 6.3534E-02 6.1454E-02 5.7773E-02 5.6135E-02 5.4611E-02 5.1869E-02 5.0631E-02 5.0111E-02 4.5372E-02 4.4474E-02 4.2809E-02 4.1306E-02 3.9943E-02 3.7507E-02 3.5313E-02 3.4855E-02 3.3364E-02 3.0267E-02 2.7810E-02 2.3209E-02 2.0051E-02 1.7724E-02 1.5932E-02 1.4501E-02 1.3330E-02 1.2352E-02 1.1520E-02 1.0805E-02 1.0178E-02 9.6309E-03 9.1448E-03 8.7076E-03 7.9585E-03 7.3379E-03 6.8181E-03 6.3687E-03 5.9804E-03 5.6440E-03 5.3444E-03 4.2468E-03 3.5436E-03 3.0538E-03 2.4083E-03 1.9990E-03 1.4235E-03 1.1163E-03 7.9127E-04 6.1974E-04 5.1304E-04 4.3905E-04 3.4304E-04 2.8217E-04 1.9705E-04 1.5251E-04 1.0603E-04 8.1848E-05 6.6927E-05 5.6746E-05 4.3721E-05 3.5711E-05 2.4674E-05 1.8968E-05 1.3083E-05 1.0044E-05 8.1787E-06 6.9129E-06 5.3016E-06 4.3141E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.6412E+03 4.4582E+05 1.8337E+04 2.0769E+03 1.1254E+03 9.0775E+02 9.8266E+02 1.4752E+03 2.2136E+03 2.3466E+03 2.2674E+03 2.1913E+03 2.5288E+03 2.0393E+03 1.8121E+03 1.9228E+03 1.7401E+03 1.5752E+03 1.6425E+03 1.1346E+03 6.5796E+02 4.1795E+02 2.0130E+02 1.1325E+02 7.1697E+01 1.8290E+02 1.5103E+02 1.2474E+02 1.7287E+02 1.6392E+02 1.5544E+02 1.7959E+02 1.6049E+02 7.6497E+01 2.6114E+01 1.2010E+01 6.5368E+00 3.9624E+00 1.7904E+00 1.7461E+00 8.5119E+00 4.8552E+00 1.6636E+00 7.7109E-01 4.2632E-01 2.6462E-01 1.7814E-01 1.2731E-01 9.5256E-02 7.3898E-02 5.9026E-02 4.8277E-02 4.0264E-02 2.9355E-02 2.5551E-02 2.2476E-02 1.7853E-02 1.6085E-02 1.5394E-02 1.0383E-02 9.6404E-03 8.3960E-03 7.3990E-03 6.5861E-03 5.3533E-03 4.4761E-03 4.3171E-03 3.8250E-03 2.9247E-03 2.3429E-03 1.5354E-03 1.1261E-03 8.8299E-04 7.2339E-04 6.1149E-04 5.2863E-04 4.6504E-04 4.1489E-04 3.7423E-04 3.4090E-04 3.1278E-04 2.8896E-04 2.6844E-04 2.3499E-04 2.0891E-04 1.8797E-04 1.7085E-04 1.5654E-04 1.4443E-04 1.3407E-04 9.8633E-05 7.7965E-05 6.4451E-05 4.7849E-05 3.8065E-05 2.5166E-05 1.8797E-05 1.2480E-05 9.3405E-06 7.4632E-06 6.2127E-06 4.6565E-06 3.7209E-06 2.4793E-06 1.8589E-06 1.2386E-06 9.2885E-07 7.4296E-07 6.1913E-07 4.6412E-07 3.7148E-07 2.4756E-07 1.8568E-07 1.2377E-07 9.2824E-08 7.4265E-08 6.1883E-08 4.6412E-08 3.7117E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.5956E-04 5.6462E-04 1.0833E-03 1.7033E-03 2.3785E-03 3.7837E-03 5.1915E-03 5.5003E-03 6.5757E-03 9.1670E-03 1.1533E-02 1.6700E-02 2.1023E-02 2.4747E-02 2.8028E-02 3.0972E-02 3.3662E-02 3.6139E-02 3.8401E-02 4.0542E-02 4.2529E-02 4.4394E-02 4.6106E-02 4.7727E-02 5.0662E-02 5.3261E-02 5.5615E-02 5.7755E-02 5.9742E-02 6.1516E-02 6.3197E-02 6.9985E-02 7.4999E-02 7.8913E-02 8.4630E-02 8.8696E-02 9.5056E-02 9.8847E-02 1.0325E-01 1.0576E-01 1.0738E-01 1.0857E-01 1.1013E-01 1.1114E-01 1.1257E-01 1.1337E-01 1.1423E-01 1.1468E-01 1.1499E-01 1.1520E-01 1.1545E-01 1.1563E-01 1.1585E-01 1.1597E-01 1.1609E-01 1.1618E-01 1.1621E-01 1.1624E-01 1.1627E-01 1.1631E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3162E-08 2.7605E-06 9.7165E-06 3.9594E-05 7.8760E-05 1.2074E-04 1.6250E-04 2.0283E-04 2.4135E-04 2.7789E-04 3.1247E-04 3.4488E-04 3.7545E-04 4.0450E-04 4.3171E-04 4.5770E-04 5.0601E-04 5.4942E-04 5.8917E-04 6.2555E-04 6.5918E-04 6.9037E-04 7.1911E-04 8.3743E-04 9.2640E-04 9.9642E-04 1.1010E-03 1.1762E-03 1.2988E-03 1.3749E-03 1.4663E-03 1.5208E-03 1.5575E-03 1.5841E-03 1.6207E-03 1.6449E-03 1.6807E-03 1.7009E-03 1.7226E-03 1.7354E-03 1.7430E-03 1.7486E-03 1.7559E-03 1.7605E-03 1.7666E-03 1.7703E-03 1.7736E-03 1.7758E-03 1.7770E-03 1.7779E-03 1.7788E-03 1.7794E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/B.mat0000644000000000000000000001642014741736366017507 0ustar00rootrootB 1 5 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.0548E-01 1.0114E+02 1.1156E+00 6.9518E-01 5.8712E-01 4.2045E-01 3.1662E-01 2.5200E-01 2.0939E-01 1.5625E-01 1.2277E-01 7.3418E-02 4.7705E-02 2.4382E-02 1.4700E-02 9.7927E-03 6.9741E-03 4.0313E-03 2.6159E-03 1.1798E-03 6.6677E-04 4.2783E-04 2.9757E-04 2.1881E-04 1.6761E-04 1.3248E-04 1.0734E-04 8.8742E-05 7.4587E-05 6.3561E-05 4.7740E-05 4.1956E-05 3.7163E-05 2.9752E-05 2.6855E-05 2.5713E-05 1.7190E-05 1.5892E-05 1.3701E-05 1.1937E-05 1.0498E-05 8.3019E-06 6.7179E-06 6.4282E-06 5.5422E-06 3.9688E-06 2.9846E-06 1.6789E-06 1.0745E-06 7.4643E-07 5.4824E-07 4.1973E-07 3.3166E-07 2.6866E-07 2.2204E-07 1.8655E-07 1.5898E-07 1.3709E-07 1.1937E-07 1.0495E-07 8.2887E-08 6.7179E-08 5.5503E-08 4.6635E-08 3.9739E-08 3.4263E-08 2.9846E-08 1.6789E-08 1.0745E-08 7.4643E-09 4.1967E-09 2.6855E-09 1.1937E-09 6.7123E-10 2.9841E-10 1.6784E-10 1.0745E-10 7.4587E-11 4.1962E-11 2.6855E-11 1.1937E-11 6.7123E-12 2.9841E-12 1.6784E-12 1.0745E-12 7.4587E-13 4.1962E-13 2.6855E-13 1.1937E-13 6.7123E-14 2.9841E-14 1.6784E-14 1.0745E-14 7.4587E-15 4.1962E-15 2.6855E-15 INCOHERENT SCATTERING CROSS SECTION 1.6115E-02 2.4813E-02 5.7332E-03 3.0843E-02 4.5683E-02 7.0410E-02 8.7344E-02 9.8763E-02 1.0717E-01 1.1954E-01 1.2879E-01 1.4377E-01 1.5118E-01 1.5541E-01 1.5452E-01 1.5190E-01 1.4878E-01 1.4221E-01 1.3603E-01 1.2305E-01 1.1291E-01 1.0487E-01 9.8317E-02 9.2850E-02 8.8179E-02 8.4118E-02 8.0548E-02 7.7378E-02 7.4532E-02 7.1951E-02 6.7438E-02 6.5452E-02 6.3617E-02 6.0342E-02 5.8879E-02 5.8266E-02 5.2640E-02 5.1580E-02 4.9621E-02 4.7844E-02 4.6217E-02 4.3330E-02 4.0831E-02 4.0324E-02 3.8646E-02 3.5029E-02 3.2124E-02 2.6794E-02 2.3139E-02 2.0454E-02 1.8382E-02 1.6728E-02 1.5380E-02 1.4249E-02 1.3291E-02 1.2461E-02 1.1742E-02 1.1107E-02 1.0545E-02 1.0043E-02 9.1800E-03 8.4614E-03 7.8598E-03 7.3473E-03 6.8961E-03 6.5062E-03 6.1608E-03 4.8964E-03 4.0870E-03 3.5216E-03 2.7774E-03 2.3050E-03 1.6416E-03 1.2873E-03 9.1243E-04 7.1468E-04 5.9157E-04 5.0640E-04 3.9550E-04 3.2537E-04 2.2722E-04 1.7586E-04 1.2227E-04 9.4418E-05 7.7150E-05 6.5452E-05 5.0418E-05 4.1165E-05 2.8448E-05 2.1875E-05 1.5085E-05 1.1581E-05 9.4307E-06 7.9712E-06 6.1107E-06 4.9727E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.2277E+03 3.8578E+06 9.5159E+03 3.7594E+02 1.5909E+02 4.6184E+01 1.8861E+01 9.3304E+00 5.2222E+00 2.0705E+00 1.0032E+00 2.6548E-01 1.0249E-01 2.6560E-02 1.0138E-02 4.7939E-03 2.5986E-03 9.8874E-04 4.6969E-04 1.2238E-04 4.7939E-05 2.3559E-05 1.3391E-05 8.4211E-06 5.6985E-06 4.0791E-06 3.0620E-06 2.3882E-06 1.9034E-06 1.5373E-06 1.0839E-06 9.5922E-07 8.7602E-07 7.0807E-07 5.9659E-07 5.4545E-07 3.7060E-07 3.4982E-07 3.0675E-07 2.6933E-07 2.4048E-07 1.9948E-07 1.7023E-07 1.6472E-07 1.4764E-07 1.1635E-07 9.5755E-08 6.5953E-08 5.0172E-08 4.0419E-08 3.3812E-08 2.9050E-08 2.5457E-08 2.2655E-08 2.0399E-08 1.8555E-08 1.7012E-08 1.5708E-08 1.4589E-08 1.3620E-08 1.2015E-08 1.0751E-08 9.7259E-09 8.8848E-09 8.1717E-09 7.5646E-09 7.0410E-09 5.2362E-09 4.1666E-09 3.4598E-09 2.5835E-09 2.0610E-09 1.3692E-09 1.0249E-09 6.8181E-10 5.1108E-10 4.0864E-10 3.4041E-10 2.5523E-10 2.0410E-10 1.3603E-10 1.0199E-10 6.8014E-11 5.0986E-11 4.0786E-11 3.3990E-11 2.5490E-11 2.0393E-11 1.3592E-11 1.0194E-11 6.7959E-12 5.0975E-12 4.0781E-12 3.3985E-12 2.5484E-12 2.0388E-12 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1035E-05 1.7925E-05 3.6710E-05 6.1497E-05 9.1381E-05 1.6299E-04 2.4554E-04 2.6470E-04 3.3436E-04 5.1879E-04 7.0354E-04 1.1430E-03 1.5341E-03 1.8867E-03 2.2003E-03 2.4838E-03 2.7412E-03 2.9751E-03 3.1879E-03 3.3834E-03 3.5656E-03 3.7355E-03 3.8943E-03 4.0435E-03 4.3176E-03 4.5638E-03 4.7872E-03 4.9905E-03 5.1777E-03 5.3498E-03 5.5102E-03 6.1664E-03 6.6622E-03 7.0577E-03 7.6481E-03 8.0826E-03 8.8123E-03 9.2747E-03 9.8373E-03 1.0177E-02 1.0405E-02 1.0573E-02 1.0801E-02 1.0946E-02 1.1169E-02 1.1291E-02 1.1419E-02 1.1492E-02 1.1542E-02 1.1570E-02 1.1614E-02 1.1642E-02 1.1676E-02 1.1698E-02 1.1720E-02 1.1731E-02 1.1737E-02 1.1742E-02 1.1748E-02 1.1753E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0742E-07 3.1880E-06 1.1235E-05 4.5883E-05 9.1410E-05 1.4043E-04 1.8934E-04 2.3685E-04 2.8236E-04 3.2581E-04 3.6698E-04 4.0597E-04 4.4279E-04 4.7799E-04 5.1136E-04 5.4322E-04 6.0272E-04 6.5675E-04 7.0688E-04 7.5367E-04 7.9656E-04 8.3667E-04 8.7455E-04 1.0333E-03 1.1575E-03 1.2583E-03 1.4154E-03 1.5341E-03 1.7402E-03 1.8778E-03 2.0555E-03 2.1685E-03 2.2476E-03 2.3073E-03 2.3919E-03 2.4493E-03 2.5362E-03 2.5869E-03 2.6426E-03 2.6755E-03 2.6955E-03 2.7100E-03 2.7295E-03 2.7417E-03 2.7585E-03 2.7685E-03 2.7779E-03 2.7841E-03 2.7874E-03 2.7896E-03 2.7924E-03 2.7941E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ba.mat0000644000000000000000000002123614741736366017651 0ustar00rootrootBa 1 56 1.000000 8 4 3 3 7 3 3 8 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0622E-03 1.0622E-03 1.0988E-03 1.1367E-03 1.1367E-03 1.2122E-03 1.2928E-03 1.2928E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.2470E-03 5.2470E-03 5.4320E-03 5.6236E-03 5.6236E-03 5.8033E-03 5.9888E-03 5.9888E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.7441E-02 3.7441E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.5205E+00 3.2624E+04 1.1491E+01 8.4592E+00 8.4592E+00 8.4225E+00 8.3846E+00 8.3846E+00 8.3107E+00 8.2311E+00 8.2311E+00 8.0162E+00 7.5119E+00 6.5647E+00 5.7271E+00 5.0343E+00 4.8808E+00 4.8808E+00 4.7739E+00 4.6615E+00 4.6615E+00 4.5523E+00 4.4598E+00 4.4598E+00 4.4554E+00 3.5547E+00 2.8973E+00 1.9054E+00 1.3673E+00 7.8671E-01 5.6570E-01 5.6570E-01 5.1220E-01 3.6420E-01 2.7289E-01 1.6861E-01 1.1432E-01 5.5649E-02 3.2981E-02 2.1776E-02 1.5432E-02 1.1501E-02 8.8977E-03 7.0854E-03 5.7754E-03 4.7988E-03 4.0507E-03 3.4642E-03 2.6162E-03 2.3040E-03 2.0443E-03 1.6414E-03 1.4835E-03 1.4213E-03 9.5379E-04 8.8233E-04 7.6155E-04 6.6393E-04 5.8387E-04 4.6171E-04 3.7428E-04 3.5841E-04 3.0957E-04 2.2184E-04 1.6668E-04 9.3801E-05 6.0078E-05 4.1717E-05 3.0653E-05 2.3470E-05 1.8545E-05 1.5019E-05 1.2415E-05 1.0433E-05 8.8889E-06 7.6654E-06 6.6787E-06 5.8675E-06 4.6352E-06 3.7555E-06 3.1039E-06 2.6083E-06 2.2224E-06 1.9164E-06 1.6695E-06 9.3888E-07 6.0078E-07 4.1730E-07 2.3474E-07 1.5024E-07 6.6787E-08 3.7555E-08 1.6690E-08 9.3888E-09 6.0078E-09 4.1730E-09 2.3474E-09 1.5024E-09 6.6787E-10 3.7555E-10 1.6690E-10 9.3888E-11 6.0078E-11 4.1730E-11 2.3474E-11 1.5024E-11 6.6787E-12 3.7555E-12 1.6690E-12 9.3888E-13 6.0078E-13 4.1730E-13 2.3474E-13 1.5024E-13 INCOHERENT SCATTERING CROSS SECTION 6.8629E-03 3.0597E+02 4.2108E-03 7.3935E-03 7.3935E-03 7.7047E-03 8.0206E-03 8.0206E-03 8.6249E-03 9.2573E-03 9.2573E-03 1.0937E-02 1.4897E-02 2.2510E-02 2.9548E-02 3.5801E-02 3.7209E-02 3.7209E-02 3.8235E-02 3.9270E-02 3.9270E-02 4.0213E-02 4.1164E-02 4.1164E-02 4.1221E-02 5.0343E-02 5.8148E-02 7.3409E-02 8.3758E-02 9.5949E-02 1.0108E-01 1.0108E-01 1.0240E-01 1.0586E-01 1.0761E-01 1.0823E-01 1.0682E-01 1.0082E-01 9.4546E-02 8.8965E-02 8.4109E-02 7.9878E-02 7.6172E-02 7.2901E-02 6.9989E-02 6.7370E-02 6.4989E-02 6.2807E-02 5.8983E-02 5.7315E-02 5.5785E-02 5.2984E-02 5.1658E-02 5.1088E-02 4.6264E-02 4.5355E-02 4.3639E-02 4.2068E-02 4.0637E-02 3.8113E-02 3.5933E-02 3.5490E-02 3.4022E-02 3.0847E-02 2.8294E-02 2.3606E-02 2.0391E-02 1.8023E-02 1.6204E-02 1.4748E-02 1.3555E-02 1.2559E-02 1.1717E-02 1.0985E-02 1.0349E-02 9.7923E-03 9.2967E-03 8.8538E-03 8.0908E-03 7.4637E-03 6.9331E-03 6.4770E-03 6.0823E-03 5.7359E-03 5.4333E-03 4.3173E-03 3.6038E-03 3.1048E-03 2.4487E-03 2.0326E-03 1.4476E-03 1.1349E-03 8.0426E-04 6.3016E-04 5.2141E-04 4.4642E-04 3.4872E-04 2.8688E-04 2.0036E-04 1.5506E-04 1.0783E-04 8.3232E-05 6.8059E-05 5.7710E-05 4.4466E-05 3.6297E-05 2.5084E-05 1.9286E-05 1.3300E-05 1.0209E-05 8.3144E-06 7.0296E-06 5.3895E-06 4.3848E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 8.5337E+03 1.4732E+06 4.0233E+04 7.4593E+03 8.5381E+03 7.9465E+03 7.3979E+03 7.8277E+03 6.8414E+03 5.9815E+03 6.2490E+03 4.4905E+03 2.3110E+03 8.6302E+02 4.1879E+02 2.3632E+02 2.0861E+02 6.0473E+02 5.5664E+02 5.1220E+02 6.9682E+02 6.4494E+02 5.9683E+02 6.8892E+02 6.8542E+02 3.2986E+02 1.8304E+02 6.1481E+01 2.7925E+01 9.0205E+00 4.8326E+00 2.8522E+01 2.3957E+01 1.3318E+01 8.1303E+00 3.6862E+00 1.9742E+00 6.2621E-01 2.7702E-01 1.4809E-01 8.9547E-02 5.9033E-02 4.1480E-02 3.0606E-02 2.3470E-02 1.8565E-02 1.5063E-02 1.2483E-02 9.0149E-03 7.8189E-03 6.8578E-03 5.4264E-03 4.8852E-03 4.6747E-03 3.1530E-03 2.9293E-03 2.5554E-03 2.2558E-03 2.0106E-03 1.6374E-03 1.3713E-03 1.3230E-03 1.1740E-03 9.0216E-04 7.2620E-04 4.8018E-04 3.5464E-04 2.7960E-04 2.3009E-04 1.9510E-04 1.6918E-04 1.4923E-04 1.3340E-04 1.2059E-04 1.0998E-04 1.0104E-04 9.3450E-05 8.6916E-05 7.6216E-05 6.7884E-05 6.1130E-05 5.5649E-05 5.1000E-05 4.7098E-05 4.3765E-05 3.2271E-05 2.5553E-05 2.1146E-05 1.5721E-05 1.2511E-05 8.2837E-06 6.1920E-06 4.1121E-06 3.0789E-06 2.4601E-06 2.0488E-06 1.5353E-06 1.2274E-06 8.1785E-07 6.1306E-07 4.0857E-07 3.0640E-07 2.4509E-07 2.0422E-07 1.5313E-07 1.2252E-07 8.1653E-08 6.1262E-08 4.0831E-08 3.0622E-08 2.4500E-08 2.0418E-08 1.5313E-08 1.2248E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.0194E-04 3.1333E-04 5.9341E-04 9.3318E-04 1.3174E-03 2.1760E-03 3.1039E-03 3.3126E-03 4.0550E-03 5.9317E-03 7.7224E-03 1.1757E-02 1.5230E-02 1.8221E-02 2.0878E-02 2.3264E-02 2.5430E-02 2.7417E-02 2.9250E-02 3.0947E-02 3.2534E-02 3.3994E-02 3.5345E-02 3.6599E-02 3.8880E-02 4.0923E-02 4.2774E-02 4.4466E-02 4.6001E-02 4.7405E-02 4.8676E-02 5.3982E-02 5.7885E-02 6.0911E-02 6.5384E-02 6.8585E-02 7.3672E-02 7.6698E-02 8.0250E-02 8.2267E-02 8.3627E-02 8.4592E-02 8.5863E-02 8.6696E-02 8.7880E-02 8.8538E-02 8.9240E-02 8.9635E-02 8.9854E-02 9.0029E-02 9.0248E-02 9.0380E-02 9.0599E-02 9.0687E-02 9.0775E-02 9.0862E-02 9.0906E-02 9.0906E-02 9.0950E-02 9.0950E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4739E-08 2.8091E-06 9.8931E-06 4.0349E-05 8.0294E-05 1.2318E-04 1.6585E-04 2.0720E-04 2.4667E-04 2.8416E-04 3.1964E-04 3.5301E-04 3.8450E-04 4.1441E-04 4.4291E-04 4.6966E-04 5.1921E-04 5.6438E-04 6.0604E-04 6.4375E-04 6.7884E-04 7.1129E-04 7.4155E-04 8.6653E-04 9.6125E-04 1.0362E-03 1.1489E-03 1.2309E-03 1.3664E-03 1.4520E-03 1.5563E-03 1.6195E-03 1.6624E-03 1.6945E-03 1.7383E-03 1.7677E-03 1.8120E-03 1.8374E-03 1.8650E-03 1.8813E-03 1.8914E-03 1.8988E-03 1.9080E-03 1.9142E-03 1.9225E-03 1.9273E-03 1.9317E-03 1.9348E-03 1.9365E-03 1.9374E-03 1.9387E-03 1.9396E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Be.mat0000644000000000000000000001642014741736366017654 0ustar00rootrootBeryllium 1 4 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.9184E-01 8.1796E+01 8.6437E-01 4.9475E-01 4.1029E-01 2.9616E-01 2.3214E-01 1.9258E-01 1.6485E-01 1.2543E-01 9.7494E-02 5.5797E-02 3.5382E-02 1.7701E-02 1.0538E-02 6.9562E-03 4.9201E-03 2.8226E-03 1.8236E-03 8.1857E-04 4.6208E-04 2.9620E-04 2.9620E-04 2.0588E-04 1.1594E-04 9.1638E-05 7.4239E-05 6.1354E-05 5.1553E-05 4.3932E-05 3.3005E-05 2.9008E-05 2.5692E-05 2.0565E-05 1.8563E-05 1.7775E-05 1.1881E-05 1.0985E-05 9.4723E-06 8.2525E-06 7.2537E-06 5.7313E-06 4.6421E-06 4.4443E-06 3.8363E-06 2.7464E-06 2.0628E-06 1.1607E-06 7.4306E-07 5.1580E-07 3.7895E-07 2.9014E-07 2.2927E-07 1.8570E-07 1.5342E-07 1.2897E-07 1.0986E-07 9.4754E-08 8.2525E-08 7.2502E-08 5.7307E-08 4.6421E-08 3.8363E-08 3.2235E-08 2.7464E-08 2.3682E-08 2.0628E-08 1.1607E-08 7.4239E-09 5.1573E-09 2.9008E-09 1.8563E-09 8.2525E-10 4.6408E-10 2.0628E-10 1.1600E-10 7.4239E-11 5.1567E-11 2.9008E-11 1.8563E-11 8.2525E-12 4.6408E-12 2.0628E-12 1.1600E-12 7.4239E-13 5.1567E-13 2.9008E-13 1.8563E-13 8.2525E-14 4.6408E-14 2.0628E-14 1.1600E-14 7.4239E-15 5.1567E-15 2.9008E-15 1.8563E-15 INCOHERENT SCATTERING CROSS SECTION 2.0909E-02 1.9690E-01 8.3858E-03 3.7922E-02 5.2836E-02 7.3504E-02 8.6267E-02 9.5623E-02 1.0344E-01 1.1627E-01 1.2616E-01 1.4113E-01 1.4768E-01 1.5075E-01 1.4935E-01 1.4654E-01 1.4333E-01 1.3685E-01 1.3077E-01 1.1814E-01 1.0845E-01 1.0075E-01 1.0075E-01 9.4420E-02 8.4597E-02 8.0725E-02 7.7313E-02 7.4252E-02 7.1500E-02 6.9024E-02 6.4724E-02 6.2833E-02 6.1081E-02 5.7927E-02 5.6498E-02 5.5897E-02 5.0518E-02 4.9508E-02 4.7631E-02 4.5920E-02 4.4351E-02 4.1572E-02 3.9185E-02 3.8703E-02 3.7104E-02 3.3625E-02 3.0825E-02 2.5713E-02 2.2205E-02 1.9626E-02 1.7641E-02 1.6057E-02 1.4761E-02 1.3672E-02 1.2756E-02 1.1961E-02 1.1266E-02 1.0658E-02 1.0124E-02 9.6358E-03 8.8072E-03 8.1256E-03 7.5442E-03 7.0497E-03 6.6201E-03 6.2452E-03 5.9131E-03 4.6989E-03 3.9225E-03 3.3799E-03 2.6655E-03 2.2125E-03 1.5757E-03 1.2349E-03 8.7537E-04 6.8560E-04 5.6759E-04 4.8600E-04 3.7955E-04 3.1226E-04 2.1804E-04 1.6879E-04 1.1734E-04 9.0611E-05 7.4039E-05 6.2806E-05 4.8386E-05 3.9505E-05 2.7304E-05 2.0989E-05 1.4474E-05 1.1113E-05 9.0477E-06 7.6511E-06 5.8657E-06 4.7724E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.0354E+02 2.0370E+06 4.9240E+03 1.7915E+02 7.4239E+01 2.0902E+01 8.3661E+00 4.0808E+00 2.2593E+00 8.8205E-01 4.2292E-01 1.1006E-01 4.2071E-02 1.0765E-02 4.0802E-03 1.9191E-03 1.0391E-03 3.9365E-04 1.8590E-04 4.8179E-05 1.8810E-05 9.2218E-06 9.2218E-06 5.2342E-06 2.2238E-06 1.5904E-06 1.1934E-06 9.3103E-07 7.4106E-07 5.9641E-07 4.1969E-07 3.7360E-07 3.4465E-07 2.8003E-07 2.3227E-07 2.1009E-07 1.4280E-07 1.3525E-07 1.1864E-07 1.0391E-07 9.2666E-08 7.6934E-08 6.5780E-08 6.3668E-08 5.7109E-08 4.5039E-08 3.7086E-08 2.5600E-08 1.9485E-08 1.5710E-08 1.3151E-08 1.1300E-08 9.9030E-09 8.8138E-09 7.9452E-09 7.2235E-09 6.6261E-09 6.1182E-09 5.6832E-09 5.3050E-09 4.6822E-09 4.1904E-09 3.7915E-09 3.4621E-09 3.1854E-09 2.9495E-09 2.7464E-09 2.0421E-09 1.6251E-09 1.3498E-09 1.0077E-09 8.0387E-10 5.3418E-10 3.9993E-10 2.6615E-10 1.9946E-10 1.5944E-10 1.3284E-10 9.9565E-11 7.9652E-11 5.3084E-11 3.9806E-11 2.6528E-11 1.9900E-11 1.5917E-11 1.3264E-11 9.9498E-12 7.9585E-12 5.3050E-12 3.9786E-12 2.6522E-12 1.9893E-12 1.5910E-12 1.3264E-12 9.9431E-13 7.9585E-13 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 8.4196E-06 1.3687E-05 2.8066E-05 4.7063E-05 6.9985E-05 1.2494E-04 1.8830E-04 2.0301E-04 2.5646E-04 3.9813E-04 5.4006E-04 8.7738E-04 1.1781E-03 1.4480E-03 1.6893E-03 1.9071E-03 2.1049E-03 2.2853E-03 2.4490E-03 2.5994E-03 2.7397E-03 2.8707E-03 2.9930E-03 3.1079E-03 3.3197E-03 3.5102E-03 3.6826E-03 3.8409E-03 3.9859E-03 4.1203E-03 4.2445E-03 4.7591E-03 5.1446E-03 5.4514E-03 5.9151E-03 6.2512E-03 6.8092E-03 7.1633E-03 7.6044E-03 7.8650E-03 8.0387E-03 8.1724E-03 8.3461E-03 8.4664E-03 8.6401E-03 8.7337E-03 8.8406E-03 8.8940E-03 8.9341E-03 8.9609E-03 8.9943E-03 9.0143E-03 9.0410E-03 9.0611E-03 9.0745E-03 9.0878E-03 9.0878E-03 9.0945E-03 9.1012E-03 9.1012E-03 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0315E-07 3.0607E-06 1.0785E-05 4.4036E-05 8.7738E-05 1.3478E-04 1.8169E-04 2.2726E-04 2.7096E-04 3.1266E-04 3.5222E-04 3.8957E-04 4.2492E-04 4.5873E-04 4.9074E-04 5.2135E-04 5.7835E-04 6.3053E-04 6.7891E-04 7.2302E-04 7.6445E-04 8.0320E-04 8.3929E-04 9.9231E-04 1.1126E-03 1.2095E-03 1.3612E-03 1.4761E-03 1.6752E-03 1.8082E-03 1.9813E-03 2.0915E-03 2.1704E-03 2.2299E-03 2.3141E-03 2.3722E-03 2.4611E-03 2.5132E-03 2.5713E-03 2.6047E-03 2.6261E-03 2.6415E-03 2.6615E-03 2.6749E-03 2.6929E-03 2.7030E-03 2.7130E-03 2.7197E-03 2.7230E-03 2.7257E-03 2.7283E-03 2.7304E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Bi.mat0000644000000000000000000002174214741736366017663 0ustar00rootrootBi 1 83 1.000000 10 6 3 3 3 3 7 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.5796E-03 2.5796E-03 2.6330E-03 2.6876E-03 2.6876E-03 3.0000E-03 3.1769E-03 3.1769E-03 3.4268E-03 3.6963E-03 3.6963E-03 3.8447E-03 3.9991E-03 3.9991E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.3419E-02 1.3419E-02 1.5000E-02 1.5711E-02 1.5711E-02 1.6046E-02 1.6387E-02 1.6387E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 9.0526E-02 9.0526E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2697E+01 5.3485E+01 1.3952E+01 1.2172E+01 1.1584E+01 1.0893E+01 1.0893E+01 1.0829E+01 1.0763E+01 1.0763E+01 1.0391E+01 1.0192E+01 1.0192E+01 9.9453E+00 9.6162E+00 9.6162E+00 9.4025E+00 9.2963E+00 9.2963E+00 9.2963E+00 8.3223E+00 7.4722E+00 6.0976E+00 5.0660E+00 3.8067E+00 3.8067E+00 3.3716E+00 3.2015E+00 3.2015E+00 3.1249E+00 3.0488E+00 3.0488E+00 2.3883E+00 1.4063E+00 9.4058E-01 6.6999E-01 5.0170E-01 3.1526E-01 2.5716E-01 2.5716E-01 2.1791E-01 1.0760E-01 6.4204E-02 4.2833E-02 3.0661E-02 2.3035E-02 1.7936E-02 1.4356E-02 1.1749E-02 9.7905E-03 8.2848E-03 7.1029E-03 5.3873E-03 4.7519E-03 4.2212E-03 3.3968E-03 3.0747E-03 2.9480E-03 1.9858E-03 1.8381E-03 1.5886E-03 1.3867E-03 1.2208E-03 9.6691E-04 7.8468E-04 7.5154E-04 6.4956E-04 4.6621E-04 3.5070E-04 1.9757E-04 1.2656E-04 8.7949E-05 6.4636E-05 4.9478E-05 3.9104E-05 3.1670E-05 2.6186E-05 2.2004E-05 1.8751E-05 1.6169E-05 1.4086E-05 1.2380E-05 9.7804E-06 7.9246E-06 6.5472E-06 5.5011E-06 4.6885E-06 4.0430E-06 3.5214E-06 1.9809E-06 1.2679E-06 8.8035E-07 4.9536E-07 3.1698E-07 1.4086E-07 7.9246E-08 3.5214E-08 1.9809E-08 1.2679E-08 8.8035E-09 4.9536E-09 3.1698E-09 1.4086E-09 7.9246E-10 3.5214E-10 1.9809E-10 1.2679E-10 8.8035E-11 4.9536E-11 3.1698E-11 1.4086E-11 7.9246E-12 3.5214E-12 1.9809E-12 1.2679E-12 8.8035E-13 4.9536E-13 3.1698E-13 INCOHERENT SCATTERING CROSS SECTION 3.4984E-03 3.0919E-03 1.2952E-03 6.4895E-03 9.5470E-03 1.2985E-02 1.2985E-02 1.3293E-02 1.3607E-02 1.3607E-02 1.5374E-02 1.6333E-02 1.6333E-02 1.7699E-02 1.9071E-02 1.9071E-02 1.9761E-02 2.0610E-02 2.0610E-02 2.0616E-02 2.5411E-02 2.9912E-02 3.8211E-02 4.5502E-02 5.5472E-02 5.5472E-02 5.9334E-02 6.0919E-02 6.0919E-02 6.1639E-02 6.2359E-02 6.2359E-02 6.9074E-02 8.2301E-02 9.0254E-02 9.4865E-02 9.7458E-02 9.9389E-02 9.9418E-02 9.9418E-02 9.9130E-02 9.5066E-02 8.9908E-02 8.4995E-02 8.0600E-02 7.6729E-02 7.3310E-02 7.0270E-02 6.7546E-02 6.5087E-02 6.2849E-02 6.0800E-02 5.7173E-02 5.5559E-02 5.4057E-02 5.1344E-02 5.0112E-02 4.9594E-02 4.4925E-02 4.4041E-02 4.2393E-02 4.0891E-02 3.9517E-02 3.7077E-02 3.4955E-02 3.4522E-02 3.3092E-02 3.0010E-02 2.7534E-02 2.2981E-02 1.9852E-02 1.7549E-02 1.5777E-02 1.4359E-02 1.3201E-02 1.2230E-02 1.1409E-02 1.0700E-02 1.0080E-02 9.5355E-03 9.0542E-03 8.6220E-03 7.8814E-03 7.2676E-03 6.7518E-03 6.3080E-03 5.9247E-03 5.5876E-03 5.2908E-03 4.2044E-03 3.5099E-03 3.0229E-03 2.3849E-03 1.9794E-03 1.4097E-03 1.1054E-03 7.8353E-04 6.1351E-04 5.0775E-04 4.3484E-04 3.3975E-04 2.7941E-04 1.9515E-04 1.5103E-04 1.0501E-04 8.1062E-05 6.6279E-05 5.6193E-05 4.3312E-05 3.5358E-05 2.4431E-05 1.8783E-05 1.2953E-05 9.9447E-06 8.0975E-06 6.8469E-06 5.2504E-06 4.2706E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.4291E+03 4.9123E+05 2.1069E+04 2.4555E+03 1.3359E+03 7.6163E+02 1.7714E+03 1.8082E+03 1.8460E+03 2.5710E+03 2.0428E+03 1.7636E+03 2.0376E+03 1.6918E+03 1.4048E+03 1.4887E+03 1.3550E+03 1.2336E+03 1.2878E+03 1.2870E+03 7.4952E+02 4.7807E+02 2.3172E+02 1.3089E+02 6.1034E+01 1.5215E+02 1.1253E+02 9.9418E+01 1.3835E+02 1.3156E+02 1.2512E+02 1.4463E+02 8.7055E+01 3.0027E+01 1.3921E+01 7.6134E+00 4.6337E+00 2.1071E+00 1.4999E+00 7.0226E+00 5.4204E+00 1.8797E+00 8.7920E-01 4.8924E-01 3.0517E-01 2.0624E-01 1.4789E-01 1.1096E-01 8.6277E-02 6.9030E-02 5.6538E-02 4.7217E-02 3.4502E-02 3.0056E-02 2.6456E-02 2.1031E-02 1.8953E-02 1.8140E-02 1.2238E-02 1.1362E-02 9.8922E-03 8.7171E-03 7.7617E-03 6.3117E-03 5.2706E-03 5.0804E-03 4.4951E-03 3.4363E-03 2.7546E-03 1.8028E-03 1.3210E-03 1.0348E-03 8.4721E-04 7.1552E-04 6.1841E-04 5.4406E-04 4.8499E-04 4.3744E-04 3.9825E-04 3.6540E-04 3.3744E-04 3.1353E-04 2.7436E-04 2.4385E-04 2.1938E-04 1.9933E-04 1.8264E-04 1.6849E-04 1.5639E-04 1.1498E-04 9.0888E-05 7.5125E-05 5.5760E-05 4.4349E-05 2.9307E-05 2.1892E-05 1.4532E-05 1.0878E-05 8.6911E-06 7.2359E-06 5.4204E-06 4.3340E-06 2.8874E-06 2.1644E-06 1.4423E-06 1.0815E-06 8.6508E-07 7.2100E-07 5.4060E-07 4.3254E-07 2.8817E-07 2.1618E-07 1.4411E-07 1.0809E-07 8.6479E-08 7.2071E-08 5.4031E-08 4.3225E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.8730E-04 6.1065E-04 1.1778E-03 1.8552E-03 2.5880E-03 4.0918E-03 5.5789E-03 5.9046E-03 7.0337E-03 9.7225E-03 1.2146E-02 1.7397E-02 2.1794E-02 2.5584E-02 2.8932E-02 3.1929E-02 3.4667E-02 3.7174E-02 3.9508E-02 4.1669E-02 4.3715E-02 4.5617E-02 4.7375E-02 4.9046E-02 5.2043E-02 5.4694E-02 5.7115E-02 5.9334E-02 6.1351E-02 6.3195E-02 6.4895E-02 7.1840E-02 7.6998E-02 8.1004E-02 8.6882E-02 9.1032E-02 9.7574E-02 1.0146E-01 1.0596E-01 1.0855E-01 1.1022E-01 1.1143E-01 1.1305E-01 1.1409E-01 1.1558E-01 1.1639E-01 1.1728E-01 1.1775E-01 1.1806E-01 1.1826E-01 1.1855E-01 1.1873E-01 1.1896E-01 1.1907E-01 1.1921E-01 1.1927E-01 1.1933E-01 1.1936E-01 1.1939E-01 1.1942E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2244E-08 2.7330E-06 9.6190E-06 3.9191E-05 7.7949E-05 1.1950E-04 1.6080E-04 2.0068E-04 2.3878E-04 2.7488E-04 3.0892E-04 3.4119E-04 3.7116E-04 3.9998E-04 4.2706E-04 4.5271E-04 4.9997E-04 5.4320E-04 5.8239E-04 6.1812E-04 6.5126E-04 6.8180E-04 7.1033E-04 8.2704E-04 9.1464E-04 9.8352E-04 1.0861E-03 1.1602E-03 1.2809E-03 1.3558E-03 1.4463E-03 1.4999E-03 1.5362E-03 1.5627E-03 1.5993E-03 1.6232E-03 1.6590E-03 1.6792E-03 1.7008E-03 1.7137E-03 1.7215E-03 1.7270E-03 1.7342E-03 1.7388E-03 1.7449E-03 1.7486E-03 1.7518E-03 1.7541E-03 1.7555E-03 1.7564E-03 1.7572E-03 1.7578E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Bk.mat0000644000000000000000000002277214741736366017671 0ustar00rootrootBk 1 97 1.000000 13 4 3 3 5 3 3 4 3 5 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2350E-03 1.2350E-03 1.5000E-03 1.5540E-03 1.5540E-03 1.6514E-03 1.7550E-03 1.7550E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.1320E-03 4.1320E-03 4.2474E-03 4.3660E-03 4.3660E-03 4.6615E-03 4.9770E-03 4.9770E-03 5.0000E-03 6.0000E-03 6.1470E-03 6.1470E-03 6.3482E-03 6.5560E-03 6.5560E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.9452E-02 1.9452E-02 2.0000E-02 2.4385E-02 2.4385E-02 2.4826E-02 2.5275E-02 2.5275E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.3159E-01 1.3159E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4615E+01 5.1414E+01 1.5995E+01 1.4332E+01 1.4332E+01 1.4005E+01 1.3932E+01 1.3932E+01 1.3808E+01 1.3676E+01 1.3676E+01 1.3340E+01 1.1999E+01 1.0739E+01 1.0583E+01 1.0583E+01 1.0449E+01 1.0313E+01 1.0313E+01 9.9827E+00 9.6424E+00 9.6424E+00 9.6181E+00 8.6504E+00 8.5188E+00 8.5188E+00 8.3452E+00 8.1727E+00 8.1727E+00 7.1051E+00 5.9473E+00 4.0607E+00 3.0468E+00 3.0468E+00 2.9468E+00 2.3046E+00 2.3046E+00 2.2457E+00 2.1881E+00 2.1881E+00 1.7430E+00 1.1692E+00 8.4822E-01 6.4080E-01 4.0291E-01 2.7957E-01 1.7644E-01 1.7644E-01 1.4076E-01 8.4481E-02 5.6540E-02 4.0632E-02 3.0669E-02 2.3989E-02 1.9279E-02 1.5831E-02 1.3231E-02 1.1222E-02 9.6366E-03 7.3308E-03 6.4787E-03 5.7683E-03 4.6563E-03 4.2143E-03 4.0388E-03 2.7323E-03 2.5314E-03 2.1899E-03 1.9129E-03 1.6856E-03 1.3377E-03 1.0868E-03 1.0410E-03 9.0008E-04 6.4691E-04 4.8724E-04 2.7494E-04 1.7637E-04 1.2260E-04 9.0136E-05 6.9052E-05 5.4574E-05 4.4215E-05 3.6537E-05 3.0711E-05 2.6178E-05 2.2568E-05 1.9660E-05 1.7281E-05 1.3654E-05 1.1061E-05 9.1428E-06 7.6827E-06 6.5469E-06 5.6451E-06 4.9163E-06 2.7665E-06 1.7701E-06 1.2292E-06 6.9150E-07 4.4264E-07 1.9668E-07 1.1063E-07 4.9163E-08 2.7665E-08 1.7701E-08 1.2292E-08 6.9150E-09 4.4264E-09 1.9668E-09 1.1063E-09 4.9163E-10 2.7665E-10 1.7701E-10 1.2292E-10 6.9150E-11 4.4264E-11 1.9668E-11 1.1063E-11 4.9163E-12 2.7665E-12 1.7701E-12 1.2292E-12 6.9150E-13 4.4264E-13 INCOHERENT SCATTERING CROSS SECTION 4.2192E-03 6.7179E-01 2.0805E-03 5.5646E-03 5.5646E-03 7.0393E-03 7.3464E-03 7.3464E-03 7.8966E-03 8.4773E-03 8.4773E-03 9.8545E-03 1.5314E-02 2.0365E-02 2.0998E-02 2.0998E-02 2.1551E-02 2.2103E-02 2.2103E-02 2.3378E-02 2.4862E-02 2.4862E-02 2.4984E-02 2.9152E-02 2.9761E-02 2.9761E-02 3.0558E-02 3.1345E-02 3.1345E-02 3.6610E-02 4.3167E-02 5.6572E-02 6.5250E-02 6.5250E-02 6.6176E-02 7.2464E-02 7.2464E-02 7.2966E-02 7.3464E-02 7.3464E-02 7.8485E-02 8.5968E-02 9.0672E-02 9.3499E-02 9.5815E-02 9.5888E-02 9.4036E-02 9.4036E-02 9.2500E-02 8.7820E-02 8.3238E-02 7.9070E-02 7.5351E-02 7.2050E-02 6.9111E-02 6.6468E-02 6.4071E-02 6.1886E-02 5.9885E-02 5.6345E-02 5.4769E-02 5.3302E-02 5.0644E-02 4.9431E-02 4.8919E-02 4.4337E-02 4.3469E-02 4.1848E-02 4.0364E-02 3.8998E-02 3.6580E-02 3.4514E-02 3.4099E-02 3.2714E-02 2.9667E-02 2.7202E-02 2.2709E-02 1.9621E-02 1.7347E-02 1.5592E-02 1.4193E-02 1.3048E-02 1.2090E-02 1.1275E-02 1.0576E-02 9.9642E-03 9.4255E-03 8.9502E-03 8.5237E-03 7.7900E-03 7.1831E-03 6.6737E-03 6.2349E-03 5.8547E-03 5.5232E-03 5.2307E-03 4.1558E-03 3.4684E-03 2.9883E-03 2.3575E-03 1.9568E-03 1.3935E-03 1.0927E-03 7.7437E-04 6.0643E-04 5.0211E-04 4.2996E-04 3.3563E-04 2.7616E-04 1.9290E-04 1.4929E-04 1.0381E-04 8.0118E-05 6.5518E-05 5.5549E-05 4.2801E-05 3.4953E-05 2.4150E-05 1.8566E-05 1.2804E-05 9.8301E-06 8.0045E-06 6.7663E-06 5.1893E-06 4.2216E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.8266E+03 4.5419E+05 2.6576E+04 5.3940E+03 5.7377E+03 3.9389E+03 3.6659E+03 3.7122E+03 3.2761E+03 2.8908E+03 2.9444E+03 2.2361E+03 9.1696E+02 4.7359E+02 4.3898E+02 9.8228E+02 9.3307E+02 8.8649E+02 1.2331E+03 1.0568E+03 9.0599E+02 1.0625E+03 1.0459E+03 6.5981E+02 6.1910E+02 6.5664E+02 6.0599E+02 5.5939E+02 5.8303E+02 3.5708E+02 2.0435E+02 7.3001E+01 3.7390E+01 8.7747E+01 8.0898E+01 4.7578E+01 6.8321E+01 6.5128E+01 6.2081E+01 7.1563E+01 4.6433E+01 2.2224E+01 1.2426E+01 7.6901E+00 3.5830E+00 1.9743E+00 9.4742E-01 3.7877E+00 2.7372E+00 1.3233E+00 7.5461E-01 4.8017E-01 3.2977E-01 2.3962E-01 1.8182E-01 1.4271E-01 1.1509E-01 9.4889E-02 7.9691E-02 5.8713E-02 5.1283E-02 4.5224E-02 3.6062E-02 3.2564E-02 3.1199E-02 2.1110E-02 1.9591E-02 1.7041E-02 1.5002E-02 1.3349E-02 1.0848E-02 9.0574E-03 8.7308E-03 7.7230E-03 5.8915E-03 4.7115E-03 3.0711E-03 2.2419E-03 1.7518E-03 1.4313E-03 1.2065E-03 1.0413E-03 9.1452E-04 8.1483E-04 7.3415E-04 6.6785E-04 6.1228E-04 5.6524E-04 5.2478E-04 4.5872E-04 4.0729E-04 3.6634E-04 3.3246E-04 3.0468E-04 2.8079E-04 2.6056E-04 1.9134E-04 1.5110E-04 1.2482E-04 9.2598E-05 7.3586E-05 4.8626E-05 3.6293E-05 2.4094E-05 1.8030E-05 1.4405E-05 1.1992E-05 8.9843E-06 7.1831E-06 4.7847E-06 3.5854E-06 2.3899E-06 1.7920E-06 1.4334E-06 1.1943E-06 8.9575E-07 7.1660E-07 4.7773E-07 3.5830E-07 2.3879E-07 1.7910E-07 1.4327E-07 1.1938E-07 8.9551E-08 7.1636E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.8821E-04 7.8296E-04 1.5453E-03 2.4594E-03 3.4298E-03 5.3313E-03 7.1148E-03 7.4999E-03 8.8163E-03 1.1840E-02 1.4466E-02 2.0021E-02 2.4642E-02 2.8542E-02 3.2076E-02 3.5269E-02 3.8219E-02 4.0924E-02 4.3435E-02 4.5799E-02 4.7993E-02 5.0040E-02 5.1966E-02 5.3794E-02 5.7060E-02 5.9985E-02 6.2666E-02 6.5103E-02 6.7346E-02 6.9393E-02 7.1270E-02 7.8948E-02 8.4676E-02 8.9112E-02 9.5644E-02 1.0025E-01 1.0749E-01 1.1178E-01 1.1680E-01 1.1965E-01 1.2155E-01 1.2289E-01 1.2467E-01 1.2584E-01 1.2748E-01 1.2840E-01 1.2935E-01 1.2996E-01 1.3028E-01 1.3052E-01 1.3084E-01 1.3104E-01 1.3125E-01 1.3143E-01 1.3155E-01 1.3167E-01 1.3172E-01 1.3174E-01 1.3177E-01 1.3179E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1094E-08 2.6992E-06 9.5011E-06 3.8706E-05 7.6925E-05 1.1787E-04 1.5855E-04 1.9782E-04 2.3528E-04 2.7080E-04 3.0419E-04 3.3563E-04 3.6537E-04 3.9340E-04 4.1997E-04 4.4507E-04 4.9138E-04 5.3355E-04 5.7182E-04 6.0692E-04 6.3909E-04 6.6907E-04 6.9661E-04 8.1020E-04 8.9526E-04 9.6205E-04 1.0615E-03 1.1332E-03 1.2502E-03 1.3223E-03 1.4098E-03 1.4617E-03 1.4971E-03 1.5229E-03 1.5582E-03 1.5819E-03 1.6167E-03 1.6365E-03 1.6579E-03 1.6709E-03 1.6787E-03 1.6840E-03 1.6913E-03 1.6960E-03 1.7020E-03 1.7057E-03 1.7091E-03 1.7116E-03 1.7128E-03 1.7135E-03 1.7145E-03 1.7152E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Br.mat0000644000000000000000000002005014741736366017663 0ustar00rootrootBr 1 35 1.000000 5 5 3 3 9 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.5499E-03 1.5499E-03 1.5728E-03 1.5960E-03 1.5960E-03 1.6864E-03 1.7820E-03 1.7820E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.3474E-02 1.3474E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.8334E+00 5.7342E+01 6.6657E+00 5.5116E+00 5.4754E+00 5.4754E+00 5.4586E+00 5.4415E+00 5.4415E+00 5.3772E+00 5.3096E+00 5.3096E+00 5.1476E+00 4.4391E+00 3.8437E+00 3.3606E+00 2.9597E+00 2.3228E+00 1.8457E+00 1.2865E+00 1.2865E+00 1.1222E+00 7.6498E-01 4.3261E-01 2.7660E-01 1.9121E-01 1.4048E-01 8.5692E-02 5.7972E-02 2.7788E-02 1.6204E-02 1.0590E-02 7.4561E-03 5.5314E-03 4.2650E-03 3.3875E-03 2.7547E-03 2.2835E-03 1.9234E-03 1.6420E-03 1.2368E-03 1.0883E-03 9.6499E-04 7.7376E-04 6.9873E-04 6.6911E-04 4.4806E-04 4.1437E-04 3.5745E-04 3.1149E-04 2.7385E-04 2.1645E-04 1.7538E-04 1.6792E-04 1.4498E-04 1.0383E-04 7.8005E-05 4.3894E-05 2.8097E-05 1.9513E-05 1.4335E-05 1.0973E-05 8.6748E-06 7.0250E-06 5.8055E-06 4.8785E-06 4.1573E-06 3.5845E-06 3.1225E-06 2.7441E-06 2.1683E-06 1.7561E-06 1.4516E-06 1.2194E-06 1.0393E-06 8.9612E-07 7.8080E-07 4.3909E-07 2.8104E-07 1.9513E-07 1.0973E-07 7.0250E-08 3.1225E-08 1.7561E-08 7.8080E-09 4.3909E-09 2.8097E-09 1.9513E-09 1.0973E-09 7.0250E-10 3.1225E-10 1.7561E-10 7.8080E-11 4.3909E-11 2.8097E-11 1.9513E-11 1.0973E-11 7.0250E-12 3.1225E-12 1.7561E-12 7.8080E-13 4.3909E-13 2.8097E-13 1.9513E-13 1.0973E-13 7.0250E-14 INCOHERENT SCATTERING CROSS SECTION 5.1732E-03 1.0515E-02 1.7964E-03 1.0084E-02 1.0597E-02 1.0597E-02 1.0835E-02 1.1079E-02 1.1079E-02 1.2023E-02 1.3016E-02 1.3016E-02 1.5284E-02 2.5173E-02 3.3923E-02 4.1490E-02 4.8114E-02 5.9480E-02 6.9059E-02 8.2527E-02 8.2527E-02 8.7275E-02 9.9409E-02 1.1305E-01 1.1961E-01 1.2247E-01 1.2330E-01 1.2217E-01 1.1946E-01 1.1139E-01 1.0378E-01 9.7184E-02 9.1571E-02 8.6774E-02 8.2602E-02 7.8925E-02 7.5669E-02 7.2770E-02 7.0159E-02 6.7783E-02 6.3611E-02 6.1771E-02 6.0068E-02 5.7000E-02 5.5606E-02 5.5018E-02 4.9757E-02 4.8766E-02 4.6923E-02 4.5243E-02 4.3705E-02 4.0981E-02 3.8633E-02 3.8158E-02 3.6581E-02 3.3157E-02 3.0403E-02 2.5369E-02 2.1909E-02 1.9362E-02 1.7410E-02 1.5842E-02 1.4561E-02 1.3491E-02 1.2586E-02 1.1802E-02 1.1117E-02 1.0521E-02 9.9861E-03 9.5113E-03 8.6898E-03 8.0191E-03 7.4455E-03 6.9571E-03 6.5336E-03 6.1628E-03 5.8357E-03 4.6373E-03 3.8709E-03 3.3350E-03 2.6303E-03 2.1834E-03 1.5548E-03 1.2187E-03 8.6371E-04 6.7665E-04 5.6013E-04 4.7956E-04 3.7457E-04 3.0818E-04 2.1517E-04 1.6656E-04 1.1584E-04 8.9385E-05 7.3091E-05 6.1982E-05 4.7753E-05 3.8987E-05 2.6944E-05 2.0718E-05 1.4290E-05 1.0966E-05 8.9310E-06 7.5518E-06 5.7890E-06 4.7097E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.6183E+03 6.3167E+05 1.3651E+04 9.9635E+02 9.2023E+02 4.3065E+03 3.9306E+03 3.5875E+03 5.0971E+03 4.4952E+03 3.9643E+03 4.4889E+03 3.4021E+03 1.2262E+03 5.7761E+02 3.1790E+02 1.9384E+02 8.7878E+01 4.7202E+01 2.0394E+01 1.4568E+02 1.1064E+02 5.1792E+01 1.6988E+01 7.5043E+00 3.9500E+00 2.3183E+00 9.9032E-01 5.0865E-01 1.5073E-01 6.3851E-02 3.3103E-02 1.9558E-02 1.2660E-02 8.7652E-03 6.3898E-03 4.8544E-03 3.8130E-03 3.0735E-03 2.5295E-03 1.8121E-03 1.5737E-03 1.3864E-03 1.0988E-03 9.7977E-04 9.3154E-04 6.2916E-04 5.8612E-04 5.1231E-04 4.5243E-04 4.0371E-04 3.3002E-04 2.7743E-04 2.6785E-04 2.3826E-04 1.8421E-04 1.4915E-04 9.9861E-05 7.4372E-05 5.9028E-05 4.8823E-05 4.1573E-05 3.6169E-05 3.1993E-05 2.8670E-05 2.5964E-05 2.3718E-05 2.1834E-05 2.0221E-05 1.8827E-05 1.6543E-05 1.4757E-05 1.3310E-05 1.2127E-05 1.1132E-05 1.0288E-05 9.5641E-06 7.0732E-06 5.6096E-06 4.6479E-06 3.4609E-06 2.7562E-06 1.8269E-06 1.3664E-06 9.0817E-07 6.8011E-07 5.4355E-07 4.5273E-07 3.3930E-07 2.7132E-07 1.8073E-07 1.3551E-07 9.0365E-08 6.7740E-08 5.4181E-08 4.5152E-08 3.3862E-08 2.7087E-08 1.8058E-08 1.3543E-08 9.0290E-09 6.7710E-09 5.4166E-09 4.5137E-09 3.3855E-09 2.7079E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0092E-04 1.5848E-04 3.0719E-04 4.9418E-04 7.1357E-04 1.2280E-03 1.8073E-03 1.9392E-03 2.4149E-03 3.6583E-03 4.8830E-03 7.7101E-03 1.0190E-02 1.2368E-02 1.4312E-02 1.6061E-02 1.7643E-02 1.9090E-02 2.0409E-02 2.1623E-02 2.2731E-02 2.3763E-02 2.4720E-02 2.5617E-02 2.7260E-02 2.8730E-02 3.0064E-02 3.1285E-02 3.2393E-02 3.3410E-02 3.4345E-02 3.8173E-02 4.1022E-02 4.3238E-02 4.6524E-02 4.8853E-02 5.2569E-02 5.4784E-02 5.7362E-02 5.8847E-02 5.9819E-02 6.0520E-02 6.1447E-02 6.2050E-02 6.2924E-02 6.3399E-02 6.3911E-02 6.4183E-02 6.4356E-02 6.4477E-02 6.4635E-02 6.4740E-02 6.4876E-02 6.4951E-02 6.5027E-02 6.5072E-02 6.5095E-02 6.5110E-02 6.5140E-02 6.5147E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0187E-07 3.0211E-06 1.0642E-05 4.3419E-05 8.6446E-05 1.3272E-04 1.7885E-04 2.2354E-04 2.6627E-04 3.0697E-04 3.4541E-04 3.8173E-04 4.1603E-04 4.4866E-04 4.7956E-04 5.0895E-04 5.6352E-04 6.1319E-04 6.5863E-04 7.0054E-04 7.3928E-04 7.7553E-04 8.0869E-04 9.4812E-04 1.0536E-03 1.1380E-03 1.2654E-03 1.3581E-03 1.5126E-03 1.6098E-03 1.7297E-03 1.8020E-03 1.8510E-03 1.8872E-03 1.9369E-03 1.9701E-03 2.0191E-03 2.0470E-03 2.0771E-03 2.0952E-03 2.1058E-03 2.1140E-03 2.1238E-03 2.1306E-03 2.1389E-03 2.1442E-03 2.1487E-03 2.1517E-03 2.1540E-03 2.1547E-03 2.1563E-03 2.1570E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/C.mat0000644000000000000000000001642014741736366017510 0ustar00rootrootCarbon 1 6 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0790E+00 6.8049E+01 1.4084E+00 9.5865E-01 8.3180E-01 6.1269E-01 4.6022E-01 3.5949E-01 2.9176E-01 2.0963E-01 1.6205E-01 9.7870E-02 6.4779E-02 3.3648E-02 2.0452E-02 1.3708E-02 9.8071E-03 5.7108E-03 3.7193E-03 1.6847E-03 9.5414E-04 6.1278E-04 6.1278E-04 4.2638E-04 2.4026E-04 1.8995E-04 1.5393E-04 1.2725E-04 1.0695E-04 9.1133E-05 6.8454E-05 6.0166E-05 5.3298E-05 4.2674E-05 3.8516E-05 3.6877E-05 2.4653E-05 2.2793E-05 1.9654E-05 1.7122E-05 1.5050E-05 1.1893E-05 9.6316E-06 9.2205E-06 7.9579E-06 5.6984E-06 4.2813E-06 2.4082E-06 1.5413E-06 1.0705E-06 7.8617E-07 6.0216E-07 4.7571E-07 3.8531E-07 3.1848E-07 2.6759E-07 2.2803E-07 1.9659E-07 1.7127E-07 1.5052E-07 1.1893E-07 9.6316E-08 7.9620E-08 6.6885E-08 5.7007E-08 4.9151E-08 4.2813E-08 2.4082E-08 1.5413E-08 1.0705E-08 6.0216E-09 3.8526E-09 1.7122E-09 9.6316E-10 4.2803E-10 2.4077E-10 1.5408E-10 1.0700E-10 6.0216E-11 3.8526E-11 1.7122E-11 9.6316E-12 4.2803E-12 2.4077E-12 1.5408E-12 1.0700E-12 6.0216E-13 3.8526E-13 1.7122E-13 9.6316E-14 4.2803E-14 2.4077E-14 1.5408E-14 1.0700E-14 6.0216E-15 3.8526E-15 INCOHERENT SCATTERING CROSS SECTION 1.2630E-02 6.9268E-03 4.1567E-03 2.5074E-02 3.8617E-02 6.4077E-02 8.4483E-02 9.9475E-02 1.1041E-01 1.2520E-01 1.3522E-01 1.5102E-01 1.5954E-01 1.6546E-01 1.6526E-01 1.6295E-01 1.5984E-01 1.5312E-01 1.4661E-01 1.3272E-01 1.2189E-01 1.1326E-01 1.1326E-01 1.0619E-01 9.5213E-02 9.0841E-02 8.6990E-02 8.3554E-02 8.0472E-02 7.7694E-02 7.2844E-02 7.0695E-02 6.8699E-02 6.5144E-02 6.3576E-02 6.2924E-02 5.6857E-02 5.5715E-02 5.3609E-02 5.1693E-02 4.9928E-02 4.6790E-02 4.4097E-02 4.3555E-02 4.1756E-02 3.7845E-02 3.4696E-02 2.8940E-02 2.4994E-02 2.2091E-02 1.9855E-02 1.8070E-02 1.6611E-02 1.5388E-02 1.4355E-02 1.3462E-02 1.2680E-02 1.1998E-02 1.1391E-02 1.0845E-02 9.9124E-03 9.1403E-03 8.4935E-03 7.9369E-03 7.4506E-03 7.0294E-03 6.6534E-03 5.2896E-03 4.4147E-03 3.8035E-03 2.9998E-03 2.4899E-03 1.7729E-03 1.3903E-03 9.8522E-04 7.7163E-04 6.3876E-04 5.4701E-04 4.2718E-04 3.5142E-04 2.4543E-04 1.8997E-04 1.3206E-04 1.0193E-04 8.3380E-05 7.0695E-05 5.4450E-05 4.4463E-05 3.0730E-05 2.3625E-05 1.6290E-05 1.2510E-05 1.0188E-05 8.6088E-06 6.6032E-06 5.3698E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.2096E+03 7.7239E+06 1.6271E+04 6.9943E+02 3.0168E+02 8.9648E+01 3.7238E+01 1.8657E+01 1.0544E+01 4.2412E+00 2.0757E+00 5.5854E-01 2.1765E-01 5.7058E-02 2.1931E-02 1.0424E-02 5.6707E-03 2.1695E-03 1.0313E-03 2.7060E-04 1.0634E-04 5.2354E-05 5.2354E-05 2.9802E-05 1.2715E-05 9.1099E-06 6.8389E-06 5.3312E-06 4.2527E-06 3.4450E-06 2.4341E-06 2.1444E-06 1.9425E-06 1.5629E-06 1.3332E-06 1.2294E-06 8.3481E-07 7.8593E-07 6.8905E-07 6.0617E-07 5.4163E-07 4.4879E-07 3.8261E-07 3.7022E-07 3.3180E-07 2.6117E-07 2.1469E-07 1.4776E-07 1.1226E-07 9.0350E-08 7.5559E-08 6.4879E-08 5.6857E-08 5.0590E-08 4.5531E-08 4.1404E-08 3.7960E-08 3.5042E-08 3.2540E-08 3.0374E-08 2.6799E-08 2.3976E-08 2.1690E-08 1.9800E-08 1.8215E-08 1.6862E-08 1.5698E-08 1.1667E-08 9.2806E-09 7.7063E-09 5.7559E-09 4.5907E-09 3.0489E-09 2.2828E-09 1.5192E-09 1.1381E-09 9.1001E-10 7.5809E-10 5.6807E-10 4.5451E-10 3.0289E-10 2.2713E-10 1.5137E-10 1.1351E-10 9.0801E-11 7.5659E-11 5.6757E-11 4.5405E-11 3.0269E-11 2.2703E-11 1.5132E-11 1.1351E-11 9.0801E-12 7.5659E-12 5.6757E-12 4.5400E-12 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.4390E-05 2.3353E-05 4.7756E-05 7.9921E-05 1.1868E-04 2.1156E-04 3.1868E-04 3.4355E-04 4.3393E-04 6.7313E-04 9.1252E-04 1.4816E-03 1.9885E-03 2.4448E-03 2.8514E-03 3.2179E-03 3.5508E-03 3.8536E-03 4.1289E-03 4.3816E-03 4.6173E-03 4.8359E-03 5.0389E-03 5.2345E-03 5.5854E-03 5.9013E-03 6.1921E-03 6.4528E-03 6.6935E-03 6.9141E-03 7.1197E-03 7.9620E-03 8.5937E-03 9.1001E-03 9.8622E-03 1.0424E-02 1.1366E-02 1.1953E-02 1.2675E-02 1.3101E-02 1.3387E-02 1.3598E-02 1.3878E-02 1.4064E-02 1.4335E-02 1.4485E-02 1.4650E-02 1.4736E-02 1.4796E-02 1.4831E-02 1.4886E-02 1.4916E-02 1.4961E-02 1.4986E-02 1.5011E-02 1.5027E-02 1.5032E-02 1.5042E-02 1.5047E-02 1.5052E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1611E-07 3.4450E-06 1.2139E-05 4.9562E-05 9.8773E-05 1.5167E-04 2.0452E-04 2.5581E-04 3.0499E-04 3.5187E-04 3.9640E-04 4.3846E-04 4.7822E-04 5.1643E-04 5.5253E-04 5.8662E-04 6.5080E-04 7.0946E-04 7.6361E-04 8.1375E-04 8.5988E-04 9.0350E-04 9.4411E-04 1.1151E-03 1.2484E-03 1.3567E-03 1.5247E-03 1.6516E-03 1.8722E-03 2.0176E-03 2.2046E-03 2.3214E-03 2.4026E-03 2.4638E-03 2.5490E-03 2.6062E-03 2.6934E-03 2.7431E-03 2.7977E-03 2.8298E-03 2.8499E-03 2.8639E-03 2.8825E-03 2.8945E-03 2.9105E-03 2.9201E-03 2.9291E-03 2.9351E-03 2.9381E-03 2.9406E-03 2.9431E-03 2.9446E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ca.mat0000644000000000000000000001666214741736366017661 0ustar00rootrootCalcium 1 20 1.000000 2 8 90 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.0381E-03 4.0381E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.5822E+00 3.3979E+01 4.3461E+00 3.2591E+00 2.9631E+00 2.4628E+00 2.0511E+00 2.0360E+00 2.0360E+00 1.7205E+00 1.4647E+00 1.1163E+00 8.9540E-01 5.6708E-01 3.8226E-01 2.0586E-01 1.3022E-01 9.0397E-02 6.6475E-02 4.0120E-02 2.6731E-02 1.2523E-02 7.2275E-03 4.6925E-03 3.2877E-03 2.4298E-03 1.8677E-03 1.4796E-03 1.2007E-03 9.9379E-04 8.3605E-04 7.1307E-04 5.3630E-04 4.7152E-04 4.1775E-04 3.3461E-04 3.0217E-04 2.8940E-04 1.9354E-04 1.7894E-04 1.5433E-04 1.3447E-04 1.1820E-04 9.3395E-05 7.5671E-05 7.2456E-05 6.2561E-05 4.4794E-05 3.3643E-05 1.8933E-05 1.2114E-05 8.4131E-06 6.1802E-06 4.7317E-06 3.7385E-06 3.0293E-06 2.5033E-06 2.1036E-06 1.7926E-06 1.5447E-06 1.3460E-06 1.1832E-06 9.3477E-07 7.5716E-07 6.2583E-07 5.2576E-07 4.4808E-07 3.8632E-07 3.3658E-07 1.8933E-07 1.2115E-07 8.4131E-08 4.7317E-08 3.0293E-08 1.3460E-08 7.5716E-09 3.3643E-09 1.8933E-09 1.2114E-09 8.4131E-10 4.7317E-10 3.0277E-10 1.3460E-10 7.5716E-11 3.3643E-11 1.8933E-11 1.2114E-11 8.4131E-12 4.7317E-12 3.0277E-12 1.3460E-12 7.5716E-13 3.3643E-13 1.8933E-13 1.2114E-13 8.4131E-14 4.7317E-14 3.0277E-14 INCOHERENT SCATTERING CROSS SECTION 1.4942E-02 4.0537E-02 7.3302E-03 2.3561E-02 3.0999E-02 4.4808E-02 5.7159E-02 5.7595E-02 5.7595E-02 6.7948E-02 7.7219E-02 9.1734E-02 1.0239E-01 1.2063E-01 1.3224E-01 1.4389E-01 1.4805E-01 1.4909E-01 1.4859E-01 1.4541E-01 1.4106E-01 1.2984E-01 1.2012E-01 1.1204E-01 1.0529E-01 9.9565E-02 9.4649E-02 9.0370E-02 8.6595E-02 8.3225E-02 8.0194E-02 7.7448E-02 7.2642E-02 7.0517E-02 6.8547E-02 6.5020E-02 6.3440E-02 6.2779E-02 5.6753E-02 5.5615E-02 5.3505E-02 5.1584E-02 4.9825E-02 4.6707E-02 4.4026E-02 4.3485E-02 4.1689E-02 3.7787E-02 3.4650E-02 2.8910E-02 2.4958E-02 2.2073E-02 1.9834E-02 1.8046E-02 1.6589E-02 1.5372E-02 1.4339E-02 1.3447E-02 1.2668E-02 1.1985E-02 1.1378E-02 1.0835E-02 9.9037E-03 9.1328E-03 8.4822E-03 7.9262E-03 7.4424E-03 7.0217E-03 6.6490E-03 5.2832E-03 4.4101E-03 3.8001E-03 2.9962E-03 2.4868E-03 1.7716E-03 1.3887E-03 9.8436E-04 7.7084E-04 6.3816E-04 5.4635E-04 4.2674E-04 3.5101E-04 2.4522E-04 1.8978E-04 1.3194E-04 1.0185E-04 8.3274E-05 7.0607E-05 5.4409E-05 4.4417E-05 3.0698E-05 2.3606E-05 1.6273E-05 1.2496E-05 1.0176E-05 8.6009E-06 6.5949E-06 5.3658E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.8624E+03 1.8365E+06 2.9019E+04 1.7100E+03 7.9683E+02 2.6506E+02 1.1973E+02 1.1665E+02 1.0213E+03 6.0074E+02 3.7159E+02 1.7145E+02 9.2410E+01 2.9105E+01 1.2545E+01 3.7295E+00 1.5522E+00 7.8000E-01 4.4282E-01 1.8001E-01 8.9315E-02 2.5003E-02 1.0222E-02 5.1698E-03 2.9992E-03 1.9148E-03 1.3116E-03 9.4818E-04 7.1569E-04 5.5934E-04 4.4883E-04 3.6776E-04 2.6222E-04 2.2795E-04 2.0143E-04 1.5986E-04 1.4171E-04 1.3420E-04 9.0862E-05 8.4817E-05 7.4269E-05 6.5649E-05 5.8671E-05 4.8179E-05 4.0691E-05 3.9323E-05 3.5092E-05 2.7336E-05 2.2269E-05 1.5071E-05 1.1328E-05 9.0472E-06 7.5190E-06 6.4281E-06 5.6092E-06 4.9736E-06 4.4672E-06 4.0540E-06 3.7099E-06 3.4184E-06 3.1705E-06 2.9556E-06 2.6010E-06 2.3230E-06 2.0991E-06 1.9143E-06 1.7580E-06 1.6273E-06 1.5131E-06 1.1215E-06 8.9089E-07 7.3883E-07 5.5085E-07 4.3906E-07 2.9135E-07 2.1788E-07 1.4494E-07 1.0858E-07 8.6805E-08 7.2290E-08 5.4184E-08 4.3335E-08 2.8880E-08 2.1653E-08 1.4431E-08 1.0822E-08 8.6565E-09 7.2140E-09 5.4094E-09 4.3275E-09 2.8850E-09 2.1637E-09 1.4425E-09 1.0819E-09 8.6550E-10 7.2125E-10 5.4094E-10 4.3275E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 5.3628E-05 8.5752E-05 1.7133E-04 2.8219E-04 4.1485E-04 7.3262E-04 1.1004E-03 1.1857E-03 1.4940E-03 2.2955E-03 3.0848E-03 4.9586E-03 6.6190E-03 8.1035E-03 9.4228E-03 1.0611E-02 1.1686E-02 1.2661E-02 1.3546E-02 1.4356E-02 1.5101E-02 1.5807E-02 1.6454E-02 1.7070E-02 1.8197E-02 1.9188E-02 2.0090E-02 2.0916E-02 2.1668E-02 2.2374E-02 2.3005E-02 2.5634E-02 2.7588E-02 2.9120E-02 3.1404E-02 3.3042E-02 3.5702E-02 3.7325E-02 3.9233E-02 4.0360E-02 4.1111E-02 4.1652E-02 4.2373E-02 4.2839E-02 4.3530E-02 4.3906E-02 4.4312E-02 4.4537E-02 4.4672E-02 4.4763E-02 4.4898E-02 4.4973E-02 4.5093E-02 4.5153E-02 4.5213E-02 4.5243E-02 4.5258E-02 4.5273E-02 4.5304E-02 4.5304E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1597E-07 3.4411E-06 1.2126E-05 4.9511E-05 9.8631E-05 1.5146E-04 2.0420E-04 2.5529E-04 3.0428E-04 3.5086E-04 3.9518E-04 4.3681E-04 4.7633E-04 5.1389E-04 5.4950E-04 5.8346E-04 6.4642E-04 7.0397E-04 7.5686E-04 8.0555E-04 8.5077E-04 8.9270E-04 9.3192E-04 1.0957E-03 1.2218E-03 1.3229E-03 1.4777E-03 1.5928E-03 1.7866E-03 1.9113E-03 2.0691E-03 2.1653E-03 2.2329E-03 2.2825E-03 2.3531E-03 2.4012E-03 2.4733E-03 2.5154E-03 2.5619E-03 2.5890E-03 2.6055E-03 2.6175E-03 2.6341E-03 2.6446E-03 2.6581E-03 2.6671E-03 2.6746E-03 2.6791E-03 2.6821E-03 2.6837E-03 2.6867E-03 2.6882E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cd.mat0000644000000000000000000001774014741736366017662 0ustar00rootrootCd 1 48 1.000000 5 7 3 3 8 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.5375E-03 3.5375E-03 3.6310E-03 3.7270E-03 3.7270E-03 4.0000E-03 4.0180E-03 4.0180E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.6711E-02 2.6711E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.8269E+00 4.5411E+01 8.7790E+00 7.4359E+00 6.9966E+00 6.1073E+00 5.6573E+00 5.6573E+00 5.5830E+00 5.5073E+00 5.5073E+00 5.2930E+00 5.2790E+00 5.2790E+00 4.5949E+00 4.0147E+00 3.1543E+00 2.5693E+00 1.6870E+00 1.1759E+00 7.8216E-01 7.8216E-01 6.6108E-01 4.3179E-01 3.0520E-01 2.2634E-01 1.3832E-01 9.3645E-02 4.5451E-02 2.6781E-02 1.7604E-02 1.2440E-02 9.2548E-03 7.1519E-03 5.6903E-03 4.6340E-03 3.8465E-03 3.2438E-03 2.7722E-03 2.0916E-03 1.8413E-03 1.6331E-03 1.3103E-03 1.1840E-03 1.1341E-03 7.6019E-04 7.0310E-04 6.0669E-04 5.2887E-04 4.6512E-04 3.6786E-04 2.9808E-04 2.8538E-04 2.4637E-04 1.7649E-04 1.3265E-04 7.4680E-05 4.7787E-05 3.3188E-05 2.4386E-05 1.8670E-05 1.4754E-05 1.1952E-05 9.8788E-06 8.2984E-06 7.0716E-06 6.0965E-06 5.3117E-06 4.6683E-06 3.6885E-06 2.9877E-06 2.4692E-06 2.0749E-06 1.7679E-06 1.5247E-06 1.3281E-06 7.4680E-07 4.7808E-07 3.3199E-07 1.8675E-07 1.1952E-07 5.3117E-08 2.9877E-08 1.3281E-08 7.4680E-09 4.7808E-09 3.3199E-09 1.8675E-09 1.1952E-09 5.3117E-10 2.9877E-10 1.3281E-10 7.4680E-11 4.7808E-11 3.3199E-11 1.8675E-11 1.1952E-11 5.3117E-12 2.9877E-12 1.3281E-12 7.4680E-13 4.7808E-13 3.3199E-13 1.8675E-13 1.1952E-13 INCOHERENT SCATTERING CROSS SECTION 5.3787E-03 1.0655E-02 2.1199E-03 9.6859E-03 1.3848E-02 2.1665E-02 2.5629E-02 2.5629E-02 2.6300E-02 2.6984E-02 2.6984E-02 2.8902E-02 2.9026E-02 2.9026E-02 3.5545E-02 4.1695E-02 5.2764E-02 6.2144E-02 7.9019E-02 8.9948E-02 9.9698E-02 9.9698E-02 1.0307E-01 1.0993E-01 1.1352E-01 1.1518E-01 1.1534E-01 1.1347E-01 1.0661E-01 9.9752E-02 9.3714E-02 8.8502E-02 8.3989E-02 8.0037E-02 7.6545E-02 7.3448E-02 7.0688E-02 6.8198E-02 6.5926E-02 6.1906E-02 6.0108E-02 5.8432E-02 5.5435E-02 5.4108E-02 5.3556E-02 4.8456E-02 4.7491E-02 4.5702E-02 4.4074E-02 4.2579E-02 3.9924E-02 3.7640E-02 3.7179E-02 3.5648E-02 3.2315E-02 2.9631E-02 2.4724E-02 2.1354E-02 1.8874E-02 1.6966E-02 1.5440E-02 1.4197E-02 1.3152E-02 1.2268E-02 1.1507E-02 1.0838E-02 1.0254E-02 9.7341E-03 9.2734E-03 8.4752E-03 7.8162E-03 7.2591E-03 6.7823E-03 6.3698E-03 6.0055E-03 5.6894E-03 4.5204E-03 3.7736E-03 3.2513E-03 2.5640E-03 2.1284E-03 1.5156E-03 1.1882E-03 8.4216E-04 6.5948E-04 5.4590E-04 4.6753E-04 3.6515E-04 3.0038E-04 2.0979E-04 1.6238E-04 1.1288E-04 8.7162E-05 7.1251E-05 6.0430E-05 4.6549E-05 3.8010E-05 2.6267E-05 2.0191E-05 1.3929E-05 1.0693E-05 8.7055E-06 7.3609E-06 5.6412E-06 4.5912E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.3448E+03 1.3710E+06 3.5443E+04 2.9235E+03 1.4663E+03 5.3519E+02 3.5186E+02 1.1465E+03 1.0751E+03 1.0077E+03 1.3838E+03 1.1641E+03 1.1513E+03 1.3211E+03 7.6394E+02 4.7524E+02 2.2217E+02 1.2177E+02 4.0013E+01 1.7936E+01 7.9287E+00 4.9763E+01 3.6885E+01 1.7234E+01 9.3591E+00 5.6358E+00 2.4975E+00 1.3168E+00 4.0726E-01 1.7732E-01 9.3681E-02 5.6144E-02 3.6767E-02 2.5693E-02 1.8868E-02 1.4416E-02 1.1375E-02 9.2038E-03 7.5989E-03 5.4671E-03 4.7519E-03 4.1873E-03 3.3208E-03 2.9652E-03 2.8217E-03 1.9034E-03 1.7717E-03 1.5465E-03 1.3640E-03 1.2154E-03 9.9095E-04 8.3145E-04 8.0252E-04 7.1294E-04 5.4885E-04 4.4246E-04 2.9379E-04 2.1761E-04 1.7197E-04 1.4175E-04 1.2038E-04 1.0452E-04 9.2305E-05 8.2555E-05 7.4680E-05 6.8144E-05 6.2680E-05 5.7965E-05 5.3947E-05 4.7347E-05 4.2178E-05 3.8020E-05 3.4602E-05 3.1752E-05 2.9331E-05 2.7252E-05 2.0116E-05 1.5938E-05 1.3195E-05 9.8145E-06 7.8109E-06 5.1746E-06 3.8679E-06 2.5699E-06 1.9243E-06 1.5381E-06 1.2809E-06 9.5948E-07 7.6716E-07 5.1124E-07 3.8331E-07 2.5543E-07 1.9158E-07 1.5322E-07 1.2766E-07 9.5734E-08 7.6609E-08 5.1065E-08 3.8294E-08 2.5527E-08 1.9147E-08 1.5316E-08 1.2766E-08 9.5734E-09 7.6609E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.6275E-04 2.5278E-04 4.8041E-04 7.5966E-04 1.0802E-03 1.8129E-03 2.6218E-03 2.8051E-03 3.4608E-03 5.1419E-03 6.7662E-03 1.0457E-02 1.3661E-02 1.6425E-02 1.8890E-02 2.1113E-02 2.3127E-02 2.4975E-02 2.6674E-02 2.8243E-02 2.9695E-02 3.1029E-02 3.2267E-02 3.3419E-02 3.5529E-02 3.7420E-02 3.9135E-02 4.0694E-02 4.2113E-02 4.3410E-02 4.4610E-02 4.9480E-02 5.3085E-02 5.5876E-02 6.0055E-02 6.3001E-02 6.7662E-02 7.0501E-02 7.3716E-02 7.5591E-02 7.6823E-02 7.7734E-02 7.8912E-02 7.9662E-02 8.0734E-02 8.1377E-02 8.2019E-02 8.2341E-02 8.2555E-02 8.2716E-02 8.2930E-02 8.3037E-02 8.3198E-02 8.3305E-02 8.3412E-02 8.3466E-02 8.3466E-02 8.3520E-02 8.3520E-02 8.3573E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9255E-08 2.9432E-06 1.0366E-05 4.2285E-05 8.4162E-05 1.2916E-04 1.7395E-04 2.1729E-04 2.5881E-04 2.9818E-04 3.3547E-04 3.7061E-04 4.0378E-04 4.3528E-04 4.6506E-04 4.9340E-04 5.4590E-04 5.9358E-04 6.3751E-04 6.7716E-04 7.1466E-04 7.4894E-04 7.8055E-04 9.1287E-04 1.0136E-03 1.0929E-03 1.2129E-03 1.3002E-03 1.4443E-03 1.5349E-03 1.6452E-03 1.7111E-03 1.7566E-03 1.7899E-03 1.8354E-03 1.8654E-03 1.9109E-03 1.9366E-03 1.9645E-03 1.9806E-03 1.9908E-03 1.9977E-03 2.0074E-03 2.0133E-03 2.0213E-03 2.0261E-03 2.0304E-03 2.0336E-03 2.0352E-03 2.0363E-03 2.0374E-03 2.0384E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ce.mat0000644000000000000000000002112614741736366017654 0ustar00rootrootCe 1 58 1.000000 8 4 3 3 7 3 3 8 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1854E-03 1.1854E-03 1.2283E-03 1.2728E-03 1.2728E-03 1.3522E-03 1.4366E-03 1.4366E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.7234E-03 5.7234E-03 6.0000E-03 6.1642E-03 6.1642E-03 6.3536E-03 6.5488E-03 6.5488E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.0443E-02 4.0443E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.9871E+00 1.4231E+01 9.8802E+00 8.7894E+00 8.7894E+00 8.7478E+00 8.7034E+00 8.7034E+00 8.6172E+00 8.5229E+00 8.5229E+00 8.4542E+00 7.9212E+00 6.9198E+00 6.0473E+00 5.3123E+00 4.8653E+00 4.8653E+00 4.7063E+00 4.6160E+00 4.6160E+00 4.5149E+00 4.4140E+00 4.4140E+00 3.7625E+00 3.0709E+00 2.0153E+00 1.4493E+00 8.4026E-01 5.4670E-01 5.3768E-01 5.3768E-01 3.8888E-01 2.9183E-01 1.8090E-01 1.2279E-01 5.9785E-02 3.5480E-02 2.3455E-02 1.6633E-02 1.2400E-02 9.5974E-03 7.6483E-03 6.2364E-03 5.1803E-03 4.3711E-03 3.7383E-03 2.8251E-03 2.4890E-03 2.2091E-03 1.7740E-03 1.6032E-03 1.5357E-03 1.0307E-03 9.5355E-04 8.2320E-04 7.1776E-04 6.3125E-04 4.9918E-04 4.0470E-04 3.8755E-04 3.3477E-04 2.3989E-04 1.8026E-04 1.0148E-04 6.4943E-05 4.5129E-05 3.3150E-05 2.5384E-05 2.0054E-05 1.6246E-05 1.3427E-05 1.1282E-05 9.6146E-06 8.2908E-06 7.2206E-06 6.3481E-06 5.0158E-06 4.0620E-06 3.3572E-06 2.8208E-06 2.4034E-06 2.0725E-06 1.8052E-06 1.0156E-06 6.4986E-07 4.5129E-07 2.5388E-07 1.6246E-07 7.2206E-08 4.0620E-08 1.8052E-08 1.0156E-08 6.4986E-09 4.5129E-09 2.5388E-09 1.6246E-09 7.2206E-10 4.0620E-10 1.8052E-10 1.0156E-10 6.4986E-11 4.5129E-11 2.5388E-11 1.6246E-11 7.2206E-12 4.0620E-12 1.8052E-12 1.0156E-12 6.4986E-13 4.5129E-13 2.5388E-13 1.6246E-13 INCOHERENT SCATTERING CROSS SECTION 6.7307E-03 4.9335E+06 5.1382E-03 8.3338E-03 8.3338E-03 8.6725E-03 9.0215E-03 9.0215E-03 9.6732E-03 1.0380E-02 1.0380E-02 1.0900E-02 1.4884E-02 2.2517E-02 2.9557E-02 3.5905E-02 3.9989E-02 3.9989E-02 4.1458E-02 4.2305E-02 4.2305E-02 4.3262E-02 4.4226E-02 4.4226E-02 5.0716E-02 5.8453E-02 7.3754E-02 8.4327E-02 9.6791E-02 1.0332E-01 1.0354E-01 1.0354E-01 1.0689E-01 1.0870E-01 1.0938E-01 1.0809E-01 1.0208E-01 9.5802E-02 9.0186E-02 8.5272E-02 8.0981E-02 7.7235E-02 7.3944E-02 7.1003E-02 6.8341E-02 6.5931E-02 6.3745E-02 5.9885E-02 5.8152E-02 5.6529E-02 5.3645E-02 5.2393E-02 5.1877E-02 4.6934E-02 4.5995E-02 4.4266E-02 4.2696E-02 4.1254E-02 3.8687E-02 3.6473E-02 3.6026E-02 3.4541E-02 3.1316E-02 2.8719E-02 2.3966E-02 2.0699E-02 1.8297E-02 1.6448E-02 1.4970E-02 1.3762E-02 1.2752E-02 1.1893E-02 1.1153E-02 1.0509E-02 9.9413E-03 9.4384E-03 8.9871E-03 8.2135E-03 7.5731E-03 7.0358E-03 6.5759E-03 6.1719E-03 5.8238E-03 5.5143E-03 4.3840E-03 3.6580E-03 3.1517E-03 2.4860E-03 2.0630E-03 1.4691E-03 1.1519E-03 8.1662E-04 6.3954E-04 5.2951E-04 4.5344E-04 3.5398E-04 2.9123E-04 2.0338E-04 1.5739E-04 1.0943E-04 8.4499E-05 6.9069E-05 5.8582E-05 4.5129E-05 3.6847E-05 2.5466E-05 1.9577E-05 1.3500E-05 1.0367E-05 8.4413E-06 7.1347E-06 5.4713E-06 4.4527E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.7006E+03 1.9618E+06 4.7969E+04 6.5544E+03 7.5344E+03 6.9757E+03 6.4556E+03 6.8424E+03 6.0139E+03 5.2865E+03 5.5229E+03 5.0244E+03 2.5994E+03 9.7865E+02 4.7493E+02 2.6862E+02 1.8941E+02 5.4069E+02 4.8610E+02 4.5086E+02 6.1418E+02 5.6988E+02 5.2865E+02 6.1032E+02 3.6941E+02 2.0506E+02 6.9327E+01 3.1590E+01 1.0251E+01 4.5645E+00 4.4269E+00 2.5706E+01 1.4708E+01 9.0473E+00 4.1188E+00 2.2143E+00 7.0702E-01 3.1393E-01 1.6829E-01 1.0199E-01 6.7369E-02 4.7407E-02 3.5012E-02 2.6867E-02 2.1265E-02 1.7265E-02 1.4316E-02 1.0349E-02 8.9785E-03 7.8754E-03 6.2328E-03 5.6132E-03 5.3725E-03 3.6219E-03 3.3642E-03 2.9341E-03 2.5900E-03 2.3089E-03 1.8808E-03 1.5739E-03 1.5181E-03 1.3459E-03 1.0337E-03 8.3209E-04 5.4971E-04 4.0582E-04 3.1977E-04 2.6304E-04 2.2298E-04 1.9328E-04 1.7046E-04 1.5236E-04 1.3766E-04 1.2554E-04 1.1536E-04 1.0668E-04 9.9198E-05 8.6991E-05 7.7407E-05 6.9756E-05 6.3438E-05 5.8195E-05 5.3725E-05 4.9900E-05 3.6795E-05 2.9128E-05 2.4103E-05 1.7918E-05 1.4261E-05 9.4384E-06 7.0530E-06 4.6848E-06 3.5076E-06 2.8032E-06 2.3342E-06 1.7493E-06 1.3986E-06 9.3181E-07 6.9842E-07 4.6547E-07 3.4904E-07 2.7920E-07 2.3265E-07 1.7450E-07 1.3956E-07 9.3052E-08 6.9799E-08 4.6504E-08 3.4887E-08 2.7911E-08 2.3256E-08 1.7446E-08 1.3956E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.1765E-04 3.3786E-04 6.3999E-04 1.0057E-03 1.4178E-03 2.3330E-03 3.3155E-03 3.5360E-03 4.3192E-03 6.2948E-03 8.1748E-03 1.2391E-02 1.6014E-02 1.9135E-02 2.1903E-02 2.4387E-02 2.6643E-02 2.8715E-02 3.0623E-02 3.2394E-02 3.4044E-02 3.5570E-02 3.6989E-02 3.8299E-02 4.0676E-02 4.2808E-02 4.4742E-02 4.6504E-02 4.8095E-02 4.9556E-02 5.0931E-02 5.6433E-02 6.0516E-02 6.3696E-02 6.8381E-02 7.1691E-02 7.7020E-02 8.0158E-02 8.3854E-02 8.6003E-02 8.7378E-02 8.8410E-02 8.9742E-02 9.0602E-02 9.1848E-02 9.2536E-02 9.3267E-02 9.3653E-02 9.3911E-02 9.4083E-02 9.4298E-02 9.4470E-02 9.4642E-02 9.4771E-02 9.4857E-02 9.4943E-02 9.4986E-02 9.4986E-02 9.5029E-02 9.5029E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.6133E-08 2.8506E-06 1.0040E-05 4.0951E-05 8.1490E-05 1.2503E-04 1.6831E-04 2.1021E-04 2.5027E-04 2.8831E-04 3.2428E-04 3.5815E-04 3.9004E-04 4.2039E-04 4.4914E-04 4.7622E-04 5.2693E-04 5.7249E-04 6.1461E-04 6.5287E-04 6.8854E-04 7.2120E-04 7.5172E-04 8.7851E-04 9.7393E-04 1.0500E-03 1.1639E-03 1.2468E-03 1.3840E-03 1.4699E-03 1.5756E-03 1.6393E-03 1.6827E-03 1.7145E-03 1.7592E-03 1.7888E-03 1.8331E-03 1.8585E-03 1.8864E-03 1.9027E-03 1.9126E-03 1.9199E-03 1.9294E-03 1.9354E-03 1.9436E-03 1.9483E-03 1.9530E-03 1.9560E-03 1.9577E-03 1.9586E-03 1.9599E-03 1.9612E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cf.mat0000644000000000000000000002266214741736366017663 0ustar00rootrootCf 1 98 1.000000 13 4 3 3 5 3 3 3 3 5 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2790E-03 1.2790E-03 1.5000E-03 1.6160E-03 1.6160E-03 1.7050E-03 1.7990E-03 1.7990E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.2530E-03 4.2530E-03 4.3733E-03 4.4970E-03 4.4970E-03 5.0000E-03 5.1090E-03 5.1090E-03 6.0000E-03 6.3590E-03 6.3590E-03 6.5535E-03 6.7540E-03 6.7540E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.9930E-02 1.9930E-02 2.0000E-02 2.5250E-02 2.5250E-02 2.5676E-02 2.6110E-02 2.6110E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.3596E-01 1.3596E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4696E+01 1.2003E+02 1.6364E+01 1.4377E+01 1.4377E+01 1.4091E+01 1.3938E+01 1.3938E+01 1.3826E+01 1.3707E+01 1.3707E+01 1.3434E+01 1.2096E+01 1.0832E+01 1.0532E+01 1.0532E+01 1.0393E+01 1.0251E+01 1.0251E+01 9.6995E+00 9.5868E+00 9.5868E+00 8.7209E+00 8.4043E+00 8.4043E+00 8.2389E+00 8.0733E+00 8.0733E+00 7.1571E+00 5.9890E+00 4.0918E+00 2.9861E+00 2.9861E+00 2.9741E+00 2.2121E+00 2.2121E+00 2.1642E+00 2.1174E+00 2.1174E+00 1.7600E+00 1.1798E+00 8.5674E-01 6.4783E-01 4.0726E-01 2.8278E-01 1.6888E-01 1.6888E-01 1.4252E-01 8.5554E-02 5.7284E-02 4.1182E-02 3.1088E-02 2.4321E-02 1.9552E-02 1.6060E-02 1.3425E-02 1.1388E-02 9.7815E-03 7.4440E-03 6.5791E-03 5.8575E-03 4.7288E-03 4.2813E-03 4.1038E-03 2.7751E-03 2.5712E-03 2.2252E-03 1.9445E-03 1.7134E-03 1.3594E-03 1.1050E-03 1.0587E-03 9.1597E-04 6.5841E-04 4.9577E-04 2.7990E-04 1.7946E-04 1.2477E-04 9.1719E-05 7.0252E-05 5.5525E-05 4.4996E-05 3.7201E-05 3.1252E-05 2.6623E-05 2.2966E-05 2.0008E-05 1.7586E-05 1.3897E-05 1.1256E-05 9.3038E-06 7.8167E-06 6.6606E-06 5.7444E-06 5.0033E-06 2.8158E-06 1.8015E-06 1.2511E-06 7.0372E-07 4.5044E-07 2.0018E-07 1.1259E-07 5.0033E-08 2.8158E-08 1.8015E-08 1.2511E-08 7.0372E-09 4.5044E-09 2.0018E-09 1.1259E-09 5.0033E-10 2.8158E-10 1.8015E-10 1.2511E-10 7.0372E-11 4.5044E-11 2.0018E-11 1.1259E-11 5.0033E-12 2.8158E-12 1.8015E-12 1.2511E-12 7.0372E-13 4.5044E-13 INCOHERENT SCATTERING CROSS SECTION 4.0798E-03 3.1822E-03 1.7946E-03 5.5885E-03 5.5885E-03 6.7997E-03 7.4401E-03 7.4401E-03 7.9307E-03 8.4475E-03 8.4475E-03 9.5532E-03 1.4921E-02 1.9905E-02 2.1102E-02 2.1102E-02 2.1663E-02 2.2232E-02 2.2232E-02 2.4465E-02 2.4944E-02 2.4944E-02 2.8638E-02 3.0053E-02 3.0053E-02 3.0803E-02 3.1564E-02 3.1564E-02 3.6049E-02 4.2573E-02 5.5933E-02 6.5407E-02 6.5407E-02 6.5503E-02 7.2770E-02 7.2770E-02 7.3278E-02 7.3778E-02 7.3778E-02 7.7807E-02 8.5267E-02 8.9920E-02 9.2750E-02 9.5100E-02 9.5196E-02 9.2846E-02 9.2846E-02 9.1695E-02 8.7209E-02 8.2678E-02 7.8527E-02 7.4842E-02 7.1571E-02 6.8652E-02 6.6031E-02 6.3660E-02 6.1497E-02 5.9511E-02 5.5988E-02 5.4422E-02 5.2967E-02 5.0340E-02 4.9145E-02 4.8642E-02 4.4084E-02 4.3215E-02 4.1597E-02 4.0127E-02 3.8791E-02 3.6417E-02 3.4322E-02 3.3891E-02 3.2473E-02 2.9464E-02 2.7055E-02 2.2577E-02 1.9505E-02 1.7245E-02 1.5501E-02 1.4110E-02 1.2971E-02 1.2019E-02 1.1211E-02 1.0515E-02 9.9058E-03 9.3709E-03 8.8984E-03 8.4739E-03 7.7447E-03 7.1427E-03 6.6342E-03 6.1977E-03 5.8212E-03 5.4902E-03 5.1999E-03 4.1326E-03 3.4490E-03 2.9717E-03 2.3438E-03 1.9454E-03 1.3854E-03 1.0863E-03 7.6992E-04 6.0298E-04 4.9913E-04 4.2741E-04 3.3387E-04 2.7463E-04 1.9176E-04 1.4842E-04 1.0321E-04 7.9654E-05 6.5119E-05 5.5237E-05 4.2549E-05 3.4730E-05 2.4009E-05 1.8459E-05 1.2731E-05 9.7739E-06 7.9582E-06 6.7278E-06 5.1592E-06 4.1974E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.8791E+03 3.9299E+05 2.5562E+04 5.1879E+03 5.5213E+03 4.0487E+03 3.4826E+03 3.5234E+03 3.1538E+03 2.8230E+03 2.8734E+03 2.2978E+03 9.4213E+02 4.8618E+02 4.2118E+02 9.4429E+02 8.9285E+02 8.4427E+02 1.1738E+03 9.1766E+02 8.6922E+02 1.0141E+03 6.7662E+02 5.8164E+02 6.1665E+02 5.7214E+02 5.3079E+02 5.5285E+02 3.6433E+02 2.0867E+02 7.4713E+01 3.6001E+01 8.3012E+01 8.2724E+01 4.4348E+01 6.3728E+01 6.1020E+01 5.8427E+01 6.7350E+01 4.7394E+01 2.2779E+01 1.2755E+01 7.9030E+00 3.6889E+00 2.0361E+00 8.9704E-01 3.5474E+00 2.7919E+00 1.3504E+00 7.7098E-01 4.9169E-01 3.3805E-01 2.4585E-01 1.8676E-01 1.4674E-01 1.1841E-01 9.7667E-02 8.2048E-02 6.0491E-02 5.2863E-02 4.6644E-02 3.7220E-02 3.3603E-02 3.2188E-02 2.1778E-02 2.0212E-02 1.7581E-02 1.5478E-02 1.3773E-02 1.1194E-02 9.3445E-03 9.0064E-03 7.9642E-03 6.0754E-03 4.8594E-03 3.1660E-03 2.3107E-03 1.8051E-03 1.4746E-03 1.2431E-03 1.0726E-03 9.4213E-04 8.3923E-04 7.5625E-04 6.8789E-04 6.3056E-04 5.8211E-04 5.4038E-04 4.7226E-04 4.1950E-04 3.7704E-04 3.4251E-04 3.1348E-04 2.8926E-04 2.6815E-04 1.9694E-04 1.5552E-04 1.2849E-04 9.5292E-05 7.5745E-05 5.0033E-05 3.7369E-05 2.4800E-05 1.8555E-05 1.4823E-05 1.2340E-05 9.2462E-06 7.3922E-06 4.9241E-06 3.6913E-06 2.4585E-06 1.8440E-06 1.4751E-06 1.2290E-06 9.2174E-07 7.3730E-07 4.9145E-07 3.6865E-07 2.4561E-07 1.8428E-07 1.4744E-07 1.2285E-07 9.2150E-08 7.3706E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.9241E-04 7.9062E-04 1.5630E-03 2.4896E-03 3.4730E-03 5.3946E-03 7.1883E-03 7.5745E-03 8.8940E-03 1.1925E-02 1.4554E-02 2.0092E-02 2.4705E-02 2.8566E-02 3.2092E-02 3.5282E-02 3.8208E-02 4.0918E-02 4.3437E-02 4.5787E-02 4.7994E-02 5.0057E-02 5.1975E-02 5.3798E-02 5.7084E-02 6.0010E-02 6.2673E-02 6.5119E-02 6.7374E-02 6.9412E-02 7.1307E-02 7.9006E-02 8.4739E-02 8.9200E-02 9.5748E-02 1.0035E-01 1.0760E-01 1.1191E-01 1.1693E-01 1.1980E-01 1.2168E-01 1.2304E-01 1.2482E-01 1.2597E-01 1.2762E-01 1.2856E-01 1.2949E-01 1.3009E-01 1.3043E-01 1.3067E-01 1.3098E-01 1.3117E-01 1.3141E-01 1.3156E-01 1.3170E-01 1.3180E-01 1.3185E-01 1.3189E-01 1.3192E-01 1.3194E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0589E-08 2.6838E-06 9.4453E-06 3.8472E-05 7.6464E-05 1.1717E-04 1.5756E-04 1.9658E-04 2.3381E-04 2.6911E-04 3.0221E-04 3.3363E-04 3.6289E-04 3.9096E-04 4.1734E-04 4.4228E-04 4.8833E-04 5.3007E-04 5.6796E-04 6.0298E-04 6.3488E-04 6.6462E-04 6.9197E-04 8.0470E-04 8.8912E-04 9.5556E-04 1.0541E-03 1.1251E-03 1.2410E-03 1.3127E-03 1.3993E-03 1.4506E-03 1.4856E-03 1.5111E-03 1.5461E-03 1.5693E-03 1.6036E-03 1.6233E-03 1.6444E-03 1.6571E-03 1.6648E-03 1.6701E-03 1.6773E-03 1.6818E-03 1.6878E-03 1.6917E-03 1.6948E-03 1.6972E-03 1.6984E-03 1.6993E-03 1.7001E-03 1.7008E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cl.mat0000644000000000000000000001666214741736366017674 0ustar00rootrootChlorine 1 17 1.000000 2 6 92 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.8224E-03 2.8224E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.0338E+00 5.5812E+01 3.6499E+00 2.7960E+00 2.5310E+00 2.1165E+00 2.1165E+00 2.0384E+00 1.6616E+00 1.3922E+00 1.1964E+00 9.2746E-01 7.4146E-01 4.4861E-01 2.9556E-01 1.5831E-01 1.0005E-01 6.9118E-02 5.0518E-02 3.0219E-02 2.0044E-02 9.3442E-03 5.3779E-03 3.4846E-03 2.4375E-03 1.7991E-03 1.3817E-03 1.0940E-03 8.8754E-04 7.3436E-04 6.1763E-04 5.2665E-04 3.9602E-04 3.4822E-04 3.0858E-04 2.4713E-04 2.2303E-04 2.1352E-04 1.4286E-04 1.3210E-04 1.1391E-04 9.9235E-05 8.7222E-05 6.8925E-05 5.5834E-05 5.3456E-05 4.6145E-05 3.3039E-05 2.4817E-05 1.3965E-05 8.9382E-06 6.2068E-06 4.5608E-06 3.4907E-06 2.7586E-06 2.2337E-06 1.8464E-06 1.5517E-06 1.3222E-06 1.1401E-06 9.9319E-07 8.7293E-07 6.8965E-07 5.5868E-07 4.6169E-07 3.8797E-07 3.3056E-07 2.8503E-07 2.4834E-07 1.3966E-07 8.9382E-08 6.2068E-08 3.4907E-08 2.2337E-08 9.9302E-09 5.5851E-09 2.4834E-09 1.3965E-09 8.9382E-10 6.2068E-10 3.4907E-10 2.2337E-10 9.9302E-11 5.5851E-11 2.4834E-11 1.3965E-11 8.9382E-12 6.2068E-12 3.4907E-12 2.2337E-12 9.9302E-13 5.5851E-13 2.4834E-13 1.3965E-13 8.9382E-14 6.2068E-14 3.4907E-14 2.2337E-14 INCOHERENT SCATTERING CROSS SECTION 8.5560E-03 6.5596E-03 2.8536E-03 1.6912E-02 2.5853E-02 3.9731E-02 3.9731E-02 4.2483E-02 5.6208E-02 6.7096E-02 7.5810E-02 8.9348E-02 9.9999E-02 1.1907E-01 1.3051E-01 1.4106E-01 1.4464E-01 1.4539E-01 1.4466E-01 1.4114E-01 1.3662E-01 1.2534E-01 1.1578E-01 1.0790E-01 1.0134E-01 9.5801E-02 9.1047E-02 8.6912E-02 8.3267E-02 8.0021E-02 7.7101E-02 7.4456E-02 6.9831E-02 6.7793E-02 6.5906E-02 6.2515E-02 6.0981E-02 6.0336E-02 5.4543E-02 5.3455E-02 5.1433E-02 4.9583E-02 4.7881E-02 4.4868E-02 4.2313E-02 4.1804E-02 4.0098E-02 3.6336E-02 3.3293E-02 2.7773E-02 2.3985E-02 2.1199E-02 1.9059E-02 1.7343E-02 1.5943E-02 1.4771E-02 1.3778E-02 1.2922E-02 1.2172E-02 1.1517E-02 1.0934E-02 1.0413E-02 9.5158E-03 8.7752E-03 8.1501E-03 7.6167E-03 7.1530E-03 6.7470E-03 6.3886E-03 5.0772E-03 4.2381E-03 3.6521E-03 2.8792E-03 2.3900E-03 1.7020E-03 1.3345E-03 9.4580E-04 7.4078E-04 6.1321E-04 5.2505E-04 4.1005E-04 3.3735E-04 2.3560E-04 1.8226E-04 1.2679E-04 9.7859E-05 8.0006E-05 6.7844E-05 5.2284E-05 4.2687E-05 2.9488E-05 2.2677E-05 1.5639E-05 1.2006E-05 9.7774E-06 8.2656E-06 6.3376E-06 5.1554E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.8282E+03 1.2035E+06 1.7498E+04 9.7434E+02 4.4946E+02 1.7530E+02 1.6344E+03 1.4707E+03 7.0205E+02 3.8865E+02 2.3713E+02 1.0649E+02 5.6412E+01 1.7275E+01 7.3143E+00 2.1267E+00 8.7191E-01 4.3383E-01 2.4426E-01 9.8249E-02 4.8343E-02 1.3360E-02 5.4187E-03 2.7254E-03 1.5750E-03 1.0027E-03 6.8523E-04 4.9439E-04 3.7268E-04 2.9108E-04 2.3339E-04 1.9100E-04 1.3598E-04 1.1828E-04 1.0468E-04 8.3170E-05 7.3568E-05 6.9559E-05 4.7120E-05 4.4010E-05 3.8546E-05 3.4075E-05 3.0471E-05 2.5063E-05 2.1182E-05 2.0469E-05 1.8267E-05 1.4258E-05 1.1642E-05 7.9072E-06 5.9537E-06 4.7613E-06 3.9629E-06 3.3905E-06 2.9607E-06 2.6278E-06 2.3611E-06 2.1420E-06 1.9619E-06 1.8091E-06 1.6774E-06 1.5639E-06 1.3774E-06 1.2307E-06 1.1119E-06 1.0143E-06 9.3221E-07 8.6240E-07 8.0227E-07 5.9503E-07 4.7273E-07 3.9222E-07 2.9251E-07 2.3322E-07 1.5473E-07 1.1578E-07 7.6999E-08 5.7686E-08 4.6118E-08 3.8406E-08 2.8792E-08 2.3034E-08 1.5344E-08 1.1505E-08 7.6677E-09 5.7499E-09 4.5999E-09 3.8338E-09 2.8741E-09 2.3000E-09 1.5332E-09 1.1498E-09 7.6660E-10 5.7482E-10 4.5982E-10 3.8321E-10 2.8741E-10 2.3000E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.2415E-05 6.8165E-05 1.3723E-04 2.2711E-04 3.3468E-04 5.9156E-04 8.8788E-04 9.5667E-04 1.2060E-03 1.8601E-03 2.5089E-03 4.0428E-03 5.4068E-03 6.6247E-03 7.7101E-03 8.6851E-03 9.5701E-03 1.0372E-02 1.1099E-02 1.1766E-02 1.2385E-02 1.2961E-02 1.3497E-02 1.4002E-02 1.4924E-02 1.5750E-02 1.6495E-02 1.7173E-02 1.7802E-02 1.8362E-02 1.8889E-02 2.1080E-02 2.2711E-02 2.3985E-02 2.5853E-02 2.7212E-02 2.9420E-02 3.0779E-02 3.2376E-02 3.3293E-02 3.3922E-02 3.4363E-02 3.4958E-02 3.5349E-02 3.5909E-02 3.6215E-02 3.6538E-02 3.6725E-02 3.6843E-02 3.6911E-02 3.7030E-02 3.7081E-02 3.7183E-02 3.7234E-02 3.7285E-02 3.7302E-02 3.7319E-02 3.7336E-02 3.7353E-02 3.7353E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1140E-07 3.3059E-06 1.1651E-05 4.7579E-05 9.4784E-05 1.4556E-04 1.9619E-04 2.4545E-04 2.9251E-04 3.3735E-04 3.7999E-04 4.2007E-04 4.5812E-04 4.9430E-04 5.2862E-04 5.6123E-04 6.2204E-04 6.7759E-04 7.2855E-04 7.7560E-04 8.1925E-04 8.5985E-04 8.9773E-04 1.0564E-03 1.1787E-03 1.2769E-03 1.4272E-03 1.5388E-03 1.7275E-03 1.8498E-03 2.0044E-03 2.0978E-03 2.1624E-03 2.2116E-03 2.2779E-03 2.3220E-03 2.3900E-03 2.4274E-03 2.4698E-03 2.4953E-03 2.5106E-03 2.5208E-03 2.5344E-03 2.5429E-03 2.5565E-03 2.5632E-03 2.5700E-03 2.5734E-03 2.5768E-03 2.5785E-03 2.5802E-03 2.5819E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cm.mat0000644000000000000000000002255214741736366017670 0ustar00rootrootCm 1 96 1.000000 13 4 3 3 4 3 3 3 3 5 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1540E-03 1.1540E-03 1.2891E-03 1.4400E-03 1.4400E-03 1.5000E-03 1.6430E-03 1.6430E-03 2.0000E-03 3.0000E-03 3.9710E-03 3.9710E-03 4.0000E-03 4.2270E-03 4.2270E-03 4.5030E-03 4.7970E-03 4.7970E-03 5.0000E-03 5.8950E-03 5.8950E-03 6.0000E-03 6.2880E-03 6.2880E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.8930E-02 1.8930E-02 2.0000E-02 2.3799E-02 2.3799E-02 2.4127E-02 2.4460E-02 2.4460E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.2822E-01 1.2822E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4300E+01 8.2367E+01 1.5848E+01 1.4118E+01 1.4118E+01 1.3959E+01 1.3771E+01 1.3771E+01 1.3693E+01 1.3503E+01 1.3503E+01 1.3033E+01 1.1712E+01 1.0513E+01 1.0513E+01 1.0478E+01 1.0218E+01 1.0218E+01 9.9109E+00 9.5961E+00 9.5961E+00 9.3865E+00 8.5358E+00 8.5358E+00 8.4432E+00 8.1970E+00 8.1970E+00 6.9393E+00 5.8108E+00 3.9657E+00 3.0663E+00 3.0663E+00 2.8737E+00 2.3175E+00 2.3175E+00 2.2769E+00 2.2368E+00 2.2368E+00 1.6979E+00 1.1400E+00 8.2580E-01 6.2349E-01 3.9194E-01 2.7202E-01 1.7922E-01 1.7922E-01 1.3674E-01 8.2019E-02 5.4883E-02 3.9437E-02 2.9762E-02 2.3272E-02 1.8697E-02 1.5348E-02 1.2825E-02 1.0876E-02 9.3400E-03 7.1046E-03 6.2764E-03 5.5848E-03 4.5055E-03 4.0802E-03 3.9121E-03 2.6446E-03 2.4496E-03 2.1190E-03 1.8510E-03 1.6307E-03 1.2936E-03 1.0513E-03 1.0071E-03 8.7115E-04 6.2591E-04 4.7115E-04 2.6592E-04 1.7052E-04 1.1853E-04 8.7138E-05 6.6737E-05 5.2746E-05 4.2728E-05 3.5318E-05 2.9688E-05 2.5300E-05 2.1815E-05 1.9005E-05 1.6704E-05 1.3199E-05 1.0691E-05 8.8356E-06 7.4244E-06 6.3275E-06 5.4549E-06 4.7530E-06 2.6738E-06 1.7111E-06 1.1882E-06 6.6834E-07 4.2777E-07 1.9012E-07 1.0693E-07 4.7530E-08 2.6738E-08 1.7111E-08 1.1882E-08 6.6834E-09 4.2777E-09 1.9012E-09 1.0693E-09 4.7530E-10 2.6738E-10 1.7111E-10 1.1882E-10 6.6834E-11 4.2777E-11 1.9012E-11 1.0693E-11 4.7530E-12 2.6738E-12 1.7111E-12 1.1882E-12 6.6834E-13 4.2777E-13 INCOHERENT SCATTERING CROSS SECTION 4.2509E-03 9.9379E+01 2.3950E-03 5.1381E-03 5.1381E-03 5.8936E-03 6.7346E-03 6.7346E-03 7.0758E-03 7.8826E-03 7.8826E-03 9.8837E-03 1.5322E-02 2.0199E-02 2.0199E-02 2.0338E-02 2.1413E-02 2.1413E-02 2.2688E-02 2.4013E-02 2.4013E-02 2.4910E-02 2.8640E-02 2.8640E-02 2.9054E-02 3.0200E-02 3.0200E-02 3.6415E-02 4.2923E-02 5.6182E-02 6.3909E-02 6.3909E-02 6.5688E-02 7.1173E-02 7.1173E-02 7.1589E-02 7.2001E-02 7.2001E-02 7.7851E-02 8.5310E-02 8.9941E-02 9.2719E-02 9.4986E-02 9.5035E-02 9.3426E-02 9.3426E-02 9.1647E-02 8.6991E-02 8.2426E-02 7.8290E-02 7.4615E-02 7.1343E-02 6.8415E-02 6.5786E-02 6.3413E-02 6.1252E-02 5.9269E-02 5.5762E-02 5.4208E-02 5.2767E-02 5.0149E-02 4.8943E-02 4.8432E-02 4.3898E-02 4.3042E-02 4.1441E-02 3.9974E-02 3.8624E-02 3.6230E-02 3.4173E-02 3.3758E-02 3.2379E-02 2.9367E-02 2.6933E-02 2.2475E-02 1.9419E-02 1.7167E-02 1.5431E-02 1.4047E-02 1.2913E-02 1.1965E-02 1.1161E-02 1.0466E-02 9.8618E-03 9.3304E-03 8.8576E-03 8.4359E-03 7.7096E-03 7.1099E-03 6.6030E-03 6.1715E-03 5.7937E-03 5.4671E-03 5.1771E-03 4.1144E-03 3.4343E-03 2.9590E-03 2.3331E-03 1.9365E-03 1.3791E-03 1.0812E-03 7.6632E-04 6.0034E-04 4.9699E-04 4.2533E-04 3.3222E-04 2.7323E-04 1.9090E-04 1.4776E-04 1.0274E-04 7.9289E-05 6.4835E-05 5.4988E-05 4.2362E-05 3.4587E-05 2.3901E-05 1.8376E-05 1.2672E-05 9.7302E-06 7.9216E-06 6.6980E-06 5.1356E-06 4.1777E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.5243E+03 4.1417E+05 2.5149E+04 5.8669E+03 6.2276E+03 5.0461E+03 4.0900E+03 4.1729E+03 3.8170E+03 3.1711E+03 3.2296E+03 2.1405E+03 8.7723E+02 4.6067E+02 1.0379E+03 1.0269E+03 9.2183E+02 1.2874E+03 1.1089E+03 9.5522E+02 1.1120E+03 1.0069E+03 6.6054E+02 7.0051E+02 6.7053E+02 5.9692E+02 6.2179E+02 3.4368E+02 1.9670E+02 7.0100E+01 3.8487E+01 9.0379E+01 7.8509E+01 4.8797E+01 6.9856E+01 6.7355E+01 6.4957E+01 7.4853E+01 4.4727E+01 2.1325E+01 1.1904E+01 7.3586E+00 3.4221E+00 1.8827E+00 9.6692E-01 3.9096E+00 2.6422E+00 1.2755E+00 7.2611E-01 4.6116E-01 3.1630E-01 2.2960E-01 1.7407E-01 1.3652E-01 1.1002E-01 9.0672E-02 7.6130E-02 5.6060E-02 4.8943E-02 4.3134E-02 3.4374E-02 3.1053E-02 2.9761E-02 2.0123E-02 1.8673E-02 1.6246E-02 1.4305E-02 1.2728E-02 1.0339E-02 8.6358E-03 8.3262E-03 7.3690E-03 5.6222E-03 4.4946E-03 2.9298E-03 2.1393E-03 1.6721E-03 1.3662E-03 1.1519E-03 9.9422E-04 8.7333E-04 7.7802E-04 7.0125E-04 6.3787E-04 5.8498E-04 5.3989E-04 5.0113E-04 4.3825E-04 3.8926E-04 3.4977E-04 3.1784E-04 2.9103E-04 2.6836E-04 2.4910E-04 1.8283E-04 1.4439E-04 1.1929E-04 8.8503E-05 7.0344E-05 4.6482E-05 3.4709E-05 2.3031E-05 1.7235E-05 1.3769E-05 1.1463E-05 8.5870E-06 6.8662E-06 4.5726E-06 3.4270E-06 2.2843E-06 1.7130E-06 1.3701E-06 1.1417E-06 8.5627E-07 6.8491E-07 4.5653E-07 3.4246E-07 2.2826E-07 1.7118E-07 1.3696E-07 1.1412E-07 8.5602E-08 6.8467E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.7627E-04 7.6266E-04 1.5022E-03 2.3884E-03 3.3312E-03 5.1852E-03 6.9271E-03 7.3025E-03 8.5877E-03 1.1556E-02 1.4147E-02 1.9626E-02 2.4196E-02 2.8055E-02 3.1540E-02 3.4684E-02 3.7585E-02 4.0242E-02 4.2728E-02 4.5043E-02 4.7188E-02 4.9236E-02 5.1137E-02 5.2892E-02 5.6134E-02 5.9010E-02 6.1618E-02 6.4031E-02 6.6225E-02 6.8223E-02 7.0076E-02 7.7632E-02 8.3238E-02 8.7601E-02 9.4011E-02 9.8520E-02 1.0561E-01 1.0985E-01 1.1478E-01 1.1761E-01 1.1946E-01 1.2077E-01 1.2253E-01 1.2367E-01 1.2528E-01 1.2621E-01 1.2711E-01 1.2772E-01 1.2804E-01 1.2828E-01 1.2857E-01 1.2877E-01 1.2901E-01 1.2916E-01 1.2928E-01 1.2938E-01 1.2945E-01 1.2948E-01 1.2950E-01 1.2952E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0130E-08 2.6711E-06 9.4036E-06 3.8316E-05 7.6145E-05 1.1668E-04 1.5695E-04 1.9582E-04 2.3292E-04 2.6812E-04 3.0126E-04 3.3246E-04 3.6171E-04 3.8950E-04 4.1582E-04 4.4069E-04 4.8651E-04 5.2819E-04 5.6621E-04 6.0082E-04 6.3275E-04 6.6249E-04 6.8979E-04 8.0240E-04 8.8649E-04 9.5279E-04 1.0515E-03 1.1224E-03 1.2382E-03 1.3099E-03 1.3969E-03 1.4483E-03 1.4834E-03 1.5090E-03 1.5443E-03 1.5677E-03 1.6024E-03 1.6221E-03 1.6436E-03 1.6562E-03 1.6640E-03 1.6694E-03 1.6765E-03 1.6811E-03 1.6872E-03 1.6911E-03 1.6945E-03 1.6967E-03 1.6979E-03 1.6989E-03 1.6996E-03 1.7003E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Co.mat0000644000000000000000000001666214741736366017677 0ustar00rootrootCo 1 27 1.000000 2 10 88 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 7.7089E-03 7.7089E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 4.6587E+00 3.4533E+01 5.3502E+00 4.3736E+00 4.0701E+00 3.4917E+00 2.9808E+00 2.5414E+00 2.1735E+00 1.6912E+00 1.6912E+00 1.6258E+00 1.2630E+00 7.7835E-01 5.3913E-01 2.9828E-01 1.8802E-01 1.3018E-01 9.5973E-02 5.8624E-02 3.9454E-02 1.8690E-02 1.0842E-02 7.0676E-03 4.9662E-03 3.6772E-03 2.8305E-03 2.2451E-03 1.8240E-03 1.5111E-03 1.2722E-03 1.0855E-03 8.1692E-04 7.1857E-04 6.3701E-04 5.1053E-04 4.6086E-04 4.4124E-04 2.9532E-04 2.7306E-04 2.3546E-04 2.0519E-04 1.8051E-04 1.4286E-04 1.1557E-04 1.1057E-04 9.5284E-05 6.8259E-05 5.1369E-05 2.8898E-05 1.8496E-05 1.2845E-05 9.4389E-06 7.2266E-06 5.7101E-06 4.6249E-06 3.8228E-06 3.2117E-06 2.7365E-06 2.3595E-06 2.0560E-06 1.8066E-06 1.4275E-06 1.1567E-06 9.5564E-07 8.0298E-07 6.8424E-07 5.8992E-07 5.1389E-07 2.8908E-07 1.8506E-07 1.2845E-07 7.2266E-08 4.6249E-08 2.0560E-08 1.1557E-08 5.1389E-09 2.8908E-09 1.8496E-09 1.2845E-09 7.2266E-10 4.6249E-10 2.0560E-10 1.1557E-10 5.1389E-11 2.8908E-11 1.8496E-11 1.2845E-11 7.2266E-12 4.6249E-12 2.0560E-12 1.1557E-12 5.1389E-13 2.8908E-13 1.8496E-13 1.2845E-13 7.2266E-14 4.6249E-14 INCOHERENT SCATTERING CROSS SECTION 8.0410E-03 2.8908E-02 3.3165E-03 1.4173E-02 1.9834E-02 3.0196E-02 3.9883E-02 4.8814E-02 5.6928E-02 6.9067E-02 6.9067E-02 7.0927E-02 8.2280E-02 1.0162E-01 1.1322E-01 1.2569E-01 1.3100E-01 1.3284E-01 1.3284E-01 1.3070E-01 1.2732E-01 1.1792E-01 1.0944E-01 1.0229E-01 9.6259E-02 9.1112E-02 8.6664E-02 8.2774E-02 7.9337E-02 7.6272E-02 7.3512E-02 7.1008E-02 6.6621E-02 6.4684E-02 6.2889E-02 5.9663E-02 5.8205E-02 5.7592E-02 5.2074E-02 5.1035E-02 4.9105E-02 4.7343E-02 4.5724E-02 4.2860E-02 4.0414E-02 3.9924E-02 3.8288E-02 3.4704E-02 3.1810E-02 2.6538E-02 2.2920E-02 2.0253E-02 1.8210E-02 1.6575E-02 1.5236E-02 1.4112E-02 1.3162E-02 1.2344E-02 1.1629E-02 1.1005E-02 1.0443E-02 9.9478E-03 9.0915E-03 8.3843E-03 7.7876E-03 7.2767E-03 6.8332E-03 6.4459E-03 6.1036E-03 4.8508E-03 4.0486E-03 3.4886E-03 2.7508E-03 2.2839E-03 1.6258E-03 1.2753E-03 9.0373E-04 7.0774E-04 5.8583E-04 5.0163E-04 3.9178E-04 3.2229E-04 2.2512E-04 1.7423E-04 1.2109E-04 9.3500E-05 7.6445E-05 6.4827E-05 4.9948E-05 4.0782E-05 2.8183E-05 2.1663E-05 1.4940E-05 1.1475E-05 9.3418E-06 7.8969E-06 6.0545E-06 4.9264E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.7904E+03 2.4868E+06 5.1847E+04 3.6920E+03 1.7750E+03 6.0933E+02 2.7999E+02 1.5175E+02 9.1487E+01 4.5350E+01 3.5377E+02 3.2311E+02 1.8281E+02 6.1128E+01 2.7376E+01 8.5376E+00 3.6613E+00 1.8812E+00 1.0852E+00 4.5207E-01 2.2818E-01 6.5675E-02 2.7314E-02 1.3982E-02 8.1841E-03 5.2597E-03 3.6215E-03 2.6289E-03 1.9906E-03 1.5593E-03 1.2538E-03 1.0295E-03 7.3558E-04 6.3887E-04 5.6342E-04 4.4675E-04 3.9750E-04 3.7737E-04 2.5516E-04 2.3793E-04 2.0820E-04 1.8393E-04 1.6415E-04 1.3432E-04 1.1332E-04 1.0954E-04 9.7753E-05 7.5828E-05 6.1475E-05 4.1375E-05 3.0952E-05 2.4647E-05 2.0437E-05 1.7433E-05 1.5195E-05 1.3458E-05 1.2068E-05 1.0944E-05 1.0005E-05 9.2141E-06 8.5397E-06 7.9552E-06 6.9977E-06 6.2456E-06 5.6386E-06 5.1389E-06 4.7200E-06 4.3644E-06 4.0578E-06 3.0043E-06 2.3850E-06 1.9773E-06 1.4725E-06 1.1731E-06 7.7825E-07 5.8215E-07 3.8698E-07 2.8990E-07 2.3176E-07 1.9303E-07 1.4470E-07 1.1567E-07 7.7069E-08 5.7786E-08 3.8514E-08 2.8878E-08 2.3104E-08 1.9252E-08 1.4439E-08 1.1547E-08 7.6997E-09 5.7745E-09 3.8493E-09 2.8867E-09 2.3094E-09 1.9252E-09 1.4439E-09 1.1547E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 7.2858E-05 1.1538E-04 2.2688E-04 3.6920E-04 5.3792E-04 9.3875E-04 1.3989E-03 1.5052E-03 1.8889E-03 2.8879E-03 3.8708E-03 6.1751E-03 8.2096E-03 1.0021E-02 1.1629E-02 1.3080E-02 1.4388E-02 1.5573E-02 1.6656E-02 1.7637E-02 1.8547E-02 1.9405E-02 2.0192E-02 2.0938E-02 2.2307E-02 2.3523E-02 2.4627E-02 2.5628E-02 2.6548E-02 2.7386E-02 2.8162E-02 3.1320E-02 3.3680E-02 3.5540E-02 3.8299E-02 4.0271E-02 4.3439E-02 4.5340E-02 4.7567E-02 4.8855E-02 4.9703E-02 5.0316E-02 5.1124E-02 5.1645E-02 5.2411E-02 5.2820E-02 5.3269E-02 5.3515E-02 5.3668E-02 5.3770E-02 5.3913E-02 5.4005E-02 5.4118E-02 5.4189E-02 5.4250E-02 5.4291E-02 5.4312E-02 5.4332E-02 5.4353E-02 5.4363E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0640E-07 3.1575E-06 1.1128E-05 4.5442E-05 9.0516E-05 1.3897E-04 1.8731E-04 2.3411E-04 2.7897E-04 3.2168E-04 3.6204E-04 4.0026E-04 4.3633E-04 4.7067E-04 5.0316E-04 5.3413E-04 5.9155E-04 6.4397E-04 6.9210E-04 7.3635E-04 7.7743E-04 8.1554E-04 8.5100E-04 9.9917E-04 1.1128E-03 1.2037E-03 1.3417E-03 1.4429E-03 1.6125E-03 1.7208E-03 1.8537E-03 1.9344E-03 1.9896E-03 2.0304E-03 2.0866E-03 2.1255E-03 2.1817E-03 2.2144E-03 2.2491E-03 2.2706E-03 2.2828E-03 2.2920E-03 2.3043E-03 2.3114E-03 2.3227E-03 2.3278E-03 2.3339E-03 2.3380E-03 2.3401E-03 2.3411E-03 2.3431E-03 2.3441E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cr.mat0000644000000000000000000001666214741736366017702 0ustar00rootrootChromium 1 24 1.000000 2 9 89 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.9892E-03 5.9892E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 4.1405E+00 3.5071E+01 4.8134E+00 3.8637E+00 3.5730E+00 3.0182E+00 2.5318E+00 2.1288E+00 1.8079E+00 1.8079E+00 1.8045E+00 1.3458E+00 1.0545E+00 6.6283E-01 4.5725E-01 2.4936E-01 1.5728E-01 1.0916E-01 8.0529E-02 4.9049E-02 3.2881E-02 1.5497E-02 8.9760E-03 5.8437E-03 5.8437E-03 4.1012E-03 2.3338E-03 1.8509E-03 1.5033E-03 1.2447E-03 1.0472E-03 8.9330E-04 6.7214E-04 5.9114E-04 5.2392E-04 4.1977E-04 3.7896E-04 3.6286E-04 2.4287E-04 2.2459E-04 1.9369E-04 1.6875E-04 1.4833E-04 1.1722E-04 9.4972E-05 9.0929E-05 7.8503E-05 5.6217E-05 4.2228E-05 2.3754E-05 1.5207E-05 1.0559E-05 7.7576E-06 5.9404E-06 4.6930E-06 3.8012E-06 3.1422E-06 2.6395E-06 2.2492E-06 1.9400E-06 1.6898E-06 1.4848E-06 1.1732E-06 9.5041E-07 7.8548E-07 6.6005E-07 5.6242E-07 4.8493E-07 4.2239E-07 2.3766E-07 1.5207E-07 1.0559E-07 5.9404E-08 3.8012E-08 1.6898E-08 9.5029E-09 4.2239E-09 2.3754E-09 1.5207E-09 1.0559E-09 5.9392E-10 3.8012E-10 1.6898E-10 9.5029E-11 4.2239E-11 2.3754E-11 1.5207E-11 1.0559E-11 5.9392E-12 3.8012E-12 1.6898E-12 9.5029E-13 4.2239E-13 2.3754E-13 1.5207E-13 1.0559E-13 5.9392E-14 3.8012E-14 INCOHERENT SCATTERING CROSS SECTION 8.5440E-03 1.0762E-02 3.5136E-03 1.4906E-02 2.1056E-02 3.2800E-02 4.3571E-02 5.3277E-02 6.1882E-02 6.1882E-02 6.1975E-02 7.6580E-02 8.7849E-02 1.0631E-01 1.1744E-01 1.2937E-01 1.3412E-01 1.3551E-01 1.3528E-01 1.3284E-01 1.2914E-01 1.1929E-01 1.1063E-01 1.0332E-01 1.0332E-01 9.7161E-02 8.7420E-02 8.3484E-02 8.0008E-02 7.6906E-02 7.4113E-02 7.1577E-02 6.7145E-02 6.5195E-02 6.3392E-02 6.0143E-02 5.8662E-02 5.8037E-02 5.2478E-02 5.1432E-02 4.9484E-02 4.7706E-02 4.6077E-02 4.3194E-02 4.0722E-02 4.0224E-02 3.8567E-02 3.4958E-02 3.2047E-02 2.6731E-02 2.3094E-02 2.0407E-02 1.8346E-02 1.6690E-02 1.5346E-02 1.4223E-02 1.3261E-02 1.2439E-02 1.1721E-02 1.1085E-02 1.0524E-02 1.0022E-02 9.1601E-03 8.4467E-03 7.8456E-03 7.3313E-03 6.8843E-03 6.4940E-03 6.1500E-03 4.8864E-03 4.0791E-03 3.5139E-03 2.7715E-03 2.3002E-03 1.6388E-03 1.2844E-03 9.1045E-04 7.1310E-04 5.9021E-04 5.0543E-04 3.9471E-04 3.2476E-04 2.2677E-04 1.7547E-04 1.2207E-04 9.4207E-05 7.7020E-05 6.5310E-05 5.0323E-05 4.1081E-05 2.8399E-05 2.1832E-05 1.5056E-05 1.1558E-05 9.4115E-06 7.9556E-06 6.1002E-06 4.9628E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.4008E+03 2.3157E+06 4.1731E+04 2.6905E+03 1.2740E+03 4.3085E+02 1.9620E+02 1.0578E+02 6.3863E+01 5.1400E+02 5.1424E+02 2.4994E+02 1.3759E+02 4.4949E+01 1.9805E+01 6.0550E+00 2.5642E+00 1.3064E+00 7.4819E-01 3.0854E-01 1.5462E-01 4.3988E-02 1.8172E-02 9.2545E-03 9.2545E-03 5.3960E-03 2.3754E-03 1.7204E-03 1.3006E-03 1.0182E-03 8.1838E-04 6.7152E-04 4.7933E-04 4.1637E-04 3.6742E-04 2.9141E-04 2.5897E-04 2.4565E-04 1.6620E-04 1.5504E-04 1.3573E-04 1.1999E-04 1.0719E-04 8.7879E-05 7.4089E-05 7.1576E-05 6.3804E-05 4.9582E-05 4.0317E-05 2.7206E-05 2.0396E-05 1.6249E-05 1.3493E-05 1.1519E-05 1.0044E-05 8.8995E-06 7.9880E-06 7.2433E-06 6.6260E-06 6.1037E-06 5.6578E-06 5.2732E-06 4.6397E-06 4.1417E-06 3.7398E-06 3.4097E-06 3.1329E-06 2.8966E-06 2.6939E-06 1.9956E-06 1.5844E-06 1.3134E-06 9.7890E-07 7.8016E-07 5.1748E-07 3.8707E-07 2.5735E-07 1.9284E-07 1.5416E-07 1.2833E-07 9.6211E-08 7.6939E-08 5.1261E-08 3.8440E-08 2.5619E-08 1.9214E-08 1.5369E-08 1.2810E-08 9.6049E-09 7.6834E-09 5.1215E-09 3.8417E-09 2.5608E-09 1.9203E-09 1.5369E-09 1.2798E-09 9.6026E-10 7.6823E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 6.2646E-05 9.9553E-05 1.9695E-04 3.2221E-04 4.7174E-04 8.2957E-04 1.2416E-03 1.3366E-03 1.6792E-03 2.5699E-03 3.4468E-03 5.5188E-03 7.3499E-03 8.9829E-03 1.0435E-02 1.1744E-02 1.2925E-02 1.3991E-02 1.4964E-02 1.5856E-02 1.6678E-02 1.7454E-02 1.8160E-02 1.8832E-02 2.0071E-02 2.1160E-02 2.2156E-02 2.3060E-02 2.3882E-02 2.4646E-02 2.5353E-02 2.8214E-02 3.0356E-02 3.2036E-02 3.4537E-02 3.6321E-02 3.9216E-02 4.0965E-02 4.3027E-02 4.4220E-02 4.5007E-02 4.5575E-02 4.6339E-02 4.6826E-02 4.7544E-02 4.7937E-02 4.8354E-02 4.8586E-02 4.8725E-02 4.8829E-02 4.8957E-02 4.9038E-02 4.9154E-02 4.9223E-02 4.9281E-02 4.9316E-02 4.9339E-02 4.9350E-02 4.9374E-02 4.9385E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0728E-07 3.1829E-06 1.1215E-05 4.5783E-05 9.1207E-05 1.4003E-04 1.8878E-04 2.3604E-04 2.8121E-04 3.2429E-04 3.6506E-04 4.0363E-04 4.4000E-04 4.7463E-04 5.0752E-04 5.3879E-04 5.9682E-04 6.4974E-04 6.9839E-04 7.4321E-04 7.8479E-04 8.2336E-04 8.5938E-04 1.0096E-03 1.1248E-03 1.2173E-03 1.3586E-03 1.4616E-03 1.6365E-03 1.7477E-03 1.8855E-03 1.9701E-03 2.0280E-03 2.0708E-03 2.1299E-03 2.1693E-03 2.2284E-03 2.2631E-03 2.3002E-03 2.3222E-03 2.3349E-03 2.3442E-03 2.3569E-03 2.3650E-03 2.3766E-03 2.3824E-03 2.3882E-03 2.3928E-03 2.3951E-03 2.3963E-03 2.3986E-03 2.3998E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cs.mat0000644000000000000000000002066414741736366017700 0ustar00rootrootCesium 1 55 1.000000 7 4 3 7 3 3 8 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0650E-03 1.0650E-03 1.1385E-03 1.2171E-03 1.2171E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.0119E-03 5.0119E-03 5.1827E-03 5.3594E-03 5.3594E-03 5.5340E-03 5.7143E-03 5.7143E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.5985E-02 3.5985E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.5503E+00 3.4738E+04 1.1475E+01 8.4914E+00 8.4914E+00 8.4221E+00 8.3464E+00 8.3464E+00 8.0745E+00 7.5761E+00 6.5928E+00 5.7455E+00 5.0432E+00 5.0341E+00 5.0341E+00 4.9212E+00 4.8211E+00 4.8211E+00 4.7211E+00 4.6172E+00 4.6172E+00 4.4586E+00 3.5479E+00 2.8863E+00 1.8985E+00 1.3593E+00 7.7890E-01 5.9449E-01 5.9449E-01 5.0704E-01 3.6045E-01 2.6978E-01 1.6643E-01 1.1278E-01 5.4872E-02 3.2506E-02 2.1457E-02 2.1457E-02 1.5197E-02 8.7542E-03 6.9746E-03 5.6866E-03 4.7231E-03 3.9847E-03 3.4071E-03 2.5731E-03 2.2660E-03 2.0104E-03 1.6138E-03 1.4586E-03 1.3974E-03 9.3749E-04 8.6718E-04 7.4841E-04 6.5248E-04 5.7387E-04 4.5391E-04 3.6793E-04 3.5230E-04 3.0422E-04 2.1797E-04 1.6380E-04 9.2209E-05 5.9041E-05 4.1002E-05 3.0128E-05 2.3068E-05 1.8224E-05 1.4762E-05 1.2202E-05 1.0254E-05 8.7360E-06 7.5308E-06 6.5611E-06 5.7681E-06 4.5583E-06 3.6915E-06 3.0508E-06 2.5633E-06 2.1840E-06 1.8831E-06 1.6407E-06 9.2299E-07 5.9041E-07 4.1016E-07 2.3073E-07 1.4767E-07 6.5611E-08 3.6911E-08 1.6407E-08 9.2299E-09 5.9041E-09 4.1011E-09 2.3068E-09 1.4762E-09 6.5611E-10 3.6911E-10 1.6407E-10 9.2299E-11 5.9041E-11 4.1011E-11 2.3068E-11 1.4762E-11 6.5611E-12 3.6911E-12 1.6407E-12 9.2299E-13 5.9041E-13 4.1011E-13 2.3068E-13 1.4762E-13 INCOHERENT SCATTERING CROSS SECTION 5.8814E-03 1.5722E+03 3.5751E-03 6.3934E-03 6.3934E-03 6.9734E-03 7.5942E-03 7.5942E-03 9.8643E-03 1.3992E-02 2.2035E-02 2.9407E-02 3.5819E-02 3.5891E-02 3.5891E-02 3.6904E-02 3.7908E-02 3.7908E-02 3.8870E-02 3.9847E-02 3.9847E-02 4.1369E-02 5.0794E-02 5.8905E-02 7.4628E-02 8.5186E-02 9.7601E-02 1.0200E-01 1.0200E-01 1.0417E-01 1.0771E-01 1.0947E-01 1.1006E-01 1.0861E-01 1.0240E-01 9.6015E-02 9.0344E-02 9.0344E-02 8.5412E-02 7.7347E-02 7.4015E-02 7.1048E-02 6.8385E-02 6.5973E-02 6.3773E-02 5.9898E-02 5.8180E-02 5.6586E-02 5.3719E-02 5.2425E-02 5.1882E-02 4.6943E-02 4.6008E-02 4.4273E-02 4.2692E-02 4.1246E-02 3.8682E-02 3.6467E-02 3.6018E-02 3.4530E-02 3.1308E-02 2.8714E-02 2.3956E-02 2.0694E-02 1.8292E-02 1.6444E-02 1.4966E-02 1.3757E-02 1.2746E-02 1.1890E-02 1.1151E-02 1.0503E-02 9.9368E-03 9.4338E-03 8.9853E-03 8.2104E-03 7.5715E-03 7.0323E-03 6.5747E-03 6.1714E-03 5.8225E-03 5.5144E-03 4.3812E-03 3.6571E-03 3.1510E-03 2.4849E-03 2.0626E-03 1.4690E-03 1.1518E-03 8.1606E-04 6.3934E-04 5.2924E-04 4.5311E-04 3.5388E-04 2.9113E-04 2.0331E-04 1.5737E-04 1.0943E-04 8.4461E-05 6.9055E-05 5.8542E-05 4.5117E-05 3.6834E-05 2.5456E-05 1.9570E-05 1.3498E-05 1.0363E-05 8.4370E-06 7.1320E-06 5.4691E-06 4.4496E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.3568E+03 1.1413E+06 3.9734E+04 8.2059E+03 8.6771E+03 7.5548E+03 6.5792E+03 6.8828E+03 4.3272E+03 2.2180E+03 8.2512E+02 3.9969E+02 2.2529E+02 2.2397E+02 6.6245E+02 6.0881E+02 5.5960E+02 7.6440E+02 7.0541E+02 6.5113E+02 7.4990E+02 6.6653E+02 3.1786E+02 1.7635E+02 5.9086E+01 2.6775E+01 8.6318E+00 5.1655E+00 3.0735E+01 2.3195E+01 1.2927E+01 7.8706E+00 3.5597E+00 1.9031E+00 6.0174E-01 2.6557E-01 1.4177E-01 1.4177E-01 8.5639E-02 3.9607E-02 2.9206E-02 2.2384E-02 1.7698E-02 1.4355E-02 1.1894E-02 8.5890E-03 7.4492E-03 6.5330E-03 5.1687E-03 4.6535E-03 4.4532E-03 3.0028E-03 2.7895E-03 2.4333E-03 2.1482E-03 1.9154E-03 1.5608E-03 1.3068E-03 1.2606E-03 1.1180E-03 8.5904E-04 6.9191E-04 4.5810E-04 3.3834E-04 2.6684E-04 2.1962E-04 1.8628E-04 1.6154E-04 1.4250E-04 1.2742E-04 1.1518E-04 1.0503E-04 9.6513E-05 8.9309E-05 8.3056E-05 7.2815E-05 6.4841E-05 5.8452E-05 5.3150E-05 4.8755E-05 4.5031E-05 4.1827E-05 3.0848E-05 2.4427E-05 2.0218E-05 1.5030E-05 1.1962E-05 7.9204E-06 5.9177E-06 3.9321E-06 2.9439E-06 2.3526E-06 1.9593E-06 1.4681E-06 1.1736E-06 7.8208E-07 5.8633E-07 3.9072E-07 2.9298E-07 2.3435E-07 1.9529E-07 1.4645E-07 1.1718E-07 7.8117E-08 5.8588E-08 3.9045E-08 2.9285E-08 2.3426E-08 1.9520E-08 1.4640E-08 1.1713E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.9874E-04 3.0834E-04 5.8404E-04 9.1892E-04 1.2984E-03 2.1487E-03 3.0694E-03 3.2765E-03 4.0137E-03 5.8829E-03 7.6712E-03 1.1704E-02 1.5179E-02 1.8170E-02 2.0830E-02 2.3218E-02 2.5388E-02 2.7377E-02 2.9212E-02 3.0911E-02 3.2493E-02 3.3956E-02 3.5307E-02 3.6562E-02 3.8841E-02 4.0885E-02 4.2738E-02 4.4423E-02 4.5946E-02 4.7350E-02 4.8664E-02 5.3921E-02 5.7817E-02 6.0899E-02 6.5384E-02 6.8556E-02 7.3631E-02 7.6667E-02 8.0201E-02 8.2240E-02 8.3600E-02 8.4551E-02 8.5820E-02 8.6681E-02 8.7859E-02 8.8493E-02 8.9218E-02 8.9581E-02 8.9853E-02 8.9989E-02 9.0215E-02 9.0351E-02 9.0578E-02 9.0668E-02 9.0759E-02 9.0804E-02 9.0849E-02 9.0895E-02 9.0895E-02 9.0940E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 9.6165E-08 2.8512E-06 1.0041E-05 4.0952E-05 8.1515E-05 1.2501E-04 1.6838E-04 2.1029E-04 2.5039E-04 2.8845E-04 3.2448E-04 3.5837E-04 3.9031E-04 4.2072E-04 4.4944E-04 4.7668E-04 5.2743E-04 5.7319E-04 6.1533E-04 6.5384E-04 6.8964E-04 7.2226E-04 7.5308E-04 8.7995E-04 9.7601E-04 1.0521E-03 1.1668E-03 1.2501E-03 1.3883E-03 1.4749E-03 1.5809E-03 1.6444E-03 1.6883E-03 1.7200E-03 1.7644E-03 1.7939E-03 1.8378E-03 1.8628E-03 1.8904E-03 1.9067E-03 1.9162E-03 1.9235E-03 1.9325E-03 1.9389E-03 1.9466E-03 1.9516E-03 1.9561E-03 1.9588E-03 1.9606E-03 1.9615E-03 1.9629E-03 1.9638E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Cu.mat0000644000000000000000000001712414741736366017677 0ustar00rootrootCopper 1 29 1.000000 3 4 9 87 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0961E-03 1.0961E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.9789E-03 8.9789E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.0540E+00 1.5015E+02 5.8910E+00 5.0085E+00 5.0085E+00 4.8057E+00 4.5252E+00 3.9461E+00 3.3993E+00 2.9141E+00 2.5000E+00 1.8717E+00 1.6461E+00 1.6461E+00 1.4500E+00 8.7973E-01 6.0595E-01 3.3690E-01 2.1238E-01 1.4670E-01 1.0794E-01 6.5949E-02 4.4456E-02 2.1114E-02 1.2263E-02 7.9966E-03 7.9966E-03 5.6207E-03 3.2070E-03 2.5447E-03 2.0678E-03 1.7132E-03 1.4424E-03 1.2310E-03 9.2675E-04 8.1520E-04 7.2258E-04 5.7905E-04 5.2284E-04 5.0066E-04 3.3510E-04 3.0988E-04 2.6730E-04 2.3294E-04 2.0481E-04 1.6191E-04 1.3116E-04 1.2557E-04 1.0839E-04 7.7610E-05 5.8301E-05 3.2799E-05 2.1001E-05 1.4585E-05 1.0709E-05 8.2022E-06 6.4812E-06 5.2492E-06 4.3385E-06 3.6457E-06 3.1065E-06 2.6781E-06 2.3332E-06 2.0508E-06 1.6205E-06 1.3125E-06 1.0851E-06 9.1139E-07 7.7662E-07 6.6963E-07 5.8330E-07 3.2809E-07 2.1001E-07 1.4585E-07 8.2022E-08 5.2492E-08 2.3332E-08 1.3125E-08 5.8330E-09 3.2809E-09 2.1001E-09 1.4585E-09 8.2022E-10 5.2492E-10 2.3332E-10 1.3125E-10 5.8330E-11 3.2809E-11 2.1001E-11 1.4585E-11 8.2022E-12 5.2492E-12 2.3332E-12 1.3125E-12 5.8330E-13 3.2809E-13 2.1001E-13 1.4585E-13 8.2022E-14 5.2492E-14 INCOHERENT SCATTERING CROSS SECTION 5.9145E-03 1.0335E+02 2.8316E-03 6.8385E-03 6.8385E-03 1.0860E-02 1.5912E-02 2.5872E-02 3.5273E-02 4.3906E-02 5.1810E-02 6.5693E-02 7.1616E-02 7.1616E-02 7.7255E-02 9.7611E-02 1.0984E-01 1.2310E-01 1.2888E-01 1.3106E-01 1.3135E-01 1.2945E-01 1.2623E-01 1.1713E-01 1.0879E-01 1.0177E-01 1.0177E-01 9.5811E-02 8.6258E-02 8.2399E-02 7.8989E-02 7.5939E-02 7.3189E-02 7.0696E-02 6.6335E-02 6.4414E-02 6.2636E-02 5.9429E-02 5.7970E-02 5.7354E-02 5.1867E-02 5.0834E-02 4.8911E-02 4.7157E-02 4.5549E-02 4.2702E-02 4.0258E-02 3.9765E-02 3.8126E-02 3.4556E-02 3.1681E-02 2.6431E-02 2.2830E-02 2.0176E-02 1.8139E-02 1.6509E-02 1.5172E-02 1.4054E-02 1.3116E-02 1.2301E-02 1.1581E-02 1.0965E-02 1.0406E-02 9.9127E-03 9.0570E-03 8.3519E-03 7.7568E-03 7.2488E-03 6.8072E-03 6.4205E-03 6.0803E-03 4.8313E-03 4.0333E-03 3.4751E-03 2.7407E-03 2.2744E-03 1.6196E-03 1.2699E-03 9.0020E-04 7.0498E-04 5.8358E-04 4.9971E-04 3.9026E-04 3.2107E-04 2.2422E-04 1.7352E-04 1.2064E-04 9.3138E-05 7.6156E-05 6.4575E-05 4.9753E-05 4.0618E-05 2.8070E-05 2.1579E-05 1.4888E-05 1.1429E-05 9.3053E-06 7.8658E-06 6.0310E-06 4.9071E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.0567E+04 5.4518E+06 6.9258E+04 8.2401E+03 9.3403E+03 4.4134E+03 2.1493E+03 7.4488E+02 3.4391E+02 1.8698E+02 1.1306E+02 5.0616E+01 3.6571E+01 2.7663E+02 2.1446E+02 7.3076E+01 3.3084E+01 1.0453E+01 4.5204E+00 2.3351E+00 1.3533E+00 5.6757E-01 2.8781E-01 8.3453E-02 3.4875E-02 1.7913E-02 1.7913E-02 1.0510E-02 4.6635E-03 3.3886E-03 2.5682E-03 2.0137E-03 1.6205E-03 1.3315E-03 9.5180E-04 8.2647E-04 7.2854E-04 5.7756E-04 5.1431E-04 4.8853E-04 3.3027E-04 3.0786E-04 2.6930E-04 2.3796E-04 2.1248E-04 1.7396E-04 1.4642E-04 1.4139E-04 1.2588E-04 9.7595E-05 7.9217E-05 5.3241E-05 3.9784E-05 3.1653E-05 2.6222E-05 2.2365E-05 1.9475E-05 1.7248E-05 1.5466E-05 1.4016E-05 1.2813E-05 1.1799E-05 1.0936E-05 1.0188E-05 8.9565E-06 7.9918E-06 7.2138E-06 6.5731E-06 6.0377E-06 5.5818E-06 5.1905E-06 3.8410E-06 3.0477E-06 2.5265E-06 1.8821E-06 1.4992E-06 9.9412E-07 7.4365E-07 4.9441E-07 3.7026E-07 2.9596E-07 2.4649E-07 1.8480E-07 1.4774E-07 9.8464E-08 7.3805E-08 4.9194E-08 3.6893E-08 2.9511E-08 2.4592E-08 1.8442E-08 1.4755E-08 9.8369E-09 7.3758E-09 4.9166E-09 3.6874E-09 2.9501E-09 2.4583E-09 1.8442E-09 1.4746E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 8.0202E-05 1.2669E-04 2.4805E-04 4.0239E-04 5.8509E-04 1.0180E-03 1.5106E-03 1.6234E-03 2.0311E-03 3.1006E-03 4.1584E-03 6.6177E-03 8.7869E-03 1.0718E-02 1.2434E-02 1.3969E-02 1.5362E-02 1.6632E-02 1.7769E-02 1.8821E-02 1.9797E-02 2.0707E-02 2.1550E-02 2.2337E-02 2.3787E-02 2.5076E-02 2.6251E-02 2.7312E-02 2.8288E-02 2.9179E-02 3.0004E-02 3.3368E-02 3.5889E-02 3.7860E-02 4.0788E-02 4.2883E-02 4.6209E-02 4.8209E-02 5.0530E-02 5.1867E-02 5.2748E-02 5.3373E-02 5.4207E-02 5.4757E-02 5.5534E-02 5.5961E-02 5.6425E-02 5.6671E-02 5.6823E-02 5.6937E-02 5.7079E-02 5.7164E-02 5.7287E-02 5.7354E-02 5.7429E-02 5.7467E-02 5.7486E-02 5.7496E-02 5.7524E-02 5.7534E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0607E-07 3.1469E-06 1.1088E-05 4.5261E-05 9.0143E-05 1.3836E-04 1.8650E-04 2.3313E-04 2.7777E-04 3.2022E-04 3.6050E-04 3.9850E-04 4.3432E-04 4.6844E-04 5.0085E-04 5.3165E-04 5.8870E-04 6.4082E-04 6.8859E-04 7.3265E-04 7.7340E-04 8.1122E-04 8.4647E-04 9.9317E-04 1.1059E-03 1.1950E-03 1.3315E-03 1.4310E-03 1.5968E-03 1.7020E-03 1.8309E-03 1.9077E-03 1.9608E-03 1.9996E-03 2.0527E-03 2.0887E-03 2.1408E-03 2.1711E-03 2.2034E-03 2.2233E-03 2.2346E-03 2.2432E-03 2.2536E-03 2.2612E-03 2.2706E-03 2.2754E-03 2.2811E-03 2.2839E-03 2.2868E-03 2.2877E-03 2.2887E-03 2.2905E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Dy.mat0000644000000000000000000002161614741736366017705 0ustar00rootrootDy 1 66 1.000000 10 4 3 3 3 3 6 3 3 8 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2949E-03 1.2949E-03 1.3136E-03 1.3325E-03 1.3325E-03 1.5000E-03 1.6756E-03 1.6756E-03 1.7567E-03 1.8418E-03 1.8418E-03 2.0000E-03 2.0468E-03 2.0468E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 7.7901E-03 7.7901E-03 8.0000E-03 8.5806E-03 8.5806E-03 8.8101E-03 9.0458E-03 9.0458E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.3788E-02 5.3788E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0210E+01 1.0644E+02 1.1536E+01 9.9393E+00 9.9393E+00 9.9210E+00 9.9022E+00 9.9022E+00 9.7355E+00 9.5613E+00 9.5613E+00 9.4863E+00 9.4057E+00 9.4057E+00 9.2426E+00 9.1944E+00 9.1944E+00 8.2494E+00 7.3044E+00 6.4631E+00 5.7331E+00 4.6880E+00 4.6880E+00 4.5842E+00 4.3100E+00 4.3100E+00 4.2075E+00 4.1062E+00 4.1062E+00 3.7319E+00 2.4111E+00 1.7177E+00 1.0125E+00 6.6077E-01 4.6769E-01 4.1729E-01 4.1729E-01 3.5125E-01 2.1987E-01 1.5002E-01 7.3118E-02 4.3508E-02 2.8873E-02 2.0542E-02 1.5347E-02 1.1896E-02 9.4895E-03 7.7454E-03 6.4412E-03 5.4403E-03 4.6555E-03 3.5205E-03 3.1026E-03 2.7549E-03 2.2140E-03 2.0012E-03 1.9171E-03 1.2882E-03 1.1919E-03 1.0289E-03 8.9721E-04 7.8931E-04 6.2470E-04 5.0660E-04 4.8511E-04 4.1900E-04 3.0034E-04 2.2577E-04 1.2711E-04 8.1382E-05 5.6515E-05 4.1543E-05 3.1808E-05 2.5134E-05 2.0360E-05 1.6829E-05 1.4142E-05 1.2048E-05 1.0388E-05 9.0499E-06 7.9529E-06 6.2853E-06 5.0919E-06 4.2062E-06 3.5355E-06 3.0126E-06 2.5975E-06 2.2628E-06 1.2726E-06 8.1456E-07 5.6552E-07 3.1819E-07 2.0364E-07 9.0499E-08 5.0919E-08 2.2625E-08 1.2726E-08 8.1456E-09 5.6553E-09 3.1819E-09 2.0364E-09 9.0499E-10 5.0919E-10 2.2625E-10 1.2726E-10 8.1456E-11 5.6552E-11 3.1819E-11 2.0364E-11 9.0499E-12 5.0919E-12 2.2625E-12 1.2726E-12 8.1456E-13 5.6553E-13 3.1819E-13 2.0364E-13 INCOHERENT SCATTERING CROSS SECTION 5.2661E-03 1.8800E-03 2.3132E-03 7.2747E-03 7.2747E-03 7.4037E-03 7.5342E-03 7.5342E-03 8.6719E-03 9.8615E-03 9.8615E-03 1.0401E-02 1.0966E-02 1.0966E-02 1.2026E-02 1.2337E-02 1.2337E-02 1.8637E-02 2.4819E-02 3.0504E-02 3.5640E-02 4.3619E-02 4.3619E-02 4.4471E-02 4.6769E-02 4.6769E-02 4.7638E-02 4.8511E-02 4.8511E-02 5.1920E-02 6.6670E-02 7.7565E-02 9.1129E-02 9.8318E-02 1.0221E-01 1.0317E-01 1.0317E-01 1.0425E-01 1.0543E-01 1.0451E-01 9.9208E-02 9.3315E-02 8.7974E-02 8.3272E-02 7.9145E-02 7.5527E-02 7.2340E-02 6.9486E-02 6.6901E-02 6.4557E-02 6.2429E-02 5.8677E-02 5.6997E-02 5.5427E-02 5.2612E-02 5.1364E-02 5.0845E-02 4.6028E-02 4.5113E-02 4.3418E-02 4.1877E-02 4.0463E-02 3.7949E-02 3.5773E-02 3.5332E-02 3.3871E-02 3.0712E-02 2.8172E-02 2.3510E-02 2.0308E-02 1.7952E-02 1.6136E-02 1.4687E-02 1.3501E-02 1.2511E-02 1.1666E-02 1.0944E-02 1.0310E-02 9.7540E-03 9.2574E-03 8.8164E-03 8.0604E-03 7.4304E-03 6.9041E-03 6.4520E-03 6.0592E-03 5.7145E-03 5.4107E-03 4.2989E-03 3.5892E-03 3.0926E-03 2.4389E-03 2.0242E-03 1.4416E-03 1.1303E-03 8.0122E-04 6.2741E-04 5.1957E-04 4.4471E-04 3.4732E-04 2.8573E-04 1.9956E-04 1.5446E-04 1.0740E-04 8.2902E-05 6.7781E-05 5.7479E-05 4.4286E-05 3.6151E-05 2.4985E-05 1.9208E-05 1.3245E-05 1.0169E-05 8.2828E-06 7.0005E-06 5.3662E-06 4.3656E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.4837E+03 2.0759E+05 9.4129E+03 1.5116E+03 2.1135E+03 3.1484E+03 4.6843E+03 5.4959E+03 5.5404E+03 4.2211E+03 4.8844E+03 4.3737E+03 3.9135E+03 4.1581E+03 3.4573E+03 3.2786E+03 3.4247E+03 1.3964E+03 6.8782E+02 3.9246E+02 2.4622E+02 1.2515E+02 3.3894E+02 3.2227E+02 2.6512E+02 3.6292E+02 3.4009E+02 3.1871E+02 3.6837E+02 2.8643E+02 9.9171E+01 4.5842E+01 1.5150E+01 6.8226E+00 3.6570E+00 2.9792E+00 1.6239E+01 1.2133E+01 5.6886E+00 3.1056E+00 1.0162E+00 4.5842E-01 2.4865E-01 1.5205E-01 1.0113E-01 7.1561E-02 5.3103E-02 4.0913E-02 3.2490E-02 2.6446E-02 2.1970E-02 1.5926E-02 1.3834E-02 1.2150E-02 9.6310E-03 8.6719E-03 8.2976E-03 5.5922E-03 5.1940E-03 4.5282E-03 3.9950E-03 3.5596E-03 2.8968E-03 2.4222E-03 2.3358E-03 2.0697E-03 1.5868E-03 1.2752E-03 8.3976E-04 6.1815E-04 4.8622E-04 3.9913E-04 3.3802E-04 2.9269E-04 2.5790E-04 2.3032E-04 2.0801E-04 1.8956E-04 1.7410E-04 1.6091E-04 1.4961E-04 1.3108E-04 1.1663E-04 1.0499E-04 9.5502E-05 8.7534E-05 8.0826E-05 7.5045E-05 5.5255E-05 4.3730E-05 3.6177E-05 2.6879E-05 2.1383E-05 1.4149E-05 1.0573E-05 7.0190E-06 5.2550E-06 4.1988E-06 3.4969E-06 2.6201E-06 2.0950E-06 1.3957E-06 1.0462E-06 6.9709E-07 5.2291E-07 4.1840E-07 3.4851E-07 2.6134E-07 2.0905E-07 1.3938E-07 1.0451E-07 6.9671E-08 5.2254E-08 4.1803E-08 3.4836E-08 2.6127E-08 2.0901E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.6716E-04 4.1570E-04 7.8874E-04 1.2370E-03 1.7352E-03 2.8152E-03 3.9468E-03 4.1988E-03 5.0877E-03 7.2943E-03 9.3649E-03 1.3968E-02 1.7877E-02 2.1242E-02 2.4215E-02 2.6883E-02 2.9310E-02 3.1534E-02 3.3591E-02 3.5499E-02 3.7282E-02 3.8949E-02 4.0469E-02 4.1914E-02 4.4508E-02 4.6806E-02 4.8918E-02 5.0808E-02 5.2550E-02 5.4144E-02 5.5589E-02 6.1593E-02 6.6040E-02 6.9523E-02 7.4600E-02 7.8232E-02 8.3939E-02 8.7312E-02 9.1277E-02 9.3538E-02 9.5020E-02 9.6095E-02 9.7503E-02 9.8392E-02 9.9727E-02 1.0043E-01 1.0121E-01 1.0165E-01 1.0191E-01 1.0210E-01 1.0232E-01 1.0247E-01 1.0269E-01 1.0280E-01 1.0291E-01 1.0299E-01 1.0302E-01 1.0306E-01 1.0306E-01 1.0310E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4402E-08 2.7974E-06 9.8467E-06 4.0135E-05 7.9900E-05 1.2252E-04 1.6491E-04 2.0594E-04 2.4511E-04 2.8232E-04 3.1745E-04 3.5058E-04 3.8171E-04 4.1136E-04 4.3952E-04 4.6584E-04 5.1512E-04 5.5960E-04 6.0073E-04 6.3816E-04 6.7263E-04 7.0450E-04 7.3414E-04 8.5681E-04 9.4909E-04 1.0217E-03 1.1311E-03 1.2100E-03 1.3401E-03 1.4209E-03 1.5194E-03 1.5784E-03 1.6184E-03 1.6480E-03 1.6884E-03 1.7155E-03 1.7555E-03 1.7785E-03 1.8033E-03 1.8181E-03 1.8270E-03 1.8333E-03 1.8418E-03 1.8470E-03 1.8544E-03 1.8585E-03 1.8626E-03 1.8652E-03 1.8667E-03 1.8678E-03 1.8689E-03 1.8696E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/EGRID.TXT0000644000000000000000000000016114741736366020051 0ustar00rootroot16 1.0E-04 5.0E-04 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950 1.3 1.4 1.6 1.8 2.2 2.6 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Er.mat0000644000000000000000000002174214741736366017677 0ustar00rootrootEr 1 68 1.000000 10 4 3 3 3 3 7 3 3 8 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.4093E-03 1.4093E-03 1.4311E-03 1.4533E-03 1.4533E-03 1.5000E-03 1.8118E-03 1.8118E-03 2.0000E-03 2.0058E-03 2.0058E-03 2.1038E-03 2.2065E-03 2.2065E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.3579E-03 8.3579E-03 8.7994E-03 9.2643E-03 9.2643E-03 9.5047E-03 9.7513E-03 9.7513E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.7485E-02 5.7485E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0560E+01 5.8435E+01 1.1716E+01 1.0186E+01 1.0186E+01 1.0164E+01 1.0143E+01 1.0143E+01 1.0096E+01 9.7969E+00 9.7969E+00 9.6060E+00 9.5988E+00 9.5988E+00 9.4913E+00 9.3936E+00 9.3936E+00 8.6123E+00 7.6582E+00 6.7905E+00 6.0380E+00 4.8318E+00 4.6518E+00 4.6518E+00 4.4443E+00 4.2377E+00 4.2377E+00 4.1343E+00 4.0325E+00 4.0325E+00 3.9353E+00 2.5390E+00 1.8028E+00 1.0643E+00 6.9597E-01 4.9218E-01 3.9533E-01 3.9533E-01 3.6941E-01 2.3158E-01 1.5820E-01 7.7158E-02 4.5942E-02 3.0507E-02 2.1718E-02 1.6236E-02 1.2591E-02 1.0046E-02 8.2019E-03 6.8229E-03 5.7643E-03 4.9337E-03 3.7315E-03 3.2887E-03 2.9201E-03 2.3472E-03 2.1221E-03 2.0332E-03 1.3664E-03 1.2643E-03 1.0916E-03 9.5196E-04 8.3737E-04 6.6255E-04 5.3755E-04 5.1487E-04 4.4494E-04 3.1891E-04 2.3961E-04 1.3495E-04 8.6411E-05 6.0020E-05 4.4106E-05 3.3769E-05 2.6683E-05 2.1614E-05 1.7866E-05 1.5010E-05 1.2792E-05 1.1028E-05 9.6060E-06 8.4431E-06 6.6717E-06 5.4043E-06 4.4682E-06 3.7517E-06 3.1979E-06 2.7576E-06 2.4022E-06 1.3513E-06 8.6483E-07 6.0056E-07 3.3780E-07 2.1617E-07 9.6096E-08 5.4043E-08 2.4019E-08 1.3513E-08 8.6483E-09 6.0056E-09 3.3780E-09 2.1617E-09 9.6096E-10 5.4043E-10 2.4019E-10 1.3513E-10 8.6483E-11 6.0056E-11 3.3780E-11 2.1617E-11 9.6096E-12 5.4043E-12 2.4019E-12 1.3513E-12 8.6483E-13 6.0056E-13 3.3780E-13 2.1617E-13 INCOHERENT SCATTERING CROSS SECTION 5.0154E-03 3.7696E-03 2.2270E-03 7.7014E-03 7.7014E-03 7.8443E-03 7.9894E-03 7.9894E-03 8.2955E-03 1.0308E-02 1.0308E-02 1.1529E-02 1.1565E-02 1.1565E-02 1.2189E-02 1.2861E-02 1.2861E-02 1.7945E-02 2.3979E-02 2.9545E-02 3.4604E-02 4.3350E-02 4.4754E-02 4.4754E-02 4.6458E-02 4.8174E-02 4.8174E-02 4.9015E-02 4.9866E-02 4.9866E-02 5.0731E-02 6.5384E-02 7.6330E-02 9.0192E-02 9.7573E-02 1.0161E-01 1.0337E-01 1.0337E-01 1.0377E-01 1.0503E-01 1.0423E-01 9.9085E-02 9.3252E-02 8.7926E-02 8.3243E-02 7.9144E-02 7.5538E-02 7.2342E-02 6.9489E-02 6.6923E-02 6.4592E-02 6.2460E-02 5.8698E-02 5.7031E-02 5.5487E-02 5.2692E-02 5.1415E-02 5.0875E-02 4.6050E-02 4.5142E-02 4.3452E-02 4.1909E-02 4.0493E-02 3.7976E-02 3.5803E-02 3.5364E-02 3.3906E-02 3.0744E-02 2.8199E-02 2.3533E-02 2.0325E-02 1.7970E-02 1.6152E-02 1.4701E-02 1.3513E-02 1.2522E-02 1.1680E-02 1.0953E-02 1.0319E-02 9.7609E-03 9.2676E-03 8.8247E-03 8.0686E-03 7.4386E-03 6.9093E-03 6.4556E-03 6.0632E-03 5.7211E-03 5.4151E-03 4.3026E-03 3.5929E-03 3.0957E-03 2.4415E-03 2.0263E-03 1.4431E-03 1.1313E-03 8.0182E-04 6.2792E-04 5.1991E-04 4.4502E-04 3.4766E-04 2.8602E-04 1.9975E-04 1.5460E-04 1.0751E-04 8.2991E-05 6.7833E-05 5.7535E-05 4.4322E-05 3.6185E-05 2.5009E-05 1.9226E-05 1.3261E-05 1.0179E-05 8.2883E-06 7.0065E-06 5.3719E-06 4.3710E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.7371E+03 2.4899E+05 1.0642E+04 1.3977E+03 2.0292E+03 2.9621E+03 4.3206E+03 4.8606E+03 6.0596E+03 3.8309E+03 4.4430E+03 3.5133E+03 3.4896E+03 3.7085E+03 3.3271E+03 2.9859E+03 3.1173E+03 1.5176E+03 7.5106E+02 4.2918E+02 2.6964E+02 1.2814E+02 1.1431E+02 3.0788E+02 2.6924E+02 2.3547E+02 3.2282E+02 3.0310E+02 2.8454E+02 3.2890E+02 3.0892E+02 1.0801E+02 5.0154E+01 1.6645E+01 7.5214E+00 4.0397E+00 2.7338E+00 1.4636E+01 1.3145E+01 6.1424E+00 3.3657E+00 1.1089E+00 5.0226E-01 2.7322E-01 1.6742E-01 1.1153E-01 7.9030E-02 5.8724E-02 4.5294E-02 3.5999E-02 2.9322E-02 2.4375E-02 1.7686E-02 1.5367E-02 1.3497E-02 1.0701E-02 9.6384E-03 9.2244E-03 6.2180E-03 5.7735E-03 5.0302E-03 4.4358E-03 3.9515E-03 3.2161E-03 2.6899E-03 2.5941E-03 2.2986E-03 1.7613E-03 1.4146E-03 9.3108E-04 6.8481E-04 5.3827E-04 4.4214E-04 3.7409E-04 3.2383E-04 2.8523E-04 2.5473E-04 2.3000E-04 2.0958E-04 1.9244E-04 1.7786E-04 1.6533E-04 1.4485E-04 1.2886E-04 1.1601E-04 1.0549E-04 9.6708E-05 8.9256E-05 8.2883E-05 6.1028E-05 4.8282E-05 3.9929E-05 2.9671E-05 2.3601E-05 1.5615E-05 1.1666E-05 7.7482E-06 5.8003E-06 4.6338E-06 3.8597E-06 2.8912E-06 2.3119E-06 1.5399E-06 1.1547E-06 7.6942E-07 5.7679E-07 4.6158E-07 3.8453E-07 2.8836E-07 2.3068E-07 1.5378E-07 1.1532E-07 7.6870E-08 5.7679E-08 4.6122E-08 3.8453E-08 2.8829E-08 2.3065E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.8163E-04 4.3862E-04 8.3304E-04 1.3062E-03 1.8300E-03 2.9584E-03 4.1369E-03 4.3998E-03 5.3243E-03 7.6006E-03 9.7213E-03 1.4434E-02 1.8431E-02 2.1869E-02 2.4904E-02 2.7630E-02 3.0107E-02 3.2379E-02 3.4482E-02 3.6437E-02 3.8273E-02 3.9965E-02 4.1513E-02 4.2990E-02 4.5654E-02 4.7994E-02 5.0154E-02 5.2099E-02 5.3863E-02 5.5519E-02 5.7031E-02 6.3152E-02 6.7725E-02 7.1253E-02 7.6474E-02 8.0182E-02 8.6015E-02 8.9472E-02 9.3504E-02 9.5808E-02 9.7321E-02 9.8401E-02 9.9841E-02 1.0074E-01 1.0211E-01 1.0283E-01 1.0362E-01 1.0405E-01 1.0431E-01 1.0449E-01 1.0474E-01 1.0488E-01 1.0510E-01 1.0521E-01 1.0535E-01 1.0539E-01 1.0542E-01 1.0546E-01 1.0549E-01 1.0553E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4390E-08 2.7984E-06 9.8545E-06 4.0181E-05 7.9930E-05 1.2260E-04 1.6501E-04 2.0605E-04 2.4526E-04 2.8246E-04 3.1760E-04 3.5069E-04 3.8201E-04 4.1153E-04 4.3962E-04 4.6590E-04 5.1523E-04 5.5987E-04 6.0056E-04 6.3800E-04 6.7257E-04 7.0425E-04 7.3413E-04 8.5619E-04 9.4800E-04 1.0207E-03 1.1295E-03 1.2080E-03 1.3369E-03 1.4171E-03 1.5144E-03 1.5727E-03 1.6123E-03 1.6411E-03 1.6811E-03 1.7077E-03 1.7469E-03 1.7696E-03 1.7938E-03 1.8085E-03 1.8172E-03 1.8233E-03 1.8316E-03 1.8370E-03 1.8438E-03 1.8481E-03 1.8521E-03 1.8546E-03 1.8560E-03 1.8571E-03 1.8582E-03 1.8589E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Es.mat0000644000000000000000000002334414741736366017700 0ustar00rootrootEs 1 99 1.000000 14 4 3 3 3 5 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0320E-03 1.0320E-03 1.1676E-03 1.3210E-03 1.3210E-03 1.5000E-03 1.6800E-03 1.6800E-03 1.7715E-03 1.8680E-03 1.8680E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.3740E-03 4.3740E-03 4.5002E-03 4.6300E-03 4.6300E-03 5.0000E-03 5.2520E-03 5.2520E-03 6.0000E-03 6.5740E-03 6.5740E-03 6.7725E-03 6.9770E-03 6.9770E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.0410E-02 2.0410E-02 2.3045E-02 2.6020E-02 2.6020E-02 2.6456E-02 2.6900E-02 2.6900E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.3949E-01 1.3949E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4952E+01 1.0373E+01 1.5583E+01 1.4914E+01 1.4914E+01 1.4761E+01 1.4582E+01 1.4582E+01 1.4348E+01 1.4109E+01 1.4109E+01 1.3994E+01 1.3870E+01 1.3870E+01 1.3689E+01 1.2339E+01 1.1056E+01 1.0607E+01 1.0607E+01 1.0460E+01 1.0311E+01 1.0311E+01 9.9022E+00 9.6346E+00 9.6346E+00 8.8988E+00 8.3900E+00 8.3900E+00 8.2227E+00 8.0555E+00 8.0555E+00 7.2982E+00 6.1038E+00 4.1735E+00 3.0364E+00 2.9647E+00 2.9647E+00 2.5484E+00 2.1737E+00 2.1737E+00 2.1268E+00 2.0808E+00 2.0808E+00 1.7986E+00 1.2047E+00 8.7603E-01 6.6269E-01 4.1687E-01 2.8930E-01 1.6553E-01 1.6553E-01 1.4601E-01 8.7698E-02 5.8706E-02 4.2213E-02 3.1892E-02 2.4965E-02 2.0071E-02 1.6486E-02 1.3783E-02 1.1694E-02 1.0047E-02 7.6493E-03 6.7607E-03 6.0187E-03 4.8589E-03 4.4004E-03 4.2189E-03 2.8548E-03 2.6449E-03 2.2888E-03 1.9998E-03 1.7621E-03 1.3982E-03 1.1369E-03 1.0894E-03 9.4270E-04 6.7772E-04 5.1028E-04 2.8811E-04 1.8476E-04 1.2845E-04 9.4459E-05 7.2337E-05 5.7191E-05 4.6322E-05 3.8295E-05 3.2179E-05 2.7425E-05 2.3651E-05 2.0605E-05 1.8111E-05 1.4310E-05 1.1591E-05 9.5797E-06 8.0508E-06 6.8611E-06 5.9150E-06 5.1530E-06 2.8978E-06 1.8553E-06 1.2884E-06 7.2481E-07 4.6393E-07 2.0614E-07 1.1596E-07 5.1530E-08 2.8978E-08 1.8553E-08 1.2884E-08 7.2481E-09 4.6370E-09 2.0614E-09 1.1596E-09 5.1530E-10 2.8978E-10 1.8553E-10 1.2884E-10 7.2481E-11 4.6370E-11 2.0614E-11 1.1596E-11 5.1530E-12 2.8978E-12 1.8553E-12 1.2884E-12 7.2481E-13 4.6370E-13 INCOHERENT SCATTERING CROSS SECTION 4.0278E-03 8.9316E+19 6.9992E-03 4.2022E-03 4.2022E-03 4.9298E-03 5.7478E-03 5.7478E-03 6.7225E-03 7.7091E-03 7.7091E-03 8.2106E-03 8.7388E-03 8.7388E-03 9.4602E-03 1.4814E-02 1.9802E-02 2.1567E-02 2.1567E-02 2.2149E-02 2.2740E-02 2.2740E-02 2.4391E-02 2.5490E-02 2.5490E-02 2.8572E-02 3.0817E-02 3.0817E-02 3.1577E-02 3.2346E-02 3.2346E-02 3.6001E-02 4.2595E-02 5.6021E-02 6.5672E-02 6.6341E-02 6.6341E-02 7.0228E-02 7.3914E-02 7.3914E-02 7.4405E-02 7.4894E-02 7.4894E-02 7.8071E-02 8.5572E-02 9.0255E-02 9.3121E-02 9.5510E-02 9.5630E-02 9.3217E-02 9.3217E-02 9.2333E-02 8.7698E-02 8.3148E-02 7.9003E-02 7.5297E-02 7.2003E-02 6.9069E-02 6.6437E-02 6.4053E-02 6.1874E-02 5.9866E-02 5.6318E-02 5.4755E-02 5.3312E-02 5.0681E-02 4.9451E-02 4.8926E-02 4.4339E-02 4.3477E-02 4.1861E-02 4.0373E-02 3.8999E-02 3.6568E-02 3.4520E-02 3.4114E-02 3.2746E-02 2.9693E-02 2.7210E-02 2.2717E-02 1.9625E-02 1.7351E-02 1.5597E-02 1.4198E-02 1.3051E-02 1.2093E-02 1.1281E-02 1.0581E-02 9.9667E-03 9.4292E-03 8.9514E-03 8.5262E-03 7.7928E-03 7.1860E-03 6.6747E-03 6.2375E-03 5.8577E-03 5.5256E-03 5.2318E-03 4.1568E-03 3.4711E-03 2.9910E-03 2.3584E-03 1.9573E-03 1.3940E-03 1.0929E-03 7.7474E-04 6.0679E-04 5.0216E-04 4.3001E-04 3.3589E-04 2.7640E-04 1.9296E-04 1.4933E-04 1.0385E-04 8.0149E-05 6.5529E-05 5.5567E-05 4.2810E-05 3.4950E-05 2.4152E-05 1.8574E-05 1.2810E-05 9.8329E-06 8.0078E-06 6.7703E-06 5.1912E-06 4.2237E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.7713E+03 2.8994E+05 2.3102E+04 7.3962E+03 7.6208E+03 6.2144E+03 5.0670E+03 5.3919E+03 4.2093E+03 3.3445E+03 3.3828E+03 3.0293E+03 2.7115E+03 2.7592E+03 2.3885E+03 9.7971E+02 5.0574E+02 4.1018E+02 9.0541E+02 8.5846E+02 8.1392E+02 1.1257E+03 9.4913E+02 8.3972E+02 9.8019E+02 7.0211E+02 5.5424E+02 5.8768E+02 5.4548E+02 5.0646E+02 5.2748E+02 3.7602E+02 2.1563E+02 7.7402E+01 3.6981E+01 3.5094E+01 8.1583E+01 5.8808E+01 4.2380E+01 6.1062E+01 5.8472E+01 5.5973E+01 6.4502E+01 4.8950E+01 2.3612E+01 1.3244E+01 8.2156E+00 3.8438E+00 2.1245E+00 8.7603E-01 3.4210E+00 2.8787E+00 1.3944E+00 7.9666E-01 5.0932E-01 3.5078E-01 2.5538E-01 1.9414E-01 1.5263E-01 1.2324E-01 1.0172E-01 8.5517E-02 6.3102E-02 5.5137E-02 4.8627E-02 3.8788E-02 3.5046E-02 3.3589E-02 2.2733E-02 2.1096E-02 1.8351E-02 1.6156E-02 1.4375E-02 1.1679E-02 9.7517E-03 9.4005E-03 8.3161E-03 6.3423E-03 5.0694E-03 3.3015E-03 2.4105E-03 1.8823E-03 1.5375E-03 1.2958E-03 1.1180E-03 9.8186E-04 8.7459E-04 7.8811E-04 7.1669E-04 6.5696E-04 6.0632E-04 5.6284E-04 4.9212E-04 4.3694E-04 3.9274E-04 3.5667E-04 3.2657E-04 3.0125E-04 2.7951E-04 2.0514E-04 1.6197E-04 1.3381E-04 9.9237E-05 7.8859E-05 5.2103E-05 3.8892E-05 2.5825E-05 1.9319E-05 1.5435E-05 1.2850E-05 9.6275E-06 7.6948E-06 5.1267E-06 3.8414E-06 2.5610E-06 1.9200E-06 1.5359E-06 1.2798E-06 9.5964E-07 7.6757E-07 5.1171E-07 3.8367E-07 2.5586E-07 1.9188E-07 1.5349E-07 1.2790E-07 9.5940E-08 7.6757E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.0240E-04 8.0784E-04 1.6003E-03 2.5514E-03 3.5589E-03 5.5207E-03 7.3484E-03 7.7426E-03 9.0878E-03 1.2164E-02 1.4819E-02 2.0404E-02 2.5060E-02 2.8930E-02 3.2490E-02 3.5715E-02 3.8677E-02 4.1424E-02 4.3957E-02 4.6346E-02 4.8567E-02 5.0646E-02 5.2605E-02 5.4444E-02 5.7765E-02 6.0727E-02 6.3450E-02 6.5935E-02 6.8204E-02 7.0283E-02 7.2194E-02 8.0006E-02 8.5835E-02 9.0350E-02 9.6991E-02 1.0167E-01 1.0901E-01 1.1338E-01 1.1847E-01 1.2138E-01 1.2329E-01 1.2466E-01 1.2645E-01 1.2762E-01 1.2929E-01 1.3025E-01 1.3118E-01 1.3180E-01 1.3213E-01 1.3237E-01 1.3268E-01 1.3287E-01 1.3311E-01 1.3328E-01 1.3340E-01 1.3352E-01 1.3359E-01 1.3361E-01 1.3364E-01 1.3366E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1187E-08 2.7008E-06 9.5032E-06 3.8701E-05 7.6948E-05 1.1789E-04 1.5855E-04 1.9781E-04 2.3526E-04 2.7067E-04 3.0411E-04 3.3565E-04 3.6527E-04 3.9322E-04 4.1974E-04 4.4482E-04 4.9117E-04 5.3321E-04 5.7144E-04 6.0655E-04 6.3880E-04 6.6843E-04 6.9614E-04 8.0938E-04 8.9442E-04 9.6107E-04 1.0602E-03 1.1314E-03 1.2477E-03 1.3197E-03 1.4066E-03 1.4580E-03 1.4931E-03 1.5187E-03 1.5538E-03 1.5769E-03 1.6113E-03 1.6309E-03 1.6522E-03 1.6649E-03 1.6725E-03 1.6778E-03 1.6849E-03 1.6895E-03 1.6957E-03 1.6993E-03 1.7026E-03 1.7048E-03 1.7062E-03 1.7069E-03 1.7079E-03 1.7086E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Eu.mat0000644000000000000000000002174214741736366017702 0ustar00rootrootEu 1 63 1.000000 10 4 3 3 3 3 7 3 3 7 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1309E-03 1.1309E-03 1.1457E-03 1.1606E-03 1.1606E-03 1.3109E-03 1.4806E-03 1.4806E-03 1.5000E-03 1.6139E-03 1.6139E-03 1.7044E-03 1.8000E-03 1.8000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 6.9769E-03 6.9769E-03 7.2900E-03 7.6171E-03 7.6171E-03 8.0000E-03 8.0520E-03 8.0520E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.8519E-02 4.8519E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.8952E+00 1.2980E+04 1.2789E+01 9.7684E+00 9.7684E+00 9.7527E+00 9.7367E+00 9.7367E+00 9.5884E+00 9.4236E+00 9.4236E+00 9.4038E+00 9.2849E+00 9.2849E+00 9.1962E+00 9.1027E+00 9.1027E+00 8.8926E+00 7.8821E+00 6.9429E+00 6.1186E+00 5.4212E+00 4.8386E+00 4.8386E+00 4.6713E+00 4.5058E+00 4.5058E+00 4.3235E+00 4.2997E+00 4.2997E+00 3.5190E+00 2.2838E+00 1.6343E+00 9.5940E-01 6.2454E-01 4.6405E-01 4.6405E-01 4.4265E-01 3.3268E-01 2.0765E-01 1.4131E-01 6.8835E-02 4.0936E-02 2.7132E-02 1.9279E-02 1.4391E-02 1.1147E-02 8.8879E-03 7.2520E-03 6.0298E-03 5.0923E-03 4.3570E-03 3.2933E-03 2.9016E-03 2.5756E-03 2.0692E-03 1.8705E-03 1.7920E-03 1.2035E-03 1.1136E-03 9.6138E-04 8.3814E-04 7.3687E-04 5.8249E-04 4.7277E-04 4.5295E-04 3.9169E-04 2.8067E-04 2.1070E-04 1.1865E-04 7.5968E-05 5.2745E-05 3.8769E-05 2.9686E-05 2.3456E-05 1.9002E-05 1.5705E-05 1.3196E-05 1.1243E-05 9.6931E-06 8.4448E-06 7.4224E-06 5.8650E-06 4.7515E-06 3.9264E-06 3.2991E-06 2.8112E-06 2.4237E-06 2.1114E-06 1.1877E-06 7.6007E-07 5.2785E-07 2.9694E-07 1.9002E-07 8.4448E-08 4.7515E-08 2.1114E-08 1.1877E-08 7.6007E-09 5.2785E-09 2.9690E-09 1.9002E-09 8.4448E-10 4.7515E-10 2.1114E-10 1.1877E-10 7.6007E-11 5.2785E-11 2.9690E-11 1.9002E-11 8.4448E-12 4.7515E-12 2.1114E-12 1.1877E-12 7.6007E-13 5.2785E-13 2.9690E-13 1.9002E-13 INCOHERENT SCATTERING CROSS SECTION 5.8095E-03 3.1069E+03 3.6467E-03 6.8082E-03 6.8082E-03 6.9188E-03 7.0301E-03 7.0301E-03 8.1244E-03 9.3523E-03 9.3523E-03 9.4950E-03 1.0331E-02 1.0331E-02 1.0983E-02 1.1667E-02 1.1667E-02 1.3109E-02 2.0151E-02 2.6674E-02 3.2626E-02 3.7960E-02 4.2640E-02 4.2640E-02 4.4059E-02 4.5454E-02 4.5454E-02 4.7039E-02 4.7277E-02 4.7277E-02 5.4727E-02 6.9944E-02 8.1040E-02 9.4435E-02 1.0149E-01 1.0490E-01 1.0490E-01 1.0533E-01 1.0731E-01 1.0830E-01 1.0727E-01 1.0165E-01 9.5505E-02 8.9963E-02 8.5122E-02 8.0903E-02 7.7196E-02 7.3910E-02 7.0975E-02 6.8335E-02 6.5942E-02 6.3758E-02 5.9915E-02 5.8214E-02 5.6637E-02 5.3779E-02 5.2468E-02 5.1913E-02 4.6999E-02 4.6072E-02 4.4342E-02 4.2759E-02 4.1308E-02 3.8734E-02 3.6518E-02 3.6070E-02 3.4583E-02 3.1356E-02 2.8758E-02 2.3999E-02 2.0730E-02 1.8324E-02 1.6470E-02 1.4991E-02 1.3783E-02 1.2768E-02 1.1908E-02 1.1171E-02 1.0521E-02 9.9547E-03 9.4514E-03 8.9996E-03 8.2269E-03 7.5849E-03 7.0459E-03 6.5862E-03 6.1820E-03 5.8333E-03 5.5242E-03 4.3908E-03 3.6636E-03 3.1564E-03 2.4895E-03 2.0662E-03 1.4714E-03 1.1536E-03 8.1793E-04 6.4040E-04 5.3023E-04 4.5375E-04 3.5452E-04 2.9167E-04 2.0369E-04 1.5764E-04 1.0961E-04 8.4607E-05 6.9191E-05 5.8650E-05 4.5176E-05 3.6902E-05 2.5501E-05 1.9604E-05 1.3521E-05 1.0379E-05 8.4527E-06 7.1450E-06 5.4806E-06 4.4582E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.2057E+03 1.6312E+05 8.0575E+03 1.7532E+03 2.3294E+03 3.5322E+03 5.3459E+03 6.4674E+03 5.6997E+03 5.0209E+03 5.8016E+03 5.6154E+03 4.7633E+03 5.0566E+03 4.4803E+03 3.9708E+03 4.1491E+03 3.2693E+03 1.2483E+03 6.1226E+02 3.4806E+02 2.1792E+02 1.4730E+02 4.0778E+02 3.6440E+02 3.2567E+02 4.4463E+02 3.9458E+02 3.8776E+02 4.4820E+02 2.5937E+02 8.8530E+01 4.0698E+01 1.3355E+01 5.9918E+00 3.4825E+00 1.9442E+01 1.7952E+01 1.1112E+01 5.1398E+00 2.7918E+00 9.0551E-01 4.0619E-01 2.1933E-01 1.3363E-01 8.8618E-02 6.2573E-02 4.6360E-02 3.5670E-02 2.8290E-02 2.3004E-02 1.9100E-02 1.3833E-02 1.2007E-02 1.0536E-02 8.3441E-03 7.5175E-03 7.1965E-03 4.8505E-03 4.5042E-03 3.9263E-03 3.4643E-03 3.0875E-03 2.5139E-03 2.1027E-03 2.0278E-03 1.7971E-03 1.3786E-03 1.1088E-03 7.3114E-04 5.3855E-04 4.2402E-04 3.4833E-04 2.9503E-04 2.5556E-04 2.2525E-04 2.0123E-04 1.8178E-04 1.6569E-04 1.5221E-04 1.4072E-04 1.3081E-04 1.1465E-04 1.0204E-04 9.1898E-05 8.3576E-05 7.6641E-05 7.0737E-05 6.5704E-05 4.8386E-05 3.8309E-05 3.1691E-05 2.3551E-05 1.8740E-05 1.2400E-05 9.2651E-06 6.1543E-06 4.6088E-06 3.6815E-06 3.0657E-06 2.2969E-06 1.8364E-06 1.2233E-06 9.1740E-07 6.1147E-07 4.5850E-07 3.6664E-07 3.0554E-07 2.2913E-07 1.8328E-07 1.2217E-07 9.1621E-08 6.1067E-08 4.5810E-08 3.6648E-08 3.0542E-08 2.2905E-08 1.8324E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.5152E-04 3.9094E-04 7.4104E-04 1.1627E-03 1.6333E-03 2.6627E-03 3.7540E-03 3.9985E-03 4.8627E-03 7.0147E-03 9.0392E-03 1.3561E-02 1.7425E-02 2.0745E-02 2.3686E-02 2.6325E-02 2.8723E-02 3.0922E-02 3.2955E-02 3.4837E-02 3.6601E-02 3.8234E-02 3.9747E-02 4.1174E-02 4.3710E-02 4.5969E-02 4.8030E-02 4.9932E-02 5.1636E-02 5.3181E-02 5.4648E-02 6.0513E-02 6.4911E-02 6.8319E-02 7.3313E-02 7.6879E-02 8.2546E-02 8.5914E-02 8.9798E-02 9.2057E-02 9.3523E-02 9.4593E-02 9.6020E-02 9.6931E-02 9.8239E-02 9.8952E-02 9.9705E-02 1.0014E-01 1.0042E-01 1.0058E-01 1.0081E-01 1.0097E-01 1.0117E-01 1.0129E-01 1.0141E-01 1.0149E-01 1.0153E-01 1.0153E-01 1.0157E-01 1.0161E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.6390E-08 2.8562E-06 1.0054E-05 4.0976E-05 8.1555E-05 1.2511E-04 1.6842E-04 2.1031E-04 2.5037E-04 2.8838E-04 3.2432E-04 3.5812E-04 3.8998E-04 4.2046E-04 4.4899E-04 4.7594E-04 5.2627E-04 5.7223E-04 6.1384E-04 6.5228E-04 6.8755E-04 7.2044E-04 7.5056E-04 8.7618E-04 9.7129E-04 1.0462E-03 1.1583E-03 1.2400E-03 1.3743E-03 1.4579E-03 1.5602E-03 1.6216E-03 1.6632E-03 1.6941E-03 1.7365E-03 1.7647E-03 1.8067E-03 1.8308E-03 1.8570E-03 1.8724E-03 1.8820E-03 1.8887E-03 1.8974E-03 1.9030E-03 1.9109E-03 1.9152E-03 1.9196E-03 1.9224E-03 1.9240E-03 1.9248E-03 1.9259E-03 1.9271E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/F.mat0000644000000000000000000001642014741736366017513 0ustar00rootrootFluorine 1 9 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.6201E+00 1.9053E+01 1.8748E+00 1.5218E+00 1.4033E+00 1.1491E+00 9.1988E-01 7.3698E-01 5.9783E-01 4.1429E-01 3.0579E-01 1.7339E-01 1.1446E-01 6.0892E-02 3.7435E-02 2.5251E-02 1.8166E-02 1.0682E-02 7.0116E-03 3.2110E-03 1.8271E-03 1.1760E-03 1.1760E-03 8.1940E-04 4.6248E-04 3.6567E-04 2.9635E-04 2.4503E-04 2.0597E-04 1.7555E-04 1.3190E-04 1.1595E-04 1.0274E-04 8.2266E-05 7.4237E-05 7.1067E-05 4.7515E-05 4.3933E-05 3.7881E-05 3.2998E-05 2.9001E-05 2.2917E-05 1.8569E-05 1.7779E-05 1.5351E-05 1.0991E-05 8.2542E-06 4.6438E-06 2.9714E-06 2.0635E-06 1.5161E-06 1.1608E-06 9.1703E-07 7.4300E-07 6.1399E-07 5.1573E-07 4.3965E-07 3.7911E-07 3.3029E-07 2.9020E-07 2.2927E-07 1.8572E-07 1.5348E-07 1.2898E-07 1.0990E-07 9.4746E-08 8.2542E-08 4.6438E-08 2.9714E-08 2.0635E-08 1.1608E-08 7.4269E-09 3.2998E-09 1.8569E-09 8.2542E-10 4.6406E-10 2.9711E-10 2.0632E-10 1.1605E-10 7.4269E-11 3.2998E-11 1.8569E-11 8.2542E-12 4.6406E-12 2.9711E-12 2.0632E-12 1.1605E-12 7.4269E-13 3.2998E-13 1.8569E-13 8.2542E-14 4.6406E-14 2.9711E-14 2.0632E-14 1.1605E-14 7.4269E-15 INCOHERENT SCATTERING CROSS SECTION 6.4315E-03 7.4056E-04 1.8728E-03 1.3535E-02 2.2147E-02 4.0986E-02 5.8990E-02 7.4617E-02 8.7550E-02 1.0628E-01 1.1839E-01 1.3494E-01 1.4340E-01 1.5088E-01 1.5240E-01 1.5136E-01 1.4917E-01 1.4369E-01 1.3801E-01 1.2537E-01 1.1529E-01 1.0719E-01 1.0719E-01 1.0055E-01 9.0213E-02 8.6066E-02 8.2415E-02 7.9172E-02 7.6266E-02 7.3642E-02 6.9063E-02 6.7042E-02 6.5167E-02 6.1802E-02 6.0290E-02 5.9656E-02 5.3918E-02 5.2839E-02 5.0835E-02 4.9005E-02 4.7323E-02 4.4345E-02 4.1810E-02 4.1303E-02 3.9610E-02 3.5899E-02 3.2903E-02 2.7444E-02 2.3701E-02 2.0949E-02 1.8829E-02 1.7136E-02 1.5751E-02 1.4594E-02 1.3611E-02 1.2765E-02 1.2026E-02 1.1376E-02 1.0803E-02 1.0286E-02 9.4017E-03 8.6694E-03 8.0513E-03 7.5251E-03 7.0655E-03 6.6661E-03 6.3111E-03 5.0146E-03 4.1873E-03 3.6072E-03 2.8449E-03 2.3612E-03 1.6816E-03 1.3183E-03 9.3446E-04 7.3191E-04 6.0575E-04 5.1858E-04 4.0510E-04 3.3315E-04 2.3276E-04 1.8014E-04 1.2524E-04 9.6679E-05 7.9055E-05 6.7042E-05 5.1636E-05 4.2158E-05 2.9140E-05 2.2404E-05 1.5450E-05 1.1861E-05 9.6584E-06 8.1654E-06 6.2604E-06 5.0939E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.6486E+03 2.7972E+07 3.5632E+04 1.9770E+03 9.0340E+02 2.8760E+02 1.2461E+02 6.4315E+01 3.7214E+01 1.5494E+01 7.7819E+00 2.1840E+00 8.7487E-01 2.3698E-01 9.2971E-02 4.4821E-02 2.4626E-02 9.5633E-03 4.5931E-03 1.2216E-03 4.8403E-04 2.3991E-04 2.3991E-04 1.3725E-04 5.8895E-05 4.2276E-05 3.1762E-05 2.4760E-05 1.9795E-05 1.6122E-05 1.1432E-05 9.9944E-06 8.9297E-06 7.1307E-06 6.2128E-06 5.8134E-06 3.9432E-06 3.6962E-06 3.2411E-06 2.8617E-06 2.5602E-06 2.1154E-06 1.7970E-06 1.7380E-06 1.5555E-06 1.2210E-06 1.0017E-06 6.8658E-07 5.2017E-07 4.1810E-07 3.4900E-07 2.9936E-07 2.6202E-07 2.3292E-07 2.0959E-07 1.9047E-07 1.7456E-07 1.6109E-07 1.4952E-07 1.3954E-07 1.2305E-07 1.1002E-07 9.9500E-08 9.0815E-08 8.3525E-08 7.7312E-08 7.1955E-08 5.3443E-08 4.2507E-08 3.5280E-08 2.6332E-08 2.1003E-08 1.3947E-08 1.0441E-08 6.9451E-09 5.2048E-09 4.1620E-09 3.4678E-09 2.5983E-09 2.0781E-09 1.3849E-09 1.0384E-09 6.9229E-10 5.1890E-10 4.1525E-10 3.4614E-10 2.5948E-10 2.0759E-10 1.3839E-10 1.0378E-10 6.9197E-11 5.1890E-11 4.1525E-11 3.4583E-11 2.5945E-11 2.0756E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 2.0623E-05 3.3437E-05 6.8276E-05 1.1414E-04 1.6939E-04 3.0175E-04 4.5455E-04 4.9005E-04 6.1902E-04 9.5971E-04 1.2999E-03 2.1082E-03 2.8287E-03 3.4741E-03 4.0510E-03 4.5677E-03 5.0368E-03 5.4648E-03 5.8546E-03 6.2097E-03 6.5393E-03 6.8468E-03 7.1352E-03 7.4047E-03 7.9023E-03 8.3461E-03 8.7487E-03 9.1132E-03 9.4492E-03 9.7599E-03 1.0048E-02 1.1221E-02 1.2115E-02 1.2822E-02 1.3884E-02 1.4664E-02 1.5941E-02 1.6724E-02 1.7650E-02 1.8188E-02 1.8543E-02 1.8800E-02 1.9146E-02 1.9368E-02 1.9691E-02 1.9868E-02 2.0062E-02 2.0163E-02 2.0230E-02 2.0274E-02 2.0334E-02 2.0372E-02 2.0423E-02 2.0452E-02 2.0480E-02 2.0496E-02 2.0506E-02 2.0512E-02 2.0521E-02 2.0528E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1001E-07 3.2653E-06 1.1510E-05 4.7008E-05 9.3636E-05 1.4385E-04 1.9393E-04 2.4259E-04 2.8921E-04 3.3378E-04 3.7594E-04 4.1556E-04 4.5328E-04 4.8942E-04 5.2365E-04 5.5599E-04 6.1653E-04 6.7200E-04 7.2303E-04 7.7026E-04 8.1401E-04 8.5490E-04 8.9294E-04 1.0536E-03 1.1782E-03 1.2793E-03 1.4359E-03 1.5535E-03 1.7548E-03 1.8857E-03 2.0499E-03 2.1501E-03 2.2192E-03 2.2702E-03 2.3406E-03 2.3875E-03 2.4576E-03 2.4972E-03 2.5400E-03 2.5656E-03 2.5809E-03 2.5920E-03 2.6062E-03 2.6154E-03 2.6278E-03 2.6351E-03 2.6417E-03 2.6465E-03 2.6490E-03 2.6506E-03 2.6525E-03 2.6538E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Fe.mat0000644000000000000000000001666214741736366017670 0ustar00rootrootIron 1 26 1.000000 2 10 88 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 7.1120E-03 7.1120E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 4.5365E+00 3.5786E+01 5.2512E+00 4.2411E+00 3.9327E+00 3.3536E+00 2.8489E+00 2.4208E+00 2.0650E+00 1.7447E+00 1.7447E+00 1.5420E+00 1.2013E+00 7.4577E-01 5.1695E-01 2.8489E-01 1.7954E-01 1.2444E-01 9.1776E-02 5.6041E-02 3.7677E-02 1.7814E-02 1.0330E-02 6.7320E-03 6.7320E-03 4.7285E-03 2.6937E-03 2.1370E-03 1.7361E-03 1.4377E-03 1.2099E-03 1.0323E-03 7.7696E-04 6.8334E-04 6.0559E-04 4.8519E-04 4.3812E-04 4.1958E-04 2.8080E-04 2.5961E-04 2.2386E-04 1.9507E-04 1.7156E-04 1.3572E-04 1.0988E-04 1.0516E-04 9.0695E-05 6.4953E-05 4.8837E-05 2.7476E-05 1.7588E-05 1.2217E-05 8.9728E-06 6.8700E-06 5.4283E-06 4.3963E-06 3.6340E-06 3.0538E-06 2.6020E-06 2.2429E-06 1.9539E-06 1.7178E-06 1.3576E-06 1.0988E-06 9.0849E-07 7.6335E-07 6.5045E-07 5.6084E-07 4.8859E-07 2.7487E-07 1.7588E-07 1.2217E-07 6.8700E-08 4.3963E-08 1.9539E-08 1.0988E-08 4.8848E-09 2.7476E-09 1.7588E-09 1.2217E-09 6.8700E-10 4.3963E-10 1.9539E-10 1.0988E-10 4.8848E-11 2.7476E-11 1.7588E-11 1.2217E-11 6.8700E-12 4.3963E-12 1.9539E-12 1.0988E-12 4.8848E-13 2.7476E-13 1.7588E-13 1.2217E-13 6.8700E-14 4.3963E-14 INCOHERENT SCATTERING CROSS SECTION 8.7765E-03 3.5039E-02 3.6910E-03 1.5301E-02 2.1243E-02 3.2059E-02 4.2119E-02 5.1328E-02 5.9664E-02 6.7999E-02 6.7999E-02 7.3952E-02 8.5414E-02 1.0468E-01 1.1624E-01 1.2864E-01 1.3382E-01 1.3555E-01 1.3555E-01 1.3317E-01 1.2961E-01 1.2002E-01 1.1139E-01 1.0406E-01 1.0406E-01 9.7880E-02 8.8099E-02 8.4144E-02 8.0648E-02 7.7527E-02 7.4717E-02 7.2170E-02 6.7713E-02 6.5746E-02 6.3923E-02 6.0643E-02 5.9157E-02 5.8532E-02 5.2924E-02 5.1868E-02 4.9904E-02 4.8115E-02 4.6478E-02 4.3577E-02 4.1074E-02 4.0567E-02 3.8885E-02 3.5243E-02 3.2317E-02 2.6969E-02 2.3292E-02 2.0585E-02 1.8504E-02 1.6843E-02 1.5474E-02 1.4342E-02 1.3371E-02 1.2541E-02 1.1818E-02 1.1182E-02 1.0615E-02 1.0108E-02 9.2391E-03 8.5199E-03 7.9138E-03 7.3952E-03 6.9444E-03 6.5508E-03 6.2025E-03 4.9290E-03 4.1138E-03 3.5445E-03 2.7961E-03 2.3206E-03 1.6520E-03 1.2961E-03 9.1830E-04 7.1924E-04 5.9534E-04 5.0973E-04 3.9812E-04 3.2749E-04 2.2871E-04 1.7706E-04 1.2315E-04 9.5011E-05 7.7683E-05 6.5875E-05 5.0757E-05 4.1440E-05 2.8640E-05 2.2019E-05 1.5183E-05 1.1657E-05 9.4925E-06 8.0249E-06 6.1529E-06 5.0056E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.0806E+03 2.4228E+06 4.8804E+04 3.3957E+03 1.6229E+03 5.5426E+02 2.5384E+02 1.3738E+02 8.2719E+01 5.1382E+01 4.0588E+02 3.0398E+02 1.6941E+02 5.6235E+01 2.5050E+01 7.7629E+00 3.3159E+00 1.6973E+00 9.7761E-01 4.0599E-01 2.0445E-01 5.8607E-02 2.4327E-02 1.2431E-02 1.2431E-02 7.2658E-03 3.2091E-03 2.3280E-03 1.7620E-03 1.3801E-03 1.1096E-03 9.1090E-04 6.5058E-04 5.6504E-04 4.9839E-04 3.9516E-04 3.5143E-04 3.3353E-04 2.2559E-04 2.1038E-04 1.8410E-04 1.6272E-04 1.4536E-04 1.1912E-04 1.0035E-04 9.6920E-05 8.6334E-05 6.7029E-05 5.4477E-05 3.6695E-05 2.7465E-05 2.1879E-05 1.8148E-05 1.5485E-05 1.3501E-05 1.1959E-05 1.0727E-05 9.7254E-06 8.8940E-06 8.1921E-06 7.5925E-06 7.0738E-06 6.2230E-06 5.5545E-06 5.0153E-06 4.5710E-06 4.1990E-06 3.8820E-06 3.6102E-06 2.6732E-06 2.1221E-06 1.7588E-06 1.3112E-06 1.0446E-06 6.9272E-07 5.1814E-07 3.4453E-07 2.5804E-07 2.0628E-07 1.7178E-07 1.2875E-07 1.0297E-07 6.8614E-08 5.1447E-08 3.4291E-08 2.5707E-08 2.0564E-08 1.7135E-08 1.2854E-08 1.0283E-08 6.8549E-09 5.1404E-09 3.4269E-09 2.5707E-09 2.0564E-09 1.7135E-09 1.2854E-09 1.0281E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 7.0307E-05 1.1146E-04 2.1960E-04 3.5800E-04 5.2255E-04 9.1451E-04 1.3641E-03 1.4676E-03 1.8415E-03 2.8177E-03 3.7806E-03 6.0386E-03 8.0325E-03 9.8095E-03 1.1387E-02 1.2811E-02 1.4094E-02 1.5258E-02 1.6315E-02 1.7286E-02 1.8170E-02 1.9011E-02 1.9787E-02 2.0521E-02 2.1858E-02 2.3055E-02 2.4144E-02 2.5125E-02 2.6031E-02 2.6850E-02 2.7616E-02 3.0711E-02 3.3029E-02 3.4841E-02 3.7558E-02 3.9499E-02 4.2626E-02 4.4513E-02 4.6713E-02 4.7996E-02 4.8837E-02 4.9441E-02 5.0250E-02 5.0768E-02 5.1533E-02 5.1943E-02 5.2396E-02 5.2633E-02 5.2795E-02 5.2892E-02 5.3032E-02 5.3118E-02 5.3248E-02 5.3313E-02 5.3377E-02 5.3410E-02 5.3442E-02 5.3453E-02 5.3474E-02 5.3485E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0822E-07 3.2105E-06 1.1312E-05 4.6174E-05 9.1981E-05 1.4126E-04 1.9032E-04 2.3799E-04 2.8360E-04 3.2695E-04 3.6803E-04 4.0685E-04 4.4352E-04 4.7845E-04 5.1145E-04 5.4294E-04 6.0138E-04 6.5476E-04 7.0361E-04 7.4868E-04 7.9041E-04 8.2923E-04 8.6547E-04 1.0163E-03 1.1322E-03 1.2250E-03 1.3652E-03 1.4687E-03 1.6434E-03 1.7534E-03 1.8903E-03 1.9733E-03 2.0305E-03 2.0725E-03 2.1308E-03 2.1707E-03 2.2289E-03 2.2634E-03 2.3001E-03 2.3216E-03 2.3346E-03 2.3443E-03 2.3572E-03 2.3648E-03 2.3756E-03 2.3820E-03 2.3885E-03 2.3917E-03 2.3939E-03 2.3960E-03 2.3971E-03 2.3982E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Fm.mat0000644000000000000000000002371614741736366017676 0ustar00rootrootFm 1 100 1.000000 15 4 3 3 3 3 5 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0020E-03 1.0020E-03 1.0350E-03 1.0690E-03 1.0690E-03 1.2084E-03 1.3660E-03 1.3660E-03 1.5000E-03 1.7470E-03 1.7470E-03 1.8395E-03 1.9370E-03 1.9370E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.4980E-03 4.4980E-03 4.6301E-03 4.7660E-03 4.7660E-03 5.0000E-03 5.3970E-03 5.3970E-03 6.0000E-03 6.7930E-03 6.7930E-03 6.9960E-03 7.2050E-03 7.2050E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.0900E-02 2.0900E-02 2.3671E-02 2.6810E-02 2.6810E-02 2.7251E-02 2.7700E-02 2.7700E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.4309E-01 1.4309E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4972E+01 4.9053E-33 1.9200E+00 1.4970E+01 1.4970E+01 1.4933E+01 1.4895E+01 1.4895E+01 1.4740E+01 1.4551E+01 1.4551E+01 1.4380E+01 1.4068E+01 1.4068E+01 1.3945E+01 1.3813E+01 1.3813E+01 1.3729E+01 1.2391E+01 1.1110E+01 1.0515E+01 1.0515E+01 1.0364E+01 1.0210E+01 1.0210E+01 9.9528E+00 9.5335E+00 9.5335E+00 8.9432E+00 8.2428E+00 8.2428E+00 8.0763E+00 7.9102E+00 7.9102E+00 7.3270E+00 6.1253E+00 4.1882E+00 3.0521E+00 2.8975E+00 2.8975E+00 2.4778E+00 2.1025E+00 2.1025E+00 2.0575E+00 2.0135E+00 2.0135E+00 1.8095E+00 1.2105E+00 8.8120E-01 6.6734E-01 4.1975E-01 2.9139E-01 1.5973E-01 1.5973E-01 1.4722E-01 8.8448E-02 5.9235E-02 4.2608E-02 3.2194E-02 2.5204E-02 2.0268E-02 1.6652E-02 1.3925E-02 1.1817E-02 1.0155E-02 7.7334E-03 6.8351E-03 6.0844E-03 4.9125E-03 4.4505E-03 4.2678E-03 2.8882E-03 2.6759E-03 2.3161E-03 2.0243E-03 1.7842E-03 1.4162E-03 1.1513E-03 1.1030E-03 9.5430E-04 6.8608E-04 5.1673E-04 2.9186E-04 1.8720E-04 1.3017E-04 9.5710E-05 7.3316E-05 5.7950E-05 4.6941E-05 3.8813E-05 3.2606E-05 2.7804E-05 2.3963E-05 2.0882E-05 1.8355E-05 1.4504E-05 1.1749E-05 9.7092E-06 8.1585E-06 6.9522E-06 5.9941E-06 5.2235E-06 2.9373E-06 1.8802E-06 1.3059E-06 7.3457E-07 4.7012E-07 2.0892E-07 1.1752E-07 5.2235E-08 2.9373E-08 1.8802E-08 1.3056E-08 7.3457E-09 4.7012E-09 2.0892E-09 1.1752E-09 5.2235E-10 2.9373E-10 1.8802E-10 1.3056E-10 7.3457E-11 4.7012E-11 2.0892E-11 1.1752E-11 5.2235E-12 2.9373E-12 1.8802E-12 1.3056E-12 7.3457E-13 4.7012E-13 INCOHERENT SCATTERING CROSS SECTION 3.9118E-03 1.4605E+25 1.4605E+25 3.9235E-03 3.9235E-03 4.1051E-03 4.2795E-03 4.2795E-03 4.9984E-03 5.8302E-03 5.8302E-03 6.5446E-03 7.8657E-03 7.8657E-03 8.3608E-03 8.8823E-03 8.8823E-03 9.2196E-03 1.4471E-02 1.9386E-02 2.1693E-02 2.1693E-02 2.2286E-02 2.2890E-02 2.2890E-02 2.3916E-02 2.5602E-02 2.5602E-02 2.8038E-02 3.1107E-02 3.1107E-02 3.1839E-02 3.2582E-02 3.2582E-02 3.5417E-02 4.1905E-02 5.5210E-02 6.4767E-02 6.6196E-02 6.6196E-02 7.0110E-02 7.3855E-02 7.3855E-02 7.4336E-02 7.4816E-02 7.4816E-02 7.7111E-02 8.4536E-02 8.9174E-02 9.2032E-02 9.4445E-02 9.4562E-02 9.1938E-02 9.1938E-02 9.1353E-02 8.6808E-02 8.2296E-02 7.8189E-02 7.4546E-02 7.1302E-02 6.8393E-02 6.5774E-02 6.3406E-02 6.1253E-02 5.9284E-02 5.5791E-02 5.4226E-02 5.2764E-02 5.0133E-02 4.8956E-02 4.8464E-02 4.3920E-02 4.3054E-02 4.1446E-02 3.9984E-02 3.8647E-02 3.6269E-02 3.4199E-02 3.3777E-02 3.2383E-02 2.9379E-02 2.6961E-02 2.2499E-02 1.9437E-02 1.7184E-02 1.5448E-02 1.4061E-02 1.2928E-02 1.1977E-02 1.1173E-02 1.0477E-02 9.8708E-03 9.3391E-03 8.8659E-03 8.4443E-03 7.7181E-03 7.1161E-03 6.6102E-03 6.1768E-03 5.7997E-03 5.4718E-03 5.1813E-03 4.1179E-03 3.4363E-03 2.9608E-03 2.3356E-03 1.9386E-03 1.3806E-03 1.0824E-03 7.6713E-04 6.0082E-04 4.9729E-04 4.2584E-04 3.3262E-04 2.7359E-04 1.9111E-04 1.4790E-04 1.0283E-04 7.9383E-05 6.4907E-05 5.5046E-05 4.2397E-05 3.4620E-05 2.3916E-05 1.8395E-05 1.2686E-05 9.7396E-06 7.9313E-06 6.7039E-06 5.1415E-06 4.1811E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.1185E+03 3.5818E+05 2.3157E+04 7.0951E+03 7.4019E+03 7.2479E+03 7.0974E+03 7.3059E+03 5.9557E+03 4.8557E+03 5.1673E+03 4.3053E+03 3.1552E+03 3.1927E+03 2.8644E+03 2.5696E+03 2.6164E+03 2.4431E+03 1.0023E+03 5.1743E+02 3.9282E+02 8.5520E+02 8.1269E+02 7.7252E+02 1.0620E+03 9.6693E+02 7.9945E+02 9.3367E+02 7.1606E+02 5.2001E+02 5.5116E+02 5.1186E+02 4.7550E+02 4.9518E+02 3.8204E+02 2.1939E+02 7.8868E+01 3.7736E+01 3.3683E+01 7.8001E+01 5.5790E+01 3.9891E+01 5.7599E+01 5.5195E+01 5.2891E+01 6.0925E+01 4.9846E+01 2.4080E+01 1.3527E+01 8.4044E+00 3.9399E+00 2.1810E+00 8.4255E-01 3.2489E+00 2.9045E+00 1.4169E+00 8.1138E-01 5.1907E-01 3.5796E-01 2.6094E-01 1.9853E-01 1.5619E-01 1.2622E-01 1.0424E-01 8.7643E-02 6.4693E-02 5.6568E-02 4.9946E-02 3.9884E-02 3.6002E-02 3.4480E-02 2.3354E-02 2.1677E-02 1.8856E-02 1.6596E-02 1.4764E-02 1.1995E-02 1.0016E-02 9.6553E-03 8.5411E-03 6.5126E-03 5.2048E-03 3.3894E-03 2.4736E-03 1.9315E-03 1.5774E-03 1.3293E-03 1.1466E-03 1.0070E-03 8.9690E-04 8.0812E-04 7.3504E-04 6.7367E-04 6.2190E-04 5.7716E-04 5.0455E-04 4.4786E-04 4.0265E-04 3.6565E-04 3.3473E-04 3.0873E-04 2.8647E-04 2.1023E-04 1.6600E-04 1.3712E-04 1.0171E-04 8.0812E-05 5.3383E-05 3.9867E-05 2.6445E-05 1.9795E-05 1.5813E-05 1.3167E-05 9.8638E-06 7.8844E-06 5.2516E-06 3.9375E-06 2.6235E-06 1.9671E-06 1.5736E-06 1.3113E-06 9.8333E-07 7.8657E-07 5.2422E-07 3.9329E-07 2.6211E-07 1.9660E-07 1.5727E-07 1.3106E-07 9.8286E-08 7.8634E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.0431E-04 8.1226E-04 1.6128E-03 2.5743E-03 3.5918E-03 5.5659E-03 7.3949E-03 7.7884E-03 9.1311E-03 1.2201E-02 1.4848E-02 2.0395E-02 2.5017E-02 2.8835E-02 3.2372E-02 3.5581E-02 3.8532E-02 4.1249E-02 4.3802E-02 4.6168E-02 4.8370E-02 5.0455E-02 5.2399E-02 5.4226E-02 5.7552E-02 6.0504E-02 6.3221E-02 6.5680E-02 6.7952E-02 7.0037E-02 7.1934E-02 7.9735E-02 8.5544E-02 9.0064E-02 9.6693E-02 1.0138E-01 1.0869E-01 1.1304E-01 1.1813E-01 1.2103E-01 1.2293E-01 1.2429E-01 1.2609E-01 1.2726E-01 1.2892E-01 1.2986E-01 1.3080E-01 1.3141E-01 1.3176E-01 1.3199E-01 1.3230E-01 1.3248E-01 1.3274E-01 1.3291E-01 1.3302E-01 1.3314E-01 1.3319E-01 1.3321E-01 1.3323E-01 1.3328E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0337E-08 2.6752E-06 9.4117E-06 3.8321E-05 7.6198E-05 1.1674E-04 1.5699E-04 1.9587E-04 2.3295E-04 2.6797E-04 3.0123E-04 3.3238E-04 3.6166E-04 3.8930E-04 4.1554E-04 4.4037E-04 4.8628E-04 5.2797E-04 5.6568E-04 6.0035E-04 6.3221E-04 6.6172E-04 6.8913E-04 8.0109E-04 8.8518E-04 9.5100E-04 1.0492E-03 1.1197E-03 1.2347E-03 1.3056E-03 1.3914E-03 1.4422E-03 1.4766E-03 1.5019E-03 1.5364E-03 1.5593E-03 1.5933E-03 1.6125E-03 1.6333E-03 1.6460E-03 1.6532E-03 1.6586E-03 1.6657E-03 1.6701E-03 1.6762E-03 1.6797E-03 1.6830E-03 1.6851E-03 1.6865E-03 1.6872E-03 1.6882E-03 1.6889E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Fr.mat0000644000000000000000000002217014741736366017674 0ustar00rootrootFr 1 87 1.000000 11 4 4 3 3 3 3 7 3 3 9 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1530E-03 1.1530E-03 1.5000E-03 2.0000E-03 2.9999E-03 2.9999E-03 3.0000E-03 3.1362E-03 3.1362E-03 3.3894E-03 3.6630E-03 3.6630E-03 4.0000E-03 4.3270E-03 4.3270E-03 4.4866E-03 4.6520E-03 4.6520E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.5031E-02 1.5031E-02 1.6406E-02 1.7907E-02 1.7907E-02 1.8269E-02 1.8639E-02 1.8639E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.0114E-01 1.0114E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2964E+01 3.1444E+02 1.4947E+01 1.2794E+01 1.2794E+01 1.2400E+01 1.1787E+01 1.0558E+01 1.0558E+01 1.0558E+01 1.0396E+01 1.0396E+01 1.0073E+01 9.8020E+00 9.8020E+00 9.4428E+00 9.1134E+00 9.1134E+00 8.9569E+00 8.7975E+00 8.7975E+00 8.4762E+00 7.6391E+00 6.2754E+00 5.2304E+00 3.5185E+00 3.5104E+00 3.5104E+00 3.1789E+00 2.8677E+00 2.8677E+00 2.7995E+00 2.7327E+00 2.7327E+00 2.5091E+00 1.4760E+00 9.9100E-01 7.0963E-01 5.3222E-01 3.3429E-01 2.3158E-01 2.2723E-01 2.2723E-01 1.1498E-01 6.8695E-02 4.5882E-02 3.2889E-02 2.4742E-02 1.9288E-02 1.5455E-02 1.2659E-02 1.0556E-02 8.9379E-03 7.6662E-03 5.8197E-03 5.1359E-03 4.5649E-03 3.6757E-03 3.3267E-03 3.1890E-03 2.1510E-03 1.9916E-03 1.7216E-03 1.5030E-03 1.3234E-03 1.0487E-03 8.5140E-04 8.1548E-04 7.0493E-04 5.0605E-04 3.8074E-04 2.1459E-04 1.3750E-04 9.5563E-05 7.0234E-05 5.3789E-05 4.2502E-05 3.4428E-05 2.8461E-05 2.3914E-05 2.0376E-05 1.7571E-05 1.5308E-05 1.3453E-05 1.0631E-05 8.6112E-06 7.1179E-06 5.9811E-06 5.0954E-06 4.3933E-06 3.8263E-06 2.1529E-06 1.3779E-06 9.5698E-07 5.3816E-07 3.4455E-07 1.5311E-07 8.6112E-08 3.8263E-08 2.1529E-08 1.3779E-08 9.5698E-09 5.3816E-09 3.4455E-09 1.5311E-09 8.6112E-10 3.8263E-10 2.1529E-10 1.3779E-10 9.5698E-11 5.3816E-11 3.4455E-11 1.5311E-11 8.6112E-12 3.8263E-12 2.1529E-12 1.3779E-12 9.5698E-13 5.3816E-13 3.4455E-13 INCOHERENT SCATTERING CROSS SECTION 4.0936E-03 2.1263E-04 1.6289E-03 4.9496E-03 4.9496E-03 6.9505E-03 9.9316E-03 1.5802E-02 1.5802E-02 1.5802E-02 1.6569E-02 1.6569E-02 1.8159E-02 1.9466E-02 1.9466E-02 2.1216E-02 2.2831E-02 2.2831E-02 2.3595E-02 2.4378E-02 2.4378E-02 2.5977E-02 3.0243E-02 3.7939E-02 4.4770E-02 5.8137E-02 5.8191E-02 5.8191E-02 6.0867E-02 6.3861E-02 6.3861E-02 6.4514E-02 6.5158E-02 6.5158E-02 6.7453E-02 7.9982E-02 8.7678E-02 9.2268E-02 9.4888E-02 9.6886E-02 9.6724E-02 9.6697E-02 9.6697E-02 9.2943E-02 8.8002E-02 8.3258E-02 7.8983E-02 7.5210E-02 7.1881E-02 6.8924E-02 6.6265E-02 6.3849E-02 6.1647E-02 5.9636E-02 5.6091E-02 5.4518E-02 5.3059E-02 5.0411E-02 4.9199E-02 4.8686E-02 4.4095E-02 4.3230E-02 4.1619E-02 4.0153E-02 3.8813E-02 3.6424E-02 3.4320E-02 3.3888E-02 3.2468E-02 2.9444E-02 2.7030E-02 2.2569E-02 1.9499E-02 1.7239E-02 1.5494E-02 1.4104E-02 1.2964E-02 1.2014E-02 1.1206E-02 1.0509E-02 9.9019E-03 9.3672E-03 8.8920E-03 8.4681E-03 7.7417E-03 7.1395E-03 6.6292E-03 6.1944E-03 5.8191E-03 5.4870E-03 5.1980E-03 4.1287E-03 3.4482E-03 2.9703E-03 2.3425E-03 1.9442E-03 1.3847E-03 1.0855E-03 7.6958E-04 6.0270E-04 4.9874E-04 4.2718E-04 3.3348E-04 2.7435E-04 1.9167E-04 1.4835E-04 1.0315E-04 7.9604E-05 6.5104E-05 5.5194E-05 4.2529E-05 3.4725E-05 2.3997E-05 1.8448E-05 1.2724E-05 9.7669E-06 7.9550E-06 6.7237E-06 5.1548E-06 4.1935E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.0702E+03 4.3288E+05 2.1931E+04 4.6634E+03 4.7606E+03 2.8326E+03 1.5500E+03 6.3078E+02 1.9847E+03 1.9839E+03 1.4390E+03 2.2445E+03 1.7762E+03 1.4058E+03 1.6312E+03 1.3121E+03 1.0766E+03 1.1436E+03 1.0466E+03 9.5779E+02 9.9910E+02 8.4032E+02 5.3735E+02 2.6214E+02 1.4865E+02 5.2169E+01 5.1872E+01 1.2678E+02 1.0000E+02 7.8902E+01 1.1077E+02 1.0540E+02 1.0032E+02 1.1592E+02 9.6751E+01 3.3942E+01 1.5856E+01 8.7219E+00 5.3330E+00 2.4400E+00 1.3269E+00 1.2864E+00 5.7651E+00 2.0865E+00 9.8452E-01 5.5160E-01 3.4590E-01 2.3474E-01 1.6890E-01 1.2712E-01 9.9100E-02 7.9455E-02 6.5185E-02 5.4508E-02 3.9901E-02 3.4779E-02 3.0627E-02 2.4372E-02 2.1980E-02 2.1046E-02 1.4214E-02 1.3193E-02 1.1480E-02 1.0110E-02 8.9969E-03 7.3127E-03 6.1107E-03 5.8920E-03 5.2161E-03 3.9841E-03 3.1890E-03 2.0843E-03 1.5257E-03 1.1943E-03 9.7723E-04 8.2493E-04 7.1260E-04 6.2646E-04 5.5869E-04 5.0360E-04 4.5851E-04 4.2043E-04 3.8830E-04 3.6049E-04 3.1539E-04 2.8029E-04 2.5212E-04 2.2906E-04 2.0984E-04 1.9358E-04 1.7965E-04 1.3204E-04 1.0434E-04 8.6220E-05 6.3996E-05 5.0873E-05 3.3618E-05 2.5113E-05 1.6671E-05 1.2475E-05 9.9667E-06 8.3006E-06 6.2187E-06 4.9712E-06 3.3105E-06 2.4824E-06 1.6542E-06 1.2402E-06 9.9208E-07 8.2682E-07 6.1998E-07 4.9604E-07 3.3051E-07 2.4794E-07 1.6528E-07 1.2397E-07 9.9154E-08 8.2628E-08 6.1971E-08 4.9577E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.1179E-04 6.5199E-04 1.2645E-03 1.9963E-03 2.7836E-03 4.3785E-03 5.9298E-03 6.2673E-03 7.4324E-03 1.0179E-02 1.2632E-02 1.7922E-02 2.2339E-02 2.6144E-02 2.9487E-02 3.2511E-02 3.5293E-02 3.7831E-02 4.0180E-02 4.2367E-02 4.4419E-02 4.6337E-02 4.8146E-02 4.9820E-02 5.2844E-02 5.5545E-02 5.8002E-02 6.0243E-02 6.2295E-02 6.4158E-02 6.5914E-02 7.2961E-02 7.8200E-02 8.2277E-02 8.8245E-02 9.2430E-02 9.9100E-02 1.0304E-01 1.0763E-01 1.1025E-01 1.1198E-01 1.1322E-01 1.1487E-01 1.1592E-01 1.1746E-01 1.1830E-01 1.1919E-01 1.1968E-01 1.2000E-01 1.2022E-01 1.2049E-01 1.2068E-01 1.2092E-01 1.2105E-01 1.2119E-01 1.2124E-01 1.2130E-01 1.2132E-01 1.2138E-01 1.2140E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0595E-08 2.6839E-06 9.4455E-06 3.8479E-05 7.6526E-05 1.1730E-04 1.5780E-04 1.9696E-04 2.3433E-04 2.6973E-04 3.0324E-04 3.3456E-04 3.6427E-04 3.9235E-04 4.1881E-04 4.4392E-04 4.9037E-04 5.3249E-04 5.7084E-04 6.0594E-04 6.3834E-04 6.6832E-04 6.9586E-04 8.1008E-04 8.9568E-04 9.6292E-04 1.0634E-03 1.1357E-03 1.2540E-03 1.3272E-03 1.4160E-03 1.4689E-03 1.5049E-03 1.5311E-03 1.5670E-03 1.5910E-03 1.6264E-03 1.6466E-03 1.6685E-03 1.6815E-03 1.6893E-03 1.6947E-03 1.7023E-03 1.7068E-03 1.7131E-03 1.7168E-03 1.7203E-03 1.7228E-03 1.7241E-03 1.7249E-03 1.7257E-03 1.7266E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ga.mat0000644000000000000000000002005014741736366017647 0ustar00rootrootGa 1 31 1.000000 5 4 3 3 10 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1154E-03 1.1154E-03 1.1288E-03 1.1423E-03 1.1423E-03 1.2175E-03 1.2977E-03 1.2977E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.0367E-02 1.0367E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.2229E+00 3.0693E+03 6.6478E+00 5.1590E+00 5.1590E+00 5.1513E+00 5.1435E+00 5.1435E+00 5.1029E+00 5.0597E+00 5.0597E+00 4.9362E+00 4.6313E+00 4.0448E+00 3.5214E+00 3.0593E+00 2.6568E+00 2.0202E+00 1.5728E+00 1.5081E+00 1.5081E+00 9.5010E-01 6.5202E-01 3.6527E-01 2.3096E-01 1.5944E-01 1.1721E-01 7.1585E-02 4.8334E-02 2.3027E-02 1.3388E-02 8.7374E-03 6.1454E-03 4.5546E-03 3.5093E-03 2.7860E-03 2.2647E-03 1.8764E-03 1.5797E-03 1.3482E-03 1.0151E-03 8.9309E-04 7.9183E-04 6.3476E-04 5.7308E-04 5.4872E-04 3.6734E-04 3.3971E-04 2.9301E-04 2.5532E-04 2.2447E-04 1.7744E-04 1.4372E-04 1.3759E-04 1.1876E-04 8.5063E-05 6.3924E-05 3.5965E-05 2.3018E-05 1.5988E-05 1.1747E-05 8.9914E-06 7.1067E-06 5.7559E-06 4.7574E-06 3.9973E-06 3.4057E-06 2.9367E-06 2.5583E-06 2.2483E-06 1.7767E-06 1.4390E-06 1.1893E-06 9.9933E-07 8.5154E-07 7.3425E-07 6.3959E-07 3.5974E-07 2.3027E-07 1.5988E-07 8.9914E-08 5.7559E-08 2.5583E-08 1.4390E-08 6.3950E-09 3.5974E-09 2.3027E-09 1.5988E-09 8.9914E-10 5.7559E-10 2.5583E-10 1.4390E-10 6.3950E-11 3.5974E-11 2.3027E-11 1.5988E-11 8.9914E-12 5.7559E-12 2.5583E-12 1.4390E-12 6.3950E-13 3.5974E-13 2.3027E-13 1.5988E-13 8.9914E-14 5.7559E-14 INCOHERENT SCATTERING CROSS SECTION 6.4762E-03 8.4848E+02 3.3131E-03 7.6776E-03 7.6776E-03 7.8183E-03 7.9609E-03 7.9609E-03 8.7621E-03 9.6219E-03 9.6219E-03 1.1764E-02 1.6869E-02 2.6024E-02 3.4298E-02 4.2020E-02 4.9198E-02 6.1903E-02 7.2656E-02 7.4427E-02 7.4427E-02 9.2418E-02 1.0468E-01 1.1807E-01 1.2412E-01 1.2654E-01 1.2697E-01 1.2541E-01 1.2239E-01 1.1375E-01 1.0572E-01 9.8942E-02 9.3196E-02 8.8249E-02 8.3963E-02 8.0218E-02 7.6906E-02 7.3944E-02 7.1274E-02 6.8853E-02 6.4614E-02 6.2741E-02 6.1005E-02 5.7878E-02 5.6462E-02 5.5866E-02 5.0528E-02 4.9523E-02 4.7652E-02 4.5941E-02 4.4369E-02 4.1585E-02 3.9213E-02 3.8738E-02 3.7152E-02 3.3671E-02 3.0861E-02 2.5748E-02 2.2241E-02 1.9658E-02 1.7672E-02 1.6083E-02 1.4778E-02 1.3699E-02 1.2774E-02 1.1980E-02 1.1289E-02 1.0676E-02 1.0140E-02 9.6564E-03 8.8273E-03 8.1363E-03 7.5576E-03 7.0618E-03 6.6317E-03 6.2559E-03 5.9234E-03 4.7073E-03 3.9291E-03 3.3858E-03 2.6698E-03 2.2163E-03 1.5780E-03 1.2377E-03 8.7668E-04 6.8683E-04 5.6859E-04 4.8679E-04 3.8021E-04 3.1275E-04 2.1844E-04 1.6903E-04 1.1755E-04 9.0777E-05 7.4194E-05 6.2914E-05 4.8472E-05 3.9576E-05 2.7354E-05 2.1023E-05 1.4502E-05 1.1133E-05 9.0691E-06 7.6638E-06 5.8759E-06 4.7807E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.6920E+03 3.9238E+05 8.7184E+03 1.3068E+03 3.8142E+03 4.6409E+03 5.6427E+03 7.3382E+03 6.8269E+03 6.3535E+03 7.2000E+03 5.0821E+03 2.5108E+03 8.8186E+02 4.0940E+02 2.2345E+02 1.3552E+02 6.0944E+01 3.2554E+01 2.9418E+01 2.1982E+02 8.4325E+01 3.8522E+01 1.2325E+01 5.3706E+00 2.7898E+00 1.6238E+00 6.8528E-01 3.4903E-01 1.0192E-01 4.2806E-02 2.2050E-02 1.2964E-02 8.3628E-03 5.7749E-03 4.2013E-03 3.1863E-03 2.4989E-03 2.0116E-03 1.6537E-03 1.1834E-03 1.0278E-03 9.0605E-04 7.1827E-04 6.3976E-04 6.0780E-04 4.1079E-04 3.8283E-04 3.3475E-04 2.9574E-04 2.6409E-04 2.1622E-04 1.8181E-04 1.7551E-04 1.5610E-04 1.2091E-04 9.8119E-05 6.5850E-05 4.9163E-05 3.9075E-05 3.2355E-05 2.7579E-05 2.4012E-05 2.1248E-05 1.9054E-05 1.7266E-05 1.5780E-05 1.4528E-05 1.3457E-05 1.2533E-05 1.1021E-05 9.8292E-06 8.8704E-06 8.0853E-06 7.4246E-06 6.8640E-06 6.3812E-06 4.7211E-06 3.7460E-06 3.1042E-06 2.3122E-06 1.8423E-06 1.2213E-06 9.1296E-07 6.0720E-07 4.5475E-07 3.6345E-07 3.0273E-07 2.2690E-07 1.8147E-07 1.2092E-07 9.0605E-08 6.0409E-08 4.5302E-08 3.6233E-08 3.0196E-08 2.2647E-08 1.8112E-08 1.2075E-08 9.0605E-09 6.0374E-09 4.5285E-09 3.6225E-09 3.0187E-09 2.2638E-09 1.8112E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.5811E-05 1.3528E-04 2.6396E-04 4.2702E-04 6.1956E-04 1.0743E-03 1.5893E-03 1.7067E-03 2.1313E-03 3.2465E-03 4.3497E-03 6.9046E-03 9.1555E-03 1.1142E-02 1.2921E-02 1.4511E-02 1.5962E-02 1.7266E-02 1.8458E-02 1.9546E-02 2.0548E-02 2.1481E-02 2.2353E-02 2.3174E-02 2.4685E-02 2.6024E-02 2.7242E-02 2.8347E-02 2.9349E-02 3.0282E-02 3.1129E-02 3.4618E-02 3.7218E-02 3.9256E-02 4.2271E-02 4.4421E-02 4.7842E-02 4.9880E-02 5.2255E-02 5.3629E-02 5.4527E-02 5.5166E-02 5.6021E-02 5.6574E-02 5.7377E-02 5.7809E-02 5.8284E-02 5.8535E-02 5.8699E-02 5.8811E-02 5.8949E-02 5.9044E-02 5.9165E-02 5.9234E-02 5.9312E-02 5.9346E-02 5.9372E-02 5.9390E-02 5.9407E-02 5.9416E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0347E-07 3.0681E-06 1.0805E-05 4.4084E-05 8.7841E-05 1.3483E-04 1.8164E-04 2.2707E-04 2.7052E-04 3.1189E-04 3.5102E-04 3.8798E-04 4.2288E-04 4.5613E-04 4.8757E-04 5.1746E-04 5.7308E-04 6.2369E-04 6.7016E-04 7.1292E-04 7.5248E-04 7.8918E-04 8.2347E-04 9.6564E-04 1.0745E-03 1.1617E-03 1.2930E-03 1.3889E-03 1.5487E-03 1.6488E-03 1.7724E-03 1.8466E-03 1.8976E-03 1.9356E-03 1.9874E-03 2.0220E-03 2.0729E-03 2.1023E-03 2.1343E-03 2.1533E-03 2.1645E-03 2.1723E-03 2.1835E-03 2.1904E-03 2.1990E-03 2.2051E-03 2.2103E-03 2.2137E-03 2.2154E-03 2.2163E-03 2.2180E-03 2.2189E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Gd.mat0000644000000000000000000002174214741736366017663 0ustar00rootrootGd 1 64 1.000000 10 4 3 3 3 3 7 3 3 8 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1852E-03 1.1852E-03 1.2011E-03 1.2172E-03 1.2172E-03 1.5000E-03 1.5440E-03 1.5440E-03 1.6145E-03 1.6883E-03 1.6883E-03 1.7820E-03 1.8808E-03 1.8808E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 7.2428E-03 7.2428E-03 7.5788E-03 7.9303E-03 7.9303E-03 8.0000E-03 8.3756E-03 8.3756E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.0239E-02 5.0239E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.8767E+00 9.0168E+02 1.1901E+01 9.6929E+00 9.6929E+00 9.6757E+00 9.6584E+00 9.6584E+00 9.3750E+00 9.3290E+00 9.3290E+00 9.2537E+00 9.1759E+00 9.1759E+00 9.0811E+00 8.9805E+00 8.9805E+00 8.8542E+00 7.8470E+00 6.9202E+00 6.1083E+00 5.4190E+00 4.7028E+00 4.7028E+00 4.5283E+00 4.3620E+00 4.3620E+00 4.3313E+00 4.1628E+00 4.1628E+00 3.5294E+00 2.2905E+00 1.6379E+00 9.6392E-01 6.2806E-01 4.4501E-01 4.4194E-01 4.4194E-01 3.3448E-01 2.0902E-01 1.4239E-01 6.9393E-02 4.1284E-02 2.7365E-02 1.9451E-02 1.4526E-02 1.1255E-02 8.9740E-03 7.3223E-03 6.0892E-03 5.1432E-03 4.4010E-03 3.3268E-03 2.9312E-03 2.6021E-03 2.0907E-03 1.8899E-03 1.8107E-03 1.2163E-03 1.1253E-03 9.7149E-04 8.4712E-04 7.4517E-04 5.8954E-04 4.7794E-04 4.5764E-04 3.9524E-04 2.8332E-04 2.1301E-04 1.1994E-04 7.6785E-05 5.3347E-05 3.9177E-05 3.0009E-05 2.3713E-05 1.9210E-05 1.5874E-05 1.3339E-05 1.1366E-05 9.8001E-06 8.5363E-06 7.5061E-06 5.9283E-06 4.8024E-06 3.9675E-06 3.3352E-06 2.8420E-06 2.4506E-06 2.1347E-06 1.2006E-06 7.6861E-07 5.3385E-07 3.0021E-07 1.9213E-07 8.5401E-08 4.8024E-08 2.1347E-08 1.2006E-08 7.6861E-09 5.3347E-09 3.0017E-09 1.9210E-09 8.5401E-10 4.8024E-10 2.1347E-10 1.2006E-10 7.6861E-11 5.3347E-11 3.0017E-11 1.9210E-11 8.5401E-12 4.8024E-12 2.1347E-12 1.2006E-12 7.6861E-13 5.3347E-13 3.0017E-13 1.9210E-13 INCOHERENT SCATTERING CROSS SECTION 5.6258E-03 2.3632E+00 2.8787E-03 7.0198E-03 7.0198E-03 7.1381E-03 7.2572E-03 7.2572E-03 9.2793E-03 9.5971E-03 9.5971E-03 1.0103E-02 1.0623E-02 1.0623E-02 1.1273E-02 1.1956E-02 1.1956E-02 1.2791E-02 1.9608E-02 2.5965E-02 3.1801E-02 3.7056E-02 4.2816E-02 4.2816E-02 4.4288E-02 4.5726E-02 4.5726E-02 4.5994E-02 4.7488E-02 4.7488E-02 5.3462E-02 6.8244E-02 7.9082E-02 9.2333E-02 9.9303E-02 1.0309E-01 1.0317E-01 1.0317E-01 1.0509E-01 1.0612E-01 1.0512E-01 9.9648E-02 9.3673E-02 8.8264E-02 8.3525E-02 7.9386E-02 7.5751E-02 7.2534E-02 6.9661E-02 6.7075E-02 6.4721E-02 6.2565E-02 5.8787E-02 5.7138E-02 5.5625E-02 5.2839E-02 5.1509E-02 5.0934E-02 4.6109E-02 4.5211E-02 4.3523E-02 4.1973E-02 4.0550E-02 3.8027E-02 3.5849E-02 3.5409E-02 3.3948E-02 3.0781E-02 2.8232E-02 2.3560E-02 2.0351E-02 1.7988E-02 1.6169E-02 1.4717E-02 1.3530E-02 1.2534E-02 1.1692E-02 1.0964E-02 1.0329E-02 9.7733E-03 9.2793E-03 8.8350E-03 8.0767E-03 7.4487E-03 6.9164E-03 6.4645E-03 6.0700E-03 5.7253E-03 5.4228E-03 4.3084E-03 3.5968E-03 3.0990E-03 2.4441E-03 2.0286E-03 1.4445E-03 1.1328E-03 8.0270E-04 6.2883E-04 5.2045E-04 4.4577E-04 3.4804E-04 2.8634E-04 1.9995E-04 1.5476E-04 1.0761E-04 8.3065E-05 6.7900E-05 5.7598E-05 4.4386E-05 3.6229E-05 2.5034E-05 1.9248E-05 1.3274E-05 1.0191E-05 8.2989E-06 7.0159E-06 5.3807E-06 4.3773E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.2813E+03 1.7055E+05 8.3599E+03 1.6594E+03 1.8340E+03 2.7082E+03 3.9867E+03 4.8062E+03 5.0322E+03 4.6913E+03 5.4228E+03 4.8909E+03 4.4118E+03 4.6837E+03 4.1535E+03 3.6826E+03 3.8450E+03 3.3510E+03 1.2841E+03 6.3113E+02 3.5918E+02 2.2507E+02 1.3810E+02 3.7963E+02 3.3775E+02 3.0051E+02 4.1016E+02 4.0250E+02 3.5892E+02 4.1475E+02 2.6570E+02 9.0993E+01 4.1896E+01 1.3783E+01 6.1926E+00 3.3115E+00 3.2671E+00 1.8091E+01 1.1313E+01 5.2581E+00 2.8619E+00 9.3099E-01 4.1858E-01 2.2630E-01 1.3802E-01 9.1636E-02 6.4759E-02 4.8001E-02 3.6945E-02 2.9313E-02 2.3843E-02 1.9798E-02 1.4341E-02 1.2454E-02 1.0936E-02 8.6650E-03 7.8010E-03 7.4640E-03 5.0322E-03 4.6738E-03 4.0743E-03 3.5941E-03 3.2022E-03 2.6064E-03 2.1806E-03 2.1032E-03 1.8645E-03 1.4299E-03 1.1493E-03 7.5751E-04 5.5798E-04 4.3888E-04 3.6064E-04 3.0542E-04 2.6455E-04 2.3311E-04 2.0826E-04 1.8811E-04 1.7145E-04 1.5748E-04 1.4557E-04 1.3534E-04 1.1860E-04 1.0555E-04 9.5052E-05 8.6435E-05 7.9236E-05 7.3146E-05 6.7938E-05 5.0054E-05 3.9599E-05 3.2767E-05 2.4349E-05 1.9374E-05 1.2818E-05 9.5780E-06 6.3611E-06 4.7641E-06 3.8055E-06 3.1687E-06 2.3744E-06 1.8984E-06 1.2646E-06 9.4822E-07 6.3189E-07 4.7373E-07 3.7898E-07 3.1579E-07 2.3683E-07 1.8945E-07 1.2630E-07 9.4707E-08 6.3151E-08 4.7373E-08 3.7883E-08 3.1572E-08 2.3679E-08 1.8941E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.5379E-04 3.9455E-04 7.4797E-04 1.1734E-03 1.6479E-03 2.6832E-03 3.7741E-03 4.0173E-03 4.8768E-03 7.0211E-03 9.0418E-03 1.3542E-02 1.7375E-02 2.0676E-02 2.3591E-02 2.6210E-02 2.8592E-02 3.0775E-02 3.2793E-02 3.4662E-02 3.6416E-02 3.8036E-02 3.9560E-02 4.0939E-02 4.3467E-02 4.5726E-02 4.7794E-02 4.9632E-02 5.1356E-02 5.2888E-02 5.4343E-02 6.0202E-02 6.4530E-02 6.7938E-02 7.2917E-02 7.6440E-02 8.2070E-02 8.5401E-02 8.9269E-02 9.1529E-02 9.2984E-02 9.4018E-02 9.5397E-02 9.6316E-02 9.7618E-02 9.8346E-02 9.9112E-02 9.9494E-02 9.9763E-02 9.9954E-02 1.0018E-01 1.0034E-01 1.0053E-01 1.0064E-01 1.0076E-01 1.0083E-01 1.0087E-01 1.0091E-01 1.0091E-01 1.0095E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4501E-08 2.8022E-06 9.8690E-06 4.0250E-05 8.0078E-05 1.2282E-04 1.6533E-04 2.0646E-04 2.4575E-04 2.8305E-04 3.1828E-04 3.5149E-04 3.8274E-04 4.1245E-04 4.4041E-04 4.6722E-04 5.1662E-04 5.6143E-04 6.0240E-04 6.3994E-04 6.7479E-04 7.0657E-04 7.3644E-04 8.5976E-04 9.5244E-04 1.0260E-03 1.1363E-03 1.2159E-03 1.3473E-03 1.4292E-03 1.5296E-03 1.5893E-03 1.6303E-03 1.6602E-03 1.7015E-03 1.7291E-03 1.7705E-03 1.7938E-03 1.8195E-03 1.8344E-03 1.8436E-03 1.8501E-03 1.8589E-03 1.8643E-03 1.8719E-03 1.8761E-03 1.8804E-03 1.8830E-03 1.8846E-03 1.8857E-03 1.8869E-03 1.8876E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ge.mat0000644000000000000000000002005014741736366017653 0ustar00rootrootGermanium 1 32 1.000000 5 4 3 3 10 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2167E-03 1.2167E-03 1.2322E-03 1.2478E-03 1.2478E-03 1.3284E-03 1.4143E-03 1.4143E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.1103E-02 1.1103E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.3387E+00 1.2721E+02 6.2624E+00 5.2093E+00 5.2093E+00 5.1998E+00 5.1903E+00 5.1903E+00 5.1430E+00 5.0916E+00 5.0916E+00 5.0360E+00 4.7125E+00 4.1038E+00 3.5771E+00 3.1226E+00 2.7270E+00 2.0917E+00 1.6355E+00 1.4456E+00 1.4456E+00 9.8779E-01 6.7669E-01 3.8035E-01 2.4110E-01 1.6637E-01 1.2233E-01 7.4677E-02 5.0451E-02 2.4077E-02 1.4000E-02 9.1412E-03 9.1412E-03 6.4327E-03 3.6750E-03 2.9178E-03 2.3720E-03 1.9658E-03 1.6554E-03 1.4132E-03 1.0644E-03 9.3637E-04 8.3004E-04 6.6520E-04 6.0064E-04 5.7518E-04 3.8508E-04 3.5611E-04 3.0717E-04 2.6764E-04 2.3526E-04 1.8592E-04 1.5070E-04 1.4431E-04 1.2464E-04 8.9250E-05 6.7014E-05 3.7704E-05 2.4135E-05 1.6762E-05 1.2316E-05 9.4301E-06 7.4495E-06 6.0346E-06 4.9871E-06 4.1909E-06 3.5705E-06 3.0787E-06 2.6822E-06 2.3571E-06 1.8628E-06 1.5086E-06 1.2466E-06 1.0475E-06 8.9241E-07 7.6975E-07 6.7055E-07 3.7720E-07 2.4135E-07 1.6762E-07 9.4301E-08 6.0346E-08 2.6822E-08 1.5086E-08 6.7047E-09 3.7712E-09 2.4135E-09 1.6762E-09 9.4301E-10 6.0346E-10 2.6822E-10 1.5086E-10 6.7047E-11 3.7712E-11 2.4135E-11 1.6762E-11 9.4301E-12 6.0346E-12 2.6822E-12 1.5086E-12 6.7047E-13 3.7712E-13 2.4135E-13 1.6762E-13 9.4301E-14 6.0346E-14 INCOHERENT SCATTERING CROSS SECTION 6.1855E-03 7.3586E-02 2.4205E-03 8.4265E-03 8.4265E-03 8.5912E-03 8.7583E-03 8.7583E-03 9.6220E-03 1.0541E-02 1.0541E-02 1.1454E-02 1.6654E-02 2.6026E-02 3.4220E-02 4.1676E-02 4.8569E-02 6.0777E-02 7.1153E-02 7.6137E-02 7.6137E-02 9.0485E-02 1.0268E-01 1.1611E-01 1.2233E-01 1.2482E-01 1.2540E-01 1.2391E-01 1.2101E-01 1.1255E-01 1.0475E-01 9.8032E-02 9.8032E-02 9.2310E-02 8.3187E-02 7.9483E-02 7.6204E-02 7.3272E-02 7.0630E-02 6.8234E-02 6.4035E-02 6.2179E-02 6.0457E-02 5.7359E-02 5.5958E-02 5.5369E-02 5.0078E-02 4.9080E-02 4.7223E-02 4.5533E-02 4.3987E-02 4.1245E-02 3.8873E-02 3.8392E-02 3.6799E-02 3.3361E-02 3.0596E-02 2.5520E-02 2.2045E-02 1.9482E-02 1.7517E-02 1.5941E-02 1.4655E-02 1.3577E-02 1.2665E-02 1.1877E-02 1.1188E-02 1.0583E-02 1.0052E-02 9.5711E-03 8.7417E-03 8.0649E-03 7.4910E-03 7.0000E-03 6.5728E-03 6.2005E-03 5.8712E-03 4.6661E-03 3.8948E-03 3.3557E-03 2.6466E-03 2.1962E-03 1.5642E-03 1.2267E-03 8.6919E-04 6.8084E-04 5.6356E-04 4.8253E-04 3.7687E-04 3.1002E-04 2.1655E-04 1.6762E-04 1.1653E-04 8.9905E-05 7.3541E-05 6.2361E-05 4.8046E-05 3.9230E-05 2.7112E-05 2.0842E-05 1.4373E-05 1.1039E-05 8.9822E-06 7.5963E-06 5.8247E-06 4.7391E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.8868E+03 4.4541E+05 9.7756E+03 1.1852E+03 4.3559E+03 4.6516E+03 4.9663E+03 6.6500E+03 6.0740E+03 5.5486E+03 6.2817E+03 5.4698E+03 2.7063E+03 9.5711E+02 4.4612E+02 2.4409E+02 1.4813E+02 6.6749E+01 3.5713E+01 2.6590E+01 1.9665E+02 9.0403E+01 4.1436E+01 1.3353E+01 5.8430E+00 3.0438E+00 1.7749E+00 7.5150E-01 3.8351E-01 1.1246E-01 4.7324E-02 2.4415E-02 2.4415E-02 1.4373E-02 6.4119E-03 4.6670E-03 3.5415E-03 2.7793E-03 2.2385E-03 1.8406E-03 1.3171E-03 1.1437E-03 1.0080E-03 7.9911E-04 7.1202E-04 6.7661E-04 4.5715E-04 4.2602E-04 3.7253E-04 3.2910E-04 2.9377E-04 2.4033E-04 2.0212E-04 1.9515E-04 1.7364E-04 1.3443E-04 1.0898E-04 7.3093E-05 5.4540E-05 4.3335E-05 3.5871E-05 3.0563E-05 2.6607E-05 2.3546E-05 2.1108E-05 1.9126E-05 1.7475E-05 1.6090E-05 1.4904E-05 1.3884E-05 1.2200E-05 1.0881E-05 9.8199E-06 8.9490E-06 8.2183E-06 7.5971E-06 7.0630E-06 5.2251E-06 4.1452E-06 3.4353E-06 2.5586E-06 2.0378E-06 1.3511E-06 1.0102E-06 6.7163E-07 5.0302E-07 4.0208E-07 3.3482E-07 2.5097E-07 2.0071E-07 1.3370E-07 1.0027E-07 6.6815E-08 5.0103E-08 4.0084E-08 3.3399E-08 2.5047E-08 2.0038E-08 1.3361E-08 1.0019E-08 6.6782E-09 5.0086E-09 4.0067E-09 3.3391E-09 2.5039E-09 2.0038E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 8.8993E-05 1.4017E-04 2.7310E-04 4.4123E-04 6.3947E-04 1.1068E-03 1.6347E-03 1.7550E-03 2.1896E-03 3.3312E-03 4.4604E-03 7.0713E-03 9.3720E-03 1.1396E-02 1.3204E-02 1.4829E-02 1.6306E-02 1.7641E-02 1.8860E-02 1.9971E-02 2.1008E-02 2.1962E-02 2.2849E-02 2.3687E-02 2.5213E-02 2.6582E-02 2.7817E-02 2.8945E-02 2.9974E-02 3.0919E-02 3.1790E-02 3.5348E-02 3.7994E-02 4.0067E-02 4.3136E-02 4.5317E-02 4.8792E-02 5.0874E-02 5.3288E-02 5.4673E-02 5.5593E-02 5.6240E-02 5.7111E-02 5.7675E-02 5.8488E-02 5.8936E-02 5.9417E-02 5.9674E-02 5.9840E-02 5.9948E-02 6.0097E-02 6.0188E-02 6.0321E-02 6.0387E-02 6.0462E-02 6.0503E-02 6.0520E-02 6.0537E-02 6.0561E-02 6.0570E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0244E-07 3.0390E-06 1.0707E-05 4.3700E-05 8.7002E-05 1.3361E-04 1.7998E-04 2.2501E-04 2.6806E-04 3.0903E-04 3.4784E-04 3.8450E-04 4.1900E-04 4.5193E-04 4.8311E-04 5.1272E-04 5.6779E-04 6.1789E-04 6.6384E-04 7.0622E-04 7.4536E-04 7.8169E-04 8.1561E-04 9.5628E-04 1.0641E-03 1.1495E-03 1.2789E-03 1.3735E-03 1.5310E-03 1.6306E-03 1.7525E-03 1.8255E-03 1.8761E-03 1.9134E-03 1.9640E-03 1.9980E-03 2.0486E-03 2.0776E-03 2.1091E-03 2.1274E-03 2.1390E-03 2.1473E-03 2.1572E-03 2.1639E-03 2.1730E-03 2.1788E-03 2.1838E-03 2.1871E-03 2.1887E-03 2.1904E-03 2.1912E-03 2.1921E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/H.mat0000644000000000000000000001642014741736366017515 0ustar00rootrootHidrogen 1 1 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.4683E-01 8.4781E+01 4.9029E-01 2.9784E-01 2.4741E-01 1.6514E-01 1.1238E-01 8.0121E-02 5.9675E-02 3.6601E-02 2.4622E-02 1.1609E-02 6.6857E-03 3.0244E-03 1.7123E-03 1.0993E-03 7.6476E-04 4.3084E-04 2.7597E-04 1.2278E-04 6.9068E-05 4.4207E-05 4.4207E-05 3.0704E-05 1.7273E-05 1.3646E-05 1.1053E-05 9.1358E-06 7.6775E-06 6.5419E-06 4.9131E-06 4.3179E-06 3.8247E-06 3.0618E-06 2.7633E-06 2.6456E-06 1.7685E-06 1.6352E-06 1.4102E-06 1.2284E-06 1.0794E-06 8.5241E-07 6.9068E-07 6.6140E-07 5.7123E-07 4.0896E-07 3.0704E-07 1.7273E-07 1.1053E-07 7.6775E-08 5.6395E-08 4.3179E-08 3.4116E-08 2.7633E-08 2.2841E-08 1.9191E-08 1.6353E-08 1.4100E-08 1.2284E-08 1.0796E-08 8.5319E-09 6.9068E-09 5.7094E-09 4.7977E-09 4.0879E-09 3.5245E-09 3.0704E-09 1.7267E-09 1.1053E-09 7.6715E-10 4.3149E-10 2.7603E-10 1.2272E-10 6.9008E-11 3.0674E-11 1.7255E-11 1.1041E-11 7.6655E-12 4.3131E-12 2.7603E-12 1.2272E-12 6.9008E-13 3.0674E-13 1.7255E-13 1.1041E-13 7.6655E-14 4.3131E-14 2.7603E-14 1.2272E-14 6.9008E-15 3.0674E-15 1.7255E-15 1.1041E-15 7.6655E-16 4.3131E-16 2.7603E-16 INCOHERENT SCATTERING CROSS SECTION 5.0331E-02 6.9800E-02 1.7221E-02 9.8583E-02 1.4805E-01 2.2835E-01 2.7932E-01 3.0991E-01 3.2879E-01 3.4892E-01 3.5806E-01 3.6416E-01 3.6254E-01 3.5394E-01 3.4408E-01 3.3440E-01 3.2526E-01 3.0865E-01 2.9413E-01 2.6498E-01 2.4281E-01 2.2538E-01 2.2538E-01 2.1121E-01 1.8928E-01 1.8054E-01 1.7285E-01 1.6601E-01 1.5988E-01 1.5436E-01 1.4472E-01 1.4047E-01 1.3651E-01 1.2945E-01 1.2631E-01 1.2499E-01 1.1292E-01 1.1065E-01 1.0646E-01 1.0265E-01 9.9143E-02 9.2928E-02 8.7589E-02 8.6514E-02 8.2936E-02 7.5150E-02 6.8888E-02 5.7477E-02 4.9638E-02 4.3872E-02 3.9433E-02 3.5890E-02 3.2992E-02 3.0567E-02 2.8511E-02 2.6737E-02 2.5189E-02 2.3827E-02 2.2620E-02 2.1545E-02 1.9693E-02 1.8157E-02 1.6867E-02 1.5761E-02 1.4799E-02 1.3957E-02 1.3216E-02 1.0504E-02 8.7709E-03 7.5520E-03 5.9580E-03 4.9447E-03 3.5215E-03 2.7609E-03 1.9567E-03 1.5325E-03 1.2684E-03 1.0862E-03 8.4841E-04 6.9784E-04 4.8748E-04 3.7724E-04 2.6229E-04 2.0248E-04 1.6556E-04 1.4041E-04 1.0814E-04 8.8306E-05 6.1002E-05 4.6919E-05 3.2359E-05 2.4843E-05 2.0230E-05 1.7100E-05 1.3114E-05 1.0665E-05 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.8171E+00 2.2770E+04 7.0084E+01 1.7518E+00 6.6379E-01 1.6765E-01 6.2914E-02 2.9318E-02 1.5696E-02 5.8648E-03 2.7233E-03 6.7395E-04 2.4986E-04 6.1659E-05 2.2841E-05 1.0581E-05 5.6491E-06 2.1049E-06 9.8224E-07 2.4950E-07 9.6252E-08 4.6792E-08 4.6792E-08 2.6372E-08 1.1101E-08 7.9307E-09 5.9311E-09 4.6015E-09 3.6792E-09 3.0167E-09 2.1529E-09 1.8629E-09 1.6332E-09 1.2968E-09 1.1716E-09 1.1232E-09 7.7910E-10 7.3002E-10 6.4825E-10 5.8146E-10 5.2483E-10 4.3546E-10 3.7049E-10 3.5872E-10 3.2227E-10 2.5501E-10 2.1055E-10 1.4602E-10 1.1149E-10 9.0098E-11 7.5520E-11 6.5005E-11 5.7034E-11 5.0803E-11 4.5796E-11 4.1685E-11 3.8244E-11 3.5334E-11 3.2831E-11 3.0656E-11 2.7071E-11 2.4239E-11 2.1939E-11 2.0039E-11 1.8444E-11 1.7082E-11 1.5905E-11 1.1836E-11 9.4221E-12 7.8269E-12 5.8474E-12 4.6668E-12 3.1015E-12 2.3224E-12 1.5457E-12 1.1585E-12 9.2608E-13 7.7133E-13 5.7847E-13 4.6268E-13 3.0835E-13 2.3122E-13 1.5415E-13 1.1555E-13 9.2488E-14 7.7074E-14 5.7781E-14 4.6226E-14 3.0817E-14 2.3110E-14 1.5409E-14 1.1555E-14 9.2429E-15 7.7014E-15 5.7775E-15 4.6220E-15 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.6633E-06 7.5913E-06 1.5600E-05 2.6199E-05 3.9001E-05 6.9700E-05 1.0504E-04 1.1322E-04 1.4301E-04 2.2216E-04 3.0160E-04 4.9004E-04 6.5841E-04 8.0957E-04 9.4400E-04 1.0659E-03 1.1770E-03 1.2774E-03 1.3694E-03 1.4536E-03 1.5325E-03 1.6060E-03 1.6747E-03 1.7398E-03 1.8593E-03 1.9669E-03 2.0655E-03 2.1557E-03 2.2387E-03 2.3164E-03 2.3887E-03 2.6922E-03 2.9288E-03 3.1218E-03 3.4241E-03 3.6541E-03 4.0514E-03 4.3101E-03 4.6322E-03 4.8270E-03 4.9590E-03 5.0552E-03 5.1860E-03 5.2721E-03 5.3981E-03 5.4686E-03 5.5427E-03 5.5881E-03 5.6144E-03 5.6329E-03 5.6574E-03 5.6730E-03 5.6933E-03 5.7052E-03 5.7160E-03 5.7244E-03 5.7285E-03 5.7309E-03 5.7339E-03 5.7363E-03 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 2.3074E-07 6.8437E-06 2.4108E-05 9.8403E-05 1.9615E-04 3.0124E-04 4.0616E-04 5.0803E-04 6.0583E-04 6.9904E-04 7.8747E-04 8.7111E-04 9.4998E-04 1.0253E-03 1.0970E-03 1.1657E-03 1.2929E-03 1.4094E-03 1.5170E-03 1.6168E-03 1.7100E-03 1.7966E-03 1.8778E-03 2.2220E-03 2.4932E-03 2.7161E-03 3.0686E-03 3.3416E-03 3.8310E-03 4.1679E-03 4.6190E-03 4.9130E-03 5.1233E-03 5.2822E-03 5.5105E-03 5.6670E-03 5.9078E-03 6.0464E-03 6.2017E-03 6.2914E-03 6.3511E-03 6.3929E-03 6.4467E-03 6.4825E-03 6.5303E-03 6.5542E-03 6.5841E-03 6.6020E-03 6.6080E-03 6.6200E-03 6.6259E-03 6.6319E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/He.mat0000644000000000000000000001642014741736366017662 0ustar00rootrootHellium 1 2 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.7870E-01 5.1885E+00 4.4168E-01 3.5462E-01 3.2544E-01 2.6270E-01 2.0643E-01 1.6159E-01 1.2799E-01 8.4255E-02 5.9054E-02 2.9549E-02 1.7558E-02 8.1773E-03 4.6852E-03 3.0257E-03 2.1109E-03 1.1939E-03 7.6582E-04 3.4123E-04 1.9213E-04 1.2301E-04 1.2301E-04 8.5429E-05 4.8055E-05 3.7979E-05 3.0768E-05 2.5428E-05 2.1365E-05 1.8204E-05 1.3674E-05 1.2018E-05 1.0646E-05 8.5228E-06 7.6913E-06 7.3633E-06 4.9229E-06 4.5517E-06 3.9248E-06 3.4184E-06 3.0034E-06 2.3720E-06 1.9228E-06 1.8416E-06 1.5910E-06 1.1388E-06 8.5459E-07 4.8071E-07 3.0768E-07 2.1365E-07 1.5693E-07 1.2018E-07 9.4968E-08 7.6913E-08 6.3567E-08 5.3412E-08 4.5513E-08 3.9239E-08 3.4184E-08 3.0046E-08 2.3742E-08 1.9228E-08 1.5888E-08 1.3354E-08 1.1377E-08 9.8112E-09 8.5459E-09 4.8071E-09 3.0768E-09 2.1365E-09 1.2015E-09 7.6883E-10 3.4168E-10 1.9228E-10 8.5429E-11 4.8056E-11 3.0753E-11 2.1365E-11 1.2014E-11 7.6883E-12 3.4168E-12 1.9228E-12 8.5429E-13 4.8055E-13 3.0753E-13 2.1365E-13 1.2014E-13 7.6883E-14 3.4168E-14 1.9228E-14 8.5429E-15 4.8056E-15 3.0753E-15 2.1365E-15 1.2014E-15 7.6883E-16 INCOHERENT SCATTERING CROSS SECTION 1.0169E-02 1.1399E-03 2.9712E-03 2.1350E-02 3.4861E-02 6.3643E-02 8.9491E-02 1.1025E-01 1.2616E-01 1.4722E-01 1.5933E-01 1.7227E-01 1.7573E-01 1.7498E-01 1.7137E-01 1.6716E-01 1.6294E-01 1.5497E-01 1.4782E-01 1.3330E-01 1.2223E-01 1.1348E-01 1.1348E-01 1.0634E-01 9.5299E-02 9.0901E-02 8.7039E-02 8.3605E-02 8.0524E-02 7.7738E-02 7.2880E-02 7.0744E-02 6.8770E-02 6.5220E-02 6.3613E-02 6.2936E-02 5.6872E-02 5.5734E-02 5.3622E-02 5.1697E-02 4.9931E-02 4.6801E-02 4.4114E-02 4.3572E-02 4.1773E-02 3.7861E-02 3.4710E-02 2.8948E-02 2.5006E-02 2.2102E-02 1.9860E-02 1.8070E-02 1.6610E-02 1.5392E-02 1.4358E-02 1.3466E-02 1.2685E-02 1.2000E-02 1.1392E-02 1.0849E-02 9.9165E-03 9.1447E-03 8.4932E-03 7.9365E-03 7.4536E-03 7.0308E-03 6.6577E-03 5.2900E-03 4.4159E-03 3.8050E-03 3.0001E-03 2.4900E-03 1.7739E-03 1.3905E-03 9.8563E-04 7.7184E-04 6.3898E-04 5.4706E-04 4.2729E-04 3.5146E-04 2.4554E-04 1.9003E-04 1.3212E-04 1.0198E-04 8.3382E-05 7.0699E-05 5.4480E-05 4.4475E-05 3.0738E-05 2.3637E-05 1.6294E-05 1.2512E-05 1.0189E-05 8.6121E-06 6.6035E-06 5.3728E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.0438E+01 4.8984E+04 5.5544E+02 1.6385E+01 6.5042E+00 1.6806E+00 6.3703E-01 3.0482E-01 1.6535E-01 6.1837E-02 2.9203E-02 7.3347E-03 2.7518E-03 6.8728E-04 2.5653E-04 1.1954E-04 6.4079E-05 2.4013E-05 1.1260E-05 2.8827E-06 1.1176E-06 5.4521E-07 5.4521E-07 3.0828E-07 1.3032E-07 9.3079E-08 6.9736E-08 5.4308E-08 4.3271E-08 3.4986E-08 2.4689E-08 2.1801E-08 1.9831E-08 1.6007E-08 1.3583E-08 1.2479E-08 8.5188E-09 8.0417E-09 7.0709E-09 6.2289E-09 5.5720E-09 4.6290E-09 3.9600E-09 3.8351E-09 3.4459E-09 2.7233E-09 2.2448E-09 1.5542E-09 1.1854E-09 9.5705E-10 8.0193E-10 6.8984E-10 6.0513E-10 5.3878E-10 4.8567E-10 4.4189E-10 4.0548E-10 3.7448E-10 3.4785E-10 3.2483E-10 2.8677E-10 2.5683E-10 2.3245E-10 2.1229E-10 1.9529E-10 1.8085E-10 1.6836E-10 1.2528E-10 9.9737E-11 8.2841E-11 6.1882E-11 4.9380E-11 3.2814E-11 2.4569E-11 1.6355E-11 1.2253E-11 9.7977E-12 8.1622E-12 6.1190E-12 4.8943E-12 3.2619E-12 2.4464E-12 1.6294E-12 1.2226E-12 9.7796E-13 8.1502E-13 6.1115E-13 4.8898E-13 3.2589E-13 2.4449E-13 1.6294E-13 1.2223E-13 9.7781E-14 8.1487E-14 6.1115E-14 4.8883E-14 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.7047E-06 7.6569E-06 1.5728E-05 2.6405E-05 3.9293E-05 7.0193E-05 1.0583E-04 1.1411E-04 1.4420E-04 2.2399E-04 3.0392E-04 4.9364E-04 6.6276E-04 8.1532E-04 9.5103E-04 1.0738E-03 1.1853E-03 1.2867E-03 1.3792E-03 1.4642E-03 1.5437E-03 1.6174E-03 1.6866E-03 1.7513E-03 1.8717E-03 1.9800E-03 2.0793E-03 2.1696E-03 2.2538E-03 2.3306E-03 2.4028E-03 2.7052E-03 2.9369E-03 3.1235E-03 3.4078E-03 3.6170E-03 3.9615E-03 4.1751E-03 4.4279E-03 4.5754E-03 4.6731E-03 4.7424E-03 4.8371E-03 4.8973E-03 4.9861E-03 5.0342E-03 5.0854E-03 5.1170E-03 5.1350E-03 5.1471E-03 5.1636E-03 5.1742E-03 5.1862E-03 5.1952E-03 5.2028E-03 5.2073E-03 5.2103E-03 5.2118E-03 5.2133E-03 5.2148E-03 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1613E-07 3.4457E-06 1.2142E-05 4.9575E-05 9.8774E-05 1.5166E-04 2.0462E-04 2.5592E-04 3.0512E-04 3.5192E-04 3.9645E-04 4.3858E-04 4.7845E-04 5.1636E-04 5.5247E-04 5.8693E-04 6.5117E-04 7.0985E-04 7.6416E-04 8.1442E-04 8.6106E-04 9.0469E-04 9.4561E-04 1.1189E-03 1.2554E-03 1.3672E-03 1.5422E-03 1.6776E-03 1.9123E-03 2.0688E-03 2.2704E-03 2.3953E-03 2.4825E-03 2.5472E-03 2.6375E-03 2.6977E-03 2.7894E-03 2.8406E-03 2.8978E-03 2.9309E-03 2.9504E-03 2.9655E-03 2.9850E-03 2.9971E-03 3.0136E-03 3.0227E-03 3.0317E-03 3.0377E-03 3.0422E-03 3.0437E-03 3.0467E-03 3.0482E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Hf.mat0000644000000000000000000002174214741736366017666 0ustar00rootrootHf 1 72 1.000000 10 5 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.6617E-03 1.6617E-03 1.6888E-03 1.7164E-03 1.7164E-03 2.0000E-03 2.1076E-03 2.1076E-03 2.2328E-03 2.3654E-03 2.3654E-03 2.4804E-03 2.6009E-03 2.6009E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 9.5607E-03 9.5607E-03 1.0000E-02 1.0739E-02 1.0739E-02 1.1002E-02 1.1271E-02 1.1271E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 6.5351E-02 6.5351E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1134E+01 5.1636E+01 1.2286E+01 1.0658E+01 1.0490E+01 1.0490E+01 1.0461E+01 1.0432E+01 1.0432E+01 1.0145E+01 1.0031E+01 1.0031E+01 9.8945E+00 9.7574E+00 9.7574E+00 9.6485E+00 9.5347E+00 9.5347E+00 9.1231E+00 8.1582E+00 7.2810E+00 6.5083E+00 5.2431E+00 4.4772E+00 4.4772E+00 4.2916E+00 3.9981E+00 3.9981E+00 3.9028E+00 3.8092E+00 3.8092E+00 2.7717E+00 1.9576E+00 1.1573E+00 7.6048E-01 5.3747E-01 4.0285E-01 3.5156E-01 3.5156E-01 2.5305E-01 1.7349E-01 8.4753E-02 5.0474E-02 3.3573E-02 2.3941E-02 1.7918E-02 1.3907E-02 1.1106E-02 9.0725E-03 7.5498E-03 6.3801E-03 5.4621E-03 4.1334E-03 3.6439E-03 3.2364E-03 2.6026E-03 2.3533E-03 2.2548E-03 1.5162E-03 1.4032E-03 1.2118E-03 1.0571E-03 9.3013E-04 7.3628E-04 5.9719E-04 5.7188E-04 4.9404E-04 3.5423E-04 2.6630E-04 1.4997E-04 9.6056E-05 6.6703E-05 4.9023E-05 3.7552E-05 2.9664E-05 2.4029E-05 1.9859E-05 1.6687E-05 1.4221E-05 1.2261E-05 1.0682E-05 9.3897E-06 7.4193E-06 6.0090E-06 4.9664E-06 4.1736E-06 3.5561E-06 3.0656E-06 2.6705E-06 1.5021E-06 9.6157E-07 6.6770E-07 3.7552E-07 2.4036E-07 1.0682E-07 6.0090E-08 2.6705E-08 1.5021E-08 9.6123E-09 6.6770E-09 3.7552E-09 2.4036E-09 1.0682E-09 6.0090E-10 2.6705E-10 1.5021E-10 9.6123E-11 6.6770E-11 3.7552E-11 2.4036E-11 1.0682E-11 6.0090E-12 2.6705E-12 1.5021E-12 9.6123E-13 6.6770E-13 3.7552E-13 2.4036E-13 INCOHERENT SCATTERING CROSS SECTION 4.6155E-03 5.8438E-03 1.9824E-03 7.8377E-03 8.8532E-03 8.8532E-03 9.0226E-03 9.1940E-03 9.1940E-03 1.0908E-02 1.1566E-02 1.1566E-02 1.2327E-02 1.3128E-02 1.3128E-02 1.3820E-02 1.4542E-02 1.4542E-02 1.6897E-02 2.2568E-02 2.7875E-02 3.2781E-02 4.1364E-02 4.7066E-02 4.7066E-02 4.8551E-02 5.0946E-02 5.0946E-02 5.1770E-02 5.2600E-02 5.2600E-02 6.2755E-02 7.3417E-02 8.7486E-02 9.5212E-02 9.9464E-02 1.0176E-01 1.0250E-01 1.0250E-01 1.0328E-01 1.0264E-01 9.7844E-02 9.2210E-02 8.6989E-02 8.2391E-02 7.8376E-02 7.4834E-02 7.1679E-02 6.8862E-02 6.6335E-02 6.4037E-02 6.1927E-02 5.8197E-02 5.6547E-02 5.5021E-02 5.2253E-02 5.0980E-02 5.0440E-02 4.5683E-02 4.4783E-02 4.3102E-02 4.1567E-02 4.0165E-02 3.7683E-02 3.5528E-02 3.5089E-02 3.3635E-02 3.0495E-02 2.7973E-02 2.3348E-02 2.0166E-02 1.7828E-02 1.6026E-02 1.4586E-02 1.3408E-02 1.2423E-02 1.1589E-02 1.0867E-02 1.0240E-02 9.6866E-03 9.1973E-03 8.7587E-03 8.0030E-03 7.3822E-03 6.8558E-03 6.4071E-03 6.0157E-03 5.6750E-03 5.3747E-03 4.2714E-03 3.5662E-03 3.0713E-03 2.4221E-03 2.0105E-03 1.4319E-03 1.1225E-03 7.9557E-04 6.2317E-04 5.1587E-04 4.4165E-04 3.4482E-04 2.8378E-04 1.9818E-04 1.5338E-04 1.0665E-04 8.2324E-05 6.7310E-05 5.7087E-05 4.3962E-05 3.5899E-05 2.4815E-05 1.9076E-05 1.3155E-05 1.0102E-05 8.2257E-06 6.9537E-06 5.3308E-06 4.3389E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.3243E+03 3.3095E+05 1.3279E+04 1.4785E+03 1.1923E+03 1.4764E+03 2.1820E+03 3.2224E+03 3.6337E+03 3.5865E+03 3.1428E+03 3.6472E+03 3.1729E+03 2.7595E+03 2.9333E+03 2.6275E+03 2.3537E+03 2.4559E+03 1.7592E+03 8.7756E+02 5.0407E+02 3.1789E+02 1.5179E+02 9.5449E+01 2.5116E+02 2.2578E+02 1.8540E+02 2.5487E+02 2.4037E+02 2.2669E+02 2.6209E+02 1.2612E+02 5.8841E+01 1.9738E+01 8.9713E+00 4.8416E+00 2.9154E+00 2.2970E+00 1.1910E+01 6.9942E+00 3.8767E+00 1.2946E+00 5.9111E-01 3.2347E-01 1.9913E-01 1.3315E-01 9.4639E-02 7.0496E-02 5.4489E-02 4.3388E-02 3.5393E-02 2.9452E-02 2.1400E-02 1.8604E-02 1.6350E-02 1.2972E-02 1.1684E-02 1.1181E-02 7.5374E-03 6.9984E-03 6.0964E-03 5.3747E-03 4.7868E-03 3.8945E-03 3.2565E-03 3.1405E-03 2.7822E-03 2.1304E-03 1.7096E-03 1.1232E-03 8.2560E-04 6.4813E-04 5.3173E-04 4.4975E-04 3.8935E-04 3.4279E-04 3.0591E-04 2.7612E-04 2.5156E-04 2.3095E-04 2.1340E-04 1.9832E-04 1.7369E-04 1.5446E-04 1.3904E-04 1.2642E-04 1.1586E-04 1.0692E-04 9.9295E-05 7.3079E-05 5.7796E-05 4.7809E-05 3.5494E-05 2.8236E-05 1.8678E-05 1.3955E-05 9.2648E-06 6.9368E-06 5.5434E-06 4.6155E-06 3.4583E-06 2.7643E-06 1.8415E-06 1.3806E-06 9.2007E-07 6.8997E-07 5.5198E-07 4.5987E-07 3.4482E-07 2.7585E-07 1.8388E-07 1.3789E-07 9.1940E-08 6.8963E-08 5.5164E-08 4.5953E-08 3.4482E-08 2.7579E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.0851E-04 4.8156E-04 9.1697E-04 1.4386E-03 2.0135E-03 3.2385E-03 4.4941E-03 4.7707E-03 5.7413E-03 8.1249E-03 1.0341E-02 1.5233E-02 1.9350E-02 2.2885E-02 2.6006E-02 2.8813E-02 3.1364E-02 3.3706E-02 3.5865E-02 3.7889E-02 3.9779E-02 4.1533E-02 4.3153E-02 4.4671E-02 4.7404E-02 4.9867E-02 5.2094E-02 5.4084E-02 5.5940E-02 5.7627E-02 5.9213E-02 6.5556E-02 7.0279E-02 7.3957E-02 7.9355E-02 8.3167E-02 8.9173E-02 9.2749E-02 9.6899E-02 9.9261E-02 1.0081E-01 1.0193E-01 1.0341E-01 1.0436E-01 1.0574E-01 1.0648E-01 1.0729E-01 1.0773E-01 1.0800E-01 1.0820E-01 1.0844E-01 1.0861E-01 1.0881E-01 1.0894E-01 1.0905E-01 1.0911E-01 1.0918E-01 1.0918E-01 1.0921E-01 1.0925E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3750E-08 2.7779E-06 9.7777E-06 3.9846E-05 7.9287E-05 1.2156E-04 1.6364E-04 2.0429E-04 2.4313E-04 2.7997E-04 3.1479E-04 3.4752E-04 3.7856E-04 4.0757E-04 4.3557E-04 4.6155E-04 5.1048E-04 5.5434E-04 5.9482E-04 6.3160E-04 6.6568E-04 6.9705E-04 7.2641E-04 8.4686E-04 9.3728E-04 1.0085E-03 1.1151E-03 1.1920E-03 1.3182E-03 1.3961E-03 1.4909E-03 1.5476E-03 1.5857E-03 1.6141E-03 1.6526E-03 1.6782E-03 1.7163E-03 1.7379E-03 1.7615E-03 1.7754E-03 1.7838E-03 1.7899E-03 1.7976E-03 1.8027E-03 1.8094E-03 1.8135E-03 1.8172E-03 1.8196E-03 1.8209E-03 1.8219E-03 1.8229E-03 1.8236E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Hg.mat0000644000000000000000000002205214741736366017662 0ustar00rootrootHg 1 80 1.000000 10 6 3 3 3 3 7 3 3 9 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.2949E-03 2.2949E-03 2.3395E-03 2.3849E-03 2.3849E-03 2.6058E-03 2.8471E-03 2.8471E-03 3.0000E-03 3.2785E-03 3.2785E-03 3.4171E-03 3.5616E-03 3.5616E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.2284E-02 1.2284E-02 1.3211E-02 1.4209E-02 1.4209E-02 1.4521E-02 1.4839E-02 1.4839E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 8.3102E-02 8.3102E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2342E+01 4.7727E+01 1.3465E+01 1.1874E+01 1.1324E+01 1.0976E+01 1.0976E+01 1.0924E+01 1.0871E+01 1.0871E+01 1.0619E+01 1.0343E+01 1.0343E+01 1.0165E+01 9.8503E+00 9.8503E+00 9.6952E+00 9.5350E+00 9.5350E+00 9.0637E+00 8.0880E+00 7.2413E+00 5.8933E+00 4.8816E+00 3.9989E+00 3.9989E+00 3.7051E+00 3.4225E+00 3.4225E+00 3.3406E+00 3.2604E+00 3.2604E+00 3.2214E+00 2.2715E+00 1.3396E+00 8.9256E-01 6.3347E-01 4.7405E-01 2.9800E-01 2.7990E-01 2.7990E-01 2.0562E-01 1.0117E-01 6.0314E-02 4.0211E-02 2.8758E-02 2.1583E-02 1.6788E-02 1.3428E-02 1.0982E-02 9.1475E-03 7.7367E-03 6.6289E-03 5.0237E-03 4.4313E-03 3.9377E-03 3.1692E-03 2.8668E-03 2.7473E-03 1.8500E-03 1.7124E-03 1.4796E-03 1.2910E-03 1.1359E-03 8.9916E-04 7.3014E-04 6.9952E-04 6.0495E-04 4.3389E-04 3.2604E-04 1.8371E-04 1.1766E-04 8.1750E-05 6.0074E-05 4.5994E-05 3.6357E-05 2.9452E-05 2.4342E-05 2.0454E-05 1.7428E-05 1.5029E-05 1.3093E-05 1.1507E-05 9.0907E-06 7.3644E-06 6.0855E-06 5.1158E-06 4.3592E-06 3.7588E-06 3.2724E-06 1.8413E-06 1.1784E-06 8.1840E-07 4.6024E-07 2.9461E-07 1.3093E-07 7.3644E-08 3.2724E-08 1.8413E-08 1.1784E-08 8.1840E-09 4.6024E-09 2.9461E-09 1.3093E-09 7.3644E-10 3.2724E-10 1.8413E-10 1.1784E-10 8.1840E-11 4.6024E-11 2.9461E-11 1.3093E-11 7.3644E-12 3.2724E-12 1.8413E-12 1.1784E-12 8.1840E-13 4.6024E-13 2.9461E-13 INCOHERENT SCATTERING CROSS SECTION 3.5636E-03 5.9681E-03 1.3841E-03 6.4638E-03 9.3219E-03 1.0982E-02 1.0982E-02 1.1230E-02 1.1480E-02 1.1480E-02 1.2680E-02 1.3975E-02 1.3975E-02 1.4798E-02 1.6272E-02 1.6272E-02 1.6999E-02 1.7752E-02 1.7752E-02 2.0007E-02 2.4966E-02 2.9713E-02 3.8458E-02 4.5904E-02 5.3019E-02 5.3019E-02 5.5468E-02 5.7973E-02 5.7973E-02 5.8747E-02 5.9504E-02 5.9504E-02 5.9864E-02 6.9891E-02 8.3491E-02 9.1447E-02 9.6011E-02 9.8563E-02 1.0036E-01 1.0042E-01 1.0042E-01 1.0003E-01 9.5801E-02 9.0517E-02 8.5534E-02 8.1090E-02 7.7169E-02 7.3704E-02 7.0627E-02 6.7880E-02 6.5411E-02 6.3167E-02 6.1105E-02 5.7444E-02 5.5811E-02 5.4292E-02 5.1567E-02 5.0347E-02 4.9837E-02 4.5123E-02 4.4232E-02 4.2580E-02 4.1070E-02 3.9676E-02 3.7201E-02 3.5096E-02 3.4676E-02 3.3269E-02 3.0164E-02 2.7650E-02 2.3078E-02 1.9938E-02 1.7623E-02 1.5843E-02 1.4420E-02 1.3255E-02 1.2282E-02 1.1456E-02 1.0745E-02 1.0123E-02 9.5771E-03 9.0907E-03 8.6584E-03 7.9138E-03 7.2984E-03 6.7790E-03 6.3347E-03 5.9474E-03 5.6111E-03 5.3139E-03 4.2211E-03 3.5246E-03 3.0382E-03 2.3949E-03 1.9878E-03 1.4155E-03 1.1099E-03 7.8658E-04 6.1605E-04 5.1008E-04 4.3682E-04 3.4105E-04 2.8059E-04 1.9595E-04 1.5167E-04 1.0544E-04 8.1390E-05 6.6559E-05 5.6442E-05 4.3472E-05 3.5486E-05 2.4534E-05 1.8860E-05 1.3009E-05 9.9854E-06 8.1330E-06 6.8751E-06 5.2719E-06 4.2872E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.8186E+03 4.5664E+05 1.8964E+04 2.1619E+03 1.1724E+03 8.6644E+02 9.7812E+02 1.4392E+03 2.1169E+03 2.2835E+03 2.1730E+03 2.0679E+03 2.3883E+03 2.1073E+03 1.6941E+03 1.7980E+03 1.6296E+03 1.4771E+03 1.5398E+03 1.1697E+03 6.7880E+02 4.3142E+02 2.0811E+02 1.1718E+02 6.8601E+01 1.7392E+02 1.4290E+02 1.1742E+02 1.6284E+02 1.5457E+02 1.4675E+02 1.6981E+02 1.6479E+02 7.8898E+01 2.6987E+01 1.2435E+01 6.7730E+00 4.1100E+00 1.8605E+00 1.6746E+00 8.0850E+00 4.9717E+00 1.7119E+00 7.9469E-01 4.4010E-01 2.7359E-01 1.8435E-01 1.3186E-01 9.8736E-02 7.6646E-02 6.1245E-02 5.0107E-02 4.1805E-02 3.0496E-02 2.6546E-02 2.3349E-02 1.8547E-02 1.6716E-02 1.6002E-02 1.0793E-02 1.0020E-02 8.7254E-03 7.6887E-03 6.8435E-03 5.5618E-03 4.6504E-03 4.4853E-03 3.9741E-03 3.0384E-03 2.4336E-03 1.5945E-03 1.1691E-03 9.1658E-04 7.5085E-04 6.3437E-04 5.4850E-04 4.8246E-04 4.3052E-04 3.8819E-04 3.5366E-04 3.2454E-04 2.9968E-04 2.7840E-04 2.4369E-04 2.1661E-04 1.9490E-04 1.7710E-04 1.6230E-04 1.4975E-04 1.3900E-04 1.0223E-04 8.0820E-05 6.6799E-05 4.9597E-05 3.9449E-05 2.6077E-05 1.9478E-05 1.2931E-05 9.6791E-06 7.7337E-06 6.4397E-06 4.8246E-06 3.8578E-06 2.5693E-06 1.9262E-06 1.2834E-06 9.6251E-07 7.6977E-07 6.4157E-07 4.8095E-07 3.8488E-07 2.5654E-07 1.9238E-07 1.2825E-07 9.6191E-08 7.6947E-08 6.4127E-08 4.8095E-08 3.8488E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.6567E-04 5.7480E-04 1.1042E-03 1.7368E-03 2.4241E-03 3.8489E-03 5.2719E-03 5.5841E-03 6.6704E-03 9.2803E-03 1.1655E-02 1.6824E-02 2.1154E-02 2.4882E-02 2.8167E-02 3.1133E-02 3.3805E-02 3.6297E-02 3.8578E-02 4.0710E-02 4.2691E-02 4.4553E-02 4.6294E-02 4.7915E-02 5.0857E-02 5.3469E-02 5.5811E-02 5.7973E-02 5.9954E-02 6.1755E-02 6.3437E-02 7.0222E-02 7.5265E-02 7.9198E-02 8.4963E-02 8.9016E-02 9.5410E-02 9.9193E-02 1.0361E-01 1.0613E-01 1.0778E-01 1.0895E-01 1.1051E-01 1.1153E-01 1.1300E-01 1.1378E-01 1.1465E-01 1.1510E-01 1.1541E-01 1.1562E-01 1.1586E-01 1.1604E-01 1.1628E-01 1.1640E-01 1.1652E-01 1.1658E-01 1.1664E-01 1.1667E-01 1.1670E-01 1.1673E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2538E-08 2.7435E-06 9.6611E-06 3.9389E-05 7.8328E-05 1.2006E-04 1.6155E-04 2.0166E-04 2.3994E-04 2.7626E-04 3.1043E-04 3.4285E-04 3.7317E-04 4.0200E-04 4.2932E-04 4.5514E-04 5.0287E-04 5.4610E-04 5.8573E-04 6.2176E-04 6.5508E-04 6.8601E-04 7.1453E-04 8.3221E-04 9.2048E-04 9.8983E-04 1.0937E-03 1.1682E-03 1.2901E-03 1.3654E-03 1.4564E-03 1.5104E-03 1.5470E-03 1.5735E-03 1.6101E-03 1.6341E-03 1.6698E-03 1.6899E-03 1.7119E-03 1.7248E-03 1.7326E-03 1.7380E-03 1.7455E-03 1.7500E-03 1.7560E-03 1.7599E-03 1.7632E-03 1.7656E-03 1.7668E-03 1.7677E-03 1.7686E-03 1.7692E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ho.mat0000644000000000000000000002174214741736366017677 0ustar00rootrootHo 1 67 1.000000 10 4 3 3 3 3 7 3 3 8 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.3514E-03 1.3514E-03 1.3713E-03 1.3915E-03 1.3915E-03 1.5000E-03 1.7412E-03 1.7412E-03 1.8297E-03 1.9228E-03 1.9228E-03 2.0000E-03 2.1283E-03 2.1283E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.0711E-03 8.0711E-03 8.4839E-03 8.9178E-03 8.9178E-03 9.1529E-03 9.3942E-03 9.3942E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.5618E-02 5.5618E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0370E+01 6.3692E+01 1.1587E+01 1.0034E+01 1.0034E+01 1.0014E+01 9.9937E+00 9.9937E+00 9.8805E+00 9.6395E+00 9.6395E+00 9.5473E+00 9.4496E+00 9.4496E+00 9.3693E+00 9.2342E+00 9.2342E+00 8.3615E+00 7.4158E+00 6.5724E+00 5.8385E+00 4.6773E+00 4.6408E+00 4.6408E+00 4.4424E+00 4.2501E+00 4.2501E+00 4.1497E+00 4.0493E+00 4.0493E+00 3.8120E+00 2.4654E+00 1.7541E+00 1.0359E+00 6.7695E-01 4.7905E-01 4.0530E-01 4.0530E-01 3.5966E-01 2.2536E-01 1.5387E-01 7.5035E-02 4.4656E-02 2.9648E-02 2.1101E-02 1.5768E-02 1.2225E-02 9.7547E-03 7.9635E-03 6.6228E-03 5.5938E-03 4.7874E-03 3.6211E-03 3.1913E-03 2.8333E-03 2.2769E-03 2.0586E-03 1.9724E-03 1.3254E-03 1.2263E-03 1.0587E-03 9.2342E-04 8.1264E-04 6.4339E-04 5.2141E-04 4.9914E-04 4.3083E-04 3.0889E-04 2.3237E-04 1.3083E-04 8.3761E-05 5.8202E-05 4.2757E-05 3.2745E-05 2.5873E-05 2.0959E-05 1.7322E-05 1.4554E-05 1.2404E-05 1.0695E-05 9.3145E-06 8.1863E-06 6.4701E-06 5.2396E-06 4.3305E-06 3.6393E-06 3.1011E-06 2.6739E-06 2.3292E-06 1.3101E-06 8.3834E-07 5.8239E-07 3.2752E-07 2.0962E-07 9.3182E-08 5.2396E-08 2.3292E-08 1.3101E-08 8.3834E-09 5.8239E-09 3.2752E-09 2.0962E-09 9.3182E-10 5.2396E-10 2.3292E-10 1.3101E-10 8.3834E-11 5.8239E-11 3.2752E-11 2.0962E-11 9.3182E-12 5.2396E-12 2.3292E-12 1.3101E-12 8.3834E-13 5.8239E-13 3.2752E-13 2.0962E-13 INCOHERENT SCATTERING CROSS SECTION 5.1374E-03 7.6215E-03 2.3254E-03 7.4852E-03 7.4852E-03 7.6174E-03 7.7518E-03 7.7518E-03 8.4784E-03 1.0063E-02 1.0063E-02 1.0647E-02 1.1261E-02 1.1261E-02 1.1768E-02 1.2612E-02 1.2612E-02 1.8282E-02 2.4387E-02 3.0007E-02 3.5107E-02 4.3889E-02 4.4181E-02 4.4181E-02 4.5827E-02 4.7467E-02 4.7467E-02 4.8322E-02 4.9183E-02 4.9183E-02 5.1301E-02 6.6016E-02 7.6933E-02 9.0662E-02 9.7928E-02 1.0187E-01 1.0326E-01 1.0326E-01 1.0399E-01 1.0519E-01 1.0435E-01 9.9133E-02 9.3255E-02 8.7904E-02 8.3214E-02 7.9117E-02 7.5509E-02 7.2306E-02 6.9448E-02 6.6884E-02 6.4555E-02 6.2422E-02 5.8660E-02 5.6997E-02 5.5458E-02 5.2663E-02 5.1374E-02 5.0826E-02 4.6007E-02 4.5104E-02 4.3421E-02 4.1881E-02 4.0464E-02 3.7946E-02 3.5776E-02 3.5337E-02 3.3882E-02 3.0722E-02 2.8177E-02 2.3515E-02 2.0309E-02 1.7954E-02 1.6139E-02 1.4689E-02 1.3503E-02 1.2513E-02 1.1670E-02 1.0943E-02 1.0311E-02 9.7563E-03 9.2598E-03 8.8179E-03 8.0621E-03 7.4341E-03 6.9047E-03 6.4519E-03 6.0575E-03 5.7143E-03 5.4113E-03 4.3013E-03 3.5900E-03 3.0930E-03 2.4394E-03 2.0247E-03 1.4419E-03 1.1304E-03 8.0147E-04 6.2766E-04 5.1958E-04 4.4473E-04 3.4739E-04 2.8579E-04 1.9958E-04 1.5449E-04 1.0742E-04 8.2922E-05 6.7769E-05 5.7472E-05 4.4291E-05 3.6159E-05 2.4990E-05 1.9213E-05 1.3251E-05 1.0173E-05 8.2849E-06 7.0032E-06 5.3674E-06 4.3670E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.6056E+03 2.2690E+05 9.9964E+03 1.4529E+03 2.0583E+03 3.0368E+03 4.4765E+03 5.1812E+03 5.8385E+03 4.0274E+03 4.6664E+03 4.1518E+03 3.6951E+03 3.9252E+03 3.5812E+03 3.1190E+03 3.2570E+03 1.4561E+03 7.1895E+02 4.1041E+02 2.5771E+02 1.2232E+02 1.1954E+02 3.2365E+02 2.8428E+02 2.4971E+02 3.4206E+02 3.2085E+02 3.0101E+02 3.4793E+02 2.9733E+02 1.0351E+02 4.7978E+01 1.5883E+01 7.1639E+00 3.8448E+00 2.8520E+00 1.5412E+01 1.2630E+01 5.9115E+00 3.2343E+00 1.0618E+00 4.7978E-01 2.6062E-01 1.5956E-01 1.0622E-01 7.5217E-02 5.5848E-02 4.3049E-02 3.4201E-02 2.7849E-02 2.3144E-02 1.6786E-02 1.4583E-02 1.2809E-02 1.0154E-02 9.1429E-03 8.7486E-03 5.8969E-03 5.4763E-03 4.7730E-03 4.2100E-03 3.7507E-03 3.0524E-03 2.5526E-03 2.4617E-03 2.1814E-03 1.6720E-03 1.3433E-03 8.8435E-04 6.5067E-04 5.1155E-04 4.2027E-04 3.5560E-04 3.0788E-04 2.7122E-04 2.4223E-04 2.1871E-04 1.9933E-04 1.8304E-04 1.6920E-04 1.5726E-04 1.3780E-04 1.2257E-04 1.1038E-04 1.0037E-04 9.2013E-05 8.4930E-05 7.8869E-05 5.8093E-05 4.5970E-05 3.8010E-05 2.8243E-05 2.2467E-05 1.4865E-05 1.1107E-05 7.3757E-06 5.5208E-06 4.4108E-06 3.6732E-06 2.7527E-06 2.2007E-06 1.4660E-06 1.0990E-06 7.3246E-07 5.4916E-07 4.3925E-07 3.6623E-07 2.7454E-07 2.1963E-07 1.4642E-07 1.0980E-07 7.3209E-08 5.4879E-08 4.3925E-08 3.6586E-08 2.7447E-08 2.1959E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.7425E-04 4.2690E-04 8.1035E-04 1.2710E-03 1.7826E-03 2.8891E-03 4.0420E-03 4.2976E-03 5.1990E-03 7.4388E-03 9.5409E-03 1.4196E-02 1.8151E-02 2.1550E-02 2.4551E-02 2.7250E-02 2.9700E-02 3.1949E-02 3.4027E-02 3.5958E-02 3.7755E-02 3.9434E-02 4.1004E-02 4.2465E-02 4.5057E-02 4.7394E-02 4.9512E-02 5.1447E-02 5.3200E-02 5.4806E-02 5.6303E-02 6.2365E-02 6.6856E-02 7.0361E-02 7.5546E-02 7.9161E-02 8.4930E-02 8.8362E-02 9.2378E-02 9.4642E-02 9.6139E-02 9.7198E-02 9.8622E-02 9.9572E-02 1.0089E-01 1.0162E-01 1.0238E-01 1.0282E-01 1.0308E-01 1.0326E-01 1.0351E-01 1.0366E-01 1.0388E-01 1.0399E-01 1.0410E-01 1.0417E-01 1.0421E-01 1.0425E-01 1.0425E-01 1.0428E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4278E-08 2.7958E-06 9.8476E-06 4.0165E-05 7.9891E-05 1.2250E-04 1.6493E-04 2.0593E-04 2.4511E-04 2.8228E-04 3.1745E-04 3.5053E-04 3.8156E-04 4.1114E-04 4.3925E-04 4.6591E-04 5.1484E-04 5.5975E-04 6.0028E-04 6.3789E-04 6.7221E-04 7.0434E-04 7.3392E-04 8.5624E-04 9.4825E-04 1.0209E-03 1.1297E-03 1.2086E-03 1.3382E-03 1.4185E-03 1.5164E-03 1.5752E-03 1.6150E-03 1.6442E-03 1.6844E-03 1.7110E-03 1.7508E-03 1.7734E-03 1.7979E-03 1.8125E-03 1.8216E-03 1.8279E-03 1.8362E-03 1.8414E-03 1.8487E-03 1.8527E-03 1.8567E-03 1.8593E-03 1.8607E-03 1.8618E-03 1.8629E-03 1.8636E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/I.mat0000644000000000000000000002016614741736366017520 0ustar00rootrootIodine 1 53 1.000000 6 4 6 3 3 8 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0721E-03 1.0721E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.5571E-03 4.5571E-03 4.7023E-03 4.8521E-03 4.8521E-03 5.0000E-03 5.1881E-03 5.1881E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.3169E-02 3.3169E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.4184E+00 1.8036E+03 1.0403E+01 8.3567E+00 8.3567E+00 7.9581E+00 7.4455E+00 6.4632E+00 5.6281E+00 5.2294E+00 5.2294E+00 5.1326E+00 5.0349E+00 5.0349E+00 4.9400E+00 4.8213E+00 4.8213E+00 4.3563E+00 3.4461E+00 2.7984E+00 1.8431E+00 1.3121E+00 7.4550E-01 6.4300E-01 6.4300E-01 4.8593E-01 3.4518E-01 2.5768E-01 1.5845E-01 1.0734E-01 5.2200E-02 3.0869E-02 2.0346E-02 2.0346E-02 1.4402E-02 8.2950E-03 6.6040E-03 5.3813E-03 4.4692E-03 3.7707E-03 3.2238E-03 2.4338E-03 2.1430E-03 1.9011E-03 1.5259E-03 1.3790E-03 1.3211E-03 8.8597E-04 8.1945E-04 7.0712E-04 6.1643E-04 5.4214E-04 4.2883E-04 3.4765E-04 3.3289E-04 2.8748E-04 2.0595E-04 1.5475E-04 8.7126E-05 5.5759E-05 3.8732E-05 2.8458E-05 2.1791E-05 1.7216E-05 1.3947E-05 1.1527E-05 9.6854E-06 8.2523E-06 7.1181E-06 6.1975E-06 5.4477E-06 4.3050E-06 3.4869E-06 2.8819E-06 2.4216E-06 2.0633E-06 1.7791E-06 1.5499E-06 8.7173E-07 5.5806E-07 3.8746E-07 2.1796E-07 1.3947E-07 6.1975E-08 3.4869E-08 1.5499E-08 8.7173E-09 5.5806E-09 3.8742E-09 2.1791E-09 1.3947E-09 6.1975E-10 3.4869E-10 1.5499E-10 8.7173E-11 5.5806E-11 3.8742E-11 2.1791E-11 1.3947E-11 6.1975E-12 3.4869E-12 1.5499E-12 8.7173E-13 5.5806E-13 3.8742E-13 2.1791E-13 1.3947E-13 INCOHERENT SCATTERING CROSS SECTION 4.6875E-03 7.1680E+02 2.2309E-03 5.2721E-03 5.2721E-03 8.9688E-03 1.3425E-02 2.1895E-02 2.9317E-02 3.2962E-02 3.2962E-02 3.3869E-02 3.4789E-02 3.4789E-02 3.5681E-02 3.6791E-02 3.6791E-02 4.1290E-02 5.1061E-02 5.9555E-02 7.5784E-02 8.6461E-02 9.9084E-02 1.0165E-01 1.0165E-01 1.0573E-01 1.0933E-01 1.1104E-01 1.1152E-01 1.1000E-01 1.0364E-01 9.7091E-02 9.1292E-02 9.1292E-02 8.6272E-02 7.8109E-02 7.4745E-02 7.1751E-02 6.9063E-02 6.6626E-02 6.4397E-02 6.0476E-02 5.8748E-02 5.7151E-02 5.4251E-02 5.2911E-02 5.2342E-02 4.7373E-02 4.6439E-02 4.4691E-02 4.3093E-02 4.1629E-02 3.9037E-02 3.6805E-02 3.6355E-02 3.4857E-02 3.1603E-02 2.8980E-02 2.4178E-02 2.0885E-02 1.8460E-02 1.6595E-02 1.5105E-02 1.3885E-02 1.2865E-02 1.1996E-02 1.1251E-02 1.0601E-02 1.0027E-02 9.5240E-03 9.0685E-03 8.2855E-03 7.6401E-03 7.0991E-03 6.6341E-03 6.2307E-03 5.8748E-03 5.5616E-03 4.4213E-03 3.6910E-03 3.1799E-03 2.5079E-03 2.0818E-03 1.4825E-03 1.1622E-03 8.2380E-04 6.4538E-04 5.3386E-04 4.5727E-04 3.5714E-04 2.9384E-04 2.0519E-04 1.5883E-04 1.1043E-04 8.5228E-05 6.9710E-05 5.9080E-05 4.5532E-05 3.7176E-05 2.5692E-05 1.9750E-05 1.3619E-05 1.0459E-05 8.5180E-06 7.1988E-06 5.5189E-06 4.4906E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.0875E+03 1.1162E+06 3.8671E+04 7.8584E+03 8.1953E+03 3.9112E+03 1.9893E+03 7.3554E+02 3.5510E+02 2.5388E+02 7.4977E+02 7.0270E+02 6.5866E+02 8.8834E+02 8.3804E+02 7.6164E+02 8.7885E+02 6.1311E+02 2.8862E+02 1.5973E+02 5.3196E+01 2.4035E+01 7.7160E+00 5.8084E+00 3.5083E+01 2.1506E+01 1.1868E+01 7.2083E+00 3.2402E+00 1.7250E+00 5.4193E-01 2.3831E-01 1.2690E-01 1.2690E-01 7.6496E-02 3.5254E-02 2.5956E-02 1.9879E-02 1.5716E-02 1.2737E-02 1.0529E-02 7.5863E-03 6.5961E-03 5.8133E-03 4.6121E-03 4.1204E-03 3.9221E-03 2.6446E-03 2.4607E-03 2.1467E-03 1.8929E-03 1.6870E-03 1.3755E-03 1.1522E-03 1.1114E-03 9.8575E-04 7.5820E-04 6.1121E-04 4.0464E-04 2.9920E-04 2.3608E-04 1.9442E-04 1.6495E-04 1.4307E-04 1.2623E-04 1.1289E-04 1.0207E-04 9.3105E-05 8.5560E-05 7.9153E-05 7.3649E-05 6.4585E-05 5.7514E-05 5.1820E-05 4.7169E-05 4.3269E-05 3.9961E-05 3.7123E-05 2.7381E-05 2.1687E-05 1.7952E-05 1.3349E-05 1.0625E-05 7.0327E-06 5.2579E-06 3.4926E-06 2.6152E-06 2.0899E-06 1.7401E-06 1.3040E-06 1.0426E-06 6.9473E-07 5.2057E-07 3.4708E-07 2.6029E-07 2.0818E-07 1.7349E-07 1.3012E-07 1.0407E-07 6.9378E-08 5.2010E-08 3.4684E-08 2.6014E-08 2.0813E-08 1.7344E-08 1.3007E-08 1.0407E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.8835E-04 2.9210E-04 5.5325E-04 8.7126E-04 1.2331E-03 2.0496E-03 2.9388E-03 3.1391E-03 3.8527E-03 5.6664E-03 7.4076E-03 1.1356E-02 1.4758E-02 1.7691E-02 2.0301E-02 2.2645E-02 2.4776E-02 2.6726E-02 2.8525E-02 3.0190E-02 3.1737E-02 3.3161E-02 3.4485E-02 3.5709E-02 3.7944E-02 3.9952E-02 4.1769E-02 4.3420E-02 4.4930E-02 4.6306E-02 4.7596E-02 5.2721E-02 5.6565E-02 5.9555E-02 6.3921E-02 6.7053E-02 7.2035E-02 7.5025E-02 7.8489E-02 8.0482E-02 8.1763E-02 8.2712E-02 8.3946E-02 8.4753E-02 8.5939E-02 8.6604E-02 8.7268E-02 8.7648E-02 8.7885E-02 8.8027E-02 8.8265E-02 8.8407E-02 8.8597E-02 8.8692E-02 8.8787E-02 8.8834E-02 8.8882E-02 8.8882E-02 8.8929E-02 8.8929E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 9.7091E-08 2.8784E-06 1.0136E-05 4.1337E-05 8.2285E-05 1.2623E-04 1.6998E-04 2.1231E-04 2.5284E-04 2.9127E-04 3.2762E-04 3.6193E-04 3.9420E-04 4.2490E-04 4.5395E-04 4.8166E-04 5.3243E-04 5.7894E-04 6.2165E-04 6.6056E-04 6.9663E-04 7.2984E-04 7.6116E-04 8.8929E-04 9.8657E-04 1.0639E-03 1.1797E-03 1.2642E-03 1.4042E-03 1.4915E-03 1.5987E-03 1.6633E-03 1.7069E-03 1.7392E-03 1.7838E-03 1.8132E-03 1.8569E-03 1.8816E-03 1.9086E-03 1.9243E-03 1.9342E-03 1.9409E-03 1.9499E-03 1.9556E-03 1.9632E-03 1.9679E-03 1.9722E-03 1.9750E-03 1.9765E-03 1.9774E-03 1.9788E-03 1.9798E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/In.mat0000644000000000000000000001774014741736366017702 0ustar00rootrootIn 1 49 1.000000 5 7 3 3 8 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.7301E-03 3.7301E-03 3.8326E-03 3.9380E-03 3.9380E-03 4.0000E-03 4.2375E-03 4.2375E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.7940E-02 2.7940E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.9512E+00 4.4245E+01 8.9439E+00 7.5368E+00 7.0858E+00 6.1942E+00 5.5963E+00 5.5963E+00 5.5154E+00 5.4337E+00 5.4337E+00 5.3865E+00 5.2118E+00 5.2118E+00 4.6910E+00 4.1057E+00 3.2256E+00 2.6250E+00 1.7271E+00 1.2095E+00 7.5473E-01 7.5473E-01 6.8078E-01 4.4440E-01 3.1459E-01 2.3355E-01 1.4287E-01 9.6715E-02 4.6973E-02 2.7703E-02 1.8218E-02 1.2876E-02 9.5816E-03 7.4057E-03 5.8929E-03 4.7996E-03 3.9844E-03 3.3604E-03 2.8719E-03 2.1670E-03 1.9081E-03 1.6929E-03 1.3587E-03 1.2273E-03 1.1754E-03 7.8830E-04 7.2912E-04 6.2897E-04 5.4809E-04 4.8191E-04 3.8111E-04 3.0897E-04 2.9586E-04 2.5551E-04 1.8304E-04 1.3752E-04 7.7414E-05 4.9543E-05 3.4411E-05 2.5285E-05 1.9359E-05 1.5294E-05 1.2388E-05 1.0238E-05 8.6068E-06 7.3323E-06 6.3200E-06 5.5071E-06 4.8405E-06 3.8245E-06 3.0976E-06 2.5600E-06 2.1514E-06 1.8331E-06 1.5808E-06 1.3768E-06 7.7466E-07 4.9564E-07 3.4422E-07 1.9359E-07 1.2394E-07 5.5071E-08 3.0976E-08 1.3768E-08 7.7466E-09 4.9564E-09 3.4417E-09 1.9359E-09 1.2388E-09 5.5071E-10 3.0976E-10 1.3768E-10 7.7466E-11 4.9564E-11 3.4417E-11 1.9359E-11 1.2388E-11 5.5071E-12 3.0976E-12 1.3768E-12 7.7466E-13 4.9564E-13 3.4417E-13 1.9359E-13 1.2388E-13 INCOHERENT SCATTERING CROSS SECTION 5.4546E-03 8.8458E-03 2.1252E-03 9.8708E-03 1.4172E-02 2.2039E-02 2.7299E-02 2.7299E-02 2.8011E-02 2.8737E-02 2.8737E-02 2.9161E-02 3.0761E-02 3.0761E-02 3.5675E-02 4.1681E-02 5.2449E-02 6.1784E-02 7.8620E-02 8.9530E-02 1.0060E-01 1.0060E-01 1.0264E-01 1.0951E-01 1.1308E-01 1.1476E-01 1.1497E-01 1.1318E-01 1.0642E-01 9.9600E-02 9.3586E-02 8.8376E-02 8.3856E-02 7.9931E-02 7.6497E-02 7.3428E-02 7.0645E-02 6.8131E-02 6.5860E-02 6.1858E-02 6.0053E-02 5.8358E-02 5.5359E-02 5.4074E-02 5.3550E-02 4.8426E-02 4.7451E-02 4.5665E-02 4.4046E-02 4.2557E-02 3.9904E-02 3.7616E-02 3.7155E-02 3.5622E-02 3.2292E-02 2.9612E-02 2.4708E-02 2.1341E-02 1.8866E-02 1.6957E-02 1.5430E-02 1.4187E-02 1.3144E-02 1.2262E-02 1.1497E-02 1.0831E-02 1.0248E-02 9.7292E-03 9.2676E-03 8.4704E-03 7.8096E-03 7.2536E-03 6.7763E-03 6.3672E-03 6.0054E-03 5.6854E-03 4.5179E-03 3.7710E-03 3.2492E-03 2.5626E-03 2.1268E-03 1.5147E-03 1.1874E-03 8.4180E-04 6.5928E-04 5.4599E-04 4.6726E-04 3.6494E-04 3.0022E-04 2.0969E-04 1.6228E-04 1.1282E-04 8.7117E-05 7.1225E-05 6.0368E-05 4.6522E-05 3.7983E-05 2.6250E-05 2.0182E-05 1.3920E-05 1.0684E-05 8.7012E-06 7.3533E-06 5.6382E-06 4.5887E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.7991E+03 1.4115E+06 3.7303E+04 3.1233E+03 1.5708E+03 5.7484E+02 3.2995E+02 1.0406E+03 9.8153E+02 9.2572E+02 1.2467E+03 1.2252E+03 1.0610E+03 1.2179E+03 8.0876E+02 5.0303E+02 2.3576E+02 1.2944E+02 4.2646E+01 1.9138E+01 7.4582E+00 4.6469E+01 3.8702E+01 1.8173E+01 9.8761E+00 5.9581E+00 2.6486E+00 1.3993E+00 4.3417E-01 1.8939E-01 1.0025E-01 6.0158E-02 3.9421E-02 2.7562E-02 2.0252E-02 1.5483E-02 1.2222E-02 9.8918E-03 8.1680E-03 5.8772E-03 5.1090E-03 4.5028E-03 3.5717E-03 3.1889E-03 3.0341E-03 2.0465E-03 1.9049E-03 1.6626E-03 1.4665E-03 1.3071E-03 1.0662E-03 8.9372E-04 8.6225E-04 7.6524E-04 5.8903E-04 4.7513E-04 3.1532E-04 2.3350E-04 1.8446E-04 1.5205E-04 1.2908E-04 1.1203E-04 9.8918E-05 8.8481E-05 8.0036E-05 7.3008E-05 6.7134E-05 6.2099E-05 5.7798E-05 5.0718E-05 4.5179E-05 4.0721E-05 3.7060E-05 3.4002E-05 3.1411E-05 2.9182E-05 2.1535E-05 1.7061E-05 1.4124E-05 1.0505E-05 8.3655E-06 5.5386E-06 4.1403E-06 2.7509E-06 2.0597E-06 1.6458E-06 1.3710E-06 1.0269E-06 8.2134E-07 5.4704E-07 4.1025E-07 2.7341E-07 2.0502E-07 1.6401E-07 1.3668E-07 1.0248E-07 8.1977E-08 5.4651E-08 4.0989E-08 2.7326E-08 2.0492E-08 1.6395E-08 1.3663E-08 1.0248E-08 8.1977E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.6852E-04 2.6161E-04 4.9672E-04 7.8463E-04 1.1145E-03 1.8665E-03 2.6943E-03 2.8815E-03 3.5506E-03 5.2612E-03 6.9127E-03 1.0679E-02 1.3936E-02 1.6747E-02 1.9254E-02 2.1509E-02 2.3560E-02 2.5432E-02 2.7163E-02 2.8758E-02 3.0237E-02 3.1595E-02 3.2854E-02 3.4029E-02 3.6174E-02 3.8093E-02 3.9835E-02 4.1413E-02 4.2856E-02 4.4177E-02 4.5399E-02 5.0345E-02 5.4022E-02 5.6854E-02 6.1102E-02 6.4092E-02 6.8865E-02 7.1697E-02 7.5001E-02 7.6889E-02 7.8148E-02 7.9040E-02 8.0246E-02 8.1033E-02 8.2134E-02 8.2764E-02 8.3393E-02 8.3760E-02 8.3970E-02 8.4127E-02 8.4337E-02 8.4495E-02 8.4652E-02 8.4757E-02 8.4862E-02 8.4914E-02 8.4914E-02 8.4967E-02 8.4967E-02 8.5019E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9175E-08 2.9410E-06 1.0359E-05 4.2258E-05 8.4127E-05 1.2908E-04 1.7381E-04 2.1714E-04 2.5857E-04 2.9796E-04 3.3520E-04 3.7029E-04 4.0338E-04 4.3485E-04 4.6459E-04 4.9291E-04 5.4546E-04 5.9319E-04 6.3672E-04 6.7659E-04 7.1330E-04 7.4792E-04 7.7991E-04 9.1156E-04 1.0117E-03 1.0915E-03 1.2110E-03 1.2976E-03 1.4418E-03 1.5315E-03 1.6416E-03 1.7077E-03 1.7528E-03 1.7859E-03 1.8315E-03 1.8619E-03 1.9076E-03 1.9333E-03 1.9610E-03 1.9773E-03 1.9873E-03 1.9946E-03 2.0041E-03 2.0098E-03 2.0182E-03 2.0229E-03 2.0271E-03 2.0303E-03 2.0319E-03 2.0329E-03 2.0340E-03 2.0350E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ir.mat0000644000000000000000000002205214741736366017676 0ustar00rootrootIr 1 77 1.000000 10 6 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.0404E-03 2.0404E-03 2.0779E-03 2.1161E-03 2.1161E-03 2.3233E-03 2.5507E-03 2.5507E-03 2.7238E-03 2.9087E-03 2.9087E-03 3.0000E-03 3.1737E-03 3.1737E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.1215E-02 1.1215E-02 1.1993E-02 1.2824E-02 1.2824E-02 1.3118E-02 1.3419E-02 1.3419E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 7.6111E-02 7.6111E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1893E+01 4.5973E+01 1.3026E+01 1.1413E+01 1.0865E+01 1.0818E+01 1.0818E+01 1.0776E+01 1.0733E+01 1.0733E+01 1.0506E+01 1.0251E+01 1.0251E+01 1.0053E+01 9.8437E+00 9.8437E+00 9.7434E+00 9.5555E+00 9.5555E+00 8.6970E+00 7.7697E+00 6.9614E+00 5.6581E+00 4.6681E+00 4.1825E+00 4.1825E+00 3.9010E+00 3.6311E+00 3.6311E+00 3.5441E+00 3.4588E+00 3.4588E+00 3.0527E+00 2.1514E+00 1.2713E+00 8.4276E-01 5.9683E-01 4.4676E-01 3.0480E-01 3.0480E-01 2.8087E-01 1.9337E-01 9.4834E-02 5.6518E-02 3.7651E-02 2.6899E-02 2.0167E-02 1.5674E-02 1.2529E-02 1.0242E-02 8.5266E-03 7.2089E-03 6.1752E-03 4.6784E-03 4.1261E-03 3.6658E-03 2.9489E-03 2.6668E-03 2.5552E-03 1.7197E-03 1.5916E-03 1.3749E-03 1.1996E-03 1.0559E-03 8.3633E-04 6.7828E-04 6.4946E-04 5.6091E-04 4.0231E-04 3.0264E-04 1.7049E-04 1.0918E-04 7.5848E-05 5.5735E-05 4.2702E-05 3.3742E-05 2.7326E-05 2.2585E-05 1.8979E-05 1.6172E-05 1.3945E-05 1.2146E-05 1.0677E-05 8.4370E-06 6.8329E-06 5.6487E-06 4.7464E-06 4.0446E-06 3.4870E-06 3.0371E-06 1.7084E-06 1.0934E-06 7.5942E-07 4.2702E-07 2.7335E-07 1.2150E-07 6.8329E-08 3.0371E-08 1.7084E-08 1.0934E-08 7.5942E-09 4.2702E-09 2.7335E-09 1.2150E-09 6.8329E-10 3.0371E-10 1.7084E-10 1.0934E-10 7.5942E-11 4.2702E-11 2.7335E-11 1.2150E-11 6.8329E-12 3.0371E-12 1.7084E-12 1.0934E-12 7.5942E-13 4.2702E-13 2.7335E-13 INCOHERENT SCATTERING CROSS SECTION 3.9318E-03 6.6780E-03 1.5742E-03 6.9990E-03 9.9659E-03 1.0201E-02 1.0201E-02 1.0421E-02 1.0646E-02 1.0646E-02 1.1838E-02 1.3118E-02 1.3118E-02 1.4091E-02 1.5126E-02 1.5126E-02 1.5633E-02 1.6592E-02 1.6592E-02 2.1025E-02 2.6135E-02 3.0975E-02 3.9694E-02 4.6994E-02 5.0910E-02 5.0910E-02 5.3133E-02 5.5390E-02 5.5390E-02 5.6186E-02 5.6988E-02 5.6988E-02 6.0873E-02 7.1086E-02 8.4903E-02 9.2829E-02 9.7278E-02 9.9753E-02 1.0132E-01 1.0132E-01 1.0144E-01 1.0101E-01 9.6557E-02 9.1169E-02 8.6096E-02 8.1582E-02 7.7616E-02 7.4125E-02 7.1032E-02 6.8267E-02 6.5774E-02 6.3505E-02 6.1423E-02 5.7743E-02 5.6111E-02 5.4598E-02 5.1855E-02 5.0597E-02 5.0064E-02 4.5334E-02 4.4441E-02 4.2776E-02 4.1261E-02 3.9878E-02 3.7422E-02 3.5277E-02 3.4838E-02 3.3389E-02 3.0275E-02 2.7777E-02 2.3181E-02 2.0026E-02 1.7701E-02 1.5912E-02 1.4484E-02 1.3315E-02 1.2338E-02 1.1507E-02 1.0793E-02 1.0166E-02 9.6181E-03 9.1325E-03 8.6970E-03 7.9483E-03 7.3311E-03 6.8079E-03 6.3630E-03 5.9745E-03 5.6362E-03 5.3354E-03 4.2420E-03 3.5402E-03 3.0499E-03 2.4055E-03 1.9966E-03 1.4217E-03 1.1147E-03 7.9013E-04 6.1876E-04 5.1224E-04 4.3861E-04 3.4243E-04 2.8181E-04 1.9681E-04 1.5232E-04 1.0592E-04 8.1770E-05 6.6857E-05 5.6675E-05 4.3673E-05 3.5653E-05 2.4641E-05 1.8945E-05 1.3064E-05 1.0032E-05 8.1676E-06 6.9050E-06 5.2947E-06 4.3078E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.2295E+03 4.1524E+05 1.6829E+04 1.8867E+03 1.0210E+03 9.7748E+02 1.0520E+03 1.6008E+03 2.4343E+03 2.5662E+03 2.4884E+03 2.4133E+03 2.7886E+03 2.3796E+03 2.0308E+03 2.1561E+03 2.0016E+03 1.7576E+03 1.8334E+03 1.0542E+03 6.0998E+02 3.8660E+02 1.8572E+02 1.0430E+02 7.7321E+01 1.9957E+02 1.6651E+02 1.3891E+02 1.9227E+02 1.8188E+02 1.7209E+02 1.9894E+02 1.4991E+02 7.0961E+01 2.4102E+01 1.1053E+01 5.9996E+00 3.6279E+00 1.8779E+00 9.3205E+00 8.2020E+00 4.5616E+00 1.5489E+00 7.1494E-01 3.9414E-01 2.4406E-01 1.6394E-01 1.1698E-01 8.7437E-02 6.7765E-02 5.4065E-02 4.4174E-02 3.6817E-02 2.6821E-02 2.3337E-02 2.0522E-02 1.6294E-02 1.4681E-02 1.4051E-02 9.4771E-03 8.7986E-03 7.6628E-03 6.7546E-03 6.0161E-03 4.8944E-03 4.0885E-03 3.9412E-03 3.4881E-03 2.6686E-03 2.1411E-03 1.4042E-03 1.0304E-03 8.0830E-04 6.6262E-04 5.6017E-04 4.8435E-04 4.2608E-04 3.8034E-04 3.4306E-04 3.1251E-04 2.8682E-04 2.6498E-04 2.4619E-04 2.1555E-04 1.9161E-04 1.7244E-04 1.5674E-04 1.4365E-04 1.3255E-04 1.2303E-04 9.0511E-05 7.1556E-05 5.9181E-05 4.3955E-05 3.4932E-05 2.3109E-05 1.7259E-05 1.1460E-05 8.5780E-06 6.8549E-06 5.7082E-06 4.2765E-06 3.4180E-06 2.2770E-06 1.7071E-06 1.1376E-06 8.5310E-07 6.8235E-07 5.6863E-07 4.2639E-07 3.4118E-07 2.2739E-07 1.7053E-07 1.1366E-07 8.5247E-08 6.8204E-08 5.6832E-08 4.2639E-08 3.4086E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.4400E-04 5.3903E-04 1.0313E-03 1.6200E-03 2.2637E-03 3.6133E-03 4.9720E-03 5.2696E-03 6.3089E-03 8.8335E-03 1.1156E-02 1.6241E-02 2.0496E-02 2.4158E-02 2.7385E-02 3.0289E-02 3.2927E-02 3.5371E-02 3.7595E-02 3.9694E-02 4.1637E-02 4.3454E-02 4.5177E-02 4.6743E-02 4.9626E-02 5.2163E-02 5.4482E-02 5.6581E-02 5.8523E-02 6.0278E-02 6.1907E-02 6.8549E-02 7.3499E-02 7.7321E-02 8.2929E-02 8.6908E-02 9.3174E-02 9.6870E-02 1.0119E-01 1.0364E-01 1.0524E-01 1.0639E-01 1.0793E-01 1.0893E-01 1.1034E-01 1.1113E-01 1.1197E-01 1.1241E-01 1.1269E-01 1.1291E-01 1.1316E-01 1.1332E-01 1.1354E-01 1.1366E-01 1.1379E-01 1.1385E-01 1.1391E-01 1.1394E-01 1.1398E-01 1.1398E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2983E-08 2.7564E-06 9.7058E-06 3.9569E-05 7.8699E-05 1.2065E-04 1.6235E-04 2.0267E-04 2.4117E-04 2.7767E-04 3.1217E-04 3.4462E-04 3.7533E-04 4.0415E-04 4.3172E-04 4.5772E-04 5.0566E-04 5.4920E-04 5.8899E-04 6.2565E-04 6.5917E-04 6.9019E-04 7.1901E-04 8.3775E-04 9.2672E-04 9.9690E-04 1.1015E-03 1.1770E-03 1.3005E-03 1.3769E-03 1.4693E-03 1.5242E-03 1.5615E-03 1.5887E-03 1.6260E-03 1.6507E-03 1.6874E-03 1.7081E-03 1.7306E-03 1.7438E-03 1.7519E-03 1.7576E-03 1.7651E-03 1.7698E-03 1.7761E-03 1.7801E-03 1.7836E-03 1.7858E-03 1.7873E-03 1.7880E-03 1.7889E-03 1.7898E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/K.mat0000644000000000000000000001667614741736366017535 0ustar00rootrootPotassium 1 19 1.000000 2 7 91 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.6074E-03 3.6074E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.3470E+00 3.0438E+01 3.9862E+00 3.0790E+00 2.8171E+00 2.3273E+00 2.0655E+00 2.0655E+00 1.9161E+00 1.5988E+00 1.3602E+00 1.0415E+00 8.3620E-01 5.2261E-01 3.4902E-01 1.8730E-01 1.1846E-01 8.2142E-02 6.0301E-02 3.6288E-02 2.4136E-02 1.1290E-02 6.5107E-03 4.2253E-03 2.9588E-03 2.1851E-03 1.6789E-03 1.3300E-03 1.0794E-03 8.9338E-04 7.5149E-04 6.4083E-04 4.8188E-04 4.2372E-04 3.7550E-04 3.0082E-04 2.7155E-04 2.6000E-04 1.7389E-04 1.6079E-04 1.3867E-04 1.2082E-04 1.0620E-04 8.3927E-05 6.7987E-05 6.5091E-05 5.6189E-05 4.0231E-05 3.0220E-05 1.7004E-05 1.0883E-05 7.5580E-06 5.5526E-06 4.2511E-06 3.3593E-06 2.7216E-06 2.2488E-06 1.8899E-06 1.6096E-06 1.3882E-06 1.2093E-06 1.0629E-06 8.3975E-07 6.8018E-07 5.6219E-07 4.7240E-07 4.0247E-07 3.4702E-07 3.0235E-07 1.7004E-07 1.0883E-07 7.5580E-08 4.2511E-08 2.7201E-08 1.2093E-08 6.8018E-09 3.0235E-09 1.7004E-09 1.0883E-09 7.5580E-10 4.2511E-10 2.7201E-10 1.2093E-10 6.8018E-11 3.0235E-11 1.7004E-11 1.0883E-11 7.5580E-12 4.2511E-12 2.7201E-12 1.2093E-12 6.8018E-13 3.0235E-13 1.7004E-13 1.0883E-13 7.5580E-14 4.2511E-14 2.7201E-14 INCOHERENT SCATTERING CROSS SECTION 1.2156E-02 2.2804E-03 5.4864E-03 1.9577E-02 2.7031E-02 4.1618E-02 4.9766E-02 4.9766E-02 5.4633E-02 6.5769E-02 7.5072E-02 8.9319E-02 9.9839E-02 1.1820E-01 1.2974E-01 1.4096E-01 1.4489E-01 1.4583E-01 1.4528E-01 1.4206E-01 1.3771E-01 1.2662E-01 1.1709E-01 1.0919E-01 1.0260E-01 9.7014E-02 9.2215E-02 8.8033E-02 8.4344E-02 8.1059E-02 7.8106E-02 7.5431E-02 7.0749E-02 6.8680E-02 6.6762E-02 6.3323E-02 6.1780E-02 6.1133E-02 5.5264E-02 5.4160E-02 5.2111E-02 5.0243E-02 4.8527E-02 4.5486E-02 4.2881E-02 4.2357E-02 4.0614E-02 3.6810E-02 3.3747E-02 2.8156E-02 2.4305E-02 2.1487E-02 1.9315E-02 1.7574E-02 1.6157E-02 1.4970E-02 1.3962E-02 1.3095E-02 1.2336E-02 1.1671E-02 1.1081E-02 1.0552E-02 9.6435E-03 8.8934E-03 8.2604E-03 7.7182E-03 7.2484E-03 6.8372E-03 6.4737E-03 5.1445E-03 4.2942E-03 3.6997E-03 2.9188E-03 2.4228E-03 1.7251E-03 1.3523E-03 9.5850E-04 7.5072E-04 6.2149E-04 5.3200E-04 4.1556E-04 3.4194E-04 2.3874E-04 1.8483E-04 1.2849E-04 9.9177E-05 8.1094E-05 6.8757E-05 5.2985E-05 4.3250E-05 2.9896E-05 2.2981E-05 1.5849E-05 1.2168E-05 9.9085E-06 8.3759E-06 6.4229E-06 5.2245E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.0540E+03 1.5977E+06 2.4503E+04 1.4149E+03 6.5646E+02 2.1748E+02 1.3061E+02 1.1986E+03 9.2354E+02 5.1722E+02 3.1899E+02 1.4575E+02 7.8137E+01 2.4382E+01 1.0454E+01 3.0836E+00 1.2775E+00 6.3982E-01 3.6227E-01 1.4680E-01 7.2638E-02 2.0254E-02 8.2558E-03 4.1681E-03 2.4151E-03 1.5402E-03 1.0542E-03 7.6165E-04 5.7467E-04 4.4895E-04 3.6011E-04 2.9497E-04 2.1027E-04 1.8283E-04 1.6163E-04 1.2831E-04 1.1369E-04 1.0762E-04 7.2869E-05 6.8031E-05 5.9576E-05 5.2661E-05 4.7067E-05 3.8661E-05 3.2669E-05 3.1575E-05 2.8187E-05 2.1964E-05 1.7898E-05 1.2133E-05 9.1229E-06 7.2885E-06 6.0609E-06 5.1814E-06 4.5237E-06 4.0124E-06 3.6042E-06 3.2700E-06 2.9927E-06 2.7586E-06 2.5584E-06 2.3843E-06 2.0994E-06 1.8760E-06 1.6943E-06 1.5449E-06 1.4203E-06 1.3137E-06 1.2220E-06 9.0598E-07 7.1976E-07 5.9700E-07 4.4513E-07 3.5472E-07 2.3535E-07 1.7605E-07 1.1714E-07 8.7748E-08 7.0143E-08 5.8422E-08 4.3789E-08 3.5025E-08 2.3335E-08 1.7497E-08 1.1663E-08 8.7471E-09 6.9958E-09 5.8299E-09 4.3728E-09 3.4979E-09 2.3319E-09 1.7482E-09 1.1658E-09 8.7440E-10 6.9943E-10 5.8283E-10 4.3712E-10 3.4979E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.9057E-05 7.8631E-05 1.5765E-04 2.6015E-04 3.8268E-04 6.7530E-04 1.0130E-03 1.0914E-03 1.3751E-03 2.1164E-03 2.8495E-03 4.5853E-03 6.1241E-03 7.4995E-03 8.7225E-03 9.8237E-03 1.0820E-02 1.1724E-02 1.2545E-02 1.3297E-02 1.3995E-02 1.4642E-02 1.5247E-02 1.5818E-02 1.6850E-02 1.7790E-02 1.8622E-02 1.9392E-02 2.0085E-02 2.0732E-02 2.1317E-02 2.3766E-02 2.5599E-02 2.7016E-02 2.9126E-02 3.0651E-02 3.3115E-02 3.4625E-02 3.6412E-02 3.7459E-02 3.8137E-02 3.8645E-02 3.9307E-02 3.9739E-02 4.0370E-02 4.0724E-02 4.1094E-02 4.1294E-02 4.1417E-02 4.1510E-02 4.1633E-02 4.1710E-02 4.1803E-02 4.1864E-02 4.1926E-02 4.1957E-02 4.1972E-02 4.1987E-02 4.2003E-02 4.2003E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1293E-07 3.3509E-06 1.1808E-05 4.8210E-05 9.6050E-05 1.4749E-04 1.9885E-04 2.4860E-04 2.9635E-04 3.4178E-04 3.8491E-04 4.2557E-04 4.6392E-04 5.0058E-04 5.3524E-04 5.6835E-04 6.2981E-04 6.8588E-04 7.3747E-04 7.8507E-04 8.2912E-04 8.7009E-04 9.0829E-04 1.0682E-03 1.1912E-03 1.2901E-03 1.4412E-03 1.5541E-03 1.7436E-03 1.8652E-03 2.0193E-03 2.1117E-03 2.1779E-03 2.2257E-03 2.2934E-03 2.3381E-03 2.4074E-03 2.4475E-03 2.4906E-03 2.5168E-03 2.5322E-03 2.5430E-03 2.5584E-03 2.5676E-03 2.5815E-03 2.5892E-03 2.5969E-03 2.6015E-03 2.6046E-03 2.6061E-03 2.6077E-03 2.6092E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/KCl.mat0000644000000000000000000001714114741736366020000 0ustar00rootrootKCl 2 17 19 0.475550 0.524450 3 6 3 91 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.8224E-03 2.8224E-03 3.0000E-03 3.6074E-03 3.6074E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.1980E+00 4.2505E+01 3.8263E+00 2.9444E+00 2.6810E+00 2.2703E+00 2.2703E+00 2.1899E+00 1.9372E+00 1.9372E+00 1.7951E+00 1.5005E+00 1.2823E+00 9.8728E-01 7.9115E-01 4.8742E-01 3.2360E-01 1.7351E-01 1.0971E-01 7.5948E-02 5.5648E-02 3.3402E-02 2.2190E-02 1.0365E-02 5.9720E-03 3.8731E-03 2.7109E-03 2.0016E-03 1.5375E-03 1.2178E-03 9.8817E-04 8.1775E-04 6.8783E-04 5.8653E-04 4.4105E-04 3.8782E-04 3.4368E-04 2.7529E-04 2.4848E-04 2.3789E-04 1.5913E-04 1.4715E-04 1.2690E-04 1.1055E-04 9.7176E-05 7.6792E-05 6.2208E-05 5.9558E-05 5.1413E-05 3.6811E-05 2.7651E-05 1.5559E-05 9.9584E-06 6.9155E-06 5.0810E-06 3.8895E-06 3.0736E-06 2.4896E-06 2.0574E-06 1.7291E-06 1.4729E-06 1.2702E-06 1.1065E-06 9.7258E-07 7.6837E-07 6.2240E-07 5.1440E-07 4.3225E-07 3.6827E-07 3.1754E-07 2.7667E-07 1.5560E-07 9.9584E-08 6.9155E-08 3.8895E-08 2.4888E-08 1.1064E-08 6.2232E-09 2.7667E-09 1.5559E-09 9.9584E-10 6.9155E-10 3.8895E-10 2.4888E-10 1.1064E-10 6.2232E-11 2.7667E-11 1.5559E-11 9.9584E-12 6.9155E-12 3.8895E-12 2.4888E-12 1.1064E-12 6.2232E-13 2.7667E-13 1.5559E-13 9.9584E-14 6.9155E-14 3.8895E-14 2.4888E-14 INCOHERENT SCATTERING CROSS SECTION 1.0444E-02 4.3154E-03 4.2344E-03 1.8309E-02 2.6471E-02 3.9405E-02 3.9405E-02 4.2029E-02 5.0438E-02 5.0438E-02 5.5382E-02 6.6400E-02 7.5423E-02 8.9333E-02 9.9915E-02 1.1862E-01 1.3010E-01 1.4101E-01 1.4477E-01 1.4562E-01 1.4498E-01 1.4162E-01 1.3719E-01 1.2601E-01 1.1647E-01 1.0858E-01 1.0200E-01 9.6437E-02 9.1660E-02 8.7499E-02 8.3832E-02 8.0565E-02 7.7628E-02 7.4967E-02 7.0312E-02 6.8258E-02 6.6355E-02 6.2939E-02 6.1400E-02 6.0754E-02 5.4921E-02 5.3825E-02 5.1788E-02 4.9929E-02 4.8220E-02 4.5192E-02 4.2611E-02 4.2094E-02 4.0368E-02 3.6585E-02 3.3531E-02 2.7974E-02 2.4153E-02 2.1350E-02 1.9193E-02 1.7464E-02 1.6056E-02 1.4875E-02 1.3875E-02 1.3013E-02 1.2258E-02 1.1597E-02 1.1011E-02 1.0486E-02 9.5828E-03 8.8372E-03 8.2079E-03 7.6699E-03 7.2030E-03 6.7943E-03 6.4332E-03 5.1125E-03 4.2675E-03 3.6770E-03 2.9000E-03 2.4072E-03 1.7141E-03 1.3438E-03 9.5246E-04 7.4599E-04 6.1755E-04 5.2870E-04 4.1294E-04 3.3976E-04 2.3725E-04 1.8361E-04 1.2768E-04 9.8550E-05 8.0577E-05 6.8323E-05 5.2652E-05 4.2982E-05 2.9702E-05 2.2836E-05 1.5749E-05 1.2091E-05 9.8461E-06 8.3234E-06 6.3823E-06 5.1916E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.4711E+03 1.4102E+06 2.1171E+04 1.2054E+03 5.5802E+02 2.1803E+02 9.1191E+02 8.1344E+02 5.1461E+02 1.0747E+03 8.1821E+02 4.5608E+02 2.8006E+02 1.2708E+02 6.7806E+01 2.1002E+01 8.9608E+00 2.6285E+00 1.0846E+00 5.4186E-01 3.0615E-01 1.2371E-01 6.1085E-02 1.6976E-02 6.9066E-03 3.4820E-03 2.0156E-03 1.2846E-03 8.7871E-04 6.3455E-04 4.7861E-04 3.7387E-04 2.9985E-04 2.4553E-04 1.7494E-04 1.5213E-04 1.3455E-04 1.0685E-04 9.4608E-05 8.9519E-05 6.0624E-05 5.6608E-05 4.9575E-05 4.3822E-05 3.9175E-05 3.2194E-05 2.7206E-05 2.6293E-05 2.3470E-05 1.8299E-05 1.4923E-05 1.0123E-05 7.6158E-06 6.0867E-06 5.0632E-06 4.3297E-06 3.7804E-06 3.3539E-06 3.0130E-06 2.7336E-06 2.5025E-06 2.3070E-06 2.1394E-06 1.9942E-06 1.7560E-06 1.5691E-06 1.4173E-06 1.2925E-06 1.1882E-06 1.0991E-06 1.0224E-06 7.5811E-07 6.0229E-07 4.9962E-07 3.7255E-07 2.9694E-07 1.9701E-07 1.4739E-07 9.8049E-08 7.3452E-08 5.8718E-08 4.8903E-08 3.6657E-08 2.9323E-08 1.9535E-08 1.4648E-08 9.7629E-09 7.3218E-09 5.8565E-09 4.8807E-09 3.6601E-09 2.9282E-09 1.9521E-09 1.4636E-09 9.7597E-10 7.3194E-10 5.8548E-10 4.8790E-10 3.6593E-10 2.9282E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 4.5898E-05 7.3654E-05 1.4794E-04 2.4444E-04 3.5985E-04 6.3548E-04 9.5351E-04 1.0273E-03 1.2947E-03 1.9945E-03 2.6875E-03 4.3273E-03 5.7830E-03 7.0835E-03 8.2410E-03 9.2823E-03 1.0226E-02 1.1081E-02 1.1858E-02 1.2569E-02 1.3229E-02 1.3842E-02 1.4415E-02 1.4955E-02 1.5934E-02 1.6820E-02 1.7611E-02 1.8337E-02 1.8999E-02 1.9605E-02 2.0162E-02 2.2489E-02 2.4226E-02 2.5575E-02 2.7570E-02 2.9016E-02 3.1358E-02 3.2796E-02 3.4493E-02 3.5478E-02 3.6132E-02 3.6609E-02 3.7239E-02 3.7651E-02 3.8249E-02 3.8580E-02 3.8927E-02 3.9121E-02 3.9242E-02 3.9323E-02 3.9444E-02 3.9509E-02 3.9606E-02 3.9662E-02 3.9719E-02 3.9743E-02 3.9759E-02 3.9775E-02 3.9792E-02 3.9792E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1220E-07 3.3295E-06 1.1733E-05 4.7910E-05 9.5448E-05 1.4657E-04 1.9758E-04 2.4710E-04 2.9452E-04 3.3967E-04 3.8257E-04 4.2296E-04 4.6117E-04 4.9760E-04 5.3209E-04 5.6497E-04 6.2612E-04 6.8193E-04 7.3323E-04 7.8057E-04 8.2443E-04 8.6522E-04 9.0327E-04 1.0626E-03 1.1853E-03 1.2838E-03 1.4345E-03 1.5468E-03 1.7359E-03 1.8579E-03 2.0122E-03 2.1051E-03 2.1705E-03 2.2190E-03 2.2860E-03 2.3305E-03 2.3991E-03 2.4379E-03 2.4807E-03 2.5066E-03 2.5219E-03 2.5324E-03 2.5470E-03 2.5558E-03 2.5696E-03 2.5768E-03 2.5841E-03 2.5882E-03 2.5914E-03 2.5930E-03 2.5946E-03 2.5962E-03././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Kr.mat0000644000000000000000000002005014741736366017674 0ustar00rootrootKr 1 36 1.000000 5 5 3 3 9 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.6749E-03 1.6749E-03 1.7008E-03 1.7272E-03 1.7272E-03 1.8215E-03 1.9210E-03 1.9210E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.4326E-02 1.4326E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.8978E+00 5.2605E+01 6.7108E+00 5.5809E+00 5.4537E+00 5.4537E+00 5.4343E+00 5.4149E+00 5.4149E+00 5.3480E+00 5.2769E+00 5.2769E+00 5.2173E+00 4.4936E+00 3.8799E+00 3.3862E+00 2.9823E+00 2.3521E+00 1.8792E+00 1.2174E+00 1.2174E+00 1.1477E+00 7.8115E-01 4.4225E-01 2.8364E-01 1.9633E-01 1.4416E-01 8.7960E-02 5.9510E-02 2.8566E-02 1.6665E-02 1.0897E-02 7.6750E-03 5.6946E-03 4.3916E-03 3.4889E-03 2.8379E-03 2.3528E-03 1.9820E-03 1.6923E-03 1.2750E-03 1.1218E-03 9.9456E-04 7.9732E-04 7.2007E-04 6.8960E-04 4.6179E-04 4.2705E-04 3.6838E-04 3.2101E-04 2.8223E-04 2.2312E-04 1.8081E-04 1.7312E-04 1.4947E-04 1.0705E-04 8.0415E-05 4.5245E-05 2.8961E-05 2.0115E-05 1.4775E-05 1.1311E-05 8.9398E-06 7.2438E-06 5.9848E-06 5.0290E-06 4.2852E-06 3.6952E-06 3.2188E-06 2.8293E-06 2.2349E-06 1.8102E-06 1.4962E-06 1.2576E-06 1.0715E-06 9.2344E-07 8.0487E-07 4.5259E-07 2.8968E-07 2.0115E-07 1.1318E-07 7.2438E-08 3.2188E-08 1.8102E-08 8.0487E-09 4.5259E-09 2.8968E-09 2.0115E-09 1.1318E-09 7.2438E-10 3.2188E-10 1.8102E-10 8.0487E-11 4.5259E-11 2.8968E-11 2.0115E-11 1.1318E-11 7.2438E-12 3.2188E-12 1.8102E-12 8.0487E-13 4.5259E-13 2.8968E-13 2.0115E-13 1.1318E-13 7.2438E-14 INCOHERENT SCATTERING CROSS SECTION 4.7573E-03 6.1989E-03 1.6112E-03 9.3710E-03 1.1088E-02 1.1088E-02 1.1349E-02 1.1613E-02 1.1613E-02 1.2555E-02 1.3546E-02 1.3546E-02 1.4337E-02 2.3959E-02 3.2683E-02 4.0315E-02 4.6941E-02 5.8051E-02 6.7293E-02 8.2930E-02 8.2930E-02 8.4870E-02 9.6728E-02 1.1017E-01 1.1663E-01 1.1958E-01 1.2051E-01 1.1951E-01 1.1692E-01 1.0902E-01 1.0161E-01 9.5234E-02 8.9757E-02 8.5025E-02 8.0918E-02 7.7330E-02 7.4163E-02 7.1338E-02 6.8787E-02 6.6463E-02 6.2378E-02 6.0573E-02 5.8903E-02 5.5894E-02 5.4530E-02 5.3955E-02 4.8795E-02 4.7824E-02 4.6020E-02 4.4376E-02 4.2868E-02 4.0195E-02 3.7886E-02 3.7419E-02 3.5870E-02 3.2513E-02 2.9816E-02 2.4879E-02 2.1487E-02 1.8993E-02 1.7068E-02 1.5537E-02 1.4279E-02 1.3230E-02 1.2346E-02 1.1577E-02 1.0909E-02 1.0320E-02 9.7950E-03 9.3278E-03 8.5230E-03 7.8618E-03 7.3013E-03 6.8234E-03 6.4073E-03 6.0444E-03 5.7232E-03 4.5482E-03 3.7965E-03 3.2712E-03 2.5799E-03 2.1415E-03 1.5249E-03 1.1958E-03 8.4727E-04 6.6366E-04 5.4939E-04 4.7034E-04 3.6736E-04 3.0226E-04 2.1106E-04 1.6335E-04 1.1362E-04 8.7673E-05 7.1684E-05 6.0789E-05 4.6833E-05 3.8238E-05 2.6424E-05 2.0316E-05 1.4013E-05 1.0758E-05 8.7601E-06 7.4019E-06 5.6779E-06 4.6194E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.8479E+03 6.7513E+05 1.4772E+04 1.0873E+03 8.3074E+02 3.9108E+03 3.5147E+03 3.1598E+03 4.5590E+03 3.9813E+03 3.4782E+03 3.9424E+03 3.5946E+03 1.3007E+03 6.1479E+02 3.3912E+02 2.0711E+02 9.4069E+01 5.0620E+01 1.8411E+01 1.3000E+02 1.1556E+02 5.4602E+01 1.7980E+01 7.9912E+00 4.2069E+00 2.4742E+00 1.0600E+00 5.4566E-01 1.6227E-01 6.8881E-02 3.5770E-02 2.1157E-02 1.3703E-02 9.4931E-03 6.9264E-03 5.2654E-03 4.1367E-03 3.3352E-03 2.7460E-03 1.9684E-03 1.7089E-03 1.5046E-03 1.1918E-03 1.0636E-03 1.0118E-03 6.8328E-04 6.3638E-04 5.5622E-04 4.9126E-04 4.3837E-04 3.5827E-04 3.0103E-04 2.9061E-04 2.5845E-04 1.9981E-04 1.6176E-04 1.0815E-04 8.0559E-05 6.3894E-05 5.2834E-05 4.4979E-05 3.9122E-05 3.4602E-05 3.1002E-05 2.8077E-05 2.5648E-05 2.3607E-05 2.1861E-05 2.0352E-05 1.7887E-05 1.5946E-05 1.4387E-05 1.3108E-05 1.2030E-05 1.1117E-05 1.0334E-05 7.6391E-06 6.0602E-06 5.0204E-06 3.7383E-06 2.9773E-06 1.9734E-06 1.4754E-06 9.8093E-07 7.3444E-07 5.8698E-07 4.8889E-07 3.6636E-07 2.9299E-07 1.9518E-07 1.4639E-07 9.7518E-08 7.3157E-08 5.8511E-08 4.8759E-08 3.6564E-08 2.9248E-08 1.9496E-08 1.4624E-08 9.7518E-09 7.3085E-09 5.8489E-09 4.8745E-09 3.6557E-09 2.9248E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0327E-04 1.6201E-04 3.1348E-04 5.0362E-04 7.2648E-04 1.2483E-03 1.8339E-03 1.9669E-03 2.4465E-03 3.7017E-03 4.9384E-03 7.7828E-03 1.0284E-02 1.2468E-02 1.4423E-02 1.6176E-02 1.7779E-02 1.9231E-02 2.0560E-02 2.1775E-02 2.2888E-02 2.3923E-02 2.4886E-02 2.5792E-02 2.7452E-02 2.8932E-02 3.0276E-02 3.1505E-02 3.2619E-02 3.3639E-02 3.4588E-02 3.8432E-02 4.1293E-02 4.3520E-02 4.6812E-02 4.9147E-02 5.2870E-02 5.5090E-02 5.7677E-02 5.9165E-02 6.0142E-02 6.0847E-02 6.1781E-02 6.2384E-02 6.3261E-02 6.3735E-02 6.4253E-02 6.4526E-02 6.4706E-02 6.4828E-02 6.4986E-02 6.5087E-02 6.5223E-02 6.5302E-02 6.5374E-02 6.5417E-02 6.5446E-02 6.5460E-02 6.5482E-02 6.5496E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9842E-08 2.9617E-06 1.0435E-05 4.2586E-05 8.4799E-05 1.3014E-04 1.7535E-04 2.1918E-04 2.6108E-04 3.0096E-04 3.3869E-04 3.7434E-04 4.0790E-04 4.3987E-04 4.7013E-04 4.9895E-04 5.5241E-04 6.0106E-04 6.4562E-04 6.8665E-04 7.2438E-04 7.5959E-04 7.9265E-04 9.2847E-04 1.0320E-03 1.1146E-03 1.2389E-03 1.3302E-03 1.4811E-03 1.5760E-03 1.6931E-03 1.7628E-03 1.8110E-03 1.8462E-03 1.8943E-03 1.9267E-03 1.9741E-03 2.0014E-03 2.0301E-03 2.0481E-03 2.0582E-03 2.0653E-03 2.0754E-03 2.0819E-03 2.0898E-03 2.0948E-03 2.0998E-03 2.1027E-03 2.1042E-03 2.1056E-03 2.1063E-03 2.1077E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/La.mat0000644000000000000000000002112614741736366017661 0ustar00rootrootLa 1 57 1.000000 8 4 3 3 7 3 3 7 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1234E-03 1.1234E-03 1.1632E-03 1.2044E-03 1.2044E-03 1.2804E-03 1.3613E-03 1.3613E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.4827E-03 5.4827E-03 5.6830E-03 5.8906E-03 5.8906E-03 6.0000E-03 6.2663E-03 6.2663E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.8925E-02 3.8925E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.7359E+00 1.0076E+03 1.0752E+01 8.6058E+00 8.6058E+00 8.5632E+00 8.5191E+00 8.5191E+00 8.4396E+00 8.3544E+00 8.3544E+00 8.2026E+00 7.6737E+00 6.6896E+00 5.8441E+00 5.1331E+00 4.8383E+00 4.8383E+00 4.7245E+00 4.6086E+00 4.6086E+00 4.5479E+00 4.4091E+00 4.4091E+00 3.6379E+00 2.9698E+00 1.9527E+00 1.4038E+00 8.1159E-01 5.5016E-01 5.5016E-01 5.2805E-01 3.7566E-01 2.8172E-01 1.7441E-01 1.1831E-01 5.7618E-02 3.4159E-02 2.2568E-02 1.5998E-02 1.1922E-02 9.2258E-03 7.3524E-03 5.9959E-03 4.9811E-03 4.2032E-03 3.5946E-03 2.7156E-03 2.3919E-03 2.1223E-03 1.7038E-03 1.5399E-03 1.4753E-03 9.9021E-04 9.1603E-04 7.9067E-04 6.8933E-04 6.0622E-04 4.7941E-04 3.8867E-04 3.7220E-04 3.2149E-04 2.3035E-04 1.7307E-04 9.7417E-05 6.2387E-05 4.3324E-05 3.1835E-05 2.4374E-05 1.9258E-05 1.5599E-05 1.2894E-05 1.0834E-05 9.2301E-06 7.9598E-06 6.9323E-06 6.0956E-06 4.8167E-06 3.9006E-06 3.2238E-06 2.7088E-06 2.3082E-06 1.9900E-06 1.7337E-06 9.7504E-07 6.2387E-07 4.3341E-07 2.4378E-07 1.5603E-07 6.9323E-08 3.9006E-08 1.7337E-08 9.7504E-09 6.2387E-09 4.3337E-09 2.4378E-09 1.5603E-09 6.9323E-10 3.9006E-10 1.7337E-10 9.7504E-11 6.2387E-11 4.3337E-11 2.4378E-11 1.5603E-11 6.9323E-12 3.9006E-12 1.7337E-12 9.7504E-13 6.2387E-13 4.3337E-13 2.4378E-13 1.5603E-13 INCOHERENT SCATTERING CROSS SECTION 6.8846E-03 2.9920E+01 3.8766E-03 7.9728E-03 7.9728E-03 8.3195E-03 8.6708E-03 8.6708E-03 9.2951E-03 9.9498E-03 9.9498E-03 1.1103E-02 1.5122E-02 2.2778E-02 2.9828E-02 3.6149E-02 3.8902E-02 3.8902E-02 3.9984E-02 4.1082E-02 4.1082E-02 4.1655E-02 4.3007E-02 4.3007E-02 5.0811E-02 5.8528E-02 7.3702E-02 8.4107E-02 9.6333E-02 1.0227E-01 1.0227E-01 1.0279E-01 1.0626E-01 1.0804E-01 1.0869E-01 1.0734E-01 1.0132E-01 9.5032E-02 8.9451E-02 8.4584E-02 8.0330E-02 7.6607E-02 7.3329E-02 7.0407E-02 6.7774E-02 6.5378E-02 6.3186E-02 5.9343E-02 5.7661E-02 5.6115E-02 5.3299E-02 5.1982E-02 5.1418E-02 4.6519E-02 4.5604E-02 4.3895E-02 4.2331E-02 4.0895E-02 3.8349E-02 3.6157E-02 3.5715E-02 3.4245E-02 3.1048E-02 2.8471E-02 2.3754E-02 2.0520E-02 1.8139E-02 1.6306E-02 1.4840E-02 1.3639E-02 1.2638E-02 1.1788E-02 1.1055E-02 1.0414E-02 9.8544E-03 9.3558E-03 8.9093E-03 8.1419E-03 7.5089E-03 6.9757E-03 6.5161E-03 6.1216E-03 5.7748E-03 5.4670E-03 4.3441E-03 3.6261E-03 3.1245E-03 2.4643E-03 2.0455E-03 1.4567E-03 1.1419E-03 8.0942E-04 6.3384E-04 5.2459E-04 4.4915E-04 3.5091E-04 2.8870E-04 2.0160E-04 1.5603E-04 1.0852E-04 8.3760E-05 6.8456E-05 5.8051E-05 4.4742E-05 3.6526E-05 2.5241E-05 1.9405E-05 1.3383E-05 1.0275E-05 8.3674E-06 7.0711E-06 5.4236E-06 4.4135E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.0784E+03 1.6009E+06 4.3077E+04 6.9930E+03 8.0162E+03 7.4384E+03 6.9020E+03 7.3139E+03 6.4241E+03 5.6447E+03 5.8962E+03 4.7646E+03 2.4564E+03 9.1998E+02 4.4698E+02 2.5267E+02 1.9904E+02 5.7141E+02 5.2382E+02 4.7993E+02 6.5031E+02 6.2734E+02 5.6100E+02 6.4728E+02 3.4917E+02 1.9371E+02 6.5291E+01 2.9698E+01 9.6160E+00 4.6172E+00 2.7075E+01 2.5154E+01 1.3990E+01 8.5711E+00 3.8936E+00 2.0897E+00 6.6505E-01 2.9472E-01 1.5778E-01 9.5509E-02 6.3016E-02 4.4308E-02 3.2712E-02 2.5098E-02 1.9862E-02 1.6119E-02 1.3358E-02 9.6503E-03 8.3760E-03 7.3542E-03 5.8240E-03 5.2372E-03 5.0074E-03 3.3777E-03 3.1386E-03 2.7374E-03 2.4157E-03 2.1533E-03 1.7542E-03 1.4684E-03 1.4164E-03 1.2561E-03 9.6500E-04 7.7691E-04 5.1331E-04 3.7913E-04 2.9884E-04 2.4586E-04 2.0845E-04 1.8074E-04 1.5937E-04 1.4246E-04 1.2876E-04 1.1740E-04 1.0791E-04 9.9801E-05 9.2821E-05 8.1376E-05 7.2445E-05 6.5248E-05 5.9395E-05 5.4453E-05 5.0291E-05 4.6692E-05 3.4436E-05 2.7265E-05 2.2562E-05 1.6774E-05 1.3349E-05 8.8356E-06 6.6028E-06 4.3874E-06 3.2841E-06 2.6247E-06 2.1855E-06 1.6375E-06 1.3093E-06 8.7229E-07 6.5421E-07 4.3571E-07 3.2680E-07 2.6143E-07 2.1785E-07 1.6336E-07 1.3067E-07 8.7099E-08 6.5335E-08 4.3571E-08 3.2667E-08 2.6134E-08 2.1777E-08 1.6332E-08 1.3067E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.0944E-04 3.2504E-04 6.1559E-04 9.6767E-04 1.3650E-03 2.2501E-03 3.2043E-03 3.4189E-03 4.1816E-03 6.1061E-03 7.9382E-03 1.2057E-02 1.5603E-02 1.8655E-02 2.1361E-02 2.3793E-02 2.6004E-02 2.8028E-02 2.9897E-02 3.1631E-02 3.3248E-02 3.4740E-02 3.6123E-02 3.7402E-02 3.9725E-02 4.1806E-02 4.3701E-02 4.5435E-02 4.6996E-02 4.8427E-02 4.9727E-02 5.5103E-02 5.9092E-02 6.2213E-02 6.6809E-02 7.0060E-02 7.5220E-02 7.8341E-02 8.1939E-02 8.4020E-02 8.5408E-02 8.6362E-02 8.7662E-02 8.8529E-02 8.9743E-02 9.0394E-02 9.1131E-02 9.1521E-02 9.1781E-02 9.1954E-02 9.2171E-02 9.2301E-02 9.2518E-02 9.2605E-02 9.2735E-02 9.2778E-02 9.2821E-02 9.2821E-02 9.2865E-02 9.2865E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.5318E-08 2.8264E-06 9.9541E-06 4.0601E-05 8.0812E-05 1.2395E-04 1.6687E-04 2.0845E-04 2.4816E-04 2.8588E-04 3.2156E-04 3.5516E-04 3.8676E-04 4.1689E-04 4.4525E-04 4.7256E-04 5.2242E-04 5.6794E-04 6.0956E-04 6.4771E-04 6.8283E-04 7.1534E-04 7.4569E-04 8.7142E-04 9.6637E-04 1.0418E-03 1.1550E-03 1.2373E-03 1.3739E-03 1.4597E-03 1.5647E-03 1.6279E-03 1.6717E-03 1.7038E-03 1.7480E-03 1.7775E-03 1.8222E-03 1.8473E-03 1.8755E-03 1.8920E-03 1.9019E-03 1.9093E-03 1.9189E-03 1.9249E-03 1.9327E-03 1.9379E-03 1.9423E-03 1.9453E-03 1.9470E-03 1.9483E-03 1.9496E-03 1.9505E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Li.mat0000644000000000000000000001642014741736366017672 0ustar00rootrootLi 1 3 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 4.1073E-01 8.9458E+00 5.8355E-01 3.4193E-01 2.9204E-01 2.3157E-01 1.9357E-01 1.6389E-01 1.3899E-01 1.0090E-01 7.4849E-02 4.0136E-02 2.4736E-02 1.1990E-02 7.0060E-03 4.5723E-03 3.2111E-03 1.8272E-03 1.1765E-03 5.2569E-04 2.9629E-04 1.8981E-04 1.3188E-04 9.6912E-05 7.4207E-05 5.8638E-05 4.7502E-05 3.9263E-05 3.2996E-05 2.8117E-05 2.1119E-05 1.8558E-05 1.6435E-05 1.3156E-05 1.1878E-05 1.1374E-05 7.6038E-06 7.0299E-06 6.0617E-06 5.2803E-06 4.6399E-06 3.6647E-06 2.9699E-06 2.8441E-06 2.4563E-06 1.7581E-06 1.3196E-06 7.4259E-07 4.7528E-07 3.3004E-07 2.4250E-07 1.8567E-07 1.4671E-07 1.1878E-07 9.8214E-08 8.2510E-08 7.0303E-08 6.0620E-08 5.2803E-08 4.6409E-08 3.6674E-08 2.9707E-08 2.4545E-08 2.0623E-08 1.7578E-08 1.5157E-08 1.3205E-08 7.4251E-09 4.7519E-09 3.3004E-09 1.8558E-09 1.1878E-09 5.2786E-10 2.9690E-10 1.3196E-10 7.4233E-11 4.7511E-11 3.2996E-11 1.8558E-11 1.1878E-11 5.2786E-12 2.9690E-12 1.3196E-12 7.4233E-13 4.7511E-13 3.2996E-13 1.8558E-13 1.1878E-13 5.2786E-14 2.9690E-14 1.3196E-14 7.4233E-15 4.7511E-15 3.2996E-15 1.8558E-15 1.1878E-15 INCOHERENT SCATTERING CROSS SECTION 3.0792E-02 1.9344E+00 1.7614E-02 4.5749E-02 5.5337E-02 6.9149E-02 8.1218E-02 9.2228E-02 1.0212E-01 1.1774E-01 1.2867E-01 1.4264E-01 1.4767E-01 1.4906E-01 1.4680E-01 1.4368E-01 1.4029E-01 1.3361E-01 1.2763E-01 1.1522E-01 1.0568E-01 9.8129E-02 9.1968E-02 8.6810E-02 8.2415E-02 7.8613E-02 7.5275E-02 7.2306E-02 6.9644E-02 6.7239E-02 6.3044E-02 6.1193E-02 5.9478E-02 5.6401E-02 5.5016E-02 5.4434E-02 4.9194E-02 4.8209E-02 4.6382E-02 4.4717E-02 4.3190E-02 4.0483E-02 3.8158E-02 3.7689E-02 3.6132E-02 3.2745E-02 3.0020E-02 2.5039E-02 2.1621E-02 1.9114E-02 1.7179E-02 1.5634E-02 1.4368E-02 1.3318E-02 1.2416E-02 1.1643E-02 1.0975E-02 1.0377E-02 9.8561E-03 9.3876E-03 8.5781E-03 7.9101E-03 7.3470E-03 6.8655E-03 6.4464E-03 6.0811E-03 5.7584E-03 4.5758E-03 3.8201E-03 3.2909E-03 2.5959E-03 2.1543E-03 1.5339E-03 1.2025E-03 8.5252E-04 6.6772E-04 5.5267E-04 4.7320E-04 3.6961E-04 3.0410E-04 2.1239E-04 1.6433E-04 1.1427E-04 8.8237E-05 7.2125E-05 6.1158E-05 4.7120E-05 3.8470E-05 2.6584E-05 2.0441E-05 1.4099E-05 1.0819E-05 8.8150E-06 7.4494E-06 5.7124E-06 4.6470E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.3339E+02 7.6356E+05 2.0422E+03 6.6295E+01 2.6723E+01 7.2481E+00 2.8397E+00 1.3630E+00 7.4650E-01 2.8675E-01 1.3604E-01 3.4783E-02 1.3153E-02 3.3325E-03 1.2537E-03 5.8738E-04 3.1625E-04 1.1912E-04 5.6083E-05 1.4455E-05 5.6230E-06 2.7497E-06 1.5582E-06 9.7827E-07 6.6069E-07 4.7181E-07 3.5407E-07 2.7662E-07 2.1977E-07 1.7568E-07 1.2304E-07 1.1071E-07 1.0410E-07 8.5487E-08 6.8880E-08 6.1063E-08 4.1542E-08 3.9581E-08 3.4712E-08 3.0245E-08 2.6914E-08 2.2392E-08 1.9192E-08 1.8576E-08 1.6663E-08 1.3155E-08 1.0845E-08 7.4988E-09 5.7141E-09 4.6097E-09 3.8609E-09 3.3195E-09 2.9109E-09 2.5916E-09 2.3348E-09 2.1239E-09 1.9487E-09 1.7994E-09 1.6719E-09 1.5608E-09 1.3778E-09 1.2329E-09 1.1158E-09 1.0195E-09 9.3790E-10 8.6849E-10 8.0853E-10 6.0135E-10 4.7866E-10 3.9754E-10 2.9690E-10 2.3686E-10 1.5739E-10 1.1782E-10 7.8424E-11 5.8772E-11 4.6990E-11 3.9147E-11 2.9352E-11 2.3469E-11 1.5643E-11 1.1730E-11 7.8190E-12 5.8634E-12 4.6903E-12 3.9086E-12 2.9317E-12 2.3452E-12 1.5634E-12 1.1722E-12 7.8164E-13 5.8625E-13 4.6895E-13 3.9078E-13 2.9308E-13 2.3452E-13 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6.1184E-06 9.9547E-06 2.0438E-05 3.4297E-05 5.1015E-05 9.1082E-05 1.3734E-04 1.4810E-04 1.8722E-04 2.9075E-04 3.9433E-04 6.4056E-04 8.6016E-04 1.0576E-03 1.2338E-03 1.3934E-03 1.5374E-03 1.6693E-03 1.7890E-03 1.8992E-03 2.0025E-03 2.0979E-03 2.1873E-03 2.2723E-03 2.4276E-03 2.5673E-03 2.6948E-03 2.8111E-03 2.9187E-03 3.0176E-03 3.1104E-03 3.4913E-03 3.7785E-03 4.0093E-03 4.3633E-03 4.6166E-03 5.0331E-03 5.2925E-03 5.6092E-03 5.7983E-03 5.9267E-03 6.0195E-03 6.1471E-03 6.2312E-03 6.3544E-03 6.4238E-03 6.4993E-03 6.5401E-03 6.5661E-03 6.5852E-03 6.6086E-03 6.6243E-03 6.6451E-03 6.6572E-03 6.6694E-03 6.6755E-03 6.6798E-03 6.6824E-03 6.6859E-03 6.6876E-03 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0036E-07 2.9786E-06 1.0498E-05 4.2878E-05 8.5443E-05 1.3127E-04 1.7691E-04 2.2133E-04 2.6393E-04 3.0445E-04 3.4297E-04 3.7941E-04 4.1377E-04 4.4665E-04 4.7788E-04 5.0773E-04 5.6317E-04 6.1401E-04 6.6095E-04 7.0433E-04 7.4476E-04 7.8250E-04 8.1790E-04 9.6739E-04 1.0845E-03 1.1808E-03 1.3301E-03 1.4437E-03 1.6415E-03 1.7717E-03 1.9417E-03 2.0502E-03 2.1283E-03 2.1873E-03 2.2723E-03 2.3313E-03 2.4233E-03 2.4779E-03 2.5404E-03 2.5768E-03 2.6003E-03 2.6167E-03 2.6393E-03 2.6532E-03 2.6740E-03 2.6853E-03 2.6966E-03 2.7035E-03 2.7078E-03 2.7113E-03 2.7139E-03 2.7165E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Lu.mat0000644000000000000000000002174214741736366017711 0ustar00rootrootLu 1 71 1.000000 10 5 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.5885E-03 1.5885E-03 1.6137E-03 1.6394E-03 1.6394E-03 2.0000E-03 2.0236E-03 2.0236E-03 2.1402E-03 2.2635E-03 2.2635E-03 2.3746E-03 2.4912E-03 2.4912E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 9.2441E-03 9.2441E-03 1.0000E-02 1.0349E-02 1.0349E-02 1.0606E-02 1.0870E-02 1.0870E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 6.3314E-02 6.3314E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1035E+01 4.7646E+01 1.2161E+01 1.0563E+01 1.0474E+01 1.0474E+01 1.0448E+01 1.0422E+01 1.0422E+01 1.0064E+01 1.0036E+01 1.0036E+01 9.9093E+00 9.7887E+00 9.7887E+00 9.6868E+00 9.5787E+00 9.5787E+00 9.0590E+00 8.0987E+00 7.2176E+00 6.4397E+00 5.1766E+00 4.5570E+00 4.5570E+00 4.2301E+00 4.0889E+00 4.0889E+00 3.9900E+00 3.8928E+00 3.8928E+00 2.7277E+00 1.9281E+00 1.1393E+00 7.4792E-01 5.2867E-01 3.9616E-01 3.6346E-01 3.6346E-01 2.4874E-01 1.7037E-01 8.3190E-02 4.9563E-02 3.2944E-02 2.3477E-02 1.7568E-02 1.3633E-02 1.0882E-02 8.8869E-03 7.3955E-03 6.2504E-03 5.3515E-03 4.0493E-03 3.5692E-03 3.1695E-03 2.5480E-03 2.3040E-03 2.2076E-03 1.4845E-03 1.3737E-03 1.1862E-03 1.0346E-03 9.1036E-04 7.2060E-04 5.8443E-04 5.5965E-04 4.8342E-04 3.4659E-04 2.6058E-04 1.4676E-04 9.3963E-05 6.5292E-05 4.7980E-05 3.6725E-05 2.9025E-05 2.3511E-05 1.9433E-05 1.6328E-05 1.3915E-05 1.1998E-05 1.0450E-05 9.1864E-06 7.2589E-06 5.8787E-06 4.8599E-06 4.0821E-06 3.4797E-06 2.9996E-06 2.6131E-06 1.4697E-06 9.4066E-07 6.5327E-07 3.6759E-07 2.3518E-07 1.0453E-07 5.8787E-08 2.6131E-08 1.4697E-08 9.4066E-09 6.5327E-09 3.6759E-09 2.3518E-09 1.0453E-09 5.8787E-10 2.6131E-10 1.4697E-10 9.4066E-11 6.5327E-11 3.6759E-11 2.3518E-11 1.0453E-11 5.8787E-12 2.6131E-12 1.4697E-12 9.4066E-13 6.5327E-13 3.6759E-13 2.3518E-13 INCOHERENT SCATTERING CROSS SECTION 4.7429E-03 2.9697E-03 2.0513E-03 7.9542E-03 8.5152E-03 8.5152E-03 8.6727E-03 8.8318E-03 8.8318E-03 1.1045E-02 1.1190E-02 1.1190E-02 1.1905E-02 1.2666E-02 1.2666E-02 1.3354E-02 1.4074E-02 1.4074E-02 1.7137E-02 2.2909E-02 2.8289E-02 3.3228E-02 4.1819E-02 4.6465E-02 4.6465E-02 4.9081E-02 5.0251E-02 5.0251E-02 5.1093E-02 5.1938E-02 5.1938E-02 6.3503E-02 7.4310E-02 8.8422E-02 9.6131E-02 1.0036E-01 1.0267E-01 1.0312E-01 1.0312E-01 1.0412E-01 1.0343E-01 9.8541E-02 9.2827E-02 8.7576E-02 8.2949E-02 7.8890E-02 7.5308E-02 7.2124E-02 6.9285E-02 6.6739E-02 6.4432E-02 6.2321E-02 5.8573E-02 5.6894E-02 5.5327E-02 5.2525E-02 5.1284E-02 5.0768E-02 4.5949E-02 4.5036E-02 4.3349E-02 4.1819E-02 4.0417E-02 3.7916E-02 3.5727E-02 3.5279E-02 3.3806E-02 3.0659E-02 2.8141E-02 2.3487E-02 2.0286E-02 1.7936E-02 1.6122E-02 1.4673E-02 1.3489E-02 1.2497E-02 1.1658E-02 1.0931E-02 1.0298E-02 9.7439E-03 9.2517E-03 8.8112E-03 8.0505E-03 7.4241E-03 6.8975E-03 6.4432E-03 6.0508E-03 5.7101E-03 5.4072E-03 4.2955E-03 3.5864E-03 3.0898E-03 2.4368E-03 2.0224E-03 1.4404E-03 1.1293E-03 8.0058E-04 6.2676E-04 5.1903E-04 4.4435E-04 3.4694E-04 2.8547E-04 1.9939E-04 1.5430E-04 1.0728E-04 8.2811E-05 6.7702E-05 5.7410E-05 4.4228E-05 3.6105E-05 2.4960E-05 1.9192E-05 1.3234E-05 1.0160E-05 8.2743E-06 6.9939E-06 5.3624E-06 4.3643E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.1758E+03 3.1497E+05 1.2671E+04 1.4136E+03 1.2539E+03 1.5592E+03 2.3018E+03 3.3954E+03 3.8928E+03 3.4419E+03 3.3421E+03 3.8790E+03 3.3881E+03 2.9597E+03 3.1455E+03 2.8158E+03 2.5215E+03 2.6310E+03 1.7010E+03 8.4773E+02 4.8634E+02 3.0640E+02 1.4614E+02 1.0026E+02 2.6571E+02 2.1680E+02 1.9777E+02 2.7163E+02 2.5584E+02 2.4100E+02 2.7862E+02 1.2188E+02 5.6825E+01 1.9006E+01 8.6288E+00 4.6500E+00 2.7976E+00 2.4072E+00 1.2587E+01 6.8080E+00 3.7585E+00 1.2518E+00 5.7066E-01 3.1172E-01 1.9164E-01 1.2803E-01 9.0934E-02 6.7686E-02 5.2282E-02 4.1609E-02 3.3930E-02 2.8229E-02 2.0506E-02 1.7825E-02 1.5664E-02 1.2424E-02 1.1190E-02 1.0708E-02 7.2210E-03 6.7050E-03 5.8407E-03 5.1490E-03 4.5858E-03 3.7311E-03 3.1201E-03 3.0089E-03 2.6658E-03 2.0416E-03 1.6387E-03 1.0770E-03 7.9163E-04 6.2195E-04 5.1043E-04 4.3161E-04 3.7344E-04 3.2894E-04 2.9366E-04 2.6509E-04 2.4152E-04 2.2176E-04 2.0493E-04 1.9044E-04 1.6683E-04 1.4834E-04 1.3354E-04 1.2143E-04 1.1128E-04 1.0271E-04 9.5374E-05 7.0214E-05 5.5517E-05 4.5915E-05 3.4112E-05 2.7132E-05 1.7949E-05 1.3410E-05 8.9041E-06 6.6635E-06 5.3246E-06 4.4331E-06 3.3228E-06 2.6564E-06 1.7698E-06 1.3268E-06 8.8422E-07 6.6290E-07 5.3039E-07 4.4194E-07 3.3138E-07 2.6509E-07 1.7671E-07 1.3251E-07 8.8353E-08 6.6256E-08 5.3005E-08 4.4159E-08 3.3128E-08 2.6502E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.0295E-04 4.7261E-04 8.9930E-04 1.4105E-03 1.9739E-03 3.1773E-03 4.4194E-03 4.6947E-03 5.6607E-03 8.0280E-03 1.0226E-02 1.5096E-02 1.9202E-02 2.2727E-02 2.5838E-02 2.8636E-02 3.1180E-02 3.3513E-02 3.5658E-02 3.7688E-02 3.9547E-02 4.1302E-02 4.2920E-02 4.4435E-02 4.7188E-02 4.9597E-02 5.1800E-02 5.3831E-02 5.5655E-02 5.7342E-02 5.8890E-02 6.5223E-02 6.9939E-02 7.3587E-02 7.8991E-02 8.2777E-02 8.8766E-02 9.2311E-02 9.6441E-02 9.8816E-02 1.0036E-01 1.0147E-01 1.0295E-01 1.0388E-01 1.0525E-01 1.0601E-01 1.0684E-01 1.0725E-01 1.0752E-01 1.0773E-01 1.0797E-01 1.0811E-01 1.0835E-01 1.0845E-01 1.0859E-01 1.0863E-01 1.0869E-01 1.0869E-01 1.0876E-01 1.0876E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4275E-08 2.7941E-06 9.8369E-06 4.0098E-05 7.9783E-05 1.2232E-04 1.6462E-04 2.0555E-04 2.4465E-04 2.8172E-04 3.1676E-04 3.4969E-04 3.8067E-04 4.1027E-04 4.3815E-04 4.6465E-04 5.1353E-04 5.5793E-04 5.9854E-04 6.3571E-04 6.7013E-04 7.0180E-04 7.3105E-04 8.5255E-04 9.4376E-04 1.0157E-03 1.1231E-03 1.2005E-03 1.3279E-03 1.4067E-03 1.5024E-03 1.5592E-03 1.5981E-03 1.6266E-03 1.6655E-03 1.6913E-03 1.7299E-03 1.7519E-03 1.7757E-03 1.7898E-03 1.7980E-03 1.8042E-03 1.8121E-03 1.8173E-03 1.8242E-03 1.8283E-03 1.8321E-03 1.8345E-03 1.8359E-03 1.8369E-03 1.8380E-03 1.8386E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/MATERIALS.DICT0000644000000000000000000000235314741736366020611 0ustar00rootroot[Air] Comment = Dry Air (Near sea level) density=0.001204790 g/cm3 CompoundList = C1, N1, O1, Ar1, Kr1 CompoundFraction = 0.0001240, 0.755267, 0.231780, 0.012827, 3.2E-6 Density = 0.001204790 Thickness = 1.0 [Goethite] Comment = Mineral FeO(OH) density from 3.3 to 4.3 density=4.3 g/cm3 CompoundList = Fe1O2H1 CompoundFraction = 1.0 Density = 4.3 Thickness = 0.1 [Mylar] Comment = Mylar (Polyethylene Terephthalate) density=1.40 g/cm3 CompoundList = H1, C1, O1 CompoundFraction = 0.0419590, 0.625017, 0.333025 Density = 1.40 [Kapton] Comment = Kapton 100 HN 25 micron density=1.42 g/cm3 CompoundList = C1, N1, O1 CompoundFraction = 0.628772, 0.066659, 0.304569 Density = 1.42 Thickness = 0.0025 [Teflon] Comment = Teflon density=2.2 g/cm3 CompoundList = C1,F1 CompoundFraction = 0.240183, 0.759817 Density = 2.2 [Viton] Comment = Viton Fluoroelastomer density=1.8 g/cm3 CompoundList = H1,C1,F1 CompoundFraction = 0.0094170, 0.2805550, 0.7100280 Density = 1.8 [Water] Comment = Water density=1.0 g/cm3 CompoundList = H2O1 CompoundFraction = 1.0 Density = 1.0 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Mg.mat0000644000000000000000000001666214741736366017701 0ustar00rootrootMg 1 12 1.000000 2 4 94 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.3050E-03 1.3050E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 2.1457E+00 6.0692E+01 2.6520E+00 2.0300E+00 2.0300E+00 1.9562E+00 1.7805E+00 1.4993E+00 1.2785E+00 1.0909E+00 9.2965E-01 6.8039E-01 5.1165E-01 2.8841E-01 1.8799E-01 1.0050E-01 6.2612E-02 4.2543E-02 3.0724E-02 1.8152E-02 1.1967E-02 5.5229E-03 3.1566E-03 2.0365E-03 1.4207E-03 1.0468E-03 8.0303E-04 6.3538E-04 5.1512E-04 4.2593E-04 3.5803E-04 3.0521E-04 2.2943E-04 2.0169E-04 1.7866E-04 1.4304E-04 1.2914E-04 1.2366E-04 8.2682E-05 7.6448E-05 6.5930E-05 5.7434E-05 5.0464E-05 3.9853E-05 3.2310E-05 3.0947E-05 2.6741E-05 1.9142E-05 1.4363E-05 8.0799E-06 5.1710E-06 3.5902E-06 2.6388E-06 2.0201E-06 1.5962E-06 1.2929E-06 1.0684E-06 8.9768E-07 7.6488E-07 6.5957E-07 5.7459E-07 5.0496E-07 3.9892E-07 3.2334E-07 2.6710E-07 2.2446E-07 1.9126E-07 1.6489E-07 1.4363E-07 8.0799E-08 5.1710E-08 3.5902E-08 2.0199E-08 1.2926E-08 5.7459E-09 3.2310E-09 1.4363E-09 8.0799E-10 5.1710E-10 3.5902E-10 2.0199E-10 1.2926E-10 5.7459E-11 3.2310E-11 1.4363E-11 8.0799E-12 5.1710E-12 3.5902E-12 2.0198E-12 1.2926E-12 5.7459E-13 3.2310E-13 1.4363E-13 8.0799E-14 5.1710E-14 3.5902E-14 2.0199E-14 1.2926E-14 INCOHERENT SCATTERING CROSS SECTION 1.5431E-02 3.8208E+00 7.7386E-03 2.1717E-02 2.1717E-02 2.5347E-02 3.3103E-02 4.5615E-02 5.7260E-02 6.8435E-02 7.8866E-02 9.6805E-02 1.1068E-01 1.3177E-01 1.4225E-01 1.5151E-01 1.5436E-01 1.5431E-01 1.5280E-01 1.4802E-01 1.4262E-01 1.3006E-01 1.1982E-01 1.1150E-01 1.0463E-01 9.8868E-02 9.3931E-02 8.9637E-02 8.5854E-02 8.2485E-02 7.9461E-02 7.6725E-02 7.1950E-02 6.9847E-02 6.7902E-02 6.4399E-02 6.2811E-02 6.2142E-02 5.6170E-02 5.5048E-02 5.2962E-02 5.1066E-02 4.9334E-02 4.6259E-02 4.3583E-02 4.3038E-02 4.1240E-02 3.7385E-02 3.4292E-02 2.8593E-02 2.4701E-02 2.1831E-02 1.9621E-02 1.7860E-02 1.6417E-02 1.5211E-02 1.4188E-02 1.3305E-02 1.2535E-02 1.1858E-02 1.1256E-02 1.0721E-02 9.7994E-03 9.0363E-03 8.3921E-03 7.8420E-03 7.3638E-03 6.9476E-03 6.5784E-03 5.2280E-03 4.3633E-03 3.7587E-03 2.9658E-03 2.4609E-03 1.7525E-03 1.3739E-03 9.7400E-04 7.6265E-04 6.3133E-04 5.4064E-04 4.2221E-04 3.4738E-04 2.4257E-04 1.8774E-04 1.3055E-04 1.0077E-04 8.2385E-05 6.9872E-05 5.3816E-05 4.3955E-05 3.0377E-05 2.3350E-05 1.6103E-05 1.2361E-05 1.0067E-05 8.5110E-06 6.5264E-06 5.3098E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.2023E+02 4.3917E+05 5.8917E+03 4.5095E+02 5.4411E+03 4.0015E+03 1.9299E+03 6.5685E+02 2.9609E+02 1.5711E+02 9.2791E+01 3.9817E+01 2.0434E+01 5.9367E+00 2.4329E+00 6.7840E-01 2.7106E-01 1.3236E-01 7.3465E-02 2.8940E-02 1.4026E-02 3.7860E-03 1.5144E-03 7.5436E-04 4.3286E-04 2.7414E-04 1.8667E-04 1.3437E-04 1.0114E-04 7.8905E-05 6.3157E-05 5.1551E-05 3.6612E-05 3.1913E-05 2.8365E-05 2.2590E-05 1.9847E-05 1.8677E-05 1.2664E-05 1.1848E-05 1.0385E-05 9.1775E-06 8.2111E-06 6.7717E-06 5.7384E-06 5.5477E-06 4.9587E-06 3.8843E-06 3.1814E-06 2.1720E-06 1.6415E-06 1.3164E-06 1.0976E-06 9.4055E-07 8.2261E-07 7.3068E-07 6.5710E-07 5.9689E-07 5.4684E-07 5.0447E-07 4.6804E-07 4.3658E-07 3.8479E-07 3.4416E-07 3.1096E-07 2.8370E-07 2.6091E-07 2.4148E-07 2.2473E-07 1.6683E-07 1.3263E-07 1.1006E-07 8.2112E-08 6.5487E-08 4.3484E-08 3.2533E-08 2.1645E-08 1.6217E-08 1.2966E-08 1.0800E-08 8.0948E-09 6.4743E-09 4.3137E-09 3.2359E-09 2.1564E-09 1.6170E-09 1.2936E-09 1.0778E-09 8.0849E-10 6.4669E-10 4.3113E-10 3.2334E-10 2.1554E-10 1.6165E-10 1.2934E-10 1.0778E-10 8.0824E-11 6.4669E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.9361E-05 4.7464E-05 9.6460E-05 1.6073E-04 2.3801E-04 4.2304E-04 6.3653E-04 6.8609E-04 8.6591E-04 1.3398E-03 1.8122E-03 2.9336E-03 3.9297E-03 4.8242E-03 5.6195E-03 6.3356E-03 6.9847E-03 7.5744E-03 8.1096E-03 8.6002E-03 9.0561E-03 9.4798E-03 9.8763E-03 1.0248E-02 1.0929E-02 1.1539E-02 1.2091E-02 1.2594E-02 1.3053E-02 1.3479E-02 1.3870E-02 1.5488E-02 1.6700E-02 1.7661E-02 1.9108E-02 2.0144E-02 2.1812E-02 2.2822E-02 2.4019E-02 2.4715E-02 2.5174E-02 2.5521E-02 2.5967E-02 2.6239E-02 2.6685E-02 2.6908E-02 2.7156E-02 2.7305E-02 2.7379E-02 2.7429E-02 2.7528E-02 2.7577E-02 2.7627E-02 2.7676E-02 2.7701E-02 2.7726E-02 2.7751E-02 2.7751E-02 2.7751E-02 2.7775E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1475E-07 3.4046E-06 1.1997E-05 4.8985E-05 9.7598E-05 1.4990E-04 2.0211E-04 2.5273E-04 3.0129E-04 3.4763E-04 3.9148E-04 4.3311E-04 4.7226E-04 5.0967E-04 5.4510E-04 5.7905E-04 6.4198E-04 6.9946E-04 7.5249E-04 8.0130E-04 8.4664E-04 8.8901E-04 9.2841E-04 1.0942E-03 1.2225E-03 1.3261E-03 1.4854E-03 1.6038E-03 1.8048E-03 1.9341E-03 2.0964E-03 2.1968E-03 2.2666E-03 2.3184E-03 2.3915E-03 2.4408E-03 2.5149E-03 2.5595E-03 2.6066E-03 2.6363E-03 2.6537E-03 2.6660E-03 2.6834E-03 2.6933E-03 2.7082E-03 2.7156E-03 2.7230E-03 2.7305E-03 2.7329E-03 2.7354E-03 2.7379E-03 2.7379E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Mn.mat0000644000000000000000000001666214741736366017710 0ustar00rootrootMn 1 25 1.000000 2 10 88 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 6.5390E-03 6.5390E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 4.2400E+00 3.8550E+01 4.9518E+00 3.9484E+00 3.6459E+00 3.0912E+00 2.6133E+00 2.2132E+00 1.8843E+00 1.7352E+00 1.7352E+00 1.4075E+00 1.0995E+00 6.8785E-01 4.7639E-01 2.6133E-01 1.6475E-01 1.1433E-01 8.4350E-02 5.1454E-02 3.4540E-02 1.6311E-02 9.4523E-03 6.1554E-03 4.3222E-03 3.1994E-03 2.4620E-03 1.9519E-03 1.5851E-03 1.3127E-03 1.1049E-03 9.4273E-04 7.0941E-04 6.2394E-04 5.5303E-04 4.4316E-04 4.0010E-04 3.8311E-04 2.5639E-04 2.3708E-04 2.0446E-04 1.7813E-04 1.5657E-04 1.2374E-04 1.0026E-04 9.5991E-05 8.2878E-05 5.9350E-05 4.4581E-05 2.5080E-05 1.6048E-05 1.1148E-05 8.1906E-06 6.2712E-06 4.9547E-06 4.0131E-06 3.3170E-06 2.7876E-06 2.3754E-06 2.0476E-06 1.7835E-06 1.5675E-06 1.2387E-06 1.0034E-06 8.2925E-07 6.9683E-07 5.9368E-07 5.1191E-07 4.4592E-07 2.5080E-07 1.6059E-07 1.1148E-07 6.2712E-08 4.0131E-08 1.7835E-08 1.0033E-08 4.4592E-09 2.5080E-09 1.6059E-09 1.1148E-09 6.2712E-10 4.0131E-10 1.7835E-10 1.0033E-10 4.4592E-11 2.5080E-11 1.6059E-11 1.1148E-11 6.2712E-12 4.0131E-12 1.7835E-12 1.0033E-12 4.4592E-13 2.5080E-13 1.6059E-13 1.1148E-13 6.2712E-14 4.0131E-14 INCOHERENT SCATTERING CROSS SECTION 9.2363E-03 3.9090E-02 3.9665E-03 1.5905E-02 2.1901E-02 3.2764E-02 4.2794E-02 5.1915E-02 6.0136E-02 6.4203E-02 6.4203E-02 7.4145E-02 8.5227E-02 1.0364E-01 1.1477E-01 1.2672E-01 1.3154E-01 1.3297E-01 1.3297E-01 1.3055E-01 1.2705E-01 1.1751E-01 1.0896E-01 1.0177E-01 9.5728E-02 9.0585E-02 8.6148E-02 8.2271E-02 7.8847E-02 7.5794E-02 7.3049E-02 7.0560E-02 6.6199E-02 6.4268E-02 6.2476E-02 5.9263E-02 5.7823E-02 5.7220E-02 5.1728E-02 5.0693E-02 4.8776E-02 4.7037E-02 4.5447E-02 4.2622E-02 4.0153E-02 3.9648E-02 3.7986E-02 3.4433E-02 3.1592E-02 2.6363E-02 2.2767E-02 2.0126E-02 1.8087E-02 1.6453E-02 1.5127E-02 1.4020E-02 1.3077E-02 1.2266E-02 1.1554E-02 1.0929E-02 1.0375E-02 9.8809E-03 9.0302E-03 8.3276E-03 7.7357E-03 7.2281E-03 6.7875E-03 6.4027E-03 6.0629E-03 4.8177E-03 4.0218E-03 3.4650E-03 2.7327E-03 2.2680E-03 1.6147E-03 1.2661E-03 8.9765E-04 7.0297E-04 5.8196E-04 4.9821E-04 3.8914E-04 3.2019E-04 2.2362E-04 1.7309E-04 1.2036E-04 9.2878E-05 7.5932E-05 6.4389E-05 4.9613E-05 4.0503E-05 2.7996E-05 2.1518E-05 1.4842E-05 1.1389E-05 9.2791E-06 7.8431E-06 6.0147E-06 4.8933E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 8.0886E+03 2.3496E+06 4.4602E+04 2.9794E+03 1.4173E+03 4.8199E+02 2.2022E+02 1.1893E+02 7.1558E+01 5.6233E+01 4.5020E+02 2.7196E+02 1.5018E+02 4.9481E+01 2.1934E+01 6.7535E+00 2.8731E+00 1.4667E+00 8.4241E-01 3.4858E-01 1.7506E-01 5.0018E-02 2.0707E-02 1.0564E-02 6.1670E-03 3.9557E-03 2.7196E-03 1.9720E-03 1.4919E-03 1.1679E-03 9.3854E-04 7.7020E-04 5.5001E-04 4.7782E-04 4.2163E-04 3.3443E-04 2.9728E-04 2.8204E-04 1.9073E-04 1.7788E-04 1.5566E-04 1.3757E-04 1.2290E-04 1.0077E-04 8.4931E-05 8.2037E-05 7.3098E-05 5.6779E-05 4.6160E-05 3.1120E-05 2.3316E-05 1.8580E-05 1.5412E-05 1.3154E-05 1.1466E-05 1.0160E-05 9.1179E-06 8.2673E-06 7.5614E-06 6.9651E-06 6.4553E-06 6.0158E-06 5.2923E-06 4.7245E-06 4.2663E-06 3.8881E-06 3.5724E-06 3.3028E-06 3.0715E-06 2.2745E-06 1.8065E-06 1.4974E-06 1.1159E-06 8.8910E-07 5.8974E-07 4.4110E-07 2.9333E-07 2.1967E-07 1.7561E-07 1.4623E-07 1.0962E-07 8.7672E-08 5.8415E-08 4.3803E-08 2.9191E-08 2.1890E-08 1.7517E-08 1.4590E-08 1.0944E-08 8.7540E-09 5.8360E-09 4.3770E-09 2.9180E-09 2.1880E-09 1.7506E-09 1.4590E-09 1.0942E-09 8.7529E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6.5189E-05 1.0347E-04 2.0427E-04 3.3356E-04 4.8756E-04 8.5520E-04 1.2781E-03 1.3757E-03 1.7278E-03 2.6441E-03 3.5461E-03 5.6705E-03 7.5493E-03 9.2232E-03 1.0711E-02 1.2047E-02 1.3264E-02 1.4360E-02 1.5357E-02 1.6267E-02 1.7111E-02 1.7900E-02 1.8624E-02 1.9314E-02 2.0575E-02 2.1704E-02 2.2713E-02 2.3644E-02 2.4488E-02 2.5267E-02 2.5990E-02 2.8917E-02 3.1120E-02 3.2830E-02 3.5384E-02 3.7215E-02 4.0164E-02 4.1950E-02 4.4044E-02 4.5261E-02 4.6061E-02 4.6631E-02 4.7398E-02 4.7903E-02 4.8626E-02 4.9021E-02 4.9448E-02 4.9678E-02 4.9821E-02 4.9920E-02 5.0051E-02 5.0139E-02 5.0248E-02 5.0314E-02 5.0380E-02 5.0413E-02 5.0435E-02 5.0446E-02 5.0468E-02 5.0479E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0585E-07 3.1397E-06 1.1060E-05 4.5140E-05 8.9919E-05 1.3801E-04 1.8602E-04 2.3261E-04 2.7722E-04 3.1964E-04 3.5987E-04 3.9780E-04 4.3364E-04 4.6774E-04 5.0018E-04 5.3098E-04 5.8809E-04 6.4027E-04 6.8817E-04 7.3235E-04 7.7313E-04 8.1116E-04 8.4657E-04 9.9433E-04 1.1082E-03 1.1981E-03 1.3362E-03 1.4382E-03 1.6092E-03 1.7188E-03 1.8536E-03 1.9358E-03 1.9928E-03 2.0345E-03 2.0937E-03 2.1320E-03 2.1912E-03 2.2252E-03 2.2614E-03 2.2833E-03 2.2965E-03 2.3063E-03 2.3184E-03 2.3272E-03 2.3381E-03 2.3447E-03 2.3502E-03 2.3546E-03 2.3568E-03 2.3579E-03 2.3601E-03 2.3611E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Mo.mat0000644000000000000000000002005014741736366017673 0ustar00rootrootMo 1 42 1.000000 5 6 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.5202E-03 2.5202E-03 2.5721E-03 2.6251E-03 2.6251E-03 2.7427E-03 2.8655E-03 2.8655E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.0000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 6.9423E+00 5.1200E+01 7.9270E+00 6.5406E+00 6.1056E+00 5.6656E+00 5.6656E+00 5.6220E+00 5.5777E+00 5.5777E+00 5.4807E+00 5.3813E+00 5.3813E+00 5.2745E+00 4.5565E+00 3.9652E+00 3.4856E+00 2.7738E+00 2.2672E+00 1.4481E+00 9.8925E-01 9.8925E-01 9.8925E-01 5.5834E-01 3.6363E-01 2.5441E-01 1.8737E-01 1.1424E-01 7.7332E-02 3.7405E-02 2.1932E-02 1.4379E-02 1.0144E-02 7.5350E-03 5.8163E-03 4.6246E-03 3.7643E-03 3.1228E-03 2.6319E-03 2.2480E-03 1.6949E-03 1.4920E-03 1.3236E-03 1.0617E-03 9.5850E-04 9.1769E-04 6.1508E-04 5.6892E-04 4.9079E-04 4.2771E-04 3.7612E-04 2.9747E-04 2.4097E-04 2.3068E-04 1.9909E-04 1.4263E-04 1.0721E-04 6.0322E-05 3.8616E-05 2.6815E-05 1.9703E-05 1.5090E-05 1.1920E-05 9.6540E-06 7.9780E-06 6.7038E-06 5.7139E-06 4.9268E-06 4.2916E-06 3.7718E-06 2.9803E-06 2.4141E-06 1.9955E-06 1.6766E-06 1.4286E-06 1.2315E-06 1.0727E-06 6.0353E-07 3.8629E-07 2.6822E-07 1.5090E-07 9.6540E-08 4.2916E-08 2.4141E-08 1.0727E-08 6.0347E-09 3.8622E-09 2.6822E-09 1.5090E-09 9.6540E-10 4.2916E-10 2.4141E-10 1.0727E-10 6.0347E-11 3.8622E-11 2.6822E-11 1.5090E-11 9.6540E-12 4.2916E-12 2.4141E-12 1.0727E-12 6.0347E-13 3.8622E-13 2.6822E-13 1.5090E-13 9.6540E-14 INCOHERENT SCATTERING CROSS SECTION 6.4276E-03 8.2195E-03 2.6428E-03 1.1217E-02 1.5837E-02 2.0450E-02 2.0450E-02 2.0899E-02 2.1354E-02 2.1354E-02 2.2362E-02 2.3407E-02 2.3407E-02 2.4537E-02 3.2496E-02 3.9821E-02 4.6544E-02 5.8050E-02 6.7164E-02 8.3735E-02 9.5096E-02 9.5096E-02 9.5096E-02 1.0872E-01 1.1556E-01 1.1901E-01 1.2039E-01 1.1995E-01 1.1769E-01 1.1016E-01 1.0288E-01 9.6527E-02 9.1079E-02 8.6389E-02 8.2291E-02 7.8668E-02 7.5449E-02 7.2576E-02 6.9988E-02 6.7637E-02 6.3505E-02 6.1671E-02 5.9967E-02 5.6904E-02 5.5526E-02 5.4949E-02 4.9701E-02 4.8712E-02 4.6875E-02 4.5201E-02 4.3663E-02 4.0936E-02 3.8597E-02 3.8126E-02 3.6559E-02 3.3137E-02 3.0381E-02 2.5353E-02 2.1894E-02 1.9352E-02 1.7394E-02 1.5831E-02 1.4556E-02 1.3483E-02 1.2579E-02 1.1794E-02 1.1110E-02 1.0514E-02 9.9804E-03 9.5034E-03 8.6873E-03 8.0094E-03 7.4382E-03 6.9549E-03 6.5281E-03 6.1590E-03 5.8326E-03 4.6349E-03 3.8685E-03 3.3331E-03 2.6288E-03 2.1819E-03 1.5536E-03 1.2184E-03 8.6371E-04 6.7603E-04 5.5984E-04 4.7931E-04 3.7436E-04 3.0801E-04 2.1511E-04 1.6647E-04 1.1575E-04 8.9321E-05 7.3064E-05 6.1948E-05 4.7724E-05 3.8968E-05 2.6928E-05 2.0701E-05 1.4280E-05 1.0960E-05 8.9259E-06 7.5449E-06 5.7855E-06 4.7071E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.9356E+03 1.0562E+06 2.4823E+04 1.9182E+03 9.5347E+02 5.3587E+02 1.9729E+03 1.8551E+03 1.7444E+03 2.4273E+03 2.1787E+03 1.9559E+03 2.2371E+03 2.0061E+03 9.6603E+02 5.4101E+02 3.3362E+02 1.5372E+02 8.3421E+01 2.7004E+01 1.1995E+01 7.8462E+01 7.8462E+01 2.7430E+01 1.2460E+01 6.6662E+00 3.9658E+00 1.7281E+00 9.0075E-01 2.7324E-01 1.1751E-01 6.1557E-02 3.6651E-02 2.3871E-02 1.6609E-02 1.2157E-02 9.2648E-03 7.2946E-03 5.8916E-03 4.8574E-03 3.4880E-03 3.0299E-03 2.6687E-03 2.1151E-03 1.8881E-03 1.7965E-03 1.2127E-03 1.1290E-03 9.8586E-04 8.6999E-04 7.7589E-04 6.3360E-04 5.3179E-04 5.1321E-04 4.5589E-04 3.5167E-04 2.8422E-04 1.8938E-04 1.4060E-04 1.1135E-04 9.1895E-05 7.8148E-05 6.7917E-05 6.0002E-05 5.3725E-05 4.8621E-05 4.4391E-05 4.0832E-05 3.7800E-05 3.5182E-05 3.0895E-05 2.7537E-05 2.4832E-05 2.2610E-05 2.0752E-05 1.9170E-05 1.7814E-05 1.3163E-05 1.0432E-05 8.6371E-06 6.4276E-06 5.1201E-06 3.3921E-06 2.5359E-06 1.6854E-06 1.2617E-06 1.0087E-06 8.3986E-07 6.2958E-07 5.0335E-07 3.3532E-07 2.5146E-07 1.6760E-07 1.2567E-07 1.0049E-07 8.3735E-08 6.2833E-08 5.0247E-08 3.3494E-08 2.5120E-08 1.6747E-08 1.2560E-08 1.0049E-08 8.3735E-09 6.2770E-09 5.0241E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.3401E-04 2.0895E-04 4.0005E-04 6.3711E-04 9.1243E-04 1.5507E-03 2.2610E-03 2.4217E-03 2.9994E-03 4.4995E-03 5.9663E-03 9.3150E-03 1.2234E-02 1.4776E-02 1.7048E-02 1.9088E-02 2.0940E-02 2.2641E-02 2.4191E-02 2.5623E-02 2.6941E-02 2.8152E-02 2.9276E-02 3.0337E-02 3.2257E-02 3.3990E-02 3.5565E-02 3.6990E-02 3.8296E-02 3.9488E-02 4.0587E-02 4.5056E-02 4.8364E-02 5.0944E-02 5.4754E-02 5.7459E-02 6.1766E-02 6.4339E-02 6.7352E-02 6.9110E-02 7.0239E-02 7.1055E-02 7.2122E-02 7.2813E-02 7.3817E-02 7.4382E-02 7.5010E-02 7.5324E-02 7.5512E-02 7.5638E-02 7.5826E-02 7.5951E-02 7.6140E-02 7.6203E-02 7.6328E-02 7.6328E-02 7.6391E-02 7.6391E-02 7.6454E-02 7.6454E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0183E-07 3.0194E-06 1.0633E-05 4.3374E-05 8.6371E-05 1.3251E-04 1.7852E-04 2.2308E-04 2.6570E-04 3.0619E-04 3.4454E-04 3.8070E-04 4.1478E-04 4.4723E-04 4.7799E-04 5.0718E-04 5.6129E-04 6.1050E-04 6.5532E-04 6.9675E-04 7.3503E-04 7.7081E-04 8.0408E-04 9.4092E-04 1.0451E-03 1.1273E-03 1.2523E-03 1.3433E-03 1.4945E-03 1.5900E-03 1.7061E-03 1.7764E-03 1.8247E-03 1.8599E-03 1.9088E-03 1.9415E-03 1.9904E-03 2.0180E-03 2.0482E-03 2.0658E-03 2.0764E-03 2.0846E-03 2.0946E-03 2.1009E-03 2.1097E-03 2.1153E-03 2.1197E-03 2.1229E-03 2.1248E-03 2.1260E-03 2.1273E-03 2.1285E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/N.mat0000644000000000000000000001642014741736366017523 0ustar00rootrootNitrogen 1 7 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2911E+00 4.2730E+01 1.6014E+00 1.1755E+00 1.0456E+00 8.0013E-01 6.1095E-01 4.7724E-01 3.8381E-01 2.6854E-01 2.0302E-01 1.2060E-01 8.0400E-02 4.2302E-02 2.5835E-02 1.7378E-02 1.2473E-02 7.2962E-03 4.7681E-03 2.1695E-03 1.2309E-03 7.9120E-04 7.9120E-04 5.5076E-04 3.1046E-04 2.4544E-04 1.9889E-04 1.6444E-04 1.3823E-04 1.1781E-04 8.8504E-05 7.7777E-05 6.8881E-05 5.5141E-05 4.9788E-05 4.7681E-05 3.1876E-05 2.9468E-05 2.5409E-05 2.2138E-05 1.9462E-05 1.5383E-05 1.2456E-05 1.1922E-05 1.0286E-05 7.3638E-06 5.5334E-06 3.1141E-06 1.9928E-06 1.3840E-06 1.0168E-06 7.7863E-07 6.1525E-07 4.9831E-07 4.1176E-07 3.4598E-07 2.9481E-07 2.5418E-07 2.2142E-07 1.9464E-07 1.5379E-07 1.2456E-07 1.0293E-07 8.6505E-08 7.3693E-08 6.3546E-08 5.5377E-08 3.1137E-08 1.9928E-08 1.3840E-08 7.7820E-09 4.9831E-09 2.2138E-09 1.2451E-09 5.5334E-10 3.1132E-10 1.9924E-10 1.3836E-10 7.7820E-11 4.9831E-11 2.2138E-11 1.2451E-11 5.5334E-12 3.1132E-12 1.9924E-12 1.3836E-12 7.7820E-13 4.9831E-13 2.2138E-13 1.2451E-13 5.5334E-14 3.1132E-14 1.9924E-14 1.3836E-14 7.7820E-15 4.9831E-15 INCOHERENT SCATTERING CROSS SECTION 1.1007E-02 3.9908E-03 3.4674E-03 2.2349E-02 3.5105E-02 5.9848E-02 8.0228E-02 9.5663E-02 1.0723E-01 1.2288E-01 1.3298E-01 1.4829E-01 1.5672E-01 1.6338E-01 1.6385E-01 1.6192E-01 1.5908E-01 1.5267E-01 1.4631E-01 1.3264E-01 1.2185E-01 1.1324E-01 1.1324E-01 1.0620E-01 9.5233E-02 9.0840E-02 8.6978E-02 8.3551E-02 8.0486E-02 7.7722E-02 7.2881E-02 7.0726E-02 6.8718E-02 6.5150E-02 6.3589E-02 6.2944E-02 5.6882E-02 5.5728E-02 5.3600E-02 5.1679E-02 4.9933E-02 4.6834E-02 4.4112E-02 4.3553E-02 4.1718E-02 3.7821E-02 3.4710E-02 2.8953E-02 2.5001E-02 2.2099E-02 1.9863E-02 1.8079E-02 1.6617E-02 1.5396E-02 1.4360E-02 1.3466E-02 1.2688E-02 1.2004E-02 1.1394E-02 1.0852E-02 9.9188E-03 9.1449E-03 8.4957E-03 7.9368E-03 7.4553E-03 7.0339E-03 6.6599E-03 5.2926E-03 4.4155E-03 3.8054E-03 3.0010E-03 2.4911E-03 1.7740E-03 1.3909E-03 9.8587E-04 7.7218E-04 6.3890E-04 5.4732E-04 4.2737E-04 3.5161E-04 2.4554E-04 1.9004E-04 1.3212E-04 1.0198E-04 8.3409E-05 7.0726E-05 5.4474E-05 4.4499E-05 3.0741E-05 2.3634E-05 1.6299E-05 1.2516E-05 1.0190E-05 8.6118E-06 6.6040E-06 5.3743E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.3102E+03 1.0776E+07 2.3144E+04 1.0813E+03 4.7595E+02 1.4476E+02 6.0966E+01 3.0870E+01 1.7593E+01 7.1672E+00 3.5432E+00 9.6738E-01 3.8076E-01 1.0095E-01 3.9069E-02 1.8660E-02 1.0185E-02 3.9185E-03 1.8690E-03 4.9186E-04 1.9416E-04 9.5809E-05 9.5809E-05 5.4603E-05 2.3337E-05 1.6731E-05 1.2563E-05 9.7938E-06 7.8207E-06 6.3501E-06 4.4937E-06 3.9456E-06 3.5529E-06 2.8490E-06 2.4524E-06 2.2757E-06 1.5448E-06 1.4518E-06 1.2731E-06 1.1217E-06 1.0026E-06 8.2937E-07 7.0640E-07 6.8361E-07 6.1276E-07 4.8181E-07 3.9555E-07 2.7185E-07 2.0633E-07 1.6600E-07 1.3874E-07 1.1909E-07 1.0430E-07 9.2739E-08 8.3495E-08 7.5928E-08 6.9608E-08 6.4234E-08 5.9633E-08 5.5678E-08 4.9100E-08 4.3940E-08 3.9731E-08 3.6266E-08 3.3359E-08 3.0883E-08 2.8746E-08 2.1360E-08 1.6991E-08 1.4107E-08 1.0534E-08 8.4011E-09 5.5807E-09 4.1769E-09 2.7796E-09 2.0827E-09 1.6652E-09 1.3870E-09 1.0396E-09 8.3151E-10 5.5420E-10 4.1559E-10 2.7701E-10 2.0771E-10 1.6617E-10 1.3849E-10 1.0383E-10 8.3065E-11 5.5377E-11 4.1537E-11 2.7689E-11 2.0766E-11 1.6613E-11 1.3844E-11 1.0383E-11 8.3065E-12 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.6901E-05 2.7408E-05 5.5978E-05 9.3599E-05 1.3891E-04 2.4744E-04 3.7263E-04 4.0170E-04 5.0730E-04 7.8655E-04 1.0658E-03 1.7297E-03 2.3208E-03 2.8531E-03 3.3265E-03 3.7539E-03 4.1417E-03 4.4929E-03 4.8154E-03 5.1078E-03 5.3829E-03 5.6366E-03 5.8774E-03 6.1009E-03 6.5094E-03 6.8748E-03 7.2102E-03 7.5112E-03 7.7906E-03 8.0443E-03 8.2808E-03 9.2567E-03 9.9962E-03 1.0585E-02 1.1467E-02 1.2120E-02 1.3204E-02 1.3883E-02 1.4696E-02 1.5177E-02 1.5500E-02 1.5732E-02 1.6041E-02 1.6248E-02 1.6544E-02 1.6712E-02 1.6888E-02 1.6987E-02 1.7047E-02 1.7090E-02 1.7146E-02 1.7181E-02 1.7232E-02 1.7258E-02 1.7284E-02 1.7301E-02 1.7310E-02 1.7314E-02 1.7323E-02 1.7327E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1615E-07 3.4460E-06 1.2142E-05 4.9573E-05 9.8802E-05 1.5173E-04 2.0461E-04 2.5590E-04 3.0513E-04 3.5204E-04 3.9654E-04 4.3854E-04 4.7853E-04 5.1636E-04 5.5248E-04 5.8688E-04 6.5094E-04 7.0941E-04 7.6358E-04 8.1346E-04 8.5989E-04 9.0332E-04 9.4373E-04 1.1140E-03 1.2468E-03 1.3543E-03 1.5216E-03 1.6476E-03 1.8660E-03 2.0100E-03 2.1936E-03 2.3079E-03 2.3879E-03 2.4473E-03 2.5298E-03 2.5857E-03 2.6695E-03 2.7173E-03 2.7701E-03 2.8011E-03 2.8200E-03 2.8333E-03 2.8514E-03 2.8626E-03 2.8781E-03 2.8871E-03 2.8957E-03 2.9013E-03 2.9043E-03 2.9064E-03 2.9090E-03 2.9107E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Na.mat0000644000000000000000000001666214741736366017674 0ustar00rootrootSodium 1 11 1.000000 2 4 94 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0721E-03 1.0721E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.9190E+00 1.0167E+03 2.5146E+00 1.8978E+00 1.8978E+00 1.7747E+00 1.6414E+00 1.4027E+00 1.1851E+00 9.9252E-01 8.3064E-01 5.9305E-01 4.4086E-01 2.4702E-01 1.6123E-01 8.5972E-02 5.3254E-02 3.6070E-02 2.5998E-02 1.5327E-02 1.0090E-02 4.6417E-03 2.6483E-03 1.7078E-03 1.1911E-03 8.7722E-04 6.7268E-04 5.3214E-04 4.3143E-04 3.5678E-04 2.9993E-04 2.5564E-04 1.9211E-04 1.6888E-04 1.4963E-04 1.1982E-04 1.0813E-04 1.0352E-04 6.9233E-05 6.4014E-05 5.5200E-05 4.8094E-05 4.2284E-05 3.3425E-05 2.7059E-05 2.5899E-05 2.2342E-05 1.5997E-05 1.2023E-05 6.7635E-06 4.3300E-06 3.0072E-06 2.2088E-06 1.6911E-06 1.3362E-06 1.0824E-06 8.9455E-07 7.5153E-07 6.4046E-07 5.5219E-07 4.8094E-07 4.2279E-07 3.3398E-07 2.7059E-07 2.2360E-07 1.8790E-07 1.6010E-07 1.3805E-07 1.2026E-07 6.7635E-08 4.3300E-08 3.0072E-08 1.6909E-08 1.0821E-08 4.8094E-09 2.7059E-09 1.2023E-09 6.7635E-10 4.3274E-10 3.0072E-10 1.6909E-10 1.0821E-10 4.8094E-11 2.7059E-11 1.2023E-11 6.7635E-12 4.3274E-12 3.0072E-12 1.6909E-12 1.0821E-12 4.8094E-13 2.7059E-13 1.2023E-13 6.7635E-14 4.3274E-14 3.0072E-14 1.6909E-14 1.0821E-14 INCOHERENT SCATTERING CROSS SECTION 1.2699E-02 1.6252E+09 1.1616E-02 1.3841E-02 1.3841E-02 1.9942E-02 2.6378E-02 3.9476E-02 5.2835E-02 6.5566E-02 7.7170E-02 9.6240E-02 1.1010E-01 1.3001E-01 1.3975E-01 1.4842E-01 1.5091E-01 1.5059E-01 1.4892E-01 1.4399E-01 1.3860E-01 1.2623E-01 1.1623E-01 1.0813E-01 1.0145E-01 9.5847E-02 9.1053E-02 8.6890E-02 8.3221E-02 7.9952E-02 7.7013E-02 7.4353E-02 6.9720E-02 6.7688E-02 6.5811E-02 6.2425E-02 6.0877E-02 6.0222E-02 5.4433E-02 5.3347E-02 5.1324E-02 4.9482E-02 4.7797E-02 4.4810E-02 4.2226E-02 4.1702E-02 3.9971E-02 3.6241E-02 3.3241E-02 2.7714E-02 2.3937E-02 2.1158E-02 1.9017E-02 1.7307E-02 1.5908E-02 1.4740E-02 1.3750E-02 1.2893E-02 1.2147E-02 1.1492E-02 1.0910E-02 1.0389E-02 9.4956E-03 8.7569E-03 8.1335E-03 7.5991E-03 7.1355E-03 6.7321E-03 6.3758E-03 5.0661E-03 4.2279E-03 3.6437E-03 2.8736E-03 2.3848E-03 1.6982E-03 1.3315E-03 9.4380E-04 7.3922E-04 6.1191E-04 5.2390E-04 4.0916E-04 3.3660E-04 2.3507E-04 1.8195E-04 1.2652E-04 9.7654E-05 7.9842E-05 6.7714E-05 5.2154E-05 4.2593E-05 2.9443E-05 2.2627E-05 1.5604E-05 1.1982E-05 9.7550E-06 8.2461E-06 6.3234E-06 5.1447E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.5225E+02 3.2039E+05 4.2126E+03 5.4119E+02 6.4335E+03 3.1932E+03 1.5190E+03 5.0556E+02 2.2491E+02 1.1830E+02 6.9390E+01 2.9495E+01 1.5023E+01 4.3169E+00 1.7564E+00 4.8539E-01 1.9274E-01 9.3699E-02 5.1866E-02 2.0325E-02 9.8257E-03 2.6378E-03 1.0525E-03 5.2331E-04 2.9993E-04 1.8987E-04 1.2922E-04 9.2931E-05 6.9888E-05 5.4486E-05 4.3588E-05 3.5563E-05 2.5259E-05 2.2032E-05 1.9603E-05 1.5616E-05 1.3695E-05 1.2872E-05 8.7307E-06 8.1717E-06 7.1628E-06 6.3287E-06 5.6623E-06 4.6726E-06 3.9633E-06 3.8323E-06 3.4272E-06 2.6859E-06 2.2004E-06 1.5044E-06 1.1379E-06 9.1315E-07 7.6175E-07 6.5304E-07 5.7131E-07 5.0739E-07 4.5658E-07 4.1466E-07 3.8009E-07 3.5049E-07 3.2534E-07 3.0360E-07 2.6745E-07 2.3921E-07 2.1629E-07 1.9738E-07 1.8148E-07 1.6796E-07 1.5630E-07 1.1604E-07 9.2284E-08 7.6594E-08 5.7157E-08 4.5579E-08 3.0255E-08 2.2648E-08 1.5067E-08 1.1287E-08 9.0241E-09 7.5179E-09 5.6345E-09 4.5081E-09 3.0046E-09 2.2520E-09 1.5010E-09 1.1256E-09 9.0058E-10 7.5048E-10 5.6267E-10 4.5029E-10 3.0019E-10 2.2509E-10 1.5004E-10 1.1253E-10 9.0032E-11 7.5022E-11 5.6267E-11 4.5003E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 2.5852E-05 4.1838E-05 8.5179E-05 1.4211E-04 2.1059E-04 3.7459E-04 5.6398E-04 6.0798E-04 7.6771E-04 1.1887E-03 1.6081E-03 2.6043E-03 3.4918E-03 4.2855E-03 4.9927E-03 5.6319E-03 6.2082E-03 6.7347E-03 7.2114E-03 7.6489E-03 8.0549E-03 8.4321E-03 8.7858E-03 9.1158E-03 9.7235E-03 1.0268E-02 1.0761E-02 1.1209E-02 1.1617E-02 1.1997E-02 1.2348E-02 1.3789E-02 1.4876E-02 1.5738E-02 1.7032E-02 1.7964E-02 1.9473E-02 2.0390E-02 2.1467E-02 2.2093E-02 2.2507E-02 2.2803E-02 2.3201E-02 2.3460E-02 2.3835E-02 2.4042E-02 2.4264E-02 2.4385E-02 2.4461E-02 2.4513E-02 2.4581E-02 2.4623E-02 2.4686E-02 2.4717E-02 2.4752E-02 2.4770E-02 2.4780E-02 2.4788E-02 2.4799E-02 2.4804E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1120E-07 3.2993E-06 1.1625E-05 4.7465E-05 9.4590E-05 1.4528E-04 1.9586E-04 2.4500E-04 2.9207E-04 3.3687E-04 3.7956E-04 4.1990E-04 4.5789E-04 4.9404E-04 5.2861E-04 5.6136E-04 6.2239E-04 6.7818E-04 7.2953E-04 7.7694E-04 8.2121E-04 8.6207E-04 9.0058E-04 1.0617E-03 1.1866E-03 1.2875E-03 1.4431E-03 1.5591E-03 1.7558E-03 1.8824E-03 2.0406E-03 2.1375E-03 2.2046E-03 2.2541E-03 2.3235E-03 2.3701E-03 2.4406E-03 2.4812E-03 2.5260E-03 2.5524E-03 2.5689E-03 2.5805E-03 2.5959E-03 2.6056E-03 2.6192E-03 2.6273E-03 2.6352E-03 2.6404E-03 2.6431E-03 2.6431E-03 2.6457E-03 2.6483E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Nb.mat0000644000000000000000000002005014741736366017657 0ustar00rootrootNb 1 41 1.000000 5 6 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.3705E-03 2.3705E-03 2.4171E-03 2.4647E-03 2.4647E-03 2.5786E-03 2.6977E-03 2.6977E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.8986E-02 1.8986E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 6.8125E+00 3.8080E+01 7.7689E+00 6.4029E+00 5.9731E+00 5.6568E+00 5.6568E+00 5.6223E+00 5.5868E+00 5.5868E+00 5.4958E+00 5.3975E+00 5.3975E+00 5.1609E+00 4.4641E+00 3.8905E+00 3.4244E+00 2.7276E+00 2.2259E+00 1.4111E+00 1.0326E+00 1.0326E+00 9.6192E-01 5.4358E-01 3.5346E-01 2.4677E-01 1.8162E-01 1.1071E-01 7.4996E-02 3.6228E-02 2.1222E-02 1.3906E-02 9.8072E-03 7.2849E-03 5.6231E-03 4.4705E-03 3.6383E-03 3.0179E-03 2.5435E-03 2.1729E-03 1.6383E-03 1.4416E-03 1.2779E-03 1.0245E-03 9.2562E-04 8.8673E-04 5.9407E-04 5.4937E-04 4.7395E-04 4.1309E-04 3.6326E-04 2.8722E-04 2.3270E-04 2.2278E-04 1.9232E-04 1.3775E-04 1.0352E-04 5.8253E-05 3.7291E-05 2.5895E-05 1.9024E-05 1.4571E-05 1.1512E-05 9.3210E-06 7.7070E-06 6.4755E-06 5.5174E-06 4.7577E-06 4.1446E-06 3.6422E-06 2.8780E-06 2.3316E-06 1.9264E-06 1.6192E-06 1.3794E-06 1.1894E-06 1.0358E-06 5.8279E-07 3.7297E-07 2.5902E-07 1.4571E-07 9.3275E-08 4.1439E-08 2.3309E-08 1.0358E-08 5.8279E-09 3.7297E-09 2.5902E-09 1.4571E-09 9.3210E-10 4.1439E-10 2.3309E-10 1.0358E-10 5.8279E-11 3.7297E-11 2.5902E-11 1.4571E-11 9.3210E-12 4.1439E-12 2.3309E-12 1.0358E-12 5.8279E-13 3.7297E-13 2.5902E-13 1.4571E-13 9.3210E-14 INCOHERENT SCATTERING CROSS SECTION 6.8384E-03 9.4090E-03 2.8756E-03 1.1778E-02 1.6503E-02 1.9893E-02 1.9893E-02 2.0305E-02 2.0723E-02 2.0723E-02 2.1728E-02 2.2778E-02 2.2778E-02 2.5390E-02 3.3518E-02 4.0959E-02 4.7727E-02 5.9167E-02 6.8255E-02 8.4913E-02 9.4442E-02 9.4442E-02 9.6451E-02 1.1013E-01 1.1706E-01 1.2043E-01 1.2173E-01 1.2121E-01 1.1888E-01 1.1123E-01 1.0384E-01 9.7432E-02 9.1914E-02 8.7130E-02 8.2969E-02 7.9326E-02 7.6098E-02 7.3204E-02 7.0588E-02 6.8208E-02 6.4029E-02 6.2181E-02 6.0469E-02 5.7385E-02 5.5985E-02 5.5395E-02 5.0105E-02 4.9109E-02 4.7256E-02 4.5568E-02 4.4022E-02 4.1280E-02 3.8911E-02 3.8431E-02 3.6841E-02 3.3397E-02 3.0627E-02 2.5552E-02 2.2071E-02 1.9511E-02 1.7534E-02 1.5959E-02 1.4669E-02 1.3593E-02 1.2679E-02 1.1894E-02 1.1201E-02 1.0598E-02 1.0060E-02 9.5803E-03 8.7571E-03 8.0765E-03 7.4996E-03 7.0070E-03 6.5792E-03 6.2091E-03 5.8791E-03 4.6722E-03 3.9002E-03 3.3602E-03 2.6498E-03 2.1993E-03 1.5667E-03 1.2283E-03 8.7052E-04 6.8190E-04 5.6432E-04 4.8316E-04 3.7738E-04 3.1048E-04 2.1682E-04 1.6782E-04 1.1667E-04 9.0099E-05 7.3635E-05 6.2447E-05 4.8109E-05 3.9281E-05 2.7146E-05 2.0872E-05 1.4390E-05 1.1052E-05 8.9969E-06 7.6033E-06 5.8325E-06 4.7448E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.5925E+03 9.9990E+05 2.3218E+04 1.7799E+03 8.8349E+02 5.7877E+02 2.1753E+03 2.0486E+03 1.9297E+03 2.6881E+03 2.4070E+03 2.1559E+03 2.4644E+03 1.9005E+03 9.1201E+02 5.0942E+02 3.1373E+02 1.4409E+02 7.8107E+01 2.5221E+01 1.2964E+01 8.6664E+01 7.6033E+01 2.5999E+01 1.1765E+01 6.2765E+00 3.7291E+00 1.6205E+00 8.4265E-01 2.5487E-01 1.0935E-01 5.7203E-02 3.4024E-02 2.2139E-02 1.5395E-02 1.1265E-02 8.5821E-03 6.7536E-03 5.4520E-03 4.4934E-03 3.2258E-03 2.8021E-03 2.4683E-03 1.9564E-03 1.7462E-03 1.6613E-03 1.1214E-03 1.0441E-03 9.1205E-04 8.0506E-04 7.1804E-04 5.8633E-04 4.9211E-04 4.7493E-04 4.2195E-04 3.2561E-04 2.6323E-04 1.7547E-04 1.3035E-04 1.0326E-04 8.5238E-05 7.2533E-05 6.3011E-05 5.5686E-05 4.9866E-05 4.5134E-05 4.1212E-05 3.7913E-05 3.5100E-05 3.2669E-05 2.8689E-05 2.5571E-05 2.3063E-05 2.1001E-05 1.9271E-05 1.7812E-05 1.6548E-05 1.2225E-05 9.6905E-06 8.0311E-06 5.9751E-06 4.7577E-06 3.1522E-06 2.3568E-06 1.5660E-06 1.1732E-06 9.3729E-07 7.8043E-07 5.8506E-07 4.6787E-07 3.1172E-07 2.3367E-07 1.5576E-07 1.1680E-07 9.3405E-08 7.7848E-08 5.8383E-08 4.6702E-08 3.1133E-08 2.3348E-08 1.5563E-08 1.1674E-08 9.3405E-09 7.7848E-09 5.8370E-09 4.6696E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.2996E-04 2.0286E-04 3.8911E-04 6.2065E-04 8.8997E-04 1.5153E-03 2.2116E-03 2.3691E-03 2.9359E-03 4.4105E-03 5.8545E-03 9.1525E-03 1.2037E-02 1.4545E-02 1.6788E-02 1.8811E-02 2.0639E-02 2.2317E-02 2.3847E-02 2.5260E-02 2.6557E-02 2.7749E-02 2.8864E-02 2.9908E-02 3.1813E-02 3.3525E-02 3.5074E-02 3.6487E-02 3.7770E-02 3.8950E-02 4.0039E-02 4.4447E-02 4.7714E-02 5.0261E-02 5.4027E-02 5.6698E-02 6.0956E-02 6.3504E-02 6.6440E-02 6.8190E-02 6.9292E-02 7.0135E-02 7.1172E-02 7.1885E-02 7.2857E-02 7.3440E-02 7.4024E-02 7.4348E-02 7.4542E-02 7.4672E-02 7.4866E-02 7.4996E-02 7.5126E-02 7.5255E-02 7.5320E-02 7.5385E-02 7.5385E-02 7.5385E-02 7.5450E-02 7.5450E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0252E-07 3.0412E-06 1.0715E-05 4.3727E-05 8.7052E-05 1.3359E-04 1.8000E-04 2.2492E-04 2.6790E-04 3.0873E-04 3.4743E-04 3.8393E-04 4.1828E-04 4.5101E-04 4.8200E-04 5.1149E-04 5.6607E-04 6.1578E-04 6.6116E-04 7.0329E-04 7.4153E-04 7.7783E-04 8.1089E-04 9.4960E-04 1.0546E-03 1.1382E-03 1.2640E-03 1.3560E-03 1.5090E-03 1.6056E-03 1.7235E-03 1.7948E-03 1.8441E-03 1.8798E-03 1.9297E-03 1.9627E-03 2.0126E-03 2.0405E-03 2.0716E-03 2.0898E-03 2.1008E-03 2.1086E-03 2.1196E-03 2.1261E-03 2.1352E-03 2.1403E-03 2.1455E-03 2.1488E-03 2.1507E-03 2.1514E-03 2.1533E-03 2.1539E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Nd.mat0000644000000000000000000002150014741736366017662 0ustar00rootrootNd 1 60 1.000000 9 4 3 3 3 7 3 3 8 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0050E-03 1.0050E-03 1.1419E-03 1.2974E-03 1.2974E-03 1.3491E-03 1.4028E-03 1.4028E-03 1.5000E-03 1.5753E-03 1.5753E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 6.2079E-03 6.2079E-03 6.4596E-03 6.7215E-03 6.7215E-03 6.9208E-03 7.1260E-03 7.1260E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.3569E-02 4.3569E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.4023E+00 4.0755E-01 5.0290E+00 9.3939E+00 9.3939E+00 9.2363E+00 9.1059E+00 9.1059E+00 9.0544E+00 8.9973E+00 8.9973E+00 8.8929E+00 8.8136E+00 8.8136E+00 8.3752E+00 7.3732E+00 6.4630E+00 5.6823E+00 5.0268E+00 4.9057E+00 4.9057E+00 4.7614E+00 4.6176E+00 4.6176E+00 4.5148E+00 4.4131E+00 4.4131E+00 4.0085E+00 3.2641E+00 2.1301E+00 1.5293E+00 8.9138E-01 5.7992E-01 5.0936E-01 5.0936E-01 4.1187E-01 3.0929E-01 1.9230E-01 1.3064E-01 6.3628E-02 3.7784E-02 2.5003E-02 1.7744E-02 1.3233E-02 1.0246E-02 8.1688E-03 6.6634E-03 5.5361E-03 4.6719E-03 3.9961E-03 3.0207E-03 2.6616E-03 2.3626E-03 1.8976E-03 1.7147E-03 1.6425E-03 1.1026E-03 1.0202E-03 8.8075E-04 7.6780E-04 6.7499E-04 5.3352E-04 4.3296E-04 4.1479E-04 3.5866E-04 2.5699E-04 1.9293E-04 1.0864E-04 6.9557E-05 4.8306E-05 3.5492E-05 2.7176E-05 2.1472E-05 1.7393E-05 1.4375E-05 1.2079E-05 1.0292E-05 8.8762E-06 7.7323E-06 6.7970E-06 5.3692E-06 4.3504E-06 3.5939E-06 3.0198E-06 2.5735E-06 2.2191E-06 1.9331E-06 1.0872E-06 6.9599E-07 4.8306E-07 2.7180E-07 1.7398E-07 7.7323E-08 4.3504E-08 1.9331E-08 1.0872E-08 6.9599E-09 4.8306E-09 2.7180E-09 1.7398E-09 7.7322E-10 4.3504E-10 1.9331E-10 1.0872E-10 6.9599E-11 4.8306E-11 2.7180E-11 1.7398E-11 7.7322E-12 4.3504E-12 1.9331E-12 1.0872E-12 6.9599E-13 4.8306E-13 2.7180E-13 1.7398E-13 INCOHERENT SCATTERING CROSS SECTION 6.3169E-03 2.6032E+25 1.1865E+04 6.3586E-03 6.3586E-03 7.4559E-03 8.6549E-03 8.6549E-03 9.0570E-03 9.4774E-03 9.4774E-03 1.0237E-02 1.0822E-02 1.0822E-02 1.4066E-02 2.1464E-02 2.8299E-02 3.4482E-02 3.9960E-02 4.1020E-02 4.1020E-02 4.2282E-02 4.3546E-02 4.3546E-02 4.4463E-02 4.5383E-02 4.5383E-02 4.9224E-02 5.6990E-02 7.2438E-02 8.3335E-02 9.6277E-02 1.0304E-01 1.0463E-01 1.0463E-01 1.0672E-01 1.0859E-01 1.0943E-01 1.0822E-01 1.0237E-01 9.6110E-02 9.0492E-02 8.5589E-02 8.1315E-02 7.7573E-02 7.4268E-02 7.1310E-02 6.8636E-02 6.6217E-02 6.4025E-02 6.0172E-02 5.8451E-02 5.6843E-02 5.3946E-02 5.2648E-02 5.2105E-02 4.7178E-02 4.6244E-02 4.4506E-02 4.2920E-02 4.1464E-02 3.8879E-02 3.6649E-02 3.6198E-02 3.4702E-02 3.1463E-02 2.8858E-02 2.4082E-02 2.0800E-02 1.8387E-02 1.6525E-02 1.5043E-02 1.3828E-02 1.2813E-02 1.1949E-02 1.1206E-02 1.0559E-02 9.9868E-03 9.4816E-03 9.0307E-03 8.2541E-03 7.6112E-03 7.0684E-03 6.6050E-03 6.2042E-03 5.8535E-03 5.5403E-03 4.4047E-03 3.6762E-03 3.1672E-03 2.4980E-03 2.0733E-03 1.4763E-03 1.1577E-03 8.2040E-04 6.4254E-04 5.3190E-04 4.5550E-04 3.5572E-04 2.9263E-04 2.0437E-04 1.5819E-04 1.0997E-04 8.4879E-05 6.9432E-05 5.8869E-05 4.5341E-05 3.7025E-05 2.5589E-05 1.9673E-05 1.3565E-05 1.0417E-05 8.4838E-06 7.1686E-06 5.4986E-06 4.4715E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.6175E+03 3.7757E-06 1.0916E+01 6.9223E+03 8.5130E+03 7.1015E+03 5.9244E+03 6.8221E+03 6.2559E+03 5.7366E+03 6.0831E+03 5.2648E+03 4.7304E+03 4.9433E+03 2.8700E+03 1.0859E+03 5.3024E+02 3.0044E+02 1.8763E+02 1.7172E+02 4.8431E+02 4.3824E+02 3.9667E+02 5.4109E+02 5.0305E+02 4.6803E+02 5.4026E+02 4.0536E+02 2.2667E+02 7.7030E+01 3.5225E+01 1.1477E+01 5.1270E+00 4.0290E+00 2.3042E+01 1.5978E+01 9.9075E+00 4.5383E+00 2.4487E+00 7.8617E-01 3.5058E-01 1.8851E-01 1.1448E-01 7.5727E-02 5.3357E-02 3.9460E-02 3.0315E-02 2.4016E-02 1.9510E-02 1.6186E-02 1.1707E-02 1.0158E-02 8.9104E-03 7.0537E-03 6.3545E-03 6.0831E-03 4.1003E-03 3.8081E-03 3.3208E-03 2.9309E-03 2.6122E-03 2.1269E-03 1.7798E-03 1.7168E-03 1.5224E-03 1.1688E-03 9.4023E-04 6.2042E-04 4.5759E-04 3.6052E-04 2.9643E-04 2.5121E-04 2.1769E-04 1.9193E-04 1.7151E-04 1.5498E-04 1.4128E-04 1.2980E-04 1.2003E-04 1.1160E-04 9.7864E-05 8.7092E-05 7.8450E-05 7.1352E-05 6.5424E-05 6.0413E-05 5.6113E-05 4.1354E-05 3.2737E-05 2.7084E-05 2.0132E-05 1.6020E-05 1.0605E-05 7.9243E-06 5.2648E-06 3.9400E-06 3.1484E-06 2.6215E-06 1.9644E-06 1.5707E-06 1.0463E-06 7.8450E-07 5.2272E-07 3.9204E-07 3.1359E-07 2.6132E-07 1.9598E-07 1.5677E-07 1.0450E-07 7.8366E-08 5.2230E-08 3.9183E-08 3.1347E-08 2.6123E-08 1.9589E-08 1.5673E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.3184E-04 3.6006E-04 6.8219E-04 1.0713E-03 1.5081E-03 2.4723E-03 3.5021E-03 3.7329E-03 4.5517E-03 6.6075E-03 8.5547E-03 1.2909E-02 1.6650E-02 1.9865E-02 2.2717E-02 2.5276E-02 2.7597E-02 2.9731E-02 3.1701E-02 3.3522E-02 3.5225E-02 3.6799E-02 3.8265E-02 3.9622E-02 4.2085E-02 4.4298E-02 4.6260E-02 4.8097E-02 4.9725E-02 5.1270E-02 5.2648E-02 5.8326E-02 6.2543E-02 6.5841E-02 7.0684E-02 7.4108E-02 7.9577E-02 8.2834E-02 8.6633E-02 8.8846E-02 9.0265E-02 9.1309E-02 9.2687E-02 9.3564E-02 9.4858E-02 9.5568E-02 9.6319E-02 9.6737E-02 9.6987E-02 9.7154E-02 9.7405E-02 9.7530E-02 9.7739E-02 9.7864E-02 9.7989E-02 9.8031E-02 9.8073E-02 9.8114E-02 9.8156E-02 9.8156E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.6674E-08 2.8658E-06 1.0091E-05 4.1145E-05 8.1873E-05 1.2559E-04 1.6909E-04 2.1118E-04 2.5138E-04 2.8958E-04 3.2566E-04 3.5968E-04 3.9171E-04 4.2210E-04 4.5091E-04 4.7846E-04 5.2898E-04 5.7491E-04 6.1708E-04 6.5549E-04 6.9098E-04 7.2396E-04 7.5485E-04 8.8136E-04 9.7697E-04 1.0530E-03 1.1665E-03 1.2492E-03 1.3857E-03 1.4713E-03 1.5757E-03 1.6387E-03 1.6817E-03 1.7130E-03 1.7569E-03 1.7857E-03 1.8291E-03 1.8542E-03 1.8813E-03 1.8976E-03 1.9072E-03 1.9143E-03 1.9235E-03 1.9293E-03 1.9372E-03 1.9422E-03 1.9464E-03 1.9493E-03 1.9510E-03 1.9523E-03 1.9535E-03 1.9544E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ne.mat0000644000000000000000000001642014741736366017670 0ustar00rootrootNe 1 10 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.9001E+00 1.5636E+01 2.1490E+00 1.8031E+00 1.6831E+00 1.4151E+00 1.1597E+00 9.4452E-01 7.7412E-01 5.4045E-01 3.9840E-01 2.2263E-01 1.4554E-01 7.7292E-02 4.7629E-02 3.2170E-02 2.3140E-02 1.3617E-02 8.9468E-03 4.1063E-03 2.3397E-03 1.5068E-03 1.0502E-03 7.7329E-04 5.9297E-04 4.6905E-04 3.8019E-04 3.1432E-04 2.6420E-04 2.2520E-04 1.6926E-04 1.4877E-04 1.3175E-04 1.0547E-04 9.5228E-05 9.1199E-05 6.0968E-05 5.6365E-05 4.8605E-05 4.2347E-05 3.7222E-05 2.9411E-05 2.3823E-05 2.2809E-05 1.9690E-05 1.4100E-05 1.0591E-05 5.9566E-06 3.8139E-06 2.6476E-06 1.9451E-06 1.4894E-06 1.1767E-06 9.5317E-07 7.8784E-07 6.6191E-07 5.6402E-07 4.8643E-07 4.2347E-07 3.7244E-07 2.9419E-07 2.3829E-07 1.9693E-07 1.6548E-07 1.4101E-07 1.2158E-07 1.0591E-07 5.9566E-08 3.8139E-08 2.6476E-08 1.4891E-08 9.5317E-09 4.2347E-09 2.3826E-09 1.0588E-09 5.9566E-10 3.8109E-10 2.6473E-10 1.4891E-10 9.5287E-11 4.2347E-11 2.3826E-11 1.0588E-11 5.9566E-12 3.8109E-12 2.6473E-12 1.4891E-12 9.5287E-13 4.2347E-13 2.3826E-13 1.0588E-13 5.9566E-14 3.8109E-14 2.6473E-14 1.4891E-14 9.5287E-15 INCOHERENT SCATTERING CROSS SECTION 5.4791E-03 4.8963E-04 1.5631E-03 1.1645E-02 1.9254E-02 3.6438E-02 5.3597E-02 6.9235E-02 8.2783E-02 1.0364E-01 1.1785E-01 1.3737E-01 1.4700E-01 1.5560E-01 1.5778E-01 1.5709E-01 1.5512E-01 1.4972E-01 1.4393E-01 1.3095E-01 1.2050E-01 1.1208E-01 1.0514E-01 9.9308E-02 9.4332E-02 9.0020E-02 8.6215E-02 8.2816E-02 7.9769E-02 7.7028E-02 7.2248E-02 7.0130E-02 6.8159E-02 6.4630E-02 6.3057E-02 6.2401E-02 5.6373E-02 5.5245E-02 5.3164E-02 5.1269E-02 4.9524E-02 4.6419E-02 4.3749E-02 4.3212E-02 4.1425E-02 3.7536E-02 3.4408E-02 2.8709E-02 2.4793E-02 2.1913E-02 1.9696E-02 1.7923E-02 1.6476E-02 1.5267E-02 1.4238E-02 1.3355E-02 1.2582E-02 1.1901E-02 1.1298E-02 1.0761E-02 9.8331E-03 9.0692E-03 8.4245E-03 7.8725E-03 7.3920E-03 6.9712E-03 6.6012E-03 5.2463E-03 4.3779E-03 3.7721E-03 2.9759E-03 2.4698E-03 1.7589E-03 1.3790E-03 9.7734E-04 7.6546E-04 6.3356E-04 5.4254E-04 4.2376E-04 3.4856E-04 2.4349E-04 1.8843E-04 1.3101E-04 1.0114E-04 8.2694E-05 7.0130E-05 5.4015E-05 4.4107E-05 3.0469E-05 2.3435E-05 1.6163E-05 1.2409E-05 1.0105E-05 8.5409E-06 6.5504E-06 5.3269E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.4069E+03 3.0022E+07 4.4551E+04 2.6643E+03 1.2412E+03 4.0377E+02 1.7723E+02 9.2363E+01 5.3836E+01 2.2639E+01 1.1451E+01 3.2528E+00 1.3134E+00 3.5930E-01 1.4184E-01 6.8668E-02 3.7870E-02 1.4778E-02 7.1204E-03 1.9034E-03 7.5681E-04 3.7541E-04 2.1490E-04 1.3596E-04 9.2482E-05 6.6467E-05 4.9956E-05 3.8931E-05 3.1126E-05 2.5373E-05 1.8013E-05 1.5730E-05 1.4023E-05 1.1184E-05 9.7794E-06 9.1736E-06 6.2252E-06 5.8301E-06 5.1098E-06 4.5122E-06 4.0364E-06 3.3329E-06 2.8294E-06 2.7363E-06 2.4481E-06 1.9199E-06 1.5739E-06 1.0776E-06 8.1560E-07 6.5504E-07 5.4672E-07 4.6883E-07 4.1004E-07 3.6438E-07 3.2797E-07 2.9798E-07 2.7303E-07 2.5193E-07 2.3385E-07 2.1818E-07 1.9237E-07 1.7201E-07 1.5554E-07 1.4193E-07 1.3053E-07 1.2080E-07 1.1245E-07 8.3499E-08 6.6400E-08 5.5119E-08 4.1123E-08 3.2797E-08 2.1779E-08 1.6300E-08 1.0845E-08 8.1261E-09 6.4967E-09 5.4105E-09 4.0556E-09 3.2439E-09 2.1621E-09 1.6213E-09 1.0806E-09 8.1023E-10 6.4818E-10 5.4015E-10 4.0526E-10 3.2409E-10 2.1606E-10 1.6205E-10 1.0803E-10 8.1023E-11 6.4818E-11 5.4015E-11 4.0496E-11 3.2409E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.4143E-05 3.9110E-05 7.9751E-05 1.3322E-04 1.9762E-04 3.5194E-04 5.2971E-04 5.7089E-04 7.2052E-04 1.1165E-03 1.5124E-03 2.4513E-03 3.2886E-03 4.0377E-03 4.7032E-03 5.3060E-03 5.8521E-03 6.3475E-03 6.7951E-03 7.2100E-03 7.5919E-03 7.9501E-03 8.2813E-03 8.5947E-03 9.1706E-03 9.6839E-03 1.0149E-02 1.0573E-02 1.0961E-02 1.1319E-02 1.1651E-02 1.3014E-02 1.4041E-02 1.4853E-02 1.6085E-02 1.6980E-02 1.8434E-02 1.9317E-02 2.0353E-02 2.0952E-02 2.1349E-02 2.1633E-02 2.2012E-02 2.2260E-02 2.2615E-02 2.2809E-02 2.3021E-02 2.3134E-02 2.3206E-02 2.3256E-02 2.3319E-02 2.3361E-02 2.3417E-02 2.3447E-02 2.3480E-02 2.3498E-02 2.3507E-02 2.3516E-02 2.3525E-02 2.3531E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1525E-07 3.4183E-06 1.2041E-05 4.9151E-05 9.7973E-05 1.5047E-04 2.0287E-04 2.5375E-04 3.0260E-04 3.4916E-04 3.9303E-04 4.3481E-04 4.7420E-04 5.1180E-04 5.4761E-04 5.8163E-04 6.4490E-04 7.0279E-04 7.5591E-04 8.0515E-04 8.5111E-04 8.9349E-04 9.3347E-04 1.1009E-03 1.2307E-03 1.3361E-03 1.4984E-03 1.6199E-03 1.8267E-03 1.9598E-03 2.1257E-03 2.2263E-03 2.2952E-03 2.3459E-03 2.4155E-03 2.4620E-03 2.5306E-03 2.5694E-03 2.6115E-03 2.6363E-03 2.6512E-03 2.6620E-03 2.6760E-03 2.6849E-03 2.6969E-03 2.7040E-03 2.7103E-03 2.7148E-03 2.7175E-03 2.7190E-03 2.7207E-03 2.7219E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ni.mat0000644000000000000000000001712414741736366017676 0ustar00rootrootNi 1 28 1.000000 3 4 9 87 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0081E-03 1.0081E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.3328E-03 8.3328E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.0525E+00 2.0491E+00 5.3370E+00 5.0473E+00 5.0473E+00 4.7611E+00 4.4471E+00 3.8376E+00 3.2927E+00 2.8187E+00 2.4175E+00 1.8111E+00 1.7331E+00 1.7331E+00 1.4057E+00 8.6007E-01 5.9472E-01 3.3030E-01 2.0819E-01 1.4396E-01 1.0610E-01 6.4829E-02 4.3670E-02 2.0717E-02 1.2026E-02 7.8405E-03 5.5101E-03 4.0813E-03 3.1429E-03 2.4940E-03 2.0265E-03 1.6786E-03 1.4129E-03 1.2056E-03 9.0752E-04 7.9830E-04 7.0766E-04 5.6713E-04 5.1202E-04 4.9027E-04 3.2814E-04 3.0344E-04 2.6170E-04 2.2800E-04 2.0039E-04 1.5836E-04 1.2836E-04 1.2293E-04 1.0617E-04 7.6023E-05 5.7082E-05 3.2117E-05 2.0553E-05 1.4273E-05 1.0487E-05 8.0302E-06 6.3454E-06 5.1397E-06 4.2480E-06 3.5687E-06 3.0413E-06 2.6227E-06 2.2841E-06 2.0081E-06 1.5863E-06 1.2847E-06 1.0620E-06 8.9239E-07 7.6033E-07 6.5557E-07 5.7112E-07 3.2127E-07 2.0563E-07 1.4273E-07 8.0302E-08 5.1397E-08 2.2841E-08 1.2847E-08 5.7102E-09 3.2117E-09 2.0553E-09 1.4273E-09 8.0302E-10 5.1397E-10 2.2841E-10 1.2847E-10 5.7102E-11 3.2117E-11 2.0553E-11 1.4273E-11 8.0302E-12 5.1397E-12 2.2841E-12 1.2847E-12 5.7102E-13 3.2117E-13 2.0553E-13 1.4273E-13 8.0302E-14 5.1397E-14 INCOHERENT SCATTERING CROSS SECTION 7.8116E-03 6.3978E+25 2.2354E-01 7.9101E-03 7.9101E-03 1.3904E-02 1.9598E-02 3.0034E-02 3.9843E-02 4.8955E-02 5.7266E-02 7.1724E-02 7.3858E-02 7.3858E-02 8.3585E-02 1.0415E-01 1.1646E-01 1.2990E-01 1.3565E-01 1.3770E-01 1.3780E-01 1.3575E-01 1.3226E-01 1.2262E-01 1.1390E-01 1.0646E-01 1.0018E-01 9.4825E-02 9.0204E-02 8.6161E-02 8.2590E-02 7.9406E-02 7.6536E-02 7.3929E-02 6.9363E-02 6.7353E-02 6.5494E-02 6.2141E-02 6.0611E-02 5.9965E-02 5.4229E-02 5.3149E-02 5.1136E-02 4.9304E-02 4.7630E-02 4.4664E-02 4.2090E-02 4.1567E-02 3.9837E-02 3.6111E-02 3.3122E-02 2.7633E-02 2.3867E-02 2.1096E-02 1.8962E-02 1.7259E-02 1.5863E-02 1.4694E-02 1.3709E-02 1.2857E-02 1.2108E-02 1.1461E-02 1.0877E-02 1.0364E-02 9.4678E-03 8.7310E-03 8.1092E-03 7.5777E-03 7.1160E-03 6.7127E-03 6.3566E-03 5.0504E-03 4.2162E-03 3.6324E-03 2.8648E-03 2.3775E-03 1.6931E-03 1.3278E-03 9.4103E-04 7.3704E-04 6.1011E-04 5.2238E-04 4.0797E-04 3.3563E-04 2.3436E-04 1.8141E-04 1.2611E-04 9.7366E-05 7.9604E-05 6.7507E-05 5.2013E-05 4.2470E-05 2.9346E-05 2.2564E-05 1.5556E-05 1.1944E-05 9.7274E-06 8.2231E-06 6.3053E-06 5.1294E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.8505E+03 3.7130E+06 5.8748E+04 9.6514E+03 1.0989E+04 4.2296E+03 2.0440E+03 7.0564E+02 3.2486E+02 1.7639E+02 1.0651E+02 4.7641E+01 4.2470E+01 3.2753E+02 2.0748E+02 6.9846E+01 3.1491E+01 9.8833E+00 4.2562E+00 2.1928E+00 1.2672E+00 5.2998E-01 2.6802E-01 7.7460E-02 3.2291E-02 1.6556E-02 9.7017E-03 6.2404E-03 4.2993E-03 3.1224E-03 2.3651E-03 1.8534E-03 1.4909E-03 1.2247E-03 8.7551E-04 7.6033E-04 6.7034E-04 5.3139E-04 4.7303E-04 4.4922E-04 3.0372E-04 2.8314E-04 2.4768E-04 2.1887E-04 1.9547E-04 1.6012E-04 1.3483E-04 1.3021E-04 1.1595E-04 8.9923E-05 7.3006E-05 4.9099E-05 3.6714E-05 2.9213E-05 2.4216E-05 2.0655E-05 1.7998E-05 1.5935E-05 1.4293E-05 1.2960E-05 1.1841E-05 1.0907E-05 1.0108E-05 9.4165E-06 8.2826E-06 7.3909E-06 6.6717E-06 6.0796E-06 5.5840E-06 5.1633E-06 4.8011E-06 3.5534E-06 2.8207E-06 2.3374E-06 1.7413E-06 1.3873E-06 9.2020E-07 6.8830E-07 4.5764E-07 3.4271E-07 2.7397E-07 2.2820E-07 1.7105E-07 1.3678E-07 9.1117E-08 6.8317E-08 4.5538E-08 3.4148E-08 2.7315E-08 2.2759E-08 1.7074E-08 1.3657E-08 9.1035E-09 6.8276E-09 4.5517E-09 3.4138E-09 2.7304E-09 2.2759E-09 1.7064E-09 1.3657E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 7.9799E-05 1.2620E-04 2.4761E-04 4.0233E-04 5.8574E-04 1.0210E-03 1.5176E-03 1.6315E-03 2.0432E-03 3.1220E-03 4.1885E-03 6.6747E-03 8.8675E-03 1.0815E-02 1.2549E-02 1.4109E-02 1.5525E-02 1.6797E-02 1.7967E-02 1.9024E-02 2.0009E-02 2.0922E-02 2.1784E-02 2.2584E-02 2.4052E-02 2.5355E-02 2.6545E-02 2.7622E-02 2.8607E-02 2.9510E-02 3.0342E-02 3.3748E-02 3.6293E-02 3.8294E-02 4.1259E-02 4.3383E-02 4.6780E-02 4.8811E-02 5.1192E-02 5.2556E-02 5.3459E-02 5.4106E-02 5.4958E-02 5.5522E-02 5.6322E-02 5.6763E-02 5.7235E-02 5.7492E-02 5.7656E-02 5.7769E-02 5.7913E-02 5.8005E-02 5.8128E-02 5.8200E-02 5.8272E-02 5.8313E-02 5.8333E-02 5.8344E-02 5.8374E-02 5.8385E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1100E-07 3.2918E-06 1.1595E-05 4.7313E-05 9.4247E-05 1.4468E-04 1.9496E-04 2.4380E-04 2.9049E-04 3.3492E-04 3.7699E-04 4.1670E-04 4.5415E-04 4.8996E-04 5.2372E-04 5.5594E-04 6.1576E-04 6.7024E-04 7.2032E-04 7.6639E-04 8.0897E-04 8.4868E-04 8.8562E-04 1.0394E-03 1.1574E-03 1.2518E-03 1.3945E-03 1.4991E-03 1.6746E-03 1.7854E-03 1.9229E-03 2.0050E-03 2.0624E-03 2.1045E-03 2.1620E-03 2.2010E-03 2.2584E-03 2.2913E-03 2.3272E-03 2.3487E-03 2.3610E-03 2.3703E-03 2.3826E-03 2.3908E-03 2.4011E-03 2.4072E-03 2.4134E-03 2.4164E-03 2.4195E-03 2.4206E-03 2.4216E-03 2.4236E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Np.mat0000644000000000000000000002266214741736366017710 0ustar00rootrootNp 1 93 1.000000 13 4 3 3 4 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0868E-03 1.0868E-03 1.2012E-03 1.3277E-03 1.3277E-03 1.5000E-03 1.5007E-03 1.5007E-03 2.0000E-03 3.0000E-03 3.6658E-03 3.6658E-03 3.7569E-03 3.8503E-03 3.8503E-03 4.0000E-03 4.4347E-03 4.4347E-03 5.0000E-03 5.3662E-03 5.3662E-03 5.5418E-03 5.7232E-03 5.7232E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.7610E-02 1.7610E-02 2.0000E-02 2.1600E-02 2.1600E-02 2.2010E-02 2.2427E-02 2.2427E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.1868E-01 1.1868E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3940E+01 2.0479E-02 1.2396E+01 1.3833E+01 1.3833E+01 1.3718E+01 1.3543E+01 1.3543E+01 1.3312E+01 1.3312E+01 1.3312E+01 1.2649E+01 1.1338E+01 1.0525E+01 1.0525E+01 1.0420E+01 1.0312E+01 1.0312E+01 1.0139E+01 9.6665E+00 9.6665E+00 9.0923E+00 8.7443E+00 8.7443E+00 8.5859E+00 8.4267E+00 8.4267E+00 8.1905E+00 6.7475E+00 5.6500E+00 3.8437E+00 3.2188E+00 3.2188E+00 2.7717E+00 2.5224E+00 2.5224E+00 2.4642E+00 2.4068E+00 2.4068E+00 1.6345E+00 1.0988E+00 7.9313E-01 5.9726E-01 3.7523E-01 2.6040E-01 1.9526E-01 1.9526E-01 1.3038E-01 7.8119E-02 5.2255E-02 3.7523E-02 2.8282E-02 2.2089E-02 1.7730E-02 1.4544E-02 1.2145E-02 1.0294E-02 8.8360E-03 6.7162E-03 5.9320E-03 5.2777E-03 4.2555E-03 3.8514E-03 3.6913E-03 2.4935E-03 2.3095E-03 1.9975E-03 1.7445E-03 1.5367E-03 1.2185E-03 9.8977E-04 9.4810E-04 8.1982E-04 5.8892E-04 4.4331E-04 2.5006E-04 1.6028E-04 1.1140E-04 8.1879E-05 6.2724E-05 4.9565E-05 4.0165E-05 3.3204E-05 2.7894E-05 2.3769E-05 2.0497E-05 1.7854E-05 1.5692E-05 1.2400E-05 1.0045E-05 8.3023E-06 6.9761E-06 5.9447E-06 5.1267E-06 4.4636E-06 2.5115E-06 1.6074E-06 1.1163E-06 6.2800E-07 4.0190E-07 1.7859E-07 1.0045E-07 4.4661E-08 2.5115E-08 1.6074E-08 1.1163E-08 6.2800E-09 4.0190E-09 1.7860E-09 1.0045E-09 4.4661E-10 2.5115E-10 1.6074E-10 1.1163E-10 6.2800E-11 4.0190E-11 1.7860E-11 1.0045E-11 4.4661E-12 2.5115E-12 1.6074E-12 1.1163E-12 6.2800E-13 4.0190E-13 INCOHERENT SCATTERING CROSS SECTION 4.5195E-03 5.1645E+17 6.8013E-03 5.0454E-03 5.0454E-03 5.6928E-03 6.4503E-03 6.4503E-03 7.4690E-03 7.4715E-03 7.4715E-03 1.0380E-02 1.6028E-02 1.9569E-02 1.9569E-02 2.0037E-02 2.0512E-02 2.0512E-02 2.1264E-02 2.3395E-02 2.3395E-02 2.6014E-02 2.7640E-02 2.7640E-02 2.8385E-02 2.9139E-02 2.9139E-02 3.0282E-02 3.7777E-02 4.4382E-02 5.7669E-02 6.2927E-02 6.2927E-02 6.7068E-02 6.9507E-02 6.9507E-02 7.0105E-02 7.0701E-02 7.0701E-02 7.9288E-02 8.6833E-02 9.1508E-02 9.4251E-02 9.6436E-02 9.6411E-02 9.5445E-02 9.5445E-02 9.2854E-02 8.8053E-02 8.3396E-02 7.9186E-02 7.5450E-02 7.2124E-02 6.9148E-02 6.6484E-02 6.4090E-02 6.1911E-02 5.9909E-02 5.6355E-02 5.4772E-02 5.3301E-02 5.0643E-02 4.9438E-02 4.8929E-02 4.4331E-02 4.3465E-02 4.1851E-02 4.0368E-02 3.8993E-02 3.6554E-02 3.4500E-02 3.4093E-02 3.2724E-02 2.9666E-02 2.7183E-02 2.2697E-02 1.9607E-02 1.7334E-02 1.5583E-02 1.4183E-02 1.3038E-02 1.2082E-02 1.1270E-02 1.0568E-02 9.9561E-03 9.4201E-03 8.9425E-03 8.5157E-03 7.7840E-03 7.1794E-03 6.6687E-03 6.2318E-03 5.8507E-03 5.5204E-03 5.2257E-03 4.1537E-03 3.4677E-03 2.9876E-03 2.3558E-03 1.9554E-03 1.3924E-03 1.0919E-03 7.7383E-04 6.0616E-04 5.0174E-04 4.2959E-04 3.3560E-04 2.7589E-04 1.9275E-04 1.4918E-04 1.0373E-04 8.0076E-05 6.5468E-05 5.5509E-05 4.2782E-05 3.4931E-05 2.4134E-05 1.8553E-05 1.2796E-05 9.8240E-06 7.9999E-06 6.7627E-06 5.1851E-06 4.2172E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.9380E+03 4.1656E+05 2.3799E+04 5.9828E+03 6.3664E+03 5.2741E+03 4.3696E+03 4.4280E+03 3.4754E+03 3.4728E+03 3.5389E+03 1.9490E+03 7.9771E+02 5.0428E+02 1.2055E+03 1.1338E+03 1.0667E+03 1.5118E+03 1.3800E+03 1.0695E+03 1.2464E+03 9.2321E+02 7.7078E+02 8.1803E+02 7.5527E+02 6.9736E+02 7.2708E+02 6.4858E+02 3.1807E+02 1.8175E+02 6.4477E+01 4.2578E+01 1.0136E+02 7.1616E+01 5.8228E+01 8.2946E+01 7.8957E+01 7.5147E+01 8.6706E+01 4.1435E+01 1.9590E+01 1.0876E+01 6.6941E+00 3.0943E+00 1.6963E+00 1.0685E+00 4.4788E+00 2.4724E+00 1.1864E+00 6.7180E-01 4.2451E-01 2.9001E-01 2.0987E-01 1.5870E-01 1.2420E-01 9.9910E-02 8.2210E-02 6.8936E-02 5.0666E-02 4.4204E-02 3.8936E-02 3.1002E-02 2.7996E-02 2.6827E-02 1.8131E-02 1.6824E-02 1.4636E-02 1.2890E-02 1.1474E-02 9.3281E-03 7.7865E-03 7.5045E-03 6.6365E-03 5.0658E-03 4.0546E-03 2.6446E-03 1.9336E-03 1.5118E-03 1.2359E-03 1.0426E-03 8.9983E-04 7.9085E-04 7.0473E-04 6.3512E-04 5.7796E-04 5.2994E-04 4.8929E-04 4.5424E-04 3.9733E-04 3.5287E-04 3.1730E-04 2.8809E-04 2.6395E-04 2.4345E-04 2.2590E-04 1.6592E-04 1.3106E-04 1.0830E-04 8.0355E-05 6.3867E-05 4.2197E-05 3.1502E-05 2.0916E-05 1.5652E-05 1.2504E-05 1.0411E-05 7.7992E-06 6.2369E-06 4.1537E-06 3.1146E-06 2.0748E-06 1.5558E-06 1.2446E-06 1.0370E-06 7.7764E-07 6.2216E-07 4.1460E-07 3.1095E-07 2.0733E-07 1.5550E-07 1.2438E-07 1.0365E-07 7.7738E-08 6.2191E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.5957E-04 7.3299E-04 1.4357E-03 2.2765E-03 3.1733E-03 4.9536E-03 6.6509E-03 7.0193E-03 8.2825E-03 1.1206E-02 1.3769E-02 1.9244E-02 2.3814E-02 2.7716E-02 3.1197E-02 3.4322E-02 3.7192E-02 3.9860E-02 4.2324E-02 4.4611E-02 4.6745E-02 4.8752E-02 5.0632E-02 5.2410E-02 5.5585E-02 5.8431E-02 6.1022E-02 6.3385E-02 6.5544E-02 6.7526E-02 6.9355E-02 7.6798E-02 8.2311E-02 8.6605E-02 9.2905E-02 9.7351E-02 1.0436E-01 1.0853E-01 1.1338E-01 1.1618E-01 1.1800E-01 1.1933E-01 1.2105E-01 1.2217E-01 1.2377E-01 1.2469E-01 1.2558E-01 1.2619E-01 1.2649E-01 1.2672E-01 1.2702E-01 1.2723E-01 1.2746E-01 1.2761E-01 1.2773E-01 1.2784E-01 1.2789E-01 1.2791E-01 1.2794E-01 1.2796E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1048E-08 2.6979E-06 9.4963E-06 3.8691E-05 7.6925E-05 1.1788E-04 1.5855E-04 1.9783E-04 2.3532E-04 2.7081E-04 3.0435E-04 3.3585E-04 3.6557E-04 3.9377E-04 4.2019E-04 4.4534E-04 4.9183E-04 5.3401E-04 5.7237E-04 6.0768E-04 6.3994E-04 6.6992E-04 6.9761E-04 8.1168E-04 8.9704E-04 9.6411E-04 1.0645E-03 1.1364E-03 1.2545E-03 1.3274E-03 1.4161E-03 1.4686E-03 1.5047E-03 1.5309E-03 1.5670E-03 1.5908E-03 1.6267E-03 1.6467E-03 1.6688E-03 1.6820E-03 1.6899E-03 1.6955E-03 1.7029E-03 1.7077E-03 1.7141E-03 1.7179E-03 1.7214E-03 1.7237E-03 1.7250E-03 1.7260E-03 1.7268E-03 1.7275E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/O.mat0000644000000000000000000001642014741736366017524 0ustar00rootrootOxygen 1 8 1.000000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.5015E+00 2.8632E+01 1.7906E+00 1.3919E+00 1.2632E+00 1.0023E+00 7.8328E-01 6.1804E-01 4.9797E-01 3.4467E-01 2.5648E-01 1.4860E-01 9.8880E-02 5.2470E-02 3.2148E-02 2.1662E-02 1.5575E-02 9.1389E-03 5.9885E-03 2.7342E-03 1.5538E-03 9.9939E-04 9.9939E-04 6.9596E-04 3.9258E-04 3.1043E-04 2.5158E-04 2.0800E-04 1.7484E-04 1.4902E-04 1.1198E-04 9.8428E-05 8.7182E-05 6.9795E-05 6.3009E-05 6.0337E-05 4.0350E-05 3.7302E-05 3.2158E-05 2.8012E-05 2.4623E-05 1.9461E-05 1.5760E-05 1.5086E-05 1.3018E-05 9.3216E-06 7.0048E-06 3.9409E-06 2.5215E-06 1.7510E-06 1.2865E-06 9.8503E-07 7.7839E-07 6.3047E-07 5.2093E-07 4.3775E-07 3.7305E-07 3.2163E-07 2.8019E-07 2.4624E-07 1.9456E-07 1.5760E-07 1.3027E-07 1.0946E-07 9.3271E-08 8.0399E-08 7.0048E-08 3.9409E-08 2.5215E-08 1.7510E-08 9.8503E-09 6.3047E-09 2.8015E-09 1.5756E-09 7.0048E-10 3.9409E-10 2.5211E-10 1.7510E-10 9.8503E-11 6.3047E-11 2.8015E-11 1.5756E-11 7.0048E-12 3.9409E-12 2.5211E-12 1.7510E-12 9.8503E-13 6.3047E-13 2.8015E-13 1.5756E-13 7.0048E-14 3.9409E-14 2.5211E-14 1.7510E-14 9.8503E-15 6.3047E-15 INCOHERENT SCATTERING CROSS SECTION 8.5141E-03 1.6334E-03 2.5572E-03 1.7679E-02 2.8456E-02 5.0889E-02 7.0989E-02 8.7437E-02 1.0031E-01 1.1815E-01 1.2944E-01 1.4544E-01 1.5402E-01 1.6132E-01 1.6242E-01 1.6091E-01 1.5835E-01 1.5222E-01 1.4604E-01 1.3253E-01 1.2180E-01 1.1322E-01 1.1322E-01 1.0618E-01 9.5229E-02 9.0866E-02 8.7023E-02 8.3593E-02 8.0511E-02 7.7730E-02 7.2890E-02 7.0763E-02 6.8796E-02 6.5256E-02 6.3649E-02 6.2971E-02 5.6911E-02 5.5767E-02 5.3640E-02 5.1717E-02 4.9974E-02 4.6884E-02 4.4151E-02 4.3587E-02 4.1738E-02 3.7834E-02 3.4726E-02 2.8968E-02 2.5015E-02 2.2110E-02 1.9874E-02 1.8086E-02 1.6625E-02 1.5406E-02 1.4367E-02 1.3475E-02 1.2692E-02 1.2007E-02 1.1401E-02 1.0859E-02 9.9218E-03 9.1502E-03 8.4991E-03 7.9420E-03 7.4564E-03 7.0349E-03 6.6622E-03 5.2922E-03 4.4189E-03 3.8054E-03 3.0025E-03 2.4921E-03 1.7747E-03 1.3915E-03 9.8616E-04 7.7237E-04 6.3950E-04 5.4766E-04 4.2759E-04 3.5178E-04 2.4567E-04 1.9016E-04 1.3219E-04 1.0204E-04 8.3447E-05 7.0763E-05 5.4502E-05 4.4490E-05 3.0759E-05 2.3645E-05 1.6309E-05 1.2519E-05 1.0197E-05 8.6195E-06 6.6095E-06 5.3750E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.5883E+03 1.6974E+07 3.0554E+04 1.5474E+03 6.9370E+02 2.1601E+02 9.2293E+01 4.7200E+01 2.7097E+01 1.1168E+01 5.5669E+00 1.5417E+00 6.1240E-01 1.6411E-01 6.3950E-02 3.0680E-02 1.6806E-02 6.4966E-03 3.1106E-03 8.2281E-04 3.2509E-04 1.6084E-04 1.6084E-04 9.1879E-05 3.9334E-05 2.8226E-05 2.1206E-05 1.6532E-05 1.3208E-05 1.0740E-05 7.6084E-06 6.6660E-06 5.9791E-06 4.7848E-06 4.1441E-06 3.8618E-06 2.6220E-06 2.4607E-06 2.1571E-06 1.9023E-06 1.7013E-06 1.4071E-06 1.1966E-06 1.1574E-06 1.0362E-06 8.1419E-07 6.6848E-07 4.5883E-07 3.4787E-07 2.7966E-07 2.3363E-07 2.0047E-07 1.7551E-07 1.5605E-07 1.4047E-07 1.2767E-07 1.1702E-07 1.0799E-07 1.0027E-07 9.3572E-08 8.2544E-08 7.3812E-08 6.6773E-08 6.0939E-08 5.6046E-08 5.1868E-08 4.8292E-08 3.5874E-08 2.8535E-08 2.3690E-08 1.7683E-08 1.4104E-08 9.3648E-09 7.0123E-09 4.6636E-09 3.4956E-09 2.7948E-09 2.3280E-09 1.7454E-09 1.3957E-09 9.3008E-10 6.9746E-10 4.6485E-10 3.4862E-10 2.7887E-10 2.3239E-10 1.7427E-10 1.3942E-10 9.2933E-11 6.9709E-11 4.6485E-11 3.4854E-11 2.7884E-11 2.3235E-11 1.7427E-11 1.3942E-11 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.9418E-05 3.1466E-05 6.4194E-05 1.0727E-04 1.5919E-04 2.8364E-04 4.2683E-04 4.5996E-04 5.8038E-04 8.9980E-04 1.2199E-03 1.9783E-03 2.6540E-03 3.2611E-03 3.8016E-03 4.2872E-03 4.7313E-03 5.1303E-03 5.4954E-03 5.8304E-03 6.1428E-03 6.4326E-03 6.7036E-03 6.9596E-03 7.4263E-03 7.8441E-03 8.2243E-03 8.5706E-03 8.8867E-03 9.1803E-03 9.4513E-03 1.0554E-02 1.1397E-02 1.2060E-02 1.3069E-02 1.3806E-02 1.5030E-02 1.5782E-02 1.6686E-02 1.7213E-02 1.7563E-02 1.7815E-02 1.8154E-02 1.8376E-02 1.8699E-02 1.8876E-02 1.9068E-02 1.9170E-02 1.9234E-02 1.9283E-02 1.9339E-02 1.9377E-02 1.9430E-02 1.9460E-02 1.9490E-02 1.9505E-02 1.9512E-02 1.9520E-02 1.9528E-02 1.9535E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1621E-07 3.4481E-06 1.2150E-05 4.9609E-05 9.8842E-05 1.5180E-04 2.0469E-04 2.5606E-04 3.0530E-04 3.5220E-04 3.9672E-04 4.3888E-04 4.7878E-04 5.1679E-04 5.5255E-04 5.8718E-04 6.5117E-04 7.0951E-04 7.6371E-04 8.1340E-04 8.5969E-04 9.0298E-04 9.4325E-04 1.1134E-03 1.2455E-03 1.3528E-03 1.5191E-03 1.6441E-03 1.8602E-03 2.0009E-03 2.1797E-03 2.2900E-03 2.3660E-03 2.4225E-03 2.5012E-03 2.5535E-03 2.6321E-03 2.6766E-03 2.7255E-03 2.7541E-03 2.7718E-03 2.7838E-03 2.8004E-03 2.8109E-03 2.8249E-03 2.8331E-03 2.8410E-03 2.8463E-03 2.8493E-03 2.8512E-03 2.8531E-03 2.8550E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Os.mat0000644000000000000000000002174214741736366017712 0ustar00rootrootOs 1 76 1.000000 10 5 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.9601E-03 1.9601E-03 2.0000E-03 2.0308E-03 2.0308E-03 2.2338E-03 2.4572E-03 2.4572E-03 2.6193E-03 2.7922E-03 2.7922E-03 3.0000E-03 3.0485E-03 3.0485E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.0871E-02 1.0871E-02 1.1603E-02 1.2385E-02 1.2385E-02 1.2673E-02 1.2968E-02 1.2968E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 7.3871E-02 7.3871E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1696E+01 4.8962E+01 1.2848E+01 1.1215E+01 1.0718E+01 1.0718E+01 1.0673E+01 1.0638E+01 1.0638E+01 1.0416E+01 1.0173E+01 1.0173E+01 9.9919E+00 9.7994E+00 9.7994E+00 9.5715E+00 9.5176E+00 9.5176E+00 8.5488E+00 7.6401E+00 6.8454E+00 5.5567E+00 4.5783E+00 4.2269E+00 4.2269E+00 3.9622E+00 3.6981E+00 3.6981E+00 3.6040E+00 3.5113E+00 3.5113E+00 2.9848E+00 2.1039E+00 1.2437E+00 8.2290E-01 5.8258E-01 4.3599E-01 3.1241E-01 3.1241E-01 2.7413E-01 1.8858E-01 9.2422E-02 5.5060E-02 3.6667E-02 2.6188E-02 1.9628E-02 1.5252E-02 1.2188E-02 9.9609E-03 8.2919E-03 7.0100E-03 6.0045E-03 4.5487E-03 4.0116E-03 3.5640E-03 2.8666E-03 2.5919E-03 2.4833E-03 1.6711E-03 1.5467E-03 1.3360E-03 1.1655E-03 1.0256E-03 8.1207E-04 6.5889E-04 6.3103E-04 5.4525E-04 3.9099E-04 2.9395E-04 1.6559E-04 1.0604E-04 7.3678E-05 5.4142E-05 4.1446E-05 3.2770E-05 2.6539E-05 2.1936E-05 1.8431E-05 1.5704E-05 1.3542E-05 1.1797E-05 1.0369E-05 8.1942E-06 6.6364E-06 5.4839E-06 4.6100E-06 3.9261E-06 3.3847E-06 2.9496E-06 1.6591E-06 1.0619E-06 7.3741E-07 4.1477E-07 2.6546E-07 1.1797E-07 6.6364E-08 2.9496E-08 1.6591E-08 1.0619E-08 7.3741E-09 4.1477E-09 2.6546E-09 1.1797E-09 6.6364E-10 2.9496E-10 1.6591E-10 1.0619E-10 7.3741E-11 4.1477E-11 2.6546E-11 1.1797E-11 6.6364E-12 2.9496E-12 1.6591E-12 1.0619E-12 7.3741E-13 4.1477E-13 2.6546E-13 INCOHERENT SCATTERING CROSS SECTION 4.0464E-03 8.9474E-03 1.6524E-03 7.1366E-03 9.8659E-03 9.8659E-03 1.0100E-02 1.0281E-02 1.0281E-02 1.1451E-02 1.2716E-02 1.2716E-02 1.3632E-02 1.4603E-02 1.4603E-02 1.5758E-02 1.6027E-02 1.6027E-02 2.1157E-02 2.6286E-02 3.1140E-02 3.9831E-02 4.7082E-02 4.9900E-02 4.9900E-02 5.2157E-02 5.4364E-02 5.4364E-02 5.5108E-02 5.5852E-02 5.5852E-02 6.0950E-02 7.1208E-02 8.5044E-02 9.2928E-02 9.7329E-02 9.9736E-02 1.0119E-01 1.0119E-01 1.0141E-01 1.0094E-01 9.6443E-02 9.0997E-02 8.5926E-02 8.1435E-02 7.7487E-02 7.3994E-02 7.0882E-02 6.8105E-02 6.5617E-02 6.3356E-02 6.1279E-02 5.7604E-02 5.5979E-02 5.4473E-02 5.1736E-02 5.0469E-02 4.9931E-02 4.5213E-02 4.4326E-02 4.2669E-02 4.1161E-02 3.9784E-02 3.7334E-02 3.5177E-02 3.4733E-02 3.3277E-02 3.0182E-02 2.7708E-02 2.3123E-02 1.9976E-02 1.7658E-02 1.5872E-02 1.4447E-02 1.3282E-02 1.2307E-02 1.1478E-02 1.0765E-02 1.0141E-02 9.5936E-03 9.1092E-03 8.6754E-03 7.9282E-03 7.3108E-03 6.7915E-03 6.3451E-03 5.9588E-03 5.6232E-03 5.3224E-03 4.2301E-03 3.5303E-03 3.0424E-03 2.3994E-03 1.9915E-03 1.4181E-03 1.1120E-03 7.8807E-04 6.1741E-04 5.1103E-04 4.3757E-04 3.4163E-04 2.8113E-04 1.9634E-04 1.5195E-04 1.0566E-04 8.1562E-05 6.6680E-05 5.6549E-05 4.3567E-05 3.5557E-05 2.4579E-05 1.8896E-05 1.3032E-05 1.0005E-05 8.1467E-06 6.8865E-06 5.2812E-06 4.2966E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.0211E+03 3.9712E+05 1.6020E+04 1.7902E+03 1.0122E+03 1.0439E+03 2.2075E+03 2.5817E+03 2.8258E+03 2.6757E+03 2.5336E+03 2.9354E+03 2.5131E+03 2.1518E+03 2.2863E+03 1.9289E+03 1.8592E+03 1.9390E+03 1.0141E+03 5.8575E+02 3.7076E+02 1.7800E+02 9.9862E+01 8.0295E+01 2.0780E+02 1.7451E+02 1.4656E+02 2.0232E+02 1.9137E+02 1.8104E+02 2.0932E+02 1.4476E+02 6.8200E+01 2.3104E+01 1.0578E+01 5.7340E+00 3.4670E+00 1.9463E+00 9.7456E+00 7.9124E+00 4.4074E+00 1.4907E+00 6.8675E-01 3.7799E-01 2.3373E-01 1.5689E-01 1.1186E-01 8.3528E-02 6.4686E-02 5.1588E-02 4.2142E-02 3.5118E-02 2.5573E-02 2.2246E-02 1.9557E-02 1.5523E-02 1.3988E-02 1.3390E-02 9.0300E-03 8.3837E-03 7.3023E-03 6.4369E-03 5.7316E-03 4.6603E-03 3.8944E-03 3.7551E-03 3.3255E-03 2.5451E-03 2.0416E-03 1.3393E-03 9.8311E-04 7.7129E-04 6.3229E-04 5.3446E-04 4.6227E-04 4.0686E-04 3.6316E-04 3.2770E-04 2.9845E-04 2.7391E-04 2.5308E-04 2.3512E-04 2.0587E-04 1.8304E-04 1.6474E-04 1.4973E-04 1.3722E-04 1.2662E-04 1.1756E-04 8.6501E-05 6.8390E-05 5.6549E-05 4.1984E-05 3.3404E-05 2.2084E-05 1.6496E-05 1.0955E-05 8.1973E-06 6.5509E-06 5.4554E-06 4.0876E-06 3.2675E-06 2.1765E-06 1.6319E-06 1.0873E-06 8.1530E-07 6.5224E-07 5.4332E-07 4.0749E-07 3.2612E-07 2.1733E-07 1.6300E-07 1.0866E-07 8.1498E-08 6.5192E-08 5.4332E-08 4.0749E-08 3.2580E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.3530E-04 5.2509E-04 1.0039E-03 1.5765E-03 2.2026E-03 3.5186E-03 4.8538E-03 5.1483E-03 6.1760E-03 8.6641E-03 1.0949E-02 1.5980E-02 2.0194E-02 2.3816E-02 2.7011E-02 2.9883E-02 3.2485E-02 3.4892E-02 3.7108E-02 3.9198E-02 4.1129E-02 4.2934E-02 4.4612E-02 4.6163E-02 4.9013E-02 5.1514E-02 5.3794E-02 5.5884E-02 5.7783E-02 5.9525E-02 6.1140E-02 6.7725E-02 7.2570E-02 7.6369E-02 8.1942E-02 8.5836E-02 9.2042E-02 9.5683E-02 9.9957E-02 1.0240E-01 1.0398E-01 1.0512E-01 1.0664E-01 1.0762E-01 1.0901E-01 1.0977E-01 1.1063E-01 1.1107E-01 1.1136E-01 1.1155E-01 1.1180E-01 1.1196E-01 1.1218E-01 1.1231E-01 1.1243E-01 1.1250E-01 1.1253E-01 1.1256E-01 1.1259E-01 1.1262E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2854E-08 2.7510E-06 9.6823E-06 3.9451E-05 7.8490E-05 1.2035E-04 1.6195E-04 2.0219E-04 2.4063E-04 2.7704E-04 3.1146E-04 3.4385E-04 3.7425E-04 4.0338E-04 4.3060E-04 4.5657E-04 5.0469E-04 5.4807E-04 5.8797E-04 6.2438E-04 6.5794E-04 6.8897E-04 7.1778E-04 8.3620E-04 9.2517E-04 9.9546E-04 1.0999E-03 1.1756E-03 1.2988E-03 1.3754E-03 1.4679E-03 1.5226E-03 1.5600E-03 1.5872E-03 1.6246E-03 1.6496E-03 1.6863E-03 1.7069E-03 1.7294E-03 1.7430E-03 1.7509E-03 1.7566E-03 1.7642E-03 1.7690E-03 1.7753E-03 1.7791E-03 1.7826E-03 1.7851E-03 1.7864E-03 1.7873E-03 1.7883E-03 1.7889E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/P.mat0000644000000000000000000001666214741736366017535 0ustar00rootrootPhosphor 1 15 1.000000 2 6 92 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.1455E-03 2.1455E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 2.6559E+00 6.1911E+01 3.2840E+00 2.4128E+00 2.1640E+00 2.0959E+00 2.0959E+00 1.7446E+00 1.4479E+00 1.2369E+00 1.0758E+00 8.3293E-01 6.5386E-01 3.8244E-01 2.5023E-01 1.3410E-01 8.4498E-02 5.8056E-02 4.2230E-02 2.5120E-02 1.6627E-02 7.7246E-03 4.4349E-03 2.8689E-03 2.0045E-03 1.4784E-03 1.1349E-03 8.9841E-04 7.2871E-04 6.0280E-04 5.0687E-04 4.3214E-04 3.2487E-04 2.8561E-04 2.5306E-04 2.0266E-04 1.8294E-04 1.7516E-04 1.1714E-04 1.0831E-04 9.3401E-05 8.1368E-05 7.1514E-05 5.6506E-05 4.5788E-05 4.3843E-05 3.7860E-05 2.7109E-05 2.0357E-05 1.1450E-05 7.3280E-06 5.0882E-06 3.7388E-06 2.8620E-06 2.2612E-06 1.8321E-06 1.5142E-06 1.2723E-06 1.0841E-06 9.3481E-07 8.1426E-07 7.1569E-07 5.6539E-07 4.5807E-07 3.7855E-07 3.1808E-07 2.7103E-07 2.3370E-07 2.0357E-07 1.1450E-07 7.3280E-08 5.0882E-08 2.8620E-08 1.8319E-08 8.1426E-09 4.5788E-09 2.0357E-09 1.1450E-09 7.3280E-10 5.0882E-10 2.8620E-10 1.8319E-10 8.1426E-11 4.5788E-11 2.0357E-11 1.1450E-11 7.3280E-12 5.0882E-12 2.8620E-12 1.8319E-12 8.1426E-13 4.5788E-13 2.0357E-13 1.1450E-13 7.3280E-14 5.0882E-14 2.8620E-14 1.8319E-14 INCOHERENT SCATTERING CROSS SECTION 1.1127E-02 2.8032E-02 4.1478E-03 2.0804E-02 3.0253E-02 3.2858E-02 3.2858E-02 4.6371E-02 5.8853E-02 6.8788E-02 7.7188E-02 9.1342E-02 1.0299E-01 1.2331E-01 1.3460E-01 1.4463E-01 1.4798E-01 1.4848E-01 1.4751E-01 1.4356E-01 1.3872E-01 1.2698E-01 1.1716E-01 1.0913E-01 1.0246E-01 9.6839E-02 9.2022E-02 8.7839E-02 8.4148E-02 8.0850E-02 7.7887E-02 7.5213E-02 7.0542E-02 6.8477E-02 6.6561E-02 6.3129E-02 6.1594E-02 6.0953E-02 5.5081E-02 5.3979E-02 5.1940E-02 5.0084E-02 4.8377E-02 4.5343E-02 4.2735E-02 4.2210E-02 4.0467E-02 3.6683E-02 3.3636E-02 2.8056E-02 2.4226E-02 2.1406E-02 1.9246E-02 1.7516E-02 1.6102E-02 1.4918E-02 1.3915E-02 1.3050E-02 1.2294E-02 1.1631E-02 1.1042E-02 1.0515E-02 9.6105E-03 8.8620E-03 8.2320E-03 7.6915E-03 7.2230E-03 6.8147E-03 6.4511E-03 5.1270E-03 4.2793E-03 3.6883E-03 2.9086E-03 2.4148E-03 1.7189E-03 1.3478E-03 9.5522E-04 7.4816E-04 6.1925E-04 5.3020E-04 4.1413E-04 3.4064E-04 2.3798E-04 1.8416E-04 1.2805E-04 9.8847E-05 8.0804E-05 6.8536E-05 5.2787E-05 4.3104E-05 2.9786E-05 2.2904E-05 1.5795E-05 1.2126E-05 9.8749E-06 8.3468E-06 6.4005E-06 5.2068E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.9101E+03 8.5271E+05 1.1987E+04 6.5230E+02 2.9961E+02 2.4731E+02 2.4712E+03 1.1162E+03 5.2262E+02 2.8484E+02 1.7147E+02 7.5671E+01 3.9605E+01 1.1883E+01 4.9696E+00 1.4213E+00 5.7706E-01 2.8522E-01 1.5968E-01 6.3694E-02 3.1167E-02 8.5334E-03 3.4414E-03 1.7248E-03 9.9411E-04 6.3149E-04 4.3085E-04 3.1052E-04 2.3390E-04 1.8255E-04 1.4627E-04 1.1962E-04 8.5153E-05 7.4135E-05 6.5707E-05 5.2229E-05 4.6079E-05 4.3493E-05 2.9475E-05 2.7546E-05 2.4132E-05 2.1329E-05 1.9075E-05 1.5705E-05 1.3293E-05 1.2850E-05 1.1478E-05 8.9679E-06 7.3280E-06 4.9890E-06 3.7602E-06 3.0117E-06 2.5081E-06 2.1465E-06 1.8760E-06 1.6653E-06 1.4969E-06 1.3590E-06 1.2445E-06 1.1475E-06 1.0647E-06 9.9274E-07 8.7473E-07 7.8160E-07 7.0655E-07 6.4433E-07 5.9242E-07 5.4809E-07 5.0998E-07 3.7835E-07 3.0078E-07 2.4945E-07 1.8607E-07 1.4837E-07 9.8477E-08 7.3688E-08 4.9015E-08 3.6727E-08 2.9358E-08 2.4459E-08 1.8329E-08 1.4658E-08 9.7680E-09 7.3241E-09 4.8821E-09 3.6611E-09 2.9281E-09 2.4401E-09 1.8301E-09 1.4640E-09 9.7602E-10 7.3202E-10 4.8801E-10 3.6591E-10 2.9281E-10 2.4401E-10 1.8298E-10 1.4638E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 3.6999E-05 5.9618E-05 1.2053E-04 2.0007E-04 2.9543E-04 5.2334E-04 7.8626E-04 8.4731E-04 1.0687E-03 1.6511E-03 2.2301E-03 3.6008E-03 4.8179E-03 5.9086E-03 6.8769E-03 7.7518E-03 8.5431E-03 9.2606E-03 9.9119E-03 1.0509E-02 1.1063E-02 1.1578E-02 1.2060E-02 1.2511E-02 1.3340E-02 1.4080E-02 1.4749E-02 1.5358E-02 1.5916E-02 1.6429E-02 1.6903E-02 1.8869E-02 2.0337E-02 2.1484E-02 2.3195E-02 2.4420E-02 2.6403E-02 2.7609E-02 2.9047E-02 2.9903E-02 3.0447E-02 3.0856E-02 3.1400E-02 3.1750E-02 3.2275E-02 3.2547E-02 3.2858E-02 3.3014E-02 3.3130E-02 3.3189E-02 3.3286E-02 3.3344E-02 3.3441E-02 3.3480E-02 3.3519E-02 3.3558E-02 3.3578E-02 3.3578E-02 3.3597E-02 3.3597E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1255E-07 3.3394E-06 1.1767E-05 4.8043E-05 9.5736E-05 1.4703E-04 1.9812E-04 2.4789E-04 2.9553E-04 3.4083E-04 3.8380E-04 4.2443E-04 4.6293E-04 4.9948E-04 5.3429E-04 5.6734E-04 6.2878E-04 6.8497E-04 7.3668E-04 7.8432E-04 8.2865E-04 8.6987E-04 9.0836E-04 1.0693E-03 1.1938E-03 1.2937E-03 1.4471E-03 1.5609E-03 1.7539E-03 1.8786E-03 2.0357E-03 2.1329E-03 2.1990E-03 2.2495E-03 2.3195E-03 2.3662E-03 2.4381E-03 2.4770E-03 2.5217E-03 2.5489E-03 2.5645E-03 2.5762E-03 2.5917E-03 2.6014E-03 2.6150E-03 2.6228E-03 2.6287E-03 2.6345E-03 2.6364E-03 2.6384E-03 2.6403E-03 2.6423E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pa.mat0000644000000000000000000002277214741736366017675 0ustar00rootrootPa 1 91 1.000000 13 4 3 3 5 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0067E-03 1.0067E-03 1.1102E-03 1.2243E-03 1.2243E-03 1.3032E-03 1.3871E-03 1.3871E-03 1.5000E-03 2.0000E-03 3.0000E-03 3.4418E-03 3.4418E-03 3.5255E-03 3.6112E-03 3.6112E-03 4.0000E-03 4.1738E-03 4.1738E-03 5.0000E-03 5.0009E-03 5.0009E-03 5.1807E-03 5.3669E-03 5.3669E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.6733E-02 1.6733E-02 2.0000E-02 2.0314E-02 2.0314E-02 2.0705E-02 2.1105E-02 2.1105E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.1260E-01 1.1260E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3658E+01 1.1453E+35 1.2139E+02 1.3651E+01 1.3651E+01 1.3522E+01 1.3377E+01 1.3377E+01 1.3281E+01 1.3176E+01 1.3176E+01 1.3025E+01 1.2360E+01 1.1073E+01 1.0544E+01 1.0544E+01 1.0446E+01 1.0346E+01 1.0346E+01 9.9076E+00 9.7199E+00 9.7199E+00 8.8937E+00 8.8937E+00 8.8937E+00 8.7805E+00 8.5574E+00 8.5574E+00 8.0231E+00 6.6129E+00 5.5338E+00 3.7509E+00 3.3260E+00 3.3260E+00 2.6978E+00 2.6457E+00 2.6457E+00 2.5844E+00 2.5253E+00 2.5253E+00 1.5890E+00 1.0682E+00 7.6920E-01 5.7840E-01 3.6336E-01 2.5203E-01 2.0647E-01 2.0647E-01 1.2585E-01 7.5330E-02 5.0348E-02 3.6127E-02 2.7219E-02 2.1251E-02 1.7050E-02 1.3979E-02 1.1666E-02 9.8842E-03 8.4834E-03 6.4463E-03 5.6902E-03 5.0580E-03 4.0749E-03 3.6909E-03 3.5397E-03 2.3889E-03 2.2119E-03 1.9127E-03 1.6706E-03 1.4715E-03 1.1666E-03 9.4749E-04 9.0761E-04 7.8477E-04 5.6357E-04 4.2409E-04 2.3915E-04 1.5327E-04 1.0650E-04 7.8302E-05 5.9951E-05 4.7388E-05 3.8395E-05 3.1722E-05 2.6665E-05 2.2722E-05 1.9594E-05 1.7068E-05 1.5001E-05 1.1855E-05 9.6026E-06 7.9370E-06 6.6676E-06 5.6823E-06 4.9004E-06 4.2670E-06 2.4009E-06 1.5366E-06 1.0671E-06 6.0030E-07 3.8421E-07 1.7073E-07 9.6026E-08 4.2696E-08 2.4009E-08 1.5366E-08 1.0671E-08 6.0030E-09 3.8421E-09 1.7073E-09 9.6026E-10 4.2696E-10 2.4009E-10 1.5366E-10 1.0671E-10 6.0030E-11 3.8421E-11 1.7073E-11 9.6026E-12 4.2696E-12 2.4009E-12 1.5366E-12 1.0671E-12 6.0030E-13 3.8421E-13 INCOHERENT SCATTERING CROSS SECTION 4.7023E-03 1.6252E+25 1.5159E-02 4.7440E-03 4.7440E-03 5.3890E-03 6.0838E-03 6.0838E-03 6.5448E-03 7.0352E-03 7.0352E-03 7.7155E-03 1.0684E-02 1.6437E-02 1.8864E-02 1.8864E-02 1.9317E-02 1.9766E-02 1.9766E-02 2.1778E-02 2.2651E-02 2.2651E-02 2.6587E-02 2.6613E-02 2.6613E-02 2.8931E-02 2.8229E-02 2.8229E-02 3.0888E-02 3.8421E-02 4.5068E-02 5.8387E-02 6.1984E-02 6.1984E-02 6.7719E-02 6.8214E-02 6.8214E-02 6.8816E-02 6.9413E-02 6.9413E-02 8.0022E-02 8.7659E-02 9.2299E-02 9.5036E-02 9.7147E-02 9.7069E-02 9.6470E-02 9.6470E-02 9.3420E-02 8.8572E-02 8.3847E-02 7.9579E-02 7.5806E-02 7.2463E-02 6.9480E-02 6.6807E-02 6.4394E-02 6.2193E-02 6.0167E-02 5.6582E-02 5.4999E-02 5.3536E-02 5.0881E-02 4.9655E-02 4.9134E-02 4.4520E-02 4.3651E-02 4.2024E-02 4.0532E-02 3.9158E-02 3.6722E-02 3.4641E-02 3.4224E-02 3.2830E-02 2.9766E-02 2.7291E-02 2.2787E-02 1.9685E-02 1.7404E-02 1.5645E-02 1.4240E-02 1.3090E-02 1.2128E-02 1.1313E-02 1.0611E-02 9.9962E-03 9.4567E-03 8.9797E-03 8.5496E-03 7.8145E-03 7.2072E-03 6.6937E-03 6.2558E-03 5.8752E-03 5.5416E-03 5.2470E-03 4.1705E-03 3.4798E-03 2.9976E-03 2.3652E-03 1.9630E-03 1.3979E-03 1.0961E-03 7.7702E-04 6.0838E-04 5.0359E-04 4.3139E-04 3.3677E-04 2.7708E-04 1.9351E-04 1.4977E-04 1.0413E-04 8.0387E-05 6.5712E-05 5.5729E-05 4.2930E-05 3.5059E-05 2.4228E-05 1.8627E-05 1.2845E-05 9.8633E-06 8.0309E-06 6.7901E-06 5.2053E-06 4.2357E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.5165E+03 4.1979E+05 2.2833E+04 6.4383E+03 6.8553E+03 5.7244E+03 4.7831E+03 4.8508E+03 4.2940E+03 3.8030E+03 3.8786E+03 3.3130E+03 1.8212E+03 7.4470E+02 5.4425E+02 1.3520E+03 1.2602E+03 1.1748E+03 1.6841E+03 1.3046E+03 1.1724E+03 1.3648E+03 8.6695E+02 8.6669E+02 9.1986E+02 8.4294E+02 7.7259E+02 8.0569E+02 6.1359E+02 3.0080E+02 1.7136E+02 6.0603E+01 4.5641E+01 1.0963E+02 6.7484E+01 6.4747E+01 9.1804E+01 8.7368E+01 8.3176E+01 9.6000E+01 3.9099E+01 1.8413E+01 1.0187E+01 6.2558E+00 2.8829E+00 1.5752E+00 1.1417E+00 4.8952E+00 2.3558E+00 1.1240E+00 6.3405E-01 3.9959E-01 2.7237E-01 1.9672E-01 1.4851E-01 1.1607E-01 9.3267E-02 7.6660E-02 6.4206E-02 4.7115E-02 4.1106E-02 3.6225E-02 2.8853E-02 2.6027E-02 2.4922E-02 1.6844E-02 1.5634E-02 1.3602E-02 1.1977E-02 1.0659E-02 8.6642E-03 7.2359E-03 6.9752E-03 6.1710E-03 4.7101E-03 3.7691E-03 2.4611E-03 1.7998E-03 1.4078E-03 1.1513E-03 9.7121E-04 8.3854E-04 7.3714E-04 6.5686E-04 5.9222E-04 5.3878E-04 4.9421E-04 4.5641E-04 4.2357E-04 3.7066E-04 3.2921E-04 2.9611E-04 2.6900E-04 2.4630E-04 2.2719E-04 2.1082E-04 1.5488E-04 1.2235E-04 1.0111E-04 7.5017E-05 5.9639E-05 3.9412E-05 2.9428E-05 1.9534E-05 1.4618E-05 1.1680E-05 9.7252E-06 7.2854E-06 5.8231E-06 3.8786E-06 2.9089E-06 1.9380E-06 1.4532E-06 1.1623E-06 9.6861E-07 7.2645E-07 5.8101E-07 3.8734E-07 2.9037E-07 1.9364E-07 1.4524E-07 1.1618E-07 9.6808E-08 7.2619E-08 5.8101E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.4651E-04 7.1034E-04 1.3866E-03 2.1953E-03 3.0605E-03 4.7902E-03 6.4487E-03 6.8084E-03 8.0447E-03 1.0927E-02 1.3471E-02 1.8921E-02 2.3472E-02 2.7369E-02 3.0836E-02 3.3964E-02 3.6805E-02 3.9438E-02 4.1888E-02 4.4155E-02 4.6293E-02 4.8274E-02 5.0125E-02 5.1871E-02 5.5025E-02 5.7840E-02 6.0394E-02 6.2740E-02 6.4878E-02 6.6833E-02 6.8631E-02 7.5982E-02 8.1456E-02 8.5678E-02 9.1908E-02 9.6287E-02 1.0322E-01 1.0734E-01 1.1216E-01 1.1490E-01 1.1672E-01 1.1800E-01 1.1972E-01 1.2084E-01 1.2246E-01 1.2332E-01 1.2428E-01 1.2478E-01 1.2512E-01 1.2535E-01 1.2564E-01 1.2582E-01 1.2608E-01 1.2621E-01 1.2637E-01 1.2645E-01 1.2647E-01 1.2652E-01 1.2655E-01 1.2658E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1466E-08 2.7095E-06 9.5349E-06 3.8838E-05 7.7233E-05 1.1836E-04 1.5924E-04 1.9870E-04 2.3636E-04 2.7213E-04 3.0575E-04 3.3755E-04 3.6727E-04 3.9542E-04 4.2227E-04 4.4755E-04 4.9421E-04 5.3669E-04 5.7527E-04 6.1072E-04 6.4304E-04 6.7328E-04 7.0117E-04 8.1586E-04 9.0188E-04 9.6939E-04 1.0703E-03 1.1430E-03 1.2618E-03 1.3356E-03 1.4250E-03 1.4782E-03 1.5147E-03 1.5410E-03 1.5778E-03 1.6020E-03 1.6382E-03 1.6588E-03 1.6812E-03 1.6943E-03 1.7024E-03 1.7081E-03 1.7157E-03 1.7206E-03 1.7271E-03 1.7310E-03 1.7344E-03 1.7368E-03 1.7383E-03 1.7391E-03 1.7402E-03 1.7409E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pb.mat0000644000000000000000000002174214741736366017672 0ustar00rootrootPb 1 82 1.000000 10 6 3 3 3 3 7 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.4840E-03 2.4840E-03 2.5343E-03 2.5856E-03 2.5856E-03 3.0000E-03 3.0664E-03 3.0664E-03 3.3013E-03 3.5542E-03 3.5542E-03 3.6995E-03 3.8507E-03 3.8507E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.3035E-02 1.3035E-02 1.5000E-02 1.5200E-02 1.5200E-02 1.5527E-02 1.5861E-02 1.5861E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 8.8004E-02 8.8004E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2509E+01 5.4318E+01 1.3723E+01 1.2009E+01 1.1437E+01 1.0876E+01 1.0876E+01 1.0817E+01 1.0757E+01 1.0757E+01 1.0268E+01 1.0193E+01 1.0193E+01 9.9294E+00 9.6523E+00 9.6523E+00 9.4962E+00 9.3355E+00 9.3355E+00 9.1785E+00 8.2078E+00 7.3620E+00 6.0018E+00 4.9816E+00 3.8510E+00 3.8510E+00 3.3075E+00 3.2581E+00 3.2581E+00 3.1804E+00 3.1041E+00 3.1041E+00 2.3379E+00 1.3771E+00 9.2018E-01 6.5453E-01 4.9003E-01 3.0779E-01 2.6318E-01 2.6318E-01 2.1275E-01 1.0492E-01 6.2605E-02 4.1757E-02 2.9878E-02 2.2436E-02 1.7462E-02 1.3974E-02 1.1434E-02 9.5268E-03 8.0595E-03 6.9071E-03 5.2373E-03 4.6212E-03 4.1080E-03 3.3071E-03 2.9907E-03 2.8655E-03 1.9305E-03 1.7871E-03 1.5441E-03 1.3474E-03 1.1861E-03 9.3973E-04 7.6265E-04 7.3039E-04 6.3114E-04 4.5286E-04 3.4063E-04 1.9191E-04 1.2294E-04 8.5420E-05 6.2779E-05 4.8072E-05 3.7987E-05 3.0779E-05 2.5431E-05 2.1371E-05 1.8212E-05 1.5703E-05 1.3681E-05 1.2024E-05 9.5011E-06 7.6962E-06 6.3593E-06 5.3449E-06 4.5544E-06 3.9266E-06 3.4209E-06 1.9241E-06 1.2315E-06 8.5507E-07 4.8102E-07 3.0779E-07 1.3684E-07 7.6962E-08 3.4209E-08 1.9241E-08 1.2315E-08 8.5507E-09 4.8102E-09 3.0779E-09 1.3684E-09 7.6962E-10 3.4209E-10 1.9241E-10 1.2315E-10 8.5507E-11 4.8102E-11 3.0779E-11 1.3684E-11 7.6962E-12 3.4209E-12 1.9241E-12 1.2315E-12 8.5507E-13 4.8102E-13 3.0779E-13 INCOHERENT SCATTERING CROSS SECTION 3.5865E-03 3.8267E-03 1.3496E-03 6.6005E-03 9.6203E-03 1.2399E-02 1.2399E-02 1.2683E-02 1.2971E-02 1.2971E-02 1.5247E-02 1.5605E-02 1.5605E-02 1.6838E-02 1.8130E-02 1.8130E-02 1.8866E-02 1.9627E-02 1.9627E-02 2.0371E-02 2.5155E-02 2.9704E-02 3.8074E-02 4.5399E-02 5.4350E-02 5.4350E-02 5.9204E-02 5.9640E-02 5.9640E-02 6.0370E-02 6.1122E-02 6.1122E-02 6.8970E-02 8.2281E-02 9.0187E-02 9.4779E-02 9.7337E-02 9.9226E-02 9.9284E-02 9.9284E-02 9.8935E-02 9.4837E-02 8.9664E-02 8.4749E-02 8.0363E-02 7.6504E-02 7.3097E-02 7.0067E-02 6.7342E-02 6.4873E-02 6.2634E-02 6.0597E-02 5.6990E-02 5.5368E-02 5.3846E-02 5.1126E-02 4.9933E-02 4.9438E-02 4.4759E-02 4.3875E-02 4.2243E-02 4.0748E-02 3.9358E-02 3.6888E-02 3.4819E-02 3.4412E-02 3.3038E-02 2.9951E-02 2.7437E-02 2.2900E-02 1.9781E-02 1.7488E-02 1.5721E-02 1.4308E-02 1.3155E-02 1.2187E-02 1.1367E-02 1.0661E-02 1.0045E-02 9.5040E-03 9.0216E-03 8.5914E-03 7.8532E-03 7.2428E-03 6.7255E-03 6.2866E-03 5.9030E-03 5.5687E-03 5.2723E-03 4.1882E-03 3.4964E-03 3.0140E-03 2.3763E-03 1.9723E-03 1.4047E-03 1.1012E-03 7.8067E-04 6.1122E-04 5.0601E-04 4.3335E-04 3.3831E-04 2.7841E-04 1.9444E-04 1.5050E-04 1.0463E-04 8.0770E-05 6.6034E-05 5.6007E-05 4.3132E-05 3.5226E-05 2.4344E-05 1.8717E-05 1.2907E-05 9.9080E-06 8.0683E-06 6.8214E-06 5.2316E-06 4.2550E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.1967E+03 4.7834E+05 2.0277E+04 2.3443E+03 1.2739E+03 7.8997E+02 1.3849E+03 1.6362E+03 1.9328E+03 2.4391E+03 1.9546E+03 1.8468E+03 2.1359E+03 1.7817E+03 1.4861E+03 1.5750E+03 1.4319E+03 1.3018E+03 1.3585E+03 1.2419E+03 7.2225E+02 4.5980E+02 2.2263E+02 1.2562E+02 6.3099E+01 1.5820E+02 1.0821E+02 1.0446E+02 1.4521E+02 1.3801E+02 1.3120E+02 1.5166E+02 8.3967E+01 2.8858E+01 1.3349E+01 7.2923E+00 4.4323E+00 2.0124E+00 1.5474E+00 7.3213E+00 5.2374E+00 1.8148E+00 8.4635E-01 4.7015E-01 2.9297E-01 1.9781E-01 1.4172E-01 1.0626E-01 8.2572E-02 6.6032E-02 5.4060E-02 4.5132E-02 3.2963E-02 2.8710E-02 2.5266E-02 2.0080E-02 1.8095E-02 1.7319E-02 1.1684E-02 1.0847E-02 9.4437E-03 8.3211E-03 7.4081E-03 6.0237E-03 5.0339E-03 4.8537E-03 4.2974E-03 3.2848E-03 2.6315E-03 1.7226E-03 1.2626E-03 9.8935E-04 8.1031E-04 6.8447E-04 5.9146E-04 5.2025E-04 4.6416E-04 4.1853E-04 3.8103E-04 3.4964E-04 3.2291E-04 2.9994E-04 2.6254E-04 2.3336E-04 2.0993E-04 1.9078E-04 1.7479E-04 1.6128E-04 1.4968E-04 1.1007E-04 8.6990E-05 7.1905E-05 5.3391E-05 4.2434E-05 2.8065E-05 2.0961E-05 1.3916E-05 1.0414E-05 8.3211E-06 6.9289E-06 5.1909E-06 4.1504E-06 2.7646E-06 2.0726E-06 1.3811E-06 1.0356E-06 8.2833E-07 6.9028E-07 5.1764E-07 4.1417E-07 2.7602E-07 2.0703E-07 1.3800E-07 1.0350E-07 8.2804E-08 6.8999E-08 5.1735E-08 4.1388E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.7813E-04 5.9561E-04 1.1473E-03 1.8064E-03 2.5203E-03 3.9906E-03 5.4496E-03 5.7693E-03 6.8789E-03 9.5277E-03 1.1922E-02 1.7122E-02 2.1476E-02 2.5228E-02 2.8530E-02 3.1506E-02 3.4209E-02 3.6708E-02 3.9004E-02 4.1155E-02 4.3161E-02 4.5050E-02 4.6794E-02 4.8421E-02 5.1386E-02 5.4031E-02 5.6414E-02 5.8594E-02 6.0570E-02 6.2401E-02 6.4087E-02 7.0975E-02 7.6061E-02 8.0014E-02 8.5827E-02 8.9925E-02 9.6377E-02 1.0021E-01 1.0466E-01 1.0722E-01 1.0888E-01 1.1007E-01 1.1167E-01 1.1268E-01 1.1416E-01 1.1498E-01 1.1585E-01 1.1632E-01 1.1661E-01 1.1681E-01 1.1707E-01 1.1725E-01 1.1748E-01 1.1762E-01 1.1774E-01 1.1780E-01 1.1786E-01 1.1789E-01 1.1791E-01 1.1794E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1886E-08 2.7230E-06 9.5854E-06 3.9063E-05 7.7689E-05 1.1911E-04 1.6023E-04 2.0002E-04 2.3798E-04 2.7399E-04 3.0808E-04 3.4005E-04 3.6999E-04 3.9876E-04 4.2550E-04 4.5108E-04 4.9845E-04 5.4147E-04 5.8042E-04 6.1645E-04 6.4930E-04 6.7982E-04 7.0830E-04 8.2456E-04 9.1204E-04 9.8063E-04 1.0832E-03 1.1571E-03 1.2777E-03 1.3521E-03 1.4425E-03 1.4959E-03 1.5323E-03 1.5587E-03 1.5951E-03 1.6189E-03 1.6546E-03 1.6747E-03 1.6962E-03 1.7093E-03 1.7171E-03 1.7224E-03 1.7296E-03 1.7343E-03 1.7404E-03 1.7442E-03 1.7476E-03 1.7497E-03 1.7511E-03 1.7520E-03 1.7529E-03 1.7535E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pd.mat0000644000000000000000000002005014741736366017663 0ustar00rootrootPd 1 46 1.000000 5 7 3 3 9 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.1733E-03 3.1733E-03 3.2509E-03 3.3303E-03 3.3303E-03 3.4646E-03 3.6043E-03 3.6043E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.4350E-02 2.4350E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.6338E+00 4.9181E+01 8.5426E+00 7.2716E+00 6.8415E+00 5.9418E+00 5.7890E+00 5.7890E+00 5.7229E+00 5.6560E+00 5.6560E+00 5.5434E+00 5.4280E+00 5.4280E+00 5.1162E+00 4.4229E+00 3.8605E+00 3.0405E+00 2.4797E+00 1.6179E+00 1.1176E+00 8.5222E-01 8.5222E-01 6.2813E-01 4.1038E-01 2.8917E-01 2.1385E-01 1.3055E-01 8.8334E-02 4.2854E-02 2.5216E-02 1.6556E-02 1.1691E-02 8.6944E-03 6.7170E-03 5.3430E-03 4.3505E-03 3.6107E-03 3.0445E-03 2.6012E-03 1.9619E-03 1.7271E-03 1.5320E-03 1.2292E-03 1.1103E-03 1.0633E-03 7.1301E-04 6.5948E-04 5.6891E-04 4.9577E-04 4.3592E-04 3.4472E-04 2.7938E-04 2.6749E-04 2.3096E-04 1.6546E-04 1.2432E-04 6.9943E-05 4.4784E-05 3.1107E-05 2.2856E-05 1.7497E-05 1.3825E-05 1.1199E-05 9.2579E-06 7.7752E-06 6.6265E-06 5.7154E-06 4.9775E-06 4.3748E-06 3.4570E-06 2.8000E-06 2.3139E-06 1.9444E-06 1.6569E-06 1.4289E-06 1.2444E-06 7.0000E-07 4.4801E-07 3.1112E-07 1.7503E-07 1.1199E-07 4.9775E-08 2.8000E-08 1.2444E-08 7.0000E-09 4.4801E-09 3.1112E-09 1.7497E-09 1.1199E-09 4.9775E-10 2.8000E-10 1.2444E-10 7.0000E-11 4.4801E-11 3.1112E-11 1.7497E-11 1.1199E-11 4.9775E-12 2.8000E-12 1.2444E-12 7.0000E-13 4.4801E-13 3.1112E-13 1.7497E-13 1.1199E-13 INCOHERENT SCATTERING CROSS SECTION 4.2702E-03 3.1558E-03 1.4164E-03 8.4656E-03 1.2981E-02 2.1549E-02 2.2913E-02 2.2913E-02 2.3518E-02 2.4135E-02 2.4135E-02 2.5167E-02 2.6229E-02 2.6229E-02 2.9177E-02 3.6188E-02 4.2741E-02 5.4393E-02 6.3945E-02 8.0808E-02 9.1899E-02 9.8803E-02 9.8803E-02 1.0525E-01 1.1221E-01 1.1572E-01 1.1731E-01 1.1731E-01 1.1533E-01 1.0820E-01 1.0118E-01 9.5011E-02 8.9693E-02 8.5099E-02 8.1091E-02 7.7558E-02 7.4414E-02 7.1592E-02 6.9038E-02 6.6711E-02 6.2631E-02 6.0833E-02 5.9170E-02 5.6172E-02 5.4806E-02 5.4229E-02 4.9062E-02 4.8087E-02 4.6273E-02 4.4620E-02 4.3107E-02 4.0425E-02 3.8107E-02 3.7637E-02 3.6079E-02 3.2708E-02 2.9998E-02 2.5029E-02 2.1617E-02 1.9110E-02 1.7175E-02 1.5630E-02 1.4368E-02 1.3315E-02 1.2421E-02 1.1646E-02 1.0972E-02 1.0378E-02 9.8577E-03 9.3824E-03 8.5788E-03 7.9111E-03 7.3452E-03 6.8642E-03 6.4454E-03 6.0833E-03 5.7607E-03 4.5763E-03 3.8197E-03 3.2912E-03 2.5957E-03 2.1543E-03 1.5341E-03 1.2031E-03 8.5279E-04 6.6774E-04 5.5276E-04 4.7325E-04 3.6964E-04 3.0411E-04 2.1238E-04 1.6439E-04 1.1431E-04 8.8221E-05 7.2150E-05 6.1172E-05 4.7121E-05 3.8474E-05 2.6591E-05 2.0440E-05 1.4096E-05 1.0825E-05 8.8165E-06 7.4527E-06 5.7154E-06 4.6476E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.5303E+03 1.2970E+06 3.2114E+04 2.5714E+03 1.2851E+03 4.6697E+02 4.0489E+02 1.3496E+03 1.2777E+03 1.2099E+03 1.6586E+03 1.5098E+03 1.3740E+03 1.5766E+03 1.2217E+03 6.8698E+02 4.2685E+02 1.9863E+02 1.0848E+02 3.5447E+01 1.5833E+01 9.0768E+00 5.8060E+01 3.3913E+01 1.5613E+01 8.4430E+00 5.0675E+00 2.2324E+00 1.1731E+00 3.6047E-01 1.5635E-01 8.2393E-02 4.9266E-02 3.2191E-02 2.2460E-02 1.6480E-02 1.2585E-02 9.9239E-03 8.0242E-03 6.6215E-03 4.7598E-03 4.1355E-03 3.6428E-03 2.8880E-03 2.5793E-03 2.4548E-03 1.6563E-03 1.5418E-03 1.3461E-03 1.1878E-03 1.0590E-03 8.6395E-04 7.2433E-04 6.9887E-04 6.2042E-04 4.7807E-04 3.8605E-04 2.5663E-04 1.9025E-04 1.5041E-04 1.2404E-04 1.0542E-04 9.1503E-05 8.0808E-05 7.2320E-05 6.5416E-05 5.9757E-05 5.4930E-05 5.0833E-05 4.7302E-05 4.1519E-05 3.6992E-05 3.3353E-05 3.0360E-05 2.7858E-05 2.5736E-05 2.3914E-05 1.7656E-05 1.3989E-05 1.1584E-05 8.6184E-06 6.8585E-06 4.5446E-06 3.3970E-06 2.2573E-06 1.6903E-06 1.3508E-06 1.1250E-06 8.4317E-07 6.7397E-07 4.4909E-07 3.3670E-07 2.2443E-07 1.6829E-07 1.3462E-07 1.1216E-07 8.4090E-08 6.7284E-08 4.4858E-08 3.3642E-08 2.2426E-08 1.6818E-08 1.3457E-08 1.1216E-08 8.4090E-09 6.7284E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.5352E-04 2.3863E-04 4.5431E-04 7.1980E-04 1.0258E-03 1.7291E-03 2.5086E-03 2.6851E-03 3.3178E-03 4.9457E-03 6.5246E-03 1.0124E-02 1.3247E-02 1.5947E-02 1.8363E-02 2.0536E-02 2.2505E-02 2.4310E-02 2.5974E-02 2.7502E-02 2.8922E-02 3.0224E-02 3.1429E-02 3.2555E-02 3.4615E-02 3.6460E-02 3.8135E-02 3.9657E-02 4.1044E-02 4.2311E-02 4.3483E-02 4.8242E-02 5.1767E-02 5.4517E-02 5.8569E-02 6.1455E-02 6.6039E-02 6.8755E-02 7.1980E-02 7.3791E-02 7.4980E-02 7.5885E-02 7.7017E-02 7.7752E-02 7.8828E-02 7.9450E-02 8.0073E-02 8.0412E-02 8.0638E-02 8.0752E-02 8.0978E-02 8.1091E-02 8.1261E-02 8.1317E-02 8.1431E-02 8.1487E-02 8.1544E-02 8.1544E-02 8.1544E-02 8.1600E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0041E-07 2.9782E-06 1.0491E-05 4.2809E-05 8.5222E-05 1.3078E-04 1.7616E-04 2.2007E-04 2.6212E-04 3.0201E-04 3.3981E-04 3.7541E-04 4.0902E-04 4.4094E-04 4.7115E-04 4.9990E-04 5.5309E-04 6.0153E-04 6.4567E-04 6.8642E-04 7.2433E-04 7.5885E-04 7.9167E-04 9.2579E-04 1.0276E-03 1.1086E-03 1.2308E-03 1.3196E-03 1.4668E-03 1.5584E-03 1.6711E-03 1.7384E-03 1.7842E-03 1.8182E-03 1.8640E-03 1.8946E-03 1.9398E-03 1.9653E-03 1.9930E-03 2.0095E-03 2.0196E-03 2.0264E-03 2.0355E-03 2.0417E-03 2.0496E-03 2.0542E-03 2.0587E-03 2.0615E-03 2.0632E-03 2.0638E-03 2.0649E-03 2.0660E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pm.mat0000644000000000000000000002205214741736366017700 0ustar00rootrootPm 1 61 1.000000 10 4 3 3 3 3 7 3 3 8 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0269E-03 1.0269E-03 1.0391E-03 1.0515E-03 1.0515E-03 1.1945E-03 1.3569E-03 1.3569E-03 1.4130E-03 1.4714E-03 1.4714E-03 1.5000E-03 1.6530E-03 1.6530E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 6.4593E-03 6.4593E-03 6.7304E-03 7.0128E-03 7.0128E-03 7.2174E-03 7.4279E-03 7.4279E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.5184E-02 4.5184E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.6911E+00 2.5976E+24 4.4791E+01 9.6662E+00 9.6662E+00 9.6539E+00 9.6412E+00 9.6412E+00 9.4961E+00 9.3337E+00 9.3337E+00 9.2769E+00 9.2132E+00 9.2132E+00 9.1799E+00 9.0179E+00 9.0179E+00 8.6605E+00 7.6423E+00 6.7073E+00 5.9011E+00 5.2237E+00 4.9453E+00 4.9453E+00 4.7924E+00 4.6419E+00 4.6419E+00 4.5380E+00 4.4341E+00 4.4341E+00 4.1640E+00 3.3906E+00 2.2083E+00 1.5842E+00 9.2547E-01 6.0216E-01 4.9993E-01 4.9993E-01 4.2762E-01 3.2115E-01 1.9993E-01 1.3589E-01 6.6200E-02 3.9330E-02 2.6039E-02 1.8489E-02 1.3793E-02 1.0680E-02 8.5127E-03 6.9442E-03 5.7728E-03 4.8746E-03 4.1704E-03 3.1515E-03 2.7760E-03 2.4634E-03 1.9784E-03 1.7886E-03 1.7138E-03 1.1507E-03 1.0645E-03 9.1891E-04 8.0122E-04 7.0470E-04 5.5745E-04 4.5214E-04 4.3302E-04 3.7411E-04 2.6803E-04 2.0134E-04 1.1337E-04 7.2559E-05 5.0409E-05 3.7040E-05 2.8363E-05 2.2412E-05 1.8152E-05 1.5002E-05 1.2608E-05 1.0742E-05 9.2631E-06 8.0704E-06 7.0938E-06 5.6019E-06 4.5380E-06 3.7514E-06 3.1521E-06 2.6858E-06 2.3160E-06 2.0172E-06 1.1349E-06 7.2642E-07 5.0450E-07 2.8367E-07 1.8156E-07 8.0704E-08 4.5380E-08 2.0172E-08 1.1345E-08 7.2642E-09 5.0450E-09 2.8367E-09 1.8156E-09 8.0704E-10 4.5380E-10 2.0172E-10 1.1345E-10 7.2642E-11 5.0450E-11 2.8367E-11 1.8156E-11 8.0704E-12 4.5380E-12 2.0172E-12 1.1345E-12 7.2642E-13 5.0450E-13 2.8367E-13 1.8156E-13 INCOHERENT SCATTERING CROSS SECTION 6.2252E-03 1.4470E-18 1.0382E-03 6.4413E-03 6.4413E-03 6.5405E-03 6.6408E-03 6.6408E-03 7.7619E-03 9.0054E-03 9.0054E-03 9.4412E-03 9.8947E-03 9.8947E-03 1.0115E-02 1.1291E-02 1.1291E-02 1.3917E-02 2.1298E-02 2.8117E-02 3.4314E-02 3.9820E-02 4.2139E-02 4.2139E-02 4.3464E-02 4.4798E-02 4.4798E-02 4.5730E-02 4.6668E-02 4.6668E-02 4.9162E-02 5.7016E-02 7.2558E-02 8.3654E-02 9.6952E-02 1.0389E-01 1.0614E-01 1.0614E-01 1.0763E-01 1.0959E-01 1.1050E-01 1.0929E-01 1.0344E-01 9.7160E-02 9.1510E-02 8.6563E-02 8.2241E-02 7.8460E-02 7.5128E-02 7.2143E-02 6.9438E-02 6.6990E-02 6.4775E-02 6.0879E-02 5.9136E-02 5.7503E-02 5.4575E-02 5.3276E-02 5.2736E-02 4.7707E-02 4.6761E-02 4.5016E-02 4.3427E-02 4.1962E-02 3.9347E-02 3.7085E-02 3.6628E-02 3.5113E-02 3.1837E-02 2.9202E-02 2.4369E-02 2.1049E-02 1.8605E-02 1.6723E-02 1.5222E-02 1.3992E-02 1.2966E-02 1.2093E-02 1.1341E-02 1.0684E-02 1.0107E-02 9.5955E-03 9.1384E-03 8.3530E-03 7.7047E-03 7.1561E-03 6.6865E-03 6.2793E-03 5.9219E-03 5.6102E-03 4.4549E-03 3.7198E-03 3.2053E-03 2.5279E-03 2.0982E-03 1.4940E-03 1.1715E-03 8.3031E-04 6.5037E-04 5.3816E-04 4.6087E-04 3.5997E-04 2.9614E-04 2.0683E-04 1.6008E-04 1.1129E-04 8.5898E-05 7.0231E-05 5.9551E-05 4.5879E-05 3.7468E-05 2.5894E-05 1.9906E-05 1.3730E-05 1.0539E-05 8.5815E-06 7.2559E-06 5.5645E-06 4.5256E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.0467E+03 1.4117E+05 7.3192E+03 1.9494E+03 2.5441E+03 3.8444E+03 5.7930E+03 7.1935E+03 6.3917E+03 5.6808E+03 6.5452E+03 5.9766E+03 5.4564E+03 5.7889E+03 5.5437E+03 4.4882E+03 4.6918E+03 3.0395E+03 1.1540E+03 5.6434E+02 3.2007E+02 2.0006E+02 1.6515E+02 4.6294E+02 4.1705E+02 3.7580E+02 5.1281E+02 4.7763E+02 4.4508E+02 5.1406E+02 4.2721E+02 2.4057E+02 8.1826E+01 3.7493E+01 1.2243E+01 5.4731E+00 3.8852E+00 2.2046E+01 1.6814E+01 1.0443E+01 4.7957E+00 2.5944E+00 8.3571E-01 3.7335E-01 2.0103E-01 1.2222E-01 8.0918E-02 5.7058E-02 4.2224E-02 3.2456E-02 2.5722E-02 2.0903E-02 1.7346E-02 1.2552E-02 1.0892E-02 9.5552E-03 7.5648E-03 6.8153E-03 6.5244E-03 4.3967E-03 4.0833E-03 3.5608E-03 3.1425E-03 2.8004E-03 2.2794E-03 1.9079E-03 1.8406E-03 1.6325E-03 1.2529E-03 1.0073E-03 6.6450E-04 4.8996E-04 3.8586E-04 3.1720E-04 2.6875E-04 2.3289E-04 2.0529E-04 1.8343E-04 1.6573E-04 1.5110E-04 1.3880E-04 1.2833E-04 1.1931E-04 1.0460E-04 9.3088E-05 8.3862E-05 7.6257E-05 6.9940E-05 6.4580E-05 5.9967E-05 4.4175E-05 3.4979E-05 2.8940E-05 2.1510E-05 1.7117E-05 1.1328E-05 8.4652E-06 5.6227E-06 4.2097E-06 3.3636E-06 2.8009E-06 2.0986E-06 1.6781E-06 1.1179E-06 8.3820E-07 5.5853E-07 4.1889E-07 3.3499E-07 2.7914E-07 2.0932E-07 1.6747E-07 1.1162E-07 8.3737E-08 5.5811E-08 4.1848E-08 3.3487E-08 2.7906E-08 2.0928E-08 1.6743E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.4136E-04 3.7498E-04 7.1066E-04 1.1158E-03 1.5698E-03 2.5687E-03 3.6321E-03 3.8702E-03 4.7137E-03 6.8273E-03 8.8267E-03 1.3298E-02 1.7130E-02 2.0425E-02 2.3343E-02 2.5961E-02 2.8342E-02 3.0528E-02 3.2543E-02 3.4413E-02 3.6159E-02 3.7775E-02 3.9276E-02 4.0668E-02 4.3178E-02 4.5422E-02 4.7500E-02 4.9328E-02 5.1032E-02 5.2570E-02 5.4024E-02 5.9842E-02 6.4164E-02 6.7530E-02 7.2517E-02 7.6049E-02 8.1618E-02 8.4984E-02 8.8849E-02 9.1093E-02 9.2589E-02 9.3628E-02 9.5041E-02 9.5955E-02 9.7243E-02 9.7991E-02 9.8739E-02 9.9155E-02 9.9446E-02 9.9612E-02 9.9861E-02 9.9986E-02 1.0024E-01 1.0032E-01 1.0044E-01 1.0048E-01 1.0053E-01 1.0057E-01 1.0061E-01 1.0061E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.7792E-08 2.8994E-06 1.0211E-05 4.1640E-05 8.2865E-05 1.2708E-04 1.7109E-04 2.1364E-04 2.5433E-04 2.9298E-04 3.2946E-04 3.6387E-04 3.9625E-04 4.2721E-04 4.5630E-04 4.8372E-04 5.3484E-04 5.8138E-04 6.2377E-04 6.6283E-04 6.9899E-04 7.3223E-04 7.6340E-04 8.9140E-04 9.8781E-04 1.0643E-03 1.1794E-03 1.2625E-03 1.4001E-03 1.4861E-03 1.5912E-03 1.6544E-03 1.6976E-03 1.7292E-03 1.7728E-03 1.8019E-03 1.8455E-03 1.8705E-03 1.8979E-03 1.9141E-03 1.9237E-03 1.9307E-03 1.9399E-03 1.9457E-03 1.9540E-03 1.9586E-03 1.9627E-03 1.9661E-03 1.9677E-03 1.9686E-03 1.9698E-03 1.9706E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Po.mat0000644000000000000000000002161614741736366017707 0ustar00rootrootPo 1 84 1.000000 10 6 3 3 3 3 6 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.6830E-03 2.6830E-03 2.7399E-03 2.7980E-03 2.7980E-03 3.0000E-03 3.3019E-03 3.3019E-03 3.5673E-03 3.8541E-03 3.8541E-03 4.0000E-03 4.1494E-03 4.1494E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.3814E-02 1.3814E-02 1.5000E-02 1.6244E-02 1.6244E-02 1.6588E-02 1.6939E-02 1.6939E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 9.3105E-02 9.3105E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2996E+01 5.7163E+01 1.4307E+01 1.2452E+01 1.1838E+01 1.0993E+01 1.0993E+01 1.0924E+01 1.0852E+01 1.0852E+01 1.0607E+01 1.0262E+01 1.0262E+01 9.9648E+00 9.6478E+00 9.6478E+00 9.4893E+00 9.3337E+00 9.3337E+00 8.5066E+00 7.6450E+00 6.2474E+00 5.1927E+00 3.7922E+00 3.7922E+00 3.4666E+00 3.1669E+00 3.1669E+00 3.0915E+00 3.0171E+00 3.0171E+00 2.4595E+00 1.4475E+00 9.6939E-01 6.9131E-01 5.1783E-01 3.2534E-01 2.5338E-01 2.5338E-01 2.2503E-01 1.1126E-01 6.6393E-02 4.4306E-02 3.1727E-02 2.3845E-02 1.8572E-02 1.4870E-02 1.2172E-02 1.0147E-02 8.5873E-03 7.3610E-03 5.5816E-03 4.9247E-03 4.3774E-03 3.5253E-03 3.1900E-03 3.0574E-03 2.0601E-03 1.9071E-03 1.6482E-03 1.4385E-03 1.2663E-03 1.0031E-03 8.1435E-04 7.8006E-04 6.7439E-04 4.8396E-04 3.6395E-04 2.0509E-04 1.3137E-04 9.1291E-05 6.7085E-05 5.1380E-05 4.0602E-05 3.2880E-05 2.7183E-05 2.2843E-05 1.9466E-05 1.6786E-05 1.4621E-05 1.2852E-05 1.0155E-05 8.2242E-06 6.7978E-06 5.7114E-06 4.8671E-06 4.1957E-06 3.6568E-06 2.0566E-06 1.3160E-06 9.1406E-07 5.1409E-07 3.2908E-07 1.4624E-07 8.2242E-08 3.6568E-08 2.0563E-08 1.3160E-08 9.1406E-09 5.1409E-09 3.2908E-09 1.4624E-09 8.2242E-10 3.6568E-10 2.0563E-10 1.3160E-10 9.1406E-11 5.1409E-11 3.2908E-11 1.4624E-11 8.2242E-12 3.6568E-12 2.0563E-12 1.3160E-12 9.1406E-13 5.1409E-13 3.2908E-13 INCOHERENT SCATTERING CROSS SECTION 3.4868E-03 3.0419E-03 1.2631E-03 6.5557E-03 9.7227E-03 1.3907E-02 1.3907E-02 1.4244E-02 1.4587E-02 1.4587E-02 1.5760E-02 1.7440E-02 1.7440E-02 1.8877E-02 2.0388E-02 2.0388E-02 2.1137E-02 2.1895E-02 2.1895E-02 2.5975E-02 3.0459E-02 3.8729E-02 4.6049E-02 5.7114E-02 5.7114E-02 5.9996E-02 6.2733E-02 6.2733E-02 6.3454E-02 6.4174E-02 6.4174E-02 6.9765E-02 8.3049E-02 9.1060E-02 9.5757E-02 9.8408E-02 1.0040E-01 1.0040E-01 1.0040E-01 1.0014E-01 9.6103E-02 9.0916E-02 8.5952E-02 8.1522E-02 7.7627E-02 7.4174E-02 7.1085E-02 6.8324E-02 6.5848E-02 6.3598E-02 6.1531E-02 5.7859E-02 5.6221E-02 5.4697E-02 5.1953E-02 5.0717E-02 5.0198E-02 4.5472E-02 4.4575E-02 4.2905E-02 4.1380E-02 3.9981E-02 3.7498E-02 3.5358E-02 3.4926E-02 3.3491E-02 3.0376E-02 2.7866E-02 2.3258E-02 2.0091E-02 1.7762E-02 1.5967E-02 1.4532E-02 1.3359E-02 1.2380E-02 1.1547E-02 1.0829E-02 1.0201E-02 9.6506E-03 9.1636E-03 8.7256E-03 7.9764E-03 7.3540E-03 6.8324E-03 6.3828E-03 5.9938E-03 5.6538E-03 5.3541E-03 4.2562E-03 3.5531E-03 3.0603E-03 2.4137E-03 2.0033E-03 1.4267E-03 1.1187E-03 7.9274E-04 6.2099E-04 5.1409E-04 4.4003E-04 3.4378E-04 2.8278E-04 1.9748E-04 1.5284E-04 1.0628E-04 8.2041E-05 6.7085E-05 5.6884E-05 4.3830E-05 3.5790E-05 2.4725E-05 1.9010E-05 1.3109E-05 1.0066E-05 8.1954E-06 6.9275E-06 5.3109E-06 4.3225E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.7114E+03 5.0785E+05 2.2052E+04 2.5915E+03 1.4114E+03 7.3713E+02 2.1947E+03 1.9674E+03 1.7641E+03 2.7007E+03 2.1439E+03 1.6829E+03 1.9457E+03 1.6083E+03 1.3296E+03 1.4094E+03 1.2895E+03 1.1806E+03 1.2322E+03 7.8467E+02 5.0083E+02 2.4310E+02 1.3745E+02 5.9506E+01 1.4748E+02 1.1841E+02 9.5267E+01 1.3284E+02 1.2633E+02 1.2011E+02 1.3887E+02 9.1002E+01 3.1496E+01 1.4633E+01 8.0139E+00 4.8815E+00 2.2235E+00 1.4662E+00 6.7863E+00 5.6653E+00 1.9624E+00 9.2011E-01 5.1285E-01 3.2015E-01 2.1664E-01 1.5552E-01 1.1678E-01 9.0858E-02 7.2752E-02 5.9621E-02 4.9800E-02 3.6386E-02 3.1698E-02 2.7905E-02 2.2195E-02 2.0007E-02 1.9151E-02 1.2921E-02 1.1994E-02 1.0442E-02 9.2011E-03 8.1941E-03 6.6655E-03 5.5645E-03 5.3627E-03 4.7431E-03 3.6262E-03 2.9076E-03 1.9016E-03 1.3930E-03 1.0910E-03 8.9331E-04 7.5442E-04 6.5183E-04 5.7316E-04 5.1120E-04 4.6106E-04 4.1957E-04 3.8499E-04 3.5560E-04 3.3024E-04 2.8903E-04 2.5684E-04 2.3105E-04 2.0993E-04 1.9235E-04 1.7745E-04 1.6469E-04 1.2109E-04 9.5700E-05 7.9101E-05 5.8699E-05 4.6683E-05 3.0862E-05 2.3047E-05 1.5299E-05 1.1449E-05 9.1492E-06 7.6162E-06 5.7057E-06 4.5616E-06 3.0401E-06 2.2785E-06 1.5183E-06 1.1385E-06 9.1060E-07 7.5874E-07 5.6913E-07 4.5530E-07 3.0344E-07 2.2756E-07 1.5172E-07 1.1377E-07 9.1031E-08 7.5845E-08 5.6884E-08 4.5501E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.9997E-04 6.3127E-04 1.2191E-03 1.9212E-03 2.6793E-03 4.2298E-03 5.7575E-03 6.0918E-03 7.2498E-03 1.0001E-02 1.2475E-02 1.7823E-02 2.2298E-02 2.6160E-02 2.9566E-02 3.2620E-02 3.5415E-02 3.7980E-02 4.0343E-02 4.2562E-02 4.4637E-02 4.6567E-02 4.8383E-02 5.0054E-02 5.3109E-02 5.5818E-02 5.8296E-02 6.0543E-02 6.2618E-02 6.4491E-02 6.6249E-02 7.3338E-02 7.8611E-02 8.2703E-02 8.8697E-02 9.2904E-02 9.9590E-02 1.0357E-01 1.0818E-01 1.1080E-01 1.1253E-01 1.1377E-01 1.1541E-01 1.1648E-01 1.1800E-01 1.1884E-01 1.1973E-01 1.2022E-01 1.2054E-01 1.2074E-01 1.2103E-01 1.2120E-01 1.2143E-01 1.2158E-01 1.2172E-01 1.2178E-01 1.2184E-01 1.2186E-01 1.2189E-01 1.2192E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3259E-08 2.7645E-06 9.7342E-06 3.9680E-05 7.8900E-05 1.2091E-04 1.6270E-04 2.0307E-04 2.4160E-04 2.7814E-04 3.1266E-04 3.4493E-04 3.7548E-04 4.0458E-04 4.3196E-04 4.5789E-04 5.0602E-04 5.4924E-04 5.8901E-04 6.2532E-04 6.5874E-04 6.8958E-04 7.1839E-04 8.3625E-04 9.2472E-04 9.9446E-04 1.0982E-03 1.1731E-03 1.2953E-03 1.3708E-03 1.4624E-03 1.5166E-03 1.5535E-03 1.5806E-03 1.6175E-03 1.6417E-03 1.6777E-03 1.6982E-03 1.7201E-03 1.7333E-03 1.7411E-03 1.7466E-03 1.7538E-03 1.7587E-03 1.7647E-03 1.7685E-03 1.7719E-03 1.7742E-03 1.7757E-03 1.7762E-03 1.7771E-03 1.7780E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pr.mat0000644000000000000000000002100214741736366017677 0ustar00rootrootPr 1 59 1.000000 8 4 3 3 6 3 3 8 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2422E-03 1.2422E-03 1.2889E-03 1.3374E-03 1.3374E-03 1.5000E-03 1.5110E-03 1.5110E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.9643E-03 5.9643E-03 6.0000E-03 6.4404E-03 6.4404E-03 6.6347E-03 6.8348E-03 6.8348E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.1991E-02 4.1991E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.2827E+00 2.0055E+01 1.0244E+01 9.0349E+00 9.0349E+00 8.9914E+00 8.9451E+00 8.9451E+00 8.7699E+00 8.7571E+00 8.7571E+00 8.2485E+00 7.2441E+00 6.3381E+00 5.5688E+00 4.9491E+00 4.9491E+00 4.9277E+00 4.6798E+00 4.6798E+00 4.5752E+00 4.4704E+00 4.4704E+00 3.9315E+00 3.2024E+00 2.0942E+00 1.5044E+00 8.7400E-01 5.6885E-01 5.2824E-01 5.2824E-01 4.0413E-01 3.0336E-01 1.8835E-01 1.2787E-01 6.2269E-02 3.6964E-02 2.4445E-02 1.7343E-02 1.2936E-02 1.0014E-02 7.9775E-03 6.5048E-03 5.4064E-03 4.5644E-03 3.9042E-03 2.9497E-03 2.5985E-03 2.3064E-03 1.8525E-03 1.6741E-03 1.6035E-03 1.0766E-03 9.9594E-04 8.5948E-04 7.4920E-04 6.5888E-04 5.2122E-04 4.2268E-04 4.0477E-04 3.4965E-04 2.5055E-04 1.8826E-04 1.0599E-04 6.7868E-05 4.7140E-05 3.4626E-05 2.6515E-05 2.0950E-05 1.6971E-05 1.4027E-05 1.1787E-05 1.0043E-05 8.6588E-06 7.5433E-06 6.6287E-06 5.2397E-06 4.2430E-06 3.5067E-06 2.9468E-06 2.5109E-06 2.1647E-06 1.8860E-06 1.0608E-06 6.7868E-07 4.7140E-07 2.6519E-07 1.6971E-07 7.5433E-08 4.2430E-08 1.8860E-08 1.0608E-08 6.7911E-09 4.7140E-09 2.6519E-09 1.6971E-09 7.5433E-10 4.2430E-10 1.8860E-10 1.0608E-10 6.7911E-11 4.7140E-11 2.6519E-11 1.6971E-11 7.5433E-12 4.2430E-12 1.8860E-12 1.0608E-12 6.7911E-13 4.7140E-13 2.6519E-13 1.6971E-13 INCOHERENT SCATTERING CROSS SECTION 6.5347E-03 1.2737E+03 4.0470E-03 8.5305E-03 8.5305E-03 8.8818E-03 9.2485E-03 9.2485E-03 1.0552E-02 1.0638E-02 1.0638E-02 1.4471E-02 2.2027E-02 2.9002E-02 3.5293E-02 4.0644E-02 4.0644E-02 4.0832E-02 4.3080E-02 4.3080E-02 4.4039E-02 4.5003E-02 4.5003E-02 5.0175E-02 5.8038E-02 7.3595E-02 8.4493E-02 9.7358E-02 1.0411E-01 1.0501E-01 1.0501E-01 1.0774E-01 1.0962E-01 1.1039E-01 1.0911E-01 1.0313E-01 9.6802E-02 9.1140E-02 8.6203E-02 8.1900E-02 7.8125E-02 7.4785E-02 7.1800E-02 6.9111E-02 6.6672E-02 6.4447E-02 6.0537E-02 5.8808E-02 5.7205E-02 5.4312E-02 5.2995E-02 5.2440E-02 4.7482E-02 4.6547E-02 4.4803E-02 4.3208E-02 4.1742E-02 3.9136E-02 3.6892E-02 3.6439E-02 3.4935E-02 3.1674E-02 2.9049E-02 2.4241E-02 2.0937E-02 1.8506E-02 1.6634E-02 1.5142E-02 1.3920E-02 1.2898E-02 1.2031E-02 1.1283E-02 1.0629E-02 1.0056E-02 9.5477E-03 9.0904E-03 8.3083E-03 7.6630E-03 7.1159E-03 6.6501E-03 6.2440E-03 5.8893E-03 5.5773E-03 4.4319E-03 3.7003E-03 3.1883E-03 2.5143E-03 2.0869E-03 1.4860E-03 1.1655E-03 8.2570E-04 6.4663E-04 5.3551E-04 4.5858E-04 3.5806E-04 2.9459E-04 2.0574E-04 1.5924E-04 1.1069E-04 8.5476E-05 6.9877E-05 5.9235E-05 4.5644E-05 3.7268E-05 2.5758E-05 1.9801E-05 1.3655E-05 1.0484E-05 8.5391E-06 7.2185E-06 5.5346E-06 4.5003E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.0573E+04 2.7224E+06 5.6228E+04 6.2697E+03 7.2142E+03 6.6522E+03 6.1329E+03 6.5048E+03 5.0816E+03 5.0004E+03 5.2269E+03 2.7596E+03 1.0394E+03 5.0687E+02 2.8686E+02 1.8181E+02 5.1200E+02 5.0944E+02 4.2627E+02 5.8081E+02 5.3980E+02 5.0132E+02 5.7910E+02 3.9101E+02 2.1762E+02 7.3809E+01 3.3673E+01 1.0950E+01 4.8850E+00 4.2584E+00 2.4545E+01 1.5475E+01 9.5648E+00 4.3636E+00 2.3510E+00 7.5262E-01 3.3490E-01 1.7984E-01 1.0911E-01 7.2114E-02 5.0773E-02 3.7524E-02 2.8814E-02 2.2819E-02 1.8531E-02 1.5367E-02 1.1110E-02 9.6417E-03 8.4613E-03 6.6993E-03 6.0304E-03 5.7697E-03 3.8905E-03 3.6140E-03 3.1517E-03 2.7814E-03 2.4790E-03 2.0190E-03 1.6899E-03 1.6300E-03 1.4454E-03 1.1096E-03 8.9280E-04 5.8979E-04 4.3507E-04 3.4280E-04 2.8190E-04 2.3895E-04 2.0711E-04 1.8258E-04 1.6317E-04 1.4745E-04 1.3445E-04 1.2351E-04 1.1424E-04 1.0620E-04 9.3126E-05 8.2912E-05 7.4664E-05 6.7911E-05 6.2312E-05 5.7526E-05 5.3423E-05 3.9379E-05 3.1173E-05 2.5797E-05 1.9177E-05 1.5258E-05 1.0099E-05 7.5476E-06 5.0132E-06 3.7528E-06 2.9989E-06 2.4976E-06 1.8715E-06 1.4963E-06 9.9665E-07 7.4749E-07 4.9790E-07 3.7345E-07 2.9874E-07 2.4891E-07 1.8668E-07 1.4933E-07 9.9537E-08 7.4664E-08 4.9790E-08 3.7328E-08 2.9861E-08 2.4882E-08 1.8664E-08 1.4928E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2673E-04 3.5202E-04 6.6683E-04 1.0475E-03 1.4756E-03 2.4235E-03 3.4387E-03 3.6665E-03 4.4747E-03 6.5070E-03 8.4365E-03 1.2766E-02 1.6480E-02 1.9677E-02 2.2510E-02 2.5053E-02 2.7365E-02 2.9489E-02 3.1447E-02 3.3259E-02 3.4951E-02 3.6515E-02 3.7969E-02 3.9315E-02 4.1755E-02 4.3935E-02 4.5944E-02 4.7739E-02 4.9363E-02 5.0858E-02 5.2269E-02 5.7910E-02 6.2099E-02 6.5347E-02 7.0176E-02 7.3552E-02 7.8980E-02 8.2228E-02 8.6032E-02 8.8212E-02 8.9622E-02 9.0648E-02 9.2015E-02 9.2913E-02 9.4195E-02 9.4879E-02 9.5648E-02 9.6075E-02 9.6332E-02 9.6503E-02 9.6716E-02 9.6887E-02 9.7058E-02 9.7187E-02 9.7315E-02 9.7358E-02 9.7400E-02 9.7443E-02 9.7443E-02 9.7486E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.7353E-08 2.8855E-06 1.0159E-05 4.1418E-05 8.2442E-05 1.2642E-04 1.7023E-04 2.1262E-04 2.5310E-04 2.9156E-04 3.2793E-04 3.6216E-04 3.9439E-04 4.2507E-04 4.5388E-04 4.8166E-04 5.3252E-04 5.7910E-04 6.2141E-04 6.6030E-04 6.9620E-04 7.2911E-04 7.6031E-04 8.8767E-04 9.8426E-04 1.0608E-03 1.1757E-03 1.2591E-03 1.3971E-03 1.4834E-03 1.5894E-03 1.6531E-03 1.6967E-03 1.7288E-03 1.7728E-03 1.8023E-03 1.8467E-03 1.8719E-03 1.8997E-03 1.9160E-03 1.9258E-03 1.9330E-03 1.9424E-03 1.9484E-03 1.9566E-03 1.9613E-03 1.9660E-03 1.9689E-03 1.9707E-03 1.9715E-03 1.9728E-03 1.9736E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pt.mat0000644000000000000000000002205214741736366017707 0ustar00rootrootPt 1 78 1.000000 10 6 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.1216E-03 2.1216E-03 2.1614E-03 2.2019E-03 2.2019E-03 2.4135E-03 2.6454E-03 2.6454E-03 3.0000E-03 3.0265E-03 3.0265E-03 3.1584E-03 3.2960E-03 3.2960E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.1564E-02 1.1564E-02 1.2389E-02 1.3273E-02 1.3273E-02 1.3573E-02 1.3880E-02 1.3880E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 7.8395E-02 7.8395E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2061E+01 4.6010E+01 1.3160E+01 1.1601E+01 1.1061E+01 1.0919E+01 1.0919E+01 1.0873E+01 1.0826E+01 1.0826E+01 1.0588E+01 1.0329E+01 1.0329E+01 9.9216E+00 9.8908E+00 9.8908E+00 9.7419E+00 9.5913E+00 9.5913E+00 8.8412E+00 7.8873E+00 7.0600E+00 5.7387E+00 4.7416E+00 4.1242E+00 4.1242E+00 3.8375E+00 3.5624E+00 3.5624E+00 3.4768E+00 3.3926E+00 3.3926E+00 3.1086E+00 2.1912E+00 1.2941E+00 8.5911E-01 6.0907E-01 4.5564E-01 2.9617E-01 2.9617E-01 2.8647E-01 1.9738E-01 9.6901E-02 5.7758E-02 3.8486E-02 2.7505E-02 2.0629E-02 1.6037E-02 1.2820E-02 1.0480E-02 8.7278E-03 7.3810E-03 6.3238E-03 4.7917E-03 4.2261E-03 3.7548E-03 3.0207E-03 2.7317E-03 2.6175E-03 1.7621E-03 1.6309E-03 1.4088E-03 1.2292E-03 1.0822E-03 8.5738E-04 6.9519E-04 6.6556E-04 5.7465E-04 4.1224E-04 3.1024E-04 1.7479E-04 1.1193E-04 7.7762E-05 5.7141E-05 4.3774E-05 3.4574E-05 2.8015E-05 2.3153E-05 1.9457E-05 1.6580E-05 1.4296E-05 1.2453E-05 1.0947E-05 8.6498E-06 7.0044E-06 5.7881E-06 4.8651E-06 4.1459E-06 3.5748E-06 3.1148E-06 1.7516E-06 1.1209E-06 7.7854E-07 4.3774E-07 2.8024E-07 1.2456E-07 7.0044E-08 3.1148E-08 1.7516E-08 1.1209E-08 7.7854E-09 4.3774E-09 2.8024E-09 1.2456E-09 7.0044E-10 3.1148E-10 1.7516E-10 1.1209E-10 7.7854E-11 4.3774E-11 2.8024E-11 1.2456E-11 7.0044E-12 3.1148E-12 1.7516E-12 1.1209E-12 7.7854E-13 4.3774E-13 2.8024E-13 INCOHERENT SCATTERING CROSS SECTION 3.3679E-03 2.6946E-03 1.2564E-03 6.2111E-03 9.1283E-03 9.8352E-03 9.8352E-03 1.0066E-02 1.0301E-02 1.0301E-02 1.1509E-02 1.2817E-02 1.2817E-02 1.4805E-02 1.4950E-02 1.4950E-02 1.5670E-02 1.6417E-02 1.6417E-02 2.0171E-02 2.5298E-02 3.0194E-02 3.9051E-02 4.6490E-02 5.1460E-02 5.1460E-02 5.3776E-02 5.6122E-02 5.6122E-02 5.6905E-02 5.7696E-02 5.7696E-02 6.0444E-02 7.0600E-02 8.4368E-02 9.2332E-02 9.6809E-02 9.9278E-02 1.0101E-01 1.0101E-01 1.0104E-01 1.0064E-01 9.6284E-02 9.0912E-02 8.5862E-02 8.1374E-02 7.7433E-02 7.3965E-02 7.0891E-02 6.8130E-02 6.5626E-02 6.3345E-02 6.1261E-02 5.7591E-02 5.5967E-02 5.4463E-02 5.1745E-02 5.0503E-02 4.9979E-02 4.5256E-02 4.4362E-02 4.2698E-02 4.1181E-02 3.9791E-02 3.7324E-02 3.5192E-02 3.4760E-02 3.3327E-02 3.0223E-02 2.7724E-02 2.3137E-02 1.9988E-02 1.7670E-02 1.5883E-02 1.4456E-02 1.3290E-02 1.2314E-02 1.1487E-02 1.0771E-02 1.0147E-02 9.6006E-03 9.1159E-03 8.6807E-03 7.9336E-03 7.3162E-03 6.7945E-03 6.3500E-03 5.9641E-03 5.6245E-03 5.3282E-03 4.2323E-03 3.5346E-03 3.0444E-03 2.4011E-03 1.9927E-03 1.4191E-03 1.1129E-03 7.8873E-04 6.1771E-04 5.1121E-04 4.3774E-04 3.4204E-04 2.8129E-04 1.9646E-04 1.5204E-04 1.0573E-04 8.1590E-05 6.6710E-05 5.6585E-05 4.3589E-05 3.5593E-05 2.4594E-05 1.8908E-05 1.3040E-05 1.0011E-05 8.1528E-06 6.8902E-06 5.2850E-06 4.3002E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.4206E+03 4.2981E+05 1.7536E+04 1.9748E+03 1.0693E+03 9.3969E+02 1.0187E+03 1.5289E+03 2.2933E+03 2.4409E+03 2.3664E+03 2.2946E+03 2.6505E+03 1.9553E+03 1.9133E+03 2.0313E+03 1.8366E+03 1.6608E+03 1.7321E+03 1.0913E+03 6.3222E+02 4.0100E+02 1.9294E+02 1.0845E+02 7.4273E+01 1.9047E+02 1.5814E+02 1.3132E+02 1.8176E+02 1.7221E+02 1.6315E+02 1.8862E+02 1.5460E+02 7.3471E+01 2.5036E+01 1.1496E+01 6.2481E+00 3.7847E+00 1.8062E+00 8.9832E+00 8.3442E+00 4.6953E+00 1.6015E+00 7.4088E-01 4.0961E-01 2.5357E-01 1.7049E-01 1.2178E-01 9.1059E-02 7.0600E-02 5.6369E-02 4.6089E-02 3.8428E-02 2.8001E-02 2.4366E-02 2.1428E-02 1.7017E-02 1.5333E-02 1.4676E-02 9.9000E-03 9.1908E-03 8.0029E-03 7.0538E-03 6.2829E-03 5.1122E-03 4.2693E-03 4.1150E-03 3.6407E-03 2.7852E-03 2.2350E-03 1.4651E-03 1.0749E-03 8.4306E-04 6.9087E-04 5.8375E-04 5.0473E-04 4.4422E-04 3.9637E-04 3.5748E-04 3.2568E-04 2.9888E-04 2.7610E-04 2.5650E-04 2.2455E-04 1.9964E-04 1.7963E-04 1.6327E-04 1.4963E-04 1.3805E-04 1.2814E-04 9.4277E-05 7.4520E-05 6.1617E-05 4.5749E-05 3.6396E-05 2.4060E-05 1.7973E-05 1.1931E-05 8.9307E-06 7.1372E-06 5.9425E-06 4.4515E-06 3.5593E-06 2.3708E-06 1.7775E-06 1.1845E-06 8.8813E-07 7.1032E-07 5.9209E-07 4.4391E-07 3.5501E-07 2.3674E-07 1.7753E-07 1.1836E-07 8.8752E-08 7.1001E-08 5.9178E-08 4.4391E-08 3.5501E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.5099E-04 5.5057E-04 1.0548E-03 1.6571E-03 2.3131E-03 3.6824E-03 5.0658E-03 5.3714E-03 6.4353E-03 8.9899E-03 1.1317E-02 1.6429E-02 2.0711E-02 2.4394E-02 2.7638E-02 3.0558E-02 3.3216E-02 3.5655E-02 3.7908E-02 4.0008E-02 4.1983E-02 4.3835E-02 4.5533E-02 4.7139E-02 5.0010E-02 5.2572E-02 5.4918E-02 5.7048E-02 5.8962E-02 6.0752E-02 6.2388E-02 6.9087E-02 7.4057E-02 7.7916E-02 8.3596E-02 8.7578E-02 9.3876E-02 9.7611E-02 1.0196E-01 1.0443E-01 1.0607E-01 1.0721E-01 1.0876E-01 1.0974E-01 1.1119E-01 1.1197E-01 1.1283E-01 1.1326E-01 1.1357E-01 1.1376E-01 1.1403E-01 1.1419E-01 1.1440E-01 1.1453E-01 1.1468E-01 1.1474E-01 1.1477E-01 1.1481E-01 1.1484E-01 1.1487E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.2841E-08 2.7516E-06 9.6870E-06 3.9483E-05 7.8534E-05 1.2039E-04 1.6201E-04 2.0223E-04 2.4066E-04 2.7709E-04 3.1148E-04 3.4389E-04 3.7445E-04 4.0316E-04 4.3064E-04 4.5657E-04 5.0442E-04 5.4794E-04 5.8777E-04 6.2419E-04 6.5753E-04 6.8840E-04 7.1711E-04 8.3534E-04 9.2425E-04 9.9433E-04 1.0987E-03 1.1737E-03 1.2965E-03 1.3725E-03 1.4642E-03 1.5185E-03 1.5552E-03 1.5821E-03 1.6188E-03 1.6429E-03 1.6787E-03 1.6991E-03 1.7210E-03 1.7340E-03 1.7417E-03 1.7472E-03 1.7543E-03 1.7590E-03 1.7652E-03 1.7689E-03 1.7723E-03 1.7744E-03 1.7760E-03 1.7766E-03 1.7775E-03 1.7784E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Pu.mat0000644000000000000000000002266214741736366017717 0ustar00rootrootPu 1 94 1.000000 13 4 3 3 4 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1148E-03 1.1148E-03 1.2368E-03 1.3721E-03 1.3721E-03 1.5000E-03 1.5586E-03 1.5586E-03 2.0000E-03 3.0000E-03 3.7781E-03 3.7781E-03 3.8741E-03 3.9726E-03 3.9726E-03 4.0000E-03 4.5566E-03 4.5566E-03 5.0000E-03 5.5412E-03 5.5412E-03 5.7337E-03 5.9329E-03 5.9329E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.8057E-02 1.8057E-02 2.0000E-02 2.2266E-02 2.2266E-02 2.2678E-02 2.3097E-02 2.3097E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.2182E-01 1.2182E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.4153E+01 9.0638E+01 1.5714E+01 1.4019E+01 1.4019E+01 1.3879E+01 1.3714E+01 1.3714E+01 1.3548E+01 1.3473E+01 1.3473E+01 1.2898E+01 1.1583E+01 1.0613E+01 1.0613E+01 1.0500E+01 1.0384E+01 1.0384E+01 1.0351E+01 9.7316E+00 9.7316E+00 9.2706E+00 8.7491E+00 8.7491E+00 8.5744E+00 8.3989E+00 8.3989E+00 8.3410E+00 6.8597E+00 5.7412E+00 3.9098E+00 3.1842E+00 3.1842E+00 2.8240E+00 2.4751E+00 2.4751E+00 2.4186E+00 2.3630E+00 2.3630E+00 1.6657E+00 1.1193E+00 8.0891E-01 6.0964E-01 3.8291E-01 2.6577E-01 1.9073E-01 1.9073E-01 1.3326E-01 7.9883E-02 5.3424E-02 3.8367E-02 2.8936E-02 2.2612E-02 1.8155E-02 1.4896E-02 1.2442E-02 1.0548E-02 9.0555E-03 6.8848E-03 6.0813E-03 5.4108E-03 4.3636E-03 3.9501E-03 3.7863E-03 2.5570E-03 2.3684E-03 2.0488E-03 1.7899E-03 1.5770E-03 1.2509E-03 1.0160E-03 9.7316E-04 8.4135E-04 6.0434E-04 4.5496E-04 2.5670E-04 1.6460E-04 1.1440E-04 8.4090E-05 6.4415E-05 5.0912E-05 4.1239E-05 3.4084E-05 2.8643E-05 2.4411E-05 2.1050E-05 1.8337E-05 1.6118E-05 1.2737E-05 1.0316E-05 8.5274E-06 7.1645E-06 6.1040E-06 5.2651E-06 4.5849E-06 2.5796E-06 1.6511E-06 1.1465E-06 6.4491E-07 4.1264E-07 1.8345E-07 1.0319E-07 4.5849E-08 2.5796E-08 1.6511E-08 1.1465E-08 6.4491E-09 4.1264E-09 1.8345E-09 1.0319E-09 4.5849E-10 2.5796E-10 1.6511E-10 1.1465E-10 6.4491E-11 4.1264E-11 1.8345E-11 1.0319E-11 4.5849E-12 2.5796E-12 1.6511E-12 1.1465E-12 6.4491E-13 4.1264E-13 INCOHERENT SCATTERING CROSS SECTION 4.4388E-03 2.5124E+03 2.7748E-03 5.1139E-03 5.1139E-03 5.8138E-03 6.5851E-03 6.5851E-03 7.3283E-03 7.6684E-03 7.6684E-03 1.0213E-02 1.5767E-02 1.9788E-02 1.9788E-02 2.0262E-02 2.0748E-02 2.0748E-02 2.0884E-02 2.3537E-02 2.3537E-02 2.5544E-02 2.7887E-02 2.7887E-02 2.8682E-02 2.9500E-02 2.9500E-02 2.9777E-02 3.7284E-02 4.3884E-02 5.7336E-02 6.3533E-02 6.3533E-02 6.6884E-02 7.0335E-02 7.0335E-02 7.0905E-02 7.1469E-02 7.1469E-02 7.9203E-02 8.6760E-02 9.1446E-02 9.4242E-02 9.6484E-02 9.6459E-02 9.5300E-02 9.5300E-02 9.2957E-02 8.8196E-02 8.3530E-02 7.9304E-02 7.5564E-02 7.2250E-02 6.9294E-02 6.6632E-02 6.4217E-02 6.2022E-02 6.0021E-02 5.6479E-02 5.4893E-02 5.3409E-02 5.0730E-02 4.9527E-02 4.9023E-02 4.4413E-02 4.3543E-02 4.1929E-02 4.0458E-02 3.9106E-02 3.6692E-02 3.4588E-02 3.4160E-02 3.2745E-02 2.9702E-02 2.7257E-02 2.2748E-02 1.9652E-02 1.7375E-02 1.5619E-02 1.4216E-02 1.3069E-02 1.2110E-02 1.1293E-02 1.0593E-02 9.9784E-03 9.4419E-03 8.9632E-03 8.5375E-03 7.8019E-03 7.1948E-03 6.6834E-03 6.2450E-03 5.8646E-03 5.5321E-03 5.2374E-03 4.1617E-03 3.4739E-03 2.9953E-03 2.3612E-03 1.9599E-03 1.3956E-03 1.0943E-03 7.7565E-04 6.0737E-04 5.0283E-04 4.3053E-04 3.3631E-04 2.7661E-04 1.9320E-04 1.4954E-04 1.0397E-04 8.0261E-05 6.5624E-05 5.5649E-05 4.2876E-05 3.4991E-05 2.4189E-05 1.8597E-05 1.2825E-05 9.8449E-06 8.0185E-06 6.7766E-06 5.1971E-06 4.2272E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 7.1796E+03 4.2237E+05 2.4483E+04 5.9251E+03 6.3030E+03 5.1776E+03 4.2524E+03 4.3103E+03 3.6075E+03 3.3404E+03 3.4034E+03 2.0237E+03 8.2780E+02 4.8796E+02 1.1702E+03 1.0935E+03 1.0220E+03 1.3858E+03 1.4160E+03 1.0336E+03 1.2047E+03 9.5552E+02 7.3434E+02 7.7918E+02 7.1618E+02 6.5826E+02 6.8647E+02 6.6758E+02 3.2825E+02 1.8773E+02 6.6682E+01 4.1289E+01 9.7870E+01 7.4190E+01 5.5497E+01 7.9152E+01 7.5445E+01 7.1922E+01 8.2956E+01 4.2776E+01 2.0267E+01 1.1273E+01 6.9479E+00 3.2195E+00 1.7664E+00 1.0382E+00 4.3027E+00 2.5418E+00 1.2228E+00 6.9349E-01 4.3884E-01 3.0026E-01 2.1756E-01 1.6464E-01 1.2893E-01 1.0378E-01 8.5450E-02 7.1691E-02 5.2722E-02 4.6000E-02 4.0514E-02 3.2263E-02 2.9147E-02 2.7938E-02 1.8881E-02 1.7519E-02 1.5242E-02 1.3425E-02 1.1948E-02 9.7093E-03 8.1067E-03 7.8145E-03 6.9128E-03 5.2746E-03 4.2196E-03 2.7535E-03 2.0116E-03 1.5727E-03 1.2853E-03 1.0840E-03 9.3562E-04 8.2226E-04 7.3258E-04 6.6028E-04 6.0082E-04 5.5094E-04 5.0862E-04 4.7209E-04 4.1289E-04 3.6679E-04 3.2976E-04 2.9953E-04 2.7434E-04 2.5292E-04 2.3471E-04 1.7239E-04 1.3616E-04 1.1251E-04 8.3460E-05 6.6330E-05 4.3834E-05 3.2724E-05 2.1725E-05 1.6256E-05 1.2989E-05 1.0815E-05 8.1017E-06 6.4768E-06 4.3128E-06 3.2346E-06 2.1552E-06 1.6158E-06 1.2926E-06 1.0769E-06 8.0765E-07 6.4617E-07 4.3078E-07 3.2296E-07 2.1534E-07 1.6150E-07 1.2918E-07 1.0767E-07 8.0739E-08 6.4592E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.6781E-04 7.4710E-04 1.4661E-03 2.3267E-03 3.2439E-03 5.0593E-03 6.7816E-03 7.1544E-03 8.4320E-03 1.1386E-02 1.3971E-02 1.9481E-02 2.4076E-02 2.7988E-02 3.1490E-02 3.4639E-02 3.7536E-02 4.0206E-02 4.2700E-02 4.5018E-02 4.7159E-02 4.9199E-02 5.1089E-02 5.2852E-02 5.6077E-02 5.8949E-02 6.1569E-02 6.3962E-02 6.6153E-02 6.8144E-02 6.9983E-02 7.7490E-02 8.3082E-02 8.7415E-02 9.3789E-02 9.8298E-02 1.0538E-01 1.0958E-01 1.1450E-01 1.1729E-01 1.1913E-01 1.2047E-01 1.2221E-01 1.2334E-01 1.2495E-01 1.2586E-01 1.2679E-01 1.2737E-01 1.2770E-01 1.2792E-01 1.2823E-01 1.2843E-01 1.2865E-01 1.2881E-01 1.2893E-01 1.2903E-01 1.2911E-01 1.2913E-01 1.2916E-01 1.2918E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1281E-08 2.7043E-06 9.5174E-06 3.8770E-05 7.7087E-05 1.1812E-04 1.5888E-04 1.9826E-04 2.3582E-04 2.7131E-04 3.0507E-04 3.3656E-04 3.6629E-04 3.9450E-04 4.2095E-04 4.4640E-04 4.9275E-04 5.3507E-04 5.7362E-04 6.0863E-04 6.4113E-04 6.7111E-04 6.9882E-04 8.1294E-04 8.9834E-04 9.6560E-04 1.0659E-03 1.1379E-03 1.2556E-03 1.3284E-03 1.4168E-03 1.4692E-03 1.5050E-03 1.5312E-03 1.5669E-03 1.5909E-03 1.6264E-03 1.6465E-03 1.6682E-03 1.6813E-03 1.6891E-03 1.6946E-03 1.7022E-03 1.7070E-03 1.7133E-03 1.7171E-03 1.7203E-03 1.7229E-03 1.7241E-03 1.7249E-03 1.7259E-03 1.7266E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ra.mat0000644000000000000000000002265214741736366017674 0ustar00rootrootRa 1 88 1.000000 12 4 3 5 3 3 3 3 7 3 3 9 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0576E-03 1.0576E-03 1.1305E-03 1.2084E-03 1.2084E-03 1.5000E-03 2.0000E-03 3.0000E-03 3.1049E-03 3.1049E-03 3.1758E-03 3.2484E-03 3.2484E-03 3.5096E-03 3.7918E-03 3.7918E-03 4.0000E-03 4.4895E-03 4.4895E-03 4.6528E-03 4.8220E-03 4.8220E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.5444E-02 1.5444E-02 1.6896E-02 1.8484E-02 1.8484E-02 1.8857E-02 1.9237E-02 1.9237E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.0392E-01 1.0392E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3029E+01 1.4294E+04 1.6688E+01 1.2962E+01 1.2962E+01 1.2875E+01 1.2781E+01 1.2781E+01 1.2429E+01 1.1811E+01 1.0599E+01 1.0474E+01 1.0474E+01 1.0392E+01 1.0311E+01 1.0311E+01 1.0018E+01 9.7089E+00 9.7089E+00 9.4905E+00 9.0002E+00 9.0002E+00 8.8440E+00 8.6858E+00 8.6858E+00 8.5233E+00 7.6867E+00 6.3252E+00 5.2808E+00 3.5596E+00 3.4477E+00 3.4477E+00 3.1118E+00 2.7976E+00 2.7976E+00 2.7317E+00 2.6670E+00 2.6670E+00 2.5437E+00 1.4968E+00 1.0055E+00 7.2124E-01 5.4113E-01 3.3997E-01 2.3556E-01 2.2082E-01 2.2082E-01 1.1710E-01 7.0019E-02 4.6785E-02 3.3544E-02 2.5239E-02 1.9679E-02 1.5772E-02 1.2922E-02 1.0780E-02 9.1281E-03 7.8270E-03 5.9404E-03 5.2461E-03 4.6687E-03 3.7638E-03 3.4024E-03 3.2585E-03 2.1989E-03 2.0367E-03 1.7608E-03 1.5368E-03 1.3528E-03 1.0718E-03 8.7071E-04 8.3421E-04 7.2157E-04 5.1800E-04 3.8953E-04 2.1957E-04 1.4068E-04 9.7755E-05 7.1858E-05 5.5019E-05 4.3482E-05 3.5223E-05 2.9121E-05 2.4470E-05 2.0851E-05 1.7979E-05 1.5664E-05 1.3767E-05 1.0879E-05 8.8110E-06 7.2817E-06 6.1200E-06 5.2142E-06 4.4948E-06 3.9166E-06 2.2032E-06 1.4100E-06 9.7915E-07 5.5072E-07 3.5250E-07 1.5666E-07 8.8110E-08 3.9166E-08 2.2032E-08 1.4100E-08 9.7915E-09 5.5072E-09 3.5250E-09 1.5666E-09 8.8110E-10 3.9166E-10 2.2032E-10 1.4100E-10 9.7915E-11 5.5072E-11 3.5250E-11 1.5666E-11 8.8110E-12 3.9166E-12 2.2032E-12 1.4100E-12 9.7915E-13 5.5072E-13 3.5250E-13 INCOHERENT SCATTERING CROSS SECTION 4.7879E-03 8.5947E+02 3.0268E-03 5.1342E-03 5.1342E-03 5.5710E-03 6.0321E-03 6.0321E-03 7.7133E-03 1.0628E-02 1.6317E-02 1.6889E-02 1.6889E-02 1.7285E-02 1.7691E-02 1.7691E-02 1.9105E-02 2.0569E-02 2.0569E-02 2.1624E-02 2.4003E-02 2.4003E-02 2.4768E-02 2.5546E-02 2.5546E-02 2.6348E-02 3.0560E-02 3.8100E-02 4.4815E-02 5.8030E-02 5.8989E-02 5.8989E-02 6.1884E-02 6.4744E-02 6.4744E-02 6.5382E-02 6.6023E-02 6.6023E-02 6.7275E-02 7.9664E-02 8.7284E-02 9.1894E-02 9.4532E-02 9.6530E-02 9.6397E-02 9.6237E-02 9.6237E-02 9.2667E-02 8.7764E-02 8.3033E-02 7.8785E-02 7.5042E-02 7.1725E-02 6.8762E-02 6.6103E-02 6.3703E-02 6.1520E-02 5.9519E-02 5.5979E-02 5.4406E-02 5.2945E-02 5.0305E-02 4.9104E-02 4.8598E-02 4.4015E-02 4.3148E-02 4.1537E-02 4.0072E-02 3.8732E-02 3.6349E-02 3.4264E-02 3.3837E-02 3.2430E-02 2.9412E-02 2.6990E-02 2.2525E-02 1.9461E-02 1.7204E-02 1.5464E-02 1.4076E-02 1.2941E-02 1.1990E-02 1.1182E-02 1.0490E-02 9.8821E-03 9.3492E-03 8.8750E-03 8.4514E-03 7.7240E-03 7.1245E-03 6.6183E-03 6.1840E-03 5.8056E-03 5.4779E-03 5.1875E-03 4.1218E-03 3.4397E-03 2.9654E-03 2.3380E-03 1.9405E-03 1.3820E-03 1.0836E-03 7.6787E-04 6.0135E-04 4.9797E-04 4.2630E-04 3.3305E-04 2.7390E-04 1.9130E-04 1.4806E-04 1.0295E-04 7.9451E-05 6.4957E-05 5.5099E-05 4.2443E-05 3.4663E-05 2.3950E-05 1.8413E-05 1.2698E-05 9.7489E-06 7.9398E-06 6.7115E-06 5.1449E-06 4.1857E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.1893E+03 4.0647E+05 2.1811E+04 5.5898E+03 5.6698E+03 5.0024E+03 4.4122E+03 4.5054E+03 2.9388E+03 1.6087E+03 6.5570E+02 6.0641E+02 1.7039E+03 1.5242E+03 1.3636E+03 2.0281E+03 1.6438E+03 1.3324E+03 1.5483E+03 1.3572E+03 1.0149E+03 1.0772E+03 9.8691E+02 9.0428E+02 9.4345E+02 8.6565E+02 5.5365E+02 2.7043E+02 1.5357E+02 5.3980E+01 5.0037E+01 1.2179E+02 9.5441E+01 7.4789E+01 1.0527E+02 1.0014E+02 9.5251E+01 1.1004E+02 9.9674E+01 3.5063E+01 1.6404E+01 9.0375E+00 5.5312E+00 2.5346E+00 1.3799E+00 1.2429E+00 5.5099E+00 2.1456E+00 1.0138E+00 5.6888E-01 3.5729E-01 2.4276E-01 1.7484E-01 1.3168E-01 1.0271E-01 8.2389E-02 6.7621E-02 5.6570E-02 4.1439E-02 3.6129E-02 3.1820E-02 2.5324E-02 2.2842E-02 2.1872E-02 1.4774E-02 1.3713E-02 1.1933E-02 1.0508E-02 9.3498E-03 7.5968E-03 6.3492E-03 6.1227E-03 5.4217E-03 4.1397E-03 3.3118E-03 2.1645E-03 1.5840E-03 1.2397E-03 1.0143E-03 8.5606E-04 7.3936E-04 6.5010E-04 5.7950E-04 5.2248E-04 4.7559E-04 4.3616E-04 4.0285E-04 3.7408E-04 3.2718E-04 2.9068E-04 2.6145E-04 2.3753E-04 2.1760E-04 2.0073E-04 1.8627E-04 1.3689E-04 1.0815E-04 8.9389E-05 6.6343E-05 5.2728E-05 3.4850E-05 2.6031E-05 1.7278E-05 1.2930E-05 1.0332E-05 8.6032E-06 6.4451E-06 5.1529E-06 3.4317E-06 2.5727E-06 1.7145E-06 1.2856E-06 1.0282E-06 8.5686E-07 6.4264E-07 5.1396E-07 3.4264E-07 2.5698E-07 1.7132E-07 1.2848E-07 1.0279E-07 8.5659E-08 6.4238E-08 5.1396E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.1857E-04 6.6357E-04 1.2891E-03 2.0364E-03 2.8383E-03 4.4560E-03 6.0295E-03 6.3732E-03 7.5570E-03 1.0326E-02 1.2784E-02 1.8091E-02 2.2525E-02 2.6340E-02 2.9708E-02 3.2745E-02 3.5516E-02 3.8074E-02 4.0445E-02 4.2630E-02 4.4708E-02 4.6626E-02 4.8438E-02 5.0117E-02 5.3154E-02 5.5872E-02 5.8350E-02 6.0614E-02 6.2666E-02 6.4557E-02 6.6289E-02 7.3403E-02 7.8679E-02 8.2755E-02 8.8777E-02 9.3013E-02 9.9700E-02 1.0367E-01 1.0828E-01 1.1094E-01 1.1268E-01 1.1393E-01 1.1558E-01 1.1665E-01 1.1819E-01 1.1904E-01 1.1995E-01 1.2043E-01 1.2075E-01 1.2096E-01 1.2126E-01 1.2141E-01 1.2168E-01 1.2181E-01 1.2195E-01 1.2203E-01 1.2205E-01 1.2208E-01 1.2213E-01 1.2216E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0331E-08 2.6774E-06 9.4265E-06 3.8420E-05 7.6387E-05 1.1705E-04 1.5749E-04 1.9652E-04 2.3380E-04 2.6910E-04 3.0240E-04 3.3384E-04 3.6342E-04 3.9139E-04 4.1777E-04 4.4282E-04 4.8918E-04 5.3127E-04 5.6937E-04 6.0454E-04 6.3678E-04 6.6662E-04 6.9433E-04 8.0783E-04 8.9336E-04 9.6024E-04 1.0604E-03 1.1326E-03 1.2507E-03 1.3237E-03 1.4124E-03 1.4654E-03 1.5014E-03 1.5277E-03 1.5640E-03 1.5882E-03 1.6242E-03 1.6444E-03 1.6668E-03 1.6801E-03 1.6881E-03 1.6937E-03 1.7015E-03 1.7063E-03 1.7127E-03 1.7166E-03 1.7201E-03 1.7225E-03 1.7238E-03 1.7249E-03 1.7257E-03 1.7265E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Rb.mat0000644000000000000000000001774014741736366017677 0ustar00rootrootRb 1 37 1.000000 5 5 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.8044E-03 1.8044E-03 1.8339E-03 1.8639E-03 1.8639E-03 2.0000E-03 2.0651E-03 2.0651E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.5200E-02 1.5200E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.9955E+00 2.7800E+01 6.7813E+00 5.6517E+00 5.4389E+00 5.4389E+00 5.4172E+00 5.3952E+00 5.3952E+00 5.2958E+00 5.2486E+00 5.2486E+00 4.5990E+00 3.9853E+00 3.4808E+00 3.0686E+00 2.4309E+00 1.9539E+00 1.2021E+00 1.1816E+00 1.1816E+00 8.1735E-01 4.6300E-01 2.9791E-01 2.0645E-01 1.5170E-01 9.2515E-02 6.2605E-02 3.0101E-02 1.7573E-02 1.1492E-02 8.0960E-03 6.0093E-03 4.6356E-03 3.6832E-03 2.9960E-03 2.4841E-03 2.0927E-03 1.7868E-03 1.3466E-03 1.1852E-03 1.0512E-03 8.4295E-04 7.6098E-04 7.2856E-04 4.8794E-04 4.5129E-04 3.8929E-04 3.3920E-04 2.9817E-04 2.3567E-04 1.9102E-04 1.8292E-04 1.5797E-04 1.1314E-04 8.4976E-05 4.7815E-05 3.0608E-05 2.1258E-05 1.5614E-05 1.1957E-05 9.4488E-06 7.6521E-06 6.3246E-06 5.3142E-06 4.5285E-06 3.9042E-06 3.4011E-06 2.9897E-06 2.3618E-06 1.9130E-06 1.5811E-06 1.3289E-06 1.1323E-06 9.7588E-07 8.5046E-07 4.7829E-07 3.0615E-07 2.1258E-07 1.1957E-07 7.6521E-08 3.4011E-08 1.9130E-08 8.5046E-09 4.7829E-09 3.0608E-09 2.1258E-09 1.1957E-09 7.6521E-10 3.4011E-10 1.9130E-10 8.5046E-11 4.7829E-11 3.0608E-11 2.1258E-11 1.1957E-11 7.6521E-12 3.4011E-12 1.9130E-12 8.5046E-13 4.7829E-13 3.0608E-13 2.1258E-13 1.1957E-13 7.6521E-14 INCOHERENT SCATTERING CROSS SECTION 6.9651E-03 1.0702E-03 3.0127E-03 1.1492E-02 1.4325E-02 1.4325E-02 1.4601E-02 1.4881E-02 1.4881E-02 1.6143E-02 1.6749E-02 1.6749E-02 2.5232E-02 3.3603E-02 4.1114E-02 4.7702E-02 5.8694E-02 6.7748E-02 8.5046E-02 8.5610E-02 8.5610E-02 9.6813E-02 1.1041E-01 1.1697E-01 1.1999E-01 1.2105E-01 1.2014E-01 1.1760E-01 1.0971E-01 1.0231E-01 9.5909E-02 9.0401E-02 8.5641E-02 8.1523E-02 7.7939E-02 7.4759E-02 7.1895E-02 6.9305E-02 6.6957E-02 6.2848E-02 6.1033E-02 5.9350E-02 5.6318E-02 5.4945E-02 5.4368E-02 4.9168E-02 4.8190E-02 4.6373E-02 4.4714E-02 4.3191E-02 4.0489E-02 3.8176E-02 3.7711E-02 3.6162E-02 3.2780E-02 3.0052E-02 2.5070E-02 2.1653E-02 1.9137E-02 1.7200E-02 1.5656E-02 1.4395E-02 1.3338E-02 1.2436E-02 1.1668E-02 1.0992E-02 1.0393E-02 9.8716E-03 9.3995E-03 8.5892E-03 7.9198E-03 7.3561E-03 6.8763E-03 6.4570E-03 6.0906E-03 5.7672E-03 4.5835E-03 3.8260E-03 3.2962E-03 2.5993E-03 2.1575E-03 1.5368E-03 1.2049E-03 8.5399E-04 6.6874E-04 5.5361E-04 4.7399E-04 3.7020E-04 3.0453E-04 2.1272E-04 1.6460E-04 1.1443E-04 8.8358E-05 7.2222E-05 6.1259E-05 4.7195E-05 3.8535E-05 2.6627E-05 2.0476E-05 1.4120E-05 1.0837E-05 8.8287E-06 7.4618E-06 5.7214E-06 4.6546E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.1679E+03 7.3615E+05 1.6332E+04 1.2133E+03 7.7296E+02 3.0904E+03 2.9707E+03 2.8558E+03 3.9522E+03 3.4047E+03 3.1482E+03 3.6013E+03 1.4134E+03 6.7079E+02 3.7091E+02 2.2688E+02 1.0330E+02 5.5643E+01 1.7805E+01 1.7150E+01 1.1957E+02 5.8884E+01 1.9511E+01 8.6949E+00 4.5919E+00 2.7057E+00 1.1626E+00 5.9976E-01 1.7897E-01 7.6168E-02 3.9598E-02 2.3442E-02 1.5202E-02 1.0541E-02 7.6934E-03 5.8497E-03 4.5973E-03 3.7077E-03 3.0532E-03 2.1892E-03 1.9010E-03 1.6743E-03 1.3267E-03 1.1837E-03 1.1260E-03 7.6027E-04 7.0810E-04 6.1882E-04 5.4642E-04 4.8747E-04 3.9827E-04 3.3469E-04 3.2313E-04 2.8740E-04 2.2208E-04 1.7968E-04 1.2007E-04 8.9344E-05 7.0884E-05 5.8581E-05 4.9865E-05 4.3369E-05 3.8345E-05 3.4357E-05 3.1108E-05 2.8417E-05 2.6148E-05 2.4210E-05 2.2540E-05 1.9807E-05 1.7657E-05 1.5931E-05 1.4508E-05 1.3317E-05 1.2310E-05 1.1443E-05 8.4553E-06 6.7072E-06 5.5565E-06 4.1368E-06 3.2948E-06 2.1836E-06 1.6326E-06 1.0851E-06 8.1241E-07 6.4951E-07 5.4093E-07 4.0536E-07 3.2419E-07 2.1596E-07 1.6192E-07 1.0795E-07 8.0960E-08 6.4739E-08 5.3945E-08 4.0459E-08 3.2363E-08 2.1575E-08 1.6178E-08 1.0788E-08 8.0889E-09 6.4718E-09 5.3931E-09 4.0445E-09 3.2356E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0851E-04 1.7006E-04 3.2849E-04 5.2698E-04 7.5927E-04 1.3023E-03 1.9109E-03 2.0490E-03 2.5469E-03 3.8480E-03 5.1281E-03 8.0678E-03 1.0647E-02 1.2908E-02 1.4924E-02 1.6734E-02 1.8383E-02 1.9884E-02 2.1258E-02 2.2512E-02 2.3668E-02 2.4739E-02 2.5732E-02 2.6669E-02 2.8375E-02 2.9911E-02 3.1299E-02 3.2560E-02 3.3716E-02 3.4772E-02 3.5745E-02 3.9712E-02 4.2657E-02 4.4954E-02 4.8350E-02 5.0760E-02 5.4593E-02 5.6883E-02 5.9554E-02 6.1090E-02 6.2097E-02 6.2823E-02 6.3781E-02 6.4408E-02 6.5310E-02 6.5803E-02 6.6332E-02 6.6621E-02 6.6797E-02 6.6924E-02 6.7086E-02 6.7192E-02 6.7339E-02 6.7410E-02 6.7494E-02 6.7537E-02 6.7565E-02 6.7579E-02 6.7607E-02 6.7621E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0058E-07 2.9839E-06 1.0513E-05 4.2911E-05 8.5469E-05 1.3113E-04 1.7672E-04 2.2082E-04 2.6303E-04 3.0319E-04 3.4124E-04 3.7711E-04 4.1093E-04 4.4313E-04 4.7364E-04 5.0260E-04 5.5636E-04 6.0533E-04 6.5021E-04 6.9150E-04 7.2997E-04 7.6520E-04 7.9832E-04 9.3502E-04 1.0386E-03 1.1217E-03 1.2465E-03 1.3381E-03 1.4895E-03 1.5854E-03 1.7030E-03 1.7735E-03 1.8221E-03 1.8581E-03 1.9074E-03 1.9405E-03 1.9898E-03 2.0180E-03 2.0490E-03 2.0673E-03 2.0786E-03 2.0863E-03 2.0969E-03 2.1033E-03 2.1124E-03 2.1181E-03 2.1230E-03 2.1265E-03 2.1279E-03 2.1293E-03 2.1307E-03 2.1314E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Re.mat0000644000000000000000000002205214741736366017672 0ustar00rootrootRe 1 75 1.000000 10 5 3 3 3 3 8 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.8224E-03 1.8224E-03 1.8846E-03 1.9489E-03 1.9489E-03 2.0000E-03 2.3673E-03 2.3673E-03 2.5196E-03 2.6816E-03 2.6816E-03 2.8039E-03 2.9317E-03 2.9317E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.0535E-02 1.0535E-02 1.1224E-02 1.1959E-02 1.1959E-02 1.2239E-02 1.2527E-02 1.2527E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 7.1676E-02 7.1676E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1620E+01 4.2511E+01 1.2745E+01 1.1135E+01 1.0795E+01 1.0795E+01 1.0726E+01 1.0653E+01 1.0653E+01 1.0595E+01 1.0184E+01 1.0184E+01 1.0023E+01 9.8511E+00 9.8511E+00 9.7189E+00 9.5794E+00 9.5794E+00 9.5050E+00 8.4928E+00 7.5905E+00 6.7981E+00 5.5109E+00 4.5342E+00 4.3143E+00 4.3143E+00 4.0501E+00 3.7936E+00 3.7936E+00 3.7025E+00 3.6125E+00 3.6125E+00 2.9482E+00 2.0786E+00 1.2290E+00 8.1176E-01 5.7438E-01 4.3014E-01 3.2373E-01 3.2373E-01 2.7034E-01 1.8580E-01 9.0975E-02 5.4204E-02 3.6084E-02 2.5760E-02 1.9301E-02 1.4993E-02 1.1980E-02 9.7896E-03 8.1490E-03 6.8887E-03 5.8996E-03 4.4674E-03 3.9391E-03 3.4991E-03 2.8142E-03 2.5449E-03 2.4385E-03 1.6407E-03 1.5184E-03 1.3115E-03 1.1442E-03 1.0071E-03 7.9759E-04 6.4682E-04 6.1933E-04 5.3487E-04 3.8357E-04 2.8848E-04 1.6248E-04 1.0407E-04 7.2282E-05 5.3136E-05 4.0685E-05 3.2147E-05 2.6041E-05 2.1523E-05 1.8085E-05 1.5411E-05 1.3289E-05 1.1575E-05 1.0175E-05 8.0400E-06 6.5103E-06 5.3816E-06 4.5213E-06 3.8518E-06 3.3214E-06 2.8942E-06 1.6281E-06 1.0420E-06 7.2347E-07 4.0685E-07 2.6048E-07 1.1578E-07 6.5103E-08 2.8942E-08 1.6281E-08 1.0420E-08 7.2347E-09 4.0685E-09 2.6048E-09 1.1578E-09 6.5103E-10 2.8942E-10 1.6281E-10 1.0420E-10 7.2347E-11 4.0685E-11 2.6048E-11 1.1578E-11 6.5103E-12 2.8942E-12 1.6281E-12 1.0420E-12 7.2347E-13 4.0685E-13 2.6048E-13 INCOHERENT SCATTERING CROSS SECTION 4.2076E-03 1.1121E-02 1.7526E-03 7.3447E-03 9.2787E-03 9.2787E-03 9.6482E-03 1.0029E-02 1.0029E-02 1.0330E-02 1.2477E-02 1.2477E-02 1.3339E-02 1.4249E-02 1.4249E-02 1.4941E-02 1.5663E-02 1.5663E-02 1.6044E-02 2.1513E-02 2.6720E-02 3.1636E-02 4.0362E-02 4.7671E-02 4.9417E-02 4.9417E-02 5.1583E-02 5.3783E-02 5.3783E-02 5.4592E-02 5.5400E-02 5.5400E-02 6.1707E-02 7.2121E-02 8.6124E-02 9.4016E-02 9.8382E-02 1.0081E-01 1.0210E-01 1.0210E-01 1.0242E-01 1.0194E-01 9.7347E-02 9.1816E-02 8.6668E-02 8.2114E-02 7.8125E-02 7.4611E-02 7.1490E-02 6.8692E-02 6.6166E-02 6.3874E-02 6.1784E-02 5.8089E-02 5.6435E-02 5.4890E-02 5.2112E-02 5.0872E-02 5.0355E-02 4.5601E-02 4.4701E-02 4.3027E-02 4.1494E-02 4.0076E-02 3.7565E-02 3.5446E-02 3.5025E-02 3.3613E-02 3.0477E-02 2.7930E-02 2.3308E-02 2.0136E-02 1.7801E-02 1.5999E-02 1.4563E-02 1.3389E-02 1.2406E-02 1.1572E-02 1.0850E-02 1.0223E-02 9.6732E-03 9.1816E-03 8.7450E-03 7.9915E-03 7.3705E-03 6.8466E-03 6.3971E-03 6.0057E-03 5.6662E-03 5.3654E-03 4.2626E-03 3.5608E-03 3.0669E-03 2.4188E-03 2.0074E-03 1.4295E-03 1.1209E-03 7.9462E-04 6.2224E-04 5.1519E-04 4.4113E-04 3.4443E-04 2.8337E-04 1.9790E-04 1.5317E-04 1.0650E-04 8.2211E-05 6.7205E-05 5.6985E-05 4.3919E-05 3.5866E-05 2.4777E-05 1.9049E-05 1.3137E-05 1.0084E-05 8.2114E-06 6.9436E-06 5.3233E-06 4.3305E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.8615E+03 3.8369E+05 1.5413E+04 1.7176E+03 1.1365E+03 1.1371E+03 1.7350E+03 2.6452E+03 2.7302E+03 3.7613E+03 2.6850E+03 3.1128E+03 2.6753E+03 2.2995E+03 2.4437E+03 2.2013E+03 1.9828E+03 2.0682E+03 1.9625E+03 9.8576E+02 5.6823E+02 3.5899E+02 1.7222E+02 9.6538E+01 8.4216E+01 2.1905E+02 1.8495E+02 1.5614E+02 2.1536E+02 2.0358E+02 1.9246E+02 2.2251E+02 1.4101E+02 6.6202E+01 2.2361E+01 1.0220E+01 5.5336E+00 3.3408E+00 2.0385E+00 1.0307E+01 7.6972E+00 4.2981E+00 1.4489E+00 6.6590E-01 3.6603E-01 2.2606E-01 1.5158E-01 1.0799E-01 8.0589E-02 6.2386E-02 4.9740E-02 4.0620E-02 3.3836E-02 2.4622E-02 2.1416E-02 1.8828E-02 1.4943E-02 1.3460E-02 1.2881E-02 8.6868E-03 8.0662E-03 7.0266E-03 6.1933E-03 5.5132E-03 4.4813E-03 3.7483E-03 3.6157E-03 3.2050E-03 2.4525E-03 1.9657E-03 1.2901E-03 9.4727E-04 7.4352E-04 6.0963E-04 5.1519E-04 4.4566E-04 3.9230E-04 3.5025E-04 3.1600E-04 2.8780E-04 2.6419E-04 2.4408E-04 2.2681E-04 1.9861E-04 1.7658E-04 1.5892E-04 1.4447E-04 1.3240E-04 1.2218E-04 1.1342E-04 8.3472E-05 6.6008E-05 5.4559E-05 4.0523E-05 3.2231E-05 2.1316E-05 1.5925E-05 1.0572E-05 7.9139E-06 6.3227E-06 5.2651E-06 3.9456E-06 3.1542E-06 2.1009E-06 1.5750E-06 1.0498E-06 7.8718E-07 6.2968E-07 5.2457E-07 3.9327E-07 3.1471E-07 2.0980E-07 1.5734E-07 1.0488E-07 7.8654E-08 6.2936E-08 5.2457E-08 3.9327E-08 3.1465E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.3053E-04 5.1711E-04 9.8742E-04 1.5501E-03 2.1668E-03 3.4678E-03 4.7897E-03 5.0808E-03 6.0984E-03 8.5741E-03 1.0857E-02 1.5883E-02 2.0100E-02 2.3722E-02 2.6917E-02 2.9789E-02 3.2406E-02 3.4799E-02 3.7031E-02 3.9100E-02 4.1008E-02 4.2820E-02 4.4501E-02 4.6054E-02 4.8900E-02 5.1422E-02 5.3686E-02 5.5756E-02 5.7664E-02 5.9411E-02 6.1028E-02 6.7560E-02 7.2444E-02 7.6228E-02 8.1758E-02 8.5672E-02 9.1849E-02 9.5503E-02 9.9772E-02 1.0220E-01 1.0378E-01 1.0491E-01 1.0643E-01 1.0740E-01 1.0883E-01 1.0960E-01 1.1041E-01 1.1087E-01 1.1116E-01 1.1135E-01 1.1161E-01 1.1177E-01 1.1200E-01 1.1209E-01 1.1222E-01 1.1229E-01 1.1235E-01 1.1235E-01 1.1242E-01 1.1242E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3565E-08 2.7727E-06 9.7605E-06 3.9780E-05 7.9139E-05 1.2134E-04 1.6329E-04 2.0385E-04 2.4259E-04 2.7933E-04 3.1406E-04 3.4670E-04 3.7742E-04 4.0685E-04 4.3434E-04 4.6054E-04 5.0905E-04 5.5271E-04 5.9281E-04 6.2968E-04 6.6364E-04 6.9469E-04 7.2379E-04 8.4346E-04 9.3336E-04 1.0042E-03 1.1099E-03 1.1863E-03 1.3108E-03 1.3881E-03 1.4815E-03 1.5372E-03 1.5750E-03 1.6025E-03 1.6403E-03 1.6656E-03 1.7028E-03 1.7238E-03 1.7467E-03 1.7603E-03 1.7684E-03 1.7742E-03 1.7820E-03 1.7868E-03 1.7933E-03 1.7972E-03 1.8008E-03 1.8033E-03 1.8046E-03 1.8056E-03 1.8062E-03 1.8072E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Rh.mat0000644000000000000000000002005014741736366017671 0ustar00rootrootRh 1 45 1.000000 5 7 3 3 9 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.0038E-03 3.0038E-03 3.0741E-03 3.1461E-03 3.1461E-03 3.2763E-03 3.4119E-03 3.4119E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.3220E-02 2.3220E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.4907E+00 5.1650E+01 8.4627E+00 7.0986E+00 6.6597E+00 5.7743E+00 5.7708E+00 5.7708E+00 5.7093E+00 5.6502E+00 5.6502E+00 5.5433E+00 5.4325E+00 5.4325E+00 4.9813E+00 4.3183E+00 3.7787E+00 2.9875E+00 2.4427E+00 1.5871E+00 1.0938E+00 8.9069E-01 8.9069E-01 6.1506E-01 4.0169E-01 2.8254E-01 2.0874E-01 1.2740E-01 8.6201E-02 4.1790E-02 2.4567E-02 1.6130E-02 1.1388E-02 8.4645E-03 6.5368E-03 5.1997E-03 4.2340E-03 3.5137E-03 2.9623E-03 2.5309E-03 1.9087E-03 1.6801E-03 1.4902E-03 1.1954E-03 1.0797E-03 1.0341E-03 6.9347E-04 6.4141E-04 5.5332E-04 4.8215E-04 4.2389E-04 3.3513E-04 2.7165E-04 2.6013E-04 2.2466E-04 1.6095E-04 1.2090E-04 6.8001E-05 4.3546E-05 3.0244E-05 2.2220E-05 1.7012E-05 1.3442E-05 1.0891E-05 9.0005E-06 7.5609E-06 6.4432E-06 5.5560E-06 4.8403E-06 4.2539E-06 3.3614E-06 2.7224E-06 2.2501E-06 1.8908E-06 1.6111E-06 1.3893E-06 1.2102E-06 6.8060E-07 4.3563E-07 3.0250E-07 1.7018E-07 1.0891E-07 4.8403E-08 2.7224E-08 1.2102E-08 6.8060E-09 4.3563E-09 3.0250E-09 1.7018E-09 1.0891E-09 4.8403E-10 2.7224E-10 1.2102E-10 6.8060E-11 4.3563E-11 3.0250E-11 1.7018E-11 1.0891E-11 4.8403E-12 2.7224E-12 1.2102E-12 6.8060E-13 4.3563E-13 3.0250E-13 1.7018E-13 1.0891E-13 INCOHERENT SCATTERING CROSS SECTION 5.5291E-03 6.2421E-03 2.1332E-03 1.0025E-02 1.4537E-02 2.3128E-02 2.3157E-02 2.3157E-02 2.3720E-02 2.4315E-02 2.4315E-02 2.5360E-02 2.6416E-02 2.6416E-02 3.0923E-02 3.8039E-02 4.4622E-02 5.6209E-02 6.5661E-02 8.2398E-02 9.3575E-02 9.8900E-02 9.8900E-02 1.0703E-01 1.1400E-01 1.1757E-01 1.1909E-01 1.1897E-01 1.1687E-01 1.0961E-01 1.0247E-01 9.6211E-02 9.0825E-02 8.6172E-02 8.2105E-02 7.8512E-02 7.5317E-02 7.2457E-02 6.9874E-02 6.7522E-02 6.3391E-02 6.1564E-02 5.9871E-02 5.6826E-02 5.5449E-02 5.4869E-02 4.9638E-02 4.8650E-02 4.6815E-02 4.5143E-02 4.3612E-02 4.0897E-02 3.8554E-02 3.8080E-02 3.6506E-02 3.3094E-02 3.0349E-02 2.5322E-02 2.1869E-02 1.9329E-02 1.7375E-02 1.5812E-02 1.4537E-02 1.3472E-02 1.2564E-02 1.1780E-02 1.1101E-02 1.0505E-02 9.9720E-03 9.4921E-03 8.6787E-03 7.9998E-03 7.4322E-03 6.9464E-03 6.5251E-03 6.1506E-03 5.8258E-03 4.6296E-03 3.8647E-03 3.3298E-03 2.6258E-03 2.1793E-03 1.5520E-03 1.2172E-03 8.6260E-04 6.7533E-04 5.5923E-04 4.7882E-04 3.7395E-04 3.0765E-04 2.1483E-04 1.6632E-04 1.1564E-04 8.9245E-05 7.2976E-05 6.1857E-05 4.7671E-05 3.8922E-05 2.6902E-05 2.0681E-05 1.4262E-05 1.0949E-05 8.9186E-06 7.5375E-06 5.7795E-06 4.7022E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.1623E+03 1.2438E+06 3.0448E+04 2.4193E+03 1.2073E+03 4.3838E+02 4.3692E+02 1.5075E+03 1.4165E+03 1.3319E+03 1.8411E+03 1.6656E+03 1.5069E+03 1.7258E+03 1.1652E+03 6.5427E+02 4.0625E+02 1.8844E+02 1.0276E+02 3.3503E+01 1.4952E+01 9.7964E+00 6.3144E+01 3.2579E+01 1.4923E+01 8.0466E+00 4.8198E+00 2.1185E+00 1.1107E+00 3.4024E-01 1.4718E-01 7.7453E-02 4.6278E-02 3.0220E-02 2.1068E-02 1.5444E-02 1.1786E-02 9.2929E-03 7.5141E-03 6.1994E-03 4.4543E-03 3.8700E-03 3.4094E-03 2.7032E-03 2.4134E-03 2.2964E-03 1.5491E-03 1.4420E-03 1.2592E-03 1.1113E-03 9.9121E-04 8.0922E-04 6.7826E-04 6.5427E-04 5.8054E-04 4.4746E-04 3.6160E-04 2.4052E-04 1.7837E-04 1.4109E-04 1.1640E-04 9.8901E-05 8.5909E-05 7.5843E-05 6.7884E-05 6.1447E-05 5.6081E-05 5.1575E-05 4.7730E-05 4.4417E-05 3.8993E-05 3.4744E-05 3.1326E-05 2.8517E-05 2.6171E-05 2.4175E-05 2.2466E-05 1.6591E-05 1.3144E-05 1.0885E-05 8.0993E-06 6.4490E-06 4.2709E-06 3.1929E-06 2.1220E-06 1.5888E-06 1.2699E-06 1.0575E-06 7.9237E-07 6.3378E-07 4.2211E-07 3.1648E-07 2.1091E-07 1.5818E-07 1.2652E-07 1.0545E-07 7.9062E-08 6.3261E-08 4.2164E-08 3.1619E-08 2.1079E-08 1.5812E-08 1.2646E-08 1.0540E-08 7.9062E-09 6.3261E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.4976E-04 2.3297E-04 4.4417E-04 7.0459E-04 1.0051E-03 1.6970E-03 2.4655E-03 2.6399E-03 3.2651E-03 4.8747E-03 6.4373E-03 1.0007E-02 1.3109E-02 1.5789E-02 1.8188E-02 2.0348E-02 2.2308E-02 2.4105E-02 2.5755E-02 2.7271E-02 2.8675E-02 2.9969E-02 3.1162E-02 3.2280E-02 3.4328E-02 3.6160E-02 3.7828E-02 3.9338E-02 4.0719E-02 4.1983E-02 4.3148E-02 4.7870E-02 5.1370E-02 5.4103E-02 5.8135E-02 6.0979E-02 6.5544E-02 6.8294E-02 7.1454E-02 7.3268E-02 7.4497E-02 7.5317E-02 7.6487E-02 7.7189E-02 7.8301E-02 7.8886E-02 7.9472E-02 7.9823E-02 8.0057E-02 8.0232E-02 8.0408E-02 8.0525E-02 8.0700E-02 8.0759E-02 8.0876E-02 8.0935E-02 8.0935E-02 8.0993E-02 8.0993E-02 8.1052E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0161E-07 3.0137E-06 1.0616E-05 4.3317E-05 8.6260E-05 1.3232E-04 1.7820E-04 2.2267E-04 2.6522E-04 3.0566E-04 3.4387E-04 3.7992E-04 4.1392E-04 4.4628E-04 4.7689E-04 5.0597E-04 5.5981E-04 6.0862E-04 6.5368E-04 6.9523E-04 7.3327E-04 7.6838E-04 8.0115E-04 9.3751E-04 1.0405E-03 1.1230E-03 1.2465E-03 1.3366E-03 1.4864E-03 1.5801E-03 1.6948E-03 1.7638E-03 1.8106E-03 1.8452E-03 1.8932E-03 1.9248E-03 1.9722E-03 1.9985E-03 2.0278E-03 2.0447E-03 2.0553E-03 2.0629E-03 2.0722E-03 2.0787E-03 2.0869E-03 2.0921E-03 2.0968E-03 2.0997E-03 2.1015E-03 2.1027E-03 2.1038E-03 2.1050E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Rn.mat0000644000000000000000000002206014741736366017702 0ustar00rootrootRn 1 86 1.000000 11 4 4 3 3 3 3 6 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0970E-03 1.0970E-03 1.5000E-03 2.0000E-03 2.8924E-03 2.8924E-03 3.0000E-03 3.0215E-03 3.0215E-03 3.2696E-03 3.5380E-03 3.5380E-03 4.0000E-03 4.1590E-03 4.1590E-03 4.3175E-03 4.4820E-03 4.4820E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.4619E-02 1.4619E-02 1.5000E-02 1.7337E-02 1.7337E-02 1.7689E-02 1.8049E-02 1.8049E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 9.8404E-02 9.8404E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2825E+01 2.1224E+02 1.4589E+01 1.2724E+01 1.2724E+01 1.2279E+01 1.1658E+01 1.0546E+01 1.0546E+01 1.0416E+01 1.0391E+01 1.0391E+01 1.0107E+01 9.8028E+00 9.8028E+00 9.3092E+00 9.1464E+00 9.1464E+00 8.9899E+00 8.8318E+00 8.8318E+00 8.3517E+00 7.5216E+00 6.1654E+00 5.1347E+00 3.5425E+00 3.5425E+00 3.4448E+00 2.9132E+00 2.9132E+00 2.8447E+00 2.7776E+00 2.7776E+00 2.4518E+00 1.4422E+00 9.6753E-01 6.9195E-01 5.1862E-01 3.2577E-01 2.3175E-01 2.3175E-01 2.2560E-01 1.1183E-01 6.6808E-02 4.4599E-02 3.1953E-02 2.4031E-02 1.8730E-02 1.5004E-02 1.2287E-02 1.0247E-02 8.6744E-03 7.4366E-03 5.6415E-03 4.9801E-03 4.4297E-03 3.5695E-03 3.2278E-03 3.0922E-03 2.0851E-03 1.9308E-03 1.6689E-03 1.4566E-03 1.2822E-03 1.0158E-03 8.2486E-04 7.9014E-04 6.8311E-04 4.9017E-04 3.6862E-04 2.0786E-04 1.3318E-04 9.2522E-05 6.8001E-05 5.2079E-05 4.1148E-05 3.3336E-05 2.7559E-05 2.3159E-05 1.9733E-05 1.7015E-05 1.4824E-05 1.3028E-05 1.0294E-05 8.3381E-06 6.8924E-06 5.7911E-06 4.9340E-06 4.2558E-06 3.7079E-06 2.0851E-06 1.3343E-06 9.2658E-07 5.2133E-07 3.3363E-07 1.4826E-07 8.3408E-08 3.7079E-08 2.0851E-08 1.3345E-08 9.2658E-09 5.2133E-09 3.3363E-09 1.4826E-09 8.3408E-10 3.7079E-10 2.0851E-10 1.3345E-10 9.2658E-11 5.2133E-11 3.3363E-11 1.4826E-11 8.3408E-12 3.7079E-12 2.0851E-12 1.3345E-12 9.2658E-13 5.2133E-13 3.3363E-13 INCOHERENT SCATTERING CROSS SECTION 3.1899E-03 4.7439E+00 1.3429E-03 3.7269E-03 3.7269E-03 6.1139E-03 9.1925E-03 1.4598E-02 1.4598E-02 1.5225E-02 1.5350E-02 1.5350E-02 1.6761E-02 1.8236E-02 1.8236E-02 2.0664E-02 2.1464E-02 2.1464E-02 2.2233E-02 2.3013E-02 2.3013E-02 2.5410E-02 2.9701E-02 3.7486E-02 4.4376E-02 5.6880E-02 5.6880E-02 5.7721E-02 6.2414E-02 6.2414E-02 6.3065E-02 6.3716E-02 6.3716E-02 6.7025E-02 7.9611E-02 8.7287E-02 9.1844E-02 9.4421E-02 9.6401E-02 9.6265E-02 9.6265E-02 9.6211E-02 9.2386E-02 8.7450E-02 8.2715E-02 7.8471E-02 7.4733E-02 7.1419E-02 6.8458E-02 6.5804E-02 6.3417E-02 6.1247E-02 5.9258E-02 5.5723E-02 5.4141E-02 5.2665E-02 5.0024E-02 4.8851E-02 4.8363E-02 4.3806E-02 4.2942E-02 4.1339E-02 3.9873E-02 3.8518E-02 3.6111E-02 3.4068E-02 3.3662E-02 3.2299E-02 2.9289E-02 2.6851E-02 2.2413E-02 1.9362E-02 1.7116E-02 1.5385E-02 1.4004E-02 1.2873E-02 1.1929E-02 1.1127E-02 1.0435E-02 9.8300E-03 9.3010E-03 8.8291E-03 8.4086E-03 7.6871E-03 7.0877E-03 6.5831E-03 6.1519E-03 5.7775E-03 5.4493E-03 5.1591E-03 4.1012E-03 3.4231E-03 2.9484E-03 2.3259E-03 1.9307E-03 1.3749E-03 1.0779E-03 7.6410E-04 5.9837E-04 4.9530E-04 4.2423E-04 3.3119E-04 2.7260E-04 1.9031E-04 1.4729E-04 1.0242E-04 7.9068E-05 6.4638E-05 5.4819E-05 4.2233E-05 3.4475E-05 2.3829E-05 1.8320E-05 1.2635E-05 9.6998E-06 7.8987E-06 6.6754E-06 5.1184E-06 4.1663E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.8128E+03 4.0773E+05 2.0897E+04 4.9014E+03 5.0045E+03 2.7062E+03 1.4783E+03 6.5289E+02 2.3094E+03 1.5431E+03 1.5138E+03 2.4591E+03 1.9006E+03 1.4691E+03 1.7002E+03 1.2570E+03 1.1392E+03 1.2081E+03 1.1036E+03 1.0082E+03 1.0522E+03 8.0804E+02 5.1645E+02 2.5144E+02 1.4249E+02 5.3381E+01 1.3079E+02 1.2236E+02 8.2594E+01 1.1552E+02 1.1004E+02 1.0484E+02 1.2122E+02 9.3119E+01 3.2550E+01 1.5184E+01 8.3408E+00 5.0940E+00 2.3265E+00 1.3207E+00 5.9349E+00 5.7640E+00 2.0105E+00 9.4692E-01 5.3102E-01 3.3146E-01 2.2466E-01 1.6164E-01 1.2157E-01 9.4692E-02 7.5877E-02 6.2224E-02 5.2016E-02 3.8061E-02 3.3173E-02 2.9212E-02 2.3239E-02 2.0951E-02 2.0056E-02 1.3538E-02 1.2566E-02 1.0938E-02 9.6374E-03 8.5819E-03 6.9805E-03 5.8264E-03 5.6148E-03 4.9648E-03 3.7935E-03 3.0407E-03 1.9882E-03 1.4558E-03 1.1398E-03 9.3281E-04 7.8743E-04 6.8028E-04 5.9810E-04 5.3327E-04 4.8092E-04 4.3779E-04 4.0172E-04 3.7079E-04 3.4448E-04 3.0135E-04 2.6777E-04 2.4087E-04 2.1884E-04 2.0048E-04 1.8496E-04 1.7164E-04 1.2616E-04 9.9710E-05 8.2405E-05 6.1166E-05 4.8607E-05 3.2143E-05 2.4003E-05 1.5933E-05 1.1924E-05 9.5262E-06 7.9339E-06 5.9430E-06 4.7522E-06 3.1654E-06 2.3726E-06 1.5811E-06 1.1856E-06 9.4828E-07 7.9014E-07 5.9267E-07 4.7414E-07 3.1600E-07 2.3699E-07 1.5797E-07 1.1848E-07 9.4800E-08 7.8987E-08 5.9240E-08 4.7387E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.0063E-04 6.3367E-04 1.2273E-03 1.9364E-03 2.7002E-03 4.2524E-03 5.7694E-03 6.1003E-03 7.2444E-03 9.9497E-03 1.2372E-02 1.7590E-02 2.1952E-02 2.5714E-02 2.9023E-02 3.2007E-02 3.4719E-02 3.7242E-02 3.9575E-02 4.1718E-02 4.3752E-02 4.5651E-02 4.7414E-02 4.9068E-02 5.2052E-02 5.4710E-02 5.7124E-02 5.9349E-02 6.1356E-02 6.3200E-02 6.4909E-02 7.1853E-02 7.7034E-02 8.1021E-02 8.6907E-02 9.1057E-02 9.7594E-02 1.0147E-01 1.0600E-01 1.0858E-01 1.1029E-01 1.1151E-01 1.1311E-01 1.1417E-01 1.1566E-01 1.1647E-01 1.1737E-01 1.1786E-01 1.1815E-01 1.1837E-01 1.1864E-01 1.1881E-01 1.1905E-01 1.1919E-01 1.1932E-01 1.1940E-01 1.1943E-01 1.1946E-01 1.1951E-01 1.1954E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.9931E-08 2.6647E-06 9.3797E-06 3.8219E-05 7.6003E-05 1.1650E-04 1.5673E-04 1.9562E-04 2.3273E-04 2.6791E-04 3.0108E-04 3.3228E-04 3.6184E-04 3.8951E-04 4.1609E-04 4.4105E-04 4.8716E-04 5.2893E-04 5.6717E-04 6.0189E-04 6.3417E-04 6.6401E-04 6.9141E-04 8.0479E-04 8.8996E-04 9.5696E-04 1.0568E-03 1.1287E-03 1.2461E-03 1.3188E-03 1.4070E-03 1.4593E-03 1.4948E-03 1.5206E-03 1.5561E-03 1.5797E-03 1.6142E-03 1.6340E-03 1.6549E-03 1.6673E-03 1.6749E-03 1.6804E-03 1.6874E-03 1.6918E-03 1.6977E-03 1.7013E-03 1.7045E-03 1.7067E-03 1.7080E-03 1.7088E-03 1.7097E-03 1.7105E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ru.mat0000644000000000000000000001571414741736366017721 0ustar00rootrootRuthenium 1 44 1.000000 5 6 3 3 9 70 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.8379E-03 2.8379E-03 2.9017E-03 2.9669E-03 2.9669E-03 3.0000E-03 3.2240E-03 3.2240E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.2117E-02 2.2117E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 3.0000E-01 4.0000E-01 5.0000E-01 6.0000E-01 8.0000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.5000E+00 2.0000E+00 2.0440E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.2752E+00 4.5448E+01 8.2395E+00 6.8760E+00 6.4410E+00 5.7105E+00 5.7105E+00 5.6562E+00 5.6015E+00 5.6015E+00 5.5741E+00 5.3917E+00 5.3917E+00 4.8084E+00 4.1727E+00 3.6567E+00 2.8982E+00 2.3708E+00 1.5331E+00 1.0528E+00 9.1759E-01 9.1759E-01 5.9280E-01 3.8682E-01 2.7164E-01 2.0044E-01 1.2227E-01 8.2762E-02 4.0094E-02 2.3548E-02 1.0904E-02 6.2623E-03 4.0529E-03 2.8350E-03 1.6076E-03 1.0332E-03 9.8969E-04 6.6317E-04 4.6118E-04 2.5985E-04 2.4882E-04 1.1559E-04 6.5066E-05 4.1649E-05 2.8928E-05 2.1254E-05 1.6272E-05 1.2858E-05 1.0415E-05 8.6099E-06 7.2335E-06 6.1610E-06 5.3137E-06 4.6291E-06 4.0684E-06 3.2145E-06 2.6038E-06 2.1522E-06 1.8084E-06 1.5408E-06 1.3287E-06 1.1571E-06 6.5125E-07 4.1661E-07 2.8934E-07 1.6272E-07 1.0415E-07 4.6291E-08 2.6038E-08 1.1571E-08 6.5066E-09 4.1661E-09 2.8934E-09 1.6272E-09 1.0415E-09 4.6291E-10 2.6038E-10 1.1571E-10 6.5066E-11 4.1661E-11 2.8934E-11 1.6272E-11 1.0415E-11 4.6291E-12 2.6038E-12 1.1571E-12 6.5066E-13 4.1661E-13 2.8934E-13 1.6272E-13 1.0415E-13 INCOHERENT SCATTERING CROSS SECTION 5.7915E-03 6.0024E-03 2.2666E-03 1.0397E-02 1.4967E-02 2.2255E-02 2.2255E-02 2.2786E-02 2.3327E-02 2.3327E-02 2.3601E-02 2.5418E-02 2.5418E-02 3.1430E-02 3.8586E-02 4.5188E-02 5.6700E-02 6.5959E-02 8.2464E-02 9.3606E-02 9.7241E-02 9.7241E-02 1.0707E-01 1.1398E-01 1.1744E-01 1.1893E-01 1.1869E-01 1.1661E-01 1.0928E-01 1.0213E-01 9.0448E-02 8.1749E-02 7.5016E-02 6.9594E-02 6.1312E-02 5.5210E-02 5.4626E-02 4.9419E-02 4.4944E-02 3.8378E-02 3.7907E-02 3.0215E-02 2.5210E-02 2.1772E-02 1.9246E-02 1.7297E-02 1.5742E-02 1.4473E-02 1.3412E-02 1.2507E-02 1.1732E-02 1.1053E-02 1.0457E-02 9.9267E-03 9.4500E-03 8.6397E-03 7.9664E-03 7.4003E-03 6.9177E-03 6.4946E-03 6.1252E-03 5.7999E-03 4.6088E-03 3.8473E-03 3.3146E-03 2.6139E-03 2.1700E-03 1.5450E-03 1.2113E-03 8.5860E-04 6.7270E-04 5.5669E-04 4.7667E-04 3.7228E-04 3.0626E-04 2.1391E-04 1.6552E-04 1.1512E-04 8.8839E-05 7.2633E-05 6.1610E-05 4.7459E-05 3.8747E-05 2.6777E-05 2.0586E-05 1.4199E-05 1.0898E-05 8.8780E-06 7.5016E-06 5.7534E-06 4.6809E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.7105E+03 1.1791E+06 2.8414E+04 2.2338E+03 1.1130E+03 4.6475E+02 1.6380E+03 1.5397E+03 1.4467E+03 1.9692E+03 1.9573E+03 1.6320E+03 1.8685E+03 1.0898E+03 6.1252E+02 3.7943E+02 1.7553E+02 9.5572E+01 3.1085E+01 1.3847E+01 1.0415E+01 6.7747E+01 3.0698E+01 1.4014E+01 7.5314E+00 4.5027E+00 1.9740E+00 1.0326E+00 3.1532E-01 1.3615E-01 4.2698E-02 1.9412E-02 1.0850E-02 6.9058E-03 3.5560E-03 2.2177E-03 2.1099E-03 1.4235E-03 1.0213E-03 6.2325E-04 6.0180E-04 3.3272E-04 2.2141E-04 1.6427E-04 1.3001E-04 1.0725E-04 9.1163E-05 7.9187E-05 6.9951E-05 6.2623E-05 5.6658E-05 5.1725E-05 4.7572E-05 4.4032E-05 4.0976E-05 3.5977E-05 3.2056E-05 2.8904E-05 2.6312E-05 2.4149E-05 2.2314E-05 2.0735E-05 1.5313E-05 1.2137E-05 1.0046E-05 7.4778E-06 5.9530E-06 3.9433E-06 2.9482E-06 1.9591E-06 1.4670E-06 1.1726E-06 9.7658E-07 7.3169E-07 5.8505E-07 3.8980E-07 2.9226E-07 1.9478E-07 1.4604E-07 1.1684E-07 9.7360E-08 7.2990E-08 5.8404E-08 3.8932E-08 2.9202E-08 1.9466E-08 1.4598E-08 1.1678E-08 9.7300E-09 7.2990E-09 5.8398E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.4372E-04 6.7806E-04 2.3845E-03 2.5532E-03 6.2503E-03 9.7300E-03 1.2757E-02 1.5379E-02 1.7726E-02 1.9835E-02 2.1748E-02 2.3506E-02 2.5115E-02 2.6598E-02 2.7963E-02 2.9220E-02 3.0388E-02 3.1478E-02 3.3480E-02 3.5268E-02 3.6894E-02 3.8372E-02 3.9725E-02 4.0958E-02 4.2096E-02 4.6714E-02 5.0134E-02 5.2803E-02 5.6736E-02 5.9536E-02 6.3993E-02 6.6674E-02 6.9773E-02 7.1560E-02 7.2692E-02 7.3586E-02 7.4659E-02 7.5433E-02 7.6446E-02 7.7042E-02 7.7638E-02 7.7995E-02 7.8174E-02 7.8353E-02 7.8531E-02 7.8651E-02 7.8829E-02 7.8889E-02 7.9008E-02 7.9068E-02 7.9068E-02 7.9127E-02 7.9127E-02 7.9127E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0570E-05 4.3127E-05 8.5860E-05 1.3174E-04 1.7744E-04 2.2171E-04 2.6408E-04 3.0435E-04 3.4243E-04 3.7836E-04 4.1220E-04 4.4444E-04 4.7494E-04 5.0390E-04 5.5759E-04 6.0656E-04 6.5125E-04 6.9236E-04 7.3050E-04 7.6565E-04 7.9842E-04 9.3427E-04 1.0374E-03 1.1190E-03 1.2423E-03 1.3323E-03 1.4818E-03 1.5754E-03 1.6904E-03 1.7595E-03 1.8072E-03 1.8417E-03 1.8894E-03 1.9216E-03 1.9686E-03 1.9961E-03 2.0253E-03 2.0425E-03 2.0533E-03 2.0604E-03 2.0705E-03 2.0771E-03 2.0854E-03 2.0902E-03 2.0950E-03 2.0979E-03 2.0997E-03 2.1009E-03 2.1021E-03 2.1033E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/S.mat0000644000000000000000000001666214741736366017540 0ustar00rootrootS 1 16 1.000000 2 6 92 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.4720E-03 2.4720E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 2.9466E+00 5.6141E+01 3.5912E+00 2.6950E+00 2.4264E+00 2.1823E+00 2.1823E+00 1.9494E+00 1.6003E+00 1.3533E+00 1.1715E+00 9.1085E-01 7.2286E-01 4.3007E-01 2.8208E-01 1.5116E-01 9.5442E-02 6.5788E-02 4.7965E-02 2.8603E-02 1.8949E-02 8.8231E-03 5.0707E-03 3.2825E-03 2.2950E-03 1.6934E-03 1.3004E-03 1.0296E-03 8.3517E-04 6.9092E-04 5.8107E-04 4.9553E-04 3.7262E-04 3.2753E-04 2.9007E-04 2.3224E-04 2.0978E-04 2.0095E-04 1.3434E-04 1.2419E-04 1.0710E-04 9.3320E-05 8.2033E-05 6.4821E-05 5.2510E-05 5.0275E-05 4.3404E-05 3.1079E-05 2.3344E-05 1.3131E-05 8.4042E-06 5.8370E-06 4.2876E-06 3.2828E-06 2.5936E-06 2.1015E-06 1.7364E-06 1.4592E-06 1.2433E-06 1.0720E-06 9.3376E-07 8.2071E-07 6.4849E-07 5.2529E-07 4.3420E-07 3.6472E-07 3.1082E-07 2.6800E-07 2.3344E-07 1.3131E-07 8.4042E-08 5.8370E-08 3.2828E-08 2.1015E-08 9.3376E-09 5.2529E-09 2.3344E-09 1.3131E-09 8.4042E-10 5.8351E-10 3.2828E-10 2.1015E-10 9.3376E-11 5.2529E-11 2.3344E-11 1.3131E-11 8.4042E-12 5.8351E-12 3.2828E-12 2.1015E-12 9.3376E-13 5.2529E-13 2.3344E-13 1.3131E-13 8.4042E-14 5.8351E-14 3.2828E-14 2.1015E-14 INCOHERENT SCATTERING CROSS SECTION 1.0110E-02 1.3225E-02 3.5376E-03 1.9513E-02 2.9166E-02 3.7711E-02 3.7711E-02 4.6369E-02 6.0022E-02 7.0727E-02 7.9460E-02 9.3583E-02 1.0502E-01 1.2540E-01 1.3721E-01 1.4788E-01 1.5146E-01 1.5210E-01 1.5124E-01 1.4739E-01 1.4254E-01 1.3064E-01 1.2059E-01 1.1235E-01 1.0551E-01 9.9738E-02 9.4785E-02 9.0472E-02 8.6672E-02 8.3289E-02 8.0249E-02 7.7494E-02 7.2679E-02 7.0558E-02 6.8596E-02 6.5063E-02 6.3459E-02 6.2783E-02 5.6754E-02 5.5620E-02 5.3510E-02 5.1590E-02 4.9835E-02 4.6727E-02 4.4040E-02 4.3496E-02 4.1690E-02 3.7786E-02 3.4650E-02 2.8903E-02 2.4959E-02 2.2067E-02 1.9832E-02 1.8048E-02 1.6591E-02 1.5372E-02 1.4337E-02 1.3447E-02 1.2667E-02 1.1984E-02 1.1377E-02 1.0834E-02 9.9029E-03 9.1311E-03 8.4812E-03 7.9253E-03 7.4427E-03 7.0201E-03 6.6483E-03 5.2829E-03 4.4096E-03 3.7993E-03 2.9955E-03 2.4865E-03 1.7710E-03 1.3886E-03 9.8428E-04 7.7075E-04 6.3816E-04 5.4632E-04 4.2669E-04 3.5101E-04 2.4508E-04 1.8968E-04 1.3193E-04 1.0183E-04 8.3254E-05 7.0596E-05 5.4388E-05 4.4416E-05 3.0687E-05 2.3588E-05 1.6273E-05 1.2495E-05 1.0173E-05 8.5996E-06 6.5938E-06 5.3656E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.4264E+03 1.0615E+06 1.5134E+04 8.3141E+02 3.8275E+02 2.1466E+02 2.0677E+03 1.3366E+03 6.3215E+02 3.4725E+02 2.1034E+02 9.3639E+01 4.9299E+01 1.4945E+01 6.2896E+00 1.8136E+00 7.4032E-01 3.6697E-01 2.0602E-01 8.2559E-02 4.0509E-02 1.1144E-02 4.5073E-03 2.2629E-03 1.3060E-03 8.3057E-04 5.6717E-04 4.0899E-04 3.0819E-04 2.4062E-04 1.9288E-04 1.5780E-04 1.1236E-04 9.7771E-05 8.6586E-05 6.8798E-05 6.0774E-05 5.7412E-05 3.8894E-05 3.6343E-05 3.1844E-05 2.8152E-05 2.5172E-05 2.0705E-05 1.7515E-05 1.6931E-05 1.5123E-05 1.1807E-05 9.6400E-06 6.5544E-06 4.9393E-06 3.9514E-06 3.2903E-06 2.8152E-06 2.4602E-06 2.1823E-06 1.9626E-06 1.7809E-06 1.6305E-06 1.5034E-06 1.3946E-06 1.3005E-06 1.1456E-06 1.0235E-06 9.2494E-07 8.4381E-07 7.7544E-07 7.1760E-07 6.6764E-07 4.9524E-07 3.9345E-07 3.2640E-07 2.4339E-07 1.9419E-07 1.2882E-07 9.6400E-08 6.4116E-08 4.8040E-08 3.8406E-08 3.1983E-08 2.3983E-08 1.9175E-08 1.2776E-08 9.5799E-09 6.3854E-09 4.7890E-09 3.8312E-09 3.1927E-09 2.3945E-09 1.9156E-09 1.2767E-09 9.5743E-10 6.3835E-10 4.7871E-10 3.8293E-10 3.1908E-10 2.3926E-10 1.9156E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.1092E-05 6.6121E-05 1.3339E-04 2.2105E-04 3.2601E-04 5.7676E-04 8.6653E-04 9.3395E-04 1.1783E-03 1.8192E-03 2.4546E-03 3.9589E-03 5.2942E-03 6.4905E-03 7.5554E-03 8.5132E-03 9.3808E-03 1.0168E-02 1.0881E-02 1.1537E-02 1.2145E-02 1.2709E-02 1.3236E-02 1.3732E-02 1.4639E-02 1.5449E-02 1.6183E-02 1.6850E-02 1.7460E-02 1.8022E-02 1.8542E-02 2.0696E-02 2.2292E-02 2.3551E-02 2.5410E-02 2.6743E-02 2.8922E-02 3.0237E-02 3.1814E-02 3.2734E-02 3.3335E-02 3.3786E-02 3.4368E-02 3.4744E-02 3.5307E-02 3.5626E-02 3.5946E-02 3.6134E-02 3.6246E-02 3.6321E-02 3.6434E-02 3.6490E-02 3.6584E-02 3.6622E-02 3.6678E-02 3.6716E-02 3.6735E-02 3.6735E-02 3.6753E-02 3.6753E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1596E-07 3.4408E-06 1.2125E-05 4.9505E-05 9.8635E-05 1.5148E-04 2.0414E-04 2.5541E-04 3.0443E-04 3.5119E-04 3.9552E-04 4.3721E-04 4.7684E-04 5.1458E-04 5.5027E-04 5.8426E-04 6.4755E-04 7.0539E-04 7.5854E-04 8.0775E-04 8.5320E-04 8.9545E-04 9.3508E-04 1.1005E-03 1.2282E-03 1.3308E-03 1.4880E-03 1.6046E-03 1.8027E-03 1.9306E-03 2.0903E-03 2.1898E-03 2.2593E-03 2.3100E-03 2.3814E-03 2.4283E-03 2.4997E-03 2.5410E-03 2.5861E-03 2.6124E-03 2.6274E-03 2.6387E-03 2.6537E-03 2.6649E-03 2.6781E-03 2.6856E-03 2.6931E-03 2.6969E-03 2.7006E-03 2.7025E-03 2.7044E-03 2.7063E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Sb.mat0000644000000000000000000002005014741736366017664 0ustar00rootrootSb 1 51 1.000000 5 8 3 3 9 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.1322E-03 4.1322E-03 4.2545E-03 4.3804E-03 4.3804E-03 4.5366E-03 4.6983E-03 4.6983E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.0491E-02 3.0491E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.1120E+00 5.5111E+01 9.1920E+00 7.6717E+00 7.1870E+00 6.2670E+00 5.4657E+00 5.3717E+00 5.3717E+00 5.2834E+00 5.1936E+00 5.1936E+00 5.0876E+00 4.9809E+00 4.9809E+00 4.7846E+00 4.2049E+00 3.3111E+00 2.6898E+00 1.7733E+00 1.2524E+00 7.0782E-01 6.9100E-01 6.9100E-01 4.6159E-01 3.2745E-01 2.4380E-01 1.4953E-01 1.0120E-01 4.9191E-02 2.9055E-02 1.9133E-02 1.3533E-02 1.0071E-02 7.7855E-03 6.1980E-03 5.0502E-03 4.1931E-03 3.5366E-03 3.0230E-03 2.2818E-03 2.0092E-03 1.7824E-03 1.4304E-03 1.2925E-03 1.2381E-03 8.3049E-04 7.6818E-04 6.6285E-04 5.7773E-04 5.0798E-04 4.0164E-04 3.2562E-04 3.1182E-04 2.6933E-04 1.9294E-04 1.4493E-04 8.1565E-05 5.2233E-05 3.6271E-05 2.6651E-05 2.0404E-05 1.6125E-05 1.3058E-05 1.0793E-05 9.0715E-06 7.7261E-06 6.6627E-06 5.8070E-06 5.0996E-06 4.0312E-06 3.2656E-06 2.6987E-06 2.2674E-06 1.9320E-06 1.6659E-06 1.4512E-06 8.1614E-07 5.2233E-07 3.6281E-07 2.0408E-07 1.3063E-07 5.8070E-08 3.2651E-08 1.4512E-08 8.1614E-09 5.2233E-09 3.6281E-09 2.0408E-09 1.3058E-09 5.8070E-10 3.2651E-10 1.4512E-10 8.1614E-11 5.2233E-11 3.6281E-11 2.0408E-11 1.3058E-11 5.8070E-12 3.2651E-12 1.4512E-12 8.1614E-13 5.2233E-13 3.6281E-13 2.0408E-13 1.3058E-13 INCOHERENT SCATTERING CROSS SECTION 5.0255E-03 5.7937E-03 1.8693E-03 9.3238E-03 1.3667E-02 2.1818E-02 2.8985E-02 2.9871E-02 2.9871E-02 3.0668E-02 3.1473E-02 3.1473E-02 3.2464E-02 3.3477E-02 3.3477E-02 3.5317E-02 4.1040E-02 5.1194E-02 6.0048E-02 7.6569E-02 8.7253E-02 1.0001E-01 1.0046E-01 1.0046E-01 1.0674E-01 1.1030E-01 1.1203E-01 1.1238E-01 1.1070E-01 1.0417E-01 9.7591E-02 9.1744E-02 8.6659E-02 8.2243E-02 7.8399E-02 7.5029E-02 7.2018E-02 6.9293E-02 6.6825E-02 6.4585E-02 6.0656E-02 5.8911E-02 5.7287E-02 5.4375E-02 5.3074E-02 5.2530E-02 4.7524E-02 4.6577E-02 4.4822E-02 4.3226E-02 4.1763E-02 3.9166E-02 3.6919E-02 3.6464E-02 3.4955E-02 3.1690E-02 2.9065E-02 2.4252E-02 2.0948E-02 1.8519E-02 1.6644E-02 1.5151E-02 1.3924E-02 1.2905E-02 1.2034E-02 1.1287E-02 1.0635E-02 1.0061E-02 9.5513E-03 9.0963E-03 8.3148E-03 7.6668E-03 7.1177E-03 6.6528E-03 6.2472E-03 5.8960E-03 5.5794E-03 4.4349E-03 3.7018E-03 3.1894E-03 2.5157E-03 2.0878E-03 1.4869E-03 1.1658E-03 8.2603E-04 6.4698E-04 5.3569E-04 4.5862E-04 3.5821E-04 2.9470E-04 2.0582E-04 1.5927E-04 1.1075E-04 8.5472E-05 6.9891E-05 5.9257E-05 4.5669E-05 3.7285E-05 2.5765E-05 1.9810E-05 1.3662E-05 1.0491E-05 8.5423E-06 7.2216E-06 5.5349E-06 4.5041E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 8.5769E+03 1.4283E+06 3.9992E+04 3.4832E+03 1.7599E+03 6.4698E+02 3.1137E+02 2.8644E+02 8.6412E+02 8.1687E+02 7.7212E+02 1.0447E+03 9.6350E+02 8.8885E+02 1.0244E+03 8.7995E+02 5.5250E+02 2.5973E+02 1.4310E+02 4.7386E+01 2.1338E+01 6.8210E+00 6.5143E+00 3.9937E+01 1.9696E+01 1.0763E+01 6.5192E+00 2.9139E+00 1.5457E+00 4.8276E-01 2.1141E-01 1.1219E-01 6.7468E-02 4.4294E-02 3.1018E-02 2.2820E-02 1.7460E-02 1.3789E-02 1.1164E-02 9.2239E-03 6.6446E-03 5.7773E-03 5.0915E-03 4.0383E-03 3.6069E-03 3.4327E-03 2.3149E-03 2.1543E-03 1.8799E-03 1.6580E-03 1.4777E-03 1.2048E-03 1.0095E-03 9.7393E-04 8.6417E-04 6.6494E-04 5.3618E-04 3.5544E-04 2.6300E-04 2.0765E-04 1.7104E-04 1.4517E-04 1.2598E-04 1.1119E-04 9.9470E-05 8.9924E-05 8.2059E-05 7.5431E-05 6.9792E-05 6.4896E-05 5.6932E-05 5.0700E-05 4.5714E-05 4.1599E-05 3.8161E-05 3.5247E-05 3.2745E-05 2.4163E-05 1.9137E-05 1.5843E-05 1.1782E-05 9.3782E-06 6.2126E-06 4.6416E-06 3.0840E-06 2.3089E-06 1.8455E-06 1.5368E-06 1.1515E-06 9.2100E-07 6.1334E-07 4.5991E-07 3.0647E-07 2.2986E-07 1.8385E-07 1.5319E-07 1.1490E-07 9.1903E-08 6.1285E-08 4.5946E-08 3.0633E-08 2.2971E-08 1.8376E-08 1.5314E-08 1.1485E-08 9.1903E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.7698E-04 2.7459E-04 5.2066E-04 8.2109E-04 1.1640E-03 1.9417E-03 2.7937E-03 2.9861E-03 3.6728E-03 5.4231E-03 7.1079E-03 1.0936E-02 1.4240E-02 1.7094E-02 1.9632E-02 2.1917E-02 2.3990E-02 2.5889E-02 2.7640E-02 2.9257E-02 3.0766E-02 3.2151E-02 3.3432E-02 3.4619E-02 3.6796E-02 3.8740E-02 4.0505E-02 4.2108E-02 4.3572E-02 4.4913E-02 4.6149E-02 5.1145E-02 5.4904E-02 5.7773E-02 6.2076E-02 6.5093E-02 6.9941E-02 7.2810E-02 7.6173E-02 7.8102E-02 7.9388E-02 8.0279E-02 8.1515E-02 8.2307E-02 8.3444E-02 8.4038E-02 8.4730E-02 8.5077E-02 8.5324E-02 8.5472E-02 8.5670E-02 8.5819E-02 8.5967E-02 8.6066E-02 8.6165E-02 8.6214E-02 8.6264E-02 8.6313E-02 8.6313E-02 8.6363E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.7304E-08 2.8858E-06 1.0165E-05 4.1470E-05 8.2554E-05 1.2663E-04 1.7055E-04 2.1304E-04 2.5370E-04 2.9233E-04 3.2883E-04 3.6326E-04 3.9566E-04 4.2652E-04 4.5570E-04 4.8340E-04 5.3470E-04 5.8119E-04 6.2422E-04 6.6330E-04 6.9941E-04 7.3304E-04 7.6421E-04 8.9330E-04 9.9124E-04 1.0689E-03 1.1861E-03 1.2707E-03 1.4112E-03 1.4992E-03 1.6071E-03 1.6719E-03 1.7159E-03 1.7485E-03 1.7930E-03 1.8227E-03 1.8667E-03 1.8920E-03 1.9192E-03 1.9350E-03 1.9449E-03 1.9518E-03 1.9607E-03 1.9667E-03 1.9746E-03 1.9790E-03 1.9835E-03 1.9864E-03 1.9879E-03 1.9889E-03 1.9899E-03 1.9909E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Sc.mat0000644000000000000000000001666214741736366017703 0ustar00rootrootSc 1 21 1.000000 2 8 90 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.4928E-03 4.4928E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.5525E+00 3.8505E+01 4.2945E+00 3.2444E+00 2.9524E+00 2.4554E+00 2.0495E+00 1.8767E+00 1.8767E+00 1.7200E+00 1.4628E+00 1.1074E+00 8.8371E-01 5.6222E-01 3.8204E-01 2.0629E-01 1.3042E-01 9.0622E-02 6.6751E-02 4.0415E-02 2.6965E-02 1.2658E-02 7.3140E-03 4.7530E-03 3.3315E-03 2.4622E-03 1.8928E-03 1.5000E-03 1.2177E-03 1.0080E-03 8.4808E-04 7.2333E-04 5.4402E-04 4.7836E-04 4.2388E-04 3.3959E-04 3.0663E-04 2.9363E-04 1.9638E-04 1.8159E-04 1.5664E-04 1.3650E-04 1.1999E-04 9.4808E-05 7.6797E-05 7.3529E-05 6.3480E-05 4.5457E-05 3.4146E-05 1.9209E-05 1.2295E-05 8.5370E-06 6.2732E-06 4.8023E-06 3.7950E-06 3.0730E-06 2.5398E-06 2.1339E-06 1.8191E-06 1.5686E-06 1.3664E-06 1.2007E-06 9.4868E-07 7.6837E-07 6.3509E-07 5.3368E-07 4.5465E-07 3.9209E-07 3.4159E-07 1.9209E-07 1.2295E-07 8.5384E-08 4.8023E-08 3.0730E-08 1.3664E-08 7.6837E-09 3.4146E-09 1.9209E-09 1.2295E-09 8.5370E-10 4.8023E-10 3.0730E-10 1.3664E-10 7.6837E-11 3.4146E-11 1.9209E-11 1.2295E-11 8.5370E-12 4.8023E-12 3.0730E-12 1.3664E-12 7.6837E-13 3.4146E-13 1.9209E-13 1.2295E-13 8.5370E-14 4.8023E-14 3.0730E-14 INCOHERENT SCATTERING CROSS SECTION 1.3010E-02 4.8348E-02 6.1685E-03 2.1031E-02 2.7957E-02 4.0616E-02 5.1989E-02 5.7092E-02 5.7092E-02 6.1982E-02 7.0689E-02 8.4580E-02 9.4801E-02 1.1191E-01 1.2273E-01 1.3385E-01 1.3784E-01 1.3891E-01 1.3851E-01 1.3570E-01 1.3172E-01 1.2135E-01 1.1232E-01 1.0480E-01 9.8498E-02 9.3163E-02 8.8572E-02 8.4567E-02 8.1030E-02 7.7877E-02 7.5042E-02 7.2477E-02 6.7992E-02 6.6014E-02 6.4180E-02 6.0879E-02 5.9383E-02 5.8753E-02 5.3114E-02 5.2054E-02 5.0085E-02 4.8291E-02 4.6648E-02 4.3734E-02 4.1218E-02 4.0709E-02 3.9021E-02 3.5366E-02 3.2431E-02 2.7059E-02 2.3362E-02 2.0656E-02 1.8566E-02 1.6892E-02 1.5526E-02 1.4387E-02 1.3422E-02 1.2587E-02 1.1858E-02 1.1219E-02 1.0651E-02 1.0143E-02 9.2698E-03 8.5491E-03 7.9409E-03 7.4199E-03 6.9671E-03 6.5719E-03 6.2236E-03 4.9457E-03 4.1285E-03 3.5565E-03 2.8050E-03 2.3282E-03 1.6584E-03 1.3000E-03 9.2135E-04 7.2162E-04 5.9731E-04 5.1145E-04 3.9946E-04 3.2860E-04 2.2947E-04 1.7763E-04 1.2351E-04 9.5337E-05 7.7949E-05 6.6094E-05 5.0930E-05 4.1580E-05 2.8734E-05 2.2089E-05 1.5231E-05 1.1697E-05 9.5243E-06 8.0508E-06 6.1741E-06 5.0220E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.2337E+03 1.8972E+06 3.0849E+04 1.8540E+03 8.6750E+02 2.8975E+02 1.3114E+02 9.4948E+01 8.1285E+02 6.2879E+02 3.9182E+02 1.8165E+02 9.8538E+01 3.1346E+01 1.3583E+01 4.0683E+00 1.7012E+00 8.5772E-01 4.8800E-01 1.9906E-01 9.9061E-02 2.7850E-02 1.1414E-02 5.7841E-03 3.3596E-03 2.1461E-03 1.4708E-03 1.0641E-03 8.0374E-04 6.2840E-04 5.0435E-04 4.1331E-04 2.9476E-04 2.5626E-04 2.2648E-04 1.7979E-04 1.5941E-04 1.5097E-04 1.0220E-04 9.5386E-05 8.3515E-05 7.3823E-05 6.5987E-05 5.4188E-05 4.5719E-05 4.4165E-05 3.9373E-05 3.0648E-05 2.4969E-05 1.6892E-05 1.2688E-05 1.0128E-05 8.4151E-06 7.1908E-06 6.2745E-06 5.5632E-06 4.9952E-06 4.5317E-06 4.1460E-06 3.8218E-06 3.5431E-06 3.3020E-06 2.9069E-06 2.5961E-06 2.3456E-06 2.1379E-06 1.9651E-06 1.8165E-06 1.6905E-06 1.2525E-06 9.9476E-07 8.2504E-07 6.1499E-07 4.9015E-07 3.2525E-07 2.4327E-07 1.6182E-07 1.2119E-07 9.6877E-08 8.0695E-08 6.0481E-08 4.8372E-08 3.2230E-08 2.4166E-08 1.6102E-08 1.2079E-08 9.6623E-09 8.0521E-09 6.0388E-09 4.8305E-09 3.2203E-09 2.4152E-09 1.6102E-09 1.2075E-09 9.6596E-10 8.0494E-10 6.0374E-10 4.8291E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.3355E-05 8.5169E-05 1.6971E-04 2.7903E-04 4.0977E-04 7.2306E-04 1.0860E-03 1.1702E-03 1.4743E-03 2.2625E-03 3.0368E-03 4.8760E-03 6.5063E-03 7.9624E-03 9.2564E-03 1.0422E-02 1.1476E-02 1.2431E-02 1.3299E-02 1.4092E-02 1.4829E-02 1.5512E-02 1.6155E-02 1.6758E-02 1.7856E-02 1.8834E-02 1.9718E-02 2.0522E-02 2.1259E-02 2.1942E-02 2.2572E-02 2.5144E-02 2.7059E-02 2.8560E-02 3.0783E-02 3.2391E-02 3.4989E-02 3.6584E-02 3.8459E-02 3.9544E-02 4.0281E-02 4.0803E-02 4.1513E-02 4.1969E-02 4.2638E-02 4.3000E-02 4.3389E-02 4.3603E-02 4.3750E-02 4.3844E-02 4.3965E-02 4.4045E-02 4.4152E-02 4.4206E-02 4.4273E-02 4.4299E-02 4.4326E-02 4.4340E-02 4.4353E-02 4.4366E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0859E-07 3.2215E-06 1.1350E-05 4.6336E-05 9.2323E-05 1.4173E-04 1.9116E-04 2.3898E-04 2.8479E-04 3.2846E-04 3.6972E-04 4.0884E-04 4.4567E-04 4.8090E-04 5.1413E-04 5.4587E-04 6.0481E-04 6.5866E-04 7.0809E-04 7.5364E-04 7.9584E-04 8.3508E-04 8.7166E-04 1.0246E-03 1.1422E-03 1.2367E-03 1.3811E-03 1.4883E-03 1.6691E-03 1.7856E-03 1.9303E-03 2.0201E-03 2.0830E-03 2.1286E-03 2.1942E-03 2.2371E-03 2.3041E-03 2.3429E-03 2.3844E-03 2.4099E-03 2.4246E-03 2.4367E-03 2.4514E-03 2.4608E-03 2.4728E-03 2.4809E-03 2.4876E-03 2.4929E-03 2.4956E-03 2.4969E-03 2.4983E-03 2.5010E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Se.mat0000644000000000000000000001774014741736366017703 0ustar00rootrootSe 1 34 1.000000 5 4 3 3 9 86 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.4358E-03 1.4358E-03 1.4559E-03 1.4762E-03 1.4762E-03 1.5000E-03 1.6539E-03 1.6539E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.2658E-02 1.2658E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.5592E+00 8.5766E+01 6.4227E+00 5.2900E+00 5.2900E+00 5.2759E+00 5.2617E+00 5.2617E+00 5.2457E+00 5.1382E+00 5.1382E+00 4.8979E+00 4.2336E+00 3.6769E+00 3.2178E+00 2.8303E+00 2.2072E+00 1.7435E+00 1.3095E+00 1.3095E+00 1.0563E+00 7.2134E-01 4.0735E-01 2.5962E-01 1.7938E-01 1.3179E-01 8.0387E-02 5.4379E-02 2.6030E-02 1.5162E-02 9.9066E-03 6.9740E-03 5.1724E-03 3.9873E-03 3.1666E-03 2.5748E-03 2.1342E-03 1.7976E-03 1.5349E-03 1.1564E-03 1.0174E-03 9.0186E-04 7.2276E-04 6.5270E-04 6.2509E-04 4.1856E-04 3.8708E-04 3.3391E-04 2.9096E-04 2.5576E-04 2.0211E-04 1.6382E-04 1.5688E-04 1.3551E-04 9.7034E-05 7.2859E-05 4.0994E-05 2.6244E-05 1.8220E-05 1.3393E-05 1.0250E-05 8.0997E-06 6.5614E-06 5.4227E-06 4.5563E-06 3.8821E-06 3.3474E-06 2.9165E-06 2.5634E-06 2.0249E-06 1.6405E-06 1.3560E-06 1.1394E-06 9.7089E-07 8.3666E-07 7.2905E-07 4.1009E-07 2.6244E-07 1.8228E-07 1.0250E-07 6.5606E-08 2.9157E-08 1.6405E-08 7.2897E-09 4.1002E-09 2.6244E-09 1.8228E-09 1.0250E-09 6.5606E-10 2.9157E-10 1.6405E-10 7.2897E-11 4.1002E-11 2.6244E-11 1.8228E-11 1.0250E-11 6.5606E-12 2.9157E-12 1.6405E-12 7.2897E-13 4.1002E-13 2.6244E-13 1.8228E-13 1.0250E-13 6.5606E-14 INCOHERENT SCATTERING CROSS SECTION 5.3914E-03 1.7119E-02 1.9405E-03 9.6784E-03 9.6784E-03 9.8827E-03 1.0090E-02 1.0090E-02 1.0334E-02 1.1905E-02 1.1905E-02 1.5437E-02 2.5008E-02 3.3413E-02 4.0742E-02 4.7271E-02 5.8643E-02 6.8291E-02 7.9014E-02 7.9014E-02 8.6564E-02 9.8539E-02 1.1189E-01 1.1822E-01 1.2089E-01 1.2165E-01 1.2043E-01 1.1768E-01 1.0967E-01 1.0212E-01 9.5610E-02 9.0073E-02 8.5336E-02 8.1226E-02 7.7614E-02 7.4415E-02 7.1559E-02 6.8985E-02 6.6644E-02 6.2541E-02 6.0732E-02 5.9059E-02 5.6042E-02 5.4669E-02 5.4089E-02 4.8918E-02 4.7945E-02 4.6133E-02 4.4480E-02 4.2964E-02 4.0281E-02 3.7974E-02 3.7509E-02 3.5962E-02 3.2598E-02 2.9890E-02 2.4940E-02 2.1538E-02 1.9037E-02 1.7115E-02 1.5574E-02 1.4316E-02 1.3263E-02 1.2371E-02 1.1600E-02 1.0929E-02 1.0342E-02 9.8157E-03 9.3505E-03 8.5420E-03 7.8785E-03 7.3195E-03 6.8397E-03 6.4225E-03 6.0587E-03 5.7369E-03 4.5585E-03 3.8050E-03 3.2788E-03 2.5855E-03 2.1462E-03 1.5284E-03 1.1982E-03 8.4963E-04 6.6521E-04 5.5066E-04 4.7149E-04 3.6822E-04 3.0294E-04 2.1157E-04 1.6375E-04 1.1387E-04 8.7861E-05 7.1852E-05 6.0931E-05 4.6943E-05 3.8325E-05 2.6488E-05 2.0364E-05 1.4041E-05 1.0784E-05 8.7785E-06 7.4217E-06 5.6911E-06 4.6302E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.3117E+03 5.5978E+05 1.2068E+04 9.7623E+02 4.3435E+03 4.1164E+03 3.9019E+03 5.5889E+03 5.3304E+03 4.3374E+03 4.9101E+03 3.0934E+03 1.1120E+03 5.2145E+02 2.8639E+02 1.7443E+02 7.8861E+01 4.2321E+01 2.1790E+01 1.5749E+02 1.0212E+02 4.7363E+01 1.5444E+01 6.8062E+00 3.5640E+00 2.0875E+00 8.8929E-01 4.5578E-01 1.3454E-01 5.6881E-02 2.9446E-02 1.7374E-02 1.1233E-02 7.7717E-03 5.6644E-03 4.3023E-03 3.3776E-03 2.7212E-03 2.2389E-03 1.6037E-03 1.3927E-03 1.2270E-03 9.7252E-04 8.6717E-04 8.2446E-04 5.5676E-04 5.1870E-04 4.5348E-04 4.0056E-04 3.5747E-04 2.9227E-04 2.4574E-04 2.3727E-04 2.1110E-04 1.6330E-04 1.3225E-04 8.8547E-05 6.6018E-05 5.2412E-05 4.3366E-05 3.6937E-05 3.2139E-05 2.8433E-05 2.5481E-05 2.3079E-05 2.1088E-05 1.9410E-05 1.7976E-05 1.6741E-05 1.4712E-05 1.3126E-05 1.1844E-05 1.0784E-05 9.9072E-06 9.1522E-06 8.5115E-06 6.2937E-06 4.9918E-06 4.1360E-06 3.0797E-06 2.4535E-06 1.6260E-06 1.2157E-06 8.0844E-07 6.0534E-07 4.8385E-07 4.0300E-07 3.0202E-07 2.4154E-07 1.6093E-07 1.2066E-07 8.0387E-08 6.0298E-08 4.8232E-08 4.0193E-08 3.0141E-08 2.4116E-08 1.6077E-08 1.2058E-08 8.0387E-09 6.0275E-09 4.8217E-09 4.0186E-09 3.0134E-09 2.4108E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.5030E-05 1.4938E-04 2.9000E-04 4.6722E-04 6.7561E-04 1.1653E-03 1.7160E-03 1.8411E-03 2.2930E-03 3.4795E-03 4.6524E-03 7.3545E-03 9.7318E-03 1.1814E-02 1.3683E-02 1.5353E-02 1.6878E-02 1.8259E-02 1.9525E-02 2.0676E-02 2.1736E-02 2.2720E-02 2.3643E-02 2.4505E-02 2.6076E-02 2.7495E-02 2.8768E-02 2.9935E-02 3.0995E-02 3.1972E-02 3.2872E-02 3.6540E-02 3.9270E-02 4.1398E-02 4.4548E-02 4.6791E-02 5.0352E-02 5.2480E-02 5.4951E-02 5.6377E-02 5.7316E-02 5.7979E-02 5.8871E-02 5.9451E-02 6.0290E-02 6.0740E-02 6.1236E-02 6.1503E-02 6.1670E-02 6.1785E-02 6.1937E-02 6.2029E-02 6.2166E-02 6.2235E-02 6.2311E-02 6.2349E-02 6.2372E-02 6.2387E-02 6.2410E-02 6.2426E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0003E-07 2.9677E-06 1.0456E-05 4.2687E-05 8.5039E-05 1.3049E-04 1.7580E-04 2.1973E-04 2.6183E-04 3.0179E-04 3.3970E-04 3.7539E-04 4.0910E-04 4.4121E-04 4.7164E-04 5.0055E-04 5.5424E-04 6.0305E-04 6.4790E-04 6.8916E-04 7.2722E-04 7.6268E-04 7.9548E-04 9.3276E-04 1.0372E-03 1.1204E-03 1.2455E-03 1.3377E-03 1.4903E-03 1.5856E-03 1.7038E-03 1.7755E-03 1.8236E-03 1.8594E-03 1.9090E-03 1.9418E-03 1.9906E-03 2.0181E-03 2.0478E-03 2.0653E-03 2.0760E-03 2.0836E-03 2.0943E-03 2.1004E-03 2.1088E-03 2.1142E-03 2.1187E-03 2.1218E-03 2.1241E-03 2.1248E-03 2.1264E-03 2.1271E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Si.mat0000644000000000000000000001666214741736366017711 0ustar00rootrootSilicon 1 14 1.000000 2 5 93 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.8389E-03 1.8389E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 2.5280E+00 6.0917E+01 3.1519E+00 2.2857E+00 2.1213E+00 2.1213E+00 2.0484E+00 1.6688E+00 1.4040E+00 1.2083E+00 1.0511E+00 8.0387E-01 6.2225E-01 3.5851E-01 2.3415E-01 1.2548E-01 7.8864E-02 5.3991E-02 3.9175E-02 2.3243E-02 1.5368E-02 7.1252E-03 4.0847E-03 2.6401E-03 2.6401E-03 1.8438E-03 1.0434E-03 8.2576E-04 6.6964E-04 5.5388E-04 4.6572E-04 3.9708E-04 2.9854E-04 2.6245E-04 2.3251E-04 1.8616E-04 1.6804E-04 1.6090E-04 1.0760E-04 9.9489E-05 8.5802E-05 7.4747E-05 6.5685E-05 5.1881E-05 4.2048E-05 4.0268E-05 3.4784E-05 2.4903E-05 1.8693E-05 1.0515E-05 6.7307E-06 4.6744E-06 3.4350E-06 2.6288E-06 2.0773E-06 1.6828E-06 1.3907E-06 1.1686E-06 9.9577E-07 8.5854E-07 7.4790E-07 6.5720E-07 5.1933E-07 4.2070E-07 3.4758E-07 2.9204E-07 2.4894E-07 2.1464E-07 1.8695E-07 1.0517E-07 6.7307E-08 4.6744E-08 2.6288E-08 1.6826E-08 7.4769E-09 4.2070E-09 1.8693E-09 1.0515E-09 6.7307E-10 4.6744E-10 2.6288E-10 1.6826E-10 7.4769E-11 4.2070E-11 1.8693E-11 1.0515E-11 6.7307E-12 4.6744E-12 2.6288E-12 1.6826E-12 7.4769E-13 4.2070E-13 1.8693E-13 1.0515E-13 6.7307E-14 4.6744E-14 2.6288E-14 1.6826E-14 INCOHERENT SCATTERING CROSS SECTION 1.3168E-02 6.6683E-02 5.2041E-03 2.3929E-02 3.0812E-02 3.0812E-02 3.3879E-02 4.9617E-02 6.1346E-02 7.1102E-02 7.9829E-02 9.5075E-02 1.0764E-01 1.2887E-01 1.4019E-01 1.5014E-01 1.5342E-01 1.5378E-01 1.5263E-01 1.4834E-01 1.4319E-01 1.3090E-01 1.2072E-01 1.1242E-01 1.1242E-01 1.0554E-01 9.4753E-02 9.0431E-02 8.6626E-02 8.3237E-02 8.0194E-02 7.7441E-02 7.2629E-02 7.0502E-02 6.8529E-02 6.4992E-02 6.3404E-02 6.2740E-02 5.6715E-02 5.5578E-02 5.3469E-02 5.1547E-02 4.9784E-02 4.6666E-02 4.3999E-02 4.3463E-02 4.1674E-02 3.7759E-02 3.4608E-02 2.8883E-02 2.4937E-02 2.2043E-02 1.9813E-02 1.8031E-02 1.6575E-02 1.5357E-02 1.4323E-02 1.3434E-02 1.2655E-02 1.1971E-02 1.1366E-02 1.0824E-02 9.8934E-03 9.1236E-03 8.4739E-03 7.9186E-03 7.4361E-03 7.0137E-03 6.6406E-03 5.2769E-03 4.4064E-03 3.7953E-03 2.9933E-03 2.4851E-03 1.7694E-03 1.3873E-03 9.8334E-04 7.6999E-04 6.3748E-04 5.4570E-04 4.2627E-04 3.5079E-04 2.4487E-04 1.8955E-04 1.3180E-04 1.0174E-04 8.3174E-05 7.0545E-05 5.4334E-05 4.4364E-05 3.0662E-05 2.3565E-05 1.6257E-05 1.2481E-05 1.0164E-05 8.5919E-06 6.5870E-06 5.3605E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.5674E+03 7.1496E+05 9.9005E+03 5.3327E+02 3.0705E+02 3.1906E+03 2.7746E+03 9.7669E+02 4.5136E+02 2.4380E+02 1.4585E+02 6.3790E+01 3.3150E+01 9.8484E+00 4.0890E+00 1.1607E+00 4.6873E-01 2.3072E-01 1.2885E-01 5.1204E-02 2.4980E-02 6.8057E-03 2.7360E-03 1.3691E-03 1.3691E-03 7.8821E-04 3.4093E-04 2.4556E-04 1.8492E-04 1.4433E-04 1.1564E-04 9.4530E-05 6.7235E-05 5.8537E-05 5.1903E-05 4.1271E-05 3.6387E-05 3.4329E-05 2.3265E-05 2.1746E-05 1.9052E-05 1.6839E-05 1.5061E-05 1.2405E-05 1.0505E-05 1.0155E-05 9.0739E-06 7.0946E-06 5.8001E-06 3.9518E-06 2.9826E-06 2.3887E-06 1.9905E-06 1.7047E-06 1.4898E-06 1.3228E-06 1.1892E-06 1.0800E-06 9.8891E-07 9.1215E-07 8.4632E-07 7.8929E-07 6.9537E-07 6.2161E-07 5.6178E-07 5.1247E-07 4.7108E-07 4.3592E-07 4.0569E-07 3.0105E-07 2.3929E-07 1.9851E-07 1.4808E-07 1.1808E-07 7.8371E-08 5.8644E-08 3.9025E-08 2.9226E-08 2.3372E-08 1.9465E-08 1.4591E-08 1.1669E-08 7.7749E-09 5.8301E-09 3.8853E-09 2.9140E-09 2.3308E-09 1.9427E-09 1.4570E-09 1.1656E-09 7.7706E-10 5.8280E-10 3.8853E-10 2.9140E-10 2.3308E-10 1.9422E-10 1.4568E-10 1.1654E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 3.5208E-05 5.6796E-05 1.1504E-04 1.9120E-04 2.8260E-04 5.0115E-04 7.5326E-04 8.1180E-04 1.0242E-03 1.5833E-03 2.1395E-03 3.4565E-03 4.6294E-03 5.6779E-03 6.6106E-03 7.4511E-03 8.2123E-03 8.9049E-03 9.5310E-03 1.0108E-02 1.0642E-02 1.1137E-02 1.1602E-02 1.2038E-02 1.2835E-02 1.3547E-02 1.4193E-02 1.4780E-02 1.5318E-02 1.5814E-02 1.6272E-02 1.8166E-02 1.9583E-02 2.0696E-02 2.2364E-02 2.3543E-02 2.5473E-02 2.6631E-02 2.8025E-02 2.8840E-02 2.9376E-02 2.9762E-02 3.0298E-02 3.0641E-02 3.1134E-02 3.1391E-02 3.1692E-02 3.1863E-02 3.1949E-02 3.2035E-02 3.2120E-02 3.2185E-02 3.2249E-02 3.2292E-02 3.2356E-02 3.2378E-02 3.2378E-02 3.2399E-02 3.2399E-02 3.2421E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.1590E-07 3.4380E-06 1.2113E-05 4.9446E-05 9.8527E-05 1.5134E-04 2.0404E-04 2.5516E-04 3.0426E-04 3.5101E-04 3.9518E-04 4.3699E-04 4.7666E-04 5.1440E-04 5.5021E-04 5.8430E-04 6.4755E-04 7.0545E-04 7.5884E-04 8.0794E-04 8.5361E-04 8.9607E-04 9.3574E-04 1.1021E-03 1.2306E-03 1.3341E-03 1.4926E-03 1.6105E-03 1.8104E-03 1.9394E-03 2.1024E-03 2.2021E-03 2.2729E-03 2.3265E-03 2.3994E-03 2.4487E-03 2.5237E-03 2.5666E-03 2.6138E-03 2.6417E-03 2.6588E-03 2.6717E-03 2.6867E-03 2.6974E-03 2.7124E-03 2.7189E-03 2.7274E-03 2.7339E-03 2.7360E-03 2.7382E-03 2.7403E-03 2.7425E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Sm.mat0000644000000000000000000002205214741736366017703 0ustar00rootrootSm 1 62 1.000000 10 4 3 3 3 3 7 3 3 8 82 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0802E-03 1.0802E-03 1.0930E-03 1.1060E-03 1.1060E-03 1.2531E-03 1.4198E-03 1.4198E-03 1.5000E-03 1.5407E-03 1.5407E-03 1.6292E-03 1.7228E-03 1.7228E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 6.7162E-03 6.7162E-03 7.0077E-03 7.3118E-03 7.3118E-03 7.5213E-03 7.7368E-03 7.7368E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 4.6834E-02 4.6834E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 9.6684E+00 2.4404E+00 9.9721E+00 9.5883E+00 9.5883E+00 9.5763E+00 9.5643E+00 9.5643E+00 9.4252E+00 9.2559E+00 9.2559E+00 9.1718E+00 9.1317E+00 9.1317E+00 9.0413E+00 8.9435E+00 8.9435E+00 8.6631E+00 7.6618E+00 6.7367E+00 5.9316E+00 5.2507E+00 4.8302E+00 4.8302E+00 4.6741E+00 4.5178E+00 4.5178E+00 4.4132E+00 4.3095E+00 4.3095E+00 4.1894E+00 3.4100E+00 2.2164E+00 1.5884E+00 9.3040E-01 6.0518E-01 4.7541E-01 4.7541E-01 4.2935E-01 3.2269E-01 2.0114E-01 1.3682E-01 6.6646E-02 3.9611E-02 2.6236E-02 1.8636E-02 1.3910E-02 1.0774E-02 8.5874E-03 7.0050E-03 5.8240E-03 4.9183E-03 4.2078E-03 3.1802E-03 2.8020E-03 2.4875E-03 1.9984E-03 1.8059E-03 1.7298E-03 1.1619E-03 1.0749E-03 9.2778E-04 8.0904E-04 7.1199E-04 5.6376E-04 4.5659E-04 4.3696E-04 3.7691E-04 2.7018E-04 2.0334E-04 1.1451E-04 7.3294E-05 5.0905E-05 3.7412E-05 2.8645E-05 2.2633E-05 1.8336E-05 1.5151E-05 1.2732E-05 1.0850E-05 9.3560E-06 8.1505E-06 7.1612E-06 5.6593E-06 4.5859E-06 3.7889E-06 3.1837E-06 2.7127E-06 2.3390E-06 2.0374E-06 1.1463E-06 7.3334E-07 5.0945E-07 2.8653E-07 1.8336E-07 8.1505E-08 4.5859E-08 2.0374E-08 1.1459E-08 7.3334E-09 5.0945E-09 2.8653E-09 1.8336E-09 8.1505E-10 4.5859E-10 2.0374E-10 1.1459E-10 7.3334E-11 5.0945E-11 2.8653E-11 1.8336E-11 8.1505E-12 4.5859E-12 2.0374E-12 1.1459E-12 7.3334E-13 5.0945E-13 2.8653E-13 1.8336E-13 INCOHERENT SCATTERING CROSS SECTION 5.9356E-03 1.0830E+00 3.0274E-03 6.5564E-03 6.5564E-03 6.6561E-03 6.7567E-03 6.7567E-03 7.8576E-03 9.0757E-03 9.0757E-03 9.6724E-03 9.9768E-03 9.9768E-03 1.0633E-02 1.1319E-02 1.1319E-02 1.3333E-02 2.0446E-02 2.7031E-02 3.3022E-02 3.8369E-02 4.1854E-02 4.1854E-02 4.3184E-02 4.4537E-02 4.4537E-02 4.5457E-02 4.6380E-02 4.6380E-02 4.7461E-02 5.5111E-02 7.0330E-02 8.1304E-02 9.4481E-02 1.0137E-01 1.0417E-01 1.0417E-01 1.0509E-01 1.0706E-01 1.0798E-01 1.0690E-01 1.0121E-01 9.5082E-02 8.9573E-02 8.4749E-02 8.0529E-02 7.6819E-02 7.3536E-02 7.0611E-02 6.7985E-02 6.5604E-02 6.3429E-02 5.9603E-02 5.7914E-02 5.6351E-02 5.3505E-02 5.2187E-02 5.1626E-02 4.6740E-02 4.5823E-02 4.4107E-02 4.2535E-02 4.1090E-02 3.8527E-02 3.6323E-02 3.5878E-02 3.4401E-02 3.1191E-02 2.8605E-02 2.3871E-02 2.0618E-02 1.8223E-02 1.6381E-02 1.4911E-02 1.3706E-02 1.2700E-02 1.1847E-02 1.1110E-02 1.0465E-02 9.9007E-03 9.4001E-03 8.9515E-03 8.1825E-03 7.5457E-03 7.0090E-03 6.5484E-03 6.1519E-03 5.8035E-03 5.4951E-03 4.3656E-03 3.6439E-03 3.1396E-03 2.4760E-03 2.0550E-03 1.4635E-03 1.1475E-03 8.1344E-04 6.3682E-04 5.2748E-04 4.5138E-04 3.5261E-04 2.9009E-04 2.0258E-04 1.5680E-04 1.0902E-04 8.4148E-05 6.8808E-05 5.8355E-05 4.4938E-05 3.6703E-05 2.5365E-05 1.9501E-05 1.3449E-05 1.0325E-05 8.4068E-06 7.1091E-06 5.4510E-06 4.4337E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.0971E+03 1.4958E+05 7.5768E+03 1.8179E+03 2.5144E+03 3.7402E+03 5.5511E+03 6.7847E+03 5.9704E+03 5.2548E+03 6.0638E+03 5.3469E+03 5.0385E+03 5.3469E+03 4.7271E+03 4.1814E+03 4.3696E+03 3.1116E+03 1.1859E+03 5.8035E+02 3.2966E+02 2.0622E+02 1.5388E+02 4.2855E+02 3.8452E+02 3.4504E+02 4.7101E+02 4.3936E+02 4.0973E+02 4.7341E+02 4.3576E+02 2.4648E+02 8.4028E+01 3.8582E+01 1.2628E+01 5.6553E+00 3.6295E+00 2.0418E+01 1.7210E+01 1.0642E+01 4.9023E+00 2.6578E+00 8.5910E-01 3.8453E-01 2.0733E-01 1.2620E-01 8.3654E-02 5.9036E-02 4.3704E-02 3.3603E-02 2.6640E-02 2.1656E-02 1.7973E-02 1.3011E-02 1.1295E-02 9.9131E-03 7.8509E-03 7.0691E-03 6.7647E-03 4.5619E-03 4.2369E-03 3.6934E-03 3.2586E-03 2.9041E-03 2.3649E-03 1.9781E-03 1.9077E-03 1.6905E-03 1.2970E-03 1.0433E-03 6.8848E-04 5.0745E-04 3.9939E-04 3.2826E-04 2.7808E-04 2.4091E-04 2.1235E-04 1.8972E-04 1.7138E-04 1.5624E-04 1.4354E-04 1.3269E-04 1.2340E-04 1.0814E-04 9.6244E-05 8.6671E-05 7.8821E-05 7.2293E-05 6.6726E-05 6.2000E-05 4.5659E-05 3.6150E-05 2.9906E-05 2.2229E-05 1.7687E-05 1.1703E-05 8.7472E-06 5.8075E-06 4.3496E-06 3.4749E-06 2.8937E-06 2.1680E-06 1.7334E-06 1.1547E-06 8.6591E-07 5.7714E-07 4.3256E-07 3.4608E-07 2.8837E-07 2.1628E-07 1.7302E-07 1.1535E-07 8.6511E-08 5.7674E-08 4.3256E-08 3.4596E-08 2.8829E-08 2.1620E-08 1.7298E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.4319E-04 3.7789E-04 7.1623E-04 1.1242E-03 1.5808E-03 2.5828E-03 3.6455E-03 3.8830E-03 4.7239E-03 6.8295E-03 8.8193E-03 1.3257E-02 1.7054E-02 2.0322E-02 2.3214E-02 2.5809E-02 2.8168E-02 3.0331E-02 3.2330E-02 3.4184E-02 3.5914E-02 3.7516E-02 3.9006E-02 4.0372E-02 4.2895E-02 4.5138E-02 4.7141E-02 4.8983E-02 5.0665E-02 5.2227E-02 5.3629E-02 5.9436E-02 6.3722E-02 6.7046E-02 7.1972E-02 7.5497E-02 8.1024E-02 8.4348E-02 8.8193E-02 9.0396E-02 9.1878E-02 9.2919E-02 9.4281E-02 9.5202E-02 9.6484E-02 9.7205E-02 9.7966E-02 9.8366E-02 9.8647E-02 9.8807E-02 9.9047E-02 9.9207E-02 9.9408E-02 9.9528E-02 9.9648E-02 9.9688E-02 9.9728E-02 9.9768E-02 9.9808E-02 9.9808E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.5834E-08 2.8405E-06 1.0001E-05 4.0772E-05 8.1144E-05 1.2444E-04 1.6754E-04 2.0923E-04 2.4908E-04 2.8689E-04 3.2265E-04 3.5634E-04 3.8802E-04 4.1814E-04 4.4657E-04 4.7381E-04 5.2387E-04 5.6913E-04 6.1078E-04 6.4923E-04 6.8408E-04 7.1692E-04 7.4736E-04 8.7232E-04 9.6684E-04 1.0417E-03 1.1539E-03 1.2352E-03 1.3694E-03 1.4531E-03 1.5552E-03 1.6169E-03 1.6585E-03 1.6894E-03 1.7318E-03 1.7603E-03 1.8027E-03 1.8267E-03 1.8532E-03 1.8684E-03 1.8780E-03 1.8848E-03 1.8936E-03 1.8996E-03 1.9073E-03 1.9117E-03 1.9161E-03 1.9189E-03 1.9205E-03 1.9217E-03 1.9225E-03 1.9237E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Sn.mat0000644000000000000000000001774014741736366017714 0ustar00rootrootSn 1 50 1.000000 5 7 3 3 8 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 3.9288E-03 3.9288E-03 4.0000E-03 4.1561E-03 4.1561E-03 4.3076E-03 4.4647E-03 4.4647E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.9200E-02 2.9200E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.0001E+00 4.6626E+01 9.0339E+00 7.5689E+00 7.1022E+00 6.2043E+00 5.4636E+00 5.4636E+00 5.4078E+00 5.2962E+00 5.2962E+00 5.1890E+00 5.0781E+00 5.0781E+00 4.7224E+00 4.1416E+00 3.2563E+00 2.6471E+00 1.7441E+00 1.2266E+00 7.1935E-01 7.1935E-01 6.9145E-01 4.5134E-01 3.1985E-01 2.3782E-01 1.4565E-01 9.8619E-02 4.7899E-02 2.8272E-02 1.8606E-02 1.3154E-02 9.7865E-03 7.5638E-03 6.0208E-03 4.9056E-03 4.0731E-03 3.4354E-03 2.9364E-03 2.2161E-03 1.9511E-03 1.7307E-03 1.3889E-03 1.2551E-03 1.2023E-03 8.0610E-04 7.4550E-04 6.4315E-04 5.6056E-04 4.9299E-04 3.8997E-04 3.1610E-04 3.0265E-04 2.6132E-04 1.8720E-04 1.4067E-04 7.9189E-05 5.0689E-05 3.5206E-05 2.5867E-05 1.9805E-05 1.5650E-05 1.2677E-05 1.0476E-05 8.8016E-06 7.5029E-06 6.4681E-06 5.6361E-06 4.9517E-06 3.9128E-06 3.1691E-06 2.6192E-06 2.2012E-06 1.8755E-06 1.6173E-06 1.4088E-06 7.9240E-07 5.0710E-07 3.5217E-07 1.9810E-07 1.2677E-07 5.6361E-08 3.1691E-08 1.4088E-08 7.9240E-09 5.0710E-09 3.5212E-09 1.9810E-09 1.2677E-09 5.6361E-10 3.1691E-10 1.4088E-10 7.9240E-11 5.0710E-11 3.5212E-11 1.9810E-11 1.2677E-11 5.6361E-12 3.1691E-12 1.4088E-12 7.9240E-13 5.0710E-13 3.5212E-13 1.9810E-13 1.2677E-13 INCOHERENT SCATTERING CROSS SECTION 5.2708E-03 7.5700E-03 1.9996E-03 9.6843E-03 1.4052E-02 2.2022E-02 2.8581E-02 2.8581E-02 2.9058E-02 3.0093E-02 3.0093E-02 3.1078E-02 3.2082E-02 3.2082E-02 3.5404E-02 4.1223E-02 5.1643E-02 6.0673E-02 7.7312E-02 8.8067E-02 1.0014E-01 1.0014E-01 1.0090E-01 1.0770E-01 1.1125E-01 1.1292E-01 1.1323E-01 1.1150E-01 1.0486E-01 9.8213E-02 9.2322E-02 8.7205E-02 8.2760E-02 7.8885E-02 7.5480E-02 7.2442E-02 6.9700E-02 6.7217E-02 6.4961E-02 6.1004E-02 5.9252E-02 5.7626E-02 5.4695E-02 5.3368E-02 5.2810E-02 4.7793E-02 4.6844E-02 4.5080E-02 4.3470E-02 4.1996E-02 3.9381E-02 3.7124E-02 3.6668E-02 3.5152E-02 3.1868E-02 2.9225E-02 2.4386E-02 2.1063E-02 1.8618E-02 1.6736E-02 1.5234E-02 1.4001E-02 1.2972E-02 1.2099E-02 1.1348E-02 1.0689E-02 1.0116E-02 9.6032E-03 9.1466E-03 8.3603E-03 7.7059E-03 7.1580E-03 6.6913E-03 6.2804E-03 5.9252E-03 5.6107E-03 4.4592E-03 3.7220E-03 3.2071E-03 2.5294E-03 2.0992E-03 1.4950E-03 1.1724E-03 8.3095E-04 6.5086E-04 5.3875E-04 4.6118E-04 3.6018E-04 2.9631E-04 2.0693E-04 1.6015E-04 1.1135E-04 8.5987E-05 7.0261E-05 5.9608E-05 4.5916E-05 3.7489E-05 2.5908E-05 1.9922E-05 1.3738E-05 1.0547E-05 8.5886E-06 7.2594E-06 5.5651E-06 4.5287E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 8.1472E+03 1.4095E+06 3.8439E+04 3.2883E+03 1.6579E+03 6.0774E+02 3.0595E+02 9.2024E+02 9.3394E+02 8.4161E+02 1.1394E+03 1.0493E+03 9.6590E+02 1.1120E+03 8.4211E+02 5.2505E+02 2.4675E+02 1.3570E+02 4.4820E+01 2.0145E+01 6.9398E+00 4.2765E+01 4.0422E+01 1.8866E+01 1.0268E+01 6.2144E+00 2.7698E+00 1.4666E+00 4.5637E-01 1.9952E-01 1.0574E-01 6.3514E-02 4.1659E-02 2.9149E-02 2.1430E-02 1.6391E-02 1.2944E-02 1.0481E-02 8.6581E-03 6.2330E-03 5.4179E-03 4.7738E-03 3.7855E-03 3.3806E-03 3.2173E-03 2.1697E-03 2.0194E-03 1.7625E-03 1.5544E-03 1.3848E-03 1.1286E-03 9.4662E-04 9.1364E-04 8.1154E-04 6.2446E-04 5.0314E-04 3.3370E-04 2.4705E-04 1.9511E-04 1.6076E-04 1.3646E-04 1.1845E-04 1.0455E-04 9.3495E-05 8.4567E-05 7.7160E-05 7.0920E-05 6.5644E-05 6.1079E-05 5.3571E-05 4.7716E-05 4.3009E-05 3.9143E-05 3.5912E-05 3.3167E-05 3.0813E-05 2.2742E-05 1.8014E-05 1.4915E-05 1.1090E-05 8.8270E-06 5.8441E-06 4.3699E-06 2.9033E-06 2.1738E-06 1.7375E-06 1.4468E-06 1.0841E-06 8.6697E-07 5.7731E-07 4.3298E-07 2.8855E-07 2.1641E-07 1.7309E-07 1.4422E-07 1.0816E-07 8.6545E-08 5.7680E-08 4.3262E-08 2.8840E-08 2.1631E-08 1.7304E-08 1.4417E-08 1.0816E-08 8.6494E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.7208E-04 2.6702E-04 5.0655E-04 7.9950E-04 1.1347E-03 1.8973E-03 2.7338E-03 2.9225E-03 3.5968E-03 5.3210E-03 6.9855E-03 1.0770E-02 1.4037E-02 1.6858E-02 1.9374E-02 2.1631E-02 2.3686E-02 2.5568E-02 2.7303E-02 2.8901E-02 3.0387E-02 3.1757E-02 3.3020E-02 3.4197E-02 3.6348E-02 3.8276E-02 4.0021E-02 4.1609E-02 4.3059E-02 4.4384E-02 4.5606E-02 5.0573E-02 5.4230E-02 5.7122E-02 6.1332E-02 6.4376E-02 6.9145E-02 7.1986E-02 7.5334E-02 7.7211E-02 7.8479E-02 7.9392E-02 8.0610E-02 8.1371E-02 8.2487E-02 8.3095E-02 8.3755E-02 8.4110E-02 8.4313E-02 8.4516E-02 8.4719E-02 8.4820E-02 8.5023E-02 8.5125E-02 8.5226E-02 8.5277E-02 8.5277E-02 8.5328E-02 8.5328E-02 8.5378E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.7859E-08 2.9021E-06 1.0222E-05 4.1700E-05 8.2994E-05 1.2733E-04 1.7152E-04 2.1428E-04 2.5517E-04 2.9398E-04 3.3071E-04 3.6536E-04 3.9798E-04 4.2902E-04 4.5839E-04 4.8630E-04 5.3774E-04 5.8491E-04 6.2804E-04 6.6760E-04 7.0362E-04 7.3761E-04 7.6906E-04 8.9893E-04 9.9786E-04 1.0760E-03 1.1937E-03 1.2794E-03 1.4209E-03 1.5097E-03 1.6183E-03 1.6832E-03 1.7279E-03 1.7603E-03 1.8055E-03 1.8354E-03 1.8800E-03 1.9054E-03 1.9328E-03 1.9490E-03 1.9592E-03 1.9658E-03 1.9754E-03 1.9810E-03 1.9891E-03 1.9937E-03 1.9982E-03 2.0008E-03 2.0028E-03 2.0038E-03 2.0048E-03 2.0059E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Sr.mat0000644000000000000000000001774014741736366017720 0ustar00rootrootSr 1 38 1.000000 5 5 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.9396E-03 1.9396E-03 2.0000E-03 2.0068E-03 2.0068E-03 2.1090E-03 2.2163E-03 2.2163E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.6105E-02 1.6105E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 6.1197E+00 2.7283E+01 6.9893E+00 5.7314E+00 5.4015E+00 5.4015E+00 5.3561E+00 5.3513E+00 5.3513E+00 5.2769E+00 5.1974E+00 5.1974E+00 4.6682E+00 4.0633E+00 3.5547E+00 3.1362E+00 2.4922E+00 2.0138E+00 1.2488E+00 1.1395E+00 1.1395E+00 8.4950E-01 4.8104E-01 3.1045E-01 2.1554E-01 1.5842E-01 9.6566E-02 6.5390E-02 3.1478E-02 1.8399E-02 1.2038E-02 8.4813E-03 6.2962E-03 4.8578E-03 3.8606E-03 3.1410E-03 2.6047E-03 2.1946E-03 1.8741E-03 1.4122E-03 1.2426E-03 1.1017E-03 8.8338E-04 7.9796E-04 7.6428E-04 5.1183E-04 4.7332E-04 4.0829E-04 3.5582E-04 3.1284E-04 2.4732E-04 2.0042E-04 1.9189E-04 1.6569E-04 1.1866E-04 8.9143E-05 5.0159E-05 3.2111E-05 2.2296E-05 1.6385E-05 1.2543E-05 9.9109E-06 8.0277E-06 6.6352E-06 5.5754E-06 4.7506E-06 4.0963E-06 3.5685E-06 3.1362E-06 2.4784E-06 2.0069E-06 1.6591E-06 1.3938E-06 1.1877E-06 1.0241E-06 8.9212E-07 5.0180E-07 3.2118E-07 2.2303E-07 1.2543E-07 8.0277E-08 3.5685E-08 2.0069E-08 8.9212E-09 5.0180E-09 3.2111E-09 2.2303E-09 1.2543E-09 8.0277E-10 3.5685E-10 2.0069E-10 8.9212E-11 5.0180E-11 3.2111E-11 2.2303E-11 1.2543E-11 8.0277E-12 3.5685E-12 2.0069E-12 8.9212E-13 5.0180E-13 3.2111E-13 2.2303E-13 1.2543E-13 8.0277E-14 INCOHERENT SCATTERING CROSS SECTION 8.4057E-03 7.6463E-03 3.9993E-03 1.3341E-02 1.7354E-02 1.7354E-02 1.7897E-02 1.7959E-02 1.7959E-02 1.8878E-02 1.9829E-02 1.9829E-02 2.6578E-02 3.4551E-02 4.1815E-02 4.8290E-02 5.9115E-02 6.7947E-02 8.4813E-02 8.7768E-02 8.7768E-02 9.6428E-02 1.1004E-01 1.1664E-01 1.1973E-01 1.2083E-01 1.2000E-01 1.1753E-01 1.0976E-01 1.0241E-01 9.5961E-02 9.0449E-02 8.5741E-02 8.1651E-02 7.8046E-02 7.4847E-02 7.1992E-02 6.9417E-02 6.7075E-02 6.2958E-02 6.1135E-02 5.9446E-02 5.6406E-02 5.5032E-02 5.4455E-02 4.9252E-02 4.8272E-02 4.6452E-02 4.4791E-02 4.3267E-02 4.0563E-02 3.8241E-02 3.7774E-02 3.6220E-02 3.2833E-02 3.0104E-02 2.5114E-02 2.1691E-02 1.9176E-02 1.7231E-02 1.5684E-02 1.4420E-02 1.3361E-02 1.2461E-02 1.1684E-02 1.1011E-02 1.0413E-02 9.8903E-03 9.4160E-03 8.6050E-03 7.9383E-03 7.3747E-03 6.8868E-03 6.4682E-03 6.1019E-03 5.7781E-03 4.5912E-03 3.8324E-03 3.3025E-03 2.6042E-03 2.1616E-03 1.5396E-03 1.2069E-03 8.5569E-04 6.6998E-04 5.5458E-04 4.7486E-04 3.7087E-04 3.0509E-04 2.1306E-04 1.6488E-04 1.1464E-04 8.8524E-05 7.2373E-05 6.1369E-05 4.7279E-05 3.8606E-05 2.6681E-05 2.0509E-05 1.4145E-05 1.0859E-05 8.8456E-06 7.4778E-06 5.7321E-06 4.6633E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.4874E+03 7.9378E+05 1.7867E+04 1.3409E+03 7.1548E+02 2.8578E+03 2.5843E+03 2.5664E+03 3.5726E+03 3.1838E+03 2.8372E+03 3.2358E+03 1.5210E+03 7.2579E+02 4.0221E+02 2.4640E+02 1.1244E+02 6.0654E+01 1.9458E+01 1.5911E+01 1.0962E+02 6.2916E+01 2.0970E+01 9.3885E+00 4.9699E+00 2.9348E+00 1.2646E+00 6.5362E-01 1.9567E-01 8.3438E-02 4.3453E-02 2.5760E-02 1.6720E-02 1.1602E-02 8.4721E-03 6.4448E-03 5.0671E-03 4.0874E-03 3.3658E-03 2.4135E-03 2.0970E-03 1.8484E-03 1.4657E-03 1.3066E-03 1.2420E-03 8.3851E-04 7.8108E-04 6.8256E-04 6.0263E-04 5.3766E-04 4.3935E-04 3.6894E-04 3.5609E-04 3.1648E-04 2.4451E-04 1.9787E-04 1.3210E-04 9.8284E-05 7.7940E-05 6.4400E-05 5.4805E-05 4.7657E-05 4.2132E-05 3.7740E-05 3.4173E-05 3.1210E-05 2.8715E-05 2.6592E-05 2.4757E-05 2.1746E-05 1.9389E-05 1.7492E-05 1.5932E-05 1.4619E-05 1.3512E-05 1.2557E-05 9.2854E-06 7.3610E-06 6.0977E-06 4.5389E-06 3.6145E-06 2.3952E-06 1.7911E-06 1.1904E-06 8.9143E-07 7.1273E-07 5.9342E-07 4.4468E-07 3.5561E-07 2.3691E-07 1.7767E-07 1.1842E-07 8.8799E-08 7.0998E-08 5.9177E-08 4.4379E-08 3.5499E-08 2.3664E-08 1.7746E-08 1.1835E-08 8.8731E-09 7.0998E-09 5.9163E-09 4.4372E-09 3.5499E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1327E-04 1.7734E-04 3.4197E-04 5.4785E-04 7.8847E-04 1.3501E-03 1.9781E-03 2.1203E-03 2.6331E-03 3.9724E-03 5.2895E-03 8.3095E-03 1.0956E-02 1.3272E-02 1.5341E-02 1.7196E-02 1.8887E-02 2.0427E-02 2.1836E-02 2.3128E-02 2.4324E-02 2.5416E-02 2.6440E-02 2.7396E-02 2.9142E-02 3.0709E-02 3.2138E-02 3.3430E-02 3.4613E-02 3.5698E-02 3.6695E-02 4.0764E-02 4.3781E-02 4.6132E-02 4.9609E-02 5.2077E-02 5.6008E-02 5.8352E-02 6.1087E-02 6.2661E-02 6.3692E-02 6.4435E-02 6.5424E-02 6.6063E-02 6.6991E-02 6.7493E-02 6.8036E-02 6.8332E-02 6.8517E-02 6.8648E-02 6.8799E-02 6.8936E-02 6.9074E-02 6.9143E-02 6.9211E-02 6.9280E-02 6.9280E-02 6.9349E-02 6.9349E-02 6.9349E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0087E-07 2.9914E-06 1.0536E-05 4.2984E-05 8.5569E-05 1.3134E-04 1.7698E-04 2.2117E-04 2.6344E-04 3.0365E-04 3.4173E-04 3.7760E-04 4.1149E-04 4.4372E-04 4.7424E-04 5.0331E-04 5.5713E-04 6.0613E-04 6.5101E-04 6.9211E-04 7.3060E-04 7.6565E-04 7.9864E-04 9.3542E-04 1.0399E-03 1.1224E-03 1.2475E-03 1.3382E-03 1.4901E-03 1.5856E-03 1.7038E-03 1.7746E-03 1.8241E-03 1.8598E-03 1.9100E-03 1.9437E-03 1.9945E-03 2.0234E-03 2.0550E-03 2.0736E-03 2.0853E-03 2.0935E-03 2.1045E-03 2.1114E-03 2.1210E-03 2.1265E-03 2.1320E-03 2.1354E-03 2.1375E-03 2.1389E-03 2.1403E-03 2.1409E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ta.mat0000644000000000000000000002174214741736366017675 0ustar00rootrootTa 1 73 1.000000 10 5 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.7351E-03 1.7351E-03 1.7639E-03 1.7932E-03 1.7932E-03 2.0000E-03 2.1940E-03 2.1940E-03 2.3273E-03 2.4687E-03 2.4687E-03 2.5856E-03 2.7080E-03 2.7080E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 9.8811E-03 9.8811E-03 1.0000E-02 1.1136E-02 1.1136E-02 1.1406E-02 1.1681E-02 1.1681E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 6.7416E-02 6.7416E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1302E+01 4.8296E+01 1.2446E+01 1.0823E+01 1.0580E+01 1.0580E+01 1.0550E+01 1.0520E+01 1.0520E+01 1.0297E+01 1.0084E+01 1.0084E+01 9.9517E+00 9.8113E+00 9.8113E+00 9.6874E+00 9.5550E+00 9.5550E+00 9.2488E+00 8.2737E+00 7.3884E+00 6.6096E+00 5.3383E+00 4.4264E+00 4.4264E+00 4.3765E+00 3.9338E+00 3.9338E+00 3.8384E+00 3.7441E+00 3.7441E+00 2.8322E+00 1.9989E+00 1.1818E+00 7.7811E-01 5.5014E-01 4.1235E-01 3.4180E-01 3.4180E-01 2.5893E-01 1.7765E-01 8.6864E-02 5.1752E-02 3.4426E-02 2.4555E-02 1.8385E-02 1.4274E-02 1.1399E-02 9.3120E-03 7.7494E-03 6.5497E-03 5.6089E-03 4.2467E-03 3.7441E-03 3.3254E-03 2.6737E-03 2.4175E-03 2.3164E-03 1.5579E-03 1.4418E-03 1.2453E-03 1.0863E-03 9.5582E-04 7.5653E-04 6.1370E-04 5.8774E-04 5.0782E-04 3.6410E-04 2.7370E-04 1.5416E-04 9.8712E-05 6.8592E-05 5.0388E-05 3.8606E-05 3.0492E-05 2.4701E-05 2.0418E-05 1.7156E-05 1.4620E-05 1.2607E-05 1.0979E-05 9.6515E-06 7.6247E-06 6.1770E-06 5.1053E-06 4.2899E-06 3.6543E-06 3.1514E-06 2.7454E-06 1.5442E-06 9.8845E-07 6.8626E-07 3.8606E-07 2.4708E-07 1.0983E-07 6.1770E-08 2.7454E-08 1.5442E-08 9.8845E-09 6.8626E-09 3.8606E-09 2.4708E-09 1.0983E-09 6.1770E-10 2.7454E-10 1.5442E-10 9.8845E-11 6.8626E-11 3.8606E-11 2.4708E-11 1.0983E-11 6.1770E-12 2.7454E-12 1.5442E-12 9.8845E-13 6.8626E-13 3.8606E-13 2.4708E-13 INCOHERENT SCATTERING CROSS SECTION 4.4863E-03 1.0980E-02 1.9182E-03 7.6979E-03 9.1390E-03 9.1390E-03 9.3138E-03 9.4918E-03 9.4918E-03 1.0750E-02 1.1921E-02 1.1921E-02 1.2716E-02 1.3552E-02 1.3552E-02 1.4241E-02 1.4960E-02 1.4960E-02 1.6657E-02 2.2268E-02 2.7547E-02 3.2462E-02 4.1069E-02 4.7891E-02 4.7891E-02 4.8291E-02 5.1918E-02 5.1918E-02 5.2747E-02 5.3582E-02 5.3582E-02 6.2402E-02 7.3019E-02 8.7063E-02 9.4851E-02 9.9178E-02 1.0151E-01 1.0244E-01 1.0244E-01 1.0304E-01 1.0247E-01 9.7713E-02 9.2122E-02 8.6957E-02 8.2371E-02 7.8329E-02 7.4782E-02 7.1659E-02 6.8858E-02 6.6314E-02 6.3999E-02 6.1893E-02 5.8188E-02 5.6544E-02 5.5016E-02 5.2248E-02 5.0987E-02 5.0454E-02 4.5662E-02 4.4763E-02 4.3093E-02 4.1568E-02 4.0162E-02 3.7661E-02 3.5511E-02 3.5078E-02 3.3639E-02 3.0504E-02 2.7976E-02 2.3350E-02 2.0168E-02 1.7829E-02 1.6025E-02 1.4587E-02 1.3409E-02 1.2424E-02 1.1588E-02 1.0870E-02 1.0241E-02 9.6881E-03 9.1989E-03 8.7596E-03 8.0041E-03 7.3817E-03 6.8559E-03 6.4066E-03 6.0172E-03 5.6744E-03 5.3749E-03 4.2700E-03 3.5644E-03 3.0718E-03 2.4225E-03 2.0108E-03 1.4321E-03 1.1226E-03 7.9575E-04 6.2335E-04 5.1586E-04 4.4164E-04 3.4512E-04 2.8382E-04 1.9822E-04 1.5343E-04 1.0667E-04 8.2337E-05 6.7328E-05 5.7077E-05 4.3998E-05 3.5910E-05 2.4818E-05 1.9080E-05 1.3159E-05 1.0101E-05 8.2271E-06 6.9524E-06 5.3316E-06 4.3365E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.4978E+03 3.4897E+05 1.3984E+04 1.5556E+03 1.1439E+03 1.3928E+03 2.0563E+03 3.0339E+03 3.3714E+03 3.7608E+03 2.9750E+03 3.4546E+03 2.9930E+03 2.5946E+03 2.7577E+03 2.4761E+03 2.2235E+03 2.3197E+03 1.8288E+03 9.1390E+02 5.2551E+02 3.3158E+02 1.5852E+02 9.1523E+01 2.3926E+02 2.3347E+02 1.7506E+02 2.4092E+02 2.2730E+02 2.1446E+02 2.4794E+02 1.3113E+02 6.1270E+01 2.0604E+01 9.3819E+00 5.0687E+00 3.0549E+00 2.2079E+00 1.1355E+01 7.2253E+00 4.0204E+00 1.3462E+00 6.1603E-01 3.3759E-01 2.0801E-01 1.3919E-01 9.9011E-02 7.3812E-02 5.7077E-02 4.5448E-02 3.7075E-02 3.0865E-02 2.2451E-02 1.9523E-02 1.7157E-02 1.3610E-02 1.2261E-02 1.1735E-02 7.9142E-03 7.3485E-03 6.4018E-03 5.6445E-03 5.0275E-03 4.0899E-03 3.4180E-03 3.2955E-03 2.9182E-03 2.2343E-03 1.7935E-03 1.1778E-03 8.6531E-04 6.7927E-04 5.5712E-04 4.7126E-04 4.0769E-04 3.5910E-04 3.2040E-04 2.8918E-04 2.6342E-04 2.4182E-04 2.2345E-04 2.0764E-04 1.8185E-04 1.6171E-04 1.4557E-04 1.3233E-04 1.2128E-04 1.1192E-04 1.0390E-04 7.6480E-05 6.0472E-05 5.0021E-05 3.7142E-05 2.9547E-05 1.9543E-05 1.4600E-05 9.6948E-06 7.2553E-06 5.7976E-06 4.8291E-06 3.6177E-06 2.8921E-06 1.9266E-06 1.4444E-06 9.6249E-07 7.2187E-07 5.7743E-07 4.8091E-07 3.6077E-07 2.8858E-07 1.9240E-07 1.4427E-07 9.6182E-08 7.2120E-08 5.7709E-08 4.8091E-08 3.6077E-08 2.8855E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.1597E-04 4.9359E-04 9.4073E-04 1.4760E-03 2.0643E-03 3.3131E-03 4.5928E-03 4.8757E-03 5.8663E-03 8.2838E-03 1.0520E-02 1.5462E-02 1.9613E-02 2.3180E-02 2.6329E-02 2.9158E-02 3.1730E-02 3.4080E-02 3.6276E-02 3.8306E-02 4.0203E-02 4.2001E-02 4.3631E-02 4.5162E-02 4.7958E-02 5.0421E-02 5.2651E-02 5.4681E-02 5.6544E-02 5.8275E-02 5.9839E-02 6.6296E-02 7.1055E-02 7.4782E-02 8.0207E-02 8.4068E-02 9.0125E-02 9.3753E-02 9.7913E-02 1.0031E-01 1.0187E-01 1.0300E-01 1.0450E-01 1.0547E-01 1.0683E-01 1.0760E-01 1.0843E-01 1.0886E-01 1.0913E-01 1.0933E-01 1.0956E-01 1.0973E-01 1.0996E-01 1.1006E-01 1.1019E-01 1.1026E-01 1.1029E-01 1.1033E-01 1.1036E-01 1.1039E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3631E-08 2.7763E-06 9.7780E-06 3.9871E-05 7.9275E-05 1.2158E-04 1.6361E-04 2.0428E-04 2.4312E-04 2.7993E-04 3.1474E-04 3.4745E-04 3.7841E-04 4.0769E-04 4.3532E-04 4.6161E-04 5.1020E-04 5.5413E-04 5.9440E-04 6.3134E-04 6.6529E-04 6.9690E-04 7.2586E-04 8.4634E-04 9.3653E-04 1.0077E-03 1.1139E-03 1.1908E-03 1.3166E-03 1.3945E-03 1.4887E-03 1.5449E-03 1.5832E-03 1.6111E-03 1.6497E-03 1.6750E-03 1.7130E-03 1.7343E-03 1.7576E-03 1.7716E-03 1.7799E-03 1.7859E-03 1.7935E-03 1.7985E-03 1.8052E-03 1.8092E-03 1.8128E-03 1.8155E-03 1.8168E-03 1.8178E-03 1.8188E-03 1.8195E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Tb.mat0000644000000000000000000002174214741736366017676 0ustar00rootrootTb 1 65 1.000000 10 4 3 3 3 3 7 3 3 8 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.2412E-03 1.2412E-03 1.2580E-03 1.2750E-03 1.2750E-03 1.5000E-03 1.6113E-03 1.6113E-03 1.6877E-03 1.7677E-03 1.7677E-03 1.8649E-03 1.9675E-03 1.9675E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 7.5140E-03 7.5140E-03 8.0000E-03 8.2516E-03 8.2516E-03 8.4767E-03 8.7080E-03 8.7080E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.1996E-02 5.1996E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0106E+01 8.2817E-01 1.0155E+01 9.8787E+00 9.8787E+00 9.8676E+00 9.8559E+00 9.8559E+00 9.6286E+00 9.5149E+00 9.5149E+00 9.4429E+00 9.3671E+00 9.3671E+00 9.2695E+00 9.1625E+00 9.1625E+00 9.1284E+00 8.1280E+00 7.1845E+00 6.3471E+00 5.6309E+00 4.7404E+00 4.7404E+00 4.4941E+00 4.3766E+00 4.3766E+00 4.2744E+00 4.1720E+00 4.1720E+00 3.6593E+00 2.3675E+00 1.6893E+00 9.9469E-01 6.4835E-01 4.5926E-01 4.3198E-01 4.3198E-01 3.4505E-01 2.1580E-01 1.4710E-01 7.1693E-02 4.2667E-02 2.8295E-02 2.0117E-02 1.5026E-02 1.1644E-02 9.2864E-03 7.5786E-03 6.3028E-03 5.3239E-03 4.5559E-03 3.4445E-03 3.0352E-03 2.6947E-03 2.1653E-03 1.9572E-03 1.8749E-03 1.2596E-03 1.1655E-03 1.0064E-03 8.7760E-04 7.7179E-04 6.1037E-04 4.9526E-04 4.7442E-04 4.1009E-04 2.9388E-04 2.2069E-04 1.2425E-04 7.9575E-05 5.5248E-05 4.0621E-05 3.1095E-05 2.4570E-05 1.9901E-05 1.6449E-05 1.3823E-05 1.1777E-05 1.0155E-05 8.8480E-06 7.7756E-06 6.1424E-06 4.9753E-06 4.1114E-06 3.4558E-06 2.9447E-06 2.5392E-06 2.2118E-06 1.2440E-06 7.9613E-07 5.5286E-07 3.1106E-07 1.9905E-07 8.8480E-08 4.9753E-08 2.2118E-08 1.2440E-08 7.9613E-09 5.5286E-09 3.1102E-09 1.9905E-09 8.8480E-10 4.9753E-10 2.2118E-10 1.2440E-10 7.9613E-11 5.5286E-11 3.1102E-11 1.9905E-11 8.8480E-12 4.9753E-12 2.2118E-12 1.2440E-12 7.9613E-13 5.5286E-13 3.1102E-13 1.9905E-13 INCOHERENT SCATTERING CROSS SECTION 5.5134E-03 3.5083E+09 4.7525E-03 7.2944E-03 7.2944E-03 7.3978E-03 7.5028E-03 7.5028E-03 9.1170E-03 9.9052E-03 9.9052E-03 1.0430E-02 1.0978E-02 1.0978E-02 1.1650E-02 1.2361E-02 1.2361E-02 1.2584E-02 1.9337E-02 2.5650E-02 3.1462E-02 3.6718E-02 4.3653E-02 4.3653E-02 4.5699E-02 4.6684E-02 4.6684E-02 4.7564E-02 4.8465E-02 4.8465E-02 5.3164E-02 6.7980E-02 7.8893E-02 9.2345E-02 9.9431E-02 1.0330E-01 1.0379E-01 1.0379E-01 1.0530E-01 1.0640E-01 1.0546E-01 1.0004E-01 9.4050E-02 8.8641E-02 8.3895E-02 7.9737E-02 7.6089E-02 7.2869E-02 6.9988E-02 6.7384E-02 6.5024E-02 6.2879E-02 5.9097E-02 5.7408E-02 5.5830E-02 5.2993E-02 5.1724E-02 5.1193E-02 4.6343E-02 4.5426E-02 4.3725E-02 4.2175E-02 4.0750E-02 3.8216E-02 3.6025E-02 3.5581E-02 3.4112E-02 3.0930E-02 2.8370E-02 2.3675E-02 2.0451E-02 1.8079E-02 1.6248E-02 1.4790E-02 1.3596E-02 1.2596E-02 1.1751E-02 1.1019E-02 1.0383E-02 9.8218E-03 9.3254E-03 8.8783E-03 8.1167E-03 7.4838E-03 6.9533E-03 6.4948E-03 6.1008E-03 5.7559E-03 5.4490E-03 4.3312E-03 3.6142E-03 3.1140E-03 2.4558E-03 2.0386E-03 1.4517E-03 1.1383E-03 8.0674E-04 6.3167E-04 5.2292E-04 4.4789E-04 3.4975E-04 2.8772E-04 2.0095E-04 1.5551E-04 1.0815E-04 8.3478E-05 6.8245E-05 5.7862E-05 4.4600E-05 3.6404E-05 2.5161E-05 1.9341E-05 1.3338E-05 1.0242E-05 8.3402E-06 7.0481E-06 5.4035E-06 4.3994E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.3861E+03 1.9134E+05 8.9306E+03 1.5816E+03 2.2758E+03 3.3613E+03 4.9602E+03 5.8696E+03 5.3050E+03 4.4562E+03 5.1534E+03 4.6286E+03 4.1568E+03 4.4145E+03 3.9149E+03 3.4725E+03 3.6279E+03 3.4983E+03 1.3463E+03 6.6237E+02 3.7741E+02 2.3668E+02 1.3206E+02 3.6101E+02 3.0875E+02 2.8374E+02 3.8802E+02 3.6318E+02 3.3986E+02 3.9295E+02 2.7779E+02 9.5566E+01 4.4107E+01 1.4539E+01 6.5403E+00 3.5013E+00 3.1368E+00 1.7230E+01 1.1781E+01 5.5020E+00 3.0004E+00 9.7877E-01 4.4069E-01 2.3867E-01 1.4577E-01 9.6868E-02 6.8510E-02 5.0826E-02 3.9143E-02 3.1065E-02 2.5271E-02 2.0987E-02 1.5210E-02 1.3209E-02 1.1598E-02 9.1900E-03 8.2758E-03 7.9196E-03 5.3391E-03 4.9583E-03 4.3216E-03 3.8120E-03 3.3964E-03 2.7646E-03 2.3126E-03 2.2304E-03 1.9768E-03 1.5158E-03 1.2183E-03 8.0257E-04 5.9113E-04 4.6495E-04 3.8196E-04 3.2334E-04 2.7999E-04 2.4672E-04 2.2038E-04 1.9905E-04 1.8139E-04 1.6661E-04 1.5403E-04 1.4316E-04 1.2546E-04 1.1163E-04 1.0053E-04 9.1398E-05 8.3819E-05 7.7377E-05 7.1845E-05 5.2936E-05 4.1872E-05 3.4645E-05 2.5744E-05 2.0481E-05 1.3550E-05 1.0125E-05 6.7260E-06 5.0360E-06 4.0242E-06 3.3497E-06 2.5100E-06 2.0068E-06 1.3369E-06 1.0023E-06 6.6805E-07 5.0094E-07 4.0053E-07 3.3384E-07 2.5036E-07 2.0026E-07 1.3350E-07 1.0011E-07 6.6729E-08 5.0056E-08 4.0053E-08 3.3372E-08 2.5028E-08 2.0023E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.6199E-04 4.0748E-04 7.7284E-04 1.2122E-03 1.7011E-03 2.7643E-03 3.8840E-03 4.1341E-03 5.0164E-03 7.2048E-03 9.2572E-03 1.3835E-02 1.7734E-02 2.1084E-02 2.4047E-02 2.6707E-02 2.9124E-02 3.1341E-02 3.3391E-02 3.5293E-02 3.7074E-02 3.8727E-02 4.0242E-02 4.1682E-02 4.4259E-02 4.6532E-02 4.8617E-02 5.0511E-02 5.2254E-02 5.3846E-02 5.5286E-02 6.1273E-02 6.5706E-02 6.9117E-02 7.4194E-02 7.7794E-02 8.3478E-02 8.6888E-02 9.0829E-02 9.3065E-02 9.4581E-02 9.5642E-02 9.7044E-02 9.7953E-02 9.9279E-02 9.9999E-02 1.0076E-01 1.0117E-01 1.0144E-01 1.0163E-01 1.0186E-01 1.0201E-01 1.0223E-01 1.0235E-01 1.0246E-01 1.0254E-01 1.0258E-01 1.0258E-01 1.0261E-01 1.0265E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.5005E-08 2.8163E-06 9.9166E-06 4.0432E-05 8.0447E-05 1.2338E-04 1.6608E-04 2.0743E-04 2.4691E-04 2.8435E-04 3.1978E-04 3.5312E-04 3.8461E-04 4.1417E-04 4.4259E-04 4.6949E-04 5.1875E-04 5.6385E-04 6.0515E-04 6.4266E-04 6.7752E-04 7.0973E-04 7.3967E-04 8.6320E-04 9.5642E-04 1.0299E-03 1.1406E-03 1.2205E-03 1.3520E-03 1.4339E-03 1.5339E-03 1.5938E-03 1.6347E-03 1.6646E-03 1.7059E-03 1.7332E-03 1.7741E-03 1.7976E-03 1.8230E-03 1.8382E-03 1.8473E-03 1.8537E-03 1.8624E-03 1.8677E-03 1.8753E-03 1.8795E-03 1.8837E-03 1.8863E-03 1.8882E-03 1.8890E-03 1.8901E-03 1.8909E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Tc.mat0000644000000000000000000001772414741736366017704 0ustar00rootrootTc 1 43 1.000000 5 6 3 3 9 84 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.6769E-03 2.6769E-03 2.7344E-03 2.7932E-03 2.7932E-03 3.0000E-03 3.0425E-03 3.0425E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.1044E-02 2.1044E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 7.1165E+00 5.0744E+01 8.1454E+00 6.6921E+00 6.2431E+00 5.6643E+00 5.6643E+00 5.6164E+00 5.5678E+00 5.5678E+00 5.4005E+00 5.3666E+00 5.3666E+00 4.6734E+00 4.0700E+00 3.5773E+00 2.8442E+00 2.3269E+00 1.4965E+00 1.0253E+00 9.5646E-01 9.5646E-01 5.7800E-01 3.7699E-01 2.6418E-01 1.9480E-01 1.1877E-01 8.0453E-02 3.8935E-02 2.2850E-02 1.4985E-02 1.0573E-02 7.8570E-03 6.0666E-03 4.8243E-03 3.9273E-03 3.2587E-03 2.7470E-03 2.3466E-03 1.7693E-03 1.5574E-03 1.3814E-03 1.1082E-03 1.0007E-03 9.5830E-04 6.4215E-04 5.9395E-04 5.1244E-04 4.4655E-04 3.9255E-04 3.1028E-04 2.5157E-04 2.4093E-04 2.0814E-04 1.4908E-04 1.1195E-04 6.2985E-05 4.0325E-05 2.8005E-05 2.0575E-05 1.5752E-05 1.2449E-05 1.0081E-05 8.3344E-06 6.9997E-06 5.9663E-06 5.1446E-06 4.4815E-06 3.9390E-06 3.1123E-06 2.5206E-06 2.0833E-06 1.7505E-06 1.4916E-06 1.2861E-06 1.1207E-06 6.3046E-07 4.0337E-07 2.8011E-07 1.5752E-07 1.0081E-07 4.4815E-08 2.5206E-08 1.1207E-08 6.3046E-09 4.0337E-09 2.8011E-09 1.5759E-09 1.0081E-09 4.4815E-10 2.5206E-10 1.1207E-10 6.3046E-11 4.0337E-11 2.8011E-11 1.5759E-11 1.0081E-11 4.4815E-12 2.5206E-12 1.1207E-12 6.3046E-13 4.0337E-13 2.8011E-13 1.5759E-13 1.0081E-13 INCOHERENT SCATTERING CROSS SECTION 7.0243E-03 2.0631E-02 2.9976E-03 1.2093E-02 1.6736E-02 2.2574E-02 2.2574E-02 2.3052E-02 2.3539E-02 2.3539E-02 2.5237E-02 2.5575E-02 2.5575E-02 3.2975E-02 4.0073E-02 4.6630E-02 5.8033E-02 6.7229E-02 8.3713E-02 9.4969E-02 9.6815E-02 9.6815E-02 1.0856E-01 1.1545E-01 1.1896E-01 1.2037E-01 1.2006E-01 1.1785E-01 1.1041E-01 1.0315E-01 9.6809E-02 9.1340E-02 8.6605E-02 8.2483E-02 7.8867E-02 7.5656E-02 7.2776E-02 7.0181E-02 6.7831E-02 6.3709E-02 6.1878E-02 6.0172E-02 5.7093E-02 5.5702E-02 5.5118E-02 4.9859E-02 4.8868E-02 4.7025E-02 4.5344E-02 4.3802E-02 4.1069E-02 3.8720E-02 3.8246E-02 3.6670E-02 3.3239E-02 3.0478E-02 2.5434E-02 2.1965E-02 1.9418E-02 1.7450E-02 1.5882E-02 1.4602E-02 1.3526E-02 1.2615E-02 1.1834E-02 1.1145E-02 1.0549E-02 1.0014E-02 9.5338E-03 8.7158E-03 8.0392E-03 7.4671E-03 6.9751E-03 6.5507E-03 6.1816E-03 5.8513E-03 4.6494E-03 3.8812E-03 3.3442E-03 2.6375E-03 2.1891E-03 1.5586E-03 1.2222E-03 8.6604E-04 6.7844E-04 5.6164E-04 4.8087E-04 3.7557E-04 3.0896E-04 2.1577E-04 1.6700E-04 1.1613E-04 8.9618E-05 7.3257E-05 6.2124E-05 4.7878E-05 3.9095E-05 2.7015E-05 2.0771E-05 1.4325E-05 1.0998E-05 8.9557E-06 7.5717E-06 5.8046E-06 4.7226E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.3494E+03 1.1276E+06 2.6782E+04 2.0851E+03 1.0377E+03 5.0148E+02 1.8059E+03 1.6980E+03 1.5968E+03 2.2180E+03 1.8569E+03 1.7948E+03 2.0538E+03 1.0315E+03 5.7947E+02 3.5823E+02 1.6540E+02 8.9926E+01 2.9186E+01 1.2978E+01 1.1238E+01 7.3749E+01 2.9241E+01 1.3310E+01 7.1412E+00 4.2564E+00 1.8600E+00 9.7061E-01 2.9561E-01 1.2738E-01 6.6829E-02 3.9839E-02 2.5973E-02 1.8084E-02 1.3241E-02 1.0094E-02 7.9487E-03 6.4215E-03 5.2960E-03 3.8049E-03 3.3055E-03 2.9114E-03 2.3076E-03 2.0605E-03 1.9609E-03 1.3231E-03 1.2318E-03 1.0759E-03 9.4969E-04 8.4687E-04 6.9112E-04 5.7990E-04 5.5967E-04 4.9720E-04 3.8339E-04 3.0970E-04 2.0624E-04 1.5309E-04 1.2117E-04 1.0001E-04 8.5005E-05 7.3872E-05 6.5261E-05 5.8409E-05 5.2861E-05 4.8260E-05 4.4385E-05 4.1088E-05 3.8240E-05 3.3578E-05 2.9924E-05 2.6978E-05 2.4567E-05 2.2543E-05 2.0827E-05 1.9357E-05 1.4295E-05 1.1330E-05 9.3862E-06 6.9812E-06 5.5598E-06 3.6831E-06 2.7537E-06 1.8299E-06 1.3704E-06 1.0949E-06 9.1217E-07 6.8336E-07 5.4650E-07 3.6413E-07 2.7298E-07 1.8194E-07 1.3643E-07 1.0912E-07 9.0910E-08 6.8213E-08 5.4558E-08 3.6370E-08 2.7273E-08 1.8182E-08 1.3636E-08 1.0912E-08 9.0910E-09 6.8213E-09 5.4546E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.3962E-04 2.1758E-04 4.1609E-04 6.6183E-04 9.4647E-04 1.6044E-03 2.3367E-03 2.5028E-03 3.0992E-03 4.6419E-03 6.1447E-03 9.5769E-03 1.2572E-02 1.5168E-02 1.7493E-02 1.9578E-02 2.1479E-02 2.3213E-02 2.4806E-02 2.6270E-02 2.7624E-02 2.8866E-02 3.0016E-02 3.1099E-02 3.3073E-02 3.4845E-02 3.6456E-02 3.7914E-02 3.9249E-02 4.0473E-02 4.1598E-02 4.6168E-02 4.9557E-02 5.2190E-02 5.6090E-02 5.8858E-02 6.3292E-02 6.5876E-02 6.8951E-02 7.0735E-02 7.1904E-02 7.2765E-02 7.3872E-02 7.4548E-02 7.5594E-02 7.6209E-02 7.6824E-02 7.7132E-02 7.7316E-02 7.7501E-02 7.7685E-02 7.7808E-02 7.7931E-02 7.8054E-02 7.8116E-02 7.8177E-02 7.8239E-02 7.8239E-02 7.8239E-02 7.8300E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0210E-07 3.0279E-06 1.0666E-05 4.3511E-05 8.6604E-05 1.3292E-04 1.7905E-04 2.2377E-04 2.6652E-04 3.0711E-04 3.4556E-04 3.8185E-04 4.1598E-04 4.4852E-04 4.7934E-04 5.0855E-04 5.6280E-04 6.1213E-04 6.5753E-04 6.9874E-04 7.3749E-04 7.7255E-04 8.0576E-04 9.4293E-04 1.0475E-03 1.1299E-03 1.2548E-03 1.3458E-03 1.4971E-03 1.5925E-03 1.7093E-03 1.7794E-03 1.8280E-03 1.8637E-03 1.9129E-03 1.9455E-03 1.9947E-03 2.0230E-03 2.0538E-03 2.0716E-03 2.0827E-03 2.0907E-03 2.1011E-03 2.1079E-03 2.1165E-03 2.1220E-03 2.1270E-03 2.1300E-03 2.1319E-03 2.1331E-03 2.1343E-03 2.1356E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Te.mat0000644000000000000000000002027614741736366017702 0ustar00rootrootTe 1 52 1.000000 6 4 6 3 3 9 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0060E-03 1.0060E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.3414E-03 4.3414E-03 4.4747E-03 4.6120E-03 4.6120E-03 4.7728E-03 4.9392E-03 4.9392E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.1814E-02 3.1814E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.0515E+00 5.9057E+27 4.6295E+01 8.0468E+00 8.0468E+00 7.6079E+00 7.1218E+00 6.1968E+00 5.4039E+00 5.1632E+00 5.1632E+00 5.0743E+00 4.9838E+00 4.9838E+00 4.8781E+00 4.7715E+00 4.7715E+00 4.7337E+00 4.1702E+00 3.2900E+00 2.6713E+00 1.7604E+00 1.2483E+00 7.0699E-01 6.4894E-01 6.4894E-01 4.6100E-01 3.2730E-01 2.4405E-01 1.4985E-01 1.0147E-01 4.9319E-02 2.9162E-02 1.9211E-02 1.3592E-02 1.0121E-02 7.8250E-03 6.2274E-03 5.0735E-03 4.2142E-03 3.5562E-03 3.0405E-03 2.2951E-03 2.0209E-03 1.7929E-03 1.4390E-03 1.3002E-03 1.2455E-03 8.3536E-04 7.7263E-04 6.6658E-04 5.8098E-04 5.1092E-04 4.0416E-04 3.2763E-04 3.1371E-04 2.7090E-04 1.9409E-04 1.4583E-04 8.2073E-05 5.2576E-05 3.6501E-05 2.6816E-05 2.0535E-05 1.6226E-05 1.3144E-05 1.0860E-05 9.1276E-06 7.7778E-06 6.7065E-06 5.8428E-06 5.1349E-06 4.0564E-06 3.2857E-06 2.7156E-06 2.2819E-06 1.9445E-06 1.6764E-06 1.4607E-06 8.2167E-07 5.2576E-07 3.6510E-07 2.0535E-07 1.3144E-07 5.8428E-08 3.2857E-08 1.4602E-08 8.2167E-09 5.2576E-09 3.6510E-09 2.0535E-09 1.3144E-09 5.8428E-10 3.2857E-10 1.4602E-10 8.2167E-11 5.2576E-11 3.6510E-11 2.0535E-11 1.3144E-11 5.8428E-12 3.2857E-12 1.4602E-12 8.2167E-13 5.2576E-13 3.6510E-13 2.0535E-13 1.3144E-13 INCOHERENT SCATTERING CROSS SECTION 4.7431E-03 2.9427E+25 4.0062E-02 4.7903E-03 4.7903E-03 8.9483E-03 1.3257E-02 2.1365E-02 2.8454E-02 3.0635E-02 3.0635E-02 3.1463E-02 3.2305E-02 3.2305E-02 3.3273E-02 3.4254E-02 3.4254E-02 3.4608E-02 4.0111E-02 4.9838E-02 5.8239E-02 7.4191E-02 8.4621E-02 9.6987E-02 9.8450E-02 9.8450E-02 1.0350E-01 1.0699E-01 1.0869E-01 1.0907E-01 1.0751E-01 1.0123E-01 9.4863E-02 8.9172E-02 8.4244E-02 7.9989E-02 7.6268E-02 7.2973E-02 7.0038E-02 6.7409E-02 6.5035E-02 6.2876E-02 5.9055E-02 5.7342E-02 5.5741E-02 5.2886E-02 5.1632E-02 5.1113E-02 4.6233E-02 4.5308E-02 4.3602E-02 4.2051E-02 4.0626E-02 3.8094E-02 3.5916E-02 3.5477E-02 3.4017E-02 3.0837E-02 2.8275E-02 2.3593E-02 2.0379E-02 1.8014E-02 1.6193E-02 1.4739E-02 1.3550E-02 1.2554E-02 1.1709E-02 1.0982E-02 1.0345E-02 9.7883E-03 9.2928E-03 8.8491E-03 8.0846E-03 7.4569E-03 6.9283E-03 6.4705E-03 6.0788E-03 5.7342E-03 5.4275E-03 4.3141E-03 3.6015E-03 3.1031E-03 2.4471E-03 2.0313E-03 1.4465E-03 1.1341E-03 8.0374E-04 6.2959E-04 5.2104E-04 4.4619E-04 3.4849E-04 2.8671E-04 2.0020E-04 1.5499E-04 1.0775E-04 8.3158E-05 6.8009E-05 5.7673E-05 4.4430E-05 3.6274E-05 2.5070E-05 1.9275E-05 1.3290E-05 1.0204E-05 8.3111E-06 7.0227E-06 5.3850E-06 4.3816E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 8.4244E+03 1.1579E+06 3.7088E+04 8.3206E+03 8.6745E+03 3.6001E+03 1.8250E+03 6.7301E+02 3.2428E+02 2.6264E+02 7.8297E+02 7.3750E+02 6.9472E+02 9.3966E+02 8.6774E+02 8.0138E+02 9.2456E+02 8.9671E+02 5.6776E+02 2.6684E+02 1.4739E+02 4.8942E+01 2.2078E+01 7.0746E+00 5.9891E+00 3.6449E+01 2.0082E+01 1.1015E+01 6.6876E+00 2.9960E+00 1.5919E+00 4.9886E-01 2.1885E-01 1.1632E-01 7.0038E-02 4.6016E-02 3.2239E-02 2.3728E-02 1.8166E-02 1.4356E-02 1.1629E-02 9.6091E-03 6.9205E-03 6.0174E-03 5.3042E-03 4.2089E-03 3.7591E-03 3.5774E-03 2.4126E-03 2.2451E-03 1.9588E-03 1.7274E-03 1.5395E-03 1.2554E-03 1.0515E-03 1.0142E-03 8.9948E-04 6.9182E-04 5.5785E-04 3.6973E-04 2.7350E-04 2.1587E-04 1.7779E-04 1.5088E-04 1.3087E-04 1.1549E-04 1.0331E-04 9.3400E-05 8.5188E-05 7.8344E-05 7.2445E-05 6.7395E-05 5.9136E-05 5.2670E-05 4.7479E-05 4.3184E-05 3.9616E-05 3.6591E-05 3.3990E-05 2.5075E-05 1.9860E-05 1.6438E-05 1.2228E-05 9.7317E-06 6.4422E-06 4.8139E-06 3.1998E-06 2.3956E-06 1.9142E-06 1.5943E-06 1.1945E-06 9.5524E-07 6.3619E-07 4.7715E-07 3.1796E-07 2.3843E-07 1.9072E-07 1.5895E-07 1.1917E-07 9.5335E-08 6.3572E-08 4.7667E-08 3.1777E-08 2.3834E-08 1.9067E-08 1.5886E-08 1.1917E-08 9.5335E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.7793E-04 2.7597E-04 5.2292E-04 8.2403E-04 1.1673E-03 1.9440E-03 2.7921E-03 2.9832E-03 3.6649E-03 5.4007E-03 7.0699E-03 1.0860E-02 1.4130E-02 1.6948E-02 1.9454E-02 2.1710E-02 2.3758E-02 2.5637E-02 2.7364E-02 2.8964E-02 3.0450E-02 3.1819E-02 3.3089E-02 3.4264E-02 3.6416E-02 3.8342E-02 4.0088E-02 4.1674E-02 4.3122E-02 4.4444E-02 4.5666E-02 5.0641E-02 5.4322E-02 5.7154E-02 6.1401E-02 6.4375E-02 6.9141E-02 7.2020E-02 7.5324E-02 7.7259E-02 7.8533E-02 7.9430E-02 8.0610E-02 8.1412E-02 8.2498E-02 8.3111E-02 8.3772E-02 8.4149E-02 8.4385E-02 8.4527E-02 8.4716E-02 8.4857E-02 8.5046E-02 8.5141E-02 8.5235E-02 8.5282E-02 8.5329E-02 8.5329E-02 8.5377E-02 8.5377E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4759E-08 2.8092E-06 9.8922E-06 4.0338E-05 8.0279E-05 1.2318E-04 1.6589E-04 2.0724E-04 2.4674E-04 2.8431E-04 3.1980E-04 3.5326E-04 3.8478E-04 4.1480E-04 4.4312E-04 4.7007E-04 5.2009E-04 5.6540E-04 6.0693E-04 6.4516E-04 6.8009E-04 7.1265E-04 7.4286E-04 8.6840E-04 9.6373E-04 1.0392E-03 1.1525E-03 1.2351E-03 1.3715E-03 1.4569E-03 1.5617E-03 1.6245E-03 1.6674E-03 1.6990E-03 1.7425E-03 1.7712E-03 1.8142E-03 1.8383E-03 1.8647E-03 1.8803E-03 1.8897E-03 1.8963E-03 1.9053E-03 1.9109E-03 1.9185E-03 1.9227E-03 1.9270E-03 1.9298E-03 1.9312E-03 1.9327E-03 1.9336E-03 1.9345E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Th.mat0000644000000000000000000002241614741736366017703 0ustar00rootrootTh 1 90 1.000000 12 4 3 5 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1683E-03 1.1683E-03 1.2463E-03 1.3295E-03 1.3295E-03 1.5000E-03 2.0000E-03 3.0000E-03 3.3320E-03 3.3320E-03 3.4105E-03 3.4908E-03 3.4908E-03 4.0000E-03 4.0461E-03 4.0461E-03 4.4209E-03 4.8304E-03 4.8304E-03 5.0000E-03 5.1823E-03 5.1823E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.6300E-02 1.6300E-02 1.7917E-02 1.9693E-02 1.9693E-02 2.0000E-02 2.0472E-02 2.0472E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.0965E-01 1.0965E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3272E+01 5.5091E+01 1.4710E+01 1.3060E+01 1.3060E+01 1.2965E+01 1.2860E+01 1.2860E+01 1.2629E+01 1.1964E+01 1.0706E+01 1.0322E+01 1.0322E+01 1.0233E+01 1.0143E+01 1.0143E+01 9.5897E+00 9.5430E+00 9.5430E+00 9.1671E+00 8.7774E+00 8.7774E+00 8.6243E+00 8.4608E+00 8.4608E+00 7.7886E+00 6.4260E+00 5.3775E+00 3.6386E+00 3.3220E+00 3.3220E+00 2.9799E+00 2.6628E+00 2.6628E+00 2.6135E+00 2.5390E+00 2.5390E+00 1.5388E+00 1.0345E+00 7.4408E-01 5.5903E-01 3.5115E-01 2.4355E-01 2.0864E-01 2.0864E-01 1.2144E-01 7.2669E-02 4.8555E-02 3.4829E-02 2.6233E-02 2.0474E-02 1.6420E-02 1.3459E-02 1.1232E-02 9.5145E-03 8.1626E-03 6.1991E-03 5.4735E-03 4.8686E-03 3.9239E-03 3.5504E-03 3.4025E-03 2.2971E-03 2.1275E-03 1.8396E-03 1.6060E-03 1.4140E-03 1.1206E-03 9.1044E-04 8.7229E-04 7.5455E-04 5.4177E-04 4.0747E-04 2.2974E-04 1.4723E-04 1.0231E-04 7.5212E-05 5.7590E-05 4.5522E-05 3.6880E-05 3.0469E-05 2.5613E-05 2.1824E-05 1.8819E-05 1.6395E-05 1.4409E-05 1.1386E-05 9.2238E-06 7.6225E-06 6.4053E-06 5.4580E-06 4.7053E-06 4.1006E-06 2.3059E-06 1.4760E-06 1.0249E-06 5.7642E-07 3.6905E-07 1.6400E-07 9.2238E-08 4.1006E-08 2.3062E-08 1.4760E-08 1.0249E-08 5.7642E-09 3.6905E-09 1.6400E-09 9.2238E-10 4.1006E-10 2.3062E-10 1.4760E-10 1.0249E-10 5.7642E-11 3.6905E-11 1.6400E-11 9.2238E-12 4.1006E-12 2.3062E-12 1.4760E-12 1.0249E-12 5.7642E-13 3.6905E-13 INCOHERENT SCATTERING CROSS SECTION 4.8065E-03 7.3799E+02 2.9056E-03 5.8706E-03 5.8706E-03 6.3429E-03 6.8413E-03 6.8413E-03 7.8846E-03 1.0859E-02 1.6558E-02 1.8375E-02 1.8375E-02 1.8796E-02 1.9224E-02 1.9224E-02 2.1855E-02 2.2086E-02 2.2086E-02 2.3928E-02 2.5873E-02 2.5873E-02 2.6654E-02 2.7458E-02 2.7458E-02 3.0884E-02 3.8307E-02 4.4821E-02 5.7824E-02 6.0497E-02 6.0497E-02 6.3514E-02 6.6440E-02 6.6440E-02 6.6907E-02 6.7634E-02 6.7634E-02 7.9053E-02 8.6554E-02 9.1122E-02 9.3795E-02 9.5845E-02 9.5741E-02 9.5300E-02 9.5300E-02 9.2108E-02 8.7281E-02 8.2610E-02 7.8405E-02 7.4690E-02 7.1397E-02 6.8459E-02 6.5817E-02 6.3426E-02 6.1250E-02 5.9258E-02 5.5745E-02 5.4190E-02 5.2748E-02 5.0116E-02 4.8896E-02 4.8377E-02 4.3835E-02 4.2980E-02 4.1381E-02 3.9916E-02 3.8571E-02 3.6184E-02 3.4128E-02 3.3713E-02 3.2331E-02 2.9319E-02 2.6888E-02 2.2439E-02 1.9387E-02 1.7140E-02 1.5406E-02 1.4023E-02 1.2891E-02 1.1944E-02 1.1142E-02 1.0449E-02 9.8441E-03 9.3120E-03 8.8423E-03 8.4192E-03 7.6951E-03 7.0982E-03 6.5921E-03 6.1613E-03 5.7850E-03 5.4580E-03 5.1673E-03 4.1058E-03 3.4284E-03 2.9535E-03 2.3290E-03 1.9333E-03 1.3768E-03 1.0794E-03 7.6510E-04 5.9926E-04 4.9597E-04 4.2459E-04 3.3168E-04 2.7277E-04 1.9057E-04 1.4749E-04 1.0254E-04 7.9157E-05 6.4727E-05 5.4891E-05 4.2278E-05 3.4518E-05 2.3859E-05 1.8344E-05 1.2650E-05 9.7117E-06 7.9079E-06 6.6856E-06 5.1258E-06 4.1707E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.5999E+03 4.5009E+05 2.3529E+04 4.9649E+03 5.0349E+03 4.4457E+03 3.9267E+03 4.0046E+03 3.1481E+03 1.7295E+03 7.0723E+02 5.5670E+02 1.3833E+03 1.2967E+03 1.2154E+03 1.7391E+03 1.2434E+03 1.2076E+03 1.4051E+03 1.1256E+03 9.0162E+02 9.5664E+02 8.7904E+02 8.0455E+02 8.3933E+02 5.8680E+02 2.8730E+02 1.6351E+02 5.7720E+01 4.6534E+01 1.1225E+02 8.6779E+01 6.7115E+01 9.5975E+01 9.0992E+01 8.5905E+01 9.9193E+01 3.7295E+01 1.7529E+01 9.6831E+00 5.9381E+00 2.7303E+00 1.4908E+00 1.1609E+00 5.0323E+00 2.2584E+00 1.0739E+00 6.0479E-01 3.8073E-01 2.5925E-01 1.8707E-01 1.4112E-01 1.1022E-01 8.8515E-02 7.2721E-02 6.0889E-02 4.4663E-02 3.8956E-02 3.4319E-02 2.7320E-02 2.4643E-02 2.3597E-02 1.5946E-02 1.4800E-02 1.2877E-02 1.1339E-02 1.0091E-02 8.2031E-03 6.8517E-03 6.6051E-03 5.8443E-03 4.4620E-03 3.5712E-03 2.3322E-03 1.7056E-03 1.3345E-03 1.0913E-03 9.2108E-04 7.9521E-04 6.9892E-04 6.2314E-04 5.6163E-04 5.1128E-04 4.6872E-04 4.3290E-04 4.0202E-04 3.5167E-04 3.1222E-04 2.8081E-04 2.5517E-04 2.3373E-04 2.1559E-04 2.0005E-04 1.4700E-04 1.1611E-04 9.5949E-05 7.1216E-05 5.6604E-05 3.7425E-05 2.7926E-05 1.8544E-05 1.3877E-05 1.1087E-05 9.2316E-06 6.9165E-06 5.5280E-06 3.6828E-06 2.7614E-06 1.8398E-06 1.3797E-06 1.1035E-06 9.1952E-07 6.8958E-07 5.5151E-07 3.6776E-07 2.7588E-07 1.8383E-07 1.3786E-07 1.1030E-07 9.1926E-08 6.8932E-08 5.5151E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.3212E-04 6.8666E-04 1.3382E-03 2.1170E-03 2.9510E-03 4.6229E-03 6.2340E-03 6.5843E-03 7.7894E-03 1.0601E-02 1.3088E-02 1.8432E-02 2.2891E-02 2.6732E-02 3.0106E-02 3.3168E-02 3.5971E-02 3.8541E-02 4.0928E-02 4.3160E-02 4.5236E-02 4.7183E-02 4.9000E-02 5.0713E-02 5.3775E-02 5.6526E-02 5.9044E-02 6.1327E-02 6.3404E-02 6.5324E-02 6.7089E-02 7.4252E-02 7.9599E-02 8.3725E-02 8.9824E-02 9.4106E-02 1.0088E-01 1.0490E-01 1.0960E-01 1.1227E-01 1.1404E-01 1.1531E-01 1.1697E-01 1.1806E-01 1.1964E-01 1.2050E-01 1.2144E-01 1.2193E-01 1.2224E-01 1.2247E-01 1.2276E-01 1.2291E-01 1.2317E-01 1.2330E-01 1.2346E-01 1.2354E-01 1.2359E-01 1.2362E-01 1.2364E-01 1.2367E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.0044E-08 2.6678E-06 9.3899E-06 3.8255E-05 7.6069E-05 1.1658E-04 1.5684E-04 1.9571E-04 2.3283E-04 2.6810E-04 3.0106E-04 3.3246E-04 3.6179E-04 3.8956E-04 4.1603E-04 4.4095E-04 4.8688E-04 5.2867E-04 5.6682E-04 6.0160E-04 6.3378E-04 6.6336E-04 6.9087E-04 8.0377E-04 8.8864E-04 9.5534E-04 1.0547E-03 1.1266E-03 1.2439E-03 1.3169E-03 1.4054E-03 1.4581E-03 1.4941E-03 1.5203E-03 1.5567E-03 1.5808E-03 1.6169E-03 1.6371E-03 1.6594E-03 1.6727E-03 1.6807E-03 1.6864E-03 1.6940E-03 1.6989E-03 1.7054E-03 1.7093E-03 1.7127E-03 1.7152E-03 1.7165E-03 1.7173E-03 1.7184E-03 1.7191E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Ti.mat0000644000000000000000000001666214741736366017712 0ustar00rootrootTi 1 22 1.000000 2 8 90 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.9664E-03 4.9664E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.6915E+00 3.8236E+01 4.4255E+00 3.3871E+00 3.0928E+00 2.5809E+00 2.1571E+00 1.8237E+00 1.8237E+00 1.8137E+00 1.5408E+00 1.1600E+00 9.2030E-01 5.8536E-01 4.0060E-01 2.1696E-01 1.3710E-01 9.5275E-02 7.0246E-02 4.2638E-02 2.8501E-02 1.3395E-02 7.7490E-03 5.0393E-03 3.5343E-03 2.6136E-03 2.0099E-03 1.5928E-03 1.2930E-03 1.0704E-03 9.0068E-04 7.6828E-04 5.7797E-04 5.0826E-04 4.5042E-04 3.6084E-04 3.2576E-04 3.1192E-04 2.0866E-04 1.9295E-04 1.6643E-04 1.4502E-04 1.2748E-04 1.0073E-04 8.1603E-05 7.8132E-05 6.7458E-05 4.8308E-05 3.6286E-05 2.0413E-05 1.3068E-05 9.0735E-06 6.6661E-06 5.1040E-06 4.0324E-06 3.2664E-06 2.6991E-06 2.2677E-06 1.9332E-06 1.6665E-06 1.4515E-06 1.2754E-06 1.0081E-06 8.1666E-07 6.7491E-07 5.6712E-07 4.8323E-07 4.1669E-07 3.6299E-07 2.0413E-07 1.3068E-07 9.0735E-08 5.1040E-08 3.2664E-08 1.4515E-08 8.1654E-09 3.6286E-09 2.0413E-09 1.3068E-09 9.0735E-10 5.1040E-10 3.2664E-10 1.4515E-10 8.1654E-11 3.6286E-11 2.0413E-11 1.3068E-11 9.0735E-12 5.1040E-12 3.2664E-12 1.4515E-12 8.1654E-13 3.6286E-13 2.0413E-13 1.3068E-13 9.0735E-14 5.1040E-14 3.2664E-14 INCOHERENT SCATTERING CROSS SECTION 1.1819E-02 4.9067E-02 5.4368E-03 1.9495E-02 2.6186E-02 3.8374E-02 4.9405E-02 5.8838E-02 5.8838E-02 5.9140E-02 6.7692E-02 8.1578E-02 9.1929E-02 1.0898E-01 1.1964E-01 1.3081E-01 1.3496E-01 1.3609E-01 1.3571E-01 1.3307E-01 1.2917E-01 1.1918E-01 1.1037E-01 1.0300E-01 9.6835E-02 9.1598E-02 8.7087E-02 8.3151E-02 7.9679E-02 7.6587E-02 7.3805E-02 7.1281E-02 6.6862E-02 6.4913E-02 6.3108E-02 5.9864E-02 5.8398E-02 5.7781E-02 5.2247E-02 5.1205E-02 4.9265E-02 4.7493E-02 4.5865E-02 4.2988E-02 4.0537E-02 4.0047E-02 3.8410E-02 3.4816E-02 3.1909E-02 2.6614E-02 2.2992E-02 2.0313E-02 1.8263E-02 1.6615E-02 1.5282E-02 1.4150E-02 1.3206E-02 1.2381E-02 1.1664E-02 1.1036E-02 1.0477E-02 9.9765E-03 9.1187E-03 8.4081E-03 7.8107E-03 7.2988E-03 6.8535E-03 6.4649E-03 6.1215E-03 4.8650E-03 4.0600E-03 3.4991E-03 2.7595E-03 2.2904E-03 1.6313E-03 1.2791E-03 9.0634E-04 7.0988E-04 5.8762E-04 5.0310E-04 3.9292E-04 3.2324E-04 2.2577E-04 1.7470E-04 1.2149E-04 9.3778E-05 7.6673E-05 6.5013E-05 5.0096E-05 4.0902E-05 2.8262E-05 2.1734E-05 1.4980E-05 1.1505E-05 9.3690E-06 7.9201E-06 6.0724E-06 4.9405E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 5.8649E+03 2.0421E+06 3.4153E+04 2.0929E+03 9.8294E+02 3.2966E+02 1.4955E+02 8.1918E+01 6.8585E+02 6.8196E+02 4.3078E+02 2.0112E+02 1.0966E+02 3.5179E+01 1.5332E+01 4.6235E+00 1.9407E+00 9.8206E-01 5.6008E-01 2.2954E-01 1.1441E-01 3.2287E-02 1.3269E-02 6.7353E-03 3.9179E-03 2.5064E-03 1.7194E-03 1.2442E-03 9.3980E-04 7.3494E-04 5.9014E-04 4.8391E-04 3.4526E-04 2.9997E-04 2.6482E-04 2.1006E-04 1.8653E-04 1.7684E-04 1.1969E-04 1.1167E-04 9.7762E-05 8.6420E-05 7.7230E-05 6.3377E-05 5.3467E-05 5.1656E-05 4.6061E-05 3.5841E-05 2.9180E-05 1.9722E-05 1.4804E-05 1.1808E-05 9.8067E-06 8.3779E-06 7.3076E-06 6.4787E-06 5.8159E-06 5.2763E-06 4.8273E-06 4.4474E-06 4.1229E-06 3.8424E-06 3.3821E-06 3.0199E-06 2.7281E-06 2.4866E-06 2.2853E-06 2.1130E-06 1.9659E-06 1.4565E-06 1.1566E-06 9.5916E-07 7.1491E-07 5.6976E-07 3.7796E-07 2.8274E-07 1.8803E-07 1.4087E-07 1.1261E-07 9.3791E-08 7.0296E-08 5.6222E-08 3.7456E-08 2.8086E-08 1.8715E-08 1.4037E-08 1.1229E-08 9.3577E-09 7.0183E-09 5.6146E-09 3.7431E-09 2.8073E-09 1.8715E-09 1.4037E-09 1.1227E-09 9.3552E-10 7.0170E-10 5.6134E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 5.5681E-05 8.8745E-05 1.7640E-04 2.8954E-04 4.2472E-04 7.4860E-04 1.1237E-03 1.2107E-03 1.5246E-03 2.3370E-03 3.1343E-03 5.0285E-03 6.7051E-03 8.2031E-03 9.5338E-03 1.0731E-02 1.1815E-02 1.2791E-02 1.3684E-02 1.4502E-02 1.5269E-02 1.5961E-02 1.6628E-02 1.7244E-02 1.8363E-02 1.9382E-02 2.0288E-02 2.1118E-02 2.1872E-02 2.2577E-02 2.3218E-02 2.5859E-02 2.7822E-02 2.9356E-02 3.1658E-02 3.3305E-02 3.5972E-02 3.7594E-02 3.9506E-02 4.0626E-02 4.1368E-02 4.1908E-02 4.2625E-02 4.3091E-02 4.3770E-02 4.4135E-02 4.4537E-02 4.4751E-02 4.4889E-02 4.4990E-02 4.5116E-02 4.5191E-02 4.5304E-02 4.5367E-02 4.5418E-02 4.5455E-02 4.5480E-02 4.5493E-02 4.5506E-02 4.5518E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0678E-07 3.1681E-06 1.1164E-05 4.5581E-05 9.0810E-05 1.3949E-04 1.8791E-04 2.3495E-04 2.8010E-04 3.2299E-04 3.6362E-04 4.0198E-04 4.3820E-04 4.7279E-04 5.0562E-04 5.3681E-04 5.9467E-04 6.4749E-04 6.9604E-04 7.4082E-04 7.8220E-04 8.2081E-04 8.5678E-04 1.0068E-03 1.1223E-03 1.2149E-03 1.3559E-03 1.4615E-03 1.6376E-03 1.7508E-03 1.8929E-03 1.9797E-03 2.0401E-03 2.0854E-03 2.1482E-03 2.1910E-03 2.2539E-03 2.2916E-03 2.3319E-03 2.3558E-03 2.3709E-03 2.3809E-03 2.3948E-03 2.4036E-03 2.4161E-03 2.4237E-03 2.4300E-03 2.4350E-03 2.4375E-03 2.4388E-03 2.4413E-03 2.4426E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Tl.mat0000644000000000000000000002174214741736366017710 0ustar00rootrootTl 1 81 1.000000 10 6 3 3 3 3 7 3 3 8 79 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.3893E-03 2.3893E-03 2.4367E-03 2.4851E-03 2.4851E-03 2.7106E-03 2.9566E-03 2.9566E-03 3.0000E-03 3.4157E-03 3.4157E-03 3.5570E-03 3.7041E-03 3.7041E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.2657E-02 1.2657E-02 1.3640E-02 1.4698E-02 1.4698E-02 1.5000E-02 1.5347E-02 1.5347E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 8.5530E-02 8.5530E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2390E+01 4.1237E+01 1.3509E+01 1.1904E+01 1.1347E+01 1.0887E+01 1.0887E+01 1.0841E+01 1.0793E+01 1.0793E+01 1.0537E+01 1.0242E+01 1.0242E+01 1.0192E+01 9.7264E+00 9.7264E+00 9.5724E+00 9.4140E+00 9.4140E+00 9.1017E+00 8.1294E+00 7.2867E+00 5.9342E+00 4.9206E+00 3.9129E+00 3.9129E+00 3.6188E+00 3.3325E+00 3.3325E+00 3.2559E+00 3.1734E+00 3.1734E+00 2.2991E+00 1.3551E+00 9.0398E-01 6.4263E-01 4.8087E-01 3.0231E-01 2.7072E-01 2.7072E-01 2.0867E-01 1.0277E-01 6.1316E-02 4.0884E-02 2.9241E-02 2.1951E-02 1.7081E-02 1.3665E-02 1.1179E-02 9.3138E-03 7.8789E-03 6.7514E-03 5.1170E-03 4.5140E-03 4.0118E-03 3.2293E-03 2.9209E-03 2.7989E-03 1.8852E-03 1.7451E-03 1.5079E-03 1.3159E-03 1.1584E-03 9.1765E-04 7.4458E-04 7.1305E-04 6.1606E-04 4.4190E-04 3.3236E-04 1.8731E-04 1.1998E-04 8.3356E-05 6.1258E-05 4.6908E-05 3.7067E-05 3.0025E-05 2.4821E-05 2.0858E-05 1.7773E-05 1.5325E-05 1.3351E-05 1.1733E-05 9.2726E-06 7.5106E-06 6.2053E-06 5.2153E-06 4.4433E-06 3.8334E-06 3.3384E-06 1.8778E-06 1.2019E-06 8.3445E-07 4.6938E-07 3.0054E-07 1.3353E-07 7.5106E-08 3.3384E-08 1.8775E-08 1.2016E-08 8.3445E-09 4.6938E-09 3.0054E-09 1.3353E-09 7.5106E-10 3.3384E-10 1.8775E-10 1.2016E-10 8.3445E-11 4.6938E-11 3.0054E-11 1.3354E-11 7.5106E-12 3.3384E-12 1.8775E-12 1.2016E-12 8.3445E-13 4.6938E-13 3.0054E-13 INCOHERENT SCATTERING CROSS SECTION 3.6183E-03 7.0691E-03 1.4016E-03 6.5854E-03 9.5172E-03 1.1730E-02 1.1730E-02 1.1976E-02 1.2225E-02 1.2225E-02 1.3440E-02 1.4783E-02 1.4783E-02 1.5012E-02 1.7175E-02 1.7175E-02 1.7899E-02 1.8648E-02 1.8648E-02 2.0136E-02 2.4983E-02 2.9612E-02 3.8157E-02 4.5523E-02 5.3508E-02 5.3508E-02 5.6077E-02 5.8665E-02 5.8665E-02 5.9372E-02 6.0167E-02 6.0167E-02 6.9243E-02 8.2679E-02 9.0605E-02 9.5172E-02 9.7706E-02 9.9532E-02 9.9621E-02 9.9621E-02 9.9238E-02 9.5083E-02 8.9868E-02 8.4931E-02 8.0528E-02 7.6649E-02 7.3220E-02 7.0170E-02 6.7445E-02 6.4995E-02 6.2760E-02 6.0702E-02 5.7059E-02 5.5453E-02 5.3970E-02 5.1278E-02 5.0031E-02 4.9501E-02 4.4846E-02 4.3963E-02 4.2311E-02 4.0809E-02 3.9446E-02 3.7026E-02 3.4886E-02 3.4444E-02 3.2995E-02 2.9925E-02 2.7476E-02 2.2933E-02 1.9809E-02 1.7514E-02 1.5743E-02 1.4329E-02 1.3174E-02 1.2204E-02 1.1385E-02 1.0678E-02 1.0059E-02 9.5172E-03 9.0339E-03 8.6038E-03 7.8642E-03 7.2513E-03 6.7357E-03 6.2937E-03 5.9107E-03 5.5748E-03 5.2801E-03 4.1958E-03 3.5034E-03 3.0172E-03 2.3799E-03 1.9753E-03 1.4067E-03 1.1029E-03 7.8170E-04 6.1228E-04 5.0680E-04 4.3402E-04 3.3885E-04 2.7883E-04 1.9470E-04 1.5071E-04 1.0478E-04 8.0881E-05 6.6119E-05 5.6072E-05 4.3196E-05 3.5270E-05 2.4379E-05 1.8743E-05 1.2926E-05 9.9238E-06 8.0822E-06 6.8300E-06 5.2389E-06 4.2606E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.9943E+03 4.6656E+05 1.9575E+04 2.2473E+03 1.2198E+03 8.2443E+02 1.1211E+03 1.5083E+03 2.0290E+03 2.3448E+03 2.1367E+03 1.9470E+03 2.2552E+03 2.1783E+03 1.5811E+03 1.6771E+03 1.5228E+03 1.3828E+03 1.4426E+03 1.2031E+03 6.9861E+02 4.4433E+02 2.1483E+02 1.2107E+02 6.5589E+01 1.6533E+02 1.3514E+02 1.1049E+02 1.5378E+02 1.4635E+02 1.3834E+02 1.5991E+02 8.1235E+01 2.7850E+01 1.2856E+01 7.0127E+00 4.2606E+00 1.9305E+00 1.6052E+00 7.6756E+00 5.0886E+00 1.7591E+00 8.1824E-01 4.5381E-01 2.8248E-01 1.9054E-01 1.3639E-01 1.0220E-01 7.9378E-02 6.3464E-02 5.1947E-02 4.3354E-02 3.1639E-02 2.7547E-02 2.4235E-02 1.9256E-02 1.7355E-02 1.6612E-02 1.1206E-02 1.0402E-02 9.0572E-03 7.9820E-03 7.1079E-03 5.7813E-03 4.8293E-03 4.6555E-03 4.1200E-03 3.1499E-03 2.5251E-03 1.6536E-03 1.2122E-03 9.5024E-04 7.7817E-04 6.5736E-04 5.6838E-04 5.0002E-04 4.4580E-04 4.0220E-04 3.6625E-04 3.3619E-04 3.1027E-04 2.8834E-04 2.5237E-04 2.2432E-04 2.0183E-04 1.8342E-04 1.6807E-04 1.5504E-04 1.4391E-04 1.0584E-04 8.3651E-05 6.9154E-05 5.1357E-05 4.0838E-05 2.6993E-05 2.0160E-05 1.3386E-05 1.0018E-05 8.0056E-06 6.6650E-06 4.9943E-06 3.9925E-06 2.6592E-06 1.9936E-06 1.3286E-06 9.9621E-07 7.9673E-07 6.6384E-07 4.9796E-07 3.9837E-07 2.6551E-07 1.9912E-07 1.3274E-07 9.9562E-08 7.9644E-08 6.6384E-08 4.9766E-08 3.9807E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.7096E-04 5.8375E-04 1.1230E-03 1.7673E-03 2.4663E-03 3.9103E-03 5.3479E-03 5.6632E-03 6.7588E-03 9.3830E-03 1.1762E-02 1.6933E-02 2.1265E-02 2.4998E-02 2.8280E-02 3.1233E-02 3.3944E-02 3.6419E-02 3.8687E-02 4.0838E-02 4.2842E-02 4.4698E-02 4.6437E-02 4.8057E-02 5.1004E-02 5.3597E-02 5.5983E-02 5.8134E-02 6.0138E-02 6.1935E-02 6.3615E-02 7.0421E-02 7.5489E-02 7.9408E-02 8.5183E-02 8.9249E-02 9.5673E-02 9.9474E-02 1.0389E-01 1.0640E-01 1.0808E-01 1.0926E-01 1.1082E-01 1.1182E-01 1.1329E-01 1.1409E-01 1.1497E-01 1.1541E-01 1.1571E-01 1.1591E-01 1.1618E-01 1.1636E-01 1.1659E-01 1.1671E-01 1.1686E-01 1.1692E-01 1.1695E-01 1.1698E-01 1.1703E-01 1.1706E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.1987E-08 2.7265E-06 9.5997E-06 3.9129E-05 7.7817E-05 1.1927E-04 1.6050E-04 2.0033E-04 2.3837E-04 2.7444E-04 3.0850E-04 3.4061E-04 3.7067E-04 3.9925E-04 4.2636E-04 4.5199E-04 4.9943E-04 5.4245E-04 5.8164E-04 6.1758E-04 6.5059E-04 6.8123E-04 7.0951E-04 8.2620E-04 9.1400E-04 9.8295E-04 1.0858E-03 1.1597E-03 1.2808E-03 1.3554E-03 1.4458E-03 1.4995E-03 1.5357E-03 1.5622E-03 1.5985E-03 1.6226E-03 1.6583E-03 1.6783E-03 1.7001E-03 1.7128E-03 1.7208E-03 1.7261E-03 1.7334E-03 1.7378E-03 1.7440E-03 1.7479E-03 1.7511E-03 1.7535E-03 1.7549E-03 1.7555E-03 1.7564E-03 1.7573E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Tm.mat0000644000000000000000000002163214741736366017707 0ustar00rootrootTm 1 69 1.000000 10 4 3 3 3 3 7 3 3 7 81 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.4677E-03 1.4677E-03 1.5000E-03 1.5146E-03 1.5146E-03 1.6895E-03 1.8845E-03 1.8845E-03 2.0000E-03 2.0898E-03 2.0898E-03 2.1956E-03 2.3068E-03 2.3068E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.6480E-03 8.6480E-03 9.1196E-03 9.6169E-03 9.6169E-03 1.0000E-02 1.0116E-02 1.0116E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 5.9390E-02 5.9390E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0780E+01 5.7308E+01 1.1925E+01 1.0352E+01 1.0352E+01 1.0320E+01 1.0306E+01 1.0306E+01 1.0137E+01 9.9457E+00 9.9457E+00 9.8281E+00 9.7354E+00 9.7354E+00 9.6269E+00 9.5144E+00 9.5144E+00 8.8335E+00 7.8675E+00 6.9870E+00 6.2170E+00 4.9800E+00 4.6520E+00 4.6520E+00 4.4327E+00 4.2171E+00 4.2171E+00 4.0603E+00 4.0139E+00 4.0139E+00 2.6169E+00 1.8548E+00 1.0955E+00 7.1688E-01 5.0691E-01 3.8642E-01 3.8642E-01 3.8036E-01 2.3856E-01 1.6312E-01 7.9602E-02 4.7376E-02 3.1474E-02 2.2419E-02 1.6766E-02 1.3004E-02 1.0379E-02 8.4735E-03 7.0474E-03 5.9532E-03 5.0958E-03 3.8560E-03 3.3990E-03 3.0184E-03 2.4262E-03 2.1934E-03 2.1014E-03 1.4127E-03 1.3072E-03 1.1287E-03 9.8459E-04 8.6672E-04 6.8651E-04 5.5611E-04 5.3222E-04 4.5914E-04 3.2924E-04 2.4782E-04 1.3956E-04 8.9369E-05 6.2063E-05 4.5629E-05 3.4928E-05 2.7599E-05 2.2355E-05 1.8476E-05 1.5525E-05 1.3229E-05 1.1407E-05 9.9386E-06 8.7337E-06 6.9014E-06 5.5896E-06 4.6200E-06 3.8820E-06 3.3078E-06 2.8522E-06 2.4847E-06 1.3978E-06 8.9440E-07 6.2099E-07 3.4938E-07 2.2362E-07 9.9386E-08 5.5896E-08 2.4847E-08 1.3974E-08 8.9440E-09 6.2099E-09 3.4938E-09 2.2362E-09 9.9386E-10 5.5896E-10 2.4847E-10 1.3974E-10 8.9440E-11 6.2099E-11 3.4938E-11 2.2362E-11 9.9386E-12 5.5896E-12 2.4847E-12 1.3974E-12 8.9440E-13 6.2099E-13 3.4938E-13 2.2362E-13 INCOHERENT SCATTERING CROSS SECTION 4.9158E-03 1.1283E-03 2.1254E-03 7.9388E-03 7.9388E-03 8.1491E-03 8.2418E-03 8.2418E-03 9.3527E-03 1.0598E-02 1.0598E-02 1.1336E-02 1.1910E-02 1.1910E-02 1.2585E-02 1.3293E-02 1.3293E-02 1.7685E-02 2.3663E-02 2.9188E-02 3.4222E-02 4.2956E-02 4.5451E-02 4.5451E-02 4.7187E-02 4.8980E-02 4.8980E-02 5.0335E-02 5.0727E-02 5.0727E-02 6.4986E-02 7.6001E-02 9.0046E-02 9.7604E-02 1.0174E-01 1.0384E-01 1.0384E-01 1.0395E-01 1.0527E-01 1.0452E-01 9.9422E-02 9.3611E-02 8.8289E-02 8.3594E-02 7.9477E-02 7.5859E-02 7.2658E-02 6.9798E-02 6.7221E-02 6.4879E-02 6.2739E-02 5.8962E-02 5.7286E-02 5.5730E-02 5.2924E-02 5.1654E-02 5.1119E-02 4.6271E-02 4.5355E-02 4.3653E-02 4.2100E-02 4.0674E-02 3.8144E-02 3.5969E-02 3.5530E-02 3.4071E-02 3.0892E-02 2.8329E-02 2.3642E-02 2.0419E-02 1.8052E-02 1.6227E-02 1.4769E-02 1.3578E-02 1.2580E-02 1.1735E-02 1.1004E-02 1.0366E-02 9.8067E-03 9.3112E-03 8.8692E-03 8.1063E-03 7.4753E-03 6.9406E-03 6.4879E-03 6.0922E-03 5.7464E-03 5.4399E-03 4.3241E-03 3.6111E-03 3.1099E-03 2.4526E-03 2.0358E-03 1.4498E-03 1.1368E-03 8.0564E-04 6.3097E-04 5.2224E-04 4.4738E-04 3.4928E-04 2.8736E-04 2.0066E-04 1.5532E-04 1.0798E-04 8.3345E-05 6.8159E-05 5.7785E-05 4.4524E-05 3.6361E-05 2.5125E-05 1.9318E-05 1.3322E-05 1.0227E-05 8.3273E-06 7.0404E-06 5.3971E-06 4.3918E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 2.8882E+03 2.7501E+05 1.1384E+04 1.3521E+03 1.8448E+03 3.9248E+03 4.1351E+03 4.8196E+03 4.1996E+03 3.6575E+03 4.2421E+03 3.6753E+03 3.3167E+03 3.5241E+03 3.1483E+03 2.8126E+03 2.9363E+03 1.5849E+03 7.8675E+02 4.4988E+02 2.8294E+02 1.3464E+02 1.0987E+02 2.9445E+02 2.5634E+02 2.2316E+02 3.0589E+02 2.7894E+02 2.7042E+02 3.1263E+02 1.1300E+02 5.2581E+01 1.7500E+01 7.9209E+00 4.2599E+00 2.6319E+00 1.4131E+01 1.3603E+01 6.3988E+00 3.5127E+00 1.1614E+00 5.2723E-01 2.8713E-01 1.7621E-01 1.1749E-01 8.3309E-02 6.1944E-02 4.7804E-02 3.8009E-02 3.0971E-02 2.5756E-02 1.8698E-02 1.6245E-02 1.4265E-02 1.1307E-02 1.0188E-02 9.7532E-03 6.5735E-03 6.1035E-03 5.3188E-03 4.6913E-03 4.1791E-03 3.4002E-03 2.8433E-03 2.7420E-03 2.4297E-03 1.8615E-03 1.4947E-03 9.8317E-04 7.2329E-04 5.6823E-04 4.6627E-04 3.9462E-04 3.4165E-04 3.0090E-04 2.6868E-04 2.4258E-04 2.2105E-04 2.0298E-04 1.8758E-04 1.7435E-04 1.5275E-04 1.3585E-04 1.2231E-04 1.1122E-04 1.0195E-04 9.4110E-05 8.7373E-05 6.4344E-05 5.0905E-05 4.2100E-05 3.1270E-05 2.4871E-05 1.6455E-05 1.2295E-05 8.1634E-06 6.1100E-06 4.8838E-06 4.0674E-06 3.0468E-06 2.4358E-06 1.6227E-06 1.2167E-06 8.1063E-07 6.0780E-07 4.8624E-07 4.0532E-07 3.0386E-07 2.4308E-07 1.6206E-07 1.2152E-07 8.1028E-08 6.0744E-08 4.8624E-08 4.0496E-08 3.0379E-08 2.4301E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.9017E-04 4.5215E-04 8.5922E-04 1.3475E-03 1.8875E-03 3.0481E-03 4.2528E-03 4.5201E-03 5.4605E-03 7.7793E-03 9.9422E-03 1.4733E-02 1.8786E-02 2.2273E-02 2.5353E-02 2.8115E-02 3.0629E-02 3.2935E-02 3.5067E-02 3.7038E-02 3.8892E-02 4.0638E-02 4.2207E-02 4.3704E-02 4.6413E-02 4.8802E-02 5.0976E-02 5.2973E-02 5.4755E-02 5.6430E-02 5.7963E-02 6.4202E-02 6.8836E-02 7.2436E-02 7.7748E-02 8.1491E-02 8.7408E-02 9.0902E-02 9.5001E-02 9.7319E-02 9.8851E-02 9.9957E-02 1.0142E-01 1.0234E-01 1.0370E-01 1.0445E-01 1.0523E-01 1.0566E-01 1.0595E-01 1.0612E-01 1.0637E-01 1.0652E-01 1.0677E-01 1.0687E-01 1.0698E-01 1.0705E-01 1.0709E-01 1.0712E-01 1.0716E-01 1.0716E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.4885E-08 2.8120E-06 9.8994E-06 4.0353E-05 8.0315E-05 1.2316E-04 1.6576E-04 2.0697E-04 2.4633E-04 2.8369E-04 3.1898E-04 3.5224E-04 3.8357E-04 4.1316E-04 4.4132E-04 4.6806E-04 5.1725E-04 5.6217E-04 6.0316E-04 6.4059E-04 6.7517E-04 7.0725E-04 7.3684E-04 8.5947E-04 9.5180E-04 1.0245E-03 1.1332E-03 1.2117E-03 1.3407E-03 1.4209E-03 1.5182E-03 1.5760E-03 1.6156E-03 1.6444E-03 1.6844E-03 1.7107E-03 1.7500E-03 1.7721E-03 1.7967E-03 1.8109E-03 1.8198E-03 1.8259E-03 1.8341E-03 1.8391E-03 1.8462E-03 1.8505E-03 1.8544E-03 1.8569E-03 1.8583E-03 1.8594E-03 1.8601E-03 1.8612E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/U.mat0000644000000000000000000002277214741736366017541 0ustar00rootrootU 1 92 1.000000 13 4 3 3 5 3 3 3 3 6 3 3 8 78 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0449E-03 1.0449E-03 1.1531E-03 1.2726E-03 1.2726E-03 1.3541E-03 1.4408E-03 1.4408E-03 1.5000E-03 2.0000E-03 3.0000E-03 3.5517E-03 3.5517E-03 3.6386E-03 3.7276E-03 3.7276E-03 4.0000E-03 4.3034E-03 4.3034E-03 5.0000E-03 5.1822E-03 5.1822E-03 5.3620E-03 5.5480E-03 5.5480E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.7166E-02 1.7166E-02 2.0000E-02 2.0948E-02 2.0948E-02 2.1349E-02 2.1757E-02 2.1757E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.1561E-01 1.1561E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.3568E+01 1.2763E+02 1.5256E+01 1.3515E+01 1.3515E+01 1.3391E+01 1.3247E+01 1.3247E+01 1.3142E+01 1.3027E+01 1.3027E+01 1.2949E+01 1.2296E+01 1.1018E+01 1.0360E+01 1.0360E+01 1.0260E+01 1.0158E+01 1.0158E+01 9.8544E+00 9.5305E+00 9.5305E+00 8.8398E+00 8.6703E+00 8.6703E+00 8.5087E+00 8.3465E+00 8.3465E+00 7.9695E+00 6.5679E+00 5.4977E+00 3.7343E+00 3.2182E+00 3.2182E+00 2.6894E+00 2.5401E+00 2.5401E+00 2.4817E+00 2.4245E+00 2.4245E+00 1.5848E+00 1.0654E+00 7.6811E-01 5.7811E-01 3.6306E-01 2.5191E-01 1.9744E-01 1.9744E-01 1.2597E-01 7.5445E-02 5.0439E-02 3.6204E-02 2.7285E-02 2.1308E-02 1.7098E-02 1.4021E-02 1.1706E-02 9.9201E-03 8.5132E-03 6.4685E-03 5.7127E-03 5.0827E-03 4.0984E-03 3.7090E-03 3.5547E-03 2.4002E-03 2.2230E-03 1.9224E-03 1.6787E-03 1.4784E-03 1.1721E-03 9.5229E-04 9.1232E-04 7.8905E-04 5.6661E-04 4.2631E-04 2.4048E-04 1.5413E-04 1.0712E-04 7.8734E-05 6.0290E-05 4.7665E-05 3.8608E-05 3.1903E-05 2.6818E-05 2.2854E-05 1.9706E-05 1.7166E-05 1.5089E-05 1.1924E-05 9.6570E-06 7.9822E-06 6.7070E-06 5.7153E-06 4.9284E-06 4.2934E-06 2.4149E-06 1.5456E-06 1.0732E-06 6.0366E-07 3.8633E-07 1.7174E-07 9.6595E-08 4.2934E-08 2.4149E-08 1.5456E-08 1.0732E-08 6.0366E-09 3.8633E-09 1.7174E-09 9.6595E-10 4.2934E-10 2.4149E-10 1.5456E-10 1.0732E-10 6.0366E-11 3.8633E-11 1.7174E-11 9.6595E-12 4.2934E-12 2.4149E-12 1.5456E-12 1.0732E-12 6.0366E-13 3.8633E-13 INCOHERENT SCATTERING CROSS SECTION 4.5262E-03 4.5960E+14 5.7419E-03 4.7944E-03 4.7944E-03 5.4284E-03 6.1201E-03 6.1201E-03 6.5971E-03 7.1068E-03 7.1068E-03 7.4534E-03 1.0343E-02 1.5952E-02 1.8886E-02 1.8886E-02 1.9335E-02 1.9790E-02 1.9790E-02 2.1158E-02 2.2644E-02 2.2644E-02 2.5882E-02 2.6666E-02 2.6666E-02 2.7441E-02 2.8235E-02 2.8235E-02 3.0082E-02 3.7469E-02 4.3971E-02 5.7052E-02 6.1428E-02 6.1428E-02 6.6261E-02 6.7703E-02 6.7703E-02 6.8297E-02 6.8892E-02 6.8892E-02 7.8329E-02 8.5767E-02 9.0346E-02 9.3053E-02 9.5179E-02 9.5103E-02 9.4344E-02 9.4344E-02 9.1586E-02 8.6830E-02 8.2220E-02 7.8051E-02 7.4349E-02 7.1068E-02 6.8147E-02 6.5527E-02 6.3157E-02 6.0998E-02 5.9020E-02 5.5520E-02 5.3965E-02 5.2519E-02 4.9900E-02 4.8703E-02 4.8197E-02 4.3668E-02 4.2812E-02 4.1220E-02 3.9772E-02 3.8449E-02 3.6090E-02 3.4003E-02 3.3573E-02 3.2163E-02 2.9178E-02 2.6793E-02 2.2360E-02 1.9317E-02 1.7078E-02 1.5352E-02 1.3973E-02 1.2845E-02 1.1904E-02 1.1102E-02 1.0413E-02 9.8088E-03 9.2800E-03 8.8095E-03 8.3895E-03 7.6684E-03 7.0714E-03 6.5679E-03 6.1378E-03 5.7633E-03 5.4370E-03 5.1486E-03 4.0910E-03 3.4155E-03 2.9424E-03 2.3210E-03 1.9263E-03 1.3718E-03 1.0755E-03 7.6229E-04 5.9708E-04 4.9436E-04 4.2327E-04 3.3042E-04 2.7198E-04 1.8990E-04 1.4697E-04 1.0219E-04 7.8885E-05 6.4490E-05 5.4699E-05 4.2125E-05 3.4408E-05 2.3774E-05 1.8279E-05 1.2607E-05 9.6773E-06 7.8810E-06 6.6615E-06 5.1081E-06 4.1568E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.6134E+03 4.0381E+05 2.2804E+04 6.1150E+03 6.5072E+03 5.4186E+03 4.5135E+03 4.5768E+03 4.0498E+03 3.5850E+03 3.6559E+03 3.3674E+03 1.8527E+03 7.5824E+02 5.1536E+02 1.2554E+03 1.1760E+03 1.1018E+03 1.5716E+03 1.3189E+03 1.1008E+03 1.2820E+03 8.8019E+02 8.0302E+02 8.5236E+02 7.8333E+02 7.1979E+02 7.5065E+02 6.2036E+02 3.0411E+02 1.7356E+02 6.1479E+01 4.3339E+01 1.0368E+02 6.8310E+01 6.0391E+01 8.5767E+01 8.1653E+01 7.7747E+01 8.9714E+01 3.9620E+01 1.8679E+01 1.0353E+01 6.3630E+00 2.9373E+00 1.6076E+00 1.0859E+00 4.6021E+00 2.3734E+00 1.1357E+00 6.4186E-01 4.0505E-01 2.7642E-01 1.9984E-01 1.5099E-01 1.1808E-01 9.4931E-02 7.8076E-02 6.5437E-02 4.8058E-02 4.1922E-02 3.6926E-02 2.9399E-02 2.6540E-02 2.5427E-02 1.7184E-02 1.5947E-02 1.3876E-02 1.2220E-02 1.0875E-02 8.8376E-03 7.3800E-03 7.1144E-03 6.2949E-03 4.8058E-03 3.8456E-03 2.5093E-03 1.8345E-03 1.4348E-03 1.1732E-03 9.8948E-04 8.5438E-04 7.5090E-04 6.6919E-04 6.0315E-04 5.4876E-04 5.0322E-04 4.6476E-04 4.3137E-04 3.7722E-04 3.3523E-04 3.0132E-04 2.7375E-04 2.5075E-04 2.3127E-04 2.1459E-04 1.5764E-04 1.2453E-04 1.0290E-04 7.6355E-05 6.0695E-05 4.0101E-05 2.9955E-05 1.9878E-05 1.4876E-05 1.1883E-05 9.8948E-06 7.4129E-06 5.9253E-06 3.9468E-06 2.9601E-06 1.9719E-06 1.4788E-06 1.1828E-06 9.8544E-07 7.3901E-07 5.9126E-07 3.9417E-07 2.9550E-07 1.9704E-07 1.4778E-07 1.1823E-07 9.8518E-08 7.3876E-08 5.9101E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 4.4553E-04 7.0972E-04 1.3878E-03 2.1988E-03 3.0648E-03 4.7894E-03 6.4414E-03 6.8006E-03 8.0330E-03 1.0887E-02 1.3394E-02 1.8770E-02 2.3253E-02 2.7096E-02 3.0512E-02 3.3573E-02 3.6407E-02 3.8987E-02 4.1416E-02 4.3643E-02 4.5742E-02 4.7716E-02 4.9563E-02 5.1283E-02 5.4395E-02 5.7178E-02 5.9708E-02 6.2010E-02 6.4136E-02 6.6058E-02 6.7855E-02 7.5116E-02 8.0505E-02 8.4704E-02 9.0852E-02 9.5204E-02 1.0206E-01 1.0613E-01 1.1089E-01 1.1362E-01 1.1542E-01 1.1668E-01 1.1838E-01 1.1949E-01 1.2109E-01 1.2195E-01 1.2288E-01 1.2341E-01 1.2372E-01 1.2394E-01 1.2425E-01 1.2443E-01 1.2468E-01 1.2481E-01 1.2496E-01 1.2503E-01 1.2508E-01 1.2511E-01 1.2516E-01 1.2518E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 8.9671E-08 2.6576E-06 9.3559E-06 3.8127E-05 7.5799E-05 1.1613E-04 1.5623E-04 1.9494E-04 2.3190E-04 2.6691E-04 3.0006E-04 3.3092E-04 3.6027E-04 3.8785E-04 4.1416E-04 4.3896E-04 4.8475E-04 5.2649E-04 5.6419E-04 5.9885E-04 6.3073E-04 6.6033E-04 6.8765E-04 7.9999E-04 8.8424E-04 9.5052E-04 1.0494E-03 1.1205E-03 1.2369E-03 1.3093E-03 1.3966E-03 1.4487E-03 1.4844E-03 1.5102E-03 1.5458E-03 1.5696E-03 1.6050E-03 1.6250E-03 1.6468E-03 1.6599E-03 1.6678E-03 1.6733E-03 1.6807E-03 1.6855E-03 1.6916E-03 1.6954E-03 1.6989E-03 1.7012E-03 1.7027E-03 1.7035E-03 1.7045E-03 1.7052E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/V.mat0000644000000000000000000001666214741736366017543 0ustar00rootrootVanadium 1 23 1.000000 2 9 89 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 5.4651E-03 5.4651E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 3.8219E+00 3.7370E+01 4.5411E+00 3.5240E+00 3.2297E+00 2.7060E+00 2.2698E+00 1.9116E+00 1.7697E+00 1.7697E+00 1.6243E+00 1.2176E+00 9.6063E-01 6.0882E-01 4.1896E-01 2.2780E-01 1.4387E-01 9.9929E-02 7.3720E-02 4.4840E-02 3.0015E-02 1.4139E-02 8.1794E-03 5.3222E-03 5.3222E-03 3.7345E-03 2.1244E-03 1.6843E-03 1.3678E-03 1.1324E-03 9.5271E-04 8.1260E-04 6.1132E-04 5.3765E-04 4.7655E-04 3.8186E-04 3.4472E-04 3.3006E-04 2.2083E-04 2.0420E-04 1.7611E-04 1.5345E-04 1.3488E-04 1.0660E-04 8.6357E-05 8.2681E-05 7.1379E-05 5.1114E-05 3.8397E-05 2.1598E-05 1.3820E-05 9.6016E-06 7.0540E-06 5.4013E-06 4.2676E-06 3.4567E-06 2.8573E-06 2.4010E-06 2.0451E-06 1.7638E-06 1.5368E-06 1.3500E-06 1.0669E-06 8.6416E-07 7.1415E-07 6.0007E-07 5.1141E-07 4.4095E-07 3.8409E-07 2.1598E-07 1.3831E-07 9.6016E-08 5.4013E-08 3.4567E-08 1.5356E-08 8.6405E-09 3.8409E-09 2.1598E-09 1.3831E-09 9.6016E-10 5.4001E-10 3.4567E-10 1.5356E-10 8.6405E-11 3.8409E-11 2.1598E-11 1.3831E-11 9.6016E-12 5.4001E-12 3.4567E-12 1.5356E-12 8.6405E-13 3.8409E-13 2.1598E-13 1.3831E-13 9.6016E-14 5.4001E-14 3.4567E-14 INCOHERENT SCATTERING CROSS SECTION 1.0713E-02 5.0052E-02 4.8077E-03 1.7969E-02 2.4341E-02 3.5950E-02 4.6530E-02 5.5964E-02 5.9983E-02 5.9983E-02 6.4334E-02 7.8141E-02 8.8627E-02 1.0580E-01 1.1640E-01 1.2767E-01 1.3193E-01 1.3311E-01 1.3288E-01 1.3039E-01 1.2673E-01 1.1693E-01 1.0833E-01 1.0114E-01 1.0114E-01 9.5094E-02 8.5542E-02 8.1689E-02 7.8283E-02 7.5240E-02 7.2502E-02 7.0024E-02 6.5691E-02 6.3778E-02 6.2004E-02 5.8818E-02 5.7382E-02 5.6779E-02 5.1330E-02 5.0304E-02 4.8401E-02 4.6672E-02 4.5090E-02 4.2280E-02 3.9839E-02 3.9343E-02 3.7703E-02 3.4179E-02 3.1351E-02 2.6150E-02 2.2591E-02 1.9967E-02 1.7945E-02 1.6326E-02 1.5014E-02 1.3914E-02 1.2968E-02 1.2165E-02 1.1462E-02 1.0843E-02 1.0294E-02 9.8037E-03 8.9596E-03 8.2622E-03 7.6746E-03 7.1710E-03 6.7348E-03 6.3530E-03 6.0149E-03 4.7795E-03 3.9898E-03 3.4377E-03 2.7107E-03 2.2508E-03 1.6030E-03 1.2566E-03 8.9053E-04 6.9748E-04 5.7737E-04 4.9438E-04 3.8610E-04 3.1765E-04 2.2177E-04 1.7165E-04 1.1940E-04 9.2150E-05 7.5340E-05 6.3884E-05 4.9225E-05 4.0194E-05 2.7769E-05 2.1350E-05 1.4730E-05 1.1305E-05 9.2067E-06 7.7822E-06 5.9676E-06 4.8552E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 6.4913E+03 2.1405E+06 3.7186E+04 2.3383E+03 1.1027E+03 3.7156E+02 1.6893E+02 9.0944E+01 7.0930E+01 5.8517E+02 4.6707E+02 2.2036E+02 1.2070E+02 3.9106E+01 1.7141E+01 5.2086E+00 2.1965E+00 1.1144E+00 6.3719E-01 2.6185E-01 1.3098E-01 3.7108E-02 1.5285E-02 7.7721E-03 7.7721E-03 4.5265E-03 1.9896E-03 1.4408E-03 1.0889E-03 8.5177E-04 6.8412E-04 5.6118E-04 4.0053E-04 3.4791E-04 3.0697E-04 2.4342E-04 2.1634E-04 2.0522E-04 1.3890E-04 1.2957E-04 1.1341E-04 1.0024E-04 8.9549E-05 7.3441E-05 6.1957E-05 5.9865E-05 5.3386E-05 4.1506E-05 3.3763E-05 2.2804E-05 1.7094E-05 1.3642E-05 1.1322E-05 9.6701E-06 8.4336E-06 7.4748E-06 6.7088E-06 6.0858E-06 5.5668E-06 5.1294E-06 4.7547E-06 4.4308E-06 3.9000E-06 3.4815E-06 3.1446E-06 2.8668E-06 2.6339E-06 2.4353E-06 2.2650E-06 1.6787E-06 1.3323E-06 1.1049E-06 8.2350E-07 6.5634E-07 4.3527E-07 3.2569E-07 2.1657E-07 1.6219E-07 1.2968E-07 1.0800E-07 8.0955E-08 6.4735E-08 4.3137E-08 3.2344E-08 2.1563E-08 1.6160E-08 1.2933E-08 1.0775E-08 8.0813E-09 6.4653E-09 4.3102E-09 3.2320E-09 2.1551E-09 1.6160E-09 1.2933E-09 1.0773E-09 8.0801E-10 6.4641E-10 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 5.7950E-05 9.2225E-05 1.8289E-04 2.9968E-04 4.3914E-04 7.7304E-04 1.1590E-03 1.2484E-03 1.5706E-03 2.4053E-03 3.2250E-03 5.1696E-03 6.8897E-03 8.4241E-03 9.7883E-03 1.1015E-02 1.2129E-02 1.3134E-02 1.4044E-02 1.4883E-02 1.5664E-02 1.6385E-02 1.7059E-02 1.7685E-02 1.8844E-02 1.9872E-02 2.0806E-02 2.1657E-02 2.2438E-02 2.3147E-02 2.3809E-02 2.6504E-02 2.8526E-02 3.0098E-02 3.2439E-02 3.4129E-02 3.6848E-02 3.8503E-02 4.0454E-02 4.1600E-02 4.2345E-02 4.2889E-02 4.3610E-02 4.4083E-02 4.4769E-02 4.5135E-02 4.5549E-02 4.5762E-02 4.5904E-02 4.5998E-02 4.6116E-02 4.6199E-02 4.6305E-02 4.6365E-02 4.6436E-02 4.6459E-02 4.6483E-02 4.6495E-02 4.6518E-02 4.6530E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0497E-07 3.1139E-06 1.0971E-05 4.4780E-05 8.9218E-05 1.3701E-04 1.8465E-04 2.3088E-04 2.7521E-04 3.1729E-04 3.5725E-04 3.9496E-04 4.3055E-04 4.6447E-04 4.9663E-04 5.2725E-04 5.8399E-04 6.3589E-04 6.8353E-04 7.2751E-04 7.6805E-04 8.0588E-04 8.4123E-04 9.8841E-04 1.1015E-03 1.1928E-03 1.3311E-03 1.4328E-03 1.6054E-03 1.7165E-03 1.8536E-03 1.9376E-03 1.9967E-03 2.0392E-03 2.0995E-03 2.1409E-03 2.2024E-03 2.2367E-03 2.2757E-03 2.2993E-03 2.3135E-03 2.3230E-03 2.3360E-03 2.3442E-03 2.3561E-03 2.3632E-03 2.3702E-03 2.3738E-03 2.3762E-03 2.3773E-03 2.3797E-03 2.3809E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/W.mat0000644000000000000000000002205214741736366017532 0ustar00rootrootW 1 74 1.000000 10 5 3 3 3 3 8 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.8092E-03 1.8092E-03 1.8401E-03 1.8716E-03 1.8716E-03 2.0000E-03 2.2810E-03 2.2810E-03 2.4235E-03 2.5749E-03 2.5749E-03 2.6945E-03 2.8196E-03 2.8196E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.0207E-02 1.0207E-02 1.0855E-02 1.1544E-02 1.1544E-02 1.1819E-02 1.2100E-02 1.2100E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 6.9525E-02 6.9525E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.1445E+01 4.3486E+01 1.2569E+01 1.0963E+01 1.0639E+01 1.0639E+01 1.0605E+01 1.0570E+01 1.0570E+01 1.0429E+01 1.0118E+01 1.0118E+01 9.9718E+00 9.8169E+00 9.8169E+00 9.6899E+00 9.5548E+00 9.5548E+00 9.3616E+00 8.3691E+00 7.4814E+00 6.6953E+00 5.4178E+00 4.4482E+00 4.3631E+00 4.3631E+00 4.1077E+00 3.8586E+00 3.8586E+00 3.7663E+00 3.6752E+00 3.6752E+00 2.8861E+00 2.0358E+00 1.2038E+00 7.9367E-01 5.6143E-01 4.2058E-01 3.3182E-01 3.3182E-01 2.6421E-01 1.8147E-01 8.8768E-02 5.2900E-02 3.5203E-02 2.5117E-02 1.8812E-02 1.4609E-02 1.1670E-02 9.5352E-03 7.9363E-03 6.7084E-03 5.7453E-03 4.3505E-03 3.8357E-03 3.4067E-03 2.7392E-03 2.4770E-03 2.3735E-03 1.5965E-03 1.4775E-03 1.2761E-03 1.1134E-03 9.8007E-04 7.7626E-04 6.2924E-04 6.0238E-04 5.2001E-04 3.7294E-04 2.8062E-04 1.5805E-04 1.0122E-04 7.0327E-05 5.1656E-05 3.9569E-05 3.1265E-05 2.5327E-05 2.0931E-05 1.7590E-05 1.4989E-05 1.2925E-05 1.1258E-05 9.8955E-06 7.8188E-06 6.3317E-06 5.2344E-06 4.3991E-06 3.7473E-06 3.2314E-06 2.8147E-06 1.5834E-06 1.0135E-06 7.0359E-07 3.9569E-07 2.5333E-07 1.1258E-07 6.3317E-08 2.8147E-08 1.5834E-08 1.0135E-08 7.0359E-09 3.9569E-09 2.5333E-09 1.1258E-09 6.3317E-10 2.8147E-10 1.5834E-10 1.0135E-10 7.0359E-11 3.9569E-11 2.5333E-11 1.1258E-11 6.3317E-12 2.8147E-12 1.5834E-12 1.0135E-12 7.0359E-13 3.9569E-13 2.5333E-13 INCOHERENT SCATTERING CROSS SECTION 4.3401E-03 1.1729E-02 1.8326E-03 7.5142E-03 9.3812E-03 9.3812E-03 9.5663E-03 9.7546E-03 9.7546E-03 1.0524E-02 1.2192E-02 1.2192E-02 1.3016E-02 1.3885E-02 1.3885E-02 1.4573E-02 1.5294E-02 1.5294E-02 1.6325E-02 2.1864E-02 2.7109E-02 3.2025E-02 4.0683E-02 4.7922E-02 4.8609E-02 4.8609E-02 5.0699E-02 5.2802E-02 5.2802E-02 5.3604E-02 5.4407E-02 5.4407E-02 6.1974E-02 7.2456E-02 8.6442E-02 9.4271E-02 9.8627E-02 1.0099E-01 1.0217E-01 1.0217E-01 1.0259E-01 1.0203E-01 9.7383E-02 9.1847E-02 8.6688E-02 8.2119E-02 7.8113E-02 7.4585E-02 7.1454E-02 6.8656E-02 6.6136E-02 6.3841E-02 6.1735E-02 5.8030E-02 5.6405E-02 5.4909E-02 5.2166E-02 5.0870E-02 5.0313E-02 4.5563E-02 4.4674E-02 4.3004E-02 4.1469E-02 4.0059E-02 3.7566E-02 3.5442E-02 3.5016E-02 3.3591E-02 3.0450E-02 2.7911E-02 2.3296E-02 2.0122E-02 1.7786E-02 1.5988E-02 1.4553E-02 1.3377E-02 1.2398E-02 1.1563E-02 1.0845E-02 1.0217E-02 9.6662E-03 9.1749E-03 8.7392E-03 7.9858E-03 7.3635E-03 6.8427E-03 6.3939E-03 6.0041E-03 5.6635E-03 5.3621E-03 4.2615E-03 3.5573E-03 3.0646E-03 2.4170E-03 2.0060E-03 1.4288E-03 1.1202E-03 7.9400E-04 6.2170E-04 5.1459E-04 4.4056E-04 3.4426E-04 2.8317E-04 1.9775E-04 1.5307E-04 1.0642E-04 8.2151E-05 6.7149E-05 5.6962E-05 4.3893E-05 3.5835E-05 2.4760E-05 1.9034E-05 1.3128E-05 1.0079E-05 8.2086E-06 6.9377E-06 5.3195E-06 4.3270E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.6719E+03 3.6635E+05 1.4677E+04 1.6325E+03 1.0973E+03 1.3047E+03 1.9304E+03 2.8543E+03 3.1124E+03 3.9110E+03 2.8176E+03 3.2693E+03 2.8217E+03 2.4357E+03 2.5890E+03 2.3285E+03 2.0941E+03 2.1845E+03 1.8926E+03 9.4795E+02 5.4571E+02 3.4459E+02 1.6506E+02 9.2404E+01 8.7589E+01 2.2896E+02 1.9433E+02 1.6496E+02 2.2729E+02 2.1468E+02 2.0279E+02 2.3443E+02 1.3594E+02 6.3612E+01 2.1439E+01 9.7809E+00 5.2900E+00 3.1911E+00 2.1177E+00 1.0800E+01 7.4421E+00 4.1534E+00 1.3951E+00 6.3972E-01 3.5110E-01 2.1658E-01 1.4507E-01 1.0328E-01 7.7051E-02 5.9615E-02 4.7487E-02 3.8750E-02 3.2269E-02 2.3482E-02 2.0423E-02 1.7951E-02 1.4242E-02 1.2830E-02 1.2280E-02 8.2806E-03 7.6897E-03 6.7005E-03 5.9059E-03 5.2549E-03 4.2679E-03 3.5736E-03 3.4492E-03 3.0613E-03 2.3423E-03 1.8753E-03 1.2313E-03 9.0439E-04 7.0982E-04 5.8207E-04 4.9232E-04 4.2582E-04 3.7472E-04 3.3444E-04 3.0191E-04 2.7502E-04 2.5245E-04 2.3325E-04 2.1674E-04 1.8982E-04 1.6879E-04 1.5192E-04 1.3810E-04 1.2657E-04 1.1681E-04 1.0842E-04 7.9793E-05 6.3120E-05 5.2180E-05 3.8750E-05 3.0823E-05 2.0387E-05 1.5228E-05 1.0112E-05 7.5698E-06 6.0467E-06 5.0346E-06 3.7735E-06 3.0165E-06 2.0096E-06 1.5064E-06 1.0040E-06 7.5273E-07 6.0205E-07 5.0182E-07 3.7636E-07 3.0099E-07 2.0066E-07 1.5048E-07 1.0033E-07 7.5240E-08 6.0205E-08 5.0149E-08 3.7604E-08 3.0093E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 3.2271E-04 5.0446E-04 9.6228E-04 1.5104E-03 2.1124E-03 3.3872E-03 4.6841E-03 4.9690E-03 5.9671E-03 8.4090E-03 1.0672E-02 1.5651E-02 1.9827E-02 2.3417E-02 2.6585E-02 2.9431E-02 3.2022E-02 3.4393E-02 3.6588E-02 3.8652E-02 4.0552E-02 4.2353E-02 4.3991E-02 4.5563E-02 4.8347E-02 5.0837E-02 5.3097E-02 5.5161E-02 5.7028E-02 5.8764E-02 6.0336E-02 6.6822E-02 7.1637E-02 7.5371E-02 8.0874E-02 8.4739E-02 9.0864E-02 9.4500E-02 9.8693E-02 1.0112E-01 1.0269E-01 1.0380E-01 1.0531E-01 1.0629E-01 1.0767E-01 1.0842E-01 1.0927E-01 1.0970E-01 1.0999E-01 1.1016E-01 1.1042E-01 1.1058E-01 1.1081E-01 1.1094E-01 1.1104E-01 1.1111E-01 1.1117E-01 1.1117E-01 1.1124E-01 1.1124E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3468E-08 2.7705E-06 9.7546E-06 3.9765E-05 7.9105E-05 1.2126E-04 1.6322E-04 2.0377E-04 2.4249E-04 2.7921E-04 3.1393E-04 3.4656E-04 3.7735E-04 4.0650E-04 4.3401E-04 4.6022E-04 5.0870E-04 5.5259E-04 5.9288E-04 6.2956E-04 6.6330E-04 6.9475E-04 7.2390E-04 8.4346E-04 9.3354E-04 1.0046E-03 1.1104E-03 1.1867E-03 1.3119E-03 1.3892E-03 1.4829E-03 1.5389E-03 1.5769E-03 1.6044E-03 1.6427E-03 1.6679E-03 1.7053E-03 1.7266E-03 1.7495E-03 1.7632E-03 1.7714E-03 1.7773E-03 1.7852E-03 1.7901E-03 1.7967E-03 1.8006E-03 1.8042E-03 1.8065E-03 1.8081E-03 1.8088E-03 1.8098E-03 1.8107E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Xe.mat0000644000000000000000000002016614741736366017704 0ustar00rootrootXenon 1 54 1.000000 6 4 6 3 3 8 83 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.1490E-03 1.1490E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 4.7822E-03 4.7822E-03 5.0000E-03 5.1037E-03 5.1037E-03 5.2754E-03 5.4528E-03 5.4528E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 3.4561E-02 3.4561E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 8.4582E+00 1.0786E+02 9.7206E+00 8.3252E+00 8.3252E+00 7.9995E+00 7.4812E+00 6.4813E+00 5.6373E+00 5.0869E+00 5.0869E+00 4.9447E+00 4.8805E+00 4.8805E+00 4.7754E+00 4.6695E+00 4.6695E+00 4.3681E+00 3.4645E+00 2.8145E+00 1.8522E+00 1.3224E+00 7.5454E-01 6.1189E-01 6.1189E-01 4.9126E-01 3.4920E-01 2.6099E-01 1.6077E-01 1.0889E-01 5.2979E-02 3.1356E-02 2.0677E-02 2.0677E-02 1.4641E-02 8.4353E-03 6.7150E-03 5.4722E-03 4.5463E-03 3.8369E-03 3.2807E-03 2.4767E-03 2.1811E-03 1.9354E-03 1.5539E-03 1.4040E-03 1.3449E-03 9.0224E-04 8.3464E-04 7.2035E-04 6.2795E-04 5.5218E-04 4.3661E-04 3.5397E-04 3.3897E-04 2.9280E-04 2.0978E-04 1.5761E-04 8.8711E-05 5.6786E-05 3.9443E-05 2.8980E-05 2.2191E-05 1.7536E-05 1.4201E-05 1.1738E-05 9.8618E-06 8.4032E-06 7.2473E-06 6.3116E-06 5.5501E-06 4.3842E-06 3.5512E-06 2.9347E-06 2.4659E-06 2.1013E-06 1.8118E-06 1.5784E-06 8.8802E-07 5.6832E-07 3.9456E-07 2.2196E-07 1.4206E-07 6.3116E-08 3.5507E-08 1.5784E-08 8.8756E-09 5.6832E-09 3.9456E-09 2.2191E-09 1.4206E-09 6.3116E-10 3.5507E-10 1.5784E-10 8.8756E-11 5.6832E-11 3.9456E-11 2.2191E-11 1.4206E-11 6.3116E-12 3.5507E-12 1.5784E-12 8.8756E-13 5.6832E-13 3.9456E-13 2.2191E-13 1.4206E-13 INCOHERENT SCATTERING CROSS SECTION 4.4167E-03 2.2491E-01 1.6853E-03 5.5823E-03 5.5823E-03 8.5225E-03 1.2848E-02 2.1228E-02 2.8737E-02 3.3833E-02 3.3833E-02 3.5154E-02 3.5769E-02 3.5769E-02 3.6765E-02 3.7769E-02 3.7769E-02 4.0713E-02 5.0272E-02 5.8483E-02 7.4399E-02 8.4858E-02 9.7288E-02 1.0077E-01 1.0077E-01 1.0385E-01 1.0733E-01 1.0908E-01 1.0963E-01 1.0811E-01 1.0192E-01 9.5545E-02 8.9885E-02 8.9885E-02 8.4949E-02 7.6876E-02 7.3575E-02 7.0638E-02 6.7993E-02 6.5593E-02 6.3401E-02 5.9545E-02 5.7841E-02 5.6262E-02 5.3410E-02 5.2107E-02 5.1557E-02 4.6649E-02 4.5725E-02 4.4007E-02 4.2438E-02 4.0999E-02 3.8447E-02 3.6246E-02 3.5801E-02 3.4324E-02 3.1120E-02 2.8540E-02 2.3811E-02 2.0568E-02 1.8182E-02 1.6343E-02 1.4875E-02 1.3674E-02 1.2669E-02 1.1816E-02 1.1082E-02 1.0440E-02 9.8756E-03 9.3756E-03 8.9307E-03 8.1601E-03 7.5271E-03 6.9904E-03 6.5317E-03 6.1327E-03 5.7887E-03 5.4813E-03 4.3543E-03 3.6347E-03 3.1319E-03 2.4700E-03 2.0499E-03 1.4600E-03 1.1444E-03 8.1142E-04 6.3529E-04 5.2612E-04 4.5034E-04 3.5172E-04 2.8934E-04 2.0210E-04 1.5641E-04 1.0876E-04 8.3940E-05 6.8620E-05 5.8208E-05 4.4842E-05 3.6608E-05 2.5301E-05 1.9453E-05 1.3417E-05 1.0298E-05 8.3848E-06 7.0913E-06 5.4355E-06 4.4227E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 9.4031E+03 1.1643E+06 4.0117E+04 7.0317E+03 7.3344E+03 4.0768E+03 2.0802E+03 7.7152E+02 3.7301E+02 2.3572E+02 6.8895E+02 6.3437E+02 5.9951E+02 8.1326E+02 7.5146E+02 6.9446E+02 8.0179E+02 6.3299E+02 2.9975E+02 1.6618E+02 5.5501E+01 2.5104E+01 8.0775E+00 5.4171E+00 3.2443E+01 2.2109E+01 1.2270E+01 7.4537E+00 3.3627E+00 1.7935E+00 5.6511E-01 2.4902E-01 1.3274E-01 1.3274E-01 8.0087E-02 3.6989E-02 2.7256E-02 2.0884E-02 1.6514E-02 1.3385E-02 1.1067E-02 7.9796E-03 6.9400E-03 6.1174E-03 4.8533E-03 4.3351E-03 4.1259E-03 2.7824E-03 2.5891E-03 2.2586E-03 1.9912E-03 1.7739E-03 1.4457E-03 1.2114E-03 1.1687E-03 1.0371E-03 7.9727E-04 6.4217E-04 4.2502E-04 3.1416E-04 2.4783E-04 2.0403E-04 1.7306E-04 1.5013E-04 1.3242E-04 1.1843E-04 1.0706E-04 9.7655E-05 8.9720E-05 8.3023E-05 7.7197E-05 6.7703E-05 6.0318E-05 5.4355E-05 4.9447E-05 4.5351E-05 4.1883E-05 3.8906E-05 2.8696E-05 2.2723E-05 1.8806E-05 1.3985E-05 1.1132E-05 7.3711E-06 5.5089E-06 3.6590E-06 2.7393E-06 2.1893E-06 1.8228E-06 1.3660E-06 1.0921E-06 7.2748E-07 5.4538E-07 3.6356E-07 2.7265E-07 2.1811E-07 1.8173E-07 1.3628E-07 1.0903E-07 7.2656E-08 5.4492E-08 3.6333E-08 2.7251E-08 2.1802E-08 1.8169E-08 1.3623E-08 1.0898E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.9141E-04 2.9692E-04 5.6242E-04 8.8527E-04 1.2518E-03 2.0757E-03 2.9714E-03 3.1732E-03 3.8919E-03 5.7138E-03 7.4583E-03 1.1408E-02 1.4811E-02 1.7742E-02 2.0347E-02 2.2691E-02 2.4820E-02 2.6769E-02 2.8567E-02 3.0228E-02 3.1783E-02 3.3209E-02 3.4535E-02 3.5759E-02 3.7993E-02 3.9993E-02 4.1810E-02 4.3461E-02 4.4965E-02 4.6328E-02 4.7612E-02 5.2749E-02 5.6602E-02 5.9584E-02 6.3987E-02 6.7106E-02 7.2060E-02 7.5042E-02 7.8528E-02 8.0500E-02 8.1830E-02 8.2748E-02 8.3986E-02 8.4812E-02 8.6004E-02 8.6646E-02 8.7335E-02 8.7701E-02 8.7931E-02 8.8114E-02 8.8298E-02 8.8435E-02 8.8619E-02 8.8711E-02 8.8848E-02 8.8894E-02 8.8940E-02 8.8940E-02 8.8986E-02 8.8986E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 9.5596E-08 2.8342E-06 9.9811E-06 4.0704E-05 8.1005E-05 1.2430E-04 1.6738E-04 2.0907E-04 2.4893E-04 2.8677E-04 3.2260E-04 3.5631E-04 3.8810E-04 4.1833E-04 4.4690E-04 4.7383E-04 5.2428E-04 5.7015E-04 6.1189E-04 6.5042E-04 6.8574E-04 7.1831E-04 7.4904E-04 8.7518E-04 9.7105E-04 1.0467E-03 1.1609E-03 1.2440E-03 1.3811E-03 1.4673E-03 1.5724E-03 1.6357E-03 1.6788E-03 1.7105E-03 1.7540E-03 1.7829E-03 1.8256E-03 1.8499E-03 1.8765E-03 1.8916E-03 1.9013E-03 1.9077E-03 1.9169E-03 1.9224E-03 1.9297E-03 1.9343E-03 1.9384E-03 1.9412E-03 1.9426E-03 1.9439E-03 1.9448E-03 1.9458E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Y.mat0000644000000000000000000002005014741736366017530 0ustar00rootrootY 1 39 1.000000 5 6 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.0800E-03 2.0800E-03 2.1174E-03 2.1555E-03 2.1555E-03 2.2614E-03 2.3725E-03 2.3725E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.7038E-02 1.7038E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 6.3652E+00 3.6818E+01 7.3203E+00 5.9533E+00 5.5496E+00 5.4866E+00 5.4866E+00 5.4574E+00 5.4277E+00 5.4277E+00 5.3461E+00 5.2624E+00 5.2624E+00 4.8228E+00 4.1969E+00 3.6727E+00 3.2405E+00 2.5801E+00 2.0930E+00 1.3080E+00 1.1082E+00 1.1082E+00 8.9005E-01 5.0375E-01 3.2608E-01 2.2685E-01 1.6677E-01 1.0167E-01 6.8820E-02 3.3184E-02 1.9413E-02 1.2706E-02 8.9547E-03 6.6497E-03 5.1317E-03 4.0785E-03 3.3184E-03 2.7521E-03 2.3193E-03 1.9811E-03 1.4931E-03 1.3134E-03 1.1639E-03 9.3298E-04 8.4331E-04 8.0809E-04 5.4114E-04 5.0036E-04 4.3163E-04 3.7621E-04 3.3078E-04 2.6148E-04 2.1188E-04 2.0287E-04 1.7517E-04 1.2549E-04 9.4289E-05 5.3044E-05 3.3956E-05 2.3579E-05 1.7327E-05 1.3263E-05 1.0479E-05 8.4873E-06 7.0175E-06 5.8958E-06 5.0240E-06 4.3317E-06 3.7736E-06 3.3164E-06 2.6207E-06 2.1228E-06 1.7544E-06 1.4739E-06 1.2558E-06 1.0831E-06 9.4356E-07 5.3064E-07 3.3963E-07 2.3586E-07 1.3263E-07 8.4873E-08 3.7736E-08 2.1222E-08 9.4356E-09 5.3064E-09 3.3963E-09 2.3586E-09 1.3263E-09 8.4873E-10 3.7736E-10 2.1222E-10 9.4356E-11 5.3064E-11 3.3963E-11 2.3586E-11 1.3263E-11 8.4873E-12 3.7736E-12 2.1222E-12 9.4356E-13 5.3064E-13 3.3963E-13 2.3586E-13 1.3263E-13 8.4873E-14 INCOHERENT SCATTERING CROSS SECTION 8.3993E-03 1.6606E-02 3.9253E-03 1.3601E-02 1.8289E-02 1.9020E-02 1.9020E-02 1.9360E-02 1.9704E-02 1.9704E-02 2.0657E-02 2.1648E-02 2.1648E-02 2.7047E-02 3.5026E-02 4.2301E-02 4.8845E-02 5.9804E-02 6.8617E-02 8.5415E-02 9.0631E-02 9.0631E-02 9.6998E-02 1.1068E-01 1.1745E-01 1.2064E-01 1.2186E-01 1.2111E-01 1.1867E-01 1.1088E-01 1.0343E-01 9.6965E-02 9.1444E-02 8.6707E-02 8.2570E-02 7.8908E-02 7.5661E-02 7.2773E-02 7.0175E-02 6.7812E-02 6.3662E-02 6.1823E-02 6.0116E-02 5.7045E-02 5.5659E-02 5.5076E-02 4.9813E-02 4.8820E-02 4.6978E-02 4.5302E-02 4.3769E-02 4.1048E-02 3.8684E-02 3.8203E-02 3.6613E-02 3.3193E-02 3.0447E-02 2.5401E-02 2.1940E-02 1.9393E-02 1.7429E-02 1.5864E-02 1.4584E-02 1.3513E-02 1.2606E-02 1.1820E-02 1.1136E-02 1.0533E-02 1.0005E-02 9.5237E-03 8.7041E-03 8.0267E-03 7.4577E-03 6.9700E-03 6.5426E-03 6.1721E-03 5.8443E-03 4.6440E-03 3.8765E-03 3.3401E-03 2.6343E-03 2.1865E-03 1.5573E-03 1.2206E-03 8.6499E-04 6.7736E-04 5.6099E-04 4.8032E-04 3.7512E-04 3.0861E-04 2.1554E-04 1.6683E-04 1.1596E-04 8.9547E-05 7.3223E-05 6.2073E-05 4.7822E-05 3.9043E-05 2.6986E-05 2.0748E-05 1.4306E-05 1.0987E-05 8.9412E-06 7.5593E-06 5.7975E-06 4.7165E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.8576E+03 8.6327E+05 1.9663E+04 1.4875E+03 7.3629E+02 6.6835E+02 2.6200E+03 2.4741E+03 2.3362E+03 3.2574E+03 2.9050E+03 2.5929E+03 2.9560E+03 1.6494E+03 7.8913E+02 4.3873E+02 2.6925E+02 1.2314E+02 6.6551E+01 2.1391E+01 1.4915E+01 1.0167E+02 6.7567E+01 2.2692E+01 1.0201E+01 5.4162E+00 3.2039E+00 1.3845E+00 7.1733E-01 2.1547E-01 9.2053E-02 4.8007E-02 2.8490E-02 1.8507E-02 1.2850E-02 9.3890E-03 7.1462E-03 5.6213E-03 4.5363E-03 3.7367E-03 2.6801E-03 2.3281E-03 2.0514E-03 1.6265E-03 1.4509E-03 1.3798E-03 9.3137E-04 8.6742E-04 7.5790E-04 6.6910E-04 5.9684E-04 4.8750E-04 4.0940E-04 3.9517E-04 3.5126E-04 2.7125E-04 2.1940E-04 1.4645E-04 1.0885E-04 8.6296E-05 7.1258E-05 6.0651E-05 5.2733E-05 4.6616E-05 4.1753E-05 3.7797E-05 3.4518E-05 3.1761E-05 2.9404E-05 2.7372E-05 2.4046E-05 2.1438E-05 1.9332E-05 1.7605E-05 1.6162E-05 1.4936E-05 1.3879E-05 1.0255E-05 8.1351E-06 6.7377E-06 5.0152E-06 3.9937E-06 2.6464E-06 1.9786E-06 1.3148E-06 9.8488E-07 7.8709E-07 6.5548E-07 4.9122E-07 3.9280E-07 2.6173E-07 1.9623E-07 1.3080E-07 9.8082E-08 7.8438E-08 6.5365E-08 4.9021E-08 3.9219E-08 2.6139E-08 1.9610E-08 1.3073E-08 9.8014E-09 7.8438E-09 6.5352E-09 4.9014E-09 3.9212E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.1935E-04 1.8667E-04 3.5929E-04 5.7467E-04 8.2590E-04 1.4111E-03 2.0653E-03 2.2136E-03 2.7478E-03 4.1398E-03 5.5056E-03 8.6364E-03 1.1380E-02 1.3771E-02 1.5904E-02 1.7828E-02 1.9576E-02 2.1168E-02 2.2631E-02 2.3965E-02 2.5198E-02 2.6329E-02 2.7386E-02 2.8375E-02 3.0190E-02 3.1822E-02 3.3299E-02 3.4640E-02 3.5866E-02 3.6984E-02 3.8020E-02 4.2227E-02 4.5343E-02 4.7774E-02 5.1364E-02 5.3911E-02 5.7969E-02 6.0394E-02 6.3218E-02 6.4851E-02 6.5921E-02 6.6686E-02 6.7709E-02 6.8346E-02 6.9294E-02 6.9836E-02 7.0445E-02 7.0716E-02 7.0920E-02 7.1055E-02 7.1191E-02 7.1326E-02 7.1462E-02 7.1529E-02 7.1665E-02 7.1665E-02 7.1733E-02 7.1733E-02 7.1733E-02 7.1800E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0200E-07 3.0249E-06 1.0655E-05 4.3473E-05 8.6567E-05 1.3283E-04 1.7896E-04 2.2366E-04 2.6641E-04 3.0705E-04 3.4552E-04 3.8183E-04 4.1610E-04 4.4868E-04 4.7950E-04 5.0883E-04 5.6323E-04 6.1274E-04 6.5806E-04 6.9971E-04 7.3832E-04 7.7422E-04 8.0741E-04 9.4560E-04 1.0506E-03 1.1339E-03 1.2599E-03 1.3520E-03 1.5051E-03 1.6013E-03 1.7205E-03 1.7923E-03 1.8417E-03 1.8783E-03 1.9291E-03 1.9630E-03 2.0138E-03 2.0429E-03 2.0754E-03 2.0944E-03 2.1059E-03 2.1140E-03 2.1249E-03 2.1323E-03 2.1418E-03 2.1472E-03 2.1527E-03 2.1560E-03 2.1581E-03 2.1594E-03 2.1608E-03 2.1621E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Yb.mat0000644000000000000000000002174214741736366017703 0ustar00rootrootYb 1 70 1.000000 10 5 3 3 3 3 7 3 3 8 80 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 1.5278E-03 1.5278E-03 1.5519E-03 1.5763E-03 1.5763E-03 1.7531E-03 1.9498E-03 1.9498E-03 2.0000E-03 2.1730E-03 2.1730E-03 2.2828E-03 2.3981E-03 2.3981E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 8.9436E-03 8.9436E-03 9.4467E-03 9.9782E-03 9.9782E-03 1.0000E-02 1.0486E-02 1.0486E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 6.1332E-02 6.1332E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.0848E+01 2.5463E+01 1.1806E+01 1.0392E+01 1.0368E+01 1.0368E+01 1.0344E+01 1.0319E+01 1.0319E+01 1.0146E+01 9.9603E+00 9.9603E+00 9.9116E+00 9.7341E+00 9.7341E+00 9.6224E+00 9.5079E+00 9.5079E+00 8.9267E+00 7.9627E+00 7.0857E+00 6.3096E+00 5.0602E+00 4.5869E+00 4.5869E+00 4.3428E+00 4.1345E+00 4.1345E+00 4.1275E+00 3.9396E+00 3.9396E+00 2.6589E+00 1.8814E+00 1.1112E+00 7.2806E-01 5.1472E-01 3.8595E-01 3.7273E-01 3.7273E-01 2.4222E-01 1.6576E-01 8.0915E-02 4.8166E-02 3.2011E-02 2.2809E-02 1.7061E-02 1.3235E-02 1.0564E-02 8.6274E-03 7.1786E-03 6.0660E-03 5.1927E-03 3.9283E-03 3.4625E-03 3.0748E-03 2.4719E-03 2.2350E-03 2.1414E-03 1.4394E-03 1.3320E-03 1.1503E-03 1.0033E-03 8.8278E-04 6.9863E-04 5.6658E-04 5.4256E-04 4.6869E-04 3.3604E-04 2.5263E-04 1.4227E-04 9.1112E-05 6.3270E-05 4.6495E-05 3.5602E-05 2.8134E-05 2.2792E-05 1.8835E-05 1.5828E-05 1.3486E-05 1.1631E-05 1.0131E-05 8.9058E-06 7.0370E-06 5.7006E-06 4.7087E-06 3.9570E-06 3.3723E-06 2.9077E-06 2.5329E-06 1.4248E-06 9.1181E-07 6.3340E-07 3.5637E-07 2.2795E-07 1.0131E-07 5.7006E-08 2.5329E-08 1.4248E-08 9.1181E-09 6.3305E-09 3.5602E-09 2.2795E-09 1.0131E-09 5.7006E-10 2.5329E-10 1.4248E-10 9.1181E-11 6.3305E-11 3.5602E-11 2.2795E-11 1.0131E-11 5.7006E-12 2.5329E-12 1.4248E-12 9.1181E-13 6.3305E-13 3.5602E-13 2.2795E-13 INCOHERENT SCATTERING CROSS SECTION 4.7540E-03 2.3793E-03 2.0793E-03 7.8966E-03 8.0706E-03 8.0706E-03 8.2209E-03 8.3734E-03 8.3734E-03 9.4690E-03 1.0688E-02 1.0688E-02 1.1001E-02 1.2076E-02 1.2076E-02 1.2758E-02 1.3475E-02 1.3475E-02 1.7192E-02 2.3042E-02 2.8451E-02 3.3386E-02 4.1971E-02 4.5521E-02 4.5521E-02 4.7077E-02 4.9140E-02 4.9140E-02 4.9245E-02 5.0846E-02 5.0846E-02 6.3722E-02 7.4581E-02 8.8641E-02 9.6227E-02 1.0040E-01 1.0263E-01 1.0284E-01 1.0284E-01 1.0402E-01 1.0333E-01 9.8350E-02 9.2643E-02 8.7371E-02 8.2724E-02 7.8667E-02 7.5103E-02 7.1945E-02 6.9117E-02 6.6562E-02 6.4244E-02 6.2131E-02 5.8396E-02 5.6727E-02 5.5170E-02 5.2374E-02 5.1124E-02 5.0602E-02 4.5799E-02 4.4891E-02 4.3213E-02 4.1693E-02 4.0306E-02 3.7830E-02 3.5637E-02 3.5185E-02 3.3701E-02 3.0562E-02 2.8057E-02 2.3415E-02 2.0223E-02 1.7878E-02 1.6072E-02 1.4627E-02 1.3447E-02 1.2459E-02 1.1620E-02 1.0900E-02 1.0267E-02 9.7132E-03 9.2225E-03 8.7840E-03 8.0288E-03 7.4024E-03 6.8769E-03 6.4244E-03 6.0347E-03 5.6901E-03 5.3908E-03 4.2841E-03 3.5742E-03 3.0800E-03 2.4292E-03 2.0161E-03 1.4359E-03 1.1258E-03 7.9801E-04 6.2504E-04 5.1716E-04 4.4303E-04 3.4593E-04 2.8461E-04 1.9875E-04 1.5382E-04 1.0695E-04 8.2550E-05 6.7516E-05 5.7249E-05 4.4094E-05 3.6020E-05 2.4883E-05 1.9131E-05 1.3193E-05 1.0131E-05 8.2481E-06 6.9708E-06 5.3456E-06 4.3502E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.0065E+03 2.9569E+05 1.1965E+04 1.3399E+03 1.2898E+03 1.9374E+03 2.7470E+03 3.8943E+03 4.5277E+03 3.9723E+03 3.4872E+03 4.0440E+03 3.7865E+03 3.1186E+03 3.3138E+03 2.9597E+03 2.6436E+03 2.7598E+03 1.6315E+03 8.1123E+02 4.6461E+02 2.9244E+02 1.3931E+02 1.0416E+02 2.7779E+02 2.4073E+02 2.0867E+02 2.9380E+02 2.9018E+02 2.5367E+02 2.9328E+02 1.1655E+02 5.4326E+01 1.8125E+01 8.2168E+00 4.4233E+00 2.6585E+00 2.4998E+00 1.3176E+01 6.5637E+00 3.6124E+00 1.1986E+00 5.4535E-01 2.9744E-01 1.8264E-01 1.2190E-01 8.6518E-02 6.4369E-02 4.9697E-02 3.9530E-02 3.2220E-02 2.6799E-02 1.9461E-02 1.6914E-02 1.4859E-02 1.1784E-02 1.0615E-02 1.0159E-02 6.8490E-03 6.3597E-03 5.5413E-03 4.8862E-03 4.3521E-03 3.5406E-03 2.9606E-03 2.8552E-03 2.5297E-03 1.9377E-03 1.5556E-03 1.0228E-03 7.5207E-04 5.9094E-04 4.8479E-04 4.1032E-04 3.5498E-04 3.1273E-04 2.7922E-04 2.5207E-04 2.2966E-04 2.1087E-04 1.9489E-04 1.8111E-04 1.5866E-04 1.4112E-04 1.2703E-04 1.1551E-04 1.0587E-04 9.7724E-05 9.0729E-05 6.6785E-05 5.2829E-05 4.3711E-05 3.2463E-05 2.5823E-05 1.7081E-05 1.2762E-05 8.4743E-06 6.3444E-06 5.0707E-06 4.2215E-06 3.1625E-06 2.5287E-06 1.6844E-06 1.2626E-06 8.4151E-07 6.3096E-07 5.0463E-07 4.2076E-07 3.1541E-07 2.5231E-07 1.6820E-07 1.2616E-07 8.4082E-08 6.3061E-08 5.0463E-08 4.2041E-08 3.1534E-08 2.5228E-08 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.9460E-04 4.5933E-04 8.7348E-04 1.3702E-03 1.9190E-03 3.0953E-03 4.3085E-03 4.5765E-03 5.5189E-03 7.8462E-03 1.0019E-02 1.4819E-02 1.8873E-02 2.2360E-02 2.5433E-02 2.8197E-02 3.0709E-02 3.3017E-02 3.5150E-02 3.7134E-02 3.8978E-02 4.0718E-02 4.2319E-02 4.3816E-02 4.6495E-02 4.8897E-02 5.1089E-02 5.3038E-02 5.4883E-02 5.6518E-02 5.8050E-02 6.4314E-02 6.8943E-02 7.2562E-02 7.7852E-02 8.1611E-02 8.7527E-02 9.1042E-02 9.5114E-02 9.7446E-02 9.8977E-02 1.0009E-01 1.0152E-01 1.0246E-01 1.0381E-01 1.0458E-01 1.0538E-01 1.0580E-01 1.0608E-01 1.0625E-01 1.0649E-01 1.0667E-01 1.0688E-01 1.0698E-01 1.0712E-01 1.0716E-01 1.0722E-01 1.0722E-01 1.0726E-01 1.0729E-01 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.3928E-08 2.7848E-06 9.8072E-06 3.9987E-05 7.9523E-05 1.2195E-04 1.6416E-04 2.0495E-04 2.4393E-04 2.8092E-04 3.1586E-04 3.4872E-04 3.7969E-04 4.0927E-04 4.3711E-04 4.6321E-04 5.1229E-04 5.5648E-04 5.9685E-04 6.3409E-04 6.6820E-04 6.9987E-04 7.2945E-04 8.5056E-04 9.4174E-04 1.0134E-03 1.1210E-03 1.1986E-03 1.3256E-03 1.4046E-03 1.5003E-03 1.5574E-03 1.5960E-03 1.6246E-03 1.6635E-03 1.6896E-03 1.7279E-03 1.7498E-03 1.7739E-03 1.7878E-03 1.7965E-03 1.8024E-03 1.8104E-03 1.8156E-03 1.8226E-03 1.8264E-03 1.8302E-03 1.8327E-03 1.8344E-03 1.8351E-03 1.8362E-03 1.8368E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Zn.mat0000644000000000000000000002005014741736366017707 0ustar00rootrootZinc 1 30 1.000000 5 4 3 3 9 87 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.0197E-03 1.0197E-03 1.0312E-03 1.0428E-03 1.0428E-03 1.1157E-03 1.1936E-03 1.1936E-03 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 9.6586E-03 9.6586E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 2.5000E-01 3.0000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 5.2439E+00 7.0986E-20 1.6039E+00 5.2338E+00 5.2338E+00 5.2283E+00 5.2227E+00 5.2227E+00 5.1853E+00 5.1426E+00 5.1426E+00 4.9750E+00 4.6766E+00 4.0844E+00 3.5383E+00 3.0539E+00 2.6349E+00 1.9874E+00 1.6052E+00 1.6052E+00 1.5417E+00 9.3293E-01 6.4126E-01 3.5788E-01 2.2591E-01 1.5592E-01 1.1475E-01 7.0066E-02 4.7273E-02 2.2481E-02 1.3059E-02 8.5206E-03 8.5206E-03 5.9927E-03 3.4214E-03 2.7151E-03 2.2066E-03 1.8286E-03 1.5398E-03 1.3141E-03 9.8914E-04 8.7003E-04 7.7120E-04 6.1809E-04 5.5810E-04 5.3443E-04 3.5779E-04 3.3086E-04 2.8536E-04 2.4866E-04 2.1863E-04 1.7285E-04 1.3999E-04 1.3400E-04 1.1563E-04 8.2819E-05 6.2247E-05 3.5024E-05 2.2416E-05 1.5564E-05 1.1438E-05 8.7574E-06 6.9201E-06 5.6049E-06 4.6324E-06 3.8929E-06 3.3164E-06 2.8596E-06 2.4912E-06 2.1891E-06 1.7305E-06 1.4017E-06 1.1586E-06 9.7345E-07 8.2914E-07 7.1494E-07 6.2284E-07 3.5033E-07 2.2416E-07 1.5573E-07 8.7574E-08 5.6049E-08 2.4912E-08 1.4008E-08 6.2275E-09 3.5033E-09 2.2416E-09 1.5573E-09 8.7574E-10 5.6049E-10 2.4912E-10 1.4008E-10 6.2275E-11 3.5033E-11 2.2416E-11 1.5573E-11 8.7574E-12 5.6049E-12 2.4912E-12 1.4008E-12 6.2275E-13 3.5033E-13 2.2416E-13 1.5573E-13 8.7574E-14 5.6049E-14 INCOHERENT SCATTERING CROSS SECTION 6.5802E-03 2.0245E+24 1.2796E-02 6.7865E-03 6.7865E-03 6.9073E-03 7.0297E-03 7.0297E-03 7.8018E-03 8.6349E-03 8.6349E-03 1.1917E-02 1.7001E-02 2.6376E-02 3.5227E-02 4.3543E-02 5.1224E-02 6.4762E-02 7.4358E-02 7.4358E-02 7.6145E-02 9.6608E-02 1.0913E-01 1.2276E-01 1.2884E-01 1.3114E-01 1.3151E-01 1.2976E-01 1.2654E-01 1.1751E-01 1.0923E-01 1.0220E-01 1.0220E-01 9.6240E-02 8.6671E-02 8.2799E-02 7.9377E-02 7.6321E-02 7.3566E-02 7.1066E-02 6.6686E-02 6.4752E-02 6.2961E-02 5.9734E-02 5.8269E-02 5.7652E-02 5.2135E-02 5.1096E-02 4.9164E-02 4.7402E-02 4.5788E-02 4.2929E-02 4.0467E-02 3.9970E-02 3.8318E-02 3.4732E-02 3.1847E-02 2.6570E-02 2.2950E-02 2.0279E-02 1.8235E-02 1.6596E-02 1.5251E-02 1.4137E-02 1.3179E-02 1.2359E-02 1.1650E-02 1.1015E-02 1.0462E-02 9.9648E-03 9.1046E-03 8.3964E-03 7.7987E-03 7.2875E-03 6.8427E-03 6.4550E-03 6.1124E-03 4.8571E-03 4.0541E-03 3.4932E-03 2.7546E-03 2.2867E-03 1.6283E-03 1.2764E-03 9.0493E-04 7.0877E-04 5.8665E-04 5.0229E-04 3.9233E-04 3.2280E-04 2.2545E-04 1.7443E-04 1.2129E-04 9.3661E-05 7.6559E-05 6.4918E-05 5.0017E-05 4.0835E-05 2.8218E-05 2.1698E-05 1.4966E-05 1.1484E-05 9.3569E-06 7.9073E-06 6.0636E-06 4.9326E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 1.5481E+03 3.4346E+05 7.8700E+03 1.4791E+03 3.5208E+03 4.7830E+03 6.4881E+03 8.2334E+03 7.7875E+03 7.3677E+03 8.3908E+03 4.8194E+03 2.3696E+03 8.2702E+02 3.8303E+02 2.0869E+02 1.2636E+02 5.6685E+01 3.3375E+01 2.5188E+02 2.3144E+02 8.0142E+01 3.6442E+01 1.1586E+01 5.0293E+00 2.6054E+00 1.5141E+00 6.3666E-01 3.2353E-01 9.4122E-02 3.9445E-02 2.0291E-02 2.0291E-02 1.1917E-02 5.2983E-03 3.8522E-03 2.9204E-03 2.2897E-03 1.8428E-03 1.5147E-03 1.0838E-03 9.4122E-04 8.2961E-04 6.5750E-04 5.8554E-04 5.5626E-04 3.7603E-04 3.5047E-04 3.0650E-04 2.7076E-04 2.4172E-04 1.9784E-04 1.6651E-04 1.6080E-04 1.4316E-04 1.1094E-04 9.0005E-05 6.0442E-05 4.5145E-05 3.5899E-05 2.9738E-05 2.5354E-05 2.2075E-05 1.9543E-05 1.7526E-05 1.5877E-05 1.4514E-05 1.3363E-05 1.2387E-05 1.1530E-05 1.0140E-05 9.0484E-06 8.1670E-06 7.4413E-06 6.8344E-06 6.3187E-06 5.8748E-06 4.3469E-06 3.4490E-06 2.8587E-06 2.1293E-06 1.6964E-06 1.1245E-06 8.4120E-07 5.5930E-07 4.1885E-07 3.3477E-07 2.7887E-07 2.0897E-07 1.6715E-07 1.1134E-07 8.3494E-08 5.5644E-08 4.1729E-08 3.3375E-08 2.7813E-08 2.0860E-08 1.6688E-08 1.1125E-08 8.3429E-09 5.5617E-09 4.1710E-09 3.3366E-09 2.7804E-09 2.0860E-09 1.6688E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 8.4535E-05 1.3340E-04 2.6075E-04 4.2235E-04 6.1324E-04 1.0646E-03 1.5785E-03 1.6964E-03 2.1222E-03 3.2357E-03 4.3340E-03 6.8888E-03 9.1405E-03 1.1134E-02 1.2912E-02 1.4514E-02 1.5960E-02 1.7268E-02 1.8456E-02 1.9552E-02 2.0556E-02 2.1495E-02 2.2370E-02 2.3190E-02 2.4700E-02 2.6045E-02 2.7260E-02 2.8356E-02 2.9369E-02 3.0290E-02 3.1147E-02 3.4637E-02 3.7253E-02 3.9288E-02 4.2318E-02 4.4473E-02 4.7917E-02 4.9971E-02 5.2366E-02 5.3738E-02 5.4640E-02 5.5294E-02 5.6151E-02 5.6713E-02 5.7514E-02 5.7956E-02 5.8426E-02 5.8683E-02 5.8840E-02 5.8950E-02 5.9098E-02 5.9190E-02 5.9319E-02 5.9383E-02 5.9457E-02 5.9494E-02 5.9521E-02 5.9540E-02 5.9558E-02 5.9567E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.0658E-07 3.1623E-06 1.1144E-05 4.5495E-05 9.0613E-05 1.3916E-04 1.8741E-04 2.3429E-04 2.7923E-04 3.2187E-04 3.6230E-04 4.0043E-04 4.3644E-04 4.7079E-04 5.0330E-04 5.3425E-04 5.9162E-04 6.4393E-04 6.9191E-04 7.3612E-04 7.7692E-04 8.1495E-04 8.5032E-04 9.9740E-04 1.1107E-03 1.2000E-03 1.3363E-03 1.4358E-03 1.6015E-03 1.7056E-03 1.8345E-03 1.9110E-03 1.9644E-03 2.0031E-03 2.0565E-03 2.0924E-03 2.1458E-03 2.1762E-03 2.2085E-03 2.2278E-03 2.2398E-03 2.2481E-03 2.2591E-03 2.2665E-03 2.2757E-03 2.2821E-03 2.2867E-03 2.2904E-03 2.2923E-03 2.2941E-03 2.2950E-03 2.2959E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/Zr.mat0000644000000000000000000002005014741736366017713 0ustar00rootrootZr 1 40 1.000000 5 6 3 3 9 85 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 2.2223E-03 2.2223E-03 2.2641E-03 2.3067E-03 2.3067E-03 2.4165E-03 2.5316E-03 2.5316E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 1.7998E-02 1.7998E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 6.5467E+00 4.0957E+01 7.5353E+00 6.1255E+00 5.7050E+00 5.5235E+00 5.5235E+00 5.4898E+00 5.4561E+00 5.4561E+00 5.3740E+00 5.2904E+00 5.2904E+00 4.9439E+00 4.2969E+00 3.7576E+00 3.3139E+00 2.6406E+00 2.1501E+00 1.3533E+00 1.0635E+00 1.0635E+00 9.2223E-01 5.2145E-01 3.3839E-01 2.3580E-01 1.7349E-01 1.0576E-01 7.1626E-02 3.4565E-02 2.0234E-02 1.3250E-02 9.3411E-03 6.9374E-03 5.3545E-03 4.2566E-03 3.4638E-03 2.8727E-03 2.4208E-03 2.0679E-03 1.5591E-03 1.3718E-03 1.2159E-03 9.7463E-04 8.8064E-04 8.4367E-04 5.6522E-04 5.2270E-04 4.5093E-04 3.9299E-04 3.4548E-04 2.7306E-04 2.2135E-04 2.1197E-04 1.8310E-04 1.3115E-04 9.8494E-05 5.5413E-05 3.5470E-05 2.4637E-05 1.8101E-05 1.3857E-05 1.0952E-05 8.8724E-06 7.3276E-06 6.1598E-06 5.2482E-06 4.5253E-06 3.9424E-06 3.4651E-06 2.7376E-06 2.2174E-06 1.8326E-06 1.5401E-06 1.3124E-06 1.1315E-06 9.8560E-07 5.5439E-07 3.5483E-07 2.4637E-07 1.3857E-07 8.8724E-08 3.9424E-08 2.2174E-08 9.8560E-09 5.5433E-09 3.5476E-09 2.4637E-09 1.3857E-09 8.8724E-10 3.9424E-10 2.2174E-10 9.8560E-11 5.5433E-11 3.5476E-11 2.4637E-11 1.3857E-11 8.8724E-12 3.9424E-12 2.2174E-12 9.8560E-13 5.5433E-13 3.5476E-13 2.4637E-13 1.3857E-13 8.8724E-14 INCOHERENT SCATTERING CROSS SECTION 8.1000E-03 1.8870E-02 3.6773E-03 1.3381E-02 1.8141E-02 2.0174E-02 2.0174E-02 2.0555E-02 2.0940E-02 2.0940E-02 2.1913E-02 2.2914E-02 2.2914E-02 2.6914E-02 3.4843E-02 4.2065E-02 4.8607E-02 5.9625E-02 6.8457E-02 8.4961E-02 9.2355E-02 9.2355E-02 9.6448E-02 1.1005E-01 1.1685E-01 1.2015E-01 1.2140E-01 1.2074E-01 1.1836E-01 1.1064E-01 1.0331E-01 9.6900E-02 9.1365E-02 8.6586E-02 8.2452E-02 7.8849E-02 7.5653E-02 7.2778E-02 7.0174E-02 6.7801E-02 6.3633E-02 6.1790E-02 6.0082E-02 5.7014E-02 5.5631E-02 5.5050E-02 4.9788E-02 4.8797E-02 4.6956E-02 4.5280E-02 4.3743E-02 4.1016E-02 3.8665E-02 3.8190E-02 3.6612E-02 3.3188E-02 3.0433E-02 2.5389E-02 2.1930E-02 1.9382E-02 1.7421E-02 1.5857E-02 1.4576E-02 1.3507E-02 1.2596E-02 1.1817E-02 1.1130E-02 1.0529E-02 9.9946E-03 9.5193E-03 8.7008E-03 8.0208E-03 7.4531E-03 6.9646E-03 6.5401E-03 6.1691E-03 5.8417E-03 4.6422E-03 3.8751E-03 3.3390E-03 2.6333E-03 2.1858E-03 1.5566E-03 1.2200E-03 8.6479E-04 6.7731E-04 5.6073E-04 4.8013E-04 3.7496E-04 3.0849E-04 2.1541E-04 1.6675E-04 1.1592E-04 8.9516E-05 7.3144E-05 6.2047E-05 4.7801E-05 3.9028E-05 2.6974E-05 2.0735E-05 1.4299E-05 1.0978E-05 8.9384E-06 7.5587E-06 5.7948E-06 4.7148E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 4.2032E+03 9.2819E+05 2.1342E+04 1.6253E+03 8.0604E+02 6.2028E+02 2.3858E+03 2.2458E+03 2.1145E+03 2.9476E+03 2.6336E+03 2.3534E+03 2.6855E+03 1.7672E+03 8.4631E+02 4.7181E+02 2.9014E+02 1.3295E+02 7.1956E+01 2.3184E+01 1.3857E+01 9.3543E+01 7.1362E+01 2.4221E+01 1.0932E+01 5.8179E+00 3.4486E+00 1.4946E+00 7.7567E-01 2.3382E-01 1.0014E-01 5.2309E-02 3.1073E-02 2.0199E-02 1.4035E-02 1.0264E-02 7.8162E-03 6.1490E-03 4.9623E-03 4.0884E-03 2.9337E-03 2.5488E-03 2.2460E-03 1.7806E-03 1.5883E-03 1.5104E-03 1.0193E-03 9.4923E-04 8.2931E-04 7.3210E-04 6.5304E-04 5.3341E-04 4.4791E-04 4.3233E-04 3.8423E-04 2.9656E-04 2.3977E-04 1.5995E-04 1.1889E-04 9.4203E-05 7.7765E-05 6.6147E-05 5.7519E-05 5.0838E-05 4.5530E-05 4.1213E-05 3.7635E-05 3.4625E-05 3.2057E-05 2.9839E-05 2.6208E-05 2.3363E-05 2.1072E-05 1.9184E-05 1.7613E-05 1.6273E-05 1.5124E-05 1.1176E-05 8.8592E-06 7.3408E-06 5.4621E-06 4.3497E-06 2.8822E-06 2.1547E-06 1.4319E-06 1.0721E-06 8.5687E-07 7.1362E-07 5.3492E-07 4.2778E-07 2.8499E-07 2.1369E-07 1.4239E-07 1.0681E-07 8.5423E-08 7.1164E-08 5.3380E-08 4.2705E-08 2.8466E-08 2.1349E-08 1.4233E-08 1.0675E-08 8.5423E-09 7.1164E-09 5.3373E-09 4.2698E-09 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.2411E-04 1.9394E-04 3.7269E-04 5.9532E-04 8.5460E-04 1.4574E-03 2.1303E-03 2.2828E-03 2.8316E-03 4.2600E-03 5.6601E-03 8.8658E-03 1.1665E-02 1.4107E-02 1.6292E-02 1.8253E-02 2.0036E-02 2.1666E-02 2.3158E-02 2.4531E-02 2.5792E-02 2.6954E-02 2.8036E-02 2.9053E-02 3.0902E-02 3.2559E-02 3.4070E-02 3.5437E-02 3.6691E-02 3.7833E-02 3.8889E-02 4.3187E-02 4.6369E-02 4.8844E-02 5.2508E-02 5.5116E-02 5.9255E-02 6.1737E-02 6.4622E-02 6.6279E-02 6.7401E-02 6.8193E-02 6.9183E-02 6.9910E-02 7.0834E-02 7.1428E-02 7.1956E-02 7.2286E-02 7.2484E-02 7.2616E-02 7.2814E-02 7.2880E-02 7.3078E-02 7.3144E-02 7.3210E-02 7.3276E-02 7.3342E-02 7.3342E-02 7.3342E-02 7.3342E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0193E-07 3.0230E-06 1.0648E-05 4.3451E-05 8.6545E-05 1.3276E-04 1.7883E-04 2.2353E-04 2.6624E-04 3.0684E-04 3.4532E-04 3.8157E-04 4.1576E-04 4.4831E-04 4.7914E-04 5.0845E-04 5.6271E-04 6.1216E-04 6.5744E-04 6.9910E-04 7.3739E-04 7.7303E-04 8.0670E-04 9.4401E-04 1.0490E-03 1.1322E-03 1.2576E-03 1.3493E-03 1.5018E-03 1.5982E-03 1.7164E-03 1.7883E-03 1.8379E-03 1.8742E-03 1.9243E-03 1.9580E-03 2.0088E-03 2.0379E-03 2.0702E-03 2.0887E-03 2.1006E-03 2.1085E-03 2.1191E-03 2.1263E-03 2.1356E-03 2.1409E-03 2.1461E-03 2.1501E-03 2.1521E-03 2.1534E-03 2.1547E-03 2.1554E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/atomsf.dict0000644000000000000000000006510614741736366020766 0ustar00rootroot [Ru] z = 44 electrons = 44 c = 5.378740, 19.267399, 12.918200, 4.863370, 1.567560 b = 0.808520, 8.434669, 24.799700, 94.292801 [Yb] z = 70 electrons = 70 c = 7.566720, 28.664101, 15.434500, 15.308700, 2.989630 b = 1.988900, 0.257119, 10.664700, 100.417000 [Sm] z = 62 electrons = 62 c = 2.209630, 24.004200, 19.425800, 13.439600, 2.896040 b = 2.472740, 0.196451, 14.399600, 128.007004 [Ni] z = 28 electrons = 28 c = 1.034100, 12.837600, 7.292000, 4.443800, 2.380000 b = 3.878500, 0.256500, 12.176300, 66.342102 [F-1] z = 9 electrons = 10 c = 0.653396, 3.632200, 3.510570, 1.260640, 0.940706 b = 5.277560, 14.735300, 0.442258, 47.343700 [Ni+2] z = 28 electrons = 26 c = 0.861400, 11.416600, 7.400500, 5.344200, 0.977300 b = 3.676600, 0.244900, 8.873000, 22.162600 [Ni+3] z = 28 electrons = 25 c = 0.386044, 10.780600, 7.758680, 5.227460, 0.847114 b = 3.547700, 0.223140, 7.644680, 16.967300 [Ra] z = 88 electrons = 88 c = 13.621099, 35.763000, 22.906399, 12.473900, 3.210970 b = 0.616341, 3.871350, 19.988701, 142.324997 [Rb] z = 37 electrons = 37 c = 3.487300, 17.178400, 9.643499, 5.139900, 1.529200 b = 1.788800, 17.315100, 0.274800, 164.933990 [Sb] z = 51 electrons = 51 c = 4.590900, 19.641800, 19.045500, 5.037100, 2.682700 b = 5.303400, 0.460700, 27.907400, 75.282501 [Rn] z = 86 electrons = 86 c = 13.690500, 35.563099, 21.281601, 8.003700, 7.443300 b = 0.663100, 4.069100, 14.042200, 44.247299 [Rh] z = 45 electrons = 45 c = 5.328000, 19.295700, 14.350100, 4.734250, 1.289180 b = 0.751536, 8.217580, 25.874901, 98.606201 [Mn+4] z = 25 electrons = 21 c = 0.251877, 9.962530, 7.970570, 2.760670, 0.054447 b = 4.848500, 0.283303, 10.485200, 27.573000 [Be] z = 4 electrons = 4 c = 0.038500, 1.591900, 1.127800, 0.539100, 0.702900 b = 43.642700, 1.862300, 103.483002, 0.542000 [Rh+4] z = 45 electrons = 41 c = 11.283500, 18.854500, 13.980600, 2.534640, -5.652600 b = 0.760825, 7.624360, 19.331699, -0.010200 [Rh+3] z = 45 electrons = 42 c = 11.867800, 18.878500, 14.125900, 3.325150, -6.198900 b = 0.764252, 7.844380, 21.248699, -0.010360 [Ba] z = 56 electrons = 56 c = 2.773100, 20.336100, 19.297001, 10.888000, 2.695900 b = 3.216000, 0.275600, 20.207300, 167.201996 [Mn+2] z = 25 electrons = 23 c = 1.087400, 10.806100, 7.362000, 3.526800, 0.218400 b = 5.279600, 0.343500, 14.343000, 41.323502 [Mn+3] z = 25 electrons = 22 c = 0.393974, 9.845210, 7.871940, 3.565310, 0.323613 b = 4.917970, 0.294393, 10.817100, 24.128099 [Sr+2] z = 38 electrons = 36 c = 41.402500, 18.087400, 8.137300, 2.565400, -34.193001 b = 1.490700, 12.696300, 24.565100, -0.013800 [Mo+6] z = 42 electrons = 36 c = 0.344941, 17.887100, 11.175000, 6.578910, 0.000000 b = 1.036490, 8.480610, 0.058881, 0.000000 [Au+3] z = 79 electrons = 76 c = 9.096800, 30.688599, 16.902901, 12.780100, 6.523540 b = 1.219900, 6.828720, 0.212867, 18.659000 [H-1] z = 1 electrons = 2 c = 0.002389, 0.897661, 0.565616, 0.415815, 0.116973 b = 53.136799, 15.187000, 186.575989, 3.567090 [Mo+3] z = 42 electrons = 39 c = -14.421000, 21.166401, 18.201700, 11.742300, 2.309510 b = 0.014734, 1.030310, 9.536590, 26.630699 [Bk] z = 97 electrons = 97 c = 13.275400, 36.788101, 24.773600, 17.891899, 4.232840 b = 0.451018, 3.046190, 12.894600, 86.002998 [O-1] z = 8 electrons = 9 c = 21.941200, 4.191600, 1.639690, 1.526730, -20.306999 b = 12.857300, 4.172360, 47.017899, -0.014040 [Br] z = 35 electrons = 35 c = 2.955700, 17.178900, 5.235800, 5.637700, 3.985100 b = 2.172300, 16.579599, 0.260900, 41.432800 [Mg+2] z = 12 electrons = 10 c = 0.485300, 3.498800, 3.837800, 1.328400, 0.849700 b = 2.167600, 4.754200, 0.185000, 10.141100 [Ce+3] z = 58 electrons = 55 c = 2.090130, 20.803600, 19.559000, 11.936900, 0.612376 b = 2.776910, 0.231540, 16.540800, 43.169201 [Ra+2] z = 88 electrons = 86 c = 13.543100, 35.215000, 21.670000, 7.913420, 7.650780 b = 0.604909, 3.576700, 12.601000, 29.843599 [V+2] z = 23 electrons = 21 c = 1.229800, 10.106000, 7.354100, 2.288400, 0.022300 b = 6.881800, 0.440900, 20.300400, 115.122002 [Ho] z = 67 electrons = 67 c = 4.567960, 26.904900, 17.293999, 14.558300, 3.638370 b = 2.070510, 0.197940, 11.440700, 92.656601 [Al+3] z = 13 electrons = 10 c = 0.706786, 4.174480, 3.387600, 1.202960, 0.528137 b = 1.938160, 4.145530, 0.228753, 8.285240 [H] z = 1 electrons = 1 c = 0.003038, 0.493002, 0.322912, 0.140191, 0.040810 b = 10.510900, 26.125700, 3.142360, 57.799698 [Ti+2] z = 22 electrons = 20 c = 0.897155, 9.114230, 7.621740, 2.279300, 0.087899 b = 7.524300, 0.457585, 19.536100, 61.655800 [Ti+3] z = 22 electrons = 19 c = -14.652000, 17.734400, 8.738160, 5.256910, 1.921340 b = 0.220610, 7.047160, -0.157620, 15.976800 [Ti+4] z = 22 electrons = 18 c = -13.280000, 19.511400, 8.234730, 2.013410, 1.520800 b = 0.178847, 6.670180, -0.292630, 12.946400 [Ne] z = 10 electrons = 10 c = 0.351500, 3.955300, 3.112500, 1.454600, 1.125100 b = 8.404200, 3.426200, 0.230600, 21.718399 [Li+1] z = 3 electrons = 3 c = 0.016700, 0.696800, 0.788800, 0.341400, 0.156300 b = 4.623700, 1.955700, 0.631600, 10.095300 [Ag+2] z = 47 electrons = 45 c = 5.214040, 19.164299, 16.245600, 4.370900, 0.000000 b = 0.645643, 7.185440, 21.407200, 0.000000 [Zn+2] z = 30 electrons = 28 c = 0.780700, 11.971900, 7.386200, 6.466800, 1.394000 b = 2.994600, 0.203100, 7.082600, 18.099499 [Os] z = 76 electrons = 76 c = 11.000500, 28.189400, 16.154999, 14.930500, 5.675890 b = 1.629030, 8.979480, 0.382661, 48.164700 [Si+4] z = 14 electrons = 10 c = 0.746297, 4.439180, 3.203450, 1.194530, 0.416530 b = 1.641670, 3.437570, 0.214900, 6.653650 [Os+4] z = 76 electrons = 72 c = 6.498040, 30.418999, 15.263700, 14.745800, 5.067950 b = 1.371130, 6.847060, 0.165191, 18.003000 [Br-1] z = 35 electrons = 36 c = 3.177600, 17.171799, 6.333800, 5.575400, 3.727200 b = 2.205900, 19.334499, 0.287100, 58.153500 [Re] z = 75 electrons = 75 c = 10.472000, 28.762100, 15.718900, 14.556400, 5.441740 b = 1.671910, 9.092270, 0.350500, 52.086098 [Nb+5] z = 41 electrons = 36 c = -6.393400, 17.916300, 13.341700, 10.799000, 0.337905 b = 1.124460, 0.028781, 9.282060, 25.722799 [Dy+3] z = 66 electrons = 63 c = 0.689690, 25.539499, 20.286100, 11.981200, 4.500730 b = 1.980400, 0.143384, 9.349720, 19.580999 [Nb+3] z = 41 electrons = 38 c = -12.912000, 19.881199, 18.065300, 11.017700, 1.947150 b = 0.019175, 1.133050, 10.162100, 28.338900 [Ge] z = 32 electrons = 32 c = 2.131300, 16.081600, 6.374700, 3.706800, 3.683000 b = 2.850900, 0.251600, 11.446800, 54.762501 [Cl-1] z = 17 electrons = 18 c = -16.378000, 18.291500, 7.208400, 6.533700, 2.338600 b = 0.006600, 1.171700, 19.542400, 60.448601 [Ga] z = 31 electrons = 31 c = 1.718900, 15.235400, 6.700600, 4.359100, 2.962300 b = 3.066900, 0.241200, 10.780500, 61.413498 [Lu+3] z = 71 electrons = 68 c = 2.975730, 28.462799, 18.121000, 12.842899, 5.594150 b = 1.682160, 0.142292, 7.337270, 16.353500 [Pr] z = 59 electrons = 59 c = 2.058300, 22.043999, 19.669701, 12.385600, 2.824280 b = 2.773930, 0.222087, 16.766899, 143.643997 [Pm+3] z = 61 electrons = 58 c = 1.194990, 22.552700, 20.110800, 12.067100, 2.074920 b = 2.417400, 0.185769, 13.127500, 27.449100 [Y] z = 39 electrons = 39 c = 1.912130, 17.775999, 10.294600, 5.726290, 3.265880 b = 1.402900, 12.800600, 0.125599, 104.353996 [Bi+3] z = 83 electrons = 80 c = 12.471100, 21.805300, 19.502600, 19.105301, 7.102950 b = 1.235600, 6.241490, 0.469999, 20.318501 [Pt] z = 78 electrons = 78 c = 11.688300, 27.005899, 17.763901, 15.713100, 5.783700 b = 1.512930, 8.811740, 0.424593, 38.610298 [Pu] z = 94 electrons = 94 c = 13.381200, 36.525398, 23.808300, 16.770700, 3.479470 b = 0.499384, 3.263710, 14.945499, 105.979996 [U+6] z = 92 electrons = 86 c = 13.166500, 34.850899, 22.758400, 14.009900, 1.214570 b = 0.507079, 2.890300, 13.176700, 25.201700 [U+4] z = 92 electrons = 88 c = 13.267099, 35.371498, 22.532600, 12.029100, 4.798400 b = 0.516598, 3.050530, 12.572300, 23.458200 [U+3] z = 92 electrons = 89 c = 13.309200, 35.574699, 22.525900, 12.216499, 5.370730 b = 0.520480, 3.122930, 12.714800, 26.339399 [Mg] z = 12 electrons = 12 c = 0.858400, 5.420400, 2.173500, 1.226900, 2.307300 b = 2.827500, 79.261101, 0.380800, 7.193700 [Zr+4] z = 40 electrons = 36 c = 9.414539, 18.166800, 10.056200, 1.011180, -2.647900 b = 1.214800, 10.148300, 21.605400, -0.102760 [I-1] z = 53 electrons = 54 c = 4.071400, 20.233200, 18.997000, 7.806900, 2.886800 b = 4.357900, 0.381500, 29.525900, 84.930397 [Sc+3] z = 21 electrons = 18 c = -6.666700, 14.400800, 8.027300, 1.659430, 1.579360 b = 0.298540, 7.962900, -0.286040, 16.066200 [Pa] z = 91 electrons = 91 c = 13.428699, 35.884701, 23.294800, 14.189100, 4.172870 b = 0.547751, 3.415190, 16.923500, 105.250999 [Pd] z = 46 electrons = 46 c = 5.265930, 19.331900, 15.501699, 5.295370, 0.605844 b = 0.698655, 7.989290, 25.205200, 76.898598 [Cd] z = 48 electrons = 48 c = 5.069400, 19.221399, 17.644400, 4.461000, 1.602900 b = 0.594600, 6.908900, 24.700800, 87.482498 [Po] z = 84 electrons = 84 c = 13.677000, 34.672600, 15.473300, 13.113800, 7.025880 b = 0.700999, 3.550780, 9.556419, 47.004501 [Pm] z = 61 electrons = 61 c = 2.028760, 23.340500, 19.609501, 13.123500, 2.875160 b = 2.562700, 0.202088, 15.100900, 132.720993 [Tl+1] z = 81 electrons = 80 c = 12.525800, 21.398500, 20.472300, 18.747799, 6.828470 b = 1.471100, 0.517394, 7.434630, 28.848200 [Tl+3] z = 81 electrons = 78 c = 9.802700, 30.869499, 18.384100, 11.932800, 7.005740 b = 1.100800, 6.538520, 0.219074, 17.211399 [In+3] z = 49 electrons = 46 c = 4.996350, 19.104500, 18.110800, 3.788970, 0.000000 b = 0.551522, 6.324700, 17.359501, 0.000000 [Sm+3] z = 62 electrons = 58 c = 0.954586, 23.150400, 20.259899, 11.920200, 2.714880 b = 2.316410, 0.174081, 12.157100, 24.824200 [Gd] z = 64 electrons = 64 c = 2.419600, 25.070900, 19.079800, 13.851800, 3.545450 b = 2.253410, 0.181951, 12.933100, 101.397995 [La+3] z = 57 electrons = 54 c = 2.408600, 20.248899, 19.376301, 11.632299, 0.336048 b = 2.920700, 0.250698, 17.821100, 54.945297 [Th+4] z = 90 electrons = 86 c = 13.375999, 35.100700, 22.441799, 9.785540, 5.294440 b = 0.555054, 3.244980, 13.466100, 23.953300 [Gd+3] z = 64 electrons = 61 c = 0.645089, 24.346600, 20.420799, 11.870800, 3.714900 b = 2.135530, 0.155525, 10.578199, 21.702900 [Hf] z = 72 electrons = 72 c = 8.581540, 29.143999, 15.172600, 14.758600, 4.300130 b = 1.832620, 9.599899, 0.275116, 72.028999 [Hg] z = 80 electrons = 80 c = 12.608900, 20.680901, 19.041700, 21.657499, 5.967600 b = 0.545000, 8.448400, 1.572900, 38.324600 [Tm+3] z = 69 electrons = 66 c = 1.639290, 27.308300, 19.332001, 12.333900, 5.383480 b = 1.787110, 0.136974, 7.967780, 17.292200 [C] z = 6 electrons = 6 c = 0.215600, 2.310000, 1.020000, 1.588600, 0.865000 b = 20.843899, 10.207500, 0.568700, 51.651199 [Hf+4] z = 72 electrons = 68 c = 2.396990, 28.813099, 18.460100, 12.728500, 5.599270 b = 1.591360, 0.128903, 6.762320, 14.036600 [K] z = 19 electrons = 19 c = 1.422800, 8.218599, 7.439800, 1.051900, 0.865900 b = 12.794900, 0.774800, 213.186996, 41.684097 [Mn] z = 25 electrons = 25 c = 1.089600, 11.281900, 7.357300, 3.019300, 2.244100 b = 5.340900, 0.343200, 17.867399, 83.754303 [O] z = 8 electrons = 8 c = 0.250800, 3.048500, 2.286800, 1.546300, 0.867000 b = 13.277100, 5.701100, 0.323900, 32.908897 [Ca+2] z = 20 electrons = 18 c = -14.875000, 15.634800, 7.951800, 8.437200, 0.853700 b = -0.007400, 0.608900, 10.311600, 25.990499 [S] z = 16 electrons = 16 c = 0.866900, 6.905300, 5.203400, 1.437900, 1.586300 b = 1.467900, 22.215099, 0.253600, 56.172001 [W] z = 74 electrons = 74 c = 9.887500, 29.081800, 15.430000, 14.432700, 5.119820 b = 1.720290, 9.225900, 0.321703, 57.056000 [Np+3] z = 93 electrons = 90 c = 13.254400, 35.707397, 22.612999, 12.989799, 5.432270 b = 0.502322, 3.038070, 12.144899, 25.492800 [Ho+3] z = 67 electrons = 64 c = 0.852795, 26.129601, 20.099400, 11.978800, 4.936760 b = 1.910720, 0.139358, 8.800180, 18.590799 [Np+4] z = 93 electrons = 89 c = 13.211599, 35.510300, 22.578699, 12.776600, 4.921590 b = 0.498626, 2.966270, 11.948400, 22.750200 [Zn] z = 30 electrons = 30 c = 1.304100, 14.074300, 7.031800, 5.162500, 2.410000 b = 3.265500, 0.233300, 10.316299, 58.709702 [Mo+5] z = 42 electrons = 37 c = -14.316000, 21.014900, 18.099199, 11.463200, 0.740625 b = 0.014345, 1.022380, 8.788090, 23.345200 [Eu] z = 63 electrons = 63 c = 2.574500, 24.627399, 19.088600, 13.760300, 2.922700 b = 2.387900, 0.194200, 13.754600, 123.173996 [Zr] z = 40 electrons = 40 c = 2.069290, 17.876499, 10.948000, 5.417320, 3.657210 b = 1.276180, 11.916000, 0.117622, 87.662697 [Er] z = 68 electrons = 68 c = 5.920460, 27.656300, 16.428499, 14.977900, 2.982330 b = 2.073560, 0.223545, 11.360400, 105.703003 [Ge+4] z = 32 electrons = 28 c = 1.455720, 12.917200, 6.700030, 6.067910, 0.859041 b = 2.537180, 0.205855, 5.479130, 11.603000 [Yb+2] z = 70 electrons = 68 c = 3.709830, 28.120899, 17.681700, 13.333500, 5.146570 b = 1.785030, 0.159970, 8.183040, 20.389999 [Yb+3] z = 70 electrons = 67 c = 2.260010, 27.891701, 18.761400, 12.607200, 5.476470 b = 1.732720, 0.138790, 7.644120, 16.814301 [Na] z = 11 electrons = 11 c = 0.676000, 4.762600, 3.173600, 1.267400, 1.112800 b = 3.285000, 8.842199, 0.313600, 129.423996 [Nb] z = 41 electrons = 41 c = 3.755910, 17.614201, 12.014400, 4.041830, 3.533460 b = 1.188650, 11.766000, 0.204785, 69.795700 [V+3] z = 23 electrons = 19 c = 0.656565, 9.431410, 7.741900, 2.153430, 0.016865 b = 6.395350, 0.383349, 15.190800, 63.969002 [Nd] z = 60 electrons = 60 c = 1.984860, 22.684500, 19.684700, 12.774000, 2.851370 b = 2.662480, 0.210628, 15.885000, 137.903000 [V+5] z = 23 electrons = 18 c = 1.714300, 15.688700, 8.142080, 2.030810, -9.576000 b = 0.679003, 5.401350, 9.972780, 0.940464 [Bi] z = 83 electrons = 83 c = 13.578199, 33.368900, 12.951000, 16.587700, 6.469200 b = 0.704000, 2.923800, 8.793700, 48.009300 [Ru+3] z = 44 electrons = 41 c = -3.189200, 18.563801, 13.288500, 9.326019, 3.009640 b = 0.847329, 8.371640, 0.017662, 22.886999 [Ga+3] z = 31 electrons = 28 c = 1.535450, 12.691999, 6.698830, 6.066920, 1.006600 b = 2.812620, 0.227890, 6.364410, 14.412200 [Bi+5] z = 83 electrons = 78 c = -6.799400, 33.536400, 25.094601, 19.249699, 6.915550 b = 0.916540, 0.390420, 5.714140, 12.828500 [Au+1] z = 79 electrons = 78 c = 11.229900, 28.010899, 17.820400, 14.335899, 6.580770 b = 1.353210, 7.739500, 0.356752, 26.404301 [Ru+4] z = 44 electrons = 40 c = 1.423570, 18.500299, 13.178699, 4.713040, 2.185350 b = 0.844582, 8.125340, 0.364950, 20.850399 [Np] z = 93 electrons = 93 c = 13.357300, 36.187401, 23.596399, 15.640200, 4.185500 b = 0.511929, 3.253960, 15.362200, 97.490799 [Pt+4] z = 78 electrons = 74 c = 7.395340, 30.961201, 15.982900, 13.734800, 5.920340 b = 1.248130, 6.608340, 0.168640, 16.939199 [Fr] z = 87 electrons = 87 c = 13.724700, 35.929901, 23.054699, 12.143900, 2.112530 b = 0.646453, 4.176190, 23.105200, 150.644989 [Cd+2] z = 48 electrons = 46 c = 5.119370, 19.151400, 17.253500, 4.471280, 0.000000 b = 0.597922, 6.806390, 20.252100, 0.000000 [Np+6] z = 93 electrons = 87 c = 13.113000, 35.013599, 22.728600, 14.388400, 1.756690 b = 0.489810, 2.810990, 12.330000, 22.658100 [Rb+1] z = 37 electrons = 36 c = 2.078200, 17.581600, 7.659800, 5.898100, 2.781700 b = 1.713900, 14.795700, 0.160300, 31.208700 [Hg+2] z = 80 electrons = 78 c = 10.626800, 29.564100, 18.059999, 12.837400, 6.899120 b = 1.211520, 7.056390, 0.284738, 20.748199 [Fe] z = 26 electrons = 26 c = 1.036900, 11.769500, 7.357300, 3.522200, 2.304500 b = 4.761100, 0.307200, 15.353500, 76.880501 [Hg+1] z = 80 electrons = 79 c = 12.020500, 25.085300, 18.497299, 16.888300, 6.482160 b = 1.395070, 7.651050, 0.443378, 28.226200 [Eu+3] z = 63 electrons = 60 c = 0.759344, 23.749699, 20.374500, 11.850900, 3.265030 b = 2.222580, 0.163940, 11.311000, 22.996599 [Eu+2] z = 63 electrons = 61 c = 1.363890, 24.006300, 19.950399, 11.803400, 3.872430 b = 2.277830, 0.173530, 11.609600, 26.515600 [Co+3] z = 27 electrons = 24 c = 0.286667, 10.337999, 7.881730, 4.767950, 0.725591 b = 3.909690, 0.238668, 8.355830, 18.349100 [Co+2] z = 27 electrons = 25 c = 0.932400, 11.229600, 7.388300, 4.739300, 0.710800 b = 4.123100, 0.272600, 10.244300, 25.646599 [Ir+4] z = 77 electrons = 73 c = 6.968240, 30.705799, 15.551200, 14.232600, 5.536720 b = 1.309230, 6.719830, 0.167252, 17.491100 [B] z = 5 electrons = 5 c = -0.193200, 2.054500, 1.332600, 1.097900, 0.706800 b = 23.218500, 1.021000, 60.349800, 0.140300 [Ir+3] z = 77 electrons = 74 c = 8.279030, 30.415600, 15.862000, 13.614500, 5.820080 b = 1.343230, 7.109090, 0.204633, 20.325399 [Sr] z = 38 electrons = 38 c = 2.506400, 17.566299, 9.818399, 5.422000, 2.669400 b = 1.556400, 14.098800, 0.166400, 132.376007 [Ce+4] z = 58 electrons = 54 c = 1.591800, 20.323500, 19.818600, 12.123300, 0.144583 b = 2.659410, 0.218850, 15.799200, 62.235500 [N] z = 7 electrons = 7 c = -11.528999, 12.212600, 3.132200, 2.012500, 1.166300 b = 0.005700, 9.893300, 28.997499, 0.582600 [Kr] z = 36 electrons = 36 c = 2.825000, 17.355499, 6.728600, 5.549300, 3.537500 b = 1.938400, 16.562300, 0.226100, 39.397202 [Si] z = 14 electrons = 14 c = 1.140700, 6.291500, 3.035300, 1.989100, 1.541000 b = 2.438600, 32.333698, 0.678500, 81.693695 [Sn] z = 50 electrons = 50 c = 4.782100, 19.188900, 19.100500, 4.458500, 2.466300 b = 5.830300, 0.503100, 26.890900, 83.957100 [Ac+3] z = 89 electrons = 86 c = 13.463699, 35.173599, 22.111200, 8.192160, 7.055450 b = 0.579689, 3.414370, 12.918700, 25.944300 [V] z = 23 electrons = 23 c = 1.219900, 10.297100, 7.351100, 2.070300, 2.057100 b = 6.865700, 0.438500, 26.893799, 102.477997 [Sc] z = 21 electrons = 21 c = 1.332900, 9.189000, 7.367900, 1.640900, 1.468000 b = 9.021299, 0.572900, 136.108002, 51.353100 [Sb+3] z = 51 electrons = 48 c = 4.696260, 18.975500, 18.932999, 5.107890, 0.288753 b = 0.467196, 5.221260, 19.590200, 55.511299 [Fe+2] z = 26 electrons = 24 c = 1.009700, 11.042400, 7.374000, 4.134600, 0.439900 b = 4.653800, 0.305300, 12.054600, 31.280899 [Fe+3] z = 26 electrons = 23 c = 0.970700, 11.176400, 7.386300, 3.394800, 0.072400 b = 4.614700, 0.300500, 11.672900, 38.556599 [Se] z = 34 electrons = 34 c = 2.840900, 17.000599, 5.819600, 3.973100, 4.354300 b = 2.409800, 0.272600, 15.237200, 43.816299 [Sb+5] z = 51 electrons = 46 c = 4.692630, 19.868500, 19.030199, 2.412530, 0.000000 b = 5.448530, 0.467973, 14.125900, 0.000000 [Ag+1] z = 47 electrons = 46 c = 5.215720, 19.181200, 15.971900, 5.274750, 0.357534 b = 0.646179, 7.191230, 21.732599, 66.114700 [Pb] z = 82 electrons = 82 c = 13.411800, 31.061699, 13.063700, 18.441999, 5.969600 b = 0.690200, 2.357600, 8.618000, 47.257900 [Er+3] z = 68 electrons = 65 c = 1.176130, 26.722000, 19.774799, 12.150600, 5.173790 b = 1.846590, 0.137290, 8.362249, 17.897400 [Co] z = 27 electrons = 27 c = 1.011800, 12.284100, 7.340900, 4.003400, 2.348800 b = 4.279100, 0.278400, 13.535900, 71.169197 [Cm] z = 96 electrons = 96 c = 13.288700, 36.648800, 24.409599, 17.399000, 4.216650 b = 0.465154, 3.089970, 13.434600, 88.483398 [Cl] z = 17 electrons = 17 c = -9.557400, 11.460400, 7.196400, 6.255600, 1.645500 b = 0.010400, 1.166200, 18.519400, 47.778400 [Ca] z = 20 electrons = 20 c = 1.375100, 8.626600, 7.387300, 1.589900, 1.021100 b = 10.442100, 0.659900, 85.748398, 178.436996 [Cf] z = 98 electrons = 98 c = 13.267400, 36.918499, 25.199499, 18.331699, 4.243910 b = 0.437533, 3.007750, 12.404400, 83.788101 [Ce] z = 58 electrons = 58 c = 1.862640, 21.167099, 19.769501, 11.851299, 3.330490 b = 2.812190, 0.226836, 17.608299, 127.112999 [Xe] z = 54 electrons = 54 c = 3.711800, 20.293301, 19.029800, 8.976700, 1.990000 b = 3.928200, 0.344000, 26.465900, 64.265800 [Tm] z = 69 electrons = 69 c = 6.756210, 28.181900, 15.885099, 15.154200, 2.987060 b = 2.028590, 0.238849, 10.997499, 102.960999 [Cs] z = 55 electrons = 55 c = 3.335200, 20.389200, 19.106199, 10.662000, 1.495300 b = 3.569000, 0.310700, 24.387899, 213.903992 [Cr] z = 24 electrons = 24 c = 1.183200, 10.640600, 7.353700, 3.324000, 1.492200 b = 6.103800, 0.392000, 20.262600, 98.739899 [Sn+4] z = 50 electrons = 46 c = 3.918200, 18.933300, 19.713100, 3.418200, 0.019300 b = 5.764000, 0.465500, 14.004900, -0.758300 [Sn+2] z = 50 electrons = 48 c = 4.786100, 19.109400, 19.054800, 4.564800, 0.487000 b = 0.503600, 5.837800, 23.375200, 62.206100 [Cv] z = 6 electrons = 6 c = 0.286977, 2.260690, 1.561650, 1.050750, 0.839259 b = 22.690701, 0.656665, 9.756180, 55.594898 [Cu] z = 29 electrons = 29 c = 1.191000, 13.337999, 7.167600, 5.615800, 1.673500 b = 3.582800, 0.247000, 11.396600, 64.812599 [Pt+2] z = 78 electrons = 76 c = 9.853290, 29.842899, 16.722401, 13.215300, 6.352340 b = 1.329270, 7.389790, 0.263297, 22.942600 [Ta+5] z = 73 electrons = 68 c = 1.785550, 29.158699, 18.840700, 12.826799, 5.386950 b = 1.507110, 0.116741, 6.315240, 12.424400 [La] z = 57 electrons = 57 c = 2.146780, 20.577999, 19.598999, 11.372700, 3.287190 b = 2.948170, 0.244475, 18.772600, 133.123993 [Ba+2] z = 56 electrons = 54 c = 3.029020, 20.180700, 19.113600, 10.905399, 0.776340 b = 3.213670, 0.283310, 20.055799, 51.745998 [Li] z = 3 electrons = 3 c = 0.037700, 1.128200, 0.750800, 0.617500, 0.465300 b = 3.954600, 1.052400, 85.390503, 168.261002 [Y+3] z = 39 electrons = 36 c = 40.260201, 17.926800, 9.153100, 1.767950, -33.108002 b = 1.354170, 11.214500, 22.659901, -0.013190 [Tl] z = 81 electrons = 81 c = 13.174600, 27.544600, 19.158400, 15.538000, 5.525930 b = 0.655150, 8.707510, 1.963470, 45.814899 [Lu] z = 71 electrons = 71 c = 7.976280, 28.947599, 15.220800, 15.100000, 3.716010 b = 1.901820, 9.985189, 0.261033, 84.329803 [Th] z = 90 electrons = 90 c = 13.431400, 35.564499, 23.421900, 12.747300, 4.807030 b = 0.563359, 3.462040, 17.830900, 99.172195 [Ti] z = 22 electrons = 22 c = 1.280700, 9.759500, 7.355800, 1.699100, 1.902100 b = 7.850800, 0.500000, 35.633801, 116.104996 [Pu+3] z = 94 electrons = 91 c = 13.199100, 35.840000, 22.716900, 13.580700, 5.660160 b = 0.484936, 2.961180, 11.533100, 24.399200 [Tb] z = 65 electrons = 65 c = 3.582240, 25.897600, 18.218500, 14.316700, 2.953540 b = 2.242560, 0.196143, 12.664800, 115.362000 [He] z = 2 electrons = 2 c = 0.006400, 0.873400, 0.630900, 0.311200, 0.178000 b = 9.103700, 3.356800, 22.927601, 0.982100 [Pu+6] z = 94 electrons = 88 c = 13.058200, 35.173599, 22.718100, 14.763500, 2.286780 b = 0.473204, 2.738480, 11.552999, 20.930300 [Ta] z = 73 electrons = 73 c = 9.243540, 29.202400, 15.229300, 14.513500, 4.764920 b = 1.773330, 9.370460, 0.295977, 63.364399 [Pb+2] z = 82 electrons = 80 c = 12.473400, 21.788601, 19.568199, 19.140600, 7.011070 b = 1.336600, 0.488383, 6.772700, 23.813200 [Te] z = 52 electrons = 52 c = 4.352000, 19.964399, 19.013800, 6.144870, 2.523900 b = 4.817420, 0.420885, 28.528400, 70.840302 [Tb+3] z = 65 electrons = 62 c = 0.691967, 24.955900, 20.327099, 12.247100, 3.773000 b = 2.056010, 0.149525, 10.049900, 21.277300 [Pb+4] z = 82 electrons = 78 c = 8.084280, 32.124397, 18.800301, 12.017500, 6.968860 b = 1.005660, 6.109260, 0.147041, 14.714000 [Pu+4] z = 94 electrons = 90 c = 13.155500, 35.649300, 22.646000, 13.359500, 5.188310 b = 0.481422, 2.890200, 11.316000, 21.830099 [F] z = 9 electrons = 9 c = 0.277600, 3.539200, 2.641200, 1.517000, 1.024300 b = 10.282499, 4.294400, 0.261500, 26.147600 [K+1] z = 19 electrons = 18 c = -4.997800, 7.957800, 7.491700, 6.359000, 1.191500 b = 12.633100, 0.767400, -0.002000, 31.912800 [Tc] z = 43 electrons = 43 c = 5.404280, 19.130100, 11.094800, 4.649010, 2.712630 b = 0.864132, 8.144870, 21.570700, 86.847198 [Be+2] z = 4 electrons = 2 c = -6.109200, 6.260300, 0.884900, 0.799300, 0.164700 b = 0.002700, 0.831300, 2.275800, 5.114600 [Pd+2] z = 46 electrons = 44 c = 5.291600, 19.170099, 15.209600, 4.322340, 0.000000 b = 0.696219, 7.555730, 22.505699, 0.000000 [Pd+4] z = 46 electrons = 42 c = 13.017400, 19.249300, 14.790000, 2.892890, -7.949200 b = 0.683839, 7.148330, 17.914400, 0.005127 [Dy] z = 66 electrons = 66 c = 4.297280, 26.507000, 17.638300, 14.559600, 2.965770 b = 2.180200, 0.202172, 12.189899, 111.874001 [Nd+3] z = 60 electrons = 57 c = 1.475880, 21.961000, 19.933899, 12.120000, 1.510310 b = 2.527220, 0.199237, 14.178300, 30.871700 [Cs+1] z = 55 electrons = 54 c = 3.279100, 20.352400, 19.127800, 10.282100, 0.961500 b = 3.552000, 0.308600, 23.712799, 59.456497 [Na+1] z = 11 electrons = 10 c = 0.404000, 3.256500, 3.936200, 1.399800, 1.003200 b = 2.667100, 6.115300, 0.200100, 14.039000 [I] z = 53 electrons = 53 c = 4.071200, 20.147200, 18.994900, 7.513800, 2.273500 b = 4.347000, 0.381400, 27.765999, 66.877602 [In] z = 49 electrons = 49 c = 4.939100, 19.162399, 18.559601, 4.294800, 2.039600 b = 0.547600, 6.377600, 25.849899, 92.802902 [Cr+2] z = 24 electrons = 22 c = 0.616898, 9.540340, 7.750900, 3.582740, 0.509107 b = 5.660780, 0.344261, 13.307500, 32.422401 [U] z = 92 electrons = 92 c = 13.396600, 36.022800, 23.412800, 14.949100, 4.188000 b = 0.529300, 3.325300, 16.092699, 100.612999 [Siv] z = 14 electrons = 14 c = 1.247070, 5.662690, 3.071640, 2.624460, 1.393200 b = 2.665200, 38.663399, 0.916946, 93.545799 [Ac] z = 89 electrons = 89 c = 13.526600, 35.659698, 23.103199, 12.597700, 4.086550 b = 0.589092, 3.651550, 18.598999, 117.019997 [Ag] z = 47 electrons = 47 c = 5.179000, 19.280800, 16.688499, 4.804500, 1.046300 b = 0.644600, 7.472600, 24.660500, 99.815598 [P] z = 15 electrons = 15 c = 1.114900, 6.434500, 4.179100, 1.780000, 1.490800 b = 1.906700, 27.157000, 0.526000, 68.164497 [Cu+1] z = 29 electrons = 28 c = 0.890000, 11.947500, 7.357300, 6.245500, 1.557800 b = 3.366900, 0.227400, 8.662500, 25.848700 [Ir] z = 77 electrons = 77 c = 11.472200, 27.304899, 16.729599, 15.611500, 5.833770 b = 1.592790, 8.865530, 0.417916, 45.001099 [Am] z = 95 electrons = 95 c = 13.359200, 36.670601, 24.099199, 17.341499, 3.493310 b = 0.483629, 3.206470, 14.313600, 102.272995 [Al] z = 13 electrons = 13 c = 1.115100, 6.420200, 1.900200, 1.593600, 1.964600 b = 3.038700, 0.742600, 31.547199, 85.088600 [Cu+2] z = 29 electrons = 27 c = 1.144310, 11.816800, 7.111810, 5.781350, 1.145230 b = 3.374840, 0.244078, 7.987600, 19.896999 [Pr+3] z = 59 electrons = 56 c = 1.771320, 21.372700, 19.749100, 12.132900, 0.975180 b = 2.645200, 0.214299, 15.323000, 36.406502 [As] z = 33 electrons = 33 c = 2.531000, 16.672300, 6.070100, 3.431300, 4.277900 b = 2.634500, 0.264700, 12.947900, 47.797199 [Ar] z = 18 electrons = 18 c = 1.444500, 7.484500, 6.772300, 0.653900, 1.644200 b = 0.907200, 14.840700, 43.898300, 33.392899 [Au] z = 79 electrons = 79 c = 12.065800, 16.881901, 18.591299, 25.558201, 5.860000 b = 0.461100, 8.621600, 1.482600, 36.395599 [At] z = 85 electrons = 85 c = 13.710800, 35.316299, 19.021099, 9.498870, 7.425180 b = 0.685870, 3.974580, 11.382400, 45.471500 [Pr+4] z = 59 electrons = 55 c = 1.242850, 20.941299, 20.053900, 12.466800, 0.296689 b = 2.544670, 0.202481, 14.813700, 45.464298 [Mo] z = 42 electrons = 42 c = 4.387500, 3.702500, 17.235600, 12.887600, 3.742900 b = 0.277200, 1.095800, 11.004000, 61.658401 [Cr+3] z = 24 electrons = 21 c = 0.518275, 9.680900, 7.811360, 2.876030, 0.113575 b = 5.594630, 0.334393, 12.828800, 32.876099 [W+6] z = 74 electrons = 68 c = 1.010740, 29.493599, 19.376301, 13.054399, 5.064120 b = 1.427550, 0.104621, 5.936670, 11.197200 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/atomsf.lib0000644000000000000000000014444014741736366020610 0ustar00rootrootH 1 1 0.003038 0.493002 0.322912 0.140191 0.040810 10.510900 26.125700 3.142360 57.799698 0.000000 0.000000 0.000000 0.000000 H-1 1 2 0.002389 0.897661 0.565616 0.415815 0.116973 53.136799 15.187000 186.575989 3.567090 0.000000 0.000000 0.000000 0.000000 He 2 2 0.006400 0.873400 0.630900 0.311200 0.178000 9.103700 3.356800 22.927601 0.982100 0.000000 0.000000 0.000000 0.000000 Li 3 3 0.037700 1.128200 0.750800 0.617500 0.465300 3.954600 1.052400 85.390503 168.261002 0.001000 0.000000 0.000000 0.000000 Li+1 3 3 0.016700 0.696800 0.788800 0.341400 0.156300 4.623700 1.955700 0.631600 10.095300 0.001000 0.000000 0.000000 0.000000 Be 4 4 0.038500 1.591900 1.127800 0.539100 0.702900 43.642700 1.862300 103.483002 0.542000 0.003000 0.001000 0.000000 0.000000 Be+2 4 2 -6.109200 6.260300 0.884900 0.799300 0.164700 0.002700 0.831300 2.275800 5.114600 0.003000 0.001000 0.000000 0.000000 B 5 5 -0.193200 2.054500 1.332600 1.097900 0.706800 23.218500 1.021000 60.349800 0.140300 0.008000 0.004000 0.000000 0.001000 C 6 6 0.215600 2.310000 1.020000 1.588600 0.865000 20.843899 10.207500 0.568700 51.651199 0.017000 0.009000 0.002000 0.002000 Cv 6 6 0.286977 2.260690 1.561650 1.050750 0.839259 22.690701 0.656665 9.756180 55.594898 0.017000 0.009000 0.002000 0.002000 N 7 7 -11.528999 12.212600 3.132200 2.012500 1.166300 0.005700 9.893300 28.997499 0.582600 0.029000 0.018000 0.004000 0.003000 O 8 8 0.250800 3.048500 2.286800 1.546300 0.867000 13.277100 5.701100 0.323900 32.908897 0.047000 0.032000 0.008000 0.006000 O-1 8 9 21.941200 4.191600 1.639690 1.526730 -20.306999 12.857300 4.172360 47.017899 -0.014040 0.047000 0.032000 0.008000 0.006000 F 9 9 0.277600 3.539200 2.641200 1.517000 1.024300 10.282499 4.294400 0.261500 26.147600 0.069000 0.053000 0.014000 0.010000 F-1 9 10 0.653396 3.632200 3.510570 1.260640 0.940706 5.277560 14.735300 0.442258 47.343700 0.069000 0.053000 0.014000 0.010000 Ne 10 10 0.351500 3.955300 3.112500 1.454600 1.125100 8.404200 3.426200 0.230600 21.718399 0.097000 0.083000 0.021000 0.016000 Na 11 11 0.676000 4.762600 3.173600 1.267400 1.112800 3.285000 8.842199 0.313600 129.423996 0.129000 0.124000 0.030000 0.025000 Na+1 11 10 0.404000 3.256500 3.936200 1.399800 1.003200 2.667100 6.115300 0.200100 14.039000 0.129000 0.124000 0.030000 0.025000 Mg 12 12 0.858400 5.420400 2.173500 1.226900 2.307300 2.827500 79.261101 0.380800 7.193700 0.165000 0.177000 0.042000 0.036000 Mg+2 12 10 0.485300 3.498800 3.837800 1.328400 0.849700 2.167600 4.754200 0.185000 10.141100 0.165000 0.177000 0.042000 0.036000 Al 13 13 1.115100 6.420200 1.900200 1.593600 1.964600 3.038700 0.742600 31.547199 85.088600 0.204000 0.246000 0.056000 0.052000 Al+3 13 10 0.706786 4.174480 3.387600 1.202960 0.528137 1.938160 4.145530 0.228753 8.285240 0.204000 0.246000 0.056000 0.052000 Si 14 14 1.140700 6.291500 3.035300 1.989100 1.541000 2.438600 32.333698 0.678500 81.693695 0.244000 0.330000 0.072000 0.071000 Siv 14 14 1.247070 5.662690 3.071640 2.624460 1.393200 2.665200 38.663399 0.916946 93.545799 0.244000 0.330000 0.072000 0.071000 Si+4 14 10 0.746297 4.439180 3.203450 1.194530 0.416530 1.641670 3.437570 0.214900 6.653650 0.244000 0.330000 0.072000 0.071000 P 15 15 1.114900 6.434500 4.179100 1.780000 1.490800 1.906700 27.157000 0.526000 68.164497 0.283000 0.434000 0.090000 0.095000 S 16 16 0.866900 6.905300 5.203400 1.437900 1.586300 1.467900 22.215099 0.253600 56.172001 0.319000 0.557000 0.110000 0.124000 Cl 17 17 -9.557400 11.460400 7.196400 6.255600 1.645500 0.010400 1.166200 18.519400 47.778400 0.348000 0.702000 0.132000 0.159000 Cl-1 17 18 -16.378000 18.291500 7.208400 6.533700 2.338600 0.006600 1.171700 19.542400 60.448601 0.348000 0.702000 0.132000 0.159000 Ar 18 18 1.444500 7.484500 6.772300 0.653900 1.644200 0.907200 14.840700 43.898300 33.392899 0.366000 0.872000 0.155000 0.201000 K 19 19 1.422800 8.218599 7.439800 1.051900 0.865900 12.794900 0.774800 213.186996 41.684097 0.365000 1.066000 0.179000 0.250000 K+1 19 18 -4.997800 7.957800 7.491700 6.359000 1.191500 12.633100 0.767400 -0.002000 31.912800 0.365000 1.066000 0.179000 0.250000 Ca 20 20 1.375100 8.626600 7.387300 1.589900 1.021100 10.442100 0.659900 85.748398 178.436996 0.341000 1.286000 0.203000 0.306000 Ca+2 20 18 -14.875000 15.634800 7.951800 8.437200 0.853700 -0.007400 0.608900 10.311600 25.990499 0.341000 1.286000 0.203000 0.306000 Sc 21 21 1.332900 9.189000 7.367900 1.640900 1.468000 9.021299 0.572900 136.108002 51.353100 0.285000 1.533000 0.226000 0.372000 Sc+3 21 18 -6.666700 14.400800 8.027300 1.659430 1.579360 0.298540 7.962900 -0.286040 16.066200 0.285000 1.533000 0.226000 0.372000 Ti 22 22 1.280700 9.759500 7.355800 1.699100 1.902100 7.850800 0.500000 35.633801 116.104996 0.189000 1.807000 0.248000 0.446000 Ti+2 22 20 0.897155 9.114230 7.621740 2.279300 0.087899 7.524300 0.457585 19.536100 61.655800 0.189000 1.807000 0.248000 0.446000 Ti+3 22 19 -14.652000 17.734400 8.738160 5.256910 1.921340 0.220610 7.047160 -0.157620 15.976800 0.189000 1.807000 0.248000 0.446000 Ti+4 22 18 -13.280000 19.511400 8.234730 2.013410 1.520800 0.178847 6.670180 -0.292630 12.946400 0.189000 1.807000 0.248000 0.446000 V 23 23 1.219900 10.297100 7.351100 2.070300 2.057100 6.865700 0.438500 26.893799 102.477997 0.035000 2.110000 0.267000 0.530000 V+2 23 21 1.229800 10.106000 7.354100 2.288400 0.022300 6.881800 0.440900 20.300400 115.122002 0.035000 2.110000 0.267000 0.530000 V+3 23 19 0.656565 9.431410 7.741900 2.153430 0.016865 6.395350 0.383349 15.190800 63.969002 0.035000 2.110000 0.267000 0.530000 V+5 23 18 1.714300 15.688700 8.142080 2.030810 -9.576000 0.679003 5.401350 9.972780 0.940464 0.035000 2.110000 0.267000 0.530000 Cr 24 24 1.183200 10.640600 7.353700 3.324000 1.492200 6.103800 0.392000 20.262600 98.739899 -0.198000 2.443000 0.284000 0.624000 Cr+2 24 22 0.616898 9.540340 7.750900 3.582740 0.509107 5.660780 0.344261 13.307500 32.422401 -0.198000 2.443000 0.284000 0.624000 Cr+3 24 21 0.518275 9.680900 7.811360 2.876030 0.113575 5.594630 0.334393 12.828800 32.876099 -0.198000 2.443000 0.284000 0.624000 Mn 25 25 1.089600 11.281900 7.357300 3.019300 2.244100 5.340900 0.343200 17.867399 83.754303 -0.568000 2.808000 0.295000 0.729000 Mn+2 25 23 1.087400 10.806100 7.362000 3.526800 0.218400 5.279600 0.343500 14.343000 41.323502 -0.568000 2.808000 0.295000 0.729000 Mn+3 25 22 0.393974 9.845210 7.871940 3.565310 0.323613 4.917970 0.294393 10.817100 24.128099 -0.568000 2.808000 0.295000 0.729000 Mn+4 25 21 0.251877 9.962530 7.970570 2.760670 0.054447 4.848500 0.283303 10.485200 27.573000 -0.568000 2.808000 0.295000 0.729000 Fe 26 26 1.036900 11.769500 7.357300 3.522200 2.304500 4.761100 0.307200 15.353500 76.880501 -1.179000 3.204000 0.301000 0.845000 Fe+2 26 24 1.009700 11.042400 7.374000 4.134600 0.439900 4.653800 0.305300 12.054600 31.280899 -1.179000 3.204000 0.301000 0.845000 Fe+3 26 23 0.970700 11.176400 7.386300 3.394800 0.072400 4.614700 0.300500 11.672900 38.556599 -1.179000 3.204000 0.301000 0.845000 Co 27 27 1.011800 12.284100 7.340900 4.003400 2.348800 4.279100 0.278400 13.535900 71.169197 -2.464000 3.608000 0.299000 0.973000 Co+2 27 25 0.932400 11.229600 7.388300 4.739300 0.710800 4.123100 0.272600 10.244300 25.646599 -2.464000 3.608000 0.299000 0.973000 Co+3 27 24 0.286667 10.337999 7.881730 4.767950 0.725591 3.909690 0.238668 8.355830 18.349100 -2.464000 3.608000 0.299000 0.973000 Ni 28 28 1.034100 12.837600 7.292000 4.443800 2.380000 3.878500 0.256500 12.176300 66.342102 -2.956000 0.509000 0.285000 1.113000 Ni+2 28 26 0.861400 11.416600 7.400500 5.344200 0.977300 3.676600 0.244900 8.873000 22.162600 -2.956000 0.509000 0.285000 1.113000 Ni+3 28 25 0.386044 10.780600 7.758680 5.227460 0.847114 3.547700 0.223140 7.644680 16.967300 -2.956000 0.509000 0.285000 1.113000 Cu 29 29 1.191000 13.337999 7.167600 5.615800 1.673500 3.582800 0.247000 11.396600 64.812599 -2.019000 0.589000 0.263000 1.266000 Cu+1 29 28 0.890000 11.947500 7.357300 6.245500 1.557800 3.366900 0.227400 8.662500 25.848700 -2.019000 0.589000 0.263000 1.266000 Cu+2 29 27 1.144310 11.816800 7.111810 5.781350 1.145230 3.374840 0.244078 7.987600 19.896999 -2.019000 0.589000 0.263000 1.266000 Zn 30 30 1.304100 14.074300 7.031800 5.162500 2.410000 3.265500 0.233300 10.316299 58.709702 -1.612000 0.678000 0.222000 1.431000 Zn+2 30 28 0.780700 11.971900 7.386200 6.466800 1.394000 2.994600 0.203100 7.082600 18.099499 -1.612000 0.678000 0.222000 1.431000 Ga 31 31 1.718900 15.235400 6.700600 4.359100 2.962300 3.066900 0.241200 10.780500 61.413498 -1.354000 0.777000 0.163000 1.609000 Ga+3 31 28 1.535450 12.691999 6.698830 6.066920 1.006600 2.812620 0.227890 6.364410 14.412200 -1.354000 0.777000 0.163000 1.609000 Ge 32 32 2.131300 16.081600 6.374700 3.706800 3.683000 2.850900 0.251600 11.446800 54.762501 -1.163000 0.886000 0.081000 1.801000 Ge+4 32 28 1.455720 12.917200 6.700030 6.067910 0.859041 2.537180 0.205855 5.479130 11.603000 -1.163000 0.886000 0.081000 1.801000 As 33 33 2.531000 16.672300 6.070100 3.431300 4.277900 2.634500 0.264700 12.947900 47.797199 -1.011000 1.006000 -0.030000 2.007000 Se 34 34 2.840900 17.000599 5.819600 3.973100 4.354300 2.409800 0.272600 15.237200 43.816299 -0.879000 1.139000 -0.178000 2.223000 Br 35 35 2.955700 17.178900 5.235800 5.637700 3.985100 2.172300 16.579599 0.260900 41.432800 -0.767000 1.283000 -0.374000 2.456000 Br-1 35 36 3.177600 17.171799 6.333800 5.575400 3.727200 2.205900 19.334499 0.287100 58.153500 -0.767000 1.283000 -0.374000 2.456000 Kr 36 36 2.825000 17.355499 6.728600 5.549300 3.537500 1.938400 16.562300 0.226100 39.397202 -0.665000 1.439000 -0.652000 2.713000 Rb 37 37 3.487300 17.178400 9.643499 5.139900 1.529200 1.788800 17.315100 0.274800 164.933990 -0.574000 1.608000 -1.044000 2.973000 Rb+1 37 36 2.078200 17.581600 7.659800 5.898100 2.781700 1.713900 14.795700 0.160300 31.208700 -0.574000 1.608000 -1.044000 2.973000 Sr 38 38 2.506400 17.566299 9.818399 5.422000 2.669400 1.556400 14.098800 0.166400 132.376007 -0.465000 1.820000 -1.657000 3.264000 Sr+2 38 36 41.402500 18.087400 8.137300 2.565400 -34.193001 1.490700 12.696300 24.565100 -0.013800 -0.465000 1.820000 -1.657000 3.264000 Y 39 39 1.912130 17.775999 10.294600 5.726290 3.265880 1.402900 12.800600 0.125599 104.353996 -0.386000 2.025000 -2.951000 3.542000 Y+3 39 36 40.260201 17.926800 9.153100 1.767950 -33.108002 1.354170 11.214500 22.659901 -0.013190 -0.386000 2.025000 -2.951000 3.542000 Zr 40 40 2.069290 17.876499 10.948000 5.417320 3.657210 1.276180 11.916000 0.117622 87.662697 -0.314000 2.245000 -2.965000 0.560000 Zr+4 40 36 9.414539 18.166800 10.056200 1.011180 -2.647900 1.214800 10.148300 21.605400 -0.102760 -0.314000 2.245000 -2.965000 0.560000 Nb 41 41 3.755910 17.614201 12.014400 4.041830 3.533460 1.188650 11.766000 0.204785 69.795700 -0.248000 2.482000 -2.197000 0.621000 Nb+3 41 38 -12.912000 19.881199 18.065300 11.017700 1.947150 0.019175 1.133050 10.162100 28.338900 -0.248000 2.482000 -2.197000 0.621000 Nb+5 41 36 -6.393400 17.916300 13.341700 10.799000 0.337905 1.124460 0.028781 9.282060 25.722799 -0.248000 2.482000 -2.197000 0.621000 Mo 42 42 4.387500 3.702500 17.235600 12.887600 3.742900 0.277200 1.095800 11.004000 61.658401 -0.191000 2.735000 -1.825000 0.688000 Mo+3 42 39 -14.421000 21.166401 18.201700 11.742300 2.309510 0.014734 1.030310 9.536590 26.630699 -0.191000 2.735000 -1.825000 0.688000 Mo+5 42 37 -14.316000 21.014900 18.099199 11.463200 0.740625 0.014345 1.022380 8.788090 23.345200 -0.191000 2.735000 -1.825000 0.688000 Mo+6 42 36 0.344941 17.887100 11.175000 6.578910 0.000000 1.036490 8.480610 0.058881 0.000000 -0.191000 2.735000 -1.825000 0.688000 Tc 43 43 5.404280 19.130100 11.094800 4.649010 2.712630 0.864132 8.144870 21.570700 86.847198 -0.145000 3.005000 -0.590000 0.759000 Ru 44 44 5.378740 19.267399 12.918200 4.863370 1.567560 0.808520 8.434669 24.799700 94.292801 -0.105000 3.296000 -1.420000 0.836000 Ru+3 44 41 -3.189200 18.563801 13.288500 9.326019 3.009640 0.847329 8.371640 0.017662 22.886999 -0.105000 3.296000 -1.420000 0.836000 Ru+4 44 40 1.423570 18.500299 13.178699 4.713040 2.185350 0.844582 8.125340 0.364950 20.850399 -0.105000 3.296000 -1.420000 0.836000 Rh 45 45 5.328000 19.295700 14.350100 4.734250 1.289180 0.751536 8.217580 25.874901 98.606201 -0.077000 3.605000 -1.287000 0.919000 Rh+3 45 42 11.867800 18.878500 14.125900 3.325150 -6.198900 0.764252 7.844380 21.248699 -0.010360 -0.077000 3.605000 -1.287000 0.919000 Rh+4 45 41 11.283500 18.854500 13.980600 2.534640 -5.652600 0.760825 7.624360 19.331699 -0.010200 -0.077000 3.605000 -1.287000 0.919000 Pd 46 46 5.265930 19.331900 15.501699 5.295370 0.605844 0.698655 7.989290 25.205200 76.898598 -0.059000 3.934000 -1.177000 1.007000 Pd+2 46 44 5.291600 19.170099 15.209600 4.322340 0.000000 0.696219 7.555730 22.505699 0.000000 -0.059000 3.934000 -1.177000 1.007000 Pd+4 46 42 13.017400 19.249300 14.790000 2.892890 -7.949200 0.683839 7.148330 17.914400 0.005127 -0.059000 3.934000 -1.177000 1.007000 Ag 47 47 5.179000 19.280800 16.688499 4.804500 1.046300 0.644600 7.472600 24.660500 99.815598 -0.060000 4.282000 -1.085000 1.101000 Ag+1 47 46 5.215720 19.181200 15.971900 5.274750 0.357534 0.646179 7.191230 21.732599 66.114700 -0.060000 4.282000 -1.085000 1.101000 Ag+2 47 45 5.214040 19.164299 16.245600 4.370900 0.000000 0.645643 7.185440 21.407200 0.000000 -0.060000 4.282000 -1.085000 1.101000 Cd 48 48 5.069400 19.221399 17.644400 4.461000 1.602900 0.594600 6.908900 24.700800 87.482498 -0.079000 4.653000 -1.005000 1.202000 Cd+2 48 46 5.119370 19.151400 17.253500 4.471280 0.000000 0.597922 6.806390 20.252100 0.000000 -0.079000 4.653000 -1.005000 1.202000 In 49 49 4.939100 19.162399 18.559601 4.294800 2.039600 0.547600 6.377600 25.849899 92.802902 -0.126000 5.045000 -0.936000 1.310000 In+3 49 46 4.996350 19.104500 18.110800 3.788970 0.000000 0.551522 6.324700 17.359501 0.000000 -0.126000 5.045000 -0.936000 1.310000 Sn 50 50 4.782100 19.188900 19.100500 4.458500 2.466300 5.830300 0.503100 26.890900 83.957100 -0.194000 5.459000 -0.873000 1.424000 Sn+2 50 48 4.786100 19.109400 19.054800 4.564800 0.487000 0.503600 5.837800 23.375200 62.206100 -0.194000 5.459000 -0.873000 1.424000 Sn+4 50 46 3.918200 18.933300 19.713100 3.418200 0.019300 5.764000 0.465500 14.004900 -0.758300 -0.194000 5.459000 -0.873000 1.424000 Sb 51 51 4.590900 19.641800 19.045500 5.037100 2.682700 5.303400 0.460700 27.907400 75.282501 -0.287000 5.894000 -0.816000 1.546000 Sb+3 51 48 4.696260 18.975500 18.932999 5.107890 0.288753 0.467196 5.221260 19.590200 55.511299 -0.287000 5.894000 -0.816000 1.546000 Sb+5 51 46 4.692630 19.868500 19.030199 2.412530 0.000000 5.448530 0.467973 14.125900 0.000000 -0.287000 5.894000 -0.816000 1.546000 Te 52 52 4.352000 19.964399 19.013800 6.144870 2.523900 4.817420 0.420885 28.528400 70.840302 -0.418000 6.352000 -0.772000 1.675000 I 53 53 4.071200 20.147200 18.994900 7.513800 2.273500 4.347000 0.381400 27.765999 66.877602 -0.579000 6.835000 -0.726000 1.812000 I-1 53 54 4.071400 20.233200 18.997000 7.806900 2.886800 4.357900 0.381500 29.525900 84.930397 -0.579000 6.835000 -0.726000 1.812000 Xe 54 54 3.711800 20.293301 19.029800 8.976700 1.990000 3.928200 0.344000 26.465900 64.265800 -0.783000 7.348000 -0.684000 1.958000 Cs 55 55 3.335200 20.389200 19.106199 10.662000 1.495300 3.569000 0.310700 24.387899 213.903992 -1.022000 7.904000 -0.644000 2.119000 Cs+1 55 54 3.279100 20.352400 19.127800 10.282100 0.961500 3.552000 0.308600 23.712799 59.456497 -1.022000 7.904000 -0.644000 2.119000 Ba 56 56 2.773100 20.336100 19.297001 10.888000 2.695900 3.216000 0.275600 20.207300 167.201996 -1.334000 8.460000 -0.613000 2.282000 Ba+2 56 54 3.029020 20.180700 19.113600 10.905399 0.776340 3.213670 0.283310 20.055799 51.745998 -1.334000 8.460000 -0.613000 2.282000 La 57 57 2.146780 20.577999 19.598999 11.372700 3.287190 2.948170 0.244475 18.772600 133.123993 -1.716000 9.035999 -0.588000 2.452000 La+3 57 54 2.408600 20.248899 19.376301 11.632299 0.336048 2.920700 0.250698 17.821100 54.945297 -1.716000 9.035999 -0.588000 2.452000 Ce 58 58 1.862640 21.167099 19.769501 11.851299 3.330490 2.812190 0.226836 17.608299 127.112999 -2.170000 9.648000 -0.564000 2.632000 Ce+3 58 55 2.090130 20.803600 19.559000 11.936900 0.612376 2.776910 0.231540 16.540800 43.169201 -2.170000 9.648000 -0.564000 2.632000 Ce+4 58 54 1.591800 20.323500 19.818600 12.123300 0.144583 2.659410 0.218850 15.799200 62.235500 -2.170000 9.648000 -0.564000 2.632000 Pr 59 59 2.058300 22.043999 19.669701 12.385600 2.824280 2.773930 0.222087 16.766899 143.643997 -2.939000 10.535000 -0.530000 2.845000 Pr+3 59 56 1.771320 21.372700 19.749100 12.132900 0.975180 2.645200 0.214299 15.323000 36.406502 -2.939000 10.535000 -0.530000 2.845000 Pr+4 59 55 1.242850 20.941299 20.053900 12.466800 0.296689 2.544670 0.202481 14.813700 45.464298 -2.939000 10.535000 -0.530000 2.845000 Nd 60 60 1.984860 22.684500 19.684700 12.774000 2.851370 2.662480 0.210628 15.885000 137.903000 -3.431000 10.933000 -0.535000 3.018000 Nd+3 60 57 1.475880 21.961000 19.933899 12.120000 1.510310 2.527220 0.199237 14.178300 30.871700 -3.431000 10.933000 -0.535000 3.018000 Pm 61 61 2.028760 23.340500 19.609501 13.123500 2.875160 2.562700 0.202088 15.100900 132.720993 -4.357000 11.614000 -0.530000 3.225000 Pm+3 61 58 1.194990 22.552700 20.110800 12.067100 2.074920 2.417400 0.185769 13.127500 27.449100 -4.357000 11.614000 -0.530000 3.225000 Sm 62 62 2.209630 24.004200 19.425800 13.439600 2.896040 2.472740 0.196451 14.399600 128.007004 -5.696000 12.320000 -0.533000 3.442000 Sm+3 62 58 0.954586 23.150400 20.259899 11.920200 2.714880 2.316410 0.174081 12.157100 24.824200 -5.696000 12.320000 -0.533000 3.442000 Eu 63 63 2.574500 24.627399 19.088600 13.760300 2.922700 2.387900 0.194200 13.754600 123.173996 -7.718000 11.276000 -0.542000 3.669000 Eu+2 63 61 1.363890 24.006300 19.950399 11.803400 3.872430 2.277830 0.173530 11.609600 26.515600 -7.718000 11.276000 -0.542000 3.669000 Eu+3 63 60 0.759344 23.749699 20.374500 11.850900 3.265030 2.222580 0.163940 11.311000 22.996599 -7.718000 11.276000 -0.542000 3.669000 Gd 64 64 2.419600 25.070900 19.079800 13.851800 3.545450 2.253410 0.181951 12.933100 101.397995 -9.242000 11.946000 -0.564000 3.904000 Gd+3 64 61 0.645089 24.346600 20.420799 11.870800 3.714900 2.135530 0.155525 10.578199 21.702900 -9.242000 11.946000 -0.564000 3.904000 Tb 65 65 3.582240 25.897600 18.218500 14.316700 2.953540 2.242560 0.196143 12.664800 115.362000 -9.498000 9.242000 -0.591000 4.151000 Tb+3 65 62 0.691967 24.955900 20.327099 12.247100 3.773000 2.056010 0.149525 10.049900 21.277300 -9.498000 9.242000 -0.591000 4.151000 Dy 66 66 4.297280 26.507000 17.638300 14.559600 2.965770 2.180200 0.202172 12.189899 111.874001 -10.423000 9.748000 -0.619000 4.410000 Dy+3 66 63 0.689690 25.539499 20.286100 11.981200 4.500730 1.980400 0.143384 9.349720 19.580999 -10.423000 9.748000 -0.619000 4.410000 Ho 67 67 4.567960 26.904900 17.293999 14.558300 3.638370 2.070510 0.197940 11.440700 92.656601 -12.255000 3.704000 -0.666000 4.678000 Ho+3 67 64 0.852795 26.129601 20.099400 11.978800 4.936760 1.910720 0.139358 8.800180 18.590799 -12.255000 3.704000 -0.666000 4.678000 Er 68 68 5.920460 27.656300 16.428499 14.977900 2.982330 2.073560 0.223545 11.360400 105.703003 -9.733000 3.937000 -0.723000 4.958000 Er+3 68 65 1.176130 26.722000 19.774799 12.150600 5.173790 1.846590 0.137290 8.362249 17.897400 -9.733000 3.937000 -0.723000 4.958000 Tm 69 69 6.756210 28.181900 15.885099 15.154200 2.987060 2.028590 0.238849 10.997499 102.960999 -8.488000 4.181000 -0.795000 5.248000 Tm+3 69 66 1.639290 27.308300 19.332001 12.333900 5.383480 1.787110 0.136974 7.967780 17.292200 -8.488000 4.181000 -0.795000 5.248000 Yb 70 70 7.566720 28.664101 15.434500 15.308700 2.989630 1.988900 0.257119 10.664700 100.417000 -7.701000 4.432000 -0.884000 5.548000 Yb+2 70 68 3.709830 28.120899 17.681700 13.333500 5.146570 1.785030 0.159970 8.183040 20.389999 -7.701000 4.432000 -0.884000 5.548000 Yb+3 70 67 2.260010 27.891701 18.761400 12.607200 5.476470 1.732720 0.138790 7.644120 16.814301 -7.701000 4.432000 -0.884000 5.548000 Lu 71 71 7.976280 28.947599 15.220800 15.100000 3.716010 1.901820 9.985189 0.261033 84.329803 -7.133000 4.693000 -0.988000 5.858000 Lu+3 71 68 2.975730 28.462799 18.121000 12.842899 5.594150 1.682160 0.142292 7.337270 16.353500 -7.133000 4.693000 -0.988000 5.858000 Hf 72 72 8.581540 29.143999 15.172600 14.758600 4.300130 1.832620 9.599899 0.275116 72.028999 -6.715000 4.977000 -1.118000 6.185000 Hf+4 72 68 2.396990 28.813099 18.460100 12.728500 5.599270 1.591360 0.128903 6.762320 14.036600 -6.715000 4.977000 -1.118000 6.185000 Ta 73 73 9.243540 29.202400 15.229300 14.513500 4.764920 1.773330 9.370460 0.295977 63.364399 -6.351000 5.271000 -1.258000 6.523000 Ta+5 73 68 1.785550 29.158699 18.840700 12.826799 5.386950 1.507110 0.116741 6.315240 12.424400 -6.351000 5.271000 -1.258000 6.523000 W 74 74 9.887500 29.081800 15.430000 14.432700 5.119820 1.720290 9.225900 0.321703 57.056000 -6.048000 5.577000 -1.421000 6.872000 W+6 74 68 1.010740 29.493599 19.376301 13.054399 5.064120 1.427550 0.104621 5.936670 11.197200 -6.048000 5.577000 -1.421000 6.872000 Re 75 75 10.472000 28.762100 15.718900 14.556400 5.441740 1.671910 9.092270 0.350500 52.086098 -5.790000 5.891000 -1.598000 7.232000 Os 76 76 11.000500 28.189400 16.154999 14.930500 5.675890 1.629030 8.979480 0.382661 48.164700 -5.581000 6.221000 -1.816000 7.605000 Os+4 76 72 6.498040 30.418999 15.263700 14.745800 5.067950 1.371130 6.847060 0.165191 18.003000 -5.581000 6.221000 -1.816000 7.605000 Ir 77 77 11.472200 27.304899 16.729599 15.611500 5.833770 1.592790 8.865530 0.417916 45.001099 -5.391000 6.566000 -2.066000 7.990000 Ir+3 77 74 8.279030 30.415600 15.862000 13.614500 5.820080 1.343230 7.109090 0.204633 20.325399 -5.391000 6.566000 -2.066000 7.990000 Ir+4 77 73 6.968240 30.705799 15.551200 14.232600 5.536720 1.309230 6.719830 0.167252 17.491100 -5.391000 6.566000 -2.066000 7.990000 Pt 78 78 11.688300 27.005899 17.763901 15.713100 5.783700 1.512930 8.811740 0.424593 38.610298 -5.233000 6.925000 -2.352000 8.388000 Pt+2 78 76 9.853290 29.842899 16.722401 13.215300 6.352340 1.329270 7.389790 0.263297 22.942600 -5.233000 6.925000 -2.352000 8.388000 Pt+4 78 74 7.395340 30.961201 15.982900 13.734800 5.920340 1.248130 6.608340 0.168640 16.939199 -5.233000 6.925000 -2.352000 8.388000 Au 79 79 12.065800 16.881901 18.591299 25.558201 5.860000 0.461100 8.621600 1.482600 36.395599 -5.096000 7.297000 -2.688000 8.798000 Au+1 79 78 11.229900 28.010899 17.820400 14.335899 6.580770 1.353210 7.739500 0.356752 26.404301 -5.096000 7.297000 -2.688000 8.798000 Au+3 79 76 9.096800 30.688599 16.902901 12.780100 6.523540 1.219900 6.828720 0.212867 18.659000 -5.096000 7.297000 -2.688000 8.798000 Hg 80 80 12.608900 20.680901 19.041700 21.657499 5.967600 0.545000 8.448400 1.572900 38.324600 -4.990000 7.686000 -3.084000 9.223000 Hg+1 80 79 12.020500 25.085300 18.497299 16.888300 6.482160 1.395070 7.651050 0.443378 28.226200 -4.990000 7.686000 -3.084000 9.223000 Hg+2 80 78 10.626800 29.564100 18.059999 12.837400 6.899120 1.211520 7.056390 0.284738 20.748199 -4.990000 7.686000 -3.084000 9.223000 Tl 81 81 13.174600 27.544600 19.158400 15.538000 5.525930 0.655150 8.707510 1.963470 45.814899 -4.883000 8.089000 -3.556000 9.659000 Tl+1 81 80 12.525800 21.398500 20.472300 18.747799 6.828470 1.471100 0.517394 7.434630 28.848200 -4.883000 8.089000 -3.556000 9.659000 Tl+3 81 78 9.802700 30.869499 18.384100 11.932800 7.005740 1.100800 6.538520 0.219074 17.211399 -4.883000 8.089000 -3.556000 9.659000 Pb 82 82 13.411800 31.061699 13.063700 18.441999 5.969600 0.690200 2.357600 8.618000 47.257900 -4.818000 8.505000 -4.133000 10.102000 Pb+2 82 80 12.473400 21.788601 19.568199 19.140600 7.011070 1.336600 0.488383 6.772700 23.813200 -4.818000 8.505000 -4.133000 10.102000 Pb+4 82 78 8.084280 32.124397 18.800301 12.017500 6.968860 1.005660 6.109260 0.147041 14.714000 -4.818000 8.505000 -4.133000 10.102000 Bi 83 83 13.578199 33.368900 12.951000 16.587700 6.469200 0.704000 2.923800 8.793700 48.009300 -4.776000 8.930000 -4.861000 10.559000 Bi+3 83 80 12.471100 21.805300 19.502600 19.105301 7.102950 1.235600 6.241490 0.469999 20.318501 -4.776000 8.930000 -4.861000 10.559000 Bi+5 83 78 -6.799400 33.536400 25.094601 19.249699 6.915550 0.916540 0.390420 5.714140 12.828500 -4.776000 8.930000 -4.861000 10.559000 Po 84 84 13.677000 34.672600 15.473300 13.113800 7.025880 0.700999 3.550780 9.556419 47.004501 -4.756000 9.382999 -5.924000 11.042000 At 85 85 13.710800 35.316299 19.021099 9.498870 7.425180 0.685870 3.974580 11.382400 45.471500 -4.772000 9.843000 -7.444000 9.961000 Rn 86 86 13.690500 35.563099 21.281601 8.003700 7.443300 0.663100 4.069100 14.042200 44.247299 -4.787000 10.316999 -8.862000 10.403000 Fr 87 87 13.724700 35.929901 23.054699 12.143900 2.112530 0.646453 4.176190 23.105200 150.644989 -4.833000 10.802999 -7.912000 7.754000 Ra 88 88 13.621099 35.763000 22.906399 12.473900 3.210970 0.616341 3.871350 19.988701 142.324997 -4.898000 11.296000 -7.620000 8.105000 Ra+2 88 86 13.543100 35.215000 21.670000 7.913420 7.650780 0.604909 3.576700 12.601000 29.843599 -4.898000 11.296000 -7.620000 8.105000 Ac 89 89 13.526600 35.659698 23.103199 12.597700 4.086550 0.589092 3.651550 18.598999 117.019997 -4.994000 11.799000 -7.725000 8.472000 Ac+3 89 86 13.463699 35.173599 22.111200 8.192160 7.055450 0.579689 3.414370 12.918700 25.944300 -4.994000 11.799000 -7.725000 8.472000 Th 90 90 13.431400 35.564499 23.421900 12.747300 4.807030 0.563359 3.462040 17.830900 99.172195 -5.091000 12.330000 -8.127000 8.870000 Th+4 90 86 13.375999 35.100700 22.441799 9.785540 5.294440 0.555054 3.244980 13.466100 23.953300 -5.091000 12.330000 -8.127000 8.870000 Pa 91 91 13.428699 35.884701 23.294800 14.189100 4.172870 0.547751 3.415190 16.923500 105.250999 -5.216000 12.868000 -8.960000 9.284000 U 92 92 13.396600 36.022800 23.412800 14.949100 4.188000 0.529300 3.325300 16.092699 100.612999 -5.359000 13.409000 -10.673000 9.653999 U+3 92 89 13.309200 35.574699 22.525900 12.216499 5.370730 0.520480 3.122930 12.714800 26.339399 -5.359000 13.409000 -10.673000 9.653999 U+4 92 88 13.267099 35.371498 22.532600 12.029100 4.798400 0.516598 3.050530 12.572300 23.458200 -5.359000 13.409000 -10.673000 9.653999 U+6 92 86 13.166500 34.850899 22.758400 14.009900 1.214570 0.507079 2.890300 13.176700 25.201700 -5.359000 13.409000 -10.673000 9.653999 Np 93 93 13.357300 36.187401 23.596399 15.640200 4.185500 0.511929 3.253960 15.362200 97.490799 -5.529000 13.967000 -11.158000 4.148000 Np+3 93 90 13.254400 35.707397 22.612999 12.989799 5.432270 0.502322 3.038070 12.144899 25.492800 -5.529000 13.967000 -11.158000 4.148000 Np+4 93 89 13.211599 35.510300 22.578699 12.776600 4.921590 0.498626 2.966270 11.948400 22.750200 -5.529000 13.967000 -11.158000 4.148000 Np+6 93 87 13.113000 35.013599 22.728600 14.388400 1.756690 0.489810 2.810990 12.330000 22.658100 -5.529000 13.967000 -11.158000 4.148000 Pu 94 94 13.381200 36.525398 23.808300 16.770700 3.479470 0.499384 3.263710 14.945499 105.979996 -5.712000 14.535999 -9.725000 4.330000 Pu+3 94 91 13.199100 35.840000 22.716900 13.580700 5.660160 0.484936 2.961180 11.533100 24.399200 -5.712000 14.535999 -9.725000 4.330000 Pu+4 94 90 13.155500 35.649300 22.646000 13.359500 5.188310 0.481422 2.890200 11.316000 21.830099 -5.712000 14.535999 -9.725000 4.330000 Pu+6 94 88 13.058200 35.173599 22.718100 14.763500 2.286780 0.473204 2.738480 11.552999 20.930300 -5.712000 14.535999 -9.725000 4.330000 Am 95 95 13.359200 36.670601 24.099199 17.341499 3.493310 0.483629 3.206470 14.313600 102.272995 -5.930000 15.087000 -8.926000 4.511000 Cm 96 96 13.288700 36.648800 24.409599 17.399000 4.216650 0.465154 3.089970 13.434600 88.483398 -6.176000 15.634000 -8.416000 4.697000 Bk 97 97 13.275400 36.788101 24.773600 17.891899 4.232840 0.451018 3.046190 12.894600 86.002998 -6.498000 16.316999 -7.990000 4.908000 Cf 98 98 13.267400 36.918499 25.199499 18.331699 4.243910 0.437533 3.007750 12.404400 83.788101 -6.798000 16.930000 -7.683000 5.107000 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/incoh.dict0000644000000000000000000014634114741736366020576 0ustar00rootroot[ISCADT] XSVAL=[ 0.0 5.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 2.5000E-02 3.0000E-02 4.0000E-02 5.0000E-02 7.0000E-02 9.0000E-02 1.0000E-01 1.2500E-01 1.5000E-01 1.7500E-01 2.0000E-01 2.5000E-01 3.0000E-01 4.0000E-01 5.0000E-01 6.0000E-01 7.0000E-01 8.0000E-01 9.0000E-01 1.0000E+00 1.2500E+00 1.5000E+00 2.0000E+00 2.5000E+00 3.0000E+00 3.5000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 1.0000E+01 1.5000E+01 2.0000E+01 5.0000E+01 8.0000E+01 1.0000E+02 1.0000E+03 1.0000E+06 1.0000E+09] SCATF=[ 0.0 1.1047E-03 4.4098E-03 9.8880E-03 1.7494E-02 2.7167E-02 3.8828E-02 6.7731E-02 1.0332E-01 1.9024E-01 2.9039E-01 3.4257E-01 4.7131E-01 5.8874E-01 6.8851E-01 7.6885E-01 8.7768E-01 9.3687E-01 9.8298E-01 9.9502E-01 9.9837E-01 9.9941E-01 9.9977E-01 9.9990E-01 9.9995E-01 9.9999E-01 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 0.0 8.3186E-04 3.3274E-03 7.4867E-03 1.3310E-02 2.0590E-02 2.9900E-02 5.1900E-02 8.0540E-02 1.5347E-01 2.4502E-01 2.9575E-01 4.3215E-01 5.8352E-01 7.3603E-01 8.8056E-01 1.1457E+00 1.3624E+00 1.6566E+00 1.8175E+00 1.9023E+00 1.9467E+00 1.9702E+00 1.9829E+00 1.9899E+00 1.9971E+00 1.9990E+00 1.9999E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 2.0000E+00 0.0 6.6000E-03 2.6500E-02 5.8475E-02 1.0220E-01 1.5449E-01 2.1640E-01 3.5410E-01 4.9980E-01 7.6520E-01 9.6290E-01 1.0328E+00 1.1721E+00 1.2458E+00 1.3297E+00 1.4176E+00 1.6052E+00 1.7953E+00 2.1428E+00 2.4166E+00 2.6129E+00 2.7462E+00 2.8339E+00 2.8909E+00 2.9278E+00 2.9732E+00 2.9892E+00 2.9978E+00 2.9994E+00 2.9998E+00 2.9999E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 3.0000E+00 0.0 4.3000E-03 1.7700E-02 3.9679E-02 7.0200E-02 1.0834E-01 1.5440E-01 2.6560E-01 3.9810E-01 6.9980E-01 1.0165E+00 1.1706E+00 1.5028E+00 1.7742E+00 1.9657E+00 2.1207E+00 2.3215E+00 2.4705E+00 2.7437E+00 3.0053E+00 3.2374E+00 3.4291E+00 3.5794E+00 3.6931E+00 3.7771E+00 3.9000E+00 3.9538E+00 3.9890E+00 3.9970E+00 3.9990E+00 3.9997E+00 3.9999E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 4.0000E+00 0.0 3.9000E-03 1.5650E-02 3.5033E-02 6.2000E-02 9.5926E-02 1.3702E-01 2.3761E-01 3.5989E-01 6.5072E-01 9.7789E-01 1.1474E+00 1.5485E+00 1.9314E+00 2.2558E+00 2.5308E+00 2.9329E+00 3.1899E+00 3.4991E+00 3.7318E+00 3.9476E+00 4.1462E+00 4.3202E+00 4.4689E+00 4.5896E+00 4.7918E+00 4.8955E+00 4.9729E+00 4.9922E+00 4.9974E+00 4.9991E+00 4.9996E+00 4.9999E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 5.0000E+00 0.0 3.7900E-03 1.2990E-02 2.9534E-02 5.1640E-02 8.0494E-02 1.1570E-01 2.0150E-01 3.0860E-01 5.6877E-01 8.7559E-01 1.0392E+00 1.4476E+00 1.8662E+00 2.2532E+00 2.6041E+00 3.1979E+00 3.6426E+00 4.1837E+00 4.4777E+00 4.6903E+00 4.8778E+00 5.0511E+00 5.2085E+00 5.3485E+00 5.6153E+00 5.7806E+00 5.9302E+00 5.9770E+00 5.9917E+00 5.9968E+00 5.9986E+00 5.9997E+00 5.9999E+00 6.0000E+00 6.0001E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 6.0000E+00 0.0 3.0000E-03 1.3000E-02 2.9200E-02 5.1700E-02 8.0400E-02 1.1510E-01 2.0170E-01 3.1000E-01 5.7970E-01 9.0420E-01 1.0800E+00 1.5397E+00 2.0030E+00 2.4468E+00 2.8580E+00 3.5586E+00 4.0970E+00 4.7920E+00 5.1820E+00 5.4370E+00 5.6350E+00 5.8090E+00 5.9680E+00 6.1130E+00 6.4157E+00 6.6300E+00 6.8599E+00 6.9470E+00 6.9790E+00 6.9913E+00 6.9960E+00 6.9991E+00 6.9998E+00 6.9999E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 7.0000E+00 0.0 3.0000E-03 1.1000E-02 2.5300E-02 4.4800E-02 6.9800E-02 1.0010E-01 1.7610E-01 2.7100E-01 5.1370E-01 8.1180E-01 9.7700E-01 1.4199E+00 1.8850E+00 2.3497E+00 2.7990E+00 3.6135E+00 4.2930E+00 5.2570E+00 5.8280E+00 6.1750E+00 6.4110E+00 6.5960E+00 6.7550E+00 6.9010E+00 7.2159E+00 7.4620E+00 7.7642E+00 7.8999E+00 7.9570E+00 7.9807E+00 7.9910E+00 7.9977E+00 7.9993E+00 7.9998E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 8.0000E+00 0.0 2.0000E-03 1.0000E-02 2.2400E-02 3.9700E-02 6.1900E-02 8.8800E-02 1.5650E-01 2.4200E-01 4.6100E-01 7.3490E-01 8.8800E-01 1.3084E+00 1.7610E+00 2.2271E+00 2.6910E+00 3.5693E+00 4.3470E+00 5.5520E+00 6.3390E+00 6.8320E+00 7.1510E+00 7.3760E+00 7.5520E+00 7.7030E+00 8.0243E+00 8.2880E+00 8.6479E+00 8.8345E+00 8.9230E+00 8.9631E+00 8.9820E+00 8.9951E+00 8.9985E+00 8.9995E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 9.0000E+00 0.0 2.0000E-03 9.0000E-03 2.0100E-02 3.5700E-02 5.5600E-02 7.9900E-02 1.4100E-01 2.1800E-01 4.1770E-01 6.6940E-01 8.1200E-01 1.2051E+00 1.6370E+00 2.0885E+00 2.5470E+00 3.4417E+00 4.2690E+00 5.6440E+00 6.6400E+00 7.3200E+00 7.7740E+00 8.0850E+00 8.3120E+00 8.4900E+00 8.8361E+00 9.1130E+00 9.5175E+00 9.7522E+00 9.8750E+00 9.9368E+00 9.9670E+00 9.9906E+00 9.9969E+00 9.9989E+00 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 1.0000E+01 0.0 9.0000E-03 3.6000E-02 7.9300E-02 1.3780E-01 2.0920E-01 2.9120E-01 4.7640E-01 6.7400E-01 1.0490E+00 1.3642E+00 1.5030E+00 1.8282E+00 2.1600E+00 2.5159E+00 2.8910E+00 3.6672E+00 4.4310E+00 5.8040E+00 6.9030E+00 7.7240E+00 8.3130E+00 8.7290E+00 9.0280E+00 9.2520E+00 9.6465E+00 9.9390E+00 1.0376E+01 1.0654E+01 1.0813E+01 1.0900E+01 1.0946E+01 1.0983E+01 1.0994E+01 1.0998E+01 1.0999E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 1.1000E+01 0.0 1.0000E-02 4.0000E-02 8.9700E-02 1.5720E-01 2.4110E-01 3.3930E-01 5.7020E-01 8.3100E-01 1.3721E+00 1.8578E+00 2.0660E+00 2.4913E+00 2.8290E+00 3.1354E+00 3.4440E+00 4.0957E+00 4.7710E+00 6.0640E+00 7.1810E+00 8.0860E+00 8.7840E+00 9.3040E+00 9.6890E+00 9.9750E+00 1.0449E+01 1.0766E+01 1.1229E+01 1.1543E+01 1.1738E+01 1.1852E+01 1.1916E+01 1.1972E+01 1.1990E+01 1.1996E+01 1.1998E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 1.2000E+01 0.0 1.0000E-02 3.9000E-02 8.7100E-02 1.5300E-01 2.3530E-01 3.3250E-01 5.6420E-01 8.3200E-01 1.4192E+00 1.9967E+00 2.2640E+00 2.8508E+00 3.3240E+00 3.7123E+00 4.0470E+00 4.6534E+00 5.2500E+00 6.4350E+00 7.5230E+00 8.4590E+00 9.2250E+00 9.8300E+00 1.0296E+01 1.0652E+01 1.1233E+01 1.1592E+01 1.2083E+01 1.2425E+01 1.2652E+01 1.2794E+01 1.2879E+01 1.2957E+01 1.2984E+01 1.2993E+01 1.2997E+01 1.2999E+01 1.3000E+01 1.3000E+01 1.3000E+01 1.3000E+01 1.3000E+01 1.3000E+01 1.3000E+01 1.3000E+01 0.0 9.0000E-03 3.5000E-02 7.9000E-02 1.3910E-01 2.1480E-01 3.0490E-01 5.2290E-01 7.8200E-01 1.3724E+00 1.9915E+00 2.2930E+00 2.9884E+00 3.5870E+00 4.0921E+00 4.5200E+00 5.2175E+00 5.8080E+00 6.9030E+00 7.9370E+00 8.8670E+00 9.6670E+00 1.0330E+01 1.0864E+01 1.1286E+01 1.1990E+01 1.2408E+01 1.2937E+01 1.3302E+01 1.3558E+01 1.3726E+01 1.3832E+01 1.3937E+01 1.3975E+01 1.3990E+01 1.3995E+01 1.3999E+01 1.4000E+01 1.4000E+01 1.4000E+01 1.4000E+01 1.4000E+01 1.4000E+01 1.4000E+01 1.4000E+01 0.0 8.0000E-03 3.2000E-02 7.1200E-02 1.2560E-01 1.9440E-01 2.7660E-01 4.7730E-01 7.1900E-01 1.2840E+00 1.8986E+00 2.2060E+00 2.9435E+00 3.6110E+00 4.2057E+00 4.7320E+00 5.6106E+00 6.3120E+00 7.4350E+00 8.4190E+00 9.3230E+00 1.0131E+01 1.0827E+01 1.1411E+01 1.1888E+01 1.2716E+01 1.3209E+01 1.3790E+01 1.4177E+01 1.4457E+01 1.4650E+01 1.4778E+01 1.4911E+01 1.4963E+01 1.4984E+01 1.4993E+01 1.4998E+01 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01 1.5000E+01 0.0 7.0000E-03 2.9000E-02 6.4600E-02 1.1420E-01 1.7700E-01 2.5260E-01 4.3880E-01 6.6600E-01 1.2127E+00 1.8313E+00 2.1510E+00 2.9397E+00 3.6800E+00 4.3545E+00 4.9600E+00 5.9838E+00 6.7950E+00 8.0020E+00 8.9600E+00 9.8290E+00 1.0626E+01 1.1336E+01 1.1952E+01 1.2472E+01 1.3414E+01 1.3990E+01 1.4641E+01 1.5051E+01 1.5351E+01 1.5567E+01 1.5716E+01 1.5880E+01 1.5948E+01 1.5977E+01 1.5989E+01 1.5997E+01 1.6000E+01 1.6000E+01 1.6000E+01 1.6000E+01 1.6000E+01 1.6000E+01 1.6000E+01 1.6000E+01 0.0 7.0000E-03 2.6000E-02 5.9000E-02 1.0430E-01 1.6200E-01 2.3160E-01 4.0410E-01 6.1700E-01 1.1378E+00 1.7444E+00 2.0650E+00 2.8770E+00 3.6650E+00 4.4002E+00 5.0740E+00 6.2395E+00 7.1820E+00 8.5530E+00 9.5390E+00 1.0382E+01 1.1158E+01 1.1867E+01 1.2499E+01 1.3050E+01 1.4088E+01 1.4750E+01 1.5487E+01 1.5924E+01 1.6243E+01 1.6479E+01 1.6648E+01 1.6843E+01 1.6930E+01 1.6968E+01 1.6985E+01 1.6996E+01 1.7000E+01 1.7000E+01 1.7000E+01 1.7000E+01 1.7000E+01 1.7000E+01 1.7000E+01 1.7000E+01 0.0 6.0000E-03 2.4000E-02 5.4200E-02 9.5900E-02 1.4910E-01 2.1330E-01 3.7310E-01 5.7100E-01 1.0626E+00 1.6445E+00 1.9560E+00 2.7602E+00 3.5580E+00 4.3202E+00 5.0330E+00 6.3030E+00 7.3770E+00 8.9980E+00 1.0106E+01 1.0967E+01 1.1726E+01 1.2424E+01 1.3061E+01 1.3629E+01 1.4745E+01 1.5489E+01 1.6324E+01 1.6795E+01 1.7132E+01 1.7386E+01 1.7573E+01 1.7800E+01 1.7907E+01 1.7956E+01 1.7978E+01 1.7994E+01 1.8000E+01 1.8000E+01 1.8000E+01 1.8000E+01 1.8000E+01 1.8000E+01 1.8000E+01 1.8000E+01 0.0 1.6000E-02 6.2000E-02 1.3770E-01 2.3780E-01 3.5840E-01 4.9460E-01 7.9450E-01 1.1050E+00 1.6922E+00 2.2326E+00 2.5000E+00 3.1897E+00 3.9050E+00 4.6163E+00 5.3010E+00 6.5550E+00 7.6520E+00 9.4050E+00 1.0650E+01 1.1568E+01 1.2329E+01 1.3014E+01 1.3645E+01 1.4220E+01 1.5393E+01 1.6212E+01 1.7152E+01 1.7664E+01 1.8020E+01 1.8290E+01 1.8494E+01 1.8752E+01 1.8880E+01 1.8941E+01 1.8970E+01 1.8992E+01 1.8999E+01 1.9000E+01 1.9000E+01 1.9000E+01 1.9000E+01 1.9000E+01 1.9000E+01 1.9000E+01 0.0 1.8000E-02 7.2000E-02 1.5980E-01 2.7810E-01 4.2300E-01 5.8970E-01 9.6850E-01 1.3750E+00 2.1575E+00 2.8172E+00 3.1050E+00 3.7618E+00 4.4010E+00 5.0477E+00 5.6900E+00 6.8993E+00 7.9810E+00 9.7900E+00 1.1157E+01 1.2163E+01 1.2953E+01 1.3635E+01 1.4256E+01 1.4830E+01 1.6038E+01 1.6921E+01 1.7970E+01 1.8531E+01 1.8906E+01 1.9191E+01 1.9411E+01 1.9698E+01 1.9849E+01 1.9924E+01 1.9961E+01 1.9989E+01 1.9999E+01 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 2.0000E+01 0.0 1.7000E-02 6.7000E-02 1.4880E-01 2.5970E-01 3.9630E-01 5.5470E-01 9.2000E-01 1.3210E+00 2.1220E+00 2.8255E+00 3.1360E+00 3.8342E+00 4.4920E+00 5.1478E+00 5.8010E+00 7.0456E+00 8.1690E+00 1.0071E+01 1.1561E+01 1.2684E+01 1.3545E+01 1.4256E+01 1.4885E+01 1.5460E+01 1.6694E+01 1.7630E+01 1.8782E+01 1.9397E+01 1.9794E+01 2.0093E+01 2.0326E+01 2.0641E+01 2.0813E+01 2.0903E+01 2.0949E+01 2.0985E+01 2.0999E+01 2.1000E+01 2.1000E+01 2.1000E+01 2.1000E+01 2.1000E+01 2.1000E+01 2.1000E+01 0.0 1.6000E-02 6.3000E-02 1.3910E-01 2.4320E-01 3.7200E-01 5.2230E-01 8.7210E-01 1.2630E+00 2.0626E+00 2.7890E+00 3.1140E+00 3.8456E+00 4.5230E+00 5.1927E+00 5.8600E+00 7.1436E+00 8.3120E+00 1.0304E+01 1.1901E+01 1.3140E+01 1.4093E+01 1.4856E+01 1.5509E+01 1.6095E+01 1.7353E+01 1.8334E+01 1.9585E+01 2.0259E+01 2.0682E+01 2.0994E+01 2.1239E+01 2.1580E+01 2.1774E+01 2.1879E+01 2.1935E+01 2.1980E+01 2.1998E+01 2.2000E+01 2.2000E+01 2.2000E+01 2.2000E+01 2.2000E+01 2.2000E+01 2.2000E+01 0.0 1.5000E-02 5.9000E-02 1.3070E-01 2.2870E-01 3.5060E-01 4.9320E-01 8.2790E-01 1.2060E+00 1.9964E+00 2.7329E+00 3.0670E+00 3.8196E+00 4.5100E+00 5.1849E+00 5.8580E+00 7.1673E+00 8.3750E+00 1.0454E+01 1.2156E+01 1.3514E+01 1.4574E+01 1.5413E+01 1.6111E+01 1.6721E+01 1.8010E+01 1.9032E+01 2.0379E+01 2.1116E+01 2.1569E+01 2.1896E+01 2.2152E+01 2.2515E+01 2.2732E+01 2.2853E+01 2.2919E+01 2.2974E+01 2.2998E+01 2.3000E+01 2.3000E+01 2.3000E+01 2.3000E+01 2.3000E+01 2.3000E+01 2.3000E+01 0.0 1.2000E-02 4.6000E-02 1.0350E-01 1.8140E-01 2.7840E-01 3.9220E-01 6.6090E-01 9.6800E-01 1.6312E+00 2.2908E+00 2.6090E+00 3.3772E+00 4.1230E+00 4.8573E+00 5.5770E+00 6.9475E+00 8.2060E+00 1.0415E+01 1.2264E+01 1.3770E+01 1.4960E+01 1.5902E+01 1.6670E+01 1.7323E+01 1.8668E+01 1.9730E+01 2.1168E+01 2.1970E+01 2.2456E+01 2.2798E+01 2.3065E+01 2.3449E+01 2.3686E+01 2.3823E+01 2.3900E+01 2.3967E+01 2.3997E+01 2.4000E+01 2.4000E+01 2.4000E+01 2.4000E+01 2.4000E+01 2.4000E+01 2.4000E+01 0.0 1.3000E-02 5.2000E-02 1.1670E-01 2.0470E-01 3.1460E-01 4.4410E-01 7.5130E-01 1.1040E+00 1.8663E+00 2.6055E+00 2.9490E+00 3.7283E+00 4.4350E+00 5.1155E+00 5.7910E+00 7.1216E+00 8.3800E+00 1.0604E+01 1.2486E+01 1.4062E+01 1.5346E+01 1.6376E+01 1.7211E+01 1.7910E+01 1.9312E+01 2.0411E+01 2.1938E+01 2.2812E+01 2.3337E+01 2.3698E+01 2.3976E+01 2.4380E+01 2.4636E+01 2.4790E+01 2.4879E+01 2.4959E+01 2.4996E+01 2.5000E+01 2.5000E+01 2.5000E+01 2.5000E+01 2.5000E+01 2.5000E+01 2.5000E+01 0.0 1.2000E-02 5.0000E-02 1.1090E-01 1.9470E-01 2.9950E-01 4.2330E-01 7.1830E-01 1.0600E+00 1.8065E+00 2.5442E+00 2.8910E+00 3.6841E+00 4.4050E+00 5.0963E+00 5.7810E+00 7.1381E+00 8.4320E+00 1.0733E+01 1.2687E+01 1.4343E+01 1.5716E+01 1.6831E+01 1.7737E+01 1.8488E+01 1.9959E+01 2.1097E+01 2.2704E+01 2.3650E+01 2.4216E+01 2.4598E+01 2.4887E+01 2.5310E+01 2.5585E+01 2.5755E+01 2.5856E+01 2.5949E+01 2.5995E+01 2.5999E+01 2.6000E+01 2.6000E+01 2.6000E+01 2.6000E+01 2.6000E+01 2.6000E+01 0.0 1.2000E-02 4.7000E-02 1.0560E-01 1.8560E-01 2.8580E-01 4.0440E-01 6.8810E-01 1.0190E+00 1.7497E+00 2.4834E+00 2.8320E+00 3.6358E+00 4.3690E+00 5.0697E+00 5.7640E+00 7.1428E+00 8.4690E+00 1.0844E+01 1.2867E+01 1.4596E+01 1.6050E+01 1.7249E+01 1.8229E+01 1.9039E+01 2.0596E+01 2.1777E+01 2.3462E+01 2.4480E+01 2.5092E+01 2.5497E+01 2.5799E+01 2.6238E+01 2.6531E+01 2.6717E+01 2.6830E+01 2.6938E+01 2.6994E+01 2.6999E+01 2.7000E+01 2.7000E+01 2.7000E+01 2.7000E+01 2.7000E+01 2.7000E+01 0.0 1.1000E-02 4.5000E-02 1.0090E-01 1.7740E-01 2.7340E-01 3.8720E-01 6.6050E-01 9.8100E-01 1.6955E+00 2.4230E+00 2.7720E+00 3.5820E+00 4.3220E+00 5.0287E+00 5.7260E+00 7.1149E+00 8.4610E+00 1.0894E+01 1.2980E+01 1.4780E+01 1.6317E+01 1.7602E+01 1.8664E+01 1.9543E+01 2.1210E+01 2.2445E+01 2.4211E+01 2.5302E+01 2.5962E+01 2.6394E+01 2.6710E+01 2.7166E+01 2.7475E+01 2.7676E+01 2.7802E+01 2.7926E+01 2.7992E+01 2.7999E+01 2.8000E+01 2.8000E+01 2.8000E+01 2.8000E+01 2.8000E+01 2.8000E+01 0.0 9.0000E-03 3.6000E-02 8.1300E-02 1.4300E-01 2.2050E-01 3.1250E-01 5.3440E-01 7.9600E-01 1.3930E+00 2.0288E+00 2.3480E+00 3.1392E+00 3.9190E+00 4.6918E+00 5.4550E+00 6.9310E+00 8.3100E+00 1.0778E+01 1.2942E+01 1.4847E+01 1.6494E+01 1.7885E+01 1.9043E+01 2.0002E+01 2.1802E+01 2.3107E+01 2.4957E+01 2.6119E+01 2.6830E+01 2.7291E+01 2.7622E+01 2.8095E+01 2.8418E+01 2.8634E+01 2.8772E+01 2.8912E+01 2.8990E+01 2.8999E+01 2.9000E+01 2.9000E+01 2.9000E+01 2.9000E+01 2.9000E+01 2.9000E+01 0.0 1.0000E-02 4.1000E-02 9.2600E-02 1.6310E-01 2.5170E-01 3.5710E-01 6.1150E-01 9.1200E-01 1.5956E+00 2.3073E+00 2.6540E+00 3.4700E+00 4.2200E+00 4.9322E+00 5.6310E+00 7.0236E+00 8.3880E+00 1.0901E+01 1.3094E+01 1.5020E+01 1.6709E+01 1.8163E+01 1.9395E+01 2.0427E+01 2.2365E+01 2.3745E+01 2.5683E+01 2.6919E+01 2.7687E+01 2.8181E+01 2.8530E+01 2.9021E+01 2.9358E+01 2.9588E+01 2.9739E+01 2.9896E+01 2.9988E+01 2.9998E+01 3.0000E+01 3.0000E+01 3.0000E+01 3.0000E+01 3.0000E+01 3.0000E+01 0.0 1.1000E-02 4.4000E-02 9.8200E-02 1.7270E-01 2.6630E-01 3.7730E-01 6.4440E-01 9.5900E-01 1.6724E+00 2.4218E+00 2.7910E+00 3.6726E+00 4.4830E+00 5.2326E+00 5.9390E+00 7.2874E+00 8.5990E+00 1.1082E+01 1.3290E+01 1.5233E+01 1.6947E+01 1.8445E+01 1.9734E+01 2.0831E+01 2.2907E+01 2.4370E+01 2.6400E+01 2.7710E+01 2.8536E+01 2.9067E+01 2.9436E+01 2.9947E+01 3.0297E+01 3.0541E+01 3.0705E+01 3.0879E+01 3.0985E+01 3.0998E+01 3.1000E+01 3.1000E+01 3.1000E+01 3.1000E+01 3.1000E+01 3.1000E+01 0.0 1.1000E-02 4.2000E-02 9.4900E-02 1.6710E-01 2.5820E-01 3.6670E-01 6.3000E-01 9.4400E-01 1.6691E+00 2.4486E+00 2.8390E+00 3.7810E+00 4.6590E+00 5.4723E+00 6.2290E+00 7.6188E+00 8.9120E+00 1.1338E+01 1.3536E+01 1.5486E+01 1.7215E+01 1.8741E+01 2.0074E+01 2.1224E+01 2.3430E+01 2.4983E+01 2.7109E+01 2.8492E+01 2.9377E+01 2.9947E+01 3.0340E+01 3.0872E+01 3.1236E+01 3.1492E+01 3.1668E+01 3.1860E+01 3.1982E+01 3.1997E+01 3.2000E+01 3.2000E+01 3.2000E+01 3.2000E+01 3.2000E+01 3.2000E+01 0.0 1.0000E-02 4.0000E-02 9.0300E-02 1.5930E-01 2.4630E-01 3.5040E-01 6.0410E-01 9.0900E-01 1.6212E+00 2.3995E+00 2.7930E+00 3.7577E+00 4.6750E+00 5.5432E+00 6.3650E+00 7.8777E+00 9.2360E+00 1.1658E+01 1.3828E+01 1.5775E+01 1.7511E+01 1.9056E+01 2.0420E+01 2.1612E+01 2.3938E+01 2.5583E+01 2.7810E+01 2.9264E+01 3.0209E+01 3.0822E+01 3.1241E+01 3.1796E+01 3.2173E+01 3.2442E+01 3.2629E+01 3.2840E+01 3.2979E+01 3.2996E+01 3.3000E+01 3.3000E+01 3.3000E+01 3.3000E+01 3.3000E+01 3.3000E+01 0.0 1.0000E-02 3.8000E-02 8.5900E-02 1.5170E-01 2.3500E-01 3.3500E-01 5.8060E-01 8.7900E-01 1.5904E+00 2.3883E+00 2.7990E+00 3.8175E+00 4.7940E+00 5.7172E+00 6.5890E+00 8.1861E+00 9.6010E+00 1.2033E+01 1.4168E+01 1.6098E+01 1.7835E+01 1.9391E+01 2.0778E+01 2.2003E+01 2.4434E+01 2.6171E+01 2.8504E+01 3.0028E+01 3.1034E+01 3.1691E+01 3.2137E+01 3.2719E+01 3.3109E+01 3.3390E+01 3.3589E+01 3.3818E+01 3.3975E+01 3.3996E+01 3.4000E+01 3.4000E+01 3.4000E+01 3.4000E+01 3.4000E+01 3.4000E+01 0.0 9.0000E-03 3.6000E-02 8.1700E-02 1.4450E-01 2.2410E-01 3.2000E-01 5.5660E-01 8.4600E-01 1.5477E+00 2.3509E+00 2.7710E+00 3.8262E+00 4.8510E+00 5.8261E+00 6.7480E+00 8.4425E+00 9.9400E+00 1.2440E+01 1.4552E+01 1.6456E+01 1.8185E+01 1.9747E+01 2.1149E+01 2.2399E+01 2.4920E+01 2.6747E+01 2.9190E+01 3.0785E+01 3.1850E+01 3.2554E+01 3.3030E+01 3.3641E+01 3.4045E+01 3.4337E+01 3.4547E+01 3.4794E+01 3.4970E+01 3.4995E+01 3.5000E+01 3.5000E+01 3.5000E+01 3.5000E+01 3.5000E+01 3.5000E+01 0.0 9.0000E-03 3.5000E-02 7.7900E-02 1.3770E-01 2.1390E-01 3.0560E-01 5.3270E-01 8.1200E-01 1.4945E+00 2.2858E+00 2.7030E+00 3.7635E+00 4.8050E+00 5.8050E+00 6.7600E+00 8.5457E+00 1.0157E+01 1.2828E+01 1.4969E+01 1.6849E+01 1.8562E+01 2.0123E+01 2.1535E+01 2.2804E+01 2.5401E+01 2.7313E+01 2.9870E+01 3.1534E+01 3.2659E+01 3.3410E+01 3.3919E+01 3.4562E+01 3.4980E+01 3.5283E+01 3.5504E+01 3.5769E+01 3.5965E+01 3.5994E+01 3.6000E+01 3.6000E+01 3.6000E+01 3.6000E+01 3.6000E+01 3.6000E+01 0.0 2.0000E-02 7.8000E-02 1.7180E-01 2.9640E-01 4.4620E-01 6.1490E-01 9.8600E-01 1.3720E+00 2.1219E+00 2.8525E+00 3.2250E+00 4.1893E+00 5.1720E+00 6.1346E+00 7.0620E+00 8.8125E+00 1.0431E+01 1.3206E+01 1.5410E+01 1.7282E+01 1.8974E+01 2.0526E+01 2.1940E+01 2.3221E+01 2.5880E+01 2.7871E+01 3.0543E+01 3.2277E+01 3.3461E+01 3.4259E+01 3.4803E+01 3.5482E+01 3.5915E+01 3.6228E+01 3.6459E+01 3.6742E+01 3.6959E+01 3.6992E+01 3.7000E+01 3.7000E+01 3.7000E+01 3.7000E+01 3.7000E+01 3.7000E+01 0.0 2.3000E-02 9.1000E-02 2.0230E-01 3.5120E-01 5.3260E-01 7.4000E-01 1.2064E+00 1.7010E+00 2.6420E+00 3.4571E+00 3.8310E+00 4.7378E+00 5.6530E+00 6.5695E+00 7.4640E+00 9.1593E+00 1.0746E+01 1.3576E+01 1.5860E+01 1.7745E+01 1.9420E+01 2.0956E+01 2.2367E+01 2.3654E+01 2.6361E+01 2.8423E+01 3.1210E+01 3.3014E+01 3.4255E+01 3.5103E+01 3.5682E+01 3.6399E+01 3.6848E+01 3.7172E+01 3.7413E+01 3.7713E+01 3.7953E+01 3.7991E+01 3.8000E+01 3.8000E+01 3.8000E+01 3.8000E+01 3.8000E+01 3.8000E+01 0.0 2.2000E-02 8.7000E-02 1.9380E-01 3.3770E-01 5.1440E-01 7.1850E-01 1.1857E+00 1.6940E+00 2.7007E+00 3.5939E+00 3.9990E+00 4.9485E+00 5.8740E+00 6.7965E+00 7.7000E+00 9.4127E+00 1.1010E+01 1.3899E+01 1.6279E+01 1.8215E+01 1.9891E+01 2.1416E+01 2.2820E+01 2.4110E+01 2.6849E+01 2.8970E+01 3.1870E+01 3.3745E+01 3.5043E+01 3.5940E+01 3.6557E+01 3.7316E+01 3.7782E+01 3.8116E+01 3.8366E+01 3.8684E+01 3.8946E+01 3.8989E+01 3.9000E+01 3.9000E+01 3.9000E+01 3.9000E+01 3.9000E+01 3.9000E+01 0.0 2.1000E-02 8.3000E-02 1.8430E-01 3.2180E-01 4.9160E-01 6.8910E-01 1.1467E+00 1.6540E+00 2.6881E+00 3.6332E+00 4.0640E+00 5.0647E+00 6.0190E+00 6.9586E+00 7.8790E+00 9.6206E+00 1.1236E+01 1.4176E+01 1.6658E+01 1.8672E+01 2.0373E+01 2.1895E+01 2.3294E+01 2.4583E+01 2.7347E+01 2.9517E+01 3.2522E+01 3.4470E+01 3.5825E+01 3.6771E+01 3.7426E+01 3.8230E+01 3.8715E+01 3.9059E+01 3.9318E+01 3.9653E+01 3.9938E+01 3.9987E+01 4.0000E+01 4.0000E+01 4.0000E+01 4.0000E+01 4.0000E+01 4.0000E+01 0.0 1.7000E-02 6.8000E-02 1.5160E-01 2.6520E-01 4.0610E-01 5.7100E-01 9.5760E-01 1.3950E+00 2.3251E+00 3.2356E+00 3.6720E+00 4.7217E+00 5.7350E+00 6.7235E+00 7.6840E+00 9.5075E+00 1.1213E+01 1.4317E+01 1.6949E+01 1.9081E+01 2.0844E+01 2.2386E+01 2.3787E+01 2.5077E+01 2.7860E+01 3.0067E+01 3.3167E+01 3.5188E+01 3.6601E+01 3.7596E+01 3.8291E+01 3.9142E+01 3.9647E+01 4.0002E+01 4.0270E+01 4.0621E+01 4.0930E+01 4.0985E+01 4.1000E+01 4.1000E+01 4.1000E+01 4.1000E+01 4.1000E+01 4.1000E+01 0.0 1.6000E-02 6.5000E-02 1.4390E-01 2.5210E-01 3.8680E-01 5.4480E-01 9.1770E-01 1.3440E+00 2.2641E+00 3.1813E+00 3.6250E+00 4.6925E+00 5.7200E+00 6.7197E+00 7.6900E+00 9.5324E+00 1.1260E+01 1.4440E+01 1.7196E+01 1.9455E+01 2.1300E+01 2.2877E+01 2.4288E+01 2.5581E+01 2.8378E+01 3.0620E+01 3.3808E+01 3.5901E+01 3.7370E+01 3.8415E+01 3.9150E+01 4.0051E+01 4.0578E+01 4.0945E+01 4.1221E+01 4.1587E+01 4.1920E+01 4.1983E+01 4.2000E+01 4.2000E+01 4.2000E+01 4.2000E+01 4.2000E+01 4.2000E+01 0.0 1.8000E-02 7.2000E-02 1.6000E-01 2.8050E-01 4.3070E-01 6.0720E-01 1.0245E+00 1.5020E+00 2.5267E+00 3.5216E+00 3.9870E+00 5.0656E+00 6.0670E+00 7.0353E+00 7.9840E+00 9.8065E+00 1.1512E+01 1.4653E+01 1.7456E+01 1.9816E+01 2.1748E+01 2.3370E+01 2.4797E+01 2.6093E+01 2.8901E+01 3.1173E+01 3.4447E+01 3.6610E+01 3.8134E+01 3.9226E+01 4.0003E+01 4.0958E+01 4.1509E+01 4.1886E+01 4.2171E+01 4.2553E+01 4.2911E+01 4.2980E+01 4.3000E+01 4.3000E+01 4.3000E+01 4.3000E+01 4.3000E+01 4.3000E+01 0.0 1.5000E-02 5.9000E-02 1.3130E-01 2.3050E-01 3.5450E-01 5.0090E-01 8.5020E-01 1.2560E+00 2.1600E+00 3.0961E+00 3.5590E+00 4.6897E+00 5.7830E+00 6.8398E+00 7.8570E+00 9.7646E+00 1.1531E+01 1.4782E+01 1.7685E+01 2.0150E+01 2.2173E+01 2.3855E+01 2.5312E+01 2.6621E+01 2.9444E+01 3.1740E+01 3.5081E+01 3.7311E+01 3.8891E+01 4.0033E+01 4.0851E+01 4.1861E+01 4.2438E+01 4.2828E+01 4.3121E+01 4.3518E+01 4.3900E+01 4.3978E+01 4.4000E+01 4.4000E+01 4.4000E+01 4.4000E+01 4.4000E+01 4.4000E+01 0.0 1.4000E-02 5.6000E-02 1.2590E-01 2.2120E-01 3.4050E-01 4.8170E-01 8.1960E-01 1.2150E+00 2.1027E+00 3.0345E+00 3.4990E+00 4.6419E+00 5.7530E+00 6.8283E+00 7.8630E+00 9.8021E+00 1.1591E+01 1.4883E+01 1.7858E+01 2.0428E+01 2.2557E+01 2.4318E+01 2.5819E+01 2.7148E+01 2.9991E+01 3.2309E+01 3.5715E+01 3.8009E+01 3.9643E+01 4.0833E+01 4.1693E+01 4.2761E+01 4.3366E+01 4.3769E+01 4.4070E+01 4.4481E+01 4.4889E+01 4.4975E+01 4.5000E+01 4.5000E+01 4.5000E+01 4.5000E+01 4.5000E+01 4.5000E+01 0.0 1.0000E-02 3.9000E-02 8.8100E-02 1.5590E-01 2.4210E-01 3.4620E-01 6.0430E-01 9.2300E-01 1.7050E+00 2.6188E+00 3.1030E+00 4.3342E+00 5.5360E+00 6.6685E+00 7.7250E+00 9.6545E+00 1.1441E+01 1.4824E+01 1.7943E+01 2.0653E+01 2.2904E+01 2.4756E+01 2.6316E+01 2.7677E+01 3.0549E+01 3.2888E+01 3.6349E+01 3.8703E+01 4.0389E+01 4.1627E+01 4.2529E+01 4.3658E+01 4.4293E+01 4.4710E+01 4.5019E+01 4.5444E+01 4.5877E+01 4.5971E+01 4.6000E+01 4.6000E+01 4.6000E+01 4.6000E+01 4.6000E+01 4.6000E+01 0.0 1.3000E-02 5.2000E-02 1.1660E-01 2.0510E-01 3.1610E-01 4.4780E-01 7.6490E-01 1.1390E+00 1.9902E+00 2.9013E+00 3.3620E+00 4.5059E+00 5.6310E+00 6.7268E+00 7.7850E+00 9.7703E+00 1.1598E+01 1.4969E+01 1.8082E+01 2.0858E+01 2.3212E+01 2.5162E+01 2.6792E+01 2.8195E+01 3.1106E+01 3.3465E+01 3.6983E+01 3.9395E+01 4.1131E+01 4.2415E+01 4.3359E+01 4.4550E+01 4.5217E+01 4.5650E+01 4.5968E+01 4.6406E+01 4.6864E+01 4.6967E+01 4.7000E+01 4.7000E+01 4.7000E+01 4.7000E+01 4.7000E+01 4.7000E+01 0.0 1.5000E-02 5.9000E-02 1.3210E-01 2.3240E-01 3.5820E-01 5.0750E-01 8.6650E-01 1.2880E+00 2.2373E+00 3.2201E+00 3.7000E+00 4.8433E+00 5.9210E+00 6.9607E+00 7.9800E+00 9.9556E+00 1.1812E+01 1.5185E+01 1.8263E+01 2.1064E+01 2.3501E+01 2.5546E+01 2.7252E+01 2.8705E+01 3.1666E+01 3.4046E+01 3.7618E+01 4.0085E+01 4.1870E+01 4.3198E+01 4.4184E+01 4.5437E+01 4.6139E+01 4.6589E+01 4.6915E+01 4.7368E+01 4.7850E+01 4.7963E+01 4.8000E+01 4.8000E+01 4.8000E+01 4.8000E+01 4.8000E+01 4.8000E+01 0.0 1.5000E-02 6.2000E-02 1.3750E-01 2.4170E-01 3.7220E-01 5.2690E-01 8.9820E-01 1.3340E+00 2.3160E+00 3.3444E+00 3.8520E+00 5.0700E+00 6.2070E+00 7.2757E+00 8.2970E+00 1.0244E+01 1.2083E+01 1.5444E+01 1.8489E+01 2.1288E+01 2.3779E+01 2.5906E+01 2.7691E+01 2.9203E+01 3.2229E+01 3.4634E+01 3.8255E+01 4.0774E+01 4.2605E+01 4.3977E+01 4.5003E+01 4.6321E+01 4.7060E+01 4.7526E+01 4.7863E+01 4.8328E+01 4.8835E+01 4.8959E+01 4.9000E+01 4.9000E+01 4.9000E+01 4.9000E+01 4.9000E+01 4.9000E+01 0.0 1.5000E-02 6.0000E-02 1.3440E-01 2.3650E-01 3.6480E-01 5.1750E-01 8.8610E-01 1.3230E+00 2.3215E+00 3.3857E+00 3.9170E+00 5.2044E+00 6.4160E+00 7.5495E+00 8.6150E+00 1.0589E+01 1.2415E+01 1.5746E+01 1.8760E+01 2.1541E+01 2.4059E+01 2.6252E+01 2.8113E+01 2.9687E+01 3.2794E+01 3.5226E+01 3.8894E+01 4.1462E+01 4.3338E+01 4.4751E+01 4.5817E+01 4.7200E+01 4.7977E+01 4.8463E+01 4.8810E+01 4.9288E+01 4.9820E+01 4.9954E+01 5.0000E+01 5.0000E+01 5.0000E+01 5.0000E+01 5.0000E+01 5.0000E+01 0.0 1.5000E-02 5.8000E-02 1.2970E-01 2.2840E-01 3.5270E-01 5.0080E-01 8.5980E-01 1.2870E+00 2.2731E+00 3.3358E+00 3.8710E+00 5.1866E+00 6.4530E+00 7.6627E+00 8.8110E+00 1.0908E+01 1.2777E+01 1.6088E+01 1.9067E+01 2.1823E+01 2.4349E+01 2.6590E+01 2.8518E+01 3.0157E+01 3.3358E+01 3.5822E+01 3.9536E+01 4.2151E+01 4.4069E+01 4.5522E+01 4.6626E+01 4.8075E+01 4.8892E+01 4.9399E+01 4.9756E+01 5.0248E+01 5.0804E+01 5.0949E+01 5.1000E+01 5.1000E+01 5.1000E+01 5.1000E+01 5.1000E+01 5.1000E+01 0.0 1.4000E-02 5.6000E-02 1.2500E-01 2.2050E-01 3.4120E-01 4.8540E-01 8.3740E-01 1.2610E+00 2.2554E+00 3.3494E+00 3.9070E+00 5.2839E+00 6.6100E+00 7.8759E+00 9.0760E+00 1.1260E+01 1.3171E+01 1.6466E+01 1.9407E+01 2.2134E+01 2.4655E+01 2.6927E+01 2.8912E+01 3.0613E+01 3.3918E+01 3.6422E+01 4.0181E+01 4.2840E+01 4.4798E+01 4.6290E+01 4.7431E+01 4.8945E+01 4.9804E+01 5.0333E+01 5.0702E+01 5.1207E+01 5.1787E+01 5.1943E+01 5.1999E+01 5.2000E+01 5.2000E+01 5.2000E+01 5.2000E+01 5.2000E+01 0.0 1.3000E-02 5.4000E-02 1.2050E-01 2.1280E-01 3.2960E-01 4.6960E-01 8.1320E-01 1.2300E+00 2.2213E+00 3.3314E+00 3.9030E+00 5.3281E+00 6.7090E+00 8.0300E+00 9.2870E+00 1.1579E+01 1.3564E+01 1.6876E+01 1.9777E+01 2.2471E+01 2.4980E+01 2.7269E+01 2.9298E+01 3.1056E+01 3.4474E+01 3.7024E+01 4.0827E+01 4.3529E+01 4.5526E+01 4.7054E+01 4.8233E+01 4.9811E+01 5.0714E+01 5.1266E+01 5.1647E+01 5.2165E+01 5.2770E+01 5.2937E+01 5.2999E+01 5.3000E+01 5.3000E+01 5.3000E+01 5.3000E+01 5.3000E+01 0.0 1.3000E-02 5.2000E-02 1.1620E-01 2.0530E-01 3.1830E-01 4.5390E-01 7.8750E-01 1.1940E+00 2.1679E+00 3.2695E+00 3.8410E+00 5.2747E+00 6.6770E+00 8.0325E+00 9.3400E+00 1.1771E+01 1.3892E+01 1.7307E+01 2.0175E+01 2.2833E+01 2.5324E+01 2.7619E+01 2.9680E+01 3.1488E+01 3.5023E+01 3.7628E+01 4.1477E+01 4.4220E+01 4.6254E+01 4.7817E+01 4.9030E+01 5.0673E+01 5.1620E+01 5.2197E+01 5.2591E+01 5.3123E+01 5.3751E+01 5.3931E+01 5.3999E+01 5.4000E+01 5.4000E+01 5.4000E+01 5.4000E+01 5.4000E+01 0.0 2.7000E-02 1.0500E-01 2.3070E-01 3.9640E-01 5.9400E-01 8.1480E-01 1.2955E+00 1.7930E+00 2.7816E+00 3.7941E+00 4.3200E+00 5.6723E+00 7.0230E+00 8.3392E+00 9.6150E+00 1.2035E+01 1.4217E+01 1.7753E+01 2.0612E+01 2.3228E+01 2.5691E+01 2.7981E+01 3.0064E+01 3.1914E+01 3.5565E+01 3.8232E+01 4.2129E+01 4.4912E+01 4.6981E+01 4.8577E+01 4.9824E+01 5.1530E+01 5.2523E+01 5.3127E+01 5.3534E+01 5.4081E+01 5.4732E+01 5.4924E+01 5.5000E+01 5.5000E+01 5.5000E+01 5.5000E+01 5.5000E+01 5.5000E+01 0.0 3.1000E-02 1.2400E-01 2.7230E-01 4.7070E-01 7.0990E-01 9.8060E-01 1.5778E+00 2.1960E+00 3.3564E+00 4.3976E+00 4.9020E+00 6.1754E+00 7.4680E+00 8.7405E+00 9.9760E+00 1.2343E+01 1.4544E+01 1.8201E+01 2.1078E+01 2.3654E+01 2.6083E+01 2.8359E+01 3.0453E+01 3.2336E+01 3.6100E+01 3.8836E+01 4.2784E+01 4.5605E+01 4.7709E+01 4.9336E+01 5.0615E+01 5.2383E+01 5.3424E+01 5.4055E+01 5.4477E+01 5.5038E+01 5.5713E+01 5.5917E+01 5.6000E+01 5.6000E+01 5.6000E+01 5.6000E+01 5.6000E+01 5.6000E+01 0.0 3.0000E-02 1.1900E-01 2.6220E-01 4.5500E-01 6.8950E-01 9.5750E-01 1.5596E+00 2.1990E+00 3.4326E+00 4.5424E+00 5.0680E+00 6.3669E+00 7.6710E+00 8.9565E+00 1.0204E+01 1.2583E+01 1.4814E+01 1.8609E+01 2.1555E+01 2.4109E+01 2.6502E+01 2.8759E+01 3.0854E+01 3.2758E+01 3.6622E+01 3.9438E+01 4.3443E+01 4.6301E+01 4.8436E+01 5.0094E+01 5.1403E+01 5.3233E+01 5.4320E+01 5.4981E+01 5.5419E+01 5.5995E+01 5.6692E+01 5.6909E+01 5.7000E+01 5.7000E+01 5.7000E+01 5.7000E+01 5.7000E+01 5.7000E+01 0.0 2.9000E-02 1.1600E-01 2.5620E-01 4.4490E-01 6.7470E-01 9.3770E-01 1.5304E+00 2.1620E+00 3.3896E+00 4.4987E+00 5.0250E+00 6.3245E+00 7.6340E+00 8.9301E+00 1.0190E+01 1.2592E+01 1.4844E+01 1.8713E+01 2.1737E+01 2.4334E+01 2.6750E+01 2.9025E+01 3.1143E+01 3.3083E+01 3.7075E+01 4.0001E+01 4.4104E+01 4.7006E+01 4.9175E+01 5.0860E+01 5.2197E+01 5.4083E+01 5.5217E+01 5.5906E+01 5.6361E+01 5.6951E+01 5.7671E+01 5.7901E+01 5.8000E+01 5.8000E+01 5.8000E+01 5.8000E+01 5.8000E+01 5.8000E+01 0.0 2.9000E-02 1.1600E-01 2.5690E-01 4.4500E-01 6.7330E-01 9.3310E-01 1.5131E+00 2.1240E+00 3.2963E+00 4.3619E+00 4.8760E+00 6.1714E+00 7.4890E+00 8.7906E+00 1.0051E+01 1.2447E+01 1.4688E+01 1.8554E+01 2.1644E+01 2.4331E+01 2.6818E+01 2.9145E+01 3.1311E+01 3.3304E+01 3.7451E+01 4.0515E+01 4.4757E+01 4.7716E+01 4.9921E+01 5.1634E+01 5.2996E+01 5.4934E+01 5.6113E+01 5.6832E+01 5.7303E+01 5.7908E+01 5.8650E+01 5.8892E+01 5.9000E+01 5.9000E+01 5.9000E+01 5.9000E+01 5.9000E+01 5.9000E+01 0.0 2.9000E-02 1.1400E-01 2.5210E-01 4.3700E-01 6.6160E-01 9.1760E-01 1.4910E+00 2.0970E+00 3.2673E+00 4.3340E+00 4.8490E+00 6.1436E+00 7.4630E+00 8.7696E+00 1.0036E+01 1.2439E+01 1.4688E+01 1.8603E+01 2.1759E+01 2.4493E+01 2.7012E+01 2.9364E+01 3.1556E+01 3.3581E+01 3.7848E+01 4.1033E+01 4.5404E+01 4.8419E+01 5.0660E+01 5.2400E+01 5.3788E+01 5.5779E+01 5.7003E+01 5.7753E+01 5.8243E+01 5.8865E+01 5.9627E+01 5.9884E+01 5.9999E+01 6.0000E+01 6.0000E+01 6.0000E+01 6.0000E+01 6.0000E+01 0.0 2.8000E-02 1.1200E-01 2.4750E-01 4.2930E-01 6.5030E-01 9.0270E-01 1.4694E+00 2.0710E+00 3.2373E+00 4.3038E+00 4.8180E+00 6.1117E+00 7.4320E+00 8.7425E+00 1.0014E+01 1.2426E+01 1.4682E+01 1.8641E+01 2.1856E+01 2.4634E+01 2.7183E+01 2.9559E+01 3.1776E+01 3.3832E+01 3.8212E+01 4.1523E+01 4.6040E+01 4.9119E+01 5.1398E+01 5.3166E+01 5.4579E+01 5.6621E+01 5.7892E+01 5.8674E+01 5.9181E+01 5.9821E+01 6.0605E+01 6.0874E+01 6.0999E+01 6.1000E+01 6.1000E+01 6.1000E+01 6.1000E+01 6.1000E+01 0.0 2.8000E-02 1.1000E-01 2.4310E-01 4.2180E-01 6.3950E-01 8.8830E-01 1.4483E+00 2.0450E+00 3.2067E+00 4.2721E+00 4.7860E+00 6.0762E+00 7.3950E+00 8.7080E+00 9.9840E+00 1.2401E+01 1.4661E+01 1.8652E+01 2.1919E+01 2.4741E+01 2.7325E+01 2.9730E+01 3.1975E+01 3.4062E+01 3.8554E+01 4.1993E+01 4.6669E+01 4.9816E+01 5.2136E+01 5.3932E+01 5.5369E+01 5.7461E+01 5.8777E+01 5.9592E+01 6.0119E+01 6.0777E+01 6.1581E+01 6.1864E+01 6.1999E+01 6.2000E+01 6.2000E+01 6.2000E+01 6.2000E+01 6.2000E+01 0.0 2.7000E-02 1.0800E-01 2.3890E-01 4.1470E-01 6.2900E-01 8.7440E-01 1.4278E+00 2.0200E+00 3.1762E+00 4.2398E+00 4.7540E+00 6.0394E+00 7.3590E+00 8.6712E+00 9.9540E+00 1.2374E+01 1.4643E+01 1.8662E+01 2.1976E+01 2.4840E+01 2.7456E+01 2.9889E+01 3.2159E+01 3.4275E+01 3.8866E+01 4.2432E+01 4.7281E+01 5.0508E+01 5.2872E+01 5.4698E+01 5.6159E+01 5.8298E+01 5.9660E+01 6.0508E+01 6.1056E+01 6.1732E+01 6.2557E+01 6.2854E+01 6.2999E+01 6.3000E+01 6.3000E+01 6.3000E+01 6.3000E+01 6.3000E+01 0.0 2.6000E-02 1.0400E-01 2.2990E-01 4.0030E-01 6.0920E-01 8.5030E-01 1.4013E+00 2.0010E+00 3.2003E+00 4.3070E+00 4.8310E+00 6.1196E+00 7.4200E+00 8.7259E+00 1.0007E+01 1.2452E+01 1.4749E+01 1.8869E+01 2.2269E+01 2.5155E+01 2.7766E+01 3.0194E+01 3.2463E+01 3.4583E+01 3.9224E+01 4.2884E+01 4.7891E+01 5.1193E+01 5.3600E+01 5.5456E+01 5.6942E+01 5.9130E+01 6.0538E+01 6.1420E+01 6.1990E+01 6.2687E+01 6.3533E+01 6.3843E+01 6.3999E+01 6.4000E+01 6.4000E+01 6.4000E+01 6.4000E+01 6.4000E+01 0.0 2.6000E-02 1.0200E-01 2.2630E-01 3.9410E-01 6.0020E-01 8.3810E-01 1.3831E+00 1.9780E+00 3.1726E+00 4.2783E+00 4.8020E+00 6.0883E+00 7.3870E+00 8.6936E+00 9.9790E+00 1.2436E+01 1.4748E+01 1.8914E+01 2.2377E+01 2.5315E+01 2.7961E+01 3.0414E+01 3.2703E+01 3.4842E+01 3.9553E+01 4.3315E+01 4.8494E+01 5.1880E+01 5.4335E+01 5.6222E+01 5.7731E+01 5.9964E+01 6.1415E+01 6.2332E+01 6.2924E+01 6.3641E+01 6.4508E+01 6.4832E+01 6.4999E+01 6.5000E+01 6.5000E+01 6.5000E+01 6.5000E+01 6.5000E+01 0.0 2.6000E-02 1.0300E-01 2.2720E-01 3.9500E-01 6.0000E-01 8.3560E-01 1.3701E+00 1.9460E+00 3.0873E+00 4.1444E+00 4.6540E+00 5.9312E+00 7.2450E+00 8.5686E+00 9.8670E+00 1.2335E+01 1.4647E+01 1.8799E+01 2.2282E+01 2.5284E+01 2.8001E+01 3.0512E+01 3.2845E+01 3.5021E+01 3.9832E+01 4.3713E+01 4.9082E+01 5.2567E+01 5.5073E+01 5.6993E+01 5.8526E+01 6.0800E+01 6.2293E+01 6.3244E+01 6.3858E+01 6.4596E+01 6.5483E+01 6.5820E+01 6.5999E+01 6.6000E+01 6.6000E+01 6.6000E+01 6.6000E+01 6.6000E+01 0.0 2.5000E-02 1.0100E-01 2.2360E-01 3.8890E-01 5.9110E-01 8.2360E-01 1.3521E+00 1.9230E+00 3.0585E+00 4.1128E+00 4.6210E+00 5.8937E+00 7.2040E+00 8.5283E+00 9.8300E+00 1.2308E+01 1.4628E+01 1.8810E+01 2.2338E+01 2.5383E+01 2.8137E+01 3.0678E+01 3.3039E+01 3.5240E+01 4.0121E+01 4.4101E+01 4.9656E+01 5.3241E+01 5.5803E+01 5.7756E+01 5.9314E+01 6.1631E+01 6.3166E+01 6.4151E+01 6.4789E+01 6.5550E+01 6.6458E+01 6.6808E+01 6.6999E+01 6.7000E+01 6.7000E+01 6.7000E+01 6.7000E+01 6.7000E+01 0.0 2.5000E-02 9.9000E-02 2.2020E-01 3.8310E-01 5.8240E-01 8.1190E-01 1.3346E+00 1.9010E+00 3.0302E+00 4.0815E+00 4.5880E+00 5.8565E+00 7.1640E+00 8.4875E+00 9.7920E+00 1.2279E+01 1.4609E+01 1.8817E+01 2.2387E+01 2.5471E+01 2.8258E+01 3.0830E+01 3.3216E+01 3.5440E+01 4.0387E+01 4.4463E+01 5.0210E+01 5.3906E+01 5.6528E+01 5.8518E+01 6.0101E+01 6.2460E+01 6.4037E+01 6.5057E+01 6.5719E+01 6.6504E+01 6.7432E+01 6.7795E+01 6.7999E+01 6.8000E+01 6.8000E+01 6.8000E+01 6.8000E+01 6.8000E+01 0.0 2.5000E-02 9.8000E-02 2.1690E-01 3.7740E-01 5.7410E-01 8.0070E-01 1.3176E+00 1.8790E+00 3.0025E+00 4.0507E+00 4.5550E+00 5.8192E+00 7.1220E+00 8.4450E+00 9.7510E+00 1.2245E+01 1.4581E+01 1.8809E+01 2.2412E+01 2.5532E+01 2.8352E+01 3.0954E+01 3.3369E+01 3.5620E+01 4.0637E+01 4.4808E+01 5.0752E+01 5.4565E+01 5.7250E+01 5.9278E+01 6.0887E+01 6.3288E+01 6.4905E+01 6.5960E+01 6.6647E+01 6.7457E+01 6.8405E+01 6.8783E+01 6.8999E+01 6.9000E+01 6.9000E+01 6.9000E+01 6.9000E+01 6.9000E+01 0.0 2.4000E-02 9.6000E-02 2.1370E-01 3.7200E-01 5.6600E-01 7.8990E-01 1.3012E+00 1.8590E+00 2.9754E+00 4.0204E+00 4.5270E+00 5.7825E+00 7.0880E+00 8.4027E+00 9.7200E+00 1.2211E+01 1.4565E+01 1.8810E+01 2.2443E+01 2.5596E+01 2.8446E+01 3.1077E+01 3.3519E+01 3.5794E+01 4.0869E+01 4.5131E+01 5.1270E+01 5.5210E+01 5.7966E+01 6.0035E+01 6.1672E+01 6.4115E+01 6.5771E+01 6.6861E+01 6.7573E+01 6.8409E+01 6.9378E+01 6.9769E+01 6.9999E+01 7.0000E+01 7.0000E+01 7.0000E+01 7.0000E+01 7.0000E+01 0.0 2.4000E-02 9.3000E-02 2.0740E-01 3.6200E-01 5.5270E-01 7.7420E-01 1.2865E+00 1.8540E+00 3.0186E+00 4.1145E+00 4.6340E+00 5.9002E+00 7.1760E+00 8.4711E+00 9.7620E+00 1.2254E+01 1.4607E+01 1.8919E+01 2.2640E+01 2.5838E+01 2.8699E+01 3.1332E+01 3.3778E+01 3.6059E+01 4.1159E+01 4.5471E+01 5.1782E+01 5.5846E+01 5.8672E+01 6.0785E+01 6.2451E+01 6.4936E+01 6.6633E+01 6.7759E+01 6.8497E+01 6.9361E+01 7.0351E+01 7.0755E+01 7.0998E+01 7.1000E+01 7.1000E+01 7.1000E+01 7.1000E+01 7.1000E+01 0.0 2.3000E-02 9.0000E-02 1.9980E-01 3.4950E-01 5.3480E-01 7.5110E-01 1.2560E+00 1.8230E+00 3.0089E+00 4.1424E+00 4.6790E+00 5.9695E+00 7.2450E+00 8.5318E+00 9.8150E+00 1.2305E+01 1.4667E+01 1.9037E+01 2.2850E+01 2.6110E+01 2.8989E+01 3.1624E+01 3.4070E+01 3.6354E+01 4.1465E+01 4.5817E+01 5.2285E+01 5.6475E+01 5.9375E+01 6.1532E+01 6.3227E+01 6.5755E+01 6.7492E+01 6.8653E+01 6.9419E+01 7.0311E+01 7.1323E+01 7.1741E+01 7.1998E+01 7.2000E+01 7.2000E+01 7.2000E+01 7.2000E+01 7.2000E+01 0.0 2.2000E-02 8.7000E-02 1.9260E-01 3.3730E-01 5.1700E-01 7.2750E-01 1.2221E+00 1.7830E+00 2.9742E+00 4.1285E+00 4.6760E+00 5.9827E+00 7.2570E+00 8.5350E+00 9.8110E+00 1.2304E+01 1.4683E+01 1.9123E+01 2.3042E+01 2.6385E+01 2.9298E+01 3.1938E+01 3.4385E+01 3.6669E+01 4.1786E+01 4.6168E+01 5.2777E+01 5.7095E+01 6.0072E+01 6.2277E+01 6.4002E+01 6.6572E+01 6.8348E+01 6.9545E+01 7.0339E+01 7.1261E+01 7.2296E+01 7.2726E+01 7.2998E+01 7.3000E+01 7.3000E+01 7.3000E+01 7.3000E+01 7.3000E+01 0.0 2.1000E-02 8.3000E-02 1.8590E-01 3.2590E-01 5.0010E-01 7.0490E-01 1.1884E+00 1.7410E+00 2.9291E+00 4.0946E+00 4.6490E+00 5.9666E+00 7.2380E+00 8.5057E+00 9.7730E+00 1.2268E+01 1.4671E+01 1.9193E+01 2.3224E+01 2.6662E+01 2.9621E+01 3.2273E+01 3.4719E+01 3.7003E+01 4.2123E+01 4.6526E+01 5.3262E+01 5.7707E+01 6.0764E+01 6.3018E+01 6.4775E+01 6.7388E+01 6.9201E+01 7.0435E+01 7.1256E+01 7.2210E+01 7.3267E+01 7.3711E+01 7.3998E+01 7.4000E+01 7.4000E+01 7.4000E+01 7.4000E+01 7.4000E+01 0.0 2.0000E-02 8.1000E-02 1.7970E-01 3.1530E-01 4.8450E-01 6.8370E-01 1.1562E+00 1.7000E+00 2.8814E+00 4.0544E+00 4.6150E+00 5.9450E+00 7.2190E+00 8.4784E+00 9.7390E+00 1.2222E+01 1.4635E+01 1.9217E+01 2.3361E+01 2.6914E+01 2.9945E+01 3.2624E+01 3.5075E+01 3.7357E+01 4.2474E+01 4.6895E+01 5.3739E+01 5.8311E+01 6.1452E+01 6.3756E+01 6.5546E+01 6.8201E+01 7.0053E+01 7.1322E+01 7.2172E+01 7.3158E+01 7.4239E+01 7.4696E+01 7.4998E+01 7.5000E+01 7.5000E+01 7.5000E+01 7.5000E+01 7.5000E+01 0.0 2.0000E-02 7.8000E-02 1.7410E-01 3.0560E-01 4.7000E-01 6.6400E-01 1.1262E+00 1.6610E+00 2.8368E+00 4.0201E+00 4.5900E+00 5.9469E+00 7.2440E+00 8.5207E+00 9.7910E+00 1.2294E+01 1.4715E+01 1.9321E+01 2.3533E+01 2.7177E+01 3.0274E+01 3.2981E+01 3.5437E+01 3.7719E+01 4.2839E+01 4.7266E+01 5.4211E+01 5.8908E+01 6.2134E+01 6.4491E+01 6.6314E+01 6.9013E+01 7.0902E+01 7.2206E+01 7.3085E+01 7.4106E+01 7.5210E+01 7.5680E+01 7.5998E+01 7.6000E+01 7.6000E+01 7.6000E+01 7.6000E+01 7.6000E+01 0.0 1.9000E-02 7.6000E-02 1.6880E-01 2.9660E-01 4.5660E-01 6.4570E-01 1.0977E+00 1.6240E+00 2.7909E+00 3.9804E+00 4.5580E+00 5.9381E+00 7.2580E+00 8.5542E+00 9.8410E+00 1.2367E+01 1.4803E+01 1.9427E+01 2.3694E+01 2.7429E+01 3.0602E+01 3.3349E+01 3.5817E+01 3.8100E+01 4.3217E+01 4.7651E+01 5.4678E+01 5.9496E+01 6.2811E+01 6.5223E+01 6.7081E+01 6.9824E+01 7.1749E+01 7.3088E+01 7.3997E+01 7.5052E+01 7.6181E+01 7.6663E+01 7.6997E+01 7.7000E+01 7.7000E+01 7.7000E+01 7.7000E+01 7.7000E+01 0.0 1.6000E-02 6.4000E-02 1.4200E-01 2.4980E-01 3.8520E-01 5.4590E-01 9.3300E-01 1.3900E+00 2.4347E+00 3.5557E+00 4.1230E+00 5.5322E+00 6.9170E+00 8.2699E+00 9.5890E+00 1.2130E+01 1.4583E+01 1.9337E+01 2.3766E+01 2.7638E+01 3.0910E+01 3.3713E+01 3.6204E+01 3.8491E+01 4.3610E+01 4.8049E+01 5.5142E+01 6.0077E+01 6.3483E+01 6.5953E+01 6.7847E+01 7.0633E+01 7.2593E+01 7.3968E+01 7.4906E+01 7.5997E+01 7.7152E+01 7.7647E+01 7.7997E+01 7.8000E+01 7.8000E+01 7.8000E+01 7.8000E+01 7.8000E+01 0.0 1.6000E-02 6.2000E-02 1.3800E-01 2.4280E-01 3.7460E-01 5.3120E-01 9.0930E-01 1.3570E+00 2.3876E+00 3.5019E+00 4.0680E+00 5.4827E+00 6.8750E+00 8.2364E+00 9.5600E+00 1.2102E+01 1.4551E+01 1.9321E+01 2.3828E+01 2.7815E+01 3.1197E+01 3.4072E+01 3.6597E+01 3.8896E+01 4.4011E+01 4.8456E+01 5.5605E+01 6.0651E+01 6.4149E+01 6.6678E+01 6.8610E+01 7.1441E+01 7.3436E+01 7.4845E+01 7.5813E+01 7.6941E+01 7.8123E+01 7.8630E+01 7.8997E+01 7.9000E+01 7.9000E+01 7.9000E+01 7.9000E+01 7.9000E+01 0.0 1.7000E-02 6.9000E-02 1.5520E-01 2.7310E-01 4.2120E-01 5.9690E-01 1.0202E+00 1.5190E+00 2.6468E+00 3.8275E+00 4.4090E+00 5.8147E+00 7.1590E+00 8.4708E+00 9.7660E+00 1.2310E+01 1.4772E+01 1.9489E+01 2.3960E+01 2.8005E+01 3.1480E+01 3.4429E+01 3.6994E+01 3.9307E+01 4.4422E+01 4.8866E+01 5.6066E+01 6.1218E+01 6.4808E+01 6.7399E+01 6.9370E+01 7.2248E+01 7.4278E+01 7.5720E+01 7.6718E+01 7.7884E+01 7.9093E+01 7.9612E+01 7.9997E+01 8.0000E+01 8.0000E+01 8.0000E+01 8.0000E+01 8.0000E+01 0.0 1.8000E-02 7.3000E-02 1.6200E-01 2.8480E-01 4.3870E-01 6.2100E-01 1.0589E+00 1.5730E+00 2.7370E+00 3.9647E+00 4.5750E+00 6.0563E+00 7.4600E+00 8.7999E+00 1.0096E+01 1.2608E+01 1.5041E+01 1.9702E+01 2.4127E+01 2.8197E+01 3.1750E+01 3.4777E+01 3.7390E+01 3.9724E+01 4.4844E+01 4.9283E+01 5.6529E+01 6.1779E+01 6.5461E+01 6.8116E+01 7.0129E+01 7.3053E+01 7.5117E+01 7.6592E+01 7.7620E+01 7.8826E+01 8.0063E+01 8.0594E+01 8.0996E+01 8.1000E+01 8.1000E+01 8.1000E+01 8.1000E+01 8.1000E+01 0.0 1.8000E-02 7.2000E-02 1.5980E-01 2.8130E-01 4.3390E-01 6.1520E-01 1.0528E+00 1.5710E+00 2.7554E+00 4.0221E+00 4.6580E+00 6.2119E+00 7.6940E+00 9.0990E+00 1.0437E+01 1.2964E+01 1.5368E+01 1.9964E+01 2.4337E+01 2.8408E+01 3.2020E+01 3.5121E+01 3.7790E+01 4.0151E+01 4.5277E+01 4.9713E+01 5.6993E+01 6.2335E+01 6.6108E+01 6.8829E+01 7.0885E+01 7.3858E+01 7.5956E+01 7.7463E+01 7.8521E+01 7.9767E+01 8.1033E+01 8.1576E+01 8.1996E+01 8.2000E+01 8.2000E+01 8.2000E+01 8.2000E+01 8.2000E+01 0.0 1.7000E-02 7.0000E-02 1.5580E-01 2.7440E-01 4.2350E-01 6.0100E-01 1.0304E+00 1.5400E+00 2.7146E+00 3.9811E+00 4.6220E+00 6.2096E+00 7.7570E+00 9.2502E+00 1.0676E+01 1.3314E+01 1.5734E+01 2.0268E+01 2.4586E+01 2.8642E+01 3.2294E+01 3.5462E+01 3.8190E+01 4.0585E+01 4.5722E+01 5.0156E+01 5.7459E+01 6.2887E+01 6.6751E+01 6.9538E+01 7.1638E+01 7.4662E+01 7.6793E+01 7.8332E+01 7.9419E+01 8.0706E+01 8.2002E+01 8.2558E+01 8.2996E+01 8.3000E+01 8.3000E+01 8.3000E+01 8.3000E+01 8.3000E+01 0.0 1.7000E-02 6.8000E-02 1.5170E-01 2.6740E-01 4.1350E-01 5.8790E-01 1.0126E+00 1.5220E+00 2.7120E+00 4.0170E+00 4.6820E+00 6.3350E+00 7.9450E+00 9.4960E+00 1.0976E+01 1.3694E+01 1.6133E+01 2.0606E+01 2.4863E+01 2.8893E+01 3.2568E+01 3.5795E+01 3.8581E+01 4.1016E+01 4.6177E+01 5.0602E+01 5.7930E+01 6.3435E+01 6.7387E+01 7.0242E+01 7.2389E+01 7.5465E+01 7.7628E+01 7.9199E+01 8.0315E+01 8.1644E+01 8.2972E+01 8.3539E+01 8.3995E+01 8.4000E+01 8.4000E+01 8.4000E+01 8.4000E+01 8.4000E+01 0.0 1.7600E-02 6.6000E-02 1.4760E-01 2.6050E-01 4.0320E-01 5.7400E-01 9.9210E-01 1.4970E+00 2.6909E+00 4.0193E+00 4.7020E+00 6.4082E+00 8.0760E+00 9.6870E+00 1.1229E+01 1.4056E+01 1.6546E+01 2.0978E+01 2.5171E+01 2.9169E+01 3.2854E+01 3.6127E+01 3.8971E+01 4.1450E+01 4.6643E+01 5.1062E+01 5.8404E+01 6.3979E+01 6.8018E+01 7.0943E+01 7.3137E+01 7.6266E+01 7.8463E+01 8.0064E+01 8.1210E+01 8.2588E+01 8.3941E+01 8.4520E+01 8.4995E+01 8.5000E+01 8.5000E+01 8.5000E+01 8.5000E+01 8.5000E+01 0.0 1.6000E-02 6.4000E-02 1.4360E-01 2.5360E-01 3.9280E-01 5.5960E-01 9.6880E-01 1.4650E+00 2.6449E+00 3.9684E+00 4.6520E+00 6.3706E+00 8.0650E+00 9.7216E+00 1.1329E+01 1.4317E+01 1.6929E+01 2.1382E+01 2.5507E+01 2.9469E+01 3.3153E+01 3.6460E+01 3.9358E+01 4.1885E+01 4.7118E+01 5.1533E+01 5.8884E+01 6.4521E+01 6.8646E+01 7.1639E+01 7.3882E+01 7.7067E+01 7.9296E+01 8.0927E+01 8.2102E+01 8.3515E+01 8.4910E+01 8.5501E+01 8.5995E+01 8.6000E+01 8.6000E+01 8.6000E+01 8.6000E+01 8.6000E+01 0.0 3.1000E-02 1.2200E-01 2.6840E-01 4.6070E-01 6.8950E-01 9.4480E-01 1.5005E+00 2.0780E+00 3.2516E+00 4.4821E+00 5.1240E+00 6.7708E+00 8.4150E+00 1.0030E+01 1.1609E+01 1.4614E+01 1.7303E+01 2.1816E+01 2.5878E+01 2.9791E+01 3.3463E+01 3.6795E+01 3.9740E+01 4.2315E+01 4.7602E+01 5.2013E+01 5.9368E+01 6.5062E+01 6.9268E+01 7.2331E+01 7.4624E+01 7.7866E+01 8.0128E+01 8.1789E+01 8.2992E+01 8.4449E+01 8.5879E+01 8.6481E+01 8.6994E+01 8.7000E+01 8.7000E+01 8.7000E+01 8.7000E+01 8.7000E+01 0.0 3.6000E-02 1.4400E-01 3.1700E-01 5.4700E-01 8.2340E-01 1.1346E+00 1.8169E+00 2.5200E+00 3.8479E+00 5.0824E+00 5.6960E+00 7.2665E+00 8.8580E+00 1.0427E+01 1.1964E+01 1.4934E+01 1.7672E+01 2.2270E+01 2.6283E+01 3.0139E+01 3.3790E+01 3.7136E+01 4.0121E+01 4.2744E+01 4.8093E+01 5.2502E+01 5.9858E+01 6.5602E+01 6.9885E+01 7.3018E+01 7.5363E+01 7.8664E+01 8.0960E+01 8.2649E+01 8.3881E+01 8.5381E+01 8.6847E+01 8.7461E+01 8.7994E+01 8.8000E+01 8.8000E+01 8.8000E+01 8.8000E+01 8.8000E+01 0.0 3.5000E-02 1.4000E-01 3.0830E-01 5.3400E-01 8.0770E-01 1.1192E+00 1.8144E+00 2.5480E+00 3.9624E+00 5.2647E+00 5.8980E+00 7.4878E+00 9.0920E+00 1.0674E+01 1.2220E+01 1.5203E+01 1.7992E+01 2.2715E+01 2.6712E+01 3.0511E+01 3.4133E+01 3.7483E+01 4.0498E+01 4.3164E+01 4.8588E+01 5.3000E+01 6.0356E+01 6.6142E+01 7.0497E+01 7.3702E+01 7.6099E+01 7.9461E+01 8.1790E+01 8.3508E+01 8.4767E+01 8.6311E+01 8.7816E+01 8.8441E+01 8.8993E+01 8.9000E+01 8.9000E+01 8.9000E+01 8.9000E+01 8.9000E+01 0.0 3.4000E-02 1.3500E-01 2.9860E-01 5.1870E-01 7.8730E-01 1.0953E+00 1.7920E+00 2.5400E+00 4.0165E+00 5.3826E+00 6.0390E+00 7.6634E+00 9.2890E+00 1.0889E+01 1.2446E+01 1.5442E+01 1.8271E+01 2.3139E+01 2.7162E+01 3.0909E+01 3.4496E+01 3.7842E+01 4.0879E+01 4.3582E+01 4.9085E+01 5.3510E+01 6.0860E+01 6.6682E+01 7.1107E+01 7.4381E+01 7.6832E+01 8.0257E+01 8.2619E+01 8.4365E+01 8.5652E+01 8.7241E+01 8.8784E+01 8.9421E+01 8.9993E+01 9.0000E+01 9.0000E+01 9.0000E+01 9.0000E+01 9.0000E+01 0.0 3.4000E-02 1.3400E-01 2.9610E-01 5.1370E-01 7.7840E-01 1.0807E+00 1.7605E+00 2.4850E+00 3.9044E+00 5.2277E+00 5.8730E+00 7.4975E+00 9.1430E+00 1.0767E+01 1.2345E+01 1.5364E+01 1.8189E+01 2.3062E+01 2.7163E+01 3.0988E+01 3.4631E+01 3.8032E+01 4.1137E+01 4.3916E+01 4.9565E+01 5.4030E+01 6.1374E+01 6.7219E+01 7.1707E+01 7.5050E+01 7.7558E+01 8.1053E+01 8.3451E+01 8.5224E+01 8.6537E+01 8.8170E+01 8.9752E+01 9.0400E+01 9.0999E+01 9.1000E+01 9.1000E+01 9.1000E+01 9.1000E+01 9.1000E+01 0.0 3.3000E-02 1.3200E-01 2.9100E-01 5.0510E-01 7.6590E-01 1.0643E+00 1.7371E+00 2.4570E+00 3.8752E+00 5.2029E+00 5.8510E+00 7.4819E+00 9.1360E+00 1.0771E+01 1.2359E+01 1.5387E+01 1.8222E+01 2.3157E+01 2.7321E+01 3.1178E+01 3.4842E+01 3.8270E+01 4.1418E+01 4.4254E+01 5.0036E+01 5.4551E+01 6.1894E+01 6.7760E+01 7.2306E+01 7.5717E+01 7.8282E+01 8.1846E+01 8.4280E+01 8.6081E+01 8.7420E+01 8.9097E+01 9.0719E+01 9.1379E+01 9.1992E+01 9.2000E+01 9.2000E+01 9.2000E+01 9.2000E+01 9.2000E+01 0.0 3.3000E-02 1.3000E-01 2.8710E-01 4.9860E-01 7.5650E-01 1.0521E+00 1.7203E+00 2.4380E+00 3.8595E+00 5.1947E+00 5.8460E+00 7.4835E+00 9.1430E+00 1.0784E+01 1.2375E+01 1.5403E+01 1.8242E+01 2.3230E+01 2.7456E+01 3.1349E+01 3.5038E+01 3.8495E+01 4.1683E+01 4.4573E+01 5.0496E+01 5.5072E+01 6.2420E+01 6.8304E+01 7.2902E+01 7.6380E+01 7.9001E+01 8.2637E+01 8.5108E+01 8.6936E+01 8.8302E+01 9.0023E+01 9.1687E+01 9.2358E+01 9.2991E+01 9.3000E+01 9.3000E+01 9.3000E+01 9.3000E+01 9.3000E+01 0.0 3.3000E-02 1.3100E-01 2.9030E-01 5.0330E-01 7.6200E-01 1.0572E+00 1.7194E+00 2.4240E+00 3.8106E+00 5.1243E+00 5.7740E+00 7.4222E+00 9.0890E+00 1.0720E+01 1.2288E+01 1.5254E+01 1.8039E+01 2.3007E+01 2.7315E+01 3.1301E+01 3.5059E+01 3.8580E+01 4.1840E+01 4.4812E+01 5.0924E+01 5.5593E+01 6.2956E+01 6.8849E+01 7.3494E+01 7.7035E+01 7.9714E+01 8.3426E+01 8.5937E+01 8.7792E+01 8.9183E+01 9.0948E+01 9.2655E+01 9.3337E+01 9.3990E+01 9.4000E+01 9.4000E+01 9.4000E+01 9.4000E+01 9.4000E+01 0.0 3.3000E-02 1.2900E-01 2.8600E-01 4.9600E-01 7.5140E-01 1.0431E+00 1.6990E+00 2.3990E+00 3.7815E+00 5.0943E+00 5.7450E+00 7.3919E+00 9.0650E+00 1.0700E+01 1.2277E+01 1.5246E+01 1.8033E+01 2.3027E+01 2.7380E+01 3.1401E+01 3.5190E+01 3.8740E+01 4.2040E+01 4.5067E+01 5.1338E+01 5.6106E+01 6.3495E+01 6.9399E+01 7.4088E+01 7.7688E+01 8.0425E+01 8.4213E+01 8.6763E+01 8.8646E+01 9.0062E+01 9.1870E+01 9.3622E+01 9.4316E+01 9.4990E+01 9.5000E+01 9.5000E+01 9.5000E+01 9.5000E+01 9.5000E+01 0.0 3.1800E-02 1.2430E-01 2.7560E-01 4.7920E-01 7.2830E-01 1.0148E+00 1.6668E+00 2.3810E+00 3.7916E+00 5.1346E+00 5.7832E+00 7.4322E+00 9.1157E+00 1.0744E+01 1.2355E+01 1.5380E+01 1.8189E+01 2.3222E+01 2.7609E+01 3.1662E+01 3.5480E+01 3.9058E+01 4.2384E+01 4.5435E+01 5.1755E+01 5.6572E+01 6.4037E+01 6.9951E+01 7.4697E+01 7.8340E+01 8.1132E+01 8.4998E+01 8.7587E+01 8.9497E+01 9.0944E+01 9.2791E+01 9.4589E+01 9.5294E+01 9.5989E+01 9.6000E+01 9.6000E+01 9.6000E+01 9.6000E+01 9.6000E+01 0.0 3.1400E-02 1.2260E-01 2.7190E-01 4.7300E-01 7.1920E-01 1.0027E+00 1.6489E+00 2.3605E+00 3.7660E+00 5.1096E+00 5.7589E+00 7.4096E+00 9.1003E+00 1.0741E+01 1.2360E+01 1.5408E+01 1.8246E+01 2.3331E+01 2.7763E+01 3.1857E+01 3.5715E+01 3.9330E+01 4.2690E+01 4.5772E+01 5.2158E+01 5.7033E+01 6.4588E+01 7.0508E+01 7.5304E+01 7.8986E+01 8.1836E+01 8.5780E+01 8.8411E+01 9.0348E+01 9.1825E+01 9.3711E+01 9.5555E+01 9.6272E+01 9.6988E+01 9.6999E+01 9.7000E+01 9.7000E+01 9.7000E+01 9.7000E+01 0.0 3.1600E-02 1.2350E-01 2.7380E-01 4.7540E-01 7.2120E-01 1.0028E+00 1.6395E+00 2.3288E+00 3.6901E+00 4.9958E+00 5.6436E+00 7.2905E+00 8.9942E+00 1.0647E+01 1.2264E+01 1.5308E+01 1.8181E+01 2.3332E+01 2.7820E+01 3.1967E+01 3.5874E+01 3.9535E+01 4.2938E+01 4.6059E+01 5.2527E+01 5.7476E+01 6.5147E+01 7.1070E+01 7.5910E+01 7.9626E+01 8.2534E+01 8.6559E+01 8.9236E+01 9.1200E+01 9.2146E+01 9.4631E+01 9.6522E+01 9.7250E+01 9.7988E+01 9.7999E+01 9.8000E+01 9.8000E+01 9.8000E+01 9.8000E+01 0.0 3.1200E-02 1.2180E-01 2.7000E-01 4.6890E-01 7.1170E-01 9.9000E-01 1.6203E+00 2.3054E+00 3.6585E+00 4.9596E+00 5.6055E+00 7.2476E+00 8.9535E+00 1.0609E+01 1.2233E+01 1.5292E+01 1.8195E+01 2.3397E+01 2.7931E+01 3.2119E+01 3.6066E+01 3.9764E+01 4.3201E+01 4.6354E+01 5.2886E+01 5.7915E+01 6.5707E+01 7.1635E+01 7.6517E+01 8.0266E+01 8.3231E+01 8.7335E+01 9.0057E+01 9.2050E+01 9.3586E+01 9.5548E+01 9.7488E+01 9.8228E+01 9.8987E+01 9.8999E+01 9.9000E+01 9.9000E+01 9.9000E+01 9.9000E+01 0.0 3.0700E-02 1.2010E-01 2.6630E-01 4.6270E-01 7.0240E-01 9.7760E-01 1.6016E+00 2.2824E+00 3.6270E+00 4.9229E+00 5.5666E+00 7.2031E+00 8.9103E+00 1.0567E+01 1.2199E+01 1.5272E+01 1.8202E+01 2.3453E+01 2.8029E+01 3.2257E+01 3.6240E+01 3.9973E+01 4.3442E+01 4.6625E+01 5.3218E+01 5.8337E+01 6.6270E+01 7.2204E+01 7.7125E+01 8.0904E+01 8.3926E+01 8.8109E+01 9.0877E+01 9.2899E+01 9.4465E+01 9.6464E+01 9.8453E+01 9.9206E+01 9.9986E+01 9.9999E+01 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/attdata/mylar.mat0000644000000000000000000001645614741736366020463 0ustar00rootrootMylar 3 1 6 8 0.056000 0.500000 0.444000 1 96 ENERGY LIST 1.0000E-03 1.0000E-04 5.0000E-04 1.5000E-03 2.0000E-03 3.0000E-03 4.0000E-03 5.0000E-03 6.0000E-03 8.0000E-03 1.0000E-02 1.5000E-02 2.0000E-02 3.0000E-02 4.0000E-02 5.0000E-02 6.0000E-02 8.0000E-02 1.0000E-01 1.5000E-01 2.0000E-01 2.5000E-01 3.0000E-01 3.5000E-01 4.0000E-01 4.5000E-01 5.0000E-01 5.5000E-01 6.0000E-01 6.5000E-01 7.5000E-01 8.0000E-01 8.5000E-01 9.5000E-01 1.0000E+00 1.0220E+00 1.2500E+00 1.3000E+00 1.4000E+00 1.5000E+00 1.6000E+00 1.8000E+00 2.0000E+00 2.0440E+00 2.2000E+00 2.6000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8.0000E+00 9.0000E+00 1.0000E+01 1.1000E+01 1.2000E+01 1.3000E+01 1.4000E+01 1.5000E+01 1.6000E+01 1.8000E+01 2.0000E+01 2.2000E+01 2.4000E+01 2.6000E+01 2.8000E+01 3.0000E+01 4.0000E+01 5.0000E+01 6.0000E+01 8.0000E+01 1.0000E+02 1.5000E+02 2.0000E+02 3.0000E+02 4.0000E+02 5.0000E+02 6.0000E+02 8.0000E+02 1.0000E+03 1.5000E+03 2.0000E+03 3.0000E+03 4.0000E+03 5.0000E+03 6.0000E+03 8.0000E+03 1.0000E+04 1.5000E+04 2.0000E+04 3.0000E+04 4.0000E+04 5.0000E+04 6.0000E+04 8.0000E+04 1.0000E+05 COHERENT SCATTERING CROSS SECTION 1.2256E+00 5.1485E+01 1.5267E+00 1.1140E+00 9.9061E-01 7.6064E-01 5.8418E-01 4.5865E-01 3.7032E-01 2.5990E-01 1.9628E-01 1.1556E-01 7.6666E-02 4.0290E-02 2.4595E-02 1.6533E-02 1.1862E-02 6.9372E-03 4.5340E-03 2.0632E-03 1.1708E-03 7.5260E-04 5.2391E-04 3.8547E-04 2.9541E-04 2.3357E-04 1.8928E-04 1.5649E-04 1.3153E-04 1.1210E-04 8.4223E-05 7.4027E-05 6.5572E-05 5.2497E-05 4.7389E-05 4.5376E-05 3.0341E-05 2.8050E-05 2.4184E-05 2.1067E-05 1.8518E-05 1.4635E-05 1.1852E-05 1.1345E-05 9.7910E-06 7.0109E-06 5.2680E-06 2.9635E-06 1.8964E-06 1.3170E-06 9.6746E-07 7.4085E-07 5.8537E-07 4.7413E-07 3.9181E-07 3.2923E-07 2.8056E-07 2.4189E-07 2.1073E-07 1.8519E-07 1.4633E-07 1.1852E-07 9.7970E-08 8.2310E-08 7.0145E-08 6.0470E-08 5.2680E-08 2.9635E-08 1.8964E-08 1.3170E-08 7.4085E-09 4.7410E-09 2.1069E-09 1.1850E-09 5.2675E-10 2.9632E-10 1.8959E-10 1.3167E-10 7.4085E-11 4.7410E-11 2.1069E-11 1.1850E-11 5.2675E-12 2.9632E-12 1.8959E-12 1.3167E-12 7.4085E-13 4.7410E-13 2.1069E-13 1.1850E-13 5.2675E-14 2.9632E-14 1.8959E-14 1.3167E-14 7.4085E-15 4.7410E-15 INCOHERENT SCATTERING CROSS SECTION 1.2914E-02 8.0974E-03 4.1781E-03 2.5907E-02 4.0234E-02 6.7421E-02 8.9402E-02 1.0591E-01 1.1815E-01 1.3460E-01 1.4514E-01 1.6048E-01 1.6846E-01 1.7418E-01 1.7401E-01 1.7165E-01 1.6844E-01 1.6143E-01 1.5462E-01 1.4004E-01 1.2862E-01 1.1952E-01 1.1207E-01 1.0582E-01 1.0049E-01 9.5875E-02 9.1813E-02 8.8189E-02 8.4937E-02 8.2003E-02 7.6889E-02 7.4632E-02 7.2540E-02 6.8795E-02 6.7121E-02 6.6421E-02 6.0021E-02 5.8814E-02 5.6582E-02 5.4557E-02 5.2705E-02 4.9416E-02 4.6557E-02 4.5975E-02 4.4054E-02 3.9929E-02 3.6624E-02 3.0550E-02 2.6384E-02 2.3319E-02 2.0960E-02 1.9075E-02 1.7535E-02 1.6246E-02 1.5153E-02 1.4211E-02 1.3386E-02 1.2665E-02 1.2025E-02 1.1450E-02 1.0464E-02 9.6496E-03 8.9648E-03 8.3773E-03 7.8647E-03 7.4198E-03 7.0248E-03 5.5827E-03 4.6605E-03 4.0143E-03 3.1667E-03 2.6283E-03 1.8716E-03 1.4676E-03 1.0400E-03 8.1457E-04 6.7435E-04 5.7749E-04 4.5095E-04 3.7098E-04 2.5909E-04 2.0054E-04 1.3941E-04 1.0761E-04 8.8012E-05 7.4629E-05 5.7480E-05 4.6930E-05 3.2438E-05 2.4939E-05 1.7198E-05 1.3204E-05 1.0754E-05 9.0890E-06 6.9707E-06 5.6686E-06 PHOTOELECTRIC ABSORPTION CROSS SECTION 3.1424E+03 1.1400E+07 2.1706E+04 1.0368E+03 4.5888E+02 1.4074E+02 5.9600E+01 3.0287E+01 1.7304E+01 7.0794E+00 3.5097E+00 9.6384E-01 3.8074E-01 1.0140E-01 3.9360E-02 1.8834E-02 1.0298E-02 3.9694E-03 1.8968E-03 5.0064E-04 1.9752E-04 9.7594E-05 5.5697E-05 3.5122E-05 2.3822E-05 1.7088E-05 1.2835E-05 1.0006E-05 7.9908E-06 6.4913E-06 4.5953E-06 4.0320E-06 3.6261E-06 2.9060E-06 2.5067E-06 2.3294E-06 1.5816E-06 1.4855E-06 1.3023E-06 1.1477E-06 1.0262E-06 8.4916E-07 7.2260E-07 6.9903E-07 6.2601E-07 4.9210E-07 4.0416E-07 2.7761E-07 2.1059E-07 1.6935E-07 1.4152E-07 1.2145E-07 1.0636E-07 9.4586E-08 8.5137E-08 7.7392E-08 7.0940E-08 6.5470E-08 6.0793E-08 5.6735E-08 5.0051E-08 4.4762E-08 4.0493E-08 3.6958E-08 3.3993E-08 3.1461E-08 2.9292E-08 2.1763E-08 1.7310E-08 1.4372E-08 1.0730E-08 8.5576E-09 5.6826E-09 4.2550E-09 2.8303E-09 2.1212E-09 1.6959E-09 1.4127E-09 1.0590E-09 8.4696E-10 5.6442E-10 4.2325E-10 2.8209E-10 2.1155E-10 1.6923E-10 1.4101E-10 1.0576E-10 8.4607E-11 5.6398E-11 4.2303E-11 2.8206E-11 2.1152E-11 1.6921E-11 1.4100E-11 1.0576E-11 8.4604E-12 PAIR PROD. CROSS SECTION (ATOMIC NUCLEUS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.6078E-05 2.6072E-05 5.3253E-05 8.9057E-05 1.3221E-04 2.3562E-04 3.5474E-04 3.8234E-04 4.8266E-04 7.4852E-04 1.0148E-03 1.6466E-03 2.2095E-03 2.7156E-03 3.1665E-03 3.5721E-03 3.9420E-03 4.2762E-03 4.5811E-03 4.8609E-03 5.1219E-03 5.3640E-03 5.5897E-03 5.8047E-03 6.1941E-03 6.5436E-03 6.8633E-03 7.1525E-03 7.4178E-03 7.6628E-03 7.8900E-03 8.8178E-03 9.5213E-03 1.0079E-02 1.0925E-02 1.1547E-02 1.2583E-02 1.3225E-02 1.4005E-02 1.4463E-02 1.4769E-02 1.4992E-02 1.5290E-02 1.5486E-02 1.5772E-02 1.5930E-02 1.6102E-02 1.6192E-02 1.6252E-02 1.6293E-02 1.6347E-02 1.6379E-02 1.6426E-02 1.6453E-02 1.6479E-02 1.6494E-02 1.6500E-02 1.6509E-02 1.6515E-02 1.6521E-02 PAIR PROD. CROSS SECTION (ATOMIC ELECTRONS) 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 0.0000E-01 1.2257E-07 3.6367E-06 1.2814E-05 5.2318E-05 1.0426E-04 1.6010E-04 2.1588E-04 2.7005E-04 3.2197E-04 3.7146E-04 4.1844E-04 4.6288E-04 5.0489E-04 5.4508E-04 5.8303E-04 6.1930E-04 6.8692E-04 7.4868E-04 8.0584E-04 8.5856E-04 9.0740E-04 9.5328E-04 9.9602E-04 1.1763E-03 1.3168E-03 1.4311E-03 1.6087E-03 1.7429E-03 1.9765E-03 2.1306E-03 2.3288E-03 2.4526E-03 2.5387E-03 2.6033E-03 2.6936E-03 2.7542E-03 2.8462E-03 2.8985E-03 2.9563E-03 2.9900E-03 3.0113E-03 3.0260E-03 3.0456E-03 3.0583E-03 3.0752E-03 3.0850E-03 3.0947E-03 3.1010E-03 3.1042E-03 3.1070E-03 3.1094E-03 3.1113E-03 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaDataDir.py0000644000000000000000000000760014741736366016212 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os # this will be filled by the setup PYMCA_DATA_DIR = r'DATA_DIR_FROM_SETUP' # This is to be filled by the setup PYMCA_DOC_DIR = r'DOC_DIR_FROM_SETUP' PYMCA_DATA_DIR_ENV = os.getenv("PYMCA_DATA_DIR") if PYMCA_DATA_DIR_ENV is not None: PYMCA_DATA_DIR = PYMCA_DATA_DIR_ENV if not os.path.exists(PYMCA_DATA_DIR): raise IOError('%s directory set from environment not found' % \ PYMCA_DATA_DIR) else: txt = "WARNING: Taking PYMCA_DATA_DIR from environment.\n" txt += "Use it at your own risk." print(txt) # this is used in build directory if not os.path.exists(PYMCA_DATA_DIR): tmp_dir = os.path.dirname(os.path.abspath(__file__)) old_tmp_dir = tmp_dir + "dummy" basename = "PyMcaData" PYMCA_DATA_DIR_BUILD = os.path.join(tmp_dir, "PyMca5", basename) while (len(PYMCA_DATA_DIR_BUILD) > 20) and (tmp_dir != old_tmp_dir): if os.path.exists(PYMCA_DATA_DIR_BUILD): PYMCA_DATA_DIR = PYMCA_DATA_DIR_BUILD break old_tmp_dir = tmp_dir tmp_dir = os.path.dirname(tmp_dir) PYMCA_DATA_DIR_BUILD = os.path.join(tmp_dir, "PyMca5", basename) if not os.path.exists(PYMCA_DATA_DIR): raise IOError('%s directory not found' % PYMCA_DATA_DIR) PYMCA_DOC_DIR_ENV = os.getenv("PYMCA_DOC_DIR") if PYMCA_DOC_DIR_ENV is not None: PYMCA_DOC_DIR = PYMCA_DOC_DIR_ENV if not os.path.exists(PYMCA_DOC_DIR): raise IOError('%s directory set from environent not found' % \ PYMCA_DATA_DIR) else: txt = "WARNING: Taking PYMCA_DOC_DIR from environment.\n" txt += "Use it at your own risk." print(txt) # do the same for the directory containing HTML files if not os.path.exists(PYMCA_DOC_DIR): tmp_dir = os.path.dirname(os.path.abspath(__file__)) old_tmp_dir = tmp_dir + "dummy" basename = "PyMcaData" PYMCA_DOC_DIR = os.path.join(tmp_dir,basename) while (len(PYMCA_DOC_DIR) > 20) and (tmp_dir != old_tmp_dir): if os.path.exists(PYMCA_DOC_DIR): break old_tmp_dir = tmp_dir tmp_dir = os.path.dirname(tmp_dir) PYMCA_DOC_DIR = os.path.join(tmp_dir, "PyMca5", basename) if not os.path.exists(PYMCA_DOC_DIR): print("Setting PYMCA_DOC_DIR equal to PYMCA_DATA_DIR") PYMCA_DOC_DIR = PYMCA_DATA_DIR ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7517662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/0000755000000000000000000000000014741736404015357 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/Colormap.py0000644000000000000000000001252414741736366017520 0ustar00rootroot# /*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """Convert data to a RGBA colormap.""" # import ###################################################################### import numpy as np from . import ctools from . import MatplotlibColormaps # default colormaps ########################################################### _CMAP_RED = np.zeros((256, 4), dtype=np.uint8) _CMAP_RED[:, 0] = np.arange(256, dtype=np.uint8) _CMAP_RED[:, 3] = 255 _CMAP_GREEN = np.zeros((256, 4), dtype=np.uint8) _CMAP_GREEN[:, 1] = np.arange(256, dtype=np.uint8) _CMAP_GREEN[:, 3] = 255 _CMAP_BLUE = np.zeros((256, 4), dtype=np.uint8) _CMAP_BLUE[:, 2] = np.arange(256, dtype=np.uint8) _CMAP_BLUE[:, 3] = 255 _CMAP_BLUE = np.zeros((256, 4), dtype=np.uint8) _CMAP_BLUE[:, 2] = np.arange(256, dtype=np.uint8) _CMAP_BLUE[:, 3] = 255 _CMAP_GRAY = np.indices((256, 4), dtype=np.uint8)[0] _CMAP_GRAY[:, 3] = 255 _CMAP_REVERSED_GRAY = 255 - np.indices((256, 4), dtype=np.uint8)[0] _CMAP_REVERSED_GRAY[:, 3] = 255 _INDICES = np.arange(256, dtype=np.uint8) _CMAP_TEMPERATURE = np.asarray(np.dstack(( np.interp(_INDICES, (128, 192), (0, 255)), np.interp(_INDICES, (0, 64, 192, 255), (0, 255, 255, 0)), np.interp(_INDICES, (64, 128), (255, 0)), np.array((255,) * 256)))[0], dtype=np.uint8, order='C') """ red: For index 128->192, red is 0->255 green: For index 0->64, green is 0->255 and for 192->255, green is 255->0 blue: For index 64->128, blue is 255->0 """ COLORMAPS = { # Sequential 'red': _CMAP_RED, 'green': _CMAP_GREEN, 'blue': _CMAP_BLUE, 'gray': _CMAP_GRAY, 'reversed gray': _CMAP_REVERSED_GRAY, # Rainbow 'temperature': _CMAP_TEMPERATURE, } """Dictionary of default colormaps.""" # Add matplotlib colormaps for key in MatplotlibColormaps.cmaps: COLORMAPS[key] = MatplotlibColormaps.cmaps[key] # colormap #################################################################### def applyColormap(data, colormap='gray', norm='linear', bounds=None): """Convert data to a RGBA pixmap using a colormap. The returned pixmap has the same shape as data plus one dimension of 4. :param numpy.ndarray data: The data to convert to a pixmap. Any dimension is supported. :param colormap: Either the name or the RGBA colors of the colormap to use. :type colormap: Either str or numpy.ndarray with shape=(N, 4) and dtype=numpy.uint8. :param str norm: The normalization to use. Either 'linear' (the default) or 'log' for log10 normalization. :param bounds: The start and end value used to apply the colormap or None (the default) to use auto-scale. As is, start value must be <= end value. :type bounds: tuple of two floats (startValue, endValue) or None. :returns: The RGBA pixmap and the used start and end value. :rtype: (numpy.ndarray with dtype=numpy.uint8, (float, float)) """ if not isinstance(colormap, np.ndarray): try: colormap = COLORMAPS[colormap] except KeyError: raise RuntimeError("Invalid colormap: %s" % colormap) isLog10 = norm.startswith('log') if bounds is None: start, end = None, None else: start, end = bounds return ctools.dataToRGBAColormap(data, colormap, start, end, isLog10, None) # demo ######################################################################## if __name__ == "__main__": data = np.arange(1024 * 1024.) data.shape = 1024, -1 for colormap in COLORMAPS: pixmap, _ = applyColormap(data, colormap) filename = 'demoColormap_%s.ppm' % colormap print('Write generated RGB image to: %s' % filename) with open(filename, 'wb') as f: f.write(('P6\n%d %d\n255\n' % (pixmap.shape[1], pixmap.shape[0])).encode('utf-8')) f.write(pixmap[:, :, 0:3].tobytes()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/Colors.py0000644000000000000000000000503714741736366017206 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Dictionary of common colors. """ COLORDICT = {} COLORDICT['b'] = COLORDICT['blue'] = '#0000ff' COLORDICT['r'] = COLORDICT['red'] = '#ff0000' COLORDICT['g'] = COLORDICT['green'] = '#00ff00' COLORDICT['k'] = COLORDICT['black'] = '#000000' COLORDICT['white'] = '#ffffff' COLORDICT['pink'] = '#ff66ff' COLORDICT['brown'] = '#a52a2a' COLORDICT['orange'] = '#ff9900' COLORDICT['violet'] = '#6600ff' COLORDICT['gray'] = COLORDICT['grey'] = '#a0a0a4' #COLORDICT['darkGray'] = COLORDICT['darkGrey'] = '#808080' #COLORDICT['lightGray'] = COLORDICT['lightGrey'] = '#c0c0c0' COLORDICT['y'] = COLORDICT['yellow'] = '#ffff00' COLORDICT['m'] = COLORDICT['magenta'] = '#ff00ff' COLORDICT['c'] = COLORDICT['cyan'] = '#00ffff' COLORDICT['darkBlue'] = '#000080' COLORDICT['darkRed'] = '#800000' COLORDICT['darkGreen'] = '#008000' COLORDICT['darkBrown'] = '#660000' COLORDICT['darkCyan'] = '#008080' COLORDICT['darkYellow'] = '#808000' COLORDICT['darkMagenta'] = '#800080' ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/MatplotlibColormaps.py0000644000000000000000000014241114741736366021732 0ustar00rootroot# New matplotlib colormaps by Nathaniel J. Smith, Stefan van der Walt, # and (in the case of viridis) Eric Firing. # # These colormaps in are released under the CC0 license / # public domain dedication. We would appreciate credit if you use or # redistribute these colormaps, but do not impose any legal restrictions. # # To the extent possible under law, the persons who associated CC0 with # mpl-colormaps have waived all copyright and related or neighboring rights # to mpl-colormaps. # # You should have received a copy of the CC0 legalcode along with this # work. If not, see . import numpy _magma_data = [[0.001462, 0.000466, 0.013866], [0.002258, 0.001295, 0.018331], [0.003279, 0.002305, 0.023708], [0.004512, 0.003490, 0.029965], [0.005950, 0.004843, 0.037130], [0.007588, 0.006356, 0.044973], [0.009426, 0.008022, 0.052844], [0.011465, 0.009828, 0.060750], [0.013708, 0.011771, 0.068667], [0.016156, 0.013840, 0.076603], [0.018815, 0.016026, 0.084584], [0.021692, 0.018320, 0.092610], [0.024792, 0.020715, 0.100676], [0.028123, 0.023201, 0.108787], [0.031696, 0.025765, 0.116965], [0.035520, 0.028397, 0.125209], [0.039608, 0.031090, 0.133515], [0.043830, 0.033830, 0.141886], [0.048062, 0.036607, 0.150327], [0.052320, 0.039407, 0.158841], [0.056615, 0.042160, 0.167446], [0.060949, 0.044794, 0.176129], [0.065330, 0.047318, 0.184892], [0.069764, 0.049726, 0.193735], [0.074257, 0.052017, 0.202660], [0.078815, 0.054184, 0.211667], [0.083446, 0.056225, 0.220755], [0.088155, 0.058133, 0.229922], [0.092949, 0.059904, 0.239164], [0.097833, 0.061531, 0.248477], [0.102815, 0.063010, 0.257854], [0.107899, 0.064335, 0.267289], [0.113094, 0.065492, 0.276784], [0.118405, 0.066479, 0.286321], [0.123833, 0.067295, 0.295879], [0.129380, 0.067935, 0.305443], [0.135053, 0.068391, 0.315000], [0.140858, 0.068654, 0.324538], [0.146785, 0.068738, 0.334011], [0.152839, 0.068637, 0.343404], [0.159018, 0.068354, 0.352688], [0.165308, 0.067911, 0.361816], [0.171713, 0.067305, 0.370771], [0.178212, 0.066576, 0.379497], [0.184801, 0.065732, 0.387973], [0.191460, 0.064818, 0.396152], [0.198177, 0.063862, 0.404009], [0.204935, 0.062907, 0.411514], [0.211718, 0.061992, 0.418647], [0.218512, 0.061158, 0.425392], [0.225302, 0.060445, 0.431742], [0.232077, 0.059889, 0.437695], [0.238826, 0.059517, 0.443256], [0.245543, 0.059352, 0.448436], [0.252220, 0.059415, 0.453248], [0.258857, 0.059706, 0.457710], [0.265447, 0.060237, 0.461840], [0.271994, 0.060994, 0.465660], [0.278493, 0.061978, 0.469190], [0.284951, 0.063168, 0.472451], [0.291366, 0.064553, 0.475462], [0.297740, 0.066117, 0.478243], [0.304081, 0.067835, 0.480812], [0.310382, 0.069702, 0.483186], [0.316654, 0.071690, 0.485380], [0.322899, 0.073782, 0.487408], [0.329114, 0.075972, 0.489287], [0.335308, 0.078236, 0.491024], [0.341482, 0.080564, 0.492631], [0.347636, 0.082946, 0.494121], [0.353773, 0.085373, 0.495501], [0.359898, 0.087831, 0.496778], [0.366012, 0.090314, 0.497960], [0.372116, 0.092816, 0.499053], [0.378211, 0.095332, 0.500067], [0.384299, 0.097855, 0.501002], [0.390384, 0.100379, 0.501864], [0.396467, 0.102902, 0.502658], [0.402548, 0.105420, 0.503386], [0.408629, 0.107930, 0.504052], [0.414709, 0.110431, 0.504662], [0.420791, 0.112920, 0.505215], [0.426877, 0.115395, 0.505714], [0.432967, 0.117855, 0.506160], [0.439062, 0.120298, 0.506555], [0.445163, 0.122724, 0.506901], [0.451271, 0.125132, 0.507198], [0.457386, 0.127522, 0.507448], [0.463508, 0.129893, 0.507652], [0.469640, 0.132245, 0.507809], [0.475780, 0.134577, 0.507921], [0.481929, 0.136891, 0.507989], [0.488088, 0.139186, 0.508011], [0.494258, 0.141462, 0.507988], [0.500438, 0.143719, 0.507920], [0.506629, 0.145958, 0.507806], [0.512831, 0.148179, 0.507648], [0.519045, 0.150383, 0.507443], [0.525270, 0.152569, 0.507192], [0.531507, 0.154739, 0.506895], [0.537755, 0.156894, 0.506551], [0.544015, 0.159033, 0.506159], [0.550287, 0.161158, 0.505719], [0.556571, 0.163269, 0.505230], [0.562866, 0.165368, 0.504692], [0.569172, 0.167454, 0.504105], [0.575490, 0.169530, 0.503466], [0.581819, 0.171596, 0.502777], [0.588158, 0.173652, 0.502035], [0.594508, 0.175701, 0.501241], [0.600868, 0.177743, 0.500394], [0.607238, 0.179779, 0.499492], [0.613617, 0.181811, 0.498536], [0.620005, 0.183840, 0.497524], [0.626401, 0.185867, 0.496456], [0.632805, 0.187893, 0.495332], [0.639216, 0.189921, 0.494150], [0.645633, 0.191952, 0.492910], [0.652056, 0.193986, 0.491611], [0.658483, 0.196027, 0.490253], [0.664915, 0.198075, 0.488836], [0.671349, 0.200133, 0.487358], [0.677786, 0.202203, 0.485819], [0.684224, 0.204286, 0.484219], [0.690661, 0.206384, 0.482558], [0.697098, 0.208501, 0.480835], [0.703532, 0.210638, 0.479049], [0.709962, 0.212797, 0.477201], [0.716387, 0.214982, 0.475290], [0.722805, 0.217194, 0.473316], [0.729216, 0.219437, 0.471279], [0.735616, 0.221713, 0.469180], [0.742004, 0.224025, 0.467018], [0.748378, 0.226377, 0.464794], [0.754737, 0.228772, 0.462509], [0.761077, 0.231214, 0.460162], [0.767398, 0.233705, 0.457755], [0.773695, 0.236249, 0.455289], [0.779968, 0.238851, 0.452765], [0.786212, 0.241514, 0.450184], [0.792427, 0.244242, 0.447543], [0.798608, 0.247040, 0.444848], [0.804752, 0.249911, 0.442102], [0.810855, 0.252861, 0.439305], [0.816914, 0.255895, 0.436461], [0.822926, 0.259016, 0.433573], [0.828886, 0.262229, 0.430644], [0.834791, 0.265540, 0.427671], [0.840636, 0.268953, 0.424666], [0.846416, 0.272473, 0.421631], [0.852126, 0.276106, 0.418573], [0.857763, 0.279857, 0.415496], [0.863320, 0.283729, 0.412403], [0.868793, 0.287728, 0.409303], [0.874176, 0.291859, 0.406205], [0.879464, 0.296125, 0.403118], [0.884651, 0.300530, 0.400047], [0.889731, 0.305079, 0.397002], [0.894700, 0.309773, 0.393995], [0.899552, 0.314616, 0.391037], [0.904281, 0.319610, 0.388137], [0.908884, 0.324755, 0.385308], [0.913354, 0.330052, 0.382563], [0.917689, 0.335500, 0.379915], [0.921884, 0.341098, 0.377376], [0.925937, 0.346844, 0.374959], [0.929845, 0.352734, 0.372677], [0.933606, 0.358764, 0.370541], [0.937221, 0.364929, 0.368567], [0.940687, 0.371224, 0.366762], [0.944006, 0.377643, 0.365136], [0.947180, 0.384178, 0.363701], [0.950210, 0.390820, 0.362468], [0.953099, 0.397563, 0.361438], [0.955849, 0.404400, 0.360619], [0.958464, 0.411324, 0.360014], [0.960949, 0.418323, 0.359630], [0.963310, 0.425390, 0.359469], [0.965549, 0.432519, 0.359529], [0.967671, 0.439703, 0.359810], [0.969680, 0.446936, 0.360311], [0.971582, 0.454210, 0.361030], [0.973381, 0.461520, 0.361965], [0.975082, 0.468861, 0.363111], [0.976690, 0.476226, 0.364466], [0.978210, 0.483612, 0.366025], [0.979645, 0.491014, 0.367783], [0.981000, 0.498428, 0.369734], [0.982279, 0.505851, 0.371874], [0.983485, 0.513280, 0.374198], [0.984622, 0.520713, 0.376698], [0.985693, 0.528148, 0.379371], [0.986700, 0.535582, 0.382210], [0.987646, 0.543015, 0.385210], [0.988533, 0.550446, 0.388365], [0.989363, 0.557873, 0.391671], [0.990138, 0.565296, 0.395122], [0.990871, 0.572706, 0.398714], [0.991558, 0.580107, 0.402441], [0.992196, 0.587502, 0.406299], [0.992785, 0.594891, 0.410283], [0.993326, 0.602275, 0.414390], [0.993834, 0.609644, 0.418613], [0.994309, 0.616999, 0.422950], [0.994738, 0.624350, 0.427397], [0.995122, 0.631696, 0.431951], [0.995480, 0.639027, 0.436607], [0.995810, 0.646344, 0.441361], [0.996096, 0.653659, 0.446213], [0.996341, 0.660969, 0.451160], [0.996580, 0.668256, 0.456192], [0.996775, 0.675541, 0.461314], [0.996925, 0.682828, 0.466526], [0.997077, 0.690088, 0.471811], [0.997186, 0.697349, 0.477182], [0.997254, 0.704611, 0.482635], [0.997325, 0.711848, 0.488154], [0.997351, 0.719089, 0.493755], [0.997351, 0.726324, 0.499428], [0.997341, 0.733545, 0.505167], [0.997285, 0.740772, 0.510983], [0.997228, 0.747981, 0.516859], [0.997138, 0.755190, 0.522806], [0.997019, 0.762398, 0.528821], [0.996898, 0.769591, 0.534892], [0.996727, 0.776795, 0.541039], [0.996571, 0.783977, 0.547233], [0.996369, 0.791167, 0.553499], [0.996162, 0.798348, 0.559820], [0.995932, 0.805527, 0.566202], [0.995680, 0.812706, 0.572645], [0.995424, 0.819875, 0.579140], [0.995131, 0.827052, 0.585701], [0.994851, 0.834213, 0.592307], [0.994524, 0.841387, 0.598983], [0.994222, 0.848540, 0.605696], [0.993866, 0.855711, 0.612482], [0.993545, 0.862859, 0.619299], [0.993170, 0.870024, 0.626189], [0.992831, 0.877168, 0.633109], [0.992440, 0.884330, 0.640099], [0.992089, 0.891470, 0.647116], [0.991688, 0.898627, 0.654202], [0.991332, 0.905763, 0.661309], [0.990930, 0.912915, 0.668481], [0.990570, 0.920049, 0.675675], [0.990175, 0.927196, 0.682926], [0.989815, 0.934329, 0.690198], [0.989434, 0.941470, 0.697519], [0.989077, 0.948604, 0.704863], [0.988717, 0.955742, 0.712242], [0.988367, 0.962878, 0.719649], [0.988033, 0.970012, 0.727077], [0.987691, 0.977154, 0.734536], [0.987387, 0.984288, 0.742002], [0.987053, 0.991438, 0.749504]] _inferno_data = [[0.001462, 0.000466, 0.013866], [0.002267, 0.001270, 0.018570], [0.003299, 0.002249, 0.024239], [0.004547, 0.003392, 0.030909], [0.006006, 0.004692, 0.038558], [0.007676, 0.006136, 0.046836], [0.009561, 0.007713, 0.055143], [0.011663, 0.009417, 0.063460], [0.013995, 0.011225, 0.071862], [0.016561, 0.013136, 0.080282], [0.019373, 0.015133, 0.088767], [0.022447, 0.017199, 0.097327], [0.025793, 0.019331, 0.105930], [0.029432, 0.021503, 0.114621], [0.033385, 0.023702, 0.123397], [0.037668, 0.025921, 0.132232], [0.042253, 0.028139, 0.141141], [0.046915, 0.030324, 0.150164], [0.051644, 0.032474, 0.159254], [0.056449, 0.034569, 0.168414], [0.061340, 0.036590, 0.177642], [0.066331, 0.038504, 0.186962], [0.071429, 0.040294, 0.196354], [0.076637, 0.041905, 0.205799], [0.081962, 0.043328, 0.215289], [0.087411, 0.044556, 0.224813], [0.092990, 0.045583, 0.234358], [0.098702, 0.046402, 0.243904], [0.104551, 0.047008, 0.253430], [0.110536, 0.047399, 0.262912], [0.116656, 0.047574, 0.272321], [0.122908, 0.047536, 0.281624], [0.129285, 0.047293, 0.290788], [0.135778, 0.046856, 0.299776], [0.142378, 0.046242, 0.308553], [0.149073, 0.045468, 0.317085], [0.155850, 0.044559, 0.325338], [0.162689, 0.043554, 0.333277], [0.169575, 0.042489, 0.340874], [0.176493, 0.041402, 0.348111], [0.183429, 0.040329, 0.354971], [0.190367, 0.039309, 0.361447], [0.197297, 0.038400, 0.367535], [0.204209, 0.037632, 0.373238], [0.211095, 0.037030, 0.378563], [0.217949, 0.036615, 0.383522], [0.224763, 0.036405, 0.388129], [0.231538, 0.036405, 0.392400], [0.238273, 0.036621, 0.396353], [0.244967, 0.037055, 0.400007], [0.251620, 0.037705, 0.403378], [0.258234, 0.038571, 0.406485], [0.264810, 0.039647, 0.409345], [0.271347, 0.040922, 0.411976], [0.277850, 0.042353, 0.414392], [0.284321, 0.043933, 0.416608], [0.290763, 0.045644, 0.418637], [0.297178, 0.047470, 0.420491], [0.303568, 0.049396, 0.422182], [0.309935, 0.051407, 0.423721], [0.316282, 0.053490, 0.425116], [0.322610, 0.055634, 0.426377], [0.328921, 0.057827, 0.427511], [0.335217, 0.060060, 0.428524], [0.341500, 0.062325, 0.429425], [0.347771, 0.064616, 0.430217], [0.354032, 0.066925, 0.430906], [0.360284, 0.069247, 0.431497], [0.366529, 0.071579, 0.431994], [0.372768, 0.073915, 0.432400], [0.379001, 0.076253, 0.432719], [0.385228, 0.078591, 0.432955], [0.391453, 0.080927, 0.433109], [0.397674, 0.083257, 0.433183], [0.403894, 0.085580, 0.433179], [0.410113, 0.087896, 0.433098], [0.416331, 0.090203, 0.432943], [0.422549, 0.092501, 0.432714], [0.428768, 0.094790, 0.432412], [0.434987, 0.097069, 0.432039], [0.441207, 0.099338, 0.431594], [0.447428, 0.101597, 0.431080], [0.453651, 0.103848, 0.430498], [0.459875, 0.106089, 0.429846], [0.466100, 0.108322, 0.429125], [0.472328, 0.110547, 0.428334], [0.478558, 0.112764, 0.427475], [0.484789, 0.114974, 0.426548], [0.491022, 0.117179, 0.425552], [0.497257, 0.119379, 0.424488], [0.503493, 0.121575, 0.423356], [0.509730, 0.123769, 0.422156], [0.515967, 0.125960, 0.420887], [0.522206, 0.128150, 0.419549], [0.528444, 0.130341, 0.418142], [0.534683, 0.132534, 0.416667], [0.540920, 0.134729, 0.415123], [0.547157, 0.136929, 0.413511], [0.553392, 0.139134, 0.411829], [0.559624, 0.141346, 0.410078], [0.565854, 0.143567, 0.408258], [0.572081, 0.145797, 0.406369], [0.578304, 0.148039, 0.404411], [0.584521, 0.150294, 0.402385], [0.590734, 0.152563, 0.400290], [0.596940, 0.154848, 0.398125], [0.603139, 0.157151, 0.395891], [0.609330, 0.159474, 0.393589], [0.615513, 0.161817, 0.391219], [0.621685, 0.164184, 0.388781], [0.627847, 0.166575, 0.386276], [0.633998, 0.168992, 0.383704], [0.640135, 0.171438, 0.381065], [0.646260, 0.173914, 0.378359], [0.652369, 0.176421, 0.375586], [0.658463, 0.178962, 0.372748], [0.664540, 0.181539, 0.369846], [0.670599, 0.184153, 0.366879], [0.676638, 0.186807, 0.363849], [0.682656, 0.189501, 0.360757], [0.688653, 0.192239, 0.357603], [0.694627, 0.195021, 0.354388], [0.700576, 0.197851, 0.351113], [0.706500, 0.200728, 0.347777], [0.712396, 0.203656, 0.344383], [0.718264, 0.206636, 0.340931], [0.724103, 0.209670, 0.337424], [0.729909, 0.212759, 0.333861], [0.735683, 0.215906, 0.330245], [0.741423, 0.219112, 0.326576], [0.747127, 0.222378, 0.322856], [0.752794, 0.225706, 0.319085], [0.758422, 0.229097, 0.315266], [0.764010, 0.232554, 0.311399], [0.769556, 0.236077, 0.307485], [0.775059, 0.239667, 0.303526], [0.780517, 0.243327, 0.299523], [0.785929, 0.247056, 0.295477], [0.791293, 0.250856, 0.291390], [0.796607, 0.254728, 0.287264], [0.801871, 0.258674, 0.283099], [0.807082, 0.262692, 0.278898], [0.812239, 0.266786, 0.274661], [0.817341, 0.270954, 0.270390], [0.822386, 0.275197, 0.266085], [0.827372, 0.279517, 0.261750], [0.832299, 0.283913, 0.257383], [0.837165, 0.288385, 0.252988], [0.841969, 0.292933, 0.248564], [0.846709, 0.297559, 0.244113], [0.851384, 0.302260, 0.239636], [0.855992, 0.307038, 0.235133], [0.860533, 0.311892, 0.230606], [0.865006, 0.316822, 0.226055], [0.869409, 0.321827, 0.221482], [0.873741, 0.326906, 0.216886], [0.878001, 0.332060, 0.212268], [0.882188, 0.337287, 0.207628], [0.886302, 0.342586, 0.202968], [0.890341, 0.347957, 0.198286], [0.894305, 0.353399, 0.193584], [0.898192, 0.358911, 0.188860], [0.902003, 0.364492, 0.184116], [0.905735, 0.370140, 0.179350], [0.909390, 0.375856, 0.174563], [0.912966, 0.381636, 0.169755], [0.916462, 0.387481, 0.164924], [0.919879, 0.393389, 0.160070], [0.923215, 0.399359, 0.155193], [0.926470, 0.405389, 0.150292], [0.929644, 0.411479, 0.145367], [0.932737, 0.417627, 0.140417], [0.935747, 0.423831, 0.135440], [0.938675, 0.430091, 0.130438], [0.941521, 0.436405, 0.125409], [0.944285, 0.442772, 0.120354], [0.946965, 0.449191, 0.115272], [0.949562, 0.455660, 0.110164], [0.952075, 0.462178, 0.105031], [0.954506, 0.468744, 0.099874], [0.956852, 0.475356, 0.094695], [0.959114, 0.482014, 0.089499], [0.961293, 0.488716, 0.084289], [0.963387, 0.495462, 0.079073], [0.965397, 0.502249, 0.073859], [0.967322, 0.509078, 0.068659], [0.969163, 0.515946, 0.063488], [0.970919, 0.522853, 0.058367], [0.972590, 0.529798, 0.053324], [0.974176, 0.536780, 0.048392], [0.975677, 0.543798, 0.043618], [0.977092, 0.550850, 0.039050], [0.978422, 0.557937, 0.034931], [0.979666, 0.565057, 0.031409], [0.980824, 0.572209, 0.028508], [0.981895, 0.579392, 0.026250], [0.982881, 0.586606, 0.024661], [0.983779, 0.593849, 0.023770], [0.984591, 0.601122, 0.023606], [0.985315, 0.608422, 0.024202], [0.985952, 0.615750, 0.025592], [0.986502, 0.623105, 0.027814], [0.986964, 0.630485, 0.030908], [0.987337, 0.637890, 0.034916], [0.987622, 0.645320, 0.039886], [0.987819, 0.652773, 0.045581], [0.987926, 0.660250, 0.051750], [0.987945, 0.667748, 0.058329], [0.987874, 0.675267, 0.065257], [0.987714, 0.682807, 0.072489], [0.987464, 0.690366, 0.079990], [0.987124, 0.697944, 0.087731], [0.986694, 0.705540, 0.095694], [0.986175, 0.713153, 0.103863], [0.985566, 0.720782, 0.112229], [0.984865, 0.728427, 0.120785], [0.984075, 0.736087, 0.129527], [0.983196, 0.743758, 0.138453], [0.982228, 0.751442, 0.147565], [0.981173, 0.759135, 0.156863], [0.980032, 0.766837, 0.166353], [0.978806, 0.774545, 0.176037], [0.977497, 0.782258, 0.185923], [0.976108, 0.789974, 0.196018], [0.974638, 0.797692, 0.206332], [0.973088, 0.805409, 0.216877], [0.971468, 0.813122, 0.227658], [0.969783, 0.820825, 0.238686], [0.968041, 0.828515, 0.249972], [0.966243, 0.836191, 0.261534], [0.964394, 0.843848, 0.273391], [0.962517, 0.851476, 0.285546], [0.960626, 0.859069, 0.298010], [0.958720, 0.866624, 0.310820], [0.956834, 0.874129, 0.323974], [0.954997, 0.881569, 0.337475], [0.953215, 0.888942, 0.351369], [0.951546, 0.896226, 0.365627], [0.950018, 0.903409, 0.380271], [0.948683, 0.910473, 0.395289], [0.947594, 0.917399, 0.410665], [0.946809, 0.924168, 0.426373], [0.946392, 0.930761, 0.442367], [0.946403, 0.937159, 0.458592], [0.946903, 0.943348, 0.474970], [0.947937, 0.949318, 0.491426], [0.949545, 0.955063, 0.507860], [0.951740, 0.960587, 0.524203], [0.954529, 0.965896, 0.540361], [0.957896, 0.971003, 0.556275], [0.961812, 0.975924, 0.571925], [0.966249, 0.980678, 0.587206], [0.971162, 0.985282, 0.602154], [0.976511, 0.989753, 0.616760], [0.982257, 0.994109, 0.631017], [0.988362, 0.998364, 0.644924]] _plasma_data = [[0.050383, 0.029803, 0.527975], [0.063536, 0.028426, 0.533124], [0.075353, 0.027206, 0.538007], [0.086222, 0.026125, 0.542658], [0.096379, 0.025165, 0.547103], [0.105980, 0.024309, 0.551368], [0.115124, 0.023556, 0.555468], [0.123903, 0.022878, 0.559423], [0.132381, 0.022258, 0.563250], [0.140603, 0.021687, 0.566959], [0.148607, 0.021154, 0.570562], [0.156421, 0.020651, 0.574065], [0.164070, 0.020171, 0.577478], [0.171574, 0.019706, 0.580806], [0.178950, 0.019252, 0.584054], [0.186213, 0.018803, 0.587228], [0.193374, 0.018354, 0.590330], [0.200445, 0.017902, 0.593364], [0.207435, 0.017442, 0.596333], [0.214350, 0.016973, 0.599239], [0.221197, 0.016497, 0.602083], [0.227983, 0.016007, 0.604867], [0.234715, 0.015502, 0.607592], [0.241396, 0.014979, 0.610259], [0.248032, 0.014439, 0.612868], [0.254627, 0.013882, 0.615419], [0.261183, 0.013308, 0.617911], [0.267703, 0.012716, 0.620346], [0.274191, 0.012109, 0.622722], [0.280648, 0.011488, 0.625038], [0.287076, 0.010855, 0.627295], [0.293478, 0.010213, 0.629490], [0.299855, 0.009561, 0.631624], [0.306210, 0.008902, 0.633694], [0.312543, 0.008239, 0.635700], [0.318856, 0.007576, 0.637640], [0.325150, 0.006915, 0.639512], [0.331426, 0.006261, 0.641316], [0.337683, 0.005618, 0.643049], [0.343925, 0.004991, 0.644710], [0.350150, 0.004382, 0.646298], [0.356359, 0.003798, 0.647810], [0.362553, 0.003243, 0.649245], [0.368733, 0.002724, 0.650601], [0.374897, 0.002245, 0.651876], [0.381047, 0.001814, 0.653068], [0.387183, 0.001434, 0.654177], [0.393304, 0.001114, 0.655199], [0.399411, 0.000859, 0.656133], [0.405503, 0.000678, 0.656977], [0.411580, 0.000577, 0.657730], [0.417642, 0.000564, 0.658390], [0.423689, 0.000646, 0.658956], [0.429719, 0.000831, 0.659425], [0.435734, 0.001127, 0.659797], [0.441732, 0.001540, 0.660069], [0.447714, 0.002080, 0.660240], [0.453677, 0.002755, 0.660310], [0.459623, 0.003574, 0.660277], [0.465550, 0.004545, 0.660139], [0.471457, 0.005678, 0.659897], [0.477344, 0.006980, 0.659549], [0.483210, 0.008460, 0.659095], [0.489055, 0.010127, 0.658534], [0.494877, 0.011990, 0.657865], [0.500678, 0.014055, 0.657088], [0.506454, 0.016333, 0.656202], [0.512206, 0.018833, 0.655209], [0.517933, 0.021563, 0.654109], [0.523633, 0.024532, 0.652901], [0.529306, 0.027747, 0.651586], [0.534952, 0.031217, 0.650165], [0.540570, 0.034950, 0.648640], [0.546157, 0.038954, 0.647010], [0.551715, 0.043136, 0.645277], [0.557243, 0.047331, 0.643443], [0.562738, 0.051545, 0.641509], [0.568201, 0.055778, 0.639477], [0.573632, 0.060028, 0.637349], [0.579029, 0.064296, 0.635126], [0.584391, 0.068579, 0.632812], [0.589719, 0.072878, 0.630408], [0.595011, 0.077190, 0.627917], [0.600266, 0.081516, 0.625342], [0.605485, 0.085854, 0.622686], [0.610667, 0.090204, 0.619951], [0.615812, 0.094564, 0.617140], [0.620919, 0.098934, 0.614257], [0.625987, 0.103312, 0.611305], [0.631017, 0.107699, 0.608287], [0.636008, 0.112092, 0.605205], [0.640959, 0.116492, 0.602065], [0.645872, 0.120898, 0.598867], [0.650746, 0.125309, 0.595617], [0.655580, 0.129725, 0.592317], [0.660374, 0.134144, 0.588971], [0.665129, 0.138566, 0.585582], [0.669845, 0.142992, 0.582154], [0.674522, 0.147419, 0.578688], [0.679160, 0.151848, 0.575189], [0.683758, 0.156278, 0.571660], [0.688318, 0.160709, 0.568103], [0.692840, 0.165141, 0.564522], [0.697324, 0.169573, 0.560919], [0.701769, 0.174005, 0.557296], [0.706178, 0.178437, 0.553657], [0.710549, 0.182868, 0.550004], [0.714883, 0.187299, 0.546338], [0.719181, 0.191729, 0.542663], [0.723444, 0.196158, 0.538981], [0.727670, 0.200586, 0.535293], [0.731862, 0.205013, 0.531601], [0.736019, 0.209439, 0.527908], [0.740143, 0.213864, 0.524216], [0.744232, 0.218288, 0.520524], [0.748289, 0.222711, 0.516834], [0.752312, 0.227133, 0.513149], [0.756304, 0.231555, 0.509468], [0.760264, 0.235976, 0.505794], [0.764193, 0.240396, 0.502126], [0.768090, 0.244817, 0.498465], [0.771958, 0.249237, 0.494813], [0.775796, 0.253658, 0.491171], [0.779604, 0.258078, 0.487539], [0.783383, 0.262500, 0.483918], [0.787133, 0.266922, 0.480307], [0.790855, 0.271345, 0.476706], [0.794549, 0.275770, 0.473117], [0.798216, 0.280197, 0.469538], [0.801855, 0.284626, 0.465971], [0.805467, 0.289057, 0.462415], [0.809052, 0.293491, 0.458870], [0.812612, 0.297928, 0.455338], [0.816144, 0.302368, 0.451816], [0.819651, 0.306812, 0.448306], [0.823132, 0.311261, 0.444806], [0.826588, 0.315714, 0.441316], [0.830018, 0.320172, 0.437836], [0.833422, 0.324635, 0.434366], [0.836801, 0.329105, 0.430905], [0.840155, 0.333580, 0.427455], [0.843484, 0.338062, 0.424013], [0.846788, 0.342551, 0.420579], [0.850066, 0.347048, 0.417153], [0.853319, 0.351553, 0.413734], [0.856547, 0.356066, 0.410322], [0.859750, 0.360588, 0.406917], [0.862927, 0.365119, 0.403519], [0.866078, 0.369660, 0.400126], [0.869203, 0.374212, 0.396738], [0.872303, 0.378774, 0.393355], [0.875376, 0.383347, 0.389976], [0.878423, 0.387932, 0.386600], [0.881443, 0.392529, 0.383229], [0.884436, 0.397139, 0.379860], [0.887402, 0.401762, 0.376494], [0.890340, 0.406398, 0.373130], [0.893250, 0.411048, 0.369768], [0.896131, 0.415712, 0.366407], [0.898984, 0.420392, 0.363047], [0.901807, 0.425087, 0.359688], [0.904601, 0.429797, 0.356329], [0.907365, 0.434524, 0.352970], [0.910098, 0.439268, 0.349610], [0.912800, 0.444029, 0.346251], [0.915471, 0.448807, 0.342890], [0.918109, 0.453603, 0.339529], [0.920714, 0.458417, 0.336166], [0.923287, 0.463251, 0.332801], [0.925825, 0.468103, 0.329435], [0.928329, 0.472975, 0.326067], [0.930798, 0.477867, 0.322697], [0.933232, 0.482780, 0.319325], [0.935630, 0.487712, 0.315952], [0.937990, 0.492667, 0.312575], [0.940313, 0.497642, 0.309197], [0.942598, 0.502639, 0.305816], [0.944844, 0.507658, 0.302433], [0.947051, 0.512699, 0.299049], [0.949217, 0.517763, 0.295662], [0.951344, 0.522850, 0.292275], [0.953428, 0.527960, 0.288883], [0.955470, 0.533093, 0.285490], [0.957469, 0.538250, 0.282096], [0.959424, 0.543431, 0.278701], [0.961336, 0.548636, 0.275305], [0.963203, 0.553865, 0.271909], [0.965024, 0.559118, 0.268513], [0.966798, 0.564396, 0.265118], [0.968526, 0.569700, 0.261721], [0.970205, 0.575028, 0.258325], [0.971835, 0.580382, 0.254931], [0.973416, 0.585761, 0.251540], [0.974947, 0.591165, 0.248151], [0.976428, 0.596595, 0.244767], [0.977856, 0.602051, 0.241387], [0.979233, 0.607532, 0.238013], [0.980556, 0.613039, 0.234646], [0.981826, 0.618572, 0.231287], [0.983041, 0.624131, 0.227937], [0.984199, 0.629718, 0.224595], [0.985301, 0.635330, 0.221265], [0.986345, 0.640969, 0.217948], [0.987332, 0.646633, 0.214648], [0.988260, 0.652325, 0.211364], [0.989128, 0.658043, 0.208100], [0.989935, 0.663787, 0.204859], [0.990681, 0.669558, 0.201642], [0.991365, 0.675355, 0.198453], [0.991985, 0.681179, 0.195295], [0.992541, 0.687030, 0.192170], [0.993032, 0.692907, 0.189084], [0.993456, 0.698810, 0.186041], [0.993814, 0.704741, 0.183043], [0.994103, 0.710698, 0.180097], [0.994324, 0.716681, 0.177208], [0.994474, 0.722691, 0.174381], [0.994553, 0.728728, 0.171622], [0.994561, 0.734791, 0.168938], [0.994495, 0.740880, 0.166335], [0.994355, 0.746995, 0.163821], [0.994141, 0.753137, 0.161404], [0.993851, 0.759304, 0.159092], [0.993482, 0.765499, 0.156891], [0.993033, 0.771720, 0.154808], [0.992505, 0.777967, 0.152855], [0.991897, 0.784239, 0.151042], [0.991209, 0.790537, 0.149377], [0.990439, 0.796859, 0.147870], [0.989587, 0.803205, 0.146529], [0.988648, 0.809579, 0.145357], [0.987621, 0.815978, 0.144363], [0.986509, 0.822401, 0.143557], [0.985314, 0.828846, 0.142945], [0.984031, 0.835315, 0.142528], [0.982653, 0.841812, 0.142303], [0.981190, 0.848329, 0.142279], [0.979644, 0.854866, 0.142453], [0.977995, 0.861432, 0.142808], [0.976265, 0.868016, 0.143351], [0.974443, 0.874622, 0.144061], [0.972530, 0.881250, 0.144923], [0.970533, 0.887896, 0.145919], [0.968443, 0.894564, 0.147014], [0.966271, 0.901249, 0.148180], [0.964021, 0.907950, 0.149370], [0.961681, 0.914672, 0.150520], [0.959276, 0.921407, 0.151566], [0.956808, 0.928152, 0.152409], [0.954287, 0.934908, 0.152921], [0.951726, 0.941671, 0.152925], [0.949151, 0.948435, 0.152178], [0.946602, 0.955190, 0.150328], [0.944152, 0.961916, 0.146861], [0.941896, 0.968590, 0.140956], [0.940015, 0.975158, 0.131326]] _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] cmaps = {} for (name, data) in (('magma', _magma_data), ('inferno', _inferno_data), ('plasma', _plasma_data), ('viridis', _viridis_data)): cmaps[name] = numpy.zeros((256, 4), dtype=numpy.uint8) cmaps[name][:,:3] = (numpy.array(data, dtype=numpy.float32) * 255).astype(numpy.uint8) cmaps[name][:,3] = 255 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/Plot.py0000644000000000000000000015747614741736366016702 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module can be used for plugin testing purposes as well as for doing the bookkeeping of actual plot windows. Functions to be implemented by an actual plotter can be found in the abstract class PlotBackend. """ import math import sys import numpy from . import PlotBase from . import PlotBackend from . import Colors import logging import traceback _logger = logging.getLogger(__name__) DEBUG = 0 if DEBUG: PlotBase.DEBUG = True _logger.setLevel(logging.DEBUG) _COLORDICT = Colors.COLORDICT _COLORLIST = [_COLORDICT['black'], _COLORDICT['blue'], _COLORDICT['red'], _COLORDICT['green'], _COLORDICT['pink'], _COLORDICT['yellow'], _COLORDICT['brown'], _COLORDICT['cyan'], _COLORDICT['magenta'], _COLORDICT['orange'], _COLORDICT['violet'], #_COLORDICT['bluegreen'], _COLORDICT['grey'], _COLORDICT['darkBlue'], _COLORDICT['darkRed'], _COLORDICT['darkGreen'], _COLORDICT['darkCyan'], _COLORDICT['darkMagenta'], _COLORDICT['darkYellow'], _COLORDICT['darkBrown']] # #Matplotlib symbols: #"." point #"," pixel #"o" circle #"v" triangle_down #"^" triangle_up #"<" triangle_left #">" triangle_right #"1" tri_down #"2" tri_up #"3" tri_left #"4" tri_right #"8" octagon #"s" square #"p" pentagon #"*" star #"h" hexagon1 #"H" hexagon2 #"+" plus #"x" x #"D" diamond #"d" thin_diamond #"|" vline #"_" hline #"None" nothing #None nothing #" " nothing #"" nothing # DEFAULT_BACKEND = "matplotlib" class Plot(PlotBase.PlotBase): PLUGINS_DIR = None # give the possibility to set the default backend for all instances # via a class attribute. defaultBackend = DEFAULT_BACKEND colorList = _COLORLIST colorDict = _COLORDICT def __init__(self, parent=None, backend=None, callback=None): self._parent = parent if backend is None: backend = Plot.defaultBackend self._default = True else: self._default = False if hasattr(backend, "__call__"): # to be called self._plot = backend(parent) elif isinstance(backend, PlotBackend.PlotBackend): self._plot = backend elif hasattr(backend, "lower"): lowerCaseString = backend.lower() if lowerCaseString in ["matplotlib", "mpl"]: from .backends.MatplotlibBackend import MatplotlibBackend as be elif lowerCaseString in ["gl", "opengl"]: # from .backends.OpenGLBackend import OpenGLBackend as be from .backends.SilxBackend import SilxBackend as be elif lowerCaseString in ["glut"]: from .backends.GLUTOpenGLBackend import GLUTOpenGLBackend as be elif lowerCaseString in ["osmesa", "mesa"]: from .backends.OSMesaGLBackend import OSMesaGLBackend as be elif lowerCaseString in ["silx", "silx-mpl", "silxmpl", "silx-gl", "silxgl"]: from .backends.SilxBackend import SilxBackend as be else: raise ValueError("Backend not understood %s" % backend) if lowerCaseString in ["silx-gl", "silxgl"]: self._plot = be(parent, backend="gl") elif lowerCaseString in ["silx-mpl", "silxmpl"]: self._plot = be(parent, backend="mpl") else: self._plot = be(parent) super(Plot, self).__init__() widget = self._plot.getWidgetHandle() if widget is None: self.widget_ = self._plot else: self.widget_ = widget self.setCallback(callback) self.setLimits = self._plot.setLimits # curve handling self._curveList = [] self._curveDict = {} self._activeCurve = None self._hiddenCurves = [] #image handling self._imageList = [] self._imageDict = {} self._activeImage = None # marker handling self._markerList = [] self._markerDict = {} # item handling self._itemList = [] self._itemDict = {} # line types self._styleList = ['-', '--', '-.', ':'] self._nColors = len(self.colorList) self._nStyles = len(self._styleList) self._colorIndex = 0 self._styleIndex = 0 self._activeCurveColor = "#000000" # default properties self._logY = False self._logX = False self.setDefaultPlotPoints(False) self.setDefaultPlotLines(True) # zoom handling (should we take care of it?) self.enableZoom = self.setZoomModeEnabled # next line was giving troubles with silx backend(s) issue #1026 if backend in ["matplotlib", "mpl"]: self.setZoomModeEnabled(True) self._defaultDataMargins = (0., 0., 0., 0.) def enableActiveCurveHandling(self, flag=True): activeCurve = None if not flag: if self.isActiveCurveHandlingEnabled(): activeCurve = self.getActiveCurve() self._activeCurveHandling = False self._activeCurve = None else: self._activeCurveHandling = True self._plot.enableActiveCurveHandling(self._activeCurveHandling) if activeCurve not in [None, []]: self.addCurve(activeCurve[0], activeCurve[1], legend=activeCurve[2], info=activeCurve[3]) def isZoomModeEnabled(self): return self._plot.isZoomModeEnabled() def isDrawModeEnabled(self): return self._plot.isDrawModeEnabled() def getWidgetHandle(self): return self.widget_ def setCallback(self, callbackFunction): if callbackFunction is None: self._plot.setCallback(self.graphCallback) else: self._plot.setCallback(callbackFunction) def graphCallback(self, ddict=None): """ This callback is foing to receive all the events from the plot. Those events will consist on a dictionary and among the dictionary keys the key 'event' is mandatory to describe the type of event. This default implementation only handles setting the active curve. """ if ddict is None: ddict = {} if DEBUG: print("Received dict keys = ", ddict.keys()) print(ddict) if ddict['event'] in ["legendClicked", "curveClicked"]: if ddict['button'] == "left": self.setActiveCurve(ddict['label']) def setDefaultPlotPoints(self, flag): if flag: self._plotPoints = True else: self._plotPoints = False for key in self._curveList: if 'plot_symbol' in self._curveDict[key][3]: del self._curveDict[key][3]['plot_symbol'] if len(self._curveList): self._update() def setDefaultPlotLines(self, flag): if flag: self._plotLines = True else: self._plotLines = False if len(self._curveList): self._update() def _getColorAndStyle(self): self._lastColorIndex = self._colorIndex self._lastStyleIndex = self._styleIndex if self._colorIndex >= self._nColors: self._colorIndex = 0 self._styleIndex += 1 if self._styleIndex >= self._nStyles: self._styleIndex = 0 color = self.colorList[self._colorIndex] style = self._styleList[self._styleIndex] if color == self._activeCurveColor: self._colorIndex += 1 if self._colorIndex >= self._nColors: self._colorIndex = 0 self._styleIndex += 1 if self._styleIndex >= self._nStyles: self._styleIndex = 0 color = self.colorList[self._colorIndex] style = self._styleList[self._styleIndex] self._colorIndex += 1 return color, style def setZoomModeEnabled(self, flag=True, color="black"): """ Zoom and drawing are not compatible and cannot be enabled simultanelously :param flag: If True, the user can zoom. :type flag: boolean, default True :param color: The color to use to draw the selection area. Default 'black" :param color: The color to use to draw the selection area :type color: string ("#RRGGBB") or 4 column unsigned byte array or one of the predefined color names defined in Colors.py """ self._plot.setZoomModeEnabled(flag=flag, color=color) def setDrawModeEnabled(self, flag=True, shape="polygon", label=None, color=None, **kw): """ Zoom and drawing are not compatible and cannot be enabled simultanelously :param flag: Enable drawing mode disabling zoom and picking mode :type flag: boolean, default True :param shape: Type of item to be drawn (line, hline, vline, rectangle...) :type shape: string (default polygon) :param label: Associated text (for identifying the signals) :type label: string, default None :param color: The color to use to draw the selection area :type color: string ("#RRGGBB") or 4 column unsigned byte array or one of the predefined color names defined in Colors.py """ self._plot.setDrawModeEnabled(flag=flag, shape=shape, label=label, color=color, **kw) def addItem(self, xdata, ydata, legend=None, info=None, replot=True, replace=False, shape="polygon", **kw): #expected to receive the same parameters as the signal if legend is None: key = "Unnamed Item 1.1" else: key = str(legend) if info is None: info = {} item = self._plot.addItem(xdata, ydata, legend=legend, info=info, shape=shape, **kw) info['plot_handle'] = item parameters = kw label = kw.get('label', legend) parameters['shape'] = shape parameters['label'] = label if legend in self._itemList: idx = self._itemList.index(legend) del self._itemList[idx] self._itemList.append(legend) self._itemDict[legend] = { 'x':xdata, 'y':ydata, 'legend':legend, 'info':info, 'parameters':parameters} return legend def removeItem(self, legend, replot=True): if legend is None: return if legend in self._itemList: idx = self._itemList.index(legend) del self._itemList[idx] if legend in self._itemDict: handle = self._itemDict[legend]['info'].get('plot_handle', None) del self._itemDict[legend] if handle is not None: self._plot.removeItem(handle, replot=replot) def getDrawMode(self): """ Return a dictionary (or None) with the parameters passed when setting the draw mode. :key shape: The shape being drawn :key label: Associated text (or None) and any other info """ return self._plot.getDrawMode() def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, z=None, selectable=None, **kw): # Convert everything to arrays (not forcing type) in order to avoid # problems at unexpected places: missing min or max attributes, problem # when using numpy.nonzero on lists, ... received_symbol = symbol received_linestyle = linestyle x = numpy.asarray(x) y = numpy.asarray(y) if "line_style" in kw: print("DEPRECATION WARNING: line_style deprecated, use linestyle") if legend is None: key = "Unnamed curve 1.1" else: key = str(legend) if info is None: info = {} if key in self._curveDict: # prevent curves from changing attributes when updated oldInfo = self._curveDict[key][3] for savedKey in ["xlabel", "ylabel", "plot_symbol", "plot_color", "plot_linestyle", "plot_fill", "plot_yaxis"]: info[savedKey] = oldInfo[savedKey] if xlabel is None: xlabel = info.get('xlabel', 'X') if ylabel is None: ylabel = info.get('ylabel', 'Y') info['xlabel'] = str(xlabel) info['ylabel'] = str(ylabel) if xerror is None: xerror = info.get("sigmax", xerror) info['sigmax'] = xerror if yerror is None: yerror = info.get("sigmay", yerror) info['sigmay'] = yerror if replace: self._curveList = [] self._curveDict = {} self._colorIndex = 0 self._styleIndex = 0 self._plot.clearCurves() if key in self._curveList: idx = self._curveList.index(key) self._curveList[idx] = key handle = self._curveDict[key][3].get('plot_handle', None) if handle is not None: # this can give errors if it is not present in the plot self._plot.removeCurve(key, replot=False) if received_symbol is None: symbol = self._curveDict[key][3].get('plot_symbol', symbol) if color is None: color = self._curveDict[key][3].get('plot_color', color) if received_linestyle is None: linestyle = self._curveDict[key][3].get( \ 'plot_linestyle', linestyle) else: self._curveList.append(key) #print("TODO: Here we can add properties to the info dictionary") #print("For instance, color, symbol, style and width if not present") #print("They could come in **kw") #print("The actual plotting stuff should only take care of handling") #print("logarithmic filtering if needed") # deal with the fill fill = info.get("plot_fill", False) fill = kw.get("fill", fill) info["plot_fill"] = fill if yaxis is None: yaxis = info.get("plot_yaxis", "left") info["plot_yaxis"] = yaxis # deal with the symbol if received_symbol is None: symbol = info.get("plot_symbol", symbol) if self._plotPoints and (received_symbol is None): if symbol in [None, "", " "]: symbol = 'o' elif symbol == "": #symbol = None pass info["plot_symbol"] = symbol if color is None: color = info.get("plot_color", color) if received_linestyle is None: linestyle = info.get("plot_linestyle", linestyle) if self._plotLines and (received_linestyle is None): if (color is None) and (linestyle is None): color, linestyle = self._getColorAndStyle() elif linestyle in [None, " ", ""]: linestyle = '-' elif received_linestyle is None: linestyle = ' ' elif linestyle is None: linestyle = ' ' if (color is None) and (linestyle is None): color, linestyle = self._getColorAndStyle() elif linestyle is None: dummy, linestyle = self._getColorAndStyle() elif color is None: color, dummy = self._getColorAndStyle() info["plot_color"] = color info["plot_linestyle"] = linestyle if self.isXAxisLogarithmic() or self.isYAxisLogarithmic(): if hasattr(color, "size"): xplot, yplot, colorplot = self.logFilterData(x, y, color=color) else: xplot, yplot, colorplot = self.logFilterData(x, y, color=None) colorplot = color else: xplot, yplot = x, y colorplot = color if z is None: info["plot_z"] = info.get("plot_z", 1) else: info["plot_z"] = z if selectable is None: selectable = info.get("plot_selectable", True) info["plot_selectable"] = selectable if len(xplot): curveHandle = self._plot.addCurve(xplot, yplot, key, info, replot=False, replace=replace, color=colorplot, symbol=info["plot_symbol"], linestyle=info["plot_linestyle"], xlabel=info["xlabel"], ylabel=info["ylabel"], yaxis=yaxis, xerror=xerror, yerror=yerror, z=info["plot_z"], selectable=info["plot_selectable"], **kw) info['plot_handle'] = curveHandle else: info['plot_handle'] = key self._curveDict[key] = [x, y, key, info] if len(self._curveList) == 1: if self.isActiveCurveHandlingEnabled(): self._plot.setGraphXLabel(info["xlabel"]) self._plot.setGraphYLabel(info["ylabel"]) self.setActiveCurve(key) if self.isCurveHidden(key): self._plot.removeCurve(key, replot=False) if replot: # We ask for a zoom reset in order to handle the plot scaling # if the user does not want that, autoscale of the different # axes has to be set to off. self.resetZoom() #self.replot() return key def addImage(self, data, legend=None, info=None, replace=True, replot=True, xScale=None, yScale=None, z=None, selectable=False, draggable=False, colormap=None, pixmap=None, **kw): """ :param data: (nrows, ncolumns) data or (nrows, ncolumns, RGBA) ubyte array :type data: numpy.ndarray :param legend: The legend to be associated to the curve :type legend: string or None :param info: Dictionary of information associated to the image :type info: dict or None :param replace: Flag to indicate if already existing images are to be deleted :type replace: boolean default True :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True :param xScale: Two floats defining the x scale :type xScale: list or numpy.ndarray :param yScale: Two floats defining the y scale :type yScale: list or numpy.ndarray :param z: level at which the image is to be located (to allow overlays). :type z: A number bigger than or equal to zero (default) :param selectable: Flag to indicate if the image can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the image can be moved :type draggable: boolean, default False :param colormap: Dictionary describing the colormap to use (or None) :type colormap: Dictionary or None (default). Ignored if data is RGB(A) :param pixmap: Pixmap representation of the data (if any) :type pixmap: (nrows, ncolumns, RGBA) ubyte array or None (default) :returns: The legend/handle used by the backend to univocally access it. """ if legend is None: key = "Unnamed Image 1.1" else: key = str(legend) if info is None: info = {} xlabel = info.get('xlabel', 'Column') ylabel = info.get('ylabel', 'Row') if 'xlabel' in kw: info['xlabel'] = kw['xlabel'] if 'ylabel' in kw: info['ylabel'] = kw['ylabel'] info['xlabel'] = str(xlabel) info['ylabel'] = str(ylabel) if xScale is None: xScale = info.get("plot_xScale", None) if yScale is None: yScale = info.get("plot_yScale", None) if z is None: z = info.get("plot_z", 0) if replace: self._imageList = [] self._imageDict = {} if pixmap is not None: dataToSend = pixmap else: dataToSend = data if data is not None: imageHandle = self._plot.addImage(dataToSend, legend=key, info=info, replot=False, replace=replace, xScale=xScale, yScale=yScale, z=z, selectable=selectable, draggable=draggable, colormap=colormap, **kw) info['plot_handle'] = imageHandle else: info['plot_handle'] = key info["plot_xScale"] = xScale info["plot_yScale"] = yScale info["plot_z"] = z info["plot_selectable"] = selectable info["plot_draggable"] = draggable info["plot_colormap"] = colormap self._imageDict[key] = [data, key, info, pixmap] if len(self._imageDict) == 1: self.setActiveImage(key) if replot: # We ask for a zoom reset in order to handle the plot scaling # if the user does not want that, autoscale of the different # axes has to be set to off. self.resetZoom() #self.replot() return key def removeCurve(self, legend, replot=True): """ Remove the curve associated to the supplied legend from the graph. The graph will be updated if replot is true. :param legend: The legend associated to the curve to be deleted :type legend: string or None :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ if legend is None: return if legend in self._curveList: idx = self._curveList.index(legend) del self._curveList[idx] if legend in self._curveDict: handle = self._curveDict[legend][3].get('plot_handle', None) del self._curveDict[legend] if handle is not None: self._plot.removeCurve(handle, replot=replot) if not len(self._curveList): self._colorIndex = 0 self._styleIndex = 0 def removeImage(self, legend, replot=True): """ Remove the image associated to the supplied legend from the graph. The graph will be updated if replot is true. :param legend: The legend associated to the image to be deleted :type legend: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ if legend is None: return if legend in self._imageList: idx = self._imageList.index(legend) del self._imageList[idx] if legend in self._imageDict: handle = self._imageDict[legend][2].get('plot_handle', None) del self._imageDict[legend] if handle is not None: self._plot.removeImage(handle, replot=replot) return def getActiveCurve(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the active curve or list [x, y, legend, info] :rtype: string or list Function to access the graph currently active curve. It returns None in case of not having an active curve. Default output has the form: xvalues, yvalues, legend, dict where dict is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. If just_legend is True: The legend of the active curve (or None) is returned. """ if not self.isActiveCurveHandlingEnabled(): return None if self._activeCurve not in self._curveDict: self._activeCurve = None if just_legend: return self._activeCurve if self._activeCurve is None: return None else: return self._curveDict[self._activeCurve] * 1 def getActiveImage(self, just_legend=False): """ Function to access the plot currently active image. It returns None in case of not having an active image. Default output has the form: data, legend, dict, pixmap where dict is a dictionary containing image info. For the time being, only the plot labels associated to the image are warranted to be present under the keys xlabel, ylabel. If just_legend is True: The legend of the active imagee (or None) is returned. :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the active image or list [data, legend, info, pixmap] :rtype: string or list """ if self._activeImage not in self._imageDict: self._activeImage = None if just_legend: return self._activeImage if self._activeImage is None: return None else: return self._imageDict[self._activeImage] * 1 def getAllCurves(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the curves or list [[x, y, legend, info], ...] :rtype: list of strings or list of curves It returns an empty list in case of not having any curve. If just_legend is False: It returns a list of the form: [[xvalues0, yvalues0, legend0, dict0], [xvalues1, yvalues1, legend1, dict1], [...], [xvaluesn, yvaluesn, legendn, dictn]] or just an empty list. If just_legend is True: It returns a list of the form: [legend0, legend1, ..., legendn] or just an empty list. """ output = [] keys = list(self._curveDict.keys()) for key in self._curveList: if key in keys: if self.isCurveHidden(key): continue if just_legend: output.append(key) else: output.append(self._curveDict[key]) return output def getCurve(self, legend): """ :param legend: legend associated to the curve :type legend: boolean :return: list [x, y, legend, info] :rtype: list Function to access the graph specified curve. It returns None in case of not having the curve. Default output has the form: xvalues, yvalues, legend, info where info is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. """ if legend in self._curveDict: return self._curveDict[legend] * 1 else: return None def getImage(self, legend): """ :param legend: legend associated to the curve :type legend: boolean :return: list [image, legend, info, pixmap] :rtype: list Function to access the graph currently active curve. It returns None in case of not having an active curve. Default output has the form: image, legend, info, pixmap where info is a dictionary containing image information. """ if legend in self._imageDict: return self._imageDict[legend] * 1 else: return None def _getAllLimits(self): """ Internal method to retrieve the limits based on the curves, not on the plot. It might be of use to reset the zoom when one of the X or Y axes is not set to autoscale. """ keys = list(self._curveDict.keys()) if not len(keys): return 0.0, 0.0, 100., 100. xmin = None ymin = None xmax = None ymax = None for key in keys: x = self._curveDict[key][0] y = self._curveDict[key][1] if xmin is None: xmin = x.min() else: xmin = min(xmin, x.min()) if xmax is None: xmax = x.max() else: xmax = max(xmax, x.max()) if ymin is None: ymin = y.min() else: ymin = min(ymin, y.min()) if ymax is None: ymax = y.max() else: ymax = max(ymax, y.max()) return xmin, ymin, xmax, ymax def saveGraph(self, filename, fileFormat='svg', dpi=None, **kw): """ :param fileName: Destination :type fileName: String or StringIO or BytesIO :param fileFormat: String specifying the format :type fileFormat: String (default 'svg') """ return self._plot.saveGraph(filename, fileFormat=fileFormat, dpi=dpi, **kw) def setActiveCurve(self, legend, replot=True): """ Funtion to request the plot window to set the curve with the specified legend as the active curve. :param legend: The legend associated to the curve :type legend: string """ if not self.isActiveCurveHandlingEnabled(): return oldActiveCurve = self.getActiveCurve(just_legend=True) key = str(legend) if key in self._curveDict.keys(): self._activeCurve = key if self._activeCurve == oldActiveCurve: # the labels may need to be updated!!!! return self._activeCurve self._plot.setActiveCurve(self._activeCurve, replot=replot) return self._activeCurve def setActiveCurveColor(self, color="#000000"): if color is None: color = "black" if color in self.colorDict: color = self.colorDict[color] self._activeCurveColor = color self._plot.setActiveCurveColor(color) def setActiveImage(self, legend, replot=True): """ Funtion to request the plot window to set the image with the specified legend as the active image. :param legend: The legend associated to the image :type legend: string """ oldActiveImage = self.getActiveImage(just_legend=True) key = str(legend) if key in self._imageDict.keys(): self._activeImage = key self._plot.setActiveImage(self._activeImage, replot=replot) return self._activeImage def invertYAxis(self, flag=True): self._plot.invertYAxis(flag) def isYAxisInverted(self): return self._plot.isYAxisInverted() def isYAxisLogarithmic(self): if self._logY: return True else: return False def isXAxisLogarithmic(self): if self._logX: return True else: return False def setYAxisLogarithmic(self, flag): if flag: if self._logY: if DEBUG: print("y axis was already in log mode") else: self._logY = True if DEBUG: print("y axis was in linear mode") self._plot.clearCurves() # matplotlib 1.5 crashes if the log set is made before # the call to self._update() # TODO: Decide what is better for other backends if hasattr(self._plot, "matplotlibVersion"): if self._plot.matplotlibVersion < "1.5": self._plot.setYAxisLogarithmic(self._logY) self._update() else: self._update() self._plot.setYAxisLogarithmic(self._logY) else: self._plot.setYAxisLogarithmic(self._logY) self._update() else: if self._logY: if DEBUG: print("y axis was in log mode") self._logY = False self._plot.clearCurves() self._plot.setYAxisLogarithmic(self._logY) self._update() else: if DEBUG: print("y axis was already linear mode") return def setXAxisLogarithmic(self, flag): if flag: if self._logX: if DEBUG: print("x axis was already in log mode") else: self._logX = True if DEBUG: print("x axis was in linear mode") self._plot.clearCurves() # matplotlib 1.5 crashes if the log set is made before # the call to self._update() # TODO: Decide what is better for other backends if hasattr(self._plot, "matplotlibVersion"): if self._plot.matplotlibVersion < "1.5": self._plot.setXAxisLogarithmic(self._logX) self._update() else: self._update() self._plot.setXAxisLogarithmic(self._logX) else: self._plot.setXAxisLogarithmic(self._logX) self._update() else: if self._logX: if DEBUG: print("x axis was in log mode") self._logX = False self._plot.setXAxisLogarithmic(self._logX) self._update() else: if DEBUG: print("x axis was already linear mode") return def logFilterData(self, x, y, xLog=None, yLog=None, color=None): if xLog is None: xLog = self._logX if yLog is None: yLog = self._logY if xLog and yLog: idx = numpy.nonzero((x > 0) & (y > 0))[0] x = numpy.take(x, idx) y = numpy.take(y, idx) elif yLog: idx = numpy.nonzero(y > 0)[0] x = numpy.take(x, idx) y = numpy.take(y, idx) elif xLog: idx = numpy.nonzero(x > 0)[0] x = numpy.take(x, idx) y = numpy.take(y, idx) if isinstance(color, numpy.ndarray): colors = numpy.zeros((x.size, 4), color.dtype) colors[:, 0] = color[idx, 0] colors[:, 1] = color[idx, 1] colors[:, 2] = color[idx, 2] colors[:, 3] = color[idx, 3] else: colors = color return x, y, colors def _update(self): if DEBUG: print("_update called") curveList = self.getAllCurves() activeCurve = self.getActiveCurve(just_legend=True) #self._plot.clearCurves() for curve in curveList: x, y, legend, info = curve[0:4] self.addCurve(x, y, legend, info=info, replace=False, replot=False) if len(curveList): if activeCurve not in curveList: activeCurve = curveList[0][2] self.setActiveCurve(activeCurve) self.replot() def replot(self): if DEBUG: print("replot called") if self.isXAxisLogarithmic() or self.isYAxisLogarithmic(): for image in self._imageDict.keys(): self._plot.removeImage(image[1]) if hasattr(self._plot, 'replot_'): self._plot.replot_() else: self._plot.replot() def clear(self, replot=True): self._curveList = [] self._curveDict = {} self._colorIndex = 0 self._styleIndex = 0 self._markerDict = {} self._imageList = [] self._imageDict = {} self._markerList = [] self._plot.clear() if replot: self.replot() def clearCurves(self, replot=True): self._curveList = [] self._curveDict = {} self._colorIndex = 0 self._styleIndex = 0 self._plot.clearCurves() if replot: self.replot() def clearImages(self, replot=True): """ Clear all images from the plot. Not the curves or markers. """ self._imageList = [] self._imageDict = {} self._plot.clearImages() if replot: self.replot() return def getDataMargins(self): """Get the default data margin ratios, see :meth:`setDataMargins`. :return: The margin ratios for each side (xMin, xMax, yMin, yMax). :rtype: A 4-tuple of floats. """ return self._defaultDataMargins def setDataMargins(self, xMinMargin=0., xMaxMargin=0., yMinMargin=0., yMaxMargin=0.): """Set the default data margins to use in :meth:`resetZoom`. Set the default ratios of margins (as floats) to add around the data inside the plot area for each side. """ self._defaultDataMargins = (xMinMargin, xMaxMargin, yMinMargin, yMaxMargin) def resetZoom(self, dataMargins=None): if dataMargins is None: dataMargins = self._defaultDataMargins self._plot.resetZoom(dataMargins) def setXAxisAutoScale(self, flag=True): self._plot.setXAxisAutoScale(flag) def setYAxisAutoScale(self, flag=True): self._plot.setYAxisAutoScale(flag) def isXAxisAutoScale(self): return self._plot.isXAxisAutoScale() def isYAxisAutoScale(self): return self._plot.isYAxisAutoScale() def getGraphTitle(self): return self._plot.getGraphTitle() def getGraphXLabel(self): return self._plot.getGraphXLabel() def getGraphYLabel(self): return self._plot.getGraphYLabel() def setGraphYLimits(self, ymin, ymax, replot=False): self._plot.setGraphYLimits(ymin, ymax) if replot: self.replot() def setGraphXLimits(self, xmin, xmax, replot=False): self._plot.setGraphXLimits(xmin, xmax) if replot: self.replot() def getGraphXLimits(self): """ Get the graph X (bottom) limits. :return: Minimum and maximum values of the X axis """ if hasattr(self._plot, "getGraphXLimits"): xmin, xmax = self._plot.getGraphXLimits() else: xmin, ymin, xmax, ymax = self._getAllLimits() return xmin, xmax def getGraphYLimits(self): """ Get the graph Y (left) limits. :return: Minimum and maximum values of the X axis """ if hasattr(self._plot, "getGraphYLimits"): ymin, ymax = self._plot.getGraphYLimits() else: xmin, ymin, xmax, ymax = self._getAllLimits() return ymin, ymax # Title and labels def setGraphTitle(self, title=""): self._plot.setGraphTitle(title) def setGraphXLabel(self, label="X"): self._plot.setGraphXLabel(label) def setGraphYLabel(self, label="Y"): self._plot.setGraphYLabel(label) # Marker handling def insertXMarker(self, x, legend=None, text=None, color=None, selectable=False, draggable=False, **kw): """ kw ->symbol """ if DEBUG: print("Received legend = %s" % legend) if text is None: text = kw.get("label", None) if text is not None: print("insertXMarker deprecation warning: Use 'text' instead of 'label'") if color is None: color = self.colorDict['black'] elif color in self.colorDict: color = self.colorDict[color] if legend is None: i = 0 legend = "Unnamed X Marker %d" % i while legend in self._markerList: i += 1 legend = "Unnamed X Marker %d" % i if legend in self._markerList: self.removeMarker(legend) marker = self._plot.insertXMarker(x, legend, text=text, color=color, selectable=selectable, draggable=draggable, **kw) self._markerList.append(legend) self._markerDict[legend] = kw self._markerDict[legend]['marker'] = marker return marker def insertYMarker(self, y, legend=None, text=None, color=None, selectable=False, draggable=False, **kw): """ kw -> color, symbol """ if text is None: text = kw.get("label", None) if text is not None: print("insertYMarker deprecation warning: Use 'text' instead of 'label'") if color is None: color = self.colorDict['black'] elif color in self.colorDict: color = self.colorDict[color] if legend is None: i = 0 legend = "Unnamed Y Marker %d" % i while legend in self._markerList: i += 1 legend = "Unnamed Y Marker %d" % i if legend in self._markerList: self.removeMarker(legend) marker = self._plot.insertYMarker(y, legend=legend, text=text, color=color, selectable=selectable, draggable=draggable, **kw) self._markerList.append(legend) self._markerDict[legend] = kw self._markerDict[legend]['marker'] = marker return marker def insertMarker(self, x, y, legend=None, text=None, color=None, selectable=False, draggable=False, symbol=None, constraint=None, **kw): if text is None: text = kw.get("label", None) if text is not None: print("insertMarker deprecation warning: Use 'text' instead of 'label'") if color is None: color = self.colorDict['black'] elif color in self.colorDict: color = self.colorDict[color] if legend is None: i = 0 legend = "Unnamed Marker %d" % i while legend in self._markerList: i += 1 legend = "Unnamed Marker %d" % i if constraint is not None and not callable(constraint): # Then it must be a string if hasattr(constraint, 'lower'): if constraint.lower().startswith('h'): constraint = lambda xData, yData: (xData, y) elif constraint.lower().startswith('v'): constraint = lambda xData, yData: (x, yData) else: raise ValueError( "Unsupported constraint name: %s" % constraint) else: raise ValueError("Unsupported constraint") if legend in self._markerList: self.removeMarker(legend) marker = self._plot.insertMarker(x, y, legend=legend, text=text, color=color, selectable=selectable, draggable=draggable, symbol=symbol, constraint=constraint, **kw) self._markerList.append(legend) self._markerDict[legend] = kw self._markerDict[legend]['marker'] = marker return marker def keepDataAspectRatio(self, flag=True): """ :param flag: True to respect data aspect ratio :type flag: Boolean, default True """ self._plot.keepDataAspectRatio(flag=flag) def clearMarkers(self): self._markerDict = {} self._markerList = [] self._plot.clearMarkers() self.replot() def removeMarker(self, marker): if marker in self._markerList: idx = self._markerList.index(marker) del self._markerList[idx] try: self._plot.removeMarker(self._markerDict[marker]['marker']) del self._markerDict[marker] except KeyError: if DEBUG: print("Marker was not present %s" %\ self._markerDict[marker]['marker']) def setMarkerFollowMouse(self, marker, boolean): raise NotImplemented("Not necessary?") if marker not in self._markerList: raise ValueError("Marker %s not defined" % marker) pass def enableMarkerMode(self, flag): raise NotImplemented("Not necessary?") pass def isMarkerModeEnabled(self, flag): raise NotImplemented("Not necessary?") pass def showGrid(self, flag=True): if DEBUG: print("Plot showGrid called") self._plot.showGrid(flag) # colormap related functions def getDefaultColormap(self): """ Return the colormap that will be applied by the backend to an image if no colormap is applied to it. A colormap is a dictionary with the keys: :type name: string :type normalization: string (linear, log) :type autoscale: boolean :type vmin: float, minimum value :type vmax: float, maximum value :type colors: integer (typically 256) """ return self._plot.getDefaultColormap() def setDefaultColormap(self, colormap=None): """ Sets the colormap that will be applied by the backend to an image if no colormap is applied to it. A colormap is a dictionary with the keys: :type name: string :type normalization: string (linear, log) :type autoscale: boolean :type vmin: float, minimum value :type vmax: float, maximum value :type colors: integer (typically 256) If None is passed, the backend will reset to its default colormap. """ self._plot.setDefaultColormap(colormap) def getSupportedColormaps(self): """ Get a list of strings with the colormap names supported by the backend. The list should at least contain and start by: ['gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'] """ return self._plot.getSupportedColormaps() def hideCurve(self, legend, flag=True, replot=True): if flag: self._plot.removeCurve(legend, replot=replot) if legend not in self._hiddenCurves: self._hiddenCurves.append(legend) else: while legend in self._hiddenCurves: idx = self._hiddenCurves.index(legend) del self._hiddenCurves[idx] if legend in self._curveDict: x, y, legend, info = self._curveDict[legend][0:4] self.addCurve(x, y, legend, info, replot=replot) def isCurveHidden(self, legend): return legend in self._hiddenCurves def dataToPixel(self, x=None, y=None, axis="left"): """ Convert a position in data space to a position in pixels in the widget. :param float x: The X coordinate in data space. If None (default) the middle position of the displayed data is used. :param float y: The Y coordinate in data space. If None (default) the middle position of the displayed data is used. :param str axis: The Y axis to use for the conversion ('left' or 'right'). :returns: The corresponding position in pixels or None if the data position is not in the displayed area. :rtype: A tuple of 2 floats: (xPixel, yPixel) or None. """ return self._plot.dataToPixel(x, y, axis=axis) def pixelToData(self, x=None, y=None, axis="left"): """ Convert a position in pixels in the widget to a position in the data space. :param float x: The X coordinate in pixels. If None (default) the center of the widget is used. :param float y: The Y coordinate in pixels. If None (default) the center of the widget is used. :param str axis: The Y axis to use for the conversion ('left' or 'right'). :returns: The corresponding position in data space or None if the pixel position is not in the plot area. :rtype: A tuple of 2 floats: (xData, yData) or None. """ return self._plot.pixelToData(x, y, axis=axis) def setGraphCursor(self, flag=None, color=None, linewidth=None, linestyle=None): """ Toggle the display of a crosshair cursor and set its attributes. :param bool flag: Toggle the display of a crosshair cursor. The crosshair cursor is hidden by default. :param color: The color to use for the crosshair. :type color: A string (either a predefined color name in Colors.py or "#RRGGBB")) or a 4 columns unsigned byte array. Default is black. :param int linewidth: The width of the lines of the crosshair. Default is 1. :param linestyle: Type of line:: - ' ' no line - '-' solid line - '--' dashed line - '-.' dash-dot line - ':' dotted line :type linestyle: None or one of the predefined styles. """ self._plot.setGraphCursor(flag=flag, color=color, linewidth=linewidth, linestyle=linestyle) def getGraphCursor(self): """ Returns the current state of the crosshair cursor. :return: None if the crosshair cursor is not active, else a tuple (color, linewidth, linestyle). """ return self._plot.getGraphCursor() # Pan support def pan(self, direction, factor=0.1): """Pan the graph in the given direction by the given factor. Warning: Pan of right Y axis not implemented! :param str direction: One of 'up', 'down', 'left', 'right'. :param float factor: Proportion of the range used to pan the graph. Must be strictly positive. """ assert direction in ('up', 'down', 'left', 'right') assert factor > 0. if direction in ('left', 'right'): xFactor = factor if direction == 'right' else - factor xMin, xMax = self.getGraphXLimits() xMin, xMax = _applyPan(xMin, xMax, xFactor, self.isXAxisLogarithmic()) self.setGraphXLimits(xMin, xMax) else: # direction in ('up', 'down') sign = -1. if self.isYAxisInverted() else 1. yFactor = sign * (factor if direction == 'up' else - factor) yMin, yMax = self.getGraphYLimits() yIsLog = self.isYAxisLogarithmic() yMin, yMax = _applyPan(yMin, yMax, yFactor, yIsLog) self.setGraphYLimits(yMin, yMax) # TODO handle second Y axis self.replot() def _applyPan(min_, max_, panFactor, isLog10): """Returns a new range with applied panning. Moves the range according to panFactor. If isLog10 is True, converts to log10 before moving. :param float min_: Min value of the data range to pan. :param float max_: Max value of the data range to pan. Must be >= min_. :param float panFactor: Signed proportion of the range to use for pan. :param bool isLog10: True if log10 scale, False if linear scale. :return: New min and max value with pan applied. :rtype: 2-tuple of float. """ if isLog10 and min_ > 0.: # Negative range and log scale can happen with matplotlib logMin, logMax = math.log10(min_), math.log10(max_) logOffset = panFactor * (logMax - logMin) newMin = pow(10., logMin + logOffset) newMax = pow(10., logMax + logOffset) # Takes care of out-of-range values if newMin > 0. and newMax < float('inf'): min_, max_ = newMin, newMax else: offset = panFactor * (max_ - min_) newMin, newMax = min_ + offset, max_ + offset # Takes care of out-of-range values if newMin > - float('inf') and newMax < float('inf'): min_, max_ = newMin, newMax return min_, max_ def main(): x = numpy.arange(100.) y = x * x plot = Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x + 100, -x * x, "To set Active") print("Active curve = ", plot.getActiveCurve()) print("X Limits = ", plot.getGraphXLimits()) print("Y Limits = ", plot.getGraphYLimits()) print("All curves = ", plot.getAllCurves()) plot.removeCurve("dummy") plot.setActiveCurve("To set Active") print("All curves = ", plot.getAllCurves()) plot.insertXMarker(50.) if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/PlotBackend.py0000644000000000000000000010543114741736366020132 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2018 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module can be used for testing purposes as well as an abstract class for implementing Plot backends. TODO: Still to be worked out: handling of the right vertical axis. PlotBackend Functions (Functions marked by (*) only needed for handling images) - addCurve - addImage (*) - addItem (*) - clear - clearCurves - clearImages (*) - clearMarkers - enableActiveCurveHandling - getDefaultColormap (*) - getDrawMode - getGraphXLabel - getGraphXLimits - getGraphYLabel - getGraphYLimits - getGraphTitle - getSupportedColormaps (*) - getWidgetHandle - insertMarker - insertXMarker - insertYMarker - invertYAxis - isDrawModeEnabled - isKeepDataAspectRatio - isXAxisAutoScale - isYAxisAutoScale - keepDataAspectRatio(*) - removeCurve - removeImage (*) - removeMarker - resetZoom - replot - replot_ - saveGraph - setActiveCurve - setActiveImage (*) - setCallback - setDefaultColormap (*) - setDrawModeEnabled - setGraphTitle - setGraphXLabel - setGraphXLimits - setGraphYLabel - setGraphYLimits - setLimits - setXAxisAutoScale - setXAxisLogarithmic - setYAxisAutoScale - setYAxisLogarithmic - setZoomModeEnabled - showGrid PlotBackend "signals/events" All the events pass via the callback_function supplied. They consist on a dictionary in which the 'event' key is mandatory. The following keys will be present or not depending on the type of event, but if present, their meaning should be: KEY - Meaning - button - "left", "right", "middle" - label - The label or legend associated to the item associated to the event - type - The type of item associated to event ('curve', 'marker', ...) - x - Bottom axis value in graph coordenates - y - Vertical axis value in graph coordenates - xpixel - x position in pixel coordenates - ypixel - y position in pixel coordenates - xdata - Horizontal graph coordinate associated to the item - ydata - Vertical graph coordinate associated to the item drawingFinished It looks as it should export xdata, ydata and type. The information will depend on the type of item being drawn: - line - two points in graph and pixel coordinates - hline - one point in graph and pixel coordinates - vline - one point in graph and pixel coordinates - rectangle - four points in graph and pixel coordinates, x, y, width, height - polygone - n points in graph and pixel coordinates - ellipse - four points in graph and pixel coordinates? - circle - four points in graph and pixel coordinates, center and radius - parameters - Parameters passed to setDrawMode when enabling it hover Emitted the mouse pass over an item with hover notification (markers) imageClicked, curveClicked usefull for pop-up menus associated to the click using the xpixel, ypixel or to set a curve active using the label and type keys markerMoving Additional keys: - draggable - True if it is a movable marker (it should be True) - selectable - True if the marker can be selected markerMoved Additional keys: - draggable - True if it is a movable marker (it should be True) - selectable - True if the marker can be selected - xdata, ydata - Final position of the marker markerClicked Additional keys: - draggable - True if it is a movable marker - selectable - True if the marker can be selected (it should be True) mouseMoved Export the mouse position in pixel and graph coordenates mouseClicked Emitted on mouse release when not zooming, nor drawing, nor picking mouseDoubleClicked Emitted on mouse release when not zooming, nor drawing, nor picking limitsChanged Emitted when limits of visible plot area are changed. This can results from user interaction or API calls. Keys: - source: id of the widget that emitted this event. - xdata: Range of X in graph coordinates: (xMin, xMax). - ydata: Range of Y in graph coordinates: (yMin, yMax). - y2data: Range of right axis in graph coordinates (y2Min, y2Max) or None. """ DEBUG = 0 from . import Colors class PlotBackend(object): COLORDICT = Colors.COLORDICT """ Dictionary of predefined colors """ def __init__(self, parent=None): self._callback = self._dummyCallback self._parent = parent self._zoomEnabled = True self._drawModeEnabled = False self._xAutoScale = True self._yAutoScale = True self.setGraphXLimits(0., 100.) self.setGraphYLimits(0., 100.) self._activeCurveHandling = False self.setActiveCurveColor("#000000") def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linewidth=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, z=1, selectable=True, **kw): """ Add the 1D curve given by x an y to the graph. :param x: The data corresponding to the x axis :type x: list or numpy.ndarray :param y: The data corresponding to the y axis :type y: list or numpy.ndarray :param legend: The legend to be associated to the curve :type legend: string or None :param info: Dictionary of information associated to the curve :type info: dict or None :param replace: Flag to indicate if already existing curves are to be deleted :type replace: boolean default False :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True :param color: color(s) to be used :type color: string ("#RRGGBB") or (npoints, 4) unsigned byte array or one of the predefined color names defined in Colors.py :param symbol: Symbol to be drawn at each (x, y) position:: - 'o' circle - '.' point - ',' pixel - '+' cross - 'x' x-cross - 'd' diamond - 's' square :type symbol: None or one of the predefined symbols :param linewidth: The width of the curve in pixels (Default: 1). :type linewidth: None or float. :param linestyle: Type of line:: - ' ' no line - '-' solid line - '--' dashed line - '-.' dash-dot line - ':' dotted line :type linestyle: None or one of the predefined styles. :param xlabel: Label associated to the X axis when the curve is active :type xlabel: string :param ylabel: Label associated to the Y axis when the curve is active :type ylabel: string :param yaxis: Anything different from "right" is equivalent to "left" :type yaxis: string or None :param xerror: Values with the uncertainties on the x values :type xlabel: array :param yerror: Values with the uncertainties on the y values :type ylabel: array :param z: level at which the curve is to be located (to allow overlays). :type z: A number bigger than or equal to zero (default: one) :param selectable: indicate if the curve can be picked. :type selectable: boolean default: True :returns: The legend/handle used by the backend to univocally access it. """ print("PlotBackend addCurve not implemented") return legend def addImage(self, data, legend=None, info=None, replace=True, replot=True, xScale=None, yScale=None, z=0, selectable=False, draggable=False, colormap=None, **kw): """ :param data: (nrows, ncolumns) data or (nrows, ncolumns, RGBA) ubyte array :type data: numpy.ndarray :param legend: The legend to be associated to the curve :type legend: string or None :param info: Dictionary of information associated to the image :type info: dict or None :param replace: Flag to indicate if already existing images are to be deleted :type replace: boolean default True :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True :param xScale: Two floats defining the x scale :type xScale: list or numpy.ndarray :param yScale: Two floats defining the y scale :type yScale: list or numpy.ndarray :param z: level at which the image is to be located (to allow overlays). :type z: A number bigger than or equal to zero (default) :param selectable: Flag to indicate if the image can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the image can be moved :type draggable: boolean, default False :param colormap: Dictionary describing the colormap to use (or None) :type colormap: Dictionary or None (default). Ignored if data is RGB(A) :returns: The legend/handle used by the backend to univocally access it. """ print("PlotBackend addImage not implemented") return legend def addItem(self, xList, yList, legend=None, info=None, replace=False, replot=True, shape="polygon", fill=True, **kw): """ :param shape: Type of item to be drawn :type shape: string, default polygon """ print("PlotBackend addItem not implemented") return legend def clear(self): """ Clear all curvers and other items from the plot """ print("PlotBackend clear not implemented") return def clearCurves(self): """ Clear all curves from the plot. Not the markers!! """ print("PlotBackend clearCurves not implemented") return def clearImages(self): """ Clear all images from the plot. Not the curves or markers. """ print("PlotBackend clearImages not implemented") return def clearMarkers(self): """ Clear all markers from the plot. Not the curves!! """ print("PlotBackend clearMarkers not implemented") return def _dummyCallback(self, ddict): """ Default callback """ print("PlotBackend default callback called") print(ddict) def dataToPixel(self, x=None, y=None, axis="left"): """ Convert a position in data space to a position in pixels in the widget. :param float x: The X coordinate in data space. If None (default) the middle position of the displayed data is used. :param float y: The Y coordinate in data space. If None (default) the middle position of the displayed data is used. :param str axis: The Y axis to use for the conversion ('left' or 'right'). :returns: The corresponding position in pixels or None if the data position is not in the displayed area. :rtype: A tuple of 2 floats: (xPixel, yPixel) or None. """ assert axis in ("left", "right") print("PlotBackend dataToPixel not implemented") return def enableActiveCurveHandling(self, flag=True): if flag: self._activeCurveHandling = True else: self._activeCurveHandling = False def getBaseVectors(self): """Returns the coordinate in the orthogonal plot of the X and Y unit vectors of the data. :return: X and Y data unit vectors in orthogonal plot coordinates :rtype: 2-tuple of 2-tuple of float: (xx, xy), (yx, yy) """ print("PlotBackend getBaseVectors not implemented") def getGraphCursor(self): """ Returns the current state of the crosshair cursor. :return: None if the crosshair cursor is not active, else a tuple (color, linewidth, linestyle). """ print("PlotBackend getGraphCursor not implemented") return None def getDefaultColormap(self): """ Return the colormap that will be applied by the backend to an image if no colormap is applied to it. A colormap is a dictionary with the keys: - name: string - normalization: string (linear, log) - autoscale: boolean - vmin: float, minimum value - vmax: float, maximum value - colors: integer (typically 256) """ print("PlotBackend getDefaultColormap called") return {'name': 'gray', 'normalization':'linear', 'autoscale':True, 'vmin':0.0, 'vmax':1.0, 'colors':256} def getDrawMode(self): """ Return a dictionary (or None) with the parameters passed when setting the draw mode. - shape: The shape being drawn - label: Associated text (or None) and any other info passed to setDrawMode """ print("PlotBackend getDrawMode not implemented") return None def getGraphTitle(self): """ Get the graph title. :return: string """ print("PlotBackend getGraphTitle not implemented") return "" def getGraphXLimits(self): """ Get the graph X (bottom) limits. :return: Minimum and maximum values of the X axis """ print("Get the graph X (bottom) limits") return self._xMin, self._xMax def getGraphXLabel(self): """ Get the graph X (bottom) label. :return: string """ print("PlotBackend getGraphXLabel not implemented") return "X" def getGraphYLimits(self, axis="left"): """ Get the graph Y (left) limits. :param axis: The axis for which to get the limits :type axis: str, either "left" (default) or "right" :return: Minimum and maximum values of the Y axis """ print("Get the graph Y (left) limits") assert axis in ("left", "right") if axis == "left": return self._yMin, self._yMax else: return self._yRightMin, self._yRightMax def getGraphYLabel(self): """ Get the graph Y (left) label. :return: string """ print("PlotBackend getGraphYLabel not implemented") return "Y" def getSupportedColormaps(self): """ Get a list of strings with the colormap names supported by the backend. The list should at least contain and start by: ['gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'] """ return ['gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'] def getWidgetHandle(self): """ :return: Backend widget or None if the backend inherits from widget. """ return None def insertMarker(self, x, y, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, symbol=None, constraint=None, **kw): """ :param x: Horizontal position of the marker in graph coordenates :type x: float :param y: Vertical position of the marker in graph coordenates :type y: float :param legend: Legend associated to the marker to identify it :type legend: string :param text: Text associated to the marker :type text: string or None :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :param str symbol: Symbol representing the marker in: - 'o' circle - '.' point - ',' pixel - '+' cross - 'x' x-cross - 'd' diamond - 's' square :param constraint: A function filtering marker displacement by dragging operations or None for no filter. This function is called each time a marker is moved. This parameter is only used if draggable is True. :type constraint: None or a callable that takes the coordinates of the current cursor position in the plot as input and that returns the filtered coordinates. :return: Handle used by the backend to univocally access the marker """ print("PlotBackend insertMarker not implemented") return legend def insertXMarker(self, x, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, **kw): """ :param x: Horizontal position of the marker in graph coordenates :type x: float :param legend: Legend associated to the marker to identify it :type legend: string :param text: Text associated to the marker :type text: string or None :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :return: Handle used by the backend to univocally access the marker """ print("PlotBackend insertXMarker not implemented") return legend def insertYMarker(self, y, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, **kw): """ :param y: Vertical position of the marker in graph coordenates :type y: float :param legend: Legend associated to the marker to identify it :type legend: string :param text: Text associated to the marker :type text: string or None :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :return: Handle used by the backend to univocally access the marker """ print("PlotBackend insertYMarker not implemented") return legend def invertYAxis(self, flag=True): """ :param flag: If True, put the vertical axis origin on plot top left :type flag: boolean """ print("PlotBackend invertYAxis not implemented") def isDefaultBaseVectors(self): """Returns True if axes have the default basis, False otherwise. The default basis is x horizontal, y vertical. """ return True def isDrawModeEnabled(self): """ :return: True if user can draw """ print("PlotBackend isDrawModeEnabled not implemented") return False def isKeepDataAspectRatio(self): """Returns whether the plot is keeping data aspect ratio or not. :return: True if keeping data aspect ratio else False. """ print("PlotBackend isKeepDataAspectRatio not implemented") return False def isXAxisAutoScale(self): """ :return: True if bottom axis is automatically adjusting the scale """ print("PlotBackend isXAxisAutoScale not implemented") return True def isYAxisAutoScale(self): """ :return: True if left axis is automatically adjusting the scale """ print("PlotBackend isYAxisAutoScale not implemented") return True def isYAxisInverted(self): """ :return: True if left axis is inverted """ print("PlotBackend isYAxisInverted not implemented") def isZoomModeEnabled(self): """ :return: True if user can zoom """ print("PlotBackend isZoomModeEnabled not implemented") return True def keepDataAspectRatio(self, flag=True): """ :param flag: True to respect data aspect ratio :type flag: Boolean, default True """ print("PlotBackend keepDataAspectRatio not implemented") def pixelToData(self, x=None, y=None, axis="left"): """ Convert a position in pixels in the widget to a position in the data space. :param float x: The X coordinate in pixels. If None (default) the center of the widget is used. :param float y: The Y coordinate in pixels. If None (default) the center of the widget is used. :param str axis: The Y axis to use for the conversion ('left' or 'right'). :returns: The corresponding position in data space or None if the pixel position is not in the plot area. :rtype: A tuple of 2 floats: (xData, yData) or None. """ assert axis in ("left", "right") print("PlotBackend pixelToData not implemented") return def removeCurve(self, legend, replot=True): """ Remove the curve associated to the supplied legend from the graph. The graph will be updated if replot is true. :param legend: The legend associated to the curve to be deleted :type legend: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBackend removeCurve not implemented") return def removeImage(self, legend, replot=True): """ Remove the image associated to the supplied legend from the graph. The graph will be updated if replot is true. :param legend: The legend associated to the image to be deleted :type legend: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBackend removeImage not implemented") return def removeItem(self, legend, replot=True): print("PlotBackend removeItem not implemented") return def removeMarker(self, label, replot=True): """ Remove the marker associated to the supplied handle from the graph. The graph will be updated if replot is true. :param label: The handle/label associated to the curve to be deleted :type label: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBackend removeMarker not implemented") def resetZoom(self, dataMargins=None): """ Autoscale any axis that is in autoscale mode. Keep current limits on axes not in autoscale mode Extra margins can be added around the data inside the plot area. Margins are given as one ratio of the data range per limit of the data (xMin, xMax, yMin and yMax limits). For log scale, extra margins are applied in log10 of the data. :param dataMargins: Ratios of margins to add around the data inside the plot area for each side (Default: no margins). :type dataMargins: A 4-tuple of float as (xMin, xMax, yMin, yMax). """ print("PlotBackend resetZoom not implemented") def replot(self): """ Update plot. If replot is a reserved word of the used backend, it can be implemented as replot_ """ print("PlotBackend replot not implemented") def saveGraph(self, fileName, fileFormat='svg', dpi=None, **kw): """ :param fileName: Destination :type fileName: String or StringIO or BytesIO :param fileFormat: String specifying the format :type fileFormat: String (default 'svg') """ print("PlotBackend saveGraph not implemented") def setActiveCurve(self, legend, replot=True): """ Make the curve identified by the supplied legend active curve. :param legend: The legend associated to the curve :type legend: string :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBackend setActiveCurve not implemented") return def setActiveCurveColor(self, color="#000000"): self._activeCurveColor = color def setActiveImage(self, legend, replot=True): """ Make the image identified by the supplied legend active. :param legend: The legend associated to the image :type legend: string :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ if DEBUG: print("PlotBackend setActiveImage not implemented") return def setBaseVectors(self, x=(1., 0.), y=(0., 1.)): """Set the data coordinates relative to the orthogonal plot area. Useful for non-orthogonal axes. :param x: (x, y) coords on the X data base vector in orthogonal coords. :type x: 2-tuple of float :param y: (x, y) coords of the Y data base vector in orthogonal coords. :type y: 2-tuple of float """ print("PlotBackend setBaseVectors not implemented") def setCallback(self, callback_function): """ :param callback_function: function accepting a dictionary as input to handle the graph events :type callback_function: callable """ self._callback = callback_function def setGraphCursor(self, flag=None, color=None, linewidth=None, linestyle=None): """ Toggle the display of a crosshair cursor and set its attributes. :param bool flag: Toggle the display of a crosshair cursor. The crosshair cursor is hidden by default. :param color: The color to use for the crosshair. :type color: A string (either a predefined color name in Colors.py or "#RRGGBB")) or a 4 columns unsigned byte array. Default is black. :param int linewidth: The width of the lines of the crosshair. Default is 1. :param linestyle: Type of line:: - ' ' no line - '-' solid line - '--' dashed line - '-.' dash-dot line - ':' dotted line :type linestyle: None or one of the predefined styles. """ print("PlotBackend setGraphCursor not implemented") def setDefaultColormap(self, colormap=None): """ Sets the colormap that will be applied by the backend to an image if no colormap is applied to it. A colormap is a dictionary with the keys: :type name: string :type normalization: string (linear, log) :type autoscale: boolean :type vmin: float, minimum value :type vmax: float, maximum value :type colors: integer (typically 256) If None is passed, the backend will reset to its default colormap. """ print("PlotBackend setDefaultColormap not implemented") return def setDrawModeEnabled(self, flag=True, shape="polygon", label=None, color=None, **kw): """ Zoom and drawing are not compatible and cannot be enabled simultanelously :param flag: Enable drawing mode disabling zoom and picking mode :type flag: boolean, default True :param shape: Type of item to be drawn (line, hline, vline, rectangle...) :type shape: string (default polygon) :param label: Associated text (for identifying the signals) :type label: string, default None :param color: The color to use to draw the selection area :type color: string ("#RRGGBB") or 4 column unsigned byte array or one of the predefined color names defined in Colors.py """ if flag: self._drawModeEnabled = True #cannot draw and zoom simultaneously self.setZoomModeEnabled(False) else: self._drawModeEnabled = False print("PlotBackend setDrawModeEnabled not implemented") def setGraphTitle(self, title=""): """ :param title: Title associated to the plot :type title: string, default is an empty string """ print("PlotBackend setTitle not implemented") def setGraphXLabel(self, label="X"): """ :param label: label associated to the plot bottom axis :type label: string, default is 'X' """ print("PlotBackend setGraphXLabel not implemented") def setGraphXLimits(self, xmin, xmax): """ :param xmin: minimum bottom axis value :type xmin: float :param xmax: maximum bottom axis value :type xmax: float """ self._xMin = xmin self._xMax = xmax print("PlotBackend setGraphXLimits not implemented") def setGraphYLabel(self, label="Y"): """ :param label: label associated to the plot left axis :type label: string, default is 'Y' """ print("PlotBackend setGraphYLabel not implemented") def setGraphYLimits(self, ymin, ymax, axis="left"): """ :param ymin: minimum left axis value :type ymin: float :param ymax: maximum left axis value :type ymax: float :param axis: The axis for which to set the limits :type axis: str, either "left" (default) or "right" """ assert axis in ("left", "right") if axis == "left": self._yMin = ymin self._yMax = ymax else: self._yRightMin = ymin self._yRightMax = ymax print("PlotBackend setGraphYLimits not implemented") def setLimits(self, xmin, xmax, ymin, ymax): """ Convenience method :param xmin: minimum bottom axis value :type xmin: float :param xmax: maximum bottom axis value :type xmax: float :param ymin: minimum left axis value :type ymin: float :param ymax: maximum left axis value :type ymax: float """ self.setGraphXLimits(xmin, xmax) self.setGraphYLimits(ymin, ymax) def setXAxisAutoScale(self, flag=True): """ :param flag: If True, the bottom axis will adjust scale on zomm reset :type flag: boolean, default True """ if flag: self._xAutoScale = True else: self._xAutoScale = False print("PlotBackend setXAxisAutoScale not implemented") def setXAxisLogarithmic(self, flag=True): """ :param flag: If True, the bottom axis will use a log scale :type flag: boolean, default True """ print("PlotBackend setXAxisLogarithmic not implemented") def setYAxisAutoScale(self, flag=True): """ :param flag: If True, the left axis will adjust scale on zomm reset :type flag: boolean, default True """ if flag: self._yAutoScale = True else: self._yAutoScale = False print("PlotBackend setYAxisAutoScale not implemented") def setYAxisLogarithmic(self, flag): """ :param flag: If True, the left axis will use a log scale :type flag: boolean """ print("PlotBackend setYAxisLogarithmic not implemented") def setZoomModeEnabled(self, flag=True, color=None): """ Zoom and drawing cannot be simultaneously enabled. :param flag: If True, the user can zoom. :type flag: boolean, default True :param color: The color to use to draw the selection area. Default 'black" :param color: The (optional) color to use to draw the selection area. :type color: string ("#RRGGBB") or 4 column unsigned byte array or one of the predefined color names defined in Colors.py """ if flag: self._zoomEnabled = True #cannot draw and zoom simultaneously self.setDrawModeEnabled(False) else: self._zoomEnabled = True print("PlotBackend setZoomModeEnabled not implemented") def showGrid(self, flag=True): """ :param flag: If True, the grid will be shown. :type flag: boolean, default True """ print("PlotBackend showGrid not implemented") def main(): import numpy from .Plot1D import Plot1D x = numpy.arange(100.) y = x * x plot = Plot1D() plot.addCurve(x, y, "dummy") plot.addCurve(x + 100, -x * x) print("X Limits = ", plot.getGraphXLimits()) print("Y Limits = ", plot.getGraphYLimits()) print("All curves = ", plot.getAllCurves()) plot.removeCurve("dummy") print("All curves = ", plot.getAllCurves()) if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/PlotBase.py0000644000000000000000000002364514741736366017463 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Any plot window willing to accept plugins should implement the methods defined in this class. That way the plot will respect the Plot backend interface besides additional methods: The plugins will be compatible with any plot window that provides the methods: - getActiveCurve - getActiveImage - getAllCurves - getCurve - getImage - getMonotonicCurves - hideCurve - hideImage - isActiveCurveHandlingEnabled - isCurveHidden - isImageHidden - printGraph - setActiveCurve - showCurve - showImage The simplest way to achieve that is to inherit from Plot """ try: from numpy import argsort, nonzero, take except ImportError: print("WARNING: numpy not present") from . import PlotBackend from . import PluginLoader DEBUG = 0 class PlotBase(PlotBackend.PlotBackend, PluginLoader.PluginLoader): def __init__(self, parent=None): # This serves to define the plugins PluginLoader.PluginLoader.__init__(self) # And this to complete the interface PlotBackend.PlotBackend.__init__(self, parent) self._activeCurveHandling = True def getActiveCurve(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the active curve or list [x, y, legend, info] :rtype: string or list Function to access the graph currently active curve. It returns None in case of not having an active curve. Default output has the form: xvalues, yvalues, legend, dict where dict is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. If just_legend is True: The legend of the active curve (or None) is returned. """ print("PlotBase getActiveCurve not implemented") if just_legend: return None else: return [] def getActiveImage(self, just_legend=False): print("PlotBase getActiveImage not implemented") return None def getAllCurves(self, just_legend=False): """ :param just_legend: Flag to specify the type of output required :type just_legend: boolean :return: legend of the curves or list [[x, y, legend, info], ...] :rtype: list of strings or list of curves It returns an empty list in case of not having any curve. If just_legend is False: It returns a list of the form: [[xvalues0, yvalues0, legend0, dict0], [xvalues1, yvalues1, legend1, dict1], [...], [xvaluesn, yvaluesn, legendn, dictn]] or just an empty list. If just_legend is True: It returns a list of the form: [legend0, legend1, ..., legendn] or just an empty list. """ print("PlotBase getAllCurves not implemented") return [] def getCurve(self, legend): """ :param legend: legend associated to the curve :type legend: boolean :return: list [x, y, legend, info] :rtype: list Function to access the graph specified curve. It returns None in case of not having the curve. Default output has the form: xvalues, yvalues, legend, info where info is a dictionary containing curve info. For the time being, only the plot labels associated to the curve are warranted to be present under the keys xlabel, ylabel. """ print("PlotBase getCurve not implemented") return [] def getImage(self, legend): """ :param legend: legend associated to the curve :type legend: boolean :return: list [image, legend, info, pixmap] :rtype: list Function to access the graph specified image. It returns None in case of not having that image. Default output has the form: image, legend, info, pixmap where info is a dictionary containing image information. """ print("PlotBase getImage not implemented") return [] def getMonotonicCurves(self): """ Convenience method that calls getAllCurves and makes sure that all of the X values are strictly increasing. :return: It returns a list of the form: [[xvalues0, yvalues0, legend0, dict0], [xvalues1, yvalues1, legend1, dict1], [...], [xvaluesn, yvaluesn, legendn, dictn]] """ allCurves = self.getAllCurves() * 1 for i in range(len(allCurves)): curve = allCurves[i] x, y, legend, info = curve[0:4] if self.isCurveHidden(legend): continue # Sort idx = argsort(x, kind='mergesort') xproc = take(x, idx) yproc = take(y, idx) # Ravel, Increase xproc = xproc.ravel() idx = nonzero((xproc[1:] > xproc[:-1]))[0] xproc = take(xproc, idx) yproc = take(yproc, idx) allCurves[i][0:2] = xproc, yproc return allCurves def hideCurve(self, legend, replot=True): """ Remove the curve associated to the legend form the graph. It is still kept in the list of curves. The graph will be updated if replot is true. :param legend: The legend associated to the curve to be hidden :type legend: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBase hideCurve not implemented") return def hideImage(self, legend, replot=True): """ Remove the image associated to the supplied legend from the graph. I is still kept in the list of curves. The graph will be updated if replot is true. :param legend: The legend associated to the image to be hidden :type legend: string or handle :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBase hideImage not implemented") return def isActiveCurveHandlingEnabled(self): if self._activeCurveHandling: return True else: return False def isCurveHidden(self, legend): """ :param legend: The legend associated to the curve :type legend: string or handle :return: True if the associated curve is hidden """ if DEBUG: print("PlotBase isCurveHidden not implemented") return False def isImageHidden(self, legend): """ :param legend: The legend associated to the image :type legend: string or handle :return: True if the associated image is hidden """ if DEBUG: print("PlotBase isImageHidden not implemented") return False def printGraph(self, **kw): print("PlotBase printGraph not implemented") def setActiveCurve(self, legend, replot=True): """ Funtion to request the plot window to set the curve with the specified legend as the active curve. :param legend: The legend associated to the curve :type legend: string :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("setActiveCurve not implemented") return None def showCurve(self, legend, replot=True): """ Show the curve associated to the legend in the graph. :param legend: The legend associated to the curve :type legend: string :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBase showCurve not implemented") return False def showImage(self, legend, replot=True): """ Show the image associated to the legend in the graph. :param legend: The legend associated to the image :type legend: string :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True """ print("PlotBase showImage not implemented") return False ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/PluginLoader.py0000644000000000000000000001716514741736366020337 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Class to handle loading of plugins according to target method. On instantiation, this clase imports all the plugins found in the PLUGINS_DIR directory and stores them into the attributes pluginList and pluginInstanceDict """ import os import sys import glob import logging PLUGINS_DIR = None _logger = logging.getLogger(__name__) class PluginLoader(object): def __init__(self, method=None, directoryList=None): self._pluginDirList = [] self.pluginList = [] self.pluginInstanceDict = {} self.getPlugins(method=method, directoryList=directoryList) def setPluginDirectoryList(self, dirlist): """ :param dirlist: Set directories to search for plugins :type dirlist: list """ for directory in dirlist: if not os.path.exists(directory): raise IOError("Directory:\n%s\ndoes not exist." % directory) self._pluginDirList = dirlist def getPluginDirectoryList(self): """ :return dirlist: List of directories for searching plugins """ return self._pluginDirList def getPlugins(self, method=None, directoryList=None, exceptions=False): """ Import or reloads all the available plugins with the target method :param method: The method to be searched for. :type method: string, default "getPlugin1DInstance" :param directoryList: The list of directories for the search. :type directoryList: list or None (default). :param exceptions: If True, return the list of error messages :type exceptions: boolean (default False) :return: The number of plugins loaded. If exceptions is True, also the text with the error encountered. """ if method is None: method = 'getPlugin1DInstance' targetMethod = method if directoryList in [None, [] ]: directoryList = self._pluginDirList if directoryList in [None, []]: directoryList = [PLUGINS_DIR] _logger.debug("method: %s", targetMethod) _logger.debug("directoryList: %s", directoryList) exceptionMessage = "" self._pluginDirList = directoryList self.pluginList = [] for directory in self._pluginDirList: if directory is None: continue if not os.path.exists(directory): raise IOError("Directory:\n%s\ndoes not exist." % directory) fileList = glob.glob(os.path.join(directory, "*.py")) # prevent unnecessary imports moduleList = [] for fname in fileList: # in Python 3, rb implies bytes and not strings f = open(fname, 'r') lines = f.readlines() f.close() f = None for line in lines: if line.startswith("def"): if line.split(" ")[1].startswith(targetMethod): moduleList.append(fname) break for module in moduleList: try: pluginName = os.path.basename(module)[:-3] _logger.debug("pluginName %s", pluginName) plugin = pluginName if directory not in sys.path: sys.path.insert(0, directory) if pluginName in self.pluginList: idx = self.pluginList.index(pluginName) del self.pluginList[idx] if plugin in self.pluginInstanceDict.keys(): del self.pluginInstanceDict[plugin] if plugin in sys.modules: if hasattr(sys.modules[plugin], targetMethod): if sys.version.startswith('3'): import importlib importlib.reload(sys.modules[plugin]) else: reload(sys.modules[plugin]) else: __import__(plugin) if hasattr(sys.modules[plugin], targetMethod): theCall = getattr(sys.modules[plugin], targetMethod) self.pluginInstanceDict[plugin] = theCall(self) self.pluginList.append(plugin) except Exception: exceptionMessage += \ "Problem importing module %s\n" % plugin exceptionMessage += "%s\n" % sys.exc_info()[0] exceptionMessage += "%s\n" % sys.exc_info()[1] exceptionMessage += "%s\n" % sys.exc_info()[2] if len(exceptionMessage) and _logger.getEffectiveLevel() == logging.DEBUG: raise IOError(exceptionMessage) if exceptions: return len(self.pluginList), exceptionMessage else: return len(self.pluginList) def main(targetMethod, directoryList): loader = PluginLoader() n = loader.getPlugins(targetMethod, directoryList) print("Loaded %d plugins" % n) for m in loader.pluginList: print("Module %s" % m) module = sys.modules[m] if hasattr(module, 'MENU_TEXT'): text = module.MENU_TEXT else: text = os.path.basename(module.__file__) if text.endswith('.pyc'): text = text[:-4] elif text.endswith('.py'): text = text[:-3] print("\tMENU TEXT: %s" % text) methods = loader.pluginInstanceDict[m].getMethods() if not len(methods): continue for method in methods: print("\t\t %s" % method) if __name__ == "__main__": if len(sys.argv) > 2: targetMethod = sys.argv[1] directoryList = sys.argv[2:len(sys.argv)] elif len(sys.argv) > 1: targetMethod = None directoryList = sys.argv[1:len(sys.argv)] else: print("Usage: python PluginLoader.py [targetMethod] directory") main(targetMethod, directoryList) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/__init__.py0000644000000000000000000000426114741736366017502 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This package implements a graphics abstraction. The abstraction itself is defined in :mod:`PyMca5.PyMcaGraph.PlotBackend` while :mod:`PyMca5.PyMcaGraph.PlotBase` implements a plugin interface. The module :mod:`PyMca5.PyMcaGraph.Plot` implements all the previous via composition while adding a bookkeeping system. Actual plotting widgets will inherit PyMca5.PyMcaGraph.Plot You can take a look at :mod:`PyMca5.PyMcaGui.plotting.PlotWidget` for a simple implementation using Qt. That implementation gets further improved adding toolbars and dock widgets in :mod:`PyMca5.PyMcaGui.plotting.PlotWindow` """ ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7517662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/0000755000000000000000000000000014741736404017131 5ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7557662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/0000755000000000000000000000000014741736404021030 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/FontLatin1_12.py0000644000000000000000000007165314741736366023706 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a standalone Latin-1 monospace font as a texture. """ # import ###################################################################### import zlib from .gl import * # noqa from .GLTexture import Texture2D # Monospace Latin-1 font data ################################################# minChar = 0 maxChar = 255 cExtent, rExtent = 1.001 / 16., 1.001 / 12. cWidth, cHeight = 8, 15 bearingY = 11 dataWidth = 128 dataHeight = 180 dataMaxValue = 255 dataPixelSize = 1 dataZip = b'x\x9c\xed\x9c\t\\M[\xdb\xc0\x9fsN\xf3\x9c\x06)\xa5\x12\n)I*JQ\xca\x10\x07!\xb3\x0c\xc9\x9cy\xc8\x90\xb8d\xe8\xa6\x90\xcce\xaa\xc4U\x88\xae\xb1L\x99\x85\xa2\x92\xeaFi \xa7\xcc\\\xf7|\xcfZ{\x9f\xce9:\xe4\xbd\xee\xf7\xbe\xdf`\xfd~\x9d\xb5\x87\xb5\xf7\x7f\xef5<\xc3Z\xcf\x0e\xe0g\xfa\x1f\x92\x82Z\xd1l\x9a\xbe\x8f\x03\xdd\xf0\xd03u"y\xab\x91tW\x93\xc3\x14k\xb6`W_\xbaa1\x9a\xbd\xb0\xe36\xf2\xabtN\x89\xdd\x9f\xfe\xddH\xef\xee\x12;\x7f0\xb7\xcd\xb7\xde6\x8dn\x14i\x85\x92\r\xb5\xb9G|\xd5\x81s\xe8|\x862=|%\xb4\xf7P\xe6\xe2\xf3\xec\x85G\xf94\xdb<\x95\xfc\xca\x07\xc8%\xc8\x05\xc8\x7f\x17^\xe1I\xbb\xaf\xf3M\xef@\xba\r@\xe3\xe2\xf0\xfd\x91\xdd\xc1\xf5WX\xd5\x8f\xbe\xe6\'e\xd1\xc3\xb3|\x9bB.\xcd[\x95Pj\xef\xf8\xfb\xf1\xbd\xe8\x81\x08\xd5\x06\xf8cOH\xee\xb1\xfc\xbd\xe6\xb3\x07\x00\xa8\x94\x0b\xde\x96\xffY>\t&\xed\xb1\x9e\x8cG\xf5\xaf\xf4\xbcd\xc0\xf1\xd4\x038\xb1\x80-\xef\x10\xc1\xe4\xf3\xf6\xb0\x07\xcam\xc9o\x8bm\xc5[-\xe8~\x99\xf6\xb7\xf1\xdc\xdc\xae\x92\xbb\x8f{K\x9d\xdd\xd5\xdf5\x05\xb3\x96\x95\xabf\x91\xdd\xf6K\xbd\xe7\xed\xf7W\x826w\x9e\xd9\x81\x8e\x91D\xc1\xd8`v#c8\xfe\xc8G\xe8&\xe8E\xc8\x7f\x0f\x7f\xc0U\xa9\xdd;.\x12;\xaaZ\x85\xe6\xbf\x04\xab\xe1\x96}\xfc\xdb\x93\xd83\xdd\xb7m\xe8\x16h\x0fp\xcb~\xc0#\xf5\t!\x12E\xcf\x8b\xfa\xe1\xfe\x85L\x1eF~V\tIJ\x91(\x17\x10\x16\xd6B\nx\xbd\xbf\xd4\xee`=\x89\x9d\x98\xfc\xda\xac\xf7\xd9\xfb\xc9\xa6\xf5\xb4\xd5\x98\x0fW\x95\xbb6\xe9\xa6\xad\xea;9\xd8\x1c\xbff\xa8D\xd1]K\xd8\x8d\x8b~\xd2\xef\xf7\xc5\xfb\xfb\x06\x055\x93\xdc\xef\x96\xcb\x91:\xef\xa8#\xb97&B\xa9\x94\x9co\xca\xb5\x9e<*\x99\x1ci\xb3\x03f\xfa\xc3\x95\xbe\xa0t\xef\x91\xa2D\xc99\xfb\xd8\x8dJ\xc9\xde,\xc1_\xed&}|\x01\xed\xc8pj\x9c\xf4a\xb6\xff\xb1i\x8fO\xb7\xc3$\x9f\xfc0\xed\xfe-{z\xe8\xf8\x9e\x1bZ\xd0\xfb\x8f\xf8\xcdw\xaa\xdaH\x94l[\xc4\xa3y\xebb9\xe9\x1b\x86\xa9\xd0\x8c+\x9c\xf5\x05(\x9a\xfc\xda\x95*H\x1f\x96~\x7f;eC3\xba\xa118Dt\xac\x05\x19hr={)Z\xb5\x94,\x9a\xcc\xb4\xe3\x96\xc9 3uxc\xf0\x05\x88v\x83\x83se\x17\xaf\x97\xac\xbfr\xdf\xbad\xff\x85\xfc\xfb"M\xfeE\xd6Q\xceH\xf5\xef\xe4\xffL\xff\xa7\xd3\xd0\x98\x99d \xa8{-\x1cBvmCc\xfa\x93\x8e\xe4\x12\xb6c\xb8&Sb0\xd1GmB0\x11y(?y\xc7ZS\xd4>d\x7f>\xee\xeb\x8c\xdb\xd0\x83\x0c<\xe3\xd5[|\xff\x15.\xcfws(\x0e\xe3\xa9\xaf\x16\x16\x12\x012\xeb\xda\xcd\xdf\xc8\xe1K\xab\x03\xcff`\xbeh\xc9\xb8}9T@YW\xe7\x93\x87(`\xf8\x9c\xb3\xa5\xf3\x83]\x19\xfe\x99sx"{\x8b\xdfMTI\x9a\xe5{\x02\xf3\x82\xfe\x05\xbe\xf3\xb1\xb1ao\xb49EC\xc1\xec3U\'\x0b)\x1f_E\xfb\xbd\r-\xc1-\'\xe6\x01\xf7B0\xe5\xff\xce\\\xd6\xa3L,\xfb.\xa3e\xe2\xf0J\x0e|\xf3\xb0\x1a+9\xc0\xffCZ\xa2\xd6%y\xc7\xba\xcd&\x16\xec\x06\x91%\xb9C\xf5\x85\xd6\x00\xaf\xfb\x8a\xf9\x98\xd4?Y\x91\x8c\xe3\xfe\xc1\x04\xb3\x19\xab\x06Q~v\xc8d]\xccW\x1f\xea5\x95U\x14V5(\xe0\xd4_\xd9s\xc3\xb1\x02Gg\x02X\n\x89\x08s~O\xcd&\xb0x\xcf\xc8Yh\xb5\xf6\xd96\xd0\xb2%\xc9\n\xda>=?\\$(\xf8\xcf\x9a\xb4\xfbK/\xcb\xe1N\x80\x14?\xf2\x10\xf9\xf5\x17|\xf2\xc0\xcc\xe4\x81*\xe5{o\x0b\xcb)\xc7z\xda\x97wj]\x19c\xf0\x84o\'\xbfv\xaf\xaa/\xe0\r\x1b\xbf\xd3\x869B"\x97\xdbgQ;\x00L\xb2\xba\xe1\xaf\xf2\xc8\x0by\xc1\xc6x}\x16I\xa9\xd8\xee\xde\teQTS8U\xda\x91G^i\xf8p\x8c$\x7fT\x1e\x15\xc4\n\x86\xe3\xaaP\xef\x9e\xf0\x05\xca\'\xe9\xc1\x1a\xd4\xf6\x85X%\xf4\x01\x15\xaa\x9c\xf1\xd7\xb0tB\xfb\xc4\x03\xb8\xb1\xa1\xecB\xc6G\xf3zU?\xe3\xd3\xfcz\x8db~\xe3\r\xc9~\x9b\x89\xddF\xe8\x00\xbc\x8f^\x12\xfc>\xc5u79>\x1f\xd4\xff\xca\xca*\xfa\x90\xc5XX\xd1\xf1\xa8T\x92\x00\xdc\xaa\xc8\xde\xa0<\xf2;\xee\x1a\x80\xd9\'\xa2\xe9\xb4;9~V\x84/\x93\xc2\x903\x8f\x96\x99K\xbc\xbf\x9c\xcf\xa1\xa7\xeb\xa9\xa9\x9b\xdc\x07\x7f\xae\xcd\x07\xd77jb~\xf7\x12\xda\xf8\x80\xb6\x1b\xefI\x1f\xe0ZZZ\xce(\xb6\x04\xc0;\xf3\x8aB\x01\xbc\xca\xb8\xb0 \x8b\x94\xf8\x9d\x1ab\x1ee\x1cp\x7fF\xed\x1d\xb9\x08jn\x98\x861j^5\x8cQ\x9b\xd0|\xf5\xb3\xd8\xba\xf6oWqv\x08\xab\xf8\xec\x1b\xe3O\x8f\xf7\'\xdf\x93a\xdc%\xbd\xb0*\x1d-\x99\xca\xc2\xf4\xf4t|\xb0\xe2\xe4\xd8\x92\xcb\xcck\xd3\xfaOI\x8b\xad\xb8\x8f\xaf\xc9;\x93\xb3\xbf\x96Xj\xcd>\x1a\x92\x93\x9cK7\xb6\x96`E\xc2\xb1]E\xe49\xf1N\xc2\xce\xf4\xb2&\xc2\xe1\xa2J\x90\xd5\xff\x01\xee\x8f \xbff~v$\xd3u\xc3\x84\x0f\xde\x85\xe4M\x00\x8c\xfa\x8f0a\xcb\xe9\x11\x7f\xa01\xdf\xdf\x93\xeaw\x85\xee\xc3h\x035v`O\xb7\xe8O\xe5T\xab\x11\xde\x1at_\xd3\x8d\xc9{U\xaa\xd5k\r\xa9D\xdf\xff\xbf/-\xfbW\xa4\xd1\xcf\xf4\xff=\xa9\x84\xb8\x93lZ\xc8\x12/*\x9f\x95\'o\x0f\xc3\xf14yY \x1d<\x1d\x88\xbe\x1d\x8f\xa3\x9a\xe4!8\x12\xb8\xa3\xa2\xd7\xa2\xb8u\x19\x86EC\x1a\x01\x87\x1c\xa6\x96\xe2\xbc\x90\x10\xf4d\x8c\x16\xe3fO\x14\xecC\xdc\xe8\xed\xdb\x86\xb4\x06\x988\x03\xado\xd4\xd2]\x06\xe2\x11\xa7_\xd7\xe0\xf5\xbc%W\xafM!\xc0~\x823\xa4\\\xfe\xfeEIU(|T\xef\xfc6*t\x11@N\xc2\xaf\xf9\x87\xd1\xc0\x0ex\xca\xf0\x1b\x0b\xd7S>\xe7D\xba\xffB\x947\x8bP\xa45\x12\xb6@\xfe\xd6\xbfD\xfc|\xf4\xc8\x1c>\xa0(}\x86\x80#!\x94\xef\xf7v3\xe8\xd6\x16\x01\xd4T+\xc3B\x14\xd8N\xefb\x12\x04\xcd\xe1x\xa8f\xa3\xedx_tc^\x93q\x9c?\x08\xe0\xea\x04\xb4\x072\x19\xb1\x9d3\x0cT\x8a\xc7 \xff\x1aSM\x8d\x85\x8c5\xdd\xef)J1\x051\x1fk\xe8OQU\x1eg\xf8\xee\xe5\x1d@\xcc\xbfp\x97\x1b\x98D\xf8\xf7\xfc)\xff\x00Z\xcd\'W\xf7:\x00*#\xbd\xcfbuV\xb6N\x1f\xc2\xf0\x9b\xa7t\x1a\xc3\x1f\xbb\x8b\xf0\x9f\xe3\x8dg\xdd\xca4\x989\x0b4K\x90\xf7Z \xf8\xcb\x9di\xff\xf9\'\xf0\xfd\x96\x8b\xf9[\xf7\xd6\xaf\xff\rq\xe8\xf2\x10\xbe\x8c\xfa?;\x8f\xb6\xbfqm?I>\xe8+2|\x95\xb2u\xc8\xbf\x8fnsLj\x9c\xab\xd1\xa3\xc0\xc4Rh\xf5N\x19}\xce_\x19~|8\xdasE\xf8\xb2Z\x94\xdf\xa6\xd6\xbd>\xbf}\xb5\xbeL~kT\xd4\x95\xc3\x98\xfe?\xa9\\G\x92\x8f\x9e\x1f\xe5C\xe43\xe4oH\x95S\xbe\x15\xe4\x9b\x00\x86\xf3{L\x80y\xa7I\x99\x02\xe4g\x9d*\xbbi\x8a\xfdq{\xfe\xe6\xb4\xb5\xc8\xbf{[\x80\xa3\x16\x02jQ/\x1f\x11\xf3a\xe9\x1f1\xc7\n\xd4\xea\xf8\xdc\xf4\x9b\xc2\xf4\xdd\xd8V\x85\xdb\xaf\xe7\xaa3|NF\x02\xf2\x8b\xf1\xc2\rR|+!\xf2\xcdJ\xee\xe4gi\xc1\xe9\xc5t\x9cY5\xc7\x1f\x157\x1e8\xb8\xb9h1\x00\xdb\x91>(\x17:vmM\xc5Q\x13\xa2\x97\xd1\xe0\x92w\x13\xb9\xcd\x96C\x89\xa02A\xfbU\xce\r+\x8f\x9c\xef\x88\xcc\x8e#\xa9q\xa7\x8e6:\xe8w\x95\x876\xe4\x84-\xe8\x13\x9bZ\xa3\x13\xca\x1e|8\'b\xe3h\xf7\xed\x89\xfdH!\xec\xfe\x85;_x\xe2?\xd3\xcf\xf4\xefJSC\x96x\xd0\xee7xKp#\xcc\x96\x84\xcciOOX.\xdb2^\x15\xdaQu\x1b\xd2\x82\xaaQ\x9b\xf1\xa0\xb0\x8c8aA\xad\xdbL$e\xda\x06@\x7f2\xf93\xde\x15\xa6\x10c\xbb\xf7@T\xe3$\xf9\xe0\x8eGa.\x0e\xaa\xa6\xb3E\xa4\xe4GQ\xcc\xc6\xf4\x9e\x12\xfc\xdc\x03\xc1gj\xf4\xf1\x96\xaf\x96\xdd\xbc\x87z\xf6\xe3\xa6\x15wQ\xdcC\xff\xa2\xb9\xfe\x89\xed\t\xff\xf65\xc2\xff\r\xe5\xe1(\x94A\xd9\xa8\x17t\xff2q.%\x17\xcfH\x06\xdb\x1a#\xe8\xfc\\\x0f&\xa2\x8f\xa2\xfd\xc2\x91\xe1\xd7\x92)\xc1\xbe\xc4\x8d\x06^A\xdd$k`<\xcd\x82\xaf=q\x92\xe0\xfb\xa1\x0f2\x1b8%#\x80W\x8b\x0f\xf6\xb1#h\xbe\xc5az\xa6n2q\'}l\x11\x7fM,:\x04\xd9\xa0\xfbYAY\x17\xc2Q@m\xd8\xc7\xbb\x83~\x037\xcb\x1f\xd6\xc71W\x8c\xcbU\xaa\xe3\xc3\xc4\xbaIf\x86\xdf\xf7\xb6\x96\xfd#c)\xfe\xf15`\x80~\x18\xdcZB\xf9\xca\xaf<\x01R7)\xcb\xe4\xbb>E\xb1\x8d\xd8\x17\xe6\xcb_\xf3\x92\xc6\xa1\xa0y\xba\x8b\x1a.nO[W1\xa2\xd1\xf0\x05\xb5\x98X\xbebY;I\xbeV_\xec\x98\x87\xd3\xc6\x95\xe3\xbb\xf0n\xe6\x84\xd3;9\x7ff\xc4\xe8\xd0\\%)\xbe\xc6s\xd3o\xf1\x99v\xd6\x16b7y\xe0O\xeb\xdf\xb3\x9c\xd5\x00QQb~\x1c\xfa\x9e\xfeh\'\xc1\xc8\x94\xb1h\x0e\xc1\xa2=\xc9vq/qc\xf6E\xbd*kR\x82\xd5\xbfz\xe5\xac\xb3\'\xe2\xc3\xea\x8d\r\xf3\xe1f0\x18\xbd\xef@\xf9p\xf4\x17\x00\xe2&&\xcd\x14\xf3\xd7\xa2n[A\x0c$\xbd\xeaD|L\xf0\xad\x99\xcb{r\x1d\xbd]A[\x98y\x89#\xe6\xc7\xaf\x83/\xf8\x06/t\x1b\xe6\xf7x\x97& \x13\xf7\x84\xdf\xb9\xb6\x11d^\x89\xbe\\\xa0%\xe6[\xbc8\x18\'\xa0o\x96\xf9\x11\xddS\xb0\x16:\xc3\x19\xb4K\xd2\x10\'\x9f\xef_\xc7o-\xbc\x8a\xfav\xbd$\x1fb\x96\x7f\x9d\xef\xa0\xcfn4\x1b^H\xe6\xd9\\\xc9\xb4l\x17=P\xf2\x18\xd5\x9a9\xd1\x8a\xf1\x98\x1b\r\xf4kB7Z\xd2^!\x8f\xb6_KsPt#\x93\xdcf\xa4\x07\xaa\xd1\x81\xaeN\xd4\xad[;)~\xf3\n\xd5\xaf\xf2%\x92Y\\\xfd\xe9\x8b\x1fH\xee\xb9D\xfe\xd1\xe4C&\xd8\x92s\xc3\xff\xc9\xdb\xff`r\x1bC\xd3\x7f\xfa1\xfe\xe3I\xa7\xdf\x7f\xf8\x01\xf6L\x91\xda\xdd\xe1W\xbf\xc8\x9a\xf1\x92{\xea\xeb\x1e$\x88\xf7\x8c\xb3D[\xbcb\x15\xb68\xbdc$\xbbl\xf2\xb0\xf0\xe27\xf9\n\xf1\xa6\x92\xbbG\'\xd4/\xb2Sj\x01\xc9\xef\xa4\x8e\x84\xbdj\xfeB\xb4\xc5\ta\x0f\xf7\xa5\x0b\x89\x07\xd8\xd5@\xf0\xca\x82\xefHZ\x03\xa6\xf7&\xf3[G\'\xf2\xc73\xf3R\xdd\xa6\xf9\x12An5\xc9\x89\xf2U\x06\x07\x92U\'\x03~r\x02\x9f8\x96\xbac\xfb\x1bu |\xdd\xd1\xd4`q\xe4\xf3\xe9:\x98\x05\x9f\xdfR\xc4\xf7l^\xc7\xd7v\x1d\xe8f1\x98\x8bf\xbd\x85\xf3(:1f\xca\xc2\xd7\xbb\xef\x14!_\xe7\xe1\x99\xa82\x0f\x94oa7.\x85\x05\xa0V):\x9f\x98w\x12\xf9\xafOo*\r\xc4\x1b\x8c^#\xa4\xb7u\r\xbb\x1b\xcc\xf2\xd7\xa7)\xd7\xf1\x1d_o\xacM;\xb5\x0c\x9d\xb9k\xc7\x93\xaa\xe4Q\x80\xbe<|\xaa\xd4\xb0\x8e\x8f\x12\\\xfe9\xda%G\xd3\x00./@\xfb\xa7\x06\x85\x11\x16K^\x05\xdc\x17\xc8_\x87~\xce\xd8\xcb\xa4dD\x08\xf9\x9dz\x0b \x91\xf0\x85\x1d`<\x9d\xf7\xe4\t\xd9\xf9\xbe\x1d\x0c?xS\x8a\xa2\xb8\xfe\x1d\x0b\xe1\xe68/\xd4\\[\xd1Zx\x84"\xf4\xc0.4r\xc2\xea\xf8m#n\xe7\xbe\xeb\x83||\xc4\xf5\xb1\x00+\xd9\xd9\xe8B\x81|?5\xb0"\x10\xbbV\x00.|>\x9f\x89d\xa9j\x0b\x92|\xb8\xdfE\x06\xbf8o\xd7=\xe2\xbe\xf8\xbf\xda\x9eWI\x1c\xbf\xa3\xf1Oc.\xa0\xbe\xae\x8e\\JD\xee\xdc\xcd\x1f\xc2\xc2\x90\x11\x90\x08\xb0t+@4\xaa\xacN\x85`KUN\xc0\x01h\xfc\x87=\x84\xa1a\xdf-\x1fuh1\n\xa3\xc0\xb0\xb0#/\xe9\xadk,\xa5\xf9w\xba\xc9\xe2\xaf\x00\xde\xcb\xee\x00\x7f\x0c\x83VB\xca\xcf\xa1\x8b\x89\xc3E\xd1ml\xfd\x8b\xf8]\x8a9\xb0a%pkt\x9b\xf6\x81\x9dhc\xb9\xe7\x0fx@\xd6\xe5\x0b:C\xb7\\ZT+\x8fJ\x80\x96\x7f*K\xf3\x0f\xd1\x05K\xfd\x1eX\x9b\xe2P\x9b\xe2^\xa8\xdff\x80\x8a\x10\x8f>\xa7\xfc\xb5\xf4x\xd3\xa7\xe9\xf3te\xf09\xc5N\xdc2\xf4\x8c\xd2z/x\xc2\xcd!\x93\x8a\xbf|b\xfa\xd7\x0e\xd8KCj\xb8\'BH\xb6\xf1\xbdh\xfdM\xc4\xb7z~_\x1blr\x93\x0b\xef%\x8aM\xb2b\xd4\xefgf\x80\x9a\xd0\\\xc4g\r@\xf9~\x89\x0251\x7f<\x9a\x0ek\x91\x0f\xab\xa3\xdc\xc9\xd5KV\xa4\xae\xf7\xa8F{J\xeeB)\xb54\x9bT7\xa9\xa1\x86\xdb/G\xe9\x8c\xaa\xfe\xb4\n\xae4?*\xc9\x8a\x0b:\x8a\xc0\xb1\xe5k\x8a\xf9\xab@\xbe\xc6\r\xeb\x7f\xa4\xa8\xfe\x19>^\xcb\xa1\x01UJ\xb5dZ\n\x9c\x1e\x02\\#|\xeb\xf2\x9dD\xab\xb9g\x1evJG\xfd\x0baG\x8cJ\xe9\njJ:\r\xd3\x1a\xf8\x90Y\xfe\x04\xb9w\xe6\xd2\xfc\xab>P?\x15\xe7\x1czD\xfa\x99\xff\x9b\x9dl\xffc\xf8\x0bRW\x9eH\xa7[[s\xe2\xb0\xe3(\x94\x9d\xbc|\x91\xf0\xe1\xfe\'2{\xa3\xf2i"\xf7\x05*\xda^\xc5\xda\xd0\xb7\x80\xbc\x8f\x8f\x90v\xfb\xb2\x8c\xd8\xd8\x1d\xf4\xc2j+i~\x96T\xb8\x9f\x88\xdf\xa9O/\xda\xe1p\xfc\xdd%\xfc\xb6\x8c\x97\xab\xe4>\xda\x86-\xa2\xdf\x95\x98\x89\x8a|\xabf\xd4\xb0m\xc9\xcc/8j\x80-\xaao[\xa2\xf2\x1d\xc85N\xa5t\xb8wF5\xecJK\xdc\xf0\x94\xe2s\xaa\xa4\xc2\xdfD|[\xf16\xe5\xff\xcd$\xdf\xe1\xc2\xd2/\x0e\xcd\xcc\xdb*\xc1\x1f~#\xe3\xcbkHJ\x10\xaf\x87\xc3\xdeN\x7f\x9foxvu\xbd\xa0S\xf9\xd6\x12|\x93\x06\xa2!\x7f\xa6\xffpb\xe3\x9f\xeb\x84\xa3\xc1\x9c\xad\xe2\xfeh\xb0\x14}A\xce|2#\xa9\xca\x18\xadZ\x93v.$\x0e\xef\xd0\x03Ms%\x03}5C\xa3\xa5\x02)\xbf\x9a"\x93\x93\x17K\xee\xd7\xc5_\xc6\xd0_\xd5\xb7\x11|\t\xbf\xfb"\n\xefa9d\x84\x8df\xbc\xef\xa8\xfd.\xd3\xc9\x93ZtW\xf5#\x87\xcd\xc3v/!]L\xab\xada\x92\r|=\xf1&l\xdf\xe8F6Z\xd9\xda\x9a\xc98\xcf\xe9~y\x08Q\xd4\xfd\xf2\x98}9\xe6\xaf\xc3K=\xc5"\x1a\xae\xcd\xf2\x8f%I\x85{\xba\xecl\xea\xd4;\x11mn\xd5\xe8\xe3\xb7f\xc3W\x13o_`{\xdd9\xb3d\x9c\tc\xcc\xe6\x03\xc57\xa2\x07\x93\xddD\xbak\x9f2l\xd6\xb4U(g26\xcd\xbe\xe1(\xc1\x9fV\x95&\x19\xd7\xb9\xb7\xc3\xa1a\xe3\xb5\xd1)\x1b7\x0f\xd6S\x07\xc4n\x00\xcc\xd5\xaaG\x99\xd85. \xdeee\xcbz\'\xe0\xbe\x1b\xf9\xf5z\xa9J\xeb\xdf19\x9dO\xe5e\xdc\xa6q%\xe8w\xf9\x07UU\xcc\x9d!\xe6\xeb\x15(N~l_w\xb1\xf1\x82\x8dd\x94\xe3\xa5\xd6\x99\xfb3\x08\xdf3\xbbe\xc4A\x1e\x0c\xa3qG{\xeb\nFC\xdc\xb4=\xce\x0ec\xeb\xf3\x8b\xa9zX~\x98i\xff\xd1\xd7\xb2\xc3\xa8\x1fsE\x05\x12L\xd1\xacXp=g\x01U\xe0\xc6\x94\xaa]\xd3\x12\xa6\xc4\xd4]\xdcxy(y|\x14x\xfa.=]P\xa6u*6Z\x1b\x8fJ\xcc\x00\xddV\xc7q$\xd2\x9a\x89\x7f\xde\xc2\x89\xeb\x91\xa6\xe5:\xac>\x9f\xe9\x7f\xcbR\xd8\xfe\xb7\x8e\x9d6\x8f\xdd\x1a\xf0\x14\r\t+\xdb\xbd\xc7l\xa9 c\xfb\x7f\xbf\x92\xe0\x03\x12a\xd0\xfb\xdb\xc6nXj\xbe\x1e\xab=$\x84DR\xa8\x1c\x0b\xb1\xcd\xee\xcc\x9e\xecD\xf8L\xfc\xf3\xa0\x91\xe1\x86.\x0b\xa3\x9b|\x8d\xef!\xd0\x90\xe2\xdb%\r\x9e6a\x15\xd9\xfa\x95]\xdd`\xdb\x1f\x1a\xdf|$\x11qk~\xa0\xa7\xed\x888\x89\x88#\xb9\x9d\xc3M\xb3\xd8}\x9e\xc4\xf1\xe5\x0bZw\x8a\xeeS\x1f/\x1a\x7f;\x9e\xdd\xdd=\x1c \xb9\xa4"=\x9dL\x9cs\xd9\xbfz|\xd0y\xd1Y\xe2r\xa5!\x8b|\xb8R74\x04]Y\x13\xbav\xb3\x03\x9a\xca8\\\x17\xff\xdc\xe1\xbc\x17\xfa\xb9\xce\xc4\x9dm/y\xbe\xb9\xa5\x14\x7f\xd3\xca\xe8\xc76\xaa\xa94\xb2\xd1H~\x05\x95\xbf0WjF\xbc\xd3[a\xea\xa4\r2\xf8Z\xce\x8fh\xee\x96j\x99\xe2*q\xbc\x19\xc3\x07%\x96\xdf4*\x91\x15\x13\xc1\xc7\xc9\xe9X\x98\xc4L#-a\x17e\x953\x98\xafk\xc23%\xe7\x91D\xfe\xef~\xa10\xb6\xab,>\x00\xe3\xfdE\xf6\x07\xbe\xe4\xf9/\xf9\x8a\xf6\x99\xac\xc9\xabM9k\xce&1R\xea\x1a\xb3N\xab\xb0\x9fu\x935\x96\x86J\xdcF\xe4\xff\xc55\xc4\x9f2\x1d\x82\x88C\x16\xca\xebH\xc2\x94\xb5\xf9W\xa9w\xa4\xe6\x9aG\xadk\xed\xaeNwX\xf17;\x89f\xb46\xbc\x93\x93\xab\xcf%\x93e\xe1c\x9b\xfc\xa8\xdf4\xb0\xdb\xde12\xf8\xf6\x95"~\xa0\xf4\xe7C\n\xfc\xa7|b\xb7\xe8\x1d\xd9w\x848\xae!G\r/MD\xbd\x10\x14\xb4~\xc2n?0\x08\n\xda0f\xc7DP\x9b2\xc5k\xd8\x16:/yp\xb9\xf8jS>??\x88\xefF\xb8~\x0c\xbf\xeb\x04\x1b\xc9\xc0e\x11\x1f\xe4\x83X\xfe\xe2\x97\xd2|???\xe2\x86\x199z9R\xed6\xff\x84\xca\xe5Q\xe0\xbb\xf7\xb7\xd5=\xd1P\xf1\x8e=\xf2k \xdag]v\x1c\x89\x1a@\x01K\xeeI\xc7\xc7^\xfb\xe2\xf3\x1d\xe9\x14\x80\x95\xb5\x8a\xfa3\x9d\xbeV\xffLrE\xfdK&G\xccn\xf5\xf1\xbb\xd6\x04,\x11\xb2\x1ck\xcaB\x0bV\xae\xbe\xdc\x06L\xb1nFT\xe3y\xef2}\xe9\x0b\xed\xbe\xf9\xb9Z\xc0c\x80s\xdb\xbf\x83/J\x97\x1c\xdb\x9fe$y\x97\xd9\xa2\x96\x9aOGT\xd3\xf5\xc4\x81\x9fq\t\xa0\x91(\xc6\x00\xfa\xa6\x93\xb4\xfd\x1b\xfc\x92\xf43wK\\\xbe\x9fo\x04\xba\x8c~R\x8bUf\xf9mN\x10\x1eg\x97&\xe1\xeb\xbc8u\xa0\xb4\xae\n\x0c\xe9\xf4q\x87o\xf0#]\xfb*\x0ej,\x8b?\xf7\xdbq\xcc\x1dS\x0e>\xa7\x132m\x92\xa99\xaas"\xe1%\xa9\x07\xc5^\xfd\x1b}\xc7{\xd4\xf1E[\xfa\xee\xec\xb46\x9b\xec\xa3F\xd6/.\x95\x14\x18Sz\xdf\xef\xc9\xac\xd9y\xe4\xfb\xb9\xa2\xd4g\xda\xd7\xce\x84\x045\xf4\x9d\xe3\xff\xe84\x9cU\x1b\xe0\xb1\x87J\xa2\xe6iLdi\xe8\xc1\x81\xd4\xec\x0c\xef34\x84\xe4\x8dv\xc7\x9b\xc8\xb8\x1c`\xa5\xc8K\x0bb\xbe\xcc\xf48K\xdd\x1f\x954\x830\xfaaZ\x1f6R\x15\x1c\x0eS\x8f\xc9\xf0D,\x05Ey\x8f\xa2\xfe\xdf\x12Sz\x96\xbb\x96\xe9\r\x0b\x8c\x86u$\xb9\xafn U\x08#\xec\x9c\x07\xd2\xbb\xf7\xb2\x11EVH\'\x85\xf5\x8c\x1ci\xb4\x86\x9a\x83r\xa1\xca\x0b\x88c\xa4\xb0@s(\xbd\x11\xccf\x03\x19V2Fw\x90E?\xea\xd8\x8c\xb6q!\xcf\xa7\x17\xc2\x94b\xe3\x9f\x81\xbb\x845\x8eg\xb3\xab\x1b\x81\xccw\x82=\x8f\xed\xa3\x1bZ$\xc0\x89\xcc\xf8\xf5\xf8u\xcb\x00\x94\xe74\xdeJ\x01\xe4i\x8e\xaf\xb0\x88\xe4\xf8\xe43H\x8e&\xebh\xf6\xc3%_\x927f?\\B\xcd\xe6Br\x14y\x01\x02\xfa\x95\xa5(\xfe\x19\x9c\x04\xf7in.xF\xe5\xafVM\r]WV\xa8\xa9\xa5\xa3upf\xd1!\xc2\x0f)\x98<\xe9(Y\x7f\\E\xf9\xaa\xc2(\x86\xffz\'\xc3/L\x10\xf1\xdf\xc52\xfc\xe7I\x0c\xbf\xf8$\xc3\xcf\xb9@\xf8\xa9\x0b\xaai\xb3\xb0\xf1\xcf\xb0z\xeds\xea\x16\xcf\xdc\x9dK\x15\xd6\xb0\xd4\x0c\xea\x18\xf4\xb8}\x88Z0;F\x9d\'\x06\x81\xf1{F\x8b\x9a\x0b\x99YmU!\xabU_\xb3\xe6Ma\xdd\xd7\xa5/\xdd\x98<\x97\xad\xd0\x0c\xf6\x03\xe9\xa4\x95\xe4\xba\xb7z\x0fI\xc5\x8b\xe2\x9f\xe1\x81\xfbAz\xfe\xbc\xdfF\xba:\x978}1\x9d\xce\xdb\xb4j"\x9d_,1\xa6\xfc\xb1\xac:\xffQ\xfe\x80\x9b\x10E\xd4\xae(\xfe\xb9\xc5k\x85\xf1\xa4!\x1a}\xd0\xe9{\x9fV{\xabN\xb4!J\xba\x9a\xbdA\x7f\xcb\xaa\x00\xce\x0b\xca-`\xc5I\x11\xbf\xa2\xbc\xfc*\xe1W\x95\x97\x93u\xc8\xd7/\xca\xcb\xcb\xb1\xc5\n_bn\xd2 ?\xee\x17\xe8C\xe6\xd2E\xf1\xcf\xb3\x8fA\xb3\x8f\xd8\x10#\xae\x81\xfaGS\xac\xf6b\xe0UcC\xb4\xaf\x95\x87G\xd83gl\x87\xf3\x81\x06a\xc1M\x1f\x04\x82\x8f\xd8\x10\xcb>\n\x04\x1f\xb6\x01\x9c\xf8\xf4\xfe3\xa9\xff1\x05\xffH\xfd\xbbV\xe0\xa3\xa6\xcd\xaf\x8b\x7f\xd6\xfd\x84\x83t\xdd~P|\x85]s\x0e6D\x89\'\xc0\xc8{\x00\xb7F\x00x=\xe3(\xd6j\x03m\x7f\xcd\x97\xde4>\xfa\x07\xf9\xe4\xd35\x98q\xb9.\xfey4\xa2\xc0\xbdZ\xce\xfb\x19\xe6m>j\xda\xbd\xc56\xd7\xffl\xda\xf4/\x1c:Jo\x1c\xba]\xc7\x9e\xf9 \xdd\x17\xc7k\xc5\x9e\xd8\x1c\xc2\xbf\x88\x8a\xdb\x1c\xf9\xd70G\x05\xfa\xfa6\xe6\x1e\xc8\xcf\xc6|\x10@D\xfa\xa7\xact\x1c\x97K\xd3\xdf\xe6\xa4\xe3\xb8\x9b\x96.x\x94\x8e\xc6\xec\x88\xf4\xca?\xd2=mH\x0f\xd1r\xa9\x8b\x7f\xb6 s\xd6rnJ&t\n\xcbU\xc3\x80:{N\xba:T\xe5uhb\x84#\xda\xc6\xcd\x8dX\x90\x06CRp\x98+Q\xc5\xad\n\\\x9a\xa3\x81\xe5Br\xec\x08\x9dH\xde\x94\x96v#1\xd3\xad\x99r`\xc1\x963!\xf9\x8f|\x81d\xd2\xf1\xf6\x0f\\\xfd\xe3\xc9yU\xe7\x86\x0b\xfd\xafI\xdc]q\x13\xa9"uHb\xdd\xa3\xe6iT\xaf\xa9\xa70\xfe\x89\xff\xd1\x11\xf4\xbb\xf1i\xd3\x9c\xe2d\xde!L\xf4\xb9\xdb\xcc\xf94\xf3:KM\x16\xd5\xb4\xc6\x11\xcc\x7f6`\xf5\xaf\xec\xd4\xa8\x9b\xe9xfUh\x0c\xeb>\xcec\xe6[Fu\xec2\x80\xe4\x83\x94\xc7R\x03\xdd\xcb\xab\xc5$\x99wPZ\xcfX\xb3\xac\x1eV\xf8Ei\x01\x91G\x8a\x0b4G2\xf38+eLz5\r\t\xf6#\xab+j!n\x00t\xc2\xb1\xf7\xe6\x10\xea\x97\xb9E\xfeBG\xb4C\xf8Z\xcam\x1b\x16A\xa7?\xcdWl\x94ZG\xd4^\x143\xb0\xd5\x0c\xb0\x9aN"\xa0\x1a\x81\t\t{\x9ag\x0c:\xe4\x1b\xa5)\x96\xa0\x18\x82Bb\xb4=\xb8\x10\xe5e\x1c,\x0f\xde\xa2\xf0\x80\t\xa7\x0fz\x80\xa30xW\xd5P\xf2\xb1 \xda\xc4qKQ\xdd\xbd[\x95^\xacF\xbeK\x8c8Z\x89\x0fl\xffv\xc7\xbe\xdaV8l\x04\x07\xa3\xdf\xe2\x03\xe8\x97\xa7\xad{\xdfK\x8c\xe7\xde\xb9?\xf9q\x919\x0c, \x11(\x16\xd0\xe5\x15\x1e|\xde\x19Z\n\xb16\x1e\xf4\x07M\xa1)J\x8c@hRc\x8b\xce+\x1a\xb1\x91\xbb\x98\x0b\xed\x1f[\xbb\xfa,\xf4p\x0f$\xa0\xc9\x88\x9e\x9f\xdb\x03\x03\x98\x97\n\xb0\xf0\x118\xa5\n\x1b~\x7fP|\xdc\xeb,\xf9\xce7r\x9f\x96\xfdI|\x91\x8d+\xbd\xaf\xc8C\xa6\xf0\xead\xb83\x05\xf9zOt\x91\xdf\x84|\xc2\x1by\x08\xe4\x88.Zt\x01\xa0\n\x85\xfd\xb8<\x80\x9c\x19\x00>\x02\xf4\xc1P\x179\x08qD\xcc|\xb0\xfc\x1e\xea\xbd\rg\xd4.\xea|vh\x98\x0f\xfc\xe7\xb7\xc9\xc8"\xf5\xdf\xeb\x15\x17\xf9\xc1\xbfq\xa0\xa7\xd0@\r\xb2\xc7!Wc\xcd|\xe4\xeb\x08Q\x84o;\x00\x9cO=\xb1\x8a\xce\x02\x94a[LEC\xe0\x0e\xb6\xc5\xe0J\xd4U\xd8\x16]?\x93\x1e\x9e\xf2\x99\xc8\xea\xc8\x03;\xbd\xb4\x85\xed\xea\xf1[\xd4\xe3C\xd1(`\xf8\xaa[O\x90\xf7\xd7\xbfy\\\x83\xd4\xbf\xfcKw\xc27\x7f\xbcw)p>\x0c\x06H\x0f\x07x\x8a.R"V\xd3\xad\x15h)c{\x9f@\xdd\x1b\x8c\xca)6\x05{n9\xdegnN\xc8}\x1c_K\x9fm\x84NB}\xf0B\xdbCAh\x00\xb6\xaf\xf1\xdc\xcbvxC\x94\xf5\xb9\x9eX\x91\xe8l_\xa0\x1fs1\xfa/\xf2U\xf1\xcb4g\xc2\x07\xf9-\xe7\x08\x7f~\x9e\x1c\xe1C\xda3\xec\x7f\'\xa3@\xa7\x12Ukl\xcc\xd6A\xaf1\xbb\xe0V1*K\xe5+\xa5\x97*\x89A\xaf\xc6\xfc\x1d>\x9f\x9d\xf2\x9e|\xd0p\xf2Nt1qe\xe2r7\xe7\xee\xc6|mqt\x16\t\xfd\x9fS\xb6%\xf3\x9a\x9c\x04\x9f\x1d\x7f\x1bW\xc6\xaf\xc8\xdc\xa0\xe1\xd6\xc5\x98Xw\nn<\xe0\x91\xef\x7f\xa1\xc9 7\xba\x90\xa9\xdb\xdf\x93N\xafk\xfa\xf4\xa2rX\xd5\xbb\x1fu_\x15\xbb\x0f\x94\x88\xdaR\xf7\xe3\xba\x0f5%[\x9cn\xa3\x98\x89\xd9.\xa3\x18\xbdd?\xaa\x1b\xf3\xff\x03Fz1\xf3\xd4\x0e\xf4:\x0bv\x99\xcd\xc2\xccm\x94%\xfcL\xffk\x92\xaeq\xc3e\xfe\xf5$\x11\xff\xdc\x91\x99\x00sg\xa7\x07\xe5@j^\xa1\xe3\xb1xY\xf1\x13\xd0B<\xd9\xeaM\x9f\x90\xe3+u\x9d\x86o\xdd4\x9e\r\xdbA\xa5\xfeKA]\xfc\xb3e\x16\xed\x9f\xf6\x17OQ\x03dg\xa6/\x8d\xd7?0l\x12\xb5;\x82<\xdb\xca\xf4\xbfU2E\xd3\xcd\xbe\xa7\xe8\xc0\x99|\x96N\xd54\xca\xd5\x8b\xa7\xebc\x1bE\xab\xbc&\xf7\xe9\xf3\xb5\xba\x9cA\xcbm\x08\xeaC\xc2?E\xf1\xcf\xdc}tM\x92\xb3[\x7f\xc2 \x92\x07j-\xa3#\xa5\xbbE\x1b\n\xd0OH\x96\x08U\x90H\x8d\x0f\xb1v\xc7ot\xbaM{\x0f/\x82\\\xa8\xe8\xa7\xe4A/\xe0\xc6\xb2\xfe\xff\x0e&\xd4bK\xb3!\xd4\x91w\xb6n\x86rCo\xc8\xf4\x1e\xa4\x82D\xf1\xcfj>\xd3\xf9\xe4~J\xde\xd3}\xc9\xfd\xe4\xbbM\xf3#\xd3\xa9\xbc.SF\x10C\xc5fZ7\xa3\t\xd4@\xb1\x18\x17@\xdd;\xcf\xa9L\x0b\xb8La\xd6\t:N\xeeK+\xd0:\xd0\x97\xbc\xa79\x9fO\xed\x1e#>\x9f\xbe\xa8.\x9fO\xdfK\x9d\xcf\'\xed\x9d\x14\xbd\xf4*\xf9GC\xa2\xf8\xe7\xb0=\x8b\x8fg\xa1\xdc\x9b\x9b\xb8\xf8\xe0#l\x10\xff\x94%{\xc9\x7f\x84\xe8\xf3\xfb\xb2\x9dO\xd0\x8e\xda\x16\x92\xffl\xf3c\xbc\xc3\xf0W\xfb\xd7\x10G5>wm\x1e\x99\xc8\x8d,^w\x97\xac\\\x05\x97\x85_%\xb1\xc3\x01\x15\x91\xe7.\xe2\x83t\x0e\xfb\x83\xfe\xbb\x0c\x9b\xb0\x874^\xb2y\xd8M\x1a(\xa2\x1f\x96\xb1\th\xdc\xb3\xd6{sq\xfc3\xa9\x8b|>\x93_\n`\xf2\xc3K\x98|\x0b\xb9\x00\x86\xde\x84\xe5CA\xa9z \x8d\x8f\xeeQ\xad\n&\x1f4\xc1\xf6]cP\x7fo\x86\xdb\x96\xc0{\xd1\t4_a\xab\xe5\xd3\x1e{\x9e\xf9w\x1d\x90\xc0\xc6kF\xb2\x81*\xc1\xe4v\x0e\x9b\xef\xe6~\xea(\x8e\x7f6_s=\xf7\x15\xb6\x8fa\xe8\x95\\\x01\xdar\xda\x8b3r\x9fo\xc0n6\xefLn\x05vH\xa3))\xc51\x17V\x82\xd5GfruYqll\xec\xbbv\x10X\x8ey\xb5\'\x0c\xa8\xc1\xbcl8t\xfe\x80\xf9\xe3Y\r\xf19\xb9~\x8a\n\xaf\x1c\xc5\xf1\xcf\x87\x96i\xc0\xcd\t\x00\xd1Q\x8d \x15{\xee\xb2}\xfa\xb0;\n \xf0\x84\x11]\x92\xcf\x9b\xb1\xf8\x8a\x9b\x9b\x05\xb4\xfa\x93\x89gYr\x9e,0\xabB@\x16\xc9\xb5\x80_Br=p\xaau\xc6\xdc\xb0!~\xd3\x1a\x05\xb4A\x1c\xeb\xe2\x9f9/Z\x80\xf1_\xc8\x7f\xd8\x05\xd4\xdf!?} \xc8U"\xff\xe0d\xe0o\xed\xfdf\xe7\xed\xbb(O\x9dj\x0f\\,D\x83\xdf\xeaE\xf2\xc9r\xac7\xa3\xb23\x87\xaa\xb1\'h\x14d\xeeyE\r\x92\x05\xef\xc8/\xe7\xcc\x83\xe5O\xae+\x83\xaaP\x0e\x9a\x13\xdf\xeb\xb5\x11\xa8\x11\xdf\xab\x10\x95\xf5[3\x80Ll\xdd"G\xe0=E%\xb7\x1a-\xa9\xb8\xc7\xa7\x8e\x95\xe3\x03\xfc\x8eJn\xe8%\xce\xe3\x99\xa0O\x02\xc3Q\x19+\xbfGC\xe3\xd6|\xe0\x94\xf8\xa3\xbf\x17N\xb7!\x16}\xc0\x13\xc4\xffG\x1fp\xf7~\xf4\xc1\xef2\xdbh\x91\xd0i!\xcfZ\x9e\xf6\xed2h\x90\x0f+\xa2\xf1\x19\xd0\xb9\x8dCg>\x15\r\x86A\x97\x00N\xf9\x1b\nQm\xdc\xc4"\x19\xd8G\xf2\xf1\xbd\xde\xa0\rp\x00yE\xa84"\x90}\x15m\x80\x85\xc8K\xc1\xce9\x16\x05\xde6T\x1a\xbd\xd1\xff,\xa6\xff_r\x08L;-w\xd4\x15o\xd2 \xdf\xf4\x85\x927Yw\x8c\x0bC]\x80\x16\x8fBe\x0bc\x81\xaa\xf9\x9f\xe8\\e\xa1: \x8b\x0cy8\x84^c\'K\\\x0f\xf0\x18\xcd\x8b\x8d\xe8g^\x99\x0c\xb0\xf8w\x80\xe4\x10\xf4{\xf1\xfa\xad[\x00\xfa\x92\xc9YP\xa4\xdd#(%j\x98\x99P\x17\x94\x85\n`C\xf8\xb5\xc6`@\xf8\x05\x1d@\xe1\x13\xf2/\xf7\x02\xa8$3G\xa7\xfc\x12\xc9\x84X\x1cZ\xb1K\x89\xc5\x15\xfe\xcb\xe2m \'\xe8\rz\x9f;\x88\xf9\xd7\x17a5\x8d\x048\x16\t\x9c\xac9\xd8i\x13\xf0J\xbcd\xd59\x80\xbdq\x003\xb29\x10\x9e&n\x7f\x8f\xf7a0\x9a|\x0c_h\x07\xd3\t\x1f\xdf\xd7\x8f\xf0SF\x83;\t*\xdf6\x0fZ\x0b\t\x7fpf\rY\xe1\x8a\xc3zO#\x1a\xd8\xeaI\x01\x1e\x9e\xf2zO9\x89\x8e\x13\xf1\xbb\xd5&\xe5^\xc6\x81`W}\xecv6\xf6\x8b\xe6eg/\x15\xa1>\xd4\x7f|\xf5\xf7r\xb4\x90U\xef\xdeK~IW\xac\xac\xa9S\xdf\xbb\xfc\xf2\xee\xd7d|G=N\xfc\x9d\xf0\x83\x9f\x1eH%\xfc\x80\x8a}ih\x8fA\xff\xe7\xfb2*\x08_\xa1\x8a.\x83\xc6=\xbc\x92^LG\xd4\xa5\x07\xe4\xd7r8\x1d\xd6\xb6\xa8K\x1dH\x8d\x1a\xfby\xd1qh0\xa87\x1d\xcf\x8d\xfa\xf7\xa3\xe3Y\xddg U\xb7\xca=\x07K\xce\xe3\x85*y\x0eg\xbeSw\xf4P\xa7\xe3\xa2]OU7b\x00\xb7\xec\xab\xe6Bd\xa9I\x7f\xadN\xe4\x0e\xdcG\x1e\xcc\xf8\xef<\x88Y\xe9K\x9e\t\xff\xc6d\xba\x8c\xf9\x7f\xa3"\xf9c0\xfc\xd5\xbf5"9:\x9e\xf1\xf6\x17\x0e`\xf6\xe7$\x93e/\x15\x95\xff\x024+\x06\xa4' # noqa def charTexCoords(char): """Returns the texture coordinates corresponding to a character :param str char: One Latin-1 character :returns: Texture coords uMin, vMin, uMax, vMax :rtype: tuple """ index = ord(char.encode('latin1')) if index > ord('~'): index = max(96, index - 64) else: index = max(index - 32, 0) row, col = index // 16, index % 16 return (col * cExtent, row * rExtent, (col + 1) * cExtent, (row + 1) * rExtent) def loadTexture(): data = zlib.decompress(dataZip) return Texture2D(GL_RED, dataWidth, dataHeight, type_=GL_UNSIGNED_BYTE, minFilter=GL_NEAREST, magFilter=GL_NEAREST, wrapS=GL_CLAMP_TO_EDGE, wrapT=GL_CLAMP_TO_EDGE, data=data, unpackAlign=1) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLContext.py0000644000000000000000000000470514741736366023266 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Basic abstraction of platform dependent OpenGL context useful for detecting rendering across multiple OpenGL context """ # context ##################################################################### def _defaultGLContextGetter(): return None _glContextGetter = _defaultGLContextGetter def getGLContext(): """Returns an instance (platform dependent) corresponding to the current OpenGL context in use :return: OpenGL context :rtype: None by default or a platform dependent object""" return _glContextGetter() def setGLContextGetter(getter=_defaultGLContextGetter): """Allows to set a platform dependent function to get the GL context :param getter: Platform dependent GL context getter :type getter: Function with no args returning the current OpenGL context """ global _glContextGetter _glContextGetter = getter ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLFramebuffer.py0000644000000000000000000001227714741736366024071 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a texture associated to a framebuffer object for off-screen rendering """ # import ###################################################################### from .gl import * # noqa from ctypes import c_uint from .GLTexture import Texture2D # utils ####################################################################### def _deleteRenderbuffer(bufferId): glDeleteRenderbuffers(1, (c_uint * 1)(bufferId)) def _deleteFramebuffer(bufferId): glDeleteFramebuffers(1, (c_uint * 1)(bufferId)) # framebuffer ################################################################# class FBOTexture(Texture2D): """Texture with FBO aimed at off-screen rendering to texture""" _PACKED_FORMAT = GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL def __init__(self, internalFormat, width, height, stencilFormat=GL_DEPTH24_STENCIL8, depthFormat=GL_DEPTH24_STENCIL8, **kwargs): super(FBOTexture, self).__init__(internalFormat, width, height, **kwargs) self._fbo = glGenFramebuffers(1) glBindFramebuffer(GL_FRAMEBUFFER, self._fbo) # Attachments glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, self.tid, 0) if stencilFormat is not None: self._stencilId = glGenRenderbuffers(1) glBindRenderbuffer(GL_RENDERBUFFER, self._stencilId) glRenderbufferStorage(GL_RENDERBUFFER, stencilFormat, self.width, self.height) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_RENDERBUFFER, self._stencilId) if depthFormat is not None: if self._stencilId and depthFormat in self._PACKED_FORMAT: self._depthId = self._stencilId else: self._depthId = glGenRenderbuffers(1) glBindRenderbuffer(GL_RENDERBUFFER, self._depthId) glRenderbufferStorage(GL_RENDERBUFFER, depthFormat, self.width, self.height) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, self._depthId) assert glCheckFramebufferStatus(GL_FRAMEBUFFER) == \ GL_FRAMEBUFFER_COMPLETE glBindFramebuffer(GL_FRAMEBUFFER, 0) @property def fbo(self): try: return self._fbo except AttributeError: raise RuntimeError("No OpenGL framebuffer resource, \ discard has already been called") def bindFBO(self): glBindFramebuffer(GL_FRAMEBUFFER, self.fbo) # with statement def __enter__(self): self.bindFBO() def __exit__(self, excType, excValue, traceback): glBindFramebuffer(GL_FRAMEBUFFER, 0) def discard(self): if hasattr(self, '_fbo'): if bool(glDeleteFramebuffers): # Test for __del__ _deleteFramebuffer(self._fbo) del self._fbo if hasattr(self, '_stencilId'): if bool(glDeleteRenderbuffers): # Test for __del__ _deleteRenderbuffer(self._stencilId) if self._stencilId == getattr(self, '_depthId', -1): del self._depthId del self._stencilId if hasattr(self, '_depthId'): if bool(glDeleteRenderbuffers): # Test for __del__ _deleteRenderbuffer(self._depthId) del self._depthId super(FBOTexture, self).discard() def __del__(self): self.discard() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotCurve.py0000644000000000000000000013170014741736366023561 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides classes to render 2D lines and scatter plots """ # import ###################################################################### import numpy as np import math import warnings from .gl import * # noqa from .GLSupport import buildFillMaskIndices, FLOAT32_MINPOS from .GLProgram import GLProgram from .GLVertexBuffer import createVBOFromArrays, VBOAttrib try: from ....ctools import minMax except ImportError: from PyMca5.PyMcaGraph.ctools import minMax _MPL_NONES = None, 'None', '', ' ' # fill ######################################################################## class _Fill2D(object): _LINEAR, _LOG10_X, _LOG10_Y, _LOG10_X_Y = 0, 1, 2, 3 _SHADERS = { 'vertexTransforms': { _LINEAR: """ vec4 transformXY(float x, float y) { return vec4(x, y, 0.0, 1.0); } """, _LOG10_X: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), y, 0.0, 1.0); } """, _LOG10_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(x, oneOverLog10 * log(y), 0.0, 1.0); } """, _LOG10_X_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), oneOverLog10 * log(y), 0.0, 1.0); } """ }, 'vertex': """ #version 120 uniform mat4 matrix; attribute float xPos; attribute float yPos; %s void main(void) { gl_Position = matrix * transformXY(xPos, yPos); } """, 'fragment': """ #version 120 uniform vec4 color; void main(void) { gl_FragColor = color; } """ } _programs = { _LINEAR: GLProgram( _SHADERS['vertex'] % _SHADERS['vertexTransforms'][_LINEAR], _SHADERS['fragment']), _LOG10_X: GLProgram( _SHADERS['vertex'] % _SHADERS['vertexTransforms'][_LOG10_X], _SHADERS['fragment']), _LOG10_Y: GLProgram( _SHADERS['vertex'] % _SHADERS['vertexTransforms'][_LOG10_Y], _SHADERS['fragment']), _LOG10_X_Y: GLProgram( _SHADERS['vertex'] % _SHADERS['vertexTransforms'][_LOG10_X_Y], _SHADERS['fragment']), } def __init__(self, xFillVboData=None, yFillVboData=None, xMin=None, yMin=None, xMax=None, yMax=None, color=(0., 0., 0., 1.)): self.xFillVboData = xFillVboData self.yFillVboData = yFillVboData self.xMin, self.yMin = xMin, yMin self.xMax, self.yMax = xMax, yMax self.color = color self._bboxVertices = None self._indices = None def prepare(self): if self._indices is None: self._indices = buildFillMaskIndices(self.xFillVboData.size) self._indicesType = numpyToGLType(self._indices.dtype) if self._bboxVertices is None: yMin, yMax = min(self.yMin, 1e-32), max(self.yMax, 1e-32) self._bboxVertices = np.array(((self.xMin, self.xMin, self.xMax, self.xMax), (yMin, yMax, yMin, yMax)), dtype=np.float32) def render(self, matrix, isXLog, isYLog): self.prepare() if isXLog: transform = self._LOG10_X_Y if isYLog else self._LOG10_X else: transform = self._LOG10_Y if isYLog else self._LINEAR prog = self._programs[transform] prog.use() glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) glUniform4f(prog.uniforms['color'], *self.color) xPosAttrib = prog.attributes['xPos'] yPosAttrib = prog.attributes['yPos'] glEnableVertexAttribArray(xPosAttrib) self.xFillVboData.setVertexAttrib(xPosAttrib) glEnableVertexAttribArray(yPosAttrib) self.yFillVboData.setVertexAttrib(yPosAttrib) # Prepare fill mask glEnable(GL_STENCIL_TEST) glStencilMask(1) glStencilFunc(GL_ALWAYS, 1, 1) glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT) glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE) glDepthMask(GL_FALSE) glDrawElements(GL_TRIANGLE_STRIP, self._indices.size, self._indicesType, self._indices) glStencilFunc(GL_EQUAL, 1, 1) glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO) # Reset stencil while drawing glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) glDepthMask(GL_TRUE) glVertexAttribPointer(xPosAttrib, 1, GL_FLOAT, GL_FALSE, 0, self._bboxVertices[0]) glVertexAttribPointer(yPosAttrib, 1, GL_FLOAT, GL_FALSE, 0, self._bboxVertices[1]) glDrawArrays(GL_TRIANGLE_STRIP, 0, self._bboxVertices[0].size) glDisable(GL_STENCIL_TEST) # line ######################################################################## SOLID, DASHED = '-', '--' class _Lines2D(object): STYLES = SOLID, DASHED """Supported line styles (missing '-.' ':')""" _LINEAR, _LOG10_X, _LOG10_Y, _LOG10_X_Y = 0, 1, 2, 3 _SHADERS = { 'vertexTransforms': { _LINEAR: """ vec4 transformXY(float x, float y) { return vec4(x, y, 0.0, 1.0); } """, _LOG10_X: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), y, 0.0, 1.0); } """, _LOG10_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(x, oneOverLog10 * log(y), 0.0, 1.0); } """, _LOG10_X_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), oneOverLog10 * log(y), 0.0, 1.0); } """ }, SOLID: { 'vertex': """ #version 120 uniform mat4 matrix; attribute float xPos; attribute float yPos; attribute vec4 color; varying vec4 vColor; %s void main(void) { gl_Position = matrix * transformXY(xPos, yPos); vColor = color; } """, 'fragment': """ #version 120 varying vec4 vColor; void main(void) { gl_FragColor = vColor; } """ }, # Limitation: Dash using an estimate of distance in screen coord # to avoid computing distance when viewport is resized # results in inequal dashes when viewport aspect ratio is far from 1 DASHED: { 'vertex': """ #version 120 uniform mat4 matrix; uniform vec2 halfViewportSize; attribute float xPos; attribute float yPos; attribute vec4 color; attribute float distance; varying float vDist; varying vec4 vColor; %s void main(void) { gl_Position = matrix * transformXY(xPos, yPos); //Estimate distance in pixels vec2 probe = vec2(matrix * vec4(1., 1., 0., 0.)) * halfViewportSize; float pixelPerDataEstimate = length(probe)/sqrt(2.); vDist = distance * pixelPerDataEstimate; vColor = color; } """, 'fragment': """ #version 120 uniform float dashPeriod; varying float vDist; varying vec4 vColor; void main(void) { if (mod(vDist, dashPeriod) > 0.5 * dashPeriod) { discard; } else { gl_FragColor = vColor; } } """ } } _programs = {} def __init__(self, xVboData=None, yVboData=None, colorVboData=None, distVboData=None, style=SOLID, color=(0., 0., 0., 1.), width=1, dashPeriod=20, drawMode=None): self.xVboData = xVboData self.yVboData = yVboData self.distVboData = distVboData self.colorVboData = colorVboData self.useColorVboData = colorVboData is not None self.color = color self.width = width self.style = style self.dashPeriod = dashPeriod self._drawMode = drawMode if drawMode is not None else GL_LINE_STRIP @property def style(self): return self._style @style.setter def style(self, style): if style in _MPL_NONES: self._style = None self.render = self._renderNone else: assert style in self.STYLES self._style = style if style == SOLID: self.render = self._renderSolid elif style == DASHED: self.render = self._renderDash @property def width(self): return self._width @width.setter def width(self, width): # try: # widthRange = self._widthRange # except AttributeError: # widthRange = glGetFloatv(GL_ALIASED_LINE_WIDTH_RANGE) # # Shared among contexts, this should be enough.. # _Lines2D._widthRange = widthRange # assert width >= widthRange[0] and width <= widthRange[1] self._width = width @classmethod def _getProgram(cls, transform, style): try: prgm = cls._programs[(transform, style)] except KeyError: sources = cls._SHADERS[style] vertexShdr = sources['vertex'] % \ cls._SHADERS['vertexTransforms'][transform] prgm = GLProgram(vertexShdr, sources['fragment']) cls._programs[(transform, style)] = prgm return prgm @classmethod def init(cls): glHint(GL_LINE_SMOOTH_HINT, GL_NICEST) def _renderNone(self, matrix, isXLog, isYLog): pass render = _renderNone # Overridden in style setter def _renderSolid(self, matrix, isXLog, isYLog): if isXLog: transform = self._LOG10_X_Y if isYLog else self._LOG10_X else: transform = self._LOG10_Y if isYLog else self._LINEAR prog = self._getProgram(transform, SOLID) prog.use() glEnable(GL_LINE_SMOOTH) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) colorAttrib = prog.attributes['color'] if self.useColorVboData and self.colorVboData is not None: glEnableVertexAttribArray(colorAttrib) self.colorVboData.setVertexAttrib(colorAttrib) else: glDisableVertexAttribArray(colorAttrib) glVertexAttrib4f(colorAttrib, *self.color) xPosAttrib = prog.attributes['xPos'] glEnableVertexAttribArray(xPosAttrib) self.xVboData.setVertexAttrib(xPosAttrib) yPosAttrib = prog.attributes['yPos'] glEnableVertexAttribArray(yPosAttrib) self.yVboData.setVertexAttrib(yPosAttrib) glLineWidth(self.width) glDrawArrays(self._drawMode, 0, self.xVboData.size) glDisable(GL_LINE_SMOOTH) def _renderDash(self, matrix, isXLog, isYLog): if isXLog: transform = self._LOG10_X_Y if isYLog else self._LOG10_X else: transform = self._LOG10_Y if isYLog else self._LINEAR prog = self._getProgram(transform, DASHED) prog.use() glEnable(GL_LINE_SMOOTH) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) x, y, viewWidth, viewHeight = glGetFloatv(GL_VIEWPORT) glUniform2f(prog.uniforms['halfViewportSize'], 0.5 * viewWidth, 0.5 * viewHeight) glUniform1f(prog.uniforms['dashPeriod'], self.dashPeriod) colorAttrib = prog.attributes['color'] if self.useColorVboData and self.colorVboData is not None: glEnableVertexAttribArray(colorAttrib) self.colorVboData.setVertexAttrib(colorAttrib) else: glDisableVertexAttribArray(colorAttrib) glVertexAttrib4f(colorAttrib, *self.color) distAttrib = prog.attributes['distance'] glEnableVertexAttribArray(distAttrib) self.distVboData.setVertexAttrib(distAttrib) xPosAttrib = prog.attributes['xPos'] glEnableVertexAttribArray(xPosAttrib) self.xVboData.setVertexAttrib(xPosAttrib) yPosAttrib = prog.attributes['yPos'] glEnableVertexAttribArray(yPosAttrib) self.yVboData.setVertexAttrib(yPosAttrib) glLineWidth(self.width) glDrawArrays(self._drawMode, 0, self.xVboData.size) glDisable(GL_LINE_SMOOTH) def _distancesFromArrays(xData, yData): deltas = np.dstack((np.ediff1d(xData, to_begin=np.float32(0.)), np.ediff1d(yData, to_begin=np.float32(0.))))[0] return np.cumsum(np.sqrt((deltas ** 2).sum(axis=1))) # points ###################################################################### DIAMOND, CIRCLE, SQUARE, PLUS, X_MARKER, POINT, PIXEL, ASTERISK = \ 'd', 'o', 's', '+', 'x', '.', ',', '*' H_LINE, V_LINE = '_', '|' class _Points2D(object): MARKERS = (DIAMOND, CIRCLE, SQUARE, PLUS, X_MARKER, POINT, PIXEL, ASTERISK, H_LINE, V_LINE) _LINEAR, _LOG10_X, _LOG10_Y, _LOG10_X_Y = 0, 1, 2, 3 _SHADERS = { 'vertexTransforms': { _LINEAR: """ vec4 transformXY(float x, float y) { return vec4(x, y, 0.0, 1.0); } """, _LOG10_X: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), y, 0.0, 1.0); } """, _LOG10_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(x, oneOverLog10 * log(y), 0.0, 1.0); } """, _LOG10_X_Y: """ const float oneOverLog10 = 0.43429448190325176; vec4 transformXY(float x, float y) { return vec4(oneOverLog10 * log(x), oneOverLog10 * log(y), 0.0, 1.0); } """ }, 'vertex': """ #version 120 uniform mat4 matrix; uniform int transform; uniform float size; attribute float xPos; attribute float yPos; attribute vec4 color; varying vec4 vColor; %s void main(void) { gl_Position = matrix * transformXY(xPos, yPos); vColor = color; gl_PointSize = size; } """, 'fragmentSymbols': { DIAMOND: """ float alphaSymbol(vec2 coord, float size) { vec2 centerCoord = abs(coord - vec2(0.5, 0.5)); float f = centerCoord.x + centerCoord.y; return clamp(size * (0.5 - f), 0.0, 1.0); } """, CIRCLE: """ float alphaSymbol(vec2 coord, float size) { float radius = 0.5; float r = distance(coord, vec2(0.5, 0.5)); return clamp(size * (radius - r), 0.0, 1.0); } """, SQUARE: """ float alphaSymbol(vec2 coord, float size) { return 1.0; } """, PLUS: """ float alphaSymbol(vec2 coord, float size) { vec2 d = abs(size * (coord - vec2(0.5, 0.5))); if (min(d.x, d.y) < 0.5) { return 1.0; } else { return 0.0; } } """, X_MARKER: """ float alphaSymbol(vec2 coord, float size) { vec2 pos = floor(size * coord) + 0.5; vec2 d_x = abs(pos.x + vec2(- pos.y, pos.y - size)); if (min(d_x.x, d_x.y) <= 0.5) { return 1.0; } else { return 0.0; } } """, ASTERISK: """ float alphaSymbol(vec2 coord, float size) { /* Combining +, x and cirle */ vec2 d_plus = abs(size * (coord - vec2(0.5, 0.5))); vec2 pos = floor(size * coord) + 0.5; vec2 d_x = abs(pos.x + vec2(- pos.y, pos.y - size)); if (min(d_plus.x, d_plus.y) < 0.5) { return 1.0; } else if (min(d_x.x, d_x.y) <= 0.5) { float r = distance(coord, vec2(0.5, 0.5)); return clamp(size * (0.5 - r), 0.0, 1.0); } else { return 0.0; } } """, H_LINE: """ float alphaSymbol(vec2 coord, float size) { float dy = abs(size * (coord.y - 0.5)); if (dy < 0.5) { return 1.0; } else { return 0.0; } } """, V_LINE: """ float alphaSymbol(vec2 coord, float size) { float dx = abs(size * (coord.x - 0.5)); if (dx < 0.5) { return 1.0; } else { return 0.0; } } """ }, 'fragment': """ #version 120 uniform float size; varying vec4 vColor; %s void main(void) { float alpha = alphaSymbol(gl_PointCoord, size); if (alpha <= 0.0) { discard; } else { gl_FragColor = vec4(vColor.rgb, alpha * clamp(vColor.a, 0.0, 1.0)); } } """ } _programs = {} def __init__(self, xVboData=None, yVboData=None, colorVboData=None, marker=SQUARE, color=(0., 0., 0., 1.), size=7): self.color = color self.marker = marker self.size = size self.xVboData = xVboData self.yVboData = yVboData self.colorVboData = colorVboData self.useColorVboData = colorVboData is not None @property def marker(self): return self._marker @marker.setter def marker(self, marker): if marker in _MPL_NONES: self._marker = None self.render = self._renderNone else: assert marker in self.MARKERS self._marker = marker self.render = self._renderMarkers @property def size(self): return self._size @size.setter def size(self, size): # try: # sizeRange = self._sizeRange # except AttributeError: # sizeRange = glGetFloatv(GL_POINT_SIZE_RANGE) # # Shared among contexts, this should be enough.. # _Points2D._sizeRange = sizeRange # assert size >= sizeRange[0] and size <= sizeRange[1] self._size = size @classmethod def _getProgram(cls, transform, marker): """On-demand shader program creation.""" if marker == PIXEL: marker = SQUARE elif marker == POINT: marker = CIRCLE try: prgm = cls._programs[(transform, marker)] except KeyError: vertShdr = cls._SHADERS['vertex'] % \ cls._SHADERS['vertexTransforms'][transform] fragShdr = cls._SHADERS['fragment'] % \ cls._SHADERS['fragmentSymbols'][marker] prgm = GLProgram(vertShdr, fragShdr) cls._programs[(transform, marker)] = prgm return prgm @classmethod def init(cls): version = glGetString(GL_VERSION) majorVersion = int(version[0]) assert majorVersion >= 2 glEnable(GL_VERTEX_PROGRAM_POINT_SIZE) # OpenGL 2 glEnable(GL_POINT_SPRITE) # OpenGL 2 if majorVersion >= 3: # OpenGL 3 glEnable(GL_PROGRAM_POINT_SIZE) def _renderNone(self, matrix, isXLog, isYLog): pass render = _renderNone def _renderMarkers(self, matrix, isXLog, isYLog): if isXLog: transform = self._LOG10_X_Y if isYLog else self._LOG10_X else: transform = self._LOG10_Y if isYLog else self._LINEAR prog = self._getProgram(transform, self.marker) prog.use() glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) if self.marker == PIXEL: size = 1 elif self.marker == POINT: size = math.ceil(0.5 * self.size) + 1 # Mimic Matplotlib point else: size = self.size glUniform1f(prog.uniforms['size'], size) # glPointSize(self.size) cAttrib = prog.attributes['color'] if self.useColorVboData and self.colorVboData is not None: glEnableVertexAttribArray(cAttrib) self.colorVboData.setVertexAttrib(cAttrib) else: glDisableVertexAttribArray(cAttrib) glVertexAttrib4f(cAttrib, *self.color) xAttrib = prog.attributes['xPos'] glEnableVertexAttribArray(xAttrib) self.xVboData.setVertexAttrib(xAttrib) yAttrib = prog.attributes['yPos'] glEnableVertexAttribArray(yAttrib) self.yVboData.setVertexAttrib(yAttrib) glDrawArrays(GL_POINTS, 0, self.xVboData.size) glUseProgram(0) # error bars ################################################################## class _ErrorBars(object): """Display errors bars. This is using its own VBO as opposed to fill/points/lines. There is no picking on error bars. As is, there is no way to update data and errors, but it handles log scales by removing data <= 0 and clipping error bars to positive range. It uses 2 vertices per error bars and uses :class:`_Lines2D` to render error bars and :class:`_Points2D` to render the ends. """ def __init__(self, xData, yData, xError, yError, xMin, yMin, color=(0., 0., 0., 1.)): """Initialization. :param numpy.ndarray xData: X coordinates of the data. :param numpy.ndarray yData: Y coordinates of the data. :param xError: The absolute error on the X axis. :type xError: A float, or a numpy.ndarray of float32. If it is an array, it can either be a 1D array of same length as the data or a 2D array with 2 rows of same length as the data: row 0 for positive errors, row 1 for negative errors. :param yError: The absolute error on the Y axis. :type yError: A float, or a numpy.ndarray of float32. See xError. :param float xMin: The min X value already computed by GLPlotCurve2D. :param float yMin: The min Y value already computed by GLPlotCurve2D. :param color: The color to use for both lines and ending points. :type color: tuple of 4 floats """ self._attribs = None self._isXLog, self._isYLog = False, False self._xMin, self._yMin = xMin, yMin if xError is not None or yError is not None: assert len(xData) == len(yData) self._xData = np.array(xData, order='C', dtype=np.float32, copy=False) self._yData = np.array(yData, order='C', dtype=np.float32, copy=False) # This also works if xError, yError is a float/int self._xError = np.array(xError, order='C', dtype=np.float32, copy=False) self._yError = np.array(yError, order='C', dtype=np.float32, copy=False) else: self._xData, self._yData = None, None self._xError, self._yError = None, None self._lines = _Lines2D(None, None, color=color, drawMode=GL_LINES) self._xErrPoints = _Points2D(None, None, color=color, marker=V_LINE) self._yErrPoints = _Points2D(None, None, color=color, marker=H_LINE) def _positiveValueFilter(self, onlyXPos, onlyYPos): """Filter data (x, y) and errors (xError, yError) to remove negative and null data values on required axis (onlyXPos, onlyYPos). Returned arrays might be NOT contiguous. :return: Filtered xData, yData, xError and yError arrays. """ if ((not onlyXPos or self._xMin > 0.) and (not onlyYPos or self._yMin > 0.)): # No need to filter, all values are > 0 on log axes return self._xData, self._yData, self._xError, self._yError warnings.warn( 'Removing values <= 0 of curve with error bars on a log axis.', RuntimeWarning) x, y = self._xData, self._yData xError, yError = self._xError, self._yError # First remove negative data if onlyXPos and onlyYPos: mask = (x > 0.) & (y > 0.) elif onlyXPos: mask = x > 0. else: # onlyYPos mask = y > 0. x, y = x[mask], y[mask] # Remove corresponding values from error arrays if xError is not None and xError.size != 1: if len(xError.shape) == 1: xError = xError[mask] else: # 2 rows xError = xError[:, mask] if yError is not None and yError.size != 1: if len(yError.shape) == 1: yError = yError[mask] else: # 2 rows yError = yError[:, mask] return x, y, xError, yError def _buildVertices(self, isXLog, isYLog): """Generates error bars vertices according to log scales.""" xData, yData, xError, yError = self._positiveValueFilter( isXLog, isYLog) nbLinesPerDataPts = 1 if xError is not None else 0 nbLinesPerDataPts += 1 if yError is not None else 0 nbDataPts = len(xData) # interleave coord+error, coord-error. # xError vertices first if any, then yError vertices if any. xCoords = np.empty(nbDataPts * nbLinesPerDataPts * 2, dtype=np.float32) yCoords = np.empty(nbDataPts * nbLinesPerDataPts * 2, dtype=np.float32) if xError is not None: # errors on the X axis if len(xError.shape) == 2: xErrorPlus, xErrorMinus = xError[0], xError[1] else: # numpy arrays of len 1 or len(xData) xErrorPlus, xErrorMinus = xError, xError # Interleave vertices for xError endXError = 2 * nbDataPts xCoords[0:endXError-1:2] = xData + xErrorPlus minValues = xData - xErrorMinus if isXLog: # Clip min bounds to positive value minValues[minValues <= 0] = FLOAT32_MINPOS xCoords[1:endXError:2] = minValues yCoords[0:endXError-1:2] = yData yCoords[1:endXError:2] = yData else: endXError = 0 if yError is not None: # errors on the Y axis if len(yError.shape) == 2: yErrorPlus, yErrorMinus = yError[0], yError[1] else: # numpy arrays of len 1 or len(yData) yErrorPlus, yErrorMinus = yError, yError # Interleave vertices for yError xCoords[endXError::2] = xData xCoords[endXError+1::2] = xData yCoords[endXError::2] = yData + yErrorPlus minValues = yData - yErrorMinus if isYLog: # Clip min bounds to positive value minValues[minValues <= 0] = FLOAT32_MINPOS yCoords[endXError+1::2] = minValues return xCoords, yCoords def prepare(self, isXLog, isYLog): if self._xData is None: return if self._isXLog != isXLog or self._isYLog != isYLog: # Log state has changed self._isXLog, self._isYLog = isXLog, isYLog self.discard() # discard existing VBOs if self._attribs is None: xCoords, yCoords = self._buildVertices(isXLog, isYLog) xAttrib, yAttrib = createVBOFromArrays((xCoords, yCoords)) self._attribs = xAttrib, yAttrib self._lines.xVboData, self._lines.yVboData = xAttrib, yAttrib # Set xError points using the same VBO as lines self._xErrPoints.xVboData = xAttrib.copy() self._xErrPoints.xVboData.size //= 2 self._xErrPoints.yVboData = yAttrib.copy() self._xErrPoints.yVboData.size //= 2 # Set yError points using the same VBO as lines self._yErrPoints.xVboData = xAttrib.copy() self._yErrPoints.xVboData.size //= 2 self._yErrPoints.xVboData.offset += (xAttrib.itemSize * xAttrib.size // 2) self._yErrPoints.yVboData = yAttrib.copy() self._yErrPoints.yVboData.size //= 2 self._yErrPoints.yVboData.offset += (yAttrib.itemSize * yAttrib.size // 2) def render(self, matrix, isXLog, isYLog): if self._attribs is not None: self._lines.render(matrix, isXLog, isYLog) self._xErrPoints.render(matrix, isXLog, isYLog) self._yErrPoints.render(matrix, isXLog, isYLog) def discard(self): if self._attribs is not None: self._lines.xVboData, self._lines.yVboData = None, None self._xErrPoints.xVboData, self._xErrPoints.yVboData = None, None self._yErrPoints.xVboData, self._yErrPoints.yVboData = None, None self._attribs[0].vbo.discard() self._attribs = None # curves ###################################################################### def _proxyProperty(*componentsAttributes): """Create a property to access an attribute of attribute(s). Useful for composition. Supports multiple components this way: getter returns the first found, setter sets all """ def getter(self): for compName, attrName in componentsAttributes: try: component = getattr(self, compName) except AttributeError: pass else: return getattr(component, attrName) def setter(self, value): for compName, attrName in componentsAttributes: component = getattr(self, compName) setattr(component, attrName, value) return property(getter, setter) class GLPlotCurve2D(object): def __init__(self, xData, yData, colorData=None, xError=None, yError=None, lineStyle=None, lineColor=None, lineWidth=None, lineDashPeriod=None, marker=None, markerColor=None, markerSize=None, fillColor=None): self._isXLog = False self._isYLog = False self.xData, self.yData, self.colorData = xData, yData, colorData if fillColor is not None: self.fill = _Fill2D(color=fillColor) else: self.fill = None # Compute x bounds if xError is None: self.xMin, self.xMinPos, self.xMax = minMax(xData, minPositive=True) else: # Takes the error into account if hasattr(xError, 'shape') and len(xError.shape) == 2: xErrorPlus, xErrorMinus = xError[0], xError[1] else: xErrorPlus, xErrorMinus = xError, xError self.xMin, self.xMinPos, _ = minMax(xData - xErrorMinus, minPositive=True) self.xMax = (xData + xErrorPlus).max() # Compute y bounds if yError is None: self.yMin, self.yMinPos, self.yMax = minMax(yData, minPositive=True) else: # Takes the error into account if hasattr(yError, 'shape') and len(yError.shape) == 2: yErrorPlus, yErrorMinus = yError[0], yError[1] else: yErrorPlus, yErrorMinus = yError, yError self.yMin, self.yMinPos, _ = minMax(yData - yErrorMinus, minPositive=True) self.yMax = (yData + yErrorPlus).max() self._errorBars = _ErrorBars(xData, yData, xError, yError, self.xMin, self.yMin) kwargs = {'style': lineStyle} if lineColor is not None: kwargs['color'] = lineColor if lineWidth is not None: kwargs['width'] = lineWidth if lineDashPeriod is not None: kwargs['dashPeriod'] = lineDashPeriod self.lines = _Lines2D(**kwargs) kwargs = {'marker': marker} if markerColor is not None: kwargs['color'] = markerColor if markerSize is not None: kwargs['size'] = markerSize self.points = _Points2D(**kwargs) xVboData = _proxyProperty(('lines', 'xVboData'), ('points', 'xVboData')) yVboData = _proxyProperty(('lines', 'yVboData'), ('points', 'yVboData')) colorVboData = _proxyProperty(('lines', 'colorVboData'), ('points', 'colorVboData')) useColorVboData = _proxyProperty(('lines', 'useColorVboData'), ('points', 'useColorVboData')) distVboData = _proxyProperty(('lines', 'distVboData')) lineStyle = _proxyProperty(('lines', 'style')) lineColor = _proxyProperty(('lines', 'color')) lineWidth = _proxyProperty(('lines', 'width')) lineDashPeriod = _proxyProperty(('lines', 'dashPeriod')) marker = _proxyProperty(('points', 'marker')) markerColor = _proxyProperty(('points', 'color')) markerSize = _proxyProperty(('points', 'size')) @classmethod def init(cls): _Lines2D.init() _Points2D.init() @staticmethod def _logFilterData(x, y, color=None, xLog=False, yLog=False): # Copied from Plot.py if xLog and yLog: idx = np.nonzero((x > 0) & (y > 0))[0] x = np.take(x, idx) y = np.take(y, idx) elif yLog: idx = np.nonzero(y > 0)[0] x = np.take(x, idx) y = np.take(y, idx) elif xLog: idx = np.nonzero(x > 0)[0] x = np.take(x, idx) y = np.take(y, idx) if isinstance(color, np.ndarray): colors = numpy.zeros((x.size, 4), color.dtype) colors[:, 0] = color[idx, 0] colors[:, 1] = color[idx, 1] colors[:, 2] = color[idx, 2] colors[:, 3] = color[idx, 3] else: colors = color return x, y, colors def prepare(self, isXLog, isYLog): # init only supports updating isXLog, isYLog xData, yData, color = self.xData, self.yData, self.colorData if self._isXLog != isXLog or self._isYLog != isYLog: # Log state has changed self._isXLog, self._isYLog = isXLog, isYLog # Check if data <= 0. with log scale if (isXLog and self.xMin <= 0.) or (isYLog and self.yMin <= 0.): # Filtering data is needed xData, yData, color = self._logFilterData( self.xData, self.yData, self.colorData, self._isXLog, self._isYLog) self.discard() # discard existing VBOs if self.xVboData is None: xAttrib, yAttrib, cAttrib, dAttrib = None, None, None, None if self.lineStyle == DASHED: dists = _distancesFromArrays(self.xData, self.yData) if self.colorData is None: xAttrib, yAttrib, dAttrib = createVBOFromArrays( (self.xData, self.yData, dists), prefix=(1, 1, 0), suffix=(1, 1, 0)) else: xAttrib, yAttrib, cAttrib, dAttrib = createVBOFromArrays( (self.xData, self.yData, self.colorData, dists), prefix=(1, 1, 0, 0), suffix=(1, 1, 0, 0)) elif self.colorData is None: xAttrib, yAttrib = createVBOFromArrays( (self.xData, self.yData), prefix=(1, 1), suffix=(1, 1)) else: xAttrib, yAttrib, cAttrib = createVBOFromArrays( (self.xData, self.yData, self.colorData), prefix=(1, 1, 0)) # Shrink VBO self.xVboData = xAttrib.copy() self.xVboData.size -= 2 self.xVboData.offset += xAttrib.itemSize self.yVboData = yAttrib.copy() self.yVboData.size -= 2 self.yVboData.offset += yAttrib.itemSize self.colorVboData = cAttrib self.useColorVboData = cAttrib is not None self.distVboData = dAttrib if self.fill is not None: xData = self.xData[:] xData.shape = xData.size, 1 zero = np.array((1e-32,), dtype=self.yData.dtype) # Add one point before data: (x0, 0.) xAttrib.vbo.update(xData[0], xAttrib.offset, xData[0].itemsize) yAttrib.vbo.update(zero, yAttrib.offset, zero.itemsize) # Add one point after data: (xN, 0.) xAttrib.vbo.update(xData[-1], xAttrib.offset + (xAttrib.size - 1) * xAttrib.itemSize, xData[-1].itemsize) yAttrib.vbo.update(zero, yAttrib.offset + (yAttrib.size - 1) * yAttrib.itemSize, zero.itemsize) self.fill.xFillVboData = xAttrib self.fill.yFillVboData = yAttrib self.fill.xMin, self.fill.yMin = self.xMin, self.yMin self.fill.xMax, self.fill.yMax = self.xMax, self.yMax self._errorBars.prepare(isXLog, isYLog) def render(self, matrix, isXLog, isYLog): self.prepare(isXLog, isYLog) if self.fill is not None: self.fill.render(matrix, isXLog, isYLog) self._errorBars.render(matrix, isXLog, isYLog) self.lines.render(matrix, isXLog, isYLog) self.points.render(matrix, isXLog, isYLog) def discard(self): if self.xVboData is not None: self.xVboData.vbo.discard() self.xVboData = None self.yVboData = None self.colorVboData = None self.distVboData = None self._errorBars.discard() def pick(self, xPickMin, yPickMin, xPickMax, yPickMax): """Perform picking on the curve according to its rendering. The picking area is [xPickMin, xPickMax], [yPickMin, yPickMax]. In case a segment between 2 points with indices i, i+1 is picked, only its lower index end point (i.e., i) is added to the result. In case an end point with index i is picked it is added to the result, and the segment [i-1, i] is not tested for picking. :return: The indices of the picked data :rtype: list of int """ if (self.marker is None and self.lineStyle is None) or \ self.xMin > xPickMax or xPickMin > self.xMax or \ self.yMin > yPickMax or yPickMin > self.yMax: # Note: With log scale the bounding box is too large if # some data <= 0. return None elif self.lineStyle is not None: # Using Cohen-Sutherland algorithm for line clipping codes = ((self.yData > yPickMax) << 3) | \ ((self.yData < yPickMin) << 2) | \ ((self.xData > xPickMax) << 1) | \ (self.xData < xPickMin) # Add all points that are inside the picking area indices = np.nonzero(codes == 0)[0].tolist() # Segment that might cross the area with no end point inside it segToTestIdx = np.nonzero((codes[:-1] != 0) & (codes[1:] != 0) & ((codes[:-1] & codes[1:]) == 0))[0] TOP, BOTTOM, RIGHT, LEFT = (1 << 3), (1 << 2), (1 << 1), (1 << 0) for index in segToTestIdx: if index not in indices: x0, y0 = self.xData[index], self.yData[index] x1, y1 = self.xData[index + 1], self.yData[index + 1] code1 = codes[index + 1] # check for crossing with horizontal bounds # y0 == y1 is a never event: # => pt0 and pt1 in same vertical area are not in segToTest if code1 & TOP: x = x0 + (x1 - x0) * (yPickMax - y0) / (y1 - y0) elif code1 & BOTTOM: x = x0 + (x1 - x0) * (yPickMin - y0) / (y1 - y0) else: x = None # No horizontal bounds intersection test if x is not None and x >= xPickMin and x <= xPickMax: # Intersection indices.append(index) else: # check for crossing with vertical bounds # x0 == x1 is a never event (see remark for y) if code1 & RIGHT: y = y0 + (y1 - y0) * (xPickMax - x0) / (x1 - x0) elif code1 & LEFT: y = y0 + (y1 - y0) * (xPickMin - x0) / (x1 - x0) else: y = None # No vertical bounds intersection test if y is not None and y >= yPickMin and y <= yPickMax: # Intersection indices.append(index) indices.sort() else: indices = np.nonzero((self.xData >= xPickMin) & (self.xData <= xPickMax) & (self.yData >= yPickMin) & (self.yData <= yPickMax))[0].tolist() return indices # main ######################################################################## if __name__ == "__main__": from OpenGL.GLUT import * # noqa from .GLSupport import mat4Ortho glutInit(sys.argv) glutInitDisplayString("double rgba stencil") glutInitWindowSize(800, 600) glutInitWindowPosition(0, 0) glutCreateWindow('Line Plot Test') # GL init glClearColor(1., 1., 1., 1.) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) GLPlotCurve2D.init() # Plot data init xData1 = np.arange(10, dtype=np.float32) * 100 xData1[3] -= 100 yData1 = np.asarray(np.random.random(10) * 500, dtype=np.float32) yData1 = np.array((100, 100, 200, 400, 100, 100, 400, 400, 401, 400), dtype=np.float32) curve1 = GLPlotCurve2D(xData1, yData1, marker='o', lineStyle='--', fillColor=(1., 0., 0., 0.5)) xData2 = np.arange(1000, dtype=np.float32) * 1 yData2 = np.asarray(500 + np.random.random(1000) * 500, dtype=np.float32) curve2 = GLPlotCurve2D(xData2, yData2, lineStyle='', marker='s') projMatrix = mat4Ortho(0, 1000, 0, 1000, -1, 1) def display(): glClear(GL_COLOR_BUFFER_BIT) curve1.render(projMatrix, False, False) curve2.render(projMatrix, False, False) glutSwapBuffers() def resize(width, height): glViewport(0, 0, width, height) def idle(): glutPostRedisplay() glutDisplayFunc(display) glutReshapeFunc(resize) # glutIdleFunc(idle) sys.exit(glutMainLoop()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotFrame.py0000644000000000000000000010764414741736366023541 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ from __future__ import with_statement __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This modules provides the rendering of plot titles, axes and grid. """ # TODO # keep aspect ratio managed here? # smarter dirty flag handling? # import ###################################################################### import logging import numpy as np import math import weakref import warnings from collections import namedtuple from .gl import * # noqa from .GLSupport import mat4Ortho, clamp, \ FLOAT32_SAFE_MIN, FLOAT32_MINPOS, FLOAT32_SAFE_MAX from .GLProgram import GLProgram from .GLText import Text2D, CENTER, BOTTOM, TOP, LEFT, RIGHT, ROTATE_270 from .LabelLayout import niceNumbersAdaptative, niceNumbersForLog10 # PlotAxis #################################################################### class PlotAxis(object): """Represents a 1D axis of the plot. This class is intended to be used with :class:`GLPlotFrame`. """ def __init__(self, plot, tickLength=(0., 0.), labelAlign=CENTER, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=CENTER, titleRotate=0, titleOffset=(0., 0.)): self._ticks = None self._plot = weakref.ref(plot) self._isLog = False self._dataRange = 1., 100. self._displayCoords = (0., 0.), (1., 0.) self._title = '' self._tickLength = tickLength self._labelAlign = labelAlign self._labelVAlign = labelVAlign self._titleAlign = titleAlign self._titleVAlign = titleVAlign self._titleRotate = titleRotate self._titleOffset = titleOffset @property def dataRange(self): """The range of the data represented on the axis as a tuple of 2 floats: (min, max).""" return self._dataRange @dataRange.setter def dataRange(self, dataRange): assert len(dataRange) == 2 assert dataRange[0] <= dataRange[1] dataRange = float(dataRange[0]), float(dataRange[1]) if dataRange != self._dataRange: self._dataRange = dataRange self._dirtyTicks() @property def isLog(self): """Whether the axis is using a log10 scale or not as a bool.""" return self._isLog @isLog.setter def isLog(self, isLog): isLog = bool(isLog) if isLog != self._isLog: self._isLog = isLog self._dirtyTicks() @property def displayCoords(self): """The coordinates of the start and end points of the axis in display space (i.e., in pixels) as a tuple of 2 tuples of 2 floats: ((x0, y0), (x1, y1)). """ return self._displayCoords @displayCoords.setter def displayCoords(self, displayCoords): assert len(displayCoords) == 2 assert len(displayCoords[0]) == 2 assert len(displayCoords[1]) == 2 displayCoords = tuple(displayCoords[0]), tuple(displayCoords[1]) if displayCoords != self._displayCoords: self._displayCoords = displayCoords self._dirtyTicks() @property def title(self): """The text label associated with this axis as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title plot = self._plot() if plot is not None: plot._dirty() @property def ticks(self): """Ticks as tuples: ((x, y) in display, dataPos, textLabel).""" if self._ticks is None: self._ticks = tuple(self._ticksGenerator()) return self._ticks def getVerticesAndLabels(self): """Create the list of vertices for axis and associated text labels. :returns: A tuple: List of 2D line vertices, List of Text2D labels. """ vertices = list(self.displayCoords) # Add start and end points labels = [] tickLabelsSize = [0., 0.] xTickLength, yTickLength = self._tickLength for (xPixel, yPixel), dataPos, text in self.ticks: if text is None: tickScale = 0.5 else: tickScale = 1. label = Text2D(text=text, x=xPixel - xTickLength, y=yPixel - yTickLength, align=self._labelAlign, valign=self._labelVAlign) width, height = label.size if width > tickLabelsSize[0]: tickLabelsSize[0] = width if height > tickLabelsSize[1]: tickLabelsSize[1] = height labels.append(label) vertices.append((xPixel, yPixel)) vertices.append((xPixel + tickScale * xTickLength, yPixel + tickScale * yTickLength)) (x0, y0), (x1, y1) = self.displayCoords xAxisCenter = 0.5 * (x0 + x1) yAxisCenter = 0.5 * (y0 + y1) xOffset, yOffset = self._titleOffset # Adaptative title positioning: # tickNorm = math.sqrt(xTickLength ** 2 + yTickLength ** 2) # xOffset = -tickLabelsSize[0] * xTickLength / tickNorm # xOffset -= 3 * xTickLength # yOffset = -tickLabelsSize[1] * yTickLength / tickNorm # yOffset -= 3 * yTickLength axisTitle = Text2D(text=self.title, x=xAxisCenter + xOffset, y=yAxisCenter + yOffset, align=self._titleAlign, valign=self._titleVAlign, rotate=self._titleRotate) labels.append(axisTitle) return vertices, labels def _dirtyTicks(self): """Mark ticks as dirty and notify listener (i.e., background).""" self._ticks = None plot = self._plot() if plot is not None: plot._dirty() @staticmethod def _frange(start, stop, step): """range for float (including stop).""" while start <= stop: yield start start += step def _ticksGenerator(self): """Generator of ticks as tuples: ((x, y) in display, dataPos, textLabel). """ dataMin, dataMax = self.dataRange if self.isLog and dataMin <= 0.: warnings.warn( 'Getting ticks while isLog=True and dataRange[0]<=0.', RuntimeWarning) dataMin = 1. if dataMax < dataMin: dataMax = 1. if dataMin != dataMax: # data range is not null (x0, y0), (x1, y1) = self.displayCoords if self.isLog: logMin, logMax = math.log10(dataMin), math.log10(dataMax) tickMin, tickMax, step = niceNumbersForLog10(logMin, logMax) xScale = (x1 - x0) / (logMax - logMin) yScale = (y1 - y0) / (logMax - logMin) for logPos in self._frange(tickMin, tickMax, step): if logPos >= logMin and logPos <= logMax: dataPos = 10 ** logPos xPixel = x0 + (logPos - logMin) * xScale yPixel = y0 + (logPos - logMin) * yScale text = '1e%+03d' % logPos yield ((xPixel, yPixel), dataPos, text) if step == 1: ticks = list(self._frange(tickMin, tickMax, step))[:-1] for logPos in ticks: dataOrigPos = 10 ** logPos for index in range(2, 10): dataPos = dataOrigPos * index if dataPos >= dataMin and dataPos <= dataMax: logSubPos = math.log10(dataPos) xPixel = x0 + (logSubPos - logMin) * xScale yPixel = y0 + (logSubPos - logMin) * yScale yield ((xPixel, yPixel), dataPos, None) else: xScale = (x1 - x0) / (dataMax - dataMin) yScale = (y1 - y0) / (dataMax - dataMin) nbPixels = math.sqrt(pow(x1 - x0, 2) + pow(y1 - y0, 2)) # Density of 1.3 label per 92 pixels # i.e., 1.3 label per inch on a 92 dpi screen tickMin, tickMax, step, nbFrac = niceNumbersAdaptative( dataMin, dataMax, nbPixels, 1.3 / 92) for dataPos in self._frange(tickMin, tickMax, step): if dataPos >= dataMin and dataPos <= dataMax: xPixel = x0 + (dataPos - dataMin) * xScale yPixel = y0 + (dataPos - dataMin) * yScale if nbFrac == 0: text = '%g' % dataPos else: text = ('%.' + str(nbFrac) + 'f') % dataPos yield ((xPixel, yPixel), dataPos, text) # GLPlotFrame ################################################################# class GLPlotFrame(object): """Base class for rendering a 2D frame surrounded by axes.""" _TICK_LENGTH_IN_PIXELS = 5 _LINE_WIDTH = 1 _SHADERS = { 'vertex': """ attribute vec2 position; uniform mat4 matrix; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); } """, 'fragment': """ uniform vec4 color; uniform float tickFactor; /* = 1./tickLength or 0. for solid line */ void main(void) { if (mod(tickFactor * (gl_FragCoord.x + gl_FragCoord.y), 2.) < 1.) { gl_FragColor = color; } else { discard; } } """ } _Margins = namedtuple('Margins', ('left', 'right', 'top', 'bottom')) def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ self._renderResources = None self._margins = self._Margins(**margins) self.axes = [] # List of PlotAxis to be updated by subclasses self._grid = False self._size = 0., 0. self._title = '' self._baseVectors = (1., 0.), (0., 1.) self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None @property def isDirty(self): """True if it need to refresh graphic rendering, False otherwise.""" return (self._renderResources is None or self._transformedDataRanges is None or self._transformedDataProjMat is None or self._transformedDataY2ProjMat is None) GRID_NONE = 0 GRID_MAIN_TICKS = 1 GRID_SUB_TICKS = 2 GRID_ALL_TICKS = (GRID_MAIN_TICKS + GRID_SUB_TICKS) @property def margins(self): """Margins in pixels around the plot.""" return self._margins @property def grid(self): """Grid display mode: - 0: No grid. - 1: Grid on main ticks. - 2: Grid on sub-ticks for log scale axes. - 3: Grid on main and sub ticks.""" return self._grid @grid.setter def grid(self, grid): assert grid in (self.GRID_NONE, self.GRID_MAIN_TICKS, self.GRID_SUB_TICKS, self.GRID_ALL_TICKS) if grid != self._grid: self._grid = grid self._dirty() @property def size(self): """Size in pixels of the plot area including margins.""" return self._size @size.setter def size(self, size): assert len(size) == 2 size = tuple(size) if size != self._size: self._size = size self._dirty() @property def plotOrigin(self): """Plot area origin (left, top) in widget coordinates in pixels.""" return self.margins.left, self.margins.top @property def plotSize(self): """Plot area size (width, height) in pixels.""" w, h = self.size w -= self.margins.left + self.margins.right h -= self.margins.top + self.margins.bottom return w, h _DataRanges = namedtuple('dataRanges', ('x', 'y', 'y2')) @property def transformedDataRanges(self): """Bounds of the displayed area in transformed data coordinates (i.e., log scale applied if any as well as skew) 3-tuple of 2-tuple (min, max) for each axis: x, y, y2. """ if self._transformedDataRanges is None: (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = self.dataRanges if self.xAxis.isLog: try: xMin = math.log10(xMin) except ValueError: print('xMin: warning log10({0})'.format(xMin)) xMin = 0. try: xMax = math.log10(xMax) except ValueError: print('xMax: warning log10({0})'.format(xMax)) xMax = 0. if self.yAxis.isLog: try: yMin = math.log10(yMin) except ValueError: print('yMin: warning log10({0})'.format(yMin)) yMin = 0. try: yMax = math.log10(yMax) except ValueError: print('yMax: warning log10({0})'.format(yMax)) yMax = 0. try: y2Min = math.log10(y2Min) except ValueError: print('yMin: warning log10({0})'.format(y2Min)) y2Min = 0. try: y2Max = math.log10(y2Max) except ValueError: print('yMax: warning log10({0})'.format(y2Max)) y2Max = 0. # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = np.array(((xx, yx), (xy, yy))) corners = [(xMin, yMin), (xMin, yMax), (xMax, yMin), (xMax, yMax), (xMin, y2Min), (xMin, y2Max), (xMax, y2Min), (xMax, y2Max)] corners = np.array( [np.dot(skew_mat, corner) for corner in corners], dtype=np.float32) xMin, xMax = corners[:, 0].min(), corners[:, 0].max() yMin, yMax = corners[0:4, 1].min(), corners[0:4, 1].max() y2Min, y2Max = corners[4:, 1].min(), corners[4:, 1].max() self._transformedDataRanges = self._DataRanges( (xMin, xMax), (yMin, yMax), (y2Min, y2Max)) return self._transformedDataRanges @property def transformedDataProjMat(self): """Orthographic projection matrix for rendering transformed data :type: numpy.matrix """ if self._transformedDataProjMat is None: xMin, xMax = self.transformedDataRanges.x yMin, yMax = self.transformedDataRanges.y if self.isYAxisInverted: mat = mat4Ortho(xMin, xMax, yMax, yMin, 1, -1) else: mat = mat4Ortho(xMin, xMax, yMin, yMax, 1, -1) # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors mat = mat * np.matrix(( (xx, yx, 0., 0.), (xy, yy, 0., 0.), (0., 0., 1., 0.), (0., 0., 0., 1.)), dtype=np.float32) self._transformedDataProjMat = mat return self._transformedDataProjMat @property def transformedDataY2ProjMat(self): """Orthographic projection matrix for rendering transformed data for the 2nd Y axis :type: numpy.matrix """ if self._transformedDataY2ProjMat is None: xMin, xMax = self.transformedDataRanges.x y2Min, y2Max = self.transformedDataRanges.y2 if self.isYAxisInverted: mat = mat4Ortho(xMin, xMax, y2Max, y2Min, 1, -1) else: mat = mat4Ortho(xMin, xMax, y2Min, y2Max, 1, -1) # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors mat = mat * np.matrix(( (xx, yx, 0., 0.), (xy, yy, 0., 0.), (0., 0., 1., 0.), (0., 0., 0., 1.)), dtype=np.float32) self._transformedDataY2ProjMat = mat return self._transformedDataY2ProjMat def dataToPixel(self, x, y, axis='left'): """Convert data coordinate to widget pixel coordinate. """ assert axis in ('left', 'right') trBounds = self.transformedDataRanges if self.xAxis.isLog: if x < FLOAT32_MINPOS: return None xDataTr = math.log10(x) else: xDataTr = x if self.yAxis.isLog: if y < FLOAT32_MINPOS: return None yDataTr = math.log10(y) else: yDataTr = y # Non-orthogonal axes if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = np.array(((xx, yx), (xy, yy))) coords = np.dot(skew_mat, np.array((xDataTr, yDataTr))) xDataTr, yDataTr = coords plotWidth, plotHeight = self.plotSize xPixel = int(self.margins.left + plotWidth * (xDataTr - trBounds.x[0]) / (trBounds.x[1] - trBounds.x[0])) usedAxis = trBounds.y if axis == "left" else trBounds.y2 yOffset = (plotHeight * (yDataTr - usedAxis[0]) / (usedAxis[1] - usedAxis[0])) if self.isYAxisInverted: yPixel = int(self.margins.top + yOffset) else: yPixel = int(self.size[1] - self.margins.bottom - yOffset) return xPixel, yPixel def pixelToData(self, x, y, axis="left"): """Convert pixel position to data coordinates. :param float x: X coord :param float y: Y coord :param str axis: Y axis to use in ('left', 'right') :return: (x, y) position in data coords """ assert axis in ("left", "right") plotWidth, plotHeight = self.plotSize trBounds = self.transformedDataRanges xData = (x - self.margins.left + 0.5) / float(plotWidth) xData = trBounds.x[0] + xData * (trBounds.x[1] - trBounds.x[0]) usedAxis = trBounds.y if axis == "left" else trBounds.y2 if self.isYAxisInverted: yData = (y - self.margins.top + 0.5) / float(plotHeight) yData = usedAxis[0] + yData * (usedAxis[1] - usedAxis[0]) else: yData = self.size[1] - self.margins.bottom - y - 0.5 yData /= float(plotHeight) yData = usedAxis[0] + yData * (usedAxis[1] - usedAxis[0]) # non-orthogonal axis if self.baseVectors != self.DEFAULT_BASE_VECTORS: (xx, xy), (yx, yy) = self.baseVectors skew_mat = np.array(((xx, yx), (xy, yy))) skew_mat = np.linalg.inv(skew_mat) coords = np.dot(skew_mat, np.array((xData, yData))) xData, yData = coords if self.xAxis.isLog: xData = pow(10, xData) if self.yAxis.isLog: yData = pow(10, yData) return xData, yData @property def title(self): """Main title as a str in latin-1.""" return self._title @title.setter def title(self, title): if title != self._title: self._title = title self._dirty() # In-place update # if self._renderResources is not None: # self._renderResources[-1][-1].text = title def _dirty(self): # When Text2D require discard we need to handle it self._renderResources = None self._transformedDataRanges = None self._transformedDataProjMat = None self._transformedDataY2ProjMat = None def _updateAxes(self): """Override in subclass to update PlotAxis in axes.""" pass def _buildGridVertices(self): if self._grid == self.GRID_NONE: return [] elif self._grid == self.GRID_MAIN_TICKS: test = lambda text: text is not None elif self._grid == self.GRID_SUB_TICKS: test = lambda text: text is None elif self._grid == self.GRID_ALL_TICKS: test = lambda text: True else: logging.warning('Wrong grid mode: %d' % self._grid) return [] return self._buildGridVerticesWithTest(test) def _buildGridVerticesWithTest(self, test): """Override in subclass to generate grid vertices""" return [] def _buildVerticesAndLabels(self): self._updateAxes() # To fill with copy of axes lists vertices = [] labels = [] for axis in self.axes: axisVertices, axisLabels = axis.getVerticesAndLabels() vertices += axisVertices labels += axisLabels vertices = np.array(vertices, dtype=np.float32) # Add main title xTitle = (self.size[0] + self.margins.left - self.margins.right) // 2 yTitle = self.margins.top - self._TICK_LENGTH_IN_PIXELS labels.append(Text2D(text=self.title, x=xTitle, y=yTitle, align=CENTER, valign=BOTTOM)) # grid gridVertices = np.array(self._buildGridVertices(), dtype=np.float32) self._renderResources = (vertices, gridVertices, labels) _program = GLProgram(_SHADERS['vertex'], _SHADERS['fragment']) def render(self): if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) glViewport(0, 0, width, height) prog = self._program prog.use() glLineWidth(self._LINE_WIDTH) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matProj) glUniform4f(prog.uniforms['color'], 0., 0., 0., 1.) glUniform1f(prog.uniforms['tickFactor'], 0.) glEnableVertexAttribArray(prog.attributes['position']) glVertexAttribPointer(prog.attributes['position'], 2, GL_FLOAT, GL_FALSE, 0, vertices) glDrawArrays(GL_LINES, 0, len(vertices)) for label in labels: label.render(matProj) def renderGrid(self): if self._grid == self.GRID_NONE: return if self._renderResources is None: self._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources width, height = self.size matProj = mat4Ortho(0, width, height, 0, 1, -1) glViewport(0, 0, width, height) prog = self._program prog.use() glLineWidth(self._LINE_WIDTH) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matProj) glUniform4f(prog.uniforms['color'], 0.7, 0.7, 0.7, 1.) glUniform1f(prog.uniforms['tickFactor'], 0.) #1/2.) # 1/tickLen glEnableVertexAttribArray(prog.attributes['position']) glVertexAttribPointer(prog.attributes['position'], 2, GL_FLOAT, GL_FALSE, 0, gridVertices) glDrawArrays(GL_LINES, 0, len(gridVertices)) # GLPlotFrame2D ############################################################### class GLPlotFrame2D(GLPlotFrame): def __init__(self, margins): """ :param margins: The margins around plot area for axis and labels. :type margins: dict with 'left', 'right', 'top', 'bottom' keys and values as ints. """ super(GLPlotFrame2D, self).__init__(margins) self.axes.append(PlotAxis(self, tickLength=(0., -5.), labelAlign=CENTER, labelVAlign=TOP, titleAlign=CENTER, titleVAlign=TOP, titleRotate=0, titleOffset=(0, self.margins.bottom // 2))) self._x2AxisCoords = () self.axes.append(PlotAxis(self, tickLength=(5., 0.), labelAlign=RIGHT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=BOTTOM, titleRotate=ROTATE_270, titleOffset=(-3 * self.margins.left // 4, 0))) self._y2Axis = PlotAxis(self, tickLength=(-5., 0.), labelAlign=LEFT, labelVAlign=CENTER, titleAlign=CENTER, titleVAlign=TOP, titleRotate=ROTATE_270, titleOffset=(3 * self.margins.right // 4, 0)) self._isYAxisInverted = False self._dataRanges = { 'x': (1., 100.), 'y': (1., 100.), 'y2': (1., 100.)} @property def xAxis(self): return self.axes[0] @property def yAxis(self): return self.axes[1] @property def y2Axis(self): return self._y2Axis @property def isY2Axis(self): """Whether to display the left Y axis or not.""" return len(self.axes) == 3 @isY2Axis.setter def isY2Axis(self, isY2Axis): if isY2Axis != self.isY2Axis: if isY2Axis: self.axes.append(self._y2Axis) else: self.axes = self.axes[:2] self._dirty() @property def isYAxisInverted(self): """Whether Y axes are inverted or not as a bool.""" return self._isYAxisInverted @isYAxisInverted.setter def isYAxisInverted(self, value): value = bool(value) if value != self._isYAxisInverted: self._isYAxisInverted = value self._dirty() DEFAULT_BASE_VECTORS = (1., 0.), (0., 1.) """Values of baseVectors for orthogonal axes.""" @property def baseVectors(self): """Coordinates of the X and Y axes in the orthogonal plot coords. Raises ValueError if corresponding matrix is singular. 2 tuples of 2 floats: (xx, xy), (yx, yy) """ return self._baseVectors @baseVectors.setter def baseVectors(self, baseVectors): self._dirty() (xx, xy), (yx, yy) = baseVectors vectors = (float(xx), float(xy)), (float(yx), float(yy)) det = (vectors[0][0] * vectors[1][1] - vectors[1][0] * vectors[0][1]) if det == 0.: raise ValueError("Singular matrix for base vectors: " + str(vectors)) if vectors != self._baseVectors: self._baseVectors = vectors self._dirty() @property def dataRanges(self): """Ranges of data visible in the plot on x, y and y2 axes. This is different to the axes range when axes are not orthogonal. Type: ((xMin, xMax), (yMin, yMax), (y2Min, y2Max)) """ return self._DataRanges(self._dataRanges['x'], self._dataRanges['y'], self._dataRanges['y2']) @staticmethod def _clipToSafeRange(min_, max_, isLog): # Clip range if needed minLimit = FLOAT32_MINPOS if isLog else FLOAT32_SAFE_MIN min_ = clamp(min_, minLimit, FLOAT32_SAFE_MAX) max_ = clamp(max_, minLimit, FLOAT32_SAFE_MAX) assert min_ < max_ return min_, max_ def setDataRanges(self, x=None, y=None, y2=None): """Set data range over each axes. The provided ranges are clipped to possible values (i.e., 32 float range + positive range for log scale). :param x: (min, max) data range over X axis :param y: (min, max) data range over Y axis :param y2: (min, max) data range over Y2 axis """ if x is not None: self._dataRanges['x'] = \ self._clipToSafeRange(x[0], x[1], self.xAxis.isLog) if y is not None: self._dataRanges['y'] = \ self._clipToSafeRange(y[0], y[1], self.yAxis.isLog) if y2 is not None: self._dataRanges['y2'] = \ self._clipToSafeRange(y2[0], y2[1], self.y2Axis.isLog) self.xAxis.dataRange = self._dataRanges['x'] self.yAxis.dataRange = self._dataRanges['y'] self.y2Axis.dataRange = self._dataRanges['y2'] def _updateAxes(self): width, height = self.size xCoords = (self.margins.left - 0.5, width - self.margins.right + 0.5) yCoords = (height - self.margins.bottom + 0.5, self.margins.top - 0.5) self.axes[0].displayCoords = ((xCoords[0], yCoords[0]), (xCoords[1], yCoords[0])) self._x2AxisCoords = ((xCoords[0], yCoords[1]), (xCoords[1], yCoords[1])) if self.isYAxisInverted: # Y axes are inverted, axes coordinates are inverted yCoords = yCoords[1], yCoords[0] self.axes[1].displayCoords = ((xCoords[0], yCoords[0]), (xCoords[0], yCoords[1])) self._y2Axis.displayCoords = ((xCoords[1], yCoords[0]), (xCoords[1], yCoords[1])) def _buildGridVerticesWithTest(self, test): vertices = [] if self.baseVectors == self.DEFAULT_BASE_VECTORS: for axis in self.axes: for (xPixel, yPixel), data, text in axis.ticks: if test(text): vertices.append((xPixel, yPixel)) if axis == self.xAxis: vertices.append((xPixel, self.margins.top)) elif axis == self.yAxis: vertices.append((self.size[0] - self.margins.right, yPixel)) else: # axis == self.y2Axis vertices.append((self.margins.left, yPixel)) else: # Get plot corners in data coords plotLeft, plotTop = self.plotOrigin plotWidth, plotHeight = self.plotSize corners = [(plotLeft, plotTop), (plotLeft, plotTop + plotHeight), (plotLeft + plotWidth, plotTop + plotHeight), (plotLeft + plotWidth, plotTop)] for axis in self.axes: if axis == self.xAxis: cornersInData = np.array([ self.pixelToData(x, y) for (x, y) in corners]) borders = ((cornersInData[0], cornersInData[3]), # top (cornersInData[1], cornersInData[0]), # left (cornersInData[3], cornersInData[2])) # right for (xPixel, yPixel), data, text in axis.ticks: if test(text): for (x0, y0), (x1, y1) in borders: if data >= min(x0, x1) and data < max(x0, x1): yIntersect = (data - x0) * \ (y1 - y0) / (x1 - x0) + y0 pixelPos = self.dataToPixel( data, yIntersect) if pixelPos is not None: vertices.append((xPixel, yPixel)) vertices.append(pixelPos) break # Stop at first intersection else: # y or y2 axes if axis == self.yAxis: axis_name = 'left' cornersInData = np.array([ self.pixelToData(x, y) for (x, y) in corners]) borders = ( (cornersInData[3], cornersInData[2]), # right (cornersInData[0], cornersInData[3]), # top (cornersInData[2], cornersInData[1])) # bottom else: # axis == self.y2Axis axis_name = 'right' corners = np.array([self.pixelToData( x, y, axis='right') for (x, y) in corners]) borders = ( (cornersInData[1], cornersInData[0]), # left (cornersInData[0], cornersInData[3]), # top (cornersInData[2], cornersInData[1])) # bottom for (xPixel, yPixel), data, text in axis.ticks: if test(text): for (x0, y0), (x1, y1) in borders: if data >= min(y0, y1) and data < max(y0, y1): xIntersect = (data - y0) * \ (x1 - x0) / (y1 - y0) + x0 pixelPos = self.dataToPixel( xIntersect, data, axis=axis_name) if pixelPos is not None: vertices.append((xPixel, yPixel)) vertices.append(pixelPos) break # Stop at first intersection return vertices def _buildVerticesAndLabels(self): super(GLPlotFrame2D, self)._buildVerticesAndLabels() vertices, gridVertices, labels = self._renderResources # Adds vertices for borders without axis extraVertices = [] extraVertices += self._x2AxisCoords if not self.isY2Axis: extraVertices += self._y2Axis.displayCoords extraVertices = np.asarray(extraVertices, dtype=np.float32) vertices = np.append(vertices, extraVertices, axis=0) self._renderResources = (vertices, gridVertices, labels) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotImage.py0000644000000000000000000005514214741736366023524 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a class to render 2D array as a colormap or RGB(A) image """ # import ###################################################################### from .gl import * # noqa import math from .GLSupport import mat4Translate, mat4Scale, FLOAT32_MINPOS from .GLProgram import GLProgram from .GLTexture import Image try: from ....ctools import minMax except ImportError: from PyMca5.PyMcaGraph.ctools import minMax # colormap #################################################################### class _GLPlotData2D(object): def __init__(self, data, origin, scale): self.data = data assert len(origin) == 2 self.origin = tuple(origin) assert len(scale) == 2 self.scale = tuple(scale) def pick(self, x, y): if (self.xMin <= x and x <= self.xMax and self.yMin <= y and y <= self.yMax): ox, oy = self.origin sx, sy = self.scale col = int((x - ox) / sx) row = int((y - oy) / sy) return col, row else: return None @property def xMin(self): ox, sx = self.origin[0], self.scale[0] return ox if sx >= 0. else ox + sx * self.data.shape[1] @property def yMin(self): oy, sy = self.origin[1], self.scale[1] return oy if sy >= 0. else oy + sy * self.data.shape[0] @property def xMax(self): ox, sx = self.origin[0], self.scale[0] return ox + sx * self.data.shape[1] if sx >= 0. else ox @property def yMax(self): oy, sy = self.origin[1], self.scale[1] return oy + sy * self.data.shape[0] if sy >= 0. else oy def discard(self): pass def prepare(self): pass def render(self, matrix): pass class GLPlotColormap(_GLPlotData2D): _SHADERS = { 'linear': { 'vertex': """ #version 120 uniform mat4 matrix; attribute vec2 texCoords; attribute vec2 position; varying vec2 coords; void main(void) { coords = texCoords; gl_Position = matrix * vec4(position, 0.0, 1.0); } """, 'fragTransform': """ vec2 textureCoords(void) { return coords; } """}, 'log': { 'vertex': """ #version 120 attribute vec2 position; uniform mat4 matrix; uniform mat4 matOffset; uniform bvec2 isLog; varying vec2 coords; const float oneOverLog10 = 0.43429448190325176; void main(void) { vec4 dataPos = matOffset * vec4(position, 0.0, 1.0); if (isLog.x) { dataPos.x = oneOverLog10 * log(dataPos.x); } if (isLog.y) { dataPos.y = oneOverLog10 * log(dataPos.y); } coords = dataPos.xy; gl_Position = matrix * dataPos; } """, 'fragTransform': """ uniform bvec2 isLog; uniform struct { vec2 oneOverRange; vec2 originOverRange; } bounds; vec2 textureCoords(void) { vec2 pos = coords; if (isLog.x) { pos.x = pow(10., coords.x); } if (isLog.y) { pos.y = pow(10., coords.y); } return pos * bounds.oneOverRange - bounds.originOverRange; // TODO texture coords in range different from [0, 1] } """}, 'fragment': """ #version 120 #define CMAP_GRAY 0 #define CMAP_R_GRAY 1 #define CMAP_RED 2 #define CMAP_GREEN 3 #define CMAP_BLUE 4 #define CMAP_TEMP 5 uniform sampler2D data; uniform struct { int id; bool isLog; float min; float oneOverRange; } cmap; varying vec2 coords; %s vec4 cmapGray(float normValue) { return vec4(normValue, normValue, normValue, 1.); } vec4 cmapReversedGray(float normValue) { float invValue = 1. - normValue; return vec4(invValue, invValue, invValue, 1.); } vec4 cmapRed(float normValue) { return vec4(normValue, 0., 0., 1.); } vec4 cmapGreen(float normValue) { return vec4(0., normValue, 0., 1.); } vec4 cmapBlue(float normValue) { return vec4(0., 0., normValue, 1.); } //red: 0.5->0.75: 0->1 //green: 0.->0.25: 0->1; 0.75->1.: 1->0 //blue: 0.25->0.5: 1->0 vec4 cmapTemperature(float normValue) { float red = clamp(4. * normValue - 2., 0., 1.); float green = 1. - clamp(4. * abs(normValue - 0.5) - 1., 0., 1.); float blue = 1. - clamp(4. * normValue - 1., 0., 1.); return vec4(red, green, blue, 1.); } const float oneOverLog10 = 0.43429448190325176; void main(void) { float value = texture2D(data, textureCoords()).r; if (cmap.isLog) { if (value > 0.) { value = clamp(cmap.oneOverRange * (oneOverLog10 * log(value) - cmap.min), 0., 1.); } else { value = 0.; } } else { /*Linear mapping*/ value = clamp(cmap.oneOverRange * (value - cmap.min), 0., 1.); } if (cmap.id == CMAP_GRAY) { gl_FragColor = cmapGray(value); } else if (cmap.id == CMAP_R_GRAY) { gl_FragColor = cmapReversedGray(value); } else if (cmap.id == CMAP_RED) { gl_FragColor = cmapRed(value); } else if (cmap.id == CMAP_GREEN) { gl_FragColor = cmapGreen(value); } else if (cmap.id == CMAP_BLUE) { gl_FragColor = cmapBlue(value); } else if (cmap.id == CMAP_TEMP) { gl_FragColor = cmapTemperature(value); } } """ } _SHADER_CMAP_IDS = { 'gray': 0, 'reversed gray': 1, 'red': 2, 'green': 3, 'blue': 4, 'temperature': 5 } COLORMAPS = tuple(_SHADER_CMAP_IDS.keys()) _DATA_TEX_UNIT = 0 _INTERNAL_FORMATS = { np.dtype(np.float32): GL_R32F, # Use normalized integer for unsigned int formats np.dtype(np.uint16): GL_R16, np.dtype(np.uint8): GL_R8, } _linearProgram = GLProgram(_SHADERS['linear']['vertex'], _SHADERS['fragment'] % _SHADERS['linear']['fragTransform']) _logProgram = GLProgram(_SHADERS['log']['vertex'], _SHADERS['fragment'] % _SHADERS['log']['fragTransform']) def __init__(self, data, origin, scale, colormap, cmapIsLog=False, cmapRange=None): """Create a 2D colormap :param data: The 2D scalar data array to display :type data: numpy.ndarray with 2 dimensions (dtype=numpy.float32) :param origin: (x, y) coordinates of the origin of the data array :type origin: 2-tuple of floats. :param scale: (sx, sy) scale factors of the data array. This is the size of a data pixel in plot data space. :type scale: 2-tuple of floats. :param str colormap: Name of the colormap to use TODO: Accept a 1D scalar array as the colormap :param bool cmapIsLog: If True, uses log10 of the data value :param cmapRange: The range of colormap or None for autoscale colormap For logarithmic colormap, the range is in the untransformed data TODO: check consistency with matplotlib :type cmapRange: (float, float) or None """ assert data.dtype in self._INTERNAL_FORMATS super(GLPlotColormap, self).__init__(data, origin, scale) self.colormap = colormap self.cmapIsLog = cmapIsLog self._cmapRange = None # User-provided range info self._cmapRangeCache = None # Store extra data for range self.cmapRange = cmapRange # Update _cmapRange self._textureIsDirty = False def __del__(self): self.discard() def discard(self): if hasattr(self, '_texture'): self._texture.discard() del self._texture self._textureIsDirty = False @property def cmapRange(self): if self._cmapRange is None: # Auto-scale mode if self._cmapRangeCache is None: # Build data , positive ranges min_, minPos, max_ = minMax(self.data, minPositive=True) maxPos = max_ if max_ > 0. else 1. if minPos is None: minPos = maxPos self._cmapRangeCache = {'range': (min_, max_), 'pos': (minPos, maxPos)} return self._cmapRangeCache['pos' if self.cmapIsLog else 'range'] else: if not self.cmapIsLog: return self._cmapRange # Return range as is else: if self._cmapRangeCache is None: # Build a strictly positive range from cmapRange min_, max_ = self._cmapRange if min_ > 0. and max_ > 0.: minPos, maxPos = min_, max_ else: dataMin, minPos, dataMax = minMax(self.data, minPositive=True) if max_ > 0.: maxPos = max_ elif dataMax > 0.: maxPos = dataMax else: maxPos = 1. # Arbitrary fallback if minPos is None: minPos = maxPos self._cmapRangeCache = minPos, maxPos return self._cmapRangeCache # Strictly positive range @cmapRange.setter def cmapRange(self, cmapRange): self._cmapRangeCache = None if cmapRange is None: self._cmapRange = None else: assert len(cmapRange) == 2 assert cmapRange[0] <= cmapRange[1] self._cmapRange = tuple(cmapRange) def updateData(self, data): assert data.dtype in self._INTERNAL_FORMATS oldData = self.data self.data = data self._cmapRangeCache = None if hasattr(self, '_texture'): if (self.data.shape != oldData.shape or self.data.dtype != oldData.dtype): self.discard() else: self._textureIsDirty = True def prepare(self): if not hasattr(self, '_texture'): internalFormat = self._INTERNAL_FORMATS[self.data.dtype] height, width = self.data.shape self._texture = Image(internalFormat, width, height, format_=GL_RED, type_=numpyToGLType(self.data.dtype), data=self.data, texUnit=self._DATA_TEX_UNIT) elif self._textureIsDirty: self._textureIsDirty = True self._texture.updateAll(format_=GL_RED, type_=numpyToGLType(self.data.dtype), data=self.data) def _setCMap(self, prog): dataMin, dataMax = self.cmapRange # If log, it is stricly positive if self.data.dtype in (np.uint16, np.uint8): # Using unsigned int as normalized integer in OpenGL # So normalize range maxInt = float(np.iinfo(self.data.dtype).max) dataMin, dataMax = dataMin / maxInt, dataMax / maxInt if self.cmapIsLog: dataMin = math.log10(dataMin) dataMax = math.log10(dataMax) glUniform1i(prog.uniforms['cmap.id'], self._SHADER_CMAP_IDS[self.colormap]) glUniform1i(prog.uniforms['cmap.isLog'], self.cmapIsLog) glUniform1f(prog.uniforms['cmap.min'], dataMin) if dataMax > dataMin: oneOverRange = 1. / (dataMax - dataMin) else: oneOverRange = 0. # Fall-back glUniform1f(prog.uniforms['cmap.oneOverRange'], oneOverRange) def _renderLinear(self, matrix): self.prepare() prog = self._linearProgram prog.use() glUniform1i(prog.uniforms['data'], self._DATA_TEX_UNIT) mat = matrix * mat4Translate(*self.origin) * mat4Scale(*self.scale) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, mat) self._setCMap(prog) self._texture.render(prog.attributes['position'], prog.attributes['texCoords'], self._DATA_TEX_UNIT) def _renderLog10(self, matrix, isXLog, isYLog): xMin, yMin = self.xMin, self.yMin if ((isXLog and xMin < FLOAT32_MINPOS) or (isYLog and yMin < FLOAT32_MINPOS)): # Do not render images that are partly or totally <= 0 return self.prepare() prog = self._logProgram prog.use() ox, oy = self.origin glUniform1i(prog.uniforms['data'], self._DATA_TEX_UNIT) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) mat = mat4Translate(ox, oy) * mat4Scale(*self.scale) glUniformMatrix4fv(prog.uniforms['matOffset'], 1, GL_TRUE, mat) glUniform2i(prog.uniforms['isLog'], isXLog, isYLog) ex = ox + self.scale[0] * self.data.shape[1] ey = oy + self.scale[1] * self.data.shape[0] xOneOverRange = 1. / (ex - ox) yOneOverRange = 1. / (ey - oy) glUniform2f(prog.uniforms['bounds.originOverRange'], ox * xOneOverRange, oy * yOneOverRange) glUniform2f(prog.uniforms['bounds.oneOverRange'], xOneOverRange, yOneOverRange) self._setCMap(prog) try: tiles = self._texture.tiles except AttributeError: raise RuntimeError("No texture, discard has already been called") if len(tiles) > 1: raise NotImplementedError( "Image over multiple textures not supported with log scale") texture, vertices, info = tiles[0] texture.bind(self._DATA_TEX_UNIT) posAttrib = prog.attributes['position'] stride = vertices.shape[-1] * vertices.itemsize glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, stride, vertices) glDrawArrays(GL_TRIANGLE_STRIP, 0, len(vertices)) def render(self, matrix, isXLog, isYLog): if any((isXLog, isYLog)): self._renderLog10(matrix, isXLog, isYLog) else: self._renderLinear(matrix) # image ####################################################################### class GLPlotRGBAImage(_GLPlotData2D): _SHADERS = { 'linear': { 'vertex': """ #version 120 attribute vec2 position; attribute vec2 texCoords; uniform mat4 matrix; varying vec2 coords; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); coords = texCoords; } """, 'fragment': """ #version 120 uniform sampler2D tex; varying vec2 coords; void main(void) { gl_FragColor = texture2D(tex, coords); } """}, 'log': { 'vertex': """ #version 120 attribute vec2 position; uniform mat4 matrix; uniform mat4 matOffset; uniform bvec2 isLog; varying vec2 coords; const float oneOverLog10 = 0.43429448190325176; void main(void) { vec4 dataPos = matOffset * vec4(position, 0.0, 1.0); if (isLog.x) { dataPos.x = oneOverLog10 * log(dataPos.x); } if (isLog.y) { dataPos.y = oneOverLog10 * log(dataPos.y); } coords = dataPos.xy; gl_Position = matrix * dataPos; } """, 'fragment': """ #version 120 uniform sampler2D tex; uniform bvec2 isLog; uniform struct { vec2 oneOverRange; vec2 originOverRange; } bounds; varying vec2 coords; vec2 textureCoords(void) { vec2 pos = coords; if (isLog.x) { pos.x = pow(10., coords.x); } if (isLog.y) { pos.y = pow(10., coords.y); } return pos * bounds.oneOverRange - bounds.originOverRange; // TODO texture coords in range different from [0, 1] } void main(void) { gl_FragColor = texture2D(tex, textureCoords()); } """} } _DATA_TEX_UNIT = 0 _SUPPORTED_DTYPES = (np.dtype(np.float32), np.dtype(np.uint8)) _linearProgram = GLProgram(_SHADERS['linear']['vertex'], _SHADERS['linear']['fragment']) _logProgram = GLProgram(_SHADERS['log']['vertex'], _SHADERS['log']['fragment']) def __init__(self, data, origin, scale): """Create a 2D RGB(A) image from data :param data: The 2D image data array to display :type data: numpy.ndarray with 3 dimensions (dtype=numpy.uint8 or numpy.float32) :param origin: (x, y) coordinates of the origin of the data array :type origin: 2-tuple of floats. :param scale: (sx, sy) scale factors of the data array. This is the size of a data pixel in plot data space. :type scale: 2-tuple of floats. """ assert data.dtype in self._SUPPORTED_DTYPES super(GLPlotRGBAImage, self).__init__(data, origin, scale) self._textureIsDirty = False def __del__(self): self.discard() def discard(self): if hasattr(self, '_texture'): self._texture.discard() del self._texture self._textureIsDirty = False def updateData(self, data): assert data.dtype in self._SUPPORTED_DTYPES oldData = self.data self.data = data if hasattr(self, '_texture'): if self.data.shape != oldData.shape: self.discard() else: self._textureIsDirty = True def prepare(self): if not hasattr(self, '_texture'): height, width, depth = self.data.shape format_ = GL_RGBA if depth == 4 else GL_RGB type_ = numpyToGLType(self.data.dtype) self._texture = Image(format_, width, height, format_=format_, type_=type_, data=self.data, texUnit=self._DATA_TEX_UNIT) elif self._textureIsDirty: self._textureIsDirty = False # We should check that internal format is the same format_ = GL_RGBA if self.data.shape[2] == 4 else GL_RGB type_ = numpyToGLType(self.data.dtype) self._texture.updateAll(format_=format_, type_=type_, data=self.data) def _renderLinear(self, matrix): self.prepare() prog = self._linearProgram prog.use() glUniform1i(prog.uniforms['tex'], self._DATA_TEX_UNIT) mat = matrix * mat4Translate(*self.origin) * mat4Scale(*self.scale) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, mat) self._texture.render(prog.attributes['position'], prog.attributes['texCoords'], self._DATA_TEX_UNIT) def _renderLog(self, matrix, isXLog, isYLog): self.prepare() prog = self._logProgram prog.use() ox, oy = self.origin glUniform1i(prog.uniforms['tex'], self._DATA_TEX_UNIT) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix) mat = mat4Translate(ox, oy) * mat4Scale(*self.scale) glUniformMatrix4fv(prog.uniforms['matOffset'], 1, GL_TRUE, mat) glUniform2i(prog.uniforms['isLog'], isXLog, isYLog) ex = ox + self.scale[0] * self.data.shape[1] ey = oy + self.scale[1] * self.data.shape[0] xOneOverRange = 1. / (ex - ox) yOneOverRange = 1. / (ey - oy) glUniform2f(prog.uniforms['bounds.originOverRange'], ox * xOneOverRange, oy * yOneOverRange) glUniform2f(prog.uniforms['bounds.oneOverRange'], xOneOverRange, yOneOverRange) try: tiles = self._texture.tiles except AttributeError: raise RuntimeError("No texture, discard has already been called") if len(tiles) > 1: raise NotImplementedError( "Image over multiple textures not supported with log scale") texture, vertices, info = tiles[0] texture.bind(self._DATA_TEX_UNIT) posAttrib = prog.attributes['position'] stride = vertices.shape[-1] * vertices.itemsize glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, stride, vertices) glDrawArrays(GL_TRIANGLE_STRIP, 0, len(vertices)) def render(self, matrix, isXLog, isYLog): if any((isXLog, isYLog)): self._renderLog(matrix, isXLog, isYLog) else: self._renderLinear(matrix) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLProgram.py0000644000000000000000000002365314741736366023254 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a class to handle shader program compilation. """ # import ###################################################################### from ctypes import c_float import warnings import numpy from .gl import * # noqa from .GLContext import getGLContext # utils ####################################################################### def _glGetActiveAttrib(program, index): """Wrap PyOpenGL glGetActiveAttrib as for glGetActiveUniform """ bufSize = glGetProgramiv(program, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH) length = GLsizei() size = GLint() type_ = GLenum() name = (GLchar * bufSize)() glGetActiveAttrib(program, index, bufSize, length, size, type_, name) return name.value, size.value, type_.value # GLProgram ################################################################### class GLProgram(object): """Wrap OpenGL shader program. The program is compiled lazily (i.e., at first program :meth:`use`). When the program is compiled, it stores attributes and uniforms locations. So, attributes and uniforms must be used after :meth:`use`. This object supports multiple OpenGL contexts. """ def __init__(self, vertexShaderSrc, fragmentShaderSrc): """Create the object handling a shader program. :param str vertexShaderSrc: The source of the vertex shader. :param str fragmentShaderSrc: The source of the fragment shader. """ self._vertexShaderSrc = vertexShaderSrc self._fragmentShaderSrc = fragmentShaderSrc self._programs = {} @staticmethod def _compileGL(vertexShaderSrc, fragmentShaderSrc): program = glCreateProgram() vertexShader = glCreateShader(GL_VERTEX_SHADER) glShaderSource(vertexShader, vertexShaderSrc) glCompileShader(vertexShader) if glGetShaderiv(vertexShader, GL_COMPILE_STATUS) != GL_TRUE: raise RuntimeError(glGetShaderInfoLog(vertexShader)) glAttachShader(program, vertexShader) glDeleteShader(vertexShader) fragmentShader = glCreateShader(GL_FRAGMENT_SHADER) glShaderSource(fragmentShader, fragmentShaderSrc) glCompileShader(fragmentShader) if glGetShaderiv(fragmentShader, GL_COMPILE_STATUS) != GL_TRUE: raise RuntimeError(glGetShaderInfoLog(fragmentShader)) glAttachShader(program, fragmentShader) glDeleteShader(fragmentShader) glLinkProgram(program) if glGetProgramiv(program, GL_LINK_STATUS) != GL_TRUE: raise RuntimeError(glGetProgramInfoLog(program)) glValidateProgram(program) if glGetProgramiv(program, GL_VALIDATE_STATUS) != GL_TRUE: warnings.warn( 'Cannot validate program: ' + \ glGetProgramInfoLog(program).decode('ascii'), RuntimeWarning) attributes = {} for index in range(glGetProgramiv(program, GL_ACTIVE_ATTRIBUTES)): name = _glGetActiveAttrib(program, index)[0] nameStr = name.decode('ascii') attributes[nameStr] = glGetAttribLocation(program, name) uniforms = {} for index in range(glGetProgramiv(program, GL_ACTIVE_UNIFORMS)): name = glGetActiveUniform(program, index)[0] nameStr = name.decode('ascii') uniforms[nameStr] = glGetUniformLocation(program, name) return program, attributes, uniforms def _getProgramInfo(self): glContext = getGLContext() if glContext not in self._programs: raise RuntimeError( "Program was not compiled for current OpenGL context.") return self._programs[glContext] @property def attributes(self): """Vertex attributes names and locations as a dict of {str: int}. WARNING: Read-only usage. To use only with a valid OpenGL context and after :meth:`use` has been called for this context. """ return self._getProgramInfo()[1] @property def uniforms(self): """Program uniforms names and locations as a dict of {str: int}. WARNING: Read-only usage. To use only with a valid OpenGL context and after :meth:`use` has been called for this context. """ return self._getProgramInfo()[2] @property def program(self): """OpenGL id of the program. WARNING: To use only with a valid OpenGL context and after :meth:`use` has been called for this context. """ return self._getProgramInfo()[0] def discard(self): pass # Not implemented yet def __del__(self): self.discard() def use(self): glContext = getGLContext() if glContext not in self._programs: self._programs[glContext] = self._compileGL( self._vertexShaderSrc, self._fragmentShaderSrc) glUseProgram(self.program) def setUniformMatrix(self, name, value, transpose=True, safe=False): """Wrap glUniformMatrix[2|3|4]fv :param str name: The name of the uniform. :param value: The 2D matrix (or the array of matrices, 3D). Matrices are 2x2, 3x3 or 4x4. :type value: numpy.ndarray with 2 or 3 dimensions of float32 :param bool transpose: Whether to transpose (True, default) or not. :param bool safe: False: raise an error if no uniform with this name; True: silently ignores it. :raises KeyError: if no uniform corresponds to name. """ assert value.dtype == numpy.float32 shape = value.shape assert len(shape) in (2, 3) assert shape[-1] in (2, 3, 4) assert shape[-1] == shape[-2] # As in OpenGL|ES 2.0 location = self.uniforms.get(name) if location is not None: count = 1 if len(shape) == 2 else shape[0] transpose = GL_TRUE if transpose else GL_FALSE if shape[-1] == 2: glUniformMatrix2fv(location, count, transpose, value) elif shape[-1] == 3: glUniformMatrix3fv(location, count, transpose, value) elif shape[-1] == 4: glUniformMatrix4fv(location, count, transpose, value) elif not safe: raise KeyError('No uniform: %s' % name) # main ######################################################################## if __name__ == "__main__": import sys try: from PyQt4.QtGui import QApplication from PyQt4.QtOpenGL import QGLWidget except ImportError: from PyQt5.QtWidgets import QApplication from PyQt5.QtOpenGL import QGLWidget # TODO a better test example class Test(QGLWidget): _vertexShaderSrc = """ attribute vec2 position; void main(void) { gl_Position = vec4(position, 0.0, 1.0); } """ _fragmentShaderSrc = """ uniform vec4 color; void main(void) { gl_FragColor = color; } """ def initializeGL(self): glClearColor(1., 1., 1., 0.) self.glProgram = Program(self._vertexShaderSrc, self._fragmentShaderSrc) def paintGL(self): glClear(GL_COLOR_BUFFER_BIT) self.glProgram.use() print("Attributes: {0}".format(self.glProgram.attributes)) print("Uniforms: {0}".format(self.glProgram.uniforms)) w, h = 128, 128 data = (c_float * (w * h * 3))() for i in range(w * h): data[3*i] = i/float(w*h) data[3*i+1] = i/float(w*h) data[3*i+2] = i/float(w*h) glUniform4f(self.glProgram.uniforms['color'], 1., 0., 0., 1.) positions = (c_float * (4 * 2))( 0., 0., 1., 0., 0., 1., 1., 1.) glEnableVertexAttribArray(self.glProgram.attributes['position']) glVertexAttribPointer(self.glProgram.attributes['position'], 2, GL_FLOAT, GL_FALSE, 0, positions) glDrawArrays(GL_TRIANGLE_STRIP, 0, 4) def resizeGL(self, w, h): glViewport(0, 0, w, h) app = QApplication([]) widget = Test() widget.show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLSupport.py0000644000000000000000000002043714741736366023316 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides convenient classes and functions for OpenGL rendering. """ # import ###################################################################### import numpy as np from .gl import * # noqa # utils ####################################################################### def clamp(value, min_=0., max_=1.): if value < min_: return min_ elif value > max_: return max_ else: return value def rgba(color, colorDict={}): """Convert color code '#RRGGBB' and '#RRGGBBAA' to (R, G, B, A) :param str code: The color code to conver :param dict colorDict: A dictionary of color name conversion to color code :returns: RGBA colors as floats in [0., 1.] :rtype: tuple """ if len(color) == 4: r, g, b, a = color if type(color[3]) in [type(1), np.uint8, np.int8]: return r / 255., g / 255., b / 255., a / 255. if type(color[3]) in [type(1.), np.float32, np.float64]: assert r >= 0. and r <= 1. assert g >= 0. and g <= 1. assert b >= 0. and b <= 1. assert a >= 0. and a <= 1. return r, g, b, a # We assume color is a string if not color.startswith('#'): color = colorDict[color] assert len(color) in (7, 9) and color[0] == '#' r = int(color[1:3], 16) / 255. g = int(color[3:5], 16) / 255. b = int(color[5:7], 16) / 255. a = int(color[7:9], 16) / 255. if len(color) == 9 else 1. return r, g, b, a # Float 32 info ############################################################### # Using min/max value below limits of float32 # so operation with such value (e.g., max - min) do not overflow FLOAT32_SAFE_MIN = -1e37 FLOAT32_MINPOS = np.finfo(np.float32).tiny FLOAT32_SAFE_MAX = 1e37 # shape2D ##################################################################### def buildFillMaskIndices(nIndices): if nIndices <= np.iinfo(np.uint16).max + 1: dtype = np.uint16 else: dtype = np.uint32 lastIndex = nIndices - 1 splitIndex = lastIndex // 2 + 1 indices = np.empty(nIndices, dtype=dtype) indices[::2] = np.arange(0, splitIndex, step=1, dtype=dtype) indices[1::2] = np.arange(lastIndex, splitIndex - 1, step=-1, dtype=dtype) return indices class Shape2D(object): _NO_HATCH = 0 _HATCH_STEP = 20 def __init__(self, points, fill='solid', stroke=True, fillColor=(0., 0., 0., 1.), strokeColor=(0., 0., 0., 1.), strokeClosed=True): self.vertices = np.asarray(points, dtype=np.float32) self.strokeClosed = strokeClosed self._indices = buildFillMaskIndices(len(self.vertices)) tVertex = np.transpose(self.vertices) xMin, xMax = min(tVertex[0]), max(tVertex[0]) yMin, yMax = min(tVertex[1]), max(tVertex[1]) self.bboxVertices = np.array(((xMin, yMin), (xMin, yMax), (xMax, yMin), (xMax, yMax)), dtype=np.float32) self._xMin, self._xMax = xMin, xMax self._yMin, self._yMax = yMin, yMax self.fill = fill self.fillColor = fillColor self.stroke = stroke self.strokeColor = strokeColor @property def xMin(self): return self._xMin @property def xMax(self): return self._xMax @property def yMin(self): return self._yMin @property def yMax(self): return self._yMax def prepareFillMask(self, posAttrib): glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, 0, self.vertices) glEnable(GL_STENCIL_TEST) glStencilMask(1) glStencilFunc(GL_ALWAYS, 1, 1) glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT) glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE) glDepthMask(GL_FALSE) glDrawElements(GL_TRIANGLE_STRIP, len(self._indices), GL_UNSIGNED_SHORT, self._indices) glStencilFunc(GL_EQUAL, 1, 1) glStencilOp(GL_ZERO, GL_ZERO, GL_ZERO) # Reset stencil while drawing glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE) glDepthMask(GL_TRUE) def renderFill(self, posAttrib): self.prepareFillMask(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, 0, self.bboxVertices) glDrawArrays(GL_TRIANGLE_STRIP, 0, len(self.bboxVertices)) glDisable(GL_STENCIL_TEST) def renderStroke(self, posAttrib): glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, 0, self.vertices) glLineWidth(1) drawMode = GL_LINE_LOOP if self.strokeClosed else GL_LINE_STRIP glDrawArrays(drawMode, 0, len(self.vertices)) def render(self, posAttrib, colorUnif, hatchStepUnif): assert self.fill in ['hatch', 'solid', None] if self.fill is not None: glUniform4f(colorUnif, *self.fillColor) step = self._HATCH_STEP if self.fill == 'hatch' else self._NO_HATCH glUniform1i(hatchStepUnif, step) self.renderFill(posAttrib) if self.stroke: glUniform4f(colorUnif, *self.strokeColor) glUniform1i(hatchStepUnif, self._NO_HATCH) self.renderStroke(posAttrib) # matrix ###################################################################### def mat4Ortho(left, right, bottom, top, near, far): """Orthographic projection matrix (row-major)""" return np.matrix(( (2./(right - left), 0., 0., -(right+left)/float(right-left)), (0., 2./(top - bottom), 0., -(top+bottom)/float(top-bottom)), (0., 0., -2./(far-near), -(far+near)/float(far-near)), (0., 0., 0., 1.)), dtype=np.float32) def mat4Translate(x=0., y=0., z=0.): """Translation matrix (row-major)""" return np.matrix(( (1., 0., 0., x), (0., 1., 0., y), (0., 0., 1., z), (0., 0., 0., 1.)), dtype=np.float32) def mat4Scale(sx=1., sy=1., sz=1.): """Scale matrix (row-major)""" return np.matrix(( (sx, 0., 0., 0.), (0., sy, 0., 0.), (0., 0., sz, 0.), (0., 0., 0., 1.)), dtype=np.float32) def mat4Identity(): """Identity matrix""" return np.matrix(( (1., 0., 0., 0.), (0., 1., 0., 0.), (0., 0., 1., 0.), (0., 0., 0., 1.)), dtype=np.float32) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLText.py0000644000000000000000000003420714741736366022566 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ from __future__ import with_statement __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides minimalistic text support for OpenGL. It provides Latin-1 (ISO8859-1) characters for one monospace font at one size. """ # import ###################################################################### import numpy as np import math from ctypes import c_void_p, sizeof, c_float from .gl import * # noqa from . import FontLatin1_12 as font from .GLContext import getGLContext from .GLSupport import mat4Translate from .GLProgram import GLProgram # TODO: Font should be configurable by the main program # Text2D ###################################################################### LEFT, CENTER, RIGHT = 'left', 'center', 'right' TOP, BASELINE, BOTTOM = 'top', 'baseline', 'bottom' ROTATE_90, ROTATE_180, ROTATE_270 = 90, 180, 270 class Text2D(object): _SHADERS = { 'vertex': """ #version 120 attribute vec2 position; attribute vec2 texCoords; uniform mat4 matrix; varying vec2 vCoords; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); vCoords = texCoords; } """, 'fragment': """ #version 120 uniform sampler2D texText; uniform vec4 color; uniform vec4 bgColor; varying vec2 vCoords; void main(void) { gl_FragColor = mix(bgColor, color, texture2D(texText, vCoords).r); } """ } _program = GLProgram(_SHADERS['vertex'], _SHADERS['fragment']) _textures = {} def __init__(self, text, x=0, y=0, color=(0., 0., 0., 1.), bgColor=None, align=LEFT, valign=BASELINE, rotate=0): self._vertices = None self._text = text self.x = x self.y = y self.color = color self.bgColor = bgColor if align not in (LEFT, CENTER, RIGHT): raise RuntimeError( "Horizontal alignment not supported: {0}".format(align)) self._align = align if valign not in (TOP, CENTER, BASELINE, BOTTOM): raise RuntimeError( "Vertical alignment not supported: {0}".format(valign)) self._valign = valign self._rotate = math.radians(rotate) @classmethod def _getTexture(cls): # Loaded once for all Text2D instances per OpenGL context context = getGLContext() try: tex = cls._textures[context] except KeyError: cls._textures[context] = font.loadTexture() tex = cls._textures[context] return tex @property def text(self): return self._text @text.setter def text(self, text): if self._text != text: self._vertices = None self._text = text @property def size(self): return len(self._text) * font.cWidth, font.cHeight def getVertices(self): if self._vertices is None: self._vertices = np.empty((len(self.text), 4, 4), dtype='float32') if self._align == LEFT: xOrig = 0 elif self._align == RIGHT: xOrig = - len(self._text) * font.cWidth else: # CENTER xOrig = - (len(self._text) * font.cWidth) // 2 if self._valign == BASELINE: yOrig = - font.bearingY elif self._valign == TOP: yOrig = 0 elif self._valign == BOTTOM: yOrig = - font.cHeight else: # CENTER yOrig = - font.cHeight // 2 cos, sin = math.cos(self._rotate), math.sin(self._rotate) for index, char in enumerate(self.text): uMin, vMin, uMax, vMax = font.charTexCoords(char) vertices = ((xOrig + index * font.cWidth, yOrig + font.cHeight, uMin, vMax), (xOrig + index * font.cWidth, yOrig, uMin, vMin), (xOrig + (index + 1) * font.cWidth, yOrig + font.cHeight, uMax, vMax), (xOrig + (index + 1) * font.cWidth, yOrig, uMax, vMin)) self._vertices[index] = [ (cos * x - sin * y, sin * x + cos * y, u, v) for x, y, u, v in vertices] return self._vertices def getStride(self): vertices = self.getVertices() return vertices.shape[-1] * vertices.itemsize def render(self, matrix): if not self.text: return prog = self._program prog.use() texUnit = 0 self._getTexture().bind(texUnit) glUniform1i(prog.uniforms['texText'], texUnit) glUniformMatrix4fv(prog.uniforms['matrix'], 1, GL_TRUE, matrix * mat4Translate(self.x, self.y)) glUniform4f(prog.uniforms['color'], *self.color) if self.bgColor is not None: bgColor = self.bgColor else: bgColor = self.color[0], self.color[1], self.color[2], 0. glUniform4f(prog.uniforms['bgColor'], *bgColor) stride, vertices = self.getStride(), self.getVertices() posAttrib = prog.attributes['position'] glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, stride, vertices) texAttrib = prog.attributes['texCoords'] glEnableVertexAttribArray(texAttrib) glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, stride, c_void_p(vertices.ctypes.data + 2 * sizeof(c_float)) ) nbChar, nbVert, _ = vertices.shape glDrawArrays(GL_TRIANGLE_STRIP, 0, nbChar * nbVert) glBindTexture(GL_TEXTURE_2D, 0) # main ######################################################################## if __name__ == "__main__": import sys try: from PyQt4.QtGui import QApplication from PyQt4.QtOpenGL import QGLWidget, QGLContext except ImportError: from PyQt5.QtWidgets import QApplication from PyQt5.QtOpenGL import QGLWidget, QGLContext from .GLContext import setGLContextGetter from .GLSupport import mat4Ortho setGLContextGetter(QGLContext.currentContext) class TestText(QGLWidget): _SHADER_SRCS = { 'vertex': """ uniform mat4 matrix; attribute vec2 position; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); } """, 'fragment': """ void main(void) { gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0); } """ } def __init__(self, parent=None): QGLWidget.__init__(self, parent) def initializeGL(self): glClearColor(1., 1., 1., 1.) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) self.prog = GLProgram(self._SHADER_SRCS['vertex'], self._SHADER_SRCS['fragment']) self.matScreenProj = np.matrix(( (1., 0., 0., 0.), (0., 1., 0., 0.), (0., 0., 1., 0.), (0., 0., 0., 1.)), dtype=np.float32) self.lines = np.array(( (100, 0), (100, 1000), (220, 0), (220, 1000), (340, 0), (340, 1000), (460, 0), (460, 1000), (10, 25), (550, 25), (10, 50), (550, 50), (10, 75), (550, 75), (10, 160), (550, 160), (10, 260), (550, 260), (10, 360), (550, 360), ), dtype=np.float32) self.texts = [ (100, 25, Text2D('left_top', align=LEFT, valign=TOP)), (100, 50, Text2D('center_top', color=(1., 0., 1., 1.), align=CENTER, valign=TOP)), (100, 75, Text2D('right_top', align=RIGHT, valign=TOP)), (220, 25, Text2D('left_center', align=LEFT, valign=CENTER)), (220, 50, Text2D('center_center', align=CENTER, valign=CENTER)), (220, 75, Text2D('right_center', align=RIGHT, valign=CENTER)), (340, 25, Text2D('left_baseline', align=LEFT, valign=BASELINE)), (340, 50, Text2D('center_baseline', align=CENTER, valign=BASELINE)), (340, 75, Text2D('right_baseline', align=RIGHT, valign=BASELINE)), (460, 25, Text2D('left_bottom', align=LEFT, valign=BOTTOM)), (460, 50, Text2D('center_bottom', align=CENTER, valign=BOTTOM)), (460, 75, Text2D('right_bottom', align=RIGHT, valign=BOTTOM)), (100, 160, Text2D('center_90', align=CENTER, valign=CENTER, rotate=ROTATE_90)), (220, 160, Text2D('center_180', align=CENTER, valign=CENTER, rotate=ROTATE_180)), (340, 160, Text2D('ctr_270', align=CENTER, valign=CENTER, rotate=ROTATE_270)), (460, 160, Text2D('center_45', align=CENTER, valign=CENTER, rotate=45)), (100, 260, Text2D('left_90', align=LEFT, valign=CENTER, rotate=ROTATE_90)), (220, 260, Text2D('left_180', align=LEFT, valign=CENTER, rotate=ROTATE_180)), (340, 260, Text2D('left_270', align=LEFT, valign=CENTER, rotate=ROTATE_270)), (460, 260, Text2D('left_45', align=LEFT, valign=CENTER, rotate=45)), (100, 260, Text2D('r_90', align=RIGHT, valign=CENTER, rotate=ROTATE_90)), (220, 260, Text2D('r_180', align=RIGHT, valign=CENTER, rotate=ROTATE_180)), (340, 260, Text2D('r_270', align=RIGHT, valign=CENTER, rotate=ROTATE_270)), (460, 260, Text2D('r_45', align=RIGHT, valign=CENTER, rotate=45)), (100, 360, Text2D('l_top_90', align=LEFT, valign=TOP, rotate=ROTATE_90)), (220, 360, Text2D('l_top_180', align=LEFT, valign=TOP, rotate=ROTATE_180)), (340, 360, Text2D('l_top', align=LEFT, valign=TOP, rotate=ROTATE_270)), (460, 360, Text2D('l_top_45', align=LEFT, valign=TOP, rotate=45)), (100, 360, Text2D('r_btm', align=RIGHT, valign=BOTTOM, rotate=ROTATE_90)), (220, 360, Text2D('r_btm_180', align=RIGHT, valign=BOTTOM, rotate=ROTATE_180)), (340, 360, Text2D('r_btm_270', align=RIGHT, valign=BOTTOM, rotate=ROTATE_270)), (460, 360, Text2D('r_btm_45', align=RIGHT, valign=BOTTOM, rotate=45)), ] def paintGL(self): glClear(GL_COLOR_BUFFER_BIT) # Draw lines self.prog.use() glUniformMatrix4fv(self.prog.uniforms['matrix'], 1, GL_TRUE, self.matScreenProj) glLineWidth(1.) glEnableVertexAttribArray(self.prog.attributes['position']) glVertexAttribPointer(self.prog.attributes['position'], 2, GL_FLOAT, GL_FALSE, 0, self.lines) glDrawArrays(GL_LINES, 0, len(self.lines)) for x, y, text in self.texts: matrix = self.matScreenProj * mat4Translate(x, y, 0) text.render(matrix) def resizeGL(self, w, h): glViewport(0, 0, w, h) self.matScreenProj = mat4Ortho(0, w, h, 0, 1, -1) app = QApplication([]) widget1 = TestText() widget1.show() widget2 = TestText() widget2.show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLTexture.py0000644000000000000000000003302214741736366023274 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides classes wrapping OpenGL texture. """ # import ###################################################################### from .gl import * # noqa from ctypes import c_void_p import numpy as np # texture ##################################################################### class Texture2D(object): """Wraps OpenGL texture2D""" def __init__(self, internalFormat, width, height, format_=None, type_=GL_FLOAT, data=None, texUnit=0, minFilter=None, magFilter=None, wrapS=None, wrapT=None, unpackAlign=1, unpackRowLength=0, unpackSkipPixels=0, unpackSkipRows=0): self._internalFormat = internalFormat self._width, self._height = width, height self.texUnit = texUnit self._tid = glGenTextures(1) self.bind(self.texUnit) if minFilter is not None: glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter) if magFilter is not None: glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter) if wrapS is not None: glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS) if wrapT is not None: glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT) glPixelStorei(GL_UNPACK_ALIGNMENT, unpackAlign) if unpackRowLength: glPixelStorei(GL_UNPACK_ROW_LENGTH, unpackRowLength) if unpackSkipPixels: glPixelStorei(GL_UNPACK_SKIP_PIXELS, unpackSkipPixels) if unpackSkipRows: glPixelStorei(GL_UNPACK_SKIP_ROWS, unpackSkipRows) glTexImage2D(GL_TEXTURE_2D, 0, self.internalFormat, self.width, self.height, 0, format_ if format_ is not None else self.internalFormat, type_, data if data is not None else c_void_p(0)) if unpackRowLength: glPixelStorei(GL_UNPACK_ROW_LENGTH, 0) if unpackSkipPixels: glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0) if unpackSkipRows: glPixelStorei(GL_UNPACK_SKIP_ROWS, 0) glBindTexture(GL_TEXTURE_2D, 0) @property def internalFormat(self): return self._internalFormat @property def width(self): return self._width @property def height(self): return self._height @property def tid(self): """OpenGL texture ID""" try: return self._tid except AttributeError: raise RuntimeError("No OpenGL texture resource, \ discard has already been called") def discard(self): if hasattr(self, '_tid'): if bool(glDeleteTextures): # Test for __del__ glDeleteTextures(np.array((self._tid,))) del self._tid def __del__(self): self.discard() def bind(self, texUnit=None): texUnit = texUnit if texUnit is not None else self.texUnit glActiveTexture(GL_TEXTURE0 + texUnit) glBindTexture(GL_TEXTURE_2D, self.tid) def update(self, format_, type_, data, xOffset=0, yOffset=0, width=None, height=None, texUnit=None, unpackAlign=1, unpackRowLength=0, unpackSkipPixels=0, unpackSkipRows=0): if unpackRowLength: glPixelStorei(GL_UNPACK_ROW_LENGTH, unpackRowLength) if unpackSkipPixels: glPixelStorei(GL_UNPACK_SKIP_PIXELS, unpackSkipPixels) if unpackSkipRows: glPixelStorei(GL_UNPACK_SKIP_ROWS, unpackSkipRows) glPixelStorei(GL_UNPACK_ALIGNMENT, unpackAlign) self.bind(texUnit) glTexSubImage2D(GL_TEXTURE_2D, 0, xOffset, yOffset, width or self.width, height or self.height, format_, type_, data) glBindTexture(GL_TEXTURE_2D, 0) if unpackRowLength: glPixelStorei(GL_UNPACK_ROW_LENGTH, 0) if unpackSkipPixels: glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0) if unpackSkipRows: glPixelStorei(GL_UNPACK_SKIP_ROWS, 0) def _checkTexture2D(internalFormat, width, height, format_=None, type_=GL_FLOAT, border=0): """Check if texture size with provided parameters is supported :rtype: bool """ glTexImage2D(GL_PROXY_TEXTURE_2D, 0, internalFormat, width, height, border, format_ or internalFormat, type_, c_void_p(0)) width = glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0, GL_TEXTURE_WIDTH) return bool(width) MIN_TEXTURE_SIZE = 64 def _getMaxSquareTexture2DSize(internalFormat=GL_RGBA, format_=None, type_=GL_FLOAT, border=0): """Returns a supported size for a corresponding square texture :returns: GL_MAX_TEXTURE_SIZE or a smaller supported size (not optimal) :rtype: tuple """ # Is this useful? maxTexSize = glGetIntegerv(GL_MAX_TEXTURE_SIZE) while maxTexSize > MIN_TEXTURE_SIZE and \ not _checkTexture2D(internalFormat, maxTexSize, maxTexSize, format_, type_, border): maxTexSize = maxTexSize // 2 return max(MIN_TEXTURE_SIZE, maxTexSize) class Image(object): """Image of any size eventually using multiple textures or larger texture """ _WRAP_S = GL_CLAMP_TO_EDGE _WRAP_T = GL_CLAMP_TO_EDGE _MIN_FILTER = GL_NEAREST _MAG_FILTER = GL_NEAREST def __init__(self, internalFormat, width, height, format_=None, type_=GL_FLOAT, data=None, texUnit=0, unpackAlign=1): self.internalFormat = internalFormat self.width, self.height = width, height if _checkTexture2D(internalFormat, width, height, format_, type_): texture = Texture2D(internalFormat, width, height, format_, type_, data, texUnit=texUnit, minFilter=self._MIN_FILTER, magFilter=self._MAG_FILTER, wrapS=self._WRAP_S, wrapT=self._WRAP_T, unpackAlign=unpackAlign) vertices = np.array(( (0., 0., 0., 0.), (width, 0., 1., 0.), (0., height, 0., 1.), (width, height, 1., 1.)), dtype=np.float32) self.tiles = ((texture, vertices, {'xOrigData': 0, 'yOrigData': 0, 'wData': width, 'hData': height}),) else: # Handle dimension too large: make tiles maxTexSize = _getMaxSquareTexture2DSize(internalFormat, format_, type_) nCols = (width+maxTexSize-1) // maxTexSize colWidths = [width // nCols] * nCols colWidths[-1] += width % nCols nRows = (height+maxTexSize-1) // maxTexSize rowHeights = [height//nRows] * nRows rowHeights[-1] += height % nRows tiles = [] yOrig = 0 for hData in rowHeights: xOrig = 0 for wData in colWidths: if (hData < MIN_TEXTURE_SIZE or wData < MIN_TEXTURE_SIZE) \ and not _checkTexture2D(internalFormat, wData, hData, format_, type_): # Ensure texture size is at least MIN_TEXTURE_SIZE tH = max(hData, MIN_TEXTURE_SIZE) tW = max(wData, MIN_TEXTURE_SIZE) uMax, vMax = float(wData)/tW, float(hData)/tH texture = Texture2D(internalFormat, tW, tH, format_, type_, None, texUnit=texUnit, minFilter=self._MIN_FILTER, magFilter=self._MAG_FILTER, wrapS=self._WRAP_S, wrapT=self._WRAP_T, unpackAlign=unpackAlign) texture.update(format_, type_, data, width=wData, height=hData, unpackRowLength=width, unpackSkipPixels=xOrig, unpackSkipRows=yOrig) else: uMax, vMax = 1, 1 texture = Texture2D(internalFormat, wData, hData, format_, type_, data, texUnit=texUnit, minFilter=self._MIN_FILTER, magFilter=self._MAG_FILTER, wrapS=self._WRAP_S, wrapT=self._WRAP_T, unpackAlign=unpackAlign, unpackRowLength=width, unpackSkipPixels=xOrig, unpackSkipRows=yOrig) vertices = np.array(( (xOrig, yOrig, 0., 0.), (xOrig + wData, yOrig, uMax, 0.), (xOrig, yOrig + hData, 0., vMax), (xOrig + wData, yOrig + hData, uMax, vMax)), dtype=np.float32) tiles.append((texture, vertices, {'xOrigData': xOrig, 'yOrigData': yOrig, 'wData': wData, 'hData': hData})) xOrig += wData yOrig += hData self.tiles = tuple(tiles) def discard(self): for texture, vertices, _ in self.tiles: texture.discard() del self.tiles def updateAll(self, format_, type_, data, texUnit=0, unpackAlign=1): if not hasattr(self, 'tiles'): raise RuntimeError("No texture, discard has already been called") assert data.shape[:2] == (self.height, self.width) if len(self.tiles) == 1: self.tiles[0][0].update(format_, type_, data, width=self.width, height=self.height, texUnit=texUnit, unpackAlign=unpackAlign) else: for texture, _, info in self.tiles: texture.update(format_, type_, data, width=info['wData'], height=info['hData'], texUnit=texUnit, unpackAlign=unpackAlign, unpackRowLength=self.width, unpackSkipPixels=info['xOrigData'], unpackSkipRows=info['yOrigData']) def render(self, posAttrib, texAttrib, texUnit=0): try: tiles = self.tiles except AttributeError: raise RuntimeError("No texture, discard has already been called") for texture, vertices, _ in tiles: texture.bind(texUnit) stride = vertices.shape[-1] * vertices.itemsize glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, stride, vertices) texCoordsPtr = c_void_p(vertices.ctypes.data + 2 * vertices.itemsize) glEnableVertexAttribArray(texAttrib) glVertexAttribPointer(texAttrib, 2, GL_FLOAT, GL_FALSE, stride, texCoordsPtr) glDrawArrays(GL_TRIANGLE_STRIP, 0, len(vertices)) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/GLVertexBuffer.py0000644000000000000000000001772614741736366024260 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a class managing a vertex buffer """ # import ###################################################################### from .gl import * # noqa from ctypes import c_void_p, c_uint import numpy as np # VBO ######################################################################### class VertexBuffer(object): # OpenGL|ES 2.0 subset: _USAGES = GL_STREAM_DRAW, GL_STATIC_DRAW, GL_DYNAMIC_DRAW _TARGETS = GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER def __init__(self, data=None, sizeInBytes=None, usage=None, target=None): if usage is None: usage = GL_STATIC_DRAW assert usage in self._USAGES if target is None: target = GL_ARRAY_BUFFER assert target in self._TARGETS self._target = target self._vboId = glGenBuffers(1) self.bind() if data is None: assert sizeInBytes is not None self._size = sizeInBytes glBufferData(self._target, self._size, c_void_p(0), usage) else: assert isinstance(data, np.ndarray) and data.flags['C_CONTIGUOUS'] if sizeInBytes is not None: assert sizeInBytes <= data.nbytes self._size = sizeInBytes or data.nbytes glBufferData(self._target, self._size, data, usage) glBindBuffer(self._target, 0) @property def vboId(self): """OpenGL Vertex Buffer Object ID :type: int """ try: return self._vboId except AttributeError: raise RuntimeError("No OpenGL buffer resource, \ discard has already been called") @property def size(self): """Size in bytes of the Vertex Buffer Object :type: int """ try: return self._size except AttributeError: raise RuntimeError("No OpenGL buffer resource, \ discard has already been called") def bind(self): glBindBuffer(self._target, self.vboId) def update(self, data, offsetInBytes=0, sizeInBytes=None): assert isinstance(data, np.ndarray) and data.flags['C_CONTIGUOUS'] if sizeInBytes is None: sizeInBytes = data.nbytes assert offsetInBytes + sizeInBytes <= self.size with self: glBufferSubData(self._target, offsetInBytes, sizeInBytes, data) def discard(self): if hasattr(self, '_vboId'): if bool(glDeleteBuffers): # Test for __del__ glDeleteBuffers(1, (c_uint * 1)(self._vboId)) del self._vboId del self._size def __del__(self): self.discard() # with statement def __enter__(self): self.bind() def __exit__(self, excType, excValue, traceback): glBindBuffer(self._target, 0) # VBOAttrib ################################################################### class VBOAttrib(object): """Describes data stored in a VBO """ _GL_TYPES = GL_UNSIGNED_BYTE, GL_FLOAT, GL_INT def __init__(self, vbo, type_, size, dimension=1, offset=0, stride=0): """ :param VertexBuffer vbo: The VBO storing the data :param int type_: The OpenGL type of the data :param int size: The number of data elements stored in the VBO :param int dimension: The number of type_ element(s) in [1, 4] :param int offset: Start offset of data in the VBO :param int stride: Data stride in the VBO """ self.vbo = vbo assert type_ in self._GL_TYPES self.type_ = type_ self.size = size assert dimension >= 1 and dimension <= 4 self.dimension = dimension self.offset = offset self.stride = stride @property def itemSize(self): """Size of a VBO element in bytes""" return self.dimension * sizeofGLType(self.type_) def setVertexAttrib(self, attrib): with self.vbo: glVertexAttribPointer(attrib, self.dimension, self.type_, GL_FALSE, self.stride, c_void_p(self.offset)) def copy(self): return VBOAttrib(self.vbo, self.type_, self.size, self.dimension, self.offset, self.stride) def createVBOFromArrays(arrays, prefix=None, suffix=None, usage=None): """ Create a single VBO from multiple 1D or 2D numpy arrays It is possible to reserve memory before and after each array in the VBO :param arrays: Arrays of data to store :type arrays: Iterable of numpy.ndarray :param prefix: If given, number of elements to reserve before each array :type prefix: Iterable of int or None :param suffix: If given, number of elements to reserve after each array :type suffix: Iterable of int or None :param int usage: VBO usage hint or None for default :returns: List of VBOAttrib objects sharing the same VBO """ info = [] vboSize = 0 if prefix is None: prefix = (0,) * len(arrays) if suffix is None: suffix = (0,) * len(arrays) for data, pre, post in zip(arrays, prefix, suffix): shape = data.shape assert len(shape) <= 2 type_ = numpyToGLType(data.dtype) size = shape[0] + pre + post dimension = 1 if len(shape) == 1 else shape[1] sizeInBytes = size * dimension * sizeofGLType(type_) sizeInBytes = 4 * (((sizeInBytes) + 3) >> 2) # 4 bytes alignment copyOffset = vboSize + pre * dimension * sizeofGLType(type_) info.append((data, type_, size, dimension, vboSize, sizeInBytes, copyOffset)) vboSize += sizeInBytes vbo = VertexBuffer(sizeInBytes=vboSize, usage=usage) result = [] for data, type_, size, dimension, offset, sizeInBytes, copyOffset in info: copySize = data.shape[0] * dimension * sizeofGLType(type_) vbo.update(data, offsetInBytes=copyOffset, sizeInBytes=copySize) result.append(VBOAttrib(vbo, type_, size, dimension, offset, 0)) return result ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/Interaction.py0000644000000000000000000002445014741736366023675 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides an implementation of state machines for interaction. Sample code of a state machine with two states ('idle' and 'active') with transitions on left button press/release: .. code-block:: python from PyMca5.PyMcaGraph.backends.GLSupport.Interaction import * class SampleStateMachine(StateMachine): class Idle(State): def onPress(self, x, y, btn): if btn == LEFT_BTN: self.goto('active') class Active(State): def enter(self): print('Enabled') # Handle enter active state here def leave(self): print('Disabled') # Handle leave active state here def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.goto('idle') def __init__(self): # State machine has 2 states states = { 'idle': SampleStateMachine.Idle, 'active': SampleStateMachine.Active } super(TwoStates, self).__init__(states, 'idle') # idle is the initial state stateMachine = SampleStateMachine() # Triggers a transition to the Active state: stateMachine.handleEvent('press', 0, 0, LEFT_BTN) # Triggers a transition to the Idle state: stateMachine.handleEvent('release', 0, 0, LEFT_BTN) See :class:`ClickOrDrag` for another example of a state machine. See `Renaud Blanch, Michel Beaudouin-Lafon. Programming Rich Interactions using the Hierarchical State Machine Toolkit. In Proceedings of AVI 2006. p 51-58. `_ for a discussion of using (hierarchical) state machines for interaction. """ import weakref # state machine ############################################################### class State(object): """Base class for the states of a state machine. This class is meant to be subclassed. """ def __init__(self, machine): """State instances should be created by the :class:`StateMachine`. They are not intended to be used outside this context. :param machine: The state machine instance this state belongs to. :type machine: StateMachine """ self._machineRef = weakref.ref(machine) # Prevent cyclic reference @property def machine(self): """The state machine this state belongs to. Useful to access data or methods that are shared across states. """ machine = self._machineRef() if machine is not None: return machine else: raise RuntimeError("Associated StateMachine is not valid") def goto(self, state, *args, **kwargs): """Performs a transition to a new state. Extra arguments are passed to the :meth:`enter` method of the new state. :param str state: The name of the state to go to. """ self.machine._goto(state, *args, **kwargs) def enter(self, *args, **kwargs): """Called when the state machine enters this state. Arguments are those provided to the :meth:`goto` method that triggered the transition to this state. """ pass def leave(self): """Called when the state machine leaves this state (i.e., when :meth:`goto` is called). """ pass class StateMachine(object): """State machine controller. This is the entry point of a state machine. It is in charge of dispatching received event and handling the current active state. """ def __init__(self, states, initState, *args, **kwargs): """Create a state machine controller with an initial state. Extra arguments are passed to the enter method of the initState. :param states: All states of the state machine :type states: dict of: {str name: State subclass} :param str initState: Key of the initial state in states """ self.states = states self.state = self.states[initState](self) self.state.enter(*args, **kwargs) def _goto(self, state, *args, **kwargs): self.state.leave() self.state = self.states[state](self) self.state.enter(*args, **kwargs) def handleEvent(self, eventName, *args, **kwargs): """Process an event with the state machine. This method looks up for an event handler in the current state and then in the :class:`StateMachine` instance. Handler are looked up as 'onEventName' method. If a handler is found, it is called with the provided extra arguments, and this method returns the return value of the handler. If no handler is found, this method returns None. :param str eventName: Name of the event to handle :returns: The return value of the handler or None """ handlerName = 'on' + eventName[0].upper() + eventName[1:] try: handler = getattr(self.state, handlerName) except AttributeError: try: handler = getattr(self, handlerName) except AttributeError: handler = None if handler is not None: return handler(*args, **kwargs) # clickOrDrag ################################################################# LEFT_BTN = 'left' """Left mouse button.""" RIGHT_BTN = 'right' """Right mouse button.""" MIDDLE_BTN = 'middle' """Middle mouse button.""" class ClickOrDrag(StateMachine): """State machine for left and right click and left drag interaction. It is intended to be used through subclassing by overriding :meth:`click`, :meth:`beginDrag`, :meth:`drag` and :meth:`endDrag`. """ DRAG_THRESHOLD_SQUARE_DIST = 5 ** 2 class Idle(State): def onPress(self, x, y, btn): if btn == LEFT_BTN: self.goto('clickOrDrag', x, y) return True elif btn == RIGHT_BTN: self.goto('rightClick', x, y) return True class RightClick(State): def onMove(self, x, y): self.goto('idle') def onRelease(self, x, y, btn): if btn == RIGHT_BTN: self.machine.click(x, y, btn) self.goto('idle') class ClickOrDrag(State): def enter(self, x, y): self.initPos = x, y def onMove(self, x, y): dx = (x - self.initPos[0]) ** 2 dy = (y - self.initPos[1]) ** 2 if (dx ** 2 + dy ** 2) >= self.machine.DRAG_THRESHOLD_SQUARE_DIST: self.goto('drag', self.initPos, (x, y)) def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.machine.click(x, y, btn) self.goto('idle') class Drag(State): def enter(self, initPos, curPos): self.initPos = initPos self.machine.beginDrag(*initPos) self.machine.drag(*curPos) def onMove(self, x, y): self.machine.drag(x, y) def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.machine.endDrag(self.initPos, (x, y)) self.goto('idle') def __init__(self): states = { 'idle': ClickOrDrag.Idle, 'rightClick': ClickOrDrag.RightClick, 'clickOrDrag': ClickOrDrag.ClickOrDrag, 'drag': ClickOrDrag.Drag } super(ClickOrDrag, self).__init__(states, 'idle') def click(self, x, y, btn): """Called upon a left or right button click. To override in a subclass. """ pass def beginDrag(self, x, y): """Called at the beginning of a drag gesture with left button pressed. To override in a subclass. """ pass def drag(self, x, y): """Called on mouse moved during a drag gesture. To override in a subclass. """ pass def endDrag(self, x, y): """Called at the end of a drag gesture when the left button is released. To override in a subclass. """ pass # main ######################################################################## if __name__ == "__main__": class DumpClickOrDrag(ClickOrDrag): def click(self, x, y, btn): print('click', x, y, btn) def beginDrag(self, x, y): print('beginDrag', x, y) def drag(self, x, y): print('drag', x, y) def endDrag(self, x, y): print('endDrag', x, y) clickOrDrag = DumpClickOrDrag() for event in (('press', 10, 10, LEFT_BTN), ('release', 10, 10, LEFT_BTN), ('press', 10, 10, LEFT_BTN), ('move', 15, 10), ('move', 20, 10), ('release', 20, 10, LEFT_BTN)): print('Event:', event) clickOrDrag.handleEvent(*event) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/LabelLayout.py0000644000000000000000000001364314741736366023635 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module implements labels layout on graph axes. """ # import ###################################################################### import math # utils ####################################################################### def numberOfDigits(tickSpacing): """Returns the number of digits to display for text label. :param float tickSpacing: Step between ticks in data space. :return: Number of digits to show for labels. :rtype: int """ nFrac = int(-math.floor(math.log10(tickSpacing))) if nFrac < 0: nFrac = 0 return nFrac # Nice Numbers ################################################################ def _niceNum(value, isRound=False): expValue = math.floor(math.log10(value)) frac = value/pow(10., expValue) if isRound: if frac < 1.5: niceFrac = 1. elif frac < 3.: niceFrac = 2. elif frac < 7.: niceFrac = 5. else: niceFrac = 10. else: if frac <= 1.: niceFrac = 1. elif frac <= 2.: niceFrac = 2. elif frac <= 5.: niceFrac = 5. else: niceFrac = 10. return niceFrac * pow(10., expValue) def niceNumbers(vMin, vMax, nTicks=5): """Returns tick positions. This function implements graph labels layout using nice numbers by Paul Heckbert from "Graphics Gems", Academic Press, 1990. See `C code `_. :param float vMin: The min value on the axis :param float vMax: The max value on the axis :param int nTicks: The number of ticks to position :returns: min, max, increment value of tick positions and number of fractional digit to show :rtype: tuple """ vRange = _niceNum(vMax - vMin, False) tickSpacing = _niceNum(vRange / nTicks, True) graphMin = math.floor(vMin / tickSpacing) * tickSpacing graphMax = math.ceil(vMax / tickSpacing) * tickSpacing nFrac = numberOfDigits(tickSpacing) return graphMin, graphMax, tickSpacing, nFrac def niceNumbersAdaptative(vMin, vMax, axisLength, tickDensity): """Returns tick positions using :func:`niceNumbers` and a density of ticks. axisLength and tickDensity are based on the same unit (e.g., pixel). :param float vMin: The min value on the axis :param float vMax: The max value on the axis :param float axisLength: The length of the axis. :param float tickDensity: The density of ticks along the axis. :returns: min, max, increment value of tick positions and number of fractional digit to show :rtype: tuple """ # At least 2 ticks nTicks = max(2, int(round(tickDensity * axisLength))) tickMin, tickMax, step, nbFrac = niceNumbers(vMin, vMax, nTicks) return tickMin, tickMax, step, nbFrac # Nice Numbers for log scale ################################################## def niceNumbersForLog10(minLog, maxLog, nTicks=5): """Return tick positions for logarithmic scale :param float minLog: log10 of the min value on the axis :param float maxLog: log10 of the max value on the axis :param int nTicks: The number of ticks to position :returns: log10 of min, max and increment value of tick positions :rtype: tuple of int """ graphMinLog = math.floor(minLog) graphMaxLog = math.ceil(maxLog) rangeLog = graphMaxLog - graphMinLog if rangeLog <= nTicks: tickSpacing = 1. else: tickSpacing = math.floor(rangeLog / nTicks) graphMinLog = math.floor(graphMinLog / tickSpacing) * tickSpacing graphMaxLog = math.ceil(graphMaxLog / tickSpacing) * tickSpacing return int(graphMinLog), int(graphMaxLog), int(tickSpacing) # main ######################################################################## if __name__ == "__main__": niceNumbersTests = [ (0.5, 10.5), (10000., 10000.5), (0.001, 0.005) ] for vMin, vMax in niceNumbersTests: print("niceNumbers({0}, {1}): {2}".format( vMin, vMax, niceNumbers(vMin, vMax))) niceNumbersForLog10Tests = [ # This are log10 min, max (0., 3.), (-3., 3), (-32., 0.) ] for vMin, vMax in niceNumbersForLog10Tests: print("niceNumbersForLog10({0}, {1}): {2}".format( vMin, vMax, niceNumbersForLog10(vMin, vMax))) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/PlotEvents.py0000644000000000000000000001331014741736366023512 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Functions to prepare events to be sent to backend callback. """ # import ###################################################################### import numpy as np # signals ##################################################################### def prepareDrawingSignal(event, type_, points, parameters=None): if parameters is None: parameters = {} eventDict = {} eventDict['event'] = event eventDict['type'] = type_ points = np.array(points, dtype=np.float32) points.shape = -1, 2 eventDict['points'] = points eventDict['xdata'] = points[:, 0] eventDict['ydata'] = points[:, 1] if type_ in ('rectangle',): eventDict['x'] = eventDict['xdata'].min() eventDict['y'] = eventDict['ydata'].min() eventDict['width'] = eventDict['xdata'].max() - eventDict['x'] eventDict['height'] = eventDict['ydata'].max() - eventDict['y'] eventDict['parameters'] = parameters.copy() return eventDict def prepareMouseSignal(eventType, button, xData, yData, xPixel, yPixel): assert eventType in ('mouseMoved', 'mouseClicked', 'mouseDoubleClicked') assert button in (None, 'left', 'right') return {'event': eventType, 'x': xData, 'y': yData, 'xpixel': xPixel, 'ypixel': yPixel, 'button': button} def prepareHoverSignal(label, type_, posData, posPixel, draggable, selectable): return {'event': 'hover', 'label': label, 'type': type_, 'x': posData[0], 'y': posData[1], 'xpixel': posPixel[0], 'ypixel': posPixel[1], 'draggable': draggable, 'selectable': selectable} def prepareMarkerSignal(eventType, button, label, type_, draggable, selectable, posDataMarker, posPixelCursor=None, posDataCursor=None): if eventType == 'markerClicked': assert posPixelCursor is not None assert posDataCursor is None posDataCursor = list(posDataMarker) if hasattr(posDataCursor[0], "__len__"): posDataCursor[0] = posDataCursor[0][-1] if hasattr(posDataCursor[1], "__len__"): posDataCursor[1] = posDataCursor[1][-1] elif eventType == 'markerMoving': assert posPixelCursor is not None assert posDataCursor is not None elif eventType == 'markerMoved': assert posPixelCursor is None assert posDataCursor is None posDataCursor = posDataMarker else: raise NotImplementedError("Unknown event type {0}".format(eventType)) eventDict = {'event': eventType, 'button': button, 'label': label, 'type': type_, 'x': posDataCursor[0], 'y': posDataCursor[1], 'xdata': posDataMarker[0], 'ydata': posDataMarker[1], 'draggable': draggable, 'selectable': selectable} if eventType in ('markerMoving', 'markerClicked'): eventDict['xpixel'] = posPixelCursor[0] eventDict['ypixel'] = posPixelCursor[1] return eventDict def prepareImageSignal(button, label, type_, col, row, x, y, xPixel, yPixel): return {'event': 'imageClicked', 'button': button, 'label': label, 'type': type_, 'col': col, 'row': row, 'x': x, 'y': y, 'xpixel': xPixel, 'ypixel': yPixel} def prepareCurveSignal(button, label, type_, xData, yData, x, y, xPixel, yPixel): return {'event': 'curveClicked', 'button': button, 'label': label, 'type': type_, 'xdata': xData, 'ydata': yData, 'x': x, 'y': y, 'xpixel': xPixel, 'ypixel': yPixel} def prepareLimitsChangedSignal(sourceObj, xRange, yRange, y2Range): return {'event': 'limitsChanged', 'source': id(sourceObj), 'xdata': xRange, 'ydata': yRange, 'y2data': y2Range} ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/PlotImageFile.py0000644000000000000000000001402414741736366024073 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Function to save an image to a file. """ # import ###################################################################### import base64 import struct import sys import zlib # Image writer ################################################################ def convertRGBDataToPNG(data): """Convert a RGB bitmap to PNG. It only supports RGB bitmap with one byte per channel stored as a 3D array. See `Definitive Guide `_ and `Specification `_ for details. :param data: A 3D array (h, w, rgb) storing an RGB image :type data: numpy.ndarray of unsigned bytes :returns: The PNG encoded data :rtype: bytes """ height, width = data.shape[0], data.shape[1] depth = 8 # 8 bit per channel colorType = 2 # 'truecolor' = RGB interlace = 0 # No pngData = [] # PNG signature pngData.append(b'\x89PNG\r\n\x1a\n') # IHDR chunk: Image Header pngData.append(struct.pack(">I", 13)) # length IHDRdata = struct.pack(">ccccIIBBBBB", b'I', b'H', b'D', b'R', width, height, depth, colorType, 0, 0, interlace) pngData.append(IHDRdata) pngData.append(struct.pack(">I", zlib.crc32(IHDRdata) & 0xffffffff)) # CRC # Add filter 'None' before each scanline preparedData = b'\x00' + b'\x00'.join(line.tobytes() for line in data) compressedData = zlib.compress(preparedData, 8) # IDAT chunk: Payload pngData.append(struct.pack(">I", len(compressedData))) IDATdata = struct.pack("cccc", b'I', b'D', b'A', b'T') IDATdata += compressedData pngData.append(IDATdata) pngData.append(struct.pack(">I", zlib.crc32(IDATdata) & 0xffffffff)) # CRC # IEND chunk: footer pngData.append(b'\x00\x00\x00\x00IEND\xaeB`\x82') return b''.join(pngData) def saveImageToFile(data, fileNameOrObj, fileFormat): """Save a RGB image to a file. :param data: A 3D array (h, w, 3) storing an RGB image. :type data: numpy.ndarray with of unsigned bytes. :param fileNameOrObj: Filename or object to use to write the image. :type fileNameOrObj: A str or a 'file-like' object with a 'write' method. :param str fileType: The type of the file in: 'png', 'ppm', 'svg', 'tiff'. """ assert len(data.shape) == 3 assert data.shape[2] == 3 assert fileFormat in ('png', 'ppm', 'svg', 'tiff') if not hasattr(fileNameOrObj, 'write'): if sys.version < "3.0": fileObj=open(fileNameOrObj, "wb") else: fileObj=open(fileNameOrObj, "w", newline='') else: # Use as a file-like object fileObj = fileNameOrObj if fileFormat == 'svg': height, width = data.shape[:2] base64Data = base64.b64encode(convertRGBDataToPNG(data)) fileObj.write( '\n') fileObj.write('\n') fileObj.write('\n' % height) fileObj.write(' \n') fileObj.write('') elif fileFormat == 'ppm': height, width = data.shape[:2] fileObj.write('P6\n') fileObj.write('%d %d\n' % (width, height)) fileObj.write('255\n') fileObj.write(data.tobytes()) elif fileFormat == 'png': fileObj.write(convertRGBDataToPNG(data)) elif fileFormat == 'tiff': if fileObj == fileNameOrObj: raise NotImplementedError( 'Save TIFF to a file-like object not implemented') from PyMca5.PyMcaIO.TiffIO import TiffIO tif = TiffIO(fileNameOrObj, mode='wb+') tif.writeImage(data, info={'Title': 'PyMCA GL Snapshot'}) if fileObj != fileNameOrObj: fileObj.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/PlotInteraction.py0000644000000000000000000013007014741736366024530 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Implementation of the interaction for the OpenGL plot backend. """ # import ###################################################################### import math import numpy as np import time import weakref try: from ..PlotBackend import PlotBackend except ImportError: from PyMca5.PyMcaGraph.PlotBackend import PlotBackend from .GLSupport import rgba, FLOAT32_MINPOS, FLOAT32_SAFE_MIN, FLOAT32_SAFE_MAX from .Interaction import ClickOrDrag, LEFT_BTN, RIGHT_BTN,\ State, StateMachine from .PlotEvents import prepareCurveSignal, prepareDrawingSignal,\ prepareHoverSignal, prepareImageSignal,\ prepareMarkerSignal, prepareMouseSignal # Zoom/Pan #################################################################### def _scale1DRange(min_, max_, center, scale, isLog): """Scale a 1D range given a scale factor and an center point. Keeps the values in a smaller range than float32. :param float min_: The current min value of the range. :param float max_: The current max value of the range. :param float center: The center of the zoom (i.e., invariant point). :param float scale: The scale to use for zoom :param bool isLog: Whether using log scale or not. :return: The zoomed range. :rtype: tuple of 2 floats: (min, max) """ if isLog: # Min and center can be < 0 when # autoscale is off and switch to log scale # max_ < 0 should not happen min_ = np.log10(min_) if min_ > 0. else FLOAT32_MINPOS center = np.log10(center) if center > 0. else FLOAT32_MINPOS max_ = np.log10(max_) if max_ > 0. else FLOAT32_MINPOS if min_ == max_: return min_, max_ offset = (center - min_) / (max_ - min_) range_ = (max_ - min_) / scale newMin = center - offset * range_ newMax = center + (1. - offset) * range_ if isLog: # No overflow as exponent is log10 of a float32 newMin = pow(10., newMin) newMax = pow(10., newMax) newMin = np.clip(newMin, FLOAT32_MINPOS, FLOAT32_SAFE_MAX) newMax = np.clip(newMax, FLOAT32_MINPOS, FLOAT32_SAFE_MAX) else: newMin = np.clip(newMin, FLOAT32_SAFE_MIN, FLOAT32_SAFE_MAX) newMax = np.clip(newMax, FLOAT32_SAFE_MIN, FLOAT32_SAFE_MAX) return newMin, newMax def _applyZoomToBackend(backend, cx, cy, scaleF): """Zoom in/out backend given a scale and a center point. :param PlotBackend backend: The backend on which to apply zoom. :param float cx: X coord in data coordinates of the zoom center. :param float cy: Y coord in data coordinates of the zoom center. :param float scaleF: Scale factor of zoom. """ dataCenterPos = backend.pixelToData(cx, cy) assert dataCenterPos is not None xMin, xMax = backend.getGraphXLimits() xMin, xMax = _scale1DRange(xMin, xMax, dataCenterPos[0], scaleF, backend.isXAxisLogarithmic()) yMin, yMax = backend.getGraphYLimits() yMin, yMax = _scale1DRange(yMin, yMax, dataCenterPos[1], scaleF, backend.isYAxisLogarithmic()) dataPos = backend.pixelToData(y=cy, axis="right") assert dataPos is not None y2Center = dataPos[1] y2Min, y2Max = backend.getGraphYLimits(axis="right") y2Min, y2Max = _scale1DRange(y2Min, y2Max, y2Center, scaleF, backend.isYAxisLogarithmic()) backend.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) backend.replot() class _ZoomOnWheel(ClickOrDrag): """:class:`ClickOrDrag` state machine with zooming on mouse wheel. Base class for :class:`Pan` and :class:`Zoom` """ class ZoomIdle(ClickOrDrag.Idle): def onWheel(self, x, y, angle): scaleF = 1.1 if angle > 0 else 1./1.1 _applyZoomToBackend(self.machine.backend, x, y, scaleF) def __init__(self, backend): """ :param backend: The backend to apply modifications to. """ self._backend = weakref.ref(backend) # Avoid cyclic-ref states = { 'idle': _ZoomOnWheel.ZoomIdle, 'rightClick': ClickOrDrag.RightClick, 'clickOrDrag': ClickOrDrag.ClickOrDrag, 'drag': ClickOrDrag.Drag } StateMachine.__init__(self, states, 'idle') @property def backend(self): backend = self._backend() assert backend is not None return backend # Pan ######################################################################### class Pan(_ZoomOnWheel): """Pan plot content and zoom on wheel state machine.""" def _pixelToData(self, x, y): xData, yData = self.backend.pixelToData(x, y) _, y2Data = self.backend.pixelToData(x, y, axis='right') return xData, yData, y2Data def beginDrag(self, x, y): self._previousDataPos = self._pixelToData(x, y) def drag(self, x, y): xData, yData, y2Data = self._pixelToData(x, y) lastX, lastY, lastY2 = self._previousDataPos xMin, xMax = self.backend.getGraphXLimits() yMin, yMax = self.backend.getGraphYLimits(axis='left') y2Min, y2Max = self.backend.getGraphYLimits(axis='right') if self.backend.isXAxisLogarithmic(): try: dx = math.log10(xData) - math.log10(lastX) newXMin = pow(10., (math.log10(xMin) - dx)) newXMax = pow(10., (math.log10(xMax) - dx)) except (ValueError, OverflowError): newXMin, newXMax = xMin, xMax # Makes sure both values stays in positive float32 range if newXMin < FLOAT32_MINPOS or newXMax > FLOAT32_SAFE_MAX: newXMin, newXMax = xMin, xMax else: dx = xData - lastX newXMin, newXMax = xMin - dx, xMax - dx # Makes sure both values stays in float32 range if newXMin < FLOAT32_SAFE_MIN or newXMax > FLOAT32_SAFE_MAX: newXMin, newXMax = xMin, xMax if self.backend.isYAxisLogarithmic(): try: dy = math.log10(yData) - math.log10(lastY) newYMin = pow(10., math.log10(yMin) - dy) newYMax = pow(10., math.log10(yMax) - dy) dy2 = math.log10(y2Data) - math.log10(lastY2) newY2Min = pow(10., math.log10(y2Min) - dy2) newY2Max = pow(10., math.log10(y2Max) - dy2) except (ValueError, OverflowError): newYMin, newYMax = yMin, yMax newY2Min, newY2Max = y2Min, y2Max # Makes sure y and y2 stays in positive float32 range if (newYMin < FLOAT32_MINPOS or newYMax > FLOAT32_SAFE_MAX or newY2Min < FLOAT32_MINPOS or newY2Max > FLOAT32_SAFE_MAX): newYMin, newYMax = yMin, yMax newY2Min, newY2Max = y2Min, y2Max else: dy = yData - lastY dy2 = y2Data - lastY2 newYMin, newYMax = yMin - dy, yMax - dy newY2Min, newY2Max = y2Min - dy2, y2Max - dy2 # Makes sure y and y2 stays in float32 range if (newYMin < FLOAT32_SAFE_MIN or newYMax > FLOAT32_SAFE_MAX or newY2Min < FLOAT32_SAFE_MIN or newY2Max > FLOAT32_SAFE_MAX): newYMin, newYMax = yMin, yMax newY2Min, newY2Max = y2Min, y2Max self.backend.setLimits(newXMin, newXMax, newYMin, newYMax, newY2Min, newY2Max) self.backend.replot() self._previousDataPos = self._pixelToData(x, y) def endDrag(self, startPos, endPos): del self._previousDataPos def cancel(self): pass # Zoom ######################################################################## class Zoom(_ZoomOnWheel): """Zoom-in/out state machine. Zoom-in on selected area, zoom-out on right click, and zoom on mouse wheel. """ _DOUBLE_CLICK_TIMEOUT = 0.4 def __init__(self, backend, color): self.color = color self.zoomStack = [] self._lastClick = 0., None super(Zoom, self).__init__(backend) def _areaWithAspectRatio(self, x0, y0, x1, y1): plotW, plotH = self.backend.plotSizeInPixels() areaX0, areaY0, areaX1, areaY1 = x0, y0, x1, y1 if plotH != 0.: plotRatio = plotW / float(plotH) width, height = math.fabs(x1 - x0), math.fabs(y1 - y0) if height != 0. and width != 0.: if width / height > plotRatio: areaHeight = width / plotRatio areaX0, areaX1 = x0, x1 center = 0.5 * (y0 + y1) areaY0 = center - np.sign(y1 - y0) * 0.5 * areaHeight areaY1 = center + np.sign(y1 - y0) * 0.5 * areaHeight else: areaWidth = height * plotRatio areaY0, areaY1 = y0, y1 center = 0.5 * (x0 + x1) areaX0 = center - np.sign(x1 - x0) * 0.5 * areaWidth areaX1 = center + np.sign(x1 - x0) * 0.5 * areaWidth return areaX0, areaY0, areaX1, areaY1 def click(self, x, y, btn): if btn == LEFT_BTN: lastClickTime, lastClickPos = self._lastClick # Signal mouse double clicked event first if (time.time() - lastClickTime) <= self._DOUBLE_CLICK_TIMEOUT: # Use position of first click eventDict = prepareMouseSignal('mouseDoubleClicked', 'left', *lastClickPos) self.backend.sendEvent(eventDict) self._lastClick = 0., None else: # Signal mouse clicked event dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareMouseSignal('mouseClicked', 'left', dataPos[0], dataPos[1], x, y) self.backend.sendEvent(eventDict) self._lastClick = time.time(), (dataPos[0], dataPos[1], x, y) # Zoom-in centered on mouse cursor # xMin, xMax = self.backend.getGraphXLimits() # yMin, yMax = self.backend.getGraphYLimits() # y2Min, y2Max = self.backend.getGraphYLimits(axis="right") # self.zoomStack.append((xMin, xMax, yMin, yMax, y2Min, y2Max)) # self._zoom(x, y, 2) elif btn == RIGHT_BTN: try: xMin, xMax, yMin, yMax, y2Min, y2Max = self.zoomStack.pop() except IndexError: # Signal mouse clicked event dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareMouseSignal('mouseClicked', 'right', dataPos[0], dataPos[1], x, y) self.backend.sendEvent(eventDict) else: self.backend.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) self.backend.replot() def beginDrag(self, x, y): dataPos = self.backend.pixelToData(x, y) assert dataPos is not None self.x0, self.y0 = x, y def drag(self, x1, y1): dataPos = self.backend.pixelToData(x1, y1) assert dataPos is not None if self.backend.isKeepDataAspectRatio(): area = self._areaWithAspectRatio(self.x0, self.y0, x1, y1) areaX0, areaY0, areaX1, areaY1 = area areaPoints = ((areaX0, areaY0), (areaX1, areaY0), (areaX1, areaY1), (areaX0, areaY1)) areaPoints = np.array([self.backend.pixelToData(x, y, check=False) for (x, y) in areaPoints]) if self.color != 'video inverted': areaColor = list(self.color) areaColor[3] *= 0.25 else: areaColor = [1., 1., 1., 1.] self.backend.setSelectionArea(areaPoints, fill=None, color=areaColor, name="zoomedArea") corners = ((self.x0, self.y0), (self.x0, y1), (x1, y1), (x1, self.y0)) corners = np.array([self.backend.pixelToData(x, y, check=False) for (x, y) in corners]) self.backend.setSelectionArea(corners, fill=None, color=self.color) self.backend.replot() def endDrag(self, startPos, endPos): x0, y0 = startPos x1, y1 = endPos if x0 != x1 or y0 != y1: # Avoid empty zoom area # Store current zoom state in stack xMin, xMax = self.backend.getGraphXLimits() yMin, yMax = self.backend.getGraphYLimits() y2Min, y2Max = self.backend.getGraphYLimits(axis="right") self.zoomStack.append((xMin, xMax, yMin, yMax, y2Min, y2Max)) if self.backend.isKeepDataAspectRatio(): x0, y0, x1, y1 = self._areaWithAspectRatio(x0, y0, x1, y1) if self.backend.isDefaultBaseVectors(): # Convert to data space and set limits x0, y0 = self.backend.pixelToData(x0, y0, check=False) dataPos = self.backend.pixelToData( y=startPos[1], axis="right", check=False) y2_0 = dataPos[1] x1, y1 = self.backend.pixelToData(x1, y1, check=False) dataPos = self.backend.pixelToData( y=endPos[1], axis="right", check=False) y2_1 = dataPos[1] xMin, xMax = min(x0, x1), max(x0, x1) yMin, yMax = min(y0, y1), max(y0, y1) y2Min, y2Max = min(y2_0, y2_1), max(y2_0, y2_1) self.backend.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) else: # Non-orthogonal axes # Get zoom bbox in pixels xPixelMin, xPixelMax = min(x0, x1), max(x0, x1) yPixelMin, yPixelMax = min(y0, y1), max(y0, y1) # Take the data bounds that fit entirely in the bbox corners = [(x0, y0), (x0, y1), (x1, y0), (x1, y1)] corners = np.array([self.backend.pixelToData(x, y, check=False) for (x, y) in corners], dtype=np.float32) # Drop the 2 extermes and use the other 2 as the range xMin, xMax = np.sort(corners[:, 0])[1:3] yMin, yMax = np.sort(corners[:, 1])[1:3] # TODO y2 axis self.backend.setLimits(xMin, xMax, yMin, yMax) self.backend.resetSelectionArea() self.backend.replot() def cancel(self): if isinstance(self.state, self.states['drag']): self.backend.resetSelectionArea() self.backend.replot() # Select ###################################################################### class Select(StateMachine): """Base class for drawing selection areas.""" def __init__(self, backend, parameters, states, state): """Init a state machine. :param backend: The backend to apply changes to. :param dict parameters: A dict of parameters such as color. :param dict states: The states of the state machine. :param str state: The name of the initial state. """ self._backend = weakref.ref(backend) # Avoid cyclic-ref self.parameters = parameters super(Select, self).__init__(states, state) def onWheel(self, x, y, angle): scaleF = 1.1 if angle > 0 else 1./1.1 _applyZoomToBackend(self.backend, x, y, scaleF) @property def backend(self): backend = self._backend() assert backend is not None return backend @property def color(self): return self.parameters.get('color', None) class SelectPolygon(Select): """Drawing selection polygon area state machine.""" class Idle(State): def onPress(self, x, y, btn): if btn == LEFT_BTN: self.goto('select', x, y) return True class Select(State): def enter(self, x, y): dataPos = self.machine.backend.pixelToData(x, y) assert dataPos is not None self.points = [dataPos, dataPos] def updateSelectionArea(self): self.machine.backend.setSelectionArea(self.points, fill='hatch', color=self.machine.color) self.machine.backend.replot() eventDict = prepareDrawingSignal('drawingProgress', 'polygon', self.points, self.machine.parameters) self.machine.backend.sendEvent(eventDict) def onRelease(self, x, y, btn): if btn == LEFT_BTN: dataPos = self.machine.backend.pixelToData(x, y) assert dataPos is not None self.points[-1] = dataPos self.updateSelectionArea() if self.points[-2] != self.points[-1]: self.points.append(dataPos) return True def onMove(self, x, y): dataPos = self.machine.backend.pixelToData(x, y) assert dataPos is not None self.points[-1] = dataPos self.updateSelectionArea() def onPress(self, x, y, btn): if btn == RIGHT_BTN: self.machine.backend.resetSelectionArea() self.machine.backend.replot() dataPos = self.machine.backend.pixelToData(x, y) assert dataPos is not None self.points[-1] = dataPos if self.points[-2] == self.points[-1]: self.points.pop() self.points.append(self.points[0]) eventDict = prepareDrawingSignal('drawingFinished', 'polygon', self.points, self.machine.parameters) self.machine.backend.sendEvent(eventDict) self.goto('idle') def __init__(self, backend, parameters): states = { 'idle': SelectPolygon.Idle, 'select': SelectPolygon.Select } super(SelectPolygon, self).__init__(backend, parameters, states, 'idle') def cancel(self): if isinstance(self.state, self.states['select']): self.backend.resetSelectionArea() self.backend.replot() class Select2Points(Select): """Base class for drawing selection based on 2 input points.""" class Idle(State): def onPress(self, x, y, btn): if btn == LEFT_BTN: self.goto('start', x, y) return True class Start(State): def enter(self, x, y): self.machine.beginSelect(x, y) def onMove(self, x, y): self.goto('select', x, y) def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.goto('select', x, y) return True class Select(State): def enter(self, x, y): self.onMove(x, y) def onMove(self, x, y): self.machine.select(x, y) def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.machine.endSelect(x, y) self.goto('idle') def __init__(self, backend, parameters): states = { 'idle': Select2Points.Idle, 'start': Select2Points.Start, 'select': Select2Points.Select } super(Select2Points, self).__init__(backend, parameters, states, 'idle') def beginSelect(self, x, y): pass def select(self, x, y): pass def endSelect(self, x, y): pass def cancelSelect(self): pass def cancel(self): if isinstance(self.state, self.states['select']): self.cancelSelect() class SelectRectangle(Select2Points): """Drawing rectangle selection area state machine.""" def beginSelect(self, x, y): self.startPt = self.backend.pixelToData(x, y) assert self.startPt is not None def select(self, x, y): dataPos = self.backend.pixelToData(x, y) assert dataPos is not None self.backend.setSelectionArea((self.startPt, (self.startPt[0], dataPos[1]), dataPos, (dataPos[0], self.startPt[1])), fill='hatch', color=self.color) self.backend.replot() eventDict = prepareDrawingSignal('drawingProgress', 'rectangle', (self.startPt, dataPos), self.parameters) self.backend.sendEvent(eventDict) def endSelect(self, x, y): self.backend.resetSelectionArea() self.backend.replot() dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareDrawingSignal('drawingFinished', 'rectangle', (self.startPt, dataPos), self.parameters) self.backend.sendEvent(eventDict) def cancelSelect(self): self.backend.resetSelectionArea() self.backend.replot() class SelectLine(Select2Points): """Drawing line selection area state machine.""" def beginSelect(self, x, y): self.startPt = self.backend.pixelToData(x, y) assert self.startPt is not None def select(self, x, y): dataPos = self.backend.pixelToData(x, y) assert dataPos is not None self.backend.setSelectionArea((self.startPt, dataPos), fill='hatch', color=self.color) self.backend.replot() eventDict = prepareDrawingSignal('drawingProgress', 'line', (self.startPt, dataPos), self.parameters) self.backend.sendEvent(eventDict) def endSelect(self, x, y): self.backend.resetSelectionArea() self.backend.replot() dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareDrawingSignal('drawingFinished', 'line', (self.startPt, dataPos), self.parameters) self.backend.sendEvent(eventDict) def cancelSelect(self): self.backend.resetSelectionArea() self.backend.replot() class Select1Point(Select): """Base class for drawing selection area based on one input point.""" class Idle(State): def onPress(self, x, y, btn): if btn == LEFT_BTN: self.goto('select', x, y) return True class Select(State): def enter(self, x, y): self.onMove(x, y) def onMove(self, x, y): self.machine.select(x, y) def onRelease(self, x, y, btn): if btn == LEFT_BTN: self.machine.endSelect(x, y) self.goto('idle') def onWheel(self, x, y, angle): self.machine.onWheel(x, y, angle) # Call select default wheel self.machine.select(x, y) def __init__(self, backend, parameters): states = { 'idle': Select1Point.Idle, 'select': Select1Point.Select } super(Select1Point, self).__init__(backend, parameters, states, 'idle') def select(self, x, y): pass def endSelect(self, x, y): pass def cancelSelect(self): pass def cancel(self): if isinstance(self.state, self.states['select']): self.cancelSelect() class SelectHLine(Select1Point): """Drawing a horizontal line selection area state machine.""" def _hLine(self, y): """Return points in data coords of the segment visible in the plot. Supports non-orthogonal axes. """ plotWidth, plotHeight = self.backend.plotSizeInPixels() plotLeft, plotTop = self.backend.plotOriginInPixels() dataPos1 = self.backend.pixelToData(plotLeft, y, check=False) dataPos2 = self.backend.pixelToData( plotLeft + plotWidth, y, check=False) return dataPos1, dataPos2 def select(self, x, y): points = self._hLine(y) self.backend.setSelectionArea(points, fill='hatch', color=self.color) self.backend.replot() eventDict = prepareDrawingSignal('drawingProgress', 'hline', points, self.parameters) self.backend.sendEvent(eventDict) def endSelect(self, x, y): self.backend.resetSelectionArea() self.backend.replot() eventDict = prepareDrawingSignal('drawingFinished', 'hline', self._hLine(y), self.parameters) self.backend.sendEvent(eventDict) def cancelSelect(self): self.backend.resetSelectionArea() self.backend.replot() class SelectVLine(Select1Point): """Drawing a vertical line selection area state machine.""" def _vLine(self, x): """Return points in data coords of the segment visible in the plot. Supports non-orthogonal axes. """ plotWidth, plotHeight = self.backend.plotSizeInPixels() plotLeft, plotTop = self.backend.plotOriginInPixels() dataPos1 = self.backend.pixelToData(x, plotTop, check=False) dataPos2 = self.backend.pixelToData( x, plotTop + plotHeight, check=False) return dataPos1, dataPos2 def select(self, x, y): points = self._vLine(x) self.backend.setSelectionArea(points, fill='hatch', color=self.color) self.backend.replot() eventDict = prepareDrawingSignal('drawingProgress', 'vline', points, self.parameters) self.backend.sendEvent(eventDict) def endSelect(self, x, y): self.backend.resetSelectionArea() self.backend.replot() eventDict = prepareDrawingSignal('drawingFinished', 'vline', self._vLine(x), self.parameters) self.backend.sendEvent(eventDict) def cancelSelect(self): self.backend.resetSelectionArea() self.backend.replot() # ItemInteraction ############################################################# class ItemsInteraction(ClickOrDrag): class Idle(ClickOrDrag.Idle): def __init__(self, *args, **kw): super(ItemsInteraction.Idle, self).__init__(*args, **kw) self._hoverMarker = None def onWheel(self, x, y, angle): scaleF = 1.1 if angle > 0 else 1./1.1 _applyZoomToBackend(self.machine.backend, x, y, scaleF) def onPress(self, x, y, btn): if btn == LEFT_BTN: testBehaviors = set(('selectable', 'draggable')) marker = self.machine.backend.pickMarker( x, y, lambda marker: marker['behaviors'] & testBehaviors) if marker is not None: self.goto('clickOrDrag', x, y) return True else: picked = self.machine.backend.pickImageOrCurve( x, y, lambda item: item.info['behaviors'] & testBehaviors) if picked is not None: self.goto('clickOrDrag', x, y) return True return False def onMove(self, x, y): marker = self.machine.backend.pickMarker(x, y) if marker is not None: dataPos = self.machine.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareHoverSignal( marker['legend'], 'marker', dataPos, (x, y), 'draggable' in marker['behaviors'], 'selectable' in marker['behaviors']) self.machine.backend.sendEvent(eventDict) if marker != self._hoverMarker: self._hoverMarker = marker if marker is None: self.machine.backend.setCursor() elif 'draggable' in marker['behaviors']: if marker['x'] is None: self.machine.backend.setCursor('size vertical') elif marker['y'] is None: self.machine.backend.setCursor('size horizontal') else: self.machine.backend.setCursor('size all') elif 'selectable' in marker['behaviors']: self.machine.backend.setCursor('pointing') return True def __init__(self, backend): self._backend = weakref.ref(backend) # Avoid cyclic-ref states = { 'idle': ItemsInteraction.Idle, 'clickOrDrag': ClickOrDrag.ClickOrDrag, 'drag': ClickOrDrag.Drag } StateMachine.__init__(self, states, 'idle') @property def backend(self): backend = self._backend() assert backend is not None return backend def click(self, x, y, btn): # Signal mouse clicked event dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareMouseSignal('mouseClicked', btn, dataPos[0], dataPos[1], x, y) self.backend.sendEvent(eventDict) if btn == LEFT_BTN: marker = self.backend.pickMarker( x, y, lambda marker: 'selectable' in marker['behaviors']) if marker is not None: # Mimic MatplotlibBackend signal xData, yData = marker['x'], marker['y'] if xData is None: xData = [0, 1] if yData is None: yData = [0, 1] draggable = 'draggable' in marker['behaviors'] selectable = 'selectable' in marker['behaviors'] eventDict = prepareMarkerSignal('markerClicked', 'left', marker['legend'], 'marker', draggable, selectable, (xData, yData), (x, y), None) self.backend.sendEvent(eventDict) self.backend.replot() else: picked = self.backend.pickImageOrCurve( x, y, lambda item: 'selectable' in item.info['behaviors']) if picked is None: pass elif picked[0] == 'curve': _, curve, indices = picked dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareCurveSignal('left', curve.info['legend'], 'curve', curve.xData[indices], curve.yData[indices], dataPos[0], dataPos[1], x, y) self.backend.sendEvent(eventDict) elif picked[0] == 'image': _, image, posImg = picked dataPos = self.backend.pixelToData(x, y) assert dataPos is not None eventDict = prepareImageSignal('left', image.info['legend'], 'image', posImg[0], posImg[1], dataPos[0], dataPos[1], x, y) self.backend.sendEvent(eventDict) def _signalMarkerMovingEvent(self, eventType, marker, x, y): assert marker is not None # Mimic MatplotlibBackend signal xData, yData = marker['x'], marker['y'] if xData is None: xData = [0, 1] if yData is None: yData = [0, 1] posDataCursor = self.backend.pixelToData(x, y) assert posDataCursor is not None eventDict = prepareMarkerSignal(eventType, 'left', marker['legend'], 'marker', 'draggable' in marker['behaviors'], 'selectable' in marker['behaviors'], (xData, yData), (x, y), posDataCursor) self.backend.sendEvent(eventDict) def beginDrag(self, x, y): self._lastPos = self.backend.pixelToData(x, y) assert self._lastPos is not None self.image = None self.marker = self.backend.pickMarker( x, y, lambda marker: 'draggable' in marker['behaviors']) if self.marker is not None: self._signalMarkerMovingEvent('markerMoving', self.marker, x, y) else: picked = self.backend.pickImageOrCurve( x, y, lambda item: 'draggable' in item.info['behaviors']) if picked is None: self.image = None self.backend.setCursor() else: assert picked[0] == 'image' # For now, only drag images self.image = picked[1] def drag(self, x, y): dataPos = self.backend.pixelToData(x, y) assert dataPos is not None xData, yData = dataPos if self.marker is not None: if self.marker['constraint'] is not None: xData, yData = self.marker['constraint'](xData, yData) if self.marker['x'] is not None: self.marker['x'] = xData if self.marker['y'] is not None: self.marker['y'] = yData self._signalMarkerMovingEvent('markerMoving', self.marker, x, y) self.backend.replot() if self.image is not None: dx, dy = xData - self._lastPos[0], yData - self._lastPos[1] self.image.xMin += dx self.image.yMin += dy self.backend._plotDirtyFlag = True self.backend.replot() self._lastPos = xData, yData def endDrag(self, startPos, endPos): if self.marker is not None: posData = [self.marker['x'], self.marker['y']] # Mimic MatplotlibBackend signal if posData[0] is None: posData[0] = [0, 1] if posData[1] is None: posData[1] = [0, 1] eventDict = prepareMarkerSignal( 'markerMoved', 'left', self.marker['legend'], 'marker', 'draggable' in self.marker['behaviors'], 'selectable' in self.marker['behaviors'], posData) self.backend.sendEvent(eventDict) self.backend.setCursor() del self.marker del self.image del self._lastPos def cancel(self): self.backend.setCursor() # FocusManager ################################################################ class FocusManager(StateMachine): """Manages focus across multiple event handlers On press an event handler can acquire focus. By default it looses focus when all buttons are released. """ class Idle(State): def onPress(self, x, y, btn): for eventHandler in self.machine.eventHandlers: requestFocus = eventHandler.handleEvent('press', x, y, btn) if requestFocus: self.goto('focus', eventHandler, btn) break def _processEvent(self, *args): for eventHandler in self.machine.eventHandlers: consumeEvent = eventHandler.handleEvent(*args) if consumeEvent: break def onMove(self, x, y): self._processEvent('move', x, y) def onRelease(self, x, y, btn): self._processEvent('release', x, y, btn) def onWheel(self, x, y, angle): self._processEvent('wheel', x, y, angle) class Focus(State): def enter(self, eventHandler, btn): self.eventHandler = eventHandler self.focusBtns = set((btn,)) def onPress(self, x, y, btn): self.focusBtns.add(btn) self.eventHandler.handleEvent('press', x, y, btn) def onMove(self, x, y): self.eventHandler.handleEvent('move', x, y) def onRelease(self, x, y, btn): self.focusBtns.discard(btn) requestFocus = self.eventHandler.handleEvent('release', x, y, btn) if len(self.focusBtns) == 0 and not requestFocus: self.goto('idle') def onWheel(self, x, y, angleInDegrees): self.eventHandler.handleEvent('wheel', x, y, angleInDegrees) def __init__(self, eventHandlers=()): self.eventHandlers = list(eventHandlers) states = { 'idle': FocusManager.Idle, 'focus': FocusManager.Focus } super(FocusManager, self).__init__(states, 'idle') def cancel(self): for handler in self.eventHandlers: handler.cancel() class ZoomAndSelect(FocusManager): """Combine Zoom and ItemInteraction state machine.""" def __init__(self, backend, color): eventHandlers = ItemsInteraction(backend), Zoom(backend, color) super(ZoomAndSelect, self).__init__(eventHandlers) @property def color(self): return self.eventHandlers[1].color # Interaction mode control #################################################### class PlotInteraction(object): """Proxy to currently use state machine for interaction. This allows to switch interactive mode. """ _DRAW_MODES = { 'polygon': SelectPolygon, 'rectangle': SelectRectangle, 'line': SelectLine, 'vline': SelectVLine, 'hline': SelectHLine, } def __init__(self, backend): self._backend = weakref.ref(backend) # Avoid cyclic-ref # Default event handler self._eventHandler = ItemsInteraction(backend) def getInteractiveMode(self): """Returns the current interactive mode as a dict. The returned dict contains at least the key 'mode'. Mode can be: 'draw', 'pan', 'select', 'zoom'. It can also contains extra keys (e.g., 'color') specific to a mode as provided to :meth:`setInteractiveMode`. """ if isinstance(self._eventHandler, ZoomAndSelect): return {'mode': 'zoom', 'color': self._eventHandler.color} elif isinstance(self._eventHandler, Select): result = self._eventHandler.parameters.copy() result['mode'] = 'draw' return result elif isinstance(self._eventHandler, Pan): return {'mode': 'pan'} else: return {'mode': 'select'} def setInteractiveMode(self, mode, color=None, shape='polygon', label=None): """Switch the interactive mode. :param str mode: The name of the interactive mode. In 'draw', 'pan', 'select', 'zoom'. :param color: Only for 'draw' and 'zoom' modes. Color to use for drawing selection area. Default black. :type color: Color description: The name as a str or a tuple of 4 floats. :param str shape: Only for 'draw' mode. The kind of shape to draw. In 'polygon', 'rectangle', 'line', 'vline', 'hline'. Default is 'polygon'. :param str label: Only for 'draw' mode. """ assert mode in ('draw', 'pan', 'select', 'zoom') if color is None: color = 'black' backend = self._backend() assert backend is not None if mode == 'draw': assert shape in self._DRAW_MODES eventHandlerClass = self._DRAW_MODES[shape] parameters = { 'shape': shape, 'label': label, 'color': rgba(color, PlotBackend.COLORDICT) } self._eventHandler.cancel() self._eventHandler = eventHandlerClass(backend, parameters) elif mode == 'pan': # Ignores color, shape and label self._eventHandler.cancel() self._eventHandler = Pan(backend) elif mode == 'zoom': # Ignores shape and label if color != 'video inverted': color = rgba(color, PlotBackend.COLORDICT) self._eventHandler.cancel() self._eventHandler = ZoomAndSelect(backend, color) else: # Default mode: interaction with plot objects # Ignores color, shape and label self._eventHandler.cancel() self._eventHandler = ItemsInteraction(backend) def handleEvent(self, *args, **kwargs): """Forward event to current interactive mode state machine.""" self._eventHandler.handleEvent(*args, **kwargs) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/__init__.py0000644000000000000000000000424414741736366023154 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides convenient classes for the OpenGL rendering backend. """ # import ###################################################################### from .GLContext import * # noqa from .GLFramebuffer import * # noqa from .GLPlotCurve import * # noqa from .GLPlotFrame import * # noqa from .GLPlotImage import * # noqa from .GLProgram import GLProgram # noqa from .GLSupport import * # noqa from .GLText import * # noqa from .GLTexture import * # noqa from .GLVertexBuffer import * # noqa from .Interaction import * # noqa from .LabelLayout import * # noqa ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7557662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/gl/0000755000000000000000000000000014741736404021432 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLSupport/gl/__init__.py0000644000000000000000000000761514741736366023563 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module loads PyOpenGL """ # import ###################################################################### import numpy as np import OpenGL if 0: # Debug OpenGL.ERROR_ON_COPY = True else: OpenGL.ERROR_LOGGING = False OpenGL.ERROR_CHECKING = False OpenGL.ERROR_ON_COPY = False from OpenGL.GL import * # noqa # Extentions core in OpenGL 3 from OpenGL.GL.ARB.framebuffer_object import * # noqa from OpenGL.GL.ARB.texture_rg import GL_R32F, GL_R16F from OpenGL.GL.ARB.texture_rg import GL_R16, GL_R8 # PyOpenGL 3.0.1 does not define it try: GLchar except NameError: from ctypes import c_char GLchar = c_char def testGL(): """Test if required OpenGL version and extensions are available.""" version = glGetString(GL_VERSION).split()[0] # get version number major, minor = int(version[0]), int(version[2]) if major < 2 or (major == 2 and minor < 1): raise RuntimeError( "Requires at least OpenGL version 2.1, running with %s" % version) from OpenGL.GL.ARB.framebuffer_object import glInitFramebufferObjectARB from OpenGL.GL.ARB.texture_rg import glInitTextureRgARB if not glInitFramebufferObjectARB(): raise RuntimeError( "OpenGL GL_ARB_framebuffer_object extension required !") if not glInitTextureRgARB(): raise RuntimeError("OpenGL GL_ARB_texture_rg extension required !") # utils ####################################################################### _GL_TYPE_SIZES = { GL_FLOAT: 4, GL_BYTE: 1, GL_SHORT: 2, GL_INT: 4, GL_UNSIGNED_BYTE: 1, GL_UNSIGNED_SHORT: 2, GL_UNSIGNED_INT: 4, } def sizeofGLType(type_): """Returns the size in bytes of an element of type type_""" return _GL_TYPE_SIZES[type_] _TYPE_CONVERTER = { np.dtype(np.float32): GL_FLOAT, np.dtype(np.int8): GL_BYTE, np.dtype(np.int16): GL_SHORT, np.dtype(np.int32): GL_INT, np.dtype(np.uint8): GL_UNSIGNED_BYTE, np.dtype(np.uint16): GL_UNSIGNED_SHORT, np.dtype(np.uint32): GL_UNSIGNED_INT, } def isSupportedGLType(type_): """Test if a numpy type or dtype can be converted to a GL type.""" return np.dtype(type_) in _TYPE_CONVERTER def numpyToGLType(type_): """Returns the GL type corresponding the provided numpy type or dtype.""" return _TYPE_CONVERTER[np.dtype(type_)] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/GLUTOpenGLBackend.py0000644000000000000000000001144214741736366022604 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ OpenGL/GLUT backend """ # import ###################################################################### from OpenGL.GLUT import * # noqa from ._OpenGLPlotCanvas import OpenGLPlotCanvas from ._OpenGLPlotCanvas import CURSOR_DEFAULT, CURSOR_POINTING, \ CURSOR_SIZE_HOR, CURSOR_SIZE_VER, CURSOR_SIZE_ALL # GLUT ######################################################################## class GLUTOpenGLBackend(OpenGLPlotCanvas): _MOUSE_BTNS = { GLUT_LEFT_BUTTON: 'left', GLUT_RIGHT_BUTTON: 'right', GLUT_MIDDLE_BUTTON: 'middle' } _CURSORS = { CURSOR_DEFAULT: GLUT_CURSOR_INHERIT, CURSOR_POINTING: GLUT_CURSOR_INFO, CURSOR_SIZE_HOR: GLUT_CURSOR_LEFT_RIGHT, CURSOR_SIZE_VER: GLUT_CURSOR_UP_DOWN, CURSOR_SIZE_ALL: GLUT_CURSOR_LEFT_RIGHT } def __init__(self, parent=None, **kw): glutInitWindowSize(800, 600) glutInitWindowPosition(0, 0) glutCreateWindow('GLUTOpenGLBackend') OpenGLPlotCanvas.__init__(self, parent, **kw) self.initializeGL() glutDisplayFunc(self.glutDisplay) glutReshapeFunc(self.resizeGL) glutMouseFunc(self.glutMouseClicked) glutMotionFunc(self.glutMouseMoved) glutPassiveMotionFunc(self.glutMouseMoved) def postRedisplay(self): glutPostRedisplay() def setCursor(self, cursor=CURSOR_DEFAULT): glutSetCursor(self._CURSORS[cursor]) def glutDisplay(self): self.paintGL() glutSwapBuffers() def glutMouseClicked(self, btn, state, xPixel, yPixel): if btn == 3: # mouse wheel self.onMouseWheel(xPixel, yPixel, 15.) elif btn == 4: # mouse wheel self.onMouseWheel(xPixel, yPixel, -15.) else: btn = self._MOUSE_BTNS[btn] if state == GLUT_DOWN: self.onMousePress(xPixel, yPixel, btn) else: self.onMouseRelease(xPixel, yPixel, btn) def glutMouseMoved(self, xPixel, yPixel): self.onMouseMove(xPixel, yPixel) # main ######################################################################## if __name__ == "__main__": import sys import numpy as np from ..Plot import Plot glutInit(sys.argv) glutInitDisplayString("double rgba stencil") w = Plot(None, backend=GLUTOpenGLBackend) size = 4096 data = np.arange(float(size)*size, dtype=np.dtype(np.float32)) data.shape = size, size colormap = {'name': 'gray', 'normalization': 'linear', 'autoscale': True, 'vmin': 0.0, 'vmax': 1.0, 'colors': 256} w.addImage(data, legend="image 1", xScale=(25, 1.0), yScale=(-1000, 1.0), replot=False, colormap=colormap) w.insertXMarker(1000, 'testX', 'markerX', color='pink', selectable=False, draggable=True) w.insertYMarker(600, 'testY', 'markerY', color='black', selectable=False, draggable=True) w.insertMarker(1000, 500, 'testXY', 'markerPt', color='black', selectable=False, draggable=True) w.insertMarker(100, 500, 'testS', 'markerSelect', color='black', selectable=True, draggable=False) sys.exit(glutMainLoop()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/MatplotlibBackend.py0000644000000000000000000034003514741736366023076 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Matplotlib Plot backend. """ from matplotlib import cbook import matplotlib # blitting enabled by default # it provides faster response at the cost of missing minor updates # during movement (only the bounding box of the moving object is updated) # For instance, when moving a marker, the label is not updated during the # movement. BLITTING = True import numpy from numpy import vstack as numpyvstack # Problem on debian6 numpy version 1.4.1 unsigned longs give infinity #from numpy import nanmax, nanmin def nanmax(x): x = numpy.asarray(x) x = x[numpy.isfinite(x)] if len(x): return x.max() else: return 0 def nanmin(x): x = numpy.asarray(x) x = x[numpy.isfinite(x)] if len(x): return x.min() else: return 0 import sys import types # This should be independent of Qt TK = False if ("tk" in sys.argv) or ("Tkinter" in sys.modules) or ("tkinter" in sys.modules): TK = True if TK and ("PyQt5.QtCore" not in sys.modules) and ("PyQt6.QtCore" not in sys.modules) and \ ("PySide6.QtCore" not in sys.modules) and ("PySide2.QtCore" not in sys.modules): import tkinter as Tk elif 'PySide2.QtCore' in sys.modules: from PySide2 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication elif 'PyQt5.QtCore' in sys.modules: from PyQt5 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication elif 'PySide6.QtCore' in sys.modules: from PySide6 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication elif 'PyQt6.QtCore' in sys.modules: from PyQt6 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication else: try: from PyQt5 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication except ImportError: try: from PyQt6 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication except ImportError: from PySide6 import QtCore, QtGui, QtWidgets QtGui.QApplication = QtWidgets.QApplication if ("PyQt5.QtCore" in sys.modules) or ("PySide2.QtCore" in sys.modules): from ._patch_matplotlib import patch_backend_qt patch_backend_qt() from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas TK = False QT = True elif ("PyQt6.QtCore" in sys.modules) or ("PySide6.QtCore" in sys.modules): from ._patch_matplotlib import patch_backend_qt patch_backend_qt() from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas TK = False QT = True elif ("Tkinter" in sys.modules) or ("tkinter" in sys.modules): TK = True QT = False from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg as FigureCanvas else: QT = False TK = False print("Unknown backend. Defaulting to Agg") from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas try: from .. import PlotBackend except ImportError: from PyMca5.PyMca import PlotBackend from matplotlib import cm from matplotlib.font_manager import FontProperties try: from matplotlib.widgets import Cursor except Exception: print("matplotlib.widgets Cursor not available") from matplotlib.figure import Figure import matplotlib.patches as patches Rectangle = patches.Rectangle Polygon = patches.Polygon from matplotlib.lines import Line2D from matplotlib.collections import PathCollection from matplotlib.text import Text from matplotlib.image import AxesImage, NonUniformImage from matplotlib.colors import LinearSegmentedColormap, LogNorm, Normalize import time try: from . import _utils except ImportError: from PyMca5.PyMcaGraph.backends import _utils DEBUG = 0 class ModestImage(AxesImage): pass class MatplotlibGraph(FigureCanvas): def __init__(self, parent=None, **kw): #self.figure = Figure(figsize=size, dpi=dpi) #in inches self.fig = Figure() if TK: self._canvas = FigureCanvas.__init__(self, self.fig, master=parent) else: self._originalCursorShape = QtCore.Qt.ArrowCursor self._canvas = FigureCanvas.__init__(self, self.fig) # get the default widget color color = self.palette().color(self.backgroundRole()) color = "#%x" % color.rgb() if len(color) == 9: color = "#" + color[3:] #self.fig.set_facecolor(color) self.fig.set_facecolor("w") # that's it if 1: #this almost works """ def twinx(self): call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right ax2 = self.fig.add_axes(self.get_position(True), sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') ax2.yaxis.set_offset_position('right') self.ax.yaxis.tick_left() ax2.xaxis.set_visible(False) return ax2 """ self.ax = self.fig.add_axes([.15, .15, .75, .75], label="left") self.ax2 = self.ax.twinx() self.ax2.set_label("right") # critical for picking!!!! self.ax2.set_zorder(0) self.ax2.set_autoscaley_on(True) self.ax.set_zorder(1) #this works but the figure color is left if hasattr(self.ax, "set_facecolor"): self.ax.set_facecolor('none') else: # this was deprecated in 2.0 self.ax.set_axis_bgcolor('none') self.fig.sca(self.ax) try: # prevent use of offsets self.ax.get_yaxis().get_major_formatter().set_useOffset(False) self.ax.get_xaxis().get_major_formatter().set_useOffset(False) except Exception: print("Error disabling matplotlib offsets") else: #this almost works self.ax2 = self.fig.add_axes([.15, .15, .75, .75], axisbg="w", label="right", frameon=False) self.ax = self.fig.add_axes(self.ax2.get_position(), sharex=self.ax2, label="left", frameon=True) self.ax2.yaxis.tick_right() self.ax2.xaxis.set_visible(False) self.ax2.yaxis.set_label_position('right') self.ax2.yaxis.set_offset_position('right') if hasattr(self.ax, "set_facecolor"): self.ax.set_facecolor('none') else: # this was deprecated in 2.0 self.ax.set_axis_bgcolor('none') # this respects aspect size # self.ax = self.fig.add_subplot(111, aspect='equal') # This should be independent of Qt if QT: FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.__lastMouseClick = ["middle", time.time()] self._zoomEnabled = False self._zoomColor = "black" self.__zooming = False self.__picking = False self._background = None self.__markerMoving = False self._zoomStack = [] self.xAutoScale = True self.yAutoScale = True #info text self._infoText = None #drawingmode handling self.setDrawModeEnabled(False) self.__drawModeList = ['line', 'hline', 'vline', 'rectangle', 'polygon'] self.__drawing = False self._drawingPatch = None self._drawModePatch = 'line' #event handling self._callback = self._dummyCallback self._x0 = None self._y0 = None self._zoomRectangle = None self.fig.canvas.mpl_connect('button_press_event', self.onMousePressed) self.fig.canvas.mpl_connect('button_release_event', self.onMouseReleased) self.fig.canvas.mpl_connect('motion_notify_event', self.onMouseMoved) self.fig.canvas.mpl_connect('scroll_event', self.onMouseWheel) self.fig.canvas.mpl_connect('pick_event', self.onPick) def _dummyCallback(self, ddict): if DEBUG: print(ddict) def setCallback(self, callbackFuntion): self._callback = callbackFuntion def onPick(self, event): # Unfortunately only the artists on the top axes # can be picked -> A legend handling widget is # needed middleButton = 2 rightButton = 3 button = event.mouseevent.button if button == middleButton: # do nothing with the midle button return elif button == rightButton: button = "right" else: button = "left" if self._drawModeEnabled: # forget about picking or zooming # should one disconnect when setting the mode? return self.__picking = False self._pickingInfo = {} if isinstance(event.artist, Line2D) or \ isinstance(event.artist, PathCollection): # we only handle curves and markers for the time being self.__picking = True artist = event.artist label = artist.get_label() ind = event.ind #xdata = thisline.get_xdata() #ydata = thisline.get_ydata() #print('onPick line:', zip(numpy.take(xdata, ind), # numpy.take(ydata, ind))) self._pickingInfo['artist'] = artist self._pickingInfo['event_ind'] = ind if label.startswith("__MARKER__"): label = label[10:] self._pickingInfo['type'] = 'marker' self._pickingInfo['label'] = label if 'draggable' in artist._plot_options: self._pickingInfo['draggable'] = True else: self._pickingInfo['draggable'] = False if 'selectable' in artist._plot_options: self._pickingInfo['selectable'] = True else: self._pickingInfo['selectable'] = False if hasattr(artist, "_infoText"): self._pickingInfo['infoText'] = artist._infoText else: self._pickingInfo['infoText'] = None elif isinstance(event.artist, PathCollection): # almost identical to line 2D self._pickingInfo['type'] = 'curve' self._pickingInfo['label'] = label self._pickingInfo['artist'] = artist data = artist.get_offsets() xdata = data[:, 0] ydata = data[:, 1] self._pickingInfo['xdata'] = xdata[ind] self._pickingInfo['ydata'] = ydata[ind] self._pickingInfo['infoText'] = None else: # line2D self._pickingInfo['type'] = 'curve' self._pickingInfo['label'] = label self._pickingInfo['artist'] = artist xdata = artist.get_xdata() ydata = artist.get_ydata() self._pickingInfo['xdata'] = xdata[ind] self._pickingInfo['ydata'] = ydata[ind] self._pickingInfo['infoText'] = None if self._pickingInfo['infoText'] is None: if self._infoText is None: self._infoText = self.ax.text(event.mouseevent.xdata, event.mouseevent.ydata, label) else: self._infoText.set_position((event.mouseevent.xdata, event.mouseevent.ydata)) self._infoText.set_text(label) self._pickingInfo['infoText'] = self._infoText self._pickingInfo['infoText'].set_visible(True) if DEBUG: print("%s %s selected" % (self._pickingInfo['type'].upper(), self._pickingInfo['label'])) elif isinstance(event.artist, Rectangle): patch = event.artist print('onPick patch:', patch.get_path()) elif isinstance(event.artist, Text): text = event.artist print('onPick text:', text.get_text()) elif isinstance(event.artist, AxesImage): self.__picking = True artist = event.artist #print dir(artist) self._pickingInfo['artist'] = artist #self._pickingInfo['event_ind'] = ind label = artist.get_label() self._pickingInfo['type'] = 'image' self._pickingInfo['label'] = label self._pickingInfo['draggable'] = False self._pickingInfo['selectable'] = False if hasattr(artist, "_plot_options"): if 'draggable' in artist._plot_options: self._pickingInfo['draggable'] = True else: self._pickingInfo['draggable'] = False if 'selectable' in artist._plot_options: self._pickingInfo['selectable'] = True else: self._pickingInfo['selectable'] = False else: print("unhandled event", event.artist) def setDrawModeEnabled(self, flag=True, shape="polygon", label=None, color=None, **kw): if flag: shape = shape.lower() if shape not in self.__drawModeList: self._drawModeEnabled = False raise ValueError("Unsupported shape %s" % shape) else: self._drawModeEnabled = True self.setZoomModeEnabled(False) self._drawModePatch = shape self._drawingParameters = kw if color is not None: self._drawingParameters['color'] = color self._drawingParameters['shape'] = shape self._drawingParameters['label'] = label else: self._drawModeEnabled = False def setZoomModeEnabled(self, flag=True, color=None): if color is None: color = self._zoomColor if len(color) == 4: if type(color[3]) in [type(1), numpy.uint8, numpy.int8]: color = numpy.array(color, dtype=numpy.float64)/255. self._zoomColor = color if flag: self._zoomEnabled = True self.setDrawModeEnabled(False) else: self._zoomEnabled = False def isZoomModeEnabled(self): return self._zoomEnabled def isDrawModeEnabled(self): return self._drawModeEnabled def getDrawMode(self): if self.isDrawModeEnabled(): return self._drawingParameters else: return None def onMousePressed(self, event): if DEBUG: print("onMousePressed, event = ",event.xdata, event.ydata) print("Mouse button = ", event.button) self.__time0 = -1.0 if event.inaxes != self.ax: if DEBUG: print("RETURNING") return button = event.button leftButton = 1 middleButton = 2 rightButton = 3 self._x0 = event.xdata self._y0 = event.ydata if button == middleButton: # by default, do nothing with the middle button return self._x0Pixel = event.x self._y0Pixel = event.y self._x1 = event.xdata self._y1 = event.ydata self._x1Pixel = event.x self._y1Pixel = event.y self.__movingMarker = 0 # picking handling if self.__picking: if DEBUG: print("PICKING, Ignoring zoom") self.__zooming = False self.__drawing = False self.__markerMoving = False if self._pickingInfo['type'] == "marker": if button == rightButton: # only selection or movement self._pickingInfo = {} return artist = self._pickingInfo['artist'] if button == leftButton: if self._pickingInfo['draggable']: self.__markerMoving = True if self._pickingInfo['selectable']: self.__markerMoving = False if self.__markerMoving: if 'xmarker' in artist._plot_options: data = event.xdata if not numpy.iterable(data): data = [data, ] artist.set_xdata(data) elif 'ymarker' in artist._plot_options: data = event.ydata if not numpy.iterable(data): data = [data, ] artist.set_ydata(data) else: xData, yData = event.xdata, event.ydata if artist._constraint is not None: # Apply marker constraint xData, yData = artist._constraint(xData, yData) if not numpy.iterable(xData): xData = [xData, ] if not numpy.iterable(yData): yData = [yData, ] artist.set_xdata(xData) artist.set_ydata(yData) if BLITTING and hasattr(artist.figure, "canvas"): canvas = artist.figure.canvas axes = artist.axes artist.set_animated(True) canvas.draw() self._background = canvas.copy_from_bbox(self.fig.bbox) axes.draw_artist(artist) canvas.blit(self.fig.bbox) else: self.fig.canvas.draw() ddict = {} ddict['label'] = self._pickingInfo['label'] ddict['type'] = self._pickingInfo['type'] ddict['draggable'] = self._pickingInfo['draggable'] ddict['selectable'] = self._pickingInfo['selectable'] ddict['xpixel'] = self._x0Pixel ddict['ypixel'] = self._y0Pixel ddict['xdata'] = artist.get_xdata() ddict['ydata'] = artist.get_ydata() if self.__markerMoving: ddict['event'] = "markerMoving" ddict['x'] = self._x0 ddict['y'] = self._y0 else: ddict['event'] = "markerClicked" if hasattr(ddict['xdata'], "__len__"): ddict['x'] = ddict['xdata'][-1] else: ddict['x'] = ddict['xdata'] if hasattr(ddict['ydata'], "__len__"): ddict['y'] = ddict['ydata'][-1] else: ddict['y'] = ddict['ydata'] if button == leftButton: ddict['button'] = "left" else: ddict['button'] = "right" self._callback(ddict) if ddict['event'] == "markerClicked": self.__picking = False return elif self._pickingInfo['type'] == "curve": ddict = {} ddict['event'] = "curveClicked" #ddict['event'] = "legendClicked" ddict['label'] = self._pickingInfo['label'] ddict['type'] = self._pickingInfo['type'] ddict['x'] = self._x0 ddict['y'] = self._y0 ddict['xpixel'] = self._x0Pixel ddict['ypixel'] = self._y0Pixel ddict['xdata'] = self._pickingInfo['xdata'] ddict['ydata'] = self._pickingInfo['ydata'] if button == leftButton: ddict['button'] = "left" else: ddict['button'] = "right" self._callback(ddict) return elif self._pickingInfo['type'] == "image": artist = self._pickingInfo['artist'] ddict = {} ddict['event'] = "imageClicked" #ddict['event'] = "legendClicked" ddict['label'] = self._pickingInfo['label'] ddict['type'] = self._pickingInfo['type'] ddict['x'] = self._x0 ddict['y'] = self._y0 ddict['xpixel'] = self._x0Pixel ddict['ypixel'] = self._y0Pixel xScale = artist._plot_info['xScale'] yScale = artist._plot_info['yScale'] col = (ddict['x'] - xScale[0])/float(xScale[1]) row = (ddict['y'] - yScale[0])/float(yScale[1]) ddict['row'] = int(row) ddict['col'] = int(col) if button == leftButton: ddict['button'] = "left" else: ddict['button'] = "right" self.__picking = False self._callback(ddict) if event.button == rightButton: #right click self.__zooming = False if self._drawingPatch is not None: self._emitDrawingSignal("drawingFinished") return self.__time0 = time.time() self.__zooming = self._zoomEnabled self._zoomRect = None self._xmin, self._xmax = self.ax.get_xlim() self._ymin, self._ymax = self.ax.get_ylim() # deal with inverted axis if self._xmin > self._xmax: tmpValue = self._xmin self._xmin = self._xmax self._xmax = tmpValue if self._ymin > self._ymax: tmpValue = self._ymin self._ymin = self._ymax self._ymax = tmpValue if self.ax.get_aspect() != 'auto': self._ratio = (self._ymax - self._ymin) / (self._xmax - self._xmin) self.__drawing = self._drawModeEnabled if self.__drawing: if self._drawModePatch in ['hline', 'vline']: if self._drawingPatch is None: self._mouseData = numpy.zeros((2,2), numpy.float32) if self._drawModePatch == "hline": self._mouseData[0,0] = self._xmin self._mouseData[0,1] = self._y0 self._mouseData[1,0] = self._xmax self._mouseData[1,1] = self._y0 else: self._mouseData[0,0] = self._x0 self._mouseData[0,1] = self._ymin self._mouseData[1,0] = self._x0 self._mouseData[1,1] = self._ymax color = self._getDrawingColor() self._drawingPatch = Polygon(self._mouseData, closed=True, fill=False, color=color) self.ax.add_patch(self._drawingPatch) def _getDrawingColor(self): color = "black" if "color" in self._drawingParameters: color = self._drawingParameters["color"] if len(color) == 4: if type(color[3]) in [type(1), numpy.uint8, numpy.int8]: color = numpy.array(color, dtype=numpy.float64)/255. return color def onMouseMoved(self, event): if DEBUG: print("onMouseMoved, event = ",event.xdata, event.ydata) if event.inaxes != self.ax: if DEBUG: print("RETURNING") return button = event.button if button == 1: button = "left" elif button == 2: button = "middle" elif button == 3: button = "right" else: button = None #as default, export the mouse in graph coordenates self._x1 = event.xdata self._y1 = event.ydata self._x1Pixel = event.x self._y1Pixel = event.y ddict= {'event':'mouseMoved', 'x':self._x1, 'y':self._y1, 'xpixel':self._x1Pixel, 'ypixel':self._y1Pixel, 'button':button, } self._callback(ddict) if button == "middle": return # should this be made by Plot1D with the previous call??? # The problem is Plot1D does not know if one is zooming or drawing if not (self.__zooming or self.__drawing or self.__picking): # this corresponds to moving without click marker = None for artist in self.ax.lines: label = artist.get_label() if label.startswith("__MARKER__"): #data = artist.get_xydata()[0:1] x, y = artist.get_xydata()[-1] pixels = self.ax.transData.transform(numpyvstack([x,y]).T) xPixel, yPixel = pixels.T if 'xmarker' in artist._plot_options: if abs(xPixel-event.x) < 5: marker = artist elif 'ymarker' in artist._plot_options: if abs(yPixel-event.y) < 5: marker = artist elif (abs(xPixel-event.x) < 5) and \ (abs(yPixel-event.y) < 5): marker = artist if marker is not None: break if QT: oldShape = self.cursor().shape() if oldShape not in [QtCore.Qt.SizeHorCursor, QtCore.Qt.SizeVerCursor, QtCore.Qt.PointingHandCursor, QtCore.Qt.OpenHandCursor, QtCore.Qt.SizeAllCursor]: self._originalCursorShape = oldShape if marker is not None: ddict = {} ddict['event'] = 'hover' ddict['type'] = 'marker' ddict['label'] = marker.get_label()[10:] if 'draggable' in marker._plot_options: ddict['draggable'] = True if QT: if 'ymarker' in artist._plot_options: self.setCursor(QtGui.QCursor(QtCore.Qt.SizeVerCursor)) elif 'xmarker' in artist._plot_options: self.setCursor(QtGui.QCursor(QtCore.Qt.SizeHorCursor)) else: self.setCursor(QtGui.QCursor(QtCore.Qt.SizeAllCursor)) else: ddict['draggable'] = False if 'selectable' in marker._plot_options: ddict['selectable'] = True if QT: self.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) else: ddict['selectable'] = False ddict['x'] = self._x1 ddict['y'] = self._y1 ddict['xpixel'] = self._x1Pixel ddict['ypixel'] = self._y1Pixel self._callback(ddict) elif QT: if self._originalCursorShape in [QtCore.Qt.SizeHorCursor, QtCore.Qt.SizeVerCursor, QtCore.Qt.PointingHandCursor, QtCore.Qt.OpenHandCursor, QtCore.Qt.SizeAllCursor]: self.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) else: self.setCursor(QtGui.QCursor(self._originalCursorShape)) return if self.__picking: if self.__markerMoving: artist = self._pickingInfo['artist'] infoText = self._pickingInfo['infoText'] if 'xmarker' in artist._plot_options: data = event.xdata if not numpy.iterable(data): data = [data, ] artist.set_xdata(data) ymin, ymax = self.ax.get_ylim() delta = abs(ymax - ymin) ymax = max(ymax, ymin) - 0.005 * delta if infoText is not None: infoText.set_position((event.xdata, ymax)) elif 'ymarker' in artist._plot_options: data = event.ydata if not numpy.iterable(data): data = [data, ] artist.set_ydata(data) if infoText is not None: infoText.set_position((event.xdata, event.ydata)) else: xData, yData = event.xdata, event.ydata if artist._constraint is not None: # Apply marker constraint xData, yData = artist._constraint(xData, yData) if not numpy.iterable(xData): xData = [xData, ] if not numpy.iterable(yData): yData = [yData, ] artist.set_xdata(xData) artist.set_ydata(yData) if infoText is not None: xtmp, ytmp = self.ax.transData.transform_point((xData, yData)) inv = self.ax.transData.inverted() xtmp, ytmp = inv.transform_point((xtmp, ytmp + 15)) infoText.set_position((xData, ytmp)) if BLITTING and (self._background is not None) and\ hasattr(artist.figure, "canvas"): canvas = artist.figure.canvas axes = artist.axes artist.set_animated(True) canvas.restore_region(self._background) axes.draw_artist(artist) canvas.blit(self.fig.bbox) else: self.fig.canvas.draw() ddict = {} ddict['event'] = "markerMoving" ddict['button'] = "left" ddict['label'] = self._pickingInfo['label'] ddict['type'] = self._pickingInfo['type'] ddict['draggable'] = self._pickingInfo['draggable'] ddict['selectable'] = self._pickingInfo['selectable'] ddict['x'] = self._x1 ddict['y'] = self._y1 ddict['xpixel'] = self._x1Pixel ddict['ypixel'] = self._y1Pixel ddict['xdata'] = artist.get_xdata() ddict['ydata'] = artist.get_ydata() self._callback(ddict) return if (not self.__zooming) and (not self.__drawing): return if self._x0 is None: # this happened when using the middle button return if self.__zooming or \ (self.__drawing and (self._drawModePatch == 'rectangle')): if self._x1 < self._xmin: self._x1 = self._xmin elif self._x1 > self._xmax: self._x1 = self._xmax if self._y1 < self._ymin: self._y1 = self._ymin elif self._y1 > self._ymax: self._y1 = self._ymax if self._x1 < self._x0: x = self._x1 w = self._x0 - self._x1 else: x = self._x0 w = self._x1 - self._x0 if self._y1 < self._y0: y = self._y1 h = self._y0 - self._y1 else: y = self._y0 h = self._y1 - self._y0 if w == 0: return if (not self.__drawing) and (self.ax.get_aspect() != 'auto'): if (h / w) > self._ratio: h = w * self._ratio else: w = h / self._ratio if self._x1 > self._x0: x = self._x0 else: x = self._x0 - w if self._y1 > self._y0: y = self._y0 else: y = self._y0 - h if self.__zooming: if self._zoomRectangle is None: self._zoomRectangle = Rectangle(xy=(x,y), width=w, height=h, color=self._zoomColor, fill=False) self.ax.add_patch(self._zoomRectangle) else: self._zoomRectangle.set_bounds(x, y, w, h) #self._zoomRectangle._update_patch_transform() if BLITTING: artist = self._zoomRectangle canvas = artist.figure.canvas axes = artist.axes artist.set_animated(True) if self._background is None: self._background = canvas.copy_from_bbox(self.fig.bbox) canvas.restore_region(self._background) axes.draw_artist(artist) canvas.blit(self.fig.bbox) else: self.fig.canvas.draw() return else: if self._drawingPatch is None: color = self._getDrawingColor() self._drawingPatch = Rectangle(xy=(x,y), width=w, height=h, fill=False, color=color) self._drawingPatch.set_hatch('.') self.ax.add_patch(self._drawingPatch) else: self._drawingPatch.set_bounds(x, y, w, h) #self._zoomRectangle._update_patch_transform() if self.__drawing: if self._drawingPatch is None: self._mouseData = numpy.zeros((2,2), numpy.float32) self._mouseData[0,0] = self._x0 self._mouseData[0,1] = self._y0 self._mouseData[1,0] = self._x1 self._mouseData[1,1] = self._y1 color = self._getDrawingColor() self._drawingPatch = Polygon(self._mouseData, closed=True, fill=False, color=color) self.ax.add_patch(self._drawingPatch) elif self._drawModePatch == 'rectangle': # already handled, just for compatibility self._mouseData = numpy.zeros((2,2), numpy.float32) self._mouseData[0,0] = self._x0 self._mouseData[0,1] = self._y0 self._mouseData[1,0] = self._x1 self._mouseData[1,1] = self._y1 elif self._drawModePatch == 'line': self._mouseData[0,0] = self._x0 self._mouseData[0,1] = self._y0 self._mouseData[1,0] = self._x1 self._mouseData[1,1] = self._y1 self._drawingPatch.set_xy(self._mouseData) elif self._drawModePatch == 'hline': xmin, xmax = self.ax.get_xlim() self._mouseData[0,0] = xmin self._mouseData[0,1] = self._y1 self._mouseData[1,0] = xmax self._mouseData[1,1] = self._y1 self._drawingPatch.set_xy(self._mouseData) elif self._drawModePatch == 'vline': ymin, ymax = self.ax.get_ylim() self._mouseData[0,0] = self._x1 self._mouseData[0,1] = ymin self._mouseData[1,0] = self._x1 self._mouseData[1,1] = ymax self._drawingPatch.set_xy(self._mouseData) elif self._drawModePatch == 'polygon': self._mouseData[-1,0] = self._x1 self._mouseData[-1,1] = self._y1 self._drawingPatch.set_xy(self._mouseData) if matplotlib.__version__.startswith('1.1.1'): # Patch for Debian 7 # Workaround matplotlib issue with closed path # Need to toggle closed path to rebuild points self._drawingPatch.set_closed(False) self._drawingPatch.set_closed(True) self._drawingPatch.set_hatch('/') if BLITTING: if self._background is None: artist = self._drawingPatch canvas = artist.figure.canvas axes = artist.axes self._background = canvas.copy_from_bbox(self.fig.bbox) artist = self._drawingPatch canvas = artist.figure.canvas axes = artist.axes artist.set_animated(True) canvas.restore_region(self._background) axes.draw_artist(artist) canvas.blit(self.fig.bbox) else: self.fig.canvas.draw() self._emitDrawingSignal(event='drawingProgress') def onMouseReleased(self, event): if DEBUG: print("onMouseReleased, event = ",event.xdata, event.ydata) if self._infoText in self.ax.texts: self._infoText.set_visible(False) if self.__picking: self.__picking = False if self.__markerMoving: self.__markerMoving = False artist = self._pickingInfo['artist'] if BLITTING and hasattr(artist.figure, "canvas"): artist.set_animated(False) self._background = None artist.figure.canvas.draw() ddict = {} ddict['event'] = "markerMoved" ddict['label'] = self._pickingInfo['label'] ddict['type'] = self._pickingInfo['type'] ddict['draggable'] = self._pickingInfo['draggable'] ddict['selectable'] = self._pickingInfo['selectable'] # use this and not the current mouse position because # it has to agree with the marker position ddict['x'] = artist.get_xdata() ddict['y'] = artist.get_ydata() ddict['xdata'] = artist.get_xdata() ddict['ydata'] = artist.get_ydata() # matplotlib 3.7.x was giving different output than previous versions for key in ["x", "y", "xdata", "ydata"]: if hasattr(ddict[key], "__len__"): if len(ddict[key]) == 1: ddict[key] = ddict[key][0] self._callback(ddict) self._pickingInfo = {} return if not hasattr(self, "__zoomstack"): self.__zoomstack = [] if event.button == 3: #right click if self.__drawing: self.__drawing = False #self._drawingPatch = None ddict = {} ddict['event'] = 'drawingFinished' ddict['type'] = '%s' % self._drawModePatch ddict['data'] = self._mouseData * 1 self._emitDrawingSignal(event='drawingFinished') return self.__zooming = False if len(self._zoomStack): xmin, xmax, ymin, ymax, y2min, y2max = self._zoomStack.pop() self.setLimits(xmin, xmax, ymin, ymax, y2min, y2max) self.draw() if self.__drawing and (self._drawingPatch is not None): nrows, ncols = self._mouseData.shape if self._drawModePatch in ['polygon']: self._mouseData = numpy.resize(self._mouseData, (nrows+1,2)) self._mouseData[-1,0] = self._x1 self._mouseData[-1,1] = self._y1 self._drawingPatch.set_xy(self._mouseData) if self._drawModePatch not in ['polygon']: self._emitDrawingSignal("drawingFinished") if self._x0 is None: if event.inaxes != self.ax: if DEBUG: print("on MouseReleased RETURNING") else: print("How can it be here???") return if self._zoomRectangle is None: currentTime = time.time() deltaT = currentTime - self.__time0 if (deltaT < 0.150) or (self.__time0 < 0) or (not self.__zooming) or\ ((self._x1 == self._x0) and (self._y1 == self._y0)): # single or double click, no zooming self.__zooming = False ddict = {'x':event.xdata, 'y':event.ydata, 'xpixel':event.x, 'ypixel':event.y} leftButton = 1 middleButton = 2 rightButton = 3 button = event.button if button == rightButton: ddict['button'] = "right" elif button == middleButton: ddict['button'] = "middle" else: ddict['button'] = "left" if (button == self.__lastMouseClick[0]) and\ ((currentTime - self.__lastMouseClick[1]) < 0.6): ddict['event'] = "mouseDoubleClicked" else: ddict['event'] = "mouseClicked" self.__lastMouseClick = [button, time.time()] self._callback(ddict) return if self._zoomRectangle is not None: x, y = self._zoomRectangle.get_xy() w = self._zoomRectangle.get_width() h = self._zoomRectangle.get_height() self._zoomRectangle.remove() self._x0 = None self._y0 = None if BLITTING: artist = self._zoomRectangle axes = artist.axes artist.set_animated(False) self._background = None self._zoomRectangle = None if (w != 0) and (h != 0): # don't do anything xmin, xmax = self.ax.get_xlim() ymin, ymax = self.ax.get_ylim() if ymax < ymin: ymin, ymax = ymax, ymin if not self.ax2.get_yaxis().get_visible(): y2min, y2max = None, None newY2Min, newY2Max = None, None else: bottom, top = self.ax2.get_ylim() y2min, y2max = min(bottom, top), max(bottom, top) # Convert corners from ax data to window pt0 = self.ax.transData.transform_point((x, y)) pt1 = self.ax.transData.transform_point((x + w, y + h)) # Convert corners from window to ax2 data pt0 = self.ax2.transData.inverted().transform_point(pt0) pt1 = self.ax2.transData.inverted().transform_point(pt1) # Get min and max on right Y axis newY2Min, newY2Max = pt0[1], pt1[1] if newY2Max < newY2Min: newY2Min, newY2Max = newY2Max, newY2Min self._zoomStack.append((xmin, xmax, ymin, ymax, y2min, y2max)) self.setLimits(x, x+w, y, y+h, newY2Min, newY2Max) self.draw() @staticmethod def _newZoomRange(min_, max_, center, scale, isLog): if isLog: if min_ > 0.: oldMin = numpy.log10(min_) else: # Happens when autoscale is off and switch to log scale # while displaying area < 0. oldMin = numpy.log10(numpy.nextafter(0, 1)) if center > 0.: center = numpy.log10(center) else: center = numpy.log10(numpy.nextafter(0, 1)) if max_ > 0.: oldMax = numpy.log10(max_) else: # Should not happen oldMax = 0. else: oldMin, oldMax = min_, max_ offset = (center - oldMin) / (oldMax - oldMin) range_ = (oldMax - oldMin) / scale newMin = center - offset * range_ newMax = center + (1. - offset) * range_ if isLog: try: newMin, newMax = 10. ** float(newMin), 10. ** float(newMax) except OverflowError: # Limit case newMin, newMax = min_, max_ if newMin <= 0. or newMax <= 0.: # Limit case newMin, newMax = min_, max_ return newMin, newMax def onMouseWheel(self, event): if not self.isZoomModeEnabled(): return if event.xdata is None or event.ydata is None: return scaleF = 1.1 if event.step > 0 else 1 / 1.1 xLim = self.ax.get_xlim() xMin, xMax = min(xLim), max(xLim) isXLog = (self.ax.get_xscale() == 'log') yLim = self.ax.get_ylim() yMin, yMax = min(yLim), max(yLim) isYLog = (self.ax.get_yscale() == 'log') # If negative limit and log scale, # try to get a positive limit from the data limits if (isXLog and xMin <= 0.) or (isYLog and yMin <= 0.): bounds = self.getDataLimits() if isXLog: if xMin <= 0. and bounds[0] > 0.: xMin = bounds[0] if xMax <= 0. and bounds[1] > 0.: xMax = bounds[1] if isYLog: if yMin <= 0. and bounds[2] > 0.: yMin = bounds[2] if yMax <= 0. and bounds[3] > 0.: yMax = bounds[3] xMin, xMax = self._newZoomRange(xMin, xMax, event.xdata, scaleF, isXLog) yMin, yMax = self._newZoomRange(yMin, yMax, event.ydata, scaleF, isYLog) if self.ax2.get_yaxis().get_visible(): # Get y position in right axis coords x, y2Data = self.ax2.transData.inverted().transform_point( (event.x, event.y)) y2Lim = self.ax2.get_ylim() y2Min, y2Max = min(y2Lim), max(y2Lim) isY2Log = (self.ax2.get_yscale() == 'log') # If negative limit and log scale, # try to get a positive limit from the data limits if isY2Log and y2Min <= 0.: bounds = self.getDataLimits('right') if yMin <= 0. and bounds[2] > 0.: y2Min = bounds[2] if yMax <= 0. and bounds[3] > 0.: y2Max = bounds[3] y2Min, y2Max = self._newZoomRange(y2Min, y2Max, y2Data, scaleF, isYLog) self.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) else: self.setLimits(xMin, xMax, yMin, yMax) self.draw() def _emitDrawingSignal(self, event="drawingFinished"): ddict = {} ddict['event'] = event ddict['type'] = '%s' % self._drawModePatch #ddict['xdata'] = numpy.array(self._drawingPatch.get_x()) #ddict['ydata'] = numpy.array(self._drawingPatch.get_y()) #print(dir(self._drawingPatch)) a = self._drawingPatch.get_xy() ddict['points'] = numpy.array(a) ddict['points'].shape = -1, 2 ddict['xdata'] = ddict['points'][:, 0] ddict['ydata'] = ddict['points'][:, 1] #print(numpyvstack(a)) #pixels = self.ax.transData.transform(numpyvstack(a).T) #xPixel, yPixels = pixels.T if self._drawModePatch in ["rectangle", "circle"]: # we need the rectangle containing it ddict['x'] = ddict['points'][:, 0].min() ddict['y'] = ddict['points'][:, 1].min() ddict['width'] = self._drawingPatch.get_width() ddict['height'] = self._drawingPatch.get_height() elif self._drawModePatch in ["ellipse"]: #we need the rectangle but given the four corners pass ddict['parameters'] = {} for key in self._drawingParameters.keys(): ddict['parameters'][key] = self._drawingParameters[key] if event == "drawingFinished": self.__drawingParameters = None self.__drawing = False if self._drawingPatch is not None: if BLITTING: artist = self._drawingPatch artist.set_animated(False) self._background = None self._drawingPatch.remove() self._drawingPatch = None self.draw() self._callback(ddict) def emitLimitsChangedSignal(self): # Send event about limits changed left, right = self.ax.get_xlim() xRange = (left, right) if left < right else (right, left) bottom, top = self.ax.get_ylim() yRange = (bottom, top) if bottom < top else (top, bottom) if hasattr(self.ax2, "get_visible") and self.ax2.get_visible(): bottom2, top2 = self.ax2.get_ylim() y2Range = (bottom2, top2) if bottom2 < top2 else (top2, bottom2) else: y2Range = None if hasattr(self, "get_tk_widget"): sourceObj = self.get_tk_widget() else: sourceObj = self eventDict = { 'event': 'limitsChanged', 'source': id(sourceObj), 'xdata': xRange, 'ydata': yRange, 'y2data': y2Range, } self._callback(eventDict) def setLimits(self, xmin, xmax, ymin, ymax, y2min=None, y2max=None): delta = 0.044 if xmin == xmax: xmax += delta xmin -= delta self.ax.set_xlim(xmin, xmax) if ymin == ymax: ymax += delta ymin -= delta if ymax < ymin: ymin, ymax = ymax, ymin current = self.ax.get_ylim() if self.ax.yaxis_inverted(): self.ax.set_ylim(ymax, ymin) #top, bottom = current else: self.ax.set_ylim(ymin, ymax) #bottom, top = current if y2min is not None and y2max is not None: if y2max < y2min: y2min, y2max = y2max, y2min if self.ax2.yaxis_inverted(): bottom, top = y2max, y2min else: bottom, top = y2min, y2max self.ax2.set_ylim(bottom, top) # if second axis was not properly initialized, this does not work #if 0 and hasattr(self.ax2, "get_visible") and self.ax2.get_visible(): # #print("BOTTOM, TOP = ", bottom, top) # bottom2, top2 = self.ax2.get_ylim() # #print("BOTTOM2, TO2 = ", bottom2, top2) # i2Range = top2 - bottom2 # if i2Range > 0: # ymin2 = bottom2 + i2Range * (ymin - bottom)/(top - bottom) # ymax2 = bottom2 + i2Range * (ymax - bottom)/(top - bottom) # #print("OBTAINED = ", ymin2, ymax2) # if self.ax2.yaxis_inverted(): # self.ax2.set_ylim(ymax2, ymin2) # else: # self.ax2.set_ylim(ymin2, ymax2) # Next line forces a square display region #self.ax.set_aspect((xmax-xmin)/float(ymax-ymin)) #self.draw() self.emitLimitsChangedSignal() def resetZoom(self, dataMargins=None): xmin, xmax, ymin, ymax = self.getDataLimits('left') if hasattr(self.ax2, "get_visible"): if self.ax2.get_visible(): xmin2, xmax2, ymin2, ymax2 = self.getDataLimits('right') else: xmin2 = None xmax2 = None else: xmin2, xmax2, ymin2, ymax2 = self.getDataLimits('right') #self.ax2.set_ylim(ymin2, ymax2) if (xmin2 is not None) and ((xmin2 != 0) or (xmax2 != 1)): xmin = min(xmin, xmin2) xmax = max(xmax, xmax2) # Add margins around data inside the plot area if xmin2 is None: newLimits = _utils.addMarginsToLimits( dataMargins, self.ax.get_xscale() == 'log', self.ax.get_yscale() == 'log', xmin, xmax, ymin, ymax) self.setLimits(*newLimits) else: newLimits = _utils.addMarginsToLimits( dataMargins, self.ax.get_xscale() == 'log', self.ax.get_yscale() == 'log', xmin, xmax, ymin, ymax, ymin2, ymax2) self.setLimits(*newLimits) #self.ax2.set_autoscaley_on(True) self._zoomStack = [] def getDataLimits(self, axesLabel='left'): if axesLabel == 'right': axes = self.ax2 else: axes = self.ax if DEBUG: print("CALCULATING limits ", axes.get_label()) xmin = None for line2d in axes.lines: label = line2d.get_label() if label.startswith("__MARKER__"): #it is a marker continue lineXMin = None if hasattr(line2d, "_plot_info"): if line2d._plot_info.get("axes", "left") != axesLabel: continue if "xmin" in line2d._plot_info: lineXMin = line2d._plot_info["xmin"] lineXMax = line2d._plot_info["xmax"] lineYMin = line2d._plot_info["ymin"] lineYMax = line2d._plot_info["ymax"] if lineXMin is None: x = line2d.get_xdata() y = line2d.get_ydata() if not len(x) or not len(y): continue lineXMin = nanmin(x) lineXMax = nanmax(x) lineYMin = nanmin(y) lineYMax = nanmax(y) if xmin is None: xmin = lineXMin xmax = lineXMax ymin = lineYMin ymax = lineYMax continue xmin = min(xmin, lineXMin) xmax = max(xmax, lineXMax) ymin = min(ymin, lineYMin) ymax = max(ymax, lineYMax) for line2d in axes.collections: label = line2d.get_label() if label.startswith("__MARKER__"): #it is a marker continue lineXMin = None if hasattr(line2d, "_plot_info"): if line2d._plot_info.get("axes", "left") != axesLabel: continue if "xmin" in line2d._plot_info: lineXMin = line2d._plot_info["xmin"] lineXMax = line2d._plot_info["xmax"] lineYMin = line2d._plot_info["ymin"] lineYMax = line2d._plot_info["ymax"] if lineXMin is None: print("CANNOT CALCULATE LIMITS") continue if xmin is None: xmin = lineXMin xmax = lineXMax ymin = lineYMin ymax = lineYMax continue xmin = min(xmin, lineXMin) xmax = max(xmax, lineXMax) ymin = min(ymin, lineYMin) ymax = max(ymax, lineYMax) for artist in axes.images: x0, x1, y0, y1 = artist.get_extent() if (xmin is None): xmin = x0 xmax = x1 ymin = min(y0, y1) ymax = max(y0, y1) xmin = min(xmin, x0) xmax = max(xmax, x1) ymin = min(ymin, y0) ymax = max(ymax, y1) for artist in axes.artists: label = artist.get_label() if label.startswith("__IMAGE__"): if hasattr(artist, 'get_image_extent'): x0, x1, y0, y1 = artist.get_image_extent() else: x0, x1, y0, y1 = artist.get_extent() if (xmin is None): xmin = x0 xmax = x1 ymin = min(y0, y1) ymax = max(y0, y1) ymin = min(ymin, y0, y1) ymax = max(ymax, y1, y0) xmin = min(xmin, x0) xmax = max(xmax, x1) if xmin is None: xmin = 0 xmax = 1 ymin = 0 ymax = 1 if axesLabel == 'right': return None, None, None, None xSize = float(xmax - xmin) ySize = float(ymax - ymin) A = self.ax.get_aspect() if A != 'auto': figW, figH = self.ax.get_figure().get_size_inches() figAspect = figH / figW #l, b, w, h = self.ax.get_position(original=True).bounds #box_aspect = figAspect * (h / float(w)) #dataRatio = box_aspect / A dataRatio = (ySize / xSize) * A y_expander = dataRatio - figAspect # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: #good enough pass else: # this works for any data ratio if y_expander < 0: #print("adjust_y") deltaY = xSize * (figAspect / A) - ySize yc = 0.5 * (ymin + ymax) ymin = yc - (ySize + deltaY) * 0.5 ymax = yc + (ySize + deltaY) * 0.5 else: #print("ADJUST X") deltaX = ySize * (A / figAspect) - xSize xc = 0.5 * (xmin + xmax) xmin = xc - (xSize + deltaX) * 0.5 xmax = xc + (xSize + deltaX) * 0.5 if DEBUG: print("CALCULATED LIMITS = ", xmin, xmax, ymin, ymax) return xmin, xmax, ymin, ymax def resizeEvent(self, ev): # we have to get rid of the copy of the underlying image self._background = None FigureCanvas.resizeEvent(self, ev) if DEBUG: def draw(self): print("Draw called") super(MatplotlibGraph, self).draw() class MatplotlibBackend(PlotBackend.PlotBackend): def __init__(self, parent=None, **kw): #self.figure = Figure(figsize=size, dpi=dpi) #in inches self.graph = MatplotlibGraph(parent, **kw) self.ax2 = self.graph.ax2 self.ax = self.graph.ax PlotBackend.PlotBackend.__init__(self, parent) self._parent = parent self._logX = False self._logY = False self.setZoomModeEnabled = self.graph.setZoomModeEnabled self.setDrawModeEnabled = self.graph.setDrawModeEnabled self.isZoomModeEnabled = self.graph.isZoomModeEnabled self.isDrawModeEnabled = self.graph.isDrawModeEnabled self.getDrawMode = self.graph.getDrawMode self._oldActiveCurve = None self._oldActiveCurveLegend = None # should one have two methods, for enable and for show self._rightAxisEnabled = False self.enableAxis('right', False) self._graphCursor = None self.matplotlibVersion = matplotlib.__version__ def setGraphCursor(self, flag=True, color=None, linewidth=None, linestyle=None): if color is None: color = "black" if linewidth is None: linewidth = 1 if linestyle is None: linestyle="-" self._graphCursorConfiguration = (color, linewidth, linestyle) if flag: if self._graphCursor is None: self._graphCursor = Cursor(self.ax, useblit=True, color=color, linewidth=linewidth, linestyle=linestyle) self.ax.get_figure().canvas.draw() self._graphCursor.visible = True else: if self._graphCursor is not None: self._graphCursor.visible = False def getGraphCursor(self): if self._graphCursor is None: return None elif not self._graphCursor.visible: return None else: return self._graphCursorConfiguration * 1 def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linewidth=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, z=1, selectable=True, **kw): if legend is None: legend = "Unnamed curve" if replace: self.clearCurves() else: self.removeCurve(legend, replot=False) if color is None: color = self._activeCurveColor if len(color) == 4: if type(color[3]) in [type(1), numpy.uint8, numpy.int8]: color = numpy.array(color, dtype=numpy.float64)/255. brush = color style = linestyle if linewidth is None: linewidth = 1 if yaxis == "right": axisId = yaxis else: axisId = "left" fill = kw.get('plot_fill', False) if axisId == "right": axes = self.ax2 if self._rightAxisEnabled is None: # never initialized self.enableAxis(axisId, True) else: axes = self.ax pickradius = 3 if selectable: picker = True else: picker = False scatterPlot = False if hasattr(color, "dtype"): if len(color) == len(x): scatterPlot = True if scatterPlot: # scatter plot if color.dtype not in [numpy.float32, numpy.float64]: actualColor = color / 255. else: actualColor = color pathObject = axes.scatter(x, y, label=legend, color=actualColor, marker=symbol, picker=picker, pickradius=pickradius) if style not in [" ", None]: # scatter plot with an actual line ... # we need to assign a color ... curveList = axes.plot(x, y, label=legend, linestyle=style, color=actualColor[0], linewidth=linewidth, picker=picker, marker=None, pickradius=pickradius, **kw) curveList[-1]._plot_info = {'color':actualColor, 'linewidth':linewidth, 'brush':brush, 'style':style, 'symbol':symbol, 'label':legend, 'axes':axisId, 'fill':fill, 'xlabel':xlabel, 'ylabel':ylabel} if hasattr(x, "min") and hasattr(y, "min"): curveList[-1]._plot_info['xmin'] = nanmin(x) curveList[-1]._plot_info['xmax'] = nanmax(x) curveList[-1]._plot_info['ymin'] = nanmin(y) curveList[-1]._plot_info['ymax'] = nanmax(y) # scatter plot is a collection curveList = [pathObject] if self._logY: axes.set_yscale('log') elif self._logY: curveList = axes.semilogy( x, y, label=legend, linestyle=style, color=color, linewidth=linewidth, picker=picker, pickradius=pickradius, **kw) else: curveList = axes.plot( x, y, label=legend, linestyle=style, color=color, linewidth=linewidth, picker=picker, pickradius=pickradius, **kw) # errorbar is a container? #axes.errorbar(x,y, label=legend,yerr=numpy.sqrt(y), linestyle=" ",color='b') # nice effects: #curveList[-1].set_drawstyle('steps-mid') if fill: axes.fill_between(x, 1.0e-8, y) #curveList[-1].set_fillstyle('bottom') if hasattr(curveList[-1], "set_marker"): if symbol is None: symbol = "None" curveList[-1].set_marker(symbol) curveList[-1]._plot_info = {'color':color, 'linewidth':linewidth, 'brush':brush, 'style':style, 'symbol':symbol, 'label':legend, 'axes':axisId, 'fill':fill, 'xlabel':xlabel, 'ylabel':ylabel} if hasattr(x, "min") and hasattr(y, "min"): # this is needed for scatter plots because I do not know # how to recover the data yet, it can speed up limits too curveList[-1]._plot_info['xmin'] = nanmin(x) curveList[-1]._plot_info['xmax'] = nanmax(x) curveList[-1]._plot_info['ymin'] = nanmin(y) curveList[-1]._plot_info['ymax'] = nanmax(y) if self._activeCurveHandling: if self._oldActiveCurve in self.ax.lines: if self._oldActiveCurve.get_label() == legend: curveList[-1].set_color(self._activeCurveColor) elif self._oldActiveCurveLegend == legend: curveList[-1].set_color(self._activeCurveColor) curveList[-1].axes = axes # set_axes(axes) deprecated in version 1.5 curveList[-1].set_zorder(z) if replot: self.replot() # If I return the instance, later on cannot make a copy.deepcopy # of the info and asks me to use "frozen" instead #return curveList[-1] return legend def addItem(self, x, y, legend, info=None, replace=False, replot=True, **kw): if replace: self.clearItems() else: # make sure we do not cummulate images with same name self.removeItem(legend, replot=False) item = None shape = kw.get('shape', "polygon") if shape not in ['line', 'hline', 'vline', 'rectangle', 'polygon']: raise NotImplemented("Unsupported item shape %s" % shape) label = kw.get('label', legend) color = kw.get('color', 'black') fill = kw.get('fill', True) xView = numpy.asarray(x) yView = numpy.asarray(y) label = "__ITEM__" + label if shape in ["line", "hline", "vline"]: print("Not implemented") return legend elif shape in ["hline"]: if hasattr(y, "__len__"): y = y[-1] line = self.ax.axhline(y, label=label, color=color) return line elif shape in ["vline"]: if hasattr(x, "__len__"): x = x[-1] line = self.ax.axvline(x, label=label, color=color) return line elif shape in ['rectangle']: xMin = nanmin(xView) xMax = nanmax(xView) yMin = nanmin(yView) yMax = nanmax(yView) w = xMax - xMin h = yMax - yMin item = Rectangle(xy=(xMin,yMin), width=w, height=h, fill=False, color=color) if fill: item.set_hatch('.') elif shape in ['polygon']: xView.shape = 1, -1 yView.shape = 1, -1 item = Polygon(numpyvstack((xView, yView)).T, closed=True, fill=False, label=label, color=color) if fill: #item.set_hatch('+') item.set_hatch('/') if item is None: print("Undefined item") print("shape = ", shape) print("legend = ", legend) return self.ax.add_patch(item) if replot: self.ax.figure.canvas.draw() return item def clear(self): """ Clear all curvers and other items from the plot """ n = list(range(len(self.ax.lines))) n.reverse() for i in n: line2d = self.ax.lines[i] line2d.remove() del line2d self.ax.clear() def clearImages(self): n = list(range(len(self.ax.images))) n.reverse() for i in n: image = self.ax.images[i] image.remove() del image # in versions of matplotlib prior to 3.5.0 # the content of the if block was needed if i < len(self.ax.images): del self.ax.images[i] n = list(range(len(self.ax.artists))) n.reverse() for i in n: artist = self.ax.artists[i] label = artist.get_label() if label.startswith("__IMAGE__"): artist.remove() del artist def clearCurves(self): """ Clear all curves from the plot. Not the markers!! """ for axes in [self.ax, self.ax2]: n = list(range(len(axes.lines))) n.reverse() for i in n: line2d = axes.lines[i] label = line2d.get_label() if label.startswith("__MARKER__"): #it is a marker continue line2d.remove() del line2d def clearMarkers(self): """ Clear all markers from the plot. Not the curves!! """ for axes in [self.ax, self.ax2]: n = list(range(len(axes.lines))) n.reverse() for i in n: line2d = axes.lines[i] label = line2d.get_label() if label.startswith("__MARKER__"): #it is a marker if hasattr(line2d, "_infoText"): line2d._infoText.remove() line2d.remove() del line2d def clearItems(self): """ Clear items, not markers, not curves """ for axes in [self.ax, self.ax2]: n = list(range(len(axes.patches))) n.reverse() for i in n: item = axes.patches[i] label = item.get_label() if label.startswith("__ITEM__"): item.remove() del item def removeItem(self, handle, replot=True): if hasattr(handle, "remove"): for axes in [self.ax, self.ax2]: if handle in axes.patches: handle.remove() del handle break else: # we have received a legend! # we have received a legend! legend = handle handle = None for axes in [self.ax, self.ax2]: if handle is not None: break for item in axes.patches: label = item.get_label() if label == ("__ITEM__"+legend): handle = item break if handle is not None: handle.remove() del handle if replot: self.replot() def getGraphXLimits(self): """ Get the graph X (bottom) limits. :return: Minimum and maximum values of the X axis """ vmin, vmax = self.ax.get_xlim() if vmin > vmax: return vmax, vmin else: return vmin, vmax def getGraphYLimits(self, axis="left"): if axis == "right": ax = self.ax2 else: ax = self.ax vmin, vmax = ax.get_ylim() if vmin > vmax: return vmax, vmin else: return vmin, vmax def getWidgetHandle(self): """ :return: Backend widget. """ if hasattr(self.graph, "get_tk_widget"): return self.graph.get_tk_widget() else: return self.graph def enableAxis(self, axis, flag=True): """ :param axis: Axis to be shown or hidden :type axis: string (left, right, top, bottom) :param flag: Boolean (default, True) """ if axis == "right": self.ax2.get_yaxis().set_visible(flag) self._rightAxisEnabled = flag elif axis == "left": self.ax.get_yaxis().set_visible(flag) else: print("unhandled axis %s" % axis) def insertMarker(self, x, y, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, symbol=None, constraint=None, **kw): """ :param x: Horizontal position of the marker in graph coordenates :type x: float :param y: Vertical position of the marker in graph coordenates :type y: float :param label: Legend associated to the marker :type label: string :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :param str symbol: Symbol representing the marker :param constraint: None or a function filtering marker displacements. :return: Handle used by the backend to univocally access the marker """ #line = self.ax.axvline(x, picker=True) xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() if x is None: x = 0.5 * (xmax + xmin) if y is None: y = 0.5 * (ymax + ymin) # Apply constraint to provided position if draggable and constraint is not None: x, y = constraint(x, y) if legend is None: legend = "Unnamed marker" if text is None: text = kw.get("label", None) if text is not None: print("Deprecation warning: use 'text' instead of 'label'") self.removeMarker(legend, replot=False) legend = "__MARKER__" + legend if symbol is None: symbol = "+" markersize=10. if selectable or draggable: line = self.ax.plot(x, y, label=legend, linestyle=" ", color=color, picker=True, pickradius=5, marker=symbol, markersize=markersize)[-1] else: line = self.ax.plot(x, y, label=legend, linestyle=" ", color=color, picker=False, marker=symbol, markersize=markersize)[-1] if text is not None: xtmp, ytmp = self.ax.transData.transform((x, y)) inv = self.ax.transData.inverted() xtmp, ytmp = inv.transform((xtmp, ytmp + 15)) text = " " + text line._infoText = self.ax.text(x, ytmp, text, color=color, horizontalalignment='left', verticalalignment='top') line._constraint = constraint if draggable else None #line.set_ydata(numpy.array([1.0, 10.], dtype=numpy.float32)) line._plot_options = ["marker"] if selectable: line._plot_options.append('selectable') if draggable: line._plot_options.append('draggable') if replot: self.replot() return line def insertXMarker(self, x, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, **kw): """ :param x: Horizontal position of the marker in graph coordenates :type x: float :param legend: Legend associated to the marker :type legend: string :param label: Text associated to the marker :type label: string or None :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :return: Handle used by the backend to univocally access the marker """ #line = self.ax.axvline(x, picker=True) if legend is None: legend = "Unnamed marker" if text is None: text = kw.get("label", None) if text is not None: print("Deprecation warning: use 'text' instead of 'label'") self.removeMarker(legend, replot=False) legend = "__MARKER__" + legend if selectable or draggable: line = self.ax.axvline(x, label=legend, color=color, picker=True, pickradius=5) else: line = self.ax.axvline(x, label=legend, color=color) if text is not None: text = " " + text ymin, ymax = self.getGraphYLimits() delta = abs(ymax - ymin) if ymin > ymax: ymax = ymin ymax -= 0.005 * delta line._infoText = self.ax.text(x, ymax, text, color=color, horizontalalignment='left', verticalalignment='top') #line.set_ydata(numpy.array([1.0, 10.], dtype=numpy.float32)) line._plot_options = ["xmarker"] if selectable: line._plot_options.append('selectable') if draggable: line._plot_options.append('draggable') if replot: self.replot() return line def insertYMarker(self, y, legend=None, text=None, color='k', selectable=False, draggable=False, replot=True, **kw): """ :param y: Vertical position of the marker in graph coordenates :type y: float :param legend: Legend associated to the marker :type legend: string :param label: Text associated to the marker :type label: string or None :param color: Color to be used for instance 'blue', 'b', '#FF0000' :type color: string, default 'k' (black) :param selectable: Flag to indicate if the marker can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the marker can be moved :type draggable: boolean, default False :param replot: Flag to indicate if the plot is to be updated :type replot: boolean, default True :return: Handle used by the backend to univocally access the marker """ if legend is None: legend = "Unnamed marker" if text is None: text = kw.get("label", None) if text is not None: print("Deprecation warning: use 'text' instead of 'label'") legend = "__MARKER__" + legend if selectable or draggable: line = self.ax.axhline(y, label=legend, color=color, picker=True, pickradius=5) else: line = self.ax.axhline(y, label=legend, color=color) if text is not None: text = " " + text xmin, xmax = self.getGraphXLimits() delta = abs(xmax - xmin) if xmin > xmax: xmax = xmin xmax -= 0.005 * delta line._infoText = self.ax.text(y, xmax, text, color=color, horizontalalignment='left', verticalalignment='top') line._plot_options = ["ymarker"] if selectable: line._plot_options.append('selectable') if draggable: line._plot_options.append('draggable') if replot: self.replot() return line def isXAxisAutoScale(self): if self._xAutoScale: return True else: return False def isYAxisAutoScale(self): if self._yAutoScale: return True else: return False def removeCurve(self, handle, replot=True): if hasattr(handle, "remove"): if handle in self.ax.lines: handle.remove() if handle in self.ax2.lines: handle.remove() if handle in self.ax.collections: handle.remove() if handle in self.ax2.collections: handle.remove() else: # we have received a legend! legend = handle testLists = [self.ax.lines, self.ax2.lines, self.ax.collections, self.ax2.collections] for container in testLists: for line2d in container: handle = None label = line2d.get_label() if label == legend: handle = line2d if handle is not None: handle.remove() del handle if replot: self.replot() def removeImage(self, handle, replot=True): if hasattr(handle, "remove"): if (handle in self.ax.images) or (handle in self.ax.artists): handle.remove() else: # we have received a legend! legend = handle handle = None for item in self.ax.artists: label = item.get_label() if label == ("__IMAGE__" + legend): handle = item if handle is None: for item in self.ax.images: label = item.get_label() if label == legend: handle = item if handle is not None: handle.remove() del handle if replot: self.replot() def removeMarker(self, handle, replot=True): if hasattr(handle, "remove"): self._removeInfoText(handle) try: handle.remove() except ValueError: # it seems it was already removed pass del handle else: # we have received a legend! legend = handle done = False for axes in [self.ax, self.ax2]: for line2d in axes.lines: if done: break label = line2d.get_label() if label == ("__MARKER__" + legend): if hasattr(line2d, "_infoText"): line2d._infoText.remove() line2d.remove() del line2d done = True if replot: self.replot() def _removeInfoText(self, handle): if hasattr(handle, "_infoText"): t = handle._infoText handle._infoText = None try: t.remove() except ValueError: # it seems it was already removed pass del t def resetZoom(self, dataMargins=None): """ It should autoscale any axis that is in autoscale mode """ xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() xAuto = self.isXAxisAutoScale() yAuto = self.isYAxisAutoScale() if xAuto and yAuto: self.graph.resetZoom(dataMargins) elif yAuto: self.graph.resetZoom(dataMargins) self.setGraphXLimits(xmin, xmax) elif xAuto: self.graph.resetZoom(dataMargins) self.setGraphYLimits(ymin, ymax) else: if DEBUG: print("Nothing to autoscale") #xmin2, xmax2, ymin2, ymax2 = self.graph.getDataLimits('right') #self.ax2.figure.sca(self.ax2) #self.ax2.set_ylim(10., 100.) #self.ax2.figure.sca(self.ax) self._zoomStack = [] self.replot() return def replot(self): """ Update plot """ if self._rightAxisEnabled is not None: # the right axis was initialized at a certain point # so, we have to see if there is something still mapped # to that axis. # For the time being we only check lines if not len(self.ax2.lines): self.enableAxis('right', False) self._rightAxisEnabled = None try: self.graph.draw() except ValueError: # TODO: Understand why matplotlib 2.1.0rc0 raises an # error when toggling semilogarithmic axes and previous # versions not. if DEBUG: print("MatplotlibBackend ERROR", sys.exc_info()) return def saveGraph(self, fileName, fileFormat='svg', dpi=None , **kw): # fileName can be also a StringIO or file instance fig = self.ax.figure if dpi is not None: fig.savefig(fileName, format=fileFormat, dpi=dpi) else: fig.savefig(fileName, format=fileFormat) fig = None return def setActiveCurve(self, legend, replot=True): if not self._activeCurveHandling: return if hasattr(legend, "_plot_info"): # we have received an actual item handle = legend else: # we have received a legend handle = None for line2d in self.ax.lines: label = line2d.get_label() if label.startswith("__MARKER__"): continue if label == legend: handle = line2d axes = self.ax break if handle is None: for line2d in self.ax2.lines: label = line2d.get_label() if label.startswith("__MARKER__"): continue if label == legend: handle = line2d axes = self.ax2 break if handle is not None: handle.set_color(self._activeCurveColor) else: raise KeyError("Curve %s not found" % legend) if self._oldActiveCurve in self.ax.lines: if self._oldActiveCurve._plot_info['label'] != legend: color = self._oldActiveCurve._plot_info['color'] self._oldActiveCurve.set_color(color) elif self._oldActiveCurve in self.ax2.lines: if self._oldActiveCurve._plot_info['label'] != legend: color = self._oldActiveCurve._plot_info['color'] self._oldActiveCurve.set_color(color) elif self._oldActiveCurveLegend is not None: if self._oldActiveCurveLegend != handle._plot_info['label']: done = False for line2d in self.ax.lines: label = line2d.get_label() if label == self._oldActiveCurveLegend: color = line2d._plot_info['color'] line2d.set_color(color) done = True break if not done: for line2d in self.ax2.lines: label = line2d.get_label() if label == self._oldActiveCurveLegend: color = line2d._plot_info['color'] line2d.set_color(color) break #update labels according to active curve??? if hasattr(handle, "_plot_info"): xLabel = handle._plot_info.get("xlabel", None) yLabel = handle._plot_info.get("ylabel", None) if (xLabel is not None) and (yLabel is not None): axes.set_xlabel(xLabel) axes.set_ylabel(yLabel) self._oldActiveCurve = handle self._oldActiveCurveLegend = handle.get_label() if replot: self.replot() def setCallback(self, callbackFunction): self.graph.setCallback(callbackFunction) # Should I call the base to keep a copy? # It does not seem necessary since the graph will do it. def getGraphTitle(self): return self.ax.get_title() def getGraphXLabel(self): return self.ax.get_xlabel() def getGraphYLabel(self): return self.ax.get_ylabel() def setGraphTitle(self, title=""): self.ax.set_title(title) def setGraphXLabel(self, label="X"): self.ax.set_xlabel(label) def setGraphXLimits(self, xmin, xmax): if xmin == xmax: delta = 0.044 xmax += delta xmin -= delta self.ax.set_xlim(xmin, xmax) self.graph.emitLimitsChangedSignal() def setGraphYLabel(self, label="Y"): self.ax.set_ylabel(label) def setGraphYLimits(self, ymin, ymax): if ymin == ymax: delta = 0.044 ymax += delta ymin -= delta if self.ax.yaxis_inverted(): self.ax.set_ylim(ymax, ymin) else: self.ax.set_ylim(ymin, ymax) self.graph.emitLimitsChangedSignal() def setLimits(self, xmin, xmax, ymin, ymax): # Overrides PlotBackend to send a single limitsChanged event. self.ax.set_xlim(xmin, xmax) if self.ax.yaxis_inverted(): self.ax.set_ylim(ymax, ymin) else: self.ax.set_ylim(ymin, ymax) self.graph.emitLimitsChangedSignal() def setXAxisAutoScale(self, flag=True): if flag: self._xAutoScale = True else: self._xAutoScale = False def setXAxisLogarithmic(self, flag): if flag: self._logX = True if hasattr(self.ax2, "get_visible"): if self.ax2.get_visible(): self.ax2.set_xscale('log') self.ax.set_xscale('log') else: self._logX = False if hasattr(self.ax2, "get_visible"): if self.ax2.get_visible(): self.ax2.set_xscale('linear') self.ax.set_xscale('linear') def setYAxisAutoScale(self, flag=True): if flag: self._yAutoScale = True else: self._yAutoScale = False def setYAxisLogarithmic(self, flag): """ :param flag: If True, the left axis will use a log scale :type flag: boolean """ if flag: self._logY = True if hasattr(self.ax2, "get_visible"): if self.ax2.get_visible(): self.ax2.set_yscale('log') self.ax.set_yscale('log') else: self._logY = False if hasattr(self.ax2, "get_visible"): if self.ax2.get_visible(): self.ax2.set_yscale('linear') self.ax.set_yscale('linear') def addImage(self, data, legend=None, info=None, replace=True, replot=True, xScale=None, yScale=None, z=0, selectable=False, draggable=False, colormap=None, **kw): """ :param data: (nrows, ncolumns) data or (nrows, ncolumns, RGBA) ubyte array :type data: numpy.ndarray :param legend: The legend to be associated to the curve :type legend: string or None :param info: Dictionary of information associated to the image :type info: dict or None :param replace: Flag to indicate if already existing images are to be deleted :type replace: boolean default True :param replot: Flag to indicate plot is to be immediately updated :type replot: boolean default True :param xScale: Two floats defining the x scale :type xScale: list or numpy.ndarray :param yScale: Two floats defining the y scale :type yScale: list or numpy.ndarray :param z: level at which the image is to be located (to allow overlays). :type z: A number bigger than or equal to zero (default) :param selectable: Flag to indicate if the image can be selected :type selectable: boolean, default False :param draggable: Flag to indicate if the image can be moved :type draggable: boolean, default False :param colormap: Dictionary describing the colormap to use (or None) :type colormap: Dictionary or None (default). Ignored if data is RGB(A) :returns: The legend/handle used by the backend to univocally access it. """ # Non-uniform image #http://wiki.scipy.org/Cookbook/Histograms # Non-linear axes #http://stackoverflow.com/questions/11488800/non-linear-axes-for-imshow-in-matplotlib if legend is None: legend = 'Unnamed image' if replace: self.clearImages() else: # make sure we do not cummulate images with same name self.removeImage(legend, replot=False) if xScale is None: xScale = [0.0, 1.0] if yScale is None: yScale = [0.0, 1.0] h, w = data.shape[0:2] xmin = xScale[0] xmax = xmin + xScale[1] * w ymin = yScale[0] ymax = ymin + yScale[1] * h extent = (xmin, xmax, ymax, ymin) if selectable or draggable: picker = True else: picker = False shape = data.shape if 0: # this supports non regularly spaced coordenates!!!! x = xmin + numpy.arange(w) * xScale[1] y = ymin + numpy.arange(h) * yScale[1] image = NonUniformImage(self.ax, interpolation='nearest', #aspect='auto', extent=extent, picker=picker, cmap=cmap) image.set_data(x, y, data) xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() self.ax.images.append(image) self.ax.set_xlim(xmin, xmax) self.ax.set_ylim(ymin, ymax) elif 1: #the normalization can be a source of time waste # Two possibilities, we receive data or a ready to show image if len(data.shape) == 3: if data.shape[-1] == 4: # force alpha(?) # data[:,:,3] = 255 pass if len(shape) == 3: # RGBA image # TODO: Possibility to mirror the image # in case of pixmaps just setting # extend = (xmin, xmax, ymax, ymin) # instead of (xmin, xmax, ymin, ymax) extent = (xmin, xmax, ymin, ymax) if tuple(xScale) != (0., 1.) or tuple(yScale) != (0., 1.): # for the time being not properly handled imageClass = AxesImage elif (shape[0] * shape[1]) > 5.0e5: imageClass = ModestImage else: imageClass = AxesImage image = imageClass(self.ax, label="__IMAGE__"+legend, interpolation='nearest', picker=picker, zorder=z) if image.origin == 'upper': image.set_extent((xmin, xmax, ymax, ymin)) else: image.set_extent((xmin, xmax, ymin, ymax)) image.set_data(data) else: if colormap is None: colormap = self.getDefaultColormap() cmap = self.__getColormap(colormap['name']) if colormap['normalization'].startswith('log'): vmin, vmax = None, None if not colormap['autoscale']: if colormap['vmin'] > 0.: vmin = colormap['vmin'] if colormap['vmax'] > 0.: vmax = colormap['vmax'] if vmin is None or vmax is None: print('Warning: ' + 'Log colormap with negative bounds, ' + 'changing bounds to positive ones.') elif vmin > vmax: print('Warning: Colormap bounds are inverted.') vmin, vmax = vmax, vmin # Set unset/negative bounds to positive bounds if vmin is None or vmax is None: posData = data[data > 0] if vmax is None: # 1. as an ultimate fallback vmax = posData.max() if posData.size > 0 else 1. if vmin is None: vmin = posData.min() if posData.size > 0 else vmax if vmin > vmax: vmin = vmax norm = LogNorm(vmin, vmax) else: # Linear normalization if colormap['autoscale']: vmin = data.min() vmax = data.max() else: vmin = colormap['vmin'] vmax = colormap['vmax'] if vmin > vmax: print('Warning: Colormap bounds are inverted.') vmin, vmax = vmax, vmin norm = Normalize(vmin, vmax) # try as data if tuple(xScale) != (0., 1.) or tuple(yScale) != (0., 1.): # for the time being not properly handled imageClass = AxesImage elif (shape[0] * shape[1]) > 5.0e5: imageClass = ModestImage else: imageClass = AxesImage image = imageClass(self.ax, label="__IMAGE__"+legend, interpolation='nearest', #origin= cmap=cmap, extent=extent, picker=picker, zorder=z, norm=norm) if image.origin == 'upper': image.set_extent((xmin, xmax, ymax, ymin)) else: image.set_extent((xmin, xmax, ymin, ymax)) image.set_data(data) self.ax.add_artist(image) #self.ax.draw_artist(image) image._plot_info = {'label':legend, 'type':'image', 'xScale':xScale, 'yScale':yScale, 'z':z} image._plot_options = [] if draggable: image._plot_options.append('draggable') if selectable: image._plot_options.append('selectable') return image def invertYAxis(self, flag=True): if flag: if not self.ax.yaxis_inverted(): self.ax.invert_yaxis() else: if self.ax.yaxis_inverted(): self.ax.invert_yaxis() def isYAxisInverted(self): return self.ax.yaxis_inverted() def showGrid(self, flag=True): if flag == 1: if hasattr(self.ax.xaxis, "set_tick_params"): self.ax.xaxis.set_tick_params(which='major') self.ax.yaxis.set_tick_params(which='major') self.ax.grid(which='major') elif flag == 2: if hasattr(self.ax.xaxis, "set_tick_params"): self.ax.xaxis.set_tick_params(which='both') self.ax.yaxis.set_tick_params(which='both') self.ax.grid(which='both') elif flag: if hasattr(self.ax.xaxis, "set_tick_params"): self.ax.xaxis.set_tick_params(which='major') self.ax.yaxis.set_tick_params(which='major') self.ax.grid(True) else: self.ax.grid(False) self.replot() def keepDataAspectRatio(self, flag=True): """ :param flag: True to respect data aspect ratio :type flag: Boolean, default True """ if flag: for axes in [self.ax]: if axes.get_aspect() not in [1.0]: axes.set_aspect(1.0) self.resetZoom() else: for axes in [self.ax]: if axes.get_aspect() not in ['auto', None]: axes.set_aspect('auto') self.resetZoom() def isKeepDataAspectRatio(self): return self.ax.get_aspect() in (1.0, 'equal') def setDefaultColormap(self, colormap=None): if colormap is None: colormap = {'name': 'gray', 'normalization':'linear', 'autoscale':True, 'vmin':0.0, 'vmax':1.0, 'colors':256} self._defaultColormap = colormap def getDefaultColormap(self): if not hasattr(self, "_defaultColormap"): self.setDefaultColormap(None) return self._defaultColormap def getSupportedColormaps(self): default = ['gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'] maps = [m for m in cm.datad] maps.sort() return default + maps def __getColormap(self, name): if not hasattr(self, "__temperatureCmap"): #initialize own colormaps cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__redCmap = LinearSegmentedColormap('red',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__greenCmap = LinearSegmentedColormap('green',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))} self.__blueCmap = LinearSegmentedColormap('blue',cdict,256) # Temperature as defined in spslut cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.25, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (0.25, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))} #but limited to 256 colors for a faster display (of the colorbar) self.__temperatureCmap = LinearSegmentedColormap('temperature', cdict, 256) #reversed gray cdict = {'red': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0))} self.__reversedGrayCmap = LinearSegmentedColormap('yerg', cdict, 256) if name == "reversed gray": return self.__reversedGrayCmap elif name == "temperature": return self.__temperatureCmap elif name == "red": return self.__redCmap elif name == "green": return self.__greenCmap elif name == "blue": return self.__blueCmap else: # built in return cm.get_cmap(name) def dataToPixel(self, x=None, y=None, axis="left"): """ Convert a position in data space to a position in pixels in the widget. :param float x: The X coordinate in data space. If None (default) the middle position of the displayed data is used. :param float y: The Y coordinate in data space. If None (default) the middle position of the displayed data is used. :param str axis: The Y axis to use for the conversion ('left' or 'right'). :returns: The corresponding position in pixels or None if the data position is not in the displayed area. :rtype: A tuple of 2 floats: (xPixel, yPixel) or None. """ assert axis in ("left", "right") if "axis" == "right": ax = self.ax2 else: ax = self.ax xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits(axis=axis) if x is None: x = 0.5 * (xmax - xmin) if y is None: y = 0.5 * (ymax - ymin) if (x > xmax) or (x < xmin): return None if (y > ymax) or (y < ymin): return None pixels = ax.transData.transform([x, y]) xPixel, yPixel = pixels.T return xPixel, yPixel def pixelToData(self, x=None, y=None, axis="left"): assert axis in ("left", "right") if "axis" == "right": ax = self.ax2 else: ax = self.ax inv = ax.transData.inverted() x, y = inv.transform((x, y)) xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits(axis=axis) if (x > xmax) or (x < xmin): return None if (y > ymax) or (y < ymin): return None return x, y def main(parent=None): from .. import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot(parent, backend=MatplotlibBackend) plot.addCurve(x, y, "dummy") plot.addCurve(x + 100, -x * x, "To set Active") #info = {} #info['plot_yaxis'] = 'right' #plot.addCurve(x + 100, -x * x + 500, "RIGHT", info=info) #print("Active curve = ", plot.getActiveCurve()) print("X Limits) = ", plot.getGraphXLimits()) print("Y Limits = ", plot.getGraphYLimits()) #print("All curves = ", plot.getAllCurves()) #plot.removeCurve("dummy") plot.setActiveCurve("To set Active") #print("All curves = ", plot.getAllCurves()) #plot.resetZoom() return plot if __name__ == "__main__": if ("tkinter" in sys.modules) or ("Tkinter" in sys.modules): root = Tk.Tk() parent=root #w = MatplotlibGraph(root) #Tk.mainloop() #sys.exit(0) w = main(parent) widget = w._plot.graph else: app = QtGui.QApplication([]) parent = None w = main(parent) widget = w.getWidgetHandle() #w.invertYAxis(True) w.replot() #w.invertYAxis(True) data = numpy.arange(1000.*1000) data.shape = 10000,100 #plot.replot() #w.invertYAxis(True) #w.replot() #w.widget.show() w.addImage(data, legend="image 0", xScale=(25, 1.0) , yScale=(-1000, 1.0), selectable=True) w.removeImage("image 0") #w.invertYAxis(True) #w.replot() w.addImage(data, legend="image 1", xScale=(25, 1.0) , yScale=(-1000, 1.0), replot=False, selectable=True) #w.invertYAxis(True) widget.ax.axis('auto') # appropriate for curves, no aspect ratio #w.widget.ax.axis('equal') # candidate for keepting aspect ratio #w.widget.ax.axis('scaled') # candidate for keepting aspect ratio w.insertXMarker(50., text="Label", color='pink', draggable=True) w.insertMarker(25, -5000, text="Label\n", color='pink', draggable=True) w.resetZoom() #print(w.widget.ax.get_images()) #print(w.widget.ax.get_lines()) if ("tkinter" in sys.modules) or ("Tkinter" in sys.modules): tkWidget = w.getWidgetHandle() tkWidget.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) Tk.mainloop() else: widget.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/OSMesaGLBackend.py0000644000000000000000000002176014741736366022342 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Experimental Off-Screen Mesa/Qt OpenGL backend. This backend is based on the OSMesa software backend (http://www.mesa3d.org/). It can be used when OpenGL is not available. It depends on libOSMesa, PyOpenGL (tested with v3.1.1) and Qt. Information on how to compile libOSMesa can be found here: - http://www.mesa3d.org/osmesa.html - http://www.paraview.org/Wiki/ParaView/ParaView_And_Mesa_3D The --enable-texture-float flag is required to support float32 textures. The environment variable PYOPENGL_PLATFORM MUST be set to osmesa before the first import of PyOpenGL. This module adds it to the environment variables, but in case another module imports PyOpenGL before, PYOPENGL_PLATFORM must already be set at that time (e.g., from the shell). """ # import ###################################################################### import numpy as np # PyOpenGL # Tells PyOpenGL to use libOSMesa # This only works if PyOpenGL has not yet been imported import os os.environ['PYOPENGL_PLATFORM'] = 'osmesa' # Test PyOpenGL version import OpenGL if OpenGL.version.__version__ < '3.1.0': raise ImportError( "PyOpenGL version >= 3.1.0 is required for OS Mesa backend.") try: from OpenGL.raw.osmesa import mesa except Exception: raise RuntimeError( """PyOpenGL is not set to use OSMesa. Add PYOPENGL_PLATFORM=osmesa to the environment variables.""") from .GLSupport import gl from .GLSupport import setGLContextGetter # Qt try: from PyMca5.PyMcaGui.PyMcaQt import pyqtSignal, QCursor, QSize, Qt, QLabel from PyMca5.PyMcaGui.PyMcaQt import QPixmap, QImage except ImportError: try: from PyQt4.QtCore import pyqtSignal, QSize, Qt from PyQt4.QtGui import QLabel, QPixmap, QImage from PyQt4.Qt import QCursor except ImportError: from PyQt5.QtCore import pyqtSignal, QSize, Qt from PyQt5.QtGui import QLabel, QPixmap from PyQt5.Qt import QCursor from ._OpenGLPlotCanvas import OpenGLPlotCanvas from ._OpenGLPlotCanvas import CURSOR_DEFAULT, CURSOR_POINTING, \ CURSOR_SIZE_HOR, CURSOR_SIZE_VER, CURSOR_SIZE_ALL # OS Mesa ##################################################################### class OSMesaGLBackend(QLabel, OpenGLPlotCanvas): _signalRedisplay = pyqtSignal() # PyQt binds it to instances _currentContext = None def __init__(self, parent=None, **kw): # Qt init QLabel.__init__(self, parent) self._signalRedisplay.connect(self.update) self.setAutoFillBackground(False) self.setMouseTracking(True) # OS Mesa init self.__dirtyPixmap = True self.__context = mesa.OSMesaCreateContext(mesa.OSMESA_BGRA, None) assert self.__context != 0 # OpenGL Plot backend init OpenGLPlotCanvas.__init__(self, parent, **kw) def __del__(self): mesa.OSMesaDestroyContext(self.__context) @classmethod def getCurrentContext(cls): """Returns the current OSMesa GL context.""" return cls._currentContext def makeCurrent(self): """Set the current OSMesa GL context to this instance. There is one context per OSMesaGLBackend instance. """ OSMesaGLBackend._currentContext = self def postRedisplay(self): self.__dirtyPixmap = True self._signalRedisplay.emit() # Paint # def paintEvent(self, event): # Only refresh content when paint comes from backend if self.__dirtyPixmap: self.__dirtyPixmap = False height, width = self.__pixmap.shape[0:2] assert width == self.size().width() assert height == self.size().height() errCode = mesa.OSMesaMakeCurrent(self.__context, self.__pixmap, gl.GL_UNSIGNED_BYTE, width, height) assert errCode == gl.GL_TRUE self.makeCurrent() self.paintGL() gl.glFinish() image = QImage(self.__pixmap.data, width, height, QImage.Format_ARGB32) self.setPixmap(QPixmap.fromImage(image)) QLabel.paintEvent(self, event) def resizeEvent(self, event): width, height = self.size().width(), self.size().height() # Update underlying pixmap self.__dirtyPixmap = True self.__pixmap = np.empty((height, width, 4), dtype=np.uint8) errCode = mesa.OSMesaMakeCurrent(self.__context, self.__pixmap, gl.GL_UNSIGNED_BYTE, width, height) assert errCode == gl.GL_TRUE mesa.OSMesaPixelStore(mesa.OSMESA_Y_UP, 0) self.makeCurrent() gl.testGL() self.initializeGL() self.resizeGL(width, height) QLabel.resizeEvent(self, event) # Mouse events # _MOUSE_BTNS = {1: 'left', 2: 'right', 4: 'middle'} def sizeHint(self): return QSize(8 * 80, 6 * 80) # Mimic MatplotlibBackend def mousePressEvent(self, event): xPixel, yPixel = event.x(), event.y() btn = self._MOUSE_BTNS[event.button()] self.onMousePress(xPixel, yPixel, btn) event.accept() def mouseMoveEvent(self, event): xPixel, yPixel = event.x(), event.y() self.onMouseMove(xPixel, yPixel) event.accept() def mouseReleaseEvent(self, event): xPixel, yPixel = event.x(), event.y() btn = self._MOUSE_BTNS[event.button()] self.onMouseRelease(xPixel, yPixel, btn) event.accept() def wheelEvent(self, event): xPixel, yPixel = event.x(), event.y() angleInDegrees = event.delta() / 8. self.onMouseWheel(xPixel, yPixel, angleInDegrees) event.accept() _CURSORS = { CURSOR_DEFAULT: Qt.ArrowCursor, CURSOR_POINTING: Qt.PointingHandCursor, CURSOR_SIZE_HOR: Qt.SizeHorCursor, CURSOR_SIZE_VER: Qt.SizeVerCursor, CURSOR_SIZE_ALL: Qt.SizeAllCursor, } def setCursor(self, cursor=CURSOR_DEFAULT): cursor = self._CURSORS[cursor] QLabel.setCursor(self, QCursor(cursor)) # Widget handle def getWidgetHandle(self): return self # Init GL context getter setGLContextGetter(OSMesaGLBackend.getCurrentContext) # OSMesaGetCurrentContext does not return the same object for the context. # setGLContextGetter(mesa.OSMesaGetCurrentContext) # main ######################################################################## if __name__ == "__main__": import sys try: from PyQt4.QtGui import QApplication except ImportError: from PyQt5.QtWidgets import QApplication from PyMca5.PyMcaGraph.Plot import Plot app = QApplication([]) w = Plot(None, backend=OSMesaGLBackend) size = 1024 data = np.arange(float(size)*size, dtype=np.uint16) data.shape = size, size colormap = {'name': 'gray', 'normalization': 'linear', 'autoscale': True, 'vmin': 0.0, 'vmax': 1.0, 'colors': 256} w.addImage(data, legend="image 1", xScale=(25, 1.0), yScale=(-1000, 1.0), replot=False, colormap=colormap) w.insertXMarker(512, 'testX', 'markerX', color='pink', selectable=False, draggable=True) w.getWidgetHandle().show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/OpenGLBackend.py0000644000000000000000000001263714741736366022117 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ OpenGL/Qt QGLWidget backend. """ # import ###################################################################### from PyMca5.PyMcaGui.PyMcaQt import pyqtSignal, QSize, Qt from PyMca5.PyMcaGui.PyMcaQt import QGLWidget, QGLContext from PyMca5.PyMcaGui.PyMcaQt import QCursor from ._OpenGLPlotCanvas import OpenGLPlotCanvas from ._OpenGLPlotCanvas import CURSOR_DEFAULT, CURSOR_POINTING, \ CURSOR_SIZE_HOR, CURSOR_SIZE_VER, CURSOR_SIZE_ALL from .GLSupport import setGLContextGetter # OpenGLBackend ############################################################### # Init GL context getter setGLContextGetter(QGLContext.currentContext) class OpenGLBackend(QGLWidget, OpenGLPlotCanvas): _signalRedisplay = pyqtSignal() # PyQt binds it to instances def __init__(self, parent=None, **kw): QGLWidget.__init__(self, parent) self._signalRedisplay.connect(self.update) self.setAutoFillBackground(False) self.setMouseTracking(True) OpenGLPlotCanvas.__init__(self, parent, **kw) def postRedisplay(self): """Thread-safe call to QWidget.update.""" self._signalRedisplay.emit() # Mouse events # _MOUSE_BTNS = {1: 'left', 2: 'right', 4: 'middle'} def sizeHint(self): return QSize(8 * 80, 6 * 80) # Mimic MatplotlibBackend def mousePressEvent(self, event): xPixel, yPixel = event.x(), event.y() btn = self._MOUSE_BTNS[event.button()] self.onMousePress(xPixel, yPixel, btn) event.accept() def mouseMoveEvent(self, event): xPixel, yPixel = event.x(), event.y() self.onMouseMove(xPixel, yPixel) event.accept() def mouseReleaseEvent(self, event): xPixel, yPixel = event.x(), event.y() btn = self._MOUSE_BTNS[event.button()] self.onMouseRelease(xPixel, yPixel, btn) event.accept() def wheelEvent(self, event): xPixel, yPixel = event.x(), event.y() if hasattr(event, 'angleDelta'): # Qt 5 delta = event.angleDelta().y() else: # Qt 4 support delta = event.delta() angleInDegrees = delta / 8. self.onMouseWheel(xPixel, yPixel, angleInDegrees) event.accept() _CURSORS = { CURSOR_DEFAULT: Qt.ArrowCursor, CURSOR_POINTING: Qt.PointingHandCursor, CURSOR_SIZE_HOR: Qt.SizeHorCursor, CURSOR_SIZE_VER: Qt.SizeVerCursor, CURSOR_SIZE_ALL: Qt.SizeAllCursor, } def setCursor(self, cursor=CURSOR_DEFAULT): cursor = self._CURSORS[cursor] super(OpenGLBackend, self).setCursor(QCursor(cursor)) # Widget def getWidgetHandle(self): return self # PySide seems to need proxy methods def initializeGL(self): return OpenGLPlotCanvas.initializeGL(self) def paintGL(self): return OpenGLPlotCanvas.paintGL(self) def resizeGL(self, width, height): return OpenGLPlotCanvas.resizeGL(self, width, height) # demo ######################################################################## if __name__ == "__main__": import numpy as np import sys from ..Plot import Plot try: from PyQt4.QtGui import QApplication except ImportError: try: from PyQt5.QtWidgets import QApplication except ImportError: from PySide.QtGui import QApplication app = QApplication([]) w = Plot(None, backend=OpenGLBackend) size = 4096 data = np.arange(float(size)*size, dtype=np.dtype(np.float32)) data.shape = size, size colormap = {'name': 'gray', 'normalization': 'linear', 'autoscale': True, 'vmin': 0.0, 'vmax': 1.0, 'colors': 256} w.addImage(data, legend="image 1", xScale=(25, 1.0), yScale=(-1000, 1.0), replot=False, colormap=colormap) w.getWidgetHandle().show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/SilxBackend.py0000644000000000000000000002175314741736366021711 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Silx Plot Backend. """ import silx from silx.gui import qt from silx.gui.plot import PlotWidget import numpy import logging _logger = logging.getLogger(__name__) class SilxBackend(PlotWidget): def __init__(self, *var, **kw): PlotWidget.__init__(self, *var, **kw) # No context menu by default, execute zoomBack on right click if "backend" in kw: setBackend = kw["backend"] else: setBackend = None _logger.info("SilxBackend called with backend = %s" % setBackend) plotArea = self.getWidgetHandle() plotArea.setContextMenuPolicy(qt.Qt.CustomContextMenu) plotArea.customContextMenuRequested.connect(self._zoomBack) self.addShape = self.addItem def addItem(self, *var, **kw): if len(var) < 2: if len(var) == 0: item = PlotWidget.addItem(self, **kw) else: item = PlotWidget.addItem(self, *var, **kw) else: item = self.__addItem(*var, **kw) if hasattr(item, "getName"): item = item.getName() return item def __addItem(self, xdata, ydata, legend=None, info=None, replace=False, replot=True, shape="polygon", fill=True, **kw): if hasattr(PlotWidget, "addShape"): m = PlotWidget.addShape else: m = PlotWidget.addItem overlay = kw.get("overlay", False) z = kw.get("z", None) color = kw.get("color", "black") linestyle = kw.get("linestyle", "-") linewidth = kw.get("linewidth", 1.0) linebgcolor = kw.get("linebgcolor", None) linebgcolor = kw.get("gapcolor", linebgcolor) if silx.version_info < (1, 2): return m(self, xdata, ydata, legend=legend, replace=replace, shape=shape, color=color, fill=fill, overlay=overlay, z=z, linestyle=linestyle, linewidth=linewidth, linebgcolor=linebgcolor) else: return m(self, xdata, ydata, legend=legend, replace=replace, shape=shape, color=color, fill=fill, overlay=overlay, z=z, linestyle=linestyle, linewidth=linewidth, gapcolor=linebgcolor) def _zoomBack(self, pos): self.getLimitsHistory().pop() def addCurve(self, *var, **kw): if "replot" in kw: if kw["replot"]: kw["resetzoom"] = True del kw["replot"] result = PlotWidget.addCurve(self, *var, **kw) if hasattr(result, "getName"): result = result.getName() allCurves = self.getAllCurves(just_legend=True) if len(allCurves) == 1: self.setActiveCurve(allCurves[0]) return result def addImage(self, *var, **kw): if "replot" in kw: del kw["replot"] if "xScale" in kw: xScale = kw["xScale"] del kw["xScale"] if "yScale" in kw: yScale = kw["yScale"] del kw["yScale"] if xScale is not None or yScale is not None: origin = kw.get("origin", None) scale = kw.get("scale", None) if origin is None and scale is None: kw["origin"] = xScale[0], yScale[0] kw["scale"] = xScale[1], yScale[1] result = PlotWidget.addImage(self, *var, **kw) if hasattr(result, "getName"): result = result.getName() return result def setActiveCurve(self, legend, replot=True): return PlotWidget.setActiveCurve(self, legend) def setActiveImage(self, *var, **kw): if "replot" in kw: del kw["replot"] return PlotWidget.setActiveImage(self, *var, **kw) def insertXMarker(self, *var, **kw): if "replot" in kw: del kw["replot"] result = self.addXMarker(*var, **kw) if hasattr(result, "getName"): result = result.getName() return result def insertYMarker(self, *var, **kw): if "replot" in kw: del kw["replot"] result = self.addYMarker(*var, **kw) if hasattr(result, "getName"): result = result.getName() return result def insertMarker(self, *var, **kw): if "replot" in kw: del kw["replot"] result = self.addMarker(*var, **kw) if hasattr(result, "getName"): result = result.getName() return result def removeCurve(self, *var, **kw): if "replot" in kw: del kw["replot"] # silx schedules replots, explicit replot call # should not be needed return PlotWidget.removeCurve(self, *var, **kw) def isActiveCurveHandlingEnabled(self): return self.isActiveCurveHandling() def enableActiveCurveHandling(self, *args, **kwargs): return self.setActiveCurveHandling(*args, **kwargs) def invertYAxis(self, *args, **kwargs): return self.getYAxis().setInverted(*args, **kwargs) def showGrid(self, flag=True): if flag in (0, False): flag = None elif flag in (1, True): flag = 'major' else: flag = 'both' return self.setGraphGrid(flag) def keepDataAspectRatio(self, *args, **kwargs): return self.setKeepDataAspectRatio(*args, **kwargs) def hideCurve(self, *var, **kw): if "replot" in kw: del kw["replot"] return PlotWidget.hideCurve(self, *var, **kw) def setGraphXLimits(self, *var, **kw): if "replot" in kw: del kw["replot"] return PlotWidget.setGraphXLimits(self, *var, **kw) def setGraphYLimits(self, *var, **kw): if "replot" in kw: del kw["replot"] return PlotWidget.setGraphYLimits(self, *var, **kw) def isDrawModeEnabled(self): return self.getInteractiveMode()['mode'] == 'draw' def setDrawModeEnabled(self, flag=True, shape='polygon', label=None, color=None, **kwargs): if color is None: color = 'black' if isinstance(color, numpy.ndarray): color = tuple(color) if flag: self.setInteractiveMode('draw', shape=shape, label=label, color=color) elif self.getInteractiveMode()['mode'] == 'draw': self.setInteractiveMode('select') def getDrawMode(self): mode = self.getInteractiveMode() return mode if mode['mode'] == 'draw' else None def isZoomModeEnabled(self): return self.getInteractiveMode()['mode'] == 'zoom' def setZoomModeEnabled(self, flag=True, color=None): if color is None: color = 'black' if isinstance(color, numpy.ndarray): color = tuple(color) if flag: self.setInteractiveMode('zoom', color=color) elif self.getInteractiveMode()['mode'] == 'zoom': self.setInteractiveMode('select') def setActiveCurveColor(self, *var, **kw): return PlotWidget.setActiveCurveStyle(self, *var, **kw) if __name__ == "__main__": def callback(ddict): print("RECEIVED = ", ddict) from silx.gui import qt app = qt.QApplication([]) w = SilxBackend() w.setCallback(callback) w.addCurve([1, 2, 3], [4, 5, 6], legend="My Curve") w.insertXMarker(1.5, draggable=True) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/_OpenGLPlotCanvas.py0000644000000000000000000022227614741736366023003 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ OpenGL plot backend with no dependencies on the control of the OpenGL context. """ # import ###################################################################### from collections import namedtuple import math import numpy as np import warnings try: from ..PlotBackend import PlotBackend except ImportError: from PyMca5.PyMcaGraph.PlotBackend import PlotBackend from .GLSupport import * # noqa from .GLSupport.gl import * # noqa from .GLSupport.PlotEvents import prepareMouseSignal,\ prepareLimitsChangedSignal from .GLSupport.PlotImageFile import saveImageToFile from .GLSupport.PlotInteraction import PlotInteraction from . import _utils # OrderedDict ################################################################# class MiniOrderedDict(object): """Simple subset of OrderedDict for python 2.6 support""" _DEFAULT_ARG = object() def __init__(self): self._dict = {} self._orderedKeys = [] def __getitem__(self, key): return self._dict[key] def __setitem__(self, key, value): if key not in self._orderedKeys: self._orderedKeys.append(key) self._dict[key] = value def __delitem__(self, key): del self._dict[key] self._orderedKeys.remove(key) def __len__(self): return len(self._dict) def keys(self): return self._orderedKeys[:] def values(self): return [self._dict[key] for key in self._orderedKeys] def get(self, key, default=None): return self._dict.get(key, default) def pop(self, key, default=_DEFAULT_ARG): value = self._dict.pop(key, self._DEFAULT_ARG) if value is not self._DEFAULT_ARG: self._orderedKeys.remove(key) return value elif default is self._DEFAULT_ARG: raise KeyError else: return default # Bounds ###################################################################### class Range(namedtuple('Range', ('min_', 'max_'))): """Describes a 1D range""" @property def range_(self): return self.max_ - self.min_ @property def center(self): return 0.5 * (self.min_ + self.max_) class Bounds(object): """Describes plot bounds with 2 y axis""" def __init__(self, xMin, xMax, yMin, yMax, y2Min, y2Max): self._xAxis = Range(xMin, xMax) self._yAxis = Range(yMin, yMax) self._y2Axis = Range(y2Min, y2Max) def __repr__(self): return "x: %s, y: %s, y2: %s" % (repr(self._xAxis), repr(self._yAxis), repr(self._y2Axis)) @property def xAxis(self): return self._xAxis @property def yAxis(self): return self._yAxis @property def y2Axis(self): return self._y2Axis # Content ##################################################################### class PlotDataContent(object): """Manage plot data content: images and curves. This class is only meant to work with _OpenGLPlotCanvas. """ _PRIMITIVE_TYPES = 'curve', 'image' def __init__(self): self._primitives = MiniOrderedDict() # For images and curves def add(self, primitive): """Add a curve or image to the content dictionary. This function generates the key in the dict from the primitive. :param primitive: The primitive to add. :type primitive: Instance of GLPlotCurve2D, GLPlotColormap, GLPlotRGBAImage. """ if isinstance(primitive, GLPlotCurve2D): primitiveType = 'curve' elif isinstance(primitive, (GLPlotColormap, GLPlotRGBAImage)): primitiveType = 'image' else: raise RuntimeError('Unsupported object type: %s', primitive) key = primitiveType, primitive.info['legend'] self._primitives[key] = primitive def get(self, primitiveType, legend): """Get the corresponding primitive of given type with given legend. :param str primitiveType: Type of primitive ('curve' or 'image'). :param str legend: The legend of the primitive to retrieve. :return: The corresponding curve or None if no such curve. """ assert primitiveType in self._PRIMITIVE_TYPES return self._primitives.get((primitiveType, legend)) def pop(self, primitiveType, key): """Pop the corresponding curve or return None if no such curve. :param str primitiveType: :param str key: :return: """ assert primitiveType in self._PRIMITIVE_TYPES return self._primitives.pop((primitiveType, key), None) def zOrderedPrimitives(self, reverse=False): """List of primitives sorted according to their z order. It is a stable sort (as sorted): Original order is preserved when key is the same. :param bool reverse: Ascending (True, default) or descending (False). """ return sorted(self._primitives.values(), key=lambda primitive: primitive.info['zOrder'], reverse=reverse) def primitives(self): """Iterator over all primitives.""" return self._primitives.values() def primitiveKeys(self, primitiveType): """Iterator over primitives of a specific type.""" assert primitiveType in self._PRIMITIVE_TYPES for type_, key in self._primitives.keys(): if type_ == primitiveType: yield key def getBounds(self, xPositive=False, yPositive=False): """Bounds of the data. Can return strictly positive bounds (for log scale). In this case, curves are clipped to their smaller positive value and images with negative min are ignored. :param bool xPositive: True to get strictly positive range. :param bool yPositive: True to get strictly positive range. :return: The range of data for x, y and y2, or default (1., 100.) if no range found for one dimension. :rtype: Bounds """ xMin, yMin, y2Min = float('inf'), float('inf'), float('inf') xMax = 0. if xPositive else -float('inf') if yPositive: yMax, y2Max = 0., 0. else: yMax, y2Max = -float('inf'), -float('inf') for item in self._primitives.values(): # To support curve <= 0. and log and bypass images: # If positive only, uses x|yMinPos if available # and bypass other data with negative min bounds if xPositive: itemXMin = getattr(item, 'xMinPos', item.xMin) if itemXMin is None or itemXMin < FLOAT32_MINPOS: continue else: itemXMin = item.xMin if yPositive: itemYMin = getattr(item, 'yMinPos', item.yMin) if itemYMin is None or itemYMin < FLOAT32_MINPOS: continue else: itemYMin = item.yMin if itemXMin < xMin: xMin = itemXMin if item.xMax > xMax: xMax = item.xMax if item.info.get('yAxis') == 'right': if itemYMin < y2Min: y2Min = itemYMin if item.yMax > y2Max: y2Max = item.yMax else: if itemYMin < yMin: yMin = itemYMin if item.yMax > yMax: yMax = item.yMax # One of the limit has not been updated, return default range if xMin >= xMax: xMin, xMax = 1., 100. if yMin >= yMax: yMin, yMax = 1., 100. if y2Min >= y2Max: y2Min, y2Max = 1., 100. return Bounds(xMin, xMax, yMin, yMax, y2Min, y2Max) # shaders ##################################################################### _baseVertShd = """ attribute vec2 position; uniform mat4 matrix; uniform bvec2 isLog; const float oneOverLog10 = 0.43429448190325176; void main(void) { vec2 posTransformed = position; if (isLog.x) { posTransformed.x = oneOverLog10 * log(position.x); } if (isLog.y) { posTransformed.y = oneOverLog10 * log(position.y); } gl_Position = matrix * vec4(posTransformed, 0.0, 1.0); } """ _baseFragShd = """ uniform vec4 color; uniform int hatchStep; uniform float tickLen; void main(void) { if (tickLen != 0.) { if (mod((gl_FragCoord.x + gl_FragCoord.y) / tickLen, 2.) < 1.) { gl_FragColor = color; } else { discard; } } else if (hatchStep == 0 || mod(gl_FragCoord.x - gl_FragCoord.y, float(hatchStep)) == 0.) { gl_FragColor = color; } else { discard; } } """ _texVertShd = """ attribute vec2 position; attribute vec2 texCoords; uniform mat4 matrix; varying vec2 coords; void main(void) { gl_Position = matrix * vec4(position, 0.0, 1.0); coords = texCoords; } """ _texFragShd = """ uniform sampler2D tex; varying vec2 coords; void main(void) { gl_FragColor = texture2D(tex, coords); } """ # OpenGLPlotCanvas ############################################################ CURSOR_DEFAULT = 'default' CURSOR_POINTING = 'pointing' CURSOR_SIZE_HOR = 'size horizontal' CURSOR_SIZE_VER = 'size vertical' CURSOR_SIZE_ALL = 'size all' class OpenGLPlotCanvas(PlotBackend): """Implements PlotBackend API using OpenGL. WARNINGS: Unless stated otherwise, this API is NOT thread-safe and MUST be called from the main thread. When numpy arrays are passed as arguments to the API (through :func:`addCurve` and :func:`addImage`), they are copied only if required. So, the caller should not modify these arrays afterwards. """ _UNNAMED_ITEM = '__unnamed_item__' _PICK_OFFSET = 3 _DEFAULT_COLORMAP = {'name': 'gray', 'normalization': 'linear', 'autoscale': True, 'vmin': 0.0, 'vmax': 1.0, 'colors': 256} def __init__(self, parent=None, glContextGetter=None, **kw): self._eventCallback = self._noopCallback self._defaultColormap = self._DEFAULT_COLORMAP self._progBase = GLProgram(_baseVertShd, _baseFragShd) self._progTex = GLProgram(_texVertShd, _texFragShd) self._plotFBOs = {} self._keepDataAspectRatio = False self._activeCurveLegend = None self._crosshairCursor = None self._mousePosInPixels = None self._markers = MiniOrderedDict() self._items = MiniOrderedDict() self._plotContent = PlotDataContent() # For images and curves self._selectionAreas = MiniOrderedDict() self._glGarbageCollector = [] self._lineWidth = 1 self._tickLen = 5 self._plotDirtyFlag = True self.eventHandler = PlotInteraction(self) self.eventHandler.setInteractiveMode('zoom', color=(0., 0., 0., 1.)) self._pressedButtons = [] # Currently pressed mouse buttons self._plotFrame = GLPlotFrame2D( margins={'left': 100, 'right': 50, 'top': 50, 'bottom': 50}) PlotBackend.__init__(self, parent, **kw) # Callback # @staticmethod def _noopCallback(eventDict): """Default no-op callback.""" pass def setCallback(self, func): if func is None: self._eventCallback = self._noopCallback else: assert callable(func) self._eventCallback = func def sendEvent(self, event): """Send the event to the registered callback. :param dict event: The event information (See PlotBackend for details). """ self._eventCallback(event) # Link with embedding toolkit # def makeCurrent(self): """Override this method to allow to set the current OpenGL context.""" pass def postRedisplay(self): raise NotImplementedError("This method must be provided by \ subclass to trigger redraw") def setCursor(self, cursor=CURSOR_DEFAULT): """Override this method in subclass to enable cursor shape changes """ print('setCursor:', cursor) # User event handling # def _mouseInPlotArea(self, x, y): xPlot = clamp( x, self._plotFrame.margins.left, self._plotFrame.size[0] - self._plotFrame.margins.right - 1) yPlot = clamp( y, self._plotFrame.margins.top, self._plotFrame.size[1] - self._plotFrame.margins.bottom - 1) return xPlot, yPlot def onMousePress(self, xPixel, yPixel, btn): if self._mouseInPlotArea(xPixel, yPixel) == (xPixel, yPixel): self._pressedButtons.append(btn) self.eventHandler.handleEvent('press', xPixel, yPixel, btn) def onMouseMove(self, xPixel, yPixel): inXPixel, inYPixel = self._mouseInPlotArea(xPixel, yPixel) isCursorInPlot = inXPixel == xPixel and inYPixel == yPixel previousMousePosInPixels = self._mousePosInPixels self._mousePosInPixels = (xPixel, yPixel) if isCursorInPlot else None if (self._crosshairCursor is not None and previousMousePosInPixels != self._crosshairCursor): # Avoid replot when cursor remains outside plot area self.replot() if isCursorInPlot: # Signal mouse move event dataPos = self.pixelToData(inXPixel, inYPixel) assert dataPos is not None btn = self._pressedButtons[-1] if self._pressedButtons else None eventDict = prepareMouseSignal( 'mouseMoved', btn, dataPos[0], dataPos[1], xPixel, yPixel) self.sendEvent(eventDict) # Either button was pressed in the plot or cursor is in the plot if isCursorInPlot or self._pressedButtons: self.eventHandler.handleEvent('move', inXPixel, inYPixel) def onMouseRelease(self, xPixel, yPixel, btn): try: self._pressedButtons.remove(btn) except ValueError: pass else: xPixel, yPixel = self._mouseInPlotArea(xPixel, yPixel) self.eventHandler.handleEvent('release', xPixel, yPixel, btn) def onMouseWheel(self, xPixel, yPixel, angleInDegrees): if self._mouseInPlotArea(xPixel, yPixel) == (xPixel, yPixel): self.eventHandler.handleEvent('wheel', xPixel, yPixel, angleInDegrees) # Picking # def pickMarker(self, x, y, test=None): if test is None: test = lambda marker: True for marker in reversed(self._markers.values()): pixelPos = self.dataToPixel(marker['x'], marker['y'], check=False) if pixelPos is None: # negative coord on a log axis continue if marker['x'] is None: # Horizontal line pt1 = self.pixelToData(x, y - self._PICK_OFFSET, check=False) pt2 = self.pixelToData(x, y + self._PICK_OFFSET, check=False) isPicked = (marker['y'] >= min(pt1[1], pt2[1]) and marker['y'] <= max(pt1[1], pt2[1])) elif marker['y'] is None: # Vertical line pt1 = self.pixelToData(x - self._PICK_OFFSET, y, check=False) pt2 = self.pixelToData(x + self._PICK_OFFSET, y, check=False) isPicked = (marker['x'] >= min(pt1[0], pt2[0]) and marker['x'] <= max(pt1[0], pt2[0])) else: isPicked = ( math.fabs(x - pixelPos[0]) <= self._PICK_OFFSET and \ math.fabs(y - pixelPos[1]) <= self._PICK_OFFSET ) if isPicked: if test(marker): return marker return None def pickImageOrCurve(self, x, y, test=None): if test is None: test = lambda item: True dataPos = self.pixelToData(x, y) assert dataPos is not None for item in self._plotContent.zOrderedPrimitives(reverse=True): if test(item): if isinstance(item, (GLPlotColormap, GLPlotRGBAImage)): pickedPos = item.pick(*dataPos) if pickedPos is not None: return 'image', item, pickedPos elif isinstance(item, GLPlotCurve2D): offset = self._PICK_OFFSET if item.marker is not None: offset = max(item.markerSize / 2., offset) if item.lineStyle is not None: offset = max(item.lineWidth / 2., offset) yAxis = item.info['yAxis'] inAreaPos = self._mouseInPlotArea(x - offset, y - offset) dataPos = self.pixelToData(inAreaPos[0], inAreaPos[1], axis=yAxis) assert dataPos is not None xPick0, yPick0 = dataPos inAreaPos = self._mouseInPlotArea(x + offset, y + offset) dataPos = self.pixelToData(inAreaPos[0], inAreaPos[1], axis=yAxis) assert dataPos is not None xPick1, yPick1 = dataPos if xPick0 < xPick1: xPickMin, xPickMax = xPick0, xPick1 else: xPickMin, xPickMax = xPick1, xPick0 if yPick0 < yPick1: yPickMin, yPickMax = yPick0, yPick1 else: yPickMin, yPickMax = yPick1, yPick0 pickedIndices = item.pick(xPickMin, yPickMin, xPickMax, yPickMax) if pickedIndices: return 'curve', item, pickedIndices return None # Default colormap # def getSupportedColormaps(self): return GLPlotColormap.COLORMAPS def getDefaultColormap(self): return self._defaultColormap.copy() def setDefaultColormap(self, colormap=None): if colormap is None: self._defaultColormap = self._DEFAULT_COLORMAP else: assert colormap['name'] in self.getSupportedColormaps() if colormap['colors'] != 256: warnings.warn("Colormap 'colors' field is ignored", RuntimeWarning) self._defaultColormap = colormap.copy() # Manage Plot # def setSelectionArea(self, points, fill=None, color=None, name=None): """Set a polygon selection area overlaid on the plot. Multiple simultaneous areas are supported through the name parameter. :param points: The 2D coordinates of the points of the polygon :type points: An iterable of (x, y) coordinates :param str fill: The fill mode: 'hatch', 'solid' or None (default) :param color: RGBA color to use (default: black) or 'video inverted' to use video inverted mode. :type color: list or tuple of 4 float in the range [0, 1] :param name: The key associated with this selection area """ if color is None: color = 0., 0., 0., 1. isVideoInverted = (color == 'video inverted') if isVideoInverted: color = 1., 1., 1., 1. shape = Shape2D(points, fill=fill, fillColor=color, stroke=True, strokeColor=color) shape.isVideoInverted = isVideoInverted self._selectionAreas[name] = shape def resetSelectionArea(self, name=None): """Remove the name selection area set by setSelectionArea. If name is None (the default), it removes all selection areas. :param name: The name key provided to setSelectionArea or None """ if name is None: self._selectionAreas = MiniOrderedDict() elif name in self._selectionAreas: del self._selectionAreas[name] # Coordinate systems # def dataToPixel(self, x=None, y=None, axis='left', check=True): """Convert data coordinate to widget pixel coordinate. :param bool check: Toggle checking if data position is in displayed area. If False, this method never returns None. :return: pixel position or None if coord <= 0 on a log axis or check failed. :rtype: tuple of 2 ints or None. """ assert axis in ('left', 'right') if x is None or y is None: dataBounds = self._plotContent.getBounds( self.isXAxisLogarithmic(), self.isYAxisLogarithmic()) if x is None: x = dataBounds.xAxis.center if y is None: if axis == 'left': y = dataBounds.yAxis.center else: y = dataBounds.y2Axis.center result = self._plotFrame.dataToPixel(x, y, axis) if check and result is not None: xPixel, yPixel = result width, height = self._plotFrame.size if (xPixel < self._plotFrame.margins.left or xPixel > (width - self._plotFrame.margins.right) or yPixel < self._plotFrame.margins.top or yPixel > height - self._plotFrame.margins.bottom): return None # (x, y) is out of plot area return result def pixelToData(self, x=None, y=None, axis="left", check=True): """ :param bool check: Toggle checking if pixel is in plot area. If False, this method never returns None. """ assert axis in ("left", "right") if x is None: x = self._plotFrame.size[0] / 2. if y is None: y = self._plotFrame.size[1] / 2. if check and (x < self._plotFrame.margins.left or x > (self._plotFrame.size[0] - self._plotFrame.margins.right) or y < self._plotFrame.margins.top or y > (self._plotFrame.size[1] - self._plotFrame.margins.bottom)): return None # (x, y) is out of plot area return self._plotFrame.pixelToData(x, y, axis) def plotOriginInPixels(self): """Plot area origin (left, top) in widget coordinates in pixels.""" return self._plotFrame.plotOrigin def plotSizeInPixels(self): """Plot area size (width, height) in pixels.""" return self._plotFrame.plotSize # QGLWidget API # @staticmethod def _setBlendFuncGL(): # glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE) def initializeGL(self): testGL() glClearColor(1., 1., 1., 1.) glClearStencil(0) glEnable(GL_BLEND) self._setBlendFuncGL() # For lines glHint(GL_LINE_SMOOTH_HINT, GL_NICEST) # For points glEnable(GL_VERTEX_PROGRAM_POINT_SIZE) # OpenGL 2 glEnable(GL_POINT_SPRITE) # OpenGL 2 # glEnable(GL_PROGRAM_POINT_SIZE) # Building shader programs here failed on Mac OS X 10.7.5 def _paintDirectGL(self): self._renderPlotAreaGL() self._plotFrame.render() self._renderMarkersGL() self._renderOverlayGL() def _paintFBOGL(self): context = getGLContext() plotFBOTex = self._plotFBOs.get(context) if (self._plotDirtyFlag or self._plotFrame.isDirty or plotFBOTex is None): self._plotDirtyFlag = False self._plotVertices = np.array(((-1., -1., 0., 0.), (1., -1., 1., 0.), (-1., 1., 0., 1.), (1., 1., 1., 1.)), dtype=np.float32) if plotFBOTex is None or \ plotFBOTex.width != self._plotFrame.size[0] or \ plotFBOTex.height != self._plotFrame.size[1]: if plotFBOTex is not None: plotFBOTex.discard() plotFBOTex = FBOTexture(GL_RGBA, self._plotFrame.size[0], self._plotFrame.size[1], minFilter=GL_NEAREST, magFilter=GL_NEAREST, wrapS=GL_CLAMP_TO_EDGE, wrapT=GL_CLAMP_TO_EDGE) self._plotFBOs[context] = plotFBOTex with plotFBOTex: glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) self._renderPlotAreaGL() self._plotFrame.render() # Render plot in screen coords glViewport(0, 0, self._plotFrame.size[0], self._plotFrame.size[1]) self._progTex.use() texUnit = 0 glUniform1i(self._progTex.uniforms['tex'], texUnit) glUniformMatrix4fv(self._progTex.uniforms['matrix'], 1, GL_TRUE, mat4Identity()) stride = self._plotVertices.shape[-1] * self._plotVertices.itemsize glEnableVertexAttribArray(self._progTex.attributes['position']) glVertexAttribPointer(self._progTex.attributes['position'], 2, GL_FLOAT, GL_FALSE, stride, self._plotVertices) texCoordsPtr = c_void_p(self._plotVertices.ctypes.data + 2 * self._plotVertices.itemsize) # Better way? glEnableVertexAttribArray(self._progTex.attributes['texCoords']) glVertexAttribPointer(self._progTex.attributes['texCoords'], 2, GL_FLOAT, GL_FALSE, stride, texCoordsPtr) plotFBOTex.bind(texUnit) glDrawArrays(GL_TRIANGLE_STRIP, 0, len(self._plotVertices)) glBindTexture(GL_TEXTURE_2D, 0) self._renderMarkersGL() self._renderOverlayGL() def paintGL(self): # Release OpenGL resources for item in self._glGarbageCollector: item.discard() self._glGarbageCollector = [] glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) # Check if window is large enough plotWidth, plotHeight = self.plotSizeInPixels() if plotWidth <= 2 or plotHeight <= 2: return # self._paintDirectGL() self._paintFBOGL() def _nonOrthoAxesLineMarkerPrimitives(self, marker, pixelOffset): """Generates the vertices and label for a line marker. :param dict marker: Description of a line marker :param int pixelOffset: Offset of text from borders in pixels :return: Line vertices and Text label or None :rtype: 2-tuple (2x2 numpy.array of float, Text2D) """ label, vertices = None, None xCoord, yCoord = marker['x'], marker['y'] assert xCoord is None or yCoord is None # Specific to line markers # Get plot corners in data coords plotLeft, plotTop = self.plotOriginInPixels() plotWidth, plotHeight = self.plotSizeInPixels() corners = [(plotLeft, plotTop), (plotLeft, plotTop + plotHeight), (plotLeft + plotWidth, plotTop + plotHeight), (plotLeft + plotWidth, plotTop)] corners = np.array([self.pixelToData(x, y, check=False) for (x, y) in corners]) borders = { 'right': (corners[3], corners[2]), 'top': (corners[0], corners[3]), 'bottom': (corners[2], corners[1]), 'left': (corners[1], corners[0]) } textLayouts = { # align, valign, offsets 'right': (RIGHT, BOTTOM, (-1., -1.)), 'top': (LEFT, TOP, (1., 1.)), 'bottom': (LEFT, BOTTOM, (1., -1.)), 'left': (LEFT, BOTTOM, (1., -1.)) } if xCoord is None: # Horizontal line in data space if marker['text'] is not None: # Find intersection of hline with borders in data # Order is important as it stops at first intersection for border_name in ('right', 'top', 'bottom', 'left'): (x0, y0), (x1, y1) = borders[border_name] if yCoord >= min(y0, y1) and yCoord < max(y0, y1): xIntersect = (yCoord - y0) * (x1 - x0) / (y1 - y0) + x0 # Add text label pixelPos = self.dataToPixel( xIntersect, yCoord, check=False) align, valign, offsets = textLayouts[border_name] x = pixelPos[0] + offsets[0] * pixelOffset y = pixelPos[1] + offsets[1] * pixelOffset label = Text2D(marker['text'], x, y, color=marker['color'], bgColor=(1., 1., 1., 0.5), align=align, valign=valign) break # Stop at first intersection xMin, xMax = corners[:, 0].min(), corners[:, 0].max() vertices = np.array( ((xMin, yCoord), (xMax, yCoord)), dtype=np.float32) else: # yCoord is None: vertical line in data space if marker['text'] is not None: # Find intersection of hline with borders in data # Order is important as it stops at first intersection for border_name in ('top', 'bottom', 'right', 'left'): (x0, y0), (x1, y1) = borders[border_name] if xCoord >= min(x0, x1) and xCoord < max(x0, x1): yIntersect = (xCoord - x0) * (y1 - y0) / (x1 - x0) + y0 # Add text label pixelPos = self.dataToPixel( xCoord, yIntersect, check=False) align, valign, offsets = textLayouts[border_name] x = pixelPos[0] + offsets[0] * pixelOffset y = pixelPos[1] + offsets[1] * pixelOffset label = Text2D(marker['text'], x, y, color=marker['color'], bgColor=(1., 1., 1., 0.5), align=align, valign=valign) break # Stop at first intersection yMin, yMax = corners[:, 1].min(), corners[:, 1].max() vertices = np.array( ((xCoord, yMin), (xCoord, yMax)), dtype=np.float32) return vertices, label def _renderMarkersGL(self): if len(self._markers) == 0: return plotWidth, plotHeight = self.plotSizeInPixels() isXLog = self._plotFrame.xAxis.isLog isYLog = self._plotFrame.yAxis.isLog # Render in plot area glScissor(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) glEnable(GL_SCISSOR_TEST) glViewport(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) # Prepare vertical and horizontal markers rendering self._progBase.use() glUniformMatrix4fv(self._progBase.uniforms['matrix'], 1, GL_TRUE, self._plotFrame.transformedDataProjMat) glUniform2i(self._progBase.uniforms['isLog'], isXLog, isYLog) glUniform1i(self._progBase.uniforms['hatchStep'], 0) glUniform1f(self._progBase.uniforms['tickLen'], 0.) posAttrib = self._progBase.attributes['position'] labels = [] pixelOffset = 3 for marker in self._markers.values(): xCoord, yCoord = marker['x'], marker['y'] if ((isXLog and xCoord is not None and xCoord < FLOAT32_MINPOS) or (isYLog and yCoord is not None and yCoord < FLOAT32_MINPOS)): # Do not render markers with negative coords on log axis continue if xCoord is None or yCoord is None: if not self.isDefaultBaseVectors(): # Non-orthogonal axes vertices, label = self._nonOrthoAxesLineMarkerPrimitives( marker, pixelOffset) if label is not None: labels.append(label) else: # Orthogonal axes pixelPos = self.dataToPixel(xCoord, yCoord, check=False) if xCoord is None: # Horizontal line in data space if marker['text'] is not None: x = self._plotFrame.size[0] - \ self._plotFrame.margins.right - pixelOffset y = pixelPos[1] - pixelOffset label = Text2D(marker['text'], x, y, color=marker['color'], bgColor=(1., 1., 1., 0.5), align=RIGHT, valign=BOTTOM) labels.append(label) xMin, xMax = self._plotFrame.dataRanges.x vertices = np.array(((xMin, yCoord), (xMax, yCoord)), dtype=np.float32) else: # yCoord is None: vertical line in data space if marker['text'] is not None: x = pixelPos[0] + pixelOffset y = self._plotFrame.margins.top + pixelOffset label = Text2D(marker['text'], x, y, color=marker['color'], bgColor=(1., 1., 1., 0.5), align=LEFT, valign=TOP) labels.append(label) yMin, yMax = self._plotFrame.dataRanges.y vertices = np.array(((xCoord, yMin), (xCoord, yMax)), dtype=np.float32) self._progBase.use() glUniform4f(self._progBase.uniforms['color'], *marker['color']) glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, 0, vertices) glLineWidth(1) glDrawArrays(GL_LINES, 0, len(vertices)) else: pixelPos = self.dataToPixel(xCoord, yCoord, check=True) if pixelPos is None: # Do not render markers outside visible plot area continue if marker['text'] is not None: x = pixelPos[0] + pixelOffset y = pixelPos[1] + pixelOffset label = Text2D(marker['text'], x, y, color=marker['color'], bgColor=(1., 1., 1., 0.5), align=LEFT, valign=TOP) labels.append(label) # For now simple implementation: using a curve for each marker # Should pack all markers to a single set of points markerCurve = GLPlotCurve2D( np.array((xCoord,), dtype=np.float32), np.array((yCoord,), dtype=np.float32), marker=marker['symbol'], markerColor=marker['color'], markerSize=11) markerCurve.render(self._plotFrame.transformedDataProjMat, isXLog, isYLog) glViewport(0, 0, self._plotFrame.size[0], self._plotFrame.size[1]) # Render marker labels for label in labels: label.render(self.matScreenProj) glDisable(GL_SCISSOR_TEST) def _renderOverlayGL(self): # Render selection area and crosshair cursor if self._selectionAreas or self._crosshairCursor is not None: plotWidth, plotHeight = self.plotSizeInPixels() # Scissor to plot area glScissor(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) glEnable(GL_SCISSOR_TEST) self._progBase.use() glUniform2i(self._progBase.uniforms['isLog'], self._plotFrame.xAxis.isLog, self._plotFrame.yAxis.isLog) glUniform1f(self._progBase.uniforms['tickLen'], 0.) posAttrib = self._progBase.attributes['position'] matrixUnif = self._progBase.uniforms['matrix'] colorUnif = self._progBase.uniforms['color'] hatchStepUnif = self._progBase.uniforms['hatchStep'] # Render selection area in plot area if self._selectionAreas: glViewport(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) glUniformMatrix4fv(matrixUnif, 1, GL_TRUE, self._plotFrame.transformedDataProjMat) for shape in self._selectionAreas.values(): if shape.isVideoInverted: glBlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ZERO) shape.render(posAttrib, colorUnif, hatchStepUnif) if shape.isVideoInverted: self._setBlendFuncGL() # Render crosshair cursor is screen frame but with scissor if (self._crosshairCursor is not None and self._mousePosInPixels is not None): glViewport( 0, 0, self._plotFrame.size[0], self._plotFrame.size[1]) glUniformMatrix4fv(matrixUnif, 1, GL_TRUE, self.matScreenProj) color, lineWidth = self._crosshairCursor glUniform4f(colorUnif, *color) glUniform1i(hatchStepUnif, 0) xPixel, yPixel = self._mousePosInPixels xPixel, yPixel = xPixel + 0.5, yPixel + 0.5 vertices = np.array(((0., yPixel), (self._plotFrame.size[0], yPixel), (xPixel, 0.), (xPixel, self._plotFrame.size[1])), dtype=np.float32) glEnableVertexAttribArray(posAttrib) glVertexAttribPointer(posAttrib, 2, GL_FLOAT, GL_FALSE, 0, vertices) glLineWidth(lineWidth) glDrawArrays(GL_LINES, 0, len(vertices)) glDisable(GL_SCISSOR_TEST) def _renderPlotAreaGL(self): plotWidth, plotHeight = self.plotSizeInPixels() self._plotFrame.renderGrid() glScissor(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) glEnable(GL_SCISSOR_TEST) # Matrix trBounds = self._plotFrame.transformedDataRanges if trBounds.x[0] == trBounds.x[1] or \ trBounds.y[0] == trBounds.y[1]: return isXLog = self._plotFrame.xAxis.isLog isYLog = self._plotFrame.yAxis.isLog glViewport(self._plotFrame.margins.left, self._plotFrame.margins.bottom, plotWidth, plotHeight) # Render images and curves # sorted is stable: original order is preserved when key is the same for item in self._plotContent.zOrderedPrimitives(): if item.info.get('yAxis') == 'right': item.render(self._plotFrame.transformedDataY2ProjMat, isXLog, isYLog) else: item.render(self._plotFrame.transformedDataProjMat, isXLog, isYLog) # Render Items self._progBase.use() glUniformMatrix4fv(self._progBase.uniforms['matrix'], 1, GL_TRUE, self._plotFrame.transformedDataProjMat) glUniform2i(self._progBase.uniforms['isLog'], self._plotFrame.xAxis.isLog, self._plotFrame.yAxis.isLog) glUniform1f(self._progBase.uniforms['tickLen'], 0.) for item in self._items.values(): shape2D = item.get('_shape2D') if shape2D is None: shape2D = Shape2D(tuple(zip(item['x'], item['y'])), fill=item['fill'], fillColor=item['color'], stroke=True, strokeColor=item['color']) item['_shape2D'] = shape2D if ((isXLog and shape2D.xMin < FLOAT32_MINPOS) or (isYLog and shape2D.yMin < FLOAT32_MINPOS)): # Ignore items <= 0. on log axes continue posAttrib = self._progBase.attributes['position'] colorUnif = self._progBase.uniforms['color'] hatchStepUnif = self._progBase.uniforms['hatchStep'] shape2D.render(posAttrib, colorUnif, hatchStepUnif) glDisable(GL_SCISSOR_TEST) def resizeGL(self, width, height): self._plotFrame.size = width, height self.matScreenProj = mat4Ortho(0, self._plotFrame.size[0], self._plotFrame.size[1], 0, 1, -1) (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = \ self._plotFrame.dataRanges self.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) # PlotBackend API # def insertMarker(self, x, y, legend=None, text=None, color='k', selectable=False, draggable=False, symbol=None, constraint=None, **kw): if symbol is not None: warnings.warn("insertMarker ignores the symbol parameter", RuntimeWarning) if kw: warnings.warn("insertMarker ignores additional parameters", RuntimeWarning) if legend is None: legend = self._UNNAMED_ITEM if symbol is None: symbol = '+' behaviors = set() if selectable: behaviors.add('selectable') if draggable: behaviors.add('draggable') # Apply constraint to provided position isConstraint = (draggable and constraint is not None and x is not None and y is not None) if isConstraint: x, y = constraint(x, y) if x is not None and self._plotFrame.xAxis.isLog and x <= 0.: raise RuntimeError( 'Cannot add marker with X <= 0 with X axis log scale') if y is not None and self._plotFrame.yAxis.isLog and y <= 0.: raise RuntimeError( 'Cannot add marker with Y <= 0 with Y axis log scale') self._markers[legend] = { 'x': x, 'y': y, 'legend': legend, 'text': text, 'color': rgba(color, PlotBackend.COLORDICT), 'behaviors': behaviors, 'constraint': constraint if isConstraint else None, 'symbol': symbol, } self._plotDirtyFlag = True return legend def insertXMarker(self, x, legend=None, text=None, color='k', selectable=False, draggable=False, **kw): if kw: warnings.warn("insertXMarker ignores additional parameters", RuntimeWarning) return self.insertMarker(x, None, legend, text, color, selectable, draggable, **kw) def insertYMarker(self, y, legend=None, text=None, color='k', selectable=False, draggable=False, **kw): if kw: warnings.warn("insertYMarker ignores additional parameters", RuntimeWarning) return self.insertMarker(None, y, legend, text, color, selectable, draggable, **kw) def removeMarker(self, legend, replot=True): try: del self._markers[legend] except KeyError: pass else: self._plotDirtyFlag = True if replot: self.replot() def clearMarkers(self): self._markers = MiniOrderedDict() self._plotDirtyFlag = True def addImage(self, data, legend=None, info=None, replace=True, replot=True, xScale=None, yScale=None, z=0, selectable=False, draggable=False, colormap=None, **kw): if info is not None: warnings.warn("Ignore info parameter of addImage", RuntimeWarning) if kw: warnings.warn("addImage ignores additional parameters", RuntimeWarning) behaviors = set() if selectable: behaviors.add('selectable') if draggable: behaviors.add('draggable') if legend is None: legend = self._UNNAMED_ITEM oldImage = self._plotContent.get('image', legend) if oldImage is not None and oldImage.data.shape != data.shape: oldImage = None self.removeImage(legend) if replace: self.clearImages() if xScale is None: xScale = (0, 1) if yScale is None: yScale = (0, 1) if len(data.shape) == 2: # Ensure array is contiguous and eventually convert its type if np.dtype(data.dtype).kind == 'f' and data.dtype != np.float32: warnings.warn( 'addImage: Convert %s data to float32' % str(data.dtype), RuntimeWarning) data = np.array(data, dtype=np.float32, order='C') else: data = np.asarray(data, order='C') assert data.dtype in (np.float32, np.uint8, np.uint16) if colormap is None: colormap = self.getDefaultColormap() if colormap['normalization'] not in ('linear', 'log'): raise NotImplementedError( "Normalisation: {0}".format(colormap['normalization'])) if colormap['colors'] != 256: raise NotImplementedError( "Colors: {0}".format(colormap['colors'])) colormapIsLog = colormap['normalization'].startswith('log') if colormap['autoscale']: cmapRange = None else: cmapRange = colormap['vmin'], colormap['vmax'] assert cmapRange[0] <= cmapRange[1] if oldImage is not None: # TODO check if benefit image = oldImage image.origin = xScale[0], yScale[0] image.scale = xScale[1], yScale[1] image.colormap = colormap['name'][:] image.cmapIsLog = colormapIsLog image.cmapRange = cmapRange image.updateData(data) else: image = GLPlotColormap(data, (xScale[0], yScale[0]), # origin (xScale[1], yScale[1]), # scale colormap['name'][:], colormapIsLog, cmapRange) image.info = { 'legend': legend, 'zOrder': z, 'behaviors': behaviors } self._plotContent.add(image) elif len(data.shape) == 3: # For RGB, RGBA data assert data.shape[2] in (3, 4) assert data.dtype in (np.float32, np.uint8) if oldImage is not None: image = oldImage image.origin = xScale[0], yScale[0] image.scale = xScale[1], yScale[1] image.updateData(data) else: image = GLPlotRGBAImage(data, origin=(xScale[0], yScale[0]), scale=(xScale[1], yScale[1])) image.info = { 'legend': legend, 'zOrder': z, 'behaviors': behaviors } if self._plotFrame.xAxis.isLog and image.xMin <= 0.: raise RuntimeError( 'Cannot add image with X <= 0 with X axis log scale') if self._plotFrame.yAxis.isLog and image.yMin <= 0.: raise RuntimeError( 'Cannot add image with Y <= 0 with Y axis log scale') self._plotContent.add(image) else: raise RuntimeError("Unsupported data shape {0}".format(data.shape)) self._plotDirtyFlag = True if replot: self.replot() return legend # This is the 'handle' def removeImage(self, legend, replot=True): if legend is None: legend = self._UNNAMED_ITEM image = self._plotContent.pop('image', legend) if image is not None: self._glGarbageCollector.append(image) self._plotDirtyFlag = True if replot: self.replot() def clearImages(self): # Copy keys as it removes primitives from the dict for legend in list(self._plotContent.primitiveKeys('image')): self.removeImage(legend, replot=False) def addItem(self, xList, yList, legend=None, info=None, replace=False, replot=True, shape="polygon", fill=True, color=None, **kw): # info is ignored if shape not in ('polygon', 'rectangle', 'line', 'vline', 'hline'): raise NotImplementedError("Unsupported shape {0}".format(shape)) if kw: warnings.warn("addItem ignores additional parameters", RuntimeWarning) if legend is None: legend = self._UNNAMED_ITEM if replace: self.clearItems() colorCode = color if color is not None else 'black' if shape == 'rectangle': xMin, xMax = xList xList = np.array((xMin, xMin, xMax, xMax)) yMin, yMax = yList yList = np.array((yMin, yMax, yMax, yMin)) else: xList = np.asarray(xList) yList = np.asarray(yList) if self._plotFrame.xAxis.isLog and xList.min() <= 0.: raise RuntimeError( 'Cannot add item with X <= 0 with X axis log scale') if self._plotFrame.yAxis.isLog and yList.min() <= 0.: raise RuntimeError( 'Cannot add item with Y <= 0 with Y axis log scale') self._items[legend] = { 'shape': shape, 'color': rgba(colorCode, PlotBackend.COLORDICT), 'fill': 'hatch' if fill else None, 'x': xList, 'y': yList } self._plotDirtyFlag = True if replot: self.replot() return legend # this is the 'handle' def removeItem(self, legend, replot=True): if legend is None: legend = self._UNNAMED_ITEM try: del self._items[legend] except KeyError: pass else: self._plotDirtyFlag = True if replot: self.replot() def clearItems(self): self._items = MiniOrderedDict() self._plotDirtyFlag = True def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linewidth=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, z=1, selectable=True, fill=None, **kw): if kw: warnings.warn("addCurve ignores additional parameters", RuntimeWarning) if legend is None: legend = self._UNNAMED_ITEM x = np.asarray(x, dtype=np.float32, order='C') y = np.asarray(y, dtype=np.float32, order='C') if xerror is not None: xerror = np.asarray(xerror, dtype=np.float32, order='C') assert np.all(xerror >= 0.) if yerror is not None: yerror = np.asarray(yerror, dtype=np.float32, order='C') assert np.all(yerror >= 0.) behaviors = set() if selectable: behaviors.add('selectable') wasActiveCurve = (legend == self._activeCurveLegend) oldCurve = self._plotContent.get('curve', legend) if oldCurve is not None: self.removeCurve(legend) if replace: self.clearCurves() if color is None: color = self._activeCurveColor if isinstance(color, np.ndarray) and len(color) > 4: colorArray = color color = None else: colorArray = None color = rgba(color, PlotBackend.COLORDICT) if fill is None and info is not None: # To make it run with Plot.py fill = info.get('plot_fill', False) curve = GLPlotCurve2D(x, y, colorArray, xError=xerror, yError=yerror, lineStyle=linestyle, lineColor=color, lineWidth=1 if linewidth is None else linewidth, marker=symbol, markerColor=color, fillColor=color if fill else None) curve.info = { 'legend': legend, 'zOrder': z, 'behaviors': behaviors, 'xLabel': xlabel, 'yLabel': ylabel, 'yAxis': 'left' if yaxis is None else yaxis, } if yaxis == "right": self._plotFrame.isY2Axis = True self._plotContent.add(curve) self._plotDirtyFlag = True self._resetZoom() if wasActiveCurve: self.setActiveCurve(legend, replot=False) if replot: self.replot() return legend def removeCurve(self, legend, replot=True): if legend is None: legend = self._UNNAMED_ITEM curve = self._plotContent.pop('curve', legend) if curve is not None: # Check if some curves remains on the right Y axis y2AxisItems = (item for item in self._plotContent.primitives() if item.info.get('yAxis', 'left') == 'right') self._plotFrame.isY2Axis = (next(y2AxisItems, None) is not None) self._glGarbageCollector.append(curve) self._plotDirtyFlag = True if replot: self.replot() def clearCurves(self): # Copy keys as dict is changed for legend in list(self._plotContent.primitiveKeys('curve')): self.removeCurve(legend, replot=False) def setActiveCurve(self, legend, replot=True): if not self._activeCurveHandling: return if legend is None: legend = self._UNNAMED_ITEM curve = self._plotContent.get('curve', legend) if curve is None: raise KeyError("Curve %s not found" % legend) if self._activeCurveLegend is not None: activeCurve = self._plotContent.get('curve', self._activeCurveLegend) # _inactiveState might not exists as # _activeCurveLegend is not reset when curve is removed. inactiveState = getattr(activeCurve, '_inactiveState', None) if inactiveState is not None: del activeCurve._inactiveState activeCurve.lineColor = inactiveState['lineColor'] activeCurve.markerColor = inactiveState['markerColor'] activeCurve.useColorVboData = inactiveState['useColorVbo'] self.setGraphXLabel(inactiveState['xLabel']) self.setGraphYLabel(inactiveState['yLabel']) curve._inactiveState = {'lineColor': curve.lineColor, 'markerColor': curve.markerColor, 'useColorVbo': curve.useColorVboData, 'xLabel': self.getGraphXLabel(), 'yLabel': self.getGraphYLabel()} if curve.info['xLabel'] is not None: self.setGraphXLabel(curve.info['xLabel']) if curve.info['yAxis'] == 'left' and curve.info['yLabel'] is not None: self.setGraphYLabel(curve.info['yLabel']) color = rgba(self._activeCurveColor, PlotBackend.COLORDICT) curve.lineColor = color curve.markerColor = color curve.useColorVboData = False self._activeCurveLegend = legend if replot: self.replot() def clear(self): self.clearCurves() self.clearImages() self.clearItems() self.clearMarkers() def replot(self): self.postRedisplay() # Interaction modes # def getInteractiveMode(self): return self.eventHandler.getInteractiveMode() def setInteractiveMode(self, mode, color=None, shape='polygon', label=None): self.eventHandler.setInteractiveMode(mode, color, shape, label) def isDrawModeEnabled(self): return self.getInteractiveMode()['mode'] == 'draw' def setDrawModeEnabled(self, flag=True, shape='polygon', label=None, color=None, **kwargs): if kwargs: warnings.warn('setDrawModeEnabled ignores additional parameters', RuntimeWarning) if flag: self.setInteractiveMode('draw', shape=shape, label=label, color=color) elif self.getInteractiveMode()['mode'] == 'draw': self.setInteractiveMode('select') def getDrawMode(self): mode = self.getInteractiveMode() return mode if mode['mode'] == 'draw' else None def isZoomModeEnabled(self): return self.getInteractiveMode()['mode'] == 'zoom' def setZoomModeEnabled(self, flag=True, color=None): if flag: self.setInteractiveMode('zoom', color=color) elif self.getInteractiveMode()['mode'] == 'zoom': self.setInteractiveMode('select') # Zoom # def isXAxisAutoScale(self): return self._xAutoScale def setXAxisAutoScale(self, flag=True): self._xAutoScale = flag def isYAxisAutoScale(self): return self._yAutoScale def setYAxisAutoScale(self, flag=True): self._yAutoScale = flag def _resetZoom(self, dataMargins=None, forceAutoscale=False): dataBounds = self._plotContent.getBounds( self.isXAxisLogarithmic(), self.isYAxisLogarithmic()) if forceAutoscale: isXAuto, isYAuto = True, True else: isXAuto, isYAuto = self.isXAxisAutoScale(), self.isYAxisAutoScale() xMin, xMax, yMin, yMax, y2Min, y2Max = _utils.addMarginsToLimits( dataMargins, self.isXAxisLogarithmic(), self.isYAxisLogarithmic(), dataBounds.xAxis.min_, dataBounds.xAxis.max_, dataBounds.yAxis.min_, dataBounds.yAxis.max_, dataBounds.y2Axis.min_, dataBounds.y2Axis.max_) if isXAuto and isYAuto: self.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) elif isXAuto: self.setGraphXLimits(xMin, xMax) elif isYAuto: xMin, xMax = self.getGraphXLimits() self.setLimits(xMin, xMax, yMin, yMax, y2Min, y2Max) def resetZoom(self, dataMargins=None): self._resetZoom(dataMargins) self.replot() # Limits # def _setDataRanges(self, x=None, y=None, y2=None): """Set the visible range of data in the plot frame. This clips the ranges to possible values (takes care of float32 range + positive range for log). This also takes care of non-orthogonal axes. This should be moved to PlotFrame. """ # Update axes range with a clipped range if too wide self._plotFrame.setDataRanges(x, y, y2) if not self.isDefaultBaseVectors(): # Update axes range with axes bounds in data coords plotLeft, plotTop = self.plotOriginInPixels() plotWidth, plotHeight = self.plotSizeInPixels() self._plotFrame.xAxis.dataRange = sorted([ self.pixelToData(x, y, check=False)[0] for (x, y) in ((plotLeft, plotTop + plotHeight), (plotLeft + plotWidth, plotTop + plotHeight))]) self._plotFrame.yAxis.dataRange = sorted([ self.pixelToData(x, y, check=False)[1] for (x, y) in ((plotLeft, plotTop + plotHeight), (plotLeft, plotTop))]) self._plotFrame.y2Axis.dataRange = sorted([ self.pixelToData(x, y, axis='right', check=False)[1] for (x, y) in ((plotLeft + plotWidth, plotTop + plotHeight), (plotLeft + plotWidth, plotTop))]) def _ensureAspectRatio(self, keepDim=None): """Update plot bounds in order to keep aspect ratio. Warning: keepDim on right Y axis is not implemented ! :param str keepDim: The dimension to maintain: 'x', 'y' or None. If None (the default), the dimension with the largest range. """ plotWidth, plotHeight = self.plotSizeInPixels() if plotWidth <= 2 or plotHeight <= 2: return if keepDim is None: dataBounds = self._plotContent.getBounds( self.isXAxisLogarithmic(), self.isYAxisLogarithmic()) if dataBounds.yAxis.range_ != 0.: dataRatio = dataBounds.xAxis.range_ dataRatio /= float(dataBounds.yAxis.range_) plotRatio = plotWidth / float(plotHeight) # Test != 0 before keepDim = 'x' if dataRatio > plotRatio else 'y' else: # Limit case keepDim = 'x' (xMin, xMax), (yMin, yMax), (y2Min, y2Max) = \ self._plotFrame.dataRanges if keepDim == 'y': dataW = (yMax - yMin) * plotWidth / float(plotHeight) xCenter = 0.5 * (xMin + xMax) xMin = xCenter - 0.5 * dataW xMax = xCenter + 0.5 * dataW elif keepDim == 'x': dataH = (xMax - xMin) * plotHeight / float(plotWidth) yCenter = 0.5 * (yMin + yMax) yMin = yCenter - 0.5 * dataH yMax = yCenter + 0.5 * dataH y2Center = 0.5 * (y2Min + y2Max) y2Min = y2Center - 0.5 * dataH y2Max = y2Center + 0.5 * dataH else: raise RuntimeError('Unsupported dimension to keep: %s' % keepDim) # Update plot frame bounds self._setDataRanges(x=(xMin, xMax), y=(yMin, yMax), y2=(y2Min, y2Max)) def _setPlotBounds(self, xRange=None, yRange=None, y2Range=None, keepDim=None): # Update axes range with a clipped range if too wide self._setDataRanges(x=xRange, y=yRange, y2=y2Range) # Keep data aspect ratio if self.isKeepDataAspectRatio(): self._ensureAspectRatio(keepDim) # Raise dirty flags self._plotDirtyFlag = True # Send limits changed to callback dataRanges = self._plotFrame.dataRanges eventDict = prepareLimitsChangedSignal( self.getWidgetHandle(), dataRanges.x, dataRanges.y, dataRanges.y2 if self._plotFrame.isY2Axis else None) self.sendEvent(eventDict) def isKeepDataAspectRatio(self): if self._plotFrame.xAxis.isLog or self._plotFrame.yAxis.isLog: return False else: return self._keepDataAspectRatio def keepDataAspectRatio(self, flag=True): if flag and (self._plotFrame.xAxis.isLog or self._plotFrame.yAxis.isLog): warnings.warn("KeepDataAspectRatio is ignored with log axes", RuntimeWarning) if flag and not self.isDefaultBaseVectors(): warnings.warn( "keepDataAspectRatio ignored because baseVectors are set", RuntimeWarning) self._keepDataAspectRatio = flag self.resetZoom() def getGraphXLimits(self): return self._plotFrame.dataRanges.x def setGraphXLimits(self, xMin, xMax): assert xMin < xMax self._setPlotBounds(xRange=(xMin, xMax), keepDim='x') def getGraphYLimits(self, axis="left"): assert axis in ("left", "right") if axis == "left": return self._plotFrame.dataRanges.y else: return self._plotFrame.dataRanges.y2 def setGraphYLimits(self, yMin, yMax, axis="left"): assert yMin < yMax assert axis in ("left", "right") if axis == "left": self._setPlotBounds(yRange=(yMin, yMax), keepDim='y') else: self._setPlotBounds(y2Range=(yMin, yMax), keepDim='y') def setLimits(self, xMin, xMax, yMin, yMax, y2Min=None, y2Max=None): assert xMin < xMax assert yMin < yMax if y2Min is None or y2Max is None: y2Range = None else: assert y2Min < y2Max y2Range = y2Min, y2Max self._setPlotBounds((xMin, xMax), (yMin, yMax), y2Range) def invertYAxis(self, flag=True): if flag != self._plotFrame.isYAxisInverted: self._plotFrame.isYAxisInverted = flag self._plotDirtyFlag = True def isYAxisInverted(self): return self._plotFrame.isYAxisInverted # Log axis # def setXAxisLogarithmic(self, flag=True): if flag != self._plotFrame.xAxis.isLog: if flag and self._keepDataAspectRatio: warnings.warn("KeepDataAspectRatio is ignored with log axes", RuntimeWarning) if flag and not self.isDefaultBaseVectors(): warnings.warn( "setXAxisLogarithmic ignored because baseVectors are set", RuntimeWarning) return self._plotFrame.xAxis.isLog = flag # With log axis on, force autoscale to avoid limits <= 0 if flag: self._resetZoom(forceAutoscale=True) def setYAxisLogarithmic(self, flag=True): if (flag != self._plotFrame.yAxis.isLog or flag != self._plotFrame.y2Axis.isLog): if flag and self._keepDataAspectRatio: warnings.warn("KeepDataAspectRatio is ignored with log axes", RuntimeWarning) if flag and not self.isDefaultBaseVectors(): warnings.warn( "setYAxisLogarithmic ignored because baseVectors are set", RuntimeWarning) return self._plotFrame.yAxis.isLog = flag self._plotFrame.y2Axis.isLog = flag # With log axis on, force autoscale to avoid limits <= 0 if flag: self._resetZoom(forceAutoscale=True) def isXAxisLogarithmic(self): return self._plotFrame.xAxis.isLog def isYAxisLogarithmic(self): return self._plotFrame.yAxis.isLog # Non orthogonal axes def setBaseVectors(self, x=(1., 0.), y=(0., 1.)): """Set base vectors. Useful for non-orthogonal axes. If an axis is in log scale, skew is applied to log transformed values. Base vector does not work well with log axes, to investi """ if x != (1., 0.) and y != (0., 1.): if self.isXAxisLogarithmic(): warnings.warn("setBaseVectors disables X axis logarithmic.", RuntimeWarning) self.setXAxisLogarithmic(False) if self.isYAxisLogarithmic(): warnings.warn("setBaseVectors disables Y axis logarithmic.", RuntimeWarning) self.setYAxisLogarithmic(False) if self.isKeepDataAspectRatio(): warnings.warn("setBaseVectors disables keepDataAspectRatio.", RuntimeWarning) self.keepDataAspectRatio(False) self._plotFrame.baseVectors = x, y self._plotDirtyFlag = True self.resetZoom() def getBaseVectors(self): return self._plotFrame.baseVectors def isDefaultBaseVectors(self): return self._plotFrame.baseVectors == \ self._plotFrame.DEFAULT_BASE_VECTORS # Title, Labels def setGraphTitle(self, title=""): self._plotFrame.title = title def getGraphTitle(self): return self._plotFrame.title def setGraphXLabel(self, label="X"): self._plotFrame.xAxis.title = label self._plotDirtyFlag = True def getGraphXLabel(self): return self._plotFrame.xAxis.title def setGraphYLabel(self, label="Y"): self._plotFrame.yAxis.title = label self._plotDirtyFlag = True def getGraphYLabel(self): return self._plotFrame.yAxis.title def showGrid(self, flag=True): self._plotFrame.grid = flag self._plotDirtyFlag = True self.replot() # Cursor def setGraphCursor(self, flag=True, color=None, linewidth=1, linestyle=None): if linestyle is not None: warnings.warn( "OpenGLBackend.setGraphCursor linestyle parameter ignored", RuntimeWarning) if flag: # Default values if color is None: color = 'black' if linewidth is None: linewidth = 1 color = rgba(color, PlotBackend.COLORDICT) crosshairCursor = color, linewidth else: crosshairCursor = None if crosshairCursor != self._crosshairCursor: self._crosshairCursor = crosshairCursor self.replot() def getGraphCursor(self): return self._crosshairCursor # Save def saveGraph(self, fileName, fileFormat='svg', dpi=None, **kw): """Save the graph as an image to a file. WARNING: This method is performing some OpenGL calls. It must be called from the main thread. """ if dpi is not None: warnings.warn("saveGraph ignores dpi parameter", RuntimeWarning) if kw: warnings.warn("saveGraph ignores additional parameters", RuntimeWarning) if fileFormat not in ['png', 'ppm', 'svg', 'tiff']: raise NotImplementedError('Unsupported format: %s' % fileFormat) self.makeCurrent() data = np.empty((self._plotFrame.size[1], self._plotFrame.size[0], 3), dtype=np.uint8, order='C') glBindFramebuffer(GL_FRAMEBUFFER, 0) glPixelStorei(GL_PACK_ALIGNMENT, 1) glReadPixels(0, 0, self._plotFrame.size[0], self._plotFrame.size[1], GL_RGB, GL_UNSIGNED_BYTE, data) # glReadPixels gives bottom to top, # while images are stored as top to bottom data = np.flipud(data) # fileName is either a file-like object or a str saveImageToFile(data, fileName, fileFormat) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/__init__.py0000644000000000000000000000000014741736366021237 0ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/_patch_matplotlib.py0000644000000000000000000000607614741736366023210 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2021 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import weakref if 'PyQt5.QtCore' in sys.modules: from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication elif 'PyQt6.QtCore' in sys.modules: from PyQt6 import QtCore from PyQt6.QtWidgets import QApplication elif 'PySide2.QtCore' in sys.modules: from PySide2 import QtCore from PySide2.QtWidgets import QApplication elif 'PySide6.QtCore' in sys.modules: from PySide6 import QtCore from PySide6.QtWidgets import QApplication else: raise ImportError("This module expects PySide2, PySide6 or PyQt5") def patch_backend_qt(): import matplotlib.backends.backend_qt5 def _create_qApp(): if QApplication.instance() is None: raise ValueError("A QApplication must be created before") # this piece of code will never be reached # it is left for documentation if 'PyQt5.QtCore' in sys.modules: # Matplotlib is doing this but it only makes sense prior # to create the QApplication try: QApplication.instance().setAttribute(\ QtCore.Qt.AA_UseHighDpiPixmaps) QApplication.instance().setAttribute(\ QtCore.Qt.AA_EnableHighDpiScaling) except AttributeError: pass matplotlib.backends.backend_qt5.qApp = weakref.proxy(\ QApplication.instance()) matplotlib.backends.backend_qt5._create_qApp = _create_qApp ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/backends/_utils.py0000644000000000000000000000765614741736366021027 0ustar00rootroot# /*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """Common functions shared by backends""" import numpy def addMarginsToLimits(margins, isXLog, isYLog, xMin, xMax, yMin, yMax, y2Min=None, y2Max=None): """Returns updated limits by extending them with margins. :param margins: The ratio of the margins to add or None for no margins. :type margins: A 4-tuple of floats as (xMinMargin, xMaxMargin, yMinMargin, yMaxMargin) :return: The updated limits :rtype: tuple of 4 or 6 floats: Either (xMin, xMax, yMin, yMax) or (xMin, xMax, yMin, yMax, y2Min, y2Max) if y2Min and y2Max are provided. """ if margins is not None: xMinMargin, xMaxMargin, yMinMargin, yMaxMargin = margins if not isXLog: xRange = xMax - xMin xMin -= xMinMargin * xRange xMax += xMaxMargin * xRange elif xMin > 0. and xMax > 0.: # Log scale # Do not apply margins if limits < 0 xMinLog, xMaxLog = numpy.log10(xMin), numpy.log10(xMax) xRangeLog = xMaxLog - xMinLog xMin = pow(10., xMinLog - xMinMargin * xRangeLog) xMax = pow(10., xMaxLog + xMaxMargin * xRangeLog) if not isYLog: yRange = yMax - yMin yMin -= yMinMargin * yRange yMax += yMaxMargin * yRange elif yMin > 0. and yMax > 0.: # Log scale # Do not apply margins if limits < 0 yMinLog, yMaxLog = numpy.log10(yMin), numpy.log10(yMax) yRangeLog = yMaxLog - yMinLog yMin = pow(10., yMinLog - yMinMargin * yRangeLog) yMax = pow(10., yMaxLog + yMaxMargin * yRangeLog) if y2Min is not None and y2Max is not None: if not isYLog: yRange = y2Max - y2Min y2Min -= yMinMargin * yRange y2Max += yMaxMargin * yRange elif y2Min > 0. and y2Max > 0.: # Log scale # Do not apply margins if limits < 0 yMinLog, yMaxLog = numpy.log10(y2Min), numpy.log10(y2Max) yRangeLog = yMaxLog - yMinLog y2Min = pow(10., yMinLog - yMinMargin * yRangeLog) y2Max = pow(10., yMaxLog + yMaxMargin * yRangeLog) if y2Min is None or y2Max is None: return xMin, xMax, yMin, yMax else: return xMin, xMax, yMin, yMax, y2Min, y2Max ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7557662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/0000755000000000000000000000000014741736404016662 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/__init__.py0000644000000000000000000000322214741736366021001 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: from ._ctools import * except Exception: from _ctools import * ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7557662 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/0000755000000000000000000000000014741736404020324 5ustar00rootroot././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.759766 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/0000755000000000000000000000000014741736404021630 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pxd0000644000000000000000000000410514741736366024130 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ ctypedef unsigned char uint8_t # TODO use libc.stdint when available cdef extern from "Colormap.h": void colormapFillPixmap(void * data, unsigned int type, unsigned long length, double startValue, double endValue, unsigned int isLog10Mapping, uint8_t * RGBAColormap, unsigned int colormapLength, uint8_t * RGBANaNColor, uint8_t * RGBAPixmapOut) nogil void initFastLog10() nogil double fastLog10(double value) nogil ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx0000644000000000000000000001247014741736366024161 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython cimport numpy as np import numpy as np from Colormap cimport colormapFillPixmap, initFastLog10 from Colormap cimport fastLog10 as _fastLog10 from MinMax cimport getMinMax # Init fastLog10 look-up table initFastLog10() # Convert numpy dtype array-protocol string to bit field to pass to C function # 4th bit for type: 1: floating point, 0: integer # 3rd bit for signedness (int only): 1: unsigned, 0: signed # 1st and 2nd bits for size: 00: 8 bits, 01: 16 bits, 10: 32 bits, 11: 64 bits. _NUMPY_TO_TYPE_DESC = { 'f8': 0b1011, 'f4': 0b1010, 'i1': 0b0000, 'u1': 0b0100, 'i2': 0b0001, 'u2': 0b0101, 'i4': 0b0010, 'u4': 0b0110, 'i8': 0b0011, 'u8': 0b0111, } @cython.boundscheck(False) @cython.wraparound(False) def dataToRGBAColormap(data, np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, startValue=None, endValue=None, bint isLog10Mapping=False, nanColor=None): """Compute a pixmap by applying a colormap to data. :param numpy.ndarray data: Array of data value to convert to pixmap. :param numpy.ndarray colormap: palette to use as colormap as an array of RGBA color. :param startValue: The value to map to the first color of the colormap. :param endValue: The value to map to the last color of the colormap. :param bool isLog10Mapping: The mapping: False for linear, True for log10. :param nanColor: RGBA color to use for NaNs. If None, the first color of the colormap. :type nanColor: None (the default) or a container that can be converted to a numpy.ndarray containing 4 elements in [0, 255]. :returns: The corresponding pixmap of RGBA pixels as an array of 4 uint8 with same dimensions as data and used min and max. :rtype: A tuple : (pixmap , (usedMin, usedMax)). """ #Convert float16 to float32 if data.dtype.str[1:] == 'f2': data = np.asarray(data, dtype=np.float32) cdef np.ndarray c_data = np.ascontiguousarray(data) cdef void * c_dataPtr = c_data.data # &c_data[0] needs dim cdef unsigned long c_dataSize = c_data.size cdef unsigned int c_dataItemSize = c_data.itemsize cdef unsigned char[:, :] c_colormap = colormap cdef unsigned int c_colormapLength = len(colormap) cdef unsigned char * c_nanColorPtr cdef np.ndarray c_nanColor if nanColor is None: c_nanColorPtr = NULL else: c_nanColor = np.asarray(nanColor, dtype=np.uint8, order='C') c_nanColorPtr = c_nanColor.data pixmap = np.empty((data.size, 4), dtype=np.uint8) cdef unsigned char[:, :] c_pixmap = pixmap cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] cdef double c_start, c_startExtra, c_end if startValue is None or endValue is None: if isLog10Mapping: with nogil: getMinMax(c_dataPtr, c_type, c_dataSize, &c_startExtra, &c_start, &c_end) else: with nogil: getMinMax(c_dataPtr, c_type, c_dataSize, &c_start, NULL, &c_end) if startValue is not None: c_start = startValue if endValue is not None: c_end = endValue else: c_start = startValue c_end = endValue with nogil: colormapFillPixmap(c_dataPtr, c_type, c_dataSize, c_start, c_end, isLog10Mapping, &c_colormap[0, 0], c_colormapLength, c_nanColorPtr, &c_pixmap[0, 0]) pixmap.shape = data.shape + (4,) return pixmap, (c_start, c_end) def fastLog10(double value): return _fastLog10(value) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/ColormapLUT.pxd0000644000000000000000000000257314741736366024524 0ustar00rootrootcdef extern from "ColormapLUT.h": void fillPixmapFromDouble(double *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromFloat(float *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromChar(char *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromUChar(unsigned char *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromShort(short *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromUShort(unsigned short **, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromInt(char *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromUInt(unsigned int *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromLong(long *, long, char *, long, \ char *, short, short, double *, double *) nogil void fillPixmapFromULong(unsigned long *, long, char *, long, \ char *, short, short, double *, double *) nogil ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/ColormapLUT.pyx0000644000000000000000000001100514741736366024537 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython from ColormapLUT cimport fillPixmapFromDouble from ColormapLUT cimport fillPixmapFromFloat from ColormapLUT cimport fillPixmapFromChar from ColormapLUT cimport fillPixmapFromUChar from ColormapLUT cimport fillPixmapFromShort from ColormapLUT cimport fillPixmapFromUShort from ColormapLUT cimport fillPixmapFromInt from ColormapLUT cimport fillPixmapFromUInt from ColormapLUT cimport fillPixmapFromLong from ColormapLUT cimport fillPixmapFromULong cimport numpy import numpy @cython.boundscheck(False) def fillPixmap(points, colormap, mode="linear", auto=True, minValue=0, maxValue=1): """ :param points: Contiguous array with the values to be mapped :type points: ndarray :param colormap: Array of uint8 of N, 4 with the colors to assign :type points: ndarray :param mode: linear or log :type border: string (default linear) :param auto: True to calculate the min and max values of the input data :param minValue: If auto is false, the value to be used as minimum :param maxValue: If auto is false, the value to be used as maximum :returns pixmap: Int32 of colormap values with the same shape as points :returns usedMin: Used minimum value :returns usedMax: Used maximum value """ if isinstance(points, numpy.ndarray): """ if points.dtype in [numpy.float64, numpy.float]: f = _fillPixmapDouble elif points.dtype in [numpy.float32, numpy.float16]: f = _fillPixmapFloat elif points.dtype in [numpy.int32]: f = _fillPixmapInt elif points.dtype in [numpy.uint32]: f = _fillPixmapUInt elif points.dtype in [numpy.int, numpy.int64]: f = _fillPixmapLong elif points.dtype in [numpy.uint, numpy.uint64]: f = _fillPixmapULong elif points.dtype in [numpy.int16]: f = _fillPixmapShort elif points.dtype in [numpy.uint16]: f = _fillPixmapUShort elif points.dtype in [numpy.int8]: f = _fillPixmapByte elif points.dtype in [numpy.uint8]: f = _fillPixmapUByte else: f = _fillPixmapDouble """ f = _fillPixmapDouble return f(points, colormap, mode, auto, minValue, maxValue) @cython.boundscheck(False) def _fillPixmapDouble(data, colormap, mode, auto=True, minValue=0, maxValue=1): cdef double[:,:] c_data = numpy.ascontiguousarray(data, dtype=numpy.float64) cdef char[:, :] c_colormap = numpy.ascontiguousarray(colormap, dtype=numpy.uint8) cdef long n_data = c_data.size cdef long n_colors = c_colormap.shape[1] cdef short c_mode cdef short c_auto cdef double min_data cdef double max_data cdef char[:, :] pixmap = numpy.empty((n_data, 4), dtype=numpy.uint8) if mode.lower() == "linear": c_mode = 0 else: c_mode = 1 if auto: c_auto = 1 else: c_auto = 0 with nogil: fillPixmapFromDouble(&c_data[0,0], n_data, &c_colormap[0,0], n_colors,\ &pixmap[0, 0], c_mode, c_auto, &min_data, &max_data) return pixmap, min_data, max_data ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/InsidePolygonWithBounds.pxd0000644000000000000000000000061614741736366027151 0ustar00rootrootcdef extern from "InsidePolygonWithBounds.h": void PointsInsidePolygon(double *, int , \ double *, int , int , unsigned char *) nogil void PointsInsidePolygonF(double *, int , \ float *, int , int , unsigned char *) nogil void PointsInsidePolygonInt(double *, int , \ int *, int , int , unsigned char *) nogil ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/InsidePolygonWithBounds.pyx0000644000000000000000000001131514741736366027174 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython from InsidePolygonWithBounds cimport PointsInsidePolygon as _pnpoly from InsidePolygonWithBounds cimport PointsInsidePolygonF as _pnpolyf from InsidePolygonWithBounds cimport PointsInsidePolygonInt as _pnpolyInt32 cimport numpy import numpy @cython.boundscheck(False) def pnpoly(vertices, points, bint border=True): """ :param vertices: Array Nx2 with the coordenates of the polygon vertices :type vertices: ndarray :param points: Points to be checked out. :type points: ndarray Nx2 or list of [x, y] pairs :param border: Flag to indicate if a pointon a vertex is to be in or out :type border: boolean (default True) """ if isinstance(points, numpy.ndarray): if points.dtype == numpy.float32: return _pnpolyFloat(vertices, points, border) elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, numpy.uint32, numpy.uint8, numpy.uint16]: return _pnpolyInt(vertices, points, border) return _pnpolyd(vertices, points, border) @cython.boundscheck(False) def _pnpolyd(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef double[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.float64) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask @cython.boundscheck(False) def _pnpolyFloat(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef float[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.float32) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask @cython.boundscheck(False) def _pnpolyInt(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef int[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.int32) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pxd0000644000000000000000000000323414741736366023547 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cdef extern from "MinMax.h": void getMinMax(void * data, unsigned int type, unsigned long length, double * minOut, double * minPosOut, double * maxOut) nogil ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx0000644000000000000000000000672214741736366023601 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython cimport numpy as np import numpy as np from MinMax cimport getMinMax # Convert numpy dtype array-protocol string to bit field to pass to C function # 4th bit for type: 1: floating point, 0: integer # 3rd bit for signedness (int only): 1: unsigned, 0: signed # 1st and 2nd bits for size: 00: 8 bits, 01: 16 bits, 10: 32 bits, 11: 64 bits. _NUMPY_TO_TYPE_DESC = { 'f8': 0b1011, 'f4': 0b1010, 'i1': 0b0000, 'u1': 0b0100, 'i2': 0b0001, 'u2': 0b0101, 'i4': 0b0010, 'u4': 0b0110, 'i8': 0b0011, 'u8': 0b0111, } @cython.boundscheck(False) @cython.wraparound(False) def minMax(np.ndarray data, bint minPositive=False): """Get min, max and optionally min positive of data. NaNs are ignored while computing min/max. If all data is NaNs, returned min/max are NaNs and returned minPositive is None. :param np.ndarray data: Array of data :param bool minPositive: Wheither to compute min positive or not. :returns: (min, max) or (min, minPositive, max) if minPositive is True If all data < 0, minPositive is None. :rtype: tuple of float :raises: ValueError if data is empty """ #Convert float16 to float32 if data.dtype.str[1:] == 'f2': data = np.asarray(data, dtype=np.float32) cdef np.ndarray c_data = np.ascontiguousarray(data) cdef void * c_dataPtr = c_data.data cdef unsigned long c_dataSize = c_data.size if c_dataSize == 0: raise ValueError("zero-size array") cdef double c_dataMin, c_dataMinPos, c_dataMax cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] if minPositive: with nogil: getMinMax(c_dataPtr, c_type, c_dataSize, &c_dataMin, &c_dataMinPos, &c_dataMax) if c_dataMinPos == 0: return c_dataMin, None, c_dataMax else: return c_dataMin, c_dataMinPos, c_dataMax else: with nogil: getMinMax(c_dataPtr, c_type, c_dataSize, &c_dataMin, NULL, &c_dataMax) return c_dataMin, c_dataMax ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.py0000644000000000000000000000531614741736366023660 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from InsidePolygonWithBounds cimport PointsInsidePolygon as _pnpoly cimport numpy import numpy def pnpoly(vertices, points, bint border=True): """ :param vertices: Array Nx2 with the coordenates of the polygon vertices :type vertices: ndarray :param points: Points to be checked out. :type points: ndarray Nx2 or list of [x, y] pairs :param border: Flag to indicate if a pointon a vertex is to be in or out :type border: boolean (default True) """ cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef double[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.float64) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=2] mask = \ numpy.zeros(c_vertices.shape, dtypes=numpy.uint8) _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0, 0]) return mask ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx0000644000000000000000000001134514741736366024047 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython from InsidePolygonWithBounds cimport PointsInsidePolygon as _pnpoly from InsidePolygonWithBounds cimport PointsInsidePolygonF as _pnpolyf from InsidePolygonWithBounds cimport PointsInsidePolygonInt as _pnpolyInt32 cimport numpy import numpy include "MinMax.pyx" include "Colormap.pyx" @cython.boundscheck(False) def pnpoly(vertices, points, bint border=True): """ :param vertices: Array Nx2 with the coordenates of the polygon vertices :type vertices: ndarray :param points: Points to be checked out. :type points: ndarray Nx2 or list of [x, y] pairs :param border: Flag to indicate if a pointon a vertex is to be in or out :type border: boolean (default True) """ if isinstance(points, numpy.ndarray): if points.dtype == numpy.float32: return _pnpolyFloat(vertices, points, border) elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, numpy.uint32, numpy.uint8, numpy.uint16]: return _pnpolyInt(vertices, points, border) return _pnpolyd(vertices, points, border) @cython.boundscheck(False) def _pnpolyd(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef double[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.float64) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask @cython.boundscheck(False) def _pnpolyFloat(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef float[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.float32) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask @cython.boundscheck(False) def _pnpolyInt(vertices, points, bint border=True): cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, dtype=numpy.float64) cdef int n_vertices = c_vertices.shape[0] assert c_vertices.shape[1] == 2 cdef int[:,:] c_points = numpy.ascontiguousarray(points, dtype=numpy.int32) cdef int n_points = c_points.shape[0] assert c_points.shape[1] == 2 cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ numpy.zeros((n_points, ), dtype=numpy.uint8) with nogil: _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, border, &mask[0]) return mask ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.759766 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/default/0000755000000000000000000000000014741736404023254 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/cython/default/_ctools.c0000644000000000000000000401066114741736366025101 0ustar00rootroot/* Generated by Cython 0.29.32 */ #ifndef PY_SSIZE_T_CLEAN #define PY_SSIZE_T_CLEAN #endif /* PY_SSIZE_T_CLEAN */ #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else #define CYTHON_ABI "0_29_32" #define CYTHON_HEX_VERSION 0x001D20F0 #define CYTHON_FUTURE_DIVISION 0 #include #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #define __PYX_COMMA , #ifndef HAVE_LONG_LONG #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #if PY_VERSION_HEX < 0x03050000 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #undef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 1 #undef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 0 #undef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 0 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC (PYPY_VERSION_HEX >= 0x07030900) #endif #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 0 #endif #elif defined(PY_NOGIL) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 1 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #ifndef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 1 #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 1 #endif #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) #define CYTHON_USE_PYTYPE_LOOKUP 1 #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #elif !defined(CYTHON_USE_PYLONG_INTERNALS) #define CYTHON_USE_PYLONG_INTERNALS 1 #endif #ifndef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 1 #endif #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #if PY_VERSION_HEX < 0x030300F0 || PY_VERSION_HEX >= 0x030B00A2 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #elif !defined(CYTHON_USE_UNICODE_WRITER) #define CYTHON_USE_UNICODE_WRITER 1 #endif #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #elif !defined(CYTHON_FAST_THREAD_STATE) #define CYTHON_FAST_THREAD_STATE 1 #endif #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL (PY_VERSION_HEX < 0x030A0000) #endif #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) #endif #ifndef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #elif !defined(CYTHON_USE_EXC_INFO_STACK) #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) #endif #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 1 #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) #endif #if CYTHON_USE_PYLONG_INTERNALS #if PY_MAJOR_VERSION < 3 #include "longintrepr.h" #endif #undef SHIFT #undef BASE #undef MASK #ifdef SIZEOF_VOID_P enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; #endif #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifndef __has_cpp_attribute #define __has_cpp_attribute(x) 0 #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif #ifndef CYTHON_MAYBE_UNUSED_VAR # if defined(__cplusplus) template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } # else # define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) # endif #endif #ifndef CYTHON_NCP_UNUSED # if CYTHON_COMPILING_IN_CPYTHON # define CYTHON_NCP_UNUSED # else # define CYTHON_NCP_UNUSED CYTHON_UNUSED # endif #endif #define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) #ifdef _MSC_VER #ifndef _MSC_STDINT_H_ #if _MSC_VER < 1300 typedef unsigned char uint8_t; typedef unsigned int uint32_t; #else typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; #endif #endif #else #include #endif #ifndef CYTHON_FALLTHROUGH #if defined(__cplusplus) && __cplusplus >= 201103L #if __has_cpp_attribute(fallthrough) #define CYTHON_FALLTHROUGH [[fallthrough]] #elif __has_cpp_attribute(clang::fallthrough) #define CYTHON_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] #endif #endif #ifndef CYTHON_FALLTHROUGH #if __has_attribute(fallthrough) #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) #else #define CYTHON_FALLTHROUGH #endif #endif #if defined(__clang__ ) && defined(__apple_build_version__) #if __apple_build_version__ < 7000000 #undef CYTHON_FALLTHROUGH #define CYTHON_FALLTHROUGH #endif #endif #endif #ifndef CYTHON_INLINE #if defined(__clang__) #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) #elif defined(__GNUC__) #define CYTHON_INLINE __inline__ #elif defined(_MSC_VER) #define CYTHON_INLINE __inline #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_INLINE inline #else #define CYTHON_INLINE #endif #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #define __Pyx_DefaultClassType PyType_Type #if PY_VERSION_HEX >= 0x030B00A1 static CYTHON_INLINE PyCodeObject* __Pyx_PyCode_New(int a, int k, int l, int s, int f, PyObject *code, PyObject *c, PyObject* n, PyObject *v, PyObject *fv, PyObject *cell, PyObject* fn, PyObject *name, int fline, PyObject *lnos) { PyObject *kwds=NULL, *argcount=NULL, *posonlyargcount=NULL, *kwonlyargcount=NULL; PyObject *nlocals=NULL, *stacksize=NULL, *flags=NULL, *replace=NULL, *call_result=NULL, *empty=NULL; const char *fn_cstr=NULL; const char *name_cstr=NULL; PyCodeObject* co=NULL; PyObject *type, *value, *traceback; PyErr_Fetch(&type, &value, &traceback); if (!(kwds=PyDict_New())) goto end; if (!(argcount=PyLong_FromLong(a))) goto end; if (PyDict_SetItemString(kwds, "co_argcount", argcount) != 0) goto end; if (!(posonlyargcount=PyLong_FromLong(0))) goto end; if (PyDict_SetItemString(kwds, "co_posonlyargcount", posonlyargcount) != 0) goto end; if (!(kwonlyargcount=PyLong_FromLong(k))) goto end; if (PyDict_SetItemString(kwds, "co_kwonlyargcount", kwonlyargcount) != 0) goto end; if (!(nlocals=PyLong_FromLong(l))) goto end; if (PyDict_SetItemString(kwds, "co_nlocals", nlocals) != 0) goto end; if (!(stacksize=PyLong_FromLong(s))) goto end; if (PyDict_SetItemString(kwds, "co_stacksize", stacksize) != 0) goto end; if (!(flags=PyLong_FromLong(f))) goto end; if (PyDict_SetItemString(kwds, "co_flags", flags) != 0) goto end; if (PyDict_SetItemString(kwds, "co_code", code) != 0) goto end; if (PyDict_SetItemString(kwds, "co_consts", c) != 0) goto end; if (PyDict_SetItemString(kwds, "co_names", n) != 0) goto end; if (PyDict_SetItemString(kwds, "co_varnames", v) != 0) goto end; if (PyDict_SetItemString(kwds, "co_freevars", fv) != 0) goto end; if (PyDict_SetItemString(kwds, "co_cellvars", cell) != 0) goto end; if (PyDict_SetItemString(kwds, "co_linetable", lnos) != 0) goto end; if (!(fn_cstr=PyUnicode_AsUTF8AndSize(fn, NULL))) goto end; if (!(name_cstr=PyUnicode_AsUTF8AndSize(name, NULL))) goto end; if (!(co = PyCode_NewEmpty(fn_cstr, name_cstr, fline))) goto end; if (!(replace = PyObject_GetAttrString((PyObject*)co, "replace"))) goto cleanup_code_too; if (!(empty = PyTuple_New(0))) goto cleanup_code_too; // unfortunately __pyx_empty_tuple isn't available here if (!(call_result = PyObject_Call(replace, empty, kwds))) goto cleanup_code_too; Py_XDECREF((PyObject*)co); co = (PyCodeObject*)call_result; call_result = NULL; if (0) { cleanup_code_too: Py_XDECREF((PyObject*)co); co = NULL; } end: Py_XDECREF(kwds); Py_XDECREF(argcount); Py_XDECREF(posonlyargcount); Py_XDECREF(kwonlyargcount); Py_XDECREF(nlocals); Py_XDECREF(stacksize); Py_XDECREF(replace); Py_XDECREF(call_result); Py_XDECREF(empty); if (type) { PyErr_Restore(type, value, traceback); } return co; } #else #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #endif #define __Pyx_DefaultClassType PyType_Type #endif #ifndef Py_TPFLAGS_CHECKTYPES #define Py_TPFLAGS_CHECKTYPES 0 #endif #ifndef Py_TPFLAGS_HAVE_INDEX #define Py_TPFLAGS_HAVE_INDEX 0 #endif #ifndef Py_TPFLAGS_HAVE_NEWBUFFER #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #ifndef METH_STACKLESS #define METH_STACKLESS 0 #endif #if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) #ifndef METH_FASTCALL #define METH_FASTCALL 0x80 #endif typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) #define PyObject_Malloc(s) PyMem_Malloc(s) #define PyObject_Free(p) PyMem_Free(p) #define PyObject_Realloc(p) PyMem_Realloc(p) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 #define PyMem_RawMalloc(n) PyMem_Malloc(n) #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) #define PyMem_RawFree(p) PyMem_Free(p) #endif #if CYTHON_COMPILING_IN_PYSTON #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) #else #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) #endif #if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #elif PY_VERSION_HEX >= 0x03060000 #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() #elif PY_VERSION_HEX >= 0x03000000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #else #define __Pyx_PyThreadState_Current _PyThreadState_Current #endif #if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) #include "pythread.h" #define Py_tss_NEEDS_INIT 0 typedef int Py_tss_t; static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { *key = PyThread_create_key(); return 0; } static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); *key = Py_tss_NEEDS_INIT; return key; } static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { PyObject_Free(key); } static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { return *key != Py_tss_NEEDS_INIT; } static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { PyThread_delete_key(*key); *key = Py_tss_NEEDS_INIT; } static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { return PyThread_set_key_value(*key, value); } static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { return PyThread_get_key_value(*key); } #endif #if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) #define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) #else #define __Pyx_PyDict_NewPresized(n) PyDict_New() #endif #if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS #define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) #else #define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #if defined(PyUnicode_IS_READY) #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ 0 : _PyUnicode_Ready((PyObject *)(op))) #else #define __Pyx_PyUnicode_READY(op) (0) #endif #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) #if defined(PyUnicode_IS_READY) && defined(PyUnicode_GET_SIZE) #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x03090000 #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : ((PyCompactUnicodeObject *)(u))->wstr_length)) #else #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) #endif #else #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_LENGTH(u)) #endif #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 #define PyUnicode_2BYTE_KIND 2 #define PyUnicode_4BYTE_KIND 4 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) #define PyObject_ASCII(o) PyObject_Repr(o) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #ifndef PyObject_Unicode #define PyObject_Unicode PyObject_Str #endif #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #if PY_VERSION_HEX >= 0x030900A4 #define __Pyx_SET_REFCNT(obj, refcnt) Py_SET_REFCNT(obj, refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SET_SIZE(obj, size) #else #define __Pyx_SET_REFCNT(obj, refcnt) Py_REFCNT(obj) = (refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SIZE(obj) = (size) #endif #if CYTHON_ASSUME_SAFE_MACROS #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) #else #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) #endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY #ifndef PyUnicode_InternFromString #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) #endif #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsHash_t #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyMethod_New(func, self, klass) ((self) ? ((void)(klass), PyMethod_New(func, self)) : __Pyx_NewRef(func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif #if CYTHON_USE_ASYNC_SLOTS #if PY_VERSION_HEX >= 0x030500B1 #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif #ifndef __Pyx_PyAsyncMethodsStruct typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; } __Pyx_PyAsyncMethodsStruct; #endif #if defined(_WIN32) || defined(WIN32) || defined(MS_WINDOWS) #if !defined(_USE_MATH_DEFINES) #define _USE_MATH_DEFINES #endif #endif #include #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) #define __Pyx_truncl trunc #else #define __Pyx_truncl truncl #endif #define __PYX_MARK_ERR_POS(f_index, lineno) \ { __pyx_filename = __pyx_f[f_index]; (void)__pyx_filename; __pyx_lineno = lineno; (void)__pyx_lineno; __pyx_clineno = __LINE__; (void)__pyx_clineno; } #define __PYX_ERR(f_index, lineno, Ln_error) \ { __PYX_MARK_ERR_POS(f_index, lineno) goto Ln_error; } #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #define __PYX_HAVE__PyMca5__PyMcaGraph__ctools___ctools #define __PYX_HAVE_API__PyMca5__PyMcaGraph__ctools___ctools /* Early includes */ #include "InsidePolygonWithBounds.h" #include #include #include "numpy/arrayobject.h" #include "numpy/ndarrayobject.h" #include "numpy/ndarraytypes.h" #include "numpy/arrayscalars.h" #include "numpy/ufuncobject.h" /* NumPy API declarations from "numpy/__init__.pxd" */ #include "MinMax.h" #include "Colormap.h" #include "pythread.h" #include #include "pystate.h" #ifdef _OPENMP #include #endif /* _OPENMP */ #if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_uchar_cast(c) ((unsigned char)c) #define __Pyx_long_cast(x) ((long)x) #define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ (sizeof(type) < sizeof(Py_ssize_t)) ||\ (sizeof(type) > sizeof(Py_ssize_t) &&\ likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX) &&\ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ v == (type)PY_SSIZE_T_MIN))) ||\ (sizeof(type) == sizeof(Py_ssize_t) &&\ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { return (size_t) i < (size_t) limit; } #if defined (__cplusplus) && __cplusplus >= 201103L #include #define __Pyx_sst_abs(value) std::abs(value) #elif SIZEOF_INT >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) #elif defined (_MSC_VER) #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) #define __Pyx_sst_abs(value) __builtin_llabs(value) #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); #define __Pyx_PySequence_Tuple(obj)\ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject*); #if CYTHON_ASSUME_SAFE_MACROS #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) #else #define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) #endif #define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; /* Header.proto */ #if !defined(CYTHON_CCOMPLEX) #if defined(__cplusplus) #define CYTHON_CCOMPLEX 1 #elif defined(_Complex_I) #define CYTHON_CCOMPLEX 1 #else #define CYTHON_CCOMPLEX 0 #endif #endif #if CYTHON_CCOMPLEX #ifdef __cplusplus #include #else #include #endif #endif #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) #undef _Complex_I #define _Complex_I 1.0fj #endif static const char *__pyx_f[] = { "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\MinMax.pyx", "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\Colormap.pyx", "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\_ctools.pyx", "__init__.pxd", "stringsource", "type.pxd", }; /* NoFastGil.proto */ #define __Pyx_PyGILState_Ensure PyGILState_Ensure #define __Pyx_PyGILState_Release PyGILState_Release #define __Pyx_FastGIL_Remember() #define __Pyx_FastGIL_Forget() #define __Pyx_FastGilFuncInit() /* BufferFormatStructs.proto */ #define IS_UNSIGNED(type) (((type) -1) > 0) struct __Pyx_StructField_; #define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) typedef struct { const char* name; struct __Pyx_StructField_* fields; size_t size; size_t arraysize[8]; int ndim; char typegroup; char is_unsigned; int flags; } __Pyx_TypeInfo; typedef struct __Pyx_StructField_ { __Pyx_TypeInfo* type; const char* name; size_t offset; } __Pyx_StructField; typedef struct { __Pyx_StructField* field; size_t parent_offset; } __Pyx_BufFmt_StackElem; typedef struct { __Pyx_StructField root; __Pyx_BufFmt_StackElem* head; size_t fmt_offset; size_t new_count, enc_count; size_t struct_alignment; int is_complex; char enc_type; char new_packmode; char enc_packmode; char is_valid_array; } __Pyx_BufFmt_Context; /* MemviewSliceStruct.proto */ struct __pyx_memoryview_obj; typedef struct { struct __pyx_memoryview_obj *memview; char *data; Py_ssize_t shape[8]; Py_ssize_t strides[8]; Py_ssize_t suboffsets[8]; } __Pyx_memviewslice; #define __Pyx_MemoryView_Len(m) (m.shape[0]) /* Atomics.proto */ #include #ifndef CYTHON_ATOMICS #define CYTHON_ATOMICS 1 #endif #define __PYX_CYTHON_ATOMICS_ENABLED() CYTHON_ATOMICS #define __pyx_atomic_int_type int #if CYTHON_ATOMICS && (__GNUC__ >= 5 || (__GNUC__ == 4 &&\ (__GNUC_MINOR__ > 1 ||\ (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ >= 2)))) #define __pyx_atomic_incr_aligned(value) __sync_fetch_and_add(value, 1) #define __pyx_atomic_decr_aligned(value) __sync_fetch_and_sub(value, 1) #ifdef __PYX_DEBUG_ATOMICS #warning "Using GNU atomics" #endif #elif CYTHON_ATOMICS && defined(_MSC_VER) && CYTHON_COMPILING_IN_NOGIL #include #undef __pyx_atomic_int_type #define __pyx_atomic_int_type long #pragma intrinsic (_InterlockedExchangeAdd) #define __pyx_atomic_incr_aligned(value) _InterlockedExchangeAdd(value, 1) #define __pyx_atomic_decr_aligned(value) _InterlockedExchangeAdd(value, -1) #ifdef __PYX_DEBUG_ATOMICS #pragma message ("Using MSVC atomics") #endif #else #undef CYTHON_ATOMICS #define CYTHON_ATOMICS 0 #ifdef __PYX_DEBUG_ATOMICS #warning "Not using atomics" #endif #endif typedef volatile __pyx_atomic_int_type __pyx_atomic_int; #if CYTHON_ATOMICS #define __pyx_add_acquisition_count(memview)\ __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview)) #define __pyx_sub_acquisition_count(memview)\ __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview)) #else #define __pyx_add_acquisition_count(memview)\ __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #define __pyx_sub_acquisition_count(memview)\ __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #endif /* ForceInitThreads.proto */ #ifndef __PYX_FORCE_INIT_THREADS #define __PYX_FORCE_INIT_THREADS 0 #endif /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":689 * # in Cython to enable them only on the right systems. * * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t */ typedef npy_int8 __pyx_t_5numpy_int8_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":690 * * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t */ typedef npy_int16 __pyx_t_5numpy_int16_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":691 * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< * ctypedef npy_int64 int64_t * #ctypedef npy_int96 int96_t */ typedef npy_int32 __pyx_t_5numpy_int32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":692 * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< * #ctypedef npy_int96 int96_t * #ctypedef npy_int128 int128_t */ typedef npy_int64 __pyx_t_5numpy_int64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":696 * #ctypedef npy_int128 int128_t * * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t */ typedef npy_uint8 __pyx_t_5numpy_uint8_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":697 * * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t */ typedef npy_uint16 __pyx_t_5numpy_uint16_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":698 * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< * ctypedef npy_uint64 uint64_t * #ctypedef npy_uint96 uint96_t */ typedef npy_uint32 __pyx_t_5numpy_uint32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":699 * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< * #ctypedef npy_uint96 uint96_t * #ctypedef npy_uint128 uint128_t */ typedef npy_uint64 __pyx_t_5numpy_uint64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":703 * #ctypedef npy_uint128 uint128_t * * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< * ctypedef npy_float64 float64_t * #ctypedef npy_float80 float80_t */ typedef npy_float32 __pyx_t_5numpy_float32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":704 * * ctypedef npy_float32 float32_t * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< * #ctypedef npy_float80 float80_t * #ctypedef npy_float128 float128_t */ typedef npy_float64 __pyx_t_5numpy_float64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":713 * # The int types are mapped a bit surprising -- * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t # <<<<<<<<<<<<<< * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t */ typedef npy_long __pyx_t_5numpy_int_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":714 * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< * ctypedef npy_longlong longlong_t * */ typedef npy_longlong __pyx_t_5numpy_long_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":715 * ctypedef npy_long int_t * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< * * ctypedef npy_ulong uint_t */ typedef npy_longlong __pyx_t_5numpy_longlong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":717 * ctypedef npy_longlong longlong_t * * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t */ typedef npy_ulong __pyx_t_5numpy_uint_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":718 * * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulonglong_t * */ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":719 * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< * * ctypedef npy_intp intp_t */ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":721 * ctypedef npy_ulonglong ulonglong_t * * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< * ctypedef npy_uintp uintp_t * */ typedef npy_intp __pyx_t_5numpy_intp_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":722 * * ctypedef npy_intp intp_t * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< * * ctypedef npy_double float_t */ typedef npy_uintp __pyx_t_5numpy_uintp_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":724 * ctypedef npy_uintp uintp_t * * ctypedef npy_double float_t # <<<<<<<<<<<<<< * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t */ typedef npy_double __pyx_t_5numpy_float_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":725 * * ctypedef npy_double float_t * ctypedef npy_double double_t # <<<<<<<<<<<<<< * ctypedef npy_longdouble longdouble_t * */ typedef npy_double __pyx_t_5numpy_double_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":726 * ctypedef npy_double float_t * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cfloat cfloat_t */ typedef npy_longdouble __pyx_t_5numpy_longdouble_t; /* "Colormap.pxd":29 * # * #############################################################################*[inserted by cython to avoid comment closer]/ * ctypedef unsigned char uint8_t # TODO use libc.stdint when available # <<<<<<<<<<<<<< * * cdef extern from "Colormap.h": */ typedef unsigned char __pyx_t_8Colormap_uint8_t; /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< float > __pyx_t_float_complex; #else typedef float _Complex __pyx_t_float_complex; #endif #else typedef struct { float real, imag; } __pyx_t_float_complex; #endif static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< double > __pyx_t_double_complex; #else typedef double _Complex __pyx_t_double_complex; #endif #else typedef struct { double real, imag; } __pyx_t_double_complex; #endif static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); /*--- Type declarations ---*/ struct __pyx_array_obj; struct __pyx_MemviewEnum_obj; struct __pyx_memoryview_obj; struct __pyx_memoryviewslice_obj; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":728 * ctypedef npy_longdouble longdouble_t * * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t */ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":729 * * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< * ctypedef npy_clongdouble clongdouble_t * */ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":730 * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cdouble complex_t */ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":732 * ctypedef npy_clongdouble clongdouble_t * * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew1(a): */ typedef npy_cdouble __pyx_t_5numpy_complex_t; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_array_obj { PyObject_HEAD struct __pyx_vtabstruct_array *__pyx_vtab; char *data; Py_ssize_t len; char *format; int ndim; Py_ssize_t *_shape; Py_ssize_t *_strides; Py_ssize_t itemsize; PyObject *mode; PyObject *_format; void (*callback_free_data)(void *); int free_data; int dtype_is_object; }; /* "View.MemoryView":280 * * @cname('__pyx_MemviewEnum') * cdef class Enum(object): # <<<<<<<<<<<<<< * cdef object name * def __init__(self, name): */ struct __pyx_MemviewEnum_obj { PyObject_HEAD PyObject *name; }; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_memoryview_obj { PyObject_HEAD struct __pyx_vtabstruct_memoryview *__pyx_vtab; PyObject *obj; PyObject *_size; PyObject *_array_interface; PyThread_type_lock lock; __pyx_atomic_int acquisition_count[2]; __pyx_atomic_int *acquisition_count_aligned_p; Py_buffer view; int flags; int dtype_is_object; __Pyx_TypeInfo *typeinfo; }; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_memoryviewslice_obj { struct __pyx_memoryview_obj __pyx_base; __Pyx_memviewslice from_slice; PyObject *from_object; PyObject *(*to_object_func)(char *); int (*to_dtype_func)(char *, PyObject *); }; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_vtabstruct_array { PyObject *(*get_memview)(struct __pyx_array_obj *); }; static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_vtabstruct_memoryview { char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); }; static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_vtabstruct__memoryviewslice { struct __pyx_vtabstruct_memoryview __pyx_base; }; static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; /* --- Runtime support code (head) --- */ /* Refnanny.proto */ #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil)\ if (acquire_gil) {\ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ PyGILState_Release(__pyx_gilstate_save);\ } else {\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil)\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext()\ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif #define __Pyx_XDECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_XDECREF(tmp);\ } while (0) #define __Pyx_DECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_DECREF(tmp);\ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif /* GetBuiltinName.proto */ static PyObject *__Pyx_GetBuiltinName(PyObject *name); /* RaiseDoubleKeywords.proto */ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /* ParseKeywords.proto */ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); /* RaiseArgTupleInvalid.proto */ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /* ArgTypeTest.proto */ #define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ __Pyx__ArgTypeTest(obj, type, name, exact)) static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); /* SliceObject.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice( PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); /* IncludeStringH.proto */ #include /* BytesEquals.proto */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /* UnicodeEquals.proto */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /* StrEquals.proto */ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals #else #define __Pyx_PyString_Equals __Pyx_PyBytes_Equals #endif /* PyDictVersioning.proto */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS #define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ (version_var) = __PYX_GET_DICT_VERSION(dict);\ (cache_var) = (value); #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ (VAR) = __pyx_dict_cached_value;\ } else {\ (VAR) = __pyx_dict_cached_value = (LOOKUP);\ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ }\ } static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); #else #define __PYX_GET_DICT_VERSION(dict) (0) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); #endif /* GetModuleGlobalName.proto */ #if CYTHON_USE_DICT_VERSIONS #define __Pyx_GetModuleGlobalName(var, name) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } #define __Pyx_GetModuleGlobalNameUncached(var, name) {\ PY_UINT64_T __pyx_dict_version;\ PyObject *__pyx_dict_cached_value;\ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); #else #define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) #define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); #endif /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif /* ExtTypeTest.proto */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /* PyCFunctionFastCall.proto */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); #else #define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) #endif /* PyFunctionFastCall.proto */ #if CYTHON_FAST_PYCALL #define __Pyx_PyFunction_FastCall(func, args, nargs)\ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); #else #define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) #endif #define __Pyx_BUILD_ASSERT_EXPR(cond)\ (sizeof(char [1 - 2*!(cond)]) - 1) #ifndef Py_MEMBER_SIZE #define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) #endif #if CYTHON_FAST_PYCALL static size_t __pyx_pyframe_localsplus_offset = 0; #include "frameobject.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif #define __Pxy_PyFrame_Initialize_Offsets()\ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) #define __Pyx_PyFrame_GetLocalsplus(frame)\ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) #endif // CYTHON_FAST_PYCALL #endif /* PyObjectCall2Args.proto */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); /* PyObjectCallMethO.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); #endif /* PyObjectCallOneArg.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; #define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; #define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign #define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) #else #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #endif #else #define __Pyx_PyErr_Clear() PyErr_Clear() #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /* GetItemInt.proto */ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); /* ObjectGetItem.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); #else #define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) #endif /* IsLittleEndian.proto */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); /* BufferFormatCheck.proto */ static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type); /* BufferGetAndValidate.proto */ #define __Pyx_GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)\ ((obj == Py_None || obj == NULL) ?\ (__Pyx_ZeroBuffer(buf), 0) :\ __Pyx__GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)) static int __Pyx__GetBufferAndValidate(Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); static void __Pyx_ZeroBuffer(Py_buffer* buf); static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); static Py_ssize_t __Pyx_minusones[] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static Py_ssize_t __Pyx_zeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* PyObjectSetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS #define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL) static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value); #else #define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) #define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) #endif /* MemviewSliceInit.proto */ #define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d #define __Pyx_MEMVIEW_DIRECT 1 #define __Pyx_MEMVIEW_PTR 2 #define __Pyx_MEMVIEW_FULL 4 #define __Pyx_MEMVIEW_CONTIG 8 #define __Pyx_MEMVIEW_STRIDED 16 #define __Pyx_MEMVIEW_FOLLOW 32 #define __Pyx_IS_C_CONTIG 1 #define __Pyx_IS_F_CONTIG 2 static int __Pyx_init_memviewslice( struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference); static CYTHON_INLINE int __pyx_add_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); #define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) #define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) #define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) #define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); #define __Pyx_BufPtrStrided1d(type, buf, i0, s0) (type)((char*)buf + i0 * s0) /* GetTopmostException.proto */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); #endif /* SaveResetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); #else #define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) #define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) #endif /* PyErrExceptionMatches.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); #else #define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) #endif /* GetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); #endif /* DivInt[Py_ssize_t].proto */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t, Py_ssize_t); /* UnaryNegOverflows.proto */ #define UNARY_NEG_WOULD_OVERFLOW(x)\ (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /* decode_c_string_utf16.proto */ static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 0; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16LE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = -1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16BE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } /* decode_c_string.proto */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); /* GetAttr3.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); /* RaiseNeedMoreValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); /* RaiseNoneIterError.proto */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); /* SwapException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); #endif /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /* FastTypeChecks.proto */ #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) #define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif #define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ /* ListCompAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len)) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) #endif /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* ListExtend.proto */ static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { #if CYTHON_COMPILING_IN_CPYTHON PyObject* none = _PyList_Extend((PyListObject*)L, v); if (unlikely(!none)) return -1; Py_DECREF(none); return 0; #else return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); #endif } /* ListAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_PyList_Append(L,x) PyList_Append(L,x) #endif /* None.proto */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); /* DivInt[long].proto */ static CYTHON_INLINE long __Pyx_div_long(long, long); /* PySequenceContains.proto */ static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { int result = PySequence_Contains(seq, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* ImportFrom.proto */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /* HasAttr.proto */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /* PyObject_GenericGetAttrNoDict.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr #endif /* PyObject_GenericGetAttr.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr #endif /* SetVTable.proto */ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /* PyObjectGetAttrStrNoError.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name); /* SetupReduce.proto */ static int __Pyx_setup_reduce(PyObject* type_obj); /* TypeImport.proto */ #ifndef __PYX_HAVE_RT_ImportType_proto #define __PYX_HAVE_RT_ImportType_proto enum __Pyx_ImportType_CheckSize { __Pyx_ImportType_CheckSize_Error = 0, __Pyx_ImportType_CheckSize_Warn = 1, __Pyx_ImportType_CheckSize_Ignore = 2 }; static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); #endif /* CLineInTraceback.proto */ #ifdef CYTHON_CLINE_IN_TRACEBACK #define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) #else static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); #endif /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; int code_line; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); /* AddTraceback.proto */ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); static void __Pyx_ReleaseBuffer(Py_buffer *view); #else #define __Pyx_GetBuffer PyObject_GetBuffer #define __Pyx_ReleaseBuffer PyBuffer_Release #endif /* BufferStructDeclare.proto */ typedef struct { Py_ssize_t shape, strides, suboffsets; } __Pyx_Buf_DimInfo; typedef struct { size_t refcount; Py_buffer pybuffer; } __Pyx_Buffer; typedef struct { __Pyx_Buffer *rcbuffer; char *data; __Pyx_Buf_DimInfo diminfo[8]; } __Pyx_LocalBuf_ND; /* MemviewSliceIsContig.proto */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim); /* OverlappingSlices.proto */ static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize); /* Capsule.proto */ static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); /* GCCDiagnostics.proto */ #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) #define __Pyx_HAS_GCC_DIAGNOSTIC #endif /* TypeInfoCompare.proto */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); /* MemviewSliceValidateAndInit.proto */ static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_unsigned_char(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_float(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_int(PyObject *, int writable_flag); /* RealImag.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus #define __Pyx_CREAL(z) ((z).real()) #define __Pyx_CIMAG(z) ((z).imag()) #else #define __Pyx_CREAL(z) (__real__(z)) #define __Pyx_CIMAG(z) (__imag__(z)) #endif #else #define __Pyx_CREAL(z) ((z).real) #define __Pyx_CIMAG(z) ((z).imag) #endif #if defined(__cplusplus) && CYTHON_CCOMPLEX\ && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) #define __Pyx_SET_CREAL(z,x) ((z).real(x)) #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) #else #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_float(a, b) ((a)==(b)) #define __Pyx_c_sum_float(a, b) ((a)+(b)) #define __Pyx_c_diff_float(a, b) ((a)-(b)) #define __Pyx_c_prod_float(a, b) ((a)*(b)) #define __Pyx_c_quot_float(a, b) ((a)/(b)) #define __Pyx_c_neg_float(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_float(z) ((z)==(float)0) #define __Pyx_c_conj_float(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_float(z) (::std::abs(z)) #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_float(z) ((z)==0) #define __Pyx_c_conj_float(z) (conjf(z)) #if 1 #define __Pyx_c_abs_float(z) (cabsf(z)) #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); #endif #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_double(a, b) ((a)==(b)) #define __Pyx_c_sum_double(a, b) ((a)+(b)) #define __Pyx_c_diff_double(a, b) ((a)-(b)) #define __Pyx_c_prod_double(a, b) ((a)*(b)) #define __Pyx_c_quot_double(a, b) ((a)/(b)) #define __Pyx_c_neg_double(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_double(z) ((z)==(double)0) #define __Pyx_c_conj_double(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_double(z) (::std::abs(z)) #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_double(z) ((z)==0) #define __Pyx_c_conj_double(z) (conj(z)) #if 1 #define __Pyx_c_abs_double(z) (cabs(z)) #define __Pyx_c_pow_double(a, b) (cpow(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); #endif #endif /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object); /* CIntFromPy.proto */ static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE unsigned int __Pyx_PyInt_As_unsigned_int(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntFromPy.proto */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); /* InitStrings.proto */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self); /* proto*/ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto*/ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ /* Module declarations from 'cython.view' */ /* Module declarations from 'cython' */ /* Module declarations from 'InsidePolygonWithBounds' */ /* Module declarations from 'cpython.buffer' */ /* Module declarations from 'libc.string' */ /* Module declarations from 'libc.stdio' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.type' */ static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; /* Module declarations from 'cpython' */ /* Module declarations from 'cpython.object' */ /* Module declarations from 'cpython.ref' */ /* Module declarations from 'cpython.mem' */ /* Module declarations from 'numpy' */ /* Module declarations from 'numpy' */ static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; static PyTypeObject *__pyx_ptype_5numpy_generic = 0; static PyTypeObject *__pyx_ptype_5numpy_number = 0; static PyTypeObject *__pyx_ptype_5numpy_integer = 0; static PyTypeObject *__pyx_ptype_5numpy_signedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_unsignedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_inexact = 0; static PyTypeObject *__pyx_ptype_5numpy_floating = 0; static PyTypeObject *__pyx_ptype_5numpy_complexfloating = 0; static PyTypeObject *__pyx_ptype_5numpy_flexible = 0; static PyTypeObject *__pyx_ptype_5numpy_character = 0; static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; /* Module declarations from 'MinMax' */ /* Module declarations from 'Colormap' */ /* Module declarations from 'PyMca5.PyMcaGraph.ctools._ctools' */ static PyTypeObject *__pyx_array_type = 0; static PyTypeObject *__pyx_MemviewEnum_type = 0; static PyTypeObject *__pyx_memoryview_type = 0; static PyTypeObject *__pyx_memoryviewslice_type = 0; static PyObject *generic = 0; static PyObject *strided = 0; static PyObject *indirect = 0; static PyObject *contiguous = 0; static PyObject *indirect_contiguous = 0; static int __pyx_memoryview_thread_locks_used; static PyThread_type_lock __pyx_memoryview_thread_locks[8]; static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ static void *__pyx_align_pointer(void *, size_t); /*proto*/ static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ static PyObject *_unellipsify(PyObject *, int); /*proto*/ static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t = { "uint8_t", NULL, sizeof(__pyx_t_5numpy_uint8_t), { 0 }, 0, IS_UNSIGNED(__pyx_t_5numpy_uint8_t) ? 'U' : 'I', IS_UNSIGNED(__pyx_t_5numpy_uint8_t), 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_unsigned_char = { "unsigned char", NULL, sizeof(unsigned char), { 0 }, 0, IS_UNSIGNED(unsigned char) ? 'U' : 'I', IS_UNSIGNED(unsigned char), 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_float = { "float", NULL, sizeof(float), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_int = { "int", NULL, sizeof(int), { 0 }, 0, IS_UNSIGNED(int) ? 'U' : 'I', IS_UNSIGNED(int), 0 }; #define __Pyx_MODULE_NAME "PyMca5.PyMcaGraph.ctools._ctools" extern int __pyx_module_is_main_PyMca5__PyMcaGraph__ctools___ctools; int __pyx_module_is_main_PyMca5__PyMcaGraph__ctools___ctools = 0; /* Implementation of 'PyMca5.PyMcaGraph.ctools._ctools' */ static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_ImportError; static PyObject *__pyx_builtin_MemoryError; static PyObject *__pyx_builtin_enumerate; static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_TypeError; static PyObject *__pyx_builtin_Ellipsis; static PyObject *__pyx_builtin_id; static PyObject *__pyx_builtin_IndexError; static const char __pyx_k_C[] = "C"; static const char __pyx_k_O[] = "O"; static const char __pyx_k_c[] = "c"; static const char __pyx_k_f2[] = "f2"; static const char __pyx_k_f4[] = "f4"; static const char __pyx_k_f8[] = "f8"; static const char __pyx_k_i1[] = "i1"; static const char __pyx_k_i2[] = "i2"; static const char __pyx_k_i4[] = "i4"; static const char __pyx_k_i8[] = "i8"; static const char __pyx_k_id[] = "id"; static const char __pyx_k_np[] = "np"; static const char __pyx_k_u1[] = "u1"; static const char __pyx_k_u2[] = "u2"; static const char __pyx_k_u4[] = "u4"; static const char __pyx_k_u8[] = "u8"; static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_str[] = "str"; static const char __pyx_k_base[] = "base"; static const char __pyx_k_data[] = "data"; static const char __pyx_k_dict[] = "__dict__"; static const char __pyx_k_int8[] = "int8"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_mask[] = "mask"; static const char __pyx_k_mode[] = "mode"; static const char __pyx_k_name[] = "name"; static const char __pyx_k_ndim[] = "ndim"; static const char __pyx_k_pack[] = "pack"; static const char __pyx_k_size[] = "size"; static const char __pyx_k_step[] = "step"; static const char __pyx_k_stop[] = "stop"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_ASCII[] = "ASCII"; static const char __pyx_k_c_end[] = "c_end"; static const char __pyx_k_class[] = "__class__"; static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_empty[] = "empty"; static const char __pyx_k_error[] = "error"; static const char __pyx_k_flags[] = "flags"; static const char __pyx_k_int16[] = "int16"; static const char __pyx_k_int32[] = "int32"; static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_order[] = "order"; static const char __pyx_k_range[] = "range"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_start[] = "start"; static const char __pyx_k_uint8[] = "uint8"; static const char __pyx_k_value[] = "value"; static const char __pyx_k_zeros[] = "zeros"; static const char __pyx_k_border[] = "border"; static const char __pyx_k_c_data[] = "c_data"; static const char __pyx_k_c_type[] = "c_type"; static const char __pyx_k_encode[] = "encode"; static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; static const char __pyx_k_minMax[] = "minMax"; static const char __pyx_k_name_2[] = "__name__"; static const char __pyx_k_pickle[] = "pickle"; static const char __pyx_k_pixmap[] = "pixmap"; static const char __pyx_k_pnpoly[] = "pnpoly"; static const char __pyx_k_points[] = "points"; static const char __pyx_k_reduce[] = "__reduce__"; static const char __pyx_k_struct[] = "struct"; static const char __pyx_k_uint16[] = "uint16"; static const char __pyx_k_uint32[] = "uint32"; static const char __pyx_k_unpack[] = "unpack"; static const char __pyx_k_update[] = "update"; static const char __pyx_k_asarray[] = "asarray"; static const char __pyx_k_c_start[] = "c_start"; static const char __pyx_k_float32[] = "float32"; static const char __pyx_k_float64[] = "float64"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_pnpolyd[] = "_pnpolyd"; static const char __pyx_k_Ellipsis[] = "Ellipsis"; static const char __pyx_k_c_pixmap[] = "c_pixmap"; static const char __pyx_k_c_points[] = "c_points"; static const char __pyx_k_colormap[] = "colormap"; static const char __pyx_k_endValue[] = "endValue"; static const char __pyx_k_getstate[] = "__getstate__"; static const char __pyx_k_itemsize[] = "itemsize"; static const char __pyx_k_n_points[] = "n_points"; static const char __pyx_k_nanColor[] = "nanColor"; static const char __pyx_k_pyx_type[] = "__pyx_type"; static const char __pyx_k_setstate[] = "__setstate__"; static const char __pyx_k_vertices[] = "vertices"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_c_dataMax[] = "c_dataMax"; static const char __pyx_k_c_dataMin[] = "c_dataMin"; static const char __pyx_k_c_dataPtr[] = "c_dataPtr"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_fastLog10[] = "fastLog10"; static const char __pyx_k_pnpolyInt[] = "_pnpolyInt"; static const char __pyx_k_pyx_state[] = "__pyx_state"; static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; static const char __pyx_k_IndexError[] = "IndexError"; static const char __pyx_k_ValueError[] = "ValueError"; static const char __pyx_k_c_colormap[] = "c_colormap"; static const char __pyx_k_c_dataSize[] = "c_dataSize"; static const char __pyx_k_c_nanColor[] = "c_nanColor"; static const char __pyx_k_c_vertices[] = "c_vertices"; static const char __pyx_k_n_vertices[] = "n_vertices"; static const char __pyx_k_pyx_result[] = "__pyx_result"; static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; static const char __pyx_k_startValue[] = "startValue"; static const char __pyx_k_ImportError[] = "ImportError"; static const char __pyx_k_MemoryError[] = "MemoryError"; static const char __pyx_k_PickleError[] = "PickleError"; static const char __pyx_k_minPositive[] = "minPositive"; static const char __pyx_k_pnpolyFloat[] = "_pnpolyFloat"; static const char __pyx_k_c_dataMinPos[] = "c_dataMinPos"; static const char __pyx_k_c_startExtra[] = "c_startExtra"; static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; static const char __pyx_k_stringsource[] = "stringsource"; static const char __pyx_k_c_nanColorPtr[] = "c_nanColorPtr"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; static const char __pyx_k_c_dataItemSize[] = "c_dataItemSize"; static const char __pyx_k_isLog10Mapping[] = "isLog10Mapping"; static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; static const char __pyx_k_zero_size_array[] = "zero-size array"; static const char __pyx_k_c_colormapLength[] = "c_colormapLength"; static const char __pyx_k_ascontiguousarray[] = "ascontiguousarray"; static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; static const char __pyx_k_NUMPY_TO_TYPE_DESC[] = "_NUMPY_TO_TYPE_DESC"; static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_dataToRGBAColormap[] = "dataToRGBAColormap"; static const char __pyx_k_strided_and_direct[] = ""; static const char __pyx_k_strided_and_indirect[] = ""; static const char __pyx_k_contiguous_and_direct[] = ""; static const char __pyx_k_MemoryView_of_r_object[] = ""; static const char __pyx_k_MemoryView_of_r_at_0x_x[] = ""; static const char __pyx_k_contiguous_and_indirect[] = ""; static const char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; static const char __pyx_k_strided_and_direct_or_indirect[] = ""; static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; static const char __pyx_k_Cannot_assign_to_read_only_memor[] = "Cannot assign to read-only memoryview"; static const char __pyx_k_Cannot_create_writable_memory_vi[] = "Cannot create writable memory view from read-only memoryview"; static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))"; static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; static const char __pyx_k_PyMca5_PyMcaGraph_ctools__ctools[] = "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\MinMax.pyx"; static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; static const char __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_2[] = "PyMca5.PyMcaGraph.ctools._ctools"; static const char __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_3[] = "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\Colormap.pyx"; static const char __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_4[] = "PyMca5\\PyMcaGraph\\ctools\\_ctools\\cython\\_ctools.pyx"; static PyObject *__pyx_n_s_ASCII; static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; static PyObject *__pyx_n_s_C; static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; static PyObject *__pyx_kp_s_Cannot_assign_to_read_only_memor; static PyObject *__pyx_kp_s_Cannot_create_writable_memory_vi; static PyObject *__pyx_kp_s_Cannot_index_with_type_s; static PyObject *__pyx_n_s_Ellipsis; static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; static PyObject *__pyx_n_s_ImportError; static PyObject *__pyx_kp_s_Incompatible_checksums_0x_x_vs_0; static PyObject *__pyx_n_s_IndexError; static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; static PyObject *__pyx_n_s_MemoryError; static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; static PyObject *__pyx_kp_s_MemoryView_of_r_object; static PyObject *__pyx_n_s_NUMPY_TO_TYPE_DESC; static PyObject *__pyx_n_b_O; static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; static PyObject *__pyx_n_s_PickleError; static PyObject *__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools; static PyObject *__pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2; static PyObject *__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_3; static PyObject *__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_View_MemoryView; static PyObject *__pyx_n_s_allocate_buffer; static PyObject *__pyx_n_s_asarray; static PyObject *__pyx_n_s_ascontiguousarray; static PyObject *__pyx_n_s_base; static PyObject *__pyx_n_s_border; static PyObject *__pyx_n_s_c; static PyObject *__pyx_n_u_c; static PyObject *__pyx_n_s_c_colormap; static PyObject *__pyx_n_s_c_colormapLength; static PyObject *__pyx_n_s_c_data; static PyObject *__pyx_n_s_c_dataItemSize; static PyObject *__pyx_n_s_c_dataMax; static PyObject *__pyx_n_s_c_dataMin; static PyObject *__pyx_n_s_c_dataMinPos; static PyObject *__pyx_n_s_c_dataPtr; static PyObject *__pyx_n_s_c_dataSize; static PyObject *__pyx_n_s_c_end; static PyObject *__pyx_n_s_c_nanColor; static PyObject *__pyx_n_s_c_nanColorPtr; static PyObject *__pyx_n_s_c_pixmap; static PyObject *__pyx_n_s_c_points; static PyObject *__pyx_n_s_c_start; static PyObject *__pyx_n_s_c_startExtra; static PyObject *__pyx_n_s_c_type; static PyObject *__pyx_n_s_c_vertices; static PyObject *__pyx_n_s_class; static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_n_s_colormap; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; static PyObject *__pyx_n_s_data; static PyObject *__pyx_n_s_dataToRGBAColormap; static PyObject *__pyx_n_s_dict; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_empty; static PyObject *__pyx_n_s_encode; static PyObject *__pyx_n_s_endValue; static PyObject *__pyx_n_s_enumerate; static PyObject *__pyx_n_s_error; static PyObject *__pyx_n_s_f2; static PyObject *__pyx_n_s_f4; static PyObject *__pyx_n_s_f8; static PyObject *__pyx_n_s_fastLog10; static PyObject *__pyx_n_s_flags; static PyObject *__pyx_n_s_float32; static PyObject *__pyx_n_s_float64; static PyObject *__pyx_n_s_format; static PyObject *__pyx_n_s_fortran; static PyObject *__pyx_n_u_fortran; static PyObject *__pyx_n_s_getstate; static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; static PyObject *__pyx_n_s_i1; static PyObject *__pyx_n_s_i2; static PyObject *__pyx_n_s_i4; static PyObject *__pyx_n_s_i8; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_int16; static PyObject *__pyx_n_s_int32; static PyObject *__pyx_n_s_int8; static PyObject *__pyx_n_s_isLog10Mapping; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_mask; static PyObject *__pyx_n_s_memview; static PyObject *__pyx_n_s_minMax; static PyObject *__pyx_n_s_minPositive; static PyObject *__pyx_n_s_mode; static PyObject *__pyx_n_s_n_points; static PyObject *__pyx_n_s_n_vertices; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_nanColor; static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_new; static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; static PyObject *__pyx_n_s_np; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_order; static PyObject *__pyx_n_s_pack; static PyObject *__pyx_n_s_pickle; static PyObject *__pyx_n_s_pixmap; static PyObject *__pyx_n_s_pnpoly; static PyObject *__pyx_n_s_pnpolyFloat; static PyObject *__pyx_n_s_pnpolyInt; static PyObject *__pyx_n_s_pnpolyd; static PyObject *__pyx_n_s_points; static PyObject *__pyx_n_s_pyx_PickleError; static PyObject *__pyx_n_s_pyx_checksum; static PyObject *__pyx_n_s_pyx_getbuffer; static PyObject *__pyx_n_s_pyx_result; static PyObject *__pyx_n_s_pyx_state; static PyObject *__pyx_n_s_pyx_type; static PyObject *__pyx_n_s_pyx_unpickle_Enum; static PyObject *__pyx_n_s_pyx_vtable; static PyObject *__pyx_n_s_range; static PyObject *__pyx_n_s_reduce; static PyObject *__pyx_n_s_reduce_cython; static PyObject *__pyx_n_s_reduce_ex; static PyObject *__pyx_n_s_setstate; static PyObject *__pyx_n_s_setstate_cython; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_start; static PyObject *__pyx_n_s_startValue; static PyObject *__pyx_n_s_step; static PyObject *__pyx_n_s_stop; static PyObject *__pyx_n_s_str; static PyObject *__pyx_kp_s_strided_and_direct; static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; static PyObject *__pyx_kp_s_strided_and_indirect; static PyObject *__pyx_kp_s_stringsource; static PyObject *__pyx_n_s_struct; static PyObject *__pyx_n_s_test; static PyObject *__pyx_n_s_u1; static PyObject *__pyx_n_s_u2; static PyObject *__pyx_n_s_u4; static PyObject *__pyx_n_s_u8; static PyObject *__pyx_n_s_uint16; static PyObject *__pyx_n_s_uint32; static PyObject *__pyx_n_s_uint8; static PyObject *__pyx_kp_s_unable_to_allocate_array_data; static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; static PyObject *__pyx_n_s_unpack; static PyObject *__pyx_n_s_update; static PyObject *__pyx_n_s_value; static PyObject *__pyx_n_s_vertices; static PyObject *__pyx_kp_s_zero_size_array; static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_minMax(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_data, int __pyx_v_minPositive); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_2dataToRGBAColormap(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_data, PyArrayObject *__pyx_v_colormap, PyObject *__pyx_v_startValue, PyObject *__pyx_v_endValue, int __pyx_v_isLog10Mapping, PyObject *__pyx_v_nanColor); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_4fastLog10(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_value); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_6pnpoly(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_8_pnpolyd(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_10_pnpolyFloat(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border); /* proto */ static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_12_pnpolyInt(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_2; static PyObject *__pyx_int_3; static PyObject *__pyx_int_4; static PyObject *__pyx_int_5; static PyObject *__pyx_int_6; static PyObject *__pyx_int_7; static PyObject *__pyx_int_10; static PyObject *__pyx_int_11; static PyObject *__pyx_int_112105877; static PyObject *__pyx_int_136983863; static PyObject *__pyx_int_184977713; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_slice_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; static PyObject *__pyx_tuple__4; static PyObject *__pyx_tuple__5; static PyObject *__pyx_tuple__6; static PyObject *__pyx_tuple__7; static PyObject *__pyx_tuple__8; static PyObject *__pyx_tuple__9; static PyObject *__pyx_slice__20; static PyObject *__pyx_tuple__10; static PyObject *__pyx_tuple__11; static PyObject *__pyx_tuple__12; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__14; static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__16; static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__21; static PyObject *__pyx_tuple__22; static PyObject *__pyx_tuple__23; static PyObject *__pyx_tuple__24; static PyObject *__pyx_tuple__25; static PyObject *__pyx_tuple__27; static PyObject *__pyx_tuple__29; static PyObject *__pyx_tuple__31; static PyObject *__pyx_tuple__33; static PyObject *__pyx_tuple__35; static PyObject *__pyx_tuple__37; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_tuple__42; static PyObject *__pyx_tuple__43; static PyObject *__pyx_tuple__44; static PyObject *__pyx_codeobj__26; static PyObject *__pyx_codeobj__28; static PyObject *__pyx_codeobj__30; static PyObject *__pyx_codeobj__32; static PyObject *__pyx_codeobj__34; static PyObject *__pyx_codeobj__36; static PyObject *__pyx_codeobj__38; static PyObject *__pyx_codeobj__45; /* Late includes */ /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":55 * @cython.boundscheck(False) * @cython.wraparound(False) * def minMax(np.ndarray data, bint minPositive=False): # <<<<<<<<<<<<<< * """Get min, max and optionally min positive of data. * */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_1minMax(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_minMax[] = "Get min, max and optionally min positive of data.\n\n NaNs are ignored while computing min/max.\n If all data is NaNs, returned min/max are NaNs and\n returned minPositive is None.\n\n :param np.ndarray data: Array of data\n :param bool minPositive: Wheither to compute min positive or not.\n :returns: (min, max) or (min, minPositive, max) if minPositive is True\n If all data < 0, minPositive is None.\n :rtype: tuple of float\n :raises: ValueError if data is empty\n "; static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_1minMax = {"minMax", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_1minMax, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_minMax}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_1minMax(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyArrayObject *__pyx_v_data = 0; int __pyx_v_minPositive; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("minMax (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_data,&__pyx_n_s_minPositive,0}; PyObject* values[2] = {0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_data)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_minPositive); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "minMax") < 0)) __PYX_ERR(0, 55, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_data = ((PyArrayObject *)values[0]); if (values[1]) { __pyx_v_minPositive = __Pyx_PyObject_IsTrue(values[1]); if (unlikely((__pyx_v_minPositive == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 55, __pyx_L3_error) } else { __pyx_v_minPositive = ((int)0); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("minMax", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 55, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.minMax", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_data), __pyx_ptype_5numpy_ndarray, 1, "data", 0))) __PYX_ERR(0, 55, __pyx_L1_error) __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_minMax(__pyx_self, __pyx_v_data, __pyx_v_minPositive); /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_minMax(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_data, int __pyx_v_minPositive) { PyArrayObject *__pyx_v_c_data = 0; void *__pyx_v_c_dataPtr; unsigned long __pyx_v_c_dataSize; double __pyx_v_c_dataMin; double __pyx_v_c_dataMinPos; double __pyx_v_c_dataMax; unsigned int __pyx_v_c_type; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; char *__pyx_t_7; unsigned long __pyx_t_8; unsigned int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("minMax", 0); __Pyx_INCREF((PyObject *)__pyx_v_data); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":70 * """ * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': # <<<<<<<<<<<<<< * data = np.asarray(data, dtype=np.float32) * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data), __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_str); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_t_2, 1, 0, NULL, NULL, &__pyx_slice_, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_3 = (__Pyx_PyString_Equals(__pyx_t_1, __pyx_n_s_f2, Py_EQ)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_3) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":71 * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': * data = np.asarray(data, dtype=np.float32) # <<<<<<<<<<<<<< * * cdef np.ndarray c_data = np.ascontiguousarray(data) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_asarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)__pyx_v_data)); __Pyx_GIVEREF(((PyObject *)__pyx_v_data)); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)__pyx_v_data)); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_6) < 0) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!(likely(((__pyx_t_6) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_6, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 71, __pyx_L1_error) __Pyx_DECREF_SET(__pyx_v_data, ((PyArrayObject *)__pyx_t_6)); __pyx_t_6 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":70 * """ * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': # <<<<<<<<<<<<<< * data = np.asarray(data, dtype=np.float32) * */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":73 * data = np.asarray(data, dtype=np.float32) * * cdef np.ndarray c_data = np.ascontiguousarray(data) # <<<<<<<<<<<<<< * cdef void * c_dataPtr = c_data.data * cdef unsigned long c_dataSize = c_data.size */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_6 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_4, ((PyObject *)__pyx_v_data)) : __Pyx_PyObject_CallOneArg(__pyx_t_1, ((PyObject *)__pyx_v_data)); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (!(likely(((__pyx_t_6) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_6, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 73, __pyx_L1_error) __pyx_v_c_data = ((PyArrayObject *)__pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":74 * * cdef np.ndarray c_data = np.ascontiguousarray(data) * cdef void * c_dataPtr = c_data.data # <<<<<<<<<<<<<< * cdef unsigned long c_dataSize = c_data.size * */ __pyx_t_7 = __pyx_v_c_data->data; __pyx_v_c_dataPtr = __pyx_t_7; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":75 * cdef np.ndarray c_data = np.ascontiguousarray(data) * cdef void * c_dataPtr = c_data.data * cdef unsigned long c_dataSize = c_data.size # <<<<<<<<<<<<<< * * if c_dataSize == 0: */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_c_data), __pyx_n_s_size); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 75, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyInt_As_unsigned_long(__pyx_t_6); if (unlikely((__pyx_t_8 == (unsigned long)-1) && PyErr_Occurred())) __PYX_ERR(0, 75, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_c_dataSize = __pyx_t_8; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":77 * cdef unsigned long c_dataSize = c_data.size * * if c_dataSize == 0: # <<<<<<<<<<<<<< * raise ValueError("zero-size array") * */ __pyx_t_3 = ((__pyx_v_c_dataSize == 0) != 0); if (unlikely(__pyx_t_3)) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":78 * * if c_dataSize == 0: * raise ValueError("zero-size array") # <<<<<<<<<<<<<< * * cdef double c_dataMin, c_dataMinPos, c_dataMax */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(0, 78, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":77 * cdef unsigned long c_dataSize = c_data.size * * if c_dataSize == 0: # <<<<<<<<<<<<<< * raise ValueError("zero-size array") * */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":82 * cdef double c_dataMin, c_dataMinPos, c_dataMax * * cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] # <<<<<<<<<<<<<< * * if minPositive: */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_NUMPY_TO_TYPE_DESC); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_data), __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_str); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_t_4, 1, 0, NULL, NULL, &__pyx_slice_, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_t_6, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_9 = __Pyx_PyInt_As_unsigned_int(__pyx_t_4); if (unlikely((__pyx_t_9 == (unsigned int)-1) && PyErr_Occurred())) __PYX_ERR(0, 82, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_c_type = __pyx_t_9; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":84 * cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] * * if minPositive: # <<<<<<<<<<<<<< * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, */ __pyx_t_3 = (__pyx_v_minPositive != 0); if (__pyx_t_3) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":85 * * if minPositive: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, &c_dataMinPos, &c_dataMax) */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":86 * if minPositive: * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, # <<<<<<<<<<<<<< * &c_dataMin, &c_dataMinPos, &c_dataMax) * if c_dataMinPos == 0: */ getMinMax(__pyx_v_c_dataPtr, __pyx_v_c_type, __pyx_v_c_dataSize, (&__pyx_v_c_dataMin), (&__pyx_v_c_dataMinPos), (&__pyx_v_c_dataMax)); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":85 * * if minPositive: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, &c_dataMinPos, &c_dataMax) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L8; } __pyx_L8:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":88 * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, &c_dataMinPos, &c_dataMax) * if c_dataMinPos == 0: # <<<<<<<<<<<<<< * return c_dataMin, None, c_dataMax * else: */ __pyx_t_3 = ((__pyx_v_c_dataMinPos == 0.0) != 0); if (__pyx_t_3) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":89 * &c_dataMin, &c_dataMinPos, &c_dataMax) * if c_dataMinPos == 0: * return c_dataMin, None, c_dataMax # <<<<<<<<<<<<<< * else: * return c_dataMin, c_dataMinPos, c_dataMax */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = PyFloat_FromDouble(__pyx_v_c_dataMin); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 89, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyFloat_FromDouble(__pyx_v_c_dataMax); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 89, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 89, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_4); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_6, 1, Py_None); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_1); __pyx_t_4 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":88 * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, &c_dataMinPos, &c_dataMax) * if c_dataMinPos == 0: # <<<<<<<<<<<<<< * return c_dataMin, None, c_dataMax * else: */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":91 * return c_dataMin, None, c_dataMax * else: * return c_dataMin, c_dataMinPos, c_dataMax # <<<<<<<<<<<<<< * else: * with nogil: */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_6 = PyFloat_FromDouble(__pyx_v_c_dataMin); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = PyFloat_FromDouble(__pyx_v_c_dataMinPos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyFloat_FromDouble(__pyx_v_c_dataMax); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_4); __pyx_t_6 = 0; __pyx_t_1 = 0; __pyx_t_4 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":84 * cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] * * if minPositive: # <<<<<<<<<<<<<< * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":93 * return c_dataMin, c_dataMinPos, c_dataMax * else: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, NULL, &c_dataMax) */ /*else*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":94 * else: * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, # <<<<<<<<<<<<<< * &c_dataMin, NULL, &c_dataMax) * return c_dataMin, c_dataMax */ getMinMax(__pyx_v_c_dataPtr, __pyx_v_c_type, __pyx_v_c_dataSize, (&__pyx_v_c_dataMin), NULL, (&__pyx_v_c_dataMax)); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":93 * return c_dataMin, c_dataMinPos, c_dataMax * else: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, NULL, &c_dataMax) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L12; } __pyx_L12:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":96 * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_dataMin, NULL, &c_dataMax) * return c_dataMin, c_dataMax # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = PyFloat_FromDouble(__pyx_v_c_dataMin); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyFloat_FromDouble(__pyx_v_c_dataMax); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_4); __pyx_t_2 = 0; __pyx_t_4 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":55 * @cython.boundscheck(False) * @cython.wraparound(False) * def minMax(np.ndarray data, bint minPositive=False): # <<<<<<<<<<<<<< * """Get min, max and optionally min positive of data. * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.minMax", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_c_data); __Pyx_XDECREF((PyObject *)__pyx_v_data); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":61 * @cython.boundscheck(False) * @cython.wraparound(False) * def dataToRGBAColormap(data, # <<<<<<<<<<<<<< * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_3dataToRGBAColormap(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_2dataToRGBAColormap[] = "Compute a pixmap by applying a colormap to data.\n\n :param numpy.ndarray data: Array of data value to convert to pixmap.\n :param numpy.ndarray colormap: palette to use as colormap as an array of\n RGBA color.\n :param startValue: The value to map to the first color of the colormap.\n :param endValue: The value to map to the last color of the colormap.\n :param bool isLog10Mapping: The mapping: False for linear, True for log10.\n :param nanColor: RGBA color to use for NaNs.\n If None, the first color of the colormap.\n :type nanColor: None (the default) or a container that can be converted\n to a numpy.ndarray containing 4 elements in [0, 255].\n :returns: The corresponding pixmap of RGBA pixels as an array of 4 uint8\n with same dimensions as data and used min and max.\n :rtype: A tuple : (pixmap , (usedMin, usedMax)).\n "; static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_3dataToRGBAColormap = {"dataToRGBAColormap", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_3dataToRGBAColormap, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_2dataToRGBAColormap}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_3dataToRGBAColormap(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_data = 0; PyArrayObject *__pyx_v_colormap = 0; PyObject *__pyx_v_startValue = 0; PyObject *__pyx_v_endValue = 0; int __pyx_v_isLog10Mapping; PyObject *__pyx_v_nanColor = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("dataToRGBAColormap (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_data,&__pyx_n_s_colormap,&__pyx_n_s_startValue,&__pyx_n_s_endValue,&__pyx_n_s_isLog10Mapping,&__pyx_n_s_nanColor,0}; PyObject* values[6] = {0,0,0,0,0,0}; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":63 * def dataToRGBAColormap(data, * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, # <<<<<<<<<<<<<< * bint isLog10Mapping=False, * nanColor=None): */ values[2] = ((PyObject *)Py_None); values[3] = ((PyObject *)Py_None); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":65 * startValue=None, endValue=None, * bint isLog10Mapping=False, * nanColor=None): # <<<<<<<<<<<<<< * """Compute a pixmap by applying a colormap to data. * */ values[5] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_data)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_colormap)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("dataToRGBAColormap", 0, 2, 6, 1); __PYX_ERR(1, 61, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_startValue); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_endValue); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_isLog10Mapping); if (value) { values[4] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 5: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nanColor); if (value) { values[5] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dataToRGBAColormap") < 0)) __PYX_ERR(1, 61, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_data = values[0]; __pyx_v_colormap = ((PyArrayObject *)values[1]); __pyx_v_startValue = values[2]; __pyx_v_endValue = values[3]; if (values[4]) { __pyx_v_isLog10Mapping = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_isLog10Mapping == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 64, __pyx_L3_error) } else { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":64 * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, * bint isLog10Mapping=False, # <<<<<<<<<<<<<< * nanColor=None): * """Compute a pixmap by applying a colormap to data. */ __pyx_v_isLog10Mapping = ((int)0); } __pyx_v_nanColor = values[5]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("dataToRGBAColormap", 0, 2, 6, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(1, 61, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.dataToRGBAColormap", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_colormap), __pyx_ptype_5numpy_ndarray, 1, "colormap", 0))) __PYX_ERR(1, 62, __pyx_L1_error) __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_2dataToRGBAColormap(__pyx_self, __pyx_v_data, __pyx_v_colormap, __pyx_v_startValue, __pyx_v_endValue, __pyx_v_isLog10Mapping, __pyx_v_nanColor); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":61 * @cython.boundscheck(False) * @cython.wraparound(False) * def dataToRGBAColormap(data, # <<<<<<<<<<<<<< * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, */ /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_2dataToRGBAColormap(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_data, PyArrayObject *__pyx_v_colormap, PyObject *__pyx_v_startValue, PyObject *__pyx_v_endValue, int __pyx_v_isLog10Mapping, PyObject *__pyx_v_nanColor) { PyArrayObject *__pyx_v_c_data = 0; void *__pyx_v_c_dataPtr; unsigned long __pyx_v_c_dataSize; CYTHON_UNUSED unsigned int __pyx_v_c_dataItemSize; __Pyx_memviewslice __pyx_v_c_colormap = { 0, 0, { 0 }, { 0 }, { 0 } }; unsigned int __pyx_v_c_colormapLength; unsigned char *__pyx_v_c_nanColorPtr; PyArrayObject *__pyx_v_c_nanColor = 0; PyObject *__pyx_v_pixmap = NULL; __Pyx_memviewslice __pyx_v_c_pixmap = { 0, 0, { 0 }, { 0 }, { 0 } }; unsigned int __pyx_v_c_type; double __pyx_v_c_start; double __pyx_v_c_startExtra; double __pyx_v_c_end; __Pyx_LocalBuf_ND __pyx_pybuffernd_colormap; __Pyx_Buffer __pyx_pybuffer_colormap; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; char *__pyx_t_7; unsigned long __pyx_t_8; unsigned int __pyx_t_9; __Pyx_memviewslice __pyx_t_10 = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_t_11; int __pyx_t_12; int __pyx_t_13; double __pyx_t_14; Py_ssize_t __pyx_t_15; Py_ssize_t __pyx_t_16; Py_ssize_t __pyx_t_17; Py_ssize_t __pyx_t_18; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("dataToRGBAColormap", 0); __Pyx_INCREF(__pyx_v_data); __pyx_pybuffer_colormap.pybuffer.buf = NULL; __pyx_pybuffer_colormap.refcount = 0; __pyx_pybuffernd_colormap.data = NULL; __pyx_pybuffernd_colormap.rcbuffer = &__pyx_pybuffer_colormap; { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_colormap.rcbuffer->pybuffer, (PyObject*)__pyx_v_colormap, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 2, 0, __pyx_stack) == -1)) __PYX_ERR(1, 61, __pyx_L1_error) } __pyx_pybuffernd_colormap.diminfo[0].strides = __pyx_pybuffernd_colormap.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_colormap.diminfo[0].shape = __pyx_pybuffernd_colormap.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_colormap.diminfo[1].strides = __pyx_pybuffernd_colormap.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_colormap.diminfo[1].shape = __pyx_pybuffernd_colormap.rcbuffer->pybuffer.shape[1]; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":83 * """ * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': # <<<<<<<<<<<<<< * data = np.asarray(data, dtype=np.float32) * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_data, __pyx_n_s_dtype); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_str); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_t_2, 1, 0, NULL, NULL, &__pyx_slice_, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_3 = (__Pyx_PyString_Equals(__pyx_t_1, __pyx_n_s_f2, Py_EQ)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(1, 83, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_3) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":84 * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': * data = np.asarray(data, dtype=np.float32) # <<<<<<<<<<<<<< * * cdef np.ndarray c_data = np.ascontiguousarray(data) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_asarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_data); __Pyx_GIVEREF(__pyx_v_data); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_data); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_float32); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_6) < 0) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 84, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_data, __pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":83 * """ * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': # <<<<<<<<<<<<<< * data = np.asarray(data, dtype=np.float32) * */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":86 * data = np.asarray(data, dtype=np.float32) * * cdef np.ndarray c_data = np.ascontiguousarray(data) # <<<<<<<<<<<<<< * cdef void * c_dataPtr = c_data.data # &c_data[0] needs dim * cdef unsigned long c_dataSize = c_data.size */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_6 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_4, __pyx_v_data) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v_data); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (!(likely(((__pyx_t_6) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_6, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(1, 86, __pyx_L1_error) __pyx_v_c_data = ((PyArrayObject *)__pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":87 * * cdef np.ndarray c_data = np.ascontiguousarray(data) * cdef void * c_dataPtr = c_data.data # &c_data[0] needs dim # <<<<<<<<<<<<<< * cdef unsigned long c_dataSize = c_data.size * cdef unsigned int c_dataItemSize = c_data.itemsize */ __pyx_t_7 = __pyx_v_c_data->data; __pyx_v_c_dataPtr = __pyx_t_7; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":88 * cdef np.ndarray c_data = np.ascontiguousarray(data) * cdef void * c_dataPtr = c_data.data # &c_data[0] needs dim * cdef unsigned long c_dataSize = c_data.size # <<<<<<<<<<<<<< * cdef unsigned int c_dataItemSize = c_data.itemsize * */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_c_data), __pyx_n_s_size); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 88, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyInt_As_unsigned_long(__pyx_t_6); if (unlikely((__pyx_t_8 == (unsigned long)-1) && PyErr_Occurred())) __PYX_ERR(1, 88, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_c_dataSize = __pyx_t_8; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":89 * cdef void * c_dataPtr = c_data.data # &c_data[0] needs dim * cdef unsigned long c_dataSize = c_data.size * cdef unsigned int c_dataItemSize = c_data.itemsize # <<<<<<<<<<<<<< * * cdef unsigned char[:, :] c_colormap = colormap */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_c_data), __pyx_n_s_itemsize); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 89, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_9 = __Pyx_PyInt_As_unsigned_int(__pyx_t_6); if (unlikely((__pyx_t_9 == (unsigned int)-1) && PyErr_Occurred())) __PYX_ERR(1, 89, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_c_dataItemSize = __pyx_t_9; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":91 * cdef unsigned int c_dataItemSize = c_data.itemsize * * cdef unsigned char[:, :] c_colormap = colormap # <<<<<<<<<<<<<< * cdef unsigned int c_colormapLength = len(colormap) * */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_unsigned_char(((PyObject *)__pyx_v_colormap), PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(1, 91, __pyx_L1_error) __pyx_v_c_colormap = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":92 * * cdef unsigned char[:, :] c_colormap = colormap * cdef unsigned int c_colormapLength = len(colormap) # <<<<<<<<<<<<<< * * cdef unsigned char * c_nanColorPtr */ __pyx_t_11 = PyObject_Length(((PyObject *)__pyx_v_colormap)); if (unlikely(__pyx_t_11 == ((Py_ssize_t)-1))) __PYX_ERR(1, 92, __pyx_L1_error) __pyx_v_c_colormapLength = __pyx_t_11; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":96 * cdef unsigned char * c_nanColorPtr * cdef np.ndarray c_nanColor * if nanColor is None: # <<<<<<<<<<<<<< * c_nanColorPtr = NULL * else: */ __pyx_t_3 = (__pyx_v_nanColor == Py_None); __pyx_t_12 = (__pyx_t_3 != 0); if (__pyx_t_12) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":97 * cdef np.ndarray c_nanColor * if nanColor is None: * c_nanColorPtr = NULL # <<<<<<<<<<<<<< * else: * c_nanColor = np.asarray(nanColor, dtype=np.uint8, order='C') */ __pyx_v_c_nanColorPtr = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":96 * cdef unsigned char * c_nanColorPtr * cdef np.ndarray c_nanColor * if nanColor is None: # <<<<<<<<<<<<<< * c_nanColorPtr = NULL * else: */ goto __pyx_L4; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":99 * c_nanColorPtr = NULL * else: * c_nanColor = np.asarray(nanColor, dtype=np.uint8, order='C') # <<<<<<<<<<<<<< * c_nanColorPtr = c_nanColor.data * */ /*else*/ { __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_asarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_v_nanColor); __Pyx_GIVEREF(__pyx_v_nanColor); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_v_nanColor); __pyx_t_4 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_uint8); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_order, __pyx_n_s_C) < 0) __PYX_ERR(1, 99, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, __pyx_t_4); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(1, 99, __pyx_L1_error) __pyx_v_c_nanColor = ((PyArrayObject *)__pyx_t_5); __pyx_t_5 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":100 * else: * c_nanColor = np.asarray(nanColor, dtype=np.uint8, order='C') * c_nanColorPtr = c_nanColor.data # <<<<<<<<<<<<<< * * pixmap = np.empty((data.size, 4), dtype=np.uint8) */ __pyx_v_c_nanColorPtr = ((unsigned char *)__pyx_v_c_nanColor->data); } __pyx_L4:; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":102 * c_nanColorPtr = c_nanColor.data * * pixmap = np.empty((data.size, 4), dtype=np.uint8) # <<<<<<<<<<<<<< * cdef unsigned char[:, :] c_pixmap = pixmap * */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_data, __pyx_n_s_size); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_5); __Pyx_INCREF(__pyx_int_4); __Pyx_GIVEREF(__pyx_int_4); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_int_4); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_uint8); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_pixmap = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":103 * * pixmap = np.empty((data.size, 4), dtype=np.uint8) * cdef unsigned char[:, :] c_pixmap = pixmap # <<<<<<<<<<<<<< * * cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_unsigned_char(__pyx_v_pixmap, PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(1, 103, __pyx_L1_error) __pyx_v_c_pixmap = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":105 * cdef unsigned char[:, :] c_pixmap = pixmap * * cdef unsigned int c_type = _NUMPY_TO_TYPE_DESC[data.dtype.str[1:]] # <<<<<<<<<<<<<< * * cdef double c_start, c_startExtra, c_end */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_NUMPY_TO_TYPE_DESC); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_data, __pyx_n_s_dtype); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_str); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetSlice(__pyx_t_5, 1, 0, NULL, NULL, &__pyx_slice_, 1, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_GetItem(__pyx_t_2, __pyx_t_6); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_9 = __Pyx_PyInt_As_unsigned_int(__pyx_t_5); if (unlikely((__pyx_t_9 == (unsigned int)-1) && PyErr_Occurred())) __PYX_ERR(1, 105, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_c_type = __pyx_t_9; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":108 * * cdef double c_start, c_startExtra, c_end * if startValue is None or endValue is None: # <<<<<<<<<<<<<< * if isLog10Mapping: * with nogil: */ __pyx_t_3 = (__pyx_v_startValue == Py_None); __pyx_t_13 = (__pyx_t_3 != 0); if (!__pyx_t_13) { } else { __pyx_t_12 = __pyx_t_13; goto __pyx_L6_bool_binop_done; } __pyx_t_13 = (__pyx_v_endValue == Py_None); __pyx_t_3 = (__pyx_t_13 != 0); __pyx_t_12 = __pyx_t_3; __pyx_L6_bool_binop_done:; if (__pyx_t_12) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":109 * cdef double c_start, c_startExtra, c_end * if startValue is None or endValue is None: * if isLog10Mapping: # <<<<<<<<<<<<<< * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, */ __pyx_t_12 = (__pyx_v_isLog10Mapping != 0); if (__pyx_t_12) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":110 * if startValue is None or endValue is None: * if isLog10Mapping: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_startExtra, &c_start, &c_end) */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":111 * if isLog10Mapping: * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, # <<<<<<<<<<<<<< * &c_startExtra, &c_start, &c_end) * else: */ getMinMax(__pyx_v_c_dataPtr, __pyx_v_c_type, __pyx_v_c_dataSize, (&__pyx_v_c_startExtra), (&__pyx_v_c_start), (&__pyx_v_c_end)); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":110 * if startValue is None or endValue is None: * if isLog10Mapping: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_startExtra, &c_start, &c_end) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L11; } __pyx_L11:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":109 * cdef double c_start, c_startExtra, c_end * if startValue is None or endValue is None: * if isLog10Mapping: # <<<<<<<<<<<<<< * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, */ goto __pyx_L8; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":114 * &c_startExtra, &c_start, &c_end) * else: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_start, NULL, &c_end) */ /*else*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":115 * else: * with nogil: * getMinMax(c_dataPtr, c_type, c_dataSize, # <<<<<<<<<<<<<< * &c_start, NULL, &c_end) * */ getMinMax(__pyx_v_c_dataPtr, __pyx_v_c_type, __pyx_v_c_dataSize, (&__pyx_v_c_start), NULL, (&__pyx_v_c_end)); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":114 * &c_startExtra, &c_start, &c_end) * else: * with nogil: # <<<<<<<<<<<<<< * getMinMax(c_dataPtr, c_type, c_dataSize, * &c_start, NULL, &c_end) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L14; } __pyx_L14:; } } } __pyx_L8:; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":118 * &c_start, NULL, &c_end) * * if startValue is not None: # <<<<<<<<<<<<<< * c_start = startValue * if endValue is not None: */ __pyx_t_12 = (__pyx_v_startValue != Py_None); __pyx_t_3 = (__pyx_t_12 != 0); if (__pyx_t_3) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":119 * * if startValue is not None: * c_start = startValue # <<<<<<<<<<<<<< * if endValue is not None: * c_end = endValue */ __pyx_t_14 = __pyx_PyFloat_AsDouble(__pyx_v_startValue); if (unlikely((__pyx_t_14 == (double)-1) && PyErr_Occurred())) __PYX_ERR(1, 119, __pyx_L1_error) __pyx_v_c_start = __pyx_t_14; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":118 * &c_start, NULL, &c_end) * * if startValue is not None: # <<<<<<<<<<<<<< * c_start = startValue * if endValue is not None: */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":120 * if startValue is not None: * c_start = startValue * if endValue is not None: # <<<<<<<<<<<<<< * c_end = endValue * else: */ __pyx_t_3 = (__pyx_v_endValue != Py_None); __pyx_t_12 = (__pyx_t_3 != 0); if (__pyx_t_12) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":121 * c_start = startValue * if endValue is not None: * c_end = endValue # <<<<<<<<<<<<<< * else: * c_start = startValue */ __pyx_t_14 = __pyx_PyFloat_AsDouble(__pyx_v_endValue); if (unlikely((__pyx_t_14 == (double)-1) && PyErr_Occurred())) __PYX_ERR(1, 121, __pyx_L1_error) __pyx_v_c_end = __pyx_t_14; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":120 * if startValue is not None: * c_start = startValue * if endValue is not None: # <<<<<<<<<<<<<< * c_end = endValue * else: */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":108 * * cdef double c_start, c_startExtra, c_end * if startValue is None or endValue is None: # <<<<<<<<<<<<<< * if isLog10Mapping: * with nogil: */ goto __pyx_L5; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":123 * c_end = endValue * else: * c_start = startValue # <<<<<<<<<<<<<< * c_end = endValue * */ /*else*/ { __pyx_t_14 = __pyx_PyFloat_AsDouble(__pyx_v_startValue); if (unlikely((__pyx_t_14 == (double)-1) && PyErr_Occurred())) __PYX_ERR(1, 123, __pyx_L1_error) __pyx_v_c_start = __pyx_t_14; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":124 * else: * c_start = startValue * c_end = endValue # <<<<<<<<<<<<<< * * with nogil: */ __pyx_t_14 = __pyx_PyFloat_AsDouble(__pyx_v_endValue); if (unlikely((__pyx_t_14 == (double)-1) && PyErr_Occurred())) __PYX_ERR(1, 124, __pyx_L1_error) __pyx_v_c_end = __pyx_t_14; } __pyx_L5:; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":126 * c_end = endValue * * with nogil: # <<<<<<<<<<<<<< * colormapFillPixmap(c_dataPtr, * c_type, */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":133 * c_end, * isLog10Mapping, * &c_colormap[0, 0], # <<<<<<<<<<<<<< * c_colormapLength, * c_nanColorPtr, */ __pyx_t_15 = 0; __pyx_t_16 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":136 * c_colormapLength, * c_nanColorPtr, * &c_pixmap[0, 0]) # <<<<<<<<<<<<<< * * pixmap.shape = data.shape + (4,) */ __pyx_t_17 = 0; __pyx_t_18 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":127 * * with nogil: * colormapFillPixmap(c_dataPtr, # <<<<<<<<<<<<<< * c_type, * c_dataSize, */ colormapFillPixmap(__pyx_v_c_dataPtr, __pyx_v_c_type, __pyx_v_c_dataSize, __pyx_v_c_start, __pyx_v_c_end, __pyx_v_isLog10Mapping, (&(*((unsigned char *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_colormap.data + __pyx_t_15 * __pyx_v_c_colormap.strides[0]) ) + __pyx_t_16 * __pyx_v_c_colormap.strides[1]) )))), __pyx_v_c_colormapLength, __pyx_v_c_nanColorPtr, (&(*((unsigned char *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_pixmap.data + __pyx_t_17 * __pyx_v_c_pixmap.strides[0]) ) + __pyx_t_18 * __pyx_v_c_pixmap.strides[1]) ))))); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":126 * c_end = endValue * * with nogil: # <<<<<<<<<<<<<< * colormapFillPixmap(c_dataPtr, * c_type, */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L19; } __pyx_L19:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":138 * &c_pixmap[0, 0]) * * pixmap.shape = data.shape + (4,) # <<<<<<<<<<<<<< * return pixmap, (c_start, c_end) * */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_data, __pyx_n_s_shape); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_tuple__3); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (__Pyx_PyObject_SetAttrStr(__pyx_v_pixmap, __pyx_n_s_shape, __pyx_t_6) < 0) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":139 * * pixmap.shape = data.shape + (4,) * return pixmap, (c_start, c_end) # <<<<<<<<<<<<<< * * def fastLog10(double value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_6 = PyFloat_FromDouble(__pyx_v_c_start); if (unlikely(!__pyx_t_6)) __PYX_ERR(1, 139, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = PyFloat_FromDouble(__pyx_v_c_end); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 139, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(1, 139, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_5); __pyx_t_6 = 0; __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(1, 139, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_pixmap); __Pyx_GIVEREF(__pyx_v_pixmap); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_pixmap); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":61 * @cython.boundscheck(False) * @cython.wraparound(False) * def dataToRGBAColormap(data, # <<<<<<<<<<<<<< * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __PYX_XDEC_MEMVIEW(&__pyx_t_10, 1); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_colormap.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.dataToRGBAColormap", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_colormap.rcbuffer->pybuffer); __pyx_L2:; __Pyx_XDECREF((PyObject *)__pyx_v_c_data); __PYX_XDEC_MEMVIEW(&__pyx_v_c_colormap, 1); __Pyx_XDECREF((PyObject *)__pyx_v_c_nanColor); __Pyx_XDECREF(__pyx_v_pixmap); __PYX_XDEC_MEMVIEW(&__pyx_v_c_pixmap, 1); __Pyx_XDECREF(__pyx_v_data); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":141 * return pixmap, (c_start, c_end) * * def fastLog10(double value): # <<<<<<<<<<<<<< * return _fastLog10(value) */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_5fastLog10(PyObject *__pyx_self, PyObject *__pyx_arg_value); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_5fastLog10 = {"fastLog10", (PyCFunction)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_5fastLog10, METH_O, 0}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_5fastLog10(PyObject *__pyx_self, PyObject *__pyx_arg_value) { double __pyx_v_value; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("fastLog10 (wrapper)", 0); assert(__pyx_arg_value); { __pyx_v_value = __pyx_PyFloat_AsDouble(__pyx_arg_value); if (unlikely((__pyx_v_value == (double)-1) && PyErr_Occurred())) __PYX_ERR(1, 141, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.fastLog10", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_4fastLog10(__pyx_self, ((double)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_4fastLog10(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_value) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("fastLog10", 0); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":142 * * def fastLog10(double value): * return _fastLog10(value) # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyFloat_FromDouble(fastLog10(__pyx_v_value)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 142, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":141 * return pixmap, (c_start, c_end) * * def fastLog10(double value): # <<<<<<<<<<<<<< * return _fastLog10(value) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.fastLog10", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":54 * * @cython.boundscheck(False) * def pnpoly(vertices, points, bint border=True): # <<<<<<<<<<<<<< * """ * :param vertices: Array Nx2 with the coordenates of the polygon vertices */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_7pnpoly(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_6pnpoly[] = "\n :param vertices: Array Nx2 with the coordenates of the polygon vertices\n :type vertices: ndarray\n :param points: Points to be checked out.\n :type points: ndarray Nx2 or list of [x, y] pairs\n :param border: Flag to indicate if a pointon a vertex is to be in or out\n :type border: boolean (default True)\n "; static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_7pnpoly = {"pnpoly", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_7pnpoly, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6PyMca5_10PyMcaGraph_6ctools_7_ctools_6pnpoly}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_7pnpoly(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_vertices = 0; PyObject *__pyx_v_points = 0; int __pyx_v_border; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("pnpoly (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_vertices,&__pyx_n_s_points,&__pyx_n_s_border,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_vertices)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_points)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("pnpoly", 0, 2, 3, 1); __PYX_ERR(2, 54, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_border); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "pnpoly") < 0)) __PYX_ERR(2, 54, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_vertices = values[0]; __pyx_v_points = values[1]; if (values[2]) { __pyx_v_border = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_border == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 54, __pyx_L3_error) } else { __pyx_v_border = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("pnpoly", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 54, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.pnpoly", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_6pnpoly(__pyx_self, __pyx_v_vertices, __pyx_v_points, __pyx_v_border); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_6pnpoly(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("pnpoly", 0); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":63 * :type border: boolean (default True) * """ * if isinstance(points, numpy.ndarray): # <<<<<<<<<<<<<< * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_points, __pyx_ptype_5numpy_ndarray); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":64 * """ * if isinstance(points, numpy.ndarray): * if points.dtype == numpy.float32: # <<<<<<<<<<<<<< * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_points, __pyx_n_s_dtype); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 64, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 64, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_2) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":65 * if isinstance(points, numpy.ndarray): * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) # <<<<<<<<<<<<<< * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, * numpy.uint32, numpy.uint8, numpy.uint16]: */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pnpolyFloat); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyBool_FromLong(__pyx_v_border); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_6, __pyx_v_vertices, __pyx_v_points, __pyx_t_3}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_6, __pyx_v_vertices, __pyx_v_points, __pyx_t_3}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else #endif { __pyx_t_8 = PyTuple_New(3+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_6) { __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_6); __pyx_t_6 = NULL; } __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_v_vertices); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_points); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_8, 2+__pyx_t_7, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 65, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":64 * """ * if isinstance(points, numpy.ndarray): * if points.dtype == numpy.float32: # <<<<<<<<<<<<<< * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":66 * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, # <<<<<<<<<<<<<< * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_points, __pyx_n_s_dtype); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_int32); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L5_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_int8); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L5_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_int16); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L5_bool_binop_done; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":67 * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, * numpy.uint32, numpy.uint8, numpy.uint16]: # <<<<<<<<<<<<<< * return _pnpolyInt(vertices, points, border) * return _pnpolyd(vertices, points, border) */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_uint32); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":66 * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, # <<<<<<<<<<<<<< * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L5_bool_binop_done; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":67 * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, * numpy.uint32, numpy.uint8, numpy.uint16]: # <<<<<<<<<<<<<< * return _pnpolyInt(vertices, points, border) * return _pnpolyd(vertices, points, border) */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_uint8); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":66 * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, # <<<<<<<<<<<<<< * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L5_bool_binop_done; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":67 * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, * numpy.uint32, numpy.uint8, numpy.uint16]: # <<<<<<<<<<<<<< * return _pnpolyInt(vertices, points, border) * return _pnpolyd(vertices, points, border) */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_uint16); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyObject_RichCompare(__pyx_t_4, __pyx_t_8, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":66 * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, # <<<<<<<<<<<<<< * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_2 = __pyx_t_1; __pyx_L5_bool_binop_done:; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":68 * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) # <<<<<<<<<<<<<< * return _pnpolyd(vertices, points, border) * */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pnpolyInt); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_8 = __Pyx_PyBool_FromLong(__pyx_v_border); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_3 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_3, __pyx_v_vertices, __pyx_v_points, __pyx_t_8}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_3, __pyx_v_vertices, __pyx_v_points, __pyx_t_8}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } else #endif { __pyx_t_6 = PyTuple_New(3+__pyx_t_7); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (__pyx_t_3) { __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = NULL; } __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_6, 0+__pyx_t_7, __pyx_v_vertices); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_6, 1+__pyx_t_7, __pyx_v_points); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_6, 2+__pyx_t_7, __pyx_t_8); __pyx_t_8 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":66 * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) * elif points.dtype in [numpy.int32, numpy.int8, numpy.int16, # <<<<<<<<<<<<<< * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":63 * :type border: boolean (default True) * """ * if isinstance(points, numpy.ndarray): # <<<<<<<<<<<<<< * if points.dtype == numpy.float32: * return _pnpolyFloat(vertices, points, border) */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":69 * numpy.uint32, numpy.uint8, numpy.uint16]: * return _pnpolyInt(vertices, points, border) * return _pnpolyd(vertices, points, border) # <<<<<<<<<<<<<< * * @cython.boundscheck(False) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pnpolyd); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyBool_FromLong(__pyx_v_border); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_8, __pyx_v_vertices, __pyx_v_points, __pyx_t_6}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[4] = {__pyx_t_8, __pyx_v_vertices, __pyx_v_points, __pyx_t_6}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_7, 3+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_3 = PyTuple_New(3+__pyx_t_7); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (__pyx_t_8) { __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_8); __pyx_t_8 = NULL; } __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_3, 0+__pyx_t_7, __pyx_v_vertices); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_3, 1+__pyx_t_7, __pyx_v_points); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 2+__pyx_t_7, __pyx_t_6); __pyx_t_6 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_3, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 69, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":54 * * @cython.boundscheck(False) * def pnpoly(vertices, points, bint border=True): # <<<<<<<<<<<<<< * """ * :param vertices: Array Nx2 with the coordenates of the polygon vertices */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools.pnpoly", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":72 * * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_9_pnpolyd(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_9_pnpolyd = {"_pnpolyd", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_9_pnpolyd, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_9_pnpolyd(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_vertices = 0; PyObject *__pyx_v_points = 0; int __pyx_v_border; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_pnpolyd (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_vertices,&__pyx_n_s_points,&__pyx_n_s_border,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_vertices)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_points)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_pnpolyd", 0, 2, 3, 1); __PYX_ERR(2, 72, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_border); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_pnpolyd") < 0)) __PYX_ERR(2, 72, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_vertices = values[0]; __pyx_v_points = values[1]; if (values[2]) { __pyx_v_border = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_border == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 72, __pyx_L3_error) } else { __pyx_v_border = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_pnpolyd", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 72, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyd", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_8_pnpolyd(__pyx_self, __pyx_v_vertices, __pyx_v_points, __pyx_v_border); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_8_pnpolyd(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border) { __Pyx_memviewslice __pyx_v_c_vertices = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_vertices; __Pyx_memviewslice __pyx_v_c_points = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_points; PyArrayObject *__pyx_v_mask = 0; __Pyx_LocalBuf_ND __pyx_pybuffernd_mask; __Pyx_Buffer __pyx_pybuffer_mask; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyArrayObject *__pyx_t_7 = NULL; Py_ssize_t __pyx_t_8; Py_ssize_t __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_pnpolyd", 0); __pyx_pybuffer_mask.pybuffer.buf = NULL; __pyx_pybuffer_mask.refcount = 0; __pyx_pybuffernd_mask.data = NULL; __pyx_pybuffernd_mask.rcbuffer = &__pyx_pybuffer_mask; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":73 * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_vertices); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":74 * def _pnpolyd(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 74, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(2, 74, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":73 * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(2, 73, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_c_vertices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":75 * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] # <<<<<<<<<<<<<< * assert c_vertices.shape[1] == 2 * cdef double[:,:] c_points = numpy.ascontiguousarray(points, */ __pyx_v_n_vertices = (__pyx_v_c_vertices.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":76 * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 # <<<<<<<<<<<<<< * cdef double[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float64) */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_vertices.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 76, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":77 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef double[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_points = c_points.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 77, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 77, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 77, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_points); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":78 * assert c_vertices.shape[1] == 2 * cdef double[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 */ __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(2, 78, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":77 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef double[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_points = c_points.shape[0] */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 77, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(2, 77, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_c_points = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":79 * cdef double[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float64) * cdef int n_points = c_points.shape[0] # <<<<<<<<<<<<<< * assert c_points.shape[1] == 2 * */ __pyx_v_n_points = (__pyx_v_c_points.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":80 * dtype=numpy.float64) * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 # <<<<<<<<<<<<<< * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_points.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 80, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":83 * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) # <<<<<<<<<<<<<< * with nogil: * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_n_points); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_uint8); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!(likely(((__pyx_t_2) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_2, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(2, 83, __pyx_L1_error) __pyx_t_7 = ((PyArrayObject *)__pyx_t_2); { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_mask.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { __pyx_v_mask = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf = NULL; __PYX_ERR(2, 82, __pyx_L1_error) } else {__pyx_pybuffernd_mask.diminfo[0].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_mask.diminfo[0].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[0]; } } __pyx_t_7 = 0; __pyx_v_mask = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":84 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":85 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ __pyx_t_8 = 0; __pyx_t_9 = 0; if (__pyx_t_8 < 0) __pyx_t_8 += __pyx_v_c_vertices.shape[0]; if (__pyx_t_9 < 0) __pyx_t_9 += __pyx_v_c_vertices.shape[1]; __pyx_t_10 = 0; __pyx_t_11 = 0; if (__pyx_t_10 < 0) __pyx_t_10 += __pyx_v_c_points.shape[0]; if (__pyx_t_11 < 0) __pyx_t_11 += __pyx_v_c_points.shape[1]; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":86 * with nogil: * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) # <<<<<<<<<<<<<< * return mask * */ __pyx_t_12 = 0; if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_pybuffernd_mask.diminfo[0].shape; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":85 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ PointsInsidePolygon((&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_vertices.data + __pyx_t_8 * __pyx_v_c_vertices.strides[0]) ) + __pyx_t_9 * __pyx_v_c_vertices.strides[1]) )))), __pyx_v_n_vertices, (&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_points.data + __pyx_t_10 * __pyx_v_c_points.strides[0]) ) + __pyx_t_11 * __pyx_v_c_points.strides[1]) )))), __pyx_v_n_points, __pyx_v_border, (&(*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_uint8_t *, __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf, __pyx_t_12, __pyx_pybuffernd_mask.diminfo[0].strides)))); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":84 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L5; } __pyx_L5:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":87 * _pnpoly(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) * return mask # <<<<<<<<<<<<<< * * @cython.boundscheck(False) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_mask)); __pyx_r = ((PyObject *)__pyx_v_mask); goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":72 * * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyd", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __pyx_L2:; __PYX_XDEC_MEMVIEW(&__pyx_v_c_vertices, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_points, 1); __Pyx_XDECREF((PyObject *)__pyx_v_mask); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":90 * * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_11_pnpolyFloat(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_11_pnpolyFloat = {"_pnpolyFloat", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_11_pnpolyFloat, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_11_pnpolyFloat(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_vertices = 0; PyObject *__pyx_v_points = 0; int __pyx_v_border; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_pnpolyFloat (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_vertices,&__pyx_n_s_points,&__pyx_n_s_border,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_vertices)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_points)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_pnpolyFloat", 0, 2, 3, 1); __PYX_ERR(2, 90, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_border); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_pnpolyFloat") < 0)) __PYX_ERR(2, 90, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_vertices = values[0]; __pyx_v_points = values[1]; if (values[2]) { __pyx_v_border = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_border == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 90, __pyx_L3_error) } else { __pyx_v_border = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_pnpolyFloat", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 90, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyFloat", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_10_pnpolyFloat(__pyx_self, __pyx_v_vertices, __pyx_v_points, __pyx_v_border); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_10_pnpolyFloat(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border) { __Pyx_memviewslice __pyx_v_c_vertices = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_vertices; __Pyx_memviewslice __pyx_v_c_points = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_points; PyArrayObject *__pyx_v_mask = 0; __Pyx_LocalBuf_ND __pyx_pybuffernd_mask; __Pyx_Buffer __pyx_pybuffer_mask; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_t_7 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyArrayObject *__pyx_t_8 = NULL; Py_ssize_t __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; Py_ssize_t __pyx_t_13; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_pnpolyFloat", 0); __pyx_pybuffer_mask.pybuffer.buf = NULL; __pyx_pybuffer_mask.refcount = 0; __pyx_pybuffernd_mask.data = NULL; __pyx_pybuffernd_mask.rcbuffer = &__pyx_pybuffer_mask; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":91 * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_vertices); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":92 * def _pnpolyFloat(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 92, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 92, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 92, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(2, 92, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":91 * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 91, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(2, 91, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_c_vertices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":93 * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] # <<<<<<<<<<<<<< * assert c_vertices.shape[1] == 2 * cdef float[:,:] c_points = numpy.ascontiguousarray(points, */ __pyx_v_n_vertices = (__pyx_v_c_vertices.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":94 * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 # <<<<<<<<<<<<<< * cdef float[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float32) */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_vertices.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 94, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":95 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef float[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.float32) * cdef int n_points = c_points.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_points); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":96 * assert c_vertices.shape[1] == 2 * cdef float[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float32) # <<<<<<<<<<<<<< * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 */ __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float32); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 96, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(2, 96, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":95 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef float[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.float32) * cdef int n_points = c_points.shape[0] */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(2, 95, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_c_points = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":97 * cdef float[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.float32) * cdef int n_points = c_points.shape[0] # <<<<<<<<<<<<<< * assert c_points.shape[1] == 2 * */ __pyx_v_n_points = (__pyx_v_c_points.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":98 * dtype=numpy.float32) * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 # <<<<<<<<<<<<<< * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_points.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 98, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":101 * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) # <<<<<<<<<<<<<< * with nogil: * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_n_points); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_uint8); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!(likely(((__pyx_t_2) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_2, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(2, 101, __pyx_L1_error) __pyx_t_8 = ((PyArrayObject *)__pyx_t_2); { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_mask.rcbuffer->pybuffer, (PyObject*)__pyx_t_8, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { __pyx_v_mask = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf = NULL; __PYX_ERR(2, 100, __pyx_L1_error) } else {__pyx_pybuffernd_mask.diminfo[0].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_mask.diminfo[0].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[0]; } } __pyx_t_8 = 0; __pyx_v_mask = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":102 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":103 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ __pyx_t_9 = 0; __pyx_t_10 = 0; if (__pyx_t_9 < 0) __pyx_t_9 += __pyx_v_c_vertices.shape[0]; if (__pyx_t_10 < 0) __pyx_t_10 += __pyx_v_c_vertices.shape[1]; __pyx_t_11 = 0; __pyx_t_12 = 0; if (__pyx_t_11 < 0) __pyx_t_11 += __pyx_v_c_points.shape[0]; if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_v_c_points.shape[1]; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":104 * with nogil: * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) # <<<<<<<<<<<<<< * return mask * */ __pyx_t_13 = 0; if (__pyx_t_13 < 0) __pyx_t_13 += __pyx_pybuffernd_mask.diminfo[0].shape; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":103 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ PointsInsidePolygonF((&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_vertices.data + __pyx_t_9 * __pyx_v_c_vertices.strides[0]) ) + __pyx_t_10 * __pyx_v_c_vertices.strides[1]) )))), __pyx_v_n_vertices, (&(*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_points.data + __pyx_t_11 * __pyx_v_c_points.strides[0]) ) + __pyx_t_12 * __pyx_v_c_points.strides[1]) )))), __pyx_v_n_points, __pyx_v_border, (&(*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_uint8_t *, __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf, __pyx_t_13, __pyx_pybuffernd_mask.diminfo[0].strides)))); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":102 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L5; } __pyx_L5:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":105 * _pnpolyf(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) * return mask # <<<<<<<<<<<<<< * * @cython.boundscheck(False) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_mask)); __pyx_r = ((PyObject *)__pyx_v_mask); goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":90 * * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); __PYX_XDEC_MEMVIEW(&__pyx_t_7, 1); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyFloat", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __pyx_L2:; __PYX_XDEC_MEMVIEW(&__pyx_v_c_vertices, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_points, 1); __Pyx_XDECREF((PyObject *)__pyx_v_mask); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":108 * * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_13_pnpolyInt(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_13_pnpolyInt = {"_pnpolyInt", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_13_pnpolyInt, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_6PyMca5_10PyMcaGraph_6ctools_7_ctools_13_pnpolyInt(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_vertices = 0; PyObject *__pyx_v_points = 0; int __pyx_v_border; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_pnpolyInt (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_vertices,&__pyx_n_s_points,&__pyx_n_s_border,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_vertices)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_points)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("_pnpolyInt", 0, 2, 3, 1); __PYX_ERR(2, 108, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_border); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "_pnpolyInt") < 0)) __PYX_ERR(2, 108, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_vertices = values[0]; __pyx_v_points = values[1]; if (values[2]) { __pyx_v_border = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_border == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 108, __pyx_L3_error) } else { __pyx_v_border = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("_pnpolyInt", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 108, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyInt", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_12_pnpolyInt(__pyx_self, __pyx_v_vertices, __pyx_v_points, __pyx_v_border); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_10PyMcaGraph_6ctools_7_ctools_12_pnpolyInt(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_vertices, PyObject *__pyx_v_points, int __pyx_v_border) { __Pyx_memviewslice __pyx_v_c_vertices = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_vertices; __Pyx_memviewslice __pyx_v_c_points = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_n_points; PyArrayObject *__pyx_v_mask = 0; __Pyx_LocalBuf_ND __pyx_pybuffernd_mask; __Pyx_Buffer __pyx_pybuffer_mask; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_t_7 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyArrayObject *__pyx_t_8 = NULL; Py_ssize_t __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; Py_ssize_t __pyx_t_13; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_pnpolyInt", 0); __pyx_pybuffer_mask.pybuffer.buf = NULL; __pyx_pybuffer_mask.refcount = 0; __pyx_pybuffernd_mask.data = NULL; __pyx_pybuffernd_mask.rcbuffer = &__pyx_pybuffer_mask; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":109 * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 109, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 109, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 109, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_vertices); __Pyx_GIVEREF(__pyx_v_vertices); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_vertices); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":110 * def _pnpolyInt(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(2, 110, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":109 * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 109, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_t_5, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(2, 109, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_c_vertices = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":111 * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] # <<<<<<<<<<<<<< * assert c_vertices.shape[1] == 2 * cdef int[:,:] c_points = numpy.ascontiguousarray(points, */ __pyx_v_n_vertices = (__pyx_v_c_vertices.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":112 * dtype=numpy.float64) * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 # <<<<<<<<<<<<<< * cdef int[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.int32) */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_vertices.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 112, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":113 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef int[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.int32) * cdef int n_points = c_points.shape[0] */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_numpy); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_points); __Pyx_GIVEREF(__pyx_v_points); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_points); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":114 * assert c_vertices.shape[1] == 2 * cdef int[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.int32) # <<<<<<<<<<<<<< * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 */ __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 114, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 114, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int32); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 114, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(2, 114, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":113 * cdef int n_vertices = c_vertices.shape[0] * assert c_vertices.shape[1] == 2 * cdef int[:,:] c_points = numpy.ascontiguousarray(points, # <<<<<<<<<<<<<< * dtype=numpy.int32) * cdef int n_points = c_points.shape[0] */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_dsds_int(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(2, 113, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_c_points = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":115 * cdef int[:,:] c_points = numpy.ascontiguousarray(points, * dtype=numpy.int32) * cdef int n_points = c_points.shape[0] # <<<<<<<<<<<<<< * assert c_points.shape[1] == 2 * */ __pyx_v_n_points = (__pyx_v_c_points.shape[0]); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":116 * dtype=numpy.int32) * cdef int n_points = c_points.shape[0] * assert c_points.shape[1] == 2 # <<<<<<<<<<<<<< * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!(((__pyx_v_c_points.shape[1]) == 2) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 116, __pyx_L1_error) } } #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":119 * * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) # <<<<<<<<<<<<<< * with nogil: * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_n_points); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_uint8); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 119, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (!(likely(((__pyx_t_2) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_2, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(2, 119, __pyx_L1_error) __pyx_t_8 = ((PyArrayObject *)__pyx_t_2); { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_mask.rcbuffer->pybuffer, (PyObject*)__pyx_t_8, &__Pyx_TypeInfo_nn___pyx_t_5numpy_uint8_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) { __pyx_v_mask = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf = NULL; __PYX_ERR(2, 118, __pyx_L1_error) } else {__pyx_pybuffernd_mask.diminfo[0].strides = __pyx_pybuffernd_mask.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_mask.diminfo[0].shape = __pyx_pybuffernd_mask.rcbuffer->pybuffer.shape[0]; } } __pyx_t_8 = 0; __pyx_v_mask = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":120 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":121 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ __pyx_t_9 = 0; __pyx_t_10 = 0; if (__pyx_t_9 < 0) __pyx_t_9 += __pyx_v_c_vertices.shape[0]; if (__pyx_t_10 < 0) __pyx_t_10 += __pyx_v_c_vertices.shape[1]; __pyx_t_11 = 0; __pyx_t_12 = 0; if (__pyx_t_11 < 0) __pyx_t_11 += __pyx_v_c_points.shape[0]; if (__pyx_t_12 < 0) __pyx_t_12 += __pyx_v_c_points.shape[1]; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":122 * with nogil: * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) # <<<<<<<<<<<<<< * return mask */ __pyx_t_13 = 0; if (__pyx_t_13 < 0) __pyx_t_13 += __pyx_pybuffernd_mask.diminfo[0].shape; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":121 * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, # <<<<<<<<<<<<<< * border, &mask[0]) * return mask */ PointsInsidePolygonInt((&(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_vertices.data + __pyx_t_9 * __pyx_v_c_vertices.strides[0]) ) + __pyx_t_10 * __pyx_v_c_vertices.strides[1]) )))), __pyx_v_n_vertices, (&(*((int *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_c_points.data + __pyx_t_11 * __pyx_v_c_points.strides[0]) ) + __pyx_t_12 * __pyx_v_c_points.strides[1]) )))), __pyx_v_n_points, __pyx_v_border, (&(*__Pyx_BufPtrStrided1d(__pyx_t_5numpy_uint8_t *, __pyx_pybuffernd_mask.rcbuffer->pybuffer.buf, __pyx_t_13, __pyx_pybuffernd_mask.diminfo[0].strides)))); } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":120 * cdef numpy.ndarray[numpy.uint8_t, ndim=1] mask = \ * numpy.zeros((n_points, ), dtype=numpy.uint8) * with nogil: # <<<<<<<<<<<<<< * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L5; } __pyx_L5:; } } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":123 * _pnpolyInt32(&c_vertices[0,0], n_vertices, &c_points[0,0], n_points, * border, &mask[0]) * return mask # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_mask)); __pyx_r = ((PyObject *)__pyx_v_mask); goto __pyx_L0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":108 * * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); __PYX_XDEC_MEMVIEW(&__pyx_t_7, 1); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("PyMca5.PyMcaGraph.ctools._ctools._pnpolyInt", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_mask.rcbuffer->pybuffer); __pyx_L2:; __PYX_XDEC_MEMVIEW(&__pyx_v_c_vertices, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_points, 1); __Pyx_XDECREF((PyObject *)__pyx_v_mask); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, a) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":735 * * cdef inline object PyArray_MultiIterNew1(a): * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew2(a, b): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 735, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, a) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, a, b) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":738 * * cdef inline object PyArray_MultiIterNew2(a, b): * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew3(a, b, c): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 738, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, a, b) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, a, b, c) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":741 * * cdef inline object PyArray_MultiIterNew3(a, b, c): * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, a, b, c) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, a, b, c, d) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":744 * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 744, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, a, b, c, d) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, a, b, c, d, e) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":747 * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< * * cdef inline tuple PyDataType_SHAPE(dtype d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 747, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, a, b, c, d, e) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return d.subarray.shape * else: */ __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); if (__pyx_t_1) { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":751 * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape # <<<<<<<<<<<<<< * else: * return () */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return d.subarray.shape * else: */ } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":753 * return d.subarray.shape * else: * return () # <<<<<<<<<<<<<< * * */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_empty_tuple); __pyx_r = __pyx_empty_tuple; goto __pyx_L0; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_array_base", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":929 * * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< * PyArray_SetBaseObject(arr, base) * */ Py_INCREF(__pyx_v_base); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":930 * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< * * cdef inline object get_array_base(ndarray arr): */ (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { PyObject *__pyx_v_base; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("get_array_base", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":933 * * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< * if base is NULL: * return None */ __pyx_v_base = PyArray_BASE(__pyx_v_arr); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return base */ __pyx_t_1 = ((__pyx_v_base == NULL) != 0); if (__pyx_t_1) { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":935 * base = PyArray_BASE(arr) * if base is NULL: * return None # <<<<<<<<<<<<<< * return base * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return base */ } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":936 * if base is NULL: * return None * return base # <<<<<<<<<<<<<< * * # Versions of the import_* functions which are more suitable for */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_base)); __pyx_r = ((PyObject *)__pyx_v_base); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_array", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":942 * cdef inline int import_array() except -1: * try: * __pyx_import_array() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.multiarray failed to import") */ __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(3, 942, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":943 * try: * __pyx_import_array() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.multiarray failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(3, 943, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__4, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 944, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(3, 944, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_umath", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":948 * cdef inline int import_umath() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(3, 948, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":949 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(3, 949, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 950, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(3, 950, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_ufunc", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":954 * cdef inline int import_ufunc() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(3, 954, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":955 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(3, 955, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":956 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef extern from *: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(3, 956, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(3, 956, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_timedelta64_object", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":978 * bool * """ * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type)); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_datetime64_object", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":993 * bool * """ * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type)); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) { npy_datetime __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1003 * also needed. That can be found using `get_datetime64_unit`. * """ * return (obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) { npy_timedelta __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1010 * returns the int64 value underlying scalar numpy timedelta64 object * """ * return (obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) { NPY_DATETIMEUNIT __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1017 * returns the unit part of the dtype for a numpy datetime64 object. * """ * return (obj).obmeta.base # <<<<<<<<<<<<<< */ __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* Python wrapper */ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; Py_ssize_t __pyx_v_itemsize; PyObject *__pyx_v_format = 0; PyObject *__pyx_v_mode = 0; int __pyx_v_allocate_buffer; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = ((PyObject *)__pyx_n_s_c); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(4, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(4, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_allocate_buffer); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(4, 123, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = ((PyObject*)values[0]); __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 123, __pyx_L3_error) __pyx_v_format = values[2]; __pyx_v_mode = values[3]; if (values[4]) { __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 124, __pyx_L3_error) } else { /* "View.MemoryView":124 * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< * * cdef int idx */ __pyx_v_allocate_buffer = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(4, 123, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(4, 123, __pyx_L1_error) if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(4, 123, __pyx_L1_error) } __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { int __pyx_v_idx; Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_dim; PyObject **__pyx_v_p; char __pyx_v_order; int __pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; char *__pyx_t_7; int __pyx_t_8; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; Py_ssize_t __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); __Pyx_INCREF(__pyx_v_format); /* "View.MemoryView":130 * cdef PyObject **p * * self.ndim = len(shape) # <<<<<<<<<<<<<< * self.itemsize = itemsize * */ if (unlikely(__pyx_v_shape == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(4, 130, __pyx_L1_error) } __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(4, 130, __pyx_L1_error) __pyx_v_self->ndim = ((int)__pyx_t_1); /* "View.MemoryView":131 * * self.ndim = len(shape) * self.itemsize = itemsize # <<<<<<<<<<<<<< * * if not self.ndim: */ __pyx_v_self->itemsize = __pyx_v_itemsize; /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 134, __pyx_L1_error) /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ } /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 137, __pyx_L1_error) /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ } /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ __pyx_t_2 = PyBytes_Check(__pyx_v_format); __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_4) { /* "View.MemoryView":140 * * if not isinstance(format, bytes): * format = format.encode('ASCII') # <<<<<<<<<<<<<< * self._format = format # keep a reference to the byte string * self.format = self._format */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_3 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_n_s_ASCII) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_n_s_ASCII); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ } /* "View.MemoryView":141 * if not isinstance(format, bytes): * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< * self.format = self._format * */ if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(4, 141, __pyx_L1_error) __pyx_t_3 = __pyx_v_format; __Pyx_INCREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __Pyx_GOTREF(__pyx_v_self->_format); __Pyx_DECREF(__pyx_v_self->_format); __pyx_v_self->_format = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":142 * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string * self.format = self._format # <<<<<<<<<<<<<< * * */ if (unlikely(__pyx_v_self->_format == Py_None)) { PyErr_SetString(PyExc_TypeError, "expected bytes, NoneType found"); __PYX_ERR(4, 142, __pyx_L1_error) } __pyx_t_7 = __Pyx_PyBytes_AsWritableString(__pyx_v_self->_format); if (unlikely((!__pyx_t_7) && PyErr_Occurred())) __PYX_ERR(4, 142, __pyx_L1_error) __pyx_v_self->format = __pyx_t_7; /* "View.MemoryView":145 * * * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< * self._strides = self._shape + self.ndim * */ __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); /* "View.MemoryView":146 * * self._shape = PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< * * if not self._shape: */ __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 149, __pyx_L1_error) /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ } /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ __pyx_t_8 = 0; __pyx_t_3 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_3); __pyx_t_1 = 0; for (;;) { if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_1); __Pyx_INCREF(__pyx_t_5); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(4, 152, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_3, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_5); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 152, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_9; __pyx_v_idx = __pyx_t_8; __pyx_t_8 = (__pyx_t_8 + 1); /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":154 * for idx, dim in enumerate(shape): * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< * self._shape[idx] = dim * */ __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(4, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_6); __pyx_t_5 = 0; __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_6); if (unlikely(!__pyx_t_10)) __PYX_ERR(4, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(4, 154, __pyx_L1_error) /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ } /* "View.MemoryView":155 * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim # <<<<<<<<<<<<<< * * cdef char order */ (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(4, 158, __pyx_L1_error) if (__pyx_t_4) { /* "View.MemoryView":159 * cdef char order * if mode == 'fortran': * order = b'F' # <<<<<<<<<<<<<< * self.mode = u'fortran' * elif mode == 'c': */ __pyx_v_order = 'F'; /* "View.MemoryView":160 * if mode == 'fortran': * order = b'F' * self.mode = u'fortran' # <<<<<<<<<<<<<< * elif mode == 'c': * order = b'C' */ __Pyx_INCREF(__pyx_n_u_fortran); __Pyx_GIVEREF(__pyx_n_u_fortran); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_fortran; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ goto __pyx_L10; } /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(4, 161, __pyx_L1_error) if (likely(__pyx_t_4)) { /* "View.MemoryView":162 * self.mode = u'fortran' * elif mode == 'c': * order = b'C' # <<<<<<<<<<<<<< * self.mode = u'c' * else: */ __pyx_v_order = 'C'; /* "View.MemoryView":163 * elif mode == 'c': * order = b'C' * self.mode = u'c' # <<<<<<<<<<<<<< * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) */ __Pyx_INCREF(__pyx_n_u_c); __Pyx_GIVEREF(__pyx_n_u_c); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_c; /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ goto __pyx_L10; } /* "View.MemoryView":165 * self.mode = u'c' * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< * * self.len = fill_contig_strides_array(self._shape, self._strides, */ /*else*/ { __pyx_t_3 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_10)) __PYX_ERR(4, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(4, 165, __pyx_L1_error) } __pyx_L10:; /* "View.MemoryView":167 * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) * * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< * itemsize, self.ndim, order) * */ __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); /* "View.MemoryView":170 * itemsize, self.ndim, order) * * self.free_data = allocate_buffer # <<<<<<<<<<<<<< * self.dtype_is_object = format == b'O' * if allocate_buffer: */ __pyx_v_self->free_data = __pyx_v_allocate_buffer; /* "View.MemoryView":171 * * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< * if allocate_buffer: * */ __pyx_t_10 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_10); if (unlikely(!__pyx_t_10)) __PYX_ERR(4, 171, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_v_self->dtype_is_object = __pyx_t_4; /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ __pyx_t_4 = (__pyx_v_allocate_buffer != 0); if (__pyx_t_4) { /* "View.MemoryView":175 * * * self.data = malloc(self.len) # <<<<<<<<<<<<<< * if not self.data: * raise MemoryError("unable to allocate array data.") */ __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); /* "View.MemoryView":176 * * self.data = malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":177 * self.data = malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(4, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(4, 177, __pyx_L1_error) /* "View.MemoryView":176 * * self.data = malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = self.data * for i in range(self.len / itemsize): */ __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_4) { /* "View.MemoryView":180 * * if self.dtype_is_object: * p = self.data # <<<<<<<<<<<<<< * for i in range(self.len / itemsize): * p[i] = Py_None */ __pyx_v_p = ((PyObject **)__pyx_v_self->data); /* "View.MemoryView":181 * if self.dtype_is_object: * p = self.data * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< * p[i] = Py_None * Py_INCREF(Py_None) */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(4, 181, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(4, 181, __pyx_L1_error) } __pyx_t_1 = __Pyx_div_Py_ssize_t(__pyx_v_self->len, __pyx_v_itemsize); __pyx_t_9 = __pyx_t_1; for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_9; __pyx_t_11+=1) { __pyx_v_i = __pyx_t_11; /* "View.MemoryView":182 * p = self.data * for i in range(self.len / itemsize): * p[i] = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ (__pyx_v_p[__pyx_v_i]) = Py_None; /* "View.MemoryView":183 * for i in range(self.len / itemsize): * p[i] = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * @cname('getbuffer') */ Py_INCREF(Py_None); } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = self.data * for i in range(self.len / itemsize): */ } /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_format); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_v_bufmode; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; char *__pyx_t_4; Py_ssize_t __pyx_t_5; int __pyx_t_6; Py_ssize_t *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":187 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 # <<<<<<<<<<<<<< * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = -1; /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 188, __pyx_L1_error) __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":189 * cdef int bufmode = -1 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ goto __pyx_L3; } /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(4, 190, __pyx_L1_error) __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":191 * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") */ __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ } __pyx_L3:; /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 193, __pyx_L1_error) /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ } /* "View.MemoryView":194 * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data # <<<<<<<<<<<<<< * info.len = self.len * info.ndim = self.ndim */ __pyx_t_4 = __pyx_v_self->data; __pyx_v_info->buf = __pyx_t_4; /* "View.MemoryView":195 * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data * info.len = self.len # <<<<<<<<<<<<<< * info.ndim = self.ndim * info.shape = self._shape */ __pyx_t_5 = __pyx_v_self->len; __pyx_v_info->len = __pyx_t_5; /* "View.MemoryView":196 * info.buf = self.data * info.len = self.len * info.ndim = self.ndim # <<<<<<<<<<<<<< * info.shape = self._shape * info.strides = self._strides */ __pyx_t_6 = __pyx_v_self->ndim; __pyx_v_info->ndim = __pyx_t_6; /* "View.MemoryView":197 * info.len = self.len * info.ndim = self.ndim * info.shape = self._shape # <<<<<<<<<<<<<< * info.strides = self._strides * info.suboffsets = NULL */ __pyx_t_7 = __pyx_v_self->_shape; __pyx_v_info->shape = __pyx_t_7; /* "View.MemoryView":198 * info.ndim = self.ndim * info.shape = self._shape * info.strides = self._strides # <<<<<<<<<<<<<< * info.suboffsets = NULL * info.itemsize = self.itemsize */ __pyx_t_7 = __pyx_v_self->_strides; __pyx_v_info->strides = __pyx_t_7; /* "View.MemoryView":199 * info.shape = self._shape * info.strides = self._strides * info.suboffsets = NULL # <<<<<<<<<<<<<< * info.itemsize = self.itemsize * info.readonly = 0 */ __pyx_v_info->suboffsets = NULL; /* "View.MemoryView":200 * info.strides = self._strides * info.suboffsets = NULL * info.itemsize = self.itemsize # <<<<<<<<<<<<<< * info.readonly = 0 * */ __pyx_t_5 = __pyx_v_self->itemsize; __pyx_v_info->itemsize = __pyx_t_5; /* "View.MemoryView":201 * info.suboffsets = NULL * info.itemsize = self.itemsize * info.readonly = 0 # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ __pyx_v_info->readonly = 0; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":204 * * if flags & PyBUF_FORMAT: * info.format = self.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_4 = __pyx_v_self->format; __pyx_v_info->format = __pyx_t_4; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ goto __pyx_L5; } /* "View.MemoryView":206 * info.format = self.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.obj = self */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L5:; /* "View.MemoryView":208 * info.format = NULL * * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":212 * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* Python wrapper */ static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":214 * def __dealloc__(array self): * if self.callback_free_data != NULL: * self.callback_free_data(self.data) # <<<<<<<<<<<<<< * elif self.free_data: * if self.dtype_is_object: */ __pyx_v_self->callback_free_data(__pyx_v_self->data); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ goto __pyx_L3; } /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ __pyx_t_1 = (__pyx_v_self->free_data != 0); if (__pyx_t_1) { /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":217 * elif self.free_data: * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< * self._strides, self.ndim, False) * free(self.data) */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ } /* "View.MemoryView":219 * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) * free(self.data) # <<<<<<<<<<<<<< * PyObject_Free(self._shape) * */ free(__pyx_v_self->data); /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ } __pyx_L3:; /* "View.MemoryView":220 * self._strides, self.ndim, False) * free(self.data) * PyObject_Free(self._shape) # <<<<<<<<<<<<<< * * @property */ PyObject_Free(__pyx_v_self->_shape); /* "View.MemoryView":212 * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":224 * @property * def memview(self): * return self.get_memview() # <<<<<<<<<<<<<< * * @cname('get_memview') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_memview", 0); /* "View.MemoryView":228 * @cname('get_memview') * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< * return memoryview(self, flags, self.dtype_is_object) * */ __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); /* "View.MemoryView":229 * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.get_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* Python wrapper */ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":232 * * def __len__(self): * return self._shape[0] # <<<<<<<<<<<<<< * * def __getattr__(self, attr): */ __pyx_r = (__pyx_v_self->_shape[0]); goto __pyx_L0; /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* Python wrapper */ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getattr__", 0); /* "View.MemoryView":235 * * def __getattr__(self, attr): * return getattr(self.memview, attr) # <<<<<<<<<<<<<< * * def __getitem__(self, item): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* Python wrapper */ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":238 * * def __getitem__(self, item): * return self.memview[item] # <<<<<<<<<<<<<< * * def __setitem__(self, item, value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* Python wrapper */ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); /* "View.MemoryView":241 * * def __setitem__(self, item, value): * self.memview[item] = value # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 241, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(4, 241, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array___reduce_cython__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array_2__setstate_cython__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { struct __pyx_array_obj *__pyx_v_result = 0; struct __pyx_array_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("array_cwrapper", 0); /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":250 * * if buf == NULL: * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ goto __pyx_L3; } /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ /*else*/ { __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_3 = 0; /* "View.MemoryView":253 * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) # <<<<<<<<<<<<<< * result.data = buf * */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 253, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(4, 253, __pyx_L1_error) /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); __pyx_t_5 = 0; /* "View.MemoryView":254 * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) * result.data = buf # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->data = __pyx_v_buf; } __pyx_L3:; /* "View.MemoryView":256 * result.data = buf * * return result # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(((PyObject *)__pyx_r)); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* Python wrapper */ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_name = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; PyObject* values[1] = {0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(4, 282, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); } __pyx_v_name = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(4, 282, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__", 0); /* "View.MemoryView":283 * cdef object name * def __init__(self, name): * self.name = name # <<<<<<<<<<<<<< * def __repr__(self): * return self.name */ __Pyx_INCREF(__pyx_v_name); __Pyx_GIVEREF(__pyx_v_name); __Pyx_GOTREF(__pyx_v_self->name); __Pyx_DECREF(__pyx_v_self->name); __pyx_v_self->name = __pyx_v_name; /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* function exit code */ __pyx_r = 0; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* Python wrapper */ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":285 * self.name = name * def __repr__(self): * return self.name # <<<<<<<<<<<<<< * * cdef generic = Enum("") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->name); __pyx_r = __pyx_v_self->name; goto __pyx_L0; /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum___reduce_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_v_state = 0; PyObject *__pyx_v__dict = 0; int __pyx_v_use_setstate; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":5 * cdef object _dict * cdef bint use_setstate * state = (self.name,) # <<<<<<<<<<<<<< * _dict = getattr(self, '__dict__', None) * if _dict is not None: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_self->name); __Pyx_GIVEREF(__pyx_v_self->name); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_self->name); __pyx_v_state = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":6 * cdef bint use_setstate * state = (self.name,) * _dict = getattr(self, '__dict__', None) # <<<<<<<<<<<<<< * if _dict is not None: * state += (_dict,) */ __pyx_t_1 = __Pyx_GetAttr3(((PyObject *)__pyx_v_self), __pyx_n_s_dict, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v__dict = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ __pyx_t_2 = (__pyx_v__dict != Py_None); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":8 * _dict = getattr(self, '__dict__', None) * if _dict is not None: * state += (_dict,) # <<<<<<<<<<<<<< * use_setstate = True * else: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v__dict); __Pyx_GIVEREF(__pyx_v__dict); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v__dict); __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_state, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_state, ((PyObject*)__pyx_t_4)); __pyx_t_4 = 0; /* "(tree fragment)":9 * if _dict is not None: * state += (_dict,) * use_setstate = True # <<<<<<<<<<<<<< * else: * use_setstate = self.name is not None */ __pyx_v_use_setstate = 1; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ goto __pyx_L3; } /* "(tree fragment)":11 * use_setstate = True * else: * use_setstate = self.name is not None # <<<<<<<<<<<<<< * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state */ /*else*/ { __pyx_t_3 = (__pyx_v_self->name != Py_None); __pyx_v_use_setstate = __pyx_t_3; } __pyx_L3:; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ __pyx_t_3 = (__pyx_v_use_setstate != 0); if (__pyx_t_3) { /* "(tree fragment)":13 * use_setstate = self.name is not None * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state # <<<<<<<<<<<<<< * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_1); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_state); __pyx_t_4 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ } /* "(tree fragment)":15 * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_state); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1); __pyx_t_5 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.Enum.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_state); __Pyx_XDECREF(__pyx_v__dict); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum_2__setstate_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":17 * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) # <<<<<<<<<<<<<< */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(4, 17, __pyx_L1_error) __pyx_t_1 = __pyx_unpickle_Enum__set_state(__pyx_v_self, ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 17, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.Enum.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = memory */ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { Py_intptr_t __pyx_v_aligned_p; size_t __pyx_v_offset; void *__pyx_r; int __pyx_t_1; /* "View.MemoryView":301 * cdef void *align_pointer(void *memory, size_t alignment) nogil: * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = memory # <<<<<<<<<<<<<< * cdef size_t offset * */ __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); /* "View.MemoryView":305 * * with cython.cdivision(True): * offset = aligned_p % alignment # <<<<<<<<<<<<<< * * if offset > 0: */ __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ __pyx_t_1 = ((__pyx_v_offset > 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":308 * * if offset > 0: * aligned_p += alignment - offset # <<<<<<<<<<<<<< * * return aligned_p */ __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ } /* "View.MemoryView":310 * aligned_p += alignment - offset * * return aligned_p # <<<<<<<<<<<<<< * * */ __pyx_r = ((void *)__pyx_v_aligned_p); goto __pyx_L0; /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = memory */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* Python wrapper */ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_obj = 0; int __pyx_v_flags; int __pyx_v_dtype_is_object; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(4, 346, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype_is_object); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(4, 346, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_obj = values[0]; __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 346, __pyx_L3_error) if (values[2]) { __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 346, __pyx_L3_error) } else { __pyx_v_dtype_is_object = ((int)0); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(4, 346, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); /* "View.MemoryView":347 * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj # <<<<<<<<<<<<<< * self.flags = flags * if type(self) is memoryview or obj is not None: */ __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); __Pyx_GOTREF(__pyx_v_self->obj); __Pyx_DECREF(__pyx_v_self->obj); __pyx_v_self->obj = __pyx_v_obj; /* "View.MemoryView":348 * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj * self.flags = flags # <<<<<<<<<<<<<< * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) */ __pyx_v_self->flags = __pyx_v_flags; /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: */ __pyx_t_2 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)__pyx_memoryview_type)); __pyx_t_3 = (__pyx_t_2 != 0); if (!__pyx_t_3) { } else { __pyx_t_1 = __pyx_t_3; goto __pyx_L4_bool_binop_done; } __pyx_t_3 = (__pyx_v_obj != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (__pyx_t_1) { /* "View.MemoryView":350 * self.flags = flags * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None */ __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(4, 350, __pyx_L1_error) /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":352 * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; /* "View.MemoryView":353 * if self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if not __PYX_CYTHON_ATOMICS_ENABLED(): */ Py_INCREF(Py_None); /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ } /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if self.view.obj == NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ __pyx_t_1 = ((!(__PYX_CYTHON_ATOMICS_ENABLED() != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); if (__pyx_t_1) { /* "View.MemoryView":358 * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: */ __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); /* "View.MemoryView":359 * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< * if self.lock is NULL: * self.lock = PyThread_allocate_lock() */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":361 * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< * if self.lock is NULL: * raise MemoryError */ __pyx_v_self->lock = PyThread_allocate_lock(); /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":363 * self.lock = PyThread_allocate_lock() * if self.lock is NULL: * raise MemoryError # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ PyErr_NoMemory(); __PYX_ERR(4, 363, __pyx_L1_error) /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ } /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":366 * * if flags & PyBUF_FORMAT: * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< * else: * self.dtype_is_object = dtype_is_object */ __pyx_t_2 = (((__pyx_v_self->view.format[0]) == 'O') != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L12_bool_binop_done; } __pyx_t_2 = (((__pyx_v_self->view.format[1]) == '\x00') != 0); __pyx_t_1 = __pyx_t_2; __pyx_L12_bool_binop_done:; __pyx_v_self->dtype_is_object = __pyx_t_1; /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ goto __pyx_L11; } /* "View.MemoryView":368 * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( */ /*else*/ { __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; } __pyx_L11:; /* "View.MemoryView":370 * self.dtype_is_object = dtype_is_object * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL */ __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); /* "View.MemoryView":372 * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( * &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL # <<<<<<<<<<<<<< * * def __dealloc__(memoryview self): */ __pyx_v_self->typeinfo = NULL; /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* Python wrapper */ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { int __pyx_v_i; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyThread_type_lock __pyx_t_6; PyThread_type_lock __pyx_t_7; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ __pyx_t_1 = (__pyx_v_self->obj != Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":376 * def __dealloc__(memoryview self): * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< * elif (<__pyx_buffer *> &self.view).obj == Py_None: * */ __Pyx_ReleaseBuffer((&__pyx_v_self->view)); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ goto __pyx_L3; } /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ __pyx_t_2 = ((((Py_buffer *)(&__pyx_v_self->view))->obj == Py_None) != 0); if (__pyx_t_2) { /* "View.MemoryView":379 * elif (<__pyx_buffer *> &self.view).obj == Py_None: * * (<__pyx_buffer *> &self.view).obj = NULL # <<<<<<<<<<<<<< * Py_DECREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = NULL; /* "View.MemoryView":380 * * (<__pyx_buffer *> &self.view).obj = NULL * Py_DECREF(Py_None) # <<<<<<<<<<<<<< * * cdef int i */ Py_DECREF(Py_None); /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ } __pyx_L3:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":385 * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 */ __pyx_t_3 = __pyx_memoryview_thread_locks_used; __pyx_t_4 = __pyx_t_3; for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); if (__pyx_t_2) { /* "View.MemoryView":387 * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); if (__pyx_t_2) { /* "View.MemoryView":390 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< * break * else: */ __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); __pyx_t_7 = (__pyx_memoryview_thread_locks[__pyx_v_i]); /* "View.MemoryView":389 * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break */ (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_6; (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_7; /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ } /* "View.MemoryView":391 * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break # <<<<<<<<<<<<<< * else: * PyThread_free_lock(self.lock) */ goto __pyx_L6_break; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ } } /*else*/ { /* "View.MemoryView":393 * break * else: * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< * * cdef char *get_item_pointer(memoryview self, object index) except NULL: */ PyThread_free_lock(__pyx_v_self->lock); } __pyx_L6_break:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = self.view.buf */ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { Py_ssize_t __pyx_v_dim; char *__pyx_v_itemp; PyObject *__pyx_v_idx = NULL; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t __pyx_t_3; PyObject *(*__pyx_t_4)(PyObject *); PyObject *__pyx_t_5 = NULL; Py_ssize_t __pyx_t_6; char *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_item_pointer", 0); /* "View.MemoryView":397 * cdef char *get_item_pointer(memoryview self, object index) except NULL: * cdef Py_ssize_t dim * cdef char *itemp = self.view.buf # <<<<<<<<<<<<<< * * for dim, idx in enumerate(index): */ __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); /* "View.MemoryView":399 * cdef char *itemp = self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ __pyx_t_1 = 0; if (likely(PyList_CheckExact(__pyx_v_index)) || PyTuple_CheckExact(__pyx_v_index)) { __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; __pyx_t_4 = NULL; } else { __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 399, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_4)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(4, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } else { if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(4, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } } else { __pyx_t_5 = __pyx_t_4(__pyx_t_2); if (unlikely(!__pyx_t_5)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(4, 399, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_5); } __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_1; __pyx_t_1 = (__pyx_t_1 + 1); /* "View.MemoryView":400 * * for dim, idx in enumerate(index): * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< * * return itemp */ __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 400, __pyx_L1_error) __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(4, 400, __pyx_L1_error) __pyx_v_itemp = __pyx_t_7; /* "View.MemoryView":399 * cdef char *itemp = self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":402 * itemp = pybuffer_index(&self.view, itemp, idx, dim) * * return itemp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_itemp; goto __pyx_L0; /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = self.view.buf */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_idx); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* Python wrapper */ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_indices = NULL; char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; char *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":407 * def __getitem__(memoryview self, object index): * if index is Ellipsis: * return self # <<<<<<<<<<<<<< * * have_slices, indices = _unellipsify(index, self.view.ndim) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __pyx_r = ((PyObject *)__pyx_v_self); goto __pyx_L0; /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ } /* "View.MemoryView":409 * return self * * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * cdef char *itemp */ __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (likely(__pyx_t_3 != Py_None)) { PyObject* sequence = __pyx_t_3; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(4, 409, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); #else __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(4, 409, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_4; __pyx_t_4 = 0; __pyx_v_indices = __pyx_t_5; __pyx_t_5 = 0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(4, 412, __pyx_L1_error) if (__pyx_t_2) { /* "View.MemoryView":413 * cdef char *itemp * if have_slices: * return memview_slice(self, indices) # <<<<<<<<<<<<<< * else: * itemp = self.get_item_pointer(indices) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 413, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ } /* "View.MemoryView":415 * return memview_slice(self, indices) * else: * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< * return self.convert_item_to_object(itemp) * */ /*else*/ { __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == ((char *)NULL))) __PYX_ERR(4, 415, __pyx_L1_error) __pyx_v_itemp = __pyx_t_6; /* "View.MemoryView":416 * else: * itemp = self.get_item_pointer(indices) * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< * * def __setitem__(memoryview self, object index, object value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 416, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_indices); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* Python wrapper */ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_obj = NULL; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); __Pyx_INCREF(__pyx_v_index); /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ __pyx_t_1 = (__pyx_v_self->view.readonly != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(4, 420, __pyx_L1_error) /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ } /* "View.MemoryView":422 * raise TypeError("Cannot assign to read-only memoryview") * * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * if have_slices: */ __pyx_t_2 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (likely(__pyx_t_2 != Py_None)) { PyObject* sequence = __pyx_t_2; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(4, 422, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(4, 422, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_3; __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 424, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":425 * * if have_slices: * obj = self.is_slice(value) # <<<<<<<<<<<<<< * if obj: * self.setitem_slice_assignment(self[index], obj) */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 425, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_obj = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 426, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":427 * obj = self.is_slice(value) * if obj: * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< * else: * self.setitem_slice_assign_scalar(self[index], value) */ __pyx_t_2 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_2, __pyx_v_obj); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ goto __pyx_L5; } /* "View.MemoryView":429 * self.setitem_slice_assignment(self[index], obj) * else: * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< * else: * self.setitem_indexed(index, value) */ /*else*/ { __pyx_t_4 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_memoryview_type))))) __PYX_ERR(4, 429, __pyx_L1_error) __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_4), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L5:; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ goto __pyx_L4; } /* "View.MemoryView":431 * self.setitem_slice_assign_scalar(self[index], value) * else: * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< * * cdef is_slice(self, obj): */ /*else*/ { __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 431, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L4:; /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_obj); __Pyx_XDECREF(__pyx_v_index); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_slice", 0); __Pyx_INCREF(__pyx_v_obj); /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, __pyx_memoryview_type); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); __Pyx_XGOTREF(__pyx_t_5); /*try:*/ { /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_6 = __Pyx_PyInt_From_int(((__pyx_v_self->flags & (~PyBUF_WRITABLE)) | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":437 * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) # <<<<<<<<<<<<<< * except TypeError: * return None */ __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 437, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(4, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ } __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L9_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; /* "View.MemoryView":438 * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) * except TypeError: # <<<<<<<<<<<<<< * return None * */ __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(4, 438, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":439 * self.dtype_is_object) * except TypeError: * return None # <<<<<<<<<<<<<< * * return obj */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L7_except_return; } goto __pyx_L6_except_error; __pyx_L6_except_error:; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L1_error; __pyx_L7_except_return:; __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L0; __pyx_L9_try_end:; } /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ } /* "View.MemoryView":441 * return None * * return obj # <<<<<<<<<<<<<< * * cdef setitem_slice_assignment(self, dst, src): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_obj); __pyx_r = __pyx_v_obj; goto __pyx_L0; /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_obj); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { __Pyx_memviewslice __pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_src_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; __Pyx_memviewslice *__pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(4, 447, __pyx_L1_error) __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(4, 447, __pyx_L1_error) /* "View.MemoryView":448 * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< * src.ndim, dst.ndim, self.dtype_is_object) * */ if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(4, 448, __pyx_L1_error) __pyx_t_2 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice)); if (unlikely(__pyx_t_2 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(4, 448, __pyx_L1_error) /* "View.MemoryView":449 * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(4, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ __pyx_t_6 = __pyx_memoryview_copy_contents((__pyx_t_1[0]), (__pyx_t_2[0]), __pyx_t_4, __pyx_t_5, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(4, 447, __pyx_L1_error) /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { int __pyx_v_array[0x80]; void *__pyx_v_tmp; void *__pyx_v_item; __Pyx_memviewslice *__pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_tmp_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; char const *__pyx_t_6; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); /* "View.MemoryView":453 * cdef setitem_slice_assign_scalar(self, memoryview dst, value): * cdef int array[128] * cdef void *tmp = NULL # <<<<<<<<<<<<<< * cdef void *item * */ __pyx_v_tmp = NULL; /* "View.MemoryView":458 * cdef __Pyx_memviewslice *dst_slice * cdef __Pyx_memviewslice tmp_slice * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< * * if self.view.itemsize > sizeof(array): */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(4, 458, __pyx_L1_error) __pyx_v_dst_slice = __pyx_t_1; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ __pyx_t_2 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); if (__pyx_t_2) { /* "View.MemoryView":461 * * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< * if tmp == NULL: * raise MemoryError */ __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); /* "View.MemoryView":462 * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ __pyx_t_2 = ((__pyx_v_tmp == NULL) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":463 * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: * raise MemoryError # <<<<<<<<<<<<<< * item = tmp * else: */ PyErr_NoMemory(); __PYX_ERR(4, 463, __pyx_L1_error) /* "View.MemoryView":462 * if self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ } /* "View.MemoryView":464 * if tmp == NULL: * raise MemoryError * item = tmp # <<<<<<<<<<<<<< * else: * item = array */ __pyx_v_item = __pyx_v_tmp; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ goto __pyx_L3; } /* "View.MemoryView":466 * item = tmp * else: * item = array # <<<<<<<<<<<<<< * * try: */ /*else*/ { __pyx_v_item = ((void *)__pyx_v_array); } __pyx_L3:; /* "View.MemoryView":468 * item = array * * try: # <<<<<<<<<<<<<< * if self.dtype_is_object: * ( item)[0] = value */ /*try:*/ { /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * ( item)[0] = value * else: */ __pyx_t_2 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_2) { /* "View.MemoryView":470 * try: * if self.dtype_is_object: * ( item)[0] = value # <<<<<<<<<<<<<< * else: * self.assign_item_from_object( item, value) */ (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * ( item)[0] = value * else: */ goto __pyx_L8; } /* "View.MemoryView":472 * ( item)[0] = value * else: * self.assign_item_from_object( item, value) # <<<<<<<<<<<<<< * * */ /*else*/ { __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 472, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L8:; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ __pyx_t_2 = ((__pyx_v_self->view.suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":477 * * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, * item, self.dtype_is_object) */ __pyx_t_3 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 477, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ } /* "View.MemoryView":478 * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< * item, self.dtype_is_object) * finally: */ __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); } /* "View.MemoryView":481 * item, self.dtype_is_object) * finally: * PyMem_Free(tmp) # <<<<<<<<<<<<<< * * cdef setitem_indexed(self, index, value): */ /*finally:*/ { /*normal exit:*/{ PyMem_Free(__pyx_v_tmp); goto __pyx_L7; } __pyx_L6_error:; /*exception exit:*/{ __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_10, &__pyx_t_11, &__pyx_t_12); if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9) < 0)) __Pyx_ErrFetch(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); __Pyx_XGOTREF(__pyx_t_10); __Pyx_XGOTREF(__pyx_t_11); __Pyx_XGOTREF(__pyx_t_12); __pyx_t_4 = __pyx_lineno; __pyx_t_5 = __pyx_clineno; __pyx_t_6 = __pyx_filename; { PyMem_Free(__pyx_v_tmp); } if (PY_MAJOR_VERSION >= 3) { __Pyx_XGIVEREF(__pyx_t_10); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_12); __Pyx_ExceptionReset(__pyx_t_10, __pyx_t_11, __pyx_t_12); } __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ErrRestore(__pyx_t_7, __pyx_t_8, __pyx_t_9); __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __pyx_lineno = __pyx_t_4; __pyx_clineno = __pyx_t_5; __pyx_filename = __pyx_t_6; goto __pyx_L1_error; } __pyx_L7:; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations char *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_indexed", 0); /* "View.MemoryView":484 * * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< * self.assign_item_from_object(itemp, value) * */ __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == ((char *)NULL))) __PYX_ERR(4, 484, __pyx_L1_error) __pyx_v_itemp = __pyx_t_1; /* "View.MemoryView":485 * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 485, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_v_struct = NULL; PyObject *__pyx_v_bytesitem = 0; PyObject *__pyx_v_result = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; int __pyx_t_8; PyObject *__pyx_t_9 = NULL; size_t __pyx_t_10; int __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":490 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef bytes bytesitem * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 490, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":493 * cdef bytes bytesitem * * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< * try: * result = struct.unpack(self.view.format, bytesitem) */ __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 493, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); /*try:*/ { /* "View.MemoryView":495 * bytesitem = itemp[:self.view.itemsize] * try: * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< * except struct.error: * raise ValueError("Unable to convert item to object") */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = NULL; __pyx_t_8 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_7)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_7); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_8 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_9); if (__pyx_t_7) { __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; } __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_9, 0+__pyx_t_8, __pyx_t_6); __Pyx_INCREF(__pyx_v_bytesitem); __Pyx_GIVEREF(__pyx_v_bytesitem); PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ } /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ /*else:*/ { __pyx_t_10 = strlen(__pyx_v_self->view.format); __pyx_t_11 = ((__pyx_t_10 == 1) != 0); if (__pyx_t_11) { /* "View.MemoryView":500 * else: * if len(self.view.format) == 1: * return result[0] # <<<<<<<<<<<<<< * return result * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 500, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6_except_return; /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ } /* "View.MemoryView":501 * if len(self.view.format) == 1: * return result[0] * return result # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_result); __pyx_r = __pyx_v_result; goto __pyx_L6_except_return; } __pyx_L3_error:; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /* "View.MemoryView":496 * try: * result = struct.unpack(self.view.format, bytesitem) * except struct.error: # <<<<<<<<<<<<<< * raise ValueError("Unable to convert item to object") * else: */ __Pyx_ErrFetch(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_1, __pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_ErrRestore(__pyx_t_1, __pyx_t_5, __pyx_t_9); __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_9 = 0; if (__pyx_t_8) { __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_1) < 0) __PYX_ERR(4, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_1); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 497, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(4, 497, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L1_error; __pyx_L6_except_return:; __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L0; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesitem); __Pyx_XDECREF(__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_v_struct = NULL; char __pyx_v_c; PyObject *__pyx_v_bytesvalue = 0; Py_ssize_t __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; char *__pyx_t_11; char *__pyx_t_12; char *__pyx_t_13; char *__pyx_t_14; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":506 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef char c * cdef bytes bytesvalue */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 506, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ __pyx_t_2 = PyTuple_Check(__pyx_v_value); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "View.MemoryView":512 * * if isinstance(value, tuple): * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< * else: * bytesvalue = struct.pack(self.view.format, value) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(4, 512, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ goto __pyx_L3; } /* "View.MemoryView":514 * bytesvalue = struct.pack(self.view.format, *value) * else: * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< * * for i, c in enumerate(bytesvalue): */ /*else*/ { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_1); __Pyx_INCREF(__pyx_v_value); __Pyx_GIVEREF(__pyx_v_value); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); __pyx_t_1 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(4, 514, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; } __pyx_L3:; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = 0; if (unlikely(__pyx_v_bytesvalue == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); __PYX_ERR(4, 516, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_bytesvalue); __pyx_t_10 = __pyx_v_bytesvalue; __pyx_t_12 = PyBytes_AS_STRING(__pyx_t_10); __pyx_t_13 = (__pyx_t_12 + PyBytes_GET_SIZE(__pyx_t_10)); for (__pyx_t_14 = __pyx_t_12; __pyx_t_14 < __pyx_t_13; __pyx_t_14++) { __pyx_t_11 = __pyx_t_14; __pyx_v_c = (__pyx_t_11[0]); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ __pyx_v_i = __pyx_t_9; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = (__pyx_t_9 + 1); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; } __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesvalue); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; char *__pyx_t_5; void *__pyx_t_6; int __pyx_t_7; Py_ssize_t __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ __pyx_t_2 = ((__pyx_v_flags & PyBUF_WRITABLE) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L4_bool_binop_done; } __pyx_t_2 = (__pyx_v_self->view.readonly != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 522, __pyx_L1_error) /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ } /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_ND) != 0); if (__pyx_t_1) { /* "View.MemoryView":525 * * if flags & PyBUF_ND: * info.shape = self.view.shape # <<<<<<<<<<<<<< * else: * info.shape = NULL */ __pyx_t_4 = __pyx_v_self->view.shape; __pyx_v_info->shape = __pyx_t_4; /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ goto __pyx_L6; } /* "View.MemoryView":527 * info.shape = self.view.shape * else: * info.shape = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_STRIDES: */ /*else*/ { __pyx_v_info->shape = NULL; } __pyx_L6:; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); if (__pyx_t_1) { /* "View.MemoryView":530 * * if flags & PyBUF_STRIDES: * info.strides = self.view.strides # <<<<<<<<<<<<<< * else: * info.strides = NULL */ __pyx_t_4 = __pyx_v_self->view.strides; __pyx_v_info->strides = __pyx_t_4; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ goto __pyx_L7; } /* "View.MemoryView":532 * info.strides = self.view.strides * else: * info.strides = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_INDIRECT: */ /*else*/ { __pyx_v_info->strides = NULL; } __pyx_L7:; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); if (__pyx_t_1) { /* "View.MemoryView":535 * * if flags & PyBUF_INDIRECT: * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< * else: * info.suboffsets = NULL */ __pyx_t_4 = __pyx_v_self->view.suboffsets; __pyx_v_info->suboffsets = __pyx_t_4; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ goto __pyx_L8; } /* "View.MemoryView":537 * info.suboffsets = self.view.suboffsets * else: * info.suboffsets = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ /*else*/ { __pyx_v_info->suboffsets = NULL; } __pyx_L8:; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":540 * * if flags & PyBUF_FORMAT: * info.format = self.view.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_5 = __pyx_v_self->view.format; __pyx_v_info->format = __pyx_t_5; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ goto __pyx_L9; } /* "View.MemoryView":542 * info.format = self.view.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.buf = self.view.buf */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L9:; /* "View.MemoryView":544 * info.format = NULL * * info.buf = self.view.buf # <<<<<<<<<<<<<< * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize */ __pyx_t_6 = __pyx_v_self->view.buf; __pyx_v_info->buf = __pyx_t_6; /* "View.MemoryView":545 * * info.buf = self.view.buf * info.ndim = self.view.ndim # <<<<<<<<<<<<<< * info.itemsize = self.view.itemsize * info.len = self.view.len */ __pyx_t_7 = __pyx_v_self->view.ndim; __pyx_v_info->ndim = __pyx_t_7; /* "View.MemoryView":546 * info.buf = self.view.buf * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< * info.len = self.view.len * info.readonly = self.view.readonly */ __pyx_t_8 = __pyx_v_self->view.itemsize; __pyx_v_info->itemsize = __pyx_t_8; /* "View.MemoryView":547 * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize * info.len = self.view.len # <<<<<<<<<<<<<< * info.readonly = self.view.readonly * info.obj = self */ __pyx_t_8 = __pyx_v_self->view.len; __pyx_v_info->len = __pyx_t_8; /* "View.MemoryView":548 * info.itemsize = self.view.itemsize * info.len = self.view.len * info.readonly = self.view.readonly # <<<<<<<<<<<<<< * info.obj = self * */ __pyx_t_1 = __pyx_v_self->view.readonly; __pyx_v_info->readonly = __pyx_t_1; /* "View.MemoryView":549 * info.len = self.view.len * info.readonly = self.view.readonly * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":556 * @property * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< * transpose_memslice(&result.from_slice) * return result */ __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 556, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(4, 556, __pyx_L1_error) __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":557 * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< * return result * */ __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(4, 557, __pyx_L1_error) /* "View.MemoryView":558 * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) * return result # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":562 * @property * def base(self): * return self.obj # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->obj); __pyx_r = __pyx_v_self->obj; goto __pyx_L0; /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_length; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":566 * @property * def shape(self): * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_length = (__pyx_t_2[0]); __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(4, 566, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_stride; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(4, 572, __pyx_L1_error) /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ } /* "View.MemoryView":574 * raise ValueError("Buffer view does not expose strides") * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_v_stride = (__pyx_t_3[0]); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(4, 574, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; Py_ssize_t *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__17, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ } /* "View.MemoryView":581 * return (-1,) * self.view.ndim * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { __pyx_t_4 = __pyx_t_6; __pyx_v_suboffset = (__pyx_t_4[0]); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(4, 581, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":585 * @property * def ndim(self): * return self.view.ndim # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 585, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":589 * @property * def itemsize(self): * return self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 589, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":593 * @property * def nbytes(self): * return self.size * self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_v_result = NULL; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ __pyx_t_1 = (__pyx_v_self->_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":598 * def size(self): * if self._size is None: * result = 1 # <<<<<<<<<<<<<< * * for length in self.view.shape[:self.view.ndim]: */ __Pyx_INCREF(__pyx_int_1); __pyx_v_result = __pyx_int_1; /* "View.MemoryView":600 * result = 1 * * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< * result *= length * */ __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 600, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); __pyx_t_6 = 0; /* "View.MemoryView":601 * * for length in self.view.shape[:self.view.ndim]: * result *= length # <<<<<<<<<<<<<< * * self._size = result */ __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 601, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); __pyx_t_6 = 0; } /* "View.MemoryView":603 * result *= length * * self._size = result # <<<<<<<<<<<<<< * * return self._size */ __Pyx_INCREF(__pyx_v_result); __Pyx_GIVEREF(__pyx_v_result); __Pyx_GOTREF(__pyx_v_self->_size); __Pyx_DECREF(__pyx_v_self->_size); __pyx_v_self->_size = __pyx_v_result; /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ } /* "View.MemoryView":605 * self._size = result * * return self._size # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->_size); __pyx_r = __pyx_v_self->_size; goto __pyx_L0; /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* Python wrapper */ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":609 * def __len__(self): * if self.view.ndim >= 1: * return self.view.shape[0] # <<<<<<<<<<<<<< * * return 0 */ __pyx_r = (__pyx_v_self->view.shape[0]); goto __pyx_L0; /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ } /* "View.MemoryView":611 * return self.view.shape[0] * * return 0 # <<<<<<<<<<<<<< * * def __repr__(self): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "" % (self.base.__class__.__name__, * id(self)) */ /* Python wrapper */ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":614 * * def __repr__(self): * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":615 * def __repr__(self): * return "" % (self.base.__class__.__name__, * id(self)) # <<<<<<<<<<<<<< * * def __str__(self): */ __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 615, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); /* "View.MemoryView":614 * * def __repr__(self): * return "" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "" % (self.base.__class__.__name__, * id(self)) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "" % (self.base.__class__.__name__,) * */ /* Python wrapper */ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__str__", 0); /* "View.MemoryView":618 * * def __str__(self): * return "" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "" % (self.base.__class__.__name__,) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_c_contig", 0); /* "View.MemoryView":624 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'C', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(4, 624, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":625 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< * * def is_f_contig(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 625, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_f_contig", 0); /* "View.MemoryView":630 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'F', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(4, 630, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":631 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< * * def copy(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 631, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_mslice; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy", 0); /* "View.MemoryView":635 * def copy(self): * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &mslice) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); /* "View.MemoryView":637 * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS * * slice_copy(self, &mslice) # <<<<<<<<<<<<<< * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); /* "View.MemoryView":638 * * slice_copy(self, &mslice) * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_C_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(4, 638, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":643 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< * * def copy_fortran(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 643, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy_fortran", 0); /* "View.MemoryView":647 * def copy_fortran(self): * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &src) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); /* "View.MemoryView":649 * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS * * slice_copy(self, &src) # <<<<<<<<<<<<<< * dst = slice_copy_contig(&src, "fortran", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); /* "View.MemoryView":650 * * slice_copy(self, &src) * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_F_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(4, 650, __pyx_L1_error) __pyx_v_dst = __pyx_t_1; /* "View.MemoryView":655 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 655, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview___reduce_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview_2__setstate_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { struct __pyx_memoryview_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); /* "View.MemoryView":660 * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< * result.typeinfo = typeinfo * return result */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_o); __Pyx_GIVEREF(__pyx_v_o); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":661 * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo # <<<<<<<<<<<<<< * return result * */ __pyx_v_result->typeinfo = __pyx_v_typeinfo; /* "View.MemoryView":662 * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_check') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("memoryview_check", 0); /* "View.MemoryView":666 * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): * return isinstance(o, memoryview) # <<<<<<<<<<<<<< * * cdef tuple _unellipsify(object index, int ndim): */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, __pyx_memoryview_type); __pyx_r = __pyx_t_1; goto __pyx_L0; /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { PyObject *__pyx_v_tup = NULL; PyObject *__pyx_v_result = NULL; int __pyx_v_have_slices; int __pyx_v_seen_ellipsis; CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; PyObject *__pyx_v_item = NULL; Py_ssize_t __pyx_v_nslices; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; Py_ssize_t __pyx_t_5; PyObject *(*__pyx_t_6)(PyObject *); PyObject *__pyx_t_7 = NULL; Py_ssize_t __pyx_t_8; int __pyx_t_9; int __pyx_t_10; PyObject *__pyx_t_11 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_unellipsify", 0); /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ __pyx_t_1 = PyTuple_Check(__pyx_v_index); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":674 * """ * if not isinstance(index, tuple): * tup = (index,) # <<<<<<<<<<<<<< * else: * tup = index */ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_index); __Pyx_GIVEREF(__pyx_v_index); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); __pyx_v_tup = __pyx_t_3; __pyx_t_3 = 0; /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ goto __pyx_L3; } /* "View.MemoryView":676 * tup = (index,) * else: * tup = index # <<<<<<<<<<<<<< * * result = [] */ /*else*/ { __Pyx_INCREF(__pyx_v_index); __pyx_v_tup = __pyx_v_index; } __pyx_L3:; /* "View.MemoryView":678 * tup = index * * result = [] # <<<<<<<<<<<<<< * have_slices = False * seen_ellipsis = False */ __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 678, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_result = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":679 * * result = [] * have_slices = False # <<<<<<<<<<<<<< * seen_ellipsis = False * for idx, item in enumerate(tup): */ __pyx_v_have_slices = 0; /* "View.MemoryView":680 * result = [] * have_slices = False * seen_ellipsis = False # <<<<<<<<<<<<<< * for idx, item in enumerate(tup): * if item is Ellipsis: */ __pyx_v_seen_ellipsis = 0; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ __Pyx_INCREF(__pyx_int_0); __pyx_t_3 = __pyx_int_0; if (likely(PyList_CheckExact(__pyx_v_tup)) || PyTuple_CheckExact(__pyx_v_tup)) { __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; __pyx_t_6 = NULL; } else { __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 681, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_6)) { if (likely(PyList_CheckExact(__pyx_t_4))) { if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(4, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } else { if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(4, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } } else { __pyx_t_7 = __pyx_t_6(__pyx_t_4); if (unlikely(!__pyx_t_7)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(4, 681, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_7); } __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); __pyx_t_7 = 0; __Pyx_INCREF(__pyx_t_3); __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_7; __pyx_t_7 = 0; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(4, 684, __pyx_L1_error) __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { __Pyx_INCREF(__pyx_slice__20); __Pyx_GIVEREF(__pyx_slice__20); PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__20); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(4, 684, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":685 * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True # <<<<<<<<<<<<<< * else: * result.append(slice(None)) */ __pyx_v_seen_ellipsis = 1; /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ goto __pyx_L7; } /* "View.MemoryView":687 * seen_ellipsis = True * else: * result.append(slice(None)) # <<<<<<<<<<<<<< * have_slices = True * else: */ /*else*/ { __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__20); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(4, 687, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":688 * else: * result.append(slice(None)) * have_slices = True # <<<<<<<<<<<<<< * else: * if not isinstance(item, slice) and not PyIndex_Check(item): */ __pyx_v_have_slices = 1; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ goto __pyx_L6; } /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ /*else*/ { __pyx_t_2 = PySlice_Check(__pyx_v_item); __pyx_t_10 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); __pyx_t_1 = __pyx_t_10; __pyx_L9_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":691 * else: * if not isinstance(item, slice) and not PyIndex_Check(item): * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< * * have_slices = have_slices or isinstance(item, slice) */ __pyx_t_7 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_11 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_7); if (unlikely(!__pyx_t_11)) __PYX_ERR(4, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_Raise(__pyx_t_11, 0, 0, 0); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __PYX_ERR(4, 691, __pyx_L1_error) /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ } /* "View.MemoryView":693 * raise TypeError("Cannot index with type '%s'" % type(item)) * * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< * result.append(item) * */ __pyx_t_10 = (__pyx_v_have_slices != 0); if (!__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = PySlice_Check(__pyx_v_item); __pyx_t_2 = (__pyx_t_10 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L11_bool_binop_done:; __pyx_v_have_slices = __pyx_t_1; /* "View.MemoryView":694 * * have_slices = have_slices or isinstance(item, slice) * result.append(item) # <<<<<<<<<<<<<< * * nslices = ndim - len(result) */ __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(4, 694, __pyx_L1_error) } __pyx_L6:; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":696 * result.append(item) * * nslices = ndim - len(result) # <<<<<<<<<<<<<< * if nslices: * result.extend([slice(None)] * nslices) */ __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(4, 696, __pyx_L1_error) __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ __pyx_t_1 = (__pyx_v_nslices != 0); if (__pyx_t_1) { /* "View.MemoryView":698 * nslices = ndim - len(result) * if nslices: * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< * * return have_slices or nslices, tuple(result) */ __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 698, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { __Pyx_INCREF(__pyx_slice__20); __Pyx_GIVEREF(__pyx_slice__20); PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__20); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(4, 698, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ } /* "View.MemoryView":700 * result.extend([slice(None)] * nslices) * * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): */ __Pyx_XDECREF(__pyx_r); if (!__pyx_v_have_slices) { } else { __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L14_bool_binop_done; } __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; __pyx_L14_bool_binop_done:; __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = PyTuple_New(2); if (unlikely(!__pyx_t_11)) __PYX_ERR(4, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_11, 1, __pyx_t_4); __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_r = ((PyObject*)__pyx_t_11); __pyx_t_11 = 0; goto __pyx_L0; /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_tup); __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XDECREF(__pyx_v_item); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); /* "View.MemoryView":703 * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") */ __pyx_t_2 = (__pyx_v_suboffsets + __pyx_v_ndim); for (__pyx_t_3 = __pyx_v_suboffsets; __pyx_t_3 < __pyx_t_2; __pyx_t_3++) { __pyx_t_1 = __pyx_t_3; __pyx_v_suboffset = (__pyx_t_1[0]); /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __PYX_ERR(4, 705, __pyx_L1_error) /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ } } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { int __pyx_v_new_ndim; int __pyx_v_suboffset_dim; int __pyx_v_dim; __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; __Pyx_memviewslice *__pyx_v_p_src; struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; __Pyx_memviewslice *__pyx_v_p_dst; int *__pyx_v_p_suboffset_dim; Py_ssize_t __pyx_v_start; Py_ssize_t __pyx_v_stop; Py_ssize_t __pyx_v_step; int __pyx_v_have_start; int __pyx_v_have_stop; int __pyx_v_have_step; PyObject *__pyx_v_index = NULL; struct __pyx_memoryview_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; struct __pyx_memoryview_obj *__pyx_t_4; char *__pyx_t_5; int __pyx_t_6; Py_ssize_t __pyx_t_7; PyObject *(*__pyx_t_8)(PyObject *); PyObject *__pyx_t_9 = NULL; Py_ssize_t __pyx_t_10; int __pyx_t_11; Py_ssize_t __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memview_slice", 0); /* "View.MemoryView":713 * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< * cdef bint negative_step * cdef __Pyx_memviewslice src, dst */ __pyx_v_new_ndim = 0; __pyx_v_suboffset_dim = -1; /* "View.MemoryView":720 * * * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< * * cdef _memoryviewslice memviewsliceobj */ (void)(memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst)))); /* "View.MemoryView":724 * cdef _memoryviewslice memviewsliceobj * * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(4, 724, __pyx_L1_error) } } #endif /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":727 * * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview # <<<<<<<<<<<<<< * p_src = &memviewsliceobj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(4, 727, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":728 * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, &src) */ __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ goto __pyx_L3; } /* "View.MemoryView":730 * p_src = &memviewsliceobj.from_slice * else: * slice_copy(memview, &src) # <<<<<<<<<<<<<< * p_src = &src * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); /* "View.MemoryView":731 * else: * slice_copy(memview, &src) * p_src = &src # <<<<<<<<<<<<<< * * */ __pyx_v_p_src = (&__pyx_v_src); } __pyx_L3:; /* "View.MemoryView":737 * * * dst.memview = p_src.memview # <<<<<<<<<<<<<< * dst.data = p_src.data * */ __pyx_t_4 = __pyx_v_p_src->memview; __pyx_v_dst.memview = __pyx_t_4; /* "View.MemoryView":738 * * dst.memview = p_src.memview * dst.data = p_src.data # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_v_p_src->data; __pyx_v_dst.data = __pyx_t_5; /* "View.MemoryView":743 * * * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< * cdef int *p_suboffset_dim = &suboffset_dim * cdef Py_ssize_t start, stop, step */ __pyx_v_p_dst = (&__pyx_v_dst); /* "View.MemoryView":744 * * cdef __Pyx_memviewslice *p_dst = &dst * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< * cdef Py_ssize_t start, stop, step * cdef bint have_start, have_stop, have_step */ __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ __pyx_t_6 = 0; if (likely(PyList_CheckExact(__pyx_v_indices)) || PyTuple_CheckExact(__pyx_v_indices)) { __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; __pyx_t_8 = NULL; } else { __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(4, 748, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_8)) { if (likely(PyList_CheckExact(__pyx_t_3))) { if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(4, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } else { if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(4, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } } else { __pyx_t_9 = __pyx_t_8(__pyx_t_3); if (unlikely(!__pyx_t_9)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(4, 748, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_9); } __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); __pyx_t_9 = 0; __pyx_v_dim = __pyx_t_6; __pyx_t_6 = (__pyx_t_6 + 1); /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); if (__pyx_t_2) { /* "View.MemoryView":753 * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< * 0, 0, 0, # have_{start,stop,step} * False) */ __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 753, __pyx_L1_error) /* "View.MemoryView":750 * for dim, index in enumerate(indices): * if PyIndex_Check(index): * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(4, 750, __pyx_L1_error) /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ goto __pyx_L6; } /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ __pyx_t_2 = (__pyx_v_index == Py_None); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":757 * False) * elif index is None: * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 */ (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; /* "View.MemoryView":758 * elif index is None: * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 */ (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; /* "View.MemoryView":759 * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< * new_ndim += 1 * else: */ (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; /* "View.MemoryView":760 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 # <<<<<<<<<<<<<< * else: * start = index.start or 0 */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ goto __pyx_L6; } /* "View.MemoryView":762 * new_ndim += 1 * else: * start = index.start or 0 # <<<<<<<<<<<<<< * stop = index.stop or 0 * step = index.step or 0 */ /*else*/ { __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 762, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 762, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 762, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L7_bool_binop_done; } __pyx_t_10 = 0; __pyx_L7_bool_binop_done:; __pyx_v_start = __pyx_t_10; /* "View.MemoryView":763 * else: * start = index.start or 0 * stop = index.stop or 0 # <<<<<<<<<<<<<< * step = index.step or 0 * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 763, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 763, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 763, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = 0; __pyx_L9_bool_binop_done:; __pyx_v_stop = __pyx_t_10; /* "View.MemoryView":764 * start = index.start or 0 * stop = index.stop or 0 * step = index.step or 0 # <<<<<<<<<<<<<< * * have_start = index.start is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 764, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(4, 764, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 764, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = 0; __pyx_L11_bool_binop_done:; __pyx_v_step = __pyx_t_10; /* "View.MemoryView":766 * step = index.step or 0 * * have_start = index.start is not None # <<<<<<<<<<<<<< * have_stop = index.stop is not None * have_step = index.step is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_start = __pyx_t_1; /* "View.MemoryView":767 * * have_start = index.start is not None * have_stop = index.stop is not None # <<<<<<<<<<<<<< * have_step = index.step is not None * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 767, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_stop = __pyx_t_1; /* "View.MemoryView":768 * have_start = index.start is not None * have_stop = index.stop is not None * have_step = index.step is not None # <<<<<<<<<<<<<< * * slice_memviewslice( */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(4, 768, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_step = __pyx_t_1; /* "View.MemoryView":770 * have_step = index.step is not None * * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(4, 770, __pyx_L1_error) /* "View.MemoryView":776 * have_start, have_stop, have_step, * True) * new_ndim += 1 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); } __pyx_L6:; /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":780 * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< * memviewsliceobj.to_dtype_func, * memview.dtype_is_object) */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(4, 780, __pyx_L1_error) } /* "View.MemoryView":781 * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< * memview.dtype_is_object) * else: */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(4, 781, __pyx_L1_error) } /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 779, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(4, 779, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ } /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ /*else*/ { __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":785 * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 784, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(4, 784, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); __Pyx_XDECREF(__pyx_v_index); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { Py_ssize_t __pyx_v_new_shape; int __pyx_v_negative_step; int __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ __pyx_t_1 = ((__pyx_v_start < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":832 * * if start < 0: * start += shape # <<<<<<<<<<<<<< * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ } /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ __pyx_t_1 = (0 <= __pyx_v_start); if (__pyx_t_1) { __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); } __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":834 * start += shape * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< * else: * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(4, 834, __pyx_L1_error) /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ } /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ goto __pyx_L3; } /* "View.MemoryView":837 * else: * * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< * * if have_step and step == 0: */ /*else*/ { __pyx_t_1 = ((__pyx_v_have_step != 0) != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L6_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step < 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L6_bool_binop_done:; __pyx_v_negative_step = __pyx_t_2; /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ __pyx_t_1 = (__pyx_v_have_step != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L9_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step == 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L9_bool_binop_done:; if (__pyx_t_2) { /* "View.MemoryView":840 * * if have_step and step == 0: * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(4, 840, __pyx_L1_error) /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ } /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ __pyx_t_2 = (__pyx_v_have_start != 0); if (__pyx_t_2) { /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":845 * if have_start: * if start < 0: * start += shape # <<<<<<<<<<<<<< * if start < 0: * start = 0 */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":847 * start += shape * if start < 0: * start = 0 # <<<<<<<<<<<<<< * elif start >= shape: * if negative_step: */ __pyx_v_start = 0; /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ } /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ goto __pyx_L12; } /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":850 * elif start >= shape: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = shape */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L14; } /* "View.MemoryView":852 * start = shape - 1 * else: * start = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ /*else*/ { __pyx_v_start = __pyx_v_shape; } __pyx_L14:; /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ } __pyx_L12:; /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ goto __pyx_L11; } /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":855 * else: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = 0 */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L15; } /* "View.MemoryView":857 * start = shape - 1 * else: * start = 0 # <<<<<<<<<<<<<< * * if have_stop: */ /*else*/ { __pyx_v_start = 0; } __pyx_L15:; } __pyx_L11:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ __pyx_t_2 = (__pyx_v_have_stop != 0); if (__pyx_t_2) { /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":861 * if have_stop: * if stop < 0: * stop += shape # <<<<<<<<<<<<<< * if stop < 0: * stop = 0 */ __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":863 * stop += shape * if stop < 0: * stop = 0 # <<<<<<<<<<<<<< * elif stop > shape: * stop = shape */ __pyx_v_stop = 0; /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ } /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ goto __pyx_L17; } /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":865 * stop = 0 * elif stop > shape: * stop = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ __pyx_v_stop = __pyx_v_shape; /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ } __pyx_L17:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ goto __pyx_L16; } /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":868 * else: * if negative_step: * stop = -1 # <<<<<<<<<<<<<< * else: * stop = shape */ __pyx_v_stop = -1L; /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ goto __pyx_L19; } /* "View.MemoryView":870 * stop = -1 * else: * stop = shape # <<<<<<<<<<<<<< * * if not have_step: */ /*else*/ { __pyx_v_stop = __pyx_v_shape; } __pyx_L19:; } __pyx_L16:; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":873 * * if not have_step: * step = 1 # <<<<<<<<<<<<<< * * */ __pyx_v_step = 1; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ } /* "View.MemoryView":877 * * with cython.cdivision(True): * new_shape = (stop - start) // step # <<<<<<<<<<<<<< * * if (stop - start) - step * new_shape: */ __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); if (__pyx_t_2) { /* "View.MemoryView":880 * * if (stop - start) - step * new_shape: * new_shape += 1 # <<<<<<<<<<<<<< * * if new_shape < 0: */ __pyx_v_new_shape = (__pyx_v_new_shape + 1); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ } /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":883 * * if new_shape < 0: * new_shape = 0 # <<<<<<<<<<<<<< * * */ __pyx_v_new_shape = 0; /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ } /* "View.MemoryView":886 * * * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset */ (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); /* "View.MemoryView":887 * * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< * dst.suboffsets[new_ndim] = suboffset * */ (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; /* "View.MemoryView":888 * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< * * */ (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; } __pyx_L3:; /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":892 * * if suboffset_dim[0] < 0: * dst.data += start * stride # <<<<<<<<<<<<<< * else: * dst.suboffsets[suboffset_dim[0]] += start * stride */ __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ goto __pyx_L23; } /* "View.MemoryView":894 * dst.data += start * stride * else: * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< * * if suboffset >= 0: */ /*else*/ { __pyx_t_3 = (__pyx_v_suboffset_dim[0]); (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); } __pyx_L23:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = ( dst.data)[0] + suboffset */ __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = ( dst.data)[0] + suboffset * else: */ __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":899 * if not is_slice: * if new_ndim == 0: * dst.data = ( dst.data)[0] + suboffset # <<<<<<<<<<<<<< * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " */ __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = ( dst.data)[0] + suboffset * else: */ goto __pyx_L26; } /* "View.MemoryView":901 * dst.data = ( dst.data)[0] + suboffset * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< * "must be indexed and not sliced", dim) * else: */ /*else*/ { /* "View.MemoryView":902 * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< * else: * suboffset_dim[0] = new_ndim */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(4, 901, __pyx_L1_error) } __pyx_L26:; /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = ( dst.data)[0] + suboffset */ goto __pyx_L25; } /* "View.MemoryView":904 * "must be indexed and not sliced", dim) * else: * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< * * return 0 */ /*else*/ { (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; } __pyx_L25:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ } /* "View.MemoryView":906 * suboffset_dim[0] = new_ndim * * return 0 # <<<<<<<<<<<<<< * * */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_suboffset; Py_ssize_t __pyx_v_itemsize; char *__pyx_v_resultp; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("pybuffer_index", 0); /* "View.MemoryView":914 * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< * cdef Py_ssize_t itemsize = view.itemsize * cdef char *resultp */ __pyx_v_suboffset = -1L; /* "View.MemoryView":915 * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< * cdef char *resultp * */ __pyx_t_1 = __pyx_v_view->itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":919 * * if view.ndim == 0: * shape = view.len / itemsize # <<<<<<<<<<<<<< * stride = itemsize * else: */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(4, 919, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(4, 919, __pyx_L1_error) } __pyx_v_shape = __Pyx_div_Py_ssize_t(__pyx_v_view->len, __pyx_v_itemsize); /* "View.MemoryView":920 * if view.ndim == 0: * shape = view.len / itemsize * stride = itemsize # <<<<<<<<<<<<<< * else: * shape = view.shape[dim] */ __pyx_v_stride = __pyx_v_itemsize; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ goto __pyx_L3; } /* "View.MemoryView":922 * stride = itemsize * else: * shape = view.shape[dim] # <<<<<<<<<<<<<< * stride = view.strides[dim] * if view.suboffsets != NULL: */ /*else*/ { __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); /* "View.MemoryView":923 * else: * shape = view.shape[dim] * stride = view.strides[dim] # <<<<<<<<<<<<<< * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] */ __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":925 * stride = view.strides[dim] * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< * * if index < 0: */ __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ } } __pyx_L3:; /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":928 * * if index < 0: * index += view.shape[dim] # <<<<<<<<<<<<<< * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) */ __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":930 * index += view.shape[dim] * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * if index >= shape: */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 930, __pyx_L1_error) /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ } /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":933 * * if index >= shape: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * resultp = bufp + index * stride */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(4, 933, __pyx_L1_error) /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":935 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * resultp = bufp + index * stride # <<<<<<<<<<<<<< * if suboffset >= 0: * resultp = ( resultp)[0] + suboffset */ __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = ( resultp)[0] + suboffset * */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":937 * resultp = bufp + index * stride * if suboffset >= 0: * resultp = ( resultp)[0] + suboffset # <<<<<<<<<<<<<< * * return resultp */ __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = ( resultp)[0] + suboffset * */ } /* "View.MemoryView":939 * resultp = ( resultp)[0] + suboffset * * return resultp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_resultp; goto __pyx_L0; /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { int __pyx_v_ndim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; int __pyx_v_i; int __pyx_v_j; int __pyx_r; int __pyx_t_1; Py_ssize_t *__pyx_t_2; long __pyx_t_3; long __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; int __pyx_t_7; int __pyx_t_8; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":946 * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< * * cdef Py_ssize_t *shape = memslice.shape */ __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; __pyx_v_ndim = __pyx_t_1; /* "View.MemoryView":948 * cdef int ndim = memslice.memview.view.ndim * * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< * cdef Py_ssize_t *strides = memslice.strides * */ __pyx_t_2 = __pyx_v_memslice->shape; __pyx_v_shape = __pyx_t_2; /* "View.MemoryView":949 * * cdef Py_ssize_t *shape = memslice.shape * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< * * */ __pyx_t_2 = __pyx_v_memslice->strides; __pyx_v_strides = __pyx_t_2; /* "View.MemoryView":953 * * cdef int i, j * for i in range(ndim / 2): # <<<<<<<<<<<<<< * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] */ __pyx_t_3 = __Pyx_div_long(__pyx_v_ndim, 2); __pyx_t_4 = __pyx_t_3; for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_4; __pyx_t_1+=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":954 * cdef int i, j * for i in range(ndim / 2): * j = ndim - 1 - i # <<<<<<<<<<<<<< * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] */ __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); /* "View.MemoryView":955 * for i in range(ndim / 2): * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< * shape[i], shape[j] = shape[j], shape[i] * */ __pyx_t_5 = (__pyx_v_strides[__pyx_v_j]); __pyx_t_6 = (__pyx_v_strides[__pyx_v_i]); (__pyx_v_strides[__pyx_v_i]) = __pyx_t_5; (__pyx_v_strides[__pyx_v_j]) = __pyx_t_6; /* "View.MemoryView":956 * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: */ __pyx_t_6 = (__pyx_v_shape[__pyx_v_j]); __pyx_t_5 = (__pyx_v_shape[__pyx_v_i]); (__pyx_v_shape[__pyx_v_i]) = __pyx_t_6; (__pyx_v_shape[__pyx_v_j]) = __pyx_t_5; /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); if (!__pyx_t_8) { } else { __pyx_t_7 = __pyx_t_8; goto __pyx_L6_bool_binop_done; } __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); __pyx_t_7 = __pyx_t_8; __pyx_L6_bool_binop_done:; if (__pyx_t_7) { /* "View.MemoryView":959 * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< * * return 1 */ __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(4, 959, __pyx_L1_error) /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ } } /* "View.MemoryView":961 * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * * return 1 # <<<<<<<<<<<<<< * * */ __pyx_r = 1; goto __pyx_L0; /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = 0; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* Python wrapper */ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":979 * * def __dealloc__(self): * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":983 * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: * return self.to_object_func(itemp) # <<<<<<<<<<<<<< * else: * return memoryview.convert_item_to_object(self, itemp) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 983, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ } /* "View.MemoryView":985 * return self.to_object_func(itemp) * else: * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 985, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":989 * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< * else: * memoryview.assign_item_from_object(self, itemp, value) */ __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(4, 989, __pyx_L1_error) /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ goto __pyx_L3; } /* "View.MemoryView":991 * self.to_dtype_func(itemp, value) * else: * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< * * @property */ /*else*/ { __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 991, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":995 * @property * def base(self): * return self.from_object # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->from_object); __pyx_r = __pyx_v_self->from_object; goto __pyx_L0; /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice___reduce_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice_2__setstate_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_TypeInfo *__pyx_t_4; Py_buffer __pyx_t_5; Py_ssize_t *__pyx_t_6; Py_ssize_t *__pyx_t_7; Py_ssize_t *__pyx_t_8; Py_ssize_t __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_fromslice", 0); /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); if (__pyx_t_1) { /* "View.MemoryView":1010 * * if memviewslice.memview == Py_None: * return None # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ } /* "View.MemoryView":1015 * * * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< * * result.from_slice = memviewslice */ __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1017 * result = _memoryviewslice(None, 0, dtype_is_object) * * result.from_slice = memviewslice # <<<<<<<<<<<<<< * __PYX_INC_MEMVIEW(&memviewslice, 1) * */ __pyx_v_result->from_slice = __pyx_v_memviewslice; /* "View.MemoryView":1018 * * result.from_slice = memviewslice * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< * * result.from_object = ( memviewslice.memview).base */ __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); /* "View.MemoryView":1020 * __PYX_INC_MEMVIEW(&memviewslice, 1) * * result.from_object = ( memviewslice.memview).base # <<<<<<<<<<<<<< * result.typeinfo = memviewslice.memview.typeinfo * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1020, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __Pyx_GOTREF(__pyx_v_result->from_object); __Pyx_DECREF(__pyx_v_result->from_object); __pyx_v_result->from_object = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":1021 * * result.from_object = ( memviewslice.memview).base * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< * * result.view = memviewslice.memview.view */ __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; /* "View.MemoryView":1023 * result.typeinfo = memviewslice.memview.typeinfo * * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< * result.view.buf = memviewslice.data * result.view.ndim = ndim */ __pyx_t_5 = __pyx_v_memviewslice.memview->view; __pyx_v_result->__pyx_base.view = __pyx_t_5; /* "View.MemoryView":1024 * * result.view = memviewslice.memview.view * result.view.buf = memviewslice.data # <<<<<<<<<<<<<< * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None */ __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); /* "View.MemoryView":1025 * result.view = memviewslice.memview.view * result.view.buf = memviewslice.data * result.view.ndim = ndim # <<<<<<<<<<<<<< * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; /* "View.MemoryView":1026 * result.view.buf = memviewslice.data * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; /* "View.MemoryView":1027 * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if (memviewslice.memview).flags & PyBUF_WRITABLE: */ Py_INCREF(Py_None); /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ __pyx_t_1 = ((((struct __pyx_memoryview_obj *)__pyx_v_memviewslice.memview)->flags & PyBUF_WRITABLE) != 0); if (__pyx_t_1) { /* "View.MemoryView":1030 * * if (memviewslice.memview).flags & PyBUF_WRITABLE: * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< * else: * result.flags = PyBUF_RECORDS_RO */ __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ goto __pyx_L4; } /* "View.MemoryView":1032 * result.flags = PyBUF_RECORDS * else: * result.flags = PyBUF_RECORDS_RO # <<<<<<<<<<<<<< * * result.view.shape = result.from_slice.shape */ /*else*/ { __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS_RO; } __pyx_L4:; /* "View.MemoryView":1034 * result.flags = PyBUF_RECORDS_RO * * result.view.shape = result.from_slice.shape # <<<<<<<<<<<<<< * result.view.strides = result.from_slice.strides * */ __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); /* "View.MemoryView":1035 * * result.view.shape = result.from_slice.shape * result.view.strides = result.from_slice.strides # <<<<<<<<<<<<<< * * */ __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); /* "View.MemoryView":1038 * * * result.view.suboffsets = NULL # <<<<<<<<<<<<<< * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: */ __pyx_v_result->__pyx_base.view.suboffsets = NULL; /* "View.MemoryView":1039 * * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * result.view.suboffsets = result.from_slice.suboffsets */ __pyx_t_7 = (__pyx_v_result->from_slice.suboffsets + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->from_slice.suboffsets; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_v_suboffset = (__pyx_t_6[0]); /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = result.from_slice.suboffsets * break */ __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1041 * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: * result.view.suboffsets = result.from_slice.suboffsets # <<<<<<<<<<<<<< * break * */ __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); /* "View.MemoryView":1042 * if suboffset >= 0: * result.view.suboffsets = result.from_slice.suboffsets * break # <<<<<<<<<<<<<< * * result.view.len = result.view.itemsize */ goto __pyx_L6_break; /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = result.from_slice.suboffsets * break */ } } __pyx_L6_break:; /* "View.MemoryView":1044 * break * * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< * for length in result.view.shape[:ndim]: * result.view.len *= length */ __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; /* "View.MemoryView":1045 * * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< * result.view.len *= length * */ __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1045, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1046 * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: * result.view.len *= length # <<<<<<<<<<<<<< * * result.to_object_func = to_object_func */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(4, 1046, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; } /* "View.MemoryView":1048 * result.view.len *= length * * result.to_object_func = to_object_func # <<<<<<<<<<<<<< * result.to_dtype_func = to_dtype_func * */ __pyx_v_result->to_object_func = __pyx_v_to_object_func; /* "View.MemoryView":1049 * * result.to_object_func = to_object_func * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; /* "View.MemoryView":1051 * result.to_dtype_func = to_dtype_func * * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_get_slice_from_memoryview') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; __Pyx_memviewslice *__pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_slice_from_memview", 0); /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1058 * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): * obj = memview # <<<<<<<<<<<<<< * return &obj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(4, 1058, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":1059 * if isinstance(memview, _memoryviewslice): * obj = memview * return &obj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, mslice) */ __pyx_r = (&__pyx_v_obj->from_slice); goto __pyx_L0; /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ } /* "View.MemoryView":1061 * return &obj.from_slice * else: * slice_copy(memview, mslice) # <<<<<<<<<<<<<< * return mslice * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); /* "View.MemoryView":1062 * else: * slice_copy(memview, mslice) * return mslice # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_slice_copy') */ __pyx_r = __pyx_v_mslice; goto __pyx_L0; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_obj); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { int __pyx_v_dim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; Py_ssize_t *__pyx_v_suboffsets; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; Py_ssize_t __pyx_t_5; __Pyx_RefNannySetupContext("slice_copy", 0); /* "View.MemoryView":1069 * cdef (Py_ssize_t*) shape, strides, suboffsets * * shape = memview.view.shape # <<<<<<<<<<<<<< * strides = memview.view.strides * suboffsets = memview.view.suboffsets */ __pyx_t_1 = __pyx_v_memview->view.shape; __pyx_v_shape = __pyx_t_1; /* "View.MemoryView":1070 * * shape = memview.view.shape * strides = memview.view.strides # <<<<<<<<<<<<<< * suboffsets = memview.view.suboffsets * */ __pyx_t_1 = __pyx_v_memview->view.strides; __pyx_v_strides = __pyx_t_1; /* "View.MemoryView":1071 * shape = memview.view.shape * strides = memview.view.strides * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< * * dst.memview = <__pyx_memoryview *> memview */ __pyx_t_1 = __pyx_v_memview->view.suboffsets; __pyx_v_suboffsets = __pyx_t_1; /* "View.MemoryView":1073 * suboffsets = memview.view.suboffsets * * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< * dst.data = memview.view.buf * */ __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); /* "View.MemoryView":1074 * * dst.memview = <__pyx_memoryview *> memview * dst.data = memview.view.buf # <<<<<<<<<<<<<< * * for dim in range(memview.view.ndim): */ __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); /* "View.MemoryView":1076 * dst.data = memview.view.buf * * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] */ __pyx_t_2 = __pyx_v_memview->view.ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_dim = __pyx_t_4; /* "View.MemoryView":1077 * * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 */ (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); /* "View.MemoryView":1078 * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 * */ (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); /* "View.MemoryView":1079 * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object') */ if ((__pyx_v_suboffsets != 0)) { __pyx_t_5 = (__pyx_v_suboffsets[__pyx_v_dim]); } else { __pyx_t_5 = -1L; } (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_5; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { __Pyx_memviewslice __pyx_v_memviewslice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy", 0); /* "View.MemoryView":1085 * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< * return memoryview_copy_from_slice(memview, &memviewslice) * */ __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); /* "View.MemoryView":1086 * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object_from_slice') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 1086, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { PyObject *(*__pyx_v_to_object_func)(char *); int (*__pyx_v_to_dtype_func)(char *, PyObject *); PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *(*__pyx_t_3)(char *); int (*__pyx_t_4)(char *, PyObject *); PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1097 * * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: */ __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; __pyx_v_to_object_func = __pyx_t_3; /* "View.MemoryView":1098 * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< * else: * to_object_func = NULL */ __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; __pyx_v_to_dtype_func = __pyx_t_4; /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ goto __pyx_L3; } /* "View.MemoryView":1100 * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: * to_object_func = NULL # <<<<<<<<<<<<<< * to_dtype_func = NULL * */ /*else*/ { __pyx_v_to_object_func = NULL; /* "View.MemoryView":1101 * else: * to_object_func = NULL * to_dtype_func = NULL # <<<<<<<<<<<<<< * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, */ __pyx_v_to_dtype_func = NULL; } __pyx_L3:; /* "View.MemoryView":1103 * to_dtype_func = NULL * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< * to_object_func, to_dtype_func, * memview.dtype_is_object) */ __Pyx_XDECREF(__pyx_r); /* "View.MemoryView":1105 * return memoryview_fromslice(memviewslice[0], memview.view.ndim, * to_object_func, to_dtype_func, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 1103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { Py_ssize_t __pyx_r; int __pyx_t_1; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ __pyx_t_1 = ((__pyx_v_arg < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1113 * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: * return -arg # <<<<<<<<<<<<<< * else: * return arg */ __pyx_r = (-__pyx_v_arg); goto __pyx_L0; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ } /* "View.MemoryView":1115 * return -arg * else: * return arg # <<<<<<<<<<<<<< * * @cname('__pyx_get_best_slice_order') */ /*else*/ { __pyx_r = __pyx_v_arg; goto __pyx_L0; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { int __pyx_v_i; Py_ssize_t __pyx_v_c_stride; Py_ssize_t __pyx_v_f_stride; char __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1123 * """ * cdef int i * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< * cdef Py_ssize_t f_stride = 0 * */ __pyx_v_c_stride = 0; /* "View.MemoryView":1124 * cdef int i * cdef Py_ssize_t c_stride = 0 * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_f_stride = 0; /* "View.MemoryView":1126 * cdef Py_ssize_t f_stride = 0 * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1128 * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1129 * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * for i in range(ndim): */ goto __pyx_L4_break; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ } } __pyx_L4_break:; /* "View.MemoryView":1131 * break * * for i in range(ndim): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] */ __pyx_t_1 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_1; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1133 * for i in range(ndim): * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1134 * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): */ goto __pyx_L7_break; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ } } __pyx_L7_break:; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1137 * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): * return 'C' # <<<<<<<<<<<<<< * else: * return 'F' */ __pyx_r = 'C'; goto __pyx_L0; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ } /* "View.MemoryView":1139 * return 'C' * else: * return 'F' # <<<<<<<<<<<<<< * * @cython.cdivision(True) */ /*else*/ { __pyx_r = 'F'; goto __pyx_L0; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; Py_ssize_t __pyx_v_dst_extent; Py_ssize_t __pyx_v_src_stride; Py_ssize_t __pyx_v_dst_stride; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; /* "View.MemoryView":1149 * * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] */ __pyx_v_src_extent = (__pyx_v_src_shape[0]); /* "View.MemoryView":1150 * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] */ __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); /* "View.MemoryView":1151 * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_stride = dst_strides[0] * */ __pyx_v_src_stride = (__pyx_v_src_strides[0]); /* "View.MemoryView":1152 * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * src_stride == itemsize == dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ __pyx_t_2 = ((__pyx_v_src_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } /* "View.MemoryView":1156 * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize * dst_extent) * else: */ __pyx_t_2 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); if (__pyx_t_2) { __pyx_t_2 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); } __pyx_t_3 = (__pyx_t_2 != 0); __pyx_t_1 = __pyx_t_3; __pyx_L5_bool_binop_done:; /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * src_stride == itemsize == dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ if (__pyx_t_1) { /* "View.MemoryView":1157 * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent))); /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * src_stride == itemsize == dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ goto __pyx_L4; } /* "View.MemoryView":1159 * memcpy(dst_data, src_data, itemsize * dst_extent) * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize) * src_data += src_stride */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1160 * else: * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< * src_data += src_stride * dst_data += dst_stride */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize)); /* "View.MemoryView":1161 * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * else: */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1162 * memcpy(dst_data, src_data, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L4:; /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * src_stride == itemsize == dst_stride): */ goto __pyx_L3; } /* "View.MemoryView":1164 * dst_data += dst_stride * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * _copy_strided_to_strided(src_data, src_strides + 1, * dst_data, dst_strides + 1, */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1165 * else: * for i in range(dst_extent): * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< * dst_data, dst_strides + 1, * src_shape + 1, dst_shape + 1, */ _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); /* "View.MemoryView":1169 * src_shape + 1, dst_shape + 1, * ndim - 1, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1170 * ndim - 1, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L3:; /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ /* function exit code */ } /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { /* "View.MemoryView":1175 * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< * src.shape, dst.shape, ndim, itemsize) * */ _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ /* function exit code */ } /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_size; Py_ssize_t __pyx_r; Py_ssize_t __pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; /* "View.MemoryView":1181 * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize # <<<<<<<<<<<<<< * * for shape in src.shape[:ndim]: */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_size = __pyx_t_1; /* "View.MemoryView":1183 * cdef Py_ssize_t shape, size = src.memview.view.itemsize * * for shape in src.shape[:ndim]: # <<<<<<<<<<<<<< * size *= shape * */ __pyx_t_3 = (__pyx_v_src->shape + __pyx_v_ndim); for (__pyx_t_4 = __pyx_v_src->shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_shape = (__pyx_t_2[0]); /* "View.MemoryView":1184 * * for shape in src.shape[:ndim]: * size *= shape # <<<<<<<<<<<<<< * * return size */ __pyx_v_size = (__pyx_v_size * __pyx_v_shape); } /* "View.MemoryView":1186 * size *= shape * * return size # <<<<<<<<<<<<<< * * @cname('__pyx_fill_contig_strides_array') */ __pyx_r = __pyx_v_size; goto __pyx_L0; /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { int __pyx_v_idx; Py_ssize_t __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ __pyx_t_1 = ((__pyx_v_order == 'F') != 0); if (__pyx_t_1) { /* "View.MemoryView":1199 * * if order == 'F': * for idx in range(ndim): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ __pyx_t_2 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_idx = __pyx_t_4; /* "View.MemoryView":1200 * if order == 'F': * for idx in range(ndim): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * else: */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1201 * for idx in range(ndim): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * else: * for idx in range(ndim - 1, -1, -1): */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ goto __pyx_L3; } /* "View.MemoryView":1203 * stride *= shape[idx] * else: * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ /*else*/ { for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { __pyx_v_idx = __pyx_t_2; /* "View.MemoryView":1204 * else: * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1205 * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * * return stride */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } } __pyx_L3:; /* "View.MemoryView":1207 * stride *= shape[idx] * * return stride # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_data_to_temp') */ __pyx_r = __pyx_v_stride; goto __pyx_L0; /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { int __pyx_v_i; void *__pyx_v_result; size_t __pyx_v_itemsize; size_t __pyx_v_size; void *__pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; struct __pyx_memoryview_obj *__pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1221 * cdef void *result * * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef size_t size = slice_get_size(src, ndim) * */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1222 * * cdef size_t itemsize = src.memview.view.itemsize * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< * * result = malloc(size) */ __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); /* "View.MemoryView":1224 * cdef size_t size = slice_get_size(src, ndim) * * result = malloc(size) # <<<<<<<<<<<<<< * if not result: * _err(MemoryError, NULL) */ __pyx_v_result = malloc(__pyx_v_size); /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1226 * result = malloc(size) * if not result: * _err(MemoryError, NULL) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(4, 1226, __pyx_L1_error) /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ } /* "View.MemoryView":1229 * * * tmpslice.data = result # <<<<<<<<<<<<<< * tmpslice.memview = src.memview * for i in range(ndim): */ __pyx_v_tmpslice->data = ((char *)__pyx_v_result); /* "View.MemoryView":1230 * * tmpslice.data = result * tmpslice.memview = src.memview # <<<<<<<<<<<<<< * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] */ __pyx_t_4 = __pyx_v_src->memview; __pyx_v_tmpslice->memview = __pyx_t_4; /* "View.MemoryView":1231 * tmpslice.data = result * tmpslice.memview = src.memview * for i in range(ndim): # <<<<<<<<<<<<<< * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1232 * tmpslice.memview = src.memview * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< * tmpslice.suboffsets[i] = -1 * */ (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); /* "View.MemoryView":1233 * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, */ (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1235 * tmpslice.suboffsets[i] = -1 * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< * ndim, order) * */ (void)(__pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order)); /* "View.MemoryView":1239 * * * for i in range(ndim): # <<<<<<<<<<<<<< * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1241 * for i in range(ndim): * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< * * if slice_is_contig(src[0], order, ndim): */ (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ } } /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1244 * * if slice_is_contig(src[0], order, ndim): * memcpy(result, src.data, size) # <<<<<<<<<<<<<< * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) */ (void)(memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size)); /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ goto __pyx_L9; } /* "View.MemoryView":1246 * memcpy(result, src.data, size) * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< * * return result */ /*else*/ { copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); } __pyx_L9:; /* "View.MemoryView":1248 * copy_strided_to_strided(src, tmpslice, ndim, itemsize) * * return result # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = NULL; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_extents", 0); /* "View.MemoryView":1256 * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % * (i, extent1, extent2)) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err_dim') */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; /* "View.MemoryView":1255 * cdef int _err_extents(int i, Py_ssize_t extent1, * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< * (i, extent1, extent2)) * */ __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(4, 1255, __pyx_L1_error) /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_dim", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1260 * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err') */ __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_INCREF(__pyx_v_error); __pyx_t_3 = __pyx_v_error; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(4, 1260, __pyx_L1_error) /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":1265 * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< * else: * raise error */ __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(4, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_error); __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(4, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(4, 1265, __pyx_L1_error) /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ } /* "View.MemoryView":1267 * raise error(msg.decode('ascii')) * else: * raise error # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_contents') */ /*else*/ { __Pyx_Raise(__pyx_v_error, 0, 0, 0); __PYX_ERR(4, 1267, __pyx_L1_error) } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { void *__pyx_v_tmpdata; size_t __pyx_v_itemsize; int __pyx_v_i; char __pyx_v_order; int __pyx_v_broadcasting; int __pyx_v_direct_copy; __Pyx_memviewslice __pyx_v_tmp; int __pyx_v_ndim; int __pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; void *__pyx_t_7; int __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1278 * Check for overlapping memory and verify the shapes. * """ * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< * cdef size_t itemsize = src.memview.view.itemsize * cdef int i */ __pyx_v_tmpdata = NULL; /* "View.MemoryView":1279 * """ * cdef void *tmpdata = NULL * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef int i * cdef char order = get_best_order(&src, src_ndim) */ __pyx_t_1 = __pyx_v_src.memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1281 * cdef size_t itemsize = src.memview.view.itemsize * cdef int i * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< * cdef bint broadcasting = False * cdef bint direct_copy = False */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); /* "View.MemoryView":1282 * cdef int i * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False # <<<<<<<<<<<<<< * cdef bint direct_copy = False * cdef __Pyx_memviewslice tmp */ __pyx_v_broadcasting = 0; /* "View.MemoryView":1283 * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False * cdef bint direct_copy = False # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice tmp * */ __pyx_v_direct_copy = 0; /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1287 * * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ goto __pyx_L3; } /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1289 * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< * * cdef int ndim = max(src_ndim, dst_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ } __pyx_L3:; /* "View.MemoryView":1291 * broadcast_leading(&dst, dst_ndim, src_ndim) * * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< * * for i in range(ndim): */ __pyx_t_3 = __pyx_v_dst_ndim; __pyx_t_4 = __pyx_v_src_ndim; if (((__pyx_t_3 > __pyx_t_4) != 0)) { __pyx_t_5 = __pyx_t_3; } else { __pyx_t_5 = __pyx_t_4; } __pyx_v_ndim = __pyx_t_5; /* "View.MemoryView":1293 * cdef int ndim = max(src_ndim, dst_ndim) * * for i in range(ndim): # <<<<<<<<<<<<<< * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: */ __pyx_t_5 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_5; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); if (__pyx_t_2) { /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1296 * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: * broadcasting = True # <<<<<<<<<<<<<< * src.strides[i] = 0 * else: */ __pyx_v_broadcasting = 1; /* "View.MemoryView":1297 * if src.shape[i] == 1: * broadcasting = True * src.strides[i] = 0 # <<<<<<<<<<<<<< * else: * _err_extents(i, dst.shape[i], src.shape[i]) */ (__pyx_v_src.strides[__pyx_v_i]) = 0; /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ goto __pyx_L7; } /* "View.MemoryView":1299 * src.strides[i] = 0 * else: * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< * * if src.suboffsets[i] >= 0: */ /*else*/ { __pyx_t_6 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(4, 1299, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ } /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":1302 * * if src.suboffsets[i] >= 0: * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< * * if slices_overlap(&src, &dst, ndim, itemsize): */ __pyx_t_6 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(4, 1302, __pyx_L1_error) /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ } } /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); if (__pyx_t_2) { /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1307 * * if not slice_is_contig(src, order, ndim): * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ } /* "View.MemoryView":1309 * order = get_best_order(&dst, ndim) * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< * src = tmp * */ __pyx_t_7 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_7 == ((void *)NULL))) __PYX_ERR(4, 1309, __pyx_L1_error) __pyx_v_tmpdata = __pyx_t_7; /* "View.MemoryView":1310 * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) * src = tmp # <<<<<<<<<<<<<< * * if not broadcasting: */ __pyx_v_src = __pyx_v_tmp; /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1316 * * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ goto __pyx_L12; } /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1318 * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< * * if direct_copy: */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ } __pyx_L12:; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_2 = (__pyx_v_direct_copy != 0); if (__pyx_t_2) { /* "View.MemoryView":1322 * if direct_copy: * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1323 * * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) */ (void)(memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim))); /* "View.MemoryView":1324 * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * free(tmpdata) * return 0 */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1325 * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1326 * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * if order == 'F' == get_best_order(&dst, ndim): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ __pyx_t_2 = (__pyx_v_order == 'F'); if (__pyx_t_2) { __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); } __pyx_t_8 = (__pyx_t_2 != 0); if (__pyx_t_8) { /* "View.MemoryView":1331 * * * transpose_memslice(&src) # <<<<<<<<<<<<<< * transpose_memslice(&dst) * */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(4, 1331, __pyx_L1_error) /* "View.MemoryView":1332 * * transpose_memslice(&src) * transpose_memslice(&dst) # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(4, 1332, __pyx_L1_error) /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1334 * transpose_memslice(&dst) * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1335 * * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * */ copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1336 * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * free(tmpdata) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1338 * refcount_copying(&dst, dtype_is_object, ndim, True) * * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1339 * * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_broadcast_leading') */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim, int __pyx_v_ndim_other) { int __pyx_v_i; int __pyx_v_offset; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; /* "View.MemoryView":1346 * int ndim_other) nogil: * cdef int i * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); /* "View.MemoryView":1348 * cdef int offset = ndim_other - ndim * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1349 * * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] */ (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); /* "View.MemoryView":1350 * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * */ (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1351 * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< * * for i in range(offset): */ (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); } /* "View.MemoryView":1353 * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * * for i in range(offset): # <<<<<<<<<<<<<< * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] */ __pyx_t_1 = __pyx_v_offset; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1354 * * for i in range(offset): * mslice.shape[i] = 1 # <<<<<<<<<<<<<< * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 */ (__pyx_v_mslice->shape[__pyx_v_i]) = 1; /* "View.MemoryView":1355 * for i in range(offset): * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< * mslice.suboffsets[i] = -1 * */ (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); /* "View.MemoryView":1356 * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * */ (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ /* function exit code */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { int __pyx_t_1; /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ __pyx_t_1 = (__pyx_v_dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":1369 * * if dtype_is_object: * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< * dst.strides, ndim, inc) * */ __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ /* function exit code */ } /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { __Pyx_RefNannyDeclarations #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); /* "View.MemoryView":1376 * Py_ssize_t *strides, int ndim, * bint inc) with gil: * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_refcount_objects_in_slice') */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ /* function exit code */ __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); /* "View.MemoryView":1383 * cdef Py_ssize_t i * * for i in range(shape[0]): # <<<<<<<<<<<<<< * if ndim == 1: * if inc: */ __pyx_t_1 = (__pyx_v_shape[0]); __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF(( data)[0]) */ __pyx_t_4 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_4) { /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF(( data)[0]) * else: */ __pyx_t_4 = (__pyx_v_inc != 0); if (__pyx_t_4) { /* "View.MemoryView":1386 * if ndim == 1: * if inc: * Py_INCREF(( data)[0]) # <<<<<<<<<<<<<< * else: * Py_DECREF(( data)[0]) */ Py_INCREF((((PyObject **)__pyx_v_data)[0])); /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF(( data)[0]) * else: */ goto __pyx_L6; } /* "View.MemoryView":1388 * Py_INCREF(( data)[0]) * else: * Py_DECREF(( data)[0]) # <<<<<<<<<<<<<< * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, */ /*else*/ { Py_DECREF((((PyObject **)__pyx_v_data)[0])); } __pyx_L6:; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF(( data)[0]) */ goto __pyx_L5; } /* "View.MemoryView":1390 * Py_DECREF(( data)[0]) * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, inc) * */ /*else*/ { /* "View.MemoryView":1391 * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, * ndim - 1, inc) # <<<<<<<<<<<<<< * * data += strides[0] */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); } __pyx_L5:; /* "View.MemoryView":1393 * ndim - 1, inc) * * data += strides[0] # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { /* "View.MemoryView":1402 * size_t itemsize, void *item, * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1403 * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) */ __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1405 * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ /* function exit code */ } /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_extent; int __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; Py_ssize_t __pyx_t_4; /* "View.MemoryView":1413 * size_t itemsize, void *item) nogil: * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t extent = shape[0] * */ __pyx_v_stride = (__pyx_v_strides[0]); /* "View.MemoryView":1414 * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_extent = (__pyx_v_shape[0]); /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1417 * * if ndim == 1: * for i in range(extent): # <<<<<<<<<<<<<< * memcpy(data, item, itemsize) * data += stride */ __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1418 * if ndim == 1: * for i in range(extent): * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< * data += stride * else: */ (void)(memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize)); /* "View.MemoryView":1419 * for i in range(extent): * memcpy(data, item, itemsize) * data += stride # <<<<<<<<<<<<<< * else: * for i in range(extent): */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ goto __pyx_L3; } /* "View.MemoryView":1421 * data += stride * else: * for i in range(extent): # <<<<<<<<<<<<<< * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) */ /*else*/ { __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1422 * else: * for i in range(extent): * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, itemsize, item) * data += stride */ __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1424 * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) * data += stride # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } } __pyx_L3:; /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ /* function exit code */ } /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum = {"__pyx_unpickle_Enum", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v___pyx_type = 0; long __pyx_v___pyx_checksum; PyObject *__pyx_v___pyx_state = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_unpickle_Enum (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_pyx_type,&__pyx_n_s_pyx_checksum,&__pyx_n_s_pyx_state,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_type)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_checksum)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 1); __PYX_ERR(4, 1, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_state)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 2); __PYX_ERR(4, 1, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_unpickle_Enum") < 0)) __PYX_ERR(4, 1, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); } __pyx_v___pyx_type = values[0]; __pyx_v___pyx_checksum = __Pyx_PyInt_As_long(values[1]); if (unlikely((__pyx_v___pyx_checksum == (long)-1) && PyErr_Occurred())) __PYX_ERR(4, 1, __pyx_L3_error) __pyx_v___pyx_state = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(4, 1, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(__pyx_self, __pyx_v___pyx_type, __pyx_v___pyx_checksum, __pyx_v___pyx_state); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_v___pyx_PickleError = 0; PyObject *__pyx_v___pyx_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum", 0); /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_t_1, __pyx_tuple__24, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":5 * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError # <<<<<<<<<<<<<< * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_PickleError); __Pyx_GIVEREF(__pyx_n_s_PickleError); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_PickleError); __pyx_t_4 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_4, __pyx_n_s_PickleError); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_1); __pyx_v___pyx_PickleError = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":6 * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) # <<<<<<<<<<<<<< * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(4, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_INCREF(__pyx_v___pyx_PickleError); __pyx_t_1 = __pyx_v___pyx_PickleError; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_6, __pyx_t_5) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(4, 6, __pyx_L1_error) /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ } /* "(tree fragment)":7 * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) # <<<<<<<<<<<<<< * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_MemviewEnum_type), __pyx_n_s_new); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_5, __pyx_v___pyx_type) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v___pyx_type); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v___pyx_result = __pyx_t_4; __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result */ __pyx_t_3 = (__pyx_v___pyx_state != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { /* "(tree fragment)":9 * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) # <<<<<<<<<<<<<< * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(4, 9, __pyx_L1_error) __pyx_t_4 = __pyx_unpickle_Enum__set_state(((struct __pyx_MemviewEnum_obj *)__pyx_v___pyx_result), ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_4)) __PYX_ERR(4, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result */ } /* "(tree fragment)":10 * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result # <<<<<<<<<<<<<< * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v___pyx_result); __pyx_r = __pyx_v___pyx_result; goto __pyx_L0; /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v___pyx_PickleError); __Pyx_XDECREF(__pyx_v___pyx_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *__pyx_v___pyx_result, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum__set_state", 0); /* "(tree fragment)":12 * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] # <<<<<<<<<<<<<< * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(4, 12, __pyx_L1_error) } __pyx_t_1 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __Pyx_GOTREF(__pyx_v___pyx_result->name); __Pyx_DECREF(__pyx_v___pyx_result->name); __pyx_v___pyx_result->name = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(4, 13, __pyx_L1_error) } __pyx_t_3 = PyTuple_GET_SIZE(__pyx_v___pyx_state); if (unlikely(__pyx_t_3 == ((Py_ssize_t)-1))) __PYX_ERR(4, 13, __pyx_L1_error) __pyx_t_4 = ((__pyx_t_3 > 1) != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_4 = __Pyx_HasAttr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(4, 13, __pyx_L1_error) __pyx_t_5 = (__pyx_t_4 != 0); __pyx_t_2 = __pyx_t_5; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { /* "(tree fragment)":14 * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) # <<<<<<<<<<<<<< */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(4, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(4, 14, __pyx_L1_error) } __pyx_t_6 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(4, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_8, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum__set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static struct __pyx_vtabstruct_array __pyx_vtable_array; static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_array_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_array_obj *)o); p->__pyx_vtab = __pyx_vtabptr_array; p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_array(PyObject *o) { struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_array___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->mode); Py_CLEAR(p->_format); (*Py_TYPE(o)->tp_free)(o); } static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_array___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { PyObject *v = __Pyx_PyObject_GenericGetAttr(o, n); if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); v = __pyx_array___getattr__(o, n); } return v; } static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(o); } static PyMethodDef __pyx_methods_array[] = { {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_array_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_array_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_array[] = { {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_array = { __pyx_array___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_array, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_array = { __pyx_array___len__, /*mp_length*/ __pyx_array___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_array = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_array_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_array = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaGraph.ctools._ctools.array", /*tp_name*/ sizeof(struct __pyx_array_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_array, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif 0, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ __pyx_tp_getattro_array, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_array, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_array, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_array, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { struct __pyx_MemviewEnum_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_MemviewEnum_obj *)o); p->name = Py_None; Py_INCREF(Py_None); return o; } static void __pyx_tp_dealloc_Enum(PyObject *o) { struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); Py_CLEAR(p->name); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { int e; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; if (p->name) { e = (*v)(p->name, a); if (e) return e; } return 0; } static int __pyx_tp_clear_Enum(PyObject *o) { PyObject* tmp; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; tmp = ((PyObject*)p->name); p->name = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); return 0; } static PyMethodDef __pyx_methods_Enum[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_MemviewEnum = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaGraph.ctools._ctools.Enum", /*tp_name*/ sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_Enum, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_MemviewEnum___repr__, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_Enum, /*tp_traverse*/ __pyx_tp_clear_Enum, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_Enum, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ __pyx_MemviewEnum___init__, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_Enum, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryview_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_memoryview_obj *)o); p->__pyx_vtab = __pyx_vtabptr_memoryview; p->obj = Py_None; Py_INCREF(Py_None); p->_size = Py_None; Py_INCREF(Py_None); p->_array_interface = Py_None; Py_INCREF(Py_None); p->view.obj = NULL; if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_memoryview(PyObject *o) { struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryview___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->obj); Py_CLEAR(p->_size); Py_CLEAR(p->_array_interface); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; if (p->obj) { e = (*v)(p->obj, a); if (e) return e; } if (p->_size) { e = (*v)(p->_size, a); if (e) return e; } if (p->_array_interface) { e = (*v)(p->_array_interface, a); if (e) return e; } if (p->view.obj) { e = (*v)(p->view.obj, a); if (e) return e; } return 0; } static int __pyx_tp_clear_memoryview(PyObject *o) { PyObject* tmp; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; tmp = ((PyObject*)p->obj); p->obj = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_size); p->_size = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_array_interface); p->_array_interface = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); Py_CLEAR(p->view.obj); return 0; } static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_memoryview___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(o); } static PyMethodDef __pyx_methods_memoryview[] = { {"is_c_contig", (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, 0}, {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_memoryview[] = { {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, (char *)0, 0}, {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, (char *)0, 0}, {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, (char *)0, 0}, {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, (char *)0, 0}, {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, (char *)0, 0}, {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, (char *)0, 0}, {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, (char *)0, 0}, {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, (char *)0, 0}, {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_memoryview = { __pyx_memoryview___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_memoryview, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_memoryview = { __pyx_memoryview___len__, /*mp_length*/ __pyx_memoryview___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_memoryview = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_memoryview_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_memoryview = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaGraph.ctools._ctools.memoryview", /*tp_name*/ sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_memoryview___repr__, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ __pyx_memoryview___str__, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_memoryview, /*tp_traverse*/ __pyx_tp_clear_memoryview, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_memoryview, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_memoryview, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_memoryview, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryviewslice_obj *p; PyObject *o = __pyx_tp_new_memoryview(t, a, k); if (unlikely(!o)) return 0; p = ((struct __pyx_memoryviewslice_obj *)o); p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; p->from_object = Py_None; Py_INCREF(Py_None); p->from_slice.memview = NULL; return o; } static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryviewslice___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->from_object); PyObject_GC_Track(o); __pyx_tp_dealloc_memoryview(o); } static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; if (p->from_object) { e = (*v)(p->from_object, a); if (e) return e; } return 0; } static int __pyx_tp_clear__memoryviewslice(PyObject *o) { PyObject* tmp; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; __pyx_tp_clear_memoryview(o); tmp = ((PyObject*)p->from_object); p->from_object = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); __PYX_XDEC_MEMVIEW(&p->from_slice, 1); return 0; } static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(o); } static PyMethodDef __pyx_methods__memoryviewslice[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_memoryviewslice = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaGraph.ctools._ctools._memoryviewslice", /*tp_name*/ sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___repr__, /*tp_repr*/ #else 0, /*tp_repr*/ #endif 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___str__, /*tp_str*/ #else 0, /*tp_str*/ #endif 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ "Internal class for passing memoryview slices to Python", /*tp_doc*/ __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ __pyx_tp_clear__memoryviewslice, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods__memoryviewslice, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets__memoryviewslice, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new__memoryviewslice, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 #if CYTHON_PEP489_MULTI_PHASE_INIT static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ static int __pyx_pymod_exec__ctools(PyObject* module); /*proto*/ static PyModuleDef_Slot __pyx_moduledef_slots[] = { {Py_mod_create, (void*)__pyx_pymod_create}, {Py_mod_exec, (void*)__pyx_pymod_exec__ctools}, {0, NULL} }; #endif static struct PyModuleDef __pyx_moduledef = { PyModuleDef_HEAD_INIT, "_ctools", 0, /* m_doc */ #if CYTHON_PEP489_MULTI_PHASE_INIT 0, /* m_size */ #else -1, /* m_size */ #endif __pyx_methods /* m_methods */, #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_moduledef_slots, /* m_slots */ #else NULL, /* m_reload */ #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif #ifndef CYTHON_SMALL_CODE #if defined(__clang__) #define CYTHON_SMALL_CODE #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define CYTHON_SMALL_CODE __attribute__((cold)) #else #define CYTHON_SMALL_CODE #endif #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, {&__pyx_n_s_C, __pyx_k_C, sizeof(__pyx_k_C), 0, 0, 1, 1}, {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_assign_to_read_only_memor, __pyx_k_Cannot_assign_to_read_only_memor, sizeof(__pyx_k_Cannot_assign_to_read_only_memor), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_create_writable_memory_vi, __pyx_k_Cannot_create_writable_memory_vi, sizeof(__pyx_k_Cannot_create_writable_memory_vi), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, {&__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_k_Incompatible_checksums_0x_x_vs_0, sizeof(__pyx_k_Incompatible_checksums_0x_x_vs_0), 0, 0, 1, 0}, {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, {&__pyx_n_s_NUMPY_TO_TYPE_DESC, __pyx_k_NUMPY_TO_TYPE_DESC, sizeof(__pyx_k_NUMPY_TO_TYPE_DESC), 0, 0, 1, 1}, {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, {&__pyx_n_s_PickleError, __pyx_k_PickleError, sizeof(__pyx_k_PickleError), 0, 0, 1, 1}, {&__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools, __pyx_k_PyMca5_PyMcaGraph_ctools__ctools, sizeof(__pyx_k_PyMca5_PyMcaGraph_ctools__ctools), 0, 0, 1, 0}, {&__pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2, __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_2, sizeof(__pyx_k_PyMca5_PyMcaGraph_ctools__ctools_2), 0, 0, 1, 1}, {&__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_3, __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_3, sizeof(__pyx_k_PyMca5_PyMcaGraph_ctools__ctools_3), 0, 0, 1, 0}, {&__pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4, __pyx_k_PyMca5_PyMcaGraph_ctools__ctools_4, sizeof(__pyx_k_PyMca5_PyMcaGraph_ctools__ctools_4), 0, 0, 1, 0}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_View_MemoryView, __pyx_k_View_MemoryView, sizeof(__pyx_k_View_MemoryView), 0, 0, 1, 1}, {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, {&__pyx_n_s_asarray, __pyx_k_asarray, sizeof(__pyx_k_asarray), 0, 0, 1, 1}, {&__pyx_n_s_ascontiguousarray, __pyx_k_ascontiguousarray, sizeof(__pyx_k_ascontiguousarray), 0, 0, 1, 1}, {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, {&__pyx_n_s_border, __pyx_k_border, sizeof(__pyx_k_border), 0, 0, 1, 1}, {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, {&__pyx_n_s_c_colormap, __pyx_k_c_colormap, sizeof(__pyx_k_c_colormap), 0, 0, 1, 1}, {&__pyx_n_s_c_colormapLength, __pyx_k_c_colormapLength, sizeof(__pyx_k_c_colormapLength), 0, 0, 1, 1}, {&__pyx_n_s_c_data, __pyx_k_c_data, sizeof(__pyx_k_c_data), 0, 0, 1, 1}, {&__pyx_n_s_c_dataItemSize, __pyx_k_c_dataItemSize, sizeof(__pyx_k_c_dataItemSize), 0, 0, 1, 1}, {&__pyx_n_s_c_dataMax, __pyx_k_c_dataMax, sizeof(__pyx_k_c_dataMax), 0, 0, 1, 1}, {&__pyx_n_s_c_dataMin, __pyx_k_c_dataMin, sizeof(__pyx_k_c_dataMin), 0, 0, 1, 1}, {&__pyx_n_s_c_dataMinPos, __pyx_k_c_dataMinPos, sizeof(__pyx_k_c_dataMinPos), 0, 0, 1, 1}, {&__pyx_n_s_c_dataPtr, __pyx_k_c_dataPtr, sizeof(__pyx_k_c_dataPtr), 0, 0, 1, 1}, {&__pyx_n_s_c_dataSize, __pyx_k_c_dataSize, sizeof(__pyx_k_c_dataSize), 0, 0, 1, 1}, {&__pyx_n_s_c_end, __pyx_k_c_end, sizeof(__pyx_k_c_end), 0, 0, 1, 1}, {&__pyx_n_s_c_nanColor, __pyx_k_c_nanColor, sizeof(__pyx_k_c_nanColor), 0, 0, 1, 1}, {&__pyx_n_s_c_nanColorPtr, __pyx_k_c_nanColorPtr, sizeof(__pyx_k_c_nanColorPtr), 0, 0, 1, 1}, {&__pyx_n_s_c_pixmap, __pyx_k_c_pixmap, sizeof(__pyx_k_c_pixmap), 0, 0, 1, 1}, {&__pyx_n_s_c_points, __pyx_k_c_points, sizeof(__pyx_k_c_points), 0, 0, 1, 1}, {&__pyx_n_s_c_start, __pyx_k_c_start, sizeof(__pyx_k_c_start), 0, 0, 1, 1}, {&__pyx_n_s_c_startExtra, __pyx_k_c_startExtra, sizeof(__pyx_k_c_startExtra), 0, 0, 1, 1}, {&__pyx_n_s_c_type, __pyx_k_c_type, sizeof(__pyx_k_c_type), 0, 0, 1, 1}, {&__pyx_n_s_c_vertices, __pyx_k_c_vertices, sizeof(__pyx_k_c_vertices), 0, 0, 1, 1}, {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_n_s_colormap, __pyx_k_colormap, sizeof(__pyx_k_colormap), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, {&__pyx_n_s_data, __pyx_k_data, sizeof(__pyx_k_data), 0, 0, 1, 1}, {&__pyx_n_s_dataToRGBAColormap, __pyx_k_dataToRGBAColormap, sizeof(__pyx_k_dataToRGBAColormap), 0, 0, 1, 1}, {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, {&__pyx_n_s_endValue, __pyx_k_endValue, sizeof(__pyx_k_endValue), 0, 0, 1, 1}, {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, {&__pyx_n_s_f2, __pyx_k_f2, sizeof(__pyx_k_f2), 0, 0, 1, 1}, {&__pyx_n_s_f4, __pyx_k_f4, sizeof(__pyx_k_f4), 0, 0, 1, 1}, {&__pyx_n_s_f8, __pyx_k_f8, sizeof(__pyx_k_f8), 0, 0, 1, 1}, {&__pyx_n_s_fastLog10, __pyx_k_fastLog10, sizeof(__pyx_k_fastLog10), 0, 0, 1, 1}, {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, {&__pyx_n_s_float32, __pyx_k_float32, sizeof(__pyx_k_float32), 0, 0, 1, 1}, {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, {&__pyx_n_s_i1, __pyx_k_i1, sizeof(__pyx_k_i1), 0, 0, 1, 1}, {&__pyx_n_s_i2, __pyx_k_i2, sizeof(__pyx_k_i2), 0, 0, 1, 1}, {&__pyx_n_s_i4, __pyx_k_i4, sizeof(__pyx_k_i4), 0, 0, 1, 1}, {&__pyx_n_s_i8, __pyx_k_i8, sizeof(__pyx_k_i8), 0, 0, 1, 1}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_int16, __pyx_k_int16, sizeof(__pyx_k_int16), 0, 0, 1, 1}, {&__pyx_n_s_int32, __pyx_k_int32, sizeof(__pyx_k_int32), 0, 0, 1, 1}, {&__pyx_n_s_int8, __pyx_k_int8, sizeof(__pyx_k_int8), 0, 0, 1, 1}, {&__pyx_n_s_isLog10Mapping, __pyx_k_isLog10Mapping, sizeof(__pyx_k_isLog10Mapping), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_mask, __pyx_k_mask, sizeof(__pyx_k_mask), 0, 0, 1, 1}, {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, {&__pyx_n_s_minMax, __pyx_k_minMax, sizeof(__pyx_k_minMax), 0, 0, 1, 1}, {&__pyx_n_s_minPositive, __pyx_k_minPositive, sizeof(__pyx_k_minPositive), 0, 0, 1, 1}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, {&__pyx_n_s_n_points, __pyx_k_n_points, sizeof(__pyx_k_n_points), 0, 0, 1, 1}, {&__pyx_n_s_n_vertices, __pyx_k_n_vertices, sizeof(__pyx_k_n_vertices), 0, 0, 1, 1}, {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_nanColor, __pyx_k_nanColor, sizeof(__pyx_k_nanColor), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_order, __pyx_k_order, sizeof(__pyx_k_order), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, {&__pyx_n_s_pixmap, __pyx_k_pixmap, sizeof(__pyx_k_pixmap), 0, 0, 1, 1}, {&__pyx_n_s_pnpoly, __pyx_k_pnpoly, sizeof(__pyx_k_pnpoly), 0, 0, 1, 1}, {&__pyx_n_s_pnpolyFloat, __pyx_k_pnpolyFloat, sizeof(__pyx_k_pnpolyFloat), 0, 0, 1, 1}, {&__pyx_n_s_pnpolyInt, __pyx_k_pnpolyInt, sizeof(__pyx_k_pnpolyInt), 0, 0, 1, 1}, {&__pyx_n_s_pnpolyd, __pyx_k_pnpolyd, sizeof(__pyx_k_pnpolyd), 0, 0, 1, 1}, {&__pyx_n_s_points, __pyx_k_points, sizeof(__pyx_k_points), 0, 0, 1, 1}, {&__pyx_n_s_pyx_PickleError, __pyx_k_pyx_PickleError, sizeof(__pyx_k_pyx_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_pyx_checksum, __pyx_k_pyx_checksum, sizeof(__pyx_k_pyx_checksum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, {&__pyx_n_s_pyx_result, __pyx_k_pyx_result, sizeof(__pyx_k_pyx_result), 0, 0, 1, 1}, {&__pyx_n_s_pyx_state, __pyx_k_pyx_state, sizeof(__pyx_k_pyx_state), 0, 0, 1, 1}, {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, {&__pyx_n_s_startValue, __pyx_k_startValue, sizeof(__pyx_k_startValue), 0, 0, 1, 1}, {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, {&__pyx_n_s_str, __pyx_k_str, sizeof(__pyx_k_str), 0, 0, 1, 1}, {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_stringsource, __pyx_k_stringsource, sizeof(__pyx_k_stringsource), 0, 0, 1, 0}, {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_n_s_u1, __pyx_k_u1, sizeof(__pyx_k_u1), 0, 0, 1, 1}, {&__pyx_n_s_u2, __pyx_k_u2, sizeof(__pyx_k_u2), 0, 0, 1, 1}, {&__pyx_n_s_u4, __pyx_k_u4, sizeof(__pyx_k_u4), 0, 0, 1, 1}, {&__pyx_n_s_u8, __pyx_k_u8, sizeof(__pyx_k_u8), 0, 0, 1, 1}, {&__pyx_n_s_uint16, __pyx_k_uint16, sizeof(__pyx_k_uint16), 0, 0, 1, 1}, {&__pyx_n_s_uint32, __pyx_k_uint32, sizeof(__pyx_k_uint32), 0, 0, 1, 1}, {&__pyx_n_s_uint8, __pyx_k_uint8, sizeof(__pyx_k_uint8), 0, 0, 1, 1}, {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {&__pyx_n_s_value, __pyx_k_value, sizeof(__pyx_k_value), 0, 0, 1, 1}, {&__pyx_n_s_vertices, __pyx_k_vertices, sizeof(__pyx_k_vertices), 0, 0, 1, 1}, {&__pyx_kp_s_zero_size_array, __pyx_k_zero_size_array, sizeof(__pyx_k_zero_size_array), 0, 0, 1, 0}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(0, 78, __pyx_L1_error) __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(3, 944, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(4, 149, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(4, 152, __pyx_L1_error) __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(4, 181, __pyx_L1_error) __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(4, 2, __pyx_L1_error) __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(4, 406, __pyx_L1_error) __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(4, 615, __pyx_L1_error) __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(4, 834, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":70 * """ * #Convert float16 to float32 * if data.dtype.str[1:] == 'f2': # <<<<<<<<<<<<<< * data = np.asarray(data, dtype=np.float32) * */ __pyx_slice_ = PySlice_New(__pyx_int_1, Py_None, Py_None); if (unlikely(!__pyx_slice_)) __PYX_ERR(0, 70, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice_); __Pyx_GIVEREF(__pyx_slice_); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":78 * * if c_dataSize == 0: * raise ValueError("zero-size array") # <<<<<<<<<<<<<< * * cdef double c_dataMin, c_dataMinPos, c_dataMax */ __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_s_zero_size_array); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(0, 78, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":138 * &c_pixmap[0, 0]) * * pixmap.shape = data.shape + (4,) # <<<<<<<<<<<<<< * return pixmap, (c_start, c_end) * */ __pyx_tuple__3 = PyTuple_Pack(1, __pyx_int_4); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(1, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__3); __Pyx_GIVEREF(__pyx_tuple__3); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_tuple__4 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(3, 944, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__4); __Pyx_GIVEREF(__pyx_tuple__4); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(3, 950, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(4, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(4, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__7); __Pyx_GIVEREF(__pyx_tuple__7); /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(4, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__8); __Pyx_GIVEREF(__pyx_tuple__8); /* "View.MemoryView":177 * self.data = malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(4, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__9); __Pyx_GIVEREF(__pyx_tuple__9); /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(4, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__10); __Pyx_GIVEREF(__pyx_tuple__10); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__11); __Pyx_GIVEREF(__pyx_tuple__11); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__12)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__12); __Pyx_GIVEREF(__pyx_tuple__12); /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_Cannot_assign_to_read_only_memor); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(4, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_tuple__14 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(4, 497, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__14); __Pyx_GIVEREF(__pyx_tuple__14); /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_s_Cannot_create_writable_memory_vi); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(4, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__15); __Pyx_GIVEREF(__pyx_tuple__15); /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(4, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__16); __Pyx_GIVEREF(__pyx_tuple__16); /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __pyx_tuple__17 = PyTuple_New(1); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(4, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__17); __Pyx_INCREF(__pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_tuple__17, 0, __pyx_int_neg_1); __Pyx_GIVEREF(__pyx_tuple__17); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__18); __Pyx_GIVEREF(__pyx_tuple__18); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__19); __Pyx_GIVEREF(__pyx_tuple__19); /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_slice__20 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__20)) __PYX_ERR(4, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice__20); __Pyx_GIVEREF(__pyx_slice__20); /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(4, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(4, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__23); __Pyx_GIVEREF(__pyx_tuple__23); __pyx_tuple__24 = PyTuple_Pack(3, __pyx_int_184977713, __pyx_int_136983863, __pyx_int_112105877); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(4, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":55 * @cython.boundscheck(False) * @cython.wraparound(False) * def minMax(np.ndarray data, bint minPositive=False): # <<<<<<<<<<<<<< * """Get min, max and optionally min positive of data. * */ __pyx_tuple__25 = PyTuple_Pack(9, __pyx_n_s_data, __pyx_n_s_minPositive, __pyx_n_s_c_data, __pyx_n_s_c_dataPtr, __pyx_n_s_c_dataSize, __pyx_n_s_c_dataMin, __pyx_n_s_c_dataMinPos, __pyx_n_s_c_dataMax, __pyx_n_s_c_type); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); __pyx_codeobj__26 = (PyObject*)__Pyx_PyCode_New(2, 0, 9, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__25, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools, __pyx_n_s_minMax, 55, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__26)) __PYX_ERR(0, 55, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":61 * @cython.boundscheck(False) * @cython.wraparound(False) * def dataToRGBAColormap(data, # <<<<<<<<<<<<<< * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, */ __pyx_tuple__27 = PyTuple_Pack(20, __pyx_n_s_data, __pyx_n_s_colormap, __pyx_n_s_startValue, __pyx_n_s_endValue, __pyx_n_s_isLog10Mapping, __pyx_n_s_nanColor, __pyx_n_s_c_data, __pyx_n_s_c_dataPtr, __pyx_n_s_c_dataSize, __pyx_n_s_c_dataItemSize, __pyx_n_s_c_colormap, __pyx_n_s_c_colormapLength, __pyx_n_s_c_nanColorPtr, __pyx_n_s_c_nanColor, __pyx_n_s_pixmap, __pyx_n_s_c_pixmap, __pyx_n_s_c_type, __pyx_n_s_c_start, __pyx_n_s_c_startExtra, __pyx_n_s_c_end); if (unlikely(!__pyx_tuple__27)) __PYX_ERR(1, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__27); __Pyx_GIVEREF(__pyx_tuple__27); __pyx_codeobj__28 = (PyObject*)__Pyx_PyCode_New(6, 0, 20, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__27, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_3, __pyx_n_s_dataToRGBAColormap, 61, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__28)) __PYX_ERR(1, 61, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":141 * return pixmap, (c_start, c_end) * * def fastLog10(double value): # <<<<<<<<<<<<<< * return _fastLog10(value) */ __pyx_tuple__29 = PyTuple_Pack(2, __pyx_n_s_value, __pyx_n_s_value); if (unlikely(!__pyx_tuple__29)) __PYX_ERR(1, 141, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__29); __Pyx_GIVEREF(__pyx_tuple__29); __pyx_codeobj__30 = (PyObject*)__Pyx_PyCode_New(1, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__29, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_3, __pyx_n_s_fastLog10, 141, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__30)) __PYX_ERR(1, 141, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":54 * * @cython.boundscheck(False) * def pnpoly(vertices, points, bint border=True): # <<<<<<<<<<<<<< * """ * :param vertices: Array Nx2 with the coordenates of the polygon vertices */ __pyx_tuple__31 = PyTuple_Pack(3, __pyx_n_s_vertices, __pyx_n_s_points, __pyx_n_s_border); if (unlikely(!__pyx_tuple__31)) __PYX_ERR(2, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__31); __Pyx_GIVEREF(__pyx_tuple__31); __pyx_codeobj__32 = (PyObject*)__Pyx_PyCode_New(3, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__31, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4, __pyx_n_s_pnpoly, 54, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__32)) __PYX_ERR(2, 54, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":72 * * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_tuple__33 = PyTuple_Pack(8, __pyx_n_s_vertices, __pyx_n_s_points, __pyx_n_s_border, __pyx_n_s_c_vertices, __pyx_n_s_n_vertices, __pyx_n_s_c_points, __pyx_n_s_n_points, __pyx_n_s_mask); if (unlikely(!__pyx_tuple__33)) __PYX_ERR(2, 72, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__33); __Pyx_GIVEREF(__pyx_tuple__33); __pyx_codeobj__34 = (PyObject*)__Pyx_PyCode_New(3, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__33, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4, __pyx_n_s_pnpolyd, 72, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__34)) __PYX_ERR(2, 72, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":90 * * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_tuple__35 = PyTuple_Pack(8, __pyx_n_s_vertices, __pyx_n_s_points, __pyx_n_s_border, __pyx_n_s_c_vertices, __pyx_n_s_n_vertices, __pyx_n_s_c_points, __pyx_n_s_n_points, __pyx_n_s_mask); if (unlikely(!__pyx_tuple__35)) __PYX_ERR(2, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__35); __Pyx_GIVEREF(__pyx_tuple__35); __pyx_codeobj__36 = (PyObject*)__Pyx_PyCode_New(3, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__35, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4, __pyx_n_s_pnpolyFloat, 90, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__36)) __PYX_ERR(2, 90, __pyx_L1_error) /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":108 * * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_tuple__37 = PyTuple_Pack(8, __pyx_n_s_vertices, __pyx_n_s_points, __pyx_n_s_border, __pyx_n_s_c_vertices, __pyx_n_s_n_vertices, __pyx_n_s_c_points, __pyx_n_s_n_points, __pyx_n_s_mask); if (unlikely(!__pyx_tuple__37)) __PYX_ERR(2, 108, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__37); __Pyx_GIVEREF(__pyx_tuple__37); __pyx_codeobj__38 = (PyObject*)__Pyx_PyCode_New(3, 0, 8, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__37, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaGraph_ctools__ctools_4, __pyx_n_s_pnpolyInt, 108, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__38)) __PYX_ERR(2, 108, __pyx_L1_error) /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("") # <<<<<<<<<<<<<< * cdef strided = Enum("") # default * cdef indirect = Enum("") */ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(4, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "View.MemoryView":288 * * cdef generic = Enum("") * cdef strided = Enum("") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("") * */ __pyx_tuple__40 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(4, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); /* "View.MemoryView":289 * cdef generic = Enum("") * cdef strided = Enum("") # default * cdef indirect = Enum("") # <<<<<<<<<<<<<< * * */ __pyx_tuple__41 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__41)) __PYX_ERR(4, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); /* "View.MemoryView":292 * * * cdef contiguous = Enum("") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("") * */ __pyx_tuple__42 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__42)) __PYX_ERR(4, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__42); __Pyx_GIVEREF(__pyx_tuple__42); /* "View.MemoryView":293 * * cdef contiguous = Enum("") * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< * * */ __pyx_tuple__43 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__43)) __PYX_ERR(4, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__43); __Pyx_GIVEREF(__pyx_tuple__43); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_tuple__44 = PyTuple_Pack(5, __pyx_n_s_pyx_type, __pyx_n_s_pyx_checksum, __pyx_n_s_pyx_state, __pyx_n_s_pyx_PickleError, __pyx_n_s_pyx_result); if (unlikely(!__pyx_tuple__44)) __PYX_ERR(4, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__44); __Pyx_GIVEREF(__pyx_tuple__44); __pyx_codeobj__45 = (PyObject*)__Pyx_PyCode_New(3, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__44, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_stringsource, __pyx_n_s_pyx_unpickle_Enum, 1, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__45)) __PYX_ERR(4, 1, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(2, 1, __pyx_L1_error); __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_3 = PyInt_FromLong(3); if (unlikely(!__pyx_int_3)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_4 = PyInt_FromLong(4); if (unlikely(!__pyx_int_4)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_5 = PyInt_FromLong(5); if (unlikely(!__pyx_int_5)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_6 = PyInt_FromLong(6); if (unlikely(!__pyx_int_6)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_7 = PyInt_FromLong(7); if (unlikely(!__pyx_int_7)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_10 = PyInt_FromLong(10); if (unlikely(!__pyx_int_10)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_11 = PyInt_FromLong(11); if (unlikely(!__pyx_int_11)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_112105877 = PyInt_FromLong(112105877L); if (unlikely(!__pyx_int_112105877)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_136983863 = PyInt_FromLong(136983863L); if (unlikely(!__pyx_int_136983863)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_184977713 = PyInt_FromLong(184977713L); if (unlikely(!__pyx_int_184977713)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(2, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ static int __Pyx_modinit_global_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); /*--- Global init code ---*/ generic = Py_None; Py_INCREF(Py_None); strided = Py_None; Py_INCREF(Py_None); indirect = Py_None; Py_INCREF(Py_None); contiguous = Py_None; Py_INCREF(Py_None); indirect_contiguous = Py_None; Py_INCREF(Py_None); __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); /*--- Variable export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); /*--- Function export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_init_code(void) { __Pyx_RefNannyDeclarations int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); /*--- Type init code ---*/ __pyx_vtabptr_array = &__pyx_vtable_array; __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(4, 106, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_array.tp_print = 0; #endif if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(4, 106, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_array) < 0) __PYX_ERR(4, 106, __pyx_L1_error) __pyx_array_type = &__pyx_type___pyx_array; if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(4, 280, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_MemviewEnum.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_MemviewEnum.tp_dictoffset && __pyx_type___pyx_MemviewEnum.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_MemviewEnum.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(4, 280, __pyx_L1_error) __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(4, 331, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryview.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryview.tp_dictoffset && __pyx_type___pyx_memoryview.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryview.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(4, 331, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(4, 331, __pyx_L1_error) __pyx_memoryview_type = &__pyx_type___pyx_memoryview; __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(4, 967, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryviewslice.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryviewslice.tp_dictoffset && __pyx_type___pyx_memoryviewslice.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryviewslice.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(4, 967, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(4, 967, __pyx_L1_error) __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_type_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); /*--- Type import code ---*/ __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(5, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 sizeof(PyTypeObject), #else sizeof(PyHeapTypeObject), #endif __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(5, 9, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(3, 199, __pyx_L1_error) __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(3, 222, __pyx_L1_error) __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(3, 226, __pyx_L1_error) __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(3, 238, __pyx_L1_error) __pyx_ptype_5numpy_generic = __Pyx_ImportType(__pyx_t_1, "numpy", "generic", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_generic) __PYX_ERR(3, 770, __pyx_L1_error) __pyx_ptype_5numpy_number = __Pyx_ImportType(__pyx_t_1, "numpy", "number", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_number) __PYX_ERR(3, 772, __pyx_L1_error) __pyx_ptype_5numpy_integer = __Pyx_ImportType(__pyx_t_1, "numpy", "integer", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_integer) __PYX_ERR(3, 774, __pyx_L1_error) __pyx_ptype_5numpy_signedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "signedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_signedinteger) __PYX_ERR(3, 776, __pyx_L1_error) __pyx_ptype_5numpy_unsignedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "unsignedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_unsignedinteger) __PYX_ERR(3, 778, __pyx_L1_error) __pyx_ptype_5numpy_inexact = __Pyx_ImportType(__pyx_t_1, "numpy", "inexact", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_inexact) __PYX_ERR(3, 780, __pyx_L1_error) __pyx_ptype_5numpy_floating = __Pyx_ImportType(__pyx_t_1, "numpy", "floating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_floating) __PYX_ERR(3, 782, __pyx_L1_error) __pyx_ptype_5numpy_complexfloating = __Pyx_ImportType(__pyx_t_1, "numpy", "complexfloating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_complexfloating) __PYX_ERR(3, 784, __pyx_L1_error) __pyx_ptype_5numpy_flexible = __Pyx_ImportType(__pyx_t_1, "numpy", "flexible", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_flexible) __PYX_ERR(3, 786, __pyx_L1_error) __pyx_ptype_5numpy_character = __Pyx_ImportType(__pyx_t_1, "numpy", "character", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_character) __PYX_ERR(3, 788, __pyx_L1_error) __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(3, 826, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_variable_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); /*--- Variable import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); /*--- Function import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } #ifndef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #elif PY_MAJOR_VERSION < 3 #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" void #else #define __Pyx_PyMODINIT_FUNC void #endif #else #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" PyObject * #else #define __Pyx_PyMODINIT_FUNC PyObject * #endif #endif #if PY_MAJOR_VERSION < 3 __Pyx_PyMODINIT_FUNC init_ctools(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC init_ctools(void) #else __Pyx_PyMODINIT_FUNC PyInit__ctools(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC PyInit__ctools(void) #if CYTHON_PEP489_MULTI_PHASE_INIT { return PyModuleDef_Init(&__pyx_moduledef); } static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { #if PY_VERSION_HEX >= 0x030700A1 static PY_INT64_T main_interpreter_id = -1; PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); if (main_interpreter_id == -1) { main_interpreter_id = current_id; return (unlikely(current_id == -1)) ? -1 : 0; } else if (unlikely(main_interpreter_id != current_id)) #else static PyInterpreterState *main_interpreter = NULL; PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; if (!main_interpreter) { main_interpreter = current_interpreter; } else if (unlikely(main_interpreter != current_interpreter)) #endif { PyErr_SetString( PyExc_ImportError, "Interpreter change detected - this module can only be loaded into one interpreter per process."); return -1; } return 0; } static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { PyObject *value = PyObject_GetAttrString(spec, from_name); int result = 0; if (likely(value)) { if (allow_none || value != Py_None) { result = PyDict_SetItemString(moddict, to_name, value); } Py_DECREF(value); } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); } else { result = -1; } return result; } static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { PyObject *module = NULL, *moddict, *modname; if (__Pyx_check_single_interpreter()) return NULL; if (__pyx_m) return __Pyx_NewRef(__pyx_m); modname = PyObject_GetAttrString(spec, "name"); if (unlikely(!modname)) goto bad; module = PyModule_NewObject(modname); Py_DECREF(modname); if (unlikely(!module)) goto bad; moddict = PyModule_GetDict(module); if (unlikely(!moddict)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; return module; bad: Py_XDECREF(module); return NULL; } static CYTHON_SMALL_CODE int __pyx_pymod_exec__ctools(PyObject *__pyx_pyinit_module) #endif #endif { PyObject *__pyx_t_1 = NULL; int __pyx_t_2; static PyThread_type_lock __pyx_t_3[8]; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannyDeclarations #if CYTHON_PEP489_MULTI_PHASE_INIT if (__pyx_m) { if (__pyx_m == __pyx_pyinit_module) return 0; PyErr_SetString(PyExc_RuntimeError, "Module '_ctools' has already been imported. Re-initialisation is not supported."); return -1; } #elif PY_MAJOR_VERSION >= 3 if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit__ctools(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #ifdef __Pxy_PyFrame_Initialize_Offsets __Pxy_PyFrame_Initialize_Offsets(); #endif __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(2, 1, __pyx_L1_error) __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(2, 1, __pyx_L1_error) #ifdef __Pyx_CyFunction_USED if (__pyx_CyFunction_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif #ifdef __Pyx_Coroutine_USED if (__pyx_Coroutine_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif #ifdef __Pyx_AsyncGen_USED if (__pyx_AsyncGen_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(WITH_THREAD) && PY_VERSION_HEX < 0x030700F0 && defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS PyEval_InitThreads(); #endif /*--- Module creation code ---*/ #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_m = __pyx_pyinit_module; Py_INCREF(__pyx_m); #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("_ctools", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(2, 1, __pyx_L1_error) #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(2, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(2, 1, __pyx_L1_error) Py_INCREF(__pyx_b); __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(2, 1, __pyx_L1_error) Py_INCREF(__pyx_cython_runtime); if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(2, 1, __pyx_L1_error); /*--- Initialize various global constants etc. ---*/ if (__Pyx_InitGlobals() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif if (__pyx_module_is_main_PyMca5__PyMcaGraph__ctools___ctools) { if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name_2, __pyx_n_s_main) < 0) __PYX_ERR(2, 1, __pyx_L1_error) } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(2, 1, __pyx_L1_error) if (!PyDict_GetItemString(modules, "PyMca5.PyMcaGraph.ctools._ctools")) { if (unlikely(PyDict_SetItemString(modules, "PyMca5.PyMcaGraph.ctools._ctools", __pyx_m) < 0)) __PYX_ERR(2, 1, __pyx_L1_error) } } #endif /*--- Builtin init code ---*/ if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(2, 1, __pyx_L1_error) /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(2, 1, __pyx_L1_error) /*--- Global type/function init code ---*/ (void)__Pyx_modinit_global_init_code(); (void)__Pyx_modinit_variable_export_code(); (void)__Pyx_modinit_function_export_code(); if (unlikely(__Pyx_modinit_type_init_code() < 0)) __PYX_ERR(2, 1, __pyx_L1_error) if (unlikely(__Pyx_modinit_type_import_code() < 0)) __PYX_ERR(2, 1, __pyx_L1_error) (void)__Pyx_modinit_variable_import_code(); (void)__Pyx_modinit_function_import_code(); /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(2, 1, __pyx_L1_error) #endif /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":34 * from InsidePolygonWithBounds cimport PointsInsidePolygonInt as _pnpolyInt32 * cimport numpy * import numpy # <<<<<<<<<<<<<< * * # From numpy_common.pxi to avoid warnings while compiling C code */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 34, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_numpy, __pyx_t_1) < 0) __PYX_ERR(2, 34, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":44 * void import_umath() * * if FALSE: # <<<<<<<<<<<<<< * import_array() * import_umath() */ __pyx_t_2 = (0 != 0); if (__pyx_t_2) { /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":45 * * if FALSE: * import_array() # <<<<<<<<<<<<<< * import_umath() * */ import_array(); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":46 * if FALSE: * import_array() * import_umath() # <<<<<<<<<<<<<< * * */ import_umath(); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":44 * void import_umath() * * if FALSE: # <<<<<<<<<<<<<< * import_array() * import_umath() */ } /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":31 * cimport cython * cimport numpy as np * import numpy as np # <<<<<<<<<<<<<< * * from MinMax cimport getMinMax */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":41 * # 1st and 2nd bits for size: 00: 8 bits, 01: 16 bits, 10: 32 bits, 11: 64 bits. * _NUMPY_TO_TYPE_DESC = { * 'f8': 0b1011, # <<<<<<<<<<<<<< * 'f4': 0b1010, * 'i1': 0b0000, */ __pyx_t_1 = __Pyx_PyDict_NewPresized(10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_f8, __pyx_int_11) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_f4, __pyx_int_10) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i1, __pyx_int_0) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u1, __pyx_int_4) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i2, __pyx_int_1) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u2, __pyx_int_5) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i4, __pyx_int_2) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u4, __pyx_int_6) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i8, __pyx_int_3) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u8, __pyx_int_7) < 0) __PYX_ERR(0, 41, __pyx_L1_error) if (PyDict_SetItem(__pyx_d, __pyx_n_s_NUMPY_TO_TYPE_DESC, __pyx_t_1) < 0) __PYX_ERR(0, 40, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx":55 * @cython.boundscheck(False) * @cython.wraparound(False) * def minMax(np.ndarray data, bint minPositive=False): # <<<<<<<<<<<<<< * """Get min, max and optionally min positive of data. * */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_1minMax, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_minMax, __pyx_t_1) < 0) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":31 * cimport cython * cimport numpy as np * import numpy as np # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(1, 31, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":40 * * # Init fastLog10 look-up table * initFastLog10() # <<<<<<<<<<<<<< * * # Convert numpy dtype array-protocol string to bit field to pass to C function */ initFastLog10(); /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":47 * # 1st and 2nd bits for size: 00: 8 bits, 01: 16 bits, 10: 32 bits, 11: 64 bits. * _NUMPY_TO_TYPE_DESC = { * 'f8': 0b1011, # <<<<<<<<<<<<<< * 'f4': 0b1010, * 'i1': 0b0000, */ __pyx_t_1 = __Pyx_PyDict_NewPresized(10); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 47, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_f8, __pyx_int_11) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_f4, __pyx_int_10) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i1, __pyx_int_0) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u1, __pyx_int_4) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i2, __pyx_int_1) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u2, __pyx_int_5) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i4, __pyx_int_2) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u4, __pyx_int_6) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_i8, __pyx_int_3) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_u8, __pyx_int_7) < 0) __PYX_ERR(1, 47, __pyx_L1_error) if (PyDict_SetItem(__pyx_d, __pyx_n_s_NUMPY_TO_TYPE_DESC, __pyx_t_1) < 0) __PYX_ERR(1, 46, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":61 * @cython.boundscheck(False) * @cython.wraparound(False) * def dataToRGBAColormap(data, # <<<<<<<<<<<<<< * np.ndarray[np.uint8_t, ndim=2, mode="c"] colormap, * startValue=None, endValue=None, */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_3dataToRGBAColormap, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_dataToRGBAColormap, __pyx_t_1) < 0) __PYX_ERR(1, 61, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx":141 * return pixmap, (c_start, c_end) * * def fastLog10(double value): # <<<<<<<<<<<<<< * return _fastLog10(value) */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_5fastLog10, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 141, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_fastLog10, __pyx_t_1) < 0) __PYX_ERR(1, 141, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":54 * * @cython.boundscheck(False) * def pnpoly(vertices, points, bint border=True): # <<<<<<<<<<<<<< * """ * :param vertices: Array Nx2 with the coordenates of the polygon vertices */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_7pnpoly, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pnpoly, __pyx_t_1) < 0) __PYX_ERR(2, 54, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":72 * * @cython.boundscheck(False) * def _pnpolyd(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_9_pnpolyd, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 72, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pnpolyd, __pyx_t_1) < 0) __PYX_ERR(2, 72, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":90 * * @cython.boundscheck(False) * def _pnpolyFloat(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_11_pnpolyFloat, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pnpolyFloat, __pyx_t_1) < 0) __PYX_ERR(2, 90, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":108 * * @cython.boundscheck(False) * def _pnpolyInt(vertices, points, bint border=True): # <<<<<<<<<<<<<< * cdef double[:,:] c_vertices = numpy.ascontiguousarray(vertices, * dtype=numpy.float64) */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_10PyMcaGraph_6ctools_7_ctools_13_pnpolyInt, NULL, __pyx_n_s_PyMca5_PyMcaGraph_ctools__ctools_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 108, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pnpolyInt, __pyx_t_1) < 0) __PYX_ERR(2, 108, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx":1 * #/[inserted by cython to avoid comment start]*########################################################################## # <<<<<<<<<<<<<< * # * # The PyMca X-Ray Fluorescence Toolkit */ __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":210 * info.obj = self * * __pyx_getbuffer = capsule( &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * def __dealloc__(array self): */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(4, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_array_type); /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("") # <<<<<<<<<<<<<< * cdef strided = Enum("") # default * cdef indirect = Enum("") */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__39, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(generic); __Pyx_DECREF_SET(generic, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":288 * * cdef generic = Enum("") * cdef strided = Enum("") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__40, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(strided); __Pyx_DECREF_SET(strided, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":289 * cdef generic = Enum("") * cdef strided = Enum("") # default * cdef indirect = Enum("") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__41, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect); __Pyx_DECREF_SET(indirect, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":292 * * * cdef contiguous = Enum("") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__42, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(contiguous); __Pyx_DECREF_SET(contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":293 * * cdef contiguous = Enum("") * cdef indirect_contiguous = Enum("") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__43, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect_contiguous); __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":317 * * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ * PyThread_allocate_lock(), */ __pyx_memoryview_thread_locks_used = 0; /* "View.MemoryView":318 * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< * PyThread_allocate_lock(), * PyThread_allocate_lock(), */ __pyx_t_3[0] = PyThread_allocate_lock(); __pyx_t_3[1] = PyThread_allocate_lock(); __pyx_t_3[2] = PyThread_allocate_lock(); __pyx_t_3[3] = PyThread_allocate_lock(); __pyx_t_3[4] = PyThread_allocate_lock(); __pyx_t_3[5] = PyThread_allocate_lock(); __pyx_t_3[6] = PyThread_allocate_lock(); __pyx_t_3[7] = PyThread_allocate_lock(); memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_3, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); /* "View.MemoryView":551 * info.obj = self * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 551, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(4, 551, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryview_type); /* "View.MemoryView":997 * return self.from_object * * __pyx_getbuffer = capsule( &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 997, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(4, 997, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryviewslice_type); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum, NULL, __pyx_n_s_View_MemoryView); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pyx_unpickle_Enum, __pyx_t_1) < 0) __PYX_ERR(4, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state( __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /*--- Wrapped vars code ---*/ goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); if (__pyx_m) { if (__pyx_d) { __Pyx_AddTraceback("init PyMca5.PyMcaGraph.ctools._ctools", __pyx_clineno, __pyx_lineno, __pyx_filename); } Py_CLEAR(__pyx_m); } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init PyMca5.PyMcaGraph.ctools._ctools"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if CYTHON_PEP489_MULTI_PHASE_INIT return (__pyx_m != NULL) ? 0 : -1; #elif PY_MAJOR_VERSION >= 3 return __pyx_m; #else return; #endif } /* --- Runtime support code --- */ /* Refnanny */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule(modname); if (!m) goto end; p = PyObject_GetAttrString(m, "RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* PyObjectGetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #endif /* GetBuiltinName */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } /* RaiseDoubleKeywords */ static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } /* ParseKeywords */ static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**name) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**argname) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } /* RaiseArgTupleInvalid */ static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } /* ArgTypeTest */ static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } else if (exact) { #if PY_MAJOR_VERSION == 2 if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; #endif } else { if (likely(__Pyx_TypeCheck(obj, type))) return 1; } PyErr_Format(PyExc_TypeError, "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", name, type->tp_name, Py_TYPE(obj)->tp_name); return 0; } /* SliceObject */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice(PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_USE_TYPE_SLOTS PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) goto bad; PyErr_Clear(); } } return ms->sq_slice(obj, cstart, cstop); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_subscript)) #endif { PyObject* result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_USE_TYPE_SLOTS result = mp->mp_subscript(obj, py_slice); #else result = PyObject_GetItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", Py_TYPE(obj)->tp_name); bad: return NULL; } /* BytesEquals */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result; #if CYTHON_USE_UNICODE_INTERNALS && (PY_VERSION_HEX < 0x030B0000) Py_hash_t hash1, hash2; hash1 = ((PyBytesObject*)s1)->ob_shash; hash2 = ((PyBytesObject*)s2)->ob_shash; if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { return (equals == Py_NE); } #endif result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } /* UnicodeEquals */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) return -1; length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } #if CYTHON_USE_UNICODE_INTERNALS { Py_hash_t hash1, hash2; #if CYTHON_PEP393_ENABLED hash1 = ((PyASCIIObject*)s1)->hash; hash2 = ((PyASCIIObject*)s2)->hash; #else hash1 = ((PyUnicodeObject*)s1)->hash; hash2 = ((PyUnicodeObject*)s2)->hash; #endif if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { goto return_ne; } } #endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } /* PyDictVersioning */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { PyObject *dict = Py_TYPE(obj)->tp_dict; return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; } static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { PyObject **dictptr = NULL; Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; if (offset) { #if CYTHON_COMPILING_IN_CPYTHON dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); #else dictptr = _PyObject_GetDictPtr(obj); #endif } return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; } static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { PyObject *dict = Py_TYPE(obj)->tp_dict; if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) return 0; return obj_dict_version == __Pyx_get_object_dict_version(obj); } #endif /* GetModuleGlobalName */ #if CYTHON_USE_DICT_VERSIONS static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) #else static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) #endif { PyObject *result; #if !CYTHON_AVOID_BORROWED_REFS #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } else if (unlikely(PyErr_Occurred())) { return NULL; } #else result = PyDict_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } #endif #else result = PyObject_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } PyErr_Clear(); #endif return __Pyx_GetBuiltinName(name); } /* PyObjectCall */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = Py_TYPE(func)->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = (*call)(func, arg, kw); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* ExtTypeTest */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } if (likely(__Pyx_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); return 0; } /* PyCFunctionFastCall */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); int flags = PyCFunction_GET_FLAGS(func); assert(PyCFunction_Check(func)); assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); assert(nargs >= 0); assert(nargs == 0 || args != NULL); /* _PyCFunction_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); } else { return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); } } #endif /* PyFunctionFastCall */ #if CYTHON_FAST_PYCALL static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { PyFrameObject *f; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject **fastlocals; Py_ssize_t i; PyObject *result; assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) { return NULL; } fastlocals = __Pyx_PyFrame_GetLocalsplus(f); for (i = 0; i < na; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } result = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return result; } #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *closure; #if PY_MAJOR_VERSION >= 3 PyObject *kwdefs; #endif PyObject *kwtuple, **k; PyObject **d; Py_ssize_t nd; Py_ssize_t nk; PyObject *result; assert(kwargs == NULL || PyDict_Check(kwargs)); nk = kwargs ? PyDict_Size(kwargs) : 0; if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } if ( #if PY_MAJOR_VERSION >= 3 co->co_kwonlyargcount == 0 && #endif likely(kwargs == NULL || nk == 0) && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); goto done; } else if (nargs == 0 && argdefs != NULL && co->co_argcount == Py_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ args = &PyTuple_GET_ITEM(argdefs, 0); result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); goto done; } } if (kwargs != NULL) { Py_ssize_t pos, i; kwtuple = PyTuple_New(2 * nk); if (kwtuple == NULL) { result = NULL; goto done; } k = &PyTuple_GET_ITEM(kwtuple, 0); pos = i = 0; while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { Py_INCREF(k[i]); Py_INCREF(k[i+1]); i += 2; } nk = i / 2; } else { kwtuple = NULL; k = NULL; } closure = PyFunction_GET_CLOSURE(func); #if PY_MAJOR_VERSION >= 3 kwdefs = PyFunction_GET_KW_DEFAULTS(func); #endif if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } else { d = NULL; nd = 0; } #if PY_MAJOR_VERSION >= 3 result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, kwdefs, closure); #else result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, closure); #endif Py_XDECREF(kwtuple); done: Py_LeaveRecursiveCall(); return result; } #endif #endif /* PyObjectCall2Args */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { PyObject *args, *result = NULL; #if CYTHON_FAST_PYCALL if (PyFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyFunction_FastCall(function, args, 2); } #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyCFunction_FastCall(function, args, 2); } #endif args = PyTuple_New(2); if (unlikely(!args)) goto done; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); Py_INCREF(function); result = __Pyx_PyObject_Call(function, args, NULL); Py_DECREF(args); Py_DECREF(function); done: return result; } /* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; cfunc = PyCFunction_GET_FUNCTION(func); self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallOneArg */ #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); if (unlikely(!args)) return NULL; Py_INCREF(arg); PyTuple_SET_ITEM(args, 0, arg); result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, &arg, 1); } #endif if (likely(PyCFunction_Check(func))) { if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { return __Pyx_PyObject_CallMethO(func, arg); #if CYTHON_FAST_PYCCALL } else if (__Pyx_PyFastCFunction_Check(func)) { return __Pyx_PyCFunction_FastCall(func, &arg, 1); #endif } } return __Pyx__PyObject_CallOneArg(func, arg); } #else static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_Pack(1, arg); if (unlikely(!args)) return NULL; result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } #endif /* PyErrFetchRestore */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; } #endif /* RaiseException */ #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } if (PyType_Check(type)) { #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } } __Pyx_PyThreadState_assign __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { int is_subclass = PyObject_IsSubclass(instance_class, type); if (!is_subclass) { instance_class = NULL; } else if (unlikely(is_subclass == -1)) { goto bad; } else { type = instance_class; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } if (cause) { PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { #if CYTHON_COMPILING_IN_PYPY PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); Py_INCREF(tb); PyErr_Restore(tmp_type, tmp_value, tb); Py_XDECREF(tmp_tb); #else PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } #endif } bad: Py_XDECREF(owned_instance); return; } #endif /* GetItemInt */ static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyList_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyTuple_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; PyErr_Clear(); } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } /* ObjectGetItem */ #if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr; Py_ssize_t key_value; PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; if (unlikely(!(m && m->sq_item))) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); return NULL; } key_value = __Pyx_PyIndex_AsSsize_t(index); if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); } if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { PyErr_Clear(); PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); } return NULL; } static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; if (likely(m && m->mp_subscript)) { return m->mp_subscript(obj, key); } return __Pyx_PyObject_GetIndex(obj, key); } #endif /* IsLittleEndian */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) { union { uint32_t u32; uint8_t u8[4]; } S; S.u32 = 0x01020304; return S.u8[0] == 4; } /* BufferFormatCheck */ static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type) { stack[0].field = &ctx->root; stack[0].parent_offset = 0; ctx->root.type = type; ctx->root.name = "buffer dtype"; ctx->root.offset = 0; ctx->head = stack; ctx->head->field = &ctx->root; ctx->fmt_offset = 0; ctx->head->parent_offset = 0; ctx->new_packmode = '@'; ctx->enc_packmode = '@'; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->is_complex = 0; ctx->is_valid_array = 0; ctx->struct_alignment = 0; while (type->typegroup == 'S') { ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = 0; type = type->fields->type; } } static int __Pyx_BufFmt_ParseNumber(const char** ts) { int count; const char* t = *ts; if (*t < '0' || *t > '9') { return -1; } else { count = *t++ - '0'; while (*t >= '0' && *t <= '9') { count *= 10; count += *t++ - '0'; } } *ts = t; return count; } static int __Pyx_BufFmt_ExpectNumber(const char **ts) { int number = __Pyx_BufFmt_ParseNumber(ts); if (number == -1) PyErr_Format(PyExc_ValueError,\ "Does not understand character buffer dtype format string ('%c')", **ts); return number; } static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { PyErr_Format(PyExc_ValueError, "Unexpected format string character: '%c'", ch); } static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { switch (ch) { case '?': return "'bool'"; case 'c': return "'char'"; case 'b': return "'signed char'"; case 'B': return "'unsigned char'"; case 'h': return "'short'"; case 'H': return "'unsigned short'"; case 'i': return "'int'"; case 'I': return "'unsigned int'"; case 'l': return "'long'"; case 'L': return "'unsigned long'"; case 'q': return "'long long'"; case 'Q': return "'unsigned long long'"; case 'f': return (is_complex ? "'complex float'" : "'float'"); case 'd': return (is_complex ? "'complex double'" : "'double'"); case 'g': return (is_complex ? "'complex long double'" : "'long double'"); case 'T': return "a struct"; case 'O': return "Python object"; case 'P': return "a pointer"; case 's': case 'p': return "a string"; case 0: return "end"; default: return "unparseable format string"; } } static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return 2; case 'i': case 'I': case 'l': case 'L': return 4; case 'q': case 'Q': return 8; case 'f': return (is_complex ? 8 : 4); case 'd': return (is_complex ? 16 : 8); case 'g': { PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); return 0; } case 'O': case 'P': return sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(short); case 'i': case 'I': return sizeof(int); case 'l': case 'L': return sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(float) * (is_complex ? 2 : 1); case 'd': return sizeof(double) * (is_complex ? 2 : 1); case 'g': return sizeof(long double) * (is_complex ? 2 : 1); case 'O': case 'P': return sizeof(void*); default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } typedef struct { char c; short x; } __Pyx_st_short; typedef struct { char c; int x; } __Pyx_st_int; typedef struct { char c; long x; } __Pyx_st_long; typedef struct { char c; float x; } __Pyx_st_float; typedef struct { char c; double x; } __Pyx_st_double; typedef struct { char c; long double x; } __Pyx_st_longdouble; typedef struct { char c; void *x; } __Pyx_st_void_p; #ifdef HAVE_LONG_LONG typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_st_float) - sizeof(float); case 'd': return sizeof(__Pyx_st_double) - sizeof(double); case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } /* These are for computing the padding at the end of the struct to align on the first member of the struct. This will probably the same as above, but we don't have any guarantees. */ typedef struct { short x; char c; } __Pyx_pad_short; typedef struct { int x; char c; } __Pyx_pad_int; typedef struct { long x; char c; } __Pyx_pad_long; typedef struct { float x; char c; } __Pyx_pad_float; typedef struct { double x; char c; } __Pyx_pad_double; typedef struct { long double x; char c; } __Pyx_pad_longdouble; typedef struct { void *x; char c; } __Pyx_pad_void_p; #ifdef HAVE_LONG_LONG typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { switch (ch) { case 'c': return 'H'; case 'b': case 'h': case 'i': case 'l': case 'q': case 's': case 'p': return 'I'; case '?': case 'B': case 'H': case 'I': case 'L': case 'Q': return 'U'; case 'f': case 'd': case 'g': return (is_complex ? 'C' : 'R'); case 'O': return 'O'; case 'P': return 'P'; default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { if (ctx->head == NULL || ctx->head->field == &ctx->root) { const char* expected; const char* quote; if (ctx->head == NULL) { expected = "end"; quote = ""; } else { expected = ctx->head->field->type->name; quote = "'"; } PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected %s%s%s but got %s", quote, expected, quote, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); } else { __Pyx_StructField* field = ctx->head->field; __Pyx_StructField* parent = (ctx->head - 1)->field; PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), parent->type->name, field->name); } } static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { char group; size_t size, offset, arraysize = 1; if (ctx->enc_type == 0) return 0; if (ctx->head->field->type->arraysize[0]) { int i, ndim = 0; if (ctx->enc_type == 's' || ctx->enc_type == 'p') { ctx->is_valid_array = ctx->head->field->type->ndim == 1; ndim = 1; if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %zu", ctx->head->field->type->arraysize[0], ctx->enc_count); return -1; } } if (!ctx->is_valid_array) { PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", ctx->head->field->type->ndim, ndim); return -1; } for (i = 0; i < ctx->head->field->type->ndim; i++) { arraysize *= ctx->head->field->type->arraysize[i]; } ctx->is_valid_array = 0; ctx->enc_count = 1; } group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); do { __Pyx_StructField* field = ctx->head->field; __Pyx_TypeInfo* type = field->type; if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); } else { size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); } if (ctx->enc_packmode == '@') { size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); size_t align_mod_offset; if (align_at == 0) return -1; align_mod_offset = ctx->fmt_offset % align_at; if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; if (ctx->struct_alignment == 0) ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, ctx->is_complex); } if (type->size != size || type->typegroup != group) { if (type->typegroup == 'C' && type->fields != NULL) { size_t parent_offset = ctx->head->parent_offset + field->offset; ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = parent_offset; continue; } if ((type->typegroup == 'H' || group == 'H') && type->size == size) { } else { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } } offset = ctx->head->parent_offset + field->offset; if (ctx->fmt_offset != offset) { PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); return -1; } ctx->fmt_offset += size; if (arraysize) ctx->fmt_offset += (arraysize - 1) * size; --ctx->enc_count; while (1) { if (field == &ctx->root) { ctx->head = NULL; if (ctx->enc_count != 0) { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } break; } ctx->head->field = ++field; if (field->type == NULL) { --ctx->head; field = ctx->head->field; continue; } else if (field->type->typegroup == 'S') { size_t parent_offset = ctx->head->parent_offset + field->offset; if (field->type->fields->type == NULL) continue; field = field->type->fields; ++ctx->head; ctx->head->field = field; ctx->head->parent_offset = parent_offset; break; } else { break; } } } while (ctx->enc_count); ctx->enc_type = 0; ctx->is_complex = 0; return 0; } static PyObject * __pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) { const char *ts = *tsp; int i = 0, number, ndim; ++ts; if (ctx->new_count != 1) { PyErr_SetString(PyExc_ValueError, "Cannot handle repeated arrays in format string"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ndim = ctx->head->field->type->ndim; while (*ts && *ts != ')') { switch (*ts) { case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; default: break; } number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) return PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %d", ctx->head->field->type->arraysize[i], number); if (*ts != ',' && *ts != ')') return PyErr_Format(PyExc_ValueError, "Expected a comma in format string, got '%c'", *ts); if (*ts == ',') ts++; i++; } if (i != ndim) return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", ctx->head->field->type->ndim, i); if (!*ts) { PyErr_SetString(PyExc_ValueError, "Unexpected end of format string, expected ')'"); return NULL; } ctx->is_valid_array = 1; ctx->new_count = 1; *tsp = ++ts; return Py_None; } static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { int got_Z = 0; while (1) { switch(*ts) { case 0: if (ctx->enc_type != 0 && ctx->head == NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; if (ctx->head != NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } return ts; case ' ': case '\r': case '\n': ++ts; break; case '<': if (!__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '>': case '!': if (__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '=': case '@': case '^': ctx->new_packmode = *ts++; break; case 'T': { const char* ts_after_sub; size_t i, struct_count = ctx->new_count; size_t struct_alignment = ctx->struct_alignment; ctx->new_count = 1; ++ts; if (*ts != '{') { PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; ctx->enc_count = 0; ctx->struct_alignment = 0; ++ts; ts_after_sub = ts; for (i = 0; i != struct_count; ++i) { ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); if (!ts_after_sub) return NULL; } ts = ts_after_sub; if (struct_alignment) ctx->struct_alignment = struct_alignment; } break; case '}': { size_t alignment = ctx->struct_alignment; ++ts; if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; if (alignment && ctx->fmt_offset % alignment) { ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); } } return ts; case 'x': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->fmt_offset += ctx->new_count; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->enc_packmode = ctx->new_packmode; ++ts; break; case 'Z': got_Z = 1; ++ts; if (*ts != 'f' && *ts != 'd' && *ts != 'g') { __Pyx_BufFmt_RaiseUnexpectedChar('Z'); return NULL; } CYTHON_FALLTHROUGH; case '?': case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': case 'l': case 'L': case 'q': case 'Q': case 'f': case 'd': case 'g': case 'O': case 'p': if ((ctx->enc_type == *ts) && (got_Z == ctx->is_complex) && (ctx->enc_packmode == ctx->new_packmode) && (!ctx->is_valid_array)) { ctx->enc_count += ctx->new_count; ctx->new_count = 1; got_Z = 0; ++ts; break; } CYTHON_FALLTHROUGH; case 's': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_count = ctx->new_count; ctx->enc_packmode = ctx->new_packmode; ctx->enc_type = *ts; ctx->is_complex = got_Z; ++ts; ctx->new_count = 1; got_Z = 0; break; case ':': ++ts; while(*ts != ':') ++ts; ++ts; break; case '(': if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; break; default: { int number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; ctx->new_count = (size_t)number; } } } } /* BufferGetAndValidate */ static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { if (unlikely(info->buf == NULL)) return; if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; __Pyx_ReleaseBuffer(info); } static void __Pyx_ZeroBuffer(Py_buffer* buf) { buf->buf = NULL; buf->obj = NULL; buf->strides = __Pyx_zeros; buf->shape = __Pyx_zeros; buf->suboffsets = __Pyx_minusones; } static int __Pyx__GetBufferAndValidate( Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack) { buf->buf = NULL; if (unlikely(__Pyx_GetBuffer(obj, buf, flags) == -1)) { __Pyx_ZeroBuffer(buf); return -1; } if (unlikely(buf->ndim != nd)) { PyErr_Format(PyExc_ValueError, "Buffer has wrong number of dimensions (expected %d, got %d)", nd, buf->ndim); goto fail; } if (!cast) { __Pyx_BufFmt_Context ctx; __Pyx_BufFmt_Init(&ctx, stack, dtype); if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; } if (unlikely((size_t)buf->itemsize != dtype->size)) { PyErr_Format(PyExc_ValueError, "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", buf->itemsize, (buf->itemsize > 1) ? "s" : "", dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); goto fail; } if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; return 0; fail:; __Pyx_SafeReleaseBuffer(buf); return -1; } /* PyObjectSetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_setattro)) return tp->tp_setattro(obj, attr_name, value); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_setattr)) return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); #endif return PyObject_SetAttr(obj, attr_name, value); } #endif /* MemviewSliceInit */ static int __Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference) { __Pyx_RefNannyDeclarations int i, retval=-1; Py_buffer *buf = &memview->view; __Pyx_RefNannySetupContext("init_memviewslice", 0); if (unlikely(memviewslice->memview || memviewslice->data)) { PyErr_SetString(PyExc_ValueError, "memviewslice is already initialized!"); goto fail; } if (buf->strides) { for (i = 0; i < ndim; i++) { memviewslice->strides[i] = buf->strides[i]; } } else { Py_ssize_t stride = buf->itemsize; for (i = ndim - 1; i >= 0; i--) { memviewslice->strides[i] = stride; stride *= buf->shape[i]; } } for (i = 0; i < ndim; i++) { memviewslice->shape[i] = buf->shape[i]; if (buf->suboffsets) { memviewslice->suboffsets[i] = buf->suboffsets[i]; } else { memviewslice->suboffsets[i] = -1; } } memviewslice->memview = memview; memviewslice->data = (char *)buf->buf; if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { Py_INCREF(memview); } retval = 0; goto no_fail; fail: memviewslice->memview = 0; memviewslice->data = 0; retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } #ifndef Py_NO_RETURN #define Py_NO_RETURN #endif static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN { va_list vargs; char msg[200]; #if PY_VERSION_HEX >= 0x030A0000 || defined(HAVE_STDARG_PROTOTYPES) va_start(vargs, fmt); #else va_start(vargs); #endif vsnprintf(msg, 200, fmt, vargs); va_end(vargs); Py_FatalError(msg); } static CYTHON_INLINE int __pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)++; PyThread_release_lock(lock); return result; } static CYTHON_INLINE int __pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)--; PyThread_release_lock(lock); return result; } static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int first_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) return; if (unlikely(__pyx_get_slice_count(memview) < 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); first_time = __pyx_add_acquisition_count(memview) == 0; if (unlikely(first_time)) { if (have_gil) { Py_INCREF((PyObject *) memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_INCREF((PyObject *) memview); PyGILState_Release(_gilstate); } } } static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int last_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) { memslice->memview = NULL; return; } if (unlikely(__pyx_get_slice_count(memview) <= 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); last_time = __pyx_sub_acquisition_count(memview) == 1; memslice->data = NULL; if (unlikely(last_time)) { if (have_gil) { Py_CLEAR(memslice->memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_CLEAR(memslice->memview); PyGILState_Release(_gilstate); } } else { memslice->memview = NULL; } } /* GetTopmostException */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate) { _PyErr_StackItem *exc_info = tstate->exc_info; while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && exc_info->previous_item != NULL) { exc_info = exc_info->previous_item; } return exc_info; } #endif /* SaveResetException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); *type = exc_info->exc_type; *value = exc_info->exc_value; *tb = exc_info->exc_traceback; #else *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; #endif Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); } static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = type; exc_info->exc_value = value; exc_info->exc_traceback = tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } #endif /* PyErrExceptionMatches */ #if CYTHON_FAST_THREAD_STATE static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; icurexc_type; if (exc_type == err) return 1; if (unlikely(!exc_type)) return 0; if (unlikely(PyTuple_Check(err))) return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); } #endif /* GetException */ #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) #endif { PyObject *local_type, *local_value, *local_tb; #if CYTHON_FAST_THREAD_STATE PyObject *tmp_type, *tmp_value, *tmp_tb; local_type = tstate->curexc_type; local_value = tstate->curexc_value; local_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(&local_type, &local_value, &local_tb); #endif PyErr_NormalizeException(&local_type, &local_value, &local_tb); #if CYTHON_FAST_THREAD_STATE if (unlikely(tstate->curexc_type)) #else if (unlikely(PyErr_Occurred())) #endif goto bad; #if PY_MAJOR_VERSION >= 3 if (local_tb) { if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) goto bad; } #endif Py_XINCREF(local_tb); Py_XINCREF(local_type); Py_XINCREF(local_value); *type = local_type; *value = local_value; *tb = local_tb; #if CYTHON_FAST_THREAD_STATE #if CYTHON_USE_EXC_INFO_STACK { _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = local_type; exc_info->exc_value = local_value; exc_info->exc_traceback = local_tb; } #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(local_type, local_value, local_tb); #endif return 0; bad: *type = 0; *value = 0; *tb = 0; Py_XDECREF(local_type); Py_XDECREF(local_value); Py_XDECREF(local_tb); return -1; } /* DivInt[Py_ssize_t] */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t a, Py_ssize_t b) { Py_ssize_t q = a / b; Py_ssize_t r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* GetAttr */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else if (likely(PyString_Check(n))) #endif return __Pyx_PyObject_GetAttrStr(o, n); #endif return PyObject_GetAttr(o, n); } /* decode_c_string */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { Py_ssize_t length; if (unlikely((start < 0) | (stop < 0))) { size_t slen = strlen(cstring); if (unlikely(slen > (size_t) PY_SSIZE_T_MAX)) { PyErr_SetString(PyExc_OverflowError, "c-string too long to convert to Python"); return NULL; } length = (Py_ssize_t) slen; if (start < 0) { start += length; if (start < 0) start = 0; } if (stop < 0) stop += length; } if (unlikely(stop <= start)) return __Pyx_NewRef(__pyx_empty_unicode); length = stop - start; cstring += start; if (decode_func) { return decode_func(cstring, length, errors); } else { return PyUnicode_Decode(cstring, length, encoding, errors); } } /* GetAttr3 */ static PyObject *__Pyx_GetAttr3Default(PyObject *d) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) return NULL; __Pyx_PyErr_Clear(); Py_INCREF(d); return d; } static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) { PyObject *r = __Pyx_GetAttr(o, n); return (likely(r)) ? r : __Pyx_GetAttr3Default(d); } /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* RaiseNeedMoreValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* RaiseNoneIterError */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* SwapException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = *type; exc_info->exc_value = *value; exc_info->exc_traceback = *tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = *type; tstate->exc_value = *value; tstate->exc_traceback = *tb; #endif *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); PyErr_SetExcInfo(*type, *value, *tb); *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #endif /* Import */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if ((1) && (strchr(__Pyx_MODULE_NAME, '.'))) { module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; } #endif if (!module) { #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } bad: #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } /* FastTypeChecks */ #if CYTHON_COMPILING_IN_CPYTHON static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { while (a) { a = a->tp_base; if (a == b) return 1; } return b == &PyBaseObject_Type; } static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (a == b) return 1; mro = a->tp_mro; if (likely(mro)) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } return __Pyx_InBases(a, b); } #if PY_MAJOR_VERSION == 2 static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { PyObject *exception, *value, *tb; int res; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&exception, &value, &tb); res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } if (!res) { res = PyObject_IsSubclass(err, exc_type2); if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } } __Pyx_ErrRestore(exception, value, tb); return res; } #else static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; if (!res) { res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); } return res; } #endif static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; assert(PyExceptionClass_Check(exc_type)); n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* None */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* DivInt[long] */ static CYTHON_INLINE long __Pyx_div_long(long a, long b) { long q = a / b; long r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* ImportFrom */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } /* HasAttr */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { PyObject *r; if (unlikely(!__Pyx_PyBaseString_Check(n))) { PyErr_SetString(PyExc_TypeError, "hasattr(): attribute name must be string"); return -1; } r = __Pyx_GetAttr(o, n); if (unlikely(!r)) { PyErr_Clear(); return 0; } else { Py_DECREF(r); return 1; } } /* PyObject_GenericGetAttrNoDict */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { PyErr_Format(PyExc_AttributeError, #if PY_MAJOR_VERSION >= 3 "'%.50s' object has no attribute '%U'", tp->tp_name, attr_name); #else "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(attr_name)); #endif return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { PyObject *descr; PyTypeObject *tp = Py_TYPE(obj); if (unlikely(!PyString_Check(attr_name))) { return PyObject_GenericGetAttr(obj, attr_name); } assert(!tp->tp_dictoffset); descr = _PyType_Lookup(tp, attr_name); if (unlikely(!descr)) { return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); } Py_INCREF(descr); #if PY_MAJOR_VERSION < 3 if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) #endif { descrgetfunc f = Py_TYPE(descr)->tp_descr_get; if (unlikely(f)) { PyObject *res = f(descr, obj, (PyObject *)tp); Py_DECREF(descr); return res; } } return descr; } #endif /* PyObject_GenericGetAttr */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { return PyObject_GenericGetAttr(obj, attr_name); } return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); } #endif /* SetVTable */ static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); #endif if (!ob) goto bad; if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) goto bad; Py_DECREF(ob); return 0; bad: Py_XDECREF(ob); return -1; } /* PyObjectGetAttrStrNoError */ static void __Pyx_PyObject_GetAttrStr_ClearAttributeError(void) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (likely(__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) __Pyx_PyErr_Clear(); } static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name) { PyObject *result; #if CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_TYPE_SLOTS && PY_VERSION_HEX >= 0x030700B1 PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro == PyObject_GenericGetAttr)) { return _PyObject_GenericGetAttrWithDict(obj, attr_name, NULL, 1); } #endif result = __Pyx_PyObject_GetAttrStr(obj, attr_name); if (unlikely(!result)) { __Pyx_PyObject_GetAttrStr_ClearAttributeError(); } return result; } /* SetupReduce */ static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { int ret; PyObject *name_attr; name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name_2); if (likely(name_attr)) { ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); } else { ret = -1; } if (unlikely(ret < 0)) { PyErr_Clear(); ret = 0; } Py_XDECREF(name_attr); return ret; } static int __Pyx_setup_reduce(PyObject* type_obj) { int ret = 0; PyObject *object_reduce = NULL; PyObject *object_getstate = NULL; PyObject *object_reduce_ex = NULL; PyObject *reduce = NULL; PyObject *reduce_ex = NULL; PyObject *reduce_cython = NULL; PyObject *setstate = NULL; PyObject *setstate_cython = NULL; PyObject *getstate = NULL; #if CYTHON_USE_PYTYPE_LOOKUP getstate = _PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate); #else getstate = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_getstate); if (!getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (getstate) { #if CYTHON_USE_PYTYPE_LOOKUP object_getstate = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_getstate); #else object_getstate = __Pyx_PyObject_GetAttrStrNoError((PyObject*)&PyBaseObject_Type, __pyx_n_s_getstate); if (!object_getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (object_getstate != getstate) { goto __PYX_GOOD; } } #if CYTHON_USE_PYTYPE_LOOKUP object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #else object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #endif reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto __PYX_BAD; if (reduce_ex == object_reduce_ex) { #if CYTHON_USE_PYTYPE_LOOKUP object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #else object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #endif reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto __PYX_BAD; if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { reduce_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_reduce_cython); if (likely(reduce_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (reduce == object_reduce || PyErr_Occurred()) { goto __PYX_BAD; } setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); if (!setstate) PyErr_Clear(); if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { setstate_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_setstate_cython); if (likely(setstate_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (!setstate || PyErr_Occurred()) { goto __PYX_BAD; } } PyType_Modified((PyTypeObject*)type_obj); } } goto __PYX_GOOD; __PYX_BAD: if (!PyErr_Occurred()) PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); ret = -1; __PYX_GOOD: #if !CYTHON_USE_PYTYPE_LOOKUP Py_XDECREF(object_reduce); Py_XDECREF(object_reduce_ex); Py_XDECREF(object_getstate); Py_XDECREF(getstate); #endif Py_XDECREF(reduce); Py_XDECREF(reduce_ex); Py_XDECREF(reduce_cython); Py_XDECREF(setstate); Py_XDECREF(setstate_cython); return ret; } /* TypeImport */ #ifndef __PYX_HAVE_RT_ImportType #define __PYX_HAVE_RT_ImportType static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size) { PyObject *result = 0; char warning[200]; Py_ssize_t basicsize; #ifdef Py_LIMITED_API PyObject *py_basicsize; #endif result = PyObject_GetAttrString(module, class_name); if (!result) goto bad; if (!PyType_Check(result)) { PyErr_Format(PyExc_TypeError, "%.200s.%.200s is not a type object", module_name, class_name); goto bad; } #ifndef Py_LIMITED_API basicsize = ((PyTypeObject *)result)->tp_basicsize; #else py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); if (!py_basicsize) goto bad; basicsize = PyLong_AsSsize_t(py_basicsize); Py_DECREF(py_basicsize); py_basicsize = 0; if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) goto bad; #endif if ((size_t)basicsize < size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { PyOS_snprintf(warning, sizeof(warning), "%s.%s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; } return (PyTypeObject *)result; bad: Py_XDECREF(result); return NULL; } #endif /* CLineInTraceback */ #ifndef CYTHON_CLINE_IN_TRACEBACK static int __Pyx_CLineForTraceback(CYTHON_NCP_UNUSED PyThreadState *tstate, int c_line) { PyObject *use_cline; PyObject *ptype, *pvalue, *ptraceback; #if CYTHON_COMPILING_IN_CPYTHON PyObject **cython_runtime_dict; #endif if (unlikely(!__pyx_cython_runtime)) { return c_line; } __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); #if CYTHON_COMPILING_IN_CPYTHON cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); if (likely(cython_runtime_dict)) { __PYX_PY_DICT_LOOKUP_IF_MODIFIED( use_cline, *cython_runtime_dict, __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) } else #endif { PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); if (use_cline_obj) { use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; Py_DECREF(use_cline_obj); } else { PyErr_Clear(); use_cline = NULL; } } if (!use_cline) { c_line = 0; (void) PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); } else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { c_line = 0; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); return c_line; } #endif /* CodeObjectCache */ static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = start + (end - start) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, ((size_t)new_max) * sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } /* AddTraceback */ #include "compile.h" #include "frameobject.h" #include "traceback.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = NULL; PyObject *py_funcname = NULL; #if PY_MAJOR_VERSION < 3 PyObject *py_srcfile = NULL; py_srcfile = PyString_FromString(filename); if (!py_srcfile) goto bad; #endif if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; funcname = PyUnicode_AsUTF8(py_funcname); if (!funcname) goto bad; #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); if (!py_funcname) goto bad; #endif } #if PY_MAJOR_VERSION < 3 py_code = __Pyx_PyCode_New( 0, 0, 0, 0, 0, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); #else py_code = PyCode_NewEmpty(filename, funcname, py_line); #endif Py_XDECREF(py_funcname); // XDECREF since it's only set on Py3 if cline return py_code; bad: Py_XDECREF(py_funcname); #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_srcfile); #endif return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject *ptype, *pvalue, *ptraceback; if (c_line) { c_line = __Pyx_CLineForTraceback(tstate, c_line); } py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) { /* If the code object creation fails, then we should clear the fetched exception references and propagate the new exception */ Py_XDECREF(ptype); Py_XDECREF(pvalue); Py_XDECREF(ptraceback); goto bad; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( tstate, /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ __pyx_d, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); return -1; } static void __Pyx_ReleaseBuffer(Py_buffer *view) { PyObject *obj = view->obj; if (!obj) return; if (PyObject_CheckBuffer(obj)) { PyBuffer_Release(view); return; } if ((0)) {} view->obj = NULL; Py_DECREF(obj); } #endif /* MemviewSliceIsContig */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) { int i, index, step, start; Py_ssize_t itemsize = mvs.memview->view.itemsize; if (order == 'F') { step = 1; start = 0; } else { step = -1; start = ndim - 1; } for (i = 0; i < ndim; i++) { index = start + step * i; if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize) return 0; itemsize *= mvs.shape[index]; } return 1; } /* OverlappingSlices */ static void __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, void **out_start, void **out_end, int ndim, size_t itemsize) { char *start, *end; int i; start = end = slice->data; for (i = 0; i < ndim; i++) { Py_ssize_t stride = slice->strides[i]; Py_ssize_t extent = slice->shape[i]; if (extent == 0) { *out_start = *out_end = start; return; } else { if (stride > 0) end += stride * (extent - 1); else start += stride * (extent - 1); } } *out_start = start; *out_end = end + itemsize; } static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize) { void *start1, *end1, *start2, *end2; __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); return (start1 < end2) && (start2 < end1); } /* Capsule */ static CYTHON_INLINE PyObject * __pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) { PyObject *cobj; #if PY_VERSION_HEX >= 0x02070000 cobj = PyCapsule_New(p, sig, NULL); #else cobj = PyCObject_FromVoidPtr(p, NULL); #endif return cobj; } /* CIntFromPyVerify */ #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) #define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ {\ func_type value = func_value;\ if (sizeof(target_type) < sizeof(func_type)) {\ if (unlikely(value != (func_type) (target_type) value)) {\ func_type zero = 0;\ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ return (target_type) -1;\ if (is_unsigned && unlikely(value < zero))\ goto raise_neg_overflow;\ else\ goto raise_overflow;\ }\ }\ return (target_type) value;\ } /* TypeInfoCompare */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) { int i; if (!a || !b) return 0; if (a == b) return 1; if (a->size != b->size || a->typegroup != b->typegroup || a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { if (a->typegroup == 'H' || b->typegroup == 'H') { return a->size == b->size; } else { return 0; } } if (a->ndim) { for (i = 0; i < a->ndim; i++) if (a->arraysize[i] != b->arraysize[i]) return 0; } if (a->typegroup == 'S') { if (a->flags != b->flags) return 0; if (a->fields || b->fields) { if (!(a->fields && b->fields)) return 0; for (i = 0; a->fields[i].type && b->fields[i].type; i++) { __Pyx_StructField *field_a = a->fields + i; __Pyx_StructField *field_b = b->fields + i; if (field_a->offset != field_b->offset || !__pyx_typeinfo_cmp(field_a->type, field_b->type)) return 0; } return !a->fields[i].type && !b->fields[i].type; } } return 1; } /* MemviewSliceValidateAndInit */ static int __pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) { if (buf->shape[dim] <= 1) return 1; if (buf->strides) { if (spec & __Pyx_MEMVIEW_CONTIG) { if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { if (unlikely(buf->strides[dim] != sizeof(void *))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly contiguous " "in dimension %d.", dim); goto fail; } } else if (unlikely(buf->strides[dim] != buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } if (spec & __Pyx_MEMVIEW_FOLLOW) { Py_ssize_t stride = buf->strides[dim]; if (stride < 0) stride = -stride; if (unlikely(stride < buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } } else { if (unlikely(spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1)) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not contiguous in " "dimension %d", dim); goto fail; } else if (unlikely(spec & (__Pyx_MEMVIEW_PTR))) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not indirect in " "dimension %d", dim); goto fail; } else if (unlikely(buf->suboffsets)) { PyErr_SetString(PyExc_ValueError, "Buffer exposes suboffsets but no strides"); goto fail; } } return 1; fail: return 0; } static int __pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) { if (spec & __Pyx_MEMVIEW_DIRECT) { if (unlikely(buf->suboffsets && buf->suboffsets[dim] >= 0)) { PyErr_Format(PyExc_ValueError, "Buffer not compatible with direct access " "in dimension %d.", dim); goto fail; } } if (spec & __Pyx_MEMVIEW_PTR) { if (unlikely(!buf->suboffsets || (buf->suboffsets[dim] < 0))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly accessible " "in dimension %d.", dim); goto fail; } } return 1; fail: return 0; } static int __pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) { int i; if (c_or_f_flag & __Pyx_IS_F_CONTIG) { Py_ssize_t stride = 1; for (i = 0; i < ndim; i++) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not fortran contiguous."); goto fail; } stride = stride * buf->shape[i]; } } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { Py_ssize_t stride = 1; for (i = ndim - 1; i >- 1; i--) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not C contiguous."); goto fail; } stride = stride * buf->shape[i]; } } return 1; fail: return 0; } static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj) { struct __pyx_memoryview_obj *memview, *new_memview; __Pyx_RefNannyDeclarations Py_buffer *buf; int i, spec = 0, retval = -1; __Pyx_BufFmt_Context ctx; int from_memoryview = __pyx_memoryview_check(original_obj); __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) original_obj)->typeinfo)) { memview = (struct __pyx_memoryview_obj *) original_obj; new_memview = NULL; } else { memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( original_obj, buf_flags, 0, dtype); new_memview = memview; if (unlikely(!memview)) goto fail; } buf = &memview->view; if (unlikely(buf->ndim != ndim)) { PyErr_Format(PyExc_ValueError, "Buffer has wrong number of dimensions (expected %d, got %d)", ndim, buf->ndim); goto fail; } if (new_memview) { __Pyx_BufFmt_Init(&ctx, stack, dtype); if (unlikely(!__Pyx_BufFmt_CheckString(&ctx, buf->format))) goto fail; } if (unlikely((unsigned) buf->itemsize != dtype->size)) { PyErr_Format(PyExc_ValueError, "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", buf->itemsize, (buf->itemsize > 1) ? "s" : "", dtype->name, dtype->size, (dtype->size > 1) ? "s" : ""); goto fail; } if (buf->len > 0) { for (i = 0; i < ndim; i++) { spec = axes_specs[i]; if (unlikely(!__pyx_check_strides(buf, i, ndim, spec))) goto fail; if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec))) goto fail; } if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag))) goto fail; } if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, new_memview != NULL) == -1)) { goto fail; } retval = 0; goto no_fail; fail: Py_XDECREF(new_memview); retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_unsigned_char(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_unsigned_char, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_float(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_float, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_int(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_int, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return ::std::complex< float >(x, y); } #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return x + y*(__pyx_t_float_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { __pyx_t_float_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabsf(b.real) >= fabsf(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { float r = b.imag / b.real; float s = (float)(1.0) / (b.real + b.imag * r); return __pyx_t_float_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { float r = b.real / b.imag; float s = (float)(1.0) / (b.imag + b.real * r); return __pyx_t_float_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else { float denom = b.real * b.real + b.imag * b.imag; return __pyx_t_float_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrtf(z.real*z.real + z.imag*z.imag); #else return hypotf(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; float r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { float denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_float(a, a); case 3: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, a); case 4: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = powf(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2f(0.0, -1.0); } } else { r = __Pyx_c_abs_float(a); theta = atan2f(a.imag, a.real); } lnr = logf(r); z_r = expf(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cosf(z_theta); z.imag = z_r * sinf(z_theta); return z; } #endif #endif /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return ::std::complex< double >(x, y); } #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return x + y*(__pyx_t_double_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { __pyx_t_double_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabs(b.real) >= fabs(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { double r = b.imag / b.real; double s = (double)(1.0) / (b.real + b.imag * r); return __pyx_t_double_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { double r = b.real / b.imag; double s = (double)(1.0) / (b.imag + b.real * r); return __pyx_t_double_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else { double denom = b.real * b.real + b.imag * b.imag; return __pyx_t_double_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrt(z.real*z.real + z.imag*z.imag); #else return hypot(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; double r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { double denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_double(a, a); case 3: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, a); case 4: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = pow(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2(0.0, -1.0); } } else { r = __Pyx_c_abs_double(a); theta = atan2(a.imag, a.real); } lnr = log(r); z_r = exp(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cos(z_theta); z.imag = z_r * sin(z_theta); return z; } #endif #endif /* MemviewSliceCopyTemplate */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object) { __Pyx_RefNannyDeclarations int i; __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; struct __pyx_memoryview_obj *from_memview = from_mvs->memview; Py_buffer *buf = &from_memview->view; PyObject *shape_tuple = NULL; PyObject *temp_int = NULL; struct __pyx_array_obj *array_obj = NULL; struct __pyx_memoryview_obj *memview_obj = NULL; __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); for (i = 0; i < ndim; i++) { if (unlikely(from_mvs->suboffsets[i] >= 0)) { PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " "indirect dimensions (axis %d)", i); goto fail; } } shape_tuple = PyTuple_New(ndim); if (unlikely(!shape_tuple)) { goto fail; } __Pyx_GOTREF(shape_tuple); for(i = 0; i < ndim; i++) { temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); if(unlikely(!temp_int)) { goto fail; } else { PyTuple_SET_ITEM(shape_tuple, i, temp_int); temp_int = NULL; } } array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); if (unlikely(!array_obj)) { goto fail; } __Pyx_GOTREF(array_obj); memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( (PyObject *) array_obj, contig_flag, dtype_is_object, from_mvs->memview->typeinfo); if (unlikely(!memview_obj)) goto fail; if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) goto fail; if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, dtype_is_object) < 0)) goto fail; goto no_fail; fail: __Pyx_XDECREF(new_mvs.memview); new_mvs.memview = NULL; new_mvs.data = NULL; no_fail: __Pyx_XDECREF(shape_tuple); __Pyx_XDECREF(temp_int); __Pyx_XDECREF(array_obj); __Pyx_RefNannyFinishContext(); return new_mvs; } /* CIntFromPy */ static CYTHON_INLINE unsigned long __Pyx_PyInt_As_unsigned_long(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const unsigned long neg_one = (unsigned long) -1, const_zero = (unsigned long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(unsigned long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(unsigned long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (unsigned long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (unsigned long) 0; case 1: __PYX_VERIFY_RETURN_INT(unsigned long, digit, digits[0]) case 2: if (8 * sizeof(unsigned long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) >= 2 * PyLong_SHIFT) { return (unsigned long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); } } break; case 3: if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) >= 3 * PyLong_SHIFT) { return (unsigned long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); } } break; case 4: if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) >= 4 * PyLong_SHIFT) { return (unsigned long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (unsigned long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(unsigned long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(unsigned long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (unsigned long) 0; case -1: __PYX_VERIFY_RETURN_INT(unsigned long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(unsigned long, digit, +digits[0]) case -2: if (8 * sizeof(unsigned long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 2 * PyLong_SHIFT) { return (unsigned long) (((unsigned long)-1)*(((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; case 2: if (8 * sizeof(unsigned long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 2 * PyLong_SHIFT) { return (unsigned long) ((((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; case -3: if (8 * sizeof(unsigned long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 3 * PyLong_SHIFT) { return (unsigned long) (((unsigned long)-1)*(((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; case 3: if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 3 * PyLong_SHIFT) { return (unsigned long) ((((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; case -4: if (8 * sizeof(unsigned long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 4 * PyLong_SHIFT) { return (unsigned long) (((unsigned long)-1)*(((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; case 4: if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned long) - 1 > 4 * PyLong_SHIFT) { return (unsigned long) ((((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))); } } break; } #endif if (sizeof(unsigned long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(unsigned long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else unsigned long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (unsigned long) -1; } } else { unsigned long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (unsigned long) -1; val = __Pyx_PyInt_As_unsigned_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to unsigned long"); return (unsigned long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to unsigned long"); return (unsigned long) -1; } /* CIntFromPy */ static CYTHON_INLINE unsigned int __Pyx_PyInt_As_unsigned_int(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const unsigned int neg_one = (unsigned int) -1, const_zero = (unsigned int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(unsigned int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(unsigned int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (unsigned int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (unsigned int) 0; case 1: __PYX_VERIFY_RETURN_INT(unsigned int, digit, digits[0]) case 2: if (8 * sizeof(unsigned int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) >= 2 * PyLong_SHIFT) { return (unsigned int) (((((unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0])); } } break; case 3: if (8 * sizeof(unsigned int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) >= 3 * PyLong_SHIFT) { return (unsigned int) (((((((unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0])); } } break; case 4: if (8 * sizeof(unsigned int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) >= 4 * PyLong_SHIFT) { return (unsigned int) (((((((((unsigned int)digits[3]) << PyLong_SHIFT) | (unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (unsigned int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(unsigned int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(unsigned int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (unsigned int) 0; case -1: __PYX_VERIFY_RETURN_INT(unsigned int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(unsigned int, digit, +digits[0]) case -2: if (8 * sizeof(unsigned int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 2 * PyLong_SHIFT) { return (unsigned int) (((unsigned int)-1)*(((((unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; case 2: if (8 * sizeof(unsigned int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 2 * PyLong_SHIFT) { return (unsigned int) ((((((unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; case -3: if (8 * sizeof(unsigned int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 3 * PyLong_SHIFT) { return (unsigned int) (((unsigned int)-1)*(((((((unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; case 3: if (8 * sizeof(unsigned int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 3 * PyLong_SHIFT) { return (unsigned int) ((((((((unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; case -4: if (8 * sizeof(unsigned int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 4 * PyLong_SHIFT) { return (unsigned int) (((unsigned int)-1)*(((((((((unsigned int)digits[3]) << PyLong_SHIFT) | (unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; case 4: if (8 * sizeof(unsigned int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(unsigned int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(unsigned int) - 1 > 4 * PyLong_SHIFT) { return (unsigned int) ((((((((((unsigned int)digits[3]) << PyLong_SHIFT) | (unsigned int)digits[2]) << PyLong_SHIFT) | (unsigned int)digits[1]) << PyLong_SHIFT) | (unsigned int)digits[0]))); } } break; } #endif if (sizeof(unsigned int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(unsigned int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(unsigned int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else unsigned int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (unsigned int) -1; } } else { unsigned int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (unsigned int) -1; val = __Pyx_PyInt_As_unsigned_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to unsigned int"); return (unsigned int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to unsigned int"); return (unsigned int) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(int) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) case -2: if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -3: if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -4: if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; } #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int"); return (int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } /* CIntFromPy */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) case -2: if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -3: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -4: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; } #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to long"); return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const char neg_one = (char) -1, const_zero = (char) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(char) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (char) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case 1: __PYX_VERIFY_RETURN_INT(char, digit, digits[0]) case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 2 * PyLong_SHIFT) { return (char) (((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 3 * PyLong_SHIFT) { return (char) (((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 4 * PyLong_SHIFT) { return (char) (((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (char) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(char) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case -1: __PYX_VERIFY_RETURN_INT(char, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(char, digit, +digits[0]) case -2: if (8 * sizeof(char) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) (((char)-1)*(((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) ((((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -3: if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) ((((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -4: if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) ((((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; } #endif if (sizeof(char) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(char, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else char val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (char) -1; } } else { char val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (char) -1; val = __Pyx_PyInt_As_char(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to char"); return (char) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to char"); return (char) -1; } /* CheckBinaryVersion */ static int __Pyx_check_binary_version(void) { char ctversion[5]; int same=1, i, found_dot; const char* rt_from_call = Py_GetVersion(); PyOS_snprintf(ctversion, 5, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); found_dot = 0; for (i = 0; i < 4; i++) { if (!ctversion[i]) { same = (rt_from_call[i] < '0' || rt_from_call[i] > '9'); break; } if (rt_from_call[i] != ctversion[i]) { same = 0; break; } } if (!same) { char rtversion[5] = {'\0'}; char message[200]; for (i=0; i<4; ++i) { if (rt_from_call[i] == '.') { if (found_dot) break; found_dot = 1; } else if (rt_from_call[i] < '0' || rt_from_call[i] > '9') { break; } rtversion[i] = rt_from_call[i]; } PyOS_snprintf(message, sizeof(message), "compiletime version %s of module '%.100s' " "does not match runtime version %s", ctversion, __Pyx_MODULE_NAME, rtversion); return PyErr_WarnEx(NULL, message, 1); } return 0; } /* InitStrings */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; if (PyObject_Hash(*t->p) == -1) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT #if !CYTHON_PEP393_ENABLED static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif *length = PyBytes_GET_SIZE(defenc); return defenc_c; } #else static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (likely(PyUnicode_IS_ASCII(o))) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else return PyUnicode_AsUTF8AndSize(o, length); #endif } #endif #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { int retval; if (unlikely(!x)) return -1; retval = __Pyx_PyObject_IsTrue(x); Py_DECREF(x); return retval; } static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { #if PY_MAJOR_VERSION >= 3 if (PyLong_Check(result)) { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", type_name, type_name, Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; #endif const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x) || PyLong_Check(x))) #else if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; res = m->nb_long(x); } #else if (likely(m && m->nb_int)) { name = "int"; res = m->nb_int(x); } #endif #else if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { res = PyNumber_Int(x); } #endif if (likely(res)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else if (unlikely(!PyLong_CheckExact(res))) { #endif return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) { if (sizeof(Py_ssize_t) >= sizeof(long)) return PyInt_AS_LONG(b); else return PyInt_AsSsize_t(b); } #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)b)->ob_digit; const Py_ssize_t size = Py_SIZE(b); if (likely(__Pyx_sst_abs(size) <= 1)) { ival = likely(size) ? digits[0] : 0; if (size == -1) ival = -ival; return ival; } else { switch (size) { case 2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; } } #endif return PyLong_AsSsize_t(b); } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject* o) { if (sizeof(Py_hash_t) == sizeof(Py_ssize_t)) { return (Py_hash_t) __Pyx_PyIndex_AsSsize_t(o); #if PY_MAJOR_VERSION < 3 } else if (likely(PyInt_CheckExact(o))) { return PyInt_AS_LONG(o); #endif } else { Py_ssize_t ival; PyObject *x; x = PyNumber_Index(o); if (!x) return -1; ival = PyInt_AsLong(x); Py_DECREF(x); return ival; } } static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } #endif /* Py_PYTHON_H */ ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7637663 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/0000755000000000000000000000000014741736404021747 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/Colormap.h0000644000000000000000000000744214741736366023712 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /** @file Colormap.h * Conversion of data to pixmap using a colormap. */ #ifndef __Colormap_H__ #define __Colormap_H__ #include "Types.h" /** Initialize the look-up table used by fastLog10. * * This function MUST be called before any call to fastLog10. */ void initFastLog10(void); /** Compute a fast log10 approximation. * * If value is negative, returns NaN. * If value is zero, returns - HUGE_VAL * If value positive infinity, returns INFINITY * If value is NaN, returns NaN. * * This function uses lrint and expect rounding to be: FE_TONEAREST. * See lrint and fegetround man for more information. * Note: rounding mode impacts approximation error. * * @param value * @return An approximation of log10(value) */ double fastLog10(double value); /** Fill a RGBA pixmap from data using the provided colormap. * * The index in the colormap is computed using casting and not rounding. * It provides equally spaced bins even on the edges (as opposed to rounding). * * startValue and endValue can be equal or startValue > endValue * * @param data Pointer to the data to convert to colormap. * @param type Bit field describing the data type. * @param length Number of elements in data. * @param startValue Data value to convert to the first color of the colormap. * @param endValue Data value to convert to the last color of the colormap. * @param isLog10Mapping True for log10 mapping, False for linear mapping. * @param RGBAColormap Pointer the RGBA colormap. * It is a contiguous array of RGBA values (1 byte per channel). * @param colormapLength The number of values in the colormap. * @param RGBANaNColor Pointer to 4 bytes describing the RGBA color * to use for NaNs. * If NULL, then the first color of the colormap is used. * @param RGBPixmapOut Pointer to the pixmap to fill. * It is a contiguous memory block of RGBA pixels (1 byte per channel). * The size of the pixmap MUST be at least 4 * length bytes. */ void colormapFillPixmap(void * data, unsigned int type, unsigned long length, double startValue, double endValue, unsigned int isLog10Mapping, uint8_t * RGBAColormap, unsigned int colormapLength, uint8_t * RGBANaNColor, uint8_t * RGBAPixmapOut); #endif /*__Colormap_H__*/ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/ColormapLUT.h0000644000000000000000000001401114741736366024265 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* Make sure we work with 32 bit integers */ #if defined (_MSC_VER) /* Microsoft Visual Studio */ #if _MSC_VER >= 1600 /* Visual Studio 2010 and higher */ #include #else #ifndef int32_t #define int32_t int #define uint32_t unsigned int #endif #endif #else #include #endif void getMinMaxDouble(double *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, double highestValue); void getMinMaxFloat(float *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, float highestValue); void getMinMaxChar(char *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, char highestValue); void getMinMaxUChar(unsigned char *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, unsigned char highestValue); void getMinMaxShort(short *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, short highestValue); void getMinMaxUShort(unsigned short *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, unsigned short highestValue); void getMinMaxInt32(int32_t *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, int32_t highestValue); void getMinMaxUInt32(uint32_t *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, uint32_t highestValue); void getMinMaxInt(int *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, int32_t highestValue); void getMinMaxUInt(unsigned int *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, uint32_t highestValue); void getMinMaxLong(long *data, long nValues,\ double *minValue, double *maxValue, double *minPositive, long highestValue); void getMinMaxULong(unsigned long *data, long nValues, \ double *minValue, double *maxValue, double *minPositive, unsigned long highestValue); void fillPixmapFromDouble(double *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromFloat(float *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromChar(char *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromUChar(unsigned char *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromShort(short *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromUShort(unsigned short *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromInt(int *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromUInt(unsigned int *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromInt32(int32_t *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromUInt32(uint32_t *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromLong(long *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); void fillPixmapFromULong(unsigned long *data, long nValues, unsigned char *colormap, long nColors, \ unsigned char *pixmap, short method, short autoFlag, double *minValue, double *maxValue); ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/InsidePolygonWithBounds.h0000644000000000000000000000524014741736366026722 0ustar00rootroot/* Source http://paulbourke.net/geometry/polygonmesh/ with contribution by Alexander Motrichuk: InsidePolygonWithBounds.cpp to deal with points exactly on a vertex Any source code found in the previous site may be freely used provided credits are given to the author. Credits follow: */ #/*########################################################################## # # Copyright Paul Bourke # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* SOLUTION #1 (2D) */ #define MIN(x,y) (x < y ? x : y) #define MAX(x,y) (x > y ? x : y) #define INSIDE 1 #define OUTSIDE 0 typedef struct { double x,y; } Point; typedef struct { float x,y; } PointF; typedef struct { int x,y; } PointInt; unsigned char _InsidePolygonF(Point *polygon, int N,\ PointF p, unsigned char bound_value); void PointsInsidePolygonF(double *polygon_xy, int N_xy, \ float *points_xy, int N_points_xy, int border_value, unsigned char *output); unsigned char _InsidePolygonInt(Point *polygon, int N,\ PointInt p, unsigned char bound_value); void PointsInsidePolygonInt(double *polygon_xy, int N_xy, \ int *points_xy, int N_points_xy, int border_value, unsigned char *output); unsigned char _InsidePolygon(Point *polygon, int N,\ Point p, unsigned char bound_value); void PointsInsidePolygon(double *polygon_xy, int N_xy, \ double *points_xy, int N_points_xy, int border_value, unsigned char *output); ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/MinMax.h0000644000000000000000000000433414741736366023324 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /** @file MinMax.h * Get min and max from data. */ #ifndef __MinMax_H__ #define __MinMax_H__ /** Get the min and max values of data. * * Optionally get the min positive value of data. * * @param data Pointer to the data to get min and max from. * @param type Bit field describing the data type. * @param length Number of elements in data. * @param minOut Pointer where to store the min value. * @param minPositiveOut Pointer where to store the strictly positive min. * If not required, set to NULL. * If all values of data are < 0, set to 0. * @param maxOut Pointer where to store the max value. */ void getMinMax(void * data, unsigned int type, unsigned long length, double * minOut, double * minPositiveOut, double * maxOut); #endif /*__MinMax_H__*/ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/include/Types.h0000644000000000000000000000642614741736366023243 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #ifndef __Types_H__ #define __Types_H__ /* Defines sized types if they are not defined */ #if defined (_MSC_VER) /* Microsoft Visual Studio */ #if _MSC_VER >= 1600 /* Visual Studio 2010 and higher */ #include #else #include #ifndef int8_t #define int8_t signed char #define INT8_MIN SCHAR_MIN #define INT8_MAX SCHAR_MAX #endif #ifndef uint8_t #define uint8_t unsigned char #define UINT8_MAX UCHAR_MAX #endif #ifndef int16_t #define int16_t short #define INT16_MIN SHRT_MIN #define INT16_MAX SHRT_MAX #endif #ifndef uint16_t #define uint16_t unsigned short #define UINT16_MAX USHRT_MAX #endif #ifndef int32_t #define int32_t int /*#define INT32_MIN INT_MIN #define INT32_MAX INT_MAX*/ #endif #ifndef uint32_t #define uint32_t unsigned int /*#define UINT32_MAX UINT_MAX*/ #endif #ifndef int64_t #define int64_t long long #define INT32_MIN LLONG_MIN #define INT32_MAX LLONG_MAX #endif #ifndef uint64_t #define uint64_t unsigned long long #define UINT32_MAX ULLONG_MAX #endif #endif #else #include #endif /* Description of data type using as a bit field */ #define FLOATING (1 << 3) /**< flag for floating point types */ #define UNSIGNED (1 << 2) /**< flag for unsigned types (int only) */ #define SIZE_MASK 0x3 /**< Bit mask corresponding to size */ #define SIZE_8 (0) /**< 8 bits sized type */ #define SIZE_16 (1) /**< 16 bits sized type */ #define SIZE_32 (2) /**< 32 bits sized type */ #define SIZE_64 (3) /**< 64 bits sized type */ #endif /*__Types_H__*/ ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/setup.py0000644000000000000000000000536414741736366022055 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import glob import os import sys import numpy from distutils.core import setup, Extension try: from Cython.Distutils import build_ext except Exception: build_ext = None c_files = glob.glob(os.path.join('src', 'InsidePolygonWithBounds.c')) c_files += glob.glob(os.path.join('src', 'MinMaxImpl.c')) c_files += glob.glob(os.path.join('src', 'Colormap.c')) if build_ext: src = glob.glob(os.path.join('cython', '_ctools.pyx')) else: src = glob.glob(os.path.join('cython', '*.c')) src += c_files if sys.platform == 'win32': extra_compile_args = [] extra_link_args = [] else: # OpenMP and auto-vectorization flags for Colormap and MinMax # extra_compile_args = ['-fopenmp', '-ftree-vectorize'] # extra_link_args = ['-fopenmp'] extra_compile_args = [] extra_link_args = [] setup( name='ctools', ext_modules=[Extension( name="_ctools", sources=src, include_dirs=[numpy.get_include(), os.path.join(os.getcwd(), "include")], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, language="c", )], cmdclass={'build_ext': build_ext}, ) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7637663 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/src/0000755000000000000000000000000014741736404021113 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/src/Colormap.c0000644000000000000000000003323014741736366023043 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include #include "Colormap.h" #include "Types.h" /* No lrint before Microsoft Visual Studio 2013*/ #if (defined (_MSC_VER) && _MSC_VER < 1800) #include #define lrint(v) ((int) (v)) #define isnan(v) _isnan(v) #define isfinite(v) _finite(v) #define INFINITY (DBL_MAX+DBL_MAX) #define NAN (INFINITY-INFINITY) #endif #ifdef _OPENMP #define PRAGMA_OMP(ompString) _Pragma(ompString) #else #define PRAGMA_OMP(ompString) #endif /* _OPEMMP */ /* OpenMP parallel for if test is length >= 1024^2. * This is an arbitrary value. */ /* Fast log ******************************************************************/ /* Implements fast log using the fact that double is stored as m * 2^n, * so log2(m * 2^n) = log2(m) + n and a look-up table for log2(m). * * See: Vinyals, O. and Friedland, G. * A Hardware-Independent Fast Logarithm Approximation with Adjustable Accuracy. * In Proc. Tenth IEEE International Symposium on Multimedia (ISM 2008). * IEEE. pp 61-65. * http://dx.doi.org/10.1109/ISM.2008.83 * * We use frexp (C99 but available in Visual Studio 2008) to get exponent and * mantissa. */ #define LOG_LUT_SIZE (1 << 12) /* 4096 */ static double logLUT[LOG_LUT_SIZE + 1]; /* indexLUT can overflow of 1 ! */ const double oneOverLog_2 = 1.4426950408889634; const double oneOverLog2_10 = 0.30102999566398114; void initFastLog10(void) { unsigned int index; for (index=0; index 0.0) { /* i.e., value = +INFINITY */ result = value; /* i.e. +INFINITY */ } } else { int exponent; double mantissa; /* in [0.5, 1) unless value == 0 NaN or +/-inf */ int indexLUT; mantissa = frexp(value, &exponent); indexLUT = lrint(LOG_LUT_SIZE * 2 * (mantissa - 0.5)); result = oneOverLog2_10 * ((double) exponent + logLUT[indexLUT]); } return result; } /* Fill pixmap for each type *************************************************/ /** Macro defining typed function filling pixmap from data with a colormap. * * See colormapFillPixmap in header for a description of generated functions * arguments. * * colormap and pixmapOut are uint32_t to copy the 4 RGBA uint8_t at once. * * The index in the colormap is computed using casting and not rounding. * It provides equally spaced bins even on the edges (as opposed to rounding). * * For log10 mapping: * - data with value <= 0 is supported and represented with the first color * of the colormap. * - min and max MUST be > 0. * - For the sake of simplicity, if min or max <= 0, the pixmap is filled * with the last color of the colormap. * * For floating types, the nanColor is used for NaNs. * * @param TYPE The type of the input data of the function * @param FIRST_IN_LOOP Allow to inject code at the beginning of each loop. * Used to add isnan test for floating types. */ #define FILL_PIXMAP_DEFINITION(TYPE, FIRST_IN_LOOP)\ static void fillPixmap_ ## TYPE(\ TYPE * data,\ unsigned long length,\ double startValue,\ double endValue,\ unsigned int isLog10Mapping,\ uint32_t * colormap,\ unsigned int colormapLength,\ uint32_t nanColor,\ uint32_t * pixmapOut)\ {\ double min, max;\ unsigned int cmapMax = colormapLength - 1;\ \ min = (startValue < endValue) ? startValue : endValue;\ max = (startValue < endValue) ? endValue : startValue;\ \ if (isLog10Mapping) {\ unsigned long index;\ double startLog, endLog, scale;\ \ if (startValue <= 0.0 || endValue <= 0.0) {\ startValue = 0.0;\ endValue = 0.0;\ min = 0.0;\ max = 0.0;\ startLog = 0.0;\ endLog = 0.0;\ }\ else {\ startLog = fastLog10(startValue);\ endLog = fastLog10(endValue);\ }\ \ if (startLog != endLog) {\ scale = ((double) colormapLength) / (endLog - startLog);\ }\ else {\ scale = 0.0; /* Should never be used */\ }\ \ PRAGMA_OMP("omp parallel for schedule(static) if (length > 1048576)")\ for (index=0; index= max) {\ cmapIndex = cmapMax;\ }\ else if (value <= min) {\ cmapIndex = 0;\ }\ else {\ cmapIndex = (unsigned int) (scale * (fastLog10(value) - startLog));\ if (cmapIndex > cmapMax) {\ cmapIndex = cmapMax;\ }\ }\ \ pixmapOut[index] = colormap[cmapIndex];\ }\ }\ else {\ unsigned long index;\ double scale;\ \ if (startValue != endValue) {\ scale = ((double) colormapLength) / (endValue - startValue);\ }\ else {\ scale = 0.0; /* Should never be used */\ }\ \ PRAGMA_OMP("omp parallel for schedule(static) if (length > 1048576)")\ for (index=0; index= max) {\ cmapIndex = cmapMax;\ }\ else if (value <= min) {\ cmapIndex = 0;\ }\ else {\ cmapIndex = (unsigned int) (scale * (value - startValue));\ if (cmapIndex > cmapMax) {\ cmapIndex = cmapMax;\ }\ }\ \ pixmapOut[index] = colormap[cmapIndex];\ }\ }\ } /* Code to handle NaN color for floating type */ #define HANDLE_NAN \ if (isnan(value)) {\ pixmapOut[index] = nanColor;\ continue;\ } #define NOOP FILL_PIXMAP_DEFINITION(float, HANDLE_NAN) FILL_PIXMAP_DEFINITION(double, HANDLE_NAN) FILL_PIXMAP_DEFINITION(uint8_t, NOOP) FILL_PIXMAP_DEFINITION(int8_t, NOOP) FILL_PIXMAP_DEFINITION(uint16_t, NOOP) FILL_PIXMAP_DEFINITION(int16_t, NOOP) FILL_PIXMAP_DEFINITION(uint32_t, NOOP) FILL_PIXMAP_DEFINITION(int32_t, NOOP) FILL_PIXMAP_DEFINITION(uint64_t, NOOP) FILL_PIXMAP_DEFINITION(int64_t, NOOP) /* Fill pixmap with LUT ******************************************************/ /** Macro defining typed function filling pixmap with a look-up table. * * See colormapFillPixmap in header for a description of generated functions * arguments. * * Faster-way to fill pixmap from (u)int8_t and (u)int16_t for large data. * * First builds a color look-up table first and then fill the pixmap with it. * The look-up table is built using functions generating pixmaps to * ensure similar results. * * @param TYPE The type of the input data of the function * @param TYPE_MIN The min value of TYPE * @param TYPE_NBELEM The number of values TYPE can represent */ #define FILL_PIXMAP_WITH_LUT_DEFINITION(TYPE, TYPE_MIN, TYPE_NBELEM) \ static void \ fillPixmapWithLUT_ ## TYPE(TYPE * data,\ unsigned long length,\ double startValue,\ double endValue,\ unsigned int isLog10Mapping,\ uint32_t * colormap,\ unsigned int colormapLength,\ uint32_t * pixmapOut)\ {\ unsigned long index;\ uint32_t colorLUT[TYPE_NBELEM];\ TYPE indices[TYPE_NBELEM];\ \ /* Fill look-up table using colormap and an indices array */\ for (index=0; index 1048576)")\ for (index=0; index UINT8_MAX) { if ((type & UNSIGNED) != 0) { CALL_FILL_PIXMAP_WITH_LUT(uint8_t); } else { CALL_FILL_PIXMAP_WITH_LUT(int8_t); } } else if ((type & SIZE_MASK) == SIZE_16 && length > UINT16_MAX) { if ((type & UNSIGNED) != 0) { CALL_FILL_PIXMAP_WITH_LUT(uint16_t); } else { CALL_FILL_PIXMAP_WITH_LUT(int16_t); } } else { /* Generic approach */ switch (type) { case (FLOATING | SIZE_32): /*float*/ /* If NaN color is NULL, use the first color of the colormap */ nanColor = (RGBANaNColor == 0) ? *((uint32_t *) RGBAColormap) : *((uint32_t *) RGBANaNColor); CALL_FILL_PIXMAP(float); break; case (FLOATING | SIZE_64): /*double*/ /* If NaN color is NULL, use the first color of the colormap */ nanColor = (RGBANaNColor == 0) ? *((uint32_t *) RGBAColormap) : *((uint32_t *) RGBANaNColor); CALL_FILL_PIXMAP(double); break; case (SIZE_8): /*int8_t*/ CALL_FILL_PIXMAP(int8_t); break; case (UNSIGNED | SIZE_8): /*uint8_t*/ CALL_FILL_PIXMAP(uint8_t); break; case (SIZE_16): /*int16_t*/ CALL_FILL_PIXMAP(int16_t); break; case (UNSIGNED | SIZE_16): /*uint16_t*/ CALL_FILL_PIXMAP(uint16_t); break; case (SIZE_32): /*int32_t*/ CALL_FILL_PIXMAP(int32_t); break; case (UNSIGNED | SIZE_32): /*uint32_t*/ CALL_FILL_PIXMAP(uint32_t); break; case (SIZE_64): /*int64_t*/ CALL_FILL_PIXMAP(int64_t); break; case (UNSIGNED | SIZE_64): /*uint64_t*/ CALL_FILL_PIXMAP(uint64_t); break; default: break; } } } ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/src/ColormapLUT.c0000644000000000000000000004371714741736366023443 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include #include #include #ifndef __GNUC__ #include #ifndef lrintf #define lrint(dbl) ((int)(dbl)) #define lrintf(flt) ((int)(flt)) #endif #else #include #endif // __GNUC__ #include "../include/ColormapLUT.h" #define FINDMINMAX(NAME, TYPE) \ void NAME(TYPE *data, long nValues, double *minValue, double *maxValue, double *minPositive, TYPE highestValue) \ { \ register TYPE *c1; \ register long i; \ register TYPE tmpMinValue, tmpMaxValue, tmpMinPositive; \ int doMinPositive; \ \ c1 = data; \ if (minPositive == NULL) \ doMinPositive = 0; \ else \ doMinPositive = 1; \ tmpMaxValue = tmpMinValue = *c1; \ tmpMinPositive = highestValue; \ if (doMinPositive) \ { \ for (i = nValues; i; i--, c1++) { \ if (*c1 < tmpMinValue) \ tmpMinValue = *c1; \ else if (*c1 > tmpMaxValue) \ tmpMaxValue = *c1; \ if ((*c1 < tmpMinPositive) && (*c1 > 0)) \ tmpMinPositive = *c1; \ } \ } \ else \ { \ for (i = nValues; i; i--, c1++) \ { \ if (*c1 < tmpMinValue) \ tmpMinValue = *c1; \ else if (*c1 > tmpMaxValue) \ tmpMaxValue = *c1; \ } \ } \ *minValue = (double) tmpMinValue; \ *maxValue = (double) tmpMaxValue; \ *minPositive = (double) tmpMinPositive; \ } FINDMINMAX(getMinMaxDouble, double)//, DBL_MAX) FINDMINMAX(getMinMaxFloat, float) //, FLT_MAX) FINDMINMAX(getMinMaxChar, char)// , SCHAR_MAX) FINDMINMAX(getMinMaxUChar, unsigned char) //, UCHAR_MAX) FINDMINMAX(getMinMaxShort, short) //, SHRT_MAX) FINDMINMAX(getMinMaxUShort, unsigned short) //, USHRT_MAX) FINDMINMAX(getMinMaxInt, int32_t)//, INT_MAX) FINDMINMAX(getMinMaxUInt, uint32_t)//, UINT_MAX) FINDMINMAX(getMinMaxLong, long) //, LONG_MAX) FINDMINMAX(getMinMaxULong, unsigned long)//, ULONG_MAX) /* It is very likely an performance mistake to always calculate min and max as double instead of using the supplied type. The goal would be to avoid the conversion double to int. One could probably just use double pointers for the float and double cases. The use of the lrint and lrintf functions would be very limited because it seems the cast truncation is as fast on intel 64 bit machines with SSE2 optimization enabled. */ #define FILLPIXMAP()\ colormapInt32 = (uint32_t *) colormap;\ pixmapInt32 = (uint32_t *) pixmap;\ delta = usedMax - usedMin; \ if (delta <= 0) \ delta = 1.0; \ for (i = 0; i < nValues; i++) \ {\ if(data[i] <= usedMin)\ {\ pixmapInt32[i] = colormapInt32[0];\ }\ else\ {\ if(data[i] >= usedMin)\ {\ pixmapInt32[i] = colormapInt32[nColors - 1];\ }\ else\ {\ idx = lrint(nColors * ((*data - usedMin)/delta));\ if (idx < 0)\ idx = 0;\ if (idx >= nColors)\ idx = nColors - 1;\ pixmapInt32[i] = colormapInt32[idx];\ }\ }\ } void fillPixmapFromDouble(double *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxDouble(data, nValues, &usedMin, &usedMax, minPlusPointer, DBL_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxDouble(data, nValues, &usedMin, &usedMax, minPlusPointer, DBL_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromFloat(float *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxFloat(data, nValues, &usedMin, &usedMax, minPlusPointer, FLT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxFloat(data, nValues, &usedMin, &usedMax, minPlusPointer, FLT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromChar(char *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxChar(data, nValues, &usedMin, &usedMax, minPlusPointer, CHAR_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxChar(data, nValues, &usedMin, &usedMax, minPlusPointer, CHAR_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromUChar(unsigned char *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxUChar(data, nValues, &usedMin, &usedMax, minPlusPointer, UCHAR_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxUChar(data, nValues, &usedMin, &usedMax, minPlusPointer, UCHAR_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromShort(short *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxShort(data, nValues, &usedMin, &usedMax, minPlusPointer, SHRT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxShort(data, nValues, &usedMin, &usedMax, minPlusPointer, SHRT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromUShort(unsigned short *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxUShort(data, nValues, &usedMin, &usedMax, minPlusPointer, USHRT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxUShort(data, nValues, &usedMin, &usedMax, minPlusPointer, USHRT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromInt(int *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxInt(data, nValues, &usedMin, &usedMax, minPlusPointer, INT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxInt(data, nValues, &usedMin, &usedMax, minPlusPointer, INT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromUInt(unsigned int *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxUInt(data, nValues, &usedMin, &usedMax, minPlusPointer, UINT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxUInt(data, nValues, &usedMin, &usedMax, minPlusPointer, UINT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromInt32(int32_t *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxInt(data, nValues, &usedMin, &usedMax, minPlusPointer, INT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxInt(data, nValues, &usedMin, &usedMax, minPlusPointer, INT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromUInt32(uint32_t *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxUInt(data, nValues, &usedMin, &usedMax, minPlusPointer, UINT_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxUInt(data, nValues, &usedMin, &usedMax, minPlusPointer, UINT_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromLong(long *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxLong(data, nValues, &usedMin, &usedMax, minPlusPointer, LONG_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxLong(data, nValues, &usedMin, &usedMax, minPlusPointer, LONG_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } void fillPixmapFromULong(unsigned long *data, long nValues, unsigned char* colormap, long nColors, unsigned char*pixmap, short method, short autoFlag, double *minValue, double *maxValue) { double usedMin, usedMax, usedMinPlus; double *minPlusPointer; long i, idx; double delta; int32_t *colormapInt32; int32_t *pixmapInt32; if (method == 2) { /* Shift logarithmic */ minPlusPointer = &usedMinPlus; } else { minPlusPointer = NULL; } if (autoFlag) { getMinMaxULong(data, nValues, &usedMin, &usedMax, minPlusPointer, ULONG_MAX); } else { if((minValue == NULL) || (maxValue == NULL)) { getMinMaxULong(data, nValues, &usedMin, &usedMax, minPlusPointer, ULONG_MAX); if(minValue != NULL) usedMin = *minValue; if(maxValue != NULL) usedMax = *maxValue; } } /* minValue and maxValue to be modified in case of log use ... */ FILLPIXMAP() } ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/src/InsidePolygonWithBounds.c0000644000000000000000000001410514741736366026061 0ustar00rootroot/* Source http://paulbourke.net/geometry/polygonmesh/ with contribution by Alexander Motrichuk: InsidePolygonWithBounds.cpp to deal with points exactly on a vertex Any source code found in the previous site may be freely used provided credits are given to the author. Credits follow: */ #/*########################################################################## # # Copyright Paul Bourke # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* SOLUTION #1 (2D) */ #include "../include/InsidePolygonWithBounds.h" #define _INSIDE_POLYGON(NAME, TYPE) \ unsigned char NAME(Point *polygon, int N, TYPE p, unsigned char border_value) \ { \ int counter = 0; \ int i; \ double xinters; \ Point p1,p2; \ \ p1 = polygon[0]; \ for (i=1;i<=N;i++) { \ if ((p1.x == p.x) && (p1.y == p.y)) \ return border_value; \ p2 = polygon[i % N]; \ if (p.y > MIN(p1.y,p2.y)) { \ if (p.y <= MAX(p1.y,p2.y)) { \ if (p.x <= MAX(p1.x,p2.x)) { \ if (p1.y != p2.y) { \ xinters = (p.y-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x; \ if (p1.x == p2.x || p.x <= xinters) \ counter++; \ } \ } \ } \ } \ p1 = p2; \ } \ \ if (counter % 2 == 0) \ return(OUTSIDE); \ else \ return(INSIDE); \ } _INSIDE_POLYGON(_InsidePolygon, Point) _INSIDE_POLYGON(_InsidePolygonF, PointF) _INSIDE_POLYGON(_InsidePolygonInt, PointInt) void PointsInsidePolygon(double *vertices, int N_vertices, \ double *points_xy, int N_points_xy, int border_value, unsigned char *output) { int i; Point *polygon; Point *point; unsigned char *p; unsigned char border; polygon = (Point *) vertices; point = (Point *) points_xy; border = (unsigned char) border_value; p = output; for (i=0; i < N_points_xy; i++) { *p = _InsidePolygon(polygon, N_vertices, *point, border); p++; point++; } } void PointsInsidePolygonF(double *vertices, int N_vertices, \ float *points_xy, int N_points_xy, int border_value, unsigned char *output) { int i; Point *polygon; PointF *point; unsigned char *p; unsigned char border; polygon = (Point *) vertices; point = (PointF *) points_xy; border = (unsigned char) border_value; p = output; for (i=0; i < N_points_xy; i++) { *p = _InsidePolygonF(polygon, N_vertices, *point, border); p++; point++; } } void PointsInsidePolygonInt(double *vertices, int N_vertices, \ int *points_xy, int N_points_xy, int border_value, unsigned char *output) { int i; Point *polygon; PointInt *point; unsigned char *p; unsigned char border; polygon = (Point *) vertices; point = (PointInt *) points_xy; border = (unsigned char) border_value; p = output; for (i=0; i < N_points_xy; i++) { *p = _InsidePolygonInt(polygon, N_vertices, *point, border); p++; point++; } } ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/src/MinMaxImpl.c0000644000000000000000000001230714741736366023304 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include #include "MinMax.h" #include "Types.h" #if (defined (_MSC_VER) && _MSC_VER < 1800) #include #define isnan(v) _isnan(v) #endif /* To support NaN, for floating type, we skip all first NaN data * If all data is NaNs: min/max are NaNs * Else min/max are computed ignoring NaNs, * as NaN is never < or > to a number. */ #define INIT_SKIP_NAN(TYPE) \ for (; index < length; index++) {\ TYPE value = data[index];\ if (!isnan(value)) {\ tmpMin = value;\ tmpMax = value;\ break;\ }\ } #define INIT_NOOP(TYPE) #define GET_MINMAX_DEFINITION(TYPE, INIT_CODE)\ static void getMinMax_ ## TYPE(TYPE * data,\ unsigned long length,\ double * min,\ double * minPos,\ double * max)\ {\ TYPE tmpMin = data[0];\ TYPE tmpMax = tmpMin;\ unsigned long index = 0;\ \ INIT_CODE(TYPE)\ \ if (minPos != 0) {\ TYPE tmpMinPos = (TYPE) 0;\ \ /* First loop until tmpMinPos is initialized */\ for (; index < length; index++) {\ TYPE value = data[index];\ tmpMin = (value < tmpMin) ? value : tmpMin;\ tmpMax = (value > tmpMax) ? value : tmpMax;\ if (value > (TYPE) 0) {\ tmpMinPos = value;\ break;\ }\ }\ \ /* Second loop with tmpMinPos initialized */\ for (; index < length; index++) {\ TYPE value = data[index];\ tmpMin = (value < tmpMin) ? value : tmpMin;\ tmpMax = (value > tmpMax) ? value : tmpMax;\ tmpMinPos = (value > (TYPE) 0 && value < tmpMinPos) ? value : tmpMinPos;\ }\ \ *minPos = (double) tmpMinPos;\ }\ else {\ for (; index < length; index++) {\ TYPE value = data[index];\ tmpMin = (value < tmpMin) ? value : tmpMin;\ tmpMax = (value > tmpMax) ? value : tmpMax;\ }\ }\ \ *min = (double) tmpMin;\ *max = (double) tmpMax;\ } GET_MINMAX_DEFINITION(float, INIT_SKIP_NAN) GET_MINMAX_DEFINITION(double, INIT_SKIP_NAN) GET_MINMAX_DEFINITION(int8_t, INIT_NOOP) GET_MINMAX_DEFINITION(uint8_t, INIT_NOOP) GET_MINMAX_DEFINITION(int16_t, INIT_NOOP) GET_MINMAX_DEFINITION(uint16_t, INIT_NOOP) GET_MINMAX_DEFINITION(int32_t, INIT_NOOP) GET_MINMAX_DEFINITION(uint32_t, INIT_NOOP) GET_MINMAX_DEFINITION(int64_t, INIT_NOOP) GET_MINMAX_DEFINITION(uint64_t, INIT_NOOP) #define CALL_GET_MINMAX(TYPE)\ getMinMax_ ## TYPE((TYPE *) data,\ length,\ minOut,\ minPosOut,\ maxOut) void getMinMax(void * data, unsigned int type, unsigned long length, double * minOut, double * minPosOut, double * maxOut) { switch (type) { case (FLOATING | SIZE_32): /*float*/ CALL_GET_MINMAX(float); break; case (FLOATING | SIZE_64): /*double*/ CALL_GET_MINMAX(double); break; case (SIZE_8): /*int8_t*/ CALL_GET_MINMAX(int8_t); break; case (UNSIGNED | SIZE_8): /*uint8_t*/ CALL_GET_MINMAX(uint8_t); break; case (SIZE_16): /*int16_t*/ CALL_GET_MINMAX(int16_t); break; case (UNSIGNED | SIZE_16): /*uint16_t*/ CALL_GET_MINMAX(uint16_t); break; case (SIZE_32): /*int32_t*/ CALL_GET_MINMAX(int32_t); break; case (UNSIGNED | SIZE_32): /*uint32_t*/ CALL_GET_MINMAX(uint32_t); break; case (SIZE_64): /*int64_t*/ CALL_GET_MINMAX(int64_t); break; case (UNSIGNED | SIZE_64): /*uint64_t*/ CALL_GET_MINMAX(uint64_t); break; default: break; } } ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7637663 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/test/0000755000000000000000000000000014741736404021303 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/test/testColormap.py0000644000000000000000000006776314741736366024363 0ustar00rootroot# -*- coding: utf-8 -*- #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ # import ###################################################################### import numpy as np import time try: import unittest except ImportError: import unittest2 as unittest from PyMca5.PyMcaGraph import ctools from PyMca5 import spslut # TODOs: # what to do with max < min: as SPS LUT or also invert outside boundaries? # test usedMin and usedMax # benchmark # common ###################################################################### class _TestColormap(unittest.TestCase): # Array data types to test FLOATING_DTYPES = np.float16, np.float32, np.float64 SIGNED_DTYPES = FLOATING_DTYPES + (np.int8, np.int16, np.int32, np.int64) UNSIGNED_DTYPES = np.uint8, np.uint16, np.uint32, np.uint64 DTYPES = SIGNED_DTYPES + UNSIGNED_DTYPES # Array sizes to test SIZES = 2, 10, 256, 1024 # , 2048, 4096 # Colormaps definitions _LUT_RED_256 = np.zeros((256, 4), dtype=np.uint8) _LUT_RED_256[:, 0] = np.arange(256, dtype=np.uint8) _LUT_RED_256[:, 3] = 255 _LUT_RGB_3 = np.array(((255, 0, 0, 255), (0, 255, 0, 255), (0, 0, 255, 255)), dtype=np.uint8) _LUT_RGB_768 = np.zeros((768, 4), dtype=np.uint8) _LUT_RGB_768[0:256, 0] = np.arange(256, dtype=np.uint8) _LUT_RGB_768[256:512, 1] = np.arange(256, dtype=np.uint8) _LUT_RGB_768[512:768, 1] = np.arange(256, dtype=np.uint8) _LUT_RGB_768[:, 3] = 255 COLORMAPS = { 'red 256': _LUT_RED_256, 'rgb 3': _LUT_RGB_3, 'rgb 768': _LUT_RGB_768, } @staticmethod def _log(*args): """Logging used by test for debugging.""" pass # print(args) @staticmethod def buildControlPixmap(data, colormap, start=None, end=None, isLog10=False): """Generate a pixmap used to test C pixmap.""" if isLog10: # Convert to log if start is None: posValue = data[np.nonzero(data > 0)] if posValue.size != 0: start = np.nanmin(posValue) else: start = 0. if end is None: end = np.nanmax(data) start = 0. if start <= 0. else np.log10(start, dtype=np.float64) end = 0. if end <= 0. else np.log10(end, dtype=np.float64) data = np.log10(data, dtype=np.float64) else: if start is None: start = np.nanmin(data) if end is None: end = np.nanmax(data) start, end = float(start), float(end) min_, max_ = min(start, end), max(start, end) if start == end: indices = np.asarray((len(colormap) - 1) * (data >= max_), dtype=np.int) else: clipData = np.clip(data, min_, max_) # Clip first avoid overflow scale = len(colormap) / (end - start) normData = scale * (np.asarray(clipData, np.float64) - start) # Clip again to makes sure <= len(colormap) - 1 indices = np.asarray(np.clip(normData, 0, len(colormap) - 1), dtype=np.uint32) pixmap = np.take(colormap, indices, axis=0) pixmap.shape = data.shape + (4,) return np.ascontiguousarray(pixmap) @staticmethod def buildSPSLUTRedPixmap(data, start=None, end=None, isLog10=False): """Generate a pixmap with SPS LUT. Only supports red colormap with 256 colors. """ colormap = spslut.RED mapping = spslut.LOG if isLog10 else spslut.LINEAR if start is None and end is None: autoScale = 1 start, end = 0, 1 else: autoScale = 0 if start is None: start = data.min() if end is None: end = data.max() pixmap, size, minMax = spslut.transform(data, (1, 0), (mapping, 3.0), 'RGBX', colormap, autoScale, (start, end), (0, 255), 1) pixmap.shape = data.shape[0], data.shape[1], 4 return pixmap def _testColormap(self, data, colormap, start, end, control=None, isLog10=False, nanColor=None): """Test pixmap built with C code against SPS LUT if possible, else against Python control code.""" startTime = time.time() pixmap, (usedMin, usedMax) = ctools.dataToRGBAColormap(data, colormap, start, end, isLog10, nanColor) duration = time.time() - startTime # Compare with result controlType = 'array' if control is None: startTime = time.time() # Compare with SPS LUT if possible if (colormap.shape == self.COLORMAPS['red 256'].shape and np.all(np.equal(colormap, self.COLORMAPS['red 256'])) and data.size % 2 == 0 and data.dtype in (np.float32, np.float64)): # Only works with red colormap and even size # as it needs 2D data if len(data.shape) == 1: data.shape = data.size // 2, -1 pixmap.shape = data.shape + (4,) control = self.buildSPSLUTRedPixmap(data, start, end, isLog10) controlType = 'SPS LUT' # Compare with python test implementation else: control = self.buildControlPixmap(data, colormap, start, end, isLog10) controlType = 'Python control code' controlDuration = time.time() - startTime if duration >= controlDuration: self._log('duration', duration, 'control', controlDuration) # Allows duration to be 20% over SPS LUT duration # self.assertTrue(duration < 1.2 * controlDuration) difference = np.fabs(np.asarray(pixmap, dtype=np.float64) - np.asarray(control, dtype=np.float64)) if np.any(difference != 0.0): self._log('control', controlType) self._log('data', data) self._log('pixmap', pixmap) self._log('control', control) self._log('errors', np.ravel(difference)) self._log('errors', difference[difference != 0]) self._log('in pixmap', pixmap[difference != 0]) self._log('in control', control[difference != 0]) self._log('Max error', difference.max()) # Allows a difference of 1 per channel self.assertTrue(np.all(difference <= 1.0)) return duration # TestColormap ################################################################ class TestColormap(_TestColormap): """Test common limit case for colormap in C with both linear and log mode. Test with different: data types, sizes, colormaps (with different sizes), mapping range. """ def testNoData(self): """Test pixmap generation with empty data.""" self._log("TestColormap.testNoData") cmapName = 'red 256' colormap = self.COLORMAPS[cmapName] for dtype in self.DTYPES: for isLog10 in (False, True): data = np.array((), dtype=dtype) result = np.array((), dtype=np.uint8) result.shape = 0, 4 duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10) self._log('No data', 'red 256', dtype, len(data), (None, None), 'isLog10:', isLog10, duration) def testNaN(self): """Test pixmap generation with NaN values and no NaN color.""" self._log("TestColormap.testNaN") cmapName = 'red 256' colormap = self.COLORMAPS[cmapName] for dtype in self.FLOATING_DTYPES: for isLog10 in (False, True): # All NaNs data = np.array((float('nan'),) * 4, dtype=dtype) result = np.array(((0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10) self._log('All NaNs', 'red 256', dtype, len(data), (None, None),'isLog10:', isLog10, duration) # Some NaNs data = np.array((1., float('nan'), 0., float('nan')), dtype=dtype) result = np.array(((255, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10) self._log('Some NaNs', 'red 256', dtype, len(data), (None, None), 'isLog10:', isLog10, duration) def testNaNWithColor(self): """Test pixmap generation with NaN values with a NaN color.""" self._log("TestColormap.testNaNWithColor") cmapName = 'red 256' colormap = self.COLORMAPS[cmapName] for dtype in self.FLOATING_DTYPES: for isLog10 in (False, True): # All NaNs data = np.array((float('nan'),) * 4, dtype=dtype) result = np.array(((128, 128, 128, 255), (128, 128, 128, 255), (128, 128, 128, 255), (128, 128, 128, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10, nanColor=(128, 128, 128, 255)) self._log('All NaNs', 'red 256', dtype, len(data), (None, None),'isLog10:', isLog10, duration) # Some NaNs data = np.array((1., float('nan'), 0., float('nan')), dtype=dtype) result = np.array(((255, 0, 0, 255), (128, 128, 128, 255), (0, 0, 0, 255), (128, 128, 128, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10, nanColor=(128, 128, 128, 255)) self._log('Some NaNs', 'red 256', dtype, len(data), (None, None), 'isLog10:', isLog10, duration) # TestLinearColormap ########################################################## class TestLinearColormap(_TestColormap): """Test fill pixmap with colormap in C with linear mode. Test with different: data types, sizes, colormaps (with different sizes), mapping range. """ # Colormap ranges to map RANGES = (None, None), (1, 10) def test1DData(self): """Test pixmap generation for 1D data of different size and types.""" self._log("TestLinearColormap.test1DData") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(size, dtype=dtype) duration = self._testColormap(data, colormap, start, end) self._log('1D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1] duration = self._testColormap(data, colormap, start, end) self._log('1D', cmapName, dtype, size, (start, end), duration) def test2DData(self): """Test pixmap generation for 2D data of different size and types.""" self._log("TestLinearColormap.test2DData") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(size * size, dtype=dtype) data = np.nan_to_num(data) data.shape = size, size duration = self._testColormap(data, colormap, start, end) self._log('2D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1, ::-1] duration = self._testColormap(data, colormap, start, end) self._log('2D', cmapName, dtype, size, (start, end), duration) def testInf(self): """Test pixmap generation with Inf values.""" self._log("TestLinearColormap.testInf") for dtype in self.FLOATING_DTYPES: # All positive Inf data = np.array((float('inf'),) * 4, dtype=dtype) result = np.array(((255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result) self._log('All +Inf', 'red 256', dtype, len(data), (None, None), duration) # All negative Inf data = np.array((float('-inf'),) * 4, dtype=dtype) result = np.array(((255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result) self._log('All -Inf', 'red 256', dtype, len(data), (None, None), duration) # All +/-Inf data = np.array((float('inf'), float('-inf'), float('-inf'), float('inf')), dtype=dtype) result = np.array(((255, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (255, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result) self._log('All +/-Inf', 'red 256', dtype, len(data), (None, None), duration) # Some +/-Inf data = np.array((float('inf'), 0., float('-inf'), -10.), dtype=dtype) result = np.array(((255, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result) # Seg Fault with SPS self._log('Some +/-Inf', 'red 256', dtype, len(data), (None, None), duration) @unittest.skip("Not for reproductible tests") def test1DDataRandom(self): """Test pixmap generation for 1D data of different size and types.""" self._log("TestLinearColormap.test1DDataRandom") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: try: dtypeMax = np.iinfo(dtype).max except ValueError: dtypeMax = np.finfo(dtype).max data = np.asarray(np.random.rand(size) * dtypeMax, dtype=dtype) duration = self._testColormap(data, colormap, start, end) self._log('1D Random', cmapName, dtype, size, (start, end), duration) # TestLog10Colormap ########################################################### class TestLog10Colormap(_TestColormap): """Test fill pixmap with colormap in C with log mode. Test with different: data types, sizes, colormaps (with different sizes), mapping range. """ # Colormap ranges to map RANGES = (None, None), (1, 10) #, (10, 1) def test1DDataAllPositive(self): """Test pixmap generation for all positive 1D data.""" self._log("TestLog10Colormap.test1DDataAllPositive") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(size, dtype=dtype) + 1 duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1] duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) def test2DDataAllPositive(self): """Test pixmap generation for all positive 2D data.""" self._log("TestLog10Colormap.test2DDataAllPositive") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(size * size, dtype=dtype) + 1 data = np.nan_to_num(data) data.shape = size, size duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('2D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1, ::-1] duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('2D', cmapName, dtype, size, (start, end), duration) def testAllNegative(self): """Test pixmap generation for all negative 1D data.""" self._log("TestLog10Colormap.testAllNegative") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.SIGNED_DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(-size, 0, dtype=dtype) duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1] duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) def testCrossingZero(self): """Test pixmap generation for 1D data with negative and zero.""" self._log("TestLog10Colormap.testCrossingZero") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.SIGNED_DTYPES: for start, end in self.RANGES: # Increasing values data = np.arange(-size/2, size/2 + 1, dtype=dtype) duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) # Reverse order data = data[::-1] duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D', cmapName, dtype, size, (start, end), duration) @unittest.skip("Not for reproductible tests") def test1DDataRandom(self): """Test pixmap generation for 1D data of different size and types.""" self._log("TestLog10Colormap.test1DDataRandom") for cmapName, colormap in self.COLORMAPS.items(): for size in self.SIZES: for dtype in self.DTYPES: for start, end in self.RANGES: try: dtypeMax = np.iinfo(dtype).max dtypeMin = np.iinfo(dtype).min except ValueError: dtypeMax = np.finfo(dtype).max dtypeMin = np.finfo(dtype).min if dtypeMin < 0: data = np.asarray(-dtypeMax/2. + np.random.rand(size) * dtypeMax, dtype=dtype) else: data = np.asarray(np.random.rand(size) * dtypeMax, dtype=dtype) duration = self._testColormap(data, colormap, start, end, isLog10=True) self._log('1D Random', cmapName, dtype, size, (start, end), duration) def testInf(self): """Test pixmap generation with Inf values.""" self._log("TestLog10Colormap.testInf") for dtype in self.FLOATING_DTYPES: # All positive Inf data = np.array((float('inf'),) * 4, dtype=dtype) result = np.array(((255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255), (255, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10=True) self._log('All +Inf', 'red 256', dtype, len(data), (None, None), duration) # All negative Inf data = np.array((float('-inf'),) * 4, dtype=dtype) result = np.array(((0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10=True) self._log('All -Inf', 'red 256', dtype, len(data), (None, None), duration) # All +/-Inf data = np.array((float('inf'), float('-inf'), float('-inf'), float('inf')), dtype=dtype) result = np.array(((255, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (255, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10=True) self._log('All +/-Inf', 'red 256', dtype, len(data), (None, None), duration) # Some +/-Inf data = np.array((float('inf'), 0., float('-inf'), -10.), dtype=dtype) result = np.array(((255, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255), (0, 0, 0, 255)), dtype=np.uint8) duration = self._testColormap(data, self.COLORMAPS['red 256'], None, None, result, isLog10=True) self._log('Some +/-Inf', 'red 256', dtype, len(data), (None, None), duration) # main ######################################################################## if __name__ == '__main__': import sys unittest.main(argv=sys.argv[:]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/test/testFastLog10.py0000644000000000000000000001051014741736366024261 0ustar00rootroot# -*- coding: utf-8 -*- #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ # import ###################################################################### import math import numpy as np import random import time import struct import sys try: import unittest except ImportError: import unittest2 as unittest from PyMca5.PyMcaGraph import ctools # TODOs: # benchmark perf # common ###################################################################### class TestFastLog10(unittest.TestCase): """Test C fastLog10.""" @staticmethod def _log(*args): """Logging used by test for debugging.""" pass # print(args) def testReturnDefined(self): """Test specific values.""" # Test cases as (value, log10(value)) testCases = ( (0.0, float('-inf')), (1.0, 0.0), (float('inf'), float('inf')), ) for value, refLogValue in testCases: logValue = ctools.fastLog10(value) self.assertEqual(logValue, refLogValue) def testReturnNan(self): """Test values for which log10(value) returns NaN. Test: NaN, -Inf, and a few negative values. """ testValues = ( float('nan'), float('-inf'), -1.0, - sys.float_info.max, - sys.float_info.min ) for value in testValues: logValue = ctools.fastLog10(value) self.assertTrue(math.isnan(logValue)) @staticmethod def _randFloat(): """Returns a random float truly over the full range of 64-bits floats. Can produce Nan, +/- inf. """ return struct.unpack('d', struct.pack('Q', random.getrandbits(64)))[0] def _randPosFloat(self): """Returns a strictly positive random float.""" value = self._randFloat() while value < 0.0 or math.isinf(value) or math.isnan(value): value = self._randFloat() return value # @unittest.skip("Not for reproductible tests") def testRandomPositive(self): """Test with strictly positive random values.""" self._log("testRandomPositive") # Create data set nbData = 10 ** 6 values = [self._randPosFloat() for i in range(nbData)] dataRange = min(values), max(values) self._log("Nb data:", nbData, "in range:", dataRange) # Compute log10 logValues = map(ctools.fastLog10, values) refLogValues = map(math.log10, values) # Comparison errors = list(map(lambda a, b: math.fabs(a - b), logValues, refLogValues)) bigErrors = list(filter(lambda a : a > 0.00011, errors)) self._log("Nb errors > 0.00011", len(bigErrors)) self._log("Max Error:", max(errors)) self.assertEqual(len(bigErrors), 0) # main ######################################################################## if __name__ == '__main__': import sys unittest.main(argv=sys.argv[:]) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGraph/ctools/_ctools/test/testMinMax.py0000644000000000000000000002024714741736366023762 0ustar00rootroot# -*- coding: utf-8 -*- #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """Tests for C minMax""" # import ###################################################################### import math import numpy as np import time try: import unittest except ImportError: import unittest2 as unittest from PyMca5.PyMcaGraph import ctools # TestMinMax ################################################################## class TestMinMax(unittest.TestCase): """Test minMax in C. Test with different: data types, sizes. """ # Array data types to test FLOATING_DTYPES = np.float16, np.float32, np.float64 SIGNED_DTYPES = FLOATING_DTYPES + (np.int8, np.int16, np.int32, np.int64) UNSIGNED_DTYPES = np.uint8, np.uint16, np.uint32, np.uint64 DTYPES = SIGNED_DTYPES + UNSIGNED_DTYPES # Array sizes to test SIZES = 10, 256, 1024, 2048, 4096 # , 4096 ** 2, 8192 ** 2 def _log(self, *args): """Logging used by test for debugging.""" pass # print(args) @staticmethod def _minPos(data): posValue = np.take(data, np.nonzero(data > 0)) if posValue.size != 0: return posValue.min() else: return None # if no value above 0 def _testMinMaxVsNumpy(self, data, minPos=False): """Single test C minMax and min positive vs Numpy min/max.""" startTime = time.time() if minPos: min_, minPositive, max_ = ctools.minMax(data, minPositive=True) else: min_, max_ = ctools.minMax(data, minPositive=False) duration = time.time() - startTime startTime = time.time() try: minNumpy, maxNumpy = np.nanmin(data), np.nanmax(data) except ValueError: minNumpy, maxNumpy = None, None if minPos: minPositiveNumpy = self._minPos(data) durationNumpy = time.time() - startTime self._log(data.dtype, data.size, 'duration C (s):', duration, 'duration Numpy (s):', durationNumpy) self.assertEqual(min_, minNumpy) if minPos: self.assertEqual(minPositive, minPositiveNumpy) self.assertEqual(max_, maxNumpy) def testMinMaxOnly(self): """Test C minMax vs Numpy min/max for different data types and sizes. """ self._log("testMinMax") for size in self.SIZES: for dtype in self.DTYPES: data = np.arange(size, dtype=dtype) self._testMinMaxVsNumpy(data, False) data = np.arange(size, 0, -1, dtype=dtype) self._testMinMaxVsNumpy(data, False) def testMinMax(self): """Test C minMax and min positive vs Numpy. """ self._log("testMinMinPosMax") for size in self.SIZES: for dtype in self.DTYPES: # Increasing data data = np.arange(size, dtype=dtype) self._testMinMaxVsNumpy(data) # Decreasing data data = np.arange(size, 0, -1, dtype=dtype) self._testMinMaxVsNumpy(data) def testMinMinPosMaxSomeNegative(self): """Test C minMax and min positive vs Numpy with some negative data. """ self._log("testMinMinPosMaxAllNegative") for size in self.SIZES: for dtype in self.SIGNED_DTYPES: # Some negative data data = np.arange(-int(size/2.), size, dtype=dtype) self._testMinMaxVsNumpy(data) def testMinMinPosMaxAllNegative(self): """Test C minMax and min positive vs Numpy with all negative data. """ self._log("testMinMinPosMaxAllNegative") for size in self.SIZES: for dtype in self.SIGNED_DTYPES: # All negative data data = np.arange(-size, 0, dtype=dtype) self._testMinMaxVsNumpy(data) def testMinMaxNoData(self): """Test C minMax and min positive with no data. """ self._log("testMinMaxNoData") for dtype in self.DTYPES: # No data data = np.array((), dtype=dtype) with self.assertRaises(ValueError): ctools.minMax(data, minPositive=False) with self.assertRaises(ValueError): ctools.minMax(data, minPositive=True) def testMinMaxNan(self): """Test C minMax and min positive with NaN. """ self._log("testMinMaxNan") for dtype in self.FLOATING_DTYPES: # All NaN data = np.array((float('nan'), float('nan')), dtype=dtype) min_, minPositive, max_ = ctools.minMax(data, minPositive=True) self.assertTrue(math.isnan(min_)) self.assertEqual(minPositive, None) self.assertTrue(math.isnan(max_)) # NaN first and positive data = np.array((float('nan'), 1.0), dtype=dtype) self._testMinMaxVsNumpy(data) # NaN first and negative data = np.array((float('nan'), -1.0), dtype=dtype) self._testMinMaxVsNumpy(data) # NaN last and positive data = np.array((1.0, 2.0, float('nan')), dtype=dtype) self._testMinMaxVsNumpy(data) # NaN last and negative data = np.array((-1.0, -2.0, float('nan')), dtype=dtype) self._testMinMaxVsNumpy(data) # Some NaN data = np.array((1.0, float('nan'), -1.0), dtype=dtype) self._testMinMaxVsNumpy(data) def testMinMaxInf(self): """Test C minMax and min positive with Inf. """ self._log("testMinMaxInf") for dtype in self.FLOATING_DTYPES: # All Positive Inf data = np.array((float('inf'), float('inf')), dtype=dtype) self._testMinMaxVsNumpy(data) # All Negative Inf data = np.array((float('-inf'), float('-inf')), dtype=dtype) self._testMinMaxVsNumpy(data) # Positive and negative Inf data = np.array((float('inf'), float('-inf')), dtype=dtype) self._testMinMaxVsNumpy(data) # Positive and negative Inf and NaN first data = np.array((float('nan'), float('inf'), float('-inf')), dtype=dtype) self._testMinMaxVsNumpy(data) # Positive and negative Inf and NaN last data = np.array((float('inf'), float('-inf'), float('nan')), dtype=dtype) self._testMinMaxVsNumpy(data) # Positive and negative Inf and NaN last data = np.array((float('inf'), float('-inf'), float('nan')), dtype=dtype) self._testMinMaxVsNumpy(data) # main ######################################################################## if __name__ == '__main__': import sys unittest.main(argv=sys.argv[:]) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7637663 pymca5-5.9.4/src/PyMca5/PyMcaGui/0000755000000000000000000000000014741736404015042 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/PluginsToolButton.py0000644000000000000000000002510414741736366021100 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module defines a QToolButton opening a plugin menu when clicked: - :class:`PluginsToolButton` This button takes a plot object as constructor parameter. The plot can be a legacy *PyMca* plot widget, or a *silx* plot widget. The minor API incompatibilities between the plugins and the *silx* plot widget are solved using a proxy class (:class:`PlotProxySilx`). This button inherits :class:`PluginLoader` to load the plugins. It also acts as a plot proxy to dynamically provide the plot methods needed by the plugins. This is done in its method :meth:`PluginsToolButton.__getattr__` which looks for needed methods in :attr:`PluginsToolButton.plot`. """ # TODO: we should probably support future plugins using the new silx plot API # (e.g. expecting 5 return values from getActiveCurve() ...) import logging import os import sys import traceback import weakref from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGraph.PluginLoader import PluginLoader from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict _logger = logging.getLogger(__name__) def _toggleLogger(): """Toggle logger level for logging.DEBUG to logging.WARNING and vice-versa.""" if _logger.getEffectiveLevel() == logging.DEBUG: _logger.setLevel(logging.WARNING) else: _logger.setLevel(logging.DEBUG) class PluginsToolButton(qt.QToolButton, PluginLoader): """Toolbutton providing a context menu loaded with PyMca plugins. It behaves as a proxy for accessing the plot methods from the plugins. :param plot: reference to related plot widget :param parent: Parent QWidget widget """ def __init__(self, plot, parent=None, method="getPlugin1DInstance"): qt.QToolButton.__init__(self, parent) self.setIcon(qt.QIcon(qt.QPixmap(IconDict["plugin"]))) if method == "getPlugin1DInstance": self.setToolTip("Call/Load 1D Plugins") elif method == "getPlugin2DInstance": self.setToolTip("Call/Load 2D Plugins") # fill attr pluginList and pluginInstanceDict with existing plugins PluginLoader.__init__(self, method=method) # plugins expect a legacy API, not the silx Plot API self.plot = weakref.proxy(plot, self._ooPlotDestroyed) self._plotType = getattr(self.plot, "_plotType", None) self.clicked.connect(self._pluginClicked) def _ooPlotDestroyed(self, obj=None): self.setEnabled(False) def __getattr__(self, attr): """Plot API for plugins: forward calls for unknown methods to :attr:`plot`.""" try: return getattr(self.plot, attr) except AttributeError: # blame plot class for missing attribute, not PluginsToolButton raise AttributeError( self.plot.__class__.__name__ + " has no attribute " + attr) def _connectPlotSignals(self): for name, plugin in self.pluginInstanceDict.items(): if hasattr(plugin, "activeCurveChanged") and callable(plugin.activeCurveChanged): # Can we just assume it has the proper signature? self.plot.sigActiveCurveChanged.connect(plugin.activeCurveChanged) if hasattr(plugin, "activeImageChanged") and callable(plugin.activeImageChanged): # Can we just assume it has the proper signature? self.plot.sigActiveImageChanged.connect(plugin.activeImageChanged) def _disconnectPlotSignals(self): for name, plugin in self.pluginInstanceDict.items(): if hasattr(plugin, "activeCurveChanged") and callable(plugin.activeCurveChanged): # Can we just assume it has the proper signature? self.plot.sigActiveCurveChanged.disconnect(plugin.activeCurveChanged) if hasattr(plugin, "activeImageChanged") and callable(plugin.activeImageChanged): # Can we just assume it has the proper signature? self.plot.sigActiveImageChanged.disconnect(plugin.activeImageChanged) def getPlugins(self, method=None, directoryList=None, exceptions=False): """method overloaded to update signal connections when loading plugins""" self._disconnectPlotSignals() PluginLoader.getPlugins(self, method, directoryList, exceptions) self._connectPlotSignals() def _pluginClicked(self): actionNames = [] menu = qt.QMenu(self) menu.addAction("Reload Plugins") actionNames.append("Reload Plugins") menu.addAction("Set User Plugin Directory") actionNames.append("Set User Plugin Directory") if _logger.getEffectiveLevel() == logging.DEBUG: text = "Toggle DEBUG mode OFF" else: text = "Toggle DEBUG mode ON" menu.addAction(text) menu.addSeparator() actionNames.append(text) callableKeys = ["Dummy0", "Dummy1", "Dummy2"] pluginInstances = self.pluginInstanceDict for pluginName in self.pluginList: if pluginName in ["PyMcaPlugins.Plugin1DBase", "Plugin1DBase"]: continue module = sys.modules[pluginName] if hasattr(module, 'MENU_TEXT'): text = module.MENU_TEXT else: text = os.path.basename(module.__file__) if text.endswith('.pyc'): text = text[:-4] elif text.endswith('.py'): text = text[:-3] methods = pluginInstances[pluginName].getMethods( plottype=self._plotType) if not len(methods): continue elif len(methods) == 1: pixmap = pluginInstances[pluginName].getMethodPixmap(methods[0]) tip = pluginInstances[pluginName].getMethodToolTip(methods[0]) if pixmap is not None: action = qt.QAction(qt.QIcon(qt.QPixmap(pixmap)), text, self) else: action = qt.QAction(text, self) if tip is not None: action.setToolTip(tip) menu.addAction(action) else: menu.addAction(text) actionNames.append(text) callableKeys.append(pluginName) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = actionNames.index(a.text()) if a.text() == "Reload Plugins": n, message = self.getPlugins(exceptions=True) if n < 1: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setWindowTitle("No plugins") msg.setInformativeText(" Problem loading plugins ") msg.setDetailedText(message) msg.exec() return if a.text() == "Set User Plugin Directory": dirName = qt.QFileDialog.getExistingDirectory( self, "Enter user plugins directory", os.getcwd()) if len(dirName): pluginsDir = self.getPluginDirectoryList() pluginsDirList = [pluginsDir[0], dirName] self.setPluginDirectoryList(pluginsDirList) return if "Toggle DEBUG mode" in a.text(): _toggleLogger() return key = callableKeys[idx] methods = pluginInstances[key].getMethods( plottype=self._plotType) if len(methods) == 1: idx = 0 else: actionNames = [] # allow the plugin designer to specify the order #methods.sort() menu = qt.QMenu(self) for method in methods: text = method pixmap = pluginInstances[key].getMethodPixmap(method) tip = pluginInstances[key].getMethodToolTip(method) if pixmap is not None: action = qt.QAction(qt.QIcon(qt.QPixmap(pixmap)), text, self) else: action = qt.QAction(text, self) if tip is not None: action.setToolTip(tip) menu.addAction(action) actionNames.append((text, pixmap, tip, action)) #qt.QObject.connect(menu, qt.SIGNAL("hovered(QAction *)"), self._actionHovered) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = -1 for action in actionNames: if a.text() == action[0]: idx = actionNames.index(action) try: pluginInstances[key].applyMethod(methods[idx]) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Plugin error") msg.setText("An error has occured while executing the plugin:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _actionHovered(self, action): # from PyMca5 PlotWindow tip = action.toolTip() if str(tip) != str(action.text()): qt.QToolTip.showText(qt.QCursor.pos(), tip) else: qt.QToolTip.hideText() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/PyMcaPrintPreview.py0000644000000000000000000000311414741736366021012 0ustar00rootroot#/*########################################################################## # Copyright (C) 2018 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from .plotting.PyMcaPrintPreview import * ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/PyMcaQt.py0000644000000000000000000005071714741736366016753 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import traceback import logging """ This module simplifies writing code that has to deal with with PySideX and PyQtX. """ _logger = logging.getLogger(__name__) BINDING = None """The name of the Qt binding in use: PyQt5, PySide6, PySide2, PyQt6""" HAS_SVG = False """True if Qt provides support for Scalable Vector Graphics (QtSVG).""" HAS_OPENGL = False """True if Qt provides support for OpenGL (QtOpenGL).""" # force cx_freeze to consider sip among the modules to add # to the binary packages if 'PySide2.QtCore' in sys.modules: BINDING = 'PySide2' elif 'PySide6.QtCore' in sys.modules: BINDING = 'PySide6' elif 'PyQt5.QtCore' in sys.modules: BINDING = 'PyQt5' elif 'PyQt6.QtCore' in sys.modules: BINDING = 'PyQt6' elif 'PyQt4.QtCore' in sys.modules: BINDING = 'PyQt4' _logger = logging.critical("PyQt4 already imported and not supported") elif hasattr(sys, 'argv') and ('--binding=PySide2' in sys.argv): BINDING = 'PySide2' elif hasattr(sys, 'argv') and ('--binding=PySide6' in sys.argv): # argv might not be defined for embedded python (e.g., in Qt designer) BINDING = 'PySide6' else: BINDING = os.environ.get("QT_API", None) if BINDING is None: # Try the different bindings try: import PyQt5.QtCore BINDING = "PyQt5" except ImportError: if "PyQt5" in sys.modules: del sys.modules["PyQt5"] try: import PySide6.QtCore BINDING = "PySide6" except ImportError: if "PySide6" in sys.modules: del sys.modules["PySide6"] try: import PyQt6.QtCore BINDING = "PyQt6" except ImportError: if 'PyQt6' in sys.modules: del sys.modules["PyQt6"] try: import PySide2.QtCore # noqa BINDING = "PySide2" except ImportError: if 'PySide2' in sys.modules: del sys.modules["PySide2"] raise ImportError( 'No Qt wrapper found. Install PyQt5, PySide6 or PyQt6.') _logger.info("BINDING set to %s" % BINDING) if BINDING.lower() == "pyqt5": BINDING = "PyQt5" from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtPrintSupport import * try: from PyQt5.QtOpenGL import * HAS_OPENGL = True except Exception: _logger.info("PyQt5.QtOpenGL not available") try: from PyQt5.QtSvg import * HAS_SVG = True except Exception: _logger.info("PyQt5.QtSVG not available") Signal = pyqtSignal Slot = pyqtSlot elif BINDING.lower() == "pyside2": BINDING = "PySide2" from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * from PySide2.QtPrintSupport import * try: from PySide2.QtOpenGL import * HAS_OPENGL = True except Exception: _logger.info("PySide2.QtOpenGL not available") try: from PySide2.QtSvg import * HAS_SVG = True except Exception: _logger.info("PySide2.QtSVG not available") pyqtSignal = Signal pyqtSlot = Slot # Qt6 compatibility: # with PySide2 `exec` method has a special behavior class _ExecMixIn: """Mix-in class providind `exec` compatibility""" def exec(self, *args, **kwargs): return super().exec_(*args, **kwargs) # QtWidgets QApplication.exec = QApplication.exec_ class QColorDialog(_ExecMixIn, QColorDialog): pass class QDialog(_ExecMixIn, QDialog): pass class QErrorMessage(_ExecMixIn, QErrorMessage): pass class QFileDialog(_ExecMixIn, QFileDialog): pass class QFontDialog(_ExecMixIn, QFontDialog): pass class QInputDialog(_ExecMixIn, QInputDialog): pass class QMenu(_ExecMixIn, QMenu): pass class QMessageBox(_ExecMixIn, QMessageBox): pass class QProgressDialog(_ExecMixIn, QProgressDialog): pass #QtCore class QCoreApplication(_ExecMixIn, QCoreApplication): pass class QEventLoop(_ExecMixIn, QEventLoop): pass if hasattr(QTextStreamManipulator, "exec_"): # exec_ only wrapped in PySide2 and NOT in PyQt5 class QTextStreamManipulator(_ExecMixIn, QTextStreamManipulator): pass class QThread(_ExecMixIn, QThread): pass # workaround not finding the Qt platform plugin "windows" in "" error # when creating a QApplication if sys.platform.startswith("win")and QApplication.instance() is None: _platform_plugin_path = os.environ.get("QT_QPA_PLATFORM_PLUGIN_PATH", None) if _platform_plugin_path: if not os.path.exists(_platform_plugin_path): _logger.info("QT_QPA_PLATFORM_PLUGIN_PATH <%s> ignored" % \ _platform_plugin_path) _platform_plugin_path = None if not _platform_plugin_path: import PySide2 _platform_plugin_path = os.path.join( \ os.path.dirname(PySide2.__file__), "plugins", "platforms") os.environ["QT_QPA_PLATFORM_PLUGIN_PATH"] = \ _platform_plugin_path _logger.info("QT_QPA_PLATFORM_PLUGIN_PATH set to <%s>" % \ _platform_plugin_path) elif BINDING.lower() == 'pyside6': _logger.debug('Using PySide6 bindings') BINDING = "PySide6" import PySide6 from PySide6.QtCore import * # noqa from PySide6.QtGui import * # noqa from PySide6.QtWidgets import * # noqa from PySide6.QtPrintSupport import * # noqa try: from PySide6.QtOpenGL import * # noqa from PySide6.QtOpenGLWidgets import QOpenGLWidget # noqa except ImportError: _logger.info("PySide6.QtOpenGL not available") HAS_OPENGL = False else: HAS_OPENGL = True try: from PySide6.QtSvg import * # noqa except ImportError: _logger.info("PySide6.QtSvg not available") HAS_SVG = False else: HAS_SVG = True pyqtSignal = Signal # use a (bad) replacement for QDesktopWidget class QDesktopWidget: def height(self): _logger.info("Using obsolete QDesktopWidget class") screen = QApplication.instance().primaryScreen() return screen.availableGeometry().height() def width(self): _logger.info("Using obsolete QDesktopWidget class") screen = QApplication.instance().primaryScreen() return screen.availableGeometry().width() elif BINDING.lower() == 'pyqt6': _logger.debug('Using PyQt6 bindings') BINDING = "PyQt6" import enum from PyQt6 import QtCore if QtCore.PYQT_VERSION < int("0x60300", 16): raise RuntimeError( "PyQt6 v%s is not supported, please upgrade it." % QtCore.PYQT_VERSION_STR ) # Monkey-patch module to expose enum values for compatibility # All Qt modules loaded here should be patched. import PyQt6.sip def patch_enums(*modules): """Patch PyQt6 modules to provide backward compatibility of enum values :param modules: Modules to patch (e.g., PyQt6.QtCore). """ for module in modules: for clsName in dir(module): cls = getattr(module, clsName, None) if isinstance(cls, PyQt6.sip.wrappertype) and clsName.startswith('Q'): for qenumName in dir(cls): if qenumName[0].isupper(): qenum = getattr(cls, qenumName, None) if isinstance(qenum, enum.EnumMeta): if qenum is getattr(cls.__mro__[1], qenumName, None): continue # Only handle it once for item in qenum: # Special cases to avoid overrides and mimic PySide6 if clsName == 'QColorSpace' and qenumName in ( 'Primaries', 'TransferFunction'): break if qenumName in ('DeviceType', 'PointerType'): break setattr(cls, item.name, item) from PyQt6 import QtGui, QtWidgets, QtPrintSupport, QtOpenGL, QtSvg from PyQt6 import QtTest as _QtTest patch_enums( QtCore, QtGui, QtWidgets, QtPrintSupport, QtOpenGL, QtSvg, _QtTest) from PyQt6.QtCore import * # noqa from PyQt6.QtGui import * # noqa from PyQt6.QtWidgets import * # noqa from PyQt6.QtPrintSupport import * # noqa try: from PyQt6.QtOpenGL import * # noqa from PyQt6.QtOpenGLWidgets import QOpenGLWidget # noqa except ImportError: _logger.info("PyQt6's QtOpenGL or QtOpenGLWidgets not available") HAS_OPENGL = False else: HAS_OPENGL = True try: from PyQt6.QtSvg import * # noqa except ImportError: _logger.info("PyQt6.QtSvg not available") HAS_SVG = False else: HAS_SVG = True Signal = pyqtSignal Property = pyqtProperty Slot = pyqtSlot if not hasattr(Qt, "AlignCenter"): Qt.AlignLeft = Qt.AlignmentFlag.AlignLeft Qt.AlignRight = Qt.AlignmentFlag.AlignRight Qt.AlignHCenter = Qt.AlignmentFlag.AlignHCenter Qt.AlignJustify = Qt.AlignmentFlag.AlignJustify Qt.AlignTop = Qt.AlignmentFlag.AlignTop Qt.AlignBottom = Qt.AlignmentFlag.AlignBottom Qt.AlignVCenter = Qt.AlignmentFlag.AlignVCenter Qt.AlignBaseline = Qt.AlignmentFlag.AlignBaseline Qt.AlignCenter = Qt.AlignmentFlag.AlignCenter Qt.AlignAbsolute = Qt.AlignmentFlag.AlignAbsolute if not hasattr(Qt, "NoDockWidgetArea"): Qt.LeftDockWidgetArea = Qt.DockWidgetArea.LeftDockWidgetArea Qt.RightDockWidgetArea = Qt.DockWidgetArea.RightDockWidgetArea Qt.TopDockWidgetArea = Qt.DockWidgetArea.TopDockWidgetArea Qt.BottomDockWidgetArea = Qt.DockWidgetArea.BottomDockWidgetArea Qt.AllDockWidgetAreas = Qt.DockWidgetArea.AllDockWidgetAreas Qt.NoDockWidgetArea = Qt.DockWidgetArea.NoDockWidgetArea if not hasattr(Qt, "Widget"): Qt.Widget = Qt.WindowType.Widget Qt.Window = Qt.WindowType.Window Qt.Dialog = Qt.WindowType.Dialog Qt.Drawer = Qt.WindowType.Drawer Qt.Popup = Qt.WindowType.Popup Qt.Tool = Qt.WindowType.Tool Qt.ToolTip = Qt.WindowType.ToolTip Qt.SplashScreen = Qt.WindowType.SplashScreen Qt.Subwindow = Qt.WindowType.SubWindow Qt.ForeignWindow = Qt.WindowType.ForeignWindow Qt.CoverWindow = Qt.WindowType.CoverWindow if not hasattr(Qt, "StrongFocus"): Qt.TabFocus = Qt.FocusPolicy.TabFocus Qt.ClickFocus = Qt.FocusPolicy.ClickFocus Qt.StrongFocus = Qt.FocusPolicy.StrongFocus Qt.WheelFocus = Qt.FocusPolicy.WheelFocus Qt.NoFocus = Qt.FocusPolicy.NoFocus if not hasattr(QAbstractItemView, "NoEditTriggers"): QAbstractItemView.NoEditTriggers = QAbstractItemView.EditTrigger.NoEditTriggers QAbstractItemView.CurrentChanged = QAbstractItemView.EditTrigger.CurrentChanged QAbstractItemView.DoubleClicked = QAbstractItemView.EditTrigger.DoubleClicked QAbstractItemView.SelectedClicked = QAbstractItemView.EditTrigger.SelectedClicked QAbstractItemView.AnyKeyPressed = QAbstractItemView.EditTrigger.AnyKeyPressed QAbstractItemView.AllEditTriggers = QAbstractItemView.EditTrigger.AllEditTriggers if not hasattr(QPalette, "Normal"): if hasattr(QPalette, "Active"): QPalette.Normal = QPalette.Active else: QPalette.Disabled = QPalette.ColorGroup.Disabled QPalette.Active = QPalette.ColorGroup.Active QPalette.Inactive = QPalette.ColorGroup.Inactive QPalette.Normal = QPalette.ColorGroup.Normal QPalette.Window = QPalette.ColorRole.Window QPalette.WindowText = QPalette.ColorRole.WindowText QPalette.Base = QPalette.ColorRole.Base QPalette.AlternateBase = QPalette.ColorRole.AlternateBase QPalette.ToolTipBase = QPalette.ColorRole.ToolTipBase QPalette.ToolTipText = QPalette.ColorRole.ToolTipText QPalette.PlaceholderText = QPalette.ColorRole.PlaceholderText QPalette.Text = QPalette.ColorRole.Text QPalette.Button = QPalette.ColorRole.Button QPalette.ButtonText = QPalette.ColorRole.ButtonText QPalette.BrightText = QPalette.ColorRole.BrightText try: from silx.gui import qt as SilxQt if not hasattr(SilxQt.QPalette, "Normal"): if hasattr(SilxQt.QPalette, "Active"): SilxQt.QPalette.Normal = SilxQt.QPalette.Active else: SilxQt.QPalette.Disabled = SilxQt.QPalette.ColorGroup.Disabled SilxQt.QPalette.Active = SilxQt.QPalette.ColorGroup.Active SilxQt.QPalette.Inactive = SilxQt.QPalette.ColorGroup.Inactive SilxQt.QPalette.Normal = SilxQt.QPalette.ColorGroup.Normal SilxQt.QPalette.Window = SilxQt.QPalette.ColorRole.Window SilxQt.QPalette.WindowText = SilxQt.QPalette.ColorRole.WindowText SilxQt.QPalette.Base = SilxQt.QPalette.ColorRole.Base SilxQt.QPalette.AlternateBase = SilxQt.QPalette.ColorRole.AlternateBase SilxQt.QPalette.ToolTipBase = SilxQt.QPalette.ColorRole.ToolTipBase SilxQt.QPalette.ToolTipText = SilxQt.QPalette.ColorRole.ToolTipText SilxQt.QPalette.PlaceholderText = SilxQt.QPalette.ColorRole.PlaceholderText SilxQt.QPalette.Text = SilxQt.QPalette.ColorRole.Text SilxQt.QPalette.Button = SilxQt.QPalette.ColorRole.Button SilxQt.QPalette.ButtonText = SilxQt.QPalette.ColorRole.ButtonText SilxQt.QPalette.BrightText = SilxQt.QPalette.ColorRole.BrightText except Exception: _logger.info("Exception patching silx") pass # use a (bad) replacement for QDesktopWidget class QDesktopWidget: def height(self): _logger.info("Using obsolete QDesktopWidget class") screen = QApplication.instance().primaryScreen() return screen.availableGeometry().height() def width(self): _logger.info("Using obsolete QDesktopWidget class") screen = QApplication.instance().primaryScreen() return screen.availableGeometry().width() # Disable PyQt6 cooperative multi-inheritance since other bindings do not provide it. # See https://www.riverbankcomputing.com/static/Docs/PyQt6/multiinheritance.html?highlight=inheritance class _Foo(object): pass class QObject(QObject, _Foo): pass else: raise ImportError('No Qt wrapper found. Install one of PyQt5, PySide6, PyQt6') _logger.info("PyMcaQt.BINDING set to %s" % BINDING) # provide a exception handler but not implement it by default def exceptionHandler(type_, value, trace): _logger.error("%s %s %s", type_, value, ''.join(traceback.format_tb(trace))) if QApplication.instance(): msg = QMessageBox() msg.setWindowTitle("Unhandled exception") msg.setIcon(QMessageBox.Critical) msg.setInformativeText("%s %s\nPlease report details" % (type_, value)) msg.setDetailedText(("%s " % value) + \ ''.join(traceback.format_tb(trace))) msg.raise_() msg.exec() # Overwrite the QFileDialog to make sure that by default it # returns non-native dialogs as it was the traditional behavior of Qt _QFileDialog = QFileDialog class QFileDialog(_QFileDialog): def __init__(self, *args, **kwargs): try: _QFileDialog.__init__(self, *args, **kwargs) except Exception: # not all versions support kwargs _QFileDialog.__init__(self, *args) try: self.setOptions(_QFileDialog.DontUseNativeDialog) except Exception: print("WARNING: Cannot force default QFileDialog behavior") class HorizontalSpacer(QWidget): def __init__(self, *args): QWidget.__init__(self, *args) self.setSizePolicy(QSizePolicy(QSizePolicy.Expanding, QSizePolicy.Fixed)) class VerticalSpacer(QWidget): def __init__(self, *args): QWidget.__init__(self, *args) self.setSizePolicy(QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Expanding)) _QToolButton = QToolButton class QToolButton(_QToolButton): def __init__(self, *var, **kw): _QToolButton.__init__(self, *var, **kw) if "silx" in sys.modules: try: # this should be set via a user accessible parameter tb = QToolBar() size = tb.iconSize() if (size.width() > 15) and (size.height() > 15): self.setIconSize(size) except Exception: print("unable to setIconSize") pass if sys.version_info < (3,): import types # perhaps a better name would be safe unicode? # should this method be a more generic tool to # be found outside PyMcaQt? def safe_str(potentialQString): if type(potentialQString) == types.StringType or\ type(potentialQString) == types.UnicodeType: return potentialQString try: # default, just str x = str(potentialQString) except UnicodeEncodeError: # try user OS file system encoding # expected to be 'mbcs' under windows # and 'utf-8' under MacOS X try: x = unicode(potentialQString, sys.getfilesystemencoding()) return x except Exception: # on any error just keep going pass # reasonable tries are 'utf-8' and 'latin-1' # should I really go beyond those? # In fact, 'utf-8' is the default file encoding for python 3 encodingOptions = ['utf-8', 'latin-1', 'utf-16', 'utf-32'] for encodingOption in encodingOptions: try: x = unicode(potentialQString, encodingOption) break except UnicodeDecodeError: if encodingOption == encodingOptions[-1]: raise return x else: safe_str = str if BINDING.lower()=="pyside2": _logger = logging.warning("PyMca PySide2 support deprecated and not reliable") class CLocaleQDoubleValidator(QDoubleValidator): """ A QDoubleValidator using C locale """ def __init__(self, *var): QDoubleValidator.__init__(self, *var) self._localeHolder = QLocale("C") self.setLocale(self._localeHolder) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/__init__.py0000644000000000000000000000473514741736366017173 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2018 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import glob def getPackages(directory): packages = [] fileList = glob.glob(os.path.join(directory, "*", "__init__.py")) for fileName in fileList: dirName = os.path.dirname(fileName) packages.append(dirName) packages += getPackages(dirName) return packages from .plotting import PyMca_Icons from .plotting.PyMca_Icons import IconDict ## legacy (not used within PyMca) #import silx.gui.widgets.PrintPreview as PyMcaPrintPreview #PyMcaPrintPreview.PyMcaPrintPreview = PyMcaPrintPreview.SingletonPrintPreviewDialog # this is the package level directory PyMcaGui baseDirectory = os.path.dirname(__file__) __path__ += [baseDirectory] for directory in ["io", "math", "misc", "physics", "plotting", "pymca"]: tmpDir = os.path.join(baseDirectory, directory) if os.path.exists(os.path.join(tmpDir, "__init__.py")): __path__ += [tmpDir] __path__ += getPackages(tmpDir) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7677662 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/0000755000000000000000000000000014741736404015451 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/ConfigurationFileDialogs.py0000644000000000000000000001255614741736366022755 0ustar00rootroot#/*########################################################################## # Copyright (C) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """This module provides tools to read configurations from ini files and from their representation in an HDF5 file""" import sys if sys.version_info < (3,): from StringIO import StringIO else: from io import StringIO from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs try: from h5py import is_hdf5 from PyMca5.PyMcaGui.io.hdf5.HDF5Widget import getDatasetUri HAS_H5PY = True except ImportError: HAS_H5PY = False _HDF5_EXTENSIONS = [".h5", ".hdf5", ".hdf", ".nxs", ".nx"] def getFitConfigurationFilePath(parent=None, filetypelist=None, message=None, currentdir=None, mode="OPEN", getfilter=None, single=True, currentfilter=None, native=None): """ Returns a list of fit configuration files or URIs of the form filename::dataset if an HDF5 dataset is selected. """ if filetypelist is None: filetypelist = ["Fit configuration files (*.cfg)"] if HAS_H5PY: filetypelist.append( "Fit results file (*%s)" % " *".join(_HDF5_EXTENSIONS)) filetypelist.append("All files (*)") if message is None: message = "Choose fit configuration file" return getConfigurationFilePath(parent=parent, filetypelist=filetypelist, message=message, currentdir=currentdir, mode=mode, getfilter=getfilter, single=single, currentfilter=currentfilter, native=native) def getConfigurationFilePath(parent=None, filetypelist=None, message=None, currentdir=None, mode="OPEN", getfilter=None, single=True, currentfilter=None, native=None): if filetypelist is None: filetypelist = ["Configuration from .ini files (*.ini)"] if HAS_H5PY: filetypelist.append( "Configuration from HDF5 file (*%s)" % " *".join(_HDF5_EXTENSIONS)) filetypelist.append("All files (*)") if message is None: message = "Choose configuration file" fileList = PyMcaFileDialogs.getFileList(parent=parent, filetypelist=filetypelist, message=message, currentdir=currentdir, mode="OPEN", # input ignored getfilter=getfilter, single=single, currentfilter=currentfilter, native=native) if getfilter: fileList, usedfilter = fileList if HAS_H5PY: newList = [] for filename in fileList: if is_hdf5(filename): # we have to select a dataset msg = 'Select the configuration dataset by a double click' uri = getDatasetUri(parent=parent, filename=filename, message=msg) if uri: newList.append(uri) else: newList.append(filename) fileList = newList if getfilter: return fileList, usedfilter else: return fileList def getFitConfigurationDict(*var, **kw): selection = getFitConfigurationFilePath(*var, **kw) if selection: return ConfigDict.getDictFromPathOrUri(selection) def getConfigurationDict(*var, **kw): selection = getConfigurationFilePath(*var, **kw) if selection: return ConfigDict.getDictFromPathOrUri(selection) if __name__ == "__main__": app = qt.QApplication([]) if len(sys.argv) > 1: config = ConfigDict.ConfigDict(filelist=sys.argv[1]) else: config = getFitConfigurationDict() ConfigDict.prtdict(config) app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/PyMcaFileDialogs.py0000644000000000000000000003230114741736366021145 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5 import PyMcaDirs QTVERSION = qt.qVersion() def getExistingDirectory(parent=None, message=None, mode=None, currentdir=None): if message is None: message = "Please select a directory" if mode is None: mode = "OPEN" else: mode = mode.upper() if currentdir is None: if mode == "OPEN": wdir = PyMcaDirs.inputDir else: wdir = PyMcaDirs.outputDir else: wdir = currentdir if PyMcaDirs.nativeFileDialogs: outdir = qt.safe_str(qt.QFileDialog.getExistingDirectory(parent, message, wdir)) else: outfile = qt.QFileDialog(parent) outfile.setWindowTitle("Output Directory Selection") outfile.setModal(1) outfile.setDirectory(wdir) if hasattr(outfile, "Directory"): outfile.setFileMode(outfile.Directory) if hasattr(outfile, "ShowDirsOnly"): outfile.setOption(outfile.ShowDirsOnly) elif hasattr(outfile, "DirectoryOnly"): outfile.setFileMode(outfile.DirectoryOnly) else: outfile.setFileMode(qt.QFileDialog.FileMode.Directory) ret = outfile.exec() if ret: outdir = qt.safe_str(outfile.selectedFiles()[0]) else: outdir = "" outfile.close() del outfile if len(outdir): if mode == "OPEN": PyMcaDirs.inputDir = os.path.dirname(outdir) if PyMcaDirs.outputDir is None: PyMcaDirs.outputDir = os.path.dirname(outdir) else: PyMcaDirs.outputDir = os.path.dirname(outdir) if PyMcaDirs.inputDir is None: PyMcaDirs.inputDir = os.path.dirname(outdir) return outdir def getFileList(parent=None, filetypelist=None, message=None, currentdir=None, mode=None, getfilter=None, single=False, currentfilter=None, native=None): if filetypelist is None: fileTypeList = ['All Files (*)'] else: fileTypeList = filetypelist if message is None: if single: message = "Please select one file" else: message = "Please select one or more files" if mode is None: mode = "OPEN" else: mode = mode.upper() if currentdir is None: if mode == "OPEN": wdir = PyMcaDirs.inputDir else: wdir = PyMcaDirs.outputDir else: wdir = currentdir if currentfilter is None: if mode == "OPEN": currentfilter = PyMcaDirs.openFilter else: currentfilter = PyMcaDirs.saveFilter # it can still be None if currentfilter is None: currentfilter = fileTypeList[0] if currentfilter not in fileTypeList: currentfilter = fileTypeList[0] if native is None: nativeFileDialogs = PyMcaDirs.nativeFileDialogs else: nativeFileDialogs = native if getfilter is None: getfilter = False if getfilter: if QTVERSION < '4.5.1': native_possible = False else: native_possible = True else: native_possible = True filterused = None if native_possible and nativeFileDialogs: filetypes = currentfilter for filetype in fileTypeList: if filetype != currentfilter: filetypes += ";;" + filetype if getfilter: if mode == "OPEN": if single and hasattr(qt.QFileDialog, "getOpenFileNameAndFilter"): filelist, filterused = qt.QFileDialog.getOpenFileNameAndFilter(parent, message, wdir, filetypes, currentfilter) filelist =[filelist] elif single: # PyQt5 filelist, filterused = qt.QFileDialog.getOpenFileName(parent, message, wdir, filetypes, currentfilter) filelist =[filelist] elif hasattr(qt.QFileDialog, "getOpenFileNamesAndFilter"): filelist, filterused = qt.QFileDialog.getOpenFileNamesAndFilter(parent, message, wdir, filetypes, currentfilter) else: # PyQt5 filelist, filterused = qt.QFileDialog.getOpenFileNames(parent, message, wdir, filetypes, currentfilter) filterused = qt.safe_str(filterused) else: if QTVERSION < '5.0.0': filelist = qt.QFileDialog.getSaveFileNameAndFilter(parent, message, wdir, filetypes) else: filelist = qt.QFileDialog.getSaveFileName(parent, message, wdir, filetypes) if len(filelist[0]): filterused = qt.safe_str(filelist[1]) filelist=[filelist[0]] else: filelist = [] else: if mode == "OPEN": if single: if QTVERSION < '5.0.0': filelist = [qt.QFileDialog.getOpenFileName(parent, message, wdir, filetypes)] else: filelist, filterused = qt.QFileDialog.getOpenFileName(parent, message, wdir, filetypes) filelist = [filelist] else: filelist = qt.QFileDialog.getOpenFileNames(parent, message, wdir, filetypes) else: if QTVERSION < '5.0.0': filelist = qt.QFileDialog.getSaveFileName(parent, message, wdir, filetypes) else: filelist, filterused = qt.QFileDialog.getSaveFileName(parent, message, wdir, filetypes) filelist = qt.safe_str(filelist) if len(filelist): filelist = [filelist] else: filelist = [] if not len(filelist): if getfilter: return [], filterused else: return [] elif filterused is None: sample = qt.safe_str(filelist[0]) for filetype in fileTypeList: ftype = filetype.replace("(", "") ftype = ftype.replace(")", "") extensions = ftype.split()[2:] for extension in extensions: if sample.endswith(extension[-3:]): filterused = filetype break else: fdialog = qt.QFileDialog(parent) fdialog.setModal(True) fdialog.setWindowTitle(message) if hasattr(qt, "QStringList"): strlist = qt.QStringList() else: strlist = [] strlist.append(currentfilter) for filetype in fileTypeList: if filetype != currentfilter: strlist.append(filetype) if hasattr(fdialog, "setFilters"): fdialog.setFilters(strlist) else: fdialog.setNameFilters(strlist) if mode == "OPEN": fdialog.setFileMode(qt.QFileDialog.FileMode.ExistingFiles) else: fdialog.setAcceptMode(qt.QFileDialog.AcceptMode.AcceptSave) fdialog.setFileMode(qt.QFileDialog.FileMode.AnyFile) fdialog.setDirectory(wdir) if QTVERSION > '4.3.0': history = fdialog.history() if len(history) > 6: fdialog.setHistory(history[-6:]) ret = fdialog.exec() if ret != qt.QDialog.Accepted: fdialog.close() del fdialog if getfilter: return [], filterused else: return [] else: filelist = fdialog.selectedFiles() if single: filelist = [filelist[0]] if QTVERSION < "5.0.0": filterused = qt.safe_str(fdialog.selectedFilter()) else: filterused = qt.safe_str(fdialog.selectedNameFilter()) if mode != "OPEN": if "." in filterused: extension = filterused.replace(")", "") if "(" in extension: extension = extension.split("(")[-1] extensionList = extension.split() txt = qt.safe_str(filelist[0]) for extension in extensionList: extension = extension.split(".")[-1] if extension != "*": txt = qt.safe_str(filelist[0]) if txt.endswith(extension): break else: txt = txt+"."+extension filelist[0] = txt fdialog.close() del fdialog filelist = [qt.safe_str(x) for x in filelist] if filelist: if mode == "OPEN": PyMcaDirs.inputDir = os.path.dirname(filelist[0]) if PyMcaDirs.outputDir is None: PyMcaDirs.outputDir = os.path.dirname(filelist[0]) else: PyMcaDirs.outputDir = os.path.dirname(filelist[0]) if PyMcaDirs.inputDir is None: PyMcaDirs.inputDir = os.path.dirname(filelist[0]) #do not sort file list in order to allow the user other choices #filelist.sort() if getfilter: if mode == "OPEN": PyMcaDirs.openFilter = filterused if PyMcaDirs.saveFilter is None: PyMcaDirs.saveFilter = filterused else: PyMcaDirs.saveFilter = filterused if PyMcaDirs.openFilter is None: PyMcaDirs.openFilter = filterused return filelist, filterused else: return filelist if __name__ == "__main__": app = qt.QApplication([]) fileTypeList = ['PNG Files (*.png *.jpg)', 'TIFF Files (*.tif *.tiff)'] print(getExistingDirectory()) PyMcaDirs.nativeFileDialogs = False print(getExistingDirectory()) PyMcaDirs.nativeFileDialogs = True print(getFileList(parent=None, filetypelist=fileTypeList, message="Please select a file", mode="SAVE", getfilter=True, single=True)) PyMcaDirs.nativeFileDialogs = False print(getFileList(parent=None, filetypelist=fileTypeList, message="Please select input files", mode="OPEN", getfilter=True, currentfilter='TIFF Files (*.tif *.tiff)', single=False)) print("Last INPUT directory <%s>" % PyMcaDirs.inputDir) print("Last OPEN filter <%s>" % PyMcaDirs.openFilter) print("Last OUTPUT directory <%s>" % PyMcaDirs.outputDir) print("Last SAVE filter <%s>" % PyMcaDirs.saveFilter) #app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/QEdfFileWidget.py0000644000000000000000000021737314741736366020632 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon, V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os.path import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting import PlotWidget if not hasattr(qt, 'QString'): QString = qt.safe_str QStringList = list else: QString = qt.QString QStringList = qt.QStringList QTVERSION = qt.qVersion() QT4=True from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave MATPLOTLIB = True from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.plotting import ColormapDialog from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview from PyMca5.PyMcaIO import ArraySave from PyMca5 import PyMcaDirs from . import SpecFileDataInfo from PyMca5 import spslut _logger = logging.getLogger(__name__) COLORMAPLIST = [spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP, spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY] DEBUG = 0 SOURCE_TYPE = 'EdfFile' __revision__ = "$Revision: 1.35 $" def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True): if xScale is None: c = x else: c = (x - xScale[0]) / xScale[1] if yScale is None: r = y else: r = ( y - yScale[0]) / yScale[1] if safe: c = min(int(c), shape[1] - 1) c = max(c, 0) r = min(int(r), shape[0] - 1) r = max(r, 0) else: c = int(c) r = int(r) return r, c class EdfFile_StandardArray(qt.QWidget): sigWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="Edf_StandardArray", images=None, rows=None, cols=None): if images is None: images = 1 if rows is None: rows = 0 if cols is None: cols = 0 qt.QWidget.__init__(self, parent) layout = qt.QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) ilab= qt.QLabel("Image:", self) self.plab= qt.QLabel("Plot", self) self.ylab= qt.QLabel("Columns :", self) layout.addWidget(ilab, 0, 0, qt.Qt.AlignRight) layout.addWidget(self.plab, 1, 0, qt.Qt.AlignRight) layout.addWidget(self.ylab, 2, 0, qt.Qt.AlignRight|qt.Qt.AlignTop) self.iCombo= qt.QComboBox(self) self.iCombo.setEditable(0) self.plotCombo= qt.QComboBox(self) self.plotCombo.setEditable(0) self.plotCombo.insertItems(0, ["Rows", "Columns"]) self.yList= qt.QListWidget(self) #self.yList.setSelectionMode(qt.QListBox.Multi) layout.addWidget(self.iCombo, 0, 1) layout.addWidget(self.plotCombo,1, 1) layout.addWidget(self.yList, 2, 1) self.plotCombo.activated[int].connect(self.__plotChanged) self.iCombo.activated[int].connect(self.__iChanged) self.setImages(images) self.setDataSize(rows, cols) def setImages(self,images,info=None): self.iCombo.clear() if info is None: info = [] for i in range(images): if len(info) == images: self.iCombo.insertItem(i, "Image %d Key %s" % (i,info[i])) else: self.iCombo.insertItem(i, "Image %d" % i) def setCurrentImage(self,image): if image < self.iCombo.count(): self.iCombo.setCurrentIndex(image) def setDataSize(self, rows, cols): self.rows= rows self.cols= cols idx = self.cols <= self.rows self.plotCombo.setCurrentIndex(idx) self.__plotChanged(idx) def __plotChanged(self, index): if index==1: self.ylab.setText('Columns') txt= "Column" val= self.cols else: self.ylab.setText('Rows') txt= "Row" val= self.rows self.yList.clear() for x in range(val): self.yList.addItem("%s %d"%(txt,x)) ddict={} ddict['event'] = "plotChanged" ddict['plot'] = txt+"s" self.sigWidgetSignal.emit((ddict)) def __iChanged(self, index): ddict={} ddict['event'] = "imageChanged" ddict['index'] = index self.sigWidgetSignal.emit((ddict)) def getSelection(self): selection= [] idx = self.plotCombo.currentIndex() if idx==1: plot= "cols" else: plot= "rows" idx = self.iCombo.currentIndex() if idx==0: image= None else: image= idx-1 if hasattr(self.yList, "isItemSelected"): ylist= [ idx for idx in range(self.yList.count()) \ if self.yList.isItemSelected(self.yList.item(idx))] else: selectedItems = self.yList.selectedItems() ylist = [self.yList.row(item) for item in selectedItems] for y in ylist: selection.append({"plot":plot, "image": image,"x":None, "y":y}) return selection def markImageSelected(self,imagelist=[]): current = self.iCombo.currentIndex() images = self.iCombo.count() #self.iCombo.clear() msg = " (selected)" for i in range(images): index = "%d" % i text = qt.safe_str(self.iCombo.itemText(i)).split(msg)[0] key = text.split()[-1] if key in imagelist: self.iCombo.setItemText(i, "%s%s" % (text,msg)) else: self.iCombo.setItemText(i, "%s" % (text)) self.iCombo.setCurrentIndex(current) def markRowSelected(self, rowlist=[]): if not qt.safe_str(self.plotCombo.currentText()) == "Rows": return current = self.yList.currentItem() n = self.yList.count() self.yList.clear() for index in range(n): if index in rowlist: self.yList.addItem(" Row %d (selected)" % index) else: self.yList.addItem(" Row %d" % index) def markColSelected(self, collist=[]): if not qt.safe_str(self.plotCombo.currentText()) == "Columns": return current = self.yList.currentItem() n = self.yList.count() self.yList.clear() for index in range(n): if index in collist: self.yList.addItem(" Column %d (selected)" % index) else: self.yList.addItem(" Column %d" % index) self.yList.setCurrentItem(current) class QEdfFileWidget(qt.QWidget): sigAddSelection = qt.pyqtSignal(object) sigRemoveSelection = qt.pyqtSignal(object) sigReplaceSelection = qt.pyqtSignal(object) def __init__(self, parent=None, justviewer=False): qt.QWidget.__init__(self, parent) self.justViewer = justviewer self.dataSource= None self.oldsource = "" self.oldcurrentArray = None self.data= None self.currentFile= None self.currentArray= 0 self._matplotlibSaveImage = None self.selection= None self.__plotting = "Columns" self._edfstack = None self.lastInputDir = None self.colormapDialog = None self.colormap = None self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) #self.selectPixmap= qt.QPixmap(icons.selected) #self.unselectPixamp= qt.QPixmap(icons.unselected) self.mapComboName= {} self.mainLayout= qt.QVBoxLayout(self) self.toolBar = None self._buildToolBar() # --- splitter self.splitter = qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Vertical) # --- graph self.graph = PlotWidget.PlotWidget(self.splitter, backend=None) self.graph.setGraphTitle('') self.graph.setGraphXLabel('Columns') self.graph.setGraphYLabel('Rows') self.graph.sigPlotSignal.connect(self.widgetSignal) self._x1Limit = self.graph.getGraphXLimits()[-1] self._y1Limit = self.graph.getGraphYLimits()[-1] #self.graph.hide() # --- array parameter self.__dummyW = qt.QWidget(self.splitter) self.__dummyW.layout =qt.QVBoxLayout(self.__dummyW) self.__dummyW.layout.setContentsMargins(0, 0, 0, 0) self.__dummyW.layout.setSpacing(0) if not justviewer: self.applygroupContainer = qt.QWidget(self.__dummyW) self.applytoone = qt.QCheckBox(self.applygroupContainer) self.applytoone.setText("Apply to seen image") self.applytoone.setChecked(1) self.applytoall = qt.QCheckBox(self.applygroupContainer) self.applytoall.setText("Apply to all images in list") self.applygroup = qt.QButtonGroup() self.applygroup.addButton(self.applytoone, 0) self.applygroup.addButton(self.applytoall, 1) self.applygroup.setExclusive(True) self.applygroupLayout = qt.QHBoxLayout(self.applygroupContainer) self.applygroupLayout.setContentsMargins(0, 0, 0, 0) self.applygroupLayout.setSpacing(0) self.applygroupLayout.addWidget(self.applytoone) self.applygroupLayout.addWidget(self.applytoall) self.__dummyW.layout.addWidget(self.applygroupContainer) if hasattr(self.applygroup, "idClicked"): self.applygroup.idClicked[int].connect(self.groupSignal) else: # deprecated _logger.debug("Using deprecated signal") self.applygroup.buttonClicked[int].connect(self.groupSignal) self.dataInfoWidgetDict = {} self.paramWidget = EdfFile_StandardArray(self.__dummyW) self.__dummyW.layout.addWidget(self.paramWidget) self.paramWidget.sigWidgetSignal.connect(self.widgetSignal) if justviewer: self.paramWidget.plab.hide() self.paramWidget.plotCombo.hide() self.paramWidget.ylab.hide() self.paramWidget.yList.hide() self.allImages = 0 # --- main layout self.mainLayout.setContentsMargins(5, 5, 5, 5) self.mainLayout.setSpacing(2) #self.mainLayout.addWidget(self.infoBar) self.mainLayout.addWidget(self.splitter) if not justviewer: self._buildActions() def _buildToolBar(self): self.hFlipIcon = qt.QIcon(qt.QPixmap(IconDict["gioconda16mirror"])) self.solidCircleIcon = qt.QIcon(qt.QPixmap(IconDict["solidcircle"])) self.solidEllipseIcon = qt.QIcon(qt.QPixmap(IconDict["solidellipse"])) self.colormapIcon = qt.QIcon(qt.QPixmap(IconDict["colormap"])) self.zoomResetIcon = qt.QIcon(qt.QPixmap(IconDict["zoomreset"])) self.printIcon = qt.QIcon(qt.QPixmap(IconDict["fileprint"])) self.copyIcon = qt.QIcon(qt.QPixmap(IconDict["clipboard"])) self.saveIcon = qt.QIcon(qt.QPixmap(IconDict["filesave"])) try: self.infoIcon = qt.QApplication.style().\ standardIcon(qt.QStyle.SP_MessageBoxInformation) except Exception: self.infoIcon = None self.toolBar = qt.QWidget(self) self.toolBarLayout = qt.QHBoxLayout(self.toolBar) self.toolBarLayout.setSpacing(0) self.toolBarLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.addWidget(self.toolBar) # Autoscale self._addToolButton(self.zoomResetIcon, self._zoomReset, 'Auto-Scale the Graph') self.aspectButton = self._addToolButton(self.solidCircleIcon, self._aspectButtonSignal, 'Keep data aspect ratio', toggle = False) self.aspectButton.setChecked(False) self._keepDataAspectRatioFlag = False # colormap self._addToolButton(self.colormapIcon, self.selectColormap, 'Color-Scale the Graph') tb = self._addToolButton(self.hFlipIcon, self._hFlipIconSignal, 'Flip Horizontal') self.hFlipToolButton = tb # info if self.infoIcon is not None: self._addToolButton(self.infoIcon, self._showInformation, 'Show source information') # clipboard self.copyToolButton = self._addToolButton(self.copyIcon, self._copyIconSignal, "Copy graph to clipboard") # save if MATPLOTLIB: tb = self._addToolButton(self.saveIcon, self.__saveIconSignal, 'Export Graph') self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Standard"), self._saveIconSignal) self._saveMenu.addAction(QString("Matplotlib") , self._saveMatplotlibImage) else: tb = self._addToolButton(self.saveIcon, self._saveIconSignal, 'Export Graph') # info self.infoText = qt.QLabel(self.toolBar) self.infoText.setText(" X = ???? Y = ???? Z = ????") self.toolBarLayout.addWidget(self.infoText) self.toolBarLayout.addWidget(qt.HorizontalSpacer(self.toolBar)) # ---print tb = self._addToolButton(self.printIcon, self.printGraph, 'Print the Graph') def _hFlipIconSignal(self): _logger.debug("_hFlipIconSignal called") if self.graph.isYAxisInverted(): self.graph.invertYAxis(False) else: self.graph.invertYAxis(True) self.graph.replot() def _aspectButtonSignal(self): _logger.debug("_aspectButtonSignal") if self._keepDataAspectRatioFlag: self.keepDataAspectRatio(False) else: self.keepDataAspectRatio(True) def keepDataAspectRatio(self, flag=True): if flag: self.aspectButton.setIcon(self.solidEllipseIcon) self.aspectButton.setToolTip("Set free data aspect ratio") self._keepDataAspectRatioFlag = True else: self._keepDataAspectRatioFlag = False self.aspectButton.setIcon(self.solidCircleIcon) self.aspectButton.setToolTip("Keep data aspect ratio") self.graph.keepDataAspectRatio(self._keepDataAspectRatioFlag) def _addToolButton(self, icon, action, tip, toggle=None): tb = qt.QToolButton(self.toolBar) tb.setIcon(icon) tb.setToolTip(tip) if toggle is not None: if toggle: tb.setCheckable(1) self.toolBarLayout.addWidget(tb) tb.clicked.connect(action) return tb def _showInformation(self): if (self.data is None) or \ (self.currentArray is None): qt.QMessageBox.information(self, "No data",\ "No information to be shown") return #this could be cached because implies a new reading infoSource= self.data.getSourceInfo() info = self.data.getKeyInfo(infoSource['KeyList']\ [self.currentArray]) infoWidget = SpecFileDataInfo.SpecFileDataInfo(info, parent=None) infoWidget.show() infoWidget.notifyCloseEventToWidget(self) self.dataInfoWidgetDict[id(infoWidget)] = infoWidget def _dataInfoClosed(self, ddict): if ddict['event'] == "SpecFileDataInfoClosed": key = ddict['id'] if key in self.dataInfoWidgetDict: del self.dataInfoWidgetDict[key] def customEvent(self, event): if hasattr(event, 'dict'): ddict = event.dict self._dataInfoClosed(ddict) def _zoomReset(self): _logger.debug("_zoomReset") self.graph.resetZoom() def _saveMatplotlibImage(self): if self._matplotlibSaveImage is None: if (self.currentArray is None) or \ (self.data is None): self._matplotlibSaveImage = QPyMcaMatplotlibSave.SaveImageSetup(None, None) else: self._matplotlibSaveImage = QPyMcaMatplotlibSave.SaveImageSetup(None, self.lastData) else: self._matplotlibSaveImage.setImageData(self.lastData) self._matplotlibSaveImage.show() self._matplotlibSaveImage.raise_() def _copyIconSignal(self): self.graph.copyToClipboard() def __saveIconSignal(self): self._saveMenu.exec(self.cursor().pos()) def _saveIconSignal(self): self.lastInputDir = PyMcaDirs.outputDir fileTypeList = ["Data *.dat", "ImageData *.tif", "Image *.png", "Image *.jpg", "ZoomedImage *.png", "ZoomedImage *.jpg", "Widget *.png", "Widget *.jpg"] outfile, filterused = PyMcaFileDialogs.getFileList(parent=self, filetypelist=fileTypeList, message="Output File Selection", currentdir=self.lastInputDir, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(outfile): return filterused = filterused.split() filetype = filterused[0] extension = filterused[1] outputFile = outfile[0] outputDir = os.path.dirname(outputFile) self.lastInputDir = outputDir #always overwrite for the time being if len(outputFile) < len(extension[1:]): outputFile += extension[1:] elif outputFile[-4:] != extension[1:]: outputFile += extension[1:] outputFile = os.path.join(outputDir, outputFile) if os.path.exists(outputFile): try: os.remove(outputFile) except Exception: qt.QMessageBox.critical(self, "Save Error", "Cannot overwrite existing file") return tiff = False if filetype.upper() == "IMAGEDATA": tiff = True if (filetype.upper() == "DATA") or tiff: if (self.data is None) or \ (self.currentArray is None): qt.QMessageBox.information(self, "No data",\ "No data to be saved") return i = 0 for sname in self.data.sourceName: if i == 0: selfdatasourceName = sname i = 1 else: selfdatasourceName += "|"+sname key = self.data.getSourceInfo()['KeyList'][self.currentArray] label = selfdatasourceName +"_"+"Key"+"_"+key try: if tiff: ArraySave.save2DArrayListAsMonochromaticTiff([self.lastData], outputFile, labels = [label], dtype=None) else: ArraySave.save2DArrayListAsASCII([self.lastData], outputFile, labels = [label]) except Exception: qt.QMessageBox.critical(self, "Save Error", "%s" % \ sys.exc_info()[1]) return elif filetype.upper() == "IMAGE": self.saveGraphImage(outputFile, original=True) elif filetype.upper() == "ZOOMEDIMAGE": self.saveGraphImage(outputFile,original=False) else: self.saveGraphWidget(outputFile) def saveGraphImage(self, filename,original=True): fformat = filename[-3:].upper() #This is the whole image, not the zoomed one ... rgbData, legend, info, pixmap = self.graph.getActiveImage() if original: # save whole image bgrData = numpy.array(rgbData, copy=True) bgrData[:,:,0] = rgbData[:, :, 2] bgrData[:,:,2] = rgbData[:, :, 0] else: shape = rgbData.shape[:2] xmin, xmax = self.graph.getGraphXLimits() ymin, ymax = self.graph.getGraphYLimits() # save zoomed image, for that we have to get the limits r0, c0 = convertToRowAndColumn(xmin, ymin, shape, xScale=None, yScale=None, safe=True) r1, c1 = convertToRowAndColumn(xmax, ymax, shape, xScale=None, yScale=None, safe=True) row0 = int(min(r0, r1)) row1 = int(max(r0, r1)) col0 = int(min(c0, c1)) col1 = int(max(c0, c1)) if row1 < shape[0]: row1 += 1 if col1 < shape[1]: col1 += 1 tmpArray = rgbData[row0:row1, col0:col1, :] bgrData = numpy.array(tmpArray, copy=True, dtype=rgbData.dtype) bgrData[:,:,0] = tmpArray[:, :, 2] bgrData[:,:,2] = tmpArray[:, :, 0] if self.graph.isYAxisInverted(): qImage = qt.QImage(bgrData, bgrData.shape[1], bgrData.shape[0], qt.QImage.Format_RGB32) else: qImage = qt.QImage(bgrData, bgrData.shape[1], bgrData.shape[0], qt.QImage.Format_RGB32).mirrored(False, True) pixmap = qt.QPixmap.fromImage(qImage) if pixmap.save(filename, fformat): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def saveGraphWidget(self, filename): fformat = filename[-3:].upper() if hasattr(qt.QPixmap, "grabWidget"): # Qt4 pixmap = qt.QPixmap.grabWidget(self.graph) else: #Qt5 pixmap = self.graph.grab() if pixmap.save(filename, fformat): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def setSaveDirectory(self, wdir): if os.path.exists(wdir): self.lastInputDir = wdir return True else: return False def printGraph(self): if hasattr(qt.QPixmap, "graphWidget"): # Qt4 pixmap = qt.QPixmap.grabWidget(self.graph) else: #Qt5 pixmap = self.graph.grab() self.printPreview.addPixmap(pixmap) if self.printPreview.isHidden(): self.printPreview.show() self.printPreview.raise_() def _buildActions(self): self.buttonBox = qt.QWidget(self) buttonBox = self.buttonBox self.buttonBoxLayout = qt.QGridLayout(buttonBox) self.buttonBoxLayout.setContentsMargins(0, 0, 0, 0) self.buttonBoxLayout.setSpacing(2) self.add2DButton = qt.QPushButton(buttonBox) self.add2DButton.setText("ADD 2D") self.remove2DButton = qt.QPushButton(buttonBox) self.remove2DButton.setText("REMOVE 2D") self.replace2DButton = qt.QPushButton(buttonBox) self.replace2DButton.setText("REPLACE 2D") self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.buttonBoxLayout.addWidget(self.add2DButton, 0, 0) self.buttonBoxLayout.addWidget(self.remove2DButton, 0, 1) self.buttonBoxLayout.addWidget(self.replace2DButton, 0, 2) self.buttonBoxLayout.addWidget(self.addButton, 1, 0) self.buttonBoxLayout.addWidget(self.removeButton, 1, 1) self.buttonBoxLayout.addWidget(self.replaceButton, 1, 2) self.mainLayout.addWidget(buttonBox) self.add2DButton.clicked.connect(self._add2DClicked) self.remove2DButton.clicked.connect(self._remove2DClicked) self.replace2DButton.clicked.connect(self._replace2DClicked) self.addButton.clicked.connect(self._addClicked) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def _buildActionsQt3(self): self.buttonBox = qt.QWidget(self) buttonBox = self.buttonBox self.buttonBoxLayout = qt.QHBoxLayout(buttonBox) self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.buttonBoxLayout.addWidget(self.addButton) self.buttonBoxLayout.addWidget(self.removeButton) self.buttonBoxLayout.addWidget(self.replaceButton) self.mainLayout.addWidget(buttonBox) self.addButton.clicked.connect(self._addClicked) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def groupSignal(self,i): self.allImages = i def widgetSignal(self,dict=None): if dict is None: dict = {} if 'event' in dict: if dict['event'] == 'plotChanged': self.__plotting = dict['plot'] self.__refreshSelection() elif dict['event'] in ['mouseMoved', 'MouseAt']: x = round(dict['y']) if x < 0: x = 0 y = round(dict['x']) if y < 0: y = 0 if (self.data is None) or \ (self.currentArray is None): self.infoText.setText(" X = %d Y = %d Z = ????" %\ (y, x)) else: limits = self.lastData.shape x = min(int(x), limits[0]-1) y = min(int(y), limits[1]-1) z = self.lastData[x, y] self.infoText.setText(" X = %d Y = %d Z = %.4g" %\ (y, x, z)) elif dict['event'] in ['mouseClicked', 'MouseClick']: if self.justViewer: return col = min(int(round(dict['x'])), self._x1Limit - 1) row = min(int(round(dict['y'])), self._y1Limit - 1) if row < 0: row = 0 if col < 0: col = 0 if self.data is None: self.graph.removeImage(legend="QEdfFileWidget") wid = self.__getParamWidget('array') wid.setImages(1) return if self.data.sourceName is None:return if self.selection is None: self.selection = {} nsel = {} i = 0 for sname in self.data.sourceName: if i == 0: selfdatasourceName = sname i = 1 else: selfdatasourceName += "|"+sname nsel['SourceType'] = self.data.sourceType nsel['SourceName'] = selfdatasourceName nsel['selection'] = None key_list = self.data.getSourceInfo()['KeyList'] if self.currentArray == len(key_list): key = '0.0' else: key = key_list[self.currentArray] if self.allImages: arraynamelist = key_list else: arraynamelist = [key] for key in arraynamelist: nsel['Key'] = key signalsel = {} signalsel['SourceType'] = self.data.sourceType signalsel['SourceName'] = self.data.sourceName signalsel['selection'] = None signalsel['Key'] = key if self.__plotting == 'Rows': ptype = 'rows' nsel[key] = {'rows':[{'y':row,'x':None}],'cols':[]} signalsel['Key'] += ".r.%d" % row else: nsel[key] = {'rows':[],'cols':[{'y':col,'x':None}]} signalsel['Key'] += ".c.%d" % col ptype = 'cols' name = "" i = int(key.split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] if self.selection == {}: self.setSelected([nsel],reset=0) self.sigAddSelection.emit([signalsel]) elif not (nsel['SourceName'] in self.selection): self.setSelected([nsel],reset=0) self.sigAddSelection.emit([signalsel]) elif not (key in self.selection[nsel['SourceName']]): self.setSelected([nsel],reset=0) self.sigAddSelection.emit([signalsel]) elif len(self.selection[nsel['SourceName']][key][ptype]) == 0: self.setSelected([nsel],reset=0) self.sigAddSelection.emit([signalsel]) elif nsel[key][ptype][0] not in self.selection[nsel['SourceName']][key][ptype]: self.setSelected([nsel],reset=0) self.sigAddSelection.emit([signalsel]) else: self.removeSelection([nsel]) elif dict['event'] == 'imageChanged': _logger.debug("Image changed") if dict['index'] != self.currentArray: self.currentArray = dict['index'] self.refresh() _logger.debug("self.currentArray = %s", self.currentArray) def openFile(self, filename=None,justloaded=None): _logger.debug("openfile = %s", filename) if justloaded is None:justloaded = 0 if filename is None: self.lastInputDir = PyMcaDirs.inputDir wdir = self.lastInputDir filetypelist = ["EdfFiles (*.edf)", "EdfFiles (*mca)", "EdfFiles (*ccd)", "All files (*)"] message = "Open new EdfFile(s)" filelist = PyMcaFileDialogs.getFileList(parent=None, filetypelist=None, message=None, currentdir=wdir, mode="OPEN", getfilter=False, single=False, currentfilter=None, native=None) if not len(filelist): return #respect selection choice #filelist.sort() filename=[] for f in filelist: filename.append(qt.safe_str(f)) if not len(filename): return if len(filename): self.lastInputDir = os.path.dirname(filename[0]) PyMcaDirs.inputDir = os.path.dirname(filename[0]) justloaded = 1 if justloaded: if type(filename) != type([]): filename = [filename] if not os.path.exists(filename[0]): raise IOError("File %s does not exist" % filename[0]) if (justloaded) and (filename in self.mapComboName.keys()): self.selectFile(filename,justloaded=justloaded) elif 1: combokey = os.path.basename(filename[0]) self.mapComboName[combokey]= filename self.selectFile(combokey,justloaded=justloaded) else: if not self.data.SetSource(filename): qt.QMessageBox.critical(self, "ERROR opening EdfFile", "Cannot open following EdfFile:\n%s"%(filename)) else: filename= self.data.SourceName.split("|") if len(filename) > 1: combokey = 'EDF Stack' self._edfstack = filename else: combokey = os.path.basename(filename[0]) if combokey not in self.mapComboName.keys(): self.mapComboName[combokey]= filename[0] self.fileCombo.insertItem(combokey) self.selectFile(combokey,justloaded=justloaded) def selectFile(self, filename=None, justloaded=None): if justloaded is None:justloaded=0 if filename is not None: #if qt.safe_str(self.fileCombo.currentText()) !=\ # self.mapComboName[filename]: if filename == 'EDF Stack': filename= self._edfstack else: filename = self.mapComboName[filename] if justloaded and (filename==self._edfstack): self.currentArray=len(self.data.getSourceInfo()['KeyList']) else: self.currentArray=0 self.refresh() def selectColormap(self): if self.colormap is None: return if self.colormapDialog.isHidden(): self.colormapDialog.show() self.colormapDialog.raise_() self.colormapDialog.show() def getPixmapFromData(self, data, colormap): finiteData = numpy.isfinite(data) goodData = finiteData.min() if self.colormapDialog is not None: minData = self.colormapDialog.dataMin maxData = self.colormapDialog.dataMax else: if goodData: minData = data.min() maxData = data.max() else: tmpData = data[finiteData] if tmpData.size > 0: minData = tmpData.min() maxData = tmpData.max() else: minData = None maxData = None tmpData = None if colormap is None: if minData is None: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 1, (0, 1), (0, 255), 1) else: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 0, (minData,maxData), (0, 255), 1) else: if len(colormap) < 7: colormap.append(spslut.LINEAR) if goodData: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0,255), 1) elif colormap[1]: #autoscale if minData is None: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 1, (0, 1), (0, 255), 1) else: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], 0, (minData,maxData), (0,255), 1) else: (pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0,255), 1) pixmap.shape = [data.shape[0], data.shape[1], 4] if not goodData: pixmap[finiteData < 1] = 255 return pixmap def updateColormap(self, *var): if len(var) == 1: var = var[0] if len(var) > 6: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5], var[6]] elif len(var) > 5: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5]] else: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5]] #self.graph.invertYAxis(True) pixmap = self.getPixmapFromData(self.lastData, self.colormap) self.graph.addImage(pixmap, legend="QEdfFileWidget") self.graph.replot() def closeFile(self, filename=None): if filename is None: ffile= qt.safe_str(self.fileCombo.currentText()) #if file != "EDF Stack": # filename = self.mapComboName[file] #else: # filename ="EDF Stack" filename = ffile #print self.selection if (self.selection is not None) and filename in self.selection: nmca = 0 for key in self.selection[filename].keys(): nmca += len(self.selection[filename][key]['rows']) + len(self.selection[filename][key]['cols']) if nmca: msg= "%d mca are linked to that EdfFile source.\n"% nmca msg+="Do you really want to delete all these graphs ??" ans= qt.QMessageBox.information(self, "Remove SpecFile %s"%filename, msg, qt.QMessageBox.No, qt.QMessageBox.Yes) if ans==qt.QMessageBox.No: return try: self.sigDelSelection.emit((self.data.SourceName, mcakeys)) except Exception: _logger.debug("sigDelSelection is to be implemented") for idx in range(self.fileCombo.count()): itext = self.fileCombo.itemText(idx) if filename == "EDF Stack": if itext == filename: self.fileCombo.removeItem(idx) del self.mapComboName[filename] break elif qt.safe_str(itext) ==\ os.path.basename(self.mapComboName[filename]): self.fileCombo.removeItem(idx) del self.mapComboName[filename] break if not self.fileCombo.count(): self.data.sourceName = None self._reset() #self.selectFile() else: self.selectFile(self.mapComboName.keys()[0]) def __fileSelection(self, ffile): ffile= qt.safe_str(ffile) for filename, comboname in self.mapComboName.items(): if filename == ffile: self.selectFile(filename) break def _reset(self): self.graph.removeImage(legend="QEdfFileWidget") self.oldsource = None self.graph.clearMarkers() self.graph.replot() wid = self.__getParamWidget('array') wid.setImages(1) wid.setDataSize(0, 0) def setDataSource(self,data=None): _logger.debug("setData(self, data) called") _logger.debug("data = %s", data) self.data= data self.refresh() def refresh(self): _logger.debug("refresh method called") if self.data is None: self._reset() #wid = self.__getParamWidget('array') #wid.setImages(1) return if self.data.sourceName is None: return self.currentFile = self.data.sourceName #this gives the number of images in the file infoSource = self.data.getSourceInfo() _logger.debug("info :") _logger.debug("%s", infoSource) nimages=len(infoSource['KeyList']) #print self.data.SourceName,"nimages = ",nimages loadsum = 0 if nimages == 1: self.currentArray = 0 elif self.currentArray > nimages: self.currentArray = 0 elif self.currentArray == nimages: loadsum=1 #print "SUM = ",loadsum, infoSource['KeyList'] #print self.currentArray if (self.oldsource != self.currentFile) or (self.oldcurrentArray != self.currentArray): _logger.debug("I have to read again ... ") if not loadsum: _logger.debug("Not Loading the sum") dataObject = self.data.getDataObject(infoSource['KeyList']\ [self.currentArray]) info = dataObject.info data = dataObject.data imageinfo = infoSource['KeyList'] else: _logger.debug("Loading the sum") dataObject = self.data.getDataObject('0.0') info = dataObject.info data = dataObject.data imageinfo = infoSource['KeyList'] wid= self.__getParamWidget("array") if nimages > 1: if 'Title' in info: i = 0 for key in self.data.getSourceInfo()['KeyList']: source,image = key.split(".") source = int(source) image = int(image) dataObject = self.data.getDataObject(key) header = dataObject.info if 'Title' in header: imageinfo[i] += "- " + header['Title'] i+=1 if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("ADDING 0.0 - SUM KEY") wid.setImages(nimages+1, info = imageinfo+["0.0 - SUM"]) wid.setImages(nimages,info = imageinfo) else: if 'Title' in info: imageinfo [self.currentArray] += info['Title'] wid.setImages(nimages, info = imageinfo) wid.setCurrentImage(self.currentArray) #P.B. -> pointer(a,d1,d2,i1,i2) = a+ (i1+i2 * d1) wid.setDataSize(int(info["Dim_2"]), int(info["Dim_1"])) _logger.debug("Image size = %d x %d", int(info["Dim_2"]), int(info["Dim_1"])) _logger.debug("data size = %s", data.shape) if self.graph.isHidden(): self.graph.show() ##self.graph.setx1axislimits(0, int(info["Dim_2"])) ##self.graph.sety1axislimits(0, int(info["Dim_1"])) self._x1Limit = int(info["Dim_1"]) self._y1Limit = int(info["Dim_2"]) self.graph.clear(replot=False) finiteData = numpy.isfinite(data) if finiteData.any(): finiteData = data[finiteData] minData = finiteData.min() maxData = finiteData.max() else: minData = 0 maxData = 1 wasnone = 0 self.lastData = data if self.colormapDialog is None: wasnone = 1 self.colormapDialog = ColormapDialog.ColormapDialog() self.colormapDialog.colormapIndex = self.colormapDialog.colormapList.index("Temperature") self.colormapDialog.colormapString = "Temperature" self.colormapDialog.sigColormapChanged.connect( \ self.updateColormap) self.colormapDialog.setDataMinMax(minData, maxData) if wasnone: self.colormapDialog.setAutoscale(1) self.colormapDialog.setColormap(self.colormapDialog.colormapIndex) self.colormap = (self.colormapDialog.colormapIndex, self.colormapDialog.autoscale, self.colormapDialog.minValue, self.colormapDialog.maxValue, minData, maxData) #self.graph.imagePlot(data=data, colormap = self.colormap) self.colormapDialog._update() pixmap = self.getPixmapFromData(data, self.colormap) self.graph.addImage(pixmap, legend="QEdfFileWidget") self.__refreshSelection() self.oldsource = "%s" % self.data.sourceName self.oldcurrentArray = self.currentArray * 1 def __getParamWidget(self, widtype): return self.paramWidget def _replaceClicked(self): _logger.debug("replace clicked") selkeys= self.__getSelectedKeys() if len(selkeys): #self.eh.event(self.repEvent, selkeys) _logger.debug("Replace event") if self.allImages: arraynamelist = self.data.getSourceInfo()['KeyList'] else: arraynamelist = [] for selection in selkeys: arraynamelist.append(selection['Key']) sellist=[] signalsellist = [] for arrayname in arraynamelist: sel = {} sel['SourceType'] = SOURCE_TYPE for selection in selkeys: signalsel = {} signalsel.update(sel) signalsel['selection'] = None signalsel['SourceName'] = self.data.sourceName if not ('SourceName' in sel): sel['SourceName'] = selection['SourceName'] arrayname = selection['Key'] if not ('Key' in sel): sel['Key'] = selection['Key'] signalsel['Key'] = selection['Key'] if not (arrayname in sel): sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'cols': sel[arrayname]['cols'].append({'x':selection['x'],'y':selection['y']}) signalsel['Key'] += ".c.%d" % selection['y'] if selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'],'y':selection['y']}) signalsel['Key'] += ".r.%d" % selection['y'] i = int(signalsel['Key'].split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ \ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] """ if selection['plot'] == 0: sel[arrayname]['mca'].append({'x':selection['x'],'y':selection['y']}) """ signalsellist.append(signalsel) sellist.append(sel) self.setSelected(sellist,reset=1) self.sigReplaceSelection.emit(signalsellist) def _add2DClicked(self, replace=False, emit=True): _logger.debug("ADD 2D clicked") if (self.data is None) or \ (self.currentArray is None): return #this is not very efficient because it could be cached #while this implies a new reading infoSource= self.data.getSourceInfo() sel = {} sel['SourceType'] = infoSource['SourceType'] sel['SourceName'] = self.data.sourceName sel['Key'] = infoSource['KeyList'][self.currentArray] f, i = sel['Key'].split(".") f = int(f) - 1 sel['legend'] = os.path.basename(self.data.sourceName[f]) +\ " "+ ("%s" % self.paramWidget.iCombo.currentText()) sel['selectiontype'] = '2D' sel['imageselection'] = True sel['mcaselection'] = False sel['scanselection'] = False sel['selection'] = None if emit: if replace: self.sigReplaceSelection.emit([sel]) else: self.sigAddSelection.emit([sel]) else: return [sel] def _remove2DClicked(self): _logger.debug("REMOVE 2D clicked") infoSource= self.data.getSourceInfo() sel = {} sel['SourceType'] = infoSource['SourceType'] sel['SourceName'] = self.data.sourceName sel['Key'] = infoSource['KeyList'][self.currentArray] f, i = sel['Key'].split(".") f = int(f) - 1 sel['legend'] = os.path.basename(self.data.sourceName[f]) +\ " "+ qt.safe_str(self.paramWidget.iCombo.currentText()) sel['selectiontype'] = '2D' sel['imageselection'] = True sel['mcaselection'] = False sel['scanselection'] = False sel['selection'] = None self.sigRemoveSelection.emit([sel]) def _replace2DClicked(self): _logger.debug("REPLACE 2D clicked") self._add2DClicked(replace=True) def currentSelectionList(self): a = self._addClicked(emit=False) if a in [None, []]: a = self._add2DClicked(emit=False) return a def _addClicked(self, emit=True): _logger.debug("select clicked") selkeys= self.__getSelectedKeys() _logger.debug("selected keys = %s", selkeys) if len(selkeys): #self.eh.event(self.addEvent, selkeys) _logger.debug("Select event") if self.allImages: arraynamelist = self.data.getSourceInfo()['KeyList'] else: arraynamelist = [] for selection in selkeys: arraynamelist.append(selection['Key']) sellist=[] sellistsignal = [] for arrayname in arraynamelist: sel = {} sel['SourceType'] = SOURCE_TYPE for selection in selkeys: selsignal = {} selsignal['SourceType'] = self.data.sourceType selsignal['SourceName'] = self.data.sourceName selsignal['selection'] = None selsignal['Key'] = arrayname if not ('SourceName' in sel): sel['SourceName'] = selection['SourceName'] #arrayname = selection['Key'] if not ('Key' in sel): sel['Key'] = arrayname if not (arrayname in sel): sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'cols': sel[arrayname]['cols'].append({'x':selection['x'], 'y':selection['y']}) selsignal["Key"] += ".c.%d" % int(selection['y']) i = int(selsignal["Key"].split(".")[0]) if i > 0: selsignal['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+selsignal['Key'] else: selsignal['legend'] = "EDF Stack "+ os.path.basename(self.data.sourceName[0])+\ " "+selsignal['Key'] if selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'], 'y':selection['y']}) selsignal["Key"] += ".r.%d" % int(selection['y']) i = int(selsignal["Key"].split(".")[0]) if i > 0: selsignal['legend'] = os.path.basename(self.data.sourceName[i-1]) +\ " "+selsignal['Key'] else: selsignal['legend'] = "EDF Stack "+\ os.path.basename(self.data.sourceName[0])+\ " "+selsignal['Key'] sellistsignal.append(selsignal) sellist.append(sel) if self.selection is None: self.setSelected(sellist,reset=1) else: self.setSelected(sellist,reset=0) if emit: self.sigAddSelection.emit(sellistsignal) else: return sellistsignal def __getSelectedKeys(self): selkeys= [] parwid= self.paramWidget #.visibleWidget() if self.currentArray is not None: for sel in parwid.getSelection(): sel["SourceName"]= self.currentFile sel['SourceType'] = SOURCE_TYPE if 0: sel["Key"]= "%d" % self.currentArray else: keylist = self.data.getSourceInfo()['KeyList'] if self.currentArray == len(keylist): sel["Key"]= "0.0" else: sel["Key"]= keylist[self.currentArray] selkeys.append(sel) return selkeys def _removeClicked(self): _logger.debug("remove clicked") selkeys= self.__getSelectedKeys() returnedselection=[] signalsellist = [] if len(selkeys): #self.eh.event(self.delEvent, selkeys) _logger.debug("Remove Event") _logger.debug("self.selection before = %s", self.selection) if self.allImages: arraynamelist = self.data.getSourceInfo()['KeyList'] else: arraynamelist = [] for selection in selkeys: arraynamelist.append(selection['Key']) for arrayname in arraynamelist: for selection in selkeys: sel = {} i = 0 for sname in self.data.sourceName: if i == 0: selfdatasourceName = sname i = 1 else: selfdatasourceName += "|"+sname sel['SourceName'] = selfdatasourceName sel['SourceType'] = SOURCE_TYPE #sel['Key'] = selection['Key'] #arrayname = "%s" % selection['Key'] sel['Key'] = arrayname sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'cols': sel[arrayname]['cols'].append({'x':selection['x'],'y':selection['y']}) if selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'],'y':selection['y']}) if self.selection is not None: _logger.debug("step 1") if sel['SourceName'] in self.selection: _logger.debug("step 2") if arrayname in self.selection[sel['SourceName']]: _logger.debug("step 3") if 'rows' in self.selection[sel['SourceName']][arrayname]: _logger.debug("step 4") for couple in sel[arrayname]['rows']: if couple in self.selection[sel['SourceName']][arrayname]['rows']: index= self.selection[sel['SourceName']][arrayname]['rows'].index(couple) del self.selection[sel['SourceName']][arrayname]['rows'][index] signalsel = {} signalsel.update(sel) signalsel['SourceName'] = self.data.sourceName signalsel['Key'] += ".r.%d" % couple['y'] i = int(signalsel['Key'].split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ \ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] signalsellist.append(signalsel) for couple in sel[arrayname]['cols']: if couple in self.selection[sel['SourceName']][arrayname]['cols']: index= self.selection[sel['SourceName']][arrayname]['cols'].index(couple) del self.selection[sel['SourceName']][arrayname]['cols'][index] signalsel = {} signalsel.update(sel) signalsel['SourceName'] = self.data.sourceName signalsel['Key'] += ".c.%d" % couple['y'] i = int(signalsel['Key'].split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ \ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] signalsellist.append(signalsel) seln = {} seln['SourceName'] = sel['SourceName'] seln['SourceType'] = SOURCE_TYPE seln['Key'] = sel['Key'] seln[seln['Key']] = self.selection[seln['SourceName']][seln['Key']] self.setSelected([seln],reset=0) returnedselection.append(sel) self.sigRemoveSelection.emit(signalsellist) def removeSelection(self,selection): if type(selection) != type([]): selection=[selection] signalsellist = [] for sel in selection: arrayname = sel['Key'] if self.selection is not None: _logger.debug("step 1") if sel['SourceName'] in self.selection: _logger.debug("step 2") if arrayname in self.selection[sel['SourceName']]: _logger.debug("step 3") if 'rows' in self.selection[sel['SourceName']][arrayname]: _logger.debug("step 4") for couple in sel[arrayname]['rows']: if couple in self.selection[sel['SourceName']][arrayname]['rows']: index= self.selection[sel['SourceName']][arrayname]['rows'].index(couple) del self.selection[sel['SourceName']][arrayname]['rows'][index] signalsel = {} signalsel.update(sel) signalsel['SourceName'] = self.data.sourceName signalsel['Key'] += ".r.%d" % couple['y'] i = int(signalsel['Key'].split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ \ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] signalsellist.append(signalsel) for couple in sel[arrayname]['cols']: if couple in self.selection[sel['SourceName']][arrayname]['cols']: index= self.selection[sel['SourceName']][arrayname]['cols'].index(couple) del self.selection[sel['SourceName']][arrayname]['cols'][index] signalsel = {} signalsel.update(sel) signalsel['SourceName'] = self.data.sourceName signalsel['Key'] += ".r.%d" % couple['y'] i = int(signalsel['Key'].split(".")[0]) if i > 0: signalsel['legend'] = os.path.basename(self.data.sourceName[i-1]) +" "+signalsel['Key'] else: signalsel['legend'] = "EDF Stack "+ \ os.path.basename(self.data.sourceName[0])+\ " "+signalsel['Key'] signalsellist.append(signalsel) seln = {} seln['SourceName'] = sel['SourceName'] seln['SourceType'] = SOURCE_TYPE seln['Key'] = sel['Key'] seln[seln['Key']] = self.selection[seln['SourceName']][seln['Key']] self.setSelected([seln],reset=0) self.sigRemoveSelection.emit(signalsellist) def setSelected(self,sellist,reset=1): _logger.debug("setSelected(self,sellist,reset=1) called") _logger.debug("sellist = %s", sellist) _logger.debug("selection before = %s", self.selection) _logger.debug("reset = %s", reset) if reset: self.selection = {} elif self.selection is None: self.selection = {} for sel in sellist: specname = sel['SourceName'] if type(specname) == type([]): for i in range(len(sel['SourceName'])): if i == 0: specname = sel['SourceName'][i] else: specname += "|"+sel['SourceName'][i] #selkey is the array name what to do if multiple array names? if type(sel["Key"]) == type([]): selkey = sel["Key"][0] else: selkey = sel["Key"] if not (specname in self.selection): self.selection[specname]= {} if not (selkey in self.selection[specname]): self.selection[specname][selkey] = {'rows':[],'cols':[]} if 'rows' in sel[selkey]: for rowsel in sel[selkey]['rows']: if rowsel not in self.selection[specname][selkey]['rows']: self.selection[specname][selkey]['rows'].append(rowsel) if 'cols' in sel[selkey]: for rowsel in sel[selkey]['cols']: if rowsel not in self.selection[specname][selkey]['cols']: self.selection[specname][selkey]['cols'].append(rowsel) _logger.debug("self.selection after = %s", self.selection) self.__refreshSelection() def getSelection(self): """ Give the dicionary of dictionaries as an easy to understand list of individual selections """ selection = [] if self.selection is None: return selection for sourcekey in self.selection.keys(): for arraykey in self.selection[sourcekey].keys(): sel={} sel['SourceName'] = sourcekey sel['SourceType'] = 'EdfFile' sel['Key'] = arraykey sel[arraykey] = self.selection[sourcekey][arraykey] selection.append(sel) return selection def __refreshSelection(self): _logger.debug("__refreshSelection(self) called") _logger.debug(self.selection) if self.data: _logger.debug("self.data.SourceName = %s", self.data.sourceName) if self.selection is not None: if self.data is None: return if self.data.sourceName is None: return if type(self.data.sourceName) == type([]): i = 0 for sname in self.data.sourceName: if i == 0: selfdatasourceName = sname i = 1 else: selfdatasourceName += "|"+sname else: selfdatasourceName = self.data.sourceName if "|" in self.data.sourceName: #print "here should be the multiple" #sel = self.selection.get(self.data.SourceName[0], {}) sel = self.selection.get(selfdatasourceName, {}) else: sel = self.selection.get(selfdatasourceName, {}) selkeys = [] for key in sel.keys(): if (sel[key]['rows'] != []) or (sel[key]['cols'] != []): selkeys.append(key) _logger.debug("selected images = %s but self.selection = %s", selkeys, self.selection) _logger.debug("and self.selection.get(self.data.SourceName, {}) = %s ", sel) wid = self.__getParamWidget("array") wid.markImageSelected(selkeys) #imagedict = sel.get("%d" % self.currentArray, {}) keylist = self.data.getSourceInfo()['KeyList'] if self.currentArray == len(keylist): imagedict = sel.get("0.0",{}) else: imagedict = sel.get(keylist[self.currentArray],{}) if not ('rows' in imagedict): imagedict['rows'] = [] if not ('cols' in imagedict): imagedict['cols'] = [] rows = [] for ddict in imagedict['rows']: if 'y' in ddict: if ddict['y'] not in rows: rows.append(ddict['y']) wid.markRowSelected(rows) cols = [] for ddict in imagedict['cols']: if 'y' in ddict: if ddict['y'] not in cols: cols.append(ddict['y']) wid.markColSelected(cols) self.graph.clearMarkers() for i in rows: label = "R%d" % i marker=self.graph.insertYMarker(i, label, text=label, color='white') for i in cols: label = "C%d" % i marker=self.graph.insertXMarker(i, label, text=label, color='white') self.graph.replot() return def closeEvent(self, event): if self.colormapDialog is not None: self.colormapDialog.close() if self._matplotlibSaveImage is not None: self._matplotlibSaveImage.close() qt.QWidget.closeEvent(self, event) def test2(): a= qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = EdfFile_StandardArray() w.show() a.exec() def test(): import sys from PyMca5.PyMcaCore import EdfFileDataSource def replaceSelection(sel): print("replaceSelection", sel) def removeSelection(sel): print("removeSelection", sel) def addSelection(sel): print("addSelection", sel) if qt.QApplication.instance() is None: a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) sys.excepthook = qt.exceptionHandler else: a = None w = QEdfFileWidget() #print w if len(sys.argv) > 1: d = EdfFileDataSource.EdfFileDataSource([sys.argv[1]]) elif os.path.exists('test.edf'): d = EdfFileDataSource.EdfFileDataSource(['test.edf']) else: print("Usage:") print("python QEdfFileWidget edffile") sys.exit(0) w.setDataSource(d) w.sigAddSelection.connect(addSelection) w.sigRemoveSelection.connect(removeSelection) w.sigReplaceSelection.connect(replaceSelection) w.show() if a is not None: a.exec() else: return w if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/QSelectorWidget.py0000644000000000000000000000651414741736366021105 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class QSelectorWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self._build() self._buildActions() def _build(self): """ Method to be overwritten to build the main widget """ _logger.debug("_build():Method to be overwritten") pass def _buildActions(self): self.buttonBox = qt.QWidget(self) buttonBox = self.buttonBox self.buttonBoxLayout = qt.QHBoxLayout(buttonBox) self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.buttonBoxLayout.addWidget(self.addButton) self.buttonBoxLayout.addWidget(self.removeButton) self.buttonBoxLayout.addWidget(self.replaceButton) self.mainLayout.addWidget(buttonBox) self.addButton.clicked.connect(self._addClickedSlot) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def _addClickedSlot(self): self._addClicked() def _addClicked(self): _logger.debug("_addClicked()") def _removeClicked(self): _logger.debug("_removeClicked()") def _replaceClicked(self): _logger.debug("_replaceClicked()") def test(): app = qt.QApplication([]) w = QSelectorWidget() w.show() app.lastWindowClosed.connect(app.quit) app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/QSourceSelector.py0000644000000000000000000003521114741736366021116 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.plotting import PyMca_Icons as icons from PyMca5.PyMcaIO import spswrap as sps from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs BLISS = False if sys.version_info > (3, 5): try: from PyMca5.PyMcaCore import RedisTools BLISS = True except Exception: _logger.info("Bliss data file direct support not available") class QSourceSelector(qt.QWidget): sigSourceSelectorSignal = qt.pyqtSignal(object) def __init__(self, parent=None, filetypelist=None, pluginsIcon=False): qt.QWidget.__init__(self, parent) self.mainLayout= qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) if filetypelist is None: self.fileTypeList = ["Spec Files (*mca)", "Spec Files (*dat)", "Spec Files (*spec)", "SPE Files (*SPE)", "EDF Files (*edf)", "EDF Files (*ccd)", "CSV Files (*csv)", "All Files (*)"] else: self.fileTypeList = filetypelist self.lastFileFilter = self.fileTypeList[0] # --- file combo/open/close self.lastInputDir = PyMcaDirs.inputDir self.fileWidget= qt.QWidget(self) fileWidgetLayout= qt.QHBoxLayout(self.fileWidget) fileWidgetLayout.setContentsMargins(0, 0, 0, 0) fileWidgetLayout.setSpacing(0) self.fileCombo = qt.QComboBox(self.fileWidget) self.fileCombo.setEditable(0) self.mapCombo= {} openButton= qt.QPushButton(self.fileWidget) self.openIcon = qt.QIcon(qt.QPixmap(icons.IconDict["fileopen"])) self.closeIcon = qt.QIcon(qt.QPixmap(icons.IconDict["close"])) self.reloadIcon = qt.QIcon(qt.QPixmap(icons.IconDict["reload"])) if BLISS: self.specIcon = qt.QIcon(qt.QPixmap(icons.IconDict["bliss"])) else: self.specIcon = qt.QIcon(qt.QPixmap(icons.IconDict["spec"])) openButton.setIcon(self.openIcon) openButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) openButton.setToolTip("Open new file data source") closeButton= qt.QPushButton(self.fileWidget) closeButton.setIcon(self.closeIcon) closeButton.setToolTip("Close current data source") refreshButton= qt.QPushButton(self.fileWidget) refreshButton.setIcon(self.reloadIcon) refreshButton.setToolTip("Refresh data source") specButton= qt.QPushButton(self.fileWidget) specButton.setIcon(self.specIcon) if BLISS: specButton.setToolTip("Open data acquisition source") else: specButton.setToolTip("Open new shared memory source") closeButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) specButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) refreshButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) openButton.clicked.connect(self._openFileSlot) closeButton.clicked.connect(self.closeFile) refreshButton.clicked.connect(self._reload) specButton.clicked.connect(self.openBlissOrSpec) if hasattr(self.fileCombo, "textActivated"): self.fileCombo.textActivated[str].connect(self._fileSelection) else: _logger.debug("Using deprecated signal") self.fileCombo.activated[str].connect(self._fileSelection) fileWidgetLayout.addWidget(self.fileCombo) fileWidgetLayout.addWidget(openButton) fileWidgetLayout.addWidget(closeButton) fileWidgetLayout.addWidget(specButton) if sys.platform == "win32":specButton.hide() fileWidgetLayout.addWidget(refreshButton) self.specButton = specButton if pluginsIcon: self.pluginsButton = qt.QPushButton(self.fileWidget) self.pluginsButton.setIcon(qt.QIcon(qt.QPixmap(icons.IconDict["plugin"]))) self.pluginsButton.setToolTip("Plugin handling") self.pluginsButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) fileWidgetLayout.addWidget(self.pluginsButton) self.mainLayout.addWidget(self.fileWidget) def _reload(self): _logger.debug("_reload called") qstring = self.fileCombo.currentText() if not len(qstring): return key = qt.safe_str(qstring) ddict = {} ddict["event"] = "SourceReloaded" ddict["combokey"] = key ddict["sourcelist"] = self.mapCombo[key] * 1 self.sigSourceSelectorSignal.emit(ddict) def _openFileSlot(self): self.openFile(None, None) def openSource(self, sourcename, specsession=None): if specsession is None: if sourcename in sps.getspeclist(): specsession=True elif BLISS and sourcename in RedisTools.get_sessions_list(): specsession = "bliss" else: specsession=False self.openFile(sourcename, specsession=specsession) def openFile(self, filename=None, justloaded=None, specsession=False): _logger.debug("openfile = %s", filename) staticDialog = False fileFilter = None if specsession == "bliss": specsession = False session = filename node = RedisTools.get_node(session) if not node: txt = "No REDIS information retrieved from session %s" % \ session raise IOError(txt) filename = RedisTools.get_session_filename(node) if not len(filename): txt = "Cannot retrieve last output filename from session %s" % \ session raise IOError(txt) if not os.path.exists(filename): txt = "Last output file <%s> does not exist" % filename raise IOError(txt) filename = [filename] key = os.path.basename(filename[0]) try: self._emitSourceSelectedOrReloaded(filename, key) except Exception: _logger.error("Problem opening %s" % filename[0]) key = "%s" % session self._emitSourceSelectedOrReloaded([session], key) return if not specsession: if justloaded is None: justloaded = True if filename is None: if self.lastInputDir is not None: if not os.path.exists(self.lastInputDir): self.lastInputDir = None wdir = self.lastInputDir filelist, fileFilter = PyMcaFileDialogs.getFileList(self, filetypelist=self.fileTypeList, message="Open a new source file", currentdir=wdir, mode="OPEN", getfilter=True, single=False, currentfilter=self.lastFileFilter) if not len(filelist): return if not len(filelist[0]): return filename=[] for f in filelist: filename.append(qt.safe_str(f)) if not len(filename): return if len(filename): self.lastInputDir = os.path.dirname(filename[0]) PyMcaDirs.inputDir = os.path.dirname(filename[0]) self.lastFileFilter = fileFilter justloaded = True if justloaded: if type(filename) != type([]): filename = [filename] if not os.path.exists(filename[0]): if '%' not in filename[0]: if filename[0].startswith("tiled") or \ filename[0].startswith("http"): pass else: raise IOError("File %s does not exist" % filename[0]) #check if it is a stack if len(filename) > 1: key = "STACK from %s to %s" % (filename[0], filename[-1]) else: key = os.path.basename(filename[0]) else: key = filename if key not in sps.getspeclist(): qt.QMessageBox.critical(self, "SPS Error", "No shared memory source named %s" % key) return self._emitSourceSelectedOrReloaded(filename, key, filefilter=fileFilter) def _emitSourceSelectedOrReloaded(self, filename, key, filefilter=None): ddict = {} ddict["event"] = "NewSourceSelected" ddict["filter"] = filefilter if key in self.mapCombo.keys(): if self.mapCombo[key] == filename: #Reloaded event ddict["event"] = "SourceReloaded" else: i = 0 while key in self.mapCombo.keys(): key += "_%d" % i ddict["combokey"] = key ddict["sourcelist"] = filename self.mapCombo[key] = filename if ddict["event"] =="NewSourceSelected": nitems = self.fileCombo.count() self.fileCombo.insertItem(nitems, key) self.fileCombo.setCurrentIndex(nitems) else: if hasattr(qt, "QString"): nitem = self.fileCombo.findText(qt.QString(key)) else: nitem = self.fileCombo.findText(key) self.fileCombo.setCurrentIndex(nitem) self.sigSourceSelectorSignal.emit(ddict) def closeFile(self): _logger.debug("closeFile called") #get current combobox key qstring = self.fileCombo.currentText() if not len(qstring): return key = qt.safe_str(qstring) ddict = {} ddict["event"] = "SourceClosed" ddict["combokey"] = key ddict["sourcelist"] = self.mapCombo[key] * 1 if hasattr(qt, "QString"): nitem = self.fileCombo.findText(qt.QString(key)) else: nitem = self.fileCombo.findText(key) self.fileCombo.removeItem(nitem) del self.mapCombo[key] self.sigSourceSelectorSignal.emit(ddict) def openBlissOrSpec(self): if not BLISS: return self.openSpec() sessionList = RedisTools.get_sessions_list() if not len(sessionList): return self.openSpec() activeList = [] for session in sessionList: node = RedisTools.get_node(session) if node: activeList.append(session) if not len(activeList): _logger.info("Bliss sessions found but no info in REDIS") return self.openSpec() sessionList = activeList menu = qt.QMenu() for session in sessionList: if hasattr(qt, "QString"): menu.addAction(qt.QString(session), lambda i=session:self.openFile(i, specsession="bliss")) else: menu.addAction(session, lambda i=session:self.openFile(i, specsession="bliss")) menu.exec(self.cursor().pos()) def openSpec(self): speclist = sps.getspeclist() if not len(speclist): qt.QMessageBox.information(self, "No SPEC Shared Memory or Bliss session in REDIS Found", "No shared memory source available") return menu = qt.QMenu() for spec in speclist: if hasattr(qt, "QString"): menu.addAction(qt.QString(spec), lambda i=spec:self.openFile(i, specsession=True)) else: menu.addAction(spec, lambda i=spec:self.openFile(i, specsession=True)) menu.exec(self.cursor().pos()) def _fileSelection(self, qstring): _logger.debug("file selected %s", qstring) key = str(qstring) ddict = {} ddict["event"] = "SourceSelected" ddict["combokey"] = key ddict["sourcelist"] = self.mapCombo[key] self.sigSourceSelectorSignal.emit(ddict) def test(): a = qt.QApplication(sys.argv) #new access from PyMca5.PyMcaGui.pymca import QDataSource w= QSourceSelector() def mySlot(ddict): print(ddict) if ddict["event"] == "NewSourceSelected": d = QDataSource.QDataSource(ddict["sourcelist"][0]) w.specfileWidget.setDataSource(d) w.sigSourceSelectorSignal.connect(mySlot) a.lastWindowClosed.connect(a.quit) w.show() a.exec() if __name__=="__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/QSpecFileWidget.py0000644000000000000000000010773514741736366021026 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon, V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import QSelectorWidget from PyMca5.PyMcaGui.io import SpecFileDataInfo from PyMca5.PyMcaGui.io import SpecFileCntTable OBJECT3D = SpecFileCntTable.OBJECT3D from PyMca5.PyMcaGui.io import SpecFileMcaTable _logger = logging.getLogger(__name__) QTVERSION = qt.qVersion() if QTVERSION > '4.2.0': class MyQTreeWidgetItem(qt.QTreeWidgetItem): def __lt__(self, other): c = self.treeWidget().sortColumn() if c == 0: return False if c != 2: return (float(self.text(c)) < float(other.text(c))) return (self.text(c) < other.text(c)) else: MyQTreeWidgetItem = qt.QTreeWidgetItem #class QSpecFileWidget(qt.QWidget): class QSpecFileWidget(QSelectorWidget.QSelectorWidget): sigAddSelection = qt.pyqtSignal(object) sigRemoveSelection = qt.pyqtSignal(object) sigReplaceSelection = qt.pyqtSignal(object) sigOtherSignals = qt.pyqtSignal(object) sigScanSelection = qt.pyqtSignal(object) sigScanDoubleClicked = qt.pyqtSignal(object) def __init__(self, parent=None, autoreplace=False): self.autoReplace = autoreplace if self.autoReplace: self.autoAdd = False else: self.autoAdd = True self._oldCntSelection = None QSelectorWidget.QSelectorWidget.__init__(self, parent) self.dataInfoWidgetDict = {} def _build(self): #self.layout= qt.QVBoxLayout(self) self.splitter = qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Vertical) self.list = qt.QTreeWidget(self.splitter) self.list.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) self.mainTab = qt.QTabWidget(self.splitter) self.cntTable = SpecFileCntTable.SpecFileCntTable() self.mcaTable = SpecFileMcaTable.SpecFileMcaTable() self.mainTab.addTab(self.cntTable, str("Counters")) self.mainTab.addTab(self.mcaTable, str("MCA")) self.mainTab.setCurrentWidget(self.mcaTable) autoBox = qt.QWidget(self) autoBoxLayout = qt.QGridLayout(autoBox) autoBoxLayout.setContentsMargins(0, 0, 0, 0) autoBoxLayout.setSpacing(0) self.autoOffBox = qt.QCheckBox(autoBox) self.autoOffBox.setText("Auto OFF") self.autoAddBox = qt.QCheckBox(autoBox) self.autoAddBox.setText("Auto ADD") self.autoReplaceBox = qt.QCheckBox(autoBox) self.autoReplaceBox.setText("Auto REPLACE") row = 0 autoBoxLayout.addWidget(self.autoOffBox, row, 0) autoBoxLayout.addWidget(self.autoAddBox, row, 1) autoBoxLayout.addWidget(self.autoReplaceBox, row, 2) if self.autoReplace: self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(True) else: self.autoAddBox.setChecked(True) self.autoReplaceBox.setChecked(False) row += 1 if OBJECT3D: self.object3DBox = qt.QCheckBox(autoBox) self.object3DBox.setText("3D On") self.object3DBox.setToolTip("Use OpenGL and enable 2D & 3D selections") autoBoxLayout.addWidget(self.object3DBox, row, 0) self.mcaTable.sigMcaDeviceSelected.connect(self.mcaDeviceSelected) self.meshBox = qt.QCheckBox(autoBox) self.meshBox.setText("2D On") self.meshBox.setToolTip("Enable 2D selections (mesh and scatter)") autoBoxLayout.addWidget(self.meshBox, row, 1) self.forceMcaBox = qt.QCheckBox(autoBox) self.forceMcaBox.setText("Force MCA") self.forceMcaBox.setToolTip("Interpret selections as MCA") autoBoxLayout.addWidget(self.forceMcaBox, row, 2) self.mainLayout.addWidget(self.splitter) self.mainLayout.addWidget(autoBox) # --- list headers labels = ["X", "S#", "Command", "Points", "Nb. Mca"] ncols = len(labels) self.list.setColumnCount(ncols) self.list.setHeaderLabels(labels) #size=50 #self.list.header().resizeSection(0, size) #self.list.header().resizeSection(1, size) #self.list.header().resizeSection(2, 4 * size) #self.list.header().resizeSection(3, size) #self.list.header().resizeSection(4, size) self.list.header().setStretchLastSection(False) if QTVERSION > '5.0.0': self.list.header().setSectionResizeMode(0, qt.QHeaderView.Interactive) self.list.header().setSectionResizeMode(1, qt.QHeaderView.Interactive) self.list.header().setSectionResizeMode(2, qt.QHeaderView.Interactive) self.list.header().setSectionResizeMode(3, qt.QHeaderView.Interactive) self.list.header().setSectionResizeMode(4, qt.QHeaderView.Interactive) fm = self.list.header().fontMetrics() if hasattr(fm, "width"): size = fm.width("X") else: size = fm.maxWidth() self.list.header().setMinimumSectionSize(size) self.list.header().resizeSection(0, size) # self.list.header().resizeSection(1, size * 4) self.list.header().resizeSection(2, size * 25) # self.list.header().resizeSection(3, size * 7) # self.list.header().resizeSection(4, size * 8) elif QTVERSION < '4.2.0': self.list.header().setResizeMode(0, qt.QHeaderView.Stretch) self.list.header().setResizeMode(1, qt.QHeaderView.Stretch) self.list.header().setResizeMode(2, qt.QHeaderView.Interactive) self.list.header().setResizeMode(3, qt.QHeaderView.Stretch) self.list.header().setResizeMode(4, qt.QHeaderView.Stretch) else: self.list.header().setResizeMode(0, qt.QHeaderView.ResizeToContents) self.list.header().setResizeMode(1, qt.QHeaderView.ResizeToContents) self.list.header().setResizeMode(2, qt.QHeaderView.Interactive) self.list.header().setResizeMode(3, qt.QHeaderView.ResizeToContents) self.list.header().setResizeMode(4, qt.QHeaderView.ResizeToContents) # --- signal handling self.list.itemSelectionChanged.connect(self.__selectionChanged) self.list.setContextMenuPolicy(qt.Qt.CustomContextMenu) self.list.customContextMenuRequested.connect(self.__contextMenu) self.list.itemClicked[qt.QTreeWidgetItem, int].connect( \ self.__singleClicked) self.list.itemDoubleClicked[qt.QTreeWidgetItem, int].connect( \ self.__doubleClicked) self.cntTable.sigSpecFileCntTableSignal.connect(self._cntSignal) if QTVERSION > '4.2.0': self.list.setSortingEnabled(False) self.list.header().sectionDoubleClicked[int].connect( \ self.__headerSectionDoubleClicked) if OBJECT3D: self.object3DBox.clicked.connect(self._setObject3DBox) if hasattr(self, 'meshBox'): self.meshBox.clicked.connect(self._setMeshBox) self.autoOffBox.clicked.connect(self._setAutoOff) self.autoAddBox.clicked.connect(self._setAutoAdd) self.autoReplaceBox.clicked.connect(self._setAutoReplace) self.forceMcaBox.clicked.connect(self._setForcedMca) self.mainTab.currentChanged[int].connect(self._tabChanged) self.disableMca = 0 #(type=="scan") self.disableScan = 0 #(type=="mca") # -- last scan watcher if QTVERSION > '5.0.0': self.lastScanWatcher = qt.QTimer() self.lastScanWatcher.setSingleShot(True) self.lastScanWatcher.setInterval(2000) # 2 seconds self.lastScanWatcher.timeout.connect(self._timerSlot) else: self.lastScanWatcher = None # --- context menu self.data= None self.scans= [] def _setObject3DBox(self): self.autoAddBox.setChecked(False) self.meshBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoOffBox.setChecked(False) self.cntTable.set3DEnabled(True) self.object3DBox.setChecked(True) def _setMeshBox(self): self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoOffBox.setChecked(False) self.cntTable.set2DEnabled(True) if hasattr(self, "object3DBox"): self.object3DBox.setChecked(False) self.meshBox.setChecked(True) def _setAutoOff(self): if OBJECT3D: self.cntTable.set3DEnabled(False) self.object3DBox.setChecked(False) if hasattr(self, "meshBox"): self.cntTable.set2DEnabled(False) self.meshBox.setChecked(False) self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoOffBox.setChecked(True) def _setAutoAdd(self): if OBJECT3D: self.cntTable.set3DEnabled(False) self.object3DBox.setChecked(False) if hasattr(self, "meshBox"): self.meshBox.setChecked(False) self.cntTable.set2DEnabled(False) self.autoOffBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoAddBox.setChecked(True) def _setAutoReplace(self): if OBJECT3D: self.cntTable.set3DEnabled(False) self.object3DBox.setChecked(False) if hasattr(self, "meshBox"): self.cntTable.set2DEnabled(False) self.meshBox.setChecked(False) self.autoOffBox.setChecked(False) self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(True) def _setForcedMca(self): if self.forceMcaBox.isChecked(): if OBJECT3D: self.object3DBox.setChecked(False) self.object3DBox.setEnabled(False) if hasattr(self, "meshBox"): self.meshBox.setChecked(False) self.meshBox.setEnabled(False) else: if OBJECT3D: self.object3DBox.setEnabled(True) if hasattr(self, "meshBox"): self.meshBox.setEnabled(True) # # Data management # #NEW data management def setDataSource(self, datasource): _logger.debug("setDataSource(self, datasource) called") _logger.debug("datasource = %s", datasource) self.data = datasource self.refresh() if not self.autoAddBox.isChecked(): return #If there is only one mca containing scan # and we are in auto add mode, I plot it. if len(self.scans) == 1: item = self.list.itemAt(qt.QPoint(0,0)) if item is not None: item.setSelected(True) # this call is not needed # triggered by the selectionChanged signal # self.__selectionChanged() #OLD data management def setData(self, specfiledata): _logger.debug("setData(self, specfiledata) called") _logger.debug("specfiledata = %s", specfiledata) self.data= specfiledata self.refresh() def refresh(self): self.list.clear() if self.data is None: return try: if self.data.sourceName is None: return except Exception: if self.data.SourceName is None: return try: #new info= self.data.getSourceInfo() except Exception: #old if not hasattr(self.data, "GetSourceInfo"): raise info= self.data.GetSourceInfo() self.scans= [] after= None i = 0 for (sn, cmd, pts, mca) in zip(info["KeyList"], info["Commands"], info["NumPts"], info["NumMca"]): if after is not None: #print "after is not none" #item= qt.QTreeWidgetItem(self.list, [after, "", sn, cmd, str(pts), str(mca)]) item= MyQTreeWidgetItem(self.list, ["", sn, cmd, str(pts), str(mca)]) else: item= MyQTreeWidgetItem(self.list, ["", sn, cmd, str(pts), str(mca)]) if (self.disableMca and not mca) or (self.disableScan and not pts): item.setSelectable(0) #XXX: not possible to put in italic: other solutions ?? self.scans.append(sn) after= item i = i + 1 if QTVERSION > '5.0.0': self.list.resizeColumnToContents(0) self.list.resizeColumnToContents(1) #self.list.resizeColumnToContents(2) self.list.resizeColumnToContents(3) self.list.resizeColumnToContents(4) def clear(self): self.list.clear() self.data= None self.scans= [] def markScanSelected(self, scanlist): for sn in self.scans: item= self.list.findItem(sn, 1) if item is not None: if sn in scanlist: item.setText(0, "X") else: item.setText(0, "") def _autoReplace(self, scanlist=None): _logger.debug("autoreplace called with %s", scanlist) if self.autoReplaceBox.isChecked(): self._replaceClicked() elif self.autoAddBox.isChecked(): self._addClicked() # # signal/slot handling # def _cntSignal(self, ddict): if ddict["event"] == "updated": itemlist = self.list.selectedItems() sel = [str(item.text(1)) for item in itemlist] self._autoReplace(sel) def __selectionChanged(self): _logger.info("__selectionChanged") itemlist = self.list.selectedItems() sel = [str(item.text(1)) for item in itemlist] _logger.debug("selection = %s", sel) if not len(sel): return info = self.data.getKeyInfo(sel[0]) self.mcaTable.build(info) if False: # This does not work properly yet # TODO: mca as function of other parameter NbMca = info.get('NbMcaDet', 0) self.cntTable.build(info['LabelNames'], nmca=NbMca) else: self.cntTable.build(info['LabelNames'], nmca=0) autoReplaceCall = True if (info['Lines'] > 0) and len(info['LabelNames']): if self._oldCntSelection is not None: if len(self._oldCntSelection['y']): self.cntTable.setCounterSelection(self._oldCntSelection) else: if len(self.cntTable.cntList): self.cntTable.setCounterSelection({'x':[0], 'y':[-1], 'cntlist':info['LabelNames']*1}) else: if len(self.cntTable.cntList): self.cntTable.setCounterSelection({'x':[0], 'y':[-1], 'cntlist':info['LabelNames']*1}) # That already emitted a signal, no need to repeat with # autoreplace autoReplaceCall = False # Emit this signal for the case someone else uses it ... self.sigScanSelection.emit((sel)) if (info['NbMca'] > 0) and (info['Lines'] > 0): pass elif (info['NbMca'] > 0) and (info['Lines'] == 0): self.mainTab.setCurrentWidget(self.mcaTable) elif (info['NbMca'] == 0) and (info['Lines'] > 0): self.mainTab.setCurrentWidget(self.cntTable) else: pass # Next call is needed to handle the direct opening of MCAs # when using a single scan, single mca file. if autoReplaceCall: self._autoReplace(sel) def __headerSectionDoubleClicked(self, index): if index == 0: return else: self.list.sortItems(index, qt.Qt.AscendingOrder) #print "index = ", index def _timerSlot(self): _logger.info("_timerSlot") # check if last scan is selected if not len(self.scans): if self.lastScanWatcher: if self.lastScanWatcher.isActive(): self.lastScanWatcher.stop() return scan = self.scans[-1] itemList = self.list.findItems(scan, qt.Qt.MatchExactly,1) if len(itemList) == 1: itemlist = self.list.selectedItems() scan_sel = [str(item.text(1)) for item in itemlist] if itemList[0].isSelected(): if len(scan_sel) == 1: # allow the user to perform multiple selections # that include the last scan if hasattr(self.data, "isUpdated") and hasattr(self.data, "refresh"): if hasattr(self.data.sourceName, "upper"): source = self.data.sourceName else: source = self.data.sourceName[0] try: updated = self.data.isUpdated(self.data.sourceName, scan) except Exception: _logger.warning("Error trying to verify if source was updated") updated = False if updated: self.data.refresh() self.refresh() if QTVERSION > "5.0.0": # make sure the item is found and selected after the update itemList = self.list.findItems(scan, qt.Qt.MatchExactly,1) if len(itemList) == 1: itemList[0].setSelected(True) if not self.lastScanWatcher.isActive(): self.lastScanWatcher.start() else: self.lastScanWatcher.setActive(False) def __singleClicked(self, item): _logger.info("__singleClicked") if item is not None: sn = str(item.text(1)) ddict={} ddict['Key'] = sn ddict['Command'] = str(item.text(2)) ddict['NbPoints'] = int(str(item.text(3))) ddict['NbMca'] = int(str(item.text(4))) selected = item.isSelected() if len(self.scans) and self.lastScanWatcher: if sn == self.scans[-1]: if hasattr(self.data, "isUpdated") and hasattr(self.data, "refresh"): if hasattr(self.data.sourceName, "upper"): source = self.data.sourceName else: source = self.data.sourceName[0] if os.path.exists(source): _logger.info("last scan watcher disabled on actual files") if self.lastScanWatcher.isActive(): self.lastScanWatcher.stop() return if not self.lastScanWatcher.isActive(): self.lastScanWatcher.start() _logger.info("last scan watcher started") return if self.lastScanWatcher.isActive(): self.lastScanWatcher.stop() def __doubleClicked(self, item): _logger.info("__doubleClicked") if item is not None: sn = str(item.text(1)) ddict={} ddict['Key'] = sn ddict['Command'] = str(item.text(2)) ddict['NbPoints'] = int(str(item.text(3))) ddict['NbMca'] = int(str(item.text(4))) self.sigScanDoubleClicked.emit(ddict) if len(self.scans): if sn == self.scans[-1]: if hasattr(self.data, "isUpdated") and hasattr(self.data, "refresh"): if hasattr(self.data.sourceName, "upper"): source = self.data.sourceName else: source = self.data.sourceName[0] if os.path.exists(source) and self.data.isUpdated(self.data.sourceName, sn): updated = True else: # bliss case, it takes as long to check as to update updated = True if updated: self.data.refresh() self.refresh() if QTVERSION > "5.0.0": # make sure the item is selected itemList = self.list.findItems(sn, qt.Qt.MatchExactly,1) if len(itemList) == 1: itemList[0].setSelected(True) #shortcut selec + remove? #for the time being just add self._addClicked() def __contextMenu(self, point): _logger.info("__contextMenu %s", point) item = self.list.itemAt(point) if item is not None: sn= str(item.text(1)) self.menu= qt.QMenu() self.menu.addAction("Show scan header", self.__showScanInfo) self.menu_idx = self.scans.index(sn) self.menu.popup(self.cursor().pos()) def mcaDeviceSelected(self, ddict): action, actiontype = ddict['action'].split() mca = ddict['mca'] + 1 sel_list = [] itemlist = self.list.selectedItems() scan_sel = [str(item.text(1)) for item in itemlist] for scan in scan_sel: sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = "%s.%d"% (scan, mca) #sel['selection'] = None sel['selection'] = {} if actiontype.upper() == "STACK": sel['selection']['selectiontype'] = "STACK" sel['imageselection'] = False else: sel['selection']['selectiontype'] = "2D" sel['imageselection'] = True sel['scanselection'] = False sel['mcaselection'] = False sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+ sel['Key'] sel_list.append(sel) if len(scan_sel): if action == 'ADD': self.sigAddSelection.emit(sel_list) elif action == 'REMOVE': self.sigRemoveSelection.emit(sel_list) elif action == 'REPLACE': self.sigReplaceSelection.emit(sel_list) def __showScanInfo(self, idx = None): if idx is None: if QTVERSION > '4.0.0': idx = self.menu_idx _logger.debug("Scan information:") try: info = self.data.getDataObject(self.scans[idx]).info except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Error: %s\n accessing scan information." % (sys.exc_info()[1]) msg.setText(text) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise return dataInfoWidget= SpecFileDataInfo.SpecFileDataInfo(info) if "Header" in info: if info['Header'] is not None: dataInfoWidget.setWindowTitle(info['Header'][0]) dataInfoWidget.show() wid = id(dataInfoWidget) self.dataInfoWidgetDict[wid] = dataInfoWidget dataInfoWidget.notifyCloseEventToWidget(self) def _dataInfoClosed(self, ddict): if ddict['event'] == "SpecFileDataInfoClosed": del self.dataInfoWidgetDict[ddict['id']] def customEvent(self, event): if hasattr(event, 'dict'): ddict = event.dict self._dataInfoClosed(ddict) def _addClicked(self, emit=True): _logger.debug("Overwritten _addClicked method") #get selected scan keys if QTVERSION < '4.0.0': scan_sel= [sn for sn in self.scans if self.list.findItem(sn,1).isSelected()] else: itemlist = self.list.selectedItems() scan_sel = [str(item.text(1)) for item in itemlist] #get selected counter keys cnt_sel = self.cntTable.getCounterSelection() if len(cnt_sel['cntlist']): if len(cnt_sel['y']): self._oldCntSelection = cnt_sel mca_sel = self.mcaTable.getCurrentlySelectedMca() sel_list = [] #build the appropriate selection for mca's for scan in scan_sel: for mca in mca_sel: sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan sel['Key'] += "." + mca sel['selection'] = None #for the future #sel['scanselection'] = False sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+ sel['Key'] sel_list.append(sel) if len(cnt_sel['cntlist']): if len(cnt_sel['y']): #if there is something to plot sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan sel['selection'] = {} if self.forceMcaBox.isChecked(): sel['scanselection'] = "MCA" else: sel['scanselection'] = True sel['selection']['x'] = cnt_sel['x'] sel['selection']['y'] = cnt_sel['y'] sel['selection']['m'] = cnt_sel['m'] sel['selection']['cntlist'] = cnt_sel['cntlist'] sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+ sel['Key'] if len(sel['selection']['x']) == 2: if self.meshBox.isChecked(): sel['selection']['selectiontype'] = "2D" if cnt_sel['y'][0] >= len(cnt_sel['cntlist']): if 'mcalist' in cnt_sel: sel['selection']['mcalist'] = cnt_sel['mcalist'] else: # I could rise the exception here # but I let the data source to rise it. pass elif len(sel['selection']['x']) == 2: if not self.meshBox.isChecked(): # no regular mesh attempted # try scatter or 3D sel['legend'] += " " + cnt_sel['cntlist'][cnt_sel['y'][0]] sel_list.append(sel) if emit: if len(sel_list): self.sigAddSelection.emit(sel_list) else: return sel_list def currentSelectionList(self): return self._addClicked(emit=False) def _removeClicked(self): _logger.debug("Overwritten _removeClicked method") #get selected scan keys itemlist = self.list.selectedItems() scan_sel = [str(item.text(1)) for item in itemlist] #get selected counter keys cnt_sel = self.cntTable.getCounterSelection() mca_sel = self.mcaTable.getCurrentlySelectedMca() sel_list = [] #build the appropriate selection for mca's for scan in scan_sel: for mca in mca_sel: sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan sel['Key'] += "."+mca sel['selection'] = None #for the future #sel['scanselection'] = False sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+sel['Key'] sel_list.append(sel) if len(cnt_sel['cntlist']): if len(cnt_sel['y']): #if there is something to plot sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan sel['selection'] = {} if self.forceMcaBox.isChecked(): sel['scanselection'] = "MCA" else: sel['scanselection'] = True sel['selection']['x'] = cnt_sel['x'] if len(sel['selection']['x']) == 2: if self.meshBox.isChecked(): sel['selection']['selectiontype'] = "2D" sel['selection']['y'] = cnt_sel['y'] sel['selection']['m'] = cnt_sel['m'] sel['selection']['cntlist'] = cnt_sel['cntlist'] sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+ sel['Key'] sel_list.append(sel) if len(sel_list): self.sigRemoveSelection.emit(sel_list) def _replaceClicked(self): _logger.debug("Overwritten _replaceClicked method") #get selected scan keys itemlist = self.list.selectedItems() scan_sel = [str(item.text(1)) for item in itemlist] #get selected counter keys cnt_sel = self.cntTable.getCounterSelection() if len(cnt_sel['cntlist']): if len(cnt_sel['y']): self._oldCntSelection = cnt_sel mca_sel = self.mcaTable.getCurrentlySelectedMca() sel_list = [] #build the appropriate selection for mca's for scan in scan_sel: for mca in mca_sel: sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan sel['Key'] += "."+mca sel['selection'] = None #for the future #sel['scanselection'] = False #This could also be MCA sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+sel['Key'] sel_list.append(sel) if len(cnt_sel['cntlist']): sel = {} sel['SourceName'] = self.data.sourceName sel['SourceType'] = self.data.sourceType sel['Key'] = scan if len(cnt_sel['y']): #if there is something to plot if self.forceMcaBox.isChecked(): sel['scanselection'] = "MCA" else: sel['scanselection'] = True #This could also be SCAN sel['selection'] = {} sel['selection']['x'] = cnt_sel['x'] if len(sel['selection']['x']) == 2: if self.meshBox.isChecked(): sel['selection']['selectiontype'] = "2D" sel['selection']['y'] = cnt_sel['y'] sel['selection']['m'] = cnt_sel['m'] sel['selection']['cntlist'] = cnt_sel['cntlist'] sel['legend'] = os.path.basename(sel['SourceName'][0]) +" "+ sel['Key'] if cnt_sel['y'][0] >= len(cnt_sel['cntlist']): if 'mcalist' in cnt_sel: sel['selection']['mcalist'] = cnt_sel['mcalist'] else: # I could rise the exception here # but I let the data source to rise it. pass sel_list.append(sel) if len(sel_list): self.sigReplaceSelection.emit(sel_list) def _tabChanged(self, value): _logger.debug("self._tabChanged(value), value = %s", value) text = str(self.mainTab.tabText(value)) if self.data is None: return ddict = {} ddict['SourceName'] = self.data.sourceName ddict['SourceType'] = self.data.sourceType ddict['event'] = "SelectionTypeChanged" ddict['SelectionType'] = text self.sigOtherSignals.emit(ddict) def getWidgetConfiguration(self): # just limited to the actions ddict = {} ddict["mca"]= self.forceMcaBox.isChecked() if self.autoReplaceBox.isChecked(): ddict['auto'] = "REPLACE" elif self.autoAddBox.isChecked(): ddict['auto'] = "ADD" else: ddict['auto'] = "OFF" ddict["2d"]= self.meshBox.isChecked() if hasattr(self, "object3DBox"): ddict["3d"] = self.object3DBox.isChecked() else: ddict["3d"] = False ddict["mca"]= self.forceMcaBox.isChecked() return ddict def setWidgetConfiguration(self, ddict): # just limited to the actions mca = ddict.get("mca", False) if mca in ["False", "0", 0, "", "false"]: mca = False else: mca = True auto = ddict.get("auto", "ADD") twod = ddict.get("2d", "False") if twod in ["False", "0", 0, "", "false"]: twod = False else: twod = True threed = ddict.get("3d", "False") if threed in ["False", "0", 0, "", "false"]: threed = False else: threed = True self.forceMcaBox.setChecked(mca) if auto == "ADD": self._setAutoAdd() elif auto == "OFF": self._setAutoOff() # this is compatible with 2D or 3D selections if OBJECT3D: if threed: self._setObject3DBox() else: self.object3DBox.setChecked(False) if twod: self._setMeshBox() else: self.meshBox.setChecked(False) elif auto == "REPLACE": self._setAutoReplace() def test(): from PyMca5.PyMcaGui.pymca import QDataSource a = qt.QApplication(sys.argv) w = QSpecFileWidget() if len(sys.argv) > 1: d = QDataSource.QDataSource(sys.argv[1]) else: if os.path.exists('03novs060sum.mca'): d = QDataSource.QDataSource('03novs060sum.mca') else: print("Usage:") print(" python QSpecFileWidget.py filename") a.quit() sys.exit(0) w.setData(d) w.show() def mySlot(selection): print(selection) try: # this is only for "addSelection" print(d.getDataObject(selection[0]['Key'], selection[0]['selection'])) except Exception: pass return w.sigAddSelection.connect(mySlot) w.sigRemoveSelection.connect(mySlot) w.sigReplaceSelection.connect(mySlot) a.lastWindowClosed.connect(a.quit) a.exec() if __name__=="__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/QSpsWidget.py0000644000000000000000000014720414741736366020074 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon, V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaIO import spswrap as sps from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import SpecFileCntTable from PyMca5.PyMcaGui.plotting import MaskImageWidget QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.plotting import PyMca_Icons as icons _logger = logging.getLogger(__name__) SOURCE_TYPE = 'SPS' SCAN_MODE = True if QTVERSION > '4.0.0': class QGridLayout(qt.QGridLayout): def addMultiCellWidget(self, w, r0, r1, c0, c1, *var): self.addWidget(w, r0, c0, 1 + r1 - r0, 1 + c1 - c0) class SPSFramesMcaWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.graphWidget = MaskImageWidget.MaskImageWidget(self, imageicons=False, selection=False) self.graph = self.graphWidget.graphWidget.graph self.mainLayout.addWidget(self.graphWidget) def setInfo(self, info): self.setDataSize(info["rows"], info["cols"]) self.setTitle(info["Key"]) self.info=info def setDataSource(self, data): self.data = data self.data.sigUpdated.connect(self._update) dataObject = self._getDataObject() self.graphWidget.setImageData(dataObject.data) self.lastDataObject = dataObject def _update(self, ddict): targetwidgetid = ddict.get('targetwidgetid', None) if targetwidgetid not in [None, id(self)]: return dataObject = self._getDataObject(ddict['Key'], selection=None) if dataObject is not None: self.graphWidget.setImageData(dataObject.data) self.lastDataObject = dataObject def _getDataObject(self, key=None, selection=None): if key is None: key = self.info['Key'] dataObject = self.data.getDataObject(key, selection=None, poll=False) if dataObject is not None: dataObject.info['legend'] = self.info['Key'] dataObject.info['imageselection'] = False dataObject.info['scanselection'] = False dataObject.info['targetwidgetid'] = id(self) self.data.addToPoller(dataObject) return dataObject def setDataSize(self,rows,cols,selsize=None): self.rows= rows self.cols= cols if self.cols<=self.rows: self.idx='cols' else: self.idx='rows' def setTitle(self, title): self.graph.setTitle("%s"%title) def getSelection(self): keys = {"plot":self.idx,"x":0,"y":1} return [keys] class SPSScanArrayWidget(SpecFileCntTable.SpecFileCntTable): def setInfo(self, info): _logger.debug("info = %s", info) if "LabelNames" in info: # new style cntList = info.get("LabelNames", []) self.build(cntList) return elif "envdict" in info: # old style if len(info["envdict"].keys()): #We have environment information if "datafile" in info["envdict"]: if info["envdict"]["datafile"] != "/dev/null": _logger.debug("I should send a signal, either from here or from the parent to the dispatcher") _logger.debug("SPEC data file = %s", info["envdict"]["datafile"]) #usefull keys = ["datafile", "scantype", "axistitles","plotlist", "xlabel", "ylabel"] # #info = self.data.getKeyInfo(sel[0]) #except Exception: # info, data = self.data.LoadSource(sel[0]) cntList = info.get("LabelNames", []) ycntidx = info["envdict"].get('plotlist', "") if len(ycntidx): ycntidx = ycntidx.split(',') self.build(cntList) #self.cntTable.setCounterSelection(self._oldCntSelection) return if info['cols'] > 0: #arrayname = info['Key'] arrayname = 'Column' cntList = [] for i in range(info['cols']): cntList.append('%s_%03d' % (arrayname, i)) self.build(cntList) def getSelection(self): #get selected counter keys cnt_sel = self.getCounterSelection() sel_list = [] #build the appropriate selection for mca's if len(cnt_sel['cntlist']): if len(cnt_sel['y']): #if there is something to plot for index in cnt_sel['y']: sel = {} sel['selection'] = {} sel['plot'] = 'scan' sel['scanselection'] = True sel['selection']['x'] = cnt_sel['x'] sel['selection']['y'] = [index] sel['selection']['m'] = cnt_sel['m'] sel['selection']['cntlist'] = cnt_sel['cntlist'] sel_list.append(sel) return sel_list class SPSMcaArrayWidget(qt.QWidget): def __init__(self, parent=None, name="SPS_MCA_DATA", fl=0, title="MCA", size=(0,8192)): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) layout= qt.QGridLayout(self, 5, 2) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) layout= QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(0) self.title= qt.QLabel(self) font= self.title.font() font.setBold(1) self.title.setFont(font) if QTVERSION < '4.0.0': layout.addMultiCellWidget(self.title, 0, 0, 0, 1, qt.Qt.AlignCenter) layout.addRowSpacing(0, 40) else: #layout.addMultiCellWidget(self.title, 0, 0, 0, 1, qt.Qt.AlignCenter) layout.addWidget(self.title, 0, 0) layout.setAlignment(self.title, qt.Qt.AlignCenter) self.setTitle(title) def setInfo(self, info): self.setDataSize(info["rows"], info["cols"]) self.setTitle(info["Key"]) def setDataSize(self,rows,cols,selsize=None): self.rows= rows self.cols= cols if self.cols<=self.rows: self.idx='cols' else: self.idx='rows' def setTitle(self, title): self.title.setText("%s"%title) def getSelection(self): keys = {"plot":self.idx,"x":0,"y":1} return [keys] class SPSXiaArrayWidget(qt.QWidget): def __init__(self, parent=None, name="SPS_XIA_DATA", fl=0, title="XIA", size=(0,8192)): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) layout= qt.QGridLayout(self, 2, 1) else: qt.QWidget.__init__(self, parent) layout= qt.QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(0) self.title= qt.QLabel(self) font= self.title.font() font.setBold(1) self.title.setFont(font) self.title.setText(title) if QTVERSION < '4.0.0': self.detList= qt.QListBox(self) self.detList.setSelectionMode(qt.QListBox.Multi) layout.addWidget(self.title, 0, 0, qt.Qt.AlignCenter) layout.addRowSpacing(0, 40) layout.addWidget(self.detList, 1, 0) else: self.detList= qt.QListWidget(self) self.detList.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) layout.addWidget(self.title, 0, 0) layout.setAlignment(self.title, qt.Qt.AlignCenter) ##layout.addRowSpacing(0, 40) _logger.debug("row spacing") layout.addWidget(self.detList, 1, 0) def setTitle(self, title): self.title.setText("%s"%title) def setInfo(self, info): self.setDataSize(info["rows"], info["cols"], info.get("Detectors", None)) self.setTitle(info["Key"]) def setDataSize(self, rows, cols, dets=None): self.rows= rows self.cols= cols if dets is None or (len(dets)!=(rows-1)): dets= range(self.rows) self.detList.clear() if QTVERSION < '4.0.0': for idx in range(1, self.rows): self.detList.insertItem("Detector %d"%dets[idx-1]) else: for idx in range(1, self.rows): self.detList.addItem("Detector %d"%dets[idx-1]) def getSelection(self): selection= [] if QTVERSION < '4.0.0': ylist= [ (idx+1) for idx in range(self.detList.count()) if self.detList.isSelected(idx) ] else: itemlist = self.detList.selectedItems() ylist = [int(str(item.text()).split()[-1]) for item in itemlist] for y in ylist: selection.append({"plot":"XIA", "x":0, "y":y}) return selection class SPS_ImageArray(qt.QWidget): def __init__(self, parent=None, name="SPS_ImageArray", fl=0, title="MCA", size=(0,8192)): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) layout= qt.QGridLayout(self, 5, 2) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) layout= QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(0) self.title= qt.QLabel(self) font= self.title.font() font.setBold(1) self.title.setFont(font) if QTVERSION < '4.0.0': layout.addMultiCellWidget(self.title, 0, 0, 0, 1, qt.Qt.AlignCenter) layout.addRowSpacing(0, 40) else: #layout.addMultiCellWidget(self.title, 0, 0, 0, 1, qt.Qt.AlignCenter) layout.addWidget(self.title, 0, 0) layout.setAlignment(self.title, qt.Qt.AlignCenter) self.setTitle(title) def setInfo(self, info): self.setDataSize(info["rows"], info["cols"]) self.setTitle(info["Key"]) def setDataSize(self,rows,cols,selsize=None): self.rows= rows self.cols= cols def setTitle(self, title): self.title.setText("%s"%title) def getSelection(self): #get selected counter keys sel_list = [] sel = {} sel['selection'] = {} sel['plot'] = 'image' sel['scanselection'] = False sel['selection'] = None sel_list.append(sel) return sel_list class SPS_StandardArray(qt.QWidget): def __init__(self, parent=None, name="SPS_StandardArray", fl=0, rows=0, cols=0): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) layout= qt.QGridLayout(self, 4, 2) else: qt.QWidget.__init__(self, parent) layout= qt.QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(0) plab= qt.QLabel("Plot", self) xlab= qt.QLabel("X :", self) ylab= qt.QLabel("Y :", self) layout.addWidget(plab, 0, 0, qt.Qt.AlignRight) layout.addWidget(xlab, 1, 0, qt.Qt.AlignRight) layout.addWidget(ylab, 2, 0, qt.Qt.AlignRight|qt.Qt.AlignTop) self.plotCombo= qt.QComboBox(self) self.plotCombo.setEditable(0) if QTVERSION < '4.0.0': self.plotCombo.insertItem("Rows") self.plotCombo.insertItem("Columns") else: self.plotCombo.addItem("Rows") self.plotCombo.addItem("Columns") self.xCombo= qt.QComboBox(self) self.xCombo.setEditable(0) self.yList= qt.QListWidget(self) self.yList.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) layout.addWidget(self.plotCombo, 0, 1) layout.addWidget(self.xCombo, 1, 1) layout.addWidget(self.yList, 2, 1) self.plotCombo.activated[int].connect(self.__plotChanged) self.setDataSize(rows, cols) def setDataSize(self, rows, cols): self.rows= rows self.cols= cols idx= self.cols<=self.rows self.plotCombo.setCurrentIndex(idx) self.__plotChanged(idx) def __plotChanged(self, index): if index==1: txt= "Column" val= self.cols else: txt= "Row" val= self.rows self.xCombo.clear() if QTVERSION < '4.0.0': self.xCombo.insertItem("Array Index") self.yList.clear() for x in range(val): self.xCombo.insertItem("%s %d"%(txt,x)) self.yList.insertItem("%s %d"%(txt,x)) if val==2: self.xCombo.setCurrentItem(0) self.__xChanged(0) else: self.xCombo.addItem("Array Index") self.yList.clear() for x in range(val): self.xCombo.addItem("%s %d"%(txt,x)) self.yList.addItem("%s %d"%(txt,x)) if val==2: self.xCombo.setCurrentIndex(0) self.__xChanged(0) def __xChanged(self, index): pass def getSelection(self): selection= [] if QTVERSION < '4.0.0': idx= self.plotCombo.currentItem() else: idx= self.plotCombo.currentIndex() if idx==1: plot= "cols" else: plot= "rows" if QTVERSION < '4.0.0': idx= self.xCombo.currentItem() else: idx= self.xCombo.currentIndex() if idx==0: x= None else: x= idx-1 if QTVERSION < '4.0.0': ylist= [ idx for idx in range(self.yList.count()) if self.yList.isSelected(idx) ] else: itemlist = self.yList.selectedItems() ylist = [int(str(item.text()).split()[-1]) for item in itemlist] for y in ylist: selection.append({"plot":plot, "x":x, "y":y}) return selection class QSpsWidget(qt.QWidget): HiddenArrays= ["MCA_DATA_PARAM", "XIA_STAT", "XIA_DET"] WidgetArrays= {"scan":SPSScanArrayWidget, "xia": SPSXiaArrayWidget, "mca": SPSMcaArrayWidget, "array": SPS_StandardArray, "image": SPS_ImageArray, "frames_mca":SPSFramesMcaWidget, "frames_image":qt.QWidget, "empty": qt.QWidget} TypeArrays= {"MCA_DATA": "mca", "XIA_PLOT": "mca", "XIA_DATA": "xia", "XIA_BASELINE":"xia", "SCAN_D": "scan", "image_data":"image" } sigAddSelection = qt.pyqtSignal(object) sigRemoveSelection = qt.pyqtSignal(object) sigReplaceSelection = qt.pyqtSignal(object) sigOtherSignals = qt.pyqtSignal(object) def __init__(self, parent=None, name="SPSSelector", fl=0): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) else: qt.QWidget.__init__(self, parent) self.dataSource= None self.data= None self.currentSpec= None self.currentArray= None self.selection= None self.openFile = self.refreshSpecList self.selectPixmap= qt.QPixmap(icons.selected) self.unselectPixamp= qt.QPixmap(icons.unselected) mainLayout= qt.QVBoxLayout(self) # --- spec name selection specWidget= qt.QWidget(self) self.specCombo= qt.QComboBox(specWidget) self.specCombo.setEditable(0) if QTVERSION < '4.0.0': self.reload_= qt.QIconSet(qt.QPixmap(icons.reload_)) refreshButton= qt.QToolButton(specWidget) refreshButton.setIconSet(self.reload_) self.closeIcon= qt.QIconSet(qt.QPixmap(icons.fileclose)) closeButton= qt.QToolButton(specWidget) closeButton.setIconSet(self.closeIcon) else: self.reload_= qt.QIcon(qt.QPixmap(icons.reload_)) refreshButton= qt.QToolButton(specWidget) refreshButton.setIcon(self.reload_) self.closeIcon= qt.QIcon(qt.QPixmap(icons.fileclose)) closeButton= qt.QToolButton(specWidget) closeButton.setIcon(self.closeIcon) refreshButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) closeButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Minimum)) specLayout= qt.QHBoxLayout(specWidget) specLayout.addWidget(self.specCombo) specLayout.addWidget(refreshButton) specLayout.addWidget(closeButton) refreshButton.clicked.connect(self.refreshSpecList) closeButton.clicked.connect(self.closeCurrentSpec) if hasattr(self.specCombo, "textActivated"): self.specCombo.textActivated[str].connect(self.refreshArrayList) else: self.specCombo.activated[str].connect(self.refreshArrayList) # --- splitter self.splitter= qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Vertical) # --- shm array list self.arrayList= qt.QTreeWidget(self.splitter) labels = ["","Array Name", "Rows","Cols"] self.arrayList.setColumnCount(len(labels)) self.arrayList.setHeaderLabels(labels) self.arrayList.setSelectionMode(qt.QAbstractItemView.SingleSelection) self.arrayList.itemSelectionChanged[()].connect(self.__arraySelection) # --- array parameter self.paramIndex= {} self.paramWidget= qt.QStackedWidget(self.splitter) for wtype in self.WidgetArrays.keys(): widclass= self.WidgetArrays[wtype] wid= widclass(self.paramWidget) self.paramWidget.addWidget(wid) self.paramIndex[wtype]= self.paramWidget.indexOf(wid) # --- command buttons butWidget= qt.QWidget(self) butWidget.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Minimum, qt.QSizePolicy.Minimum)) addButton= qt.QPushButton("Add", butWidget) removeButton= qt.QPushButton("Remove", butWidget) replaceButton= qt.QPushButton("Replace", butWidget) butLayout= qt.QHBoxLayout(butWidget) butLayout.addWidget(addButton) butLayout.addWidget(removeButton) butLayout.addWidget(replaceButton) butLayout.setContentsMargins(5, 5, 5, 5) addButton.clicked.connect(self.__addClicked) replaceButton.clicked.connect(self.__replaceClicked) removeButton.clicked.connect(self.__removeClicked) # --- main layout mainLayout.setContentsMargins(5, 5, 5, 5) mainLayout.setSpacing(5) mainLayout.addWidget(specWidget) if __name__ != "__main__": specWidget.hide() mainLayout.addWidget(self.splitter) mainLayout.addWidget(butWidget) def setData(self,data=None): _logger.debug("setData(self, data) called") _logger.debug("spec data = %s", data) self.data= data self.refreshSpecList() self.refreshDataSelection() def setDataSource(self,data=None): _logger.debug("setDataSource(self, data) called") _logger.debug("spec data = %s", data) self.data= data self.refreshSpecList() self.refreshDataSelection() if data is None: self.arrayList.clear() else: self.refreshArrayList(data.sourceName) def refreshSpecList(self): speclist= sps.getspeclist() if self.specCombo.count(): selected= str(self.specCombo.currentText()) else: selected= None self.specCombo.clear() if len(speclist): for spec in speclist: self.specCombo.addItem(spec) self.selectSpec(selected or speclist[0]) def selectSpec(self, specname=None): for idx in range(self.specCombo.count()): if str(self.specCombo.itemText(idx))==specname: self.specCombo.setCurrentIndex(idx) def __getCurrentSpec(self): if self.specCombo.count(): return str(self.specCombo.currentText()) else: return None def refreshDataSelection(self, source=None): spec= self.__getCurrentSpec() if spec is not None and self.dataSource is not None: arraylist= self.dataSource.GetDataList(spec) item= self.arrayList.firstChild() while item is not None: name= str(item.text(1)) if name in arraylist: item.setPixmap(0, self.selectPixmap) else: item.setPixmap(0, self.unselectPixmap) item= item.nextSibling() def closeCurrentSpec(self): spec= self.__getCurrentSpec() if spec is not None and self.dataSource is not None: arraylist= self.DataSource.GetDataList(spec) if len(arraylist): msg= "%d spectrums are linked to that SPEC source.\n"%(len(arraylist)) msg+= "Do you really want to delete all these spectrums ??" ans= qt.QMessageBox.information(self, "Remove Spec Shared %s"%spec, msg, \ qt.QMessageBox.No, qt.QMessageBox.Yes) if ans.qt.QMessageBox.Yes: self.dataSource.RemoveData(spec) def refreshArrayList(self,qstring): self.arrayList.clear() #spec= self.__getCurrentSpec() self.currentSpec = str(qstring) spec = self.currentSpec if spec is not None: arraylist= {} for array in sps.getarraylist(spec): if array not in self.HiddenArrays: info= sps.getarrayinfo(spec, array) rows= info[0] cols= info[1] type= info[2] flag= info[3] _logger.debug(" array = %s", array) _logger.debug(" flag = %s", flag) _logger.debug(" type = %s", type) if type!=sps.STRING: if (flag & sps.TAG_ARRAY) == sps.TAG_ARRAY: arraylist[array]= (rows, cols) if len(arraylist.keys()): arrayorder= list(arraylist.keys()) arrayorder.sort() arrayorder.reverse() if QTVERSION < '4.0.0': for name in arrayorder: self.arrayList.insertItem(qt.QListViewItem(self.arrayList, "", name, str(arraylist[name][0]), str(arraylist[name][1]))) else: for name in arrayorder: item = (qt.QTreeWidgetItem(self.arrayList, ["", name, str(arraylist[name][0]), str(arraylist[name][1])])) self.refreshDataSelection() self.__getParamWidget("empty") def __arraySelection(self): """ Method called when selecting an array in the view """ item= self.arrayList.selectedItems() if len(item): item = item[0] self.currentArray= str(item.text(1)) else: #click on empty space return #self.data.SetSource(self.currentSpec) #self.data.LoadSource(self.currentArray) info= self.data.getKeyInfo(self.currentArray) wid= None atype = None if 0 and ((info['flag'] & sps.TAG_FRAMES) == sps.TAG_FRAMES) and\ ((info['flag'] & sps.TAG_IMAGE) == sps.TAG_IMAGE): atype = "frames_image" elif ((info['flag'] & sps.TAG_FRAMES) == sps.TAG_FRAMES) and\ ((info['flag'] & sps.TAG_MCA) == sps.TAG_MCA): atype = "frames_mca" elif (info['flag'] & sps.TAG_IMAGE) == sps.TAG_IMAGE: atype = "image" elif (info['flag'] & sps.TAG_MCA) == sps.TAG_MCA: atype = "mca" elif (info['flag'] & sps.TAG_SCAN) == sps.TAG_SCAN: atype = "scan" elif (info['rows'] > 100) and (info['cols'] > 100): atype = "image" if atype is not None: wid= self.__getParamWidget(atype) wid.setInfo(info) if hasattr(wid, "setDataSource"): wid.setDataSource(self.data) else: for (array, atype) in self.TypeArrays.items(): if self.currentArray[0:len(array)]==array: wid= self.__getParamWidget(atype) wid.setInfo(info) if hasattr(wid, "setDataSource"): wid.setDataSource(self.data) break if wid is None: arrayType = "ARRAY" wid= self.__getParamWidget("array") wid.setDataSize(info["rows"], info["cols"]) else: arrayType = atype.upper() #emit a selection to inform about the change ddict = {} ddict['SourceName'] = self.data.sourceName ddict['SourceType'] = self.data.sourceType ddict['event'] = "SelectionTypeChanged" if arrayType in ["IMAGE"]: ddict['SelectionType'] = self.data.sourceName +" "+self.currentArray elif arrayType in ["MCA", "XIA"]: ddict['SelectionType'] = "MCA" elif arrayType in ["ARRAY"]: ddict['SelectionType'] = "MCA" else: ddict['SelectionType'] = arrayType self.sigOtherSignals.emit(ddict) def __getParamWidget(self, widtype): wid= self.paramWidget.currentWidget() if self.paramWidget.indexOf(wid) != self.paramIndex[widtype]: self.paramWidget.setCurrentIndex(self.paramIndex[widtype]) wid = self.paramWidget.currentWidget() return wid def __replaceClicked(self): _logger.debug("replace clicked") selkeys= self.__getSelectedKeys() if len(selkeys): #self.eh.event(self.repEvent, selkeys) _logger.debug("Replace event") sel = {} sel['SourceType'] = SOURCE_TYPE sellistsignal = [] for selection in selkeys: selsignal = {} selsignal['SourceType'] = self.data.sourceType selsignal['SourceName'] = self.data.sourceName selsignal['selection'] = None selsignal['Key'] = selection['Key'] if 'SourceName' not in sel: sel['SourceName'] = selection['SourceName'] arrayname = selection['Key'] if 'Key' not in sel: sel['Key'] = selection['Key'] if arrayname not in sel: sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'cols': selsignal["selection"] = {"cols":{}} selsignal["selection"]["cols"] = {} selsignal["selection"]["cols"]["x"] = [selection['x']] selsignal["selection"]["cols"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".c.%d" % int(selection['y']) sel[arrayname]['cols'].append({'x':selection['x'],'y':selection['y']}) elif selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'],'y':selection['y']}) selsignal["selection"] = {"rows":{}} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".r.%d" % int(selection['y']) elif selection['plot'] == 'XIA': sel[arrayname]['rows'].append({'x':selection['x'], 'y':selection['y']}) #selsignal["Key"] += ".r.%d" % int(selection['y']) selsignal["selection"] = {"rows":{}, "XIA":True} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ " #%02d" % int(selection['y']) elif selection['plot'] == 'scan': if SCAN_MODE: #sel[arrayname]['cols'].append({'x':selection['selection']['x'][0], # 'y':selection['selection']['y'][0]}) selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = True #print "cheeting" #selsignal['scanselection'] = False else: #do it as a col sel[arrayname]['cols'].append({'x':selection['selection']['x'], 'y':selection['selection']['y']}) selsignal["selection"] = {'cols':{}} selsignal["selection"]["cols"]["x"] = selection['selection']['x'] selsignal["selection"]["cols"]["y"] = selection['selection']['y'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = True #print "cheeting" #selsignal['scanselection'] = False elif selection['plot'] == 'image': selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = False selsignal['imageselection'] = True sellistsignal.append(selsignal) self.setSelected([sel],reset=1) self.sigReplaceSelection.emit(sellistsignal) def currentSelectionList(self): return self._addCliked(emit = False) def __addClicked(self): return self._addClicked() def _addClicked(self, emit=True): _logger.debug("select clicked") selkeys= self.__getSelectedKeys() _logger.debug("selected keys = %s", selkeys ) if len(selkeys): #self.eh.event(self.addEvent, selkeys) _logger.debug("Select event") sel = {} sel['SourceType'] = SOURCE_TYPE sellistsignal = [] for selection in selkeys: selsignal = {} selsignal['SourceType'] = self.data.sourceType selsignal['SourceName'] = self.data.sourceName selsignal['selection'] = None selsignal['Key'] = selection['Key'] if 'SourceName' not in sel: sel['SourceName'] = selection['SourceName'] arrayname = selection['Key'] if 'Key' not in sel: sel['Key'] = selection['Key'] if arrayname not in sel: sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'XIA': sel[arrayname]['rows'].append({'x':selection['x'], 'y':selection['y']}) #selsignal["Key"] += ".r.%d" % int(selection['y']) selsignal["selection"] = {"rows":{}, "XIA":True} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ " #%02d" % int(selection['y']) elif selection['plot'] == 'cols': sel[arrayname]['cols'].append({'x':selection['x'], 'y':selection['y']}) #selsignal["Key"] += ".c.%d" % int(selection['y']) selsignal["selection"] = {"cols":{}} selsignal["selection"]["cols"] = {} selsignal["selection"]["cols"]["x"] = [selection['x']] selsignal["selection"]["cols"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".c.%d" % int(selection['y']) elif selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'], 'y':selection['y']}) #selsignal["Key"] += ".r.%d" % int(selection['y']) selsignal["selection"] = {"rows":{}} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".r.%d" % int(selection['y']) elif selection['plot'] == 'scan': if SCAN_MODE: #sel[arrayname]['cols'].append({'x':selection['selection']['x'][0], # 'y':selection['selection']['y'][0]}) selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = True #print "cheeting" #selsignal['scanselection'] = False else: #do it as a col sel[arrayname]['cols'].append({'x':selection['selection']['x'], 'y':selection['selection']['y']}) selsignal["selection"] = {'cols':{}} selsignal["selection"]["cols"]["x"] = selection['selection']['x'] selsignal["selection"]["cols"]["y"] = selection['selection']['y'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = True #print "cheeting" #selsignal['scanselection'] = False elif selection['plot'] == 'image': selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = False selsignal['imageselection'] = True sellistsignal.append(selsignal) if self.selection is None: self.setSelected([sel],reset=1) else: self.setSelected([sel],reset=0) if emit: self.sigAddSelection.emit(sellistsignal) else: return sellistsignal def __getSelectedKeys(self): selkeys= [] parwid= self.paramWidget.currentWidget() if self.currentArray is not None: for sel in parwid.getSelection(): sel["SourceName"]= self.currentSpec sel['SourceType'] = SOURCE_TYPE sel["Key"]= self.currentArray selkeys.append(sel) return selkeys def __removeClicked(self): _logger.debug("remove clicked") selkeys= self.__getSelectedKeys() if len(selkeys): #self.eh.event(self.delEvent, selkeys) _logger.debug("Remove Event") _logger.debug("self.selection before = %s", self.selection) returnedselection=[] sellistsignal = [] for selection in selkeys: selsignal = {} selsignal['SourceType'] = self.data.sourceType selsignal['SourceName'] = self.data.sourceName selsignal['selection'] = None selsignal['Key'] = selection['Key'] sel = {} sel['SourceName'] = selection['SourceName'] sel['SourceType'] = SOURCE_TYPE sel['Key'] = selection['Key'] arrayname = selection['Key'] sel[arrayname] = {'rows':[],'cols':[]} if selection['plot'] == 'cols': sel[arrayname]['cols'].append({'x':selection['x'],'y':selection['y']}) selsignal["selection"] = {"cols":{}} selsignal["selection"]["cols"] = {} selsignal["selection"]["cols"]["x"] = [selection['x']] selsignal["selection"]["cols"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".c.%d" % int(selection['y']) elif selection['plot'] == 'rows': sel[arrayname]['rows'].append({'x':selection['x'],'y':selection['y']}) selsignal["selection"] = {"rows":{}} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ ".r.%d" % int(selection['y']) elif selection['plot'] == 'XIA': sel[arrayname]['rows'].append({'x':selection['x'], 'y':selection['y']}) #selsignal["Key"] += ".r.%d" % int(selection['y']) selsignal["selection"] = {"rows":{}, "XIA":True} selsignal["selection"]["rows"] = {} selsignal["selection"]["rows"]["x"] = [selection['x']] selsignal["selection"]["rows"]["y"] = [selection['y']] if type(self.data.sourceName) == type(''): sname = [self.data.sourceName] else: sname = self.data.sourceName selsignal["legend"] = sname[0] +\ " "+selsignal['Key']+\ " #%02d" % int(selection['y']) elif selection['plot'] == 'scan': #sel[arrayname]['cols'].append({'x':selection['selection']['x'][0], # 'y':selection['selection']['y'][0]}) selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = True elif selection['plot'] == 'image': selsignal["selection"] = selection['selection'] selsignal['legend'] = self.data.sourceName + " " + \ selsignal['Key'] selsignal['scanselection'] = False selsignal['imageselection'] = True sellistsignal.append(selsignal) returnedselection.append(sel) if self.selection is not None: _logger.debug("step 1") if sel['SourceName'] in self.selection: _logger.debug("step 2") if arrayname in self.selection[sel['SourceName']]: _logger.debug("step 3") if 'rows' in self.selection[sel['SourceName']][arrayname]: _logger.debug("step 4") for couple in sel[arrayname]['rows']: if couple in self.selection[sel['SourceName']][arrayname]['rows']: index= self.selection[sel['SourceName']][arrayname]['rows'].index(couple) del self.selection[sel['SourceName']][arrayname]['rows'][index] for couple in sel[arrayname]['cols']: if couple in self.selection[sel['SourceName']][arrayname]['cols']: index= self.selection[sel['SourceName']][arrayname]['cols'].index(couple) del self.selection[sel['SourceName']][arrayname]['cols'][index] seln = {} seln['SourceName'] = sel['SourceName'] seln['SourceType'] = SOURCE_TYPE seln['Key'] = sel['Key'] seln[seln['Key']] = self.selection[seln['SourceName']][seln['Key']] self.setSelected([seln],reset=0) self.sigRemoveSelection.emit(sellistsignal) def removeSelection(self,selection): if type(selection) != type([]): selection=[selection] for sel in selection: arrayname = sel['Key'] if self.selection is not None: _logger.debug("step 1") if sel['SourceName'] in self.selection: _logger.debug("step 2") if arrayname in self.selection[sel['SourceName']]: _logger.debug("step 3") if 'rows' in self.selection[sel['SourceName']][arrayname]: _logger.debug("step 4") for couple in sel[arrayname]['rows']: if couple in self.selection[sel['SourceName']][arrayname]['rows']: index= self.selection[sel['SourceName']][arrayname]['rows'].index(couple) del self.selection[sel['SourceName']][arrayname]['rows'][index] for couple in sel[arrayname]['cols']: if couple in self.selection[sel['SourceName']][arrayname]['cols']: index= self.selection[sel['SourceName']][arrayname]['cols'].index(couple) del self.selection[sel['SourceName']][arrayname]['cols'][index] seln = {} seln['SourceName'] = sel['SourceName'] seln['SourceType'] = SOURCE_TYPE seln['Key'] = sel['Key'] seln[seln['Key']] = self.selection[seln['SourceName']][seln['Key']] self.setSelected([seln],reset=0) self.sigRemoveSelection.emit((selection)) def setSelected(self,sellist,reset=1): _logger.debug("setSelected(self,sellist,reset=1) called") _logger.debug("sellist = %s", sellist) _logger.debug("selection before = %s", self.selection) _logger.debug("reset = %s", reset) if reset: self.selection = {} elif self.selection is None: self.selection = {} for sel in sellist: specname = sel['SourceName'] #selkey is the array name what to do if multiple array names? if type(sel["Key"]) == type([]): selkey = sel["Key"][0] else: selkey = sel["Key"] if specname not in self.selection: self.selection[specname]= {} if selkey not in self.selection[specname]: self.selection[specname][selkey] = {'rows':[],'cols':[]} if 'rows' in sel[selkey]: for rowsel in sel[selkey]['rows']: if rowsel not in self.selection[specname][selkey]['rows']: self.selection[specname][selkey]['rows'].append(rowsel) if 'cols' in sel[selkey]: for rowsel in sel[selkey]['cols']: if rowsel not in self.selection[specname][selkey]['cols']: self.selection[specname][selkey]['cols'].append(rowsel) _logger.debug("self.selection after = %s", self.selection) self.__refreshSelection() def getSelection(self): """ Give the dicionary of dictionaries as an easy to understand list of individual selections """ selection = [] if self.selection is None: return selection for sourcekey in self.selection.keys(): for arraykey in self.selection[sourcekey].keys(): sel={} sel['SourceName'] = sourcekey sel['SourceType'] = 'SPS' sel['Key'] = arraykey sel[arraykey] = self.selection[sourcekey][arraykey] selection.append(sel) return selection def __refreshSelection(self): return _logger.debug("__refreshSelection(self) called") _logger.debug(selection) if self.selection is not None: sel = self.selection.get(self.data.SourceName, {}) selkeys = [] for key in sel.keys(): if (sel[key]['mca'] != []) or (sel[key]['scan']['Ycnt'] != []): selkeys.append(key) _logger.debug("selected scans = %s", selkeys) _logger.debug("but self.selection = %s", self.selection) _logger.debug("and self.selection.get(self.data.SourceName, {}) = %s", sel) self.scanList.markScanSelected(selkeys) scandict = sel.get(self.currentScan, {}) if 'mca' in scandict: self.mcaTable.markMcaSelected(scandict['mca']) else: self.mcaTable.markMcaSelected([]) if 'scan' in scandict: self.cntTable.markCntSelected(scandict['scan']) else: self.cntTable.markCntSelected({}) def isSelectionUpdated(self,sellist): outsel = [] if type(sellist) != type([]): sellist = [sellist] for ddict in sellist: #for dict in selection: if 'SourceName' in ddict: spec = ddict['SourceName'] if 'Key' in ddict: shm = ddict['Key'] if shm in ddict: check = 0 rows = [] cols = [] if 'cols' in ddict[shm]: cols = ddict[shm]['cols'] if len(cols): check = 1 if 'rows' in ddict[shm]: rows = ddict[shm]['rows'] if len(rows): check = 1 if check and sps.specrunning(spec): if sps.isupdated(spec,shm): outsel.append({'SourceName':spec, 'Key':shm, shm:{'rows':rows, 'cols':cols}, 'SourceType':'SPS'}) return outsel def test(): import sys from PyMca5.PyMcaGui.pymca import QSpsDataSource a= qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) def replaceSelection(sel): print("replaceSelection", sel) def removeSelection(sel): print("removeSelection", sel) def addSelection(sel): print("addSelection", sel) w= QSpsWidget() w.sigAddSelection.connect(addSelection) w.sigRemoveSelection.connect(removeSelection) w.sigReplaceSelection.connect(replaceSelection) #d = QSpsDataSource.QSpsDataSource() #w.setData(d) """ w.eh.register("addSelection", addSelection) w.eh.register("repSelection", repSelection) """ w.show() a.exec() if __name__=="__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/SpecFileCntTable.py0000644000000000000000000002477514741736366021160 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon, V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() try: import PyMca5.PyMcaGui.pymca.SilxGLWindow OBJECT3D = True except Exception: OBJECT3D = False class SpecFileCntTable(qt.QTableWidget): sigSpecFileCntTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) self.cntList = [] self.mcaList = [] self.xSelection = [] self.ySelection = [] self.monSelection = [] self.__is3DEnabled = False self.__is2DEnabled = False labels = ['Counter', 'X ', 'Y ', 'Mon'] self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) """ #the cell is not the same as the check box #but I wonder about the checkboxes being destroyed self.cellClicked[int, int].connect(self._mySlot) """ def build(self, cntlist, nmca=None): if not OBJECT3D: nmca = 0 nmca = 0 if nmca is None: nmca = 0 self.cntList = cntlist self.mcaList = [] n = len(cntlist) self.setRowCount(n) if n > 0: self.setRowCount(n + nmca) rheight = self.horizontalHeader().sizeHint().height() for i in range(n): self.setRowHeight(i, rheight) self.__addLine(i, cntlist[i]) for j in range(1, 4, 1): widget = self.cellWidget(i, j) widget.setEnabled(True) for j in range(nmca): row = n+j self.setRowHeight(n+j, rheight) mca = "Mca %d" % (j+1) self.mcaList.append(mca) self.__addLine(n+j, self.mcaList[j]) #the x checkbox widget = self.cellWidget(row, 1) widget.setChecked(False) widget.setEnabled(False) #the y checkbox widget = self.cellWidget(row, 2) widget.setChecked(False) widget.setEnabled(True) #the Monitor checkbox widget = self.cellWidget(row, 3) widget.setChecked(False) widget.setEnabled(False) else: self.setRowCount(0) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) def __addLine(self, i, cntlabel): #the counter name item = self.item(i, 0) if item is None: item = qt.QTableWidgetItem(cntlabel, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, 0, item) else: item.setText(cntlabel) #item is just enabled (not selectable) item.setFlags(qt.Qt.ItemIsEnabled) #the checkboxes for j in range(1, 4, 1): widget = self.cellWidget(i, j) if widget is None: widget = CheckBoxItem(self, i, j) self.setCellWidget(i, j, widget) widget.sigCheckBoxItemSignal.connect(self._mySlot) else: pass def set3DEnabled(self, value): self.__is2DEnabled = False if value: self.__is3DEnabled = True if len(self.xSelection) > 3: self.xSelection = self.xSelection[-3:] else: self.__is3DEnabled = False if len(self.xSelection) > 1: self.xSelection = [1 * self.xSelection[0]] self._update() def set2DEnabled(self, value): self.__is3DEnabled = False if value: self.__is2DEnabled = True if len(self.xSelection) > 2: self.xSelection = self.xSelection[-2:] else: self.__is2DEnabled = False if len(self.xSelection) > 1: self.xSelection = [1 * self.xSelection[0]] self._update() def _mySlot(self, ddict): row = ddict["row"] col = ddict["col"] if col == 1: if ddict["state"]: if row not in self.xSelection: self.xSelection.append(row) else: if row in self.xSelection: del self.xSelection[self.xSelection.index(row)] if (not OBJECT3D) or (not self.__is3DEnabled): if len(self.xSelection) > 2: #that is to support mesh plots self.xSelection = self.xSelection[-2:] if not self.__is2DEnabled: if len(self.xSelection) > 1: self.xSelection = self.xSelection[-1:] elif len(self.xSelection) > 3: self.xSelection = self.xSelection[-3:] if col == 2: if ddict["state"]: if row not in self.ySelection: self.ySelection.append(row) else: if row in self.ySelection: del self.ySelection[self.ySelection.index(row)] if col == 3: if ddict["state"]: if row not in self.monSelection: self.monSelection.append(row) else: if row in self.monSelection: del self.monSelection[self.monSelection.index(row)] if len(self.monSelection) > 1: self.monSelection = self.monSelection[-1:] self._update() def _update(self): for i in range(self.rowCount()): j = 1 widget = self.cellWidget(i, j) if i in self.xSelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) j = 2 widget = self.cellWidget(i, j) if i in self.ySelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) j = 3 widget = self.cellWidget(i, j) if i in self.monSelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) ddict = {} ddict["event"] = "updated" self.sigSpecFileCntTableSignal.emit(ddict) def getCounterSelection(self): ddict = {} ddict['cntlist'] = self.cntList * 1 ddict['mcalist'] = self.mcaList * 1 ddict['x'] = self.xSelection * 1 ddict['y'] = self.ySelection * 1 ddict['m'] = self.monSelection * 1 return ddict def setCounterSelection(self, ddict): keys = ddict.keys() if 'cntlist' in keys: cntlist = ddict['cntlist'] else: cntlist = self.cntList * 1 if 'x' in keys: x = ddict['x'] else: x = [] if 'y' in keys: y = ddict['y'] else: y = [] if 'm' in keys: monitor = ddict['m'] else: monitor = [] self.xSelection = [] for item in x: if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: self.xSelection.append(self.cntList.index(counter)) else: self.xSelection.append(item) self.ySelection = [] for item in y: if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: self.ySelection.append(self.cntList.index(counter)) self.monSelection = [] for item in monitor: if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: self.monSelection.append(self.cntList.index(counter)) self._update() class CheckBoxItem(qt.QCheckBox): sigCheckBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): qt.QCheckBox.__init__(self, parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "clicked" ddict["state"] = value ddict["row"] = self.__row * 1 ddict["col"] = self.__col * 1 self.sigCheckBoxItemSignal.emit(ddict) def main(): app = qt.QApplication([]) tab = SpecFileCntTable() tab.build(["Cnt1", "Cnt2", "Cnt3"]) tab.setCounterSelection({'x':[1, 2], 'y':[4], 'cntlist':["dummy", "Cnt0", "Cnt1", "Cnt2", "Cnt3"]}) tab.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/SpecFileDataInfo.py0000644000000000000000000002644314741736366021143 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc.TableWidget import TableWidget QTVERSION = qt.qVersion() class QTable(TableWidget): def setText(self, row, col, text): item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) class SpecFileDataInfoCustomEvent(qt.QEvent): def __init__(self, ddict): if ddict is None: ddict = {} self.dict = ddict qt.QEvent.__init__(self, qt.QEvent.User) class SpecFileDataInfo(qt.QTabWidget): InfoTableItems= [ ("SourceType", "Type"), ("SourceName", "Filename"), ("Date", "Date"), ("Command", "Command"), ("Key", "Scan Number"), ("Lines", "Nb Lines"), ("NbMca", "Nb Mca Spectrum"), ("NbMcaDet", "Nb Mca Detectors"), ("McaCalib", "Mca Calibration"), ("McaPresetTime", "Mca Preset Time"), ("McaLiveTime", "Mca Live Time"), ("McaRealTime", "Mca Real Time"), #EDF Related ("HeaderID", "HeaderID"), ("Image", "Image"), ("DataType", "Data Type"), ("ByteOrder", "Byte Order"), ("Dim_1", "1st Dimension"), ("Dim_2", "2nd Dimension"), ("Dim_3", "3rd Dimension"), ("Size", "File Data Size"), ] def __init__(self, info, parent=None, name="DataSpecFileInfo", fl=0): qt.QTabWidget.__init__(self, parent) if name is not None: self.setWindowTitle(name) self._notifyCloseEventToWidget = [] self.info= info self.__createInfoTable() self.__createMotorTable() self.__createCounterTable() self.__createHeaderText() self.__createEDFHeaderText() self.__createFileHeaderText() def sizeHint(self): return qt.QSize(2 * qt.QTabWidget.sizeHint(self).width(), 3 * qt.QTabWidget.sizeHint(self).height()) def notifyCloseEventToWidget(self, widget): if widget not in self._notifyCloseEventToWidget: self._notifyCloseEventToWidget.append(widget) def __createInfoTable(self): pars= [ par for par in self.InfoTableItems if par[0] in self.info.keys() ] num= len(pars) if num: table= self.__createTable(num, "Parameter", "Value") for idx in range(num): table.setText(idx, 0, str(pars[idx][1])) table.setText(idx, 1, str(self.info.get(pars[idx][0], "-"))) self.__adjustTable(table) self.addTab(table, "Info") def __createTable(self, rows, head_par, head_val, index=False): table= QTable() if index: labels = ["Index"] else: labels = [] labels = labels + [head_par, head_val] table.setColumnCount(len(labels)) table.setRowCount(rows) #table.setSelectionMode(qt.QTableWidget.NoSelection) table.verticalHeader().hide() for i in range(len(labels)): item = table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) table.setHorizontalHeaderItem(i,item) return table def __adjustTable(self, table): for col in range(table.columnCount()): table.resizeColumnToContents(col) rheight = table.horizontalHeader().sizeHint().height() for row in range(table.rowCount()): table.setRowHeight(row, rheight) def __createMotorTable(self): nameKeys = ["MotorNames", "motor_mne"] for key in nameKeys: names= self.info.get(key, None) if names is not None: if key != nameKeys[0]: #EDF like ... tmpString = names.replace('"','') #ID01 specific tmpKey = key + '~1' if tmpKey in self.info: tmpString += self.info[tmpKey].replace('"','') names = tmpString.split() break valKeys = ["MotorValues", "motor_pos"] for key in valKeys: pos= self.info.get(key, None) if pos is not None: if key != valKeys[0]: #EDF like ... tmpString = pos.replace('"', '') #ID01 specific tmpKey = key + '~1' if tmpKey in self.info: tmpString += self.info[tmpKey].replace('"','') pos = tmpString.split() break if names is not None and pos is not None: num= len(names) if num != len(pos): print("Incorrent number of labels or values") return if num: table= self.__createTable(num, "Motor", "Position", index=True) numbers = list(range(num)) def sort_column(column, table=table, numbers=numbers, names=names, positions=pos): if column == 1: sorted_list = sorted(names, key=str.casefold) sorted_list = [names.index(x) for x in sorted_list] else: sorted_list = [int(x) for x in numbers] for i in range(num): idx = sorted_list[i] table.setText(i, 0, "%d" % numbers[idx]) table.setText(i, 1, str(names[idx])) table.setText(i, 2, str(pos[idx])) sort_column(0) tip = "Copy selection to clipboard with CTRL-C." tip += "\nDoubleclick on Index or Motor header to sort accordingly." table.setToolTip(tip) self.__adjustTable(table) self.addTab(table, "Motors") headerView = table.horizontalHeader() headerView.sectionDoubleClicked[int].connect(sort_column) def __createCounterTable(self): nameKeys = ["LabelNames", "counter_mne"] for key in nameKeys: cnts= self.info.get(key, None) if cnts is not None: if key != nameKeys[0]: #EDF like ... cnts = cnts.split() break valKeys = ["LabelValues", "counter_pos"] for key in valKeys: vals= self.info.get(key, None) if vals is not None: if key != valKeys[0]: #EDF like ... vals = vals.split() break if cnts is not None and vals is not None: num= len(cnts) if num != len(vals): print("Incorrent number of labels or values") return if num: table= self.__createTable(num, "Counter", "Value") if sys.version_info > (3, 3): sorted_list = sorted(cnts, key=str.casefold) else: sorted_list = sorted(cnts) for i in range(num): idx = cnts.index(sorted_list[i]) table.setText(i, 0, str(cnts[idx])) table.setText(i, 1, str(vals[idx])) self.__adjustTable(table) self.addTab(table, "Counters") def __createHeaderText(self): text = self.info.get("SourceType","") if text.upper() in ['EDFFILE', 'EDFFILESTACK']: return text= self.info.get("Header", None) if text is not None: wid = qt.QTextEdit() wid.insertHtml("
".join(text)) wid.setReadOnly(1) self.addTab(wid, "Scan Header") def __createEDFHeaderText(self): text = self.info.get("SourceType","") if text.upper() not in ['EDFFILE', 'EDFFILESTACK']: return keys = self.info.keys() nameKeys = [] vals = [] for key in keys: if key in ['SourceName', 'SourceType']: continue nameKeys.append(key) vals.append(self.info.get(key," --- ")) num = len(nameKeys) if num: table= self.__createTable(num, "Keyword", "Value") for idx in range(num): table.setText(idx, 0, str(nameKeys[idx])) table.setText(idx, 1, str(vals[idx])) self.__adjustTable(table) self.addTab(table, "Header") def __createFileHeaderText(self): text= self.info.get("FileHeader", None) if text not in [None, []]: wid = qt.QTextEdit() wid.insertHtml("
".join(text)) wid.setReadOnly(1) self.addTab(wid, "File Header") def closeEvent(self, event): ddict = {} ddict['event'] = "SpecFileDataInfoClosed" ddict['id'] = id(self) #self.sigSpecFileDataInfoSignal.emit(ddict) if len(self._notifyCloseEventToWidget): for widget in self._notifyCloseEventToWidget: newEvent = SpecFileDataInfoCustomEvent(ddict) qt.QApplication.postEvent(widget, newEvent) self._notifyCloseEventToWidget = [] return qt.QTabWidget.closeEvent(self, event) def test(): from PyMca5.PyMcaCore import SpecFileLayer if len(sys.argv) < 3: print("USAGE: %s " % sys.argv[0]) sys.exit(0) d = SpecFileLayer.SpecFileLayer() d.SetSource(sys.argv[1]) info, data = d.LoadSource(sys.argv[2]) app= qt.QApplication([]) wid= SpecFileDataInfo(info) wid.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/SpecFileMcaTable.py0000644000000000000000000001643614741736366021127 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon, V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class SpecFileMcaTable(qt.QWidget): sigMcaDeviceSelected = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.l = qt.QVBoxLayout(self) self.table= qt.QTableWidget(self) self.table.setColumnCount(1) self.table.setRowCount(0) item = self.table.horizontalHeaderItem(0) if item is None: item = qt.QTableWidgetItem("No MCA for the selected scan", qt.QTableWidgetItem.Type) self.table.setHorizontalHeaderItem(0,item) self.table.resizeColumnToContents(0) self.table.setEditTriggers(qt.QAbstractItemView.NoEditTriggers) self.table.setSelectionMode(qt.QAbstractItemView.MultiSelection) self.l.addWidget(self.table) #self.table.cellActivated[int, int].connect(self._cellActivated) self.table.cellClicked[int, int].connect(self._cellClicked) self.table.cellDoubleClicked[int, int].connect(self._cellDoubleClicked) self.table._hHeader = self.table.horizontalHeader() self.table._hHeader.sectionClicked[int].connect(self._horizontalHeaderClicked) self.table._hHeader.menu = qt.QMenu() self.table._hHeader.menu.addAction('ADD Image') self.table._hHeader.menu.addAction('REMOVE Image') self.table._hHeader.menu.addAction('REPLACE Image') self.table._hHeader.menu.addAction('ADD Stack') def _horizontalHeaderClicked(self, value): if value < 0: return item = self.table.horizontalHeaderItem(value) text = str(item.text()) if text.startswith("No MCA for"): return action = self.table._hHeader.menu.exec(self.cursor().pos()) if action is None: return txt = str(action.text()) ddict = {} ddict['event'] = 'McaDeviceSelected' ddict['mca'] = value ddict['action'] = txt self.sigMcaDeviceSelected.emit(ddict) def build(self, info): if info['NbMca'] > 0: ncol = int(info['NbMcaDet']) else: ncol = 1 nrow = info['NbMca'] // ncol self.table.setColumnCount(ncol) self.table.setRowCount(nrow) if nrow == 0: item = self.table.horizontalHeaderItem(0) item.setText("No MCA for the selected scan") self.table.resizeColumnToContents(0) return for c in range(ncol): text = "Mca %d" % (c+1) item = self.table.horizontalHeaderItem(c) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.table.setHorizontalHeaderItem(c,item) else: item.setText(text) self.table.resizeColumnToContents(c) if nrow == 1: if ncol == 1: item = self.table.item(0, 0) if item is None: item = qt.QTableWidgetItem('', qt.QTableWidgetItem.Type) self.table.setItem(0, 0, item) item.setSelected(True) def _toggleCell(self, row, col): item = self.table.item(row, col) if item is None: item = qt.QTableWidgetItem('X', qt.QTableWidgetItem.Type) self.table.setItem(row, col, item) return text = str(item.text()) if text == "X": item.setText("") else: item.setText("X") def _cellClicked(self, row, col): _logger.debug("_cellClicked %d %d ", row, col) item = self.table.item(row, col) if item is None: item = qt.QTableWidgetItem('',qt.QTableWidgetItem.Type) self.table.setItem(row, col, item) def _cellDoubleClicked(self, row, col): _logger.debug("_cellDoubleClicked %d %d", (row, col)) #self._toggleCell(row, col) pass def getCurrentlySelectedMca(self): mca = [] for item in self.table.selectedItems(): row = self.table.row(item) col = self.table.column(item) mca.append("%d.%d" % (row+1, col+1)) return mca def getSelectedMca(self): mca = self.getCurrentlySelectedMca() # They may be not X marked for r in range(self.table.rowCount()): for c in range(self.table.ColumnCount()): item = self.table.item(r, c) if item is not None: text = str(item.text) if text == "X": new = "%d.%d" % (r+1, c+1) if new not in mca: mca.append(new) return mca def setSelectedMca(self, mcalist): for r in range(self.table.rowCount()): for c in range(self.table.columnCount()): item = self.table.item(r, c) new = "%d.%d" % (r+1, c+1) if item is not None: if new not in mcalist: item.setText("") else: item.setText("X") else: if new in mcalist: self._toggleCell(r, c) def test(): import sys from PyMca5.PyMcaCore import SpecFileLayer app = qt.QApplication([]) tab = SpecFileMcaTable() d = SpecFileLayer.SpecFileLayer() if len(sys.argv) > 1: d.SetSource(sys.argv[1]) else: d.SetSource('03novs060sum.mca') info, data = d.LoadSource('1.1') tab.build(info) tab.setSelectedMca(["1.1"]) tab.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/__init__.py0000644000000000000000000000321414741736366017571 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os baseDirectory = os.path.dirname(__file__) __path__ += [os.path.join(baseDirectory, "hdf5")] ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7677662 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/0000755000000000000000000000000014741736404016277 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/DataViewerSelector.py0000644000000000000000000001236714741736366022425 0ustar00rootroot#/*########################################################################## # Copyright (C) 2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io.hdf5.Hdf5NodeView import Hdf5NodeViewer from silx.gui.data import DataViews from silx.gui.data.DataViewer import DataViewer class SelectorFromDataViewer(Hdf5NodeViewer): sigSliceSelectorSignal = qt.pyqtSignal(object) def __init__(self, parent=None): Hdf5NodeViewer.__init__(self, parent) self.__data = None self._buildActions() self.viewWidget.displayedViewChanged.connect(self._viewChanged) self.viewWidget.dataChanged.connect(self._dataChanged) def _buildActions(self): self.buttonBox = qt.QWidget(self) buttonBox = self.buttonBox self.buttonBoxLayout = qt.QHBoxLayout(buttonBox) self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.buttonBoxLayout.addWidget(self.addButton) self.buttonBoxLayout.addWidget(self.removeButton) self.buttonBoxLayout.addWidget(self.replaceButton) self.layout().addWidget(buttonBox) self.addButton.clicked.connect(self._addClickedSlot) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def _addClickedSlot(self): self._addClicked() def _addClicked(self): _logger.debug("_addClicked()") self._emitSignal(action="ADD") def _removeClicked(self): _logger.debug("_removeClicked()") self._emitSignal(action="REMOVE") def _replaceClicked(self): _logger.debug("_replaceClicked()") self._emitSignal(action="REPLACE") def getSelection(self): widget = self.viewWidget.displayedView().getWidget() if hasattr(widget, "getGraphTitle"): selection = widget.getGraphTitle() else: selection = widget.currentWidget().getGraphTitle() selection = selection[selection.index("["):selection.index("]")+1] return selection def _emitSignal(self, action="ADD"): ddict = {} ddict["action"] = action ddict["slice"] = self.getSelection() shape = self.__data.shape ddict["index"] = sel self.sigSliceSelectorSignal.emit(ddict) def setData(self, data, mode=None): if mode is None: interpretation = "spectrum" if hasattr(data, "attrs"): if "interpretation" in data.attrs: interpretation = data.attrs["interpretation"] mode = interpretation self.viewWidget.setData(data) self.__data = data if mode.lower() in ["image"]: self.viewWidget.setDisplayMode(DataViews.IMAGE_MODE) else: self.viewWidget.setDisplayMode(DataViews.PLOT1D_MODE) def _viewChanged(self, something): _logger.debug("_viewChanged called", something) if self.__data: pass def _dataChanged(self): _logger.debug("_dataChanged called") if __name__ == "__main__": import sys import os if len(sys.argv) > 1: fname = sys.argv[1] else: fname = r"D:\DATA\DAPHNIA\Daphnia_float32.h5" if not os.path.exists(fname): print("Usage:") print("python DataViewerSelector.py [hdf5_file]") sys.exit() app = qt.QApplication([]) w = SelectorFromDataViewer() def mySlot(ddict): print(ddict) w.sigSliceSelectorSignal.connect(mySlot) import h5py h5 = h5py.File(fname, "r") data = h5["/data/data"] w.setData(data) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5CounterTable.py0000644000000000000000000005731014741736366021664 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import posixpath import logging import re from PyMca5.PyMcaGui import PyMcaQt as qt safe_str = qt.safe_str _logger = logging.getLogger(__name__) class CntSelectionType(qt.QWidget): sigCntSelectionTypeSignal = qt.pyqtSignal(object) def __init__(self, parent=None, row=0, column=0, shape=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self._row = row self._column = column self._selector = False self._selection = qt.QCheckBox(self) self._selection.setText(" ") self._selectionType = qt.QComboBox(self) self._optionsList = ["full", "index"] if shape: if len(shape) > 2: self._optionsList += ["slice"] for option in self._optionsList: self._selectionType.addItem(option[0].upper() + option[1:]) self._selectionType.setCurrentIndex(self._optionsList.index("full")) self.mainLayout.addWidget(self._selection) self.mainLayout.addWidget(self._selectionType) self._selection.clicked.connect(self._mySignal) self._selectionType.activated[int].connect(self._preSignal) self._sliceList = [] self._index = qt.QSpinBox(self) if shape in [None, "None"]: shape = None maximum = 0 elif len(shape) in [0, 1]: maximum = 0 else: maximum = 1 for dim in shape[:-1]: maximum *= dim self._index.setMinimum(0) if maximum: self._index.setMaximum(maximum - 1) else: self._index.setMaximum(0) self._index.setValue(0) self.mainLayout.addWidget(self._index) if self._selector: self._selectorButton = qt.QPushButton(self) self._selectorButton.setText("Browser") self.mainLayout.addWidget(self._selectorButton) self._index.hide() # textChanged or editingFinished ? self._index.valueChanged[int].connect(self._indexValueChangedSlot) if self._selector: self._selectorButton.hide() self._selectorButton.clicked.connect(self._selectorButtonClickedSlot) if shape and len(shape) > 2: self._sliceList = [] for i in range(len(shape) - 1): spinbox = qt.QSpinBox(self) spinbox.setMinimum(0) if shape[i] > 0: spinbox.setMaximum(shape[i] - 1) else: spinbox.setMaximum(0) spinbox.setValue(0) self.mainLayout.addWidget(spinbox) spinbox.hide() spinbox.valueChanged[int].connect(self._sliceChangedSlot) self._sliceList.append(spinbox) if shape is None or len(shape) < 2: self._selectionType.hide() elif len(shape) == 2: if shape[0] == 1: self._selectionType.hide() def setChecked(self, value): if value: self._selection.setChecked(True) else: self._selection.setChecked(False) def isChecked(self): return self._selection.isChecked() def setText(self, text): self._selection.setText(text) def currentText(self): idx = self._selectionType.currentIndex() text = self._optionsList[idx] if text == "index": text += " %d" % self._index.value() if text == "slice": for i in range(len(self._sliceList)): if i == 0: text += " [%d" % self._sliceList[0].value() else: text += ", %d" % self._sliceList[1].value() text += ", :]" return text def currentIndex(self): if hasattr(self, "_index"): return self._index.value() else: return 0 def setCurrentText(self, text): text = text.lower() if text in ["full", ""]: text = "full" elif text.startswith("index"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') items = exp.findall(text) if len(items) not in [0, 1]: raise ValueError("Cannot retieve index from %s" % text) elif len(items) == 0: value = 0 else: value = 1 self._index.setValue(value) elif text.startswith("slice"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') items = exp.findall(text) if len(items) != len(self._sliceList): raise IndexError("Received slice %s does not match length of %" % (text, len(self._sliceList))) for w in self._sliceList: w.setValue(int(items[0])) else: raise ValueError("Received option %s not among supported options" % text) def _indexTextChangedSlot(self, text): _logger.debug("Text changed %s" % text) self._mySignal() def _indexValueChangedSlot(self, value): _logger.debug("Value changed %s" % value) self._mySignal() def _sliceChangedSlot(self, value): _logger.debug("Value changed %s" % value) self._mySignal() def _selectorButtonClickedSlot(self): _logger.debug("selectorButtonClicked") self._mySignal(event="selector") def _preSignal(self, value): if self._optionsList[value] == "index": self._index.show() if self._selector: self._selectorButton.show() else: self._index.hide() if self._selector: self._selectorButton.hide() if self._optionsList[value] == "slice": for w in self._sliceList: w.show() if self._selector: self._selectorButton.show() else: for w in self._sliceList: w.hide() if self._selector: self._selectorButton.hide() self._mySignal() def _mySignal(self, value=None, event=None): if event is None: event = "clicked" ddict = {} ddict["event"] = event ddict["state"] = self._selection.isChecked() ddict["type"] = self.currentText() ddict["row"] = self._row * 1 ddict["column"] = self._column * 1 self.sigCntSelectionTypeSignal.emit(ddict) class HDF5CounterTable(qt.QTableWidget): sigHDF5CounterTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) self.cntList = [] self.aliasList = [] self.shapeList = [] self.mcaList = [] self.xSelection = [] self.ySelection = [] self.monSelection = [] self.xSelectionType = [] self.ySelectionType = [] self.monSelectionType = [] self.__oldSelection = self.getCounterSelection() self.__is3DEnabled = False self.__is2DEnabled = False labels = ['Dataset', 'Axes', 'Signals', 'Monitor', 'Alias'] self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) """ #the cell is not the same as the check box #but I wonder about the checkboxes being destroyed """ self.cellChanged[int, int].connect(self._aliasSlot) def build(self, cntlist, aliaslist=None, selection=None, shapelist=None): _logger.debug("build cntlist = %s aliaslist = %s shapelist = %s" % (cntlist, aliaslist, shapelist)) self.__building = True if selection is None: if len(cntlist): if len(self.cntList): self.__oldSelection = self.getCounterSelection() else: _logger.info("received selection %s", selection) self.__oldSelection = selection if aliaslist is None: aliaslist = [] for item in cntlist: aliaslist.append(posixpath.basename(item)) if len(cntlist) != len(aliaslist): raise ValueError("Alias list and counter list must have same length") self.cntList = cntlist self.aliasList = aliaslist self.shapeList = shapelist self.setRowCount(0) n = len(cntlist) if self.shapeList is None: self.shapeList = (None,) * n self.setRowCount(n) if n > 0: self.setRowCount(n) rheight = self.horizontalHeader().sizeHint().height() # check if we need the complete description useFullPath = [] for i in range(n): iName = posixpath.basename(cntlist[i]) for j in range(i+1, n): if posixpath.basename(cntlist[j]) == iName: if i not in useFullPath: useFullPath.append(i) if j not in useFullPath: useFullPath.append(j) for i in range(n): self.setRowHeight(i, rheight) if i in useFullPath: self.__addLine(i, cntlist[i], shape=self.shapeList[i]) else: self.__addLine(i, posixpath.basename(cntlist[i]), shape=self.shapeList[i]) for j in range(1, 4, 1): widget = self.cellWidget(i, j) widget.setEnabled(True) else: self.setRowCount(0) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) self.setCounterSelection(self.__oldSelection) self.__building = False def __addLine(self, i, cntlabel, shape=None): #the counter name item = self.item(i, 0) if item is None: item = qt.QTableWidgetItem(cntlabel, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, 0, item) else: item.setText(cntlabel) #item is just enabled (not selectable) item.setFlags(qt.Qt.ItemIsEnabled) #the checkboxes for j in range(1, 4, 1): widget = self.cellWidget(i, j) if widget is None: """ widget = CheckBoxItem(self, i, j) self.setCellWidget(i, j, widget) widget.sigCheckBoxItemSignal.connect(self._mySlot) """ widget = CntSelectionType(self, i, j, shape=shape) self.setCellWidget(i, j, widget) widget.sigCntSelectionTypeSignal.connect(self._mySlot) else: pass #the alias item = self.item(i, 4) alias = self.aliasList[i] if item is None: item = qt.QTableWidgetItem(alias, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, 4, item) else: item.setText(alias) def set3DEnabled(self, value, emit=True): if value: self.__is3DEnabled = True self.__is2DEnabled = True else: self.__is3DEnabled = False if len(self.xSelection) > 1: self.xSelection = self.xSelection[-1:] self._update(emit=emit) def set2DEnabled(self, value, emit=True): if value: self.__is2DEnabled = True self.__is3DEnabled = False if len(self.xSelection) > 2: self.xSelection = self.xSelection[-2:] else: self.__is2DEnabled = False if len(self.xSelection) > 1: self.xSelection = self.xSelection[-1:] self._update(emit=emit) def _aliasSlot(self, row, col): if self.__building: return if col != 4: return item = self.item(row, 4) self.aliasList[row] = safe_str(item.text()) def _mySlot(self, ddict): _logger.debug("HDF5CounterTable._mySlot %s", ddict) row = ddict["row"] col = ddict["column"] if col == 1: if ddict["state"]: if row not in self.xSelection: self.xSelection.append(row) self.xSelectionType.append(ddict["type"]) else: self.xSelectionType[self.xSelection.index(row)] = ddict["type"] else: if row in self.xSelection: del self.xSelectionType[self.xSelection.index(row)] del self.xSelection[self.xSelection.index(row)] if self.__is3DEnabled: if len(self.xSelection) > 3: self.xSelection = self.xSelection[-3:] self.xSelectionType = self.xSelectionType[-3:] elif self.__is2DEnabled: if len(self.xSelection) > 2: self.xSelection = self.xSelection[-2:] self.xSelectionType = self.xSelectionType[-2:] else: if len(self.xSelection) > 1: self.xSelection = self.xSelection[-1:] self.xSelectionType = self.xSelectionType[-1:] if col == 2: if ddict["state"]: if row not in self.ySelection: self.ySelection.append(row) self.ySelectionType.append(ddict["type"]) else: self.ySelectionType[self.ySelection.index(row)] = ddict["type"] else: if row in self.ySelection: del self.ySelectionType[self.ySelection.index(row)] del self.ySelection[self.ySelection.index(row)] if col == 3: if ddict["state"]: if row not in self.monSelection: self.monSelection.append(row) self.monSelectionType.append(ddict["type"]) else: self.monSelectionType[self.monSelection.index(row)] = ddict["type"] else: if row in self.monSelection: del self.monSelectionType[self.monSelection.index(row)] del self.monSelection[self.monSelection.index(row)] if len(self.monSelection) > 1: self.monSelection = self.monSelection[-1:] self.monSelectionType = self.monSelectionType[-1:] index = ddict.get("type", "") if index.lower().startswith("index") and ddict["column"] == 2 and ddict["state"]: # we have a selection based on a index referenceWidget = self.cellWidget(ddict['row'], ddict['column']) refIndex = index refValue = referenceWidget._index.value() refMin = referenceWidget._index.minimum() refMax = referenceWidget._index.maximum() # try to synchronize all other indices for i in range(len(self.xSelectionType)): if self.xSelectionType[i].lower().startswith("index"): widget = self.cellWidget(self.xSelection[i], 1) if widget._index.minimum() == refMin and widget._index.maximum() == refMax: widget._index.setValue(refValue) self.xSelectionType[i] = refIndex for i in range(len(self.ySelectionType)): if i == ddict["column"]: continue if self.ySelectionType[i].lower().startswith("index"): widget = self.cellWidget(self.ySelection[i], 2) if widget._index.minimum() == refMin and widget._index.maximum() == refMax: widget._index.setValue(refValue) self.ySelectionType[i] = refIndex for i in range(len(self.monSelectionType)): if self.monSelectionType[i].lower().startswith("index"): widget = self.cellWidget(self.monSelection[i], 3) if widget._index.minimum() == refMin and widget._index.maximum() == refMax: widget._index.setValue(refValue) self.monSelectionType[i] = refIndex self._update() def _update(self, emit=True): _logger.debug("_update called with emit = %s" % emit) axisLabels = ['X', 'Y', 'Z'] for i in range(self.rowCount()): j = 1 widget = self.cellWidget(i, j) if i in self.xSelection: if not widget.isChecked(): widget.setChecked(True) widget.setCurrentText(self.xSelectionType[self.xSelection.index(i)]) widget.setText(axisLabels[self.xSelection.index(i)]) else: if widget.isChecked(): widget.setChecked(False) widget.setText("") j = 2 widget = self.cellWidget(i, j) if i in self.ySelection: if not widget.isChecked(): widget.setChecked(True) widget.setCurrentText(self.ySelectionType[self.ySelection.index(i)]) else: if widget.isChecked(): widget.setChecked(False) j = 3 widget = self.cellWidget(i, j) if i in self.monSelection: if not widget.isChecked(): widget.setChecked(True) widget.setCurrentText(self.monSelectionType[self.monSelection.index(i)]) else: if widget.isChecked(): widget.setChecked(False) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) if emit: ddict = {} ddict["event"] = "updated" self.sigHDF5CounterTableSignal.emit(ddict) def getCounterSelection(self): ddict = {} ddict['cntlist'] = self.cntList * 1 ddict['aliaslist'] = self.aliasList * 1 ddict['shapelist'] = self.shapeList * 1 ddict['x'] = self.xSelection * 1 ddict['y'] = self.ySelection * 1 ddict['m'] = self.monSelection * 1 ddict['xselectiontype'] = self.xSelectionType * 1 ddict['yselectiontype'] = self.ySelectionType * 1 ddict['monselectiontype'] = self.monSelectionType * 1 return ddict def setCounterSelection(self, ddict): _logger.debug("HDF5CounterTable.setCounterSelection %s", ddict) keys = ddict.keys() if 'cntlist' in keys: cntlist = ddict['cntlist'] else: cntlist = self.cntList * 1 # no selection based on aliaslist or counterlist (yet?) if 0: if 'aliaslist' in keys: aliaslist = ddict['aliaslist'] elif len(self.aliasList) == len(cntlist): aliaslist = self.aliasList * 1 else: aliaslist = self.cntList * 1 if 'x' in keys: x = ddict['x'] else: x = [] if 'y' in keys: y = ddict['y'] else: y = [] if 'm' in keys: monitor = ddict['m'] else: monitor = [] if 'xselectiontype' in keys: xSelectionType = ddict['xselectiontype'] else: xSelectionType = ['full'] * len(x) if 'yselectiontype' in keys: ySelectionType = ddict['yselectiontype'] else: ySelectionType = ['full'] * len(y) if 'monselectiontype' in keys: monSelectionType = ddict['monselectiontype'] else: monSelectionType = ['full'] * len(monitor) self.xSelection = [] self.xSelectionType = [] for i in range(len(x)): item = x[i] if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: # counter name based selection self.xSelection.append(self.cntList.index(counter)) self.xSelectionType.append(xSelectionType[i]) elif item < len(self.cntList): # index based selection self.xSelection.append(item) self.xSelectionType.append(xSelectionType[i]) self.ySelection = [] self.ySelectionType = [] for i in range(len(y)): item = y[i] if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: self.ySelection.append(self.cntList.index(counter)) self.ySelectionType.append(ySelectionType[i]) self.monSelection = [] self.monSelectionType = [] for i in range(len(monitor)): item = monitor[i] if item < len(cntlist): counter = cntlist[item] if counter in self.cntList: self.monSelection.append(self.cntList.index(counter)) self.monSelectionType.append(monSelectionType[i]) self._update() class CheckBoxItem(qt.QCheckBox): sigCheckBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): qt.QCheckBox.__init__(self, parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value=None): ddict = {} ddict["event"] = "clicked" if value is None: value = self.isChecked() ddict["state"] = value ddict["row"] = self.__row * 1 ddict["column"] = self.__col * 1 self.sigCheckBoxItemSignal.emit(ddict) def main(): app = qt.QApplication([]) tab = HDF5CounterTable() tab.build(["Cnt1", "Cnt2", "Cnt3", "Cnt 4", "Cnt 5"], shapelist=[None, (10, 10), (10, 20), (10, 10), (20, 10)]) tab.show() def slot(ddict): print("Received = ", ddict) print("Selection = ", tab.getCounterSelection()) tab.sigHDF5CounterTableSignal.connect(slot) app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5DatasetTable.py0000644000000000000000000000441714741736366021632 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import CloseEventNotifyingWidget from PyMca5.PyMcaGui.misc import NumpyArrayTableWidget class HDF5DatasetTable(CloseEventNotifyingWidget.CloseEventNotifyingWidget): def __init__(self, parent=None): CloseEventNotifyingWidget.CloseEventNotifyingWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.arrayTableWidget = NumpyArrayTableWidget.NumpyArrayTableWidget(self) self.mainLayout.addWidget(self.arrayTableWidget) def setDataset(self, dataset): self.arrayTableWidget.setArrayData(dataset) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5Info.py0000644000000000000000000005037414741736366020173 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import h5py import logging _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui import PyMcaQt as qt safe_str = qt.safe_str import copy import posixpath class HDFInfoCustomEvent(qt.QEvent): def __init__(self, ddict): if ddict is None: ddict = {} self.dict = ddict qt.QEvent.__init__(self, qt.QEvent.User) class VerticalSpacer(qt.QWidget): def __init__(self, *args): qt.QWidget.__init__(self, *args) self.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Expanding)) class SimpleInfoGroupBox(qt.QGroupBox): def __init__(self, parent, title=None, keys=None): qt.QGroupBox.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) if title is not None: self.setTitle(title) if keys is None: keys = [] self.keyList = keys self.keyDict = {} if len(self.keyList): self._build() def _build(self): i = 0 for key in self.keyList: label = qt.QLabel(self) label.setText(key) line = qt.QLineEdit(self) line.setReadOnly(True) self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(line, i, 1) self.keyDict[key] = (label, line) i += 1 def setInfoDict(self, ddict): if not len(self.keyList): self.keyList = ddict.keys() self._build() self._fillInfo(ddict) def _fillInfo(self, ddict0): ddict = self._getMappedDict(ddict0) actualKeys = list(ddict.keys()) dictKeys = [] for key in actualKeys: l = key.lower() if l not in dictKeys: dictKeys.append(l) for key in self.keyList: l = key.lower() if l in dictKeys: self._fillKey(key, ddict[actualKeys[dictKeys.index(l)]]) def _getMappedDict(self, ddict): #Default implementation returns a copy of the input dictionary return copy.deepcopy(ddict) def _fillKey(self, key, value): #This can be overwritten if type(value) == type(""): self.keyDict[key][1].setText(value) else: self.keyDict[key][1].setText(safe_str(value)) class NameGroupBox(SimpleInfoGroupBox): def __init__(self, parent, title=None, keys=[]): SimpleInfoGroupBox.__init__(self, parent, title=title, keys=["Name", "Path", "Type"]) def setInfoDict(self, ddict): key = "Value" if key in ddict.keys(): if key not in self.keyList: self.keyList.append(key) label = qt.QLabel(self) label.setText(key) line = qt.QLineEdit(self) line.setReadOnly(True) i = self.keyList.index(key) self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(line, i, 1) self.keyDict[key] = (label, line) if 'Path' in ddict: if ddict['Path'] == "/": if 'Name' in ddict: self.keyDict['Name'][0].setText("File") SimpleInfoGroupBox.setInfoDict(self, ddict) class DimensionGroupBox(SimpleInfoGroupBox): def __init__(self, parent, title=None, keys=None): keys = ["No. of Dimension(s)", "Dimension Size(s)", "Data Type"] SimpleInfoGroupBox.__init__(self, parent, title=title, keys=keys) def _getMappedDict(self, ddict): return copy.deepcopy(ddict) class MembersGroupBox(qt.QGroupBox): def __init__(self, parent): qt.QGroupBox.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.setTitle("Group Members") self.label = qt.QLabel(self) self.label.setText("Number of members: 0") self.table = qt.QTableWidget(self) #labels = ["Name", "Type", "Shape", "Value"] labels = ["Name", "Value", "Type"] nlabels = len(labels) self.table.setColumnCount(nlabels) rheight = self.table.horizontalHeader().sizeHint().height() self.table.setMinimumHeight(12*rheight) self.table.setMaximumHeight(20*rheight) for i in range(nlabels): item = self.table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.table.setHorizontalHeaderItem(i, item) self._tableLabels = labels self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.table) def setInfoDict(self, ddict): keylist = ddict.keys() if "members" not in keylist: self.hide() return keylist = ddict['members'] self.label.setText("Number of members: %d" % len(keylist)) nrows = len(keylist) if not nrows: self.table.setRowCount(nrows) self.hide() return self.table.setRowCount(nrows) if ddict['Path'] != '/': #this could destroy ordering ... keylist.sort() row = 0 for key in keylist: item = self.table.item(row, 0) if item is None: item = qt.QTableWidgetItem(key, qt.QTableWidgetItem.Type) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) self.table.setItem(row, 0, item) else: item.setText(key) for label in self._tableLabels[1:]: if not label in ddict[key]: continue col = self._tableLabels.index(label) info = ddict[key][label] item = self.table.item(row, col) if item is None: item = qt.QTableWidgetItem(info, qt.QTableWidgetItem.Type) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) self.table.setItem(row, col, item) else: item.setText(info) row += 1 for i in range(self.table.columnCount()): self.table.resizeColumnToContents(i) class HDF5GeneralInfoWidget(qt.QWidget): def __init__(self, parent=None, ddict=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.nameWidget = NameGroupBox(self) self.membersWidget = MembersGroupBox(self) self.dimensionWidget = DimensionGroupBox(self) self.mainLayout.addWidget(self.nameWidget) self.mainLayout.addWidget(self.membersWidget) self.mainLayout.addWidget(VerticalSpacer(self)) self.mainLayout.addWidget(self.dimensionWidget) self._notifyCloseEventToWidget = None if ddict is not None: self.setInfoDict(ddict) def setInfoDict(self, ddict): if 'general' in ddict: self._setInfoDict(ddict['general']) else: self._setInfoDict(ddict) def _setInfoDict(self, ddict): self.nameWidget.setInfoDict(ddict) self.membersWidget.setInfoDict(ddict) self.dimensionWidget.setInfoDict(ddict) if 'members' in ddict: if len(ddict['members']): #it is a datagroup self.dimensionWidget.hide() self.dimensionWidget.hide() class HDF5AttributesInfoWidget(qt.QWidget): def __init__(self, parent): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.label = qt.QLabel(self) self.label.setText("Number of members: 0") self.table = qt.QTableWidget(self) labels = ["Name", "Value", "Type", "Size"] self.table.setColumnCount(len(labels)) for i in range(len(labels)): item = self.table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.table.setHorizontalHeaderItem(i, item) self._tableLabels = labels self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.table) def setInfoDict(self, ddict): if 'attributes' in ddict: self._setInfoDict(ddict['attributes']) else: self._setInfoDict(ddict) def _setInfoDict(self, ddict): keylist = ddict['names'] self.label.setText("Number of attributes: %d" % len(keylist)) nrows = len(keylist) if not nrows: self.table.setRowCount(nrows) self.hide() return self.table.setRowCount(nrows) keylist.sort() row = 0 for key in keylist: for label in self._tableLabels: if not label in ddict[key]: continue else: text = ddict[key][label] col = self._tableLabels.index(label) item = self.table.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) self.table.setItem(row, col, item) else: item.setText(text) row += 1 #for i in range(self.table.columnCount()): self.table.resizeColumnToContents(1) self.table.resizeColumnToContents(3) class HDF5InfoWidget(qt.QTabWidget): def __init__(self, parent=None, info=None): qt.QTabWidget.__init__(self, parent) self._notifyCloseEventToWidget = [] self._build() if info is not None: self.setInfoDict(info) def sizeHint(self): return qt.QSize(2 * qt.QTabWidget.sizeHint(self).width(), int(1.5 * qt.QTabWidget.sizeHint(self).height())) def _build(self): self.generalInfoWidget = HDF5GeneralInfoWidget(self) self.attributesInfoWidget = HDF5AttributesInfoWidget(self) self.addTab(self.generalInfoWidget, 'General') self.addTab(self.attributesInfoWidget, 'Attributes') def setInfoDict(self, ddict): self.generalInfoWidget.setInfoDict(ddict) self.attributesInfoWidget.setInfoDict(ddict) def notifyCloseEventToWidget(self, widget): if widget not in self._notifyCloseEventToWidget: self._notifyCloseEventToWidget.append(widget) def closeEvent(self, event): if len(self._notifyCloseEventToWidget): for widget in self._notifyCloseEventToWidget: ddict={} ddict['event'] = 'closeEventSignal' ddict['id'] = id(self) newEvent = HDFInfoCustomEvent(ddict) try: qt.QApplication.postEvent(widget, newEvent) except Exception: _logger.warning("Error notifying close event to widget", widget) self._notifyCloseEventToWidget = [] return qt.QWidget.closeEvent(self, event) def getInfo(hdf5File, node): """ hdf5File is and HDF5 file-like insance node is the posix path to the node """ data = hdf5File[node] ddict = {} ddict['general'] = {} ddict['attributes'] = {} externalFile = False if hasattr(hdf5File, "file"): if hasattr(hdf5File.file, "filename"): if data.file.filename != hdf5File.file.filename: externalFile = True if externalFile: path = node if path != "/": name = posixpath.basename(node) else: name = hdf5File.file.filename if data.name != node: path += " external link to %s" % data.name path += " in %s" % safe_str(data.file.filename) name += " external link to %s" % data.name name += " in %s" % safe_str(data.file.filename) else: name = data.name ddict['general']['Path'] = path ddict['general']['Name'] = name else: ddict['general']['Path'] = data.name if ddict['general']['Path'] != "/": ddict['general']['Name'] = posixpath.basename(data.name) else: ddict['general']['Name'] = data.file.filename ddict['general']['Type'] = safe_str(data) if hasattr(data, 'dtype'): dataw = data if hasattr(data, "asstr"): id_type = data.id.get_type() if hasattr(id_type, "get_cset") and id_type.get_cset() == h5py.h5t.CSET_UTF8: try: dataw = data.asstr() except Exception: _logger.warning("Cannot decode %s as utf-8" % data.name) dataw = data if ("%s" % data.dtype).startswith("|S") or\ ("%s" % data.dtype).startswith("|O"): if hasattr(data, 'shape'): shape = data.shape if shape is None: shape = () if not len(shape): ddict['general']['Value'] = "%s" % dataw[()] elif shape[0] == 1: ddict['general']['Value'] = "%s" % dataw[0] else: _logger.warning("Node %s not fully understood" % node) ddict['general']['Value'] = "%s" % dataw[()] elif hasattr(data, 'shape'): shape = data.shape if shape is None: shape = () if len(shape) == 1: if shape[0] == 1: ddict['general']['Value'] = "%s" % dataw[0] elif len(shape) == 0: ddict['general']['Value'] = "%s" % dataw[()] if hasattr(data, "keys"): ddict['general']['members'] = list(data.keys()) elif hasattr(data, "listnames"): ddict['general']['members'] = list(data.listnames()) else: ddict['general']['members'] = [] for member in list(ddict['general']['members']): ddict['general'][member] = {} ddict['general'][member]['Name'] = safe_str(member) if ddict['general']['Path'] == "/": ddict['general'][member]['Type'] = safe_str(hdf5File[node+"/"+member]) continue memberObject = hdf5File[node][member] if hasattr(memberObject, 'shape'): ddict['general'][member]['Type'] = safe_str(hdf5File[node+"/"+member]) dtype = memberObject.dtype if hasattr(memberObject, 'shape'): shape = memberObject.shape if shape is None: shape = () memberObjectw = memberObject if hasattr(memberObject, "asstr"): id_type = memberObject.id.get_type() if hasattr(id_type, "get_cset") and id_type.get_cset() == h5py.h5t.CSET_UTF8: try: memberObjectw = memberObject.asstr() except Exception: _logger.warning("Cannot decode %s as utf-8" % \ ddict['general'][member]['Name']) memberObjectw = memberObject if ("%s" % dtype).startswith("|S") or\ ("%s" % dtype).startswith("|O"): if not len(shape): ddict['general'][member]['Shape'] = "" ddict['general'][member]['Value'] = "%s" % memberObjectw[()] else: ddict['general'][member]['Shape'] = shape[0] if shape[0] > 0: ddict['general'][member]['Value'] = "%s" % memberObjectw[0] continue if not len(shape): ddict['general'][member]['Shape'] = "" ddict['general'][member]['Value'] = "%s" % memberObjectw[()] continue ddict['general'][member]['Shape'] = "%d" % shape[0] for i in range(1, len(shape)): ddict['general'][member]['Shape'] += " x %d" % shape[i] if len(shape) == 1: if shape[0] == 1: ddict['general'][member]['Value'] = "%s" % memberObject[0] elif shape[0] > 1: ddict['general'][member]['Value'] = "%s, ..., %s" % (memberObject[0], memberObject[-1]) elif len(shape) == 2: ddict['general'][member]['Value'] = "%s, ..., %s" % (memberObject[0], memberObject[-1]) else: _logger.info("Not showing value information for %dd data" % len(shape)) else: ddict['general'][member]['Type'] = safe_str(hdf5File[node+"/"+member]) if hasattr(data.attrs, "keys"): ddict['attributes']['names'] = data.attrs.keys() elif hasattr(data.attrs, "listnames"): ddict['attributes']['names'] = data.attrs.listnames() else: ddict['attributes']['names'] = [] if sys.version >= '3.0.0': ddict['attributes']['names'] = list(ddict['attributes']['names']) ddict['attributes']['names'].sort() for key in ddict['attributes']['names']: ddict['attributes'][key] = {} Name = key Value = data.attrs[key] Type = safe_str(type(Value)) if type(Value) == type(""): Size = "%d" % len(Value) elif type(Value) in [type(1), type(0.0)]: Value = safe_str(Value) Size = "1" elif hasattr(Value, "size"): Size = "%s" % Value.size Value = safe_str(Value) else: Value = safe_str(Value) Size = "Unknown" ddict['attributes'][key]['Name'] = Name ddict['attributes'][key]['Value'] = Value ddict['attributes'][key]['Type'] = Type ddict['attributes'][key]['Size'] = Size return ddict if __name__ == "__main__": if len(sys.argv) < 3: print("Usage:") print("python HDF5Info.py hdf5File node") sys.exit(0) h=h5py.File(sys.argv[1], "r") node = sys.argv[2] info = getInfo(h, node) app = qt.QApplication([]) w = HDF5InfoWidget() w.setInfoDict(info) w.show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5McaTable.py0000644000000000000000000003643214741736366020747 0ustar00rootroot#/*########################################################################## # Copyright (C) 2020-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import posixpath import logging import re from PyMca5.PyMcaGui import PyMcaQt as qt _logger = logging.getLogger(__name__) safe_str = qt.safe_str class McaSelectionType(qt.QWidget): sigMcaSelectionTypeSignal = qt.pyqtSignal(object) def __init__(self, parent=None, row=0, column=0, shape=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self._row = row self._column = column self._selector = False self._selection = qt.QCheckBox(self) self._selection.setText(" ") self._selectionType = qt.QComboBox(self) self._optionsList = ["sum", "average", "index"] if shape: if len(shape) > 2: self._optionsList += ["slice"] for option in self._optionsList: self._selectionType.addItem(option[0].upper() + option[1:]) self._selectionType.setCurrentIndex(self._optionsList.index("average")) self.mainLayout.addWidget(self._selection) self.mainLayout.addWidget(self._selectionType) self._selection.clicked.connect(self._mySignal) self._selectionType.activated[int].connect(self._preSignal) self._sliceList = [] self._mcaIndex = qt.QSpinBox(self) if shape is None: maximum = 0 elif len(shape) in [0, 1]: maximum = 0 else: maximum = 1 for dim in shape[:-1]: maximum *= dim self._mcaIndex.setMinimum(0) if maximum: self._mcaIndex.setMaximum(maximum - 1) else: self._mcaIndex.setMaximum(0) self._mcaIndex.setValue(0) self.mainLayout.addWidget(self._mcaIndex) if self._selector: self._selectorButton = qt.QPushButton(self) self._selectorButton.setText("Browser") self.mainLayout.addWidget(self._selectorButton) self._mcaIndex.hide() # textChanged or editingFinished ? #self._mcaIndex.editingFinished[str].connect(self._mcaIndexTextChangedSlot) self._mcaIndex.valueChanged[int].connect(self._mcaIndexValueChangedSlot) if self._selector: self._selectorButton.hide() self._selectorButton.clicked.connect(self._selectorButtonClickedSlot) if shape and len(shape) > 2: self._sliceList = [] for i in range(len(shape) - 1): spinbox = qt.QSpinBox(self) spinbox.setMinimum(0) if shape[i] > 0: spinbox.setMaximum(shape[i] - 1) else: spinbox.setMaximum(0) spinbox.setValue(0) self.mainLayout.addWidget(spinbox) spinbox.hide() spinbox.valueChanged[int].connect(self._sliceChangedSlot) self._sliceList.append(spinbox) if shape is None or len(shape) < 2: self._selectionType.hide() elif len(shape) == 2: if shape[0] == 1: self._selectionType.hide() def setChecked(self, value): if value: self._selection.setChecked(True) else: self._selection.setChecked(False) def isChecked(self): return self._selection.isChecked() def currentText(self): idx = self._selectionType.currentIndex() text = self._optionsList[idx] if text == "index": text += " %d" % self._mcaIndex.value() if text == "slice": for i in range(len(self._sliceList)): if i == 0: text += " [%d" % self._sliceList[0].value() else: text += ", %d" % self._sliceList[1].value() text += ", :]" return text def currentMcaIndex(self): if hasattr(self, "_mcaIndex"): return self._mcaIndex.value() else: return 0 def setCurrentText(self, text): text = text.lower() if text in ["average", "avg"]: text = "average" elif text.startswith("index"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') items = exp.findall(text) if len(items) not in [0, 1]: raise ValueError("Cannot retieve index from %s" % text) elif len(items) == 0: value = 0 else: value = 1 self._mcaIndex.setValue(value) elif text.startswith("slice"): exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') items = exp.findall(text) if len(items) != len(self._sliceList): raise IndexError("Received slice %s does not match length of %" % (text, len(self._sliceList))) for w in self._sliceList: w.setValue(int(items[0])) else: raise ValueError("Received option %s not among supported options" % text) def _mcaIndexTextChangedSlot(self, text): _logger.debug("Text changed %s" % text) self._mySignal() def _mcaIndexValueChangedSlot(self, value): _logger.debug("Value changed %s" % value) self._mySignal() def _sliceChangedSlot(self, value): _logger.debug("Value changed %s" % value) self._mySignal() def _selectorButtonClickedSlot(self): _logger.debug("selectorButtonClicked") self._mySignal(event="selector") def _preSignal(self, value): if self._optionsList[value] == "index": self._mcaIndex.show() if self._selector: self._selectorButton.show() else: self._mcaIndex.hide() if self._selector: self._selectorButton.hide() if self._optionsList[value] == "slice": for w in self._sliceList: w.show() if self._selector: self._selectorButton.show() else: for w in self._sliceList: w.hide() if self._selector: self._selectorButton.hide() self._mySignal() def _mySignal(self, value=None, event=None): if event is None: event = "clicked" ddict = {} ddict["event"] = event ddict["state"] = self._selection.isChecked() ddict["type"] = self.currentText() ddict["row"] = self._row * 1 ddict["column"] = self._column * 1 self.sigMcaSelectionTypeSignal.emit(ddict) class HDF5McaTable(qt.QTableWidget): sigHDF5McaTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) self.aliasList = [] self.mcaList = [] self.mcaSelection = [] self.mcaSelectionType = [] labels = ['Dataset', 'Selection', 'Alias'] self._aliasColumn = labels.index('Alias') self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) self.cellChanged[int, int].connect(self._aliasSlot) def build(self, cntlist, aliaslist=None, shapelist=None): self.__building = True if aliaslist is None: aliaslist = [] for item in cntlist: aliaslist.append(posixpath.basename(item)) if len(cntlist) != len(aliaslist): raise ValueError("Alias list and counter list must have same length") self.mcaList = cntlist self.aliasList = aliaslist self.shapeList = shapelist n = len(cntlist) if self.shapeList is None: self.shapeList = (None,) * n self.setRowCount(n) if n > 0: self.setRowCount(n) rheight = self.horizontalHeader().sizeHint().height() # check if we need the complete description useFullPath = [] for i in range(n): iName = posixpath.basename(cntlist[i]) for j in range(i+1, n): if posixpath.basename(cntlist[j]) == iName: if i not in useFullPath: useFullPath.append(i) if j not in useFullPath: useFullPath.append(j) for i in range(n): self.setRowHeight(i, rheight) if i in useFullPath: self.__addLine(i, cntlist[i], self.shapeList[i]) else: self.__addLine(i, posixpath.basename(cntlist[i]), self.shapeList[i]) for j in range(1, 2): widget = self.cellWidget(i, j) widget.setEnabled(True) else: self.setRowCount(0) self.resizeColumnToContents(1) #self.resizeColumnToContents(2) self.__building = False def __addLine(self, i, cntlabel, shape=None): #the counter name j = 0 item = self.item(i, 0) if item is None: item = qt.QTableWidgetItem(cntlabel, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, 0, item) else: item.setText(cntlabel) #item is just enabled (not selectable) item.setFlags(qt.Qt.ItemIsEnabled) # the selection type j += 1 widget = self.cellWidget(i, j) if widget is None: widget = McaSelectionType(self, i, j, shape=shape) self.setCellWidget(i, j, widget) widget.sigMcaSelectionTypeSignal.connect(self._mySlot) else: pass #the alias j += 1 item = self.item(i, j) alias = self.aliasList[i] if item is None: item = qt.QTableWidgetItem(alias, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, j, item) else: item.setText(alias) def _aliasSlot(self, row, col): if self.__building: return if col != self._aliasColumn: return item = self.item(row, col) self.aliasList[row] = safe_str(item.text()) self._update(row, col) def _mySlot(self, ddict): _logger.debug("HDF5McaTable._mySlot %s", ddict) row = ddict["row"] col = ddict["column"] if col == 1: if ddict["state"]: if row not in self.mcaSelection: self.mcaSelection.append(row) self.mcaSelectionType.append(ddict["type"]) else: idx = self.mcaSelection.index(row) self.mcaSelectionType[idx] = ddict["type"] else: if row in self.mcaSelection: idx = self.mcaSelection.index(row) del self.mcaSelection[idx] del self.mcaSelectionType[idx] self._update(row, col) self.resizeColumnToContents(1) def _update(self, row=None, column=None): for i in range(self.rowCount()): j = 1 widget = self.cellWidget(i, j) assert len(self.mcaSelection) == len(self.mcaSelectionType) if i in self.mcaSelection: if not widget.isChecked(): widget.setChecked(True) widget.setCurrentText(self.mcaSelectionType[i]) else: if widget.isChecked(): widget.setChecked(False) ddict = {} ddict["event"] = "updated" ddict["row"] = row ddict["column"] = column if row: ddict["type"] = self.cellWidget(row, 1).currentText().lower() if row is not None and column is not None: self.sigHDF5McaTableSignal.emit(ddict) def getMcaSelection(self): ddict = {} ddict['mcalist'] = self.mcaList * 1 ddict['aliaslist'] = self.aliasList * 1 ddict['selectionindex'] = self.mcaSelection * 1 ddict['selectiontype'] = self.mcaSelectionType * 1 return ddict def setMcaSelection(self, ddict): keys = ddict.keys() if 'mcalist' in keys: mcalist = ddict['mcalist'] else: mcalist = self.mcaList * 1 # no selection based on aliaslist or counterlist (yet?) if 0: if 'aliaslist' in keys: aliaslist = ddict['aliaslist'] elif len(self.aliasList) == len(cntlist): aliaslist = self.aliasList * 1 else: aliaslist = self.mcaList * 1 if 'selectionindex' in keys: selection = ddict['selectionindex'] else: selection = [] if 'selectiontype' in keys: selectionType = ddict['selectiontype'] else: selectionType = [] assert len(selection) == len(selectionType) self.mcaSelection = [] self.mcaSelectionType = [] for i in range(len(selection)): idx = selection[idx] if idx < len(mcalist): self.mcaSelection.append(selection[i]) self.mcaSelectionType.append(selectionType[i]) self._update() def main(): app = qt.QApplication([]) tab = HDF5McaTable() tab.build(["Cnt1", "Cnt2", "Cnt3"]) #tab.setCounterSelection({'x':[1, 2], 'y':[4], # 'cntlist':["dummy", "Cnt0", "Cnt1", "Cnt2", "Cnt3"]}) tab.show() def slot(ddict): print("Received = ", ddict) tab.sigHDF5McaTableSignal.connect(slot) app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5Selection.py0000644000000000000000000001024114741736366021212 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2021 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt safe_str = qt.safe_str class HDF5Selection(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.selectionWidgetsDict = {} row = 0 for key in ['entry', 'x', 'y', 'm']: label = qt.QLabel(self) label.setText(key+":") line = qt.QLineEdit(self) line.setReadOnly(True) self.mainLayout.addWidget(label, row, 0) self.mainLayout.addWidget(line, row, 1) self.selectionWidgetsDict[key] = line row += 1 def setSelection(self, selection): if 'cntlist' in selection: # "Raw" selection cntlist = selection['cntlist'] for key in ['entry', 'x', 'y', 'm']: if key not in selection: self.selectionWidgetsDict[key].setText("") continue n = len(selection[key]) if not n: self.selectionWidgetsDict[key].setText("") continue idx = selection[key][0] text = "%s" % cntlist[idx] if n > 1: for idx in range(1, n): text += ", %s" % cntlist[selection[key][idx]] self.selectionWidgetsDict[key].setText(text) else: # "Digested" selection for key in ['entry', 'x', 'y', 'm']: if key not in selection: self.selectionWidgetsDict[key].setText("") continue n = len(selection[key]) if not n: self.selectionWidgetsDict[key].setText("") continue text = "%s" % selection[key][0] if n > 1: for idx in range(1, n): text += ", %s" % selection[key][idx] self.selectionWidgetsDict[key].setText(text) def getSelection(self): selection = {} for key in ['entry', 'x', 'y', 'm']: selection[key] = [] text = safe_str(self.selectionWidgetsDict[key].text()) text = text.replace(" ","") if len(text): selection[key] = text.split(',') return selection def main(): app = qt.QApplication([]) tab = HDF5Selection() tab.setSelection({'x':[1, 2], 'y':[4], 'cntlist':["dummy", "Cnt0", "Cnt1", "Cnt2", "Cnt3"]}) tab.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/HDF5Widget.py0000644000000000000000000012203714741736366020517 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 V.A. Sole, ESRF - D. Dale CHESS # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Darren Dale (CHESS) & V.A. Sole (ESRF)" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import posixpath import time import gc import re from operator import itemgetter import logging _logger = logging.getLogger(__name__) if "hdf5plugin" not in sys.modules: # try to import hdf5plugins try: import hdf5plugin except Exception: _logger.info("Cannot import hdf5plugin") import h5py import weakref try: from silx.io import is_group from silx.io import open as h5open import logging logging.getLogger("silx.io.fabioh5").setLevel(logging.CRITICAL) except ImportError: def is_group(node): return isinstance(node, h5py.Group) def h5open(filename): try: return h5py.File(filename, "r") except OSError: if h5py.version.hdf5_version_tuple < (1, 10): # no reason to try SWMR mode raise _logger.info("Cannot open %s. Trying in SWMR mode" % filename) return h5py.File(filename, "r", libver='latest', swmr=True) from PyMca5.PyMcaGui import PyMcaQt as qt safe_str = qt.safe_str if hasattr(qt, 'QStringList'): MyQVariant = qt.QVariant else: def MyQVariant(x=None): return x QVERSION = qt.qVersion() #sorting method def h5py_sorting(object_list, sorting_list=None): if sorting_list is None: sorting_list = ['start_time', 'end_time', 'name'] n = len(object_list) if n < 2: return object_list # we have received items, not values # perform a first sort based on received names # this solves a problem with Eiger data where all the # external data have the same posixName. Without this sorting # they arrive "unsorted" object_list.sort() try: posixNames = [item[1].name for item in object_list] except AttributeError: # Typical of broken external links _logger.debug("HDF5Widget: Cannot get posixNames") return object_list # This implementation only sorts entries if posixpath.dirname(posixNames[0]) != "/": return object_list sorting_key = None if hasattr(object_list[0][1], "items"): for key in sorting_list: if key in [x[0] for x in object_list[0][1].items()]: sorting_key = key break if sorting_key is None: if 'name' in sorting_list: sorting_key = 'name' else: return object_list try: if sorting_key == 'title': def getTitle(x): try: title = x["title"][()] except Exception: # allow the title to be missing title = "" if hasattr(title, "dtype"): if hasattr(title, "__len__"): if len(title) == 1: title = title[0] if hasattr(title, "decode"): title = title.decode("utf-8") return title # sort first by the traditional keys in order to be sorted # by title and respecting actquisition order for equal title try: ordered_list = h5py_sorting(object_list) except Exception: ordered_list = object_list sorting_list = [(getTitle(o[1]), o) for o in ordered_list] sorted_list = sorted(sorting_list, key=itemgetter(0)) return [x[1] for x in sorted_list] if sorting_key != 'name': sorting_list = [(o[1][sorting_key][()], o) for o in object_list] sorted_list = sorted(sorting_list, key=itemgetter(0)) return [x[1] for x in sorted_list] if sorting_key == 'name': sorting_list = [(_get_number_list(o[1].name),o) for o in object_list] sorting_list.sort() return [x[1] for x in sorting_list] except Exception: #The only way to reach this point is to have different #structures among the different entries. In that case #defaults to the unfiltered case _logger.warning("WARNING: Default ordering") _logger.warning("Probably all entries do not have the key %s" % sorting_key) return object_list def _get_number_list(txt): rexpr = '[/a-zA-Z:_-]' nbs= [float(w) for w in re.split(rexpr, txt) if w not in ['',' ']] return nbs class BrokenLink(object): pass class QRLock(qt.QMutex): def __init__(self): qt.QMutex.__init__(self, qt.QMutex.Recursive) def __enter__(self): self.lock() return self def __exit__(self, type, value, traceback): self.unlock() class RootItem(object): @property def children(self): return self._children @property def hasChildren(self): if len(self._children): return True else: return False @property def header(self): return self._header @property def parent(self): return None def __init__(self, header): self._header = header self._children = [] self._identifiers = [] def __iter__(self): def iter_files(files): for f in files: yield f return iter_files(self.children) def __len__(self): return len(self.children) def appendChild(self, item): self.children.append(H5FileProxy(item, self)) self._identifiers.append(id(item)) def deleteChild(self, child): idx = self._children.index(child) del self._children[idx] del self._identifiers[idx] class H5NodeProxy(object): def sortChildren(self, column, order): #print("sort children called with ", column, order) self.__sorting = True if column == 1: self.__sorting_list = ["title"] else: self.__sorting_list = None self.__sorting_order = order def raw_keys(self): for node in self.children: yield node.name def raw_values(self): node = self.getNode(self.name) if hasattr(node, "values"): return node.values() else: # spech5 does not implement values() prior to silx 0.6.0 for _, value in self.raw_items(): yield value def raw_items(self): return self.getNode(self.name).items() @property def children(self): if not self.hasChildren: return [] if self.__sorting or not self._children: # obtaining the lock here is necessary, otherwise application can # freeze if navigating tree while data is processing if 1: #with self.file.plock: if 1: try: # this returns (str, str) in case of dealing with a broken link items = list(self.raw_items()) except Exception: items = [] _logger.warning("Cannot obtain items list. Ignoring") else: # this returns (str, None) in case of dealing with a broken link items = list(self.getNode(self.name).items()) try: # better handling of external links finalList = h5py_sorting(items, sorting_list=self.__sorting_list) for i in range(len(finalList)): # avoid an error at silx level with the linechecking "if finalList[i][1] and " finalListIsTrue = True dataset = finalList[i][1] if hasattr(dataset, "shape"): if not len(dataset.shape): # it can still be a string if hasattr(dataset, "dtype"): if safe_str(dataset.dtype).startswith("|S"): pass elif safe_str(dataset.dtype) == "object": # issue 1059 pass else: finalListIsTrue = False else: finalListIsTrue = False if finalListIsTrue and not isinstance(finalList[i][1], str): finalList[i][1]._posixPath = posixpath.join(self.name, finalList[i][0]) else: finalList[i] = [x for x in finalList[i]] finalList[i][1] = BrokenLink() finalList[i][1]._posixPath = posixpath.join(self.name, finalList[i][0]) self._children = [H5NodeProxy(self.file, i[1], self) for i in finalList] except Exception: # one cannot afford any error, so I revert to the old # method where values where used instead of items if 1 or _logger.getEffectiveLevel() == logging.DEBUG: raise tmpList = list(self.raw_values()) finalList = tmpList for i in range(len(finalList)): finalList[i]._posixPath = posixpath.join(self.name, items[i][0]) self._children = [H5NodeProxy(self.file, i, self) for i in finalList] self.__sorting = False return self._children @property def file(self): return self._file @property def hasChildren(self): return self._hasChildren @property def name(self): return self._name @property def row(self): if 1:#with self.file.plock: try: return self.parent.children.index(self) except ValueError: return @property def type(self): return self._type @property def shape(self): if type(self._shape) == type(""): return self._shape if self._shape is None: return "" if len(self._shape) == 1: return "%d" % self._shape[0] elif len(self._shape) > 1: text = "%d" % self._shape[0] for a in range(1, len(self._shape)): text += " x %d" % self._shape[a] return text else: return "" @property def dtype(self): return self._dtype @property def parent(self): return self._parent #@property #def attrs(self): # return self._attrs @property def color(self): return self._color def __init__(self, ffile, node, parent=None, path=None): self.__sorting = False self.__sorting_list = None self.__sorting_order = qt.Qt.AscendingOrder if 1:#with ffile.plock: self._file = ffile self._parent = parent if hasattr(node, '_posixPath'): self._name = node._posixPath else: self._name = node.name """ if hasattr(node, "_sourceName"): self._name = node._sourceName else: self._name = posixpath.basename(node.name) """ self._type = type(node).__name__ self._hasChildren = is_group(node) #self._attrs = [] self._color = qt.QColor(qt.Qt.black) if hasattr(node, 'attrs'): attrs = list(node.attrs) for cname in ['class', 'NX_class']: if cname in attrs: nodeattr = node.attrs[cname] if sys.version <'3.0': _type = "%s" % nodeattr elif hasattr(nodeattr, "decode"): _type = nodeattr.decode('utf=8') else: _type = "%s" % nodeattr self._type = _type if _type in ["NXdata"]: self._color = qt.QColor(qt.Qt.blue) elif ("default" in attrs): self._color = qt.QColor(qt.Qt.blue) #self._attrs = attrs break #self._type = _type[2].upper() + _type[3:] self._children = [] if hasattr(node, 'dtype'): self._dtype = safe_str(node.dtype) else: self._dtype = "" if hasattr(node, 'shape'): if 0: self._shape = safe_str(node.shape) else: self._shape = node.shape else: self._shape = "" def clearChildren(self): self._children = [] self._hasChildren = False def getNode(self, name=None): if not name: name = self.name try: return self.file[name] except Exception: _logger.critical("Cannot access HDF5 file path <%s>" % name) return name def __len__(self): return len(self.children) class H5FileProxy(H5NodeProxy): @property def name(self): return '/' @property def filename(self): return self._filename def __init__(self, ffile, parent=None): super(H5FileProxy, self).__init__(ffile, ffile, parent) self._name = ffile.name self._filename = self.file.name def close(self): return self.file.close() def __getitem__(self, path): if path == '/': return self else: return H5NodeProxy(self.file, self.file[path], self) def raw_keys(self): if isinstance(self.file, h5py.File): file_path = self.file.filename data_path = self.name try: if sys.platform.startswith("win") and \ getattr(sys, 'frozen', False): _logger.debug("Frozen executable. Using standard approach") return self.file[data_path].keys() else: from PyMca5.PyMcaIO import HDF5Utils return HDF5Utils.safe_hdf5_group_keys(file_path, data_path=data_path) except Exception: _logger.debug("Using standard approach") return self.file[data_path].keys() else: file_path = self.file.filename data_path = self.name return self.file[data_path].keys() def raw_values(self): for _, value in self.raw_items(): yield value def raw_items(self): for data_path in self.raw_keys(): yield data_path, self.getNode(data_path) class FileModel(qt.QAbstractItemModel): """ """ sigFileUpdated = qt.pyqtSignal(object) sigFileAppended = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QAbstractItemModel.__init__(self, parent) self.rootItem = RootItem(['File/Group/Dataset', 'Description', 'Shape', 'DType']) self._idMap = {qt.QModelIndex().internalId(): self.rootItem} def sort(self, column, order): #print("FileModel sort called with ", column, order) for item in self.rootItem: item.sortChildren(column, order) def clearRows(self, index): self.getProxyFromIndex(index).clearChildren() def close(self): for item in self.rootItem: item.close() self._idMap = {} def columnCount(self, parent): return 4 def data(self, index, role): try: if role == qt.Qt.DisplayRole: item = self.getProxyFromIndex(index) column = index.column() if column == 0: if isinstance(item, H5FileProxy): try: return MyQVariant(os.path.basename(item.file.filename)) except Exception: _logger.critical("Cannot retrieve file name") return MyQVariant("Unknown file. Please refresh") else: if hasattr(item, "name"): return MyQVariant(posixpath.basename(item.name)) else: # this can only happen with the root return MyQVariant("/") if column == 1: showtitle = True if showtitle: if hasattr(item, 'type'): if item.type in ["Entry", "NXentry"]: if hasattr(item, "children"): children = item.children names = [posixpath.basename(o.name) for o in children] if "title" in names: idx = names.index("title") node = children[idx].getNode() if hasattr(node, "shape") and len(node.shape): #stored as an array of strings??? #return just the first item if hasattr(node, "asstr"): try: return MyQVariant("%s" % node.asstr()[()][0]) except Exception: return MyQVariant("%s" % node[()][0]) else: #stored as a string try: try: return MyQVariant("%s" % node.asstr()[()]) except Exception: return MyQVariant("%s" % node[()]) except Exception: # issue #745 return MyQVariant("Unknown %s" % node) else: _logger.critical("Entry %s has no children" % item.name) return MyQVariant(item.type) if column == 2: return MyQVariant(item.shape) if column == 3: return MyQVariant(item.dtype) elif role == qt.Qt.ForegroundRole: item = self.getProxyFromIndex(index) column = index.column() if column == 0: if hasattr(item, "color"): return MyQVariant(qt.QColor(item.color)) elif role == qt.Qt.ToolTipRole: item = self.getProxyFromIndex(index) if hasattr(item, "color"): if item.color == qt.Qt.blue: return MyQVariant("Item has a double click NXdata associated action") return MyQVariant() except Exception: return MyQVariant("Unhandled exception filling tree. Reload?") def getNodeFromIndex(self, index): try: return self.getProxyFromIndex(index).getNode() except AttributeError: return None def getProxyFromIndex(self, index): try: return self._idMap[index.internalId()] except KeyError: try: #Linux 32-bit problem return self._idMap[index.internalId() & 0xFFFFFFFF] except KeyError: return self.rootItem def hasChildren(self, index): return self.getProxyFromIndex(index).hasChildren def headerData(self, section, orientation, role): if orientation == qt.Qt.Horizontal and \ role == qt.Qt.DisplayRole: return MyQVariant(self.rootItem.header[section]) return MyQVariant() def hasIndex(self, row, column, parent): parentItem = self.getProxyFromIndex(parent) if row >= len(parentItem.children): return False return True def index(self, row, column, parent): parentItem = self.getProxyFromIndex(parent) if row >= len(parentItem.children): return qt.QModelIndex() child = parentItem.children[row] #force a pointer to child and not use id(child) index = self.createIndex(row, column, child) self._idMap.setdefault(index.internalId(), child) return index def parent(self, index): child = self.getProxyFromIndex(index) parent = child.parent if parent == self.rootItem: return qt.QModelIndex() if parent is None: return qt.QModelIndex() if parent.row is None: return qt.QModelIndex() else: return self.createIndex(parent.row, 0, parent) def rowCount(self, index): return len(self.getProxyFromIndex(index)) def openFile(self, filename, weakreference=False): gc.collect() for item in self.rootItem: if item.file.filename == filename: ddict = {} ddict['event'] = "fileUpdated" ddict['filename'] = filename self.sigFileUpdated.emit(ddict) return item.file phynxFile = h5open(filename) if weakreference: def phynxFileInstanceDistroyed(weakrefObject): idx = self.rootItem._identifiers.index(id(weakrefObject)) child = self.rootItem._children[idx] child.clearChildren() del self._idMap[id(child)] self.rootItem.deleteChild(child) if not self.rootItem.hasChildren: self.clear() return refProxy = weakref.proxy(phynxFile, phynxFileInstanceDistroyed) self.rootItem.appendChild(refProxy) else: self.rootItem.appendChild(phynxFile) ddict = {} ddict['event'] = "fileAppended" ddict['filename'] = filename self.sigFileAppended.emit(ddict) return phynxFile def appendPhynxFile(self, phynxFile, weakreference=True): """ I create a weak reference to a phynx file instance, get informed when the instance disappears, and delete the entry from the view """ if hasattr(phynxFile, "_sourceName"): name = phynxFile._sourceName else: name = phynxFile.name gc.collect() present = False for child in self.rootItem: if child.file.filename == name: #already present present = True break if present: ddict = {} ddict['event'] = "fileUpdated" ddict['filename'] = name self.sigFileUpdated.emit(ddict) return if weakreference: def phynxFileInstanceDistroyed(weakrefObject): idx = self.rootItem._identifiers.index(id(weakrefObject)) child = self.rootItem._children[idx] child.clearChildren() del self._idMap[id(child)] self.rootItem.deleteChild(child) if not self.rootItem.hasChildren: self.clear() return phynxFileProxy = weakref.proxy(phynxFile, phynxFileInstanceDistroyed) self.rootItem.appendChild(phynxFileProxy) else: self.rootItem.appendChild(phynxFile) ddict = {} ddict['event'] = "fileAppended" ddict['filename'] = name self.sigFileAppended.emit(ddict) def clear(self): _logger.debug("Clear called") # reset is considered obsolete under Qt 5. if hasattr(self, "reset"): self.reset() else: rootItem = self.rootItem self.beginResetModel() #for idx in range(len(rootItem._children)): # child = rootItem._children[idx] # child.clearChildren() # del self._idMap[id(child)] # rootItem.deleteChild(child) rootItem.children.clear() self.endResetModel() class FileView(qt.QTreeView): sigHDF5WidgetSignal = qt.pyqtSignal(object) def __init__(self, fileModel, parent=None): qt.QTreeView.__init__(self, parent) self.setModel(fileModel) self.setColumnWidth(0, 250) #This removes the children after a double click #with no possibility to recover them #self.collapsed[QModelIndex].connect(fileModel.clearRows) fileModel.sigFileAppended.connect(self.fileAppended) fileModel.sigFileUpdated.connect(self.fileUpdated) def fileAppended(self, ddict=None): self.doItemsLayout() if ddict is None: return self.fileUpdated(ddict) def fileUpdated(self, ddict): rootModelIndex = self.rootIndex() if self.model().hasChildren(rootModelIndex): rootItem = self.model().getProxyFromIndex(rootModelIndex) for row in range(len(rootItem)): if self.model().hasIndex(row, 0, rootModelIndex): modelIndex = self.model().index(row, 0, rootModelIndex) item = self.model().getProxyFromIndex(modelIndex) if item.name == ddict['filename']: self.selectionModel().setCurrentIndex(modelIndex, qt.QItemSelectionModel.NoUpdate) self.scrollTo(modelIndex, qt.QAbstractItemView.PositionAtTop) break self.doItemsLayout() class HDF5Widget(FileView): def __init__(self, model, parent=None): FileView.__init__(self, model, parent) self.setSelectionBehavior(qt.QAbstractItemView.SelectRows) self.setAutoScroll(False) self._adjust() if 0: self.activated[qt.QModelIndex].connect(self.itemActivated) self.clicked[qt.QModelIndex].connect(self.itemClicked) self.doubleClicked[qt.QModelIndex].connect(self.itemDoubleClicked) self.collapsed[qt.QModelIndex].connect(self._adjust) self.expanded[qt.QModelIndex].connect(self._adjust) self.setSortingEnabled(False) self.header().sectionDoubleClicked[int].connect( \ self._headerSectionDoubleClicked) tip = "Double click on first two columns to change order" self.header().setToolTip(tip) def _headerSectionDoubleClicked(self, index): self.sortItems(index, qt.Qt.AscendingOrder) def __updateOrder(self): rootModelIndex = self.rootIndex() filelist = [] if self.model().hasChildren(rootModelIndex): rootItem = self.model().getProxyFromIndex(rootModelIndex) for row in range(len(rootItem)): if self.model().hasIndex(row, 0, rootModelIndex): modelIndex = self.model().index(row, 0, rootModelIndex) item = self.model().getProxyFromIndex(modelIndex) try: filename = item.file.filename if filename not in filelist: filelist.append(filename) except Exception: continue if len(filelist): for file in filelist: ddict = {} ddict['event'] = "fileUpdated" ddict['filename'] = filename self.fileUpdated(ddict) def sortByColumn(self, column, order): #reimplement QTreeWidget sorting _logger.info("sort by column %d setting indicator %s" % (column, order)) self.setSortingEnabled(True) self.header().setSortIndicator(column, order) self.__updateOrder() self.setSortingEnabled(False) def sortItems(self, column, order): #reimplement QTreeWidget sorting _logger.info("sort items") self.sortByColumn(column, order) def _adjust(self, modelIndex=None): self.resizeColumnToContents(0) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) def mousePressEvent(self, e): button = e.button() if button == qt.Qt.LeftButton: self._lastMouse = "left" elif button == qt.Qt.RightButton: self._lastMouse = "right" elif button == qt.Qt.MidButton: self._lastMouse = "middle" else: #Should I set it to no button? self._lastMouse = "left" qt.QTreeView.mousePressEvent(self, e) if self._lastMouse != "left": # Qt5 only sends itemClicked on left button mouse click if QVERSION > "5": event = "itemClicked" modelIndex = self.indexAt(e.pos()) self.emitSignal(event, modelIndex) def itemActivated(self, modelIndex): event = "itemActivated" self.emitSignal(event, modelIndex) def itemClicked(self, modelIndex): event ="itemClicked" self.emitSignal(event, modelIndex) def itemDoubleClicked(self, modelIndex): event ="itemDoubleClicked" self.emitSignal(event, modelIndex) def selectionChanged(self, selected, deselected): super(HDF5Widget, self).selectionChanged(selected, deselected) event = "itemSelectionChanged" modelIndex = self.currentIndex() self.emitSignal(event, modelIndex) def emitSignal(self, event, modelIndex): if self.model() is None: return item = self.model().getProxyFromIndex(modelIndex) if QVERSION > "5": # prevent crash clicking on empty space if not hasattr(item, "file"): # RootItem return ddict = {} ddict['event'] = event ddict['file'] = item.file.filename # awful patch to support tiled sources where silx removes "tiled:" from the name #if ddict['file'].startswith("http"): # print("TODO: Issue with silx removing tiled: from the file name") # ddict['file'] = "tiled:" + ddict['file'] ddict['name'] = item.name ddict['type'] = item.type ddict['dtype'] = item.dtype ddict['shape'] = item.shape ddict['color'] = item.color ddict['mouse'] = getattr(self, '_lastMouse', 'left') * 1 self.sigHDF5WidgetSignal.emit(ddict) def getSelectedEntries(self): modelIndexList = self.selectedIndexes() entryList = [] analyzedPaths = [] for modelIndex in modelIndexList: item = self.model().getProxyFromIndex(modelIndex) if item.type in ["weakproxy", "File"]: continue filename = item.file.filename path = item.name * 1 if (path, filename) in analyzedPaths: continue else: analyzedPaths.append((path, filename)) entry = "/" + path.split("/")[1] if (entry, filename) not in entryList: entryList.append((entry, filename)) _logger.info("Returned entryList %s" % entryList) return entryList class Hdf5SelectionDialog(qt.QDialog): """Dialog widget to select a HDF5 item in a file. It is composed of a :class:`HDF5Widget` tree view, and two buttons Ok and Cancel. When the dialog's execution is ended with a click on the OK button, or with a double-click on an item of the proper type, the URI of the selected item will be available in attribute :attr:`selectedItemUri`. If the user clicked cancel or closed the dialog without selecting an item, :attr:`selectedItemUri` will be None.""" datasetTypes = ['dataset', 'spech5dataset', 'spech5linktodataset', # spech5 'framedata', 'rawheaderdata'] # fabioh5 def __init__(self, parent=None, filename=None, message=None, itemtype="any"): """ :param filename: Name of the HDF5 file :param value: If True returns dataset value instead of just the dataset. This must be False if itemtype is not "dataset". :param str itemtype: "dataset" or "group" or "any" (default) """ message = message if message is not None else 'Select your item' self.itemtype = itemtype if itemtype is not None else "any" if self.itemtype not in ["any", "dataset", "group"]: raise AttributeError( "Invalid itemtype %s, should be 'group', 'dataset' or 'any'" % itemtype) if filename is None: filename = _getFilenameDialog(parent=parent) if filename is None: raise IOError("No filename specified") qt.QDialog.__init__(self, parent) self.setWindowTitle(message) mainLayout = qt.QVBoxLayout(self) mainLayout.setContentsMargins(0, 0, 0, 0) mainLayout.setSpacing(0) self.fileModel = FileModel() self.fileView = HDF5Widget(self.fileModel) self.filename = filename self.fileView.sigHDF5WidgetSignal.connect(self._hdf5WidgetSlot) mainLayout.addWidget(self.fileView) buttonContainer = qt.QWidget(self) buttonContainerLayout = qt.QHBoxLayout(buttonContainer) mainLayout.setContentsMargins(0, 0, 0, 0) mainLayout.setSpacing(0) self.okb = qt.QPushButton("OK", buttonContainer) cancelb = qt.QPushButton("Cancel", buttonContainer) self.okb.clicked.connect(self.onOk) self.okb.setEnabled(False) # requires item to be clicked or activated cancelb.clicked.connect(self.reject) buttonContainerLayout.addWidget(self.okb) buttonContainerLayout.addWidget(cancelb) mainLayout.addWidget(buttonContainer) self.resize(400, 200) self.selectedItemUri = None """URI of selected HDF5 item, with format 'filename::item_name' """ self._lastEvent = None """Dictionary with info about latest event""" def _hdf5WidgetSlot(self, ddict): self._lastEvent = ddict eventType = ddict['type'].lower() isExpectedType = self.itemtype.lower() == "any" or \ (eventType in self.datasetTypes and self.itemtype == "dataset") or \ (eventType not in self.datasetTypes and self.itemtype == "group") if isExpectedType: self.okb.setEnabled(True) else: self.okb.setEnabled(False) if ddict['event'] == "itemDoubleClicked": if isExpectedType: self.selectedItemUri = ddict['file'] + "::" + ddict['name'] self.accept() def onOk(self): self.selectedItemUri = self._lastEvent['file'] + "::" + self._lastEvent['name'] self.accept() def exec(self): with h5open(self.filename) as hdf5File: self.fileModel.appendPhynxFile(hdf5File, weakreference=True) ret = qt.QDialog.exec(self) return ret def exec_(self): return self.exec() def _getFilenameDialog(parent=None): """Open a dialog to select a file in a filesystem tree view. Return the selected filename.""" from PyMca5.PyMcaGui.io import PyMcaFileDialogs fileTypeList = ['HDF5 Files (*.h5 *.nxs *.hdf)', 'HDF5 Files (*)'] message = "Open HDF5 file" filenamelist, ffilter = PyMcaFileDialogs.getFileList(parent=parent, filetypelist=fileTypeList, message=message, getfilter=True, single=True, currentfilter=None) if len(filenamelist) < 1: return None return filenamelist[0] def getDatasetValueDialog(filename=None, message=None, parent=None): """Open a dialog to select a dataset in a HDF5 file. Return the value of the dataset. If the dataset selection was cancelled, None is returned. :param str filename: HDF5 file path. If None, a file dialog is used to select the file. :param str message: Message used as window title for dialog :return: HDF5 dataset as numpy array, or None """ hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "dataset") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri with h5open(filename) as hdf5File: hdf5Item = hdf5File[selectedHdf5Uri.split("::")[-1]] data = hdf5Item[()] return data def getDatasetUri(parent=None, filename=None, message=None): # TODO: Accept a filter for type of dataset hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "dataset") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri return selectedHdf5Uri def getGroupUri(parent=None, filename=None, message=None): # TODO: Accept a filter for a particular attribute (NXclass) hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "dataset") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri return selectedHdf5Uri def getUri(parent=None, filename=None, message=None): hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "any") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri return selectedHdf5Uri def getDatasetDialog(filename=None, value=False, message=None, parent=None): # function kept for backward compatibility, in case someone # uses it with value=False outside PyMca5 if value: return getDatasetValueDialog(filename=filename, message=message, parent=parent) hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "dataset") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri hdf5File = h5open(filename) return hdf5File[selectedHdf5Uri.split("::")[-1]] def getGroupNameDialog(filename=None, message=None, parent=None): """Open a dialog to select a group in a HDF5 file. Return the name of the group. :param str filename: HDF5 file path. If None, a file dialog is used to select the file. :param str message: Message used as window title for dialog :return: HDF5 group name """ hdf5Dialog = Hdf5SelectionDialog(parent, filename, message, "group") ret = hdf5Dialog.exec() if not ret: return None selectedHdf5Uri = hdf5Dialog.selectedItemUri return selectedHdf5Uri.split("::")[-1] if __name__ == "__main__": if len(sys.argv) < 2: print("Usage:") print("python HDF5Widget.py path_to_hdf5_file_name") sys.exit(0) app = qt.QApplication(sys.argv) fileModel = FileModel() fileView = HDF5Widget(fileModel) phynxFile = fileModel.openFile(sys.argv[1]) def mySlot(ddict): print(ddict) if ddict['type'].lower() in Hdf5SelectionDialog.datasetTypes: print(phynxFile[ddict['name']].dtype, phynxFile[ddict['name']].shape) fileView.sigHDF5WidgetSignal.connect(mySlot) fileView.show() ret = app.exec() app = None sys.exit(ret) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/Hdf5NodeView.py0000644000000000000000000002322514741736366021113 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """The :class:`Hdf5NodeView` widget in this module aims to replace :class:`HDF5DatasetTable` in :class:`QNexusWidget` for visualization of HDF5 datasets and groups, with support of NXdata groups as plot. It uses the silx :class:`DataViewerFrame` widget with views modified to handle plugins.""" __author__ = "P. Knobel - ESRF Data Analysis" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import PyMca5 from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import CloseEventNotifyingWidget from PyMca5.PyMcaGui.PluginsToolButton import PluginsToolButton import silx from silx.gui.data.DataViewerFrame import DataViewerFrame from silx.gui.data.DataViewer import DataViewer from silx.gui.data import DataViews from silx.gui.data import NXdataWidgets from silx.gui.plot import Plot1D, Plot2D from silx.gui import icons PLUGINS_DIR = [] if os.path.exists(os.path.join(os.path.dirname(PyMca5.__file__), "PyMcaPlugins")): from PyMca5 import PyMcaPlugins PLUGINS_DIR.append(os.path.dirname(PyMcaPlugins.__file__)) else: directory = os.path.dirname(__file__) while True: if os.path.exists(os.path.join(directory, "PyMcaPlugins")): PLUGINS_DIR.append(os.path.join(directory, "PyMcaPlugins")) break directory = os.path.dirname(directory) if len(directory) < 5: break userPluginsDirectory = PyMca5.getDefaultUserPluginsDirectory() if userPluginsDirectory is not None: PLUGINS_DIR.append(userPluginsDirectory) class Plot1DWithPlugins(Plot1D): """Add a plugin toolbutton to a Plot1D""" def __init__(self, parent=None): Plot1D.__init__(self, parent) self._plotType = "SCAN" # needed by legacy plugins self._toolbar = qt.QToolBar(self) self.addToolBar(self._toolbar) pluginsToolButton = PluginsToolButton(plot=self, parent=self) if PLUGINS_DIR: pluginsToolButton.getPlugins( method="getPlugin1DInstance", directoryList=PLUGINS_DIR) self._toolbar.addWidget(pluginsToolButton) class Plot1DViewWithPlugins(DataViews._Plot1dView): """Overload Plot1DView to use the widget with a :class:`PluginsToolButton`""" def createWidget(self, parent): return Plot1DWithPlugins(parent=parent) class Plot2DWithPlugins(Plot2D): """Add a plugin toolbutton to a Plot2D""" def __init__(self, parent=None): Plot2D.__init__(self, parent) self._toolbar = qt.QToolBar(self) self.addToolBar(self._toolbar) pluginsToolButton = PluginsToolButton(plot=self, parent=self, method="getPlugin2DInstance") if PLUGINS_DIR: pluginsToolButton.getPlugins( method="getPlugin2DInstance", directoryList=PLUGINS_DIR) self._toolbar.addWidget(pluginsToolButton) if hasattr(self, "getIntensityHistogramAction"): self.getIntensityHistogramAction().setVisible(True) else: print("Plot2D getIntensityHistogramAction missing") class Plot2DViewWithPlugins(DataViews._Plot2dView): def createWidget(self, parent): widget = Plot2DWithPlugins(parent=parent) widget.setDefaultColormap(self.defaultColormap()) widget.getColormapAction().setColorDialog(self.defaultColorDialog()) widget.setKeepDataAspectRatio(False) widget.getXAxis().setLabel('X') widget.getYAxis().setLabel('Y') return widget class ArrayCurvePlotWithPlugins(NXdataWidgets.ArrayCurvePlot): """Adds a plugin toolbutton to an ArrayCurvePlot widget""" def __init__(self, parent=None): NXdataWidgets.ArrayCurvePlot.__init__(self, parent) # patch the Plot1D to make it compatible with plugins self._plot._plotType = "SCAN" self._toolbar = qt.QToolBar(self) self._plot.addToolBar(self._toolbar) pluginsToolButton = PluginsToolButton(plot=self._plot, parent=self) if PLUGINS_DIR: pluginsToolButton.getPlugins( method="getPlugin1DInstance", directoryList=PLUGINS_DIR) self._toolbar.addWidget(pluginsToolButton) class NXdataCurveViewWithPlugins(DataViews._NXdataCurveView): """Use the widget with a :class:`PluginsToolButton`""" def createWidget(self, parent): return ArrayCurvePlotWithPlugins(parent=parent) class ArrayImagePlotWithPlugins(NXdataWidgets.ArrayImagePlot): """Adds a plugin toolbutton to an ArrayImagePlot widget""" def __init__(self, parent=None): NXdataWidgets.ArrayImagePlot.__init__(self, parent) self._toolbar = qt.QToolBar(self) self.getPlot().addToolBar(self._toolbar) pluginsToolButton = PluginsToolButton(plot=self.getPlot(), parent=self, method="getPlugin2DInstance") if PLUGINS_DIR: pluginsToolButton.getPlugins( method="getPlugin2DInstance", directoryList=PLUGINS_DIR) self._toolbar.addWidget(pluginsToolButton) class NXdataImageViewWithPlugins(DataViews._NXdataImageView): """Use the widget with a :class:`PluginsToolButton`""" def createWidget(self, parent): widget = ArrayImagePlotWithPlugins(parent) widget.getPlot().setDefaultColormap(self.defaultColormap()) widget.getPlot().getColormapAction().setColorDialog(self.defaultColorDialog()) return widget class Hdf5NodeView(CloseEventNotifyingWidget.CloseEventNotifyingWidget): """QWidget displaying data as raw values in a table widget, or as a curve, image or stack in a plot widget. It can also display information related to HDF5 groups (attributes, compression, ...) and interpret a NXdata group to plot its data. The plot features depend on *silx*'s availability. """ def __init__(self, parent=None): CloseEventNotifyingWidget.CloseEventNotifyingWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.viewWidget = DataViewerFrame(self) self.viewWidget.replaceView(DataViews.PLOT1D_MODE, Plot1DViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.PLOT2D_MODE, Plot2DViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.NXDATA_CURVE_MODE, NXdataCurveViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.NXDATA_IMAGE_MODE, NXdataImageViewWithPlugins(self)) self.mainLayout.addWidget(self.viewWidget) def setData(self, dataset): self.viewWidget.setData(dataset) class Hdf5NodeViewer(CloseEventNotifyingWidget.CloseEventNotifyingWidget): """QWidget displaying data as raw values in a table widget, or as a curve, image or stack in a plot widget. It can also display information related to HDF5 groups (attributes, compression, ...) and interpret a NXdata group to plot its data. The plot features depend on *silx*'s availability. """ def __init__(self, parent=None): CloseEventNotifyingWidget.CloseEventNotifyingWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.viewWidget = DataViewer(self) self.viewWidget.replaceView(DataViews.PLOT1D_MODE, Plot1DViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.PLOT2D_MODE, Plot2DViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.NXDATA_CURVE_MODE, NXdataCurveViewWithPlugins(self)) self.viewWidget.replaceView(DataViews.NXDATA_IMAGE_MODE, NXdataImageViewWithPlugins(self)) self.mainLayout.addWidget(self.viewWidget) def setData(self, dataset): self.viewWidget.setData(dataset) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/NexusInfo.py0000644000000000000000000001147214741736366020603 0ustar00rootroot#/*########################################################################## # Copyright (C) 2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "M. Spitoni" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import h5py from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaCore.NexusTools import getStartingPositionerValues from . import HDF5Info class NexusMotorInfoWidget(qt.QWidget): def __init__(self, parent): super().__init__(parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.label = qt.QLabel(self) self.label.setText("Number of motors: 0") column_names = ["Name", "Value", "Units"] self._column_names = column_names self.table = qt.QTableWidget(self) self.table.setColumnCount(len(column_names)) for i in range(len(column_names)): item = self.table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(column_names[i], qt.QTableWidgetItem.Type) item.setText(column_names[i]) self.table.setHorizontalHeaderItem(i, item) self.table.setSortingEnabled(True) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.table) def setInfoDict(self, ddict): if "motors" in ddict: self._setInfoDict(ddict["motors"]) else: self._setInfoDict(ddict) def _setInfoDict(self, ddict): nrows = len(ddict.get(self._column_names[0], [])) self.label.setText("Number of motors: %d" % nrows) self.table.setRowCount(nrows) if not nrows: self.hide() return for row in range(nrows): for col, label in enumerate(self._column_names): text = str(ddict[label][row]) item = self.table.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) self.table.setItem(row, col, item) else: item.setText(text) for col in range(len(self._column_names)): self.table.resizeColumnToContents(col) class NexusInfoWidget(HDF5Info.HDF5InfoWidget): def __init__(self, parent=None, info=None, nxclass=None): self._nxclass = nxclass super().__init__(parent=parent, info=info) def _build(self): super()._build() if self._nxclass in ("NXentry", b"NXentry"): self.motorInfoWidget = NexusMotorInfoWidget(self) self.addTab(self.motorInfoWidget, "Motors") def setInfoDict(self, ddict): super().setInfoDict(ddict) if self._nxclass in ("NXentry", b"NXentry"): self.motorInfoWidget.setInfoDict(ddict) def getInfo(hdf5File, node): """ hdf5File is and HDF5 file-like insance node is the posix path to the node """ info = HDF5Info.getInfo(hdf5File, node) info["motors"] = get_motor_positions(hdf5File, node) return info def get_motor_positions(hdf5File, node): node = hdf5File[node] nxentry_name = node.name.split("/")[1] if not nxentry_name: return dict() nxentry = hdf5File[nxentry_name] if not isinstance(nxentry, h5py.Group): return dict() positions = getStartingPositionerValues(hdf5File, nxentry_name) column_names = "Name", "Value", "Units" return dict(zip(column_names, zip(*positions))) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/QNexusWidget.py0000644000000000000000000016215214741736366021256 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import posixpath import weakref import gc import h5py import logging _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaCore import NexusTools safe_str = qt.safe_str if hasattr(qt, 'QString'): QString = qt.QString else: QString = str from . import HDF5Widget from . import NexusInfo from . import HDF5CounterTable from . import HDF5McaTable from . import QNexusWidgetActions try: from . import Hdf5NodeView except Exception: # prevent crushing due to other silx-related errors _logger.info("Cannot use silx Hdf5NodeView") from . import HDF5DatasetTable Hdf5NodeView = None try: from . import DataViewerSelector SINGLE_ENABLED = True except Exception: _logger.debug("Cannot import DataViewerSelector") SINGLE_ENABLED = False from PyMca5.PyMcaIO import ConfigDict from PyMca5 import PyMcaDirs class Buttons(qt.QWidget): sigButtonsSignal = qt.pyqtSignal(object) def __init__(self, parent=None, options=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.buttonGroup = qt.QButtonGroup(self) self.buttonList = [] i = 0 if options is None: optionList = ['SCAN', 'MCA'] else: optionList = options actionList = ['ADD', 'REMOVE', 'REPLACE'] for option in optionList: row = optionList.index(option) for action in actionList: col = actionList.index(action) button = qt.QPushButton(self) button.setText(action + " " + option) self.mainLayout.addWidget(button, row, col) self.buttonGroup.addButton(button) self.buttonList.append(button) if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self.emitSignal) else: # deprecated _logger.debug("Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self.emitSignal) def emitSignal(self, idx): button = self.buttonGroup.button(idx) ddict={} ddict['event'] = 'buttonClicked' ddict['action'] = safe_str(button.text()) self.sigButtonsSignal.emit(ddict) class QNexusWidget(qt.QWidget): sigAddSelection = qt.pyqtSignal(object) sigRemoveSelection = qt.pyqtSignal(object) sigReplaceSelection = qt.pyqtSignal(object) sigOtherSignals = qt.pyqtSignal(object) def __init__(self, parent=None, mca=False, buttons=False): qt.QWidget.__init__(self, parent) self.data = None self._dataSourceList = [] self._oldCntSelection = None self._cntList = [] self._aliasList = [] self._shapeList = [] self._autoCntList = [] self._autoAliasList = [] self._defaultModel = HDF5Widget.FileModel() self.getInfo = NexusInfo.getInfo self._modelDict = {} self._widgetDict = {} self._lastWidgetId = None self._dir = None self._lastAction = None self._lastEntry = None self._lastMcaSelection = None self._lastCntSelection = None self._mca = mca self._BUTTONS = buttons self.build() def sizeHint(self): originalHint = qt.QWidget.sizeHint(self) if isinstance(self.parent(), qt.QDialog): return qt.QSize(2 * originalHint.width(), originalHint.height()) else: return qt.QSize(originalHint.width(), originalHint.height()) def build(self): self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(5, 5, 5, 0) self.splitter = qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Vertical) self.hdf5Widget = HDF5Widget.HDF5Widget(self._defaultModel, self.splitter) self.hdf5Widget.setExpandsOnDoubleClick(False) self.hdf5Widget.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) self.tableTab = qt.QTabWidget(self.splitter) self.tableTab.setContentsMargins(0, 0, 0, 0) self.cntTable = HDF5CounterTable.HDF5CounterTable(self.tableTab) self.autoTable = HDF5CounterTable.HDF5CounterTable(self.tableTab) self.tableTabOrder = ["AUTO", "USER", "MCA"] self.tableTab.addTab(self.autoTable, "AUTO") self.tableTab.addTab(self.cntTable, "USER") if self._mca: self.mcaTable = HDF5McaTable.HDF5McaTable(self.tableTab) self.tableTab.addTab(self.mcaTable, "MCA") self.mainLayout.addWidget(self.splitter) #Enable 3D BUTTONS = self._BUTTONS if BUTTONS: if ('PyMca5.PyMcaGui.pymca.SilxGLWindow' in sys.modules) or \ ('PyMca5.PyMca.SilxGLWindow' in sys.modules): self.buttons = Buttons(self, options=['SCAN', 'MCA', '2D', '3D']) self.cntTable.set3DEnabled(True) self.autoTable.set3DEnabled(True) else: self.buttons = Buttons(self, options=['SCAN', 'MCA', '2D']) self.cntTable.set3DEnabled(False) self.autoTable.set3DEnabled(False) if self._mca: self.tableTab.removeTab(2) self.tableTab.removeTab(0) self.mainLayout.addWidget(self.buttons) else: self.actions = QNexusWidgetActions.QNexusWidgetActions(self) if ('PyMca5.PyMcaGui.pymca.SilxGLWindow' in sys.modules) or \ ('PyMca5.PyMca.SilxGLWindow' in sys.modules): self.actions.set3DEnabled(True) else: self.actions.set3DEnabled(False) self.cntTable.set2DEnabled(False) self.autoTable.set2DEnabled(False) self.mainLayout.addWidget(self.actions) self.hdf5Widget.sigHDF5WidgetSignal.connect(self.hdf5Slot) self.cntTable.customContextMenuRequested[qt.QPoint].connect(\ self._counterTableCustomMenuSlot) if BUTTONS: self.buttons.sigButtonsSignal.connect(self.buttonsSlot) else: self.actions.sigAddSelection.connect(self._addAction) self.actions.sigRemoveSelection.connect(self._removeAction) self.actions.sigReplaceSelection.connect(self._replaceAction) self.actions.sigActionsConfigurationChanged.connect(\ self._configurationChangedAction) self.autoTable.sigHDF5CounterTableSignal.connect(\ self._autoTableUpdated) self.cntTable.sigHDF5CounterTableSignal.connect(\ self._userTableUpdated) if self._mca: self.mcaTable.sigHDF5McaTableSignal.connect(\ self._mcaTableUpdated) # Some convenience functions to customize the table # They could have been included in other class inheriting # this one. self.cntTable.setContextMenuPolicy(qt.Qt.CustomContextMenu) self._cntTableMenu = qt.QMenu(self) self._cntTableMenu.addAction(QString("Load"), self._loadCounterTableConfiguration) self._cntTableMenu.addAction(QString("Merge"), self._mergeCounterTableConfiguration) self._cntTableMenu.addAction(QString("Save"), self._saveCounterTableConfiguration) self._cntTableMenu.addSeparator() self._cntTableMenu.addAction(QString("Delete All"), self._deleteAllCountersFromTable) self._cntTableMenu.addAction(QString("Delete Selected"), self._deleteSelectedCountersFromTable) def _counterTableCustomMenuSlot(self, qpoint): self.getWidgetConfiguration() self._cntTableMenu.exec(qt.QCursor.pos()) def _getConfigurationFromFile(self, fname): ddict = ConfigDict.ConfigDict() ddict.read(fname) keys = ddict.keys if 'PyMca' in keys(): ddict = ddict['PyMca'] if 'HDF5' not in ddict.keys(): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("File does not contain HDF5 configuration") msg.exec() return None if 'WidgetConfiguration' not in ddict['HDF5'].keys(): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("File does not contain HDF5 WidgetConfiguration") msg.exec() return None ddict =ddict['HDF5']['WidgetConfiguration'] keys = ddict.keys() if ('counters' not in keys) or\ ('aliases' not in keys): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("File does not contain HDF5 counters information") msg.exec() return None if len(ddict['counters']) != len(ddict['aliases']): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Number of counters does not match number of aliases") msg.exec() return None return ddict def _loadCounterTableConfiguration(self): fname = self.getInputFilename() if not len(fname): return ddict = self._getConfigurationFromFile(fname) if ddict is not None: if "shapes" not in ddict: ddict["shapes"] = [None,] * len(ddict["counters"]) elif not hasattr(ddict["shapes"], "__len__"): ddict["shapes"] = [ddict["shapes"]] elif len(ddict["shapes"]) != len(ddict["counters"]): ddict["shapes"] = [ddict["shapes"]] assert len(ddict["shapes"]) == len(ddict["counters"]) self.setWidgetConfiguration(ddict) def _mergeCounterTableConfiguration(self): fname = self.getInputFilename() if not len(fname): return ddict = self._getConfigurationFromFile(fname) if ddict is None: return current = self.getWidgetConfiguration() cntList = ddict['counters'] aliasList = ddict['aliases'] shapeList = ddict['shapes'] for i in range(len(cntList)): cnt = cntList[i] if cnt not in current['counters']: current['counters'].append(cnt) current['aliases'].append(aliasList[i]) current['shapes'].append(shapeList[i]) self.setWidgetConfiguration(current) def _saveCounterTableConfiguration(self): fname = self.getOutputFilename() if not len(fname): return if not fname.endswith('.ini'): fname += '.ini' ddict = ConfigDict.ConfigDict() if "PyMcaDirs" in sys.modules: ddict['PyMca'] = {} ddict['PyMca']['HDF5'] = {'WidgetConfiguration':\ self.getWidgetConfiguration()} else: ddict['HDF5'] ={'WidgetConfiguration':\ self.getWidgetConfiguration()} _logger.debug("TODO - Add selection options") ddict.write(fname) def _deleteAllCountersFromTable(self): current = self.cntTable.getCounterSelection() current['x'] = [] current['y'] = [] current['m'] = [] self.cntTable.setCounterSelection(current) self.setWidgetConfiguration(None) def _deleteSelectedCountersFromTable(self): itemList = self.cntTable.selectedItems() _logger.debug("Selected items = %s" % itemList) rowList = [] for item in itemList: row = item.row() if row not in rowList: rowList.append(row) rowList.sort() rowList.reverse() current = self.cntTable.getCounterSelection() _logger.debug("current = %s" % current) for row in rowList: for key in ['x', 'y', 'm']: if row in current[key]: idx = current[key].index(row) del current[key][idx] ddict = {} ddict['counters'] = [] ddict['aliases'] = [] ddict['shapes'] = [] for i in range(self.cntTable.rowCount()): if i not in rowList: #name = safe_str(self.cntTable.item(i, 0).text()) #alias = safe_str(self.cntTable.item(i, 4).text()) ddict['counters'].append(current["cntlist"][i]) ddict['aliases'].append(current["aliaslist"][i]) ddict['shapes'].append(current["shapelist"][i]) for i in rowList: del current['cntlist'][i] del current['aliaslist'][i] del current['shapelist'][i] self.setWidgetConfiguration(ddict) self.cntTable.setCounterSelection(current) def getInputFilename(self): if self._dir is None: inidir = PyMcaDirs.inputDir else: inidir = self._dir if not os.path.exists(inidir): inidir = os.getcwd() fileList = PyMcaFileDialogs.getFileList(parent=self, filetypelist=["ini files (*.ini)"], message="Select a .ini file", currentdir=inidir, mode="OPEN", getfilter=False) if len(fileList): ret = fileList[0] else: ret = "" if len(ret): self._dir = os.path.dirname(ret) PyMcaDirs.inputDir = os.path.dirname(ret) return ret def getOutputFilename(self): if self._dir is None: inidir = PyMcaDirs.outputDir else: inidir = self._dir if not os.path.exists(inidir): inidir = os.getcwd() fileList = PyMcaFileDialogs.getFileList(parent=self, filetypelist=["ini files (*.ini)"], message="Select a .ini file", currentdir=inidir, mode="SAVE", getfilter=False) if len(fileList): ret = fileList[0] else: ret = "" if len(ret): self._dir = os.path.dirname(ret) PyMcaDirs.outputDir = os.path.dirname(ret) return ret def getWidgetConfiguration(self): cntSelection = self.cntTable.getCounterSelection() if hasattr(self, "actions"): ddict =self.actions.getConfiguration() else: ddict = {} ddict['counters'] = cntSelection['cntlist'] ddict['aliases'] = cntSelection['aliaslist'] ddict['shapes'] = cntSelection['shapelist'] return ddict def setWidgetConfiguration(self, ddict=None): _logger.debug("setWidgetConfiguration %s" % ddict) if ddict is None: self._cntList = [] self._aliasList = [] self._shapeList = [] elif "counters" in ddict and len(ddict["counters"]): self._cntList = ddict['counters'] self._aliasList = ddict['aliases'] if type(self._cntList) == type(""): self._cntList = [ddict['counters']] if type(self._aliasList) == type(""): self._aliasList = [ddict['aliases']] if 'shapes' in ddict: self._shapeList = ddict['shapes'] else: self._shapeList = [None,] * len(self._cntList) self.cntTable.build(self._cntList, self._aliasList, shapelist=self._shapeList) if hasattr(self, "actions"): if hasattr(self.actions, "setConfiguration"): self.actions.setConfiguration(ddict) def setDataSource(self, dataSource): self.data = dataSource if self.data is None: self.hdf5Widget.collapseAll() self.hdf5Widget.setModel(self._defaultModel) return def dataSourceDestroyed(weakrefReference): idx = self._dataSourceList.index(weakrefReference) del self._dataSourceList[idx] del self._modelDict[weakrefReference] return ref = weakref.ref(dataSource, dataSourceDestroyed) if ref not in self._dataSourceList: self._dataSourceList.append(ref) self._modelDict[ref] = HDF5Widget.FileModel() model = self._modelDict[ref] self.hdf5Widget.setModel(model) for source in self.data._sourceObjectList: self.hdf5Widget.model().appendPhynxFile(source, weakreference=True) if len(self.data._sourceObjectList) == 1: # only one file, expand by default if hasattr(self.hdf5Widget, "expandToDepth"): self.hdf5Widget.expandToDepth(0) def setFile(self, filename): self._data = self.hdf5Widget.model().openFile(filename, weakreference=True) def showInfoWidget(self, filename, name, dset=False): # delete references to all the closed widgets self._checkWidgetDict() # we can use the existing instance or a new one # the former solution seems more robust if 1: useInstance = True else: if h5py.version.version < '2.0': useInstance = True else: useInstance = False if useInstance: fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] else: phynxFile = HDF5Widget.h5open(filename) info = self.getInfo(phynxFile, name) nxclass = phynxFile[name].attrs.get("NX_class") widget = NexusInfo.NexusInfoWidget(nxclass=nxclass) widget.notifyCloseEventToWidget(self) title = os.path.basename(filename) title += " %s" % name widget.setWindowTitle(title) wid = id(widget) if self._lastWidgetId is not None: try: width = self._widgetDict[self._lastWidgetId].width() height = self._widgetDict[self._lastWidgetId].height() widget.resize(max(150, width), max(150, height)) except Exception: pass self._lastWidgetId = wid self._widgetDict[wid] = widget if useInstance: def sourceObjectDestroyed(weakrefReference): if wid == self._lastWidgetId: self._lastWidgetId = None if wid in self._widgetDict: del self._widgetDict[wid] widget._sourceObjectWeakReference = weakref.ref(phynxFile, sourceObjectDestroyed) widget.setInfoDict(info) # todo: this first `if` block can be dropped when silx is a hard dependency if dset and Hdf5NodeView is None: dataset = phynxFile[name] if isinstance(dataset, h5py.Dataset): if len(dataset.shape): #0 length datasets do not need a table widget.w = HDF5DatasetTable.HDF5DatasetTable(widget) try: widget.w.setDataset(dataset) except Exception: _logger.error("Error filling table") widget.addTab(widget.w, 'DataView') widget.setCurrentWidget(widget.w) elif Hdf5NodeView is not None: data = phynxFile[name] widget.w = Hdf5NodeView.Hdf5NodeView(widget) widget.w.setData(data) widget.addTab(widget.w, 'DataView') widget.setCurrentWidget(widget.w) widget.show() return widget def itemRightClickedSlot(self, ddict): _hdf5WidgetDatasetMenu = qt.QMenu(self) self._lastItemDict = ddict if ddict['dtype'].startswith('|S') or ddict['dtype'] == '' or \ ddict['dtype'].startswith('object'): # handle a right click on a group or a dataset of string type _hdf5WidgetDatasetMenu.addAction(QString("Show Information"), self._showInfoWidgetSlot) _hdf5WidgetDatasetMenu.addAction(QString("Copy Path to Clipboard"), self._copyPathSlot) _hdf5WidgetDatasetMenu.exec(qt.QCursor.pos()) else: #handle a right click on a numeric dataset _hdf5WidgetDatasetMenu.addAction(QString("Add to selection table"), self._addToSelectionTable) if 0: #these two options can be combined into one for the time being _hdf5WidgetDatasetMenu.addAction(QString("Open"), self._openDataset) _hdf5WidgetDatasetMenu.addAction(QString("Show Properties"), self._showDatasetProperties) else: _hdf5WidgetDatasetMenu.addAction(QString("Show Information"), self._showInfoWidgetSlot) _hdf5WidgetDatasetMenu.addAction(QString("Copy Path to Clipboard"), self._copyPathSlot) _hdf5WidgetDatasetMenu.exec(qt.QCursor.pos()) self._lastItemDict = None return def _addToSelectionTable(self, ddict=None): if ddict is None: ddict = self._lastItemDict #handle as a double click ddict['event'] = "itemDoubleClicked" self.hdf5Slot(ddict) def _showInfoWidgetSlot(self, ddict=None): if ddict is None: ddict = self._lastItemDict is_numeric_dataset = (not ddict['dtype'].startswith('|S') and not ddict['dtype'].startswith('|U') and not ddict['dtype'].startswith('|O') and not ddict['dtype'] == '') return self.showInfoWidget(ddict['file'], ddict['name'], dset=is_numeric_dataset) def _copyPathSlot(self, ddict=None): if ddict is None: ddict = self._lastItemDict try: clipboard = qt.QApplication.clipboard() clipboard.setText(ddict["name"]) except Exception: _logger.warning("Unsuccessful copy to clipboard") def _openDataset(self, ddict=None): if ddict is None: ddict = self._lastItemDict filename = ddict['file'] name = ddict['name'] self._checkWidgetDict() fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] dataset = phynxFile[name] if Hdf5NodeView is not None: widget = Hdf5NodeView.Hdf5NodeView() widget.setData(dataset) else: widget = HDF5DatasetTable.HDF5DatasetTable() widget.setDataset(dataset) title = os.path.basename(filename) title += " %s" % name widget.setWindowTitle(title) if self._lastWidgetId is not None: ids = self._widgetDict.keys() if len(ids): if self._lastWidgetId in ids: try: width = self._widgetDict[self._lastWidgetId].width() height = self._widgetDict[self._lastWidgetId].height() widget.resize(max(150, width), max(300, height)) except Exception: pass else: try: width = self._widgetDict[ids[-1]].width() height = self._widgetDict[ids[-1]].height() widget.resize(max(150, width), max(300, height)) except Exception: pass widget.notifyCloseEventToWidget(self) wid = id(widget) self._lastWidgetId = wid self._widgetDict[wid] = widget widget.show() def _showDatasetProperties(self, ddict=None): if ddict is None: ddict = self._lastItemDict filename = ddict['file'] name = ddict['name'] return self.showInfoWidget(filename, name) def _isNumericType(self, dtype): if dtype.startswith('|S') or dtype.startswith('|U') or \ dtype.startswith('|O') or dtype.startswith('object'): return False else: return True def _isNumeric(self, hdf5item): if hasattr(hdf5item, "dtype"): dtype = safe_str(hdf5item.dtype) return self._isNumericType(dtype) else: return False def hdf5Slot(self, ddict): _logger.debug("hdf5Slot %s" % ddict) entryName = NexusTools.getEntryName(ddict['name']) currentEntry = "%s::%s" % (ddict['file'], entryName) if (currentEntry != self._lastEntry) and not self._BUTTONS: self._lastEntry = None cntList = [] cntShapeList = [] aliasList = [] measurement = None scanned = [] scannedShapeList = [] mcaList = [] mcaShapeList = [] if posixpath.dirname(entryName) != entryName: h5file = HDF5Widget.h5open(ddict['file']) try: measurement = NexusTools.getMeasurementGroup(h5file, ddict['name']) scanned = NexusTools.getScannedPositioners(h5file, ddict['name']) if measurement is not None: measurementDatasets = [item for key,item in measurement.items() \ if self._isNumeric(item)] measurement = [item.name for key,item in measurement.items() \ if self._isNumeric(item)] try: # case insensitive sorting of measurement if sys.version_info > (3, 3): measurement.sort(key=str.casefold) except Exception: _logger.error("Cannot apply sorting %s" % sys.exc_info()[1]) nmeasurement = len(measurement) cntShapeList = [None] * nmeasurement for item in measurementDatasets: if item.name in measurement: idx = measurement.index(item.name) if hasattr(item, "shape"): shape = item.shape else: shape = (0,) cntShapeList[idx] = shape if self._mca: mcaList = NexusTools.getMcaList(h5file, entryName) mcaShapeList = [] for mca in mcaList: try: dataset = h5file[mca] except KeyError: dataset = h5file[NexusTools.sanitizeFilePath(h5file, mca, entry=entryName)] if hasattr(dataset, "shape"): mcaShapeList.append(dataset.shape) else: mcaShapeList.append((0,)) if scanned: scannedShapeList = [] for itemName in scanned: try: dataset = h5file[itemName] except KeyError: newItemName = NexusTools.sanitizeFilePath(h5file, itemName, entry=entryName) dataset = h5file[newItemName] if hasattr(dataset, "shape"): scannedShapeList.append(dataset.shape) else: scannedShapeList.append((0,)) finally: h5file.close() h5file = None del h5file self._autoCntList = [] self._autoCntShapeList = [] for i in range(len(scanned)): key = scanned[i] self._autoCntList.append(key) self._autoCntShapeList.append(scannedShapeList[i]) aliasList.append(posixpath.basename(key)) if measurement is not None: for i in range(len(measurement)): key = measurement[i] if key not in self._autoCntList: self._autoCntList.append(key) self._autoCntShapeList.append(cntShapeList[i]) aliasList.append(posixpath.basename(key)) cleanedCntList = [] for key in self._autoCntList: root = key.split('/') root = "/" + root[1] if len(key) == len(root): cleanedCntList.append(key) else: cleanedCntList.append(key[len(root):]) self._autoAliasList = aliasList self._autoCntList = cleanedCntList _logger.info("building autoTable") self.autoTable.build(self._autoCntList, self._autoAliasList, selection=self._lastCntSelection, shapelist=self._autoCntShapeList) currentTab = qt.safe_str(self.tableTab.tabText( \ self.tableTab.currentIndex())) if self._mca: mcaAliasList = [] cleanedMcaList = [] for key in mcaList: root = key.split('/') root = "/" + root[1] if len(key) == len(root): cleanedMcaList.append(key) else: cleanedMcaList.append(key[len(root):]) mcaAliasList.append(posixpath.basename(key)) self.mcaTable.build(cleanedMcaList, mcaAliasList, mcaShapeList) nTabs = self.tableTab.count() if (len(mcaList) > 0) and (nTabs < 3): self.tableTab.insertTab(2, self.mcaTable, "MCA") elif (len(mcaList)==0) and (nTabs > 2): self.tableTab.removeTab(2) _logger.debug("currentTab = %s", currentTab) if currentTab not in ["USER", "AUTO"]: if (len(mcaList) > 0) and (len(cntList) == 0): idx = self.tableTabOrder.index("MCA") self.tableTab.setCurrentIndex(idx) _logger.debug("setting tab = %s MCA", idx) elif (len(mcaList) == 0) and (len(cntList) > 0): idx = self.tableTabOrder.index("AUTO") self.tableTab.setCurrentIndex(idx) _logger.debug("setting tab = %s AUTO", idx) self._lastEntry = currentEntry if ddict['event'] == 'itemClicked': if ddict['mouse'] == "right": return self.itemRightClickedSlot(ddict) if ddict['mouse'] == "left": # If parent is root do it even if not NXentry?? if ddict['type'] in ['NXentry', 'Entry']: if not self._BUTTONS: auto = self.actions.getConfiguration()["auto"] if auto == "ADD": self._addAction() elif auto == "REPLACE": self._replaceAction() if ddict['event'] == "itemDoubleClicked": if ddict['type'] in ['Dataset', "TiledDataset"]: currentIndex = self.tableTab.currentIndex() text = safe_str(self.tableTab.tabText(currentIndex)) if text.upper() != "USER": if currentIndex == 0: self.tableTab.setCurrentIndex(1) else: self.tableTab.setCurrentIndex(0) if not self._isNumericType(ddict['dtype']): _logger.debug("string like %s", ddict['dtype']) else: root = ddict['name'].split('/') root = "/" + root[1] if len(ddict['name']) == len(root): cnt = ddict['name'] else: cnt = ddict['name'][len(root):] if cnt not in self._cntList: self._cntList.append(cnt) basename = posixpath.basename(cnt) if basename not in self._aliasList: self._aliasList.append(basename) else: self._aliasList.append(cnt) if 'shape' in ddict and 'x' in ddict['shape']: shape = [int(item) for item in ddict['shape'].split('x')] else: shape = None self._shapeList.append(shape) self.cntTable.build(self._cntList, self._aliasList, shapelist=self._shapeList) elif (ddict['color'] == qt.Qt.blue) and ("silx" in sys.modules): # there is an action to be applied self.showInfoWidget(ddict["file"], ddict["name"], dset=False) elif ddict['type'] in ['NXentry', 'Entry']: if self._lastAction is None: return action, selectionType = self._lastAction.split() if action == 'REMOVE': action = 'ADD' ddict['action'] = "%s %s" % (action, selectionType) self.buttonsSlot(ddict) else: if self.data is not None: name = ddict['name'] filename = ddict['file'] fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] dataset = phynxFile[name] if isinstance(dataset, h5py.Dataset): root = ddict['name'].split('/') root = "/" + root[1] cnt = ddict['name'].split(root)[-1] if cnt not in self._cntList: _logger.debug("USING SECOND WAY") self._cntList.append(cnt) basename = posixpath.basename(cnt) if basename not in self._aliasList: self._aliasList.append(basename) else: self._aliasList.append(cnt) try: self._shapeList.append(dataset.shape) except Exception: self._shapeList.append(None) self.cntTable.build(self._cntList, self._aliasList, shapelist=self._shapeList) return _logger.debug("Unhandled item type: %s", ddict['dtype']) def _addMcaAction(self): _logger.debug("_addMcaAction received") self.mcaAction("ADD") def _removeMcaAction(self): _logger.debug("_removeMcaAction received") self.mcaAction("REMOVE") def _replaceMcaAction(self): _logger.debug("_replaceMcaAction received") self.mcaAction("REPLACE") def mcaAction(self, action="ADD"): _logger.debug("mcaAction %s", action) self.mcaTable.getMcaSelection() ddict = {} ddict['action'] = "%s MCA" % action self.buttonsSlot(ddict, emit=True) def _addAction(self): _logger.debug("_addAction received") # formerly we had action and selection type text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "MCA": self._addMcaAction() else: ddict = {} mca = self.actions.getConfiguration()["mca"] if mca: ddict['action'] = "ADD MCA" else: ddict['action'] = "ADD SCAN" self.buttonsSlot(ddict, emit=True) def _removeAction(self): _logger.debug("_removeAction received") text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "MCA": self._removeMcaAction() else: ddict = {} mca = self.actions.getConfiguration()["mca"] if mca: ddict['action'] = "REMOVE MCA" else: ddict['action'] = "REMOVE SCAN" self.buttonsSlot(ddict, emit=True) def _replaceAction(self): _logger.debug("_replaceAction received") text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "MCA": self._replaceMcaAction() else: ddict = {} mca = self.actions.getConfiguration()["mca"] if mca: ddict['action'] = "REPLACE MCA" else: ddict['action'] = "REPLACE SCAN" self.buttonsSlot(ddict, emit=True) def _configurationChangedAction(self, ddict): _logger.debug("_configurationChangedAction received %s", ddict) if ddict["3d"]: self.autoTable.set3DEnabled(True, emit=False) self.cntTable.set3DEnabled(True, emit=False) elif ddict["2d"]: self.autoTable.set2DEnabled(True, emit=False) self.cntTable.set2DEnabled(True, emit=False) else: self.autoTable.set2DEnabled(False, emit=False) self.cntTable.set2DEnabled(False, emit=False) def _autoTableUpdated(self, ddict): _logger.debug("_autoTableUpdated(self, ddict) %s", ddict) text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "AUTO": actions = self.actions.getConfiguration() if len(self.autoTable.getCounterSelection()['y']): if actions["auto"] == "ADD": self._addAction() elif actions["auto"] == "REPLACE": self._replaceAction() def _userTableUpdated(self, ddict): _logger.debug("_userTableUpdated(self, ddict) %s", ddict) text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "USER": actions = self.actions.getConfiguration() if len(self.cntTable.getCounterSelection()['y']): if actions["auto"] == "ADD": self._addAction() elif actions["auto"] == "REPLACE": self._replaceAction() def _mcaTableUpdated(self, ddict): _logger.debug("_mcaTableUpdated(self, ddict) %s", ddict) text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) if text.upper() == "MCA": actions = self.actions.getConfiguration() if len(self.mcaTable.getMcaSelection()['selectionindex']): if actions["auto"] == "ADD": self._addAction() elif actions["auto"] == "REPLACE": self._replaceAction() def buttonsSlot(self, ddict, emit=True): _logger.debug("buttonsSlot(self, %s,emit=%s)", ddict, emit) if self.data is None: return action, selectionType = ddict['action'].split() entryList = self.getSelectedEntries() if not len(entryList): return text = qt.safe_str(self.tableTab.tabText(self.tableTab.currentIndex())) mcaSelection = {'mcalist':[], 'selectionindex':[]} cntSelection = {'cntlist':[], 'y':[]} if text.upper() == "AUTO": cntSelection = self.autoTable.getCounterSelection() # self._aliasList = cntSelection['aliaslist'] elif text.upper() == "MCA": mcaSelection = self.mcaTable.getMcaSelection() else: cntSelection = self.cntTable.getCounterSelection() self._aliasList = cntSelection['aliaslist'] selectionList = [] for entry, filename in entryList: if not len(cntSelection['cntlist']) and \ not len(mcaSelection['mcalist']): continue if not len(cntSelection['y']) and \ not len(mcaSelection['selectionindex']): #nothing to plot continue mcaIdx = 0 if filename not in self.data.sourceName: if ("tiled:" + filename) in self.data.sourceName: filename = "tiled:" + filename for yMca in mcaSelection['selectionindex']: sel = {} sel['SourceName'] = self.data.sourceName * 1 sel['SourceType'] = "HDF5" fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] entryIndex = list(phynxFile["/"].keys()).index(entry[1:]) sel['Key'] = "%d.%d" % (fileIndex+1, entryIndex+1) sel['legend'] = os.path.basename(filename)+\ " " + posixpath.basename(entry) #it was sel['Key'] sel['selection'] = {} sel['selection']['sourcename'] = filename #deal with the case the "entry" is a dataset hunging at root level if isinstance(phynxFile[entry], h5py.Dataset): entry = "/" sel['selection']['entry'] = entry sel['selection']['key'] = "%d.%d" % (fileIndex+1, entryIndex+1) sel['selection']['mca'] = [yMca] sel['selection']['mcaselectiontype'] = mcaSelection['selectiontype'][mcaIdx] sel['legend'] += " " + mcaSelection['aliaslist'][yMca] + \ " " + sel['selection']['mcaselectiontype'] mcaIdx += 1 sel['selection']['mcalist'] = mcaSelection['mcalist'] sel['selection']['LabelNames'] = mcaSelection['aliaslist'] #sel['selection']['aliaslist'] = cntSelection['aliaslist'] sel['selection']['selectiontype'] = "MCA" sel['mcaselection'] = True aliases = mcaSelection['aliaslist'] selectionList.append(sel) for yCnt in cntSelection['y']: sel = {} sel['SourceName'] = self.data.sourceName * 1 sel['SourceType'] = "HDF5" fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] if entry == "/": entryIndex = 1 else: entryIndex = list(phynxFile["/"].keys()).index(entry[1:]) sel['Key'] = "%d.%d" % (fileIndex+1, entryIndex+1) sel['legend'] = os.path.basename(filename)+\ " " + posixpath.basename(entry) #it was sel['Key'] sel['selection'] = {} sel['selection']['sourcename'] = filename #deal with the case the "entry" is a dataset hunging at root level if isinstance(phynxFile[entry], h5py.Dataset): _logger.info("HDF5 dataset at root level") entry = "/" elif hasattr(phynxFile[entry], "shape"): # HDF5-like dataset at top level _logger.info("HDF5-like dataset at root level") entry = "/" sel['selection']['entry'] = entry sel['selection']['key'] = "%d.%d" % (fileIndex+1, entryIndex+1) sel['selection']['x'] = cntSelection['x'] sel['selection']['xselectiontype'] = cntSelection['xselectiontype'] sel['selection']['y'] = [yCnt] sel['selection']['yselectiontype'] = [cntSelection['yselectiontype'][cntSelection['y'].index(yCnt)]] sel['selection']['m'] = cntSelection['m'] sel['selection']['mselectiontype'] = cntSelection['monselectiontype'] sel['selection']['cntlist'] = cntSelection['cntlist'] sel['selection']['LabelNames'] = cntSelection['aliaslist'] #sel['selection']['aliaslist'] = cntSelection['aliaslist'] sel['selection']['selectiontype'] = selectionType if selectionType.upper() == "SCAN": if cntSelection['cntlist'][yCnt].startswith("/"): actualDatasetPath = posixpath.join(entry, cntSelection['cntlist'][yCnt][1:]) else: actualDatasetPath = posixpath.join(entry, cntSelection['cntlist'][yCnt]) _logger.info("actualDatasetPath = %s" % actualDatasetPath) try: actualDataset = phynxFile[actualDatasetPath] except KeyError: # filter x.1 and x.2 ESRF case if len(entryList) > 4: _logger.info("Ignoring %s in %s" % \ (actualDatasetPath, entry)) continue else: raise sel['scanselection'] = True if hasattr(actualDataset, "shape"): if len(actualDataset.shape) > 1 and sel['selection']['yselectiontype'][0] in ["full", ""]: if 1 in actualDataset.shape[-2:]: #shape (1, n) or (n, 1) pass else: # at least twoD dataset selectionType= "2D" sel['scanselection'] = False elif len(actualDataset.shape) > 1 and sel['selection']['yselectiontype'][0].startswith("index"): if len(actualDataset.shape) <= 2: # 1D selection pass else: # at least twoD dataset selectionType= "2D" sel['scanselection'] = False elif len(actualDataset.shape) > 1 and sel['selection']['yselectiontype'][0].startswith("slice"): # 1D selection pass n_axes = len(sel['selection']['x']) if n_axes > 1: selectionType = "%dD" % len(sel['selection']['x']) selectionTypeDecided = False nAxesItems = 1 if n_axes == len(actualDataset.shape): for xCnt in cntSelection['x']: if cntSelection['cntlist'][xCnt].startswith("/"): xDatasetPath = posixpath.join(entry, cntSelection['cntlist'][xCnt][1:]) else: xDatasetPath = posixpath.join(entry, cntSelection['cntlist'][xCnt]) nAxesItems *= phynxFile[xDatasetPath].size if nAxesItems == actualDataset.size: # we have an image with the associated dimensions selectionTypeDediced = True if selectionTypeDecided: pass elif n_axes == 2: try: from silx import version_info as silx_version except ImportError: silx_version = (0, 0, 0) if silx_version < (0, 11): # we have to use the 3D visualization selectionType = "3D" else: # we can afford a scatter view selectionType = "2D" else: selectionType = "%dD" % n_axes sel['scanselection'] = False sel['mcaselection'] = False elif selectionType.upper() == "MCA": sel['scanselection'] = False sel['mcaselection'] = True if cntSelection['cntlist'][yCnt].startswith("/"): actualDatasetPath = posixpath.join(entry, cntSelection['cntlist'][yCnt][1:]) else: actualDatasetPath = posixpath.join(entry, cntSelection['cntlist'][yCnt]) actualDataset = phynxFile[actualDatasetPath] if hasattr(actualDataset, "shape"): actualDatasetLen = len(actualDataset.shape) if sel['selection']['yselectiontype'][0] not in ["", "full", None]: sel['selection']['mcaselectiontype'] = sel['selection']['yselectiontype'][0] else: if (actualDatasetLen == 2) and (1 in actualDataset.shape): # still can be used pass elif (actualDatasetLen > 1) and (not hasattr(self, "_messageShown")): # at least twoD dataset msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("Multidimensional data set as MCA. Using Average.\n Consider slicing or use ROI Imaging tool") msg.exec() self._messageShown = True sel['selection']['mcaselectiontype'] = "avg" else: sel['scanselection'] = False sel['mcaselection'] = False sel['selection']['selectiontype'] = selectionType aliases = cntSelection['aliaslist'] if sel['selection']['yselectiontype'][0] not in ["", "full", None]: aliases[yCnt] += " " + sel['selection']['yselectiontype'][0] if len(cntSelection['m']): if sel['selection']['mselectiontype'][0] not in ["", "full", None]: aliases[cntSelection['m'][0]] += " " + sel['selection']['mselectiontype'][0] if len(cntSelection['x']): if sel['selection']['xselectiontype'][0] not in ["", "full", None]: aliases[cntSelection['x'][0]] += " " + sel['selection']['xselectiontype'][0] if len(cntSelection['x']) and len(cntSelection['m']): addLegend = " (%s/%s) vs %s" % (aliases[yCnt], aliases[cntSelection['m'][0]], aliases[cntSelection['x'][0]]) elif len(cntSelection['x']): addLegend = " %s vs %s" % (aliases[yCnt], aliases[cntSelection['x'][0]]) elif len(cntSelection['m']): addLegend = " (%s/%s)" % (aliases[yCnt], aliases[cntSelection['m'][0]]) else: addLegend = " %s" % aliases[yCnt] sel['legend'] += addLegend selectionList.append(sel) if not emit: return selectionList self._lastAction = "%s" % ddict['action'] if len(selectionList): if text.upper() == "MCA": self._lastMcaSelection = mcaSelection else: self._lastCntSelection = cntSelection if selectionType.upper() in ["SCAN", "MCA"]: ddict = {} ddict['event'] = "SelectionTypeChanged" ddict['SelectionType'] = selectionType.upper() self.sigOtherSignals.emit(ddict) if action.upper() == "ADD": self.sigAddSelection.emit(selectionList) if action.upper() == "REMOVE": self.sigRemoveSelection.emit(selectionList) if action.upper() == "REPLACE": self.sigReplaceSelection.emit(selectionList) def currentSelectionList(self): ddict={} ddict['event'] = 'buttonClicked' ddict['action'] = 'ADD DUMMY' return self.buttonsSlot(ddict, emit=False) def getSelectedEntries(self): return self.hdf5Widget.getSelectedEntries() def closeEvent(self, event): keyList = list(self._widgetDict.keys()) for key in keyList: self._widgetDict[key].close() del self._widgetDict[key] return qt.QWidget.closeEvent(self, event) def _checkWidgetDict(self): keyList = list(self._widgetDict.keys()) for key in keyList: if self._widgetDict[key].isHidden(): del self._widgetDict[key] def customEvent(self, event): if hasattr(event, 'dict'): ddict = event.dict if 'event' in ddict: if ddict['event'] == "closeEventSignal": if ddict['id'] in self._widgetDict: if _logger.getEffectiveLevel() == logging.DEBUG: try: widget = self._widgetDict[ddict['id']] _logger.debug("DELETING %s", widget.windowTitle()) except Exception: pass del self._widgetDict[ddict['id']] if __name__ == "__main__": import sys _logger.setLevel(logging.DEBUG) app = qt.QApplication(sys.argv) try: #this is to add the 3D buttons ... from PyMca5.PyMcaGui.pymca import SilxGLWindow except Exception: pass w = QNexusWidget() if 0: w.setFile(sys.argv[1]) else: from PyMca5.PyMcaCore import NexusDataSource dataSource = NexusDataSource.NexusDataSource(sys.argv[1:]) w.setDataSource(dataSource) def addSelection(sel): print(sel) def removeSelection(sel): print(sel) def replaceSelection(sel): print(sel) w.show() w.sigAddSelection.connect(addSelection) w.sigRemoveSelection.connect(removeSelection) w.sigReplaceSelection.connect(replaceSelection) ret = app.exec() sys.exit(ret) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/QNexusWidgetActions.py0000644000000000000000000002310514741736366022571 0ustar00rootroot#/*########################################################################## # Copyright (C) 2018-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt _logger = logging.getLogger(__name__) class QNexusWidgetActions(qt.QWidget): sigAddSelection = qt.pyqtSignal() sigRemoveSelection = qt.pyqtSignal() sigReplaceSelection = qt.pyqtSignal() sigActionsConfigurationChanged = qt.pyqtSignal(object) def __init__(self, parent=None, autoreplace=False): self.autoReplace = autoreplace if self.autoReplace: self.autoAdd = False else: self.autoAdd = True self._oldCntSelection = None qt.QWidget.__init__(self, parent) self._build() def _build(self): self.mainLayout = qt.QVBoxLayout(self) autoBox = qt.QWidget(self) autoBoxLayout = qt.QGridLayout(autoBox) autoBoxLayout.setContentsMargins(0, 0, 0, 0) autoBoxLayout.setSpacing(0) self.autoOffBox = qt.QCheckBox(autoBox) self.autoOffBox.setText("Auto OFF") self.autoAddBox = qt.QCheckBox(autoBox) self.autoAddBox.setText("Auto ADD") self.autoReplaceBox = qt.QCheckBox(autoBox) self.autoReplaceBox.setText("Auto REPLACE") row = 0 autoBoxLayout.addWidget(self.autoOffBox, row, 0) autoBoxLayout.addWidget(self.autoAddBox, row, 1) autoBoxLayout.addWidget(self.autoReplaceBox, row, 2) if self.autoReplace: self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(True) else: self.autoAddBox.setChecked(True) self.autoReplaceBox.setChecked(False) row += 1 self.object3DBox = qt.QCheckBox(autoBox) self.object3DBox.setText("3D On") self.object3DBox.setToolTip("Use OpenGL and Enable 3-Axes selections") autoBoxLayout.addWidget(self.object3DBox, row, 0) self.meshBox = qt.QCheckBox(autoBox) self.meshBox.setText("2D On") self.meshBox.setToolTip("Enable 2-Axes selections (mesh and scatter)") autoBoxLayout.addWidget(self.meshBox, row, 1) self.forceMcaBox = qt.QCheckBox(autoBox) self.forceMcaBox.setText("Force MCA") self.forceMcaBox.setToolTip("Interpret selections as MCA") autoBoxLayout.addWidget(self.forceMcaBox, row, 2) self.mainLayout.addWidget(autoBox) self.buttonBox = qt.QWidget(self) buttonBox = self.buttonBox self.buttonBoxLayout = qt.QHBoxLayout(buttonBox) self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.buttonBoxLayout.addWidget(self.addButton) self.buttonBoxLayout.addWidget(self.removeButton) self.buttonBoxLayout.addWidget(self.replaceButton) self.mainLayout.addWidget(buttonBox) # --- signal handling self.object3DBox.clicked.connect(self._setObject3DBox) self.meshBox.clicked.connect(self._setMeshBox) self.autoOffBox.clicked.connect(self._setAutoOff) self.autoAddBox.clicked.connect(self._setAutoAdd) self.autoReplaceBox.clicked.connect(self._setAutoReplace) self.forceMcaBox.clicked.connect(self._setForcedMca) self.addButton.clicked.connect(self._addClickedSlot) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def _setObject3DBox(self): if self.object3DBox.isChecked(): self.meshBox.setChecked(False) self.autoOffBox.setChecked(True) self.autoReplaceBox.setChecked(False) self.autoAddBox.setChecked(False) self.configurationChanged() def _setMeshBox(self): if self.meshBox.isChecked(): self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoOffBox.setChecked(True) self.object3DBox.setChecked(False) self.configurationChanged() def _setAutoOff(self): self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoOffBox.setChecked(True) self.object3DBox.setChecked(False) self.meshBox.setChecked(False) self.configurationChanged() def _setAutoAdd(self): self.object3DBox.setChecked(False) self.meshBox.setChecked(False) self.autoOffBox.setChecked(False) self.autoReplaceBox.setChecked(False) self.autoAddBox.setChecked(True) self.configurationChanged() def _setAutoReplace(self): self.object3DBox.setChecked(False) self.meshBox.setChecked(False) self.autoOffBox.setChecked(False) self.autoAddBox.setChecked(False) self.autoReplaceBox.setChecked(True) self.configurationChanged() def _setForcedMca(self): if self.forceMcaBox.isChecked(): self.object3DBox.setChecked(False) self.object3DBox.setEnabled(False) self.meshBox.setChecked(False) self.meshBox.setEnabled(False) else: self.object3DBox.setEnabled(True) self.meshBox.setEnabled(True) self.configurationChanged() def _addClickedSlot(self): self._addClicked() def _addClicked(self): _logger.debug("_addClicked()") self.sigAddSelection.emit() def _removeClicked(self): _logger.debug("_removeClicked()") self.sigRemoveSelection.emit() def _replaceClicked(self): _logger.debug("_replaceClicked()") self.sigReplaceSelection.emit() def configurationChanged(self): _logger.debug("configurationChanged(object)") ddict = self.getConfiguration() self.sigActionsConfigurationChanged.emit(ddict) def set3DEnabled(self, flag): if flag: self.object3DBox.setEnabled(True) else: wasChecked = self.object3DBox.isChecked() self.object3DBox.setChecked(False) self.object3DBox.setEnabled(False) if wasChecked: self.configurationChanged() def getConfiguration(self): ddict = {} ddict["mca"]= self.forceMcaBox.isChecked() if self.autoReplaceBox.isChecked(): ddict['auto'] = "REPLACE" elif self.autoAddBox.isChecked(): ddict['auto'] = "ADD" else: ddict['auto'] = "OFF" ddict["2d"]= self.meshBox.isChecked() ddict["3d"]= self.object3DBox.isChecked() ddict["mca"]= self.forceMcaBox.isChecked() return ddict def setConfiguration(self, ddict): mca = ddict.get("mca", False) if mca in ["False", "0", 0, "", "false"]: mca = False else: mca = True auto = ddict.get("auto", "ADD") twod = ddict.get("2d", "False") if twod in ["False", "0", 0, "", "false"]: twod = False else: twod = True threed = ddict.get("3d", "False") if threed in ["False", "0", 0, "", "false"]: threed = False else: threed = True self.forceMcaBox.setChecked(mca) if auto == "ADD": self._setAutoAdd() elif auto == "OFF": # this is compatible with 2d or 3d selections self._setAutoOff() self.set3DEnabled(threed) self.meshBox.setChecked(twod) elif auto == "REPLACE": self._setAutoReplace() if __name__ == "__main__": app = qt.QApplication([]) w = QNexusWidgetActions() w.show() def addSelection(): print("addSelectionCalled") def removeSelection(): print("removeSelectionCalled") def replaceSelection(): print("replaceSelectionCalled") def configurationChanged(ddict): print("configurationChanged ", ddict) w.show() w.sigAddSelection.connect(addSelection) w.sigRemoveSelection.connect(removeSelection) w.sigReplaceSelection.connect(replaceSelection) w.sigActionsConfigurationChanged.connect(configurationChanged) sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/io/hdf5/__init__.py0000644000000000000000000000000014741736366020405 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7717662 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/0000755000000000000000000000000014741736404015773 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/FFTAlignmentWindow.py0000644000000000000000000003240614741736366022027 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.pymca import ExternalImagesWindow from PyMca5.PyMcaGui.io import PyMcaFileDialogs class ParametersWidget(qt.QWidget): parametersWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, ndim=2): qt.QWidget.__init__(self, parent) self._nDimensions = 2 self._shape = 3000, 3000 self._settingShape = False self._build() def _build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.widgetDict = {} for i in range(self._nDimensions): key = "Dim %d" % i self.widgetDict[key] = {} #offset offsetLabel = qt.QLabel(self) offsetLabel.setText("Dimension %d Offset :" % i) offset = qt.QSpinBox(self) offset.setMinimum(0) offset.setMaximum(100) offset.setValue(0) #width widthLabel = qt.QLabel(self) widthLabel.setText("Dimension %d width :" % i) width = qt.QComboBox(self) nMax = int(numpy.log10(self._shape[i])/numpy.log10(2)) for j in range(1, nMax + 1): width.addItem("%d" % pow(2, j)) self.widgetDict[key]['offset'] = offset self.widgetDict[key]['width'] = width self.mainLayout.addWidget(offsetLabel, i, 0) self.mainLayout.addWidget(offset, i, 1) self.mainLayout.addWidget(widthLabel, i, 2) self.mainLayout.addWidget(width, i, 3) width.setCurrentIndex(width.count() - 1) # connections for i in range(self._nDimensions): key = "Dim %d" % i offset = self.widgetDict[key]['offset'] offset.valueChanged.connect(self._offsetValueChanged) width = self.widgetDict[key]['width'] width.currentIndexChanged.connect(self._widthValueChanged) def _offsetValueChanged(self, value): if self._settingShape: return ddict = self.getParameters() for i in range(self._nDimensions): key = "Dim %d" % i offset = ddict[key]['offset'] width = ddict[key]['width'] if (offset + width) > self._shape[i]: offset = self._shape[i] - width if offset < 0: print("This should not happen") offset = 0 self.widgetDict[key]['offset'].setValue(offset) return else: lastItem = 0 for j in range(1, 11): v = pow(2, j) if v <= (self._shape[i] - offset): lastItem = "%d" % v self.widgetDict[key]['width'].addItem(lastItem) self.emitParametersWidgetSignal() def _widthValueChanged(self, value): if self._settingShape: return ddict = self.getParameters() for i in range(self._nDimensions): key = "Dim %d" % i offset = ddict[key]['offset'] width = ddict[key]['width'] if (offset + width) > self._shape[i]: offset = self._shape[i] - width self.widgetDict[key]['offset'].setValue(offset) return self.emitParametersWidgetSignal() def setShape(self, shape): if len(shape) != self._nDimensions: raise ValueError("Shape length does not match number of dimensions") self._shape = shape self._settingShape = True for i in range(self._nDimensions): key = "Dim %d" % i # offset current = self.widgetDict[key]['offset'].value() self.widgetDict[key]['offset'].setMinimum(0) self.widgetDict[key]['offset'].setMaximum(shape[i] - 1) if current < shape[0]: self.widgetDict[key]['offset'].setValue(current) else: self.widgetDict[key]['offset'].setValue(0) # width current = str(self.widgetDict[key]['width'].currentText()) self.widgetDict[key]['width'].clear() nMax = int(numpy.log10(self._shape[i])/numpy.log10(2)) for j in range(1, nMax + 1): self.widgetDict[key]['width'].addItem("%d" % pow(2, j)) self.widgetDict[key]['width'].setCurrentIndex(nMax - 1) self._settingShape = False def getParameters(self): ddict = {} for i in range(self._nDimensions): key = "Dim %d" % i ddict[key] = {} ddict[key]['offset'] = self.widgetDict[key]['offset'].value() width = str(self.widgetDict[key]['width'].currentText()) ddict[key]['width'] = int(width) ddict['shape'] = self._shape * 1 return ddict def emitParametersWidgetSignal(self, event="ParametersChanged"): ddict = self.getParameters() ddict['event'] = "ParametersChanged" self.parametersWidgetSignal.emit(ddict) class OutputFile(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.checkBox = qt.QCheckBox(self) self.checkBox.setText("Use") self.fileName = qt.QLineEdit(self) self.fileName.setText("") self.fileName.setReadOnly(True) self.browse = qt.QPushButton(self) self.browse.setAutoDefault(False) self.browse.setText("Browse") self.browse.clicked.connect(self.browseFile) self.mainLayout.addWidget(self.checkBox) self.mainLayout.addWidget(self.fileName) self.mainLayout.addWidget(self.browse) def browseFile(self): filelist = PyMcaFileDialogs.getFileList(self, filetypelist=['HDF5 files (*.h5)'], message="Please enter output file", mode="SAVE", single=True) if len(filelist): name = filelist[0] if not name.endswith('.h5'): name = name + ".h5" self.fileName.setText(name) def getParameters(self): ddict = {} ddict['file_use'] = self.checkBox.isChecked() ddict['file_name'] = qt.safe_str(self.fileName.text()) return ddict def setForcedFileOutput(self, flag=True): if flag: self.checkBox.setChecked(True) self.checkBox.setEnabled(False) else: self.checkBox.setChecked(False) self.checkBox.setEnabled(True) class FFTAlignmentWindow(qt.QWidget): def __init__(self, parent=None, stack=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("FFT Alignment") self._build() def _build(self): self.mainLayout = qt.QVBoxLayout(self) self.parametersWidget = ParametersWidget(self) self.outputFileWidget = OutputFile(self) self.imageBrowser = ExternalImagesWindow.ExternalImagesWindow(self, crop=False, selection=False, imageicons=False) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.outputFileWidget) self.mainLayout.addWidget(self.imageBrowser) self.parametersWidget.parametersWidgetSignal.connect(self.mySlot) def setStack(self, stack, index=None): if index is None: if hasattr(stack, "info"): index = stack.info.get('McaIndex') else: index = 0 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack if isinstance(data, numpy.ndarray): self.outputFileWidget.setForcedFileOutput(False) else: self.outputFileWidget.setForcedFileOutput(True) self.imageBrowser.setStack(data, index=index) shape = self.imageBrowser.getImageData().shape self.parametersWidget.setShape(shape) ddict = self.parametersWidget.getParameters() self.mySlot(ddict) def getParameters(self): parameters = self.parametersWidget.getParameters() parameters['reference_image'] = self.imageBrowser.getImageData() parameters.update(self.outputFileWidget.getParameters()) parameters['reference_index'] = self.imageBrowser.getCurrentIndex() return parameters def mySlot(self, ddict): mask = self.imageBrowser.getSelectionMask() i0start = ddict['Dim 0']['offset'] i0end = i0start + ddict['Dim 0']['width'] i1start = ddict['Dim 1']['offset'] i1end = i1start + ddict['Dim 1']['width'] mask[:,:] = 0 mask[i0start:i0end, i1start:i1end] = 1 self.imageBrowser.setSelectionMask(mask) class FFTAlignmentDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("FFT Alignment Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.parametersWidget = FFTAlignmentWindow(self) self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) self.setStack = self.parametersWidget.setStack self.setDummyStack() def setDummyStack(self): dummyStack = numpy.arange(2 * 128 *256) dummyStack.shape = 2, 128, 256 self.setStack(dummyStack, index=0) def getParameters(self): return self.parametersWidget.getParameters() def accept(self): parameters = self.getParameters() if parameters['file_use']: if not len(parameters['file_name']): qt.QMessageBox.information(self, "Missing valid file name", "Please provide a valid output file name") return shape = parameters['shape'] for i in range(len(shape)): key = "Dim %d" % i offset = parameters[key]['offset'] width = parameters[key]['width'] if (offset + width) > shape[i]: qt.QMessageBox.information(self, "Check window", "Inconsistent limits on dimension %d" % i) return return qt.QDialog.accept(self) def reject(self): self.setDummyStack() return qt.QDialog.reject(self) def closeEvent(self, ev): self.setDummyStack() return qt.QDialog.closeEvent(self, ev) if __name__ == "__main__": #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): stackData[:, :, i] = a * i app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = FFTAlignmentDialog() w.setStack(stackData, index=0) w.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/NNMADialog.py0000644000000000000000000002307214741736366020231 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import time import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import CalculationThread from . import NNMAWindow NNMA = True _logger = logging.getLogger(__name__) class NNMADialog(qt.QDialog): def __init__(self, parent=None, rgbwidget=None, selection=False): qt.QDialog.__init__(self, parent) self.setWindowTitle("NNMA calculation dialog") self.mainLayout = qt.QVBoxLayout(self) self.calculateButton = qt.QPushButton(self) self.calculateButton.setAutoDefault(False) self.calculateButton.setText("Perform NNMA") self.showLastButton = qt.QPushButton(self) self.showLastButton.setAutoDefault(False) self.showLastButton.setText("Last Results") self.mainLayout.addWidget(self.calculateButton) self.mainLayout.addWidget(self.showLastButton) self._data = None self.nnmaWindow = NNMAWindow.NNMAWindow(parent = None, rgbwidget=rgbwidget, #selection=True, selection=selection, colormap=True, #imageicons=True, imageicons=selection, standalonesave=True) self.nnmaWindow.setDefaultColormap(0, logflag=False) self.nnmaParametersDialog = None self.nnmaWindow.hide() #connections self.calculateButton.clicked.connect(self._calculateSlot) self.showLastButton.clicked.connect(self._showLastSlot) def sizeHint(self): return qt.QSize(int(4*qt.QDialog.sizeHint(self).width()), qt.QDialog.sizeHint(self).height()) def _calculateSlot(self): if self._data is None: msg = qt.QMessageBox(self) msg.setWindowTitle("No data") msg.setIcon(qt.QMessageBox.Information) msg.setText("No data to perform calculation") msg.exec() return if self.nnmaParametersDialog is None: self.nnmaParametersDialog = NNMAWindow.NNMAParametersDialog(self) self.nnmaParametersDialog.nPC.setMaximum(self._spectrumLength) self.nnmaParametersDialog.nPC.setValue(min(10, self._spectrumLength)) ddict = {'options':self._binningOptions, 'binning': 1, 'method': 0} self.nnmaParametersDialog.setParameters(ddict) ret = self.nnmaParametersDialog.exec() if ret: t0 = time.time() nnmaParameters = self.nnmaParametersDialog.getParameters() self.nnmaParametersDialog.close() function = nnmaParameters['function'] binning = nnmaParameters['binning'] npc = nnmaParameters['npc'] kw = nnmaParameters['kw'] data = self._data old_shape = self._data.shape if _logger.getEffectiveLevel() == logging.DEBUG: images, eigenvalues, eigenvectors = function(data, npc, binning=binning, **kw) else: try: threadResult = self._submitThread(function, data, npc, binning=binning, **kw) if type(threadResult) == type((1,)): if len(threadResult): if hasattr(threadResult[0], "startswith"): if threadResult[0].startswith("Exception"): raise Exception(threadResult[1], threadResult[2]) images, eigenvalues, eigenvectors = threadResult except Exception: if isinstance(data, numpy.ndarray): self._data.shape = old_shape msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() return if isinstance(self._data, numpy.ndarray): self._data.shape = old_shape _logger.debug("NNMA Elapsed = %s", time.time() - t0) self.nnmaWindow.setPCAData(images, eigenvalues, eigenvectors) self.nnmaWindow.show() self.nnmaWindow.raise_() def _showLastSlot(self): self.nnmaWindow.show() self.nnmaWindow.raise_() def setData(self, data=None, spectrumindex=-1): if type(data) == type([]): #assume is an image list if data[0].dtype not in [numpy.float32, numpy.float64]: dtype = numpy.float64 else: dtype = data[0].dtype self._spectrumLength = len(data) self._shape = data[0].shape n = 1 for shape in self._shape: n *= shape self._binningOptions = [1] if len(self._shape) == 1: self._data = numpy.zeros((self._shape[0], self._spectrumLength), dtype) for i in range(self._spectrumLength): self._data[:, i] = data[i][:] elif len(self._shape) == 2: self._data = numpy.zeros((self._shape[0], self._shape[1], self._spectrumLength), dtype) for i in range(self._spectrumLength): self._data[:, :, i] = data[i][:,:] else: self._shape = data.shape self._data = data self._spectrumLength = self._shape[spectrumindex] self._binningOptions=[1] for number in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19]: if (self._spectrumLength % number) == 0: self._binningOptions.append(number) if self.nnmaParametersDialog is not None: self.nnmaParametersDialog.nPC.setMaximum(self._spectrumLength) self.nnmaParametersDialog.nPC.setValue(min(10, self._spectrumLength)) def _submitThread(self, function, *var, **kw): message = "Please Wait: NNMA Going On" thread = CalculationThread.CalculationThread( calculation_method=function, calculation_vars = var, calculation_kw = kw, expand_vars=True, expand_kw=True) thread.start() CalculationThread.waitingMessageDialog(thread, message=message, parent=self, modal=True, update_callback=None, frameless=True) threadResult = thread.getResult() self.raise_() return threadResult if __name__ == "__main__": import os from PyMca5.PyMcaIO import EdfFile app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) d = NNMADialog() imageList = [] for t in ["mix1.edf", "mix2.edf", "mix3.edf"]: fname = os.path.join(os.path.dirname(__file__), "tests", t) if not os.path.exists(fname): break edf = EdfFile.EdfFile(fname) data = edf.GetData(0) edf = None imageList.append(data) if len(imageList): d.setData(imageList) d.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/NNMAWindow.py0000644000000000000000000004022014741736366020273 0ustar00rootroot# /*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui.math import PCAWindow from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaMath.mva import NNMAModule import logging _logger = logging.getLogger(__name__) class NNMAParametersDialog(qt.QDialog): def __init__(self, parent=None, options=[1, 2, 3, 4, 5, 10], regions=False): qt.QDialog.__init__(self, parent) self.setWindowTitle("NNMA Configuration Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(11, 11, 11, 11) self.mainLayout.setSpacing(0) self.infoButton = qt.QPushButton(self) self.infoButton.setAutoDefault(False) self.infoButton.setText("About NNMA") self.mainLayout.addWidget(self.infoButton) self.infoButton.clicked.connect(self._showInfo) # self.methodOptions = qt.QGroupBox(self) self.methodOptions.setTitle("NNMA Method to use") self.methods = [ "RRI", "NNSC", "NMF", "SNMF", "NMFKL", "FNMAI", "ALS", "FastHALS", "GDCLS", ] self.methodOptions.mainLayout = qt.QGridLayout(self.methodOptions) self.methodOptions.mainLayout.setContentsMargins(0, 0, 0, 0) self.methodOptions.mainLayout.setSpacing(2) self.buttonGroup = qt.QButtonGroup(self.methodOptions) i = 0 for item in self.methods: rButton = qt.QRadioButton(self.methodOptions) self.methodOptions.mainLayout.addWidget(rButton, 0, i) # self.l.setAlignment(rButton, qt.Qt.AlignHCenter) if i == 1: rButton.setChecked(True) rButton.setText(item) self.buttonGroup.addButton(rButton) self.buttonGroup.setId(rButton, i) i += 1 if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self._slot) else: # deprecated _logger.debug("Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self._slot) self.mainLayout.addWidget(self.methodOptions) # NNMA configuration parameters self.nnmaConfiguration = qt.QGroupBox(self) self.nnmaConfiguration.setTitle("NNMA Configuration") self.nnmaConfiguration.mainLayout = qt.QGridLayout(self.nnmaConfiguration) self.nnmaConfiguration.mainLayout.setContentsMargins(0, 0, 0, 0) self.nnmaConfiguration.mainLayout.setSpacing(2) label = qt.QLabel(self.nnmaConfiguration) label.setText("Tolerance (0 0: fromValue = ddict["from"] toValue = ddict["to"] self.graph.setEnabled(True) self.graph.clearMarkers() self.graph.insertXMarker( fromValue, "From", text="From", color="blue", draggable=True ) self.graph.insertXMarker( toValue, "To", text="To", color="blue", draggable=True ) self.graph.replot() else: self.graph.clearMarkers() self.graph.setEnabled(False) def _graphSlot(self, ddict): if ddict["event"] == "markerMoved": marker = ddict["label"] value = ddict["x"] signal = False if marker == "From": self.regionsWidget.fromLine.setText("%f" % value) elif marker == "To": self.regionsWidget.toLine.setText("%f" % value) else: signal = True self.regionsWidget._editingSlot(signal=signal) def _slot(self, index): button = self.buttonGroup.button(index) button.setChecked(True) self.binningLabel.setText("Spectral Binning:") if 1 or index != 2: self.binningCombo.setEnabled(True) else: self.binningCombo.setEnabled(False) return def setSpectrum(self, x, y, legend=None, info=None): if self.graph is None: self.__addRegionsWidget() if legend is None: legend = "Current Active Spectrum" if info is None: info = {} if not isinstance(x, numpy.ndarray): x = numpy.array(x) y = numpy.array(y) self._x = x self._y = y self.regionsWidget.setLimits(x.min(), x.max()) self._legend = legend self._info = info self.updatePlot() def getSpectrum(self, binned=False): if binned: return self._binnedX, self._binnedY, self._legend, self._info else: return self._x, self._y, self._legend, self._info # value unused, but received with the Qt signal def _updatePlotFromBinningCombo(self, value): if self.graph is None: return self.updatePlot() def updatePlot(self): binning = int(self.binningCombo.currentText()) x = self._x * 1.0 y = self._y * 1.0 x.shape = 1, -1 y.shape = 1, -1 r, c = x.shape x.shape = r, int(c / binning), binning y.shape = r, int(c / binning), binning x = x.sum(axis=-1, dtype=numpy.float32) / binning y = y.sum(axis=-1, dtype=numpy.float32) x.shape = -1 y.shape = -1 self._binnedX = x self._binnedY = y if self.graph: self.graph.addCurve(x, y, legend=self._legend, replace=True) def setParameters(self, ddict): if "options" in ddict: self.binningCombo.clear() for option in ddict["options"]: self.binningCombo.addItem("%d" % option) if "binning" in ddict: option = "%d" % ddict["binning"] for i in range(self.binningCombo.count()): if str(self.binningCombo.itemText(i)) == option: self.binningCombo.setCurrentIndex(i) if "npc" in ddict: self.nPC.setValue(ddict["npc"]) if "method" in ddict: self.buttonGroup.buttons()[ddict["method"]].setChecked(True) if "regions" in ddict: self.regionsWidget.setRegions(regions) return def getParameters(self): ddict = {} i = self.buttonGroup.checkedId() ddict["methodlabel"] = self.methods[i] ddict["function"] = NNMAModule.nnma eps = float(self._tolerance.text()) maxcount = self._maxIterations.value() ddict["binning"] = int(self.binningCombo.currentText()) ddict["npc"] = self.nPC.value() ddict["kw"] = {"eps": eps, "maxcount": maxcount} mask = None if self.__regions: regions = self.regionsWidget.getRegions() if not len(regions): mask = None else: mask = numpy.zeros(self._binnedX.shape, dtype=numpy.uint8) for region in regions: mask[ (self._binnedX >= region[0]) * (self._binnedX <= region[1]) ] = 1 ddict["regions"] = regions # try to simplify life to the caller but can be hard if # spectral_binning has been applied because of the ambiguity # about if the spectral_mask is to be applied before or after # binning. The use of the 'regions' should be less prone to errors ddict["spectral_mask"] = mask else: ddict["regions"] = [] ddict["spectral_mask"] = mask return ddict class NNMAWindow(PCAWindow.PCAWindow): def setPCAData( self, images, eigenvalues=None, eigenvectors=None, imagenames=None, vectornames=None, ): self.eigenValues = eigenvalues self.eigenVectors = eigenvectors if type(images) == type([]): self.imageList = images elif len(images.shape) == 3: nimages = images.shape[0] self.imageList = [0] * nimages for i in range(nimages): self.imageList[i] = images[i, :] if self.imageList[i].max() < 0: self.imageList[i] *= -1 if self.eigenVectors is not None: self.eigenVectors[i] *= -1 if imagenames is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("NNMA Image %02d" % i) else: self.imageNames = imagenames if self.imageList is not None: self.slider.setMaximum(len(self.imageList) - 1) self.showImage(0) else: self.slider.setMaximum(0) if self.eigenVectors is not None: if vectornames is None: self.vectorNames = [] for i in range(nimages): self.vectorNames.append("NNMA Component %02d" % i) else: self.vectorNames = vectornames legend = self.vectorNames[0] y = self.eigenVectors[0] self.vectorGraph.newCurve(range(len(y)), y, legend, replace=True) if self.eigenValues is not None: self.vectorGraphTitles = [] for i in range(nimages): self.vectorGraphTitles.append( "%g %% explained intensity" % self.eigenValues[i] ) self.vectorGraph.setGraphTitle(self.vectorGraphTitles[0]) self.slider.setValue(0) def test2(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) dialog = NNMAParametersDialog(regions=True) # dialog.setParameters({'options':[1,3,5,7,9],'method':1, 'npc':8,'binning':3}) dialog.setModal(True) ret = dialog.exec() if ret: dialog.close() print(dialog.getParameters()) # app.exec() def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = NNMAWindow() data = numpy.arange(20000) data.shape = 2, 100, 100 data[1, 0:100, 0:50] = 100 container.setPCAData( data, eigenvectors=[numpy.arange(100.0), numpy.arange(100.0) + 10], imagenames=["I1", "I2"], vectornames=["V1", "V2"], ) container.show() def theSlot(ddict): print(ddict["event"]) container.sigMaskImageWidgetSignal.connect(theSlot) app.exec() if __name__ == "__main__": import numpy test2() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/PCADialog.py0000644000000000000000000002727014741736366020107 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import time import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import CalculationThread try: from . import PCAWindow PCA = True MDP = PCAWindow.MDP except ImportError: PCA = False MDP = False _logger = logging.getLogger(__name__) class PCADialog(qt.QDialog): def __init__(self, parent=None, rgbwidget=None, selection=False): qt.QDialog.__init__(self, parent) self.setWindowTitle("PCA calculation dialog") self.mainLayout = qt.QVBoxLayout(self) self.calculateButton = qt.QPushButton(self) self.calculateButton.setAutoDefault(False) self.calculateButton.setText("Perform PCA") self.showLastButton = qt.QPushButton(self) self.showLastButton.setAutoDefault(False) self.showLastButton.setText("Last Results") self.mainLayout.addWidget(self.calculateButton) self.mainLayout.addWidget(self.showLastButton) self._data = None self.pcaWindow = PCAWindow.PCAWindow(parent=None, rgbwidget=rgbwidget, #selection=True, selection=selection, colormap=True, #imageicons=True, imageicons=selection, standalonesave=True) self.pcaWindow.setDefaultColormap(0, logflag=False) self.pcaParametersDialog = PCAWindow.PCAParametersDialog(self) self.pcaParametersDialog.nPC.setMaximum(11) self.pcaParametersDialog.nPC.setValue(10) self.pcaParametersDialog.hide() self.pcaParametersDialogInitialized = False self.pcaWindow.hide() #connections self.calculateButton.clicked.connect(self._calculateSlot) self.showLastButton.clicked.connect(self._showLastSlot) def sizeHint(self): return qt.QSize(int(4 * qt.QDialog.sizeHint(self).width()), qt.QDialog.sizeHint(self).height()) def _calculateSlot(self): if self._data is None: msg = qt.QMessageBox(self) msg.setWindowTitle("No data") msg.setIcon(qt.QMessageBox.Information) msg.setText("No data to perform calculation") msg.exec() return if not self.pcaParametersDialogInitialized: self.pcaParametersDialog.nPC.setMaximum(self._spectrumLength) self.pcaParametersDialog.nPC.setValue( min(10, self._spectrumLength)) ddict = {'options': self._binningOptions, 'binning': 1, 'method': 0} self.pcaParametersDialog.setParameters(ddict) self.pcaParametersDialogInitialized = True ret = self.pcaParametersDialog.exec() if ret: t0 = time.time() pcaParameters = self.pcaParametersDialog.getParameters() self.pcaParametersDialog.close() function = pcaParameters['function'] binning = pcaParameters['binning'] npc = pcaParameters['npc'] mask = pcaParameters.get('mask', None) kw = pcaParameters.get('kw', {}) data = self._data old_shape = self._data.shape if mask is not None: if mask.sum() < npc: msg = qt.QMessageBox(self) msg.setWindowTitle("Not enough data") msg.setIcon(qt.QMessageBox.Information) msg.setText("Number of components too high") msg.exec() return if _logger.getEffectiveLevel() == logging.DEBUG: images, eigenvalues, eigenvectors = function(data, npc, binning=binning, mask=mask, **kw) else: try: threadResult = self._submitThread(function, data, npc, binning=binning, mask=mask, **kw) if type(threadResult) == type((1,)): if len(threadResult): if hasattr(threadResult[0], "startswith"): if threadResult[0].startswith("Exception"): raise Exception(threadResult[1], threadResult[2]) images, eigenvalues, eigenvectors = threadResult except Exception: if isinstance(data, numpy.ndarray): self._data.shape = old_shape msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() return if isinstance(self._data, numpy.ndarray): self._data.shape = old_shape _logger.debug("PCA Elapsed = %s", time.time() - t0) methodlabel = pcaParameters.get('methodlabel', "") imagenames = None vectornames = None if " ICA " in methodlabel: nimages = images.shape[0] imagenames = [] vectornames = [] itmp = int(nimages / 2) for i in range(itmp): imagenames.append("ICAimage %02d" % i) vectornames.append("ICAvector %02d" % i) for i in range(itmp): imagenames.append("Eigenimage %02d" % i) vectornames.append("Eigenvector %02d" % i) self.pcaWindow.setPCAData(images, eigenvalues, eigenvectors, imagenames=imagenames, vectornames=vectornames) self.pcaWindow.show() self.pcaWindow.raise_() def _showLastSlot(self): self.pcaWindow.show() self.pcaWindow.raise_() def setData(self, data=None, spectrumindex=-1): if type(data) == type([]): #assume is an image list if data[0].dtype not in [numpy.float32, numpy.float64]: dtype = numpy.float64 else: dtype = data[0].dtype self._spectrumLength = len(data) self._shape = data[0].shape n = 1 for shape in self._shape: n *= shape self._binningOptions = [1] if len(self._shape) == 1: self._data = numpy.zeros((self._shape[0], self._spectrumLength), dtype) for i in range(self._spectrumLength): self._data[:, i] = data[i][:] elif len(self._shape) == 2: self._data = numpy.zeros((self._shape[0], self._shape[1], self._spectrumLength), dtype) for i in range(self._spectrumLength): self._data[:, :, i] = data[i][:, :] else: self._shape = data.shape self._data = data self._spectrumLength = self._shape[spectrumindex] self._binningOptions = [1] for number in [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19]: if (self._spectrumLength % number) == 0: self._binningOptions.append(number) if self.pcaParametersDialog is not None: value = self.pcaParametersDialog.nPC.value() self.pcaParametersDialog.nPC.setMaximum(self._spectrumLength) self.pcaParametersDialog.nPC.setValue(min(value, self._spectrumLength)) def setSpectrum(self, x, y, legend=None): return self.pcaParametersDialog.setSpectrum(x, y, legend=legend) def _submitThread(self, function, *var, **kw): message = "Please Wait: PCA Going On" thread = CalculationThread.CalculationThread( calculation_method=function, calculation_vars = var, calculation_kw = kw, expand_vars=True, expand_kw=True) thread.start() CalculationThread.waitingMessageDialog(thread, message=message, parent=self, modal=True, update_callback=None, frameless=True) threadResult = thread.getResult() self.raise_() return threadResult if __name__ == "__main__": _logger.setLevel(logging.DEBUG) import os from PyMca5.PyMcaIO import EdfFile app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) d = PCADialog() if len(sys.argv) < 2: fileList = [r"D:\DATA\ICA\mix1.edf", r"D:\DATA\ICA\mix2.edf", r"D:\DATA\ICA\mix3.edf"] else: fileList = [] for i in range(1, len(sys.argv)): fileList.append(sys.argv[i]) imageList = [] for fname in fileList: print(fname) if not os.path.exists(fname): print("File name %s does not exists" % fname) break edf = EdfFile.EdfFile(fname) data = edf.GetData(0) edf = None imageList.append(data) if len(imageList): d.setData(imageList) d.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/PCAWindow.py0000644000000000000000000006657214741736366020167 0ustar00rootroot# /*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaGui.pymca import ScanWindow from PyMca5.PyMcaMath.mva import PCAModule from PyMca5.PyMcaGui.plotting import ScatterPlotCorrelatorWidget if hasattr(qt, "QString"): QString = qt.QString else: QString = str MDP = PCAModule.MDP MATPLOTLIB = MaskImageWidget.MATPLOTLIB QTVERSION = MaskImageWidget.QTVERSION import logging _logger = logging.getLogger(__name__) class PCAParametersDialog(qt.QDialog): def __init__( self, parent=None, options=[1, 2, 3, 4, 5, 10], regions=False, index=-1 ): qt.QDialog.__init__(self, parent) self.setWindowTitle("PCA Configuration Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(11, 11, 11, 11) self.mainLayout.setSpacing(0) self.methodOptions = qt.QGroupBox(self) self.methodOptions.setTitle("PCA Method to use") self.methods = [ "Covariance", "Correlation", "Expectation Max.", "Cov. Multiple Arrays", "Corr. Multiple Arrays", ] self._multipleIndex = [3, 4] self.functions = [ PCAModule.numpyCovariancePCA, PCAModule.numpyCorrelationPCA, PCAModule.expectationMaximizationPCA, PCAModule.multipleArrayCovariancePCA, PCAModule.multipleArrayCorrelationPCA, ] self.methodOptions.mainLayout = qt.QGridLayout(self.methodOptions) self.methodOptions.mainLayout.setContentsMargins(0, 0, 0, 0) self.methodOptions.mainLayout.setSpacing(2) if MDP and (index != 0): # self.methods.append("MDP (PCA + ICA)") self.methods.append("MDP (SVD float32)") self.methods.append("MDP (SVD float64)") self.methods.append("MDP ICA (float32)") self.methods.append("MDP ICA (float64)") self.functions.append(PCAModule.mdpPCASVDFloat32) self.functions.append(PCAModule.mdpPCASVDFloat64) self.functions.append(PCAModule.mdpICAFloat32) self.functions.append(PCAModule.mdpICAFloat64) self.buttonGroup = qt.QButtonGroup(self.methodOptions) i = 0 for item in self.methods: rButton = qt.QRadioButton(self.methodOptions) row = int(i / 5) col = i % 5 self.methodOptions.mainLayout.addWidget(rButton, row, col) # self.l.setAlignment(rButton, qt.Qt.AlignHCenter) if i == 1: rButton.setChecked(True) rButton.setText(item) self.buttonGroup.addButton(rButton) self.buttonGroup.setId(rButton, i) i += 1 if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self._slot) else: # deprecated _logger.debug("PCAWindow. Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self._slot) self.mainLayout.addWidget(self.methodOptions) # built in speed options self.speedOptions = qt.QGroupBox(self) self.speedOptions.setTitle("Speed Options") self.speedOptions.mainLayout = qt.QGridLayout(self.speedOptions) self.speedOptions.mainLayout.setContentsMargins(0, 0, 0, 0) self.speedOptions.mainLayout.setSpacing(2) labelPC = qt.QLabel(self) labelPC.setText("Number of PC:") self.nPC = qt.QSpinBox(self.speedOptions) self.nPC.setMinimum(0) self.nPC.setValue(10) self.nPC.setMaximum(40) self.binningLabel = qt.QLabel(self.speedOptions) self.binningLabel.setText("Spectral Binning:") self.binningCombo = qt.QComboBox(self.speedOptions) for option in options: self.binningCombo.addItem("%d" % option) self.speedOptions.mainLayout.addWidget(labelPC, 0, 0) self.speedOptions.mainLayout.addWidget(self.nPC, 0, 1) # self.speedOptions.mainLayout.addWidget(qt.HorizontalSpacer(self), 0, 2) self.speedOptions.mainLayout.addWidget(self.binningLabel, 1, 0) self.speedOptions.mainLayout.addWidget(self.binningCombo, 1, 1) self.binningCombo.activated[int].connect(self._updatePlotFromBinningCombo) if regions: self.__regions = True self.__addRegionsWidget() else: self.__regions = False # the optional plot self.graph = None # the OK button hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("Accept") self.okButton.setAutoDefault(False) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) self.mainLayout.addWidget(self.speedOptions) if regions: self.mainLayout.addWidget(self.regionsWidget) self.mainLayout.addWidget(hbox) if self.graph is not None: self.mainLayout.addWidget(self.graph) self.okButton.clicked.connect(self.accept) def __addRegionsWidget(self): # Region handling self.regionsWidget = RegionsWidget(self) self.regionsWidget.setEnabled(True) self.regionsWidget.sigRegionsWidgetSignal.connect(self.regionsWidgetSlot) # the plot self.graph = ScanWindow.ScanWindow(self) self.graph.setEnabled(False) self.graph.sigPlotSignal.connect(self._graphSlot) if not self.__regions: # I am adding after instantiation self.mainLayout.insertWidget(2, self.regionsWidget) self.mainLayout.addWidget(self.graph) self.__regions = True def regionsWidgetSlot(self, ddict): if ddict["nRegions"] > 0: fromValue = ddict["from"] toValue = ddict["to"] self.graph.setEnabled(True) self.graph.clearMarkers() self.graph.insertXMarker( fromValue, "From", text="From", color="blue", draggable=True ) self.graph.insertXMarker( toValue, "To", text="To", color="blue", draggable=True ) self.graph.replot() else: self.graph.clearMarkers() self.graph.setEnabled(False) def _graphSlot(self, ddict): if ddict["event"] == "markerMoved": marker = ddict["label"] value = ddict["x"] signal = False if marker == "From": self.regionsWidget.fromLine.setText("%f" % value) elif marker == "To": self.regionsWidget.toLine.setText("%f" % value) else: signal = True self.regionsWidget._editingSlot(signal=signal) def _slot(self, index): button = self.buttonGroup.button(index) button.setChecked(True) self.binningLabel.setText("Spectral Binning:") if index not in self._multipleIndex: self.binningCombo.setEnabled(True) else: self.binningCombo.setEnabled(False) if self.__regions: if index not in self._multipleIndex: self.regionsWidget.setEnabled(True) self.graph.setEnabled(True) else: self.regionsWidget.setEnabled(False) self.graph.setEnabled(False) return def setSpectrum(self, x, y, legend=None, info=None): if self.graph is None: self.__addRegionsWidget() if legend is None: legend = "Current Active Spectrum" if info is None: info = {} if not isinstance(x, numpy.ndarray): x = numpy.array(x) y = numpy.array(y) self._x = x self._y = y self.regionsWidget.setLimits(x.min(), x.max()) self._legend = legend self._info = info self.updatePlot() def getSpectrum(self, binned=False): if binned: return self._binnedX, self._binnedY, self._legend, self._info else: return self._x, self._y, self._legend, self._info # value unused, but received with the Qt signal def _updatePlotFromBinningCombo(self, value): if self.graph is None: return self.updatePlot() def updatePlot(self): binning = int(self.binningCombo.currentText()) x = self._x * 1.0 y = self._y * 1.0 x.shape = 1, -1 y.shape = 1, -1 r, c = x.shape x.shape = r, int(c / binning), binning y.shape = r, int(c / binning), binning x = x.sum(axis=-1, dtype=numpy.float32) / binning y = y.sum(axis=-1, dtype=numpy.float32) x.shape = -1 y.shape = -1 self._binnedX = x self._binnedY = y self.graph.addCurve(x, y, legend=self._legend, replace=True) def setParameters(self, ddict): if "options" in ddict: self.binningCombo.clear() for option in ddict["options"]: self.binningCombo.addItem("%d" % option) if "binning" in ddict: option = "%d" % ddict["binning"] for i in range(self.binningCombo.count()): if str(self.binningCombo.itemText(i)) == option: self.binningCombo.setCurrentIndex(i) if "npc" in ddict: self.nPC.setValue(ddict["npc"]) if "method" in ddict: self.buttonGroup.buttons()[ddict["method"]].setChecked(True) if ddict["method"] not in self._multipleIndex: self.binningCombo.setEnabled(True) else: self.binningCombo.setEnabled(False) if "regions" in ddict: self.regionsWidget.setRegions(regions) return def getParameters(self): ddict = {} ddict["binning"] = int(self.binningCombo.currentText()) ddict["npc"] = self.nPC.value() i = self.buttonGroup.checkedId() ddict["method"] = i ddict["methodlabel"] = self.methods[i] ddict["function"] = self.functions[i] mask = None if self.__regions: regions = self.regionsWidget.getRegions() if not len(regions): mask = None else: mask = numpy.zeros(self._binnedX.shape, dtype=numpy.uint8) for region in regions: mask[ (self._binnedX >= region[0]) * (self._binnedX <= region[1]) ] = 1 ddict["regions"] = regions # try to simplify life to the caller but can be hard if # spectral_binning has been applied because of the ambiguity # about if the spectral_mask is to be applied before or after # binning. The use of the 'regions' should be less prone to errors ddict["spectral_mask"] = mask else: ddict["regions"] = [] ddict["spectral_mask"] = mask return ddict class RegionsWidget(qt.QGroupBox): sigRegionsWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, nregions=10, limits=[0.0, 1000.0]): qt.QGroupBox.__init__(self, parent) self.setTitle("Spectral Regions") self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) if nregions % 2: nregions += 1 self.nRegions = nregions self.regionList = [] self.__limits = [limits[0], limits[1]] # Nice hint -> What about: # self.regionList.extend([[limits[0], limits[1]] * self.nRegions) # instead of this loop with the useless i? for i in range(self.nRegions): self.regionList.append([limits[0], limits[1]]) self.nRegionsLabel = qt.QLabel(self) self.nRegionsLabel.setText("Number of Regions:") self.nRegionsSpinBox = qt.QSpinBox(self) self.nRegionsSpinBox.setMinimum(0) self.nRegionsSpinBox.setValue(0) self.nRegionsSpinBox.setMaximum(self.nRegions) self.mainLayout.addWidget(self.nRegionsLabel, 0, 0) self.mainLayout.addWidget(self.nRegionsSpinBox, 0, 1) self.nRegionsSpinBox.valueChanged[int].connect(self._regionsChanged) self.currentRegionLabel = qt.QLabel(self) self.currentRegionLabel.setText("Current Region:") self.currentRegionSpinBox = qt.QSpinBox(self) self.currentRegionSpinBox.setMinimum(1) self.currentRegionSpinBox.setValue(1) self.currentRegionSpinBox.setMaximum(1) self.mainLayout.addWidget(self.currentRegionLabel, 0, 2) self.mainLayout.addWidget(self.currentRegionSpinBox, 0, 3) self.currentRegionSpinBox.valueChanged[int].connect(self._currentRegionChanged) label = qt.QLabel(self) label.setText("From:") self.fromLine = qt.QLineEdit(self) self.fromLine.setText("%f" % limits[0]) self.fromLine._v = qt.CLocaleQDoubleValidator(self.fromLine) self.fromLine.setValidator(self.fromLine._v) self.mainLayout.addWidget(label, 0, 4) self.mainLayout.addWidget(self.fromLine, 0, 5) self.fromLine.editingFinished[()].connect(self._editingSlot) label = qt.QLabel(self) label.setText("To:") self.toLine = qt.QLineEdit(self) self.toLine.setText("%f" % limits[1]) self.toLine._v = qt.CLocaleQDoubleValidator(self.toLine) self.toLine.setValidator(self.toLine._v) self.mainLayout.addWidget(label, 0, 6) self.mainLayout.addWidget(self.toLine, 0, 7) self.toLine.editingFinished[()].connect(self._editingSlot) self._regionsChanged(0) def setLimits(self, xmin, xmax): for i in range(len(self.regionList)): self.regionList[i][0] = max(self.regionList[i][0], xmin) self.regionList[i][1] = min(self.regionList[i][1], xmax) self.__limits = [xmin, xmax] current = self.currentRegionSpinBox.value() self._currentRegionChanged(current) def _regionsChanged(self, value): if value == 0: self.toLine.setDisabled(True) self.fromLine.setDisabled(True) self.currentRegionSpinBox.setDisabled(True) else: current = self.currentRegionSpinBox.value() self.currentRegionSpinBox.setMaximum(value) self.toLine.setDisabled(False) self.fromLine.setDisabled(False) self.currentRegionSpinBox.setDisabled(False) if current > value: self.currentRegionSpinBox.setValue(value) self._currentRegionChanged(value) def _currentRegionChanged(self, value): if value > 0: fromValue, toValue = self.regionList[value - 1] self.fromLine.setText("%f" % fromValue) self.toLine.setText("%f" % toValue) self.mySignal() def _editingSlot(self, signal=True): current = self.currentRegionSpinBox.value() - 1 self.regionList[current][0] = float(str(self.fromLine.text())) self.regionList[current][1] = float(str(self.toLine.text())) if self.regionList[current][0] < self.__limits[0]: self.regionList[current][0] = self.__limits[0] if self.regionList[current][1] > self.__limits[1]: self.regionList[current][1] = self.__limits[1] if signal: self.mySignal() def mySignal(self): current = self.currentRegionSpinBox.value() - 1 ddict = {} ddict["event"] = "regionChanged" ddict["nRegions"] = self.nRegionsSpinBox.value() ddict["current"] = current if current >= 0: ddict["from"] = self.regionList[current][0] ddict["to"] = self.regionList[current][1] self.sigRegionsWidgetSignal.emit(ddict) def getRegions(self): nRegions = self.nRegionsSpinBox.value() regions = [] if nRegions > 0: for i in range(nRegions): regions.append(self.regionList[i]) return regions def setRegions(self, regionList=None): """ :param regionList: List of couple of "from" and to "values" :type param: List """ if regionList is None: regionList = [] nRegions = len(regionList) # the number of regions is small so, we can afford to loop # instead of a direct copy self.regionList = [] for i in range(nRegions): fromValue, toValue = regionList[i] self.regionList.append([fromValue, toValue]) self.currentRegionSpinBox.setValue(nRegions) if nRegions > 0: self._editingSlot(signal=False) self._regionsChanged(self, nRegions) class PCAWindow(MaskImageWidget.MaskImageWidget): def __init__(self, *var, **kw): ddict = {} ddict["usetab"] = True ddict.update(kw) ddict["standalonesave"] = False MaskImageWidget.MaskImageWidget.__init__(self, *var, **ddict) self.slider = qt.QSlider(self) self.slider.setOrientation(qt.Qt.Horizontal) self.slider.setMinimum(0) self.slider.setMaximum(0) # The 1D graph self.vectorGraph = ScanWindow.ScanWindow(self) self.mainTab.addTab(self.vectorGraph, "VECTORS") self.mainLayout.addWidget(self.slider) self.slider.valueChanged[int].connect(self._showImage) self.imageList = None self.imageNames = None self.eigenValues = None self.eigenVectors = None self.vectorNames = None self.vectorGraphTitles = None standalonesave = kw.get("standalonesave", True) if standalonesave: self.graphWidget.saveToolButton.clicked.connect(self._saveToolButtonSignal) self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Image Data"), self.saveImageList) self._saveMenu.addAction( QString("Standard Graphics"), self.graphWidget._saveIconSignal ) if MATPLOTLIB: self._saveMenu.addAction( QString("Matplotlib"), self._saveMatplotlibImage ) self.multiplyIcon = qt.QIcon(qt.QPixmap(IconDict["swapsign"])) infotext = "Multiply image by -1" self.multiplyButton = self.graphWidget._addToolButton( self.multiplyIcon, self._multiplyIconChecked, infotext, toggle=False, position=12, ) # The density plot widget self.scatterPlotWidget = ( ScatterPlotCorrelatorWidget.ScatterPlotCorrelatorWidget( None, labels=["Legend", "X", "Y"], types=["Text", "RadioButton", "RadioButton"], maxNRois=1, ) ) self.__scatterPlotWidgetDataToUpdate = True self.__maskToScatterConnected = True self.sigMaskImageWidgetSignal.connect(self._internalSlot) self.scatterPlotWidget.sigMaskScatterWidgetSignal.connect(self._internalSlot) # add the command to show it to the menu if hasattr(self, "_additionalSelectionMenu"): self.additionalSelectionMenu().addAction( QString("Show scatter plot"), self.showScatterPlot ) def sizeHint(self): return qt.QSize(400, 400) def _multiplyIconChecked(self): if self.imageList is None: return index = self.slider.value() self.imageList[index] *= -1 if self.eigenVectors is not None: self.eigenVectors[index] *= -1 self._showImage(index) self.__scatterPlotWidgetDataToUpdate = True self._updateScatterPlotWidget() def _showImage(self, index): if self.eigenVectors is not None: legend = self.vectorNames[index] y = self.eigenVectors[index] if self.vectorGraphTitles is not None: self.vectorGraph.setGraphTitle(self.vectorGraphTitles[index]) self.vectorGraph.addCurve(range(len(y)), y, legend, replace=True) if len(self.imageList): self.showImage(index, moveslider=False) def showImage(self, index=0, moveslider=True): if self.imageList is None: return if len(self.imageList) == 0: return self.graphWidget.graph.setGraphTitle(self.imageNames[index]) self.setImageData(self.imageList[index]) if moveslider: self.slider.setValue(index) def setPCAData( self, images, eigenvalues=None, eigenvectors=None, imagenames=None, vectornames=None, ): self.eigenValues = eigenvalues self.eigenVectors = eigenvectors if type(images) == type([]): self.imageList = images elif len(images.shape) == 3: nimages = images.shape[0] self.imageList = [0] * nimages for i in range(nimages): self.imageList[i] = images[i, :] if self.imageList[i].max() < 0: self.imageList[i] *= -1 if self.eigenVectors is not None: self.eigenVectors[i] *= -1 if imagenames is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("Eigenimage %02d" % i) else: self.imageNames = imagenames if self.imageList is not None: self.slider.setMaximum(len(self.imageList) - 1) self.showImage(0) else: self.slider.setMaximum(0) if self.eigenVectors is not None: if vectornames is None: self.vectorNames = [] for i in range(nimages): self.vectorNames.append("Component %02d" % i) else: self.vectorNames = vectornames legend = self.vectorNames[0] y = self.eigenVectors[0] self.vectorGraph.newCurve(range(len(y)), y, legend, replace=True) self.slider.setValue(0) self.__scatterPlotWidgetDataToUpdate = True self._updateScatterPlotWidget() def _updateScatterPlotWidget(self): w = self.scatterPlotWidget if self.__scatterPlotWidgetDataToUpdate: if self.imageNames: for i in range(len(self.imageNames)): w.addSelectableItem(self.imageList[i], self.imageNames[i]) self.__scatterPlotWidgetDataToUpdate = False w.setPolygonSelectionMode() w.setSelectionMask(self.getSelectionMask()) def _internalSlot(self, ddict): if ddict["id"] == id(self): # signal generated by this instance # only the the scatter plot to be updated unless hidden if self.scatterPlotWidget.isHidden(): return if ddict["event"] in [ "selectionMaskChanged", "resetSelection", "invertSelection", ]: mask = self.getSelectionMask() if mask is None: mask = numpy.zeros(self.imageList[0].shape, numpy.uint8) self.scatterPlotWidget.setSelectionMask(mask) elif ddict["id"] == id(self.scatterPlotWidget): # signal generated by the scatter plot if ddict["event"] in [ "selectionMaskChanged", "resetSelection", "invertSelection", ]: mask = self.scatterPlotWidget.getSelectionMask() super(PCAWindow, self).setSelectionMask(mask, plot=True) ddict["id"] = id(self) try: self.__maskToScatterConnected = False self.sigMaskImageWidgetSignal.emit(ddict) finally: self.__maskToScatterConnected = True def setSelectionMask(self, *var, **kw): super(PCAWindow, self).setSelectionMask(*var, **kw) if not self.scatterPlotWidget.isHidden(): self._updateScatterPlotWidget() def saveImageList(self, filename=None, imagelist=None, labels=None): if self.imageList is None: return labels = [] for i in range(len(self.imageList)): labels.append(self.imageNames[i].replace(" ", "_")) return MaskImageWidget.MaskImageWidget.saveImageList( self, imagelist=self.imageList, labels=labels ) def setImageList(self, imagelist): self.imageList = imagelist self.eigenValues = None self.eigenVectors = None if imagelist is not None: self.slider.setMaximum(len(self.imageList) - 1) self.showImage(0) def showScatterPlot(self): if self.scatterPlotWidget.isHidden(): # it needs update self._updateScatterPlotWidget() self.scatterPlotWidget.show() # make sure it is visible self.scatterPlotWidget.raise_() def test2(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) dialog = PCAParametersDialog() dialog.setParameters( {"options": [1, 3, 5, 7, 9], "method": 1, "npc": 8, "binning": 3} ) dialog.setModal(True) ret = dialog.exec() if ret: dialog.close() print(dialog.getParameters()) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = PCAWindow() data = numpy.arange(20000) data.shape = 2, 100, 100 data[1, 0:100, 0:50] = 100 container.setPCAData( data, eigenvectors=[numpy.arange(100.0), numpy.arange(100.0) + 10], imagenames=["I1", "I2"], vectornames=["V1", "V2"], ) container.show() def theSlot(ddict): print(ddict["event"]) container.sigMaskImageWidgetSignal.connect(theSlot) app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/SGWindow.py0000644000000000000000000002044414741736366020061 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.pymca import ScanWindow from PyMca5.PyMcaMath import SGModule class SGParametersWidget(qt.QWidget): sigSGParametersSignal = qt.pyqtSignal(object) def __init__(self, parent = None, length=2000): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) i = 0 self._keyList = ['points', 'degree', 'order'] self.parametersDict = {'points':3, 'degree':1, 'order':0} for text in ["Savitzky-Golay filter width:", "Interpolating polynomial degree:", "Derivative order (0=smoothing):"]: label = qt.QLabel(self) label.setText(text) self.mainLayout.addWidget(label, i, 0) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), i, 1) i +=1 i = 0 self.widgetDict = {} for key in self._keyList: self.widgetDict[key] = qt.QSpinBox(self) self.widgetDict[key].setMinimum(1) self.widgetDict[key].setMaximum(100) self.widgetDict[key].setValue(self.parametersDict[key]) self.widgetDict[key].valueChanged[int].connect( \ self._updateParameters) self.mainLayout.addWidget(self.widgetDict[key], i, 1) i += 1 self.widgetDict['order'].setMinimum(0) self.widgetDict['order'].setValue(0) self.widgetDict['order'].setMaximum(4) def setParameters(self, ddict): for key in ddict: if key in self._keyList: self.widgetDict[key].setValue(ddict[key]) dummy = 0 self._updateParameters(dummy) def _updateParameters(self, val): for key in self._keyList: self.parametersDict[key] = self.widgetDict[key].value() self.widgetDict['order'].setMaximum(self.parametersDict['degree']) if self.parametersDict['order'] > self.parametersDict['degree']: self.parametersDict['order']=self.parametersDict['degree'] self.widgetDict['order'].setValue(self.parametersDict['order']) ddict = {} ddict['event']='SGParametersChanged' ddict.update(self.parametersDict) self.sigSGParametersSignal.emit(ddict) def getParameters(self): return self.parametersDict class SGWindow(qt.QWidget): def __init__(self, parent, data, image=None, x=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("Savitzky-Golay Filter Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) spectrum = data if x is None: self.xValues = range(len(spectrum)) else: self.xValues = x self.image = None self.spectrum = spectrum self.parametersWidget = SGParametersWidget(self, length=len(spectrum)) self.graph = ScanWindow.ScanWindow(self) self.graph.addCurve(self.xValues, spectrum, "Spectrum", replace=True) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.graph) self.getParameters = self.parametersWidget.getParameters self.setParameters = self.parametersWidget.setParameters self.parametersWidget.sigSGParametersSignal.connect(self.updateGraph) self.updateGraph(self.getParameters()) def updateGraph(self, ddict): points = ddict['points'] degree = ddict['degree'] order = ddict['order'] self.background = SGModule.getSavitzkyGolay(self.spectrum, points, degree=degree, order=order) # if the x are decreasing the result is not correct if order % 2: if self.xValues is not None: if self.xValues[0] > self.xValues[-1]: self.background *= -1 if order > 0: maptoy2 = "right" else: maptoy2 = "left" self.graph.addCurve(self.xValues, self.background, "Filtered Spectrum", replace=False, yaxis=maptoy2) #Force information update legend = self.graph.getActiveCurve(just_legend=True) if legend.startswith('Filtered'): self.graph.setActiveCurve(legend) class SGDialog(qt.QDialog): def __init__(self, parent, data, x=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Savitzky-Golay Configuration Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.mainLayout.setSpacing(2) self.__image = False if len(data.shape) == 2: spectrum = data.ravel() else: spectrum = data self.parametersWidget = SGWindow(self, spectrum, image=False, x=x) self.graph = self.parametersWidget.graph self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def getParameters(self): parametersDict = self.parametersWidget.getParameters() parametersDict['function'] = SGModule.replaceStackWithSavitzkyGolay parametersDict['arguments'] = [parametersDict['points'], parametersDict['degree'], parametersDict['order']] return parametersDict def setParameters(self, ddict): return self.parametersWidget.setParameters(ddict) if __name__ == "__main__": import numpy app = qt.QApplication([]) if 1: noise = numpy.random.randn(1000) y=numpy.arange(1000.) w = SGDialog(None, y+numpy.sqrt(y)* noise) w.show() ret = w.exec() if ret: print(w.getParameters()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/SIFTAlignmentWindow.py0000644000000000000000000003211314741736366022150 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import ExternalImagesWindow from PyMca5.PyMcaGui.io import PyMcaFileDialogs import pyopencl import silx.opencl from silx.image import sift DEBUG = 0 if DEBUG: print("SIFT coming from %s" % os.path.abspath(sift.__file__)) __doc__ = """The SIFT algorithm belongs to the University of British Columbia. It is protected by patent US6711293. If you are in a country where this patent applies (like the USA), please check if you are allowed to use it. The University of British Columbia does not require a license for its use for non-commercial research applications. This SIFT implementation uses the code developed by Jerome Kieffer and Pierre Paleo. The project is hosted at: https://github.com/silx-kit/silx/tree/master/silx/opencl/sift This algorithm should provide better results than FFT based algorithms provided the images to be aligned provide enough registration points (or common "features"). You can restrict the region of the images to be used by drawing a mask. If you do not find any device listed under OpenCL devices that could mean you do not have any OpenCL driver installed in your system. Windows users can at least install the CPU OpenCL drivers from AMD. You can easily find them searching the internet for AMD Accelerated Parallel Processing SDK. Mac users should have OpenCL provided with their operating system. Linux users probably need to install PyMca as provided by their distribution. Please note that introduces an additional dependency of PyMca on PyOpenCL. sift_pyocl license follows: Copyright (C) 2013-2017 European Synchrotron Radiation Facility, Grenoble, France Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ class ParametersWidget(qt.QWidget): parametersWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, ndim=2): qt.QWidget.__init__(self, parent) self._nDimensions = 2 self._shape = 3000, 3000 self._settingShape = False self._build() devices = self.getOpenCLDevices() if len(devices): self.deviceSelector.clear() for device in devices: self.deviceSelector.addItem("(%d, %d) %s" % (device[0], device[1], device[2])) def _build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) #self.aboutSiftButton = qt.QPushButton(self) #self.aboutSiftButton.setText("Please read prior to use!") #self.aboutSiftButton.clicked.connect(self._showInfo) # info self._infoDocument = qt.QTextEdit() self._infoDocument.setReadOnly(True) self._infoDocument.setMaximumHeight(150) self._infoDocument.setText(__doc__) #self._infoDocument.hide() label = qt.QLabel(self) label.setText("OpenCL Device:") self.deviceSelector = qt.QComboBox(self) self.deviceSelector.addItem("(-1, -1) No OpenCL device found") #self.mainLayout.addWidget(self.aboutSiftButton, 0, 0, 1, 2) self.mainLayout.addWidget(self._infoDocument, 0, 0, 2, 2) self.mainLayout.addWidget(label, 2, 0) self.mainLayout.addWidget(self.deviceSelector, 2, 1) def emitParametersWidgetSignal(self, event="ParametersChanged"): ddict = self.getParameters() ddict['event'] = "ParametersChanged" self.parametersWidgetSignal.emit(ddict) def _showInfo(self): if self._infoDocument.isHidden(): self._infoDocument.show() else: self._infoDocument.hide() def getOpenCLDevices(self): devices = [] if silx.opencl.ocl is not None: for platformid, platform in enumerate(silx.opencl.ocl.platforms): for deviceid, dev in enumerate(platform.devices): devices.append((platformid, deviceid, dev.name)) return devices def getParameters(self): txt = str(self.deviceSelector.currentText()).split(")")[0] txt = txt[1:].split(",") device = (int(txt[0]), int(txt[1])) return {'opencl_device':device} class OutputFile(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.checkBox = qt.QCheckBox(self) self.checkBox.setText("Use") self.fileName = qt.QLineEdit(self) self.fileName.setText("") self.fileName.setReadOnly(True) self.browse = qt.QPushButton(self) self.browse.setAutoDefault(False) self.browse.setText("Browse") self.browse.clicked.connect(self.browseFile) self.mainLayout.addWidget(self.checkBox) self.mainLayout.addWidget(self.fileName) self.mainLayout.addWidget(self.browse) def browseFile(self): filelist = PyMcaFileDialogs.getFileList(self, filetypelist=['HDF5 files (*.h5)'], message="Please enter output file", mode="SAVE", single=True) if len(filelist): name = filelist[0] if not name.endswith('.h5'): name = name + ".h5" self.fileName.setText(name) def getParameters(self): ddict = {} ddict['file_use'] = self.checkBox.isChecked() ddict['file_name'] = qt.safe_str(self.fileName.text()) return ddict def setForcedFileOutput(self, flag=True): if flag: self.checkBox.setChecked(True) self.checkBox.setEnabled(False) else: self.checkBox.setChecked(False) self.checkBox.setEnabled(True) class SIFTAlignmentWindow(qt.QWidget): def __init__(self, parent=None, stack=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("SIFT Alignment") self._build() def _build(self): self.mainLayout = qt.QVBoxLayout(self) self.parametersWidget = ParametersWidget(self) self.outputFileWidget = OutputFile(self) self.imageBrowser = ExternalImagesWindow.ExternalImagesWindow(self, crop=False, selection=True, imageicons=True) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.outputFileWidget) self.mainLayout.addWidget(self.imageBrowser) self.parametersWidget.parametersWidgetSignal.connect(self.mySlot) def setStack(self, stack, index=None): if index is None: if hasattr(stack, "info"): index = stack.info.get('McaIndex') else: index = 0 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack if isinstance(data, numpy.ndarray): self.outputFileWidget.setForcedFileOutput(False) else: self.outputFileWidget.setForcedFileOutput(True) self.imageBrowser.setStack(data, index=index) #shape = self.imageBrowser.getImageData().shape #self.parametersWidget.setShape(shape) #ddict = self.parametersWidget.getParameters() #self.mySlot(ddict) def getParameters(self): parameters = self.parametersWidget.getParameters() parameters['reference_image'] = self.imageBrowser.getImageData() parameters.update(self.outputFileWidget.getParameters()) parameters['reference_index'] = self.imageBrowser.getCurrentIndex() parameters['mask'] = self.imageBrowser.getSelectionMask() return parameters def mySlot(self, ddict): mask = self.imageBrowser.getSelectionMask() i0start = ddict['Dim 0']['offset'] i0end = i0start + ddict['Dim 0']['width'] i1start = ddict['Dim 1']['offset'] i1end = i1start + ddict['Dim 1']['width'] mask[:,:] = 0 mask[i0start:i0end, i1start:i1end] = 1 self.imageBrowser.setSelectionMask(mask) class SIFTAlignmentDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("SIFT Alignment Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.parametersWidget = SIFTAlignmentWindow(self) self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) self.setStack = self.parametersWidget.setStack self.setSelectionMask = self.parametersWidget.imageBrowser.setSelectionMask self.setDummyStack() def setDummyStack(self): dummyStack = numpy.arange(2 * 128 *256) dummyStack.shape = 2, 128, 256 self.setStack(dummyStack, index=0) def getParameters(self): return self.parametersWidget.getParameters() def accept(self): parameters = self.getParameters() if parameters['file_use']: if not len(parameters['file_name']): qt.QMessageBox.information(self, "Missing valid file name", "Please provide a valid output file name") return return qt.QDialog.accept(self) def reject(self): self.setDummyStack() return qt.QDialog.reject(self) def closeEvent(self, ev): self.setDummyStack() return qt.QDialog.closeEvent(self, ev) if __name__ == "__main__": #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): stackData[:, :, i] = a * i app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = SIFTAlignmentDialog() w.setStack(stackData, index=0) ret = w.exec() if ret: print(w.getParameters()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/SNIPWindow.py0000644000000000000000000004430714741736366020325 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaGui.pymca import ScanWindow from PyMca5.PyMcaMath import SNIPModule #TODO: Add this functionality using SilxGLWindow OBJECT3D = False class SNIP1DParametersWidget(qt.QWidget): sigSNIPParametersSignal = qt.pyqtSignal(object) def __init__(self, parent = None, length=2000, smooth=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) i = 0 self.parametersDict = {'roi_min':0, 'roi_max':length, 'width':min(30, length/10), 'smoothing':1} textLabels = ["SNIP background width (2 to 3 times fwhm) :", "Minimum channel considered:", "Maximum channel considered:", "Preliminar smoothing level:"] if smooth: textLabels[0] = "SNIP width :" self.parametersDict['width'] = 3 for text in textLabels: label = qt.QLabel(self) label.setText(text) self.mainLayout.addWidget(label, i, 0) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), i, 1) i +=1 i = 0 self.widgetDict = {} for key in ['width', 'roi_min', 'roi_max', 'smoothing']: self.widgetDict[key] = qt.QSpinBox(self) self.widgetDict[key].setMinimum(0) self.widgetDict[key].setMaximum(self.parametersDict['roi_max']) self.widgetDict[key].setValue(self.parametersDict[key]) self.widgetDict[key].valueChanged[int].connect(self._updateParameters) self.mainLayout.addWidget(self.widgetDict[key], i, 1) i += 1 self.widgetDict['smoothing'].setMaximum(100) def _updateParameters(self, val): for key in ['width', 'roi_min', 'roi_max', 'smoothing']: self.parametersDict[key] = self.widgetDict[key].value() ddict = {} ddict['event']='SNIPParametersChanged' ddict.update(self.parametersDict) self.sigSNIPParametersSignal.emit(ddict) def getParameters(self): return self.parametersDict def setParameters(self, ddict=None): if ddict is None: return actualKeys = self.widgetDict.keys() for key in ddict.keys(): if key in actualKeys: w = self.widgetDict[key] #w.setMaximum(max(ddict[key], w.value())) #w.setMinimum(min(ddict[key], w.value())) w.setValue(ddict[key]) self._updateParameters("dummy") class SNIP2DParametersWidget(qt.QWidget): sigSNIPParametersSignal = qt.pyqtSignal(object) def __init__(self, parent = None, shape=(4000,4000)): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) i = 0 self.parametersDict = {'roi_min':[0,0], 'roi_max':[shape[0], shape[1]], 'width':min(30, int(min(shape)/10)), 'smoothing':1} for text in ["SNIP background width (2 to 3 times fwhm) :", "Minimum ROI channels considered:", "Maximum ROI channels considered:", "Pleliminar smoothing level:"]: label = qt.QLabel(self) label.setText(text) self.mainLayout.addWidget(label, i, 0) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), i, 1) i +=1 i = 0 self.widgetDict = {} for key in ['width', 'roi_min', 'roi_max', 'smoothing']: if key in ['width', 'smoothing']: spinBox = qt.QSpinBox(self) spinBox.setMinimum(0) spinBox.setMaximum(min(self.parametersDict['roi_max'])) spinBox.setValue(self.parametersDict[key]) spinBox.valueChanged[int].connect(self._updateParameters) self.mainLayout.addWidget(spinBox, i, 2) self.widgetDict[key] = spinBox elif 1: lineEdit = qt.QLineEdit(self) validator = qt.QIntValidator(lineEdit) lineEdit.setValidator(validator) lineEdit._validator = validator lineEdit.setText("%d" % self.parametersDict[key][0]) lineEdit.editingFinished[()].connect( \ self._updateParameters) self.mainLayout.addWidget(lineEdit, i, 1) self.widgetDict[key] = [lineEdit] lineEdit = qt.QLineEdit(self) validator = qt.QIntValidator(lineEdit) lineEdit.setValidator(validator) lineEdit._validator = validator lineEdit.setText("%d" % self.parametersDict[key][1]) lineEdit.editingFinished.connect(self._updateParameters) self.mainLayout.addWidget(lineEdit, i, 2) self.widgetDict[key].append(lineEdit) else: spinBox = qt.QSpinBox(self) spinBox.setMinimum(0) spinBox.setMaximum(self.parametersDict['roi_max'][0]) spinBox.setValue(self.parametersDict[key][0]) spinBox.valueChanged[int].connect(self._updateParameters) self.mainLayout.addWidget(spinBox, i, 1) self.widgetDict[key] = [spinBox] spinBox = qt.QSpinBox(self) spinBox.setMinimum(0) spinBox.setMaximum(self.parametersDict['roi_max'][1]) spinBox.setValue(self.parametersDict[key][1]) spinBox.valueChanged[int].connect(self._updateParameters) self.mainLayout.addWidget(spinBox, i, 2) self.widgetDict[key].append(spinBox) i += 1 self.widgetDict['smoothing'].setMaximum(100) def _updateParameters(self, val=None): for key in ['width', 'smoothing']: self.parametersDict[key] = self.widgetDict[key].value() for key in ['roi_min', 'roi_max']: self.parametersDict[key] = [int(self.widgetDict[key][0].text()), int(self.widgetDict[key][1].text())] ddict = {} ddict['event']='SNIPParametersChanged' ddict.update(self.parametersDict) self.sigSNIPParametersSignal.emit(ddict) def getParameters(self): return self.parametersDict def setParameters(self): raise NotImplemented("Set parameters not implemented for SNIP 2D") class SNIPWindow(qt.QWidget): def __init__(self, parent, data, image=None, x=None, smooth=False): qt.QWidget.__init__(self, parent) self.setWindowTitle("SNIP Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) if image is None: image = False if data.shape == 2: if 1 not in data.shape: image = True else: spectrum = data.ravel() else: spectrum = data elif not image: spectrum = data self.__smooth = smooth self.__image = image if self.__image: self.spectrum = None else: if x is None: self.xValues = range(len(spectrum)) else: self.xValues = x if self.__image: self.image = data self.graphWidget = MaskImageWidget.MaskImageWidget(self, colormap=True, selection=False, imageicons=False, standalonesave=True) self.parametersWidget = SNIP2DParametersWidget(self, shape=self.image.shape) self.graph = self.graphWidget.graphWidget.graph self.graphWidget.setImageData(data) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.graphWidget) self.o3dScene = None else: self.image = None self.spectrum = spectrum self.parametersWidget = SNIP1DParametersWidget(self, length=len(spectrum), smooth=smooth) self.graph = ScanWindow.ScanWindow(self) self.graph.newCurve(self.xValues, spectrum, "Spectrum", replace=True) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.graph) self.xMarkers = [] self.yMarkers = [] self.getParameters = self.parametersWidget.getParameters self.setParameters = self.parametersWidget.setParameters self.parametersWidget.sigSNIPParametersSignal.connect( \ self.updateGraph) self.updateGraph(self.getParameters()) def updateGraph(self, ddict): width = ddict['width'] roi_min = ddict['roi_min'] roi_max = ddict['roi_max'] smoothing = ddict['smoothing'] if self.__image: if self.xMarkers == []: xMin, xMax = self.graph.getGraphXLimits() yMin, yMax = self.graph.getGraphYLimits() xMean = 0.5 * (xMin + xMax) yMean = 0.5 * (yMin + yMax) self.xMarkers.append(self.graph.insertXMarker(roi_min[1], legend='C Min', text='C Min')) self.xMarkers.append(self.graph.insertXMarker(roi_max[1], legend='C Max', text='C Max')) self.yMarkers.append(self.graph.insertYMarker(roi_min[0], legend='R Min', text='R Min')) self.yMarkers.append(self.graph.insertYMarker(roi_max[0], legend='R Max', text='R Max')) else: self.graph.insertXMarker(roi_min[1], legend='C Min', text='C Min') self.graph.insertXMarker(roi_max[1], legend='C Max', text='C Max') self.graph.insertYMarker(roi_min[0], legend='R Min', text='R Min') self.graph.insertYMarker(roi_max[0], legend='R Max', text='R Max') self.background = SNIPModule.getImageBackground(self.image, width, roi_min=roi_min, roi_max=roi_max, smoothing=smoothing) difference = self.image-self.background self.graphWidget.setImageData(difference) #if OBJECT3D: # if self.o3dScene is None: # self.o3dScene = Object3DScene.Object3DScene() # self.o3dScene.show() # if 0: # imageData =(self.image * 1).astype(numpy.float32) # backgroundData = (self.background * 1).astype(numpy.float32) # self.o3dScene.mesh(imageData, z=imageData * 1, legend='Data', update_scene=True) # self.o3dScene.mesh(backgroundData, z=backgroundData , legend='Background', update_scene=True) # else: # self.o3dScene.mesh(difference, z=difference, legend='Data-Background') # self.o3dScene.show() else: self.background = SNIPModule.getSpectrumBackground(self.spectrum, width, roi_min=roi_min, roi_max=roi_max, smoothing=smoothing) if self.__smooth: legend0 = "Smoothed Spectrum" else: legend0 = "Background" self.graph.addCurve(self.xValues, self.background, legend0, replace=False) #Force information update legend = self.graph.getActiveCurve(just_legend=True) if legend.startswith(legend0[0:5]): self.graph.setActiveCurve(legend) class SNIPDialog(qt.QDialog): def __init__(self, parent, data, x=None, smooth=False): qt.QDialog.__init__(self, parent) self.setWindowTitle("SNIP Configuration Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.mainLayout.setSpacing(2) self.__image = False self.__smooth = smooth if len(data.shape) == 2: if 1 not in data.shape: image = data self.__image = True else: spectrum = data.ravel() else: spectrum = data if self.__image: self.parametersWidget = SNIPWindow(self, image, image=True, x=x) else: self.parametersWidget = SNIPWindow(self, spectrum, image=False, x=x, smooth=smooth) self.graph = self.parametersWidget.graph self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def getParameters(self): parametersDict = self.parametersWidget.getParameters() if self.__image: parametersDict['function'] = SNIPModule.subtractSnip2DBackgroundFromStack elif self.__smooth: parametersDict['function'] = SNIPModule.replaceStackWithSnip1DBackground else: parametersDict['function'] = SNIPModule.subtractSnip1DBackgroundFromStack parametersDict['arguments'] = [parametersDict['width'], parametersDict['roi_min'], parametersDict['roi_max'], parametersDict['smoothing']] return parametersDict def setParameters(self, ddict0): if 'arguments' in ddict0: ddict = {} ddict['width'] = ddict0['arguments'][0] ddict['roi_min'] = ddict0['arguments'][1] ddict['roi_max'] = ddict0['arguments'][2] ddict['smoothing'] = ddict0['arguments'][3] self.parametersWidget.setParameters(ddict) else: self.parametersWidget.setParameters(ddict0) if __name__ == "__main__": import numpy app = qt.QApplication([]) if 0: noise = numpy.random.randn(1000).astype(numpy.float64) y = numpy.arange(1000.) w = SNIPDialog(None, y+numpy.sqrt(y)* noise) elif len(sys.argv) > 1: from PyMca5.PyMcaIO import EdfFile edf = EdfFile.EdfFile(sys.argv[1]) data = edf.GetData(0) w = SNIPDialog(None, data) else: x, y = numpy.ogrid[0:200:200j, 0:200:200j] data = 50 * numpy.exp(-(x-64)*(x-64)/20.) +\ 50 * numpy.exp(-(y-128)*(y-128)/20.) +\ 100 * numpy.exp(-(1./20) * ((x-64)*(x-64) + (y-128)*(y-128))) w = SNIPDialog(None, data) w.show() ret = w.exec() if ret: print(w.getParameters()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/SimpleActions.py0000644000000000000000000002467514741736366021144 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2017 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module defines a set of simple plot actions processing one or all plotted curves in a ScanWindow: - :class:`AverageAction` - :class:`DerivativeAction` - :class:`SmoothAction` - :class:`SwapSignAction` - :class:`SubtractAction` - :class:`YMinToZeroAction` """ import copy from silx.gui.plot.actions import PlotAction from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaMath import SimpleMath from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str _simpleMath = SimpleMath.SimpleMath() def _getOneCurve(plot, qwarning=True): """Return active curve if any, else if there is a single curve return it, else return None. :param plot: Plot instance :param bool qwarning: If True, display a warning popup to inform that a curve must be selected when function is not successful. """ curve = plot.getActiveCurve() if curve is None: curves = plot.getAllCurves() if not curves or len(curves) > 1: if qwarning: _QWarning(msg="You must select a curve.", parent=plot) return None return curves[0] return curve def _QWarning(msg, parent=None): """Print a warning message in a QMessageBox""" mb = qt.QMessageBox(parent) mb.setIcon(qt.QMessageBox.Warning) mb.setText(msg) mb.exec() # # def _isActive(legend, plot): # """ # # :param legend: curve legend # :param plot: plot instance # :return: True or False # """ # active_legend = plot.getActiveCurve(just_legend=True) # if active_legend is None: # # No active curve # return False # return legend == active_legend def _updated_info(info0, sourcename, operation): info1 = copy.deepcopy(info0) if not 'operations' in info1: info1['operations'] = [] info1['operations'].append(operation) info1['SourceName'] = sourcename if 'selectionlegend' in info1: del info1['selectionlegend'] return info1 class AverageAction(PlotAction): """Average all curves, clear plot, add average curve """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["average16"])) PlotAction.__init__(self, plot, icon=self.icon, text='Average Plotted Curves', tooltip='Replace all curves by the average curve', triggered=self._averageAllCurves, parent=parent) def _averageAllCurves(self): curves = self.plot.getAllCurves() if not curves: return x0, y0, legend0, info0, _params0 = curves[0] avg_legend = legend0 all_x = [x0] all_y = [y0] for x, y, legend, info, params in curves[1:]: avg_legend += " + " + legend all_x.append(x) all_y.append(y) avg_info = _updated_info(info0, avg_legend, "average") xavg, yavg = _simpleMath.average(all_x, all_y) avg_legend = "(%s)/%d" % (avg_legend, len(curves)) self.plot.clearCurves() self.plot.addCurve(xavg, yavg, avg_legend, info=avg_info) class SmoothAction(PlotAction): """Plot smooth of the active curve if any, else plot smooth of the only existing curve if any. """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["smooth"])) PlotAction.__init__(self, plot, icon=self.icon, text='Smooth Active Curve', tooltip='Smooth Active Curve', triggered=self._smoothActiveCurve, parent=parent) def _smoothActiveCurve(self): curve = _getOneCurve(self.plot) if curve is None: return x0, y0, legend0, info0, _params = curve x1 = x0 * 1 y1 = _simpleMath.smooth(y0) if info0.get("operations") is None or \ info0["operations"][-1] != "smooth": legend1 = "%s Smooth" % legend0 else: # don't repeat "smooth" legend1 = legend0 info1 = _updated_info(info0, legend0, "smooth") self.plot.addCurve(x1, y1, legend1, info=info1) class DerivativeAction(PlotAction): """Plot derivative of the active curve if any, else the derivative of the only existing curve. """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["derive"])) PlotAction.__init__(self, plot, icon=self.icon, tooltip='Plot Derivative of Active Curve', text='Derivate Active Curve', triggered=self._derivateActiveCurve, parent=parent) def _derivateActiveCurve(self): curve = _getOneCurve(self.plot) if curve is None: return x0, y0, legend0, info0, params0 = curve x1, y1 = _simpleMath.derivate(x0, y0) legend1 = legend0 + "'" info1 = _updated_info(info0, legend0, "derivate") info1['plot_yaxis'] = "right" ylabel1 = params0.get("ylabel") if ylabel1 is None: ylabel1 = "Y" self.plot.addCurve(x1, y1, legend1, ylabel=ylabel1 + "'", info=info1, yaxis="right") class SwapSignAction(PlotAction): """Plot the active curve multiplied by -1 """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["swapsign"])) PlotAction.__init__(self, plot, icon=self.icon, text='Multiply Active Curve by -1', tooltip='Multiply Active Curve by -1', triggered=self._swapSignCurve, parent=parent) def _swapSignCurve(self): curve = _getOneCurve(self.plot) if curve is None: return x0, y0, legend0, info0, _params = curve x1 = 1 * x0 y1 = -y0 legend1 = "-(%s)" % legend0 info1 = _updated_info(info0, legend0, "swapsign") self.plot.addCurve(x1, y1, legend1, info=info1) class YMinToZeroAction(PlotAction): """ """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["ymintozero"])) PlotAction.__init__(self, plot, icon=self.icon, text='Y Min to Zero', tooltip='Shift curve vertically to put min value at 0', triggered=self._yMinToZeroCurve, parent=parent) def _yMinToZeroCurve(self): curve = _getOneCurve(self.plot) if curve is None: return x0, y0, legend0, info0, _params = curve x1 = x0 * 1 y1 = y0 - min(y0) legend1 = "(%s) - ymin" % legend0 info1 = _updated_info(info0, legend0, "forceymintozero") self.plot.addCurve(x1, y1, legend1, info=info1) class SubtractAction(PlotAction): """Subtract active curve from all curves. """ def __init__(self, plot, parent=None): self.icon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) PlotAction.__init__(self, plot, icon=self.icon, text='Subtract Active Curve', tooltip='Subtract active curve from all curves', triggered=self._subtractCurve, parent=parent) def _subtractCurve(self): active_curve = _getOneCurve(self.plot) all_curves = self.plot.getAllCurves() ############################################################# if active_curve is None: return x0, y0, legend0, info0, params0 = active_curve ylabel0 = params0.get("ylabel", "Y0") if ylabel0 is None: ylabel0 = "Y0" for x, y, legend, info, params in all_curves: # (y1 - y0) is equivalent to 2 * average(-y0, y1) XX = [x0, x] YY = [-y0, y] xplot, yplot = _simpleMath.average(XX, YY) yplot *= 2 legend1 = "(%s - %s)" % (legend, legend0) ylabel = params0.get("ylabel", "Y") if ylabel is None: ylabel = "Y" ylabel1 = "(%s - %s)" % (ylabel, ylabel0) info1 = _updated_info(info, legend, "subtract") info1['LabelNames'] = [legend1] self.plot.removeCurve(legend) self.plot.addCurve(xplot, yplot, legend1, info=info1, ylabel=ylabel1) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/StripBackgroundWidget.py0000644000000000000000000003527114741736366022631 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaMath.fitting import SpecfitFuns class StripParametersWidget(qt.QWidget): sigStripParametersWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.build() def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(11, 11, 11, 11) self.mainLayout.setSpacing(6) #strip algorithm self.stripComboLabel = qt.QLabel(self) self.stripComboLabel.setText("Non-analytical (or estimation) background algorithm") self.stripCombo = qt.QComboBox(self) self.stripCombo.addItem(str("Strip")) self.stripCombo.addItem(str("SNIP")) self.stripCombo.activated[int].connect(self._stripComboActivated) #SNIP width self.snipWidthLabel = qt.QLabel(self) self.snipWidthLabel.setText(str("SNIP Background Width")) self.snipWidthSpin = qt.QSpinBox(self) self.snipWidthSpin.setMaximum(300) self.snipWidthSpin.setMinimum(0) self.snipWidthSpin.valueChanged[int].connect(self._emitSignal) #Strip width self.stripWidthLabel = qt.QLabel(self) self.stripWidthLabel.setText(str("Strip Background Width")) self.stripWidthSpin = qt.QSpinBox(self) self.stripWidthSpin.setMaximum(100) self.stripWidthSpin.setMinimum(1) self.stripWidthSpin.valueChanged[int].connect(self._emitSignal) #Strip iterations self.stripIterLabel = qt.QLabel(self) self.stripIterLabel.setText(str("Strip Background Iterations")) self.stripIterValue = qt.QLineEdit(self) validator = qt.QIntValidator(self.stripIterValue) self.stripIterValue._v = validator self.stripIterValue.editingFinished[()].connect(self._emitSignal) #Strip smoothing self.stripFilterLabel = qt.QLabel(self) self.stripFilterLabel.setText(str("Strip Background Smoothing Width (Savitsky-Golay)")) self.stripFilterSpin = qt.QSpinBox(self) self.stripFilterSpin.setMinimum(1) self.stripFilterSpin.setMaximum(40) self.stripFilterSpin.setSingleStep(2) self.stripFilterSpin.valueChanged[int].connect(self._emitSignal) #anchors self.anchorsContainer = qt.QWidget(self) anchorsContainerLayout = qt.QHBoxLayout(self.anchorsContainer) anchorsContainerLayout.setContentsMargins(0, 0, 0, 0) anchorsContainerLayout.setSpacing(2) self.stripAnchorsFlagCheck = qt.QCheckBox(self.anchorsContainer) self.stripAnchorsFlagCheck.setText(str("Strip Background use Anchors")) self.stripAnchorsFlagCheck.stateChanged[int].connect( \ self._emitSignal) anchorsContainerLayout.addWidget(self.stripAnchorsFlagCheck) #self.iterSpin = qt.QSpinBox(self) #self.iterSpin.setMinimum(1) maxnchannel = 16384*4 self.stripAnchorsList = [] for i in range(4): anchorSpin = qt.QSpinBox(self.anchorsContainer) anchorSpin.setMinimum(0) anchorSpin.setMaximum(maxnchannel) anchorSpin.valueChanged[int].connect(self._emitSignal) anchorsContainerLayout.addWidget(anchorSpin) self.stripAnchorsList.append(anchorSpin) self.mainLayout.setColumnStretch(0, 1) row = 0 self.mainLayout.addWidget(self.stripComboLabel, row, 0) self.mainLayout.addWidget(self.stripCombo, row, 4) row += 1 self.mainLayout.addWidget(self.snipWidthLabel,row, 0) self.mainLayout.addWidget(self.snipWidthSpin, row, 4) row += 1 self.mainLayout.addWidget(self.stripWidthLabel, row, 0) self.mainLayout.addWidget(self.stripWidthSpin, row, 4) row += 1 self.mainLayout.addWidget(self.stripIterLabel, row, 0) self.mainLayout.addWidget(self.stripIterValue, row, 4) row += 1 self.mainLayout.addWidget(self.stripFilterLabel, row, 0) self.mainLayout.addWidget(self.stripFilterSpin, row, 4) row += 1 self.mainLayout.addWidget(self.anchorsContainer, row, 0, 1, 5) self._stripComboActivated(0) def _stripComboActivated(self, iValue): if iValue == 1: self.setSNIP(True) else: self.setSNIP(False) def setSNIP(self, bValue): if bValue: self.snipWidthSpin.setEnabled(True) self.stripWidthSpin.setEnabled(False) #self.stripFilterSpin.setEnabled(False) self.stripIterValue.setEnabled(False) self.stripCombo.setCurrentIndex(1) else: self.snipWidthSpin.setEnabled(False) #self.stripFilterSpin.setEnabled(True) self.stripWidthSpin.setEnabled(True) self.stripIterValue.setEnabled(True) self.stripCombo.setCurrentIndex(0) def setParameters(self, ddict): if 'fit' in ddict: pars = ddict['fit'] else: pars = ddict key = "stripalgorithm" if key in pars: stripAlgorithm = int(pars[key]) self.setSNIP(stripAlgorithm) key = "snipwidth" if key in pars: self.snipWidthSpin.setValue(int(pars[key])) key = "stripwidth" if key in pars: self.stripWidthSpin.setValue(int(pars[key])) key = "stripiterations" if key in pars: self.stripIterValue.setText("%d" % int(pars[key])) key = "stripfilterwidth" if key in pars: self.stripFilterSpin.setValue(int(pars[key])) key = "stripanchorsflag" if key in pars: self.stripAnchorsFlagCheck.setChecked(int(pars[key])) key = "stripanchorslist" if key in pars: anchorslist = pars[key] if anchorslist in [None, 'None']: anchorslist = [] for spin in self.stripAnchorsList: spin.setValue(0) i = 0 for value in anchorslist: self.stripAnchorsList[i].setValue(int(value)) i += 1 def getParameters(self): pars = {} pars["stripalgorithm"] = int(self.stripCombo.currentIndex()) pars["stripconstant"]= 1.0 pars["snipwidth"] = self.snipWidthSpin.value() txt = str(self.stripIterValue.text()) if len(txt): pars["stripiterations"]= int(txt) else: pars["stripiterations"] = 0 pars["stripwidth"]= self.stripWidthSpin.value() pars["stripfilterwidth"] = self.stripFilterSpin.value() pars["stripanchorsflag"] = int(self.stripAnchorsFlagCheck.isChecked()) pars["stripanchorslist"] = [] for spin in self.stripAnchorsList: pars["stripanchorslist"].append(spin.value()) return pars def _emitSignal(self, dummy=None): ddict= {} ddict['event']='ParametersChanged' ddict['parameters'] = self.getParameters() self.sigStripParametersWidgetSignal.emit(ddict) class StripBackgroundWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("Strip and SNIP Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.parametersWidget = StripParametersWidget(self) self.graphWidget = PlotWindow.PlotWindow(self, newplot=False, plugins=False, fit=False) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.graphWidget) self.getParameters = self.parametersWidget.getParameters self.setParameters = self.parametersWidget.setParameters self._x = None self._y = None self.parametersWidget.sigStripParametersWidgetSignal.connect( \ self._slot) def setData(self, x, y): self._x = x self._y = y self.update() def _slot(self, ddict): self.update() def update(self): if self._y is None: return pars = self.getParameters() #smoothed data y = numpy.ravel(numpy.array(self._y)).astype(numpy.float64) ysmooth = SpecfitFuns.SavitskyGolay(y, pars['stripfilterwidth']) f=[0.25,0.5,0.25] ysmooth[1:-1] = numpy.convolve(ysmooth,f,mode=0) ysmooth[0] = 0.5 *(ysmooth[0] + ysmooth[1]) ysmooth[-1] = 0.5 * (ysmooth[-1] + ysmooth[-2]) #loop for anchors x = self._x niter = pars['stripiterations'] anchorslist = [] if pars['stripanchorsflag']: if pars['stripanchorslist'] is not None: ravelled = x for channel in pars['stripanchorslist']: if channel <= ravelled[0]:continue index = numpy.nonzero(ravelled >= channel)[0] if len(index): index = min(index) if index > 0: anchorslist.append(index) if niter > 1000: stripBackground = SpecfitFuns.subac(ysmooth, pars['stripconstant'], niter, pars['stripwidth'], anchorslist) #final smoothing stripBackground = SpecfitFuns.subac(stripBackground, pars['stripconstant'], 500,1, anchorslist) elif niter > 0: stripBackground = SpecfitFuns.subac(ysmooth, pars['stripconstant'], niter, pars['stripwidth'], anchorslist) else: stripBackground = 0.0 * ysmooth + ysmooth.min() if len(anchorslist) == 0: anchorslist = [0, len(ysmooth)-1] anchorslist.sort() snipBackground = 0.0 * ysmooth lastAnchor = 0 width = pars['snipwidth'] for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < len(ysmooth)): snipBackground[lastAnchor:anchor] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:anchor], width, 0) lastAnchor = anchor if lastAnchor < len(ysmooth): snipBackground[lastAnchor:] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:], width, 0) self.graphWidget.addCurve(x, y, \ legend='Input Data',\ replace=True, replot=False) self.graphWidget.addCurve(x, stripBackground,\ legend='Strip Background',\ replot=False) self.graphWidget.addCurve(x, snipBackground,\ legend='SNIP Background', replot=True) class StripBackgroundDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Strip and SNIP Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.parametersWidget = StripBackgroundWidget(self) self.setData = self.parametersWidget.setData self.getParameters = self.parametersWidget.getParameters self.setParameters = self.parametersWidget.setParameters self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(2) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def sizeHint(self): return qt.QSize(int(1.5*qt.QDialog.sizeHint(self).width()), qt.QDialog.sizeHint(self).height()) if __name__ == "__main__": a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = StripBackgroundDialog() def mySlot(ddict): print(ddict) w.parametersWidget.parametersWidget.\ sigStripParametersWidgetSignal.connect(mySlot) x = numpy.arange(1000.).astype(numpy.float32) y = 100 + x + 100 * numpy.exp(-0.5*(x-500) * (x-500)/ 30.) w.setData(x, y) w.exec() #a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/__init__.py0000644000000000000000000000000014741736366020101 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7757661 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/0000755000000000000000000000000014741736404017437 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/CheckField.py0000644000000000000000000000401314741736366021777 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt class CheckField(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.resize(321,45) CheckFieldLayout = qt.QHBoxLayout(self) CheckFieldLayout.setContentsMargins(11, 11, 11, 11) CheckFieldLayout.setSpacing(6) self.CheckBox = qt.QCheckBox(self) self.CheckBox.setText("CheckBox") CheckFieldLayout.addWidget(self.CheckBox) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/EntryField.py0000644000000000000000000000374314741736366022074 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() class EntryField(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) Layout1 = qt.QHBoxLayout(self) self.TextLabel = qt.QLabel(self) self.TextLabel.setText("TextLabel") self.Entry = qt.QLineEdit(self) Layout1.addWidget(self.TextLabel) Layout1.addWidget(self.Entry) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/FitActionsGui.py0000644000000000000000000000632314741736366022534 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() def uic_load_pixmap_FitActionsGui(name): pix = qt.QPixmap() if QTVERSION < '4.0.0': m = qt.QMimeSourceFactory.defaultFactory().data(name) if m: qt.QImageDrag.decode(m,pix) return pix class FitActionsGui(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.resize(234,53) FitActionsGUILayout = qt.QGridLayout(self) FitActionsGUILayout.setContentsMargins(11, 11, 11, 11) FitActionsGUILayout.setSpacing(6) Layout9 = qt.QHBoxLayout(None) Layout9.setContentsMargins(0, 0, 0, 0) Layout9.setSpacing(6) self.EstimateButton = qt.QPushButton(self) self.EstimateButton.setText("Estimate") Layout9.addWidget(self.EstimateButton) spacer = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) Layout9.addItem(spacer) self.StartfitButton = qt.QPushButton(self) self.StartfitButton.setText("Start Fit") Layout9.addWidget(self.StartfitButton) spacer_2 = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) Layout9.addItem(spacer_2) self.DismissButton = qt.QPushButton(self) self.DismissButton.setText("Dismiss") Layout9.addWidget(self.DismissButton) FitActionsGUILayout.addLayout(Layout9,0,0) if __name__ == "__main__": app = qt.QApplication([]) w = FitActionsGui() w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/FitConfigGui.py0000644000000000000000000001146214741736366022341 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() def uic_load_pixmap_FitConfigGui(name): pix = qt.QPixmap() m = qt.QMimeSourceFactory.defaultFactory().data(name) if m: qt.QImageDrag.decode(m,pix) return pix class FitConfigGui(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.setWindowTitle(str("FitConfigGUI")) FitConfigGUILayout = qt.QHBoxLayout(self) FitConfigGUILayout.setContentsMargins(11, 11, 11, 11) FitConfigGUILayout.setSpacing(6) Layout9 = qt.QHBoxLayout(None) Layout9.setContentsMargins(0, 0, 0, 0) Layout9.setSpacing(6) Layout2 = qt.QGridLayout(None) Layout2.setContentsMargins(0, 0, 0, 0) Layout2.setSpacing(6) self.BkgComBox = qt.QComboBox(self) self.BkgComBox.addItem(str("Add Background")) Layout2.addWidget(self.BkgComBox,1,1) self.BkgLabel = qt.QLabel(self) self.BkgLabel.setText(str("Background")) Layout2.addWidget(self.BkgLabel,1,0) self.FunComBox = qt.QComboBox(self) self.FunComBox.addItem(str("Add Function(s)")) Layout2.addWidget(self.FunComBox,0,1) self.FunLabel = qt.QLabel(self) self.FunLabel.setText(str("Function")) Layout2.addWidget(self.FunLabel,0,0) Layout9.addLayout(Layout2) spacer = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) Layout9.addItem(spacer) Layout6 = qt.QGridLayout(None) Layout6.setContentsMargins(0, 0, 0, 0) Layout6.setSpacing(6) self.WeightCheckBox = qt.QCheckBox(self) self.WeightCheckBox.setText(str("Weight")) Layout6.addWidget(self.WeightCheckBox,0,0) self.MCACheckBox = qt.QCheckBox(self) self.MCACheckBox.setText(str("MCA Mode")) Layout6.addWidget(self.MCACheckBox,1,0) Layout9.addLayout(Layout6) Layout6_2 = qt.QGridLayout(None) Layout6_2.setContentsMargins(0, 0, 0, 0) Layout6_2.setSpacing(6) self.AutoFWHMCheckBox = qt.QCheckBox(self) self.AutoFWHMCheckBox.setText(str("Auto FWHM")) Layout6_2.addWidget(self.AutoFWHMCheckBox,0,0) self.AutoScalingCheckBox = qt.QCheckBox(self) self.AutoScalingCheckBox.setText(str("Auto Scaling")) Layout6_2.addWidget(self.AutoScalingCheckBox,1,0) Layout9.addLayout(Layout6_2) spacer_2 = qt.QSpacerItem(20,20,qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) Layout9.addItem(spacer_2) Layout5 = qt.QGridLayout(None) Layout5.setContentsMargins(0, 0, 0, 0) Layout5.setSpacing(6) self.PrintPushButton = qt.QPushButton(self) self.PrintPushButton.setText(str("Print")) Layout5.addWidget(self.PrintPushButton,1,0) self.ConfigureButton = qt.QPushButton(self) self.ConfigureButton.setText(str("Configure")) Layout5.addWidget(self.ConfigureButton,0,0) Layout9.addLayout(Layout5) FitConfigGUILayout.addLayout(Layout9) if __name__ == "__main__": app = qt.QApplication([]) w = FitConfigGui() w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/FitStatusGui.py0000644000000000000000000000565114741736366022422 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() def uic_load_pixmap_FitActionsGui(name): pix = qt.QPixmap() if QTVERSION < '4.0.0': m = qt.QMimeSourceFactory.defaultFactory().data(name) if m: qt.QImageDrag.decode(m,pix) return pix class FitStatusGui(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.resize(535,47) FitStatusGUILayout = qt.QHBoxLayout(self) FitStatusGUILayout.setContentsMargins(11, 11, 11, 11) FitStatusGUILayout.setSpacing(6) self.StatusLabel = qt.QLabel(self) self.StatusLabel.setText("Status:") FitStatusGUILayout.addWidget(self.StatusLabel) self.StatusLine = qt.QLineEdit(self) self.StatusLine.setText("Ready") self.StatusLine.setReadOnly(1) FitStatusGUILayout.addWidget(self.StatusLine) self.ChisqLabel = qt.QLabel(self) self.ChisqLabel.setText("Chisq:") FitStatusGUILayout.addWidget(self.ChisqLabel) self.ChisqLine = qt.QLineEdit(self) #self.ChisqLine.setSizePolicy(QSizePolicy(1,0,0,0,self.ChisqLine.sizePolicy().hasHeightForWidth())) self.ChisqLine.setMaximumSize(qt.QSize(16000,32767)) self.ChisqLine.setText("") self.ChisqLine.setReadOnly(1) FitStatusGUILayout.addWidget(self.ChisqLine) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/McaTable.py0000644000000000000000000002065214741736366021475 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str QTVERSION = qt.qVersion() QTable = qt.QTableWidget _logger = logging.getLogger(__name__) class McaTable(QTable): sigMcaTableSignal = qt.pyqtSignal(object) def __init__(self, *args,**kw): QTable.__init__(self, *args) self.setRowCount(1) self.setColumnCount(1) self.labels=['Parameter','Estimation','Fit Value','Sigma', 'Restrains','Min/Parame','Max/Factor/Delta/'] self.code_options=["FREE","POSITIVE","QUOTED", "FIXED","FACTOR","DELTA","SUM","IGNORE","ADD","SHOW"] i=0 if 'labels' in kw: self.labels=[] for label in kw['labels']: self.labels.append(label) else: self.labels=['Position','Fit Area','MCA Area','Sigma','Fwhm','Chisq', 'Region','XBegin','XEnd'] self.setColumnCount(len(self.labels)) for label in self.labels: item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i,item) item.setText(self.labels[i]) self.resizeColumnToContents(i) i=i+1 self.regionlist=[] self.regiondict={} if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("MCATABLE click on vertical header items?") self.verticalHeader().sectionClicked[int].connect(self.__myslot) self.cellClicked[int, int].connect(self.__myslot) self.itemSelectionChanged[()].connect(self.__myslot) def fillfrommca(self,mcaresult,diag=1): line0=0 region=0 alreadyforced = 0 for result in mcaresult: region=region+1 if result['chisq'] is not None: chisq=QString("%6.2f" % (result['chisq'])) else: chisq=QString("Fit Error") if 1: xbegin=QString("%6g" % (result['xbegin'])) xend=QString("%6g" % (result['xend'])) fitlabel,fitpars, fitsigmas = self.__getfitpar(result) if QTVERSION < '4.0.0': qt.QHeader.setLabel(self.horizontalHeader(),1,"Fit "+fitlabel) else: item = self.horizontalHeaderItem(1) item.setText("Fit "+fitlabel) i = 0 for (pos,area,sigma,fwhm) in result['mca_areas']: line0=line0+1 if QTVERSION < '4.0.0': nlines=self.numRows() if (line0 > nlines): self.setNumRows(line0) else: nlines=self.rowCount() if (line0 > nlines): self.setRowCount(line0) line=line0-1 #pos=QString(str(pos)) #area=QString(str(area)) #sigma=QString(str(sigma)) #fwhm=QString(str(fwhm)) tregion=QString(str(region)) pos=QString("%6g" % (pos)) fitpar = QString("%6g" % (fitpars[i])) if fitlabel == 'Area': sigma = max(sigma,fitsigmas[i]) areastr=QString("%6g" % (area)) sigmastr=QString("%6.3g" % (sigma)) fwhm=QString("%6g" % (fwhm)) tregion=QString("%6g" % (region)) fields=[pos,fitpar,areastr,sigmastr,fwhm,chisq,tregion,xbegin,xend] col=0 recolor = 0 if fitlabel == 'Area': if diag: if abs(fitpars[i]-area) > (3.0 * sigma): color = qt.QColor(255,182,193) recolor = 1 for field in fields: key = self.item(line, col) if key is None: key = qt.QTableWidgetItem(field) self.setItem(line, col, key) else: item.setText(field) if recolor: #function introduced in Qt 4.2.0 if QTVERSION >= '4.2.0': item.setBackground(qt.QBrush(color)) item.setFlags(qt.Qt.ItemIsSelectable|qt.Qt.ItemIsEnabled) col=col+1 if recolor: if not alreadyforced: alreadyforced = 1 self.scrollToItem(self.item(line, 0)) i += 1 i = 0 for label in self.labels: self.resizeColumnToContents(i) i=i+1 ndict = {} ndict['event'] = 'McaTableFilled' self.sigMcaTableSignal.emit(ndict) def __getfitpar(self,result): if result['fitconfig']['fittheory'].find("Area") != -1: fitlabel='Area' elif result['fitconfig']['fittheory'].find("Hypermet") != -1: fitlabel='Area' else: fitlabel='Height' values = [] sigmavalues = [] for param in result['paramlist']: if param['name'].find('ST_Area')!= -1: # value and sigmavalue known via fitlabel values[-1] = value * (1.0 + param['fitresult']) #just an approximation sigmavalues[-1] = sigmavalue * (1.0 + param['fitresult']) elif param['name'].find('LT_Area')!= -1: pass elif param['name'].find(fitlabel)!= -1: value = param['fitresult'] sigmavalue = param['sigma'] values.append(value) sigmavalues.append(sigmavalue) return fitlabel, values, sigmavalues def __myslot(self, *var): ddict={} if len(var) == 0: #selection changed event #get the current selection ddict['event'] = 'McaTableClicked' row = self.currentRow() else: #Header click ddict['event'] = 'McaTableRowHeaderClicked' row = var[0] ccol = self.currentColumn() ddict['row' ] = row ddict['col'] = ccol ddict['labelslist'] = self.labels if row >= 0: col = 0 for label in self.labels: text = str(self.item(row, col).text()) try: ddict[label] = float(text) except Exception: ddict[label] = text col +=1 self.sigMcaTableSignal.emit(ddict) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/MultiParameters.py0000644000000000000000000003146114741736366023143 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from . import Parameters QTVERSION = qt.qVersion() from . import McaTable _logger = logging.getLogger(__name__) class ParametersTab(qt.QTabWidget): sigMultiParametersSignal = qt.pyqtSignal(object) def __init__(self,parent = None, name = "FitParameters"): qt.QTabWidget.__init__(self, parent) self.setWindowTitle(name) #geometry #self.resize(570,300) #self.setCaption(self.trUtf8(name)) #initialize the numer of tabs to 1 #self.TabWidget=QTabWidget(self,"ParametersTab") #self.TabWidget.setGeometry(QRect(25,25,450,350)) #the widgets in the notebook self.views={} #the names of the widgets (to have them in order) self.tabs=[] #the widgets/tables themselves self.tables={} self.mcatable=None self.setContentsMargins(10, 10, 10, 10) self.setview(name="Region 1") def setview(self,name=None,fitparameterslist=None): if name is None: name = self.current if name in self.tables.keys(): table=self.tables[name] else: #create the parameters instance self.tables[name]=Parameters.Parameters(self) table=self.tables[name] self.tabs.append(name) self.views[name]=table #if qVersion() >= '3.0.0': # self.addTab(table,self.trUtf8(name)) #else: # self.addTab(table,self.tr(name)) self.addTab(table,str(name)) if fitparameterslist is not None: table.fillfromfit(fitparameterslist) if QTVERSION < '4.0.0': self.showPage(self.views[name]) else: self.setCurrentWidget(self.views[name]) self.current=name def renameview(self,oldname=None,newname=None): error = 1 if newname is not None: if newname not in self.views.keys(): if oldname in self.views.keys(): parameterlist=self.tables[oldname].fillfitfromtable() self.setview(name=newname,fitparameterslist=parameterlist) self.removeview(oldname) error = 0 return error def fillfromfit(self,fitparameterslist,current=None): if current is None: current=self.current #for view in self.tables.keys(): # self.removeview(view) self.setview(fitparameterslist=fitparameterslist,name=current) def fillfitfromtable(self,*vars,**kw): if len(vars) > 0: name=vars[0] elif 'view' in kw: name=kw['view'] elif 'name' in kw: name=kw['name'] else: name=self.current if hasattr(self.tables[name],'fillfitfromtable'): return self.tables[name].fillfitfromtable() else: return None def removeview(self,*vars,**kw): error = 1 if len(vars) > 0: view=vars[0] elif 'view' in kw: view=kw['view'] elif 'name' in kw: view=kw['name'] else: return error if view == self.current: return error if view in self.views.keys(): self.tabs.remove(view) if QTVERSION < '4.0.0': self.removePage(self.tables[view]) self.removePage(self.views[view]) else: index = self.indexOf(self.tables[view]) self.removeTab(index) index = self.indexOf(self.views[view]) self.removeTab(index) del self.tables[view] del self.views[view] error =0 return error def removeallviews(self,keep='Fit'): for view in list(self.tables.keys()): if view != keep: self.removeview(view) def fillfrommca(self,mcaresult): #for view in self.tables.keys(): # self.removeview(view) self.removeallviews() region = 0 for result in mcaresult: #if result['chisq'] is not None: region=region+1 self.fillfromfit(result['paramlist'],current='Region '+\ "%d" % region) name='MCA' if name in self.tables: table=self.tables[name] else: self.tables[name]=McaTable.McaTable(self) table=self.tables[name] self.tabs.append(name) self.views[name]=table #self.addTab(table,self.trUtf8(name)) self.addTab(table,str(name)) table.sigMcaTableSignal.connect(self.__forward) table.fillfrommca(mcaresult) self.setview(name=name) return def __forward(self,ddict): self.sigMultiParametersSignal.emit(ddict) def gettext(self,**kw): if "name" in kw: name = kw["name"] else: name = self.current table = self.tables[name] lemon = ("#%x%x%x" % (255,250,205)).upper() if QTVERSION < '4.0.0': hb = table.horizontalHeader().paletteBackgroundColor() hcolor = ("#%x%x%x" % (hb.red(), hb.green(), hb.blue())).upper() else: _logger.debug("Actual color to ge got") hcolor = ("#%x%x%x" % (230,240,249)).upper() text="" text+=("") text+=( "") text+=( "") if QTVERSION < '4.0.0': ncols = table.numCols() else: ncols = table.columnCount() for l in range(ncols): text+=('") text+=("") if QTVERSION < '4.0.0': nrows = table.numRows() else: nrows = table.rowCount() for r in range(nrows): text+=("") if QTVERSION < '4.0.0': newtext = str(table.text(r,0)) else: item = table.item(r, 0) newtext = "" if item is not None: newtext = str(item.text()) if len(newtext): color = "white" b="" else: b="" color = lemon try: #MyQTable item has color defined cc = table.item(r,0).color cc = ("#%x%x%x" % (cc.red(),cc.green(),cc.blue())).upper() color = cc except Exception: pass for c in range(ncols): if QTVERSION < '4.0.0': newtext = str(table.text(r,c)) else: item = table.item(r, c) newtext = "" if item is not None: newtext = str(item.text()) if len(newtext): finalcolor = color else: finalcolor = "white" if c<2: text+=('") else: text+=("") if QTVERSION < '4.0.0': newtext = str(table.text(r,0)) else: item = table.item(r, 0) newtext = "" if item is not None: newtext = str(item.text()) if len(newtext): text+=("") text+=("") #text+=( str(qt.QString("
")) text+=("\n") text+=("
' % hcolor) if QTVERSION < '4.0.0': text+=(str(table.horizontalHeader().label(l))) else: text+=(str(table.horizontalHeaderItem(l).text())) text+=("
%s' % (finalcolor,b)) else: text+=('%s' % (finalcolor,b)) text+=(newtext) if len(b): text+=("
") text+=("
") return text def getHTMLText(self, **kw): return self.gettext(**kw) if QTVERSION > '4.0.0': def getText(self, **kw): if "name" in kw: name = kw["name"] else: name = self.current table = self.tables[name] text="" if QTVERSION < '4.0.0': ncols = table.numCols() else: ncols = table.columnCount() for l in range(ncols): if QTVERSION < '4.0.0': text+=(str(table.horizontalHeader().label(l))) else: text+=(str(table.horizontalHeaderItem(l).text()))+"\t" text+=("\n") if QTVERSION < '4.0.0': nrows = table.numRows() else: nrows = table.rowCount() for r in range(nrows): if QTVERSION < '4.0.0': newtext = str(table.text(r,0)) else: item = table.item(r, 0) newtext = "" if item is not None: newtext = str(item.text())+"\t" for c in range(ncols): if QTVERSION < '4.0.0': newtext = str(table.text(r,c)) else: newtext = "" if c != 4: item = table.item(r, c) if item is not None: newtext = str(item.text()) else: item = table.cellWidget(r, c) if item is not None: newtext = str(item.currentText()) text+=(newtext)+"\t" text+=("\n") text+=("\n") return text def test(): a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = ParametersTab() w.show() from PyMca5.PyMca import specfilewrapper as specfile from PyMca5.PyMca import Specfit from PyMca5 import PyMcaDataDir import numpy sf=specfile.Specfile(os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, "XRFSpectrum.mca")) scan=sf.select('2.1') mcadata=scan.mca(1) y=numpy.array(mcadata) #x=numpy.arange(len(y)) x=numpy.arange(len(y))*0.0502883-0.492773 fit=Specfit.Specfit() fit.setdata(x=x,y=y) fit.importfun(os.path.join(os.path.dirname(Specfit.__file__), "SpecfitFunctions.py")) fit.settheory('Hypermet') fit.configure(Yscaling=1., WeightFlag=1, PosFwhmFlag=1, HeightAreaFlag=1, FwhmPoints=16, PositionFlag=1, HypermetTails=1) fit.setbackground('Linear') if 1: mcaresult=fit.mcafit(x=x,xmin=x[300],xmax=x[1000]) w.fillfrommca(mcaresult) else: fit.estimate() fit.startfit() w.fillfromfit(fit.paramlist,current='Fit') w.removeview(view='Region 1') a.exec() if __name__ == "__main__": bench=0 if bench: import pstats import profile profile.run('test()',"test") p=pstats.Stats("test") p.strip_dirs().sort_stats(-1).print_stats() else: test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/Parameters.py0000644000000000000000000011076514741736366022135 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt if not hasattr(qt, "QString"): QString = str else: QString = qt.QString if not hasattr(qt, "QStringList"): QStringList = list else: QStringList = qt.QStringList QTVERSION = qt.qVersion() QTable = qt.QTableWidget _logger = logging.getLogger(__name__) class QComboTableItem(qt.QComboBox): sigCellChanged = qt.pyqtSignal(int, int) def __init__(self, parent=None, row=None, col=None): self._row = row self._col = col qt.QComboBox.__init__(self, parent) self.activated[int].connect(self._cellChanged) def _cellChanged(self, idx): _logger.debug("cell changed %s", idx) self.sigCellChanged.emit(self._row, self._col) class QCheckBoxItem(qt.QCheckBox): sigCellChanged = qt.pyqtSignal(int, int) def __init__(self, parent=None, row=None, col=None): self._row = row self._col = col qt.QCheckBox.__init__(self, parent) self.clicked.connect(self._cellChanged) def _cellChanged(self): self.sigCellChanged.emit(self._row, self._col) class Parameters(QTable): def __init__(self, parent=None, allowBackgroundAdd=False, **kw): QTable.__init__(self, parent) self._allowBackgroundAdd = allowBackgroundAdd self.setRowCount(1) self.setColumnCount(1) self.labels = ['Parameter', 'Estimation', 'Fit Value', 'Sigma', 'Constraints', 'Min/Parame', 'Max/Factor/Delta/'] if _logger.getEffectiveLevel() == logging.DEBUG: self.code_options = ["FREE", "POSITIVE", "QUOTED", "FIXED", "FACTOR", "DELTA", "SUM", "IGNORE", "ADD", "SHOW"] else: self.code_options = ["FREE", "POSITIVE", "QUOTED", "FIXED", "FACTOR", "DELTA", "SUM", "IGNORE", "ADD"] self.__configuring = False self.setColumnCount(len(self.labels)) i = 0 if 'labels' in kw: for label in kw['labels']: item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i, item) item.setText(self.labels[i]) i += 1 else: for label in self.labels: item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i, item) item.setText(self.labels[i]) i += 1 self.resizeColumnToContents(self.labels.index('Parameter')) self.resizeColumnToContents(1) self.resizeColumnToContents(3) self.resizeColumnToContents(len(self.labels) - 1) self.resizeColumnToContents(len(self.labels) - 2) self.parameters = {} self.paramlist = [] if 'paramlist' in kw: self.paramlist = kw['paramlist'] self.build() self.cellChanged[int,int].connect(self.myslot) def build(self): line = 1 oldlist = list(self.paramlist) self.paramlist = [] for param in oldlist: self.newparameterline(param, line) line += 1 def newparameterline(self, param, line): #get current number of lines nlines = self.rowCount() self.__configuring = True if (line > nlines): self.setRowCount(line) linew = line - 1 self.parameters[param] = {'line': linew, 'fields': ['name', 'estimation', 'fitresult', 'sigma', 'code', 'val1', 'val2'], 'estimation': QString('0'), 'fitresult': QString(), 'sigma': QString(), 'code': QString('FREE'), 'val1': QString(), 'val2': QString(), 'cons1': 0, 'cons2': 0, 'vmin': QString('0'), 'vmax': QString('1'), 'relatedto': QString(), 'factor': QString('1.0'), 'delta': QString('0.0'), 'sum': QString('0.0'), 'group': QString(), 'name': QString(param), 'xmin': None, 'xmax': None} self.paramlist.append(param) #Aleixandre request:self.setText(linew,0,QString(param)) self.setReadWrite(param, 'estimation') self.setReadOnly(param, ['name', 'fitresult', 'sigma', 'val1', 'val2']) #the code a = QStringList() for option in self.code_options: a.append(option) cellWidget = self.cellWidget(linew, self.parameters[param]['fields'].index('code')) if cellWidget is None: col = self.parameters[param]['fields'].index('code') cellWidget = QComboTableItem(self, row=linew, col=col) cellWidget.addItems(a) self.setCellWidget(linew, col, cellWidget) cellWidget.sigCellChanged[int, int].connect(self.myslot) self.parameters[param]['code_item'] = cellWidget self.parameters[param]['relatedto_item'] = None self.__configuring = False def fillTableFromFit(self, fitparameterslist): return self.fillfromfit(fitparameterslist) def fillfromfit(self, fitparameterslist): self.setRowCount(len(fitparameterslist)) self.parameters = {} self.paramlist = [] line = 1 for param in fitparameterslist: self.newparameterline(param['name'], line) line += 1 for param in fitparameterslist: name = param['name'] code = str(param['code']) if code not in self.code_options: code = self.code_options[int(code)] val1 = param['cons1'] val2 = param['cons2'] estimation = param['estimation'] group = param['group'] sigma = param['sigma'] fitresult = param['fitresult'] if 'xmin' in param: xmin = param['xmin'] else: xmin = None if 'xmax' in param: xmax = param['xmax'] else: xmax = None self.configure(name=name, code=code, val1=val1, val2=val2, estimation=estimation, fitresult=fitresult, sigma=sigma, group=group, xmin=xmin, xmax=xmax) def fillFitFromTable(self): return self.fillfitfromtable() def getConfiguration(self): ddict = {} ddict['parameters'] = self.fillFitFromTable() return ddict def setConfiguration(self, ddict): self.fillTableFromFit(ddict['parameters']) def fillfitfromtable(self): fitparameterslist = [] for param in self.paramlist: fitparam = {} name = param estimation, [code, cons1, cons2] = self.cget(name) buf = str(self.parameters[param]['fitresult']) xmin = self.parameters[param]['xmin'] xmax = self.parameters[param]['xmax'] if len(buf): fitresult = float(buf) else: fitresult = 0.0 buf = str(self.parameters[param]['sigma']) if len(buf): sigma = float(buf) else: sigma = 0.0 buf = str(self.parameters[param]['group']) if len(buf): group = float(buf) else: group = 0 fitparam['name'] = name fitparam['estimation'] = estimation fitparam['fitresult'] = fitresult fitparam['sigma'] = sigma fitparam['group'] = group fitparam['code'] = code fitparam['cons1'] = cons1 fitparam['cons2'] = cons2 fitparam['xmin'] = xmin fitparam['xmax'] = xmax fitparameterslist.append(fitparam) return fitparameterslist def myslot(self, row, col): _logger.debug("Passing by myslot(%d, %d)", row, col) _logger.debug("current(%d, %d)", self.currentRow(), self.currentColumn()) if (col != 4) and (col != -1): if row != self.currentRow(): return if col != self.currentColumn(): return if self.__configuring: return param = self.paramlist[row] field = self.parameters[param]['fields'][col] oldvalue = QString(self.parameters[param][field]) if col != 4: item = self.item(row, col) if item is not None: newvalue = item.text() else: newvalue = QString() else: #this is the combobox widget = self.cellWidget(row, col) newvalue = widget.currentText() _logger.debug("old value = %s", oldvalue) _logger.debug("new value = %s", newvalue) if self.validate(param, field, oldvalue, newvalue): _logger.debug("Change is valid") exec("self.configure(name=param,%s=newvalue)" % field) else: _logger.debug("Change is not valid") _logger.debug("oldvalue %s", oldvalue) if field == 'code': index = self.code_options.index(oldvalue) self.__configuring = True try: self.parameters[param]['code_item'].setCurrentIndex(index) finally: self.__configuring = False else: exec("self.configure(name=param,%s=oldvalue)" % field) def validate(self, param, field, oldvalue, newvalue): if field == 'code': pass return self.setcodevalue(param, field, oldvalue, newvalue) if ((str(self.parameters[param]['code']) == 'DELTA') or\ (str(self.parameters[param]['code']) == 'FACTOR') or\ (str(self.parameters[param]['code']) == 'SUM')) and \ (field == 'val1'): best, candidates = self.getrelatedcandidates(param) if str(newvalue) in candidates: return 1 else: return 0 else: try: float(str(newvalue)) except Exception: return 0 return 1 def setcodevalue(self, workparam, field, oldvalue, newvalue): if str(newvalue) == 'FREE': self.configure(name=workparam, code=newvalue) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'POSITIVE': self.configure(name=workparam, code=newvalue) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'QUOTED': #I have to get the limits self.configure(name=workparam, code=newvalue) #, #cons1=self.parameters[workparam]['vmin'], #cons2=self.parameters[workparam]['vmax']) #, #val1=self.parameters[workparam]['vmin'], #val2=self.parameters[workparam]['vmax']) if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'FIXED': self.configure(name=workparam, code=newvalue) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'FACTOR': #I should check here that some parameter is set best, candidates = self.getrelatedcandidates(workparam) if len(candidates) == 0: return 0 self.configure(name=workparam, code=newvalue, relatedto=best) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'DELTA': #I should check here that some parameter is set best, candidates = self.getrelatedcandidates(workparam) if len(candidates) == 0: return 0 self.configure(name=workparam, code=newvalue, relatedto=best) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'SUM': #I should check here that some parameter is set best, candidates = self.getrelatedcandidates(workparam) if len(candidates) == 0: return 0 self.configure(name=workparam, code=newvalue, relatedto=best) #, #cons1=0, #cons2=0, #val1='', #val2='') if str(oldvalue) == 'IGNORE': self.freerestofgroup(workparam) return 1 elif str(newvalue) == 'IGNORE': # I should check if the group can be ignored # for the time being I just fix all of them to ignore group = int(float(str(self.parameters[workparam]['group']))) candidates = [] for param in self.parameters.keys(): if group == int(float(str(self.parameters[param]['group']))): candidates.append(param) #print candidates #I should check here if there is any relation to them for param in candidates: self.configure(name=param, code=newvalue) #, #cons1=0, #cons2=0, #val1='', #val2='') return 1 elif str(newvalue) == 'ADD': group = int(float(str(self.parameters[workparam]['group']))) if group == 0: if not self._allowBackgroundAdd: #One cannot add a background group return 0 i = 0 for param in self.paramlist: if i <= int(float(str(self.parameters[param]['group']))): i += 1 if (group == 0) and (i == 1): i += 1 self.addgroup(i, group) return 0 elif str(newvalue) == 'SHOW': _logger.info(self.cget(workparam)) return 0 else: _logger.info("None of the others!") def addgroup(self, newg, gtype): _logger.debug("addgroup called") _logger.debug("newg = %s gtype = %s", newg, gtype) line = 0 newparam = [] oldparamlist = list(self.paramlist) for param in oldparamlist: line += 1 paramgroup = int(float(str(self.parameters[param]['group']))) if paramgroup == gtype: #Try to construct an appropriate name #I have to remove any possible trailing number #and append the group index xmin = self.parameters[param]['xmin'] xmax = self.parameters[param]['xmax'] j = len(param) - 1 while ('0' < param[j]) & (param[j] < '9'): j -= 1 if j == -1: break if j >= 0: newparam.append(param[0:j + 1] + "%d" % newg) else: newparam.append("%d" % newg) for param in newparam: line += 1 self.newparameterline(param, line) for param in newparam: self.configure(name=param, group=newg, xmin=xmin, xmax=xmax) def freerestofgroup(self, workparam): if workparam in self.parameters.keys(): group = int(float(str(self.parameters[workparam]['group']))) for param in self.parameters.keys(): if param != workparam: if group == int(float(str(self.parameters[param]['group']))): self.configure(name=param, code='FREE', cons1=0, cons2=0, val1='', val2='') def getrelatedcandidates(self, workparam): best = None candidates = [] for param in self.paramlist: if param != workparam: if str(self.parameters[param]['code']) != 'IGNORE' and \ str(self.parameters[param]['code']) != 'FACTOR' and \ str(self.parameters[param]['code']) != 'DELTA' and \ str(self.parameters[param]['code']) != 'SUM': candidates.append(param) #Now get the best from the list if candidates == None: return best, candidates #take the previous one if possible if str(self.parameters[workparam]['relatedto']) in candidates: best = str(self.parameters[workparam]['relatedto']) return best, candidates #take the first with similar name for param in candidates: j = len(param) - 1 while ('0' <= param[j]) & (param[j] < '9'): j -= 1 if j == -1: break if j >= 0: try: pos = workparam.index(param[0:j + 1]) if pos == 0: best = param return best, candidates except Exception: pass #take the first return candidates[0], candidates def setReadOnly(self, parameter, fields): _logger.debug("parameter %s", parameter) _logger.debug("fields = %s", fields) _logger.debug("asked to be read only") if QTVERSION < '4.0.0': self.setfield(parameter, fields, qttable.QTableItem.Never) else: editflags = qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled self.setfield(parameter, fields, editflags) def setReadWrite(self, parameter, fields): _logger.debug("parameter %s", parameter) _logger.debug("fields = %s", fields) _logger.debug("asked to be read write") if QTVERSION < '4.0.0': self.setfield(parameter, fields, qttable.QTableItem.OnTyping) else: editflags = qt.Qt.ItemIsSelectable |\ qt.Qt.ItemIsEnabled |\ qt.Qt.ItemIsEditable self.setfield(parameter, fields, editflags) def setfield(self, parameter, fields, EditType): _logger.debug("setfield. parameter = %s", parameter) _logger.debug("fields = %s", fields) if isinstance(parameter, list) or \ isinstance(parameter, tuple): paramlist = parameter else: paramlist = [parameter] if isinstance(fields, list) or \ isinstance(fields, tuple): fieldlist = fields else: fieldlist = [fields] _oldvalue = self.__configuring self.__configuring = True for param in paramlist: if param in self.paramlist: try: row = self.paramlist.index(param) except ValueError: row = -1 if row >= 0: for field in fieldlist: if field in self.parameters[param]['fields']: col = self.parameters[param]['fields'].index(field) if field != 'code': key = field + "_item" if QTVERSION < '4.0.0': self.parameters[param][key] = qttable.QTableItem(self, EditType, self.parameters[param][field]) self.setItem(row, col, self.parameters[param][key]) else: item = self.item(row, col) if item is None: item = qt.QTableWidgetItem() item.setText(self.parameters[param][field]) self.setItem(row, col, item) else: item.setText(self.parameters[param][field]) self.parameters[param][key] = item item.setFlags(EditType) self.__configuring = _oldvalue def configure(self, *vars, **kw): _logger.debug("configure called with **kw = %s", kw) name = None error = 0 if 'name' in kw: name = kw['name'] else: return 1 if name in self.parameters: for key in kw.keys(): if key != 'name': if key in self.parameters[name]['fields']: oldvalue = self.parameters[name][key] if key == 'code': newvalue = QString(str(kw[key])) else: if len(str(kw[key])): keyDone = False if key == "val1": if str(self.parameters[name]['code']) in\ ['DELTA', 'FACTOR', 'SUM']: newvalue = str(kw[key]) keyDone = True if not keyDone: newvalue = float(str(kw[key])) if key == 'sigma': newvalue = "%6.3g" % newvalue else: newvalue = "%8g" % newvalue else: newvalue = "" newvalue = QString(newvalue) #avoid endless recursivity if key != 'code': if self.validate(name, key, oldvalue, newvalue): self.parameters[name][key] = newvalue else: self.parameters[name][key] = oldvalue error = 1 elif key in self.parameters[name].keys(): newvalue = QString(str(kw[key])) self.parameters[name][key] = newvalue _logger.debug("error = %s", error) if 'code' in kw: newvalue = QString(kw['code']) self.parameters[name]['code'] = newvalue if QTVERSION < '4.0.0': self.parameters[name]['code_item'].setCurrentItem(newvalue) else: for i in range(self.parameters[name]['code_item'].count()): if str(newvalue) == str(self.parameters[name]['code_item'].itemText(i)): self.parameters[name]['code_item'].setCurrentIndex(i) break if str(self.parameters[name]['code']) == 'QUOTED': if 'val1' in kw: self.parameters[name]['vmin'] = self.parameters[name]['val1'] if 'val2' in kw: self.parameters[name]['vmax'] = self.parameters[name]['val2'] if str(self.parameters[name]['code']) == 'DELTA': if 'val1'in kw: if kw['val1'] in self.paramlist: self.parameters[name]['relatedto'] = kw['val1'] else: self.parameters[name]['relatedto'] =\ self.paramlist[int(float(str(kw['val1'])))] if 'val2'in kw: self.parameters[name]['delta'] = self.parameters[name]['val2'] if str(self.parameters[name]['code']) == 'SUM': if 'val1' in kw: if kw['val1'] in self.paramlist: self.parameters[name]['relatedto'] = kw['val1'] else: self.parameters[name]['relatedto'] =\ self.paramlist[int(float(str(kw['val1'])))] if 'val2' in kw: self.parameters[name]['sum'] = self.parameters[name]['val2'] if str(self.parameters[name]['code']) == 'FACTOR': if 'val1'in kw: if kw['val1'] in self.paramlist: self.parameters[name]['relatedto'] = kw['val1'] else: self.parameters[name]['relatedto'] =\ self.paramlist[int(float(str(kw['val1'])))] if 'val2'in kw: self.parameters[name]['factor'] = self.parameters[name]['val2'] else: #Update the proper parameter in case of change in val1 and val2 if str(self.parameters[name]['code']) == 'QUOTED': self.parameters[name]['vmin'] = self.parameters[name]['val1'] self.parameters[name]['vmax'] = self.parameters[name]['val2'] #print "vmin =",str(self.parameters[name]['vmin']) if str(self.parameters[name]['code']) == 'DELTA': self.parameters[name]['relatedto'] = self.parameters[name]['val1'] self.parameters[name]['delta'] = self.parameters[name]['val2'] if str(self.parameters[name]['code']) == 'SUM': self.parameters[name]['relatedto'] = self.parameters[name]['val1'] self.parameters[name]['sum'] = self.parameters[name]['val2'] if str(self.parameters[name]['code']) == 'FACTOR': self.parameters[name]['relatedto'] = self.parameters[name]['val1'] self.parameters[name]['factor'] = self.parameters[name]['val2'] #Update val1 and val2 according to the parameters #and Update the table if str(self.parameters[name]['code']) == 'FREE' or \ str(self.parameters[name]['code']) == 'POSITIVE' or \ str(self.parameters[name]['code']) == 'IGNORE' or\ str(self.parameters[name]['code']) == 'FIXED': self.parameters[name]['val1'] = QString() self.parameters[name]['val2'] = QString() self.parameters[name]['cons1'] = 0 self.parameters[name]['cons2'] = 0 self.setReadWrite(name, 'estimation') self.setReadOnly(name, ['fitresult', 'sigma', 'val1', 'val2']) elif str(self.parameters[name]['code']) == 'QUOTED': self.parameters[name]['val1'] = self.parameters[name]['vmin'] self.parameters[name]['val2'] = self.parameters[name]['vmax'] try: self.parameters[name]['cons1'] =\ float(str(self.parameters[name]['val1'])) except Exception: self.parameters[name]['cons1'] = 0 try: self.parameters[name]['cons2'] =\ float(str(self.parameters[name]['val2'])) except Exception: self.parameters[name]['cons2'] = 0 if self.parameters[name]['cons1'] > self.parameters[name]['cons2']: buf = self.parameters[name]['cons1'] self.parameters[name]['cons1'] = self.parameters[name]['cons2'] self.parameters[name]['cons2'] = buf self.setReadWrite(name, ['estimation', 'val1', 'val2']) self.setReadOnly(name, ['fitresult', 'sigma']) elif str(self.parameters[name]['code']) == 'FACTOR': self.parameters[name]['val1'] = self.parameters[name]['relatedto'] self.parameters[name]['val2'] = self.parameters[name]['factor'] self.parameters[name]['cons1'] =\ self.paramlist.index(str(self.parameters[name]['val1'])) try: self.parameters[name]['cons2'] =\ float(str(self.parameters[name]['val2'])) except Exception: error = 1 _logger.warning("Forcing factor to 1") self.parameters[name]['cons2'] = 1.0 self.setReadWrite(name, ['estimation', 'val1', 'val2']) self.setReadOnly(name, ['fitresult', 'sigma']) elif str(self.parameters[name]['code']) == 'DELTA': self.parameters[name]['val1'] = self.parameters[name]['relatedto'] self.parameters[name]['val2'] = self.parameters[name]['delta'] self.parameters[name]['cons1'] =\ self.paramlist.index(str(self.parameters[name]['val1'])) try: self.parameters[name]['cons2'] =\ float(str(self.parameters[name]['val2'])) except Exception: error = 1 _logger.warning("Forcing delta to 0") self.parameters[name]['cons2'] = 0.0 self.setReadWrite(name, ['estimation', 'val1', 'val2']) self.setReadOnly(name, ['fitresult', 'sigma']) elif str(self.parameters[name]['code']) == 'SUM': self.parameters[name]['val1'] = self.parameters[name]['relatedto'] self.parameters[name]['val2'] = self.parameters[name]['sum'] self.parameters[name]['cons1'] =\ self.paramlist.index(str(self.parameters[name]['val1'])) try: self.parameters[name]['cons2'] =\ float(str(self.parameters[name]['val2'])) except Exception: error = 1 _logger.warning("Forcing sum to 0") self.parameters[name]['cons2'] = 0.0 self.setReadWrite(name, ['estimation', 'val1', 'val2']) self.setReadOnly(name, ['fitresult', 'sigma']) else: self.setReadWrite(name, ['estimation', 'val1', 'val2']) self.setReadOnly(name, ['fitresult', 'sigma']) return error def cget(self, param): """ Return tuple estimation,constraints where estimation is the value in the estimate field and constraints are the relevant constraints according to the active code """ estimation = None constraints = None if param in self.parameters.keys(): buf = str(self.parameters[param]['estimation']) if len(buf): estimation = float(buf) else: estimation = 0 self.parameters[param]['code_item'] if str(self.parameters[param]['code']) in self.code_options: code = self.code_options.index(str(self.parameters[param]['code'])) else: code = str(self.parameters[param]['code']) cons1 = self.parameters[param]['cons1'] cons2 = self.parameters[param]['cons2'] constraints = [code, cons1, cons2] return estimation, constraints def main(args): from PyMca5.PyMca import specfile from PyMca5.PyMca import specfilewrapper as specfile from PyMca5.PyMca import Specfit from PyMca5 import PyMcaDataDir import numpy import os app = qt.QApplication(args) tab = Parameters(labels=['Parameter', 'Estimation', 'Fit Value', 'Sigma', 'Restrains', 'Min/Parame', 'Max/Factor/Delta/'], paramlist=['Height', 'Position', 'FWHM']) tab.showGrid() tab.configure(name='Height', estimation='1234', group=0) tab.configure(name='Position', code='FIXED', group=1) tab.configure(name='FWHM', group=1) sf=specfile.Specfile(os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, "XRFSpectrum.mca")) scan=sf.select('2.1') mcadata=scan.mca(1) y=numpy.array(mcadata) #x=numpy.arange(len(y)) x=numpy.arange(len(y))*0.0502883-0.492773 fit=Specfit.Specfit() fit.setdata(x=x,y=y) fit.importfun(os.path.join(os.path.dirname(Specfit.__file__), "SpecfitFunctions.py")) fit.settheory('Hypermet') fit.configure(Yscaling=1., WeightFlag=1, PosFwhmFlag=1, HeightAreaFlag=1, FwhmPoints=16, PositionFlag=1, HypermetTails=1) fit.setbackground('Linear') fit.estimate() fit.startfit() tab.fillfromfit(fit.paramlist) tab.show() app.lastWindowClosed.connect(app.quit) app.exec() if __name__ == "__main__": main(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/QScriptOption.py0000644000000000000000000003033014741736366022575 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from . import CheckField from . import EntryField from . import TextField #import RadioField from . import TabSheets TupleType=type(()) def uic_load_pixmap_RadioField(name): pix = qt.QPixmap() m = qt.QMimeSourceFactory.defaultFactory().data(name) if m: qt.QImageDrag.decode(m,pix) return pix class QScriptOption(TabSheets.TabSheets): def __init__(self,parent = None,name=None,modal=1,fl = 0, sheets=(),default=None,nohelp=1,nodefaults=1): TabSheets.TabSheets.__init__(self,parent,name,modal,fl, nohelp,nodefaults) if QTVERSION < '4.0.0': if name is not None:self.setCaption(str(name)) else: if name is not None:self.setWindowTitle(str(name)) self.sheets={} self.sheetslist=[] self.default=default self.output={} self.output.update(self.default) ntabs=self.tabWidget.count() #remove anything not having to do with my sheets for i in range(ntabs): if QTVERSION < '4.0.0': page = self.tabWidget.page(0) self.tabWidget.removePage(page) else: self.tabWidget.setCurrentIndex(0) self.tabWidget.removeTab(self.tabWidget.currentIndex()) for sheet in sheets: name=sheet['notetitle'] a=FieldSheet(fields=sheet['fields']) self.sheets[name]=a a.setdefaults(self.default) self.sheetslist.append(name) self.tabWidget.addTab(self.sheets[name],str(name)) if QTVERSION < '4.2.0': i = self.tabWidget.indexOf(self.sheets[name]) self.tabWidget.setCurrentIndex(i) else: self.tabWidget.setCurrentWidget(self.sheets[name]) #perform the binding to the buttons self.buttonOk.clicked.connect(self.myaccept) self.buttonCancel.clicked.connect(self.myreject) if not nodefaults: self.buttonDefaults.clicked.connect(self.defaults) if not nohelp: self.buttonHelp.clicked.connect(self.myhelp) def myaccept(self): self.output.update(self.default) for name,sheet in self.sheets.items(): self.output.update(sheet.get()) #avoid pathologicval None cases for key in list(self.output.keys()): if self.output[key] is None: if key in self.default: self.output[key]=self.default[key] self.accept() return def myreject(self): self.output={} self.output.update(self.default) self.reject() return def defaults(self): self.output={} self.output.update(self.default) def myhelp(self): print("Default - Sets back to the initial parameters") print("Cancel - Sets back to the initial parameters and quits") print("OK - Updates the parameters and quits") class FieldSheet(qt.QWidget): def __init__(self,parent = None,name=None,fl = 0,fields=()): qt.QWidget.__init__(self,parent) layout= qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) #self.fields = ([,,,]) self.fields=[] self.nbfield= 1 for field in fields: fieldtype=field[0] if len(field) == 3: key = field[1] else: key = None parameters=field[-1] if fieldtype == "TextField": myTextField = MyTextField(self,keys=key,params=parameters) self.fields.append(myTextField) layout.addWidget(myTextField) if fieldtype == "CheckField": myCheckField = MyCheckField(self,keys=key,params=parameters) self.fields.append(myCheckField) layout.addWidget(myCheckField) if fieldtype == "EntryField": myEntryField = MyEntryField(self,keys=key,params=parameters) self.fields.append(myEntryField) layout.addWidget(myEntryField) if fieldtype == "RadioField": radioField = RadioField(self,keys=key,params=parameters) self.fields.append(radioField) layout.addWidget(radioField) def get(self): result={} for field in self.fields: result.update(field.getvalue()) return result def setdefaults(self,dict): for field in self.fields: field.setdefaults(dict) return class MyTextField(TextField.TextField): def __init__(self,parent = None,name = None,fl = 0, keys=(), params = ()): TextField.TextField.__init__(self,parent,name,fl) self.TextLabel.setText(str(params)) def getvalue(self): pass return def setvalue(self): pass return def setdefaults(self,dict): pass return class MyEntryField(EntryField.EntryField): def __init__(self,parent = None,name = None,fl = 0, keys=(), params = ()): EntryField.EntryField.__init__(self,parent,name,fl) self.dict={} if type(keys) == TupleType: for key in keys: self.dict[key]=None else: self.dict[keys]=None self.TextLabel.setText(str(params)) self.Entry.textChanged[str].connect(self.setvalue) def getvalue(self): return self.dict def setvalue(self,value): for key in self.dict.keys(): self.dict[key]=str(value) return def setdefaults(self, ddict): for key in list(self.dict.keys()): if key in ddict: self.dict[key] = ddict[key] self.Entry.setText(str(ddict[key])) return class MyCheckField(CheckField.CheckField): def __init__(self,parent = None,name = None,fl = 0, keys=(), params = ()): CheckField.CheckField.__init__(self,parent,name,fl) self.dict={} if type(keys) == TupleType: for key in keys: self.dict[key]=None else: self.dict[keys]=None self.CheckBox.setText(str(params)) self.CheckBox.stateChanged[int].connect(self.setvalue) def getvalue(self): return self.dict def setvalue(self,value): if value: val=1 else: val=0 for key in self.dict.keys(): self.dict[key]=val return def setdefaults(self, ddict): for key in self.dict.keys(): if key in ddict: if ddict[key]: self.CheckBox.setChecked(1) self.dict[key]=1 else: self.CheckBox.setChecked(0) self.dict[key]=0 return class RadioField(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0, keys=(), params = ()): if QTVERSION < '4.0.0': qt.QWidget.__init__(self,parent,name,fl) if name == None: self.setName("RadioField") #self.resize(166,607) self.setSizePolicy(qt.QSizePolicy(1,1,0,0,self.sizePolicy().hasHeightForWidth())) self.setCaption(str("RadioField")) RadioFieldLayout = qt.QHBoxLayout(self,11,6,"RadioFieldLayout") else: qt.QWidget.__init__(self,parent) RadioFieldLayout = qt.QHBoxLayout(self) RadioFieldLayout.setContentsMargins(11, 11, 11, 11) RadioFieldLayout.setSpacing(6) self.RadioFieldBox = qt.QButtonGroup(self) if QTVERSION < '4.0.0': self.RadioFieldBox.setSizePolicy(qt.QSizePolicy(1,1,0,0,self.RadioFieldBox.sizePolicy().hasHeightForWidth())) self.RadioFieldBox.setTitle(str("")) self.RadioFieldBox.setColumnLayout(0,qt.Qt.Vertical) self.RadioFieldBox.layout().setSpacing(6) self.RadioFieldBox.layout().setContentsMargins(11, 11, 11, 11) RadioFieldBoxLayout = qt.QVBoxLayout(self.RadioFieldBox.layout()) RadioFieldBoxLayout.setAlignment(qt.Qt.AlignTop) Layout1 = qt.QVBoxLayout(None,0,6,"Layout1") self.dict={} if type(keys) == TupleType: for key in keys: self.dict[key]=1 else: self.dict[keys]=1 self.RadioButton=[] i=0 for text in params: self.RadioButton.append(qt.QRadioButton(self.RadioFieldBox, "RadioButton"+"%d" % i)) self.RadioButton[-1].setSizePolicy(qt.QSizePolicy(1,1,0,0, self.RadioButton[-1].sizePolicy().hasHeightForWidth())) self.RadioButton[-1].setText(str(text)) Layout1.addWidget(self.RadioButton[-1]) i=i+1 RadioFieldBoxLayout.addLayout(Layout1) RadioFieldLayout.addWidget(self.RadioFieldBox) self.RadioButton[0].setChecked(1) self.RadioFieldBox.clicked[int].connect(self.setvalue) def getvalue(self): return self.dict def setvalue(self,value): if value: val=1 else: val=0 for key in self.dict.keys(): self.dict[key]=val return def setdefaults(self, ddict): for key in list(self.dict.keys()): if key in ddict: self.dict[key]=ddict[key] i=int(ddict[key]) self.RadioButton[i].setChecked(1) return def test(): a = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) #w = FieldSheet(fields=(["TextField",'Simple Entry'], # ["EntryField",'entry','MyLabel'], # ["CheckField",'label','Check Label'], # ["RadioField",'radio',('Button1','hmmm','3')])) sheet1={'notetitle':"First Sheet", 'fields':(["TextField",'Simple Entry'], ["EntryField",'entry','MyLabel'], ["CheckField",'label','Check Label'])} sheet2={'notetitle':"Second Sheet", 'fields':(["TextField",'Simple Radio Buttons'], ["RadioField",'radio',('Button1','hmmm','3')])} w=QScriptOption(name='QScriptOptions',sheets=(sheet1,sheet2), default={'radio':1,'entry':'type here','label':1}) w.show() a.exec() print(w.output) if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/RateLawWindow.py0000644000000000000000000001555214741736366022557 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaMath.fitting import RateLaw class RateLawWindow(qt.QMainWindow): def __init__(self, parent=None, backend=None): super(RateLawWindow, self).__init__(parent) self.setWindowTitle("RateLaw Window") if parent is not None: # behave as a widget self.setWindowFlags(qt.Qt.Widget) self.mdiArea = RateLawMdiArea(self, backend=backend) self.setCentralWidget(self.mdiArea) # connect #self.mdiArea.sigRateLawMdiAreaSignal.connect(self._update) def setSpectrum(self, x, y, **kw): self.mdiArea.setSpectrum(x, y, **kw) class RateLawMdiArea(qt.QMdiArea): sigRateLawMdiAreaSignal = qt.pyqtSignal(object) def __init__(self, parent=None, backend=None): super(RateLawMdiArea, self).__init__(parent) self._windowDict = {} self._windowList = ["Original", "Zero", "First", "Second"] self._windowList.reverse() for title in self._windowList: plot = PlotWindow.PlotWindow(self, position=True, backend=backend) plot.setWindowTitle(title) self.addSubWindow(plot) self._windowDict[title] = plot plot.setDataMargins(0, 0, 0.025, 0.025) self._windowList.reverse() self.setActivationOrder(qt.QMdiArea.StackingOrder) self.tileSubWindows() def setSpectrum(self, x, y, legend=None, sigmay=None, xlabel=None, ylabel=None): for key in self._windowDict: self._windowDict[key].clearCurves() self._windowDict["Original"].addCurve(x, y, legend=legend, xlabel=xlabel, ylabel=ylabel, yerror=sigmay, symbol="o") self.update() def update(self): plot = self._windowDict["Original"] activeCurve = plot.getActiveCurve() if not len(activeCurve): return [x, y, legend, info] = activeCurve[:4] xmin, xmax = plot.getGraphXLimits() ymin, ymax = plot.getGraphYLimits() result = RateLaw.rateLaw(x, y, sigmay=None) labels = ["Zero", "First", "Second"] for key in labels: plot = self._windowDict[key] workingResult = result[key.lower()] if workingResult is None: # no fit was performed plot.clear() continue intercept = workingResult["intercept"] slope = workingResult["slope"] sigma_intercept = workingResult["sigma_intercept"] sigma_slope = workingResult["sigma_slope"] r_value = workingResult["r_value"] stderr = workingResult["stderr"] xw = workingResult["x"] yw = workingResult["y"] xlabel = info["ylabel"] ylabel = info["ylabel"] title = "r = %.5f slope = %.3E +/- %.2E" % (r_value, slope, sigma_slope) fit_legend = "%.3g * x + %.3g" % (slope, intercept) if key == "First": ylabel = "log(%s)" % ylabel elif key == "Second": ylabel = "1 / %s" % ylabel plot.addCurve(xw, yw, legend="Data", replace=True, replot=False, symbol="o", linestyle=" ", ylabel=ylabel) plot.setGraphTitle(title) plot.addCurve(xw, intercept + slope * xw, legend=fit_legend, replace=False, replot=True, symbol=None, color="red", ylabel=ylabel) plot.resetZoom() self.sigRateLawMdiAreaSignal.emit(result) def main(argv=None): if argv is None: argv = sys.argv if len(argv) < 2: # first order, k = 4.820e-04 x = [0, 600, 1200, 1800, 2400, 3000, 3600] y = [0.0365, 0.0274, 0.0206, 0.0157, 0.0117, 0.00860, 0.00640] order = "First" slope = "0.000482" print("Expected order: First") print("Expected slope: 0.000482") sigmay = None # second order, k = 1.3e-02 #x = [0, 900, 1800, 3600, 6000] #y = [1.72e-2, 1.43e-2, 1.23e-2, 9.52e-3, 7.3e-3] #order = "second" #slope = "0.013" elif len(argv) > 1: # assume we have got a two column csv file data = numpy.loadtxt(argv[1]) x = data[:, 0] y = data[:, 1] if data.shape[1] > 2: sigmay = data[:, 2] else: sigmay = None else: print("RateLaw [csv_file_name]") return w = RateLawWindow() w.show() w.setSpectrum(x, y, sigmay = sigmay) return w if __name__ == "__main__": app = qt.QApplication([]) w = main() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SimpleFitAllGui.py0000644000000000000000000002277614741736366023030 0ustar00rootroot#/*########################################################################## # Copyright (C) 2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging import os import sys import traceback import time from .SimpleFitGui import SimpleFitGui from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaMath.fitting import SimpleFitAll from PyMca5.PyMcaMath.fitting import SimpleFitModule from PyMca5.PyMcaMath.fitting import SpecfitFunctions from PyMca5.PyMcaGui.math.fitting import SpecfitConfigGui from PyMca5.PyMcaGui.misc import CalculationThread _logger = logging.getLogger(__name__) class OutputParameters(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.outputDirLabel = qt.QLabel(self) self.outputDirLabel.setText("Output directory") self.outputDirLine = qt.QLineEdit(self) self.outputDirLine.setReadOnly(True) self.outputDirButton = qt.QPushButton(self) self.outputDirButton.setText("Browse") self.outputDirButton.clicked.connect(self.browseDirectory) self.outputFileLabel = qt.QLabel(self) self.outputFileLabel.setText("Output file root") self.outputFileLine = qt.QLineEdit(self) self.outputDir = PyMcaDirs.outputDir self.outputFile = "SimpleFitAllOutput.h5" self.setOutputDirectory(self.outputDir) self.setOutputFileName(self.outputFile) self.mainLayout.addWidget(self.outputDirLabel, 0, 0) self.mainLayout.addWidget(self.outputDirLine, 0, 1) self.mainLayout.addWidget(self.outputDirButton, 0, 2) self.mainLayout.addWidget(self.outputFileLabel, 1, 0) self.mainLayout.addWidget(self.outputFileLine, 1, 1) def getOutputDirectory(self): return qt.safe_str(self.outputDirLine.text()) def getOutputFileName(self): return qt.safe_str(self.outputFileLine.text()) def setOutputDirectory(self, txt): if os.path.exists(txt): self.outputDirLine.setText(txt) self.outputDir = txt PyMcaDirs.outputDir = txt else: raise IOError("Directory does not exists") def setOutputFileName(self, txt): if len(txt): self.outputFileLine.setText(txt) self.outputFile = txt def browseDirectory(self): wdir = self.outputDir outputDir = qt.QFileDialog.getExistingDirectory( self, "Please select output directory", wdir) if len(outputDir): self.setOutputDirectory(qt.safe_str(outputDir)) class SimpleFitAllGui(SimpleFitGui): def __init__(self, parent=None, fit=None, graph=None, actions=True): if fit is None: fit = SimpleFitModule.SimpleFit() # inject config widget by patching the module w = SpecfitConfigGui.SpecfitConfigGui SpecfitFunctions.WIDGET = [w for _t in SpecfitFunctions.THEORY] fit.importFunctions(SpecfitFunctions) fit.loadUserFunctions() SimpleFitGui.__init__(self, parent, fit, graph, actions) self.fitAllInstance = SimpleFitAll.SimpleFitAll(fit=self.fitModule) self.fitActions.dismissButton.hide() self.outputParameters = OutputParameters(self) self.startFitAllButton = qt.QPushButton(self) self.startFitAllButton.setText("Fit all") self.startFitAllButton.clicked.connect(self.startFitAll) self.progressBar = qt.QProgressBar(self) self.mainLayout.addWidget(self.outputParameters) self.mainLayout.addWidget(self.startFitAllButton) self.mainLayout.addWidget(self.progressBar) # progress handling self._total = 100 self._index = 0 self.fitAllInstance.setProgressCallback(self.progressUpdate) self.curves_x = None self.curves_y = None self.legends = None self.xlabels = None self.ylabels = None # store active curve self._activeData = None def setSpectrum(self, x, y, sigma=None, xmin=None, xmax=None): """Set the main active curve to be plotted, for estimation purposes.""" self._activeData = x, y, sigma, xmin, xmax SimpleFitGui.setData(self, x, y, sigma, xmin, xmax) def setSpectra(self, curves_x, curves_y, legends=None, xlabels=None, ylabels=None): """Set all curves to be fitted. :param curves_x: list of 1D arrays of X curve values :param curves_y: list of 1D arrays of Y curve values. :param legends: list of curve legends """ self.curves_x = curves_x self.curves_y = curves_y self.legends = legends self.xlabels = xlabels self.ylabels = ylabels def startFitAll(self): xmin = self.fitModule._fitConfiguration['fit']['xmin'] xmax = self.fitModule._fitConfiguration['fit']['xmax'] self.fitAllInstance.setOutputDirectory( self.outputParameters.getOutputDirectory()) self.fitAllInstance.setOutputFileName( self.outputParameters.getOutputFileName()) self.fitAllInstance.setData(self.curves_x, self.curves_y, sigma=None, xmin=xmin, xmax=xmax, legends=self.legends, xlabels=self.xlabels, ylabels=self.ylabels) fileName = self.outputParameters.getOutputFileName() if os.path.exists(fileName): msg = qt.QMessageBox() msg.setWindowTitle("Output file(s) exists") msg.setIcon(qt.QMessageBox.Information) msg.setText("Do you want to delete current output files?") msg.setStandardButtons(qt.QMessageBox.Yes | qt.QMessageBox.Cancel) answer = msg.exec() if answer == qt.QMessageBox.Yes: try: if os.path.exists(fileName): os.remove(fileName) except Exception: qt.QMessageBox.critical( self, "Delete Error", "ERROR while deleting file:\n%s" % fileName, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) return else: return try: self._startWork() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Fitting All Error") msg.setText("Error has occurred while processing the data") msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() finally: self.progressBar.hide() self.setEnabled(True) if self._activeData is not None: self.setSpectrum(*self._activeData) def _startWork(self): self.setEnabled(False) self.progressBar.show() thread = CalculationThread.CalculationThread( parent=self, calculation_method=self.processAll) thread.start() self._total = 100 self._index = 0 while thread.isRunning(): time.sleep(2) qApp = qt.QApplication.instance() qApp.processEvents() self.progressBar.setMaximum(self._total) self.progressBar.setValue(self._index) self.progressBar.hide() self.setEnabled(True) if thread.result is not None: if len(thread.result): tb = thread.result[-1] traceback.print_tb(tb) raise RuntimeError(*thread.result[1:]) def processAll(self): # fill estimation from table, in case it has been updated manually self.fitModule.paramlist = self.parametersTable.fillFitFromTable() self.fitAllInstance.processAll() def progressUpdate(self, idx, total): self._index = int(idx) self._total = int(total) if idx % 10 == 0: _logger.info("Fitted %d of %d", idx, total) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SimpleFitBatchGui.py0000644000000000000000000002617314741736366023334 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import IconDict from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs PyMcaDirs.nativeFileDialogs = False QTVERSION = qt.qVersion() HDF5SUPPORT = True from PyMca5.PyMcaGui.pymca import QDataSource class SimpleFitBatchParameters(qt.QWidget): def __init__(self, parent=None, file_browser=True): qt.QWidget.__init__(self, parent) self.setWindowTitle("PyMca Simple Fit Batch GUI") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self._inputDir = None self._outputDir = None self._lastInputFileFilter = None self._fileList = [] self._build(file_browser) def _build(self, file_browser): row = 0 if file_browser: self._listLabel = qt.QLabel(self) self._listLabel.setText("Input File list:") self._listView = qt.QTextEdit(self) self._listView.setMaximumHeight(30*self._listLabel.sizeHint().height()) self._listButton = qt.QPushButton(self) self._listButton.setText('Browse') self._listButton.setAutoDefault(False) self._listButton.clicked.connect(self.browseList) self.mainLayout.addWidget(self._listLabel, 0, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) self.mainLayout.addWidget(self._listView, 0, 1) self.mainLayout.addWidget(self._listButton, 0, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) row += 1 #options labels = ['Fit Configuration File:', 'Output Directory:'] row0 = 0 for label in labels: l = qt.QLabel(self) l.setText(label) line = qt.QLineEdit(self) b = qt.QPushButton(self) b.setText('Browse') self.mainLayout.addWidget(l, row+row0, 0) self.mainLayout.addWidget(line, row+row0, 1) self.mainLayout.addWidget(b, row+row0, 2) if row0 == 0: self._fitConfigurationLine = line self._fitConfigurationButton = b else: self._outputDirectoryLine = line self._outputDirectoryButton = b row0 += 1 row += row0 self._outputDirectoryButton.clicked.connect( \ self.browseOutputDirectory) self._fitConfigurationButton.clicked.connect( \ self.browseFitConfiguration) def browseList(self): if self._inputDir is None: self._inputDir = PyMcaDirs.inputDir elif os.path.exists(self._inputDir): PyMcaDirs.inputDir = self._inputDir filetypes = ["Mca Files (*.mca)", "Edf Files (*.edf)"] if HDF5SUPPORT: filetypes.append("HDF5 Files(*.nxs *.h5 *.hdf)") filetypes.append("SPEC Files (*.spec)") filetypes.append("SPEC Files (*.dat)") filetypes.append("All files (*)") message = "Open a set of files" mode = "OPEN" getfilter = True currentfilter = self._lastInputFileFilter fileList, fileFilter = PyMcaFileDialogs.getFileList(self, filetypelist=filetypes, message=message, mode=mode, getfilter=getfilter, single=False, currentfilter=currentfilter) if not len(fileList): return else: self._lastInputFileFilter = fileFilter self._inputDir = os.path.dirname(fileList[0]) if (QTVERSION < '4.2.0') or (not len(self._fileList)): self.setFileList(fileList) self.raise_() return msg = qt.QMessageBox() msg.setWindowTitle("Append or replace") msg.setIcon(qt.QMessageBox.Information) msg.setText("Do you want to delete current file list?") msg.setStandardButtons(qt.QMessageBox.Yes|qt.QMessageBox.No) answer=msg.exec() if answer == qt.QMessageBox.Yes: append = False else: append = True self.setFileList(fileList, append=append) self.raise_() def browseFitConfiguration(self): if self._inputDir is None: self._inputDir = PyMcaDirs.inputDir elif os.path.exists(self._inputDir): PyMcaDirs.inputDir = self._inputDir filetypes = ["Configuration Files (*.cfg)"] if self._inputDir is None: self._inputDir = PyMcaDirs.inputDir elif os.path.exists(self._inputDir): PyMcaDirs.inputDir = self._inputDir message = "Select a Simple Fit Configuration File" mode = "OPEN" getfilter = False currentfilter = None #self._lastInputFileFilter fileList = PyMcaFileDialogs.getFileList(self, filetypelist=filetypes, message=message, mode=mode, getfilter=getfilter, single=True, currentfilter=currentfilter) if not len(fileList): return self._inputDir = os.path.dirname(fileList[0]) self.setFitConfigurationFile(fileList[0]) self.raise_() def browseOutputDirectory(self): if self._outputDir is None: self._outputDir = PyMcaDirs.outputDir elif os.path.exists(self._outputDir): PyMcaDirs.inputDir = self._outputDir message = "Select a Simple Fit Configuration File" mode = "OPEN" fileList = PyMcaFileDialogs.getExistingDirectory(self, message=message, mode=mode) if not len(fileList): return if type(fileList) != type([]): fileList = [fileList] self._outputDir = os.path.dirname(fileList[0]) self.setOutputDirectory(fileList[0]) self.raise_() def setFileList(self, filelist, append=False): if filelist is None: filelist = [] if not append: self._fileList = [] self._listView.clear() text = "" for ffile in self._fileList: text += ffile + "\n" for ffile in filelist: if ffile not in self._fileList: self._fileList.append(ffile) text += ffile + "\n" self._listView.insertPlainText(text) sourceType = QDataSource.getSourceType(self._fileList[0]) dataSourceClass = QDataSource.source_types[sourceType] dataSourceWidget = QDataSource.source_widgets[sourceType] self._dataSource = dataSourceClass(self._fileList[0]) self._dataWidget = dataSourceWidget() self._dataWidget.setDataSource(self._dataSource) self._dataWidget.sigAddSelection.connect(self.printSelection) self._dataWidget.show() def setFitConfigurationFile(self, fname): self._fitConfigurationLine.setText(fname) def setOutputDirectory(self, fname): self._outputDirectoryLine.setText(fname) def printSelection(self, ddict): print("Received = ", ddict) def getParameters(self): ddict = {} ddict['selection'] = {} ddict['selection']['x'] = None ddict['selection']['y'] = None ddict['selection']['m'] = None ddict['filelist'] = self._fileList ddict['outputdir'] = str(self._outputDirectoryLine.text()) ddict['fitconfiguration'] = str(self._fitConfigurationLine.text()) return ddict class SimpleFitBatchGui(qt.QWidget): def __init__(self, parent=None, stack=False, actions=True): qt.QWidget.__init__(self, parent) if stack in [None, False]: file_browser = False else: file_browser = True self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.parametersWidget = SimpleFitBatchParameters(self) self.getParameters = self.parametersWidget.getParameters self.mainLayout.addWidget(self.parametersWidget) if actions: self.actionsBox = qt.QWidget(self) self.actionsBox.mainLayout = qt.QHBoxLayout(self.actionsBox) self.actionsBox.mainLayout.setContentsMargins(2, 2, 2, 2) self.actionsBox.mainLayout.setSpacing(2) self.closeButton = qt.QPushButton(self.actionsBox) self.closeButton.setText("Close") self.startButton = qt.QPushButton(self.actionsBox) self.startButton.setText("Start") self.actionsBox.mainLayout.addWidget(qt.HorizontalSpacer(self.actionsBox)) self.actionsBox.mainLayout.addWidget(self.closeButton) self.actionsBox.mainLayout.addWidget(qt.HorizontalSpacer(self.actionsBox)) self.actionsBox.mainLayout.addWidget(self.startButton) self.actionsBox.mainLayout.addWidget(qt.HorizontalSpacer(self.actionsBox)) self.mainLayout.addWidget(self.actionsBox) self.closeButton.clicked.connect(self.close) if __name__ == "__main__": app = qt.QApplication([]) w = SimpleFitBatchGui() w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SimpleFitConfigurationGui.py0000644000000000000000000006025714741736366025123 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import traceback import os.path import logging from . import SimpleFitControlWidget if sys.version_info < (3,): from StringIO import StringIO else: from io import StringIO try: import h5py except ImportError: h5py = None from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting import PyMca_Icons as Icons from PyMca5 import PyMcaDirs if h5py is not None: from PyMca5.PyMcaGui.io.hdf5 import HDF5Widget #strip background handling from . import Parameters from PyMca5.PyMcaGui.math.StripBackgroundWidget import StripBackgroundDialog _logger = logging.getLogger(__name__) class DummyWidget(qt.QWidget): def __init__(self, parent=None, text="Automatically estimated function"): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.label = qt.QLabel(self) self.label.setAlignment(qt.Qt.AlignHCenter) self.label.setText(text) self.mainLayout.addWidget(qt.VerticalSpacer(self)) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(qt.VerticalSpacer(self)) self._configuration = {} def setConfiguration(self, ddict): self._configuration = ddict def getConfiguration(self): return self._configuration def configure(self, ddict=None): if ddict is None: return self.getConfiguration() else: return self.setConfiguration(ddict) class DefaultParametersWidget(qt.QWidget): def __init__(self, parent=None, fit=None, background=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.parametersWidget = Parameters.Parameters(self, allowBackgroundAdd=True) self.mainLayout.addWidget(self.parametersWidget) self.simpleFitInstance = fit self.background = background self._buffer = {} def setConfiguration(self, ddict): if self.simpleFitInstance is None: self._buffer = ddict return if ddict['configuration']['estimation'] is None: #initialize with the default parameters parameters = ddict['parameters'] if type(parameters) == type(""): parameters = [parameters] xmin = self.simpleFitInstance._x.min() xmax = self.simpleFitInstance._x.max() if self.background: group = 0 else: group = 1 paramlist = [] for i in range(len(parameters)): pname = parameters[i]+"_1" paramdict = {'name':pname, 'estimation':0, 'group':group, 'code':'FREE', 'cons1':0, 'cons2':0, 'fitresult':0.0, 'sigma':0.0, 'xmin':xmin, 'xmax':xmax} paramlist.append(paramdict) else: parameters = ddict['configuration']['estimation']['parameters'] if type(parameters) == type(""): parameters = [parameters] paramlist = [] for parameter in parameters: paramdict = ddict['configuration']['estimation'][parameter] paramlist.append(paramdict) self.parametersWidget.fillTableFromFit(paramlist) def getConfiguration(self): if self.simpleFitInstance is None: return self._buffer paramlist = self.parametersWidget.fillFitFromTable() ddict = {} ddict['configuration']={} ddict['configuration']['estimation'] = {} ddict['configuration']['estimation']['parameters'] = [] for param in paramlist: name = param['name'] ddict['configuration']['estimation']['parameters'].append(name) ddict['configuration']['estimation'][name] = {} for key in param.keys(): if key in ['xmax', 'xmin']: ddict['configuration']['estimation'][name][key] = float(param[key]) else: ddict['configuration']['estimation'][name][key] = param[key] return ddict def configure(self, ddict=None): if ddict is None: return self.getConfiguration() else: return self.setConfiguration(ddict) class SimpleFitConfigurationGui(qt.QDialog): _HDF5_EXTENSIONS = [".h5", ".hdf5", ".hdf", ".nxs", ".nx"] def __init__(self, parent = None, fit=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("PyMca - Simple Fit Configuration") self.setWindowIcon(qt.QIcon(qt.QPixmap(Icons.IconDict["gioconda16"]))) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.tabWidget = qt.QTabWidget(self) self.fitControlWidget = SimpleFitControlWidget.SimpleFitControlWidget(self) self.fitControlWidget.sigFitControlSignal.connect(self._fitControlSlot) self.tabWidget.insertTab(0, self.fitControlWidget, "FIT") self.fitFunctionWidgetStack = qt.QWidget(self) self.fitFunctionWidgetStack.mainLayout = qt.QStackedLayout(self.fitFunctionWidgetStack) self.fitFunctionWidgetStack.mainLayout.setContentsMargins(0, 0, 0, 0) self.fitFunctionWidgetStack.mainLayout.setSpacing(0) self.tabWidget.insertTab(1, self.fitFunctionWidgetStack, "FUNCTION") self.backgroundWidgetStack = qt.QWidget(self) self.backgroundWidgetStack.mainLayout = qt.QStackedLayout(self.backgroundWidgetStack) self.backgroundWidgetStack.mainLayout.setContentsMargins(0, 0, 0, 0) self.backgroundWidgetStack.mainLayout.setSpacing(0) self.tabWidget.insertTab(2, self.backgroundWidgetStack, "BACKGROUND") self.mainLayout.addWidget(self.tabWidget) self._stripDialog = None self.buildAndConnectActions() self.mainLayout.addWidget(qt.VerticalSpacer(self)) self._fitFunctionWidgets = {} self._backgroundWidgets = {} self.setSimpleFitInstance(fit) #input output directory self.initDir = None def _fitControlSlot(self, ddict): _logger.debug("FitControlSignal %s", ddict) event = ddict['event'] if event == "stripSetupCalled": if self._stripDialog is None: self._stripDialog = StripBackgroundDialog() self._stripDialog.setWindowIcon(qt.QIcon(\ qt.QPixmap(Icons.IconDict["gioconda16"]))) pars = self.__getConfiguration("FIT") if self.simpleFitInstance is None: return xmin = pars['xmin'] xmax = pars['xmax'] idx = (self.simpleFitInstance._x0 >= xmin) & (self.simpleFitInstance._x0 <= xmax) x = self.simpleFitInstance._x0[idx] * 1 y = self.simpleFitInstance._y0[idx] * 1 self._stripDialog.setParameters(pars) self._stripDialog.setData(x, y) ret = self._stripDialog.exec() if not ret: return pars = self._stripDialog.getParameters() self.fitControlWidget.setConfiguration(pars) if event == "fitFunctionChanged": functionName = ddict['fit_function'] if functionName in [None, "None", "NONE"]: functionName = "None" instance = self._fitFunctionWidgets.get(functionName, None) if instance is None: instance = qt.QWidget(self.fitFunctionWidgetStack) self.fitFunctionWidgetStack.mainLayout.addWidget(instance) self._fitFunctionWidgets[functionName] = instance self.fitFunctionWidgetStack.mainLayout.setCurrentWidget(instance) return fun = self.simpleFitInstance._fitConfiguration['functions'][functionName] instance = self._fitFunctionWidgets.get(functionName, None) if instance is None: widget = fun.get('widget', None) if widget is None: instance = self._buildDefaultWidget(functionName, background=False) else: instance = widget(self.fitFunctionWidgetStack) self.fitFunctionWidgetStack.mainLayout.addWidget(instance) self._fitFunctionWidgets[functionName] = instance if hasattr(instance, 'configure'): configureMethod = fun['configure'] if configureMethod is not None: #make sure it is up-to-date fun['configuration'].update(configureMethod()) instance.configure(fun) self.fitFunctionWidgetStack.mainLayout.setCurrentWidget(instance) if event == "backgroundFunctionChanged": functionName = ddict['background_function'] if functionName in [None, "None", "NONE"]: functionName = "None" instance = self._backgroundWidgets.get(functionName, None) if instance is None: instance = qt.QWidget(self.backgroundWidgetStack) self.backgroundWidgetStack.mainLayout.addWidget(instance) self._backgroundWidgets[functionName] = instance self.backgroundWidgetStack.mainLayout.setCurrentWidget(instance) return fun = self.simpleFitInstance._fitConfiguration['functions'][functionName] instance = self._backgroundWidgets.get(functionName, None) if instance is None: widget = fun.get('widget', None) if widget is None: instance = self._buildDefaultWidget(functionName, background=True) else: instance = widget(self.backgroundWidgetStack) self.backgroundWidgetStack.mainLayout.addWidget(instance) self._backgroundWidgets[functionName] = instance if hasattr(instance, 'configure'): configureMethod = fun['configure'] if configureMethod is not None: #make sure it is up-to-date fun['configuration'].update(configureMethod()) instance.configure(fun) self.backgroundWidgetStack.mainLayout.setCurrentWidget(instance) def _buildDefaultWidget(self, functionName, background=False): functionDescription = self.simpleFitInstance._fitConfiguration['functions']\ [functionName] #if we here that means the function does not provide a widget #if the function does not provide an authomatic estimate #the user has to fill the default parameters in the default table estimate = functionDescription['estimate'] if estimate is None: if background: widget = DefaultParametersWidget(self.backgroundWidgetStack, self.simpleFitInstance, background=background) widget.setConfiguration(functionDescription) self.backgroundWidgetStack.mainLayout.addWidget(widget) else: widget = DefaultParametersWidget(self.fitFunctionWidgetStack, self.simpleFitInstance, background=background) widget.setConfiguration(functionDescription) self.fitFunctionWidgetStack.mainLayout.addWidget(widget) else: text = "%s is automatically configured and estimated" % functionName if background: widget = DummyWidget(self.backgroundWidgetStack, text=text) self.backgroundWidgetStack.mainLayout.addWidget(widget) else: widget = DummyWidget(self.fitFunctionWidgetStack, text=text) self.fitFunctionWidgetStack.mainLayout.addWidget(widget) return widget def buildAndConnectActions(self): buts= qt.QGroupBox(self) buts.layout = qt.QHBoxLayout(buts) load= qt.QPushButton(buts) load.setAutoDefault(False) load.setText("Load") save= qt.QPushButton(buts) save.setAutoDefault(False) save.setText("Save") reject= qt.QPushButton(buts) reject.setAutoDefault(False) reject.setText("Cancel") accept= qt.QPushButton(buts) accept.setAutoDefault(False) accept.setText("OK") buts.layout.addWidget(load) buts.layout.addWidget(save) buts.layout.addWidget(reject) buts.layout.addWidget(accept) self.mainLayout.addWidget(buts) load.clicked.connect(self.load) save.clicked.connect(self.save) reject.clicked.connect(self.reject) accept.clicked.connect(self.accept) def setSimpleFitInstance(self, fitInstance): self.simpleFitInstance = fitInstance if self.simpleFitInstance is not None: self.setConfiguration(self.simpleFitInstance.getConfiguration()) def setConfiguration(self, ddict): currentConfig = self.simpleFitInstance.getConfiguration() currentFiles = [] for functionName in currentConfig['functions'].keys(): fname = currentConfig['functions'][functionName]['file'] if fname not in currentFiles: currentFiles.append(fname) if 'functions' in ddict: #make sure new modules are imported for functionName in ddict['functions'].keys(): fileName = ddict['functions'][functionName]['file'] if fileName not in currentFiles: try: _logger.debug("Adding file %s", fileName) self.simpleFitInstance.importFunctions(fileName) currentFiles.append(fileName) except Exception: if "library.zip" in fileName: _logger.debug("Assuming PyMca supplied fit function") continue _logger.warning("Cannot import file %s", fileName) _logger.warning(sys.exc_info()[1]) if 'fit' in ddict: self.fitControlWidget.setConfiguration(ddict['fit']) fitFunction = ddict['fit']['fit_function'] background = ddict['fit']['background_function'] if fitFunction not in self._fitFunctionWidgets.keys(): self._fitControlSlot({'event':'fitFunctionChanged', 'fit_function':fitFunction}) if background not in self._backgroundWidgets.keys(): self._fitControlSlot({'event':'backgroundFunctionChanged', 'background_function':background}) #fit function fname = ddict['fit']['fit_function'] widget = self._fitFunctionWidgets[fname] if fname not in [None, "None", "NONE"]: if fname in ddict['functions']: #if currentConfig['functions'][fname]['widget'] is not None: widget.setConfiguration(ddict['functions'][fname]) self.fitFunctionWidgetStack.mainLayout.setCurrentWidget(widget) #background function fname = ddict['fit']['background_function'] widget = self._backgroundWidgets[fname] if fname not in [None, "None", "NONE"]: if fname in ddict['functions']: #if currentConfig['functions'][fname]['widget'] is not None: widget.setConfiguration(ddict['functions'][fname]) self.backgroundWidgetStack.mainLayout.setCurrentWidget(widget) def getConfiguration(self): oldConfiguration = self.simpleFitInstance.getConfiguration() ddict = {} for name in ['fit']: ddict[name] = self.__getConfiguration(name) #fit function fname = ddict['fit']['fit_function'] ddict['functions'] = {} widget = self._fitFunctionWidgets[fname] if fname not in [None, "None", "NONE"]: ddict['functions'][fname]={} ddict['functions'][fname]['file'] = \ oldConfiguration['functions'][fname]['file'] ddict['functions'][fname]['configuration'] =\ oldConfiguration['functions'][fname]['configuration'] newConfig = widget.getConfiguration() if 'configuration' in newConfig: ddict['functions'][fname]['configuration'].update(\ newConfig['configuration']) else: ddict['functions'][fname]['configuration'].update(newConfig) #background function fname = ddict['fit']['background_function'] widget = self._backgroundWidgets[fname] if fname not in [None, "None", "NONE"]: ddict['functions'][fname]={} ddict['functions'][fname]['file'] = \ oldConfiguration['functions'][fname]['file'] ddict['functions'][fname]['configuration'] =\ oldConfiguration['functions'][fname]['configuration'] newConfig = widget.getConfiguration() if 'configuration' in newConfig: ddict['functions'][fname]['configuration'].update(\ newConfig['configuration']) else: ddict['functions'][fname]['configuration'].update(newConfig) return ddict def __getConfiguration(self, name): if name in ['fit', 'FIT']: return self.fitControlWidget.getConfiguration() def load(self): filetypelist = ["Fit configuration files (*.cfg)"] if h5py is not None: filetypelist.append( "Fit results file (*%s)" % " *".join(self._HDF5_EXTENSIONS)) message = "Choose fit configuration file" initdir = os.path.curdir if self.initDir is not None: if os.path.isdir(self.initDir): initdir = self.initDir fileList = PyMcaFileDialogs.getFileList(parent=self, filetypelist=filetypelist, message=message, currentdir=initdir, mode="OPEN", getfilter=False, single=True, currentfilter=None, native=None) if len(fileList): filename = fileList[0] self.loadConfiguration(filename) self.initDir = os.path.dirname(filename) return def save(self): if self.initDir is None: self.initDir = PyMcaDirs.outputDir filetypelist = ["Fit configuration files (*.cfg)"] message = "Enter ouput fit configuration file" initdir = self.initDir fileList = PyMcaFileDialogs.getFileList(parent=self, filetypelist=filetypelist, message=message, currentdir=initdir, mode="SAVE", getfilter=False, single=True, currentfilter=None, native=None) if len(fileList): filename = fileList[0] self.saveConfiguration(filename) self.initDir = os.path.dirname(filename) return def loadConfiguration(self, filename): cfg = ConfigDict.ConfigDict() _basename, extension = os.path.splitext(filename) try: if extension in self._HDF5_EXTENSIONS: initxt = self._loadIniFromHdf5(filename) cfg.readfp(StringIO(initxt)) else: cfg.read(filename) self.initDir = os.path.dirname(filename) self.setConfiguration(cfg) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "ERROR while loading parameters from\n%s\n" % filename msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _loadIniFromHdf5(self, filename): self.__hdf5Dialog = qt.QDialog() self.__hdf5Dialog.setWindowTitle('Select the fit configuration dataset by a double click') self.__hdf5Dialog.mainLayout = qt.QVBoxLayout(self.__hdf5Dialog) self.__hdf5Dialog.mainLayout.setContentsMargins(0, 0, 0, 0) self.__hdf5Dialog.mainLayout.setSpacing(0) fileModel = HDF5Widget.FileModel() fileView = HDF5Widget.HDF5Widget(fileModel) with h5py.File(filename, "r") as hdfFile: fileModel.appendPhynxFile(hdfFile, weakreference=True) fileView.sigHDF5WidgetSignal.connect(self._hdf5WidgetSlot) self.__hdf5Dialog.mainLayout.addWidget(fileView) self.__hdf5Dialog.resize(400, 200) ret = self.__hdf5Dialog.exec() if ret: initxt = hdfFile[self.__fitConfigDataset][()] else: initxt = None return initxt def _hdf5WidgetSlot(self, ddict): if ddict['event'] == "itemDoubleClicked": if ddict['type'].lower() in ['dataset']: self.__fitConfigDataset = ddict['name'] self.__hdf5Dialog.accept() def saveConfiguration(self, filename): cfg = ConfigDict.ConfigDict(self.getConfiguration()) try: cfg.write(filename) self.initDir = os.path.dirname(filename) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise qt.QMessageBox.critical(self, "Save Parameters", "ERROR while saving parameters to\n%s"%filename, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) def test(): app = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) wid = SimpleFitConfigurationGui()\ # ddict = {} # ddict['fit'] = {} # ddict['fit']['use_limits'] = 1 # ddict['fit']['xmin'] = 1 # ddict['fit']['xmax'] = 1024 # wid.setConfiguration(ddict) wid.exec() print(wid.getConfiguration()) sys.exit() if __name__=="__main__": _logger.setLevel(logging.DEBUG) test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SimpleFitControlWidget.py0000644000000000000000000005641514741736366024434 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() class FitFunctionDefinition(qt.QGroupBox): sigFitFunctionDefinitionSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QGroupBox.__init__(self, parent) self.setTitle("Function Definition") self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) row = 0 #actual fit function self.fitFunctionCheckBox = qt.QCheckBox(self) self.fitFunctionCheckBox.setText("Fit Function to be used") self.fitFunctionCombo = qt.QComboBox(self) self.fitFunctionCombo.addItem(str("None")) self.fitFunctionCombo.activated[int].connect( \ self._fitFunctionComboActivated) self.fitFunctionSetupButton = qt.QPushButton(self) self.fitFunctionSetupButton.setText('SETUP') self.fitFunctionSetupButton.setAutoDefault(False) self.fitFunctionSetupButton.hide() self.mainLayout.addWidget(self.fitFunctionCheckBox, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.fitFunctionSetupButton, row, 2) self.mainLayout.addWidget(self.fitFunctionCombo, row, 3) row += 1 #background self.backgroundCheckBox = qt.QCheckBox(self) self.backgroundCheckBox.setText("Background function") self.backgroundCombo = qt.QComboBox(self) self.backgroundCombo.addItem(str("None")) self.backgroundCombo.activated[int].connect( \ self._backgroundComboActivated) self.backgroundSetupButton = qt.QPushButton(self) self.backgroundSetupButton.setText('SETUP') self.backgroundSetupButton.setAutoDefault(False) self.backgroundSetupButton.hide() self.mainLayout.addWidget(self.backgroundCheckBox, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.backgroundSetupButton, row, 2) self.mainLayout.addWidget(self.backgroundCombo, row, 3) row += 1 #stripping self.stripCheckBox = qt.QCheckBox(self) self.stripCheckBox.setText("Non-analytical (or estimation) background algorithm") self.stripCombo = qt.QComboBox(self) self.stripCombo.addItem(str("Strip")) self.stripCombo.addItem(str("SNIP")) self.stripSetupButton = qt.QPushButton(self) self.stripSetupButton.setText('SETUP') self.stripSetupButton.setAutoDefault(False) self.stripCombo.activated[int].connect(self._stripComboActivated) self.mainLayout.addWidget(self.stripCheckBox, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.stripSetupButton, row, 2) self.mainLayout.addWidget(self.stripCombo, row, 3) row += 1 self.snipWidthLabel = qt.QLabel(self) self.snipWidthLabel.setText(str("SNIP Background Width")) self.snipWidthSpin = qt.QSpinBox(self) self.snipWidthSpin.setMinimum(1) self.snipWidthSpin.setMaximum(300) self.snipWidthSpin.setValue(10) self.mainLayout.addWidget(self.snipWidthLabel, row, 0) self.mainLayout.addWidget(self.snipWidthSpin, row, 3) row += 1 self.stripWidthLabel = qt.QLabel(self) self.stripWidthLabel.setText(str("Strip Background Width")) self.stripWidthSpin = qt.QSpinBox(self) self.stripWidthSpin.setMinimum(1) self.stripWidthSpin.setMaximum(100) self.stripWidthSpin.setValue(4) self.mainLayout.addWidget(self.stripWidthLabel, row, 0) self.mainLayout.addWidget(self.stripWidthSpin, row, 3) row += 1 self.stripIterLabel = qt.QLabel(self) self.stripIterLabel.setText(str("Strip Background Iterations")) self.stripIterSpin = qt.QSpinBox(self) self.stripIterSpin.setMinimum(0) self.stripIterSpin.setMaximum(100000) self.stripIterSpin.setValue(5000) self.mainLayout.addWidget(self.stripIterLabel, row, 0) self.mainLayout.addWidget(self.stripIterSpin, row, 3) row += 1 self.stripFilterLabel = qt.QLabel(self) text = str("Strip Background Smoothing Width (Savitsky-Golay)") self.stripFilterLabel.setText(text) self.stripFilterSpin = qt.QSpinBox(self) self.stripFilterSpin.setMinimum(0) self.stripFilterSpin.setMaximum(40) self.stripFilterSpin.setSingleStep(2) self.mainLayout.addWidget(self.stripFilterLabel, row, 0) self.mainLayout.addWidget(self.stripFilterSpin, row, 3) row += 1 #anchors self.anchorsContainer = qt.QWidget(self) anchorsContainerLayout = qt.QHBoxLayout(self.anchorsContainer) anchorsContainerLayout.setContentsMargins(2, 2, 2, 2) anchorsContainerLayout.setSpacing(2) self.stripAnchorsCheckBox = qt.QCheckBox(self.anchorsContainer) self.stripAnchorsCheckBox.setText(str("Strip Background use Anchors")) anchorsContainerLayout.addWidget(self.stripAnchorsCheckBox) self.stripAnchorsList = [] for i in range(4): anchor = qt.QLineEdit(self.anchorsContainer) anchor._v = qt.CLocaleQDoubleValidator(anchor) anchor.setValidator(anchor._v) anchor.setText("0.0") anchorsContainerLayout.addWidget(anchor) self.stripAnchorsList.append(anchor) self.mainLayout.addWidget(self.anchorsContainer, row, 0, 1, 4) row += 1 #signals self.fitFunctionSetupButton.clicked.connect(self.setupFitFunction) self.backgroundSetupButton.clicked.connect(self.setupBackground) self.stripSetupButton.clicked.connect(self.setupStrip) def _stripComboActivated(self, iValue): if iValue == 1: self.setSNIP(True) else: self.setSNIP(False) def _fitFunctionComboActivated(self, iValue): ddict = {} ddict['event'] = "fitFunctionChanged" ddict['fit_function'] = str(self.fitFunctionCombo.currentText()) self.sigFitFunctionDefinitionSignal.emit(ddict) def _backgroundComboActivated(self, iValue): ddict = {} ddict['event'] = "backgroundFunctionChanged" ddict['background_function'] = str(self.backgroundCombo.currentText()) self.sigFitFunctionDefinitionSignal.emit(ddict) def setSNIP(self, bValue): if bValue: self.snipWidthSpin.setEnabled(True) self.stripWidthSpin.setEnabled(False) self.stripIterSpin.setEnabled(False) self.stripCombo.setCurrentIndex(1) else: self.snipWidthSpin.setEnabled(False) self.stripWidthSpin.setEnabled(True) self.stripIterSpin.setEnabled(True) self.stripCombo.setCurrentIndex(0) def setFunctions(self, functionList): currentFunction = str(self.fitFunctionCombo.currentText()) currentBackground = str(self.backgroundCombo.currentText()) self.fitFunctionCombo.clear() self.backgroundCombo.clear() self.fitFunctionCombo.addItem('None') self.backgroundCombo.addItem('None') for key in functionList: self.fitFunctionCombo.addItem(str(key)) self.backgroundCombo.addItem(str(key)) #restore previous values idx = self.fitFunctionCombo.findText(currentFunction) self.fitFunctionCombo.setCurrentIndex(idx) idx = self.backgroundCombo.findText(currentBackground) self.backgroundCombo.setCurrentIndex(idx) def getFunctions(self): functionList = [] n = self.fitFunctionCombo.count() for i in range(n): if i == 0: continue functionList.append(str(self.fitFunctionCombo.itemText(i))) return functionList def setupFitFunction(self): print("FUNCTION SETUP CALLED") def setupBackground(self): print("Background SETUP CALLED") def setupStrip(self): ddict = {} ddict['event'] = "stripSetupCalled" ddict['strip_function'] = str(self.stripCombo.currentText()) ddict['stripalgorithm'] = self.stripCombo.currentIndex() self.sigFitFunctionDefinitionSignal.emit(ddict) class FitControl(qt.QGroupBox): def __init__(self, parent=None): qt.QGroupBox.__init__(self, parent) self.setTitle("Fit Control") self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) row =0 #linear fit self.fitAlgorithmLabel = qt.QLabel(self) self.fitAlgorithmLabel.setText("Fit algorithm") self.fitAlgorithmCombo = qt.QComboBox(self) self.fitAlgorithmCombo.addItem(str("Levenberg-Marquardt")) self.fitAlgorithmCombo.addItem(str("Linear Fit")) self.mainLayout.addWidget(self.fitAlgorithmLabel, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.fitAlgorithmCombo, row, 3) row += 1 #weighting self.weightLabel = qt.QLabel(self) self.weightLabel.setText("Statistical weighting of data") self.weightCombo = qt.QComboBox(self) self.weightCombo.addItem(str("NO Weight")) self.weightCombo.addItem(str("Poisson (1/Y)")) self.mainLayout.addWidget(self.weightLabel, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.weightCombo, row, 3) row += 1 #function estimation policy self.functionEstimationLabel = qt.QLabel(self) self.functionEstimationLabel.setText("Function estimation policy") self.functionEstimationCombo = qt.QComboBox(self) self.functionEstimationCombo.addItem(str("Use configuration")) self.functionEstimationCombo.addItem(str("Estimate once")) self.functionEstimationCombo.addItem(str("Estimate always")) self.functionEstimationCombo.setCurrentIndex(2) self.mainLayout.addWidget(self.functionEstimationLabel, row, 0) self.mainLayout.addWidget(self.functionEstimationCombo, row, 3) row += 1 #background estimation policy self.backgroundEstimationLabel = qt.QLabel(self) text = "Background estimation policy" self.backgroundEstimationLabel.setText(text) self.backgroundEstimationCombo = qt.QComboBox(self) self.backgroundEstimationCombo.addItem(str("Use configuration")) self.backgroundEstimationCombo.addItem(str("Estimate once")) self.backgroundEstimationCombo.addItem(str("Estimate always")) self.backgroundEstimationCombo.setCurrentIndex(2) self.mainLayout.addWidget(self.backgroundEstimationLabel, row, 0) self.mainLayout.addWidget(self.backgroundEstimationCombo, row, 3) row += 1 #number of iterations self.iterLabel = qt.QLabel(self) self.iterLabel.setText(str("Maximum number of fit iterations")) self.iterSpin = qt.QSpinBox(self) self.iterSpin.setMinimum(1) self.iterSpin.setMaximum(10000) self.iterSpin.setValue(10) self.mainLayout.addWidget(self.iterLabel, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.iterSpin, row, 3) row += 1 #chi square handling self.chi2Label = qt.QLabel(self) self.chi2Label.setText(str("Minimum chi^2 difference (%)")) if 0: self.chi2Value = qt.QLineEdit(self) self.chi2Value._v = qt.CLocaleQDoubleValidator(self.chi2Value) self.chi2Value.setValidator(self.chi2Value._v) self.chi2Value.setText(str("0.001")) else: self.chi2Value = qt.QDoubleSpinBox(self) self.chi2Value.setDecimals(4) self.chi2Value.setMinimum(0.0001) self.chi2Value.setMaximum(100.) self.chi2Value.setSingleStep(0.0001) self.chi2Value.setValue(0.001) self.mainLayout.addWidget(self.chi2Label, row, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), row, 1) self.mainLayout.addWidget(self.chi2Value, row, 3) row +=1 #fitting region self.regionTopLine = qt.QFrame(self) self.regionTopLine.setFrameShape(qt.QFrame.HLine) self.regionTopLine.setFrameShadow(qt.QFrame.Sunken) self.regionTopLine.setFrameShape(qt.QFrame.HLine) self.regionCheckBox = qt.QCheckBox(self) self.regionCheckBox.setText(str("Limit fitting region to :")) self.firstLabel = qt.QLabel(self) firstLabel_font = qt.QFont(self.firstLabel.font()) firstLabel_font.setItalic(1) self.firstLabel.setFont(firstLabel_font) self.firstLabel.setText(str("First X Value ")) self.firstLabel.setAlignment(qt.Qt.AlignVCenter | qt.Qt.AlignRight) self.firstValue = qt.QLineEdit(self) self.firstValue._v = qt.CLocaleQDoubleValidator(self.firstValue) self.firstValue.setValidator(self.firstValue._v) self.firstValue.setText(str("0.")) self.lastLabel = qt.QLabel(self) lastLabel_font = qt.QFont(self.lastLabel.font()) lastLabel_font.setItalic(1) self.lastLabel.setFont(lastLabel_font) self.lastLabel.setText(str("Last X Value ")) self.lastLabel.setAlignment(qt.Qt.AlignVCenter | qt.Qt.AlignRight) self.lastValue = qt.QLineEdit(self) self.lastValue._v = qt.CLocaleQDoubleValidator(self.lastValue) self.lastValue.setValidator(self.lastValue._v) self.lastValue.setText(str("1000.")) self.regionBottomLine = qt.QFrame(self) self.regionBottomLine.setFrameShape(qt.QFrame.HLine) self.regionBottomLine.setFrameShadow(qt.QFrame.Sunken) self.regionBottomLine.setFrameShape(qt.QFrame.HLine) self.mainLayout.addWidget(self.regionTopLine, row, 0, 1, 4) row += 1 self.mainLayout.addWidget(self.regionCheckBox,row, 0) self.mainLayout.addWidget(self.firstLabel, row, 1) self.mainLayout.addWidget(self.firstValue, row, 3) row += 1 self.mainLayout.addWidget(self.lastLabel, row, 1) self.mainLayout.addWidget(self.lastValue, row, 3) row += 1 self.mainLayout.addWidget(self.regionBottomLine, row, 0, 1, 4) row += 1 class SimpleFitControlWidget(qt.QWidget): sigFitControlSignal = qt.pyqtSignal(object) def __init__(self, parent = None): qt.QWidget.__init__(self, parent) self.mainLayout = qt. QVBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.functionDefinitionWidget = FitFunctionDefinition(self) self.fitControlWidget = FitControl(self) self.mainLayout.addWidget(self.functionDefinitionWidget) self.mainLayout.addWidget(self.fitControlWidget) self.mainLayout.addWidget(qt.VerticalSpacer(self)) self.functionDefinitionWidget.sigFitFunctionDefinitionSignal.connect( \ self._functionDefinitionSlot) def _functionDefinitionSlot(self, ddict): self.sigFitControlSignal.emit(ddict) def setConfiguration(self, ddict0): if "fit" in ddict0: ddict = ddict0["fit"] else: ddict = ddict0 workingKeys = [] originalKeys = list(ddict.keys()) for key in originalKeys: workingKeys.append(key.lower()) #get current configuration current = self.getConfiguration() for key in list(current.keys()): #avoid case sensitivity problems lowerCaseKey = key.lower() if lowerCaseKey in workingKeys: idx = workingKeys.index(lowerCaseKey) current[key] = ddict[originalKeys[idx]] self._setConfiguration(current) def _setConfiguration(self, ddict): #all the keys will be present w = self.functionDefinitionWidget if 'functions' in ddict: w.setFunctions(ddict['functions']) if ddict['fit_function'] in [None, "None", "NONE"]: idx = 0 else: idx = w.fitFunctionCombo.findText(ddict['fit_function']) w.fitFunctionCombo.setCurrentIndex(idx) if ddict['background_function'] in [None, "None", "NONE"]: idx = 0 else: idx = w.backgroundCombo.findText(ddict['background_function']) w.backgroundCombo.setCurrentIndex(idx) if ddict['function_flag']: w.fitFunctionCheckBox.setChecked(True) else: w.fitFunctionCheckBox.setChecked(False) if ddict['strip_flag']: w.stripCheckBox.setChecked(True) else: w.stripCheckBox.setChecked(False) if ddict['background_flag']: w.backgroundCheckBox.setChecked(True) else: w.backgroundCheckBox.setChecked(False) if ddict['stripalgorithm'] in [0, 1, "0", "1"]: idx = int(ddict['stripalgorithm']) else: idx = w.stripCombo.findText(ddict['strip_function']) w.stripCombo.setCurrentIndex(idx) w.setSNIP(idx) w.snipWidthSpin.setValue(int(ddict["snipwidth"])) w.stripWidthSpin.setValue(int(ddict["stripwidth"])) w.stripFilterSpin.setValue(int(ddict["stripfilterwidth"])) w.stripIterSpin.setValue(int(ddict['stripiterations'])) ddict['stripconstant'] = 1.0 w.stripFilterSpin.setValue(int(ddict['stripfilterwidth'])) if int(ddict["stripanchorsflag"]): w.stripAnchorsCheckBox.setChecked(True) else: w.stripAnchorsCheckBox.setChecked(False) anchorslist = ddict.get("stripanchorslist", [0, 0, 0, 0]) anchorslist = ddict["stripanchorslist"] for lineEdit in w.stripAnchorsList: lineEdit.setText("0.0") i = 0 for value in anchorslist: w.stripAnchorsList[i].setText("%g" % float(value)) i += 1 w = self.fitControlWidget idx = w.fitAlgorithmCombo.findText(ddict['fit_algorithm']) w.fitAlgorithmCombo.setCurrentIndex(idx) idx = w.weightCombo.findText(ddict['weight']) w.weightCombo.setCurrentIndex(idx) text = ddict['function_estimation_policy'] idx = w.functionEstimationCombo.findText(text) w.functionEstimationCombo.setCurrentIndex(idx) text = ddict['background_estimation_policy'] idx = w.backgroundEstimationCombo.findText(text) w.backgroundEstimationCombo.setCurrentIndex(idx) w.iterSpin.setValue(int(ddict['maximum_fit_iterations'])) w.chi2Value.setValue(float(ddict['minimum_delta_chi'])) if ddict['use_limits']: w.regionCheckBox.setChecked(True) else: w.regionCheckBox.setChecked(False) w.firstValue.setText("%g" % float(ddict['xmin'])) w.lastValue.setText("%g" % float(ddict['xmax'])) return def getConfiguration(self): ddict = {} w = self.functionDefinitionWidget ddict['functions'] = w.getFunctions() ddict['fit_function'] = str(w.fitFunctionCombo.currentText()) ddict['strip_function'] = str(w.stripCombo.currentText()) ddict['stripalgorithm'] = w.stripCombo.currentIndex() ddict['background_function'] = str(w.backgroundCombo.currentText()) if w.fitFunctionCheckBox.isChecked(): ddict['function_flag'] = 1 else: ddict['function_flag'] = 0 if w.backgroundCheckBox.isChecked(): ddict['background_flag'] = 1 else: ddict['background_flag'] = 0 if w.stripCheckBox.isChecked(): ddict['strip_flag'] = 1 else: ddict['strip_flag'] = 0 ddict['snipwidth'] = w.snipWidthSpin.value() ddict['stripwidth'] = w.stripWidthSpin.value() ddict['stripiterations'] = w.stripIterSpin.value() ddict['stripconstant'] = 1.0 ddict['stripfilterwidth'] = w.stripFilterSpin.value() if w.stripAnchorsCheckBox.isChecked(): ddict['stripanchorsflag'] = 1 else: ddict['stripanchorsflag'] = 0 ddict["stripanchorslist"] = [] for lineEdit in w.stripAnchorsList: text = str(lineEdit.text()) if not len(text): text = 0.0 ddict["stripanchorslist"].append(float(text)) w = self.fitControlWidget ddict['fit_algorithm'] = str(w.fitAlgorithmCombo.currentText()) ddict['weight'] = str(w.weightCombo.currentText()) text = str(w.functionEstimationCombo.currentText()) ddict['function_estimation_policy'] = text text = str(w.backgroundEstimationCombo.currentText()) ddict['background_estimation_policy'] = text ddict['maximum_fit_iterations'] = w.iterSpin.value() ddict['minimum_delta_chi'] = w.chi2Value.value() if w.regionCheckBox.isChecked(): ddict['use_limits'] = 1 else: ddict['use_limits'] = 0 ddict['xmin'] = float(str(w.firstValue.text())) ddict['xmax'] = float(str(w.lastValue.text())) return ddict def test(): app = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) wid = SimpleFitControlWidget() ddict = {} ddict['stripwidth'] = 4 ddict['stripiterations'] = 4000 ddict['stripconstant'] = 1.0 ddict['stripfilterwidth'] = 3 ddict['stripanchorsflag'] = 1 ddict['stripanchorslist'] = [0, 1, 2, 3] ddict['use_limits'] = 1 ddict['xmin'] = 1 ddict['xmax'] = 1024 wid.setConfiguration(ddict) wid.show() app.exec() if __name__=="__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SimpleFitGui.py0000644000000000000000000004512114741736366022364 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaMath.fitting import SimpleFitModule from . import SimpleFitConfigurationGui from PyMca5.PyMcaMath.fitting import SimpleFitUserEstimatedFunctions from . import Parameters from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaGui.io import PyMcaFileDialogs _logger = logging.getLogger(__name__) class TopWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) font = qt.QFont(self.font()) font.setBold(True) #Function handling self.functionLabel = qt.QLabel(self) self.functionLabel.setFont(font) self.functionLabel.setText("Function:") self.addFunctionButton = qt.QPushButton(self) self.addFunctionButton.setText("ADD") #fit function self.fitFunctionLabel = qt.QLabel(self) self.fitFunctionLabel.setFont(font) self.fitFunctionLabel.setText("Fit:") self.fitFunctionCombo = qt.QComboBox(self) self.fitFunctionCombo.addItem(qt.safe_str("None")) self.fitFunctionCombo.setSizeAdjustPolicy(qt.QComboBox.AdjustToContents) self.fitFunctionCombo.setMinimumWidth(100) #background function self.backgroundLabel = qt.QLabel(self) self.backgroundLabel.setFont(font) self.backgroundLabel.setText("Background:") self.backgroundCombo = qt.QComboBox(self) self.backgroundCombo.addItem(qt.safe_str("None")) self.backgroundCombo.setSizeAdjustPolicy(qt.QComboBox.AdjustToContents) self.backgroundCombo.setMinimumWidth(100) #arrange everything self.mainLayout.addWidget(self.functionLabel, 0, 0) self.mainLayout.addWidget(self.addFunctionButton, 0, 1) self.mainLayout.addWidget(qt.HorizontalSpacer(self), 0, 2) self.mainLayout.addWidget(self.fitFunctionLabel, 0, 3) self.mainLayout.addWidget(self.fitFunctionCombo, 0, 4) self.mainLayout.addWidget(qt.HorizontalSpacer(self), 0, 5) self.mainLayout.addWidget(self.backgroundLabel, 0, 6) self.mainLayout.addWidget(self.backgroundCombo, 0, 7) self.configureButton = qt.QPushButton(self) self.configureButton.setText("CONFIGURE") self.mainLayout.addWidget(self.configureButton, 0, 8) def setFunctions(self, functionList): currentFunction = qt.safe_str(self.fitFunctionCombo.currentText()) currentBackground = qt.safe_str(self.backgroundCombo.currentText()) self.fitFunctionCombo.clear() self.backgroundCombo.clear() self.fitFunctionCombo.addItem('None') self.backgroundCombo.addItem('None') for key in functionList: self.fitFunctionCombo.addItem(qt.safe_str(key)) self.backgroundCombo.addItem(qt.safe_str(key)) #restore previous values idx = self.fitFunctionCombo.findText(currentFunction) self.fitFunctionCombo.setCurrentIndex(idx) idx = self.backgroundCombo.findText(currentBackground) self.backgroundCombo.setCurrentIndex(idx) class StatusWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.statusLabel = qt.QLabel(self) self.statusLabel.setText(qt.safe_str("Status:")) self.statusLine = qt.QLineEdit(self) self.statusLine.setText(qt.safe_str("Ready")) self.statusLine.setReadOnly(1) self.chi2Label = qt.QLabel(self) self.chi2Label.setText(qt.safe_str("Reduced Chi Square:")) self.chi2Line = qt.QLineEdit(self) self.chi2Line.setText(qt.safe_str("")) self.chi2Line.setReadOnly(1) self.mainLayout.addWidget(self.statusLabel) self.mainLayout.addWidget(self.statusLine) self.mainLayout.addWidget(self.chi2Label) self.mainLayout.addWidget(self.chi2Line) class SimpleFitGui(qt.QWidget): sigSimpleFitSignal = qt.pyqtSignal(object) def __init__(self, parent=None, fit=None, graph=None, actions=True): qt.QWidget.__init__(self, parent) self.setWindowTitle("SimpleFitGui") if fit is None: self.fitModule = SimpleFitModule.SimpleFit() self.fitModule.importFunctions(SimpleFitUserEstimatedFunctions) self.fitModule.loadUserFunctions() else: self.fitModule = fit if graph is None: self.__useTab = True self.graph = PlotWindow.PlotWindow(newplot=False, plugins=False, fit=False, control=True, position=True) else: self.__useTab = False self.graph = graph self._configurationDialog = None self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.topWidget = TopWidget(self) config = self.fitModule.getConfiguration() self.topWidget.setFunctions(config['fit']['functions']) config = None if self.__useTab: self.mainTab = qt.QTabWidget(self) self.mainLayout.addWidget(self.mainTab) self.parametersTable = Parameters.Parameters() self.mainTab.addTab(self.graph, 'GRAPH') self.mainTab.addTab(self.parametersTable, 'FIT') else: self.parametersTable = Parameters.Parameters(self) self.statusWidget = StatusWidget(self) self.mainLayout.addWidget(self.topWidget) if self.__useTab: self.mainLayout.addWidget(self.mainTab) else: self.mainLayout.addWidget(self.parametersTable) self.mainLayout.addWidget(self.statusWidget) if actions: #build the actions widget self.fitActions = qt.QWidget(self) self.fitActions.mainLayout = qt.QHBoxLayout(self.fitActions) self.fitActions.mainLayout.setContentsMargins(2, 2, 2, 2) self.fitActions.mainLayout.setSpacing(2) self.fitActions.estimateButton = qt.QPushButton(self.fitActions) self.fitActions.estimateButton.setText("Estimate") self.fitActions.startFitButton = qt.QPushButton(self.fitActions) self.fitActions.startFitButton.setText("Start Fit") self.fitActions.dismissButton = qt.QPushButton(self.fitActions) self.fitActions.dismissButton.setText("Dismiss") self.fitActions.mainLayout.addWidget(self.fitActions.estimateButton) self.fitActions.mainLayout.addWidget(self.fitActions.startFitButton) self.fitActions.mainLayout.addWidget(self.fitActions.dismissButton) self.mainLayout.addWidget(self.fitActions) #connect top widget self.topWidget.addFunctionButton.clicked.connect(\ self.importFunctionsSlot) self.topWidget.fitFunctionCombo.currentIndexChanged[int].connect(\ self.fitFunctionComboSlot) self.topWidget.backgroundCombo.currentIndexChanged[int].connect(\ self.backgroundComboSlot) self.topWidget.configureButton.clicked.connect(\ self.configureButtonSlot) if actions: #connect actions self.fitActions.estimateButton.clicked.connect(self.estimate) self.fitActions.startFitButton.clicked.connect(self.startFit) self.fitActions.dismissButton.clicked.connect(self.dismiss) def importFunctionsSlot(self): return self.importFunctions() def importFunctions(self, functionsfile=None): if functionsfile is None: filetypelist = ['Python files (*.py)', 'All Files (*)'] fileList = PyMcaFileDialogs.getFileList(self, filetypelist=filetypelist, message="Select input functions file", currentdir=None, mode="OPEN", getfilter=None, single=True, currentfilter=filetypelist[0], native=None) if len(fileList): functionsfile= qt.safe_str(fileList[0]) else: functionsfile = "" if not len(functionsfile): return try: self.fitModule.importFunctions(functionsfile) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox() msg.setWindowTitle("SimpleFitGui error") msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("Function not imported %s" % \ str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() config = self.fitModule.getConfiguration() self.topWidget.setFunctions(config['fit']['functions']) def fitFunctionComboSlot(self, idx): if idx <= 0: fname = "None" else: fname = qt.safe_str(self.topWidget.fitFunctionCombo.itemText(idx)) self.fitModule.setFitFunction(fname) def backgroundComboSlot(self, idx): if idx <= 0: fname = "None" else: fname = qt.safe_str(self.topWidget.backgroundCombo.itemText(idx)) self.setBackgroundFunction(fname) def configureButtonSlot(self): if self._configurationDialog is None: self._configurationDialog =\ SimpleFitConfigurationGui.SimpleFitConfigurationGui() self._configurationDialog.setSimpleFitInstance(self.fitModule) if not self._configurationDialog.exec(): _logger.debug("NOT UPDATING CONFIGURATION") oldConfig = self.fitModule.getConfiguration() self._configurationDialog.setConfiguration(oldConfig) return newConfig = self._configurationDialog.getConfiguration() self.topWidget.setFunctions(newConfig['fit']['functions']) self.fitModule.setConfiguration(newConfig) newConfig = self.fitModule.getConfiguration() #self.topWidget.setFunctions(newConfig['fit']['functions']) fname = self.fitModule.getFitFunction() if fname in [None, "None", "NONE"]: idx = 0 else: idx = newConfig['fit']['functions'].index(fname) + 1 self.topWidget.fitFunctionCombo.setCurrentIndex(idx) fname = self.fitModule.getBackgroundFunction() if fname in [None, "None", "NONE"]: idx = 0 else: idx = newConfig['fit']['functions'].index(fname) + 1 idx = self.topWidget.backgroundCombo.findText(fname) self.topWidget.backgroundCombo.setCurrentIndex(idx) _logger.debug("TABLE TO BE CLEANED") #self.estimate() def setFitFunction(self, fname): current = self.fitModule.getFitFunction() if current != fname: self.fitModule.setFitFunction(fname) idx = self.topWidget.fitFunctionCombo.findText(fname) self.topWidget.fitFunctionCombo.setCurrentIndex(idx) def setBackgroundFunction(self, fname): current = self.fitModule.getBackgroundFunction() if current != fname: self.fitModule.setBackgroundFunction(fname) idx = self.topWidget.backgroundCombo.findText(fname) self.topWidget.backgroundCombo.setCurrentIndex(idx) def setData(self, *var, **kw): returnValue = self.fitModule.setData(*var, **kw) if self.__useTab: if hasattr(self.graph, "addCurve"): self.graph.addCurve(self.fitModule._x, self.fitModule._y, legend='Data', replace=True) elif hasattr(self.graph, "newCurve"): self.graph.clearCurves() self.graph.newCurve('Data', self.fitModule._x, self.fitModule._y) self.graph.replot() return returnValue def estimate(self): self.setStatus("Estimate started") self.statusWidget.chi2Line.setText("") try: x = self.fitModule._x y = self.fitModule._y self.graph.clear() self.graph.addCurve(x, y, 'Data') self.fitModule.estimate() self.setStatus() self.parametersTable.fillTableFromFit(self.fitModule.paramlist) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise text = "%s:%s" % (sys.exc_info()[0], sys.exc_info()[1]) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() self.setStatus("Ready (after estimate error)") def setStatus(self, text=None): if text is None: text = "%s" % self.fitModule.getStatus() self.statusWidget.statusLine.setText(text) def startFit(self): #get parameters from table self.fitModule.paramlist = self.parametersTable.fillFitFromTable() try: values,chisq,sigma,niter,lastdeltachi = self.fitModule.startFit() self.setStatus() except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise text = "%s:%s" % (sys.exc_info()[0], sys.exc_info()[1]) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() self.setStatus("Ready (after fit error)") return self.parametersTable.fillTableFromFit(self.fitModule.paramlist) self.statusWidget.chi2Line.setText("%f" % chisq) ddict = {} ddict['event'] = "FitFinished" ddict['x'] = self.fitModule._x ddict['y'] = self.fitModule._y ddict['yfit'] = self.evaluateDefinedFunction() self.sigSimpleFitSignal.emit(ddict) self.updateGraph() def updateGraph(self): #this is to be overwritten and for test purposes if self.graph is None: return ddict = self.fitModule.evaluateContributions() ddict['event'] = "FitFinished" ddict['x'] = self.fitModule._x ddict['y'] = self.fitModule._y #ddict['yfit'] = self.evaluateDefinedFunction() #ddict['background'] = self.fitModule._evaluateBackground() self.graph.clear() self.graph.addCurve(ddict['x'], ddict['y'], 'Data', replot=False) self.graph.addCurve(ddict['x'], ddict['yfit'], 'Fit', replot=False) self.graph.addCurve(ddict['x'], ddict['background'], 'Background', replot=True) contributions = ddict['contributions'] if len(contributions) > 1: background = ddict['background'] i = 0 for contribution in contributions: i += 1 if i == len(contributions): replot = True else: replot = False self.graph.addCurve(ddict['x'], background + contribution, legend='Contribution %d' % i, replot=replot) self.graph.show() def dismiss(self): self.close() def evaluateDefinedFunction(self, x=None): return self.fitModule.evaluateDefinedFunction(x) def evaluateContributions(self, x=None): return self.fitModule.evaluateContributions(x) def test(): import numpy #import DefaultFitFunctions as SpecfitFunctions from PyMca5.PyMca import SpecfitFunctions a=SpecfitFunctions.SpecfitFunctions() x = numpy.arange(1000).astype(numpy.float64) p1 = numpy.array([1500,100.,50.0]) p2 = numpy.array([1500,700.,50.0]) y = a.gauss(p1, x) y = y + a.gauss(p2,x) + x * 5. if 0: fit = SimpleFitModule.SimpleFit() fit.importFunctions(SpecfitFunctions) fit.setFitFunction('Gaussians') #fit.setBackgroundFunction('Gaussians') #fit.setBackgroundFunction('Constant') fit.setData(x, y) w = SimpleFitGui(fit=fit) w.show() else: fit=None w = SimpleFitGui(fit=fit) w.setData(x, y, xmin=x[0], xmax=x[-1]) w.show() from PyMca5.PyMca import SimpleFitUserEstimatedFunctions fname = SimpleFitUserEstimatedFunctions.__file__ w.importFunctions(fname) w.setFitFunction('User Estimated Gaussians') return w if __name__=="__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) w = test() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SpecfitConfigGui.py0000644000000000000000000001113114741736366023205 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2018 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """Configuration widget for using Specfit functions in a SimpleFitWindow.""" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.math.fitting.QScriptOption import FieldSheet from PyMca5.PyMcaMath.fitting import SpecfitFunctions sheet1 = {'notetitle': 'Restrains', 'fields': (["CheckField", 'HeightAreaFlag', 'Force positive Height/Area'], ["CheckField", 'PositionFlag', 'Force position in interval'], ["CheckField", 'PosFwhmFlag', 'Force positive FWHM'], ["CheckField", 'SameFwhmFlag', 'Force same FWHM'], ["CheckField", 'EtaFlag', 'Force Eta between 0 and 1'], ["CheckField", 'NoConstrainsFlag', 'Ignore Restrains'])} sheet2 = {'notetitle': 'Search', 'fields': (["EntryField", 'FwhmPoints', 'Fwhm Points: '], ["EntryField", 'Sensitivity', 'Sensitivity: '], ["EntryField", 'Yscaling', 'Y Factor : '], ["CheckField", 'ForcePeakPresence', 'Force peak presence '])} sheet3 = {'notetitle': 'Fit', 'fields': (["CheckField", 'WeightFlag', 'Weight'], ["CheckField", 'AutoFwhm', 'Auto FWHM'], ["CheckField", 'AutoScaling', 'AutoScaling'])} class SpecfitConfigGui(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) layout = qt.QHBoxLayout(self) self.default = SpecfitFunctions.SPECFITFUNCTIONS_DEFAULTS self.sheets = {} self.output = {} for sheet in [sheet1, sheet2, sheet3]: frame = qt.QFrame(self) sublayout = qt.QVBoxLayout() frame.setLayout(sublayout) name = sheet['notetitle'] label = qt.QLabel(frame) label.setText(name) self.sheets[name] = FieldSheet(fields=sheet['fields']) self.sheets[name].setdefaults(self.default) sublayout.addWidget(label) sublayout.addWidget(self.sheets[name]) frame.setLayout(sublayout) frame.setFrameStyle(qt.QFrame.StyledPanel | qt.QFrame.Raised) layout.addWidget(frame) self.setLayout(layout) def configure(self, ddict): self.setConfiguration(ddict) def setConfiguration(self, ddict): # None can show up when checkbox is unchecked # and FieldSheet cannot handle None for checkboxes for key, value in ddict.items(): if value is None: ddict[key] = 0 if "configuration" in ddict: for key, value in ddict["configuration"].items(): if value is None: ddict["configuration"][key] = 0 for name, sheet in self.sheets.items(): if "configuration" in ddict: sheet.setdefaults(ddict["configuration"]) else: sheet.setdefaults(ddict) self.output.update(ddict) def getConfiguration(self): for name, sheet in self.sheets.items(): if "configuration" in self.output: self.output["configuration"].update(sheet.get()) else: self.output.update(sheet.get()) return self.output ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/SpecfitGui.py0000644000000000000000000005502314741736366022067 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import traceback import logging from PyMca5.PyMcaCore import EventHandler from PyMca5.PyMcaMath.fitting import Specfit from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs QTVERSION = qt.qVersion() from . import FitConfigGui from . import MultiParameters from . import FitActionsGui from . import FitStatusGui from . import QScriptOption _logger = logging.getLogger(__name__) class SpecfitGui(qt.QWidget): sigSpecfitGuiSignal = qt.pyqtSignal(object) def __init__(self,parent = None,name = None,fl = 0, specfit = None, config = 0, status = 0, buttons = 0, eh = None): if name == None: name = "SpecfitGui" qt.QWidget.__init__(self, parent) self.setWindowTitle(name) layout= qt.QVBoxLayout(self) #layout.setAutoAdd(1) if eh == None: self.eh = EventHandler.EventHandler() else: self.eh = eh if specfit is None: self.specfit = Specfit.Specfit(eh=self.eh) else: self.specfit = specfit #initialize the default fitting functions in case #none is present if not len(self.specfit.theorylist): funsFile = "SpecfitFunctions.py" if not os.path.exists(funsFile): funsFile = os.path.join(os.path.dirname(Specfit.__file__),\ funsFile) self.specfit.importfun(funsFile) #copy specfit configure method for direct access self.configure=self.specfit.configure self.fitconfig=self.specfit.fitconfig self.setdata=self.specfit.setdata self.guiconfig=None if config: self.guiconfig = FitConfigGui.FitConfigGui(self) self.guiconfig.MCACheckBox.stateChanged[int].connect(self.mcaevent) self.guiconfig.WeightCheckBox.stateChanged[int].connect(self.weightevent) self.guiconfig.AutoFWHMCheckBox.stateChanged[int].connect(self.autofwhmevent) self.guiconfig.AutoScalingCheckBox.stateChanged[int].connect(self.autoscaleevent) self.guiconfig.ConfigureButton.clicked.connect(self.__configureGuiSlot) self.guiconfig.PrintPushButton.clicked.connect(self.printps) if hasattr(self.guiconfig.BkgComBox, "textActivated"): self.guiconfig.BkgComBox.textActivated[str].connect(self.bkgevent) self.guiconfig.FunComBox.textActivated[str].connect(self.funevent) else: self.guiconfig.BkgComBox.activated[str].connect(self.bkgevent) self.guiconfig.FunComBox.activated[str].connect(self.funevent) layout.addWidget(self.guiconfig) self.guiparameters = MultiParameters.ParametersTab(self) layout.addWidget(self.guiparameters) self.guiparameters.sigMultiParametersSignal.connect(self.__forward) if config: for key in self.specfit.bkgdict.keys(): self.guiconfig.BkgComBox.addItem(str(key)) for key in self.specfit.theorylist: self.guiconfig.FunComBox.addItem(str(key)) configuration={} if specfit is not None: configuration = specfit.configure() if configuration['fittheory'] is None: self.guiconfig.FunComBox.setCurrentIndex(1) self.funevent(self.specfit.theorylist[0]) else: self.funevent(configuration['fittheory']) if configuration['fitbkg'] is None: self.guiconfig.BkgComBox.setCurrentIndex(1) self.bkgevent(list(self.specfit.bkgdict.keys())[0]) else: self.bkgevent(configuration['fitbkg']) else: self.guiconfig.BkgComBox.setCurrentIndex(1) self.guiconfig.FunComBox.setCurrentIndex(1) self.funevent(self.specfit.theorylist[0]) self.bkgevent(list(self.specfit.bkgdict.keys())[0]) configuration.update(self.configure()) if configuration['McaMode']: self.guiconfig.MCACheckBox.setChecked(1) else: self.guiconfig.MCACheckBox.setChecked(0) if configuration['WeightFlag']: self.guiconfig.WeightCheckBox.setChecked(1) else: self.guiconfig.WeightCheckBox.setChecked(0) if configuration['AutoFwhm']: self.guiconfig.AutoFWHMCheckBox.setChecked(1) else: self.guiconfig.AutoFWHMCheckBox.setChecked(0) if configuration['AutoScaling']: self.guiconfig.AutoScalingCheckBox.setChecked(1) else: self.guiconfig.AutoScalingCheckBox.setChecked(0) if status: self.guistatus = FitStatusGui.FitStatusGui(self) self.eh.register('FitStatusChanged',self.fitstatus) layout.addWidget(self.guistatus) if buttons: self.guibuttons = FitActionsGui.FitActionsGui(self) self.guibuttons.EstimateButton.clicked.connect(self.estimate) self.guibuttons.StartfitButton.clicked.connect(self.startfit) self.guibuttons.DismissButton.clicked.connect(self.dismiss) layout.addWidget(self.guibuttons) def updateGui(self,configuration=None): self.__configureGui(configuration) def _emitSignal(self, ddict): self.sigSpecfitGuiSignal.emit(ddict) def __configureGuiSlot(self): self.__configureGui() def __configureGui(self, newconfiguration=None): if self.guiconfig is not None: #get current dictionary #print "before ",self.specfit.fitconfig['fitbkg'] configuration=self.configure() #get new dictionary if newconfiguration is None: newconfiguration=self.configureGui(configuration) #update configuration configuration.update(self.configure(**newconfiguration)) #print "after =",self.specfit.fitconfig['fitbkg'] #update Gui #current function #self.funevent(self.specfit.theorylist[0]) try: i=1+self.specfit.theorylist.index(self.specfit.fitconfig['fittheory']) self.guiconfig.FunComBox.setCurrentIndex(i) self.funevent(self.specfit.fitconfig['fittheory']) except Exception: _logger.warning("Function not in list %s", self.specfit.fitconfig['fittheory']) self.funevent(self.specfit.theorylist[0]) #current background try: #the list conversion is needed in python 3. i=1+list(self.specfit.bkgdict.keys()).index(self.specfit.fitconfig['fitbkg']) self.guiconfig.BkgComBox.setCurrentIndex(i) except Exception: _logger.warning("Background not in list %s", self.specfit.fitconfig['fitbkg']) self.bkgevent(list(self.specfit.bkgdict.keys())[0]) #and all the rest if configuration['McaMode']: self.guiconfig.MCACheckBox.setChecked(1) else: self.guiconfig.MCACheckBox.setChecked(0) if configuration['WeightFlag']: self.guiconfig.WeightCheckBox.setChecked(1) else: self.guiconfig.WeightCheckBox.setChecked(0) if configuration['AutoFwhm']: self.guiconfig.AutoFWHMCheckBox.setChecked(1) else: self.guiconfig.AutoFWHMCheckBox.setChecked(0) if configuration['AutoScaling']: self.guiconfig.AutoScalingCheckBox.setChecked(1) else: self.guiconfig.AutoScalingCheckBox.setChecked(0) #update the Gui self.__initialparameters() def configureGui(self,oldconfiguration): #this method can be overwritten for custom #it should give back a new dictionary newconfiguration={} newconfiguration.update(oldconfiguration) if (0): #example to force a given default configuration newconfiguration['FitTheory']="Pseudo-Voigt Line" newconfiguration['AutoFwhm']=1 newconfiguration['AutoScaling']=1 #example script options like if (1): sheet1={'notetitle':'Restrains', 'fields':(["CheckField",'HeightAreaFlag','Force positive Height/Area'], ["CheckField",'PositionFlag','Force position in interval'], ["CheckField",'PosFwhmFlag','Force positive FWHM'], ["CheckField",'SameFwhmFlag','Force same FWHM'], ["CheckField",'EtaFlag','Force Eta between 0 and 1'], ["CheckField",'NoConstrainsFlag','Ignore Restrains'])} sheet2={'notetitle':'Search', 'fields':(["EntryField",'FwhmPoints', 'Fwhm Points: '], ["EntryField",'Sensitivity','Sensitivity: '], ["EntryField",'Yscaling', 'Y Factor : '], ["CheckField",'ForcePeakPresence', 'Force peak presence '])} w=QScriptOption.QScriptOption(self,name='Fit Configuration', sheets=(sheet1,sheet2), default=oldconfiguration) w.show() w.exec() if w.result(): newconfiguration.update(w.output) #we do not need the dialog any longer del w newconfiguration['FwhmPoints']=int(float(newconfiguration['FwhmPoints'])) newconfiguration['Sensitivity']=float(newconfiguration['Sensitivity']) newconfiguration['Yscaling']=float(newconfiguration['Yscaling']) return newconfiguration def estimate(self): if self.specfit.fitconfig['McaMode']: try: mcaresult=self.specfit.mcafit() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Error on mcafit") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() ddict={} ddict['event'] = 'FitError' self._emitSignal(ddict) if _logger.getEffectiveLevel() == logging.DEBUG: raise return self.guiparameters.fillfrommca(mcaresult) ddict={} ddict['event'] = 'McaFitFinished' ddict['data'] = mcaresult self._emitSignal(ddict) #self.guiparameters.removeallviews(keep='Region 1') else: try: if self.specfit.theorydict[self.specfit.fitconfig['fittheory']][2] is not None: self.specfit.estimate() else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) text = "Function does not define a way to estimate\n" text += "the initial parameters. Please, fill them\n" text += "yourself in the table and press Start Fit\n" msg.setText(text) msg.setWindowTitle('SpecfitGui Message') msg.exec() return except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on estimate: %s" % sys.exc_info()[1]) msg.exec() return self.guiparameters.fillfromfit(self.specfit.paramlist,current='Fit') self.guiparameters.removeallviews(keep='Fit') ddict={} ddict['event'] = 'EstimateFinished' ddict['data'] = self.specfit.paramlist self._emitSignal(ddict) return def __forward(self,ddict): self._emitSignal(ddict) def startfit(self): if self.specfit.fitconfig['McaMode']: try: mcaresult=self.specfit.mcafit() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on mcafit: %s" % sys.exc_info()[1]) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise return self.guiparameters.fillfrommca(mcaresult) ddict={} ddict['event'] = 'McaFitFinished' ddict['data'] = mcaresult self._emitSignal(ddict) #self.guiparameters.removeview(view='Fit') else: #for param in self.specfit.paramlist: # print param['name'],param['group'],param['estimation'] self.specfit.paramlist=self.guiparameters.fillfitfromtable() if _logger.getEffectiveLevel() == logging.DEBUG: for param in self.specfit.paramlist: _logger.debug("name %s; group %s; estimation %s", param['name'], param['group'], param['estimation']) _logger.debug("TESTING") try: self.specfit.startfit() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on Fit") msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise return self.guiparameters.fillfromfit(self.specfit.paramlist,current='Fit') self.guiparameters.removeallviews(keep='Fit') ddict={} ddict['event'] = 'FitFinished' ddict['data'] = self.specfit.paramlist self._emitSignal(ddict) return def printps(self,**kw): text = self.guiparameters.gettext(**kw) if __name__ == "__main__": self.__printps(text) else: ddict={} ddict['event'] = 'print' ddict['text'] = text self._emitSignal(ddict) return def __printps(self, text): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Sorry, Qt4 printing not implemented yet") msg.exec() def mcaevent(self,item): if int(item): self.configure(McaMode=1) mode = 1 else: self.configure(McaMode=0) mode = 0 self.__initialparameters() ddict={} ddict['event'] = 'McaModeChanged' ddict['data'] = mode self._emitSignal(ddict) return def weightevent(self,item): if int(item): self.configure(WeightFlag=1) else: self.configure(WeightFlag=0) return def autofwhmevent(self,item): if int(item): self.configure(AutoFwhm=1) else: self.configure(AutoFwhm=0) return def autoscaleevent(self,item): if int(item): self.configure(AutoScaling=1) else: self.configure(AutoScaling=0) return def bkgevent(self,item): item=str(item) if item in self.specfit.bkgdict.keys(): self.specfit.setbackground(item) else: qt.QMessageBox.information(self, "Info", "Function not implemented") return i=1+self.specfit.bkgdict.keys().index(self.specfit.fitconfig['fitbkg']) self.guiconfig.BkgComBox.setCurrentIndex(i) self.__initialparameters() return def funevent(self,item): item=str(item) if item in self.specfit.theorylist: self.specfit.settheory(item) else: filelist = PyMcaFileDialogs.getFileList(self, message="Select python module with your function(s)", filetypelist=["Python Files (*.py)", "All Files (*)"], mode="OPEN", single=True, getfilter=False) if not len(filelist): functionsfile = "" else: functionsfile = filelist[0] if len(functionsfile): try: if self.specfit.importfun(functionsfile): qt.QMessageBox.critical(self, "ERROR", "Function not imported") return else: #empty the ComboBox n=self.guiconfig.FunComBox.count() while(self.guiconfig.FunComBox.count()>1): self.guiconfig.FunComBox.removeItem(1) #and fill it again for key in self.specfit.theorylist: if QTVERSION < '4.0.0': self.guiconfig.FunComBox.insertItem(str(key)) else: self.guiconfig.FunComBox.addItem(str(key)) except Exception: qt.QMessageBox.critical(self, "ERROR", "Function not imported") i=1+self.specfit.theorylist.index(self.specfit.fitconfig['fittheory']) if QTVERSION < '4.0.0': self.guiconfig.FunComBox.setCurrentItem(i) else: self.guiconfig.FunComBox.setCurrentIndex(i) self.__initialparameters() return def __initialparameters(self): self.specfit.final_theory=[] self.specfit.paramlist=[] for pname in self.specfit.bkgdict[self.specfit.fitconfig['fitbkg']][1]: self.specfit.final_theory.append(pname) self.specfit.paramlist.append({'name':pname, 'estimation':0, 'group':0, 'code':'FREE', 'cons1':0, 'cons2':0, 'fitresult':0.0, 'sigma':0.0, 'xmin':None, 'xmax':None}) if self.specfit.fitconfig['fittheory'] is not None: for pname in self.specfit.theorydict[self.specfit.fitconfig['fittheory']][1]: self.specfit.final_theory.append(pname+"1") self.specfit.paramlist.append({'name':pname+"1", 'estimation':0, 'group':1, 'code':'FREE', 'cons1':0, 'cons2':0, 'fitresult':0.0, 'sigma':0.0, 'xmin':None, 'xmax':None}) if self.specfit.fitconfig['McaMode']: self.guiparameters.fillfromfit(self.specfit.paramlist,current='Region 1') self.guiparameters.removeallviews(keep='Region 1') else: self.guiparameters.fillfromfit(self.specfit.paramlist,current='Fit') self.guiparameters.removeallviews(keep='Fit') return def fitstatus(self,data): if 'chisq' in data: if data['chisq'] is None: self.guistatus.ChisqLine.setText(" ") else: chisq=data['chisq'] self.guistatus.ChisqLine.setText("%6.2f" % chisq) if 'status' in data: status=data['status'] self.guistatus.StatusLine.setText(str(status)) return def dismiss(self): self.close() return if __name__ == "__main__": import numpy from PyMca5 import SpecfitFunctions a=SpecfitFunctions.SpecfitFunctions() x = numpy.arange(2000).astype(numpy.float64) p1 = numpy.array([1500,100.,30.0]) p2 = numpy.array([1500,300.,30.0]) p3 = numpy.array([1500,500.,30.0]) p4 = numpy.array([1500,700.,30.0]) p5 = numpy.array([1500,900.,30.0]) p6 = numpy.array([1500,1100.,30.0]) p7 = numpy.array([1500,1300.,30.0]) p8 = numpy.array([1500,1500.,30.0]) p9 = numpy.array([1500,1700.,30.0]) p10 = numpy.array([1500,1900.,30.0]) y = a.gauss(p1,x)+1 y = y + a.gauss(p2,x) y = y + a.gauss(p3,x) y = y + a.gauss(p4,x) y = y + a.gauss(p5,x) #y = y + a.gauss(p6,x) #y = y + a.gauss(p7,x) #y = y + a.gauss(p8,x) #y = y + a.gauss(p9,x) #y = y + a.gauss(p10,x) y=y/1000.0 a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = SpecfitGui(config=1, status=1, buttons=1) w.setdata(x=x,y=y) w.show() a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/TabSheets.py0000644000000000000000000000654614741736366021715 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() class TabSheets(qt.QDialog): def __init__(self,parent = None,name = None,modal = 0,fl = 0, nohelp =1,nodefaults=1): qt.QDialog.__init__(self,parent) self.setWindowTitle(str("TabSheets")) self.setModal(modal) TabSheetsLayout = qt.QVBoxLayout(self) TabSheetsLayout.setContentsMargins(11, 11, 11, 11) TabSheetsLayout.setSpacing(6) self.tabWidget = qt.QTabWidget(self) self.Widget8 = qt.QWidget(self.tabWidget) self.Widget9 = qt.QWidget(self.tabWidget) self.tabWidget.addTab(self.Widget8,str("Tab")) self.tabWidget.addTab(self.Widget9,str("Tab")) TabSheetsLayout.addWidget(self.tabWidget) Layout2 = qt.QHBoxLayout(None) Layout2.setContentsMargins(0, 0, 0, 0) Layout2.setSpacing(6) if not nohelp: self.buttonHelp = qt.QPushButton(self) self.buttonHelp.setText(str("Help")) Layout2.addWidget(self.buttonHelp) if not nodefaults: self.buttonDefaults = qt.QPushButton(self) self.buttonDefaults.setText(str("Defaults")) Layout2.addWidget(self.buttonDefaults) spacer = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) Layout2.addItem(spacer) self.buttonOk = qt.QPushButton(self) self.buttonOk.setText(str("OK")) Layout2.addWidget(self.buttonOk) self.buttonCancel = qt.QPushButton(self) self.buttonCancel.setText(str("Cancel")) Layout2.addWidget(self.buttonCancel) TabSheetsLayout.addLayout(Layout2) self.buttonOk.clicked.connect(self.accept) self.buttonCancel.clicked.connect(self.reject) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/TextField.py0000644000000000000000000000545114741736366021715 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class TextField(qt.QWidget): def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.resize(373,44) try: self.setSizePolicy(qt.QSizePolicy(1,1,0,0,self.sizePolicy().hasHeightForWidth())) except Exception: _logger.warning("TextField Bad Size policy") TextFieldLayout = qt.QHBoxLayout(self) Layout2 = qt.QHBoxLayout(None) Layout2.setContentsMargins(0, 0, 0, 0) Layout2.setSpacing(6) spacer = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding,qt.QSizePolicy.Minimum) Layout2.addItem(spacer) self.TextLabel = qt.QLabel(self) try: self.TextLabel.setSizePolicy(qt.QSizePolicy(7,1,0,0,self.TextLabel.sizePolicy().hasHeightForWidth())) except Exception: _logger.warning("TextField Bad Size policy") self.TextLabel.setText(str("TextLabel")) Layout2.addWidget(self.TextLabel) spacer_2 = qt.QSpacerItem(20,20, qt.QSizePolicy.Expanding,qt.QSizePolicy.Minimum) Layout2.addItem(spacer_2) TextFieldLayout.addLayout(Layout2) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/math/fitting/__init__.py0000644000000000000000000000000014741736366021545 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7797663 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/0000755000000000000000000000000014741736404015775 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/CalculationThread.py0000644000000000000000000002713414741736366021753 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import time try: from PyMca5.PyMcaGui import PyMcaQt as qt except ImportError: import PyMcaQt as qt import logging _logger = logging.getLogger(__name__) USE_MOVE_TO_THREAD = False QTHREAD = os.getenv("PYMCA_USE_QTHREAD", False) if QTHREAD in ["True", "true", True, "1", 1]: QTHREAD = True if QTHREAD: QThread = qt.QThread _logger.info("Using Qt threads") else: import threading QThread = threading.Thread # Python threads do not support moveToThread (untested) USE_MOVE_TO_THREAD = False _logger.info("Using Python threads") class CalculationObject(qt.QObject): finished = qt.pyqtSignal() started = qt.pyqtSignal() def __init__(self, parent=None, calculation_method=None, calculation_vars=None, calculation_kw=None, expand_vars=True, expand_kw=True): qt.QObject.__init__(self, parent) self.calculation_method = calculation_method self.calculation_vars = calculation_vars self.calculation_kw = calculation_kw self.expand_vars = expand_vars self.expand_kw = expand_kw if self.expand_vars: if not self.expand_kw: raise ValueError("Cannot expand vars without expanding kw") self.__result = None def run(self): try: self.__result = None if self.calculation_vars is None and self.calculation_kw is None: self.__result = self.calculation_method() elif self.calculation_vars is None: if self.expand_kw: self.__result = self.calculation_method(**self.calculation_kw) else: self.__result = self.calculation_method(self.calculation_kw) elif self.calculation_kw is None: if self.expand_vars: self.__result = self.calculation_method(*self.calculation_vars) else: self.__result = self.calculation_method(self.calculation_vars) elif self.expand_vars and self.expand_kw: self.__result = self.calculation_method(*self.calculation_vars, **self.calculation_kw) elif self.expand_kw: self.__result = self.calculation_method(self.calculation_vars, **self.calculation_kw) else: print("Impossible combination of vars and kw") self._threadRunning = False raise ValueError("Impossible combination of vars and kw") except Exception: self.__result = ("Exception",) + sys.exc_info() finally: # comment lines to allow to other call ???? self.calculation_vars = None self.calculation_kw = None self.finished.emit() def getResult(self): return self.__result class NewCalculationThread(qt.QObject): finished = qt.pyqtSignal() started = qt.pyqtSignal() def __init__(self, parent=None, calculation_method=None, calculation_vars=None, calculation_kw=None, expand_vars=True, expand_kw=True): qt.QObject.__init__(self, parent) self._calculationObject = CalculationObject(parent, calculation_method=calculation_method, calculation_vars=calculation_vars, calculation_kw=calculation_kw, expand_vars=expand_vars, expand_kw=expand_kw) self._calculationThread = qt.QThread() self._calculationObject.moveToThread(self._calculationThread) self._calculationObject.finished.connect(self._calculationThread.quit, qt.Qt.DirectConnection) self._calculationThread.started.connect(self._calculationObject.run, qt.Qt.DirectConnection) self._calculationThread.finished.connect(self._threadFinishedSlot, qt.Qt.DirectConnection) self._threadRunning = False def isRunning(self): #return self.calculationThread.isRunning() return self._threadRunning def _threadFinishedSlot(self): self._threadRunning = False self.finished.emit() def start(self): self._threadRunning = True self._calculationThread.start() self.started.emit() def getResult(self): return self._calculationObject.getResult() result = property(getResult) class OldCalculationThread(QThread): def __init__(self, parent=None, calculation_method=None, calculation_vars=None, calculation_kw=None, expand_vars=True, expand_kw=True): if QTHREAD: QThread.__init__(self, parent) else: QThread.__init__(self) self._threadRunning = False self.calculation_method = calculation_method self.calculation_vars = calculation_vars self.calculation_kw = calculation_kw self.expand_vars = expand_vars self.expand_kw = expand_kw if self.expand_vars: if not self.expand_kw: raise ValueError("Cannot expand vars without expanding kw") if not QTHREAD: def isRunning(self): return self._threadRunning def run(self): try: self._threadRunning = True self.result = None if self.calculation_vars is None and self.calculation_kw is None: self.result = self.calculation_method() elif self.calculation_vars is None: if self.expand_kw: self.result = self.calculation_method(**self.calculation_kw) else: self.result = self.calculation_method(self.calculation_kw) elif self.calculation_kw is None: if self.expand_vars: self.result = self.calculation_method(*self.calculation_vars) else: self.result = self.calculation_method(self.calculation_vars) elif self.expand_vars and self.expand_kw: self.result = self.calculation_method(*self.calculation_vars, **self.calculation_kw) elif self.expand_kw: self.result = self.calculation_method(self.calculation_vars, **self.calculation_kw) else: print("Impossible combination of vars and kw") self._threadRunning = False raise ValueError("Impossible combination of vars and kw") except Exception: self._threadRunning = False self.result = ("Exception",) + sys.exc_info() finally: self.calculation_vars = None self.calculation_kw = None self._threadRunning = False def getResult(self): if hasattr(self, "result"): return self.result else: return None if USE_MOVE_TO_THREAD: CalculationThread=NewCalculationThread else: CalculationThread=OldCalculationThread def waitingMessageDialog(thread, message=None, parent=None, modal=True, update_callback=None, frameless=False): """ thread - The thread to be polled message - The initial message to be diplayed parent - The parent QWidget. It is used just to provide a convenient localtion modal - Default is True. The dialog will prevent user from using other widgets update_callback - The function to be called to provide progress feedback. It is expected to return a dictionary. The recognized key words are: message: The updated message to be displayed. title: The title of the window title. progress: A number between 0 and 100 indicating the progress of the task. status: Status of the calculation thread. """ if message is None: message = "Please wait. Calculation going on." windowTitle = "Please Wait" if frameless: msg = qt.QDialog(None, qt.Qt.FramelessWindowHint) else: msg = qt.QDialog(None) #if modal: # msg.setWindowFlags(qt.Qt.Window | qt.Qt.CustomizeWindowHint | qt.Qt.WindowTitleHint) msg.setModal(modal) msg.setWindowTitle(windowTitle) layout = qt.QHBoxLayout(msg) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) l1 = qt.QLabel(msg) l1.setFixedWidth(l1.fontMetrics().maxWidth()*len('##')) l2 = qt.QLabel(msg) l2.setText("%s" % message) l3 = qt.QLabel(msg) l3.setFixedWidth(l3.fontMetrics().maxWidth()*len('##')) layout.addWidget(l1) layout.addWidget(l2) layout.addWidget(l3) msg.show() if parent is not None: # place the dialog at appropriate point parentGeometry = parent.geometry() x = parentGeometry.x() + 0.5 * parentGeometry.width() y = parentGeometry.y() + 0.5 * parentGeometry.height() msg.move(int(x - 0.5 * msg.width()), int(y)) t0 = time.time() i = 0 ticks = ['-','\\', "|", "/","-","\\",'|','/'] qApp = qt.QApplication.instance() if update_callback is None: while (thread.isRunning()): i = (i+1) % 8 l1.setText(ticks[i]) l3.setText(" "+ticks[i]) qApp.processEvents() if QTHREAD: qt.QThread.msleep(1000) else: time.sleep(1) else: while (thread.isRunning()): updateInfo = update_callback() message = updateInfo.get('message', message) windowTitle = updateInfo.get('title', windowTitle) msg.setWindowTitle(windowTitle) i = (i+1) % 8 l1.setText(ticks[i]) l2.setText(message) l3.setText(" "+ticks[i]) qApp.processEvents() if QTHREAD: qt.QThread.msleep(1000) else: time.sleep(1) msg.close() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/CloseEventNotifyingWidget.py0000644000000000000000000000513214741736366023461 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt class HDFInfoCustomEvent(qt.QEvent): def __init__(self, ddict): if ddict is None: ddict = {} self.dict = ddict qt.QEvent.__init__(self, qt.QEvent.User) class CloseEventNotifyingWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self._notifyCloseEventToWidget = [] def notifyCloseEventToWidget(self, widget): if widget not in self._notifyCloseEventToWidget: self._notifyCloseEventToWidget.append(widget) def closeEvent(self, event): if len(self._notifyCloseEventToWidget): for widget in self._notifyCloseEventToWidget: ddict={} ddict['event'] = 'closeEventSignal' ddict['id'] = id(self) newEvent = HDFInfoCustomEvent(ddict) qt.QApplication.postEvent(widget, newEvent) self._notifyCloseEventToWidget = [] return qt.QWidget.closeEvent(self, event) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/DoubleSlider.py0000644000000000000000000001127614741736366020742 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class DoubleSlider(qt.QWidget): sigDoubleSliderValueChanged = qt.pyqtSignal(object) def __init__(self, parent = None, scale = False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(6, 6, 6, 6) self.mainLayout.setSpacing(1) orientation = qt.Qt.Horizontal self.minSlider = MySlider(self, orientation) self.minSlider.setRange(0, 100.) self.minSlider.setValue(0) self.maxSlider = MySlider(self, orientation) self.maxSlider.setRange(0, 100.0) self.maxSlider.setValue(100.) self.mainLayout.addWidget(self.maxSlider) self.mainLayout.addWidget(self.minSlider) self.minSlider.sigValueChanged.connect(self._sliderChanged) self.maxSlider.sigValueChanged.connect(self._sliderChanged) def __getDict(self): ddict = {} ddict['event'] = "doubleSliderValueChanged" m = self.minSlider.value() M = self.maxSlider.value() if m > M: ddict['max'] = m ddict['min'] = M else: ddict['min'] = m ddict['max'] = M return ddict def _sliderChanged(self, value): _logger.debug("DoubleSlider._sliderChanged()") ddict = self.__getDict() self.sigDoubleSliderValueChanged.emit(ddict) def setMinMax(self, m, M): self.minSlider.setValue(m) self.maxSlider.setValue(M) def getMinMax(self): m = self.minSlider.value() M = self.maxSlider.value() if m > M: return M, m else: return m, M class MySlider(qt.QWidget): sigValueChanged = qt.pyqtSignal(float) def __init__(self, parent = None, orientation=qt.Qt.Horizontal): qt.QWidget.__init__(self, parent) if orientation == qt.Qt.Horizontal: alignment = qt.Qt.AlignHCenter | qt.Qt.AlignTop layout = qt.QHBoxLayout(self) else: alignment = qt.Qt.AlignVCenter | qt.Qt.AlignLeft layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.slider = qt.QSlider(self) self.slider.setOrientation(orientation) self.label = qt.QLabel("0", self) self.label.setAlignment(alignment) self.label.setFixedWidth(self.label.fontMetrics().maxWidth()*len('100.99')) layout.addWidget(self.slider) layout.addWidget(self.label) self.slider.valueChanged.connect(self.setNum) def setNum(self, value): value = value / 100. self.label.setText('%.2f' % value) self.sigValueChanged.emit(value) def setRange(self, minValue, maxValue): self.slider.setRange(int(minValue * 100), int(maxValue * 100)) def setValue(self, value): self.slider.setValue(int(value * 100)) def value(self): return self.slider.value()/100. def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = DoubleSlider() w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/FrameBrowser.py0000644000000000000000000002717414741736366020767 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt icon_first = ["22 22 2 1", ". c None", "# c #000000", "......................", "......................", ".#.................##.", ".#...............####.", ".#.............######.", ".#...........########.", ".#.........##########.", ".#.......############.", ".#.....##############.", ".#...################.", ".#.##################.", ".#.##################.", ".#...################.", ".#.....##############.", ".#.......############.", ".#.........##########.", ".#...........########.", ".#.............######.", ".#...............####.", ".#.................##.", "......................", "......................"] icon_previous = ["22 22 2 1", ". c None", "# c #000000", "......................", "......................", "...................##.", ".................####.", "...............######.", ".............########.", "...........##########.", ".........############.", ".......##############.", ".....################.", "...##################.", "...##################.", ".....################.", ".......##############.", ".........############.", "...........##########.", ".............########.", "...............######.", ".................####.", "...................##.", "......................", "......................"] icon_next = ["22 22 2 1", ". c None", "# c #000000", "......................", "......................", ".##...................", ".####.................", ".######...............", ".########.............", ".##########...........", ".############.........", ".##############.......", ".################.....", ".##################...", ".##################...", ".################.....", ".##############.......", ".############.........", ".##########...........", ".########.............", ".######...............", ".####.................", ".##...................", "......................", "......................"] icon_last = ["22 22 2 1", ". c None", "# c #000000", "......................", "......................", ".##.................#.", ".####...............#.", ".######.............#.", ".########...........#.", ".##########.........#.", ".############.......#.", ".##############.....#.", ".################...#.", ".##################.#.", ".##################.#.", ".################...#.", ".##############.....#.", ".############.......#.", ".##########.........#.", ".########...........#.", ".######.............#.", ".####...............#.", ".##.................#.", "......................", "......................"] class FrameBrowser(qt.QWidget): sigIndexChanged = qt.pyqtSignal(object) def __init__(self, parent=None, n=1): qt.QWidget.__init__(self, parent) self.mainLayout=qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.firstButton = qt.QPushButton(self) self.firstButton.setIcon(qt.QIcon(qt.QPixmap(icon_first))) self.previousButton = qt.QPushButton(self) self.previousButton.setIcon(qt.QIcon(qt.QPixmap(icon_previous))) self.lineEdit = qt.QLineEdit(self) self.lineEdit.setFixedWidth(self.lineEdit.fontMetrics().maxWidth()*len('%05d' % n)) validator = qt.QIntValidator(1, n, self.lineEdit) self.lineEdit.setText("1") self._oldIndex = 0 self.lineEdit.setValidator(validator) self.label = qt.QLabel(self) self.label.setText("of %d" % n) self.nextButton = qt.QPushButton(self) self.nextButton.setIcon(qt.QIcon(qt.QPixmap(icon_next))) self.lastButton = qt.QPushButton(self) self.lastButton.setIcon(qt.QIcon(qt.QPixmap(icon_last))) self.mainLayout.addWidget(qt.HorizontalSpacer(self)) self.mainLayout.addWidget(self.firstButton) self.mainLayout.addWidget(self.previousButton) self.mainLayout.addWidget(self.lineEdit) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.nextButton) self.mainLayout.addWidget(self.lastButton) self.mainLayout.addWidget(qt.HorizontalSpacer(self)) self.firstButton.clicked.connect(self._firstClicked) self.previousButton.clicked.connect(self._previousClicked) self.nextButton.clicked.connect(self._nextClicked) self.lastButton.clicked.connect(self._lastClicked) self.lineEdit.editingFinished.connect(self._textChangedSlot) def _firstClicked(self): self.lineEdit.setText("%d" % self.lineEdit.validator().bottom()) self._textChangedSlot() def _previousClicked(self): if self._oldIndex >= self.lineEdit.validator().bottom(): self.lineEdit.setText("%d" % (self._oldIndex)) self._textChangedSlot() def _nextClicked(self): if self._oldIndex < (self.lineEdit.validator().top()-1): self.lineEdit.setText("%d" % (self._oldIndex+2)) self._textChangedSlot() def _lastClicked(self): self.lineEdit.setText("%d" % self.lineEdit.validator().top()) self._textChangedSlot() def _textChangedSlot(self): txt = str(self.lineEdit.text()) if not len(txt): self.lineEdit.setText("%d" % (self._oldIndex+1)) return newValue = int(txt) - 1 if newValue == self._oldIndex: return ddict = {} ddict["event"] = "indexChanged" ddict["old"] = self._oldIndex + 1 self._oldIndex = newValue ddict["new"] = self._oldIndex + 1 ddict["id"] = id(self) self.sigIndexChanged.emit(ddict) def setRange(self, first, last): return self.setLimits(first, last) def setLimits(self, first, last): bottom = min(first, last) top = max(first, last) self.lineEdit.validator().setTop(top) self.lineEdit.validator().setBottom(bottom) self._oldIndex = bottom - 1 self.lineEdit.setText("%d" % (self._oldIndex + 1)) self.label.setText(" limits = %d, %d" % (bottom, top)) def setNFrames(self, nframes): bottom = 1 top = nframes self.lineEdit.validator().setTop(top) self.lineEdit.validator().setBottom(bottom) self._oldIndex = bottom - 1 self.lineEdit.setText("%d" % (self._oldIndex + 1)) self.label.setText(" of %d" % (top)) def getCurrentIndex(self): return self._oldIndex + 1 def setValue(self, value): self.lineEdit.setText("%d" % value) self._textChangedSlot() class HorizontalSliderWithBrowser(qt.QAbstractSlider): sigIndexChanged = qt.pyqtSignal(object) def __init__(self, *var): qt.QAbstractSlider.__init__(self, *var) self.setOrientation(qt.Qt.Horizontal) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.headingLabel = None self._slider = qt.QSlider(self) self._slider.setOrientation(qt.Qt.Horizontal) self._browser = FrameBrowser(self) self.mainLayout.addWidget(self._slider) self.mainLayout.addWidget(self._browser) self._slider.valueChanged[int].connect(self._sliderSlot) self._browser.sigIndexChanged.connect(self._browserSlot) def setHeadingLabelText(self, text): if self.headingLabel is None: self.headingLabel = qt.QLabel(self) self.mainLayout.insertWidget(0, self.headingLabel) self.headingLabel.setText(text) def setMinimum(self, value): self._slider.setMinimum(value) maximum = self._slider.maximum() if value == 1: self._browser.setNFrames(maximum) else: self._browser.setRange(value, maximum) def setMaximum(self, value): self._slider.setMaximum(value) minimum = self._slider.minimum() if minimum == 1: self._browser.setNFrames(value) else: self._browser.setRange(minimum, value) def setRange(self, *var): self._slider.setRange(*var) self._browser.setRange(*var) def _sliderSlot(self, value): self._browser.setValue(value) self.valueChanged.emit(value) def _browserSlot(self, ddict): self._slider.setValue(ddict['new']) def setValue(self, value): self._slider.setValue(value) self._browser.setValue(value) def value(self): return self._slider.value() def test1(args): app=qt.QApplication(args) w=HorizontalSliderWithBrowser() def slot(ddict): print(ddict) w.valueChanged[int].connect(slot) w.setRange(8, 20) w.show() app.exec() def test2(args): app=qt.QApplication(args) w=FrameBrowser() def slot(ddict): print(ddict) w.sigIndexChanged.connect(slot) if len(args) > 1: w.setLimits(8, 20) w.show() app.exec() if __name__=="__main__": import sys test1(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/NumpyArrayTableModel.py0000644000000000000000000003142414741736366022422 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, 'QStringList'): MyQVariant = qt.QVariant else: def MyQVariant(x=None): return x class NumpyArrayTableModel(qt.QAbstractTableModel): def __init__(self, parent=None, narray=None, fmt="%g", perspective=0): qt.QAbstractTableModel.__init__(self, parent) if narray is None: narray = numpy.array([]) self._array = narray self._bgcolors = None self._fgcolors = None self._hLabels = None self._vLabels = None self._format = fmt self._index = [] self.assignDataFunction(perspective) def rowCount(self, parent=None): return self._rowCount(parent) def columnCount(self, parent=None): return self._columnCount(parent) def data(self, index, role=qt.Qt.DisplayRole): if not index.isValid(): return MyQVariant() row = index.row() col = index.column() selection = tuple(self._index + [row, col]) if role == qt.Qt.BackgroundRole and self._bgcolors is not None: r, g, b = self._bgcolors[selection][0:3] if self._bgcolors.shape[-1] == 3: return qt.QColor(r, g, b) if self._bgcolors.shape[-1] == 4: a = self._bgcolors[selection][3] return qt.QColor(r, g, b, a) elif role == qt.Qt.ForegroundRole: if self._fgcolors is not None: r, g, b = self._fgcolors[selection][0:3] if self._fgcolors.shape[-1] == 3: return qt.QColor(r, g, b) if self._fgcolors.shape[-1] == 4: a = self._fgcolors[selection][3] return qt.QColor(r, g, b, a) # no fg color given, use black or white # based on luminosity threshold elif self._bgcolors is not None: r, g, b = self._bgcolors[selection][0:3] lum = 0.21 * r + 0.72 * g + 0.07 * b if lum < 128: return qt.QColor(qt.Qt.white) else: return qt.QColor(qt.Qt.black) else: return self._data(index, role) def _rowCount1D(self, parent=None): return 1 def _columnCount1D(self, parent=None): return self._array.shape[0] def _data1D(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: # row = 0 col = index.column() return MyQVariant(self._format % self._array[col]) return MyQVariant() def _rowCount2D(self, parent=None): return self._array.shape[0] def _columnCount2D(self, parent=None): return self._array.shape[1] def _data2D(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: row = index.row() col = index.column() return MyQVariant(self._format % self._array[row, col]) return MyQVariant() def _rowCountND(self, parent=None): return self._array.shape[-2] def _columnCountND(self, parent=None): return self._array.shape[-1] def _dataND(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: row = index.row() col = index.column() actualSelection = tuple(self._index + [row, col]) return MyQVariant(self._format % self._array[actualSelection]) return MyQVariant() def _rowCount3DIndex0(self, parent=None): return self._array.shape[1] def _columnCount3DIndex0(self, parent=None): return self._array.shape[2] def _rowCount3DIndex1(self, parent=None): return self._array.shape[0] def _columnCount3DIndex1(self, parent=None): return self._array.shape[2] def _rowCount3DIndex2(self, parent=None): return self._array.shape[0] def _columnCount3DIndex2(self, parent=None): return self._array.shape[1] def _data3DIndex0(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: row = index.row() col = index.column() return MyQVariant(self._format % self._array[self._index, row, col]) return MyQVariant() def _data3DIndex1(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: row = index.row() col = index.column() return MyQVariant(self._format % self._array[row, self._index, col]) return MyQVariant() def _data3DIndex2(self, index, role=qt.Qt.DisplayRole): if index.isValid(): if role == qt.Qt.DisplayRole: row = index.row() col = index.column() return MyQVariant(self._format % self._array[row, col, self._index]) return MyQVariant() def setArrayData(self, data, perspective=0): """ setStackData(self, data, perspective=0) data is a 3D array perspective is the array dimension acting as index of images """ if qt.qVersion() > "4.6": self.beginResetModel() else: self.reset() self._array = data self._bgcolors = None self._fgcolors = None self._hLabels = None self._vLabels = None self.assignDataFunction(perspective) if len(data.shape) > 3: self._index = [] for i in range(len(data.shape) - 2): self._index.append(0) elif len(data.shape) == 3: self._index = [0] else: self._index = [] if qt.qVersion() > "4.6": self.endResetModel() def setArrayColors(self, bgcolors=None, fgcolors=None): """Set the colors for all table cells by passing an array of RGB or RGBA values (integers between 0 and 255). The shape of the colors array must be consistent with the data shape. If the data array is n-dimensional, the colors array must be (n+1)-dimensional, with the first n-dimensions identical to the data array dimensions, and the last dimension length-3 (RGB) or length-4 (RGBA). :param bgcolors: RGB or RGBA colors array, defining the background color for each cell in the table. :param fgcolors: RGB or RGBA colors array, defining the foreground color (text color) for each cell in the table. """ # array must be RGB or RGBA valid_shapes = (self._array.shape + (3,), self._array.shape + (4,)) errmsg = "Inconsistent shape for color array, should be %s or %s" % valid_shapes if bgcolors is not None: bgcolors = numpy.asarray(bgcolors) assert bgcolors.shape in valid_shapes, errmsg self._bgcolors = bgcolors if fgcolors is not None: fgcolors = numpy.asarray(fgcolors) assert fgcolors.shape in valid_shapes, errmsg self._fgcolors = fgcolors def assignDataFunction(self, dimension): shape = self._array.shape if len(shape) == 2: self._rowCount = self._rowCount2D self._columnCount = self._columnCount2D self._data = self._data2D elif len(shape) == 1: self._rowCount = self._rowCount1D self._columnCount = self._columnCount1D self._data = self._data1D elif len(shape) > 3: # only C order array of images supported self._rowCount = self._rowCountND self._columnCount = self._columnCountND self._data = self._dataND else: if dimension == 1: self._rowCount = self._rowCount3DIndex1 self._columnCount = self._columnCount3DIndex1 self._data = self._data3DIndex1 elif dimension == 2: self._rowCount = self._rowCount3DIndex2 self._columnCount = self._columnCount3DIndex2 self._data = self._data3DIndex1 else: self._rowCount = self._rowCount3DIndex0 self._columnCount = self._columnCount3DIndex0 self._data = self._data3DIndex0 self._dimension = dimension def setCurrentArrayIndex(self, index): shape = self._array.shape if len(shape) < 3: # index is ignored self._index = [] return if len(shape) == 3: shape = self._array.shape[self._dimension] if hasattr(index, "__len__"): index = index[0] if (index < 0) or (index >= shape): raise ValueError("Index must be an integer lower than %d" % shape) self._index = [index] else: # Only N-dimensional arrays of images supported print("NOT SUPPORTED YET") return for i in range(len(index)): idx = index[i] if (idx < 0) or (idx >= shape[i]): raise ValueError("Index %d must be positive integer lower than %d" % \ (idx, shape[i])) self._index = index def setFormat(self, fmt): self._format = fmt def headerData(self, section, orientation, role=qt.Qt.DisplayRole): if self._hLabels and orientation == qt.Qt.Horizontal and role == qt.Qt.DisplayRole: if section < len(self._hLabels): return "%s" % self._hLabels[section] if self._vLabels and orientation == qt.Qt.Vertical and role == qt.Qt.DisplayRole: if section < len(self._vLabels): return "%s" % self._vLabels[section] return super().headerData(section, orientation, role) def setHorizontalHeaderLabels(self, labels): self._hLabels = labels def setVerticalHeaderLabels(self, labels): self._vLabels = labels if __name__ == "__main__": a = qt.QApplication([]) try: from .TableWidget import TableView except Exception: print("Cannot use PyMca Table") TableView = qt.QTableView w = TableView() d = numpy.random.normal(0,1, (5, 1000,1000)) for i in range(5): d[i, :, :] += i #m = NumpyArrayTableModel(fmt="%.5f") #m = NumpyArrayTableModel(None, numpy.arange(100.), fmt="%.5f") #m = NumpyArrayTableModel(None, numpy.ones((100,20)), fmt="%.5f") m = NumpyArrayTableModel(None, d, fmt = "%.5f") m.setVerticalHeaderLabels(["Row %d" % i for i in range(d.shape[1])]) m.setHorizontalHeaderLabels(["Column %d" % i for i in range(d.shape[2])]) w.setModel(m) m.setCurrentArrayIndex(4) #m.setArrayData(numpy.ones((100,))) from PyMca5.PyMcaGraph import Colormap bg = Colormap.applyColormap(d, colormap="temperature",norm="linear") m.setArrayColors(bg[0]) w.show() a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/NumpyArrayTableView.py0000644000000000000000000000763414741736366022302 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, 'QStringList'): MyQVariant = qt.QVariant else: def MyQVariant(x=None): return x from . import NumpyArrayTableModel import sys class HorizontalHeader(qt.QAbstractItemModel): def __init__(self, parent=None): qt.QAbstractItemModel.__init__(self, parent) def columnCount(self, modelIndex): return self.parent().columnCount() def headerData(self, section, orientation, role=qt.Qt.DisplayRole): if role == qt.Qt.DisplayRole: return MyQVariant("%d" % section) return MyQVariant() class VerticalHeader(qt.QAbstractItemModel): def __init__(self, parent=None): qt.QAbstractItemModel.__init__(self, parent) def rowCount(self, modelIndex): return self.parent().rowCount() def headerData(self, section, orientation, role=qt.Qt.DisplayRole): if role == qt.Qt.DisplayRole: return MyQVariant("%d" % section) return MyQVariant() class NumpyArrayTableView(qt.QTableView): def __init__(self, parent=None): qt.QTableView.__init__(self, parent) self._model = NumpyArrayTableModel.NumpyArrayTableModel(self) self.setModel(self._model) self._horizontalHeaderModel = HorizontalHeader(self._model) self._verticalHeaderModel = VerticalHeader(self._model) self.horizontalHeader().setModel(self._horizontalHeaderModel) self.verticalHeader().setModel(self._verticalHeaderModel) def setArrayData(self, data): t = "%s" % data.dtype if '|' in t: fmt = "%s" else: fmt = "%g" self._model.setFormat(fmt) self._model.setArrayData(data) #some linux distributions need this call self.setModel(self._model) if sys.platform not in ['win32']: self._horizontalHeaderModel = HorizontalHeader(self._model) self._verticalHeaderModel = VerticalHeader(self._model) self.horizontalHeader().setModel(self._horizontalHeaderModel) self.verticalHeader().setModel(self._verticalHeaderModel) def setCurrentArrayIndex(self, index): return self._model.setCurrentArrayIndex(index) if __name__ == "__main__": import numpy a = qt.QApplication([]) d = numpy.random.normal(0,1, (5, 1000,1000)) for i in range(5): d[i, :, :] += i w = NumpyArrayTableView() w.setArrayData(d) w.show() a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/NumpyArrayTableWidget.py0000644000000000000000000001205514741736366022604 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from . import FrameBrowser from . import NumpyArrayTableView class BrowserContainer(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) class NumpyArrayTableWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.browserContainer = BrowserContainer(self) self._widgetList = [] for i in range(4): browser = FrameBrowser.HorizontalSliderWithBrowser(self.browserContainer) self.browserContainer.mainLayout.addWidget(browser) self._widgetList.append(browser) browser.valueChanged.connect(self.browserSlot) if i == 0: browser.setEnabled(False) browser.hide() self.view = NumpyArrayTableView.NumpyArrayTableView(self) self.mainLayout.addWidget(self.browserContainer) self.mainLayout.addWidget(self.view) def setArrayData(self, data): self._array = data nWidgets = len(self._widgetList) nDimensions = len(self._array.shape) if nWidgets > (nDimensions - 2): for i in range((nDimensions - 2), nWidgets): browser = self._widgetList[i] self._widgetList[i].setEnabled(False) self._widgetList[i].hide() else: for i in range(nWidgets, nDimensions - 2): browser = FrameBrowser.HorizontalSliderWithBrowser(self.browserContainer) self.browserContainer.mainLayout.addWidget(browser) self._widgetList.append(browser) browser.valueChanged.connect(self.browserSlot) browser.setEnabled(False) browser.hide() for i in range(nWidgets): browser = self._widgetList[i] if (i + 2 ) < nDimensions: browser.setEnabled(True) if browser.isHidden(): browser.show() browser.setRange(1, self._array.shape[i]) else: browser.setEnabled(False) browser.hide() self.view.setArrayData(self._array) def browserSlot(self, value): if len(self._array.shape) == 3: self.view.setCurrentArrayIndex(value - 1) self.view.reset() else: index = [] for browser in self._widgetList: if browser.isEnabled(): index.append(browser.value() - 1) self.view.setCurrentArrayIndex(index) self.view.reset() if __name__ == "__main__": import numpy import sys a = qt.QApplication([]) d = numpy.random.normal(0,1, (4, 5, 1000,1000)) for j in range(4): for i in range(5): d[j, i, :, :] += i + 10 * j #m = NumpyArrayTableModel(numpy.arange(100.), fmt="%.5f") #m = NumpyArrayTableModel(numpy.ones((100,20)), fmt="%.5f") w = NumpyArrayTableWidget() if "2" in sys.argv: print("sending a single image") w.setArrayData(d[0,0]) elif "3" in sys.argv: print("sending a 5 images ") w.setArrayData(d[0]) else: print("sending a 4 * 5 images ") w.setArrayData(d) #m.setCurrentIndex(4) #m.setArrayData(numpy.ones((100,100))) w.show() a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/QIPythonWidget.py0000644000000000000000000001513214741736366021237 0ustar00rootroot#/############################################################################ # # This module is based on an answer published in: # # http://stackoverflow.com/questions/11513132/embedding-ipython-qt-console-in-a-pyqt-application # # by Tim Rae # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tim Rae, V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys from PyMca5.PyMcaGui.PyMcaQt import QApplication, QWidget, \ QPushButton, QVBoxLayout, QMessageBox, \ BINDING QTCONSOLE = True if sys.version_info < (3,): import IPython if IPython.__version__.startswith("2"): QTCONSOLE = False else: try: import qtconsole except ImportError: QTCONSOLE = False import IPython if QTCONSOLE: try: from qtconsole.rich_ipython_widget import RichJupyterWidget as RichIPythonWidget except Exception: from qtconsole.rich_ipython_widget import RichIPythonWidget from qtconsole.inprocess import QtInProcessKernelManager else: # Import the console machinery from ipython # Check if we using a frozen version because # the test of IPython does not find the Qt bindings executables = ["PyMcaMain.exe", "QStackWidget.exe", "PyMcaPostBatch.exe"] if os.path.basename(sys.executable) in executables: import IPython.external.qt_loaders def has_binding(*var, **kw): return True IPython.external.qt_loaders.has_binding = has_binding from IPython.qt.console.rich_ipython_widget import RichIPythonWidget from IPython.qt.inprocess import QtInProcessKernelManager class QIPythonWidget(RichIPythonWidget): """ Convenience class for a live IPython console widget. We can replace the standard banner using the customBanner argument""" def __init__(self,customBanner=None,*args,**kwargs): super(QIPythonWidget, self).__init__(*args,**kwargs) if customBanner != None: self.banner = customBanner self.setWindowTitle(self.banner) self.kernel_manager = kernel_manager = QtInProcessKernelManager() kernel_manager.start_kernel() try: # https://github.com/ipython/ipykernel/issues/370 from ipykernel import version_info if version_info < (5, 1, 1): def _abort_queues(kernel): pass kernel_manager.kernel._abort_queues = _abort_queues except Exception: pass if BINDING in ["PySide", "PyQt4"]: kernel_manager.kernel.gui = 'qt4' self.kernel_client = kernel_client = self._kernel_manager.client() kernel_client.start_channels() def stop(): #clear workspace msg = QMessageBox(self) msg.setWindowTitle("Console cleanup") msg.setText("Do you want to clean the console workspace?") msg.setStandardButtons(QMessageBox.No | QMessageBox.Yes) msg.setDefaultButton(QMessageBox.Yes) ret = msg.exec() try: if ret == QMessageBox.Yes: self.kernel_manager.kernel.shell.magic('reset -sf') kernel_client.stop_channels() kernel_manager.shutdown_kernel() except Exception: print("Error cleaning console variables") kernel_client.stop_channels() kernel_manager.shutdown_kernel() # close widget instead of quitting application self.close() self.exit_requested.connect(stop) def pushVariables(self,variableDict): """ Given a dictionary containing name / value pairs, push those variables to the IPython console widget """ self.kernel_manager.kernel.shell.push(variableDict) def clearTerminal(self): """ Clears the terminal """ self._control.clear() def printText(self,text): """ Prints some plain text to the console """ self._append_plain_text(text) def executeCommand(self,command): """ Execute a command in the frame of the console widget """ self._execute(command,False) def show(self): if self.kernel_manager.kernel is None: # we need to restart the kernel self.kernel_manager.start_kernel() self.kernel_client.start_channels() return RichIPythonWidget.show(self) class ExampleWidget(QWidget): """ Main GUI Widget including a button and IPython Console widget inside vertical layout """ def __init__(self, parent=None): super(ExampleWidget, self).__init__(parent) layout = QVBoxLayout(self) self.button = QPushButton('Another widget') ipyConsole = QIPythonWidget(customBanner="Welcome to the embedded ipython console\n") layout.addWidget(self.button) layout.addWidget(ipyConsole) # This allows the variable foo and method print_process_id to be accessed from the ipython console ipyConsole.pushVariables({"foo":43,"print_process_id":print_process_id}) ipyConsole.printText("The variable 'foo' and the method 'print_process_id()' are available. Use the 'whos' command for information.") def print_process_id(): print('Process ID is:', os.getpid()) def main(): app = QApplication([]) widget = ExampleWidget() widget.show() app.exec() if __name__ == '__main__': main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/SelectionTable.py0000644000000000000000000002373414741736366021264 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Concenience widget to generate a selection table in which each column can contain one type of widget. For the time being only text, check boxes or radio buttons are supported. Each time one of the contained widgets changes, a sigSelectionTableSignal is emitted indicating the current selection and the triggering cell. """ from PyMca5.PyMcaGui import PyMcaQt as qt class SelectionTable(qt.QTableWidget): sigSelectionTableSignal = qt.pyqtSignal(object) LABELS = ["Legend", "X", "Y"] TYPES = ["Text", "RadioButton", "CheckBox"] def __init__(self, parent=None, labels=None, types=None): qt.QTableWidget.__init__(self, parent) if labels is None: if types is None: labels = self.LABELS types = self.TYPES else: labels = [] i = 0 for item in types: if item.lower() not in ["text", "checkbox", "radiobutton"]: text = "Only Text, CheckBox or RadioButton accepted" raise TypeError(text) labels.append("Column %02d" % i) i += 1 elif types is None: types = [] for item in labels: try: if len(item) == 1: types.append("CheckBox") else: types.append("Text") except Exception: types.append("Text") self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i, item) item.setText(labels[i]) rheight = self.horizontalHeader().sizeHint().height() self._labels = labels self._types = types self._buttonGroups = [None] * len(self._labels) # set a minimum of 5 rows self.setMinimumHeight(5*rheight) def fillTable(self, entries): """ Fill the table with the given entries. :param entries: List in which each item is a list of strings. The list of strings has to match the length of the table top header. :param type: list """ nEntries = len(entries) self.setRowCount(nEntries) for i in range(nEntries): self.fillLine(i, entries[i]) # adjust column width for i in range(self.columnCount()): self.resizeColumnToContents(i) def fillLine(self, row, entry): for column in range(len(self._types)): content = entry[column] if self._types[column].lower() == "checkbox": widget = self.cellWidget(row, column) if widget is None: widget = CheckBoxItem(self, row, column) self.setCellWidget(row, column, widget) widget.sigCheckBoxItemSignal.connect(self._checkBoxSlot) widget.setText(content) elif self._types[column].lower() == "radiobutton": widget = self.cellWidget(row, column) if widget is None: widget = RadioButtonItem(self, row, column) self.setCellWidget(row, column, widget) widget.sigRadioButtonItemSignal.connect( \ self._radioButtonSlot) if self._buttonGroups[column] is None: self._buttonGroups[column] = qt.QButtonGroup() widget.setChecked(True) self._buttonGroups[column].addButton(widget) widget.setText(content) else: # text item = self.item(row, column) if item is None: item = qt.QTableWidgetItem(content, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(row, column, item) # item is enabled and selectable item.setFlags(qt.Qt.ItemIsEnabled | qt.Qt.ItemIsSelectable) else: item.setText(content) def _checkBoxSlot(self, ddict): row = ddict["row"] column = ddict["column"] self.emitSelectionChangedSignal(cell=(row, column)) def _radioButtonSlot(self, ddict): # I handle them in the same way return self._checkBoxSlot(ddict) def getSelection(self): ddict = {} for column in range(self.columnCount()): label = self._labels[column].lower() ddict[label] = [] if self._types[column].lower() in ["checkbox", "radiobutton"]: for row in range(self.rowCount()): if self.cellWidget(row, column).isChecked(): ddict[label].append(row) else: for row in range(self.rowCount()): ddict[label].append(self.item(row, column).text()) return ddict def setSelection(self, ddict, qtCall=None): if qtCall is not None: return super(SelectionTable, self).setSelection(ddict, qtCall) for key in ddict: for column in range(self.columnCount()): if key.lower() == self._labels[column].lower(): if self._types[column].lower() in ["checkbox", "radiobutton"]: for row in range(self.rowCount()): widget = self.cellWidget(row, column) if row in ddict[key]: widget.setChecked(True) else: widget.setChecked(False) else: # text if self.rowCount() < len(ddict[key]): self.setRowCount(len(ddict[key])) for row in range(len(ddict[key])): content = ddict[key][row] item = self.item(row, column) item.setText(content) def emitSelectionChangedSignal(self, cell=None): ddict = self.getSelection() ddict["event"] = "selectionChanged" ddict["cell"] = cell self.sigSelectionTableSignal.emit(ddict) def setColumnEnabled(self, index, enabled): if index < self.columnCount(): for row in range(self.rowCount()): self.cellWidget(row, index).setEnabled(enabled) class CheckBoxItem(qt.QCheckBox): sigCheckBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): super(CheckBoxItem, self).__init__(parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "clicked" ddict["state"] = value ddict["row"] = self.__row * 1 ddict["column"] = self.__col * 1 # for compatibility ... ddict["col"] = ddict["column"] self.sigCheckBoxItemSignal.emit(ddict) class RadioButtonItem(qt.QRadioButton): sigRadioButtonItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): super(RadioButtonItem, self).__init__(parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "clicked" ddict["state"] = value ddict["row"] = self.__row * 1 ddict["column"] = self.__col * 1 # for compatibility ... ddict["col"] = ddict["column"] self.sigRadioButtonItemSignal.emit(ddict) if __name__ == "__main__": app = qt.QApplication([]) def slot(ddict): print("received dict = ", ddict) tab = SelectionTable(labels=["Legend", "X", "Y"], types=["Text", "RadioButton", "CheckBox"]) tab.sigSelectionTableSignal.connect(slot) tab.fillTable([["Cnt1", "", ""], ["Cnt2", "", ""], ["Cnt3", "", ""], ["Cnt4", "", ""], ["Cnt5", "", ""]]) tab.setSelection({'x': [1], 'y': [4], 'legend': ["dummy", "Ca K", "Fe K", "Pb M", "U l"]}) tab.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/SubprocessLogWidget.py0000644000000000000000000001454314741736366022323 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import subprocess import time from PyMca5.PyMcaGui import PyMcaQt as qt class SubprocessLogWidget(qt.QWidget): sigSubprocessLogWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, args=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("Subprocess Log Widget") self.mainLayout = qt.QVBoxLayout(self) self._p = None self.__timer = qt.QTimer() self._args = args self.__timer.timeout.connect(self._timerSlot) self.logWidget = qt.QTextEdit(self) self.logWidget.setReadOnly(True) self.mainLayout.addWidget(self.logWidget) def setSubprocessArgs(self, args): self._args = args def start(self, args=None, timing=0.1): if args is None: if self._args is None: raise ValueError("Subprocess command not defined") else: self._args = args else: self._args = args if timing < 1: timing = int(timing * 1000) # it should be in milliseconds else: timing = int(timing) self._startTimer(timing=timing) def stop(self): if self.isSubprocessRunning(): #print("MESSAGE TO KILL PROCESS") #print("HOW TO KILL IT IN A GOOD WAY?") self._p.kill() def isSubprocessRunning(self): running = False if self._p is not None: if self._p.poll() is None: running = True return running def _startTimer(self, timing=0.1): if timing < 1: timing = int(timing * 1000) # it should be in milliseconds else: timing = int(timing) if self._args is None: raise ValueError("Subprocess command not defined") self._p = subprocess.Popen(self._args, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) ddict = {} ddict["subprocess"] = self._p ddict["event"] = "ProcessStarted" self.sigSubprocessLogWidgetSignal.emit(ddict) self.__timer.setInterval(timing) self.__timer.start() def _timerSlot(self): ddict = {} ddict["subprocess"] = self._p if self._p.poll() is None: # process did not finish yet line = self._p.stdout.readline() if len(line) > 1: self.logWidget.append(line[:-1]) qApp = qt.QApplication.instance() qApp.processEvents() ddict["event"] = "ProcessRunning" else: self.__timer.stop() returnCode = self._p.returncode ddict['event'] = "ProcessFinished" ddict['code'] = returnCode ddict["message"] = [] if returnCode == 0: line = self._p.stdout.readline() while len(line) > 1: self.logWidget.append(line[:-1]) line = self._p.stdout.readline() else: line = self._p.stderr.readline() while len(line) > 1: ddict["message"].append(line) self.logWidget.append(line[:-1]) line = self._p.stderr.readline() self._p = None self.sigSubprocessLogWidgetSignal.emit(ddict) def clear(self): self.logWidget.clear() def append(self, text): self.logWidget.append(text) def closeEvent(self, event): if self._p is not None: try: self.stop() except Exception: # this may happen if the process finished in the mean time pass qt.QWidget.closeEvent(self, event) if __name__ == "__main__": def slot(ddict): print(ddict) # show the command on the log widget if len(sys.argv) == 1 and sys.platform.startswith("win"): scriptFile = r"C:\Windows\System32\whoami.exe" args = [r"C:\Windows\System32\whoami.exe"] elif len(sys.argv) > 1: args = sys.argv[1:] else: print("Usage:") print("%s SubprocessLogWidget.py executable_path [arguments]" % (sys.executable,)) print("") print("Example:") print("") print("%s -m PyMca5.PyMca.SubprocessLogWidget %s -m PyMca5.PyMca.SubprocessLogWidget" % (sys.executable, sys.executable)) sys.exit(0) text = "%s" % args[0] if len(args) > 1: for arg in args[1:]: text += " %s" % arg app = qt.QApplication([]) logWidget = SubprocessLogWidget() logWidget.setMinimumWidth(400) logWidget.sigSubprocessLogWidgetSignal.connect(slot) logWidget.clear() logWidget.show() logWidget.raise_() logWidget.append(text) logWidget.start(args=args) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/TableWidget.py0000644000000000000000000005765414741736366020572 0ustar00rootroot# coding: utf-8 # /*########################################################################## # # Copyright (c) 2004-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """This module provides table widgets handling cut, copy and paste for multiple cell selections. These actions can be triggered using keyboard shortcuts or through a context menu (right-click). :class:`TableView` is a subclass of :class:`QTableView`. The added features are made available to users after a model is added to the widget, using :meth:`TableView.setModel`. :class:`TableWidget` is a subclass of :class:`qt.QTableWidget`, a table view with a built-in standard data model. The added features are available as soon as the widget is initialized. The cut, copy and paste actions are implemented as QActions: - :class:`CopySelectedCellsAction` (*Ctrl+C*) - :class:`CopyAllCellsAction` - :class:`CutSelectedCellsAction` (*Ctrl+X*) - :class:`CutAllCellsAction` - :class:`PasteCellsAction` (*Ctrl+V*) The copy actions are enabled by default. The cut and paste actions must be explicitly enabled, by passing parameters ``cut=True, paste=True`` when creating the widgets, or later by calling their :meth:`enableCut` and :meth:`enablePaste` methods. """ __authors__ = ["P. Knobel"] __license__ = "MIT" __date__ = "03/07/2017" # copied from silx 0.6 import sys from PyMca5.PyMcaGui import PyMcaQt as qt if sys.platform.startswith("win"): row_separator = "\r\n" else: row_separator = "\n" col_separator = "\t" class CopySelectedCellsAction(qt.QAction): """QAction to copy text from selected cells in a :class:`QTableWidget` into the clipboard. If multiple cells are selected, the copied text will be a concatenation of the texts in all selected cells, tabulated with tabulation and newline characters. If the cells are sparsely selected, the structure is preserved by representing the unselected cells as empty strings in between two tabulation characters. Beware of pasting this data in another table widget, because depending on how the paste is implemented, the empty cells may cause data in the target table to be deleted, even though you didn't necessarily select the corresponding cell in the origin table. :param table: :class:`QTableView` to which this action belongs. """ def __init__(self, table): if not isinstance(table, qt.QTableView): raise ValueError('CopySelectedCellsAction must be initialised ' + 'with a QTableWidget.') super(CopySelectedCellsAction, self).__init__(table) self.setText("Copy selection") self.setToolTip("Copy selected cells into the clipboard.") self.setShortcut(qt.QKeySequence.Copy) self.setShortcutContext(qt.Qt.WidgetShortcut) self.triggered.connect(self.copyCellsToClipboard) self.table = table self.cut = False """:attr:`cut` can be set to True by classes inheriting this action, to do a cut action.""" def copyCellsToClipboard(self): """Concatenate the text content of all selected cells into a string using tabulations and newlines to keep the table structure. Put this text into the clipboard. """ selected_idx = self.table.selectedIndexes() if not selected_idx: return selected_idx_tuples = [(idx.row(), idx.column()) for idx in selected_idx] selected_rows = [idx[0] for idx in selected_idx_tuples] selected_columns = [idx[1] for idx in selected_idx_tuples] data_model = self.table.model() copied_text = "" for row in range(min(selected_rows), max(selected_rows) + 1): for col in range(min(selected_columns), max(selected_columns) + 1): index = data_model.index(row, col) cell_text = data_model.data(index) flags = data_model.flags(index) if (row, col) in selected_idx_tuples and cell_text is not None: copied_text += cell_text if self.cut and (flags & qt.Qt.ItemIsEditable): data_model.setData(index, "") copied_text += col_separator # remove the right-most tabulation copied_text = copied_text[:-len(col_separator)] # add a newline copied_text += row_separator # remove final newline copied_text = copied_text[:-len(row_separator)] # put this text into clipboard qapp = qt.QApplication.instance() qapp.clipboard().setText(copied_text) class CopyAllCellsAction(qt.QAction): """QAction to copy text from all cells in a :class:`QTableWidget` into the clipboard. The copied text will be a concatenation of the texts in all cells, tabulated with tabulation and newline characters. :param table: :class:`QTableView` to which this action belongs. """ def __init__(self, table): if not isinstance(table, qt.QTableView): raise ValueError('CopyAllCellsAction must be initialised ' + 'with a QTableWidget.') super(CopyAllCellsAction, self).__init__(table) self.setText("Copy all") self.setToolTip("Copy all cells into the clipboard.") self.triggered.connect(self.copyCellsToClipboard) self.table = table self.cut = False def copyCellsToClipboard(self): """Concatenate the text content of all cells into a string using tabulations and newlines to keep the table structure. Put this text into the clipboard. """ data_model = self.table.model() copied_text = "" for row in range(data_model.rowCount()): for col in range(data_model.columnCount()): index = data_model.index(row, col) cell_text = data_model.data(index) flags = data_model.flags(index) if cell_text is not None: copied_text += cell_text if self.cut and (flags & qt.Qt.ItemIsEditable): data_model.setData(index, "") copied_text += col_separator # remove the right-most tabulation copied_text = copied_text[:-len(col_separator)] # add a newline copied_text += row_separator # remove final newline copied_text = copied_text[:-len(row_separator)] # put this text into clipboard qapp = qt.QApplication.instance() qapp.clipboard().setText(copied_text) class CutSelectedCellsAction(CopySelectedCellsAction): """QAction to cut text from selected cells in a :class:`QTableWidget` into the clipboard. The text is deleted from the original table widget (use :class:`CopySelectedCellsAction` to preserve the original data). If multiple cells are selected, the cut text will be a concatenation of the texts in all selected cells, tabulated with tabulation and newline characters. If the cells are sparsely selected, the structure is preserved by representing the unselected cells as empty strings in between two tabulation characters. Beware of pasting this data in another table widget, because depending on how the paste is implemented, the empty cells may cause data in the target table to be deleted, even though you didn't necessarily select the corresponding cell in the origin table. :param table: :class:`QTableView` to which this action belongs.""" def __init__(self, table): super(CutSelectedCellsAction, self).__init__(table) self.setText("Cut selection") self.setShortcut(qt.QKeySequence.Cut) self.setShortcutContext(qt.Qt.WidgetShortcut) # cutting is already implemented in CopySelectedCellsAction (but # it is disabled), we just need to enable it self.cut = True class CutAllCellsAction(CopyAllCellsAction): """QAction to cut text from all cells in a :class:`QTableWidget` into the clipboard. The text is deleted from the original table widget (use :class:`CopyAllCellsAction` to preserve the original data). The cut text will be a concatenation of the texts in all cells, tabulated with tabulation and newline characters. :param table: :class:`QTableView` to which this action belongs.""" def __init__(self, table): super(CutAllCellsAction, self).__init__(table) self.setText("Cut all") self.setToolTip("Cut all cells into the clipboard.") self.cut = True def _parseTextAsTable(text, row_separator=row_separator, col_separator=col_separator): """Parse text into list of lists (2D sequence). The input text must be tabulated using tabulation characters and newlines to separate columns and rows. :param text: text to be parsed :param record_separator: String, or single character, to be interpreted as a record/row separator. :param field_separator: String, or single character, to be interpreted as a field/column separator. :return: 2D sequence of strings """ rows = text.split(row_separator) table_data = [row.split(col_separator) for row in rows] return table_data class PasteCellsAction(qt.QAction): """QAction to paste text from the clipboard into the table. If the text contains tabulations and newlines, they are interpreted as column and row separators. In such a case, the text is split into multiple texts to be pasted into multiple cells. If a cell content is an empty string in the original text, it is ignored: the destination cell's text will not be deleted. :param table: :class:`QTableView` to which this action belongs. """ def __init__(self, table): if not isinstance(table, qt.QTableView): raise ValueError('PasteCellsAction must be initialised ' + 'with a QTableWidget.') super(PasteCellsAction, self).__init__(table) self.table = table self.setText("Paste") self.setShortcut(qt.QKeySequence.Paste) self.setShortcutContext(qt.Qt.WidgetShortcut) self.setToolTip("Paste data. The selected cell is the top-left" + "corner of the paste area.") self.triggered.connect(self.pasteCellFromClipboard) def pasteCellFromClipboard(self): """Paste text from clipboard into the table. :return: *True* in case of success, *False* if pasting data failed. """ selected_idx = self.table.selectedIndexes() if len(selected_idx) != 1: msgBox = qt.QMessageBox(parent=self.table) msgBox.setText("A single cell must be selected to paste data") msgBox.exec() return False data_model = self.table.model() selected_row = selected_idx[0].row() selected_col = selected_idx[0].column() qapp = qt.QApplication.instance() clipboard_text = qapp.clipboard().text() table_data = _parseTextAsTable(clipboard_text) protected_cells = 0 out_of_range_cells = 0 # paste table data into cells, using selected cell as origin for row_offset in range(len(table_data)): for col_offset in range(len(table_data[row_offset])): target_row = selected_row + row_offset target_col = selected_col + col_offset if target_row >= data_model.rowCount() or\ target_col >= data_model.columnCount(): out_of_range_cells += 1 continue index = data_model.index(target_row, target_col) flags = data_model.flags(index) # ignore empty strings if table_data[row_offset][col_offset] != "": if not flags & qt.Qt.ItemIsEditable: protected_cells += 1 continue data_model.setData(index, table_data[row_offset][col_offset]) # item.setText(table_data[row_offset][col_offset]) if protected_cells or out_of_range_cells: msgBox = qt.QMessageBox(parent=self.table) msg = "Some data could not be inserted, " msg += "due to out-of-range or write-protected cells." msgBox.setText(msg) msgBox.exec() return False return True class CopySingleCellAction(qt.QAction): """QAction to copy text from a single cell in a modified :class:`QTableWidget`. This action relies on the fact that the text in the last clicked cell are stored in :attr:`_last_cell_clicked` of the modified widget. In most cases, :class:`CopySelectedCellsAction` handles single cells, but if the selection mode of the widget has been set to NoSelection it is necessary to use this class instead. :param table: :class:`QTableView` to which this action belongs. """ def __init__(self, table): if not isinstance(table, qt.QTableView): raise ValueError('CopySingleCellAction must be initialised ' + 'with a QTableWidget.') super(CopySingleCellAction, self).__init__(table) self.setText("Copy cell") self.setToolTip("Copy cell content into the clipboard.") self.triggered.connect(self.copyCellToClipboard) self.table = table def copyCellToClipboard(self): """ """ cell_text = self.table._text_last_cell_clicked if cell_text is None: return # put this text into clipboard qapp = qt.QApplication.instance() qapp.clipboard().setText(cell_text) class TableWidget(qt.QTableWidget): """:class:`QTableWidget` with a context menu displaying up to 5 actions: - :class:`CopySelectedCellsAction` - :class:`CopyAllCellsAction` - :class:`CutSelectedCellsAction` - :class:`CutAllCellsAction` - :class:`PasteCellsAction` These actions interact with the clipboard and can be used to copy data to or from an external application, or another widget. The cut and paste actions are disabled by default, due to the risk of overwriting data (no *Undo* action is available). Use :meth:`enablePaste` and :meth:`enableCut` to activate them. :param parent: Parent QWidget :param bool cut: Enable cut action :param bool paste: Enable paste action """ def __init__(self, parent=None, cut=False, paste=False): super(TableWidget, self).__init__(parent) self._text_last_cell_clicked = None self.copySelectedCellsAction = CopySelectedCellsAction(self) self.copyAllCellsAction = CopyAllCellsAction(self) self.copySingleCellAction = None self.pasteCellsAction = None self.cutSelectedCellsAction = None self.cutAllCellsAction = None self.addAction(self.copySelectedCellsAction) self.addAction(self.copyAllCellsAction) if cut: self.enableCut() if paste: self.enablePaste() self.setContextMenuPolicy(qt.Qt.ActionsContextMenu) def mousePressEvent(self, event): item = self.itemAt(event.pos()) if item is not None: self._text_last_cell_clicked = item.text() super(TableWidget, self).mousePressEvent(event) def enablePaste(self): """Enable paste action, to paste data from the clipboard into the table. .. warning:: This action can cause data to be overwritten. There is currently no *Undo* action to retrieve lost data. """ self.pasteCellsAction = PasteCellsAction(self) self.addAction(self.pasteCellsAction) def enableCut(self): """Enable cut action. .. warning:: This action can cause data to be deleted. There is currently no *Undo* action to retrieve lost data.""" self.cutSelectedCellsAction = CutSelectedCellsAction(self) self.cutAllCellsAction = CutAllCellsAction(self) self.addAction(self.cutSelectedCellsAction) self.addAction(self.cutAllCellsAction) def setSelectionMode(self, mode): """Overloaded from QTableWidget to disable cut/copy selection actions in case mode is NoSelection :param mode: :return: """ if mode == qt.QTableView.NoSelection: self.copySelectedCellsAction.setVisible(False) self.copySelectedCellsAction.setEnabled(False) if self.cutSelectedCellsAction is not None: self.cutSelectedCellsAction.setVisible(False) self.cutSelectedCellsAction.setEnabled(False) if self.copySingleCellAction is None: self.copySingleCellAction = CopySingleCellAction(self) self.insertAction(self.copySelectedCellsAction, # before first action self.copySingleCellAction) self.copySingleCellAction.setVisible(True) self.copySingleCellAction.setEnabled(True) else: self.copySelectedCellsAction.setVisible(True) self.copySelectedCellsAction.setEnabled(True) if self.cutSelectedCellsAction is not None: self.cutSelectedCellsAction.setVisible(True) self.cutSelectedCellsAction.setEnabled(True) if self.copySingleCellAction is not None: self.copySingleCellAction.setVisible(False) self.copySingleCellAction.setEnabled(False) super(TableWidget, self).setSelectionMode(mode) class TableView(qt.QTableView): """:class:`QTableView` with a context menu displaying up to 5 actions: - :class:`CopySelectedCellsAction` - :class:`CopyAllCellsAction` - :class:`CutSelectedCellsAction` - :class:`CutAllCellsAction` - :class:`PasteCellsAction` These actions interact with the clipboard and can be used to copy data to or from an external application, or another widget. The cut and paste actions are disabled by default, due to the risk of overwriting data (no *Undo* action is available). Use :meth:`enablePaste` and :meth:`enableCut` to activate them. .. note:: These actions will be available only after a model is associated with this view, using :meth:`setModel`. :param parent: Parent QWidget :param bool cut: Enable cut action :param bool paste: Enable paste action """ def __init__(self, parent=None, cut=False, paste=False): super(TableView, self).__init__(parent) self._text_last_cell_clicked = None self.cut = cut self.paste = paste self.copySelectedCellsAction = None self.copyAllCellsAction = None self.copySingleCellAction = None self.pasteCellsAction = None self.cutSelectedCellsAction = None self.cutAllCellsAction = None def mousePressEvent(self, event): qindex = self.indexAt(event.pos()) if self.copyAllCellsAction is not None: # model was set self._text_last_cell_clicked = self.model().data(qindex) super(TableView, self).mousePressEvent(event) def setModel(self, model): """Set the data model for the table view, activate the actions and the context menu. :param model: :class:`qt.QAbstractItemModel` object """ super(TableView, self).setModel(model) self.copySelectedCellsAction = CopySelectedCellsAction(self) self.copyAllCellsAction = CopyAllCellsAction(self) self.addAction(self.copySelectedCellsAction) self.addAction(self.copyAllCellsAction) if self.cut: self.enableCut() if self.paste: self.enablePaste() self.setContextMenuPolicy(qt.Qt.ActionsContextMenu) def enablePaste(self): """Enable paste action, to paste data from the clipboard into the table. .. warning:: This action can cause data to be overwritten. There is currently no *Undo* action to retrieve lost data. """ self.pasteCellsAction = PasteCellsAction(self) self.addAction(self.pasteCellsAction) def enableCut(self): """Enable cut action. .. warning:: This action can cause data to be deleted. There is currently no *Undo* action to retrieve lost data. """ self.cutSelectedCellsAction = CutSelectedCellsAction(self) self.cutAllCellsAction = CutAllCellsAction(self) self.addAction(self.cutSelectedCellsAction) self.addAction(self.cutAllCellsAction) def addAction(self, action): # ensure the actions are not added multiple times: # compare action type and parent widget with those of existing actions for existing_action in self.actions(): if type(action) == type(existing_action): if hasattr(action, "table") and\ action.table is existing_action.table: return None super(TableView, self).addAction(action) def setSelectionMode(self, mode): """Overloaded from QTableView to disable cut/copy selection actions in case mode is NoSelection :param mode: :return: """ if mode == qt.QTableView.NoSelection: self.copySelectedCellsAction.setVisible(False) self.copySelectedCellsAction.setEnabled(False) if self.cutSelectedCellsAction is not None: self.cutSelectedCellsAction.setVisible(False) self.cutSelectedCellsAction.setEnabled(False) if self.copySingleCellAction is None: self.copySingleCellAction = CopySingleCellAction(self) self.insertAction(self.copySelectedCellsAction, # before first action self.copySingleCellAction) self.copySingleCellAction.setVisible(True) self.copySingleCellAction.setEnabled(True) else: self.copySelectedCellsAction.setVisible(True) self.copySelectedCellsAction.setEnabled(True) if self.cutSelectedCellsAction is not None: self.cutSelectedCellsAction.setVisible(True) self.cutSelectedCellsAction.setEnabled(True) if self.copySingleCellAction is not None: self.copySingleCellAction.setVisible(False) self.copySingleCellAction.setEnabled(False) super(TableView, self).setSelectionMode(mode) if __name__ == "__main__": app = qt.QApplication([]) tablewidget = TableWidget() tablewidget.setWindowTitle("TableWidget") tablewidget.setColumnCount(10) tablewidget.setRowCount(7) tablewidget.enableCut() tablewidget.enablePaste() tablewidget.show() tableview = TableView(cut=True, paste=True) tableview.setWindowTitle("TableView") model = qt.QStandardItemModel() model.setColumnCount(10) model.setRowCount(7) tableview.setModel(model) tableview.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/__init__.py0000644000000000000000000000000014741736366020103 0ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/misc/testutils.py0000644000000000000000000005126614741736366020430 0ustar00rootroot# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2023 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Helper class to write Qt widget unittests.""" __authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "19/01/2023" import gc import logging import unittest import time import functools import sys import os _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui import PyMcaQt as qt if qt.BINDING == 'PySide': from PySide.QtTest import QTest try: # Available through PySide from PySide.shiboken import isValid # noqa from PySide.shiboken import createdByPython # noqa from PySide.shiboken import ownedByPython # noqa except ImportError: # Available through standalone shiboken package from Shiboken.shiboken import isValid # noqa from Shiboken.shiboken import createdByPython # noqa from Shiboken.shiboken import ownedByPython # noqa elif qt.BINDING == 'PySide2': from PySide2.QtTest import QTest try: from PySide2.shiboken2 import isValid # noqa from PySide2.shiboken2 import createdByPython # noqa from PySide2.shiboken2 import ownedByPython # noqa except ImportError: from shiboken2 import isValid # noqa from shiboken2 import createdByPython # noqa from shiboken2 import ownedByPython # noqa elif qt.BINDING == 'PyQt5': from PyQt5.QtTest import QTest try: from PyQt5.sip import isdeleted as _isdeleted # noqa from PyQt5.sip import ispycreated as createdByPython # noqa from PyQt5.sip import ispyowned as ownedByPython # noqa except ImportError: from sip import isdeleted as _isdeleted # noqa from sip import ispycreated as createdByPython # noqa from sip import ispyowned as ownedByPython # noqa def isValid(obj): """Returns True if underlying C++ object is valid. :param QObject obj: :rtype: bool """ return not _isdeleted(obj) elif qt.BINDING == 'PyQt6': from PyQt6.QtTest import QTest try: from PyQt6.sip import isdeleted as _isdeleted # noqa from PyQt6.sip import ispycreated as createdByPython # noqa from PyQt6.sip import ispyowned as ownedByPython # noqa except ImportError: from sip import isdeleted as _isdeleted # noqa from sip import ispycreated as createdByPython # noqa from sip import ispyowned as ownedByPython # noqa def isValid(obj): """Returns True if underlying C++ object is valid. :param QObject obj: :rtype: bool """ return not _isdeleted(obj) elif qt.BINDING == 'PyQt4': from PyQt4.QtTest import QTest from sip import isdeleted as _isdeleted # noqa from sip import ispycreated as createdByPython # noqa from sip import ispyowned as ownedByPython # noqa def isValid(obj): """Returns True if underlying C++ object is valid. :param QObject obj: :rtype: bool """ return not _isdeleted(obj) elif qt.BINDING == 'PySide6': from PySide6.QtTest import QTest from shiboken6 import isValid, createdByPython, ownedByPython else: raise ImportError('Unsupported Qt bindings') # Qt4/Qt5 compatibility wrapper if qt.BINDING in ('PySide', 'PyQt4'): _logger.info("QTest.qWaitForWindowExposed not available," + "using QTest.qWaitForWindowShown instead.") def qWaitForWindowExposed(window, timeout=None): """Mimic QTest.qWaitForWindowExposed for Qt4.""" QTest.qWaitForWindowShown(window) return True else: qWaitForWindowExposed = QTest.qWaitForWindowExposed def qWaitForWindowExposedAndActivate(window, timeout=None): """Waits until the window is shown in the screen. It also activates the window and raises it. See QTest.qWaitForWindowExposed for details. """ if timeout is None: result = qWaitForWindowExposed(window) else: result = qWaitForWindowExposed(window, timeout) if result: # Makes sure window is active and on top window.activateWindow() window.raise_() return result # Placeholder for QApplication _qapp = None class TestCaseQt(unittest.TestCase): """Base class to write test for Qt stuff. It creates a QApplication before running the tests. WARNING: The QApplication is shared by all tests, which might have side effects. After each test, this class is checking for widgets remaining alive. To allow some widgets to remain alive at the end of a test, set the allowedLeakingWidgets attribute to the number of widgets that can remain alive at the end of the test. With PySide, this test is not run for now as it seems PySide is leaking widgets internally. All keyboard and mouse event simulation methods call qWait(20) after simulating the event (as QTest does on Mac OSX). This was introduced to fix issues with continuous integration tests running with Xvfb on Linux. """ DEFAULT_TIMEOUT_WAIT = 100 """Default timeout for qWait""" TIMEOUT_WAIT = 0 """Extra timeout in millisecond to add to qSleep, qWait and qWaitForWindowExposed. Intended purpose is for debugging, to add extra time to waits in order to allow to view the tested widgets. """ @classmethod def exceptionHandler(cls, exceptionClass, exception, stack): import traceback message = (''.join(traceback.format_tb(stack))) template = 'Traceback (most recent call last):\n{2}{0}: {1}' message = template.format(exceptionClass.__name__, exception, message) cls._exceptions.append(message) @classmethod def setUpClass(cls): """Makes sure Qt is inited""" cls._oldExceptionHook = sys.excepthook sys.excepthook = cls.exceptionHandler global _qapp if _qapp is None: app = qt.QApplication.instance() if app is None: # Makes sure a QApplication exists and do it once for all _qapp = qt.QApplication([]) else: import weakref _qapp = weakref.proxy(app) @classmethod def tearDownClass(cls): sys.excepthook = cls._oldExceptionHook def setUp(self): """Get the list of existing widgets.""" self.allowedLeakingWidgets = 0 self.__previousWidgets = self.qapp.allWidgets() self.__class__._exceptions = [] def _currentTestSucceeded(self): if hasattr(self, '_outcome'): if hasattr(self, '_feedErrorsToResult'): # For Python 3.4 -3.10 result = self.defaultTestResult() # these 2 methods have no side effects if hasattr(self._outcome, 'errors'): self._feedErrorsToResult(result, self._outcome.errors) else: # Python 3.11+ result = self._outcome.result else: # For Python < 3.4 result = getattr(self, '_outcomeForDoCleanups', self._resultForDoCleanups) skipped = self.id() in [case.id() for case, _ in result.skipped] error = self.id() in [case.id() for case, _ in result.errors] failure = self.id() in [case.id() for case, _ in result.failures] return not error and not failure and not skipped def _checkForUnreleasedWidgets(self): """Test fixture checking that no more widgets exists.""" gc.collect() widgets = [widget for widget in self.qapp.allWidgets() if (widget not in self.__previousWidgets and createdByPython(widget))] del self.__previousWidgets if qt.BINDING in ('PySide', 'PySide2', 'PySide6', 'PyQt5', 'PyQt6', 'PyQt4'): # TODO: many leaks with PyQt5 as well... # With PyQt6 only the thread case with the fit return # Do not test for leaking widgets allowedLeakingWidgets = self.allowedLeakingWidgets self.allowedLeakingWidgets = 0 if widgets and len(widgets) <= allowedLeakingWidgets: _logger.info( '%s: %d remaining widgets after test' % (self.id(), len(widgets))) if len(widgets) > allowedLeakingWidgets: txt = "[ " for w in widgets: if hasattr(w, "text"): txt += "%s text=%s, " % (w, w.text()) else: txt += "%s, " % w txt += "]" raise RuntimeError( "Test ended with widgets alive: %s" % txt) def tearDown(self): if len(self.__class__._exceptions) > 0: messages = "\n".join(self.__class__._exceptions) raise AssertionError("Exception occured in Qt thread:\n" + messages) if self._currentTestSucceeded(): self._checkForUnreleasedWidgets() @property def qapp(self): """The QApplication currently running.""" return qt.QApplication.instance() # Proxy to QTest Press = QTest.Press """Key press action code""" Release = QTest.Release """Key release action code""" Click = QTest.Click """Key click action code""" QTest = property(lambda self: QTest, doc="""The Qt QTest class from the used Qt binding.""") def keyClick(self, widget, key, modifier=None, delay=-1): """Simulate clicking a key. See QTest.keyClick for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() QTest.keyClick(widget, key, modifier, delay) self.qWait(20) def keyClicks(self, widget, sequence, modifier=None, delay=-1): """Simulate clicking a sequence of keys. See QTest.keyClick for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() QTest.keyClicks(widget, sequence, modifier, delay) self.qWait(20) def keyEvent(self, action, widget, key, modifier=None, delay=-1): """Sends a Qt key event. See QTest.keyEvent for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() QTest.keyEvent(action, widget, key, modifier, delay) self.qWait(20) def keyPress(self, widget, key, modifier=None, delay=-1): """Sends a Qt key press event. See QTest.keyPress for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() QTest.keyPress(widget, key, modifier, delay) self.qWait(20) def keyRelease(self, widget, key, modifier=None, delay=-1): """Sends a Qt key release event. See QTest.keyRelease for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() QTest.keyRelease(widget, key, modifier, delay) self.qWait(20) def mouseClick(self, widget, button, modifier=None, pos=None, delay=-1): """Simulate clicking a mouse button. See QTest.mouseClick for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() pos = qt.QPoint(pos[0], pos[1]) if pos is not None else qt.QPoint() QTest.mouseClick(widget, button, modifier, pos, delay) self.qWait(20) def mouseDClick(self, widget, button, modifier=None, pos=None, delay=-1): """Simulate double clicking a mouse button. See QTest.mouseDClick for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() pos = qt.QPoint(pos[0], pos[1]) if pos is not None else qt.QPoint() QTest.mouseDClick(widget, button, modifier, pos, delay) self.qWait(20) def mouseMove(self, widget, pos=None, delay=-1): """Simulate moving the mouse. See QTest.mouseMove for details. """ pos = qt.QPoint(pos[0], pos[1]) if pos is not None else qt.QPoint() QTest.mouseMove(widget, pos, delay) self.qWait(20) def mousePress(self, widget, button, modifier=None, pos=None, delay=-1): """Simulate pressing a mouse button. See QTest.mousePress for details. """ if modifier is None: modifier = self.qapp.keyboardModifiers() pos = qt.QPoint(pos[0], pos[1]) if pos is not None else qt.QPoint() QTest.mousePress(widget, button, modifier, pos, delay) self.qWait(20) def mouseRelease(self, widget, button, modifier=None, pos=None, delay=-1): """Simulate releasing a mouse button. See QTest.mouseRelease for details. """ if modifier is None: modifier = qt.Qt.KeyboardModifiers() pos = qt.QPoint(pos[0], pos[1]) if pos is not None else qt.QPoint() QTest.mouseRelease(widget, button, modifier, pos, delay) self.qWait(20) def qSleep(self, ms): """Sleep for ms milliseconds, blocking the execution of the test. See QTest.qSleep for details. """ QTest.qSleep(ms + self.TIMEOUT_WAIT) @classmethod def qWait(cls, ms=None): """Waits for ms milliseconds, events will be processed. See QTest.qWait for details. """ if ms is None: ms = cls.DEFAULT_TIMEOUT_WAIT if qt.BINDING in ('PySide', 'PySide2', 'PySide6'): # PySide has no qWait, provide a replacement timeout = int(ms) endTimeMS = int(time.time() * 1000) + timeout while timeout > 0: _qapp.processEvents(qt.QEventLoop.AllEvents, timeout) timeout = endTimeMS - int(time.time() * 1000) else: QTest.qWait(ms + cls.TIMEOUT_WAIT) def qWaitForWindowExposed(self, window, timeout=None): """Waits until the window is shown in the screen. See QTest.qWaitForWindowExposed for details. """ result = qWaitForWindowExposedAndActivate(window, timeout) if self.TIMEOUT_WAIT: QTest.qWait(self.TIMEOUT_WAIT) return result _qobject_destroyed = False @classmethod def _aboutToDestroy(cls): cls._qobject_destroyed = True @classmethod def qWaitForDestroy(cls, ref): """ Wait for Qt object destruction. Use a weakref as parameter to avoid any strong references to the object. It have to be used as following. Removing the reference to the object before calling the function looks to be expected, else :meth:`deleteLater` will not work. .. code-block:: python ref = weakref.ref(self.obj) self.obj = None self.qWaitForDestroy(ref) :param weakref ref: A weakref to an object to avoid any reference :return: True if the object was destroyed :rtype: bool """ cls._qobject_destroyed = False if qt.BINDING == 'PyQt4': # Without this, QWidget will be still alive on PyQt4 # (at least on Windows Python 2.7) # If it is not skipped on PySide, silx.gui.dialog tests will # segfault (at least on Windows Python 2.7) import gc gc.collect() qobject = ref() if qobject is None: return True qobject.destroyed.connect(cls._aboutToDestroy) qobject.deleteLater() qobject = None for _ in range(10): if cls._qobject_destroyed: break cls.qWait(10) else: _logger.debug("Object was not destroyed") return ref() is None def logScreenShot(self, level=logging.ERROR): """Take a screenshot and log it into the logging system if the logger is enabled for the expected level. The screenshot is stored in the directory "./build/test-debug", and the logging system only log the path to this file. :param level: Logging level """ if not _logger.isEnabledFor(level): return basedir = os.path.abspath(os.path.join("build", "test-debug")) if not os.path.exists(basedir): os.makedirs(basedir) filename = "Screenshot_%s.png" % self.id() filename = os.path.join(basedir, filename) if not hasattr(self.qapp, "primaryScreen"): # Qt4 winId = qt.QApplication.desktop().winId() pixmap = qt.QPixmap.grabWindow(winId) else: # Qt5 screen = self.qapp.primaryScreen() pixmap = screen.grabWindow(0) pixmap.save(filename) _logger.log(level, "Screenshot saved at %s", filename) class SignalListener(object): """Util to listen a Qt event and store parameters """ def __init__(self): self.__calls = [] def __call__(self, *args, **kargs): self.__calls.append((args, kargs)) def clear(self): """Clear stored data""" self.__calls = [] def callCount(self): """ Returns how many times the listener was called. :rtype: int """ return len(self.__calls) def arguments(self, callIndex=None, argumentIndex=None): """Returns positional arguments optionally filtered by call count id or argument index. :param int callIndex: Index of the called data :param int argumentIndex: Index of the positional argument. """ if callIndex is not None: result = self.__calls[callIndex][0] if argumentIndex is not None: result = result[argumentIndex] else: result = [x[0] for x in self.__calls] if argumentIndex is not None: result = [x[argumentIndex] for x in result] return result def karguments(self, callIndex=None, argumentName=None): """Returns positional arguments optionally filtered by call count id or name of the keyword argument. :param int callIndex: Index of the called data :param int argumentName: Name of the keyword argument. """ if callIndex is not None: result = self.__calls[callIndex][1] if argumentName is not None: result = result[argumentName] else: result = [x[1] for x in self.__calls] if argumentName is not None: result = [x[argumentName] for x in result] return result def partial(self, *args, **kargs): """Returns a new partial object which when called will behave like this listener called with the positional arguments args and keyword arguments keywords. If more arguments are supplied to the call, they are appended to args. If additional keyword arguments are supplied, they extend and override keywords. """ return functools.partial(self, *args, **kargs) def getQToolButtonFromAction(action): """Return a QToolButton corresponding to a QAction. :param QAction action: The QAction from which to get QToolButton. :return: A QToolButton associated to action or None. """ if qt.BINDING == "PySide6": widgets = action.associatedObjects() else: widgets = action.associatedWidgets() for widget in widgets: if isinstance(widget, qt.QToolButton): return widget return None def findChildren(parent, kind, name=None): if qt.BINDING in ("PySide", "PySide2", "PySide6") and name is not None: result = [] for obj in parent.findChildren(kind): if obj.objectName() == name: result.append(obj) return result else: return parent.findChildren(kind, name=name) ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7797663 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/0000755000000000000000000000000014741736404016524 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/__init__.py0000644000000000000000000000332014741736366020642 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os __path__ += [os.path.join(os.path.dirname(__file__), "xas")] __path__ += [os.path.join(os.path.dirname(__file__), "xrf")] ././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7797663 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/0000755000000000000000000000000014741736404017317 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASFourierTransformParameters.py0000644000000000000000000002721514741736366025616 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict _logger = logging.getLogger(__name__) class XASFourierTransformParameters(qt.QGroupBox): sigFTParametersSignal = qt.pyqtSignal(object) def __init__(self, parent=None): super(XASFourierTransformParameters, self).__init__(parent) self.setTitle("Fourier Transform") self.__connected = True self.build() config = {} config["FT"] = {} ddict = config["FT"] ddict["Window"] = "Gaussian" ddict["WindowList"] = ["Gaussian", "Hanning", "Box", "Parzen", "Welch", "Hamming", "Tukey", "Papul", "Kaiser"] ddict["WindowApodization"] = 0.02 ddict["WindowRange"] = None ddict["KStep"] = 0.04 ddict["Points"] = 2048 ddict["Range"] = [0.0, 7.0] self.setParameters(config) def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) # window selector windowLabel = qt.QLabel(self) windowLabel.setText("Window:") windowOptions = ["Gaussian", "Hanning", "Box", "Parzen", "Welch", "Hamming", "Tukey", "Papul", "Kaiser"] self.windowSelector = qt.QComboBox(self) for option in windowOptions: self.windowSelector.addItem(option) self.windowSelector.setCurrentIndex(0) # the apodization value apodizationLabel = qt.QLabel(self) apodizationLabel.setText("Apodization:") self.apodizationBox = qt.QDoubleSpinBox(self) self.apodizationBox.setMinimum(0.001) self.apodizationBox.setMaximum(4.) self.apodizationBox.setDecimals(3) self.apodizationBox.setSingleStep(0.01) self.apodizationBox.setValue(0.02) self.apodizationBox.setEnabled(False) # the window range # k Min kMinLabel = qt.QLabel(self) kMinLabel.setText("Window K Min:") self.kMinBox = qt.QDoubleSpinBox(self) self.kMinBox.setDecimals(2) self.kMinBox.setMinimum(0.0) self.kMinBox.setValue(2.0) self.kMinBox.setSingleStep(0.1) self.kMinBox.setEnabled(True) # k Max kMaxLabel = qt.QLabel(self) kMaxLabel.setText("Window K Max:") self.kMaxBox = qt.QDoubleSpinBox(self) self.kMaxBox.setDecimals(2) self.kMaxBox.setMaximum(25.0) self.kMaxBox.setValue(20.0) self.kMaxBox.setSingleStep(0.1) self.kMaxBox.setEnabled(True) # k Step kStepLabel = qt.QLabel(self) kStepLabel.setText("Window K Step:") self.kStepBox = qt.QDoubleSpinBox(self) self.kStepBox.setDecimals(2) self.kStepBox.setMinimum(0.01) self.kStepBox.setMaximum(0.5) self.kStepBox.setValue(0.02) self.kStepBox.setSingleStep(0.01) self.kStepBox.setEnabled(True) # the FT Range # R Max rMaxLabel = qt.QLabel(self) rMaxLabel.setText("FT Max. R:") self.rMaxBox = qt.QDoubleSpinBox(self) self.rMaxBox.setDecimals(2) self.rMaxBox.setMaximum(10.0) self.rMaxBox.setValue(6.0) self.rMaxBox.setSingleStep(0.5) self.rMaxBox.setEnabled(True) # the FT number of points pointsLabel = qt.QLabel(self) pointsLabel.setText("Points:") pointsOptions = ["512", "1024", "2048", "4096"] self.pointsSelector = qt.QComboBox(self) for option in pointsOptions: self.pointsSelector.addItem(option) self.pointsSelector.setCurrentIndex(2) # arrange everything self.mainLayout.addWidget(windowLabel, 0, 0) self.mainLayout.addWidget(self.windowSelector, 0, 1) self.mainLayout.addWidget(apodizationLabel, 1, 0) self.mainLayout.addWidget(self.apodizationBox, 1, 1) self.mainLayout.addWidget(kMinLabel, 2, 0) self.mainLayout.addWidget(self.kMinBox, 2, 1) self.mainLayout.addWidget(kMaxLabel, 3, 0) self.mainLayout.addWidget(self.kMaxBox, 3, 1) self.mainLayout.addWidget(kStepLabel, 4, 0) self.mainLayout.addWidget(self.kStepBox, 4, 1) self.mainLayout.addWidget(rMaxLabel, 5, 0) self.mainLayout.addWidget(self.rMaxBox, 5, 1) self.mainLayout.addWidget(pointsLabel, 6, 0) self.mainLayout.addWidget(self.pointsSelector, 6, 1) # connect #self.setupButton.clicked.connect(self._setupClicked) self.windowSelector.activated[int].connect(self._windowChanged) self.apodizationBox.valueChanged[float].connect(self._apodizationChanged) self.kMinBox.valueChanged[float].connect(self._kMinChanged) self.kMaxBox.valueChanged[float].connect(self._kMaxChanged) self.kStepBox.valueChanged[float].connect(self._kStepChanged) self.rMaxBox.valueChanged[float].connect(self._rMaxChanged) self.pointsSelector.activated[int].connect(self._pointsChanged) def _windowChanged(self, value): _logger.debug("_windowChanged %s" % value) current = str(self.windowSelector.currentText()) if current.lower() in ["gaussian", "gauss", "tukey", "papul"]: self.apodizationBox.setEnabled(False) if current.lower() in ["kaiser"]: self.apodizationBox.setEnabled(True) else: self.apodizationBox.setEnabled(True) if self.__connected: self.emitSignal("FTWindowChanged") def _apodizationChanged(self, value): _logger.debug("_apodizationChanged %s" % value) if self.__connected: self.emitSignal("FTApodizationChanged") def _kMinChanged(self, value): _logger.debug("Current kMin Value = %s" % value) if self.__connected: self.emitSignal("FTKMinChanged") def _kMaxChanged(self, value): _logger.debug("Current kMax Value = %s" % value) if self.__connected: if value > self.kMinBox.value(): self.emitSignal("FTKMaxChanged") else: # I should check if we have the focus prior to # raise any error. # This situation happens during manual editing pass def _kStepChanged(self, value): _logger.debug("Current kStep value = %s" % value) if self.__connected: self.emitSignal("FTKStepChanged") def _rMaxChanged(self, value): _logger.debug("Current rMax Value = %s", value) if self.__connected: self.emitSignal("FTRMaxChanged") def _pointsChanged(self, value): _logger.debug("_pointsChanged %s" % value) if self.__connected: self.emitSignal("FTPointsChanged") def getParameters(self): ddict = {} # window ddict["Window"] = str(self.windowSelector.currentText()) ddict["WindowList"] = [] for i in range(self.windowSelector.count()): ddict["WindowList"].append(str(self.windowSelector.itemText(i))) ddict["WindowApodization"] = self.apodizationBox.value() ddict["WindowRange"] = [self.kMinBox.value(), self.kMaxBox.value()] ddict["KStep"] = self.kStepBox.value() ddict["Points"] = int(str(self.pointsSelector.currentText())) ddict["Range"] = [0.0, self.rMaxBox.value()] return ddict def setParameters(self, ddict, signal=True): _logger.debug("setParameters called, ddict %s, signal %s" % (ddict, signal)) if "FT" in ddict: ddict = ddict["FT"] try: self.__connected = False if "Window" in ddict: option = ddict["Window"] if type(ddict["Window"]) == type(1): self.windowSelector.setCurrentIndex(option) else: selectorOptions = [] for i in range(self.windowSelector.count()): selectorOptions.append(str(self.windowSelector.itemText(i))) for i in range(len(selectorOptions)): if selectorOptions[i].lower().startswith(str(option).lower()): self.windowSelector.setCurrentIndex(i) break if ddict["WindowRange"] not in [None, "None", "none"]: self.kMinBox.setValue(ddict["WindowRange"][0]) self.kMaxBox.setValue(ddict["WindowRange"][-1]) self.kStepBox.setValue(ddict["KStep"]) self.rMaxBox.setValue(ddict["Range"][-1]) v = 0 for i in range(self.pointsSelector.count()): if int(str(self.pointsSelector.itemText(i))) < int(ddict["Points"]): v += 1 else: break self.pointsSelector.setCurrentIndex(v) finally: self.__connected = True if signal: self.emitSignal("FTWindowChanged") def emitSignal(self, event): ddict = self.getParameters() ddict["event"] = event self.sigFTParametersSignal.emit(ddict) def setKRange(self, kRange): if kRange[0] > kRange[1]: # do nothing (it happens on editing) return if self.kMinBox.minimum() > kRange[0]: self.kMinBox.setMinimum(kRange[0]) if self.kMaxBox.maximum() < kRange[1]: self.kMaxBox.setMaximum(kRange[1]) #kMin = self.kMinBox.value() #kMax = self.kMaxBox.value() #if kRange[1] > kMin: # self.kMaxBox.setMaximum(kRange[1]) #current = self.kMaxBox.value() #if current > (kRange[1]+0.01): # self.kMaxBox.setValue(value) def setTitleColor(self, color): #self.setStyleSheet("QGroupBox {font-weight: bold; color: red;}") self.setStyleSheet("QGroupBox {color: %s;}" % color) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) def mySlot(ddict): print("Signal received: ", ddict) w = XASFourierTransformParameters() w.show() w.sigFTParametersSignal.connect(mySlot) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASNormalizationParameters.py0000644000000000000000000004024614741736366025134 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons from PyMca5.PyMcaGui.physics.xas import XASNormalizationWindow from PyMca5.PyMcaPhysics.xas import XASNormalization IconDict = PyMca_Icons.IconDict _logger = logging.getLogger(__name__) class XASNormalizationParameters(qt.QGroupBox): sigNormalizationParametersSignal = qt.pyqtSignal(object) def __init__(self, parent=None, color=None): super(XASNormalizationParameters, self).__init__(parent) self.setTitle("Normalization") self._dialog = None self._energy = None self._mu = None self.__connected = True self.build() if color is not None: self.setTitleColor(color) def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) # the normalization method normalizationLabel = qt.QLabel(self) normalizationLabel.setText("Method:") self.normalizationOptions = ["Constant", "Flattened"] self.normalizationSelector = qt.QComboBox(self) for option in self.normalizationOptions: self.normalizationSelector.addItem(option) self.normalizationSelector.setCurrentIndex(1) # the E0 value self.e0CheckBox = qt.QCheckBox(self) self.e0CheckBox.setText("Auto E0:") self.e0CheckBox.setChecked(True) self.e0SpinBox = qt.QDoubleSpinBox(self) self.e0SpinBox.setMinimum(200.) self.e0SpinBox.setMaximum(200000.) self.e0SpinBox.setDecimals(2) self.e0SpinBox.setSingleStep(0.2) self.e0SpinBox.setEnabled(False) # the jump jumpLabel = qt.QLabel(self) jumpLabel.setText("Jump:") self.jumpLine = qt.QLineEdit(self) self.jumpLine.setEnabled(False) # the pre-edge preEdgeLabel = qt.QLabel(self) preEdgeLabel.setText("Pre-Edge") self.preEdgeSelector = XASNormalizationWindow.PolynomSelector(self) self.preEdgeSelector.setCurrentIndex(3) # pre-edge regions preEdgeStartLabel = qt.QLabel(self) preEdgeStartLabel.setText("Begin:") self.preEdgeStartBox = qt.QDoubleSpinBox(self) self.preEdgeStartBox.setDecimals(2) self.preEdgeStartBox.setMinimum(-2000.0) self.preEdgeStartBox.setMaximum(-5.0) self.preEdgeStartBox.setValue(-100) self.preEdgeStartBox.setSingleStep(5.0) self.preEdgeStartBox.setEnabled(True) preEdgeEndLabel = qt.QLabel(self) preEdgeEndLabel.setText("End:") self.preEdgeEndBox = qt.QDoubleSpinBox(self) self.preEdgeEndBox.setDecimals(2) self.preEdgeEndBox.setMinimum(-200.0) self.preEdgeEndBox.setMaximum(-1.0) self.preEdgeEndBox.setValue(-40) self.preEdgeEndBox.setSingleStep(5.0) self.preEdgeEndBox.setEnabled(True) # the post-edge postEdgeLabel = qt.QLabel(self) postEdgeLabel.setText("Post-Edge") self.postEdgeSelector = XASNormalizationWindow.PolynomSelector(self) self.postEdgeSelector.setCurrentIndex(3) # post-edge regions postEdgeStartLabel = qt.QLabel(self) postEdgeStartLabel.setText("Begin:") self.postEdgeStartBox = qt.QDoubleSpinBox(self) self.postEdgeStartBox.setDecimals(2) self.postEdgeStartBox.setMinimum(1.0) self.postEdgeStartBox.setMaximum(3000.0) self.postEdgeStartBox.setValue(10) self.postEdgeStartBox.setSingleStep(5.0) self.postEdgeStartBox.setEnabled(True) postEdgeEndLabel = qt.QLabel(self) postEdgeEndLabel.setText("End:") self.postEdgeEndBox = qt.QDoubleSpinBox(self) self.postEdgeEndBox.setDecimals(2) self.postEdgeEndBox.setMinimum(10.0) self.postEdgeEndBox.setMaximum(2000.0) self.postEdgeEndBox.setValue(300) self.postEdgeEndBox.setSingleStep(5.0) self.postEdgeEndBox.setEnabled(True) # arrange everything self.mainLayout.addWidget(normalizationLabel, 0, 0) self.mainLayout.addWidget(self.normalizationSelector, 0, 1) self.mainLayout.addWidget(self.e0CheckBox, 1, 0) self.mainLayout.addWidget(self.e0SpinBox, 1, 1) self.mainLayout.addWidget(jumpLabel, 2, 0) self.mainLayout.addWidget(self.jumpLine, 2, 1) self.mainLayout.addWidget(preEdgeLabel, 3, 0) self.mainLayout.addWidget(self.preEdgeSelector, 3, 1) self.mainLayout.addWidget(preEdgeStartLabel, 4, 0) self.mainLayout.addWidget(self.preEdgeStartBox, 4, 1) self.mainLayout.addWidget(preEdgeEndLabel, 5, 0) self.mainLayout.addWidget(self.preEdgeEndBox, 5, 1) self.mainLayout.addWidget(postEdgeLabel, 6, 0) self.mainLayout.addWidget(self.postEdgeSelector, 6, 1) self.mainLayout.addWidget(postEdgeStartLabel, 7, 0) self.mainLayout.addWidget(self.postEdgeStartBox, 7, 1) self.mainLayout.addWidget(postEdgeEndLabel, 8, 0) self.mainLayout.addWidget(self.postEdgeEndBox, 8, 1) # connect self.normalizationSelector.activated[int].connect(self._normalizationChanged) self.e0CheckBox.toggled.connect(self._e0Toggled) self.e0SpinBox.valueChanged[float].connect(self._e0Changed) self.preEdgeSelector.activated[int].connect(self._preEdgeChanged) self.preEdgeStartBox.valueChanged[float].connect(self._preEdgeStartChanged) self.preEdgeEndBox.valueChanged[float].connect(self._preEdgeEndChanged) self.postEdgeSelector.activated[int].connect(self._postEdgeChanged) self.postEdgeStartBox.valueChanged[float].connect(self._postEdgeStartChanged) self.postEdgeEndBox.valueChanged[float].connect(self._postEdgeEndChanged) def _normalizationChanged(self, value): _logger.debug("_normalizationChanged, %s " % value) if self.__connected: self._emitSignal("JumpNormalizationChanged") def setSpectrum(self, energy, mu): # try to detect keV if abs(energy[-1]-energy[0]) < 10: self._energy = energy * 1000. else: self._energy = energy * 1.0 self._mu = mu try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("SpectrumChanged") def _calculateE0(self): return XASNormalization.getE0SavitzkyGolay(self._energy, self._mu, points=5, full=False) def _e0Toggled(self, state): if state: self.e0SpinBox.setEnabled(False) if self._mu is not None: e0 = self._calculateE0() self.e0SpinBox.setValue(e0) else: self.e0SpinBox.setEnabled(True) def _e0Changed(self, value): _logger.debug("E0 CHANGED, %s" % value) if self.__connected: try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("E0Changed") def _preEdgeChanged(self, value): _logger.debug("Current pre-edge value = %s" % value) if self.__connected: self._emitSignal("PreEdgeChanged") def _preEdgeStartChanged(self, value): _logger.debug("pre start changed: %s" % value) if self.__connected: try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("PreEdgeChanged") def _preEdgeEndChanged(self, value): _logger.debug("pre end changed: %s" % value) if self.__connected: try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("PreEdgeChanged") def _postEdgeChanged(self, value): _logger.debug("post-edge changed: %s" % value) if self.__connected: self._emitSignal("PostEdgeChanged") def _postEdgeStartChanged(self, value): _logger.debug("post-edge start changed: %s" % value) if self.__connected: try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("PostEdgeChanged") def _postEdgeEndChanged(self, value): _logger.debug("post-edge changed: %s" % value) if self.__connected: try: self.__connected = False self._update() finally: self.__connected = True self._emitSignal("PostEdgeChanged") def _update(self): if self._energy is None: return eMin = self._energy.min() eMax = self._energy.max() current = self.getParameters() if current["E0Method"].lower().startswith("auto") or \ current["E0Value"] < self._energy.min() or \ current["E0Value"] > self._energy.max(): energy = self._calculateE0() current["E0Value"] = energy # energy e0 = current["E0Value"] self.e0SpinBox.setValue(e0) # pre-edge start = e0 + current["PreEdge"]["Regions"][0] end = e0 + current["PreEdge"]["Regions"][-1] if start > end: start, end = end, start start = max(start, eMin) if end <= start: end = 0.5 * (start + energy) self.preEdgeStartBox.setValue(start - e0) self.preEdgeEndBox.setValue(end - e0) # post-edge start = e0 + current["PostEdge"]["Regions"][0] end = e0 + current["PostEdge"]["Regions"][-1] if start > end: start, end = end, start end = min(end, eMax) if end <= start: start = 0.5 * (end + energy) self.postEdgeStartBox.setValue(start - e0) self.postEdgeEndBox.setValue(end - e0) def getParameters(self): ddict = {} # normalization method ddict["JumpNormalizationMethod"] = str(self.normalizationSelector.currentText()) # default values not yet handled by the interface ddict["E0MinValue"] = None ddict["E0MaxValue"] = None if self.e0CheckBox.isChecked(): ddict["E0Method"] = "Auto - 5pt SG" else: ddict["E0Method"] = "Manual" ddict["E0Value"] = self.e0SpinBox.value() # pre-edge ddict["PreEdge"] = {} ddict["PreEdge"] ["Method"] = "Polynomial" ddict["PreEdge"] ["Polynomial"] = str(self.preEdgeSelector.currentText()) # Regions is a single list with 2 * n values delimiting n regions. ddict["PreEdge"] ["Regions"] = [self.preEdgeStartBox.value(), self.preEdgeEndBox.value()] ddict["PostEdge"] = {} ddict["PostEdge"] ["Method"] = "Polynomial" ddict["PostEdge"] ["Polynomial"] = str(self.postEdgeSelector.currentText()) ddict["PostEdge"] ["Regions"] = [self.postEdgeStartBox.value(), self.postEdgeEndBox.value()] return ddict def setParameters(self, ddict, signal=True): _logger.debug("setParameters called, %s %s" % (ddict, signal)) if "Normalization" in ddict: ddict = ddict["Normalization"] try: self.__connected = False if "JumpNormalizationMethod" in ddict: option = ddict["JumpNormalizationMethod"] if type(ddict["JumpNormalizationMethod"]) == type(1): self.normalizationSelector.setCurrentIndex(option) else: selectorOptions = [] for i in range(self.normalizationSelector.count()): selectorOptions.append(str(self.normalizationSelector.itemText(i))) for i in range(len(selectorOptions)): if selectorOptions[i].lower().startswith(str(option).lower()): self.normalizationSelector.setCurrentIndex(i) break if ddict["E0Value"] is None: self.e0CheckBox.setChecked(True) else: self.e0SpinBox.setValue(ddict["E0Value"]) if ddict["E0Method"].lower().startswith("manual"): self.e0CheckBox.setChecked(False) else: self.e0CheckBox.setChecked(True) selectorOptions = self.preEdgeSelector.getOptions() i = 0 for option in selectorOptions: if str(option) == str(ddict["PreEdge"] ["Polynomial"]): self.preEdgeSelector.setCurrentIndex(i) break i += 1 selectorOptions = self.postEdgeSelector.getOptions() i = 0 for option in selectorOptions: if str(option) == str(ddict["PostEdge"] ["Polynomial"]): self.postEdgeSelector.setCurrentIndex(i) break i += 1 self.preEdgeStartBox.setValue(ddict["PreEdge"]["Regions"][0]) self.preEdgeEndBox.setValue(ddict["PreEdge"]["Regions"][-1]) self.postEdgeStartBox.setValue(ddict["PostEdge"]["Regions"][0]) self.postEdgeEndBox.setValue(ddict["PostEdge"]["Regions"][-1]) self._update() finally: self.__connected = True if signal: # E0Changed or SpectrumUpdated self._emitSignal("E0Changed") def _emitSignal(self, event): ddict = self.getParameters() ddict["event"] = event self.jumpLine.setText("") self.sigNormalizationParametersSignal.emit(ddict) def setJump(self, value): self.jumpLine.setText("%f" % value) def setTitleColor(self, color): #self.setStyleSheet("QGroupBox {font-weight: bold; color: red;}") self.setStyleSheet("QGroupBox {color: %s;}" % color) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) def mySlot(ddict): print("Signal received: ", ddict) w = XASNormalizationParameters() w.show() w.sigNormalizationParametersSignal.connect(mySlot) from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR if len(sys.argv) > 1: fileName = sys.argv[1] else: fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Cu.dat") data = specfile.Specfile(fileName)[0].data()[-2:, :] energy = data[0, :] mu = data[1, :] w.setSpectrum(energy, mu) w.setTitleColor("blue") app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASNormalizationWindow.py0000644000000000000000000005531714741736366024305 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import traceback import copy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGraph.backends.MatplotlibBackend \ import MatplotlibBackend as backend from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaPhysics.xas import XASNormalization POLYNOM_OPTIONS = ['Modif. Victoreen', 'Victoreen', 'Constant', 'Linear', 'Parabolic', 'Cubic'] class PolynomSelector(qt.QComboBox): def __init__(self, parent=None, options=None): qt.QComboBox.__init__(self, parent) self.setEditable(0) if options is not None: self.setOptions(options) else: self.setOptions(POLYNOM_OPTIONS) def setOptions(self, options): for item in options: self.addItem(item) def getOptions(self): return POLYNOM_OPTIONS * 1 class XASNormalizationParametersWidget(qt.QWidget): sigXASNormalizationParametersSignal = qt.pyqtSignal(object) def __init__(self, parent = None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.__parametersDict = self._getDefaultParameters() self.__defaultEdgeEnergy = None self._polynomOptions = POLYNOM_OPTIONS i = 0 edgeGroupBox = qt.QGroupBox(self) edgeGroupBoxLayout = qt.QGridLayout(edgeGroupBox) edgeGroupBox.setAlignment(qt.Qt.AlignHCenter) edgeGroupBox.setTitle('Edge Position') autoButton = qt.QRadioButton(edgeGroupBox) autoButton.setText('Auto') autoButton.setChecked(True) userButton = qt.QRadioButton(edgeGroupBox) userButton.setText('User') buttonGroup = qt.QButtonGroup(edgeGroupBox) buttonGroup.addButton(autoButton, 0) buttonGroup.addButton(userButton, 1) buttonGroup.setExclusive(True) userEnergy = qt.QLineEdit(edgeGroupBox) userEnergy.setEnabled(False) validator = qt.CLocaleQDoubleValidator(userEnergy) userEnergy.setValidator(validator) edgeGroupBoxLayout.addWidget(autoButton, 0, 0) edgeGroupBoxLayout.addWidget(userButton, 1, 0) edgeGroupBoxLayout.addWidget(userEnergy, 1, 1) self.mainLayout.addWidget(edgeGroupBox, 0, 0, 2, 2) #create handles to the relevant widgets self.autoEdgeButton = autoButton self.userEdgeButton = userButton self.userEdgeEnergy = userEnergy # connect the signals if hasattr(buttonGroup, "idClicked"): buttonGroup.idClicked[int].connect(self._buttonClicked) else: # deprecated buttonGroup.buttonClicked[int].connect(self._buttonClicked) self.userEdgeEnergy.editingFinished.connect(self._userEdgeEnergyEditingFinished) regionsGroupBox = qt.QGroupBox(self) regionsGroupBoxLayout = qt.QGridLayout(regionsGroupBox) regionsGroupBox.setAlignment(qt.Qt.AlignHCenter) regionsGroupBox.setTitle('Regions') i = 1 for text in ["Pre-edge Polynom:", "Post-edge Polynom:"]: label = qt.QLabel(regionsGroupBox) label.setText(text) regionsGroupBoxLayout.addWidget(label, i, 0) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), i, 1) i +=1 i = 1 self.widgetDict = {} for key in ['pre_edge', 'post_edge']: self.widgetDict[key] = {} c = 1 w = PolynomSelector(regionsGroupBox, options=self._polynomOptions) w.activated[int].connect(self._regionParameterChanged) regionsGroupBoxLayout.addWidget(w, i, c) c += 1 self.widgetDict[key]['polynomial'] = w for text in ['delta xmin', 'delta xmax']: label = qt.QLabel(regionsGroupBox) label.setText(text) self.widgetDict[key][text] = qt.QLineEdit(regionsGroupBox) self.widgetDict[key][text].editingFinished.connect( \ self._regionParameterChanged) validator = qt.CLocaleQDoubleValidator(self.widgetDict[key][text]) self.widgetDict[key][text].setValidator(validator) regionsGroupBoxLayout.addWidget(label, i, c) regionsGroupBoxLayout.addWidget(self.widgetDict[key][text], i, c + 1) c += 2 i += 1 self.mainLayout.addWidget(regionsGroupBox, 0, 2) self._updateParameters() def _getDefaultParameters(self): ddict = {} ddict['auto_edge'] = 1 #give a dummy value ddict['edge_energy'] = 0.0 ddict['pre_edge'] = {} ddict['pre_edge']['regions'] = [[-100., -40.]] ddict['pre_edge']['polynomial'] = 'Constant' ddict['post_edge'] = {} ddict['post_edge']['regions'] = [[20., 300.]] ddict['post_edge']['polynomial'] = 'Linear' return ddict def _buttonClicked(self, intValue): event = None ddict={} if intValue == 0: event = "AutoEdgeEnergyClicked" ddict['auto_edge'] = 1 else: ddict['auto_edge'] = 0 self.setParameters(ddict, signal=True, event=event) def _userEdgeEnergyEditingFinished(self): ddict={} ddict['edge_energy'] = float(self.userEdgeEnergy.text()) self.setParameters(ddict, signal=True) def _regionParameterChanged(self, dummy=None, signal=True): ddict = {} for key in ['pre_edge', 'post_edge']: ddict[key] = {} ddict[key]['polynomial'] = self.widgetDict[key]['polynomial'].currentIndex() - 2 delta_xmin = float(self.widgetDict[key]['delta xmin'].text()) delta_xmax = float(self.widgetDict[key]['delta xmax'].text()) if delta_xmin > delta_xmax: ddict[key]['regions'] = [[delta_xmax, delta_xmin]] self.widgetDict[key]['delta xmin'].setText("%f" % delta_xmax) self.widgetDict[key]['delta xmax'].setText("%f" % delta_xmin) else: ddict[key]['regions'] = [[delta_xmin, delta_xmax]] self.setParameters(ddict, signal=True) def setParameters(self, ddict, signal=False, event=None): for key in ddict: if key in ['pre_edge', 'post_edge']: self.__parametersDict[key].update(ddict[key]) elif key in self.__parametersDict: self.__parametersDict[key] = ddict[key] self._updateParameters(signal=signal, event=event) def _updateParameters(self, signal=True, event=None): for key in ['pre_edge', 'post_edge']: idx = self.__parametersDict[key]['polynomial'] if type(idx) == type(1): # polynomial order self.widgetDict[key]['polynomial'].setCurrentIndex(idx + 2) else: # string self.widgetDict[key]['polynomial'].setCurrentIndex(\ self._polynomOptions.index(idx)) i = 0 for text in ['delta xmin', 'delta xmax']: # only the first region of each shown self.widgetDict[key][text].setText("%f" %\ self.__parametersDict[key]['regions'][0][i]) i += 1 self.userEdgeEnergy.setText("%f" % self.__parametersDict['edge_energy']) if self.__parametersDict['auto_edge']: self.autoEdgeButton.setChecked(True) self.userEdgeButton.setChecked(False) self.userEdgeEnergy.setEnabled(False) else: self.autoEdgeButton.setChecked(False) self.userEdgeButton.setChecked(True) self.userEdgeEnergy.setEnabled(True) if signal: ddict = self.getParameters() if event is None: ddict['event']='XASNormalizationParametersChanged' else: ddict['event'] = event self.sigXASNormalizationParametersSignal.emit(ddict) def getParameters(self): # make sure a copy is given back return copy.deepcopy(self.__parametersDict) def setEdgeEnergy(self, energy, emin=None, emax=None): self.userEdgeEnergy.setText("%f" % energy) signal = True if self.__parametersDict['edge_energy'] == energy: signal = False ddict ={'edge_energy':energy} if emin is not None: for region in self.__parametersDict['pre_edge']['regions']: if (region[0] + energy) < emin: signal = True ddict['pre_edge'] = {} xmin = emin - energy xmax = 0.5 * xmin ddict['pre_edge']['regions'] = [[xmin, xmax]] break if emax is not None: for region in self.__parametersDict['post_edge']['regions']: if (region[1] + energy) > emax: signal=True ddict['post_edge'] = {} xmax = emax - energy xmin = 0.1 * xmax ddict['post_edge']['regions'] = [[xmin, xmax]] break self.setParameters(ddict, signal=signal) class XASNormalizationWindow(qt.QWidget): def __init__(self, parent, spectrum, energy=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("XAS Normalization Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) if energy is None: self.energy = numpy.arange(len(spectrum)).astype(numpy.float64) else: self.energy = energy self.spectrum = numpy.asarray(spectrum, dtype=numpy.float64) self.parametersWidget = XASNormalizationParametersWidget(self) self.graph = PlotWindow.PlotWindow(self, backend=backend, plugins=False, newplot=False) self.__lastDict = {} self.graph.sigPlotSignal.connect(self._handleGraphSignal) self.graph.addCurve(self.energy, spectrum, legend="Spectrum", replace=True) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.graph) # initialize variables edgeEnergy, sortedX, sortedY, xPrime, yPrime =\ XASNormalization.estimateXANESEdge(spectrum, energy=self.energy, full=True) self._xPrime = xPrime self._yPrime = yPrime self.parametersWidget.setEdgeEnergy(edgeEnergy, emin=self.energy.min(), emax=self.energy.max()) self.getParameters = self.parametersWidget.getParameters self.setParameters = self.parametersWidget.setParameters self.parametersWidget.sigXASNormalizationParametersSignal.connect( \ self.updateGraph) self.updateGraph(self.getParameters()) def setData(self, spectrum, energy=None): self.spectrum = spectrum if energy is None: self.energy = numpy.arange(len(spectrum)).astype(numpy.float64) else: self.energy = energy self.graph.clearMarkers() self.graph.addCurve(self.energy, self.spectrum, legend="Spectrum", replot=True, replace=True) edgeEnergy = XASNormalization.estimateXANESEdge(self.spectrum, energy=self.energy, full=False) self.parametersWidget.setEdgeEnergy(edgeEnergy, emin=self.energy.min(), emax=self.energy.max()) self.updateGraph(self.getParameters()) def updateGraph(self, ddict): self.__lastDict = ddict edgeEnergy = ddict['edge_energy'] preRegions = ddict['pre_edge']['regions'] postRegions = ddict['post_edge']['regions'] event = ddict.get('event', None) if event == "AutoEdgeEnergyClicked": try: # recalculate edge energy following region limits xmin = edgeEnergy + preRegions[0][0] xmax = edgeEnergy + postRegions[0][1] idx = numpy.nonzero((self.energy >= xmin) &\ (self.energy <= xmax))[0] x = numpy.take(self.energy, idx) y = numpy.take(self.spectrum, idx) edgeEnergy = XASNormalization.estimateXANESEdge(y, energy=x, full=False) self.parametersWidget.setEdgeEnergy(edgeEnergy, emin=self.energy.min(), emax=self.energy.max()) self.__lastDict['edge_energy'] = edgeEnergy except Exception: pass parameters = {} parameters['pre_edge_order'] = ddict['pre_edge']['polynomial'] parameters['post_edge_order'] = ddict['post_edge']['polynomial'] algorithm = 'polynomial' self.updateMarkers(edgeEnergy, preRegions, postRegions, edge_auto=ddict['auto_edge']) try: normalizationResult = XASNormalization.XASNormalization(self.spectrum, self.energy, edge=edgeEnergy, pre_edge_regions=preRegions, post_edge_regions=postRegions, algorithm=algorithm, algorithm_parameters=parameters) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Normalization Error") msg.setText("An error has occured while normalizing the data") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return nEnergy, nSpectrum, usedEdge, jump = normalizationResult[0:4] preEdgeFunction, preEdgeParameters = normalizationResult[4:6] postEdgeFunction, postEdgeParameters = normalizationResult[6:8] idx = self.energy > (usedEdge + preRegions[0][0]) x = self.energy[idx] yPre = preEdgeFunction(preEdgeParameters, x) yPost = postEdgeFunction(postEdgeParameters, x) self.graph.addCurve(x, yPre, legend="Pre-edge Polynomial", replace=False) self.graph.addCurve(x, yPost+yPre, legend="Post-edge Polynomial", replace=False, replot=True) def updateMarkers(self, edgeEnergy, preEdgeRegions, postEdgeRegions, edge_auto=True): if edge_auto: draggable = False else: draggable = True #self.graph.clearMarkers() self.graph.insertXMarker(edgeEnergy, 'EDGE', text='EDGE', color='pink', draggable=draggable, replot=False) for i in range(2): x = preEdgeRegions[0][i] + edgeEnergy if i == 0: label = 'MIN' else: label = 'MAX' self.graph.insertXMarker(x, 'Pre-'+ label, text=label, color='blue', draggable=True, replot=False) for i in range(2): x = postEdgeRegions[0][i] + edgeEnergy if i == 0: label = 'MIN' replot=False else: label = 'MAX' replot=True self.graph.insertXMarker(x, 'Post-'+ label, text=label, color='blue', draggable=True, replot=replot) def _handleGraphSignal(self, ddict): #print("ddict = ", ddict) if ddict['event'] != 'markerMoved': return marker = ddict['label'] edgeEnergy = self.__lastDict['edge_energy'] x = ddict['x'] if marker == "EDGE": self.parametersWidget.setEdgeEnergy(x, emin=self.energy.min(), emax=self.energy.max()) return ddict ={} if marker == "Pre-MIN": ddict['pre_edge'] ={} xmin = x - edgeEnergy xmax = self.__lastDict['pre_edge']['regions'][0][1] if xmin > xmax: ddict['pre_edge']['regions'] = [[xmax, xmin]] else: ddict['pre_edge']['regions'] = [[xmin, xmax]] elif marker == "Pre-MAX": ddict['pre_edge'] ={} xmin = self.__lastDict['pre_edge']['regions'][0][0] xmax = x - edgeEnergy if xmin > xmax: ddict['pre_edge']['regions'] = [[xmax, xmin]] else: ddict['pre_edge']['regions'] = [[xmin, xmax]] elif marker == "Post-MIN": ddict['post_edge'] ={} xmin = x - edgeEnergy xmax = self.__lastDict['post_edge']['regions'][0][1] if xmin > xmax: ddict['post_edge']['regions'] = [[xmax, xmin]] else: ddict['post_edge']['regions'] = [[xmin, xmax]] elif marker == "Post-MAX": ddict['post_edge'] ={} xmin = self.__lastDict['post_edge']['regions'][0][0] xmax = x - edgeEnergy if xmin > xmax: ddict['post_edge']['regions'] = [[xmax, xmin]] else: ddict['post_edge']['regions'] = [[xmin, xmax]] else: print("Unhandled markerMoved Signal") return self.setParameters(ddict, signal=True) class XASNormalizationDialog(qt.QDialog): def __init__(self, parent, data, energy=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("XAS Normalization Dialog") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.mainLayout.setSpacing(2) self.__image = False if len(data.shape) == 2: spectrum = data.ravel() else: spectrum = data self.parametersWidget =XASNormalizationWindow(self, spectrum, energy=energy) self.graph = self.parametersWidget.graph self.setData = self.parametersWidget.setData self.mainLayout.addWidget(self.parametersWidget) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.dismissButton) self.mainLayout.addWidget(hbox) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def getParameters(self): parametersDict = self.parametersWidget.getParameters() return parametersDict def setParameters(self, ddict): return self.parametersWidget.setParameters(ddict) def setSpectrum(self, energy, mu): self.parametersWidget.setData(mu, energy=energy) if __name__ == "__main__": app = qt.QApplication([]) if len(sys.argv) > 1: from PyMca5.PyMcaIO import specfilewrapper as specfile sf = specfile.Specfile(sys.argv[1]) scan = sf[0] data = scan.data() energy = data[0, :] spectrum = data[1, :] w = XASNormalizationDialog(None, spectrum, energy=energy) else: from PyMca5.PyMcaMath.fitting import SpecfitFuns noise = numpy.random.randn(1500).astype(numpy.float64) x = 8000. + numpy.arange(1500).astype(numpy.float64) y = SpecfitFuns.upstep([100, 8500., 50], x) w = XASNormalizationDialog(None, y + numpy.sqrt(y)* noise, energy=x) ret=w.exec() if ret: print(w.getParameters()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASParameters.py0000644000000000000000000002255314741736366022366 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.physics.xas import XASNormalizationParameters from PyMca5.PyMcaGui.physics.xas import XASPostEdgeParameters from PyMca5.PyMcaGui.physics.xas import XASFourierTransformParameters from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import ConfigDict _logger = logging.getLogger(__name__) class XASParameters(qt.QWidget): sigXASParametersSignal = qt.pyqtSignal(object) def __init__(self, parent=None, color=None): super(XASParameters, self).__init__(parent) self.setWindowTitle("XAS Parameters") self.build() if color is not None: self.setTitleColor(color) def build(self): # perhaps the layout will change to a QGridLayout self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.normalizationWidget = \ XASNormalizationParameters.XASNormalizationParameters(self) self.postEdgeWidget = \ XASPostEdgeParameters.XASPostEdgeParameters(self) self.fourierTransformWidget = \ XASFourierTransformParameters.XASFourierTransformParameters(self) self.mainLayout.addWidget(self.normalizationWidget) self.mainLayout.addWidget(self.postEdgeWidget) self.mainLayout.addWidget(self.fourierTransformWidget) self.mainLayout.addWidget(qt.VerticalSpacer(self)) container = qt.QWidget(self) container.mainLayout = qt.QHBoxLayout(container) container.mainLayout.setContentsMargins(0, 0, 0, 0) container.mainLayout.setSpacing(2) self.loadButton = qt.QPushButton(container) self.loadButton.setText("Load") self.loadButton.setAutoDefault(False) self.saveButton = qt.QPushButton(container) self.saveButton.setText("Save") self.saveButton.setAutoDefault(False) container.mainLayout.addWidget(self.loadButton) container.mainLayout.addWidget(self.saveButton) self.mainLayout.addWidget(container) # add function self.setJump = self.normalizationWidget.setJump self.setMaximumK = self.postEdgeWidget.setMaximumK # connect self.normalizationWidget.sigNormalizationParametersSignal.connect( \ self._normalizationSlot) self.postEdgeWidget.sigPostEdgeParametersSignal.connect( \ self._postEdgeParameterSlot) self.fourierTransformWidget.sigFTParametersSignal.connect( \ self._fourierTransformParameterSlot) self.loadButton.clicked.connect(self._loadClicked) self.saveButton.clicked.connect(self._saveClicked) def setMaximumK(self, value): self.postEdgeWidget.setMaximumK(value) self.fourierTransformWidget.setMaximumK(value) def emitSignal(self, event): ddict = self.getParameters() ddict["event"] = event self.sigPostEdgeParametersSignal.emit(ddict) def getParameters(self): ddict = {} ddict["Version"] = 1.0 ddict["Normalization"] = self.getNormalizationParameters() ddict["EXAFS"] = self.getPostEdgeParameters() ddict["FT"] = self.getFTParameters() return ddict def getNormalizationParameters(self): return self.normalizationWidget.getParameters() def getPostEdgeParameters(self): return self.postEdgeWidget.getParameters() def getFTParameters(self): return self.fourierTransformWidget.getParameters() def setParameters(self, ddict): if "Normalization" in ddict: self.setNormalizationParameters(ddict["Normalization"]) if "EXAFS" in ddict: self.setPostEdgeParameters(ddict["EXAFS"]) if "FT" in ddict: self.setFTParameters(ddict["FT"]) def setNormalizationParameters(self, ddict): self.normalizationWidget.setParameters(ddict) def setPostEdgeParameters(self, ddict): self.postEdgeWidget.setParameters(ddict) def setFTParameters(self, ddict): self.fourierTransformWidget.setParameters(ddict) #self._FTParameters = ddict def _normalizationSlot(self, ddict): # Should I change the event to "NormalizationChanged"? self._emitSignal(ddict["event"]) def _postEdgeParameterSlot(self, ddict): _logger.debug("_postEdgeParameterSlot: %s" % ddict) # Should I change the event to "EXAFSChanged"? self.fourierTransformWidget.setKRange([ddict["KMin"], ddict["KMax"]]) self._emitSignal(ddict["event"]) def _fourierTransformParameterSlot(self, ddict): # Should I change the event to "FTChanged"? self._emitSignal(ddict["event"]) def _emitSignal(self, event): ddict = self.getParameters() ddict["event"] = event self.sigXASParametersSignal.emit(ddict) def setSpectrum(self, energy, mu): return self.normalizationWidget.setSpectrum(energy, mu) def setJump(self, value): return self.normalizationWidget.setJump(value) def _loadClicked(self): return self.loadParameters() def loadParameters(self, fname=None): if fname is None: fname = PyMcaFileDialogs.getFileList(self, filetypelist=["Configuration (*.ini)", "Configuration (*.cfg)", "All files (*)"], message="Please set input file name", mode="OPEN", getfilter=False, single=True) if len(fname): fname = fname[0] else: return d = ConfigDict.ConfigDict() d.read(fname) self.setParameters(d["XASParameters"]) def _saveClicked(self): return self.saveParameters() def saveParameters(self, fname=None): if fname is None: fname = PyMcaFileDialogs.getFileList(self, filetypelist=["Configuration (*.ini)", "Configuration (*.cfg)"], message="Please enter output file name", mode="SAVE", getfilter=False, single=True) if len(fname): fname = fname[0] else: return ddict = ConfigDict.ConfigDict() ddict["XASParameters"] = self.getParameters() ddict.write(fname) def setTitleColor(self, color): try: self.normalizationWidget.setTitleColor(color) self.postEdgeWidget.setTitleColor(color) self.fourierTransformWidget.setTitleColor(color) except Exception: _logger.error("Error setting title color: %s" % sys.exc_info()) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) def testSlot(ddict): print("Emitted signal = ", ddict) w = XASParameters() w.sigXASParametersSignal.connect(testSlot) w.show() try: import os from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR if len(sys.argv) > 1: fileName = sys.argv[1] else: fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Cu.dat") data = specfile.Specfile(fileName)[0].data()[-2:, :] energy = data[0, :] mu = data[1, :] w.setSpectrum(energy, mu) except Exception: print("ERROR: ", sys.exc_info()) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASPostEdgeParameters.py0000644000000000000000000003332314741736366024016 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict _logger = logging.getLogger(__name__) def myFloat(x): try: return float(x) except ValueError: if ',' in x: try: return float(x.replace(',','.')) except Exception: return float(x) elif '.' in x: try: return float(x.replace('.',',')) except Exception: return float(x) else: raise class XASPostEdgeParameters(qt.QGroupBox): sigPostEdgeParametersSignal = qt.pyqtSignal(object) def __init__(self, parent=None, color=None): super(XASPostEdgeParameters, self).__init__(parent) self.setTitle("EXAFS") self.build() if color is not None: self.setTitleColor(color) def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) # k Min kMinLabel = qt.QLabel(self) kMinLabel.setText("K Min:") self.kMinBox = qt.QDoubleSpinBox(self) self.kMinBox.setDecimals(2) self.kMinBox.setMinimum(0.0) self.kMinBox.setValue(2.0) self.kMinBox.setSingleStep(0.1) self.kMinBox.setEnabled(True) # k Max kMaxLabel = qt.QLabel(self) kMaxLabel.setText("K Max:") self.kMaxBox = qt.QDoubleSpinBox(self) self.kMaxBox.setDecimals(2) self.kMaxBox.setMaximum(25.0) self.kMaxBox.setValue(20.0) self.kMaxBox.setSingleStep(0.1) self.kMaxBox.setEnabled(True) # k Weight kWeightLabel = qt.QLabel(self) kWeightLabel.setText("K Weight:") self.kWeightBox = qt.QSpinBox(self) self.kWeightBox.setMinimum(0) self.kWeightBox.setMaximum(3) self.kWeightBox.setValue(0) self.kWeightBox.setSingleStep(1) self.kWeightBox.setEnabled(True) # knots knotsLabel = qt.QLabel(self) knotsLabel.setText("Knots:") self.knotsBox = qt.QSpinBox(self) self.knotsBox.setMinimum(0) self.knotsBox.setMaximum(5) self.knotsBox.setValue(3) self.knotsBox.setEnabled(True) # table of knots positionLabel = qt.QLabel(self) positionLabel.setText("Region Start") degreeLabel = qt.QLabel(self) degreeLabel.setText("Degree") self._knotPositions = [] self._knotDegrees = [] for i in range(self.knotsBox.maximum()+1): position = qt.QDoubleSpinBox(self) position.setSingleStep(0.1) degree = qt.QSpinBox(self) degree.setMinimum(1) degree.setMaximum(3) degree.setValue(3) self._knotPositions.append(position) self._knotDegrees.append(degree) if i > self.knotsBox.value(): position.setEnabled(False) degree.setEnabled(False) if i == 0: position.setEnabled(False) # arrange everything self.mainLayout.addWidget(kMinLabel, 0, 0) self.mainLayout.addWidget(self.kMinBox, 0, 1) self.mainLayout.addWidget(kMaxLabel, 1, 0) self.mainLayout.addWidget(self.kMaxBox, 1, 1) self.mainLayout.addWidget(kWeightLabel, 2, 0) self.mainLayout.addWidget(self.kWeightBox, 2, 1) self.mainLayout.addWidget(knotsLabel, 3, 0) self.mainLayout.addWidget(self.knotsBox, 3, 1) self.mainLayout.addWidget(positionLabel, 4, 0) self.mainLayout.addWidget(degreeLabel, 4, 1) lastRow = 4 for i in range(self.knotsBox.maximum()+1): lastRow += 1 self.mainLayout.addWidget(self._knotPositions[i], lastRow, 0) self.mainLayout.addWidget(self._knotDegrees[i], lastRow, 1) # initialize values self._fillKnots() # connect self.kMinBox.valueChanged[float].connect(self._kMinChanged) self.kMaxBox.valueChanged[float].connect(self._kMaxChanged) self.kWeightBox.valueChanged[int].connect(self._kWeightChanged) self.knotsBox.valueChanged[int].connect(self._knotNumberChanged) for i in range(self.knotsBox.maximum() + 1): self._knotPositions[i].valueChanged[float].connect(self._knotChanged) self._knotDegrees[i].valueChanged[int].connect(self._degreeChanged) self.__connected = True def _knotNumberChanged(self, value): _logger.debug("Current number of knots = %s" % value) oldValue = self.__connected self.__connected = False try: for i in range(self.knotsBox.maximum()+1): if i < value+1: enabled = True else: enabled = False self._knotPositions[i].setEnabled(enabled) self._knotDegrees[i].setEnabled(enabled) self._knotPositions[0].setEnabled(False) self._fillKnots() finally: self.__connected = oldValue if self.__connected: self.emitSignal("KnotNumberChanged") def _kMinChanged(self, value): _logger.debug("Current kMin Value = %s" % value) oldValue = self.__connected self.__connected = False try: self._fillKnots() finally: self.__connected = oldValue if self.__connected: self.emitSignal("KMinChanged") def _kMaxChanged(self, value): _logger.debug("Current kMax Value = %s" % value) if value <= self.kMinBox.value(): # I should check if we have the focus prior to # raise any error. # This situation happens during manual editing return oldValue = self.__connected self.__connected = False try: self._fillKnots() finally: self.__connected = oldValue if self.__connected: self.emitSignal("KMaxChanged") def _kWeightChanged(self, value): _logger.debug("Current kWeight Value = %s" % value) if self.__connected: self.emitSignal("KWeightChanged") def _knotChanged(self, value): _logger.debug("One knot has been changed = %s" % value) # adjust limits oldValue = self.__connected self.__connected = False try: kMax = self.kMaxBox.value() for i in range(self.knotsBox.maximum()+1): if self._knotPositions[i].isEnabled(): # the first one is never enabled singleStep = self._knotPositions[i].singleStep() minimum = self._knotPositions[i-1].value() + singleStep self._knotPositions[i].setMinimum(minimum) if i < self.knotsBox.maximum(): maximum = self._knotPositions[i+1].value() - singleStep else: maximum = kMax self._knotPositions[i].setMaximum(maximum) else: self._knotPositions[i].setMaximum(kMax) finally: self.__connected = oldValue if self.__connected: self.emitSignal("KnotPositionChanged") def _degreeChanged(self, value): _logger.debug("One knot polynomial degree changed: %s" % value) if self.__connected: self.emitSignal("KnotOrderChanged") def getParameters(self): ddict = {} ddict["KMin"] = self.kMinBox.value() ddict["KMax"] = self.kMaxBox.value() ddict["KWeight"] = self.kWeightBox.value() ddict["Knots"] = {} ddict["Knots"]["Number"] = self.knotsBox.value() ddict["Knots"]["Values"] = [] ddict["Knots"]["Orders"] = [] for i in range(ddict["Knots"]["Number"]+1): txt = str(self._knotPositions[i].text()) if i == 0: pass #ddict["Knots"]["Values"].append(ddict["KMin"]) else: ddict["Knots"]["Values"].append(myFloat(txt)) ddict["Knots"]["Orders"].append(self._knotDegrees[i].value()) return ddict def setParameters(self, ddict, signal=True): _logger.debug("setParameters called: ddict %s, signal %s" % (ddict, signal)) if "EXAFS" in ddict: ddict = ddict["EXAFS"] elif "PostEdge" in ddict: ddict = ddict["PostEdge"] try: self.__connected = False kMin = ddict.get("KMin", self.kMinBox.value()) if kMin is not None: self.kMinBox.setValue(kMin) kMax = ddict.get("KMax", self.kMaxBox.value()) if kMax is not None: self.kMaxBox.setValue(kMax) kWeight = ddict.get("KWeight", self.kWeightBox.value()) if kWeight is not None: self.kWeightBox.setValue(kWeight) nKnots = self.knotsBox.value() if "Knots" in ddict: self.knotsBox.setValue(ddict["Knots"].get("Number", nKnots)) nKnots = self.knotsBox.value() positions, orders = self._getDefaultKnots(knots=nKnots) n = len(positions) for i in range(self.knotsBox.maximum()+1): if i < n: enabled = True else: enabled = False self._knotPositions[i].setEnabled(enabled) self._knotDegrees[i].setEnabled(enabled) self._knotPositions[0].setEnabled(False) if "Knots" in ddict: newPositions = ddict["Knots"].get("Values", positions) if newPositions is not None: if hasattr(newPositions, "__len__"): positions = newPositions else: positions = [newPositions] orders = ddict["Knots"].get("Orders", orders) if len(positions) == (len(orders) - 1): positions = [self.kMinBox.value()] + list(positions) self._fillKnots(positions, orders) finally: self.__connected = True if signal: # any signal do the job self.emitSignal("KMaxChanged") def _fillKnots(self, positions=None, orders=None): if (positions is None) and (orders is None): positions, orders = self._getDefaultKnots() kMin = self.kMinBox.value() kMax = self.kMaxBox.value() for i in range(self.knotsBox.maximum() + 1): self._knotPositions[i].setMinimum(kMin) self._knotPositions[i].setMaximum(kMax) n = len(positions) for i in range(n): self._knotPositions[i].setValue(positions[i]) self._knotDegrees[i].setValue(orders[i]) for i in range(n, self.knotsBox.maximum()+1): self._knotPositions[i].setValue(kMax) def _getDefaultKnots(self, kMin=None, kMax=None, knots=None): if kMin is None: kMin = self.kMinBox.value() if kMax is None: kMax = self.kMaxBox.value() if knots is None: knots = self.knotsBox.value() positions = [kMin] degrees = [3] delta = (kMax - kMin) / (knots + 1.0) for i in range(knots): positions.append(kMin + (i + 1) * delta) # here I could do something as function of k degrees.append(3) return positions, degrees def emitSignal(self, event): ddict = self.getParameters() ddict["event"] = event self.sigPostEdgeParametersSignal.emit(ddict) def setMaximumK(self, value): self.kMaxBox.setMaximum(value) current = self.kMaxBox.value() if current > (value+0.01): self.kMaxBox.setValue(value) def setTitleColor(self, color): #self.setStyleSheet("QGroupBox {font-weight: bold; color: red;}") self.setStyleSheet("QGroupBox {color: %s;}" % color) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) def testSlot(ddict): print("Emitted signal = ", ddict) w = XASPostEdgeParameters() w.sigPostEdgeParametersSignal.connect(testSlot) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASSelfattenuationWindow.py0000644000000000000000000004017514741736366024620 0ustar00rootroot# -*- coding: utf-8 -*- #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaPhysics.xrf import Elements from PyMca5.PyMcaGui.physics.xrf import MatrixImage from PyMca5.PyMcaGui.physics.xrf import MaterialEditor from PyMca5.PyMcaIO import ConfigDict if hasattr(qt, "QString"): qstring = qt.QString else: qstring = str _logger = logging.getLogger(__name__) class SampleConfiguration(qt.QWidget): def __init__(self, parent=None,orientation="vertical"): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.setContentsMargins(0, 0, 0, 0) # material materialLabel = qt.QLabel(self) materialLabel.setText("Enter material name or formula") self.materialWidget = qt.QComboBox(self) self.materialWidget.setEditable(True) i = 0 for key in Elements.Material.keys(): self.materialWidget.insertItem(i + 1, qstring(key)) i += 1 self.materialWidget.setEditText("Fe") self.editorButton = qt.QPushButton(self) self.editorButton.setText("Show/Hide Editor") self.editorButton.setAutoDefault(False) self.mainLayout.addWidget(materialLabel, 0, 0, 1, 3) self.mainLayout.addWidget(self.materialWidget, 0, 2) self.mainLayout.addWidget(self.editorButton, 0, 3) self.materialEditor = MaterialEditor.MaterialEditor(self) offset = 1 self.mainLayout.addWidget(self.materialEditor, offset, 0, 5, 4) offset += 5 #element elementLabel = qt.QLabel(self) elementLabel.setText("Element") elementWidget = qt.QComboBox(self) for i, symbol in enumerate(Elements.ElementList[2:]): elementWidget.insertItem(i + 1, qstring(symbol + "(%d)" % (i+3))) edgeLabel = qt.QLabel(self) edgeLabel.setText("Edge") edgeWidget = qt.QComboBox(self) self.edgeWidget = edgeWidget self.elementWidget = elementWidget energyLabel = qt.QLabel(self) energyLabel.setText("Energy (eV)") self.energyWidget = qt.QLineEdit(self) self.energyWidget._validator = qt.CLocaleQDoubleValidator(self.energyWidget) self.energyWidget.setValidator(self.energyWidget._validator) if orientation.lower().startswith("v"): self.mainLayout.addWidget(elementLabel, 0, 0) self.mainLayout.addWidget(elementWidget, 0, 1) self.mainLayout.addWidget(edgeLabel, 1, 0) self.mainLayout.addWidget(edgeWidget, 1, 1) self.mainLayout.addWidget(energyLabel, 2, 0) self.mainLayout.addWidget(self.energyWidget, 2, 1) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), 3, 2) else: self.mainLayout.addWidget(elementLabel, offset + 0, 0) self.mainLayout.addWidget(elementWidget, offset + 1, 0) self.mainLayout.addWidget(edgeLabel, offset + 0, 1) self.mainLayout.addWidget(edgeWidget, offset + 1, 1) self.mainLayout.addWidget(energyLabel, offset + 0, 2, 1, 2) self.mainLayout.addWidget(self.energyWidget, offset + 1, 2, 1, 2) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), 0, 3) self.editorButton.clicked.connect(self.toggleEditor) self.toggleEditor() self._lastMaterial = "Fe" self.materialSignal("Fe") #self.elementWidget.setCurrentIndex(23) #self.elementSignal(23) #self.edgeWidget.setCurrentIndex(0) #self.edgeSignal(0) self.materialWidget.activated[qstring].connect(self.materialSignal) self.elementWidget.activated[qstring].connect(self.elementSignal) self.edgeWidget.activated["int"].connect(self.edgeSignal) self.energyWidget.editingFinished.connect(self.energySignal) def materialSignal(self, txt): txt = str(txt) if Elements.isValidFormula(txt): _logger.debug("validFormula") elementDict = Elements.getMaterialMassFractions([txt], [1.0]) elif Elements.isValidMaterial(txt): _logger.debug("ValidMaterial") elementDict = Elements.getMaterialMassFractions([txt], [1.0]) else: _logger.debug("Material to be defined") msg=qt.QMessageBox.information(self, "Invalid Material %s" % txt, "The material %s is not a valid Formula " \ "nor a valid Material.\n" \ "Please use the material editor to define materials" % txt) self.materialWidget.setEditText(self._lastMaterial) if self.materialEditor.isHidden(): self.materialEditor.show() return # We have to update the possible elements elements = list(elementDict.keys()) self.updateElementsWidget(elements) def updateElementsWidget(self, elementsList): z = [] iMaxZ = 0 for i, ele in enumerate(elementsList): tmpZ = Elements.ElementList.index(elementsList[i]) + 1 z.append(tmpZ) if tmpZ > z[iMaxZ]: iMaxZ = i currentElement = str(self.elementWidget.currentText()).split("(")[0] self.elementWidget.clear() for i, ele in enumerate(elementsList): if z[i] > 2: self.elementWidget.insertItem(i, qstring(ele + "(%d)" % (z[i]))) if currentElement in elementsList: #selection does not need to be changed _logger.debug("Element widget up to date") else: #selection needs to be changed _logger.debug("Setting the highest Z as default") self.elementSignal(qstring(elementsList[iMaxZ])) def toggleEditor(self): if self.materialEditor.isHidden(): self.materialEditor.show() else: self.materialEditor.hide() def elementSignal(self, txt): element = str(txt) if "(" in txt: element = element.split("(")[0] options = [] shellList = ["K", "L1", "L2", "L3", "M1", "M2", "M3", "M4", "M5", "N1"] for shell in shellList: if Elements.Element[element]["binding"][shell] > 0.0: options.append(shell) currentShell = str(self.edgeWidget.currentText()) self.edgeWidget.clear() i = 0 for shell in options[:-1]: self.edgeWidget.insertItem(i, qstring(shell)) i += 1 if currentShell in options: idx = options.index(currentShell) else: idx = 0 self.edgeWidget.setCurrentIndex(idx) self.edgeSignal(idx) def edgeSignal(self, idx): shellList = ["K", "L1", "L2", "L3", "M1", "M2", "M3", "M4", "M5"] shell = shellList[idx] element = str(self.elementWidget.currentText()).split("(")[0] energy = Elements.Element[element]["binding"][shell] * 1000. self.energyWidget.setText("%.2f" % energy) def energySignal(self): try: energy = float(self.energyWidget.text()) except Exception: energy = 0.0 if energy <= 0.0: self.edgeSignal(self.edgeWidget.currentIndex()) def setParameters(self, ddict=None): if ddict is None: ddict = {} key = "material" if key in ddict: material = ddict['material'] if Elements.isValidMaterial(material): self.materialWidget.setEditText(material) self.materialSignal(material) else: raise ValueError("Invalid Material %s" % material) key = "element" if key in ddict: ele = ddict[key] for i in range(self.elementWidget.count()): if str(self.elementWidget.itemText(i)).split("(")[0] == ele: self.elementWidget.setCurrentIndex(i) self.elementSignal(ele) key = "edge" if key in ddict: shellList = ["K", "L1", "L2", "L3", "M1", "M2", "M3", "M4", "M5"] idx = shellList.index(ddict[key]) else: idx = 0 self.edgeWidget.setCurrentIndex(idx) self.edgeSignal(idx) key = "energy" if key in ddict: energy = ddict[key] self.energyWidget.setText("%.2f" % energy) def getParameters(self): ddict = {} ddict["material"] = str(self.materialWidget.currentText()) ddict["element"] = str(self.elementWidget.currentText()).split("(")[0] ddict["edge"] = str(self.edgeWidget.currentText()) ddict["energy"] = float(self.energyWidget.text()) return ddict class GeometryConfiguration(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.setContentsMargins(0, 0, 0, 0) self.imageLabel = qt.QLabel(self) self.imageLabel.setPixmap(qt.QPixmap(MatrixImage.image_medium)) self.angleWidgets = [] self.mainLayout.addWidget(self.imageLabel, 0, 0, 2, 2) i = 0 for item in ["Alpha In", "Alpha Out"]: label = qt.QLabel(self) label.setText(item +"(deg) :") lineEdit = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(lineEdit) lineEdit.setValidator(validator) lineEdit._v = validator lineEdit.setText("45.0") self.angleWidgets.append(lineEdit) self.mainLayout.addWidget(label, i, 3) self.mainLayout.addWidget(lineEdit, i, 4) i += 1 def getParameters(self): ddict = {} ddict['angles'] = [float(self.angleWidgets[0].text()), float(self.angleWidgets[1].text())] return ddict def setParameters(self, ddict): if 'angles' in ddict: self.angleWidgets[0].setText("%.2f" % ddict['angles'][0]) self.angleWidgets[1].setText("%.2f" % ddict['angles'][1]) class XASSelfattenuationWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.setContentsMargins(0, 0, 0, 0) self.element = SampleConfiguration(self, orientation="horizontal") self.geometry = GeometryConfiguration(self) self.mainLayout.addWidget(self.element) self.mainLayout.addWidget(self.geometry) self.mainLayout.addWidget(qt.VerticalSpacer(self)) def setParameters(self, ddict): if "XAS" in ddict: self.element.setParameters(ddict['XAS']) self.geometry.setParameters(ddict['XAS']) else: self.element.setParameters(ddict) self.geometry.setParameters(ddict) def getParameters(self): ddict = {} ddict['XAS'] = self.element.getParameters() ddict['XAS'].update(self.geometry.getParameters()) return ddict class XASSelfattenuationDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("XAS self-attenuation dialog") self.mainLayout = qt.QVBoxLayout(self) self.setContentsMargins(0, 0, 0, 0) self.configurationWidget = XASSelfattenuationWidget(self) self.actionsBox = qt.QWidget(self) self.actionsBox.mainLayout = qt.QHBoxLayout(self.actionsBox) self.actionsBox.setContentsMargins(0, 0, 0, 0) self.loadButton = qt.QPushButton(self.actionsBox) self.loadButton.setText("Load") self.loadButton.setAutoDefault(False) self.saveButton = qt.QPushButton(self.actionsBox) self.saveButton.setText("Save") self.saveButton.setAutoDefault(False) self.cancelButton = qt.QPushButton(self.actionsBox) self.cancelButton.setText("Cancel") self.cancelButton.setAutoDefault(False) self.okButton = qt.QPushButton(self.actionsBox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.actionsBox.mainLayout.addWidget(self.loadButton) self.actionsBox.mainLayout.addWidget(self.saveButton) self.actionsBox.mainLayout.addWidget(self.cancelButton) self.actionsBox.mainLayout.addWidget(self.okButton) self.mainLayout.addWidget(self.configurationWidget) self.mainLayout.addWidget(self.actionsBox) self.mainLayout.addWidget(qt.VerticalSpacer(self)) self.loadButton.clicked.connect(self.loadSignal) self.saveButton.clicked.connect(self.saveSignal) self.cancelButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def loadSignal(self): fileList = PyMcaFileDialogs.getFileList(self, filetypelist=['cfg file (*.cfg)'], mode="OPEN", single=True, getfilter=False) if len(fileList): self.loadConfiguration(fileList[0]) def saveSignal(self): fileList = PyMcaFileDialogs.getFileList(self, filetypelist=['cfg file (*.cfg)'], mode="SAVE", single=True, getfilter=False) if len(fileList): self.saveConfiguration(fileList[0]) def reject(self): return qt.QDialog.reject(self) def accept(self): return qt.QDialog.accept(self) def getConfiguration(self): return self.configurationWidget.getParameters() def setConfiguration(self, ddict): self.configurationWidget.setParameters(ddict) def loadConfiguration(self, filename): d = ConfigDict.ConfigDict() d.read(filename) self.setConfiguration(d['XAS']) def saveConfiguration(self, filename): d = ConfigDict.ConfigDict() d['XAS'] = {} ddict = self.getConfiguration() if 'XAS' in ddict: d['XAS'].update(ddict['XAS']) else: d['XAS'].update(ddict) d.write(filename) if __name__ == "__main__": app = qt.QApplication([]) w = XASSelfattenuationDialog() w.setConfiguration({"material":"Goethite"}) ret = w.exec() if ret: cfg = w.getConfiguration() print(cfg) cfg['material'] = "Fe" w.setConfiguration(cfg) ret = w.exec() if ret: cfg = w.getConfiguration() print(cfg) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/XASWindow.py0000644000000000000000000003317714741736366021536 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy import traceback import copy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaGui.physics.xas import XASParameters from PyMca5.PyMcaPhysics.xas import XASClass import logging _logger = logging.getLogger(__name__) class XASDialog(qt.QDialog): def __init__(self, parent=None, analyzer=None, backend=None): super(XASDialog, self).__init__(parent) self.setWindowTitle("XAS Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) # the main window self.xasWindow = XASWindow(self, analyzer=analyzer, backend=backend) self.setSpectrum = self.xasWindow.setSpectrum self.setConfiguration = self.xasWindow.setConfiguration self.getConfiguration = self.xasWindow.getConfiguration # the actions actionContainer = qt.QWidget(self) actionContainer.mainLayout = qt.QHBoxLayout(actionContainer) actionContainer.mainLayout.setContentsMargins(0, 0, 0, 0) actionContainer.mainLayout.setSpacing(2) self.acceptButton = qt.QPushButton(actionContainer) self.acceptButton.setText("Accept Seen Configuration") self.acceptButton.setAutoDefault(False) self.acceptButton.clicked.connect(self.accept) self.cancelButton = qt.QPushButton(actionContainer) self.cancelButton.setText("Reject Seen Configuration") self.cancelButton.setAutoDefault(False) self.cancelButton.clicked.connect(self.reject) actionContainer.mainLayout.addWidget(self.acceptButton) actionContainer.mainLayout.addWidget(self.cancelButton) # arrange things #self.actionContainer = actionContainer self.mainLayout.addWidget(self.xasWindow) self.mainLayout.addWidget(actionContainer) class XASWindow(qt.QMainWindow): def __init__(self, parent=None, analyzer=None, color="blue", backend=None): super(XASWindow, self).__init__(parent) self.setWindowTitle("XAS Window") if parent is not None: # behave as a widget self.setWindowFlags(qt.Qt.Widget) if analyzer is None: analyzer = XASClass.XASClass() self.mdiArea = XASMdiArea(self, analyzer=analyzer, backend=backend) self.setCentralWidget(self.mdiArea) self.parametersDockWidget = qt.QDockWidget(self) self.parametersDockWidget.layout().setContentsMargins(0, 0, 0, 0) self.parametersWidget = XASParameters.XASParameters(color=color) self.parametersDockWidget.setWidget(self.parametersWidget) self.addDockWidget(qt.Qt.RightDockWidgetArea, self.parametersDockWidget) # connect self.parametersWidget.sigXASParametersSignal.connect(self._parametersSlot) self.mdiArea.sigXASMdiAreaSignal.connect(self._update) def setSpectrum(self, energy, mu): self.mdiArea.setSpectrum(energy, mu) self.parametersWidget.setSpectrum(energy, mu) def setConfiguration(self, ddict): self.mdiArea.setConfiguration(ddict) self.parametersWidget.setParameters(ddict) def getConfiguration(self, ddict): return self.mdiArea.getConfiguration() def setParameters(self, ddict): self.parametersWidget.setParameters(ddict) def getParameters(self): return self.parametersWidget.getParameters() def _parametersSlot(self, ddict): _logger.debug("XASWindow.parametersSlot: %s", ddict) analyzer = self.mdiArea.analyzer if "XASParameters" in ddict: ddict = ddict["XASParameters"] analyzer.setConfiguration(ddict) _logger.debug("ANALYZER CONFIGURATION FINAL") _logger.debug(analyzer.getConfiguration()) self.update() def update(self, ddict=None): if ddict is None: # The emitted signal will reach self._update ddict = self.mdiArea.update() else: self._update(ddict) def _update(self, ddict): jump = ddict["Jump"] e0 = ddict["Edge"] maximumKRange = XASClass.e2k(ddict["NormalizedEnergy"][-1] - e0) self.parametersWidget.setJump(jump) self.parametersWidget.setMaximumK(maximumKRange) def setTitleColor(self, color): self.parametersWidget.setTitleColor(color) class XASMdiArea(qt.QMdiArea): sigXASMdiAreaSignal = qt.pyqtSignal(object) def __init__(self, parent=None, analyzer=None, backend=None): super(XASMdiArea, self).__init__(parent) if analyzer is None: analyzer = XASClass.XASClass() self.analyzer = analyzer #self.setActivationOrder(qt.QMdiArea.CreationOrder) self._windowDict = {} self._windowList = ["Spectrum", "Post-edge", "Signal", "FT"] self._windowList.reverse() for title in self._windowList: plot = PlotWindow.PlotWindow(self, #control=True, position=True, backend=backend) plot.setWindowTitle(title) self.addSubWindow(plot) self._windowDict[title] = plot plot.setDataMargins(0, 0, 0.025, 0.025) self._windowList.reverse() self.setActivationOrder(qt.QMdiArea.StackingOrder) self.tileSubWindows() #self.cascadeSubWindows() #for window in self.subWindowList(): # print(" window = ", window.windowTitle()) def getConfiguration(self): return self.analyzer.getConfiguration() def setConfiguration(self, ddict): # TODO: try except message return self.analyzer.setConfiguration(ddict) def setSpectrum(self, energy, mu): for key in self._windowDict: self._windowDict[key].clearCurves() # try to detect if we are working in eV or in keV if energy [0] < 200: if abs(energy[-1] - energy[0]) < 10: energy = energy * 1000. self._windowDict["Spectrum"].addCurve(energy, mu, legend="Spectrum", xlabel="Energy (eV)", ylabel="Absorption (a.u.)") return self.analyzer.setSpectrum(energy, mu) def update(self, ddict=None): if ddict is None: ddict = self.analyzer.processSpectrum() idx = (ddict["NormalizedEnergy"] >= ddict["NormalizedPlotMin"]) & \ (ddict["NormalizedEnergy"] <= ddict["NormalizedPlotMax"]) plot = self._windowDict["Spectrum"] e0 = ddict["Edge"] plot.addCurve(ddict["Energy"] - e0, ddict["Mu"], legend="Spectrum", xlabel="Energy (eV)", ylabel="Absorption (a.u.)", replot=False, replace=True) plot.addCurve(ddict["NormalizedEnergy"][idx] - e0, ddict["NormalizedMu"][idx], legend="Normalized", xlabel="Energy (eV)", ylabel="Absorption (a.u.)", yaxis="right", replot=False) plot.addCurve(ddict["NormalizedEnergy"] - e0, ddict["NormalizedSignal"], legend="Post", replot=False) plot.addCurve(ddict["NormalizedEnergy"] - e0, ddict["NormalizedBackground"], legend="Pre",replot=False) plot.resetZoom() #idxK = ddict["EXAFSKValues"] >= 0 idx = (ddict["EXAFSKValues"] >= ddict["KMin"]) & \ (ddict["EXAFSKValues"] <= ddict["KMax"]) plot = self._windowDict["Post-edge"] plot.addCurve(ddict["EXAFSKValues"][idx], ddict["EXAFSSignal"][idx], legend="EXAFSSignal", xlabel="K", ylabel="Normalized Units", replace=True, replot=False) plot.addCurve(ddict["EXAFSKValues"][idx], ddict["PostEdgeB"][idx], legend="PostEdge", xlabel="K", ylabel="Normalized Units", color="blue", replot=False) if 0: plot.clearMarkers() for i in range(len(ddict["KnotsX"])): plot.insertMarker(ddict["KnotsX"][i], ddict["KnotsY"][i], legend="Knot %d" % (i+1), text="Knot %d" % (i+1), replot=False, draggable=False, selectable=False, color="orange") else: plot.addCurve(ddict["KnotsX"], ddict["KnotsY"], legend="Knots", replot=False, linestyle="", symbol="o", color="orange") plot.resetZoom() plot = self._windowDict["Signal"] if ddict["KWeight"]: if ddict["KWeight"] == 1: ylabel = "EXAFS Signal * k" else: ylabel = "EXAFS Signal * k^%d" % ddict["KWeight"] else: ylabel = "EXAFS Signal" plot.addCurve(ddict["EXAFSKValues"][idx], ddict["EXAFSNormalized"][idx], legend="Normalized EXAFS", xlabel="K", ylabel=ylabel, replace=True, replot=False) plot.addCurve(ddict["FT"]["K"], ddict["FT"]["WindowWeight"], legend="FT Window", xlabel="K", ylabel="Weight", yaxis="right", color="red", replace=False, replot=False) plot.resetZoom() plot = self._windowDict["FT"] plot.addCurve(ddict["FT"]["FTRadius"], ddict["FT"]["FTIntensity"], legend="FT Intensity", xlabel="R (Angstrom)", ylabel="Arbitrary Units", replace=True, replot=False) """ plot.addCurve(ddict["FT"]["FTRadius"], ddict["FT"]["FTReal"], legend="FT Real", xlabel="R (Angstrom)", ylabel="Arbitrary Units", color="green", replace=False, replot=False) """ plot.addCurve(ddict["FT"]["FTRadius"], ddict["FT"]["FTImaginary"], legend="FT Imaginary", xlabel="R (Angstrom)", ylabel="Arbitrary Units", color="red", replace=False, replot=False) plot.resetZoom() self.sigXASMdiAreaSignal.emit(ddict) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) app = qt.QApplication([]) from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR if len(sys.argv) > 1: fileName = sys.argv[1] else: fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Ge.dat") data = specfile.Specfile(fileName)[0].data()[-2:, :] energy = data[0, :] mu = data[1, :] if 0: w = XASWindow() w.show() w.setSpectrum(energy, mu) w.update() app.exec() else: from PyMca5.PyMca import XASClass ownAnalyzer = XASClass.XASClass() configuration = ownAnalyzer.getConfiguration() w = XASDialog() w.setSpectrum(energy, mu) w.setConfiguration(configuration) print("SENT CONFIGURATION", configuration["Normalization"]) if w.exec(): print("PARAMETERS = ", w.getConfiguration()) else: print("PARAMETERS = ", configuration) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xas/__init__.py0000644000000000000000000000000014741736366021425 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7837663 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/0000755000000000000000000000000014741736404017323 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/AttenuatorsTable.py0000644000000000000000000006437414741736366023203 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() qt.QLabel.AlignRight = qt.Qt.AlignRight qt.QLabel.AlignCenter = qt.Qt.AlignCenter qt.QLabel.AlignVCenter = qt.Qt.AlignVCenter class Q3GridLayout(qt.QGridLayout): def addMultiCellWidget(self, w, r0, r1, c0, c1, *var): self.addWidget(w, r0, c0, 1 + r1 - r0, 1 + c1 - c0) from PyMca5.PyMcaPhysics import Elements from . import MaterialEditor from . import MatrixEditor from . import TransmissionTableGui import re _logger = logging.getLogger(__name__) class MyQLabel(qt.QLabel): def __init__(self, parent=None, name=None, fl=0, bold=True, color= qt.Qt.red): qt.QLabel.__init__(self, parent) palette = self.palette() role = self.foregroundRole() palette.setColor(role, color) self.setPalette(palette) self.font().setBold(bold) class AttenuatorsTab(qt.QWidget): def __init__(self, parent=None, name="Attenuators Tab", attenuators=None, graph=None): qt.QWidget.__init__(self, parent) layout = qt.QVBoxLayout(self) maxheight = qt.QDesktopWidget().height() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) self.table = AttenuatorsTableWidget(self, name, attenuators, funnyfilters=True) layout.addWidget(self.table) self.mainTab = qt.QTabWidget(self) layout.addWidget(self.mainTab) rheight = self.table.horizontalHeader().sizeHint().height() if maxheight < 801: self.editor = MaterialEditor.MaterialEditor(height=5, graph=graph) self.table.setMinimumHeight(7 * rheight) self.table.setMaximumHeight(13 * rheight) else: spacer = qt.VerticalSpacer(self) layout.addWidget(spacer) if rheight > 32: # when using big letters we run into troubles # for instance windowx 1920x1080 but with a 150% scale self.editor = MaterialEditor.MaterialEditor(height=5, graph=graph) if rheight > 40: self.table.setMinimumHeight(10*rheight) else: self.table.setMinimumHeight(13*rheight) else: self.editor = MaterialEditor.MaterialEditor(graph=graph) self.table.setMinimumHeight(13*rheight) self.table.setMaximumHeight(13*rheight) self.userAttenuators = TransmissionTableGui.TransmissionTableGui() self.mainTab.addTab(self.editor, "Material Editor") self.mainTab.addTab(self.userAttenuators, "User Attenuators") class MultilayerTab(qt.QWidget): def __init__(self,parent=None, name="Multilayer Tab", matrixlayers=None): if matrixlayers is None: matrixlayers=["Layer0", "Layer1", "Layer2", "Layer3", "Layer4", "Layer5", "Layer6", "Layer7", "Layer8", "Layer9"] qt.QWidget.__init__(self, parent) layout = qt.QVBoxLayout(self) self.matrixGeometry = MatrixEditor.MatrixEditor(self, "tabMatrix", table=False, orientation="horizontal", density=False, thickness=False, size="image2") layout.addWidget(self.matrixGeometry) text = "This matrix definition will only be " text += "considered if Matrix is selected and material is set to " text += "MULTILAYER in the ATTENUATORS tab.\n " self.matrixInfo = qt.QLabel(self) layout.addWidget(self.matrixInfo) self.matrixInfo.setText(text) self.matrixTable = AttenuatorsTableWidget(self, name, attenuators=matrixlayers, matrixmode=True) layout.addWidget(self.matrixTable) class CompoundFittingTab(qt.QWidget): def __init__(self, parent=None, name="Compound Tab", layerlist=None): qt.QWidget.__init__(self, parent) if layerlist is None: self.nlayers = 5 else: self.nlayers = len(layerlist) layout = qt.QVBoxLayout(self) hbox = qt.QWidget(self) hboxlayout = qt.QHBoxLayout(hbox) #hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) self._compoundFittingLabel = MyQLabel(hbox, color=qt.Qt.red) self._compoundFittingLabel.setText("Compound Fitting Mode is OFF") self._compoundFittingLabel.setAlignment(qt.QLabel.AlignCenter) hboxlayout.addWidget(self._compoundFittingLabel) #hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) layout.addWidget(hbox) grid = qt.QWidget(self) glt = Q3GridLayout(grid) glt.setContentsMargins(11, 11, 11, 11) glt.setSpacing(2) self._layerFlagWidgetList = [] options = ["FREE", "FIXED", "IGNORED"] for i in range(self.nlayers): r = int(i / 5) c = 3 * (i % 5) label = qt.QLabel(grid) label.setText("Layer%d" % i) cbox = qt.QComboBox(grid) for item in options: cbox.addItem(item) if i == 0: cbox.setCurrentIndex(0) else: cbox.setCurrentIndex(1) glt.addWidget(label, r, c) glt.addWidget(cbox, r, c + 1) glt.addWidget(qt.QWidget(grid), r, c + 2) layout.addWidget(grid) self.mainTab = qt.QTabWidget(self) layout.addWidget(self.mainTab) self._editorList = [] for i in range(self.nlayers): editor = CompoundFittingTab0(layerindex=i) self.mainTab.addTab(editor, "layer Editor") self._editorList.append(editor) class CompoundFittingTab0(qt.QWidget): def __init__(self, parent=None, name="Compound Tab", layerindex=None, compoundlist=None): if layerindex is None: layerindex = 0 if compoundlist is None: compoundlist = [] for i in range(10): compoundlist.append("Compound%d%d" % (layerindex, i)) qt.QWidget.__init__(self, parent) layout = qt.QVBoxLayout(self) grid = qt.QWidget(self) gl = Q3GridLayout(grid) gl.setContentsMargins(11, 11, 11, 11) gl.setSpacing(2) # Layer name nameLabel = qt.QLabel(grid) nameLabel.setText("Name") self.nameLine = qt.QLineEdit(grid) self.nameLine.setText("Compound fitting layer %d" % layerindex) gl.addWidget(nameLabel, 0, 0) gl.addMultiCellWidget(self.nameLine, 0, 0, 1, 5) Line = qt.QFrame(grid) Line.setFrameShape(qt.QFrame.HLine) Line.setFrameShadow(qt.QFrame.Sunken) Line.setFrameShape(qt.QFrame.HLine) gl.addMultiCellWidget(Line, 1, 1, 0, 5) #labels fixedLabel = qt.QLabel(grid) fixedLabel_font = qt.QFont(fixedLabel.font()) fixedLabel_font.setItalic(1) fixedLabel.setFont(fixedLabel_font) fixedLabel.setText(str("Fixed")) fixedLabel.setAlignment(qt.Qt.AlignVCenter) valueLabel = qt.QLabel(grid) valueLabel_font = qt.QFont(valueLabel.font()) valueLabel_font.setItalic(1) valueLabel.setFont(valueLabel_font) valueLabel.setText(str("Value")) valueLabel.setAlignment(qt.QLabel.AlignCenter) errorLabel = qt.QLabel(grid) errorLabel_font = qt.QFont(errorLabel.font()) errorLabel_font.setItalic(1) errorLabel.setFont(errorLabel_font) errorLabel.setText(str("Error")) errorLabel.setAlignment(qt.QLabel.AlignCenter) gl.addWidget(fixedLabel, 2, 2) gl.addWidget(valueLabel, 2, 3) gl.addWidget(errorLabel, 2, 5) #density densityLabel = qt.QLabel(grid) densityLabel.setText("Density") self.densityCheck = qt.QCheckBox(grid) self.densityCheck.setText(str("")) self.densityValue = qt.QLineEdit(grid) densitySepLabel = qt.QLabel(grid) densitySepLabel_font = qt.QFont(densitySepLabel.font()) densitySepLabel_font.setBold(1) densitySepLabel.setFont(densitySepLabel_font) densitySepLabel.setText(str("+/-")) self.densityError = qt.QLineEdit(grid) gl.addWidget(densityLabel, 3, 0) gl.addWidget(qt.HorizontalSpacer(grid), 3, 1) gl.addWidget(self.densityCheck, 3, 2) gl.addWidget(self.densityValue, 3, 3) gl.addWidget(densitySepLabel, 3, 4) gl.addWidget(self.densityError, 3, 5) #thickness thicknessLabel = qt.QLabel(grid) thicknessLabel.setText("Thickness") self.thicknessCheck = qt.QCheckBox(grid) self.thicknessCheck.setText(str("")) self.thicknessValue = qt.QLineEdit(grid) thicknessSepLabel = qt.QLabel(grid) thicknessSepLabel_font = qt.QFont(thicknessSepLabel.font()) thicknessSepLabel_font.setBold(1) thicknessSepLabel.setFont(thicknessSepLabel_font) thicknessSepLabel.setText(str("+/-")) self.thicknessError = qt.QLineEdit(grid) gl.addWidget(thicknessLabel, 4, 0) gl.addWidget(self.thicknessCheck, 4, 2) gl.addWidget(self.thicknessValue, 4, 3) gl.addWidget(thicknessSepLabel, 4, 4) gl.addWidget(self.thicknessError, 4, 5) Line = qt.QFrame(grid) Line.setFrameShape(qt.QFrame.HLine) Line.setFrameShadow(qt.QFrame.Sunken) Line.setFrameShape(qt.QFrame.HLine) gl.addMultiCellWidget(Line, 5, 5, 0, 5) layout.addWidget(grid) """ self.matrixGeometry = MatrixEditor.MatrixEditor(self,"tabMatrix", table=False, orientation="horizontal", density=False, thickness=False, size="image2") layout.addWidget(self.matrixGeometry) text ="This matrix definition will only be " text +="considered if Matrix is selected and material is set to " text +="MULTILAYER in the ATTENUATORS tab.\n " self.matrixInfo = qt.QLabel(self) layout.addWidget(self.matrixInfo) self.matrixInfo.setText(text) """ self.matrixTable = AttenuatorsTableWidget(self, name, attenuators=compoundlist, matrixmode=False, compoundmode=True, layerindex=layerindex) layout.addWidget(self.matrixTable) QTable = qt.QTableWidget class AttenuatorsTableWidget(QTable): sigValueChanged = qt.pyqtSignal(int, int) def __init__(self, parent=None, name="Attenuators Table", attenuators=None, matrixmode=None, compoundmode=None, layerindex=0, funnyfilters=False): attenuators0 = ["Atmosphere", "Air", "Window", "Contact", "DeadLayer", "Filter5", "Filter6", "Filter7", "BeamFilter1", "BeamFilter2", "Detector", "Matrix"] QTable.__init__(self, parent) self.setWindowTitle(name) if attenuators is None: attenuators = attenuators0 if matrixmode is None: matrixmode = False if matrixmode: self.compoundMode = False elif compoundmode is None: self.compoundMode = False else: self.compoundMode = compoundmode if funnyfilters is None: funnyfilters = False self.funnyFiltersMode = funnyfilters if self.compoundMode: self.funnyFiltersMode = False labels = ["Compound", "Name", "Material", "Initial Amount"] else: if self.funnyFiltersMode: labels = ["Attenuator", "Name", "Material", "Density (g/cm3)", "Thickness (cm)", "Funny Factor"] else: labels = ["Attenuator", "Name", "Material", "Density (g/cm3)", "Thickness (cm)"] self.layerindex = layerindex self.matrixMode = matrixmode self.attenuators = attenuators self.verticalHeader().hide() _logger.debug("margin to adjust") _logger.debug("focus style") self.setFrameShape(qt.QTableWidget.NoFrame) self.setSelectionMode(qt.QTableWidget.NoSelection) self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) if self.matrixMode: self.__build(len(attenuators)) elif self.compoundMode: self.__build(len(attenuators)) else: self.__build(len(attenuators0)) #self.adjustColumn(0) if self.matrixMode: item = self.horizontalHeaderItem(0) item.setText('Layer') self.setHorizontalHeaderItem(0, item) if self.compoundMode: self.resizeColumnToContents(0) self.resizeColumnToContents(1) self.sigValueChanged[int,int].connect(self.mySlot) def __build(self, nfilters=12): n = 0 if (not self.matrixMode) and (not self.compoundMode): n = 4 #self.setNumRows(nfilters+n) self.setRowCount(12) else: self.setRowCount(nfilters) rheight = self.horizontalHeader().sizeHint().height() for idx in range(self.rowCount()): self.setRowHeight(idx, rheight) self.comboList = [] matlist = list(Elements.Material.keys()) matlist.sort() if self.matrixMode or self.compoundMode: if self.matrixMode: roottext = "Layer" else: roottext = "Compound%d" % self.layerindex a = [] #a.append('') for key in matlist: a.append(key) for idx in range(self.rowCount()): item= qt.QCheckBox(self) self.setCellWidget(idx, 0, item) text = roottext+"%d" % idx item.setText(text) item = self.item(idx, 1) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 1, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) combo = MyQComboBox(self, options=a, row = idx, col = 2) combo.setEditable(True) self.setCellWidget(idx, 2, combo) combo.sigMaterialComboBoxSignal.connect(self._comboSlot) return selfnumRows = self.rowCount() for idx in range(selfnumRows - n): text = "Filter% 2d" % idx item = qt.QCheckBox(self) self.setCellWidget(idx, 0, item) item.setText(text) if idx < len(self.attenuators): text = self.attenuators[idx] item = self.item(idx, 1) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 1, item) else: item.setText(text) #a = qt.QStringList() a = [] #a.append('') for key in matlist: a.append(key) combo = MyQComboBox(self, options=a, row=idx, col = 2) combo.setEditable(True) self.setCellWidget(idx, 2, combo) #self.setItem(idx,2,combo) combo.sigMaterialComboBoxSignal.connect(self._comboSlot) for i in range(2): #BeamFilter(i) item = qt.QCheckBox(self) idx = self.rowCount() - (4 - i) self.setCellWidget(idx, 0, item) text = "BeamFilter%d" % i item.setText(text) item = self.item(idx,1) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 1, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) text = "1.0" item = self.item(idx, 5) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 5, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) combo = MyQComboBox(self, options=a, row=idx, col=2) combo.setEditable(True) self.setCellWidget(idx, 2, combo) combo.sigMaterialComboBoxSignal.connect(self._comboSlot) #Detector item = qt.QCheckBox(self) idx = self.rowCount() - 2 self.setCellWidget(idx, 0, item) text = "Detector" item.setText(text) item = self.item(idx,1) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 1, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) text = "1.0" item = self.item(idx, 5) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 5, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) combo = MyQComboBox(self, options=a, row=idx, col=2) combo.setEditable(True) self.setCellWidget(idx, 2, combo) #Matrix item = qt.QCheckBox(self) idx = self.rowCount() - 1 self.setCellWidget(idx, 0, item) text = "Matrix" item.setText(text) item = self.item(idx, 1) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 1, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable |qt.Qt.ItemIsEnabled) text = "1.0" item = self.item(idx, 5) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(idx, 5, item) else: item.setText(text) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) combo.sigMaterialComboBoxSignal.connect(self._comboSlot) #a = qt.QStringList() a = [] #a.append('') for key in matlist: a.append(key) #combo = qttable.QComboTableItem(self,a) self.combo = MyQComboBox(self, options=a, row=idx, col=2) self.setCellWidget(idx, 2, self.combo) self.combo.sigMaterialComboBoxSignal.connect(self._comboSlot) def mySlot(self, row, col): _logger.debug("Value changed row = %d cole = &d", row, col) _logger.debug("Text = %s", self.text(row, col)) def _comboSlot(self, ddict): _logger.debug("_comboSlot %s", ddict) row = ddict['row'] col = ddict['col'] text = ddict['text'] self.setCurrentCell(row, col) self._checkDensityThickness(text, row) self.sigValueChanged.emit(row, col) def text(self, row, col): if col == 2: return self.cellWidget(row, col).currentText() else: if col not in [1, 3, 4, 5]: _logger.info("row, col = %d, %d", row, col) _logger.info("I should not be here") else: item = self.item(row, col) return item.text() def setText(self, row, col, text): if col == 0: self.cellWidget(row, 0).setText(text) return if col not in [1, 3, 4, 5]: _logger.warning("only compatible columns 1, 3 and 4") raise ValueError("method for column > 2") item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) def setCellWidget(self, row, col, w): QTable.setCellWidget(self, row, col, w) def _checkDensityThickness(self, text, row): try: currentDensity = float(str(self.text(row, 3))) except Exception: currentDensity = 0.0 try: currentThickness = float(str(self.text(row, 4))) except Exception: currentThickness = 0.0 defaultDensity = -1.0 defaultThickness = -0.1 #check if default density is there if Elements.isValidFormula(text): #check if single element if text in Elements.Element.keys(): defaultDensity = Elements.Element[text]['density'] else: elts = [ w for w in re.split('[0-9]', text) if w != ''] nbs = [ int(w) for w in re.split('[a-zA-Z]', text) if w != ''] if len(elts) == 1 and len(nbs) == 1: defaultDensity = Elements.Element[elts[0]]['density'] elif Elements.isValidMaterial(text): key = Elements.getMaterialKey(text) if key is not None: if 'Density' in Elements.Material[key]: defaultDensity = Elements.Material[key]['Density'] if 'Thickness' in Elements.Material[key]: defaultThickness = Elements.Material[key]['Thickness'] if defaultDensity >= 0.0: self.setText(row, 3, "%g" % defaultDensity) elif currentDensity <= 0: # should not be better to raise an exception if the # entered density or thickness were negative? self.setText(row, 3, "%g" % 1.0) if defaultThickness >= 0.0: self.setText(row, 4, "%g" % defaultThickness) elif currentThickness <= 0.0: # should not be better to raise an exception if the # entered density or thickness were negative? self.setText(row, 4, "%g" % 0.1) class MyQComboBox(MaterialEditor.MaterialComboBox): def _mySignal(self, qstring0): qstring = qstring0 (result, index) = self.ownValidator.validate(qstring, 0) if result != self.ownValidator.Valid: qstring = self.ownValidator.fixup(qstring) (result, index) = self.ownValidator.validate(qstring,0) if result != self.ownValidator.Valid: text = str(qstring) if text.upper() != "MULTILAYER": qt.QMessageBox.critical(self, "Invalid Material '%s'" % text, "The material '%s' is not a valid Formula " \ "nor a valid Material.\n" \ "Please define the material %s or correct the formula\n" % \ (text, text)) self.setCurrentIndex(0) for i in range(self.count()): selftext = self.itemText(i) if selftext == qstring0: self.removeItem(i) break return text = str(qstring) self.setCurrentText(text) ddict = {} ddict['event'] = 'activated' ddict['row'] = self.row ddict['col'] = self.col ddict['text'] = text if qstring0 != qstring: self.removeItem(self.count() - 1) insert = True for i in range(self.count()): selftext = self.itemText(i) if qstring == selftext: insert = False if insert: self.insertItem(-1, qstring) # signal defined in the superclass. self.sigMaterialComboBoxSignal.emit(ddict) def main(args): app = qt.QApplication(args) #tab = AttenuatorsTableWidget(None) if len(args) < 2: tab = AttenuatorsTab(None) elif len(args) > 3: tab = CompoundFittingTab(None) else: tab = MultilayerTab(None) tab.show() app.exec() if __name__=="__main__": main(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/ConcentrationsWidget.py0000644000000000000000000011121214741736366024037 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging _logger = logging.getLogger(__name__) _logger.debug("ConcentrationsWidget is in debug mode") from PyMca5.PyMcaGui import PyMcaQt as qt if sys.platform.startswith("darwin"): import threading QThread = threading.Thread QTHREAD = False else: QThread = qt.QThread QTHREAD = True if hasattr(qt, 'QString'): QString = qt.QString else: QString = str QTVERSION = qt.qVersion() XRFMC_FLAG = False if QTVERSION > '4.0.0': XRFMC_FLAG = True try: from PyMca5.PyMcaGui.misc.TableWidget import TableWidget QTable = TableWidget USE_QTABLE_WIDGET = False except Exception: _logger.warning("Cannot import clipboard enabled table") QTable = qt.QTableWidget USE_QTABLE_WIDGET = True from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool from PyMca5.PyMcaPhysics.xrf import Elements import time class Concentrations(qt.QWidget): sigConcentrationsSignal = qt.pyqtSignal(object) sigClosed = qt.pyqtSignal(object) def __init__(self, parent=None, name="Concentrations"): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.build() self.setParameters = self.concentrationsWidget.setParameters self.getParameters = self.concentrationsWidget.getParameters self.setTimeFactor = self.concentrationsWidget.setTimeFactor self.__lastVar = None self.__lastKw = None def build(self): layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.concentrationsTool = ConcentrationsTool.ConcentrationsTool() self.concentrationsWidget = ConcentrationsWidget(self) self.concentrationsTable = ConcentrationsTable(self) layout.addWidget(self.concentrationsWidget) layout.addWidget(self.concentrationsTable) layout.setStretchFactor(self.concentrationsWidget, 0) layout.setStretchFactor(self.concentrationsTable, 1) self.concentrationsWidget.sigConcentrationsWidgetSignal.connect( \ self.mySlot) self.concentrationsTool.configure( self.concentrationsWidget.getParameters()) self.__connected = True def mySlot(self, ddict=None): if ddict is None: ddict = {} if not self.__connected: return try: # try to avoid multiple triggering on Mac OS self.__connected = False self.concentrationsTable.setFocus() app = qt.QApplication.instance() app.processEvents() finally: self.__connected = True if ddict['event'] == 'updated': self.concentrationsTool.configure(ddict) if self.__lastKw is not None: addInfo = False if 'addinfo' in self.__lastKw: if self.__lastKw['addinfo']: addInfo = True try: if addInfo: concentrations, info = self.processFitResult(*self.__lastVar, **self.__lastKw) else: concentrations = self.processFitResult(*self.__lastVar, **self.__lastKw) ddict['concentrations'] = concentrations except Exception: self.__lastKw = None raise self.mySignal(ddict) def mySignal(self, ddict=None): if ddict is None: ddict = {} self.sigConcentrationsSignal.emit(ddict) def processFitResult(self, *var, **kw): self.__lastVar = var self.__lastKw = kw addInfo = False if 'addinfo' in kw: if kw['addinfo']: addInfo = True if _logger.getEffectiveLevel() == logging.DEBUG: if addInfo: ddict, info = self.concentrationsTool.processFitResult(*var, **kw) self.concentrationsTable.fillFromResult(ddict) return ddict, info else: ddict = self.concentrationsTool.processFitResult(*var, **kw) self.concentrationsTable.fillFromResult(ddict) return ddict try: threadResult = self._submitThread(*var, **kw) if type(threadResult) == type((1,)): if len(threadResult): if threadResult[0] == "Exception": raise Exception(threadResult[1], threadResult[2]) if addInfo: ddict, info = threadResult self.concentrationsTable.fillFromResult(ddict) return ddict, info else: ddict = threadResult self.concentrationsTable.fillFromResult(ddict) return ddict except Exception: self.__lastKw = None self.concentrationsTable.setRowCount(0) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() def closeEvent(self, event): qt.QWidget.closeEvent(self, event) ddict = {} ddict['event'] = 'closed' self.sigClosed.emit(ddict) def _submitThread(self, *var, **kw): message = "Calculating concentrations" sthread = SimpleThread(self.concentrationsTool.processFitResult, *var, **kw) sthread.start() msg = qt.QDialog(self, qt.Qt.FramelessWindowHint) msg.setModal(0) msg.setWindowTitle("Please Wait") layout = qt.QHBoxLayout(msg) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) l1 = qt.QLabel(msg) l1.setFixedWidth(l1.fontMetrics().maxWidth()*len('##')) l2 = qt.QLabel(msg) l2.setText("%s" % message) l3 = qt.QLabel(msg) l3.setFixedWidth(l3.fontMetrics().maxWidth()*len('##')) layout.addWidget(l1) layout.addWidget(l2) layout.addWidget(l3) msg.show() qApp = qt.QApplication.instance() qApp.processEvents() i = 0 ticks = ['-', '\\', "|", "/", "-", "\\", '|', '/'] while (sthread.isRunning()): i = (i + 1) % 8 l1.setText(ticks[i]) l3.setText(" " + ticks[i]) qApp = qt.QApplication.instance() qApp.processEvents() time.sleep(1) msg.close() result = sthread._result del sthread self.raise_() return result class SimpleThread(QThread): def __init__(self, function, *var, **kw): if kw is None: kw = {} if QTHREAD: QThread.__init__(self, None) else: QThread.__init__(self) self._threadRunning = False self._function = function self._var = var self._kw = kw self._result = None if not QTHREAD: def isRunning(self): return self._threadRunning def run(self): if _logger.getEffectiveLevel() == logging.DEBUG: self._result = self._function(*self._var, **self._kw) else: try: self._threadRunning = True self._result = self._function(*self._var, **self._kw) except Exception: self._result = ("Exception",) + sys.exc_info() finally: self._threadRunning = False class ConcentrationsWidget(qt.QWidget): sigConcentrationsWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="Concentrations"): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self._liveTime = None self.build() ddict = {} ddict['usematrix'] = 0 ddict['useattenuators'] = 1 ddict['usexrfmc'] = 0 ddict['flux'] = 1.0E10 ddict['time'] = 1.0 ddict['useautotime'] = 0 ddict['area'] = 30.0 ddict['distance'] = 10.0 ddict['reference'] = "Auto" ddict['mmolarflag'] = 0 self.setParameters(ddict) def build(self): layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) buttonGroup = qt.QGroupBox(self) buttonGroup.layout = qt.QVBoxLayout(buttonGroup) buttonGroup.layout.setContentsMargins(0, 0, 0, 0) buttonGroup.layout.setSpacing(0) layout.addWidget(buttonGroup) self.fluxCheckBox = qt.QCheckBox(buttonGroup) self.fluxCheckBox.setText("From fundamental parameters") wf = qt.QWidget(buttonGroup) wf.layout = qt.QHBoxLayout(wf) wf.layout.setContentsMargins(0, 0, 0, 0) wf.layout.setSpacing(0) wf.layout.addWidget(qt.HorizontalSpacer(wf)) self.fundamentalWidget = FundamentalWidget(wf) wf.layout.addWidget(self.fundamentalWidget) wf.layout.addWidget(qt.HorizontalSpacer(wf)) self.matrixCheckBox = qt.QCheckBox(buttonGroup) self.matrixCheckBox.setText("From matrix composition") self.fluxCheckBox.setChecked(True) wm = qt.QWidget(buttonGroup) wm.layout = qt.QHBoxLayout(wm) wm.layout.setContentsMargins(0, 0, 0, 0) wm.layout.setSpacing(0) wm.layout.addWidget(qt.HorizontalSpacer(wm)) referenceLabel = qt.QLabel(wm) wm.layout.addWidget(referenceLabel) referenceLabel.setText("Matrix Reference Element:") #self.referenceCombo=MyQComboBox(wm) #self.referenceCombo=qt.QComboBox(wm) #self.referenceCombo.setEditable(True) #self.referenceCombo.insertItem('Auto') self.referenceLine = MyQLineEdit(wm) wm.layout.addWidget(self.referenceLine) fmetrics = self.referenceLine.fontMetrics() fmtext = '#######' if hasattr(fmetrics, "maxWidth"): self.referenceLine.setFixedWidth(fmetrics.maxWidth()*len(fmtext)) else: #deprecated _logger.info("Using deprecated method") self.referenceLine.setFixedWidth(fmetrics.width(fmtext)) wm.layout.addWidget(qt.HorizontalSpacer(wm)) self.referenceLine.sigMyQLineEditSignal.connect( \ self._referenceLineSlot) buttonGroup.layout.addWidget(self.fluxCheckBox) buttonGroup.layout.addWidget(wf) buttonGroup.layout.addWidget(self.matrixCheckBox) buttonGroup.layout.addWidget(wm) #self.fundamentalWidget.setEnabled(False) self.attenuatorsCheckBox = qt.QCheckBox(self) self.attenuatorsCheckBox.setText("Consider attenuators in calculations") self.attenuatorsCheckBox.setDisabled(True) #Multilayer secondary excitation self.secondaryCheckBox = qt.QCheckBox(self) self.secondaryCheckBox.setText("Consider secondary excitation") self.tertiaryCheckBox = qt.QCheckBox(self) self.tertiaryCheckBox.setText("Consider tertiary excitation") layout.addWidget(self.attenuatorsCheckBox) layout.addWidget(self.secondaryCheckBox) layout.addWidget(self.tertiaryCheckBox) #XRFMC secondary excitation if XRFMC_FLAG: self.xrfmcCheckBox = qt.QCheckBox(self) self.xrfmcCheckBox.setText("use Monte Carlo code to correct higher order excitations") layout.addWidget( self.xrfmcCheckBox) #mM checkbox self.mMolarCheckBox = qt.QCheckBox(self) self.mMolarCheckBox.setText("Elemental mM concentrations (assuming 1 l of solution is 1000 * matrix_density grams)") layout.addWidget(self.mMolarCheckBox) layout.addWidget(qt.VerticalSpacer(self)) buttonGroup.show() self.fluxCheckBox.clicked.connect(self._fluxCheckBoxSlot) self.matrixCheckBox.clicked.connect(self.checkBoxSlot) self.attenuatorsCheckBox.clicked.connect(self.checkBoxSlot) self.secondaryCheckBox.clicked.connect(self._secondaryCheckBoxSlot) self.tertiaryCheckBox.clicked.connect(self._tertiaryCheckBoxSlot) if XRFMC_FLAG: self.xrfmcCheckBox.clicked.connect(self._xrfmcCheckBoxSlot) self.mMolarCheckBox.clicked.connect(self.checkBoxSlot) self.fundamentalWidget.flux.sigMyQLineEditSignal.connect( \ self._mySignal) self.fundamentalWidget.area.sigMyQLineEditSignal.connect( \ self._mySignal) self.fundamentalWidget.time.sigMyQLineEditSignal.connect( \ self._mySignal) self.fundamentalWidget.distance.sigMyQLineEditSignal.connect( \ self._mySignal) self.fundamentalWidget.autoTimeCheckBox.clicked.connect( \ self.__autoTimeSlot) def __autoTimeSlot(self): return self._autoTimeSlot() def _autoTimeSlot(self, signal=True): if self.fundamentalWidget.autoTimeCheckBox.isChecked(): if self._liveTime is None: self.fundamentalWidget.autoTimeCheckBox.setChecked(False) self.fundamentalWidget.time.setEnabled(True) else: self.fundamentalWidget.time.setText("%.6g" % self._liveTime) self.fundamentalWidget.time.setEnabled(False) if signal: self._mySignal() else: self.fundamentalWidget.time.setEnabled(True) def setTimeFactor(self, factor=None, signal=False): self._liveTime = factor if factor is None: self.fundamentalWidget.autoTimeCheckBox.setChecked(False) self.fundamentalWidget.time.setEnabled(True) else: # act according to the settings self._autoTimeSlot(signal=signal) def _fluxCheckBoxSlot(self): if self.fluxCheckBox.isChecked(): self.matrixCheckBox.setChecked(False) else: self.matrixCheckBox.setChecked(True) self.checkBoxSlot() def _secondaryCheckBoxSlot(self): if self.secondaryCheckBox.isChecked(): if XRFMC_FLAG: self.xrfmcCheckBox.setChecked(False) self.tertiaryCheckBox.setChecked(False) self.checkBoxSlot() def _tertiaryCheckBoxSlot(self): if self.tertiaryCheckBox.isChecked(): if XRFMC_FLAG: self.xrfmcCheckBox.setChecked(False) self.secondaryCheckBox.setChecked(False) self.checkBoxSlot() def _xrfmcCheckBoxSlot(self): if self.xrfmcCheckBox.isChecked(): self.secondaryCheckBox.setChecked(False) self.checkBoxSlot() def checkBoxSlot(self): if self.matrixCheckBox.isChecked(): self.fundamentalWidget.setInputDisabled(True) self.referenceLine.setEnabled(True) self.fluxCheckBox.setChecked(False) else: self.fundamentalWidget.setInputDisabled(False) self.referenceLine.setEnabled(False) self.fluxCheckBox.setChecked(True) self._mySignal() def _referenceLineSlot(self, ddict): if ddict['event'] == "returnPressed": current = str(self.referenceLine.text()) current = current.replace(' ', '') if (current == '') or (current.upper() == 'AUTO'): pass elif len(current) == 2: current = current.upper()[0] + current.lower()[1] elif len(current) == 1: current = current.upper()[0] else: self.referenceLine.setText('Auto') msg = qt.QMessageBox(self.referenceLine) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Element %s" % current) msg.exec() self.referenceLine.setFocus() return if (current == '') or (current.upper() == 'AUTO'): self.referenceLine.setText('Auto') self._mySignal() elif not Elements.isValidFormula(current): self.referenceLine.setText('Auto') msg = qt.QMessageBox(self.referenceLine) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Element %s" % current) msg.exec() self.referenceLine.setFocus() else: self.referenceLine.setText(current) self._mySignal() def _mySignal(self, dummy=None): ddict = self.getParameters() ddict['event'] = 'updated' self.sigConcentrationsWidgetSignal.emit(ddict) def getParameters(self): ddict = {} if self.matrixCheckBox.isChecked(): ddict['usematrix'] = 1 else: ddict['usematrix'] = 0 if self.attenuatorsCheckBox.isChecked(): ddict['useattenuators'] = 1 else: ddict['useattenuators'] = 0 if self.tertiaryCheckBox.isChecked(): ddict['usemultilayersecondary'] = 2 elif self.secondaryCheckBox.isChecked(): ddict['usemultilayersecondary'] = 1 else: ddict['usemultilayersecondary'] = 0 ddict['usexrfmc'] = 0 if XRFMC_FLAG: if self.xrfmcCheckBox.isChecked(): ddict['usexrfmc'] = 1 if self.mMolarCheckBox.isChecked(): ddict['mmolarflag'] = 1 else: ddict['mmolarflag'] = 0 ddict['flux'] = float(str(self.fundamentalWidget.flux.text())) ddict['time'] = float(str(self.fundamentalWidget.time.text())) ddict['area'] = float(str(self.fundamentalWidget.area.text())) ddict['distance'] = float(str(self.fundamentalWidget.distance.text())) #ddict['reference'] = str(self.referenceCombo.currentText()) ddict['reference'] = str(self.referenceLine.text()) if self.fundamentalWidget.autoTimeCheckBox.isChecked(): ddict['useautotime'] = 1 if self._liveTime is None: #ddict["useautotime"] = 0 #self.fundamentalWidget.autoTimeCheckBox.setChecked(False) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Cannot use automatic concentrations time setting!!!") msg.exec() else: ddict['time'] = float(self._liveTime) else: ddict['useautotime'] = 0 return ddict def setParameters(self, ddict, signal=None): if signal is None: signal = True if 'usemultilayersecondary' in ddict: if ddict['usemultilayersecondary']: if ddict['usemultilayersecondary'] == 2: self.tertiaryCheckBox.setChecked(True) self.secondaryCheckBox.setChecked(False) else: self.tertiaryCheckBox.setChecked(False) self.secondaryCheckBox.setChecked(True) else: self.secondaryCheckBox.setChecked(False) self.tertiaryCheckBox.setChecked(False) else: self.secondaryCheckBox.setChecked(False) self.tertiaryCheckBox.setChecked(False) if XRFMC_FLAG: if 'usexrfmc' in ddict: if ddict['usexrfmc']: self.xrfmcCheckBox.setChecked(True) else: self.xrfmcCheckBox.setChecked(False) if 'mmolarflag' in ddict: if ddict['mmolarflag']: self.mMolarCheckBox.setChecked(True) else: self.mMolarCheckBox.setChecked(False) else: self.mMolarCheckBox.setChecked(False) usematrix = ddict.get('usematrix', False) if usematrix: self.fluxCheckBox.setChecked(False) self.matrixCheckBox.setChecked(True) else: self.fluxCheckBox.setChecked(True) self.matrixCheckBox.setChecked(False) ddict['useattenuators'] = 1 if ddict['useattenuators']: self.attenuatorsCheckBox.setChecked(True) else: self.attenuatorsCheckBox.setChecked(False) if 'reference' in ddict: #self.referenceCombo.setCurrentText(QString(ddict['reference'])) self.referenceLine.setText(QString(ddict['reference'])) else: #self.referenceCombo.setCurrentText(QString("Auto")) self.referenceLine.setText(QString("Auto")) self.fundamentalWidget.flux.setText("%.6g" % ddict['flux']) self.fundamentalWidget.area.setText("%.6g" % ddict['area']) self.fundamentalWidget.distance.setText("%.6g" % ddict['distance']) if ddict['time'] is not None: self.fundamentalWidget.time.setText("%.6g" % ddict['time']) autotime = ddict.get("useautotime", False) if autotime: self.fundamentalWidget.autoTimeCheckBox.setChecked(True) if self._liveTime is not None: self.fundamentalWidget.time.setText("%.6g" % self._liveTime) else: self.fundamentalWidget.autoTimeCheckBox.setChecked(False) if self.matrixCheckBox.isChecked(): self.fundamentalWidget.setInputDisabled(True) self.referenceLine.setEnabled(True) else: self.fundamentalWidget.setInputDisabled(False) self.referenceLine.setEnabled(False) if signal: self._mySignal() def setReferenceOptions(self, options=None): if options is None: options = ['Auto'] old = self.referenceCombo.currentText() if 'Auto' not in options: options = ['Auto'] + options self.referenceCombo.clear() self.referenceCombo.insertStrList(options) if old in options: self.referenceCombo.setCurrentText(old) else: self.referenceCombo.setCurrentText('Auto') class FundamentalWidget(qt.QWidget): def __init__(self, parent=None, name=""): qt.QWidget.__init__(self, parent) self.build() def build(self, spacing=2): layout = qt.QHBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(spacing) #column 0 c0 = qt.QWidget(self) c0.layout = qt.QVBoxLayout(c0) c0.layout.setContentsMargins(0, 0, 0, 0) c0.layout.setSpacing(spacing) c0l0 = qt.QLabel(c0) c0l0.setText("Flux (photons/s)") c0l1 = qt.QLabel(c0) c0l1.setText("Active Area (cm2)") c0.layout.addWidget(c0l0) c0.layout.addWidget(c0l1) #column 1 c1 = qt.QWidget(self) c1.layout = qt.QVBoxLayout(c1) c1.layout.setContentsMargins(0, 0, 0, 0) c1.layout.setSpacing(spacing) self.flux = MyQLineEdit(c1) self.flux.setValidator(qt.CLocaleQDoubleValidator(self.flux)) self.area = MyQLineEdit(c1) self.area.setValidator(qt.CLocaleQDoubleValidator(self.area)) c1.layout.addWidget(self.flux) c1.layout.addWidget(self.area) #column 2 c2 = qt.QWidget(self) c2.layout = qt.QVBoxLayout(c2) c2.layout.setContentsMargins(0, 0, 0, 0) c2.layout.setSpacing(spacing) c2l0 = qt.QLabel(c2) c2l0.setText("x time(seconds)") c2l1 = qt.QLabel(c2) c2l1.setText("distance (cm)") c2.layout.addWidget(c2l0) c2.layout.addWidget(c2l1) #column 3 c3 = qt.QWidget(self) c3.layout = qt.QGridLayout(c3) c3.layout.setContentsMargins(0, 0, 0, 0) c3.layout.setSpacing(spacing) self.time = MyQLineEdit(c3) self.time.setValidator(qt.CLocaleQDoubleValidator(self.time)) self.autoTimeCheckBox = qt.QCheckBox(c3) self.autoTimeCheckBox.setText("Use Automatic Factor") self.autoTimeCheckBox.setChecked(False) self.autoTimeCheckBox.setToolTip("Attempt to read from the incoming data generating an error if factor not present") self.distance = MyQLineEdit(c3) self.distance.setValidator(qt.CLocaleQDoubleValidator(self.distance)) c3.layout.addWidget(self.time, 0, 0) c3.layout.addWidget(self.autoTimeCheckBox, 0, 1) c3.layout.addWidget(self.distance, 1, 0) layout.addWidget(c0) layout.addWidget(c1) layout.addWidget(c2) layout.addWidget(c3) def setInputDisabled(self, a=None): if a is None: a = True if a: self.flux.setEnabled(False) self.time.setEnabled(False) self.area.setEnabled(False) self.distance.setEnabled(False) else: self.flux.setEnabled(True) self.time.setEnabled(True) self.area.setEnabled(True) self.distance.setEnabled(True) class ConcentrationsTable(QTable): def __init__(self, parent=None, **kw): QTable.__init__(self, parent) if 'labels' in kw: self.labels = [] for label in kw['labels']: self.labels.append(label) else: self.labels = ['Element', 'Group', 'Fit Area', 'Mass fraction'] self.setColumnCount(len(self.labels)) self.setRowCount(1) for i in range(len(self.labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i, item) self.resizeColumnToContents(i) def fillFromResult(self, result): if 'mmolar' in result: mmolarflag = True else: mmolarflag = False groupsList = result['groups'] nrows = len(groupsList) if nrows != self.rowCount(): self.setRowCount(nrows) if mmolarflag: self.labels = ['Element', 'Group', 'Fit Area', 'Sigma Area', 'mM concentration'] else: self.labels = ['Element', 'Group', 'Fit Area', 'Sigma Area', 'Mass fraction'] if 'layerlist' in result: for label in result['layerlist']: self.labels += [label] self.setColumnCount(len(self.labels)) for i in range(len(self.labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) item.setText(self.labels[i]) self.setHorizontalHeaderItem(i, item) line = 0 for group in groupsList: element, group0 = group.split() # transitions = group0 + " xrays" fitarea = QString("%.6e" % (result['fitarea'][group])) sigmaarea = QString("%.2e" % (result['sigmaarea'][group])) area = QString("%.6e" % (result['area'][group])) if result['mass fraction'][group] < 0.0: fraction = QString("Unknown") else: if mmolarflag: fraction = QString("%.4g" % (result['mmolar'][group])) else: fraction = QString("%.4g" % (result['mass fraction'][group])) if line % 2: color = qt.QColor(255, 250, 205) else: color = qt.QColor('white') if 'Expected Area' in self.labels: fields = [element, group0, fitarea, sigmaarea, area, fraction] else: fields = [element, group0, fitarea, sigmaarea, fraction] if 'layerlist' in result: for layer in result['layerlist']: if result[layer]['mass fraction'][group] < 0.0: fraction = QString("Unknown") else: if mmolarflag: fraction = QString("%.4g" % (result[layer]['mmolar'][group])) else: fraction = QString("%.4g" % (result[layer]['mass fraction'][group])) fields += [fraction] col = 0 for field in fields: item = self.item(line, col) if item is None: item = qt.QTableWidgetItem(field, qt.QTableWidgetItem.Type) self.setItem(line, col, item) else: item.setText(field) if hasattr(item, "setBackground"): # Qt5 item.setBackground(color) else: # Qt4 item.setBackgroundColor(color) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) col += 1 line += 1 for i in range(self.columnCount()): if (i > 1) and (i < 5): self.resizeColumnToContents(i) def getHtmlText(self): lemon = ("#%x%x%x" % (255, 250, 205)).upper() white = "#FFFFFF" hcolor = ("#%x%x%x" % (230, 240, 249)).upper() text = "" text += ("") text += ("") text += ("") for l in range(self.columnCount()): text += ('") text += ("") #text+=( str(QString("
")) for r in range(self.rowCount()): text += ("") if r % 2: color = white b = "" else: b = "" color = lemon for c in range(self.columnCount()): moretext = "" item = self.item(r, c) if item is not None: moretext = str(item.text()) if len(moretext): finalcolor = color else: finalcolor = white if c < 2: text += ('") else: text += ("") moretext = "" item = self.item(r, 0) if item is not None: moretext = str(item.text()) if len(moretext): text += ("") text += ("") text += ("\n") text += ("
' % hcolor) item = self.horizontalHeaderItem(l) text += str(item.text()) text += ("
%s' % (finalcolor, b)) else: text += ('%s' % (finalcolor, b)) text += moretext if len(b): text += ("
") text += ("
") return text def _copySelection(self): selected_idx = self.selectedIndexes() selected_idx_tuples = [(idx.row(), idx.column()) for idx in selected_idx] selected_rows = [idx[0] for idx in selected_idx_tuples] selected_columns = [idx[1] for idx in selected_idx_tuples] if sys.platform.startswith("win"): newline = "\r\n" else: newline = "\n" copied_text = "" for row in range(min(selected_rows), max(selected_rows) + 1): for col in range(min(selected_columns), max(selected_columns) + 1): item_text = self.item(row, col).text() if (row, col) in selected_idx_tuples: copied_text += item_text copied_text += "\t" # remove the right-most tabulation copied_text.rstrip("\t") # add a newline copied_text += newline # remove final newline copied_text.rstrip(newline) # put this text into clipboard qapp = qt.QApplication.instance() qapp.clipboard().setText(copied_text) if USE_QTABLE_WIDGET: def keyPressEvent(self, keyEvent): #if there is a control-C event copy data to the clipboard if (keyEvent.key() == qt.Qt.Key_C) and \ (keyEvent.modifiers() & qt.Qt.ControlModifier): self._copySelection() class MyQLineEdit(qt.QLineEdit): sigMyQLineEditSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name=None): qt.QLineEdit.__init__(self, parent) self.editingFinished[()].connect(self._mySignal) #TODO: Focus in to set yellow color, focus out to set white color def _mySignal(self): ddict = {} ddict['event'] = "returnPressed" self.sigMyQLineEditSignal.emit(ddict) class MyQComboBox(qt.QComboBox): def __init__(self, parent=None, name=None, fl=0): qt.QComboBox.__init__(self, parent) self.setEditable(True) self._lineEdit = MyQLineEdit() self.setLineEdit(self._lineEdit) self._lineEdit.sigMyQLineEditSignal.connect(self._mySlot) def _mySlot(self, ddict): if ddict['event'] == "returnPressed": current = str(self.currentText()) current = current.replace(' ', '') if (current == '') or (current.upper() == 'AUTO'): pass elif len(current) == 2: current = current.upper()[0] + current.lower()[1] elif len(current) == 1: current = current.upper()[0] else: msg = qt.QMessageBox(self._lineEdit) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Element %s" % current) msg.exec() self._lineEdit.setFocus() if not Elements.isValidFormula(current): msg = qt.QMessageBox(self._lineEdit) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Element %s" % current) msg.exec() self._lineEdit.setFocus() else: self.setCurrentText(current) if __name__ == "__main__": import getopt import copy # import sys # from PyMca5 import ConcentrationsTool from PyMca5.PyMcaIO import ConfigDict if len(sys.argv) > 1: options = '' longoptions = ['flux=', 'time=', 'area=', 'distance=', 'attenuators=', 'usematrix='] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) demo = Concentrations() config = demo.getParameters() for opt, arg in opts: if opt in ('--flux'): config['flux'] = float(arg) elif opt in ('--area'): config['area'] = float(arg) elif opt in ('--time'): config['time'] = float(arg) elif opt in ('--distance'): config['distance'] = float(arg) elif opt in ('--attenuators'): config['useattenuators'] = int(float(arg)) elif opt in ('--usematrix'): config['usematrix'] = int(float(arg)) demo.setParameters(config) filelist = args for file in filelist: d = ConfigDict.ConfigDict() d.read(file) for material in d['result']['config']['materials'].keys(): Elements.Material[material] = copy.deepcopy(d['result']['config']['materials'][material]) demo.processFitResult(fitresult=d, elementsfrommatrix=False) demo.show() ret = app.exec() app = None sys.exit(ret) else: print("Usage:") print("ConcentrationsWidget.py [--flux=xxxx --area=xxxx] fitresultfile") ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/ElementsInfo.py0000644000000000000000000002301414741736366022274 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaPhysics.xrf import ElementHtml from PyMca5.PyMcaPhysics.xrf import Elements from PyMca5.PyMcaGui.physics.xrf.QPeriodicTable import QPeriodicTable _logger = logging.getLogger(__name__) CLOSE_ICON =[ "16 16 18 1", ". c None", "d c #000000", "c c #080808", "k c #080c08", "b c #181818", "a c #212021", "# c #212421", "j c #292829", "e c #313031", "f c #393839", "i c #424542", "m c #525152", "h c #525552", "g c #5a595a", "l c #636163", "p c #6b696b", "n c #7b797b", "o c #ffffff", "................", "................", "......#abcd.....", "....efghijkdd...", "...elmgnliaddd..", "...fmoopnhoodd..", "..#ggooogoooddd.", "..ahnpooooocddd.", "..bilngoooadddd.", "..cjihooooodddd.", "..dkaoooaoooddd.", "...ddoocddoodd..", "...ddddddddddd..", "....ddddddddd...", "......ddddd.....", "................" ] class ElementsInfo(qt.QWidget): def __init__(self, parent=None, name="Elements Info"): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.energyValue = None self.splitter = qt.QSplitter(self) layout.addWidget(self.splitter) self.splitter.setOrientation(qt.Qt.Horizontal) self.table = QPeriodicTable(self.splitter) self.html = ElementHtml.ElementHtml() self.infoWidget = None self.table.setMinimumSize(500, 400) self.table.sigElementClicked.connect(self.elementClicked) self.lastElement = None #Elements.registerUpdate(self._updateCallback) def elementClicked(self, symbol): if self.infoWidget is None: self.__createInfoWidget(symbol) else: self.infoText.clear() self.infoText.insertHtml(self.html.gethtml(symbol)) if self.infoWidget.isHidden(): self.infoWidget.show() self.lastElement = symbol self.infoWidget.setWindowTitle(symbol) self.infoWidget.raise_() def __createInfoWidget(self,symbol=""): #Dock window like widget frame = qt.QWidget(self.splitter) layout = qt.QVBoxLayout(frame) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) #The dock functionnality toolbar = qt.QWidget(frame) layout.addWidget(toolbar) layout1 = qt.QHBoxLayout(toolbar) layout1.setContentsMargins(0, 0, 0, 0) layout1.setSpacing(0) # --- the line self.line1 = Line(toolbar) self.line1.setFrameShape(qt.QFrame.HLine) self.line1.setFrameShadow(qt.QFrame.Sunken) self.line1.setFrameShape(qt.QFrame.HLine) layout1.addWidget(self.line1) # --- the close button self.closelabel = PixmapLabel(toolbar) self.closelabel.setPixmap(qt.QPixmap(CLOSE_ICON)) layout1.addWidget(self.closelabel) self.closelabel.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) # --- connections self.line1.sigLineDoubleClickEvent.connect(self.infoReparent) self.closelabel.sigPixmapLabelMousePressEvent.connect(self.infoToggle) # --- The text edit widget w= qt.QWidget(frame) layout.addWidget(w) l=qt.QVBoxLayout(w) l.setContentsMargins(0, 0, 0, 0) l.setSpacing(0) hbox = qt.QWidget(w) hbox.layout = qt.QHBoxLayout(hbox) hbox.layout.setContentsMargins(0, 0, 0, 0) hbox.layout.setSpacing(0) l.addWidget(hbox) hbox.layout.addWidget(qt.HorizontalSpacer(hbox)) l1=qt.QLabel(hbox) l1.setText('Excitation Energy (keV)') self.energy=MyQLineEdit(hbox) self.energy.setFixedWidth(self.energy.fontMetrics().maxWidth()*len('#####.###')) self.energy.setText("") hbox.layout.addWidget(l1) hbox.layout.addWidget(self.energy) hbox.layout.addWidget(qt.HorizontalSpacer(hbox)) self.energy.editingFinished[()].connect(self._energySlot) #if both signals are emitted and there is an error then we are in an #endless loop #self.connect(self.energy, qt.SIGNAL('focusOut'), self._energySlot) self.infoText = qt.QTextEdit(w) self.infoText.setReadOnly(1) self.infoText.clear() self.infoText.insertHtml(self.html.gethtml(symbol)) l.addWidget(self.infoText) w.show() self.infoWidget=frame frame.show() def infoReparent(self): if self.infoWidget.parent() is not None: self.infoWidget.setParent(None) self.infoWidget.move(self.cursor().pos()) self.infoWidget.show() #,self.cursor().pos(),1) else: self.infoWidget.setParent(self.splitter) self.splitter.insertWidget(1,self.infoWidget) #,qt.QPoint(),1) #self.splitter.moveToFirst(self.sourceFrame) self.infoWidget.setFocus() def infoToggle(self,**kw): _logger.debug("toggleSource called") if self.infoWidget.isHidden(): self.infoWidget.show() self.infoWidget.raise_() else: self.infoWidget.hide() def _energySlot(self): string = str(self.energy.text()) if len(string): try: value = float(string) except Exception: msg=qt.QMessageBox(self.energy) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.energy.setFocus() return if self.energyValue is not None: if value != self.energyValue: self.energyValue = value Elements.updateDict(energy=value) else: self.energyValue = value Elements.updateDict(energy=value) self._updateCallback() self.energy.setPaletteBackgroundColor(qt.QColor('white')) self.infoWidget.setFocus() else: self.energyValue = None self.energy.setText("") def _updateCallback(self): _logger.debug("_updateCallback called") if self.lastElement is not None: self.elementClicked(self.lastElement) if Elements.Element[self.lastElement]['buildparameters']['energy'] is not None: self.energy.setText("%.3f" % Elements.Element[self.lastElement]['buildparameters']['energy']) else: self.energy.setText("") class Line(qt.QFrame): sigLineDoubleClickEvent = qt.pyqtSignal(object) def mouseDoubleClickEvent(self,event): _logger.debug("Double Click Event") ddict={} ddict['event']="DoubleClick" ddict['data'] = event self.sigLineDoubleClickEvent.emit(ddict) class PixmapLabel(qt.QLabel): sigPixmapLabelMousePressEvent = qt.pyqtSignal(object) def mousePressEvent(self,event): _logger.debug("Mouse Press Event") ddict={} ddict['event']="MousePress" ddict['data'] = event self.sigPixmapLabelMousePressEvent.emit(ddict) class MyQLineEdit(qt.QLineEdit): sigFocusOut = qt.pyqtSignal() def __init__(self,parent=None,name=None): qt.QLineEdit.__init__(self,parent) def setPaletteBackgroundColor(self, color): palette = self.palette() role = self.backgroundRole() palette.setColor(role,color) self.setPalette(palette) def focusInEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('yellow')) def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) self.sigFocusOut.emit() def main(): logging.basicConfig(level=logging.INFO) app = qt.QApplication([]) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) w= ElementsInfo() w.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/EnergyTable.py0000644000000000000000000006366714741736366022127 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from . import QXTube from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaGui.plotting import PyMca_Icons as Icons from PyMca5.PyMcaGui.io import PyMcaFileDialogs qt = QXTube.qt QTable = qt.QTableWidget QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class EnergyTab(qt.QWidget): def __init__(self,parent=None, name="Energy Tab"): qt.QWidget.__init__(self, parent) layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(4) hbox = qt.QWidget(self) self.hbox = qt.QHBoxLayout(hbox) self.hbox.setContentsMargins(0, 0, 0, 0) self.hbox.setSpacing(0) self.tube = QXTube.QXTube(hbox) self.table = EnergyTable(hbox) self.hbox.addWidget(self.tube) self.hbox.addWidget(self.table) self.tube.plot() self.tube.hide() self.outputFilter = None self.inputDir = None self.outputDir = None self.__calculating = 0 self.tubeActionsBox = qt.QWidget(self) actionsLayout = qt.QHBoxLayout(self.tubeActionsBox) actionsLayout.setContentsMargins(0, 0, 0, 0) actionsLayout.setSpacing(0) #tube setup button self.tubeButton = qt.QPushButton(self.tubeActionsBox) self.tubeButton.setText("Open X-Ray Tube Setup") actionsLayout.addWidget(self.tubeButton, 1) #load new energy table self.tubeLoadButton = qt.QPushButton(self.tubeActionsBox) self.tubeLoadButton.setText("Load Table") actionsLayout.addWidget(self.tubeLoadButton, 0) #save seen energy table self.tubeSaveButton = qt.QPushButton(self.tubeActionsBox) self.tubeSaveButton.setText("Save Table") actionsLayout.addWidget(self.tubeSaveButton, 0) layout.addWidget(self.tubeActionsBox) layout.addWidget(hbox) self.tubeButton.clicked.connect(self.tubeButtonClicked) self.tubeLoadButton.clicked.connect(self.loadButtonClicked) self.tubeSaveButton.clicked.connect(self.saveButtonClicked) self.tube.sigQXTubeSignal.connect(self.__tubeUpdated) def tubeButtonClicked(self): if self.tube.isHidden(): self.tube.show() self.tubeButton.setText("Close X-Ray Tube Setup") self.tubeLoadButton.hide() self.tubeSaveButton.hide() else: self.tube.hide() self.tubeLoadButton.show() self.tubeSaveButton.show() self.tubeButton.setText("Open X-Ray Tube Setup") def loadButtonClicked(self): if self.inputDir is None: if self.inputDir is not None: self.inputDir = self.outputDir else: self.inputDir = PyMcaDirs.inputDir wdir = self.inputDir if not os.path.exists(wdir): wdir = os.getcwd() filename = PyMcaFileDialogs.getFileList(self, filetypelist=["Energy table files (*.csv)"], mode="OPEN", message="Choose energy table file", currentdir=wdir, single=True) if len(filename): filename = qt.safe_str(filename[0]) if len(filename): try: self.loadEnergyTableParameters(filename) self.inputDir = os.path.dirname(filename) PyMcaDirs.inputDir = self.inputDir except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error loading energy table: %s" % (sys.exc_info()[1])) msg.exec() def loadEnergyTableParameters(self, filename): if sys.platform == "win32" and (sys.version < "3.0.0"): ffile = open(filename, "rb") else: ffile = open(filename, "r") lines = ffile.read() ffile.close() lines = lines.replace("\r","\n") lines = lines.replace('\n\n',"\n") lines = lines.replace(";"," ") lines = lines.replace("\t"," ") lines = lines.replace('"',"") lines = lines.split("\n") if (len(lines) == 1) or\ ((len(lines) == 2) and (len(lines[1])==0)): #clear table ddict={} ddict['energylist'] = [None] ddict['weightlist'] = [1.0] ddict['flaglist'] = [1] ddict['scatterlist'] = [1] else: ddict={} ddict['energylist'] = [] ddict['weightlist'] = [] ddict['flaglist'] = [] ddict['scatterlist'] = [] for i in range(1, len(lines)): line = lines[i] if not len(line): continue ene, weight, useflag, scatterflag = map(float, line.split(" ")) if ene > 0: ddict['energylist'].append(ene) else: ddict['energylist'].append(None) ddict['weightlist'].append(weight) ddict['flaglist'].append(int(useflag)) ddict['scatterlist'].append(int(scatterflag)) energylist, weightlist, flaglist, scatterlist = self.table.getParameters() lold = len(energylist) lnew = len(ddict['energylist']) if lold > lnew: energylist = [None] * lold weightlist = [0.0] * lold flaglist = [0] * lold scatterlist = [0] * lold energylist[0:lnew] = ddict['energylist'][0:lnew] weightlist[0:lnew] = ddict['weightlist'][0:lnew] flaglist[0:lnew] = ddict['flaglist'][0:lnew] scatterlist[0:lnew] = ddict['scatterlist'][0:lnew] self.table.setParameters(energylist, weightlist, flaglist, scatterlist) else: self.table.setParameters(ddict["energylist"], ddict["weightlist"], ddict["flaglist"], ddict["scatterlist"]) def saveButtonClicked(self): energylist, weightlist, flaglist, scatterlist = self.table.getParameters() if self.outputDir is None: if self.inputDir is not None: self.outputDir = self.inputDir else: self.outputDir = PyMcaDirs.outputDir wdir = self.outputDir format_list = ['";"-separated CSV *.csv', '","-separated CSV *.csv', '"tab"-separated CSV *.csv'] if self.outputFilter is None: self.outputFilter = format_list[0] outfile, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=format_list, mode="SAVE", message="Output File Selection", currentdir=wdir, currentfilter=self.outputFilter, getfilter=True, single=True) if len(outfile): outputFile = qt.safe_str(outfile[0]) else: return self.outputFilter = qt.safe_str(filterused) filterused = self.outputFilter.split() try: self.outputDir = os.path.dirname(outputFile) PyMcaDirs.outputDir = os.path.dirname(outputFile) except Exception: self.outputDir = "." if not outputFile.endswith('.csv'): outputFile += '.csv' #always overwrite if os.path.exists(outputFile): os.remove(outputFile) try: if sys.version < "3.0.0": ffile=open(outputFile,'wb') else: ffile=open(outputFile,'w') except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return if "," in filterused[0]: csv = "," elif ";" in filterused[0]: csv = ";" else: csv = "\t" ffile.write('"energy"%s"weight"%s"flag"%s"scatter"\n' % (csv, csv, csv)) #write the scatter lines in first instance alreadysaved = [] for i in range(len(energylist)): if (energylist[i] is not None) and \ (scatterlist[i] == 1): ffile.write("%f%s%f%s%d%s%d\n" % \ (energylist[i], csv, weightlist[i], csv, flaglist[i], csv, scatterlist[i])) alreadysaved.append(i) for i in range(len(energylist)): if energylist[i] is not None: if i not in alreadysaved: ffile.write("%f%s%f%s%d%s%d\n" % \ (energylist[i], csv, weightlist[i], csv, flaglist[i], csv, scatterlist[i])) ffile.close() def __tubeUpdated(self, d): if self.__calculating:return else: self.__calculating = 1 self.table.setParameters(d["energylist"], d["weightlist"], d["flaglist"], d["scatterlist"]) self.__calculating = 0 self.tubeButtonClicked() class EnergyTable(QTable): sigEnergyTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="Energy Table", energylist=None, weightlist=None, flaglist=None,offset=None,scatterlist=None,scattercolor=None): QTable.__init__(self, parent) if energylist is None:energylist=[] if weightlist is None:weightlist =[] if flaglist is None:flaglist =[] if scatterlist is None:scatterlist = [] if scattercolor is None: scattercolor = qt.QColor(255, 20, 147) if offset is None:offset = 0 self.energyList = energylist self.weightList = weightlist self.flagList = flaglist self.offset = offset self.scatterList = scatterlist self._scatterColor = scattercolor self.verticalHeader().hide() self.dataColumns = 30 if QTVERSION < '4.0.0': self.setLeftMargin(0) self.setFrameShape(qttable.QTable.NoFrame) #self.setFrameShadow(qttable.QTable.Sunken) self.setSelectionMode(qttable.QTable.Single) self.setNumCols(3 * self.dataColumns) self.setFocusStyle(qttable.QTable.FollowStyle) else: _logger.debug("margin\n" "frame shape\n" "selection mode\n" "focus style\n" "all of them missing") self.setColumnCount(3 * self.dataColumns) labels = [] for i in range(self.dataColumns): labels.append("Use") labels.append("Energy") labels.append("Weight") if QTVERSION < '4.0.0': for i in range(len(labels)): label = labels[i] self.horizontalHeader().setLabel(i, label) else: _logger.debug("margin to adjust") _logger.debug("focus style") self.setFrameShape(qt.QTableWidget.NoFrame) self.setSelectionMode(qt.QTableWidget.NoSelection) self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i],qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i,item) self.__rows = 20 self.__build(self.dataColumns * 20) self.__disconnected = False for i in range(self.dataColumns): _logger.debug("column adjustment missing") self.cellChanged[int, int].connect(self.mySlot) if hasattr(self, "cellDoubleClicked"): self.cellDoubleClicked[int, int].connect(self._doubleClickSlot) def _itemSlot(self, *var): self.mySlot(self.currentRow(), self.currentColumn()) def _doubleClickSlot(self, row, col): _logger.debug("cell %d %d double clicked" % (row, col)) if col // self.dataColumns: _logger.debug("Not an Energy column") return item = self.cellWidget(row, col) if item is None: return oldcolor = item.color if oldcolor != self._scatterColor: item.setColor(self._scatterColor) else: item.setColor(qt.QColor(255, 255, 255)) item.repaint(item.rect()) self.cellChanged.emit(row, col) def __build(self,nrows=None): #self.setNumRows(int(nrows/2)) if nrows is None: nrows = self.__rows *self.dataColumns if QTVERSION < '4.0.0': self.setNumRows(int(nrows/self.dataColumns)) else: self.setRowCount(int(nrows/self.dataColumns)) if QTVERSION > '4.0.0': rheight = self.horizontalHeader().sizeHint().height() for idx in range(self.rowCount()): self.setRowHeight(idx, rheight) coloffset = 0 rowoffset = 0 for idx in range(nrows): text = "Energy %3d" % (idx) if idx >= (nrows // self.dataColumns): rowoffset= (-int(idx/self.__rows))*(nrows //self.dataColumns) coloffset= 3*int(idx/self.__rows) r = idx + rowoffset color = qt.QColor(255, 255, 255) if len(self.scatterList): if idx < len(self.scatterList): if (self.scatterList[idx] is not None)and \ (self.scatterList[idx] != "None"): if self.scatterList[idx]: color = self._scatterColor elif idx == 0: color = self._scatterColor if QTVERSION < '4.0.0': #item= qttable.QCheckTableItem(self, text) self.viewport().setPaletteBackgroundColor(color) item= ColorQTableItem(self, text, color) self.setItem(r, 0+coloffset, item) else: item = self.cellWidget(r, 0+coloffset) if item is None: item= ColorQTableItem(self, text, color) self.setCellWidget(r, 0+coloffset, item) item.stateChanged[int].connect(self._itemSlot) if hasattr(item, "setToolTip"): item.setToolTip("Double click on empty space at the end to toggle inclusion as scatter peak (different color)") else: item.setText(text) oldcolor = item.color if color != oldcolor: item.setColor(color) item.repaint(item.rect()) if idx < len(self.energyList): item.setChecked(self.flagList[idx]) if (self.energyList[idx] is not None) and \ (self.energyList[idx] != "None"): self.setText(r, 1+coloffset, "%f" % self.energyList[idx]) else: self.setText(r, 1+coloffset,"") else: item.setChecked(False) self.setText(r, 1+coloffset,"") if idx < len(self.weightList): self.setText(r, 2+coloffset,"%g" % self.weightList[idx]) else: self.setText(r, 2+coloffset,"") def setParameters(self, energylist, weightlist, flaglist, scatterlist=None): if isinstance(energylist, numpy.ndarray): self.energyList = energylist.tolist() elif type(energylist) != type([]): self.energyList = [energylist] else: self.energyList = energylist if isinstance(weightlist, numpy.ndarray): self.weightList = weightlist.tolist() elif type(weightlist) != type([]): self.energyList = [weightlist] else: self.weightList = weightlist if isinstance(flaglist, numpy.ndarray): self.flagList = flaglist.tolist() elif type(flaglist) != type([]): self.flagList = [flaglist] else: self.flagList = flaglist if scatterlist is None: scatterlist = numpy.zeros(len(self.energyList), dtype=numpy.int32).tolist() scatterlist[0] = 1 if isinstance(scatterlist, numpy.ndarray): self.scatterList=scatterlist.tolist() elif type(scatterlist) != type([]): self.scatterList=[scatterlist] else: self.scatterList =scatterlist self.__fillTable() def getParameters(self): if QTVERSION < '4.0.0': nrows = self.numRows()*self.dataColumns else: nrows = self.rowCount() * self.dataColumns coloffset = 0 rowoffset = 0 energyList = [] weightList = [] flagList = [] scatterList = [] for idx in range(nrows): if idx >= (nrows//self.dataColumns): rowoffset= (-int(idx/self.__rows)) * (nrows//self.dataColumns) coloffset= 3 * int(idx/self.__rows) r = idx + rowoffset if QTVERSION < '4.0.0': item = self.item(r,0+coloffset) energyflag = int(item.isChecked()) else: item = self.cellWidget(r,0+coloffset) if item is None: #this should never happen continue else: energyflag = int(item.isChecked()) if item.color != self._scatterColor: scatterflag = 0 else: scatterflag = 1 text = str(self.text(r,1+coloffset)) text=text.replace(" ","") if len(text): try: energy = float(text) except Exception: energyflag = 0 energy = None else: energyflag = 0 energy = None text = str(self.text(r,2+coloffset)) text=text.replace(" ","") if len(text): try: energyweight = float(text) except Exception: energyflag = 0 energyweight= 0.0 else: energyflag = 0 energyweight = 0.0 energyList.append(energy) weightList.append(energyweight) flagList.append(int(energyflag)) scatterList.append(scatterflag) return energyList, weightList, flagList, scatterList def __fillTable(self): self.__disconnected = True try: self.__build(max(self.__rows*self.dataColumns,len(self.energyList))) for i in range(self.dataColumns): if QTVERSION < '4.0.0': self.adjustColumn(0 + 3*i) else: _logger.debug("column adjustment missing") except Exception: self.__disconnected = False raise self.__disconnected = False ddict = self._getDict() if ddict != {}: ddict['event'] = "TableFilled" ddict['row'] = 0 ddict['col'] = 0 self.sigEnergyTableSignal.emit(ddict) def mySlot(self,row,col): if self.__disconnected:return _logger.debug("Value changed row = %d col = %d", row, col) _logger.debug("Text = %s", self.text(row, col)) if (col % 3) != 0: try: s = str(self.text(row, col)) s=s.replace(" ","") if len(s): float(s) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() return ddict = self._getDict() if ddict != {}: ddict['event'] = "ValueChanged" ddict['row'] = row ddict['col'] = col self.sigEnergyTableSignal.emit(ddict) def text(self, row, col): if (col % 3) != 0: item = self.item(row , col) if item is not None: return item.text() else: return '' def setText(self, row, col, text): #ncol = self.columnCount() if (col % 3) != 0: item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) else: _logger.debug("checkbox can be called?") pass def _getDict(self): ddict ={} n = self.rowCount() ddict['energy'] = [] ddict['rate'] = [] ddict['flag'] = [] ddict['scatterflag'] = [] for i in range(n * self.dataColumns): if i >= (n*self.__rows/self.dataColumns): rowoffset= (-int(i/self.__rows))*(self.__rows) r = i + rowoffset coffset= 3*int(i/self.__rows) else: r = i coffset= 0 try: s = str(self.text(r, 1+coffset)) s=s.replace(" ","") if len(s): ene=float(s) selfitem = self.cellWidget(r, 0+coffset) if selfitem.isChecked(): flag = 1 else: flag = 0 if selfitem.color == self._scatterColor: scatterflag = 1 else: scatterflag = 0 s = str(self.text(r, 2+coffset)) s=s.replace(" ","") if len(s): rate = float(s) ddict['flag'].append(flag) ddict['energy'].append(ene) ddict['rate'].append(rate) ddict['scatterflag'].append(scatterflag) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("EnergyTable: Error on energy %d" % i) msg.exec() return {} return ddict class ColorQTableItem(qt.QCheckBox): def __init__(self, table, text, color=qt.QColor(255, 255, 255), bold=0): qt.QCheckBox.__init__(self, table) self.setColor(color) self.bold = bold self.setText(text) #this is one critical line self.setAutoFillBackground(1) def setColor(self, color): self.color = color if hasattr(color, "name"): self.setStyleSheet("background-color: %s" % color.name()) def paintEvent(self, painter): #this is the other (self.palette() is not appropriate) palette = qt.QPalette() role = self.backgroundRole() palette.setColor(role, self.color) self.setPalette(palette) return qt.QCheckBox.paintEvent(self, painter) def main(args): app=qt.QApplication(args) #tab = AttenuatorsTableWidget(None) def dummy(ddict): print("dict =",ddict) tab = EnergyTable(None) energy = numpy.arange(100.).astype(numpy.float64)+ 1.5 weight = numpy.ones(len(energy), numpy.float64) flag = numpy.zeros(len(energy), dtype=numpy.int32).tolist() scatterlist = numpy.zeros(len(energy)).astype(numpy.int8) scatterlist[0:10] = 1 tab.setParameters(energy, weight, flag, scatterlist) tab.sigEnergyTableSignal.connect(dummy) tab.show() app.exec() if __name__=="__main__": main(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/FastXRFLinearFitWindow.py0000644000000000000000000003371414741736366024157 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.io import ConfigurationFileDialogs try: import h5py hasH5py = True except ImportError: hasH5py = False class FastXRFLinearFitWindow(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("FastXRFLinearFitWindow") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) # configuration file configLabel = qt.QLabel(self) configLabel.setText("Fit Configuration File:") self._configLine = qt.QLineEdit(self) self._configLine.setReadOnly(True) self._configButton = qt.QPushButton(self) self._configButton.setText("Browse") self._configButton.setAutoDefault(False) self._configButton.clicked.connect(self.browseConfigurationFile) # output directory outdirLabel = qt.QLabel(self) outdirLabel.setText("Output dir:") self._outdirLine = qt.QLineEdit(self) self._outdirLine.setReadOnly(True) self._outdirButton = qt.QPushButton(self) self._outdirButton.setText('Browse') self._outdirButton.setAutoDefault(False) self._outdirButton.clicked.connect(self.browseOutputDir) # output root outrootLabel = qt.QLabel(self) outrootLabel.setText("Output root:") self._outrootLabel = outrootLabel self._outrootLine = qt.QLineEdit(self) self._outrootLine.setReadOnly(False) self._outrootLine.setText("IMAGES") # output entry outentryLabel = qt.QLabel(self) outentryLabel.setText("Output entry:") self._outentryLine = qt.QLineEdit(self) self._outentryLine.setReadOnly(False) self._outentryLine.setText("images") # output process outnameLabel = qt.QLabel(self) outnameLabel.setText("Output process:") self._outnameLabel = outnameLabel self._outnameLine = qt.QLineEdit(self) self._outnameLine.setText("fast_xrf_fit") # fit options boxLabel1 = qt.QLabel(self) boxLabel1.setText("Fit options:") self._boxContainer1 = qt.QWidget(self) self._boxContainerLayout1 = qt.QHBoxLayout(self._boxContainer1) self._boxContainerLayout1.setContentsMargins(0, 0, 0, 0) self._boxContainerLayout1.setSpacing(0) # save options boxLabel2 = qt.QLabel(self) boxLabel2.setText("Save options:") self._boxContainer2 = qt.QWidget(self) self._boxContainerLayout2 = qt.QHBoxLayout(self._boxContainer2) self._boxContainerLayout2.setContentsMargins(0, 0, 0, 0) self._boxContainerLayout2.setSpacing(0) # concentrations self._concentrationsBox = qt.QCheckBox(self._boxContainer1) self._concentrationsBox.setText("Concentrations") self._concentrationsBox.setChecked(False) self._concentrationsBox.setEnabled(True) # diagnostics self._diagnosticsBox = qt.QCheckBox(self._boxContainer1) self._diagnosticsBox.setText("Diagnostics") self._diagnosticsBox.setChecked(False) self._diagnosticsBox.setEnabled(hasH5py) # repeat fit on negative contributions self._fitAgainBox = qt.QCheckBox(self._boxContainer1) self._fitAgainBox.setText("Repeat fit on negative contributions") self._fitAgainBox.setChecked(True) self._fitAgainBox.setEnabled(True) text = "Fit of pixels with negative peak area\n" text += "contributions will be repeated.\n" text += "This can seriously slow down the process\n" text += "if your sample model is far from the truth." self._fitAgainBox.setToolTip(text) # generate tiff files self._tiffBox = qt.QCheckBox(self._boxContainer2) self._tiffBox.setText("TIFF") self._tiffBox.setChecked(False) self._tiffBox.setEnabled(True) # generate csv file self._csvBox = qt.QCheckBox(self._boxContainer2) self._csvBox.setText("CSV") self._csvBox.setChecked(False) self._csvBox.setEnabled(True) # generate dat file self._datBox = qt.QCheckBox(self._boxContainer2) self._datBox.setText("DAT") self._datBox.setChecked(False) self._datBox.setEnabled(True) # generate edf file self._edfBox = qt.QCheckBox(self._boxContainer2) self._edfBox.setText("EDF") self._edfBox.setChecked(True) self._edfBox.setEnabled(True) # generate hdf5 file self._h5Box = qt.QCheckBox(self._boxContainer2) self._h5Box.setText("HDF5") self._h5Box.setChecked(hasH5py) self._h5Box.setEnabled(hasH5py) self._h5Box.stateChanged.connect(self.toggleH5) self.toggleH5(hasH5py) # overwrite output self._overwriteBox = qt.QCheckBox(self._boxContainer2) self._overwriteBox.setText("Overwrite") self._overwriteBox.setChecked(True) self._overwriteBox.setEnabled(True) # generate mutipage file self._multipageBox = qt.QCheckBox(self._boxContainer2) self._multipageBox.setText("Multipage") self._multipageBox.setChecked(False) self._multipageBox.setEnabled(True) self._edfBox.stateChanged.connect(self.stateMultiPage) self._tiffBox.stateChanged.connect(self.stateMultiPage) self.stateMultiPage() self._boxContainerLayout1.addWidget(self._concentrationsBox) self._boxContainerLayout1.addWidget(self._fitAgainBox) self._boxContainerLayout1.addWidget(self._diagnosticsBox) self._boxContainerLayout2.addWidget(self._h5Box) self._boxContainerLayout2.addWidget(self._edfBox) self._boxContainerLayout2.addWidget(self._csvBox) self._boxContainerLayout2.addWidget(self._datBox) self._boxContainerLayout2.addWidget(self._tiffBox) self._boxContainerLayout2.addWidget(self._overwriteBox) self._boxContainerLayout2.addWidget(self._multipageBox) # weight method self._weightWidget = qt.QWidget(self) self._weightWidget.mainLayout = qt.QHBoxLayout(self._weightWidget) self._weightWidget.mainLayout.setContentsMargins(0, 0, 0, 0) self._weightWidget.mainLayout.setSpacing(0) self._weightButtonGroup = qt.QButtonGroup(self._weightWidget) i = 0 weightLabel = qt.QLabel(self) weightLabel.setText("Weight policy: ") for txt in ["No Weight (Fastest)", "Average Weight (Fast)", "Individual Weights (slow)"]: button = qt.QRadioButton(self._weightWidget) button.setText(txt) self._weightButtonGroup.addButton(button) self._weightButtonGroup.setId(button, i) self._weightWidget.mainLayout.addWidget(button) i += 1 self._weightButtonGroup.buttons()[0].setChecked(True) #self._weightWidget.mainLayout.addWidget(qt.HorizontalSpacer(self._weightWidget)) i = 0 self.mainLayout.addWidget(configLabel, i, 0) self.mainLayout.addWidget(self._configLine, i, 1) self.mainLayout.addWidget(self._configButton, i, 2) i += 1 self.mainLayout.addWidget(outdirLabel, i, 0) self.mainLayout.addWidget(self._outdirLine, i, 1) self.mainLayout.addWidget(self._outdirButton, i, 2) i += 1 self.mainLayout.addWidget(outrootLabel, i, 0) self.mainLayout.addWidget(self._outrootLine, i, 1) i += 1 self.mainLayout.addWidget(outentryLabel, i, 0) self.mainLayout.addWidget(self._outentryLine, i, 1) i += 1 self.mainLayout.addWidget(outnameLabel, i, 0) self.mainLayout.addWidget(self._outnameLine, i, 1) i += 1 self.mainLayout.addWidget(weightLabel, i, 0) self.mainLayout.addWidget(self._weightWidget, i, 1, 1, 1) i += 1 self.mainLayout.addWidget(boxLabel1, i, 0) self.mainLayout.addWidget(self._boxContainer1, i, 1, 1, 1) i += 1 self.mainLayout.addWidget(boxLabel2, i, 0) self.mainLayout.addWidget(self._boxContainer2, i, 1, 1, 1) def sizeHint(self): return qt.QSize(int(1.8 * qt.QWidget.sizeHint(self).width()), qt.QWidget.sizeHint(self).height()) def browseConfigurationFile(self): fileList = ConfigurationFileDialogs.getFitConfigurationFilePath(parent=self, mode="OPEN", single=True) if fileList: self._configLine.setText(fileList[0]) def browseOutputDir(self): fileList = PyMcaFileDialogs.getExistingDirectory(parent=self, message="Please select output directory", mode="OPEN") if len(fileList): self._outdirLine.setText(fileList) def toggleH5(self, state): h5Out = bool(state) self._outrootLabel.setEnabled(h5Out) self._outnameLabel.setEnabled(h5Out) self._diagnosticsBox.setEnabled(h5Out) for w in [self._outnameLine, self._outrootLine]: w.setReadOnly(not h5Out) w.setEnabled(h5Out) if h5Out: w.setStyleSheet("") else: w.setStyleSheet("color: gray; background-color: darkGray") def stateMultiPage(self, state=None): self._multipageBox.setEnabled(self._edfBox.isChecked() or self._tiffBox.isChecked()) def getParameters(self): ddict = {} fit = {} ddict['fit'] = fit fit['configuration'] = qt.safe_str(self._configLine.text()) fit['weight'] = self._weightButtonGroup.checkedId() fit['concentrations'] = self._concentrationsBox.isChecked() fit['refit'] = self._fitAgainBox.isChecked() output = {} ddict['output'] = output output['outputDir'] = qt.safe_str(self._outdirLine.text()) output['outputRoot'] = qt.safe_str(self._outrootLine.text()) # do not allow spaces in HDF5 output['fileEntry'] = qt.safe_str(self._outentryLine.text()).replace(" ", "") output['fileProcess'] = qt.safe_str(self._outnameLine.text()).replace(" ", "") # make sure the GUI reflects its output if output['fileEntry'] != qt.safe_str(self._outentryLine.text()): self._outentryLine.setText(output['fileEntry']) if output['fileProcess'] != qt.safe_str(self._outnameLine.text()): self._outnameLine.setText(output['fileProcess']) output['tif'] = int(self._tiffBox.isChecked()) output['csv'] = int(self._csvBox.isChecked()) output['dat'] = int(self._datBox.isChecked()) output['edf'] = int(self._edfBox.isChecked()) output['h5'] = int(self._h5Box.isChecked()) output['overwrite'] = int(self._overwriteBox.isChecked()) output['multipage'] = int(self._multipageBox.isChecked()) output['diagnostics'] = int(self._diagnosticsBox.isChecked()) return ddict class FastXRFLinearFitDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Fast XRF Linear Fit Dialog") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.parametersWidget = FastXRFLinearFitWindow(self) self.rejectButton= qt.QPushButton(self) self.rejectButton.setAutoDefault(False) self.rejectButton.setText("Cancel") self.acceptButton= qt.QPushButton(self) self.acceptButton.setAutoDefault(False) self.acceptButton.setText("OK") self.rejectButton.clicked.connect(self.reject) self.acceptButton.clicked.connect(self.accept) self.mainLayout.addWidget(self.parametersWidget, 0, 0, 5, 4) self.mainLayout.addWidget(self.rejectButton, 6, 1) self.mainLayout.addWidget(self.acceptButton, 6, 2) def getParameters(self): return self.parametersWidget.getParameters() if __name__ == "__main__": app = qt.QApplication([]) w = FastXRFLinearFitDialog() ret = w.exec() if ret: print(w.getParameters()) app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/FitParam.py0000644000000000000000000016737714741736366021434 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon & V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import traceback import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.plotting import PyMca_Icons as Icons import os.path import copy from PyMca5.PyMcaPhysics import Elements from .FitParamForm import FitParamForm from .FitPeakSelect import FitPeakSelect from . import AttenuatorsTable from . import ConcentrationsWidget from . import EnergyTable from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.io import ConfigurationFileDialogs XRFMC_FLAG = False _logger = logging.getLogger(__name__) try: from . import XRFMCPyMca XRFMC_FLAG = True except ImportError: _logger.warning("XRFMC_TO_BE_IMPORTED") # no XRFMC support pass from PyMca5.PyMcaGui.math import StripBackgroundWidget from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaGui.physics.xrf import StrategyHandler import numpy FitParamSections= ["fit", "detector", "peaks", "peakshape", "attenuators","concentrations"] FitParamHeaders= ["FIT", "DETECTOR","BEAM","PEAKS", "PEAK SHAPE", "ATTENUATORS","MATRIX","CONCENTRATIONS"] class FitParamWidget(FitParamForm): attenuators= ["Filter 0", "Filter 1", "Filter 2", "Filter 3", "Filter 4", "Filter 5", "Filter 6","Filter 7","BeamFilter0", "BeamFilter1","Detector", "Matrix"] def __init__(self, parent=None): FitParamForm.__init__(self, parent) self._channels = None self._counts = None self._stripDialog = None self._strategyDialog = None self._info = None self.setWindowIcon(qt.QIcon(qt.QPixmap(Icons.IconDict["gioconda16"]))) self.tabAtt = qt.QWidget() tabAttLayout = qt.QGridLayout(self.tabAtt) tabAttLayout.setContentsMargins(11, 11, 11, 11) tabAttLayout.setSpacing(6) self.graphDialog = qt.QDialog(self) self.graphDialog.mainLayout = qt.QVBoxLayout(self.graphDialog) self.graphDialog.mainLayout.setContentsMargins(0, 0, 0, 0) self.graphDialog.mainLayout.setSpacing(0) self.graphDialog.graph = PlotWindow.PlotWindow(self.graphDialog, newplot=False, fit=False, plugins=False, control=True, position=True) self.graph = self.graphDialog.graph self.graph._togglePointsSignal() self.graph.setDataMargins(0.05, 0.05, 0.05, 0.05) self.tabAttenuators = AttenuatorsTable.AttenuatorsTab(self.tabAtt, graph=self.graphDialog) self.graphDialog.mainLayout.addWidget(self.graph) self.graphDialog.okButton = qt.QPushButton(self.graphDialog) self.graphDialog.okButton.setText('OK') self.graphDialog.okButton.setAutoDefault(True) self.graphDialog.mainLayout.addWidget(self.graphDialog.okButton) self.graphDialog.okButton.clicked.connect( \ self.graphDialog.accept) self.attTable = self.tabAttenuators.table #self.multilayerTable =self.tabAttenuators.matrixTable tabAttLayout.addWidget(self.tabAttenuators,0,0) self.mainTab.addTab(self.tabAtt, str("ATTENUATORS")) maxheight = qt.QDesktopWidget().height() #self.graph.hide() self.attPlotButton = qt.QPushButton(self.tabAttenuators) self.attPlotButton.setAutoDefault(False) text = 'Plot T(filters) * (1 - T(detector)) Efficienty Term' self.attPlotButton.setText(text) self.tabAttenuators.layout().insertWidget(1, self.attPlotButton) self.attPlotButton.clicked.connect(self.__attPlotButtonSlot) if maxheight < 801: self.setMaximumHeight(int(0.8*maxheight)) self.setMinimumHeight(int(0.8*maxheight)) maxWidth = int(min(900, 0.8*qt.QDesktopWidget().width())) self.tabAttenuators.setMaximumWidth(maxWidth) #This was previously into FitParamForm.py: END self.tabMul = qt.QWidget() tabMultilayerLayout = qt.QGridLayout(self.tabMul) tabMultilayerLayout.setContentsMargins(11, 11, 11, 11) tabMultilayerLayout.setSpacing(6) self.tabMultilayer = AttenuatorsTable.MultilayerTab(self.tabMul) self.multilayerTable =self.tabMultilayer.matrixTable tabMultilayerLayout.addWidget(self.tabMultilayer,0,0) self.mainTab.addTab(self.tabMul, str("MATRIX")) self.matrixGeometry = self.tabMultilayer.matrixGeometry #The concentrations self.tabConcentrations = qt.QWidget() tabConcentrationsLayout = qt.QGridLayout(self.tabConcentrations) tabConcentrationsLayout.setContentsMargins(11, 11, 11, 11) tabConcentrationsLayout.setSpacing(6) self.concentrationsWidget = ConcentrationsWidget.ConcentrationsWidget(self.tabConcentrations,"tabConcentrations") tabConcentrationsLayout.addWidget(self.concentrationsWidget,0,0) self.mainTab.addTab(self.tabConcentrations, str("CONCENTRATIONS")) #end concentrations tab #self.matrixGeometry = self.tabAttenuators.matrixGeometry if 0: #The compound fit tab self.tabCompoundFit = qt.QWidget() tabCompoundFitLayout = qt.QGridLayout(self.tabCompoundFit) tabCompoundFitLayout.setContentsMargins(11, 11, 11, 11) tabCompoundFitLayout.setSpacing(6) self.compoundFitWidget = AttenuatorsTable.CompoundFittingTab(self.tabCompoundFit, "tabCompound_fit") tabCompoundFitLayout.addWidget(self.compoundFitWidget,0,0) self.mainTab.addTab(self.tabCompoundFit, str("COMPOUND FIT")) #end compound fit tab if XRFMC_FLAG: self.tabXRFMC = qt.QWidget() tabXRFMCLayout = qt.QGridLayout(self.tabXRFMC) tabXRFMCLayout.setContentsMargins(11, 11, 11, 11) tabXRFMCLayout.setSpacing(6) self.tabXRFMCWidget = XRFMCPyMca.XRFMCTabWidget(\ self.tabXRFMC) tabXRFMCLayout.addWidget(self.tabXRFMCWidget,0,0) self.mainTab.addTab(self.tabXRFMC, str("XRFMC")) self.layout().setContentsMargins(0, 0, 0, 0) if "PyQt4" in sys.modules: #I had to add this line to prevent a crash. Why? qApp = qt.QApplication.instance() qApp.processEvents() else: qt.QApplication.instance().processEvents() self.attTable.verticalHeader().hide() #The beam energies tab beamlayout= qt.QGridLayout(self.TabBeam) self.energyTab = EnergyTable.EnergyTab(self.TabBeam) beamlayout.addWidget(self.energyTab, 0, 0) self.energyTable = self.energyTab.table #the x-ray tube (if any) self.xRayTube = self.energyTab.tube #The peak select tab layout= qt.QGridLayout(self.TabPeaks) if 0: self.peakTable= FitPeakSelect(self.TabPeaks) layout.addWidget(self.peakTable, 0, 0) self.peakTable.setMaximumSize(self.tabDetector.sizeHint()) else: self.peakTable= FitPeakSelect(self.TabPeaks, energyTable=self.energyTable) self.peakTable.energy.setToolTip("Energy is set in the BEAM tab") maxWidth = int(min(900, 0.8*qt.QDesktopWidget().width())) self.peakTable.setMaximumWidth(maxWidth) layout.addWidget(self.peakTable, 0, 0) #self.peakTable.setMaximumSize(self.tabDetector.sizeHint()) #self.energyTable = self.peakTable.energyTable self._inputParameters = None self.linpolOrder= None self.exppolOrder= None pardict={'attenuators':{'Air' :[0,"Air",0.001204790,1.0], 'Contact' :[0,"Au1",19.370,1.0E-06], 'Deadlayer' :[0,"Si1",2.330,0.0020], 'Window' :[0,"Be1",1.848,0.0100]}, 'concentrations':self.concentrationsWidget.getParameters()} if XRFMC_FLAG: pardict = self.tabXRFMCWidget.getParameters() # TODO: This line makes PySide crash self.setParameters(pardict=pardict) self.prevTabIdx= None self.tabLabel= [] n = self.mainTab.count() for idx in range(n): self.tabLabel.append(qt.safe_str(self.mainTab.tabText(idx))) self.mainTab.currentChanged[int].connect(self.__tabChanged) self.contCombo.activated[int].connect(self.__contComboActivated) self.functionCombo.activated[int].connect(self.__functionComboActivated) self.orderSpin.valueChanged[int].connect(self.__orderSpinChanged) self._backgroundWindow = None self.stripSetupButton.clicked.connect(self.__stripSetupButtonClicked) # strategy related self.strategyCheckBox.clicked.connect(self._strategyCheckBoxClicked) self.strategySetupButton.clicked.connect(self._strategySetupButtonClicked) self.strategyCombo.activated[int].connect(self._strategyComboActivated) # calibration update handling related self.ignoreSpectrumCalibration.clicked.connect( \ self.__ignoreSpectrumCalibrationClicked) def __ignoreSpectrumCalibrationClicked(self): return self._ignoreSpectrumCalibrationClicked() def _ignoreSpectrumCalibrationClicked(self): if not self.ignoreSpectrumCalibration.isChecked(): # update the values with the received ones (if any) if self._info is not None: calibration = self._info.get('calibration', []) if calibration is not None: if len(calibration) > 1: self.zeroValue.setText("%f" % calibration[0]) self.gainValue.setText("%f" % calibration[1]) def __attPlotButtonSlot(self): try: self.computeEfficiency() except Exception: msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Error %s" % sys.exc_info()[1] msg.setInformativeText(text) msg.setDetailedText(traceback.format_exc()) msg.exec() def computeEfficiency(self): pars = self.__getAttPar() attenuators = [] funnyfilters = [] detector = [] for key in pars.keys(): if pars[key][0]: l = key.lower() if l.startswith('matrix') or l.startswith('beamfilter'): continue if l.startswith('detector'): detector.append(pars[key][1:]) else: if abs(pars[key][4] - 1.0) > 1.0e-10: funnyfilters.append(pars[key][1:]) else: attenuators.append(pars[key][1:]) maxenergy = qt.safe_str(self.peakTable.energy.text()) if maxenergy=='None': maxenergy = 100. energies = numpy.arange(0.3, maxenergy, 0.1) else: maxenergy = float(maxenergy) if maxenergy < 50: energies = numpy.arange(0.3, maxenergy, 0.01) elif maxenergy > 100: energies = numpy.arange(0.3, maxenergy, 0.1) else: energies = numpy.arange(0.3, maxenergy, 0.02) efficiency = numpy.ones(len(energies), numpy.float64) if (len(attenuators)+len(detector)+len(funnyfilters)) != 0: massatt = Elements.getMaterialMassAttenuationCoefficients if len(attenuators): coeffs = numpy.zeros(len(energies), numpy.float64) for attenuator in attenuators: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] coeffs += thickness *\ numpy.array(massatt(formula,1.0,energies)['total']) efficiency *= numpy.exp(-coeffs) if len(funnyfilters): coeffs = numpy.zeros(len(energies), numpy.float64) funnyfactor = None for attenuator in funnyfilters: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] if funnyfactor is None: funnyfactor = attenuator[3] else: if abs(attenuator[3]-funnyfactor) > 0.0001: raise ValueError("All funny type filters must have same openning fraction") coeffs += thickness *\ numpy.array(massatt(formula,1.0,energies)['total']) efficiency *= (funnyfactor * numpy.exp(-coeffs)+\ (1.0 - funnyfactor)) if len(detector): detector = detector[0] formula = detector[0] thickness = detector[1] * detector[2] coeffs = thickness *\ numpy.array(massatt(formula,1.0,energies)['total']) efficiency *= (1.0 - numpy.exp(-coeffs)) userattenuators = [] userAtt = self.tabAttenuators.userAttenuators.getParameters() for key in userAtt: if userAtt[key]["use"]: efficiency *= Elements.getTableTransmission( \ [userAtt[key]["energy"], userAtt[key]["transmission"]], energies) self.graph.setGraphTitle('Filter (not beam filter) and detector correction') self.graph.addCurve(energies, efficiency, legend='Ta * (1.0 - Td)', xlabel='Energy (keV)', ylabel='Efficiency Term', replace=True) self.graphDialog.exec() def __contComboActivated(self, idx): if idx==4: self.orderSpin.setEnabled(1) self.orderSpin.setValue(self.linpolOrder or 1) elif idx==5: self.orderSpin.setEnabled(1) self.orderSpin.setValue(self.exppolOrder or 1) else: self.orderSpin.setEnabled(0) def __functionComboActivated(self, idx): if idx==0: #hypermet flag = 1 pass else: #hypermet flag = 0 pass def __orderSpinChanged(self, value): continuum= int(self.contCombo.currentIndex()) if continuum==4: self.linpolOrder= self.orderSpin.value() elif continuum==5: self.exppolOrder= self.orderSpin.value() def setData(self, x, y, info=None): self._channels = x self._counts = y self._info = info autoTime = info.get("time", None) self.concentrationsWidget.setTimeFactor(autoTime, signal=False) def _strategyCheckBoxClicked(self, *var): if self.strategyCheckBox.isChecked(): maxEnergy = qt.safe_str(self.peakTable.energy.text()) if maxEnergy == 'None': self.strategyCheckBox.setChecked(False) msg=qt.QMessageBox(self) msg.setWindowTitle("Strategy Error") msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error configuring strategy") msg.setInformativeText("You need to specify incident beam energy") msg.exec() #_logger.debug("TO check for matrix composition") #_logger.debug("TO check for peaks") def _strategySetupButtonClicked(self): maxEnergy = qt.safe_str(self.peakTable.energy.text()) if maxEnergy == 'None': self.strategyCheckBox.setChecked(False) msg=qt.QMessageBox(self) msg.setWindowTitle("Strategy Error") msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error configuring strategy") msg.setInformativeText("You need to specify incident beam energy") msg.exec() return if self._strategyDialog is None: self._strategyDialog = StrategyHandler.StrategyHandlerDialog(self.parent()) self._strategyDialog.setWindowIcon(qt.QIcon(\ qt.QPixmap(Icons.IconDict["gioconda16"]))) if self.height() < 801: self._strategyDialog.setMinimumHeight(int(0.85*self.height())) self._strategyDialog.setMaximumHeight(int(0.85*self.height())) before = self.getParameters() try: self._strategyDialog.setFitConfiguration(before) except Exception: msg=qt.QMessageBox(self) msg.setWindowTitle("Strategy Error: %s" % \ qt.safe_str(sys.exc_info()[1])) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error configuring strategy") msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return self._strategyDialog.raise_() ret = self._strategyDialog.exec() if ret != qt.QDialog.Accepted: self._strategyDialog.setFitConfiguration(before) def _strategyComboActivated(self, intValue): # only one strategy implemented untill now pass def __stripSetupButtonClicked(self): if self._counts is None: msg=qt.QMessageBox(self) msg.setWindowTitle("No data supplied") msg.setIcon(qt.QMessageBox.Information) msg.setText("Please enter the values in the fields") msg.exec() return pars = self.__getFitPar() y = numpy.ravel(numpy.array(self._counts)).astype(numpy.float64) x = numpy.ravel(numpy.array(self._channels)) if self._stripDialog is None: self._stripDialog = StripBackgroundWidget.StripBackgroundDialog(self) self._stripDialog.setWindowIcon(qt.QIcon(\ qt.QPixmap(Icons.IconDict["gioconda16"]))) if self.height() < 801: self._stripDialog.setMinimumHeight(int(0.85*self.height())) self._stripDialog.setMaximumHeight(int(0.85*self.height())) self._stripDialog.setParameters(pars) self._stripDialog.setData(x, y) ret = self._stripDialog.exec() if not ret: return pars = self._stripDialog.getParameters() key = "stripalgorithm" if key in pars: stripAlgorithm = int(pars[key]) self.setSNIP(stripAlgorithm) key = "snipwidth" if key in pars: self.snipWidthSpin.setValue(int(pars[key])) key = "stripwidth" if key in pars: self.stripWidthSpin.setValue(int(pars[key])) key = "stripiterations" if key in pars: self.stripIterValue.setText("%d" % int(pars[key])) key = "stripfilterwidth" if key in pars: self.stripFilterSpin.setValue(int(pars[key])) key = "stripanchorsflag" if key in pars: self.stripAnchorsFlagCheck.setChecked(int(pars[key])) key = "stripanchorslist" if key in pars: anchorslist = pars[key] if anchorslist in [None, 'None']: anchorslist = [] for spin in self.stripAnchorsList: spin.setValue(0) i = 0 for value in anchorslist: self.stripAnchorsList[i].setValue(int(value)) i += 1 def __tabChanged(self, idx): if self.prevTabIdx is None: self.prevTabIdx= idx if idx != self.prevTabIdx: if self.__tabCheck(self.prevTabIdx): self.prevTabIdx= idx def __tabCheck(self, tabIdx): label= self.tabLabel[tabIdx] if self.__getPar(label) is None: return 0 return 1 def __get(self, section, key, default=0., conv=str): sect = self._inputParameters.get(section, None) if sect is None: ret = default else: ret = sect.get(key, default) if (conv is not None) and (ret is not None) and (ret != "None"): return conv(ret) else: return ret def __setInput(self, ndict): if self._inputParameters is None: self._inputParameters = {} self._inputParameters.update(ndict) def setParameters(self, pardict=None): if pardict is None: pardict={} self.__setInput(pardict) self.__setFitPar() self.__setPeaksPar() self.__setAttPar(pardict) self.__setMultilayerPar(pardict) self.__setConPar(pardict) self.__setDetPar() self.__setPeakShapePar() if "tube" in pardict: self.xRayTube.setParameters(pardict["tube"]) if "userattenuators" in pardict: self.tabAttenuators.userAttenuators.setParameters( \ pardict["userattenuators"]) if "xrfmc" in pardict: if XRFMC_FLAG: self.tabXRFMCWidget.setParameters(pardict) def getParameters(self): pars = copy.deepcopy(self._inputParameters) sections = FitParamSections * 1 sections.append('multilayer') sections.append('materials') sections.append('tube') sections.append('userattenuators') if XRFMC_FLAG: sections.append('xrfmc') for key in sections: pars[key]= self.__getPar(key) if self._strategyDialog is not None: pars.update(self._strategyDialog.getParameters()) return pars def __getPar(self, parname): if parname in ["fit", "FIT"]: return self.__getFitPar() if parname in ["detector", "DETECTOR"]: return self.__getDetPar() if parname in ["peaks", "PEAKS"]: return self.__getPeaksPar() if parname in ["peakshape", "PEAK SHAPE"]: return self.__getPeakShapePar() if parname in ["attenuators", "ATTENUATORS"]: return self.__getAttPar() if parname in ["userattenuators"]: return self.tabAttenuators.userAttenuators.getParameters() if parname in ["multilayer", "MULTILAYER"]: return self.__getMultilayerPar() if parname in ["materials", "MATERIALS"]: return self.__getMaterialsPar() if parname in ["tube", "TUBE"]: return self.__getTubePar() if parname in ["concentrations", "CONCENTRATIONS"]: return self.__getConPar() if parname in ["xrfmc", "XRFMC"]: if XRFMC_FLAG: return self.tabXRFMCWidget.getParameters()["xrfmc"] return None def __setAttPar(self, pardict): if "attenuators" in pardict.keys(): attenuatorsList = list(pardict['attenuators'].keys()) else: attenuatorsList = [] if "materials" in pardict.keys(): for key in pardict["materials"]: filteredkey = Elements.getMaterialKey(key) if filteredkey is None: Elements.Material[key] = copy.deepcopy(pardict['materials'][key]) else: Elements.Material[filteredkey] = copy.deepcopy(pardict['materials'][key]) matlist = list(Elements.Material.keys()) matlist.sort() #lastrow = -1 lastrow = -1 for idx in range(len(self.attenuators)): if idx < len(attenuatorsList): att = attenuatorsList[idx] else: att= self.attenuators[idx] if att.upper() == "MATRIX": attpar= self.__get("attenuators", att, [0, "MULTILAYER", 0., 0., 45., 45.], None) row = self.attTable.rowCount() - 1 current={'Material': attpar[1], 'Density': attpar[2], 'Thickness': attpar[3], 'AlphaIn': attpar[4], 'AlphaOut': attpar[5]} if len(attpar) == 8: current['AlphaScatteringFlag'] = attpar[6] current['AlphaScattering'] = attpar[7] else: current['AlphaScatteringFlag'] = 0 self.matrixGeometry.setParameters(current) elif att.upper() == "BEAMFILTER0": attpar= self.__get("attenuators", att, [0, "-", 0., 0.], None) row = self.attTable.rowCount() - 4 elif att.upper() == "BEAMFILTER1": attpar= self.__get("attenuators", att, [0, "-", 0., 0.], None) row = self.attTable.rowCount() - 3 elif att.upper() == "DETECTOR": attpar= self.__get("attenuators", att, [0, "-", 0., 0.], None) row = self.attTable.rowCount() - 2 else: attpar= self.__get("attenuators", att, [0, "-", 0., 0.], None) lastrow += 1 row = lastrow self.attTable.cellWidget(row, 0).setChecked(int(attpar[0])) self.attTable.setText(row, 1, att) #self.attTable.setText(idx, 2, str(attpar[1])) combo = self.attTable.cellWidget(row, 2) if combo is not None: if att.upper() == "MATRIX": combo.setOptions(matlist+["MULTILAYER"]) else: combo.setOptions(matlist) combo.lineEdit().setText(str(attpar[1])) else: _logger.warning("ERROR in __setAttPar") if len(attpar) == 4: attpar.append(1.0) self.attTable.setText(row, 3, str(attpar[2])) self.attTable.setText(row, 4, str(attpar[3])) if att.upper() not in ["MATRIX", "DETECTOR", "BEAMFILTER1", "BEAMFILTER2"]: self.attTable.setText(row, 5, str(attpar[4])) else: self.attTable.setText(row, 5, "1.0") current = self.tabAttenuators.editor.matCombo.currentText() self.tabAttenuators.editor.matCombo.setOptions(matlist) #force update of all the parameters if current in matlist: self.tabAttenuators.editor.matCombo._mySignal(current) def __getAttPar(self): pars= {} for idx in range(self.attTable.rowCount()): #att= self.attenuators[idx] att = str(self.attTable.text(idx,1)) attpar= [] attpar.append(int(self.attTable.cellWidget(idx,0).isChecked())) attpar.append(str(self.attTable.text(idx,2))) try: attpar.append(float(str(self.attTable.text(idx, 3)))) attpar.append(float(str(self.attTable.text(idx, 4)))) if att.upper() == "MATRIX": attpar.append(self.matrixGeometry.getParameters("AlphaIn")) attpar.append(self.matrixGeometry.getParameters("AlphaOut")) attpar.append(self.matrixGeometry.getParameters("AlphaScatteringFlag")) attpar.append(self.matrixGeometry.getParameters("AlphaScattering")) else: attpar.append(float(str(self.attTable.text(idx, 5)))) except Exception: if att.upper() not in ["MATRIX"]: attpar= [0, '-', 0., 0., 1.0] else: attpar= [0, '-', 0., 0., 45.0, 45.0, 0, 90.0] self.__parError("ATTENUATORS", "Attenuators parameters error on:\n%s\nI reset it to zero." % \ self.attenuators[idx]) pars[att]= attpar return pars def __setMultilayerPar(self, pardict): if "multilayer" in pardict.keys(): attenuatorsList = list(pardict['multilayer'].keys()) else: attenuatorsList = [] matlist = list(Elements.Material.keys()) matlist.sort() #lastrow = -1 lastrow = -1 lastrow=-1 for idx in range(max(self.multilayerTable.rowCount(),len(attenuatorsList))): att= "Layer%d" % idx attpar= self.__get("multilayer", att, [0, "-", 0., 0.], None) lastrow += 1 row = lastrow self.multilayerTable.cellWidget(row, 0).setChecked(int(attpar[0])) self.multilayerTable.setText(row, 1, att) #self.attTable.setText(idx, 2, str(attpar[1])) combo = self.multilayerTable.cellWidget(row, 2) if combo is not None: combo.setOptions(matlist) combo.lineEdit().setText(str(attpar[1])) else: _logger.warning("ERROR in __setAttPar") self.multilayerTable.setText(row, 3, str(attpar[2])) self.multilayerTable.setText(row, 4, str(attpar[3])) def __getMultilayerPar(self): pars= {} for idx in range(self.multilayerTable.rowCount()): #att= self.attenuators[idx] att = str(self.multilayerTable.text(idx,1)) attpar= [] attpar.append(int(self.multilayerTable.cellWidget(idx,0).isChecked())) attpar.append(str(self.multilayerTable.text(idx,2))) try: #if 1: attpar.append(float(str(self.multilayerTable.text(idx, 3)))) attpar.append(float(str(self.multilayerTable.text(idx, 4)))) #else: except Exception: attpar= [0, '-', 0., 0.] self.__parError("ATTENUATORS", "Multilayer parameters error on:\n%s\nReset it to zero." % att) pars[att]= attpar return pars def __getTubePar(self): pars = self.xRayTube.getParameters() return pars def __getMaterialsPar(self): pars = {} for key in Elements.Material.keys(): pars[key] = copy.deepcopy(Elements.Material[key]) return pars def __setConPar(self, pardict): if 'concentrations' in pardict: self.concentrationsWidget.setParameters(pardict['concentrations']) def __getConPar(self): return self.concentrationsWidget.getParameters() def __setPeakShapePar(self): hypermetflag = (self.__get("fit", "hypermetflag", 1, int)) if hypermetflag: index = 0 else: index = 1 self.functionCombo.setCurrentIndex(index) self.staCheck.setChecked(self.__get("peakshape", "fixedst_arearatio", 0, int)) self.staValue.setText(self.__get("peakshape", "st_arearatio")) self.staError.setText(self.__get("peakshape","deltast_arearatio")) self.stsCheck.setChecked(self.__get("peakshape","fixedst_sloperatio", 0, int)) self.stsValue.setText(self.__get("peakshape","st_sloperatio")) self.stsError.setText(self.__get("peakshape","deltast_sloperatio")) self.ltaCheck.setChecked(self.__get("peakshape","fixedlt_arearatio", 0, int)) self.ltaValue.setText(self.__get("peakshape","lt_arearatio")) self.ltaError.setText(self.__get("peakshape","deltalt_arearatio")) self.ltsCheck.setChecked(self.__get("peakshape","fixedlt_sloperatio", 0, int)) self.ltsValue.setText(self.__get("peakshape","lt_sloperatio")) self.ltsError.setText(self.__get("peakshape","deltalt_sloperatio")) self.shCheck.setChecked(self.__get("peakshape","fixedstep_heightratio", 0, int)) self.shValue.setText(self.__get("peakshape","step_heightratio")) self.shError.setText(self.__get("peakshape","deltastep_heightratio")) self.etaCheck.setChecked(self.__get("peakshape","fixedeta_factor", 0, int)) eta = self.__get("peakshape","eta_factor", 0.2, str) self.etaValue.setText(eta) deltaeta = self.__get("peakshape","deltaeta_factor", 0.2, str) if float(deltaeta) > float(eta): deltaeta = eta self.etaError.setText(deltaeta) def __getPeakShapePar(self): pars= {} try: err= "Short Tail Area Value" pars["st_arearatio"]= float(str(self.staValue.text())) err= "Short Tail Area Error" pars["deltast_arearatio"]= float(str(self.staError.text())) pars["fixedst_arearatio"]= int(self.staCheck.isChecked()) err= "Short Tail Slope Value" pars["st_sloperatio"]= float(str(self.stsValue.text())) err= "Short Tail Slope Error" pars["deltast_sloperatio"]= float(str(self.stsError.text())) pars["fixedst_sloperatio"]= int(self.stsCheck.isChecked()) err= "Long Tail Area Value" pars["lt_arearatio"]= float(str(self.ltaValue.text())) err= "Long Tail Area Error" pars["deltalt_arearatio"]= float(str(self.ltaError.text())) pars["fixedlt_arearatio"]= int(self.ltaCheck.isChecked()) err= "Long Tail Slope Value" pars["lt_sloperatio"]= float(str(self.ltsValue.text())) err= "Long Tail Slope Error" pars["deltalt_sloperatio"]= float(str(self.ltsError.text())) pars["fixedlt_sloperatio"]= int(self.ltsCheck.isChecked()) err= "Step Heigth Value" pars["step_heightratio"]= float(str(self.shValue.text())) err= "Step Heigth Error" pars["deltastep_heightratio"]= float(str(self.shError.text())) pars["fixedstep_heightratio"]= int(self.shCheck.isChecked()) err= "Eta Factor Value" pars["eta_factor"]= float(str(self.etaValue.text())) err= "Step Heigth Error" pars["deltaeta_factor"]= float(str(self.etaError.text())) pars["fixedeta_factor"]= int(self.etaCheck.isChecked()) return pars except Exception: self.__parError("PEAK SHAPE", "Peak Shape Parameter error on:\n%s" % err) return None def __setFitPar(self): #Default 10 eV separation between two peaks only accessible #through file editing for the time being #self.deltaOnePeak = self.__get("fit", "deltaonepeak", 0.010) self.linpolOrder= self.__get("fit", "linpolorder", 1, int) self.exppolOrder= self.__get("fit", "exppolorder", 1, int) continuum= self.__get("fit", "continuum", 0, int) self.contCombo.setCurrentIndex(continuum) self.__contComboActivated(continuum) self.fitWeight = self.__get("fit", "fitweight", 1, int) self.weightCombo.setCurrentIndex(self.fitWeight) stripAlgorithm = self.__get("fit", "stripalgorithm", 0, int) self.setSNIP(stripAlgorithm) self.snipWidthSpin.setValue(self.__get("fit", "snipwidth", 20, int)) self.stripWidthSpin.setValue(self.__get("fit", "stripwidth", 1, int)) self.stripFilterSpin.setValue(self.__get("fit", "stripfilterwidth", 1, int)) self.stripAnchorsFlagCheck.setChecked(self.__get("fit", "stripanchorsflag", 0, int)) anchorslist = self.__get("fit", "stripanchorslist", [0, 0, 0, 0], None) if anchorslist is None:anchorslist = [] for spin in self.stripAnchorsList: spin.setValue(0) i = 0 for value in anchorslist: self.stripAnchorsList[i].setValue(value) i += 1 #self.stripConstValue.setText(self.__get("fit", "stripconstant",1.0)) #self.stripConstValue.setDisabled(1) self.stripIterValue.setText(self.__get("fit", "stripiterations",20000)) self.chi2Value.setText(self.__get("fit", "deltachi")) self.linearFitFlagCheck.setChecked(self.__get("fit", "linearfitflag", 0, int)) self.iterSpin.setValue(self.__get("fit", "maxiter", 5, int)) self.minSpin.setValue(self.__get("fit", "xmin", 0, int)) self.maxSpin.setValue(self.__get("fit", "xmax", 16384, int)) self.regionCheck.setChecked(self.__get("fit", "use_limit", 0, int)) self.stripCheck.setChecked(self.__get("fit", "stripflag", 0, int)) self.escapeCheck.setChecked(self.__get("fit", "escapeflag", 0, int)) self.sumCheck.setChecked(self.__get("fit", "sumflag", 0, int)) self.scatterCheck.setChecked(self.__get("fit", "scatterflag", 0, int)) hypermetflag= self.__get("fit", "hypermetflag", 1, int) shortflag= (hypermetflag >> 1) & 1 longflag= (hypermetflag >> 2) & 1 stepflag= (hypermetflag >> 3) & 1 self.shortCheck.setChecked(shortflag) self.longCheck.setChecked(longflag) self.stepCheck.setChecked(stepflag) energylist = self.__get("fit", "energy", None, None) if type(energylist) != type([]): energy = self.__get("fit", "energy", None, float) energylist = [energy] weightlist = [1.0] flaglist = [1] scatterlist = [1] else: energy = energylist[0] weightlist = self.__get("fit", "energyweight", None, None) flaglist = self.__get("fit", "energyflag", None, None) scatterlist = self.__get("fit", "energyscatter", None, None) self.energyTable.setParameters(energylist, weightlist, flaglist, scatterlist) self.strategyCheckBox.setChecked(self.__get("fit", "strategyflag", 0, int)) def __getFitPar(self): pars= {} #Default 10 eV separation between two peaks accessible through file pars['deltaonepeak'] = self.__get("fit", "deltaonepeak", 0.010, float) err = "__getFitPar" #if 1: # fot the time being is nto necessary to read the combo box and # ask the strategy handler pars["strategy"] = "SingleLayerStrategy" pars["strategyflag"] = int(self.strategyCheckBox.isChecked()) try: pars["fitfunction"]= int(self.functionCombo.currentIndex()) pars["continuum"]= int(self.contCombo.currentIndex()) pars["fitweight"]= int(self.weightCombo.currentIndex()) pars["stripalgorithm"] = int(self.stripCombo.currentIndex()) pars["linpolorder"]= self.linpolOrder or 1 pars["exppolorder"]= self.exppolOrder or 1 #pars["stripconstant"]= float(str(self.stripConstValue.text())) pars["stripconstant"]= 1.0 pars["snipwidth"] = self.snipWidthSpin.value() pars["stripiterations"]= int(str(self.stripIterValue.text())) pars["stripwidth"]= self.stripWidthSpin.value() pars["stripfilterwidth"] = self.stripFilterSpin.value() pars["stripanchorsflag"] = int(self.stripAnchorsFlagCheck.isChecked()) pars["stripanchorslist"] = [] for spin in self.stripAnchorsList: pars["stripanchorslist"].append(spin.value()) pars["maxiter"]= self.iterSpin.value() err= "Minimum Chi2 difference" pars["deltachi"]= float(str(self.chi2Value.text())) pars["xmin"]= self.minSpin.value() pars["xmax"]= self.maxSpin.value() pars["linearfitflag"] = int(self.linearFitFlagCheck.isChecked()) pars["use_limit"]= int(self.regionCheck.isChecked()) pars["stripflag"]= int(self.stripCheck.isChecked()) pars["escapeflag"]= int(self.escapeCheck.isChecked()) pars["sumflag"]= int(self.sumCheck.isChecked()) pars["scatterflag"]= int(self.scatterCheck.isChecked()) shortflag= int(self.shortCheck.isChecked()) longflag= int(self.longCheck.isChecked()) stepflag= int(self.stepCheck.isChecked()) index = pars['fitfunction'] if index == 0: hypermetflag = 1 else: hypermetflag = 0 if hypermetflag: pars["hypermetflag"]= 1 + shortflag*2 + longflag*4 + stepflag*8 else: pars["hypermetflag"]= 0 pars['energy'],pars['energyweight'],pars['energyflag'], pars['energyscatter']= \ self.energyTable.getParameters() return pars #else: except Exception: self.__parError("FIT", "Fit parameter error on:\n%s" % err) return None def __setPeaksPar(self): pars= self._inputParameters.get("peaks", {}) self.peakTable.setSelection(pars) def __getPeaksPar(self): return self.peakTable.getSelection() def __setDetPar(self): elt= self.__get("detector", "detele", "Si") for idx in range(self.elementCombo.count()): if str(self.elementCombo.itemText(idx))==elt: self.elementCombo.setCurrentIndex(idx) break #self.energyValue0.setText(self.__get("detector", "detene")) #self.energyValue1.setText("0.0") #self.intensityValue0.setText(self.__get("detector", "detint", "1.0")) #self.intensityValue1.setText("0.0") self.nEscapeThreshold.setValue(self.__get("detector", "nthreshold",4,int)) self.zeroValue.setText(self.__get("detector", "zero")) self.zeroError.setText(self.__get("detector", "deltazero")) self.zeroCheck.setChecked(self.__get("detector", "fixedzero", 0, int)) self.gainValue.setText(self.__get("detector", "gain")) self.gainError.setText(self.__get("detector", "deltagain")) self.gainCheck.setChecked(self.__get("detector", "fixedgain", 0, int)) self.noiseValue.setText(self.__get("detector", "noise")) self.noiseError.setText(self.__get("detector", "deltanoise")) self.noiseCheck.setChecked(self.__get("detector", "fixednoise", 0, int)) self.fanoValue.setText(self.__get("detector", "fano")) self.fanoError.setText(self.__get("detector", "deltafano")) self.fanoCheck.setChecked(self.__get("detector", "fixedfano", 0, int)) self.sumfacValue.setText(self.__get("detector", "sum")) self.sumfacError.setText(self.__get("detector", "deltasum")) self.sumfacCheck.setChecked(self.__get("detector", "fixedsum", 0, int)) self.ignoreSpectrumCalibration.setChecked( \ self.__get("detector", "ignoreinputcalibration", 0, int)) def __getDetPar(self): pars= {} try: #if 1: err= "Detector Element" pars["detele"]= str(self.elementCombo.currentText()) #err= "First Escape Energy Value" #pars["detene"]= float(str(self.energyValue0.text())) #err= "Second Escape Energy Value" #pars["energy1"]= float(str(self.energyValue1.text())) #err= "First Escape Energy Intensity" #pars["detint"]= float(str(self.intensityValue0.text())) #err= "Second Escape Energy Intensity" #pars["intensity1"]= float(str(self.intensityValue1.text())) err= "Maximum Number of Escape Peaks" pars["nthreshold"] = int(self.nEscapeThreshold.value()) err= "Spectrometer Zero value" pars["zero"]= float(str(self.zeroValue.text())) err= "Spectrometer Zero error" pars["deltazero"]= float(str(self.zeroError.text())) pars["fixedzero"]= int(self.zeroCheck.isChecked()) err= "Spectrometer Gain value" pars["gain"]= float(str(self.gainValue.text())) err= "Spectrometer Gain error" pars["deltagain"]= float(str(self.gainError.text())) pars["fixedgain"]= int(self.gainCheck.isChecked()) err= "Detector Noise value" pars["noise"]= float(str(self.noiseValue.text())) err= "Detector Noise error" pars["deltanoise"]= float(str(self.noiseError.text())) pars["fixednoise"]= int(self.noiseCheck.isChecked()) err= "Fano Factor value" pars["fano"]= float(str(self.fanoValue.text())) err= "Fano Factor error" pars["deltafano"]= float(str(self.fanoError.text())) pars["fixedfano"]= int(self.fanoCheck.isChecked()) err= "Sum Factor value" pars["sum"]= float(str(self.sumfacValue.text())) err= "Sum Factor error" pars["deltasum"]= float(str(self.sumfacError.text())) pars["fixedsum"]= int(self.sumfacCheck.isChecked()) pars["ignoreinputcalibration"] = \ int(self.ignoreSpectrumCalibration.isChecked()) return pars #else: except Exception: self.__parError("DETECTOR", "Detector parameter error on:\n%s"%err) return None def __parError(self, tab, message): idx= self.tabLabel.index(tab) self.prevTabIdx= idx self.mainTab.setCurrentIndex(idx) qt.QMessageBox.critical(self, "ERROR on %s"%tab, message, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) class SectionFileDialog(qt.QFileDialog): def __init__(self, parent=None, name="SectionFileDialog", sections=[], labels=None, mode=None,modal =1, initdir=None): qt.QFileDialog.__init__(self, parent) self.setModal(modal) self.setWindowTitle(name) #layout = qt.QHBoxLayout(self) if hasattr(qt, "QStringList"): strlist = qt.QStringList() else: strlist = [] strlist.append("Config Files *.cfg") strlist.append("All Files *") self.setFilters(strlist) if initdir is not None: if os.path.isdir(initdir): if hasattr(qt, "QString"): self.setDir(qt.QString(initdir)) else: self.setDir(qt.safe_str(initdir)) _logger.debug("right to be added") if 0: self.sectionWidget= SectionFileWidget(self, sections=sections, labels=labels) self.layout().addWidget(self.sectionWidget) if mode is not None: self.setFileMode(mode) def getFilename(self): filename= qt.safe_str(self.selectedFiles()[0]) filetype= qt.safe_str(self.selectedFilter()) if filetype.find("Config")==0: fileext= os.path.splitext(filename)[1] if not len(fileext): filename= "%s.cfg"%filename return filename def getSections(self): return self.sectionWidget.getSections() class SectionFileWidget(qt.QWidget): def __init__(self, parent=None, name="FitParamSectionWidget", sections=[], labels=None, fl=0): qt.QWidget.__init__(self, parent) layout= qt.QVBoxLayout(self) self.sections= sections if labels is None: self.labels = [] for label in self.sections: self.labels.append(label.upper()) else: self.labels= labels group= qt.QGroupBox("Read sections", self) group.setAlignment(qt.Qt.Vertical) group.layout = qt.QVBoxLayout(group) layout.addWidget(group) self.allCheck= qt.QCheckBox("ALL", group) group.layout.addWidget(self.allCheck) self.check= {} for (sect, txt) in zip(self.sections, self.labels): self.check[sect]= qt.QCheckBox(txt, group) if QTVERSION > '4.0.0': group.layout.addWidget(self.check[sect]) self.allCheck.setChecked(1) self.__allClicked() self.allCheck.clicked.connect(self.__allClicked) def __allClicked(self): state= self.allCheck.isChecked() for but in self.check.values(): but.setChecked(state) but.setDisabled(state) def getSections(self): if self.allCheck.isChecked(): return None else: sections= [] for sect in self.check.keys(): if self.check[sect].isChecked(): sections.append(sect) return sections class FitParamDialog(qt.QDialog): def __init__(self, parent=None, name="FitParam", modal=1, fl=0, initdir = None, fitresult=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("PyMca - MCA Fit Parameters") self.setWindowIcon(qt.QIcon(qt.QPixmap(Icons.IconDict["gioconda16"]))) self.initDir = initdir layout= qt.QVBoxLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(5) self.fitparam= FitParamWidget(self) layout.addWidget(self.fitparam) self.setData = self.fitparam.setData #buts= qt.QButtonGroup(4, qt.Qt.Horizontal, self) buts= qt.QGroupBox(self) buts.layout = qt.QHBoxLayout(buts) loadfit = qt.QPushButton(buts) loadfit.setAutoDefault(False) loadfit.setText("Load From Fit") loadfit.setToolTip("Take non linear parameters\nfrom last fit") self.fitresult = fitresult load= qt.QPushButton(buts) load.setAutoDefault(False) load.setText("Load") save= qt.QPushButton(buts) save.setAutoDefault(False) save.setText("Save") reject= qt.QPushButton(buts) reject.setAutoDefault(False) reject.setText("Cancel") accept= qt.QPushButton(buts) accept.setAutoDefault(False) accept.setText("OK") if loadfit is not None: buts.layout.addWidget(loadfit) buts.layout.addWidget(load) buts.layout.addWidget(save) buts.layout.addWidget(reject) buts.layout.addWidget(accept) layout.addWidget(buts) self.loadfit = loadfit if self.fitresult is None: self.loadfit.setEnabled(False) else: self.loadfit.setEnabled(True) maxheight = qt.QDesktopWidget().height() maxwidth = qt.QDesktopWidget().width() self.setMaximumWidth(maxwidth) self.setMaximumHeight(maxheight) self.resize(qt.QSize(min(800, maxwidth), min(int(0.7 * maxheight), 750))) self.loadfit.clicked.connect(self.__loadFromFit) load.clicked.connect(self.load) save.clicked.connect(self.save) reject.clicked.connect(self.reject) accept.clicked.connect(self.accept) def setParameters(self, pars): actualPars = pars if 'fit' not in pars: if 'result' in pars: if 'config' in pars['result']: #we are dealing with a .fit file ... if 'fit' in pars['result']['config']: actualPars = pars['result']['config'] return self.fitparam.setParameters(actualPars) def getParameters(self): return self.fitparam.getParameters() def loadParameters(self, filename, sections=None): _logger.info("Filename to be read <%s>" % filename) cfg = ConfigDict.ConfigDict() if sections is not None: if 'attenuators' in sections: sections.append('materials') sections.append('multilayer') try: #if 1: cfg.read(filename, sections) self.initDir = os.path.dirname(filename) except Exception: #else: #self.initDir = None msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Error %s" % sys.exc_info()[1] msg.setInformativeText(text) msg.setDetailedText(traceback.format_exc()) msg.exec() return 0 self.setParameters(copy.deepcopy(cfg)) return 1 def __copyElementsMaterial(self): pars = {} for material in Elements.Material.keys(): pars[material] = {} for key in Elements.Material[material].keys(): pars[material][key] = Elements.Material[material][key] return pars def saveParameters(self, filename, sections=None): pars= self.getParameters() if sections is None: pars['materials'] = self.__copyElementsMaterial() elif 'attenuators' in sections: pars['materials'] = self.__copyElementsMaterial() sections.append('materials') sections.append('multilayer') cfg= ConfigDict.ConfigDict(initdict=pars) if sections is not None: for key in list(cfg.keys()): if key not in sections: del cfg[key] try: cfg.write(filename, sections) self.initDir = os.path.dirname(filename) return 1 except Exception: qt.QMessageBox.critical(self, "Save Parameters", "ERROR while saving parameters to\n%s"%filename, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) #self.initDir = None return 0 def setFitResult(self, result = None): self.fitresult = result if result is None: self.loadfit.setEnabled(False) else: self.loadfit.setEnabled(True) def __loadFromFit(self): """ Fill nonlinear parameters from last fit """ if self.fitresult is None: text = "Sorry. No fit parameters to be loaded.\n" text += "You need to have performed a fit." qt.QMessageBox.critical(self, "No fit data", text, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) return #detector zero = self.fitresult['fittedpar'][self.fitresult['parameters'].index('Zero')] gain = self.fitresult['fittedpar'][self.fitresult['parameters'].index('Gain')] noise= self.fitresult['fittedpar'][self.fitresult['parameters'].index('Noise')] fano = self.fitresult['fittedpar'][self.fitresult['parameters'].index('Fano')] sumf = self.fitresult['fittedpar'][self.fitresult['parameters'].index('Sum')] self.fitparam.zeroValue.setText("%.6g" % zero) self.fitparam.gainValue.setText("%.6g" % gain) self.fitparam.noiseValue.setText("%.6g" % noise) self.fitparam.fanoValue.setText("%.6g" % fano) self.fitparam.sumfacValue.setText("%.6g" % sumf) #peak shape hypermetflag = self.fitresult['config']['fit']['hypermetflag'] fitfunction = self.fitresult['config']['fit'].get('fitfunction', 0) if (fitfunction == 0) and (hypermetflag == 0): fitfunction = 1 if fitfunction == 1: name = 'Eta Factor' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.etaValue.setText("%.6g" % value) deltaeta = min(value, float(self.fitparam.etaError.text())) self.fitparam.etaError.setText("%.6g" % deltaeta) elif hypermetflag > 1: # hypermetnames = ['ST AreaR', 'ST SlopeR', # 'LT AreaR', 'LT SlopeR', # 'STEP HeightR'] name = 'ST AreaR' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.staValue.setText("%.6g" % value) name = 'ST SlopeR' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.stsValue.setText("%.6g" % value) name = 'LT AreaR' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.ltaValue.setText("%.6g" % value) name = 'LT SlopeR' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.ltsValue.setText("%.6g" % value) name = 'STEP HeightR' if name in self.fitresult['parameters']: value = self.fitresult['fittedpar'] \ [self.fitresult['parameters'].index(name)] self.fitparam.shValue.setText("%.6g" % value) text = "If you do not use an exponential background, " text += "you can now ask the program to perform a linear " text += "fit, save the configuration, and you will be ready " text += "for a speedy batch." qt.QMessageBox.information(self, "Batch tip", text) def load(self): if self.initDir is None: self.initDir = PyMcaDirs.inputDir fileList = ConfigurationFileDialogs.getFitConfigurationFilePath(self, mode="OPEN", currentdir=self.initDir, single=True) if fileList: filename = qt.safe_str(fileList[0]) if filename: self.loadParameters(filename, None) self.initDir = os.path.dirname(filename) def save(self): #diag= SectionFileDialog(self, "Save Parameters", FitParamSections, FitParamHeaders, qt.QFileDialog.AnyFile) if self.initDir is None: self.initDir = PyMcaDirs.outputDir fileList = PyMcaFileDialogs.getFileList(self, filetypelist=["Fit configuration files (*.cfg)"], mode="SAVE", message="Enter output fit configuration file", currentdir=self.initDir, single=True) if fileList: filename = qt.safe_str(fileList[0]) if len(filename): if not filename.endswith(".cfg"): filename += ".cfg" self.saveParameters(filename, None) self.initDir = os.path.dirname(filename) def openDialog(): wid= FitParamDialog(modal=1) ret = wid.exec() if ret == qt.QDialog.Accepted: npar = wid.getParameters() print(npar) del wid return ret if __name__=="__main__": logging.basicConfig(level=logging.INFO) app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) openDialog() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/FitParamForm.py0000644000000000000000000007675114741736366022253 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon & V. Armando Sole - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() QLabelAlignRight = qt.Qt.AlignRight QLabelAlignCenter = qt.Qt.AlignCenter QLabelAlignVCenter= qt.Qt.AlignVCenter class Q3SpinBox(qt.QSpinBox): def setMinValue(self, v): self.setMinimum(v) def setMaxValue(self, v): self.setMaximum(v) def setLineStep(self, v): self.setSingleStep(v) class Q3GridLayout(qt.QGridLayout): def addMultiCellWidget(self, w, r0, r1, c0, c1, *var): self.addWidget(w, r0, c0, 1 + r1 - r0, 1 + c1 - c0) class FitParamForm(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self,parent) FitParamFormLayout = qt.QVBoxLayout(self) FitParamFormLayout.setContentsMargins(11, 11, 11, 11) FitParamFormLayout.setSpacing(6) self.mainTab = qt.QTabWidget(self) self.tabFit = qt.QWidget() tabFitLayout = qt.QVBoxLayout(self.tabFit) tabFitLayout.setContentsMargins(11, 11, 11, 11) tabFitLayout.setSpacing(6) layout5 = Q3GridLayout(None) #,1,1, layout5.setContentsMargins(11, 11, 11, 11) layout5.setSpacing(6) self.functionCombo = qt.QComboBox(self.tabFit) self.functionCombo.insertItem = self.functionCombo.addItem self.functionLabel = qt.QLabel(self.tabFit) self.functionLabel.setText("Fit Function") self.functionCombo.insertItem(str("Mca Hypermet")) self.functionCombo.insertItem(str("Mca Pseudo-Voigt")) self.snipWidthLabel = qt.QLabel(self.tabFit) self.snipWidthLabel.setText(str("SNIP Background Width")) self.stripWidthLabel = qt.QLabel(self.tabFit) self.stripWidthLabel.setText(str("Strip Background Width")) self.stripIterValue = qt.QLineEdit(self.tabFit) self.chi2Label = qt.QLabel(self.tabFit) self.chi2Label.setText(str("Minimum chi^2 difference (%)")) self.chi2Value = qt.QLineEdit(self.tabFit) self.linearFitFlagCheck = qt.QCheckBox(self.tabFit) self.linearFitFlagCheck.setText(str("Perform a Linear Fit Fixing non-linear Parameters to Initial Values")) self.strategyCheckBox = qt.QCheckBox(self.tabFit) self.strategyCheckBox.setText(str("Perform a fit using the selected strategy")) self.strategyCombo = qt.QComboBox(self.tabFit) self.strategyCombo.addItem(str("Single Layer")) self.strategySetupButton = qt.QPushButton(self.tabFit) self.strategySetupButton.setText('SETUP') self.strategySetupButton.setAutoDefault(False) self.mainTab.addTab(self.tabFit,str("FIT")) self.lastLabel = qt.QLabel(self.tabFit) lastLabel_font = qt.QFont(self.lastLabel.font()) lastLabel_font.setItalic(1) self.lastLabel.setFont(lastLabel_font) self.lastLabel.setText(str("Last channel :")) self.lastLabel.setAlignment(QLabelAlignVCenter | QLabelAlignRight) self.regionCheck = qt.QCheckBox(self.tabFit) self.regionCheck.setText(str("Limit fitting region to :")) self.topLine = qt.QFrame(self.tabFit) self.topLine.setFrameShape(qt.QFrame.HLine) self.topLine.setFrameShadow(qt.QFrame.Sunken) self.topLine.setFrameShape(qt.QFrame.HLine) ########## self.weightLabel = qt.QLabel(self.tabFit) self.weightLabel.setText("Statistical weighting of data") self.weightCombo = qt.QComboBox(self.tabFit) self.weightCombo.insertItem = self.weightCombo.addItem self.weightCombo.insertItem(str("NO Weight")) self.weightCombo.insertItem(str("Poisson (1/Y)")) #self.weightCombo.insertItem(str("Poisson (1/Y2)")) ########## self.iterLabel = qt.QLabel(self.tabFit) self.iterLabel.setText(str("Number of fit iterations")) self.contCombo = qt.QComboBox(self.tabFit) self.contCombo.insertItem = self.contCombo.addItem self.contCombo.insertItem(str("NO Continuum")) self.contCombo.insertItem(str("Constant")) self.contCombo.insertItem(str("Linear")) self.contCombo.insertItem(str("Parabolic")) self.contCombo.insertItem(str("Linear Polynomial")) self.contCombo.insertItem(str("Exp. Polynomial")) self.stripCombo = qt.QComboBox(self.tabFit) self.stripCombo.insertItem = self.stripCombo.addItem self.stripComboLabel = qt.QLabel(self.tabFit) self.stripComboLabel.setText("Non-analytical (or estimation) background algorithm") self.stripCombo.insertItem(str("Strip")) self.stripCombo.insertItem(str("SNIP")) self.stripCombo.activated[int].connect(self._stripComboActivated) self.snipWidthSpin = Q3SpinBox(self.tabFit) self.snipWidthSpin.setMaxValue(300) self.snipWidthSpin.setMinValue(0) self.stripWidthSpin = Q3SpinBox(self.tabFit) self.stripWidthSpin.setMaxValue(100) self.stripWidthSpin.setMinValue(1) self.orderSpin = Q3SpinBox(self.tabFit) self.orderSpin.setMaxValue(10) self.orderSpin.setMinValue(1) maxnchannel = 16384*4 self.maxSpin = Q3SpinBox(self.tabFit) self.maxSpin.setMaxValue(maxnchannel) self.maxSpin.setLineStep(128) self.minSpin = Q3SpinBox(self.tabFit) self.minSpin.setMaxValue(maxnchannel) self.minSpin.setLineStep(128) self.stripIterLabel = qt.QLabel(self.tabFit) self.stripIterLabel.setText(str("Strip Background Iterations")) self.iterSpin = Q3SpinBox(self.tabFit) self.iterSpin.setMinValue(1) self.stripFilterLabel = qt.QLabel(self.tabFit) self.stripFilterLabel.setText(str("Strip Background Smoothing Width (Savitsky-Golay)")) self.stripFilterSpin = Q3SpinBox(self.tabFit) self.stripFilterSpin.setMinValue(1) self.stripFilterSpin.setMaxValue(40) self.stripFilterSpin.setLineStep(2) ######## self.anchorsContainer = qt.QWidget(self.tabFit) anchorsContainerLayout = qt.QHBoxLayout(self.anchorsContainer) anchorsContainerLayout.setContentsMargins(0, 0, 0, 0) anchorsContainerLayout.setSpacing(2) self.stripAnchorsFlagCheck = qt.QCheckBox(self.anchorsContainer) self.stripAnchorsFlagCheck.setText(str("Strip Background use Anchors")) anchorsContainerLayout.addWidget(self.stripAnchorsFlagCheck) self.stripAnchorsList = [] for i in range(4): anchorSpin = Q3SpinBox(self.anchorsContainer) anchorSpin.setMinValue(0) anchorSpin.setMaxValue(maxnchannel) anchorsContainerLayout.addWidget(anchorSpin) self.stripAnchorsList.append(anchorSpin) ####### self.firstLabel = qt.QLabel(self.tabFit) firstLabel_font = qt.QFont(self.firstLabel.font()) firstLabel_font.setItalic(1) self.firstLabel.setFont(firstLabel_font) self.firstLabel.setText(str("First channel :")) self.firstLabel.setAlignment(qt.Qt.AlignVCenter | qt.Qt.AlignRight) self.typeLabel = qt.QLabel(self.tabFit) self.typeLabel.setText(str("Continuum type")) self.orderLabel = qt.QLabel(self.tabFit) self.orderLabel.setText(str("Polynomial order")) self.bottomLine = qt.QFrame(self.tabFit) self.bottomLine.setFrameShape(qt.QFrame.HLine) self.bottomLine.setFrameShadow(qt.QFrame.Sunken) self.bottomLine.setFrameShape(qt.QFrame.HLine) layout5.addMultiCellWidget(self.functionLabel,0,0,0,1) layout5.addMultiCellWidget(self.functionCombo,0,0,3,4) layout5.addMultiCellWidget(self.typeLabel,1,1,0,1) layout5.addMultiCellWidget(self.contCombo,1,1,3,4) layout5.addMultiCellWidget(self.orderLabel,2,2,0,1) layout5.addMultiCellWidget(self.orderSpin,2,2,3,4) layout5.addMultiCellWidget(self.stripComboLabel, 3, 3, 0, 1) self.stripSetupButton = qt.QPushButton(self.tabFit) self.stripSetupButton.setText('SETUP') self.stripSetupButton.setAutoDefault(False) layout5.addWidget(self.stripCombo, 3, 3) layout5.addWidget(self.stripSetupButton, 3, 4) layout5.addMultiCellWidget(self.snipWidthLabel,4,4,0,1) layout5.addMultiCellWidget(self.snipWidthSpin,4,4,3,4) layout5.addMultiCellWidget(self.stripWidthLabel,5,5,0,1) layout5.addMultiCellWidget(self.stripWidthSpin,5,5,3,4) layout5.addMultiCellWidget(self.stripIterLabel,6,6,0,1) layout5.addMultiCellWidget(self.stripIterValue,6,6,3,4) layout5.addMultiCellWidget(self.stripFilterLabel,7,7,0,1) layout5.addMultiCellWidget(self.stripFilterSpin,7,7,3,4) layout5.addMultiCellWidget(self.anchorsContainer,8,8,0,4) layout5.addWidget(self.weightLabel,9,0) layout5.addMultiCellWidget(self.weightCombo,9,9,3,4) layout5.addWidget(self.iterLabel,10,0) layout5.addWidget(qt.HorizontalSpacer(self.tabFit),10,1) layout5.addMultiCellWidget(self.iterSpin,10,10,3,4) layout5.addWidget(self.chi2Label, 11, 0) layout5.addMultiCellWidget(self.chi2Value, 11, 11,3,4) layout5.addMultiCellWidget(self.strategyCheckBox, 12, 12, 0, 4) layout5.addWidget(self.strategyCombo, 12, 3) layout5.addWidget(self.strategySetupButton, 12, 4) layout5.addMultiCellWidget(self.linearFitFlagCheck, 13, 13, 0, 4) layout5.addMultiCellWidget(self.topLine, 14, 15,0,4) layout5.addMultiCellWidget(self.minSpin,15, 16,4,4) layout5.addWidget(self.regionCheck,16,0) layout5.addMultiCellWidget(self.firstLabel,16, 16,2,3) layout5.addMultiCellWidget(self.lastLabel,17,17,2,3) layout5.addWidget(self.maxSpin,17,4) layout5.addMultiCellWidget(self.bottomLine,18,18,0,4) tabFitLayout.addLayout(layout5) includeWidget = qt.QWidget(self.tabFit) includeLayout = Q3GridLayout(includeWidget) includeLayout.setContentsMargins(0, 0, 0, 0) includeLayout.setSpacing(3) self.stepCheck = qt.QCheckBox(includeWidget) self.stepCheck.setText(str("Step tail")) includeLayout.addWidget(self.stepCheck,2,2) self.escapeCheck = qt.QCheckBox(includeWidget) self.escapeCheck.setText(str("Escape peaks")) includeLayout.addWidget(self.escapeCheck,1,1) self.includeLabel = qt.QLabel(includeWidget) includeLabel_font = qt.QFont(self.includeLabel.font()) includeLabel_font.setBold(1) self.includeLabel.setFont(includeLabel_font) self.includeLabel.setText(str("Include:")) includeLayout.addWidget(self.includeLabel,0,0) self.sumCheck = qt.QCheckBox(includeWidget) self.sumCheck.setText(str("Pile-up peaks")) includeLayout.addWidget(self.sumCheck,1,2) self.scatterCheck = qt.QCheckBox(includeWidget) self.scatterCheck.setText(str("Scattering peaks")) includeLayout.addWidget(self.scatterCheck,1,3) self.stripCheck = qt.QCheckBox(includeWidget) self.stripCheck.setText(str("Stripping")) includeLayout.addWidget(self.stripCheck,1,0) self.longCheck = qt.QCheckBox(includeWidget) self.longCheck.setText(str("Long tail")) includeLayout.addWidget(self.longCheck,2,1) self.shortCheck = qt.QCheckBox(includeWidget) self.shortCheck.setText(str("Short tail")) includeLayout.addWidget(self.shortCheck,2,0) #tabFitLayout.addLayout(includeLayout) layout5.addMultiCellWidget(includeWidget,18,19,0,4) spacer_2 = qt.QSpacerItem(20, 40,\ qt.QSizePolicy.Minimum,\ qt.QSizePolicy.Expanding) tabFitLayout.addItem(spacer_2) #self.mainTab.addTab(self.tabFit,str("FIT")) self.tabDetector = qt.QWidget() tabDetectorLayout = qt.QVBoxLayout(self.tabDetector) tabDetectorLayout.setContentsMargins(11, 11, 11, 11) tabDetectorLayout.setSpacing(6) detLayout = Q3GridLayout(None) detLayout.setContentsMargins(0, 0, 0, 0) detLayout.setSpacing(2) self.elementCombo = qt.QComboBox(self.tabDetector) self.elementCombo.insertItem(0, str("Si")) self.elementCombo.insertItem(1, str("Ge")) self.elementCombo.insertItem(2, str("Cd1Te1")) self.elementCombo.insertItem(3, str("Hg1I2")) self.elementCombo.insertItem(4, str("Ga1As1")) self.elementCombo.setEnabled(1) self.elementCombo.setDuplicatesEnabled(0) detLayout.addWidget(self.elementCombo,0,3) self.elementLabel = qt.QLabel(self.tabDetector) self.elementLabel.setText(str("Detector Composition")) detLayout.addWidget(self.elementLabel,0,0) self.escapeLabel = qt.QLabel(self.tabDetector) self.escapeLabel.setText(str("Maximum Number of Escape energies")) detLayout.addMultiCellWidget(self.escapeLabel,3,4,0,0) #self.intensityValue0 = QLineEdit(self.tabDetector,"intensityValue0") #self.intensityValue0.setText(str("1.0")) #self.intensityValue0.setReadOnly(1) self.nEscapeThreshold = Q3SpinBox(self.tabDetector) self.nEscapeThreshold.setMaxValue(20) self.nEscapeThreshold.setMinValue(1) self.nEscapeThreshold.setValue(4) #detLayout.addWidget(self.intensityValue0,3,3) detLayout.addWidget(self.nEscapeThreshold,3,3) spacer_4 = qt.QSpacerItem(89, 20,\ qt.QSizePolicy.Expanding, qt.QSizePolicy.Minimum) detLayout.addItem(spacer_4,3,1) tabDetectorLayout.addLayout(detLayout) self.calibLine = qt.QFrame(self.tabDetector) self.calibLine.setFrameShape(qt.QFrame.HLine) self.calibLine.setFrameShadow(qt.QFrame.Sunken) self.calibLine.setFrameShape(qt.QFrame.HLine) tabDetectorLayout.addWidget(self.calibLine) layout5_2 = Q3GridLayout(None) layout5_2.setContentsMargins(11, 11, 11, 11) layout5_2.setSpacing(2) self.zeroError = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.zeroError,1,5) self.sumfacSepLabel = qt.QLabel(self.tabDetector) sumfacSepLabel_font = qt.QFont(self.sumfacSepLabel.font()) sumfacSepLabel_font.setBold(1) self.sumfacSepLabel.setFont(sumfacSepLabel_font) self.sumfacSepLabel.setText(str("+/-")) layout5_2.addWidget(self.sumfacSepLabel,5,4) self.noiseLabel = qt.QLabel(self.tabDetector) self.noiseLabel.setText(str("Detector noise (keV)")) layout5_2.addWidget(self.noiseLabel,3,0) self.gainCheck = qt.QCheckBox(self.tabDetector) self.gainCheck.setText(str("")) layout5_2.addWidget(self.gainCheck,2,2) self.gainLabel = qt.QLabel(self.tabDetector) self.gainLabel.setText(str("Spectrometer gain (keV/ch)")) layout5_2.addWidget(self.gainLabel,2,0) self.sumfacLabel = qt.QLabel(self.tabDetector) self.sumfacLabel.setText(str("Pile-up Factor")) layout5_2.addWidget(self.sumfacLabel,5,0) self.noiseError = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.noiseError,3,5) self.zeroValue = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.zeroValue,1,3) self.fanoSepLabel = qt.QLabel(self.tabDetector) fanoSepLabel_font = qt.QFont(self.fanoSepLabel.font()) fanoSepLabel_font.setBold(1) self.fanoSepLabel.setFont(fanoSepLabel_font) self.fanoSepLabel.setText(str("+/-")) layout5_2.addWidget(self.fanoSepLabel,4,4) self.fanoError = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.fanoError,4,5) self.zeroSepLabel = qt.QLabel(self.tabDetector) zeroSepLabel_font = qt.QFont(self.zeroSepLabel.font()) zeroSepLabel_font.setBold(1) self.zeroSepLabel.setFont(zeroSepLabel_font) self.zeroSepLabel.setText(str("+/-")) layout5_2.addWidget(self.zeroSepLabel,1,4) self.valueLabel = qt.QLabel(self.tabDetector) valueLabel_font = qt.QFont(self.valueLabel.font()) valueLabel_font.setItalic(1) self.valueLabel.setFont(valueLabel_font) self.valueLabel.setText(str("Value")) self.valueLabel.setAlignment(qt.Qt.AlignCenter) layout5_2.addWidget(self.valueLabel,0,3) layout5_2.addWidget(qt.HorizontalSpacer(self.tabDetector),1,1) self.noiseValue = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.noiseValue,3,3) self.fanoValue = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.fanoValue,4,3) self.zeroLabel = qt.QLabel(self.tabDetector) self.zeroLabel.setText(str("Spectrometer zero (keV)")) layout5_2.addWidget(self.zeroLabel,1,0) self.sumfacError = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.sumfacError,5,5) self.noiseSepLabel = qt.QLabel(self.tabDetector) noiseSepLabel_font = qt.QFont(self.noiseSepLabel.font()) noiseSepLabel_font.setBold(1) self.noiseSepLabel.setFont(noiseSepLabel_font) self.noiseSepLabel.setText(str("+/-")) layout5_2.addWidget(self.noiseSepLabel,3,4) self.sumfacCheck = qt.QCheckBox(self.tabDetector) self.sumfacCheck.setText(str("")) layout5_2.addWidget(self.sumfacCheck,5,2) self.noiseCheck = qt.QCheckBox(self.tabDetector) self.noiseCheck.setText(str("")) layout5_2.addWidget(self.noiseCheck,3,2) self.errorLabel = qt.QLabel(self.tabDetector) errorLabel_font = qt.QFont(self.errorLabel.font()) errorLabel_font.setItalic(1) self.errorLabel.setFont(errorLabel_font) self.errorLabel.setText(str("Delta ")) self.errorLabel.setAlignment(QLabelAlignCenter) layout5_2.addWidget(self.errorLabel,0,5) self.fixedLabel = qt.QLabel(self.tabDetector) fixedLabel_font = qt.QFont(self.fixedLabel.font()) fixedLabel_font.setItalic(1) self.fixedLabel.setFont(fixedLabel_font) self.fixedLabel.setText(str("Fixed ")) self.fixedLabel.setAlignment(qt.Qt.AlignVCenter) layout5_2.addWidget(self.fixedLabel,0,2) self.zeroCheck = qt.QCheckBox(self.tabDetector) self.zeroCheck.setText(str("")) layout5_2.addWidget(self.zeroCheck,1,2) self.sumfacValue = qt.QLineEdit(self.tabDetector,) layout5_2.addWidget(self.sumfacValue,5,3) self.fanoLabel = qt.QLabel(self.tabDetector) self.fanoLabel.setText(str("Fano factor (Si ~ 0.12, Ge ~ 0.1)")) layout5_2.addWidget(self.fanoLabel,4,0) self.gainValue = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.gainValue,2,3) self.gainSepLabel = qt.QLabel(self.tabDetector) gainSepLabel_font = qt.QFont(self.gainSepLabel.font()) gainSepLabel_font.setBold(1) self.gainSepLabel.setFont(gainSepLabel_font) self.gainSepLabel.setText(str("+/-")) layout5_2.addWidget(self.gainSepLabel, 2, 4) self.fanoCheck = qt.QCheckBox(self.tabDetector) self.fanoCheck.setText(str("")) layout5_2.addWidget(self.fanoCheck, 4, 2) self.gainError = qt.QLineEdit(self.tabDetector) layout5_2.addWidget(self.gainError, 2, 5) self.ignoreSpectrumCalibration = qt.QCheckBox(self.tabDetector) ignoreToolTip = "If checked, the starting calibration parameters " ignoreToolTip += "will not be replaced by the input spectrum " ignoreToolTip += "ones.\n" self.ignoreSpectrumCalibration.setToolTip(ignoreToolTip) ignoreText = "Ignore calibration from input data" self.ignoreSpectrumCalibration.setText(ignoreText) self.ignoreSpectrumCalibration.setChecked(False) layout5_2.addWidget(self.ignoreSpectrumCalibration, 6, 0) tabDetectorLayout.addLayout(layout5_2) spacer_6 = qt.QSpacerItem(20, 2,\ qt.QSizePolicy.Minimum,\ qt.QSizePolicy.Expanding) tabDetectorLayout.addItem(spacer_6) self.mainTab.addTab(self.tabDetector,str("DETECTOR")) self.TabBeam = qt.QWidget() self.mainTab.addTab(self.TabBeam,str("BEAM")) self.TabPeaks = qt.QWidget() self.mainTab.addTab(self.TabPeaks,str("PEAKS")) self.tabPeakShape = qt.QWidget() tabPeakShapeLayout = Q3GridLayout(self.tabPeakShape) tabPeakShapeLayout.setContentsMargins(11, 11, 11, 11) tabPeakShapeLayout.setSpacing(2) spacer_7 = qt.QSpacerItem(20, 90,\ qt.QSizePolicy.Minimum,\ qt.QSizePolicy.Expanding) tabPeakShapeLayout.addItem(spacer_7,8,0) self.staLabel = qt.QLabel(self.tabPeakShape) self.staLabel.setText(str("Short Tail Area")) tabPeakShapeLayout.addWidget(self.staLabel,2,0) spacer_8 = qt.QSpacerItem(59, 20,\ qt.QSizePolicy.Expanding,\ qt.QSizePolicy.Minimum) tabPeakShapeLayout.addItem(spacer_8,1,1) self.fixedLabel_2 = qt.QLabel(self.tabPeakShape) fixedLabel_2_font = qt.QFont(self.fixedLabel_2.font()) fixedLabel_2_font.setItalic(1) self.fixedLabel_2.setFont(fixedLabel_2_font) self.fixedLabel_2.setText(str("Fixed")) self.fixedLabel_2.setAlignment(QLabelAlignVCenter) tabPeakShapeLayout.addWidget(self.fixedLabel_2, 1, 2) self.staCheck = qt.QCheckBox(self.tabPeakShape) self.staCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.staCheck,2,2) self.valueLabel_2 = qt.QLabel(self.tabPeakShape) valueLabel_2_font = qt.QFont(self.valueLabel_2.font()) valueLabel_2_font.setItalic(1) self.valueLabel_2.setFont(valueLabel_2_font) self.valueLabel_2.setText(str("Value")) self.valueLabel_2.setAlignment(QLabelAlignCenter) tabPeakShapeLayout.addWidget(self.valueLabel_2,1,3) self.staValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.staValue,2,3) self.staSep = qt.QLabel(self.tabPeakShape) staSep_font = qt.QFont(self.staSep.font()) staSep_font.setBold(1) self.staSep.setFont(staSep_font) self.staSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.staSep,2,4) self.errorLabel_2 = qt.QLabel(self.tabPeakShape) errorLabel_2_font = qt.QFont(self.errorLabel_2.font()) errorLabel_2_font.setItalic(1) self.errorLabel_2.setFont(errorLabel_2_font) self.errorLabel_2.setText(str("Error")) self.errorLabel_2.setAlignment(QLabelAlignCenter) tabPeakShapeLayout.addWidget(self.errorLabel_2,1,5) self.staError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.staError,2,5) self.stsError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.stsError,3,5) self.stsSep = qt.QLabel(self.tabPeakShape) stsSep_font = qt.QFont(self.stsSep.font()) stsSep_font.setBold(1) self.stsSep.setFont(stsSep_font) self.stsSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.stsSep,3,4) self.stsValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.stsValue,3,3) self.stsCheck = qt.QCheckBox(self.tabPeakShape) self.stsCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.stsCheck,3,2) self.stsLabel = qt.QLabel(self.tabPeakShape) self.stsLabel.setText(str("Short Tail Slope")) tabPeakShapeLayout.addWidget(self.stsLabel,3,0) self.ltaLabel = qt.QLabel(self.tabPeakShape) self.ltaLabel.setText(str("Long Tail Area")) tabPeakShapeLayout.addWidget(self.ltaLabel,4,0) self.ltaCheck = qt.QCheckBox(self.tabPeakShape) self.ltaCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.ltaCheck,4,2) self.ltaValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.ltaValue,4,3) self.ltaSep = qt.QLabel(self.tabPeakShape) ltaSep_font = qt.QFont(self.ltaSep.font()) ltaSep_font.setBold(1) self.ltaSep.setFont(ltaSep_font) self.ltaSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.ltaSep,4,4) self.ltaError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.ltaError,4,5) self.ltsError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.ltsError,5,5) self.ltsSep = qt.QLabel(self.tabPeakShape) ltsSep_font = qt.QFont(self.ltsSep.font()) ltsSep_font.setBold(1) self.ltsSep.setFont(ltsSep_font) self.ltsSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.ltsSep,5,4) self.ltsValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.ltsValue,5,3) self.ltsCheck = qt.QCheckBox(self.tabPeakShape) self.ltsCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.ltsCheck,5,2) self.ltsLabel = qt.QLabel(self.tabPeakShape) self.ltsLabel.setText(str("Long Tail Slope")) tabPeakShapeLayout.addWidget(self.ltsLabel,5,0) # Step Height self.shLabel = qt.QLabel(self.tabPeakShape) self.shLabel.setText(str("Step Height")) tabPeakShapeLayout.addWidget(self.shLabel,6,0) self.shCheck = qt.QCheckBox(self.tabPeakShape) self.shCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.shCheck,6,2) self.shValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.shValue,6,3) self.shSep = qt.QLabel(self.tabPeakShape) shSep_font = qt.QFont(self.shSep.font()) shSep_font.setBold(1) self.shSep.setFont(shSep_font) self.shSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.shSep,6,4) self.shError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.shError,6,5) # Pseudo-Voigt Eta Factor self.etaLabel = qt.QLabel(self.tabPeakShape) self.etaLabel.setText(str("Pseudo-Voigt Eta")) tabPeakShapeLayout.addWidget(self.etaLabel,7,0) self.etaCheck = qt.QCheckBox(self.tabPeakShape) self.etaCheck.setText(str("")) tabPeakShapeLayout.addWidget(self.etaCheck,7,2) self.etaValue = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.etaValue,7,3) self.etaSep = qt.QLabel(self.tabPeakShape) etaSep_font = qt.QFont(self.etaSep.font()) etaSep_font.setBold(1) self.etaSep.setFont(etaSep_font) self.etaSep.setText(str("+/-")) tabPeakShapeLayout.addWidget(self.etaSep,7,4) self.etaError = qt.QLineEdit(self.tabPeakShape) tabPeakShapeLayout.addWidget(self.etaError,7,5) self.mainTab.addTab(self.tabPeakShape,str("PEAK SHAPE")) FitParamFormLayout.addWidget(self.mainTab) self.setTabOrder(self.mainTab,self.elementCombo) self.setTabOrder(self.zeroCheck,self.zeroValue) self.setTabOrder(self.zeroValue,self.zeroError) self.setTabOrder(self.zeroError,self.gainCheck) self.setTabOrder(self.gainCheck,self.gainValue) self.setTabOrder(self.gainValue,self.gainError) self.setTabOrder(self.gainError,self.noiseCheck) self.setTabOrder(self.noiseCheck,self.noiseValue) self.setTabOrder(self.noiseValue,self.noiseError) self.setTabOrder(self.noiseError,self.fanoCheck) self.setTabOrder(self.fanoCheck,self.fanoValue) self.setTabOrder(self.fanoValue,self.fanoError) self.setTabOrder(self.fanoError,self.staCheck) self.setTabOrder(self.staCheck,self.staValue) self.setTabOrder(self.staValue,self.staError) self.setTabOrder(self.staError,self.stsCheck) self.setTabOrder(self.stsCheck,self.stsValue) self.setTabOrder(self.stsValue,self.stsError) self.setTabOrder(self.stsError,self.ltaCheck) self.setTabOrder(self.ltaCheck,self.ltaValue) self.setTabOrder(self.ltaValue,self.ltaError) self.setTabOrder(self.ltaError,self.ltsCheck) self.setTabOrder(self.ltsCheck,self.ltsValue) self.setTabOrder(self.ltsValue,self.ltsError) self.setTabOrder(self.ltsError,self.shCheck) self.setTabOrder(self.shCheck,self.shValue) self.setTabOrder(self.shValue,self.shError) self.setTabOrder(self.shError,self.contCombo) self.setTabOrder(self.contCombo,self.stripCombo) self.setTabOrder(self.stripCombo,self.iterSpin) self.setTabOrder(self.iterSpin,self.chi2Value) self.setTabOrder(self.chi2Value,self.regionCheck) self.setTabOrder(self.regionCheck,self.minSpin) self.setTabOrder(self.minSpin,self.maxSpin) self.setTabOrder(self.maxSpin,self.stripCheck) self.setTabOrder(self.stripCheck,self.escapeCheck) self.setTabOrder(self.escapeCheck,self.sumCheck) self.setTabOrder(self.sumCheck,self.scatterCheck) self.setTabOrder(self.scatterCheck,self.shortCheck) self.setTabOrder(self.shortCheck,self.longCheck) self.setTabOrder(self.longCheck,self.stepCheck) self._stripComboActivated(0) def _stripComboActivated(self, intValue): if intValue == 1: self.setSNIP(True) else: self.setSNIP(False) def setSNIP(self, bValue): if bValue: self.snipWidthSpin.setEnabled(True) self.stripWidthSpin.setEnabled(False) #self.stripFilterSpin.setEnabled(False) self.stripIterValue.setEnabled(False) self.stripCombo.setCurrentIndex(1) else: self.snipWidthSpin.setEnabled(False) #self.stripFilterSpin.setEnabled(True) self.stripWidthSpin.setEnabled(True) self.stripIterValue.setEnabled(True) self.stripCombo.setCurrentIndex(0) if __name__ == "__main__": a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = FitParamForm() w.show() a.exec() a = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/FitPeakSelect.py0000644000000000000000000004323314741736366022374 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2025 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy import logging from . import EnergyTable from PyMca5.PyMcaPhysics import Elements from .QPeriodicTable import QPeriodicTable from PyMca5.PyMcaGui import PyMcaQt as qt _logger = logging.getLogger(__name__) QTVERSION = qt.qVersion() ElementList = Elements.ElementList __revision__ = "$Revision: 1.12 $" class PeakButton(qt.QPushButton): sigPeakClicked = qt.pyqtSignal(str) def __init__(self, parent, peak): qt.QPushButton.__init__(self, parent) #, peak) self.peak= peak font= self.font() font.setBold(1) self.setText(peak) self.setFlat(1) if QTVERSION < '4.0.0': self.setToggleButton(0) self.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding)) self.selected= 0 self.brush= qt.QBrush(qt.QColor(qt.Qt.yellow)) self.clicked.connect(self.clickedSlot) def toggle(self): self.selected= not self.selected self.update() def setSelected(self, b): self.selected= b if b: role = self.backgroundRole() palette = self.palette() palette.setBrush( role,self.brush) self.setPalette(palette) else: role = self.backgroundRole() palette = self.palette() palette.setBrush( role, qt.QBrush()) self.setPalette(palette) self.update() def isSelected(self): return self.selected def clickedSlot(self): self.toggle() self.sigPeakClicked.emit(self.peak) def paintEvent(self, pEvent): p = qt.QPainter(self) wr= self.rect() pr= qt.QRect(wr.left()+1, wr.top()+1, wr.width()-2, wr.height()-2) if self.selected: p.fillRect(pr, self.brush) p.setPen(qt.Qt.black) if hasattr(p, "drawRoundRect"): p.drawRoundRect(pr) else: p.drawRoundedRect(pr, 1., 1., qt.Qt.RelativeSize) p.end() qt.QPushButton.paintEvent(self, pEvent) def drawButton(self, p): wr= self.rect() pr= qt.QRect(wr.left()+1, wr.top()+1, wr.width()-2, wr.height()-2) if self.selected: p.fillRect(pr, self.brush) qt.QPushButton.drawButtonLabel(self, p) p.setPen(qt.Qt.black) p.drawRoundRect(pr) class PeakButtonList(qt.QWidget): # emitted object is a list sigSelectionChanged = qt.pyqtSignal(object) def __init__(self, parent=None, name="PeakButtonList", peaklist=['K','Ka','Kb','L','L1','L2','L3','M', 'M1', 'M2', 'M3', 'M4', 'M5'], fl=0): qt.QWidget.__init__(self,parent) self.peaklist = peaklist if QTVERSION < '4.0.0': layout= qt.QHBoxLayout(self, 0, 5) else: layout= qt.QHBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(5) #, 0, 5) layout.addStretch(2) self.buttondict={} for key in peaklist: self.buttondict[key] = PeakButton(self, key) layout.addWidget(self.buttondict[key]) self.buttondict[key].sigPeakClicked.connect(self.__selection) layout.addStretch(1) #Reset self.resetBut = qt.QPushButton(self) self.resetBut.setText("Reset") layout.addWidget(self.resetBut) self.resetBut.clicked.connect(self.__resetBut) layout.addStretch(2) def __resetBut(self): for key in self.peaklist: self.buttondict[key].setSelected(0) self.sigSelectionChanged.emit([]) def __selection(self, peak): selection= [] for key in self.peaklist: if self.buttondict[key].isSelected(): selection.append(key) self.sigSelectionChanged.emit(selection) def setSelection(self, selection=[]): for key in self.peaklist: if key in selection: self.buttondict[key].setSelected(1) else: self.buttondict[key].setSelected(0) def setDisabled(self,selection=[]): for key in self.peaklist: if key in selection: self.buttondict[key].setEnabled(0) else: self.buttondict[key].setEnabled(1) class FitPeakSelect(qt.QWidget): sigFitPeakSelect = qt.pyqtSignal(object) def __init__(self, parent=None, name="FitPeakSelect", peakdict = {}, energyTable=None): qt.QWidget.__init__(self,parent) layout=qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(10) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(20) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) l1=MyQLabel(hbox, bold=True, color=qt.QColor(0,0,0)) hboxLayout.addWidget(l1) self.energyValue = None if energyTable is not None: text = 'Excitation Energy (keV)' l1.setFixedWidth(l1.fontMetrics().maxWidth()*len("##"+text+"####")) l1.setText(text) self.energyTable = energyTable add = 0 self.energy = MyQLabel(hbox) hboxLayout.addWidget(self.energy) self.energy.setFixedWidth(self.energy.fontMetrics().maxWidth()*len('########.###')) self.energy.setAlignment(qt.Qt.AlignLeft) #self.energy.setForegroundColor(qt.Qt.red) else: l1.setText('Excitation Energy (keV)') self.energyTable = EnergyTable.EnergyTable(self) add = 1 self.energy = qt.QLineEdit(hbox) hboxLayout.addWidget(self.energy) self.energy.setFixedWidth(self.energy.fontMetrics().maxWidth()*len('########.###')) self.energyButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.energyButton) self.energyButton.setText("Update") self.energyButton.clicked.connect(self._energyClicked) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) layout.addSpacing(20) layout.addWidget(hbox) self.table = QPeriodicTable(self) line= qt.QFrame(self) line.setFrameShape(qt.QFrame.HLine) line.setFrameShadow(qt.QFrame.Sunken) self.peaks = PeakButtonList(self) self.peaks.setDisabled(['K','Ka','Kb','L','L1','L2','L3','M', 'M1', 'M2', 'M3', 'M4', 'M5']) self.energyTable.sigEnergyTableSignal.connect(self._energyTableAction) self.table.sigElementClicked.connect(self.elementClicked) self.peaks.sigSelectionChanged.connect(self.peakSelectionChanged) #Reset All self.resetAllButton = qt.QPushButton(self.peaks) palette = qt.QPalette(self.resetAllButton.palette()) role = self.resetAllButton.foregroundRole() palette.setColor(role, qt.Qt.red) self.resetAllButton.setPalette(palette) self.resetAllButton.setText("Reset All") self.peaks.layout().addWidget(self.resetAllButton) self.resetAllButton.clicked.connect(self.__resetAll) layout.addWidget(self.table) layout.addWidget(line) layout.addWidget(self.peaks) if add:layout.addWidget(self.energyTable) layout.addStretch(1) self.current= None self.setSelection(peakdict) def __resetAll(self): msg=qt.QMessageBox.warning( self, "Clear selection", "Do you want to reset the selection for all elements?", qt.QMessageBox.Yes,qt.QMessageBox.No) if msg == qt.QMessageBox.No: return self.peakdict = {} self.table.setSelection(list(self.peakdict.keys())) self.peaks.setSelection([]) self.peakSelectionChanged([]) def __getZ(self,element): return ElementList.index(element) + 1 def setSelection(self,peakdict): self.peakdict = {} self.peakdict.update(peakdict) for key in list(self.peakdict.keys()): if type(self.peakdict[key])!= type([]): self.peakdict[key]= [ self.peakdict[key] ] self.table.setSelection(list(self.peakdict.keys())) def getSelection(self): ddict={} for key in list(self.peakdict.keys()): if len(self.peakdict[key]): ddict[key]= self.peakdict[key] return ddict def peakSelectionChanged(self,selection): if self.current is None: return if type(selection) != type([]): selection=selection.list self.peakdict[self.current] = selection if len(self.peakdict[self.current]): self.table.setElementSelected(self.current,1) else: self.table.setElementSelected(self.current,0) sel= self.getSelection() sel['current'] = self.current self.sigFitPeakSelect.emit((sel)) def elementClicked(self,symbol): if QTVERSION > '4.0.0':symbol = str(symbol) if not (symbol in self.peakdict): self.peakdict[symbol] = [] self.current = symbol if len(self.peakdict[self.current]): self.table.setElementSelected(self.current,1) else: self.table.setElementSelected(self.current,0) for ele in list(self.peakdict.keys()): if ele != symbol: if not len(self.peakdict[ele]): del self.peakdict[ele] sel= self.getSelection() sel['current'] = self.current self.setPeaksDisabled(symbol) self.sigFitPeakSelect.emit((sel)) self.peaks.setSelection(self.peakdict[symbol]) def setPeaksDisabled(self,symbol): z = self.__getZ(symbol) if (z > 47) and (Elements.getomegam5('Cd') > 0.0): #we have data available to support that disabled = [] elif z > 66: #self.peaks.setDisabled(['Ka','Kb']) #disabled = ['Ka','Kb'] disabled = [] elif z > 17: #self.peaks.setDisabled(['Ka','Kb','M']) #disabled = ['Ka','Kb','M'] disabled = ['M', 'M1', 'M2', 'M3', 'M4', 'M5'] elif z > 2: #self.peaks.setDisabled(['Ka','Kb','L','L1','L2','L3','M']) #disabled = ['Ka','Kb','L','L1','L2','L3','M'] disabled = ['L','L1','L2','L3','M', 'M1', 'M2', 'M3', 'M4', 'M5'] else: #self.peaks.setDisabled(['K','Ka','Kb','L','L1','L2','L3','M']) #disabled = ['Ka','Kb','L','L1','L2','L3','M'] disabled = ['Ka', 'Kb','L','L1','L2','L3','M', 'M1', 'M2', 'M3', 'M4', 'M5'] ele = symbol if self.energyValue is not None: for peak in ['K', 'Ka', 'Kb', 'L','L1','L2','L3','M', 'M1', 'M2', 'M3', 'M4', 'M5']: if peak not in disabled: if peak == 'L': if Elements.Element[ele]['binding']['L3'] > self.energyValue: disabled.append(peak) elif peak == 'M': if Elements.Element[ele]['binding']['M5'] > self.energyValue: disabled.append(peak) elif peak == 'Ka': if Elements.Element[ele]['binding']['K'] > self.energyValue: disabled.append(peak) elif peak == 'Kb': if Elements.Element[ele]['binding']['K'] > self.energyValue: disabled.append(peak) elif Elements.Element[ele]['binding'][peak] > self.energyValue: disabled.append(peak) else: pass self.peaks.setDisabled(disabled) def setEnergy(self, energy): if (energy is None) or (energy == []): self.energyValue = energy self.energy.setText("None") elif energy == "None": self.energyValue = None self.energy.setText("None") elif type(energy) == type([]): self.energyValue = max(energy) else: self.energyValue = energy self.energy.setText("%.4f" % energy) self._energyClicked() def _energyTableAction(self, ddict): _logger.debug("_energyTableAction called, ddict = %s" % ddict) elist, wlist, flist, slist= self.energyTable.getParameters() maxenergy = 0.0 for i in range(len(flist)): if flist[i]: if elist[i] is not None: if wlist[i] > 0.0: if elist[i] > maxenergy: maxenergy = elist[i] if maxenergy == 0.0:maxenergy = None self.setEnergy(maxenergy) def _energyClicked(self): string = str(self.energy.text()) string.replace(" ","") if (string != "None") and len(string): try: value = float(string) self.energyValue = value if False: self.energyButton.setFocus() except Exception: msg=qt.QMessageBox(self.energy) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec_loop() self.energy.setFocus() else: self.energyValue = None if False: self.energyButton.setFocus() self.__updateSelection() def __updateSelection(self): if self.energyValue is not None: for ele in list(self.peakdict.keys()): for peak in self.peakdict[ele]: if peak in self.peakdict[ele]: index = self.peakdict[ele].index(peak) if peak == 'L': if Elements.Element[ele]['binding']['L3'] > self.energyValue: del self.peakdict[ele][index] elif peak == 'M': if Elements.Element[ele]['binding']['M5'] > self.energyValue: del self.peakdict[ele][index] elif peak == "Ka": if Elements.Element[ele]['binding']['K'] > self.energyValue: del self.peakdict[ele][index] elif peak == "Kb": if Elements.Element[ele]['binding']['K'] > self.energyValue: del self.peakdict[ele][index] elif Elements.Element[ele]['binding'][peak] > self.energyValue: del self.peakdict[ele][index] else: pass if ele == self.current: self.peaks.setSelection(self.peakdict[ele]) self.peakSelectionChanged(self.peakdict[ele]) self.elementClicked(ele) if not len(self.peakdict[ele]): del self.peakdict[ele] dict = copy.deepcopy(self.peakdict) self.setSelection(dict) class MyQLineEdit(qt.QLineEdit): def __init__(self,parent=None,name=None): qt.QLineEdit.__init__(self,parent,name) def focusInEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('yellow')) def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) class MyQLabel(qt.QLabel): def __init__(self, parent=None, bold=True, color= qt.Qt.red): qt.QLabel.__init__(self,parent) palette = self.palette() role = self.foregroundRole() palette.setColor(role,color) self.setPalette(palette) self.font().setBold(bold) if QTVERSION < '4.0.0': def drawContents(self, painter): painter.font().setBold(self.bold) pal =self.palette() pal.setColor(qt.QColorGroup.Foreground,self.color) self.setPalette(pal) qt.QLabel.drawContents(self,painter) painter.font().setBold(0) if __name__ == "__main__": import sys def change(ddict): print("New selection:",) print(ddict) a = qt.QApplication([]) a.lastWindowClosed.connect(a.quit) w = qt.QTabWidget() f = FitPeakSelect() w.addTab(f, "QPeriodicTable") f.sigFitPeakSelect.connect(change) w.show() a.exec() a = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/MaterialEditor.py0000644000000000000000000012064414741736366022620 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import copy import logging import numpy import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaPhysics import Elements from PyMca5.PyMcaGui.plotting import PlotWindow ScanWindow = PlotWindow.PlotWindow if hasattr(qt, "QString"): QString = qt.QString else: QString = str _logger = logging.getLogger(__name__) class MaterialEditor(qt.QWidget): def __init__(self, parent=None, name="Material Editor", comments=True, height= 7, graph=None, toolmode=False): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) if graph is None: self.graph = None self.graphDialog = None else: if isinstance(graph, qt.QDialog): self.graphDialog = graph self.graph = self.graphDialog.graph else: self.graphDialog = None self.graph = graph self.__toolMode = toolmode self.build(comments, height) def build(self,comments, height): a = [] for key in Elements.Material.keys(): a.append(key) a.sort() if self.__toolMode: layout = qt.QHBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) else: layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.__hboxMaterialCombo = qt.QWidget(self) hbox = self.__hboxMaterialCombo hboxlayout = qt.QHBoxLayout(hbox) hboxlayout.setContentsMargins(0, 0, 0, 0) hboxlayout.setSpacing(0) label = qt.QLabel(hbox) label.setText("Enter name of material to be defined:") self.matCombo = MaterialComboBox(hbox,options=a) hboxlayout.addWidget(label) hboxlayout.addWidget(self.matCombo) layout.addWidget(hbox) #self.matCombo.setEditable(True) self.matCombo.sigMaterialComboBoxSignal.connect( \ self._comboSlot) self.materialGUI = MaterialGUI(self, comments=comments, height=height, toolmode=self.__toolMode) self.materialGUI.sigMaterialTransmissionSignal.connect( \ self._transmissionSlot) self.materialGUI.sigMaterialMassAttenuationSignal.connect( \ self._massAttenuationSlot) if self.__toolMode: self.materialGUI.setCurrent(a[0]) if (self.graph is None): self.graph = ScanWindow(self, newplot=False, fit=False, plugins=False, control=True, position=True) self.graph._togglePointsSignal() self.graph.enableOwnSave(True) self.graph.setDataMargins(0, 0, 0.025, 0.025) layout.addWidget(self.materialGUI) layout.addWidget(self.graph) else: self.materialGUI.setCurrent(a[0]) layout.addWidget(self.materialGUI) def importFile(self, filename): if not os.path.exists(filename): qt.QMessageBox.critical(self, "ERROR opening file", "File %s not found" % filename) return 1 Elements.Material.read(filename) error = 0 for material in list(Elements.Material.keys()): keys = list(Elements.Material[material].keys()) compoundList = [] if "CompoundList" in keys: compoundList = Elements.Material[material]["CompoundList"] if "CompoundFraction" in keys: compoundFraction = Elements.Material[material]["CompoundFraction"] if (compoundList == []) or (compoundFraction == []): #no message? error = 1 del Elements.Material[material] continue #I should try to calculate the attenuation at one energy ... try: Elements.getMaterialMassAttenuationCoefficients(compoundList, compoundFraction, energy = 10.0) except Exception: #no message? error = 1 del Elements.Material[material] if _logger.getEffectiveLevel() == logging.DEBUG: raise continue return error def _comboSlot(self, ddict): self.materialGUI.setCurrent(ddict['text']) def _addGraphDialogButton(self): self.graphDialog.okButton = qt.QPushButton(self.graphDialog) self.graphDialog.okButton.setText('OK') self.graphDialog.okButton.setAutoDefault(True) self.graphDialog.mainLayout.addWidget(self.graphDialog.okButton) self.graphDialog.okButton.clicked.connect( \ self.graphDialog.accept) def _transmissionSlot(self, ddict): try: compoundList = ddict['CompoundList'] fractionList = ddict['CompoundFraction'] density = ddict['Density'] thickness = ddict.get('Thickness', 0.1) energy = numpy.arange(1, 100, 0.1) data=Elements.getMaterialTransmission(compoundList, fractionList, energy, density=density, thickness=thickness, listoutput=False) addButton = False if self.graph is None: # probably dead code (ScanWindow not imported) self.graphDialog = qt.QDialog(self) self.graphDialog.mainLayout = qt.QVBoxLayout(self.graphDialog) self.graphDialog.mainLayout.setContentsMargins(0, 0, 0, 0) self.graphDialog.mainLayout.setSpacing(0) #self.graph = ScanWindow.ScanWindow(self.graphDialog) self.graph = ScanWindow(self.graphDialog) self.graphDialog.mainLayout.addWidget(self.graph) self.graph._togglePointsSignal() self.graph.graph.crossPicker.setEnabled(False) addButton = True if addButton: self._addGraphDialogButton() if self.__toolMode: legend = ddict['Comment'] else: legend = str(self.matCombo.currentText()) +\ " with density = %f g/cm3" % density +\ " and thickness = %f cm" % thickness self.graph.addCurve(energy, data['transmission'], legend=legend, xlabel='Energy (keV)', ylabel='Transmission', replace=True) self.graph.setGraphTitle(ddict['Comment']) if self.graphDialog is not None: self.graphDialog.exec() except Exception: msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _massAttenuationSlot(self, ddict): try: compoundList = ddict['CompoundList'] fractionList = ddict['CompoundFraction'] energy = numpy.arange(1, 100, 0.1) data=Elements.getMaterialMassAttenuationCoefficients(compoundList, fractionList, energy) addButton = False if self.graph is None: # probably dead code (ScanWindow.ScanWindow not imported) self.graphDialog = qt.QDialog(self) self.graphDialog.mainLayout = qt.QVBoxLayout(self.graphDialog) self.graphDialog.mainLayout.setContentsMargins(0, 0, 0, 0) self.graphDialog.mainLayout.setSpacing(0) #self.graph = ScanWindow.ScanWindow(self.graphDialog) self.graph = ScanWindow(self.graphDialog) self.graphDialog.mainLayout.addWidget(self.graph) self.graph._togglePointsSignal() self.graph.graph.crossPicker.setEnabled(False) addButton = True if addButton: self._addGraphDialogButton() self.graph.setGraphTitle(ddict['Comment']) legend = 'Coherent' self.graph.addCurve(energy, numpy.array(data[legend.lower()]), legend=legend, xlabel='Energy (keV)', ylabel='Mass Att. (cm2/g)', replace=True, replot=False) for legend in ['Compton', 'Photo','Total']: self.graph.addCurve(energy, numpy.array(data[legend.lower()]), legend=legend, xlabel='Energy (keV)', ylabel='Mass Att. (cm2/g)', replace=False, replot=False) self.graph.setActiveCurve(legend+' '+'Mass Att. (cm2/g)') self.graph.setGraphTitle(ddict['Comment']) if self.graphDialog is not None: self.graphDialog.exec() except Exception: msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def closeEvent(self, event): if self.graph is not None: self.graph.close() qt.QWidget.closeEvent(self, event) def show(self): if self.graph is not None: if self.graph.isHidden(): self.graph.show() qt.QWidget.show(self) class MaterialComboBox(qt.QComboBox): sigMaterialComboBoxSignal = qt.pyqtSignal(object) def __init__(self,parent=None,name = None,fl = 0, options=['1','2','3'],row=None,col=None): if row is None: row = 0 if col is None: col = 0 self.row = row self.col = col qt.QComboBox.__init__(self,parent) self.setOptions(options) self.ownValidator = MaterialValidator(self) self.setDuplicatesEnabled(False) self.setEditable(True) self._line = self.lineEdit() self.lastText = "_U_N1iKeLyText" if hasattr(self, "textActivated"): self.textActivated[str].connect(self._mySignal) else: self.activated[str].connect(self._mySignal) self._line.editingFinished.connect(self._mySlot) def setCurrentText(self, qstring): qt.QComboBox.setEditText(self, qstring) def setOptions(self,options=['1','2','3']): self.clear() for item in options: self.addItem(item) def getCurrent(self): return self.currentItem(),str(self.currentText()) def _mySignal(self, qstring0): qstring = qstring0 text = str(qstring0) if text == '-': return (result, index) = self.ownValidator.validate(qstring,0) if result != self.ownValidator.Valid: qstring = self.ownValidator.fixup(qstring) (result, index) = self.ownValidator.validate(qstring,0) if result != self.ownValidator.Valid: text = str(qstring) if "%" in text: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Material Name '%s'\n" % text + \ "It contains a % character.\n") msg.exec() msg = qt.QMessageBox.No elif text.endswith(" ") or text.startswith(" "): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Material Name '%s'\n" % text + \ "It starts or ends with a space character.\n") msg.exec() msg = qt.QMessageBox.No else: try: # this test is needed even if pyflakes complains float(text) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Material Name %s\n" % text + \ "You cannot use a number as material name.\n" +\ "Hint: You can use _%s_" % text) msg.exec() msg = qt.QMessageBox.No except Exception: msg=qt.QMessageBox.information( self, "Invalid Material %s" % str(qstring), "The material %s is not a valid Formula " \ "nor a valid Material.\n" \ "Do you want to define the material %s\n" % \ (str(qstring), str(qstring)), qt.QMessageBox.Yes,qt.QMessageBox.No) if msg == qt.QMessageBox.No: self.setCurrentIndex(0) for i in range(self.count()): selftext = self.itemText(i) if selftext == qstring0: self.removeItem(i) return else: qstring = qstring0 text = str(qstring) if Elements.isValidFormula(text): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Material Name %s\n" % text + \ "The material is a valid Formula.\n " \ "There is no need to define it.") msg.exec() self.setCurrentIndex(0) for i in range(self.count()): selftext = self.itemText(i) if selftext == qstring0: self.removeItem(i) break return self.setCurrentText(text) self.lastText = text ddict = {} ddict['event'] = 'activated' ddict['row'] = self.row ddict['col'] = self.col ddict['text'] = text if qstring0 != qstring: self.removeItem(self.count()-1) insert = True for i in range(self.count()): selftext = self.itemText(i) if qstring == selftext: insert = False if insert: self.insertItem(self.count(), qstring) self.sigMaterialComboBoxSignal.emit(ddict) def _mySlot(self): current = str(self.currentText()) if current != self.lastText: self._mySignal(self.currentText()) class MaterialValidator(qt.QValidator): def __init__(self, *var): qt.QValidator.__init__(self, *var) if hasattr(self, "Acceptable"): self.Valid = self.Acceptable else: self.Valid = qt.QValidator.State.Acceptable if not hasattr(self, "Invalid"): self.Invalid = qt.QValidator.State.Invalid def fixup(self, qstring): if qstring is None: return None text = str(qstring) key = Elements.getMaterialKey(text) if key is not None: return QString(key) else: return qstring def validate(self, qstring, pos): text = str(qstring) if "%" in text: return (self.Invalid, pos) if text == '-': return (self.Valid, pos) try: # this test is needed even if pyflakes complains! float(text) return (self.Invalid, pos) except Exception: pass if text.endswith(' '): return (self.Invalid, pos) if Elements.isValidFormula(text): return (self.Valid, pos) elif Elements.isValidMaterial(text): return (self.Valid, pos) else: return (self.Invalid,pos) class MaterialGUI(qt.QWidget): sigMaterialMassAttenuationSignal = qt.pyqtSignal(object) sigMaterialTransmissionSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="New Material",default=None, comments=True, height=10, toolmode=False): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) if default is None: default = {} self._default = default self._setCurrentDefault() for key in default.keys(): if key in self._current: self._current[key] = self._default[key] self.__lastRow = None self.__lastColumn = None self.__fillingValues = True self.__toolMode = toolmode if toolmode: self.buildToolMode(comments,height) else: self.build(comments,height) def _setCurrentDefault(self): self._current = {'Comment':"New Material", 'CompoundList':[], 'CompoundFraction':[1.0], 'Density':1.0, 'Thickness':1.0} def build(self,comments="True",height=3): layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.__comments = comments commentsHBox = qt.QWidget(self) layout.addWidget(commentsHBox) commentsHBoxLayout = qt.QHBoxLayout(commentsHBox) commentsHBoxLayout.setContentsMargins(0, 0, 0, 0) commentsHBoxLayout.setSpacing(0) tableContainer = qt.QWidget(commentsHBox) commentsHBoxLayout.addWidget(tableContainer) tableContainerLayout = qt.QVBoxLayout(tableContainer) tableContainerLayout.setContentsMargins(0, 0, 0, 0) tableContainerLayout.setSpacing(0) self.__hboxTableContainer = qt.QWidget(tableContainer) hbox = self.__hboxTableContainer tableContainerLayout.addWidget(hbox) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(0) numberLabel = qt.QLabel(hbox) hboxLayout.addWidget(numberLabel) numberLabel.setText("Number of Compounds:") numberLabel.setAlignment(qt.Qt.AlignVCenter) self.__numberSpin = qt.QSpinBox(hbox) hboxLayout.addWidget(self.__numberSpin) self.__numberSpin.setMinimum(1) self.__numberSpin.setMaximum(100) self.__numberSpin.setValue(1) self.__table = qt.QTableWidget(tableContainer) self.__table.setRowCount(1) self.__table.setColumnCount(2) tableContainerLayout.addWidget(self.__table) self.__table.setMinimumHeight((height)*self.__table.horizontalHeader().sizeHint().height()) self.__table.setMaximumHeight((height)*self.__table.horizontalHeader().sizeHint().height()) self.__table.setMinimumWidth(1*self.__table.sizeHint().width()) self.__table.setMaximumWidth(1*self.__table.sizeHint().width()) #self.__table.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed,qt.QSizePolicy.Fixed)) labels = ["Material", "Mass Fraction"] for i in range(len(labels)): item = self.__table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i],qt.QTableWidgetItem.Type) self.__table.setHorizontalHeaderItem(i,item) self.__table.setSelectionMode(qt.QTableWidget.NoSelection) if self.__comments: vbox = qt.QWidget(commentsHBox) commentsHBoxLayout.addWidget(vbox) vboxLayout = qt.QVBoxLayout(vbox) #default thickness and density self.__gridVBox = qt.QWidget(vbox) grid = self.__gridVBox vboxLayout.addWidget(grid) gridLayout = qt.QGridLayout(grid) gridLayout.setContentsMargins(11, 11, 11, 11) gridLayout.setSpacing(4) densityLabel = qt.QLabel(grid) gridLayout.addWidget(densityLabel, 0, 0) densityLabel.setText("Default Density (g/cm3):") densityLabel.setAlignment(qt.Qt.AlignVCenter) self.__densityLine = qt.QLineEdit(grid) validator = qt.CLocaleQDoubleValidator(self.__densityLine) self.__densityLine.setValidator(validator) self.__densityLine.setReadOnly(False) gridLayout.addWidget(self.__densityLine, 0, 1) thicknessLabel = qt.QLabel(grid) gridLayout.addWidget(thicknessLabel, 1, 0) thicknessLabel.setText("Default Thickness (cm):") thicknessLabel.setAlignment(qt.Qt.AlignVCenter) self.__thicknessLine = qt.QLineEdit(grid) validator = qt.CLocaleQDoubleValidator(self.__thicknessLine) self.__thicknessLine.setValidator(validator) gridLayout.addWidget(self.__thicknessLine, 1, 1) self.__thicknessLine.setReadOnly(False) self.__densityLine.editingFinished[()].connect( \ self.__densitySlot) self.__thicknessLine.editingFinished[()].connect( \ self.__thicknessSlot) self.__transmissionButton = qt.QPushButton(grid) self.__transmissionButton.setText('Material Transmission') gridLayout.addWidget(self.__transmissionButton, 2, 0) self.__massAttButton = qt.QPushButton(grid) self.__massAttButton.setText('Mass Att. Coefficients') gridLayout.addWidget(self.__massAttButton, 2, 1) self.__transmissionButton.setAutoDefault(False) self.__massAttButton.setAutoDefault(False) self.__transmissionButton.clicked.connect( self.__transmissionSlot) self.__massAttButton.clicked.connect( self.__massAttSlot) vboxLayout.addWidget(qt.VerticalSpacer(vbox)) if self.__comments: #comment nameHBox = qt.QWidget(self) nameHBoxLayout = qt.QHBoxLayout(nameHBox) nameLabel = qt.QLabel(nameHBox) nameHBoxLayout.addWidget(nameLabel) nameLabel.setText("Material Name/Comment:") nameLabel.setAlignment(qt.Qt.AlignVCenter) nameHBoxLayout.addWidget(qt.HorizontalSpacer(nameHBox)) self.__nameLine = qt.QLineEdit(nameHBox) self.__nameLine.editingFinished[()].connect(self.__nameLineSlot) nameHBoxLayout.addWidget(self.__nameLine) self.__nameLine.setReadOnly(False) longtext="En un lugar de La Mancha, de cuyo nombre no quiero acordarme ..." self.__nameLine.setFixedWidth(self.__nameLine.fontMetrics().maxWidth()*len(longtext)) layout.addWidget(nameHBox) self.__numberSpin.valueChanged[int].connect(self.__numberSpinChanged) self.__table.cellChanged[int,int].connect(self.__tableSlot) self.__table.cellEntered[int,int].connect(self.__tableSlot2) def buildToolMode(self, comments="True",height=3): layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.__comments = comments grid = qt.QWidget(self) gridLayout = qt.QGridLayout(grid) gridLayout.setContentsMargins(11, 11, 11, 11) gridLayout.setSpacing(4) numberLabel = qt.QLabel(grid) numberLabel.setText("Number of Compounds:") numberLabel.setAlignment(qt.Qt.AlignVCenter) self.__numberSpin = qt.QSpinBox(grid) self.__numberSpin.setMinimum(1) self.__numberSpin.setMaximum(30) self.__numberSpin.setValue(1) tableContainer = qt.QWidget(self) tableContainerLayout = qt.QVBoxLayout(tableContainer) tableContainerLayout.setContentsMargins(0, 0, 0, 0) tableContainerLayout.setSpacing(0) self.__tableContainer = tableContainer self.__table = qt.QTableWidget(tableContainer) self.__table.setRowCount(1) self.__table.setColumnCount(2) tableContainerLayout.addWidget(self.__table) self.__table.setMinimumHeight((height)*self.__table.horizontalHeader().sizeHint().height()) self.__table.setMaximumHeight((height)*self.__table.horizontalHeader().sizeHint().height()) self.__table.setMinimumWidth(1*self.__table.sizeHint().width()) self.__table.setMaximumWidth(1*self.__table.sizeHint().width()) labels = ["Material", "Mass Fraction"] for i in range(len(labels)): item = self.__table.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i],qt.QTableWidgetItem.Type) self.__table.setHorizontalHeaderItem(i,item) self.__table.setSelectionMode(qt.QTableWidget.NoSelection) densityLabel = qt.QLabel(grid) densityLabel.setText("Density (g/cm3):") densityLabel.setAlignment(qt.Qt.AlignVCenter) self.__densityLine = qt.QLineEdit(grid) self.__densityLine.setText("1.0") validator = qt.CLocaleQDoubleValidator(self.__densityLine) self.__densityLine.setValidator(validator) self.__densityLine.setReadOnly(False) thicknessLabel = qt.QLabel(grid) thicknessLabel.setText("Thickness (cm):") thicknessLabel.setAlignment(qt.Qt.AlignVCenter) self.__thicknessLine = qt.QLineEdit(grid) self.__thicknessLine.setText("0.1") validator = qt.CLocaleQDoubleValidator(self.__thicknessLine) self.__thicknessLine.setValidator(validator) self.__thicknessLine.setReadOnly(False) self.__transmissionButton = qt.QPushButton(grid) self.__transmissionButton.setText('Material Transmission') self.__massAttButton = qt.QPushButton(grid) self.__massAttButton.setText('Mass Att. Coefficients') self.__transmissionButton.setAutoDefault(False) self.__massAttButton.setAutoDefault(False) nameHBox = qt.QWidget(grid) nameHBoxLayout = qt.QHBoxLayout(nameHBox) nameHBoxLayout.setContentsMargins(0, 0, 0, 0) nameHBoxLayout.setSpacing(0) nameLabel = qt.QLabel(nameHBox) nameLabel.setText("Name:") nameLabel.setAlignment(qt.Qt.AlignVCenter) self.__nameLine = qt.QLineEdit(nameHBox) self.__nameLine.setReadOnly(False) if self.__toolMode: toolTip = "Type your material name and press the ENTER key.\n" toolTip += "Fitting materials cannot be defined or redefined here.\n" toolTip += "Use the material editor of the advanced fit for it.\n" self.__nameLine.setToolTip(toolTip) nameHBoxLayout.addWidget(nameLabel) nameHBoxLayout.addWidget(self.__nameLine) gridLayout.addWidget(nameHBox, 0, 0, 1, 2) gridLayout.addWidget(numberLabel, 1, 0) gridLayout.addWidget(self.__numberSpin, 1, 1) gridLayout.addWidget(self.__tableContainer, 2, 0, 1, 2) gridLayout.addWidget(densityLabel, 3, 0) gridLayout.addWidget(self.__densityLine, 3, 1) gridLayout.addWidget(thicknessLabel, 4, 0) gridLayout.addWidget(self.__thicknessLine, 4, 1) gridLayout.addWidget(self.__transmissionButton, 5, 0) gridLayout.addWidget(self.__massAttButton, 5, 1) layout.addWidget(grid) layout.addWidget(qt.VerticalSpacer(self)) #build all the connections self.__nameLine.editingFinished[()].connect(self.__nameLineSlot) self.__numberSpin.valueChanged[int].connect(self.__numberSpinChanged) self.__table.cellChanged[int,int].connect(self.__tableSlot) self.__table.cellEntered[int,int].connect(self.__tableSlot2) self.__densityLine.editingFinished[()].connect( self.__densitySlot) self.__thicknessLine.editingFinished[()].connect(self.__thicknessSlot) self.__transmissionButton.clicked.connect(self.__transmissionSlot) self.__massAttButton.clicked.connect(self.__massAttSlot) def setCurrent(self, matkey0): _logger.debug("setCurrent(self, matkey0=%s)", matkey0) matkey = Elements.getMaterialKey(matkey0) if self._default == {}: firstTime = True else: firstTime = False if matkey is not None: if self.__toolMode: #make sure the material CANNOT be modified self._current = copy.deepcopy(Elements.Material[matkey]) if self.__table.isEnabled(): self.__disableInput() else: self._current = Elements.Material[matkey] else: self._setCurrentDefault() if not self.__toolMode: Elements.Material[matkey0] = self._current self.__numberSpin.setFocus() try: self._fillValues() self._updateCurrent() finally: if self.__toolMode: self.__nameLine.setText("%s" % matkey) self.__fillingValues = False if firstTime: self.__table.resizeColumnToContents(0) def _fillValues(self): _logger.debug("fillValues(self)") self.__fillingValues = True if self.__comments: self.__nameLine.setText("%s" % self._current['Comment']) try: self.__densityLine.setText("%.5g" % self._current['Density']) except Exception: self.__densityLine.setText("") if 'Thickness' in self._current.keys(): try: self.__thicknessLine.setText("%.5g" % self._current['Thickness']) except Exception: self.__thicknessLine.setText("") if type(self._current['CompoundList']) != type([]): self._current['CompoundList'] = [self._current['CompoundList']] if type(self._current['CompoundFraction']) != type([]): self._current['CompoundFraction'] = [self._current['CompoundFraction']] self.__numberSpin.setValue(max(len(self._current['CompoundList']),1)) row = 0 for compound in self._current['CompoundList']: item = self.__table.item(row,0) if item is None: item = qt.QTableWidgetItem(compound,qt.QTableWidgetItem.Type) self.__table.setItem(row,0,item) else: item.setText(compound) item = self.__table.item(row,1) if item is None: item = qt.QTableWidgetItem("%.5g" % self._current['CompoundFraction'][row], qt.QTableWidgetItem.Type) self.__table.setItem(row,1,item) else: item.setText("%.5g" % self._current['CompoundFraction'][row]) row += 1 self.__fillingValues = False # http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=666503 def _updateCurrent(self): _logger.debug("updateCurrent(self)") _logger.debug("self._current before = %s", self._current) self._current['CompoundList'] = [] self._current['CompoundFraction'] = [] for i in range(self.__table.rowCount()): item = self.__table.item(i, 0) if item is None: item = qt.QTableWidgetItem("", qt.QTableWidgetItem.Type) txt0 = str(item.text()) item = self.__table.item(i, 1) if item is None: item = qt.QTableWidgetItem("", qt.QTableWidgetItem.Type) txt1 = str(item.text()) if (len(txt0) > 0) and (len(txt1) > 0): self._current['CompoundList'].append(txt0) self._current['CompoundFraction'].append(float(txt1)) self.__densitySlot(silent=True) self.__thicknessSlot(silent=True) _logger.debug("self._current after = %s", self._current) def __densitySlot(self, silent=False): try: qstring = self.__densityLine.text() text = str(qstring) if len(text): value = float(str(qstring)) self._current['Density'] = value except Exception: if silent: return msg=qt.QMessageBox(self.__densityLine) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.__densityLine.setFocus() def __thicknessSlot(self, silent=False): try: qstring = self.__thicknessLine.text() text = str(qstring) if len(text): value = float(text) self._current['Thickness'] = value except Exception: if silent: return msg=qt.QMessageBox(self.__thicknessLine) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.__thicknessLine.setFocus() def __transmissionSlot(self): ddict = {} ddict.update(self._current) ddict['event'] = 'MaterialTransmission' self.sigMaterialTransmissionSignal.emit(ddict) def __massAttSlot(self): ddict = {} ddict.update(self._current) ddict['event'] = 'MaterialMassAttenuation' self.sigMaterialMassAttenuationSignal.emit(ddict) def __nameLineSlot(self): _logger.debug("__nameLineSlot(self)") qstring = self.__nameLine.text() text = str(qstring) if self.__toolMode: if len(text): matkey = Elements.getMaterialKey(text) if matkey is not None: self.setCurrent(matkey) #Disable everything self.__disableInput() elif text in Elements.ElementList: self.__disableInput() name = Elements.Element[text]['name'] self._current['Comment'] = name[0].upper() + name[1:] self._current['CompoundList'] = [text+"1"] self._current['CompoundFraction'] = [1.0] self._current['Density'] = Elements.Element[text]['density'] self._fillValues() self._updateCurrent() self.__nameLine.setText("%s" % text) else: self._current['Comment'] = text self.__numberSpin.setEnabled(True) self.__table.setEnabled(True) self.__densityLine.setEnabled(True) self.__thicknessLine.setEnabled(True) else: self._current['Comment'] = text def __disableInput(self): self.__numberSpin.setEnabled(False) self.__table.setEnabled(False) self.__densityLine.setEnabled(False) self.__thicknessLine.setEnabled(True) def __numberSpinChanged(self,value): #size = self.__table.size() self.__table.setRowCount(value) rheight = self.__table.horizontalHeader().sizeHint().height() nrows = self.__table.rowCount() for idx in range(nrows): self.__table.setRowHeight(idx, rheight) if len(self._current['CompoundList']) > value: self._current['CompoundList'] = self._current['CompoundList'][0:value] if len(self._current['CompoundFraction']) > value: self._current['CompoundFraction'] = self._current['CompoundFraction'][0:value] def __tableSlot(self,row, col): if self.__fillingValues: return item = self.__table.item(row, col) if item is not None: _logger.debug("table item is None") qstring = item.text() else: qstring = "" if col == 0: compound = str(qstring) if Elements.isValidFormula(compound): pass else: matkey = Elements.getMaterialKey(compound) if matkey is not None: item.setText(matkey) else: msg=qt.QMessageBox(self.__table) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Formula %s" % compound) msg.exec() self.__table.setCurrentCell(row, col) return else: try: float(str(qstring)) except Exception: msg=qt.QMessageBox(self.__table) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.__table.setCurrentCell(row, col) return self._updateCurrent() def __tableSlot2(self,row, col): if self.__fillingValues:return if self.__lastRow is None: self.__lastRow = row if self.__lastColumn is None: self.__lastColumn = col item = self.__table.item(self.__lastRow, self.__lastColumn) if item is None: item = qt.QTableWidgetItem("",qt.QTableWidgetItem.Type) self.__table.setItem(self.__lastRow, self.__lastColumn, item) qstring = item.text() if self.__lastColumn == 0: compound = str(qstring) if Elements.isValidFormula(compound): pass else: matkey = Elements.getMaterialKey(compound) if matkey is not None: item = self.__table.item(self.__lastRow, self.__lastColumn) if item is None: item = qt.QTableWidgetItem(matkey, qt.QTableWidgetItem.Type) self.__table.setItem(self.__lastRow, self.__lastColumn, item) else: item.setText(matkey) else: msg=qt.QMessageBox(self.__table) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Formula %s" % compound) msg.exec() self.__table.setCurrentCell(self.__lastRow, self.__lastColumn) return else: try: float(str(qstring)) except Exception: msg=qt.QMessageBox(self.__table) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.__table.setCurrentCell(self.__lastRow, self.__lastColumn) return self._updateCurrent() if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if len(sys.argv) > 1: demo = MaterialEditor(toolmode=True) else: demo = MaterialEditor(toolmode=False) demo.show() ret = app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/MatrixEditor.py0000644000000000000000000003277214741736366022332 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy from PyMca5.PyMcaGui import PyMcaQt as qt from . import MaterialEditor from . import MatrixImage QTVERSION = qt.qVersion() class MatrixEditor(qt.QWidget): def __init__(self, parent=None, name="Matrix Editor",current=None, table=True,orientation="vertical",thickness=True, density=True, size=None): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self._current={'Density': 1.0, 'Thickness': 1.0, 'AlphaIn': 45.0, 'AlphaOut': 45.0, 'AlphaScatteringFlag':False, 'AlphaScattering': 90, 'Material': "Water"} if current is not None: self._current.update(current) self.build(table,orientation, thickness, density, size) self._update() def build(self, table,orientation, thickness, density, size=None): if size is None: size="medium" layout = qt.QHBoxLayout(self) if table: #the material definition matBox = qt.QWidget(self) layout.addWidget(matBox) matBoxLayout = qt.QVBoxLayout(matBox) self.materialEditor = MaterialEditor.MaterialEditor(matBox, comments=False, height=7) matBoxLayout.addWidget(self.materialEditor) matBoxLayout.addWidget(qt.VerticalSpacer(matBox)) else: self.materialEditor = None #the matrix definition sampleBox = qt.QWidget(self) layout.addWidget(sampleBox) if orientation == "vertical": sampleBoxLayout = qt.QVBoxLayout(sampleBox) else: sampleBoxLayout = qt.QHBoxLayout(sampleBox) #the image if orientation == "vertical": labelHBox = qt.QWidget(sampleBox) sampleBoxLayout.addWidget(labelHBox) labelHBoxLayout = qt.QHBoxLayout(labelHBox) labelHBoxLayout.addWidget(qt.HorizontalSpacer(labelHBox)) label = MatrixImage.MatrixImage(labelHBox,size=size) labelHBoxLayout.addWidget(label) labelHBoxLayout.addWidget(qt.HorizontalSpacer(labelHBox)) else: labelHBox = qt.QWidget(sampleBox) sampleBoxLayout.addWidget(labelHBox) labelHBoxLayout = qt.QVBoxLayout(labelHBox) labelHBoxLayout.setContentsMargins(0, 0, 0, 0) labelHBoxLayout.setSpacing(4) label = MatrixImage.MatrixImage(labelHBox,size=size) labelHBoxLayout.addWidget(label) if orientation != "vertical": labelHBoxLayout.addWidget(qt.VerticalSpacer(labelHBox)) self.imageLabel = label #the input fields container self.__gridSampleBox = qt.QWidget(sampleBox) grid = self.__gridSampleBox sampleBoxLayout.addWidget(grid) if QTVERSION < '4.0.0': gridLayout=qt.QGridLayout(grid,6,2,11,4) else: gridLayout = qt.QGridLayout(grid) gridLayout.setContentsMargins(11, 11, 11, 11) gridLayout.setSpacing(4) #the angles angle1Label = qt.QLabel(grid) angle1Label.setText("Incoming Angle (deg.):") self.__angle1Line = MyQLineEdit(grid) self.__angle1Line.setReadOnly(False) angle2Label = qt.QLabel(grid) angle2Label.setText("Outgoing Angle (deg.):") self.__angle2Line = MyQLineEdit(grid) self.__angle2Line.setReadOnly(False) self.__angle3Label = qt.QCheckBox(grid) self.__angle3Label.setText("Scattering Angle (deg.):") self.__angle3Line = MyQLineEdit(grid) self.__angle3Line.setReadOnly(False) self.__angle3Line.setDisabled(True) if QTVERSION < '4.0.0': angle1Label.setAlignment(qt.QLabel.WordBreak | \ qt.QLabel.AlignVCenter) angle2Label.setAlignment(qt.QLabel.WordBreak | \ qt.QLabel.AlignVCenter) else: angle1Label.setAlignment(qt.Qt.AlignVCenter) angle2Label.setAlignment(qt.Qt.AlignVCenter) self.__angle3Label.setChecked(0) gridLayout.addWidget(angle1Label, 0, 0) gridLayout.addWidget(self.__angle1Line, 0, 1) gridLayout.addWidget(angle2Label, 1, 0) gridLayout.addWidget(self.__angle2Line, 1, 1) gridLayout.addWidget(self.__angle3Label, 2, 0) gridLayout.addWidget(self.__angle3Line, 2, 1) rowoffset = 3 #thickness and density if density: densityLabel = qt.QLabel(grid) densityLabel.setText("Sample Density (g/cm3):") if QTVERSION < '4.0.0': densityLabel.setAlignment(qt.QLabel.WordBreak | \ qt.QLabel.AlignVCenter) else: densityLabel.setAlignment(qt.Qt.AlignVCenter) self.__densityLine = MyQLineEdit(grid) self.__densityLine.setReadOnly(False) gridLayout.addWidget(densityLabel, rowoffset, 0) gridLayout.addWidget(self.__densityLine, rowoffset, 1) rowoffset = rowoffset + 1 else: self.__densityLine = None if thickness: thicknessLabel = qt.QLabel(grid) thicknessLabel.setText("Sample Thickness (cm):") if QTVERSION < '4.0.0': thicknessLabel.setAlignment(qt.QLabel.WordBreak | \ qt.QLabel.AlignVCenter) else: thicknessLabel.setAlignment(qt.Qt.AlignVCenter) self.__thicknessLine = MyQLineEdit(grid) self.__thicknessLine.setReadOnly(False) gridLayout.addWidget(thicknessLabel, rowoffset, 0) gridLayout.addWidget(self.__thicknessLine, rowoffset, 1) rowoffset = rowoffset + 1 else: self.__thicknessLine = None gridLayout.addWidget(qt.VerticalSpacer(grid), rowoffset, 0) gridLayout.addWidget(qt.VerticalSpacer(grid), rowoffset, 1) self.__angle1Line.sigMyQLineEditSignal.connect(self.__angle1Slot) self.__angle2Line.sigMyQLineEditSignal.connect(self.__angle2Slot) self.__angle3Line.sigMyQLineEditSignal.connect(self.__angle3Slot) if self.__densityLine is not None: self.__densityLine.sigMyQLineEditSignal.connect(self.__densitySlot) if self.__thicknessLine is not None: self.__thicknessLine.sigMyQLineEditSignal.connect(self.__thicknessSlot) self.__angle3Label.clicked.connect(self.__angle3LabelSlot) if orientation == "vertical": sampleBoxLayout.addWidget(qt.VerticalSpacer(sampleBox)) def setParameters(self, param): for key in param.keys(): self._current[key] = param[key] self._update() def getParameters(self, param = None): if param is None: return copy.deepcopy(self._current) elif param in self._current.keys(): return self._current[param] else: raise KeyError("%s" % param) return def _update(self): if self.materialEditor is not None: self.materialEditor.materialGUI.setCurrent(self._current['Material']) self.__angle1Line.setText("%.5g" % self._current['AlphaIn']) self.__updateImage() self.__angle2Line.setText("%.5g" % self._current['AlphaOut']) if self._current['AlphaScatteringFlag']: self.__angle3Label.setChecked(1) self.__angle3Line.setEnabled(True) self.__angle3Line.setText("%.5g" % self._current['AlphaScattering']) else: self.__angle3Label.setChecked(False) self.__angle3LabelSlot() if self.__densityLine is not None: self.__densityLine.setText("%.5g" % self._current['Density']) if self.__thicknessLine is not None: self.__thicknessLine.setText("%.5g" % self._current['Thickness']) def __angle1Slot(self, ddict): if (ddict['value'] < -90.) or (ddict['value'] > 90.): msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Incident beam angle has to be in the range [-90, 90]") if QTVERSION < '4.0.0': msg.exec_loop() else: msg.setWindowTitle("Angle Error") msg.exec() self.__angle1Line.setFocus() return doit = False if self._current['AlphaIn'] > 0: if ddict['value'] < 0: doit = True elif self._current['AlphaIn'] < 0: if ddict['value'] > 0: doit = True self._current['AlphaIn'] = ddict['value'] if doit: self.__updateImage() self.__updateScattering() def __updateImage(self): if self._current['AlphaIn'] < 0: self.imageLabel.setPixmap("image2trans") else: self.imageLabel.setPixmap("image2") def __angle2Slot(self, ddict): if (ddict['value'] <= 0.0) or (ddict['value'] > 180.): msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Fluorescent beam angle has to be in the range ]0, 180[") if QTVERSION < '4.0.0': msg.exec_loop() else: msg.setWindowTitle("Angle Error") msg.exec() self.__angle2Line.setFocus() return self._current['AlphaOut'] = ddict['value'] self.__updateScattering() def __angle3Slot(self, ddict): self._current['AlphaScattering'] = ddict['value'] def __angle3LabelSlot(self): if self.__angle3Label.isChecked(): self._current['AlphaScatteringFlag'] = 1 self.__angle3Line.setEnabled(True) else: self._current['AlphaScatteringFlag'] = 0 self.__angle3Line.setEnabled(False) self.__updateScattering() def __updateScattering(self): if not self.__angle3Label.isChecked(): self._current['AlphaScattering'] = self._current['AlphaIn'] +\ self._current['AlphaOut'] self.__angle3Line.setText("%.5g" % self._current['AlphaScattering']) def __thicknessSlot(self, ddict): self._current['Thickness'] = ddict['value'] def __densitySlot(self, ddict): self._current['Density'] = ddict['value'] class MyQLineEdit(qt.QLineEdit): sigMyQLineEditSignal = qt.pyqtSignal(object) def __init__(self,parent=None,name=None): qt.QLineEdit.__init__(self,parent) self.editingFinished.connect(self.__mySlot) if QTVERSION < '4.0.0': def focusInEvent(self,event): self.backgroundcolor = self.paletteBackgroundColor() self.setPaletteBackgroundColor(qt.QColor('yellow')) def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) self.__mySlot() def setPaletteBackgroundColor(self, color): qt.QLineEdit.setPaletteBackgroundColor(self, color) def __mySlot(self): qstring = self.text() text = str(qstring) try: if len(text): value = float(str(qstring)) ddict={} ddict['event'] = 'returnPressed' ddict['value'] = value ddict['text'] = text ddict['qstring'] = qstring self.sigMyQLineEditSignal.emit(ddict) except Exception: msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.setFocus() if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed[()].connect(app.quit) #demo = MatrixEditor(table=False, orientation="horizontal") demo = MatrixEditor(table=True, orientation="vertical") demo.show() app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/MatrixImage.py0000644000000000000000000053046314741736366022126 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt image2=["312 177 16 1", " c black", ". c maroon", "X c green", "o c olive", "O c navy", "+ c purple", "@ c teal", "# c fractal", "$ c silver", "% c red", "& c lime", "* c yellow", "= c blue", "- c fuchsia", "; c aqua", ": c none", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::: :::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::: :::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::", "::::===:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::%%%%%%%%:::::::::::::", "::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::%%%%%%%%%%%::::::::::::::", ":::::=====::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::%%%%%%%%%%%%%%%::::::::::::::", "::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::%%%%%%%%%%%%%:::::::::::::::", ":::::::======::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::%%%%%%%%%%%%:::::::::::::::", ":::::::::=====::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::::::::::%%%%%%%%%%::::::::::::::::", "::::::::::======::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::::::::::%%%%%%%%%::::::::::::::::", "::::::::::::=====::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::::::::%%%%%%%%%:::::::::::::::::", ":::::::::::::======::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::::::%%%%%%%%%%:::::::::::::::::", ":::::::::::::::=====::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::::%%%%:%%%%%::::::::::::::::::", "::::::::::::::::======:::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :::::::::::::::::%%%%:::%%%%::::::::::::::::::", "::::::::::::::::::=====::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::::::::%%%%%:::::%%:::::::::::::::::::", ":::::::::::::::::::======:::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: ::::::::::::%%%%%:::::::%:::::::::::::::::::", ":::::::::::::::::::::=====::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: ::::::::::%%%%:::::::::::::::::::::::::::::", "::::::::::::::::::::::======:::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: ::::::::%%%%::::::::::::::::::::::::::::::", "::::::::::::::::::::::::=====:::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: :::::%%%%%:::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::======:::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: :::%%%%%::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::=====:::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: :%%%%::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::======::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: %%%:::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::=====:::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::: %::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::======::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::::% ::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::=====:::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::::%%% :::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::======::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: ::::%%%%: ::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::=====::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: :%%%%%::: :::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::======::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: %%%%::::: ::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::=====::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::: %:::::::: :::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::======: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::% ::::::::: ::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::==== ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::%%%% ::::::::: :::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::== :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::%%%%%: ::::::::: ::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::: =::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :%%%%:::: ::::::::: :::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::: ====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%:::::: ::::::::: ::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::: =====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %:::::::: ::::::::: :::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::: ::======::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::% ::::::::: ::::::::: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::: ::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%% ::::::::: ::::::::: :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::: ::::::======:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%: ::::::::: ::::::::: ::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::: :::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::: ::::::::: ::::::::: :::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::: ::::::::::======:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::: ::::::::: ::::::::: ::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::: :::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::: ::::::::: ::::::::: :::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::: :::::::::::::::======::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::: ::::::::: ::::::::: ::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::: :::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::: ::::::::: ::::::::: :::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::: :::::::::::::::::::======::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::: ::::::::: ::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::: ::::::::: :::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::======:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::: ::::::::: ::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::: ::::::::: :::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::======:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::: ::::::::: ::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::: ::::::::: :::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::======::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::: ::::::::: ::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::: ::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::: ::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::: ::: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::: ::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::: ::::: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::: ::::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: ::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::: ::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: ::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::::::::: ::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: ::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%% ::::::::::::::::::::::::::::::::::: ::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: ::::::: :::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:: :::::::::::::::::::::::::::::::::: ::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: ::::::: :::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::: :::::::::::::::::::::::::::::::::: ::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::: :::::: ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::: ::::::::::::::::::::::::::::::::: :::::: ::: :::::::::::::::::::: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::: ::::: : :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::: ::::::::::::::::::::::::::::::::: ::::: : :: :::::::::::::::::::: ::::::::::::::::::::::::::::::::::", "::::::::::::::::::: ::: :: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::: ::::::::::::::::::::::::::::::::: ::: :: :::::::::::::::::::: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::: :::: :: ::: : ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::: ::::::::::::::::::::::::::::::::: :::: :::: ::: :: : ::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::: :: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::: :: ::: ::: :: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::: ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::: ::: :: ::: :: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::: ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::: ::: :: ::: :: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::: ::: :: ::: :: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::: ::: :: ::: :: ::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::: :: ::: :: : : ::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::: : : :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::: ::::: : ::: :::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::::::::%%%%::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::=====::::::::::::::::::::::::::::::::::%%%%:::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::=====:::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::=====::::::::=:::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::=====::::::===:::::::::::::::::%%%%::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::=====:::====::::::::::::::::%%%%::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::=====::=====:::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::==========::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::==========::::::::::%%%%::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::=========:::::::::%%%%:::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::==========::::::%%%%%::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::===========:::::%%%%%:::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::=============:::%%%%::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::==============::%%%%:::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::: :::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=======%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::: :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::: :::::: :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::::: :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::::: :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::::: :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::: : :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::: : :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::: ::: : :: ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::: :: :::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ::::::::::: :::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :::::::::::: ::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :::::::::::: ::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% :::::::::::: :::::: : ::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::: ::::::: : :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::: ::::::: :: :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::: :: :: :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: :::: :: :: :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::: ::: :: :: :::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::: : : ::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::"] image2trans =["312 177 6 1", " c black", ". c blue", "X c purple", "o c red", "O c red", "+ c none", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++oo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++oooooo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++oooooooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++++++++++++++oooooooooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ ++++++++++++++oooooooo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ ++++++++++++++ooooooo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++ ++++ ++++++++++++oooooooo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++++++++++ ++++ ++++++++++oooooooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ +++++++++++ ++++ ++++++++ooooooooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++ ++++++ +++++ ++++ ++++++oooooo+oo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++++++++ ++++ ++++ ++++oooooo+++o++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ +++++++ ++++ ++++ ++oooooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++ ++++ ++++ oooooo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ +++++++++ ++++ ++++ oooo+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++++++++++ ++++ ++++ oo++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ +++++++++++ ++++ ++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++ ++++ ++oo ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++ ++++ oooo +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++ ++++ oooo ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++ ++++ oo++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ ++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++oo ++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ oooo ++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ oooo ++++ +++++++++++++ ++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ oo++ ++++ +++++++++++ ++ + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ ++++ +++++++++ ++++ + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++o ++++ ++++ +++++++ ++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooo ++++ ++++ ++++++ ++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo ++++ ++++ +++++ ++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++ ++++ ++++ ++++ ++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++ ++++ ++++ +++ ++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++ ++++ ++++ ++++ +++++ ++ +++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++ ++++ +++++ ++++++ ++++ + +++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++ ++++ ++++++++++++ ++ + +++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++ ++++ ++++++++++++ +++ ++ + + + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++ ++++ +++++++++++++++++++++++++ ++ + ++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++ ++++ +++++++++++++++++++++++ ++ ++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++ +++++++++++++++ ++++ ++++++++++++++++++++++++ ++ ++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++ +++++++++++++++ +++++ +++++++++++++++++++++++++ ++ ++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++ +++++++++++++++ ++++++++++++++++++++++++++++++ ++ ++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++ ++++++++++++++++ ++++++++++++++++++++++++++++++ ++ + + ++ + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++ ++++++++++++++++ ++++++++++++++++++++++++++++++ +++ + ++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++++ ++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++++++ +++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo+++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooooo++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ooo++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++ ++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ ++++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ ++++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ ++++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ +++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ +++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ +++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ ++++++ + +++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++++ + ++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ++++++++++++++ +++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ +++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++......+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ + ++ ++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++........+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + +++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++..........+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++........++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ ++++++++++++++++++ ++++++++++++++++++++.......++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ + +++++++++++++++++++ +++++++++++++++++++.......+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ + +++++++++++++++++++ ++++++++++++++++++........+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++ ++++++++++++++++.........+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++ +++++++++++++++.....++..++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++ ++++++++++++++.....++++.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++++ ++++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++ ++++ ++++++++++++++++ +++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ ++++++++++++++++ ++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ + +++++++++++++++++ ++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ + ++++++++++++++++++++ +++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ + + ++++++++ ++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ + ++++++++ ++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++ ++++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++ +++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++ ++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++ +++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++ ++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + ++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++.....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++.....+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ .....++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ .++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.... ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++ ++++++++++++ +++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++ +++++++++++++ +++ ++++ +++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++ ++++++++++++ ++++ +++ ++++++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++++ +++++++++++ ++++ +++ +++ ++ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++++++ ++++++++++ ++++ +++ +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++++++++ +++++++++ +++ ++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++++++++++ ++++++++ +++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....+++++++++++++++++++++ ++++++++ +++ +++ +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++....+++++++++++++++++++++++ +++++++ ++++ ++ +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++...+++++++++++++++++++++++++ ++++++++ +++++ ++ +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.+++++++++++++++++++++++++++ +++++++++ +++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++ +++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++", "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"] image = [ "302 150 5 1", " c black", ". c blue", "X c #007700", "o c red", "O c white", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OO..OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "O.....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOO", "OOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooOOOO", "OOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooooooooOOOO", "OOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooooooOOOOO", "OOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooooOOOOO", "OOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooOOOOOO", "OOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooOOOOOO", "OOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooooooOOOOOOO", "OOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooOOOOOOO", "OOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooooooOOOOOOOO", "OOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOooooOOOOOOOO", "OOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOooOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOoOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOO OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOO OOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOO OOOOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOOO OOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOOO OOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO O....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOO OOOOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOO OOO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOO OOOOO O OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOO O OO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOO OOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOO OOOO OO OOOO O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOOO OOO OO O OOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OO OOO OOO OO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOO OO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOO OO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOO OO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOO OO OOO OO OOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OO OOO OO O O OOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OO O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOO O OOO OOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOOOOO.OOOOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOOOO...OOOOOOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OOOO....OOOOOOOOOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO....OO.....OOOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..........OOOOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.........OOOOOOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.........OOOOOOOOoooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..........OOOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO...........OOOOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.............OOooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO..............ooooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.......ooooOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO oo OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO" ] image_medium=[ "174 86 16 1", " c black", ". c maroon", "X c green", "o c olive", "O c navy", "+ c purple", "@ c #007700", "# c fractal", "$ c silver", "% c red", "& c lime", "* c yellow", "= c blue", "- c fuchsia", "; c aqua", ": c white", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::==::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", ":====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::", ":::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%::::::", "::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%%%%%%:::::::", "::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%%%%%:::::::", ":::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%%%::::::::", ":::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%%::::::::", "::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%:::::::::", "::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%:::::::::", ":::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%::::::::::", ":::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%%%%%%::::::::::", "::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:%%%%%:::::::::::", "::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::%%%%:::::::::::", ":::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::%%::::::::::::", ":::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::%::::::::::::", "::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::", "::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::", ":::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::", ":::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::", "::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::===:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::====::::::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::: ::: ::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::::%%%%%%:::::::::::::::::: ::: ::::::::::::::::::::::::::::", ":::::::::::: :: :: :::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::::::%%%%%::::::::::::::::::: :: :: ::::::::::::::::::::::::::::", "::::::::::: :::: ::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::::%%%%%%::::::::::::::::::: :::: :::::::::::::::::::::::::::::", "::::::::::: ::::: :::::::::::::::::::::::::::::::::::::::::::::====:::::::::::::::::::::::::::::::::::::::::%%%%%%: :::::::::::::::::: ::::: :::::::::::::::::::::::::::::", "::::::::::: ::::: :::::::::::::::::::::::::::::::::::::::::::: ::====::::::::::::::::::::::::::::::::::::::%%%%%%:: :::::::::::::::::: ::::: :::::::::::::::::::::::::::::", "::::::::::: :::: :::: :::::::::::::::::::::::::::::::::::::::: :::====::::::::::::::::::::::::::::::::::::%%%%%::::: ::::::::::::::::: :::: ::::::::::::::::::::::::::::::", "::::::::::: :::: :::::::::::::::::::::::::::::::::::::::::::: ::::::====::::::::::::::::::::::::::::::::%%%%%%:::::: ::::::::::::::::: :::: :::::::::::::::::: :::::::::::", "::::::::::: :::: :::::::::::::::::::::::::::::::::::::::::::: :::::::====::::::::::::::::::::::::::::::%%%%%%:::::::: :::::::::::::::: :::: :::::::::::::::::: :::::::::::", ":::::::::::: :: : :: ::: : :::::::::::::::::::::::::::::::: :::::::::====::::::::=::::::::::::::::::%%%%%%::::::::: ::::::::::::::::: :: : :: : :: :: : ::::::::::", "::::::::::::: :: :: :: ::::::::::::::::::::::::::::::: ::::::::::====::::::===::::::::::::::::%%%%%:::::::::::: ::::::::::::::::: :: : ::: :: ::: :: :::::::::::", "::::::::::::::::::::::: ::: ::: ::::::::::::::::::::::::::::::: ::::::::::::====::::===::::::::::::::%%%%%%::::::::::::: ::::::::::::::::::::::::::: ::: :: ::: :: :::::::::::", "::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::: ::::::::::::::====::=====::::::::::::%%%%%%:::::::::::::: ::::::::::::::::::::::::::: ::: :: ::: :: :::::::::::", "::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::: ::::::::::::::::=========:::::::::::%%%%%%::::::::::::::: ::::::::::::::::::::::::::: ::: :: ::: :: :::::::::::", "::::::::::::::::::::::: ::: ::: :::::::::::::::::::::::::::::: :::::::::::::::::=========:::::::::%%%%%:::::::::::::::::: :::::::::::::::::::::::::: ::: :: :: : : :::::::::", ":::::::::::::::::::::: : : ::::::::::::::::::::::::::::: ::::::::::::::::::========:::::::%%%%%%::::::::::::::::::: ::::::::::::::::::::::::::: :::: : :: ::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::==========:::::%%%%%%::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::==========::::%%%%%%:::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::", ":::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::============::%%%%%:::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::=============%%%%%%::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: =======%%%% :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%%@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::" ] image_small=[ ] class MatrixImage(qt.QWidget): def __init__(self,parent = None, name = "Matrix Image", size=None): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) layout = qt.QVBoxLayout(self) self.label = qt.QLabel(self) self.setPixmap(size) layout.addWidget(self.label) def setPixmap(self, size): if size == "small": self.pixmap = qt.QPixmap(image_small) elif size == "image2": self.pixmap = qt.QPixmap(image2) elif size == "image2trans": self.pixmap = qt.QPixmap(image2trans) elif size == "medium": self.pixmap = qt.QPixmap(image_medium) else: self.pixmap = qt.QPixmap(image) self.label.setPixmap(self.pixmap) if __name__ == '__main__': a= qt.QApplication([]) a.lastWindowClosed.connect(a.quit) if len(sys.argv) > 1: w=MatrixImage(size=sys.argv[1]) else: w=MatrixImage() w.show() a.exec() a = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/McaAdvancedFit.py0000644000000000000000000034775214741736366022517 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import time import copy import logging import tempfile import shutil import traceback from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave1D MATPLOTLIB = True #force understanding of utf-8 encoding #otherways it cannot generate svg output try: import encodings.utf_8 except Exception: #not a big problem pass from PyMca5.PyMcaPhysics.xrf import ClassMcaTheory FISX = ClassMcaTheory.FISX if FISX: FisxHelper = ClassMcaTheory.FisxHelper from PyMca5.PyMcaGui.physics.xrf import FitParam from PyMca5.PyMcaGui.physics.xrf import McaAdvancedTable from PyMca5.PyMcaGui.physics.xrf import QtMcaAdvancedFitReport from PyMca5.PyMcaGui.physics.xrf import ConcentrationsWidget from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool from PyMca5.PyMcaGui.plotting import PlotWindow from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.physics.xrf import McaCalWidget from PyMca5.PyMcaGui.physics.xrf import PeakIdentifier from PyMca5.PyMcaGui.misc import SubprocessLogWidget from PyMca5.PyMcaGui.physics.xrf import ElementsInfo Elements = ElementsInfo.Elements #import McaROIWidget from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaGui.io import PyMcaFileDialogs _logger = logging.getLogger(__name__) _logger.debug("############################################\n" "# McaAdvancedFit is in DEBUG mode #\n" "############################################") XRFMC_FLAG = False try: from PyMca5.PyMcaPhysics.xrf.XRFMC import XRFMCHelper XRFMC_FLAG = True except ImportError: _logger.warning("Cannot import XRFMCHelper module") if _logger.getEffectiveLevel() == logging.DEBUG: raise USE_BOLD_FONT = True class McaAdvancedFit(qt.QWidget): """ This class inherits QWidget. It provides all the functionality required to perform an interactive fit and to generate a configuration file. It is the simplest way to embed PyMca's fitting functionality into other PyQt application. It can be used from the interactive prompt of ipython provided ipython is started with the -q4thread flag. **Usage** >>> from PyMca5 import McaAdvancedFit >>> w = McaAdvancedFit.McaAdvancedFit() >>> w.setData(x=x, y=y) # x is your channel array and y the counts array >>> w.show() """ sigMcaAdvancedFitSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="PyMca - McaAdvancedFit",fl=0, sections=None, top=True, margin=11, spacing=6): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.lastInputDir = None self.configDialog = None self.matplotlibDialog = None self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(margin, margin, margin, margin) self.mainLayout.setSpacing(0) if sections is None: sections=["TABLE"] self.headerLabel = qt.QLabel(self) self.mainLayout.addWidget(self.headerLabel) self.headerLabel.setAlignment(qt.Qt.AlignHCenter) font = self.font() font.setBold(USE_BOLD_FONT) self.headerLabel.setFont(font) self.setHeader('Fit of XXXXXXXXXX from Channel XXXXX to XXXX') self.top = Top(self) self.mainLayout.addWidget(self.top) self.sthread = None self.elementsInfo = None self.identifier = None self.logWidget = None if False and len(sections) == 1: w = self self.mcatable = McaAdvancedTable.McaTable(w) self.concentrationsWidget = None else: self.mainTab = qt.QTabWidget(self) self.mainLayout.addWidget(self.mainTab) #graph self.tabGraph = qt.QWidget() tabGraphLayout = qt.QVBoxLayout(self.tabGraph) tabGraphLayout.setContentsMargins(margin, margin, margin, margin) tabGraphLayout.setSpacing(spacing) #self.graphToolbar = qt.QHBox(self.tabGraph) self.graphWindow = McaGraphWindow(self.tabGraph) tabGraphLayout.addWidget(self.graphWindow) self.graph = self.graphWindow self.graph.setGraphXLabel('Channel') self.graph.setGraphYLabel('Counts') self.mainTab.addTab(self.tabGraph, "GRAPH") self.graphWindow.sigPlotSignal.connect(self._mcaGraphSignalSlot) #table self.tabMca = qt.QWidget() tabMcaLayout = qt.QVBoxLayout(self.tabMca) tabMcaLayout.setContentsMargins(margin, margin, margin, margin) tabMcaLayout.setSpacing(spacing) w = self.tabMca line = Line(w, info="TABLE") tabMcaLayout.addWidget(line) line.setToolTip("DoubleClick toggles floating window mode") self.mcatable = McaAdvancedTable.McaTable(w) tabMcaLayout.addWidget(self.mcatable) self.mainTab.addTab(w,"TABLE") line.sigLineDoubleClickEvent.connect(self._tabReparent) self.mcatable.sigClosed.connect(self._mcatableClose) #concentrations self.tabConcentrations = qt.QWidget() tabConcentrationsLayout = qt.QVBoxLayout(self.tabConcentrations) tabConcentrationsLayout.setContentsMargins(margin, margin, margin, margin) tabConcentrationsLayout.setSpacing(0) line2 = Line(self.tabConcentrations, info="CONCENTRATIONS") self.concentrationsWidget = ConcentrationsWidget.Concentrations(self.tabConcentrations) tabConcentrationsLayout.addWidget(line2) tabConcentrationsLayout.addWidget(self.concentrationsWidget) self.mainTab.addTab(self.tabConcentrations,"CONCENTRATIONS") line2.setToolTip("DoubleClick toggles floating window mode") self.concentrationsWidget.sigConcentrationsSignal.connect( \ self.__configureFromConcentrations) line2.sigLineDoubleClickEvent.connect(self._tabReparent) self.concentrationsWidget.sigClosed.connect( \ self._concentrationsWidgetClose) #diagnostics self.tabDiagnostics = qt.QWidget() tabDiagnosticsLayout = qt.QVBoxLayout(self.tabDiagnostics) tabDiagnosticsLayout.setContentsMargins(margin, margin, margin, margin) tabDiagnosticsLayout.setSpacing(spacing) w = self.tabDiagnostics self.diagnosticsWidget = qt.QTextEdit(w) self.diagnosticsWidget.setReadOnly(1) tabDiagnosticsLayout.addWidget(self.diagnosticsWidget) self.mainTab.addTab(w, "DIAGNOSTICS") self.mainTab.currentChanged[int].connect(self._tabChanged) self._energyAxis = False self.__printmenu = qt.QMenu() self.__printmenu.addAction(QString("Calibrate"), self._calibrate) self.__printmenu.addAction(QString("Identify Peaks"),self.__peakIdentifier) self.__printmenu.addAction(QString("Elements Info"), self.__elementsInfo) self.outdir = None self.configDir = None self.__lastreport= None self.browser = None self.info = {} self.__fitdone = 0 self._concentrationsDict = None self._concentrationsInfo = None self._xrfmcMatrixSpectra = None #self.graph.hide() #self.guiconfig = FitParam.Fitparam() """ self.specfitGUI.guiconfig.MCACheckBox.setEnabled(0) palette = self.specfitGUI.guiconfig.MCACheckBox.palette() palette.setDisabled(palette.active()) """ ############## hbox=qt.QWidget(self) self.bottom = hbox hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(4) if not top: self.configureButton = qt.QPushButton(hbox) self.configureButton.setText("Configure") self.toolsButton = qt.QPushButton(hbox) self.toolsButton.setText("Tools") hboxLayout.addWidget(self.configureButton) hboxLayout.addWidget(self.toolsButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) self.fitButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.fitButton) #font = self.fitButton.font() #font.setBold(True) #self.fitButton.setFont(font) self.fitButton.setText("Fit Again!") self.printButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.printButton) self.printButton.setText("Print") self.htmlReportButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.htmlReportButton) self.htmlReportButton.setText("HTML Report") self.matrixSpectrumButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.matrixSpectrumButton) self.matrixSpectrumButton.setText("Matrix Spectrum") self.matrixXRFMCSpectrumButton = qt.QPushButton(hbox) self.matrixXRFMCSpectrumButton.setText("MC Matrix Spectrum") hboxLayout.addWidget(self.matrixXRFMCSpectrumButton) self.matrixXRFMCSpectrumButton.hide() self.peaksSpectrumButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.peaksSpectrumButton) self.peaksSpectrumButton.setText("Peaks Spectrum") self.matrixSpectrumButton.setCheckable(1) self.peaksSpectrumButton.setCheckable(1) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) self.dismissButton = qt.QPushButton(hbox) hboxLayout.addWidget(self.dismissButton) self.dismissButton.setText("Dismiss") hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) self.mainLayout.addWidget(hbox) self.printButton.setToolTip('Print Active Tab') self.htmlReportButton.setToolTip('Generate Browser Compatible Output\nin Chosen Directory') self.matrixSpectrumButton.setToolTip('Toggle Matrix Spectrum Calculation On/Off') self.matrixXRFMCSpectrumButton.setToolTip('Calculate Matrix Spectrum Using Monte Carlo') self.peaksSpectrumButton.setToolTip('Toggle Individual Peaks Spectrum Calculation On/Off') self.mcafit = ClassMcaTheory.McaTheory() self.fitButton.clicked.connect(self.fit) self.printButton.clicked.connect(self.printActiveTab) self.htmlReportButton.clicked.connect(self.htmlReport) self.matrixSpectrumButton.clicked.connect(self.__toggleMatrixSpectrum) if self.matrixXRFMCSpectrumButton is not None: self.matrixXRFMCSpectrumButton.clicked.connect(self.xrfmcSpectrum) self.peaksSpectrumButton.clicked.connect(self.__togglePeaksSpectrum) self.dismissButton.clicked.connect(self.dismiss) self.top.configureButton.clicked.connect(self.__configure) self.top.printButton.clicked.connect(self.__printps) if top: self.top.sigTopSignal.connect(self.__updatefromtop) else: self.top.hide() self.configureButton.clicked.connect(self.__configure) self.toolsButton.clicked.connect(self.__printps) self._updateTop() def __mainTabPatch(self, index): return self.mainTabLabels[index] def _fitdone(self): if self.__fitdone: return True else: return False def refreshWidgets(self): """ This method just forces the graphical widgets to get updated. It should be called if somehow you have modified the fit and/ or concentrations parameters by other means than the graphical interface. """ self.__configure(justupdate=True) def configure(self, ddict=None): """ This methods configures the fitting parameters and updates the graphical interface. It returns the current configuration. """ if ddict is None: return self.mcafit.configure(ddict) #configure and get the new configuration newConfig = self.mcafit.configure(ddict) #refresh the interface self.refreshWidgets() #return the current configuration return newConfig def __configure(self, justupdate=False): config = {} config.update(self.mcafit.config) #config['fit']['use_limit'] = 1 if not justupdate: if self.configDialog is None: if self.__fitdone: dialog = FitParam.FitParamDialog(modal=1, fl=0, initdir=self.configDir, fitresult=self.dict['result']) else: dialog = FitParam.FitParamDialog(modal=1, fl=0, initdir=self.configDir, fitresult=None) dialog.fitparam.peakTable.sigFitPeakSelect.connect( \ self.__elementclicked) self.configDialog = dialog else: dialog = self.configDialog if self.__fitdone: dialog.setFitResult(self.dict['result']) else: dialog.setFitResult(None) if self.__fitdone: # a direct fit without loading the file can lead to errors lastTime = self.mcafit.getLastTime() self.info["time"] = lastTime dialog.setParameters(self.mcafit.getStartingConfiguration()) dialog.setData(self.mcafit.xdata * 1.0, self.mcafit.ydata * 1.0, info=copy.deepcopy(self.info)) #dialog.fitparam.regionCheck.setDisabled(True) #dialog.fitparam.minSpin.setDisabled(True) #dialog.fitparam.maxSpin.setDisabled(True) ret = dialog.exec() if dialog.initDir is not None: self.configDir = 1 * dialog.initDir else: self.configDir = None if ret != qt.QDialog.Accepted: dialog.close() #del dialog return try: #this may crash in qt 2.3.0 npar = dialog.getParameters() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error occured getting parameters:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return config.update(npar) dialog.close() #del dialog self.graph.clearMarkers() self.graph.replot() self.__fitdone = False self._concentrationsDict = None self._concentrationsInfo = None self._xrfmcMatrixSpectra = None if self.concentrationsWidget is not None: self.concentrationsWidget.concentrationsTable.setRowCount(0) if self.mcatable is not None: self.mcatable.setRowCount(0) self.diagnosticsWidget.clear() #make sure newly or redefined materials are added to the #materials in the fit configuration for material in Elements.Material.keys(): self.mcafit.config['materials'][material] =copy.deepcopy(Elements.Material[material]) hideButton = True if 'xrfmc' in config: programFile = config['xrfmc'].get('program', None) if programFile is not None: if os.path.exists(programFile): if os.path.isfile(config['xrfmc']['program']): hideButton = False if hideButton: self.matrixXRFMCSpectrumButton.hide() else: self.matrixXRFMCSpectrumButton.show() if _logger.getEffectiveLevel() == logging.DEBUG: self.mcafit.configure(config) else: try: thread = CalculationThread.CalculationThread( \ calculation_method = self.mcafit.configure, calculation_vars = config, expand_vars=False, expand_kw=False) thread.start() CalculationThread.waitingMessageDialog(thread, message = "Configuring, please wait", parent=self, modal=True, update_callback=None, frameless=True) threadResult = thread.getResult() if type(threadResult) == type((1,)): if len(threadResult): if threadResult[0] == "Exception": raise Exception(threadResult[1], threadResult[2]) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Configuration error") msg.setText("Error configuring fit:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return #update graph delcurves = [] curveList = self.graph.getAllCurves(just_legend=True) for key in curveList: if key not in ["Data"]: delcurves.append(key) for key in delcurves: self.graph.removeCurve(key) if not justupdate: self.plot() self._updateTop() if self.concentrationsWidget is not None: try: app = qt.QApplication.instance() app.processEvents() self.concentrationsWidget.setParameters(config['concentrations'], signal=False) except Exception: if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "CONCENTRATIONS": self.mainTab.setCurrentIndex(0) def __configureFromConcentrations(self,ddict): _logger.debug("McaAdvancedFit.__configureFromConcentrations %s", ddict) config = self.concentrationsWidget.getParameters() self.mcafit.config['concentrations'].update(config) if ddict['event'] == 'updated': if 'concentrations' in ddict: self._concentrationsDict = ddict['concentrations'] self._concentrationsInfo = None self._xrfmcMatrixSpectra = None def __elementclicked(self,ddict): ddict['event'] = 'McaAdvancedFitElementClicked' self.__showElementMarker(ddict) self.__anasignal(ddict) def __showElementMarker(self, dict): self.graph.clearMarkers() ele = dict['current'] items = [] if not (ele in dict): self.graph.replot() return for rays in dict[ele]: for transition in Elements.Element[ele][rays +" xrays"]: items.append([transition, Elements.Element[ele][transition]['energy'], Elements.Element[ele][transition]['rate']]) config = self.mcafit.configure() xdata = self.mcafit.xdata * 1.0 xmin = xdata[0] xmax = xdata[-1] ymin,ymax = self.graph.getGraphYLimits() calib = [config['detector'] ['zero'], config['detector'] ['gain']] for transition,energy,rate in items: marker = "" x = (energy - calib[0])/calib[1] if (x < xmin) or (x > xmax):continue if not self._energyAxis: if abs(calib[1]) > 0.0000001: marker=self.graph.insertXMarker(x, legend=transition, text=transition, color='orange', replot=False) else: marker=self.graph.insertXMarker(energy, legend=transition, text=transition, color='orange', replot=False) self.graph.replot() def _updateTop(self): config = {} if 0: config.update(self.mcafit.config['fit']) else: config['stripflag'] = self.mcafit.config['fit'].get('stripflag',0) config['fitfunction'] = self.mcafit.config['fit'].get('fitfunction',0) config['hypermetflag'] = self.mcafit.config['fit'].get('hypermetflag',1) config['sumflag'] = self.mcafit.config['fit'].get('sumflag',0) config['escapeflag'] = self.mcafit.config['fit'].get('escapeflag',0) config['continuum'] = self.mcafit.config['fit'].get('continuum',0) self.top.setParameters(config) def __updatefromtop(self,ndict): config = self.mcafit.configure() for key in ndict.keys(): if key not in ['stripflag', 'hypermetflag', 'sumflag', 'escapeflag', 'fitfunction', 'continuum']: _logger.debug("UNKNOWN key %s", key) config['fit'][key] = ndict[key] self.__fitdone = False #erase table if self.mcatable is not None: self.mcatable.setRowCount(0) #erase concentrations if self.concentrationsWidget is not None: self.concentrationsWidget.concentrationsTable.setRowCount(0) #erase diagnostics self.diagnosticsWidget.clear() #update graph curveList = self.graph.getAllCurves(just_legend=True) delcurves = [] for key in curveList: if key not in ["Data"]: delcurves.append(key) for key in delcurves: self.graph.removeCurve(key) self.plot() if _logger.getEffectiveLevel() == logging.DEBUG: self.mcafit.configure(config) else: try: thread = CalculationThread.CalculationThread( \ calculation_method = self.mcafit.configure, calculation_vars = config, expand_vars=False, expand_kw=False) thread.start() CalculationThread.waitingMessageDialog(thread, message = "Configuring, please wait", parent=self, modal=True, update_callback=None) threadResult = thread.getResult() if type(threadResult) == type((1,)): if len(threadResult): if threadResult[0] == "Exception": raise Exception(threadResult[1], threadResult[2]) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Configuration error") msg.setText("Error configuring fit:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return def _tabChanged(self, value): _logger.debug("_tabChanged(self, value) called") if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "CONCENTRATIONS": self.printButton.setEnabled(False) w = self.concentrationsWidget if w.parent() is None: if w.isHidden(): w.show() w.raise_() self.printButton.setEnabled(True) #do not calculate again. It should be already updated return try: self.concentrations() self.printButton.setEnabled(True) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise #print "try to set" self.printButton.setEnabled(False) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Concentrations error: %s" % sys.exc_info()[1]) msg.exec() self.mainTab.setCurrentIndex(0) elif str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "TABLE": self.printButton.setEnabled(True) w = self.mcatable if w.parent() is None: if w.isHidden(): w.show() w.raise_() elif str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "DIAGNOSTICS": self.printButton.setEnabled(False) self.diagnostics() else: self.printButton.setEnabled(True) def _concentrationsWidgetClose(self, ddict): ddict['info'] = "CONCENTRATIONS" self._tabReparent(ddict) def _mcatableClose(self, ddict): ddict['info'] = "TABLE" self._tabReparent(ddict) def _tabReparent(self, ddict): if ddict['info'] == "CONCENTRATIONS": w = self.concentrationsWidget parent = self.tabConcentrations elif ddict['info'] == "TABLE": w = self.mcatable parent = self.tabMca if w.parent() is not None: parent.layout().removeWidget(w) w.setParent(None) w.show() else: w.setParent(parent) parent.layout().addWidget(w) def _calibrate(self): config = self.mcafit.configure() x = self.mcafit.xdata0[:] y = self.mcafit.ydata0[:] legend = "Calibration for " + qt.safe_str(self.headerLabel.text()) ndict={} ndict[legend] = {'A':config['detector']['zero'], 'B':config['detector']['gain'], 'C': 0.0} caldialog = McaCalWidget.McaCalWidget(legend=legend, x=x, y=y, modal=1, caldict=ndict, fl=0) caldialog.calpar.orderbox.setEnabled(0) caldialog.calpar.CText.setEnabled(0) caldialog.calpar.savebox.setEnabled(0) ret = caldialog.exec() if ret == qt.QDialog.Accepted: ddict = caldialog.getDict() config['detector']['zero'] = ddict[legend]['A'] config['detector']['gain'] = ddict[legend]['B'] #self.mcafit.configure(config) self.mcafit.config['detector']['zero'] = 1. * ddict[legend]['A'] self.mcafit.config['detector']['gain'] = 1. * ddict[legend]['B'] self.__fitdone = 0 self.plot() del caldialog def __elementsInfo(self): if self.elementsInfo is None: self.elementsInfo = ElementsInfo.ElementsInfo(None, "Elements Info") if self.elementsInfo.isHidden(): self.elementsInfo.show() self.elementsInfo.raise_() def __peakIdentifier(self, energy = None): if energy is None: energy = 5.9 if self.identifier is None: self.identifier=PeakIdentifier.PeakIdentifier(energy=energy, threshold=0.040, useviewer=1) self.identifier.mySlot() self.identifier.setEnergy(energy) if self.identifier.isHidden(): self.identifier.show() self.identifier.raise_() def printActiveTab(self): txt = str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() if txt == "GRAPH": self.graphWindow.printGraph() elif txt == "TABLE": self.printps(True) elif txt == "CONCENTRATIONS": self.printConcentrations(True) elif txt == "DIAGNOSTICS": pass else: pass def diagnostics(self): self.diagnosticsWidget.clear() if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry. You need to perform a fit first.\n" msg.setText(text) msg.exec() if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "DIAGNOSTICS": self.mainTab.setCurrentIndex(0) return fitresult = self.dict x = fitresult['result']['xdata'] energy = fitresult['result']['energy'] y = fitresult['result']['ydata'] yfit = fitresult['result']['yfit'] param = fitresult['result']['fittedpar'] i = fitresult['result']['parameters'].index('Noise') noise= param[i] * param[i] i = fitresult['result']['parameters'].index('Fano') fano = param[i] * 2.3548*2.3548*0.00385 meanfwhm = numpy.sqrt(noise + 0.5 * (energy[0] + energy[-1]) * fano) i = fitresult['result']['parameters'].index('Gain') gain = fitresult['result']['fittedpar'][i] meanfwhm = int(meanfwhm/gain) + 1 missed = self.mcafit.detectMissingPeaks(y, yfit, meanfwhm) hcolor = 'white' finalcolor = 'white' text="" if len(missed): text+="
Possibly Missing or Underestimated Peaks" text+="" text+='" text+='" text+="" for peak in missed: text+="" text+='" text+='" text+="" text+="" text+="
' % hcolor text+='Channel' text+="' % hcolor text+='Energy' text+="
' % finalcolor text+="%d " % x[int(peak)] text+="' % finalcolor text+="%.3f " % energy[int(peak)] text+="
" missed = self.mcafit.detectMissingPeaks(yfit, y, meanfwhm) if len(missed): text+="
Possibly Overestimated Peaks" text+="
" text+='" text+='" text+="" for peak in missed: text+="" text+='" text+='" text+="" text+="" text+="
' % hcolor text+='Channel' text+="' % hcolor text+='Energy' text+="
' % finalcolor text+="%d " % x[int(peak)] text+="' % finalcolor text+="%.3f " % energy[int(peak)] text+="
" # check for secondary effects useMatrix = False for attenuator in fitresult['result']['config']['attenuators']: if attenuator.upper() == "MATRIX": if fitresult['result']['config']['attenuators'][attenuator][0]: useMatrix = True break if useMatrix and FISX and \ (not fitresult['result']['config']['concentrations']['usemultilayersecondary']): doIt = False corrections = None if 'fisx' in fitresult['result']['config']: corrections = fitresult['result']['config']['fisx'].get('corrections', None) if corrections is None: # calculate the corrections corrections = FisxHelper.getFisxCorrectionFactorsFromFitConfiguration( \ fitresult['result']['config'], elementsFromMatrix=False) # to put it into config is misleading because it was not made at # configuration time. if 'fisx' not in fitresult['result']['config']: fitresult['result']['config']['fisx'] = {} fitresult['result']['config']['fisx']['secondary'] = 2 fitresult['result']['config']['fisx']['corrections'] = corrections tertiary = False bodyText = "" for element in corrections: for family in corrections[element]: correction = corrections[element][family]['correction_factor'] if correction[-1] > 1.02: doIt = True bodyText += "" bodyText += '' % finalcolor bodyText += "%s  " % \ (element + " " + family) bodyText += "" bodyText += '' % finalcolor bodyText += "" bodyText += "%.3f" % correction[1] bodyText += "   " if len(corrections[element][family]['correction_factor']) > 2: tertiary = True bodyText+= "" bodyText += '' % finalcolor bodyText += "" bodyText+= "%.3f " % correction[2] bodyText += "   " bodyText+= "" bodyText+= "" if doIt: bodyText += "" bodyText += "" warningText = "
" warningText += "Neglected higher order excitation correction" warningText += "
" warningText += "" warningText += '" warningText += '" if tertiary: warningText += '" warningText += "" text += (warningText + bodyText) self.diagnosticsWidget.insertHtml(text) def concentrations(self): self._concentrationsDict = None self._concentrationsInfo = None self._xrfmcMatrixSpectra = None if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry, You need to perform a fit first.\n" msg.setText(text) msg.exec() if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == "CONCENTRATIONS": self.mainTab.setCurrentIndex(0) return fitresult = self.dict if False: #from the fit, it misses any update from concentrations config = fitresult['result']['config'] else: #from current, it should be up to date config = self.mcafit.configure() #tool = ConcentrationsWidget.Concentrations(fl=qt.Qt.WDestructiveClose) if self.concentrationsWidget is None: self.concentrationsWidget = ConcentrationsWidget.Concentrations() self.concentrationsWidget.sigConcentrationsSignal.connect( \ self.__configureFromConcentrations) self.concentrationsWidget.setTimeFactor(self.mcafit.getLastTime(), signal=False) tool = self.concentrationsWidget #this forces update tool.getParameters() ddict = {} ddict.update(config['concentrations']) tool.setParameters(ddict, signal=False) try: ddict, info = tool.processFitResult(config=ddict, fitresult=fitresult, elementsfrommatrix=False, fluorates=self.mcafit._fluoRates, addinfo=True) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error processing fit result: %s" % (sys.exc_info()[1])) msg.exec() if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == 'CONCENTRATIONS': self.mainTab.setCurrentIndex(0) return self._concentrationsDict = ddict self._concentrationsInfo = info tool.show() tool.setFocus() tool.raise_() def __toggleMatrixSpectrum(self): if self.matrixSpectrumButton.isChecked(): self.matrixSpectrum() self.plot() else: if "Matrix" in self.graph.getAllCurves(just_legend=True): self.graph.removeCurve("Matrix", replot=False) self.plot() def __togglePeaksSpectrum(self): if self.peaksSpectrumButton.isChecked(): self.peaksSpectrum() else: self.__clearPeaksSpectrum() self.plot() def __clearPeaksSpectrum(self): delcurves = [] for key in self.graph.getAllCurves(just_legend=True): if key not in ["Data", "Fit", "Continuum", "Pile-up", "Matrix"]: if key.startswith('MC Matrix'): if self._xrfmcMatrixSpectra in [None, []]: delcurves.append(key) else: delcurves.append(key) for key in delcurves: self.graph.removeCurve(key, replot=False) def matrixSpectrum(self): if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry, for the time being you need to perform a fit first\n" text+= "in order to calculate the spectrum derived from the matrix.\n" text+= "Background and detector parameters are taken from last fit" msg.setText(text) msg.exec() return #fitresult = self.dict['result'] fitresult = self.dict config = self.mcafit.configure() self._concentrationsInfo = None tool = ConcentrationsTool.ConcentrationsTool() #this forces update tool.configure() ddict = {} ddict.update(config['concentrations']) tool.configure(ddict) if _logger.getEffectiveLevel() == logging.DEBUG: ddict, info = tool.processFitResult(fitresult=fitresult, elementsfrommatrix=True, addinfo=True) else: try: thread = CalculationThread.CalculationThread( calculation_method=tool.processFitResult, calculation_kw={'fitresult': fitresult, 'elementsfrommatrix': True, 'addinfo': True}, expand_vars=True, expand_kw=True) thread.start() CalculationThread.waitingMessageDialog(thread, message = "Calculating Matrix Spectrum", parent=self, modal=True, update_callback=None) threadResult = thread.getResult() if type(threadResult) == type((1,)): if len(threadResult): if threadResult[0] == "Exception": raise Exception(threadResult[1], threadResult[2]) ddict, info = threadResult except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error: %s" % (sys.exc_info()[1])) msg.exec() return self._concentrationsInfo = info groupsList = fitresult['result']['groups'] if type(groupsList) != type([]): groupsList = [groupsList] corrections = None if fitresult['result']['config']['concentrations']['usemultilayersecondary']: if 'fisx' in fitresult: corrections = fitresult['fisx'].get('corrections', None) if corrections is None: # try to see if they were in the configuration # in principle this would be the most appropriate place to be # unless matrix/configuration has been somehow updated. if 'fisx' in fitresult['result']['config']: corrections = fitresult['result']['config']['fisx'].get('corrections', None) if corrections is None: # calculate the corrections # in principle I should never get here corrections = FisxHelper.getFisxCorrectionFactorsFromFitConfiguration( \ fitresult['result']['config']) areas = [] for group in groupsList: item = group.split() element = item[0] if len(element) >2: areas.append(0.0) else: area = ddict['area'][group] if corrections is not None: if element in corrections: area *= corrections[element][item[1]]['counts'][-1] / \ corrections[element][item[1]]['counts'][0] areas.append(area) nglobal = len(fitresult['result']['parameters']) - len(groupsList) parameters = [] for i in range(len(fitresult['result']['parameters'])): if i < nglobal: parameters.append(fitresult['result']['fittedpar'][i]) else: parameters.append(areas[i-nglobal]) xmatrix = fitresult['result']['xdata'] ymatrix = self.mcafit.mcatheory(parameters,xmatrix) ymatrix.shape = [len(ymatrix),1] ddict=copy.deepcopy(self.dict) ddict['event'] = "McaAdvancedFitMatrixFinished" if self.mcafit.STRIP: ddict['result']['ymatrix'] = ymatrix + self.mcafit.zz else: ddict['result']['ymatrix'] = ymatrix ddict['result']['ymatrix'].shape = (len(ddict['result']['ymatrix']),) ddict['result']['continuum'].shape = (len(ddict['result']['ymatrix']),) if self.matrixSpectrumButton.isChecked(): self.dict['result']['ymatrix']= ddict['result']['ymatrix'] * 1.0 """ if self.graph is not None: if self._logY: logfilter = 1 else: logfilter = 0 if self._energyAxis: xdata = dict['result']['energy'][:] else: xdata = dict['result']['xdata'][:] self.graph.newCurve("Matrix",xdata,dict['result']['ymatrix'],logfilter=logfilter) """ try: self.__anasignal(ddict) except Exception: _logger.warning("Error generating matrix output. ") _logger.warning("Try to perform your fit again. ") _logger.warning("%s" % sys.exc_info()) _logger.warning("If error persists, please report this error.") _logger.warning("ymatrix shape = %s" % ddict['result']['ymatrix'].shape) _logger.warning("xmatrix shape = %s" % xmatrix.shape) _logger.warning("continuum shape = %s" % ddict['result']['continuum'].shape) _logger.warning("zz shape = %s" % self.mcafit.zz.shape) def fisxSpectrum(self): if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry, current implementation requires you to perform a fit first\n" msg.setText(text) msg.exec() return self._xrfmcMatrixSpectra = None fitresult = self.dict self._fisxMatrixSpectra = None if self._concentrationsInfo is None: # concentrations have to be calculated too self.concentrations() # force fisx to work on fundamental parameters mode fitConfiguration = copy.deepcopy(self.dict['result']["config"]) fitConfiguration['concentrations']['usematrix'] = 0 fitConfiguration['concentrations']['flux'] = self._concentrationsInfo['Flux'] fitConfiguration['concentrations']['time'] = self._concentrationsInfo['Time'] # calculate expected fluorescence signal from elements present in the sample correctionFactors = FisxHelper.getFisxCorrectionFactorsFromFitConfiguration( \ fitConfiguration, elementsFromMatrix=True) groupsList = fitresult['result']['groups'] if type(groupsList) != type([]): groupsList = [groupsList] areas0 = [] areas1 = [] for group in groupsList: item = group.split() element = item[0] if element not in correctionFactors: areas0.append(0.0) areas1.append(0.0) else: if len(element) >2: areas0.append(0.0) areas1.append(0.0) else: # transitions = item[1] + " xrays" areas0.append(correctionFactors[element][item[1]]['counts'][0] * \ self._concentrationsInfo['Flux'] * self._concentrationsInfo['Time'] * \ self._concentrationsInfo['SolidAngle']) areas1.append(correctionFactors[element][item[1]]['counts'][1] * \ self._concentrationsInfo['Flux'] * self._concentrationsInfo['Time'] * \ self._concentrationsInfo['SolidAngle']) # primary nglobal = len(fitresult['result']['parameters']) - len(groupsList) parameters = [] for i in range(len(fitresult['result']['parameters'])): if i < nglobal: parameters.append(fitresult['result']['fittedpar'][i]) else: parameters.append(areas0[i-nglobal]) xmatrix = fitresult['result']['xdata'] ymatrix0 = self.mcafit.mcatheory(parameters, xmatrix) ymatrix0.shape = [len(ymatrix0),1] #secondary nglobal = len(fitresult['result']['parameters']) - len(groupsList) parameters = [] for i in range(len(fitresult['result']['parameters'])): if i < nglobal: parameters.append(fitresult['result']['fittedpar'][i]) else: parameters.append(areas1[i-nglobal]) ymatrix1 = self.mcafit.mcatheory(parameters, xmatrix) ymatrix1.shape = [len(ymatrix1),1] zeroindex = fitresult['result']['parameters'].index('Zero') gainindex = fitresult['result']['parameters'].index('Gain') zero = fitresult['result']['fittedpar'][zeroindex] gain = fitresult['result']['fittedpar'][gainindex] if self.mcafit.STRIP: ymatrix0 += self.mcafit.zz ymatrix1 += self.mcafit.zz # channels, energy, single, multiple self._xrfmcMatrixSpectra = [xmatrix, xmatrix * gain + zero, ymatrix0, ymatrix1] #self.logWidget.hide() self.plot() ddict=copy.deepcopy(self.dict) ddict['event'] = "McaAdvancedFitXRFMCMatrixFinished" def xrfmcSpectrum(self): #print "SKIPPING" #return self.fisxSpectrum() if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry, current implementation requires you to perform a fit first\n" msg.setText(text) msg.exec() return fitresult = self.dict self._xrfmcMatrixSpectra = None if self._concentrationsInfo is None: # concentrations have to be calculated too self.concentrations() # force the Monte Carlo to work on fundamental parameters mode ddict = copy.deepcopy(self.dict) ddict['result']['config']['concentrations']['usematrix'] = 0 ddict['result']['config']['concentrations']['flux'] = self._concentrationsInfo['Flux'] ddict['result']['config']['concentrations']['time'] = self._concentrationsInfo['Time'] if hasattr(self, "__tmpMatrixSpectrumDir"): if self.__tmpMatrixSpectrumDir is not None: self.removeDirectory(self.__tmpMatrixSpectrumDir) self.__tmpMatrixSpectrumDir = tempfile.mkdtemp(prefix="pymcaTmp") nfile = ConfigDict.ConfigDict() nfile.update(ddict) #the Monte Carlo expects this at top level nfile['xrfmc'] = ddict['result']['config']['xrfmc'] newFile = os.path.join(self.__tmpMatrixSpectrumDir, "pymcaTmpFitFile.fit") if os.path.exists(newFile): # this should never happen os.remove(newFile) nfile.write(newFile) nfile = None fileNamesDict = XRFMCHelper.getOutputFileNames(newFile, outputDir=self.__tmpMatrixSpectrumDir) if newFile != fileNamesDict['fit']: self.removeDirectory(self.__tmpMatrixSpectrumDir) raise ValueError("Inconsistent internal behaviour!") self._xrfmcFileNamesDict = fileNamesDict xrfmcProgram = ddict['result']['config']['xrfmc']['program'] scriptName = fileNamesDict['script'] scriptFile = XRFMCHelper.getScriptFile(xrfmcProgram, name=scriptName) csvName = fileNamesDict['csv'] speName = fileNamesDict['spe'] xmsoName = fileNamesDict['xmso'] # basic parameters args = [scriptFile, "--verbose", "--spe-file=%s" % speName, "--csv-file=%s" % csvName, #"--enable-roi-normalization", #"--disable-roi-normalization", #default #"--enable-pile-up" #"--disable-pile-up" #default #"--enable-poisson", #"--disable-poisson", #default no noise #"--set-threads=2", #overwrite default maximum newFile, xmsoName] # additionalParameters simulationParameters = ["--enable-single-run"] #simulationParameters = ["--enable-single-run", # "--set-threads=2"] i = 0 for parameter in simulationParameters: i += 1 args.insert(1, parameter) # show the command on the log widget text = "%s" % scriptFile for arg in args[1:]: text += " %s" % arg if self.logWidget is None: self.logWidget = SubprocessLogWidget.SubprocessLogWidget() self.logWidget.setMinimumWidth(400) self.logWidget.sigSubprocessLogWidgetSignal.connect(\ self._xrfmcSubprocessSlot) self.logWidget.clear() self.logWidget.show() self.logWidget.raise_() self.logWidget.append(text) self.logWidget.start(args=args) def removeDirectory(self, dirName): if os.path.exists(dirName): if os.path.isdir(dirName): shutil.rmtree(dirName) def _xrfmcSubprocessSlot(self, ddict): if ddict['event'] == "ProcessFinished": returnCode = ddict['code'] msg = qt.QMessageBox(self) msg.setWindowTitle("Simulation finished") if returnCode != 0: msg = qt.QMessageBox(self) msg.setWindowTitle("Simulation Error") msg.setIcon(qt.QMessageBox.Critical) text = "Simulation finished with error code %d\n" % (returnCode) for line in ddict['message']: text += line msg.setText(text) msg.exec() return xmsoFile = self._xrfmcFileNamesDict['xmso'] corrections = XRFMCHelper.getXMSOFileFluorescenceInformation(xmsoFile) self.dict['result']['config']['xrfmc']['corrections'] = corrections elementsList = list(corrections.keys()) elementsList.sort() for element in elementsList: for key in ['K', 'Ka', 'Kb', 'L', 'L1', 'L2', 'L3', 'M']: if corrections[element][key]['total'] > 0.0: value = corrections[element][key]['correction_factor'][-1] if value != 1.0: text = "%s %s xrays multiple excitation factor = %.4f" % \ (element, key, value) self.logWidget.append(text) from PyMca5.PyMcaIO import specfilewrapper as specfile sf = specfile.Specfile(self._xrfmcFileNamesDict['csv']) nScans = len(sf) scan = sf[nScans - 1] nMca = scan.nbmca() # specfile starts numbering at one # and the first mca corresponds to the energy self._xrfmcMatrixSpectra = [] for i in range(1, nMca + 1): self._xrfmcMatrixSpectra.append(scan.mca(i)) scan = None sf = None self.removeDirectory(self.__tmpMatrixSpectrumDir) #self.logWidget.hide() self.plot() ddict=copy.deepcopy(self.dict) ddict['event'] = "McaAdvancedFitXRFMCMatrixFinished" if 0: # this for later try: self.__anasignal(ddict) except Exception: _logger.warning("Error generating Monte Carlo matrix output. ") _logger.warning(sys.exc_info()) def peaksSpectrum(self): if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "You need to perform a fit first\n" msg.setText(text) msg.exec() return #fitresult = self.dict['result'] fitresult = self.dict # force update self.mcafit.configure() groupsList = fitresult['result']['groups'] if type(groupsList) != type([]): groupsList = [groupsList] nglobal = len(fitresult['result']['parameters']) - len(groupsList) ddict=copy.deepcopy(self.dict) ddict['event'] = "McaAdvancedFitPeaksFinished" newparameters = fitresult['result']['fittedpar'] * 1 for i in range(nglobal,len(fitresult['result']['parameters'])): newparameters[i] = 0.0 for i in range(nglobal,len(fitresult['result']['parameters'])): group = fitresult['result']['parameters'][i] parameters = newparameters * 1 parameters[i] = fitresult['result']['fittedpar'][i] xmatrix = fitresult['result']['xdata'] ymatrix = self.mcafit.mcatheory(parameters,xmatrix) ymatrix.shape = [len(ymatrix),1] label = 'y'+group if self.mcafit.STRIP: ddict['result'][label] = ymatrix + self.mcafit.zz else: ddict['result'][label] = ymatrix ddict['result'][label].shape = (len(ddict['result'][label]),) if self.peaksSpectrumButton.isChecked(): self.dict['result'][label]= ddict['result'][label] * 1.0 try: self.__anasignal(ddict) except Exception: _logger.warning("Error generating peaks output. ") _logger.warning("Try to perform your fit again. ") _logger.warning("%s" % sys.exc_info()) _logger.warning("If error persists, please report this error.") _logger.warning("ymatrix shape = %s" % ddict['result']['ymatrix'].shape) _logger.warning("xmatrix shape = %s" % xmatrix.shape) _logger.warning("continuum shape = %s" % ddict['result']['continuum'].shape) _logger.warning("zz shape = %s" % self.mcafit.zz.shape) def __printps(self): self.__printmenu.exec(self.cursor().pos()) def htmlReport(self,index=None): if not self.__fitdone: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("You should perform a fit \nfirst,\n shouldn't you?") msg.exec() return oldoutdir = self.outdir if self.outdir is None: cwd = PyMcaDirs.outputDir self.outdir =PyMcaFileDialogs.getExistingDirectory(self, message="Output Directory Selection", mode="SAVE", currentdir=cwd) if len(self.outdir): if self.outdir[-1]=="/": self.outdir=self.outdir[:-1] try: self.__htmlReport() except IOError: self.outdir = None if oldoutdir is not None: if os.path.exists(oldoutdir): self.outdir = oldoutdir msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("IO error") msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def __htmlReport(self,outfile=None): report = QtMcaAdvancedFitReport.QtMcaAdvancedFitReport(fitfile=None, outfile=outfile, outdir=self.outdir, sourcename=self.info['sourcename'], selection=self.info['legend'], fitresult=self.dict, concentrations=self._concentrationsDict, plotdict={'logy': self.graph.isYAxisLogarithmic()}) if 0: #this forces to open and read the file self.__lastreport = report.writeReport() else: text = report.getText() self.__lastreport = report.writeReport(text=text) if self.browser is None: self.browser= qt.QWidget() self.browser.setWindowTitle(QString(self.__lastreport)) self.browser.layout = qt.QVBoxLayout(self.browser) self.browser.layout.setContentsMargins(0, 0, 0, 0) self.browser.layout.setSpacing(0) self.__printmenu.addSeparator() self.__printmenu.addAction(QString("Last Report"),self.showLastReport) self.browsertext = qt.QTextBrowser(self.browser) self.browsertext.setReadOnly(1) screenWidth = qt.QDesktopWidget().width() if screenWidth > 0: self.browsertext.setMinimumWidth(min(self.width(), int(0.5 * screenWidth))) else: self.browsertext.setMinimumWidth(self.width()) screenHeight = qt.QDesktopWidget().height() if screenHeight > 0: self.browsertext.setMinimumHeight(min(self.height(), int(0.5 * screenHeight))) else: self.browsertext.setMinimumHeight(self.height()) self.browser.layout.addWidget(self.browsertext) else: self.browser.setWindowTitle(QString(self.__lastreport)) dirname = os.path.dirname(self.__lastreport) # basename = os.path.basename(self.__lastreport) #self.browsertext.setMimeSourceFactory(qt.QMimeFactory.defaultFactory()) #self.browsertext.mimeSourceFactory().addFilePath(QString(dirname)) self.browsertext.setSearchPaths([QString(dirname)]) #self.browsertext.setSource(qt.QUrl(QString(basename))) self.browsertext.clear() if QTVERSION < '4.2.0': self.browsertext.insertHtml(text) else: self.browsertext.setText(text) self.browsertext.show() self.showLastReport() def showLastReport(self): if self.browser is not None: self.browser.show() self.browser.raise_() def printConcentrations(self, doit=0): text = "
"+self.concentrationsWidget.concentrationsTable.getHtmlText()+"
" if (__name__ == "__main__") or (doit): self.__print(text) else: ddict={} ddict['event'] = "McaAdvancedFitPrint" ddict['text' ] = text self.sigMcaAdvancedFitSignal.emit(ddict) def printps(self, doit=0): h = self.__htmlheader() text = "
"+self.mcatable.gettext()+"
" #text = self.mcatable.gettext() if (__name__ == "__main__") or (doit): self.__print(h+text) #print h+text else: ddict={} ddict['event'] = "McaAdvancedFitPrint" ddict['text' ] = h+text self.sigMcaAdvancedFitSignal.emit(ddict) def __htmlheader(self): header = "%s" % qt.safe_str(self.headerLabel.text()) if header[0] == "<": header = header[3:-3] if self.mcafit.config['fit']['sumflag']: sumflag = "Y" else: sumflag = "N" if self.mcafit.config['fit']['escapeflag']: escapeflag = "Y" else: escapeflag = "N" if self.mcafit.config['fit']['stripflag']: stripflag = "Y" else: stripflag = "N" #bkg = self.mcafit.config['fit']['continuum'] #theory = "Hypermet" bkg = "%s" % qt.safe_str(self.top.BkgComBox.currentText()) theory = "%s" % qt.safe_str(self.top.FunComBox.currentText()) hypermetflag=self.mcafit.config['fit']['hypermetflag'] # g_term = hypermetflag & 1 st_term = (hypermetflag >>1) & 1 lt_term = (hypermetflag >>2) & 1 step_term = (hypermetflag >>3) & 1 if st_term: st_term = "Y" else: st_term = "N" if st_term: lt_term = "Y" else: lt_term = "N" if step_term: step_term = "Y" else: step_term = "N" h="" h+="
" h+="%s" % header h+="
" h+=" " #h+="

" h+="
" h+="
' % hcolor warningText += 'Peak Family' warningText += "' % hcolor warningText += (' ' * 10) warningText += '2nd Order' warningText += "' % hcolor warningText += (' ' * 10) warningText += '3rd Order' warningText += "
" h+="" h+=" " h+=" " h+=" " % theory h+=" " h+=" " h+=" " h+=" " % st_term h+=" " h+=" " h+=" " h+=" " % lt_term h+=" " h+=" " h+=" " h+=" " % step_term h+="" h+="" #h+=" " h+=" " % bkg h+=" " h+=" " h+=" " h+=" " % escapeflag h+=" " h+=" " h+=" " h+=" " % sumflag h+=" " h+=" " h+=" " h+=" " % stripflag h+="" h+="
Function:%sShortTail:%sLongTail:%sStepTail:%s
Background" h+=" Backg." h+=" :%sEscape:%sPile-up:%sStrip:%s
" h+="" return h # pyflakes http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=666503 def __print(self, text): _logger.info("__print not working yet") return printer = qt.QPrinter() printDialog = qt.QPrintDialog(printer, self) if printDialog.exec(): if 0: #this was crashing in Qt 4.2.2 #with the PyQt snapshot of 20061203 editor = qt.QTextEdit() cursor = editor.textCursor() cursor.movePosition(qt.QTextCursor.Start) editor.insertHtml(text) document = editor.document() else: document = qt.QTextDocument() document.setHtml(text) document.print_(printer) def setdata(self, *var, **kw): _logger.debug("McaAdvancedFit.setdata deprecated, use setData instead.") return self.setData(*var, **kw) def setData(self,*var,**kw): """ The simplest way to use it is to pass at least the y keyword containing the channel counts. The other items are not mandatory. :keywords: x channels y counts in each channel sigmay uncertainties to be applied if different than sqrt(y) xmin minimum channel of the fit xmax maximum channel of the fit calibration list of the form [a, b, c] containing the mca calibration time float containing the time or monitor factor to be used in the concentrations if requested. """ self.__fitdone = 0 self.info ={} key = 'legend' if key in kw: self.info[key] = kw[key] else: self.info[key] = 'Unknown Origin' key = 'xlabel' if key in kw: self.info[key] = kw[key] else: self.info[key] = 'X' key = 'xmin' if key in kw: self.info[key] = "%.3f" % kw[key] else: self.info[key] = "????" key = 'xmax' if key in kw: self.info[key] = "%.3f" % kw[key] else: self.info[key] = "????" key = 'sourcename' if key in kw: self.info[key] = "%s" % kw[key] else: self.info[key] = "Unknown Source" key = 'time' if key in kw: self.info[key] = kw[key] else: self.info[key] = None self.__var = var self.__kw = kw try: self.mcafit.setData(*var,**kw) except ValueError: if self.info["time"] is None: if "concentrations" in self.mcafit.config: if self.mcafit.config["concentrations"].get("useautotime", False): if not self.mcafit.config["concentrations"]["usematrix"]: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) txt = "No time information associated to spectrum but requested in configuration.\n" txt += "Please correct the acquisition time in your configuration." msg.setText(txt) msg.exec() self.mcafit.config["concentrations"] ["useautotime"] = 0 kw["time"] = None self.mcafit.setData(*var, **kw) else: raise else: raise else: raise self.info["calibration"] = kw.get('calibration', None) if 'calibration' in kw: if kw['calibration'] is not None: # The condition below gave troubles because it was using the # current calibration even if the x data where actual energies. # if (kw['calibration'] != [0.0,1.0,0.0]): if not self.mcafit.config['detector'].get('ignoreinputcalibration', False): self.mcafit.config['detector']['zero']=kw['calibration'][0] * 1 self.mcafit.config['detector']['gain']=kw['calibration'][1] * 1 if self.configDialog is not None: self.configDialog.setData(self.mcafit.xdata * 1.0, self.mcafit.ydata * 1.0, info=copy.deepcopy(self.info)) if self.concentrationsWidget is not None: if self.mcafit.config["concentrations"].get("useautotime", False): self.concentrationsWidget.setTimeFactor(self.info["time"], signal=False) self.setHeader(text="Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax'])) self._updateTop() self.plot() def setheader(self, *var, **kw): _logger.debug("McaAdvancedFit.setheader deprecated, use setHeader instead.") return self.setHeader( *var, **kw) def setHeader(self,*var,**kw): if len(var): text = var[0] elif 'text' in kw: text = kw['text'] elif 'header' in kw: text = kw['header'] else: text = "" self.headerLabel.setText("%s" % text) def fit(self): """ Function called to start the fit process. Interactive use It returns a dictionary containing the fit results or None in case of unsuccessfull fit. Embedded use In case of successfull fit emits a signal of the form: self.sigMcaAdvancedFitSignal.emit(ddict) where ddict['event'] = 'McaAdvancedFitFinished' """ self.__fitdone = 0 self.mcatable.setRowCount(0) if self.concentrationsWidget is not None: self.concentrationsWidget.concentrationsTable.setRowCount(0) self.diagnosticsWidget.clear() fitconfig = {} fitconfig.update(self.mcafit.configure()) if fitconfig['peaks'] == {}: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("No peaks defined.\nPlease configure peaks") msg.exec() return if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("calling estimate") self.mcafit.estimate() _logger.debug("calling startfit") fitresult, result = self.mcafit.startfit(digest=1) _logger.debug("filling table") self.mcatable.fillfrommca(result) _logger.debug("finished") else: try: self.mcafit.estimate() thread = CalculationThread.CalculationThread( \ calculation_method = self.mcafit.startfit, calculation_kw = {'digest':1}, expand_vars=True, expand_kw=True) thread.start() CalculationThread.waitingMessageDialog(thread, message = "Calculating Fit", parent=self, modal=True, update_callback=None, frameless=True) threadResult = thread.getResult() if type(threadResult) == type((1,)): if len(threadResult): if threadResult[0] == "Exception": raise Exception(threadResult[1], threadResult[2]) fitresult = threadResult[0] result = threadResult[1] except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Fit error") msg.setText("Error on fit:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: #self.mcatable.fillfrommca(self.mcafit.result) self.mcatable.fillfrommca(result) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error filling Table: %s" % (sys.exc_info()[1])) msg.exec() return ddict={} ddict['event'] = "McaAdvancedFitFinished" ddict['fitresult'] = fitresult ddict['result'] = result #I should make a copy but ... self.dict = {} self.dict['info'] = {} self.dict['info'] = self.info.copy() self.dict['result'] = ddict['result'] self.__fitdone = 1 # add the matrix spectrum if self.matrixSpectrumButton.isChecked(): self.matrixSpectrum() else: if "Matrix" in self.graph.getAllCurves(just_legend=True): self.graph.removeCurve("Matrix") # clear the Monte Carlo spectra (if any) self._xrfmcMatrixSpectra = None # add the peaks spectrum if self.peaksSpectrumButton.isChecked(): self.peaksSpectrum() else: self.__clearPeaksSpectrum() self.plot() if self.concentrationsWidget is not None: if (str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == 'CONCENTRATIONS') or \ (self.concentrationsWidget.parent() is None): if not self.concentrationsWidget.isHidden(): try: self.concentrations() except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Concentrations Error: %s" % (sys.exc_info()[1])) msg.exec() return if str(self.mainTab.tabText(self.mainTab.currentIndex())).upper() == 'DIAGNOSTICS': try: self.diagnostics() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Diagnostics Error: %s" % (sys.exc_info()[1])) msg.exec() return return self.__anasignal(ddict) def __anasignal(self, ddict): if type(ddict) != type({}): return if 'event' in ddict: ddict['info'] = {} ddict['info'].update(self.info) self.sigMcaAdvancedFitSignal.emit(ddict) #Simplify interactive usage of the module return ddict def dismiss(self): self.close() def closeEvent(self, event): if self.identifier is not None: self.identifier.close() qt.QWidget.closeEvent(self, event) def _mcaGraphSignalSlot(self, ddict): if ddict['event'] == "FitClicked": self.fit() elif ddict['event'] == "EnergyClicked": self.toggleEnergyAxis() elif ddict['event'] == "SaveClicked": self._saveGraph() elif ddict['event'].lower() in ["mouseclicked", "curveclicked"]: if ddict['button'] == 'left': if self._energyAxis: self.__peakIdentifier(ddict['x']) else: pass return def toggleEnergyAxis(self, dict=None): if self._energyAxis: self._energyAxis = False self.graph.setGraphXLabel('Channel') else: self._energyAxis = True self.graph.setGraphXLabel('Energy') self.plot() def plot(self, ddict=None): if self.graph.isYAxisLogarithmic(): logfilter = 1 else: logfilter = 0 formerActiveCurveLegend = self.graph.getActiveCurve(just_legend=True) self.graph.clearCurves(replot=False) config = self.mcafit.configure() if ddict is None: if not self.__fitdone: #just the data xdata = self.mcafit.xdata * 1.0 if self._energyAxis: xdata = config['detector'] ['zero'] + config['detector'] ['gain'] * xdata if self.mcafit.STRIP: ydata = self.mcafit.ydata + self.mcafit.zz else: ydata = self.mcafit.ydata * 1.0 xdata.shape= [len(xdata),] ydata.shape= [len(ydata),] self.graph.addCurve(xdata, ydata, legend="Data", replot=True, replace=True) self.graph.updateLegends() return else: ddict = self.dict if self._energyAxis: xdata = ddict['result']['energy'][:] else: xdata = ddict['result']['xdata'][:] self.graph.addCurve(xdata, ddict['result']['ydata'], legend="Data", replot=False) self.graph.addCurve(xdata, ddict['result']['yfit'], legend="Fit", replot=False) self.graph.addCurve(xdata, ddict['result']['continuum'], legend="Continuum", replot=False) curveList = self.graph.getAllCurves(just_legend=True) if config['fit']['sumflag']: self.graph.addCurve(xdata, ddict['result']['pileup'] + \ ddict['result']['continuum'], legend="Pile-up", replot=False) elif "Pile-up" in curveList: self.graph.removeCurve("Pile-up", replot=False) if self.matrixSpectrumButton.isChecked(): if 'ymatrix' in ddict['result']: self.graph.addCurve(xdata, ddict['result']['ymatrix'], legend="Matrix") else: self.graph.removeCurve("Matrix") else: self.graph.removeCurve("Matrix") if self._xrfmcMatrixSpectra is not None: if len(self._xrfmcMatrixSpectra): if self._energyAxis: mcxdata = self._xrfmcMatrixSpectra[1] else: mcxdata = self._xrfmcMatrixSpectra[0] mcydata0 = self._xrfmcMatrixSpectra[2] mcydatan = self._xrfmcMatrixSpectra[-1] self.graph.addCurve(mcxdata, mcydata0, legend='MC Matrix 1', replot=False) self.graph.addCurve(mcxdata, mcydatan, legend='MC Matrix %d' % (len(self._xrfmcMatrixSpectra) - 2), replot=False) if self.peaksSpectrumButton.isChecked(): keep = ['Data','Fit','Continuum','Matrix','Pile-up'] for group in ddict['result']['groups']: keep += [group] for key in curveList: if key not in keep: if key.startswith('MC Matrix'): if self._xrfmcMatrixSpectra in [None, []]: self.graph.removeCurve(key) else: self.graph.removeCurve(key) for group in ddict['result']['groups']: label = 'y' + group if label in ddict['result']: self.graph.addCurve(xdata, ddict['result'][label], legend=group, replot=False) else: if group in curveList: self.graph.removeCurve(group, replot=False) else: self.__clearPeaksSpectrum() curveList = self.graph.getAllCurves(just_legend=True) if formerActiveCurveLegend in curveList: currentActiveCurveLegend = self.graph.getActiveCurve(just_legend=True) if currentActiveCurveLegend != formerActiveCurveLegend: self.graph.setActiveCurve(formerActiveCurveLegend, replot=False) self.graph.replot() self.graph.updateLegends() def _saveGraph(self, dict=None): curves = self.graph.getAllCurves() if not len(curves): return if not self.__fitdone: if False: # just save the data ? # just save data plus strip background if any? # for the time being just force to have the fit pass else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Sorry, You need to perform a fit first.\n" msg.setText(text) msg.exec() return if dict is None: #everything fitresult = self.dict else: fitresult = dict xdata = fitresult['result']['xdata'] # energy = fitresult['result']['energy'] # ydata = fitresult['result']['ydata'] # yfit = fitresult['result']['yfit'] # continuum = fitresult['result']['continuum'] # pileup = fitresult['result']['pileup'] # savelist = ['xdata', 'energy','ydata','yfit','continuum','pileup'] # parNames = fitresult['result']['parameters'] # parFit = fitresult['result']['fittedpar'] # parSigma = fitresult['result']['sigmapar'] #still to add the MC matrix spectrum # The Monte Carlo generated spectra # I assume the calibration is the same MCLabels, MCSpectra = self._getXRFMCLabelsAndSpectra(limits=\ (fitresult['result']['xdata'][0], fitresult['result']['xdata'][-1])) if MCLabels is not None: if MCSpectra[2].size != fitresult['result']['xdata'].size: _logger.warning("Monte Carlo Spectra not saved: Wrong spectrum length.") MCLabels = None MCSpectra = None if self.lastInputDir is None: self.lastInputDir = PyMcaDirs.outputDir format_list = ['Specfile MCA *.mca', 'Specfile Scan *.dat', 'Raw ASCII *.txt', '";"-separated CSV *.csv', '","-separated CSV *.csv', '"tab"-separated CSV *.csv', 'Graphics PNG *.png', 'Graphics EPS *.eps', 'Graphics SVG *.svg'] if not self.peaksSpectrumButton.isChecked(): format_list.append('B/WGraphics PNG *.png') format_list.append('B/WGraphics EPS *.eps') format_list.append('B/WGraphics SVG *.svg') wdir = self.lastInputDir outputFile, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=format_list, message="Output File Selection", currentdir=wdir, mode="SAVE", getfilter=True, single=True, currentfilter=None) if outputFile: outputFile = outputFile[0] filterused = filterused.split() filedescription = filterused[0] filetype = filterused[1] extension = filterused[2] try: outputDir = os.path.dirname(outputFile) self.lastInputDir = outputDir PyMcaDirs.outputDir = outputDir except Exception: outputDir = "." #self.outdir = outputDir else: return #always overwrite for the time being if len(outputFile) < len(extension[1:]): outputFile += extension[1:] elif outputFile[-4:] != extension[1:]: outputFile += extension[1:] specFile = os.path.join(outputDir, outputFile) try: os.remove(specFile) except Exception: pass systemline = os.linesep os.linesep = '\n' try: if filetype in ['EPS', 'PNG', 'SVG']: size = (7, 3.5) #in inches logy = self.graph.isYAxisLogarithmic() if filedescription == "B/WGraphics": bw = True else: bw = False if self.peaksSpectrumButton.isChecked(): legends = True elif 'ymatrix' in fitresult['result'].keys(): legends = False else: legends = False if self.matplotlibDialog is None: self.matplotlibDialog = QPyMcaMatplotlibSave1D.\ QPyMcaMatplotlibSaveDialog(size=size, logy=logy, legends=legends, bw = bw) mtplt = self.matplotlibDialog.plot mtplt.setParameters({'logy':logy, 'legends':legends, 'bw':bw}) """ mtplt = PyMcaMatplotlibSave.PyMcaMatplotlibSave(size=size, logy=logy, legends=legends, bw = bw) self.matplotlibDialog = None """ if self._energyAxis: x = fitresult['result']['energy'] else: x = fitresult['result']['xdata'] xmin, xmax = self.graph.getGraphXLimits() ymin, ymax = self.graph.getGraphYLimits() mtplt.setLimits(xmin, xmax, ymin, ymax) index = numpy.nonzero((xmin <= x) & (x <= xmax))[0] x = numpy.take(x, index) if bw: mtplt.addDataToPlot( x, numpy.take(fitresult['result']['ydata'],index), legend='data', color='k',linestyle=':', linewidth=1.5, markersize=3) else: mtplt.addDataToPlot( x, numpy.take(fitresult['result']['ydata'],index), legend='data', linewidth=1) mtplt.addDataToPlot( x, numpy.take(fitresult['result']['yfit'],index), legend='fit', linewidth=1.5) if not self.peaksSpectrumButton.isChecked(): mtplt.addDataToPlot( x, numpy.take(fitresult['result']['continuum'],index), legend='bck', linewidth=1.5) if self.top.sumbox.isChecked(): mtplt.addDataToPlot( x, numpy.take(fitresult['result']['pileup']+\ fitresult['result']['continuum'],index), legend="pile up", linewidth=1.5) if 'ymatrix' in fitresult['result'].keys(): mtplt.addDataToPlot( x, numpy.take(fitresult['result']['ymatrix'],index), legend='matrix', linewidth=1.5) if self._xrfmcMatrixSpectra is not None: if len(self._xrfmcMatrixSpectra): if self._energyAxis: mcxdata = self._xrfmcMatrixSpectra[1] else: mcxdata = self._xrfmcMatrixSpectra[0] mcindex = numpy.nonzero((xmin <= mcxdata) & (mcxdata <= xmax))[0] mcxdatax = numpy.take(mcxdata, mcindex) mcydata0 = numpy.take(self._xrfmcMatrixSpectra[2], mcindex) mcydatan = numpy.take(self._xrfmcMatrixSpectra[-1], mcindex) mtplt.addDataToPlot(mcxdatax, mcydata0, legend='MC Matrix 1', linewidth=1.5) mtplt.addDataToPlot(mcxdatax, mcydatan, legend='MC Matrix %d' % (len(self._xrfmcMatrixSpectra) - 2), linewidth=1.5) if self.peaksSpectrumButton.isChecked(): for group in fitresult['result']['groups']: label = 'y'+group if label in fitresult['result'].keys(): mtplt.addDataToPlot( x, numpy.take(fitresult['result'][label],index), legend=group, linewidth=1.5) if self._energyAxis: mtplt.setXLabel('Energy (keV)') else: mtplt.setXLabel('Channel') mtplt.setYLabel('Counts') mtplt.plotLegends() if self.matplotlibDialog is not None: ret = self.matplotlibDialog.exec() if ret == qt.QDialog.Accepted: mtplt.saveFile(specFile) else: mtplt.saveFile(specFile) return except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("Matplotlib or Input Output Error: %s" \ % (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: if sys.version < "3.0": file = open(specFile, 'wb') else: file = open(specFile, 'w', newline='') except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("Input Output Error: %s" % \ (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: if filetype == 'ASCII': keys = fitresult['result'].keys() for i in range(len(fitresult['result']['ydata'])): file.write("%.7g %.7g %.7g %.7g %.7g %.7g" % (fitresult['result']['xdata'][i], fitresult['result']['energy'][i], fitresult['result']['ydata'][i], fitresult['result']['yfit'][i], fitresult['result']['continuum'][i], fitresult['result']['pileup'][i])) if 'ymatrix' in fitresult['result'].keys(): file.write(" %.7g" % fitresult['result']['ymatrix'][i]) if MCLabels is not None: for nInteractions in range(2, len(MCLabels)): file.write(" %.7g" % MCSpectra[nInteractions][i]) for group in fitresult['result']['groups']: label = 'y'+group if label in keys: file.write(" %.7g" % fitresult['result'][label][i]) file.write("\n") file.close() return if filetype == 'CSV': if "," in filterused[0]: csv = "," elif ";" in filterused[0]: csv = ";" else: csv = "\t" keys = fitresult['result'].keys() headerLine = '"channel"%s"Energy"%s"counts"%s"fit"%s"continuum"%s"pileup"' % (csv, csv, csv, csv, csv) if 'ymatrix' in keys: headerLine += '%s"ymatrix"' % csv if MCLabels is not None: for nLabel in range(2, len(MCLabels)): headerLine += csv+ ('"%s"' % MCLabels[nLabel]) for group in fitresult['result']['groups']: label = 'y'+group if label in keys: headerLine += csv+ ('"%s"' % group) file.write(headerLine) file.write('\n') for i in range(len(fitresult['result']['ydata'])): file.write("%.7g%s%.7g%s%.7g%s%.7g%s%.7g%s%.7g" % (fitresult['result']['xdata'][i], csv, fitresult['result']['energy'][i], csv, fitresult['result']['ydata'][i], csv, fitresult['result']['yfit'][i], csv, fitresult['result']['continuum'][i], csv, fitresult['result']['pileup'][i])) if 'ymatrix' in fitresult['result'].keys(): file.write("%s%.7g" % (csv,fitresult['result']['ymatrix'][i])) if MCLabels is not None: for nInteractions in range(2, len(MCLabels)): file.write("%s%.7g" % (csv,MCSpectra[nInteractions][i])) for group in fitresult['result']['groups']: label = 'y'+group if label in keys: file.write("%s%.7g" % (csv,fitresult['result'][label][i])) file.write("\n") file.close() return #header is almost common to specfile and mca file.write("#F %s\n" % specFile) file.write("#D %s\n"%(time.ctime(time.time()))) file.write("\n") legend = str(self.headerLabel.text()).strip('') legend.strip('<\b>') file.write("#S 1 %s\n" % legend) file.write("#D %s\n"%(time.ctime(time.time()))) i = 0 for parameter in fitresult['result']['parameters']: file.write("#U%d %s %.7g +/- %.3g\n" % (i, parameter, fitresult['result']['fittedpar'][i], fitresult['result']['sigmapar'][i])) i+=1 if filetype == 'Scan': keys = fitresult['result'].keys() labelline= "#L channel Energy counts fit continuum pileup" if 'ymatrix' in keys: nlabels = 7 labelline += "ymatrix" else: nlabels = 6 if MCLabels is not None: for nLabel in range(2, len(MCLabels)): nlabels += 1 labelline += ' '+ MCLabels[nLabel] for group in fitresult['result']['groups']: label = 'y'+group if label in keys: nlabels += 1 labelline += ' '+group file.write("#N %d\n" % nlabels) file.write(labelline) file.write("\n") for i in range(len(fitresult['result']['ydata'])): file.write("%.7g %.7g %.7g %.7g %.7g %.7g" % (fitresult['result']['xdata'][i], fitresult['result']['energy'][i], fitresult['result']['ydata'][i], fitresult['result']['yfit'][i], fitresult['result']['continuum'][i], fitresult['result']['pileup'][i])) if 'ymatrix' in keys: file.write(" %.7g" % fitresult['result']['ymatrix'][i]) if MCLabels is not None: for nInteractions in range(2, len(MCLabels)): file.write(" %.7g" % MCSpectra[nInteractions][i]) for group in fitresult['result']['groups']: label = 'y'+group if label in keys: file.write(" %.7g" % fitresult['result'][label][i]) file.write("\n") else: file.write("#@MCA %16C\n") file.write("#@CHANN %d %d %d 1\n" % (len(fitresult['result']['ydata']), fitresult['result']['xdata'][0], fitresult['result']['xdata'][-1])) zeroindex = fitresult['result']['parameters'].index('Zero') gainindex = fitresult['result']['parameters'].index('Gain') file.write("#@CALIB %.7g %.7g 0.0\n" % (fitresult['result']['fittedpar'][zeroindex], fitresult['result']['fittedpar'][gainindex])) file.write(self.array2SpecMca(fitresult['result']['ydata'])) file.write(self.array2SpecMca(fitresult['result']['yfit'])) file.write(self.array2SpecMca(fitresult['result']['continuum'])) file.write(self.array2SpecMca(fitresult['result']['pileup'])) keys = fitresult['result'].keys() if 'ymatrix' in keys: file.write(self.array2SpecMca(fitresult['result']['ymatrix'])) # The Monte Carlo generated spectra # I assume the calibration is the same if MCLabels is not None: for i in range(2, len(MCLabels)): file.write(self.array2SpecMca(MCSpectra[i])) for group in fitresult['result']['groups']: label = 'y'+group if label in keys: file.write(self.array2SpecMca(fitresult['result'][label])) file.write("\n") file.close() except Exception: os.linesep = systemline raise return def _getXRFMCLabelsAndSpectra(self, limits=None): labels = None spectra = None if self._xrfmcMatrixSpectra is not None: if len(self._xrfmcMatrixSpectra): labels = [] spectra = [] labels.append("channels") data = self._xrfmcMatrixSpectra[0] if limits: idx = numpy.nonzero((data >= limits[0]) & \ (data <= limits[1]))[0] data = data[idx] spectra.append(data) labels.append("energy") data = self._xrfmcMatrixSpectra[1] if limits: data = data[idx] spectra.append(data) for i in range(2, len(self._xrfmcMatrixSpectra)): labels.append("MC Matrix %d" % (i - 1)) data = self._xrfmcMatrixSpectra[i] if limits: data = data[idx] spectra.append(data) return labels, spectra def array2SpecMca(self, data): """ Write a python array into a Spec array. Return the string containing the Spec array """ tmpstr = "@A" length = len(data) for idx in range(0, length, 16): if idx+15 < length: for i in range(0,16): tmpstr += " %.4f" % data[idx+i] if idx+16 != length: tmpstr += "\\" else: for i in range(idx, length): tmpstr += " %.4f" % data[i] tmpstr += "\n" return tmpstr class Top(qt.QWidget): sigTopSignal = qt.pyqtSignal(object) def __init__(self,parent = None,name = None,fl = 0): qt.QWidget.__init__(self,parent) self.mainLayout= qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.build() def build(self): self.__w=qt.QWidget(self) w = self.__w self.mainLayout.addWidget(w) wlayout = qt.QGridLayout(w) wlayout.setSpacing(5) #function FunLabel = qt.QLabel(w) FunLabel.setText(str("Function")) if QTVERSION < '4.0.0': self.FunComBox = qt.QComboBox(0,w,"FunComBox") self.FunComBox.insertStrList(["Mca Hypermet"]) self.FunComBox.insertStrList(["Mca Pseudo-Voigt"]) else: self.FunComBox = qt.QComboBox(w) self.FunComBox.insertItem(0, "Mca Hypermet") self.FunComBox.insertItem(1, "Mca Pseudo-Voigt") wlayout.addWidget(FunLabel,0,0) wlayout.addWidget(self.FunComBox,0,1) #background BkgLabel = qt.QLabel(w) BkgLabel.setText(str("Background")) if QTVERSION < '4.0.0': self.BkgComBox = qt.QComboBox(0,w,"BkgComBox") self.BkgComBox.insertStrList(['No Background', 'Constant', 'Linear', 'Parabolic', 'Linear Polynomial', 'Exp. Polynomial']) else: self.BkgComBox = qt.QComboBox(w) options = ['No Background', 'Constant', 'Linear', 'Parabolic', 'Linear Polynomial', 'Exp. Polynomial'] for item in options: self.BkgComBox.insertItem(options.index(item), item) self.FunComBox.activated[int].connect(self.mysignal) self.BkgComBox.activated[int].connect(self.mysignal) wlayout.addWidget(BkgLabel,1,0) wlayout.addWidget(self.BkgComBox,1,1) dummy = qt.QWidget(self) dummy.setMinimumSize(20,0) self.mainLayout.addWidget(dummy) self.mainLayout.addWidget(qt.HorizontalSpacer(self)) #the checkboxes if 0: w1 = qt.QVBox(self) self.WeightCheckBox = qt.QCheckBox(w1) self.WeightCheckBox.setText(str("Weight")) self.McaModeCheckBox = qt.QCheckBox(w1) self.McaModeCheckBox.setText(str("Mca Mode")) # Flags f = qt.QWidget(self) self.mainLayout.addWidget(f) f.layout= qt.QGridLayout(f) f.layout.setSpacing(5) flagsoffset = -1 coffset = 0 #hyplabel = qt.QLabel(f) #hyplabel.setText(str("%s" % 'FLAGS')) self.stbox = qt.QCheckBox(f) self.stbox.setText('Short Tail') self.ltbox = qt.QCheckBox(f) self.ltbox.setText('Long Tail') self.stepbox = qt.QCheckBox(f) self.stepbox.setText('Step Tail') self.escapebox = qt.QCheckBox(f) self.escapebox.setText('Escape') self.sumbox = qt.QCheckBox(f) self.sumbox.setText('Pile-up') self.stripbox = qt.QCheckBox(f) self.stripbox.setText('Strip Back.') #checkbox connections self.stbox.clicked.connect(self.mysignal) self.ltbox.clicked.connect(self.mysignal) self.stepbox.clicked.connect(self.mysignal) self.escapebox.clicked.connect(self.mysignal) self.sumbox.clicked.connect(self.mysignal) self.stripbox.clicked.connect(self.mysignal) #f.layout.addWidget(hyplabel,flagsoffset,coffset +1) f.layout.addWidget(self.stbox,flagsoffset+1,coffset +0) f.layout.addWidget(self.ltbox,flagsoffset+1,coffset +1) f.layout.addWidget(self.stepbox,flagsoffset+1,coffset +2) f.layout.addWidget(self.escapebox,flagsoffset+2,coffset +0) f.layout.addWidget(self.sumbox,flagsoffset+2,coffset +1) f.layout.addWidget(self.stripbox,flagsoffset+2,coffset +2) self.mainLayout.addWidget(qt.HorizontalSpacer(self)) #buttons g = qt.QWidget(self) self.mainLayout.addWidget(g) glayout = qt.QGridLayout(g) glayout.setSpacing(5) self.configureButton = qt.QPushButton(g) self.configureButton.setText(str("Configure")) self.printButton = qt.QPushButton(g) self.printButton.setText(str("Tools")) glayout.addWidget(self.configureButton,0,0) glayout.addWidget(self.printButton,1,0) def setParameters(self,ddict=None): if ddict == None: ddict = {} hypermetflag = ddict.get('hypermetflag', 1) if not ('fitfunction' in ddict): if hypermetflag: ddict['fitfunction'] = 0 else: ddict['fitfunction'] = 1 self.FunComBox.setCurrentIndex(ddict['fitfunction']) if 'hypermetflag' in ddict: hypermetflag = ddict['hypermetflag'] if ddict['fitfunction'] == 0: # g_term = hypermetflag & 1 st_term = (hypermetflag >>1) & 1 lt_term = (hypermetflag >>2) & 1 step_term = (hypermetflag >>3) & 1 self.stbox.setEnabled(1) self.ltbox.setEnabled(1) self.stepbox.setEnabled(1) if st_term: self.stbox.setChecked(1) else: self.stbox.setChecked(0) if lt_term: self.ltbox.setChecked(1) else: self.ltbox.setChecked(0) if step_term: self.stepbox.setChecked(1) else: self.stepbox.setChecked(0) else: self.stbox.setEnabled(0) self.ltbox.setEnabled(0) self.stepbox.setEnabled(0) key = 'sumflag' if key in ddict: if ddict[key] == 1: self.sumbox.setChecked(1) else: self.sumbox.setChecked(0) key = 'stripflag' if key in ddict: if ddict[key] == 1: self.stripbox.setChecked(1) else: self.stripbox.setChecked(0) key = 'escapeflag' if key in ddict: if ddict[key] == 1: self.escapebox.setChecked(1) else: self.escapebox.setChecked(0) key = 'continuum' if key in ddict: if QTVERSION < '4.0.0': self.BkgComBox.setCurrentItem(ddict[key]) else: self.BkgComBox.setCurrentIndex(ddict[key]) def getParameters(self): ddict={} index = self.FunComBox.currentIndex() ddict['fitfunction'] = index ddict['hypermetflag'] = 1 if index == 0: self.stbox.setEnabled(1) self.ltbox.setEnabled(1) self.stepbox.setEnabled(1) else: ddict['hypermetflag'] = 0 self.stbox.setEnabled(0) self.ltbox.setEnabled(0) self.stepbox.setEnabled(0) if self.stbox.isChecked(): ddict['hypermetflag'] += 2 if self.ltbox.isChecked(): ddict['hypermetflag'] += 4 if self.stepbox.isChecked(): ddict['hypermetflag'] += 8 if self.sumbox.isChecked(): ddict['sumflag'] = 1 else: ddict['sumflag'] = 0 if self.stripbox.isChecked(): ddict['stripflag'] = 1 else: ddict['stripflag'] = 0 if self.escapebox.isChecked(): ddict['escapeflag'] = 1 else: ddict['escapeflag'] = 0 if QTVERSION < '4.0.0': ddict['continuum'] = self.BkgComBox.currentItem() else: ddict['continuum'] = self.BkgComBox.currentIndex() return ddict def mysignal(self, *var): ddict = self.getParameters() self.sigTopSignal.emit(ddict) class Line(qt.QFrame): sigLineDoubleClickEvent = qt.pyqtSignal(object) def __init__(self, parent=None, name="Line", fl=0, info=None): qt.QFrame.__init__(self, parent) self.info = info self.setFrameShape(qt.QFrame.HLine) self.setFrameShadow(qt.QFrame.Sunken) self.setFrameShape(qt.QFrame.HLine) def mouseDoubleClickEvent(self, event): _logger.debug("Double Click Event") ddict={} ddict['event']="DoubleClick" ddict['data'] = event ddict['info'] = self.info self.sigLineDoubleClickEvent.emit(ddict) class McaGraphWindow(PlotWindow.PlotWindow): def __init__(self, parent=None, backend=None, plugins=False, newplot=False, position=True, control=True, plot1d=True, **kw): super(McaGraphWindow, self).__init__(parent, backend=backend, plugins=plugins, newplot=newplot, energy=True, roi=True, logx=False, fit=True, position=position, control=control, plot1d=plot1d, **kw) self.setDataMargins(0, 0, 0.025, 0.025) self.setPanWithArrowKeys(True) self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) self.setGraphYLabel("Counts") if self.energyButton.isChecked(): self.setGraphXLabel("Energy") else: self.setGraphXLabel("Channel") def printGraph(self): widget = self.getWidgetHandle() if hasattr(qt.QPixmap, "grabWidget"): pixmap = qt.QPixmap.grabWidget(widget) else: pixmap = widget.grab() self.printPreview.addPixmap(pixmap) if self.printPreview.isHidden(): self.printPreview.show() self.printPreview.raise_() def _energyIconSignal(self): legend = self.getActiveCurve(just_legend=True) ddict={} ddict['event'] = 'EnergyClicked' ddict['active'] = legend self.sigPlotSignal.emit(ddict) def _fitIconSignal(self): legend = self.getActiveCurve(just_legend=True) ddict={} ddict['event'] = 'FitClicked' ddict['active'] = legend self.sigPlotSignal.emit(ddict) def _saveIconSignal(self): legend = self.getActiveCurve(just_legend=True) ddict={} ddict['event'] = 'SaveClicked' ddict['active'] = legend self.sigPlotSignal.emit(ddict) def setActiveCurve(self, legend, replot=True): super(McaGraphWindow, self).setActiveCurve(legend, replot=False) self.setGraphYLabel("Counts") if self.energyButton.isChecked(): self.setGraphXLabel("Energy") else: self.setGraphXLabel("Channel") if replot: self.replot() def test(ffile='03novs060sum.mca', cfg=None): from PyMca5.PyMcaIO import specfilewrapper as specfile app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) sf=specfile.Specfile(ffile) scan=sf[-1] nMca = scan.nbmca() mcadata=scan.mca(nMca) y0= numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 demo = McaAdvancedFit() #This illustrates how to change the configuration #oldConfig = demo.configure() #oldConfig['fit']['xmin'] = 123 #demo.configure(oldConfig) if cfg is not None: d = ConfigDict.ConfigDict() d.read(cfg) demo.configure(d) d = None xmin = demo.mcafit.config['fit']['xmin'] xmax = demo.mcafit.config['fit']['xmax'] demo.setData(x,y0,xmin=xmin,xmax=xmax,sourcename=ffile) demo.show() app.exec() def main(): app = qt.QApplication([]) form = McaAdvancedFit(top=False) form.show() sys.exit(app.exec()) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) if len(sys.argv) >1: ffile = sys.argv[1] else: ffile = '03novs060sum.mca' if len(sys.argv) > 2: cfg = sys.argv[2] else: cfg = None if os.path.exists(ffile): test(ffile, cfg) else: main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/McaAdvancedTable.py0000644000000000000000000003122514741736366023005 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaGui.misc.TableWidget import TableWidget QTable = TableWidget except Exception: _logger.warning("Cannot import clipboard enabled table") QTable = qt.QTableWidget class McaTable(QTable): sigMcaTableSignal = qt.pyqtSignal(object) sigClosed = qt.pyqtSignal(object) def __init__(self, *args,**kw): QTable.__init__(self, *args) if 'labels' in kw: self.labels=[] for label in kw['labels']: self.labels.append(label) else: #self.labels=['Element','Group','Energy','Ratio','Fit Area','MCA Area','Sigma','Fwhm','Chisq'] self.labels=['Element','Group','Fit Area','Sigma','Energy','Ratio','FWHM','Chi square'] self.setColumnCount(len(self.labels)) for i in range(len(self.labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) item.setText(self.labels[i]) self.setHorizontalHeaderItem(i,item) self.regionlist=[] self.regiondict={} verticalHeader = self.verticalHeader() if hasattr(verticalHeader, "setSectionsClickable"): self.verticalHeader().setSectionsClickable(True) else: self.verticalHeader().setClickable(True) self.verticalHeader().sectionClicked.connect(self.__myslot) self.itemSelectionChanged.connect(self.__myslot) #self.connect(self,qt.SIGNAL("selectionChanged()"),self.__myslot) #self.setSelectionMode(qttable.QTable.SingleRow) def fillfrommca(self,result,diag=1): line=0 #calculate the number of rows nrows = 0 for group in result['groups']: nrows += 1 for peak in result[group]['peaks']: nrows += 1 for peak0 in result[group]['escapepeaks']: peak = peak0+"esc" if result[group][peak]['ratio'] > 0.0: nrows += 1 self.setRowCount(nrows) for group in result['groups']: ele,group0 = group.split() fitarea = QString("%.4e" % (result[group]['fitarea'])) sigmaarea = QString("%.2e" % (result[group]['sigmaarea'])) fields = [ele,group0,fitarea,sigmaarea] col = 0 color = qt.QColor('white') nlines = self.rowCount() if (line+1) > nlines: self.setRowCount(line+1) for i in range(len(self.labels)): if i < len(fields): item = self.item(line, col) text = fields[i] if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(line, col, item) else: item.setText(text) if hasattr(item, "setBackground"): item.setBackground(color) else: item.setBackgroundColor(color) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) else: item = self.item(line, col) if item is not None: item.setText("") #self.setItem(line, col, item) col=col+1 line += 1 #Lemon Chiffon = (255,250,205) color = qt.QColor(255,250,205) for peak in result[group]['peaks']: name = peak energy = QString("%.3f" % (result[group][peak]['energy'])) ratio = QString("%.5f" % (result[group][peak]['ratio'])) area = QString("%.4e" % (result[group][peak]['fitarea'])) sigma = QString("%.2e" % (result[group][peak]['sigmaarea'])) fwhm = QString("%.3f" % (result[group][peak]['fwhm'])) chisq = QString("%.2f" % (result[group][peak]['chisq'])) if (line+1) > nlines: self.setRowCount(line+1) fields = [name,area,sigma,energy,ratio,fwhm,chisq] col = 1 for field in fields: item = self.item(line, col) text = field if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(line, col, item) else: item.setText(text) if hasattr(item, "setBackground"): item.setBackground(color) else: item.setBackgroundColor(color) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) col=col+1 line+=1 for peak0 in result[group]['escapepeaks']: peak = peak0+"esc" if result[group][peak]['ratio'] > 0.0: energy = QString("%.3f" % (result[group][peak]['energy'])) ratio = QString("%.5f" % (result[group][peak]['ratio'])) area = QString("%.4e" % (result[group][peak]['fitarea'])) sigma = QString("%.2e" % (result[group][peak]['sigmaarea'])) fwhm = QString("%.3f" % (result[group][peak]['fwhm'])) chisq = QString("%.2f" % (result[group][peak]['chisq'])) if (line+1) > nlines: self.setRowCount(line+1) fields = [peak,area,sigma,energy,ratio,fwhm,chisq] col = 1 for field in fields: item = self.item(line, col) if item is None: item = qt.QTableWidgetItem(field, qt.QTableWidgetItem.Type) self.setItem(line, col, item) else: item.setText(field) if hasattr(item, "setBackground"): item.setBackground(color) else: item.setBackgroundColor(color) item.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) col=col+1 line+=1 for i in range(self.columnCount()): if i>-1: self.resizeColumnToContents(i) def __getfitpar(self,result): if result['fitconfig']['fittheory'].find("Area") != -1: fitlabel='Area' elif result['fitconfig']['fittheory'].find("Hypermet") != -1: fitlabel='Area' else: fitlabel='Height' values = [] sigmavalues = [] for param in result['paramlist']: if param['name'].find('ST_Area') != -1: # value and sigmavalue defined via fitlabel values[-1] = value * (1.0 + param['fitresult']) #just an approximation sigmavalues[-1] = sigmavalue * (1.0 + param['fitresult']) elif param['name'].find('LT_Area')!= -1: pass elif param['name'].find(fitlabel) != -1: value = param['fitresult'] sigmavalue = param['sigma'] values.append(value) sigmavalues.append(sigmavalue) return fitlabel, values, sigmavalues def __myslot(self,*var): ddict={} if len(var) == 0: #selection changed event #get the current selection ddict['event'] = 'McaTableClicked' row = self.currentRow() else: #Header click ddict['event'] = 'McaTableRowHeaderClicked' row = var[0] ccol = self.currentColumn() ddict['row' ] = row ddict['col'] = ccol ddict['labelslist'] = self.labels if row >= 0: col = 0 for label in self.labels: item = self.item(row, col) if item is not None: text = item.text() try: ddict[label] = float(str(text)) except Exception: ddict[label] = str(text) col +=1 self.sigMcaTableSignal.emit(ddict) def gettext(self): lemon= ("#%x%x%x" % (255,250,205)).upper() if QTVERSION < '4.0.0': hb = self.horizontalHeader().paletteBackgroundColor() hcolor = ("#%x%x%x" % (hb.red(),hb.green(),hb.blue())).upper() else: _logger.debug("color background to implement") hcolor = ("#%x%x%x" % (230,240,249)).upper() text = "" text += ("
") text += ("") text += ("") ncols = self.columnCount() for l in range(ncols): text+=('") text+=("") #text+=( str(QString("
")) nrows = self.rowCount() for r in range(nrows): text+=("") moretext = "" item = self.item(r, 0) if item is not None: moretext = str(item.text()) if len(moretext): color = "white" b="" else: b="" color = lemon for c in range(ncols): moretext = "" item = self.item(r, c) if item is not None: moretext = str(item.text()) if len(moretext): finalcolor = color else: finalcolor = "white" if c<2: text+=('") else: text+=("") moretext = "" item = self.item(r, 0) if item is not None: moretext = str(item.text()) if len(moretext): text+=("") text+=("") #text+=( str(QString("
")) text+=("\n") text+=("
' % hcolor) text+=(str(self.horizontalHeaderItem(l).text())) text+=("
%s' % (finalcolor,b)) else: text+=('%s' % (finalcolor,b)) text+= moretext if len(b): text+=("
") text+=("
") return text def closeEvent(self, event): QTable.closeEvent(self, event) ddict={} ddict['event']= 'closed' self.sigClosed.emit(ddict) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/McaCalWidget.py0000644000000000000000000020123714741736366022175 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from numpy.linalg import inv as inverse import copy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting.PlotWidget import PlotWidget if hasattr(qt, "QString"): QString = qt.QString else: QString = str QTVERSION = qt.qVersion() from PyMca5.PyMcaMath.fitting import Gefit from PyMca5.PyMcaMath.fitting import Specfit from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from . import PeakTableWidget if 0: from PyMca5 import XRDPeakTableWidget _logger = logging.getLogger(__name__) LOW_HEIGHT_THRESHOLD = 660 class McaCalWidget(qt.QDialog): def __init__(self, parent=None, name="MCA Calibration Widget", x = None,y=None,current=None,peaks=None,caldict=None, specfit=None,legend="", xrd=False, lambda_="-", modal=0,fl=0): #fl=qt.Qt.WDestructiveClose): self.name= name if QTVERSION < '4.0.0': qt.QDialog.__init__(self, parent, name, modal,fl) self.setCaption(self.name) else: qt.QDialog.__init__(self, parent) self.setModal(modal) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.setWindowTitle(self.name) maxheight = qt.QDesktopWidget().height() if maxheight < 770: self.setMinimumHeight(int(0.9*(maxheight))) self.setMaximumHeight(int(1.0*(maxheight))) self.__xrdMode = xrd self.__xrdLambda = lambda_ self.__xrdEnergy = "" self.__xrdParticle = "Photon" self.__manualsearch = 0 self.foundPeaks = [] if caldict is None: caldict = {} self.dict = {} if x is None: if len(y): x = numpy.arange(len(y)).astype(numpy.float64) self.dict ['x'] = x self.dict ['y'] = y self.dict ['legend'] = legend self.current = legend self.caldict = caldict if legend not in self.caldict.keys(): self.caldict[legend] = {} self.caldict[legend]['order'] = 1 self.caldict[legend]['A'] = 0.0 self.caldict[legend]['B'] = 1.0 self.caldict[legend]['C'] = 0.0 if not ('order' in self.caldict[legend]): if abs(self.caldict[legend]['C']) > 0.0: self.caldict[legend]['order'] = 2 else: self.caldict[legend]['order'] = 1 self.callist = self.caldict.keys() if specfit is None: self.specfit = Specfit.Specfit() else: self.specfit = specfit self.build() self.initIcons() self.initToolBar() self.connections() if self.dict ['y'] is not None: self.plot(x,y,legend) self.markermode = 0 self.linewidgets=[] self._toggleLogY() self.__peakmarkermode() def build(self): self.layout = qt.QVBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.layout.setSpacing(0) self.toolbar = qt.QWidget(self) self.toolbar.layout = qt.QHBoxLayout(self.toolbar) self.toolbar.layout.setContentsMargins(0, 0, 0, 0) self.toolbar.layout.setSpacing(0) self.layout.addWidget(self.toolbar) self.container = qt.QWidget(self) self.container.layout = qt.QVBoxLayout(self.container) self.container.layout.setContentsMargins(0, 0, 0, 0) self.container.layout.setSpacing(0) self.layout.addWidget(self.container) #The graph self.graph = PlotWidget(self.container, backend=None) self.graph.setGraphXLabel('Channel') self.graph.setGraphYLabel('Counts') self.graph.setDataMargins(0.0, 0.0, 0.0, 0.0) #The calibration Widget self.bottomPanel = qt.QWidget(self.container) self.bottomPanel.layout = qt.QHBoxLayout(self.bottomPanel) self.bottomPanel.layout.setSpacing(6) if qt.QDesktopWidget().height() < LOW_HEIGHT_THRESHOLD: self.bottomPanel.layout.setContentsMargins(2, 2, 2, 2) else: self.bottomPanel.layout.setContentsMargins(10, 10, 10, 10) self.peakParameters = PeakSearchParameters(self.bottomPanel) self.bottomPanel.layout.addWidget(self.peakParameters) """ self.calpar = CalibrationParameters(self.bottomPanel) self.calpar. setSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed) """ if QTVERSION < '4.0.0': self.bottomPanel.layout.addWidget(qt.HorizontalSpacer(self.bottomPanel)) #self.cal.setSizePolicy(qt.QSizePolicy.MinimumExpanding, qt.QSizePolicy.MinimumExpanding) self.peakParameters.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) if self.__xrdMode: self.peakTable = XRDPeakTableWidget.XRDPeakTableWidget(self.bottomPanel) else: self.peakTable = PeakTableWidget.PeakTableWidget(self.bottomPanel) self.bottomPanel.layout.addWidget(self.peakTable) self.peakTable.verticalHeader().hide() if QTVERSION < '4.0.0': self.peakTable.setLeftMargin(0) self.container.layout.addWidget(self.graph) self.container.layout.addWidget(self.bottomPanel) #self.peakTable.setRowReadOnly(0,1) def initIcons(self): self.normalIcon = qt.QIcon(qt.QPixmap(IconDict["normal"])) self.zoomIcon = qt.QIcon(qt.QPixmap(IconDict["zoom"])) self.roiIcon = qt.QIcon(qt.QPixmap(IconDict["roi"])) self.peakIcon = qt.QIcon(qt.QPixmap(IconDict["peak"])) self.zoomResetIcon = qt.QIcon(qt.QPixmap(IconDict["zoomreset"])) self.roiResetIcon = qt.QIcon(qt.QPixmap(IconDict["roireset"])) self.peakResetIcon = qt.QIcon(qt.QPixmap(IconDict["peakreset"])) self.refreshIcon = qt.QIcon(qt.QPixmap(IconDict["reload"])) self.logxIcon = qt.QIcon(qt.QPixmap(IconDict["logx"])) self.logyIcon = qt.QIcon(qt.QPixmap(IconDict["logy"])) self.fitIcon = qt.QIcon(qt.QPixmap(IconDict["fit"])) self.searchIcon = qt.QIcon(qt.QPixmap(IconDict["peaksearch"])) def _resetZoom(self, dummyValue=None): return self.graph.resetZoom() def initToolBar(self): toolbar = self.toolbar #Zoom Reset self._addToolButton(self.zoomResetIcon, self._resetZoom, 'Auto-Scale the Graph') # Logarithmic self.yLogButton = self._addToolButton(self.logyIcon, self._toggleLogY, 'Toggle Logarithmic Y Axis (On/Off)', toggle=True) self.yLogButton.setChecked(False) self.yLogButton.setDown(False) # Search self._addToolButton(self.searchIcon, self.peakSearch, 'Clear Peak Table and Search Peaks') # Clear peaks self._addToolButton(self.peakResetIcon, self.clearPeaks, 'Clear Peak Table') # Manual Search self.__msb = self._addToolButton(self.peakIcon, self.manualsearch, 'Add a peak to the graph', toggle=True) self.toolbar.layout.addWidget(qt.HorizontalSpacer(toolbar)) label=qt.QLabel(toolbar) label.setText('Channel:') self.toolbar.layout.addWidget(label) self.xpos = qt.QLineEdit(toolbar) self.xpos.setText('------') self.xpos.setReadOnly(1) self.xpos.setFixedWidth(self.xpos.fontMetrics().maxWidth()*len('########')) self.toolbar.layout.addWidget(self.xpos) label=qt.QLabel(toolbar) label.setText('Counts:') self.toolbar.layout.addWidget(label) self.ypos = qt.QLineEdit(toolbar) self.ypos.setText('------') self.ypos.setReadOnly(1) self.ypos.setFixedWidth(self.ypos.fontMetrics().maxWidth()*len('#########')) self.toolbar.layout.addWidget(self.ypos) label=qt.QLabel(toolbar) if self.__xrdMode: label.setText('2Theta:') else: label.setText('Energy:') self.toolbar.layout.addWidget(label) self.epos = qt.QLineEdit(toolbar) self.epos.setText('------') self.epos.setReadOnly(1) self.epos.setFixedWidth(self.epos.fontMetrics().maxWidth()*len('#########')) self.toolbar.layout.addWidget(self.epos) #rest toolbar2 = qt.QWidget(self) self.layout.addWidget(toolbar2) toolbar2.layout = qt.QHBoxLayout(toolbar2) toolbar2.layout.setContentsMargins(0, 0, 0, 0) toolbar2.layout.setSpacing(0) self.calpar = CalibrationParameters(toolbar2, calname=self.current,caldict=self.caldict, xrd=self.__xrdMode) self.calpar. setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.okButton = qt.QPushButton(toolbar2) self.okButton.setText('OK') self.cancelButton = qt.QPushButton(toolbar2) self.cancelButton.setText('Cancel') if QTVERSION < '4.0.0': pass else: self.okButton.setAutoDefault(False) self.cancelButton.setAutoDefault(False) self.okButton. setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.cancelButton. setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) toolbar2.layout.addWidget(self.calpar) toolbar2.layout.addWidget(self.okButton) toolbar2.layout.addWidget(self.cancelButton) def _addToolButton(self, icon, action, tip, toggle=None): toolbar = self.toolbar tb = qt.QToolButton(toolbar) tb.setIcon(icon) tb.setToolTip(tip) if toggle is not None: if toggle: tb.setCheckable(1) self.toolbar.layout.addWidget(tb) tb.clicked.connect(action) return tb def _toggleLogY(self): _logger.debug("_toggleLogY") if self.graph.isYAxisLogarithmic(): self.setYAxisLogarithmic(False) else: self.setYAxisLogarithmic(True) def setYAxisLogarithmic(self, flag=True): self.graph.setYAxisLogarithmic(flag) self.yLogButton.setChecked(flag) self.yLogButton.setDown(flag) self._resetZoom() def connections(self): self.peakParameters.searchButton.clicked.connect(self.peakSearch) self.graph.sigPlotSignal.connect(self.__graphsignal) self.peakTable.sigPeakTableWidgetSignal.connect(self.__peakTableSignal) self.calpar.sigCalibrationParametersSignal.connect( \ self.__calparsignal) self.okButton.clicked.connect(self.accept) self.cancelButton.clicked.connect(self.reject) def plot(self, x, y, legend): #clear graph self.graph.clear() self.graph.addCurve(x, y , legend=legend, replot=True) self.dict['x'] = x self.dict['y'] = y self.dict['legend'] = legend #reset the zoom self._resetZoom() def peakSearch(self): _logger.debug("Peak search called") if self.__manualsearch: self.__manualsearch = 0 if QTVERSION < '4.0.0': self.__msb.setState(qt.QButton.Off) else: self.__msb.setChecked(0) #get current plot limits xmin,xmax=self.graph.getGraphXLimits() #set the data into specfit self.specfit.setdata(x=self.dict['x'], y=self.dict['y'], xmin=xmin, xmax=xmax) #get the search parameters from the interface pars = self.peakParameters.getParameters() if pars["AutoFwhm"]: fwhm = self.specfit.guess_fwhm() else: fwhm = pars["FwhmPoints"] if pars["AutoYscaling"]: yscaling = self.specfit.guess_yscaling() else: yscaling = pars["Yscaling"] sensitivity = pars["Sensitivity"] self.peakParameters.fwhmText.setText("%d" % fwhm) self.peakParameters.yscalingText.setText("%f" % yscaling) ysearch = self.specfit.ydata*yscaling peaksidx=SpecfitFuns.seek(ysearch,1,len(ysearch), fwhm, sensitivity) self.foundPeaks = [] self.graph.clearMarkers() self.__destroylinewidgets() self.peakTable.setRowCount(0) i = 0 for idx in peaksidx: self.foundPeaks.append(self.specfit.xdata[int(idx)]) #self.graph.insertx1marker(self.specfit.xdata[int(idx)],self.specfit.ydata[int(idx)]) self.graph.insertXMarker(self.specfit.xdata[int(idx)], legend="%d" % i, text=None, selectable=True, draggable=False, replot=False) i += 1 self.graph.replot() #make sure marker mode is on self.markermode = 0 self.__peakmarkermode() def clearpeaks(self): _logger.info("DEPRECATED: Use clearPeaks") return self.clearPeaks() def clearPeaks(self): self.foundPeaks = [] self.graph.clearMarkers() self.__destroylinewidgets() self.peakTable.clearPeaks() self.graph.replot() def manualsearch(self): #disable peak selection self.markermode = 1 self.__peakmarkermode() self.__manualsearch = 1 def __destroylinewidgets(self): for widget in self.linewidgets: widget.close(1) self.linewidgets=[] def __peakmarkermode(self): self.__manualsearch = 0 if self.markermode: self.graph.setCursor(qt.QCursor(qt.Qt.CrossCursor)) self.markermode = 0 self.graph.setZoomModeEnabled(False) else: self.markermode = 1 self.nomarkercursor = self.graph.cursor().shape() self.graph.setCursor(qt.QCursor(qt.Qt.PointingHandCursor)) self.graph.setZoomModeEnabled(True) #self.markerButton.setOn(self.markermode == 1) def __calparsignal(self,dict): _logger.debug("__calparsignal called dict = %s", dict) if dict['event'] == 'coeff': current = dict['calname' ] self.current = current self.caldict[current]['order'] =dict['caldict'][dict['calname']]['order'] self.caldict[current]['A'] =dict['caldict'][dict['calname']]['A'] self.caldict[current]['B'] =dict['caldict'][dict['calname']]['B'] self.caldict[current]['C'] =dict['caldict'][dict['calname']]['C'] peakdict = self.peakTable.getDict() for peak in peakdict.keys(): channel = peakdict[peak]['channel'] calenergy = self.caldict[current]['A'] + \ self.caldict[current]['B'] * channel +\ self.caldict[current]['C'] * channel * channel self.peakTable.configure(name=peak,use=0, calenergy=calenergy) elif dict['event'] == 'order': current = dict['calname' ] self.current = current order = dict['caldict'][current]['order'] self.caldict[current]['order'] = order if order in ["ID18", "ID14"]: result = self.timeCalibratorCalibration() if result is None: return peak0, npeaks, delta, deltat = result[:] self.clearPeaks() self.foundPeaks = [] for i in range(int(npeaks)): channel = peak0 + i * delta calenergy = deltat * (i + 1) self.foundPeaks.append(channel) name = "%d" % i marker = self.graph.insertXMarker(channel, legend=name, color="red", replot=False) if name in self.peakTable.peaks.keys(): self.peakTable.configure(number=name, channel=channel, use=1, setenergy=calenergy, calenery=calenergy) else: nlines=self.peakTable.rowCount() self.peakTable.newpeakline(name, nlines+1) self.peakTable.configure(number=name, channel=channel, use=1, setenergy=calenergy, calenery=calenergy) #make sure we cannot select the peaks again self.markermode = 1 self.__peakmarkermode() self.graph.replot() else: self.caldict[current]['A'] = dict['caldict'][current]['A'] self.caldict[current]['B'] = dict['caldict'][current]['B'] self.caldict[current]['C'] = dict['caldict'][current]['C'] if self.caldict[current]['order'] == 'TOF': self.caldict[current]['vfix'] = dict['caldict'][current]['vfix'] self.__peakTableSignal({'event':'use'}) elif dict['event'] == 'savebox': current = dict['calname' ] if current not in self.caldict.keys(): self.caldict[current] = {} self.current = current self.caldict[current]['order'] = dict['caldict'][current]['order'] self.caldict[current]['A'] = dict['caldict'][current]['A'] self.caldict[current]['B'] = dict['caldict'][current]['B'] self.caldict[current]['C'] = dict['caldict'][current]['C'] elif dict['event'] == 'activated': # A comboBox has been selected if dict['boxname'] == 'Source': pass elif dict['boxname'] == 'Calibration': pass else: _logger.debug("Unknown combobox %s", dict['boxname']) else: _logger.warning("Unknown signal %s", dict) def __graphsignal(self, ddict): _logger.debug("__graphsignal called with dict = %s", ddict) if ddict['event'] in ['markerClicked', 'markerSelected']: _logger.debug("Setting marker color") marker = int(ddict['label']) #The marker corresponds to the peak number channel = self.foundPeaks[marker] self.graph.insertXMarker(channel, legend=ddict['label'], color='red', replot=False) self.graph.replot() current = self.current calenergy = self.caldict[current]['A']+ \ self.caldict[current]['B'] * channel+ \ self.caldict[current]['C'] * channel * channel name = "Peak %d" % marker number = marker channel = ddict['x'] if self.__xrdMode: linewidget = XRDPeakTableWidget.XRDInputLine(self,name="Enter Selected Peak Parameters", peakpars={'name':name, 'number':number, 'channel':channel, 'use':1, 'cal2theta':calenergy, 'energy':self.__xrdEnergy, 'lambda_':self.__xrdLambda, 'particle':self.__xrdParticle}) else: linewidget = InputLine(self,name="Enter Selected Peak Parameters", peakpars={'name':name, 'number':number, 'channel':channel, 'use':1, 'calenergy':calenergy}) if QTVERSION < '4.0.0': ret = linewidget.exec_loop() else: ret = linewidget.exec() if ret == qt.QDialog.Accepted: ddict=linewidget.getDict() _logger.debug("dict got from dialog = %s", ddict) if ddict != {}: if name in self.peakTable.peaks.keys(): self.peakTable.configure(*ddict) else: nlines=self.peakTable.rowCount() ddict['name'] = name self.peakTable.newpeakline(name, nlines+1) self.peakTable.configure(**ddict) peakdict = self.peakTable.getDict() usedpeaks = [] for peak in peakdict.keys(): if peakdict[peak]['use'] == 1: if self.__xrdMode: self.__xrdLambda = ddict['lambda_'] self.__xrdParticle = ddict['particle'] self.__xrdEnergy = ddict['energy'] usedpeaks.append([peakdict[peak]['channel'], peakdict[peak]['set2theta']]) else: usedpeaks.append([peakdict[peak]['channel'], peakdict[peak]['setenergy']]) if len(usedpeaks): newcal = self.calculate(usedpeaks,order=self.caldict[current]['order']) if newcal is None: return self.caldict[current]['A'] = newcal[0] self.caldict[current]['B'] = newcal[1] self.caldict[current]['C'] = newcal[2] self.__peakTableSignal({'event':'use'}, calculate=False) else: _logger.debug("Dialog cancelled or closed ") self.graph.insertXMarker(channel, legend=ddict['label'], color='black', replot=False) self.graph.replot() del linewidget elif ddict['event'] in ["mouseMoved", 'MouseAt']: self.xpos.setText('%.1f' % ddict['x']) self.ypos.setText('%.1f' % ddict['y']) current = self.current if self.caldict[current]['order'] == 'TOF': calenergy = self.getTOFEnergy(ddict['x']) else: calenergy = self.caldict[current]['A']+ \ self.caldict[current]['B'] * ddict['x']+ \ self.caldict[current]['C'] * ddict['x'] * ddict['x'] self.epos.setText('%.3f' % calenergy) elif ddict['event'] in ['mouseClicked', 'MouseClick']: if self.__manualsearch: x = ddict['x'] y = ddict['y'] if (y <= 1.0): y=1.1 # insert the marker self.foundPeaks.append(x) legend = "%d" % (len(self.foundPeaks)-1) #self.graph.insertx1marker(self.specfit.xdata[int(idx)],self.specfit.ydata[int(idx)]) self.graph.insertXMarker(x, legend=legend, selectable=True, replot=False) self.graph.replot() self.markermode = 0 self.__peakmarkermode() self.__msb.setChecked(0) else: _logger.debug("Unhandled event %s", ddict['event']) def __peakTableSignal(self, ddict, calculate=True): _logger.debug("__peaktablesignal called dict = %s", ddict) if (ddict['event'] == 'use') or (ddict['event'] == 'setenergy'): #get table dictionary peakdict = self.peakTable.getDict() usedpeaks = [] for peak in peakdict.keys(): if peakdict[peak]['use'] == 1: if self.__xrdMode: usedpeaks.append([peakdict[peak]['channel'], peakdict[peak]['set2theta']]) else: usedpeaks.append([peakdict[peak]['channel'], peakdict[peak]['setenergy']]) if len(usedpeaks): if usedpeaks != [[0.0,0.0]]: current = self.current if calculate: newcal = self.calculate(usedpeaks,order=self.caldict[current]['order']) if newcal is None: return self.caldict[current]['A'] = newcal[0] self.caldict[current]['B'] = newcal[1] self.caldict[current]['C'] = newcal[2] self.calpar.setParameters(self.caldict[current]) for peak in peakdict.keys(): channel = peakdict[peak]['channel'] if self.caldict[current]['order'] == 'TOF': calenergy = self.getTOFEnergy(channel) else: calenergy = self.caldict[current]['A'] + \ self.caldict[current]['B'] * channel +\ self.caldict[current]['C'] * channel * channel if self.__xrdMode: self.peakTable.configure(name=peak, cal2theta=calenergy) else: self.peakTable.configure(name=peak, calenergy=calenergy) def timeCalibratorCalibration(self): self.peakSearch() # now we should have a list of peaks and the proper data to fit if 'Periodic Gaussians' not in self.specfit.theorylist: self.specfit.importfun("SpecfitFunctions.py") self.specfit.settheory('Periodic Gaussians') self.specfit.setbackground('Constant') fitconfig = {} fitconfig.update(self.specfit.fitconfig) fitconfig['WeightFlag'] = 1 fitconfig['McaMode'] = 0 self.specfit.configure(**fitconfig) try: self.specfit.estimate() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on estimate: %s" % sys.exc_info()[1]) msg.exec() return try: self.specfit.startfit() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on Fit") msg.exec() return npeaks = 0 delta = 0.0 peak0 = 0.0 for i in range(len(self.specfit.paramlist)): name = self.specfit.paramlist[i]['name'] if name == "Delta1": delta = self.specfit.paramlist[i]['fitresult'] elif name == 'N1': npeaks = self.specfit.paramlist[i]['fitresult'] elif name == 'Position1': peak0 = self.specfit.paramlist[i]['fitresult'] else: continue if (npeaks < 2) or (delta==0): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Less than two peaks found") msg.exec() return d = DoubleDialog(self, text='Enter peak separation in time:') d.setWindowTitle('Time calibration') ret = d.exec() if ret != qt.QDialog.Accepted: return text = str(d.lineEdit.text()) if not len(text): deltat = 0.0 else: deltat = float(text) if (deltat == 0): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid peak separation %g" % deltat) msg.exec() return return peak0, npeaks, delta, deltat def getTOFEnergy(self, x, calibration = None): if calibration is None: current = self.current A = self.caldict[current]['A'] B = self.caldict[current]['B'] C = self.caldict[current]['C'] else: A = calibration[0] B = calibration[1] C = calibration[2] return C + A / ((x - B) * (x - B)) def calculateTOF(self, usedpeaks): """ The calibration has the form: A E = Vret + --------- (x - B)^2 and Vret is given as input by the user. """ npeaks = len(usedpeaks) if npeaks < 2: return ch0, e0 = usedpeaks[0] ch1, e1 = usedpeaks[1] Vret = float(self.caldict[self.current]['C']) fixed = self.caldict[self.current]['vfix'] #calculate B Eterm = (e0 - Vret)/(e1 - Vret) a = Eterm - 1.0 b = -2 * (Eterm * ch0 - ch1) c = Eterm * ch0 * ch0 - ch1 * ch1 # I should check if b^2 - 4ac is less than zero # and I have to choose the appropriate sign B = 0.5 * (-b + numpy.sqrt(b * b - 4.0 * a * c))/a #calculate A A = (e0 - Vret) * (ch0 - B) * (ch0 - B) #refine if more than three peaks if npeaks > 3: parameters = numpy.array([A, B, Vret]) x = numpy.arange(npeaks * 1.0) y = numpy.arange(npeaks * 1.0) for i in range(npeaks): x[i] = usedpeaks[i][0] y[i] = usedpeaks[i][1] try: codes = numpy.zeros((3,3), numpy.float64) if fixed: codes[0,2] = Gefit.CFIXED fittedpar, chisq, sigmapar = Gefit.LeastSquaresFit(self.functionTOF, parameters, xdata=x, ydata=y, constrains=codes, model_deriv=self.functionTOFDerivative) if chisq != None: A= fittedpar[0] B= fittedpar[1] Vret= fittedpar[2] except Exception: msg=qt.QMessageBox(self.AText) msg.setWindowTitle(sys.exc_info()[0]) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error on fit:\n%s" % sys.exc_info()[1]) msg.exec() return (A, B, Vret) def functionTOF(self, param, x): A = param[0] B = param[1] C = param[2] return C + A / ((x - B) * (x - B)) def functionTOFDerivative(self, param, index, x): A = param[0] B = param[1] if index == 0: return self.functionTOF([1.0, B, 0.0], x) if index == 1: return A * pow((x-B), -3) if index == 2: return numpy.ones(x.shape, numpy.float64) def calculate(self, usedpeaks, order=1): """ used peaks has the form [[x0,e0],[x1,e1],...] """ if order == "TOF": return self.calculateTOF(usedpeaks) if order in ["ID18", "ID14"]: order = 2 if len(usedpeaks) == 1: if (usedpeaks[0][0] - 0.0) > 1.0E-20: return [0.0, usedpeaks[0][1]/usedpeaks[0][0], 0.0] else: _logger.debug("Division by zero") current = self.current return [self.caldict[current]['A'], self.caldict[current]['B'], self.caldict[current]['C']] if (order > 1) and (len(usedpeaks) == 2): usedpeaks.append([0.0,0.0]) usedarray = numpy.array(usedpeaks).astype(numpy.float64) energy = usedarray[:,1] channel= usedarray[:,0] if order < 2: X = numpy.array([numpy.ones(len(channel)), channel]) else: X= numpy.array([numpy.ones(len(channel)), channel, channel*channel]) TX = numpy.transpose(X) XTX= numpy.dot(X, TX) INV= inverse(XTX) PC = numpy.dot(energy, TX) C = numpy.dot(PC, INV) if order==1: result= tuple(C.tolist())+(0.,) else: result= tuple(C.tolist()) return result def getdict(self): _logger.info("DEPRECATED. Use getDict") return self.getDict() def getDict(self): ddict = {} ddict.update(self.caldict) return ddict class PeakSearchParameters(qt.QWidget): def __init__(self, parent=None, name="", specfit=None, config=None, searchbutton=1, fl=0): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) if specfit is None: self.specfit = Specfit.Specfit() else: specfit = specfit if config is None: config=self.specfit.fitconfig if "AutoYscaling" in config: autoscaling = config["AutoYscaling"] else: autoscaling = 0 self.searchButtonFlag = searchbutton parameters= { "FwhmPoints": config["FwhmPoints"], "Sensitivity": config["Sensitivity"], "Yscaling": config["Yscaling"], "AutoYscaling": autoscaling, "AutoFwhm": 0 } self.build() self.setParameters(parameters) def build(self): if 1: if QTVERSION < '4.0.0': layout= qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) # --- parameters parf= qt.QHGroupBox(self) parf.setTitle('Search Parameters') parf.setAlignment(qt.Qt.AlignHCenter) parw= qt.QWidget(parf) else: layout= qt.QVBoxLayout(self) if qt.QDesktopWidget().height() < LOW_HEIGHT_THRESHOLD: lowHeight = True else: lowHeight = False if lowHeight: layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) # --- parameters parf= qt.QGroupBox(self) parf.layout = qt.QVBoxLayout(parf) parf.setTitle('Search Parameters') parf.setAlignment(qt.Qt.AlignHCenter) parw= qt.QWidget(parf) parf.layout.addWidget(parw) else: parw = self if QTVERSION < '4.0.0': if self.searchButtonFlag: grid= qt.QGridLayout(parw, 4, 3) else: grid= qt.QGridLayout(parw, 3, 3) else: grid= qt.QGridLayout(parw) if lowHeight: grid.setContentsMargins(0, 0, 0, 0) grid.setSpacing(2) lab= qt.QLabel("Sensitivity", parw) grid.addWidget(lab, 0, 0, qt.Qt.AlignLeft) lab= qt.QLabel("Fwhm (pts)", parw) grid.addWidget(lab, 1, 0, qt.Qt.AlignLeft) lab= qt.QLabel("Yscaling", parw) grid.addWidget(lab, 2, 0, qt.Qt.AlignLeft) self.sensitivityText= MyQLineEdit(parw) grid.addWidget(self.sensitivityText, 0, 1) self.fwhmText= MyQLineEdit(parw) grid.addWidget(self.fwhmText, 1, 1) self.yscalingText= MyQLineEdit(parw) grid.addWidget(self.yscalingText, 2, 1) self.fwhmAuto= qt.QCheckBox("Auto", parw) self.fwhmAuto.toggled[bool].connect(self.__fwhmToggled) grid.addWidget(self.fwhmAuto, 1, 2, qt.Qt.AlignLeft) self.yscalingAuto= qt.QCheckBox("Auto", parw) self.yscalingAuto.toggled[bool].connect(self.__yscalingToggled) grid.addWidget(self.yscalingAuto, 2, 2, qt.Qt.AlignLeft) if self.searchButtonFlag: self.searchButton = qt.QPushButton(parw) self.searchButton.setText('Search') grid.addWidget(self.searchButton, 3, 1) self.searchButton.setAutoDefault(0) layout.addWidget(parf) text = "Enter a positive number above 2.0\n" text += "A higher number means a lower sensitivity." self.sensitivityText.setToolTip(text) text = "Enter a positive integer." self.fwhmText.setToolTip(text) text = "If your data are averaged or normalized,\n" text += "enter the scaling factor for your data to\n" text += "follow a normal distribution." self.yscalingText.setToolTip(text) for w in [self.sensitivityText, self.fwhmText, self.yscalingText]: validator = qt.CLocaleQDoubleValidator(w) w.setValidator(validator) def setParameters(self, pars): self.sensitivityText.setText(str(pars["Sensitivity"])) self.fwhmText.setText(str(pars["FwhmPoints"])) self.yscalingText.setText(str(pars["Yscaling"])) self.fwhmAuto.setChecked(pars["AutoFwhm"]) self.yscalingAuto.setChecked(pars["AutoYscaling"]) #self.specfit.configure(pars) def getParameters(self): pars= {} pars["Sensitivity"]= float(str(self.sensitivityText.text())) pars["FwhmPoints"]= float(str(self.fwhmText.text())) pars["Yscaling"]= float(str(self.yscalingText.text())) pars["AutoFwhm"]= self.fwhmAuto.isChecked() pars["AutoYscaling"]= self.yscalingAuto.isChecked() self.specfit.configure(**pars) return pars def __fwhmToggled(self, on): if on: self.fwhmText.setReadOnly(1) else: self.fwhmText.setReadOnly(0) def __yscalingToggled(self, on): if on: self.yscalingText.setReadOnly(1) else: self.yscalingText.setReadOnly(0) class CalibrationParameters(qt.QWidget): sigCalibrationParametersSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="", calname="", caldict = {},fl=0, xrd=False): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) else: qt.QWidget.__init__(self, parent) self.__xrdMode = xrd self.caldict=caldict if calname not in self.caldict.keys(): self.caldict[calname] = {} self.caldict[calname]['order'] = 1 self.caldict[calname]['A'] = 0.0 self.caldict[calname]['B'] = 1.0 self.caldict[calname]['C'] = 0.0 self.currentcal = calname self.build() self.setParameters(self.caldict[calname]) self.connections() def build(self): layout= qt.QHBoxLayout(self) if qt.QDesktopWidget().height() < LOW_HEIGHT_THRESHOLD: layout.setContentsMargins(0, 0, 0, 0) parw = self lab= qt.QLabel("Order:", parw) if QTVERSION < '4.0.0': self.orderbox = SimpleComboBox(parw, options=['1st','2nd']) else: if self.__xrdMode: self.orderbox = SimpleComboBox(parw, options=['1st','2nd']) else: self.orderbox = SimpleComboBox(parw, options=['1st','2nd','TOF', 'ID14']) layout.addWidget(lab) layout.addWidget(self.orderbox) lab= qt.QLabel("A:", parw) #self.AText= qt.QLineEdit(parw) self.AText= MyQLineEdit(parw) layout.addWidget(lab) layout.addWidget(self.AText) lab= qt.QLabel("B:", parw) self.BText= MyQLineEdit(parw) layout.addWidget(lab) layout.addWidget(self.BText) self.CLabel= qt.QLabel("C:", parw) layout.addWidget(self.CLabel) self.CText= MyQLineEdit(parw) if QTVERSION > '4.0.0': self.CFixed = qt.QCheckBox(self) self.CFixed.setText('Fixed') self.CFixed.setChecked(True) layout.addWidget(self.CFixed) self.CFixed.hide() layout.addWidget(self.CText) if 0: self.savebut= qt.QPushButton(parw) self.savebut.setText("Add as") else: lab = qt.QLabel("Add as", parw) layout.addWidget(lab) self.savebox = SimpleComboBox(parw, options=self.caldict.keys()) layout.addWidget(self.savebox) self.savebox.setEditable(1) self.savebox.setDuplicatesEnabled(0) def connections(self): self.AText.editingFinished[()].connect(self._Aslot) self.BText.editingFinished[()].connect(self._Bslot) self.CText.editingFinished[()].connect(self._Cslot) self.CFixed.clicked.connect(self._CFixSlot) if hasattr(self.orderbox, "textActivated"): self.orderbox.textActivated[str].connect(self.__orderbox) self.savebox.textActivated[str].connect(self.__savebox) else: self.orderbox.activated[str].connect(self.__orderbox) self.savebox.activated[str].connect(self.__savebox) if hasattr(self.savebox.lineEdit(), "editingFinished"): self.savebox.lineEdit().editingFinished[()].connect(self.__savebox) def setParameters(self, pars): self.AText.setText("%.4g" % pars["A"]) self.BText.setText("%.4g" % pars["B"]) self.CText.setText("%.4g" % pars["C"]) if pars['order'] != 1: if pars['order'] == 'TOF': self.orderbox.setCurrentIndex(2) else: self.orderbox.setCurrentIndex(1) self.CText.setReadOnly(0) else: self.orderbox.setCurrentIndex(0) self.CText.setReadOnly(1) self.caldict[self.currentcal]["A"] = pars["A"] self.caldict[self.currentcal]["B"] = pars["B"] self.caldict[self.currentcal]["C"] = pars["C"] self.caldict[self.currentcal]["order"] = pars["order"] def getcurrentdict(self): return self.caldict[self.currentcal] def getcurrentcal(self): return self.current def getdict(self): _logger.info("DEPRECATED. Use getDict") return self.getDict() def getDict(self): return self.caldict def _CFixSlot(self): self.__orderbox(QString('TOF')) def __orderbox(self,qstring): qstring = str(qstring) if qstring == "1st": self.caldict[self.currentcal]['order'] = 1 self.CText.setText("0.0") self.CText.setReadOnly(1) self.CLabel.setText("C:") self.caldict[self.currentcal]['C'] = 0.0 if QTVERSION > '4.0.0': self.CFixed.hide() elif qstring == "TOF": self.caldict[self.currentcal]['order'] = 'TOF' self.caldict[self.currentcal]['vfix'] = self.CFixed.isChecked() self.CLabel.setText("Vr:") self.CText.setReadOnly(0) self.CFixed.show() elif qstring in ["ID14", "ID18"]: self.caldict[self.currentcal]['order'] = 'ID14' self.CLabel.setText("C:") self.CText.setReadOnly(1) if QTVERSION > '4.0.0': self.CFixed.hide() else: self.caldict[self.currentcal]['order'] = 2 self.CLabel.setText("C:") self.CText.setReadOnly(0) if QTVERSION > '4.0.0': self.CFixed.hide() self.myslot(event='order') def __savebox(self, qstring=None): if qstring is None: qstring = self.savebox.currentText() key = qt.safe_str(qstring) if key not in self.caldict.keys(): self.caldict[key] = {} if QTVERSION < '4.0.0': self.caldict[key]['order'] = self.orderbox.currentItem()+1 else: self.caldict[key]['order'] = self.orderbox.currentIndex()+1 if self.caldict[key]['order'] == 3: self.caldict[key]['order'] = "TOF" self.caldict[key]['A'] = float(str(self.AText.text())) self.caldict[key]['B'] = float(str(self.BText.text())) self.caldict[key]['C'] = float(str(self.CText.text())) self.currentcal = key self.myslot(event='savebox') def _Aslot(self): qstring = self.AText.text() try: value = float(str(qstring)) self.caldict[self.currentcal]['A'] = value self.myslot(event='coeff') except Exception: msg=qt.QMessageBox(self.AText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") if QTVERSION < '4.0.0': msg.exec_loop() else: msg.exec() self.AText.setFocus() def _Bslot(self): qstring = self.BText.text() try: value = float(str(qstring)) self.caldict[self.currentcal]['B'] = value self.myslot(event='coeff') except Exception: msg=qt.QMessageBox(self.BText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.BText.setFocus() def _Cslot(self): qstring = self.CText.text() try: value = float(str(qstring)) self.caldict[self.currentcal]['C'] = value self.myslot(event='coeff') except Exception: msg=qt.QMessageBox(self.CText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.CText.setFocus() def myslot(self, *var, **kw): _logger.debug("Cal Parameters Slot %s %s", var, kw) _logger.debug("%s", self.caldict[self.currentcal]) if 'event' in kw: ddict={} if (kw['event'] == 'order'): ddict={} ddict['event'] = "order" ddict['calname'] = self.currentcal ddict['caldict'] = self.caldict if (kw['event'] == 'coeff'): ddict={} ddict['event'] = "coeff" ddict['calname' ] = self.currentcal ddict['caldict'] = self.caldict if (kw['event'] == 'savebox'): ddict={} ddict['event'] = "savebox" ddict['calname' ] = self.currentcal ddict['caldict'] = self.caldict self.sigCalibrationParametersSignal.emit(ddict) class MyQLineEdit(qt.QLineEdit): def __init__(self,parent=None,name=None): qt.QLineEdit.__init__(self,parent) if QTVERSION > '4.0.0': self.setAutoFillBackground(True) def setPaletteBackgroundColor(self, color): if QTVERSION < '4.0.0': qt.QLineEdit.setPaletteBackgroundColor(self,color) else: palette = qt.QPalette() role = self.backgroundRole() palette.setColor(role,color) self.setPalette(palette) def focusInEvent(self,event): if QTVERSION < '4.0.0': self.backgroundcolor = self.paletteBackgroundColor() self.setPaletteBackgroundColor(qt.QColor('yellow')) qt.QLineEdit.focusInEvent(self, event) def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) qt.QLineEdit.focusOutEvent(self, event) class DoubleDialog(qt.QDialog): def __init__(self, parent=None, text=None, value=None): qt.QDialog.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) label = qt.QLabel(self) if text is None: text = "" label.setText(text) self.lineEdit = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(self.lineEdit) self.lineEdit.setValidator(validator) if value is not None: self.lineEdit.setValue('%g' % value) self.okButton = qt.QPushButton(self) self.okButton.setText('OK') self.cancelButton = qt.QPushButton(self) self.cancelButton.setText('Cancel') self.okButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.cancelButton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.mainLayout.addWidget(label, 0, 0) self.mainLayout.addWidget(self.lineEdit, 0, 1) self.mainLayout.addWidget(self.okButton, 1, 0) self.mainLayout.addWidget(self.cancelButton, 1, 1) self.okButton.clicked.connect(self.accept) self.cancelButton.clicked.connect(self.reject) class InputLine(qt.QDialog): def __init__(self,parent ,name = "Peak Parameters",modal=1, peakpars={}): qt.QDialog.__init__(self, parent) self.setModal(modal) self.setWindowTitle(name) self.resize(600,200) layout = qt.QVBoxLayout(self) self.table = PeakTableWidget.PeakTableWidget(self) layout.addWidget(self.table) self.bottom = qt.QWidget(self) self.bottom.layout = qt.QHBoxLayout(self.bottom) layout.addWidget(self.bottom) self.bottom.layout.addWidget(qt.HorizontalSpacer(self.bottom)) okbutton = qt.QPushButton(self.bottom) self.bottom.layout.addWidget(okbutton) okbutton.setText('OK') cancelbutton = qt.QPushButton(self.bottom) cancelbutton.setText('Cancel') self.bottom.layout.addWidget(cancelbutton) okbutton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) cancelbutton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.bottom.layout.addWidget(qt.HorizontalSpacer(self.bottom)) cancelbutton.clicked.connect(self.reject) okbutton.clicked.connect(self.accept) if 'name' in peakpars: peakname = peakpars['name'] else: peakname = 'PEAK 1' if 'number' in peakpars: number = peakpars['number'] else: number = 1 if 'channel' in peakpars: channel = peakpars['channel'] else: channel = 0 if 'element' in peakpars: element = peakpars['element'] else: element = '-' if 'elementline' in peakpars: elementline = peakpars['elementline'] else: elementline = '-' if elementline == '-': if 'setenergy' in peakpars: setenergy = peakpars['setenergy'] else: setenergy = '0.0' if 'use' in peakpars: use = peakpars['use'] else: use = 1 if 'calenergy' in peakpars: calenergy = peakpars['calenergy'] else: calenergy = "" self.table.newpeakline(peakname, 1) self.peakname = peakname self.table.configure(name=peakname, number=number, channel=channel, element=element, elementline=elementline, setenergy=setenergy, use=use, calenergy=calenergy) def getdict(self): _logger.info("DEPRECATED. Use getDict") return self.getDict() def getDict(self): ddict=self.table.getDict(self.peakname) return ddict class McaCalCopy(qt.QDialog): def __init__(self,parent=None ,name = None,modal=1,fl=0, legend=None,sourcecal=None,currentcal=None,caldict=None): #fl=qt.Qt.WDestructiveClose): if legend is None: legend= 'Active Curve' name = "Enter Calibration for %s" % legend if QTVERSION < '4.0.0': qt.QDialog.__init__(self, parent, name, modal, fl) self.setCaption(name) else: qt.QDialog.__init__(self, parent) self.setWindowTitle(name) self.setModal(modal) layout0 = qt.QVBoxLayout(self) layout0.setContentsMargins(0, 0, 0, 0) layout0.setSpacing(0) currentcal = legend if sourcecal is None: sourcecal = [0.0,1.0,0.0] if caldict is None: caldict = {} self.caldict = caldict self.currentcal = currentcal if currentcal in caldict.keys(): currentval = [caldict[currentcal]['A'], caldict[currentcal]['B'], caldict[currentcal]['C']] else: currentval = [0.0,1.0,0.0] # --- source --- if QTVERSION < '4.0.0': sgroup = qt.QHGroupBox(self) else: sgroup = qt.QGroupBox(self) sgrouplayout = qt.QHBoxLayout(sgroup) sgrouplayout.setContentsMargins(0, 0, 0, 0) sgrouplayout.setSpacing(0) sgroup.setTitle('Calibration from Source (Read Only)') sgroup.setAlignment(qt.Qt.AlignHCenter) layout0.addWidget(sgroup) w = qt.QWidget(sgroup) wlayout= qt.QVBoxLayout(w) wlayout.setContentsMargins(0, 0, 0, 0) wlayout.setSpacing(0) if QTVERSION < '4.0.0': pass else: sgroup.layout().addWidget(w) """ l = qt.QHBox(w) qt.HorizontalSpacer(l) sourcelabel = qt.QLabel(l) qt.HorizontalSpacer(l) f = sourcelabel.font() f.setBold(1) sourcelabel.setText('Calibration from Source') """ lines = qt.QWidget(w) lineslayout = qt.QHBoxLayout(lines) lineslayout.setContentsMargins(0, 0, 0, 0) lineslayout.setSpacing(0) asl=qt.QLabel(lines) asl.setText('A:') asl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) as_=qt.QLineEdit(lines) as_.setReadOnly(1) as_.setText("%.4g" % sourcecal[0]) bsl=qt.QLabel(lines) bsl.setText('B:') bsl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) bs=qt.QLineEdit(lines) bs.setReadOnly(1) bs.setText("%.4g" % sourcecal[1]) csl=qt.QLabel(lines) csl.setText('C:') csl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) cs=qt.QLineEdit(lines) cs.setReadOnly(1) cs.setText("%.4g" % sourcecal[2]) lineslayout.addWidget(asl) lineslayout.addWidget(as_) lineslayout.addWidget(bsl) lineslayout.addWidget(bs) lineslayout.addWidget(csl) lineslayout.addWidget(cs) wlayout.addWidget(lines) # --- PyMca/Current --- if QTVERSION < '4.0.0': cgroup = qt.QHGroupBox(self) else: cgroup = qt.QGroupBox(self) cgrouplayout = qt.QHBoxLayout(cgroup) cgrouplayout.setContentsMargins(0, 0, 0, 0) cgrouplayout.setSpacing(0) layout0.addWidget(cgroup) fontc = cgroup.font() fontc.setBold(1) cgroup.setFont(fontc) cgroup.setTitle('Enter New Calibration (PyMca)') cgroup.setAlignment(qt.Qt.AlignHCenter) wc = qt.QWidget(cgroup) wclayout = qt.QVBoxLayout(wc) wclayout.setContentsMargins(0, 0, 0, 0) wclayout.setSpacing(3) if QTVERSION < '4.0.0': pass else: cgrouplayout.addWidget(wc) linec = qt.QWidget(wc) lineclayout = qt.QHBoxLayout(linec) lineclayout.setContentsMargins(0, 0, 0, 0) lineclayout.setSpacing(0) wclayout.addWidget(linec) acl=qt.QLabel(linec) #acl.setFont(font) acl.setText('A:') acl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.AText=MyQLineEdit(linec) self.AText.setReadOnly(0) self.AText.setText("%.4g" % currentval[0]) bcl=qt.QLabel(linec) #bcl.setFont(font) bcl.setText('B:') bcl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.BText=MyQLineEdit(linec) self.BText.setReadOnly(0) self.BText.setText("%.4g" % currentval[1]) ccl=qt.QLabel(linec) #ccl.setFont(font) ccl.setText('C:') ccl.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.CText=MyQLineEdit(linec) self.CText.setReadOnly(0) self.CText.setText("%.4g" % currentval[2]) lineclayout.addWidget(acl) lineclayout.addWidget(self.AText) lineclayout.addWidget(bcl) lineclayout.addWidget(self.BText) lineclayout.addWidget(ccl) lineclayout.addWidget(self.CText) self.AText.editingFinished[()].connect(self._Aslot) self.BText.editingFinished[()].connect(self._Bslot) self.CText.editingFinished[()].connect(self._Cslot) # --- available for copy --- if len(caldict.keys()): wid = qt.QWidget(wc) wfont = wid.font() wfont.setBold(0) wid.setFont(wfont) layout2=qt.QHBoxLayout(wid) layout2.setContentsMargins(0, 0, 0, 0) layout2.setSpacing(3) copybut = qt.QPushButton(wid) copybut.setText('Copy From') copybut.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed,qt.QSizePolicy.Fixed)) copybut.clicked.connect(self.__copybuttonclicked) self.combo = SimpleComboBox(wid,options=caldict.keys()) self.combo.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Expanding,qt.QSizePolicy.Fixed)) layout2.addWidget(copybut) layout2.addWidget(self.combo) wclayout.addWidget(wid) # --- dialog buttons --- bottom = qt.QWidget(self) bottomlayout = qt.QHBoxLayout(bottom) bottomlayout.setContentsMargins(0, 0, 0, 0) bottomlayout.setSpacing(0) layout0.addWidget(bottom) bottomlayout.addWidget(qt.HorizontalSpacer(bottom)) okbutton = qt.QPushButton(bottom) okbutton.setText('OK') bottomlayout.addWidget(okbutton) cancelbutton = qt.QPushButton(bottom) cancelbutton.setText('Cancel') bottomlayout.addWidget(cancelbutton) okbutton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) cancelbutton.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) bottomlayout.addWidget(qt.HorizontalSpacer(bottom)) cancelbutton.clicked.connect(self.reject) okbutton.clicked.connect(self.accept) self.AText.setFocus() def _Aslot(self): qstring = self.AText.text() try: float(str(qstring)) except Exception: msg=qt.QMessageBox(self.AText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.AText.setFocus() def _Bslot(self): qstring = self.BText.text() try: float(str(qstring)) except Exception: msg=qt.QMessageBox(self.BText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.BText.setFocus() def _Cslot(self): qstring = self.CText.text() try: float(str(qstring)) except Exception: msg=qt.QMessageBox(self.CText) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.exec() self.CText.setFocus() def __copybuttonclicked(self): item, text = self.combo.getCurrent() self.AText.setText("%.7g" % self.caldict[text]['A']) self.BText.setText("%.7g" % self.caldict[text]['B']) self.CText.setText("%.7g" % self.caldict[text]['C']) def getdict(self): _logger.info("DEPRECATED. Use getDict") return self.getDict() def getDict(self): ddict = {} ddict[self.currentcal] = {} ddict[self.currentcal]['A'] = float(str(self.AText.text())) ddict[self.currentcal]['B'] = float(str(self.BText.text())) ddict[self.currentcal]['C'] = float(str(self.CText.text())) if ddict[self.currentcal]['C'] != 0.0: ddict[self.currentcal]['order'] = 2 else: ddict[self.currentcal]['order'] = 1 self.caldict.update(ddict) return copy.deepcopy(self.caldict) class SimpleComboBox(qt.QComboBox): def __init__(self,parent = None,name = None,fl = 0,options=['1','2','3']): qt.QComboBox.__init__(self,parent) self.setOptions(options) def setOptions(self,options=['1','2','3']): self.clear() for item in options: self.addItem(QString(item)) def getCurrent(self): return self.currentIndex(),str(self.currentText()) def test(x,y,legend): app = qt.QApplication(args) demo = McaCalWidget(x=x,y=y,modal=1,legend=legend) ret=demo.exec() if ret == qt.QDialog.Accepted: ddict=demo.getDict() else: ddict={} print(" output = ", ddict) demo.close() del demo #app.exec_loop() if __name__ == '__main__': import os import getopt from PyMca5.PyMcaIO import specfilewrapper as specfile options = 'f:s:o' longoptions = ['file=','scan=','pkm=', 'output=','linear=','strip=', 'maxiter=','sumflag=','plotflag='] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) inputfile = None scan = None pkm = None scankey = None plotflag = 0 strip = 1 linear = 0 for opt,arg in opts: if opt in ('-f','--file'): inputfile = arg if opt in ('-s','--scan'): scan = arg if opt in ('--pkm'): pkm = arg if opt in ('--linear'): linear = int(float(arg)) if opt in ('--strip'): strip = int(float(arg)) if opt in ('--maxiter'): maxiter = int(float(arg)) if opt in ('--sum'): sumflag = int(float(arg)) if opt in ('--plotflag'): plotflag = int(float(arg)) if len(sys.argv) > 1: inputfile = sys.argv[1] if inputfile is None: from PyMca5 import PyMcaDataDir inputfile = os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'XRFSpectrum.mca') sf=specfile.Specfile(inputfile) if scankey is None: scan=sf[len(sf) - 1] else: scan=sf.select(scankey) nbmca=scan.nbmca() mcadata=scan.mca(nbmca) y=numpy.array(mcadata).astype(numpy.float64) x=numpy.arange(len(y)).astype(numpy.float64) test(x,y,inputfile) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/PeakIdentifier.py0000644000000000000000000002570614741736366022601 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaPhysics import Elements from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class PeakIdentifier(qt.QWidget): sigPeakIdentifierSignal = qt.pyqtSignal(object) def __init__(self,parent=None,energy=None,threshold=None,useviewer=None, name="Peak Identifier"): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) if energy is None: energy = 5.9 if threshold is None: threshold = 0.030 if useviewer is None: useviewer = 0 self.__useviewer = useviewer layout = qt.QVBoxLayout(self) #heading self.__energyHBox=qt.QWidget(self) hbox = self.__energyHBox hbox.layout = qt.QHBoxLayout(hbox) hbox.layout.setContentsMargins(0, 0, 0, 0) hbox.layout.setSpacing(0) layout.addWidget(hbox) hbox.layout.addWidget(qt.HorizontalSpacer(hbox)) l1=qt.QLabel(hbox) l1.setText('Energy (keV)') hbox.layout.addWidget(l1) self.energy=MyQLineEdit(hbox) self.energy.setText("%.3f" % energy) self.energy._validator = qt.CLocaleQDoubleValidator(self.energy) self.energy.setValidator(self.energy._validator) self.energy.setToolTip('Press enter to validate your energy') hbox.layout.addWidget(self.energy) hbox.layout.addWidget(qt.HorizontalSpacer(hbox)) self.energy.editingFinished.connect(self._energySlot) #parameters self.__hbox2 = qt.QWidget(self) hbox2 = self.__hbox2 layout.addWidget(hbox2) hbox2.layout = qt.QHBoxLayout(hbox2) hbox2.layout.setContentsMargins(0, 0, 0, 0) hbox2.layout.setSpacing(0) font=hbox2.font() font.setBold(1) hbox2.setFont(font) l2=qt.QLabel(hbox2) l2.setText('Energy Threshold (eV)') self.threshold=qt.QSpinBox(hbox2) self.threshold.setMinimum(0) self.threshold.setMaximum(1000) self.threshold.setValue(int(threshold*1000)) self.k = qt.QCheckBox(hbox2) self.k.setText('K') self.k.setChecked(1) self.l1 = qt.QCheckBox(hbox2) self.l1.setText('L1') self.l1.setChecked(1) self.l2 = qt.QCheckBox(hbox2) self.l2.setText('L2') self.l2.setChecked(1) self.l3 = qt.QCheckBox(hbox2) self.l3.setText('L3') self.l3.setChecked(1) self.m = qt.QCheckBox(hbox2) self.m.setText('M') self.m.setChecked(1) self.threshold.valueChanged[int].connect(self._thresholdSlot) self.k.clicked.connect(self._mySlot) self.l1.clicked.connect(self._mySlot) self.l2.clicked.connect(self._mySlot) self.l3.clicked.connect(self._mySlot) self.m.clicked.connect(self._mySlot) hbox2.layout.addWidget(l2) hbox2.layout.addWidget(self.threshold) hbox2.layout.addWidget(self.k) hbox2.layout.addWidget(self.l1) hbox2.layout.addWidget(self.l2) hbox2.layout.addWidget(self.l3) hbox2.layout.addWidget(self.m) if self.__useviewer: self.__browsertext = qt.QTextEdit(self) layout.addWidget(self.__browsertext) self.setEnergy(energy) def setEnergy(self, energy = None): if energy is None: energy = 5.9 if type(energy) == type(""): self.energy.setText("%s" % energy) self._energySlot() else: self.energy.setText("%.3f" % energy) self.mySlot(energy=energy) def _energySlot(self): qstring = self.energy.text() try: value = float(qt.safe_str(qstring)) self.energyvalue = value self.mySlot() self.energy.setPaletteBackgroundColor(qt.Qt.white) cursor = self.__browsertext.textCursor() cursor.movePosition(qt.QTextCursor.Start) self.__browsertext.setTextCursor(cursor) self.threshold.setFocus() except Exception: msg=qt.QMessageBox(self.energy) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Float") msg.setWindowTitle("Invalid entry") msg.exec() self.energy.setFocus() return def myslot(self): _logger.info("PeakIdentifier.py myslot deprecated, use mySlot") return self.mySlot() def _thresholdSlot(self, value): self.mySlot() def _mySlot(self): # this intermediate is needed to prevent passing a boolean to # mySlot when receiving the signal from the checkboxes. return self.mySlot() def mySlot(self, energy=None): if energy is None: try: energy = float(qt.safe_str(self.energy.text())) except ValueError: msg=qt.QMessageBox(self.energy) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid Energy Value") msg.setWindowTitle("Invalid energy") msg.exec() self.energy.setFocus() return threshold = float(self.threshold.value())/1000. lines=[] if self.k.isChecked(): lines.append('K') if self.l1.isChecked(): lines.append('L1') if self.l2.isChecked(): lines.append('L2') if self.l3.isChecked(): lines.append('L3') if self.m.isChecked(): lines.append('M') ddict=Elements.getcandidates(energy,threshold,lines)[0] ddict['text'] =self.getHtmlText(ddict) ddict['event']='Candidates' ddict['lines']=lines if self.__useviewer: self.__browsertext.clear() #self.__browsertext.insertHtml("
"+dict['text']+\ # "
") self.__browsertext.insertHtml(ddict['text']) self.sigPeakIdentifierSignal.emit(ddict) def getHtmlText(self, ddict): text = "" if QTVERSION < '4.0.0': text += "
" labels=['Element','Line','Energy','Rate'] lemmon=("#%x%x%x" % (255,250,205)) lemmon = lemmon.upper() hcolor = ("#%x%x%x" % (230,240,249)) hcolor = hcolor.upper() text+="
" text+=("") text+=( "") text+=( "") for l in labels: text+=('") text+=("") for ele in ddict['elements']: oldline="" for line in ddict[ele]: if line[0][0:1] == 'K': group0 = 'K rays' elif line[0][0:2] == 'L1': group0 = 'L1 rays' elif line[0][0:2] == 'L2': group0 = 'L2 rays' elif line[0][0:2] == 'L3': group0 = 'L3 rays' elif line[0][0:1] == 'M': group0 = 'M rays' else: group0 = 'Unknown' if group0 != oldline: text +="" text += '' % ele text += '' % group0 text += '' oldline = group0 #for peak in result[group]['peaks']: text += '' name = line[0] energy = ("%.3f" % line[1]) ratio = ("%.5f" % line[2]) fields = [name,energy,ratio] for field in fields: if field == name: text+=('' % (lemmon,field)) else: text+=('' % (lemmon,field)) text+="" text+=("
' % hcolor) text+=l text+=("
%s%s
%s%s
") text+=("
") text+="
" return text class MyQLineEdit(qt.QLineEdit): def __init__(self,parent=None,name=None): qt.QLineEdit.__init__(self,parent) self.setAutoFillBackground(True) def setPaletteBackgroundColor(self, color): palette = qt.QPalette() role = self.backgroundRole() palette.setColor(role,color) self.setPalette(palette) def focusInEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('yellow')) # TODO not like focusOutEvent ? ''' if QTVERSION > '4.0.0': qt.QLineEdit.focusInEvent(self, event) ''' def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) qt.QLineEdit.focusOutEvent(self, event) def main(): logging.basicConfig(level=logging.INFO) app = qt.QApplication(sys.argv) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) if len(sys.argv) > 1: ene = float(sys.argv[1]) else: ene = 5.9 mw = qt.QWidget() l = qt.QVBoxLayout(mw) l.setSpacing(0) w= PeakIdentifier(mw,energy=ene,useviewer=1) l.addWidget(w) mw.setWindowTitle("Peak Identifier") mw.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/PeakTableWidget.py0000644000000000000000000005600614741736366022707 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QStringList"): QStringList = qt.QStringList else: def QStringList(): return [] if hasattr(qt, "QString"): QString = qt.QString else: QString = str from PyMca5.PyMcaPhysics import Elements _logger = logging.getLogger(__name__) QTable = qt.QTableWidget class QComboTableItem(qt.QComboBox): sigCellChanged = qt.pyqtSignal(int,int) def __init__(self, parent=None, row = None, col = None): self._row = row self._col = col qt.QComboBox.__init__(self,parent) self.activated[int].connect(self._cellChanged) def _cellChanged(self, idx): _logger.debug("cell changed %s", idx) self.sigCellChanged.emit(self._row, self._col) class QCheckBoxItem(qt.QCheckBox): sigCellChanged = qt.pyqtSignal(int, int) def __init__(self, parent=None, row = None, col = None): self._row = row self._col = col qt.QCheckBox.__init__(self,parent) self.clicked.connect(self._cellChanged) def _cellChanged(self): self.sigCellChanged.emit(self._row, self._col) class PeakTableWidget(QTable): sigPeakTableWidgetSignal = qt.pyqtSignal(object) def __init__(self, *args,**kw): QTable.__init__(self, *args) self.setRowCount(0) self.labels=['Peak','Channel','Element','Line', 'Energy','Use','Calc. Energy'] self.setColumnCount(len(self.labels)) if 'labels' in kw: self.labels = kw['labels'] for i in range(len(self.labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(self.labels[i], qt.QTableWidgetItem.Type) item.setText(self.labels[i]) self.setHorizontalHeaderItem(i,item) self.peaks={} self.peaklist=[] if 'peaklist' in kw: self.peaklist = kw['peaklist'] self.build() self.cellChanged[int,int].connect(self.myslot) rheight = self.horizontalHeader().sizeHint().height() for idx in range(self.rowCount()): self.setRowHeight(idx, rheight) def build(self): line = 1 oldlist=list(self.peaklist) self.peaklist=[] for peak in oldlist: self.newpeakline(peak,line) line=line+1 self.resizeColumnToContents(0) #self.resizeColumnToContents(1) #self.resizeColumnToContents(2) self.resizeColumnToContents(5) def clearPeaks(self): self.peaks = {} self.peaklist = [] self.setRowCount(0) def newpeakline(self,peak,line): #get current number of lines nlines=self.rowCount() #if the number of lines is smaller than line resize table if (line > nlines): self.setRowCount(line) linew=line-1 self.peaks[peak]={ 'line':linew, 'fields':['number', 'channel', 'element', 'elementline', 'setenergy', 'use', 'calenergy'], 'number': QString('1'), 'channel': QString('0'), 'element': QString('-'), 'elementline':QString('-'), 'setenergy': QString('0'), 'use': 0, 'calenergy': QString()} self.peaklist.append(peak) self.setReadWrite(peak,'setenergy') self.setReadWrite(peak,'channel') self.setReadOnly (peak,['number','line','calenergy']) col = self.peaks[peak]['fields'].index('element') self.peaks[peak]['element_item']=QPeriodicComboTableItem(self, row = linew, col= col) self.setCellWidget(linew, col, self.peaks[peak]['element_item']) self.peaks[peak]['element_item'].sigCellChanged[int,int].connect( \ self.myslot) a = QStringList() a.append('-') col = self.peaks[peak]['fields'].index('elementline') self.peaks[peak]['elementline_item']= QComboTableItem(self, row = linew, col = col) self.peaks[peak]['elementline_item'].addItems(a) self.setCellWidget(linew, col, self.peaks[peak]['elementline_item']) self.peaks[peak]['elementline_item'].sigCellChanged[int,int].connect( \ self.myslot) col = self.peaks[peak]['fields'].index('use') self.peaks[peak]['use_item'] = QCheckBoxItem(self, row = linew, col = col) self.peaks[peak]['use_item'].setText("") self.setCellWidget(linew, col, self.peaks[peak]['use_item']) self.peaks[peak]['use_item'].sigCellChanged[int,int].connect( \ self.myslot) self.peaks[peak]['use_item'].setChecked(self.peaks[peak]['use']) def myslot(self, row, col): _logger.debug("Passing by myslot %s", self.peaks[self.peaklist[row]]['fields'][col]) peak = self.peaklist[row] field = self.peaks[peak]['fields'][col] if (field == "element") or (field == "elementline"): key = field + "_item" newvalue = self.peaks[peak][key].currentText() elif field == "use": pass else: newvalue = self.item(row, col).text() if field == "element": if str(newvalue) == '-': #no element #set line to - options = QStringList() options.append('-') self.peaks[peak]["elementline_item"].insertItems(0, options) self.peaks[peak]["elementline_item"].setCurrentIndex(0) else: #get the emission energies ele = str(newvalue).split()[0] options = QStringList() energies = QStringList() options.append('-') energies.append('0.000') emax = 0.0 for rays in Elements.Element[ele]['rays']: for transition in Elements.Element[ele][rays]: options.append("%s (%.5f)" % (transition, Elements.Element[ele][transition]['rate'])) energies.append("%.5f " % (Elements.Element[ele][transition]['energy'])) emax = max(emax,Elements.Element[ele][transition]['rate']) energies[0] = "%.5f " % emax #lineitem=qttable.QComboTableItem(self,options) self.peaks[peak]["elementline_item"].insertItems(0, options) self.peaks[peak]["elementline_item"].setCurrentIndex(0) #self.setItem(row, # col+1, # lineitem) self.peaks[peak][field] = newvalue if field == "elementline": if str(newvalue) == '-': #no element #set energy to rw self.setReadWrite(peak,'setenergy') else: #get the element energy #newvalue=QString(self.text(row,col-1)) elevalue=self.peaks[peak]["element_item"].currentText() ele = str(elevalue).split()[0] energy = "0.0" for rays in Elements.Element[ele]['rays']: for transition in Elements.Element[ele][rays]: option = QString("%s (%.5f)" % (transition, Elements.Element[ele][transition]['rate'])) if option == newvalue: energy = "%.5f " % (Elements.Element[ele][transition]['energy']) break if energy == "0.0": _logger.warning("Something is wrong") else: self.configure(name=peak,setenergy=energy) self.setReadOnly(peak,'setenergy') self.peaks[peak][field] = newvalue if field == "setenergy": oldvalue = self.peaks[peak]["setenergy"] try: value = float(str(newvalue)) except Exception: _logger.warning("%s newvalue = %s taking old value %s" % (field, newvalue, oldvalue)) item = self.item(row, col) item.setText("%s" % oldvalue) value = float(str(oldvalue)) self.peaks[peak][field] = value ddict={} ddict['event'] = 'use' self.sigPeakTableWidgetSignal.emit(ddict) if field == "channel": oldvalue = self.peaks[peak]["channel"] try: value = float(str(newvalue)) except Exception: _logger.warning("%s newvalue = %s taking old value%s" % (field, newvalue, oldvalue)) item = self.item(row, col) item.setText("%s" % oldvalue) value = float(str(oldvalue)) self.peaks[peak][field] = value ddict={} ddict['event'] = 'use' self.sigPeakTableWidgetSignal.emit(ddict) if field == "use": if self.peaks[peak][field+"_item"].isChecked(): self.peaks[peak][field] = 1 else: self.peaks[peak][field] = 0 ddict={} ddict['event'] = 'use' self.sigPeakTableWidgetSignal.emit(ddict) def setReadOnly(self, parameter, fields): _logger.debug("peak %s fields = %s asked to be read only" % (parameter, fields)) self.setfield(parameter, fields, qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) def setReadWrite(self, parameter, fields): _logger.debug("peak %s fields = %s asked to be read write" % (parameter, fields)) self.setfield(parameter, fields, qt.Qt.ItemIsEditable | qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) def setfield(self,peak,fields,EditType): _logger.debug("setfield. peak = %s fields = %s" % (peak, fields)) if type(peak) == type (()) or \ type(peak) == type ([]): peaklist=peak else: peaklist=[peak] if type(fields) == type (()) or \ type(fields) == type ([]): fieldlist=fields else: fieldlist=[fields] for peak in peaklist: if peak in self.peaklist: try: row=self.peaklist.index(peak) except ValueError: row=-1 if row >= 0: for field in fieldlist: if field in self.peaks[peak]['fields']: col=self.peaks[peak]['fields'].index(field) if (field != 'element') and (field != 'elementline'): key=field+"_item" item = self.item(row, col) text = "%s" % self.peaks[peak][field] if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(str(text)) item.setFlags(EditType) def configure(self,*vars,**kw): _logger.debug("configure called with **kw = %s", kw) _logger.debug("configure called with *vars = %s", vars) name = None error=0 if 'name' in kw: name=kw['name'] elif 'number' in kw: name=kw['number'] else: return 1 keylist = [] if "channel" in kw: keylist=["channel"] for key in kw.keys(): if key != "setenergy": if key not in keylist: keylist.append(key) if "setenergy" in kw.keys(): keylist.append("setenergy") if name in self.peaks: row=self.peaks[name]['line'] for key in keylist: if key != 'name': if key in self.peaks[name]['fields']: col=self.peaks[name]['fields'].index(key) oldvalue=self.peaks[name][key] if key == 'code': newvalue = QString(str(kw[key])) elif key == 'element': newvalue = str(kw[key]).split()[0] if newvalue == "-": self.peaks[name][key+"_item"].setCurrentIndex(0) else: self.peaks[name][key+"_item"].setSelection(newvalue) try: self.myslot(row,col) except Exception: _logger.warning("Error setting element") elif key == 'elementline': try: iv = self.peaks[name][key+"_item"].findText(QString(kw[key])) self.peaks[name][key+"_item"].setCurrentIndex(iv) except Exception: _logger.warning("Error setting elementline") elif key == 'use': if kw[key]: self.peaks[name][key] = 1 else: self.peaks[name][key] = 0 self.peaks[name][key+"_item"].setChecked(self.peaks[name][key]) elif key == 'number': if len(str(kw[key])): newvalue=float(str(kw[key])) newvalue= QString("%3d" % newvalue) self.peaks[name][key]=newvalue else: self.peaks[name][key]=oldvalue text = self.peaks[name][key] item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) elif key == 'channel': _logger.debug("setting channel in configure") if len(str(kw[key])): newvalue = float(str(kw[key])) newvalue = QString("%.3f" % newvalue) self.peaks[name][key]=newvalue else: self.peaks[name][key]=oldvalue text = self.peaks[name][key] item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) elif (key == 'setenergy') or (key == 'calenergy'): if len(str(kw[key])): newvalue=float(str(kw[key])) newvalue= QString("%.4f" % newvalue) self.peaks[name][key]=newvalue else: self.peaks[name][key]=oldvalue text = self.peaks[name][key] item = self.item(row, col) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) self.setItem(row, col, item) else: item.setText(text) #self.myslot(row,col) else: if len(str(kw[key])): newvalue=float(str(kw[key])) if key == 'sigma': newvalue= "%6.3g" % newvalue else: newvalue= "%8g" % newvalue else: newvalue="" newvalue=QString(newvalue) return error def validate(self,name,key,oldvalue,newvalue): if (key == 'setenergy') or (key == 'number') or (key == 'calcenergy'): try: float(str(newvalue)) except Exception: return 0 return 1 def getdict(self, *var): _logger.warning("PeakTableWidget.getdict deprecated. Use getDict") return self.getDict(*var) def getDict(self,*var): ddict={} if len(var) == 0: #asked for the dict of dicts for peak in self.peaks.keys(): ddict[peak] = {} ddict[peak]['number'] = float(str(self.peaks[peak]['number'])) ddict[peak]['channel'] = float(str(self.peaks[peak]['channel'])) ddict[peak]['element'] = str(self.peaks[peak]['element']) ddict[peak]['elementline'] = str(self.peaks[peak]['elementline']) ddict[peak]['setenergy'] = float(str(self.peaks[peak]['setenergy'])) ddict[peak]['use'] = self.peaks[peak]['use'] if len(str(self.peaks[peak]['calenergy'])): ddict[peak]['calenergy'] = float(str(self.peaks[peak]['calenergy'])) else: ddict[peak]['calenergy'] = "" else: peak=var[0] if peak in self.peaks.keys(): ddict['number'] = float(str(self.peaks[peak]['number'])) ddict['channel'] = float(str(self.peaks[peak]['channel'])) ddict['element'] = str(self.peaks[peak]['element']) ddict['elementline'] = str(self.peaks[peak]['elementline']) ddict['setenergy'] = float(str(self.peaks[peak]['setenergy'])) ddict['use'] = self.peaks[peak]['use'] if len(str(self.peaks[peak]['calenergy'])): ddict['calenergy'] = float(str(self.peaks[peak]['calenergy'])) else: ddict['calenergy'] = "" return ddict class QPeriodicComboTableItem(QComboTableItem): """ Periodic Table Combo List to be used in a QTable Init options: table (mandatory)= parent QTable addnone= 1 (default) add "-" in the list to provide possibility to select no specific element. 0 only element list. detailed= 1 (default) display element symbol, Z and name 0 display only element symbol and Z Public methods: setSelection(eltsymbol): Set the element selected given its symbol getSelection(): Return symbol of element selected Signals: sigValueChanged(int,int) """ sigValueChanged = qt.pyqtSignal(int, int) def __init__(self, table=None, addnone=1, detailed=0, row=None, col=None): strlist = QStringList() self.addnone= (addnone==1) if self.addnone: strlist.append("-") for (symbol, Z, x, y, name, mass, density) in Elements.ElementsInfo: if detailed: txt= "%2s (%d) - %s"%(symbol, Z, name) else: txt= "%2s (%d)"%(symbol, Z) strlist.append(txt) if row is None: row = 0 if col is None: col = 0 self._row = row self._col = col qt.QComboBox.__init__(self) self.addItems(strlist) self.activated[int].connect(self._cellChanged) def _cellChanged(self, idx): self.sigCellChanged.emit(self._row, self._col) def setSelection(self, symbol=None): if symbol is None: if self.addnone: self.setCurrentIndex(0) else: idx= self.addnone+Elements.getz(symbol)-1 self.setCurrentIndex(idx) def getSelection(self): idx = self.currentIndex() if self.addnone and not idx: return None else: return Elements.ElementList[idx - self.addnone] def main(args): app=qt.QApplication(args) win=qt.QMainWindow() #tab = Parameters(labels=['Parameter','Estimation','Fit Value','Sigma', # 'Restrains','Min/Parame','Max/Factor/Delta/'], # paramlist=['Height','Position','FWHM']) tab = PeakTableWidget(labels= ['Peak','Channel','Element','Line','Set Energy','Use', 'Cal. Energy'], peaklist=['1']) tab.showGrid() tab.configure(name='1',number=24,channel='1234',use=1, setenergy=12.5,calenergy=24.0) tab.show() app.exec() if __name__=="__main__": main(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/QPeriodicTable.py0000644000000000000000000005206514741736366022543 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon & V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() # # Symbol Atomic Number x y ( positions on table ) # name, mass, density # DEBUG = 0 Elements = [ ["H", 1, 1,1, "hydrogen", 1.00800, 1008.00 ], ["He", 2, 18,1, "helium", 4.00300, 0.118500 ], ["Li", 3, 1,2, "lithium", 6.94000, 534.000 ], ["Be", 4, 2,2, "beryllium", 9.01200, 1848.00 ], ["B", 5, 13,2, "boron", 10.8110, 2340.00 ], ["C", 6, 14,2, "carbon", 12.0100, 1580.00 ], ["N", 7, 15,2, "nitrogen", 14.0080, 1.25 ], ["O", 8, 16,2, "oxygen", 16.0000, 1.429 ], ["F", 9, 17,2, "fluorine", 19.0000, 1108.00 ], ["Ne", 10, 18,2, "neon", 20.1830, 0.9 ], ["Na", 11, 1,3, "sodium", 22.9970, 970.000 ], ["Mg", 12, 2,3, "magnesium", 24.3200, 1740.00 ], ["Al", 13, 13,3, "aluminium", 26.9700, 2720.00 ], ["Si", 14, 14,3, "silicon", 28.0860, 2330.00 ], ["P", 15, 15,3, "phosphorus", 30.9750, 1820.00 ], ["S", 16, 16,3, "sulphur", 32.0660, 2000.00 ], ["Cl", 17, 17,3, "chlorine", 35.4570, 1560.00 ], ["Ar", 18, 18,3, "argon", 39.9440, 1.78400 ], ["K", 19, 1,4, "potassium", 39.1020, 862.000 ], ["Ca", 20, 2,4, "calcium", 40.0800, 1550.00 ], ["Sc", 21, 3,4, "scandium", 44.9600, 2992.00 ], ["Ti", 22, 4,4, "titanium", 47.9000, 4540.00 ], ["V", 23, 5,4, "vanadium", 50.9420, 6110.00 ], ["Cr", 24, 6,4, "chromium", 51.9960, 7190.00 ], ["Mn", 25, 7,4, "manganese", 54.9400, 7420.00 ], ["Fe", 26, 8,4, "iron", 55.8500, 7860.00 ], ["Co", 27, 9,4, "cobalt", 58.9330, 8900.00 ], ["Ni", 28, 10,4, "nickel", 58.6900, 8900.00 ], ["Cu", 29, 11,4, "copper", 63.5400, 8940.00 ], ["Zn", 30, 12,4, "zinc", 65.3800, 7140.00 ], ["Ga", 31, 13,4, "gallium", 69.7200, 5903.00 ], ["Ge", 32, 14,4, "germanium", 72.5900, 5323.00 ], ["As", 33, 15,4, "arsenic", 74.9200, 5730.00 ], ["Se", 34, 16,4, "selenium", 78.9600, 4790.00 ], ["Br", 35, 17,4, "bromine", 79.9200, 3120.00 ], ["Kr", 36, 18,4, "krypton", 83.8000, 3.74000 ], ["Rb", 37, 1,5, "rubidium", 85.4800, 1532.00 ], ["Sr", 38, 2,5, "strontium", 87.6200, 2540.00 ], ["Y", 39, 3,5, "yttrium", 88.9050, 4405.00 ], ["Zr", 40, 4,5, "zirconium", 91.2200, 6530.00 ], ["Nb", 41, 5,5, "niobium", 92.9060, 8570.00 ], ["Mo", 42, 6,5, "molybdenum", 95.9500, 10220.00 ], ["Tc", 43, 7,5, "technetium", 99.0000, 11500.0 ], ["Ru", 44, 8,5, "ruthenium", 101.0700, 12410.0 ], ["Rh", 45, 9,5, "rhodium", 102.9100, 12440.0 ], ["Pd", 46, 10,5, "palladium", 106.400, 12160.0 ], ["Ag", 47, 11,5, "silver", 107.880, 10500.00 ], ["Cd", 48, 12,5, "cadmium", 112.410, 8650.00 ], ["In", 49, 13,5, "indium", 114.820, 7280.00 ], ["Sn", 50, 14,5, "tin", 118.690, 5310.00 ], ["Sb", 51, 15,5, "antimony", 121.760, 6691.00 ], ["Te", 52, 16,5, "tellurium", 127.600, 6240.00 ], ["I", 53, 17,5, "iodine", 126.910, 4940.00 ], ["Xe", 54, 18,5, "xenon", 131.300, 5.90000 ], ["Cs", 55, 1,6, "caesium", 132.910, 1873.00 ], ["Ba", 56, 2,6, "barium", 137.360, 3500.00 ], ["La", 57, 3,6, "lanthanum", 138.920, 6150.00 ], ["Ce", 58, 4,9, "cerium", 140.130, 6670.00 ], ["Pr", 59, 5,9, "praseodymium",140.920, 6769.00 ], ["Nd", 60, 6,9, "neodymium", 144.270, 6960.00 ], ["Pm", 61, 7,9, "promethium", 147.000, 6782.00 ], ["Sm", 62, 8,9, "samarium", 150.350, 7536.00 ], ["Eu", 63, 9,9, "europium", 152.000, 5259.00 ], ["Gd", 64, 10,9, "gadolinium", 157.260, 7950.00 ], ["Tb", 65, 11,9, "terbium", 158.930, 8272.00 ], ["Dy", 66, 12,9, "dysprosium", 162.510, 8536.00 ], ["Ho", 67, 13,9, "holmium", 164.940, 8803.00 ], ["Er", 68, 14,9, "erbium", 167.270, 9051.00 ], ["Tm", 69, 15,9, "thulium", 168.940, 9332.00 ], ["Yb", 70, 16,9, "ytterbium", 173.040, 6977.00 ], ["Lu", 71, 17,9, "lutetium", 174.990, 9842.00 ], ["Hf", 72, 4,6, "hafnium", 178.500, 13300.0 ], ["Ta", 73, 5,6, "tantalum", 180.950, 16600.0 ], ["W", 74, 6,6, "tungsten", 183.920, 19300.0 ], ["Re", 75, 7,6, "rhenium", 186.200, 21020.0 ], ["Os", 76, 8,6, "osmium", 190.200, 22500.0 ], ["Ir", 77, 9,6, "iridium", 192.200, 22420.0 ], ["Pt", 78, 10,6, "platinum", 195.090, 21370.0 ], ["Au", 79, 11,6, "gold", 197.200, 19370.0 ], ["Hg", 80, 12,6, "mercury", 200.610, 13546.0 ], ["Tl", 81, 13,6, "thallium", 204.390, 11860.0 ], ["Pb", 82, 14,6, "lead", 207.210, 11340.0 ], ["Bi", 83, 15,6, "bismuth", 209.000, 9800.00 ], ["Po", 84, 16,6, "polonium", 209.000, 0 ], ["At", 85, 17,6, "astatine", 210.000, 0 ], ["Rn", 86, 18,6, "radon", 222.000, 9.73000 ], ["Fr", 87, 1,7, "francium", 223.000, 0 ], ["Ra", 88, 2,7, "radium", 226.000, 0 ], ["Ac", 89, 3,7, "actinium", 227.000, 0 ], ["Th", 90, 4,10, "thorium", 232.000, 11700.0 ], ["Pa", 91, 5,10, "proactinium",231.03588, 0 ], ["U", 92, 6,10, "uranium", 238.070, 19050.0 ], ["Np", 93, 7,10, "neptunium", 237.000, 0 ], ["Pu", 94, 8,10, "plutonium", 239.100, 19700.0 ], ["Am", 95, 9,10, "americium", 243, 0 ], ["Cm", 96, 10,10, "curium", 247, 0 ], ["Bk", 97, 11,10, "berkelium", 247, 0 ], ["Cf", 98, 12,10, "californium",251, 0 ], ["Es", 99, 13,10, "einsteinium",252, 0 ], ["Fm", 100, 14,10, "fermium", 257, 0 ], ["Md", 101, 15,10, "mendelevium",258, 0 ], ["No", 102, 16,10, "nobelium", 259, 0 ], ["Lr", 103, 17,10, "lawrencium", 262, 0 ], ["Rf", 104, 4,7, "rutherfordium",261, 0 ], ["Db", 105, 5,7, "dubnium", 262, 0 ], ["Sg", 106, 6,7, "seaborgium", 266, 0 ], ["Bh", 107, 7,7, "bohrium", 264, 0 ], ["Hs", 108, 8,7, "hassium", 269, 0 ], ["Mt", 109, 9,7, "meitnerium", 268, 0 ], ] ElementList= [ elt[0] for elt in Elements ] class ElementButton(qt.QPushButton): sigElementEnter = qt.pyqtSignal(object) sigElementLeave = qt.pyqtSignal(object) sigElementClicked = qt.pyqtSignal(object) def __init__(self, parent, symbol, Z, name): qt.QPushButton.__init__(self, parent) self.symbol = symbol self.Z = Z self.name = name self.setText(symbol) self.setFlat(1) self.setCheckable(0) self.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding)) self.selected= 0 self.current= 0 self.colors= [ qt.QColor(qt.Qt.yellow), qt.QColor(qt.Qt.darkYellow), qt.QColor(qt.Qt.gray) ] self.brush= qt.QBrush() self.clicked.connect(self.clickedSlot) def sizeHint(self): return qt.QSize(40, 40) def setCurrent(self, b): self.current= b self.__setBrush() def isCurrent(self): return self.current def isSelected(self): return self.selected def setSelected(self, b): self.selected= b self.__setBrush() def __setBrush(self): role = self.backgroundRole() palette = self.palette() if self.current and self.selected: self.brush= qt.QBrush(self.colors[1]) elif self.selected: self.brush= qt.QBrush(self.colors[0]) elif self.current: self.brush= qt.QBrush(self.colors[2]) else: self.brush= qt.QBrush() palette.setBrush( role,self.brush) self.update() def paintEvent(self, pEvent): p = qt.QPainter(self) wr= self.rect() pr= qt.QRect(wr.left()+1, wr.top()+1, wr.width()-2, wr.height()-2) if self.brush is not None: p.fillRect(pr, self.brush) p.setPen(qt.Qt.black) p.drawRect(pr) p.end() qt.QPushButton.paintEvent(self, pEvent) def drawButton(self, p): #Qt 2 and Qt3 wr= self.rect() pr= qt.QRect(wr.left()+1, wr.top()+1, wr.width()-2, wr.height()-2) if self.brush is not None: p.fillRect(pr, self.brush) qt.QPushButton.drawButtonLabel(self, p) p.setPen(qt.Qt.black) p.drawRect(pr) def enterEvent(self, e): self.sigElementEnter.emit((self.symbol, self.Z, self.name)) def leaveEvent(self, e): self.sigElementLeave.emit(self.symbol) def clickedSlot(self): self.sigElementClicked.emit(self.symbol) class QPeriodicTable(qt.QWidget): """ Periodic Table - qt.Qt version Public methods: setSelection(eltlist): set all elements in eltlist selected if mode single, set last element of eltlist selected getSelection(): get list of selected elements Signal: sigElementClicked(symbol): """ sigElementClicked = qt.pyqtSignal(object) def __init__(self, parent=None, name="PeriodicTable", fl=0): qt.QWidget.__init__(self,parent) self.setWindowTitle(name) self.gridLayout= qt.QGridLayout(self) self.gridLayout.setContentsMargins(0, 0, 0, 0) #, 6, 10, 0, 0, "PTLayout") self.gridLayout.addItem(qt.QSpacerItem(0, 5), 7, 0) for idx in range(10): self.gridLayout.setRowStretch(idx, 3) self.gridLayout.setRowStretch(7, 2) self.eltLabel= qt.QLabel(self) f= self.eltLabel.font() f.setBold(1) self.eltLabel.setFont(f) self.eltLabel.setAlignment(qt.Qt.AlignHCenter) self.gridLayout.addWidget(self.eltLabel, 1, 1, 3, 10) self.eltCurrent= None self.eltButton= {} for (symbol, Z, x, y, name, mass, density) in Elements: self.__addElement(symbol, Z, name, y-1, x-1) def __addElement(self, symbol, Z, name, row, col): b= ElementButton(self, symbol, Z, name) b.setAutoDefault(False) self.eltButton[symbol]= b self.gridLayout.addWidget(b, row, col) b.sigElementEnter.connect(self.elementEnter) b.sigElementLeave.connect(self.elementLeave) b.sigElementClicked.connect(self.elementClicked) def elementEnter(self, *var): if len(var) == 1: symbol, z, name = var[0] else: symbol, z, name = var self.eltLabel.setText("%s(%d) - %s"%(symbol, z, name)) def elementLeave(self, symbol): self.eltLabel.setText("") def elementClicked(self, symbol): if self.eltCurrent is not None: self.eltCurrent.setCurrent(0) symbol = str(symbol) self.eltButton[symbol].setCurrent(1) self.eltCurrent= self.eltButton[symbol] self.sigElementClicked.emit(symbol) def getSelection(self): return [ e for (e,b) in self.eltButton.items() if b.isSelected() ] def setSelection(self, symbolList): for (e,b) in self.eltButton.items(): b.setSelected(e in symbolList) def setElementSelected(self, symbol, state): self.eltButton[symbol].setSelected(state) def isElementSelected(self, symbol): return self.eltButton[symbol].isSelected() def elementToggle(self, symbol): symbol = str(symbol) b= self.eltButton[symbol] b.setSelected(not b.isSelected()) class QPeriodicComboTableItem(qt.QComboBox): """ Periodic Table Combo List to be used in a QTable Init options: table (mandatory)= parent QTable addnone= 1 (default) add "-" in the list to provide possibility to select no specific element. 0 only element list. detailed= 1 (default) display element symbol, Z and name 0 display only element symbol and Z Public methods: setSelection(eltsymbol): Set the element selected given its symbol getSelection(): Return symbol of element selected Signals: No specific signals. Use signals from QTable valueChanged(int,int) for example. """ def __init__(self, table, addnone=1, detailed=0): strlist= qt.QStringList() self.addnone= (addnone==1) if self.addnone: strlist.append("-") for (symbol, Z, x, y, name, mass, density) in Elements: if detailed: txt= "%2s (%d) - %s" % (symbol, Z, name) else: txt= "%2s (%d)" % (symbol, Z) strlist.append(txt) qt.QComboBox.__init__(self) self.addItems(strlist) print("still to continue") def setSelection(self, symbol=None): if symbol is None: if self.addnone: self.setCurrentItem(0) else: idx= self.addnone+ElementList[symbol] self.setCurrentItem(idx) def getSelection(self): idx = self.currentItem() if self.addnone and not idx: return None else: return ElementList[idx - self.addnone] class QPeriodicCombo(qt.QComboBox): """ Periodic Table Element list in a QComboBox Init options: detailed= 1 (default) display element symbol, Z and name 0 display only element symbol and Z Public methods: setSelection(eltsymbol): Set the element selected given its symbol getSelection(): Return symbol of element selected Signal: sigSelectionChanged(elt): signal sent when the selection changed send symbol of element selected """ sigSelectionChanged = qt.pyqtSignal(object) def __init__(self, parent=None, name=None, detailed=1): qt.QComboBox.__init__(self, parent) i = 0 for (symbol, Z, x, y, name, mass, density) in Elements: if detailed: txt= "%2s (%d) - %s"%(symbol, Z, name) else: txt= "%2s (%d)"%(symbol, Z) self.insertItem(i,txt) i += 1 self.activated[int].connect(self.__selectionChanged) def __selectionChanged(self, idx): self.sigSelectionChanged.emit(Elements[idx][0]) def getSelection(self): return Elements[self.currentItem()] def setSelection(self, symbol): symblist= [ elt[0] for elt in Elements ] self.setCurrentItem(symblist.index(symbol)) class QPeriodicList(qt.QTreeWidget): """ Periodic Table Element list in a QListView Init options: detailed= 1 (default) display element symbol, Z and name 0 display only element symbol and Z single= 1 for single element selection mode 0 (default) for multi element selection mode Public methods: setSelection(symbollist): Set the list of symbol selected getSelection(): Return the list of symbol selected Signal: sigSelectionChanged(elt): signal sent when the selection changed send list of symbol selected """ sigSelectionChanged = qt.pyqtSignal(object) sigItemSelectionChanged = qt.pyqtSignal(object) def __init__(self, master=None, name=None, fl=0, detailed=1, single=0): qt.QTreeWidget.__init__(self, master) self.detailed= (detailed==1) try: strlist= QStringList() except Exception: strlist= [] strlist.append("Z") strlist.append("Symbol") if detailed: strlist.append("Name") self.setColumnCount(3) else: self.setColumnCount(2) self.setHeaderLabels(strlist) self.header().setStretchLastSection(False) self.setRootIsDecorated(0) self.sigItemSelectionChanged.connect(self.__selectionChanged) print("what to do? ") """ self.header().setClickEnabled(0, -1) self.setAllColumnsShowFocus(1) self.setSelectionMode((single and QListView.Single) or QListView.Extended) self.setSorting(-1) """ self.setSelectionMode((single and qt.QAbstractItemView.SingleSelection) or qt.QAbstractItemView.ExtendedSelection) self.__fill_list() self.resizeColumnToContents(0) self.resizeColumnToContents(1) if detailed: self.resizeColumnToContents(2) def __fill_list(self): self.items= [] after= None for (symbol, Z, x, y, name, mass, density) in Elements: if after is None: item= qt.QTreeWidgetItem(self) else: item= qt.QTreeWidgetItem(self, after) item.setText(0, str(Z)) item.setText(1, symbol) if self.detailed: item.setText(2, name) self.items.append(item) after= item """ def setSelection(self, symbolList): for idx in range(len(self.items)): self.items[idx].setSelected(Elements[idx][0] in symbolList) """ def __selectionChanged(self): self.sigSelectionChanged.emit(self.getSelection()) def getSelection(self): return [ Elements[idx][0] for idx in range(len(self.items)) \ if self.isItemSelected(self.items[idx]) ] #return self.selectedItems() #TODO: Implement this in Qt4 if QTVERSION < "4.0.0": def setSelection(self, symbolList): for idx in range(len(self.items)): self.items[idx].setSelected(Elements[idx][0] in symbolList) def testwidget(): def change(list): print("New selection:", list) a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w = qt.QTabWidget() f = QPeriodicTable() o= qt.QWidget() ol= qt.QVBoxLayout(o) #ol.setAutoAdd(1) tlabel = qt.QLabel("QPeriodicCombo", o) ol.addWidget(tlabel) c = QPeriodicCombo(o) ol.addWidget(c) t = qt.QLabel("QPeriodicList", o) ol.addWidget(t) l = QPeriodicList(o) ol.addWidget(l) tab = qt.QTableWidget() tab.setRowCount(2) tab.setColumnCount(1) tab.setCellWidget(0, 0, QPeriodicCombo(tab, detailed=0)) tab.setCellWidget(1, 0, QPeriodicCombo(tab, detailed=0)) w.addTab(f, "QPeriodicTable") w.addTab(o, "QPeriodicList/Combo") w.addTab(tab, "QPeriodicComboTableItem") f.setSelection(['H', 'Fe', 'Si']) f.sigElementClicked.connect(f.elementToggle) l.sigSelectionChanged.connect(change) c.sigSelectionChanged.connect(change) w.show() a.exec() if __name__ == "__main__": testwidget() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/QXTube.py0000644000000000000000000004474214741736366021067 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaPhysics.xrf import Elements from PyMca5.PyMcaPhysics.xrf import XRayTubeEbel import numpy from PyMca5.PyMcaGui.plotting.PlotWindow import PlotWindow from PyMca5.PyMcaGui import PyMcaQt as qt _logger = logging.getLogger(__name__) if qt.qVersion() > '4.0.0': class QGridLayout(qt.QGridLayout): def addMultiCellWidget(self, w, r0, r1, c0, c1, *var): self.addWidget(w, r0, c0, 1 + r1 - r0, 1 + c1 - c0) class QXTube(qt.QWidget): sigQXTubeSignal = qt.pyqtSignal(object) def __init__(self, parent=None, initdict = None): qt.QWidget.__init__(self, parent) self.l = qt.QVBoxLayout(self) self.l.setContentsMargins(0, 0, 0, 0) self.l.setSpacing(0) self.tubeWidget = TubeWidget(self, initdict = initdict) self.setParameters = self.tubeWidget.setParameters self.getParameters = self.tubeWidget.getParameters label = qt.QLabel(self) hbox = qt.QWidget(self) hboxl = qt.QHBoxLayout(hbox) hboxl.setContentsMargins(0, 0, 0, 0) hboxl.setSpacing(0) self.plotButton = qt.QPushButton(hbox) self.plotButton.setText("Plot Continuum") self.exportButton = qt.QPushButton(hbox) self.exportButton.setText("Export to Fit") #grid.addWidget(self.plotButton, 7, 1) #grid.addWidget(self.exportButton, 7, 3) hboxl.addWidget(self.plotButton) hboxl.addWidget(self.exportButton) self.l.addWidget(self.tubeWidget) f = label.font() f.setItalic(1) label.setFont(f) label.setAlignment(qt.Qt.AlignRight) label.setText("H. Ebel, X-Ray Spectrometry 28 (1999) 255-266 ") self.l.addWidget(label) self.l.addWidget(hbox) self.graph = PlotWindow(self, backend=None) self.l.addWidget(self.graph) self.graph.setGraphXLabel("Energy (keV)") self.graph.setGraphYLabel("photons/sr/mA/keV/s") self.plotButton.clicked.connect(self.plot) self.exportButton.clicked.connect(self._export) def plot(self): d = self.tubeWidget.getParameters() transmission = d["transmission"] anode = d["anode"] anodedensity = d["anodedensity"] anodethickness = d["anodethickness"] voltage = d["voltage"] wele = d["window"] wdensity = d["windowdensity"] wthickness = d["windowthickness"] fele = d["filter1"] fdensity = d["filter1density"] fthickness = d["filter1thickness"] filterlist =[[fele, fdensity, fthickness]] alphae = d["alphae"] alphax = d["alphax"] delta = d["deltaplotting"] e = numpy.arange(1, voltage, delta) if __name__ == "__main__": continuumR = XRayTubeEbel.continuumEbel([anode, anodedensity, anodethickness], voltage, e, [wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=0, targetthickness=anodethickness, filterlist=filterlist) continuumT = XRayTubeEbel.continuumEbel([anode, anodedensity, anodethickness], voltage, e, [wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=1, targetthickness=anodethickness, filterlist=filterlist) self.graph.addCurve(e, continuumR, "continuumR", replot=False) self.graph.addCurve(e, continuumT, "continuumT", replot=False) else: continuum = XRayTubeEbel.continuumEbel([anode, anodedensity, anodethickness], voltage, e, [wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=anodethickness, filterlist=filterlist) self.graph.addCurve(e, continuum, "continuum", replot=False) self.graph.setActiveCurve("continuum") self.graph.resetZoom() self.graph.replot() def _export(self): d = self.tubeWidget.getParameters() transmission = d["transmission"] anode = d["anode"] anodedensity = d["anodedensity"] anodethickness = d["anodethickness"] voltage = d["voltage"] wele = d["window"] wdensity = d["windowdensity"] wthickness = d["windowthickness"] fele = d["filter1"] fdensity = d["filter1density"] fthickness = d["filter1thickness"] filterlist =[[fele, fdensity, fthickness]] alphae = d["alphae"] alphax = d["alphax"] delta = d["deltaplotting"] e = numpy.arange(1, voltage, delta) d["event"] = "TubeUpdated" d["energyplot"] = e d["continuum"] = XRayTubeEbel.continuumEbel([anode, anodedensity, anodethickness], voltage, e, [wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=anodethickness, filterlist=filterlist) fllines = XRayTubeEbel.characteristicEbel([anode, anodedensity, anodethickness], voltage, [wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=anodethickness, filterlist=filterlist) d["characteristic"] = fllines energy, energyweight, energyscatter = XRayTubeEbel.generateLists( [anode, anodedensity, anodethickness], voltage, window=[wele, wdensity, wthickness], alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=anodethickness, filterlist=filterlist) d["energylist"] = energy d["weightlist"] = energyweight d["scatterlist"] = energyscatter d["flaglist"] = numpy.ones(len(energy), dtype=numpy.int32) self.sigQXTubeSignal.emit(d) class TubeWidget(qt.QWidget): def __init__(self, parent=None, initdict = None): qt.QWidget.__init__(self, parent) self._build() self.anodeCombo.sigMyQComboBoxSignal.connect(self._anodeSlot) self.windowCombo.sigMyQComboBoxSignal.connect(self._windowSlot) self.filter1Combo.sigMyQComboBoxSignal.connect(self._filter1Slot) self.transmissionCheckBox.clicked.connect(self._transmissionSlot) if initdict is not None: self.setParameters(initdict) else: d = {} d["transmission"] = 0 d["voltage"] = 30.0 d["anode"] = "Ag" d["anodethickness"] = 0.0002 d["anodedensity"] = Elements.Element["Ag"]["density"] d["window"] = "Be" d["windowthickness"] = 0.0125 d["windowdensity"] = Elements.Element["Be"]["density"] d["filter1"] = "He" d["filter1thickness"]= 0.0 d["filter1density"] = Elements.Element["He"]["density"] d["alphax"] = 90.0 d["alphae"] = 90.0 d["deltaplotting"] = 0.10 self.setParameters(d) def _build(self): layout = qt.QVBoxLayout(self) layout.setContentsMargins(11, 11, 11, 11) gridwidget = qt.QWidget(self) grid = QGridLayout(gridwidget) grid.setContentsMargins(0, 0, 0, 0) grid.setSpacing(6) self.transmissionCheckBox = qt.QCheckBox(gridwidget) self.transmissionCheckBox.setText("Transmission Tube") voltage = qt.QLabel(gridwidget) voltage.setText("Voltage") self.voltage = qt.QLineEdit(gridwidget) grid.addMultiCellWidget(self.transmissionCheckBox, 0 ,0, 0, 1) grid.addWidget(voltage, 0 ,2) grid.addWidget(self.voltage, 0 ,3) #materials mlabel = qt.QLabel(gridwidget) mlabel.setText("Material") dlabel = qt.QLabel(gridwidget) dlabel.setText("Density (g/cm3)") tlabel = qt.QLabel(gridwidget) tlabel.setText("Thickness (cm)") #anode anodelabel = qt.QLabel(gridwidget) anodelabel.setText("Anode") self.anodeCombo = MyQComboBox(gridwidget, options = Elements.ElementList) self.anodeDensity = qt.QLineEdit(gridwidget) self.anodeThickness = qt.QLineEdit(gridwidget) #window windowlabel = qt.QLabel(gridwidget) windowlabel.setText("Window") self.windowCombo = MyQComboBox(gridwidget, options = Elements.ElementList) self.windowDensity = qt.QLineEdit(gridwidget) self.windowThickness = qt.QLineEdit(gridwidget) grid.addWidget(mlabel, 1 ,1) grid.addWidget(dlabel, 1 ,2) grid.addWidget(tlabel, 1 ,3) grid.addWidget(anodelabel, 2, 0) grid.addWidget(self.anodeCombo, 2, 1) grid.addWidget(self.anodeDensity, 2, 2) grid.addWidget(self.anodeThickness, 2, 3) grid.addWidget(windowlabel, 3, 0) grid.addWidget(self.windowCombo, 3, 1) grid.addWidget(self.windowDensity, 3, 2) grid.addWidget(self.windowThickness, 3, 3) #filter1 filter1label = qt.QLabel(gridwidget) filter1label.setText("Filter") self.filter1Combo = MyQComboBox(gridwidget, options = Elements.ElementList) self.filter1Density = qt.QLineEdit(gridwidget) self.filter1Thickness = qt.QLineEdit(gridwidget) grid.addWidget(filter1label, 4, 0) grid.addWidget(self.filter1Combo, 4, 1) grid.addWidget(self.filter1Density, 4, 2) grid.addWidget(self.filter1Thickness, 4, 3) #angles alphaelabel = qt.QLabel(gridwidget) alphaelabel.setText("Alpha electron") self.alphaE = qt.QLineEdit(gridwidget) alphaxlabel = qt.QLabel(gridwidget) alphaxlabel.setText("Alpha x-ray") self.alphaX = qt.QLineEdit(gridwidget) grid.addWidget(alphaelabel, 5, 2) grid.addWidget(self.alphaE, 5, 3) grid.addWidget(alphaxlabel, 6, 2) grid.addWidget(self.alphaX, 6, 3) #delta energy deltalabel = qt.QLabel(gridwidget) deltalabel.setText("Delta energy (keV) just for plotting") self.delta = qt.QLineEdit(gridwidget) grid.addMultiCellWidget(deltalabel, 7, 7, 0, 3) grid.addWidget(self.delta, 7, 3) layout.addWidget(gridwidget) def setParameters(self, d): """ d["transmission"] = 1 d["anode"] = "Ag" d["anodethickness"] = 0.0002 d["anodedensity"] = None d["window"] = "Be" d["windowthickness"] = 0.0125 d["windowdensity"] = None d["anglex"] = 90.0 d["anglee"] = 90.0 d["deltaplotting"] = 0.2 """ if "transmission" in d: if d["transmission"]: self.transmissionCheckBox.setChecked(1) else: self.transmissionCheckBox.setChecked(0) self._transmissionSlot() if "voltage" in d: self.voltage.setText("%.1f" % d["voltage"]) if "anode" in d: self.anodeCombo.setCurrentIndex(Elements.ElementList.index(d["anode"])) self.anodeDensity.setText("%f" % Elements.Element[d["anode"]]["density"]) if "anodethickness" in d: self.anodeThickness.setText("%f" % d["anodethickness"]) if "anodedensity" in d: self.anodeDensity.setText("%f" % d["anodedensity"]) if "window" in d: self.windowCombo.setCurrentIndex(Elements.ElementList.index(d["window"])) self.windowDensity.setText("%f" % Elements.Element[d["window"]]["density"]) if "windowthickness" in d: self.windowThickness.setText("%f" % d["windowthickness"]) if "windowdensity" in d: self.windowDensity.setText("%f" % d["windowdensity"]) if "filter1" in d: self.filter1Combo.setCurrentIndex(Elements.ElementList.index(d["filter1"])) self.filter1Density.setText("%f" % Elements.Element[d["filter1"]]["density"]) if "filter1thickness" in d: self.filter1Thickness.setText("%f" % d["filter1thickness"]) if "filter1density" in d: self.filter1Density.setText("%f" % d["filter1density"]) if "alphax" in d: self.alphaX.setText("%.1f" % d["alphax"]) if "alphae" in d: self.alphaE.setText("%.1f" % d["alphae"]) if "deltaplotting" in d: self.delta.setText("%.3f" % d["deltaplotting"]) def getParameters(self): d = {} if self.transmissionCheckBox.isChecked(): d["transmission"] = 1 else: d["transmission"] = 0 d["voltage"] = float(str(self.voltage.text())) d["anode"] = self.anodeCombo.getCurrent()[1] d["anodethickness"] = float(str(self.anodeThickness.text())) d["anodedensity"] = float(str(self.anodeDensity.text())) d["window"] = self.windowCombo.getCurrent()[1] d["windowthickness"] = float(str(self.windowThickness.text())) d["windowdensity"] = float(str(self.windowDensity.text())) d["filter1"] = self.filter1Combo.getCurrent()[1] d["filter1thickness"] = float(str(self.filter1Thickness.text())) d["filter1density"] = float(str(self.filter1Density.text())) d["alphax"] = float(str(self.alphaX.text())) d["alphae"] = float(str(self.alphaE.text())) d["deltaplotting"] = float(str(self.delta.text())) return d def _anodeSlot(self, ddict): _logger.debug("_anodeSlot %s", ddict) self.anodeDensity.setText("%f" % Elements.Element[ddict["element"]]["density"]) def _windowSlot(self, ddict): _logger.debug("_windowSlot %s", ddict) self.windowDensity.setText("%f" % Elements.Element[ddict["element"]]["density"]) def _filter1Slot(self, ddict): _logger.debug("_filter1Slot %s", ddict) self.filter1Density.setText("%f" % Elements.Element[ddict["element"]]["density"]) def _transmissionSlot(self): _logger.debug("_transmissionSlot") if self.transmissionCheckBox.isChecked(): self.anodeThickness.setEnabled(1) else: self.anodeThickness.setEnabled(0) class MyQComboBox(qt.QComboBox): sigMyQComboBoxSignal = qt.pyqtSignal(object) def __init__(self,parent = None,name = None,fl = 0, options=['1','2','3'],row=None,col=None): if row is None: row = 0 if col is None: col = 0 self.row = row self.col = col qt.QComboBox.__init__(self,parent) self.setOptions(options) self.setDuplicatesEnabled(False) self.setEditable(False) if hasattr(self, "textActivated"): self.textActivated[str].connect(self._mySignal) else: self.activated[str].connect(self._mySignal) def setOptions(self,options=['1','2','3']): self.clear() if qt.qVersion() < '4.0.0': self.insertStrList(options) else: for item in options: self.addItem(item) def getCurrent(self): return self.currentIndex(),str(self.currentText()) def _mySignal(self, qstring0): _logger.debug("_mySignal %s" % qstring0) text = str(qstring0) d = {} d['event'] = 'activated' d['element'] = text #d['z'] = Elemens.ElementList.index(d) + 1 self.sigMyQComboBoxSignal.emit(d) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) app = qt.QApplication([]) w = QXTube() w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/QtMcaAdvancedFitReport.py0000644000000000000000000010772014741736366024205 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import time MATPLOTLIB = True from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() #this is installation dependent I guess from matplotlib import __version__ as matplotlib_version from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure MATPLOTLIB = True from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaCore import PyMcaLogo from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool ConcentrationsConversion = ConcentrationsTool.ConcentrationsConversion class QtMcaAdvancedFitReport: def __init__(self, fitfile = None, outfile = None, outdir = None, sourcename = None, selection = None, fitresult = None,htmltext=None, concentrations=None, table = None, plotdict=None): self.concentrations = concentrations self.concentrationsConversion = ConcentrationsConversion() if table is None: table = 2 self.tableFlag = table if fitfile is not None: #generate output from fit result file self.fitfile = fitfile self.outfile = outfile self.outdir = outdir self.generateReportFromFitFile() else: #generate output from fitresult INCLUDING fit file self.fitfile = fitfile self.outfile = outfile self.outdir = outdir self.sourcename=sourcename self.selection =selection self.fitresult =fitresult if self.outfile is None: if selection is not None: self.outfile = selection if (self.outfile is None) or (self.outfile == 'Unknown Origin'): if sourcename is not None: self.outfile = os.path.basename(sourcename) self.outfile = self.outfile.replace(" ","_") self.outfile = self.outfile.replace("/","_over_") self.graph = None if htmltext is None: htmltext={} self.otherhtmltext=htmltext if plotdict is None: self.plotDict = {'logy':None, 'xmin':None, 'xmax':None, 'ymin':None, 'ymax':None} else: self.plotDict = plotdict def writeReport(self,text=None): if len(self.outfile) > 5: if self.outfile[-5:] != ".html": outfile = os.path.join(self.outdir, self.outfile+".html") else: outfile = os.path.join(self.outdir, self.outfile) else: outfile = os.path.join(self.outdir, self.outfile+".html") try: os.remove(outfile) except Exception: pass concentrationsfile = outfile[:-5]+"_concentrations.txt" try: os.remove(concentrationsfile) except Exception: pass if text is None: text = self.getText() f=open(outfile,"w") f.write(text) f.close() if len(self._concentrationsTextASCII) > 1: f=open(concentrationsfile, "w") f.write(self._concentrationsTextASCII) f.close() return outfile def generateReportFromFitFile(self): d=ConfigDict.ConfigDict() d.read(self.fitfile) sourcename = "Unknown Source" selection = "Unknown Selection" if 'info' in d: if 'key' in d['info']: selection=d['info']['key'] elif 'Key' in d['info']: selection=d['info']['Key'] for key in d['info'].keys(): if key.upper() == 'SOURCENAME': sourcename = d['info'][key] elif (key.upper() == 'SELECTION') or\ (key.upper() == 'LEGEND'): selection = d['info'][key] self.sourcename = sourcename self.selection = selection if self.outfile is None: if self.outdir is None: self.outdir = os.getcwd() self.outfile= os.path.basename(self.fitfile) else: if self.outdir is None: self.outdir = os.path.dirname(self.outfile) self.outfile= os.path.basename(self.outfile) if self.outdir == '':self.outdir = "." self.fitresult=d if 'concentrations' in d: self.concentrations = d['concentrations'] def getText(self): newlinks = [] for key in self.otherhtmltext.keys(): newlinks.append(["#%s" % (key),"%s" % key]) text =self.getHeader(newlinks) text+=self.getInfo() text+=self.getImage() text+=self.getParam() text+=self.getConcentrations() self._concentrationsTextASCII = self.getConcentrationsASCII() text+=self.getResult() for key in self.otherhtmltext.keys(): text+="\n" text+= "

" % key text+= "%s:" % key text+= "

" text+= self.otherhtmltext[key] text+="
" text+=self.getFooter() return text def getHeader(self,addlink=None): link = [ ['http://pymca.sourceforge.net', 'PyMCA home'], ['http://www.esrf.fr', 'ESRF home'], ['http://www.esrf.fr/UsersAndScience/Experiments/TBS/BLISS', 'BLISS home']] if self.concentrations is not None: link.append(['#Concentrations', 'Concentrations']) if self.tableFlag:link.append(['#Fit_Peak_Results', 'Fit Peak Results']) if addlink is not None: for item in addlink: link.append(item) text ="" text+= "" text+= "" text+= "PyMCA : Advanced Fit Results" text+= "" text+= "" text+= "
" text+= "" text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= " " text+= "
" text+= " PyMCA : Advanced Fit Results" text+= " " text+= " " logofile = self.outdir + "/" + "PyMcaLogo.png" if not os.path.exists(logofile): pixmap = qt.QPixmap(PyMcaLogo.PyMcaLogo) pixmap.save(logofile,"PNG") text+= " " % "PyMcaLogo.png" text+= "
" text+= " " text+= " " text+= " " text+= " " text+= "
" text+= "  " for name in link: text+= "|  %s  "%(tuple(name)) text+= " " text+= "
" text+= "
" text+= "
" text+= "
" return text def getInfo(self): text ="" text+= "

" text+= "Computed File : " text+= "" text+= "" if self.fitfile is not None: if os.path.basename(self.fitfile) == self.fitfile: text+= "%s" % (os.getcwd()+"/"+self.fitfile) else: text+= "%s" % (self.fitfile) else: text+= "%s" % (self.outdir+"/"+self.outfile+".fit") #and I have to generate it!!!!!!!!!!!!" d=ConfigDict.ConfigDict(self.fitresult) try: os.remove(self.outdir+"/"+self.outfile+".fit") except Exception: pass if self.concentrations is not None: d['concentrations'] = self.concentrations d.write(self.outdir+"/"+self.outfile+".fit") text+= "" text+= "

" text+= "
" text+= "" text+= "" text+= "" text+="" if 0: #not yet implemented text+="" text+=" " text+="" text+="
" text+= "" text+= " " % (self.sourcename) text+= " " % (self.selection) text+= " " """ text+= " "%(self.sourcename) text+= " "%(self.selection) keys= [ key for key in info.keys() if key not in ['paramfile', 'peakfile'] ] for idx in range(0, len(keys), 2): text+= " "%(keys[idx], info[keys[idx]]) if idx+1 1: text+=" " text+=" " % 'Slope' value = self.fitresult['result']['fittedpar'][self.fitresult['result']['parameters'].index('Constant')+1] stdvalue = self.fitresult['result']['sigmapar'] [self.fitresult['result']['parameters'].index('Constant')+1] text+=" " % (value, stdvalue) text+=" " text+="" text+="
Source :  %s
Selection :  %s
Parameters :  " d=ConfigDict.ConfigDict(self.fitresult['result']['config']) try: os.remove(self.outdir+"/"+self.outfile+".txt") except Exception: pass d.write(self.outdir+"/"+self.outfile+".txt") text+= "%s"% (self.outfile+".txt",self.outfile+".txt") text+="
Source : %sSelection : %s
%s : %s
 %s % .5E +/- % .5E
" text+="
" text+=" FIT END STATUS : %s
"% "STATUS" text+=" %s" % "MESSAGE" text+="
" text+="" return text def getFooter(self): now = time.time() text ="" text+= "
" text+= "" text+= " " text+= " " text+= " " text+= " " text+= " " % time.ctime(now) #text+= " " if sys.platform == 'win32': try: user = os.getenv('USERNAME') text+= " %s" % user except Exception: text +="" else: try: user = os.getenv("USER") text+= " %s" % user except Exception: text +="" text+= " " text+= "
created: %slast modified: %s" % time.ctime(now) text+= " last modified: %s by" % time.ctime(now) #text+= " papillon@esrf.fr
" text+= "
" text+= "" text+= "" return text def __getFitImage(self,imagefile=None): if imagefile is None:imagefile=self.outdir+"/"+self.outfile+".png" filelink = "%s" % imagefile text = "" text+= "

" text+= "Spectrum, Continuum and Fitted values :" text+= "

" text+= "
" text+= ""%filelink text+= "
" return text def getImage(self): ddict=self.fitresult try: fig = Figure(figsize=(6,3)) # in inches canvas = FigureCanvas(fig) ax = fig.add_axes([.15, .15, .8, .8]) ax.set_axisbelow(True) logplot = self.plotDict.get('logy', True) if logplot is None: if (ddict['result']['ydata'].max() - ddict['result']['ydata'].min()) < 200: logplot = False elif ddict['result']['yfit'].min() < 0.01: logplot = False else: logplot = True if logplot: axplot = ax.semilogy else: axplot = ax.plot axplot(ddict['result']['energy'], ddict['result']['ydata'], 'k', lw=1.5) axplot(ddict['result']['energy'], ddict['result']['continuum'], 'g', lw=1.5) legendlist = ['spectrum', 'continuum', 'fit'] axplot(ddict['result']['energy'], ddict['result']['yfit'], 'r', lw=1.5) fontproperties = FontProperties(size=8) if ddict['result']['config']['fit']['sumflag']: axplot(ddict['result']['energy'], ddict['result']['pileup'] + ddict['result']['continuum'], 'y', lw=1.5) legendlist.append('pileup') if matplotlib_version < '0.99.0': legend = ax.legend(legendlist,0, prop = fontproperties, labelsep=0.02) elif matplotlib_version < '1.5': legend = ax.legend(legendlist,0, prop = fontproperties, labelspacing=0.02) else: legend = ax.legend(legendlist, loc=0, prop = fontproperties, labelspacing=0.02) except ValueError: # It seems this error is not caught with matplotlib 2.2.4 and the # report crashes instead of switching to a linear plot fig = Figure(figsize=(6,3)) # in inches canvas = FigureCanvas(fig) ax = fig.add_axes([.15, .15, .8, .8]) ax.set_axisbelow(True) ax.plot(ddict['result']['energy'], ddict['result']['ydata'], 'k', lw=1.5) ax.plot(ddict['result']['energy'], ddict['result']['continuum'], 'g', lw=1.5) legendlist = ['spectrum', 'continuum', 'fit'] ax.plot(ddict['result']['energy'], ddict['result']['yfit'], 'r', lw=1.5) fontproperties = FontProperties(size=8) if ddict['result']['config']['fit']['sumflag']: ax.plot(ddict['result']['energy'], ddict['result']['pileup'] + ddict['result']['continuum'], 'y', lw=1.5) legendlist.append('pileup') if matplotlib_version < '0.99.0': legend = ax.legend(legendlist,0, prop = fontproperties, labelsep=0.02) elif matplotlib_version < '1.5': legend = ax.legend(legendlist,0, prop = fontproperties, labelspacing=0.02) else: legend = ax.legend(legendlist, loc=0, prop = fontproperties, labelspacing=0.02) ax.set_xlabel('Energy') ax.set_ylabel('Counts') legend.draw_frame(False) outfile = self.outdir+"/"+self.outfile+".png" try: os.remove(outfile) except Exception: pass canvas.print_figure(outfile) return self.__getFitImage(self.outfile+".png") def getConcentrations(self): return self.concentrationsConversion.getConcentrationsAsHtml(\ self.concentrations) def getConcentrationsASCII(self): return self.concentrationsConversion.getConcentrationsAsAscii(\ self.concentrations) def getResult(self): text = "" if self.tableFlag == 0: return text text+="\n" text+= "

" % 'Fit_Peak_Results' text+= "%s:" % 'Fit Peak Results' text+= "

" text+="
" result = self.fitresult['result'] if self.tableFlag == 1: labels=['Element','Group','Fit  Area','Sigma'] else: labels=['Element','Group','Fit  Area','Sigma','Energy','Ratio','FWHM','Chi  square'] lemmon = ("#%x%x%x" % (255,250,205)).upper() hcolor = ("#%x%x%x" % (230,240,249)).upper() text += "
" text += ("") text += '' text += ( "") for l in range(len(labels)): if l < 2: text += '' % (hcolor,labels[l]) elif (l > 3) or (self.tableFlag == 1): text += '' % (hcolor,labels[l]) else: text += '' % (hcolor,labels[l]) text+="\n" for group in result['groups']: text+=("") ele,group0 = group.split() text += '' % ele text += '' % group0 fitarea = "%.6e" % result[group]['fitarea'] sigmaarea = "%.2e" % result[group]['sigmaarea'] text += '' % fitarea text += '' % sigmaarea text += '' text += '' text += '' text += '' text += '\n' if type(result[group]['peaks']) != type([]): iterator = [result[group]['peaks']] else: iterator = 1 * result[group]['peaks'] if self.tableFlag == 1: iterator = [] for peak in iterator: text += '' name = peak energy = ("%.3f" % (result[group][peak]['energy'])) ratio = ("%.5f" % (result[group][peak]['ratio'])) area = ("%.6e" % (result[group][peak]['fitarea'])) sigma = ("%.2e" % (result[group][peak]['sigmaarea'])) fwhm = ("%.3f" % (result[group][peak]['fwhm'])) chisq = ("%.2f" % (result[group][peak]['chisq'])) fields = [name,area,sigma,energy,ratio,fwhm,chisq] for field in fields: if field == name: text+=('' % (lemmon,field)) else: text+=('' % (lemmon,field)) text+="\n" if type(result[group]['escapepeaks']) != type([]): iterator = [result[group]['escapepeaks']] else: iterator = 1 * result[group]['escapepeaks'] if self.tableFlag == 1: iterator = [] for peak0 in iterator: name = peak0+"esc" peak = peak0+"esc" if name not in result[group]: # i.e. peak0 = "Al K" and Si detector continue if result[group][name]['ratio'] > 0.0: text += '' energy = ("%.3f" % (result[group][peak]['energy'])) ratio = ("%.5f" % (result[group][peak]['ratio'])) area = ("%.6e" % (result[group][peak]['fitarea'])) sigma = ("%.2e" % (result[group][peak]['sigmaarea'])) fwhm = ("%.3f" % (result[group][peak]['fwhm'])) chisq = ("%.2f" % (result[group][peak]['chisq'])) fields = [name,area,sigma,energy,ratio,fwhm,chisq] for field in fields: if field == name: text+=('' % (lemmon,field)) else: text+=('' % (lemmon,field)) text+="\n" text+=("
%s%s%s
%s%s%s%s    
 %s%s
%s%s
") text+=("
") text+="
" return text def generateoutput(fitfile,outfile=None): report = QtMcaAdvancedFitReport(fitfile, outfile) report.writeReport() if __name__ == "__main__": if len(sys.argv) <2 : print("Usage: %s Input_Fit_Result_File [optional_output_file]" %\ sys.argv[0]) sys.exit(1) app = qt.QApplication(sys.argv) fitfile=sys.argv[1] if len(sys.argv) > 2: outfile = sys.argv[2] else: outfile = None generateoutput(fitfile,outfile) app.quit() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/StrategyHandler.py0000644000000000000000000006750714741736366023023 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import copy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaPhysics import Elements from PyMca5.PyMcaGui.plotting import PyMca_Icons from PyMca5.PyMcaIO import ConfigDict from .MaterialEditor import MaterialComboBox IconDict = PyMca_Icons.IconDict QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) def _getPeakList(fitConfiguration): elementsList = [] for element in fitConfiguration['peaks']: if len(element) > 1: ele = element[0:1].upper() + element[1:2].lower() else: ele = element.upper() if type(fitConfiguration['peaks'][element]) == type([]): for peak in fitConfiguration['peaks'][element]: elementsList.append(ele + " " + peak) else: for peak in [fitConfiguration['peaks'][element]]: elementsList.append(ele + " " + peak) elementsList.sort() return elementsList def _getMatrixDescription(fitConfiguration): useMatrix = False detector = None for attenuator in list(fitConfiguration['attenuators'].keys()): if not fitConfiguration['attenuators'][attenuator][0]: # set to be ignored continue if attenuator.upper() == "MATRIX": if fitConfiguration['attenuators'][attenuator][0]: useMatrix = True matrix = fitConfiguration['attenuators'][attenuator][1:4] alphaIn= fitConfiguration['attenuators'][attenuator][4] alphaOut= fitConfiguration['attenuators'][attenuator][5] else: useMatrix = False break if not useMatrix: raise ValueError("Sample matrix has to be specified!") if matrix[0].upper() == "MULTILAYER": multilayerSample = {} layerKeys = list(fitConfiguration['multilayer'].keys()) if len(layerKeys): layerKeys.sort() for layer in layerKeys: if fitConfiguration['multilayer'][layer][0]: multilayerSample[layer] = \ fitConfiguration['multilayer'][layer][1:] else: multilayerSample = {"Auto":matrix} return multilayerSample class StrategyHandlerWidget(qt.QWidget): sigStrategyHandlerSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="Single Layer Matrix Iteration Strategy"): qt.QWidget.__init__(self, parent) self._fitConfiguration = None self.setWindowTitle(name) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._descriptionButton = qt.QPushButton(self) self._descriptionButton.setText("Hide algorithm description") self._descriptionButton.setAutoDefault(False) self._descriptionButton.clicked.connect(self.toggleDescription) self._descriptionWidget = qt.QTextEdit(self) self._description = qt.QTextDocument() self.mainLayout.addWidget(self._descriptionButton) self.mainLayout.addWidget(self._descriptionWidget) self.build() def toggleDescription(self): if self._descriptionButton.text().startswith("Hide"): self._descriptionWidget.hide() self._descriptionButton.setText("Show algorithm description") else: self._descriptionWidget.show() self._descriptionButton.setText("Hide algorithm description") def setDescription(self, txt): self._description.setPlainText(txt) self._descriptionWidget.setDocument(self._description) def build(self): self.strategy = {} self.strategy["SingleLayerStrategy"] = SingleLayerStrategyWidget(self) currentStrategy = self.strategy["SingleLayerStrategy"] self.setDescription(currentStrategy.getDescription()) self.mainLayout.addWidget(currentStrategy) def setFitConfiguration(self, fitConfiguration): self._fitConfiguration = copy.deepcopy(fitConfiguration) strategy = self._fitConfiguration["fit"].get("strategy", "SingleLayerStrategy") self.strategy[strategy].setFitConfiguration(self._fitConfiguration) def getParameters(self): if self._fitConfiguration is None: return {} strategy = self._fitConfiguration["fit"].get("strategy", "SingleLayerStrategy") return {strategy:self.strategy[strategy].getParameters()} def setParameters(self, ddict): # this is used to use the current fit configuration but with other strategy configuration # from other file if self._fitConfiguration is None: return strategy = self._fitConfiguration["fit"].get("strategy", "SingleLayerStrategy") if strategy in ddict: return self.strategy[strategy].setParameters(ddict[strategy]) class SingleLayerStrategyWidget(qt.QWidget): def __init__(self, parent=None, name="Single Layer Matrix Iteration Strategy"): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.build() def getDescription(self): txt = "WARNING: Not recommended for use with internal standard if the " txt += "internal standard is present in the refining layer. You will " txt += "get better results working in fundamental parameters mode.\n" txt += "This matrix iteration procedure is implemented as follows:\n" txt += "The concentration of the elements selected to be updated, will " txt += "be incorporated in the matrix in the specified form.\n" txt += "If the sum of the mass fractions of those elements is above 1 " txt += "the program will normalize as usual.\n" txt += "If the sum of the mass fractions is below 1, the same procedure " txt += "will be applied unless the user has chosen a completing material.\n" txt += "Limitations of the algorithm:\n" txt += "- The incorporated elements cannot be on different layers.\n" txt += "- One element cannot be selected more than once.\n" txt += "Recommendations:\n" txt += "- In order to avoid unnecessarily slow setups, " txt += "activate this option and any secondary or tertiary excitation " txt += "calculation once you are ready for quantification." return txt def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) label = qt.QLabel("Number of matrix iterations to perfom:") self._nIterations = qt.QSpinBox(self) self._nIterations.setMinimum(1) self._nIterations.setMaximum(100) self._nIterations.setValue(3) self.mainLayout.addWidget(label, 0, 0) self.mainLayout.addWidget(qt.HorizontalSpacer(self), 1, 0) self.mainLayout.addWidget(self._nIterations, 0, 2) label = qt.QLabel("Layer in wich the algorithm is to be applied:") self._layerOptions = qt.QComboBox(self) self._layerOptions.addItem("Auto") self.mainLayout.addWidget(label, 1, 0) #self.mainLayout.addWidget(qt.HorizontalSpacer(self), 1, 0) self.mainLayout.addWidget(self._layerOptions, 1, 2) label = qt.QLabel("Completing material to be used:") materialList = list(Elements.Material.keys()) materialList.sort() a = ["-"] for key in materialList: a.append(key) self._materialOptions = MyQComboBox(self, options=a) self._materialOptions.addItem("-") self.mainLayout.addWidget(label, 2, 0) self.mainLayout.addWidget(self._materialOptions, 2, 2) self._table = IterationTable(self) self.mainLayout.addWidget(self._table, 3, 0, 5, 5) self.mainLayout.addWidget(qt.VerticalSpacer(self), 10, 0) def setFitConfiguration(self, fitConfiguration): # obtain the peak families fitted _peakList = _getPeakList(fitConfiguration) if not len(_peakList): raise ValueError("No peaks to fit!!!!") matrixDescription = _getMatrixDescription(fitConfiguration) layerList = list(matrixDescription.keys()) layerList.sort() materialList = list(Elements.Material.keys()) materialList.sort() a = ["-"] for key in materialList: a.append(key) # Material options self._materialOptions.setOptions(a) self._table.setMaterialOptions(a) # If only one layer, all the elements are selectable layerPeaks = {} if len(layerList) == 1: layerPeaks[layerList[0]] = _peakList else: inAllLayers = [] toDeleteFromAllLayers = [] toForgetAbout = [] for layer in layerList: layerPeaks[layer] = [] for peak in _peakList: element = peak.split()[0] layersPresent = [] for layer in layerList: material = matrixDescription[layer][0] if element in Elements.getMaterialMassFractions(\ [material], [1.0]).keys(): layersPresent.append(layer) if len(layersPresent) == 1: layerPeaks[layersPresent[0]].append(peak) oldOption = qt.safe_str(self._layerOptions.currentText()) self._layerOptions.clear() for item in layerList: self._layerOptions.addItem(item) self._layerList = layerList if oldOption not in layerList: oldOption = layerList[0] self._layerOptions.setCurrentIndex(layerList.index(oldOption)) self._layerList = layerList self._layerPeaks = layerPeaks self._table.setLayerPeakFamilies(layerPeaks[oldOption]) strategy = fitConfiguration["fit"].get("strategy", "SingleLayerStrategy") if strategy in fitConfiguration: self.setParameters(fitConfiguration["SingleLayerStrategy"]) def getParameters(self): ddict = self._table.getParameters() ddict["layer"] = str(self._layerOptions.currentText()) ddict["iterations"] = self._nIterations.value() ddict["completer"] = str(self._materialOptions.currentText()) return ddict def setParameters(self, ddict): layer = ddict.get("layer", "Auto") if layer not in self._layerList: if layer.upper() != "AUTO": raise ValueError("Layer %s not among fitted layers" % layer) else: layerList = self._layerList + ["Auto"] self._layerOptions.clear() for item in layerList: self._layerOptions.addItem(item) self._layerList = layerList nIterations = ddict.get("iterations", 3) self._nIterations.setValue(nIterations) layerList = self._layerList layerPeaks = self._layerPeaks self._layerOptions.setCurrentIndex(layerList.index(layer)) if layer in layerPeaks: self._table.setLayerPeakFamilies(layerPeaks[layer]) completer = ddict.get("completer", "-") self._materialOptions.setCurrentText(completer) flags = ddict["flags"] families = ddict["peaks"] materials = ddict["materials"] nItem = 0 for i in range(len(flags)): doIt = 0 if (flags[i] in [1, True, "1", "True"]) and (layer in layerPeaks): flag = 1 if families[i] in layerPeaks[layer]: if materials[i] in ["-"]: doIt = 1 else: element = families[i].split()[0] if element in Elements.getMaterialMassFractions( \ [materials[i]], [1.0]): doIt = 1 if doIt: self._table.setData(nItem, flag, families[i], materials[i]) else: self._table.setData(nItem, flag, families[i], element) else: self._table.setData(nItem, 0, "-", "-") nItem += 1 class IterationTable(qt.QTableWidget): sigValueChanged = qt.pyqtSignal(int, int) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) self.verticalHeader().hide() nMaxEntries = 15 nRows = 5 nColumns = 3 * (nMaxEntries // nRows) self.setRowCount(nRows) self.setColumnCount(nColumns) labels = ["Use", "Peak Family", "Material Form"] * (nColumns // 3) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) self.setHorizontalHeaderItem(i,item) self.build() for i in range(0, nColumns, 3): self.resizeColumnToContents(i) self.cellChanged[int, int].connect(self.mySlot) def setData(self, idx, use, peak, material="-"): row = idx % self.rowCount() c = 3 * (idx // self.rowCount()) item = self.cellWidget(row, 0 + c) if use: item.setChecked(True) else: item.setChecked(False) item = self.cellWidget(row, 1 + c) n = item.findText(peak) item.setCurrentIndex(n) ddict = {} ddict['row'] = row ddict['col'] = 1 + c ddict['text'] = peak self.__updateMaterialOptions(ddict) item = self.cellWidget(row, 2 + c) item.setEditText(material) def mySlot(self,row,col): _logger.debug("Value changed row = %d col = %d" % (row, col)) if col != 0: _logger.debug("Text = %s" % self.cellWidget(row, col).currentText()) def _checkBoxSlot(self, ddict): # check we do not have duplicates row = ddict['row'] col = ddict['col'] target = str(self.cellWidget(row, 1 + col).currentText()).split()[0] nRows = self.rowCount() nColumns = self.columnCount() for idx in range((nRows*nColumns) // 3): r = idx % nRows c = 3 * (idx // self.rowCount()) if r == row: if c == col: continue item = self.cellWidget(r, 0 + c) if item.isChecked(): element = str(self.cellWidget(r, 1 + c).currentText()).split()[0] if target == element: # reset the just changed one self.cellWidget(row, col).setChecked(False) self.cellWidget(row, col + 1).setCurrentIndex(0) self.cellWidget(row, col + 2).setCurrentText("-") return self.setCurrentCell(row, col) self.sigValueChanged.emit(row, col) def build(self): materialList = list(Elements.Material.keys()) materialList.sort() a = ["-"] for key in materialList: a.append(key) nRows = self.rowCount() nColumns = self.columnCount() for idx in range((nRows*nColumns) // 3): row = idx % nRows c = 3 * (idx // nRows) item = self.cellWidget(row, 0 + c) if item is None: item = MyCheckBox(self, row, 0 + c) self.setCellWidget(row, 0 + c, item) item.sigMyCheckBoxSignal.connect(self._checkBoxSlot) item = self.cellWidget(row, 1 + c) if item is None: item = SimpleComboBox(self, row=row, col=1 + c) self.setCellWidget(row, 1 + c, item) item.sigSimpleComboBoxSignal.connect(self._peakFamilySlot) item = self.cellWidget(row, 2 + c) if item is None: item = MyQComboBox(self, options=a, row=row, col=2 + c) item.setEditable(True) self.setCellWidget(row, 2 + c, item) item.sigMaterialComboBoxSignal.connect(self._comboSlot) def setMaterialOptions(self, options): nRows = self.rowCount() nColumns = self.columnCount() nItems = (nRows * nColumns) // 3 for idx in range(nItems): row = idx % nRows c = 3 * (idx // nRows) item = self.cellWidget(row, 2 + c) item.setOptions(options) def setLayerPeakFamilies(self, layerPeaks): nRows = self.rowCount() nColumns = self.columnCount() nItems = (nRows * nColumns) // 3 for idx in range(nItems): row = idx % nRows c = 3 * (idx // nRows) item = self.cellWidget(row, 1 + c) item.setOptions(["-"] + layerPeaks) # reset material form item = self.cellWidget(row, 2 + c) item.setCurrentIndex(0) def __updateMaterialOptions(self, ddict): row = ddict['row'] col = ddict['col'] text = ddict['text'] element = text.split()[0] materialItem = self.cellWidget(row, col + 1) associatedMaterial = str(materialItem.currentText()) goodCandidates = [element] for i in range(materialItem.count()): material = str(materialItem.itemText(i)) if material not in ["-", element]: if element in Elements.getMaterialMassFractions([material], [1.0]): goodCandidates.append(material) materialItem.clear() materialItem.setOptions(goodCandidates) if associatedMaterial in goodCandidates: materialItem.setCurrentIndex(goodCandidates.index(associatedMaterial)) else: materialItem.setCurrentIndex(0) def _peakFamilySlot(self, ddict): _logger.debug("_peakFamilySlot %s" % ddict) # check we do not have duplicates target = ddict["text"].split()[0] row = ddict['row'] col = ddict['col'] for idx in range(10): r = idx % 5 c = 3 * (idx // self.rowCount()) if r == row: if (c + 1) == col: continue item = self.cellWidget(r, 0 + c) if item.isChecked(): element = str(self.cellWidget(r, 1 + c).currentText()).split()[0] if target == element: # reset the just changed one self.cellWidget(row, col - 1).setChecked(False) return self.__updateMaterialOptions(ddict) self.setCurrentCell(row, col) self.sigValueChanged.emit(row, col) def _comboSlot(self, ddict): _logger.debug("_comboSlot %s" % ddict) row = ddict['row'] col = ddict['col'] text = ddict['text'] self.setCurrentCell(row, col) self.sigValueChanged.emit(row, col) def getParameters(self): ddict = {} ddict["flags"] = [] ddict["peaks"] = [] ddict["materials"] = [] nRows = self.rowCount() nColumns = self.columnCount() for idx in range((nRows * nColumns) // 3): row = idx % nRows c = 3 * (idx // nRows) item = self.cellWidget(row, 0 + c) if item.isChecked(): peak = str(self.cellWidget(row, 1 + c).currentText()) if peak in ["-"]: continue #raise ValueError("Invalid peak family in row %d" % row) ddict["flags"].append(1) ddict["peaks"].append(peak) ddict["materials"].append(self.cellWidget(row, 2 + c).currentText()) else: ddict["flags"].append(0) ddict["peaks"].append(self.cellWidget(row, 1 + c).currentText()) ddict["materials"].append(self.cellWidget(row, 2 + c).currentText()) return ddict class SimpleComboBox(qt.QComboBox): sigSimpleComboBoxSignal = qt.pyqtSignal(object) def __init__(self, parent=None,row=None, col=None): if row is None: row = 0 if col is None: col = 0 self.row = row self.col = col qt.QComboBox.__init__(self,parent) self.setEditable(False) self.setDuplicatesEnabled(False) if hasattr(self, "textActivated"): self.textActivated[str].connect(self._mySignal) else: self.activated[str].connect(self._mySignal) def setOptions(self, options): self.clear() for item in options: self.addItem(item) def _mySignal(self, txt): ddict = {} ddict["event"] = "activated" ddict["row"] = self.row ddict["col"] = self.col ddict["text"] = self.currentText() self.sigSimpleComboBoxSignal.emit(ddict) class MyQComboBox(MaterialComboBox): def _mySignal(self, qstring0): qstring = qstring0 (result, index) = self.ownValidator.validate(qstring, 0) if result != self.ownValidator.Valid: qstring = self.ownValidator.fixup(qstring) (result, index) = self.ownValidator.validate(qstring,0) if result != self.ownValidator.Valid: text = str(qstring) if text.upper() not in ["-", "None"]: qt.QMessageBox.critical(self, "Invalid Material '%s'" % text, "The material '%s' is not a valid Formula " \ "nor a valid Material.\n" \ "Please define the material %s or correct the formula\n" % \ (text, text)) self.setCurrentIndex(0) for i in range(self.count()): selftext = self.itemText(i) if selftext == qstring0: self.removeItem(i) break return text = str(qstring) self.setCurrentText(text) self.lastText = text ddict = {} ddict['event'] = 'activated' ddict['row'] = self.row ddict['col'] = self.col ddict['text'] = text if qstring0 != qstring: self.removeItem(self.count() - 1) insert = True for i in range(self.count()): selftext = self.itemText(i) if qstring == selftext: insert = False if insert: self.insertItem(-1, qstring) # signal defined in the superclass. self.sigMaterialComboBoxSignal.emit(ddict) class MyCheckBox(qt.QCheckBox): sigMyCheckBoxSignal = qt.pyqtSignal(object) def __init__(self, parent=None, row=0, col=0): qt.QCheckBox.__init__(self, parent) self._row = row self._col = col self.stateChanged[int].connect(self._emitSignal) def _emitSignal(self, *var): ddict = {} ddict["row"] = self._row ddict["col"] = self._col self.sigMyCheckBoxSignal.emit(ddict) class StrategyHandlerDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Fit Strategy Configuration Window") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.handlerWidget = StrategyHandlerWidget(self) # mimic behavior self.setFitConfiguration = self.handlerWidget.setFitConfiguration self.getParameters = self.handlerWidget.getParameters self.setParameters = self.handlerWidget.setParameters # the actions hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(2) self.loadButton = qt.QPushButton(hbox) self.loadButton.setText("Load") self.loadButton.setAutoDefault(False) self.loadButton.setToolTip("Read the strategy parameters from other fit configuration file") self.okButton = qt.QPushButton(hbox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(hbox) self.dismissButton.setText("Cancel") self.dismissButton.setAutoDefault(False) hboxLayout.addWidget(self.loadButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(self.dismissButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) # layout self.mainLayout.addWidget(self.handlerWidget) self.mainLayout.addWidget(hbox) # connect self.loadButton.clicked.connect(self.load) self.dismissButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def sizeHint(self): return qt.QSize(int(1.5*qt.QDialog.sizeHint(self).width()), qt.QDialog.sizeHint(self).height()) def load(self): fileList = PyMcaFileDialogs.getFileList(parent=self, filetypelist=["Fit files (*.cfg)"], message="Select a fit configuration file", mode="OPEN", getfilter=False, single=True) if len(fileList): d = ConfigDict.ConfigDict() d.read(fileList[0]) self.setParameters(d) def main(fileName=None): app = qt.QApplication(sys.argv) w = StrategyHandlerDialog() if fileName is not None: d = ConfigDict.ConfigDict() d.read(fileName) d["fit"]["strategy"] = "SingleLayerStrategy" d["SingleLayerStrategy"] = {} d["SingleLayerStrategy"]["iterations"] = 4 d["SingleLayerStrategy"]["flags"] = 1, 1, 0, 1 d["SingleLayerStrategy"]["peaks"] = "Cr K", "Fe K", "Mn K", "Fe Ka" d["SingleLayerStrategy"]["materials"] = "-", "Goethite", "-", "Goethite" d["SingleLayerStrategy"]["completer"] = "Mo" w.setFitConfiguration(d) if w.exec() == qt.QDialog.Accepted: print(w.getParameters()) if __name__ == "__main__": sys.excepthook = qt.exceptionHandler if len(sys.argv) < 2: print("Usage: python StrategyHandler FitConfigurationFile") main() else: fileName = sys.argv[1] print(main(fileName)) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/TransmissionTableEditor.py0000644000000000000000000003412014741736366024514 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import copy import logging import numpy import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ArraySave _logger = logging.getLogger(__name__) class TransmissionTableEditor(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) layout = qt.QGridLayout(self) layout.setContentsMargins(10, 10, 10, 10) layout.setSpacing(2) # the flag to use it useBox = qt.QWidget(self) label = qt.QLabel(useBox) label.setText("Use") self.useCheckBox = qt.QCheckBox(useBox) self.useCheckBox.setChecked(False) self.useCheckBox.clicked.connect(self._useSlot) useBoxLayout = qt.QHBoxLayout(useBox) useBoxLayout.addWidget(label) useBoxLayout.addWidget(self.useCheckBox) layout.addWidget(useBox, 0, 0, 2, 1) self.lineEditDict = {} r = 0 c = 1 labels = ["Name", "Comment"] for idx in range(len(labels)): l = labels[idx] label = qt.QLabel(self) label.setText(l) line = qt.QLineEdit(self) line.editingFinished.connect(self._lineSlot) line.setText("") layout.addWidget(label, r, c) layout.addWidget(line, r, c + 1) self.lineEditDict[l.lower()] = line r += 1 buttonsBox = qt.QWidget(self) buttonsBoxLayout = qt.QHBoxLayout(buttonsBox) self.buttonsDict = {} actions = ["Load", "Save", "Show"] slots = [self._loadSlot, self._saveSlot, self._showSlot] buttonsBoxLayout.addWidget(qt.HorizontalSpacer(buttonsBox)) for i in range(len(slots)): l = actions[i] s = slots[i] b = qt.QPushButton(buttonsBox) b.setText(l) b.setAutoDefault(False) b.clicked.connect(s) buttonsBoxLayout.addWidget(b) self.buttonsDict[l.lower()] = b buttonsBoxLayout.addWidget(qt.HorizontalSpacer(buttonsBox)) layout.addWidget(buttonsBox, 2, 0, 1, 3) self.inputDir = None self.outputDir = None self.outputFilter = None self.plotDialog = None ddict = {} ddict["use"] = 0 ddict["name"] = "" ddict["comment"] = "" ddict["energy"] = [0.0, 0.001] ddict["transmission"] = [0.0, 1.0] self._transmissionTable = ddict self.update() self.setTransmissionTable(ddict) def _useSlot(self): if self.useCheckBox.isChecked(): self._transmissionTable["use"] = 1 else: self._transmissionTable["use"] = 0 def _lineSlot(self): ddict = {} for key in ["name", "comment"]: txt = qt.safe_str(self.lineEditDict[key].text()) ddict[key] = txt.strip() self.setTransmissionTable(ddict, updating=True) def _loadSlot(self): if self.inputDir is None: if self.inputDir is not None: self.inputDir = self.outputDir else: self.inputDir = PyMcaDirs.inputDir wdir = self.inputDir if not os.path.exists(wdir): wdir = os.getcwd() filename = PyMcaFileDialogs.getFileList(self, filetypelist=["Transmission table files (*.csv)", "Transmission table files (*)"], mode="OPEN", message="Choose 2-column transmission table file", currentdir=wdir, single=True) if len(filename): filename = qt.safe_str(filename[0]) if len(filename): try: self.loadTransmissionTable(filename) self.inputDir = os.path.dirname(filename) PyMcaDirs.inputDir = self.inputDir except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error transmission table: %s" % (sys.exc_info()[1])) msg.exec() return def loadTransmissionTable(self, filename): # read with our wrapper sf = specfile.Specfile(filename) scan = sf[0] data = scan.data() labels = scan.alllabels() scan = None sf = None nLabels = len(labels) if nLabels not in [2, 3]: txt = "Expected a two column file got %d columns" % nLabels raise IOError(txt) if nLabels == 3 and labels[0].lower().startswith("point"): energyIdx = 1 transmissionIdx = 2 else: energyIdx = 0 transmissionIdx = 1 # sort energies in ascending order energy = data[energyIdx, :] transmission = data[transmissionIdx, :] idx = numpy.argsort(energy) energy = numpy.take(energy, idx) transmission = numpy.take(transmission, idx) ddict = {} ddict["use"] = 1 ddict["energy"] = energy ddict["transmission"] = transmission ddict["name"] = os.path.basename(filename) ddict["comment"] = "" self.setTransmissionTable(ddict, updating=True) def _saveSlot(self): if self.outputDir is None: if self.inputDir is not None: self.outputDir = self.inputDir else: self.outputDir = PyMcaDirs.outputDir wdir = self.outputDir format_list = ['";"-separated CSV *.csv', '","-separated CSV *.csv', '"tab"-separated CSV *.csv'] if self.outputFilter is None: self.outputFilter = format_list[0] outfile, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=format_list, mode="SAVE", message="Output File Selection", currentdir=wdir, currentfilter=self.outputFilter, getfilter=True, single=True) if len(outfile): outputFile = qt.safe_str(outfile[0]) else: return self.outputFilter = qt.safe_str(filterused) filterused = self.outputFilter.split() try: self.outputDir = os.path.dirname(outputFile) PyMcaDirs.outputDir = os.path.dirname(outputFile) except Exception: self.outputDir = "." if not outputFile.endswith('.csv'): outputFile += '.csv' #always overwrite if "," in filterused[0]: csv = "," elif ";" in filterused[0]: csv = ";" else: csv = "\t" ddict = self.getTransmissionTable() x = ddict["energy"] y = ddict["transmission"] try: ArraySave.saveXY(x, y, outputFile, xlabel="Energy", ylabel="Transmission", csv=True, csvseparator=csv) except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return def _showSlot(self): self.showPlot() def setTransmissionTable(self, tableDict, updating=False): # make things case insensitive tableKeys = list(tableDict.keys()) tableKeysLower = [x.lower() for x in tableKeys] if updating: # we are not expected to supply a complete dictionary ddict = self.getTransmissionTable() else: # a complete dictionary expected ddict = {} ddict["use"] = 0 ddict["name"] = "" ddict["comment"] = "" ddict["energy"] = [0.0, 0.001] ddict["transmission"] = [0.0, 1.0] for key in ["name", "comment"]: if key in tableKeysLower: idx = tableKeysLower.index(key) txt = tableDict[tableKeys[idx]] if not len(txt): txt = "" ddict[key] = txt.strip() for key in ["use"]: if key in tableKeysLower: idx = tableKeysLower.index(key) txt = tableDict[tableKeys[idx]] if txt in ["", "0", 0, "false", "False"]: ddict[key] = 0 else: ddict[key] = 1 for key in ["energy", "transmission"]: if key in tableKeysLower: idx = tableKeysLower.index(key) values = tableDict[tableKeys[idx]] ddict[key] = values for key in ["energy", "transmission"]: # make sure we have floats values = numpy.array(ddict[key], numpy.float64).reshape(-1) # convert to list to prevent issues when saving ddict[key] = values.tolist() try: self._validateDict(ddict) self._transmissionTable = ddict except Exception: msg=qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() self.update() def _validateDict(self, ddict): for key in ["name", "comment"]: txt = ddict.get(key, "") for c in ["%"]: if c in txt: raise ValueError("Invalid name '%s'\n" % txt + \ "It contains a <%s> character.\n" % c) txt = ddict.get("name", "") if txt.startswith(" ") or txt.endswith(" "): raise ValueError("Invalid name '%s'\n" % txt + \ "It starts or ends with a space.\n") if len(ddict["energy"]) != len(ddict["transmission"]): txt = "Energy and transmission vectors must have same length" raise ValueError(txt) return True def update(self): for key in ["name", "comment"]: self.lineEditDict[key].setText(self._transmissionTable[key]) if self._transmissionTable["use"]: self.useCheckBox.setChecked(True) else: self.useCheckBox.setChecked(False) if self.plotDialog is not None: self.plot() def plot(self): if self.plotDialog is None: from PyMca5.PyMcaGui.plotting.PlotWindow import PlotWindow dialog = qt.QDialog(self) dialog.mainLayout = qt.QVBoxLayout(dialog) dialog.mainLayout.setContentsMargins(0, 0, 0, 0) dialog.mainLayout.setSpacing(0) dialog.plotWidget = PlotWindow(dialog, newplot=False, fit=False, plugins=False, control=True, position=True) dialog.plotWidget.setDefaultPlotLines(True) dialog.plotWidget.setDefaultPlotPoints(True) dialog.plotWidget.setDataMargins(0.05, 0.05, 0.05, 0.05) dialog.mainLayout.addWidget(dialog.plotWidget) self.plotDialog = dialog legend = self._transmissionTable["name"] if legend == "": legend = None x = self._transmissionTable["energy"] y = self._transmissionTable["transmission"] comment = self._transmissionTable["comment"] self.plotDialog.plotWidget.addCurve(x, y, legend=legend, xlabel="Energy (keV)", ylabel="Transmission", replot=True, replace=True) self.plotDialog.plotWidget.setGraphTitle(comment) def showPlot(self): self.plot() self.plotDialog.exec() def getTransmissionTable(self): return copy.deepcopy(self._transmissionTable) if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) demo = TransmissionTableEditor() if len(sys.argv) > 1: demo.loadTransmissionTable(sys.argv[1]) demo.show() ret = app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/TransmissionTableGui.py0000644000000000000000000001003014741736366024004 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import copy import logging import numpy import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from .TransmissionTableEditor import TransmissionTableEditor _logger = logging.getLogger(__name__) class TransmissionTableGui(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) layout = qt.QGridLayout(self) layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(2) self.groupBoxList = [] for i in range(2): groupBox = qt.QGroupBox(self) groupBox.setAlignment(qt.Qt.AlignHCenter) groupBox.setFlat(False) groupBox.setCheckable(False) groupBox.setTitle("Attenuation Table %d" % i) groupBoxLayout = qt.QVBoxLayout(groupBox) groupBox.transmissionTable = TransmissionTableEditor(groupBox) groupBoxLayout.addWidget(groupBox.transmissionTable) groupBoxLayout.addWidget(qt.VerticalSpacer(groupBox)) layout.addWidget(groupBox, 0, i) self.groupBoxList.append(groupBox) def setParameters(self, ddict): """ Expects a dictionary of the form: dict["UserFilter0"] = TransmissionTableDict dict["UserFilter1"] = TransmissionTableDict where TransmissionTableDict has the keys needed to define a transmission table (use, name, comment, energy, transmission) """ _logger.info("Received keys = %s" % list(ddict.keys())) if "userattenuators" in ddict: ddict = ddict["userattenuators"] for ttable in ddict: if ttable.lower() == "userfilter0": t = self.groupBoxList[0].transmissionTable elif ttable.lower() == "userfilter1": t = self.groupBoxList[1].transmissionTable else: _logger.warning("Ignored key %s" % ttable) continue t.setTransmissionTable(ddict[ttable]) def getParameters(self): ddict = {} for i in range(2): key = "UserFilter%d" % i t = self.groupBoxList[i].transmissionTable ddict[key] = t.getTransmissionTable() # provide a default name if ddict[key]["name"] == "": ddict[key]["name"] = key return ddict if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) demo = TransmissionTableGui() demo.show() ret = app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/XRFMCPyMca.py0000644000000000000000000010264714741736366021527 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import time import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5 import PyMcaDirs as xrfmc_dirs from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.misc import SubprocessLogWidget from PyMca5.PyMcaPhysics.xrf.XRFMC import XRFMCHelper QTVERSION = qt.qVersion() class VerticalSpacer(qt.QWidget): def __init__(self, *args): qt.QWidget.__init__(self, *args) self.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Expanding)) class HorizontalSpacer(qt.QWidget): def __init__(self, *args): qt.QWidget.__init__(self, *args) self.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Expanding, qt.QSizePolicy.Fixed)) class GetFileList(qt.QGroupBox): sigFileListUpdated = qt.pyqtSignal(object) def __init__(self, parent=None, title='File Input', nfiles=1): qt.QGroupBox.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.__maxNFiles = nfiles self.fileList = [] self.setTitle(title) self.build() def build(self, text=""): self._label = qt.QLabel(self) self._label.setText(text) self.__listView = qt.QTextEdit(self) n = int(min(self.__maxNFiles, 10)) self.__listButton = qt.QPushButton(self) self.__listButton.setText('Browse') self.__listView.setMaximumHeight(n*self.__listButton.sizeHint().height()) self.__listButton.clicked.connect(self.__browseList) grid = self.mainLayout grid.addWidget(self._label, 0, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) grid.addWidget(self.__listView, 0, 1) grid.addWidget(self.__listButton, 0, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) def __browseList(self, dummy=True): return self._browseList() def _browseList(self, filetypes=["All Files (*)"]): self.inputDir = xrfmc_dirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir filelist = PyMcaFileDialogs.getFileList(parent=self, filetypelist=filetypes, message="Open a set of files", currentdir=wdir, mode="OPEN", getfilter=False, single=False, currentfilter=None, native=False) if not len(filelist): return if self.__maxNFiles == 1: filelist = [filelist[0]] self.setFileList(filelist) def setFileList(self,filelist=None): if filelist is None: filelist = [] text = "" self.fileList = filelist if len(self.fileList): self.fileList.sort() for i in range(len(self.fileList)): ffile = self.fileList[i] if i == 0: text += "%s" % ffile else: text += "\n%s" % ffile if len(self.fileList): self.inputDir = os.path.dirname(qt.safe_str(self.fileList[0])) xrfmc_dirs.inputDir = os.path.dirname(qt.safe_str(self.fileList[0])) self.__listView.clear() self.__listView.insertPlainText(text) ddict = {} ddict['event'] = 'fileListUpdated' ddict['filelist'] = self.fileList * 1 self.sigFileListUpdated.emit(ddict) def getFileList(self): if not len(self.fileList): return [] return self.fileList * 1 class PyMcaFitFileList(GetFileList): def __init__(self, parent=None): GetFileList.__init__(self, parent, title='PyMca Configuration or Fit Result File') self.build("") def _browseList(self, filetypes=["PyMca .cfg Files (*.cfg)", "PyMca .fit Files (*.fit)"]): GetFileList._browseList(self, filetypes) class XRFMCProgramFile(GetFileList): def __init__(self, parent=None): GetFileList.__init__(self, parent, title='XMIMSIM-PyMca Program Location') self.build("") if XRFMCHelper.XMIMSIM_PYMCA is not None: self.setFileList([XRFMCHelper.XMIMSIM_PYMCA]) def _browseList(self, filetypes=["All Files (*)"]): self.inputDir = xrfmc_dirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir if sys.platform == "darwin": message = "Select XMI-MSIM application bundle" filelist = PyMcaFileDialogs.getExistingDirectory(parent=self, message=message, mode="OPEN", currentdir=wdir) if len(filelist): xmimsim = os.path.join(filelist, "Contents", "Resources", "xmimsim-pymca") filelist = [xmimsim] print(" FILELIST = ", filelist) else: message = "Select xmimsim-pymca executable" filelist = PyMcaFileDialogs.getFileList(parent=self, filetypelist=filetypes, message=message, mode="OPEN", currentdir=wdir) if len(filelist): self.setFileList(filelist) def setFileList(self, fileList): oldInputDir = xrfmc_dirs.inputDir oldOutputDir = xrfmc_dirs.outputDir if os.path.exists(fileList[0]): GetFileList.setFileList(self, fileList) if oldInputDir is not None: if os.path.exists(oldInputDir): xrfmc_dirs.inputDir = oldInputDir if oldOutputDir is not None: if os.path.exists(oldOutputDir): xrfmc_dirs.outputDir = oldOutputDir class XRFMCIniFile(GetFileList): def __init__(self, parent=None): GetFileList.__init__(self, parent, title='XMIMSIM-PyMca Configuration File') self.build("") def _browseList(self, filetypes = "XMIMSIM-PyMca .ini File (*.ini)\nXMIMSIM-PyMca .fit File (*.fit)"): GetFileList._browseList(self, filetypes) class XRFMCOutputDir(GetFileList): def __init__(self, parent=None): GetFileList.__init__(self, parent, title='XMIMSIM-PyMca Output Directory') self.build("") def _browseList(self, filetypes=["All Files (*)"]): self.outputDir = xrfmc_dirs.outputDir if not os.path.exists(self.outputDir): self.outputDir = os.getcwd() wdir = self.outputDir message = "Please select the output directory" filelist = PyMcaFileDialogs.getExistingDirectory(parent=self, message=message, mode="SAVE", currentdir=wdir) if len(filelist): filelist = [str(filelist)] self.setFileList(filelist) class XRFMCParameters(qt.QGroupBox): def __init__(self, parent=None, title='XMIMSIM-PyMca Configuration'): qt.QGroupBox.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.setTitle(title) # I should read a default configuration file # for the time being I define it here self.__configuration = {} self.__configuration['xrfmc'] ={} self.__configuration['xrfmc']['setup'] = {} current = self.__configuration['xrfmc']['setup'] current['p_polarisation'] = 0.995 current['source_sample_distance'] = 100.0 current['slit_distance'] = 100.0 current['slit_width_x'] = 0.005 current['slit_width_y'] = 0.005 current['source_size_x'] = 0.0005 current['source_size_y'] = 0.0001 current['source_diverg_x'] = 0.0001 current['source_diverg_y'] = 0.0001 current['nmax_interaction'] = 4 current['layer'] = 1 # these are assumed by the Monte Carlo code current['collimator_height'] = 0.0 current['collimator_diameter'] = 0.0 self.build() self.__update() def build(self): self.__text = ["Photon beam polarisation degree:", "Source horizontal size FWHM (cm):", "Source vertical size FWHM (cm):", "Source horizontal divergence (rad):", "Source vertical divergence (rad):", "Distance beam source to slits (cm):", "Distance beam source to sample (cm):", "Slit width (cm):", "Slit height (cm):", # "Detector acceptance angle (rad):", "Maximum number of sample interactions: ", "Sample layer to be adjusted:"] i = 0 for t in self.__text: label = qt.QLabel(self) label.setText(t) self.mainLayout.addWidget(label, i, 0) i += 1 self.__widgetList = [] #polarisation i = 0 self.polarisationSB = qt.QDoubleSpinBox(self) self.polarisationSB.setRange(0.0, 1.0) self.polarisationSB.setDecimals(5) self.__widgetList.append(self.polarisationSB) self.mainLayout.addWidget(self.polarisationSB, i, 1) i += 1 #source horizontal size self.sourceHSize = qt.QDoubleSpinBox(self) self.sourceHSize.setRange(0.0, 1.0) self.sourceHSize.setDecimals(5) self.__widgetList.append(self.sourceHSize) self.mainLayout.addWidget(self.sourceHSize, i, 1) i += 1 #source vertical size self.sourceVSize = qt.QDoubleSpinBox(self) self.sourceVSize.setRange(0.0, 1.0) self.sourceVSize.setDecimals(5) self.__widgetList.append(self.sourceVSize) self.mainLayout.addWidget(self.sourceVSize, i, 1) i += 1 # Source horizontal divergence self.sourceHDivergence = qt.QDoubleSpinBox(self) self.sourceHDivergence.setDecimals(5) self.sourceHDivergence.setRange(0.0, 3.1415926) self.__widgetList.append(self.sourceHDivergence) self.mainLayout.addWidget(self.sourceHDivergence, i, 1) i += 1 # Source vertical divergence self.sourceVDivergence = qt.QDoubleSpinBox(self) self.sourceVDivergence.setDecimals(5) self.sourceVDivergence.setRange(0.0, 3.14159) self.__widgetList.append(self.sourceVDivergence) self.mainLayout.addWidget(self.sourceVDivergence, i, 1) i += 1 # Distance source sample self.sourceSampleDistance = qt.QDoubleSpinBox(self) self.sourceSampleDistance.setDecimals(5) self.sourceSampleDistance.setRange(0.0001, 100000.0) self.__widgetList.append(self.sourceSampleDistance) self.mainLayout.addWidget(self.sourceSampleDistance, i, 1) i += 1 # Distance source slits self.sourceSlitsDistance = qt.QDoubleSpinBox(self) self.sourceSlitsDistance.setDecimals(5) self.sourceSlitsDistance.setRange(0.0001, 100000.0) self.__widgetList.append(self.sourceSlitsDistance) self.mainLayout.addWidget(self.sourceSlitsDistance, i, 1) i += 1 # Slit H size self.slitsHWidth = qt.QDoubleSpinBox(self) self.slitsHWidth.setDecimals(5) self.slitsHWidth.setRange(0.0001, 100.0) self.__widgetList.append(self.slitsHWidth) self.mainLayout.addWidget(self.slitsHWidth, i, 1) i += 1 # Slit V size self.slitsVWidth = qt.QDoubleSpinBox(self) self.slitsVWidth.setDecimals(5) self.slitsVWidth.setRange(0.0001, 100.0) self.__widgetList.append(self.slitsVWidth) self.mainLayout.addWidget(self.slitsVWidth, i, 1) i += 1 # Detector acceptance angle if 0: # this was used in previous versions of the code self.acceptanceAngle = qt.QDoubleSpinBox(self) self.acceptanceAngle.setDecimals(5) self.acceptanceAngle.setRange(0.0001, 3.14159) self.__widgetList.append(self.acceptanceAngle) self.mainLayout.addWidget(self.acceptanceAngle, i, 1) i += 1 # Maximum number of interactions self.maxInteractions = qt.QSpinBox(self) self.maxInteractions.setMinimum(1) self.__widgetList.append(self.maxInteractions) self.mainLayout.addWidget(self.maxInteractions, i, 1) i += 1 # Layer to be adjusted self.fitLayer = qt.QSpinBox(self) self.fitLayer.setMinimum(0) self.fitLayer.setValue(0) self.__widgetList.append(self.fitLayer) self.mainLayout.addWidget(self.fitLayer, i, 1) i += 1 def setParameters(self, ddict0): if 'xrfmc' in ddict0: ddict = ddict0['xrfmc']['setup'] else: ddict= ddict0 current = self.__configuration['xrfmc']['setup'] keyList = current.keys() for key in keyList: value = ddict.get(key, current[key]) current[key] = value self.__update() return def __update(self): current = self.__configuration['xrfmc']['setup'] key = 'p_polarisation' self.polarisationSB.setValue(current[key]) key = 'source_diverg_x' self.sourceHDivergence.setValue(current[key]) key = 'source_diverg_y' self.sourceVDivergence.setValue(current[key]) key = 'source_sample_distance' self.sourceSampleDistance.setValue(current[key]) key = 'slit_distance' self.sourceSlitsDistance.setValue(current[key]) key = 'slit_width_x' self.slitsHWidth.setValue(current[key]) key = 'slit_width_y' self.slitsVWidth.setValue(current[key]) key = 'source_size_x' self.sourceHSize.setValue(current[key]) key = 'source_size_y' self.sourceVSize.setValue(current[key]) if 0: key = 'detector_acceptance_angle' self.acceptanceAngle.setValue(current[key]) key = 'nmax_interaction' self.maxInteractions.setValue(current[key]) key = 'layer' self.fitLayer.setValue(current[key] - 1) def getParameters(self): current = self.__configuration['xrfmc']['setup'] key = 'p_polarisation' current[key] = self.polarisationSB.value() key = 'source_diverg_x' current[key] = self.sourceHDivergence.value() key = 'source_diverg_y' current[key] = self.sourceVDivergence.value() key = 'source_sample_distance' current[key] = self.sourceSampleDistance.value() key = 'slit_distance' current[key] = self.sourceSlitsDistance.value() key = 'slit_width_x' current[key] = self.slitsHWidth.value() key = 'slit_width_y' current[key] = self.slitsVWidth.value() key = 'source_size_x' current[key] = self.sourceHSize.value() key = 'source_size_y' current[key] = self.sourceVSize.value() if 0: # used in older versions key = 'detector_acceptance_angle' current[key] = self.acceptanceAngle.value() key = 'nmax_interaction' current[key] = self.maxInteractions.value() key = 'layer' current[key] = self.fitLayer.value() + 1 return self.__configuration def getLabelsAndValues(self): labels = self.__text i = 0 values = [] for w in self.__widgetList: values.append(w.value()) i += 1 return labels, values class XRFMCSimulationControl(qt.QGroupBox): def __init__(self, parent=None, fit=False): qt.QGroupBox.__init__(self, parent) self.setTitle("Simulation Control") self._fit = fit self.build() def build(self): self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) i = 0 if 0: label = qt.QLabel(self) label.setText("Run Number (0 for first run):") self.__runNumber = qt.QSpinBox(self) self.__runNumber.setMinimum(0) self.__runNumber.setValue(0) self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(self.__runNumber, i, 1) i += 1 if self._fit: label = qt.QLabel(self) label.setText("Select simulation or fit mode:") self._simulationMode = qt.QComboBox(self) self._simulationMode.setEditable(False) self._simulationMode.addItem("Simulation") self._simulationMode.addItem("Fit") self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(self._simulationMode, i, 1) i += 1 if 1: label = qt.QLabel(self) label.setText("Number of histories:") self.__nHistories = qt.QSpinBox(self) self.__nHistories.setMinimum(1000) self.__nHistories.setMaximum(10000000) self.__nHistories.setValue(100000) self.__nHistories.setSingleStep(50000) self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(self.__nHistories, i, 1) i += 1 def getParameters(self): ddict = {} if 0: ddict['run'] = self.__runNumber.value() ddict['histories'] = self.__nHistories.value() return ddict def setParameters(self, ddict0): if 'xrfmc' in ddict0: ddict = ddict0['xrfmc']['setup'] else: ddict= ddict0 if 'histories' in ddict: self.__nHistories.setValue(int(ddict['histories'])) def getSimulationMode(self): current = self._simulationMode.currentIndex() if current: mode = "Fit" else: mode = "Simulation" return mode def setSimulationMode(self, mode=""): current = 0 if hasattr(mode, "lower"): if mode.lower() == "fit": current = 1 self._simulationMode.setCurrentIndex(current) class XRFMCTabWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("XRFMC Tab Widget") self.build() def build(self): self.mainLayout = qt.QVBoxLayout(self) self.programWidget = XRFMCProgramFile(self) self.parametersWidget = XRFMCParameters(self) self.simulationWidget = XRFMCSimulationControl(self, fit=False) self.mainLayout.addWidget(self.programWidget) self.mainLayout.addWidget(self.parametersWidget) self.mainLayout.addWidget(self.simulationWidget) self.mainLayout.addWidget(VerticalSpacer(self)) def getParameters(self): ddict = self.parametersWidget.getParameters() program = self.programWidget.getFileList() control = self.simulationWidget.getParameters() ddict['xrfmc']['setup']['histories'] = control['histories'] if len(program) > 0: ddict['xrfmc']['program'] = program[0] else: ddict['xrfmc']['program'] = None return ddict def setParameters(self, ddict): self.parametersWidget.setParameters(ddict) if ddict['xrfmc']['program'] not in ["None", None, ""]: self.programWidget.setFileList([ddict['xrfmc']['program']]) self.simulationWidget.setParameters(ddict) class XRFMCActions(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.startButton = qt.QPushButton(self) self.startButton.setText("Start") self.startButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(self) self.dismissButton.setText("Dismiss") self.dismissButton.setAutoDefault(False) self.mainLayout.addWidget(self.startButton) self.mainLayout.addWidget(HorizontalSpacer(self)) self.mainLayout.addWidget(self.dismissButton) class XRFMCPyMca(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("XMIMSIM-PyMca") self.fitConfiguration = None self.logWidget = None #self._loggedProcess = None self.build() self.buildConnections() def build(self): self.mainLayout = qt.QGridLayout(self) self.programWidget = XRFMCProgramFile(self) self.fitFileWidget = PyMcaFitFileList(self) #self.iniFileWidget = XRFMCIniFile(self) self.outputDirWidget = XRFMCOutputDir(self) self.parametersWidget = XRFMCParameters(self) self.simulationWidget = XRFMCSimulationControl(self, fit=True) self.actions = XRFMCActions(self) self.logWidget = SubprocessLogWidget.SubprocessLogWidget() self.logWidget.setMinimumWidth(400) i = 0 self.mainLayout.addWidget(self.programWidget, i, 0) i += 1 self.mainLayout.addWidget(self.fitFileWidget, i, 0) i += 1 #self.mainLayout.addWidget(self.iniFileWidget, i, 0) #i += 1 self.mainLayout.addWidget(self.outputDirWidget, i, 0) i += 1 self.mainLayout.addWidget(self.parametersWidget, i, 0) i += 1 self.mainLayout.addWidget(self.simulationWidget, i, 0) i += 1 self.mainLayout.addWidget(self.actions, i, 0) i += 1 self.mainLayout.addWidget(VerticalSpacer(self), i,0) i += 1 self.mainLayout.addWidget(self.logWidget, 0, 1, i, 1) i += 1 def buildConnections(self): self.fitFileWidget.sigFileListUpdated.connect(self.fitFileChanged) self.actions.startButton.clicked.connect(self.start) self.actions.dismissButton.clicked.connect(self.close) self.logWidget.sigSubprocessLogWidgetSignal.connect(\ self.subprocessSlot) def closeEvent(self, event): if self._closeDialog(): event.accept() else: event.ignore() def _closeDialog(self): if self.logWidget is None: close = True elif self.logWidget.isSubprocessRunning(): msg = qt.QMessageBox(self) msg.setWindowTitle("Simulation going on") msg.setIcon(qt.QMessageBox.Information) msg.setText("Do you want to stop on-going simulation?") msg.setStandardButtons(qt.QMessageBox.Yes|qt.QMessageBox.No) answer=msg.exec() if answer == qt.QMessageBox.Yes: self.logWidget.stop() close = True else: print("NOT KILLING") close = False else: close = True return close def errorMessage(self, text, title='ERROR'): qt.QMessageBox.critical(self, title, text) def fitFileChanged(self, ddict): #for the time being only one ... fitfile= ddict['filelist'][0] self.fitConfiguration = ConfigDict.ConfigDict() self.fitConfiguration.read(fitfile) if 'result' in self.fitConfiguration: matrix = self.fitConfiguration['result']\ ['config']['attenuators'].get('Matrix', None) else: matrix = self.fitConfiguration\ ['attenuators'].get('Matrix', None) if matrix is None: text = 'Undefined sample matrix in file %s' % fitfile title = "Invalid Matrix" self.errorMessage(text, title) return if matrix[0] != 1: text = 'Undefined sample matrix in file %s' % fitfile title = "Matrix not considered in fit" self.errorMessage(text, title) return if matrix[1] == '-': text = 'Invalid sample Composition "%s"' % matrix[1] title = "Invalid Sample" self.errorMessage(text, title) return if 'xrfmc' in self.fitConfiguration: if 'setup' in self.fitConfiguration['xrfmc']: self.parametersWidget.setParameters(self.fitConfiguration) if matrix[1] != "MULTILAYER": self.parametersWidget.setParameters({'layer':1}) self.parametersWidget.fitLayer.setMaximum(0) def configurationFileChanged(self, ddict): configFile= ddict['filelist'][0] configuration = ConfigDict.ConfigDict() configuration.read(configFile) if not ('setup' in configuration['xrfmc']): title = "Invalid file" text = "Invalid configuration file." self.errorMessage(text, title) else: self.parametersWidget.setParameters(configuration['xrfmc']['setup']) def errorMessage(self, text, title=None): msg = qt.QMessageBox(self) if title is not None: msg.setWindowTitle(title) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() def start(self): try: self._start() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Plugin error") msg.setText("An error has occured while executing the plugin:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _start(self): """ """ if self.logWidget is not None: if self.logWidget.isSubprocessRunning(): text = "A simulation is already started\n" self.errorMessage(text) return pymcaFitFile = self.fitFileWidget.getFileList() if len(pymcaFitFile) < 1: text = "PyMca .fit or .cfg file is mandatory\n" self.errorMessage(text) return pymcaFitFile = pymcaFitFile[0] program = self.programWidget.getFileList() if len(program) < 1: text = "Simulation program file is mandatory\n" self.errorMessage(text) return program = program[0] #This one would only be needed for backup purposes #self.iniFileWidget.getFileList() #The output directory outputDir = self.outputDirWidget.getFileList() if len(outputDir) < 1: text = "Output directory is mandatory\n" self.errorMessage(text) return #the actual parameters to be used ddict = self.parametersWidget.getParameters() #the output directory ddict['xrfmc']['setup']['output_dir'] = outputDir[0] self.__outputDir = outputDir[0] #the simulation parameters simPar = self.simulationWidget.getParameters() ddict['xrfmc']['setup']['histories'] = simPar['histories'] #write a file containing both, PyMca and XRFMC configuration in output dir if pymcaFitFile.lower().endswith(".cfg"): # not a fit result but a configuration file # but this does not work newFile=ConfigDict.ConfigDict() newFile.read(pymcaFitFile) #perform a dummy fit till xmimsim-pymca is upgraded if 0: import numpy from PyMca import ClassMcaTheory newFile['fit']['linearfitflag']=1 newFile['fit']['stripflag']=0 newFile['fit']['stripiterations']=0 xmin = newFile['fit']['xmin'] xmax = newFile['fit']['xmax'] #xdata = numpy.arange(xmin, xmax + 1) * 1.0 xdata = numpy.arange(0, xmax + 1) * 1.0 ydata = 0.0 + 0.1 * xdata mcaFit = ClassMcaTheory.McaTheory() mcaFit.configure(newFile) mcaFit.setData(x=xdata, y=ydata, xmin=xmin, xmax=xmax) mcaFit.estimate() fitresult,result = mcaFit.startfit(digest=1) newFile = None nfile=ConfigDict.ConfigDict() nfile['result'] = result #nfile.write("tmpFitFileFromConfig.fit") else: nfile = ConfigDict.ConfigDict() nfile.read(pymcaFitFile) nfile.update(ddict) newFile = os.path.join(outputDir[0],\ os.path.basename(pymcaFitFile[:-4] + ".fit")) else: nfile = ConfigDict.ConfigDict() nfile.read(pymcaFitFile) nfile.update(ddict) newFile = os.path.join(outputDir[0],\ os.path.basename(pymcaFitFile)) if os.path.exists(newFile): os.remove(newFile) nfile.write(newFile) nfile = None fileNamesDict = XRFMCHelper.getOutputFileNames(newFile, outputDir=outputDir[0]) if newFile != fileNamesDict['fit']: raise ValueError("Inconsistent internal behaviour!") scriptName = fileNamesDict['script'] scriptFile = XRFMCHelper.getScriptFile(program, name=scriptName) csvName = fileNamesDict['csv'] speName = fileNamesDict['spe'] xmsoName = fileNamesDict['xmso'] # basic parameters args = [scriptFile, #"--enable-single-run", "--verbose", "--spe-file=%s" % speName, "--csv-file=%s" % csvName, #"--enable-roi-normalization", #"--disable-roi-normalization", #default #"--enable-pile-up" #"--disable-pile-up" #default #"--enable-poisson", #"--disable-poisson", #default no noise #"--set-threads=2", #overwrite default maximum newFile, xmsoName] self.__fileNamesDict = fileNamesDict # additionalParameters if self.simulationWidget.getSimulationMode().lower() == "fit": simulationParameters = [] else: simulationParameters = ["--enable-single-run", "--set-threads=2"] i = 0 for parameter in simulationParameters: i += 1 args.insert(1, parameter) # show the command on the log widget text = "%s" % scriptFile for arg in args[1:]: text += " %s" % arg self.logWidget.clear() self.logWidget.append(text) self.logWidget.start(args=args) def subprocessSlot(self, ddict): if ddict['event'] == "ProcessStarted": # we do not need a direct handle to the process #self._loggedProcess = ddict['subprocess'] return if ddict['event'] == "ProcessFinished": returnCode = ddict['code'] msg = qt.QMessageBox(self) msg.setWindowTitle("Simulation finished") if returnCode == 0: msg.setIcon(qt.QMessageBox.Information) text = "Simulation finished, output written to the directory:\n" text += "%s" % self.__outputDir else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) text = "Simulation finished with error code %d\n" % (returnCode) for line in ddict['message']: text += line msg.setText(text) msg.exec() xmsoName = self.__fileNamesDict['xmso'] if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = XRFMCPyMca() w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/physics/xrf/__init__.py0000644000000000000000000000000014741736366021431 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.7917664 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/0000755000000000000000000000000014741736404016702 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/ColormapDialog.py0000644000000000000000000005055114741736366022165 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from .PlotWidget import PlotWidget QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class MyQLineEdit(qt.QLineEdit): def __init__(self,parent=None,name=""): qt.QLineEdit.__init__(self,parent) def focusInEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('yellow')) def focusOutEvent(self,event): self.setPaletteBackgroundColor(qt.QColor('white')) self.returnPressed[()].emit() def setPaletteBackgroundColor(self, color): _logger.debug("setPalettebackgroundColor not implemented yet") pass """ Manage colormap Widget class """ class ColormapDialog(qt.QDialog): sigColormapChanged = qt.pyqtSignal(object) def __init__(self, parent=None, name="Colormap Dialog"): qt.QDialog.__init__(self, parent) self.setWindowTitle(name) self.title = name self.colormapList = ["Greyscale", "Reverse Grey", "Temperature", "Red", "Green", "Blue", "Many"] # histogramData is tupel(bins, counts) self.histogramData = None # default values self.dataMin = -10 self.dataMax = 10 self.minValue = 0 self.maxValue = 1 self.colormapIndex = 2 self.colormapType = 0 self.autoscale = False self.autoscale90 = False # main layout vlayout = qt.QVBoxLayout(self) vlayout.setContentsMargins(10, 10, 10, 10) vlayout.setSpacing(0) # layout 1 : -combo to choose colormap # -autoscale button # -autoscale 90% button hbox1 = qt.QWidget(self) hlayout1 = qt.QHBoxLayout(hbox1) vlayout.addWidget(hbox1) hlayout1.setContentsMargins(0, 0, 0, 0) hlayout1.setSpacing(10) # combo self.combo = qt.QComboBox(hbox1) for colormap in self.colormapList: self.combo.addItem(colormap) self.combo.activated[int].connect(self.colormapChange) hlayout1.addWidget(self.combo) # autoscale self.autoScaleButton = qt.QPushButton("Autoscale", hbox1) self.autoScaleButton.setCheckable(True) self.autoScaleButton.setAutoDefault(False) self.autoScaleButton.toggled[bool].connect(self.autoscaleChange) hlayout1.addWidget(self.autoScaleButton) # autoscale 90% self.autoScale90Button = qt.QPushButton("Autoscale 90%", hbox1) self.autoScale90Button.setCheckable(True) self.autoScale90Button.setAutoDefault(False) self.autoScale90Button.toggled[bool].connect(self.autoscale90Change) hlayout1.addWidget(self.autoScale90Button) # hlayout hbox0 = qt.QWidget(self) self.__hbox0 = hbox0 hlayout0 = qt.QHBoxLayout(hbox0) hlayout0.setContentsMargins(0, 0, 0, 0) hlayout0.setSpacing(0) vlayout.addWidget(hbox0) #hlayout0.addStretch(10) self.buttonGroup = qt.QButtonGroup() g1 = qt.QCheckBox(hbox0) g1.setText("Linear") g2 = qt.QCheckBox(hbox0) g2.setText("Logarithmic") g3 = qt.QCheckBox(hbox0) g3.setText("Gamma") self.buttonGroup.addButton(g1, 0) self.buttonGroup.addButton(g2, 1) self.buttonGroup.addButton(g3, 2) self.buttonGroup.setExclusive(True) if self.colormapType == 1: self.buttonGroup.button(1).setChecked(True) elif self.colormapType == 2: self.buttonGroup.button(2).setChecked(True) else: self.buttonGroup.button(0).setChecked(True) hlayout0.addWidget(g1) hlayout0.addWidget(g2) hlayout0.addWidget(g3) vlayout.addWidget(hbox0) if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self.buttonGroupChange) else: # deprecated _logger.debug("Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self.buttonGroupChange) vlayout.addSpacing(20) hboxlimits = qt.QWidget(self) hboxlimitslayout = qt.QHBoxLayout(hboxlimits) hboxlimitslayout.setContentsMargins(0, 0, 0, 0) hboxlimitslayout.setSpacing(0) self.slider = None vlayout.addWidget(hboxlimits) vboxlimits = qt.QWidget(hboxlimits) vboxlimitslayout = qt.QVBoxLayout(vboxlimits) vboxlimitslayout.setContentsMargins(0, 0, 0, 0) vboxlimitslayout.setSpacing(0) hboxlimitslayout.addWidget(vboxlimits) # hlayout 2 : - min label # - min texte hbox2 = qt.QWidget(vboxlimits) self.__hbox2 = hbox2 hlayout2 = qt.QHBoxLayout(hbox2) hlayout2.setContentsMargins(0, 0, 0, 0) hlayout2.setSpacing(0) #vlayout.addWidget(hbox2) vboxlimitslayout.addWidget(hbox2) hlayout2.addStretch(10) self.minLabel = qt.QLabel(hbox2) self.minLabel.setText("Minimum") hlayout2.addWidget(self.minLabel) hlayout2.addSpacing(5) hlayout2.addStretch(1) self.minText = MyQLineEdit(hbox2) self.minText.setFixedWidth(150) self.minText.setAlignment(qt.Qt.AlignRight) self.minText.returnPressed[()].connect(self.minTextChanged) hlayout2.addWidget(self.minText) # hlayout 3 : - min label # - min text hbox3 = qt.QWidget(vboxlimits) self.__hbox3 = hbox3 hlayout3 = qt.QHBoxLayout(hbox3) hlayout3.setContentsMargins(0, 0, 0, 0) hlayout3.setSpacing(0) #vlayout.addWidget(hbox3) vboxlimitslayout.addWidget(hbox3) hlayout3.addStretch(10) self.maxLabel = qt.QLabel(hbox3) self.maxLabel.setText("Maximum") hlayout3.addWidget(self.maxLabel) hlayout3.addSpacing(5) hlayout3.addStretch(1) self.maxText = MyQLineEdit(hbox3) self.maxText.setFixedWidth(150) self.maxText.setAlignment(qt.Qt.AlignRight) self.maxText.returnPressed[()].connect(self.maxTextChanged) hlayout3.addWidget(self.maxText) # Graph widget for color curve... self.c = PlotWidget(self, backend=None) self.c.setGraphXLabel("Data Values") self.c.setZoomModeEnabled(False) self.marge = (abs(self.dataMax) + abs(self.dataMin)) / 6.0 self.minmd = self.dataMin - self.marge self.maxpd = self.dataMax + self.marge self.c.setGraphXLimits(self.minmd, self.maxpd) self.c.setGraphYLimits(-11.5, 11.5) x = [self.minmd, self.dataMin, self.dataMax, self.maxpd] y = [-10, -10, 10, 10 ] self.c.addCurve(x, y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') self.markers = [] self.__x = x self.__y = y labelList = ["","Min", "Max", ""] for i in range(4): if i in [1, 2]: draggable = True color = "blue" else: draggable = False color = "black" #TODO symbol legend = "%d" % i self.c.insertXMarker(x[i], legend=legend, text=labelList[i], draggable=draggable, color=color) self.markers.append((legend, "")) self.c.setMinimumSize(qt.QSize(250,200)) vlayout.addWidget(self.c) self.c.sigPlotSignal.connect(self.chval) # colormap window can not be resized self.setFixedSize(vlayout.minimumSize()) def plotHistogram(self, data=None): if data is not None: self.histogramData = data if self.histogramData is None: return False bins, counts = self.histogramData self.c.addCurve(bins, counts, "Histogram", color='pink', # TODO: Change fill color symbol='s', linestyle='-', # Line style #fill=True, yaxis='right') # TODO: Do not use info! def _update(self): _logger.debug("colormap _update called") self.marge = (abs(self.dataMax) + abs(self.dataMin)) / 6.0 self.minmd = self.dataMin - self.marge self.maxpd = self.dataMax + self.marge self.c.setGraphXLimits(self.minmd, self.maxpd) self.c.setGraphYLimits( -11.5, 11.5) self.__x = [self.minmd, self.dataMin, self.dataMax, self.maxpd] self.__y = [-10, -10, 10, 10] self.c.addCurve(self.__x, self.__y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') self.c.clearMarkers() for i in range(4): if i in [1, 2]: draggable = True color = "blue" else: draggable = False color = "black" key = self.markers[i][0] label = self.markers[i][1] self.c.insertXMarker(self.__x[i], legend=key, text=label, draggable=draggable, color=color) self.c.replot() self.sendColormap() def buttonGroupChange(self, val): _logger.debug("buttonGroup asking to update colormap") self.setColormapType(val, update=True) self._update() def setColormapType(self, val, update=False): self.colormapType = val if self.colormapType == 1: self.buttonGroup.button(1).setChecked(True) elif self.colormapType == 2: self.buttonGroup.button(2).setChecked(True) else: self.colormapType = 0 self.buttonGroup.button(0).setChecked(True) if update: self._update() def chval(self, ddict): _logger.debug("Received %s" % ddict) if ddict['event'] == 'markerMoving': diam = int(ddict['label']) x = ddict['x'] if diam == 1: self.setDisplayedMinValue(x) elif diam == 2: self.setDisplayedMaxValue(x) elif ddict['event'] == 'markerMoved': diam = int(ddict['label']) x = ddict['x'] if diam == 1: self.setMinValue(x) if diam == 2: self.setMaxValue(x) """ Colormap """ def setColormap(self, colormap): self.colormapIndex = colormap if QTVERSION < '4.0.0': self.combo.setCurrentItem(colormap) else: self.combo.setCurrentIndex(colormap) def colormapChange(self, colormap): self.colormapIndex = colormap self.sendColormap() # AUTOSCALE """ Autoscale """ def autoscaleChange(self, val): self.autoscale = val self.setAutoscale(val) self.sendColormap() def setAutoscale(self, val): _logger.debug("setAutoscale called %s" % val) if val: self.autoScaleButton.setChecked(True) self.autoScale90Button.setChecked(False) #self.autoScale90Button.setDown(False) self.setMinValue(self.dataMin) self.setMaxValue(self.dataMax) self.maxText.setEnabled(0) self.minText.setEnabled(0) self.c.setEnabled(0) #self.c.disablemarkermode() else: self.autoScaleButton.setChecked(False) self.autoScale90Button.setChecked(False) self.minText.setEnabled(1) self.maxText.setEnabled(1) self.c.setEnabled(1) #self.c.enablemarkermode() """ set rangeValues to dataMin ; dataMax-10% """ def autoscale90Change(self, val): self.autoscale90 = val self.setAutoscale90(val) self.sendColormap() def setAutoscale90(self, val): if val: self.autoScaleButton.setChecked(False) self.setMinValue(self.dataMin) self.setMaxValue(self.dataMax - abs(self.dataMax/10)) self.minText.setEnabled(0) self.maxText.setEnabled(0) self.c.setEnabled(0) else: self.autoScale90Button.setChecked(False) self.minText.setEnabled(1) self.maxText.setEnabled(1) self.c.setEnabled(1) self.c.setFocus() # MINIMUM """ change min value and update colormap """ def setMinValue(self, val): v = float(str(val)) self.minValue = v self.minText.setText("%g" % v) self.__x[1] = v key = self.markers[1][0] label = self.markers[1][1] self.c.insertXMarker(v, legend=key, text=label, color="blue", draggable=True) self.c.addCurve(self.__x, self.__y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') self.sendColormap() """ min value changed by text """ def minTextChanged(self): text = str(self.minText.text()) if not len(text): return val = float(text) self.setMinValue(val) if self.minText.hasFocus(): self.c.setFocus() """ change only the displayed min value """ def setDisplayedMinValue(self, val): val = float(val) self.minValue = val self.minText.setText("%g"%val) self.__x[1] = val key = self.markers[1][0] label = self.markers[1][1] self.c.insertXMarker(val, legend=key, text=label, color="blue", draggable=True) self.c.addCurve(self.__x, self.__y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') # MAXIMUM """ change max value and update colormap """ def setMaxValue(self, val): v = float(str(val)) self.maxValue = v self.maxText.setText("%g"%v) self.__x[2] = v key = self.markers[2][0] label = self.markers[2][1] self.c.insertXMarker(v, legend=key, text=label, color="blue", draggable=True) self.c.addCurve(self.__x, self.__y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') self.sendColormap() """ max value changed by text """ def maxTextChanged(self): text = str(self.maxText.text()) if not len(text):return val = float(text) self.setMaxValue(val) if self.maxText.hasFocus(): self.c.setFocus() """ change only the displayed max value """ def setDisplayedMaxValue(self, val): val = float(val) self.maxValue = val self.maxText.setText("%g"%val) self.__x[2] = val key = self.markers[2][0] label = self.markers[2][1] self.c.insertXMarker(val, legend=key, text=label, color="blue", draggable=True) self.c.addCurve(self.__x, self.__y, legend="ConstrainedCurve", color='black', symbol='o', linestyle='-') # DATA values """ set min/max value of data source """ def setDataMinMax(self, minVal, maxVal, update=True): if minVal is not None: vmin = float(str(minVal)) self.dataMin = vmin if maxVal is not None: vmax = float(str(maxVal)) self.dataMax = vmax if update: # are current values in the good range ? self._update() def getColormap(self): if self.minValue > self.maxValue: vmax = self.minValue vmin = self.maxValue else: vmax = self.maxValue vmin = self.minValue cmap = [self.colormapIndex, self.autoscale, vmin, vmax, self.dataMin, self.dataMax, self.colormapType] return cmap """ send 'ColormapChanged' signal """ def sendColormap(self): _logger.debug("sending colormap") try: cmap = self.getColormap() self.sigColormapChanged.emit(cmap) except Exception: sys.excepthook(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]) # Conversion of colormap descriptions ######################################### # Convert colormap between PlotBackend names and ColormapDialog index # Tuple of PlotBackend names in the order of colormapDialog _COLORMAP_NAMES = ('gray', 'reversed gray', 'temperature', 'red', 'green', 'blue', 'temperature') def colormapListToDict(colormapList): """Convert colormap from this dialog to :class:`PlotBackend`. :param colormapList: Colormap as returned by :meth:`getColormap`. :type colormapList: list or tuple :return: Colormap as used in :class:`PlotBackend`. :rtype: dict """ index, autoscale, vMin, vMax, dataMin, dataMax, cmapType = colormapList # Warning, gamma cmapType is not supported in plot backend # Here it is silently replaced by linear as the default colormap return { 'name': _COLORMAP_NAMES[index], 'autoscale': autoscale, 'vmin': vMin, 'vmax': vMax, 'normalization': 'log' if cmapType == 1 else 'linear', 'colors': 256 } def colormapDictToList(colormapDict): """Convert colormap from :class:`PlotBackend` to this dialog. :param dict colormapDict: Colormap as used in :class:`PlotBackend`. :return: Colormap as returned by :meth:`getColormap`. :rtype: list """ cmapIndex = _COLORMAP_NAMES.index(colormapDict['name']) cmapType = 1 if colormapDict['normalization'].startswith('log') else 0 return [cmapIndex, colormapDict['autoscale'], colormapDict['vmin'], colormapDict['vmax'], 0, # dataMin is not defined in PlotBackend colormap 0, # dataMax is not defined in PlotBackend colormap cmapType] ############################################################################### def test(): app = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) demo = ColormapDialog() # Histogram demo import numpy as np x = np.linspace(-10, 10, 50) y = abs(9. * np.exp(-x**2) + np.random.randn(len(x)) + 1.) demo.plotHistogram((x,y)) def call(*var): print("Received", var) demo.sigColormapChanged.connect(call) demo.setAutoscale(1) demo.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/ImageView.py0000644000000000000000000011630714741736366021150 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ QWidget displaying a 2D image with histograms on its sides. The :class:`ImageView` implements this widget, and :class:`ImageViewMainWindow` provides a main window with additional toolbar and status bar. Basic usage of :class:`ImageView` is through the following methods: - :meth:`ImageView.getColormap`, :meth:`ImageView.setColormap` to update the default colormap to use and update the currently displayed image. - :meth:`ImageView.setImage` to update the displayed image. The :class:`ImageView` uses :class:`PlotWindow` and also exposes :class:`PyMca5.PyMcaGraph.Plot` API for further control (plot title, axes labels, adding other images, ...). For an example of use, see the implementation of :class:`ImageViewMainWindow`. The ImageView module can also be used to open an EDF or TIFF file from the shell command line. To view an image file: ``python -m PyMca5.PyMcaGui.plotting.ImageView `` To get help: ``python -m PyMca5.PyMcaGui.plotting.ImageView -h`` """ # import ###################################################################### import numpy as np try: from .. import PyMcaQt as qt except ImportError: from PyMca5.PyMcaGui import PyMcaQt as qt from .PlotWindow import PlotWindow from .Toolbars import ProfileToolBar, LimitsToolBar from PyMca5.PyMcaGraph import Plot # utils ####################################################################### _COLORMAP_CURSOR_COLORS = { 'gray': 'pink', 'reversed gray': 'pink', 'temperature': 'black', 'red': 'gray', 'green': 'gray', 'blue': 'gray'} def _cursorColorForColormap(colormapName): """Get a color suitable for overlay over a colormap. :param str colormapName: The name of the colormap. :return: Name of the color. :rtype: str """ return _COLORMAP_CURSOR_COLORS.get(colormapName, 'black') # RadarView ################################################################### class RadarView(qt.QGraphicsView): """Widget presenting a synthetic view of a 2D area and the current visible area. Coordinates are as in QGraphicsView: x goes from left to right and y goes from top to bottom. This widget preserves the aspect ratio of the areas. The 2D area and the visible area can be set with :meth:`setDataRect` and :meth:`setVisibleRect`. When the visible area has been dragged by the user, its new position is signaled by the *visibleRectDragged* signal. It is possible to invert the direction of the axes by using the :meth:`scale` method of QGraphicsView. """ visibleRectDragged = qt.pyqtSignal(float, float, float, float) """Signals that the visible rectangle has been dragged. It provides: left, top, width, height in data coordinates. """ _DATA_PEN = qt.QPen(qt.QColor('white')) _DATA_BRUSH = qt.QBrush(qt.QColor('light gray')) _VISIBLE_PEN = qt.QPen(qt.QColor('red')) _VISIBLE_BRUSH = qt.QBrush(qt.QColor(0, 0, 0, 0)) _TOOLTIP = 'Radar View:\nVisible area (in red)\nof the image (in gray).' _PIXMAP_SIZE = 256 class _DraggableRectItem(qt.QGraphicsRectItem): """RectItem which signals its change through visibleRectDragged.""" def __init__(self, *args, **kwargs): super(RadarView._DraggableRectItem, self).__init__(*args, **kwargs) self.setFlag(qt.QGraphicsItem.ItemIsMovable) self.setFlag(qt.QGraphicsItem.ItemSendsGeometryChanges) self._ignoreChange = False self._constraint = 0, 0, 0, 0 def setConstraintRect(self, left, top, width, height): """Set the constraint rectangle for dragging. The coordinates are in the _DraggableRectItem coordinate system. This constraint only applies to modification through interaction (i.e., this constraint is not applied to change through API). If the _DraggableRectItem is smaller than the constraint rectangle, the _DraggableRectItem remains within the constraint rectangle. If the _DraggableRectItem is wider than the constraint rectangle, the constraint rectangle remains within the _DraggableRectItem. """ self._constraint = left, left + width, top, top + height def setPos(self, *args, **kwargs): """Overridden to ignore changes from API in itemChange.""" self._ignoreChange = True super(RadarView._DraggableRectItem, self).setPos(*args, **kwargs) self._ignoreChange = False def moveBy(self, *args, **kwargs): """Overridden to ignore changes from API in itemChange.""" self._ignoreChange = True super(RadarView._DraggableRectItem, self).moveBy(*args, **kwargs) self._ignoreChange = False def itemChange(self, change, value): """Callback called before applying changes to the item.""" if (change == qt.QGraphicsItem.ItemPositionChange and not self._ignoreChange): # Makes sure that the visible area is in the data # or that data is in the visible area if area is too wide x, y = value.x(), value.y() xMin, xMax, yMin, yMax = self._constraint if self.rect().width() <= (xMax - xMin): if x < xMin: value.setX(xMin) elif x > xMax - self.rect().width(): value.setX(xMax - self.rect().width()) else: if x > xMin: value.setX(xMin) elif x < xMax - self.rect().width(): value.setX(xMax - self.rect().width()) if self.rect().height() <= (yMax - yMin): if y < yMin: value.setY(yMin) elif y > yMax - self.rect().height(): value.setY(yMax - self.rect().height()) else: if y > yMin: value.setY(yMin) elif y < yMax - self.rect().height(): value.setY(yMax - self.rect().height()) if self.pos() != value: # Notify change through signal views = self.scene().views() assert len(views) == 1 views[0].visibleRectDragged.emit( value.x() + self.rect().left(), value.y() + self.rect().top(), self.rect().width(), self.rect().height()) return value return super(RadarView._DraggableRectItem, self).itemChange( change, value) def __init__(self, parent=None): self._scene = qt.QGraphicsScene() self._dataRect = self._scene.addRect(0, 0, 1, 1, self._DATA_PEN, self._DATA_BRUSH) self._visibleRect = self._DraggableRectItem(0, 0, 1, 1) self._visibleRect.setPen(self._VISIBLE_PEN) self._visibleRect.setBrush(self._VISIBLE_BRUSH) self._scene.addItem(self._visibleRect) super(RadarView, self).__init__(self._scene, parent) self.setHorizontalScrollBarPolicy(qt.Qt.ScrollBarAlwaysOff) self.setVerticalScrollBarPolicy(qt.Qt.ScrollBarAlwaysOff) self.setFocusPolicy(qt.Qt.NoFocus) self.setStyleSheet('border: 0px') self.setToolTip(self._TOOLTIP) def sizeHint(self): # """Overridden to avoid sizeHint to depend on content size.""" return self.minimumSizeHint() def wheelEvent(self, event): # """Overridden to disable vertical scrolling with wheel.""" event.ignore() def resizeEvent(self, event): # """Overridden to fit current content to new size.""" self.fitInView(self._scene.itemsBoundingRect(), qt.Qt.KeepAspectRatio) super(RadarView, self).resizeEvent(event) def setDataRect(self, left, top, width, height): """Set the bounds of the data rectangular area. This sets the coordinate system. """ self._dataRect.setRect(left, top, width, height) self._visibleRect.setConstraintRect(left, top, width, height) self.fitInView(self._scene.itemsBoundingRect(), qt.Qt.KeepAspectRatio) def setVisibleRect(self, left, top, width, height): """Set the visible rectangular area. The coordinates are relative to the data rect. """ self._visibleRect.setRect(0, 0, width, height) self._visibleRect.setPos(left, top) self.fitInView(self._scene.itemsBoundingRect(), qt.Qt.KeepAspectRatio) # ImageView ################################################################### class ImageView(qt.QWidget): """Display a single image with horizontal and vertical histograms. Use :meth:`setImage` to control the displayed image. This class also provides the :class:`PyMca5.PyMcaGraph.Plot` API. """ HISTOGRAMS_COLOR = 'blue' """Color to use for the side histograms.""" HISTOGRAMS_HEIGHT = 200 """Height in pixels of the side histograms.""" IMAGE_MIN_SIZE = 200 """Minimum size in pixels of the image area.""" # Qt signals valueChanged = qt.pyqtSignal(float, float, float) """Signals that the data value under the cursor has changed. It provides: row, column, data value. When the cursor is over an histogram, either row or column is Nan and the provided data value is the histogram value (i.e., the sum along the corresponding row/column). Row and columns are either Nan or integer values. """ def __init__(self, parent=None, windowFlags=qt.Qt.Widget, backend=None): self._imageLegend = '__ImageView__image' + str(id(self)) self._cache = None # Store currently visible data information self._updatingLimits = False super(ImageView, self).__init__(parent, windowFlags) self.setStyleSheet('background-color: white;') self._initWidgets(backend) # Sync PlotBackend and ImageView self._updateYAxisInverted() # Set-up focus proxy to handle arrow key event self.setFocusProxy(self._imagePlot) def _initWidgets(self, backend): """Set-up layout and plots.""" # Monkey-patch for histogram size # alternative: create a layout that does not use widget size hints def sizeHint(): return qt.QSize(self.HISTOGRAMS_HEIGHT, self.HISTOGRAMS_HEIGHT) self._histoHPlot = Plot.Plot(backend=backend) self._histoHPlot.setZoomModeEnabled(True) self._histoHPlot.setCallback(self._histoHPlotCB) self._histoHPlot.getWidgetHandle().sizeHint = sizeHint self._histoHPlot.getWidgetHandle().minimumSizeHint = sizeHint self._imagePlot = PlotWindow(backend=backend, plugins=False, colormap=True, flip=True, grid=False, togglePoints=False, logx=False, logy=False, aspect=True) self._imagePlot.usePlotBackendColormap = True self._imagePlot.setPanWithArrowKeys(True) self._imagePlot.setZoomModeEnabled(True) # Color is set in setColormap self._imagePlot.sigPlotSignal.connect(self._imagePlotCB) self._imagePlot.hFlipToolButton.clicked.connect( self._updateYAxisInverted) self._imagePlot.sigColormapChangedSignal.connect(self.setColormap) self._histoVPlot = Plot.Plot(backend=backend) self._histoVPlot.setZoomModeEnabled(True) self._histoVPlot.setCallback(self._histoVPlotCB) self._histoVPlot.getWidgetHandle().sizeHint = sizeHint self._histoVPlot.getWidgetHandle().minimumSizeHint = sizeHint self._radarView = RadarView() self._radarView.visibleRectDragged.connect(self._radarViewCB) self._layout = qt.QGridLayout() self._layout.addWidget(self._imagePlot, 0, 0) self._layout.addWidget(self._histoVPlot.getWidgetHandle(), 0, 1) self._layout.addWidget(self._histoHPlot.getWidgetHandle(), 1, 0) self._layout.addWidget(self._radarView, 1, 1) self._layout.setColumnMinimumWidth(0, self.IMAGE_MIN_SIZE) self._layout.setColumnStretch(0, 1) self._layout.setColumnMinimumWidth(1, self.HISTOGRAMS_HEIGHT) self._layout.setColumnStretch(1, 0) self._layout.setRowMinimumHeight(0, self.IMAGE_MIN_SIZE) self._layout.setRowStretch(0, 1) self._layout.setRowMinimumHeight(1, self.HISTOGRAMS_HEIGHT) self._layout.setRowStretch(1, 0) self._layout.setSpacing(0) self._layout.setContentsMargins(0, 0, 0, 0) self.setLayout(self._layout) def _dirtyCache(self): self._cache = None def _updateHistograms(self): """Update histograms content using current active image.""" activeImage = self._imagePlot.getActiveImage() if activeImage is not None: wasUpdatingLimits = self._updatingLimits self._updatingLimits = True data, legend, info, pixmap = activeImage xScale, yScale = info['plot_xScale'], info['plot_yScale'] height, width = data.shape xMin, xMax = self._imagePlot.getGraphXLimits() yMin, yMax = self._imagePlot.getGraphYLimits() # Convert plot area limits to image coordinates # and work in image coordinates (i.e., in pixels) xMin = int((xMin - xScale[0]) / xScale[1]) xMax = int((xMax - xScale[0]) / xScale[1]) yMin = int((yMin - yScale[0]) / yScale[1]) yMax = int((yMax - yScale[0]) / yScale[1]) if (xMin < width and xMax >= 0 and yMin < height and yMax >= 0): # The image is at least partly in the plot area # Get the visible bounds in image coords (i.e., in pixels) subsetXMin = 0 if xMin < 0 else xMin subsetXMax = (width if xMax >= width else xMax) + 1 subsetYMin = 0 if yMin < 0 else yMin subsetYMax = (height if yMax >= height else yMax) + 1 if (self._cache is None or subsetXMin != self._cache['dataXMin'] or subsetXMax != self._cache['dataXMax'] or subsetYMin != self._cache['dataYMin'] or subsetYMax != self._cache['dataYMax']): # The visible area of data has changed, update histograms # Rebuild histograms for visible area visibleData = data[subsetYMin:subsetYMax, subsetXMin:subsetXMax] histoHVisibleData = np.sum(visibleData, axis=0) histoVVisibleData = np.sum(visibleData, axis=1) self._cache = { 'dataXMin': subsetXMin, 'dataXMax': subsetXMax, 'dataYMin': subsetYMin, 'dataYMax': subsetYMax, 'histoH': histoHVisibleData, 'histoHMin': np.min(histoHVisibleData), 'histoHMax': np.max(histoHVisibleData), 'histoV': histoVVisibleData, 'histoVMin': np.min(histoVVisibleData), 'histoVMax': np.max(histoVVisibleData) } # Convert to histogram curve and update plots # Taking into account origin and scale coords = np.arange(2 * histoHVisibleData.size) xCoords = (coords + 1) // 2 + subsetXMin xCoords = xScale[0] + xScale[1] * xCoords xData = np.take(histoHVisibleData, coords // 2) self._histoHPlot.addCurve(xCoords, xData, xlabel='', ylabel='', replace=False, replot=False, color=self.HISTOGRAMS_COLOR, linestyle='-', selectable=False) vMin = self._cache['histoHMin'] vMax = self._cache['histoHMax'] vOffset = 0.1 * (vMax - vMin) if vOffset == 0.: vOffset = 1. self._histoHPlot.setGraphYLimits(vMin - vOffset, vMax + vOffset) coords = np.arange(2 * histoVVisibleData.size) yCoords = (coords + 1) // 2 + subsetYMin yCoords = yScale[0] + yScale[1] * yCoords yData = np.take(histoVVisibleData, coords // 2) self._histoVPlot.addCurve(yData, yCoords, xlabel='', ylabel='', replace=False, replot=False, color=self.HISTOGRAMS_COLOR, linestyle='-', selectable=False) vMin = self._cache['histoVMin'] vMax = self._cache['histoVMax'] vOffset = 0.1 * (vMax - vMin) if vOffset == 0.: vOffset = 1. self._histoVPlot.setGraphXLimits(vMin - vOffset, vMax + vOffset) else: self._dirtyCache() self._histoHPlot.clearCurves() self._histoVPlot.clearCurves() self._updatingLimits = wasUpdatingLimits def _updateRadarView(self): """Update radar view visible area. Takes care of y coordinate conversion. """ xMin, xMax = self._imagePlot.getGraphXLimits() yMin, yMax = self._imagePlot.getGraphYLimits() self._radarView.setVisibleRect(xMin, yMin, xMax - xMin, yMax - yMin) # Plots event listeners def _imagePlotCB(self, eventDict): """Callback for imageView plot events.""" if eventDict['event'] == 'mouseMoved': activeImage = self._imagePlot.getActiveImage() if activeImage is not None: data = activeImage[0] height, width = data.shape x, y = int(eventDict['x']), int(eventDict['y']) if x >= 0 and x < width and y >= 0 and y < height: self.valueChanged.emit(float(x), float(y), data[y][x]) elif eventDict['event'] == 'limitsChanged': # Do not handle histograms limitsChanged while # updating their limits from here. self._updatingLimits = True # Refresh histograms self._updateHistograms() # could use eventDict['xdata'], eventDict['ydata'] instead xMin, xMax = self._imagePlot.getGraphXLimits() yMin, yMax = self._imagePlot.getGraphYLimits() # Set horizontal histo limits self._histoHPlot.setGraphXLimits(xMin, xMax) self._histoHPlot.replot() # Set vertical histo limits self._histoVPlot.setGraphYLimits(yMin, yMax) self._histoVPlot.replot() self._updateRadarView() self._updatingLimits = False # Replot in case limitsChanged due to set*Limits # called from console. # This results in an extra replot call in other cases. self._imagePlot.replot() def _histoHPlotCB(self, eventDict): """Callback for horizontal histogram plot events.""" if eventDict['event'] == 'mouseMoved': if self._cache is not None: activeImage = self._imagePlot.getActiveImage() if activeImage is not None: xOrigin, xScaleFactor = activeImage[2]['plot_xScale'] minValue = xOrigin + xScaleFactor * self._cache['dataXMin'] data = self._cache['histoH'] width = data.shape[0] x = int(eventDict['x']) if x >= minValue and x < minValue + width: self.valueChanged.emit(float('nan'), float(x), data[x - minValue]) elif eventDict['event'] == 'limitsChanged': if (not self._updatingLimits and eventDict['xdata'] != self._imagePlot.getGraphXLimits()): xMin, xMax = eventDict['xdata'] self._imagePlot.setGraphXLimits(xMin, xMax) self._imagePlot.replot() def _histoVPlotCB(self, eventDict): """Callback for vertical histogram plot events.""" if eventDict['event'] == 'mouseMoved': if self._cache is not None: activeImage = self._imagePlot.getActiveImage() if activeImage is not None: yOrigin, yScaleFactor = activeImage[2]['plot_yScale'] minValue = yOrigin + yScaleFactor * self._cache['dataYMin'] data = self._cache['histoV'] height = data.shape[0] y = int(eventDict['y']) if y >= minValue and y < minValue + height: self.valueChanged.emit(float(y), float('nan'), data[y - minValue]) elif eventDict['event'] == 'limitsChanged': if (not self._updatingLimits and eventDict['ydata'] != self._imagePlot.getGraphYLimits()): yMin, yMax = eventDict['ydata'] self._imagePlot.setGraphYLimits(yMin, yMax) self._imagePlot.replot() def _radarViewCB(self, left, top, width, height): """Slot for radar view visible rectangle changes.""" if not self._updatingLimits: # Takes care of Y axis conversion self._imagePlot.setLimits(left, left + width, top, top + height) self._imagePlot.replot() def _updateYAxisInverted(self): """Sync image, vertical histogram and radar view axis orientation.""" inverted = self._imagePlot.isYAxisInverted() self._imagePlot.invertYAxis(inverted) self._histoVPlot.invertYAxis(inverted) # Use scale to invert radarView # RadarView default Y direction is from top to bottom # As opposed to Plot. So invert RadarView when Plot is NOT inverted. self._radarView.resetTransform() if not inverted: self._radarView.scale(1., -1.) self._updateRadarView() self._imagePlot.replot() self._histoVPlot.replot() self._radarView.update() def getHistogram(self, axis): """Return the histogram and corresponding row or column extent. The returned value when an histogram is available is a dict with keys: - 'data': numpy array of the histogram values. - 'extent': (start, end) row or column index. end index is not included in the histogram. :param str axis: 'x' for horizontal, 'y' for vertical :return: The histogram and its extent as a dict or None. :rtype: dict """ assert axis in ('x', 'y') if self._cache is None: return None else: if axis == 'x': return dict( data=np.array(self._cache['histoH'], copy=True), extent=(self._cache['dataXMin'], self._cache['dataXMax'])) else: return dict( data=np.array(self._cache['histoV'], copy=True), extent=(self._cache['dataYMin'], self._cache['dataYMax'])) def radarView(self): """Get the lower right radarView widget.""" return self._radarView def setRadarView(self, radarView): """Change the lower right radarView widget. :param RadarView radarView: Widget subclassing RadarView to replace the lower right corner widget. """ self._radarView.visibleRectDragged.disconnect(self._radarViewCB) self._radarView = radarView self._radarView.visibleRectDragged.connect(self._radarViewCB) self._layout.addWidget(self._radarView, 1, 1) self._updateYAxisInverted() # PlotWindow toolbar def toolBar(self): """Returns the tool bar associated with the image plot. This is the toolBar provided by :class:`PlotWindow`. :return: The toolBar associated to the image plot. :rtype: QToolBar """ return self._imagePlot.toolBar # High-level API def getColormap(self): """Get the default colormap description. :return: A description of the current colormap. See :meth:`setColormap` for details. :rtype: dict """ return self._imagePlot.getDefaultColormap() def setColormap(self, colormap=None, normalization=None, autoscale=None, vmin=None, vmax=None, colors=256): """Set the default colormap and update active image. Parameters that are not provided are taken from the current colormap. The colormap parameter can also be a dict with the following keys: - *name*: string. The colormap to use: 'gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'. - *normalization*: string. The mapping to use for the colormap: either 'linear' or 'log'. - *autoscale*: bool. Whether to use autoscale (True) or range provided by keys 'vmin' and 'vmax' (False). - *vmin*: float. The minimum value of the range to use if 'autoscale' is False. - *vmax*: float. The maximum value of the range to use if 'autoscale' is False. :param colormap: Name of the colormap in 'gray', 'reversed gray', 'temperature', 'red', 'green', 'blue'. Or the description of the colormap as a dict. :type colormap: dict or str. :param str normalization: Colormap mapping: 'linear' or 'log'. :param bool autoscale: Whether to use autoscale (True) or [vmin, vmax] range (False). :param float vmin: The minimum value of the range to use if 'autoscale' is False. :param float vmax: The maximum value of the range to use if 'autoscale' is False. """ cmapDict = self._imagePlot.getDefaultColormap() if isinstance(colormap, dict): # Support colormap parameter as a dict assert normalization is None assert autoscale is None assert vmin is None assert vmax is None assert colors == 256 for key, value in colormap.items(): cmapDict[key] = value else: if colormap is not None: cmapDict['name'] = colormap if normalization is not None: cmapDict['normalization'] = normalization if autoscale is not None: cmapDict['autoscale'] = autoscale if vmin is not None: cmapDict['vmin'] = vmin if vmax is not None: cmapDict['vmax'] = vmax if 'colors' not in cmapDict: cmapDict['colors'] = 256 cursorColor = _cursorColorForColormap(cmapDict['name']) self._imagePlot.setZoomModeEnabled(True, color=cursorColor) self._imagePlot.setDefaultColormap(cmapDict) activeImage = self._imagePlot.getActiveImage() if activeImage is not None: # Refresh image with new colormap data, legend, info, pixmap = activeImage self._imagePlot.addImage(data, legend=legend, info=info, colormap=self.getColormap(), replace=False, replot=False) self._imagePlot.replot() def setImage(self, image, origin=(0, 0), scale=(1., 1.), copy=True, reset=True): """Set the image to display. :param image: A 2D array representing the image or None to empty plot. :type image: numpy.ndarray-like with 2 dimensions or None. :param origin: The (x, y) position of the origin of the image. Default: (0, 0). The origin is the lower left corner of the image when the Y axis is not inverted. :type origin: Tuple of 2 floats: (origin x, origin y). :param scale: The scale factor to apply to the image on X and Y axes. Default: (1, 1). It is the size of a pixel in the coordinates of the axes. Scales must be positive numbers. :type scale: Tuple of 2 floats: (scale x, scale y). :param bool copy: Whether to copy image data (default) or not. :param bool reset: Whether to reset zoom and ROI (default) or not. """ self._dirtyCache() assert len(origin) == 2 assert len(scale) == 2 assert scale[0] > 0 assert scale[1] > 0 if image is None: self._imagePlot.removeImage(self._imageLegend, replot=False) return if copy: data = np.array(image, order='C', copy=True) else: data = np.asarray(image, order='C') assert data.size != 0 assert len(data.shape) == 2 height, width = data.shape self._imagePlot.addImage(data, legend=self._imageLegend, xScale=(origin[0], scale[0]), yScale=(origin[1], scale[1]), colormap=self.getColormap(), replace=False, replot=False) self._imagePlot.setActiveImage(self._imageLegend) self._updateHistograms() self._radarView.setDataRect(origin[0], origin[1], width * scale[0], height * scale[1]) if reset: self.resetZoom() else: self._histoHPlot.replot() self._histoVPlot.replot() self._imagePlot.replot() #################### # Plot API proxies # #################### # Rebuild side histograms if active image gets changed through the Plot API def addImage(self, data, legend=None, info=None, replace=True, replot=True, xScale=None, yScale=None, z=0, selectable=False, draggable=False, colormap=None, **kw): if legend == self._imagePlot.getActiveImage(just_legend=True): # Updating active image, resets side histograms cache self._dirtyCache() result = self._imagePlot.addImage(data, legend, info, replace, replot, xScale, yScale, z, selectable, draggable, colormap, **kw) self._updateHistograms() if replot: self._histoHPlot.replot() self._histoVPlot.replot() return result def clear(self): self._dirtyCache() return self._imagePlot.clear() def clearImages(self): self._dirtyCache() return self._imagePlot.clearImages() def removeImage(self, legend, replot=True): if legend == self._imagePlot.getActiveImage(just_legend=True): # Removing active image, resets side histograms cache self._dirtyCache() result = self._imageView.removeImage(legend, replot) self._updateHistograms() if replot: self._histoHPlot.replot() self._histoVPlot.replot() return result def setActiveImage(self, legend, replot=True): # Active image changes, resets side histogram cache self._dirtyCache() result = self._imagePlot.setActiveImage(legend, replot) self._updateHistograms() if replot: self._histoHPlot.replot() self._histoVPlot.replot() return result # Invert axes def invertYAxis(self, flag=True): result = self._imagePlot.invertYAxis(flag) self._updateYAxisInverted() # To sync vert. histo and radar view return result # Ugly yet simple proxy for the Plot API def __getattr__(self, name): """Proxy to expose image plot API.""" return getattr(self._imagePlot, name) # ImageViewMainWindow ######################################################### class ImageViewMainWindow(qt.QMainWindow): """QMainWindow embedding an ImageView. Surrounds the ImageView with an associated toolbar and status bar. """ def __init__(self, parent=None, windowFlags=qt.Qt.Widget, backend=None): self._dataInfo = None super(ImageViewMainWindow, self).__init__(parent, windowFlags) # Create the ImageView widget and add it to the QMainWindow self.imageView = ImageView(backend=backend) self.imageView.setGraphXLabel('X') self.imageView.setGraphYLabel('Y') self.imageView.setGraphTitle('Image') self.imageView._imagePlot.sigColormapChangedSignal.connect( self._colormapUpdated) self.setCentralWidget(self.imageView) # Using PlotWindow's toolbar self.addToolBar(self.imageView.toolBar()) self.profileToolBar = ProfileToolBar(self.imageView._imagePlot) self.addToolBar(self.profileToolBar) self.addToolBar(qt.Qt.BottomToolBarArea, LimitsToolBar(self.imageView)) self.statusBar() # Connect to ImageView's signal self.imageView.valueChanged.connect(self._statusBarSlot) def _colormapUpdated(self, colormap): """Sync ROI color with current colormap""" self.profileToolBar.overlayColor = _cursorColorForColormap( colormap['name']) def _statusBarSlot(self, row, column, value): """Update status bar with coordinates/value from plots.""" if np.isnan(row): msg = 'Column: %d, Sum: %g' % (int(column), value) elif np.isnan(column): msg = 'Row: %d, Sum: %g' % (int(row), value) else: msg = 'Position: (%d, %d), Value: %g' % (int(row), int(column), value) if self._dataInfo is not None: msg = self._dataInfo + ', ' + msg self.statusBar().showMessage(msg) def setImage(self, image, *args, **kwargs): """Set the displayed image. See :meth:`ImageView.setImage` for details. """ if hasattr(image, 'dtype') and hasattr(image, 'shape'): assert len(image.shape) == 2 height, width = image.shape self._dataInfo = 'Data: %dx%d (%s)' % (width, height, str(image.dtype)) self.statusBar().showMessage(self._dataInfo) else: self._dataInfo = None # Set the new image in ImageView widget self.imageView.setImage(image, *args, **kwargs) self.profileToolBar.updateProfile() self.setStatusBar(None) # main ######################################################################## if __name__ == "__main__": import argparse import os.path import sys from PyMca5.PyMcaIO.EdfFile import EdfFile # Command-line arguments parser = argparse.ArgumentParser( description='Browse the images of an EDF file.') parser.add_argument( '-b', '--backend', choices=('mpl', 'opengl', 'osmesa'), help="""The plot backend to use: Matplotlib (mpl, the default), OpenGL 2.1 (opengl, requires appropriate OpenGL drivers) or Off-screen Mesa OpenGL software pipeline (osmesa, requires appropriate OSMesa library).""") parser.add_argument( '-o', '--origin', nargs=2, type=float, default=(0., 0.), help="""Coordinates of the origin of the image: (x, y). Default: 0., 0.""") parser.add_argument( '-s', '--scale', nargs=2, type=float, default=(1., 1.), help="""Scale factors applied to the image: (sx, sy). Default: 1., 1.""") parser.add_argument('filename', help='EDF filename of the image to open') args = parser.parse_args() # Open the input file if not os.path.isfile(args.filename): raise RuntimeError('No input file: %s' % args.filename) edfFile = EdfFile(args.filename) nbFrames = edfFile.GetNumImages() if nbFrames == 0: raise RuntimeError( 'Cannot read image(s) from file: %s' % args.filename) # Set-up Qt application and main window app = qt.QApplication([]) mainWindow = ImageViewMainWindow(backend=args.backend) mainWindow.setImage(edfFile.GetData(0), origin=args.origin, scale=args.scale) if nbFrames > 1: # Add a toolbar for multi-frame EDF support multiFrameToolbar = qt.QToolBar('Multi-frame') multiFrameToolbar.addWidget(qt.QLabel( 'Frame [0-%d]:' % (nbFrames - 1))) spinBox = qt.QSpinBox() spinBox.setRange(0, nbFrames-1) def updateImage(index): mainWindow.setImage(edfFile.GetData(index), origin=args.origin, scale=args.scale, reset=False) spinBox.valueChanged[int].connect(updateImage) multiFrameToolbar.addWidget(spinBox) mainWindow.addToolBar(multiFrameToolbar) mainWindow.show() sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/LegendSelector.py0000644000000000000000000010644314741736366022172 0ustar00rootroot#/*########################################################################## # Copyright (C) 2015-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "T. Rueter - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt from .PyMca_Icons import IconDict if hasattr(qt, "QString"): QString = qt.QString elif hasattr(qt, "safe_str"): QString = qt.safe_str else: QString= str if hasattr(qt, 'QVariant'): QVariant = qt.QVariant else: def QVariant(x=None): return x def convertToPyObject(x): if hasattr(x, "toPyObject"): return x.toPyObject() else: return x DEBUG = 0 # Build all symbols # Courtesy of Luke Campagnola's graph project Symbols = dict([(name, qt.QPainterPath()) for name in ['o', 's', 't', 'd', '+', 'x', '.', ',']]) Symbols['o'].addEllipse(qt.QRectF(.1, .1, .8, .8)) Symbols['.'].addEllipse(qt.QRectF(.3, .3, .4, .4)) Symbols[','].addEllipse(qt.QRectF(.4, .4, .2, .2)) Symbols['s'].addRect(qt.QRectF(.1, .1, .8, .8)) coords = { 't': [(0.5, 0.), (.1,.8), (.9, .8)], 'd': [(0.1, 0.5), (0.5, 0.), (0.9, 0.5), (0.5, 1.)], '+': [(0.0, 0.40), (0.40, 0.40), (0.40, 0.), (0.60, 0.), (0.60, 0.40), (1., 0.40), (1., 0.60), (0.60, 0.60), (0.60, 1.), (0.40, 1.), (0.40, 0.60), (0., 0.60)], 'x': [(0.0, 0.40), (0.40, 0.40), (0.40, 0.), (0.60, 0.), (0.60, 0.40), (1., 0.40), (1., 0.60), (0.60, 0.60), (0.60, 1.), (0.40, 1.), (0.40, 0.60), (0., 0.60)] } for s, c in coords.items(): Symbols[s].moveTo(*c[0]) for x,y in c[1:]: Symbols[s].lineTo(x, y) Symbols[s].closeSubpath() tr = qt.QTransform() tr.rotate(45) Symbols['x'].translate(qt.QPointF(-0.5,-0.5)) Symbols['x'] = tr.map(Symbols['x']) Symbols['x'].translate(qt.QPointF(0.5,0.5)) class LegendIcon(qt.QWidget): def __init__(self, parent=None): super(LegendIcon, self).__init__(parent) # Visibilities self.showLine = True self.showSymbol = True # Line attributes self.lineStyle = qt.Qt.SolidLine self.lineWidth = 1. self.lineColor = qt.Qt.green self.symbol = '' # Symbol attributes self.symbolStyle = qt.Qt.SolidPattern self.symbolColor = qt.Qt.green self.symbolOutlineBrush = qt.QBrush(qt.Qt.white) # Control widget size: sizeHint "is the only acceptable # alternative, so the widget can never grow or shrink" # (c.f. Qt Doc, enum QSizePolicy::Policy) self.setSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed) def sizeHint(self): return qt.QSize(50,15) # Modify Symbol def setSymbol(self, symbol): symbol = qt.safe_str(symbol) if symbol not in [None, "None", "", " "]: if symbol not in Symbols: raise ValueError("Unknown symbol: <%s>" % symbol) self.symbol = symbol # self.update() after set...? # Does not seem necessary def setSymbolColor(self, color): ''' :param color: determines the symbol color :type style: qt.QColor ''' self.symbolColor = qt.QColor(color) def setSymbolStyle(self, style): ''' :param style: Must be in Qt.BrushStyle :type style: int Possible joices are: Qt.NoBrush Qt.SolidPattern Qt.Dense1Pattern Qt.Dense2Pattern Qt.Dense3Pattern Qt.Dense4Pattern Qt.Dense5Pattern Qt.Dense6Pattern Qt.Dense7Pattern Qt.HorPattern Qt.VerPattern Qt.CrossPattern Qt.BDiagPattern Qt.FDiagPattern Qt.DiagCrossPattern Qt.LinearGradientPattern Qt.ConicalGradientPattern Qt.RadialGradientPattern ''' if style not in list(range(18)): raise ValueError('Unknown style: %d') self.symbolStyle = int(style) # Modify Line def setLineColor(self, color): self.lineColor = qt.QColor(color) def setLineWidth(self, width): self.lineWidth = float(width) def setLineStyle(self, style): ''' :param style: Must be in Qt.PenStyle :type style: int Possible joices are: Qt.NoPen Qt.SolidLine Qt.DashLine Qt.DotLine Qt.DashDotLine Qt.DashDotDotLine Qt.CustomDashLine ''' if style not in list(range(7)): raise ValueError('Unknown style: %d') self.lineStyle = int(style) # Paint def paintEvent(self, event): ''' :param event: event :type event: QPaintEvent ''' painter = qt.QPainter(self) self.paint(painter, event.rect(), self.palette()) def paint(self, painter, rect, palette): painter.save() painter.setRenderHint(qt.QPainter.Antialiasing) # Scale painter to the icon height # current -> width = 2.5, height = 1.0 scale = float(self.height()) ratio = float(self.width()) / scale painter.scale(scale, scale) symbolOffset = qt.QPointF(.5*(ratio-1.), 0.) # Determine and scale offset offset = qt.QPointF( float(rect.left())/scale, float(rect.top())/scale) # Draw BG rectangle (for debugging) #bottomRight = qt.QPointF( # float(rect.right())/scale, # float(rect.bottom())/scale) #painter.fillRect(qt.QRectF(offset, bottomRight), # qt.QBrush(qt.Qt.green)) llist = [] if self.showLine: linePath = qt.QPainterPath() linePath.moveTo(0.,0.5) linePath.lineTo(ratio,0.5) #linePath.lineTo(2.5,0.5) linePen = qt.QPen( qt.QBrush(self.lineColor), (self.lineWidth / self.height()), self.lineStyle, qt.Qt.FlatCap ) llist.append((linePath, linePen, qt.QBrush(self.lineColor))) if self.showSymbol and len(self.symbol) and\ self.symbol not in ["None", " "]: # PITFALL ahead: Let this be a warning to others #symbolPath = Symbols[self.symbol] # Copy before translate! Dict is a mutable type symbolPath = qt.QPainterPath(Symbols[self.symbol]) symbolPath.translate(symbolOffset) symbolBrush = qt.QBrush( self.symbolColor, self.symbolStyle ) symbolPen = qt.QPen( self.symbolOutlineBrush, # Brush 1./self.height(), # Width qt.Qt.SolidLine # Style ) llist.append((symbolPath, symbolPen, symbolBrush)) # Draw for path, pen, brush in llist: path.translate(offset) painter.setPen(pen) painter.setBrush(brush) painter.drawPath(path) painter.restore() class LegendModel(qt.QAbstractListModel): iconColorRole = qt.Qt.UserRole + 0 iconLineWidthRole = qt.Qt.UserRole + 1 showLineRole = qt.Qt.UserRole + 2 iconSymbolRole = qt.Qt.UserRole + 3 showSymbolRole = qt.Qt.UserRole + 4 legendTypeRole = qt.Qt.UserRole + 5 selectedRole = qt.Qt.UserRole + 6 activeRole = qt.Qt.UserRole + 7 def __init__(self, legendList=None, parent=None): super(LegendModel, self).__init__(parent) if legendList is None: legendList = [] self.legendList = [] self.insertLegendList(0,legendList) def __getitem__(self, idx): if idx >= len(self.legendList): raise IndexError('list index out of range') return self.legendList[idx] def rowCount(self, modelIndex=None): return len(self.legendList) def flags(self, index): return qt.Qt.ItemIsEditable |\ qt.Qt.ItemIsEnabled |\ qt.Qt.ItemIsSelectable def data(self, modelIndex, role): if modelIndex.isValid: idx = modelIndex.row() else: return None if idx >= len(self.legendList): raise IndexError('list index out of range') item = self.legendList[idx] if role == qt.Qt.DisplayRole: # Data to be rendered in the form of text legend = QString(item[0]) #return QVariant(legend) return legend elif role == qt.Qt.SizeHintRole: #size = qt.QSize(200,50) print('LegendModel -- size hint role not implemented') return qt.QSize() elif role == qt.Qt.TextAlignmentRole: alignment = qt.Qt.AlignVCenter | qt.Qt.AlignLeft return alignment elif role == qt.Qt.BackgroundRole: # Background color, must be QBrush if idx%2: brush = qt.QBrush(qt.QColor(240,240,240)) else: brush = qt.QBrush(qt.Qt.white) return brush elif role == qt.Qt.ForegroundRole: # ForegroundRole color, must be QBrush brush = qt.QBrush(qt.Qt.blue) return brush elif role == qt.Qt.CheckStateRole: return item[2] == True elif role == qt.Qt.ToolTipRole or role == qt.Qt.StatusTipRole: return '' elif role == self.iconColorRole: return item[1]['color'] elif role == self.iconLineWidthRole: return item[1]['linewidth'] elif role == self.iconSymbolRole: return item[1]['symbol'] elif role == self.showLineRole: return item[3] elif role == self.showSymbolRole: return item[4] elif role == self.legendTypeRole: return 0 # item[4] ..curveType.. #elif role == qt.Qt.EditRole: # return qt.QString('What now?') else: print('Unkown role requested: %s',str(role)) return None def setData(self, modelIndex, value, role): if modelIndex.isValid: idx = modelIndex.row() else: return None if idx >= len(self.legendList): #raise IndexError('list index out of range') print('setData -- List index out of range, idx: %d'%idx) return None item = self.legendList[idx] try: if role == qt.Qt.DisplayRole: # Set legend item[0] = str(value) elif role == self.iconColorRole: item[1]['color'] = qt.QColor(value) elif role == self.iconLineWidthRole: item[1]['linewidth'] = int(value) elif role == self.iconSymbolRole: item[1]['symbol'] = str(value) elif role == qt.Qt.CheckStateRole: item[2] = value elif role == self.showLineRole: item[3] = value elif role == self.showSymbolRole: item[4] = value except ValueError: if DEBUG == 1: print('Conversion failed:' +'\n\tvalue:',value +'\n\trole:',role) # Can that be right? Read docs again.. self.dataChanged.emit(modelIndex, modelIndex) return True def insertLegendList(self, row, llist): ''' :param row: Determines after which row the items are inserted :type row: int :param llist: Carries the new legend information :type count: list ''' modelIndex = self.createIndex(row,0) count = len(llist) super(LegendModel, self).beginInsertRows(modelIndex, row, row+count) head = self.legendList[0:row] tail = self.legendList[row:] new = [] for (legend, icon) in llist: showLine = True showSymbol = True curveType = 0 active = icon.get('active', False) selected = icon.get('selected', True) item = [legend, icon, selected, showLine, showSymbol, curveType] new.append(item) self.legendList = head + new + tail super(LegendModel, self).endInsertRows() return True def insertRows(self, row, count, modelIndex = qt.QModelIndex()): raise NotImplementedError('Use LegendModel.insertLegendList instead') def removeRow(self, row): return self.removeRows(row, 1) def removeRows(self, row, count, modelIndex = qt.QModelIndex()): length = len(self.legendList) if length == 0: # Nothing to do.. return True if row < 0 or row >= length: raise IndexError('Index out of range -- ' +'idx: %d, len: %d'%(row, length)) if count == 0: return False super(LegendModel, self).beginRemoveRows(modelIndex, row, row+count) del(self.legendList[row:row+count]) super(LegendModel, self).endRemoveRows() return True def setEditor(self, event, editor): ''' :param event: String that identifies the editor :type event: str :param editor: Widget used to change data in the underlying model :type editor: QWidget ''' if event not in self.eventList: raise ValueError('setEditor -- Event must be in' +'%s'%(str(self.eventList))) self.editorDict[event] = editor class LegendListItemWidget(qt.QItemDelegate): # Notice: LegendListItem does NOT inherit # from QObject, it cannot emit signals! curveType = 0 imageType = 1 def __init__(self, parent=None, itemType=0): super(LegendListItemWidget, self).__init__(parent) # Dictionary to render checkboxes self.cbDict = {} self.labelDict = {} self.iconDict = {} # Keep checkbox and legend to get sizeHint self.checkbox = qt.QCheckBox() self.legend = qt.QLabel() self.icon = LegendIcon() # Context Menu and Editors self.contextMenu = None def paint(self, painter, option, modelIndex): ''' :param painter: :type painter: QPainter :param option: :type option: QStyleOptionViewItem :param modelIndex: :type modelIndex: QModelIndex Here be docs.. ''' # Rect geometry width = option.rect.width() height = option.rect.height() left = option.rect.left() top = option.rect.top() rect = qt.QRect(qt.QPoint(left, top), qt.QSize(width, height)) rect = option.rect # Calculate the icon rectangle iconSize = self.icon.sizeHint() # Calculate icon position x = rect.left() + 2 y = rect.top() + int(.5*(rect.height()-iconSize.height())) iconRect = qt.QRect(qt.QPoint(x,y), iconSize) # Calculate label rectangle legendSize = qt.QSize( rect.width() - iconSize.width() - 30, rect.height()) # Calculate label position x = rect.left() + iconRect.width() y = rect.top() labelRect = qt.QRect(qt.QPoint(x, y), legendSize) labelRect.translate(qt.QPoint(10, 0)) # Calculate the checkbox rectangle x = rect.right() - 30 y = rect.top() chBoxRect = qt.QRect(qt.QPoint(x, y), rect.bottomRight()) # Remember the rectangles idx = modelIndex.row() self.cbDict[idx] = chBoxRect self.iconDict[idx] = iconRect self.labelDict[idx] = labelRect # Draw background first! if option.state & qt.QStyle.State_MouseOver: backgroundBrush = option.palette.highlight() else: backgroundBrush = convertToPyObject(modelIndex.data(qt.Qt.BackgroundRole)) painter.fillRect(rect, backgroundBrush) # Draw label legendText = convertToPyObject(modelIndex.data(qt.Qt.DisplayRole)) textBrush = convertToPyObject(modelIndex.data(qt.Qt.ForegroundRole)) textAlign = convertToPyObject(modelIndex.data(qt.Qt.TextAlignmentRole)) painter.setBrush(textBrush) painter.setFont(self.legend.font()) painter.drawText(labelRect, textAlign, legendText) # Draw icon iconColor = convertToPyObject(modelIndex.data(LegendModel.iconColorRole)) iconLineWidth = convertToPyObject(modelIndex.data(LegendModel.iconLineWidthRole)) iconSymbol = convertToPyObject(modelIndex.data(LegendModel.iconSymbolRole)) icon = LegendIcon() icon.resize(iconRect.size()) icon.move(iconRect.topRight()) icon.showSymbol = convertToPyObject(modelIndex.data(LegendModel.showSymbolRole)) icon.showLine = convertToPyObject(modelIndex.data(LegendModel.showLineRole)) icon.setSymbolColor(iconColor) icon.setLineColor(iconColor) icon.setLineWidth(iconLineWidth) icon.setSymbol(iconSymbol) icon.symbolOutlineBrush = backgroundBrush icon.paint(painter, iconRect, option.palette) # Draw the checkbox if convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)): checkState = qt.Qt.Checked else: checkState = qt.Qt.Unchecked if sys.platform.upper().startswith("DARWIN"): MAC_QT_4_8_4_ISSUE = True else: MAC_QT_4_8_4_ISSUE = False if MAC_QT_4_8_4_ISSUE: painter.save() self.drawCheck(painter, qt.QStyleOptionViewItem(), chBoxRect, checkState) if MAC_QT_4_8_4_ISSUE: painter.restore() def editorEvent(self, event, model, option, modelIndex): # From the docs: # Mouse events are sent to editorEvent() # even if they don't start editing of the item. if event.button() == qt.Qt.RightButton and self.contextMenu: if qt.BINDING in ["PyQt5", "PySide2"]: self.contextMenu.exec(event.globalPos(), modelIndex) else: self.contextMenu.exec(event.globalPosition().toPoint(), modelIndex) return True elif event.button() == qt.Qt.LeftButton: # Check if checkbox was clicked idx = modelIndex.row() cbRect = self.cbDict[idx] if cbRect.contains(event.pos()): # Toggle checkbox model.setData(modelIndex, not modelIndex.data(qt.Qt.CheckStateRole), qt.Qt.CheckStateRole) event.ignore() return True else: return qt.QAbstractItemDelegate.editorEvent(self, event, model, option, modelIndex) def createEditor(self, parent, option, idx): print('### Editor request ###') def sizeHint(self, option, idx): #return qt.QSize(68,24) iconSize = self.icon.sizeHint() legendSize = self.legend.sizeHint() checkboxSize = self.checkbox.sizeHint() height = max([iconSize.height(), legendSize.height(), checkboxSize.height()]) + 4 width = iconSize.width() + legendSize.width() + checkboxSize.width() return qt.QSize(width, height) class LegendListView(qt.QListView): sigLegendSignal = qt.pyqtSignal(object) __mouseClickedEvent = 'mouseClicked' __checkBoxClickedEvent = 'checkBoxClicked' __legendClickedEvent = 'legendClicked' def __init__(self, parent=None, model=None, contextMenu=None): super(LegendListView, self).__init__(parent) self.__lastButton = None self.__lastClickPos = None self.__lastModelIdx = None # Set default delegate self.setItemDelegate(LegendListItemWidget()) # Set default editors #self.setSizePolicy(qt.QSizePolicy.MinimumExpanding, # qt.QSizePolicy.MinimumExpanding) # Set edit triggers by hand using self.edit(QModelIndex) # in mousePressEvent (better to control than signals) self.setEditTriggers(qt.QAbstractItemView.NoEditTriggers) # Control layout #self.setBatchSize(2) #self.setLayoutMode(qt.QListView.Batched) #self.setFlow(qt.QListView.LeftToRight) # Control selection #self.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) self.setSelectionMode(qt.QAbstractItemView.NoSelection) if model is None: model = LegendModel() self.setModel(model) #self.setSelectionModel(qt.QItemSelectionModel(model)) self.setContextMenu(contextMenu) def setLegendList(self, legendList, row=None): self.clear() if row is None: row = 0 model = self.model() model.insertLegendList(row, legendList) if DEBUG == 1: print('LegendListView.setLegendList(legendList) finished') def clear(self): model = self.model() model.removeRows(0,model.rowCount()) if DEBUG == 1: print('LegendListView.clear() finished') ''' def sizeHint(self): print('ListView.sizeHint called') return qt.QSize(300,500) def minimumWidth(self): print('ListView.minimumSize called') return 500 def minimumSize(self): print('ListView.minimumSize called') return qt.QSize(300,500) def minimumSizeHint(self): print('ListView.minimumSizeHint called') return qt.QSize(300,500) ''' def setContextMenu(self, contextMenu=None):#, actionList): delegate = self.itemDelegate() if isinstance(delegate, LegendListItemWidget) and self.model(): if contextMenu is None: delegate.contextMenu = LegendListContextMenu(self.model()) delegate.contextMenu.sigContextMenu.connect(\ self._contextMenuSlot) else: delegate.contextMenu = contextMenu def __getitem__(self, idx): model = self.model() try: item = model[idx] except ValueError: item = None return item def _contextMenuSlot(self, ddict): self.sigLegendSignal.emit(ddict) def mousePressEvent(self, event): self.__lastButton = event.button() self.__lastPosition = event.pos() super(LegendListView, self).mousePressEvent(event) # call _handleMouseClick after editing was handled # If right click (context menu) is aborted, no # signal is emitted.. self._handleMouseClick(self.indexAt(self.__lastPosition)) def mouseDoubleClickEvent(self, event): self.__lastButton = event.button() self.__lastPosition = event.pos() qt.QListView.mouseDoubleClickEvent(self, event) # call _handleMouseClick after editing was handled # If right click (context menu) is aborted, no # signal is emitted.. self._handleMouseClick(self.indexAt(self.__lastPosition)) def mouseMoveEvent(self, event): # LegendListView.mouseMoveEvent is overwritten # to suppress unwanted behavior in the delegate. pass def mouseReleaseEvent(self, event): if DEBUG == 1: print('LegendListView.mouseReleaseEvent -- ' +'is overwritten to subpress unwanted ' +'behavior in the delegate.') def _handleMouseClick(self, modelIndex): ''' :param modelIndex: index of the clicked item :type modelIndex: QModelIndex Distinguish between mouse click on Legend and mouse click on CheckBox by setting the currentCheckState attribute in LegendListItem. Emits signal sigLegendSignal(ddict) ''' if DEBUG == 1: print('self._handleMouseClick called') if self.__lastButton not in [qt.Qt.LeftButton, qt.Qt.RightButton]: return if not modelIndex.isValid(): if DEBUG: print('_handleMouseClick -- Invalid QModelIndex') return model = self.model() idx = modelIndex.row() delegate = self.itemDelegate() cbClicked = False if isinstance(delegate, LegendListItemWidget): for cbRect in delegate.cbDict.values(): if cbRect.contains(self.__lastPosition): cbClicked = True break # TODO: Check for doubleclicks on legend/icon and spawn editors # item is tupel: (legend, icon, checkState, curveType) item = model[idx] ddict = { 'legend' : qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))), 'icon' : { 'linewidth' : qt.safe_str(convertToPyObject(modelIndex.data(LegendModel.iconLineWidthRole))), 'symbol' : qt.safe_str(convertToPyObject(modelIndex.data(LegendModel.iconSymbolRole))), 'color' : convertToPyObject(modelIndex.data(LegendModel.legendTypeRole)) }, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())) } if self.__lastButton == qt.Qt.RightButton: if DEBUG == 1: print('Right clicked') ddict['button'] = "right" ddict['event'] = self.__mouseClickedEvent elif cbClicked: if DEBUG == 1: print('CheckBox clicked') ddict['button'] = "left" ddict['event'] = self.__checkBoxClickedEvent else: if DEBUG == 1: print('Legend clicked') ddict['button'] = "left" ddict['event'] = self.__legendClickedEvent if DEBUG == 1: print(' idx: %d\n ddict: %s'%(idx, str(ddict))) self.sigLegendSignal.emit(ddict) class LegendListContextMenu(qt.QMenu): sigContextMenu = qt.pyqtSignal(object) def __init__(self, model): super(LegendListContextMenu, self).__init__(parent=None) self.model = model actionList = [('Set Active', self.setActiveAction), ('Map to left', self.mapToLeftAction), ('Map to right', self.mapToRightAction), ('Toggle points', self.togglePointsAction), ('Toggle lines', self.toggleLinesAction), ('Remove curve', self.removeItemAction), ('Rename curve', self.renameItemAction)] for name, action in actionList: self.addAction(name, action) def exec_(self, pos, idx): return self.exec(pos, idx) def exec(self, pos, idx): self.__currentIdx = idx super(LegendListContextMenu, self).popup(pos) def currentIdx(self): return self.__currentIdx def mapToLeftAction(self): if DEBUG: print('LegendListContextMenu.mapToLeftAction called') modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), 'event': "mapToLeft" } self.sigContextMenu.emit(ddict) def mapToRightAction(self): if DEBUG: print('LegendListContextMenu.mapToRightAction called') modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), 'event': "mapToRight" } self.sigContextMenu.emit(ddict) def removeItemAction(self): if DEBUG == 1: print('LegendListContextMenu.removeCurveAction called') modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), 'event': "removeCurve" } self.sigContextMenu.emit(ddict) self.model.removeRow(modelIndex.row()) def renameItemAction(self): if DEBUG == 1: print('LegendListContextMenu.renameCurveAction called') modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), 'event': "renameCurve" } self.sigContextMenu.emit(ddict) def toggleLinesAction(self): modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), } flag = convertToPyObject(modelIndex.data(LegendModel.showLineRole)) if flag: if DEBUG == 1: print('toggleLinesAction -- lines turned off') ddict['event'] = "toggleLine" ddict['line'] = False self.sigContextMenu.emit(ddict) self.model.setData(modelIndex, False, LegendModel.showLineRole) else: if DEBUG == 1: print('toggleLinesAction -- lines turned on') ddict['event'] = "toggleLine" ddict['line'] = True self.sigContextMenu.emit(ddict) self.model.setData(modelIndex, True, LegendModel.showLineRole) def togglePointsAction(self): modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), } flag = convertToPyObject(modelIndex.data(LegendModel.showSymbolRole)) symbol = convertToPyObject(modelIndex.data(LegendModel.iconSymbolRole)) if flag and (symbol is not None): if DEBUG == 1: print('togglePointsAction -- Symbols turned off') ddict['event'] = "togglePoints" ddict['points'] = False self.sigContextMenu.emit(ddict) self.model.setData(modelIndex, False, LegendModel.showSymbolRole) else: if DEBUG == 1: print('togglePointsAction -- Symbols turned on') ddict['event'] = "togglePoints" ddict['points'] = True self.sigContextMenu.emit(ddict) self.model.setData(modelIndex, True, LegendModel.showSymbolRole) def setActiveAction(self): modelIndex = self.currentIdx() legend = qt.safe_str(convertToPyObject(modelIndex.data(qt.Qt.DisplayRole))) if DEBUG: print('setActiveAction -- active curve:',legend) ddict = { 'legend' : legend, 'label' : legend, 'selected' : convertToPyObject(modelIndex.data(qt.Qt.CheckStateRole)), 'type' : qt.safe_str(convertToPyObject(modelIndex.data())), 'event': "setActiveCurve", } self.sigContextMenu.emit(ddict) class Notifier(qt.QObject): def __init__(self): qt.QObject.__init__(self) self.chk = True def signalReceived(self, **kw): obj = self.sender() print('NOTIFIER -- signal received\n\tsender:', str(obj)) if __name__ == '__main__': notifier = Notifier() legends = ['Legend0', 'Legend1', 'Long Legend 2', 'Foo Legend 3', 'Even Longer Legend 4', 'Short Leg 5', 'Dot symbol 6', 'Comma symbol 7'] colors = [qt.Qt.darkRed, qt.Qt.green, qt.Qt.yellow, qt.Qt.darkCyan, qt.Qt.blue, qt.Qt.darkBlue, qt.Qt.red, qt.Qt.darkYellow] #symbols = ['circle', 'triangle', 'utriangle', 'diamond', 'square', 'cross'] symbols = ['o', 't', '+', 'x', 's', 'd', '.', ','] app = qt.QApplication([]) win = LegendListView() #win = LegendListContextMenu() #win = qt.QWidget() #layout = qt.QVBoxLayout() #layout.setContentsMargins(0,0,0,0) llist = [] for idx, (l, c, s) in enumerate(zip(legends, colors, symbols)): ddict = { 'color': qt.QColor(c), 'linewidth': 4, 'symbol': s, } legend = l llist.append((legend, ddict)) #item = qt.QListWidgetItem(win) #legendWidget = LegendListItemWidget(l) #legendWidget.icon.setSymbol(s) #legendWidget.icon.setColor(qt.QColor(c)) #layout.addWidget(legendWidget) #win.setItemWidget(item, legendWidget) #win = LegendListItemWidget('Some Legend 1') #print(llist) model = LegendModel(legendList=llist) win.setModel(model) win.setSelectionModel(qt.QItemSelectionModel(model)) win.setContextMenu() #print('Edit triggers: %d'%win.editTriggers()) #win = LegendListWidget(None, legends) #win[0].updateItem(ddict) #win.setLayout(layout) win.sigLegendSignal.connect(notifier.signalReceived) win.show() win.clear() win.setLegendList(llist) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/MaskImageTools.py0000644000000000000000000002254414741736366022151 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Common tools to deal with common graphics operations on images. """ import sys import os import numpy from PyMca5 import spslut COLORMAP_LIST = [spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP, spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY] DEFAULT_COLORMAP_INDEX = 2 DEFAULT_COLORMAP_LOG_FLAG = False def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True): """ Convert from plot coordinates to image row and column. """ if xScale is None: c = x else: if x < xScale[0]: x = xScale[0] c = (x - xScale[0]) / xScale[1] if yScale is None: r = y else: if y < yScale[0]: y = yScale[0] r = ( y - yScale[0]) / yScale[1] if safe: c = min(int(c), shape[1] - 1) r = min(int(r), shape[0] - 1) else: c = int(c) r = int(r) return r, c def getPixmapFromData(ndarray, colormap=None, mask=None, colors=None): """ Calculate a colormap and apply a mask (given as a set of unsigned ints) to it. :param ndarray: Data values :type ndarray: Numpy array :param colormap: None or a list of seven parameters: 0. Colormap index. Positive integer 1. Autoscale flag 2. Minimum value to be mapped 3. Maximum value to be mapped 4. Minimum data value 5. Maximum data value 6. Flag to indicate mode (0 - linear, 1 - logarithmic) :type colormap: list or None (default) :param mask: Numpy array of indices to indicating mask levels :type mask: Numpy nd array of indices or None (default) :param colors: List containing the colors associated to the mask levels :type colors: Numpy array of dimensions (N mask levels, 4) or None (default) :returns: Numpy uint8 array of shape equal data.shape + [4] """ oldShape = list(ndarray.shape) # deal with numpy masked arrays if hasattr(ndarray, 'mask'): data = ndarray.data[:] else: data = ndarray[:] if len(oldShape) == 1: data.shape = -1, 1 elif len(oldShape) != 2: raise TypeError("Input array must be of dimension 2 got %d" % \ len(oldShape)) # deal with non finite data finiteData = numpy.isfinite(data) goodData = finiteData.min() if goodData: minData = data.min() maxData = data.max() else: tmpData = data[finiteData] if tmpData.size > 0: minData = tmpData.min() maxData = tmpData.max() else: minData = None maxData = None tmpData = None # apply colormap if colormap is None: colormapName = COLORMAP_LIST[min(DEFAULT_COLORMAP_INDEX, len(COLORMAP_LIST) - 1)] if DEFAULT_COLORMAP_LOG_FLAG: colormapScaling = spslut.log else: colormapScaling = spslut.LINEAR if minData is None: (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormapScaling, 3.0), "RGBX", colormapName, 1, (0, 1), (0, 255), 1) else: (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormapScaling,3.0), "RGBX", colormapName, 0, (minData,maxData), (0, 255), 1) else: if len(colormap) < 7: print("Missing colormap log flag assuming linear") colormap.append(spslut.LINEAR) if goodData: (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAP_LIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0, 255), 1) elif colormap[1]: #autoscale if minData is None: colormapName = COLORMAP_LIST[min(DEFAULT_COLORMAP_INDEX, len(COLORMAP_LIST) - 1)] colormapScaling = DEFAULT_COLORMAP_LOG_FLAG (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormapScaling, 3.0), "RGBX", colormapName, 1, (0, 1), (0, 255), 1) else: (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAP_LIST[int(str(colormap[0]))], 0, (minData, maxData), (0,255), 1) else: (pixmap, size, minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAP_LIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0,255), 1) # make sure alpha is set pixmap.shape = -1, 4 pixmap[:, 3] = 255 pixmap.shape = list(data.shape) + [4] if not goodData: pixmap[finiteData < 1] = 255 if mask is not None: return applyMaskToImage(pixmap, mask, colors=colors, copy=False) return pixmap def applyMaskToImage(pixmap, mask=None, colors=None, copy=True): """ Calculate the resulting pixmap after applying a mask. Each value of the mask indicates the color index to be used. :param pixmap: Numpy array of RGBA values. :type pixmap: Numpy ndarray. :param mask: Numpy array of positive indices. Usually of type uint8. :type mask: Numpy ndarray. :param colors: Array of dimension (n_colors, 4) containing the RGBA colors. :type colors: Numpy ndarray of uint8 values. :param copy: Flag to indicate if a copy of th einput pixmap is to be made. :type copy: Boolean, default True. :returns: The resulting pixmap. """ if copy: pixmap = pixmap.copy() if mask is None: return pixmap maxValue = mask.max() startIndex = mask.min() if colors is None: if maxValue == 1: startIndex = 1 colors = numpy.zeros((2, 4), dtype=numpy.uint8) colors[1, 3] = 255 else: raise ValueError("Different mask levels require color list input") oldShape = pixmap.shape pixmap.shape = -1, 4 maskView = mask[:] maskView.shape = -1, blendFactor = 0.8 for i in range(startIndex, maxValue + 1): idx = (maskView==i) pixmap[idx, :] = pixmap[idx, :] * blendFactor + \ colors[i] * (1.0 - blendFactor) pixmap.shape = oldShape return pixmap if __name__ == "__main__": from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PlotWidget app = qt.QApplication([]) w = PlotWidget.PlotWidget() data = numpy.arange(10000.).reshape(100, 100) mask = numpy.zeros(data.shape, dtype=numpy.uint8) mask[25:75, 25:75] = 1 image = getPixmapFromData(data, mask=mask) w.addImage(image, mask=mask) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/MaskImageWidget.py0000644000000000000000000027560414741736366022303 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaGraph.ctools import pnpoly from PyMca5.PyMcaGui.io import PyMcaFileDialogs from . import RGBCorrelatorGraph from . import ColormapDialog qt = RGBCorrelatorGraph.qt IconDict = RGBCorrelatorGraph.IconDict convertToRowAndColumn = RGBCorrelatorGraph.convertToRowAndColumn QTVERSION = qt.qVersion() if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str MATPLOTLIB = False try: from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave MATPLOTLIB = True except ImportError: MATPLOTLIB = False from PyMca5 import spslut from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaIO import ArraySave from . import ProfileScanWidget from PyMca5.PyMcaMath.fitting import SpecfitFuns COLORMAPLIST = [spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP, spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY] OVERLAY_DRAW = True DEFAULT_COLORMAP_INDEX = 2 DEFAULT_COLORMAP_LOG_FLAG = False _logger = logging.getLogger(__name__) USE_PICKER = False class MaskImageWidget(qt.QWidget): sigMaskImageWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent = None, rgbwidget=None, backend=None, selection=True, colormap=False, imageicons=True, standalonesave=True, usetab=False, profileselection=False, scanwindow=None, aspect=False, polygon=None, maxNRois=1): qt.QWidget.__init__(self, parent) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.setWindowTitle("PyMca - Image Selection Tool") if 0: screenHeight = qt.QDesktopWidget().height() if screenHeight > 0: self.setMaximumHeight(int(0.99*screenHeight)) self.setMinimumHeight(int(0.5*screenHeight)) screenWidth = qt.QDesktopWidget().width() if screenWidth > 0: self.setMaximumWidth(int(screenWidth)-5) self.setMinimumWidth(min(int(0.5*screenWidth),800)) self._y1AxisInverted = False self.__selectionMask = None self._selectionColors = None self.__imageData = None self.__pixmap0 = None self.__pixmap = None self.__image = None self._xScale = None self._yScale = None self._backend = backend self.colormap = None self.colormapDialog = None self.setDefaultColormap(DEFAULT_COLORMAP_INDEX, DEFAULT_COLORMAP_LOG_FLAG) self.rgbWidget = rgbwidget self.__imageIconsFlag = imageicons if polygon is None: polygon = imageicons self.__selectionFlag = selection self.__useTab = usetab self.mainTab = None self.__aspect = aspect self._maxNRois = maxNRois self._nRoi = 1 self._build(standalonesave, profileselection=profileselection, polygon=polygon) self._profileSelectionWindow = None self._profileScanWindow = scanwindow self.__brushMenu = None self.__brushMode = False self.__eraseMode = False self.__connected = True self.__setBrush2() self.outputDir = None self._saveFilter = None self._buildConnections() self._matplotlibSaveImage = None # the last overlay legend used self.__lastOverlayLegend = None self.__lastOverlayWidth = None # the projection mode self.__lineProjectionMode = 'D' def _build(self, standalonesave, profileselection=False, polygon=False): self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) if self.__useTab: self.mainTab = qt.QTabWidget(self) #self.graphContainer =qt.QWidget() #self.graphContainer.mainLayout = qt.QVBoxLayout(self.graphContainer) #self.graphContainer.mainLayout.setContentsMargins(0, 0, 0, 0) #self.graphContainer.mainLayout.setSpacing(0) self.graphWidget = RGBCorrelatorGraph.RGBCorrelatorGraph(self, backend=self._backend, selection = self.__selectionFlag, colormap=True, imageicons=self.__imageIconsFlag, standalonesave=False, standalonezoom=False, aspect=self.__aspect, profileselection=profileselection, polygon=polygon) self.mainTab.addTab(self.graphWidget, 'IMAGES') else: self.graphWidget = RGBCorrelatorGraph.RGBCorrelatorGraph(self, backend=self._backend, selection =self.__selectionFlag, colormap=True, imageicons=self.__imageIconsFlag, standalonesave=False, standalonezoom=False, profileselection=profileselection, aspect=self.__aspect, polygon=polygon) if self._maxNRois > 1: # multiple ROI control self._buildMultipleRois() else: self._roiTags=[1] #for easy compatibility with RGBCorrelatorGraph self.graph = self.graphWidget.graph if profileselection: self.graphWidget.sigProfileSignal.connect(self._profileSignalSlot) if standalonesave: self.buildStandaloneSaveMenu() self.graphWidget.zoomResetToolButton.clicked.connect(self._zoomResetSignal) self.graphWidget.graph.setDrawModeEnabled(False) self.graphWidget.graph.setZoomModeEnabled(True) if self.__selectionFlag: if self.__imageIconsFlag: self.setSelectionMode(False) self._toggleSelectionMode() self.graphWidget.graph.setDrawModeEnabled(True, shape="rectangle", label="mask") else: self.setSelectionMode(True) self._toggleSelectionMode() if self.__useTab: self.mainLayout.addWidget(self.mainTab) else: self.mainLayout.addWidget(self.graphWidget) def buildStandaloneSaveMenu(self): self.graphWidget.saveToolButton.clicked.connect(self._saveToolButtonSignal) self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Image Data"), self.saveImageList) self._saveMenu.addAction(QString("Colormap Clipped Seen Image Data"), self.saveClippedSeenImageList) self._saveMenu.addAction(QString("Clipped and Subtracted Seen Image Data"), self.saveClippedAndSubtractedSeenImageList) self._saveMenu.addAction(QString("Standard Graphics"), self.graphWidget._saveIconSignal) if MATPLOTLIB: self._saveMenu.addAction(QString("Matplotlib") , self._saveMatplotlibImage) def _buildMultipleRois(self): """ Multiple ROI control """ mytoolbar = self.graphWidget.toolBar self._nRoiLabel = qt.QLabel(mytoolbar) self._nRoiLabel.setText("Roi:") mytoolbar.layout().addWidget(self._nRoiLabel ) self._nRoiSelector = qt.QSpinBox(mytoolbar) self._nRoiSelector.setMinimum(1) self._nRoiSelector.setMaximum(self._maxNRois) mytoolbar.layout().addWidget(self._nRoiSelector) self._nRoiSelector.valueChanged[int].connect(self.setActiveRoiNumber) if 0: self._nRoiTagLabel = qt.QLabel(mytoolbar) self._nRoiTagLabel.setText("Tag:") mytoolbar.layout().addWidget(self._nRoiTagLabel) self._nRoiTag = qt.QSpinBox(mytoolbar) self._nRoiTag.setMinimum(1) self._nRoiTag.setMaximum(self._maxNRois) mytoolbar.layout().addWidget(self._nRoiTag) self._nRoiTag.valueChanged[int].connect(self.tagRoi) # initialize tags (ROI 1 , has tag 1, ROI 2 has tag 2, ...) self._roiTags = list(range(1, self._maxNRois + 1)) def _buildConnections(self, widget = None): self.graphWidget.hFlipToolButton.clicked.connect(self._hFlipIconSignal) self.graphWidget.colormapToolButton.clicked.connect(self.selectColormap) if self.__selectionFlag: self.graphWidget.selectionToolButton.clicked.connect(self._toggleSelectionMode) text = "Toggle between Selection\nand Zoom modes" self.graphWidget.selectionToolButton.setToolTip(text) if self.__imageIconsFlag: self.graphWidget.imageToolButton.clicked.connect(\ self.__resetSelection) self.graphWidget.eraseSelectionToolButton.clicked.connect(\ self._setEraseSelectionMode) self.graphWidget.rectSelectionToolButton.clicked.connect(\ self._setRectSelectionMode) self.graphWidget.brushSelectionToolButton.clicked.connect(\ self._setBrushSelectionMode) self.graphWidget.brushToolButton.clicked.connect(self._setBrush) if hasattr(self.graphWidget, "polygonSelectionToolButton"): self.graphWidget.polygonSelectionToolButton.clicked.connect(\ self._setPolygonSelectionMode) self.graphWidget.additionalSelectionToolButton.clicked.connect(\ self._additionalSelectionMenuDialog) self._additionalSelectionMenu = qt.QMenu() self._additionalSelectionMenu.addAction(QString("Reset Selection"), self.__resetSelection) self._additionalSelectionMenu.addAction(QString("Invert Selection"), self._invertSelection) self._additionalSelectionMenu.addAction(QString("I >= Colormap Max"), self._selectMax) self._additionalSelectionMenu.addAction(QString("Colormap Min < I < Colormap Max"), self._selectMiddle) self._additionalSelectionMenu.addAction(QString("I <= Colormap Min"), self._selectMin) self.graphWidget.graph.sigPlotSignal.connect(self._graphSignal) def setSelectionColors(self, selectionColors): """ selectionColors must be None or an array of shape (n, 4) of type numpy.uint8 """ if selectionColors is None: self._selectionColors = None return if selectionColors.shape[1] != 4: raise ValueError("Array of shape (maxNRois, 4) needed") if selectionColors.dtype != numpy.uint8: raise TypeError("Array of unsigned bytes needed") self._selectionColors = selectionColors def additionalSelectionMenu(self): return self._additionalSelectionMenu def updateProfileSelectionWindow(self): mode = self.graphWidget.getPickerSelectionMode() if self.__lastOverlayLegend is not None: if mode is None: # remove the overlay if present legend = self.__lastOverlayLegend self.graphWidget.graph.removeItem(legend) elif self.__lastOverlayWidth is not None: # create a fake signal ddict = {} ddict['event'] = "profileWidthChanged" ddict['pixelwidth'] = self.__lastOverlayWidth ddict['mode'] = mode self._profileSignalSlot(ddict) def _profileSignalSlot(self, ddict): _logger.debug("_profileSignalSLot, event = %s", ddict['event']) _logger.debug("Received ddict = %s", ddict) if ddict['event'] in [None, "NONE"]: #Nothing to be made return if ddict['event'] == "profileWidthChanged": if self.__lastOverlayLegend is not None: legend = self.__lastOverlayLegend #TODO: Find a better way to deal with this if legend in self.graphWidget.graph._itemDict: info = self.graphWidget.graph._itemDict[legend]['info'] if info['mode'] == ddict['mode']: newDict = {} newDict['event'] = "updateProfile" newDict['xdata'] = info['xdata'] * 1 newDict['ydata'] = info['ydata'] * 1 newDict['mode'] = info['mode'] * 1 newDict['pixelwidth'] = ddict['pixelwidth'] * 1 info = None #self._updateProfileCurve(newDict) self._profileSignalSlot(newDict) return if self._profileSelectionWindow is None: if self._profileScanWindow is None: #identical to the standard scan window self._profileSelectionWindow = ProfileScanWidget.ProfileScanWidget(actions=False) else: self._profileSelectionWindow = ProfileScanWidget.ProfileScanWidget(actions=True) self._profileSelectionWindow.sigAddClicked.connect( \ self._profileSelectionSlot) self._profileSelectionWindow.sigRemoveClicked.connect( \ self._profileSelectionSlot) self._profileSelectionWindow.sigReplaceClicked.connect( self._profileSelectionSlot) self._interpolate = SpecfitFuns.interpol #if I do not return here and the user interacts with the graph while #the profileSelectionWindow is not shown, I get crashes under Qt 4.5.3 and MacOS X #when calling _getProfileCurve ############## TODO: show it here? self._profileSelectionWindow.show() return self._updateProfileCurve(ddict) def _updateProfileCurve(self, ddict): curve = self._getProfileCurve(ddict) if curve is None: return xdata, ydata, legend, info = curve replot=True replace=True idx = numpy.isfinite(ydata) xdata = xdata[idx] ydata = ydata[idx] self._profileSelectionWindow.addCurve(xdata, ydata, legend=legend, info=info, replot=replot, replace=replace) def getGraphTitle(self): try: title = self.graphWidget.graph.getGraphTitle() if sys.version < '3.0': title = qt.safe_str(title) except Exception: title = "" return title def setGraphTitle(self, title=""): self.graphWidget.graph.setGraphTitle(title) def setLineProjectionMode(self, mode): """ Set the line projection mode. mode: 1 character string. Allowed options 'D', 'X' 'Y' D - Plot the intensity over the drawn line over as many intervals as pixels over the axis containing the longest projection in pixels. X - Plot the intensity over the drawn line over as many intervals as pixels over the X axis Y - Plot the intensity over the drawn line over as many intervals as pixels over the Y axis """ m = mode.upper() if m not in ['D', 'X', 'Y']: raise ValueError("Invalid mode %s. It has to be 'D', 'X' or 'Y'") self.__lineProjectionMode = m def getLineProjectionMode(self): return self.__lineProjectionMode def _getProfileCurve(self, ddict, image=None, overlay=OVERLAY_DRAW): if image is None: imageData = self.__imageData else: imageData = image if imageData is None: return None title = self.getGraphTitle() self._profileSelectionWindow.setGraphTitle(title) if self._profileScanWindow is not None: self._profileSelectionWindow.label.setText(title) #showing the profileSelectionWindow now can make the program crash if the workaround mentioned above #is not implemented self._profileSelectionWindow.show() #self._profileSelectionWindow.raise_() if ddict['event'] == 'profileModeChanged': if self.__lastOverlayLegend: self.graphWidget.graph.removeItem(self.__lastOverlayLegend, replot=True) return #if I show the image here it does not crash, but it is not nice because #the user would get the profileSelectionWindow under his mouse #self._profileSelectionWindow.show() if ('row' in ddict) and ('column' in ddict): # probably arriving after width changed pass else: r0, c0 = convertToRowAndColumn(ddict['xdata'][0], ddict['ydata'][0], self.__imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) r1, c1 = convertToRowAndColumn(ddict['xdata'][1], ddict['ydata'][1], self.__imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) ddict['row'] = [r0, r1] ddict['column'] = [c0, c1] shape = imageData.shape width = ddict['pixelwidth'] - 1 if ddict['mode'].upper() in ["HLINE", "HORIZONTAL"]: xLabel = self.getXLabel() deltaDistance = 1.0 if width < 1: row = int(ddict['row'][0]) if row < 0: row = 0 if row >= shape[0]: row = shape[0] - 1 ydata = imageData[row, :] legend = "Row = %d" % row if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([0.0, shape[1], shape[1], 0.0], [row, row, row+1, row+1], legend=ddict['mode'], info=ddict, replace=True, replot=True) else: row0 = int(int(ddict['row'][0]) - 0.5 * width) if row0 < 0: row0 = 0 row1 = row0 + width else: row1 = int(int(ddict['row'][0]) + 0.5 * width) if row1 >= shape[0]: row1 = shape[0] - 1 row0 = max(0, row1 - width) ydata = imageData[row0:row1+1, :].sum(axis=0) legend = "Row = %d to %d" % (row0, row1) if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([0.0, 0.0, shape[1], shape[1]], [row0, row1+1, row1+1, row0], legend=ddict['mode'], info=ddict, replace=True, replot=True) xdata = numpy.arange(shape[1]).astype(numpy.float64) if self._xScale is not None: xdata = self._xScale[0] + xdata * self._xScale[1] elif ddict['mode'].upper() in ["VLINE", "VERTICAL"]: xLabel = self.getYLabel() deltaDistance = 1.0 if width < 1: column = int(ddict['column'][0]) if column < 0: column = 0 if column >= shape[1]: column = shape[1] - 1 ydata = imageData[:, column] legend = "Column = %d" % column if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([column, column, column+1, column+1], [0.0, shape[0], shape[0], 0.0], legend=ddict['mode'], info=ddict, replace=True, replot=True) else: col0 = int(int(ddict['column'][0]) - 0.5 * width) if col0 < 0: col0 = 0 col1 = col0 + width else: col1 = int(int(ddict['column'][0]) + 0.5 * width) if col1 >= shape[1]: col1 = shape[1] - 1 col0 = max(0, col1 - width) ydata = imageData[:, col0:col1+1].sum(axis=1) legend = "Col = %d to %d" % (col0, col1) if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([col0, col0, col1+1, col1+1], [0, shape[0], shape[0], 0.], legend=ddict['mode'], info=ddict, replace=True, replot=True) xdata = numpy.arange(shape[0]).astype(numpy.float64) if self._yScale is not None: xdata = self._yScale[0] + xdata * self._yScale[1] elif ddict['mode'].upper() in ["LINE"]: if len(ddict['column']) == 1: #only one point given return #the coordinates of the reference points x0 = numpy.arange(float(shape[0])) y0 = numpy.arange(float(shape[1])) #get the interpolation points col0, col1 = [int(x) for x in ddict['column']] row0, row1 = [int(x) for x in ddict['row']] deltaCol = abs(col0 - col1) deltaRow = abs(row0 - row1) if self.__lineProjectionMode == 'X' or ( self.__lineProjectionMode == 'D' and deltaCol >= deltaRow): npoints = deltaCol + 1 if col1 < col0: # Invert start and end points row0, col0, row1, col1 = row1, col1, row0, col0 else: # mode == 'Y' or (mode == 'D' and deltaCol < deltaRow) npoints = deltaRow + 1 if row1 < row0: # Invert start and end points row0, col0, row1, col1 = row1, col1, row0, col0 if npoints == 1: #all points are the same _logger.debug("START AND END POINT ARE THE SAME!!") return # make sure we deal with integers npoints = int(npoints) if width < 0: # width = pixelwidth - 1 x = numpy.zeros((npoints, 2), numpy.float64) x[:, 0] = numpy.linspace(row0, row1, npoints) x[:, 1] = numpy.linspace(col0, col1, npoints) legend = "From (%.3f, %.3f) to (%.3f, %.3f)" % (col0, row0, col1, row1) #perform the interpolation ydata = self._interpolate((x0, y0), imageData, x) xdata = numpy.arange(float(npoints)) if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([col0, col1], [row0, row1], legend=ddict['mode'], info=ddict, replace=True, replot=True) elif deltaCol == 0: #vertical line col0 = int(int(ddict['column'][0]) - 0.5 * width) if col0 < 0: col0 = 0 col1 = col0 + width else: col1 = int(int(ddict['column'][0]) + 0.5 * width) if col1 >= shape[1]: col1 = shape[1] - 1 col0 = max(0, col1 - width) row0 = int(ddict['row'][0]) row1 = int(ddict['row'][1]) if row0 > row1: tmp = row0 row0 = row1 row1 = tmp if row0 < 0: row0 = 0 if row1 >= shape[0]: row1 = shape[0] - 1 ydata = imageData[row0:row1+1, col0:col1+1].sum(axis=1) legend = "Col = %d to %d" % (col0, col1) npoints = max(ydata.shape) xdata = numpy.arange(float(npoints)) if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([col0, col0, col1+1, col1+1], [row0, row1+1, row1+1, row0], legend=ddict['mode'], info=ddict, replace=True, replot=True) elif deltaRow == 0: #horizontal line row0 = int(int(ddict['row'][0]) - 0.5 * width) if row0 < 0: row0 = 0 row1 = row0 + width else: row1 = int(int(ddict['row'][0]) + 0.5 * width) if row1 >= shape[0]: row1 = shape[0] - 1 row0 = max(0, row1 - width) col0 = int(ddict['column'][0]) col1 = int(ddict['column'][1]) if col0 > col1: tmp = col0 col0 = col1 col1 = tmp if col0 < 0: col0 = 0 if col1 >= shape[1]: col1 = shape[1] - 1 ydata = imageData[row0:row1+1, col0:col1+1].sum(axis=0) legend = "Row = %d to %d" % (row0, row1) npoints = max(ydata.shape) xdata = numpy.arange(float(npoints)) if overlay: #self.drawOverlayItem(x, y, legend=name, info=info, replot, replace) self.drawOverlayItem([col0, col0, col1+1, col1+1], [row0, row1+1, row1+1, row0], legend=ddict['mode'], info=ddict, replace=True, replot=True) else: #restore original value of width width = ddict['pixelwidth'] #find m and b in the line y = mx + b m = (row1 - row0) / float((col1 - col0)) b = row0 - m * col0 alpha = numpy.arctan(m) #imagine the following sequence # - change origin to the first point # - clock-wise rotation to bring the line on the x axis of a new system # so that the points (col0, row0) and (col1, row1) become (x0, 0) (x1, 0) # - counter clock-wise rotation to get the points (x0, -0.5 width), # (x0, 0.5 width), (x1, 0.5 * width) and (x1, -0.5 * width) back to the # original system. # - restore the origin to (0, 0) # - if those extremes are inside the image the selection is acceptable cosalpha = numpy.cos(alpha) sinalpha = numpy.sin(alpha) newCol0 = 0.0 newCol1 = (col1-col0) * cosalpha + (row1-row0) * sinalpha newRow0 = 0.0 newRow1 = -(col1-col0) * sinalpha + (row1-row0) * cosalpha _logger.debug("new X0 Y0 = %f, %f ", newCol0, newRow0) _logger.debug("new X1 Y1 = %f, %f ", newCol1, newRow1) tmpX = numpy.linspace(newCol0, newCol1, npoints).astype(numpy.float64) rotMatrix = numpy.zeros((2,2), numpy.float64) rotMatrix[0,0] = cosalpha rotMatrix[0,1] = - sinalpha rotMatrix[1,0] = sinalpha rotMatrix[1,1] = cosalpha if _logger.getEffectiveLevel() == logging.DEBUG: #test if I recover the original points testX = numpy.zeros((2, 1), numpy.float64) colRow = numpy.dot(rotMatrix, testX) _logger.debug("Recovered X0 = %f", colRow[0, 0] + col0) _logger.debug("Recovered Y0 = %f", colRow[1, 0] + row0) _logger.debug("It should be = %f, %f", col0, row0) testX[0, 0] = newCol1 testX[1, 0] = newRow1 colRow = numpy.dot(rotMatrix, testX) _logger.debug("Recovered X1 = %f", colRow[0, 0] + col0) _logger.debug("Recovered Y1 = %f", colRow[1, 0] + row0) _logger.debug("It should be = %f, %f", col1, row1) #find the drawing limits testX = numpy.zeros((2, 4) , numpy.float64) testX[0,0] = newCol0 testX[0,1] = newCol0 testX[0,2] = newCol1 testX[0,3] = newCol1 testX[1,0] = newRow0 - 0.5 * width testX[1,1] = newRow0 + 0.5 * width testX[1,2] = newRow1 + 0.5 * width testX[1,3] = newRow1 - 0.5 * width colRow = numpy.dot(rotMatrix, testX) colLimits0 = colRow[0, :] + col0 rowLimits0 = colRow[1, :] + row0 for a in rowLimits0: if (a >= shape[0]) or (a < 0): _logger.debug("outside row limits %s" % a) return for a in colLimits0: if (a >= shape[1]) or (a < 0): _logger.debug("outside column limits %s" % a) return r0 = rowLimits0[0] r1 = rowLimits0[1] if r0 > r1: _logger.debug("r0 > r1 %s %s" % (r0, r1)) raise ValueError("r0 > r1") x = numpy.zeros((2, npoints) , numpy.float64) tmpMatrix = numpy.zeros((npoints, 2) , numpy.float64) if 0: #take only the central point oversampling = 1 x[0, :] = tmpX x[1, :] = 0.0 colRow = numpy.dot(rotMatrix, x) colRow[0, :] += col0 colRow[1, :] += row0 tmpMatrix[:,0] = colRow[1,:] tmpMatrix[:,1] = colRow[0,:] ydataCentral = self._interpolate((x0, y0),\ imageData, tmpMatrix) #multiply by width too have the equivalent scale ydata = ydataCentral else: if True: #ddict['event'] == "PolygonSelected": #oversampling solves noise introduction issues oversampling = width + 1 oversampling = min(oversampling, 21) else: oversampling = 1 ncontributors = int(width * oversampling) iterValues = numpy.linspace(-0.5*width, 0.5*width, ncontributors) tmpMatrix = numpy.zeros((npoints*len(iterValues), 2) , numpy.float64) x[0, :] = tmpX offset = 0 for i in iterValues: x[1, :] = i colRow = numpy.dot(rotMatrix, x) colRow[0, :] += col0 colRow[1, :] += row0 """ colLimits = [colRow[0, 0], colRow[0, -1]] rowLimits = [colRow[1, 0], colRow[1, -1]] for a in rowLimits: if (a >= shape[0]) or (a < 0): print("outside row limits",a) return for a in colLimits: if (a >= shape[1]) or (a < 0): print("outside column limits",a) return """ #it is much faster to make one call to the interpolating #routine than making many calls tmpMatrix[offset:(offset+npoints),0] = colRow[1,:] tmpMatrix[offset:(offset+npoints),1] = colRow[0,:] offset += npoints ydata = self._interpolate((x0, y0),\ imageData, tmpMatrix) ydata.shape = len(iterValues), npoints ydata = ydata.sum(axis=0) #deal with the oversampling ydata /= oversampling xdata = numpy.arange(float(npoints)) legend = "y = %f (x-%.1f) + %f ; width=%d" % (m, col0, b, width) if overlay: self.drawOverlayItem(colLimits0, rowLimits0, legend=ddict['mode'], info=ddict, replace=True, replot=True) if self.__lineProjectionMode == 'X': xLabel = self.getXLabel() xdata += col0 if self._xScale is not None: xdata = self._xScale[0] + xdata * self._xScale[1] elif self.__lineProjectionMode == 'Y': xLabel = self.getYLabel() xdata += row0 if self._xScale is not None: xdata = self._yScale[0] + xdata * self._yScale[1] else: xLabel = "Distance" if self._xScale is not None: deltaCol *= self._xScale[1] deltaRow *= self._yScale[1] #get the abscisa in distance units deltaDistance = numpy.sqrt(float(deltaCol) * deltaCol + float(deltaRow) * deltaRow)/(npoints-1.0) xdata *= deltaDistance else: _logger.debug("Mode %s not supported yet %s", ddict['mode']) return self.__lastOverlayWidth = ddict['pixelwidth'] info = {} info['xlabel'] = xLabel info['ylabel'] = "Z" return xdata, ydata, legend, info def _profileSelectionSlot(self, ddict): _logger.debug("%s", ddict) # the curves as [[x0, y0, legend0, info0], ...] curveList = ddict['curves'] label = ddict['label'] n = len(curveList) if ddict['event'] == 'ADD': for i in range(n): x, y, legend, info = curveList[i] info['profilelabel'] = label if i == (n-1): replot = True self._profileScanWindow.addCurve(x, y, legend=legend, info=info, replot=replot, replace=False) elif ddict['event'] == 'REPLACE': for i in range(n): x, y, legend, info = curveList[i] info['profilelabel'] = label if i in [0, n-1]: replace = True else: replace = False if i == (n-1): replot = True else: replot = False self._profileScanWindow.addCurve(x, y, legend=legend, info=info, replot=replot, replace=replace) elif ddict['event'] == 'REMOVE': curveList = self._profileScanWindow.getAllCurves() if curveList in [None, []]: return toDelete = [] n = len(curveList) for i in range(n): x, y, legend, info = curveList[i] curveLabel = info.get('profilelabel', None) if curveLabel is not None: if label == curveLabel: toDelete.append(legend) n = len(toDelete) for i in range(n): legend = toDelete[i] if i == (n-1): replot = True else: replot = False self._profileScanWindow.removeCurve(legend, replot=replot) def drawOverlayItem(self, x, y, legend=None, info=None, replace=False, replot=True): #same call as the plot1D addCurve command if legend is None: legend="UnnamedOverlayItem" #the type of x can be list or array shape = self.__imageData.shape if self._xScale is None: xList = x else: xList = [] for i in x: xList.append(self._xScale[0] + i * self._xScale[1]) if self._yScale is None: yList = y else: yList = [] for i in y: yList.append(self._yScale[0] + i * self._yScale[1]) self.graphWidget.graph.addItem(xList, yList, legend=legend, info=info, replace=replace, replot=replot, shape="polygon", fill=True) self.__lastOverlayLegend = legend def _hFlipIconSignal(self): self._y1AxisInverted = self.graphWidget.graph.isYAxisInverted() if self._y1AxisInverted: self._y1AxisInverted = False else: self._y1AxisInverted = True #self.graphWidget.graph.zoomReset() self.graphWidget.graph.invertYAxis(self._y1AxisInverted) self._y1AxisInverted = self.graphWidget.graph.isYAxisInverted() self.graphWidget.graph.replot() #inform the other widgets ddict = {} ddict['event'] = "hFlipSignal" ddict['current'] = self._y1AxisInverted * 1 ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def setY1AxisInverted(self, value): self._y1AxisInverted = value self.graphWidget.graph.invertYAxis(self._y1AxisInverted) def setXLabel(self, label="Column"): return self.graphWidget.setXLabel(label) def setYLabel(self, label="Row"): return self.graphWidget.setYLabel(label) def getXLabel(self): return self.graphWidget.getXLabel() def getYLabel(self): return self.graphWidget.getYLabel() def buildAndConnectImageButtonBox(self, replace=True, multiple=False): # The IMAGE selection self.imageButtonBox = qt.QWidget(self) buttonBox = self.imageButtonBox self.imageButtonBoxLayout = qt.QHBoxLayout(buttonBox) self.imageButtonBoxLayout.setContentsMargins(0, 0, 0, 0) self.imageButtonBoxLayout.setSpacing(0) self.addImageButton = qt.QPushButton(buttonBox) icon = qt.QIcon(qt.QPixmap(IconDict["rgb16"])) self.addImageButton.setIcon(icon) self.addImageButton.setText("ADD IMAGE") self.imageButtonBoxLayout.addWidget(self.addImageButton) if multiple: self.addAllImageButton = qt.QPushButton(buttonBox) self.addAllImageButton.setIcon(icon) self.addAllImageButton.setText("ADD ALL") self.imageButtonBoxLayout.addWidget(self.addAllImageButton) self.addAllImageButton.clicked.connect( \ self._addAllImageClicked) self.removeImageButton = qt.QPushButton(buttonBox) self.removeImageButton.setIcon(icon) self.removeImageButton.setText("REMOVE IMAGE") self.imageButtonBoxLayout.addWidget(self.removeImageButton) self.mainLayout.addWidget(buttonBox) self.addImageButton.clicked.connect(self._addImageClicked) self.removeImageButton.clicked.connect(self._removeImageClicked) if replace: self.replaceImageButton = qt.QPushButton(buttonBox) self.replaceImageButton.setIcon(icon) self.replaceImageButton.setText("REPLACE IMAGE") self.imageButtonBoxLayout.addWidget(self.replaceImageButton) self.replaceImageButton.clicked.connect( \ self._replaceImageClicked) def _setEraseSelectionMode(self): _logger.debug("_setEraseSelectionMode") self.__eraseMode = True self.__brushMode = True self.graphWidget.graph.setDrawModeEnabled(False) def _setRectSelectionMode(self): _logger.debug("_setRectSelectionMode") self.__eraseMode = False self.__brushMode = False self.graphWidget.graph.setDrawModeEnabled(True, shape="rectangle", label="mask") def _setPolygonSelectionMode(self): self.__eraseMode = False self.__brushMode = False self.graphWidget.graph.setDrawModeEnabled(True, shape="polygon", label="mask") def _setBrushSelectionMode(self): _logger.debug("_setBrushSelectionMode") self.__eraseMode = False self.__brushMode = True self.graphWidget.graph.setDrawModeEnabled(False) def _setBrush(self): _logger.debug("_setBrush") if self.__brushMenu is None: self.__brushMenu = qt.QMenu() self.__brushMenu.addAction(QString(" 1 Image Pixel Width"), self.__setBrush1) self.__brushMenu.addAction(QString(" 2 Image Pixel Width"), self.__setBrush2) self.__brushMenu.addAction(QString(" 3 Image Pixel Width"), self.__setBrush3) self.__brushMenu.addAction(QString(" 5 Image Pixel Width"), self.__setBrush4) self.__brushMenu.addAction(QString("10 Image Pixel Width"), self.__setBrush5) self.__brushMenu.addAction(QString("20 Image Pixel Width"), self.__setBrush6) self.__brushMenu.exec(self.cursor().pos()) def __setBrush1(self): self.__brushWidth = 1 def __setBrush2(self): self.__brushWidth = 2 def __setBrush3(self): self.__brushWidth = 3 def __setBrush4(self): self.__brushWidth = 5 def __setBrush5(self): self.__brushWidth = 10 def __setBrush6(self): self.__brushWidth = 20 def _toggleSelectionMode(self): drawMode = self.graphWidget.graph.getDrawMode() if drawMode is None: # we are not drawing anything if self.graphWidget.graph.isZoomModeEnabled(): # we have to pass to mask mode self.setSelectionMode(True) else: # we set zoom mode and show the line icons self.setSelectionMode(False) elif drawMode['label'] is not None: if drawMode['label'].startswith('mask'): #we set the zoom mode and show the line icons self.setSelectionMode(False) else: # we disable zoom and drawing and set mask mode self.setSelectionMode(True) elif drawMode['label'] in [None]: # we are not drawing anything if self.graphWidget.graph.isZoomModeEnabled(): # we have to pass to mask mode self.setSelectionMode(True) else: # we set zoom mode and show the line icons self.setSelectionMode(False) def setSelectionMode(self, mode=None): #does it have sense to enable the selection without the image selection icons? #if not self.__imageIconsFlag: # mode = False if mode: self.graphWidget.graph.setDrawModeEnabled(True, 'rectangle', label='mask') self.__brushMode = False self.graphWidget.hideProfileSelectionIcons() self.graphWidget.selectionToolButton.setChecked(True) self.graphWidget.selectionToolButton.setDown(True) self.graphWidget.showImageIcons() else: self.graphWidget.showProfileSelectionIcons() self.graphWidget.graph.setZoomModeEnabled(True) self.graphWidget.selectionToolButton.setChecked(False) self.graphWidget.selectionToolButton.setDown(False) self.graphWidget.hideImageIcons() if self.__imageData is None: return def _additionalSelectionMenuDialog(self): if self.__imageData is None: return self._additionalSelectionMenu.exec(self.cursor().pos()) def _getSelectionMinMax(self): if self.colormap is None: goodData = self.__imageData[numpy.isfinite(self.__imageData)] maxValue = goodData.max() minValue = goodData.min() else: minValue = self.colormap[2] maxValue = self.colormap[3] return minValue, maxValue def _selectMax(self): selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self.__imageData, copy=True) tmpData[~numpy.isfinite(self.__imageData)] = minValue selectionMask[tmpData >= maxValue] = 1 self.setSelectionMask(selectionMask, plot=False) self.plotImage(update=False) self._emitMaskChangedSignal() def _selectMiddle(self): selectionMask = numpy.ones(self.__imageData.shape, numpy.uint8) minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self.__imageData, copy=True) tmpData[~numpy.isfinite(self.__imageData)] = maxValue selectionMask[tmpData >= maxValue] = 0 selectionMask[tmpData <= minValue] = 0 self.setSelectionMask(selectionMask, plot=False) self.plotImage(update=False) self._emitMaskChangedSignal() def _selectMin(self): selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self.__imageData, copy=True) tmpData[~numpy.isfinite(self.__imageData)] = maxValue selectionMask[tmpData <= minValue] = 1 self.setSelectionMask(selectionMask, plot=False) self.plotImage(update=False) self._emitMaskChangedSignal() def _invertSelection(self): if self.__imageData is None: return mask = numpy.ones(self.__imageData.shape, numpy.uint8) if self.__selectionMask is not None: mask[self.__selectionMask > 0] = 0 self.setSelectionMask(mask, plot=True) self._emitMaskChangedSignal() def __resetSelection(self): # Needed because receiving directly in _resetSelection it was passing # False as argument self._resetSelection(True) def _resetSelection(self, owncall=True): _logger.debug("_resetSelection") self.__selectionMask = None if self.__imageData is None: return #self.__selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) self.plotImage(update = True) #inform the others if owncall: ddict = {} ddict['event'] = "resetSelection" ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def setSelectionMask(self, mask, plot=True): if mask is not None: if self.__imageData is not None: # this operation will be made when retrieving the mask #mask *= numpy.isfinite(self.__imageData) if self.__imageData.size == mask.size: view = mask[:] view.shape = self.__imageData.shape mask = view self.__selectionMask = mask if plot: self.plotImage(update=False) def getSelectionMask(self): if self.__imageData is None: return None if self.__selectionMask is None: return numpy.zeros(self.__imageData.shape, numpy.uint8) *\ numpy.isfinite(self.__imageData) return self.__selectionMask *\ numpy.isfinite(self.__imageData) def setImageData(self, data, clearmask=False, xScale=None, yScale=None): self.__image = None self._xScale = xScale self._yScale = yScale if data is None: self.__imageData = data if not clearmask: self.__selectionMask = None self.plotImage(update=True) self.graphWidget._zoomReset(replot=True) return else: self.__imageData = data if clearmask: self.__selectionMask = None if self.__selectionMask is not None and self.__imageData is not None: if self.__selectionMask.size == self.__imageData.size: view = self.__selectionMask[:] view.shape = self.__imageData.shape self.__selectionMask = view else: # reset selection mask self.__selectionMask = None _logger.info("Resetting incompatible mask") if self.colormapDialog is not None: goodData = self.__imageData[numpy.isfinite(self.__imageData)] minData = goodData.min() maxData = goodData.max() if self.colormapDialog.autoscale: self.colormapDialog.setDisplayedMinValue(minData) self.colormapDialog.setDisplayedMaxValue(maxData) self.colormapDialog.setDataMinMax(minData, maxData, update=True) else: self.plotImage(update = True) self.graphWidget._zoomReset(replot=True) def getImageData(self): return self.__imageData def getQImage(self): return self.__image def setQImage(self, qimage, width, height, clearmask=False, data=None): #This is just to get it different than None if (qimage.width() != width) or (qimage.height() != height): if 1 or (qimage.width() > width) or (qimage.height() > height): transformation = qt.Qt.SmoothTransformation else: transformation = qt.Qt.FastTransformation self.__image = qimage.scaled(qt.QSize(width, height), qt.Qt.IgnoreAspectRatio, transformation) else: self.__image = qimage if self.__image.format() == qt.QImage.Format_Indexed8: pixmap0 = numpy.frombuffer(qimage.bits().asstring(width * height), dtype=numpy.uint8) pixmap = numpy.zeros((height * width, 4), numpy.uint8) pixmap[:, 0] = pixmap0[:] pixmap[:, 1] = pixmap0[:] pixmap[:, 2] = pixmap0[:] pixmap[:, 3] = 255 pixmap.shape = height, width, 4 else: self.__image = self.__image.convertToFormat(qt.QImage.Format_ARGB32) pixmap0 = numpy.frombuffer(self.__image.bits().asstring(width * height * 4), dtype=numpy.uint8) pixmap = numpy.array(pixmap0, copy=True) pixmap.shape = height, width, -1 # Qt uses BGRA, convert to RGBA tmpBuffer = numpy.array(pixmap[:, :, 0], copy=True, dtype=pixmap.dtype) pixmap[:, :, 0] = pixmap[:, :, 2] pixmap[:, :, 2] = tmpBuffer if data is None: self.__imageData = numpy.zeros((height, width), numpy.float64) self.__imageData = pixmap[:,:,0] * 0.299 +\ pixmap[:,:,1] * 0.587 +\ pixmap[:,:,2] * 0.114 else: self.__imageData = data self.__imageData.shape = height, width self._xScale = None self._yScale = None self.__pixmap0 = pixmap if clearmask: self.__selectionMask = None self.plotImage(update = True) self.graphWidget._zoomReset(replot=True) def plotImage(self, update=True): if self.__imageData is None: self.graphWidget.graph.clear() return if update: self.getPixmapFromData() self.__pixmap0 = self.__pixmap.copy() self.__applyMaskToImage() # replot=False as it triggers a zoom reset in Plot.py self.graphWidget.graph.addImage(self.__pixmap, "image", xScale=self._xScale, yScale=self._yScale, replot=False) self.graphWidget.graph.replot() self.updateProfileSelectionWindow() def getPixmapFromData(self): colormap = self.colormap if self.__image is not None: self.__pixmap = self.__pixmap0.copy() return if hasattr(self.__imageData, 'mask'): data = self.__imageData.data else: data = self.__imageData finiteData = numpy.isfinite(data) goodData = finiteData.min() if self.colormapDialog is not None: minData = self.colormapDialog.dataMin maxData = self.colormapDialog.dataMax else: if goodData: minData = data.min() maxData = data.max() else: tmpData = data[finiteData] if tmpData.size > 0: minData = tmpData.min() maxData = tmpData.max() else: minData = None maxData = None tmpData = None if colormap is None: if minData is None: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 1, (0, 1), (0, 255), 1) else: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 0, (minData,maxData), (0, 255), 1) else: if len(colormap) < 7: colormap.append(spslut.LINEAR) if goodData: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0,255), 1) elif colormap[1]: #autoscale if minData is None: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (self.__defaultColormapType,3.0), "RGBX", self.__defaultColormap, 1, (0, 1), (0, 255), 1) else: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], 0, (minData,maxData), (0,255), 1) else: (self.__pixmap,size,minmax)= spslut.transform(\ data, (1,0), (colormap[6],3.0), "RGBX", COLORMAPLIST[int(str(colormap[0]))], colormap[1], (colormap[2],colormap[3]), (0,255), 1) self.__pixmap.shape = [data.shape[0], data.shape[1], 4] if not goodData: self.__pixmap[finiteData < 1] = 255 return self.__pixmap def getPixmap(self, original=True): if original: if self.__pixmap0 is None: return self.__pixmap else: return self.__pixmap0 else: # in this case also the mask may been applied return self.__pixmap def tagRoi(self, intValue): #get current ROI tag oldTag = self._roiTags[self._nRoi - 1] newTag = intValue if oldTag != newTag: self._roiTags[self._roiTags.index(intValue)] = oldTag self._roiTags[self._nRoi - 1] = newTag if self.__selectionMask is not None: mem0 = (self.__selectionMask == oldTag) mem1 = (self.__selectionMask == newTag) self.__selectionMask[mem0] = newTag self.__selectionMask[mem1] = oldTag self.plotImage(update=False) def setActiveRoiNumber(self, intValue): self._nRoi = intValue if 0: self.tagRoi(self._roiTags[intValue-1]) else: self.plotImage(update=False) def __applyMaskToImageOLD(self): """ Method kept for reference till the new one is fully tested """ if self.__selectionMask is None: return #if not self.__selectionFlag: # print("Return because of selection flag") # return if self._maxNRois < 2: alteration = (1 - (0.2 * self.__selectionMask)) else: alteration = (1 - (0.2 * (self.__selectionMask > 0))) - \ 0.1 * (self.__selectionMask == self._nRoi) if self.colormap is None: if self.__image is not None: if self.__image.format() == qt.QImage.Format_ARGB32: for i in range(4): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] *\ alteration).astype(numpy.uint8) else: self.__pixmap = self.__pixmap0.copy() self.__pixmap[self.__selectionMask>0,0] = 0x40 self.__pixmap[self.__selectionMask>0,2] = 0x70 self.__pixmap[self.__selectionMask>0,3] = 0x40 else: if self.__defaultColormap > 1: for i in range(3): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] *\ alteration) if 0: #this is to recolor non finite points tmpMask = numpy.isfinite(self.__imageData) goodData = numpy.isfinite(self.__imageData).min() if not goodData: for i in range(3): self.__pixmap[:,:,i] *= tmpMask else: self.__pixmap = self.__pixmap0.copy() self.__pixmap[self.__selectionMask>0,0] = 0x40 self.__pixmap[self.__selectionMask>0,2] = 0x70 self.__pixmap[self.__selectionMask>0,3] = 0x40 if 0: #this is to recolor non finite points tmpMask = ~numpy.isfinite(self.__imageData) badData = numpy.isfinite(self.__imageData).max() if badData: self.__pixmap[tmpMask,0] = 0x00 self.__pixmap[tmpMask,1] = 0xff self.__pixmap[tmpMask,2] = 0xff self.__pixmap[tmpMask,3] = 0xff elif int(str(self.colormap[0])) > 1: #color tmp = 1 - 0.2 * self.__selectionMask for i in range(3): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] *\ tmp) if 0: tmpMask = numpy.isfinite(self.__imageData) goodData = numpy.isfinite(self.__imageData).min() if not goodData: if not goodData: for i in range(3): self.__pixmap[:,:,i] *= tmpMask else: self.__pixmap = self.__pixmap0.copy() tmp = 1 - self.__selectionMask self.__pixmap[:,:, 2] = (0x70 * self.__selectionMask) +\ tmp * self.__pixmap0[:,:,2] self.__pixmap[:,:, 3] = (0x40 * self.__selectionMask) +\ tmp * self.__pixmap0[:,:,3] if 0: tmpMask = ~numpy.isfinite(self.__imageData) badData = numpy.isfinite(self.__imageData).max() if badData: self.__pixmap[tmpMask,0] = 0x00 self.__pixmap[tmpMask,1] = 0xff self.__pixmap[tmpMask,2] = 0xff self.__pixmap[tmpMask,3] = 0xff return def __applyMaskToImage(self): if self.__selectionMask is None: self.__selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) #if not self.__selectionFlag: # print("Return because of selection flag") # return if self._selectionColors is not None: self.__pixmap = self.__pixmap0.copy() for i in range(1, self._maxNRois + 1): color = self._selectionColors[i - 1].copy() self.__pixmap[self.__selectionMask == i] = color return if self._maxNRois < 2: alteration = (1 - (0.3 * (self.__selectionMask > 0))) else: alteration = (1 - (0.2 * (self.__selectionMask > 0))) - \ 0.1 * (self.__selectionMask == self._roiTags[self._nRoi - 1]) if self.colormap is None: _logger.debug("Colormap is None") if self.__image is not None: if self.__image.format() == qt.QImage.Format_ARGB32: _logger.debug("__applyMaskToImage CASE 1") for i in range(4): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] *\ alteration).astype(numpy.uint8) else: _logger.debug("__applyMaskToImage CASE 2") self.__pixmap = self.__pixmap0.copy() tmp = self.__selectionMask > 0 self.__pixmap[tmp, 0] = 0x40 self.__pixmap[tmp, 2] = 0x70 self.__pixmap[tmp, 3] = 0x40 if self._maxNRois > 1: roiTag = (self.__selectionMask == self._roiTags[self._nRoi - 1]) self.__pixmap[roiTag, 0] = 2*0x40 self.__pixmap[roiTag, 2] = 2*0x70 self.__pixmap[roiTag, 3] = 2*0x40 else: if self.__defaultColormap > 1: _logger.debug("__applyMaskToImage CASE 3") self.__pixmap = self.__pixmap0.copy() for i in range(3): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] *\ alteration) if 0: #this is to recolor non finite points tmpMask = numpy.isfinite(self.__imageData) goodData = numpy.isfinite(self.__imageData).min() if not goodData: for i in range(3): self.__pixmap[:,:,i] *= tmpMask else: _logger.debug("__applyMaskToImage CASE 4") self.__pixmap = self.__pixmap0.copy() self.__pixmap[self.__selectionMask>0,0] = 0x40 self.__pixmap[self.__selectionMask>0,2] = 0x70 self.__pixmap[self.__selectionMask>0,3] = 0x40 if self._maxNRois > 1: self.__pixmap[self.__selectionMask==self._nRoi,0] = 2*0x40 self.__pixmap[self.__selectionMask==self._nRoi,2] = 2*0x70 self.__pixmap[self.__selectionMask==self._nRoi,3] = 2*0x40 if 0: #this is to recolor non finite points tmpMask = ~numpy.isfinite(self.__imageData) badData = numpy.isfinite(self.__imageData).max() if badData: self.__pixmap[tmpMask,0] = 0x00 self.__pixmap[tmpMask,1] = 0xff self.__pixmap[tmpMask,2] = 0xff self.__pixmap[tmpMask,3] = 0xff elif int(str(self.colormap[0])) > 1: #color _logger.debug("__applyMaskToImage CASE 5") # default color should be black, pink or green if int(str(self.colormap[0])) == 2: # expected to be temp, use black color = [0x00, 0x00, 0x00, 0xff] elif int(str(self.colormap[0])) == 3: # expected to be red, use green color = [0x00, 0xff, 0x00, 0xff] elif int(str(self.colormap[0])) == 4: # expected to be green, use pink color = [0xff, 0x66, 0xff, 0xff] elif int(str(self.colormap[0])) == 5: # expected to be blue, use yellow color = [0xff, 0xff, 0x00, 0xff] else: color = [0x00, 0x00, 0x00, 0xff] for i in range(3): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] * alteration) + \ (1 - alteration) * color[i] if 0: tmpMask = numpy.isfinite(self.__imageData) goodData = numpy.isfinite(self.__imageData).min() if not goodData: if not goodData: for i in range(3): self.__pixmap[:,:,i] *= tmpMask elif self._maxNRois > 1: _logger.debug("__applyMaskToImage CASE 6") tmp = 1 - (self.__selectionMask>0) tmp2 = (self.__selectionMask == self._roiTags[self._nRoi - 1]) self.__pixmap[:, :, 2] = (0x70 * (self.__selectionMask>0) + \ 0x70 * tmp2) +\ tmp * self.__pixmap0[:,:,2] self.__pixmap[:,:, 3] = (0x40 * (self.__selectionMask>0) + 0x40 * tmp2) +\ tmp * self.__pixmap0[:,:,3] else: _logger.debug("__applyMaskToImage CASE 7") color = numpy.array([0xff, 0x66, 0xff, 0xff], dtype=numpy.uint8) for i in range(3): self.__pixmap[:,:,i] = (self.__pixmap0[:,:,i] * alteration) +\ (1 - alteration) * color[i] if 0: tmpMask = ~numpy.isfinite(self.__imageData) badData = numpy.isfinite(self.__imageData).max() if badData: self.__pixmap[tmpMask,0] = 0x00 self.__pixmap[tmpMask,1] = 0xff self.__pixmap[tmpMask,2] = 0xff self.__pixmap[tmpMask,3] = 0xff return def selectColormap(self): if self.__imageData is None: return if self.colormapDialog is None: self.__initColormapDialog() if self.colormapDialog is None: return if self.colormapDialog.isHidden(): self.colormapDialog.show() self.colormapDialog.raise_() self.colormapDialog.show() def __initColormapDialog(self): goodData = self.__imageData[numpy.isfinite(self.__imageData)] if goodData.size > 0: maxData = goodData.max() minData = goodData.min() else: qt.QMessageBox.critical(self,"No Data", "Image data does not contain any real value") return self.colormapDialog = ColormapDialog.ColormapDialog(self) self.colormapDialog.show() colormapIndex = self.__defaultColormap if colormapIndex == 1: colormapIndex = 0 elif colormapIndex == 6: colormapIndex = 1 self.colormapDialog.colormapIndex = colormapIndex self.colormapDialog.colormapString = self.colormapDialog.colormapList[colormapIndex] self.colormapDialog.setDataMinMax(minData, maxData) self.colormapDialog.setAutoscale(1) self.colormapDialog.setColormap(self.colormapDialog.colormapIndex) self.colormapDialog.setColormapType(self.__defaultColormapType, update=False) self.colormap = (self.colormapDialog.colormapIndex, self.colormapDialog.autoscale, self.colormapDialog.minValue, self.colormapDialog.maxValue, minData, maxData) self.colormapDialog.setWindowTitle("Colormap Dialog") self.colormapDialog.sigColormapChanged.connect(self.updateColormap) self.colormapDialog._update() def updateColormap(self, *var): if len(var) == 1: var = var[0] if len(var) > 6: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5], var[6]] elif len(var) > 5: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5]] else: self.colormap = [var[0], var[1], var[2], var[3], var[4], var[5]] self.plotImage(True) def _addImageClicked(self): ddict = {} ddict['event'] = "addImageClicked" ddict['image'] = self.__imageData ddict['title'] = self.getGraphTitle() ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def _addAllImageClicked(self): ddict = {} ddict['event'] = "addAllClicked" ddict['image'] = self.__imageData ddict['title'] = self.getGraphTitle() ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def _removeImageClicked(self): ddict = {} ddict['event'] = "removeImageClicked" ddict['title'] = self.getGraphTitle() ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def _replaceImageClicked(self): ddict = {} ddict['event'] = "replaceImageClicked" ddict['image'] = self.__imageData ddict['title'] = self.getGraphTitle() ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def _saveToolButtonSignal(self): self._saveMenu.exec(self.cursor().pos()) def _saveMatplotlibImage(self): imageData = self.__imageData if self._matplotlibSaveImage is None: self._matplotlibSaveImage = QPyMcaMatplotlibSave.SaveImageSetup(None, image=None) title = "Matplotlib " + self.getGraphTitle() self._matplotlibSaveImage.setWindowTitle(title) ddict = self._matplotlibSaveImage.getParameters() if self.colormap is not None: colormapType = ddict['linlogcolormap'] try: colormapIndex, autoscale, vmin, vmax,\ dataMin, dataMax, colormapType = self.colormap if colormapType == spslut.LOG: colormapType = 'logarithmic' else: colormapType = 'linear' except Exception: colormapIndex, autoscale, vmin, vmax = self.colormap[0:4] ddict['linlogcolormap'] = colormapType if not autoscale: ddict['valuemin'] = vmin ddict['valuemax'] = vmax else: ddict['valuemin'] = 0 ddict['valuemax'] = 0 #this sets the actual dimensions if self._xScale is not None: ddict['xorigin'] = self._xScale[0] ddict['xpixelsize'] = self._xScale[1] if self._yScale is not None: ddict['yorigin'] = self._yScale[0] ddict['ypixelsize'] = self._yScale[1] ddict['xlabel'] = self.getXLabel() ddict['ylabel'] = self.getYLabel() limits = self.graphWidget.graph.getGraphXLimits() ddict['zoomxmin'] = limits[0] ddict['zoomxmax'] = limits[1] limits = self.graphWidget.graph.getGraphYLimits() ddict['zoomymin'] = limits[0] ddict['zoomymax'] = limits[1] self._matplotlibSaveImage.setParameters(ddict) self._matplotlibSaveImage.setImageData(imageData) self._matplotlibSaveImage.show() self._matplotlibSaveImage.raise_() def _otherWidgetGraphSignal(self, ddict): self._graphSignal(ddict, ownsignal = False) def _handlePolygonMask(self, ddict): if self._xScale is None: self._xScale = [0, 1] if self._yScale is None: self._yScale = [0, 1] # this is when we have __imageData if self.__imageData is not None: imageShape = self.__imageData.shape elif self.__pixmap0 is not None: imageShape = self.__pixmap0.shape[0:2] else: _logger.warning("Cannot handle polygon mask") return x = self._xScale[0] + self._xScale[1] * numpy.arange(imageShape[1]) y = self._yScale[0] + self._yScale[1] * numpy.arange(imageShape[0]) X, Y = numpy.meshgrid(x, y) X.shape = -1 Y.shape = -1 Z = numpy.zeros((imageShape[1]*imageShape[0], 2)) Z[:, 0] = X Z[:, 1] = Y X = None Y = None mask = pnpoly(ddict['points'][:-1], Z, 1) mask.shape = imageShape if self.__selectionMask is None: self.__selectionMask = mask else: self.__selectionMask[mask==1] = self._roiTags[self._nRoi - 1] self.plotImage(update = False) #inform the other widgets self._emitMaskChangedSignal() def _graphSignal(self, ddict, ownsignal = None): if ownsignal is None: ownsignal = True emitsignal = False if self.__imageData is None: if ddict['event'] == "drawingFinished": label = ddict['parameters']['label'] shape = ddict['parameters']['shape'] if shape == "polygon": return self._handlePolygonMask(ddict) return if ddict['event'] == "drawingFinished": # TODO: when drawing a shape, set a legend to it in order # to identify it. # In the mean time, assume nobody else is triggering drawing # and therefore only rectangle is supported as selection label = ddict['parameters']['label'] shape = ddict['parameters']['shape'] if label is None: #not this module business return elif not label.startswith('mask'): # is it a profile selection return elif shape == "polygon": return self._handlePolygonMask(ddict) else: # rectangle pass j1, i1 = convertToRowAndColumn(ddict['x'], ddict['y'], self.__imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) w = ddict['width'] h = ddict['height'] j2, i2 = convertToRowAndColumn(ddict['x'] + w, ddict['y'] + h, self.__imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) if i1 == i2: i2 += 1 elif (ddict['x'] + w) < self.__imageData.shape[1]: i2 += 1 if j1 == j2: j2 += 1 elif (ddict['y'] + h) < self.__imageData.shape[0]: j2 += 1 if self.__selectionMask is None: self.__selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) if self.__eraseMode: self.__selectionMask[j1:j2, i1:i2] = 0 else: self.__selectionMask[j1:j2, i1:i2] = self._roiTags[self._nRoi - 1] emitsignal = True elif ddict['event'] in ["mouseMoved", "MouseAt", "mouseClicked"]: if ownsignal: pass if None in [ddict['x'], ddict['y']]: _logger.debug("Signal from outside region %s", ddict) return if self.graphWidget.infoWidget.isHidden() or self.__brushMode: row, column = convertToRowAndColumn(ddict['x'], ddict['y'], self.__imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) halfWidth = 0.5 * self.__brushWidth #in (row, column) units halfHeight = 0.5 * self.__brushWidth #in (row, column) units shape = self.__imageData.shape columnMin = max(column - halfWidth, 0) columnMax = min(column + halfWidth, shape[1]) rowMin = max(row - halfHeight, 0) rowMax = min(row + halfHeight, shape[0]) rowMin = min(int(round(rowMin)), shape[0] - 1) rowMax = min(int(round(rowMax)), shape[0]) columnMin = min(int(round(columnMin)), shape[1] - 1) columnMax = min(int(round(columnMax)), shape[1]) if rowMin == rowMax: rowMax = rowMin + 1 elif (rowMax - rowMin) > self.__brushWidth: # python 3 implements banker's rounding # test case ddict['x'] = 23.3 gives: # i1 = 22 and i2 = 24 in python 3 # i1 = 23 and i2 = 24 in python 2 rowMin = rowMax - self.__brushWidth if columnMin == columnMax: columnMax = columnMin + 1 elif (columnMax - columnMin) > self.__brushWidth: # python 3 implements banker's rounding # test case ddict['x'] = 23.3 gives: # i1 = 22 and i2 = 24 in python 3 # i1 = 23 and i2 = 24 in python 2 columnMin = columnMax - self.__brushWidth #To show array coordinates: #x = self._xScale[0] + columnMin * self._xScale[1] #y = self._yScale[0] + rowMin * self._yScale[1] #self.setMouseText("%g, %g, %g" % (x, y, self.__imageData[rowMin, columnMin])) #To show row and column: #self.setMouseText("%g, %g, %g" % (row, column, self.__imageData[rowMin, columnMin])) #To show mouse coordinates: #self.setMouseText("%g, %g, %g" % (ddict['x'], ddict['y'], self.__imageData[rowMin, columnMin])) if self._xScale is not None: x = self._xScale[0] + column * self._xScale[1] y = self._yScale[0] + row * self._yScale[1] else: x = column y = row self.setMouseText("%g, %g, %g" % (x, y, self.__imageData[row, column])) if self.__brushMode: if self.graphWidget.graph.isZoomModeEnabled(): return if ddict['button'] != "left": return if self.__selectionMask is None: self.__selectionMask = numpy.zeros(self.__imageData.shape, numpy.uint8) if self.__eraseMode: self.__selectionMask[rowMin:rowMax, columnMin:columnMax] = 0 else: self.__selectionMask[rowMin:rowMax, columnMin:columnMax] = self._roiTags[self._nRoi - 1] emitsignal = True if emitsignal: #should this be made by the parent? self.plotImage(update = False) #inform the other widgets self._emitMaskChangedSignal() def _emitMaskChangedSignal(self): #inform the other widgets ddict = {} ddict['event'] = "selectionMaskChanged" ddict['current'] = self.__selectionMask * 1 ddict['id'] = id(self) self.emitMaskImageSignal(ddict) def emitMaskImageSignal(self, ddict): #qt.QObject.emit(self, # qt.SIGNAL('MaskImageWidgetSignal'), # ddict) self.sigMaskImageWidgetSignal.emit(ddict) def _zoomResetSignal(self): _logger.debug("_zoomResetSignal") self.graphWidget._zoomReset(replot=False) self.plotImage(True) def getOutputFileName(self): initdir = PyMcaDirs.outputDir if self.outputDir is not None: if os.path.exists(self.outputDir): initdir = self.outputDir formatlist = ["TIFF Files *.tif", "ASCII Files *.dat", "EDF Files *.edf", 'CSV(, separated) Files *.csv', 'CSV(; separated) Files *.csv', 'CSV(tab separated) Files *.csv'] if self._saveFilter in [None, ""]: self._saveFilter = formatlist[0] filelist, self._saveFilter = PyMcaFileDialogs.getFileList(parent=self, filetypelist=formatlist, message="Provide output file name", currentdir=initdir, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(filelist): return "" filename = filelist[0] if len(filename): self.outputDir = os.path.dirname(filename) filterused = "." + self._saveFilter[-3:] PyMcaDirs.outputDir = os.path.dirname(filename) if len(filename) < 4: filename = filename + filterused elif filename[-4:] != filterused : filename = filename + filterused return filename def saveImageList(self, filename=None, imagelist=None, labels=None): imageList = [] if labels is None: labels = [] if imagelist is None: if self.__imageData is not None: imageList.append(self.__imageData) label = self.getGraphTitle() label.replace(' ', '_') labels.append(label) if self.__selectionMask is not None: if self.__selectionMask.max() > 0: imageList.append(self.__selectionMask) labels.append(label+"_Mask") else: imageList = imagelist if len(labels) == 0: for i in range(len(imagelist)): labels.append("Image%02d" % i) if not len(imageList): qt.QMessageBox.information(self,"No Data", "Image list is empty.\nNothing to be saved") return if filename is None: filename = self.getOutputFileName() if not len(filename): return if filename.lower().endswith(".edf"): ArraySave.save2DArrayListAsEDF(imageList, filename, labels) elif filename.lower().endswith(".tif"): ArraySave.save2DArrayListAsMonochromaticTiff(imageList, filename, labels) elif filename.lower().endswith(".csv"): if "," in self._saveFilter: csvseparator = "," elif ";" in self._saveFilter: csvseparator = ";" else: csvseparator = "\t" ArraySave.save2DArrayListAsASCII(imageList, filename, labels, csv=True, csvseparator=csvseparator) else: ArraySave.save2DArrayListAsASCII(imageList, filename, labels, csv=False) def saveClippedSeenImageList(self): return self.saveClippedAndSubtractedSeenImageList(subtract=False) def saveClippedAndSubtractedSeenImageList(self, subtract=True): imageData = self.__imageData if imageData is None: return vmin = None label = self.getGraphTitle() if not len(label): label = "Image01" if self.colormap is not None: colormapIndex, autoscale, vmin, vmax = self.colormap[0:4] if not autoscale: imageData = imageData.clip(vmin, vmax) label += ".clip(%f,%f)" % (vmin, vmax) if subtract: if vmin is None: vmin = imageData.min() imageData = imageData-vmin label += "-%f" % vmin imageList = [imageData] labelList = [label] if self.__selectionMask is not None: if self.__selectionMask.max() > 0: imageList.append(self.__selectionMask) labelList.append(label+"_Mask") self.saveImageList(filename=None, imagelist=imageList, labels=labelList) def setDefaultColormap(self, colormapindex, logflag=False): self.__defaultColormap = COLORMAPLIST[min(colormapindex, len(COLORMAPLIST)-1)] if logflag: self.__defaultColormapType = spslut.LOG else: self.__defaultColormapType = spslut.LINEAR def closeEvent(self, event): if self._profileSelectionWindow is not None: self._profileSelectionWindow.close() if self.colormapDialog is not None: self.colormapDialog.close() return qt.QWidget.closeEvent(self, event) def setInfoText(self, text): return self.graphWidget.setInfoText(text) def setMouseText(self, text=""): return self.graphWidget.setMouseText(text) class MaskImageDialog(qt.QDialog): def __init__(self, parent=None, image=None, mask=None): super(MaskImageDialog, self).__init__(parent) layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.maskWidget = MaskImageWidget(self, aspect=True) buttonBox = qt.QWidget(self) buttonBoxLayout = qt.QHBoxLayout(buttonBox) buttonBoxLayout.setContentsMargins(0, 0, 0, 0) buttonBoxLayout.setSpacing(0) self.okButton = qt.QPushButton(buttonBox) self.okButton.setText("OK") self.okButton.setAutoDefault(False) self.cancelButton = qt.QPushButton(buttonBox) self.cancelButton.setText("Cancel") self.cancelButton.setAutoDefault(False) self.okButton.clicked.connect(self.accept) self.cancelButton.clicked.connect(self.reject) #buttonBoxLayout.addWidget(qt.HorizontalSpacer(self)) buttonBoxLayout.addWidget(self.okButton) buttonBoxLayout.addWidget(self.cancelButton) #buttonBoxLayout.addWidget(qt.HorizontalSpacer(self)) layout.addWidget(self.maskWidget) layout.addWidget(buttonBox) self.setImage = self.maskWidget.setImageData self.setMask = self.maskWidget.setSelectionMask self.getMask = self.maskWidget.getSelectionMask if image is not None: self.setImage(image) if mask is not None: self.setMask(mask) def getImageMask(image, mask=None): """ Functional interface to interactively define a mask """ w = MaskImageDialog(image=image, mask=mask) ret = w.exec() if ret: mask = w.getMask() w = None del(w) return mask def test(filename=None, backend=None): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if filename: container = MaskImageWidget(backend=backend, selection=True, aspect=True, imageicons=True, profileselection=True, maxNRois=2) if filename.endswith('edf') or\ filename.endswith('cbf') or\ filename.endswith('ccd') or\ filename.endswith('spe') or\ filename.endswith('tif') or\ filename.endswith('tiff'): from PyMca5.PyMcaIO import EdfFile edf = EdfFile.EdfFile(sys.argv[1]) data = edf.GetData(0) container.setImageData(data) else: image = qt.QImage(filename) #container.setQImage(image, image.width(),image.height()) container.setQImage(image, 200, 200) else: container = MaskImageWidget(backend=backend, aspect=True, profileselection=True, maxNRois=2) # show how to use user specified colors for the mask # without using any blitting (for the time being) # in the future it could be made using the alpha channel if 0: colors = numpy.zeros((2, 4), dtype=numpy.uint8) colors[0,0] = 255 colors[0,1] = 0 colors[0,2] = 0 colors[0,3] = 255 colors[1,0] = 0 colors[1,1] = 0 colors[1,2] = 255 colors[1,3] = 255 container.setSelectionColors(colors) data = numpy.arange(400 * 400).astype(numpy.int32) data.shape = 200, 800 #data = numpy.eye(200) container.setImageData(data, xScale=(1000.0, 1.0), yScale=(1000., 1.)) mask = (data*0).astype(numpy.uint8) n, m = data.shape mask[ n//4 : n//4 + n//8, m//4 : m//4 + m//8] = 1 mask[ 3*n//4 : 3*n//4 + n//8, m//4 : m//4 + m//8] = 2 container.setSelectionMask(mask, plot=True) #data.shape = 100, 400 #container.setImageData(None) #container.setImageData(data) container.show() def theSlot(ddict): print(ddict['event']) container.sigMaskImageWidgetSignal.connect(theSlot) app.exec() print(container.getSelectionMask()) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='PyMca image mask authoring tool.') parser.add_argument( '-b', '--backend', choices=('mpl', 'opengl'), help="""The plot backend to use: Matplotlib (mpl, the default), OpenGL 2.1 (opengl, requires appropriate OpenGL drivers).""") parser.add_argument('filename', default='', nargs='?', help='Image filename to open') args = parser.parse_args() test(args.filename, args.backend) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/MaskScatterWidget.py0000644000000000000000000012407714741736366022663 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" ___doc__ = """ This module implements a scatter plot with selection capabilities. It is structured in three superposed layers: - First (deepest) layer containing the original points as they came. - Second layer containing the scatter plot density map. - Final layer containing the selected points with the selected colors. """ import numpy import logging from PyMca5.PyMcaGraph.ctools import pnpoly _logger = logging.getLogger(__name__) from . import PlotWindow from . import MaskImageWidget from . import MaskImageTools qt = PlotWindow.qt if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str IconDict = PlotWindow.IconDict class MaskScatterWidget(PlotWindow.PlotWindow): sigMaskScatterWidgetSignal = qt.pyqtSignal(object) DEFAULT_COLORMAP_INDEX = 2 DEFAULT_COLORMAP_LOG_FLAG = True def __init__(self, parent=None, backend=None, plugins=False, newplot=False, control=False, position=False, maxNRois=1, grid=False, logx=False, logy=False, togglePoints=False, normal=True, polygon=True, colormap=True, aspect=True, imageIcons=True, bins=None, **kw): super(MaskScatterWidget, self).__init__(parent=parent, backend=backend, plugins=plugins, newplot=newplot, control=control, position=position, grid=grid, logx=logx, logy=logy, togglePoints=togglePoints, normal=normal, aspect=aspect, colormap=colormap, imageIcons=imageIcons, polygon=polygon, **kw) self._buildAdditionalSelectionMenuDict() self._selectionCurve = None self._selectionMask = None self._selectionColors = numpy.zeros((len(self.colorList), 4), numpy.uint8) self._alphaLevel = None for i in range(len(self.colorList)): self._selectionColors[i, 0] = int(self.colorList[i][-2:], 16) self._selectionColors[i, 1] = int(self.colorList[i][3:-2], 16) self._selectionColors[i, 2] = int(self.colorList[i][1:3], 16) self._selectionColors[i, 3] = 0xff self._maxNRois = maxNRois self._nRoi = 1 self._zoomMode = True self._eraseMode = False self._brushMode = False self._brushWidth = 5 self._brushMenu = None self._bins = bins self._densityPlotWidget = None self._pixmap = None self.setPlotViewMode("scatter", bins=bins) self.setDrawModeEnabled(False) def setPlotViewMode(self, mode="scatter", bins=None): if mode.lower() != "density": self._activateScatterPlotView() else: self._activateDensityPlotView(bins) def _activateScatterPlotView(self): self._plotViewMode = "scatter" for key in ["colormap", "brushSelection", "brush"]: self.setToolBarActionVisible(key, False) if hasattr(self, "eraseSelectionToolButton"): self.eraseSelectionToolButton.setToolTip("Set erase mode if checked") self.eraseSelectionToolButton.setCheckable(True) if self._eraseMode: self.eraseSelectionToolButton.setChecked(True) else: self.eraseSelectionToolButton.setChecked(False) if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.setCheckable(True) if hasattr(self, "rectSelectionToolButton"): self.rectSelectionToolButton.setCheckable(True) if hasattr(self, "brushSelectionToolButton"): if self.brushSelectionToolButton.isChecked(): self.brushSelectionToolButton.setChecked(False) self._brushMode = False self.setZoomModeEnabled(True) self.clearImages() self._updatePlot() def _activateDensityPlotView(self, bins=None): self._plotViewMode = "density" for key in ["colormap", "brushSelection", "brush", "rectangle"]: self.setToolBarActionVisible(key, True) if hasattr(self, "eraseSelectionToolButton"): self.eraseSelectionToolButton.setCheckable(True) if hasattr(self, "brushSelectionToolButton"): self.brushSelectionToolButton.setCheckable(True) if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.setCheckable(True) if hasattr(self, "rectSelectionToolButton"): self.rectSelectionToolButton.setCheckable(True) if _logger.getEffectiveLevel() == logging.DEBUG: if self._densityPlotWidget is None: self._densityPlotWidget = MaskImageWidget.MaskImageWidget( imageicons=True, selection=True, profileselection=True, aspect=True, polygon=True) self._densityPlotWidget.sigMaskImageWidgetSignal.connect(self._densityPlotSlot) self._updateDensityPlot(bins) # only show it in debug mode self._densityPlotWidget.show() curve = self.getCurve(self._selectionCurve) if curve is None: return x, y, legend, info = curve[0:4] self.setSelectionCurveData(x, y, legend=legend, info=info) def getDensityData(self, bins=None): curve = self.getCurve(self._selectionCurve) if curve is None: return x, y, legend, info = curve[0:4] if bins is not None: if type(bins) == type(1): bins = (bins, bins) elif len(bins) == 0: bins = (bins[0], bins[0]) else: bins = bins[0:2] elif self._bins is None: bins = [int(x.size / 10), int(y.size/10)] if bins[0] > 100: bins[0] = 100 elif bins[0] < 2: bins[0] = 2 if bins[1] > 100: bins[1] = 100 elif bins[1] < 2: bins[1] = 2 else: bins = self._bins idx = numpy.where(numpy.isfinite(x) & numpy.isfinite(y)) x0 = x[idx].min() y0 = y[idx].min() image = numpy.histogram2d(y[idx], x[idx], bins=bins, #range=(binsY, binsX), density=False) self._binsX = image[2] self._binsY = image[1] self._bins = bins #print("shape", image[0].shape, "image max min ", image[0].max(), image[0].min()) #print("deltaxmin and max", (self._binsX[1:] - self._binsX[:-1]).min(), # (self._binsX[1:] - self._binsX[:-1]).max()) deltaX = (self._binsX[1:] - self._binsX[:-1]).mean() deltaY = (self._binsY[1:] - self._binsY[:-1]).mean() self._xScale = (x0, deltaX) self._yScale = (y0, deltaY) return image[0] def _updateDensityPlot(self, bins=None): _logger.debug("_updateDensityPlot called") if self._densityPlotWidget is None: return curve = self.getCurve(self._selectionCurve) if curve is None: return x, y, legend, info = curve[0:4] if bins is not None: if type(bins) == type(1): bins = (bins, bins) elif len(bins) == 0: bins = (bins[0], bins[0]) else: bins = bins[0:2] elif self._bins is None: bins = [int(x.size/ 10), int(y.size/10)] if bins[0] > 100: bins[0] = 100 elif bins[0] < 2: bins[0] = 2 if bins[1] > 100: bins[1] = 100 elif bins[1] < 2: bins[1] = 2 else: bins = self._bins idx = numpy.where(numpy.isfinite(x) & numpy.isfinite(y)) x0 = x[idx].min() y0 = y[idx].min() deltaX = (x[idx].max() - x0) / float(bins[0] - 1) deltaY = (y[idx].max() - y0) / float(bins[1] - 1) self.xScale = (x0, deltaX) self.yScale = (y0, deltaY) binsX = numpy.arange(bins[0]) * deltaX binsY = numpy.arange(bins[1]) * deltaY image = numpy.histogram2d(y[idx], x[idx], bins=(binsY, binsX), density=False) self._binsX = image[2] self._binsY = image[1] self._bins = bins if _logger.getEffectiveLevel() == logging.DEBUG: # this does not work properly # update mask levels if self._selectionMask is not None: weights = self._selectionMask[:] weights.shape = x.shape if self._maxNRois > 1: _logger.debug("BAD PATH") # this does not work properly yet weightsSum = weights.sum(dtype=numpy.float64) volume = (binsY[1] - binsY[0]) * (binsX[1] - binsX[0]) mask = numpy.round(numpy.histogram2d(y[idx], x[idx], bins=(binsY, binsX), weights=weights, density=True)[0] * weightsSum * volume).astype(numpy.uint8) else: #print("GOOD PATH") mask = numpy.histogram2d(y[idx], x[idx], bins=(binsY, binsX), weights=weights, density=False)[0] mask[mask > 0] = 1 #print(mask.min(), mask.max()) self._densityPlotWidget.setSelectionMask(mask, plot=False) self._densityPlotWidget.graphWidget.graph.setGraphXLabel(self.getGraphXLabel()) self._densityPlotWidget.graphWidget.graph.setGraphYLabel(self.getGraphYLabel()) self._densityPlotWidget.setImageData(image[0], clearmask=False, xScale=self.xScale, yScale=self.yScale) # do not overlay plot (yet) pixmap = self._densityPlotWidget.getPixmap() * 1 #pixmap[:, :, 3] = 128 #self.addImage(pixmap, # legend=legend+" density", # xScale=(x0, deltaX), yScale=(y0, deltaY), z=10) self._pixmap = pixmap self._imageData = image[0] #raise NotImplemented("Density plot view not implemented yet") def setSelectionCurveData(self, x, y, legend=None, info=None, replot=True, replace=True, linestyle=" ", color=None, symbol=None, selectable=None, **kw): self.enableActiveCurveHandling(False) if legend is None: legend = "MaskScatterWidget" if symbol is None: if x.size < 1000: # circle symbol = "o" elif x.size < 1.0e5: # dot symbol = "." else: # pixel symbol = "," #if selectable is None: # if symbol == ",": # selectable = False # else: # selectable = True # the basic curve is drawn self.addCurve(x=x, y=y, legend=legend, info=info, replace=replace, replot=False, linestyle=linestyle, color=color, symbol=symbol, selectable=selectable,z=0, **kw) self._selectionCurve = legend # if view mode, draw the image if self._plotViewMode == "density": # get the binned data imageData = self.getDensityData() # get the associated pixmap if self.colormapDialog is None: self._initColormapDialog(imageData) cmap = self.colormapDialog.getColormap() pixmap=MaskImageTools.getPixmapFromData(imageData, colormap=cmap) self.addImage(imageData, legend=legend + "density", xScale=self._xScale, yScale=self._yScale, z=0, pixmap=pixmap, replot=False) self._imageData = imageData self._pixmap = pixmap # draw the mask as a set of curves hasMaskedData = False if self._selectionMask is not None: if self._selectionMask.max(): hasMaskedData = True if hasMaskedData or (replace==False): self._updatePlot(replot=False) # update the plot if it was requested if replot: self.replot() if 0 :#or self._plotViewMode == "density": # get the binned data imageData = self.getDensityData() # get the associated pixmap pixmap=MaskImageTools.getPixmapFromData(imageData) if 0: self.addImage(imageData, legend=legend + "density", xScale=self._xScale, yScale=self._yScale, z=0, pixmap=pixmap, replot=True) if _logger.getEffectiveLevel() == logging.DEBUG: if self._densityPlotWidget is None: self._densityPlotWidget = MaskImageWidget.MaskImageWidget( imageicons=True, selection=True, profileselection=True, aspect=True, polygon=True) self._updateDensityPlot() _logger.debug("CLOSE = %s", numpy.allclose(imageData, self._imageData)) _logger.debug("CLOSE PIXMAP = %s", numpy.allclose(pixmap, self._pixmap)) self._imageData = imageData self._pixmap = pixmap #self._updatePlot() def setSelectionMask(self, mask=None, plot=True): if self._selectionCurve is not None: selectionCurve = self.getCurve(self._selectionCurve) else: selectionCurve = None if selectionCurve in [[], None]: self._selectionCurve = None self._selectionMask = mask else: x, y = selectionCurve[0:2] x = numpy.asarray(x) if hasattr(mask, "size"): if mask.size == x.size: if self._selectionMask is None: self._selectionMask = mask elif self._selectionMask.size == mask.size: # keep shape because we may refer to images tmpView = self._selectionMask[:] tmpView.shape = -1 tmpMask = mask[:] tmpMask.shape = -1 tmpView[:] = tmpMask[:] else: self._selectionMask = mask else: raise ValueError("Mask size = %d while data size = %d" % (mask.size, x.size)) if plot: self._updatePlot() def getSelectionMask(self): if self._selectionMask is None: if self._selectionCurve is not None: x, y, legend, info = self.getCurve(self._selectionCurve) self._selectionMask = numpy.zeros(x.shape, numpy.uint8) return self._selectionMask def _updatePlot(self, replot=True, replace=True): if self._selectionCurve is None: return x0, y0, legend, info = self.getCurve(self._selectionCurve)[0:4] # make sure we work with views x = x0[:] y = y0[:] x.shape = -1 y.shape = -1 if 0: colors = numpy.zeros((y.size, 4), dtype=numpy.uint8) colors[:, 3] = 255 if self._selectionMask is not None: tmpMask = self._selectionMask[:] tmpMask.shape = -1 for i in range(0, self._maxNRois + 1): colors[tmpMask == i, :] = self._selectionColors[i] self.setSelectionCurveData(x, y, legend=legend, info=info, #color=colors, color="k", linestyle=" ", replot=replot, replace=replace) else: if self._selectionMask is None: for i in range(1, self._maxNRois + 1): self.removeCurve(legend=legend + " %02d" % i, replot=False) else: tmpMask = self._selectionMask[:] tmpMask.shape = -1 if self._plotViewMode == "density": useAlpha = True if self._alphaLevel is None: self._initializeAlpha() else: useAlpha = False for i in range(1, self._maxNRois + 1): xMask = x[tmpMask == i] yMask = y[tmpMask == i] if xMask.size < 1: self.removeCurve(legend=legend + " %02d" % i, replot=False) continue color = self._selectionColors[i].copy() if useAlpha: if len(color) == 4: if type(color[3]) in [numpy.uint8, numpy.int32, numpy.int64]: color[3] = self._alphaLevel # a copy of the input info is needed in order not # to set the main curve to that color self.addCurve(xMask, yMask, legend=legend + " %02d" % i, info=info.copy(), color=color, linestyle=" ", selectable=False, z=1, replot=False, replace=False) if replot: self.replot() #self.resetZoom() def setActiveRoiNumber(self, intValue): if (intValue < 0) or (intValue > self._maxNRois): raise ValueError("Value %d outside the interval [0, %d]" % (intValue, self._maxNRois)) self._nRoi = intValue def _eraseSelectionIconSignal(self): if self.eraseSelectionToolButton.isChecked(): self._eraseMode = True else: self._eraseMode = False def _polygonIconSignal(self): if self.polygonSelectionToolButton.isChecked(): self.setPolygonSelectionMode() else: self.setZoomModeEnabled(True) def _rectSelectionIconSignal(self): _logger.debug("_rectSelectionIconSignal") if self.rectSelectionToolButton.isChecked(): self.setRectangularSelectionMode() else: self.setZoomModeEnabled(True) def setZoomModeEnabled(self, flag, color=None): if color is None: if hasattr(self, "colormapDialog"): if self.colormapDialog is None: color = "#00FFFF" else: cmap = self.colormapDialog.getColormap() if cmap[0] < 2: color = "#00FFFF" else: color = "black" super(MaskScatterWidget, self).setZoomModeEnabled(flag, color=color) if flag: if hasattr(self,"polygonSelectionToolButton"): self.polygonSelectionToolButton.setChecked(False) if hasattr(self,"brushSelectionToolButton"): self.brushSelectionToolButton.setChecked(False) def _handlePolygonMask(self, points): _logger.debug("_handlePolygonMask called") if self._eraseMode: value = 0 else: value = self._nRoi x, y, legend, info = self.getCurve(self._selectionCurve)[0:4] x.shape = -1 y.shape = -1 currentMask = self.getSelectionMask() if currentMask is None: currentMask = numpy.zeros(y.shape, dtype=numpy.uint8) if value == 0: return Z = numpy.zeros((y.size, 2), numpy.float64) Z[:, 0] = x Z[:, 1] = y mask = pnpoly(points, Z, 1) mask.shape = currentMask.shape currentMask[mask > 0] = value self.setSelectionMask(currentMask, plot=True) self._emitMaskChangedSignal() def graphCallback(self, ddict): _logger.debug("MaskScatterWidget graphCallback %s", ddict) if ddict["event"] == "drawingFinished": if ddict["parameters"]["shape"].lower() == "rectangle": points = numpy.zeros((5,2), dtype=ddict["points"].dtype) points[0] = ddict["points"][0] points[1, 0] = ddict["points"][0, 0] points[1, 1] = ddict["points"][1, 1] points[2] = ddict["points"][1] points[3, 0] = ddict["points"][1, 0] points[3, 1] = ddict["points"][0, 1] points[4] = ddict["points"][0] self._handlePolygonMask(points) else: self._handlePolygonMask(ddict["points"]) elif ddict['event'] in ["mouseMoved", "MouseAt", "mouseClicked"]: if (self._plotViewMode == "density") and \ (self._imageData is not None): shape = self._imageData.shape row, column = MaskImageTools.convertToRowAndColumn( \ ddict['x'], ddict['y'], shape, xScale=self._xScale, yScale=self._yScale, safe=True) halfWidth = 0.5 * self._brushWidth #in (row, column) units halfHeight = 0.5 * self._brushWidth #in (row, column) units columnMin = max(column - halfWidth, 0) columnMax = min(column + halfWidth, shape[1]) rowMin = max(row - halfHeight, 0) rowMax = min(row + halfHeight, shape[0]) rowMin = min(int(round(rowMin)), shape[0] - 1) rowMax = min(int(round(rowMax)), shape[0]) columnMin = min(int(round(columnMin)), shape[1] - 1) columnMax = min(int(round(columnMax)), shape[1]) if rowMin == rowMax: rowMax = rowMin + 1 elif (rowMax - rowMin) > self._brushWidth: # python 3 implements banker's rounding # test case ddict['x'] = 23.3 gives: # i1 = 22 and i2 = 24 in python 3 # i1 = 23 and i2 = 24 in python 2 rowMin = rowMax - self._brushWidth if columnMin == columnMax: columnMax = columnMin + 1 elif (columnMax - columnMin) > self._brushWidth: # python 3 implements banker's rounding # test case ddict['x'] = 23.3 gives: # i1 = 22 and i2 = 24 in python 3 # i1 = 23 and i2 = 24 in python 2 columnMin = columnMax - self._brushWidth #To show array coordinates: #x = self._xScale[0] + columnMin * self._xScale[1] #y = self._yScale[0] + rowMin * self._yScale[1] #self.setMouseText("%g, %g, %g" % (x, y, self.__imageData[rowMin, columnMin])) #To show row and column: #self.setMouseText("%g, %g, %g" % (row, column, self.__imageData[rowMin, columnMin])) #To show mouse coordinates: #self.setMouseText("%g, %g, %g" % (ddict['x'], ddict['y'], self.__imageData[rowMin, columnMin])) if self._xScale is not None and self._yScale is not None: x = self._xScale[0] + column * self._xScale[1] y = self._yScale[0] + row * self._yScale[1] else: x = column y = row self.setMouseText("%g, %g, %g" % (x, y, self._imageData[row, column])) if self._brushMode: if self.isZoomModeEnabled(): return if ddict['button'] != "left": return selectionMask = numpy.zeros(self._imageData.shape, numpy.uint8) if self._eraseMode: selectionMask[rowMin:rowMax, columnMin:columnMax] = 1 else: selectionMask[rowMin:rowMax, columnMin:columnMax] = \ self._nRoi self._setSelectionMaskFromDensityMask(selectionMask, update=True) #if emitsignal: # #should this be made by the parent? # self.plotImage(update = False) # # #inform the other widgets # self._emitMaskChangedSignal() # the base implementation handles ROIs, mouse position and activeCurve super(MaskScatterWidget, self).graphCallback(ddict) def _brushIconSignal(self): if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("brushIconSignal") if self._brushMenu is None: self._brushMenu = qt.QMenu() self._brushMenu.addAction(QString(" 1 Image Pixel Width"), self._setBrush1) self._brushMenu.addAction(QString(" 2 Image Pixel Width"), self._setBrush2) self._brushMenu.addAction(QString(" 3 Image Pixel Width"), self._setBrush3) self._brushMenu.addAction(QString(" 5 Image Pixel Width"), self._setBrush4) self._brushMenu.addAction(QString("10 Image Pixel Width"), self._setBrush5) self._brushMenu.addAction(QString("20 Image Pixel Width"), self._setBrush6) self._brushMenu.exec(self.cursor().pos()) def _brushSelectionIconSignal(self): _logger.debug("_setBrushSelectionMode") if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.setChecked(False) self.setDrawModeEnabled(False) if self.brushSelectionToolButton.isChecked(): self._brushMode = True self.setZoomModeEnabled(False) else: self._brushMode = False self.setZoomModeEnabled(True) def _setBrush1(self): self._brushWidth = 1 def _setBrush2(self): self._brushWidth = 2 def _setBrush3(self): self._brushWidth = 3 def _setBrush4(self): self._brushWidth = 5 def _setBrush5(self): self._brushWidth = 10 def _setBrush6(self): self._brushWidth = 20 def setRectangularSelectionMode(self): """ Resets zoom mode and enters selection mode with the current active ROI index """ self._zoomMode = False self._brushMode = False color = self._selectionColors[self._nRoi] # make sure the selection is made with a non transparent color if len(color) == 4: if type(color[-1]) in [numpy.uint8, numpy.int8]: color = color.copy() color[-1] = 255 self.setDrawModeEnabled(True, shape="rectangle", label="mask", color=color) self.setZoomModeEnabled(False) if hasattr(self, "brushSelectionToolButton"): self.brushSelectionToolButton.setChecked(False) if hasattr(self,"polygonSelectionToolButton"): self.polygonSelectionToolButton.setChecked(False) if hasattr(self,"rectSelectionToolButton"): self.rectSelectionToolButton.setChecked(True) def setPolygonSelectionMode(self): """ Resets zoom mode and enters selection mode with the current active ROI index """ self._zoomMode = False self._brushMode = False color = self._selectionColors[self._nRoi] # make sure the selection is made with a non transparent color if len(color) == 4: if type(color[-1]) in [numpy.uint8, numpy.int8]: color = color.copy() color[-1] = 255 self.setDrawModeEnabled(True, shape="polygon", label="mask", color=color) self.setZoomModeEnabled(False) if hasattr(self, "brushSelectionToolButton"): self.brushSelectionToolButton.setChecked(False) if hasattr(self,"rectSelectionToolButton"): self.rectSelectionToolButton.setChecked(False) if hasattr(self,"polygonSelectionToolButton"): self.polygonSelectionToolButton.setChecked(True) def setEraseSelectionMode(self, erase=True): if erase: self._eraseMode = True else: self._eraseMode = False if hasattr(self, "eraseSelectionToolButton"): self.eraseSelectionToolButton.setCheckable(True) if erase: self.eraseSelectionToolButton.setChecked(True) else: self.eraseSelectionToolButton.setChecked(False) def _emitMaskChangedSignal(self): #inform the other widgets ddict = {} ddict['event'] = "selectionMaskChanged" ddict['current'] = self._selectionMask * 1 ddict['id'] = id(self) self.emitMaskScatterWidgetSignal(ddict) def emitMaskScatterWidgetSignal(self, ddict): self.sigMaskScatterWidgetSignal.emit(ddict) def _imageIconSignal(self): self.__resetSelection() def _buildAdditionalSelectionMenuDict(self): self._additionalSelectionMenu = {} #scatter view menu menu = qt.QMenu() menu.addAction(QString("Density plot view"), self.__setDensityPlotView) menu.addAction(QString("Reset Selection"), self.__resetSelection) menu.addAction(QString("Invert Selection"), self._invertSelection) self._additionalSelectionMenu["scatter"] = menu # density view menu menu = qt.QMenu() menu.addAction(QString("Scatter plot view"), self.__setScatterPlotView) menu.addAction(QString("Reset Selection"), self.__resetSelection) menu.addAction(QString("Invert Selection"), self._invertSelection) menu.addAction(QString("I >= Colormap Max"), self._selectMax) menu.addAction(QString("Colormap Min < I < Colormap Max"), self._selectMiddle) menu.addAction(QString("I <= Colormap Min"), self._selectMin) menu.addAction(QString("Increase mask alpha"), self._increaseMaskAlpha) menu.addAction(QString("Decrease mask alpha"), self._decreaseMaskAlpha) self._additionalSelectionMenu["density"] = menu def __setScatterPlotView(self): self.setPlotViewMode(mode="scatter") def __setDensityPlotView(self): self.setPlotViewMode(mode="density") def _additionalIconSignal(self): if self._plotViewMode == "density": # and imageData is not none ... self._additionalSelectionMenu["density"].exec(self.cursor().pos()) else: self._additionalSelectionMenu["scatter"].exec(self.cursor().pos()) def __resetSelection(self): # Needed because receiving directly in _resetSelection it was passing # False as argument self._resetSelection(True) def _resetSelection(self, owncall=True): _logger.debug("_resetSelection") if self._selectionMask is None: _logger.info("Selection mask is None, doing nothing") return else: self._selectionMask[:] = 0 self._updatePlot() #inform the others if owncall: ddict = {} ddict['event'] = "resetSelection" ddict['id'] = id(self) self.emitMaskScatterWidgetSignal(ddict) def _invertSelection(self): if self._selectionMask is None: return mask = numpy.ones(self._selectionMask.shape, numpy.uint8) mask[self._selectionMask > 0] = 0 self.setSelectionMask(mask, plot=True) self._emitMaskChangedSignal() def _getSelectionMinMax(self): if self.colormap is None: goodData = self._imageData[numpy.isfinite(self._imageData)] maxValue = goodData.max() minValue = goodData.min() else: minValue = self.colormap[2] maxValue = self.colormap[3] return minValue, maxValue def _selectMax(self): if (self._plotViewMode != "density") or \ (self._imageData is None): return selectionMask = numpy.zeros(self._imageData.shape, numpy.uint8) minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self._imageData, copy=True) tmpData[True - numpy.isfinite(self._imageData)] = minValue selectionMask[tmpData >= maxValue] = self._nRoi self._setSelectionMaskFromDensityMask(selectionMask) self._emitMaskChangedSignal() def _selectMiddle(self): if (self._plotViewMode != "density") or \ (self._imageData is None): return selectionMask = numpy.zeros(self._imageData.shape, numpy.uint8) selectionMask[:] = self._nRoi minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self._imageData, copy=True) tmpData[True - numpy.isfinite(self._imageData)] = minValue selectionMask[tmpData >= maxValue] = 0 selectionMask[tmpData <= minValue] = 0 self._setSelectionMaskFromDensityMask(selectionMask) self._emitMaskChangedSignal() def _selectMin(self): if (self._plotViewMode != "density") or \ (self._imageData is None): return selectionMask = numpy.zeros(self._imageData.shape, numpy.uint8) minValue, maxValue = self._getSelectionMinMax() tmpData = numpy.array(self._imageData, copy=True) tmpData[True - numpy.isfinite(self._imageData)] = maxValue selectionMask[tmpData <= minValue] = self._nRoi self._setSelectionMaskFromDensityMask(selectionMask) self._emitMaskChangedSignal() def _setSelectionMaskFromDensityMask(self, densityPlotMask, update=None): _logger.debug("_setSelectionMaskFromDensityMask called") curve = self.getCurve(self._selectionCurve) if curve is None: return x, y, legend, info = curve[0:4] bins = self._bins x0 = x.min() y0 = y.min() deltaX = (x.max() - x0)/float(bins[0]) deltaY = (y.max() - y0)/float(bins[1]) columns = numpy.digitize(x, self._binsX, right=True) columns[columns>=densityPlotMask.shape[1]] = \ densityPlotMask.shape[1] - 1 rows = numpy.digitize(y, self._binsY, right=True) rows[rows>=densityPlotMask.shape[0]] = densityPlotMask.shape[0] - 1 values = densityPlotMask[rows, columns] values.shape = -1 if self._selectionMask is None: view = numpy.zeros(x.size, dtype=numpy.uint8) view[:] = values[:] elif update: view = self._selectionMask.copy() if self._eraseMode: view[values > 0] = 0 else: view[values > 0] = values[values > 0] else: view = numpy.zeros(self._selectionMask.size, dtype=self._selectionMask.dtype) view[:] = values[:] if self._selectionMask is not None: view.shape = self._selectionMask.shape self.setSelectionMask(view, plot=True) def _densityPlotSlot(self, ddict): _logger.debug("_densityPlotSlot called") if ddict["event"] == "resetSelection": self.__resetSelection() return if ddict["event"] not in ["selectionMaskChanged"]: return densityPlotMask = ddict["current"] curve = self.getCurve(self._selectionCurve) if curve is None: return x, y, legend, info = curve[0:4] bins = self._bins x0 = x.min() y0 = y.min() deltaX = (x.max() - x0)/float(bins[0]) deltaY = (y.max() - y0)/float(bins[1]) if _logger.getEffectiveLevel() == logging.DEBUG: if self._selectionMask is None: view = numpy.zeros(x.size, dtype=numpy.uint8) else: view = numpy.zeros(self._selectionMask.size, dtype=self._selectionMask.dtype) # this works even on unordered data for i in range(x.size): row = int((y[i] - y0) /deltaY) column = int((x[i] - x0) /deltaX) try: value = densityPlotMask[row, column] except Exception: if row >= densityPlotMask.shape[0]: row = densityPlotMask.shape[0] - 1 if column >= densityPlotMask.shape[1]: column = densityPlotMask.shape[1] - 1 value = densityPlotMask[row, column] if value: view[i] = value if self._selectionMask is not None: view.shape = self._selectionMask.shape self.setSelectionMask(view) if self._selectionMask is None: view2 = numpy.zeros(x.size, dtype=numpy.uint8) else: view2 = numpy.zeros(self._selectionMask.size, dtype=self._selectionMask.dtype) columns = numpy.digitize(x, self._binsX, right=True) columns[columns>=densityPlotMask.shape[1]] = densityPlotMask.shape[1] - 1 rows = numpy.digitize(y, self._binsY, right=True) rows[rows>=densityPlotMask.shape[0]] = densityPlotMask.shape[0] - 1 values = densityPlotMask[rows, columns] values.shape = -1 view2[:] = values[:] if self._selectionMask is not None: view2.shape = self._selectionMask.shape if _logger.getEffectiveLevel() == logging.DEBUG: if not numpy.allclose(view, view2): a = view[:] b = view2[:] a.shape = -1 b.shape = -1 c = 0 for i in range(a.size): if a[i] != b[i]: _logger.debug("%d a = %s, b = %s, (x, y) = (%s, %s)", i, a[i], b[i], x[i], y[i]) c += 1 if c > 10: break else: _logger.debug("OK!!!") self.setSelectionMask(view2) def _initializeAlpha(self): self._alphaLevel = 128 def _increaseMaskAlpha(self): if self._alphaLevel is None: self._initializeAlpha() self._alphaLevel *= 4 if self._alphaLevel > 255: self._alphaLevel = 255 self._alphaLevel self._updatePlot() def _decreaseMaskAlpha(self): if self._alphaLevel is None: self._initializeAlpha() self._alphaLevel /= 4 if self._alphaLevel < 2: self._alphaLevel = 2 self._updatePlot() if __name__ == "__main__": backend = "matplotlib" #backend = "opengl" app = qt.QApplication([]) def receivingSlot(ddict): print("Received: ", ddict) x = numpy.arange(100.) y = x * 1 y[50] = numpy.nan w = MaskScatterWidget(maxNRois=10, bins=(100,100), backend=backend) w.setSelectionCurveData(x, y, color="k", selectable=False) import numpy.random w.setSelectionMask(numpy.random.permutation(100) % 10) w.setPolygonSelectionMode() w.sigMaskScatterWidgetSignal.connect(receivingSlot) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/MaskToolBar.py0000644000000000000000000003407114741736366021446 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module implements a plot toolbar with buttons to draw and erase masks. """ __author__ = "P. Knobel" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from .PyMca_Icons import IconDict from silx.gui import colors if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str _COLORDICT = colors.COLORDICT # these are color RGBA strings '#0000ff' _COLORLIST = [_COLORDICT['black'], _COLORDICT['blue'], _COLORDICT['red'], _COLORDICT['green'], _COLORDICT['pink'], _COLORDICT['yellow'], _COLORDICT['brown'], _COLORDICT['cyan'], _COLORDICT['magenta'], _COLORDICT['orange'], _COLORDICT['violet'], #_COLORDICT['bluegreen'], _COLORDICT['grey'], _COLORDICT['darkBlue'], _COLORDICT['darkRed'], _COLORDICT['darkGreen'], _COLORDICT['darkCyan'], _COLORDICT['darkMagenta'], _COLORDICT['darkYellow'], _COLORDICT['darkBrown']] class MaskToolBar(qt.QToolBar): """Toolbar with buttons controlling the mask drawing and erasing interactions on a :class:`MaskScatterWidget`, to select or deselect data.""" # sigIconSignal = qt.pyqtSignal(object) colorList = _COLORLIST def __init__(self, parent=None, plot=None, title="Mask tools", imageIcons=True, polygon=True): super(MaskToolBar, self).__init__(title, parent) assert plot is not None assert imageIcons or polygon,\ "It makes no sense to build an empty mask toolbar" self.plot = plot self._brushMenu = None self.polygonIcon = qt.QIcon(qt.QPixmap(IconDict["polygon"])) self.imageIcon = qt.QIcon(qt.QPixmap(IconDict["image"])) self.eraseSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["eraseselect"])) self.rectSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["boxselect"])) self.brushSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["brushselect"])) self.brushIcon = qt.QIcon(qt.QPixmap(IconDict["brush"])) self.additionalIcon = qt.QIcon(qt.QPixmap(IconDict["additionalselect"])) self.polygonSelectionToolButton = qt.QToolButton(self) self.imageToolButton = qt.QToolButton(self) self.eraseSelectionToolButton = qt.QToolButton(self) self.rectSelectionToolButton = qt.QToolButton(self) self.brushSelectionToolButton = qt.QToolButton(self) self.brushToolButton = qt.QToolButton(self) self.additionalSelectionToolButton = qt.QToolButton(self) self.polygonSelectionToolButton.setIcon(self.polygonIcon) self.imageToolButton.setIcon(self.imageIcon) self.eraseSelectionToolButton.setIcon(self.eraseSelectionIcon) self.rectSelectionToolButton.setIcon(self.rectSelectionIcon) self.brushSelectionToolButton.setIcon(self.brushSelectionIcon) self.brushToolButton.setIcon(self.brushIcon) self.additionalSelectionToolButton.setIcon(self.additionalIcon) self.polygonSelectionToolButton.setToolTip('Polygon selection\n' 'Click first point to finish') self.imageToolButton.setToolTip('Reset') self.eraseSelectionToolButton.setToolTip('Erase Selection') self.rectSelectionToolButton.setToolTip('Rectangular Selection') self.brushSelectionToolButton.setToolTip('Brush Selection') self.brushToolButton.setToolTip('Brush Size') self.additionalSelectionToolButton.setToolTip('Additional Selections Menu') self.eraseSelectionToolButton.setCheckable(True) self.polygonSelectionToolButton.setCheckable(True) self.rectSelectionToolButton.setCheckable(True) self.brushSelectionToolButton.setCheckable(True) self.imageAction = self.addWidget(self.imageToolButton) self.eraseSelectionAction = self.addWidget(self.eraseSelectionToolButton) self.rectSelectionAction = self.addWidget(self.rectSelectionToolButton) self.brushSelectionAction = self.addWidget(self.brushSelectionToolButton) self.brushAction = self.addWidget(self.brushToolButton) self.polygonSelectionAction = self.addWidget(self.polygonSelectionToolButton) self.additionalSelectionAction = self.addWidget(self.additionalSelectionToolButton) self.imageToolButton.clicked.connect(self._imageIconSignal) self.eraseSelectionToolButton.clicked.connect(self._eraseSelectionIconSignal) self.rectSelectionToolButton.clicked.connect(self._rectSelectionIconSignal) self.brushSelectionToolButton.clicked.connect(self._brushSelectionIconSignal) self.brushToolButton.clicked.connect(self._brushIconSignal) self.polygonSelectionToolButton.clicked.connect(self._polygonIconSignal) self.additionalSelectionToolButton.clicked.connect(self._additionalIconSignal) if not imageIcons: self.imageAction.setVisible(False) self.eraseSelectionAction.setVisible(False) self.rectSelectionAction.setVisible(False) self.brushSelectionAction.setVisible(False) self.brushAction.setVisible(False) self.polygonSelectionAction.setVisible(False) self.additionalSelectionAction.setVisible(False) if not polygon: self.polygonSelectionAction.setVisible(False) self._buildAdditionalSelectionMenuDict() # selection colors as a RBGA (uint8) array self._selectionColors = numpy.zeros((len(self.colorList), 4), numpy.uint8) for i in range(len(self.colorList)): self._selectionColors[i, 0] = eval("0x" + self.colorList[i][-2:]) self._selectionColors[i, 1] = eval("0x" + self.colorList[i][3:-2]) self._selectionColors[i, 2] = eval("0x" + self.colorList[i][1:3]) self._selectionColors[i, 3] = 0xff self.plot.sigInteractiveModeChanged.connect(self._interactiveModeChanged) def activateScatterPlotView(self): self.brushSelectionAction.setVisible(False) self.brushAction.setVisible(False) self.eraseSelectionAction.setToolTip("Set erase mode if checked") self.eraseSelectionToolButton.setChecked(self.plot._eraseMode) self.brushSelectionToolButton.setChecked(False) def activateDensityPlotView(self): self.brushSelectionAction.setVisible(True) self.brushAction.setVisible(True) self.rectSelectionAction.setVisible(True) def _imageIconSignal(self, checked=False): self.plot._resetSelection(owncall=True) def _eraseSelectionIconSignal(self, checked=False): self.plot._eraseMode = checked def _getSelectionColor(self): """Return a selection color as hex "#RRGGBBAA" string""" rgba_color_array = self._selectionColors[self.plot._nRoi] # make sure the selection is made with a non transparent color if len(rgba_color_array) == 4: rgba_color_array = rgba_color_array.copy() rgba_color_array[-1] = 255 # convert to string s = "#" for channel_uint8_value in rgba_color_array: s += "{:02x}".format(channel_uint8_value) return s def _polygonIconSignal(self, checked=False): if checked: self.plot.setInteractiveMode("draw", shape="polygon", label="mask", color=self._getSelectionColor()) self.plot._zoomMode = False self.plot._brushMode = False self.brushSelectionToolButton.setChecked(False) self.rectSelectionToolButton.setChecked(False) self.polygonSelectionToolButton.setChecked(True) else: self.plot.setInteractiveMode("select") self._uncheckAllSelectionButtons() def setPolygonSelectionMode(self): """ Resets zoom mode and enters selection mode with the current active ROI index """ self.polygonSelectionToolButton.setChecked(True) self.polygonSelectionAction.trigger() # calls _polygonIconSignal def _rectSelectionIconSignal(self, checked=False): if checked: self.plot._zoomMode = False self.plot._brushMode = False self.brushSelectionToolButton.setChecked(False) self.polygonSelectionToolButton.setChecked(False) self.rectSelectionToolButton.setChecked(True) self.plot.setInteractiveMode("draw", shape="rectangle", label="mask", color=self._getSelectionColor()) else: self.plot.setInteractiveMode("select") self._uncheckAllSelectionButtons() def _brushSelectionIconSignal(self, checked=False): self.polygonSelectionToolButton.setChecked(False) self.rectSelectionToolButton.setChecked(False) if checked: self.plot._brushMode = True self.plot.setInteractiveMode('select') else: self._brushMode = False def _brushIconSignal(self, checked=False): if self._brushMenu is None: self._brushMenu = qt.QMenu() self._brushMenu.addAction(QString(" 1 Image Pixel Width"), self._setBrush1) self._brushMenu.addAction(QString(" 2 Image Pixel Width"), self._setBrush2) self._brushMenu.addAction(QString(" 3 Image Pixel Width"), self._setBrush3) self._brushMenu.addAction(QString(" 5 Image Pixel Width"), self._setBrush4) self._brushMenu.addAction(QString("10 Image Pixel Width"), self._setBrush5) self._brushMenu.addAction(QString("20 Image Pixel Width"), self._setBrush6) self._brushMenu.exec(self.cursor().pos()) def _setBrush1(self): self.plot._brushWidth = 1 def _setBrush2(self): self.plot._brushWidth = 2 def _setBrush3(self): self.plot._brushWidth = 3 def _setBrush4(self): self.plot._brushWidth = 5 def _setBrush5(self): self.plot._brushWidth = 10 def _setBrush6(self): self.plot._brushWidth = 20 def _buildAdditionalSelectionMenuDict(self): self._additionalSelectionMenu = {} #scatter view menu menu = qt.QMenu() menu.addAction(QString("Density plot view"), self.__setDensityPlotView) menu.addAction(QString("Reset Selection"), self.__resetSelection) menu.addAction(QString("Invert Selection"), self.plot._invertSelection) self._additionalSelectionMenu["scatter"] = menu # density view menu menu = qt.QMenu() menu.addAction(QString("Scatter plot view"), self.__setScatterPlotView) menu.addAction(QString("Reset Selection"), self.__resetSelection) menu.addAction(QString("Invert Selection"), self.plot._invertSelection) menu.addAction(QString("I >= Colormap Max"), self.plot._selectMax) menu.addAction(QString("Colormap Min < I < Colormap Max"), self.plot._selectMiddle) menu.addAction(QString("I <= Colormap Min"), self.plot._selectMin) menu.addAction(QString("Increase mask alpha"), self.plot._increaseMaskAlpha) menu.addAction(QString("Decrease mask alpha"), self.plot._decreaseMaskAlpha) self._additionalSelectionMenu["density"] = menu def __setScatterPlotView(self): self.plot.setPlotViewMode(mode="scatter") def __setDensityPlotView(self): self.plot.setPlotViewMode(mode="density") def __resetSelection(self): self.plot._resetSelection(owncall=True) def _additionalIconSignal(self, checked=False): if self.plot._plotViewMode == "density": # and imageData is not none ... self._additionalSelectionMenu["density"].exec(self.cursor().pos()) else: self._additionalSelectionMenu["scatter"].exec(self.cursor().pos()) def _uncheckAllSelectionButtons(self): self.brushSelectionToolButton.setChecked(False) self.polygonSelectionToolButton.setChecked(False) self.brushSelectionToolButton.setChecked(False) def _interactiveModeChanged(self, source): if self.plot.getInteractiveMode()['mode'] != "draw": self._uncheckAllSelectionButtons() # def emitIconSignal(self, key, event="iconClicked"): # ddict = {"key": key, # "event": event} # self.sigIconSignal.emit(ddict) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/McaROIWidget.py0000644000000000000000000006112014741736366021501 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.io import ConfigurationFileDialogs _logger = logging.getLogger(__name__) class McaROIWidget(qt.QWidget): sigMcaROIWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name=None): super(McaROIWidget, self).__init__(parent) if name is not None: self.setWindowTitle(name) layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) ############## self.headerLabel = qt.QLabel(self) self.headerLabel.setAlignment(qt.Qt.AlignHCenter) self.setHeader('Channel ROIs of XXXXXXXXXX<\b>') layout.addWidget(self.headerLabel) ############## self.mcaROITable = McaROITable(self) rheight = self.mcaROITable.horizontalHeader().sizeHint().height() self.mcaROITable.setMinimumHeight(4*rheight) #self.mcaROITable.setMaximumHeight(4*rheight) self.fillFromROIDict = self.mcaROITable.fillFromROIDict self.addROI = self.mcaROITable.addROI self.getROIListAndDict=self.mcaROITable.getROIListAndDict layout.addWidget(self.mcaROITable) self.roiDir = None ################# hbox = qt.QWidget(self) hboxlayout = qt.QHBoxLayout(hbox) hboxlayout.setContentsMargins(0, 0, 0, 0) hboxlayout.setSpacing(0) hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) self.addButton = qt.QPushButton(hbox) self.addButton.setText("Add ROI") self.delButton = qt.QPushButton(hbox) self.delButton.setText("Delete ROI") self.resetButton = qt.QPushButton(hbox) self.resetButton.setText("Reset") hboxlayout.addWidget(self.addButton) hboxlayout.addWidget(self.delButton) hboxlayout.addWidget(self.resetButton) hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) self.loadButton = qt.QPushButton(hbox) self.loadButton.setText("Load") self.saveButton = qt.QPushButton(hbox) self.saveButton.setText("Save") hboxlayout.addWidget(self.loadButton) hboxlayout.addWidget(self.saveButton) layout.setStretchFactor(self.headerLabel, 0) layout.setStretchFactor(self.mcaROITable, 1) layout.setStretchFactor(hbox, 0) layout.addWidget(hbox) self.addButton.clicked.connect(self._add) self.delButton.clicked.connect(self._del) self.resetButton.clicked.connect(self._reset) self.loadButton.clicked.connect(self._load) self.saveButton.clicked.connect(self._save) self.mcaROITable.sigMcaROITableSignal.connect(self._forward) def _add(self): _logger.debug("McaROIWidget._add") ddict={} ddict['event'] = "AddROI" roilist, roidict = self.mcaROITable.getROIListAndDict() ddict['roilist'] = roilist ddict['roidict'] = roidict self.emitSignal(ddict) def _del(self): row = self.mcaROITable.currentRow() if row >= 0: index = self.mcaROITable.labels.index('Type') text = str(self.mcaROITable.item(row, index).text()) if text.upper() != 'DEFAULT': index = self.mcaROITable.labels.index('ROI') key = str(self.mcaROITable.item(row, index).text()) else: # This is to prevent deleting ICR ROI, that is # usually initialized as "Default" type. return roilist,roidict = self.mcaROITable.getROIListAndDict() row = roilist.index(key) del roilist[row] del roidict[key] if len(roilist) > 0: currentroi = roilist[0] else: currentroi = None self.mcaROITable.fillFromROIDict(roilist=roilist, roidict=roidict, currentroi=currentroi) ddict={} ddict['event'] = "DelROI" ddict['roilist'] = roilist ddict['roidict'] = roidict self.emitSignal(ddict) def _forward(self,ddict): self.emitSignal(ddict) def _reset(self): ddict={} ddict['event'] = "ResetROI" roilist0, roidict0 = self.mcaROITable.getROIListAndDict() index = 0 for key in roilist0: if roidict0[key]['type'].upper() == 'DEFAULT': index = roilist0.index(key) break roilist=[] roidict = {} if len(roilist0): roilist.append(roilist0[index]) roidict[roilist[0]] = {} roidict[roilist[0]].update(roidict0[roilist[0]]) self.mcaROITable.fillFromROIDict(roilist=roilist, roidict=roidict) ddict['roilist'] = roilist ddict['roidict'] = roidict self.emitSignal(ddict) def _load(self): if self.roiDir is None: self.roiDir = PyMcaDirs.inputDir elif not os.path.isdir(self.roiDir): self.roiDir = PyMcaDirs.inputDir fileList = ConfigurationFileDialogs.getConfigurationFilePath(parent=self, message="Select a ROI configuration", currentdir=self.roiDir, mode="OPEN", single=True) if len(fileList): outputFile = qt.safe_str(fileList[0]) if os.path.exists(outputFile): self.roiDir = os.path.dirname(outputFile) self.load(outputFile) def load(self, filename): d = ConfigDict.ConfigDict() d.read(filename) current = "" if self.mcaROITable.rowCount(): row = self.mcaROITable.currentRow() item = self.mcaROITable.item(row, 0) if item is not None: current = str(item.text()) self.fillFromROIDict(roilist=d['ROI']['roilist'], roidict=d['ROI']['roidict']) if current in d['ROI']['roidict'].keys(): if current in d['ROI']['roilist']: row = d['ROI']['roilist'].index(current, 0) self.mcaROITable.setCurrentCell(row, 0) self.mcaROITable._cellChangedSlot(row, 2) return self.mcaROITable.setCurrentCell(0, 0) self.mcaROITable._cellChangedSlot(0, 2) def _save(self): if self.roiDir is None: self.roiDir = PyMcaDirs.outputDir elif not os.path.isdir(self.roiDir): self.roiDir = PyMcaDirs.outputDir outputFile = PyMcaFileDialogs.getFileList(self, filetypelist=['PyMca *.ini', 'All *'], message="Provide output file", currentdir=self.roiDir, mode="SAVE", getfilter=False, single=False, currentfilter=None, native=None) if not len(outputFile): return outputFile = outputFile[0] extension = ".ini" if len(outputFile) < len(extension[:]): outputFile += extension[:] elif outputFile[-4:] != extension[:]: outputFile += extension[:] if os.path.exists(outputFile): try: os.remove(outputFile) except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return self.roiDir = os.path.dirname(outputFile) self.save(outputFile) def save(self, filename): d= ConfigDict.ConfigDict() d['ROI'] = {} d['ROI'] = {'roilist': self.mcaROITable.roilist * 1, 'roidict':{}} d['ROI']['roidict'].update(self.mcaROITable.roidict) d.write(filename) def setData(self,*var,**kw): self.info ={} if 'legend' in kw: self.info['legend'] = kw['legend'] del kw['legend'] else: self.info['legend'] = 'Unknown Type' if 'xlabel' in kw: self.info['xlabel'] = kw['xlabel'] del kw['xlabel'] else: self.info['xlabel'] = 'X' if 'rois' in kw: rois = kw['rois'] self.mcaROITable.fillfromrois(rois) self.setHeader(text="%s ROIs of %s" % (self.info['xlabel'], self.info['legend'])) def setHeader(self,*var,**kw): if len(var): text = var[0] elif 'text' in kw: text = kw['text'] elif 'header' in kw: text = kw['header'] else: text = "" self.headerLabel.setText("%s<\b>" % text) def emitSignal(self, ddict): self.sigMcaROIWidgetSignal.emit(ddict) class McaROITable(qt.QTableWidget): sigMcaROITableSignal = qt.pyqtSignal(object) def __init__(self, *args,**kw): super(McaROITable, self).__init__(*args) self.setRowCount(1) self.labels=['ROI','Type','From','To','Raw Counts','Net Counts'] self.setColumnCount(len(self.labels)) i=0 if QTVERSION > '4.2.0': self.setSortingEnabled(False) if 'labels' in kw: for label in kw['labels']: item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(label, qt.QTableWidgetItem.Type) item.setText(label) self.setHorizontalHeaderItem(i,item) i = i + 1 else: for label in self.labels: item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(label, qt.QTableWidgetItem.Type) item.setText(label) self.setHorizontalHeaderItem(i,item) i=i+1 self.roidict={} self.roilist=[] if 'roilist' in kw: self.roilist = kw['roilist'] if 'roidict' in kw: self.roidict.update(kw['roilist']) self.building = False self.build() #self.connect(self,qt.SIGNAL("cellClicked(int, int)"),self._mySlot) #self.connect(self,qt.SIGNAL("cellChanged(int, int)"),self._cellChangedSlot) self.cellClicked[(int, int)].connect(self._mySlot) self.cellChanged[(int, int)].connect(self._cellChangedSlot) verticalHeader = self.verticalHeader() verticalHeader.sectionClicked[int].connect(self._rowChangedSlot) horizontalHeader = self.horizontalHeader() if hasattr(horizontalHeader, "sectionPressed"): if hasattr(horizontalHeader, "setToolTip"): horizontalHeader.setToolTip("Click ROI or From to sort table") horizontalHeader.sectionPressed[int].connect(self._sortColumnSlot) def build(self): self.fillFromROIDict(roilist=self.roilist,roidict=self.roidict) def fillFromROIDict(self, roilist=None, roidict=None, currentroi=None): if roilist is None: roilist = [] if roidict is None: roidict = {} self.building = True line0 = 0 self.roilist = [] self.roidict = {} self.setSortingEnabled(False) for key in roilist: if key in roidict.keys(): roi = roidict[key] self.roilist.append(key) self.roidict[key] = {} self.roidict[key].update(roi) line0 = line0 + 1 nlines=self.rowCount() if (line0 > nlines): self.setRowCount(line0) line = line0 -1 self.roidict[key]['line'] = line ROI = key roitype = QString("%s" % roi['type']) fromdata= QString("%6g" % (roi['from'])) todata = QString("%6g" % (roi['to'])) if 'rawcounts' in roi: rawcounts= QString("%6g" % (roi['rawcounts'])) else: rawcounts = " ?????? " if 'netcounts' in roi: netcounts= QString("%6g" % (roi['netcounts'])) else: netcounts = " ?????? " fields = [ROI,roitype,fromdata,todata,rawcounts,netcounts] col = 0 for field in fields: key2 = self.item(line, col) if key2 is None: if col == 2: key2 = MyQTableWidgetItem(field, qt.QTableWidgetItem.Type) else: key2 = qt.QTableWidgetItem(field, qt.QTableWidgetItem.Type) self.setItem(line,col,key2) else: key2.setText(field) if (ROI.upper() == 'ICR') or (ROI.upper() == 'DEFAULT'): key2.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) else: if col in [0, 2, 3]: key2.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled| qt.Qt.ItemIsEditable) else: key2.setFlags(qt.Qt.ItemIsSelectable| qt.Qt.ItemIsEnabled) col=col+1 self.setRowCount(line0) i = 0 for label in self.labels: self.resizeColumnToContents(i) i=i+1 self.setSortingEnabled(True) self.sortByColumn(2, qt.Qt.AscendingOrder) self.setSortingEnabled(False) for i in range(len(self.roilist)): key = str(self.item(i, 0).text()) self.roilist[i] = key self.roidict[key]['line'] = i if len(self.roilist) == 1: self.selectRow(0) else: if currentroi in self.roidict.keys(): line = self.roidict[currentroi]['line'] self.selectRow(line) if hasattr(self, "ensureCellVisible"): self.ensureCellVisible(line, 0) elif hasattr(self, "scrollToItem"): item = self.item(line, 0) if item: self.scrollToItem(item) self.building = False def addROI(self, roi, key=None): self.setSortingEnabled(False) nlines = self.numRows() self.setNumRows(nlines+1) line = nlines if key is None: key = "%d " % line self.roidict[key] = {} self.roidict[key]['line'] = line self.roidict[key]['type'] = roi['type'] self.roidict[key]['from'] = roi['from'] self.roidict[key]['to'] = roi['to'] ROI = key roitype = QString("%s" % roi['type']) fromdata= QString("%6g" % (roi['from'])) todata = QString("%6g" % (roi['to'])) if 'rawcounts' in roi: rawcounts= QString("%6g" % (roi['rawcounts'])) else: rawcounts = " ?????? " self.roidict[key]['rawcounts'] = rawcounts if 'netcounts' in roi: netcounts= QString("%6g" % (roi['netcounts'])) else: netcounts = " ?????? " self.roidict[key]['netcounts'] = netcounts fields = [ROI,roitype,fromdata,todata,rawcounts,netcounts] col = 0 for field in fields: if (ROI == 'ICR') or (ROI.upper() == 'DEFAULT'): key=qttable.QTableItem(self,qttable.QTableItem.Never,field) else: if col == 0: key=qttable.QTableItem(self,qttable.QTableItem.OnTyping,field) else: key=qttable.QTableItem(self,qttable.QTableItem.Never,field) self.setItem(line,col,key) col=col+1 self.setSortingEnabled(True) self.sortByColumn(2, qt.Qt.AscendingOrder) self.setSortingEnabled(False) for i in range(len(self.roilist)): nkey = str(self.text(i,0)) self.roilist[i] = nkey self.roidict[nkey]['line'] = i self.selectRow(self.roidict[key]['line']) if hasattr(self, "ensureCellVisible"): self.ensureCellVisible(self.roidict[key]['line'],0) elif hasattr(self, "scrollToItem"): item = self.item(self.roidict[key]['line'], 0) if item: self.scrollToItem(item) def getROIListAndDict(self): return self.roilist, self.roidict def _mySlot(self, *var, **kw): #selection changed event #get the current selection row = self.currentRow() col = self.currentColumn() if row >= 0: ddict = {} ddict['event'] = "selectionChanged" ddict['row' ] = row ddict['col' ] = col if row >= len(self.roilist): _logger.debug("deleting???") return row = 0 item = self.item(row, 0) if item is None: text="" else: text = str(item.text()) self.roilist[row] = text ddict['roi' ] = self.roidict[self.roilist[row]] ddict['key'] = self.roilist[row] ddict['colheader'] = self.labels[col] ddict['rowheader'] = "%d" % row self.emitSignal(ddict) def _rowChangedSlot(self, row): self._emitSelectionChangedSignal(row, 0) def _sortColumnSlot(self, col): if col not in [0, 2]: _logger.info("Sorting on column %d disabled" % col) return try: self.setSortingEnabled(True) self.sortByColumn(col, qt.Qt.AscendingOrder) finally: self.setSortingEnabled(False) def _cellChangedSlot(self, row, col): _logger.debug("_cellChangedSlot(%d, %d)", row, col) if self.building: return if col == 0: self.nameSlot(row, col) else: self._valueChanged(row, col) def _valueChanged(self, row, col): if col not in [2, 3]: return item = self.item(row, col) if item is None: return text = str(item.text()) try: value = float(text) except Exception: # recover old value oldItem = self.item(row, 0) if oldItem is None: return text = str(oldItem.text()) if text in self.roidict: if col == 2: key = 'from' elif col == 3: key = 'to' if key in self.roidict[text]: item.setText("%6g" % self.roidict[text][key]) return if row >= len(self.roilist): _logger.debug("deleting???") return if QTVERSION < '4.0.0': text = str(self.text(row, 0)) else: item = self.item(row, 0) if item is None: text="" else: text = str(item.text()) if not len(text): return if col == 2: self.roidict[text]['from'] = value elif col ==3: self.roidict[text]['to'] = value self._emitSelectionChangedSignal(row, col) def nameSlot(self, row, col): if col != 0: return if row >= len(self.roilist): _logger.debug("deleting???") return item = self.item(row, col) if item is None: text="" else: text = str(item.text()) if len(text) and (text not in self.roilist): old = self.roilist[row] self.roilist[row] = text self.roidict[text] = {} self.roidict[text].update(self.roidict[old]) del self.roidict[old] self._emitSelectionChangedSignal(row, col) def _emitSelectionChangedSignal(self, row, col): ddict = {} ddict['event'] = "selectionChanged" ddict['row' ] = row ddict['col' ] = col ddict['roi' ] = self.roidict[self.roilist[row]] ddict['key'] = self.roilist[row] ddict['colheader'] = self.labels[col] ddict['rowheader'] = "%d" % row self.emitSignal(ddict) def mySlot(self,*var,**kw): if len(var) == 0: self._mySlot() return if len(var) == 2: ddict={} row = var[0] col = var[1] if col == 0: if row >= len(self.roilist): _logger.debug("deleting???") return row = 0 item = self.item(row, col) if item is None: text="" else: text = str(item.text()) if len(text) and (text not in self.roilist): old = self.roilist[row] self.roilist[row] = text self.roidict[text] = {} self.roidict[text].update(self.roidict[old]) del self.roidict[old] ddict = {} ddict['event'] = "selectionChanged" ddict['row' ] = row ddict['col' ] = col ddict['roi' ] = self.roidict[self.roilist[row]] ddict['key'] = self.roilist[row] ddict['colheader'] = self.labels[col] ddict['rowheader'] = "%d" % row self.emitSignal(ddict) else: if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) else: item.setText(text) self._mySlot() def emitSignal(self, ddict): self.sigMcaROITableSignal.emit(ddict) class SimpleComboBox(qt.QComboBox): def __init__(self,parent = None,name = None,fl = 0,options=['1','2','3']): qt.QComboBox.__init__(self,parent) self.setOptions(options) def setOptions(self,options=['1','2','3']): self.clear() self.insertStrList(options) def getCurrent(self): return self.currentItem(),str(self.currentText()) class MyQTableWidgetItem(qt.QTableWidgetItem): def __lt__(self, other): try: return float(self.text()) < float(other.text()) except Exception: return self.text() < other.text() if __name__ == '__main__': app = qt.QApplication([]) demo = McaROIWidget() demo.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/ObjectPrintConfigurationDialog.py0000644000000000000000000002052414741736366025361 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt class ObjectPrintConfigurationWidget(qt.QWidget): def __init__(self, parent=None): super(ObjectPrintConfigurationWidget, self).__init__(parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) hbox = qt.QWidget() hboxLayout = qt.QHBoxLayout(hbox) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(2) label = qt.QLabel(self) label.setText("Units") label.setAlignment(qt.Qt.AlignCenter) self._pageButton = qt.QRadioButton() self._pageButton.setText("Page") self._inchButton = qt.QRadioButton() self._inchButton.setText("Inches") self._cmButton = qt.QRadioButton() self._cmButton.setText("Centimeters") self._buttonGroup = qt.QButtonGroup(self) self._buttonGroup.addButton(self._pageButton) self._buttonGroup.addButton(self._inchButton) self._buttonGroup.addButton(self._cmButton) self._buttonGroup.setExclusive(True) # units self.mainLayout.addWidget(label, 0, 0, 1, 4) #self.mainLayout.addWidget(self._pageButton, 0, 1) #self.mainLayout.addWidget(self._inchButton, 0, 2) #self.mainLayout.addWidget(self._cmButton, 0, 3) hboxLayout.addWidget(self._pageButton) hboxLayout.addWidget(self._inchButton) hboxLayout.addWidget(self._cmButton) self.mainLayout.addWidget(hbox, 1, 0, 1, 4) self._pageButton.setChecked(True) # xOffset label = qt.QLabel(self) label.setText("X Offset:") self.mainLayout.addWidget(label, 2, 0) self._xOffset = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(None) self._xOffset.setValidator(validator) self._xOffset.setText("0.0") self.mainLayout.addWidget(self._xOffset, 2, 1) # yOffset label = qt.QLabel(self) label.setText("Y Offset:") self.mainLayout.addWidget(label, 2, 2) self._yOffset = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(None) self._yOffset.setValidator(validator) self._yOffset.setText("0.0") self.mainLayout.addWidget(self._yOffset, 2, 3) # width label = qt.QLabel(self) label.setText("Width:") self.mainLayout.addWidget(label, 3, 0) self._width = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(None) self._width.setValidator(validator) self._width.setText("0.5") self.mainLayout.addWidget(self._width, 3, 1) # height label = qt.QLabel(self) label.setText("Height:") self.mainLayout.addWidget(label, 3, 2) self._height = qt.QLineEdit(self) validator = qt.CLocaleQDoubleValidator(None) self._height.setValidator(validator) self._height.setText("0.5") self.mainLayout.addWidget(self._height, 3, 3) # aspect ratio self._aspect = qt.QCheckBox(self) self._aspect.setText("Keep screen aspect ratio") self._aspect.setChecked(True) self.mainLayout.addWidget(self._aspect, 4, 1, 1, 2) def getParameters(self): ddict = {} if self._inchButton.isChecked(): ddict['units'] = "inches" elif self._cmButton.isChecked(): ddict['units'] = "centimeters" else: ddict['units'] = "page" ddict['xOffset'] = float(qt.safe_str(self._xOffset.text())) ddict['yOffset'] = float(qt.safe_str(self._yOffset.text())) ddict['width'] = float(qt.safe_str(self._width.text())) ddict['height'] = float(qt.safe_str(self._height.text())) if self._aspect.isChecked(): ddict['keepAspectRatio'] = True else: ddict['keepAspectRatio'] = False return ddict def setParameters(self, ddict=None): if ddict is None: ddict = {} oldDict = self.getParameters() for key in ["units", "xOffset", "yOffset", "width", "height", "keepAspectRatio"]: ddict[key] = ddict.get(key, oldDict[key]) if ddict['units'].lower().startswith("inc"): self._inchButton.setChecked(True) elif ddict['units'].lower().startswith("c"): self._cmButton.setChecked(True) else: self._pageButton.setChecked(True) self._xOffset.setText("%s" % float(ddict['xOffset'])) self._yOffset.setText("%s" % float(ddict['yOffset'])) self._width.setText("%s" % float(ddict['width'])) self._height.setText("%s" % float(ddict['height'])) if ddict['keepAspectRatio']: self._aspect.setChecked(True) else: self._aspect.setChecked(False) class ObjectPrintConfigurationDialog(qt.QDialog): def __init__(self, parent=None, configuration=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Set print size preferences") if configuration is None: configuration = {"xOffset": 0.0, "yOffset": 0.0, "width": 0.5, "height": 0.5, "units": "page", "keepAspectRatio": True} layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.configurationWidget = ObjectPrintConfigurationWidget(self) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) self.okButton = qt.QPushButton(hbox) self.okButton.setText("Accept") self.okButton.setAutoDefault(False) self.rejectButton = qt.QPushButton(hbox) self.rejectButton.setText("Dismiss") self.rejectButton.setAutoDefault(False) self.okButton.clicked.connect(self.accept) self.rejectButton.clicked.connect(self.reject) hboxLayout.setContentsMargins(0, 0, 0, 0) hboxLayout.setSpacing(2) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) hboxLayout.addWidget(self.okButton) hboxLayout.addWidget(self.rejectButton) hboxLayout.addWidget(qt.HorizontalSpacer(hbox)) layout.addWidget(self.configurationWidget) layout.addWidget(hbox) self.setPrintConfiguration(configuration) def setPrintConfiguration(self, configuration, printer=None): # TODO: Receive printer in order to be able to convert units # from page to inch and/or centimeters self.configurationWidget.setParameters(configuration) def getPrintConfiguration(self): return self.configurationWidget.getParameters() if __name__ == "__main__": app = qt.QApplication([]) w = ObjectPrintConfigurationDialog() if w.exec(): print(w.getPrintConfiguration()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/PlotWidget.py0000644000000000000000000003230114741736366021344 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging import traceback if sys.version_info < (3,0): import cStringIO as _StringIO BytesIO = _StringIO.StringIO else: from io import BytesIO from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGraph import Plot SVG = qt.HAS_SVG _logger = logging.getLogger(__name__) DEBUG = 0 if DEBUG: _logger.setLevel(logging.DEBUG) Plot.DEBUG = DEBUG class PlotWidget(qt.QMainWindow, Plot.Plot): sigPlotSignal = qt.Signal(object) def __init__(self, parent=None, backend=None, legends=False, callback=None, **kw): self._panWithArrowKeys = False qt.QMainWindow.__init__(self, parent) Plot.Plot.__init__(self, parent=self, backend=backend) if parent is not None: # behave as a widget self.setWindowFlags(qt.Qt.Widget) self.containerWidget = qt.QWidget() self.containerWidget.mainLayout = qt.QVBoxLayout(self.containerWidget) self.containerWidget.mainLayout.setContentsMargins(0, 0, 0, 0) self.containerWidget.mainLayout.setSpacing(0) widget = self.getWidgetHandle() if widget is not None: self.containerWidget.mainLayout.addWidget(widget, 1) self.setCentralWidget(self.containerWidget) else: _logger.warning("No backend. Using default.") # defaultPrinter self._printer = None self.setGraphTitle(" ") self.setGraphXLabel("X") self.setGraphYLabel("Y") self.setCallback(callback) def showLegends(self, flag=True): if legends: _logger.warning("Legends widget to be implemented") def graphCallback(self, ddict=None): if ddict is not None: Plot.Plot.graphCallback(self, ddict) self.sigPlotSignal.emit(ddict) def resizeEvent(self, event): super(PlotWidget, self).resizeEvent(event) #Should I reset the zoom or replot? #self.resetZoom() def replot(self): Plot.Plot.replot(self) # force update of the widget!!! # should this be made at the backend level? w = self.centralWidget() qt.QApplication.instance().postEvent(w, qt.QResizeEvent(w.size(), w.size())) def saveGraph(self, fileName, fileFormat=None, dpi=None, **kw): supportedFormats = ["png", "svg", "pdf", "ps", "eps", "tif", "tiff","jpeg", "jpg"] if fileFormat is None: fileFormat = (fileName.split(".")[-1]).lower() if fileFormat not in supportedFormats: print("Probably unsupported format %s" % fileFormat) fileFormat = "svg" return super(PlotWidget, self).saveGraph(fileName, fileFormat, dpi=dpi, **kw) def getSvgRenderer(self, printer=None): if not SVG: raise RuntimeError("QtSvg module missing. Please compile Qt with SVG support") return if sys.version < '3.0': import cStringIO as StringIO imgData = StringIO.StringIO() else: from io import BytesIO imgData = BytesIO() self.saveGraph(imgData, fileFormat='svg') imgData.flush() imgData.seek(0) svgRawData = imgData.read() svgRendererData = qt.QXmlStreamReader(svgRawData) svgRenderer = qt.QSvgRenderer(svgRendererData) svgRenderer._svgRawData = svgRawData svgRenderer._svgRendererData = svgRendererData return svgRenderer def printGraph(self, width=None, height=None, xOffset=0.0, yOffset=0.0, units="inches", dpi=None, printer=None, dialog=True, keepAspectRatio=True, **kw): if printer is None: if self._printer is None: printer = qt.QPrinter() else: printer = self._printer if (printer is None) or dialog: # allow printer selection/configuration printDialog = qt.QPrintDialog(printer, self) actualPrint = printDialog.exec() else: actualPrint = True if actualPrint: self._printer = printer try: painter = qt.QPainter() if not(painter.begin(printer)): return 0 dpix = printer.logicalDpiX() dpiy = printer.logicalDpiY() #margin = int((2/2.54) * dpiy) #2cm margin availableWidth = printer.width() #- 1 * margin availableHeight = printer.height() #- 2 * margin # get the available space # convert the offsets to dpi if units.lower() in ['inch', 'inches']: xOffset = xOffset * dpix yOffset = yOffset * dpiy if width is not None: width = width * dpix if height is not None: height = height * dpiy elif units.lower() in ['cm', 'centimeters']: xOffset = (xOffset/2.54) * dpix yOffset = (yOffset/2.54) * dpiy if width is not None: width = (width/2.54) * dpix if height is not None: height = (height/2.54) * dpiy else: # page units xOffset = availableWidth * xOffset yOffset = availableHeight * yOffset if width is not None: width = availableWidth * width if height is not None: height = availableHeight * height availableWidth -= xOffset availableHeight -= yOffset if width is not None: if (availableWidth + 0.1) < width: txt = "Available width %f is less than requested width %f" % \ (availableWidth, width) raise ValueError(txt) availableWidth = width if height is not None: if (availableHeight + 0.1) < height: txt = "Available height %f is less than requested height %f" % \ (availableHeight, height) raise ValueError(txt) availableHeight = height if keepAspectRatio: #get the aspect ratio widget = self.getWidgetHandle() if widget is None: # does this make sense? graphWidth = availableWidth graphHeight = availableHeight else: graphWidth = float(widget.width()) graphHeight = float(widget.height()) graphRatio = graphHeight / graphWidth # that ratio has to be respected bodyWidth = availableWidth bodyHeight = availableWidth * graphRatio if bodyHeight > availableHeight: bodyHeight = availableHeight bodyWidth = bodyHeight / graphRatio else: bodyWidth = availableWidth bodyHeight = availableHeight body = qt.QRectF(xOffset, yOffset, bodyWidth, bodyHeight) svgRenderer = self.getSvgRenderer() svgRenderer.render(painter, body) finally: painter.end() # Panning with arrow keys def isPanWithArrowKeys(self): """Returns whether or not panning the graph with arrow keys is enable. See :meth:`setPanWithArrowKeys`. """ return self._panWithArrowKeys def setPanWithArrowKeys(self, pan=False): """Enable/Disable panning the graph with arrow keys. This grabs the keyboard. :param bool pan: True to enable panning, False to disable. """ self._panWithArrowKeys = bool(pan) if not self._panWithArrowKeys: self.setFocusPolicy(qt.Qt.NoFocus) else: self.setFocusPolicy(qt.Qt.StrongFocus) self.setFocus(qt.Qt.OtherFocusReason) # Dict to convert Qt arrow key code to direction str. _ARROWS_TO_PAN_DIRECTION = { qt.Qt.Key_Left: 'left', qt.Qt.Key_Right: 'right', qt.Qt.Key_Up: 'up', qt.Qt.Key_Down: 'down' } def keyPressEvent(self, event): """Key event handler handling panning on arrow keys. Overrides base class implementation. """ key = event.key() if self._panWithArrowKeys and key in self._ARROWS_TO_PAN_DIRECTION: self.pan(self._ARROWS_TO_PAN_DIRECTION[key], factor=0.1) else: # Only call base class implementation when key is not handled. # See QWidget.keyPressEvent for details. super(PlotWidget, self).keyPressEvent(event) def copyToClipboard(self): """ Copy the plot to the clipboard """ pngFile = BytesIO() self.saveGraph(pngFile, fileFormat='png') pngFile.flush() pngFile.seek(0) pngData = pngFile.read() pngFile.close() image = qt.QImage.fromData(pngData, 'png') qt.QApplication.clipboard().setImage(image) if __name__ == "__main__": import time backend = None if ("matplotlib" in sys.argv) or ("mpl" in sys.argv): backend = "matplotlib" print("USING matplotlib") time.sleep(1) elif ("silx" in sys.argv): backend = "silx" print("USING silx") time.sleep(1) elif ("OpenGL" in sys.argv) or ("opengl" in sys.argv) or ("gl" in sys.argv): backend = "opengl" print("USING OpenGL") time.sleep(1) elif ("GLUT" in sys.argv) or ("glut" in sys.argv): backend = "glut" print("USING GLUT") time.sleep(1) else: print ("USING default backend") time.sleep(1) import numpy x = numpy.arange(100.) y = x * x app = qt.QApplication([]) plot = PlotWidget(None, backend=backend, legends=True) plot.setPanWithArrowKeys(True) plot.show() if 1: plot.addCurve(x, y, "dummy") plot.addCurve(x+100, x*x) plot.addCurve(x, -y, "dummy 2") print("Active curve = ", plot.getActiveCurve()) print("X Limits = ", plot.getGraphXLimits()) print("Y Limits = ", plot.getGraphYLimits()) print("All curves = ", plot.getAllCurves()) #print("REMOVING dummy") #plot.removeCurve("dummy") plot.insertXMarker(50., legend="X", text="X", draggable=True) #plot.insertYMarker(50., draggable=True) plot.setYAxisLogarithmic(True) else: # insert a few curves cSin={} cCos={} nplots=50 for i in range(nplots): # calculate 3 NumPy arrays x = numpy.arange(0.0, 10.0, 0.1) y = 10*numpy.sin(x+(i/10.0) * 3.14) z = numpy.cos(x+(i/10.0) * 3.14) #build a key a="%d" % i #plot the data cSin[a] = plot.addCurve(x, y, 'y = sin(x)' + a, replot=False) cCos[a] = plot.addCurve(x, z, 'y = cos(x)' + a, replot=False) cCos[a] = plot.addCurve(x, z, 'y = cos(x)' + a, replot=True) plot.insertXMarker(5., legend="X", text="X", draggable=True) plot.insertYMarker(5., legend="Y", text="Y", draggable=True) print("All curves = ", plot.getAllCurves(just_legend=True)) app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/PlotWindow.py0000644000000000000000000021273714741736366021405 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This window handles plugins and adds a toolbar to the PlotWidget. Currently the only dependency on PyMca is through the Icons. """ import copy import sys import os import time import traceback import logging import numpy from numpy import argsort, nonzero, take from . import LegendSelector from .ObjectPrintConfigurationDialog import ObjectPrintConfigurationDialog from . import McaROIWidget from . import PlotWidget from . import MaskImageTools from . import RenameCurveDialog try: from . import ColormapDialog COLORMAP_DIALOG = True except Exception: COLORMAP_DIALOG = False from .PyMca_Icons import IconDict from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str QTVERSION = qt.qVersion() DEBUG = 0 _logger = logging.getLogger(__name__) class PlotWindow(PlotWidget.PlotWidget): sigROISignal = qt.pyqtSignal(object) sigIconSignal = qt.pyqtSignal(object) sigColormapChangedSignal = qt.pyqtSignal(object) DEFAULT_COLORMAP_INDEX = MaskImageTools.DEFAULT_COLORMAP_INDEX DEFAULT_COLORMAP_LOG_FLAG = MaskImageTools.DEFAULT_COLORMAP_LOG_FLAG def __init__(self, parent=None, backend=None, plugins=True, newplot=False, control=False, position=False, plot1d=None, **kw): super(PlotWindow, self).__init__(parent=parent, backend=backend) self.pluginsIconFlag = plugins self.newplotIconsFlag = newplot # assume only curves (no images) will be displayed if True self._plot1d = plot1d self.setWindowType(None) # None, "SCAN", "MCA" self._initIcons() self._buildToolBar(kw) if "silx" not in sys.modules: self.setIconSize(qt.QSize(16, 16)) self._toggleCounter = 0 self._keepDataAspectRatioFlag = False self.gridLevel = 0 self.legendWidget = None self.usePlotBackendColormap = False # Toggle usage of backend colormap self.setCallback(self.graphCallback) if control or position: self._buildGraphBottomWidget(control, position) self._controlMenu = None # default print configuration (uses full page) self._printMenu = None self._printConfigurationDialog = None self._printConfiguration = {"xOffset": 0.1, "yOffset": 0.1, "width": 0.9, "height": 0.9, "units": "page", "keepAspectRatio": True} # own save action self.enableOwnSave(True) # activeCurve handling self.enableActiveCurveHandling(True) self.setActiveCurveColor('black') # default ROI handling self.roiWidget = None self._middleROIMarkerFlag = False #colormap handling self.colormapDialog = None self.colormap = None def enableOwnSave(self, flag=True): if flag: self._ownSave = True else: self._ownSave = False def _buildGraphBottomWidget(self, control, position): widget = self.centralWidget() self.graphBottom = qt.QWidget(widget) self.graphBottomLayout = qt.QHBoxLayout(self.graphBottom) self.graphBottomLayout.setContentsMargins(0, 0, 0, 0) self.graphBottomLayout.setSpacing(0) if control: self.graphControlButton = qt.QPushButton(self.graphBottom) self.graphControlButton.setText("Options") self.graphControlButton.setAutoDefault(False) self.graphBottomLayout.addWidget(self.graphControlButton) self.graphControlButton.clicked.connect(self._graphControlClicked) if position: label=qt.QLabel(self.graphBottom) label.setText('X:') self.graphBottomLayout.addWidget(label) self._xPos = qt.QLineEdit(self.graphBottom) self._xPos.setText('------') self._xPos.setReadOnly(1) fm = self._xPos.fontMetrics() fmtext = '##############' if hasattr(fm, "maxWidth"): self._xPos.setFixedWidth(fm.maxWidth() * len(fmtext)) else: _logger.debug("Using obsolete method") self._xPos.setFixedWidth(fm.width(fmtext)) self.graphBottomLayout.addWidget(self._xPos) label=qt.QLabel(self.graphBottom) label.setText('Y:') self.graphBottomLayout.addWidget(label) self._yPos = qt.QLineEdit(self.graphBottom) self._yPos.setText('------') self._yPos.setReadOnly(1) fm = self._yPos.fontMetrics() fmtext = '##############' if hasattr(fm, "maxWidth"): self._yPos.setFixedWidth(fm.maxWidth() * len(fmtext)) else: _logger.debug("Using obsolete method") self._yPos.setFixedWidth(fm.width(fmtext)) self.graphBottomLayout.addWidget(self._yPos) self.graphBottomLayout.addWidget(qt.HorizontalSpacer(self.graphBottom)) widget.layout().addWidget(self.graphBottom, 0) def setPrintMenu(self, menu): self._printMenu = menu def setWindowType(self, wtype=None): if wtype not in [None, "SCAN", "MCA"]: _logger.warning("Unsupported window type. Default to None") self._plotType = wtype # give a proper default if not set if wtype in ["SCAN", "MCA"] and self._plot1d is None: _logger.info("Assuming 1D Plot based on window type") self._plot1d = True def _graphControlClicked(self): if self._controlMenu is None: #create a default menu controlMenu = qt.QMenu() controlMenu.addAction(QString("Show/Hide Legends"), self.toggleLegendWidget) controlMenu.addAction(QString("Toggle Crosshair"), self.toggleCrosshairCursor) controlMenu.addAction(QString("Toggle Arrow Keys Panning"), self.toggleArrowKeysPanning) controlMenu.exec(self.cursor().pos()) else: self._controlMenu.exec(self.cursor().pos()) def setControlMenu(self, menu=None): self._controlMenu = menu def _initIcons(self): self.normalIcon = qt.QIcon(qt.QPixmap(IconDict["normal"])) self.zoomIcon = qt.QIcon(qt.QPixmap(IconDict["zoom"])) self.roiIcon = qt.QIcon(qt.QPixmap(IconDict["roi"])) self.peakIcon = qt.QIcon(qt.QPixmap(IconDict["peak"])) self.energyIcon = qt.QIcon(qt.QPixmap(IconDict["energy"])) self.zoomResetIcon = qt.QIcon(qt.QPixmap(IconDict["zoomreset"])) self.roiResetIcon = qt.QIcon(qt.QPixmap(IconDict["roireset"])) self.peakResetIcon = qt.QIcon(qt.QPixmap(IconDict["peakreset"])) self.refreshIcon = qt.QIcon(qt.QPixmap(IconDict["reload"])) self.logxIcon = qt.QIcon(qt.QPixmap(IconDict["logx"])) self.logyIcon = qt.QIcon(qt.QPixmap(IconDict["logy"])) self.xAutoIcon = qt.QIcon(qt.QPixmap(IconDict["xauto"])) self.yAutoIcon = qt.QIcon(qt.QPixmap(IconDict["yauto"])) self.gridIcon = qt.QIcon(qt.QPixmap(IconDict["grid16"])) self.hFlipIcon = qt.QIcon(qt.QPixmap(IconDict["gioconda16mirror"])) self.togglePointsIcon = qt.QIcon(qt.QPixmap(IconDict["togglepoints"])) self.solidCircleIcon = qt.QIcon(qt.QPixmap(IconDict["solidcircle"])) self.solidEllipseIcon = qt.QIcon(qt.QPixmap(IconDict["solidellipse"])) self.fitIcon = qt.QIcon(qt.QPixmap(IconDict["fit"])) self.searchIcon = qt.QIcon(qt.QPixmap(IconDict["peaksearch"])) self.averageIcon = qt.QIcon(qt.QPixmap(IconDict["average16"])) self.deriveIcon = qt.QIcon(qt.QPixmap(IconDict["derive"])) self.smoothIcon = qt.QIcon(qt.QPixmap(IconDict["smooth"])) self.swapSignIcon = qt.QIcon(qt.QPixmap(IconDict["swapsign"])) self.yMinToZeroIcon = qt.QIcon(qt.QPixmap(IconDict["ymintozero"])) self.subtractIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) self.colormapIcon = qt.QIcon(qt.QPixmap(IconDict["colormap"])) self.imageIcon = qt.QIcon(qt.QPixmap(IconDict["image"])) self.eraseSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["eraseselect"])) self.rectSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["boxselect"])) self.brushSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["brushselect"])) self.brushIcon = qt.QIcon(qt.QPixmap(IconDict["brush"])) self.additionalIcon = qt.QIcon(qt.QPixmap(IconDict["additionalselect"])) self.polygonIcon = qt.QIcon(qt.QPixmap(IconDict["polygon"])) self.printIcon = qt.QIcon(qt.QPixmap(IconDict["fileprint"])) self.copyIcon = qt.QIcon(qt.QPixmap(IconDict["clipboard"])) self.saveIcon = qt.QIcon(qt.QPixmap(IconDict["filesave"])) self.pluginIcon = qt.QIcon(qt.QPixmap(IconDict["plugin"])) def _buildToolBar(self, kw=None): if kw is None: kw = {} self.toolBar = qt.QToolBar(self) self.toolBarActionsDict = {} #Autoscale self._addToolButton(self.zoomResetIcon, self._zoomReset, 'Auto-Scale the Graph', key=None) #y Autoscale self.yAutoScaleButton = self._addToolButton(self.yAutoIcon, self._yAutoScaleToggle, 'Toggle Autoscale Y Axis (On/Off)', toggle = True, key=None) self.yAutoScaleButton.setChecked(True) self.yAutoScaleButton.setDown(True) #x Autoscale self.xAutoScaleButton = self._addToolButton(self.xAutoIcon, self._xAutoScaleToggle, 'Toggle Autoscale X Axis (On/Off)', toggle = True, key=None) self.xAutoScaleButton.setChecked(True) self.xAutoScaleButton.setDown(True) #y Logarithmic if kw.get('logy', True): self.yLogButton = self._addToolButton(self.logyIcon, self._toggleLogY, 'Toggle Logarithmic Y Axis (On/Off)', toggle = True, key='logy') self.yLogButton.setChecked(False) self.yLogButton.setDown(False) #x Logarithmic if kw.get('logx', True): self.xLogButton = self._addToolButton(self.logxIcon, self._toggleLogX, 'Toggle Logarithmic X Axis (On/Off)', toggle = True, key='logx') self.xLogButton.setChecked(False) self.xLogButton.setDown(False) #Aspect ratio if kw.get('aspect', False): self.aspectButton = self._addToolButton(self.solidCircleIcon, self._aspectButtonSignal, 'Keep data aspect ratio', toggle = False, key='aspect') self.aspectButton.setChecked(False) #self.aspectButton.setDown(False) #colormap if kw.get('colormap', False): tb = self._addToolButton(self.colormapIcon, self._colormapIconSignal, 'Change Colormap', key='colormap') self.colormapToolButton = tb if kw.get('normal', False): tb = self._addToolButton(self.normalIcon, self._normalIconSignal, 'Set normal (default) mode', key='normal') self.normalToolButton = tb # image and selection related icons if kw.get('imageIcons', False) or kw.get('imageicons', False): tb = self._addToolButton(self.imageIcon, self._imageIconSignal, 'Reset', key='image') self.imageToolButton = tb tb = self._addToolButton(self.eraseSelectionIcon, self._eraseSelectionIconSignal, 'Erase Selection', key="erase") self.eraseSelectionToolButton = tb tb = self._addToolButton(self.rectSelectionIcon, self._rectSelectionIconSignal, 'Rectangular Selection', key="rectangle") self.rectSelectionToolButton = tb tb = self._addToolButton(self.brushSelectionIcon, self._brushSelectionIconSignal, 'Brush Selection', key="brushSelection") self.brushSelectionToolButton = tb tb = self._addToolButton(self.brushIcon, self._brushIconSignal, 'Select Brush', key="brush") self.brushToolButton = tb if kw.get("polygon", False): tb = self._addToolButton(self.polygonIcon, self._polygonIconSignal, 'Polygon selection', key="polygon") self.polygonSelectionToolButton = tb tb = self._addToolButton(self.additionalIcon, self._additionalIconSignal, 'Additional Selections Menu', key="additional") self.additionalSelectionToolButton = tb else: if kw.get("polygon", False): tb = self._addToolButton(self.polygonIcon, self._polygonIconSignal, 'Polygon selection', key="polygon") self.polygonSelectionToolButton = tb self.imageToolButton = None #flip if kw.get('flip', False) or kw.get('hflip', False): tb = self._addToolButton(self.hFlipIcon, self._hFlipIconSignal, 'Flip Horizontal', key="hflip") self.hFlipToolButton = tb #grid if kw.get('grid', True): tb = self._addToolButton(self.gridIcon, self.changeGridLevel, 'Change Grid', toggle = False, key="grid") self.gridTb = tb #toggle Points/Lines if kw.get('togglePoints', True): tb = self._addToolButton(self.togglePointsIcon, self._togglePointsSignal, 'Toggle Points/Lines', key="togglePoints") #energy icon if kw.get('energy', False): self.energyButton = self._addToolButton(self.energyIcon, self._energyIconSignal, 'Toggle Energy Axis (On/Off)', toggle=True, key="energy") #roi icon if kw.get('roi', False): self.roiButton = self._addToolButton(self.roiIcon, self.__toggleROI, 'Show/Hide ROI widget', toggle=False, key="roi") self.currentROI = None self.middleROIMarkerFlag = False #fit icon if kw.get('fit', False): self.fitButton = self._addToolButton(self.fitIcon, self._fitIconSignal, 'Fit of Active Curve', key="fit") if self.newplotIconsFlag: tb = self._addToolButton(self.averageIcon, self._averageIconSignal, 'Average Plotted Curves') self.derivateToolButton = self._addToolButton(self.deriveIcon, self._deriveIconSignal, 'Take Derivative of Active Curve') tb = self._addToolButton(self.smoothIcon, self._smoothIconSignal, 'Smooth Active Curve') tb = self._addToolButton(self.swapSignIcon, self._swapSignIconSignal, 'Multiply Active Curve by -1') tb = self._addToolButton(self.yMinToZeroIcon, self._yMinToZeroIconSignal, 'Force Y Minimum to be Zero') tb = self._addToolButton(self.subtractIcon, self._subtractIconSignal, 'Subtract Active Curve') # clipboard self.copyToolButton = self._addToolButton(self.copyIcon, self._copyIconSignal, "Copy graph to clipboard") # save infotext = 'Save Active Curve or Widget' tb = self._addToolButton(self.saveIcon, self._saveIconSignal, infotext) if self.pluginsIconFlag: infotext = "Call/Load 1D Plugins" tb = self._addToolButton(self.pluginIcon, self._pluginClicked, infotext) self.toolBar.addWidget(qt.HorizontalSpacer(self.toolBar)) # ---print tb = self._addToolButton(self.printIcon, self._printGraph, 'Prints the Graph') self.addToolBar(self.toolBar) def _printGraph(self): if self._printMenu is None: printMenu = qt.QMenu() #printMenu.addAction(QString("Select printer"), # self._printerSelect) printMenu.addAction(QString("Customize printing"), self._getPrintConfigurationFromDialog) printMenu.addAction(QString("Print"), self.printGraph) printMenu.exec(self.cursor().pos()) else: self._printMenu.exec(self.cursor().pos()) def printGraph(self, *var, **kw): config = self.getPrintConfiguration() PlotWidget.PlotWidget.printGraph(self, width=config['width'], height=config['height'], xOffset=config['xOffset'], yOffset=config['yOffset'], units=config['units'], keepAspectRatio=config['keepAspectRatio'], printer=self._printer) def setPrintConfiguration(self, configuration, printer=None): for key in self._printConfiguration: if key in configuration: self._printConfiguration[key] = configuration[key] if printer is not None: # printer should be a global thing ... self._printer = printer def getPrintConfiguration(self, dialog=False): if dialog: self._getPrintConfigurationFromDialog() return copy.deepcopy(self._printConfiguration) def _getPrintConfigurationFromDialog(self): if self._printConfigurationDialog is None: self._printConfigurationDialog = \ ObjectPrintConfigurationDialog(self) oldConfig = self.getPrintConfiguration() self._printConfigurationDialog.setPrintConfiguration(oldConfig, printer=self._printer) if self._printConfigurationDialog.exec(): self.setPrintConfiguration(\ self._printConfigurationDialog.getPrintConfiguration()) def _addToolButton(self, icon, action, tip, toggle=None, key=None): tb = qt.QToolButton(self.toolBar) tb.setIcon(icon) tb.setToolTip(tip) if toggle is not None: if toggle: tb.setCheckable(1) qtAction = self.toolBar.addWidget(tb) if key is not None: if not hasattr(self, "toolBarActionsDict"): self.toolBarActionsDict = {} self.toolBarActionsDict[key] = qtAction tb.clicked.connect(action) return tb def setToolBarActionVisible(self, action, visible=True): if hasattr(self, "toolBarActionsDict"): for key in self.toolBarActionsDict: if hasattr(key, "lower") and hasattr(action, "lower"): if key.lower() == action.lower(): self.toolBarActionsDict[key].setVisible(visible) return elif key == action: self.toolBarActionsDict[key].setVisible(visible) return if DEBUG: print("Unhandled action %s" % action) def _aspectButtonSignal(self): if DEBUG: print("_aspectButtonSignal") if self._keepDataAspectRatioFlag: self.keepDataAspectRatio(False) else: self.keepDataAspectRatio(True) def keepDataAspectRatio(self, flag=True): if flag: self._keepDataAspectRatioFlag = True self.aspectButton.setIcon(self.solidEllipseIcon) self.aspectButton.setToolTip("Set free data aspect ratio") else: self._keepDataAspectRatioFlag = False self.aspectButton.setIcon(self.solidCircleIcon) self.aspectButton.setToolTip("Keep data aspect ratio") super(PlotWindow, self).keepDataAspectRatio(self._keepDataAspectRatioFlag) def _zoomReset(self): if DEBUG: print("_zoomReset") self.resetZoom() def resetZoom(self, **kw): if self._plot1d: if self.isYAxisAutoScale() and self.isXAxisAutoScale(): default = True else: default = False else: default = True super(PlotWindow, self).resetZoom(**kw) if default: return elif self.isYAxisAutoScale(): # autoscale data in the seen region based on the active curve xmin, xmax = self.getGraphXLimits() active = self.getActiveCurve() if active not in [[], None]: x, y, legend, info = active[:4] else: return idx = numpy.nonzero((x >= xmin) & (x <= xmax))[0] y = numpy.take(y, idx) if y.size: ymin = numpy.nanmin(y) ymax = numpy.nanmax(y) if ymin == ymax: ymax = ymin + 1 self.setGraphYLimits(ymin, ymax) elif self.isXAxisAutoScale(): # autoscale data in the seen region based on the active curve ymin, ymax = self.getGraphYLimits() active = self.getActiveCurve() if active not in [[], None]: x, y, legend, info = active[:4] else: return idx = numpy.nonzero((y >= ymin) & (y <= ymax))[0] x = numpy.take(x, idx) if x.size: xmin = numpy.nanmin(x) xmax = numpy.nanmax(x) if xmin == xmax: xmax = xmin + 1 self.setGraphXLimits(xmin, xmax) self.replot() def _yAutoScaleToggle(self): if DEBUG: print("toggle Y auto scaling") if self.isYAxisAutoScale(): self.setYAxisAutoScale(False) self.yAutoScaleButton.setDown(False) self.yAutoScaleButton.setChecked(False) ymin, ymax = self.getGraphYLimits() self.setGraphYLimits(ymin, ymax) else: self.setYAxisAutoScale(True) self.yAutoScaleButton.setDown(True) self.resetZoom() def _xAutoScaleToggle(self): if DEBUG: print("toggle X auto scaling") if self.isXAxisAutoScale(): self.setXAxisAutoScale(False) self.xAutoScaleButton.setDown(False) self.xAutoScaleButton.setChecked(False) xmin, xmax = self.getGraphXLimits() self.setGraphXLimits(xmin, xmax) else: self.setXAxisAutoScale(True) self.xAutoScaleButton.setDown(True) self.resetZoom() def _toggleLogX(self): if DEBUG: print("toggle logarithmic X scale") if self.isXAxisLogarithmic(): self.setXAxisLogarithmic(False) else: self.setXAxisLogarithmic(True) def setXAxisLogarithmic(self, flag=True): super(PlotWindow, self).setXAxisLogarithmic(flag) self.xLogButton.setChecked(flag) self.xLogButton.setDown(flag) self.replot() self.resetZoom() def _toggleLogY(self): if DEBUG: print("_toggleLogY") if self.isYAxisLogarithmic(): self.setYAxisLogarithmic(False) else: self.setYAxisLogarithmic(True) def setYAxisLogarithmic(self, flag=True): super(PlotWindow, self).setYAxisLogarithmic(flag) self.yLogButton.setChecked(flag) self.yLogButton.setDown(flag) # TODO: setYAxisLogarithmic already calls replot # in addition resetZoom also does it self.replot() self.resetZoom() def _togglePointsSignal(self): if DEBUG: print("toggle points signal") self._toggleCounter = (self._toggleCounter + 1) % 3 if self._toggleCounter == 1: self.setDefaultPlotLines(True) self.setDefaultPlotPoints(True) elif self._toggleCounter == 2: self.setDefaultPlotLines(False) self.setDefaultPlotPoints(True) else: self.setDefaultPlotLines(True) self.setDefaultPlotPoints(False) self.replot() def _hFlipIconSignal(self): if DEBUG: print("_hFlipIconSignal called") if self.isYAxisInverted(): self.invertYAxis(False) else: self.invertYAxis(True) def _colormapIconSignal(self): image = self.getActiveImage() if image is None: return image, legend, info, pixmap = image[:4] if pixmap is not None: # image contains the data and pixmap contains its representation if self.colormapDialog is None: self._initColormapDialog(image) self.colormapDialog.show() elif image is not None and info["plot_colormap"] is not None: if self.colormapDialog is None: self._initColormapDialog(image, info['plot_colormap']) self.colormapDialog.show() else: print("No colormap to be handled") return def _initColormapDialog(self, imageData, colormap=None): """Set-up the colormap dialog default values. :param numpy.ndarray imageData: data used to init dialog. :param dict colormap: Description of the colormap as a dict. See :class:`PlotBackend` for details. If None, use default values. """ if not COLORMAP_DIALOG: raise ImportError("ColormapDialog could not be imported") goodData = imageData[numpy.isfinite(imageData)] if goodData.size > 0: maxData = goodData.max() minData = goodData.min() else: qt.QMessageBox.critical(self, "No Data", "Image data does not contain any real value") return self.colormapDialog = ColormapDialog.ColormapDialog(self) if colormap is None: colormapIndex = self.DEFAULT_COLORMAP_INDEX if colormapIndex == 6: colormapIndex = 1 self.colormapDialog.setColormap(colormapIndex) self.colormapDialog.setDataMinMax(minData, maxData) self.colormapDialog.setAutoscale(1) self.colormapDialog.setColormap(self.colormapDialog.colormapIndex) # linear or logarithmic self.colormapDialog.setColormapType(self.DEFAULT_COLORMAP_LOG_FLAG, update=False) else: # Set-up colormap dialog from provided colormap dict cmapList = ColormapDialog.colormapDictToList(colormap) index, autoscale, vMin, vMax, dataMin, dataMax, cmapType = cmapList self.colormapDialog.setColormap(index) self.colormapDialog.setAutoscale(autoscale) self.colormapDialog.setMinValue(vMin) self.colormapDialog.setMaxValue(vMax) self.colormapDialog.setDataMinMax(minData, maxData) self.colormapDialog.setColormapType(cmapType, update=False) self.colormap = self.colormapDialog.getColormap() # Is it used? self.colormapDialog.setWindowTitle("Colormap Dialog") self.colormapDialog.sigColormapChanged.connect(\ self.updateActiveImageColormap) self.colormapDialog._update() def _copyIconSignal(self): self.copyToClipboard() def updateActiveImageColormap(self, colormap, replot=True): if len(colormap) == 1: colormap = colormap[0] # TODO: Once everything is ready to work with dict instead of # list, we can remove this translation plotBackendColormap = ColormapDialog.colormapListToDict(colormap) self.setDefaultColormap(plotBackendColormap) self.sigColormapChangedSignal.emit(plotBackendColormap) image = self.getActiveImage() if image is None: if self.colormapDialog is not None: self.colormapDialog.hide() return image, legend, info, pixmap = image[:4] if self.usePlotBackendColormap: self.addImage(image, legend=legend, info=info, colormap=plotBackendColormap, replot=replot) else: if pixmap is None: if self.colormapDialog is not None: self.colormapDialog.hide() return pixmap = MaskImageTools.getPixmapFromData(image, colormap) self.addImage(image, legend=legend, info=info, pixmap=pixmap, replot=replot) def _normalIconSignal(self): if DEBUG: print("_normalIconSignal") # default implementation is setting zoom mode self.setZoomModeEnabled(True) def showRoiWidget(self, position=None): self._toggleROI(position) def __toggleROI(self): self._toggleROI() def _toggleROI(self, position=None): if DEBUG: print("_toggleROI called") if self.roiWidget is None: self.roiWidget = McaROIWidget.McaROIWidget() self.roiDockWidget = qt.QDockWidget(self) self.roiDockWidget.layout().setContentsMargins(0, 0, 0, 0) self.roiDockWidget.setWidget(self.roiWidget) if position in [None, False]: w = self.centralWidget().width() h = self.centralWidget().height() if w > (1.25 * h): self.addDockWidget(qt.Qt.RightDockWidgetArea, self.roiDockWidget) else: self.addDockWidget(qt.Qt.BottomDockWidgetArea, self.roiDockWidget) else: self.addDockWidget(position, self.roiDockWidget) if hasattr(self, "legendDockWidget"): self.tabifyDockWidget(self.legendDockWidget, self.roiDockWidget) self.roiWidget.sigMcaROIWidgetSignal.connect(self._roiSignal) self.roiDockWidget.setWindowTitle(self.windowTitle()+(" ROI")) # initialize with the ICR self._roiSignal({'event': "AddROI"}) self.roiDockWidget.raise_() else: if self.roiDockWidget.isHidden(): self.roiDockWidget.show() self.roiDockWidget.raise_() else: self.roiDockWidget.hide() def changeGridLevel(self): self.gridLevel += 1 #self.gridLevel = self.gridLevel % 3 self.gridLevel = self.gridLevel % 2 if self.gridLevel == 0: self.showGrid(False) elif self.gridLevel == 1: self.showGrid(1) elif self.gridLevel == 2: self.showGrid(2) self.replot() def emitIconSignal(self, key, event="iconClicked"): ddict = {} ddict["key"] = key ddict["event"] = event self.sigIconSignal.emit(ddict) def _energyIconSignal(self): if DEBUG: print("energy icon signal default implementation") self.emitIconSignal("energy") def _fitIconSignal(self): if DEBUG: print("fit icon signal default implementation") self.emitIconSignal("fit") def _averageIconSignal(self): if DEBUG: print("average icon signal default implementation") self.emitIconSignal("average") def _deriveIconSignal(self): if DEBUG: print("deriveIconSignal default implementation") self.emitIconSignal("derive") def _smoothIconSignal(self): if DEBUG: print("smoothIconSignal default implementation") self.emitIconSignal("smooth") def _swapSignIconSignal(self): if DEBUG: print("_swapSignIconSignal default implementation") self.emitIconSignal("swap") def _yMinToZeroIconSignal(self): if DEBUG: print("_yMinToZeroIconSignal default implementation") self.emitIconSignal("ymintozero") def _subtractIconSignal(self): if DEBUG: print("_subtractIconSignal default implementation") self.emitIconSignal("subtract") def _saveIconSignal(self): if DEBUG: print("_saveIconSignal default implementation") if self._ownSave: self.defaultSaveAction() else: self.emitIconSignal("save") def _imageIconSignal(self): if DEBUG: print("_imageIconSignal default implementation") self.emitIconSignal("image") def _eraseSelectionIconSignal(self): if DEBUG: print("_eraseSelectionIconSignal default implementation") self.emitIconSignal("erase") def _rectSelectionIconSignal(self): if DEBUG: print("_rectSelectionIconSignal") #default implementation set drawing mode with a mask self.setDrawModeEnabled(True, shape="rectangle", label="mask") def _brushSelectionIconSignal(self): if DEBUG: print("_brushSelectionIconSignal default implementation") self.emitIconSignal("brushSelection") def _brushIconSignal(self): if DEBUG: print("_brushIconSignal default implementation") self.emitIconSignal("brush") def _additionalIconSignal(self): if DEBUG: print("_additionalIconSignal default implementation") self.emitIconSignal("additional") def _polygonIconSignal(self): if DEBUG: print("_polygonIconSignal") #default implementation set drawing mode with a mask self.setDrawModeEnabled(True, shape="polygon", label="mask") def _pluginClicked(self): actionList = [] menu = qt.QMenu(self) text = QString("Reload Plugins") menu.addAction(text) actionList.append(text) text = QString("Set User Plugin Directory") menu.addAction(text) actionList.append(text) global DEBUG if DEBUG: text = QString("Toggle DEBUG mode OFF") else: text = QString("Toggle DEBUG mode ON") menu.addAction(text) actionList.append(text) menu.addSeparator() callableKeys = ["Dummy0", "Dummy1", "Dummy2"] for m in self.pluginList: if m in ["PyMcaPlugins.Plugin1DBase", "Plugin1DBase"]: continue module = sys.modules[m] if hasattr(module, 'MENU_TEXT'): text = QString(module.MENU_TEXT) else: text = os.path.basename(module.__file__) if text.endswith('.pyc'): text = text[:-4] elif text.endswith('.py'): text = text[:-3] text = QString(text) methods = self.pluginInstanceDict[m].getMethods(plottype=self._plotType) if not len(methods): continue elif len(methods) == 1: pixmap = self.pluginInstanceDict[m].getMethodPixmap(methods[0]) tip = QString(self.pluginInstanceDict[m].getMethodToolTip(methods[0])) if pixmap is not None: action = qt.QAction(qt.QIcon(qt.QPixmap(pixmap)), text, self) else: action = qt.QAction(text, self) if tip is not None: action.setToolTip(tip) menu.addAction(action) elif self.pluginInstanceDict[m].__doc__: action = qt.QAction(text, self) action.setToolTip(self.pluginInstanceDict[m].__doc__) menu.addAction(action) else: menu.addAction(text) actionList.append(text) callableKeys.append(m) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = actionList.index(a.text()) if idx == 0: n, message = self.getPlugins(exceptions=True) if n < 1: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setWindowTitle("No plugins") msg.setInformativeText(" Problem loading plugins ") msg.setDetailedText(message) msg.exec() return if idx == 1: dirName = qt.safe_str(qt.QFileDialog.getExistingDirectory(self, "Enter user plugins directory", os.getcwd())) if len(dirName): pluginsDir = self.getPluginDirectoryList() pluginsDirList = [pluginsDir[0], dirName] self.setPluginDirectoryList(pluginsDirList) return if idx == 2: if DEBUG: DEBUG = 0 else: DEBUG = 1 return key = callableKeys[idx] methods = self.pluginInstanceDict[key].getMethods(plottype=self._plotType) if len(methods) == 1: idx = 0 else: actionList = [] # allow the plugin designer to specify the order #methods.sort() menu = qt.QMenu(self) for method in methods: text = QString(method) pixmap = self.pluginInstanceDict[key].getMethodPixmap(method) tip = QString(self.pluginInstanceDict[key].getMethodToolTip(method)) if pixmap is not None: action = qt.QAction(qt.QIcon(qt.QPixmap(pixmap)), text, self) else: action = qt.QAction(text, self) if tip is not None: action.setToolTip(tip) menu.addAction(action) actionList.append((text, pixmap, tip, action)) #qt.QObject.connect(menu, qt.SIGNAL("hovered(QAction *)"), self._actionHovered) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = -1 for action in actionList: if a.text() == action[0]: idx = actionList.index(action) try: self.pluginInstanceDict[key].applyMethod(methods[idx]) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Plugin error") msg.setText("An error has occured while executing the plugin:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _actionHovered(self, action): tip = action.toolTip() if str(tip) != str(action.text()): qt.QToolTip.showText(qt.QCursor.pos(), tip) else: # hideText was introduced in Qt 4.2 if hasattr(qt.QToolTip, "hideText"): qt.QToolTip.hideText() else: qt.QToolTip.showText(qt.QCursor.pos(), "") ########### ROI HANDLING ############### def graphCallback(self, ddict=None): if DEBUG: print("_graphSignalReceived", ddict) if ddict is None: ddict = {} if ddict['event'] in ['markerMoved', 'markerSelected']: label = ddict['label'] if label in ['ROI min', 'ROI max', 'ROI middle']: self._handleROIMarkerEvent(ddict) if ddict['event'] in ["curveClicked", "legendClicked"] and \ self.isActiveCurveHandlingEnabled(): legend = ddict["label"] self.setActiveCurve(legend) if ddict['event'] in ['mouseMoved']: self._handleMouseMovedEvent(ddict) #make sure the signal is forwarded #super(PlotWindow, self).graphCallback(ddict) self.sigPlotSignal.emit(ddict) def _handleMouseMovedEvent(self, ddict): if hasattr(self, "_xPos"): self._xPos.setText('%.7g' % ddict['x']) self._yPos.setText('%.7g' % ddict['y']) def setActiveCurve(self, legend, replot=True): PlotWidget.PlotWidget.setActiveCurve(self, legend, replot=replot) self.calculateROIs() self.updateLegends() def _handleROIMarkerEvent(self, ddict): if ddict['event'] == 'markerMoved': roiList, roiDict = self.roiWidget.getROIListAndDict() if self.currentROI is None: return if self.currentROI not in roiDict: return x = ddict['x'] label = ddict['label'] if label == 'ROI min': roiDict[self.currentROI]['from'] = x if self._middleROIMarkerFlag: pos = 0.5 * (roiDict[self.currentROI]['to'] +\ roiDict[self.currentROI]['from']) self.insertXMarker(pos, legend='ROI middle', text='', color='yellow', draggable=True) elif label == 'ROI max': roiDict[self.currentROI]['to'] = x if self._middleROIMarkerFlag: pos = 0.5 * (roiDict[self.currentROI]['to'] +\ roiDict[self.currentROI]['from']) self.insertXMarker(pos, legend='ROI middle', text='', color='yellow', draggable=True) elif label == 'ROI middle': delta = x - 0.5 * (roiDict[self.currentROI]['from'] + \ roiDict[self.currentROI]['to']) roiDict[self.currentROI]['from'] += delta roiDict[self.currentROI]['to'] += delta self.insertXMarker(roiDict[self.currentROI]['from'], legend='ROI min', text='ROI min', color='blue', draggable=True) self.insertXMarker(roiDict[self.currentROI]['to'], legend='ROI max', text='ROI max', color='blue', draggable=True) else: return self.calculateROIs(roiList, roiDict) self.emitCurrentROISignal() def _roiSignal(self, ddict): if DEBUG: print("PlotWindow._roiSignal ", ddict) if ddict['event'] == "AddROI": xmin,xmax = self.getGraphXLimits() fromdata = xmin + 0.25 * (xmax - xmin) todata = xmin + 0.75 * (xmax - xmin) self.removeMarker('ROI min') self.removeMarker('ROI max') if self._middleROIMarkerFlag: self.removeMarker('ROI middle') roiList, roiDict = self.roiWidget.getROIListAndDict() nrois = len(roiList) if nrois == 0: newroi = "ICR" fromdata, dummy0, todata, dummy1 = self._getAllLimits() draggable = False color = 'black' else: for i in range(nrois): i += 1 newroi = "newroi %d" % i if newroi not in roiList: break color = 'blue' draggable = True self.insertXMarker(fromdata, legend='ROI min', text='ROI min', color=color, draggable=draggable) self.insertXMarker(todata, legend='ROI max', text='ROI max', color=color, draggable=draggable) if draggable and self._middleROIMarkerFlag: pos = 0.5 * (fromdata + todata) self.insertXMarker(pos, legend='ROI middle', text="", color='yellow', draggable=draggable) roiList.append(newroi) roiDict[newroi] = {} if newroi == "ICR": roiDict[newroi]['type'] = "Default" else: roiDict[newroi]['type'] = self.getGraphXLabel() roiDict[newroi]['from'] = fromdata roiDict[newroi]['to'] = todata self.roiWidget.fillFromROIDict(roilist=roiList, roidict=roiDict, currentroi=newroi) self.currentROI = newroi self.calculateROIs() elif ddict['event'] in ['DelROI', "ResetROI"]: self.removeMarker('ROI min') self.removeMarker('ROI max') if self._middleROIMarkerFlag: self.removeMarker('ROI middle') roiList, roiDict = self.roiWidget.getROIListAndDict() roiDictKeys = list(roiDict.keys()) if len(roiDictKeys): currentroi = roiDictKeys[0] else: # create again the ICR ddict = {"event":"AddROI"} return self._roiSignal(ddict) currentroi = None self.roiWidget.fillFromROIDict(roilist=roiList, roidict=roiDict, currentroi=currentroi) self.currentROI = currentroi elif ddict['event'] == 'ActiveROI': print("ActiveROI event") pass elif ddict['event'] == 'selectionChanged': if DEBUG: print("Selection changed") self.roilist, self.roidict = self.roiWidget.getROIListAndDict() fromdata = ddict['roi']['from'] todata = ddict['roi']['to'] self.removeMarker('ROI min') self.removeMarker('ROI max') if self._middleROIMarkerFlag: self.removeMarker('ROI middle') if ddict['key'] == 'ICR': draggable = False color = 'black' else: draggable = True color = 'blue' self.insertXMarker(fromdata, legend= 'ROI min', text= 'ROI min', color=color, draggable=draggable) self.insertXMarker(todata, legend= 'ROI max', text= 'ROI max', color=color, draggable=draggable) if draggable and self._middleROIMarkerFlag: pos = 0.5 * (fromdata + todata) self.insertXMarker(pos, legend='ROI middle', text="", color='yellow', draggable=True) self.currentROI = ddict['key'] if ddict['colheader'] in ['From', 'To']: dict0 ={} dict0['event'] = "SetActiveCurveEvent" dict0['legend'] = self.getActiveCurve(just_legend=1) self.setActiveCurve(dict0['legend']) elif ddict['colheader'] == 'Raw Counts': pass elif ddict['colheader'] == 'Net Counts': pass else: self.emitCurrentROISignal() else: if DEBUG: print("Unknown or ignored event", ddict['event']) def emitCurrentROISignal(self): ddict = {} ddict['event'] = "currentROISignal" roiList, roiDict = self.roiWidget.getROIListAndDict() if self.currentROI in roiDict: ddict['ROI'] = roiDict[self.currentROI] else: self.currentROI = None ddict['current'] = self.currentROI self.sigROISignal.emit(ddict) def calculateROIs(self, *var, **kw): if not hasattr(self, "roiWidget"): return if self.roiWidget is None: return if len(var) == 0: roiList, roiDict = self.roiWidget.getROIListAndDict() elif len(var) == 2: roiList = var[0] roiDict = var[1] else: raise ValueError("Expected roiList and roiDict or nothing") update = kw.get("update", True) activeCurve = self.getActiveCurve(just_legend=False) if activeCurve is None: xproc = None yproc = None self.roiWidget.setHeader('ROIs of XXXXXXXXXX<\b>') elif len(activeCurve): x, y, legend = activeCurve[0:3] idx = argsort(x, kind='mergesort') xproc = take(x, idx) yproc = take(y, idx) self.roiWidget.setHeader('ROIs of %s<\b>' % legend) else: xproc = None yproc = None self.roiWidget.setHeader('ROIs of XXXXXXXXXX<\b>') for key in roiList: #roiDict[key]['rawcounts'] = " ?????? " #roiDict[key]['netcounts'] = " ?????? " if key == 'ICR': if xproc is not None: roiDict[key]['from'] = xproc.min() roiDict[key]['to'] = xproc.max() else: roiDict[key]['from'] = 0 roiDict[key]['to'] = -1 fromData = roiDict[key]['from'] toData = roiDict[key]['to'] if xproc is not None: idx = nonzero((fromData <= xproc) &\ (xproc <= toData))[0] if len(idx): xw = xproc[idx].astype(numpy.float64) yw = yproc[idx].astype(numpy.float64) rawCounts = yw.sum(dtype=numpy.float64) deltaX = xw[-1] - xw[0] deltaY = yw[-1] - yw[0] if deltaX > 0.0: slope = (deltaY/deltaX) background = yw[0] + slope * (xw - xw[0]) netCounts = rawCounts -\ background.sum(dtype=numpy.float64) else: netCounts = 0.0 else: rawCounts = 0.0 netCounts = 0.0 roiDict[key]['rawcounts'] = rawCounts roiDict[key]['netcounts'] = netCounts if update: if self.currentROI in roiList: self.roiWidget.fillFromROIDict(roilist=roiList, roidict=roiDict, currentroi=self.currentROI) else: self.roiWidget.fillFromROIDict(roilist=roiList, roidict=roiDict) else: return roiList, roiDict def _buildLegendWidget(self): if self.legendWidget is None: self.legendWidget = LegendSelector.LegendListView() self.legendDockWidget = qt.QDockWidget(self) self.legendDockWidget.layout().setContentsMargins(0, 0, 0, 0) self.legendDockWidget.setWidget(self.legendWidget) w = self.centralWidget().width() h = self.centralWidget().height() if w > (1.25 * h): self.addDockWidget(qt.Qt.RightDockWidgetArea, self.legendDockWidget) else: self.addDockWidget(qt.Qt.BottomDockWidgetArea, self.legendDockWidget) if hasattr(self, "roiDockWidget"): if self.roiDockWidget is not None: self.tabifyDockWidget(self.roiDockWidget, self.legendDockWidget) self.legendWidget.sigLegendSignal.connect(self._legendSignal) self.legendDockWidget.setWindowTitle(self.windowTitle()+(" Legend")) def _legendSignal(self, ddict): if DEBUG: print("Legend signal ddict = ", ddict) if ddict['event'] == "legendClicked": if ddict['button'] == "left": ddict['label'] = ddict['legend'] self.graphCallback(ddict) elif ddict['event'] == "removeCurve": ddict['label'] = ddict['legend'] self.removeCurve(ddict['legend'], replot=True) elif ddict['event'] == "renameCurve": ddict['label'] = ddict['legend'] curveList = self.getAllCurves(just_legend=True) oldLegend = ddict['legend'] dialog = RenameCurveDialog.RenameCurveDialog(self, oldLegend, curveList) ret = dialog.exec() if ret: newLegend = dialog.getText() self.renameCurve(oldLegend, newLegend, replot=True) elif ddict['event'] == "setActiveCurve": ddict['event'] = 'legendClicked' ddict['label'] = ddict['legend'] self.graphCallback(ddict) elif ddict['event'] == "checkBoxClicked": if ddict['selected']: self.hideCurve(ddict['legend'], False) else: self.hideCurve(ddict['legend'], True) elif ddict['event'] in ["mapToRight", "mapToLeft"]: legend = ddict['legend'] x, y, legend, info = self._curveDict[legend][0:4] if ddict['event'] == "mapToRight": yaxis = "right" else: yaxis = "left" self.addCurve(x, y, legend=legend, info=info, yaxis=yaxis) elif ddict['event'] == "togglePoints": legend = ddict['legend'] x, y, legend, info = self._curveDict[legend][0:4] if ddict['points']: symbol = 'o' else: symbol = '' # TODO: Limits should be kept self.addCurve(x, y, legend=legend, info=info, symbol=symbol) self.updateLegends() elif ddict['event'] == "toggleLine": legend = ddict['legend'] x, y, legend, info = self._curveDict[legend][0:4] # TODO: Limits should be kept if ddict['line']: self.addCurve(x, y, legend=legend, info=info, linestyle="-") else: self.addCurve(x, y, legend, info=info, linestyle="") self.updateLegends() elif DEBUG: print("unhandled event", ddict['event']) def renameCurve(self, oldLegend, newLegend, replot=True): x, y,legend, info = self._curveDict[oldLegend][0:4] self.removeCurve(oldLegend, replot=False) self.addCurve(x, y, legend=newLegend, info=info, replot=True) self.updateLegends() def toggleLegendWidget(self): if self.legendWidget is None: self.showLegends(True) elif self.legendDockWidget.isHidden(): self.showLegends(True) else: self.showLegends(False) def toggleCrosshairCursor(self): if self.getGraphCursor(): self.setGraphCursor(False) else: self.setGraphCursor(True, color="red", linewidth=1, linestyle="-") def toggleArrowKeysPanning(self): if self.isPanWithArrowKeys(): self.setPanWithArrowKeys(False) else: self.setPanWithArrowKeys(True) def showLegends(self, flag=True): if self.legendWidget is None: self._buildLegendWidget() self.updateLegends() if flag: self.legendDockWidget.show() self.updateLegends() else: self.legendDockWidget.hide() def updateLegends(self): if self.legendWidget is None: return if self.legendDockWidget.isHidden(): return legendList = [] * len(self._curveList) for i in range(len(self._curveList)): legend = self._curveList[i] color = self._curveDict[legend][3].get('plot_color', '#000000') color = qt.QColor(color) linewidth = self._curveDict[legend][3].get('plot_line_width', 2) symbol = self._curveDict[legend][3].get('plot_symbol', None) if self.isCurveHidden(legend): selected = False else: selected = True ddict={'color':color, 'linewidth':linewidth, 'symbol':symbol, 'selected':selected} legendList.append((legend, ddict)) self.legendWidget.setLegendList(legendList) def setMiddleROIMarkerFlag(self, flag=True): if flag: self._middleROIMarkerFlag = True else: self._middleROIMarkerFlag= False def setMouseText(self, text=""): try: if len(text): qt.QToolTip.showText(self.cursor().pos(), text, self, qt.QRect()) else: qt.QToolTip.hideText() except Exception: print("Error trying to show mouse text <%s>" % text) def defaultSaveAction(self): """ Default save implementation. It handles saving of curves or the complete widget. """ filename = self._getOutputFileName() if filename is None: return filterused = filename[2] filetype = filename[1] filename = filename[0] if os.path.exists(filename): os.remove(filename) if filterused[0].upper() == "WIDGET": fformat = filename[-3:].upper() if hasattr(qt.QPixmap,"grabWidget"): pixmap = qt.QPixmap.grabWidget(self) else: pixmap = self.grab() if not pixmap.save(filename, fformat): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: if sys.version_info.major >= 3: ffile = open(filename, 'w', newline='\n') else: ffile = open(filename,'wb') except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("Input Output Error: %s" % (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: if not len(self._curveList): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("No curve to be saved") msg.setDetailedText(traceback.format_exc()) msg.exec() return activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = self._curveDict[self._curveList[0]] x, y, legend, info = activeCurve xlabel = self.getGraphXLabel() ylabel = self.getGraphYLabel() if filetype.lower() in ["scan", "multiscan"]: # write header ffile.write("#F %s\n" % filename) savingDate = "#D %s\n"%(time.ctime(time.time())) ffile.write(savingDate) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (info.get("xlabel", xlabel), info.get("ylabel", ylabel))) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") if filetype.lower() == "multiscan": scan_n = 1 for key in self._curveList: if key not in self._curveDict: continue if key == legend: # active curve already saved continue x, y, newLegend, info = self._curveDict[key] scan_n += 1 ffile.write("#S %d %s\n" % (scan_n, key)) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (info.get("xlabel", xlabel), info.get("ylabel", ylabel))) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") elif filetype == 'ASCII': for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) elif filetype == 'CSV': if "," in filterused[0]: csvseparator = "," elif ";" in filterused[0]: csvseparator = ";" elif "OMNIC" in filterused[0]: csvseparator = "," else: csvseparator = "\t" if "OMNIC" not in filterused[0]: ffile.write('"%s"%s"%s"\n' % (xlabel, csvseparator, ylabel)) for i in range(len(y)): ffile.write("%.7E%s%.7E\n" % (x[i], csvseparator,y[i])) else: ffile.write("#F %s\n" % filename) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (len(y), x[0], x[-1])) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (0, 1, 0)) ffile.write(self.array2SpecMca(y)) ffile.write("\n") ffile.close() except Exception: ffile.close() msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("Error while saving: %s" % (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _getOutputFileName(self): filterlist = ['Specfile MultiScan *.dat', 'Specfile Scan *.dat', 'Specfile MCA *.mca', 'Raw ASCII *.txt', '","-separated CSV *.csv', '";"-separated CSV *.csv', '"tab"-separated CSV *.csv', 'OMNIC CSV *.csv', 'Widget PNG *.png', 'Widget JPG *.jpg'] outputFile, outputFilter = PyMcaFileDialogs.getFileList(self, filetypelist=filterlist, message="Output File Selection", currentdir=None, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(outputFile): return None filterused = outputFilter.split() filetype = filterused[1] extension = filterused[2] outputFile = outputFile[0] if len(outputFile) < 5: outputFile = outputFile + extension[-4:] elif outputFile[-4:] != extension[-4:]: outputFile = outputFile + extension[-4:] return outputFile, filetype, filterused def array2SpecMca(self, data): """ Write a python array into a Spec array. Return the string containing the Spec array """ tmpstr = "@A " length = len(data) for idx in range(0, length, 16): if idx+15 < length: for i in range(0, 16): tmpstr += "%.8g " % data[idx+i] if idx+16 != length: tmpstr += "\\" else: for i in range(idx, length): tmpstr += "%.8g " % data[i] tmpstr += "\n" return tmpstr if __name__ == "__main__": x = numpy.arange(100.) y = x * x app = qt.QApplication([]) backend = None if ("opengl" in sys.argv) or ("gl" in sys.argv) or ("OpenGL" in sys.argv): backend = "opengl" elif "silx" in sys.argv: backend = "silx" elif "silx-gl" in sys.argv: backend = "silx-gl" else: backend = "matplotlib" plot = PlotWindow(backend=backend, roi=True, control=True, position=True, colormap=True)#uselegendmenu=True) plot.setPanWithArrowKeys(True) plot.show() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, x*x) plot.addCurve(x, -y, "- dummy") print("Active curve = ", plot.getActiveCurve(just_legend=True)) print("X Limits = ", plot.getGraphXLimits()) print("Y Limits = ", plot.getGraphYLimits()) print("All curves = ", plot.getAllCurves(just_legend=True)) image = numpy.arange(10000).reshape(100, 100) plot.addImage(image, xScale=(0, 1), yScale=(0, 10), pixmap=MaskImageTools.getPixmapFromData(image)) def iconSlot(ddict): print(ddict) plot.sigIconSignal.connect(iconSlot) #plot.removeCurve("dummy") #plot.addCurve(x, 2 * y, "dummy 2") #print("All curves = ", plot.getAllCurves()) app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/ProfileScanWidget.py0000644000000000000000000001242414741736366022637 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui import PyMcaQt as qt if 1: # Should profileScanWidget depend on ScanWindow??? # if not, we miss profile fitting ... from PyMca5.PyMcaGui.pymca.ScanWindow import ScanWindow as Window else: from .PlotWindow import PlotWindow as Window DEBUG = 0 class ProfileScanWidget(Window): sigAddClicked = qt.pyqtSignal(object) sigRemoveClicked = qt.pyqtSignal(object) sigReplaceClicked = qt.pyqtSignal(object) def __init__(self, parent=None, actions=False, **kw): super(ProfileScanWidget, self).__init__(parent, **kw) if actions: self._buildActionsBox() def _buildActionsBox(self): widget = self.centralWidget() self.labelBox = qt.QWidget(widget) self.labelBox.mainLayout = qt.QHBoxLayout(self.labelBox) self.labelLabel = qt.QLabel(self.labelBox) self.labelLabel.setText("Selection Label = ") self.label = qt.QLineEdit(self.labelBox) self.labelBox.mainLayout.addWidget(self.labelLabel) self.labelBox.mainLayout.addWidget(self.label) self.buttonBox = self.labelBox buttonBox = self.buttonBox self.buttonBoxLayout = self.labelBox.mainLayout self.buttonBoxLayout.setContentsMargins(0, 0, 0, 0) self.buttonBoxLayout.setSpacing(0) self.addButton = qt.QPushButton(buttonBox) self.addButton.setText("ADD") self.addButton.setToolTip("Add curves to destination widget") self.removeButton = qt.QPushButton(buttonBox) self.removeButton.setText("REMOVE") self.removeButton.setToolTip("Remove curves from destination widget") self.buttonBoxLayout.addWidget(self.addButton) self.buttonBoxLayout.addWidget(self.removeButton) self.replaceButton = qt.QPushButton(buttonBox) self.replaceButton.setText("REPLACE") self.replaceButton.setToolTip("Replace curves in destination widget") self.buttonBoxLayout.addWidget(self.replaceButton) #self.mainLayout.addWidget(buttonBox) widget.layout().addWidget(buttonBox) self.addButton.clicked.connect(self._addClicked) self.removeButton.clicked.connect(self._removeClicked) self.replaceButton.clicked.connect(self._replaceClicked) def _addClicked(self): if DEBUG: print("ADD clicked") self._emitActionSignal(action='ADD') def _removeClicked(self): if DEBUG: print("REMOVE clicked") self._emitActionSignal(action='REMOVE') def _replaceClicked(self): if DEBUG: print("REPLACE clicked") self._emitActionSignal(action='REPLACE') def _emitActionSignal(self, action='ADD'): if action not in ['ADD', 'REMOVE', 'REPLACE']: print("Unrecognized action %s" % action) curveList = self.getAllCurves() if curveList in [None, []]: return text = self.label.text() if sys.version < '3.0': text = str(text) ddict = {} ddict['event'] = action ddict['action'] = action ddict['label'] = text ddict['curves'] = curveList if action == 'ADD': self.sigAddClicked.emit(ddict) elif action == 'REMOVE': self.sigRemoveClicked.emit(ddict) else: self.sigReplaceClicked.emit(ddict) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) def testSlot(ddict): print(ddict) w = ProfileScanWidget(actions=True) w.addCurve([1, 2, 3, 4], [1, 4, 9, 16], legend='Dummy') w.sigAddClicked.connect(testSlot) w.sigRemoveClicked.connect(testSlot) w.sigReplaceClicked.connect(testSlot) w.show() app.exec() if __name__ == "__main__": DEBUG = 1 test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/PyMcaPrintPreview.py0000644000000000000000000001012714741736366022654 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging from PyMca5.PyMcaGui import PyMcaQt as qt from .Q4PyMcaPrintPreview import PyMcaPrintPreview as PrintPreview _logger = logging.getLogger(__name__) def PyMcaPrintPreview(*var, **kw): _logger.debug("PyMcaPrintPreview kept for backwards compatibility") return getSingletonPrintPreview(*var, **kw) def getSingletonPrintPreview(*var, **kw): if not hasattr(PrintPreview, "_preview_instance") or \ PrintPreview._preview_instance: _logger.debug("Instantiating preview instance") PrintPreview._preview_instance = PrintPreview(modal=0) return PrintPreview._preview_instance def resetSingletonPrintPreview(): """ To be called on Application to get rid of internal reference. """ _logger.debug("resetSingletonPrintPreview CALLED") needed = False if not hasattr(PrintPreview, "_preview_instance"): _logger.debug("PrintPreview never instantiated") return needed import gc _logger.debug("_preview_instance before = %s", PrintPreview._preview_instance) try: if PrintPreview._preview_instance: needed = True PrintPreview._preview_instance = None gc.collect() except NameError: needed = False _logger.debug("RETURNING = %s", needed) return needed if qt.QApplication.instance(): if not hasattr(PrintPreview, "_preview_instance"): _logger.debug("PrintPreview not there creating it") PrintPreview._preview_instance = PrintPreview() else: _logger.debug("PrintPreview already there = %s", PrintPreview._preview_instance) def testPreview(): """ """ import sys import os.path if len(sys.argv) < 2: print("give an image file as parameter please.") sys.exit(1) if len(sys.argv) > 2: print("only one parameter please.") sys.exit(1) filename = sys.argv[1] a = qt.QApplication(sys.argv) p = qt.QPrinter() p.setOutputFileName(os.path.splitext(filename)[0]+".ps") p.setColorMode(qt.QPrinter.Color) w = PyMcaPrintPreview( parent = None, printer = p, name = 'Print Prev', modal = 0, fl = 0) w.resize(400,500) w.addPixmap(qt.QPixmap.fromImage(qt.QImage(filename))) w.addImage(qt.QImage(filename)) if 0: w2 = PyMcaPrintPreview( parent = None, printer = p, name = '2Print Prev', modal = 0, fl = 0) w.exec() w2.resize(100,100) w2.show() sys.exit(w2.exec()) sys.exit(w.exec()) if __name__ == '__main__': testPreview() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/PyMca_Icons.py0000644000000000000000000022233514741736366021436 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2020 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging import sys if sys.version_info < (3, ): from collections import MutableMapping else: from collections.abc import MutableMapping _logger = logging.getLogger(__name__) aspect_ratio = [ #/* columns rows colors chars-per-pixel */ "32 32 5 1", " c #47463F", ". c #BA165D", "X c #2F3AB5", "o c #FFFFE8", "O c None", #/* pixels */ "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOXXXXXXXXXXXXXXXXXXXXXXXXXXXXOO", "OOXooooooooooooooooooooooooooXOO", "OOXo ...... ooooooooooooooooXOO", "OOXo. XXXXX. oooooooooooooXOO", "OOXo.XXXXXX.ooo oooooooooooXOO", "OOXo .. ....oooooo ooooooooXOO", "OOXo ooo ooo ooooooo oooooXOO", "OOXo ooo ooo ooooooooo ooXOO", "OOXoo oooo oXOO", "OOXoo oooo ................ oXOO", "OOXoo ooo ................ oXOO", "OOXooo ooo ..XXXXXXXXXXXX.. oXOO", "OOXooo ooo ..XXXXXXXXXXXX.. oXOO", "OOXooo ooo ..XXXXXXXXXXXX.. oXOO", "OOXoooo oo ..XXXXXXXXXXXX.. oXOO", "OOXoooo oo ..XXXXXXXXXXXX.. oXOO", "OOXoooo oo ..XXXXXXXXXXXX.. oXOO", "OOXooooo o ..XXXXXXXXXXXX.. oXOO", "OOXooooo o ..XXXXXXXXXXXX.. oXOO", "OOXooooo o ..XXXXXXXXXXXX.. oXOO", "OOXooooo ..XXXXXXXXXXXX.. oXOO", "OOXoooooo ..XXXXXXXXXXXX.. oXOO", "OOXoooooo ..XXXXXXXXXXXX.. oXOO", "OOXoooooo ................ oXOO", "OOXooooooo ................ oXOO", "OOXooooooo oXOO", "OOXooooooooooooooooooooooooooXOO", "OOXXXXXXXXXXXXXXXXXXXXXXXXXXXXOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO" ] # --- scan window icons --- plugin = [ #columns rows colors chars-per-pixel "32 32 16 1", " c #000000", ". c #303030", "X c #585858", "o c #c05800", "O c #ff8000", "+ c #ffa858", "@ c #c0c000", "# c #ffff00", "$ c #808080", "% c #a0a0a0", "& c #ffdca8", "* c #c3c3c3", "= c #dcdcdc", "- c #ffffc0", "; c #ffffff", ": c None", # pixels "::::::::::::::::::::::: :::::::", ":::::::::::::::::::::: -& : :::", "::::::::::::::::::: &## &+ ::", ":::::::::::::::::: -&-&&#+&#o ::", ":::::::::::::::::: ###+#@#@+o ::", "::::::::::::::::::: &&#@ @O@O :", ":::::::::::::::::: -&#@ : o@+#+ ", "::::::::::: ::: &&## ::: #+@@ ", ":::::::::: ;;; :: ##@+# : &#@@ :", "::::: :::: ;;= ::: #@+@ #&+# ::", ":::: ; ;;;;= @+@+#&##+# :", "::: ;;;;;;;====;;;; #oO@+@@@## :", ":: ;;;;;;;===***%%% oo @@@ ::", "::: ;;;;;;===**%%%%$ : @@ :::::", "::: ;;;;====**%%%$%$ :: ::::::", "::: ;;;;==%XXX%%%%$$ ::::::::::", "::: ;;===%X X$$$$$$ ::::::::::", ": ;;;==%X ::: X$$%$%% ::::::::", " ;;;====X ::::: $$$%%%=* :::::::", " ;;;==**$ ::::: %$%%%%*$ :::::::", " ;===***% ::::: =%%%%$X$ :::::::", ": ****%%% ::: ;=%%%$X ::::::::", "::: **%%%%% ;;%%%*$ ::::::::::", "::: =%%%%$$%;;=%%%*=$ ::::::::::", "::: =%%%$$%$$%%%%***% ::::::::::", "::: =%%$$$$%%%%***=== ::::::::::", ":: **%$%$$%$%%%***==== :::::::::", "::: X .$%%%$X$%**= ::::::::::", ":::: X%%$X = :::::::::::", "::::: :::: %*$ :::: ::::::::::::", ":::::::::: %X$ :::::::::::::::::", "::::::::::: ::::::::::::::::::" ] clipboard = [ "30 30 17 1 ", " c #4F4E50", ". c #6E6E70", "X c #F7941E", "o c #F89A2B", "O c #F8A038", "+ c #F8A848", "@ c #FAB86A", "# c #FAC17C", "$ c #7E7F80", "% c #919192", "& c #AEAEAF", "* c #FBCA8E", "= c #FCD6A8", "- c #C0BFC0", "; c #CECECF", ": c #FEEDD9", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>#@>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>Xo>>>>>>>>>>>>>>", ">>>>>>>>>>>>>:XX:>>>>>>>>>>>>>", ">>>>>>>>>>>>>@*=@>>>>>>>>>>>>>", ">>>>>>>>>>>>:+>>@=>>>>>>>>>>>>", ">>>>>>>::::>Oo:>+o>::::>>>>>>>", ">>>>>>#XoX@*XXXoXX*@XXX@>>>>>>", ">>>>>>oo+@:XXXXXXXX:@+oX>>>>>>", ">>>>>>XO>>>========:>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X:>>>>>", ">>>>>>XO>>;;;;:;;-&;>>+X>>>>>>", ">>>>>>XO>>$. ..%;>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>OX>>>>>>", ">>>>>>XO>>>;;;----&>>>+X:>>>>>", ">>>>>>XO>>. .>>>+X>>>>>>", ">>>>>>XO>>;:>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>;&:>>>>>>>>+X>>>>>>", ">>>>>>XO>>%%%>>>>>>>>>+X:>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>;........&>>+X>>>>>>", ">>>>>>XO>>%%&%&&&%%;>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>oXooooooooooooooXX:>>>>>", ">>>>>>=OooooooooooooooO#>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] crop =[ "16 16 2 1", " c none", ". c black", " ", " .. ", " .. ", " .. ", " .......... ", " .......... ", " .. .. ", " .. .. ", " .. .. ", " .. .. ", " .......... ", " .......... ", " .. ", " .. ", " .. ", " ", ] togglepoints =[ "16 16 2 1", " c none", ". c blue", " ", " . . ", " . . ", " . . ", " . . ", " . . ", " . ... ... ", " . . . ... ", " . ... ... ", " . . ", " . . ", " . . ", " . . ", " . . ", " . . ", " " ] square16 =[ "16 16 2 1", " c none", "X c blue", " ", " XXXXXXXXXXXXXX ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " XXXXXXXXXXXXXX ", " " ] rectangle16 =[ "16 16 2 1", " c none", "X c blue", " ", " ", " ", " XXXXXXXXXXXXXX ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " XXXXXXXXXXXXXX ", " ", " ", " " ] polygon16 =[ "16 16 2 1", " c none", "X c blue", " ", " XX ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " XXXXXXXXXXX ", " " ] circle16 =[ "16 16 2 1", " c none", "X c blue", " ", " XXXXXX ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " XXXXXX ", " " ] ellipse16 =[ "16 16 2 1", " c none", "X c blue", " ", " ", " ", " ", " XXXXXX ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " X X ", " XXXXXX ", " ", " ", " ", ] solid_circle16 =[ "16 16 2 1", " c none", "X c blue", " ", " XXXXXX ", " XXXXXXXX ", " XXXXXXXXXX ", " XXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXX ", " XXXXXXXXXX ", " XXXXXXXX ", " XXXXXX ", " " ] solid_ellipse16 =[ "16 16 2 1", " c none", "X c blue", " ", " ", " ", " ", " XXXXXX ", " XXXXXXXXXX ", " XXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXXXX ", " XXXXXXXXXXXX ", " XXXXXXXXXX ", " XXXXXX ", " ", " ", " ", ] subtract =[ "16 16 2 1", " c none", ". c blue", " ", " .......... ", " . . ", " . . ", " . . ", " . . ", " . . ", " .......... ", " . . ", " . . ", " . . ", " . . ", " . . ", " . . ", " .......... ", " " ] substract = subtract smooth = [ "16 16 3 1", "O c none", "* c yellow", ": c blue", "OOOOOOOOOOOOOOOO", "OOOO**OOO*:OOOOO", "OOOOO**O*::OOOOO", "OOOO::***:O:OOOO", "OOOO::O**OO:OOOO", "OOO:O:****OO:OOO", "OOO:OO*:O**O:OOO", "OO:OO**OOOOO:OOO", "OO:OO*OOOOOO:OOO", "O:OOOOOOOOOO::OO", "O:OOOOOOOOOOO:OO", "O:OOOOOOOOOOO::O", "OOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOO", "OOOOOOOOOOOOOOOO" ] derive = [ "16 16 2 1", " c None", ". c blue", " ", " .. . ", " . . . ", " . ", " . ", " . ", " . . . ", " .. . . . . ", " . . . . . ", " . . . . ", " . . . . . ", " . . . . . ", " . . . ", " ", " ", " " ] swapsign = [ "16 16 3 1", " c None", ". c blue", "X c red", " ", " ", " XX ", " XXX XX ", " XXX XX XX ", " XX XXX ", " XXX ", " ", " .............. ", " ", " ... ", " .. ... ", " ... .. .. ", " ... .. ", " .. ", " " ] ymintozero = [ "16 16 3 1", " c None", "X c blue", ". c red", " ", " ", " ", " ", " XX ", " XXX XX ", " XXX XX XX ", " XX XXX ", " XX ", " XX ", " X............. ", " ", " ", " ", " ", " ", ] """ average16=[ "16 16 2 1", ". c blue", " c None", " ", " .............. ", " ", " .. .. ", " .. .. ", " .. .. ", " .. .. ", " .. .. ", " ... ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " " ] """ average16=[ "16 16 2 1", ". c blue", " c None", " ", " .............. ", " ", " . . ", " . . ", " . . ", " . . ", " . . ", " .. ", " . ", " . ", " . ", " . ", " . ", " . ", " " ] horizontal=[ "16 16 2 1", ". c blue", " c None", " ", " ", " ", " ", " ", " ", " ", " .............. ", " .............. ", " ", " ", " ", " ", " ", " ", " " ] vertical=[ "16 16 2 1", ". c blue", " c None", " ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " " ] diagonal =[ "16 16 2 1", ". c blue", " c None", " ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " .. ", " . ", " " ] # ------------------------- sliderson=[ "16 16 2 1", " c blue", ". c None", "................", "... ..... ....", ". .. .. ..", "... ..... ....", "................", "................", "... ..... ....", ". .. .. ..", "... ..... ....", "................", "................", "... ..... ....", ". .. .. ..", "... ..... ....", "................", "................" ] slidersoff = [ "16 16 3 1", " c blue", ". c red", "X c None", "XXXXXXXXXXXXXXXX", "X.. XXXXX XX.X", "X ..X XX ..X", "XXX..XXXXX ..XX", "XXXX..XXXXX..XXX", "XXXXX..XXX..XXXX", "XXX X..X.. XXXX", "X XX ...XX XX", "XXX XX... XXXX", "XXXXXX..X..XXXXX", "XXXXX..XXX..XXXX", "XXX ..XXXX ..XXX", "X .. XX..XX", "XX.. XXXXX X..X", "X..XXXXXXXXXXX.X", "XXXXXXXXXXXXXXXX" ] remove = [ "16 16 3 1", "O c #ffc0c0", "+ c None", "X c red", "++++++++++++++++", "+XX++++++++++XX+", "++XX+++++++OXX++", "+++XX+++++OXX+++", "++++XXO++OXX++++", "+++++XX.OXX+++++", "++++++XXXX++++++", "++++++OXX+++++++", "+++++OXXXX++++++", "++++OXX+OXX+++++", "+++OXX+++OXX++++", "+++XX+++++OXX+++", "++XX+++++++OXX++", "+XX++++++++++XX+", "++++++++++++++++", "++++++++++++++++" ] sigma=[ "16 16 2 1", " c blue", ". c None", "................", ".... ..", ".... ..........", "..... .........", "...... ........", "....... .......", "........ ......", "....... .......", "...... ........", "..... .........", ".... ..........", "... ...........", ".. ............", ". .............", ". ..", "................" ] normalize16=[ "16 16 2 1", " c none", ". c blue", " ", " ... ", " . . . ", " . . . . . ", " . . . . ", " . . . . . ", " ... . . ", " ", " .............. ", " ", " . . ", " .. . ", " . . . ", " . .. ", " . . ", " " ] #grid grid16 = [ "16 16 2 1", " c none", ". c blue", " ", " . . . ", " ............. ", " . . . ", " . . . ", " . . . ", " . . . ", " ............. ", " . . . ", " . . . ", " . . . ", " . . . ", " ............. ", " . . . ", " ", " " ] rgb = [ "23 23 65 1 ", " c #FE0201", ". c #FE0D1A", "X c #FE2323", "o c #FE5801", "O c #FE4000", "+ c #FE6403", "@ c #FE006C", "# c #FE5959", "$ c #FE7575", "% c #FE6666", "& c #02FE02", "* c #08FC10", "= c #17FE17", "- c #29FE29", "; c #77FD01", ": c #4BFF37", "> c #00FE55", ", c #05FE6A", "< c #6DFE6D", "1 c #54FE54", "2 c #B6FD00", "3 c #FEDC00", "4 c #C2FE03", "5 c #FDFD01", "6 c #EEFF01", "7 c #FFFD36", "8 c #FEA348", "9 c #BBFE73", "0 c #0101FE", "q c #100FFD", "w c #2D01FE", "e c #3131FD", "r c #6B00FA", "t c #0054FE", "y c #056BFE", "u c #4646FE", "i c #7A7AFE", "p c #FE029A", "a c #E800FE", "s c #FD01FD", "d c #FE1AFE", "f c #FE01EC", "g c #A756EA", "h c #01FDFD", "j c #00F3F3", "k c #23FCFC", "l c #FE9999", "z c #FF938B", "x c #FDB0B0", "c c #AFFEAF", "v c #B4FEB5", "b c #8CFE8C", "n c #C3FEB2", "m c #8D8CFE", "M c #BABAFE", "N c #FDA5FE", "B c #CBB9FE", "V c #FED5D5", "C c #DAFEDA", "Z c #CBFECB", "A c #FDFFD6", "S c #CCCEFE", "D c #E5FEE5", "F c #FEFDFE", "G c #FEEFF0", "FFFFFFFFFFFGGFFFFFFFFFF", "FFFFFFFFFFFFFFFFFFFFFFF", "FFFFFFFFFFVl$lVFFFFFFFF", "FFFFFFFFF$. .$FFFFFFF", "FFFFFFFF# %FFFFFF", "FFFFFFFz lFGFFF", "FFFFFFGX XFFFFF", "FFFFFFx VFFFF", "FFFFGFz lFFFF", "FFFFFSgpp@. O+oxFFFF", "FFFFm00assf@ o3556:cFFF", "FFFm000rsssd855562&&bFF", "FFS0000qassNA5552&&&&cF", "FFi00000wadFF752&&&&&-F", "FFe000000wgFF9;&&&&&&&C", "FFe0000000ykk,&&&&&&&&c", "FFu0000000yhh,&&&&&&&&v", "FFm0000000thh>&&&&&&&&D", "FFFq000000qjj*&&&&&*&1F", "FFFMq000000y,&&&&&&&=CF", "FFFFSe0000eBn*&&&&&=ZFF", "FFFFFFMiiMFFFC<-*- c #4236fe2703600000", ", c #4277fe3f3f5c0000", "< c #552dfef152f20000", "1 c #5fd6fefe5fd6dfdf", "2 c #6b9afefe6b9a0000", "3 c #744ffd547d650000", "4 c #06b6d838d82a0000", "5 c #00b9ff72ff860000", "6 c #717afa5a81ae4048", "7 c #fef6014101a80000", "8 c #ff2b09e5018f0000", "9 c #fefe0af30af3abac", "0 c #fefc0000378d2e42", "q c #fdfa2a4300000000", "w c #fe5826312b410000", "e c #fefe2c822c820000", "r c #ffff401b22c70000", "t c #fefe309830980000", "y c #ff43027d42080000", "u c #ffff00b851150000", "i c #ff36693400000000", "p c #fefe540254020000", "a c #fee37bc87a200000", "s c #a94f0000fed80000", "d c #fceb016cd5070000", "f c #e15301d2ffff0000", "g c #f8ac00c3ffff0000", "h c #fef20103fd940000", "j c #ffff3b7bfa680000", "k c #afdefbc60bd90000", "l c #faf1de1b03030000", "z c #f11cfda800870000", "x c #fffffecc012a0000", "c c #f9e5ffff0c990000", "v c #fffffbb553fc0000", "b c #a092a092fefe0000", "n c #a438a438fefe0000", "m c #aa46aa46fefe0000", "M c #b746b746fefe0000", "N c #9065fefe906c0000", "B c #9893fefe98930000", "V c #b42bfefeb42a0000", "C c #c08aff34c0690000", "Z c #a7befe60fea20000", "A c #fefeb5e0b5e00000", "S c #d377918acd300000", "D c #fb72a8f9de230000", "F c #dc66dc69fefe0000", "G c #d2fbfefed2fb0000", "H c #d30ce56ee5220000", "J c #ffffd295c67e0000", "K c #fefedd48dd480000", "L c #edd2edc2ff190000", "P c #ee6ffefeee6f0000", "I c #fefee6bee6be0000", "U c #fefeec81ec810000", "Y c #f88bf876ff300000", "T c #f793fefef7930000", "R c #fe6bf783fcf70000", #"E c #fed4fe9efea70000", "E c none", "EEEEEEREEEREEEEE", "EEEEEEEEKIEEEEEE", "EEEEEEAt79pIEEEE", "EEEEEA77777eUEEE", "EEEERw777777aERE", "EEEEJ7777777wTEE", "EEEESuy7778qrREE", "EEY@ fhd0ilxk3EE", "YE$ +hgDcxz=&&&&V", "Em %Z6=&&&&2", "EM O5:&&&&&1", "EL. o5;&&&&&B", "YEb 4&&&&&*P", "EEEnX .#H,&&&-GE", "EEEEEFLEEECNVTEE" ] eraseselect = [ "24 24 90 1 ", " c #08720C", ". c #1B641D", "X c #4B550B", "o c #527000", "O c #637701", "+ c #69710E", "@ c #67480B", "# c #18344E", "$ c #0D104B", "% c #00726B", "& c #0C6950", "* c #2C220D", "= c #A67E00", "- c #2CB905", "; c #0D9C1D", ": c #708F03", "> c #4FB000", ", c #6EB700", "< c #5E9C18", "1 c #0ECF17", "2 c #10FE16", "3 c #2DFD0A", "4 c #0DFA32", "5 c #29F92C", "6 c #1ACD17", "7 c #4DFB0A", "8 c #70FB0B", "9 c #63DD1C", "0 c #1A9A66", "q c #59A064", "w c #03CA4F", "e c #09FA53", "r c #37DB6B", "t c #01FF77", "y c #0EDE6A", "u c #4FE856", "i c #92B600", "p c #B0A100", "a c #99E10E", "s c #B8B95B", "d c #B5B46F", "f c #939C7B", "g c #88D07A", "h c #CFCE6A", "j c #E4E37A", "k c #246EA6", "l c #5C62B3", "z c #3D06FE", "x c #3518FE", "c c #3114F3", "v c #2B25FF", "b c #3324F9", "n c #2C36F7", "m c #241FD1", "M c #4100FE", "N c #4D16EA", "B c #542CD8", "V c #1870D1", "C c #276AD3", "Z c #264EF2", "A c #1573FC", "S c #2357E5", "D c #4228AC", "F c #8774A4", "G c #03A58C", "H c #30AB94", "J c #048DB0", "K c #0BB3B2", "L c #259B96", "P c #66A09F", "I c #01F8AF", "U c #11DF90", "Y c #44CDBB", "T c #1C8BCC", "R c #0C90FB", "E c #04ABFC", "W c #03B7FA", "Q c #07ABE7", "! c #19B4D0", "~ c #02D0CD", "^ c #05F8D5", "/ c #04D0F7", "( c #03EFED", ") c #34C4C4", "_ c #B1AD91", "` c #91A7A6", "' c #8D9F8B", "] c #C6CA82", "[ c #F2F184", "{ c #D1E283", "MMMMMMMMMMMMbbxMMMMMMMMM", "MMMMMMMMMMnSVVCZnxMMMMMM", "MMMMMMMMbSTKyyUKVZxzMMMM", "MMMMMMcZTHr5654eUTSNNNNN", "MMzzzcCHru732244rP`FFlBB", "MMzzcCHua8734eyrgh]]dfFB", "MMMckL-;;0q'__]dsflNMM", "znV#+pi>-1;q'____fPPSxMM", "xSJ#+i,-1w0L'````P)RAxMM", "vVG.oi,-1wGJkPYY))WEAxMM", "vV0.Oi>-1wGJkK^~//WERbMM", "vk0X+i>-1wGJJ~(///WEAxMM", "clqXO,>-;w0GKKKKQWERZzMM", "cCqXo<. ;;&&0%%kkEEAvzzz", "clq++o. &&%%%%kQRZxzzz", "zmqiaa9614yyI~~~QWRZzMzz", "znLaaa732etI^^((/WAnzMMM", "MbCHaa832etII^((/RZxMMMM", "MMbTHua734eUI^^(WZxMMMMM", "MMNnTHuu535etI~QAbzMMMMM", "MMMMnR)Ue735eU!ZbMMMMMMM" ] additionalselect = [ "24 24 74 1 ", " c #ED1C24", ". c #1DFF0F", "X c #08FF1B", "o c #16FF1B", "O c #27FF08", "+ c #37FF09", "@ c #2CFF16", "# c #0AFF28", "$ c #17FC26", "% c #06FD38", "& c #2AF92D", "* c #49FF02", "= c #5AFF01", "- c #69FE01", "; c #79FE00", ": c #79FD17", "> c #75E139", ", c #6AB857", "< c #51B372", "1 c #01FF49", "2 c #11F74E", "3 c #02FF58", "4 c #02FD67", "5 c #01FE78", "6 c #56E355", "7 c #8FFD05", "8 c #A8FA01", "9 c #B4F605", "0 c #93D330", "q c #D0CF0F", "w c #CFEE02", "e c #C7F700", "r c #E3E300", "t c #88B851", "y c #2F6CB9", "u c #4562B9", "i c #3D07FF", "p c #291CFF", "a c #3618FE", "s c #3237E5", "d c #2C25FF", "f c #3325F9", "g c #2C35FC", "h c #4100FF", "j c #3057CF", "k c #1A71D1", "l c #266BD4", "z c #1C58FA", "x c #2453EC", "c c #244BFB", "v c #1979EC", "b c #34B08D", "n c #32A6AE", "m c #1FD38B", "M c #00FF86", "N c #00FB9A", "B c #00DCBB", "V c #01E3AB", "C c #00FBA6", "Z c #00FEB7", "A c #1D91CD", "S c #0E91FA", "D c #10A5E0", "F c #04AAFE", "G c #01BBFD", "H c #19C9CC", "J c #00FAC8", "K c #00F9D7", "L c #00C8FE", "P c #00D8FB", "I c #00E8E9", "U c #00F8E7", "Y c #00E8F9", "T c #00F6F3", "hhhhhhhhhhhiddaihhhhhhih", "hhhhhhhhiagxkkjxdphhhhhh", "hhhihhhifx mAAcahhhhh", "hhhhhia Dzahhhh", "hhhhif cihhh", "hhiif *OX2 ahhh", "hhha 8-O#%4MN fihh", "hia 97*o%3MCVJ ihh", "hhg w8=.# CZJUY ahh", "hfl w;+X1 ZJKTP hh", "hc r8-@%5 KKUTPL hh", "hx w7* TYL hh", "fk e7* TYL hh", "dk e;+$4B PTTYPG hh", "fy, -+$4V YTTPL hh", "pu, -+#3C TTYPL ahh", "put +X3MZJUTPL iih", "iu,q X15CZKTP aihh", "ij7- Scahhhh", "hhslb>:=@ IFzfhhhhh", "hhhcln66&@&25CHSzfhhhhhh", "hhhhgvHN2@@&2VDxfhhhhhhh" ] brushselect = [ "24 24 89 1 ", " c #002F35", ". c #0E2B10", "X c #0B4F08", "o c #3B4F00", "O c #09700E", "+ c #2B6D00", "@ c #00582D", "# c #017230", "$ c #6C6A00", "% c #043258", "& c #005A56", "* c #004C4B", "= c #036947", "- c #00516A", "; c #007676", ": c #02736C", "> c #897201", ", c #119508", "< c #328C02", "1 c #0DB619", "2 c #0C8039", "3 c #02B132", "4 c #28B105", "5 c #5E9D15", "6 c #10CA1C", "7 c #2EFF0F", "8 c #0CFF30", "9 c #1BF01F", "0 c #59FC01", "q c #6BDE11", "w c #00904F", "e c #01AF4C", "r c #06896E", "t c #00B471", "y c #38BB69", "u c #51B372", "i c #66B657", "p c #03CF53", "a c #0BFA52", "s c #04C87B", "d c #03FF75", "f c #27FE51", "g c #5CE556", "h c #A99E14", "j c #A7F202", "k c #9ED818", "l c #D3CE0C", "z c #D1EC03", "x c #88B851", "c c #C5B310", "v c #025D97", "b c #13759E", "n c #4563B9", "m c #3D07FE", "M c #3519FE", "N c #2C1DF5", "B c #2B25FF", "V c #3425FA", "C c #2B37F5", "Z c #222BD3", "A c #4100FF", "S c #1172CF", "D c #276AD2", "F c #1B59F7", "G c #244CFA", "H c #2453EF", "J c #1573FA", "K c #1C52CB", "L c #142B89", "P c #00AF8E", "I c #028DAF", "U c #02AEAF", "Y c #32A7AF", "T c #279894", "R c #41AD8C", "E c #06CB8E", "W c #00FF8F", "Q c #01D0AD", "! c #01F3AD", "~ c #33D88C", "^ c #02B6CF", "/ c #0C91F4", "( c #06ABF3", ") c #1A89D7", "_ c #03CCD1", "` c #00FBD3", "' c #00CEFA", "] c #00F1F2", "[ c #29C5C2", "AAAAAAAAAAAMBVMAAAAAAAAA", "AAAAAAAAAMCHSSDHVMAAAAAA", "AAAAmmmmNCSYssPY)HMmAAAA", "AAAAAmNGSb:#166aE^FNAAAA", "AAAAmVDbr=@X,,,1p!(GmAAA", "AAmmVDR5<+XXOO@#es^FMAAA", "AAAMDukk5<,133w=@=bKVAAA", "AmMDRgzkq<,33tPr:= LZmAA", "AAGYilzjqX#etsPPr& %ZmAA", "AVDuklzq<.@etEP:@ %vFmAA", "AGDxch$+OOwtPQP&*:I/JMmA", "AHYh>$.XO3tPI^U&;^'(JMmA", "VDRh>o+<1ePbIUU&;^((/VAA", "VDyh$o<46ePII^Q&*;I//VAA", "Cnyh$o<46ptIIUU: -SJAAA", "Bnic>o+,6pt:**:I- -SFAAA", "Bnxlc5oXOew=***-*%vFBmmm", "Mnilzk+XX2w=r:&--vSFMmAm", "mKulzjq,O##wPQ_^^(/GmmAA", "mCTxjj0463es!`]]'(JCmAAA", "AVDuqj0088dW!`]]'/GMAAAA", "AAV)~gq078aW!!`](FVAAAAA", "AAAGDYggf78fd!_)FVAAAAAA", "AAAAC/[Wf709f!(HVAAAAAAA" ] image = [ "24 24 85 1 ", " c #08FF1B", ". c #16FF1B", "X c #1DFF0F", "o c #27FF08", "O c #37FF09", "+ c #2CFF16", "@ c #0AFF28", "# c #06FD38", "$ c #17FC26", "% c #2AF92D", "& c #49FF02", "* c #5AFF01", "= c #47FC1F", "- c #69FE01", "; c #79FE00", ": c #79FD17", "> c #75E139", ", c #3FBF68", "< c #51B372", "1 c #6AB857", "2 c #01FF49", "3 c #02FF58", "4 c #11F74E", "5 c #02FD67", "6 c #01FE78", "7 c #1BDE6A", "8 c #56E355", "9 c #B3AF30", "0 c #BDCB18", "q c #8FFD05", "w c #A8FA01", "e c #B4F605", "r c #93D330", "t c #D0CF0F", "y c #E7DC00", "u c #E4CC0A", "i c #C7F700", "p c #CFEE02", "a c #E3E300", "s c #88B851", "d c #4562B9", "f c #3D07FF", "g c #3618FE", "h c #291CFF", "j c #2C25FF", "k c #3325F9", "l c #2C35FC", "z c #3237E5", "x c #4100FF", "c c #3057CF", "v c #1A71D1", "b c #266BD4", "n c #1C58FA", "m c #244BFB", "M c #2453EC", "N c #156AFE", "B c #1575FE", "V c #1979EC", "C c #2F6CB9", "Z c #34B08D", "A c #32A6AE", "S c #28A2A8", "D c #00FF86", "F c #00FB9A", "G c #00DCBB", "H c #00FBA6", "J c #00FEB7", "K c #01E3AB", "L c #1FD38B", "P c #0E91FA", "I c #04AAFE", "U c #01BBFD", "Y c #10A5E0", "T c #1D91CD", "R c #00FAC8", "E c #00F9D7", "W c #00E0DB", "Q c #00C8FE", "! c #00D8FB", "~ c #00D1E0", "^ c #00E8E9", "/ c #00F8E7", "( c #00E8F9", ") c #00F6F3", "_ c #19C9CC", "xxxxxxxxxxxfjjgfxxxxxxfx", "xxxxxxxxfglMvvcMjhxxxxxx", "xxxfxxxfkMvS77LTTmgxxxxx", "xxxxxfgMTZ7%$$@27Yngxxxx", "xxxxfkcS88=O ##5KYmfxxx", "xxffkcZ>;;&o 4356F~Ngxxx", "xxxgbZrew-o@#5DFFH^Pkfxx", "xfgbZ>peq&.#3DHKRE(Plfxx", "xxlA1tpw*X@36HJR/((Imgxx", "xkb<0up;O 26FJRE)!!INgxx", "xmTstaw-+#6KREE/)!QINgxx", "xMA9ypq&.2FW!))))(QINgxx", "kvZ9yiq&.5KQU!/))(QIPxxx", "jv,tyi;O$5GUU!))(!UIPkxx", "kC1tyi-O$5KQ!())!QUIBxxx", "hd1tye-O@3HR^))(!QUPmgxx", "hdsuae-O 3DJR/)!QQINlffx", "fd1tpw-o 26HJE)!QUPngfxx", "fcq-+ #5FJR/)!Pmgxxxx", "xxzbZ>:*+$3DHJE^Inkxxxxx", "xxxmbA88%+%46H_Pnkxxxxxx", "xxxxlV_F4++%4KYMkxxxxxxx" ] boxselect = [ "24 24 90 1 ", " c #113B1A", ". c #085208", "X c #097109", "o c #357100", "O c #005533", "+ c #007631", "@ c #4F7200", "# c #5D5E00", "$ c #007C53", "% c #00566D", "& c #006D6E", "* c #004C56", "= c #003F65", "- c #0B890D", "; c #0BB013", ": c #008B2E", "> c #02B53A", ", c #278600", "< c #589106", "1 c #10C613", "2 c #11FD16", "3 c #2EFE0D", "4 c #06FB39", "5 c #11FD25", "6 c #2AF92E", "7 c #13D21F", "8 c #4DFB0C", "9 c #71FB0B", "0 c #6DCD38", "q c #65DB12", "w c #00B852", "e c #019176", "r c #00B776", "t c #20AE5C", "y c #5BB567", "u c #01CB4F", "i c #09F953", "p c #03D077", "a c #02FD6B", "s c #2CED5C", "d c #56E456", "f c #AFB324", "g c #D4B101", "h c #9BD604", "j c #B4D207", "k c #9AE713", "l c #E5D507", "z c #D6DC06", "x c #88B851", "c c #01738B", "v c #306DB9", "b c #4762B9", "n c #3D07FF", "m c #3519FE", "M c #2D1BFF", "N c #2C25FF", "B c #3424FA", "V c #2B36FC", "C c #3038E5", "Z c #4100FF", "A c #1673D3", "S c #2769D4", "D c #1C5BFC", "F c #244BFB", "G c #2453EF", "H c #1373FA", "J c #3353CF", "K c #00968C", "L c #01B38C", "P c #33AE8F", "I c #0097B1", "U c #00B5B8", "Y c #04ADAE", "T c #33A0AC", "R c #08D488", "E c #01F791", "W c #00C3B2", "Q c #01F3AC", "! c #33D78C", "~ c #0892D1", "^ c #03AAD3", "/ c #1092F9", "( c #05ABFE", ") c #04B4FF", "_ c #328BCE", "` c #02CAD4", "' c #00D4EB", "] c #00F0F0", "[ c #0EEACA", "{ c #45A692", "ZZZZZZZZZZZnNBmZZZZZZZZZ", "ZZZZZZZZZmBGAASGBmZZZZZZ", "ZZZZZZZZBG~YppLT_FmZZZZZ", "ZZZZZZmG_Ps6654iR^DmZZZZ", "ZZZZnBSPdd833544aQ/FZZZZ", "ZZZnBJP0998324iiaE`HmZZZ", "ZZZmSP0jhq777upppE'/BZZZ", "ZnmS{0<#@o--:+$$ee'/FZZZ", "ZnFT0f# ...OOOOOO*^)DmZZ", "ZBSyfg#o;;>wrrLL&%^)HmZZ", "ZF_xlg@,17wrLWYYe&^(HmZZ", "nGTflz@,;>rIIYYYcc^(HmZZ", "mAPflj@X;>KIIIYL&%^(HmZZ", "NAyjlj@-;wL~~YYY&%~)/BZZ", "Mvyzlj@-;uLIYUWUc%^(HZZZ", "Mbxllho-1upLYU`^cc~/DZZZ", "Mbxllh@X-:weKKKK%*~HNnnn", "Mbyzzho.XX+$e&&%*=ADMnZn", "nJyjzkwprRUU^~HNnZZZ", "nBSykk9324aEQ[]]'(FmZZZZ", "ZnBA!d9825iEQQ[](DBZZZZZ", "ZZnVSPdd635iEQ`/DBZZZZZZ", "ZZZZV/[!s836aQ^GBZZZZZZZ" ] brush = [ "16 16 73 1", " c #0B0B00", ". c #0F0F06", "X c #101000", "o c #111100", "O c #121200", "+ c #373737", "@ c #51510D", "# c #52520D", "$ c #53530D", "% c #4D4D37", "& c #4E4E37", "* c #4F4F39", "= c #5A5A2B", "- c #616104", "; c #666611", ": c #727207", "> c #616122", ", c #444445", "< c #464646", "1 c #4A4A4A", "2 c #4D4D4D", "3 c #515151", "4 c #5C5C5C", "5 c #676744", "6 c #616162", "7 c #6E6E6E", "8 c #737373", "9 c #757575", "0 c #7C7C71", "q c #7B7B7B", "w c #9E9E00", "e c #ADAD00", "r c #B2B200", "t c #B5B500", "y c #888884", "u c #8B8B8C", "i c #8D8D8E", "p c #8D8D8F", "a c #8E8E90", "s c #949498", "d c #9A9A9A", "f c #9C9C9C", "g c #9F9F9F", "h c #A2A2A3", "j c #A6A6A7", "k c #AAAAAF", "l c #ADADB1", "z c #AEAEB1", "x c #B3B3B3", "c c #B5B5B5", "v c #B5B5B6", "b c #B8B8B8", "n c #B9B9B9", "m c #BABABA", "M c #B9B9BC", "N c #BCBCBC", "B c #C1C1C1", "V c #C2C2C2", "C c #C2C2C3", "Z c #C4C4C4", "A c #C4C4C5", "S c #C5C5C5", "D c #C5C5C6", #"F c #C6C6C6", "F c none", "G c #C7C7C7", "H c #C6C6C8", "J c #C8C8C8", "K c #C9C9C9", "L c #CACACA", "P c #CDCDCD", "I c #D2D2D2", "U c #D3D3D3", "Y c #E1E1E1", "FFFFFFFFFFFFFFFF", "FFFFFFFKDFFFFFFF", "FFFFFFBsvKFFFFFF", "FFFFFF0-5MDFFFFF", "FFFFFF*r$kFFFFFF", "FFFFFF*e#kDFFFFF", "FFFFFD*e#lKFFFFF", "FFFFDj>t:yDFFFFF", "FFFFl=wre;pKFFFF", "FFFKh.ooo 7LFFFF", "FFFGh,apa67LFFFF", "FFFKd9LIYc7LFFFF", "FFFKf9bBIc7LFFFF", "FFFC4+123 c #7C582C", ", c #77492C", "< c #005072", "1 c #555555", "2 c #803F1F", "3 c #8B461C", "4 c #A05117", "5 c #B7621E", "6 c #815134", "7 c #925531", "8 c #995028", "9 c #90762F", "0 c #8C7233", "q c #977934", "w c #916C36", "e c #AA6A31", "r c #BC7029", "t c #D27516", "y c #C67523", "u c #A9704A", "i c #B9784A", "p c #A48B3D", "a c #B4943B", "s c #CA8436", "d c #D49139", "f c #E39A35", "g c #E38C38", "h c #9E8A44", "j c #A68A42", "k c #A69547", "l c #B7974B", "z c #AB9A51", "x c #B3A254", "c c #C59C4E", "v c #D48E52", "b c #C6A856", "n c #C5A14A", "m c #EAA359", "M c #E5B352", "N c #EBB662", "B c #EAA663", "V c #006286", "C c #00709F", "Z c #0097C3", "A c #05AADA", "S c #60B2D0", "D c #96D7E9", "F c #A2E0F1", "G c #C3C3C3", "H c #FFFEDD", "J c #FFFEEA", "K c #FEFEFB", " ", " q9q0qjzpjkkhhk ", " aapj,%O@:hzkkz ", " acl*=-+oo%lxzx ", " nbwyNNv#o.:xbb ", " bn-mNNBu+oojxx ", " Me=yft55#O.:xx ", " c6&;e873$X.%kk ", " -=-dftMgVVVVVV ", " &##Bd4BiVKDFDS ", " &++iy;v7VGuAZC ", " *%##yy8#V11VV< ", " >:@X+&++VKKKJJ ", " 0:@+O66,VKJJJH ", " *%@@=svs KKJJH ", " " ] gioconda16mirror=[ "16 16 68 1 ", " c black", ". c #370C0E", "X c #3D120C", "o c #350B11", "O c #3A1211", "+ c #46180D", "@ c #451A11", "# c #521D10", "$ c #57190B", "% c #4C2413", "& c #572314", "* c #5C371B", "= c #632C15", "- c #6B3417", "; c #7F3C14", ": c #644523", "> c #7C582C", ", c #77492C", "< c #005072", "1 c #555555", "2 c #803F1F", "3 c #8B461C", "4 c #A05117", "5 c #B7621E", "6 c #815134", "7 c #925531", "8 c #995028", "9 c #90762F", "0 c #8C7233", "q c #977934", "w c #916C36", "e c #AA6A31", "r c #BC7029", "t c #D27516", "y c #C67523", "u c #A9704A", "i c #B9784A", "p c #A48B3D", "a c #B4943B", "s c #CA8436", "d c #D49139", "f c #E39A35", "g c #E38C38", "h c #9E8A44", "j c #A68A42", "k c #A69547", "l c #B7974B", "z c #AB9A51", "x c #B3A254", "c c #C59C4E", "v c #D48E52", "b c #C6A856", "n c #C5A14A", "m c #EAA359", "M c #E5B352", "N c #EBB662", "B c #EAA663", "V c #006286", "C c #00709F", "Z c #0097C3", "A c #05AADA", "S c #60B2D0", "D c #96D7E9", "F c #A2E0F1", "G c #C3C3C3", "H c #FFFEDD", "J c #FFFEEA", "K c #FEFEFB", " ", " *%@@=svs KKJJH ", " 9:++.66,VKKJJH ", " >*+X$&++VKKKJJ ", " *%+&sy8#V11VV< ", " &++it2v7VGuAZC ", " &+&md4miVKDFDS ", " :*-dftMgVVVVVV ", " c,&;e873$X.%kk ", " Me=yft55#.o:xx ", " bn=mNNBu+oojxx ", " nbwrNNv#oo:bxb ", " dcl*=-+oo%lxzx ", " aapp,%O@:pzkkz ", " q9q0qkzphkzhhk ", " " ] energy = [ "16 16 3 1", " c blue", ". c white", "X c None", "XXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX", "XXXXX XXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXXXXXXX", "XXXXX XXXXX", "XXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX" ] colormap16=[ "16 16 22 1", " c #000000", ". c #303030", "X c #004040", "o c #404000", "O c #000080", "+ c #008000", "@ c #00c000", "# c #008080", "$ c #00c0c0", "% c #c00000", "& c #c05800", "* c #ffa858", "= c #808080", "- c #a0a0a0", "; c #8080ff", ": c #ffdca8", "> c #c3c3c3", ", c #dcdcdc", "< c #c0c0ff", "1 c #c0ffc0", "2 c #c0ffff", "3 c None", #"3 c #ffffff", #/* pixels */ "333 33333333333", "33 3, 33333 333", "3 3,, 3333 ,> 33", " 3,3,3 33 ,,>> 3", " ,, > 33 ,>>, 3", " , 33 , 3 >;;O> ", " , 33 ,, ,>; ", " ,, o,,,,,>OOO> ", " ,,,,,,,,,,>>>> ", " ,,**&,,,,$$#> 3", " ,,*:&>-->$2#> 3", " >,&&%@@+-##X= 3", "3 ,,>@1+=>-- 33", "33 ,>>+++=,> 333", "333. ,,>-> 333", "33333 333333" ] MINEcolormap16 = [ "22 16 12 1", " c black", ". c navy", "X c blue", "o c #000080800000", "O c green", "+ c #000080808080", "@ c #808000000000", "# c red", "$ c yellow", "% c #808080808080", "& c #C0C0C0C0C0C0", #"* c gray100", "* c None", "**********************", "***&&&*********&&&&***", "**&*&&&********&&&&&**", "*&& ***&&****&&&&&O&&*", "*&* *** &&**&&&+OOO+&*", "*&&& ** &&&&&&&oOOO+&*", "*&&&& %&&&&&&&&&o++&&*", "**&&&&&&&&&&&&&&&&&&&*", "**&&&&%&&&&&&&&&XXX&&*", "**&&&#@#&&&&&&&.XXX.&*", "**&&@###&&%%%&&.XX.&**", "***&@##@&%$$$%&.X..&**", "***&%@@@&+$$$%&...&***", "****&&@&&+$$+%&&&&&***", "*****&&&&&ooo%&&&&****", "******&&&&&&&&&&******" ] colormap = colormap16 MINEcolormap = [ "16 16 157 2", " c black", ". c #32a230b6261c0000", "X c #2dd072373a280000", "o c #1b7a5e8a7e3e0000", "O c #0869714c720a0000", "+ c #44b0439e3f120000", "@ c #4d9943ac32ec0000", "# c #43d6445646fe0000", "$ c #4cd049da43d20000", "% c #4d8d4dca4d740000", "& c #50b84dd34c760000", "* c #5730550c4ba70000", "= c #572159e84b700000", "- c #5f1f5a5f46520000", "; c #562e53ea50ee0000", ": c #590f5766534b0000", "> c #5e475c7b59330000", ", c #5f745f9161d00000", "< c #62755e9d57b00000", "1 c #67086468556f0000", "2 c #643c636a5ce40000", "3 c #6bed68bf5bd60000", "4 c #728d6e1157d60000", "5 c #7028705770b60000", "6 c #737173a661300000", "7 c #737276576d9e0000", "8 c #7f857d106e1f0000", "9 c #77c4780f79440000", "0 c #7ce87cbd7b8f0000", "q c #05d573daadaa0000", "w c #54497b7b87e30000", "e c #39498f5045650000", "r c #500a9b725bac0000", "t c #5de187637ab20000", "y c #5cc2ac8864db0000", "u c #6e0f80fe6cd70000", "i c #6aa598bc62350000", "p c #6c7fb13f6fbb0000", "a c #1b70843fb5fd0000", "s c #33d39b4c9bdd0000", "d c #5990b350ac230000", "f c #61c7a2559a560000", "g c #74fea34891de0000", "h c #712bacd8bdfa0000", "j c #4c169fe6c1910000", "k c #7ffbb5dcc8ba0000", "l c #7631ce79cde30000", "z c #70c3cf69d1f90000", "x c #64cec217e82c0000", "c c #99d4133821f90000", "v c #87097e866f430000", "b c #a7b15b945a4e0000", "n c #c11e31ff3ea00000", "m c #cb363b2547800000", "M c #c2185dd763f70000", "N c #d89a60e866aa0000", "B c #e8ee5d0166230000", "V c #ed436e8875310000", "C c #86e381036d780000", "Z c #8a91814f70620000", "A c #887d859c73a20000", "S c #8e88843072ea0000", "D c #8d9b896e71b70000", "F c #8d1d959373fe0000", "G c #8ad89a61750c0000", "H c #940b83c06c6f0000", "J c #95478e1973fa0000", "K c #9fff80ad71230000", "L c #9551926a7af20000", "P c #9ce295857b390000", "I c #96fea16f78380000", "U c #b53d91177e3a0000", "Y c #8346833084190000", "T c #8ba28be48caf0000", "R c #9769946b8ba00000", "E c #9e9f9ae68c7e0000", "W c #94249411937e0000", "Q c #943ca01196c10000", "! c #9b7a9a0a96e00000", "~ c #9e1d9cd99c310000", "^ c #90c5acc6ab4e0000", "/ c #a0f29e208ed20000", "( c #a809a5398b520000", ") c #a632a2ab96640000", "_ c #a990a4c393650000", "` c #ae38b78093ba0000", "' c #b8ebad728ccf0000", "] c #b8edc05f9e730000", "[ c #ae65adfda2820000", "{ c #ab45ab14af050000", "} c #b439b6e5aa700000", "| c #bbb7b6d2aac20000", " . c #bd52bba3a6820000", ".. c #8ecec76694970000", "X. c #96aac4b6971a0000", "o. c #8b55c1c7ad490000", "O. c #892ec4ccb7af0000", "+. c #ac2cc2449bcc0000", "@. c #bc27c4caa3c10000", "#. c #b116c0e6b4190000", "$. c #bac9ef72b5220000", "%. c #83abd0e3f1770000", "&. c #c634984784310000", "*. c #db719fcb954a0000", "=. c #c159a96a8e280000", "-. c #c496b7829dac0000", ";. c #c5c4bbb7995f0000", ":. c #d8a5aa7e9c680000", ">. c #e4ffa5249a800000", ",. c #f6fdbc65b0b70000", "<. c #ca38c6a49d940000", "1. c #ce6bc815a7e80000", "2. c #cf0dc834ae850000", "3. c #c890c58ebf790000", "4. c #c564cc1cb2730000", "5. c #cfcfd972baff0000", "6. c #d66eca1da5130000", "7. c #da30cf78a97b0000", "8. c #d19ece63b8ac0000", "9. c #df6bd3e3af430000", "0. c #d754d705c0800000", "q. c #dabbd7b6c0540000", "w. c #e354cdd1a97f0000", "e. c #eaadd985afbb0000", "r. c #e517d6feba720000", "t. c #e3ecd8febb540000", "y. c #ed62d85ac08f0000", "u. c #c498c4c4c7500000", "i. c #cd3acdc3cf4a0000", "p. c #d7e8d692cc140000", "a. c #d511de75c37b0000", "s. c #df34d9e6c5190000", "d. c #e0aae0d5ca4a0000", "f. c #d629d578d6c00000", "g. c #dd7adce6dd6b0000", "h. c #e069e0e3e30e0000", "j. c #e3a6dc2dc7160000", "k. c #e7b1dd12cada0000", "l. c #eed2e041cf3f0000", "z. c #e3e1e2dbcc030000", "x. c #e743e4a7d8b20000", "c. c #eaa4e350d3e60000", "v. c #eb49e9a4d33b0000", "b. c #f968eb0cc8730000", "n. c #f622ecbbd45e0000", "m. c #f6edf0d3dd2c0000", "M. c #f7b2f2bddce30000", "N. c #fbf0f55cdb450000", "B. c #e7ace818e9910000", "V. c #e83fe902ea1a0000", "C. c #efffeba9e2bc0000", "Z. c #ec97ed28ed8b0000", "A. c #fa34f631eddf0000", "S. c #f6d9f74df80b0000", "D. c #f8e3f98ffa600000", "F. c #fefafef9fef30000", "G. c None", "G.F.D.G.F.G.D.F.G.F.G.D.F.G.D.F.", "G.F.G.T % W G.F.F.G.F.F.B.h.S.F.", "F.G.5 ! A.[ ! G.F.F.G.u.+ . 0 G.", "G.W ~ F.C.F.% g.F.G.i.: t.b.4 Y ", "Z., x.3 + 2.p.% G.G.T S d. .w.% ", " 3.R T G.* 8.2 i.V.$ v.k j #.C ", " | E 9 G.Y A N.< % -.h %.x a L ", " ) N.1 { Y E M.q. .n.^ a q o D ", " / M.c.7 } M.s.d.z.q.r.Q w ( J ", " _ n.z.,.>.d.k.l.k.j.0.o.@.e.J ", "# 8 v.:.N m *.a.+.4.y.O.z d ] S ", "G.& 5.M V B b X...p ` f l s u < ", "G.g.6 &.n c K r $.y I g O t @ i.", "D.G.i.= =.U 1.i e X F 6.;.H ; D.", "G.F.G.u.6 <.7.9.G G ;.' - ; Z.G.", "F.G.F.G.f.> v J P J Z > i.S.F.F."] yauto =[ "16 16 3 1", " c black", ". c #0000ff", "X c none", "XXXXXXXXXXXXXXXX", "XX.XXXXXXXXXXXXX", "X...XXXXXXXXXXXX", ".....XXXXXXXXXXX", "XX.XXXXXXXXXXXXX", "XX.XXX XXXXX XXX", "XX.XXXX XXX XXXX", "XX.XXXXX X XXXXX", "XX.XXXXXX XXXXXX", "XX.XXXXX XXXXXXX", "XX.XXXX XXXXXXXX", "XX.XXX XXXXXXXXX", ".....XXXXXXXXXXX", "X...XXXXXXXXXXXX", "XX.XXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX" ] xauto =[ "16 16 3 1", " c black", ". c #0000ff", "X c none", "XXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX", "XXXXXXXXXXXXXXXX", "XXXXX XXXXX XXXX", "XXXXXX XXX XXXXX", "XXXXXXX X XXXXXX", "XXXXXXXX XXXXXXX", "XXXXXXX X XXXXXX", "XXXXXX XXX XXXXX", "XXXXX XXXXX XXXX", "XXXXXXXXXXXXXXXX", "XXX.XXXXXXXX.XXX", "XX..XXXXXXXX..XX", "X..............X", "XX..XXXXXXXX..XX", "XXX.XXXXXXXX.XXX" ] close = [ "16 16 18 1", ". c None", "d c #000000", "c c #080808", "k c #080c08", "b c #181818", "a c #212021", "# c #212421", "j c #292829", "e c #313031", "f c #393839", "i c #424542", "m c #525152", "h c #525552", "g c #5a595a", "l c #636163", "p c #6b696b", "n c #7b797b", "o c #ffffff", "................", "................", "......#abcd.....", "....efghijkdd...", "...elmgnliaddd..", "...fmoopnhoodd..", "..#ggooogoooddd.", "..ahnpooooocddd.", "..bilngoooadddd.", "..cjihooooodddd.", "..dkaoooaoooddd.", "...ddoocddoodd..", "...ddddddddddd..", "....ddddddddd...", "......ddddd.....", "................" ] fileclose = [ "16 16 14 1", " c black", ". c #0b0b0b", "X c #181818", "o c #222222", "O c gray17", "+ c gray19", "@ c gray23", "# c #444444", "$ c #535353", "% c None", "& c gray38", "* c #686868", "= c gray47", "- c white", "%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%", "%%%%%%ooX. %%%%%", "%%%%+@%$#O. %%%", "%%%+&$%=&#o %%", "%%%@$--*=$-- %%", "%%o%%---%--- %", "%%o$=*-----. %", "%%X#&=%---o %", #"%%.O#$--- %", "%%.O#$--- %", "%% .o---o--- %", "%%% --. -- %%", "%%% %%", "%%%% %%%", "%%%%%% %%%%%", "%%%%%%%%%%%%%%%%" ] fileopen = [ "16 16 39 1", " c black", ". c gray4", "X c gray7", "o c #1f1f1e", "O c #222222", "+ c #323231", "@ c #4b3119", "# c #434343", "$ c #4a4a49", "% c #524f4c", "& c #54514e", "* c #565350", "= c #5c5a57", "- c #686867", "; c #6f6f6e", ": c #b77d44", "> c #c4864e", ", c #e5a566", "< c #f8ac62", "1 c #8d8d8b", "2 c #949493", "3 c #9c9c9b", "4 c #a0a09f", "5 c #a4a4a3", "6 c #adadab", "7 c #b5b5b5", "8 c #bcbcbc", "9 c #fec383", "0 c #fec88a", "q c #fed39a", "w c #c4c4c3", "e c #cccccc", "r c #d4d4d3", "t c #dddddc", "y c #e4e4e3", "u c #e8e8e7", "i c #ececec", "p c gray96", "a c None", "aaaaaa aaaaaa", "aaaaa a a aa", "aaaa aaaaa aa", "aaaaaaaaaaa aa", "aaaaaaaaaa aa", "a aaaaaaaaaaa", " ,q9, aaaa", " q99<<<<<<<< aaa", " 09@&&&=&&**& ", " 9>%ppiytrew877+", " 9@ttuytrw8642$a", " :&ttytrew764-Oa", " @eerrrew8652$aa", " *e8www87653;Xaa", ".85666655321$aaa", "O$$$$$$$###+oaaa" ] fileprint = [ "16 16 37 1", " c black", ". c gray19", "X c gray22", "o c #4f4928", "O c #574934", "+ c #444444", "@ c #585858", "# c #646464", "$ c gray", "% c lime", "& c #b7996e", "* c #b9b24a", "= c #838383", "- c #8c8c8c", "; c #939393", ": c #9d9d9d", "> c #a1a1a1", ", c #b7b7b7", "< c #dfc097", "1 c #e8c08d", "2 c #e4cba9", "3 c #e7d3b9", "4 c #c3c3c3", "5 c #cacaca", "6 c gainsboro", "7 c #e9d9c5", "8 c #ecdfcc", "9 c #eee4d5", "0 c #f0e6d8", "q c gray89", "w c #f3ede4", "e c #f4eee8", "r c #f5f1eb", "t c #f7f6f4", "y c #f8f7f6", "u c #fdfdfd", "i c None", "iiiiiiiiO iiiii", "iiiiiiiOuu4O iii", "iiiiii wtytu8O i", "iiiiiiOtyytrw8< ", "iiii wtytrw98& ", "iii :O9weew08< i", "ii :@&1299873@oi", "i :>># &123<< *o", " :::::># #&&.*oi", "+6uq:::::># #o$ ", "+55q6uq;--==$$@ ", " >,455q6uq$$$@+ ", "i @>,455q6u@+X ", "iiii @>,4%4+X i", "iiiiiii @>,X ii", "iiiiiiiiii iii" ] filesave = [ "16 16 26 1", " c #000000", ". c #0c0c0c", "X c gray21", "o c #3e3e3e", "O c #444444", "+ c #4c4c4c", "@ c #535353", "# c #5d5d5d", "$ c #636363", "% c #6a6a6a", "& c #747474", "* c #7c7c7c", "= c #838383", "- c #8c8c8c", "; c #939393", ": c #9a9a9a", "> c #a4a4a4", ", c gray68", "< c gray71", "1 c #c1c1c1", "2 c gray81", "3 c gray85", "4 c #e6e6e6", "5 c #efefef", "6 c #ffffff", "7 c None", "7777 777777777", "777@1,6 777777", "777@1:6666 777", "777@166666666 ", "77@1>66666666>> ", "77@1-66666666;> ", "77@<56666666== 7", "7@,>;-666666&- 7", "7@:---==*662$; 7", "7@:--=$#$&*2$; 7", #"7@ =$#$&$#.7", "@=$444+O+@@@* 77", "@%+444443O@@- 77", " 44444o+@$ 777", "777 44X@@& 777", "777777 @@; 777", "777777777 .7777" ] fit = [ "16 16 7 1", " c #303030", ". c #585858", "X c #c00000", "o c #808080", "O c #dcdcdc", "+ c #ffffff", "@ c None", "@@@@@oo@@@@@@@@@", "@@@@@oo@@@@@@@@@", "@@@@oXXo@@@@@@@@", "@@@@o++X@@@@@@@@", "@@@Xo++oX@oX@@@@", "@@@o+++oX@XoX@@@", "@@Xo++++.X++o@@@", "@Xo+++++oo++oX@@", "@ + + @@", "@ + + X@", "o ++++ ++ oX@", "X ++ ++ oX@", "+ ++ ++ oo@", "+ ++++ ++ +oX", "+ ++++ ++ ++o", "@@@@@@@@@@@@@@@@" ] logx = [ "16 16 4 1", " c #000040", ". c #0000ff", "X c #dcdcdc", "o c None", "oooooooooooooooo", "ooo oooooooooooo", "ooo oooooooooooo", "ooo oooooooooooo", "ooo ooo ooo oooo", "ooo oo o o o ooo", "ooo oo o o o ooo", "ooo o ooo ooo", "oooooooooooo ooo", "oooooooooo oooo", "oo.oooooooooo.oo", "o..oooooooooo..o", "................", "o..oooooooooo..o", "oo.oooooooooo.oo", "oooooooooooooooo" ] logy = [ "16 16 4 1", " c #000040", ". c #0000ff", "X c #dcdcdc", "o c None", "oooooooooooooooo", "oo.ooooooooooooo", "o...oooooooooooo", ".....ooooooooooo", "oo.ooooooooooooo", "oo.ooo ooooooooo", "oo.ooo ooooooooo", "oo.ooo ooooooooo", "oo.ooo ooo ooo o", "oo.ooo oo o o o ", "oo.ooo oo o o o ", "oo.ooo o ooo ", ".....oooooooooo ", "o...ooooooooo o", "oo.ooooooooooooo", "oooooooooooooooo" ] normal = [ "16 16 4 1", " c #303030", ". c #dcdcdc", "X c #ffffff", "o c None", "oooooooooooooooo", "o oooooooooooo", "o ooooooooo", "o oooooo", "oX ooooooo", "oX oooooooo", "oX oooooooo", "oXX ooooooo", "ooX XX oooooo", "ooX XooX ooooo", "ooXXooooX oooo", "oooooooooX ooo", "ooooooooooX ooo", "oooooooooooooooo", "oooooooooooooooo", "oooooooooooooooo" ] peak = [ "16 16 4 1", " c #303030", ". c #0080ff", "X c #dcdcdc", "o c None", "oooooo ooooooo", "ooooo . ooooooo", "ooooo ...ooooooo", "ooooo.....oooooo", "ooooo o.o oooooo", "ooooo o.o oooooo", "oooo oo.o oooooo", "oooo oo.o oooooo", "oo o oo.o oooooo", "oo o oo.o ooo o", "o oo.oo oo ", "o o oo.oo oo oo", "o ooooo.oo oo", " ooo.....oo ooo", "oooooo...ooooooo", "ooooooo.oooooooo" ] peakreset = [ "16 16 6 1", " c #303030", ". c #0080ff", "X c #ff0000", "o c #dcdcdc", "O c #ffc0c0", "+ c None", "XX++++ +++++XX", "+XXO+ . ++++XX+", "++XXO ...++OXX++", "+++XX.....OXX+++", "++++XXO.+OXX++++", "+++++XX.OXX+++++", "++++ +XXXX++++++", "++++ +OXX ++++++", "++ + OXXXX++++++", "++ +OXX.OXX+++ +", "+ OXX+.+OXX+ ", "+ +XX++.++OXX ++", "+ XX+++.++ OXX++", " XX++.....++ XX+", "+X++++...+++++X+", "X++++++.+++++++X" ] peaksearch = [ "16 16 6 1", " c #303030", ". c #585858", "X c #0000c0", "o c #dcdcdc", "O c #ffffff", "+ c None", "++..++++++++++++", "++.X.+++++++++++", "++XXX+++++++++++", "++.X.++++..+++++", "+..X.+++.X..++++", "+.OX..++XXX.++++", "+.OXO..+.XO..+++", "..OXOO..OXOO.+++", "OOOXOOOOOXOO..OO", " ++++++++++...", " ++ ++++++++++++", " ++ + ++ + + +", " + + + + + + +", " +++ ++ + + ++", " +++ +++ + + + +", " ++++ ++ + + +" ] reload_ = [ "16 16 51 1", " c #000000", ". c #040d00", "X c gray5", "o c #111111", "O c #1b1b1b", "+ c #0c2600", "@ c #113800", "# c #153c17", "$ c #242424", "% c #2d2d2d", "& c #343434", "* c gray24", "= c #154400", "- c #124515", "; c #1c4e1f", ": c #1b531c", "> c #1e5421", ", c #244926", "< c #235326", "1 c #215824", "2 c #265c28", "3 c #295f2c", "4 c #2f783f", "5 c #2f7a41", "6 c gray27", "7 c #4c4c4c", "8 c #525252", "9 c #5a5a5a", "0 c #7b7b7b", "q c #208a17", "w c #249215", "e c #289b19", "r c #2fa522", "t c #3fbe31", "y c #56a64f", "u c #6ebc66", "i c #44cd35", "p c #818181", "a c #929292", "s c #9f9f9f", "d c darkgray", "f c #b2b2b2", "g c #b9b9b9", "h c #a9d7ad", "j c #b5d7b3", "k c #b3d8b2", "l c #c6e0c4", "z c #dbecda", "x c #e4e4e4", "c c white", "v c None", "vvvvc2>>>>=vvvvv", "vvvc3kqr=@+==vvv", "vvv1zqr=vvv .=vv", "vvv c #4F508D", ", c #53578C", "< c #595A91", "1 c #5B638D", "2 c #696A9C", "3 c #6C7C93", "4 c #727D98", "5 c #6B6DA0", "6 c #787AA9", "7 c #6E8192", "8 c #778698", "9 c #7B9495", "0 c #7CA98A", "q c #7EB482", "w c #7F81AF", "e c #82979E", "r c #80B088", "t c #86A599", "y c #93B79E", "u c #8689AC", "i c #8A8BB3", "p c #8E90BB", "a c #9597BD", "s c #8CC485", "d c #AEC4BA", "f c #A8A9C4", "g c #AFB0CA", "h c #B4B4CD", "j c #C6C6DB", "k c #CFCFE2", "l c #D3D3E4", " 6ap:-5pi-. ", " uaa5-6p:........ ", " $O@r8.......... ", " $O$9X........... ", " $O$8............ ", " %O$8............ ", "=O% ........... ", "ss " ] spec = [ "16 16 24 1", " c black", ". c #585858", "X c #777777", "o c #9f9f9f", "O c #a5a5a5", "+ c #acacac", "@ c gray70", "# c gray73", "$ c #e6e6bc", "% c #c3c3c3", "& c #cecece", "* c #d5d5d5", "= c gainsboro", "- c #e6e6c3", "; c #e6e6cc", ": c #e6e6d5", "> c #e6e6da", ", c #ffffdd", "< c #e6e6e5", "1 c #ffffe4", "2 c #ffffeb", "3 c #fffff4", "4 c #fffffe", "5 c None", "5555555555555555", " ", " 555*&%%#@+Oooo ", " XXXXXXXXXXXXXX ", " <444444444444> ", " <44444444444,: ", " %..4..%4%..%.. ", " .444.4.3.3,.,; ", " %.%4.3.3..2.1; ", " <4.3..%2.,1.1; ", " <4.4.222.1,.,: ", " ..%2.211%..%.. ", " >,,,,111,,,,,$ ", " :::;;;;----$$$ ", " ", "5555555555555555" ] window_fullscreen = [ "16 16 23 1", " c black", ". c #777777", "X c maroon", "o c #9f9f9f", "O c #a5a5a5", "+ c #acacac", "@ c gray70", "# c gray73", "$ c #e6e6bc", "% c #c4c4c4", "& c #cecece", "* c #d5d5d5", "= c gainsboro", "- c #e6e6c3", "; c #e6e6cc", ": c #e6e6d5", "> c #e6e6db", ", c #ffffde", "< c #e6e6e6", "1 c #ffffe4", "2 c #ffffec", "3 c #fffff4", "4 c #ffffff", "4444444444444444", " ", " ===*&%%#@+Oooo ", " .............. ", " <444444444444> ", " XX222111,,XX- ", " >XXX1111,,XXX$ ", " :::;;;;----$$$ ", " ", "4444444444444444" ] window_new = [ "16 16 53 1", " c #000000", ". c #0f0000", "X c #330100", "o c #333940", "O c #5e2479", "+ c #555555", "@ c #585858", "# c gray40", "$ c #0000d0", "% c #0000d8", "& c #3940e6", "* c #642780", "= c #6f2f90", "- c #6e308b", "; c #763796", ": c #793b9c", "> c #7e3ea3", ", c #903339", "< c #e60000", "1 c #8242a7", "2 c #894caf", "3 c #8957a0", "4 c #9056b5", "5 c #925ab3", "6 c #8d61a4", "7 c #9065a8", "8 c #9570ab", "9 c #9873ae", "0 c #c0c000", "q c #c1c10a", "w c yellow", "e c #a480b9", "r c #a881be", "t c #ae86c5", "y c #b894ce", "u c #dedeb6", "i c #dedebf", "p c #ffff85", "a c #c6c6c6", "s c #dedec4", "d c #dedecb", "f c #deded2", "g c #dededd", "h c #ffffc0", "j c #ffffdf", "k c #e4e4e4", "l c #eeeee6", "z c #eeeeee", "x c #ffffe4", "c c #ffffec", "v c #fffff4", "b c #fffffe", "n c None", "@#+**********+++", "@kayytre98763ga ", "+aa45521>:;=-aa ", "+@@OOOOOOOOOO@@ ", "+zbbbbbbbbbbbvl ", "+gbbbbbbbbvcccd ", "+gbbbbbbbvcccxs ", "+gbbbbbvcc@pxji ", "+gbbbbv@pc@wj@p ", "+gbbvccc@w0w0wu ", "+gbvcccxxqhph0@ ", "+gffdd@pwwpbpwwp", "+ 0hph0 ", "nnnnnnnn w0w0wnn", "nnnnnnn pn wn pn", "nnnnnnnnnn pnnnn" ] window_nofullscreen = [ "16 16 23 1", " c black", ". c #777777", "X c maroon", "o c #9f9f9f", "O c #a5a5a5", "+ c #acacac", "@ c gray70", "# c gray73", "$ c #e6e6be", "% c #c4c4c4", "& c #cecece", "* c #d5d5d5", "= c gainsboro", "- c #e6e6c4", "; c #e6e6cc", ": c #e6e6d4", "> c #e6e6db", ", c #ffffda", "< c #e6e6e6", "1 c #ffffe4", "2 c #ffffec", "3 c #fffff4", "4 c #ffffff", "4444444444444444", " ", " ===*&%%#@+Oooo ", " .............. ", " X444444444444X ", " ", " <4XX444443XX2: ", " X3X22111,X,X$ ", " X>:::;;;---$$X ", " ", "4444444444444444" ] zoom = [ "16 16 56 1", " c #000000", ". c #0b0b0b", "X c #101010", "o c #272727", "O c #3f3f3f", "+ c #3f3f40", "@ c #404041", "# c #707071", "$ c #3eaab3", "% c #00c0c0", "& c aqua", "* c #43b2bc", "= c #7f8281", "- c #53c9d4", "; c #60c1cd", ": c #6ec4cd", "> c #68c6d1", ", c #71c6ce", "< c #7ac4cb", "1 c #7cc9cd", "2 c #76cbd5", "3 c #79cad4", "4 c #76d7e3", "5 c #78d8e3", "6 c #85ccd2", "7 c #89c8d0", "8 c #90d5db", "9 c #90d9df", "0 c #8bd7e0", "q c #8adbe5", "w c #8fdfe8", "e c #95e1ea", "r c #a8d1d5", "t c #aed6db", "y c #b6d9dd", "u c #b9dade", "i c #abdee4", "p c #b9dbe0", "a c #ade4e8", "s c #afe9f0", "d c #b0eaef", "f c #baecef", "g c #beedf1", "h c #c3c3c3", "j c #c1d4d6", "k c #ced8d9", "l c #c4eaed", "z c #caeaed", "x c #cdecf0", "c c #d7e5e6", "v c #d7e5e8", "b c #d3f2f5", "n c #def4f6", "m c #e3f4f4", "M c #eafbfa", "N c None", "NNNNoO.NNNNNNNNN", "NN+ kvj +NNNNNNN", "N+=mnlia=+NNNNNN", "N mMng9:f NNNNNN", "Xybnbsw,3p.NNNNN", "oclgde4;6z.NNNNN", ".ri0q5-*1t NNNNN", "N g2:>*$g NNNNNN", "N+=g8<7g= &NNNNN", "NN+ uzt @& NNNN", "NNNN . N% #h NNN", "NNNNNNNNN @#h NN", "NNNNNNNNNN @#h N", "NNNNNNNNNNN @#h ", "NNNNNNNNNNNN @# ", "NNNNNNNNNNNNN N" ] zoomminus = [ "16 16 56 1", " c #000000", ". c #0b0b0b", "X c #101010", "o c #272727", "O c #3f3f3f", "+ c #3f3f40", "@ c #404041", "# c #707071", "$ c #3eaab3", "% c #00c0c0", "& c aqua", "* c #43b2bc", "= c #7f8281", "- c #53c9d4", "; c #60c1cd", ": c #6ec4cd", "> c #68c6d1", ", c #71c6ce", "< c #7ac4cb", "1 c #7cc9cd", "2 c #76cbd5", "3 c #79cad4", "4 c #76d7e3", "5 c #78d8e3", "6 c #85ccd2", "7 c #89c8d0", "8 c #90d5db", "9 c #90d9df", "0 c #8bd7e0", "q c #8adbe5", "w c #8fdfe8", "e c #95e1ea", "r c #a8d1d5", "t c #aed6db", "y c #b6d9dd", "u c #b9dade", "i c #abdee4", "p c #b9dbe0", "a c #ade4e8", "s c #afe9f0", "d c #b0eaef", "f c #baecef", "g c #beedf1", "h c #c3c3c3", "j c #c1d4d6", "k c #ced8d9", "l c #c4eaed", "z c #caeaed", "x c #cdecf0", "c c #d7e5e6", "v c #d7e5e8", "b c #d3f2f5", "n c #def4f6", "m c #e3f4f4", "M c #eafbfa", "N c None", "NNNNoO.NNNNNNNNN", "NN+ kvj +NNNNNNN", "N+=mnlia=+NNNNNN", "N mMng9:f NNNNNN", "Xybnbsw,3p.NNNNN", "oclgde4;6z.NNNNN", ".ri0q5-*1t NNNNN", "N g2:>*$g NNNNNN", "N+=g8<7g= &NNNNN", "NN+ uzt +& NNNN", "NNNN . N% #h NNN", "NNNNNNNNN @#h NN", "NNNNNNNNNN @#h N", " NNNNNN @#h ", "NNNNNNNNNNNN @# ", "NNNNNNNNNNNNN N" ] zoomplus = [ "16 16 56 1", " c #000000", ". c #0b0b0b", "X c #101010", "o c #272727", "O c #3f3f3f", "+ c #3f3f40", "@ c #404041", "# c #707071", "$ c #3eaab3", "% c #00c0c0", "& c aqua", "* c #43b2bc", "= c #7f8281", "- c #53c9d4", "; c #60c1cd", ": c #6ec4cd", "> c #68c6d1", ", c #71c6ce", "< c #7ac4cb", "1 c #7cc9cd", "2 c #76cbd5", "3 c #79cad4", "4 c #76d7e3", "5 c #78d8e3", "6 c #85ccd2", "7 c #89c8d0", "8 c #90d5db", "9 c #90d9df", "0 c #8bd7e0", "q c #8adbe5", "w c #8fdfe8", "e c #95e1ea", "r c #a8d1d5", "t c #aed6db", "y c #b6d9dd", "u c #b9dade", "i c #abdee4", "p c #b9dbe0", "a c #ade4e8", "s c #afe9f0", "d c #b0eaef", "f c #baecef", "g c #beedf1", "h c #c3c3c3", "j c #c1d4d6", "k c #ced8d9", "l c #c4eaed", "z c #caeaed", "x c #cdecf0", "c c #d7e5e6", "v c #d7e5e8", "b c #d3f2f5", "n c #def4f6", "m c #e3f4f4", "M c #eafbfa", "N c None", "NNNNoO.NNNNNNNNN", "NN+ kvj +NNNNNNN", "N+=mnlia=+NNNNNN", "N mMng9:f NNNNNN", "Xybnbsw,3p.NNNNN", "oclgde4;6z.NNNNN", ".ri0q5-*1t NNNNN", "N g2:>*$g NNNNNN", "N+=g8<7g= &NNNNN", "NN+ uzt +& NNNN", "NNNN . N% #h NNN", "NN NNNNNN @#h NN", "NN NNNNNNN @#h N", " NNNNNN @#h ", "NN NNNNNNNNN @# ", "NN NNNNNNNNNN N" ] zoomreset = [ "16 16 38 1", " c #000000", ". c #0c0c0c", "X c #101010", "o c #272727", "O c #3f3f3f", "+ c #3f3f40", "@ c #404041", "# c #00c0c0", "$ c aqua", "% c #7f8281", "& c #60c1cd", "* c #6ec4cd", "= c #68c6d1", "- c #71c6ce", "; c #76cbd5", ": c #79cad4", "> c red", ", c #90d5db", "< c #90d9df", "1 c #8bd7e0", "2 c #8adbe5", "3 c #8fdfe8", "4 c #a8d1d5", "5 c #b6d9dd", "6 c #abdee4", "7 c #ade4e8", "8 c #baecef", "9 c #beedf1", "0 c #c1d4d6", "q c #ced8d9", "w c gainsboro", "e c #c4eaed", "r c #d7e5e6", "t c #d7e5e8", "y c #d5f2f4", "u c #dcf2f3", "i c #ffc0c0", "p c None", ">>ppoO.ppppppp>>", "p>> qt0 +pppp>>p", "p+>>ue67%+pi>>pp", "p i>>9<*8 i>>ppp", "X5yi>>3-:i>>pppp", "ore9i>>&i>>ppppp", ".4612i>>>> ppppp", "p 9;*=i>> pppppp", "p+%9,i>>>>$ppppp", "pp+ i>> i>> pppp", "pppi>> p#i>> ppp", "ppi>>pppp i>> pp", "pp>>pppppp i>> p", "p>>pppppppp i>> ", "p>pppppppppp @> ", ">pppppppppppp >" ] # Object3DIcons image_print_data = [ "22 22 51 1 ", " c None", ". c black", "X c #100810", "o c #151317", "O c #181821", "+ c #211821", "@ c #252328", "# c #292931", "$ c #312931", "% c #333236", "& c #393942", "* c #423942", "= c gray26", "- c #524E56", "; c #5A5A63", ": c #6B656B", "> c #6B6B73", ", c #736B73", "< c #7B737B", "1 c #08FF08", "2 c #29FF29", "3 c #31FF31", "4 c #5ACE5A", "5 c #6BFF63", "6 c #7BFF7B", "7 c #7B7384", "8 c #847B88", "9 c #8C7B94", "0 c #8A858C", "q c #8C8994", "w c #948C95", "e c #99969A", "r c #9C98A5", "t c #A59CA9", "y c #A9A8AB", "u c #ADADB5", "i c #BBBBBB", "p c #B5ADB5", "a c #94C694", "s c #9CCEA5", "d c #BDD6BD", "f c gray79", "g c #CECED6", "h c #D6CED9", "j c #DAD9DC", "k c #D6FFD6", "l c #DEDCE7", "z c #E7DEE7", "x c #EAEAEB", "c c #E7FFE7", "v c white", " pigffgffiiui ", " dxxxxxxxxxji ", " ifffffffffif ", " piiiipiipiyd ", " fyfifffiiifi ", " iipiiiiiiffp ", " ipfiifiififu ", " fidiiiiiiiip ", " ufxzjjjjjjjyyu ", " ie,pggjfjgjjjw-=:p ", " dw07<<<<<<<0ww>&@O=y", " iejxljjjjjhhs4at=O+o&", "irxvvvvvvvvvk212g9$Oo+", "yvvvvvvvvvvvc536vlooy", "w00q0q0qq0qqwqwwqq:oe ", "i,@O@@@+@#$$%%%%%$%e ", " u;**%%%%%@$@ooX=e " ] image_cut_data = [ "22 22 3 1", ". c None", "# c #000000", "a c #000082", "......................", ".......#.....#........", ".......#.....#........", ".......#.....#........", ".......#....##........", ".......##...#.........", "........#...#.........", "........##.##.........", ".........###..........", ".........###..........", "..........#...........", ".........a#a..........", "........aa.aaa........", ".......a.a.a..a.......", "......a..a.a...a......", ".....a...a.a....a.....", "....a....a.a....a.....", "....a....a..a...a.....", "....a....a..a..a......", "....a...a....aa.......", ".....aaa..............", "......................" ] image_copy_data = [ "22 22 6 1", ". c None", "# c #000000", "b c #000082", "c c #3c3cfd", "d c #8b8bfd", "a c #ffffff", "......................", "......................", "########..............", "#aaaaaa##.............", "#a####a#a#............", "#aaaaaa#aa#...........", "#a####a#bbbbbbbb......", "#aaaaaa#baaaaaabb.....", "#a#####aba####abcb....", "#aaaaaaabaaaaaabdcb...", "#a#####aba####abadcb..", "#aaaaaaabaaaaaabbbbbb.", "#a#####aba####aaaaaab.", "#aaaaaaabaaaaaaaaaaab.", "#a#####aba#########ab.", "#aaaaaaabaaaaaaaaaaab.", "########ba#########ab.", "........baaaaaaaaaaab.", "........ba#########ab.", "........baaaaaaaaaaab.", "........bbbbbbbbbbbbb.", "......................" ] image_delete_data = [ "22 22 2 1", ". c None", "# c #ff0000", "......................", "......................", ".................###..", "...............####...", ".###..........###.....", "..####.......###......", "....####....###.......", "......####.###........", ".......######.........", "........######........", "........#######.......", ".......#########......", ".......###..#####.....", "......####...#####....", ".....####.....#####...", "....#####.....#####...", "...#####.......###....", "...#####.......##.....", "...####...............", "....##................", "......................", "......................" ] image_paste_data = [ "22 22 8 1", ". c None", "# c #000000", "e c #000084", "c c #848200", "b c #848284", "d c #c6c3c6", "a c #ffff00", "f c #ffffff", "......................", ".......#####..........", "..######aaa######.....", ".######aaaaa######....", "##bcb##a###a##bcb##...", "#bcb#ddddddddd#bcb#...", "#cbc#ddddddddd#cbc#...", "#bcb###########bcb#...", "#cbcbcbcbcbcbcbcbc#...", "#bcbcbcbcbcbcbcbcb#...", "#cbcbcbceeeeeeeeee#...", "#bcbcbcbefffffffefe...", "#cbcbcbcefeeeeefeffe..", "#bcbcbcbefffffffefffe.", "#cbcbcbcefeeeeefeffffe", "#bcbcbcbefffffffeeeeee", "#cbcbcbcefeeeeeffffffe", "#bcbcbcbeffffffffffffe", "#cbcbcbcefeeeeeeeeeefe", ".#######effffffffffffe", "........eeeeeeeeeeeeee", "......................" ] file_open = ["22 22 5 1", ". c None", "# c #000000", "c c #848200", "a c #ffff00", "b c #ffffff", "......................", "......................", "......................", "............####....#.", "...........#....##.##.", "..................###.", ".................####.", ".####...........#####.", "#abab##########.......", "#babababababab#.......", "#ababababababa#.......", "#babababababab#.......", "#ababab###############", "#babab##cccccccccccc##", "#abab##cccccccccccc##.", "#bab##cccccccccccc##..", "#ab##cccccccccccc##...", "#b##cccccccccccc##....", "###cccccccccccc##.....", "##cccccccccccc##......", "###############.......", "......................"] file_save = ["22 22 5 1", ". c None", "# c #000000", "a c #848200", "b c #c1c1c1", "c c #cab5d1", "......................", ".####################.", ".#aa#bbbbbbbbbbbb#bb#.", ".#aa#bbbbbbbbbbbb#bb#.", ".#aa#bbbbbbbbbcbb####.", ".#aa#bbbccbbbbbbb#aa#.", ".#aa#bbbccbbbbbbb#aa#.", ".#aa#bbbbbbbbbbbb#aa#.", ".#aa#bbbbbbbbbbbb#aa#.", ".#aa#bbbbbbbbbbbb#aa#.", ".#aa#bbbbbbbbbbbb#aa#.", ".#aaa############aaa#.", ".#aaaaaaaaaaaaaaaaaa#.", ".#aaaaaaaaaaaaaaaaaa#.", ".#aaa#############aa#.", ".#aaa#########bbb#aa#.", ".#aaa#########bbb#aa#.", ".#aaa#########bbb#aa#.", ".#aaa#########bbb#aa#.", ".#aaa#########bbb#aa#.", "..##################..", "......................"] IconDict0 = { "derive": derive, "close": close, "clipboard": clipboard, "fileclose": fileclose, "fileopen": file_open, "filesave": file_save, "fileprint": image_print_data, "spec": spec, "bliss": bliss, "normal": normal, "normalize16": normalize16, "reload": reload_, "window_fullscreen": window_fullscreen, "window_new": window_new, "window_nofullscreen": window_nofullscreen, "zoomplus": zoomplus, "zoomminus": zoomminus, "zoomreset": zoomreset, "zoom": zoom, "logx": logx, "logy": logy, "peak": peak, "peakreset": peakreset, "peaksearch": peaksearch, "roi": roi, "roireset": roireset, "selected": selected, "unselected": unselected, "fit": fit, "energy": energy, "xauto": xauto, "yauto": yauto, "colormap": colormap, "colormap16": colormap16, "gioconda16": gioconda16, "gioconda16mirror": gioconda16mirror, "grid16": grid16, "image": image, "eraseselect": eraseselect, "boxselect": boxselect, "brush": brush, "brushselect": brushselect, "rgb16": rgb16, "rgb": rgb, "sliderson": sliderson, "slidersoff": slidersoff, "sigma": sigma, "swapsign": swapsign, "ymintozero": ymintozero, "average16": average16, "square": square16, "polygon": polygon16, "rectangle": rectangle16, "circle": circle16, "ellipse": ellipse16, "solidcircle": solid_circle16, "solidellipse": solid_ellipse16, "smooth": smooth, "subtract": subtract, "substract": substract, "togglepoints": togglepoints, "remove": remove, "additionalselect": additionalselect, "crop": crop, "plugin": plugin, "horizontal": horizontal, "vertical": vertical, "diagonal": diagonal, "rotate_left": rotate_left, "rotate_right": rotate_right } # corresponding silx icons TRANSLATION_TABLE = { "clipboard": "edit-copy", "average16": "math-average", "derive": "math-derive", "close": "close", "crop": "crop", #"fileclose": fileclose, "fileopen": "document-open", "filesave": "document-save", #"fileprint": "document-print", PyMca icon is nicer "spec": "spec", "normal": "normal", "normalize16": "math-normalize", "reload": "view-refresh", "window_fullscreen": "view-fullscreen", #"window_new": window_new, "window_nofullscreen": "view-nofullscreen", "zoomplus": "zoom-in", "zoomminus": "zoom-out", "zoomreset": "zoom-original", "zoom": "zoom", "logx": "plot-xlog", "logy": "plot-ylog", "peak": "math-peak", "peakreset": "math-peak-reset", "peaksearch": "math-peak-search", #"roi": "plot-roi", "roireset": "plot-roi-reset", "selected": "selected", #"unselected": unselected, "fit": "math-fit", "energy": "math-energy", "xauto": "plot-xauto", "yauto": "plot-yauto", "colormap": "colormap", "colormap16": "colormap", #"gioconda16": gioconda16, #"gioconda16mirror": gioconda16mirror, "grid16": "plot-grid", #"image": image, #"eraseselect": eraseselect, #"boxselect": boxselect, "brush": "draw-brush", #"brushselect": brushselect, #"rgb16": rgb16, #"rgb": rgb, "sliderson": "sliders-on", "slidersoff": "sliders-off", "sigma": "math-sigma", "swapsign": "math-swap-sign", "ymintozero": "math-ymin-to-zero", "square": "shape-square", "polygon": "shape-polygon", "rectangle": "shape-rectangle", "circle": "shape-circle", "ellipse": "shape-ellipse", "solidcircle": "shape-circle-solid", "solidellipse": "shape-ellipse-solid", "smooth": "math-smooth", "subtract": "math-substract", "substract": "math-substract", "togglepoints": "plot-toggle-points", "remove": "remove", #"additionalselect": additionalselect, #"plugin": plugin, "horizontal": "shape-horizontal", "vertical": "shape-vertical", "diagonal": "shape-diagonal", #"rotate_left": rotate_left, #"rotate_right": rotate_right } class _PatchedIconDict(MutableMapping): """IconDict that patches some legacy icons with new silx icons, when available. This object must be initialized with a legacy dictionary of icons. If silx is installed and a corresponding silx icon name is specified in TRANSLATION_TABLE, the silx icon is returned by __getitem__ rather than the legacy icon. This object allows modifying the icon dict via __setitem__ and deleting icons, like a real dict. """ def __init__(self, *args, **kw): self._unpatched_icons = dict(*args, **kw) self.__initialized = False def __iter__(self): for key in self._unpatched_icons: yield key def __len__(self): # same length return len(self._unpatched_icons) def __getitem__(self, key): if not self.__initialized: from PyMca5.PyMcaGui import PyMcaQt as qt self._qt = qt try: from silx.gui import icons as silx_icons IconDict = {} except ImportError: _logger.debug("Could not import silx. Legacy icons will be used.") silx_icons = None from PyMca5.PyMcaGui.plotting.Silx_Icons import IconDict self._silx_icons = silx_icons # keep an internal copy: self._translation_table = TRANSLATION_TABLE.copy() self.__initialized = True self._fallBackDict = IconDict if key not in self._unpatched_icons: raise KeyError("Unknown icon '%s'" % key) if key not in TRANSLATION_TABLE: _logger.debug("Using legacy icon '%s' because there is no " "corresponding icon.", key) return self._unpatched_icons[key] if self._silx_icons is None: if TRANSLATION_TABLE[key] in self._fallBackDict: _logger.info("Using fallback translation '%s' for '%s'" % (TRANSLATION_TABLE[key], key)) return self._fallBackDict[TRANSLATION_TABLE[key]] _logger.debug("Using legacy icon '%s' because silx is not " "available or because it has no corresponding icon.", key) return self._unpatched_icons[key] if self._qt.QApplication.instance() is None: _logger.warning("Cannot fetch QPixmap without a QApplication." " Using legacy PyMca icon as fallback.") return self._unpatched_icons[key] try: icon = self._silx_icons.getQPixmap(TRANSLATION_TABLE[key]) except ValueError: _logger.warning("Icon '%s' not found in silx. " "Using legacy PyMca icon '%s'.", TRANSLATION_TABLE[key], key) icon = self._unpatched_icons[key] else: _logger.debug("Using silx icon '%s' instead of legacy icon '%s'.", TRANSLATION_TABLE[key], key) finally: return icon def __delitem__(self, key): # deleting from legacy dict is enough del self._unpatched_icons[key] def __setitem__(self, key, item): self._unpatched_icons[key] = item if self._silx_icons is not None and key in self._translation_table: # we also need to remove the key from internal translation table del self._translation_table[key] IconDict = _PatchedIconDict(IconDict0) def change_icons(plot): """Replace some of the silx icons with PyMca icons. :param plot: Silx plot window, or SilxScanWindow, or SilxMcaWindow :return: """ from PyMca5.PyMcaGui import PyMcaQt as qt plot.getRoiAction().setIcon(qt.QIcon(qt.QPixmap(IconDict["roi"]))) if hasattr(plot, "printPreview"): plot.printPreview.setIcon(qt.QIcon(qt.QPixmap(IconDict["fileprint"]))) def showIcons(): w = qt.QWidget() g = qt.QGridLayout(w) idx = 0 keyList = list(IconDict.keys()) keyList.sort() for key in keyList: print("name = ", key) name = key icon = IconDict[name] column = int(idx / 20) row = idx % 20 lab = qt.QLabel(w) lab.setText(str(name)) g.addWidget(lab, row, 2 * column + 1) lab = qt.QLabel(w) lab.setPixmap(qt.QPixmap(icon)) g.addWidget(lab, row, 2 * column) idx += 1 w.show() return w if __name__ == '__main__': from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) logging.basicConfig() _logger.setLevel(logging.DEBUG) w = showIcons() app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/Q4PyMcaPrintPreview.py0000644000000000000000000007267314741736366023077 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging import traceback from PyMca5.PyMcaGui import PyMcaQt as qt DEBUG = 0 __revision__="$Revision: 1.7 $" # TODO: # - automatic picture centering # - print quality QTVERSION = qt.qVersion() ################################################################################ ################## PyMcaPrintPreview ################### ################################################################################ class PyMcaPrintPreview(qt.QDialog): def __init__(self, parent = None, printer = None, name = "PyMcaPrintPreview", \ modal = 0, fl = 0): qt.QDialog.__init__(self, parent) self.setWindowTitle(name) self.setModal(modal) self.resize(400, 500) self.printDialog = None self._toBeCleared = False self._svgItems = [] self.printer = printer """ if printer is None: printer = qt.QPrinter(qt.QPrinter.HighResolution) printer.setPageSize(qt.QPrinter.A4) printerName = "%s" % printer.printerName() if printerName in ['id24b2u']: #id24 printer very slow in color mode printer.setColorMode(qt.QPrinter.GrayScale) printer.setFullPage(True) if (printer.width() <= 0) or (printer.height() <= 0): if QTVERSION < '4.2.0': #this is impossible (no QGraphicsView) filename = "PyMCA_print.pdf" else: filename = "PyMCA_print.ps" if sys.platform == 'win32': home = os.getenv('USERPROFILE') try: l = len(home) directory = os.path.join(home,"My Documents") except Exception: home = '\\' directory = '\\' if os.path.isdir('%s' % directory): directory = os.path.join(directory,"PyMca") else: directory = os.path.join(home,"PyMca") if not os.path.exists('%s' % directory): os.mkdir('%s' % directory) finalfile = os.path.join(directory, filename) else: home = os.getenv('HOME') directory = os.path.join(home,"PyMca") if not os.path.exists('%s' % directory): os.mkdir('%s' % directory) finalfile = os.path.join(directory, filename) printer.setOutputFileName(finalfile) printer.setColorMode(qt.QPrinter.Color) """ self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._buildToolbar() self.scene = None self.page = None self.view = None self._viewScale = 1.0 self.badNews = None def exec_(self): return self.exec() def exec(self): if self._toBeCleared: self.__clearAll() return qt.QDialog.exec(self) def raise_(self): if self._toBeCleared: self.__clearAll() return qt.QDialog.raise_(self) def show(self): if self._toBeCleared: self.__clearAll() return qt.QDialog.show(self) def setOutputFileName(self, name): if self.printer is not None: self.printer.setOutputFileName(name) else: raise IOError("setOutputFileName : a printer must be defined before") def _buildToolbar(self): # --- command buttons # buttonSize = 65 toolBar = qt.QWidget(self) # a layout for the toolbar toolsLayout = qt.QHBoxLayout(toolBar) toolsLayout.setContentsMargins(0, 0, 0, 0) toolsLayout.setSpacing(0) # Margin # marginLabel = qt.QLabel("Margins:", toolBar) # if QTVERSION < '4.0.0': # self.marginSpin = qt.QSpinBox(0, 50, 10, toolBar) # else: # self.marginSpin = qt.QSpinBox(toolBar) # self.marginSpin.setRange(0, 50) # self.marginSpin.setSingleStep(10) # self.marginSpin.valueChanged[int].connect( \ # self.__marginChanged) # Scale / Zoom # scaleLabel = qt.QLabel("Zoom:", toolBar) # scaleCombo = qt.QComboBox(toolBar) # self.scaleValues = [20, 40, 60, 80, 100, 150, 200] # # for scale in self.scaleValues: # scaleCombo.addItem("%3d %%"%scale) # # self.scaleCombo = scaleCombo # self.scaleCombo.activated[int].connect(self.__scaleChanged) hideBut = qt.QPushButton("Hide", toolBar) #hideBut.setFixedWidth(buttonSize-10) hideBut.clicked.connect(self.hide) cancelBut = qt.QPushButton("Clear All", toolBar) #cancelBut.setFixedWidth(buttonSize+10) cancelBut.clicked.connect(self.__clearAll) removeBut = qt.QPushButton("Remove", toolBar) #removeBut.setFixedWidth(buttonSize) removeBut.clicked.connect(self.__remove) setupBut = qt.QPushButton("Setup", toolBar) #setupBut.setFixedWidth(buttonSize-5) setupBut.clicked.connect(self.setup) printBut = qt.QPushButton("Print", toolBar) #printBut.setFixedWidth(buttonSize-5) printBut.clicked.connect(self.__print) zoomPlusBut = qt.QPushButton("Zoom +", toolBar) #zoomPlusBut.setFixedWidth(buttonSize-5) zoomPlusBut.clicked.connect(self.__zoomPlus) zoomMinusBut = qt.QPushButton("Zoom -", toolBar) #zoomMinusBut.setFixedWidth(buttonSize-5) zoomMinusBut.clicked.connect(self.__zoomMinus) # now we put widgets in the toolLayout toolsLayout.addWidget(hideBut) toolsLayout.addWidget(printBut) toolsLayout.addWidget(cancelBut) toolsLayout.addWidget(removeBut) toolsLayout.addWidget(setupBut) #toolsLayout.addStretch() #toolsLayout.addWidget(marginLabel) #toolsLayout.addWidget(self.marginSpin) toolsLayout.addStretch() #toolsLayout.addWidget(scaleLabel) #toolsLayout.addWidget(scaleCombo) toolsLayout.addWidget(zoomPlusBut) toolsLayout.addWidget(zoomMinusBut) #toolsLayout.addStretch() self.toolBar = toolBar self.mainLayout.addWidget(self.toolBar) def _buildStatusBar(self): # status bar statusBar = qt.QStatusBar(self) self.targetLabel = qt.QLabel(statusBar) self.__updateTargetLabel() statusBar.addWidget(self.targetLabel) self.mainLayout.addWidget(statusBar) def __updateTargetLabel(self): if self.printer is None: self.targetLabel.setText("???") return if hasattr(qt, "QString"): if len(self.printer.outputFileName()): self.targetLabel.setText(qt.QString("File:").append( self.printer.outputFileName())) else: self.targetLabel.setText(qt.QString("Printer:").append( self.printer.printerName())) else: if len(self.printer.outputFileName()): self.targetLabel.setText("File:"+\ self.printer.outputFileName()) else: self.targetLabel.setText("Printer:"+\ self.printer.printerName()) def __print(self): printer = self.printer painter = qt.QPainter() try: if not(painter.begin(printer)): print("CANOT INITIALIZE PRINTER") return 0 self.scene.render(painter, qt.QRectF(0, 0, printer.width(), printer.height()), qt.QRectF(self.page.rect().x(), self.page.rect().y(), self.page.rect().width(),self.page.rect().height()), qt.Qt.KeepAspectRatio) painter.end() self.hide() self.accept() self._toBeCleared = True except Exception: painter.end() qt.QMessageBox.critical(self, "ERROR", 'Printing problem:\n %s' % sys.exc_info()[1]) return def __scaleChanged(self, value): if DEBUG: print("current scale = ", self._viewScale) if value > 2: self.view.scale(1.20, 1.20) else: self.view.scale(0.80, 0.80) def __zoomPlus(self): if DEBUG: print("current scale = ", self._viewScale) self._viewScale *= 1.20 self.view.scale(1.20, 1.20) def __zoomMinus(self): if DEBUG: print("current scale = ", self._viewScale) self._viewScale *= 0.80 self.view.scale(0.80, 0.80) def addImage(self, image, title = None, comment = None, commentPosition=None): """ add an image item to the print preview scene """ self.addPixmap(qt.QPixmap.fromImage(image), title = title, comment = comment, commentPosition=commentPosition) def addPixmap(self, pixmap, title = None, comment = None, commentPosition=None): """ add a pixmap to the print preview scene """ if self._toBeCleared: self.__clearAll() if self.printer is None: self.setup() if title is None: title = ' ' title += ' ' if comment is None: comment = ' ' comment += ' ' if commentPosition is None: commentPosition = "CENTER" if self.badNews: return if QTVERSION < "5.0": rectItem = qt.QGraphicsRectItem(self.page, self.scene) else: rectItem = qt.QGraphicsRectItem(self.page) scale = 1.0 # float(0.5 * self.scene.width()/pixmap.width()) rectItem.setRect(qt.QRectF(1, 1, pixmap.width(), pixmap.height())) pen = rectItem.pen() color = qt.QColor(qt.Qt.red) color.setAlpha(1) pen.setColor(color) rectItem.setPen(pen) rectItem.setZValue(1) rectItem.setFlag(qt.QGraphicsItem.ItemIsSelectable, True) rectItem.setFlag(qt.QGraphicsItem.ItemIsMovable, True) rectItem.setFlag(qt.QGraphicsItem.ItemIsFocusable, False) #I add the resize tool rectItemResizeRect = GraphicsResizeRectItem(rectItem, self.scene) rectItemResizeRect.setZValue(2) #I add a pixmap item if QTVERSION < "5.0": pixmapItem = qt.QGraphicsPixmapItem(rectItem, self.scene) else: pixmapItem = qt.QGraphicsPixmapItem(rectItem) pixmapItem.setPixmap(pixmap) #pixmapItem.moveBy(0, 0) pixmapItem.setZValue(0) #I add the title if QTVERSION < "5.0": textItem = qt.QGraphicsTextItem(title, rectItem, self.scene) else: textItem = qt.QGraphicsTextItem(title, rectItem) textItem.setTextInteractionFlags(qt.Qt.TextEditorInteraction) offset = 0.5 * textItem.boundingRect().width() textItem.moveBy(0.5 * pixmap.width() - offset, -20) textItem.setZValue(2) #I add the comment if QTVERSION < "5.0": commentItem = qt.QGraphicsTextItem(comment, rectItem, self.scene) else: commentItem = qt.QGraphicsTextItem(comment, rectItem) commentItem.setTextInteractionFlags(qt.Qt.TextEditorInteraction) offset = 0.5 * commentItem.boundingRect().width() if commentPosition.upper() == "LEFT": x = 1 else: x = 0.5 * pixmap.width() - offset commentItem.moveBy(x, pixmap.height()+20) commentItem.setZValue(2) #I should adjust text size here #textItem.scale(2,2) #commentItem.scale(2,2) if QTVERSION < "5.0": rectItem.scale(scale, scale) else: # the correct equivalent would be: # rectItem.setTransform(qt.QTransform.fromScale(scalex, scaley)) rectItem.setScale(scale) rectItem.moveBy(20 , 40) def isReady(self): if self.badNews: return False else: return True def addSvgItem(self, item, title = None, comment = None, commentPosition=None): if self._toBeCleared: self.__clearAll() if self.printer is None: self.setup() if self.badNews: # printer not properly initialized return if not isinstance(item, qt.QSvgRenderer): raise TypeError("addSvgItem: QSvgRenderer expected") if title is None: title = 50 * ' ' if comment is None: comment = 80 * ' ' if commentPosition is None: commentPosition = "CENTER" if 0 and hasattr(item, "_viewBox"): svgItem = GraphicsSvgItem(self.page) svgItem.setSharedRenderer(item) svgItem.setBoundingRect(item._viewBox) elif 1: svgItem = GraphicsSvgRectItem(item._viewBox, self.page) svgItem.setSvgRenderer(item) else: svgItem = qt.QGraphicsSvgItem(self.page) svgItem.setSharedRenderer(item) if hasattr(item, "_viewBox"): svgScaleX = item._viewBox.width()/svgItem.boundingRect().width() svgScaleY = item._viewBox.height()/svgItem.boundingRect().height() svgItem.scale(svgScaleX, svgScaleY) svgItem.setCacheMode(qt.QGraphicsItem.NoCache) svgItem.setZValue(0) svgItem.setFlag(qt.QGraphicsItem.ItemIsSelectable, True) svgItem.setFlag(qt.QGraphicsItem.ItemIsMovable, True) svgItem.setFlag(qt.QGraphicsItem.ItemIsFocusable, False) #I add the resize tool rectItemResizeRect = GraphicsResizeRectItem(svgItem, self.scene) rectItemResizeRect.setZValue(2) #make sure the life time of the item is enough to print it! self._svgItems.append(item) #I add the title if QTVERSION < '5.0': textItem = qt.QGraphicsTextItem(title, svgItem, self.scene) else: textItem = qt.QGraphicsTextItem(title, svgItem) textItem.setTextInteractionFlags(qt.Qt.TextEditorInteraction) offset = 0.5 * textItem.boundingRect().width() textItem.setZValue(1) textItem.setFlag(qt.QGraphicsItem.ItemIsMovable, True) #I add the comment dummyComment = 80 * "1" if QTVERSION < '5.0': commentItem = qt.QGraphicsTextItem(dummyComment, svgItem, self.scene) else: commentItem = qt.QGraphicsTextItem(dummyComment, svgItem) commentItem.setTextInteractionFlags(qt.Qt.TextEditorInteraction) scaleCalculationRect = qt.QRectF(commentItem.boundingRect()) commentItem.setPlainText(comment) commentItem.moveBy(svgItem.boundingRect().x(), svgItem.boundingRect().y() + svgItem.boundingRect().height()) commentItem.setZValue(1) scale = svgItem.boundingRect().width() / scaleCalculationRect.width() commentItem.setFlag(qt.QGraphicsItem.ItemIsMovable, True) if QTVERSION < "5.0": commentItem.scale(scale, scale) else: # the correct equivalent would be: # rectItem.setTransform(qt.QTransform.fromScale(scalex, scaley)) commentItem.setScale(scale) textItem.moveBy(svgItem.boundingRect().x()+\ 0.5 * svgItem.boundingRect().width() - offset * scale, svgItem.boundingRect().y()) if QTVERSION < "5.0": textItem.scale(scale, scale) else: # the correct equivalent would be: # rectItem.setTransform(qt.QTransform.fromScale(scalex, scaley)) textItem.setScale(scale) def setup(self): """ """ if self.printer is None: self.printer = qt.QPrinter() if (self.printDialog is None) or (not self.isReady()): self.printDialog = qt.QPrintDialog(self.printer, self) if self.printDialog.exec(): if (self.printer.width() <= 0) or (self.printer.height() <= 0): self.message = qt.QMessageBox(self) self.message.setIcon(qt.QMessageBox.Critical) self.message.setText("Unknown library error \non printer initialization") self.message.setWindowTitle("Library Error") self.message.setModal(0) self.badNews = True self.printer = None return self.badNews = False self.printer.setFullPage(True) self.updatePrinter() else: if self.page is None: # not initialized self.badNews = True self.printer = None else: self.badNews = False def updatePrinter(self): if DEBUG: print("UPDATE PRINTER") printer = self.printer if self.scene is None: self.scene = qt.QGraphicsScene() self.scene.setBackgroundBrush(qt.QColor(qt.Qt.lightGray)) self.scene.setSceneRect(qt.QRectF(0,0, printer.width(), printer.height())) if self.page is None: self.page = qt.QGraphicsRectItem(0,0, printer.width(), printer.height()) self.page.setBrush(qt.QColor(qt.Qt.white)) self.scene.addItem(self.page) self.scene.setSceneRect(qt.QRectF(0,0, self.printer.width(), self.printer.height())) self.page.setPos(qt.QPointF(0.0, 0.0)) self.page.setRect(qt.QRectF(0,0, self.printer.width(), self.printer.height())) if self.view is None: self.view = qt.QGraphicsView(self.scene) self.mainLayout.addWidget(self.view) self._buildStatusBar() self.view.fitInView(self.page.rect(), qt.Qt.KeepAspectRatio) self._viewScale = 1.00 #self.view.scale(1./self._viewScale, 1./self._viewScale) #self.view.fitInView(self.page.rect(), qt.Qt.KeepAspectRatio) #self._viewScale = 1.00 self.__updateTargetLabel() def __cancel(self): """ """ self.reject() def __clearAll(self): """ Clear the print preview window, remove all items but and keep the page. """ itemlist = self.scene.items() keep = self.page while (len(itemlist) != 1): if itemlist.index(keep) == 0: self.scene.removeItem(itemlist[1]) else: self.scene.removeItem(itemlist[0]) itemlist = self.scene.items() self._svgItems = [] self._toBeCleared = False def __remove(self): """ """ itemlist = self.scene.items() i = None #this loop is not efficient if there are many items ... for item in itemlist: if item.isSelected(): i = itemlist.index(item) break if i is not None: self.scene.removeItem(item) #this line is not really needed because the list #should be deleted at the end of the method del itemlist[i] if hasattr(qt, 'QGraphicsSvgItem'): class GraphicsSvgItem(qt.QGraphicsSvgItem): def setBoundingRect(self, rect): self._rect = rect def boundingRect(self): return self._rect def paint(self, painter, *var, **kw): if not self.renderer().isValid(): print("Invalid renderer") return if self.elementId().isEmpty(): self.renderer().render(painter, self._rect) else: self.renderer().render(painter, self.elementId(), self._rect) class GraphicsSvgRectItem(qt.QGraphicsRectItem): def setSvgRenderer(self, renderer): self._renderer = renderer def paint(self, painter, *var, **kw): #self._renderer.render(painter, self._renderer._viewBox) self._renderer.render(painter, self.boundingRect()) class GraphicsResizeRectItem(qt.QGraphicsRectItem): """Resizable QGraphicsRectItem.""" def __init__(self, parent=None, scene=None, keepratio=True): if QTVERSION < '5.0': qt.QGraphicsRectItem.__init__(self, parent, scene) else: qt.QGraphicsRectItem.__init__(self, parent) rect = parent.boundingRect() x = rect.x() y = rect.y() w = rect.width() h = rect.height() self._newRect = None self.keepRatio = keepratio self.setRect(qt.QRectF(x + w - 40, y + h - 40, 40, 40)) self.setAcceptHoverEvents(True) pen = qt.QPen() color = qt.QColor(qt.Qt.white) color.setAlpha(0) pen.setColor(color) pen.setStyle(qt.Qt.NoPen) self.setPen(pen) self.setBrush(color) self.setFlag(qt.QGraphicsItem.ItemIsMovable, True) self.show() def hoverEnterEvent(self, event): if self.parentItem().isSelected(): self.parentItem().setSelected(False) if self.keepRatio: self.setCursor(qt.QCursor(qt.Qt.SizeFDiagCursor)) else: self.setCursor(qt.QCursor(qt.Qt.SizeAllCursor)) self.setBrush(qt.QBrush(qt.Qt.yellow, qt.Qt.SolidPattern)) return qt.QGraphicsRectItem.hoverEnterEvent(self, event) def hoverLeaveEvent(self, event): self.setCursor(qt.QCursor(qt.Qt.ArrowCursor)) pen = qt.QPen() color = qt.QColor(qt.Qt.white) color.setAlpha(0) pen.setColor(color) pen.setStyle(qt.Qt.NoPen) self.setPen(pen) self.setBrush(color) return qt.QGraphicsRectItem.hoverLeaveEvent(self, event) def mouseDoubleClickEvent(self, event): if DEBUG: print("ResizeRect mouseDoubleClick") def mousePressEvent(self, event): if self._newRect is not None: self._newRect = None self._point0 = self.pos() parent = self.parentItem() scene = self.scene() # following line prevents dragging along the previously selected # item when resizing another one scene.clearSelection() rect = parent.boundingRect() self._x = rect.x() self._y = rect.y() self._w = rect.width() self._h = rect.height() self._ratio = self._w / self._h if QTVERSION < "5.0": self._newRect = qt.QGraphicsRectItem(parent, scene) else: self._newRect = qt.QGraphicsRectItem(parent) self._newRect.setRect(qt.QRectF(self._x, self._y, self._w, self._h)) qt.QGraphicsRectItem.mousePressEvent(self, event) def mouseMoveEvent(self, event): point1 = self.pos() deltax = point1.x() - self._point0.x() deltay = point1.y() - self._point0.y() if self.keepRatio: r1 = (self._w + deltax) / self._w r2 = (self._h + deltay) / self._h if r1 < r2: self._newRect.setRect(qt.QRectF(self._x, self._y, self._w + deltax, (self._w + deltax) / self._ratio)) else: self._newRect.setRect(qt.QRectF(self._x, self._y, (self._h + deltay) * self._ratio, self._h + deltay)) else: self._newRect.setRect(qt.QRectF(self._x, self._y, self._w + deltax, self._h + deltay)) qt.QGraphicsRectItem.mouseMoveEvent(self, event) def mouseReleaseEvent(self, event): point1 = self.pos() deltax = point1.x() - self._point0.x() deltay = point1.y() - self._point0.y() self.moveBy(-deltax, -deltay) parent = self.parentItem() # deduce scale from rectangle if (QTVERSION < "5.0") or self.keepRatio: scalex = self._newRect.rect().width() / self._w scaley = scalex else: scalex = self._newRect.rect().width() / self._w scaley = self._newRect.rect().height() / self._h if QTVERSION < "5.0": parent.scale(scalex, scaley) else: # apply the scale to the previous transformation matrix previousTransform = parent.transform() parent.setTransform( previousTransform.scale(scalex, scaley)) self.scene().removeItem(self._newRect) self._newRect = None qt.QGraphicsRectItem.mouseReleaseEvent(self, event) ################################################################################ ##################### TEST -- PyMcaPrintPreview -- TEST ################## ################################################################################ def testPreview(): """ """ import sys import os if len(sys.argv) < 2: print("give an image file as parameter please.") sys.exit(1) if len(sys.argv) > 2: print("only one parameter please.") sys.exit(1) filename = sys.argv[1] if filename[-3:] == "svg": if 0: item = qt.QSvgWidget() item.load(filename) item.show() else: w = PyMcaPrintPreview( parent = None, printer = None, name = 'Print Prev', modal = 0, fl = 0) w.resize(400,500) item = qt.QGraphicsSvgItem(filename, w.page) item.setFlag(qt.QGraphicsItem.ItemIsMovable, True) item.setCacheMode(qt.QGraphicsItem.NoCache) sys.exit(w.exec()) w = PyMcaPrintPreview( parent = None, modal=0) # we need to initialize a printer to get a proper page w.setup() w.resize(400,500) comment = "" for i in range(20): comment += "Line number %d: En un lugar de La Mancha de cuyo nombre ...\n" w.addPixmap(qt.QPixmap.fromImage(qt.QImage(filename)), title=filename, comment=comment, commentPosition="CENTER") w.addImage(qt.QImage(filename), comment=comment, commentPosition="LEFT") #w.addImage(qt.QImage(filename)) w.exec() def testSimple(): import sys import os filename = sys.argv[1] w = qt.QWidget() l = qt.QVBoxLayout(w) button = qt.QPushButton(w) button.setText("Print") scene = qt.QGraphicsScene() pixmapItem = qt.QGraphicsPixmapItem(qt.QPixmap.fromImage(qt.QImage(filename))) pixmapItem.setFlag(pixmapItem.ItemIsMovable, True) printer = qt.QPrinter(qt.QPrinter.HighResolution) printer.setFullPage(True) printer.setOutputFileName(os.path.splitext(filename)[0]+".ps") page = qt.QGraphicsRectItem(0,0, printer.width(), printer.height()) scene.setSceneRect(qt.QRectF(0,0, printer.width(), printer.height())) scene.addItem(page) scene.addItem(pixmapItem) view = qt.QGraphicsView(scene) view.fitInView(page.rect(), qt.Qt.KeepAspectRatio) #view.setSceneRect( view.scale(2, 2) #page.scale(0.05, 0.05) def printFile(): painter = qt.QPainter(printer) scene.render(painter, qt.QRectF(0, 0, printer.width(), printer.height()), qt.QRectF(page.rect().x(), page.rect().y(), page.rect().width(),page.rect().height()), qt.Qt.KeepAspectRatio) painter.end() l.addWidget(button) l.addWidget(view) w.resize(300, 600) w.show() button.clicked.connect(printFile) ## MAIN if __name__ == '__main__': a = qt.QApplication(sys.argv) testPreview() # a.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/RGBCorrelatorGraph.py0000644000000000000000000006747614741736366022740 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from . import PlotWidget from . import PyMcaPrintPreview from .PyMca_Icons import IconDict from PyMca5.PyMcaCore import PyMcaDirs QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True): if xScale is None: c = x else: c = (x - xScale[0]) / xScale[1] if yScale is None: r = y else: r = ( y - yScale[0]) / yScale[1] if safe: c = min(int(c), shape[1] - 1) c = max(c, 0) r = min(int(r), shape[0] - 1) r = max(r, 0) else: c = int(c) r = int(r) return r, c class RGBCorrelatorGraph(qt.QWidget): sigProfileSignal = qt.pyqtSignal(object) def __init__(self, parent = None, backend=None, selection=False, aspect=True, colormap=False, imageicons=False, standalonesave=True, standalonezoom=True, profileselection=False, polygon=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._keepDataAspectRatioFlag = False self._buildToolBar(selection, colormap, imageicons, standalonesave, standalonezoom=standalonezoom, profileselection=profileselection, aspect=aspect, polygon=polygon) self.graph = PlotWidget.PlotWidget(self, backend=backend, aspect=aspect) self.graph.setGraphXLabel("Column") self.graph.setGraphYLabel("Row") self.graph.setYAxisAutoScale(True) self.graph.setXAxisAutoScale(True) if profileselection: if len(self._pickerSelectionButtons): self.graph.sigPlotSignal.connect(\ self._graphPolygonSignalReceived) self._pickerSelectionWidthValue.valueChanged[int].connect( \ self.setPickerSelectionWith) self.saveDirectory = os.getcwd() self.mainLayout.addWidget(self.graph) self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) def sizeHint(self): return qt.QSize(int(1.5 * qt.QWidget.sizeHint(self).width()), qt.QWidget.sizeHint(self).height()) def _buildToolBar(self, selection=False, colormap=False, imageicons=False, standalonesave=True, standalonezoom=True, profileselection=False, aspect=False, polygon=False): self.solidCircleIcon = qt.QIcon(qt.QPixmap(IconDict["solidcircle"])) self.solidEllipseIcon = qt.QIcon(qt.QPixmap(IconDict["solidellipse"])) self.colormapIcon = qt.QIcon(qt.QPixmap(IconDict["colormap"])) self.selectionIcon = qt.QIcon(qt.QPixmap(IconDict["normal"])) self.zoomResetIcon = qt.QIcon(qt.QPixmap(IconDict["zoomreset"])) self.polygonIcon = qt.QIcon(qt.QPixmap(IconDict["polygon"])) self.printIcon = qt.QIcon(qt.QPixmap(IconDict["fileprint"])) self.saveIcon = qt.QIcon(qt.QPixmap(IconDict["filesave"])) self.xAutoIcon = qt.QIcon(qt.QPixmap(IconDict["xauto"])) self.yAutoIcon = qt.QIcon(qt.QPixmap(IconDict["yauto"])) self.hFlipIcon = qt.QIcon(qt.QPixmap(IconDict["gioconda16mirror"])) self.imageIcon = qt.QIcon(qt.QPixmap(IconDict["image"])) self.eraseSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["eraseselect"])) self.rectSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["boxselect"])) self.brushSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["brushselect"])) self.brushIcon = qt.QIcon(qt.QPixmap(IconDict["brush"])) self.additionalIcon = qt.QIcon(qt.QPixmap(IconDict["additionalselect"])) self.hLineIcon = qt.QIcon(qt.QPixmap(IconDict["horizontal"])) self.vLineIcon = qt.QIcon(qt.QPixmap(IconDict["vertical"])) self.lineIcon = qt.QIcon(qt.QPixmap(IconDict["diagonal"])) self.copyIcon = qt.QIcon(qt.QPixmap(IconDict["clipboard"])) self.toolBar = qt.QWidget(self) self.toolBarLayout = qt.QHBoxLayout(self.toolBar) self.toolBarLayout.setContentsMargins(0, 0, 0, 0) self.toolBarLayout.setSpacing(0) self.mainLayout.addWidget(self.toolBar) # Autoscale if standalonezoom: tb = self._addToolButton(self.zoomResetIcon, self.__zoomReset, 'Auto-Scale the Graph') else: tb = self._addToolButton(self.zoomResetIcon, None, 'Auto-Scale the Graph') self.zoomResetToolButton = tb # y Autoscale tb = self._addToolButton(self.yAutoIcon, self._yAutoScaleToggle, 'Toggle Autoscale Y Axis (On/Off)', toggle = True, state=True) tb.setDown(True) self.yAutoScaleToolButton = tb tb.setDown(True) # x Autoscale tb = self._addToolButton(self.xAutoIcon, self._xAutoScaleToggle, 'Toggle Autoscale X Axis (On/Off)', toggle = True, state=True) self.xAutoScaleToolButton = tb tb.setDown(True) # Aspect ratio if aspect: self.aspectButton = self._addToolButton(self.solidCircleIcon, self._aspectButtonSignal, 'Keep data aspect ratio', toggle=False) self.aspectButton.setChecked(False) # colormap if colormap: tb = self._addToolButton(self.colormapIcon, None, 'Change Colormap') self.colormapToolButton = tb # flip tb = self._addToolButton(self.hFlipIcon, None, 'Flip Horizontal') self.hFlipToolButton = tb # clipboard self.copyToolButton = self._addToolButton(self.copyIcon, self._copyIconSignal, "Copy graph to clipboard") # save if standalonesave: tb = self._addToolButton(self.saveIcon, self._saveIconSignal, 'Save Graph') else: tb = self._addToolButton(self.saveIcon, None, 'Save') self.saveToolButton = tb # Selection if selection: tb = self._addToolButton(self.selectionIcon, None, 'Toggle Selection Mode', toggle = True, state = False) tb.setDown(False) self.selectionToolButton = tb # image selection icons if imageicons: tb = self._addToolButton(self.imageIcon, None, 'Reset') self.imageToolButton = tb tb = self._addToolButton(self.eraseSelectionIcon, None, 'Erase Selection') self.eraseSelectionToolButton = tb tb = self._addToolButton(self.rectSelectionIcon, None, 'Rectangular Selection') self.rectSelectionToolButton = tb tb = self._addToolButton(self.brushSelectionIcon, None, 'Brush Selection') self.brushSelectionToolButton = tb tb = self._addToolButton(self.brushIcon, None, 'Select Brush') self.brushToolButton = tb if polygon: tb = self._addToolButton(self.polygonIcon, None, 'Polygon selection\nRight click to finish') self.polygonSelectionToolButton = tb tb = self._addToolButton(self.additionalIcon, None, 'Additional Selections Menu') self.additionalSelectionToolButton = tb else: if polygon: tb = self._addToolButton(self.polygonIcon, None, 'Polygon selection\nRight click to finish') self.polygonSelectionToolButton = tb self.imageToolButton = None # picker selection self._pickerSelectionButtons = [] if profileselection: self._profileSelection = True self._polygonSelection = False self._pickerSelectionButtons = [] if self._profileSelection: tb = self._addToolButton(self.hLineIcon, self._hLineProfileClicked, 'Horizontal Profile Selection', toggle=True, state=False) self.hLineProfileButton = tb self._pickerSelectionButtons.append(tb) tb = self._addToolButton(self.vLineIcon, self._vLineProfileClicked, 'Vertical Profile Selection', toggle=True, state=False) self.vLineProfileButton = tb self._pickerSelectionButtons.append(tb) tb = self._addToolButton(self.lineIcon, self._lineProfileClicked, 'Line Profile Selection', toggle=True, state=False) self.lineProfileButton = tb self._pickerSelectionButtons.append(tb) self._pickerSelectionWidthLabel = qt.QLabel(self.toolBar) self._pickerSelectionWidthLabel.setText("W:") self.toolBar.layout().addWidget(self._pickerSelectionWidthLabel) self._pickerSelectionWidthValue = qt.QSpinBox(self.toolBar) self._pickerSelectionWidthValue.setMinimum(0) self._pickerSelectionWidthValue.setMaximum(1000) self._pickerSelectionWidthValue.setValue(1) self.toolBar.layout().addWidget(self._pickerSelectionWidthValue) #tb = self._addToolButton(None, # self._lineProfileClicked, # 'Line Profile Selection', # toggle=True, # state=False) #tb.setText = "W:" #self.lineWidthProfileButton = tb #self._pickerSelectionButtons.append(tb) if self._polygonSelection: _logger.info("Polygon selection not implemented yet") # hide profile selection buttons if imageicons: for button in self._pickerSelectionButtons: button.hide() self.infoWidget = qt.QWidget(self.toolBar) self.infoWidget.mainLayout = qt.QHBoxLayout(self.infoWidget) self.infoWidget.mainLayout.setContentsMargins(0, 0, 0, 0) self.infoWidget.mainLayout.setSpacing(0) self.infoWidget.label = qt.QLabel(self.infoWidget) self.infoWidget.label.setText("X = ???? Y = ???? Z = ????") self.infoWidget.mainLayout.addWidget(self.infoWidget.label) self.toolBarLayout.addWidget(self.infoWidget) self.infoWidget.hide() self.toolBarLayout.addWidget(qt.HorizontalSpacer(self.toolBar)) # ---print tb = self._addToolButton(self.printIcon, self.printGraph, 'Prints the Graph') def _aspectButtonSignal(self): _logger.debug("_aspectButtonSignal") if self._keepDataAspectRatioFlag: self.keepDataAspectRatio(False) else: self.keepDataAspectRatio(True) def keepDataAspectRatio(self, flag=True): if flag: self._keepDataAspectRatioFlag = True self.aspectButton.setIcon(self.solidEllipseIcon) self.aspectButton.setToolTip("Set free data aspect ratio") else: self._keepDataAspectRatioFlag = False self.aspectButton.setIcon(self.solidCircleIcon) self.aspectButton.setToolTip("Keep data aspect ratio") self.graph.keepDataAspectRatio(self._keepDataAspectRatioFlag) def showInfo(self): self.infoWidget.show() def hideInfo(self): self.infoWidget.hide() def setInfoText(self, text): self.infoWidget.label.setText(text) def setMouseText(self, text=""): try: if len(text): qt.QToolTip.showText(self.cursor().pos(), text, self, qt.QRect()) else: qt.QToolTip.hideText() except Exception: _logger.warning("Error trying to show mouse text <%s>" % text) def focusOutEvent(self, ev): qt.QToolTip.hideText() def infoText(self): return self.infoWidget.label.text() def setXLabel(self, label="Column"): return self.graph.setGraphXLabel(label) def setYLabel(self, label="Row"): return self.graph.setGraphYLabel(label) def getXLabel(self): return self.graph.getGraphXLabel() def getYLabel(self): return self.graph.getGraphYLabel() def hideImageIcons(self): if self.imageToolButton is None:return self.imageToolButton.hide() self.eraseSelectionToolButton.hide() self.rectSelectionToolButton.hide() self.brushSelectionToolButton.hide() self.brushToolButton.hide() if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.hide() self.additionalSelectionToolButton.hide() def showImageIcons(self): if self.imageToolButton is None:return self.imageToolButton.show() self.eraseSelectionToolButton.show() self.rectSelectionToolButton.show() self.brushSelectionToolButton.show() self.brushToolButton.show() if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.show() self.additionalSelectionToolButton.show() def _hLineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.hLineProfileButton: button.setChecked(False) if self.hLineProfileButton.isChecked(): self._setPickerSelectionMode("HORIZONTAL") else: self._setPickerSelectionMode(None) def _vLineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.vLineProfileButton: button.setChecked(False) if self.vLineProfileButton.isChecked(): self._setPickerSelectionMode("VERTICAL") else: self._setPickerSelectionMode(None) def _lineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.lineProfileButton: button.setChecked(False) if self.lineProfileButton.isChecked(): self._setPickerSelectionMode("LINE") else: self._setPickerSelectionMode(None) def setPickerSelectionWith(self, intValue): self._pickerSelectionWidthValue.setValue(intValue) #get the current mode mode = "NONE" for button in self._pickerSelectionButtons: if button.isChecked(): if button == self.hLineProfileButton: mode = "HORIZONTAL" elif button == self.vLineProfileButton: mode = "VERTICAL" elif button == self.lineProfileButton: mode = "LINE" ddict = {} ddict['event'] = "profileWidthChanged" ddict['pixelwidth'] = self._pickerSelectionWidthValue.value() ddict['mode'] = mode self.sigProfileSignal.emit(ddict) def hideProfileSelectionIcons(self): if not len(self._pickerSelectionButtons): return for button in self._pickerSelectionButtons: button.setChecked(False) button.hide() self._pickerSelectionWidthLabel.hide() self._pickerSelectionWidthValue.hide() #self.graph.setPickerSelectionModeOff() self.graph.setDrawModeEnabled(False) def showProfileSelectionIcons(self): if not len(self._pickerSelectionButtons): return for button in self._pickerSelectionButtons: button.show() self._pickerSelectionWidthLabel.show() self._pickerSelectionWidthValue.show() def getPickerSelectionMode(self): if not len(self._pickerSelectionButtons): return None if self.hLineProfileButton.isChecked(): return "HORIZONTAL" if self.vLineProfileButton.isChecked(): return "VERTICAL" if self.lineProfileButton.isChecked(): return "LINE" return None def _setPickerSelectionMode(self, mode=None): if mode is None: self.graph.setDrawModeEnabled(False) self.graph.setZoomModeEnabled(True) else: if mode == "HORIZONTAL": shape = "hline" elif mode == "VERTICAL": shape = "vline" else: shape = "line" self.graph.setZoomModeEnabled(False) self.graph.setDrawModeEnabled(True, shape=shape, label=mode) ddict = {} if mode is None: mode = "NONE" ddict['event'] = "profileModeChanged" ddict['mode'] = mode self.sigProfileSignal.emit(ddict) def _graphPolygonSignalReceived(self, ddict): _logger.debug("PolygonSignal Received") for key in ddict.keys(): _logger.debug("%s: %s", key, ddict[key]) if ddict['event'] not in ['drawingProgress', 'drawingFinished']: return label = ddict['parameters']['label'] if label not in ['HORIZONTAL', 'VERTICAL', 'LINE']: return ddict['mode'] = label ddict['pixelwidth'] = self._pickerSelectionWidthValue.value() self.sigProfileSignal.emit(ddict) def _addToolButton(self, icon, action, tip, toggle=None, state=None, position=None): tb = qt.QToolButton(self.toolBar) if icon is not None: tb.setIcon(icon) tb.setToolTip(tip) if toggle is not None: if toggle: tb.setCheckable(1) if state is not None: if state: tb.setChecked(state) else: tb.setChecked(False) if position is not None: self.toolBarLayout.insertWidget(position, tb) else: self.toolBarLayout.addWidget(tb) if action is not None: tb.clicked.connect(action) return tb def __zoomReset(self): self._zoomReset() def _zoomReset(self, replot=None): _logger.debug("_zoomReset") if replot is None: replot = True if self.graph is not None: self.graph.resetZoom() if replot: self.graph.replot() def _yAutoScaleToggle(self): if self.graph is not None: if self.graph.isYAxisAutoScale(): self.graph.setYAxisAutoScale(False) self.yAutoScaleToolButton.setDown(False) else: self.graph.setYAxisAutoScale(True) self.yAutoScaleToolButton.setDown(True) def _xAutoScaleToggle(self): if self.graph is not None: if self.graph.isXAxisAutoScale(): self.graph.setXAxisAutoScale(False) self.xAutoScaleToolButton.setDown(False) else: self.graph.setXAxisAutoScale(True) self.xAutoScaleToolButton.setDown(True) def _copyIconSignal(self): self.graph.copyToClipboard() def _saveIconSignal(self): self.saveDirectory = PyMcaDirs.outputDir fileTypeList = ["Image *.png", "Image *.jpg", "ZoomedImage *.png", "ZoomedImage *.jpg", "Widget *.png", "Widget *.jpg"] filelist, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=fileTypeList, message="Output File Selection", currentdir=self.saveDirectory, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(filelist): return filterused = filterused.split() filetype = filterused[0] extension = filterused[1] outputFile = filelist[0] outputDir = os.path.dirname(outputFile) self.saveDirectory = outputDir PyMcaDirs.outputDir = outputDir #always overwrite for the time being if len(outputFile) < len(extension[1:]): outputFile += extension[1:] elif outputFile[-4:] != extension[1:]: outputFile += extension[1:] outputFile = os.path.join(outputDir, outputFile) if os.path.exists(outputFile): try: os.remove(outputFile) except Exception: qt.QMessageBox.critical(self, "Save Error", "Cannot overwrite existing file") return if filetype.upper() == "IMAGE": self.saveGraphImage(outputFile, original=True) elif filetype.upper() == "ZOOMEDIMAGE": self.saveGraphImage(outputFile, original=False) else: self.saveGraphWidget(outputFile) def saveGraphImage(self, filename, original=False): format_ = filename[-3:].upper() #This is the whole image, not the zoomed one ... rgbData, legend, info, pixmap = self.graph.getActiveImage() if original: # save whole image bgrData = numpy.array(rgbData, copy=True) bgrData[:,:,0] = rgbData[:, :, 2] bgrData[:,:,2] = rgbData[:, :, 0] else: xScale = info.get("plot_xScale", None) yScale = info.get("plot_yScale", None) shape = rgbData.shape[:2] xmin, xmax = self.graph.getGraphXLimits() ymin, ymax = self.graph.getGraphYLimits() # save zoomed image, for that we have to get the limits r0, c0 = convertToRowAndColumn(xmin, ymin, shape, xScale=xScale, yScale=yScale, safe=True) r1, c1 = convertToRowAndColumn(xmax, ymax, shape, xScale=xScale, yScale=yScale, safe=True) row0 = int(min(r0, r1)) row1 = int(max(r0, r1)) col0 = int(min(c0, c1)) col1 = int(max(c0, c1)) if row1 < shape[0]: row1 += 1 if col1 < shape[1]: col1 += 1 tmpArray = rgbData[row0:row1, col0:col1, :] bgrData = numpy.array(tmpArray, copy=True, dtype=rgbData.dtype) bgrData[:,:,0] = tmpArray[:, :, 2] bgrData[:,:,2] = tmpArray[:, :, 0] if self.graph.isYAxisInverted(): qImage = qt.QImage(bgrData, bgrData.shape[1], bgrData.shape[0], qt.QImage.Format_RGB32) else: qImage = qt.QImage(bgrData, bgrData.shape[1], bgrData.shape[0], qt.QImage.Format_RGB32).mirrored(False, True) pixmap = qt.QPixmap.fromImage(qImage) if pixmap.save(filename, format_): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def saveGraphWidget(self, filename): format_ = filename[-3:].upper() if hasattr(qt.QPixmap, "grabWidget"): # Qt4 pixmap = qt.QPixmap.grabWidget(self.graph.getWidgetHandle()) else: # Qt5 pixmap = self.graph.getWidgetHandle().grab() if pixmap.save(filename, format_): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def setSaveDirectory(self, wdir): if os.path.exists(wdir): self.saveDirectory = wdir return True else: return False def printGraph(self): if hasattr(qt.QPixmap, "grabWidget"): pixmap = qt.QPixmap.grabWidget(self.graph.getWidgetHandle()) else: pixmap = self.graph.getWidgetHandle().grab() self.printPreview.addPixmap(pixmap) if self.printPreview.isReady(): if self.printPreview.isHidden(): self.printPreview.show() self.printPreview.raise_() def selectColormap(self): qt.QMessageBox.information(self, "Open", "Not implemented (yet)") class MyQLabel(qt.QLabel): def __init__(self,parent=None,name=None,fl=0,bold=True, color= qt.Qt.red): qt.QLabel.__init__(self,parent) palette = self.palette() role = self.foregroundRole() palette.setColor(role,color) self.setPalette(palette) self.font().setBold(bold) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = RGBCorrelatorGraph() container.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/RenameCurveDialog.py0000644000000000000000000000666614741736366022635 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2015 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt class RenameCurveDialog(qt.QDialog): def __init__(self, parent = None, current="", curves = []): qt.QDialog.__init__(self, parent) self.setWindowTitle("Rename Curve %s" % current) self.curves = curves layout = qt.QVBoxLayout(self) self.lineEdit = qt.QLineEdit(self) self.lineEdit.setText(current) self.hbox = qt.QWidget(self) self.hboxLayout = qt.QHBoxLayout(self.hbox) self.hboxLayout.addWidget(qt.HorizontalSpacer(self.hbox)) self.okButton = qt.QPushButton(self.hbox) self.okButton.setText('OK') self.hboxLayout.addWidget(self.okButton) self.cancelButton = qt.QPushButton(self.hbox) self.cancelButton.setText('Dismiss') self.hboxLayout.addWidget(self.cancelButton) self.hboxLayout.addWidget(qt.HorizontalSpacer(self.hbox)) layout.addWidget(self.lineEdit) layout.addWidget(self.hbox) self.okButton.clicked.connect(self.preAccept) self.cancelButton.clicked.connect(self.reject) def preAccept(self): text = str(self.lineEdit.text()) addedText = "" if len(text): if text not in self.curves: self.accept() return else: addedText = "Curve already exists." text = "Invalid Curve Name" msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle(text) text += "\n%s" % addedText msg.setText(text) msg.exec() def getText(self): return str(self.lineEdit.text()) if __name__ == "__main__": app = qt.QApplication([]) w=RenameCurveDialog(None, 'curve1', ['curve1', 'curve2', 'curve3']) ret = w.exec() if ret == qt.QDialog.Accepted: print("newcurve = %s" % str(w.lineEdit.text())) else: print("keeping old curve") ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/ScatterPlotCorrelatorWidget.py0000644000000000000000000001710114741736366024730 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import SelectionTable from PyMca5.PyMcaGui.plotting import MaskScatterWidget class ScatterPlotCorrelatorWidget(MaskScatterWidget.MaskScatterWidget): def __init__(self, parent=None, labels=("Legend", "X", "Y"), types=("Text","RadioButton", "RadioButton"), toolbar=False, **kw): super(ScatterPlotCorrelatorWidget, self).__init__(None, **kw) self._splitter = qt.QSplitter(parent) self._splitter.setOrientation(qt.Qt.Horizontal) self.container = qt.QWidget(self._splitter) self.container.mainLayout = qt.QVBoxLayout(self.container) self.container.mainLayout.setContentsMargins(0, 0, 0, 0) self.container.mainLayout.setSpacing(0) # add a toolbar on top of the table if toolbar: self.toolBar = qt.QToolBar(self.container) # the selection table self.table = SelectionTable.SelectionTable(self.container, labels=labels, types=types) if toolbar: self.container.mainLayout.addWidget(self.toolBar) self.container.mainLayout.addWidget(self.table) self._splitter.addWidget(self.container) self._splitter.addWidget(self) # internal variables self._itemList = [] self._itemLabels = [] # connect self.table.sigSelectionTableSignal.connect(self.selectionTableSlot) def show(self): if self._splitter.isHidden(): self._splitter.show() else: super(ScatterPlotCorrelatorWidget, self).show() def setSelectableItemList(self, items, labels=None, copy=True): self._itemList = [] self._itemLabels = [] if labels is None: labels = [None] * len(items) for i in range(len(items)): self.addSelectableItem(items[i], label=labels[i], copy=copy) def addSelectableItem(self, item, label=None, copy=True): # we always keep a copy by default if copy: item = numpy.array(item, dtype=numpy.float32, copy=True) else: item = numpy.asarray(item, dtype=numpy.float32) if label is None: label = "Unnamed 00" i = 0 while(label in self._itemLabels): i += 1 label = "Unnamed %02d" % i if len(self._itemList): if item.size != self._itemList[0].size: raise IndexError("Invalid size") if label in self._itemLabels: self._itemList[self._itemLabels.index(label)] = item else: self._itemList.append(item) self._itemLabels.append(label) nItems = len(self._itemList) self.table.setRowCount(nItems) self.table.fillLine(nItems - 1, [label, "", ""]) self.table.resizeColumnToContents(0) self.table.resizeColumnToContents(1) self.table.resizeColumnToContents(2) ddict = self.table.getSelection() index = self._itemLabels.index(label) xKey = qt.safe_str(self.table.horizontalHeaderItem(1).text()).lower() yKey = qt.safe_str(self.table.horizontalHeaderItem(2).text()).lower() if index in (ddict[xKey] + ddict[yKey]): self.selectionTableSlot(ddict) def selectionTableSlot(self, ddict): legendKey = qt.safe_str(self.table.horizontalHeaderItem(0).text()).lower() xKey = qt.safe_str(self.table.horizontalHeaderItem(1).text()).lower() yKey = qt.safe_str(self.table.horizontalHeaderItem(2).text()).lower() if len(ddict[xKey]): x0 = self._itemList[ddict[xKey][0]] else: return if len(ddict[yKey]): y0 = self._itemList[ddict[yKey][0]] else: return x = x0[:] x.shape = -1 y = y0[:] y.shape = -1 xLabel = self._itemLabels[ddict[xKey][0]] yLabel = self._itemLabels[ddict[yKey][0]] # active curve handling is disabled self.setGraphXLabel(xLabel) self.setGraphYLabel(yLabel) self.setSelectionCurveData(x, y, legend=None, color="k", symbol=".", replot=False, replace=True, xlabel=xLabel, ylabel=yLabel, selectable=False) self._updatePlot(replot=False, replace=True) #matplotlib needs a zoom reset to update the scales # that problem does not seem to be present with OpenGL self.resetZoom() if __name__ == "__main__": if "opengl" in sys.argv: backend = "opengl" else: backend = None app = qt.QApplication([]) w = ScatterPlotCorrelatorWidget(labels=["Legend", "X", "Y"], types=["Text", "RadioButton", "RadioButton"], maxNRois=1, backend=backend) w.show() # fill some data import numpy import numpy.random import time t0 = time.time() x = numpy.arange(1000000.) w.addSelectableItem(x, "range(%d)" % x.size) print("elapsed = ", time.time() - t0) w.addSelectableItem(x * x, "range(%d) ** 2" % x.size) x = numpy.random.random(x.size) w.addSelectableItem(x, "random(%d)" % x.size) x = numpy.random.normal(500000., 1.0, 1000000) w.addSelectableItem(x, "Gauss 0") x = numpy.random.normal(500000., 1.0, 1000000) w.addSelectableItem(x, "Gauss 1") w.setPolygonSelectionMode() def theSlot(ddict): print(ddict['event']) w.sigMaskScatterWidgetSignal.connect(theSlot) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/SilxMaskImageWidget.py0000644000000000000000000013702714741736366023137 0ustar00rootroot# /*######################################################################### # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """:class:`SilxMaskImageWidget` uses a silx PlotWidget to display a stack, while offering the same tools as the :class:`StackRoiWindow` (median filter, background subtraction, ...). In addition to reimplementing existing tools, it also provides methods to plot a background image underneath the stack images. """ __authors__ = ["P. Knobel"] __license__ = "MIT" import copy import numpy import os from PyMca5.PyMcaMath.PyMcaSciPy.signal.median import medfilt2d from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs if hasattr(qt, "QString"): QString = qt.QString else: QString = str from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaIO import ArraySave from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaPlugins import MotorInfoWindow try: from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave except ImportError: QPyMcaMatplotlibSave = None # temporarily disable logging when importing silx and fabio import logging logging.basicConfig() logging.disable(logging.ERROR) import silx from silx.gui.plot import PlotWidget from PyMca5.PyMcaGui.plotting import SilxPlotActions as PlotActions from silx.gui.plot import PlotToolButtons from silx.gui.plot.MaskToolsWidget import MaskToolsWidget, MaskToolsDockWidget from silx.gui.plot.AlphaSlider import NamedImageAlphaSlider from silx.gui.plot.Profile import ProfileToolBar from silx.gui.plot.tools.profile.manager import ProfileWindow from silx.gui import icons logging.disable(logging.NOTSET) # restore default logging behavior def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True): """Return (row, column) of a pixel defined by (x, y) in an image. :param float x: Abscissa of point :param float x: Ordinate of point :param shape: Shape of image (nRows, nColumns) :param xScale: Tuple of linear scaling parameters (a, b), x = a + b * column :param yScale: Tuple of linear scaling parameters (a, b), y = a + b * row :param bool safe: If True, always return coordinates within the image's bounds. :return: 2-tuple (r, c) """ if xScale is None: c = x else: c = (x - xScale[0]) / xScale[1] if yScale is None: r = y else: r = (y - yScale[0]) / yScale[1] if safe: c = min(int(c), shape[1] - 1) c = max(c, 0) r = min(int(r), shape[0] - 1) r = max(r, 0) else: c = int(c) r = int(r) return r, c class MyProfileWindow(ProfileWindow): def createPlot1D(self, parent, backend): from PyMca5.PyMcaGui.pymca.SilxScanWindow import ScanWindow as PlotWindow plot = PlotWindow(parent, backend=backend) plot.setDataMargins(yMinMargin=0.1, yMaxMargin=0.1) plot.setGraphYLabel('Profile') plot.setGraphXLabel('') # do not overwrite the title by the legend plot.sigActiveCurveChanged.disconnect(plot._updateGraphTitle) positionInfo = plot.getPositionInfoWidget() positionInfo.setSnappingMode(positionInfo.SNAPPING_CURVE) return plot class MyMaskToolsWidget(MaskToolsWidget): """Backport of the setSelectionMask behavior implemented in silx 0.6.0, to synchronize mask parameters with the active image. This widget must not be used with silx >= 0.6""" def setSelectionMask(self, mask, copy=True): """Set the mask to a new array. :param numpy.ndarray mask: The array to use for the mask. :type mask: numpy.ndarray of uint8 of dimension 2, C-contiguous. Array of other types are converted. :param bool copy: True (the default) to copy the array, False to use it as is if possible. :return: None if failed, shape of mask as 2-tuple if successful. The mask can be cropped or padded to fit active image, the returned shape is that of the active image. """ mask = numpy.asarray(mask, dtype=numpy.uint8) if len(mask.shape) != 2: # _logger.error('Not an image, shape: %d', len(mask.shape)) return None # ensure all mask attributes are synchronized with the active image activeImage = self.plot.getActiveImage() if activeImage is not None and activeImage.getLegend() != self._maskName: self._activeImageChanged() self.plot.sigActiveImageChanged.connect(self._activeImageChanged) if self._data.shape[0:2] == (0, 0) or mask.shape == self._data.shape[0:2]: self._mask.setMask(mask, copy=copy) self._mask.commit() return mask.shape else: resizedMask = numpy.zeros(self._data.shape[0:2], dtype=numpy.uint8) height = min(self._data.shape[0], mask.shape[0]) width = min(self._data.shape[1], mask.shape[1]) resizedMask[:height, :width] = mask[:height, :width] self._mask.setMask(resizedMask, copy=False) self._mask.commit() return resizedMask.shape class MyMaskToolsDockWidget(MaskToolsDockWidget): """ Regular MaskToolsDockWidget if silx version is at least 0.6.0, else it uses a backported MaskToolsWidget """ def __init__(self, parent=None, plot=None, name='Mask'): super(MyMaskToolsDockWidget, self).__init__(parent, plot, name) if silx.version_info < (0, 6): self.setWidget(MyMaskToolsWidget(plot=plot)) self.widget().sigMaskChanged.connect(self._emitSigMaskChanged) class SaveImageListAction(qt.QAction): """Save current image and mask (if any) in a :class:`MaskImageWidget` to EDF or CSV""" def __init__(self, title, maskImageWidget, clipped=False, subtract=False): super(SaveImageListAction, self).__init__(QString(title), maskImageWidget) self.maskImageWidget = maskImageWidget self.triggered[bool].connect(self.onTrigger) self.outputDir = PyMcaDirs.outputDir """Default output dir. After each save operation, this is updated to re-use the same folder for next save.""" self.clipped = clipped """If True, clip data range to colormap min and max.""" self.subtract = subtract """If True, subtract data min value.""" def onTrigger(self): filename, saveFilter = self.getOutputFileNameFilter() if not filename: return if filename.lower().endswith(".csv"): csvseparator = "," if "," in saveFilter else\ ";" if ";" in saveFilter else\ "\t" else: csvseparator = None images, labels = self.getImagesLabels() self.saveImageList(filename, images, labels, csvseparator) def saveImageList(self, filename, imageList, labels, csvseparator=None): if not imageList: qt.QMessageBox.information( self, "No Data", "Image list is empty.\nNothing to be saved") return if filename.lower().endswith(".edf"): ArraySave.save2DArrayListAsEDF(imageList, filename, labels) elif filename.lower().endswith(".tif"): ArraySave.save2DArrayListAsMonochromaticTiff(imageList, filename, labels) elif filename.lower().endswith(".csv"): assert csvseparator is not None ArraySave.save2DArrayListAsASCII(imageList, filename, labels, csv=True, csvseparator=csvseparator) else: ArraySave.save2DArrayListAsASCII(imageList, filename, labels, csv=False) def getImagesLabels(self): """Return images to be saved and corresponding labels. Images are: - image currently displayed clipped to visible colormap range - mask If :attr:`subtract` is True, subtract the minimum image sample value to all samples.""" imageList = [] labels = [] imageData = self.maskImageWidget.getImageData() colormapDict = self.maskImageWidget.getCurrentColormap() label = self.maskImageWidget.plot.getGraphTitle() if not label: label = "Image01" label.replace(' ', '_') if self.clipped and colormapDict is not None: autoscale = colormapDict['autoscale'] if not autoscale: vmin = colormapDict['vmin'] vmax = colormapDict['vmax'] imageData = imageData.clip(vmin, vmax) label += ".clip(%f,%f)" % (vmin, vmax) if self.subtract: vmin = imageData.min() imageData = imageData - vmin label += "-%f" % vmin imageList.append(imageData) labels.append(label) mask = self.maskImageWidget.getSelectionMask() if mask is not None and mask.max() > 0: imageList.append(mask) labels.append(label + "_Mask") return imageList, labels def getOutputFileNameFilter(self): """Open a file dialog to get the output file name, and return the file name and the selected format filter. Remember output directory in attribute :attr:`outputDir`""" if os.path.exists(self.outputDir): initdir = self.outputDir else: # folder deleted, reset initdir = PyMcaDirs.outputDir formatlist = ["TIFF Files *.tif", "ASCII Files *.dat", "EDF Files *.edf", 'CSV(, separated) Files *.csv', 'CSV(; separated) Files *.csv', 'CSV(tab separated) Files *.csv'] filelist, saveFilter = PyMcaFileDialogs.getFileList( \ parent=self.maskImageWidget, filetypelist=formatlist, message="", currentdir=initdir, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(filelist): return "", "" filename = filelist[0] if filename: self.outputDir = os.path.dirname(filename) filterused = "." + saveFilter[-3:] PyMcaDirs.outputDir = os.path.dirname(filename) if len(filename) < 4 or filename[-4:] != filterused: filename += filterused else: filename = "" return filename, saveFilter class SaveMatplotlib(qt.QAction): """Save current image ho high quality graphics using matplotlib""" def __init__(self, title, maskImageWidget): super(SaveMatplotlib, self).__init__(QString(title), maskImageWidget) self.maskImageWidget = maskImageWidget self.triggered[bool].connect(self.onTrigger) self._matplotlibSaveImage = None def onTrigger(self): imageData = self.maskImageWidget.getImageData() if self._matplotlibSaveImage is None: self._matplotlibSaveImage = QPyMcaMatplotlibSave.SaveImageSetup( None, image=None) title = "Matplotlib " + self.maskImageWidget.plot.getGraphTitle() self._matplotlibSaveImage.setWindowTitle(title) ddict = self._matplotlibSaveImage.getParameters() colormapDict = self.maskImageWidget.getCurrentColormap() if colormapDict is not None: autoscale = colormapDict['autoscale'] vmin = colormapDict['vmin'] vmax = colormapDict['vmax'] colormapType = colormapDict['normalization'] # 'log' or 'linear' if colormapType == 'log': colormapType = 'logarithmic' ddict['linlogcolormap'] = colormapType if not autoscale: ddict['valuemin'] = vmin ddict['valuemax'] = vmax else: ddict['valuemin'] = 0 ddict['valuemax'] = 0 # this sets the actual dimensions origin = self.maskImageWidget._origin delta = self.maskImageWidget._deltaXY ddict['xpixelsize'] = delta[0] ddict['xorigin'] = origin[0] ddict['ypixelsize'] = delta[1] ddict['yorigin'] = origin[1] ddict['xlabel'] = self.maskImageWidget.plot.getGraphXLabel() ddict['ylabel'] = self.maskImageWidget.plot.getGraphYLabel() limits = self.maskImageWidget.plot.getGraphXLimits() ddict['zoomxmin'] = limits[0] ddict['zoomxmax'] = limits[1] limits = self.maskImageWidget.plot.getGraphYLimits() ddict['zoomymin'] = limits[0] ddict['zoomymax'] = limits[1] self._matplotlibSaveImage.setParameters(ddict) self._matplotlibSaveImage.setImageData(imageData) self._matplotlibSaveImage.show() self._matplotlibSaveImage.raise_() class SaveToolButton(qt.QToolButton): def __init__(self, parent=None, maskImageWidget=None): """ :param maskImageWidget: Parent SilxMaskImageWidget """ qt.QToolButton.__init__(self, parent) self.maskImageWidget = maskImageWidget self.setIcon(icons.getQIcon("document-save")) self.clicked.connect(self._saveToolButtonSignal) self.setToolTip('Save Graph') self._saveMenu = qt.QMenu() self._saveMenu.addAction( SaveImageListAction("Image Data", self.maskImageWidget)) self._saveMenu.addAction( SaveImageListAction("Colormap Clipped Seen Image Data", self.maskImageWidget, clipped=True)) self._saveMenu.addAction( SaveImageListAction("Clipped and Subtracted Seen Image Data", self.maskImageWidget, clipped=True, subtract=True)) # standard silx save action self._saveMenu.addAction(PlotActions.SaveAction( plot=self.maskImageWidget.plot, parent=self)) if QPyMcaMatplotlibSave is not None: self._saveMenu.addAction(SaveMatplotlib("Matplotlib", self.maskImageWidget)) def _saveToolButtonSignal(self): self._saveMenu.exec(self.parent().cursor().pos()) class MedianParameters(qt.QWidget): def __init__(self, parent=None, use_conditional=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.label = qt.QLabel(self) self.label.setText("Median filter width: ") self.widthSpin = qt.QSpinBox(self) self.widthSpin.setMinimum(1) self.widthSpin.setMaximum(99) self.widthSpin.setValue(1) self.widthSpin.setSingleStep(2) if use_conditional: self.conditionalLabel = qt.QLabel(self) self.conditionalLabel.setText("Conditional:") self.conditionalSpin = qt.QSpinBox(self) self.conditionalSpin.setMinimum(0) self.conditionalSpin.setMaximum(1) self.conditionalSpin.setValue(0) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.widthSpin) if use_conditional: self.mainLayout.addWidget(self.conditionalLabel) self.mainLayout.addWidget(self.conditionalSpin) class SilxMaskImageWidget(qt.QMainWindow): """Main window with a plot widget, a toolbar and a slider. A list of images can be set with :meth:`setImages`. The mask can be accessed through getter and setter methods: :meth:`setSelectionMask` and :meth:`getSelectionMask`. The plot widget can be accessed as :attr:`plot`. It is a silx plot widget. The toolbar offers some basic interaction tools: zoom control, colormap, aspect ratio, y axis orientation, "save image" menu and a mask widget. """ sigMaskImageWidget = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QMainWindow.__init__(self, parent=parent) if parent is not None: # behave as a widget self.setWindowFlags(qt.Qt.Widget) else: self.setWindowTitle("PyMca - Image Selection Tool") centralWidget = qt.QWidget(self) layout = qt.QVBoxLayout(centralWidget) centralWidget.setLayout(layout) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) # Plot self.plot = PlotWidget(parent=centralWidget) self.plot.setWindowFlags(qt.Qt.Widget) self.plot.setDefaultColormap({'name': 'temperature', 'normalization': 'linear', 'autoscale': True, 'vmin': 0., 'vmax': 1.}) layout.addWidget(self.plot) try: from silx.gui.widgets import ElidedLabel self.infoWidget = ElidedLabel.ElidedLabel(self) except Exception: self.infoWidget = qt.QLabel(self) layout.addWidget(self.infoWidget) self.infoWidget.hide() # Mask Widget self._maskToolsDockWidget = None # Image selection slider self.slider = qt.QSlider(self.centralWidget()) self.slider.setOrientation(qt.Qt.Horizontal) self.slider.setMinimum(0) self.slider.setMaximum(0) layout.addWidget(self.slider) self.slider.valueChanged[int].connect(self.showImage) # ADD/REMOVE/REPLACE IMAGE buttons buttonBox = qt.QWidget(self) buttonBoxLayout = qt.QHBoxLayout(buttonBox) buttonBoxLayout.setContentsMargins(0, 0, 0, 0) buttonBoxLayout.setSpacing(0) self.addImageButton = qt.QPushButton(buttonBox) icon = qt.QIcon(qt.QPixmap(IconDict["rgb16"])) self.addImageButton.setIcon(icon) self.addImageButton.setText("ADD IMAGE") self.addImageButton.setToolTip("Add image to RGB correlator") buttonBoxLayout.addWidget(self.addImageButton) self.removeImageButton = qt.QPushButton(buttonBox) self.removeImageButton.setIcon(icon) self.removeImageButton.setText("REMOVE IMAGE") self.removeImageButton.setToolTip("Remove image from RGB correlator") buttonBoxLayout.addWidget(self.removeImageButton) self.replaceImageButton = qt.QPushButton(buttonBox) self.replaceImageButton.setIcon(icon) self.replaceImageButton.setText("REPLACE IMAGE") self.replaceImageButton.setToolTip( "Replace all images in RGB correlator with this one") buttonBoxLayout.addWidget(self.replaceImageButton) self.addImageButton.clicked.connect(self._addImageClicked) self.removeImageButton.clicked.connect(self._removeImageClicked) self.replaceImageButton.clicked.connect(self._replaceImageClicked) layout.addWidget(buttonBox) self._buttonBox = buttonBox # median filter widget self._medianParameters = {'row_width': 1, 'column_width': 1, 'conditional': 0} self._medianParametersWidget = MedianParameters(self, use_conditional=True) self._medianParametersWidget.widthSpin.setValue(1) self._medianParametersWidget.widthSpin.valueChanged[int].connect( self._setMedianKernelWidth) self._medianParametersWidget.conditionalSpin.valueChanged[int].connect( self._setMedianConditionalFlag) layout.addWidget(self._medianParametersWidget) # motor positions (hidden by default) self.motorPositionsWidget = MotorInfoWindow.MotorInfoDialog(self, [""], [{}]) self.motorPositionsWidget.setMaximumHeight(100) self.plot.sigPlotSignal.connect(self._updateMotors) self.motorPositionsWidget.hide() self._motors_first_update = True layout.addWidget(self.motorPositionsWidget) self.setCentralWidget(centralWidget) # Init actions self.group = qt.QActionGroup(self) self.group.setExclusive(False) self.resetZoomAction = self.group.addAction( PlotActions.ResetZoomAction(plot=self.plot, parent=self)) self.addAction(self.resetZoomAction) self.zoomInAction = PlotActions.ZoomInAction(plot=self.plot, parent=self) self.addAction(self.zoomInAction) self.zoomOutAction = PlotActions.ZoomOutAction(plot=self.plot, parent=self) self.addAction(self.zoomOutAction) self.xAxisAutoScaleAction = self.group.addAction( PlotActions.XAxisAutoScaleAction(plot=self.plot, parent=self)) self.addAction(self.xAxisAutoScaleAction) self.yAxisAutoScaleAction = self.group.addAction( PlotActions.YAxisAutoScaleAction(plot=self.plot, parent=self)) self.addAction(self.yAxisAutoScaleAction) self.colormapAction = self.group.addAction( PlotActions.ColormapAction(plot=self.plot, parent=self)) self.addAction(self.colormapAction) self.pixelIntensitiesHistoAction = self.group.addAction( PlotActions.PixelIntensitiesHistoAction(plot=self.plot, parent=self)) self.addAction(self.pixelIntensitiesHistoAction) self.pixelIntensitiesHistoAction.setVisible(True) self.copyAction = self.group.addAction( PlotActions.CopyAction(plot=self.plot, parent=self)) self.addAction(self.copyAction) self.group.addAction(self.getMaskAction()) # Init toolbuttons self.saveToolbutton = SaveToolButton(parent=self, maskImageWidget=self) self.yAxisInvertedButton = PlotToolButtons.YAxisOriginToolButton( parent=self, plot=self.plot) self.keepDataAspectRatioButton = PlotToolButtons.AspectToolButton( parent=self, plot=self.plot) self.backgroundButton = qt.QToolButton(self) self.backgroundButton.setCheckable(True) self.backgroundButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["subtract"]))) self.backgroundButton.setToolTip( 'Toggle background image subtraction from current image\n' + 'No action if no background image available.') self.backgroundButton.clicked.connect(self._subtractBackground) # Creating the toolbar also create actions for toolbuttons self._toolbar = self._createToolBar(title='Plot', parent=None) self.addToolBar(self._toolbar) self._profile = ProfileToolBar(plot=self.plot, profileWindow=MyProfileWindow()) self.addToolBar(self._profile) self.setProfileToolbarVisible(False) # add a transparency slider for the stack data self._alphaSliderToolbar = qt.QToolBar("Alpha slider", parent=self) self._alphaSlider = NamedImageAlphaSlider(parent=self._alphaSliderToolbar, plot=self.plot, legend="current") self._alphaSlider.setOrientation(qt.Qt.Vertical) self._alphaSlider.setToolTip("Adjust opacity of stack image overlay") self._alphaSliderToolbar.addWidget(self._alphaSlider) self.addToolBar(qt.Qt.RightToolBarArea, self._alphaSliderToolbar) # hide optional tools and actions self.setAlphaSliderVisible(False) self.setBackgroundActionVisible(False) self.setMedianFilterWidgetVisible(False) self.setProfileToolbarVisible(False) self._images = [] """List of images, as 2D numpy arrays or 3D numpy arrays (RGB(A)). """ self._labels = [] """List of image labels. """ self._bg_images = [] """List of background images, as 2D numpy arrays or 3D numpy arrays (RGB(A)). These images are not active, their colormap cannot be changed and they cannot be the base image used for drawing a mask. """ self._bg_labels = [] self._deltaXY = (1.0, 1.0) # TODO: allow different scale and origin for each image """Current image scale (Xscale, Yscale) (in axis units per image pixel). The scale is adjusted to keep constant width and height for the image when a crop operation is applied.""" self._origin = (0., 0.) """Current image origin: coordinate (x, y) of sample located at (row, column) = (0, 0)""" # scales and origins for background images self._bg_deltaXY = [] self._bg_origins = [] def sizeHint(self): return qt.QSize(500, 400) def _createToolBar(self, title, parent): """Create a QToolBar with crop, rotate and flip operations :param str title: The title of the QMenu :param qt.QWidget parent: See :class:`QToolBar` """ toolbar = qt.QToolBar(title, parent) # Order widgets with actions objects = self.group.actions() # Add standard push buttons to list index = objects.index(self.colormapAction) objects.insert(index + 1, self.keepDataAspectRatioButton) objects.insert(index + 2, self.yAxisInvertedButton) objects.insert(index + 4, self.saveToolbutton) objects.insert(index + 5, self.backgroundButton) for obj in objects: if isinstance(obj, qt.QAction): toolbar.addAction(obj) else: # keep reference to toolbutton's action for changing visibility if obj is self.keepDataAspectRatioButton: self.keepDataAspectRatioAction = toolbar.addWidget(obj) elif obj is self.yAxisInvertedButton: self.yAxisInvertedAction = toolbar.addWidget(obj) elif obj is self.saveToolbutton: self.saveAction = toolbar.addWidget(obj) elif obj is self.backgroundButton: self.bgAction = toolbar.addWidget(obj) else: raise RuntimeError() return toolbar def _getMaskToolsDockWidget(self): """DockWidget with image mask panel (lazy-loaded).""" if self._maskToolsDockWidget is None: self._maskToolsDockWidget = MyMaskToolsDockWidget( plot=self.plot, name='Mask') self._maskToolsDockWidget.hide() self.addDockWidget(qt.Qt.RightDockWidgetArea, self._maskToolsDockWidget) # self._maskToolsDockWidget.setFloating(True) self._maskToolsDockWidget.sigMaskChanged.connect( self._emitMaskImageWidgetSignal) # At the very least silx 1.1.0 was not restoring the plot mode prior # to activate the mask. Force zoom state when closing the mask dock widget self._maskToolsDockWidget.visibilityChanged[bool].connect( self._maskToolsDockWidgetVisibilityChanged) return self._maskToolsDockWidget def _maskToolsDockWidgetVisibilityChanged(self, visibility): if not visibility: self.plot.setInteractiveMode("zoom") def _setMedianKernelWidth(self, value): kernelSize = numpy.asarray(value) if len(kernelSize.shape) == 0: kernelSize = [kernelSize.item()] * 2 self._medianParameters['row_width'] = kernelSize[0] self._medianParameters['column_width'] = kernelSize[1] self._medianParametersWidget.widthSpin.setValue(int(kernelSize[0])) self.showImage(self.slider.value()) def _setMedianConditionalFlag(self, value): self._medianParameters['conditional'] = int(value) self._medianParametersWidget.conditionalSpin.setValue(int(value)) self.showImage(self.slider.value()) def _subtractBackground(self): """When background button is clicked, this causes showImage to display the data after subtracting the stack background image. This background image is unrelated to the background images set with :meth:`setBackgroundImages`, it is simply the first data image whose label ends with 'background'.""" current = self.getCurrentIndex() self.showImage(current) def _updateMotors(self, ddict): if not ddict["event"] == "mouseMoved": return if not self.motorPositionsWidget.isVisible(): return motorsValuesAtCursor = self._getPositionersFromXY(ddict["x"], ddict["y"]) if motorsValuesAtCursor is None: return self.motorPositionsWidget.table.updateTable( legList=[self.plot.getActiveImage().getLegend()], motList=[motorsValuesAtCursor]) if self._motors_first_update: self._select_motors() self._motors_first_update = False def _select_motors(self): """This methods sets the motors in the comboboxes when the widget is first initialized.""" for i, combobox in enumerate(self.motorPositionsWidget.table.header.boxes): # First item (index 0) in combobox is "", so first motor name is at index 1. # First combobox in header.boxes is at index 1 (boxes[0] is None). if i == 0: continue if i < combobox.count(): combobox.setCurrentIndex(i) def _getPositionersFromXY(self, x, y): """Return positioner values for a stack pixel identified by it's (x, y) coordinates. """ activeImage = self.plot.getActiveImage() if activeImage is None: return None info = activeImage.getInfo() if not info or not isinstance(info, dict): return None positioners = info.get("positioners", {}) nRows, nCols = activeImage.getData().shape xScale, yScale = activeImage.getScale() xOrigin, yOrigin = activeImage.getOrigin() r, c = convertToRowAndColumn( x, y, shape=(nRows, nCols), xScale=(xOrigin, xScale), yScale=(yOrigin, yScale), safe=True) idx1d = r * nCols + c positionersAtIdx = {} for motorName, motorValues in positioners.items(): if numpy.isscalar(motorValues): positionersAtIdx[motorName] = motorValues elif len(motorValues.shape) == 1: positionersAtIdx[motorName] = motorValues[idx1d] else: positionersAtIdx[motorName] = motorValues.reshape((-1,))[idx1d] return positionersAtIdx # widgets visibility toggling def setBackgroundActionVisible(self, visible): """Set visibility of the background toolbar button. :param visible: True to show tool button, False to hide it. """ self.bgAction.setVisible(visible) def setButtonBoxWidgetVisible(self, visible): """Set visibility of the image actions widget :param visible: True to show the buttons, False to hide them. """ if visible: self._buttonBox.show() else: self._buttonBox.hide() def setProfileToolbarVisible(self, visible): """Set visibility of the profile toolbar :param visible: True to show toolbar, False to hide it. """ self._profile.setVisible(visible) def setMedianFilterWidgetVisible(self, visible): """Set visibility of the median filter parametrs widget. :param visible: True to show widget, False to hide it. """ self._medianParametersWidget.setVisible(visible) def setMotorPositionsVisible(self, flag): """Show or hide motor positions widget""" self.motorPositionsWidget.setVisible(flag) def setAlphaSliderVisible(self, visible): """Set visibility of the transparency slider widget in the right toolbar area. :param visible: True to show widget, False to hide it. """ self._alphaSliderToolbar.setVisible(visible) def setImagesAlpha(self, alpha): """Set the opacity of the images layer. Full opacity means that the background images layer will not be visible. :param float alpha: Opacity of images layer, in [0., 1.] """ self._alphaSlider.setValue(round(alpha * 255)) def getMaskAction(self): """QAction toggling image mask dock widget :rtype: QAction """ return self._getMaskToolsDockWidget().toggleViewAction() def _emitMaskImageWidgetSignal(self): mask = self.getSelectionMask() if not mask.size: # workaround to ignore the empty mask emitted when the mask widget # is initialized return self.sigMaskImageWidget.emit( {"event": "selectionMaskChanged", "current": self.getSelectionMask(), "id": id(self)}) def setSelectionMask(self, mask, copy=True): """Set the mask to a new array. :param numpy.ndarray mask: The array to use for the mask. Mask type: array of uint8 of dimension 2, Array of other types are converted. :param bool copy: True (the default) to copy the array, False to use it as is if possible. :return: None if failed, shape of mask as 2-tuple if successful. The mask can be cropped or padded to fit active image, the returned shape is that of the active image. """ # disconnect temporarily to avoid infinite loop self._getMaskToolsDockWidget().sigMaskChanged.disconnect( self._emitMaskImageWidgetSignal) if mask is None and silx.version_info <= (0, 7, 0): self._getMaskToolsDockWidget().resetSelectionMask() ret = None else: # from silx 0.8 onwards, setSelectionMask(None) is supported ret = self._getMaskToolsDockWidget().setSelectionMask(mask, copy=copy) self._getMaskToolsDockWidget().sigMaskChanged.connect( self._emitMaskImageWidgetSignal) return ret def getSelectionMask(self, copy=True): """Get the current mask as a 2D array. :param bool copy: True (default) to get a copy of the mask. If False, the returned array MUST not be modified. :return: The array of the mask with dimension of the 'active' image. If there is no active image, None is returned. :rtype: 2D numpy.ndarray of uint8 """ return self._getMaskToolsDockWidget().getSelectionMask(copy=copy) @staticmethod def _RgbaToGrayscale(image): """Convert RGBA image to 2D array of grayscale values (Luma coding) :param image: RGBA image, as a numpy array of shapes (nrows, ncols, 3/4) :return: Image as a 2D array """ if len(image.shape) == 2: return image assert len(image.shape) == 3 imageData = image[:, :, 0] * 0.299 +\ image[:, :, 1] * 0.587 +\ image[:, :, 2] * 0.114 return imageData def getImageData(self): """Return current image data to be sent to RGB correlator :return: Image as a 2D array """ index = self.slider.value() image = self._images[index] return self._RgbaToGrayscale(image) def getFirstBgImageData(self): """Return first bg image data to be sent to RGB correlator :return: Image as a 2D array """ image = self._bg_images[0] return self._RgbaToGrayscale(image) def getBgImagesDict(self): """Return a dict containing the data for all background images.""" bgimages = {} for i, label in enumerate(self._bg_labels): data = self._bg_images[i] origin = self._bg_origins[i] delta_w, delta_h = self._bg_deltaXY[i] w, h = delta_w * data.shape[1], delta_h * data.shape[0] bgimages[label] = {"data": data, "origin": origin, "width": w, "height": h} return bgimages def _addImageClicked(self): imageData = self.getImageData() ddict = { 'event': "addImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) def _replaceImageClicked(self): imageData = self.getImageData() ddict = { 'event': "replaceImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) def _removeImageClicked(self): imageData = self.getImageData() ddict = { 'event': "removeImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) def showImage(self, index=0): """Show data image corresponding to index. Update slider to index. """ if not self._images: return assert index < len(self._images) bg_index = None if self.backgroundButton.isChecked(): for i, imageName in enumerate(self._labels): if imageName.lower().endswith('background'): bg_index = i break mf_text = "" a = self._medianParameters['row_width'] b = self._medianParameters['column_width'] if max(a, b) > 1: mf_text = "MF(%d,%d) " % (a, b) imdata = self._getMedianData(self._images[index]) if bg_index is None: self.plot.setGraphTitle(mf_text + self._labels[index]) else: self.plot.setGraphTitle(mf_text + self._labels[index] + " Net") imdata -= self._images[bg_index] if len(self._infos) > 1: info = self._infos[index] else: info = self._infos[0] self.plot.addImage(imdata, legend="current", origin=self._origin, scale=self._deltaXY, replace=False, z=0, info=info) self.plot.setActiveImage("current") self.slider.setValue(index) def _getMedianData(self, data): data = copy.copy(data) if max(self._medianParameters['row_width'], self._medianParameters['column_width']) > 1: data = medfilt2d(data, [self._medianParameters['row_width'], self._medianParameters['column_width']], conditional=self._medianParameters['conditional']) return data def setImages(self, images, labels=None, origin=None, height=None, width=None, infos=None): """Set the list of data images. All images share the same origin, width and height. :param images: List of 2D or 3D (for RGBA data) numpy arrays of image data. All images must have the same shape. :type images: List of ndarrays :param labels: list of image names :param origin: Image origin: coordinate (x, y) of sample located at (row, column) = (0, 0). If None, use (0., 0.) :param height: Image height in Y axis units. If None, use the image height in number of pixels. :param width: Image width in X axis units. If None, use the image width in number of pixels. :param infos: List of info dicts, one per image, or None. """ self._images = images if labels is None: labels = ["Image %d" % (i + 1) for i in range(len(images))] if infos is None: infos = [{} for _img in images] self._labels = labels self._infos = infos height_pixels, width_pixels = images[0].shape[0:2] height = height or height_pixels width = width or width_pixels self._deltaXY = (float(width) / width_pixels, float(height) / height_pixels) self._origin = origin or (0., 0.) current = self.slider.value() self.slider.setMaximum(len(self._images) - 1) if current < len(self._images): self.showImage(current) else: self.showImage(0) # _maskParamsCache = width, height, self._origin, self._deltaXY # if _maskParamsCache != self._maskParamsCache: # self._maskParamsCache = _maskParamsCache # self.resetMask(width, height, self._origin, self._deltaXY) def setImageData(self, data, clearmask=False, xScale=None, yScale=None): """ Compatibility method with PyMca when handling single images """ if xScale is None: xScale = [0.0, 1.0] if yScale is None: yScale = [0.0, 1.0] self._origin = (xScale[0], yScale[0]) self._deltaXY = (xScale[1], yScale[1]) info = None if 0: self.plot.addImage(data, legend="current", origin=self._origin, scale=self._deltaXY, replace=False, z=0, info=info) self.plot.setActiveImage("current") self.slider.setValue(0) else: self.setImages([data], labels=[""], origin=self._origin, width=xScale[1] * data.shape[1], height=yScale[1]* data.shape[0]) def plotImage(self, update=True): """ Compatibility method with PyMca when handling single images """ pass def showInfo(self): if self.infoWidget.isHidden(): self.infoWidget.show() def setInfoText(self, text): """ Compatibility method with PyMca when handling single images """ self.infoWidget.setText(text) def _updateBgScales(self, heights, widths): """Recalculate BG scales (e.g after a crop operation on :attr:`_bg_images`)""" self._bg_deltaXY = [] for w, h, img in zip(widths, heights, self._bg_images): self._bg_deltaXY.append( (float(w) / img.shape[1], float(h) / img.shape[0]) ) def setBackgroundImages(self, images, labels=None, origins=None, heights=None, widths=None): """Set the list of background images. Each image should be a tile and have an origin (x, y) tuple, a height and a width defined, so that all images can be plotted on the same background layer. :param images: List of 2D or 3D (for RGBA data) numpy arrays of image data. All images must have the same shape. :type images: List of ndarrays :param labels: list of image names :param origins: Images origins: list of coordinate tuples (x, y) of sample located at (row, column) = (0, 0). If None, use (0., 0.) for all images. :param heights: Image height in Y axis units. If None, use the image height in number of pixels. :param widths: Image width in X axis units. If None, use the image width in number of pixels. """ self._bg_images = images if labels is None: labels = ["Background image %d" % (i + 1) for i in range(len(images))] # delete existing images for label in self._bg_labels: self.plot.removeImage(label) self._bg_labels = labels if heights is None: heights = [image.shape[0] for image in images] else: assert len(heights) == len(images) if widths is None: widths = [image.shape[1] for image in images] else: assert len(widths) == len(images) if origins is None: origins = [(0, 0) for _img in images] else: assert len(origins) == len(images) self._bg_origins = origins self._updateBgScales(heights, widths) for bg_deltaXY, bg_orig, label, img in zip(self._bg_deltaXY, self._bg_origins, labels, images): # FIXME: we use z=-1 because the mask is always on z=1, # so the data must be on z=0. To be fixed after the silx mask # is improved self.plot.addImage(img, origin=bg_orig, scale=bg_deltaXY, legend=label, replace=False, z=-1) # TODO: z=0 def getCurrentIndex(self): """ :return: Index of slider widget used for image selection. """ return self.slider.value() def getCurrentColormap(self): """Return colormap dict associated with the current image. If the current image is a RGBA Image, return None. See doc of silx.gui.plot.Plot for an explanation about the colormap dictionary. """ image = self.plot.getImage(legend="current") if not hasattr(image, "getColormap"): # isinstance(image, silx.gui.plot.items.ImageRgba): return None return self.plot.getImage(legend="current").getColormap() def showAndRaise(self): self.show() self.raise_() if __name__ == "__main__": app = qt.QApplication([]) w = SilxMaskImageWidget() w.setProfileToolbarVisible(True) w.show() w.setImages([numpy.array([[0, 1, 2], [2, 1, -1]])]) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/SilxPlotActions.py0000644000000000000000000000331414741736366022363 0ustar00rootroot#/*########################################################################## # Copyright (C) 2023 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """Silx 1.x and 2.x compatibility layer""" try: from silx.gui.plot.PlotActions import * except ImportError: from silx.gui.plot.actions.control import * from silx.gui.plot.actions.io import * from silx.gui.plot.actions.histogram import PixelIntensitiesHistoAction ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/SilxRGBCorrelatorGraph.py0000644000000000000000000006756414741736366023576 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from silx.gui.plot import PlotWidget from silx.gui.plot.PrintPreviewToolButton import SingletonPrintPreviewToolButton from .PyMca_Icons import IconDict from PyMca5.PyMcaCore import PyMcaDirs from silx.gui import icons as silx_icons if sys.version_info[0] == 3: from io import BytesIO else: import cStringIO as _StringIO BytesIO = _StringIO.StringIO QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) def convertToRowAndColumn(x, y, shape, xScale=None, yScale=None, safe=True): if xScale is None: c = x else: c = (x - xScale[0]) / xScale[1] if yScale is None: r = y else: r = ( y - yScale[0]) / yScale[1] if safe: c = min(int(c), shape[1] - 1) c = max(c, 0) r = min(int(r), shape[0] - 1) r = max(r, 0) else: c = int(c) r = int(r) return r, c class RGBCorrelatorGraph(qt.QWidget): sigProfileSignal = qt.pyqtSignal(object) def __init__(self, parent = None, backend=None, selection=False, aspect=True, colormap=False, imageicons=False, standalonesave=True, standalonezoom=True, profileselection=False, polygon=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._keepDataAspectRatioFlag = False self.graph = PlotWidget(parent=self, backend=backend) self.graph.setGraphXLabel("Column") self.graph.setGraphYLabel("Row") self.graph.setYAxisAutoScale(True) self.graph.setXAxisAutoScale(True) plotArea = self.graph.getWidgetHandle() plotArea.setContextMenuPolicy(qt.Qt.CustomContextMenu) plotArea.customContextMenuRequested.connect(self._zoomBack) self._buildToolBar(selection, colormap, imageicons, standalonesave, standalonezoom=standalonezoom, profileselection=profileselection, aspect=aspect, polygon=polygon) if profileselection: if len(self._pickerSelectionButtons): self.graph.sigPlotSignal.connect(\ self._graphPolygonSignalReceived) self._pickerSelectionWidthValue.valueChanged[int].connect( \ self.setPickerSelectionWith) self.saveDirectory = os.getcwd() self.mainLayout.addWidget(self.graph) def sizeHint(self): return qt.QSize(int(1.5 * qt.QWidget.sizeHint(self).width()), qt.QWidget.sizeHint(self).height()) def _buildToolBar(self, selection=False, colormap=False, imageicons=False, standalonesave=True, standalonezoom=True, profileselection=False, aspect=False, polygon=False): self.solidCircleIcon = qt.QIcon(qt.QPixmap(IconDict["solidcircle"])) self.solidEllipseIcon = qt.QIcon(qt.QPixmap(IconDict["solidellipse"])) self.colormapIcon = qt.QIcon(qt.QPixmap(IconDict["colormap"])) self.selectionIcon = qt.QIcon(qt.QPixmap(IconDict["normal"])) self.zoomResetIcon = qt.QIcon(qt.QPixmap(IconDict["zoomreset"])) self.polygonIcon = qt.QIcon(qt.QPixmap(IconDict["polygon"])) self.printIcon = qt.QIcon(qt.QPixmap(IconDict["fileprint"])) self.saveIcon = qt.QIcon(qt.QPixmap(IconDict["filesave"])) self.xAutoIcon = qt.QIcon(qt.QPixmap(IconDict["xauto"])) self.yAutoIcon = qt.QIcon(qt.QPixmap(IconDict["yauto"])) self.hFlipIcon = qt.QIcon(qt.QPixmap(IconDict["gioconda16mirror"])) self.imageIcon = qt.QIcon(qt.QPixmap(IconDict["image"])) self.eraseSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["eraseselect"])) self.rectSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["boxselect"])) self.brushSelectionIcon = qt.QIcon(qt.QPixmap(IconDict["brushselect"])) self.brushIcon = qt.QIcon(qt.QPixmap(IconDict["brush"])) self.additionalIcon = qt.QIcon(qt.QPixmap(IconDict["additionalselect"])) self.hLineIcon = qt.QIcon(qt.QPixmap(IconDict["horizontal"])) self.vLineIcon = qt.QIcon(qt.QPixmap(IconDict["vertical"])) self.lineIcon = qt.QIcon(qt.QPixmap(IconDict["diagonal"])) self.copyIcon = silx_icons.getQIcon("edit-copy") self.toolBar = qt.QWidget(self) self.toolBarLayout = qt.QHBoxLayout(self.toolBar) self.toolBarLayout.setContentsMargins(0, 0, 0, 0) self.toolBarLayout.setSpacing(0) self.mainLayout.addWidget(self.toolBar) #Autoscale if standalonezoom: tb = self._addToolButton(self.zoomResetIcon, self.__zoomReset, 'Auto-Scale the Graph') else: tb = self._addToolButton(self.zoomResetIcon, None, 'Auto-Scale the Graph') self.zoomResetToolButton = tb #y Autoscale tb = self._addToolButton(self.yAutoIcon, self._yAutoScaleToggle, 'Toggle Autoscale Y Axis (On/Off)', toggle = True, state=True) tb.setDown(True) self.yAutoScaleToolButton = tb tb.setDown(True) #x Autoscale tb = self._addToolButton(self.xAutoIcon, self._xAutoScaleToggle, 'Toggle Autoscale X Axis (On/Off)', toggle = True, state=True) self.xAutoScaleToolButton = tb tb.setDown(True) #Aspect ratio if aspect: self.aspectButton = self._addToolButton(self.solidCircleIcon, self._aspectButtonSignal, 'Keep data aspect ratio', toggle=False) self.aspectButton.setChecked(False) #colormap if colormap: tb = self._addToolButton(self.colormapIcon, None, 'Change Colormap') self.colormapToolButton = tb #flip tb = self._addToolButton(self.hFlipIcon, None, 'Flip Horizontal') self.hFlipToolButton = tb #save if standalonesave: tb = self._addToolButton(self.saveIcon, self._saveIconSignal, 'Save Graph') else: tb = self._addToolButton(self.saveIcon, None, 'Save') self.saveToolButton = tb self.copyToolButton = self._addToolButton(self.copyIcon, self._copyIconSignal, "Copy graph to clipboard") #Selection if selection: tb = self._addToolButton(self.selectionIcon, None, 'Toggle Selection Mode', toggle = True, state = False) tb.setDown(False) self.selectionToolButton = tb #image selection icons if imageicons: tb = self._addToolButton(self.imageIcon, None, 'Reset') self.imageToolButton = tb tb = self._addToolButton(self.eraseSelectionIcon, None, 'Erase Selection') self.eraseSelectionToolButton = tb tb = self._addToolButton(self.rectSelectionIcon, None, 'Rectangular Selection') self.rectSelectionToolButton = tb tb = self._addToolButton(self.brushSelectionIcon, None, 'Brush Selection') self.brushSelectionToolButton = tb tb = self._addToolButton(self.brushIcon, None, 'Select Brush') self.brushToolButton = tb if polygon: tb = self._addToolButton(self.polygonIcon, None, 'Polygon selection\nRight click to finish') self.polygonSelectionToolButton = tb tb = self._addToolButton(self.additionalIcon, None, 'Additional Selections Menu') self.additionalSelectionToolButton = tb else: if polygon: tb = self._addToolButton(self.polygonIcon, None, 'Polygon selection\nRight click to finish') self.polygonSelectionToolButton = tb self.imageToolButton = None #picker selection self._pickerSelectionButtons = [] if profileselection: self._profileSelection = True self._polygonSelection = False self._pickerSelectionButtons = [] if self._profileSelection: tb = self._addToolButton(self.hLineIcon, self._hLineProfileClicked, 'Horizontal Profile Selection', toggle=True, state=False) self.hLineProfileButton = tb self._pickerSelectionButtons.append(tb) tb = self._addToolButton(self.vLineIcon, self._vLineProfileClicked, 'Vertical Profile Selection', toggle=True, state=False) self.vLineProfileButton = tb self._pickerSelectionButtons.append(tb) tb = self._addToolButton(self.lineIcon, self._lineProfileClicked, 'Line Profile Selection', toggle=True, state=False) self.lineProfileButton = tb self._pickerSelectionButtons.append(tb) self._pickerSelectionWidthLabel = qt.QLabel(self.toolBar) self._pickerSelectionWidthLabel.setText("W:") self.toolBar.layout().addWidget(self._pickerSelectionWidthLabel) self._pickerSelectionWidthValue = qt.QSpinBox(self.toolBar) self._pickerSelectionWidthValue.setMinimum(0) self._pickerSelectionWidthValue.setMaximum(1000) self._pickerSelectionWidthValue.setValue(1) self.toolBar.layout().addWidget(self._pickerSelectionWidthValue) #tb = self._addToolButton(None, # self._lineProfileClicked, # 'Line Profile Selection', # toggle=True, # state=False) #tb.setText = "W:" #self.lineWidthProfileButton = tb #self._pickerSelectionButtons.append(tb) if self._polygonSelection: _logger.info("Polygon selection not implemented yet") #hide profile selection buttons if imageicons: for button in self._pickerSelectionButtons: button.hide() self.infoWidget = qt.QWidget(self.toolBar) self.infoWidget.mainLayout = qt.QHBoxLayout(self.infoWidget) self.infoWidget.mainLayout.setContentsMargins(0, 0, 0, 0) self.infoWidget.mainLayout.setSpacing(0) self.infoWidget.label = qt.QLabel(self.infoWidget) self.infoWidget.label.setText("X = ???? Y = ???? Z = ????") self.infoWidget.mainLayout.addWidget(self.infoWidget.label) self.toolBarLayout.addWidget(self.infoWidget) self.infoWidget.hide() self.toolBarLayout.addWidget(qt.HorizontalSpacer(self.toolBar)) # ---print self.printPreview = SingletonPrintPreviewToolButton(parent=self, plot=self.graph) self.printPreview.setIcon(self.printIcon) self.toolBarLayout.addWidget(self.printPreview) def _aspectButtonSignal(self): _logger.debug("_aspectButtonSignal") if self._keepDataAspectRatioFlag: self.keepDataAspectRatio(False) else: self.keepDataAspectRatio(True) def keepDataAspectRatio(self, flag=True): if flag: self._keepDataAspectRatioFlag = True self.aspectButton.setIcon(self.solidEllipseIcon) self.aspectButton.setToolTip("Set free data aspect ratio") else: self._keepDataAspectRatioFlag = False self.aspectButton.setIcon(self.solidCircleIcon) self.aspectButton.setToolTip("Keep data aspect ratio") self.graph.setKeepDataAspectRatio(self._keepDataAspectRatioFlag) def showInfo(self): self.infoWidget.show() def hideInfo(self): self.infoWidget.hide() def setInfoText(self, text): self.infoWidget.label.setText(text) def setMouseText(self, text=""): try: if len(text): qt.QToolTip.showText(self.cursor().pos(), text, self, qt.QRect()) else: qt.QToolTip.hideText() except Exception: _logger.warning("Error trying to show mouse text <%s>" % text) def focusOutEvent(self, ev): qt.QToolTip.hideText() def infoText(self): return self.infoWidget.label.text() def setXLabel(self, label="Column"): return self.graph.setGraphXLabel(label) def setYLabel(self, label="Row"): return self.graph.setGraphYLabel(label) def getXLabel(self): return self.graph.getGraphXLabel() def getYLabel(self): return self.graph.getGraphYLabel() def hideImageIcons(self): if self.imageToolButton is None:return self.imageToolButton.hide() self.eraseSelectionToolButton.hide() self.rectSelectionToolButton.hide() self.brushSelectionToolButton.hide() self.brushToolButton.hide() if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.hide() self.additionalSelectionToolButton.hide() def showImageIcons(self): if self.imageToolButton is None:return self.imageToolButton.show() self.eraseSelectionToolButton.show() self.rectSelectionToolButton.show() self.brushSelectionToolButton.show() self.brushToolButton.show() if hasattr(self, "polygonSelectionToolButton"): self.polygonSelectionToolButton.show() self.additionalSelectionToolButton.show() def _hLineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.hLineProfileButton: button.setChecked(False) if self.hLineProfileButton.isChecked(): self._setPickerSelectionMode("HORIZONTAL") else: self._setPickerSelectionMode(None) def _vLineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.vLineProfileButton: button.setChecked(False) if self.vLineProfileButton.isChecked(): self._setPickerSelectionMode("VERTICAL") else: self._setPickerSelectionMode(None) def _lineProfileClicked(self): for button in self._pickerSelectionButtons: if button != self.lineProfileButton: button.setChecked(False) if self.lineProfileButton.isChecked(): self._setPickerSelectionMode("LINE") else: self._setPickerSelectionMode(None) def setPickerSelectionWith(self, intValue): self._pickerSelectionWidthValue.setValue(intValue) #get the current mode mode = "NONE" for button in self._pickerSelectionButtons: if button.isChecked(): if button == self.hLineProfileButton: mode = "HORIZONTAL" elif button == self.vLineProfileButton: mode = "VERTICAL" elif button == self.lineProfileButton: mode = "LINE" ddict = {} ddict['event'] = "profileWidthChanged" ddict['pixelwidth'] = self._pickerSelectionWidthValue.value() ddict['mode'] = mode self.sigProfileSignal.emit(ddict) def hideProfileSelectionIcons(self): if not len(self._pickerSelectionButtons): return for button in self._pickerSelectionButtons: button.setChecked(False) button.hide() self._pickerSelectionWidthLabel.hide() self._pickerSelectionWidthValue.hide() if self.graph.getInteractiveMode()['mode'] == 'draw': self.graph.setInteractiveMode('select') def showProfileSelectionIcons(self): if not len(self._pickerSelectionButtons): return for button in self._pickerSelectionButtons: button.show() self._pickerSelectionWidthLabel.show() self._pickerSelectionWidthValue.show() def getPickerSelectionMode(self): if not len(self._pickerSelectionButtons): return None if self.hLineProfileButton.isChecked(): return "HORIZONTAL" if self.vLineProfileButton.isChecked(): return "VERTICAL" if self.lineProfileButton.isChecked(): return "LINE" return None def _setPickerSelectionMode(self, mode=None): if mode is None: self.graph.setInteractiveMode('zoom') else: if mode == "HORIZONTAL": shape = "hline" elif mode == "VERTICAL": shape = "vline" else: shape = "line" self.graph.setInteractiveMode('draw', shape=shape, label=mode) ddict = {} if mode is None: mode = "NONE" ddict['event'] = "profileModeChanged" ddict['mode'] = mode self.sigProfileSignal.emit(ddict) def _graphPolygonSignalReceived(self, ddict): _logger.debug("PolygonSignal Received") for key in ddict.keys(): _logger.debug("%s: %s", key, ddict[key]) if ddict['event'] not in ['drawingProgress', 'drawingFinished']: return label = ddict['parameters']['label'] if label not in ['HORIZONTAL', 'VERTICAL', 'LINE']: return ddict['mode'] = label ddict['pixelwidth'] = self._pickerSelectionWidthValue.value() self.sigProfileSignal.emit(ddict) def _addToolButton(self, icon, action, tip, toggle=None, state=None, position=None): tb = qt.QToolButton(self.toolBar) if icon is not None: tb.setIcon(icon) tb.setToolTip(tip) if toggle is not None: if toggle: tb.setCheckable(1) if state is not None: if state: tb.setChecked(state) else: tb.setChecked(False) if position is not None: self.toolBarLayout.insertWidget(position, tb) else: self.toolBarLayout.addWidget(tb) if action is not None: tb.clicked.connect(action) return tb def __zoomReset(self): self._zoomReset() def _zoomReset(self, replot=None): _logger.debug("_zoomReset") if self.graph is not None: self.graph.resetZoom() def _yAutoScaleToggle(self): if self.graph is not None: self.yAutoScaleToolButton.setDown( not self.graph.isYAxisAutoScale()) self.graph.setYAxisAutoScale( not self.graph.isYAxisAutoScale()) def _xAutoScaleToggle(self): if self.graph is not None: self.xAutoScaleToolButton.setDown( not self.graph.isXAxisAutoScale()) self.graph.setXAxisAutoScale( not self.graph.isXAxisAutoScale()) def _copyIconSignal(self): pngFile = BytesIO() self.graph.saveGraph(pngFile, fileFormat='png') pngFile.flush() pngFile.seek(0) pngData = pngFile.read() pngFile.close() image = qt.QImage.fromData(pngData, 'png') qt.QApplication.clipboard().setImage(image) def _saveIconSignal(self): self.saveDirectory = PyMcaDirs.outputDir fileTypeList = ["Image *.png", "Image *.jpg", "ZoomedImage *.png", "ZoomedImage *.jpg", "Widget *.png", "Widget *.jpg"] outputFile, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=fileTypeList, message="Output File Selection", currentdir=self.saveDirectory, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(outputFile): return outputFile = outputFile[0] filterused = filterused.split() filetype = filterused[0] extension = filterused[1] outputDir = os.path.dirname(outputFile) self.saveDirectory = outputDir PyMcaDirs.outputDir = outputDir #always overwrite for the time being if len(outputFile) < len(extension[1:]): outputFile += extension[1:] elif outputFile[-4:] != extension[1:]: outputFile += extension[1:] outputFile = os.path.join(outputDir, outputFile) if os.path.exists(outputFile): try: os.remove(outputFile) except Exception: qt.QMessageBox.critical(self, "Save Error", "Cannot overwrite existing file") return if filetype.upper() == "IMAGE": self.saveGraphImage(outputFile, original=True) elif filetype.upper() == "ZOOMEDIMAGE": self.saveGraphImage(outputFile, original=False) else: self.saveGraphWidget(outputFile) def saveGraphImage(self, filename, original=False): format_ = filename[-3:].upper() activeImage = self.graph.getActiveImage() rgbdata = activeImage.getRgbaImageData() # silx to pymca scale convention (a + b x) xScale = activeImage.getOrigin()[0], activeImage.getScale()[0] yScale = activeImage.getOrigin()[1], activeImage.getScale()[1] if original: # save whole image bgradata = numpy.array(rgbdata, copy=True) bgradata[:, :, 0] = rgbdata[:, :, 2] bgradata[:, :, 2] = rgbdata[:, :, 0] else: shape = rgbdata.shape[:2] xmin, xmax = self.graph.getGraphXLimits() ymin, ymax = self.graph.getGraphYLimits() # save zoomed image, for that we have to get the limits r0, c0 = convertToRowAndColumn(xmin, ymin, shape, xScale=xScale, yScale=yScale, safe=True) r1, c1 = convertToRowAndColumn(xmax, ymax, shape, xScale=xScale, yScale=yScale, safe=True) row0 = int(min(r0, r1)) row1 = int(max(r0, r1)) col0 = int(min(c0, c1)) col1 = int(max(c0, c1)) if row1 < shape[0]: row1 += 1 if col1 < shape[1]: col1 += 1 tmpArray = rgbdata[row0:row1, col0:col1, :] bgradata = numpy.array(tmpArray, copy=True, dtype=rgbdata.dtype) bgradata[:, :, 0] = tmpArray[:, :, 2] bgradata[:, :, 2] = tmpArray[:, :, 0] if self.graph.isYAxisInverted(): qImage = qt.QImage(bgradata, bgradata.shape[1], bgradata.shape[0], qt.QImage.Format_ARGB32) else: qImage = qt.QImage(bgradata, bgradata.shape[1], bgradata.shape[0], qt.QImage.Format_ARGB32).mirrored(False, True) pixmap = qt.QPixmap.fromImage(qImage) if pixmap.save(filename, format_): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def saveGraphWidget(self, filename): format_ = filename[-3:].upper() if hasattr(qt.QPixmap, "grabWidget"): # Qt4 pixmap = qt.QPixmap.grabWidget(self.graph.getWidgetHandle()) else: # Qt5 pixmap = self.graph.getWidgetHandle().grab() if pixmap.save(filename, format_): return else: qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return def setSaveDirectory(self, wdir): if os.path.exists(wdir): self.saveDirectory = wdir return True else: return False def selectColormap(self): qt.QMessageBox.information(self, "Open", "Not implemented (yet)") def _zoomBack(self, pos): self.graph.getLimitsHistory().pop() class MyQLabel(qt.QLabel): def __init__(self,parent=None,name=None,fl=0,bold=True, color= qt.Qt.red): qt.QLabel.__init__(self,parent) palette = self.palette() role = self.foregroundRole() palette.setColor(role,color) self.setPalette(palette) self.font().setBold(bold) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = RGBCorrelatorGraph() container.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/Silx_Icons.py0000644000000000000000000066600314741736366021350 0ustar00rootroot#/*########################################################################## # Copyright (C) 2019 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" folder = [ "30 30 24 1 ", " c #626365", ". c #9A7B59", "X c #ED9124", "o c #F7992D", "O c #B68D5D", "+ c #F6A851", "@ c #D29E64", "# c #F4B56E", "$ c #7E7E81", "% c #7F8083", "& c #908F91", "* c #AEA397", "= c #B2B2B3", "- c #F2BD82", "; c #CAB7A3", ": c #F5C794", "> c #D1C4B5", ", c #F1D3B0", "< c #BCBDC1", "1 c #BFC0C3", "2 c #D2D2D3", "3 c #F4E2CD", "4 c #DEDFE3", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555454555555555555", "555555555545555454454555555555", "555555544544442==&%*4555555555", "555554442221=*&&$$ 4445555335", "55442221222==&&% *>:-+oXX+5", "5224444422==&&%OOO.XXXoooXXX:5", "424444442<=**@@#+++++oXXooXX35", "52444442==;-:###++ooooooXoo#55", "44244421==-:###+++++oooXXXo:55", "5424421<=*:::###++ooooooXoo355", "441422<=*;:::##+++o+ooooXo#555", "54222<==&:::-##++++oooXoXo:555", "44212==&*,::###+++ooooooXo4555", "554==**&;,:::##++++++oooX#5555", "5442==&&,,::-###+++oooooX,4455", "5442&&&*,,::-##++++ooooo+45555", "5543=%%>,,::-###+o+ooooo#44555", "5542<$&3,,::-##+++++ooXO445555", "55542&;33,:,-###+OOO@=12445555", "55544&23,,:@OOO;==111222445555", "55554>>;;;==11<1>2222444355555", "555544422222>22224224445555555", "555545443424244444445455555555", "555555554444454455555555555555", "555555555554555555555555555555", "555555555555555555555555555555" ] draw_pencil = [ "30 30 22 1 ", " c #404040", ". c #01A652", "X c #22AA5A", "o c #1AAD62", "O c #32B672", "+ c #53B66D", "@ c #F7941E", "# c #F39828", "$ c #D8A23E", "% c #A9B363", "& c #D0B15D", "* c #F5C07B", "= c #50BC84", "- c #5DC690", "; c #6DCA97", ": c #9B9B9B", "> c #9CD5AB", ", c #D9CB95", "< c #ACE2C6", "1 c #D4D6D5", "2 c #D3EEDE", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "3333333333333333333332-XO23333", "333333333333333333332-O..o3333", "3333333333333333333,*%....<333", "333333333333333333,*#@%...<333", "33333333333333333&*#@@#+.O3333", "3333333333333333>*@@@@@#;33333", "333333333333333;-%@@@@@%333333", "33333333333332;=..&@@@&3333333", "3333333333332;O...o$@,33333333", "333333333332;o.....+,333333333", "3333333333<-......o23333333333", "333333333>=......=233333333333", "33333333;o......=3333333333333", "3333333=.......;33333333333333", "3333331+......<333333333333333", "33333322O....<3333333333333333", "333331331o.o233333333333333333", "33333:3331O2333333333333333333", "3333 111133333333333333333333", "3332 :133333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] image_select_box = [ "30 30 24 1 ", " c #25572D", ". c #6A6F2E", "X c #4A4B42", "o c #A6241F", "O c #CF3F24", "+ c #9E6025", "@ c #728C38", "# c #29994D", "$ c #629066", "% c #A19C33", "& c #CB9B2A", "* c #8D7C93", "= c #7E8280", "- c #7DAE96", "; c #868888", ": c #8EAB9D", "> c #8CB0AA", ", c #AAAFAD", "< c #9BCFA2", "1 c #93CEAE", "2 c #B8D5C3", "3 c #CED3CC", "4 c #DBE6D0", "5 c None", "555554554555455454554554554555", "55,====*===;;,;;=====*==*=**55", "55,=*=**=*=><2<=*======*===;55", "55,=**333344444433333333,=*:55", "55,==,5,2242444333444325,==;55", "55,==,3 #@@@@..X+&+.@#5*==,55", "55,;=;5 @@..+ooo+o+%@5;==;55", "55,;=,5 ....oXooooO+%5,==;55", "55,==:5 ....ooooooOO%5>>*;55", "55,*=,5 ..++oooooOOO%5>->:55", "55,==,5 .@+++ooooooo+&5,>1>55", "55,=*,5 @@@%+oooooOOO&%5,-1,55", "55,;;25X%@.%++oooooOO%%5>-1>55", "55,;;,5 %.++ooOoOO+&%5,11:55", "55,=;<5 ..+++oOOoOO+%@5,:1:55", "55,==,5 +@+++OoOO++%,:1,55", "55,;=,5.@@%+&+&O+O&%%@#4,:1:55", "55,;;<5$@@&.&+O&+&&&@##5<:,;55", "55,;:<5#@%&+%&++&%&%@##4,:*;55", "55,;:2532443344444222425,,;,55", "55>>-1432333333333334242;**;55", "55,>>--$$$$$$$$$$$$$$$$$***:55", "55,*>>-=----:-<--1-<>-1>,=;;55", "55>->>1>1-<:<<<<1<11<>,,*=;:55", "55,==*:1>>1>11<<-<1-,,**===;55", "55,;==*:>11111><1:>,;***===,55", "55,=====*->1:1;>:;;========;55", "55,===*==**-;;;**;=========,55", "55,*=;====*===;*==*====**=;,55", "55,::;,;;-*>;:3,,;:;:;,;;;;,55" ] math_sigma = [ "30 30 15 1 ", " c #565656", ". c #747474", "X c #F7941E", "o c #F79928", "O c #F8A139", "+ c #FAB86A", "@ c #FAC07C", "# c gray51", "$ c #B2B2B2", "% c #FBC88C", "& c #FCDEBA", "* c #D3D3D3", "= c #EBDBC9", "- c #FDE9D1", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;-++++++++++++-;;;;;;;;;;;", ";;;;;&XXXXXXXXXXoX=**$##.;;;;;", ";;;;;&oXXXoooooooo-;;;;* ;;;;;", ";;;;;;%XXX-;;;;;;;;;;;;; ;;;;;", ";;;;;;;%XXo-;;;;;;;;;;;; ;;;;;", ";;;;;;;;%XXo-;;;;;;;;;;* ;;;;;", ";;;;;;;;;@XXO-;;;;;;;;;; ;;;;;", ";;;;;;;;;;@oXO-;;;;;;;;; ;;;;;", ";;;;;;;;;;;+XXO;;;;;;;;; ;;;;;", ";;;;;;;;;;;+XX%;;;;;;;;- ;;;;;", ";;;;;;;;;;&XXO;;;;;;;;;; ;;;;;", ";;;;;;;;;;oXX-;;;;;;;;;; ;;;;;", ";;;;;;;;;+XX%;;;;;;;;;;- ;;;;;", ";;;;;;;;&XXO;;;;;;;;;;;; ;;;;;", ";;;;;;;;OXo-;;;;;;;;;;;* ;;;;;", ";;;;;;;+XX%;;;;;;;;;;;;; ;;;;;", ";;;;;;&XXO;;;;;;;;;;;;;- ;;;;;", ";;;;;-oXX%&&&&&&&&;;;;;; ;;;;;", ";;;;;-XXXXXXXXXXXX&;**$$ ;;;;;", ";;;;;-XXXXXXXXXXXX&*=**$$;;;;;", ";;;;;;&&&&&&&&&-&&;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] compare_mode_hline = [ "30 30 19 1 ", " c #040302", ". c #201E0C", "X c #27271C", "o c #493F24", "O c #606525", "+ c #865D2B", "@ c #9A6B31", "# c #738730", "$ c #A3A03D", "% c #DA9745", "& c #F8AC4F", "* c #B9D94D", "= c #D4F958", "- c #0504AA", "; c #2C28B8", ": c #4531BE", "> c #523BC3", ", c #4854C6", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<. . . . .<<", "<< o++++++@+++++++++++@+++o <<", "<<.+&&&&&&&&%%@%%%%&&&&&&&+ <<", "<< +&&&&&&&&. .&&&&&&&&+ <<", "<< +&&&&&&&@ %&&&&&&&+.<<", "<< +&&&&&&&o o&&&&&&&+ <<", "<< +&&&&&&% %&&&&&&+ <<", "<< +&&&&&&@ .X @&&&&&&+ <<", "<<.+&&&&&&o @+ X&&&&&&+ <<", "<< +&&&&&% %% %&&&&&O <<", "<< +&&&&&O X&&X +&&&&&+ <<", "<< +&&&&&. @&&@ X&&&&&+.<<", "<<-;>>>::----:>::----:>>>>;-<<", "<<-;,,,,-----------;,,,,,,;-<<", "< c #F5F7FF", ", c #F6F8FF", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<:%++%><<<<<<<<<<<<", "<<<<<<<<<<<=. o-<<<<<<<<<<<", "<<<<<<<<<<:. X><<<<<<<<<<", "<<<<<<<<<<$ &<<<<<<<<<<", "<<<<<<<<<<@ #<<<<<<<<<<", "<<<<<<<<<<@ #<<<<<<<<<<", "<<<<<<<<<<% *<<<<<<<<<<", "<<<<<<<<<<>o O,<<<<<<<<<<", "<<<<<<<<<<<-X O;<<<<<<<<<<<", "<<<<<<<<<<<<>&@@*,<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" ] add_shape_unknown = [ "30 30 22 1 ", " c #5BA03E", ". c #09A957", "X c #1CB064", "o c #2AB56E", "O c #F7941E", "+ c #F79A2A", "@ c #EB9E34", "# c #F9AD52", "$ c #FAB869", "% c #FAC27F", "& c #45BE80", "* c #60C892", "= c #8FD8B3", "- c #A1DFBF", "; c #FBC98E", ": c #FCDBB2", "> c #F4DFBD", ", c #B8E6CE", "< c #CEEEDD", "1 c #FEEAD3", "2 c #D8F1E5", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "3333333333331::133333333333333", "3333333331$OOOOO+#:33333333333", "33333333;OOOOOOOOOO#1333333333", "3333333#OOO%:311;+OO+333333333", "333333$OO#33333333;OO#33333333", "33333;OO$333,*&=333$OO#3333333", "33331+O#333&....o333$OO#333333", "3333%O+1333oX==..,333$OO@13333", "3333+O$3333,332.X,3333;O+@1333", "3331OO13333333X.X333333;OO+133", "333:OO1333333&..23331::1$O++13", "333:OO3333333..<331#OOOOOOOO;3", "333:OO1333332..331@OOOOOOO#;33", "3331OO:333333*-33+OO;31>133333", "3333+O;3333332<33OO:3333333333", "3333#O#333332X.31OO:333,<33333", "3333;O+133332..23@O#33,.X33333", "33333OO$33333==33;OO:3,.X33333", "33333%OO;333333333@O+3,.X33333", "333333@OO:33333333: ........23", "3333331+OO%333333:# .....X..23", "33333331@OO+%::;+OO@@,=.X<<<33", "333333333#O+OOOOOO+%13,.X33333", "3333333333>$OOOO$>3333,.X33333", "33333333333333133333332*=33333", "333333333333333333333333333333", "333333333333333333333333333333" ] math_phase_color = [ "30 30 24 1 ", " c #040302", ". c #28231E", "X c #583D20", "o c #616161", "O c #EA1B1D", "+ c #E35422", "@ c #FB1E62", "# c #7C981D", "$ c #25FF1C", "% c #5DFF2A", "& c #25FF5E", "* c #9EFB26", "= c #CCC131", "- c #EAE120", "; c #552EFB", ": c #FF299F", "> c #A029FD", ", c #F021EB", "< c #B561F2", "1 c #3FE9C9", "2 c #A6A6A5", "3 c #BBCEE9", "4 c #D3D7DC", "5 c None", "555555555555555555554225555555", "55555555555555555555X 2555555", "55555555555555555554 o555555", "5555555555542****-4o o. 455555", "5555555552%$%%***--. 4o 255555", "55555554$$$$%%%***# .-2 55555", "5555554&$$$%%%***-X #--. 25555", "555554&&&$$$$%%**- ---# o5555", "555541&&&&&$%%***# X---+ 5555", "55551&1&&&&%$%**-. =-=+-. 2555", "55551&&1&&&&&%%** -+=++X .555", "5555111111&&&&**X .. . 455", "5554o44oXo41&&%* .... . o55", "55o 4o 23&%# +++++OOO .55", "52 25 .5o 411X X++O+OOOO 25", "5X o13 .33o o1; @O@OOOOOOX X5", "4 413 .312 .3o .::@@@+@OO@ 5", "4 313 .313 3;>,:::@@@@@@:445", "2 .513 .1;3 3>>,,,::@@@@@4555", "4 513 .3;3 3>>,,,:::::@:5555", "5 4<3 .3;2 .3>>,,,,,:::::5555", "5. 233 .33. o<>><,,,:,:::55555", "52 24 .4o 3;>>>,,,,,,:555555", "55o 4;;>>>,,,,,,4555555", "5552o. .o3;;;>>>>,,,,55555555", "555554 .53;;;;>>>,>,<555555555", "555554 .5553<<>>,<455555555555", "555554 .5555555555555555555555", "555554 .5555555555555555555555", "555555245555555555555555555555" ] clipboard = [ "30 30 17 1 ", " c #4F4E50", ". c #6E6E70", "X c #F7941E", "o c #F89A2B", "O c #F8A038", "+ c #F8A848", "@ c #FAB86A", "# c #FAC17C", "$ c #7E7F80", "% c #919192", "& c #AEAEAF", "* c #FBCA8E", "= c #FCD6A8", "- c #C0BFC0", "; c #CECECF", ": c #FEEDD9", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>#@>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>Xo>>>>>>>>>>>>>>", ">>>>>>>>>>>>>:XX:>>>>>>>>>>>>>", ">>>>>>>>>>>>>@*=@>>>>>>>>>>>>>", ">>>>>>>>>>>>:+>>@=>>>>>>>>>>>>", ">>>>>>>::::>Oo:>+o>::::>>>>>>>", ">>>>>>#XoX@*XXXoXX*@XXX@>>>>>>", ">>>>>>oo+@:XXXXXXXX:@+oX>>>>>>", ">>>>>>XO>>>========:>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X:>>>>>", ">>>>>>XO>>;;;;:;;-&;>>+X>>>>>>", ">>>>>>XO>>$. ..%;>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>OX>>>>>>", ">>>>>>XO>>>;;;----&>>>+X:>>>>>", ">>>>>>XO>>. .>>>+X>>>>>>", ">>>>>>XO>>;:>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>;&:>>>>>>>>+X>>>>>>", ">>>>>>XO>>%%%>>>>>>>>>+X:>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>;........&>>+X>>>>>>", ">>>>>>XO>>%%&%&&&%%;>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>XO>>>>>>>>>>>>>>+X>>>>>>", ">>>>>>oXooooooooooooooXX:>>>>>", ">>>>>>=OooooooooooooooO#>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] plot_window = [ "30 30 15 1 ", " c #181818", ". c #2B2B2B", "X c #525252", "o c #6A6B6B", "O c #7EAC93", "+ c #939695", "@ c #96ABA0", "# c #B3B3B4", "$ c #9BD8B7", "% c #BED1C7", "& c #ADE1C5", "* c #CFD0CF", "= c #D1EEDF", "- c #DFE5E3", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";##*******#*******#*********#-", "-**-*#;****;**-%;;;;;;;;;;;;--", "--*;-*;*--*;*--*;;;;;;;;;;;;--", "-#*#*#*##**#*#*#*#*#**#****##-", ";------%**=%%&*&=%%&*&&-------", ";-;-;;&&==============&%;----;", "---;--%=;;;;;##;;;;;;;=%---;-;", ";---;-&=;;;;; ;;;;;;;==------", ";-;-;-*@;;;;*X++;;;;;;-%--;--;", "------%=;;;;X@*X;;;;;;=%------", "-;;-;-==;;;o.;;.;;;;;;-*-----;", ";-----%@;;oo-;;X#**;;;-*-;----", "---;--*-;;o%;;;@o..;;;==--;-;-", "-;----*-;;.*;;;- ..;;;=%-----;", ";---;-%+;.o;;;;;+#X*;;=%-;---;", ";-----%=@o;;;;;;;;++;;=&--;--;", ";;-;--%-o*;;;;;;;;* .;==------", "-----;%oX;;;;;;;;;;oo+=%;-;-;;", ";----;&=;;;;;;;;;;;;;*=%---;-;", ";-;---%=;;;;;;;;;;;;;;=&;-----", "--;-;-*$$$O$&@$$O$$@&$$%---;-;", ";*---------------------------;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] plot_roi_reset = [ "30 30 24 1 ", " c #252526", ". c #175832", "X c #43513F", "o c #564F50", "O c #644E50", "+ c #6B6B6D", "@ c #AE2B2F", "# c #EC1C24", "$ c #CF282E", "% c #E22A31", "& c #A54238", "* c #A1605F", "= c #D3575C", "- c #189C56", "; c #619478", ": c #7E7E80", "> c #68B68D", ", c #6CC999", "< c #8D8E90", "1 c #A4989A", "2 c #A9A9AB", "3 c #B5C7B5", "4 c #D2CFCF", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555<55555555555555", "55555555555555+ +5555555555555", "55555555,45555 1 4555,35555555", "55555555-,5552+2o<555-,5555555", "555555==-,555O>2:X555-<3=55555", "555544=%&,555 222 555-*%#45555", "5555541$#=452o222o254o#%*45555", "5555542*@#=1 <222++41##*245555", "55555541.$#@>12222 =##o1455555", "55555554.X$#$<222<@#%.X4555555", "55555554-X $#=1<1&#$*..2555555", "55555555-.oo$#&<@#$ 2--+555555", "55555555-.O+O$#$#$O 2-> 555555", "55555555-.>:Oo###o+ -, 555555", "5555555+--1<+@###@: 555555", "5555552X->1<$#$ $#@12-,o455555", "555555+2-><$#$ooo$#$2-,:<55555", "555555X5-;$#@o++Oo$#*-,2X<:555", "555554X5-$#@+:<<:+O$#&>5 455", "55555o14@#@o+<121:+o$#&5<+2<55", "55552<4%#@+:<22221:+o$#=455o45", "555554##=<34555555441+%#=55555", "555553$@<2455555555541<%%45555", "555553114455555555554421245555", "555554444555555555555542445555", "555555555555555555555555555555", "555555555555555555555555555555" ] selected = [ "30 30 24 1 ", " c #131313", ". c #2E2E2E", "X c #076B38", "o c #1E7E4D", "O c #2B704D", "+ c #4D4E4D", "@ c #51695D", "# c #707170", "$ c #139753", "% c #2B8C5A", "& c #03A552", "* c #2AAC69", "= c #478867", "- c #5D9D7C", "; c #6EA187", ": c #7BC29E", "> c #999A99", ", c #8FB3A1", "< c #B3B4B3", "1 c #9ECAB3", "2 c #B0D2C1", "3 c #D1D2D2", "4 c #CFE4D9", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555445555", "555555555555555555555551&,3555", "55555555555555555555551&&;<555", "555554>>>>>>>>>>>>>>>;$&&%<555", "55555<.############@+%&&&O<455", "55555<@5555555555555-&&&X@<555", "55555<+5555555555551&&$O.#3555", "55555<+555555555553&&&O#.>4555", "55555<@55555555554-&&o@>.<5555", "55555<+*:345555552&&$@>3+35555", "55555<+&&*<455555*&&@><4.<5555", "55555<+&&&$<3555,&&O#<45+35555", "55555,+&&&&$<444$&o#>355.35555", "55555<+$&&&&-34<&&@>3555+35555", "55555<+<@$&&&><-&%#<5555.35555", "55555<+3<#$&&$>$$->35555+35555", "55555<+533>o&&=&=><55555+<5555", "55555<+554<>&&&&#<455555+35555", "55555<@55543-&&%>3455555.35555", "55555<+55554<%&@>3555555+35555", "55555<@555553>$;<3555555+<5555", "55555<+5555553;<35555555+35555", "55555< ................. 35555", "555555444533433333534453355555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] item_object = [ "30 30 13 1 ", " c #0034FF", ". c #1646FF", "X c #325CFF", "o c #3961FF", "O c #5D7EFF", "+ c #5F80FF", "@ c #7490FF", "# c #99AEFF", "$ c #A7B9FF", "% c #B8C6FF", "& c #CDD7FF", "* c #DCE3FF", "= c None", "==============================", "==============================", "==============================", "==============================", "=============$@@@*============", "=============o %============", "========#O===. #==*$========", "=======# X*& @=&. #=======", "======$ . X #======", "=======. O======", "=======% X=======", "========X .*=======", "====*&$@ X##X &=======", "====@ X====X o$====", "====@ #====# @====", "====@ #====# @====", "====$X o====X @====", "=======& X##X @#&*====", "=======*. o========", "=======o $=======", "======+ =======", "======# o . $======", "=======# .%=@ &*X #=======", "========$*==# ===O#========", "============% O=============", "============*@@@#=============", "==============================", "==============================", "==============================", "==============================" ] item_2dim = [ "30 30 4 1 ", " c #0034FF", ". c #2854FF", "X c #4B70FF", "o c None", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "ooooooX................Xoooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "oooooo. .oooooo", "ooooooX................Xoooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo", "oooooooooooooooooooooooooooooo" ] crosshair = [ "30 30 20 1 ", " c #010101", ". c #333333", "X c #5B5B5B", "o c #CA7A1A", "O c #9E7C54", "+ c #F5931E", "@ c #E3902D", "# c #F69726", "$ c #AE8657", "% c #80807F", "& c #C8955A", "* c #F7A747", "= c #949494", "- c #B2B2B2", "; c #CEB596", ": c #FBCF9A", "> c #DDC8AF", ", c #FBD7AD", "< c #D2D2D2", "1 c None", "11111##*1111111111111111111111", "11111+#*1111111111111111111111", "11111++*1111111111111111111111", ",::::++@::::::::::::::::::::::", "*+++++*@++++++++++++++++++++++", "#++++@&,o+++++++++++++++++++++", ",,,,:o$<<;>:,,,,,,,,,,,,,,,,,,", "11111oOXX<<1111111111111111111", "11111o$% X<<111111111111111111", "11111oO% X<<<1111111111111111", "11111o$% X<<1111111111111111", "11111o$X X<<<11111111111111", "11111oO= X<<11111111111111", "11111oOX .<<1111111111111", "11111o$= .<<111111111111", "11111oOX .XXX=<<11111111111", "11111oOX X .<---<111111111111", "11111oO= =1. -=-<<<11111111111", "11111o$%=-== .<<11111111111111", "11111@$<-==< <<<1111111111111", "11111o$;<<-=X .<<1111111111111", "11111@@@1<<=1 -<1111111111111", "11111++@111--X X<<111111111111", "11111#+*111<=<-<<1111111111111", "11111++*1111-<--<1111111111111", "11111#+*11111<<111111111111111", "11111++*1111111111111111111111", "11111#+*1111111111111111111111", "11111+#*1111111111111111111111", "11111##*1111111111111111111111" ] cube_top = [ "30 30 15 1 ", " c #13120F", ". c #21180C", "X c #2F271D", "o c #3B3938", "O c #4B4B4B", "+ c #6E6E6E", "@ c #BB741F", "# c #B37A36", "$ c #D88C31", "% c #F09F3E", "& c #F9A847", "* c #959595", "= c #ACACAC", "- c #CBCBCB", "; c None", ";;;;;;;;;;;;;-;;;;-;;-;-;;-;-;", ";;;;;;;;;;-. ...... .. ;", ";;;;;;;;;-X@%&%&&&&&&&&&&%@o ;", ";;;;;;;;-X%$%&&&&&&&&&&&&#X;X-", ";;;;;;;-X$%@%&&&&&&&&&&&#o;; ;", ";;;;;;-X$&&$%&&&&&&&&&&#X;;; ;", ";;;;;-X$&&&$%&&&&&&&&&#X;;;; ;", ";;;;-X%&&&%$%&&&&&&&&#X;;;;;X;", ";;;-X$&&&&&$%&&&&&&&#X;;;;;; ;", ";;-X$&&&&&%$%%&&&&&#X;;;;;;; ;", ";-.$&&&&&&&@%%&&%&#X;;;;;;;; ;", "- X;;;;;;;;; ;", "; ---------o*----=O;;;;;;;;; ;", "; ;;;;;;;;;o-;;;;-o;;;;;;;;; ;", "; ;;;;;;;;;O-;;;;-O;;;;;;;;; ;", ";X;;;;;;;;;O-;;;;-o;;;;;;;;; ;", "; ;;;;;;;;;O-;;;;-o;;;;;;;;;X;", "; ;;;;;;;;;o*----*X--==----= ;", ";X;;;;;;;;;X -", "-X;;;;;;;;o=;;;;;-o;;;;;;;-X-;", "; ;;;;;;;o=;;;;;;-O;;;;;;;X-;;", ";X;;;;;;O=;;;;;;;-o;;;;;;o-;;;", "; ;;;;;O=;;;;;;;;-o;;;;;O=;;;;", "; ;;;;O*;;;;;;;;;-o;;;;o=;;;;;", ";X;;;O*;;;;;;;;;;-O;;;o=;;;;;;", "-X;;O*;;;;;;;;;;;-O;;O=;;;;;;;", ";X;++;;;;;;;;;;;;-o;O=;;;;;;;;", "; ++;;;;;;;;;;;;;-oO*;;;;;;;;;", "- *;;;;;;;;;;", ";;-;;-;;-;;;;--;-;;;;;;;;;;;;;" ] shape_diagonal = [ "30 30 8 1 ", " c #F7941E", ". c #F79827", "X c #F9B15A", "o c #F9B360", "O c #FBCA90", "+ c #FCD6A9", "@ c #FDE3C5", "# c None", "##############################", "##############################", "##############################", "##############################", "##############################", "##############################", "##############################", "########+@####################", "#######+ .@###################", "#######X .@##################", "########o .@#################", "#########o .@################", "##########X .@###############", "###########X .@##############", "############o .@#############", "#############o .+############", "##############X .@###########", "###############X .@##########", "################X @#########", "#################X .@########", "##################X .@#######", "###################X .@######", "####################X .######", "#####################X.O######", "######################O#######", "##############################", "##############################", "##############################", "##############################", "##############################" ] plot_symbols = [ "30 30 13 1 ", " c #02A752", ". c #1DB064", "X c #37BA77", "o c #58C58D", "O c #67CA97", "+ c #7CD1A6", "@ c #8ED8B2", "# c #A0DEBE", "$ c #A3DFC0", "% c #B0E3C9", "& c #D0EFDF", "* c #D9F2E5", "= c None", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "======================*&======", "======================o.======", "=====================% o=====", "==========*+o+*=====*. %====", "=========# #====o .====", "==#XXX=== ===# o===", "==O .*=$ %=*. %==", "==O .*=# $==. @==", "==O. *=& &==& X===", "===*=*===o o====@ *===", "==========@. .@======. @====", "=====================& X=====", "======================@ *=====", "=======================#======", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================" ] cube_back = [ "30 30 14 1 ", " c #120F0D", ". c #261A0B", "X c #392711", "o c #3A3835", "O c #4B4B4B", "+ c #6E6E6E", "@ c #AE7631", "# c #C98739", "$ c #E79C42", "% c #F9A847", "& c #919191", "* c gray68", "= c #D2D2D2", "- c None", "------------=-=--=-=--=--=--=-", "----------= -", "---------=oo#%$%%%%%$%%%%%@. -", "--------=o=o#%%%%%%%%%%%%@X$.=", "-------=o=-o#%%%%%%%%%%%@X$%.-", "------=o=--o#%%%%%%%%%%@X$%%.=", "-----=o=---o#%%%%%%%%%@X$%%%.-", "----=o=----o#%%%%%%%%@X$%%%%.-", "---=o=-----o#%%%%%%%@X$%%%%%.=", "--=o=------o#%%%%%%@X$%%%%%%.-", "-=o=-------o#$%%%%@X$%%%%%%% -", "= .$%%%%%%%% -", "- =========X@####@X%%%%%%%%%.-", "- ---------o#$%%%#X%%%%%%%%%.=", "-.---------o#%%%%#X%%%%%%%%% -", "-.---------o#%%%%#X%%%%%%%%% -", "- ---------o#%%%%#X%%%%%%%%%.-", "- ---------o@####@X######### -", "- ---------o . . . . =", "=o-------=o*-----=o-------=o=-", "-.-------o*------=o-------o=--", "-.------o*-------=O------o*---", "- -----O*--------=O-----O*----", "- ----O&---------=o----o*-----", "- ---O&----------=o---o*------", "=o--O&-----------=O--O*-------", "-o-+&------------=o-O*--------", "= ++-------------=oO&---------", "- &----------", "-=---==-=----==-=-------------" ] add_shape_arc = [ "30 30 21 1 ", " c #0BA752", ". c #1BB064", "X c #5BAD5B", "o c #B6992B", "O c #F7941E", "+ c #CF9827", "@ c #F79827", "# c #F8A23B", "$ c #F9AB4F", "% c #CCB463", "& c #FAB96C", "* c #FAC17D", "= c #71CE9E", "- c #9ED4A9", "; c #FBC98E", ": c #FADAB2", "> c #FDE0BD", ", c #B8E6CE", "< c #FDE8D0", "1 c #D4F0E2", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "2222222222*@;22222222222222222", "222222222<@OO$<222222222222222", "222222222&OOOOO;22222222222222", "22222222#OO&2222222222222", "22222222$O#222$OO$222222222222", "2222222:OO:2222*OO$22222222222", "2222222$O$222222;OO$2222222222", "222222;@O<2222222;OO;222222222", "222222@O&222222222&OO:22222222", "22222;OO<2222222222$O@<2222222", "2222OO>22222", "2222<$O@$2222222222222$O$22222", "222222&@O$222222222222:o+<2222", "2222222;OO;22222222222, ;2222", "22222222&OO<2222222222, $2222", "222222222@O$2222222222- O<222", "222222222:OO<22222*$OX . 12", "2222222222;@@$OOO@O+%%- .11,22", "2222222222 c #D0EFDF", ", c #FEEDD8", "< c #D7F1E4", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "1111;%%%%%%%%%%%%%%%%%%%%%%,11", "1111=OOOOOOOOOOOOOOOOOOOOOO,11", "1111=OOOOOOOOOOOOOOOOOOOOOO,11", "1111=OO=,,,,,,,,,,,,,,,,%OO,11", "1111=OO-1111111111111111%OO,11", "1111=OO-1111111111111111%OO,11", "1111=OO-1111111111111111%OO,11", "1111=OO-1111111111111111%OO,11", "1111=OO-1111111111111111%OO,11", "1111=OO-111111111111111:$OO,11", "1111=OO-11111111111111: .OO,11", "1111=OO-11111111111111: .OO,11", "1111=OO+@@@@@@@@@@@@@@# .OO,11", "1111=OOOOOOOOOOOOOOo >1", "1111=+++++++++++++Oo >1", "1111111111111111111<>>* X>>>11", "1111111111111111111111: X11111", "1111111111111111111111: X11111", "1111111111111111111111<&*11111", "111111111111111111111111111111", "111111111111111111111111111111" ] item_ndim = [ "30 30 17 1 ", " c #0106FF", ". c #0233FF", "X c #0450FF", "o c #3058FF", "O c #0163FF", "+ c #326DFF", "@ c #5353FF", "# c #4D70FF", "$ c #626EFF", "% c #3382FF", "& c #4F91FF", "* c #9D9DFF", "= c #90ACFF", "- c #A5ACFF", "; c #A5C8FF", ": c #D2DDFF", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>**>>>>>>>>>>>>>>", ">>>>>>>>>>>*@ @*>>>>>>>>>>>", ">>>>>>>>:@ $:>>>>>>>>", ">>>>>>>>=.oo .@+O;>>>>>>>>", ">>>>>>>>=....o@#+OOOO;>>>>>>>>", ">>>>>>>>=......OOOOOO;>>>>>>>>", ">>>>>>-$ ......OOOOOO.@*>>>>>>", ">>>-$ ......XOOOOOO. @*>>>", ">>#@ ......OOOOOO .+&>>", ">>o.ooo. ......OOOOOO .#+OO%>>", ">>o.... . .....OOOOX...OOOO%>>", ">>o.. ..OX. .O+>>", ">>. X. .+>>", ">>.... XXOO.... XOOO>>", ">>X......XOOOOO......XOOOOOO>>", ">>X.....XOOOOOO......XOOOOOO>>", ">>o......OOOOOO......OOOOOO+>>", ">>o.....XOOOOOX......XOOOOO%>>", ">>o.....oOOOOOO......+OOOOO%>>", ">>o.....oOOOOOO......+OOOOO%>>", ">>>=#...oOOOXXXOXX...+OOO&=>>>", ">>>>>>-#oOX....OOOOX.+%=:>>>>>", ">>>>>>>>=......OOOOOO;>>>>>>>>", ">>>>>>>>=......OOOOOO;>>>>>>>>", ">>>>>>>>=......OOOOOO;>>>>>>>>", ">>>>>>>>:#.....OOOOO&:>>>>>>>>", ">>>>>>>>>>>-#.XOO&->>>>>>>>>>>", ">>>>>>>>>>>>>:-;>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] first = [ "30 30 20 1 ", " c #092B39", ". c #20343C", "X c #0E3151", "o c #1B3967", "O c #243C62", "+ c #354349", "@ c #284278", "# c #5C6572", "$ c #354B8D", "% c #4F5E9C", "& c #4A5AA7", "* c #5765B8", "= c #6666A7", "- c #6B75CD", "; c #7D84DC", ": c #999CAC", "> c #A8A8CD", ", c #9599E2", "< c #CACBDE", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "11111111111111111111111:111111", "111111111111111111111<+ 111111", "11111>=1111111111111#. 111111", "11111>=11111111111:+ .111111", "11111>=111111111<%. 111111", "11111>=11111111:@o .111111", "11111>=111111<$@ooX 111111", "11111>=11111,&$$@oX 111111", "11111>=111<-&&&$@ooX .111111", "11111>=1<,--*&&$$@oX .111111", "11111>-,,---**&&$@oX 111111", "11111>*,,,;--*&&$$@X 111111", "11111>=1>,----*&$$ooo 111111", "11111>=111,---*&&$$ooX .111111", "11111>=1111<--*&&$$oXX .111111", "11111>=111111,-*&$$@oXX.111111", "11111>=1111111<,&&$@ooX.111111", "11111>=111111111<=$$@oXX111111", "11111>=11111111111:$@OX+111111", "11111>=1111111111111=@XO111111", "11111<>11111111111111<#X111111", "11111111111111111111111:111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111" ] view_1d = [ "30 30 17 1 ", " c #0A0804", ". c #2C1E0D", "X c #343230", "o c #483014", "O c #67451D", "+ c #714C20", "@ c #545250", "# c gray47", "$ c #845926", "% c #90612A", "& c #AA7331", "* c #BE8036", "= c #CE8B3B", "- c #E39941", "; c #F9A847", ": c #FAB460", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>@&::::::::::::::::::::::::>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X$;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;&O+=;;;;;;;;;;;;;;;;>>", ">>X%;;= O;;;;;;;;;;;;;;;>>", ">>X%;& .=;;+ o;;;;;;;;;;;;;;>>", ">>X%& o;;;;;$ %;;;;;;;;;;;-->>", ">>X+ o-;;;;;;o =;;;;;;;;;;;;>>", ">>X. -;;;;;;;;. -;;;;;;;;;;;>>", ">>. &;;;;;;;;;= o;;;;;;;;;*$:>", ">> o;;;;;;;;;;;& +;;;;;;-O >>", ">>X%;;;;;;;;;;;;+ $;;;;-. $;>>", ">>X%;;;;;;;;;;;;;O o=;& *;;>>", ">>X%;;;;;;;;;;;;;;% o-;;;>>", ">>X%;;;;;;;;;;;;;;;-%+&-;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;->>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;=>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>X%;;;;;;;;;;;;;;;;;;;;;;;;>>", ">>Xo+O+O++++++++++++++++++++>>", ">>#@@@@@@@@@@@@@@@@@@@@@@@@@>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] rudder = [ "30 30 15 1 ", " c #03A753", ". c #1BAF63", "X c #2FB771", "o c #41BD7D", "O c #48BF82", "+ c #56C48C", "@ c #6CCC9B", "# c #7BD1A5", "$ c #8AD6AF", "% c #A1DEBF", "& c #A4DFC1", "* c #B6E6CD", "= c #C6EBD8", "- c #D9F1E5", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;-&-;;;;;;;;;;;;;", ";;;;;;;;;;;;;;# *;;;;;;;;;;;;;", ";;;;;;;;;;;;;;# *;;;;;;;;;;;;;", ";;;;;;;-;;;;;;# *;;;;;;-;;;;;;", ";;;;;;@.-;;-$o. .+%;;;* &;;;;;", ";;;;;;$ .-# .&*. *;;;;;", ";;;;;;;$ .$-$ *-@ *;;;;;;", ";;;;;;;;X =;;# *;;$ @;;;;;;;", ";;;;;;;$ . .-;# =;* . -;;;;;;", ";;;;;;;. -$ .-# ** *& +;;;;;;", ";;;;;;* @;;$ .+ @ *;;. ;;;;;;", ";;;;;;# *;;;$ *;;;@ *;;;;;", ";;;XXX. .XXXX .XXXX. XXX+;;", ";;; X;;", ";;;;;;@ =;;;& .-;;;# *;;;;;", ";;;;;;& @;;& .X o .-;;X ;;;;;;", ";;;;;;; .;* *# *$ .-= o;;;;;;", ";;;;;;;$ X =;$ =;# .. =;;;;;;", ";;;;;;;;. =;;# *;;# @;;;;;;;", ";;;;;;;% X*;# *;%. .-;;;;;;", ";;;;;;& *O .. . #$ .-;;;;;", ";;;;;;+ =;;=+. X#-;;# $;;;;;", ";;;;;;;=;;;;;;# *;;;;;;*;;;;;;", ";;;;;;;;;;;;;;# *;;;;;;;;;;;;;", ";;;;;;;;;;;;;;# *;;;;;;;;;;;;;", ";;;;;;;;;;;;;;*#-;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] math_phase = [ "30 30 24 1 ", " c #020202", ". c #2C2C2C", "X c #606060", "o c #EA1515", "O c #FE6128", "+ c #FF1965", "@ c #3BFF24", "# c #23FF5C", "$ c #CCD63B", "% c #F3E925", "& c #221CFF", "* c #582DFF", "= c #205AFF", "- c #FF27A2", "; c #F11DEC", ": c #BB4EEE", "> c #1EFFA3", ", c #1E9EFF", "< c #20F0F2", "1 c #60F0F0", "2 c #A5A6A5", "3 c #D3D0D4", "4 c #DDE2D9", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "5555555555542$@$$$445555555555", "555555555#@@@@@$$$$$4555555555", "55555554#@@@@$@$$$$%%%44555555", "5555554#@@@424$3224%%%%3555555", "555554####3. 22 3%%%%455555", "55555>###3 X4. $X 4%%OO55555", "55551>>#>X .44 44. X$%O%$5555", "5555>#>>4. 2@4 4%2 .3OOOO5555", "5554>>>>4 3#4 4%4 4O%OO3555", "5551<>>>4 4#4 4%4 3OOOO$555", "5551<<<<4 4>4 4%3 2OoooO555", "555<<<<11. 4<4 4O3 3ooooo555", "5551<<<11. X14 5-X XOooooo555", "5551<<<<12 35 52 3O++oo+555", "5551,,,,,1X . . X-+++++2555", "5554,,,,,,32. .23--++++3555", "5555,,,,====33 43;;---++-5555", "55551,=====&*3 5;;;-----34555", "55555,==&=&&*3 3;;;;----55555", "555554,==&*&&3 3;;;;;;-355555", "5555553=&&&*&3XX3;;;;;;3555555", "55555554=&&&**::;;;;;;45555555", "555555555:*&**::*;;;3555555555", "555555555553:*::::345555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] pixel_intensities = [ "30 30 14 1 ", " c #0C1115", ". c #131D24", "X c #1C242A", "o c #2C3439", "O c #2C3942", "+ c #3D4448", "@ c #3A5364", "# c #54585A", "$ c #426F8C", "% c #66AAD7", "& c #979898", "* c #A7A7A7", "= c #CCCCCC", "- c None", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "---------------=--------------", "------------ o+OOX------------", "------------o%%%%o------------", "------------o%%%%o------------", "------------o%%%%o------------", "------------o%%%%o------------", "------------o%%%% ooooo-------", "------------o%%%%.%%%%o-------", "------------o%%%%.%%%%o-------", "-------&&&&&X%%%%.%%%%o-------", "-------.$$$$.%%%%.%%%%o-------", "-------o%%%%.%%%%.%%%%o-------", "-------o%%%%.%%%%.%%%%O-------", "-------o%%%%X%%%%.%%%%o-------", "--#O#o+.%%%%.%%%%.%%%%o-------", "--o%%%%.%%%%.%%%%.%%%%o-------", "--o%%%% %%%%.%%%%.%%%%o-------", "--o%%%% %%%%.%%%%.%%%% oOOoo--", "--o%%%%.%%%%.%%%%.%%%%.%%%%o--", "--o%%%%.%%%%X%%%%.%%%%.%%%%o--", "--o%%%%.%%%%.%%%%.%%%% %%%%o--", "--o%%%%.%%%%.%%%%.%%%%.%%%%o--", "--o%%%%.%%%%.%%%%.%%%%.%%%%o--", "--X@@@@ @@@@ @@@@ @@@@ @@@@o--", "--=====*====*====*====*=====--", "------------------------------" ] view_nofullscreen = [ "30 30 22 1 ", " c #1D1D1D", ". c #262626", "X c #525252", "o c #6C5D5E", "O c #707070", "+ c #EC1C24", "@ c #D42E34", "# c #E7252C", "$ c #C93B40", "% c #AF4E52", "& c #936062", "* c #B26F71", "= c #D45C61", "- c #908F8F", "; c #BA8B8D", ": c #B2B2B2", "> c #DC979A", ", c #D3ACAD", "< c #D9BFC0", "1 c #CECDCD", "2 c #E5D1D2", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "33:XXXXXXXXXXXXXXXXXXXXXXXXX23", "33OO:1111:11111:11:1,1:111:X13", "33O-33333333333333333333333.13", "33O-11111111111111111111111X13", "33O:3><33333333333333333<>3X13", "33O:<++;133333333333332>++1X13", "33O:2*@+$,>>3333333<>1=++*1X13", "33O:2:&$+##=1333333=#@+@&:1X13", "33O:22:-%++#,333331@++$O:13X13", "33O:333:&+++;33333:+++%:133X13", "33O:3331*&oO:133331*&%*1333X13", "33O:33331::12333331:--:1333o13", "33O13333,>>,2333332,,>,2333o13", "33O:3332=+++1333331+#+=2233X13", "33O:3331*+#@:233331@++*1333X13", "33O:331=+@#%1333331%+@+=133o13", "33O:31#+%o&*1333331;%o$+@,3X13", "33O:2@+%O::123333331:--%+#2X13", "33O:2=*-:2233333333322:-*%1X13", "33O.. .......... ...... . 13", "333332333333333333333333233333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] shape_circle = [ "30 30 11 1 ", " c #F7941E", ". c #F79929", "X c #F8A23A", "o c #F9AB4F", "O c #FABA6E", "+ c #FAC17B", "@ c #FBCA90", "# c #FCD8AE", "$ c #FDE1BF", "% c #FDE8CF", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&%&&&&&&&&&&&&&&", "&&&&&&&&&&&#o. o#&&&&&&&&&&", "&&&&&&&&&#X o%&&&&&&&&", "&&&&&&&&@ o#%%%@o @&&&&&&&", "&&&&&&&@ X%&&&&&&&%X #&&&&&&", "&&&&&&$ o&&&&&&&&&&&o .%&&&&&", "&&&&&&X o&&&&&&&&&&&&%. o&&&&&", "&&&&&# $&&&&&&&&&&&&&# .%&&&&", "&&&&&O o&&&&&&&&&&&&&&&X @&&&&", "&&&&&X @&&&&&&&&&&&&&&&O o&&&&", "&&&&& #&&&&&&&&&&&&&&&@ o&&&&", "&&&&& $&&&&&&&&&&&&&&&@ .&&&&", "&&&&&. #&&&&&&&&&&&&&&&@ o&&&&", "&&&&&o O&&&&&&&&&&&&&&&o O&&&&", "&&&&&@ .&&&&&&&&&&&&&&& @&&&&", "&&&&&% @&&&&&&&&&&&&&O &&&&&", "&&&&&&O .%&&&&&&&&&&&$ @&&&&&", "&&&&&&&X .%&&&&&&&&&#. o&&&&&&", "&&&&&&&%...O%&&&&&%O .%&&&&&&", "&&&&&&&&%X .oO+Oo X&&&&&&&&", "&&&&&&&&&&@ .@&&&&&&&&&", "&&&&&&&&&&&&#OOoo@#&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] _d_plane_normal_x = [ "30 30 21 1 ", " c #2A3032", ". c #4F361E", "X c #7A562B", "o c #67655C", "O c red", "+ c #95611A", "@ c #AE7532", "# c #F27A1F", "$ c #817C78", "% c #E94948", "& c #008000", "* c #59AC59", "= c #D99828", "- c #F99433", "; c #F8A847", ": c #0F0FFF", "> c #2A2AFF", ", c #989892", "< c #B2ABE3", "1 c #DCD7DB", "2 c None", "22222222222,122222222222222222", "22222222221&*2222222,$22222222", "22222222221&*222222, ,22222222", "22222222221&*22222,.+o22222222", "22222222221&*2222,.;@$22222222", "22222222221&*222,.;;@$22222222", "22222222221&*22,.;;;@$22222222", "22222222221&*2,.;;;;@$22222222", "22222222221&*,.;;;;;@$22222222", "22222222221& .;;;;;;@$22222222", "22222222221& ;;;;;;;@$22222222", "2222222222*.=;;;;;;;@$22222222", "2222222222*+=;;;;;;;@$22222222", "2222222222o+=;;;;;;;@$22222222", "2222222222o+=;;;;;;;@$22222222", "2222222222o+=;;;;;;;@$22222222", "2222222222o+#;;;;;;;@$22222222", "2222222222o+##-##-#-+X%%%%%%%1", "2222222222oX@#######.OOOOOOOO;", "222222221< X;;-;-;-+X111111112", "22222222<: @;;;;;-Xo2222222222", "2222222<:>$$;;;;;Xo22222222222", "222222<:>2$@;;;;Xo222222222222", "22222<:>12$@;;;Xo2222222222222", "2222<:>122o@;;Xo22222222222222", "222<:>1222,@;Xo222222222222222", "221::12222o@Xo2222222222222222", "21::122222$.o22222222222222222", "1::1222222oo222222222222222222", "2<2222222222222222222222222222" ] remove = [ "30 30 13 1 ", " c #ED1C24", ". c #EE2B32", "X c #EF3B42", "o c #F14C52", "O c #F25D63", "+ c #F36C71", "@ c #F57D82", "# c #F68E92", "$ c #F79EA1", "% c #F9B2B4", "& c #FBD1D3", "* c #FCDFE0", "= c None", "==============================", "==============================", "==============================", "==============================", "==============================", "======================*=======", "========O============&O=======", "=======& +==========& .=======", "=======% +========&. =======", "=======$ @======*. *======", "=======*X #====*. $=======", "========*X #==*. #========", "=========*X #*. #=========", "==========*. . #==========", "===========&. +===========", "============& o============", "============o %===========", "===========o .%==========", "==========O O% %=========", "=========+ o==%. .&========", "========+ o====% &=======", "=======$ o*=====% .*======", "=======# o*=======$ %======", "=======$ o*=========$ &======", "=======&.*===========# =======", "=======**=============#=======", "==============================", "==============================", "==============================", "==============================" ] document_open = [ "30 30 24 1 ", " c #775A39", ". c #6B6B6B", "X c #AF7D43", "o c #04A553", "O c #27A263", "+ c #4AAF7C", "@ c #E6922E", "# c #F7992C", "$ c #AE8E68", "% c #D59B58", "& c #F6A64C", "* c #F4B46C", "= c #67B78E", "- c #999592", "; c #B0B2B4", ": c #E7BC8C", "> c #96C7AE", ", c #F1C696", "< c #F1D0AA", "1 c #B9C5C2", "2 c #D2D3D4", "3 c #ECE1D2", "4 c #DEDFE3", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555552>>2555555555", "555555555555555>OooooO15555555", "5555555555554=++===+ooo>555555", "55555555552>145555553>Oo>=O555", "5555555554455555555555>ooo>555", "5555555555555555545551Oooo4555", "555555555553544444452=+oo=5555", "555555445444444342144555255555", "5554444422221;;-...-2445555555", "55554421221;;---....22443<,*55", "55222244421;;--... %&######55", "55244444221---$$%@%########*55", "552444442;;:*:***&&&#######<55", "542444421;:,,***&&##&#####&555", "54324422;;:,****&&##&#####:555", "5542422;;-,,,:*&&&&&######3555", "554242;;-;,,*****&&######&5555", "544211;--,<,,***&&&######<4455", "54541;;--<,,::*&&&&&####@44555", "5554;;--;<<,:****&######*45555", "55441--.<<,,*:*&&&&#####<25555", "55544---3<<,,***&&&####@244555", "55554;.:3<<,****&&#@@XX;454555", "555531.33<<,:*%%$$-1;222445555", "555544-3::$-$;11;2222344455555", "555555312222222223224454555555", "555555454444344444445535555555", "555555555444545455555555555555" ] tree_collapse_all = [ "30 30 15 1 ", " c #000000", ". c #090909", "X c #141414", "o c #2F2F2F", "O c #696969", "+ c #888888", "@ c #949494", "# c #A9A9A9", "$ c #B3B3B3", "% c #BABABA", "& c #CFCFCF", "* c #EAEAEA", "= c #F4F4F4", "- c #F9F9F9", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;%XXXXXXXXXXXXXXXXXX&;;;;;;;", ";;;% +++@++++++@++++O &;;;;;;;", ";;;$ *;;;;;;;;;;;;;;* %;;;;;;;", ";;;$ *;;;;;;;;;;;;;;& &;;;;;;;", ";;;$ *;*.....X.....X.....X;;;;", ";;;% *;= O@@@@@@@@@@@@@@OX;;;;", ";;;$ *;= #;;;;;;;;;;;;;;+.;;;;", ";;;$ *-= $;;;;;;;;;;;;;;@.;;;;", ";;;$ *;= #;;;;;;;;;;;;;;@X;;;;", ";;;$ *;= $;;;;;;;;;;;;;;+X;;;;", ";;;$ *-= $;;;;;;;;;;;;;;@X;;;;", ";;;% *;= $;;;;;;;;;;;;;;+.;;;;", ";;;$ =;= #;o.. %;@.;;;;", ";;;% *;* $;o %;@.;;;;", ";;;$ *;= $=Ooooooooooo%;@X;;;;", ";;;$ *-= #;;;;;;;;;;;;;;+X;;;;", ";;;$ #%# $;;;;;;;;;;;;;;@.;;;;", ";;;$ $;;;;;;;;;;;;;;@.;;;;", ";;;-***& #;;;;;;;;;;;;;;@X;;;;", ";;;;;;;= $;;;;;;;;;;;;;;+X;;;;", ";;;;;;;= O##############OX;;;;", ";;;;;;;= . .;;;;", ";;;;;;;;-=-==--=-==-=--=-=;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] plot_toggle_points = [ "30 30 12 1 ", " c #01A550", ". c #1BAF63", "X c #28B46C", "o c #52C389", "O c #62C894", "+ c #7BD1A5", "@ c #9BDCBA", "# c #A7DFC1", "$ c #A9E1C4", "% c #C7EBD8", "& c #D5F1E3", "* c None", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "*******$******%&**************", "******* @***** $**************", "******* #***** @**************", "******& #***** @**************", "******& #***** @**************", "******* #***** #**************", "******* #***&* @&*****&**&****", "******& #**& +*** O***", "******* #**& +#$.+**& O***", "******& #**& %**.+*** O***", "******* #**& %**.+**& O***", "******& #**& oOO.+*** O***", "******* #**&XX .X@***XXXXX+***", "******& #***** @**************", "******* #***** @**************", "******& #***** #**************", "******* #***** @**************", "******& @***** @**************", "*******+%*****+&**************", "******************************", "******************************", "******************************", "******************************", "******************************" ] colormap = [ "30 30 21 1 ", " c #4B4A4C", ". c #EE2A7B", "X c #13AC5E", "o c #F89D32", "O c #F8A139", "+ c #F9AB4F", "@ c #FAB96C", "# c #E0DE46", "$ c #693293", "% c #A15FA8", "& c #F15395", "* c #04AFEF", "= c #64CCD0", "- c #B5AAB4", "; c #FBC88C", ": c #FCD9AF", "> c #F3EBAB", ", c #ABE4EE", "< c #FDEAD0", "1 c #E1D6E0", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "2222222222222<2222222222222222", "2222222222<;o+O@22222222222222", "222222222;o;222+<2222222:@+:22", "2222222<+@22222+<22222;o@<<+:2", "222222@22<+@<222222o2", "2222#>22****,22>@2", "22O<22222222<#####221,,2222@:2", "2:@222222222#####>222222222,=XX>222<##>2222---122@:22", "2o<=XXXX=222222222- 12:+222", "<+2XXXX>222222222- -2O<2222", ":;222222221&&122222222+222222<&..&&2222222;+<222222", "2o222222&....122222:+@22222222", "2;@22222&.&&22222<@+:222222222", "22+;2222222222<;++:22222222222", "222@O;<<<<<:;++;<2222222222222", "2222<:@++++;:<2222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] sliders_on = [ "30 30 13 1 ", " c #07A350", ". c #30B36D", "X c #44BA7B", "o c #4DBD82", "O c #5CC38C", "+ c #69C795", "@ c #7BCFA2", "# c #8BD4AD", "$ c #A3DDBE", "% c #AEE1C6", "& c #C8EBD8", "* c #D5F0E2", "= c None", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "========$@+@#=====#+@@#=======", "====*&&&. . %&&&& . .%&&====", "====+ O=# #=X ====", "====**&&. **&** .***====", "========$##@#=====####$=======", "==============================", "======#$$$&========*$$$$*=====", "====== X*=**=*==@ %=====", "====+ #=.. =* ====", "====&# .. X$$%$%$$$o .. +$====", "======OOOO#========%OOOO&=====", "==============================", "=======&&&**====***&&=========", "======% $====# %========", "====& %& . . &% . .====", "====*#O O+ o@@@@X +O o@#@#====", "======&....$====$....&========", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================" ] plot_roi_below = [ "30 30 22 1 ", " c #0B0B0B", ". c #2F2F30", "X c #643C0D", "o c #754C1B", "O c #4E4F50", "+ c #6E6F70", "@ c #825725", "# c #AC783B", "$ c #E29C47", "% c #F2AB55", "& c #C39A6A", "* c #CAA070", "= c #FAB360", "- c #919294", "; c #9EA0A3", ": c #A7A9AC", "> c #E7BF91", ", c #F9CF9B", "< c #FCD4A6", "1 c #D0D0D0", "2 c #FDE9D1", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "3<<<<<<<<233333333333333333333", "3======%$,33332333333333333333", "3<<<<,<<=,3333 33333333333333", "3<<<<<<<=,333-..-3333333333333", "3<<<<<<<=,333.++.3333333333333", "3<<<<<<<=,332 -- 1333333333333", "3<<<<<<<=,33;.::O+333333333333", "3<<<<<<<=,33.O::+.333333333333", "3<<<<<<<=,1+.;::; 133333333333", "3<<<<<<<=& .-::::.;33333333333", "3<<<<<<<=@+:;::::O+31+23333333", "3<<<<<<<=o+::::::+ 3+ +3333333", "3<<<<<<<=o-::::::; 1...3333333", "3<<<<<<<%o-:::::::O+ - 2333333", "3<<<<<<*#@::::::::+ .; 1333333", "3<<<<<&o#$:::::::::-;:.;333333", "3<<<<,%$%%%$%%%%$%%%$$$$#%=3", "332332332222222222222222222223", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] silx = [ "30 30 22 1 ", " c #131313", ". c #333334", "X c #535355", "o c #65615E", "O c #6F6F70", "+ c #907F6D", "@ c #F7941E", "# c #F6992A", "$ c #AE9372", "% c #E0A053", "& c #CEA573", "* c #F0B56E", "= c #7E7F80", "- c #8C8C8E", "; c #A7A099", ": c #ADADAF", "> c #CDB18E", ", c #E9C69C", "< c #EACEAC", "1 c #D5D5D5", "2 c #E4DACB", "3 c None", "333333333333333333333333333333", "333333333333333133333333333333", "333333333333311113333333333333", "333333333333113111333333333333", "333333333331111:-O133333333333", "33333333333131;;;OO=3333333333", "3333333333333:--;OOO1333333333", "3333333333333:-:-OOO-333333333", "33333333333311-;-XO=O333333333", "33333333333333;#>XXOO;33333333", "33333333133333>#$OOoXo13333333", "33333333331321;#$XXXoX=3333333", "333333311331*%>@&Xooo+X;333333", "333333133131*#>@&OO=oX.X333333", "33333313311111>@&:;-X..X:33333", "3333332<<<,2<,<@>>::.Xo+-33333", "33333<##@@@**#<@&##>Oo#@&33333", "33333*@,,,,<*#<@>&@@&%@%-33333", "33333*@*,,<1*#<@&=>#@@#$o33333", "333332#@@@#,*#&@&=-%@@;XX33333", "33331112<<@*%#$@&-*##@@$o13333", "33333,***%@%%#$@&%@#$&@#$:3333", "33333,@###%O&%-#$%#;-o&@$:3333", "33333:;-;--XXoXOX$-oXoOO 33333", "333333-=====XXXXoO=XXX ;33333", "3333331====;==O...... 1333333", "3333333:==-OXoX..... o33333333", "33333333:=-XoXXo...O1333333333", "3333333331;XXooO--133333333333", "333333333333333333333333333333" ] profile_clear = [ "30 30 23 1 ", " c #913332", ". c #A82A23", "X c #FB0404", "o c #DE3021", "O c #C45D24", "+ c #AF4E4E", "@ c #AE6666", "# c #E35553", "$ c #DC6969", "% c #EC7071", "& c #F5931E", "* c #E7932F", "= c #F7AB4F", "- c #CCA06D", "; c #F5B76E", ": c #909090", "> c #ACACAC", ", c #F8C993", "< c #FCDBB2", "1 c #CFCFCF", "2 c #E7DEDE", "3 c #FCE6CC", "4 c None", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444424444444244444444444", "444444444%X%44444%X-2444444444", "444444444$XX$244%XX+2444444444", "4444444441.XX$2%XX >4444434444", "44444444441+XXoXX.@-;==&&,4444", "444443<,,;=*.XXX. &&&&&&&;4444", "4443&&&&&&&&oXXXoO&&&&&==,4444", "4443&&&&&&&oXX.XXo,<2444444444", "4444;,,<<3#XX :+XX#14444444444", "444444444$XX >21@XX#2444444444", "444444444$o >4441@o+2444444444", "4444444442>>244442>>4444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444" ] math_average = [ "30 30 9 1 ", " c #0E0E0E", ". c #262626", "X c #F7941E", "o c #F89E32", "O c #F9AC50", "+ c #F9B461", "@ c #D4D4D4", "# c #FEEEDC", "$ c None", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$#ooooooooooooooooo+$$$$$", "$$$$$$#XXXXXXXXXXXXXXXXXO$$$$$", "$$$$$$$################$#$$$$$", "$$$$$$$$@@$$$$$$$$$$$$@@$$$$$$", "$$$$$$$@ .@$$$$$$$$$$#..@$$$$$", "$$$$$$$@ .@$$$$$$$$@. @$$$$$", "$$$$$$$$@. @$$$$$$#. @$$$$$$", "$$$$$$$$$@. .@$$$$@. @$$$$$$$", "$$$$$$$$$$@ .@$$@. @$$$$$$$$", "$$$$$$$$$$$@. .@@. @$$$$$$$$$", "$$$$$$$$$$$$@ . @$$$$$$$$$$", "$$$$$$$$$$$$$@ @$$$$$$$$$$$", "$$$$$$$$$$$$$@ @$$$$$$$$$$$$", "$$$$$$$$$$$$@ .@$$$$$$$$$$$$$", "$$$$$$$$$$$@ .@$$$$$$$$$$$$$$", "$$$$$$$$$$@ .@$$$$$$$$$$$$$$$", "$$$$$$$$$@ .@$$$$$$$$$$$$$$$$", "$$$$$$$$@ .@$$$$$$$$$$$$$$$$$", "$$$$$$$@ .@$$$$$$$$$$$$$$$$$$", "$$$$$$$@ .$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$@#$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$" ] cube_rotate = [ "30 30 21 1 ", " c gray2", ". c #303030", "X c #5B3F1E", "o c #624726", "O c #6C5131", "+ c #515151", "@ c #706150", "# c #6B6A69", "$ c #815F37", "% c #896539", "& c #987447", "* c #8B7964", "= c #DD8D2D", "- c #E79635", "; c #94826D", ": c #E69D44", "> c #F9A847", ", c #908F8F", "< c #B7B7B7", "1 c #D3D2D2", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "22222222222222222221++++,22222", "222222<2222222222222+ <22222", "2221+ #2222222222221 +1222", "221 #12222222222222, + 122", "22# #22222222222222222#22# #22", "22, ,222222222222222222, ,22", "222# .+,<11112111<,+. #222", "22221# #12222", "22222222<,#++...+++#,<22222222", "222222222222222222222222222222", "2222222222222#@@@@@@@,22222222", "222222222222*=>>>>>>$@22222222", "22222222222*:->>>>>%:*22222222", "2222222222*:>->>>>%:>*22222222", "222222222;:>>->>>%:>>*22222222", "22222222@OOOOXOOo:>>>*22222222", "22222222*>>>>=>>%>>>>*22222222", "22222222;>>>>->>%>>>>#22222222", "22222222*>>>>===o==-=O22222222", "22222222*>>>->>>%>>>&122222222", "22222222*>>-->>>%>>&1222222222", "22222222*>->>>>>%>&12222222222", "22222222*->>>>>>%&122222222222", "22222222*oOOOOOOX1222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] plot_grid = [ "30 30 12 1 ", " c #01A14B", ". c #30B36D", "X c #42BA79", "o c #4BBD80", "O c #56C188", "+ c #67C894", "@ c #97D9B6", "# c #A4DDBF", "$ c #A7DFC1", "% c #ABE0C4", "& c #D8F1E4", "* c None", "******************************", "******************************", "******************************", "******************************", "*******+&*****$#*****%#*******", "******* @*****oo*****O.*******", "******& $*****oo*****O.*******", "****@@@ O@@@@@..@@@@@..@@#****", "***& .****", "******* $*****oo*****OX*******", "******& $*****oo*****OX*******", "******* $*****oo*****OX*******", "******* #*****oo*****OX*******", "******& #*****oo*****OX*******", "*****&& @***&*XX*&&**X.*&*****", "***& .****", "****#$# +%%%$%..%%%$%..%$%****", "******* $*****oo*****OX*******", "******& #*****oo*****OX*******", "******* #*****oo*****OX*******", "******& #*****oo*****OX*******", "******* #*****XX*****o.*******", "***& .****", "****@@@ +#@@#@..@@@#@..##%****", "******& #*****oo*****OX*******", "******* $*****oo*****OX*******", "*******@&*****$%*****%$*******", "******************************", "******************************", "******************************" ] profile1D = [ "30 30 21 1 ", " c black", ". c #040404", "X c gray2", "o c #070605", "O c gray3", "+ c #181817", "@ c #181818", "# c gray46", "$ c #947147", "% c gray66", "& c gray70", "* c #FBC584", "= c #FBC686", "- c #FCCA8F", "; c #FBCB90", ": c gray76", "> c #E9E9E9", ", c gray94", "< c #F1F1F1", "1 c gray99", "2 c None", "222222222222222222222222222222", "22:%%%%%%%%%%%%%%%%%%%%%%%%%%,", "22@.OOOOOOOOOOOOOOOOOOOOOOOO &", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22+$*******************-;;;;o&", "22+$***********************=o&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@#222222222222222222222222X&", "22@ &", "22<>>>>>>>>>>>>>>>>>>>>>>>>>>1", "222222222222222222222222222222" ] view_raw = [ "30 30 16 1 ", " c #090706", ". c #281B0B", "X c #39260F", "o c #353434", "O c #4B3316", "+ c #6B481E", "@ c #7D5424", "# c #4D4D4D", "$ c #656565", "% c #845926", "& c #94642A", "* c #A87230", "= c #CD8A3A", "- c #E49A41", "; c #F9A847", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::$ ::::", "::$.****&O *&*&*& .*&***+ ::::", "::$O;;;;;+ ;;;;;- O;;;;;&.::::", "::$O;;;;;+ ;;;;;- O;;;;;* ::::", "::$O;;;;;+ ;;;;;- O;;;;;&.::::", "::$O;;;;;+ ;;;;;= O;;;;;& ::::", "::$O;;;;;+ ;;;;;- O;;;;;& ::::", "::# XXXXX XXXXXX XXXXX. ::::", "::o ::::", "::$O;;;;;+ ;;;;;= O;;;;;* ::::", "::$O;;;;;+ ;;;;;- O;;;;;&.::::", "::$O;;;;;+ ;;;;;- O;;;;;& ::::", "::$O;;;;;+ ;;;;;= O;;;;;& ::::", "::$O;;;;;+ ;;;;;= O;;;;;* ::::", "::$X=====O ====== X=====@ ::::", "::o ::::", "::$ OOOOO. OOOOXO OOOOO. ::::", "::$O;;;;;+ ;;;;;= O;;;;;&.::::", "::$X;;;;;+ ;;;;;- O;;;;;& ::::", "::$O;;;;;+ ;;;;;= O;;;;;& ::::", "::$O;;;;;+ ;;;;;- O;;;;;&o::::", "::$O;;;;;+ ;;;;;- O;;;;;& ::::", "::$.%%&%&X %@&&%% .&&&&&O ::::", "::$.o ... .o ... . .. .o::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] view_nexus = [ "30 30 18 1 ", " c #040302", ". c #271A0B", "X c #322412", "o c #33312F", "O c #493216", "+ c #64441D", "@ c #69481E", "# c #717171", "$ c #895D27", "% c #98672B", "& c #B57B33", "* c #D08D3B", "= c #E69B41", "- c #F8A846", "; c #9D9D9D", ": c #A8A8A8", "> c #CFCFCF", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,>;####:>,,,,,,,,,,,", ",,,,,,,,,:o ..OXX. o:,,,,,,,,,", ",,,,,,,>o +&------&+ o>,,,,,,,", ",,,,,,:.O*----------=O :,,,,,,", ",,,,,: @--------------@ :,,,,,", ",,,,> @----------------@ >,,,,", ",,,,oO------------------Oo,,,,", ",,,: *------------------* :,,,", ",,,oO-%OO*--+O*=OO*--%OO-Oo,,,", ",,> *-$ O--. &-@ X-=. %-& >,,", ",,; --$ *-. &-=. %+ O--- :,,", ",,#X--$ . @-. &--& *---X#,,", ",,#O--$ OO *. &---O $----O#,,", ",,#O--$ O* @. &---X O----O#,,", ",,#X--% +-O &--$ . &---X#,,", ",,: --$ O-& &-= *$ .--- :,,", ",,> &-$ O--X &-O +--X @-& >,,", ",,,o+-&+%--*++**++=--*@@-@o,,,", ",,,: *------------------* :,,,", ",,,,oX------------------Oo,,,,", ",,,,>.@----------------@ >,,,,", ",,,,,: @--------------@ :,,,,,", ",,,,,,: O*----------*O :,,,,,,", ",,,,,,,>o +&------&+ o>,,,,,,,", ",,,,,,,,,:o XOOX. o:,,,,,,,,,", ",,,,,,,,,,,>;####:>,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] shape_polygon = [ "30 30 11 1 ", " c #F7941E", ". c #F79928", "X c #F8A23A", "o c #F9AA4D", "O c #FAB96C", "+ c #FAC17D", "@ c #FBCB92", "# c #FCD8AE", "$ c #FDE0BE", "% c #FDE8CE", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&%@&&&&&&&&&&&&&&&", "&&&&&&&&&&&&#.o&&&&&&&&&&&&&&&", "&&&&&&&&&&&@ &&&&&&&&&&&&&&&", "&&&&&&&&&&# $&&&&&&&&&&&&&&", "&&&&&&&&&@ oX O&&&&&&&&&&&&&&", "&&&&&&&&@ o&O o&&&&&&&&&&&&&&", "&&&&&&&@ X&&# &&&&&&&&&&&&&&", "&&&&&&O .o&&&& @&&&&&&&&&&&&&", "&&&&&O O&&&&&o O&&&&&&&&&&&&&", "&&&&O o&&&&&&@ .&&&&&&&&&&&&&", "&&&&X .&&&&&&&% %&&&&&&&&&&&&", "&&&&$ @&&&&&&&X .@&&&&&&&&&&&", "&&&&&O %&&&&&&@ X#&&&&&&&&&", "&&&&&&X X&&&&&&&&O X#&&&&&&&", "&&&&&&% O&&&&&&&&%o. o%&&&&&", "&&&&&&&+ %&&&&&&&&&%o O%&&&", "&&&&&&&&X X&&&&&&&&&&&#. O&&&", "&&&&&&&&% O&&&&&&&&&&&X .&&&&", "&&&&&&&&&O %&&&&&&&&&o. %&&&&", "&&&&&&&&%. o&&&&&&&&&@ @&&&&&", "&&&&&&&%. X%&&&&&&&&%. o&&&&&&", "&&&&&&&o @%&&&&&&&&X .&&&&&&&", "&&&&&&o XoO@@%O $&&&&&&&", "&&&&&%OoX. @&&&&&&&&", "&&&&&&&&&&&%#@@Oo o&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&%&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] math_imaginary = [ "30 30 16 1 ", " c #010101", ". c #0C0C0C", "X c #191919", "o c #2D2D2D", "O c #525252", "+ c #727272", "@ c #8A8A8A", "# c #979797", "$ c #A6A6A6", "% c #B3B3B3", "& c #C6C6C6", "* c #D9D9D9", "= c #E7E7E7", "- c #F3F3F3", "; c #FAFAFA", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", ":::::::#++++&:::::::::::::::::", ":::::::-% O-::::::::::::::::::", "::::::::# $:::::::::::::::::::", "::::::::O *:::::::::::::::::::", "::::::::XX:::;*O%;-++:;#o-;:::", ":::::::& O::-+ *$X #%o o:::::", ":::::::# $::&*O O$$ o#-.O:::::", ":::::::O *::::oo-:+.=:= %:::::", ":::::::.o::::= #::OO-:$ =:::::", "::::::& O::::# *:;.@;:+o:;::::", "::::::@ #::::OX::& &::oO:--:::", "::::::O =::::o+::+.;:; O#+-:::", "::::*$..$&::= $::oO::* X%:::::", ":::;%$%$$=::*&::;$-::;$;::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] item_3dim = [ "30 30 15 1 ", " c #0101FF", ". c #0034FF", "X c #2D39FF", "o c #1544FF", "O c #3759FF", "+ c #0163FF", "@ c #3372FF", "# c #5356FF", "$ c #4A6FFF", "% c #478EFF", "& c #7BAEFF", "* c #859BFF", "= c #ABABFF", "- c #ABC4FF", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;=##=;;;;;;;;;;;;;", ";;;;;;;;;;=# #=;;;;;;;;;;", ";;;;;;;-# #=;;;;;;;", ";;;;=# #=;;;;", ";;*X X*;;", ";;$.oOO XO@+%;;", ";;$....o$X X$@++++%;;", ";;$.......o#X .O@+++++++%;;", ";;$..........oO$@++++++++++%;;", ";;$............++++++++++++%;;", ";;$............++++++++++++%;;", ";;$............@+++++++++++%;;", ";;$............++++++++++++%;;", ";;@............++++++++++++%;;", ";;#...........o++++++++++++%;;", ";;$............++++++++++++%;;", ";;$............++++++++++++%;;", ";;$............++++++++++++%;;", ";;$.......o....++++++++++++%;;", ";;*............@+++++++++++&;;", ";;;;-%.........+++++++++%-;;;;", ";;;;;;;-$......++++++%-;;;;;;;", ";;;;;;;;;;-%o..+++%=;;;;;;;;;;", ";;;;;;;;;;;;;=%%-;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] spec = [ "30 30 13 1 ", " c #090909", ". c #2E2E2E", "X c #3F4040", "o c #4E4E4F", "O c #6B6C6C", "+ c #7F8080", "@ c #8E8F8F", "# c #ACACAD", "$ c #BEBFC0", "% c #CFD0D0", "& c #DEDFE0", "* c #DFE0E1", "= c None", "==============================", "==============================", "==============================", "==============================", "==#%%$%%%%%%%%%%%%%%%%%%%%%%#=", "==%=========================%=", "==%=========================%=", "==%#%#%$#%%#%%#%%#%%#%$$%#%$$=", "==*****==*=***=**=***==*=****=", "==**==***=**=*=**=*==*****====", "==&**%&*****=*****=**=*=*&%**=", "==&#. O=o. .O*% . X**@. .*=", "==*..OO@=..Oo O% .OOO*@ .OOO*=", "==# O==**..=&..% O**=&. %&***=", "==% O&*=..*& o% .@@## O***===", "==&# .#=. o. @% o@ O==***=", "==**&O .=. .o#*% o##%@ O*****=", "==*=*=o *..==**% O*==% .&*=**=", "==%o@O..*X.=***% .+O+=O .@@O*=", "==# .#*..**==% **o .*=", "==*&##*=*%%*=***%$$%%**=&##**=", "==***=**=**=**==*=***=***=***=", "==*==*=*=****=***=*==*=***=**=", "==****=***==**=****=**=*=**=*=", "==&&**&*&*&&**&*&*&&**&*&*&&&=", "==============================", "==============================", "==============================", "==============================", "==============================" ] layer_nx = [ "30 30 16 1 ", " c #000000", ". c gray2", "X c gray4", "o c #161616", "O c #282828", "+ c #444444", "@ c #727272", "# c #8B8B8B", "$ c #939393", "% c #B7B7B7", "& c #C6C6C6", "* c #DCDCDC", "= c #E5E5E5", "- c #F3F3F3", "; c #F9F9F9", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::-**:*&-::=*=::;*=-::::::", "::::::# o@ X&:&..%;@ O-::::::", "::::::# O@o +::# O$Xo*:::::::", "::::::# *:# o:::O $::::::::", "::::::# o::$ o:::* O:::::::::", "::::::# o::# o:::O #::::::::", "::::::# o::$ X::@ o% .&:::::::", "::::::# o::$ o:&X.&:@ O-::::::", "::::::=%&::=%&:&%&::;%%=::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] compare_mode_b = [ "30 30 15 1 ", " c #010100", ". c #23241F", "X c #3E491A", "o c #47531D", "O c #556423", "+ c #5C6C26", "@ c #434442", "# c #738730", "$ c #819836", "% c #8EA73B", "& c #9DB841", "* c #B9DA4D", "= c #BFE14F", "- c #D4F958", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;@........................@;;", ";;.X###+##################X.;;", ";;.#----------------------#.;;", ";;.#----------------------#.;;", ";;.#----oooooooO+$*-------#.;;", ";;.#---= X------#.;;", ";;.#---* X-----#.;;", ";;.#---* O#$# *----#.;;", ";;.#---* %---* $----#.;;", ";;.#---* %---= %----#.;;", ";;.#---* %---O -----#.;;", ";;.#---- #-----#.;;", ";;.#---* O------#.;;", ";;.#---= .-----#.;;", ";;.#---= $--*# +----#.;;", ";;.#---* $----+ ----#.;;", ";;.#---= %----% ----#.;;", ";;.#---* %----o ----#.;;", ";;.#---- +#$#X .----#.;;", ";;.#---* %----#.;;", ";;.#---* .%-----#.;;", ";;.#---=oooooooOO#&-------#.;;", ";;.#----------------------#.;;", ";;.#----------------------#.;;", ";;.X######################o.;;", ";;@........................@;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] compare_mode_rbneg_channel = [ "30 30 24 1 ", " c #FE7F01", ". c #FF8001", "X c #EE8E2E", "o c #B1804E", "O c #FFA851", "+ c #FFB871", "@ c #7E7F81", "# c #77808A", "$ c #5981A9", "% c #0280FE", "& c #2E93F7", "* c #54A5F6", "= c #72B8FD", "- c #818181", "; c #B9AA9A", ": c #B7B7B6", "> c #FFD2A5", ", c #8CABC9", "< c #A2D1FF", "1 c #CECECE", "2 c #FFE4C9", "3 c #CDD7E0", "4 c #C9E4FF", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "55555555522>>2553<<<5555555555", "55555552O... X#$%%%%%*45555555", "555555+. o#@@$%%%%%%=555555", "55555O.. o@@@@o#&%%%%%*55555", "5555+... X#@#@@##o%%%%%%=5555", "5552.... #@###o###$%%%%%%4555", "555X.... o@@@@@@###o%%%%%%&555", "552..... ###@@@@#o-#$%%%%%%455", "55+.....X:::@#@@-::::=&%%%%=55", "55X.....;555-##o-355555<%%%&55", "55......1555:@@--351-,55&%%%55", "52......55:55@@--351-,55%%%%45", "52.....+53@55;---255555=%%%%45", "52.....25:#151---3531355&%%%45", "52....X5524555##o451@#45<%%%45", "55....>5532455:##351-=55=%%%55", "55X...25;@@@:53#-3555554%%%&55", "55+..X++X@@@-1:o-::::=*%%%%=55", "552 .... $@@#@##-@@@$%%%%%%455", "555O.... o@@@##o---@&%%%%%&555", "5552.... ##o#-@@-@$%%%%%%4555", "5555+... X###@---@%%%%%%=5555", "55555O.....o##--@-&%%%%%*55555", "555555+.....o#--@%%%%%%=555555", "55555552O ....#$%%%%%*45555555", "5555555555>>>2553<=35555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] cube_front = [ "30 30 13 1 ", " c #14110E", ". c #3A3835", "X c #484848", "o c #AA691A", "O c #A46F2F", "+ c #CE7D1C", "@ c #CF8733", "# c #EA9938", "$ c #F9A847", "% c gray60", "& c #B3B3B3", "* c #CECECE", "= c None", "=============*===*=*==*==*====", "==========* =", "=========*..*=============&. =", "========*.*X*============&.* =", "=======*.*=X*===========&X== =", "======*.===.*==========&.=== =", "=====*.*===X*=========&.*=== *", "====*.*====X*========&.=====.=", "===*.*=====X*=======&X====== =", "==*.=======X*======&.======= =", "=*.*=======.*=====&.======== =", "* .========= =", "= @@@@@@@@@o@@@@@O.========= =", "= $$$$$$$$$@#$$$$@X========= =", "= $$$$$$$$$@$$$$$@.========= =", "= $$$$$$$$$@#$$$$@.========= =", "= $$$$$$$$$+#$$$$@.========= =", "= $$$$$$$$$@#####@.&*&&**&*& =", "= $$$$$$$$$++++++o *", "* $$$$$$$$@#$$$$$@.=======*.*=", "= $$$$$$$+#$$$$$$@.======*.*==", "= $$$$$$+#$$$$$$$@.======.*===", "= $$$$$@#$$$$$$$$@.=====.*====", "= $$$$@#$$$$$$$$$@.====.&=====", "= $$#@#$$$$$$$$$$@X===.&======", "* $$@#$$$$$$$$$$$@.==X%=======", "= $##$$$$$$$$$$$$@.=X&========", "= @#$$$$$$$$$$$#$@.X%=========", "= %==========", "=*===**=*====*====*===========" ] compare_mode_a_minus_b = [ "45 45 14 1 ", " c #030303", ". c #050505", "X c #0C0C0C", "o c #151515", "O c #2D2D2D", "+ c #505050", "@ c #6D6D6D", "# c #909090", "$ c #B0B0B0", "% c #CFCFCF", "& c #E8E8E8", "* c #F4F4F4", "= c #FAFAFA", "- c None", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------=-*-=-------------------------", "-----------$#@@@#%*=-------%#@+@@#%----------", "--------%@o X@%-=-*#o o@&-------", "------&+ .+&%O . ..#*-----", "-----$X #O O&----", "----$X .$-*+ o&---", "---% #---&O O*--", "--&o .+-----%X +--", "-=+ oo o&------# oX o. $-", "-&X $# #-------*o @%=&#%&$O .O=", "-@ o=*X &=-------# @-@ O*&X %", "=X .@$-+ +---------% +-@ #-@ @", "% .%o*$ #----------o +-@ @=@ O", "# O# $-O .$----------+ +-@ $&X ", "@ .#O +*@. .&----------@ +-#O+#%o ", "@ o% && &--&++OO#==# +-$#$%-$X ", "@ @&%%&&-+ &--&##$$&--@. +-@ @-% .", "# %o O*$ %--=-------@. +-@ %-+ ", "$ O$ %*X $----------+ +-@ $-+ X", "%. $+ @*@ @---------=X +-@ $=O +", "=O o=o. .o-% o---------$ +-@. O*$ #", "-# @&*$+ o$=*%O %--------@ +$-%@@#&@ X&", "-*oX . . . O-------&. O++O+Oo @-", "--# ..$------+ . o&-", "--=+. o&----$ $--", "--=&o O*--%X .@---", "----&O XO*%o #----", "-----&+ #O X$-----", "------=$O .O$-*#X. ...@&------", "--------*$@o o+$=----*#+X O#&=-------", "------------&%$%*------------&%%&=-----------", "--------------------------------=------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------", "---------------------------------------------" ] math_ymin_to_zero = [ "30 30 20 1 ", " c gray5", ". c #3C3C3C", "X c #2D5943", "o c gray35", "O c #6F6F6F", "+ c #07A956", "@ c #18AE61", "# c #31B772", "$ c #43BD7F", "% c #56C48B", "& c #6BCB9A", "* c #76CFA2", "= c #AAAAAA", "- c #93D9B5", "; c #A0DEBE", ": c #AFE3C9", "> c #CFD0CF", ", c #C8EAD9", "< c #D9F2E5", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "1111111:%#,1111111111111<,1111", "111111:+##@<111<%#;11111%@1111", "11111<+%11@%11<@@%+-111-+:1111", "11111%@111-+<1#@<1*+,1:+&11111", "1111<+-1111+&&+,111#@%+$111111", "1111*@11111-++;11111%#-1111111", "1111@%111111,<1111111111111111", "111,+X.......................1", "1111:>>>>>>>>>>>>>>>>>>>>>>>>1", "111111111111111111111111111111", "1111>..<1111111111111111111111", "1111.o.o1111111111111111111111", "1111 =O.1111111111111111111111", "111< =O.1111111111111111111111", "1111 =oo1111111111111111111111", "1111O =1111111111111111111111", "11111=>11111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111" ] pick = [ "30 30 18 1 ", " c #050505", ". c #2B2B2B", "X c #525252", "o c #767676", "O c #F8A13A", "+ c #E4A152", "@ c #F9B86B", "# c #919191", "$ c #B3A390", "% c #B3B3B3", "& c #C6BAAC", "* c #FBC688", "= c #F7D9B6", "- c #FDE0BD", "; c #CFCFCE", ": c #EAD7C0", "> c #FDE8D0", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,>,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,-@,>,,,,,,,,,,,,,,,,,", ",,,,,,,O*>*-O>,,,,,,,,,,,,,,,,", ",,,,,,,,*,,=>,,,,,,,,,,,,,,,,,", ",,,,,,@@>,;,*@>,,,,,,,,,,,,,,,", ",,,,,,>>,;,;::,,,,,,,,,,,,,,,,", ",,,,,,,>O%;;+>,,,,,,,,,,,,,,,,", ",,,,,,,@=$;.;%>,,,,,,,,,,,,,,,", ",,,,,,,,,$; .,%,,,,,,,,,,,,,,,", ",,,,,,,,>%% .;;;,,,,,,,,,,,,,", ",,,,,,,,,%; .;;>,,,,,,,,,,,,", ",,,,,,,,>%; .;;,,,,,,,,,,,,", ",,,,,,,,,%; .;;;,,,,,,,,,,", ",,,,,,,,;%; ;;>,,,,,,,,,", ",,,,,,,,,%; .;;;,,,,,,,,", ",,,,,,,,,%; .;;;,,,,,,,", ",,,,,,,,;%; . ;;;;;,,,,,,,,,", ",,,,,,,,,%; %# X%#%;;;,,,,,,,", ",,,,,,,,,%; %#; ;%>,,,,,,,,,,", ",,,,,,,,,%;;%##o X;,,,,,,,,,,,", ",,,,,,,,,;;%;;#; ;;>,,,,,,,,,", ",,,,,,,,;;;;;,%#X X;;,,,,,,,,,", ",,,,,,,,,,,,,,;#% ;;,,,,,,,,,", ",,,,,,,,,,,,,,>%;X#;;,,,,,,,,,", ",,,,,,,,,,,,,,,;%&%;>,,,,,,,,,", ",,,,,,,,,,,,,,,,;%;,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] next = [ "30 30 21 1 ", " c #012839", ". c #20353E", "X c #0D3151", "o c #1B3967", "O c #243E6A", "+ c #354349", "@ c #27427A", "# c #4A546D", "$ c #687075", "% c #354B8D", "& c #576394", "* c #495AA8", "= c #5865B6", "- c #5F6CC1", "; c #6B75CC", ": c #7D8285", "> c #7D83DC", ", c #9EA1B6", "< c #9A9DE3", "1 c #D6D6E9", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222,12222222222222222222222", "222222$.:222222222222222222222", "222222$ +,2222222222222222222", "222222$ $122222222222222222", "222222$ +,2222222222222222", "222222# Xo#122222222222222", "222222$ XXoo@,1222222222222", "222222$ oO%%&=<22222222222", "222222$ XXo@%%*==>2222222222", "222222$ XXo@%**=-;;<22222222", "222222$ Xo@@%**-;>><<1222222", "222222$ XXo@%**=;;;;><<222222", "222222$ XXo%%**=-;<;>12222222", "222222$ XXo@%%**-;;>1222222222", "222222$ XXo@%**=-;<12222222222", "222222$ Xoo%%**=;1222222222222", "222222$XXo@%%%-,22222222222222", "222222$Xoo@%*,2222222222222222", "222222$Xo@%&122222222222222222", "222222$Xo#,2222222222222222222", "222222&+&222222222222222222222", "222222,22222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] shape_ellipse = [ "30 30 10 1 ", " c #F7941E", ". c #F79929", "X c #F8A23B", "o c #F9AE55", "O c #FABA6C", "+ c #FAC27E", "@ c #FBCB92", "# c #FCD7AB", "$ c #FDE9D1", "% c None", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%$$$$%%%%%%%%%%%%%", "%%%%%%%%%#OX XO@%%%%%%%%%", "%%%%%%%O O$%%%%%%", "%%%%%@ .XX. .#%%%%%", "%%%%@ o@$%%%%%%$@o @%%%%", "%%%# o$%%%%%%%%%%%%$o #%%%", "%%%. @%%%%%%%%%%%%%%%%@ X%%%", "%%# @%%%%%%%%%%%%%%%%%%O #%%", "%%@..$%%%%%%%%%%%%%%%%%%% @%%", "%%@ .$%%%%%%%%%%%%%%%%%%$ @%%", "%%# +%%%%%%%%%%%%%%%%%%O #%%", "%%%X @%%%%%%%%%%%%%%%%@ X%%%", "%%%# o$%%%%%%%%%%%%$o #%%%", "%%%%@ o@$%%%%%%$@o @%%%%", "%%%%%# .oX. .#%%%%%", "%%%%%%$O +$%%%%%%", "%%%%%%%%%@OX Xo#%%%%%%%%%", "%%%%%%%%%%%%%$$$$%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" ] zoom_original = [ "30 30 24 1 ", " c #433539", ". c #5E5357", "X c #B32F36", "o c #ED1D25", "O c #DA2932", "+ c #E92B32", "@ c #D03943", "# c #EA3A41", "$ c #A55D61", "% c #EC4950", "& c #D75F67", "* c #787E80", "= c #A87D82", "- c #A49BA5", "; c #B4AAAE", ": c #DB9298", "> c #F7ACAF", ", c #BDBDC6", "< c #A6D2E7", "1 c #B6E2F4", "2 c #D5D2D5", "3 c #EED9DB", "4 c #D0E9F4", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "5555555:355555555555553>555555", "555555:oo:--2555555555+o:55555", "555555>ooO-*..;555555+oo>55555", "555552;:oo+34- *5553%oo>555555", "55554;21;oo#<5< -53%oo>5555555", "5555;3411;Oo@<4- 2#oo>55555555", "5555,44411-oo@14 +oo>555555555", "5553344411<-oo+,Ooo>5555555555", "555234441111;ooooo>55555555555", "5553255444111:ooo$555555555555", "5555;35444412#ooo+555555555555", "5555;3543443+o+@oo%55555555555", "55555-23533%oo$ $o+%3555555555", "555553-,22+oo$...@oo%555555555", "5555555;-+oo$.22. @oo%35555555", "55555553#oo:35553- @oo&3555555", "5555553%o+>5555555; Xoo%355555", "555555%oo>5555555552.Xoo&33555", "5555553+>555555555554$XO$;4555", "5555555555555555555555; .;5555", "555555555555555555555552=55555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] math_peak = [ "30 30 20 1 ", " c #131313", ". c #2C2C2C", "X c #285840", "o c #515251", "O c #767676", "+ c #0A964E", "@ c #02A652", "# c #32B773", "$ c #42BD7E", "% c #48BF82", "& c #50C288", "* c #7DD2A6", "= c #909090", "- c #90A198", "; c #B1B2B2", ": c #94D6B4", "> c #ACE1C6", ", c #CECECE", "< c #D3F0E1", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "11111111111111XX11111111111111", "1111111111111;@@=1111111111111", "1111111111111+@@+1111111111111", "111111111111>@@@@:111111111111", "111111111111+@@@@@<11111111111", "111111111111o;%$;.111111111111", "1111111111 c #B7E4CC", ", c #CCD8D2", "< c #DFF3E8", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "11111111111111<111111111111111", "1111111111111< <1111111111111", "11111111>1111@XX*111<<11111111", "1111111<$>111X@@X111=%11111111", "1111111<$>11< -- ,11=%11111111", "1111111<$>11-X::X@11=%11111111", "1111111<$>11X+::@X11=%11111111", "1111111<$>:+ :::- <1=%11111111", "1111111<$@ X-::::X:1=%11111111", "1111111<$o@::::::++1&#<1111111", "1111111<$o@::::::@ 1##@1111111", "1111111<$o-::::::: ,O#X1111111", "1111111<$.-:::::::X@o% <111111", "1111111;$o::::::::@ #% ,111111", "111111-X$*:::::::::;&%X:111111", "111111X-$*::::::::::&%@@111111", "11111< ,$;::::::::::&%:X::1111", "11111:X<$*::::::::::&%1 ,111", "11111X-<$;::::::::::&%1@X@+111", "1111<@<<$*::::::::::&%11<<+111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111" ] sliders_off = [ "30 30 24 1 ", " c #ED1D24", ". c #CF302C", "X c #EA292F", "o c #AE4D3C", "O c #9F6D54", "+ c #E75E60", "@ c #179447", "# c #08A450", "$ c #32B26D", "% c #4AA76B", "& c #B88977", "* c #50BE82", "= c #5CC38C", "- c #64C692", "; c #7BCFA2", ": c #B6B5A0", "> c #E7A6A3", ", c #89D1A9", "< c #A4DDBE", "1 c #AFE2C7", "2 c #F3D9D7", "3 c #C8EAD7", "4 c #D4EFE1", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "55555552&;-;;55555;;;;&5555555", "5555533+ O$##33333###o.+335555", "55553##@. >,###@###;> .###5555", "55555433@. O#33344#o .$3445555", "55555555<,. &55555+ .;<5555555", "55555555555X >555+ +5555555555", "555555<<<<35XX>5+ +4<<<<455555", "555554####*42X + +2,####155555", "55553##,4*$##@ .@###44##$5555", "55555,#$$#%<<+ :<-#$$#-15555", "555555==*=,5+ +2XX>4-===355555", "55555555555+ +552XX>5555555555", "5555555333+X+55553X >555555555", "5555551#@o +5555,#@ :55555555", "55553###+ o#$#$###3:. %@#$5555", "55554,=. o#$;;;;=#-=@ &;,5555", "5555553OO$$<5555<$$$*:X2555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] item_1dim = [ "30 30 12 1 ", " c #0135FF", ". c #1646FF", "X c #2F5AFF", "o c #3B63FF", "O c #5074FF", "+ c #6D8BFF", "@ c #96ACFF", "# c #A9BAFF", "$ c #B9C7FF", "% c #CDD7FF", "& c #DCE3FF", "* c None", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "********&#@@%*****************", "******&+ +************+.@*", "*****$. X&*********$ *", "****@ .OX o*********X O*", "***# .@***+ +*******@ %*", "**$ .%*****+ @*****& O**", "*&. .&*******o %****O .&**", "*+ %********&. .%**+ @***", "*# $**********% .@O O****", "**%&************# X&****", "*****************# O******", "******************&@OO#*******", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************" ] compare_mode_a = [ "30 30 15 1 ", " c #020201", ". c #2C1E0E", "X c #25221E", "o c #4E3619", "O c #5D411E", "+ c #704E24", "@ c #444342", "# c #865D2B", "$ c #91642E", "% c #AD7837", "& c #BB823B", "* c #CE8F42", "= c #E29D48", "- c #F8AC4F", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;@XXXXXXXXXXXXXXXXXXXXXXXX@;;", ";;Xo###############$######oX;;", ";;X#----------------------#X;;", ";;X#----------------------#X;;", ";;X#--------+oooo+--------#X;;", ";;X#-------= =-------#X;;", ";;X#-------# #-------+X;;", ";;X#-------. .-------$X;;", ";;X#------* *------#X;;", ";;X#------+ O+ +------#X;;", ";;X#------ &% ------#X;;", ";;X#-----% -- %-----#X;;", ";;X#-----o +--+ o-----#X;;", ";;X#----- &--& =----#X;;", ";;X#----$ .=---. $----#X;;", ";;X#----. o.oo .----#X;;", ";;X#---* *---#X;;", ";;X#---+ +---#X;;", ";;X#---. o######o .---#X;;", ";;X#--% *------* %--#X;;", ";;X#--o .--------. o--#X;;", ";;X#--+oOo$--------%oooO--#X;;", ";;X#----------------------#X;;", ";;X#----------------------#X;;", ";;Xo##$+##################oX;;", ";;@XXXXXXXXXXXXXXXXXXXXXXXX@;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] cube = [ "30 30 16 1 ", " c #181108", ". c #21180C", "X c #372816", "o c #4B3418", "O c #AE6B1A", "+ c #B07834", "@ c #CD7C1B", "# c #C17F31", "$ c #D18933", "% c #EC9C3B", "& c #E59B41", "* c #F9A847", "= c #989898", "- c #B0B0B0", "; c #CDCDCD", ": c None", ":::::::::::::::;::::;:::;:::;:", "::::::::::;. . . :", ":::::::::;XO%*************OXX:", "::::::::;X&$%************+X&X:", ":::::::;X%%$************+X&*X:", "::::::;X$**@%**********+X&**X:", ":::::;X&***$%*********+o&***X;", "::::;X&****$*********+X&****X:", ":::;X$*****$%*******+X&*****o:", "::;X&*****%$%******+o&******X;", ":;X$*******$%*****+o&*******X:", "; X&********o;", ": $#$$#$$$$O$$$$$+o*********X:", ":.*********$%****$o*********.:", ":.*********$&****$o*********X:", ":.*********$&****$o*********o:", ": *********$%%***$o*********o:", ": *********$%%%%%$o%%%%%&&%%.:", ":.*********@@@@@@OX$@$$@@@@O ;", ";.*******%$%****%$o*%**%**$X;:", ":.*******$%******$o******$X;::", ":.******$%%******$o*****&X;:::", ": *****$$********$o****%o;::::", ": ****$&*********$o**%%o-:::::", ":.***$%**********$o**&o-::::::", ";.**$%%**********$o**o-:::::::", ":.*$$**&*********$o*o=::::::::", ":.$$***&*******%*&oo=:::::::::", ": =::::::::::", ":::;:;:::::;;:::::::::::::::::" ] _d_plane_normal_z = [ "30 30 21 1 ", " c #10100B", ". c #201A15", "X c #503B23", "o c #54531B", "O c #716F6A", "+ c red", "@ c #966629", "# c #F2791D", "$ c #E5684F", "% c #2C962C", "& c #DC9A2A", "* c #F69332", "= c #D38246", "- c #E89B43", "; c #F9A847", ": c #1414F9", "> c #848382", ", c #BBBBBC", "< c #BFB2C7", "1 c #DBD5E1", "2 c None", "22222222221,,22222222222222222", "2222222222,%%22222222222222222", "22222222221%%22222222222222222", "2222222222,%>22222222222222222", "2222222222,%%22222222222222222", "2222222222,%>22222222222222222", "222222OOOOO XOOOOOOOOOO>222222", "222222 @@@@o@@@@@@@@@@@.222222", "222222 ;&;&&&;;;;;;;;;-.222222", "222222 ;;;&&&&;;;;;;;;;.222222", "222222 ;;;-&&;;;;;;;;;-.222222", "222222 ;;;;&&;;;;;;;;;-.222222", "222222 ;;;&&&;;;;;;;;;-.222222", "222222 -;-&&&&;;;;;;;;-.222222", "222222 ;;;;&&;;;;;;;;;-.222222", "222222 ;;;&&&;;;;;;;;;-.222222", "222222 ;;;-&&-*;;;**;**.222222", "222222 ;;;-&#&********&.$$$$$1", "222222 ;;;==$####*#*### +++++$", "222222 ;;-==&;*;*******.111112", "222222 --=$;;;;;;;;;;;*.222222", "222222 *==-;;;;;;;;;;;-.222222", "222222 $=-;;;;-;;;;;;;-.222222", "22222< .XXXXXXXXXXXXXXX.222222", "22221::,,,,,,,,,,,,,,,,,222222", "2221::122222222222222222222222", "22<::1222222222222222222222222", "21::12222222222222222222222222", "1::122222222222222222222222222", "1<2222222222222222222222222222" ] zoom_out = [ "30 30 23 1 ", " c #323132", ". c #4D3940", "X c #534C51", "o c #68565C", "O c #716B6F", "+ c #ED1C24", "@ c #EF333B", "# c #85777C", "$ c #F47176", "% c #78D3F5", "& c #948E91", "* c #A19DA2", "= c #B4AAAD", "- c #CCAFB1", "; c #C8BCC2", ": c #90D9F5", "> c #AAD8EA", ", c #B5E1F4", "< c #D4CED1", "1 c #FCD7D8", "2 c #E5DDE3", "3 c #CFE8F4", "4 c None", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "444444444444444444444444444444", "44444442;==<444444444444444444", "444442=**&OOo=4444-$$$$$$$-444", "44442*;>334,*X#444+++++++++444", "4444*<,,::::4> &44@+++++++@444", "444=23,,::%%%4= 24111111111444", "444=23,,,:::%,3 *4444444444444", "4442233,,::::,:Xo4444444444444", "44222333,,:,,,,OX4444444444444", "444<4333,3,,,,,Oo4444444444444", "444=2443333333, *4444444444444", "444=2243433333& <2444444444444", "4444*<4234234= O=<144444444444", "44442*;<244<#XoX#*;24444444444", "444444=&&&OOO= c #ACACAC", ", c #8FC4A9", "< c #B1C7BB", "1 c #B9CBC2", "2 c #D1D3D2", "3 c #DEE1E0", "4 c None", "444444444444444444444444444444", "444444444443213334444444444444", "444444444<%$$$$$=1344444444444", "44444444-$#*&=*%$$-24444444444", "4444444,$+;;;>;;;%$*2344444444", "4444443#%;>233321:&$:344444444", "4444443$&:2343;432>#%234444444", "4444442$&>244. @442%#>34444444", "4444442*$;23>O4 343##>24444444", "4444442=$$-2.>4O;3-$=>34444444", "44443<%$$$$%X>2:o%$&:244444444", "4441=$$$o+&$$$$$$#&;>344444444", "43-$$$o@;;>Oo=*&O+;>3344444444", "4*$$%@;:122 ;>>>;O223213344444", "4<**;;1234@O33333.,%$$$$%,3444", "43<<12342O.344443$$#****#$*234", "4333444+.:444444*$o;:>:>;&$*34", "4444443 44444441$%.>22222>%$>3", "4444443O4444444-$;.233 O32:$;2", "4444443O4444443=#;O>4>OO23,$=2", "4444443@4444444-$;;@4@;;@3-$;2", "4444442@44444431$%> 4O1>o<$%;2", "444444@>44444442-$#o@ 31X$#;>3", "44441+.4444444431=#$$$#$$$+;24", "444;O>444444444432;;&%&&$$#;34", "4443444444444444432>>>;;.$$*23", "444444444444444444433222;%$$:3", "4444444444444444444443443>#$#<", "44444444444444444444444442;$$*", "444444444444444444444444432*$%" ] camera = [ "30 30 14 1 ", " c black", ". c #010101", "X c #0C0C0C", "o c gray11", "O c #2E2E2E", "+ c gray28", "@ c #555555", "# c #676767", "$ c #777777", "% c #878787", "& c #D1D1D1", "* c #E9E9E9", "= c #F3F3F3", "- c None", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "---*#@@@@@@@@@@@#&------------", "---O. O-----&%OO---", "---X =-&%O X---", "---X =% X---", "---X =$ X---", "---X =$ X---", "---X =$ X---", "---X =$ X---", "---X =*$O X---", "---X =---&$o o---", "---+ O------=&&---", "---*%###########$*------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------" ] image_select_add = [ "30 30 24 1 ", " c #040807", ". c #14242C", "X c #262928", "o c #14502A", "O c #1F6A33", "+ c #67692C", "@ c #4B3349", "# c #13625C", "$ c #A02E24", "% c #B35C3C", "& c #996328", "* c #28883C", "= c #698E39", "- c #178C46", "; c #289655", ": c #32AC4C", "> c #55A84D", ", c #9B9C32", "< c #BBAB37", "1 c #454C86", "2 c #28A38D", "3 c #BCB4A0", "4 c #DADAD4", "5 c None", "5X oo 55", "5X X>>:o X@ 55", "5X o>>>>:X +553 55", "5X o*>><>=oO 3554 55", "5X O*>,,=++$&3554#. 55", "5X *>====++$%3554#@ 55", "5X O*==+&+$$$3554o## 55", "5X .OO++&+X$$$3554O#2. 55", "5X .oo+=++@$$$$3554+O22# 55", "5X .#oo++&&%$$$$3555+;;2#X55", "5X .#ooO+<5555555555555555554", "5X ##Xo,,45555555555555555555", "5X ooo+,+35555555555555555554", "5X .#oooO++&%11%+$3555==>1>113", "5. .#ooo++,+$$$$$$3554oO**O.34", "5X .oooo+,+&&%&$%$3554oO:>:.55", "5X ooO=,=,<&&%$%%3554O*:>2.55", "5X #-*==,,&<&%<%<3554o>::2 55", "5X oO-O===<,<<%%<&3554o*>:@ 55", "5X O--O*,=<,&<,<<<3554o:>2@ 55", "5.oO---*===<,,,==>>553O:21X 55", "5o#--O-O*======::-:33O*:1$ 55", "5X###OOO--***:--:-::--*:1X 55", "5X.###OoOO*--::-::-::-;@@ 55", "5X ##2###--:;:>O::*-;11@ 55", "5X .#2#;2-::-::-:;-#@@ 55", "5X ##2;;->;:;#O#1@ 55", "5X ##2#2##;.@ 55", "5X . . . 55", "5X 55" ] image_select_brush = [ "30 30 24 1 ", " c #2A582C", ". c #6A6A2C", "X c #484C49", "o c #9E2820", "O c #9A6226", "+ c #C75237", "@ c #168A3F", "# c #6C8E38", "$ c #1F974B", "% c #30B04B", "& c #54AA4D", "* c #A49D31", "= c #B2A54C", "- c #6DA992", "; c #848686", ": c #9DACA6", "> c #8BB4AE", ", c #91C9AF", "< c #A9D4A9", "1 c #CEC3B1", "2 c #A8D6C8", "3 c #CED0CF", "4 c #D8E4DC", "5 c None", "553333313333333333333333333355", "55;;;;;;;;;;<<:<3131;;;;;;;;55", "55;;;X;;;;,<14551:155;;;X;;;55", "54;;;;;;;;<454<& 34;;;;;;55", "55;;;;;;;,55<*# ..O*<5>:;;;;55", "55;;;;;;-45=*#...o*OO52>;;;;55", "55;;;X;;15&#...Ooo+oO53,:;;;55", "55;;;;;:5, .*. ooooo15<<>>;;55", "54;;;;;45 #..ooooo+531<42>;55", "54;;;>>5- ..OOoooo+53155554;55", "55;;;>35 ..OOoooo44155=$,5>55", "55;;;>5: ****Oooo15154=#$%5455", "55;;;25X.#..OOoo+5355+*&%%,555", "55;;-34 ..OOoo4555O*=%%%2455", "55;;:5> O*OO++451++*&%%%2455", "54;;:5$ =:*OO+O+++***&%%%4455", "55;;35 #551*O++O+****%%%%4455", "55;;4,@$355=*=O++****&@%&%-555", "55;:5-$5554*O*******&%%%%&>555", "55;:5>5535=********&@&&%&&5355", "55>>554>45##*#**#<4&@%&%$25;55", "55;>>,>>42&&&&-4554%%@%&-51;55", "55;>>>--44&&<55445-&%$%%53;;55", "55;;>>,,255544<,25%@&%$45;;;55", "55;;;;;>>>2,2>,,44%@X$35;;;;55", "55;;;;;>2>2,>2,<5,%@X14:;;;;55", "55;;;;;;;->>:>;>5;XX15:;;;;;55", "54;;;;;;;;;-;;;;43;45:;;;;;;55", "55;;;;;;;;;;;;;;;553;;;;;;;;55", "55:;;;;::;:;:;1::;:;:;:;;;;;55" ] axis = [ "30 30 15 1 ", " c #050505", ". c #171717", "X c #2D2D2D", "o c #525252", "O c #666666", "+ c #767676", "@ c #7D7D7D", "# c #8A8A8A", "$ c #999999", "% c #AEAEAE", "& c #CFCFCF", "* c #E8E8E8", "= c #F3F3F3", "- c gray98", "; c None", ";-;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";@;;;;;;;;;;;;;;;;;;;;;;;;;;;;", "% =;;;;;;;;;;;;;;;;;;;;;;;;;;;", "o $;;;;;;;;;;;;;;;;;;;;;;;;;;;", ". X;;;;;;;;;;;;;;;;;;;;;;;;;;;", " *;;;;;;;;;;;;;;;;;;;;;;;;;;", "$.$%;;;;;;;;;;;;;;;;;;;;;;;;;;", "*.;;;;;;;;;;;;;;;;;;;;;;;;;;;;", "=.;;;;;;;;;;;;;;;;;;;;;;;;;;;;", "=.;;;;;;;;;;;;;;;;;;;;;;;;;;;;", "=.;;;;;;;;;;;;;;;;;;;;;;;;;;;;", "-.;;;;;;;;;;;;;;;;;*#=;;;;;;;;", "-.;;;;;;;;;;;;;;;;;&.&;;;;;;;;", "=.;;;-;;;;;;;;;;;;;;-;;;;;;;;;", "=.;;*&=;;;;;;;;;;;-=&;;;;*&==;", "-.*o$%X%-=O.o&*O.#&o ;;;@O%OX*", "-.+o=;&X;;;@o-;+&;;* ;;*X;;;O&", "-.*&;;= ;;;-o#$%;;;* ;-=.%;;*=", "-.=$O+O ;;;;*.+;;;;= ;;;%XX#=;", ";.OO=;- ;;;;&O.*;;;= ;;==-&o.*", "; =;;= ;;;*O;$X;;-= -;%%-;;O$", ";..%;;#.=;*o=;;oO-;* =;%X=;;O%", ";.%ooO%+o%oo%;&ooo&ooO&&#OOO+;", "; ;;;;;;;;;;;;;;;;;;=;;=;;-;;;", "; ;;;;;;;;;;;;;;;;;;;;;&X#*;;;", ";.$$$$$$$$$$$$$$$$$$$$$$ X#=", ";+++++++++++++++++++++++ .+*", ";;;;;;;;;;;;;;;;;;;;;;;&.+&-;;", ";;;;;;;;;;;;;;;;;;;;;;;*;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] stats_whole_data = [ "30 30 12 1 ", " c #F7941E", ". c #F79726", "X c #F8A23B", "o c #F9AC51", "O c #F7B76A", "+ c #DEBF99", "@ c #FBCC94", "# c #D9C7B1", "$ c #FCD6A9", "% c #D8D8D8", "& c #FDE9D2", "* c None", "******************************", "******************************", "******************************", "******************************", "******************************", "*******&%******%***%%*********", "*******%%%%%%%%%%%%%%%%%*&$&**", "*******%**************%**X &*", "*******%**************%*o &*", "*******%**************%o O**", "*******#**************O o***", "*******%*************@ X****", "*******%************$ X&****", "*******+XO&********$ .&*****", "******& .$******&. .&******", "******o .o&***&. +*******", "*****O $*&o $%*******", "****@ O&o oo @*%*******", "***& X***@ O**%*******", "***X .#****&o o***%*******", "**O $%******@. o****%&******", "*& O*%*******&$*****%*******", "*& o&*%**************%*******", "**&$&**%%%%%%%%%%%%%%%%*******", "*********%****%**%****%*******", "******************************", "******************************", "******************************", "******************************", "******************************" ] shape_horizontal = [ "30 30 7 1 ", " c #F7941E", ". c #F79929", "X c #FCD3A3", "o c #FCD6A9", "O c #FDDFBC", "+ c #FEF2E5", "@ c None", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@oXXXXXXXXXXXXXXXXXXXX+@@@", "@@@@@. O@@@", "@@@@@. O@@@", "@@@@@oXXXXXXXXXXXXXXXXXXXX+@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@", "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@" ] stats_active_items = [ "30 30 11 1 ", " c #F7941E", ". c #F79A2A", "X c #F8A139", "o c #F9AB4E", "O c #FABA6E", "+ c #FAC07B", "@ c #FBC98E", "# c #FCD9AF", "$ c #FDE0BF", "% c #FDE8CF", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&$&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&$&&&", "&&&&&&&&&&&&&&&&&&&&&&&%$&&&&&", "&&&&&&&&&&&&&&&&&&&&$&$%$&&&&&", "&&&&&&&&&&&&&&&&&&&$&$&&&&&&&&", "&&&&&&%&%%&%&&&&&&$&$&&&&&&&&&", "&&&&$&$&&%&$&$&$&%&$&&&&$. #&&", "&&&$&$&&&&%&$&&&%%&&&&&%. +&&", "&&&&&&&&&&&&&$#&&&&&&&&. .%&&", "&&&&&&&&&&&&&&&&&&&&&&. .%&&&", "&&&&&&&&&&&&&&&&&&&&&o #&&&&", "&&&&&&&&&&&&&&&&&&&&O @&&&&&", "&&&&&&&&o.#&&&&&&&&+ @&&&&&&", "&&&&&&&o o&&&&&&@ O&&&&&&&", "&&&&&&+. .#&&&# o&&&$&&&&", "&&&&&# . O&# X&&&&%$&&&", "&&&&&. X&@ .. .$&&&%&&&&&", "&&&&X .&&&&o. .&&&&$%&&&&&", "&&&+ $&&&&&@ #&&&$&&&&&&&", "&&# @&&&&&&&&X.@&&&##&&&&&&&", "&&O o&&&&&&&&&&&&&$&#&&&&&&&&", "&&%Xo&&&$&#&$&&&&&$&$&&&&&&&&&", "&&&&&&$&$$&$&$&&##&#&&&&&&&&&&", "&&&&$&&$&&&&$&&#&&$&&&&&&&&&&&", "&&&%&%%&&&&&&&&&&#&&&&&&&&&&&&", "&&&&%&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] colorbar = [ "30 30 19 1 ", " c #191919", ". c #303030", "X c #4B3010", "o c #515151", "O c #727272", "+ c #905B1B", "@ c #D48B36", "# c #EB9833", "$ c #F3A13E", "% c #E29A45", "& c #F0A852", "* c #F8B76A", "= c #8E8E8E", "- c #AFAFAF", "; c #EDBC82", ": c #EECAA0", "> c #D0D0D0", ", c #FDE9D1", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<,:******:<<<<<<<<<<<<", "<<<<<<<<<&;::>:::*&<<<<<<<<<<<", "<<<<<<<<,&>>>>,>>>&*&,<<<<<<<<", "<<<<<<<<,&>>>>>>>>$,,<<<<<<<<<", "<<<<<<<<,&>>>>>>>-$,<<<<<<<<<<", "<<<<<<<<,&>--->->-$<<<<<<<<<<<", "<<<<<<<<,%--------#,<<<<<<<<<<", "<<<<<<<<,%--------#<<<<<<<<<<<", "<<<<<<<<,%--=--=--$,<<<<<<<<<<", "<<<<<<<<,%====-===$&$,<<<<<<<<", "<<<<<<<<,%========#,<<<<<<<<<<", "<<<<<<<<,%O===O===#<<<<<<<<<<<", "<<<<<<<<,%=OOOO=OO#<<<<<<<<<<<", "<<<<<<<<,%OOOOOOOO#,<<<<<<<<<<", "<<<<<<<<,@OOOoOOoO#<<<<<<<<<<<", "<<<<<<<<,@oOoOOoOo#,<<<<<<<<<<", "<<<<<<<<,@oooooooo@&#,<<<<<<<<", "<<<<<<<<,@oooooooo#,<<<<<<<<<<", "<<<<<<<<,@.o.o.oo.#<<<<<<<<<<<", "<<<<<<<<,@...o....#,<<<<<<<<<<", "<<<<<<<<,@........@<<<<<<<<<<<", "<<<<<<<<,@. ... ..#,<<<<<<<<<<", "<<<<<<<<,@ @,,<<<<<<<<<", "<<<<<<<<,@ #&&,<<<<<<<<", "<<<<<<<<<#+X.XXXX+$<<<<<<<<<<<", "<<<<<<<<<<;%&&&&&;<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" ] shape_rectangle = [ "30 30 16 1 ", " c #F7941E", ". c #F79929", "X c #F89D31", "o c #F8A23C", "O c #F9B360", "+ c #FABA6D", "@ c #FABA6E", "# c #FBCD97", "$ c #FBD09C", "% c #FCD9B0", "& c #FDE0BD", "* c #FEEDD8", "= c #FEEDD9", "- c #FEEEDC", "; c #FEF4E7", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::&@@@@@@@@@@@@@@@@@@@@@@;::", "::::# =::", "::::# =::", "::::# #****************O =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# %::::::::::::::::+ =::", "::::# Xoooooooooooooooo. =::", "::::# =::", "::::$......................-::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] add_shape_point = [ "30 30 13 1 ", " c #09A957", ". c #1CB164", "X c #F7941E", "o c #F9AD52", "O c #FAB96D", "+ c #55C38B", "@ c #6CCC9A", "# c #92D9B5", "$ c #FCD5A7", "% c #B9E6CF", "& c #CFEFDE", "* c #D7F1E4", "= c None", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "==============================", "=============$oo$=============", "=============$XX$=============", "=============$XX$=============", "=============$XX$=============", "=============$XX$=============", "=============$XX$=============", "=======$$$$$$OXXO$$$$$$=======", "=======oXXXXXXXXXXXXXXo=======", "=======oXXXXXXXXXXXXXXo=======", "=======$$$$$$OXXo$$$$$$=======", "=============$XX$=============", "=============$XX$=====*&&=====", "=============$XX$=====% .=====", "=============$XX$=====% .=====", "=============$XX$=====% .=====", "=============$oo$==@ *=", "===================+ . &=", "===================*&&# .&&&==", "======================% .=====", "======================% .=====", "======================*@#=====", "==============================", "==============================" ] compare_align_auto = [ "30 30 20 1 ", " c #070705", ". c #221E0F", "X c #2A2D11", "o c #4D4D38", "O c #6D4D26", "+ c #586724", "@ c #5F6626", "# c #986B36", "$ c #9D6F37", "% c #748830", "& c #8BA43A", "* c #AA9648", "= c #D09349", "- c #F6AD57", "; c #B3D34A", ": c #D3F857", "> c #939393", ", c #BEBEBE", "< c gray76", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "11<<<,,,,,,,,,,,,,,,,,,,,11111", "11 ,1111", "11 #--=--=-----=-----=-= ,1111", "11.#-----------XO$------ ,1111", "11.#-----=####$ . O*--- ,1111", "11 #-----X ..:;%X .O$ ,1111", "11 $----- @:;;:;%X o,111", "11.*----# ;:+ @;:;%. *1", "11 $----. .:: X:::;.o1", "11.#---= OO @:& ;;X X::; ,1", "11 #---O =# ;:+ ;:+ .::% 11", "11 $--- .-O.:: . +::.>11", "11 #--* O-.@:& %+ %::; <11", "11.#--X == ;:+ .::% X::%.111", "11 #-= O..:: X;:+ ::Xo111", "11.#-# +::@. +:; <111", "11.#-. .@;:;%X.+::%.1111", "11 #= .*$=#o. +;:::::.o1111", "11 #O #------O .+;:; >1111", "11.# -------- XX ,1111", "11 $--=---------=----=O. ,1111", "11.$-------------------- ,1111", "11 O$$$$#$$$$#######$### ,1111", "11. . . .. . . . . ,1111", "111111111111111111111111111111", "111111111111111111111111111111" ] edit_copy = [ "30 30 24 1 ", " c #523A1D", ". c #515052", "X c #6C665D", "o c #6F7071", "O c #A36923", "+ c #A0784A", "@ c #F6931E", "# c #DE8924", "$ c #F29930", "% c #B99467", "& c #D09957", "* c #F4A74D", "= c #F1BA77", "- c #7F8081", "; c #8F908F", ": c #ABA299", "> c #ADAEAE", ", c #CFB494", "< c #E0CAAF", "1 c #F5D6B1", "2 c #BEC0C1", "3 c #D1D2D3", "4 c #EFE0CE", "5 c None", "555555555555555555555555555555", "555555545555554555555555555555", "551$@@@$@@@@@@@@@@@15555555555", "55*@******$*******@=5555555555", "55*@45535555554551@=5555555555", "55*@455223343<>254@=5555555555", "55*@45oX.....oo251@=5555555555", "55$@3553354$@@@$@@@@@@@@@@$455", "55#@253533=#===%,,,==,,==,$=55", "53#@,3-...O@33333333333334$=55", "52##&33335<@332>>>>>>:;>33$=55", "53O$$23223<@32oX.o.oXo-333$=55", "53+@@,--;41@33333333333333$=55", "53O#$$3455=@23333333333333*=55", "54+#=*&o-o+@=2-XX.....X333$=55", "55OO@5*&--%#1<-;;;>;>:2334$=55", "55& @451*,=O15323333333333*=55", "55#OO*5551=*155,X333333333$=55", "55*OX#1555555555<333333333$=55", "55*#-+$5555555555>;;;:>334$=55", "55*#%XO*5555555555;....>33*=55", "55=@#O O&455555555>2332343$=55", "555=*&+ O#=55553o;2333333$=55", "5555554>-. <552.o;2333333$=55", "555555533>X <5,..;23333333$=55", "5555555553&O1% X;>2<3<<3<<$=55", "5555555555 c #D8F1E4", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,>%,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,+O>,,,,,,,,,,,,,,,,,,,,", ",,,,,,-OO@,,,,,,,,,,,,,,,,,,,,", ",,,,,,OOOO-,,,,,,,,,,,,,,,,,,,", ",,,,,-+OO+#,,,,,,,,,,,,,,,,,,,", ",,,,,,,%O,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,%O,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,%O,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,%+,,,;ooo>,,,*ooo,,,,,,", ",,,,,,,%O,,,,X o,,,. *,,,,,,", ",,,,,,,%O,,,,> ;,o &,,,,,,,", ",,,,,,,%O,,,,,; .> o,,,,,,,,", ",,,,,,,%+,,,,,,& . .,,,,,,,,,", ",,,,,,,=O,,,,,,,X >,,,,,,,,,", ",,,,,,,%O,,,,,,,* X,,,,,,,,,,", ",,,,,,,%O,,,,,,,* X,,,,,,,,,,", ",,,,,,,%+,,,,,,,* X,,,,,,,,,,", ",,,,,,,%O,,,,,,,*..X,,,,,,,,,,", ",,,,,,,%O,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,%O,,,,,,,,,,,,,,,,,,,,,", ",,,,,>-#O--,,,,,,,,,,,,,,,,,,,", ",,,,,-OOOO$,,,,,,,,,,,,,,,,,,,", ",,,,,,#O+O,,,,,,,,,,,,,,,,,,,,", ",,,,,,>OO=,,,,,,,,,,,,,,,,,,,,", ",,,,,,,%+,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,:,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] zoom_in = [ "30 30 24 1 ", " c #2F2F30", ". c #49393E", "X c #503C43", "o c #5C5055", "O c #726C6F", "+ c #84747A", "@ c #05A854", "# c #2EB671", "$ c #43BD7F", "% c #8E7D84", "& c #66CA96", "* c #7AB3C8", "= c #958E91", "- c #A19A9F", "; c #B1A8AB", ": c #B4BFBE", "> c #ACDBC6", ", c #92D9F5", "< c #A9DDF2", "1 c #B6E2F4", "2 c #D2CCCF", "3 c #E2DCDF", "4 c #D0E9F4", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "55555553;;;:5555555555>#>55555", "555553---=+Oo-55555555&@&55555", "55553;:>1514*.+5555555&@&55555", "5555;241,,,,44 =555>>>&@#>>>55", "555;441<<,,,,4: 355@@@@@@@@@55", "555;3441<,,,,,4 -55&##@@@##$55", "55524441<<,,,,1OO55555&@&55555", "55333444111<11 c #CBECDA", ", c #DAF1E5", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<;;>>><<<<<<<<<<<<<<<<<<<<<", "<<<>><<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<,O$;><<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<& o<<<<<<<<", "<<<<<<<<<<, :<<<<", "<<<,+>>+,>+,;+<-O<<<<", "<<<,O$<<<,O;,O;>O,;O,;O,-O,<<<", "<<<,O+++@#O##O##O#@O$@O$@O,<<<", "<<< c #2F91F3", ", c #63B2FF", "< c #808080", "1 c #FFD4A8", "2 c #A5D2FF", "3 c #E2E4E5", "4 c None", "444444444444444444444444444444", "444444444444444444444444444444", "444444444311134432223444444444", "44444441&@##@#-;:::::>24444444", "444444&###@@%<<<->==:::,444444", "44444&#####%<<<<<<>=::::,44444", "4444&#####$-<<<<<<<:::::=,4444", "4441######-<<<<<<<<;::::::2444", "444$#####%<<<<<<<<<<>:::::>444", "441######-<-<<<<<<<<;::=:::344", "44&#####@ooo<<<<44", "44@#####. o<<<<. .O* =:::44", "43#####@ o <<44", "44&#@@++@-<=::::,44444", "444444&#####%-<<->:::::,444444", "44444441$@####-;::::=>24444444", "444444444411134432224444444444", "444444444444444444444444444444", "444444444444444444444444444444" ] view_fullscreen = [ "30 30 21 1 ", " c #4D3C3D", ". c #555555", "X c #795D5E", "o c #777373", "O c #BB3136", "+ c #EC1C24", "@ c #D32C33", "# c #E62A31", "$ c #E53F45", "% c #996C6E", "& c #D5585D", "* c #D27D81", "= c #909090", "- c #AE9294", "; c #AEAEAE", ": c #DC8D90", "> c #CFB1B3", ", c #D1BFC0", "< c #D4D3D3", "1 c #E5D2D3", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "22.=========================X2", "22X2222222222222222222222222.2", "22.<12<121<21<21<21<21<<12<1.2", "22.2<221122<22<2212212<21221.2", "22.2222222222222222222222222.2", "22.221##@:22222222222<$$$:22.2", "22.22>++@,22222222222,&++-22.2", "22.22;@++&<2222222221:+++-12.2", "22.22;@.O#$122222222:+# @-12.2", "22.22<==XO#$1222222&+@oo=,22.2", "22.222<<;=O&<22222<&@o=,<222.2", "22.222221<;;<222221;;;122222.2", "22.2222221>:2222222>><222222.2", "22.222222>#+<222222$+>222222.2", "22.222:1:+#%<12222<-##&<*222.2", "22.22<$#+#%;1222221;%@+@+122.2", "22.22<#+@o=<2222222<;oO++:22.2", "22.22;+++%<222222222<-@+#%12.2", "22.21,=.=;12222222222>=.o;22.2", "22..... ............. ..X2", "222222122222222222222212222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] add_shape_polygon = [ "30 30 21 1 ", " c #0CA853", ". c #1BB064", "X c #B59D35", "o c #F7941E", "O c #C79828", "+ c #F79928", "@ c #F8A23A", "# c #B4B15E", "$ c #F9AA4D", "% c #DEB463", "& c #FABA6D", "* c #FAC17D", "= c #64C893", "- c #91D1A3", "; c #FBCB92", ": c #FBD8AD", "> c #FDE0BE", ", c #B8E4CB", "< c #FDE8CF", "1 c #D4F0E2", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "2222222222222<;222222222222222", "222222222222:+$222222222222222", "22222222222;ooo222222222222222", "2222222222:oooo>22222222222222", "222222222;oo$@o&22222222222222", "22222222;oo$2&o$22222222222222", "2222222;oo@22:oo<2222222222222", "222222&o+$2222oo;2222222222222", "22222&oo&22222$o&2222222222222", "2222&oo$222222;o+2222222222222", "2222@o+2222222oo;2222222@o+;22222222222", "22222&oo<222222;ooo@:222222222", "222222@o@22222222&ooo@:2222222", "222222%OO- .11122", "22222<&$@+ooooooooooo;, .22222", "22222222222<:;;&$+oo$2, .22222", "2222222222222222222<221=-22222", "222222222222222222222222222222", "222222222222222222222222222222" ] math_real = [ "30 30 15 1 ", " c #010101", ". c #0B0B0B", "X c #171717", "o c #303030", "O c gray30", "+ c #6C6C6C", "@ c #8D8D8D", "# c #979797", "$ c #AEAEAE", "% c #C9C9C9", "& c #D5D5D5", "* c #E8E8E8", "= c #F4F4F4", "- c #F9F9F9", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;&%;;-;;;;;;;;;;;;;", ";;;;;;;;;&#O Ooo+=;;;;;;;;;;;;", ";;;;;;;&O@*O.;;@ +-;;;;;;;;;;;", ";;;;;;%.$;;XO;;% O;;;;;;;;;;;;", ";;;;;;oX;;& @;;# #;;;;;==;;;;;", ";;;;;& o;;# %;=XO-;;;=+X.%;;;;", ";;;;;% o;;O.&#O$;;;;=o%$ $;;;;", ";;;;;*X#;;Xo.o;;;;;;O+;@X-;;;;", ";;;;;;-;;& #O *;;;;& &%o&;;;;;", ";;;;;;;;-@.*# #;;;;+X#+=;;;;;;", ";;;;;;;;;o+;* o;;;;oX$;;;;;;;;", ";;;;;;;;&o;;-o *;;;XO;;;%#;;;;", ";;;;;;;%O=;;-+ @;;;.X*-@+=;;;;", ";;;;&X Xo@;;% o;;;O .X#;;;;;;", ";;;;=&*=*;;;;;o $;;-$$-;;;;;;;", ";;;;;;;;;;;;;;& o-;;$$;;;;;;;;", ";;;;;;;;;;;;;;;$.O&$Xo-;;;;;;;", ";;;;;;;;;;;;;;;;*#++$;;;;;;;;;", ";;;;;;;;;;;;;;;;-;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] math_derive = [ "30 30 17 1 ", " c #000000", ". c #050505", "X c #0C0C0C", "o c #171717", "O c #222222", "+ c #3A3A3A", "@ c #484848", "# c #575757", "$ c #707070", "% c #919191", "& c #ACACAC", "* c #B8B8B8", "= c #D2D2D2", "- c #E7E7E7", "; c #F3F3F3", ": c #FAFAFA", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>:-:>>>>>>>>>>>>>>>>>>>", ">>>>>>>&X #>;=->>>>>>>>>>>>>>>", ">>>>>>-X #:# =>>>>>>>>>>>>>>>", ">>>>>>% o&=;OX>>>>>>>>>>>>>>>>", ">>>>>:$ %>>:X@>>>>>>>>>>>>>>>>", ">>>>>>@ &:>- %>>>>>>>>>>>>>>>>", ">>>>>%O #%;& ->;@;>>>>>%%>>>>>", ">>>>>O -$+>>%@>>>>>>&O>>>>>", ">>>>>@X O+-;:>>#$:>>>>>;.=>>>>", ">>>>>>+ &>>>>>>O&=@%:@$>o&>>>>", ">>>>>>@ &>>>>>>.=>+O* *>@%>>>>", ">>>>>>+ &>>>>>; =>& O+::#$>>>>", ">>>>>>+ &>>>>>; =>>O &>>#$>>>>", ">>>>>>@ &>>>>>; =:;X.$>>@$>>>>", ">>>>>>+ &>>>>>>X=:% @o;>+%>>>>", ">>>>>>+ &>>>>>>+%:O@& %>o*>>>>", ">>>>>>+ &>>>>>>$#=$*:$%= ;>>>>", ">>>>>>@ &>>>>>>*o>>>>>>%@>>>>>", ">>>>>>%%=>>>>>>>&;>>>>:==>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] view_2d_stack = [ "30 30 18 1 ", " c #0A0908", ". c #291A08", "X c #65441C", "o c #754F21", "O c #494846", "+ c #6F6F6F", "@ c #AD6A1A", "# c #8C5F28", "$ c #936023", "% c #CA7918", "& c #F6941E", "* c #D1872F", "= c #F49524", "- c #F1A03F", "; c #F8A747", ": c #9F9F9F", "> c #CFCFCF", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,: .. ... .. . +,,", ",,,,,,,,,: ##########$###$.O,,", ",,,,,,,,,:.;;;;;;;;;;;;;;;XO,,", ",,,,,,>>>+ ************%;;XO,,", ",,,,,> ;;oO,,", ",,,,,> @*%@*%*****%**%$ ;;XO,,", ",,,,,> *;*%&&&&&&&&&&&@ -;XO,,", ",,:::+ o#oXo$$$ooo$$%&@ ;;XO,,", ",,. . ........ ... @&@ -;XO,,", ",,.#--%===&&&&&&&&& @&@ ;;XO,,", ",, #;-%=&&&&&&&&&&& @&@ ;;XO,,", ",, #;-%==&&&&&&&&&& @=@ -;XO,,", ",,.#;-%==&&&&&&&&&& @=@ ;;XO,,", ",,.#;;%==&&&&&&&&&& @=@ -;XO,,", ",,.+;-%===&&&&&&&&& @=@ ;;XO,,", ",,.#;-%===&&&&&&&&& @&@ -;XO,,", ",, #;-%==&&&&&&&&&& @&@ --XO,,", ",,.#;-%==&&&&&&&&&& $@$ O,,", ",,.#;-%========&=&& @-$ :>:>,,", ",,.#;-%==&=====&&== @;@ ,,,,,,", ",,.#--%*&&&&=*&&=*& o$o ,,,,,,", ",,.$--%%%%@%%%*@%%% ,,,,,,", ",, #;;;;;;;;;;;;;;; :,,,,,,,,,", ",,.#;;;;;;;;;;;;;;- :,,,,,,,,,", ",,..XXXXXXXXXXXXXXX :,,,,,,,,,", ",,+OOOOOOOOOOOOOOOOO>,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] rotate_3d = [ "30 30 16 1 ", " c #000000", ". c #060606", "X c #0B0B0B", "o c #161616", "O c #2E2E2E", "+ c #484848", "@ c #5A5A5A", "# c #6D6D6D", "$ c #898989", "% c #989898", "& c #B1B1B1", "* c #D0D0D0", "= c #E7E7E7", "- c #F3F3F3", "; c #F9F9F9", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", ":::::::::::::*#$;:::::::::::::", "::::::::::::=o .@:::::::::::::", "::::::::::::@ #o *::::::::::::", ":::::::::::-.o;% #;-::::::::::", ":::::::::::&.@=% .X&::::::::::", ":::::::::::# %=o o;::::::::::", ":::::::::::+ *;*X.@:::::::::::", "::::::::::;O ;;;%.&:::::::::::", "::::::::::; o::::#;$++OO=:::::", "::::;*&:::= O:::::;*. .O;:::::", "::;$o. =::= +:::::::$ o$::::", "::#. +%::;* +:::::::;OO+ @:::", ":- o*:::::&.@::::::::**:*o =::", "::o +&;:::* @::::::::;:&@ o;::", "::*O .XO#$$ +*=**&&%#Oo .O*;::", ":::;%+o. .. o+%;;;::", ":::::::=&$# o+O+@@#$&=::::::::", ":::::::::;; O;::::::;:::::::::", ":::::::::::O -::::::::::::::::", ":::::::::::+ *::::::::::::::::", ":::::::::::# %::%%::::::::::::", ":::::::::::&.@:- O::::::::::::", ":::::::::::-.o-% #;:::::::::::", "::::::::::::@ #o *::::::::::::", "::::::::::::=o @:::::::::::::", ":::::::::::::*#$;:::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] math_energy = [ "30 30 13 1 ", " c DimGray", ". c #F7941E", "X c #F79827", "o c #F8A13B", "O c #F9AD53", "+ c #FAB86A", "@ c #9B9B9B", "# c #A8A8A8", "$ c #FBC88C", "% c #FCD2A1", "& c #D2D2D2", "* c #FEECD7", "= c None", "==============================", "==============================", "==============================", "==============================", "=====$$$$$$$$$$$$$%===========", "====*...X......X..o&&&&#@@&===", "====*...........XXo=&=*&& #===", "=====X.O**=***=****======@#===", "=====o.O=================##===", "=====o.O=================@@===", "=====o.O=================@#===", "=====o.O=================@#===", "=====o.O=================##===", "=====o.O=*=*=*===========@#===", "=====o.X......o==========@@===", "=====o.X......o==========@#===", "=====o.o$$$+$$$==========##===", "=====oXO=================@@===", "=====o.O=================@#===", "=====o.O=================@#===", "=====o.O=================@#===", "=====o.O=================@#===", "=====o.O=================@#===", "=====oXO=================@@===", "====*X..XXXXXXX.XXO=*===&@@===", "====*X............o&&&@@@ #===", "====*++++++++++++++===========", "==============================", "==============================", "==============================" ] view_3d = [ "30 30 16 1 ", " c #110E09", ". c #332311", "X c #2C2A28", "o c #593812", "O c #643E10", "+ c #413E3C", "@ c #78501F", "# c #525252", "$ c #946021", "% c #956429", "& c #B6762A", "* c #CD7C1B", "= c #DA8928", "- c #EA9938", "; c #F9A847", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", ":::::::::::X X::", "::::::::::X.$&&&&&&&&&&&% X::", ":::::::::#o==;;;;;;;;;;;. X::", "::::::::X.-==;;;;;;;;;; $o ::", ":::::::Xo-;==;;;;;;;;;. $;oX::", "::::::Xo;;;==;;;;;;;;. $-;oX::", ":::::Xo;;;;==;;;;;;;. $;;;o ::", "::::#X;;;;;==;;;;;;. $;;;;OX::", ":::X.;;;;;;==;;;-;. @;;;;;o.::", ":: $;;;;;;oX::", ":: .oooOoooooOooo ;;;;;;;oX::", ":: %;;;;;;;==;;;; ;;;;;;;oX::", ":: %;;;;;;;==;;;;. ;;;;;;;o.::", ":: %;;;;;;;=-;;;; ;;;;;;-oX::", ":: %;;;;;;;==;;;; ;;;;;;;o.::", ":: %;;;;;;;=***** =******. ::", ":: %;;;;;;-*===== ======o #::", ":: %;;;;;-*-;;;;; ;;;;;@ #:::", ":: %;;;;-*-;;;;;; ;;;;$ #::::", ":: %;;;;=-;;;;;;; ;;;$ #:::::", ":: %;;;*-;;;;;;;;. ;;$ X::::::", ":: %;-*-;;;;;;;;; ;% +:::::::", ":: %-*-;;;;;;;;;;. % X::::::::", ":: %*-;;;;;;;;;;; X:::::::::", ":: .oOooooooOoooo X::::::::::", "::XX X X X X X X #:::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] math_square_amplitude = [ "30 30 16 1 ", " c #010101", ". c #0B0B0B", "X c #161616", "o c #2F2F2F", "O c #464646", "+ c #585858", "@ c #646464", "# c #787878", "$ c #8E8E8E", "% c #A5A5A5", "& c gray", "* c #D4D4D4", "= c #E7E7E7", "- c #F3F3F3", "; c #FBFBFB", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", ":::::::::::::::::::::::;::::::", "::::::::::::::::::::::*%%;::::", "::::::::::::::::::::::o@Xo::::", "::::::::::;::::::::-;:;:$.::::", ":::-#:::::%+#:::::%*:::*X%::::", ":::-o:::::X .*::::#&::&.%-::::", ":::-O::::&.O $::::#&::X.oX-:::", ":::-O::::+.*Xo::::#&::=***::::", ":::-O:::-.O:# *:::#&::::::::::", ":::-O:::$.%:* +;::#*::::::::::", ":::-O:::o.-::o.-:-#&::::::::::", ":::-O::* @:::$.%;:#&;:::::::::", ":::-O:;# %-=-=.o::#&;:::::::::", ":::-O:;X *:#&::::::::::", ":::-O:% O$$$$$@ #:#*::::::::::", ":::-O:O *;::::;.X;#&::::::::::", ":::-O=.o:::::::@ &#&::::::::::", ":::-O$X$:::::::*X@#&::::::::::", ":::::::::::::::::::;::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] cube_bottom = [ "30 30 18 1 ", " c #100F0F", ". c #201C18", "X c #3B2A16", "o c #393939", "O c #453728", "+ c #644F36", "@ c #5B5650", "# c #8D622F", "$ c #A97434", "% c #CC893B", "& c #E79C42", "* c #F9A847", "= c #9C9B9A", "- c #A29F9B", "; c #B4B4B3", ": c #C1C0BF", "> c #CECECE", ", c None", ",,,,,,,,,,,,,>,,,>,>,,>,,>,,>,", ",,,,,,,,,,> ,", ",,,,,,,,,>oo>,,,,,,,,,,,,,;o.,", ",,,,,,,,>o>o>,,,,,,,,,,,,;o> ,", ",,,,,,,>o>,@>,,,,,,,,,,,;o,,.,", ",,,,,,>o>,,o>,,,,,,,,,,;o,,,.>", ",,,,,>o>,,,o>,,,,,,,,,;o,,,,.,", ",,,,>o>,,,,o>,,,,,,,,;o,,,,,.,", ",,,>o>,,,,,o>,,,,,,,;o,,,,,,.,", ",,>o,,,,,,,o>,,,,,,;o,,,,,,,.>", ",>.>,,,,,,,o>,,,,,;o,,,,,,,,.,", "> .,,,,,,,,, ,", ", >>>>>>>>>o->>>>;o,,,,,,,,,.,", ",.,,,,,,,,,o>,,,,>o,,,,,,,,, ,", ",.,,,,,,,,,o>,,,,>o,,,,,,,,,.,", ",.,,,,,,,,,o>,,,,>o,,,,,,,,, ,", ", ,,,,,,,,,o>,,,,>O,,,,,,,,,.,", ",.,,,,,,,,,O=>::>-o;>;;>::>; ,", ">.,,,,,,,,,. >", ",.,,,,,,,,X$*****%X&******%.>,", ",.,,,,,,,o$******%X*****&&X>,,", ",.,,,,,,o$*******%X*****&X:,,,", ", ,,,,,o$********%X****&X>,,,,", ",.,,,,o$*********%X***&X;,,,,,", ">.,,,+#**********%X***X;,,,,,,", ",.,,@#***********%X*&O-,,,,,,,", ",.,@+************%X*O-,,,,,,,,", ",o@+*************%XX=,,,,,,,,,", ", =,,,,,,,,,,", ",>,,,>>,>,,,,>>,>,,,,,,,,,,,,," ] math_swap_sign = [ "30 30 22 1 ", " c #1E1E1E", ". c #503E3F", "X c #474646", "o c #717171", "O c #EF3138", "+ c #F03B42", "@ c #F14B52", "# c #F4777B", "$ c #12AC5E", "% c #2FB671", "& c #45BE80", "* c #69CA98", "= c #929292", "- c #B3B3B3", "; c #F79DA0", ": c #91D9B4", "> c #FABFC1", ", c #AFE3C9", "< c #D0D0D0", "1 c #FBD2D3", "2 c #D0EFDF", "3 c None", "333333333333333333333333333333", "33333333**23333333333333333333", "3333333:&*%3333333333333333333", "3333333$23**333333333333333333", "333333,%332$333333333333333333", "333333&:333&*332$$*33333333333", "333332$33333$23$:3%:3333333333", "33333**33333,$$*332$2333333333", "3333:%2333333233333*%333333333", "332*$233333333333333&&,,,33333", "33:*33333333333333333:&&*33333", "3o..XXX.XXXX XX.XXXXXX...o3333", "33;O;3333333333333331@OO@33333", "3331O;33333333333331O;33333333", "33333O1333333;;1333@;333333333", "33333;@33333#@#@33;@3333333333", "333333O1333>O33#@;O13333333333", "333333#;333+>333;#133333333333", "3333331O33;@333333333333333333", "3333333@;3O>3333=33333333-<333", "33333331OO;3333 c #59A284", ", c #8F8F8F", "< c #ADACA1", "1 c #C3BCAA", "2 c #DDCEAB", "3 c #CCCCCC", "4 c #EAE3D1", "5 c None", "555555555555555355555555555555", "555555555555553o15555555555555", "5555555555553Oooo4555555555555", "55555555554&&>-<,ooooo,+++#@-4", "55555545555555554:OO,455;++#45", "5555555555555555555555555#@255", "5555555555555555555555554@4555", "5555555553<1<<112222221-#45555", "555555O ..$$$**@=@+#+#455555", "555555 .%%%$$*=@=@@##4555555", "55555553,>%%%$$*=$==@*45555555", "55555555555421<-=**=-455555555", "5555555555555555542;5555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] colormap_histogram = [ "30 30 13 1 ", " c black", ". c #494949", "X c #656565", "o c #F9A847", "O c #FAB86A", "+ c #FBC27F", "@ c #AFAEAE", "# c #FCCB91", "$ c #FCD7AB", "% c #FDE1BF", "& c #C6C6C6", "* c #FDE7CB", "= c None", "==============================", "==============================", "==@*==========**==========&&==", "== @========#oooo%========X.==", "== @=======#oooooo*=======X.==", "== @=======oooooooO=======X.==", "== @======#oooooooo*======X.==", "== @======ooooooooo#======X.==", "== @=====*oooooooooo======X.==", "== @=====$oooooooooo*=====X.==", "== @=====+oooooooooo*=====X.==", "== @=====Ooooooooooo$=====X.==", "== @=====ooooooooooo#=====X.==", "== @====*oooooooooooO=====X.==", "== @====*oooooooooooo=====X.==", "== @====$oooooooooooo=====X.==", "== @====#oooooooooooo*====X.==", "== @====+oooooooooooo$====X.==", "== @====ooooooooooooo#====X.==", "== @====ooooooooooooo#====X.==", "== @===*oooooooooooooo====X.==", "== @===$oooooooooooooo====X.==", "== @===Ooooooooooooooo$===X.==", "== @===oooooooooooooooO===X.==", "== @==#oooooooooooooooo*==X.==", "== @=*oooooooooooooooooO==X.==", "== @$oooooooooooooooooooO%X.==", "==*=*===*===*=====*=*=====*===", "==============================", "==============================" ] plot_widget = [ "30 30 17 1 ", " c #0D0D0D", ". c #2C2C2C", "X c #3F3F40", "o c #505050", "O c #5F5F60", "+ c #6E7170", "@ c #73857C", "# c #768D81", "$ c #7DCAA2", "% c #8D8F8F", "& c #B1B2B2", "* c #84CFA7", "= c #B6D6C7", "- c #B5E3CA", "; c #CAD4D0", ": c #DDE5E2", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>:$***********&********>>", ">>>>>>--:::>>::>::>:::::>::*>>", ">>>>>>-=:>:::>:&%>:>>:>::>:$>>", ">>>>>>-=>:>:::; &:::::>::>*>>", ">>>>>>:@::::>:%.Oo>:::::>::*>>", ">>>>>>-=::::::o+& ;:>::>:::$>>", ">>>>>>:=::::>; &> %>>:::>>:$>>", ">>>>>>-=>>::;X.>>Oo>:>:::::*>>", ">;&>;&-@;::& X&::& ::::>:>>*>>", ">; ; &;=:::Oo::>:; ;%.::::>*>>", ">>% %>--::>X+>:::>.+. %:>::%>>", ">>> ;>;;>:>.+>:>>:O. XO>:>>$>>", ">>>+:>;+;;O ;:::::& .%X>:::$>>", ">>>>>>-->X.&>::::>:;:&.:::>*>>", ">>>>>>-;: &::>:>:::::: &;::*>>", ">>>>>>--&.::::>:>::::>X .::$>>", ">>>>>>-#.+>>>:::::>::>% .%>$>>", ">>>>>>-%O:>::::>>:>:::>;&.:$>>", ">>>>>>--:>::>>::::::>:::>::*>>", ">>>>>>:-:::;:::;:>>;:>:;>::$>>", ">>>>>>-*;;;@;;-@;;;+;;;+;-;$>>", ">>>>>>>---------====-------->>", ">>>>>>>>>>>>>>>o+;.:>>>>>>>>>>", ">>>>>>>>>>>>>>>: .&>>>>>>>>>>>", ">>>>>>>>>>>>>>>:. &>>>>>>>>>>>", ">>>>>>>>>>>>>>>o+& :>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] math_peak_reset = [ "30 30 24 1 ", " c #212222", ". c #682928", "X c #135D37", "o c #535144", "O c #665D5D", "+ c #EB1D25", "@ c #D2262C", "# c #E7262D", "$ c #A34243", "% c #D9676C", "& c #179253", "* c #05A553", "= c #4CB37E", "- c #DD7D81", "; c #74BE96", ": c #75CEA1", "> c #929090", ", c #A69795", "< c #B1B1B1", "1 c #DB9EA1", "2 c #BACEC4", "3 c #D3D3D3", "4 c #D4EEE1", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "55555555555555oX55555555555555", "55555555555552**<5555555555555", "5555555555555&**X5555555555555", "5555555555555****2555555555555", "555555555555=****=555555555555", "555555555555o<::< 555555555555", "55555555554Oo5::5 455555555555", "555555555> O55::5O,54555555555", "55555555%@-555::5,O3#@45555555", "55555553%@+-55::53.++.O5555555", "55555555, ++%5::5-++.O 5555555", "555555554 O#+%;;%++. 3 4555555", "55555554Oo>555555", "555555 55551++..+#1555O>>555", "5555<>54%++O<&**&>$@+%5555 555", "55555553%@O<44**43>O+%45555555", "55555554,><555;=554<><55555555", "555555554355555455543455555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] stats_whole_items = [ "30 30 11 1 ", " c #F7941E", ". c #F79826", "X c #F8A23C", "o c #F9AB4E", "O c #FAB96C", "+ c #FAC27E", "@ c #FBCB91", "# c #FCD8AE", "$ c #FDE0BE", "% c #FDE8D0", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&# .%&&&", "&&&&&&&&&&&&&&&&&&&&&%o @&&&", "&&&&&&&&&&&&&&&&&&&&+ O&&&&", "&&&&&&&&&&&&&&&&&&#X X$&&&&&", "&&&&&&%#OXO@&&&&%o. .@&&&&&&&", "&&&&+X o@@. o%&&#@&&&&", "&&&# X#&&&@..@&&&", "&&&%..o@%&%+o .+&&&&# %&&&", "&&&&%&&&&&&&&%@O%&&&&$ @&&&&", "&&&&&&&&&&&&&&&&&&&&%. O&&&&&", "&&&&&&&&&&&&&&&&&&&%. o&&&&&&", "&&&&&&&&#X+&&&&&&&%X o&&&&&&&", "&&&&&&&%. X%&&&&&o o&&@@&&&&", "&&&&&&&X +&&&o X%&O @&&&", "&&&&&&O oo X%O .%&O. .%&&&", "&&&&&@ .%&@. . .$&O #&&&&", "&&&&%. #&&&%o #&O .$&&&&&", "&&&&X O&&&&&&@. @&O #&&&&&&", "&&&@. o&&$%&&&&%%&O .$&&&&&&&", "&&&%.X%#. oO@$%O .$&&&&&&&&", "&&&&&%o. .$&&&&&&&&&", "&&&&O oOo. .$&&&&&&&&&&", "&&&@ X$&&&&%#+oo%&&&&&&&&&&&", "&&&% .@&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] add_shape_diagonal = [ "30 30 15 1 ", " c #09A855", ". c #1CB164", "X c #B29C34", "o c #F7941E", "O c #F79826", "+ c #F9B15A", "@ c #F9B360", "# c #64C894", "$ c #9DCFA0", "% c #FCD5A7", "& c #B9E7D0", "* c #CFEEDD", "= c #FDE3C5", "- c #D7F1E4", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;%=;;;;;;;;;;;;;;;;;;;;", ";;;;;;;%oO=;;;;;;;;;;;;;;;;;;;", ";;;;;;;+ooO=;;;;;;;;;;;;;;;;;;", ";;;;;;;;@ooO=;;;;;;;;;;;;;;;;;", ";;;;;;;;;@ooO=;;;;;;;;;;;;;;;;", ";;;;;;;;;;@ooO=;;;;;;;;;;;;;;;", ";;;;;;;;;;;+ooO=;;;;;;;;;;;;;;", ";;;;;;;;;;;;@ooO=;;;;;;;;;;;;;", ";;;;;;;;;;;;;@ooO=;;;;;;;;;;;;", ";;;;;;;;;;;;;;+ooo=;;;;;;;;;;;", ";;;;;;;;;;;;;;;+ooO=;;;;;;;;;;", ";;;;;;;;;;;;;;;;+ooo=;;&*;;;;;", ";;;;;;;;;;;;;;;;;+ooo=& .;;;;;", ";;;;;;;;;;;;;;;;;=+ooO$ .;;;;;", ";;;;;;;;;;;;;;;;;;;+ooX .;;;;;", ";;;;;;;;;;;;;;;;;;;# *;", ";;;;;;;;;;;;;;;;;;;# . *;", ";;;;;;;;;;;;;;;;;;;-**$ ***;;", ";;;;;;;;;;;;;;;;;;;;;;& .;;;;;", ";;;;;;;;;;;;;;;;;;;;;;& .;;;;;", ";;;;;;;;;;;;;;;;;;;;;;-#$;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] image_select_erase = [ "30 30 24 1 ", " c #23612F", ". c #696D2D", "X c #514A43", "o c #A0241F", "O c #B42D25", "+ c #D11F25", "@ c #EC1C24", "# c #D22A29", "$ c #E9252B", "% c #A16026", "& c #D65338", "* c #9D6E53", "= c #678E3A", "- c #379C4E", "; c #33A050", ": c #57A661", "> c #9F9B32", ", c #B69A3D", "< c #8F7F80", "1 c #6BA18B", "2 c #A1A0A0", "3 c #E99699", "4 c #D4CECE", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "5552X X:=>=***&***,:1555555555", "555X ==.oXoOOo&,:;555555555", "555X .%%oo+ooOO>>;555555555", "555< ...Xooooo#$%,-555555555", "5551 ..%%%ooo+oO%,>:555555555", "555X >=>%%o+oo@@%,>-555555555", "5551 %>.>%%oooo+##>>-555555555", "555X ...%o%+o++O%,>:555555555", "555: .%%%oO##oO&>>=;555555555", "5551 =.=%%%o#O%,,>;;555555555", "555:X=>%%,%&%O&,>&>;;555553455", "5551-==,>,%%,%,,&@@%:55553$$$5", "5551-=>>>>,>&,>>@@@@%5553@@@@4", "5551-==>,>>>>>>>#@@@+&5&@@@@$4", "5551 >=>>>>===; +@$@@$$@@@+<2", "5551 -=:==-=:; ;- +$@@@@@@+<24", "5551 ; ;;;;;;;;;; #@@@@$$X245", "5551--;;::;:;;:-::;o@@@@$#<445", "5555555555555555553@@@@@@@&455", "555555555555555553@@@@@@@@$&55", "55555555555555553@@@@@X+@@$$&4", "5555555555555555$@@@@X<<$@@$@4", "5555555555555555$@@$X2442$$$$4", "55555555555555554$O*244542#$<2" ] plot_xauto = [ "30 30 17 1 ", " c #060606", ". c #303030", "X c #565656", "o c gray46", "O c #07A450", "+ c #30B36D", "@ c #47BB7D", "# c #6AC896", "$ c #959595", "% c #A9A9A9", "& c #8FD6B0", "* c #A1DCBD", "= c #BBE6CF", "- c #CACACA", "; c #C5EAD6", ": c #DBF2E5", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>-oo$:>>>ooo->>>>>>>>>", ">>>>>>>>>>. o>>o .>>>>>>>>>>", ">>>>>>>>>>: -- .:>>>>>>>>>>", ">>>>>>>>>>>- .. ->>>>>>>>>>>", ">>>>>>>>>>>>$ %>>>>>>>>>>>>", ">>>>>>>>>>>>- ->>>>>>>>>>>>", ">>>>>>>>>>>: . :>>>>>>>>>>>", ">>>>>>>>>>>X %$ .>>>>>>>>>>>", ">>>>>>>>>>X X>>X X>>>>>>>>>>", ">>>>>>>>>% ..:>>> $>>>>>>>>>", ">>>>>>::>>>>>>>>>>>>>>>=>>>>>>", ">>>>>#O=>>>>>>>>>>>>>>>++;>>>>", ">>>*OOO#&&&&&&&&&&&&&&&OOO@:>>", ">>;OO@OOOOOOOOOOOOOOOOOO+OO#>>", ">>>>&OO=>>>>>>>>>>>>>>>+O+;>>>", ">>>>>:@=>>>>>>>>>>>>>>>@*>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] image = [ "30 30 21 1 ", " c #040807", ". c #14212B", "X c #1B6131", "o c #6A6B2B", "O c #4D2D45", "+ c #136155", "@ c #A52820", "# c #D12B23", "$ c #9A6326", "% c #D06A26", "& c #25863D", "* c #6E8F39", "= c #209658", "- c #30AD4A", "; c #53AE47", ": c #9C9C33", "> c #BEAB2E", ", c #2E4F8A", "< c #1D9D92", "1 c #B4B5B5", "2 c None", "222222222222222222222222222222", "222212222112222112222112222222", "2221 .-X 1222", "2221 &;;; 1222", "2221 X;;;;&X . 1222", "2221 .&;>:o*o$>*+,. 1222", "2221 X&:*oooo%o$:<, 1222", "2221 X&o*oo@@@@@:*<< 1222", "2221 .XXo:o@@#@@@$:=<+ 1222", "2221 .X.Xoo@@@@@##%:-=<.1222", "2221 .+XXoo$$@@@@@#%>--=+1222", "2221 +X.**:$$@@@###%*=-<<1222", "2221 +.Xoo*$@@@@@@@:>--<<1222", "2221 +XXXo$$o@###%$:;--;+1222", "2221 .XXX.*$o@%##@$%>;--;+1222", "2221 .XX**:%$%$#%:>*=--;=1222", "2221 XXo**>:%$%%:>:--;-=O1222", "2221 X&&;**>$>$>>::;-=-;=O1222", "2221 +&=&**::>>:::-&;--;,.1222", "2221+&&&X&;*:**;*&-&-;-=O 1222", "2221X++&+X&-;-&=-&-----,. 1222", "2221 +++XX&X&&-&-&-;--,O 1222", "2221 +=<+==X-&-=--=-+,O 1222", "2221 .<===----&-+,OO 1222", "2221 ++=<+-+-++.O 1222", "2221 .<.+.. 1222", "2221 1222", "2221 oO 1222", "222222212122122222212212222222", "222222222222222222222222222222" ] cube_right = [ "30 30 12 1 ", " c #151310", ". c #21160A", "X c #30281E", "o c #393836", "O c #B5711E", "+ c #BA7E37", "@ c #D58A30", "# c #F09F3E", "$ c #F9A847", "% c #B2B2B2", "& c #D0D0D0", "* c None", "***********&**&*****&***&*&***", "**********% XX X X XXXX &", "*********&o &**************X *", "********&o& &*************X+.*", "*******&o&* &***********&o+$ *", "******&o&** %**********&o+$$ &", "*****&o&*** &**********X+$$$.&", "****&o&**** &*********X+$$$$.*", "***&o&***** &*******&o+$$$$$.*", "**&o&****** &*******o@$$$$$$.&", "*&o******** &******X+$$$$$$$.*", "* ooooooooo oooooo.+$$$$$$$$.&", "* &&&&&&&&& %&&&&%.$$$$$$$$$.*", "& ********* &****&.$$$$$$$$$.&", "& ********* &****&.$$$$$$$$$.*", "* ********* &****&.$$$$$$$$$ *", "* ********* &****&.#$$$$$$$$.*", "& ********* %&&&&%.#########.&", "* ********%Xoooooo.@@@@@@@@O.*", "* *******%o&*****&.$#$$#$$@X&*", "& ******%o*******&.$#$$$$@X&**", "* *****%o********&.$$$$$#X&***", "* ****%o*********&.$$$$@X&****", "& ***%o**********&.$$$@X&*****", "* **%o***********&.$$@X&******", "* *%o&***********&.$#X&*******", "& %o*************&.@X&********", "* o**************& X&*********", "* X XX X X XX &**********", "*&*****&**&****&**&***********" ] plot_ydown = [ "30 30 16 1 ", " c #040404", ". c #313131", "X c #555555", "o c gray43", "O c #02A24D", "+ c #32B46F", "@ c #41B979", "# c #51BF84", "$ c #74CC9D", "% c #B3B3B3", "& c #93D7B3", "* c #A4DEBF", "= c #B4E4CA", "- c #D1D1D1", "; c #CDEDDC", ": c None", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::-%::;*:::;---:::::::----::", ":::%.XX:#O;:::. o:::::% -::", ":::X%: :#O;:::- %:::;. %:::", ":::.%: -#O;::::% .:::o o::::", ":::X%; :#O;:::::o o:- X:::::", ":::-.Xo:#O;::::::. -. .;:::::", "::::--::#O;::::::; ;::::::", "::::::::#O;:::::::- %:::::::", "::::::::#O;:::::::: ;:::::::", "::::::::#O;:::::::: ::::::::", "::::::::#O;:::::::: -:::::::", "::::::::#O;:::::::: ::::::::", "::::::;;@O*;:::::::...::::::::", "::::::$OOOOO;:::::::::::::::::", ":::::::OOOO$::::::::::::::::::", ":::::::&OOO:::::::::::::::::::", "::::::::+O*:::::::::::::::::::", "::::::::=+::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] nxdata_remove = [ "30 30 21 1 ", " c #7B4F4F", ". c #B32B2C", "X c #F90505", "o c #DF2D2D", "O c #A05656", "+ c #DF595A", "@ c #01A24C", "# c #29B068", "$ c #50BE84", "% c #5EC48D", "& c #66C693", "* c #B4B4B4", "= c #DF8D8D", "- c #92D7B2", "; c #A7DEC1", ": c #B9E5CE", "> c #CDCCCC", ", c #F2D5D5", "< c #CBECDA", "1 c #DAF1E5", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "2222::<<<222222222222222222222", "2221@@@@@:22222222222222222222", "2222@-<<<222222222222222222222", "2222@&<12222222222222222222222", "2222@@@%2222222222222222222222", "2221@-11222,2222222,,222222222", "2222@&:<22oX=2222,+X+222222222", "2222@@@%21+XX=221+XX=122222222", "2222@-1222>.XX+,oXXO;122222222", "2222@&;<221>.XXoXX *2222222222", "2222@@@&2222>.XXX *12222222222", "2222@-122222,oXXX+,22222222222", "2221@&;<222,oXX.XX+12222222222", "2221@@@&22,oXX *.XX+,222222222", "2222@-2222oXo >1>OXX+222222222", "2222@&-:21+o >222>OoO122222222", "2222@@@&22>*>22222,*<222222222", "2222@-2222222222222222221-2222", "2221@&222222222222222222;@2222", "2222@&2221#<1#<1#1<#1:#2;@2222", "2221@&2221@:1@:<@1<@1:@1;@1222", "2221@###$$@$%@%$@%$@&$@%$@1222", "2222@@@@@#################2222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] plot_window_image = [ "30 30 22 1 ", " c #030707", ". c #2E2F31", "X c #1C6231", "o c #656A2C", "O c #653D51", "+ c #106055", "@ c #A92720", "# c #AB6826", "$ c #D24425", "% c #29883D", "& c #6F923A", "* c #1E9754", "= c #2EAB49", "- c #54B048", "; c #A0A333", ": c #D4922A", "> c #355692", ", c #22A68B", "< c #B9BBBB", "1 c #BFC0C0", "2 c #CFCFCF", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "3<22122222222222222222222222<3", "322222322213222233333333333322", "222322323223223233333333333332", "3<212<11<2<22<<2<22<22<<2221<3", "322323333323323333233233233323", "3333332< XX <2332233", "3332322< ---X <3323323", "3232333< X&;oo#;-> <3333233", "3332332< Xooo@@@#=, <2223333", "3233233< XXoo@@@$$&,,13333223", "3332332< + X&#.@@@#;*,<3333233", "3233233< .Xoo#@$@@;-*,<3223323", "32233321 +XX##$$@#;==-13332323", "3333233< XX&;:#@#:-===<3233333", "3322233< %%&;;;;;&-=*O<3233323", "3233332<+*%X&;;&%==-*.<3332233", "3333332<+++X%%**=-**> 23233323", "2322233< +,+*-=*-*+O <3332333", "3333233< +,=*+*+. <3323323", "3223332< <2332233", "33323231......O&......22333233", "322333233223333333323323232333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] zoom_back = [ "30 30 24 1 ", " c #503C43", ". c #5E4F55", "X c #73696E", "o c #FE0404", "O c #F72F30", "+ c #957275", "@ c #F85B5D", "# c #987A85", "$ c #7AD3F5", "% c #9B9094", "& c #A59AA0", "* c #B1AAAE", "= c #FF9797", "- c #C9B8BD", "; c #A6B8C8", ": c #BBC2C6", "> c #91D8F4", ", c #A7DDF3", "< c #B8E2F4", "1 c #D5CFD3", "2 c #F6D7D8", "3 c #E2DDE0", "4 c #D0E8F4", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555522555555555555", "555555555555555@oO555555555555", "555555555:*;1@OooO255555555555", "5555553&%**@ooooooooO@55555555", "555553%:,>-oooooooooooo=555555", "55555%1<,>>#oooooooooooo=55555", "5555*14<,,>$;OoooOooooooo25555", "5555*34<,,>>$$+ooO552-@oo@5555", "55531444<,,>>,<-oO555552Oo2555", "555333544<,,,,< c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>-&>>>>>>;**;>>>>>>&->>>>>", ">>>>>&+>>>>>># #>>>>>>+&>>>>>", ">>>>>&+>>>>>>o. o>>>>>>+&>>>>>", ">>>>>&+>>>>>% OO %>>>>>+&>>>>>", ">>>>>&+>>>>>@.$$ @>>>>>+&>>>>>", ">>>>>&+>>>>-..-;..->>>>+&>>>>>", ">>>>>&+>>>>$ +>>+ $>>>>+&>>>>>", ">>>>>&+>>>>O %>>% O>>>>+&>>>>>", ">>>>>&+>>>* X;>>:o *>>>+&>>>>>", ">>>>>&+>>># #>>>:# #>>>@%>>>>>", ">>>>>&+>::o &>>>>& o;>>+&>>>>>", ">>>>>&+>:% oOoOOO %:>+&>>>>>", ">>>>>&+>>+ +:>+&>>>>>", ">>>>>&+>-. =>>>>>>- ->+&>>>>>", ">>>>>&+>$ O>>>>>>>>+ #>+&>>>>>", ">>>>>&+>O $>>>>>>>>$ O>+&>>>>>", ">>>>>&+% ->>>>>>>>-. &+&>>>>>", ">>>>>-*-*=>>>>>>>>>>=*-&->>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] shape_ellipse_solid = [ "30 30 11 1 ", " c #F7941E", ". c #F79A2A", "X c #F8A23C", "o c #F9AB4E", "O c #FABA6F", "+ c #FAC27F", "@ c #FBCD96", "# c #FCDAB0", "$ c #FDE0BD", "% c #FEEAD3", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&%%%%&&&&&&&&&&&&&", "&&&&&&&&&$Oo .o@%&&&&&&&&", "&&&&&&&@. O%&&&&&&", "&&&&&%o +&&&&&", "&&&&%. O&&&&", "&&&&X @&&&", "&&&# .&&&", "&&&O %&&", "&&&O %&&", "&&&@ &&&", "&&&&. +&&&", "&&&&% o&&&&", "&&&&&$. O&&&&&", "&&&&&&&O. X#&&&&&&", "&&&&&&&&%@o ..O#&&&&&&&&", "&&&&&&&&&&&&%####%%&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] _d_plane_normal_y = [ "30 30 24 1 ", " c #372A1A", ". c #5C491E", "X c #524B44", "o c #666360", "O c #B21F1E", "+ c red", "@ c #8B612D", "# c #F0791E", "$ c #F25F53", "% c #008000", "& c #58AC58", "* c #BD8523", "= c #DD9A2A", "- c #D89338", "; c #F59131", ": c #E59743", "> c #F9A847", ", c #3131AA", "< c #1616FF", "1 c #A9979B", "2 c #AEADAD", "3 c #BCB1D2", "4 c #DCD7DB", "5 c None", "55555555555&555555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554%&55555555555555555", "55555555554% XXXXXXXXXXXXXXXo5", "5555555554 .*----:-:--:---- 25", "555555555X@*=>>>>>>>>>>>>: 255", "55555555X*===>>>>>>>>>>>: 2555", "5555555X@>>*=>>>>>>>>>>: 25555", "555555X@>>=*=>>>>>>>>>> 255555", "55554X@>>>:*=>;>>>;>>; 2555555", "5555X@>>>>>=#;;;;;;;; O$$$$$$4", "555X@>>>>>:-#;###;## ++++++++$", "55.@>>>>>-$$::;>;;; 1444444445", "5X @@@@@.X.X@@@@@@ 15555555555", "4212223o,,11122222455555555555", "5555553<<555555555555555555555", "555553<<4555555555555555555555", "55553<<45555555555555555555555", "5553<<455555555555555555555555", "553<<4555555555555555555555555", "54<<45555555555555555555555555", "4<<455555555555555555555555555", "535555555555555555555555555555" ] view_refresh = [ "30 30 23 1 ", " c #04A754", ". c #28B46C", "X c #43BD7E", "o c #F7941E", "O c #F79929", "+ c #F8A23C", "@ c #F9AA4C", "# c #FAB869", "$ c #FBC17C", "% c #47BF81", "& c #54C38B", "* c #67CA97", "= c #75D0A1", "- c #8FD8B3", "; c #A0DEBE", ": c #FBCC93", "> c #FCD9AF", ", c #FDE1BF", "< c #A3DFC0", "1 c #B3E4CB", "2 c #CFEEDE", "3 c #FDE8CF", "4 c None", "444444444444444444444444444444", "4444444444<*. .%-24444444444", "44444444* &244444444", "444444< -4444444", "44444* &444444", "4444* X&X *444<2", "444- &2444442& <4* 2", "442 14444444441. . 4", "44. 2444444444442. 4", "41 -4444444444-X 4", "4= . .44444444444X .4", "4331& 1444444444444X .4", "43O3442-44444444444444& &4", "4>oO>444444444444444444& *4", "4:ooO$444444444444444444* -4", "4:oooO@444444444444444444& ;4", "4$ooooO+444444444444444444& 14", "4#ooooooO3444444444444:3444&24", "4@oooooO#344444444444,OOo#>444", "4@oooo+34444444444444@oOoooO#4", "4+oooo#4444444444444:OoooooO>4", "4OO#OoO#44444444444>OooooooO44", "4#34#OOO@344444444:OooooooO344", "44444Ooooo#34443:+Oooooooo:444", "444443OOoooOOOoOOoooooooO#4444", "4444443OoooooooooooooooO:44444", "44444443@OoooooooooooOO,444444", "444444444>@OooooooOOO:44444444", "444444444443>#@+@@:34444444444", "444444444444444444444444444444" ] document_print = [ "30 30 16 1 ", " c gray1", ". c #070707", "X c gray5", "o c #121212", "O c #303030", "+ c gray27", "@ c #575757", "# c #6C6C6C", "$ c gray53", "% c #AAAAAA", "& c #B6B6B6", "* c #D0D0D0", "= c #E9E9E9", "- c #F4F4F4", "; c #F9F9F9", ": c None", "::::::::::-::;::-;:;::::::::::", "::::::::;============;::::::::", "::::::::&XOOoOOOOOOOX&::::::::", "::::::::&@;:::;-:;-:@&::::::::", "::::::::&@::::::::::@&::::::::", "::::::::&@::::::::::@&::::::::", "::::::::&@::::::::::@&::::::::", "::::::::&@::::::::::@&::::::::", "::::::::&@::::::::::@&::::::::", ":::::::;&@::::::::::@&::::::::", ":::&@+++OoOOOOOOOOOOoO+++@&:::", "::= . . #O.=::", "::* @:= *::", "::* O*# *::", "::* *::", ":-* *::", "::* *-;", "::* *::", "::* XooXXoooXoooo *::", "::* =*==**==**=%X *::", "::=. O:*&&&&&&&&*-X =::", ":::%+OOo#:#@@@@@@@@#:OOOO+&:::", ":::::::@&;::::::::::;$#:::::::", "::::::;O=::::::::::::*+:::::::", "::::::=O;OoXXXoXXXoXO:o-::::::", "::::::%@::::::::::::;;@&::::::", "::::::#O@####@##@#####O#::::::", "::::::*%%%%%%%%%%%%%%%%*::::::", "::::::::::::::::::::::::::::::", "::::::::::::::::::::::::::::::" ] draw_brush = [ "30 30 24 1 ", " c #0A0A0A", ". c #323232", "X c #514034", "o c #505050", "O c #7A704A", "+ c #717171", "@ c #E7753D", "# c #B1705D", "$ c #D17450", "% c #F3A62E", "& c #F3A92A", "* c #FDC911", "= c #FFD920", "- c #B39C67", "; c #D0985B", ": c #CFC26C", "> c #807F81", ", c #908F90", "< c #AEA093", "1 c #B2B2B2", "2 c #CBBAA1", "3 c #D2D2D1", "4 c #E1C9C9", "5 c None", "555555555555555555555555555555", "555555555553555555555555555555", "555555555311155555555555555555", "555555555,<>135555555555555555", "555555555,1,115555555555555555", "555555555,,,115555555555555555", "555555555<>,,11555555555555555", "5555555551+>,,<555555555555555", "5555555555+++,,555555555555555", "5555555555,o+>>555555555555555", "55555555553oo++555555555555555", "55555555555+oo+355555555555555", "555555555553ooo355555555555555", "555555555555+oo,55555555555555", "555555555555+..o,1355555555555", "555555555553...o,<1>5555555555", "5555555555,. .+++o+33555555555", "555555555+ ...51555555555", "555555553. ..o,555555555", "555555555o XOOO-555555555", "555555555+ X#%***%-355555555", "5555555551 X$@%%&***;255555555", "5555555554#@@%%%&***=:55555555", "5555555555$@@@;%&***=:55555555", "5555555555#$;$%%&&**=:55555555", "55555555552##$;%&&*&-<55555555", "55555555554#$#;;<<,15555555555", "55555555555<,<1155555555555555", "555555555555455555555555555555", "555555555555555555555555555555" ] previous = [ "30 30 20 1 ", " c #092B39", ". c #20343C", "X c #0E3151", "o c #27394B", "O c #1B3967", "+ c #233E71", "@ c #354349", "# c #284278", "$ c #5C6572", "% c #354B8D", "& c #495AA7", "* c #5461A2", "= c #5765B8", "- c #6B75CD", "; c #7D84DC", ": c #999CAC", "> c #A2A5DD", ", c #8B8FE6", "< c #CCCDE3", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "11111111111111111111111:111111", "111111111111111111111<@ 111111", "11111111111111111111$. 111111", "111111111111111111:@ .111111", "1111111111111111<*. 111111", "111111111111111:+XX .111111", "1111111111111<%++OX 111111", "111111111111,&%%+OX 111111", "1111111111<-*&&%#+OX .111111", "11111111<,--==&%%+OX .111111", "1111111<,,;-==&%%#+X 111111", "111111<,,,---==&%%+X 111111", "11111111>,;;--=&%%+OXX 111111", "1111111111,--==&&%%OXX .111111", "11111111111<--==&%%+XX .111111", "1111111111111>==&%%#OXX.111111", "11111111111111<,*&%#+OX.111111", "1111111111111111<*%%+OXo111111", "111111111111111111:%#OXo111111", "11111111111111111111*+Oo111111", "111111111111111111111<$o111111", "11111111111111111111111:111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111" ] last = [ "30 30 21 1 ", " c #012738", ". c #0E3050", "X c #1B1B7A", "o c #1B3A67", "O c #223D69", "+ c #3C494E", "@ c #29427A", "# c #586177", "$ c #354C8D", "% c #4A5BA8", "& c #5360A0", "* c #5664B8", "= c #5F6CC1", "- c #6D75CC", "; c #7C83DC", ": c #94989A", "> c #9396A8", ", c #A8AAAC", "< c #999CDC", "1 c #D1D1E2", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222221122222222222222222222222", "22222: #2222222222222222222222", "22222: :2222222222222X222222", "22222: +122222222222X222222", "22222: +#2222222222X222222", "22222: .o+,22222222X222222", "22222: .oO$=1222222X222222", "22222: .O@$&%<22222X122222", "22222: .o@$$$**-1222X222222", "22222, ..o@$%%*=--<22X222222", "22222: .oo$$$*=--;<;1X222222", "22222: ..oo$$%*----;<2222222222222X222222", "22222,.#122222222222222>222222", "222221122222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222" ] compare_align_stretch = [ "30 30 17 1 ", " c #010201", ". c #252C0F", "X c #3B451B", "o c #5E6E27", "O c #686868", "+ c #768A31", "@ c #8DA53A", "# c #B8D84C", "$ c #D4F958", "% c #DBD472", "& c #D9E467", "* c #FE04FC", "= c #F828E4", "- c gray65", "; c #E5989A", ": c #E2AD8C", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>-OOOOOOOOOOOOOOOOOOOOOO->>>", ">>>O XXXXXXXXXXXXXXXXXXXX O>>>", ">>>OX$:%%%%$$$$$$$$%%%:%&XO>>>", ">>>OX&****:$$$$$$$$&=***;XO>>>", ">>>OX&***:$$$$$$$$$$&=**;XO>>>", ">>>OX&**:$#####$$$$$$&=*;XO>>>", ">>>OX&*:$$ X@$$$&=;XO>>>", ">>>OX&:$$& #$$$&:XO>>>", ">>>OX$$$$$ #$#. +$$$$$XO>>>", ">>>OX$$$$$ #$$X +$$$$$XO>>>", ">>>OX$$$$$ +@o #$$$$$XO>>>", ">>>OX$$$$$ @$$$$$$XO>>>", ">>>O.$$$$$ ... @$$$$$XO>>>", ">>>OX$$$$$ #$$+ .$$$$$XO>>>", ">>>OX$$$$$ #$$# $$$$$XO>>>", ">>>OX$$$$$ #$$o .$$$$$XO>>>", ">>>OX&:$$$ o$$$%:XO>>>", ">>>OX&*;$$ .+$$$%=;XO>>>", ">>>OX&**:$#####$$$$$$&=*;XO>>>", ">>>OX&***;$$$$$$$$$$%=**;XO>>>", ">>>OX&****;$$$$$$$$%=***;XO>>>", ">>>OX$%%&%&$$$$$$$$&%&%%$XO>>>", ">>>O XXXXXXXXXXXXXXXXXXXX O>>>", ">>>-OOOOOOOOOOOOOOOOOOOOOO->>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] compare_keypoints = [ "30 30 14 1 ", " c #24211F", ". c #493115", "X c #444342", "o c #875B26", "O c #FB7A79", "+ c #F99C54", "@ c #F9A847", "# c #FA8969", "$ c #FC5D99", "% c #FB6C89", "& c #FC4CAC", "* c #FD31CA", "= c #FF03FB", "- c None", "------------------------------", "------------------------------", "--X X--", "-- .oooooooooooooooooooooo. --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@*=%@@@@@@@@@@@@@@@@o --", "-- o@@%===+@@@@@@@@@@@@@@@o --", "-- o@@O===+@@@@@@@@@@@@@@@o --", "-- o@@+%&O@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@O$#@@@@@@@@o --", "-- o@@@@@@@@@@#===@@@@@@@@o --", "-- o@@@@@@@@@@%===+@@@@@@@o --", "-- o@@@@@@@@@@@*=&@@@@@@@@o --", "-- o@@@@@@O&#@@@+@@@@@@@@@o --", "-- o@@@@@#===+@@@@@@@@@@@@o --", "-- o@@@@@%===#@@@@@@@@@@@@o --", "-- o@@@@@@*=&@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- o@@@@@@@@@@@@@@@@@@@@@@o --", "-- .oooooooooooooooooooooo. --", "--X X--", "------------------------------", "------------------------------" ] compare_align_origin = [ "30 30 17 1 ", " c #090803", ". c #221E0D", "X c #282E10", "o c #323232", "O c #45321B", "+ c #3A4417", "@ c #546323", "# c #686868", "$ c #70832E", "% c #819735", "& c #95AE3E", "* c #A2BD43", "= c #FAB058", "- c #B3D24A", "; c #D4F958", ": c gray65", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>#oooooooooooooooooo####:>>>", ">>>o XXXXXX.XXXXXXXX. OOO #>>>", ">>>oX;;;;;;;;;;;;;;;% ===O#>>>", ">>>oX;;-%%%%%&-;;;;;%.===O#>>>", ">>>oX;;& .*;;;% ===O#>>>", ">>>oX;;& ++ .;;;% ===O#>>>", ">>>oX;;& X;;- -;;% ===O#>>>", ">>>oX;;& .;;; -;;% ===O#>>>", ">>>oX;;& ++ @;;;%.===O#>>>", ">>>oX;;& *;;;% ===O#>>>", ">>>oX;;& $$@ *;;% ===O#>>>", ">>>oX;;& X;;;@ @;;%.===O#>>>", ">>>oX;;& X;;;@ @;;% ===O#>>>", ">>>oX;;& %&@ @;;%.===O#>>>", ">>>oX;;& X;;;% ===O#>>>", ">>>oX;;*+++X++@%;;;;% ===O#>>>", ">>>oX;;;;;;;;;;;;;;;% ===O#>>>", ">>>o.%%%%%%%%%%%%%%%@.===O#>>>", ">>>o . . . . . .===O#>>>", ">>>#O====================O#>>>", ">>>#O====================O#>>>", ">>>#O====================O#>>>", ">>># OOOOOOOOOOOOOOOOOOOO #>>>", ">>>:######################:>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] shape_circle_solid = [ "30 30 11 1 ", " c #F7941E", ". c #F79928", "X c #F8A33E", "o c #F9AC51", "O c #FAB96C", "+ c #FAC27E", "@ c #FBC98D", "# c #FCD5A7", "$ c #FDE0BE", "% c #FEEDD9", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&%@o. Xo@%&&&&&&&&&&", "&&&&&&&&&&+ @&&&&&&&&&", "&&&&&&&&%o o&&&&&&&&", "&&&&&&&&o O&&&&&&&", "&&&&&&&@ #&&&&&&", "&&&&&&% X&&&&&&", "&&&&&&# $&&&&&", "&&&&&&O +&&&&&", "&&&&&&o O&&&&&", "&&&&&&X o&&&&&", "&&&&&&o O&&&&&", "&&&&&&O @&&&&&", "&&&&&&% %&&&&&", "&&&&&&&X o&&&&&&", "&&&&&&&$ .%&&&&&&", "&&&&&&&&@ #&&&&&&&", "&&&&&&&&&# .#&&&&&&&&", "&&&&&&&&&&%O O%&&&&&&&&&", "&&&&&&&&&&&&%#@O@#&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] compare_align_center = [ "30 30 15 1 ", " c #010100", ". c #1C200B", "X c #2C3312", "o c #45321B", "O c #394317", "+ c #4F5C21", "@ c #686868", "# c #778C31", "$ c #8AA239", "% c #C38945", "& c #EEA854", "* c #B2D149", "= c #CCEF54", "- c gray65", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;-@@@@@@@@@@@@@@@@@@@@@@-;;;", ";;;@.oooooooooooooooooooo @;;;", ";;;@o&%%%%%%%%%%%%%%%%%%&o@;;;", ";;;@o% %o@;;;", ";;;@o% **===*=*==*==*=* %o@;;;", ";;;@o% ================ %o@;;;", ";;;@o% *== .O*==== %o@;;;", ";;;@o% ===. *=== %o@;;;", ";;;@o% === *=*. $===.%o@;;;", ";;;@o% === *==+ $=== %o@;;;", ";;;@o% === #$# *==* %o@;;;", ";;;@o% === $===* %o@;;;", ";;;@o% === XO. .*=== %o@;;;", ";;;@o% ===. ===$ X=== %o@;;;", ";;;@o% *== *==* === %o@;;;", ";;;@o% === *=*+ .=== %o@;;;", ";;;@o% *== $=== %o@;;;", ";;;@o% ===. .O$====.%o@;;;", ";;;@o% *=============== %o@;;;", ";;;@o% *=**=*=*====**=* %o@;;;", ";;;@o% %o@;;;", ";;;@o&%%%%%%%%%%%%%%%%%%&o@;;;", ";;;@.oooooooooooooooooooo @;;;", ";;;-@@@@@@@@@@@@@@@@@@@@@@-;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] cube_left = [ "30 30 9 1 ", " c #100F0F", ". c #362818", "X c #393736", "o c #B37A36", "O c #D18D3C", "+ c #F9A847", "@ c #B7B7B7", "# c #D0D0D0", "$ c None", "$$$$$$$$$$$#$$$#$$$$$#$$$$$##$", "$$$$$$$$$$# . . . . X $", "$$$$$$$$$#. #$$$$$$$$$$$$$$X #", "$$$$$$$$#.O #$$$$$$$$$$$$#X@ $", "$$$$$$$#.O+ #$$$$$$$$$$$$X#$ #", "$$$$$$#.O++ #$$$$$$$$$$#X@$$ $", "$$$$$#.O+++ #$$$$$$$$$$X@$$$ $", "$$$$#.O++++ #$$$$$$$$$X@$$$$ #", "$$$#.O+++++ @$$$$$$$#X#$$$$$ $", "$$#.O++++++ #$$$$$$$X#$$$$$$ $", "$#.O+++++++ #$$$$$$X@$$$$$$$ #", "$ ......... XXXXXX @$$$$$$$$ $", "$ OOoOOOOOo @####@ $$$$$$$$$ #", "# +++++++++ @$$$$# $$$$$$$$$ $", "# +++++++++ #$$$$# $$$$$$$$$ #", "$ +++++++++ #$$$$# $$$$$$$$$ $", "$ +++++++++ #$$$$# $$$$$$$$$ $", "# +++++++++ @####@ ######### #", "$ ++++++++o.XXXXXX XXXXXXXXX $", "$ +++++++oX#$$$$$# $$$$$$$#X#$", "$ ++++++oX$$$$$$$# $$$$$$#X#$$", "# +++++o.$$$$$$$$# $$$$$#X#$$$", "$ ++++o.$$$$$$$$$# $$$$#X#$$$$", "# +++oX#$$$$$$$$$# $$$#X#$$$$$", "$ ++oX#$$$$$$$$$$# $$#X#$$$$$$", "$ +o.$$$$$$$$$$$$# $#X#$$$$$$$", "$ o.$$$$$$$$$$$$$# #X#$$$$$$$$", "# X#$$$$$$$$$$$$$# X#$$$$$$$$$", "$ . . . X . X. #$$$$$$$$$$", "$#$$$$#$$$#$$$$#$$#$$$$$$$$$$$" ] _d_plane = [ "30 30 24 1 ", " c #17140D", ". c #2C231A", "X c #023C21", "o c #4E2C16", "O c #694B26", "+ c #686462", "@ c #D8230F", "# c #9B6728", "$ c #F1781C", "% c #D9744F", "& c #349834", "* c #BE8036", "= c #DA9928", "- c #D79430", "; c #F79131", ": c #E29344", "> c #F8A747", ", c #6B6BBB", "< c #0707F5", "1 c #A5A7A4", "2 c #E6B0A8", "3 c #ADADFE", "4 c #D3D6CD", "5 c None", "555555555541455555555555555555", "55555555554&&55555555555555555", "55555555554&&55555555555555555", "55555555554X&55555555555555555", "55555555554X.55555555555555555", "55555555554XOo5555555555555555", "55555555551 =O.555555555555555", "5555555555+O=>o+55555555555555", "5555555555 #=>>O+5555555555555", "5555555554 ==>>=O+555555555555", "555555555+#*=>>>;.155555555555", "555555555 -==>>>>- 15555555555", "555555554.===>>>>>- 1555555555", "55555555+#===>>>>>>: 155555555", "55555555.=>==>>>>>>>: 25555555", "55555554.>===>>>>>>>>% 4555555", "5555555+#>:*=>>>>>;>>>#.255555", "5555555.:>>-=;;;;;;;;;;#.%%%%4", "5555554.>>:*$$$$$$$;$$$O o@@@2", "555555+#::%%->;;;;;;#o O222225", "555555 -:%*>>>>>:#O O155555555", "555554.:*%:>>>-O.O155555555555", "55555+#%%:>*O..155555555555555", "55555 **:#..145555555555555555", "5555, O..+45555555555555555555", "5553 +35555555555555555555555", "553<<3555555555555555555555555", "53<<35555555555555555555555555", "5<<355555555555555555555555555", "533555555555555555555555555555" ] pan = [ "30 30 15 1 ", " c #000000", ". c #060606", "X c gray11", "o c #232323", "O c #2D2D2D", "+ c #373737", "@ c #494949", "# c #707070", "$ c gray54", "% c #ACACAC", "& c #CFCFCF", "* c #ECECEC", "= c #F3F3F3", "- c #FAFAFA", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;&*;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;@#=;;;;;;;;;;;;;", ";;;;;;;;;;;;;% &;;;;;;;;;;;;;", ";;;;;;;;;;;;=o O-;;;;;;;;;;;;", ";;;;;;;;;;;-$ $;;;;;;;;;;;;", ";;;;;;;;;;;*++..O@=;;;;;;;;;;;", ";;;;;;;;;;;;;;oo;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;oo;;;;;;;;;;;;;;", ";;;;;;;;=;;;;;oo;;;;;=;;;;;;;;", ";;;;;;-$+;;;;;oo;;;;;+#-;;;;;;", ";;;;;&O +;;;;;oo;;;;;+.O&=;;;;", ";;;*# .ooooo..oXooo. #*;;;", ";;;&@ .oXooo..ooooo. @&;;;", ";;;;;%o O;;;;;oo;;;;;+ X%--;;;", ";;;;;;;$@;;;;;oo;;;;;+#-;;;;;;", ";;;;;;;;*;;;;;oo;;;;;=;;;;;;;;", ";;;;;;;;;;;;;;oo;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;oo;;;;;;;;;;;;;;", ";;;;;;;;;;;=++..++=;;;;;;;;;;;", ";;;;;;;;;;;;$ $;;;;;;;;;;;;", ";;;;;;;;;;;;=o O-;;;;;;;;;;;;", ";;;;;;;;;;;;;% &;;;;;;;;;;;;;", ";;;;;;;;;;;;;;@#--;;;;;;;;;;;;", ";;;;;;;;;;;;;;&*;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] stats_visible_data = [ "30 30 14 1 ", " c black", ". c #343434", "X c #F7941E", "o c #F79826", "O c #F8A33D", "+ c #F9AC51", "@ c #F9B86C", "# c #B4B4B4", "$ c #FAC98F", "% c #FBD5A8", "& c #FDE0BE", "* c #D1D1D1", "= c #FEECD7", "- c None", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "-------################-------", "------= .............. =--=---", "------- -------------- --***--", "------- -------------- =****--", "------* -------------- ****=--", "------= -------------- #***---", "------- -------------$ ***----", "------* ------------%X *------", "------- o@=--------&oo *------", "------= XXo$------=oXX *------", "------* XXXo+=---=oXXo =------", "-----** XXXXXo%-=+XXX% =------", "----=** @=OXXXo++XXX$- -------", "----**# ---$XXXXXXX@-- =------", "---**** ----=OXXXX+--- -------", "--***** ------$oX+---- =------", "--***-- -------=%----- -------", "--***-* -------------- =------", "---=--- .............. -------", "-------################-------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------" ] plot_xlog = [ "30 30 17 1 ", " c #050505", ". c #313131", "X c #4B4B4B", "o c #717171", "O c #07A450", "+ c #30B36D", "@ c #47BB7D", "# c #6AC896", "$ c #999999", "% c #AFAFAF", "& c #8FD6B0", "* c #A1DCBD", "= c #BBE6CF", "- c #D2D2D2", "; c #C5EAD6", ": c #DBF2E5", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>> X>>>>>>>>>>>>>>>>>>>>>", ">>>>>>: .>>>>>>>>>>>>>>>>>>>>>", ">>>>>>: .>>>>-$->>>%%-%>>>>>>>", ">>>>>>> .>>>$ %>$ ->>>>>>", ">>>>>>: X>>> .: .>. - :>>>>>>", ">>>>>>: .>>: X>. : .>X :>>>>>>", ">>>>>>> .>>- X>. - X>X ->>>>>>", ">>>>>>: .>>: .> .> :. :>>>>>>", ">>>>>>> -o $>o :>>>>>>", ">>>>>>>oooo:>$o$>>>$%X >>>>>>>", ">>>>>>>>>>>>>>>>>>:-% .>>>>>>>", ">>>>>>::>>>>>>>>>>o $=>>>>>>", ">>>>>#O=>>>>>>>>>>:%%:>++;>>>>", ">>>*OOO#&&&&&&&&&&&&&&&+OO#:>>", ">>;OO@OOOOOOOOOOOOOOOOOO+OO#>>", ">>>>&OO=>>>>>>>>>>>>>>>+O+;>>>", ">>>>>:@=>>>>>>>>>>>>>>>@*>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] add_shape_horizontal = [ "30 30 12 1 ", " c #09A957", ". c #1CB164", "X c #F7941E", "o c #F79929", "O c #55C38B", "+ c #6CCC9A", "@ c #92D9B5", "# c #FCD4A4", "$ c #B9E6CF", "% c #CFEFDE", "& c #D7F1E4", "* c None", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "******************************", "*****#####################****", "*****oXXXXXXXXXXXXXXXXXXXX#***", "*****oXXXXXXXXXXXXXXXXXXXo#***", "*****#####################&***", "******************************", "**********************&%%*****", "**********************$ .*****", "**********************$ .*****", "**********************$ .*****", "*******************O &*", "*******************O . %*", "*******************&%%@ .%%%**", "**********************$ .*****", "**********************$ .*****", "**********************&+@*****", "******************************", "******************************" ] shape_square = [ "30 30 17 1 ", " c #F7941E", ". c #F79725", "X c #F8A33D", "o c #F8A440", "O c #F8A644", "+ c #F8A847", "@ c #FBC687", "# c #FBC88B", "$ c #FCDCB6", "% c #FDE2C1", "& c #FDEBD5", "* c #FEEDD8", "= c #FEEEDC", "- c #FEF5EB", "; c #FEF7ED", ": c #FFFCFA", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>%@@@@@@@@@@@@@@@@@@@->>>>", ">>>>># *>>>>", ">>>>># .++++++++++++++o *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># O>>>>>>>>>>>>>>* *>>>>", ">>>>># X&&&&&&&&&&&&&&$ *>>>>", ">>>>># *>>>>", ">>>>># *>>>>", ">>>>>;===================:>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] view_2d = [ "30 30 11 1 ", " c black", ". c #271A0B", "X c #442E13", "o c #63431C", "O c #754F21", "+ c #494846", "@ c #494948", "# c #7E7E7E", "$ c #AB7331", "% c #F9A847", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&& @&&", "&& O$$$$$$$$$$$$$$$$$$$$$$X+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& $%%%%%%%%%%%%%%%%%%%%%%o+&&", "&& Xoooooooooooooooooooooo.+&&", "&&@++++++++++++++++++++++++#&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] view_text = [ "30 30 18 1 ", " c #0F0B06", ". c #251B0E", "X c #352513", "o c #383633", "O c #4E3516", "+ c #66451D", "@ c #744F21", "# c #747474", "$ c #845926", "% c #98672C", "& c #B07732", "* c #BE8036", "= c #D28E3C", "- c #E49A41", "; c #F8A847", ": c #868686", "> c #B5B5B5", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,>oooooooooooooooooooooooo:,,", ",,: +@@@@+@@@@@@@@@@@@@@@@ :,,", ",,:.;;;;;;;;;;;;;;;;;;;;;;X#,,", ",,:.;;;;;;;;;;;;;;;;;;;;;;.:,,", ",,:.;;;;-=;;;;;;;;;;;;;;;;.:,,", ",,:.;;;;&@;;;;;;&$;;;;;;;;.:,,", ",,:.;;%$%@;&$$-;@X$-=@$=;;X:,,", ",,:.;$@=O@;&=&X;%+=-&==X;;.:,,", ",,:.;X-;%@;=@+ ;&@;;=@+ =;.:,,", ",,:.;.;;&@;X=;X-&@;;.=;O=;.:,,", ",,:.;@$-O@;.-& -=X=;.=* =;.:,,", ",,:.;;$@&*;&+%%-;&@=*+$&-;.:,,", ",,:.;;;;;;;;;;;;;;;;;;;;;;.:,,", ",,:.;;;;;;;;;;;;;;;;;;;;;;X#,,", ",,:.;;;;;;;;;;;;;;;;;;;;;;X:,,", ",,: XXXXXXXXXXXXXXXXXXXOXX :,,", ",,>########################>,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] normal = [ "30 30 15 1 ", " c #000000", ". c #0B0B0B", "X c #1E1E1E", "o c #272727", "O c #505050", "+ c #747474", "@ c #8B8B8B", "# c #9B9B9B", "$ c #AEAEAE", "% c #C8C8C8", "& c #D4D4D4", "* c #E9E9E9", "= c None", "- c None", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;-;--;;;;;;;;;;;;;;;;;;;;", ";;;;;;-=*=---;;;;;;;;;;;;;;;;;", ";;;;;--*&&&--;;;;;;;;;;;;;;;;;", ";;;;;;=&$-&&=-;;;;;;;;;;;;;;;;", ";;;;;;=%##$$&*-;;;;;;;;;;;;;;;", ";;;;;;=%## $%&*-;;;;;;;;;;;;;;", ";;;;;-=%@# #$&=-;;;;;;;;;;;;;", ";;;;;-*%@# #%&*--;;;;;;;;;;;", ";;;;;-=%## @%&*-;;;;;;;;;;;", ";;;;;;=%@# +&%*-;;;;;;;;;;", ";;;;;;-%@# +&%*--;;;;;;;;", ";;;;;;=$@# +&%*--;;;;;;;", ";;;;;;=%@# +%%*-;;;;;;;", ";;;;;-=%@# +&%*-;;;;;;", ";;;;;;*%@$ O&&=-;;;;;", ";;;;;;=%@# .%&&&&-**-;;;;;", ";;;;;-*%@# o@ #++@#$&*-;;;;;", ";;;;;;=%## X&%X X%#%&&*-;;;;;;", ";;;;;-*%@#X&++@ $$*-=--;;;;;;", ";;;;;-=%#$&##+&. o%&=-;;;;;;;;", ";;;;;;=&$*$%&##O $%*-;;;;;;;;", ";;;;;;-&%%&**%@% o&&=-;;;;;;;", ";;;;;;--**=--&#$O $%*-;;;;;;;", ";;;;;;;----;-*$@$ O&&;;;;;;;;", ";;;;;;;;;-;;;=&#$+$&%*-;;;;;;;", ";;;;;;;;;;;;;-=$$$#$&=-;;;;;;;", ";;;;;;;;;;;;;;-*&%&*=-;;;;;;;;", ";;;;;;;;;;;;;;;-===--;;;;;;;;;", ";;;;;;;;;;;;;;;;-;;;;;;;;;;;;;" ] plot_roi_between = [ "30 30 22 1 ", " c #181819", ". c #653D0E", "X c #754D1E", "o c #5D5E5F", "O c #9D6728", "+ c #C67E27", "@ c #9F7749", "# c #DB9036", "$ c #B48D5F", "% c #D9994E", "& c #E69F48", "* c #F5AE58", "= c #CC9D65", "- c #C7A073", "; c #FAB96B", ": c #A5A6A7", "> c #E1BA8C", ", c #F7C68B", "< c #FCD5A6", "1 c #CBCBCB", "2 c #FDE9D1", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333332<<<<<<<<<<<<233333333", "33333333,&;;;;******&,33333333", "33333333,;<<<,.X<<<<;,33333333", "33333333,;<<<$XO$<<<;,33333333", "33333333,;<<<<;,33333333", "33333333,;<<=X--O$<<;,33333333", "33333333,;<@X---$.><;,33333333", "33333333,#XX$----X-<;,33333333", "33333333,O$------@@<*@23333333", "33333333,O$------@X<%Xo3333333", "33333333,O$-------.;OO 3333333", "33333333;O$-------X@O$ 2333333", "3333333:O+--------$.+% 1333333", "333333: @&----------%= :333333", "333333 o=%----------%=oo333333", "333332 :=&----------%=o ::3333", "33333: :=%----------%=: 1333", "33333 o:%&----=-----&%:o oo333", "3****#*%&=,>,>>>>>>>*#&&&#+**3", "322222222232323333232222222223", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] nxdata_axis_add = [ "30 30 18 1 ", " c #030303", ". c #323232", "X c #555555", "o c gray46", "O c #00A14B", "+ c #58C189", "@ c #6DC998", "# c #7DCFA4", "$ c #969696", "% c #B7B7B7", "& c #87D2AA", "* c #A3DDBE", "= c #A6DEC0", "- c #B4E3CA", "; c #CCCCCC", ": c #CCECDB", "> c #D9F1E4", ", c None", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,>,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,OOOOO-,,,,,,,,,,,,", ",,,,,,,,,,,,O+**=>,,,,,,,,,,,,", ",,,,,,,,,,,,O&>,,,,,,,,,,,,,,,", ",,,,,,,,,,,,OOO+,,,,,,,,,,,,,,", ",,,,,,,,,,,,O@=:,,,,,,,,,,,,,,", ",,,,,,,,,,,,O&>>,,,,,,,,,,,,,,", ",,,,,,,,,,,,OOO@,,,,,,,,,,,,,,", ",,,,,,,,,,,,O@-:,,,,,,,,,,,,,,", ",,,,,,,,,,,,O&>>,,,,,>,,,,,,,,", ",,,,,,,,,,,,OOO+,,,,; $,,,,,,,", ",,,,,,,,,,,,O#:>,,,,$ X,,,,,,,", ",,,,,,,,,,,,O@:>,,,,$ X>,,,,,,", ",,,,,,,,,,,,OOO+,;$$X .$$%,,,,", ",,,,,,,,,,,,O#>>> ;,,,", ",,,,,,,,,,,,O@->,$XX. ..Xo>,,,", ",,,,,,,,,,,,OOO+,,>>$ X>>,,,,,", ",,,,,,,,,,,,O&>>,,,,$ X>,,,,,,", ",,,,,,,,,,,,O@-:,,,,% o,,,,,,,", ",,,,,,,,,,,,OOO+,,,,,%>,,,,,,,", ",,,,,,,,,,,,O&>,,,,,,,,,,,,,,,", ",,,,,,,,,,,,O@**=>,,,,,,,,,,,,", ",,,,,,,,,,,,OOOOO-,,,,,,,,,,,,", ",,,,,,,,,,,,,>>,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,", ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,," ] profile2D = [ "30 30 19 1 ", " c #0F0F0E", ". c #271E13", "X c #2E2D2C", "o c #4B3923", "O c #534330", "+ c #654A2A", "@ c #4B4B4A", "# c #655F57", "$ c #6B6B6B", "% c #A16823", "& c #B27832", "* c #BE8138", "= c #D3882F", "- c #ED9C3B", "; c #F9A847", ": c #878787", "> c #B5B5B5", ", c #CECECE", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<,,,,,,,,,,,,,,,,,<", "<<<<<<<<<<> .<", "<<<<<<<<<,X@,<<<<<<<<<<<<<$$X<", "<<<<<<<<,X,@,<<<<<<<<<<<<$$,X<", "<<<<<<<>X<<@,<<<<<<<<<<<$:<X<<<@,<<<<<<<<<<$$<<,X<", "<<<<<,@<<<<@,<<<<<<<<<$:<<<X<<<<<@,<<<<<<<<$:<<<<,X<", "<<<,X<<<<<<@,<<<<<<<$:<<<<<X,,,,,,,,@>,,,,,#:<<<<<<<>,,,:@,,,,,,,,>X<", "< <<<<<<<<,.++o++o.+++++++o. <", "< <<<<<<<,.%-;;;;&o;;;;;;;%XX<", "<.<<<<<<,o*=-;;;;=o-;;;;;&@,X<", "@<<:$<<<<<<<", "#:#<<<<<<<<<", "< X@@@@@@X@@@@X@XX#<<<<<<<<<<", "<:$$$$$$$$$$$$$$$$:<<<<<<<<<<<" ] math_smooth = [ "30 30 22 1 ", " c #111010", ". c #241213", "X c #2D2D2D", "o c #582224", "O c #4E4D4D", "+ c #6E6E6E", "@ c #A72B2F", "# c #EC1C24", "$ c #D12A30", "% c #EB282F", "& c #EA3E45", "* c #A35457", "= c #EC4950", "- c #E76A6F", "; c #8B8A8A", ": c #B18D8F", "> c #B3B3B3", ", c #E99EA0", "< c #D8D7D7", "1 c #FBD4D5", "2 c #FCDFE0", "3 c None", "333333333333333333233333333333", "33333333333333333-#,3333333333", "33333333333333332##&3<33333333", "3333333333333333,#$#:O33333333", "3333333333333333=#o#*X33333333", "3333333333333333#@X#& 33333333", "3333333333333331#@O&% 33333333", "333333333333333,#o+*# <3333333", "333333333333333=$O>*#o>3333333", "333333333333332#-+< #*>3333333", "33333333333333,#:+3 $#:3333333", "33333333333333&&+;3O:#*3333333", "333333333333>1#,O>332#*3333333", "33333333333> =#1X2333�", "33333333333*o#=3 3333-#1+>3333", "33333333333O$#1#,O+3333", "3333333332,$#@<>O3333<%=XO3333", "3333333,=%##-;++;33332@#.X3333", "333333,%%-*:33 O>33333o#* 3333", "333333=#13 333+ <33333o#*O<333", "333333#=3333", "333333#=+;;33332333333O@&;*333", "333333#@ X>33333333333;@#>O333", "333332#@> <33333333333<<#,.333", "3333; %@3>33333333333333%-X233", "3333O*#-3333333333333333-%O>33", "33333", "333:$#-333333333333333333#$:33", "333@%-3333333333333333333,%%,3", "333O>333333333333333333333**33" ] crop = [ "30 30 11 1 ", " c #029E4E", ". c #03A652", "X c #2CAF6B", "o c #4AB87F", "O c #57BC89", "+ c #6BC497", "@ c #8ACFAC", "# c #A3D9BE", "$ c #B0DEC6", "% c #CEE9DB", "& c None", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&@o&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&X $&&&&&&", "&&&&&&&&&&&&&&&&&&&&&X.#&&&&&&", "&&&&&&&&+oooooooooooo .XoO%&&&", "&&&&&&&%.. .. ....... . ..#&&&", "&&&&&&&%..@@@@+@+@@@@..O@@&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&&&%..&&&&&&&&&&&X.$&&&&&&", "&&&&&#@+ .@@@@@@@@@@@..$&&&&&&", "&&&&% .................$&&&&&&", "&&&&&+OX ooOOoooooooo+&&&&&&&", "&&&&&&&%..&&&&&&&&&&&&&&&&&&&&", "&&&&&&&% .&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&O+&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&", "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" ] nxdata_axis_remove = [ "30 30 20 1 ", " c #464E32", ". c #9E2B25", "X c #FB0404", "o c #D8302F", "O c #A95C5C", "+ c #E16968", "@ c #019546", "# c #00A14B", "$ c #5FBC8A", "% c #62C590", "& c #A4A2A0", "* c #CA8F8F", "= c #F28A8B", "- c #87D2AA", "; c #A3DDBE", ": c #ABDBC2", "> c #B3E2C9", ", c #E7D8D8", "< c #D3E3DA", "1 c None", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "1111111111111<1111111111111111", "111111111111#####>111111111111", "111111111111#%;;><111111111111", "111111111111#-1<11111111111111", "111111111111###%11111111111111", "111111111111#%><11111111111111", "111111111==,#-<11=+11111111111", "11111111,XX+###%=XX*1111111111", "11111111,+XX.%>+XX.&1111111111", "111111111:OXX*1111111111", "111111111OO&@@#$1&O&1111111111", "111111111,<1#%<11,,11111111111", "111111111111#%><11111111111111", "111111111111###%11111111111111", "111111111111#;<111111111111111", "111111111111#%;;:<111111111111", "111111111111#####>111111111111", "111111111111<11111111111111111", "111111111111111111111111111111", "111111111111111111111111111111", "111111111111111111111111111111" ] plot_yup = [ "30 30 14 1 ", " c #040404", ". c #2F2F2F", "X c #4A4A4A", "o c #6F6F6F", "O c #0CA553", "+ c #24AE64", "@ c #54C086", "# c #65C692", "$ c #929292", "% c #B6B6B6", "& c #89D3AC", "* c #AFE2C7", "= c #CFCFCF", "- c None", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "---------**-------------------", "---------++-------------------", "--------&OO#------------------", "--------OOOO------------------", "-------#OOOO@-----------------", "-------#@OO##-=%%=-------%%%=-", "---------OO---=. $-----o .--", "---------OO----% =---= .=--", "---------OO-----o X---. =---", "---------OO------. $-o $----", "---------OO------- .= o-----", "---------OO-------= .------", "----=XX=-OO--------$ -------", "----.%$o-OO--------% .-------", "---- -=.-OO--------% .-------", "---- -=.-OO--------% .-------", "----.%$o-OO--------% .-------", "----=Xo=-@@--------=X.o-------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------", "------------------------------" ] plot_ylog = [ "30 30 17 1 ", " c #040404", ". c #313131", "X c #4E4E4E", "o c #6F6F6F", "O c #09A451", "+ c #1FAC61", "@ c #2CB16A", "# c #41B979", "$ c #56C088", "% c #6CC997", "& c #8F8F8F", "* c #B0B0B0", "= c #8CD5AE", "- c #B0E2C7", "; c #D2D2D2", ": c #CBECDA", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>$->>>>>>>>>>>>>>>>>>>>>>", ">>>>>:O+>>>>>>>>>>>>>>>>>>>>>>", ">>>>>#+O=>>>>>>>>>>>>>>>>>>>>>", ">>>>-O+OO>>>>>>>>>>>>>>>>>>>>>", ">>>>%$O@$=>>>>>>>>>>>>>>>>>>>>", ">>>>>>@%>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>@%>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>@%>>;;>>>>>>>>>>>>>>>>>>", ">>>>>>@%>>. >>>>>>>>>>>>>>>>>>", ">>>>>>@%>>. >>>>>>>>>>>>>>>>>>", ">>>>>>@%>>. :>>>*Xo>>>&o*o*>>>", ">>>>>>@%>>. >>>* . X>* &>>>", ">>>>>>@%>>. >>>X >X ;X ;o *>>>", ">>>>>>@%>>. >>> >o *. >& &>>>", ">>>>>>@%>>. >>>. >o *. >& *>>>", ">>>>>>@%>>. **;X ;. :o &. *>>>", ">>>>>>@%>>. &; &>; . &>>>", ">>>>>>@%>>;***;>;**>>>>;o ;>>>", ">>>>>>@%>>>>>>>>>>>>>:&& ;>>>", ">>>>>>@%>>>>>>>>>>>>>* .*>>>>", ">>>>-=+@=->>>>>>>>>>>>>>>>>>>>", ">>>>=OOOO:>>>>>>>>>>>>>>>>>>>>", ">>>>>@@+$>>>>>>>>>>>>>>>>>>>>>", ">>>>>-OO>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>$%>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] _d_plane_pan = [ "30 30 20 1 ", " c #070606", ". c #312B24", "X c #48341D", "o c #674926", "O c #565049", "+ c #615D57", "@ c #727271", "# c #845C2C", "$ c #84633D", "% c #CD7C1B", "& c #D68C33", "* c #E79635", "= c #948675", "- c #D6964A", "; c #F6A647", ": c #8E8E8E", "> c #A4A19E", ", c #AAAAAA", "< c #D4D4D4", "1 c None", "111111111111111111111111111111", "1111111111<::@:@@:@::@::@@:@@1", "111111111<>:<1@+1111111111<>:1", "111111111:1>1< <11111111<>1:1", "11111111:11>11:1", "111111<:111>> :11111<>111:1", "11111<>1111>. .1111<>1111:1", "11111:11111>11. 11111<>11111:1", "1111:111111><1. 1111<,111111:1", "11<:1111111>11. 111<>1111111:1", "11:11111111+OO OO+@OOOOOOOO.1", "1@:@::::::@=@:@@=:=-&-&&-&&.O1", "1:<11<1<1+#&-;..;-:;;;;;;;X>:1", "1:111111O#;*;;. ;-=;;;;;;X>1:1", "1:11111O#;;*;;. ;;=;;;;;X,11:1", "1:1111+#;;;*;;%%;;=;;;;X>111:1", "1:111O#;;;;*;;&%*;=;;;X>1111:1", "1:11+#;;;;;*;;%%;*=;*X:<<<<1:1", "1:1O#;;;;;;***&%*&=*.+::::::@1", "1:O#;;;;;;**;;%%;-=X>111111><1", "1@.###########oo#$@>111111><11", "1=,,,,,,@:>,,,. ,,:111111><111", "1:11111,<11111. 11>11111,<1111", "1:1111,<1111. .>1111><11111", "1:111,<11111, :>111><111111", "1:11><1111111O .<>11><1111111", "1:1,<11111111< ,1>1,<11111111", "1:,<1111111111@+1<>,<111111111", "1@@:@:@:::@@:@@:::@<1111111111", "111111111111111111111111111111" ] math_normalize = [ "30 30 12 1 ", " c #060606", ". c #353535", "X c #545454", "o c #737373", "O c #F7941E", "+ c #FABA6E", "@ c #8B8B8B", "# c #B1B1B1", "$ c #FCD7AB", "% c #D1D1D1", "& c #FDE6CA", "* c None", "******************************", "******************************", "********o@o*******************", "*******% *******************", "********o @*******************", "********o @*******************", "********o o*******************", "********o @***##*o%*o%%@******", "********o @***o**XX@X**o******", "********o @***X*** %**X******", "********@ o***X***. ***X******", "********o o***o**#..@**o******", "*******% %**##* ## %&o******", "********%%%*******************", "********$&&&&&&&&&&&&&&&******", "*******$OOOOOOOOOOOOOOOO******", "*******&++++++++++++++++******", "******************************", "***********#@#****%@%*********", "***********X @***@ o*********", "***********X %**@ @*********", "***********X # %*@ o*********", "***********X %@ X*@ o*********", "***********X #*. ## @*********", "***********X #*% @ @*********", "***********X #**# o*********", "***********X #***o o*********", "***********@X%****oX#*********", "******************************", "******************************" ] math_mean = [ "30 30 17 1 ", " c #565656", ". c #AB7739", "X c #F7941E", "o c #F79828", "O c #F8A23C", "+ c #F9AB4E", "@ c #D3AC7E", "# c #F9BA6E", "$ c #FAC17C", "% c #B2AEA9", "& c #DBB486", "* c #FBCB93", "= c #FCD8AD", "- c #FDE1BF", "; c #D5D5D5", ": c #FDE8D0", "> c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>:++++O++++#>>>>>>>>>>>>>>>>>", ">>:XXXXXXXXX+>>>>>>>>>>>>>>>>>", ">>>+Xo*::-:-:>>>>>>>>>>>>:>>>>", ">>>>#XX->>>>>>>>>>>>>>>>=X*>>>", ">>>>>#Xo->>>>>>>>>>>>>>:oo:>>>", ">>>>>>$XX=>>>>>>>;;;;%%XX*>>>>", ">>>>>>>#XX:>>>>>>>>>>>+X.>>>>>", ">>>>>>>OX#>>>>>>>>>>>$X+ >>>>>", ">>>>>>#XO>>>>>>>>>>>*X+; >>>>>", ">>>>>=XX:>>>>>>>>>>:oo:: >>>>>", ">>>>:oX*>>>>>>>>>>:OX=>> >>>>>", ">>>>+o+>>>>>>>>>>>+X*>>> >>>>>", ">>>*Xo>>>>>>>>>>>#X+>>>; >>>>>", ">>:oX+#++#+##>>>*X+:>>>> >>>>>", ">>:oXXXXXXXXO>>:Xo:>>>>> >>>>>", ">>>===-===-=:>:oX=>:>>>> >:::>", ">>>>>>>>>>>>>>OX*>+XO>>: >oX#>", ">>>>>>>>>>>>>+X#>>oXX=>> >oX#>", ">>>>>>>>>>>>$X+>>>OXXX=; >OX#>", ">>>>>>>>>>>=Xo:>>>+XXXX* >OX#>", ">>>>>>>>>>:oX:>>>>OX+XXX.>OX+>", ">>>>>>>>>>OX*>>>>>+X#=oXX=+X+>", ">>>>>>>>>+X#>>>>>>+X+;&XXXOX+>", ">>>>>>>>#X+>>>>>>>oX#;;@XXXX+>", ">>>>>>>=XO:>>>>>>>OX#>>>*XXX+>", ">>>>>>>$o:>>>>>>>>+o#>>>>*+XO>", ">>>>>>>>:>>>>>>>>>>>>>>>>>:-:>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] colormap_none = [ "30 30 13 1 ", " c black", ". c #494949", "X c #656565", "o c #A7A7A7", "O c #AFAFAF", "+ c #C1C1C1", "@ c #CBCBCB", "# c #E4E4E4", "$ c #F1F1F1", "% c #F6F6F6", "& c gray97", "* c #FBFBFB", "= c None", "==============================", "==============================", "==o#======================@+==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "== O======================X.==", "==$*======================&%==", "==============================", "==============================" ] compare_mode_vline = [ "30 30 19 1 ", " c #040302", ". c #261A0C", "X c #25251D", "o c #4D3518", "O c #404827", "+ c #5A5E23", "@ c #865D2B", "# c #A27034", "$ c #738730", "% c #8D9C38", "& c #E09943", "* c #F8AC4E", "= c #B6C848", "- c #D4F958", "; c #0F0BAD", ": c #2F23B7", "> c #553BC3", ", c #5042C3", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<. . ;;XXXXXXXXXXXO<<", "<< o@@@@@@@@@+::$$$$$$$$$$OX<<", "<<.@**********>,----------$X<<", "<< @**********>,----------$X<<", "<< @******@ooo::+++$=-----$X<<", "<< @******. ;; O----$X<<", "<< @*****# ;; X---$X<<", "<< @*****+ ;;$$. =--$X<<", "<<.@***** .;;--= %--$X<<", "<< @****# .@;;--= %--$X<<", "<< @****o @&;;--+ =--$X<<", "<< @***& &*;; $---$X<<", "<< @***+ .**:; +----$X<<", "<<.@***. @**>; X---$X<<", "<<.@**# &*&>:-=$ +--$X<<", "<< @**+ ooo;:---$ --$X<<", "<< @**. ;;---$ =-$X<<", "<< @*# ;;---O --$X<<", "<< @*o X@@@@::$$O X--$X<<", "<<.@& #****>: %--$X<<", "<< @@ *****>: .%---$X<<", "<<.@+ooo@*****,:O++$=-----$X<<", "<< @**********>,----------$X<<", "<< @**********>,----------$X<<", "<< o@@@@@+@@@@::$$$$$$$$$$OX<<", "<<. . .. ;;XXXXXXXXXXXO<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" ] tree_expand_all = [ "30 30 15 1 ", " c #000000", ". c #0A0A0A", "X c #141414", "o c #2F2F2F", "O c #606060", "+ c #888888", "@ c #949494", "# c #A9A9A9", "$ c #B3B3B3", "% c #BABABA", "& c #D4D4D4", "* c #E9E9E9", "= c #F4F4F4", "- c #F9F9F9", "; c None", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;%XXXXXXXXXXXXXXXXXX&;;;;;;;", ";;;% +++@++++++@++++O &-;;;;;;", ";;;$ *;;;;;;;;;;;;;;* &=;;;;;;", ";;;$ *;;;;;;;;;;;;;;& &;;;;;;;", ";;;% *;=...........X. ...X;;;;", ";;;$ *;* O@@@@@@@@@@@@@@OX;;;;", ";;;$ *;= $;;;;;;;;;;;;;;+X;;;;", ";;;% *;= $;;;;;*&*-;;;;;@.;;;;", ";;;$ *;* $;;;;;O &;;;;;+.;;;;", ";;;$ *;= #;;;;=O &;;;;;@X;;;;", ";;;$ *;= $;;;;-O &;;;;;@.;;;;", ";;;% *;= #;;;-=O &;;;;;+X;;;;", ";;;$ *;= $;o. %;+X;;;;", ";;;% *;* $;o %;@.;;;;", ";;;$ *;= $-Oooo. oooo&=@X;;;;", ";;;$ *;* #;;;;;O &;-;;;+X;;;;", ";;;$ #%# $;;;;=O &;;;;;+X;;;;", ";;;$ $;;;;-O &;;;;;@.;;;;", ";;;-***& $;;;;;OX.&;;;;;@X;;;;", ";;;;;;;= #;;;;;;;;;;;;;;+X;;;;", ";;;;;;;* O$$############O.;;;;", ";;;;;;;= X;;;;", ";;;;;;;;-=--=--=-==-=--==-;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;", ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" ] math_phase_color_log = [ "30 30 24 1 ", " c #050403", ". c #26271B", "X c #1C5A14", "o c #564420", "O c #5B5C5B", "+ c #EA1B1D", "@ c #E35422", "# c #FB1E62", "$ c #3DCE25", "% c #27FB62", "& c #C7C920", "* c #EAE120", "= c #552EFB", "- c #FF299F", "; c #A029FD", ": c #F021EB", "> c #B561F2", ", c #42E6D0", "< c #A7A7A6", "1 c #C9BDE2", "2 c #ABDDF1", "3 c #CED2D4", "4 c #DEDDED", "5 c None", "435555555555555555554<<5555555", "1 .2=< .1;;:::::----15555", "5. <22 .21. <>;;>::::-:--55555", "5< <3 .4O .1==;;:::::--455555", "55O <==;;;::::::1555555", "5553O. .O1===;;;;::::45555555", "555553 .51====;;;:;:1555555555", "555554 .5551>>>;:>155555555555", "555553 .5555555555555555555555", "555553 .5555555555555555555555", "555555<35555555555555555555555" ] plot_roi_above = [ "30 30 22 1 ", " c #0D0D0D", ". c #2D2E2E", "X c #653D0E", "o c #724A1A", "O c #535455", "+ c #6E6F70", "@ c #93652E", "# c #A67D4B", "$ c #DE9237", "% c #AA8355", "& c #F3AB55", "* c #D29F64", "= c #FAB360", "- c #929495", "; c #9D9FA2", ": c #A7A9AC", "> c #DEB686", ", c #FAD09C", "< c #FCD4A6", "1 c #CECECE", "2 c #FDE9D1", "3 c None", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333332<<<<<<<<3", "33333333333333233333,&=======3", "33333333333333 2333,=,<<<<<,3", "3333333333333-..-333,&<<<<<<<3", "3333333333333.++.333,=<<<<<<<3", "3333333333332 -; 133,=<<<,<<<3", "333333333333;.:;.+33,=<<<<<<<3", "333333333333.O::+.33,=<<<<<<<3", "33333333331O.;::- 23,=<<<<<<<3", "333333333+ .-::::.;3,=<<<<<<<3", "333333333.+:;::::OO3=#,<<<,<<3", "333333333.+::::::+ 3%@%<<<<<<3", "333333333 -::::::: 1o$o<<<<<<3", "333333333 -:::::::.+o$X<<<<<<3", "3333333:..::::::::+ @$X><<<<<3", "333333; O;:::::::::-*$o*<<<<<3", "333333.+::::::::::::>*@%<<<<<3", "333333 -::::::::::::*$%o>*<<,3", "33333;.;::::::::::::**-XXX><<3", "33332.O:;:::::;:::;:*$*@X@@<<3", "3&=&&$&&&&&&&&&&&&*&&&>>>>@<<3", "322222222222222222222232332333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333", "333333333333333333333333333333" ] close = [ "30 30 24 1 ", " c #3A3734", ". c #4B3E2F", "X c #5C4832", "o c #413F41", "O c #434142", "+ c #6C6156", "@ c #A36B2B", "# c #C97A1D", "$ c #9B7851", "% c #F4931E", "& c #F5992D", "* c #EF9B38", "= c #D79D5B", "- c #F7A94F", "; c #D1A471", ": c #F8B76D", "> c #A9A49F", ", c #E1BA8E", "< c #FBC88E", "1 c #F9D6AE", "2 c #EFD3B7", "3 c #F3DBC2", "4 c #FCE9D3", "5 c None", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "5555555555551<<:<1555555555555", "5555555551-&-:<<111<1555555555", "55555554-&-::<1444555<45555555", "5555554&&-:<<144555554<3555555", "555554%*$=:<14444545>>2:455555", "55555&&$oo$,1444544>oo+<-55555", "5555<%*+ooO+,34455+OooO,-<5555", "5554%%*#.oOO+2444+oooO+,:*4555", "5551%&-=$ Ooo+23+ooo O><:-1555", "555:%&--=$OOoo++OoO O><<:-:555", "555&%---;;$OoooooO +>,<<:-*555", "555%%&--::;$ooooo X>,<<<:-&555", "555&&&---::;Ooooo $,<<<:-*%555", "555&%&--:::+ o OOo+;,<::-&-555", "555:%&&--=+ oo ooOO=::--&-555", "555<%%&--Xo.o.X+.OOOO=--*&1555", "5555&%&&Xoo X@=$XoOoX$*&&4555", "5555<%%@. o.X@--=$.oooX%%<5555", "55555&%X . X*=----@.oo.#*55555", "555554&#X.X@**---**@X.@#455555", "5555553&###*%*&&&&%%#@%2555555", "55555554-%%%%&&&&&%%%-45555555", "5555555553-%%%%%&%%-3555555555", "5555555555551<<:<1555555555555", "555555555555555555555555555555", "555555555555555555555555555555", "555555555555555555555555555555" ] window_new = [ "30 30 10 1 ", " c #F7941E", ". c #F79928", "X c #F8A23B", "o c #F9AB4E", "O c #FABD75", "+ c #FAC27E", "@ c #FBC88C", "# c #FCD9AE", "$ c #FDE8CF", "% c None", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%# O%%%%%", "%%%%%%%%%%%%%%%%%%%%%%#. O%%%", "%%%%%%%%%%%%%%%%%%$@oX.. ..@%", "%%%%$ooooooooo%%%O .O", "%%%%o #%$o . .X$", "%%%%o.o@@@@+@%%O . .O%%", "%%%%o @%%%%%%%$ XO#$$#...$%%%", "%%%%X @%%%%%%%o.@%%%%%# O%%%%%", "%%%%o @%%%%%%%X#%%%%%%%$%%%%%%", "%%%%X @%%%%%%$@%%%%%%%%%%@%%%%", "%%%%o @%%%%%%@%%%%%%%%%$XX%%%%", "%%%%o @%%%%%%$%%%%%%%%%@ o%%%%", "%%%%X @%%%%%%%%%%%%%%%%@ X%%%%", "%%%%o @%%%%%%%%%%%%%%%%@ o%%%%", "%%%%X @%%%%%%%%%%%%%%%%@ X%%%%", "%%%%o @%%%%%%%%%%%%%%%%@ o%%%%", "%%%%X @%%%%%%%%%%%%%%%%@ X%%%%", "%%%%o oO+OOOO++OO+OOOOOo o%%%%", "%%%%o . .o%%%%", "%%%%$OooOooOoOooooOooOooO$%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%", "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" ] zoom = [ "30 30 21 1 ", " c #503C43", ". c #584C50", "X c #68575C", "o c #726A6F", "O c #85797C", "+ c #707C82", "@ c #8B7980", "# c #79D3F5", "$ c #9B9094", "% c #A49BA0", "& c #B2ABAE", "* c #C3B9BC", "= c #C3BFC0", "- c #BBC2C6", "; c #91D9F5", ": c #A7DDF3", "> c #B8E2F4", ", c #D4CFD3", "< c #E1DBDF", "1 c #D1E9F4", "2 c None", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222222222222222222222222", "222222222-&-<22222222222222222", "222222<%$%&%oo,222222222222222", "22222<$-:;122,o%22222222222222", "22222$,>:;;#;11o&2222222222222", "2222&,1>::;###11X2222222222222", "2222&11>::;;#;:2o*222222222222", "222<,<11>:;;;;:1+$222222222222", "222<,2<11>>::::>+O222222222222", "222<,2111>>>>>>>o$222222222222", "2222&<2111111111.&222222222222", "2222%<2<1<11111&.,<22222222222", "22222$,2222121,.O&,<2222222222", "22222<$,<222<&XXX@%*<<22222222", "222222<$%%%$+o*=..O$*<<2222222", "22222222<,&&,222 c None", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>:-####;:>>>>>>>>>>>", ">>>>>>>>>;X ..o... X;>>>>>>>>>", ">>>>>>>:X +%======%+ X:>>>>>>>", ">>>>>>; o&==========&o ;>>>>>>", ">>>>>; @==============@ ;>>>>>", ">>>>: @================@ :>>>>", ">>>>Xo==================oX>>>>", ">>>; &==================& ;>>>", ">>>Xo=& &======$+++++%==oX>>>", ">>: &=& &======O $==% :>>", ">>- ==& *%$&===+ $&&&&=== ;>>", ">>-.==& o $==+ o@$*====o#>>", ">>#.==& .%o .==+ %===o#>>", ">>#o==& %=$ ==$$&%. .===.#>>", ">>#o==& &=% ======$ *==.->>", ">>- ==& &=% ==%===@ === ;>>", ">>: %=& &=% == oo O==% :>>", ">>>X+=&..*=%..==@. .$===@X>>>", ">>>; &==================& ;>>>", ">>>>Xo==================oX>>>>", ">>>>: +================+ :>>>>", ">>>>>; @==============@ ;>>>>>", ">>>>>>; o&==========&o ;>>>>>>", ">>>>>>>:X +%======%o X:>>>>>>>", ">>>>>>>>>-X .oo. X;>>>>>>>>>", ">>>>>>>>>>>>-####->>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>", ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>" ] math_fit = [ "30 30 19 1 ", " c #000000", ". c #3A2021", "X c #4F2B2C", "o c #505050", "O c #B43035", "+ c #C43A3F", "@ c #EF3037", "# c #E53C43", "$ c #B75B5F", "% c #F14C52", "& c #F25C62", "* c #F36C71", "= c #B5B2B2", "- c #F69195", "; c #F9B1B4", ": c #FABFC1", "> c #CCCCCC", ", c #FBCDCF", "< c None", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<%%<<<<<<<<<<<<<<", "<<<<<<<<<<<<<,&*;<<<<<<<<<<<<<", "<<<<<<<<<<<<<*;<%<<<<<<<<<<<<<", "<<<<<<<<<<<<<#<<%,<<<<<<<<<<<<", "<<<<<<<<<<<<,*<<--<<<<<<<<<<<<", "<<<<<<<<<<<<*;<<,%<<<<<<<<<<<<", "<<<<<<<<<<<*&<<<<@<<<<<<<<<<<<", "<<<<<<<<<;#-<<<<<*;<<<<<<<<<<<", "<<<<<<<<<&:<<<<<<;*<<-<<<<<<<<", "<<<<<<<<<&,<<<<<<,@<-@-<<<<<<<", "<<<<<<<<>$=>=<>><>O=$$+<<<<<<<", "<<<<<<<>= X>+,<<<<<<", "<<<<<<:@o >><=<<<=><<<<<%<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<", "<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<" ] IconDict = { "folder" : folder, "draw-pencil" : draw_pencil, "image-select-box" : image_select_box, "math-sigma" : math_sigma, "compare-mode-hline" : compare_mode_hline, "median-filter" : median_filter, "arrow-keys" : arrow_keys, "item-0dim" : item_0dim, "add-shape-unknown" : add_shape_unknown, "math-phase-color" : math_phase_color, "clipboard" : clipboard, "plot-window" : plot_window, "plot-roi-reset" : plot_roi_reset, "selected" : selected, "item-object" : item_object, "item-2dim" : item_2dim, "crosshair" : crosshair, "cube-top" : cube_top, "shape-diagonal" : shape_diagonal, "plot-symbols" : plot_symbols, "cube-back" : cube_back, "add-shape-arc" : add_shape_arc, "math-substract" : math_substract, "add-shape-rectangle" : add_shape_rectangle, "item-ndim" : item_ndim, "first" : first, "view-1d" : view_1d, "rudder" : rudder, "math-phase" : math_phase, "pixel-intensities" : pixel_intensities, "view-nofullscreen" : view_nofullscreen, "shape-circle" : shape_circle, "-d-plane-normal-x" : _d_plane_normal_x, "remove" : remove, "document-open" : document_open, "tree-collapse-all" : tree_collapse_all, "plot-toggle-points" : plot_toggle_points, "colormap" : colormap, "sliders-on" : sliders_on, "plot-roi-below" : plot_roi_below, "silx" : silx, "profile-clear" : profile_clear, "math-average" : math_average, "cube-rotate" : cube_rotate, "plot-grid" : plot_grid, "profile1D" : profile1D, "view-raw" : view_raw, "view-nexus" : view_nexus, "shape-polygon" : shape_polygon, "math-imaginary" : math_imaginary, "item-3dim" : item_3dim, "spec" : spec, "layer-nx" : layer_nx, "compare-mode-b" : compare_mode_b, "compare-mode-rbneg-channel" : compare_mode_rbneg_channel, "cube-front" : cube_front, "compare-mode-a-minus-b" : compare_mode_a_minus_b, "math-ymin-to-zero" : math_ymin_to_zero, "pick" : pick, "next" : next, "shape-ellipse" : shape_ellipse, "zoom-original" : zoom_original, "math-peak" : math_peak, "plot-roi" : plot_roi, "sliders-off" : sliders_off, "item-1dim" : item_1dim, "compare-mode-a" : compare_mode_a, "cube" : cube, "-d-plane-normal-z" : _d_plane_normal_z, "zoom-out" : zoom_out, "add-shape-vertical" : add_shape_vertical, "item-none" : item_none, "document-save" : document_save, "math-peak-search" : math_peak_search, "camera" : camera, "image-select-add" : image_select_add, "image-select-brush" : image_select_brush, "axis" : axis, "stats-whole-data" : stats_whole_data, "shape-horizontal" : shape_horizontal, "stats-active-items" : stats_active_items, "colorbar" : colorbar, "shape-rectangle" : shape_rectangle, "add-shape-point" : add_shape_point, "compare-align-auto" : compare_align_auto, "edit-copy" : edit_copy, "draw-rubber" : draw_rubber, "shape-vertical" : shape_vertical, "colormap-range" : colormap_range, "plot-yauto" : plot_yauto, "zoom-in" : zoom_in, "nxdata-create" : nxdata_create, "image-mask" : image_mask, "compare-mode-rb-channel" : compare_mode_rb_channel, "view-fullscreen" : view_fullscreen, "add-shape-polygon" : add_shape_polygon, "math-real" : math_real, "math-derive" : math_derive, "view-2d-stack" : view_2d_stack, "rotate-3d" : rotate_3d, "math-energy" : math_energy, "view-3d" : view_3d, "math-square-amplitude" : math_square_amplitude, "cube-bottom" : cube_bottom, "math-swap-sign" : math_swap_sign, "image-select-erase-rubber" : image_select_erase_rubber, "colormap-histogram" : colormap_histogram, "plot-widget" : plot_widget, "math-peak-reset" : math_peak_reset, "stats-whole-items" : stats_whole_items, "add-shape-diagonal" : add_shape_diagonal, "image-select-erase" : image_select_erase, "plot-xauto" : plot_xauto, "image" : image, "cube-right" : cube_right, "plot-ydown" : plot_ydown, "nxdata-remove" : nxdata_remove, "plot-window-image" : plot_window_image, "zoom-back" : zoom_back, "math-amplitude" : math_amplitude, "shape-ellipse-solid" : shape_ellipse_solid, "-d-plane-normal-y" : _d_plane_normal_y, "view-refresh" : view_refresh, "document-print" : document_print, "draw-brush" : draw_brush, "previous" : previous, "last" : last, "compare-align-stretch" : compare_align_stretch, "compare-keypoints" : compare_keypoints, "compare-align-origin" : compare_align_origin, "shape-circle-solid" : shape_circle_solid, "compare-align-center" : compare_align_center, "cube-left" : cube_left, "-d-plane" : _d_plane, "pan" : pan, "stats-visible-data" : stats_visible_data, "plot-xlog" : plot_xlog, "add-shape-horizontal" : add_shape_horizontal, "shape-square" : shape_square, "view-2d" : view_2d, "view-text" : view_text, "normal" : normal, "plot-roi-between" : plot_roi_between, "nxdata-axis-add" : nxdata_axis_add, "profile2D" : profile2D, "math-smooth" : math_smooth, "crop" : crop, "nxdata-axis-remove" : nxdata_axis_remove, "plot-yup" : plot_yup, "plot-ylog" : plot_ylog, "-d-plane-pan" : _d_plane_pan, "math-normalize" : math_normalize, "math-mean" : math_mean, "colormap-none" : colormap_none, "compare-mode-vline" : compare_mode_vline, "tree-expand-all" : tree_expand_all, "math-phase-color-log" : math_phase_color_log, "plot-roi-above" : plot_roi_above, "close" : close, "window-new" : window_new, "zoom" : zoom, "view-hdf5" : view_hdf5, "math-fit" : math_fit, } def showIcons(): w = qt.QWidget() g = qt.QGridLayout(w) idx = 0 keyList = list(IconDict.keys()) keyList.sort() for key in keyList: name = key icon = IconDict[name] column = int(idx / 20) row = idx % 20 #print "name",name lab = qt.QLabel(w) lab.setText(str(name)) g.addWidget(lab, row, 2 * column + 1) lab = qt.QLabel(w) lab.setPixmap(qt.QPixmap(icon)) g.addWidget(lab, row, 2 * column) idx += 1 w.show() return w if __name__ == '__main__': import sys from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication(sys.argv) app.lastWindowClosed.connect(app.quit) w = showIcons() app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/Toolbars.py0000644000000000000000000003436114741736366021057 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2016-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Set of QToolBar to attach to a :class:`PlotWindow` instance. Available toolbars: - ProvileToolBar: Profiling tools - LimitsToolBar: Text field to display and change the plot limits. """ # import ###################################################################### import logging import sys import numpy try: from .. import PyMcaQt as qt except ImportError: from PyMca5.PyMcaGui import PyMcaQt as qt from .PyMca_Icons import IconDict from .ProfileScanWidget import ProfileScanWidget from . import _ImageProfile # ProfileToolBar ############################################################## class ProfileToolBar(qt.QToolBar): """QToolBar providing profile tools operating on a :class:`PlotWindow`. Attributes: - plotWindow: Associated :class:`PlotWindow`. - profileWindow: Associated :class:`ProfileScanWidget`. - actionGroup: :class:`QActionGroup` of available actions. """ # TODO when available, listen to active image change to refresh profile _POLYGON_LEGEND = '__ProfileToolBar_ROI_Polygon' def __init__(self, plotWindow, profileWindow=None, title='Profile Selection', parent=None): """ :param plotWindow: :class:`PlotWindow` instance on which to operate. :param profileWindow: :class:`ProfileScanWidget` instance where to display the profile curve or None to create one. :param str title: See :class:`QToolBar`. :param parent: See :class:`QToolBar`. """ super(ProfileToolBar, self).__init__(title, parent) assert plotWindow is not None self.plotWindow = plotWindow self.plotWindow.sigPlotSignal.connect(self._plotWindowSlot) self._overlayColor = None self._roiInfo = None if profileWindow is None: self.profileWindow = ProfileScanWidget(actions=False) else: self.profileWindow = profileWindow # Actions self.browseAction = qt.QAction( qt.QIcon(qt.QPixmap(IconDict["normal"])), 'Browsing Mode', None) self.browseAction.setToolTip( 'Enables zooming interaction mode') self.browseAction.setCheckable(True) self.hLineAction = qt.QAction( qt.QIcon(qt.QPixmap(IconDict["horizontal"])), 'Horizontal Profile Mode', None) self.hLineAction.setToolTip( 'Enables horizontal profile selection mode') self.hLineAction.setCheckable(True) self.vLineAction = qt.QAction( qt.QIcon(qt.QPixmap(IconDict["vertical"])), 'Vertical Profile Mode', None) self.vLineAction.setToolTip( 'Enables vertical profile selection mode') self.vLineAction.setCheckable(True) self.lineAction = qt.QAction( qt.QIcon(qt.QPixmap(IconDict["diagonal"])), 'Fee Line Profile Mode', None) self.lineAction.setToolTip( 'Enables line profile selection mode') self.lineAction.setCheckable(True) self.clearAction = qt.QAction( qt.QIcon(qt.QPixmap(IconDict["image"])), 'Clear Profile', None) self.clearAction.setToolTip( 'Clear the profile Region of interest') self.clearAction.setCheckable(False) self.clearAction.triggered.connect(self.clearProfile) # ActionGroup self.actionGroup = qt.QActionGroup(self) self.actionGroup.addAction(self.browseAction) self.actionGroup.addAction(self.hLineAction) self.actionGroup.addAction(self.vLineAction) self.actionGroup.addAction(self.lineAction) self.actionGroup.triggered.connect(self._actionGroupTriggeredSlot) self.browseAction.setChecked(True) # Add actions to ToolBar self.addAction(self.browseAction) self.addAction(self.hLineAction) self.addAction(self.vLineAction) self.addAction(self.lineAction) self.addAction(self.clearAction) # Add width spin box to toolbar self.addWidget(qt.QLabel('W:')) self.lineWidthSpinBox = qt.QSpinBox(self) self.lineWidthSpinBox.setRange(0, 1000) self.lineWidthSpinBox.setValue(1) self.lineWidthSpinBox.valueChanged[int].connect( self._lineWidthSpinBoxValueChangedSlot) self.addWidget(self.lineWidthSpinBox) def _lineWidthSpinBoxValueChangedSlot(self, value): self.updateProfile() def _actionGroupTriggeredSlot(self, action): if action == self.browseAction: self.plotWindow.setZoomModeEnabled(True, color=self.overlayColor) elif action == self.hLineAction: self.plotWindow.setDrawModeEnabled(True, shape='hline', color=self.overlayColor) elif action == self.vLineAction: self.plotWindow.setDrawModeEnabled(True, shape='vline', color=self.overlayColor) elif action == self.lineAction: self.plotWindow.setDrawModeEnabled(True, shape='line', color=self.overlayColor) else: logging.error( 'ProfileToolBar._actionGroupTriggered got unknown action') def _plotWindowSlot(self, event): if event['event'] not in ('drawingProgress', 'drawingFinished'): return roiStart, roiEnd = event['points'][0], event['points'][1] checkedAction = self.actionGroup.checkedAction() if checkedAction == self.hLineAction: roiStart = - sys.maxsize, roiStart[1] roiEnd = sys.maxsize, roiEnd[1] lineProjectionMode = 'X' elif checkedAction == self.vLineAction: roiStart = roiStart[0], - sys.maxsize roiEnd = roiEnd[0], sys.maxsize lineProjectionMode = 'Y' elif checkedAction == self.lineAction: lineProjectionMode = 'D' else: return self._roiInfo = roiStart, roiEnd, lineProjectionMode self.updateProfile() @property def overlayColor(self): """The color to use for the ROI. """ return self._overlayColor @overlayColor.setter def overlayColor(self, color): self._overlayColor = color self.updateProfile() def updateProfile(self): """Update the displayed profile and profile ROI. """ self.plotWindow.removeItem(self._POLYGON_LEGEND, replot=True) if self._roiInfo is None: return imageData = self.plotWindow.getActiveImage() if imageData is None: return data, legend, info, pixmap = imageData origin = info['plot_xScale'][0], info['plot_yScale'][0] scale = info['plot_xScale'][1], info['plot_yScale'][1] roiWidth = self.lineWidthSpinBox.value() roiStart, roiEnd, lineProjectionMode = self._roiInfo profile = _ImageProfile.getProfileCurve(data, roiStart, roiEnd, roiWidth, origin, scale, lineProjectionMode) if profile is None: return # Update ROI polygon self.plotWindow.addItem(profile['roiPolygonX'], profile['roiPolygonY'], legend=self._POLYGON_LEGEND, color=self.overlayColor, shape='polygon', fill=True, replace=False, replot=True) # Title if lineProjectionMode == 'X': yMin = profile['roiPolygonY'].min() yMax = profile['roiPolygonY'].max() - 1 if roiWidth <= 1: profileName = 'Y = %g' % yMin else: profileName = 'Y = [%g, %g]' % (yMin, yMax) xLabel = 'Columns' elif lineProjectionMode == 'Y': xMin = profile['roiPolygonX'].min() xMax = profile['roiPolygonX'].max() - 1 if roiWidth <= 1: profileName = 'X = %g' % xMin else: profileName = 'X = [%g, %g]' % (xMin, xMax) xLabel = 'Rows' else: x0, y0 = profile['startPoint'] x1, y1 = profile['endPoint'] if roiWidth < 1 or x1 == x0 or y1 == y0: profileName = 'From (%g, %g) to (%g, %g)' % ( x0, y0, x1, y1) else: m = (y1 - y0) / float((x1 - x0)) b = y0 - m * x0 profileName = 'y = %g * x %+g ; width=%d' % ( m, b, roiWidth) xLabel = 'Distance' # Update profile curve coords, values = profile['profileCoords'], profile['profileValues'] index = numpy.isfinite(values) coords, values = coords[index], values[index] self.profileWindow.addCurve(coords, values, legend=profileName, xlabel=xLabel, replace=True, replot=True) self.profileWindow.show() def clearProfile(self): self._roiInfo = None self.updateProfile() # LimitsToolBar ############################################################## class LimitsToolBar(qt.QToolBar): """QToolBar displaying and controlling the limits of a :class:`PlotWindow`. """ class _FloatEdit(qt.QLineEdit): """Field to edit a float value.""" def __init__(self, value=None, *args, **kwargs): qt.QLineEdit.__init__(self, *args, **kwargs) self.setValidator(qt.CLocaleQDoubleValidator(None)) self.setFixedWidth(100) self.setAlignment(qt.Qt.AlignLeft) if value is not None: self.setValue(value) def value(self): return float(self.text()) def setValue(self, value): self.setText('%g' % value) def __init__(self, plotWindow, title='Limits', parent=None): """ :param plotWindow: :class:`PlotWindow` instance on which to operate. :param str title: See :class:`QToolBar`. :param parent: See :class:`QToolBar`. """ super(LimitsToolBar, self).__init__(title, parent) assert plotWindow is not None self._plotWindow = plotWindow self._plotWindow.sigPlotSignal.connect(self._plotWindowSlot) self._initWidgets() @property def plotWindow(self): """The :class:`PlotWindow` the toolbar is attached to.""" return self._plotWindow def _initWidgets(self): """Create and init Toolbar widgets.""" xMin, xMax = self.plotWindow.getGraphXLimits() yMin, yMax = self.plotWindow.getGraphYLimits() self.addWidget(qt.QLabel('Limits: ')) self.addWidget(qt.QLabel(' X: ')) self._xMinFloatEdit = self._FloatEdit(xMin) self._xMinFloatEdit.editingFinished[()].connect( self._xFloatEditChanged) self.addWidget(self._xMinFloatEdit) self._xMaxFloatEdit = self._FloatEdit(xMax) self._xMaxFloatEdit.editingFinished[()].connect( self._xFloatEditChanged) self.addWidget(self._xMaxFloatEdit) self.addWidget(qt.QLabel(' Y: ')) self._yMinFloatEdit = self._FloatEdit(yMin) self._yMinFloatEdit.editingFinished[()].connect( self._yFloatEditChanged) self.addWidget(self._yMinFloatEdit) self._yMaxFloatEdit = self._FloatEdit(yMax) self._yMaxFloatEdit.editingFinished[()].connect( self._yFloatEditChanged) self.addWidget(self._yMaxFloatEdit) def _plotWindowSlot(self, event): """Listen to :class:`PlotWindow` events.""" if event['event'] not in ('limitsChanged',): return xMin, xMax = self.plotWindow.getGraphXLimits() yMin, yMax = self.plotWindow.getGraphYLimits() self._xMinFloatEdit.setValue(xMin) self._xMaxFloatEdit.setValue(xMax) self._yMinFloatEdit.setValue(yMin) self._yMaxFloatEdit.setValue(yMax) def _xFloatEditChanged(self): """Handle X limits changed from the GUI.""" xMin, xMax = self._xMinFloatEdit.value(), self._xMaxFloatEdit.value() if xMax < xMin: xMin, xMax = xMax, xMin self.plotWindow.setGraphXLimits(xMin, xMax) def _yFloatEditChanged(self): """Handle Y limits changed from the GUI.""" yMin, yMax = self._yMinFloatEdit.value(), self._yMaxFloatEdit.value() if yMax < yMin: yMin, yMax = yMax, yMin self.plotWindow.setGraphYLimits(yMin, yMax) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/_ImageProfile.py0000644000000000000000000005005714741736366021774 0ustar00rootroot# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Functions to extract a profile curve of a region of interest in an image. """ # import ###################################################################### import numpy import logging from PyMca5.PyMcaMath.fitting import SpecfitFuns _logger = logging.getLogger(__name__) # utils ####################################################################### def _clamp(value, min_, max_): if value < min_: return min_ elif value > max_: return max_ else: return value # coordinate conversion ####################################################### def plotToImage(x, y, origin=(0, 0), scale=(1, 1), shape=None): """Convert a position from plot to image coordinates. If shape is not None, return the position clipped to the image bounds. :param float x: X coordinate in plot. :param float y: Y coordinate in plot. :param origin: Origin of the image in the plot. :type origin: 2-tuple of float: (ox, oy). :param scale: Scale of the image in the plot. :type scale: 2-tuple of float: (sx, sy). :param shape: Shape of the image or None to disable clipping. :type shape: 2-tuple of int: (height, width) or None. :return: Position in the image. :rtype: 2-tuple of int: (row, col). """ col = int((x - origin[0]) / float(scale[0])) row = int((y - origin[1]) / float(scale[1])) if shape is not None: col = _clamp(col, 0, shape[1] - 1) row = _clamp(row, 0, shape[0] - 1) return row, col def imageToPlot(row, col, origin=(0., 0.), scale=(1., 1.)): """Convert a position from image to plot coordinates. :param row: Row coordinate(s) in image. :type row: int or numpy.ndarray :param col: Column coordinate(s) in image. :type col: int or numpy.ndarray :param origin: Origin of the image in the plot. :type origin: 2-tuple of float: (ox, oy). :param scale: Scale of the image in the plot. :type scale: 2-tuple of float: (sx, sy). :return: Position in the image. :rtype: 2-tuple of float or numpy.ndarray: (x, y). """ x = origin[0] + col * scale[0] y = origin[1] + row * scale[1] return x, y # profiles #################################################################### def getAlignedROIProfileCurve(image, roiCenter, roiWidth, roiRange, axis): """Sums of a rectangular region of interest (ROI) along a given axis. Returned values and all parameters are in image coordinates. This function might change the ROI so it remains within the image. Thus, the bounds of the effective ROI and the effective roiRange are returned along with the profile. :param image: 2D data. Warning: The sum is performed with the dtype of the provided array! :type image: numpy.ndarray with 2 dimensions. :param int roiCenter: Center of the ROI in image coordinates along the given axis. :param int roiWidth: Width of the ROI in image pixels along the given axis. :param roiRange: [Start, End] positions of the ROI from which to take the ROI in image coordinates along the other dimension. Both start and end are included in the ROI if they are in the image. This range is clipped to the image. :type roiRange: 2-tuple of int. :param int axis: The axis along which to take the profile of the ROI. 0: Sum rows along columns. 1: Sum columns along rows. :return: The profile and the effective ROI as a dict with the keys: - 'profileCoordsRange': The range of profile coordinates along the selected axis (2-tuple of int). - 'profileValues': The sums of the ROI along the selected axis. - 'roiPolygonCols': The column coordinates of the polygon of the effective ROI. - 'roiPolygonRows': The row coordinates of the polygon of the effective ROI. :rtype: dict """ assert axis in (0, 1) if axis == 1: # Transpose image to use same code for both dimensions. image = image.transpose() dim0Size, dim1Size = image.shape roiCenter = int(roiCenter) roiWidth = int(roiWidth) # Keep range within image startRange = _clamp(int(roiRange[0]), 0, dim1Size - 1) endRange = _clamp(int(roiRange[1]), 0, dim1Size - 1) stepRange = 1 if startRange <= endRange else -1 rangeSlice = slice(startRange, endRange + stepRange, stepRange) # Get ROI extent in the dimension to sum start = int(roiCenter + 0.5 - 0.5 * roiWidth) end = int(roiCenter + 0.5 + 0.5 * roiWidth) # Keep ROI within image and keep its width if possible if start < 0: start, end = 0, min(roiWidth, dim0Size) elif end > dim0Size: start, end = max(dim0Size - roiWidth, 0), dim0Size if roiWidth <= 1: profileValues = image[start, rangeSlice] end = start + 1 else: profileValues = image[start:end, rangeSlice].sum(axis=0) # Get the ROI polygon roiPolygonCols = numpy.array( (startRange, endRange + stepRange, endRange + stepRange, startRange), dtype=numpy.float64) roiPolygonRows = numpy.array((start, start, end, end), dtype=numpy.float64) if axis == 1: # Image was transposed roiPolygonCols, roiPolygonRows = roiPolygonRows, roiPolygonCols return {'profileValues': profileValues, 'profileCoordsRange': (startRange, endRange), 'roiPolygonRows': roiPolygonRows, 'roiPolygonCols': roiPolygonCols} def _getROILineProfileCurve(image, roiStart, roiEnd, roiWidth, lineProjectionMode): """Returns the profile values and the polygon in the given ROI. Works in image coordinates. See :func:`getAlignedROIProfileCurve`. """ row0, col0 = roiStart row1, col1 = roiEnd deltaRow = abs(row1 - row0) deltaCol = abs(col1 - col0) if (lineProjectionMode == 'X' or (lineProjectionMode == 'D' and deltaCol >= deltaRow)): nPoints = deltaCol + 1 coordsRange = col0, col1 else: # 'Y' or ('D' and deltaCol < deltaRow) nPoints = deltaRow + 1 coordsRange = row0, row1 nPoints = int(nPoints) if nPoints == 1: # all points are the same _logger.debug("START AND END POINT ARE THE SAME!!") return None # the coordinates of the reference points x0 = numpy.arange(image.shape[0], dtype=numpy.float64) y0 = numpy.arange(image.shape[1], dtype=numpy.float64) if roiWidth < 1: x = numpy.zeros((nPoints, 2), numpy.float64) x[:, 0] = numpy.linspace(row0, row1, nPoints) x[:, 1] = numpy.linspace(col0, col1, nPoints) # perform the interpolation ydata = SpecfitFuns.interpol((x0, y0), image, x) roiPolygonCols = numpy.array((col0, col1), dtype=numpy.float64) roiPolygonRows = numpy.array((row0, row1), dtype=numpy.float64) else: # find m and b in the line y = mx + b m = (row1 - row0) / float((col1 - col0)) # Not used: b = row0 - m * col0 alpha = numpy.arctan(m) # imagine the following sequence # - change origin to the first point # - clock-wise rotation to bring the line on the x axis of a new system # so that the points (col0, row0) and (col1, row1) # become (x0, 0) (x1, 0). # - counter clock-wise rotation to get the points (x0, -0.5 width), # (x0, 0.5 width), (x1, 0.5 * width) and (x1, -0.5 * width) back to # the original system. # - restore the origin to (0, 0) # - if those extremes are inside the image the selection is acceptable cosalpha = numpy.cos(alpha) sinalpha = numpy.sin(alpha) newCol0 = 0.0 newCol1 = (col1 - col0) * cosalpha + (row1 - row0) * sinalpha newRow0 = 0.0 newRow1 = - (col1 - col0) * sinalpha + (row1 - row0) * cosalpha _logger.debug("new X0 Y0 = %f, %f ", newCol0, newRow0) _logger.debug("new X1 Y1 = %f, %f ", newCol1, newRow1) tmpX = numpy.linspace(newCol0, newCol1, nPoints).astype(numpy.float64) rotMatrix = numpy.zeros((2, 2), dtype=numpy.float64) rotMatrix[0, 0] = cosalpha rotMatrix[0, 1] = - sinalpha rotMatrix[1, 0] = sinalpha rotMatrix[1, 1] = cosalpha if _logger.getEffectiveLevel() == logging.DEBUG: # test if I recover the original points testX = numpy.zeros((2, 1), numpy.float64) colRow = numpy.dot(rotMatrix, testX) _logger.debug("Recovered X0 = %f", colRow[0, 0] + col0) _logger.debug("Recovered Y0 = %f", colRow[1, 0] + row0) _logger.debug("It should be = %f, %f", col0, row0) testX[0, 0] = newCol1 testX[1, 0] = newRow1 colRow = numpy.dot(rotMatrix, testX) _logger.debug("Recovered X1 = %f", colRow[0, 0] + col0) _logger.debug("Recovered Y1 = %f", colRow[1, 0] + row0) _logger.debug("It should be = %f, %f", col1, row1) # find the drawing limits testX = numpy.zeros((2, 4), numpy.float64) testX[0, 0] = newCol0 testX[0, 1] = newCol0 testX[0, 2] = newCol1 testX[0, 3] = newCol1 testX[1, 0] = newRow0 - 0.5 * roiWidth testX[1, 1] = newRow0 + 0.5 * roiWidth testX[1, 2] = newRow1 + 0.5 * roiWidth testX[1, 3] = newRow1 - 0.5 * roiWidth colRow = numpy.dot(rotMatrix, testX) colLimits0 = colRow[0, :] + col0 rowLimits0 = colRow[1, :] + row0 for a in rowLimits0: if (a >= image.shape[0]) or (a < 0): _logger.debug("outside row limits %s", a) return None for a in colLimits0: if (a >= image.shape[1]) or (a < 0): _logger.debug("outside column limits %s", a) return None r0 = rowLimits0[0] r1 = rowLimits0[1] if r0 > r1: _logger.debug("r0 > r1 %s %s", r0, r1) raise ValueError("r0 > r1") x = numpy.zeros((2, nPoints), numpy.float64) # oversampling solves noise introduction issues oversampling = roiWidth + 1 oversampling = min(oversampling, 21) ncontributors = int(roiWidth * oversampling) iterValues = numpy.linspace(-0.5 * roiWidth, 0.5 * roiWidth, ncontributors) tmpMatrix = numpy.zeros((nPoints * len(iterValues), 2), dtype=numpy.float64) x[0, :] = tmpX offset = 0 for i in iterValues: x[1, :] = i colRow = numpy.dot(rotMatrix, x) colRow[0, :] += col0 colRow[1, :] += row0 # it is much faster to make one call to the interpolating # routine than making many calls tmpMatrix[offset:(offset + nPoints), 0] = colRow[1, :] tmpMatrix[offset:(offset + nPoints), 1] = colRow[0, :] offset += nPoints ydata = SpecfitFuns.interpol((x0, y0), image, tmpMatrix) ydata.shape = len(iterValues), nPoints ydata = ydata.sum(axis=0) # deal with the oversampling ydata /= oversampling roiPolygonCols, roiPolygonRows = colLimits0, rowLimits0 return {'profileValues': ydata, 'profileCoordsRange': coordsRange, 'roiPolygonCols': roiPolygonCols, 'roiPolygonRows': roiPolygonRows} def getProfileCurve(image, roiStart, roiEnd, roiWidth=1, origin=(0., 0.), scale=(1., 1.), lineProjectionMode='D'): """Sums a region of interest (ROI) of an image along a given line. Returned values and all parameters except roiWidth are in plot coordinates. This function might change the ROI so it remains within the image. Thus, the polygon of the effective ROI is returned along with the profile. The profile is always returned with increasing coordinates on the projection axis, so roiStart and roiEnd are flipped if roiStart > roiEnd. :param image: 2D data. :type image: numpy.ndarray with 2 dimensions. :param roiStart: Start point (x0, y0) of the ROI line in plot coordinates. Start point is included in ROI. :type roiStart: 2-tuple of float. :param roiEnd: End point (x1, y1) of the ROI line in plot coordinates. End point is included in ROI. :type roiEnd: 2-tuple of float. :param int roiWidth: Width of the ROI line in image pixels and NOT in plot coordinates. :param origin: (ox, oy) coordinates of the origin of the image in plot coordinates. :type origin: 2-tuple of float. :param scale: (sx, sy) scale of the image in plot coordinates. :type scale: 2-tuple of float. :param str lineProjectionMode: The axis on which to do the profile, in: - 'D': Use the axis with the longest projection of the ROI line in pixels. The profile coordinates are distance along the profile line. - 'X': Use the X axis. The profile coordinates are in X axis coordinates. - 'Y': Use the Y axis. The profile coordinates are in Y axis coordinates. This changes the sampling over the ROI line and the returned coordinates of the profile curve. :return: None if cannot compute a profile curve, or the profile and the effective ROI as a dict with the keys: - 'profileCoords': The profile coordinates along the selected axis if lineProjectionMode is in ('X', 'Y'), or the distance in plot coordinates along the line if lineProjectionMode is 'D'. - 'profileValues': The sums of the ROI along the line. - 'roiPolygonCols': The column coordinates of the polygon of the effective ROI. - 'roiPolygonRows': The row coordinates of the polygon of the effective ROI. - 'roiPolygonX': The x coordinates of the polygon of the effective ROI in plot coordinates. - 'roiPolygonY': The y coordinates of the polygon of the effective ROI in plot coordinates. :rtype: dict """ assert lineProjectionMode in ('D', 'X', 'Y') if image is None: return None row0, col0 = plotToImage(roiStart[0], roiStart[1], origin, scale, image.shape) row1, col1 = plotToImage(roiEnd[0], roiEnd[1], origin, scale, image.shape) # Makes sure coords are increasing along the projection axis if (lineProjectionMode == 'X' or (lineProjectionMode == 'D' and abs(col1 - col0) >= abs(row1 - row0))): if col1 < col0: # Invert end points to have increasing coords on X axis row0, col0, row1, col1 = row1, col1, row0, col0 else: # i.e., 'Y' or ('D' and abs(col1 - col0) < abs(row1 - row0)) if row1 < row0: # Invert end points to have increasing coords on Y axis row0, col0, row1, col1 = row1, col1, row0, col0 if col0 == col1: # Vertical line if lineProjectionMode not in ('D', 'Y'): return None # Nothing to profile over 'X' result = getAlignedROIProfileCurve(image, roiCenter=col0, roiRange=(row0, row1), roiWidth=roiWidth, axis=1) elif row0 == row1: # Horizontal line if lineProjectionMode not in ('D', 'X'): return None # Nothing to profile over 'Y' result = getAlignedROIProfileCurve(image, roiCenter=row0, roiRange=(col0, col1), roiWidth=roiWidth, axis=0) else: result = _getROILineProfileCurve(image, (row0, col0), (row1, col1), roiWidth, lineProjectionMode) if result is None: return None values = result['profileValues'] # Generates profile coordinates if lineProjectionMode == 'D': # Profile coordinates are distances along the ROI line in plot unit # get the abscisa in distance units colRange = float(scale[0] * abs(col1 - col0)) rowRange = float(scale[1] * abs(row1 - row0)) deltaDistance = numpy.sqrt( colRange * colRange + rowRange * rowRange) / (len(values) - 1.0) coords = deltaDistance * numpy.arange(len(values), dtype=numpy.float64) else: # Profile coordinates are returned in plot coords # Build coords in image frame start, end = result['profileCoordsRange'] step = 1 if start <= end else -1 # In case profile is inverted coords = numpy.arange(start, end + step, step, dtype=numpy.float64) # Convert coords from image to plot if lineProjectionMode == 'X': if origin[0] != 0. or scale[0] != 1.: coords = origin[0] + coords * scale[0] elif lineProjectionMode == 'Y': if origin[1] != 0. or scale[1] != 1.: coords = origin[1] + coords * scale[1] roiPolygonX, roiPolygonY = imageToPlot(result['roiPolygonRows'], result['roiPolygonCols'], origin, scale) return {'profileValues': values, 'profileCoords': coords, 'startPoint': imageToPlot(row0, col0, origin, scale), 'endPoint': imageToPlot(row1, col1, origin, scale), 'roiPolygonCols': result['roiPolygonCols'], 'roiPolygonRows': result['roiPolygonRows'], 'roiPolygonX': roiPolygonX, 'roiPolygonY': roiPolygonY} ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/plotting/__init__.py0000644000000000000000000000000014741736366021010 0ustar00rootroot././@PaxHeader0000000000000000000000000000003400000000000010212 xustar0028 mtime=1736948995.8037663 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/0000755000000000000000000000000014741736404016153 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ChangeLog.py0000644000000000000000000000471214741736366020367 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os from PyMca5 import PyMcaDataDir from PyMca5.PyMcaGui import PyMcaQt as qt class ChangeLog(qt.QTextDocument): def __init__(self, parent=None, textfile = None): qt.QTextDocument.__init__(self, parent) if textfile is not None: self.setTextFile(textfile) def setTextFile(self, textfile): if not os.path.exists(textfile): textfile = os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, textfile) f = open(textfile) lines = f.readlines() f.close() text = "" for line in lines: text += "%s" % line self.setPlainText(text) def test(): app = qt.QApplication([]) w = qt.QTextEdit() if len(sys.argv) > 1: log = ChangeLog(textfile=sys.argv[-1]) else: log = ChangeLog(textfile='changelog.txt') w.setDocument(log) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/EdfFileSimpleViewer.py0000644000000000000000000001304214741736366022366 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) from PyMca5.PyMcaGui.io import QSourceSelector from PyMca5.PyMcaGui.pymca import QDataSource from PyMca5.PyMcaGui.io import QEdfFileWidget class EdfFileSimpleViewer(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.sourceList = [] filetypelist = ["EDF Files (*edf)", "EDF Files (*ccd)", "All Files (*)"] self.sourceSelector = QSourceSelector.QSourceSelector(self, filetypelist = filetypelist) self.sourceSelector.specButton.hide() self.selectorWidget = {} self.selectorWidget[QEdfFileWidget.SOURCE_TYPE] = QEdfFileWidget.\ QEdfFileWidget(self,justviewer=1) self.mainLayout.addWidget(self.sourceSelector) self.mainLayout.addWidget(self.selectorWidget[QEdfFileWidget.SOURCE_TYPE]) self.sourceSelector.sigSourceSelectorSignal.connect( \ self._sourceSelectorSlot) def _sourceSelectorSlot(self, ddict): _logger.debug("_sourceSelectorSlot(self, ddict)") _logger.debug("ddict = %s", ddict) if ddict["event"] == "NewSourceSelected": source = QDataSource.QDataSource(ddict["sourcelist"]) self.sourceList.append(source) sourceType = source.sourceType self.selectorWidget[sourceType].setDataSource(source) elif ddict["event"] == "SourceSelected": found = 0 for source in self.sourceList: if source.sourceName == ddict["sourcelist"]: found = 1 break if not found: _logger.debug("WARNING: source not found") return sourceType = source.sourceType self.selectorWidget[sourceType].setDataSource(source) elif ddict["event"] == "SourceClosed": found = 0 for source in self.sourceList: if source.sourceName == ddict["sourcelist"]: found = 1 break if not found: _logger.debug("WARNING: source not found") return sourceType = source.sourceType del self.sourceList[self.sourceList.index(source)] for source in self.sourceList: if sourceType == source.sourceType: self.selectorWidget[sourceType].setDataSource(source) return #there is no other selection of that type if len(self.sourceList): source = self.sourceList[0] sourceType = source.sourceType self.selectorWidget[sourceType].setDataSource(source) else: self.selectorWidget[sourceType].setDataSource(None) def setFileList(self, filelist): for ffile in filelist: self.sourceSelector.openFile(ffile, justloaded = 1) def main(): import sys import getopt import glob from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel app=qt.QApplication(sys.argv) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) options='' longoptions=['logging=', 'debug='] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) logging.basicConfig(level=getLoggingLevel(opts)) _logger.setLevel(getLoggingLevel(opts)) filelist = args if len(filelist) == 1: if sys.platform.startswith("win") and '*' in filelist[0]: filelist = glob.glob(filelist[0]) app.lastWindowClosed.connect(app.quit) w=EdfFileSimpleViewer() if len(filelist): w.setFileList(filelist) w.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ExternalImagesStackPluginBase.py0000644000000000000000000002426414741736366024414 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import EDFStack from PyMca5.PyMcaGui.io import PyMcaFileDialogs try: import h5py except ImportError: HAS_H5PY = False else: HAS_H5PY = True from PyMca5.PyMcaGui.io.hdf5 import HDF5Widget from PyMca5.PyMcaIO import NexusUtils _logger = logging.getLogger(__name__) class ExternalImagesStackPluginBase(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) def _loadImageFiles(self): fileTypeList = ["PNG Files (*png)", "JPEG Files (*jpg *jpeg)", "IMAGE Files (*)", "DAT Files (*dat)", "CSV Files (*csv)", "EDF Files (*edf)", "EDF Files (*ccd)", "EDF Files (*)", 'HDF5 Files (*.h5 *.nxs *.hdf *.hdf5)'] filenamelist, filefilter = PyMcaFileDialogs.getFileList(parent=None, filetypelist=fileTypeList, message="Open image file", getfilter=True, single=False, currentfilter=None) if not filenamelist: return filefilter = filefilter.split()[0].lower() extension = qt.safe_str(os.path.splitext(filenamelist[0])[1]).lower() if (filefilter in ["edf"]) or \ (extension in [".edf", ".tif"]): imagenames, imagelist = self._readImageListEdf(filenamelist) if imagenames: try: self._createStackPluginWindowEdf(imagenames, imagelist) except AttributeError: self._createStackPluginWindow(imagenames, imagelist) elif (filefilter in ["hdf5"]) or \ (extension in [".h5", ".nxs", ".hdf", ".hdf5"]): imagenames, imagelist = self._readImageListHdf5(filenamelist) if imagenames: try: self._createStackPluginWindowHdf5(imagenames, imagelist) except AttributeError: self._createStackPluginWindow(imagenames, imagelist) elif extension in [".csv", ".dat"]: imagenames, imagelist = self._readImageListSpec(filenamelist) if imagenames: try: self._createStackPluginWindowSpec(imagenames, imagelist) except AttributeError: self._createStackPluginWindow(imagenames, imagelist) else: imagenames, imagelist = self._readImageListQImageReadable(filenamelist) if imagenames: try: self._createStackPluginWindowQImage(imagenames, imagelist) except AttributeError: self._createStackPluginWindow(imagenames, imagelist) def _createStackPluginWindow(self, imagenames, imagelist): raise NotImplemented(\ "_createStackPluginWindow(self, imagenames, imagelist)") @property def _dialogParent(self): raise NotImplemented("_dialogParent(self) not implemented") @property def _requiredShape(self): mask = self.getStackSelectionMask() if mask is None: r, n = self.getStackROIImagesAndNames() return r[0].shape else: return mask.shape def _readImageListEdf(self, filenamelist): imagelist = [] imagenames = [] shape = tuple(sorted(self._requiredShape)) for filename in filenamelist: edf = EDFStack.EdfFileDataSource.EdfFileDataSource(filename) keylist = edf.getSourceInfo()['KeyList'] if len(keylist) < 1: self._criticalError("Cannot read image from file %s" % filename) return None, None for key in keylist: dataObject = edf.getDataObject(key) data = dataObject.data if tuple(sorted(data.shape)) != shape: continue imagename = dataObject.info.get('Title', "") if imagename != "": imagename += " " imagename += os.path.basename(filename)+" "+key imagelist.append(data) imagenames.append(imagename) if not imagenames: self._criticalError('No valid data provided') return imagenames, imagelist def _readImageListHdf5(self, filenamelist): if h5py is None: self._criticalError("Cannot read HDF5 files (h5py is missing)") return None, None imagelist = [] imagenames = [] shape = tuple(sorted(self._requiredShape)) def match(dset): return tuple(sorted(dset.shape)) == shape for uri in filenamelist: tmp = uri.split('::') if len(tmp) == 1: tmp = uri, None filename, h5path = tmp # URI exists? if h5path: with HDF5Widget.h5open(filename) as hdf5File: if h5path not in hdf5File: h5path = None # Prompt for missing HDF5 path if not h5path: tmp = HDF5Widget.getUri(parent=self._dialogParent, filename=filename, message='Select Group or Dataset') if not tmp: return None, None tmp = tmp.split('::') if len(tmp) == 2: h5path = tmp[1] if not h5path: return None, None # Add datasets from HDF5 path with HDF5Widget.h5open(filename) as hdf5File: # If `h5path` is an instance of NXdata, only the signals # (including auxilary signals) are considered for `match`. datasets = NexusUtils.selectDatasets(hdf5File[h5path], match=match) if not datasets: self._criticalError("No (valid) datasets were found in '%s::%s'" % (filename, h5path)) return None, None elif len({dset.size for dset in datasets}) > 1: self._criticalError("'%s::%s' contains datasets with different sizes. Select datasets separately." % (filename, h5path)) return None, None else: for dset in datasets: imagename = '/'.join(dset.name.split('/')[-2:]) imagelist.append(dset[()]) imagenames.append(imagename) if not imagenames: self._criticalError('No valid data provided') return imagenames, imagelist def _readImageListSpec(self, filenamelist): # what to do if more than one file selected ? from PyMca5.PyMca import specfilewrapper as Specfile sf = Specfile.Specfile(filenamelist[0]) scan = sf[0] labels = scan.alllabels() data = scan.data() scan = None sf = None if "column" in labels: offset = labels.index("column") ncols = int(data[offset].max() + 1) offset += 1 else: raise IOError("Only images exported as csv supported") imagelist = [] imagenames = [] for i in range(offset, len(labels)): if labels[i].startswith("s("): continue tmpData = data[i] tmpData.shape = -1, ncols imagelist.append(tmpData) imagenames.append(labels[i]) if not imagenames: self._criticalError('No valid data provided') return imagenames, imagelist def _readImageListQImageReadable(self, filenamelist): imagelist = [] imagenames = [] for filename in filenamelist: image = qt.QImage(filename) if image.isNull(): self._criticalError("Cannot read file %s as an image" % filename) return None, None imagelist.append(image) imagenames.append(os.path.basename(filename)) if not imagenames: self._criticalError('No valid data provided') return imagenames, imagelist def _criticalError(self, text): msg = qt.QMessageBox(self._dialogParent) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ExternalImagesWindow.py0000644000000000000000000004066614741736366022650 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaIO import EdfFile EDF = True class ExternalImagesWindow(MaskImageWidget.MaskImageWidget): def __init__(self, *var, **kw): ddict = {} ddict['usetab'] = False ddict.update(kw) ddict['standalonesave'] = False if 'aspect' not in kw: ddict['aspect'] = True if 'dynamic' in kw: del ddict['dynamic'] if 'crop' in kw: del ddict['crop'] if 'depthselection' in kw: del ddict['depthselection'] self._depthSelection = kw.get('depthselection', False) MaskImageWidget.MaskImageWidget.__init__(self, *var, **ddict) self.slider = qt.QSlider(self) self.slider.setOrientation(qt.Qt.Horizontal) self.slider.setMinimum(0) self.slider.setMaximum(0) self.mainLayout.addWidget(self.slider) self.slider.valueChanged[int].connect(self._showImage) self.imageList = None self._imageDict = None self.imageNames = None self._stack = None standalonesave = kw.get("standalonesave", True) if standalonesave: self.graphWidget.saveToolButton.clicked.connect(\ self._saveToolButtonSignal) self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Image Data"), self.saveImageList) self._saveMenu.addAction(QString("Standard Graphics"), self.graphWidget._saveIconSignal) self._saveMenu.addAction(QString("Matplotlib") , self._saveMatplotlibImage) dynamic = kw.get("dynamic", False) self._dynamic = dynamic crop = kw.get("crop", True) if crop: self.cropIcon = qt.QIcon(qt.QPixmap(IconDict["crop"])) infotext = "Crop image to the currently zoomed window" cropPosition = 6 #if 'imageicons' in kw: # if not kw['imageicons']: # cropPosition = 6 self.cropButton = self.graphWidget._addToolButton(\ self.cropIcon, self._cropIconChecked, infotext, toggle = False, position = cropPosition) infotext = "Flip image and data, not the scale." self.graphWidget.hFlipToolButton.setToolTip('Flip image') self._flipMenu = qt.QMenu() self._flipMenu.addAction(QString("Flip Image and Vertical Scale"), self.__hFlipIconSignal) self._flipMenu.addAction(QString("Flip Image Left-Right"), self._flipLeftRight) self._flipMenu.addAction(QString("Flip Image Up-Down"), self._flipUpDown) else: self.graphWidget.hFlipToolButton.clicked.connect(\ self.__hFlipIconSignal) def sizeHint(self): return qt.QSize(400, 400) def _cropIconChecked(self): #get current index index = self.slider.value() #current image label = self.imageNames[index] qimage = self._imageDict[label] width = qimage.width() height = qimage.height() xmin, xmax = self.graphWidget.graph.getGraphXLimits() ymin, ymax = self.graphWidget.graph.getGraphYLimits() xmin = int(xmin) xmax = int(xmax) ymin = int(ymin) ymax = int(ymax) dummy = xmin if (xmin > xmax): xmin = xmax xmax = dummy dummy = ymin if (ymin > ymax): ymin = ymax ymax = dummy xmin = max(xmin, 0) xmax = min(xmax, width) ymin = max(ymin, 0) ymax = min(ymax, height) rect = qt.QRect(xmin, ymin, xmax-xmin, ymax-ymin) newImageList = [] for i in range(len(self.imageList)): image = self._imageDict[self.imageNames[i]].copy(rect) newImageList.append(image) #replace current image by the new one self.setQImageList(newImageList, width, height, clearmask=False, data=None, imagenames=self.imageNames*1) ###self._imageDict[label] = self.getQImage() ###self.imageList.append(self.getImageData()) self._showImage(index) def _flipIconChecked(self): if not self.graphWidget.graph.yAutoScale: qt.QMessageBox.information(self, "Open", "Please set Y Axis to AutoScale first") return if not self.graphWidget.graph.xAutoScale: qt.QMessageBox.information(self, "Open", "Please set X Axis to AutoScale first") return if self.imageList is None: return if self._imageDict is None: return if self.imageNames is None: return self._flipMenu.exec(self.cursor().pos()) def _hFlipIconSignal(self): if self.getQImage() is None: return if self.imageNames is None: #just setImage data used #I use the default flip self.__hFlipIconSignal() return if self.imageList is None: return if self._imageDict is None: return self._flipMenu.exec(self.cursor().pos()) def __hFlipIconSignal(self): MaskImageWidget.MaskImageWidget._hFlipIconSignal(self) def _flipUpDown(self): for i in range(len(self.imageList)): label = self.imageNames[i] self._imageDict[label] = self._imageDict[label].mirrored(0, 1) self.imageList[i] = numpy.flipud(self.getImageData()) self.showImage(self.slider.value()) def _flipLeftRight(self): for i in range(len(self.imageList)): label = self.imageNames[i] self._imageDict[label] = self._imageDict[label].mirrored(1, 0) self.imageList[i] = numpy.fliplr(self.getImageData()) self.showImage(self.slider.value()) def _showImage(self, index): if len(self.imageList): self.showImage(index, moveslider=False) def showImage(self, index=0, moveslider=True): if self.imageList is None: return if len(self.imageList) == 0: return if self._dynamic: self._dynamicAction(index) elif self._stack: # with matplotlib 2.2.2 the graph title is not updated # if set after the image data if self.imageNames is None: self.graphWidget.graph.setGraphTitle("Image %d" % index) else: self.graphWidget.graph.setGraphTitle(self.imageNames[index]) self.setImageData(self.imageList[index]) else: qimage = self._imageDict[self.imageNames[index]] # with matplotlib 2.2.2 the graph title is not updated # if set after the image data self.graphWidget.graph.setGraphTitle(self.imageNames[index]) self.setQImage(qimage, qimage.width(), qimage.height(), clearmask=False, data=self.imageList[index]) if moveslider: self.slider.setValue(index) def _dynamicAction(self, index): #just support edffiles fileName = self.imageList[index] edf = EdfFile.EdfFile(fileName) self.setImageData(edf.GetData(0)) self.graphWidget.graph.setGraphTitle(os.path.basename(fileName)) def setQImageList(self, images, width, height, clearmask = False, data=None, imagenames = None): self._dynamic = False nimages = len(images) if imagenames is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("ExternalImage %02d" % i) else: self.imageNames = imagenames i = 0 self._imageDict = {} self.imageList = [] for label in self.imageNames: self.setQImage(images[i], width, height, clearmask=clearmask, data=data) self._imageDict[label] = self.getQImage() self.imageList.append(self.getImageData()) i += 1 if self.imageList is not None: self.slider.setMaximum(len(self.imageList)-1) self.showImage(0) else: self.slider.setMaximum(0) self.slider.setValue(0) def saveImageList(self, filename=None, imagelist=None, labels=None): if self.imageList is None: return if self._dynamic: #save only one image MaskImageWidget.MaskImageWidget.saveImageList(self) return labels = [] for i in range(len(self.imageList)): labels.append(self.imageNames[i].replace(" ","_")) if len(labels): mask = self.getSelectionMask() if mask is not None: labels.append("Mask") return MaskImageWidget.MaskImageWidget.saveImageList(self, imagelist=self.imageList+[mask], labels=labels) return MaskImageWidget.MaskImageWidget.saveImageList(self, imagelist=self.imageList, labels=labels) def setImageList(self, imagelist, imagenames=None, dynamic=False): if hasattr(imagelist, 'shape'): #should I only accept lists? if len(imagelist.shape) == 3: return self.setStack(imagelist, index=0, imagenames=imagenames) if type(imagelist) in [type([0]), type((0,))]: if not len(imagelist): return if hasattr(imagelist[0],'shape'): #I have a list of images #I can treat it as a stack return self.setStack(imagelist, index=0, imagenames=imagenames) self._stack = False self._dynamic = dynamic self.imageList = imagelist self.imageNames = imagenames if imagelist is not None: if imagenames is None: nImages = len(self.imageList) self.imageNames = [None] * nImages for i in range(nImages): self.imageNames[i] = "Image %02d" % i current = self.slider.value() self.slider.setMaximum(len(self.imageList)-1) if current < len(self.imageList): self.showImage(current) else: self.showImage(0) def setStack(self, stack, index=None, imagenames=None): if index is None: index = 0 if hasattr(stack, "shape"): shape = stack.shape nImages = shape[index] imagelist = [None] * nImages for i in range(nImages): if index == 0: imagelist[i] = stack[i, :, :] imagelist[i].shape = shape[1], shape[2] elif index == 1: imagelist[i] = stack[:, i, :] imagelist[i].shape = shape[0], shape[2] elif index == 2: imagelist[i] = stack[:, :, i] imagelist[i].shape = shape[0], shape[1] else: nImages = len(stack) imagelist = stack self.imageList = imagelist self.imageNames = imagenames self._dynamic = False self._stack = True mask = self.getSelectionMask() if mask is not None: shape = imagelist[0].shape if mask.shape != shape: mask = numpy.zeros(shape, numpy.uint8) self.setSelectionMask(mask, plot=False) current = self.slider.value() self.slider.setMaximum(len(self.imageList)-1) if current < len(self.imageList): self.showImage(current) else: self.showImage(0) def _updateProfileCurve(self, ddict): if not self._depthSelection: return MaskImageWidget.MaskImageWidget._updateProfileCurve(self, ddict) nImages = len(self.imageNames) for i in range(nImages): image=self.imageList[i] overlay = False if i == 0: overlay = MaskImageWidget.OVERLAY_DRAW replace = True if len(self.imageNames) == 1: replot = True else: replot = False elif i == (nImages -1): replot = True replace = False else: replot = False replace = False curve = self._getProfileCurve(ddict, image=image, overlay=overlay) if curve is None: return xdata, ydata, legend, info = curve newLegend = self.imageNames[i]+ " " + legend self._profileSelectionWindow.addCurve(xdata, ydata, legend=newLegend, info=info, replot=replot, replace=replace) def getCurrentIndex(self): return self.slider.value() def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if len(sys.argv) > 1: if sys.argv[1][-3:].upper() in ['EDF', 'CCD']: container = ExternalImagesWindow(selection=False, colormap=True, imageicons=False, standalonesave=True) #, #dynamic=True) container.setImageList(sys.argv[1:], dynamic=True) else: container = ExternalImagesWindow() image = qt.QImage(sys.argv[1]) #container.setQImage(image, image.width(),image.height()) container.setQImageList([image], 200, 100) else: container = ExternalImagesWindow() data = numpy.arange(10000) data.shape = 100, 100 container.setImageData(data) container.show() def theSlot(ddict): print(ddict['event']) if not container._dynamic: container.sigMaskImageWidgetSignal.connect(theSlot) app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/Fit2Spec.py0000644000000000000000000004037714741736366020166 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2016 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import time from . import McaCustomEvent from PyMca5.PyMcaIO import ConfigDict ROIWIDTH = 250. from PyMca5.PyMcaGui import PyMcaQt as qt class Fit2SpecGUI(qt.QWidget): def __init__(self,parent=None,name="Fit to Spec Conversion", filelist=None,outputdir=None, actions=0): qt.QWidget.__init__(self,parent,name) layout = qt.QVBoxLayout(self) layout.setAutoAdd(1) self.setCaption(name) self.__build(actions) if filelist is None: filelist = [] self.outputDir = None self.setFileList(filelist) self.setOutputDir(outputdir) def __build(self,actions): self.__grid= qt.QWidget(self) #self.__grid.setGeometry(qt.QRect(30,30,288,156)) grid = qt.QGridLayout(self.__grid,2,3,11,6) grid.setColStretch(0,0) grid.setColStretch(1,1) grid.setColStretch(2,0) #input list listrow = 0 listlabel = qt.QLabel(self.__grid) listlabel.setText("Input File list:") listlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__listView = qt.QTextView(self.__grid) self.__listView.setMaximumHeight(30*listlabel.sizeHint().height()) self.__listButton = qt.QPushButton(self.__grid) self.__listButton.setText('Browse') self.__listButton.clicked.connect(self.browseList) grid.addWidget(listlabel, listrow, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) grid.addWidget(self.__listView, listrow, 1) grid.addWidget(self.__listButton,listrow, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) #output dir outrow = 1 outlabel = qt.QLabel(self.__grid) outlabel.setText("Output dir:") outlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__outLine = qt.QLineEdit(self.__grid) self.__outLine.setReadOnly(True) #self.__outLine.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Maximum, qt.QSizePolicy.Fixed)) self.__outButton = qt.QPushButton(self.__grid) self.__outButton.setText('Browse') self.__outButton.clicked.connect(self.browseOutputDir) grid.addWidget(outlabel, outrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__outLine, outrow, 1) grid.addWidget(self.__outButton, outrow, 2, qt.Qt.AlignLeft) if actions: self.__buildActions() def __buildActions(self): box = qt.QHBox(self) qt.HorizontalSpacer(box) self.__dismissButton = qt.QPushButton(box) qt.HorizontalSpacer(box) self.__dismissButton.setText("Close") self.__startButton = qt.QPushButton(box) qt.HorizontalSpacer(box) self.__startButton.setText("Start") self.__dismissButton.clicked.connect(self.close) self.__startButton.clicked.connect(self.start) def setFileList(self,filelist=None): if filelist is None: filelist = [] if True or self.__goodFileList(filelist): text = "" filelist.sort() for ffile in filelist: text += "%s\n" % ffile self.fileList = filelist self.__listView.setText(text) def setOutputDir(self,outputdir=None): if outputdir is None:return if self.__goodOutputDir(outputdir): self.outputDir = outputdir self.__outLine.setText(outputdir) else: qt.QMessageBox.critical(self, "ERROR", "Cannot use output directory:\n%s"% (outputdir)) def __goodFileList(self,filelist): if not len(filelist):return True for file in filelist: if not os.path.exists(file): qt.QMessageBox.critical(self, "ERROR",'File %s\ndoes not exists' % file) self.raiseW() return False return True def __goodOutputDir(self,outputdir): if os.path.isdir(outputdir):return True else:return False def browseList(self): filedialog = qt.QFileDialog(self,"Open a set of files",1) filedialog.setMode(filedialog.ExistingFiles) if hasattr(filedialog, "setFilters"): filedialog.setFilters("Fit Files (*.fit)\n") else: filedialog.setNameFilters("Fit Files (*.fit)\n") if filedialog.exec_loop() == qt.QDialog.Accepted: filelist0= filedialog.selectedFiles() else: self.raiseW() return filelist = [] for f in filelist0: filelist.append(qt.safe_str(f)) if len(filelist):self.setFileList(filelist) self.raiseW() def browseConfig(self): filename= qt.QFileDialog(self,"Open a new fit config file",1) filename.setMode(filename.ExistingFiles) filename.setFilters("Config Files (*.cfg)\nAll files (*)") if filename.exec_loop() == qt.QDialog.Accepted: filename = filename.selectedFile() else: self.raiseW() return filename = qt.safe_str(filename) if len(filename): self.setConfigFile(filename) self.raiseW() def browseOutputDir(self): outfile = qt.QFileDialog(self,"Output Directory Selection",1) outfile.setMode(outfile.DirectoryOnly) ret = outfile.exec_loop() if ret: outdir = qt.safe_str(outfile.selectedFile()) outfile.close() del outfile self.setOutputDir(outdir) else: outfile.close() del outfile self.raiseW() def start(self): if not len(self.fileList): qt.QMessageBox.critical(self, "ERROR",'Empty file list') self.raiseW() return if (self.outputDir is None) or (not self.__goodOutputDir(self.outputDir)): qt.QMessageBox.critical(self, "ERROR",'Invalid output directory') self.raiseW() return name = "Batch from %s to %s " % (os.path.basename(self.fileList[ 0]), os.path.basename(self.fileList[-1])) window = Fit2SpecWindow(name="Fit 2 Spec "+name,actions=1) b = Fit2SpecBatch(window,self.fileList,self.outputDir) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) qApp = qt.QApplication.instance() qApp.aboutToQuit.connect(cleanup) self.__window = window self.__b = b window.show() b.start() class Fit2SpecBatch(qt.QThread): def __init__(self, parent, filelist=None, outputdir = None): self._filelist = filelist self.outputdir = outputdir qt.QThread.__init__(self) self.parent = parent self.pleasePause = 0 def processList(self): for fitfile in self._filelist: self.onNewFile(fitfile, self._filelist) d = ConfigDict.ConfigDict() d.read(fitfile) f = open(os.path.join(self.outputdir,os.path.basename(fitfile)+".dat"),'w+') npoints = len(d['result']['xdata']) f.write("\n") f.write("#S 1 %s\n" % fitfile) i=0 for parameter in d['result']['parameters']: f.write("#U%d %s %.6g +/- %.3g\n" % (i, parameter, d['result']['fittedpar'][i], d['result']['sigmapar'][i])) i+=1 f.write("#N 6\n") f.write("#L Energy channel counts fit continuum pileup\n") for i in range(npoints): f.write("%.6g %.6g %.6g %.6g %.6g %.6g\n" % (d['result']['energy'][i], d['result']['xdata'][i], d['result']['ydata'][i], d['result']['yfit'][i], d['result']['continuum'][i], d['result']['pileup'][i])) f.close() self.onEnd() def run(self): self.processList() def onNewFile(self, file, filelist): self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'file':file, 'filelist':filelist, 'event':'onNewFile'})) if self.pleasePause:self.__pauseMethod() def onEnd(self): self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'onEnd'})) if self.pleasePause:self.__pauseMethod() def __pauseMethod(self): self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) while(self.pleasePause): time.sleep(1) self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) class Fit2SpecWindow(qt.QWidget): def __init__(self,parent=None, name="BatchWindow", fl=0, actions = 0): qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) self.l = qt.QVBoxLayout(self) self.l.setAutoAdd(1) self.bars =qt.QWidget(self) self.barsLayout = qt.QGridLayout(self.bars,2,3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('File Progress:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.status = qt.QLabel(self) self.status.setText(" ") self.timeLeft = qt.QLabel(self) self.timeLeft.setText("Estimated time left = ???? min") self.time0 = None if actions: self.addButtons() self.show() self.raiseW() def addButtons(self): self.actions = 1 self.buttonsBox = qt.QWidget(self) l = qt.QHBoxLayout(self.buttonsBox) l.setAutoAdd(1) qt.HorizontalSpacer(self.buttonsBox) self.pauseButton = qt.QPushButton(self.buttonsBox) qt.HorizontalSpacer(self.buttonsBox) self.pauseButton.setText("Pause") self.abortButton = qt.QPushButton(self.buttonsBox) qt.HorizontalSpacer(self.buttonsBox) self.abortButton.setText("Abort") self.update() def customEvent(self,event): if event.dict['event'] == 'onNewFile':self.onNewFile(event.dict['file'], event.dict['filelist']) elif event.dict['event'] == 'onEnd': self.onEnd(event.dict) elif event.dict['event'] == 'batchPaused': self.onPause() elif event.dict['event'] == 'batchResumed':self.onResume() else: print("Unhandled event",event) def onNewFile(self, file, filelist): indexlist = range(0,len(filelist)) index = indexlist.index(filelist.index(file)) nfiles = len(indexlist) self.status.setText("Processing file %s" % file) e = time.time() self.progressBar.setTotalSteps(nfiles) self.progressBar.setProgress(index) if self.time0 is not None: t = (e - self.time0) * (nfiles - index) self.time0 =e if t < 120: self.timeLeft.setText("Estimated time left = %d sec" % (t)) else: self.timeLeft.setText("Estimated time left = %d min" % (int(t / 60.))) else: self.time0 = e def onEnd(self,dict): n = self.progressBar.progress() self.progressBar.setProgress(n+1) self.status.setText ("Batch Finished") self.timeLeft.setText("Estimated time left = 0 sec") if self.actions: self.pauseButton.hide() self.abortButton.setText("OK") def onPause(self): pass def onResume(self): pass if __name__ == "__main__": import getopt options = 'f' longoptions = ['outdir=', 'listfile='] filelist = None outdir = None listfile = None opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt,arg in opts: if opt in ('--outdir'): outdir = arg elif opt in ('--listfile'): listfile = arg if listfile is None: filelist=[] for item in args: filelist.append(item) else: fd = open(listfile) filelist = fd.readlines() fd.close() for i in range(len(filelist)): filelist[i]=filelist[i].replace('\n','') app=qt.QApplication(sys.argv) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) app.lastWindowClosed.conenct(app.quit) if len(filelist) == 0: w = Fit2SpecGUI(actions=1) app.setMainWidget(w) w.show() app.exec() else: text = "Batch from %s to %s" % (os.path.basename(filelist[0]), os.path.basename(filelist[-1])) window = Fit2SpecWindow(name=text,actions=1) b = Fit2SpecBatch(window,filelist,outdir) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) app.aboutToQuit.connect(cleanup) window.show() b.start() app.setMainWidget(window) app.exec() # PyMcaBatch.py --cfg=/mntdirect/_bliss/users/sole/COTTE/WithLead.cfg --outdir=/tmp/ /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0007.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0008.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0009.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0010.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0011.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0012.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0013.edf & # PyMcaBatch.exe --cfg=E:/COTTE/WithLead.cfg --outdir=C:/tmp/ E:/COTTE/ch09/ch09__mca_0003_0000_0007.edf E:/COTTE/ch09/ch09__mca_0003_0000_0008.edf ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ImageListStatsWidget.py0000644000000000000000000002124414741736366022600 0ustar00rootroot# /*########################################################################## # Copyright (C) 2022-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc import TableWidget from PyMca5.PyMcaGui.misc import NumpyArrayTableModel from PyMca5.PyMcaGraph import Colormap from PyMca5.PyMcaMath import ImageListStats logger = logging.getLogger(__name__) class ImageListStatsWidget(qt.QTabWidget): def __init__(self, parent=None): super(ImageListStatsWidget, self).__init__(parent=parent) self.tableWidget = TableWidget.TableWidget(parent=None, cut=False, paste=False) self.meanRatioWidget = TableWidget.TableView( parent=None, cut=False, paste=False ) self.medianRatioWidget = TableWidget.TableView( parent=None, cut=False, paste=False ) self.correlationWidget = TableWidget.TableView( parent=None, cut=False, paste=False ) self.imageList = None self.imageMask = None labels = ["Name", "Maximum", "Minimum", "N", "Mean", "std"] self._stats = [x.lower() for x in labels] self.tableWidget.setColumnCount(len(self._stats)) for i in range(len(labels)): item = self.tableWidget.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.tableWidget.setHorizontalHeaderItem(i, item) rheight = self.tableWidget.horizontalHeader().sizeHint().height() self.tableWidget.setMinimumHeight(5 * rheight) self.addTab(self.tableWidget, "Stats") self.addTab(self.meanRatioWidget, "Mean Ratio") self.addTab(self.medianRatioWidget, "Median Ratio") self.addTab(self.correlationWidget, "Pearson Correlation") def setImageList(self, images, image_names=None): if images is None: self.imageList = None self.imageMask = None self.updateStats() return if type(images) == type([]): self.imageList = images if image_names is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("Image %02d" % i) else: self.imageNames = image_names elif len(images.shape) == 3: nimages = images.shape[0] self.imageList = [0] * nimages for i in range(nimages): self.imageList[i] = images[i, :] if 0: # leave the data as they originally come if self.imageList[i].max() < 0: self.imageList[i] *= -1 if self.spectrumList is not None: self.spectrumList[i] *= -1 if image_names is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("Image %02d" % i) else: self.imageNames = image_names newMask = None if self.imageList is not None: if len(self.imageList): if self.imageMask is not None: if self.imageMask.shape == self.imageList[0].shape: # we keep the mask logger.info("Keeping previously defined mask") newMask = self.imageMask self.imageMask = newMask self.updateStats() def setSelectionMask(self, mask=None): self.imageMask = mask self.updateStats() def updateStats(self): if self.imageList in [None, []]: self.tableWidget.setRowCount(0) return statsList = [] mask = self.imageMask if mask is not None: mask = mask.flatten() if mask.min() == mask.max(): if mask.min() == 0: mask = None results = [] for idx, imageName in enumerate(self.imageNames): result = {} image = self.imageList[idx].flatten() if mask is None: pass else: image = image[mask > 0] image = numpy.array(image[numpy.isfinite(image)], dtype=numpy.float64) result["name"] = imageName result["maximum"] = image.max() result["minimum"] = image.min() result["n"] = image.size result["mean"] = image.mean() result["std"] = image.std() results.append(result) # calculate mean and median ratios meanR, medianR = ImageListStats.arrayListMeanRatioAndMedianRatio( self.imageList, mask ) m = NumpyArrayTableModel.NumpyArrayTableModel(None, meanR, fmt="%.3e") self.meanRatioWidget.setModel(m) # colormap = Colormap.COLORMAPS.get("viridis", "temperature") # bg = Colormap.applyColormap(correlation, colormap=colormap, norm="linear") # m.setArrayColors(bg[0]) m.setHorizontalHeaderLabels(self.imageNames) m.setVerticalHeaderLabels(self.imageNames) m = NumpyArrayTableModel.NumpyArrayTableModel(None, medianR, fmt="%.3e") self.medianRatioWidget.setModel(m) # colormap = Colormap.COLORMAPS.get("viridis", "temperature") # bg = Colormap.applyColormap(correlation, colormap=colormap, norm="linear") # m.setArrayColors(bg[0]) m.setHorizontalHeaderLabels(self.imageNames) m.setVerticalHeaderLabels(self.imageNames) # calculate pearson correlation correlation = ImageListStats.arrayListPearsonCorrelation(self.imageList, mask) m = NumpyArrayTableModel.NumpyArrayTableModel(None, correlation, fmt="%.3f") self.correlationWidget.setModel(m) colormap = Colormap.COLORMAPS.get("viridis", "temperature") bg = Colormap.applyColormap(correlation, colormap=colormap, norm="linear") m.setArrayColors(bg[0]) m.setHorizontalHeaderLabels(self.imageNames) m.setVerticalHeaderLabels(self.imageNames) self._fillTable(results) def _fillTable(self, results): nRows = self.tableWidget.rowCount() nColumns = self.tableWidget.columnCount() self.tableWidget.setRowCount(len(results)) for row, result in enumerate(results): for column, stat in enumerate(self._stats): if column == 0: text = result[stat] else: text = "%g" % result[stat] item = self.tableWidget.item(row, column) if item is None: item = qt.QTableWidgetItem(text, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) item.setFlags(qt.Qt.ItemIsEnabled | qt.Qt.ItemIsSelectable) self.tableWidget.setItem(row, column, item) else: item.setText(text) def main(): w = ImageListStatsWidget() data = numpy.arange(20000) data.shape = 2, 100, 100 data[1, 0:100, 0:50] = 100 w.setImageList(data, image_names=["I1", "I2"]) w.show() return w if __name__ == "__main__": app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = main() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/LegacyPyMcaBatch.py0000644000000000000000000023322014741736366021636 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import time import subprocess import logging from PyMca5.PyMcaGui import PyMcaQt as qt if sys.platform.startswith("darwin"): import threading QThread = threading.Thread else: QThread = qt.QThread QTVERSION = qt.qVersion() try: import h5py from PyMca5.PyMcaCore import NexusDataSource from PyMca5.PyMcaGui.io.hdf5 import QNexusWidget from PyMca5.PyMcaGui.io.hdf5 import HDF5Selection HDF5SUPPORT = True except ImportError: HDF5SUPPORT = False from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaPhysics.xrf import LegacyMcaAdvancedFitBatch as McaAdvancedFitBatch from PyMca5.PyMcaGui.physics.xrf import QtMcaAdvancedFitReport from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaCore import EdfFileLayer from PyMca5.PyMcaCore import SpecFileLayer from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.pymca import McaCustomEvent from PyMca5.PyMcaGui.pymca import EdfFileSimpleViewer from PyMca5.PyMcaCore import HtmlIndex from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaCore import LegacyPyMcaBatchBuildOutput as PyMcaBatchBuildOutput ROIWIDTH = 100. _logger = logging.getLogger(__name__) class McaBatchGUI(qt.QWidget): def __init__(self,parent=None,name="PyMca batch fitting",fl=None, filelist=None,config=None,outputdir=None, actions=0, showresult=True): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self._layout = qt.QVBoxLayout(self) self._layout.setContentsMargins(0, 0, 0, 0) self._layout.setSpacing(0) self._edfSimpleViewer = None self._timer = None self._processList = [] self._selection = None self.__build(actions) if filelist is None: filelist = [] self.inputDir = None self.inputFilter = None self.outputDir = None if outputdir is not None: if os.path.exists(outputdir): self.outputDir = outputdir else: qt.QMessageBox.information(self, "INFO", "Directory %s does not exist\nUsing %s"% (outputdir, self.outputDir)) self.configFile = None self.setFileList(filelist) self.setConfigFile(config) self.setOutputDir(self.outputDir) self._showResult = showresult def __build(self,actions): self.__grid= qt.QWidget(self) self._layout.addWidget(self.__grid) #self.__grid.setGeometry(qt.QRect(30,30,288,156)) if QTVERSION < '4.0.0': grid = qt.QGridLayout(self.__grid,3,3,11,6) grid.setColStretch(0,0) grid.setColStretch(1,1) grid.setColStretch(2,0) else: grid = qt.QGridLayout(self.__grid) grid.setContentsMargins(11, 11, 11, 11) grid.setSpacing(6) #input list listrow = 0 listlabel = qt.QLabel(self.__grid) listlabel.setText("Input File list:") self.__listView = qt.QTextEdit(self.__grid) self.__listView.setMaximumHeight(30*listlabel.sizeHint().height()) self.__listButton = qt.QPushButton(self.__grid) self.__listButton.setText('Browse') self.__listButton.clicked.connect(self.browseList) grid.addWidget(listlabel, listrow, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) grid.addWidget(self.__listView, listrow, 1) grid.addWidget(self.__listButton,listrow, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) if HDF5SUPPORT: self._hdf5Widget = HDF5Selection.HDF5Selection(self) grid.addWidget(self._hdf5Widget, listrow+1, 0, 1, 3) row_offset = 1 self._hdf5Widget.hide() else: row_offset = 0 #config file configrow = 1 + row_offset configlabel = qt.QLabel(self.__grid) configlabel.setText("Fit Configuration File:") if QTVERSION < '4.0.0': configlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__configLine = qt.QLineEdit(self.__grid) self.__configLine.setReadOnly(True) self.__configButton = qt.QPushButton(self.__grid) self.__configButton.setText('Browse') self.__configButton.clicked.connect(self.browseConfig) grid.addWidget(configlabel, configrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__configLine, configrow, 1) grid.addWidget(self.__configButton, configrow, 2, qt.Qt.AlignLeft) #output dir outrow = 2 + row_offset outlabel = qt.QLabel(self.__grid) outlabel.setText("Output dir:") if QTVERSION < '4.0.0': outlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__outLine = qt.QLineEdit(self.__grid) self.__outLine.setReadOnly(True) #self.__outLine.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Maximum, qt.QSizePolicy.Fixed)) self.__outButton = qt.QPushButton(self.__grid) self.__outButton.setText('Browse') self.__outButton.clicked.connect(self.browseOutputDir) grid.addWidget(outlabel, outrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__outLine, outrow, 1) grid.addWidget(self.__outButton, outrow, 2, qt.Qt.AlignLeft) box = qt.QWidget(self) box.l = qt.QHBoxLayout(box) box.l.setContentsMargins(11, 11, 11, 11) box.l.setSpacing(0) vbox1 = qt.QWidget(box) vbox1.l = qt.QVBoxLayout(vbox1) vbox1.l.setContentsMargins(0, 0, 0, 0) vbox1.l.setSpacing(0) box.l.addWidget(vbox1) vbox2 = qt.QWidget(box) vbox2.l = qt.QVBoxLayout(vbox2) vbox2.l.setContentsMargins(0, 0, 0, 0) vbox2.l.setSpacing(0) box.l.addWidget(vbox2) vbox3 = qt.QWidget(box) vbox3.l = qt.QVBoxLayout(vbox3) vbox3.l.setContentsMargins(0, 0, 0, 0) vbox3.l.setSpacing(0) box.l.addWidget(vbox3) self.__fitBox = qt.QCheckBox(vbox1) self.__fitBox.setText('Generate .fit Files') palette = self.__fitBox.palette() #if QTVERSION < '4.0.0': # palette.setDisabled(palette.active()) #else: # print("palette set disabled") self.__fitBox.setChecked(False) self.__fitBox.setEnabled(True) vbox1.l.addWidget(self.__fitBox) self.__imgBox = qt.QCheckBox(vbox2) self.__imgBox.setText('Generate Peak Images') palette = self.__imgBox.palette() if QTVERSION < '4.0.0': palette.setDisabled(palette.active()) else: _logger.debug("palette set disabled") self.__imgBox.setChecked(True) self.__imgBox.setEnabled(False) vbox2.l.addWidget(self.__imgBox) """ self.__specBox = qt.QCheckBox(box) self.__specBox.setText('Generate Peak Specfile') palette = self.__specBox.palette() palette.setDisabled(palette.active()) self.__specBox.setChecked(False) self.__specBox.setEnabled(False) """ self.__htmlBox = qt.QCheckBox(vbox3) self.__htmlBox.setText('Generate Report (SLOW!)') #palette = self.__htmlBox.palette() #palette.setDisabled(palette.active()) self.__htmlBox.setChecked(False) self.__htmlBox.setEnabled(True) vbox3.l.addWidget(self.__htmlBox) #report options #reportBox = qt.QHBox(self) self.__tableBox = qt.QCheckBox(vbox1) self.__tableBox.setText('Table in Report') palette = self.__tableBox.palette() #if QTVERSION < '4.0.0': # palette.setDisabled(palette.active()) #else: # print("palette set disabled") self.__tableBox.setChecked(True) self.__tableBox.setEnabled(False) vbox1.l.addWidget(self.__tableBox) self.__extendedTable = qt.QCheckBox(vbox2) self.__extendedTable.setText('Extended Table') self.__extendedTable.setChecked(True) self.__extendedTable.setEnabled(False) vbox2.l.addWidget(self.__extendedTable) self.__concentrationsBox = qt.QCheckBox(vbox3) self.__concentrationsBox.setText('Concentrations') self.__concentrationsBox.setChecked(False) self.__concentrationsBox.setEnabled(True) #self.__concentrationsBox.setEnabled(False) vbox3.l.addWidget(self.__concentrationsBox) self._layout.addWidget(box) # other stuff bigbox = qt.QWidget(self) bigbox.l = qt.QHBoxLayout(bigbox) bigbox.l.setContentsMargins(0, 0, 0, 0) bigbox.l.setSpacing(0) vBox = qt.QWidget(bigbox) vBox.l = qt.QVBoxLayout(vBox) vBox.l.setContentsMargins(0, 0, 0, 0) vBox.l.setSpacing(2) bigbox.l.addWidget(vBox) if 0: #These options are obsolete now self.__overwrite = qt.QCheckBox(vBox) self.__overwrite.setText('Overwrite Fit Files') self.__overwrite.setChecked(True) vBox.l.addWidget(self.__overwrite) self.__useExisting = qt.QCheckBox(vBox) self.__useExisting.setText('Use Existing Fit Files') self.__useExisting.setChecked(False) vBox.l.addWidget(self.__useExisting) self.__overwrite.clicked.connect(self.__clickSignal0) self.__useExisting.clicked.connect(self.__clickSignal1) self.__concentrationsBox.clicked.connect(self.__clickSignal2) self.__htmlBox.clicked.connect(self.__clickSignal3) boxStep0 = qt.QWidget(bigbox) boxStep0.l = qt.QVBoxLayout(boxStep0) boxStep = qt.QWidget(boxStep0) boxStep.l= qt.QHBoxLayout(boxStep) boxStep.l.setContentsMargins(0, 0, 0, 0) boxStep.l.setSpacing(0) boxStep0.l.addWidget(boxStep) bigbox.l.addWidget(boxStep0) if 0: self.__boxFStep = qt.QWidget(boxStep) boxFStep = self.__boxFStep boxFStep.l = qt.QHBoxLayout(boxFStep) boxFStep.l.setContentsMargins(0, 0, 0, 0) boxFStep.l.setSpacing(0) boxStep.l.addWidget(boxFStep) label= qt.QLabel(boxFStep) label.setText("File Step:") self.__fileSpin = qt.QSpinBox(boxFStep) if QTVERSION < '4.0.0': self.__fileSpin.setMinValue(1) self.__fileSpin.setMaxValue(10) else: self.__fileSpin.setMinimum(1) self.__fileSpin.setMaximum(10) self.__fileSpin.setValue(1) boxFStep.l.addWidget(label) boxFStep.l.addWidget(self.__fileSpin) self.__boxMStep = qt.QWidget(boxStep0) boxMStep = self.__boxMStep boxMStep.l = qt.QHBoxLayout(boxMStep) boxMStep.l.setContentsMargins(0, 0, 0, 0) boxMStep.l.setSpacing(0) boxStep0.l.addWidget(boxMStep) label= qt.QLabel(boxMStep) label.setText("MCA Step:") self.__mcaSpin = qt.QSpinBox(boxMStep) if QTVERSION < '4.0.0': self.__mcaSpin.setMinValue(1) self.__mcaSpin.setMaxValue(10) else: self.__mcaSpin.setMinimum(1) self.__mcaSpin.setMaximum(10) self.__mcaSpin.setValue(1) boxMStep.l.addWidget(label) boxMStep.l.addWidget(self.__mcaSpin) #box2 = qt.QHBox(self) self.__roiBox = qt.QCheckBox(vBox) self.__roiBox.setText('ROI Fitting Mode') vBox.l.addWidget(self.__roiBox) #box3 = qt.QHBox(box2) self.__box3 = qt.QWidget(boxStep0) box3 = self.__box3 box3.l = qt.QHBoxLayout(box3) box3.l.setContentsMargins(0, 0, 0, 0) box3.l.setSpacing(0) boxStep0.l.addWidget(box3) label= qt.QLabel(box3) label.setText("ROI Width (eV):") self.__roiSpin = qt.QSpinBox(box3) if QTVERSION < '4.0.0': self.__roiSpin.setMinValue(10) self.__roiSpin.setMaxValue(1000) else: self.__roiSpin.setMinimum(10) self.__roiSpin.setMaximum(1000) self.__roiSpin.setValue(int(ROIWIDTH)) box3.l.addWidget(label) box3.l.addWidget(self.__roiSpin) #BATCH SPLITTING self.__splitBox = qt.QCheckBox(vBox) self.__splitBox.setText('EXPERIMENTAL: Use several processes') vBox.l.addWidget(self.__splitBox) #box3 = qt.QHBox(box2) self.__box4 = qt.QWidget(boxStep0) box4 = self.__box4 box4.l = qt.QHBoxLayout(box4) box4.l.setContentsMargins(0, 0, 0, 0) box4.l.setSpacing(0) boxStep0.l.addWidget(box4) label= qt.QLabel(box4) label.setText("Number of processes:") self.__splitSpin = qt.QSpinBox(box4) if QTVERSION < '4.0.0': self.__splitSpin.setMinValue(1) self.__splitSpin.setMaxValue(1000) else: self.__splitSpin.setMinimum(1) self.__splitSpin.setMaximum(1000) self.__splitSpin.setValue(2) box4.l.addWidget(label) box4.l.addWidget(self.__splitSpin) self._layout.addWidget(bigbox) if actions: self.__buildActions() def __clickSignal0(self): if self.__overwrite.isChecked(): self.__useExisting.setChecked(0) else: self.__useExisting.setChecked(1) def __clickSignal1(self): if self.__useExisting.isChecked(): self.__overwrite.setChecked(0) else: self.__overwrite.setChecked(1) def __clickSignal2(self): #self.__tableBox.setEnabled(True) pass def __clickSignal3(self): if self.__htmlBox.isChecked(): self.__tableBox.setEnabled(True) #self.__concentrationsBox.setEnabled(True) self.__fitBox.setChecked(True) self.__fitBox.setEnabled(False) else: self.__tableBox.setEnabled(False) #self.__concentrationsBox.setEnabled(False) self.__fitBox.setChecked(False) self.__fitBox.setEnabled(True) def __buildActions(self): box = qt.QWidget(self) box.l = qt.QHBoxLayout(box) box.l.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton = qt.QPushButton(box) box.l.addWidget(self.__dismissButton) box.l.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton.setText("Close") self.__startButton = qt.QPushButton(box) box.l.addWidget(self.__startButton) box.l.addWidget(qt.HorizontalSpacer(box)) self.__startButton.setText("Start") self.__dismissButton.clicked.connect(self.close) self.__startButton.clicked.connect(self.start) self._layout.addWidget(box) def close(self): if self._edfSimpleViewer is not None: self._edfSimpleViewer.close() self._edfSimpleViewer = None qt.QWidget.close(self) def setFileList(self,filelist=None): if filelist is None:filelist = [] if True or self.__goodFileList(filelist): text = "" oldtype = None #do not sort the file list #respect user choice #filelist.sort() for file in filelist: filetype = self.__getFileType(file) if filetype is None:return if oldtype is None: oldtype = filetype if oldtype != filetype: qt.QMessageBox.critical(self, "ERROR", "Type %s does not match type %s on\n%s"% (filetype,oldtype,file)) return text += "%s\n" % file if len(filelist): if HDF5SUPPORT: if not h5py.is_hdf5(filelist[0]): self._hdf5Widget.hide() self._selection=None else: dialog = qt.QDialog(self) dialog.setWindowTitle('Select your data set') dialog.mainLayout = qt.QVBoxLayout(dialog) dialog.mainLayout.setContentsMargins(0, 0, 0, 0) dialog.mainLayout.setSpacing(0) datasource = NexusDataSource.NexusDataSource(filelist[0]) nexusWidget = QNexusWidget.QNexusWidget(dialog, buttons=True) nexusWidget.buttons.hide() nexusWidget.setDataSource(datasource) button = qt.QPushButton(dialog) button.setText("Done") button.setAutoDefault(True) button.clicked.connect(dialog.accept) dialog.mainLayout.addWidget(nexusWidget) dialog.mainLayout.addWidget(button) ret = dialog.exec() cntSelection = nexusWidget.cntTable.getCounterSelection() cntlist = cntSelection['cntlist'] if not len(cntlist): text = "No dataset selection" self.showMessage(text) self.__listView.clear() return if not len(cntSelection['y']): text = "No dataset selected as y" self.showMessage(text) self.__listView.clear() return datasource = None selection = {} selection['x'] = [] selection['y'] = [] selection['m'] = [] for key in ['x', 'y', 'm']: if len(cntSelection[key]): for idx in cntSelection[key]: selection[key].append(cntlist[idx]) self._selection = selection self._hdf5Widget.setSelection(selection) #they are not used yet #self._hdf5Widget.selectionWidgetsDict['x'].hide() #self._hdf5Widget.selectionWidgetsDict['m'].hide() if self._hdf5Widget.isHidden(): self._hdf5Widget.show() elif filelist[0][-3:].lower() in ['.h5', 'nxs', 'hdf', 'hdf5']: text = "Warning, this looks as an HDF5 file " text += "but you do not have HDF5 support." self.showMessage(text) self.fileList = filelist if len(self.fileList): self.inputDir = os.path.dirname(self.fileList[0]) PyMcaDirs.inputDir = os.path.dirname(self.fileList[0]) if QTVERSION < '4.0.0': self.__listView.setText(text) else: self.__listView.clear() self.__listView.insertPlainText(text) def showMessage(self, text): msg = qt.QMessageBox(self) msg.setWindowTitle("PyMcaBatch Message") msg.setIcon(qt.QMessageBox.Information) msg.setText(text) msg.exec() def setConfigFile(self,configfile=None): if configfile is None:return if self.__goodConfigFile(configfile): self.configFile = configfile if type(configfile) == type([]): #do not sort file list #self.configFile.sort() self.__configLine.setText(self.configFile[0]) self.lastInputDir = os.path.dirname(self.configFile[0]) else: self.__configLine.setText(configfile) self.lastInputDir = os.path.dirname(self.configFile) def setOutputDir(self,outputdir=None): if outputdir is None: return if self.__goodOutputDir(outputdir): self.outputDir = outputdir PyMcaDirs.outputDir = outputdir self.__outLine.setText(outputdir) else: qt.QMessageBox.critical(self, "ERROR", "Cannot use output directory:\n%s"% (outputdir)) def __goodFileList(self,filelist): if not len(filelist): return True for ffile in filelist: if not os.path.exists(ffile): qt.QMessageBox.critical(self, "ERROR", 'File %s\ndoes not exist' % ffile) self.raise_() return False return True def __goodConfigFile(self,configfile0): if type(configfile0) != type([]): configfileList = [configfile0] else: configfileList = configfile0 for configfile in configfileList: if not os.path.exists(configfile): qt.QMessageBox.critical(self, "ERROR",'File %s\ndoes not exist' % configfile) self.raise_() return False elif len(configfile.split()) > 1: if sys.platform != 'win32': qt.QMessageBox.critical(self, "ERROR",'Configuration File:\n %s\ncontains spaces in the path' % configfile) self.raise_() return False return True def __goodOutputDir(self,outputdir): if not os.path.isdir(outputdir): return False elif len(outputdir.split()) > 1: if sys.platform != 'win32': qt.QMessageBox.critical(self, "ERROR", 'Output Directory:\n %s\ncontains spaces in the path' % outputdir) self.raise_() return False return True def __getFileType(self,inputfile): try: ffile = None try: ffile = EdfFileLayer.EdfFileLayer(fastedf=0) ffile.SetSource(inputfile) fileinfo = ffile.GetSourceInfo() if fileinfo['KeyList'] == []:ffile=None return "EdfFile" except Exception: pass if (ffile is None): ffile = SpecFileLayer.SpecFileLayer() ffile.SetSource(inputfile) del ffile return "Specfile" except Exception: qt.QMessageBox.critical(self, sys.exc_info()[0], 'I do not know what to do with file\n %s' % ffile) self.raise_() return None def browseList(self): self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir wfilter = self.inputFilter filetypes = "McaFiles (*.mca)\nEdfFiles (*.edf)\n" if HDF5SUPPORT: filetypes += "HDF5 (*.nxs *.h5 *.hdf *.hdf5)\n" filetypes += "SpecFiles (*.spec)\nSpecFiles (*.dat)\nAll files (*)" filetypelist = filetypes.split("\n") filelist, filefilter = PyMcaFileDialogs.getFileList(self, filetypelist=filetypelist, message="Open a set of files", currentdir=wdir, mode="OPEN", getfilter=True, single=False, currentfilter=wfilter) if len(filelist): self.setFileList(filelist) self.inputFilter = filefilter self.raise_() def browseConfig(self): self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir filetypelist = ["Config Files (*.cfg)", "All files (*)"] fileList, filefilter = PyMcaFileDialogs.getFileList(self, filetypelist=filetypelist, message="Open a new fit config file", currentdir=wdir, mode="OPEN", getfilter=True, single=False, currentfilter=None) if len(fileList) == 1: self.setConfigFile(fileList[0]) elif len(fileList): self.setConfigFile(fileList) self.raise_() def browseOutputDir(self): self.outputDir = PyMcaDirs.outputDir if not os.path.exists(self.outputDir): self.outputDir = os.getcwd() wdir = self.outputDir outdir =PyMcaFileDialogs.getExistingDirectory(self, message="Output Directory Selection", mode="SAVE", currentdir=wdir) if len(outdir): self.setOutputDir(outdir) self.raise_() def start(self): if not len(self.fileList): qt.QMessageBox.critical(self, "ERROR",'Empty file list') self.raise_() return if self.__splitBox.isChecked(): if sys.platform == 'darwin': if ".app" in os.path.dirname(__file__): text = 'Multiple processes only supported on MacOS X when built from source\n' text += 'and not when running the frozen binary.' qt.QMessageBox.critical(self, "ERROR",text) self.raise_() return if len(self.fileList) == 1: if int(qt.safe_str(self.__splitSpin.text())) > 1: allowSingleFileSplitProcesses = False if HDF5SUPPORT: if h5py.is_hdf5(self.fileList[0]): _logger.info("Allowing single HDF5 file process split") _logger.info("In the past it was problematic") allowSingleFileSplitProcesses = True if not allowSingleFileSplitProcesses: text = "Multiple processes can only be used with multiple input files." qt.QMessageBox.critical(self, "ERROR",text) self.raise_() return if (self.configFile is None) or (not self.__goodConfigFile(self.configFile)): qt.QMessageBox.critical(self, "ERROR",'Invalid fit configuration file') self.raise_() return if type(self.configFile) == type([]): if len(self.configFile) != len(self.fileList): qt.QMessageBox.critical(self, "ERROR", 'Number of config files should be either one or equal to number of files') self.raise_() return if (self.outputDir is None) or (not self.__goodOutputDir(self.outputDir)): qt.QMessageBox.critical(self, "ERROR",'Invalid output directory') self.raise_() return name = "LegacyBatch from %s to %s " % (os.path.basename(self.fileList[ 0]), os.path.basename(self.fileList[-1])) roifit = self.__roiBox.isChecked() html = self.__htmlBox.isChecked() #if html: concentrations = self.__concentrationsBox.isChecked() #else: # concentrations = 0 if self.__tableBox.isChecked(): if self.__extendedTable.isChecked(): table = 2 else: table = 1 else: table =0 #htmlindex = qt.safe_str(self.__htmlIndex.text()) htmlindex = "index.html" if html: if len(htmlindex)<5: htmlindex+=".html" if len(htmlindex) == 5: htmlindex = "index.html" if htmlindex[-5:] != "html": htmlindex+=".html" roiwidth = float(qt.safe_str(self.__roiSpin.text())) if 0: overwrite= self.__overwrite.isChecked() filestep = int(qt.safe_str(self.__fileSpin.text())) mcastep = int(qt.safe_str(self.__mcaSpin.text())) else: overwrite= 1 filestep = 1 mcastep = 1 if len(self.fileList) == 1: if self.__splitBox.isChecked(): nbatches = int(qt.safe_str(self.__splitSpin.text())) mcastep = nbatches fitfiles = self.__fitBox.isChecked() selection = self._selection if selection is None: selectionFlag = False else: selectionFlag = True if self._edfSimpleViewer is not None: self._edfSimpleViewer.close() self._edfSimpleViewer = None if roifit: window = McaBatchWindow(name="ROI"+name,actions=1, outputdir=self.outputDir, html=html, htmlindex=htmlindex, table = 0, showresult=self._showResult) b = McaBatch(window,self.configFile,self.fileList,self.outputDir,roifit=roifit, roiwidth=roiwidth,overwrite=overwrite,filestep=1,mcastep=1, concentrations=0, fitfiles=fitfiles, selection=selection) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 if hasattr(b, "wait"): b.wait() qApp = qt.QApplication.instance() qApp.processEvents() qApp = None def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) window.abortButton.clicked.connect(cleanup) #qApp = qt.QApplication.instance() #qApp.aboutToQuit[()].connect(cleanup) self.__window = window self.__b = b window.show() b.start() elif (sys.platform == 'darwin') and\ ((".app" in os.path.dirname(__file__)) or (not self.__splitBox.isChecked())): #almost identical to batch window = McaBatchWindow(name="ROI"+name,actions=1,outputdir=self.outputDir, html=html,htmlindex=htmlindex, table = table, showresult=self._showResult) b = McaBatch(window,self.configFile,self.fileList,self.outputDir,roifit=roifit, roiwidth=roiwidth,overwrite=overwrite,filestep=filestep, mcastep=mcastep, concentrations=concentrations, fitfiles=fitfiles, selection=selection) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 if hasattr(b, "wait"): b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) window.abortButton.clicked.connect(cleanup) #qApp = qt.QApplication.instance() #qApp.aboutToQuit[()].connect(cleanup) window._rootname = "%s"% b._rootname self.__window = window self.__b = b window.show() b.start() elif sys.platform == 'win32': try: dirname = os.path.dirname(__file__) frozen = False if not os.path.exists(os.path.join(dirname, "LegacyPyMcaBatch.py")): # script usage case dirname = os.path.dirname(EdfFileSimpleViewer.__file__) except Exception: # __file__ is not defined dirname = os.path.dirname(EdfFileSimpleViewer.__file__) frozen = True if os.path.basename(sys.executable) in ["PyMcaMain.exe", "LegacyPyMcaBatch.exe"]: frozen = True dirname = os.path.dirname(EdfFileSimpleViewer.__file__) listfile = os.path.join(self.outputDir, "tmpfile") self.genListFile(listfile, config=False) if frozen: # we are at level PyMca5\PyMcaGui\pymca dirname = os.path.dirname(dirname) # level PyMcaGui dirname = os.path.dirname(dirname) # level PyMca5 dirname = os.path.dirname(dirname) # directory level with exe files myself = os.path.join(dirname, "LegacyPyMcaBatch.exe") viewer = os.path.join(dirname, "EdfFileSimpleViewer.exe") rgb = os.path.join(dirname, "PyMcaPostBatch.exe") if not os.path.exists(viewer): viewer = None if not os.path.exists(rgb): rgb = None else: myself = os.path.join(dirname, "LegacyPyMcaBatch.py") viewer = os.path.join(dirname, "EdfFileSimpleViewer.py") rgb = os.path.join(dirname, "PyMcaPostBatch.py") if not os.path.exists(viewer): viewer = None else: viewer = '%s "%s"' % (sys.executable, viewer) if not os.path.exists(rgb): rgb = None else: rgb = '%s "%s"' % (sys.executable, rgb) self._rgb = rgb if type(self.configFile) == type([]): cfglistfile = os.path.join(self.outputDir, "tmpfile.cfg") self.genListFile(cfglistfile, config=True) dirname = os.path.dirname(dirname) if frozen: cmd = '"%s" --cfglistfile="%s" --outdir="%s" --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile="%s" --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d' %\ (myself, cfglistfile, self.outputDir, overwrite, filestep, mcastep, html,htmlindex, listfile,concentrations, table, fitfiles, selectionFlag, self._showResult, 1) else: cmd = '%s "%s" --cfglistfile="%s" --outdir="%s" --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile="%s" --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d' %\ (sys.executable,myself, cfglistfile, self.outputDir, overwrite, filestep, mcastep, html,htmlindex, listfile,concentrations, table, fitfiles, selectionFlag, self._showResult, 1) else: if not frozen: cmd = '%s "%s" --cfg="%s" --outdir="%s" --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile="%s" --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d' % \ (sys.executable, myself, self.configFile, self.outputDir, overwrite, filestep, mcastep, html,htmlindex, listfile,concentrations, table, fitfiles, selectionFlag, self._showResult, 1) else: cmd = '"%s" --cfg="%s" --outdir="%s" --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile="%s" --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d' % \ (myself, self.configFile, self.outputDir, overwrite, filestep, mcastep, html,htmlindex, listfile,concentrations, table, fitfiles, selectionFlag, self._showResult, 1) self.hide() qApp = qt.QApplication.instance() qApp.processEvents() _logger.debug("cmd = %s", cmd) if self.__splitBox.isChecked(): nbatches = int(qt.safe_str(self.__splitSpin.text())) if len(self.fileList) > 1: filechunk = int(len(self.fileList)/nbatches) processList = [] for i in range(nbatches): beginoffset = filechunk * i endoffset = len(self.fileList) - filechunk * (i+1) if (i+1) == nbatches:endoffset = 0 cmd1 = cmd + " --filebeginoffset=%d --fileendoffset=%d --chunk=%d" % \ (beginoffset, endoffset, i) try: processList.append(subprocess.Popen(cmd1, cwd=os.getcwd())) except UnicodeEncodeError: processList.append(\ subprocess.Popen(cmd1.encode(sys.getfilesystemencoding()), cwd=os.getcwd())) _logger.debug("cmd = %s", cmd1) else: #f = open("CMD", 'wb') processList = [] for i in range(nbatches): #the mcastep has been dealt with above cmd1 = cmd + " --mcaoffset=%d --chunk=%d" % (i, i) processList.append(subprocess.Popen(cmd1, cwd=os.getcwd())) _logger.debug("CMD = %s", cmd1) #f.write(cmd1+"\n") #f.close() self._processList = processList if self._timer is None: self._timer = qt.QTimer(self) self._timer.timeout[()].connect(self._pollProcessList) if not self._timer.isActive(): self._timer.start(1000) else: _logger.info("timer was already active") return else: try: subprocess.call(cmd) except UnicodeEncodeError: try: subprocess.call(cmd.encode(sys.getfilesystemencoding())) except Exception: # be ready for any weird error like missing that encoding try: subprocess.call(cmd.encode('utf-8')) except UnicodeEncodeError: subprocess.call(cmd.encode('latin-1')) self.show() else: listfile = os.path.join(self.outputDir, "tmpfile") self.genListFile(listfile, config=False) try: dirname = os.path.dirname(__file__) frozen = False if not os.path.exists(os.path.join(dirname, "LegacyPyMcaBatch.py")): # script usage case dirname = os.path.dirname(EdfFileSimpleViewer.__file__) except Exception: # __file__ is not defined dirname = os.path.dirname(EdfFileSimpleViewer.__file__) frozen = True if not frozen: if os.path.basename(sys.executable) in ["PyMcaMain.exe", "LegacyPyMcaBatch.exe", "PyMcaMain", "LegacyPyMcaBatch"]: frozen = True dirname = os.path.dirname(EdfFileSimpleViewer.__file__) if frozen: # we are at level PyMca5\PyMcaGui\pymca dirname = os.path.dirname(dirname) # level PyMcaGui dirname = os.path.dirname(dirname) # level PyMca5 dirname = os.path.dirname(dirname) # directory level with exe files myself = os.path.join(dirname, "LegacyPyMcaBatch") viewer = os.path.join(dirname, "EdfFileSimpleViewer") rgb = os.path.join(dirname, "PyMcaPostBatch") if not os.path.exists(viewer): viewer = None if not os.path.exists(rgb): rgb = None else: myself = os.path.join(dirname, "LegacyPyMcaBatch.py") if not os.path.exists(os.path.join(dirname, myself)): dirname = os.path.dirname(EdfFileSimpleViewer.__file__) if not os.path.exists(os.path.join(dirname, myself)): text = 'Cannot locate LegacyPyMcaBatch.py file.\n' qt.QMessageBox.critical(self, "ERROR",text) self.raise_() return myself = sys.executable+" "+ os.path.join(dirname, myself) viewer = os.path.join(dirname, "EdfFileSimpleViewer.py") rgb = os.path.join(dirname, "PyMcaPostBatch.py") if not os.path.exists(viewer): viewer = None else: viewer = '%s "%s"' % (sys.executable, viewer) if not os.path.exists(rgb): rgb = None else: rgb = '%s "%s"' % (sys.executable, rgb) self._rgb = rgb if type(self.configFile) == type([]): cfglistfile = os.path.join(self.outputDir, "tmpfile.cfg") self.genListFile(cfglistfile, config=True) cmd = "%s --cfglistfile=%s --outdir=%s --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile=%s --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d &" % \ (myself, cfglistfile, self.outputDir, overwrite, filestep, mcastep, html, htmlindex, listfile, concentrations, table, fitfiles, selectionFlag, self._showResult, 1) else: cmd = "%s --cfg=%s --outdir=%s --overwrite=%d --filestep=%d --mcastep=%d --html=%d --htmlindex=%s --listfile=%s --concentrations=%d --table=%d --fitfiles=%d --selection=%d --showresult=%d --exitonend=%d &" % \ (myself, self.configFile, self.outputDir, overwrite, filestep, mcastep, html, htmlindex, listfile, concentrations, table, fitfiles, selectionFlag, self._showResult, 1) _logger.debug("cmd = %s", cmd) if self.__splitBox.isChecked(): qApp = qt.QApplication.instance() qApp.processEvents() nbatches = int(qt.safe_str(self.__splitSpin.text())) filechunk = int(len(self.fileList)/nbatches) processList = [] for i in range(nbatches): beginoffset = filechunk * i endoffset = len(self.fileList) - filechunk * (i+1) if (i+1) == nbatches:endoffset = 0 cmd1 = cmd.replace("&", "") + \ " --filebeginoffset=%d --fileendoffset=%d --chunk=%d" % \ (beginoffset, endoffset, i) # unfortunately I have to set shell = True # otherways I get a file not found error in the # child process processList.append(\ subprocess.Popen(cmd1, cwd=os.getcwd(), shell=True, close_fds=True)) self._processList = processList self.hide() self._pollProcessList() if self._timer is None: self._timer = qt.QTimer(self) self._timer.timeout[()].connect( \ self._pollProcessList) if not self._timer.isActive(): self._timer.start(1000) else: _logger.info("timer was already active") return else: os.system(cmd) _logger.info(" COMMAND = %s", cmd) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) text = "Your batch has been started as an independent process." msg.setText(text) # REMARK: non-blocking for unit testing #msg.exec() msg.show() def genListFile(self, listfile, config=None): if os.path.exists(listfile): try: os.remove(listfile) except Exception: _logger.error("Cannot delete file %s", listfile) raise if config is None: lst = self.fileList elif config: lst = self.configFile else: lst = self.fileList if lst == self.fileList: if self._selection is not None: ddict = ConfigDict.ConfigDict() ddict['PyMcaBatch'] = {} ddict['PyMcaBatch']['filelist'] = lst ddict['PyMcaBatch']['selection'] = self._selection ddict.write(listfile) return fd=open(listfile, 'wb') for filename in lst: # only the file system encoding makes sense here fd.write(('%s\n' % filename).encode(sys.getfilesystemencoding())) fd.close() def _pollProcessList(self): processList = self._processList rgb = self._rgb if QTVERSION < '4.0.0':rgb = None n = 0 for process in processList: if process.poll() is None: n += 1 if n > 0: return self._timer.stop() self.show() self.raise_() work = PyMcaBatchBuildOutput.PyMcaBatchBuildOutput(os.path.join(self.outputDir, "IMAGES")) if _logger.getEffectiveLevel() == logging.DEBUG: a, b, c = work.buildOutput(delete=False) else: a, b, c = work.buildOutput(delete=True) if self._showResult: if len(a): if self._edfSimpleViewer is None: self._edfSimpleViewer = EdfFileSimpleViewer.EdfFileSimpleViewer() self._edfSimpleViewer.setFileList(a) self._edfSimpleViewer.show() if rgb is not None: if len(b): if sys.platform == "win32": try: subprocess.Popen('%s "%s"' % (rgb, b[0]), cwd = os.getcwd()) except UnicodeEncodeError: subprocess.Popen(('%s "%s"' % (rgb, b[0])).encode(sys.getfilesystemencoding()), cwd = os.getcwd()) else: os.system("%s %s &" % (rgb, b[0])) work = PyMcaBatchBuildOutput.PyMcaBatchBuildOutput(self.outputDir) if _logger.getEffectiveLevel() == logging.DEBUG: work.buildOutput(delete=False) else: work.buildOutput(delete=True) class McaBatch(McaAdvancedFitBatch.McaAdvancedFitBatch, QThread): def __init__(self, parent, configfile, filelist=None, outputdir = None, roifit = None, roiwidth=None, overwrite=1, filestep=1, mcastep=1, concentrations=0, fitfiles=0, filebeginoffset=0, fileendoffset=0, mcaoffset=0, chunk=None, selection=None, lock=None): McaAdvancedFitBatch.McaAdvancedFitBatch.__init__(self, configfile, filelist=filelist, outputdir=outputdir, roifit=roifit, roiwidth=roiwidth, overwrite=overwrite, filestep=filestep, mcastep=mcastep, concentrations=concentrations, fitfiles=fitfiles, filebeginoffset = filebeginoffset, fileendoffset = fileendoffset, mcaoffset = mcaoffset, chunk=chunk, selection=selection, lock=lock) QThread.__init__(self) self.parent = parent self.pleasePause = 0 def run(self): self.processList() def onNewFile(self, ffile, filelist): self.__lastOnNewFile = ffile ddict = {'file':ffile, 'filelist':filelist, 'filestep':self.fileStep, 'filebeginoffset':self.fileBeginOffset, 'fileendoffset':self.fileEndOffset, 'event':'onNewFile'} if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause:self.__pauseMethod() def onImage(self, key, keylist): ddict = {'key':key, 'keylist':keylist, 'event':'onImage'} if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) def onMca(self, mca, nmca, filename=None, key=None, info=None): _logger.debug("onMca key = %s", key) ddict = {'mca':mca, 'nmca':nmca, 'mcastep':self.mcaStep, 'filename':filename, 'key':key, 'info':info, 'outputdir':self._outputdir, 'useExistingFiles':self.useExistingFiles, 'roifit':self.roiFit, 'event':'onMca'} if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause:self.__pauseMethod() def onEnd(self): _logger.debug("onEnd") ddict = {'event':'onEnd', 'filestep':self.fileStep, 'mcastep':self.mcaStep, 'chunk':self.chunk, 'savedimages':self.savedImages} if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause: self.__pauseMethod() def __pauseMethod(self): if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) while(self.pleasePause): time.sleep(1) if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) class McaBatchWindow(qt.QWidget): def __init__(self,parent=None, name="BatchWindow", fl=0, actions = 0, outputdir=None, html=0, htmlindex = None, table=2, chunk=None, exitonend=False, showresult=True): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.chunk = chunk self.exitonend = exitonend self._showResult = showresult self.l = qt.QVBoxLayout(self) #self.l.setAutoAdd(1) self.bars =qt.QWidget(self) self.l.addWidget(self.bars) if QTVERSION < '4.0.0': self.barsLayout = qt.QGridLayout(self.bars,2,3) else: self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('File Progress:') self.imageBar = qt.QProgressBar(self.bars) self.imageLabel = qt.QLabel(self.bars) self.imageLabel.setText('Image in File:') self.mcaBar = qt.QProgressBar(self.bars) self.mcaLabel = qt.QLabel(self.bars) self.mcaLabel.setText('MCA in Image:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.barsLayout.addWidget(self.imageLabel,1,0) self.barsLayout.addWidget(self.imageBar,1,1) self.barsLayout.addWidget(self.mcaLabel,2,0) self.barsLayout.addWidget(self.mcaBar,2,1) self.status = qt.QLabel(self) self.status.setText(" ") self.timeLeft = qt.QLabel(self) self.l.addWidget(self.status) self.l.addWidget(self.timeLeft) self.timeLeft.setText("Estimated time left = ???? min") self.time0 = None self.html = html if htmlindex is None:htmlindex="index.html" self.htmlindex = htmlindex self.outputdir = outputdir self.table = table self.__ended = False self.__writingReport = False if actions: self.addButtons() self.show() self.raise_() def addButtons(self): self.actions = 1 self.buttonsBox = qt.QWidget(self) l = qt.QHBoxLayout(self.buttonsBox) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.pauseButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton.setText("Pause") self.abortButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.abortButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.abortButton.setText("Abort") self.l.addWidget(self.buttonsBox) self.update() def customEvent(self,event): if event.dict['event'] == 'onNewFile':self.onNewFile(event.dict['file'], event.dict['filelist'], event.dict['filestep'], event.dict['filebeginoffset'], event.dict['fileendoffset']) elif event.dict['event'] == 'onImage': self.onImage (event.dict['key'], event.dict['keylist']) elif event.dict['event'] == 'onMca': self.onMca (event.dict) #event.dict['mca'], #event.dict['nmca'], #event.dict['mcastep'], #event.dict['filename'], #event.dict['key']) elif event.dict['event'] == 'onEnd': self.onEnd(event.dict) elif event.dict['event'] == 'batchPaused': self.onPause() elif event.dict['event'] == 'batchResumed':self.onResume() elif event.dict['event'] == 'reportWritten':self.onReportWritten() else: _logger.warning("Unhandled event %s", event) def onNewFile(self, file, filelist, filestep, filebeginoffset =0, fileendoffset = 0): _logger.debug("onNewFile: %s", file) indexlist = list(range(0,len(filelist),filestep)) index = indexlist.index(filelist.index(file)) - filebeginoffset #print index + filebeginoffset if index == 0: self.report= None if self.html: self.htmlindex = os.path.join(self.outputdir, 'HTML') htmlindex = os.path.join(os.path.basename(file)+"_HTMLDIR", "index.html") self.htmlindex = os.path.join(self.htmlindex,htmlindex) if os.path.exists(self.htmlindex): try: os.remove(self.htmlindex) except Exception: _logger.warning("cannot delete file %s", self.htmlindex) nfiles = len(indexlist)-filebeginoffset-fileendoffset self.status.setText("Processing file %s" % file) e = time.time() if QTVERSION < '4.0.0': self.progressBar.setTotalSteps(nfiles) self.progressBar.setProgress(index) else: self.progressBar.setMaximum(nfiles) self.progressBar.setValue(index) if self.time0 is not None: t = (e - self.time0) * (nfiles - index) self.time0 =e if t < 120: self.timeLeft.setText("Estimated time left = %d sec" % (t)) else: self.timeLeft.setText("Estimated time left = %d min" % (int(t / 60.))) else: self.time0 = e if sys.platform == 'darwin': qApp = qt.QApplication.instance() qApp.processEvents() def onImage(self, key, keylist): _logger.debug("onImage %s", key) i = keylist.index(key) + 1 n = len(keylist) if QTVERSION < '4.0.0': self.imageBar.setTotalSteps(n) self.imageBar.setProgress(i) self.mcaBar.setTotalSteps(1) self.mcaBar.setProgress(0) else: self.imageBar.setMaximum(n) self.imageBar.setValue(i) self.mcaBar.setMaximum(1) self.mcaBar.setValue(0) #def onMca(self, mca, nmca, mcastep): def onMca(self, ddict): _logger.debug("onMca %s", ddict['mca']) mca = ddict['mca'] nmca = ddict['nmca'] mcastep = ddict['mcastep'] filename = ddict['filename'] key = ddict['key'] info = ddict['info'] outputdir = ddict['outputdir'] useExistingFiles = ddict['useExistingFiles'] self.roiFit = ddict['roifit'] if self.html: try: if not self.roiFit: if mca == 0: self.__htmlReport(filename, key, outputdir, useExistingFiles, info, firstmca = True) else: self.__htmlReport(filename, key, outputdir, useExistingFiles, info, firstmca = False) except Exception: _logger.warning("ERROR on REPORT %s", sys.exc_info()) _logger.warning("%s", sys.exc_info()[1]) _logger.warning("filename = %s key =%s ", (filename, key)) _logger.warning("If your batch is stopped, please report this") _logger.warning("error sending the above mentioned file and the") _logger.warning("associated fit configuration file.") if QTVERSION < '4.0.0': self.mcaBar.setTotalSteps(nmca) self.mcaBar.setProgress(mca) else: self.mcaBar.setMaximum(nmca) self.mcaBar.setValue(mca) if sys.platform == 'darwin': qApp = qt.QApplication.instance() qApp.processEvents() def __htmlReport(self, filename, key, outputdir, useExistingFiles, info=None, firstmca = True): """ file=self.file fileinfo = file.GetSourceInfo() nimages = nscans = len(fileinfo['KeyList']) filename = os.path.basename(info['SourceName']) """ fitdir = os.path.join(outputdir,"HTML") if not os.path.exists(fitdir): try: os.mkdir(fitdir) except Exception: _logger.warning("I could not create directory %s", fitdir) return fitdir = os.path.join(fitdir, filename+"_HTMLDIR") if not os.path.exists(fitdir): try: os.mkdir(fitdir) except Exception: _logger.warning("I could not create directory %s", fitdir) return localindex = os.path.join(fitdir, "index.html") if not os.path.isdir(fitdir): _logger.warning("%s does not seem to be a valid directory", fitdir) else: outfile = filename + "_" + key + ".html" outfile = os.path.join(fitdir, outfile) useExistingResult = useExistingFiles if os.path.exists(outfile): if not useExistingFiles: try: os.remove(outfile) except Exception: _logger.warning("cannot delete file %s", outfile) useExistingResult = 0 else: useExistingResult = 0 outdir = fitdir fitdir = os.path.join(outputdir,"FIT") fitdir = os.path.join(fitdir,filename+"_FITDIR") fitfile= os.path.join(fitdir, filename +"_"+key+".fit") if not os.path.exists(fitfile): _logger.warning("fit file %s does not exists!", fitfile) return if self.report is None: #first file self.forcereport = 0 self._concentrationsFile = os.path.join(outputdir, self._rootname + "_concentrations.txt") if os.path.exists(self._concentrationsFile): """ #code removed, concentrations in McaAdvancedFitBatch.py try: os.remove(self._concentrationsFile) except Exception: pass """ pass else: #this is to generate the concentrations file #from an already existing set of fitfiles self.forcereport = 1 if self.forcereport or (not useExistingResult): self.report = QtMcaAdvancedFitReport.QtMcaAdvancedFitReport(fitfile = fitfile, outfile = outfile, table = self.table) self.__writingReport = True a=self.report.writeReport() """ #The code below has been moved to McaAdvancedFitBatch.py if len(self.report._concentrationsTextASCII) > 1: text = "" text += "SOURCE: "+ filename +"\n" text += "KEY: "+key+"\n" text += self.report._concentrationsTextASCII + "\n" f=open(self._concentrationsFile,"a") f.write(text) f.close() """ self.__writingReport = False #qt.QApplication.postEvent(self, McaCustomEvent.McaCustomEvent({'event':'reportWritten'})) self.onReportWritten() def onEnd(self,dict): self.__ended = True if QTVERSION < '4.0.0': n = self.progressBar.progress() self.progressBar.setProgress(n+dict['filestep']) n = self.mcaBar.progress() self.mcaBar.setProgress(n+dict['mcastep']) else: n = self.progressBar.value() self.progressBar.setValue(n+dict['filestep']) n = self.mcaBar.value() self.mcaBar.setValue(n+dict['mcastep']) self.status.setText ("Batch Finished") self.timeLeft.setText("Estimated time left = 0 sec") if self.actions: self.pauseButton.hide() self.abortButton.setText("OK") if self.chunk is None: if 'savedimages' in dict and self._showResult: self.plotImages(dict['savedimages']) if self.html: if not self.__writingReport: directory = os.path.join(self.outputdir,"HTML") a = HtmlIndex.HtmlIndex(directory) a.buildRecursiveIndex() if dict['chunk'] is not None: if 0: #this was giving troubles using HDF5 files as input sys.exit(0) else: #this seems to work properly self.close() if self.actions: if hasattr(self.abortButton, "animateClick"): if self.abortButton.text() == "OK": # click for 100 milliseconds _logger.debug("onEnd automatically clicking button") self.abortButton.animateClick() if self.exitonend: _logger.debug("onEnd close and not quit") self.close() _logger.debug("onEnd returning") def onReportWritten(self): if self.__ended: directory = os.path.join(self.outputdir,"HTML") a = HtmlIndex.HtmlIndex(directory) a.buildRecursiveIndex() def onPause(self): pass def onResume(self): pass def plotImages(self,imagelist): if (sys.platform == 'win32') or (sys.platform == 'darwin'): self.__viewer = EdfFileSimpleViewer.EdfFileSimpleViewer() self.__viewer.setFileList(imagelist) self.__viewer.show() else: filelist = " " for ffile in imagelist: filelist+=" %s" % ffile try: dirname = os.path.dirname(__file__) frozen = False except Exception: frozen = True dirname = os.path.dirname(EdfFileSimpleViewer.__file__) if not frozen: if sys.executable in ["PyMcaMain", "PyMcaMain.exe", "LegacyPyMcaBatch", "LegacyPyMcaBatch.exe"]: frozen = True _logger.debug("final dirname = %s", dirname) if frozen: # we are at level PyMca5\PyMcaGui\pymca dirname = os.path.dirname(dirname) # level PyMcaGui dirname = os.path.dirname(dirname) # level PyMca5 dirname = os.path.dirname(dirname) # directory level with exe files myself = os.path.join(dirname, "EdfFileSimpleViewer") else: myself = sys.executable+" "+os.path.join(dirname, "EdfFileSimpleViewer.py") cmd = "%s %s &" % (myself, filelist) _logger.debug("cmd = %s", cmd) os.system(cmd) def main(): sys.excepthook = qt.exceptionHandler import getopt from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel options = 'f' longoptions = ['cfg=','outdir=','roifit=','roi=','roiwidth=', 'overwrite=', 'filestep=', 'mcastep=', 'html=','htmlindex=', 'listfile=','cfglistfile=', 'concentrations=', 'table=', 'fitfiles=', 'filebeginoffset=','fileendoffset=','mcaoffset=', 'chunk=', 'nativefiledialogs=','selection=', 'exitonend=', 'logging=', 'debug=', 'showresult='] filelist = None outdir = None cfg = None listfile = None cfglistfile = None selection = False roifit = 0 roiwidth = ROIWIDTH overwrite= 1 filestep = 1 html = 0 htmlindex= None mcastep = 1 table = 2 fitfiles = 1 concentrations = 0 filebeginoffset = 0 fileendoffset = 0 mcaoffset = 0 chunk = None exitonend = False showresult = True opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt,arg in opts: if opt in ('--cfg'): cfg = arg elif opt in ('--outdir'): outdir = arg elif opt in ('--roi','--roifit'): roifit = int(arg) elif opt in ('--roiwidth'): roiwidth = float(arg) elif opt in ('--overwrite'): overwrite= int(arg) elif opt in ('--filestep'): filestep = int(arg) elif opt in ('--mcastep'): mcastep = int(arg) elif opt in ('--html'): html = int(arg) elif opt in ('--htmlindex'): htmlindex = arg elif opt in ('--listfile'): listfile = arg elif opt in ('--cfglistfile'): cfglistfile = arg elif opt in ('--concentrations'): concentrations = int(arg) elif opt in ('--table'): table = int(arg) elif opt in ('--fitfiles'): fitfiles = int(arg) elif opt in ('--filebeginoffset'): filebeginoffset = int(arg) elif opt in ('--fileendoffset'): fileendoffset = int(arg) elif opt in ('--mcaoffset'): mcaoffset = int(arg) elif opt in ('--chunk'): chunk = int(arg) elif opt in ('--selection'): selection = int(arg) if selection: selection = True else: selection = False elif opt in ('--nativefiledialogs'): if int(arg): PyMcaDirs.nativeFileDialogs = True else: PyMcaDirs.nativeFileDialogs = False elif opt in ('--exitonend'): exitonend = int(arg) elif opt in ('--showresult'): showresult = int(arg) logging.basicConfig(level=getLoggingLevel(opts)) if listfile is None: filelist=[] for item in args: filelist.append(item) selection = None else: if selection: tmpDict = ConfigDict.ConfigDict() tmpDict.read(listfile) tmpDict = tmpDict['PyMcaBatch'] filelist = tmpDict['filelist'] if type(filelist) == type(""): filelist = [filelist] selection = tmpDict['selection'] else: fd = open(listfile, 'rb') filelist = fd.readlines() fd.close() for i in range(len(filelist)): filelist[i]=filelist[i].decode(sys.getfilesystemencoding()).replace('\n','') selection = None if cfglistfile is not None: fd = open(cfglistfile, 'rb') cfg = fd.readlines() fd.close() for i in range(len(cfg)): cfg[i]=cfg[i].decode(sys.getfilesystemencoding()).replace('\n','') app=qt.QApplication(sys.argv) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) if len(filelist) == 0: app.lastWindowClosed.connect(app.quit) w = McaBatchGUI(actions=1) w.show() w.raise_() app.exec() else: app.lastWindowClosed.connect(app.quit) text = "LegacyBatch from %s to %s" % (os.path.basename(filelist[0]), os.path.basename(filelist[-1])) window = McaBatchWindow(name=text,actions=1, outputdir=outdir,html=html, htmlindex=htmlindex, table=table, chunk=chunk, exitonend=exitonend, showresult=showresult) if html:fitfiles=1 try: b = McaBatch(window,cfg,filelist,outdir,roifit=roifit,roiwidth=roiwidth, overwrite = overwrite, filestep=filestep, mcastep=mcastep, concentrations=concentrations, fitfiles=fitfiles, filebeginoffset=filebeginoffset,fileendoffset=fileendoffset, mcaoffset=mcaoffset, chunk=chunk, selection=selection) except Exception: if exitonend: _logger.warning("Error: ", sys.exc_info()[1]) _logger.warning("Quitting as requested") qt.QApplication.instance().quit() else: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() return def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 if hasattr(b, "wait"): b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) app.aboutToQuit[()].connect(cleanup) window._rootname = "%s"% b._rootname window.show() b.start() app.exec() app = None if __name__ == "__main__": main() # LegacyPyMcaBatch.py --cfg=/mntdirect/_bliss/users/sole/COTTE/WithLead.cfg --outdir=/tmp/ /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0007.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0008.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0009.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0010.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0011.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0012.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0013.edf & # LegacyPyMcaBatch.exe --cfg=E:/COTTE/WithLead.cfg --outdir=C:/tmp/ E:/COTTE/ch09/ch09__mca_0003_0000_0007.edf E:/COTTE/ch09/ch09__mca_0003_0000_0008.edf ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/Mca2Edf.py0000644000000000000000000005135014741736366017741 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import time from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() if QTVERSION >= '4.0.0': qt.Qt.WDestructiveClose = "TO BE DONE" from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.pymca import McaCustomEvent from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaCore import SpecFileLayer from PyMca5 import PyMcaDirs if sys.platform.startswith("darwin"): import threading QThread = threading.Thread else: QThread = qt.QThread class Mca2EdfGUI(qt.QWidget): def __init__(self,parent=None,name="Mca to Edf Conversion",fl=qt.Qt.WDestructiveClose, filelist=None,outputdir=None, actions=0): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) #layout.setAutoAdd(1) self.__build(actions) if filelist is None: filelist = [] self.outputDir = None self.inputDir = None self.setFileList(filelist) self.setOutputDir(outputdir) def __build(self,actions): self.__grid= qt.QWidget(self) #self.__grid.setGeometry(qt.QRect(30,30,288,156)) grid = qt.QGridLayout(self.__grid) grid.setContentsMargins(11, 11, 11, 11) grid.setSpacing(6) #input list listrow = 0 listlabel = qt.QLabel(self.__grid) listlabel.setText("Input File list:") self.__listView = qt.QTextEdit(self.__grid) self.__listView.setMaximumHeight(30*listlabel.sizeHint().height()) self.__listButton = qt.QPushButton(self.__grid) self.__listButton.setText('Browse') self.__listButton.clicked.connect(self.browseList) grid.addWidget(listlabel, listrow, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) grid.addWidget(self.__listView, listrow, 1) grid.addWidget(self.__listButton,listrow, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) #output dir outrow = 1 outlabel = qt.QLabel(self.__grid) outlabel.setText("Output dir:") self.__outLine = qt.QLineEdit(self.__grid) self.__outLine.setReadOnly(True) #self.__outLine.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Maximum, qt.QSizePolicy.Fixed)) self.__outButton = qt.QPushButton(self.__grid) self.__outButton.setText('Browse') self.__outButton.clicked.connect(self.browseOutputDir) grid.addWidget(outlabel, outrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__outLine, outrow, 1) grid.addWidget(self.__outButton, outrow, 2, qt.Qt.AlignLeft) #step filesteprow =2 filesteplabel = qt.QLabel(self.__grid) filesteplabel.setText("New EDF file each") filesteplabel2 = qt.QLabel(self.__grid) self.__fileSpin = qt.QSpinBox(self.__grid) self.__fileSpin.setMinimum(1) self.__fileSpin.setMaximum(999999) self.__fileSpin.setValue(1) filesteplabel2.setText("mca") grid.addWidget(filesteplabel, filesteprow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__fileSpin,filesteprow, 1) grid.addWidget(filesteplabel2, filesteprow, 2, qt.Qt.AlignLeft) self.mainLayout.addWidget(self.__grid) if actions: self.__buildActions() def __buildActions(self): box = qt.QWidget(self) boxLayout = qt.QHBoxLayout(box) boxLayout.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton = qt.QPushButton(box) boxLayout.addWidget(self.__dismissButton) boxLayout.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton.setText("Close") self.__startButton = qt.QPushButton(box) boxLayout.addWidget(self.__startButton) boxLayout.addWidget(qt.HorizontalSpacer(box)) self.__startButton.setText("Start") self.mainLayout.addWidget(box) self.__dismissButton.clicked.connect(self.close) self.__startButton.clicked.connect(self.start) def setFileList(self,filelist=None): if filelist is None:filelist = [] if True or self.__goodFileList(filelist): text = "" #respect initial file list choice #filelist.sort() for ffile in filelist: text += "%s\n" % ffile self.fileList = filelist self.__listView.setText(text) if len(filelist): PyMcaDirs.inputDir = os.path.dirname(filelist[0]) def setOutputDir(self,outputdir=None): if outputdir is None:return if self.__goodOutputDir(outputdir): self.outputDir = outputdir self.__outLine.setText(outputdir) PyMcaDirs.outputDir = self.outputDir else: qt.QMessageBox.critical(self, "ERROR", "Cannot use output directory:\n%s"% (outputdir)) def __goodFileList(self,filelist): if not len(filelist):return True for file in filelist: if not os.path.exists(file): qt.QMessageBox.critical(self, "ERROR",'File %s\ndoes not exists' % file) self.raiseW() return False return True def __goodOutputDir(self,outputdir): if os.path.isdir(outputdir): return True else: return False def browseList(self): if self.inputDir is None: self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir filelist = PyMcaFileDialogs.getFileList(parent=self, filetypelist=["Mca Files (*.mca)", "Spec Files (*.dat)", "All Files (*)"], message="Open a set of files", currentdir=wdir, mode="OPEN", getfilter=False, single=False, currentfilter=None, native=False) if len(filelist): self.setFileList(filelist) self.raise_() def browseOutputDir(self): if self.outputDir is None: self.outputDir = PyMcaDirs.outputDir if not os.path.exists(self.outputDir): self.outputDir = os.getcwd() wdir = self.outputDir outdir = PyMcaFileDialogs.getExistingDirectory(parent=self, message="Output Directory Selection", mode="SAVE", currentdir=wdir) if len(outdir): self.setOutputDir(outdir) def start(self): if not len(self.fileList): qt.QMessageBox.critical(self, "ERROR",'Empty file list') self.raise_() return if (self.outputDir is None) or (not self.__goodOutputDir(self.outputDir)): qt.QMessageBox.critical(self, "ERROR",'Invalid output directory') self.raise_() return name = "Batch from %s to %s " % (os.path.basename(self.fileList[ 0]), os.path.basename(self.fileList[-1])) window = Mca2EdfWindow(name="Mca 2 Edf "+name,actions=1) self.fileStep = int(qt.safe_str(self.__fileSpin.text())) b = Mca2EdfBatch(window,self.fileList,self.outputDir, self.fileStep) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) qApp = qt.QApplication.instance() qApp.aboutToQuit.connect(cleanup) self.__window = window self.__b = b window.show() b.start() class Mca2EdfBatch(QThread): def __init__(self, parent, filelist=None, outputdir = None, filestep = 1): self._filelist = filelist self.outputdir = outputdir self.filestep = filestep QThread.__init__(self) self.parent = parent self.pleasePause = 0 def processList(self): self.__ncols = None self.__nrows = self.filestep counter = 0 ffile = SpecFileLayer.SpecFileLayer() for fitfile in self._filelist: self.onNewFile(fitfile, self._filelist) ffile.SetSource(fitfile) fileinfo = ffile.GetSourceInfo() # nscans = len(fileinfo['KeyList']) for scankey in fileinfo['KeyList']: scan,order = scankey.split(".") info,data = ffile.LoadSource(scankey) scan_obj = ffile.Source.select(scankey) if info['NbMca'] > 0: for i in range(info['NbMca']): point = int(i/info['NbMcaDet']) + 1 mca = (i % info['NbMcaDet']) + 1 key = "%s.%s.%05d.%d" % (scan,order,point,mca) if i == 0: mcainfo,mcadata = ffile.LoadSource(key) mcadata = scan_obj.mca(i+1) y0 = numpy.array(mcadata, numpy.float64) if counter == 0: key0 = "%s key %s" % (os.path.basename(fitfile), key) self.__ncols = len(y0) image = numpy.zeros((self.__nrows,self.__ncols), \ numpy.float64) if self.__ncols != len(y0): print("spectrum has different number of columns") print("skipping it") else: image[counter,:] = y0[:] if (counter+1) == self.filestep: if self.filestep > 1: key1 = "%s key %s" % (os.path.basename(fitfile), key) title = "%s to %s" % (key0, key1) else: title = key0 if 1: ddict={} if 'Channel0' in mcainfo: ddict['MCA start ch'] =\ int(mcainfo['Channel0']) if 'McaCalib' in mcainfo: ddict['MCA a'] = mcainfo['McaCalib'][0] ddict['MCA b'] = mcainfo['McaCalib'][1] ddict['MCA c'] = mcainfo['McaCalib'][2] else: ddict = mcainfo ddict['Title'] = title edfname = os.path.join(self.outputdir,title.replace(" ","_")+".edf") edfout = EdfFile.EdfFile(edfname) edfout.WriteImage (ddict , image, Append=0) counter = 0 else: counter += 1 self.onEnd() def run(self): self.processList() def onNewFile(self, file, filelist): qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'file':file, 'filelist':filelist, 'event':'onNewFile'})) if self.pleasePause:self.__pauseMethod() def onEnd(self): qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'onEnd'})) if self.pleasePause:self.__pauseMethod() def __pauseMethod(self): qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) while(self.pleasePause): time.sleep(1) qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) class Mca2EdfWindow(qt.QWidget): def __init__(self,parent=None, name="BatchWindow", fl=0, actions = 0): if qt.qVersion() < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.l = qt.QVBoxLayout(self) self.l.setContentsMargins(0, 0, 0, 0) self.l.setSpacing(0) self.bars =qt.QWidget(self) self.l.addWidget(self.bars) self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('File Progress:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.status = qt.QLabel(self) self.l.addWidget(self.status) self.status.setText(" ") self.timeLeft = qt.QLabel(self) self.l.addWidget(self.timeLeft) self.timeLeft.setText("Estimated time left = ???? min") self.time0 = None if actions: self.addButtons() self.show() self.raise_() def addButtons(self): self.actions = 1 self.buttonsBox = qt.QWidget(self) l = qt.QHBoxLayout(self.buttonsBox) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.pauseButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton.setText("Pause") self.abortButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.abortButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.abortButton.setText("Abort") self.l.addWidget(self.buttonsBox) self.update() def customEvent(self,event): if event.dict['event'] == 'onNewFile':self.onNewFile(event.dict['file'], event.dict['filelist']) elif event.dict['event'] == 'onEnd': self.onEnd(event.dict) elif event.dict['event'] == 'batchPaused': self.onPause() elif event.dict['event'] == 'batchResumed':self.onResume() else: print("Unhandled event %s" % event) def onNewFile(self, file, filelist): indexlist = range(0,len(filelist)) index = indexlist.index(filelist.index(file)) nfiles = len(indexlist) self.status.setText("Processing file %s" % file) e = time.time() self.progressBar.setMaximum(nfiles) self.progressBar.setValue(index) if self.time0 is not None: t = (e - self.time0) * (nfiles - index) self.time0 =e if t < 120: self.timeLeft.setText("Estimated time left = %d sec" % (t)) else: self.timeLeft.setText("Estimated time left = %d min" % (int(t / 60.))) else: self.time0 = e if sys.platform == 'darwin': qApp = qt.QApplication.instance() qApp.processEvents() def onEnd(self,ddict): n = self.progressBar.value() self.progressBar.setValue(n+1) self.status.setText ("Batch Finished") self.timeLeft.setText("Estimated time left = 0 sec") if self.actions: self.pauseButton.hide() self.abortButton.setText("OK") def onPause(self): pass def onResume(self): pass def main(): import logging from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel import getopt options = 'f' longoptions = ['outdir=', 'listfile=', 'mcastep=', 'logging=', 'debug='] filelist = None outdir = None listfile = None mcastep = 1 opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt, arg in opts: if opt in ('--outdir'): outdir = arg elif opt in ('--listfile'): listfile = arg elif opt in ('--mcastep'): mcastep = int(arg) logging.basicConfig(level=getLoggingLevel(opts)) if listfile is None: filelist=[] for item in args: filelist.append(item) else: fd = open(listfile) filelist = fd.readlines() fd.close() for i in range(len(filelist)): filelist[i]=filelist[i].replace('\n','') app=qt.QApplication(sys.argv) winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) app.lastWindowClosed.connect(app.quit) if len(filelist) == 0: w = Mca2EdfGUI(actions=1) w.show() sys.exit(app.exec()) else: text = "Batch from %s to %s" % (os.path.basename(filelist[0]), \ os.path.basename(filelist[-1])) window = Mca2EdfWindow(name=text,actions=1) b = Mca2EdfBatch(window,filelist,outdir,mcastep) def cleanup(): b.pleasePause = 0 b.pleaseBreak = 1 b.wait() qApp = qt.QApplication.instance() qApp.processEvents() def pause(): if b.pleasePause: b.pleasePause=0 window.pauseButton.setText("Pause") else: b.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(window.close) app.aboutToQuit.connect(cleanup) window.show() b.start() sys.exit(app.exec()) if __name__ == "__main__": main() # Mca2Edf.py --outdir=/tmp --mcastep=1 *.mca # PyMcaBatch.py --cfg=/mntdirect/_bliss/users/sole/COTTE/WithLead.cfg --outdir=/tmp/ /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0007.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0008.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0009.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0010.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0011.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0012.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0013.edf & # PyMcaBatch.exe --cfg=E:/COTTE/WithLead.cfg --outdir=C:/tmp/ E:/COTTE/ch09/ch09__mca_0003_0000_0007.edf E:/COTTE/ch09/ch09__mca_0003_0000_0008.edf ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/McaCalibrationControlGUI.py0000644000000000000000000002740114741736366023316 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs _logger = logging.getLogger(__name__) class McaCalibrationControlGUI(qt.QWidget): sigMcaCalibrationControlGUISignal = qt.pyqtSignal(object) def __init__(self, parent=None, name=""): qt.QWidget.__init__(self, parent) if name is not None: self.setWindowTitle(name) self.lastInputDir = None self.build() self.connections() def build(self): layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.calbox = None self.calbut = None calibration = McaCalibrationControlLine(self) self.calbox = calibration.calbox self.calbut = calibration.calbut self.calinfo = McaCalibrationInfoLine(self) self.calmenu = qt.QMenu() self.calmenu.addAction(QString("Edit"), self._copysignal) self.calmenu.addAction(QString("Compute") ,self._computesignal) self.calmenu.addSeparator() self.calmenu.addAction(QString("Load") , self._loadsignal) self.calmenu.addAction(QString("Save") , self._savesignal) layout.addWidget(calibration) layout.addWidget(self.calinfo) def connections(self): #selection changed #self.connect(self.calbox,qt.SIGNAL("activated(const QString &)"), # self._calboxactivated) self.calbox.activated.connect(self._calboxactivated) self.calbut.clicked.connect(self._calbuttonclicked) def _calboxactivated(self, item=None): _logger.debug("Calibration box activated %s", qt.safe_str(item)) comboitem, combotext = self.calbox.getCurrent() self._emitpysignal(box=[comboitem, combotext], boxname='Calibration', event='activated') def _calbuttonclicked(self): _logger.debug("Calibration button clicked") self.calmenu.exec(self.cursor().pos()) def _copysignal(self): comboitem, combotext = self.calbox.getCurrent() self._emitpysignal(button="CalibrationCopy", box=[comboitem, combotext], event='clicked') def _computesignal(self): comboitem, combotext = self.calbox.getCurrent() self._emitpysignal(button="Calibration", box=[comboitem, combotext], event='clicked') def _loadsignal(self): if self.lastInputDir is None: self.lastInputDir = PyMcaDirs.inputDir if self.lastInputDir is not None: if not os.path.exists(self.lastInputDir): self.lastInputDir = None self.lastInputFilter = "Calibration files (*.calib)\n" windir = self.lastInputDir if windir is None: windir = os.getcwd() filelist, filefilter = PyMcaFileDialogs.getFileList(self, filetypelist=["Calibration files (*.calib)"], message="Load existing calibration file", currentdir=windir, mode="OPEN", single=True, getfilter=True, currentfilter=self.lastInputFilter) if not len(filelist): return filename = qt.safe_str(filelist[0]) if len(filename) < 6: filename = filename + ".calib" elif filename[-6:] != ".calib": filename = filename + ".calib" self.lastInputDir = os.path.dirname(filename) comboitem,combotext = self.calbox.getCurrent() self._emitpysignal(button="CalibrationLoad", box=[comboitem,combotext], line_edit = filename, event='clicked') def _savesignal(self): if self.lastInputDir is None: self.lastInputDir = PyMcaDirs.outputDir if self.lastInputDir is not None: if not os.path.exists(self.lastInputDir): self.lastInputDir = None self.lastInputFilter = "Calibration files (*.calib)\n" windir = self.lastInputDir if windir is None: windir = "" filelist, filefilter = PyMcaFileDialogs.getFileList(self, filetypelist=["Calibration files (*.calib)"], message="Save a new calibration file", currentdir=windir, mode="SAVE", single=True, getfilter=True, currentfilter=self.lastInputFilter) if not len(filelist): return filename = qt.safe_str(filelist[0]) if len(filename) < 6: filename = filename + ".calib" elif filename[-6:] != ".calib": filename = filename + ".calib" self.lastInputDir = os.path.dirname(filename) PyMcaDirs.outputDir = os.path.dirname(filename) comboitem,combotext = self.calbox.getCurrent() self._emitpysignal(button="CalibrationSave", box=[comboitem,combotext], line_edit = filename, event='clicked') def _emitpysignal(self,button=None, box=None, boxname=None, checkbox=None, line_edit=None, event=None): _logger.debug("_emitpysignal called %s %s", button, box) data={} data['button'] = button data['box'] = box data['checkbox'] = checkbox data['line_edit'] = line_edit data['event'] = event data['boxname'] = boxname self.sigMcaCalibrationControlGUISignal.emit(data) class McaCalibrationControlLine(qt.QWidget): def __init__(self, parent=None, name=None, calname="", caldict = None): if caldict is None: caldict = {} qt.QWidget.__init__(self, parent) if name is not None: self.setWindowTitle(name) self.l = qt.QHBoxLayout(self) self.l.setContentsMargins(0, 0, 0, 0) self.l.setSpacing(0) self.build() def build(self): widget = self callabel = qt.QLabel(widget) callabel.setText(str("%s" % 'Calibration')) self.calbox = SimpleComboBox(widget, options=['None', 'Original (from Source)', 'Internal (from Source OR PyMca)']) self.calbox.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Expanding, qt.QSizePolicy.Fixed)) self.calbut = qt.QPushButton(widget) self.calbut.setText('Calibrate') self.calbut.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) self.l.addWidget(callabel) self.l.addWidget(self.calbox) self.l.addWidget(self.calbut) class McaCalibrationInfoLine(qt.QWidget): def __init__(self, parent=None, name=None, calname="", caldict = None): if caldict is None: caldict = {} qt.QWidget.__init__(self, parent) if name is not None:self.setWindowTitle(name) self.caldict=caldict if calname not in self.caldict.keys(): self.caldict[calname] = {} self.caldict[calname]['order'] = 1 self.caldict[calname]['A'] = 0.0 self.caldict[calname]['B'] = 1.0 self.caldict[calname]['C'] = 0.0 self.currentcal = calname self.build() self.setParameters(self.caldict[calname]) def build(self): layout= qt.QHBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) parw = self self.lab= qt.QLabel("Active Curve Uses", parw) layout.addWidget(self.lab) lab= qt.QLabel("A:", parw) layout.addWidget(lab) self.AText= qt.QLineEdit(parw) self.AText.setReadOnly(1) layout.addWidget(self.AText) lab= qt.QLabel("B:", parw) layout.addWidget(lab) self.BText= qt.QLineEdit(parw) self.BText.setReadOnly(1) layout.addWidget(self.BText) lab= qt.QLabel("C:", parw) layout.addWidget(lab) self.CText= qt.QLineEdit(parw) self.CText.setReadOnly(1) layout.addWidget(self.CText) def setParameters(self, pars, name = None): if name is not None: self.currentcal = name if 'order' in pars: order = pars['order'] elif pars["C"] != 0.0: order = 2 else: order = 1 self.AText.setText("%.8g" % pars["A"]) self.BText.setText("%.8g" % pars["B"]) self.CText.setText("%.8g" % pars["C"]) """ if pars['order'] > 1: self.orderbox.setCurrentItem(1) self.CText.setReadOnly(0) else: self.orderbox.setCurrentItem(0) self.CText.setReadOnly(1) """ self.caldict[self.currentcal]["A"] = pars["A"] self.caldict[self.currentcal]["B"] = pars["B"] self.caldict[self.currentcal]["C"] = pars["C"] self.caldict[self.currentcal]["order"] = order class SimpleComboBox(qt.QComboBox): def __init__(self, parent=None, name=None, options=['1','2','3']): qt.QComboBox.__init__(self,parent) self.setOptions(options) def setOptions(self,options=['1','2','3']): self.clear() for item in options: self.addItem(item) def getCurrent(self): return self.currentIndex(), qt.safe_str(self.currentText()) if __name__ == '__main__': app = qt.QApplication(sys.argv) demo = McaCalibrationControlGUI() demo.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/McaCustomEvent.py0000644000000000000000000000422314741736366021432 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() if QTVERSION < '4.0': QT4 = False else: QT4 = True if QT4: MCAEVENT = qt.QEvent.User #MCAEVENT = 12345 class McaCustomEvent(qt.QEvent): def __init__(self, ddict={}): self.dict = ddict qt.QEvent.__init__(self, MCAEVENT) def type(self): return MCAEVENT else: #MCAEVENT = qt.QUserEvent + 1 MCAEVENT = 12345 class McaCustomEvent(qt.QCustomEvent): def __init__(self, dict={}): qt.QCustomEvent.__init__(self, MCAEVENT) self.dict = dict ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/McaLegendselector.py0000644000000000000000000001133714741736366022121 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2017 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "P. Knobel - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy import numpy from silx.gui.plot import LegendSelector class McaLegendsDockWidget(LegendSelector.LegendsDockWidget): """Subclassing of the silx LegendsDockWidget to handle curve renaming for McaWindow. """ def renameCurve(self, oldLegend, newLegend): """Change the name of a curve using remove and addCurve. The name must also be changed in dataObjetsDict and calDict. :param str oldLegend: The legend of the curve to be changed :param str newLegend: The new legend of the curve """ is_active = self.plot.getActiveCurve(just_legend=True) == oldLegend xChannels, yOrig, infoOrig = self.plot.getDataAndInfoFromLegend(oldLegend) curve = self.plot.getCurve(oldLegend) x = curve.getXData() y = curve.getYData() info = curve.getInfo() calib = info.get('McaCalib', [0.0, 1.0, 0.0]) calibrationOrder = info.get('McaCalibOrder', 2) if calibrationOrder == 'TOF': xFromChannels = calib[2] + calib[0] / pow(xChannels-calib[1], 2) else: xFromChannels = calib[0] + \ calib[1] * xChannels + calib[2] * xChannels * xChannels if numpy.allclose(xFromChannels, x): x = xChannels newInfo = copy.deepcopy(info) newInfo['legend'] = newLegend newInfo['SourceName'] = newLegend newInfo['Key'] = "" newInfo['selectiontype'] = "1D" self.plot.removeCurve(oldLegend) self.plot.addCurve(x, y, legend=newLegend, info=newInfo, color=curve.getColor(), symbol=curve.getSymbol(), linewidth=curve.getLineWidth(), linestyle=curve.getLineStyle(), xlabel=curve.getXLabel(), ylabel=curve.getYLabel(), xerror=curve.getXErrorData(copy=False), yerror=curve.getYErrorData(copy=False), z=curve.getZValue(), selectable=curve.isSelectable(), fill=curve.isFill(), resetzoom=False) if is_active: self.plot.setActiveCurve(newLegend) # make sure the dicts are also renamed self._renameInDataObjectsDict(oldLegend, newLegend) self._renameInCalDict(oldLegend, newLegend) def _renameInDataObjectsDict(self, oldLegend, newLegend): # This seems to be useless but I don't know why. # dataObjectDict is already properly renamed. if oldLegend in self.plot.dataObjectsDict: self.plot.dataObjectsDict[newLegend] = copy.deepcopy( self.plot.dataObjectsDict[oldLegend]) self.plot.dataObjectsDict[newLegend].info['legend'] = newLegend del self.plot.dataObjectsDict[oldLegend] def _renameInCalDict(self, oldLegend, newLegend): if oldLegend in self.plot.caldict: self.plot.caldict[newLegend] = copy.deepcopy(self.plot.caldict[oldLegend]) del self.plot.caldict[oldLegend] ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/McaSimpleFit.py0000644000000000000000000002732614741736366021063 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.math.fitting import SpecfitGui from PyMca5.PyMcaMath.fitting import Specfit class McaSimpleFit(qt.QWidget): sigMcaSimpleFitSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="McaSimpleFit", specfit=None,fl=0): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) if specfit is None: self.specfit = Specfit.Specfit() else: self.specfit = specfit layout = qt.QVBoxLayout(self) ############## self.headerlabel = qt.QLabel(self) self.headerlabel.setAlignment(qt.Qt.AlignHCenter) self.setheader('Fit of XXXXXXXXXX from Channel XXXXX to XXXX<\b>') ############## defaultFunctions = "SpecfitFunctions.py" if not os.path.exists(defaultFunctions): defaultFunctions = os.path.join(os.path.dirname(__file__), defaultFunctions) self.specfit.importfun(defaultFunctions) self.specfit.settheory('Area Gaussians') self.specfit.setbackground('Linear') fitconfig = {} fitconfig.update(self.specfit.fitconfig) fitconfig['WeightFlag'] = 1 fitconfig['McaMode'] = 1 self.specfit.configure(**fitconfig) self.specfitGui = SpecfitGui.SpecfitGui(self,config=1, status=1, buttons=0, specfit = self.specfit,eh=self.specfit.eh) layout.addWidget(self.headerlabel) layout.addWidget(self.specfitGui) hbox = qt.QWidget(self) hboxLayout = qt.QHBoxLayout(hbox) self.estimatebutton = qt.QPushButton(hbox) self.estimatebutton.setText("Estimate") hs1 = qt.HorizontalSpacer(hbox) self.fitbutton = qt.QPushButton(hbox) self.fitbutton.setText("Fit Again!") self.dismissbutton = qt.QPushButton(hbox) self.dismissbutton.setText("Dismiss") self.estimatebutton.clicked.connect(self.estimate) self.fitbutton.clicked.connect(self.fit) self.dismissbutton.clicked.connect(self.dismiss) self.specfitGui.sigSpecfitGuiSignal.connect(self.__anasignal) hs2 = qt.HorizontalSpacer(hbox) hboxLayout.addWidget(hs1) hboxLayout.addWidget(self.estimatebutton) hboxLayout.addWidget(self.fitbutton) hboxLayout.addWidget(self.dismissbutton) hboxLayout.addWidget(hs2) layout.addWidget(hbox) self.estimatebutton.hide() def setdata(self,*var,**kw): self.info ={} if 'legend' in kw: self.info['legend'] = kw['legend'] del kw['legend'] else: self.info['legend'] = 'Unknown Origin' if 'xlabel' in kw: self.info['xlabel'] = kw['xlabel'] del kw['xlabel'] else: self.info['xlabel'] = 'X' self.specfit.setdata(var,**kw) try: self.info['xmin'] = "%.3f" % min(self.specfit.xdata[0], self.specfit.xdata[-1]) except Exception: self.info['xmin'] = 'First' try: self.info['xmax'] = "%.3f" % max(self.specfit.xdata[0], self.specfit.xdata[-1]) except Exception: self.info['xmax'] = 'Last' self.setheader(text="Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax'])) def setheader(self,*var,**kw): if len(var): text = var[0] elif 'text' in kw: text = kw['text'] elif 'header' in kw: text = kw['header'] else: text = "" self.headerlabel.setText("%s<\b>" % text) def fit(self): if self.specfit.fitconfig['McaMode']: fitconfig = {} fitconfig.update(self.specfit.fitconfig) self.specfitGui.updateGui(configuration=fitconfig) #the GUI already takes care of mcafit self.specfitGui.estimate() else: #self.specfitGui.estimate() self.specfitGui.startfit() def estimate(self): fitconfig = {} fitconfig.update(self.specfit.fitconfig) self.specfitGui.updateGui(configuration=fitconfig) self.specfitGui.estimate() def _emitSignal(self, ddict): self.sigMcaSimpleFitSignal.emit(ddict) def __anasignal(self,ddict): if type(ddict) != type({}): return if 'event' in ddict: if ddict['event'].upper() == "PRINT": h = self.__htmlheader() if __name__ == "__main__": self.__print(h+ddict['text']) else: ndict={} ndict['event'] = "McaSimpleFitPrint" ndict['text' ] = h+ddict['text'] ndict['info' ] = {} ndict['info'].update(self.info) self.sigMcaSimpleFitSignal.emit(ndict) if ddict['event'] == "McaModeChanged": if ddict['data']: self.estimatebutton.hide() else: self.estimatebutton.show() else: ddict['info'] = {} ddict['info'].update(self.info) if ddict['event'] == 'FitFinished': #write the simple fit output in a form acceptable by McaWindow ddict['event'] = 'McaFitFinished' ddict['data'] = [self.specfitGui.specfit.mcagetresult()] self.sigMcaSimpleFitSignal.emit(ddict) def dismiss(self): self.close() def closeEvent(self, event): ddict = {} ddict["event"] = "McaSimpleFitClosed" self.sigMcaSimpleFitSignal.emit(ddict) return qt.QWidget.closeEvent(self, event) def __htmlheader(self): try: header="Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax']) except Exception: header = 'Fit of XXXXXXXXXX from Channel XXXXX to XXXX' if self.specfit.fitconfig['WeightFlag']: weight = "YES" else: weight = "NO" if self.specfit.fitconfig['McaMode']: mode = "YES" else: mode = "NO" theory = self.specfit.fitconfig['fittheory'] bkg = self.specfit.fitconfig['fitbkg'] fwhm = self.specfit.fitconfig['FwhmPoints'] scaling = self.specfit.fitconfig['Yscaling'] h="" h+="
" h+="%s" % header h+="

" h+="" h+="" h+=" " h+=" " h+=" " % theory h+=" " h+=" " h+=" " h+=" " % weight h+=" " h+=" " h+=" " h+=" " % fwhm h+="" h+="" h+=" " h+=" " % bkg h+=" " h+=" " h+=" " h+=" " % mode h+=" " h+=" " h+=" " h+=" " % scaling h+="" h+="
Function:%sWeight:%sFWHM:%d
Background" h+=" :%sMCA Mode:%sScaling:%g
" h+="
" return h def __print(self,text): printer = qt.QPrinter() if printer.setup(self): painter = qt.QPainter() if not(painter.begin(printer)): return 0 try: metrics = qt.QPaintDeviceMetrics(printer) dpiy = metrics.logicalDpiY() margin = int((2/2.54) * dpiy) #2cm margin body = qt.QRect(0.5*margin, margin, metrics.width()- 1 * margin, metrics.height() - 2 * margin) #text = self.mcatable.gettext() #html output -> print text richtext = qt.QSimpleRichText(text, qt.QFont(), qt.QString(""), #0, qt.QStyleSheet.defaultSheet(), qt.QMimeSourceFactory.defaultFactory(), body.height()) view = qt.QRect(body) richtext.setWidth(painter,view.width()) page = 1 while(1): richtext.draw(painter,body.left(),body.top(), view,qt.QColorGroup()) view.moveBy(0, body.height()) painter.translate(0, -body.height()) painter.drawText(view.right() - painter.fontMetrics().maxWidth()*len(qt.QString.number(page)), view.bottom() - painter.fontMetrics().ascent() + 5,qt.QString.number(page)) if view.top() >= richtext.height(): break printer.newPage() page += 1 #painter.flush() painter.end() except Exception: #painter.flush() painter.end() msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec_loop() if __name__ == "__main__": import sys app = qt.QApplication(sys.argv) demo = McaSimpleFit() demo.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/McaWindow.py0000644000000000000000000022721514741736366020435 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import time import traceback import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str if __name__ == "__main__": app = qt.QApplication([]) import copy from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from .ScanWindow import ScanWindow from . import McaCalibrationControlGUI from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.physics.xrf import McaAdvancedFit from PyMca5.PyMcaGui.physics.xrf import McaCalWidget from PyMca5.PyMcaCore import DataObject from . import McaSimpleFit from PyMca5.PyMcaMath.fitting import Specfit from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave1D MATPLOTLIB = True # force understanding of utf-8 encoding # otherwise it cannot generate svg output try: import encodings.utf_8 except Exception: # not a big problem pass _logger = logging.getLogger(__name__) # _logger.setLevel(logging.DEBUG class McaWindow(ScanWindow): def __init__(self, parent=None, name="Mca Window", specfit=None, backend=None, plugins=True, newplot=False, roi=True, fit=True, **kw): ScanWindow.__init__(self, parent, name=name, newplot=newplot, plugins=plugins, backend=backend, roi=roi, fit=fit, **kw) self.setWindowType("MCA") # these two objects are the same self.dataObjectsList = self._curveList # but this is tricky self.dataObjectsDict = {} #self.setWindowTitle(name) self.outputDir = None self.outputFilter = None self.matplotlibDialog = None self.calibration = 'None' self.calboxoptions = ['None','Original (from Source)','Internal (from Source OR PyMca)'] self.caldict={} self.calwidget = None self.currentROI = None self.peakmarker = None if specfit is None: self.specfit = Specfit.Specfit() else: self.specfit = specfit self.simplefit = McaSimpleFit.McaSimpleFit(specfit=self.specfit) self.specfit.fitconfig['McaMode'] = 1 self.advancedfit = McaAdvancedFit.McaAdvancedFit() self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) _logger.debug("printPreview id = %d" % id(self.printPreview)) self._buildCalibrationControlWidget() self._toggleCounter = 2 self._togglePointsSignal() self._ownSignal = None self.changeGridLevel() self.connections() self.setGraphYLabel('Counts') if 1: self.fitButtonMenu = qt.QMenu() self.fitButtonMenu.addAction(QString("Simple"), self.mcaSimpleFitSignal) self.fitButtonMenu.addAction(QString("Advanced") , self.mcaAdvancedFitSignal) #self.fitButtonMenu.addAction(QString("Simple Fit"), # self._simpleFitSignal) #self.fitButtonMenu.addAction(QString("Customized Fit") , # self._customFitSignal) def _buildCalibrationControlWidget(self): widget = self.centralWidget() self.controlWidget = McaCalibrationControlGUI.McaCalibrationControlGUI(\ widget) widget.layout().addWidget(self.controlWidget) self.controlWidget.sigMcaCalibrationControlGUISignal.connect(\ self.__anasignal) def connections(self): self.simplefit.sigMcaSimpleFitSignal.connect(self.__anasignal) self.advancedfit.sigMcaAdvancedFitSignal.connect(self.__anasignal) def mcaSimpleFitSignal(self): legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('MCA Window Simple Fit') msg.exec() return x, y, info = self.getDataAndInfoFromLegend(legend) self.advancedfit.hide() self.simplefit.show() self.simplefit.setFocus() self.simplefit.raise_() if info is not None: xmin, xmax = self.getGraphXLimits() self.__simplefitcalmode = self.calibration curveinfo = info if self.calibration == 'None': calib = [0.0, 1.0, 0.0] else: if 'McaCalib' in curveinfo: calib = curveinfo['McaCalib'] else: calib = [0.0, 1.0, 0.0] self.__simplefitcalibration = calib calibrationOrder = curveinfo.get('McaCalibOrder', 2) if calibrationOrder == 'TOF': x = calib[2] + calib[0] / pow(x - alib[1],2) else: x = calib[0] + calib[1] * x + calib[2] * x * x self.simplefit.setdata(x=x,y=y, xmin=xmin, xmax=xmax, legend=legend) """ if self.specfit.fitconfig['McaMode']: self.specfitGUI.guiparameters.fillfromfit(self.specfit.paramlist, current='Region 1') self.specfitGUI.guiparameters.removeallviews(keep='Region 1') else: self.specfitGUI.guiparameters.fillfromfit(self.specfit.paramlist, current='Fit') self.specfitGUI.guiparameters.removeallviews(keep='Fit') """ if self.specfit.fitconfig['McaMode']: self.simplefit.fit() else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error. Trying to fit fitted data?") msg.setWindowTitle('MCA Window Simple Fit') msg.exec() def getActiveCurve(self, just_legend=False): _logger.debug("Local MCA window getActiveCurve called!!!!") legend = super(McaWindow, self).getActiveCurve(just_legend) if just_legend: return legend activeCurve = legend if activeCurve in [None, []]: return None x = activeCurve[0] y = activeCurve[1] legend = activeCurve[2] curveinfo = activeCurve[3] xlabel = self.getGraphXLabel() ylabel = self.getGraphYLabel() """ if legend in self.dataObjectsDict.keys(): info = self.dataObjectsDict[legend].info if str(xlabel.upper()) != "CHANNEL": x = self.dataObjectsDict[legend].x[0] else: info = None else: info = None if info is not None: if self.calibration == 'None': calib = [0.0,1.0,0.0] else: if 'McaCalib' in curveinfo: calib = curveinfo['McaCalib'] else: calib = [0.0, 1.0, 0.0] calibrationOrder = curveinfo.get('McaCalibOrder',2) if calibrationOrder == 'TOF': x = calib[2] + calib[0] / pow(x - calib[1],2) else: x = calib[0] + calib[1] * x + calib[2] * x * x else: info = curveinfo """ info = curveinfo info['xlabel'] = xlabel info['ylabel'] = ylabel return x, y, legend, info def getDataAndInfoFromLegend(self, legend): """ Tries to provide the requested curve in terms of the channels and not in the terms as it is displayed. """ xdata = None ydata = None info = None if legend in self.dataObjectsDict: # The data as displayed x, y, legend, curveinfo = self.getCurve(legend)[:4] # the data as first entered info = self.dataObjectsDict[legend].info if self.calibration == 'None': if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] return x, y, curveinfo elif 'McaCalibSource' in info: return x, y, info else: return x, y, curveinfo else: if 'McaCalib' in curveinfo: calib = curveinfo['McaCalib'] current = True else: calib = info['McaCalib'] current = False x0 = self.dataObjectsDict[legend].x[0] energy = calib[0] + calib[1] * x0 + calib[2] * x0 * x0 if numpy.allclose(x, energy): xdata = self.dataObjectsDict[legend].x[0] ydata = y if current: return xdata, ydata, curveinfo else: return xdata, ydata, info else: # return current data return x, y, curveinfo else: info = None xdata = None ydata = None return xdata, ydata, info def mcaAdvancedFitSignal(self): legend = self.getActiveCurve(just_legend=True) if legend in [None, []]: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('MCA Window') msg.exec() return x, y, info = self.getDataAndInfoFromLegend(legend) curveinfo = self.getCurve(legend)[3] xmin,xmax = self.getGraphXLimits() if self.calibration == 'None': if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] elif 'McaCalibSource' in info: calib = info['McaCalibSource'] else: calib = [0.0, 1.0, 0.0] else: calib = curveinfo['McaCalib'] energy = calib[0] + calib[1] * x + calib[2] * x * x i1 = min(numpy.nonzero(energy >= xmin)[0]) i2 = max(numpy.nonzero(energy <= xmax)[0]) xmin = x[i1] * 1.0 xmax = x[i2] * 1.0 if self.simplefit is not None: self.simplefit.hide() self.advancedfit.show() self.advancedfit.setFocus() self.advancedfit.raise_() if info is not None: xlabel = 'Channel' self.advancedfit.setData(x=x, y=y, xmin=xmin, xmax=xmax, legend=legend, xlabel=xlabel, calibration=calib, sourcename=info['SourceName'], time=info.get('McaLiveTime', None)) self.advancedfit.fit() else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error. Trying to fit fitted data?") msg.exec() return def __anasignal(self,dict): _logger.debug("__anasignal called dict = ",dict) if dict['event'] == 'clicked': # A button has been cicked if dict['button'] == 'Source': pass elif dict['button'] == 'Calibration': #legend,x,y = self.graph.getactivecurve() legend = self.getActiveCurve(just_legend=1) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.exec() return else: x, y, info = self.getDataAndInfoFromLegend(legend) if info is None: return ndict = {} ndict[legend] = {'order':1, 'A':0.0, 'B':1.0, 'C':0.0} if legend in self.caldict: ndict[legend].update(self.caldict[legend]) if abs(ndict[legend]['C']) > 0.0: ndict[legend]['order'] = self.caldict[legend].get('order', 2) elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][0] else: calib = info['McaCalib'] calibrationOrder = info.get('McaCalibOrder', 2) if len(calib) > 1: ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] if len(calib) >2: ndict[legend]['order'] = calibrationOrder ndict[legend]['C'] = calib[2] caldialog = McaCalWidget.McaCalWidget(legend=legend, x=x, y=y, modal=1, caldict=ndict) #info,x,y = self.getinfodatafromlegend(legend) #caldialog.graph.newCurve("fromlegend",x=x,y=y) ret = caldialog.exec() if ret == qt.QDialog.Accepted: self.caldict.update(caldialog.getDict()) item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() del caldialog elif dict['button'] == 'CalibrationCopy': #legend,x,y = self.graph.getactivecurve() legend = self.getActiveCurve(just_legend=1) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.exec() return else: x, y, info = self.getDataAndInfoFromLegend(legend) if info is None: return ndict=copy.deepcopy(self.caldict) if 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): sourcecal = info['McaCalib'][0] else: sourcecal = info['McaCalib'] else: sourcecal = [0.0,1.0,0.0] for curve in self.getAllCurves(just_legend=True): curveinfo = self.getCurve(curve)[3] if 'McaCalibSource' in curveinfo: key = "%s (Source)" % curve if key not in ndict: if not numpy.all(curveinfo['McaCalibSource'] == [0.0,1.0,0.0]): ndict[key] = {'A':curveinfo['McaCalibSource'][0], 'B':curveinfo['McaCalibSource'][1], 'C':curveinfo['McaCalibSource'][2]} if curveinfo['McaCalibSource'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 if curve not in self.caldict.keys(): if not numpy.all(curveinfo['McaCalib'] == [0.0,1.0,0.0]): if not numpy.all(curveinfo['McaCalib'] == curveinfo['McaCalibSource']): key = "%s (PyMca)" % curve ndict[key] = {'A':curveinfo['McaCalib'][0], 'B':curveinfo['McaCalib'][1], 'C':curveinfo['McaCalib'][2]} if curveinfo['McaCalib'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 else: if curve not in self.caldict.keys(): if not numpy.all(curveinfo['McaCalib'] == [0.0,1.0,0.0]): key = "%s (PyMca)" % curve ndict[key] = {'A':curveinfo['McaCalib'][0], 'B':curveinfo['McaCalib'][1], 'C':curveinfo['McaCalib'][2]} if curveinfo['McaCalib'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 if not (legend in self.caldict): ndict[legend]={} ndict[legend]['A'] = sourcecal[0] ndict[legend]['B'] = sourcecal[1] ndict[legend]['C'] = sourcecal[2] if sourcecal[2] != 0.0: ndict[legend]['order'] = 2 else: ndict[legend]['order'] = 1 caldialog = McaCalWidget.McaCalCopy(legend=legend,modal=1, caldict=ndict, sourcecal=sourcecal, fl=0) #info,x,y = self.getinfodatafromlegend(legend) #caldialog.graph.newCurve("fromlegend",x=x,y=y) ret = caldialog.exec() if ret == qt.QDialog.Accepted: self.caldict.update(caldialog.getDict()) item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() del caldialog elif dict['button'] == 'CalibrationLoad': item = dict['box'][0] itemtext = dict['box'][1] filename = dict['line_edit'] if not os.path.exists(filename): text = "Error. Calibration file %s not found " % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return cald = ConfigDict.ConfigDict() try: cald.read(filename) except Exception: text = "Error. Cannot read calibration file %s" % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return self.caldict.update(cald) options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) self.controlWidget.calbox.setCurrentIndex(options.index(itemtext)) self.calibration = itemtext * 1 self.controlWidget._calboxactivated(itemtext) except Exception: text = "Error. Problem updating combobox" msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return elif dict['button'] == 'CalibrationSave': filename = dict['line_edit'] cald = ConfigDict.ConfigDict() if os.path.exists(filename): try: os.remove(filename) except Exception: text = "Error. Problem deleting existing file %s" % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return cald.update(self.caldict) cald.write(filename) elif dict['button'] == 'Detector': pass elif dict['button'] == 'Search': pass elif dict['button'] == 'Fit': if dict['box'][1] == 'Simple': self.mcasimplefitsignal() elif dict['box'][1] == 'Advanced': self.mcaadvancedfitsignal() else: print("Unknown Fit Event") elif dict['event'] == 'activated': # A comboBox has been selected if dict['boxname'] == 'Source': pass elif dict['boxname'] == 'Calibration': self.calibration = dict['box'][1] self.clearMarkers() self.refresh() self.resetZoom() elif dict['boxname'] == 'Detector': pass elif dict['boxname'] == 'Search': pass elif dict['boxname'] == 'ROI': if dict['combotext'] == 'Add': pass elif dict['combotext'] == 'Del': pass else: pass elif dict['boxname'] == 'Fit': """ if dict['box'][1] == 'Simple': self.anacontainer.hide() else: self.anacontainer.show() """ pass else: _logger.debug("Unknown combobox",dict['boxname']) elif (dict['event'] == 'EstimateFinished'): pass elif (dict['event'] == 'McaAdvancedFitFinished') or \ (dict['event'] == 'McaAdvancedFitMatrixFinished') : x = dict['result']['xdata'] yb = dict['result']['continuum'] legend0= dict['info']['legend'] fitcalibration = [dict['result']['fittedpar'][0], dict['result']['fittedpar'][1], 0.0] if dict['event'] == 'McaAdvancedFitMatrixFinished': legend = dict['info']['legend'] + " Fit" legend3 = dict['info']['legend'] + " Matrix" ymatrix = dict['result']['ymatrix'] * 1.0 #copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType']= 'AdvancedFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend3 newDataObject.info['Key'] = legend3 newDataObject.info['McaCalib'] = fitcalibration * 1 newDataObject.x = [x] newDataObject.y = [ymatrix] newDataObject.m = None self.dataObjectsDict[legend3] = newDataObject #self.graph.newCurve(legend3,x=x,y=ymatrix,logfilter=1) else: legend = dict['info']['legend'] + " Fit" yfit = dict['result']['yfit'] * 1.0 #copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType']= 'AdvancedFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend newDataObject.info['Key'] = legend newDataObject.info['McaCalib'] = fitcalibration * 1 newDataObject.data = numpy.reshape(numpy.concatenate((x,yfit,yb),0),(3,len(x))) newDataObject.x = [x] newDataObject.y = [yfit] newDataObject.m = None self.dataObjectsDict[legend] = newDataObject #self.graph.newCurve(legend,x=x,y=yfit,logfilter=1) #the same for the background legend2 = dict['info']['legend'] + " Bkg" newDataObject2 = DataObject.DataObject() newDataObject2.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject2.info['SourceType']= 'AdvancedFit' newDataObject2.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject2.info['legend'] = legend2 newDataObject2.info['Key'] = legend2 newDataObject2.info['McaCalib'] = fitcalibration * 1 newDataObject2.data = None newDataObject2.x = [x] newDataObject2.y = [yb] newDataObject2.m = None self.dataObjectsDict[legend2] = newDataObject2 #self.graph.newCurve(legend2,x=x,y=yb,logfilter=1) if not (legend in self.caldict): self.caldict[legend] = {} self.caldict[legend] ['order'] = 1 self.caldict[legend] ['A'] = dict['result']['fittedpar'][0] self.caldict[legend] ['B'] = dict['result']['fittedpar'][1] self.caldict[legend] ['C'] = 0.0 options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) #I only reset the graph scale after a fit, not on a matrix spectrum if dict['event'] == 'McaAdvancedFitFinished': #get current limits if self.calibration == 'None': xmin, xmax =self.getGraphXLimits() emin = dict['result']['fittedpar'][0] + \ dict['result']['fittedpar'][1] * xmin emax = dict['result']['fittedpar'][0] + \ dict['result']['fittedpar'][1] * xmax else: emin,emax = self.getGraphXLimits() ymin, ymax =self.getGraphYLimits() self.controlWidget.calbox.setCurrentIndex(options.index(legend)) self.calibration = legend self.controlWidget._calboxactivated(legend) self.setGraphYLimits(ymin, ymax, replot=False) if emin < emax: self.setGraphXLimits(emin, emax, replot=True) else: self.setGraphXLimits(emax, emin, replot=True) except Exception: _logger.debug("Refreshing due to exception", sys.exc_info()[1]) self.refresh() #self.graph.replot() elif dict['event'] == 'McaFitFinished': mcaresult = dict['data'] legend = dict['info']['legend'] + " " i = 0 xfinal = [] yfinal = [] ybfinal= [] regions = [] legend0= dict['info']['legend'] mcamode = True for result in mcaresult: i += 1 if result['chisq'] is not None: mcamode = result['fitconfig']['McaMode'] idx=numpy.nonzero((self.specfit.xdata0>=result['xbegin']) & \ (self.specfit.xdata0<=result['xend']))[0] x=numpy.take(self.specfit.xdata0,idx) y=self.specfit.gendata(x=x,parameters=result['paramlist']) nparb= len(self.specfit.bkgdict[self.specfit.fitconfig['fitbkg']][1]) yb = self.specfit.gendata(x=x,parameters=result['paramlist'][0:nparb]) xtoadd = numpy.take(self.dataObjectsDict[legend0].x[0],idx).tolist() if not len(xtoadd): continue xfinal = xfinal + xtoadd regions.append([xtoadd[0],xtoadd[-1]]) yfinal = yfinal + y.tolist() ybfinal= ybfinal + yb.tolist() #self.graph.newCurve(legend + 'Region %d' % i,x=x,y=yfit,logfilter=1) legend = legend0 + " SFit" if legend in self.dataObjectsDict.keys(): if legend in self.getAllCurves(just_legend=True): if mcamode: if not ('baseline' in self.dataObjectsDict[legend].info): self.removeCurve(legend) else: if 'baseline' in self.dataObjectsDict[legend].info: self.removeCurve(legend) #copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType']= 'SimpleFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend newDataObject.info['Key'] = legend newDataObject.info['CalMode'] = self.__simplefitcalmode newDataObject.info['McaCalib'] = self.__simplefitcalibration x = numpy.array(xfinal) yfit = numpy.array(yfinal) yb = numpy.array(ybfinal) newDataObject.x = [x] newDataObject.y = [yfit] newDataObject.m = [numpy.ones(len(yfit)).astype(numpy.float64)] if mcamode: newDataObject.info['regions'] = regions newDataObject.info['baseline'] = yb self.dataObjectsDict[legend] = newDataObject self.refresh() return elif dict['event'] == 'McaTableFilled': if self.peakmarker is not None: self.graph.removeMarker(self.peakmarker) self.peakmarker = None elif dict['event'] == 'McaTableRowHeaderClicked': #I have to mark the peaks if dict['row'] >= 0: pos = dict['Position'] label = 'PEAK %d' % (dict['row']+1) if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.insertXMarker(pos, label, text=label, color='pink', draggable=False) self.peakmarker = label else: if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif dict['event'] == 'McaTableClicked': if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif (dict['event'] == 'McaAdvancedFitElementClicked') or \ (dict['event'] == 'ElementClicked'): #this has been moved to the fit window pass elif dict['event'] == 'McaAdvancedFitPrint': #self.advancedfit.printps(doit=1) self.printHtml(dict['text']) elif dict['event'] == 'McaSimpleFitPrint': self.printHtml(dict['text']) elif dict['event'] == 'McaSimpleFitClosed': if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None self.replot() elif dict['event'] == 'ScanFitPrint': self.printHtml(dict['text']) elif dict['event'] == 'AddROI': return super(McaWindow, self)._roiSignal(dict) elif dict['event'] == 'DelROI': return super(McaWindow, self)._roiSignal(dict) elif dict['event'] == 'ResetROI': return super(McaWindow, self)._roiSignal(dict) elif dict['event'] == 'ActiveROI': print("ActiveROI event") pass elif dict['event'] == 'selectionChanged': print("Selection changed event not implemented any more") else: _logger.debug("Unknown or ignored event",dict['event']) def emitCurrentROISignal(self): if self.currentROI is None: return #I have to get the current calibration if self.getGraphXLabel().upper() != "CHANNEL": #I have to get the energy A = self.controlWidget.calinfo.caldict['']['A'] B = self.controlWidget.calinfo.caldict['']['B'] C = self.controlWidget.calinfo.caldict['']['C'] order = self.controlWidget.calinfo.caldict['']['order'] else: A = 0.0 try: legend = self.getActiveCurve(just_legend=True) if legend in self.dataObjectsDict.keys(): A = self.dataObjectsDict[legend].x[0][0] except Exception: _logger.debug("X axis offset not found") B = 1.0 C = 0.0 order = 1 key = self.currentROI roiList, roiDict = self.roiWidget.getROIListAndDict() fromdata = roiDict[key]['from' ] todata = roiDict[key]['to'] ddict = {} ddict['event'] = "ROISignal" ddict['name'] = key ddict['from'] = fromdata ddict['to'] = todata ddict['type'] = roiDict[self.currentROI]["type"] ddict['calibration']= [A, B, C, order] self.sigROISignal.emit(ddict) def setDispatcher(self, w): w.sigAddSelection.connect(self._addSelection) w.sigRemoveSelection.connect(self._removeSelection) w.sigReplaceSelection.connect(self._replaceSelection) def _addSelection(self, selection, replot=True): _logger.debug("__add, selection = %s",selection) if type(selection) == type([]): sellist = selection else: sellist = [selection] for sel in sellist: # force the selections to include their source for completeness? # source = sel['SourceName'] key = sel['Key'] if "scanselection" in sel: if sel["scanselection"] not in [False, "MCA"]: continue mcakeys = [key] for mca in mcakeys: legend = sel['legend'] dataObject = sel['dataobject'] info = dataObject.info if "selectiontype" in dataObject.info: if dataObject.info["selectiontype"] != "1D": continue if numpy.isscalar(dataObject.y[0]): dataObject.y[0] = numpy.array([dataObject.y[0]]) data = dataObject.y[0] curveinfo=copy.deepcopy(info) curveinfo["ylabel"] = info.get("ylabel", "Counts") if dataObject.x is None: xhelp = None elif len(dataObject.x): if numpy.isscalar(dataObject.x[0]): dataObject.x[0] = numpy.array([dataObject.x[0]]) xhelp = dataObject.x[0] else: xhelp = None if xhelp is None: if 'Channel0' not in info: info['Channel0'] = 0.0 xhelp =info['Channel0'] + numpy.arange(len(data)).astype(numpy.float64) dataObject.x = [xhelp] ylen = len(data) if ylen == 1: if len(xhelp) > 1: data = data[0] * numpy.ones(len(xhelp)).astype(numpy.float64) dataObject.y = [data] elif len(xhelp) == 1: xhelp = xhelp[0] * numpy.ones(ylen).astype(numpy.float64) dataObject.x = [xhelp] if not hasattr(dataObject, 'm'): dataObject.m = None if dataObject.m is not None: for imon in range(len(dataObject.m)): if numpy.isscalar(dataObject.m[imon]): dataObject.m[imon] = \ numpy.array([dataObject.m[imon]]) if len(dataObject.m[0]) > 0: mdata = dataObject.m[0] if len(mdata) == len(data): mdata[data == 0] += 0.00000001 index = numpy.nonzero(mdata)[0] if not len(index): continue xhelp = numpy.take(xhelp, index) data = numpy.take(data, index) mdata = numpy.take(mdata, index) data = data/mdata dataObject.x = [xhelp * 1] dataObject.m = [numpy.ones(len(data)).astype(numpy.float64)] elif (len(mdata) == 1) or (ylen == 1): if mdata[0] == 0.0: continue data = data/mdata else: raise ValueError("Cannot normalize data") dataObject.y = [data] self.dataObjectsDict[legend] = dataObject if ('baseline' in info) and ('regions' in info): simplefitplot = True else: simplefitplot = False try: calib = [0.0,1.0,0.0] for inputkey in ['baseline', 'regions', 'McaLiveTime']: if inputkey in info: curveinfo[inputkey] = info[inputkey] curveinfo['McaCalib'] = calib if 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib0 = info['McaCalib'][info['McaDet']-1] else: calib0 = info['McaCalib'] if 'McaCalibSource' in info: curveinfo['McaCalibSource'] = info['McaCalibSource'] else: curveinfo['McaCalibSource'] = calib0 if self.calibration == self.calboxoptions[1]: if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][info['McaDet']-1] else: calib = info['McaCalib'] if len(calib) > 1: xdata=calib[0]+ \ calib[1]* xhelp if len(calib) == 3: xdata = xdata + calib[2]* xhelp * xhelp curveinfo['McaCalib'] = calib if simplefitplot: inforegions = [] for region in info['regions']: inforegions.append([calib[0] + \ calib[1] * region[0] +\ calib[2] * region[0] * region[0], calib[0] + \ calib[1] * region[1] +\ calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) self.setGraphXLabel('Energy') elif self.calibration == self.calboxoptions[2]: calibrationOrder = None if legend in self.caldict: A = self.caldict[legend]['A'] B = self.caldict[legend]['B'] C = self.caldict[legend]['C'] calibrationOrder = self.caldict[legend]['order'] calib = [A,B,C] elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][info['McaDet']-1] else: calib = info['McaCalib'] if len(calib) > 1: xdata=calib[0]+ \ calib[1]* xhelp if len(calib) == 3: if calibrationOrder == 'TOF': xdata = calib[2] + calib[0] / pow(xhelp-calib[1],2) else: xdata = xdata + calib[2]* xhelp * xhelp curveinfo['McaCalib'] = calib curveinfo['McaCalibOrder'] = calibrationOrder if simplefitplot: inforegions = [] for region in info['regions']: if calibrationOrder == 'TOF': inforegions.append([calib[2] + calib[0] / pow(region[0]-calib[1],2), calib[2] + calib[0] / pow(region[1]-calib[1],2)]) else: inforegions.append([calib[0] + \ calib[1] * region[0] +\ calib[2] * region[0] * region[0], calib[0] + \ calib[1] * region[1] +\ calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) if calibrationOrder in ["ID14", "ID18"]: self.setGraphXLabel('Time') else: self.setGraphXLabel('Energy') elif self.calibration == 'Fit': print("Not yet implemented") continue elif self.calibration in self.caldict.keys(): A = self.caldict[self.calibration]['A'] B = self.caldict[self.calibration]['B'] C = self.caldict[self.calibration]['C'] calibrationOrder = self.caldict[self.calibration]['order'] calib = [A,B,C] if calibrationOrder == 'TOF': xdata = C + (A / ((xhelp - B) * (xhelp - B))) else: xdata=calib[0]+ \ calib[1]* xhelp + \ calib[2]* xhelp * xhelp curveinfo['McaCalib'] = calib curveinfo['McaCalibOrder'] = calibrationOrder if simplefitplot: inforegions = [] for region in info['regions']: if calibrationOrder == 'TOF': inforegions.append([calib[2] + calib[0] / pow(region[0]-calib[1],2), calib[2] + calib[0] / pow(region[1]-calib[1],2)]) else: inforegions.append([calib[0] + \ calib[1] * region[0] +\ calib[2] * region[0] * region[0], calib[0] + \ calib[1] * region[1] +\ calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) #baseline = info['baseline'], #regions = inforegions) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) if calibrationOrder in ["ID14", "ID18"]: self.setGraphXLabel('Time') else: self.setGraphXLabel('Energy') else: if simplefitplot: self.addCurve(xhelp, data, legend=legend, info=curveinfo, own=True) #baseline = info['baseline'], #regions = info['regions']) else: self.addCurve(xhelp, data, legend=legend, info=curveinfo, own=True) self.setGraphXLabel('Channel') except Exception: del self.dataObjectsDict[legend] raise if replot: #self.replot() self.resetZoom() self.updateLegends() def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist)",selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] legendlist = [] for sel in sellist: key = sel['Key'] if "scanselection" in sel: if sel['scanselection'] not in [False, "MCA"]: continue mcakeys = [key] for mca in mcakeys: legend = sel['legend'] legendlist.append(legend) self.removeCurves(legendlist, replot=True) def removeCurves(self, removelist, replot=True): for legend in removelist: self.removeCurve(legend, replot=False) if replot: self.replot() def removeCurve(self, legend, replot=True): super(McaWindow, self).removeCurve(legend, replot=False) if legend in self.dataObjectsDict.keys(): del self.dataObjectsDict[legend] self.dataObjectsList = self._curveList if replot: self.replot() def _replaceSelection(self, selectionlist): _logger.debug("_replaceSelection(self, selectionlist) %s",selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] doit = False for sel in sellist: if "scanselection" in sel: if sel['scanselection'] not in [False, "MCA"]: continue doit = True break if not doit: return self.clearCurves() self.dataObjectsDict={} self.dataObjectsList=self._curveList self._addSelection(selectionlist) def graphCallback(self, ddict): _logger.debug("McaWindow._graphCallback", ddict) if ddict['event'] in ['markerMoved', 'markerSelected']: return self._handleMarkerEvent(ddict) elif ddict['event'] in ["mouseMoved", "MouseAt"]: if self.calibration == self.calboxoptions[0]: self._xPos.setText('%.2f' % ddict['x']) self._yPos.setText('%.2f' % ddict['y']) else: self._xPos.setText('%.4f' % ddict['x']) self._yPos.setText('%.2f' % ddict['y']) elif ddict['event'] in ["curveClicked", "legendClicked"]: legend = ddict.get('legend', None) legend = ddict.get('label', legend) if legend is None: if len(self.dataObjectsList): legend = self.dataObjectsList[0] else: return self.setActiveCurve(legend) elif ddict['event'] == "renameCurveEvent": legend = ddict['legend'] newlegend = ddict['newlegend'] if legend in self.dataObjectsDict: self.dataObjectsDict[newlegend]= copy.deepcopy(\ self.dataObjectsDict[legend]) self.dataObjectsDict[newlegend].info['legend'] = newlegend self.removeCurve(legend) self.addCurve(self.dataObjectsDict[newlegend].x[0], self.dataObjectsDict[newlegend].y[0], legend=newlegend, info=self.dataObjectsDict[newlegend].info['legend'], own=True, replot=False) if legend in self.caldict: self.caldict[newlegend] = copy.deepcopy(self.caldict[legend]) del self.dataObjectsDict[legend] self.replot() else: super(McaWindow, self).graphCallback(ddict) return self.sigPlotSignal.emit(ddict) def setActiveCurve(self, legend=None, replot=True): if legend is None: legend = self.getActiveCurve(just_legend=True) if legend is None: self.controlWidget.calinfo.AText.setText("?????") self.controlWidget.calinfo.BText.setText("?????") self.controlWidget.calinfo.CText.setText("?????") return if legend in self.dataObjectsDict.keys(): x0 = self.dataObjectsDict[legend].x[0] y = self.dataObjectsDict[legend].y[0] #those are the actual data if str(self.getGraphXLabel()).upper() != "CHANNEL": #I have to get the energy A = self.controlWidget.calinfo.caldict['']['A'] B = self.controlWidget.calinfo.caldict['']['B'] C = self.controlWidget.calinfo.caldict['']['C'] order = self.controlWidget.calinfo.caldict['']['order'] else: A = 0.0 B = 1.0 C = 0.0 order = 1 calib = [A,B,C] if order == "TOF": x = calib[2] + calib[0] / pow(x0-calib[1],2) else: x = calib[0]+ \ calib[1]* x0 + \ calib[2]* x0 * x0 else: print("Received legend = ", legend) print("legends recognized = ", self.dataObjectsDict.keys()) print("Should not be here") return try: info = self.getCurve(legend)[3] calib = info['McaCalib'] self.controlWidget.calinfo.setParameters({'A':calib[0], 'B':calib[1], 'C':calib[2]}) except KeyError: self.controlWidget.calinfo.AText.setText("?????") self.controlWidget.calinfo.BText.setText("?????") self.controlWidget.calinfo.CText.setText("?????") xlabel = self.getGraphXLabel() ylabel = self.getGraphYLabel() super(McaWindow, self).setActiveCurve(legend, replot=False) self.setGraphXLabel(xlabel) self.setGraphYLabel(ylabel) if replot: self.replot() def _customFitSignalReceived(self, ddict): if ddict['event'] == "FitFinished": newDataObject = self.__customFitDataObject xplot = ddict['x'] yplot = ddict['yfit'] newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = [numpy.ones(len(yplot)).astype(numpy.float64)] #here I should check the log or linear status self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(xplot, yplot, legend=newDataObject.info['legend'], own=True) def _scanFitSignalReceived(self, ddict): _logger.debug("_graphSignalReceived", ddict) if ddict['event'] == "EstimateFinished": return if ddict['event'] == "FitFinished": newDataObject = self.__fitDataObject xplot = self.scanFit.specfit.xdata * 1.0 yplot = self.scanFit.specfit.gendata(parameters=ddict['data']) newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = [numpy.ones(len(yplot)).astype(numpy.float64)] self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(x=xplot, y=yplot, legend=newDataObject.info['legend'], own=True) def _saveIconSignal(self): legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('MCA window') msg.exec() return #get outputfile self.outputDir = PyMcaDirs.outputDir if self.outputDir is None: self.outputDir = os.getcwd() wdir = os.getcwd() elif os.path.exists(self.outputDir): wdir = self.outputDir else: self.outputDir = os.getcwd() wdir = self.outputDir format_list = ['Specfile MCA *.mca', 'Specfile Scan *.dat', 'Raw ASCII *.txt', '";"-separated CSV *.csv', '","-separated CSV *.csv', '"tab"-separated CSV *.csv', 'OMNIC CSV *.csv', 'Widget PNG *.png', 'Widget JPG *.jpg', 'Graphics PNG *.png', 'Graphics EPS *.eps', 'Graphics SVG *.svg'] if self.outputFilter is None: self.outputFilter = format_list[0] fileList, fileFilter = PyMcaFileDialogs.getFileList(self, filetypelist=format_list, message="Output File Selection", currentdir=wdir, single=True, mode="SAVE", getfilter=True, currentfilter=self.outputFilter) if not len(fileList): return self.outputFilter = fileFilter filterused = self.outputFilter.split() filetype = filterused[1] extension = filterused[2] outdir=qt.safe_str(fileList[0]) try: self.outputDir = os.path.dirname(outdir) PyMcaDirs.outputDir = os.path.dirname(outdir) except Exception: self.outputDir = "." try: outputFile = os.path.basename(outdir) except Exception: outputFile = outdir #get active curve x, y, legend, info = self.getActiveCurve() if info is None: return ndict = {} ndict[legend] = {'order':1,'A':0.0,'B':1.0,'C':0.0} if self.getGraphXLabel().upper() == "CHANNEL": if legend in self.caldict: calibrationOrder = self.caldict[legend].get('McaCalibOrder',2) ndict[legend].update(self.caldict[legend]) if abs(ndict[legend]['C']) > 0.0: ndict[legend]['order'] = 2 elif 'McaCalib' in info: calibrationOrder = info.get('McaCalibOrder',2) if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][0] else: calib = info['McaCalib'] if len(calib) > 1: ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] if len(calib) >2: ndict[legend]['order'] = 2 ndict[legend]['C'] = calib[2] elif legend in self.dataObjectsDict: calibrationOrder = self.dataObjectsDict[legend].info.get('McaCalibOrder',2) if 'McaCalib' in self.dataObjectsDict[legend].info: calib = self.dataObjectsDict[legend].info['McaCalib'] ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] ndict[legend]['C'] = calib[2] calib = [ndict[legend]['A'], ndict[legend]['B'], ndict[legend]['C']] if calibrationOrder == 'TOF': energy = calib[2] + calib[0] / pow(x - calib[1],2) else: energy = calib[0] + calib[1] * x + calib[2] * x * x else: #I have it in energy A = self.controlWidget.calinfo.caldict['']['A'] B = self.controlWidget.calinfo.caldict['']['B'] C = self.controlWidget.calinfo.caldict['']['C'] order = self.controlWidget.calinfo.caldict['']['order'] ndict[legend] = {'order':order,'A':A,'B':B,'C':C} calib = [A, B, C] energy = x * 1 if legend in self.dataObjectsDict.keys(): x0 = self.dataObjectsDict[legend].x[0] if order == 'TOF': x0 = calib[2] + calib[0] / pow(x0 - calib[1], 2) else: x0 = calib[0] + calib[1] * x0 + calib[2] * x0 * x0 if numpy.allclose(energy, x0): x = self.dataObjectsDict[legend].x[0] else: ndict[legend] = {'order':1,'A': 0.0, 'B':1.0, 'C': 1.0} #always overwrite for the time being if not outputFile.endswith(extension[1:]): outputFile += extension[1:] specFile = os.path.join(self.outputDir, outputFile) try: if os.path.exists(specFile): os.remove(specFile) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return systemline = os.linesep os.linesep = '\n' if filterused[0].upper() == "WIDGET": fformat = specFile[-3:].upper() if hasattr(qt.QPixmap, "grabWidget"): pixmap = qt.QPixmap.grabWidget(self.getWidgetHandle()) else: pixmap = self.getWidgetHandle().grab() if not pixmap.save(specFile, fformat): qt.QMessageBox.critical(self, "Save Error", "%s" % "I could not save the file\nwith the desired format") return if MATPLOTLIB: try: if specFile[-3:].upper() in ['EPS', 'PNG', 'SVG']: self.graphicsSave(specFile) return except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Save error") msg.setInformativeText("Graphics Saving Error: %s" % \ (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: if sys.version < "3.0": ffile = open(specFile, 'wb') else: ffile = open(specFile, 'w', newline='') except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return systemline = os.linesep os.linesep = '\n' #This was giving problems on legends with a leading b #legend = legend.strip('') #legend = legend.strip('<\b>') try: if filetype == 'Scan': ffile.write("#F %s\n" % specFile) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("#N 3\n") ffile.write("#L channel counts energy\n") for i in range(len(y)): ffile.write("%.7g %.7g %.7g\n" % (x[i], y[i], energy[i])) ffile.write("\n") elif filetype == 'ASCII': for i in range(len(y)): ffile.write("%.7g %.7g %.7g\n" % (x[i], y[i], energy[i])) elif filetype == 'CSV': if "," in filterused[0]: csv = "," elif ";" in filterused[0]: csv = ";" elif "OMNIC" in filterused[0]: csv = "," else: csv = "\t" if "OMNIC" in filterused[0]: for i in range(len(y)): ffile.write("%.7E%s%.7E\n" % \ (energy[i], csv, y[i])) else: ffile.write('"channel"%s"counts"%s"energy"\n' % (csv, csv)) for i in range(len(y)): ffile.write("%.7E%s%.7E%s%.7E\n" % \ (x[i], csv, y[i], csv, energy[i])) else: ffile.write("#F %s\n" % specFile) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (len(y), x[0], x[-1])) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (ndict[legend]['A'], ndict[legend]['B'], ndict[legend]['C'])) ffile.write(self.array2SpecMca(y)) ffile.write("\n") ffile.close() except: os.linesep = systemline raise return def _simpleOperation(self, operation): if operation != "save": return super(McaWindow, self)._simpleOperation(operation) else: return self._saveIconSignal() def getCalibrations(self): return copy.deepcopy(self.caldict) def setCalibrations(self, ddict=None): if ddict is None: ddict = {} self.caldict = ddict item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() #The plugins interface def _toggleLogY(self): _logger.debug("McaWindow _toggleLogY") self._ownSignal = True try: super(McaWindow, self)._toggleLogY() finally: self._ownSignal = None def _toggleLogX(self): _logger.debug("McaWindow _toggleLogX") self._ownSignal = True try: super(McaWindow, self)._toggleLogX() finally: self._ownSignal = None def getGraphYLimits(self): #if the active curve is mapped to second axis #I should give the second axis limits return super(McaWindow, self).getGraphYLimits() #end of plugins interface def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, own=None, **kw): if legend in self._curveList: if info is None: info = {} oldStuff = self.getCurve(legend) if oldStuff not in [[], None]: oldX, oldY, oldLegend, oldInfo = oldStuff else: oldInfo = {} if color is None: color = info.get("plot_color", oldInfo.get("plot_color", None)) if symbol is None: symbol = info.get("plot_symbol",oldInfo.get("plot_symbol", None)) if linestyle is None: if self._plotLines: linestyle = info.get("plot_linestyle",oldInfo.get("plot_linestyle", None)) if linestyle in [' ', None, '']: linestyle = '-' else: linestyle = ' ' if yaxis is None: yaxis = info.get("plot_yaxis",oldInfo.get("plot_yaxis", None)) if xlabel is None: xlabel = self.getGraphXLabel() if ylabel is None: ylabel = self.getGraphYLabel() if own is None: own = self._ownSignal if own and (legend in self.dataObjectsDict): # The curve is already registered super(McaWindow, self).addCurve(x, y, legend=legend, info=info, replace=replace, replot=replot, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) else: if legend in self.dataObjectsDict: xChannels, yOrig, infoOrig = self.getDataAndInfoFromLegend(legend) calib = info.get('McaCalib', [0.0, 1.0, 0.0]) calibrationOrder = info.get('McaCalibOrder',2) if calibrationOrder == 'TOF': xFromChannels = calib[2] + calib[0] / pow(xChannels-calib[1], 2) else: xFromChannels = calib[0] + \ calib[1] * xChannels + calib[2] * xChannels * xChannels if numpy.allclose(xFromChannels, x): x = xChannels # create the data object (Is this necessary????) self.newCurve(x, y, legend=legend, info=info, replace=replace, replot=replot, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) def newCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): if info is None: info = {} if legend is None: legend = "Unnamed curve 1.1" # this is awfull but I have no other way to pass the plot information ... if color is not None: info["plot_color"] = color if symbol is not None: info["plot_symbol"] = symbol if linestyle is not None: info["plot_linestyle"] = linestyle if yaxis is None: yaxis = info.get("plot_yaxis", None) if yaxis is not None: info["plot_yaxis"] = yaxis newDataObject = DataObject.DataObject() newDataObject.x = [x] newDataObject.y = [y] newDataObject.m = None newDataObject.info = copy.deepcopy(info) newDataObject.info['legend'] = legend newDataObject.info['SourceName'] = legend newDataObject.info['Key'] = "" newDataObject.info['selectiontype'] = "1D" sel_list = [] sel = {} sel['SourceType'] = "Operation" sel['SourceName'] = legend sel['Key'] = legend sel['legend'] = legend sel['dataobject'] = newDataObject sel['scanselection'] = False sel['selectiontype'] = "1D" sel_list.append(sel) if replace: self._replaceSelection(sel_list) else: self._addSelection(sel_list, replot=replot) def refresh(self): _logger.debug(" DANGEROUS REFRESH CALLED") activeCurve = self.getActiveCurve(just_legend=True) # try to keep the same curve order legendList = self.getAllCurves(just_legend=True) dataObjectsKeyList = list(self.dataObjectsDict.keys()) sellist = [] for key in legendList: if key in dataObjectsKeyList: sel ={} sel['SourceName'] = self.dataObjectsDict[key].info['SourceName'] sel['dataobject'] = self.dataObjectsDict[key] sel['legend'] = key sel['Key'] = self.dataObjectsDict[key].info['Key'] sellist.append(sel) for key in dataObjectsKeyList: if key not in legendList: sel ={} sel['SourceName'] = self.dataObjectsDict[key].info['SourceName'] sel['dataobject'] = self.dataObjectsDict[key] sel['legend'] = key sel['Key'] = self.dataObjectsDict[key].info['Key'] sellist.append(sel) self.clearCurves() self._addSelection(sellist) if activeCurve is not None: self.setActiveCurve(activeCurve) self.replot() def renameCurve(self, oldLegend, newLegend, replot=True): xChannels, yOrig, infoOrig = self.getDataAndInfoFromLegend(oldLegend) x, y, legend, info = self.getCurve(oldLegend)[:4] calib = info.get('McaCalib', [0.0, 1.0, 0.0]) calibrationOrder = info.get('McaCalibOrder',2) if calibrationOrder == 'TOF': xFromChannels = calib[2] + calib[0] / pow(xChannels-calib[1], 2) else: xFromChannels = calib[0] + \ calib[1] * xChannels + calib[2] * xChannels * xChannels if numpy.allclose(xFromChannels, x): x = xChannels newInfo = copy.deepcopy(info) newInfo['legend'] = newLegend newInfo['SourceName'] = newLegend newInfo['Key'] = "" newInfo['selectiontype'] = "1D" # create the data object (Is this necessary????) self.removeCurve(oldLegend, replot=False) self.addCurve(x, y, legend=newLegend, info=newInfo, replot=replot) self.updateLegends() def test(): w = McaWindow() x = numpy.arange(1000.) y = 10 * x + 10000. * numpy.exp(-0.5*(x-500)*(x-500)/400) w.addCurve(x, y, legend="dummy", replot=True, replace=True) w.resetZoom() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == "__main__": test() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/Median2DBrowser.py0000644000000000000000000001615614741736366021474 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaGui.pymca import StackBrowser from PyMca5.PyMcaMath.PyMcaSciPy.signal import median except ImportError: _logger.warning("Median2DBrowser problem!") import traceback print(traceback.format_exc()) medfilt2d = median.medfilt2d qt = StackBrowser.qt class MedianParameters(qt.QWidget): def __init__(self, parent=None, use_conditional=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.label = qt.QLabel(self) self.label.setText("Median filter width: ") self.widthSpin = qt.QSpinBox(self) self.widthSpin.setMinimum(1) self.widthSpin.setMaximum(99) self.widthSpin.setValue(1) self.widthSpin.setSingleStep(2) if use_conditional: self.conditionalLabel = qt.QLabel(self) self.conditionalLabel.setText("Conditional:") self.conditionalSpin = qt.QSpinBox(self) self.conditionalSpin.setMinimum(0) self.conditionalSpin.setMaximum(1) self.conditionalSpin.setValue(0) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.widthSpin) if use_conditional: self.mainLayout.addWidget(self.conditionalLabel) self.mainLayout.addWidget(self.conditionalSpin) class Median2DBrowser(StackBrowser.StackBrowser): def __init__(self, *var, **kw): StackBrowser.StackBrowser.__init__(self, *var, **kw) self.setWindowTitle("Image Browser with Median Filter") self._medianParameters = {'use':True, 'row_width':5, 'column_width':5, 'conditional':0} self._medianParametersWidget = MedianParameters(self, use_conditional=1) self._medianParametersWidget.widthSpin.setValue(5) self.layout().addWidget(self._medianParametersWidget) self._medianParametersWidget.widthSpin.valueChanged[int].connect( \ self.setKernelWidth) self._medianParametersWidget.conditionalSpin.valueChanged[int].connect(\ self.setConditionalFlag) def setKernelWidth(self, value): kernelSize = numpy.asarray(value) if not (int(value) % 2): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Median filter error") msg.setText("One odd values accepted") msg.exec() return if len(kernelSize.shape) == 0: kernelSize = [kernelSize.item()] * 2 self._medianParameters['row_width'] = kernelSize[0] self._medianParameters['column_width'] = kernelSize[1] self._medianParametersWidget.widthSpin.setValue(int(kernelSize[0])) current = self.slider.value() self.showImage(current, moveslider=False) def setConditionalFlag(self, value): self._medianParameters['conditional'] = int(value) self._medianParametersWidget.conditionalSpin.setValue(int(value)) current = self.slider.value() self.showImage(current, moveslider=False) def _buildTitle(self, legend, index): a = self._medianParameters['row_width'] b = self._medianParameters['column_width'] title = StackBrowser.StackBrowser._buildTitle(self, legend, index) if max(a, b) > 1: if self._medianParameters['conditional'] == 0: return "Median Filter (%d,%d) of %s" % (a, b, title) else: return "Conditional Median Filter (%d,%d) of %s" % (a, b, title) else: return title def showImage(self, index=0, moveslider=True): if not len(self.dataObjectsList): return legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] data = self._getImageDataFromSingleIndex(index) if self._backgroundSubtraction and (self._backgroundImage is not None): self.setImageData(data - self._backgroundImage) else: self.setImageData(data, clearmask=False) txt = self._buildTitle(legend, index) self.graphWidget.graph.setGraphTitle(txt) self.name.setText(txt) if moveslider: self.slider.setValue(index) def setImageData(self, data, **kw): if self._medianParameters['use']: if max(self._medianParameters['row_width'], self._medianParameters['column_width']) > 1: conditional = self._medianParameters['conditional'] data = medfilt2d(data,[self._medianParameters['row_width'], self._medianParameters['column_width']], conditional=conditional) # this method is in fact of MaskImageWidget StackBrowser.StackBrowser.setImageData(self, data, **kw) if __name__ == "__main__": #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): if i % 10: stackData[:, :, i] = a * i else: stackData[:, :, i] = 10 * a * i app = qt.QApplication([]) app.lastWindowClosed[()].connect(app.quit) w = Median2DBrowser() w.setStackDataObject(stackData, index=0) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaBatch.py0000644000000000000000000024456214741736366020524 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import time import subprocess import signal import atexit import logging import traceback from glob import glob from contextlib import contextmanager try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping from PyMca5.PyMcaGui import PyMcaQt as qt if sys.platform.startswith("darwin"): import threading QThread = threading.Thread else: QThread = qt.QThread QTVERSION = qt.qVersion() try: import h5py from PyMca5.PyMcaCore import NexusDataSource from PyMca5.PyMcaGui.io.hdf5 import QNexusWidget from PyMca5.PyMcaGui.io.hdf5 import HDF5Selection HDF5SUPPORT = True except ImportError: HDF5SUPPORT = False from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch from PyMca5.PyMcaGui.physics.xrf import QtMcaAdvancedFitReport from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.io import ConfigurationFileDialogs from PyMca5.PyMcaCore import EdfFileLayer from PyMca5.PyMcaCore import SpecFileLayer from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.pymca import McaCustomEvent from PyMca5.PyMcaGui.pymca import EdfFileSimpleViewer from PyMca5.PyMcaCore import HtmlIndex from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaCore import PyMcaBatchBuildOutput ROIWIDTH = 100. _logger = logging.getLogger(__name__) def moduleRunCmd(modulePath): modulePath = os.path.abspath(modulePath) if not os.path.exists(modulePath): return '' sysExecutable = sys.executable bootstrap = os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', '..', 'bootstrap.py') bootstrap = os.path.abspath(bootstrap) if (os.path.isfile(bootstrap)): modulePath, ext = os.path.splitext(modulePath) parts = [p for p in modulePath.split(os.path.sep) if p][::-1] parts = parts[:parts.index('PyMca5')+1][::-1] module = '.'.join(parts) cmd = '"{}" "{}" -m {}'.format(sysExecutable, bootstrap, module) else: cmd = '"{}" "{}"'.format(sysExecutable, modulePath) _logger.info("Issued command = <%s>" % cmd) return cmd def ranAsBootstrap(): bootstrap = os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', '..', 'bootstrap.py') bootstrap = os.path.abspath(bootstrap) return os.path.isfile(bootstrap) class Option(object): """ Command option wrapper used by `Command` which converts to a string "--option=..." """ def __init__(self, name, value=None, convert=None, format=None): self.value = value if not format: format = "{}" if convert is None: convert = lambda x: x self._name = " --{}".format(name) self._format = format self._convert = convert @property def cmdvalue(self): if self._convert is None: return self.value else: return self._convert(self.value) def __str__(self): value = self.cmdvalue if value is None: return self._name else: return self._name + "=" + self._format.format(value) class Command(MutableMapping): """ Class that wraps "cmd --option1=... --option2=..." while allowing for adding/removing/modifying options and conversion to a string for execution """ def __init__(self, cmd=''): self._options = {} self.setCommand(cmd) def setCommand(self, name, fmt=None): if not fmt: fmt = "{}" self._cmd = name, fmt def addOption(self, attr, name=None, **kwargs): if not name: name = attr self._options[attr] = Option(name, **kwargs) def removeOption(self, attr): self._options.pop(attr) def __str__(self): name, fmt = self._cmd if not name: name = "" cmd = fmt.format(name) options = map(str, self._options.values()) cmd += ''.join(list(options)) return cmd def getOptions(self, *attrs): return {attr: getattr(self, attr) for attr in attrs} def getAllOptionsBut(self, *attrs): attrs = [attr for attr in self._options if attr not in attrs] return self.getOptions(*attrs) def getAllOptions(self): attrs = list(self._options.keys()) return self.getOptions(*attrs) def __getattr__(self, attr): if attr in self._options: return self._options[attr].value else: raise AttributeError(attr) def __setattr__(self, attr, value): if attr.startswith('_'): super(Command, self).__setattr__(attr, value) else: if attr in self._options: option = self._options[attr] option.value = value else: self.addOption(attr, value=value) def __getitem__(self, attr): return self._options[attr].value def __setitem__(self, attr, value): self.addOption(attr, value=value) def __delitem__(self, key): del self._options[key] def __iter__(self): return iter(self._options) def __len__(self): return len(self._options) def toolInfo(): """ :returns 2-tuple: rootdir(str): directory of executables or GUI launch scripts frozen(bool): run as frozen executable """ if getattr(sys, "frozen", False): # frozen rootdir = os.path.dirname(sys.executable) return rootdir, True try: rootdir = os.path.dirname(__file__) if sys.platform == 'darwin': # TODO: is this necessary? frozen = '.app' in rootdir else: frozen = False if not os.path.exists(os.path.join(rootdir, "PyMcaBatch.py")): # script usage case rootdir = os.path.dirname(EdfFileSimpleViewer.__file__) except Exception: # __file__ is not defined frozen = True rootdir = os.path.dirname(EdfFileSimpleViewer.__file__) if not frozen: lst = ["PyMcaMain.exe", "PyMcaBatch.exe"] if sys.platform != 'win32': lst += ["PyMcaMain", "PyMcaBatch"] if os.path.basename(sys.executable) in lst: frozen = True rootdir = os.path.dirname(EdfFileSimpleViewer.__file__) if frozen: # we are at level PyMca5\PyMcaGui\pymca rootdir = os.path.dirname(rootdir) # level PyMcaGui rootdir = os.path.dirname(rootdir) # level PyMca5 rootdir = os.path.dirname(rootdir) # rootdir is the directory level with executables # the above is not true with cx_Freeze because there is an additional # /lib directory return rootdir, frozen def toolPath(toolname): """ :params str toolname: e.g. PyMcaBatch :returns str: e.g. /users/denolf/.local/bin/pymca """ rootdir, frozen = toolInfo() if frozen: if sys.platform == 'win32': toolname += '.exe' tool = os.path.join(rootdir, toolname) if os.path.exists(tool): tool = '"{}"'.format(tool) else: tool = '' else: tool = os.path.join(rootdir, toolname+".py") if os.path.exists(tool): tool = moduleRunCmd(tool) else: tool = '' return tool def noProcesses(): _, forzen = toolInfo() forzenDarwin = sys.platform == 'not_any_longer_needed_with_py_installer_on_darwin' and forzen return forzenDarwin def launchThread(thread, window): """Launch thread with control window """ def cleanup(): window.close() thread.pleasePause = 0 thread.pleaseBreak = 1 if hasattr(thread, "quit"): thread.quit() thread.wait() app = qt.QApplication.instance() app.processEvents() def pause(): if thread.pleasePause: thread.pleasePause=0 window.pauseButton.setText("Pause") else: thread.pleasePause=1 window.pauseButton.setText("Continue") window.pauseButton.clicked.connect(pause) window.abortButton.clicked.connect(cleanup) qt.QApplication.instance().aboutToQuit[()].connect(cleanup) window.show() thread.start() def addToSignal(onSignal, signalNumber): """ Add function to signal `signalNumber` handler :param callable onSignal: signature `(int, int)` :param int signalNumber: """ oldfunc = signal.getsignal(signalNumber) def newfunc(_signalNumber, frame): onSignal(_signalNumber, frame) if oldfunc: oldfunc(_signalNumber, frame) try: signal.signal(signalNumber, newfunc) except RuntimeError: pass def addToSignals(onSignal, signals=None, onexit=True): """ Add function to signal handlers :param callable onSignal: signature `(int, int)` :param list(int) signals: all signals by default :param bool onexit: execute on python exit """ for signalName in dir(signal): if not signalName.startswith('SIG'): continue signalNumber = getattr(signal, signalName, None) if signals: if signalNumber not in signals: continue try: signal.getsignal(signalNumber) except (ValueError, TypeError): pass else: addToSignal(onSignal, signalNumber) if onexit: atexit.register(onSignal, signal.SIGTERM, 0) def launchProcess(cmd, blocking=False, independent=False): """ Run `cmd` in one process :param Command or str cmd: :param bool blocking: wait for finish or not :param bool independent: implies non-blocking :returns: process handle when `not blocking and not independent` None when `blocking or independent` """ cmd = str(cmd) # Old way of launching an independent process: #if sys.platform == 'win32': # os.system("START /B {}".format(cmd)) #else: # os.system("{} &".format(cmd)) # Launch arguments: kwargs = {} kwargs['cwd'] = os.getcwd() kwargs['env'] = {k:str(v) for k,v in os.environ.items()} kwargs['close_fds'] = True kwargs['shell'] = True def afterLaunch(proc): return proc if blocking: _logger.info("BLOCKING PROCESS = %s", cmd) def afterLaunch(proc): """Wait for process to finish """ proc.wait() return proc elif independent: _logger.info("INDEPENDENT PROCESS = %s", cmd) # REMARK: Not needed when shell=True #if sys.platform == 'win32': # kwargs['creationflags'] = subprocess.CREATE_NEW_CONSOLE else: _logger.info("DEPENDENT PROCESS = %s", cmd) # TODO: make child process dependent on parent # by forwarding interrupts and termination #def afterLaunch(proc): # """Make dependent # """ # def passSignal(signalNumber, frame): # os.kill(proc.pid, signalNumber) # addToSignals(passSignal) # return proc # Launch with encoding error handling: encodings = None, sys.getfilesystemencoding(), 'utf-8', 'latin-1' for encoding in encodings: try: if encoding: lcmd = cmd.encode(encoding) else: lcmd = cmd return afterLaunch(subprocess.Popen(lcmd, **kwargs)) except UnicodeEncodeError: if encoding == encodings[-1]: raise def subCommands(cmd, nFiles, nBatches, func, chunks=True): """ Each batch handles a slice of the 2D XRF map. Two slicing strategies are supported: ..code: python if chunks: for mcaoffset in range(nBatchesPerFile): for filebeginoffset, fileendoffset in ...: image[filebeginoffset:fileendoffset:1, mcaoffset:None:nBatchesPerFile] else: for mcaoffset in range(nBatchesPerFile): for filebeginoffset in range(nChunks): image[filebeginoffset:None:nFilesPerChunk, mcaoffset:None:nBatchesPerFile] :param Command cmd: :param num nFiles: number of files to be process :param num nBatches: number sub processes :param callable func: signature `(Command)` :param chunks: """ cmd.addOption('filebeginoffset', value=0) cmd.addOption('fileendoffset', value=0) cmd.addOption('filestep', value=1) cmd.addOption('mcaoffset', value=0) cmd.addOption('mcastep', value=1) cmd.addOption('chunk', value=0) nFilesPerChunk = min((nFiles + nBatches - 1)//nBatches, nFiles) nChunks = (nFiles + nFilesPerChunk - 1)//nFilesPerChunk nBatchesPerFile = max(nBatches//nChunks, 1) if chunks: cmd.mcastep = nBatchesPerFile cmd.filestep = 1 for i in range(nBatchesPerFile): cmd.mcaoffset = i for j in range(nChunks): filebeginoffset = j * nFilesPerChunk fileend = min(filebeginoffset + nFilesPerChunk, nFiles) if filebeginoffset >= fileend: break cmd.filebeginoffset = filebeginoffset cmd.fileendoffset = nFiles - fileend cmd.chunk = i*nChunks + j func(cmd) else: cmd.mcastep = nBatchesPerFile cmd.filestep = nChunks cmd.fileendoffset = 0 for i in range(nBatchesPerFile): cmd.mcaoffset = i for j in range(nChunks): cmd.filebeginoffset = j cmd.chunk = i*nChunks + j func(cmd) class McaBatchGUI(qt.QWidget): """ Main batch fitting widget """ def __init__(self,parent=None,name="PyMca batch fitting",fl=None, filelist=None,config=None,outputdir=None, actions=0, selection=None, showresult=True, **guikwargs): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self._layout = qt.QVBoxLayout(self) self._layout.setContentsMargins(0, 0, 0, 0) self._layout.setSpacing(0) self._edfSimpleViewer = None self._showResult = showresult self._timer = None self._processList = [] self._selection = None self.__build(actions, **guikwargs) if filelist is None: filelist = [] self.inputDir = None self.inputFilter = None self.outputDir = None if outputdir is not None: if os.path.exists(outputdir): self.outputDir = outputdir else: qt.QMessageBox.information(self, "INFO", "Directory %s does not exist\nUsing %s"% (outputdir, self.outputDir)) self.configFile = None self.fileList = [] self.setFileList(filelist, selection=selection) self.setConfigFile(config) self.setOutputDir(self.outputDir) def __build(self, actions, roifit=0, roiwidth=ROIWIDTH, overwrite=1, concentrations=0, fitfiles=0, diagnostics=0, multipage=0, tif=0, edf=1, csv=0, h5=1, dat=1, nproc=1, table=2, html=0): self.__grid= qt.QWidget(self) self._layout.addWidget(self.__grid) #self.__grid.setGeometry(qt.QRect(30,30,288,156)) if QTVERSION < '4.0.0': grid = qt.QGridLayout(self.__grid,3,3,11,6) grid.setColStretch(0,0) grid.setColStretch(1,1) grid.setColStretch(2,0) else: grid = qt.QGridLayout(self.__grid) grid.setContentsMargins(11, 11, 11, 11) grid.setSpacing(6) #input list listrow = 0 listlabel = qt.QLabel(self.__grid) listlabel.setText("Input File list:") self.__listView = qt.QTextEdit(self.__grid) self.__listView.setMaximumHeight(30*listlabel.sizeHint().height()) self.__listButton = qt.QPushButton(self.__grid) self.__listButton.setText('Browse') self.__listButton.clicked.connect(self.browseList) grid.addWidget(listlabel, listrow, 0, qt.Qt.AlignTop|qt.Qt.AlignLeft) grid.addWidget(self.__listView, listrow, 1) grid.addWidget(self.__listButton,listrow, 2, qt.Qt.AlignTop|qt.Qt.AlignRight) if HDF5SUPPORT: self._hdf5Widget = HDF5Selection.HDF5Selection(self) grid.addWidget(self._hdf5Widget, listrow+1, 0, 1, 3) row_offset = 1 self._hdf5Widget.hide() else: row_offset = 0 #config file configrow = 1 + row_offset configlabel = qt.QLabel(self.__grid) configlabel.setText("Fit Configuration File:") if QTVERSION < '4.0.0': configlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__configLine = qt.QLineEdit(self.__grid) self.__configLine.setReadOnly(True) self.__configButton = qt.QPushButton(self.__grid) self.__configButton.setText('Browse') self.__configButton.clicked.connect(self.browseConfig) grid.addWidget(configlabel, configrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__configLine, configrow, 1) grid.addWidget(self.__configButton, configrow, 2, qt.Qt.AlignLeft) #output dir outrow = 2 + row_offset outlabel = qt.QLabel(self.__grid) outlabel.setText("Output dir:") if QTVERSION < '4.0.0': outlabel.setAlignment(qt.QLabel.WordBreak | qt.QLabel.AlignVCenter) self.__outLine = qt.QLineEdit(self.__grid) self.__outLine.setReadOnly(True) #self.__outLine.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Maximum, qt.QSizePolicy.Fixed)) self.__outButton = qt.QPushButton(self.__grid) self.__outButton.setText('Browse') self.__outButton.clicked.connect(self.browseOutputDir) grid.addWidget(outlabel, outrow, 0, qt.Qt.AlignLeft) grid.addWidget(self.__outLine, outrow, 1) grid.addWidget(self.__outButton, outrow, 2, qt.Qt.AlignLeft) box1 = qt.QWidget(self) box1.l = qt.QHBoxLayout(box1) box1.l.setContentsMargins(11, 11, 11, 11) box1.l.setSpacing(0) vbox1 = qt.QWidget(box1) vbox1.l = qt.QVBoxLayout(vbox1) vbox1.l.setContentsMargins(0, 0, 0, 0) vbox1.l.setSpacing(0) box1.l.addWidget(vbox1) vbox2 = qt.QWidget(box1) vbox2.l = qt.QVBoxLayout(vbox2) vbox2.l.setContentsMargins(0, 0, 0, 0) vbox2.l.setSpacing(0) box1.l.addWidget(vbox2) vbox3 = qt.QWidget(box1) vbox3.l = qt.QVBoxLayout(vbox3) vbox3.l.setContentsMargins(0, 0, 0, 0) vbox3.l.setSpacing(0) box1.l.addWidget(vbox3) self.__fitBox = qt.QCheckBox(vbox1) self.__fitBox.setText('Generate .fit Files') palette = self.__fitBox.palette() #if QTVERSION < '4.0.0': # palette.setDisabled(palette.active()) #else: # print("palette set disabled") self.__fitBox.setChecked(fitfiles) self.__fitBox.setEnabled(True) vbox1.l.addWidget(self.__fitBox) self.__imgBox = qt.QCheckBox(vbox2) self.__imgBox.setText('Generate Peak Images') palette = self.__imgBox.palette() if QTVERSION < '4.0.0': palette.setDisabled(palette.active()) else: _logger.debug("palette set disabled") self.__imgBox.setChecked(True) self.__imgBox.setEnabled(False) vbox2.l.addWidget(self.__imgBox) """ self.__specBox = qt.QCheckBox(box1) self.__specBox.setText('Generate Peak Specfile') palette = self.__specBox.palette() palette.setDisabled(palette.active()) self.__specBox.setChecked(False) self.__specBox.setEnabled(False) """ self.__htmlBox = qt.QCheckBox(vbox3) self.__htmlBox.setText('Generate Report (SLOW!)') #palette = self.__htmlBox.palette() #palette.setDisabled(palette.active()) self.__htmlBox.setChecked(html) self.__htmlBox.setEnabled(True) vbox3.l.addWidget(self.__htmlBox) #report options #reportBox = qt.QHBox(self) self.__tableBox = qt.QCheckBox(vbox1) self.__tableBox.setText('Table in Report') palette = self.__tableBox.palette() #if QTVERSION < '4.0.0': # palette.setDisabled(palette.active()) #else: # print("palette set disabled") self.__tableBox.setChecked(bool(table)) self.__tableBox.setEnabled(False) vbox1.l.addWidget(self.__tableBox) self.__extendedTable = qt.QCheckBox(vbox2) self.__extendedTable.setText('Extended Table') self.__extendedTable.setChecked(table>1) self.__extendedTable.setEnabled(False) vbox2.l.addWidget(self.__extendedTable) # overwrite output self._overwriteBox = qt.QCheckBox(vbox3) self._overwriteBox.setText("Overwrite") self._overwriteBox.setChecked(overwrite) self._overwriteBox.setEnabled(True) vbox3.l.addWidget(self._overwriteBox) # concentrations self.__concentrationsBox = qt.QCheckBox(vbox3) self.__concentrationsBox.setText('Concentrations') self.__concentrationsBox.setChecked(concentrations) self.__concentrationsBox.setEnabled(True) vbox3.l.addWidget(self.__concentrationsBox) # diagnostics self.__diagnosticsBox = qt.QCheckBox(vbox3) self.__diagnosticsBox.setText("Diagnostics") self.__diagnosticsBox.setChecked(diagnostics and HDF5SUPPORT) self.__diagnosticsBox.setEnabled(HDF5SUPPORT) vbox3.l.addWidget(self.__diagnosticsBox) # generate hdf5 file self._h5Box = qt.QCheckBox(vbox1) self._h5Box.setText("HDF5") self._h5Box.setChecked(h5 and HDF5SUPPORT) self._h5Box.setEnabled(HDF5SUPPORT) vbox1.l.addWidget(self._h5Box) # generate edf file self._edfBox = qt.QCheckBox(vbox2) self._edfBox.setText("EDF") self._edfBox.setChecked(edf) self._edfBox.setEnabled(True) vbox2.l.addWidget(self._edfBox) # generate csv file self._csvBox = qt.QCheckBox(vbox1) self._csvBox.setText("CSV") self._csvBox.setChecked(csv) self._csvBox.setEnabled(True) vbox1.l.addWidget(self._csvBox) # generate tiff files self._tiffBox = qt.QCheckBox(vbox2) self._tiffBox.setText("TIFF") self._tiffBox.setChecked(tif) self._tiffBox.setEnabled(True) vbox2.l.addWidget(self._tiffBox) # generate dat file self._datBox = qt.QCheckBox(vbox1) self._datBox.setText("DAT") self._datBox.setChecked(dat) self._datBox.setEnabled(True) vbox1.l.addWidget(self._datBox) # multipage edf/tif self._multipageBox = qt.QCheckBox(vbox2) self._multipageBox.setText("Multipage") self._multipageBox.setChecked(multipage) self._multipageBox.setEnabled(True) vbox2.l.addWidget(self._multipageBox) self._edfBox.stateChanged.connect(self.__stateMultiPage) self._tiffBox.stateChanged.connect(self.__stateMultiPage) self.__stateMultiPage() self._layout.addWidget(box1) # other stuff bigbox = qt.QWidget(self) bigbox.l = qt.QHBoxLayout(bigbox) bigbox.l.setContentsMargins(0, 0, 0, 0) bigbox.l.setSpacing(0) vBox = qt.QWidget(bigbox) vBox.l = qt.QVBoxLayout(vBox) vBox.l.setContentsMargins(0, 0, 0, 0) vBox.l.setSpacing(2) bigbox.l.addWidget(vBox) if 0: #These options are obsolete now self.__overwrite = qt.QCheckBox(vBox) self.__overwrite.setText('Overwrite Fit Files') self.__overwrite.setChecked(True) vBox.l.addWidget(self.__overwrite) self.__useExisting = qt.QCheckBox(vBox) self.__useExisting.setText('Use Existing Fit Files') self.__useExisting.setChecked(False) vBox.l.addWidget(self.__useExisting) self.__overwrite.clicked.connect(self.__clickSignal0) self.__useExisting.clicked.connect(self.__clickSignal1) self.__concentrationsBox.clicked.connect(self.__clickSignal2) self.__htmlBox.clicked.connect(self.__clickSignal3) boxStep0 = qt.QWidget(bigbox) boxStep0.l = qt.QVBoxLayout(boxStep0) boxStep = qt.QWidget(boxStep0) boxStep.l= qt.QHBoxLayout(boxStep) boxStep.l.setContentsMargins(0, 0, 0, 0) boxStep.l.setSpacing(0) boxStep0.l.addWidget(boxStep) bigbox.l.addWidget(boxStep0) if 0: self.__boxFStep = qt.QWidget(boxStep) boxFStep = self.__boxFStep boxFStep.l = qt.QHBoxLayout(boxFStep) boxFStep.l.setContentsMargins(0, 0, 0, 0) boxFStep.l.setSpacing(0) boxStep.l.addWidget(boxFStep) label= qt.QLabel(boxFStep) label.setText("File Step:") self.__fileSpin = qt.QSpinBox(boxFStep) if QTVERSION < '4.0.0': self.__fileSpin.setMinValue(1) self.__fileSpin.setMaxValue(10) else: self.__fileSpin.setMinimum(1) self.__fileSpin.setMaximum(10) self.__fileSpin.setValue(1) boxFStep.l.addWidget(label) boxFStep.l.addWidget(self.__fileSpin) self.__boxMStep = qt.QWidget(boxStep0) boxMStep = self.__boxMStep boxMStep.l = qt.QHBoxLayout(boxMStep) boxMStep.l.setContentsMargins(0, 0, 0, 0) boxMStep.l.setSpacing(0) boxStep0.l.addWidget(boxMStep) label= qt.QLabel(boxMStep) label.setText("MCA Step:") self.__mcaSpin = qt.QSpinBox(boxMStep) if QTVERSION < '4.0.0': self.__mcaSpin.setMinValue(1) self.__mcaSpin.setMaxValue(10) else: self.__mcaSpin.setMinimum(1) self.__mcaSpin.setMaximum(10) self.__mcaSpin.setValue(1) boxMStep.l.addWidget(label) boxMStep.l.addWidget(self.__mcaSpin) #box2 = qt.QHBox(self) self.__roiBox = qt.QCheckBox(vBox) self.__roiBox.setText('ROI Fitting Mode') self.__roiBox.setChecked(roifit) self.__roiBox.setEnabled(True) vBox.l.addWidget(self.__roiBox) #box3 = qt.QHBox(box2) self.__box3 = qt.QWidget(boxStep0) box3 = self.__box3 box3.l = qt.QHBoxLayout(box3) box3.l.setContentsMargins(0, 0, 0, 0) box3.l.setSpacing(0) boxStep0.l.addWidget(box3) label= qt.QLabel(box3) label.setText("ROI Width (eV):") self.__roiSpin = qt.QSpinBox(box3) if QTVERSION < '4.0.0': self.__roiSpin.setMinValue(10) self.__roiSpin.setMaxValue(1000) else: self.__roiSpin.setMinimum(10) self.__roiSpin.setMaximum(1000) self.__roiSpin.setValue(int(roiwidth)) box3.l.addWidget(label) box3.l.addWidget(self.__roiSpin) #BATCH SPLITTING self.__splitBox = qt.QCheckBox(vBox) self.__splitBox.setText('Use several processes') self.__splitBox.setChecked(nproc > 1) self.__splitBox.setEnabled(True) vBox.l.addWidget(self.__splitBox) #box3 = qt.QHBox(box2) self.__box4 = qt.QWidget(boxStep0) box4 = self.__box4 box4.l = qt.QHBoxLayout(box4) box4.l.setContentsMargins(0, 0, 0, 0) box4.l.setSpacing(0) boxStep0.l.addWidget(box4) label= qt.QLabel(box4) label.setText("Number of processes:") self.__splitSpin = qt.QSpinBox(box4) if QTVERSION < '4.0.0': self.__splitSpin.setMinValue(0) self.__splitSpin.setMaxValue(1000) else: self.__splitSpin.setMinimum(0) self.__splitSpin.setMaximum(1000) self.__splitSpin.setValue(max(nproc, 0)) # nproc == 0: run fit in single thread # nproc != 0: run fit in one or more processes box4.l.addWidget(label) box4.l.addWidget(self.__splitSpin) self._layout.addWidget(bigbox) if actions: self.__buildActions() def __stateMultiPage(self, state=None): self._multipageBox.setEnabled(self._edfBox.isChecked() or self._tiffBox.isChecked()) def __clickSignal0(self): if self.__overwrite.isChecked(): self.__useExisting.setChecked(0) else: self.__useExisting.setChecked(1) def __clickSignal1(self): if self.__useExisting.isChecked(): self.__overwrite.setChecked(0) else: self.__overwrite.setChecked(1) def __clickSignal2(self): #self.__tableBox.setEnabled(True) pass def __clickSignal3(self): if self.__htmlBox.isChecked(): self.__tableBox.setEnabled(True) #self.__concentrationsBox.setEnabled(True) self.__fitBox.setChecked(True) self.__fitBox.setEnabled(False) else: self.__tableBox.setEnabled(False) #self.__concentrationsBox.setEnabled(False) self.__fitBox.setChecked(False) self.__fitBox.setEnabled(True) def __buildActions(self): box = qt.QWidget(self) box.l = qt.QHBoxLayout(box) box.l.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton = qt.QPushButton(box) box.l.addWidget(self.__dismissButton) box.l.addWidget(qt.HorizontalSpacer(box)) self.__dismissButton.setText("Close") self.__startButton = qt.QPushButton(box) box.l.addWidget(self.__startButton) box.l.addWidget(qt.HorizontalSpacer(box)) self.__startButton.setText("Start") self.__dismissButton.clicked.connect(self.close) self.__startButton.clicked.connect(self.start) self._layout.addWidget(box) def close(self): if self._edfSimpleViewer is not None: self._edfSimpleViewer.close() self._edfSimpleViewer = None qt.QWidget.close(self) def setFileList(self, filelist=None, selection=None): self._selection = selection if filelist is None: filelist = [] # Check file existence if not self.__goodFileList(filelist) and False: return # Check file types text = "" oldtype = None #do not sort the file list #respect user choice #filelist.sort() for file in filelist: filetype = self.__getFileType(file) if filetype is None: return if oldtype is None: oldtype = filetype if oldtype != filetype: qt.QMessageBox.critical(self, "ERROR", "Type %s does not match type %s on\n%s"% (filetype,oldtype,file)) return text += "%s\n" % file # HDF5 selection if len(filelist): if HDF5SUPPORT: if h5py.is_hdf5(filelist[0]): if selection is None: selection = self._hdf5Selection(filelist[0]) if selection: self._selection = selection self._hdf5Widget.setSelection(selection) #they are not used yet #self._hdf5Widget.selectionWidgetsDict['x'].hide() #self._hdf5Widget.selectionWidgetsDict['m'].hide() if self._hdf5Widget.isHidden(): self._hdf5Widget.show() else: self._selection = None self._hdf5Widget.hide() elif filelist[0][-3:].lower() in ['.h5', 'nxs', 'hdf', 'hdf5']: text = "Warning, this looks as an HDF5 file " text += "but you do not have HDF5 support." self.showMessage(text) else: self._selection = None self._hdf5Widget.hide() # Accept new file list self.fileList = filelist if len(self.fileList): self.inputDir = os.path.dirname(self.fileList[0]) PyMcaDirs.inputDir = os.path.dirname(self.fileList[0]) if QTVERSION < '4.0.0': self.__listView.setText(text) else: self.__listView.clear() self.__listView.insertPlainText(text) def _hdf5Selection(self, filename): selection = {} dialog = qt.QDialog(self) dialog.setWindowTitle('Select your data set') dialog.mainLayout = qt.QVBoxLayout(dialog) dialog.mainLayout.setContentsMargins(0, 0, 0, 0) dialog.mainLayout.setSpacing(0) datasource = NexusDataSource.NexusDataSource(filename) nexusWidget = QNexusWidget.QNexusWidget(dialog, buttons=True) nexusWidget.buttons.hide() nexusWidget.setDataSource(datasource) button = qt.QPushButton(dialog) button.setText("Done") button.setAutoDefault(True) button.clicked.connect(dialog.accept) dialog.mainLayout.addWidget(nexusWidget) dialog.mainLayout.addWidget(button) ret = dialog.exec() cntSelection = nexusWidget.cntTable.getCounterSelection() cntlist = cntSelection['cntlist'] if not len(cntlist): text = "No dataset selection" self.showMessage(text) self.__listView.clear() return selection if not len(cntSelection['y']): text = "No dataset selected as y" self.showMessage(text) self.__listView.clear() return selection entryList = nexusWidget.getSelectedEntries() datasource = None selection['entry'] = [] selection['x'] = [] selection['y'] = [] selection['m'] = [] for key in ['x', 'y', 'm']: if len(cntSelection[key]): for idx in cntSelection[key]: selection[key].append(cntlist[idx]) for item in entryList: selection['entry'].append(item[0]) return selection def showMessage(self, text): msg = qt.QMessageBox(self) msg.setWindowTitle("PyMcaBatch Message") msg.setIcon(qt.QMessageBox.Information) msg.setText(text) msg.exec() def setConfigFile(self,configfile=None): if configfile is None: return if self.__goodConfigFile(configfile): self.configFile = configfile if type(configfile) == type([]): #do not sort file list #self.configFile.sort() self.__configLine.setText(self.configFile[0]) self.lastInputDir = os.path.dirname(self.configFile[0]) else: self.__configLine.setText(configfile) self.lastInputDir = os.path.dirname(self.configFile) def setOutputDir(self,outputdir=None): if outputdir is None: return if self.__goodOutputDir(outputdir): self.outputDir = outputdir PyMcaDirs.outputDir = outputdir self.__outLine.setText(outputdir) else: qt.QMessageBox.critical(self, "ERROR", "Cannot use output directory:\n%s"% (outputdir)) def __goodFileList(self,filelist): if not len(filelist): return True for ffile in filelist: if not os.path.exists(ffile): qt.QMessageBox.critical(self, "ERROR", 'File %s\ndoes not exist' % ffile) self.raise_() return False return True def __goodConfigFile(self,configfile0): if type(configfile0) != type([]): configfileList = [configfile0] else: configfileList = configfile0 for configfile in configfileList: if not os.path.exists(configfile.split('::')[0]): qt.QMessageBox.critical(self, "ERROR",'File %s\ndoes not exist' % configfile) self.raise_() return False elif len(configfile.split()) > 1: if sys.platform != 'win32': qt.QMessageBox.critical(self, "ERROR",'Configuration File:\n %s\ncontains spaces in the path' % configfile) self.raise_() return False return True def __goodOutputDir(self,outputdir): if not os.path.isdir(outputdir): return False elif len(outputdir.split()) > 1: if sys.platform != 'win32': qt.QMessageBox.critical(self, "ERROR", 'Output Directory:\n %s\ncontains spaces in the path' % outputdir) self.raise_() return False if len(self.fileList) == 1: if HDF5SUPPORT: try: if h5py.is_hdf5(self.fileList[0]): if os.path.dirname(os.path.abspath(self.fileList[0])) == \ os.path.abspath(outputdir): msg = "Please specify a different output directory.\n" msg += "Risk of overwritting input file." qt.QMessageBox.critical(self,"ERROR", msg) self.raise_() return False except Exception: _logger.warning("Cannot verify suitability of output directory") return True def __getFileType(self,inputfile): try: ffile = None try: ffile = EdfFileLayer.EdfFileLayer(fastedf=0) ffile.SetSource(inputfile) fileinfo = ffile.GetSourceInfo() if fileinfo['KeyList'] == []:ffile=None return "EdfFile" except Exception: pass if (ffile is None): ffile = SpecFileLayer.SpecFileLayer() ffile.SetSource(inputfile) del ffile return "Specfile" except Exception: qt.QMessageBox.critical(self, sys.exc_info()[0], 'I do not know what to do with file\n %s' % ffile) self.raise_() return None def browseList(self): self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir wfilter = self.inputFilter filetypes = "McaFiles (*.mca)\nEdfFiles (*.edf)\nCSV (*.csv *.CSV)\n" if HDF5SUPPORT: filetypes += "HDF5 (*.nxs *.h5 *.hdf *.hdf5)\n" filetypes += "SpecFiles (*.spec)\nSpecFiles (*.dat)\nAll files (*)" filetypelist = filetypes.split("\n") filelist, filefilter = PyMcaFileDialogs.getFileList(self, filetypelist=filetypelist, message="Open a set of files", currentdir=wdir, mode="OPEN", getfilter=True, single=False, currentfilter=wfilter) if filelist: self.setFileList(filelist) self.inputFilter = filefilter self.raise_() def browseConfig(self): self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir fileList = ConfigurationFileDialogs.getFitConfigurationFilePath(self, currentdir=wdir, mode="OPEN", single=True, currentfilter="Fit configuration files (*.cfg)") if fileList: self.setConfigFile(fileList[0]) self.raise_() def browseOutputDir(self): self.outputDir = PyMcaDirs.outputDir if not os.path.exists(self.outputDir): self.outputDir = os.getcwd() wdir = self.outputDir outdir = PyMcaFileDialogs.getExistingDirectory(self, message="Output Directory Selection", mode="SAVE", currentdir=wdir) if outdir: self.setOutputDir(outdir) self.raise_() @property def _runAsMultiProcess(self): return self._nProcesses > 1 @property def _runAsSingleProcess(self): return self._nProcesses == 1 @property def _runAsSingleThread(self): return self._nProcesses == 0 @property def _nProcesses(self): roifit = self.__roiBox.isChecked() if roifit or noProcesses(): # single thread return 0 n = int(qt.safe_str(self.__splitSpin.text())) if not self.__splitBox.isChecked(): # single thread or single process n = min(n, 1) return n def start(self, blocking=False): """ :param bool blocking: blocking call in case of single process """ if not len(self.fileList): qt.QMessageBox.critical(self, "ERROR",'Empty file list') self.raise_() return # Raise exception in case multi processing is not allowed # REMARK: not longer needed because # - silently ignore multi processing on frozen MacOS X # - multi processing on single file always allowed #if self._runAsMultiProcess: # if sys.platform == 'darwin': # if ".app" in os.path.dirname(__file__): # text = 'Multiple processes only supported on MacOS X when built from source\n' # text += 'and not when running the frozen binary.' # qt.QMessageBox.critical(self, "ERROR",text) # self.raise_() # return # if len(self.fileList) == 1: # if int(qt.safe_str(self.__splitSpin.text())) > 1: # allowSingleFileSplitProcesses = True # if HDF5SUPPORT: # if h5py.is_hdf5(self.fileList[0]): # _logger.info("Allowing single HDF5 file process split") # _logger.info("In the past it was problematic") # allowSingleFileSplitProcesses = True # if not allowSingleFileSplitProcesses: # text = "Multiple processes can only be used with multiple input files." # qt.QMessageBox.critical(self, "ERROR",text) # self.raise_() # return # Verify config file if (self.configFile is None) or (not self.__goodConfigFile(self.configFile)): qt.QMessageBox.critical(self, "ERROR",'Invalid fit configuration file') self.raise_() return if type(self.configFile) == type([]): if len(self.configFile) != len(self.fileList): qt.QMessageBox.critical(self, "ERROR", 'Number of config files should be either one or equal to number of files') self.raise_() return # Verify output if (self.outputDir is None) or (not self.__goodOutputDir(self.outputDir)): qt.QMessageBox.critical(self, "ERROR",'Invalid output directory') self.raise_() return # Command options cmd = Command() cmd.addOption('outdir', value=self.outputDir, format='"{}"') cmd.addOption('roifit', value=self.__roiBox.isChecked(), format="{:d}") cmd.addOption('html', value=self.__htmlBox.isChecked(), format="{:d}") cmd.addOption('concentrations', value=self.__concentrationsBox.isChecked(), format="{:d}") cmd.addOption('diagnostics', value=self.__diagnosticsBox.isChecked(), format="{:d}") cmd.addOption('tif', value=self._tiffBox.isChecked(), format="{:d}") cmd.addOption('csv', value=self._csvBox.isChecked(), format="{:d}") cmd.addOption('dat', value=self._datBox.isChecked(), format="{:d}") cmd.addOption('edf', value=self._edfBox.isChecked(), format="{:d}") cmd.addOption('h5', value=self._h5Box.isChecked(), format="{:d}") cmd.addOption('overwrite', value=self._overwriteBox.isChecked(), format="{:d}") cmd.addOption('multipage', value=self._multipageBox.isChecked(), format="{:d}") if self.__tableBox.isChecked(): if self.__extendedTable.isChecked(): table = 2 else: table = 1 else: table = 0 cmd.addOption('table', value=table, format="{:d}") #htmlindex = qt.safe_str(self.__htmlIndex.text()) htmlindex = "index.html" if cmd.html: if len(htmlindex)<5: htmlindex+=".html" if len(htmlindex) == 5: htmlindex = "index.html" if htmlindex[-5:] != "html": htmlindex+=".html" cmd.addOption('htmlindex', value=htmlindex) #filestep = int(qt.safe_str(self.__fileSpin.text())) #mcastep = int(qt.safe_str(self.__mcaSpin.text())) cmd.addOption('filestep', value=1) cmd.addOption('mcastep', value=1) cmd.addOption('fitfiles', value=self.__fitBox.isChecked(), format="{:d}") cmd.addOption('selection', value=self._selection, format="{:d}", convert=bool) if cmd.roifit: cmd.addOption('roiwidth', value=float(qt.safe_str(self.__roiSpin.text()))) cmd.table = 0 cmd.concentrations = 0 cmd.filestep = 1 cmd.mcastep = 1 if self._edfSimpleViewer is not None: self._edfSimpleViewer.close() self._edfSimpleViewer = None # Launch `cmd` in thread or process(es) wname = "Batch from %s to %s " % (os.path.basename(self.fileList[ 0]), os.path.basename(self.fileList[-1])) if self._runAsSingleThread: self._runInThreadMain(cmd, wname) else: self._runInProcessMain(cmd, blocking=blocking) def _runInThreadMain(self, cmd, wname): """ Run `cmd` in a single thread :param Command cmd: :param str wname: """ kwargs = cmd.getOptions('outdir', 'html', 'htmlindex', 'table') kwargs['outputdir'] = kwargs.pop('outdir') window = McaBatchWindow(name=wname, actions=1, showresult=self._showResult, **kwargs) kwargs = cmd.getAllOptionsBut('html', 'htmlindex', 'table') kwargs['outputdir'] = kwargs.pop('outdir') thread = McaBatch(window, self.configFile, filelist=self.fileList, **kwargs) window._rootname = "%s"% thread._rootname launchThread(thread, window) self.__window = window self.__thread = thread def _runInProcessMain(self, cmd, blocking=False): """ Run `cmd` in one of more processes :param Command cmd: :param bool blocking: blocking call in case of single process """ cmd.addOption('debug', value=_logger.getEffectiveLevel() == logging.DEBUG, format="{:d}") cmd.addOption('exitonend', value=1, format="{:d}") cmd.addOption('showresult', value=0, format="{:d}") # Prepare tools (executables or python scripts) for processing/viewing if not self._processToolsInit(cmd): return # Create file with files to be processed listfile = os.path.join(self.outputDir, "tmpfile") cmd.addOption("listfile", value=listfile, format='"{}"') self.genListFile(listfile, config=False) # Create file with config files to be used if isinstance(self.configFile, list): cfglistfile = os.path.join(self.outputDir, "tmpfile.cfg") self.genListFile(cfglistfile, config=True) if sys.platform.startswith("win"): cmd.addOption("cfglistfile", value='"%s"' % cfglistfile) else: cmd.addOption("cfglistfile", value=cfglistfile) else: if sys.platform.startswith("win"): cmd.addOption("cfg", value='"%s"' % self.configFile) else: cmd.addOption("cfg", value=self.configFile) # Launch process(es) monitored = self._runAsMultiProcess or not blocking if monitored: # Dependent (monitored) processes # REMARK: _pollProcessList will # - show the result # - show the PyMcaBatch window cmd.showresult = 0 self.hide() qApp = qt.QApplication.instance() qApp.processEvents() self._runInProcessMonitored(cmd) else: # Blocking or independent (unmonitored) process # REMARK: currently a non-blocking is always monitored (see above) cmd.showresult = self._showResult if blocking: self.hide() qApp = qt.QApplication.instance() qApp.processEvents() self._runInProcess(cmd, blocking=blocking) if blocking: self.show() def _processToolsInit(self, cmd): """ Initialize tools for processings and inspecting results :param Command cmd: """ myself = toolPath('PyMcaBatch') if not myself: text = 'Cannot locate PyMcaBatch.\n' qt.QMessageBox.critical(self, "ERROR",text) self.raise_() return False cmd.setCommand(myself) if QTVERSION < '4.0.0': self._datviewer_path = None else: self._datviewer_path = toolPath('PyMcaPostBatch') self._edfviewer_path = toolPath('EdfFileSimpleViewer') return True def _runInProcessMonitored(self, cmd): """ Run `cmd` in one or more processes and start polling for finish :param Command cmd: """ processList = [] nFiles = len(self.fileList) nBatches = self._nProcesses if nBatches > 1: def launch(cmd): self._runInProcess(cmd, blocking=False, processList=processList) subCommands(cmd, nFiles, nBatches, launch) else: self._runInProcess(cmd, blocking=False, processList=processList) self._processList = processList self._pollProcessList() if self._timer is None: self._timer = qt.QTimer(self) self._timer.timeout[()].connect(self._pollProcessList) if not self._timer.isActive(): self._timer.start(1000) else: _logger.info("timer was already active") def _runInProcess(self, cmd, blocking=False, processList=None): """ Run `cmd` in one process :param Command cmd: :param bool blocking: wait for finish or not :param processList: implies non-blocking when a list """ if processList is not None: p = launchProcess(cmd, blocking=False) processList.append(p) elif blocking: launchProcess(cmd, blocking=True) else: launchProcess(cmd, independent=True) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) text = "Your fit has been started as an independent process." msg.setText(text) # REMARK: needs to be non-blocking for unit testing #msg.exec() msg.show() def genListFile(self, listfile, config=None): if os.path.exists(listfile): try: os.remove(listfile) except Exception: _logger.error("Cannot delete file %s", listfile) raise if config is None: lst = self.fileList elif config: lst = self.configFile else: lst = self.fileList if lst == self.fileList: if self._selection is not None: ddict = ConfigDict.ConfigDict() ddict['PyMcaBatch'] = {} ddict['PyMcaBatch']['filelist'] = lst ddict['PyMcaBatch']['selection'] = self._selection ddict.write(listfile) return fd=open(listfile, 'wb') for filename in lst: # only the file system encoding makes sense here fd.write(('%s\n' % filename).encode(sys.getfilesystemencoding())) fd.close() def _pollProcessList(self): processList = self._processList n = 0 for process in processList: if process.poll() is None: n += 1 if n > 0: return self._timer.stop() self.show() self.raise_() edfoutlist, datoutlist = self._mergeProcessResults() if not edfoutlist and not datoutlist: edfoutlist, datoutlist = self._fetchProcessResults() if self._showResult: try: self._showProcessResults(edfoutlist, datoutlist) except Exception: _logger.error("Failed plotting result (probably interrupted by the user)") def _mergeProcessResults(self): _logger.info('Merging multi-process results...') work = PyMcaBatchBuildOutput.PyMcaBatchBuildOutput(inputdir=self.outputDir) delete = _logger.getEffectiveLevel() != logging.DEBUG basename = McaAdvancedFitBatch.getRootName(self.fileList) edfoutlist, datoutlist, h5outlist = work.buildOutput(basename=basename, delete=delete) #inputdir = os.path.join(self.outputDir, basename) inputdir = os.path.join(self.outputDir, 'IMAGES') edfoutlist2, datoutlist2, h5outlist2 = work.buildOutput(basename=basename, inputdir=inputdir, delete=delete) edfoutlist += edfoutlist2 datoutlist += datoutlist2 _logger.info('Finished merging multi-process results.') return edfoutlist, datoutlist def _fetchProcessResults(self): basename = McaAdvancedFitBatch.getRootName(self.fileList) #inputdir = os.path.join(self.outputDir, basename) inputdir = os.path.join(self.outputDir, 'IMAGES') edfoutlist = glob(os.path.join(inputdir, basename+'*.edf')) datoutlist = glob(os.path.join(inputdir, basename+'*.dat')) return edfoutlist, datoutlist def _showProcessResults(self, edfoutlist, datoutlist): # Load in EDF viewer (this process) #if edfoutlist: # if self._edfSimpleViewer is None: # self._edfSimpleViewer = EdfFileSimpleViewer.EdfFileSimpleViewer() # # REMARK: this call takes a long time to finish and blocks everything: # self._edfSimpleViewer.setFileList(edfoutlist) # self._edfSimpleViewer.show() # Load in EDF viewer (independent process) if edfoutlist and self._edfviewer_path: edfoutlist = ' '.join('"%s"' % filename for filename in edfoutlist) cmd = '%s %s' % (self._edfviewer_path, edfoutlist) launchProcess(cmd, independent=True) # Load in RGB correlator (independent process) if datoutlist and self._datviewer_path: cmd = '%s "%s"' % (self._datviewer_path, datoutlist[0]) launchProcess(cmd, independent=True) class McaBatch(McaAdvancedFitBatch.McaAdvancedFitBatch, QThread): """ Batch fitting thread """ def __init__(self, parent, configfile, **kwargs): McaAdvancedFitBatch.McaAdvancedFitBatch.__init__(self, configfile, **kwargs) QThread.__init__(self) self.parent = parent self.pleasePause = 0 def run(self): self.processList() def onNewFile(self, ffile, filelist): self.__lastOnNewFile = ffile ddict = {'file':ffile, 'filelist':filelist, 'filestep':self.fileStep, 'filebeginoffset':self.fileBeginOffset, 'fileendoffset':self.fileEndOffset, 'event':'onNewFile'} qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause: self.__pauseMethod() def onImage(self, key, keylist): ddict = {'key':key, 'keylist':keylist, 'event':'onImage'} qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) def onMca(self, imca, nmca, filename=None, key=None, info=None): _logger.debug("onMca key = %s", key) ddict = {'mca':imca, 'nmca':nmca, 'mcastep':self.mcaStep, 'filename':filename, 'key':key, 'info':info, 'outputdir':self.outputdir, 'useExistingFiles':self.useExistingFiles, 'roifit':self.roiFit, 'event':'onMca'} qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause: self.__pauseMethod() def onEnd(self): _logger.debug("onEnd") savedimages = [] if self.outbuffer is not None: savedimages = self.outbuffer.filenames('.edf') savedimages = [fname for fname in savedimages if os.path.isfile(fname)] ddict = {'event':'onEnd', 'filestep':self.fileStep, 'mcastep':self.mcaStep, 'chunk':self.chunk, 'savedimages':savedimages} if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent(ddict)) if self.pleasePause: self.__pauseMethod() def __pauseMethod(self): if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchPaused'})) while(self.pleasePause): time.sleep(1) if QTVERSION < '4.0.0': self.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) else: qt.QApplication.postEvent(self.parent, McaCustomEvent.McaCustomEvent({'event':'batchResumed'})) class McaBatchWindow(qt.QWidget): """ Widget to control batch fitting threads """ def __init__(self,parent=None, name="BatchWindow", fl=0, actions = 0, outputdir=None, html=0, htmlindex = None, table=2, chunk=None, exitonend=False, showresult=True): if QTVERSION < '4.0.0': qt.QWidget.__init__(self, parent, name, fl) self.setCaption(name) else: qt.QWidget.__init__(self, parent) self.setWindowTitle(name) self.chunk = chunk self.exitonend = exitonend self._showResult = showresult self.l = qt.QVBoxLayout(self) #self.l.setAutoAdd(1) self.bars =qt.QWidget(self) self.l.addWidget(self.bars) if QTVERSION < '4.0.0': self.barsLayout = qt.QGridLayout(self.bars,2,3) else: self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('File Progress:') self.imageBar = qt.QProgressBar(self.bars) self.imageLabel = qt.QLabel(self.bars) self.imageLabel.setText('Image in File:') self.mcaBar = qt.QProgressBar(self.bars) self.mcaLabel = qt.QLabel(self.bars) self.mcaLabel.setText('MCA in Image:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.barsLayout.addWidget(self.imageLabel,1,0) self.barsLayout.addWidget(self.imageBar,1,1) self.barsLayout.addWidget(self.mcaLabel,2,0) self.barsLayout.addWidget(self.mcaBar,2,1) self.status = qt.QLabel(self) self.status.setText(" ") self.timeLeft = qt.QLabel(self) self.l.addWidget(self.status) self.l.addWidget(self.timeLeft) self.timeLeft.setText("Estimated time left = ???? min") self.time0 = None self.html = html if htmlindex is None:htmlindex="index.html" self.htmlindex = htmlindex self.outputdir = outputdir self.table = table self.__ended = False self.__writingReport = False if actions: self.addButtons() self.show() self.raise_() def addButtons(self): self.actions = 1 self.buttonsBox = qt.QWidget(self) l = qt.QHBoxLayout(self.buttonsBox) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.pauseButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.pauseButton.setText("Pause") self.abortButton = qt.QPushButton(self.buttonsBox) l.addWidget(self.abortButton) l.addWidget(qt.HorizontalSpacer(self.buttonsBox)) self.abortButton.setText("Abort") self.l.addWidget(self.buttonsBox) self.update() def customEvent(self,event): if event.dict['event'] == 'onNewFile':self.onNewFile(event.dict['file'], event.dict['filelist'], event.dict['filestep'], event.dict['filebeginoffset'], event.dict['fileendoffset']) elif event.dict['event'] == 'onImage': self.onImage (event.dict['key'], event.dict['keylist']) elif event.dict['event'] == 'onMca': self.onMca (event.dict) #event.dict['mca'], #event.dict['nmca'], #event.dict['mcastep'], #event.dict['filename'], #event.dict['key']) elif event.dict['event'] == 'onEnd': self.onEnd(event.dict) elif event.dict['event'] == 'batchPaused': self.onPause() elif event.dict['event'] == 'batchResumed':self.onResume() elif event.dict['event'] == 'reportWritten':self.onReportWritten() else: _logger.warning("Unhandled event %s", event) def onNewFile(self, file, filelist, filestep, filebeginoffset =0, fileendoffset = 0): _logger.debug("onNewFile: %s", file) indexlist = list(range(filebeginoffset, len(filelist)-fileendoffset, filestep)) index = indexlist.index(filelist.index(file)) #print index + filebeginoffset if index == 0: self.report= None if self.html: self.htmlindex = os.path.join(self.outputdir, 'HTML') htmlindex = os.path.join(os.path.basename(file)+"_HTMLDIR", "index.html") self.htmlindex = os.path.join(self.htmlindex,htmlindex) if os.path.exists(self.htmlindex): try: os.remove(self.htmlindex) except Exception: _logger.warning("cannot delete file %s", self.htmlindex) nfiles = len(indexlist) self.status.setText("Processing file %s" % file) e = time.time() if QTVERSION < '4.0.0': self.progressBar.setTotalSteps(nfiles) self.progressBar.setProgress(index) else: self.progressBar.setMaximum(nfiles) self.progressBar.setValue(index) if self.time0 is not None: t = (e - self.time0) * (nfiles - index) self.time0 =e if t < 120: self.timeLeft.setText("Estimated time left = %d sec" % (t)) else: self.timeLeft.setText("Estimated time left = %d min" % (int(t / 60.))) else: self.time0 = e if sys.platform == 'darwin': qApp = qt.QApplication.instance() qApp.processEvents() def onImage(self, key, keylist): _logger.debug("onImage %s", key) i = keylist.index(key) + 1 n = len(keylist) if QTVERSION < '4.0.0': self.imageBar.setTotalSteps(n) self.imageBar.setProgress(i) self.mcaBar.setTotalSteps(1) self.mcaBar.setProgress(0) else: self.imageBar.setMaximum(n) self.imageBar.setValue(i) self.mcaBar.setMaximum(1) self.mcaBar.setValue(0) #def onMca(self, mca, nmca, mcastep): def onMca(self, ddict): _logger.debug("onMca %s", ddict['mca']) mca = ddict['mca'] nmca = ddict['nmca'] mcastep = ddict['mcastep'] filename = ddict['filename'] key = ddict['key'] info = ddict['info'] outputdir = ddict['outputdir'] useExistingFiles = ddict['useExistingFiles'] self.roiFit = ddict['roifit'] if self.html: try: if not self.roiFit: if mca == 0: self.__htmlReport(filename, key, outputdir, useExistingFiles, info, firstmca = True) else: self.__htmlReport(filename, key, outputdir, useExistingFiles, info, firstmca = False) except Exception: _logger.warning("ERROR on REPORT %s", sys.exc_info()) _logger.warning("%s", sys.exc_info()[1]) try: _logger.warning("%s", ''.join(traceback.format_tb(sys.exc_info()[2]))) except Exception: pass _logger.warning("filename = %s key =%s " , filename, key) _logger.warning("If your batch is stopped, please report this") _logger.warning("error sending the above mentioned file and the") _logger.warning("associated fit configuration file.") if QTVERSION < '4.0.0': self.mcaBar.setTotalSteps(nmca) self.mcaBar.setProgress(mca) else: self.mcaBar.setMaximum(nmca) self.mcaBar.setValue(mca) if sys.platform == 'darwin': qApp = qt.QApplication.instance() qApp.processEvents() def __htmlReport(self, filename, key, outputdir, useExistingFiles, info=None, firstmca = True): """ file=self.file fileinfo = file.GetSourceInfo() nimages = nscans = len(fileinfo['KeyList']) filename = os.path.basename(info['SourceName']) """ fitdir = os.path.join(outputdir,"HTML") if not os.path.exists(fitdir): try: os.makedirs(fitdir) except Exception: _logger.warning("I could not create directory %s", fitdir) return fitdir = os.path.join(fitdir, filename+"_HTMLDIR") if not os.path.exists(fitdir): try: os.makedirs(fitdir) except Exception: _logger.warning("I could not create directory %s", fitdir) return localindex = os.path.join(fitdir, "index.html") if not os.path.isdir(fitdir): _logger.warning("%s does not seem to be a valid directory", fitdir) else: outfile = filename + "_" + key + ".html" outfile = os.path.join(fitdir, outfile) useExistingResult = useExistingFiles if os.path.exists(outfile): if not useExistingFiles: try: os.remove(outfile) except Exception: _logger.warning("cannot delete file %s", outfile) useExistingResult = 0 else: useExistingResult = 0 outdir = fitdir fitdir = os.path.join(outputdir,"FIT") fitdir = os.path.join(fitdir,filename+"_FITDIR") fitfile= os.path.join(fitdir, filename +"_"+key+".fit") if not os.path.exists(fitfile): _logger.warning("fit file %s does not exists!", fitfile) return if self.report is None: #first file self.forcereport = 0 self._concentrationsFile = os.path.join(outputdir, self._rootname + "_concentrations.txt") if os.path.exists(self._concentrationsFile): """ #code removed, concentrations in McaAdvancedFitBatch.py try: os.remove(self._concentrationsFile) except Exception: pass """ pass else: #this is to generate the concentrations file #from an already existing set of fitfiles self.forcereport = 1 if self.forcereport or (not useExistingResult): self.report = QtMcaAdvancedFitReport.QtMcaAdvancedFitReport(fitfile = fitfile, outfile = outfile, table = self.table) self.__writingReport = True a=self.report.writeReport() """ #The code below has been moved to McaAdvancedFitBatch.py if len(self.report._concentrationsTextASCII) > 1: text = "" text += "SOURCE: "+ filename +"\n" text += "KEY: "+key+"\n" text += self.report._concentrationsTextASCII + "\n" f=open(self._concentrationsFile,"a") f.write(text) f.close() """ self.__writingReport = False #qt.QApplication.postEvent(self, McaCustomEvent.McaCustomEvent({'event':'reportWritten'})) self.onReportWritten() def onEnd(self, dict): _logger.debug("Batch finished") self.__ended = True if QTVERSION < '4.0.0': n = self.progressBar.progress() self.progressBar.setProgress(n + dict['filestep']) n = self.mcaBar.progress() self.mcaBar.setProgress(n + dict['mcastep']) else: n = self.progressBar.value() self.progressBar.setValue(n + dict['filestep']) n = self.mcaBar.value() self.mcaBar.setValue(n + dict['mcastep']) self.status.setText ("Batch Finished") self.timeLeft.setText("Estimated time left = 0 sec") if self.actions: self.pauseButton.hide() self.abortButton.setText("OK") if self.chunk is None: savedimages = dict.get('savedimages', None) if savedimages and self._showResult: self.plotImages(savedimages) if self.html: if not self.__writingReport: directory = os.path.join(self.outputdir,"HTML") a = HtmlIndex.HtmlIndex(directory) a.buildRecursiveIndex() if dict['chunk'] is not None: #this seems to work properly _logger.debug("onEnd Closing after processing a chunk") self.close() if self.actions: if hasattr(self.abortButton, "animateClick"): if self.abortButton.text() == "OK": # click for 100 milliseconds _logger.debug("onEnd automatically clicking button") self.abortButton.animateClick() if self.exitonend: _logger.debug("onEnd close and not quit") self.close() _logger.debug("onEnd returning") def onReportWritten(self): if self.__ended: directory = os.path.join(self.outputdir,"HTML") a = HtmlIndex.HtmlIndex(directory) a.buildRecursiveIndex() def onPause(self): pass def onResume(self): pass def plotImages(self,imagelist): if noProcesses(): if self.exitonend: # Do not start because we exit anyway return self.__viewer = EdfFileSimpleViewer.EdfFileSimpleViewer() # REMARK: this call takes a long time to finish: self.__viewer.setFileList(imagelist) self.__viewer.show() else: edfviewer_path = toolPath('EdfFileSimpleViewer') if edfviewer_path: filelist = ' '.join('"%s"' % filename for filename in imagelist) cmd = '%s %s' % (edfviewer_path, filelist) launchProcess(cmd, independent=True) def main(): sys.excepthook = qt.exceptionHandler import getopt from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel options = 'f' longoptions = ['cfg=','outdir=','roifit=','roi=','roiwidth=', 'overwrite=', 'filestep=', 'mcastep=', 'html=','htmlindex=', 'listfile=','cfglistfile=', 'concentrations=', 'table=', 'fitfiles=', 'filebeginoffset=','fileendoffset=','mcaoffset=', 'chunk=', 'nativefiledialogs=','selection=', 'exitonend=', 'edf=', 'h5=', 'csv=', 'tif=', 'dat=', 'diagnostics=', 'logging=', 'debug=', 'gui=', 'multipage=', 'nproc=', 'showresult='] filelist = None outdir = None cfg = None listfile = None cfglistfile = None selection = False roifit = 0 roiwidth = ROIWIDTH overwrite= 1 filestep = 1 html = 0 htmlindex= None mcastep = 1 table = 2 fitfiles = 0 concentrations = 0 filebeginoffset = 0 fileendoffset = 0 mcaoffset = 0 chunk = None exitonend = False showresult = True gui = 0 diagnostics = 0 tif = 0 edf = 1 csv = 0 h5 = 1 dat = 1 multipage = 0 nproc = 1 opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt,arg in opts: if opt in ('--cfg'): cfg = arg elif opt in ('--outdir'): outdir = arg elif opt in ('--roi','--roifit'): roifit = int(arg) elif opt in ('--roiwidth'): roiwidth = float(arg) elif opt in ('--overwrite'): overwrite= int(arg) elif opt in ('--filestep'): filestep = int(arg) elif opt in ('--mcastep'): mcastep = int(arg) elif opt in ('--html'): html = int(arg) elif opt in ('--htmlindex'): htmlindex = arg elif opt in ('--listfile'): listfile = arg elif opt in ('--cfglistfile'): cfglistfile = arg elif opt in ('--concentrations'): concentrations = int(arg) elif opt in ('--table'): table = int(arg) elif opt in ('--fitfiles'): fitfiles = int(arg) elif opt in ('--filebeginoffset'): filebeginoffset = int(arg) elif opt in ('--fileendoffset'): fileendoffset = int(arg) elif opt in ('--mcaoffset'): mcaoffset = int(arg) elif opt in ('--chunk'): chunk = int(arg) elif opt in ('--gui'): gui = int(arg) elif opt in ('--selection'): selection = int(arg) if selection: selection = True else: selection = False elif opt in ('--nativefiledialogs'): if int(arg): PyMcaDirs.nativeFileDialogs = True else: PyMcaDirs.nativeFileDialogs = False elif opt in ('--exitonend'): exitonend = int(arg) elif opt in ('--showresult'): showresult = int(arg) elif opt == '--diagnostics': diagnostics = int(arg) elif opt == '--edf': edf = int(arg) elif opt == '--csv': csv = int(arg) elif opt == '--h5': h5 = int(arg) elif opt == '--dat': dat = int(arg) elif opt == '--tif': tif = int(arg) elif opt == '--multipage': multipage = int(arg) elif opt == '--nproc': nproc = max(int(arg), 0) level = getLoggingLevel(opts) logging.basicConfig(level=level) _logger.setLevel(level) # Files to fit: if listfile is None: filelist=[] for item in args: filelist.append(item) selection = None else: if selection: tmpDict = ConfigDict.ConfigDict() tmpDict.read(listfile) tmpDict = tmpDict['PyMcaBatch'] filelist = tmpDict['filelist'] if type(filelist) == type(""): filelist = [filelist] selection = tmpDict['selection'] else: fd = open(listfile, 'rb') filelist = fd.readlines() fd.close() for i in range(len(filelist)): filelist[i]=filelist[i].decode(sys.getfilesystemencoding()).replace('\n','') selection = None # Configurations to use: if cfglistfile is not None: fd = open(cfglistfile, 'rb') cfg = fd.readlines() fd.close() for i in range(len(cfg)): cfg[i]=cfg[i].decode(sys.getfilesystemencoding()).replace('\n','') # Launch app = qt.QApplication([]) if html: fitfiles=1 if len(filelist) == 0 or gui: # Launch GUI when no files are provided app.lastWindowClosed.connect(app.quit) w = McaBatchGUI(actions=1,filelist=filelist,config=cfg,outputdir=outdir, roifit=roifit,roiwidth=roiwidth,overwrite=overwrite, concentrations=concentrations, fitfiles=fitfiles, diagnostics=diagnostics, multipage=multipage, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, nproc=nproc, table=table, html=html) w.show() w.raise_() else: # Launch processing thread when files are provided app.lastWindowClosed.connect(app.quit) text = "Batch from %s to %s" % (os.path.basename(filelist[0]), os.path.basename(filelist[-1])) window = McaBatchWindow(name=text,actions=1, outputdir=outdir,html=html, htmlindex=htmlindex, table=table, chunk=chunk, exitonend=exitonend, showresult=showresult) try: thread = McaBatch(window,cfg,filelist=filelist,outputdir=outdir,roifit=roifit,roiwidth=roiwidth, overwrite=overwrite, filestep=filestep, mcastep=mcastep, concentrations=concentrations, fitfiles=fitfiles, filebeginoffset=filebeginoffset,fileendoffset=fileendoffset, mcaoffset=mcaoffset, chunk=chunk, selection=selection, diagnostics=diagnostics, multipage=multipage, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat) except Exception: if exitonend: _logger.warning("Error: ", sys.exc_info()[1]) _logger.warning("Quitting as requested") qt.QApplication.instance().quit() else: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() return window._rootname = "%s"% thread._rootname launchThread(thread, window) app.exec() app = None if __name__ == "__main__": # We are going to read. Disable file locking. os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" _logger.info("%s set to %s" % ("HDF5_USE_FILE_LOCKING", os.environ["HDF5_USE_FILE_LOCKING"])) main() # PyMcaBatch.py --cfg=/mntdirect/_bliss/users/sole/COTTE/WithLead.cfg --outdir=/tmp/ /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0007.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0008.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0009.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0010.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0011.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0012.edf /mntdirect/_bliss/users/sole/COTTE/ch09/ch09__mca_0003_0000_0013.edf & # PyMcaBatch.exe --cfg=E:/COTTE/WithLead.cfg --outdir=C:/tmp/ E:/COTTE/ch09/ch09__mca_0003_0000_0007.edf E:/COTTE/ch09/ch09__mca_0003_0000_0008.edf ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaFileDialogs.py0000644000000000000000000000324114741736366021650 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" print("DEPRECATION WARNING: PyMcaFileDialogs.py moved to io directory") from PyMca5.PyMcaGui.io.PyMcaFileDialogs import * ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaHKLImageWindow.py0000644000000000000000000002436414741736366022250 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2018 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging from . import PyMcaImageWindow from PyMca5.PyMcaPhysics import SixCircle arctan = numpy.arctan _logger = logging.getLogger(__name__) class PyMcaHKLImageWindow(PyMcaImageWindow.PyMcaImageWindow): def __init__(self, *var, **kw): PyMcaImageWindow.PyMcaImageWindow.__init__(self, *var, **kw) self._HKLOn = True def _graphSignal(self, ddict): if (ddict['event'] not in ["MouseAt", "mouseMoved", "mouseClicked"]) or \ (not self._HKLOn): return PyMcaImageWindow.PyMcaImageWindow._graphSignal(self, ddict) if self._imageData is None: self.graphWidget.setInfoText(" H = ???? K = ???? L = ???? I = ????") return #pixel coordinates if ddict['y'] < 0: x = int(ddict['y'] - 0.5) else: x = int(ddict['y'] + 0.5) if x < 0: x = 0 if ddict['x'] < 0: y = int(ddict['x'] - 0.5) else: y = int(ddict['x'] + 0.5) if y < 0: y = 0 limits = self._imageData.shape x = min(int(x), limits[0]-1) y = min(int(y), limits[1]-1) z = self._imageData[x, y] text = " X = %d Y = %d Z = %.7g " % (y, x, z) info = self._getHKLInfoFromWidget() toDeg = 180.0/numpy.pi phi = info['phi'] chi = info['chi'] theta = info['theta'] if 0: # delta in vertical (following BM28) # gamma in horizontal (following BM28) deltaH = toDeg * numpy.arctan((x - info['pixel_zero_h']) *\ (info['pixel_size_h']/info['distance'])) deltaV = toDeg *arctan((y - info['pixel_zero_v'])*\ (info['pixel_size_v']/info['distance'])) if 0: #original gamma = info['gamma'] + deltaH delta = info['delta'] - deltaV else: #MarCCD settings gamma = info['gamma'] - deltaV delta = info['delta'] - deltaH #end of BM28 customization else: #ID03 deltaH = toDeg * numpy.arctan((x - info['pixel_zero_v']) *\ (info['pixel_size_v']/info['distance'])) deltaV = toDeg *arctan((y - info['pixel_zero_h'])*\ (info['pixel_size_h']/info['distance'])) #delta in horizontal #gamma in vertical gamma = info['gamma'] - deltaH delta = info['delta'] - deltaV if 0: #ID03 test for EH1 wavelength = 1.03321027 ub = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] ub[0] = 0.060082400000000001 ub[1] = 0.054556500000000001 ub[2] = -0.92985700000000004 ub[3] = -1.5089399999999999 ub[4] = -2.61991 ub[5] = -0.0203886 ub[6] = -2.1539600000000001 ub[7] = 0.230518 ub[8] = -0.011654299999999999 delta, theta, chi, phi, mu, gamma = 44.0035, -92.968, 90.715,\ 1.26, 0.3, 0.578 print(" Expected value = ", 1, 1, 0.1) mu = info['mu'] wavelength = info['lambda'] ub = info['ub'] if 0: #This should always give 1 1 1 wavelength = 0.363504 ub = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] ub[0] = -4.080 ub[1] = 0.000 ub[2] = 0.000 ub[3] = 0.000 ub[4] = 4.080 ub[5] = 0.000 ub[6] = 0.000 ub[7] = 0.000 ub[8] = -4.080 delta, theta, chi, phi, mu, gamma = 23.5910, 47.0595, -135.,\ 0.0, 0.0, 0.0 HKL = SixCircle.getHKL(wavelength, ub, phi=phi, chi=chi, theta=theta, gamma=gamma, delta=delta, mu=mu) HKL.shape = -1 text += "H = %.3f " % HKL[0] text += "K = %.3f " % HKL[1] text += "L = %.3f " % HKL[2] self.graphWidget.setInfoText(text) def _getHKLInfoFromWidget(self): ddict = {} ddict['lambda'] = 1.0 # In Angstroms ddict['distance'] = 1000. # Same units as pixel size ddict['pixel_size_h'] = 0.080 # Same units as distance ddict['pixel_size_v'] = 0.080 # Same units as distance ddict['pixel_zero_h'] = 1024. # In pixel units (float) ddict['pixel_zero_v'] = 1024. # In pixel units (float) ddict['orientation'] = 0 ddict['ub'] = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] ddict['phi'] = 0.0 ddict['chi'] = 0.0 ddict['theta'] = 0.0 ddict['gamma'] = 0.0 ddict['delta'] = 0.0 ddict['mu'] = 0.0 legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] info = dataObject.info #try to get the information from the motors motPos = info.get('motor_pos', "") motMne = info.get('motor_mne', "") motPos = motPos.split() motMne = motMne.split() if len(motPos) == len(motMne): idx = -1 for mne in motMne: idx += 1 if mne.upper() in ['ENERGY', 'NRJ']: energy = float(motPos[idx]) ddict['lambda'] = 12.39842 / energy continue if mne in ['phi', 'chi', 'mu']: ddict[mne] = float(motPos[idx]) continue if mne in ['th', 'theta']: ddict['theta'] = float(motPos[idx]) continue if mne in ['del', 'delta', 'tth', 'twotheta']: ddict['delta'] = float(motPos[idx]) continue if mne in ['gam', 'gamma']: ddict['gamma'] = float(motPos[idx]) continue #and update it from the counters cntPos = info.get('counter_pos', "").split() cntMne = info.get('counter_mne', "").split() cntInfo = {} if len(cntPos) == len(cntMne): for i in range(len(cntMne)): cntInfo[cntMne[i]] = cntPos[i] for key in cntInfo.keys(): # diffractometer if key in ['phicnt']: ddict['phi'] = float(cntInfo[key]) continue if key in ['chicnt']: ddict['chi'] = float(cntInfo[key]) continue if key in ['thcnt', 'thetacnt']: ddict['theta'] = float(cntInfo[key]) continue if key in ['tthcnt'] and ('delcnt' not in cntInfo.keys()): #Avoid ID03 trap because they have delcnt and tthcnt ... ddict['delta'] = float(cntInfo[key]) continue if key in ['delcnt', 'deltacnt']: ddict['delta'] = float(cntInfo[key]) continue if key in ['gamcnt', 'gammacnt']: ddict['gamma'] = float(cntInfo[key]) continue if key in ['mucnt']: ddict['mu'] = float(cntInfo[key]) continue for key in info.keys(): # UB matrix if key.upper() in ['UB_POS']: ddict['ub'] = [float(x) for x in info[key].split()] continue # direct beam if key in ['beam_x', 'pixel_zero_x']: ddict['pixel_zero_h'] = float(info[key]) continue if key in ['beam_y', 'pixel_zero_y']: ddict['pixel_zero_v'] = float(info[key]) continue #sample to direct beam distance if key in ['detector_distance', 'd_sample_det']: ddict['distance'] = float(info[key]) continue #pixel sizes if key in ['pixel_size_x']: ddict['pixel_size_h'] = float(info[key]) continue if key in ['pixel_size_y']: ddict['pixel_size_v'] = float(info[key]) continue #wave length if key in ['source_wavelength', 'lambda']: ddict['lambda'] = float(info[key]) continue for key in ddict.keys(): _logger.debug("%s: %s", key, ddict[key]) return ddict ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaImageWindow.py0000644000000000000000000005255014741736366021707 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging from . import RGBImageCalculator qt = RGBImageCalculator.qt QTVERSION = qt.qVersion() from . import RGBCorrelator from PyMca5.PyMcaGui.misc import FrameBrowser USE_BROWSER = True _logger = logging.getLogger(__name__) class PyMcaImageWindow(RGBImageCalculator.RGBImageCalculator): def __init__(self, parent = None, name = "PyMca Image Window", correlator = None, scanwindow=None, usesilx=False): RGBImageCalculator.RGBImageCalculator.__init__(self, parent, math = False, replace = True, scanwindow=scanwindow, usesilx=usesilx) self.setWindowTitle(name) self.correlator = correlator self.ownCorrelator = False #self.mathBox.hide() self.dataObjectsList = [] self.dataObjectsDict = {} self._plotEnabled = True self._externalWidget = None self.setDefaultColormap(2, logflag=True) if USE_BROWSER: self.slider = FrameBrowser.HorizontalSliderWithBrowser(self) else: self.slider = qt.QSlider(self) self.slider.setOrientation(qt.Qt.Horizontal) self.slider.setRange(0, 0) self._xLabel = "Column" self._yLabel = "Row" self.mainLayout.addWidget(self.slider) self.slider.valueChanged[int].connect(self._showImageSliderSlot) self.slider.hide() def _connectCorrelator(self): if self.correlator is None: self.ownCorrelator = True self.correlator = RGBCorrelator.RGBCorrelator() self.correlator.setWindowTitle("ImageWindow RGB Correlator") self.sigAddImageClicked.connect(self.correlator.addImageSlot) self.sigRemoveImageClicked.connect(self.correlator.removeImageSlot) self.sigReplaceImageClicked.connect( \ self.correlator.replaceImageSlot) def _addImageClicked(self): if self.correlator is None: self._connectCorrelator() if self._imageData is None: return if len(self._imageData) == 0: return if not RGBImageCalculator.RGBImageCalculator._addImageClicked(self): #if self.ownCorrelator: if self.correlator.isHidden(): self.correlator.show() def setDispatcher(self, w): w.sigAddSelection.connect(self._addSelection) w.sigRemoveSelection.connect(self._removeSelection) w.sigReplaceSelection.connect(self._replaceSelection) def _addSelection(self, selectionlist): _logger.debug("_addSelection(self, selectionlist=%s)", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] for sel in sellist: self._xScale = None self._yScale = None xLabel = "Column" yLabel = "Row" source = sel['SourceName'] key = sel['Key'] legend = sel['legend'] #expected form sourcename + scan key #if not "scanselection" in sel: continue #if not sel["scanselection"]:continue #if len(key.split(".")) > 2: continue dataObject = sel['dataobject'] #only two-dimensional selections considered if dataObject.info.get("selectiontype", "1D") != "2D": continue if dataObject.data is None: # This is the SCAN regular mesh case if hasattr(dataObject, "y"): if dataObject.y is not None: dataObject.data = dataObject.y[0] data0 = dataObject.y[0] if len(data0.shape) == 1: #we have to figure out the shape ... if hasattr(dataObject, "x"): if len(dataObject.x) == 2: x0 = dataObject.x[0][:] x0.shape = -1 x1 = dataObject.x[1][:] x1.shape = -1 if abs(x0[1] - x0[0]) < 1.0e-6: nColumns = numpy.argmin(abs(x0-x0[0]) < 1.0e-6) nRows = x1.size / nColumns if nRows!= int(nRows): raise ValueError("2D Selection not understood") transpose = False self._yScale = x0[0], x0[nColumns] - x0[0] self._xScale = x1[0], x1[1] - x1[0] elif abs(x1[1] - x1[0]) < 1.0e-6: nRows = numpy.argmin(abs(x1-x1[0]) < 1.0e-6) nColumns = x0.size / nRows if nColumns != int(nColumns): raise ValueError("2D Selection not understood") transpose = True self._xScale = x0[0], x0[1] - x0[0] self._yScale = x1[0], x1[nRows] - x1[0] else: raise TypeError("2D Selection is not a regular mesh") dataObject.data = numpy.zeros((len(dataObject.y), int(nRows), int(nColumns)), data0.dtype) for yIndex in range(len(dataObject.y)): if transpose: tmpData = numpy.transpose(dataObject.y[yIndex])[:] else: tmpData = dataObject.y[yIndex][:] tmpData.shape = int(nRows), int(nColumns) dataObject.data[yIndex] = tmpData else: _logger.info("Nothing to plot") elif hasattr(dataObject, "x") and (dataObject.x is not None): if "selection" in sel: axesLabels = self._getAxesLabelsFromSelection(sel["selection"]) else: axesLabels = [] shape = dataObject.data.shape if len(dataObject.x) == 2: x0 = dataObject.x[0][:] x0.shape = -1 x1 = dataObject.x[1][:] x1.shape = -1 if abs(x0[1] - x0[0]) < 1.0e-6: nColumns = numpy.argmin(abs(x0-x0[0]) < 1.0e-6) nRows = x1.size / nColumns if nRows!= int(nRows): _logger.warning("%f != %d", nRows, int(nRows)) raise ValueError("2D Selection not understood") transpose = False nColumns = int(nColumns) self._yScale = x0[0], x0[nColumns] - x0[0] self._xScale = x1[0], x1[1] - x1[0] elif abs(x1[1] - x1[0]) < 1.0e-6: nRows = numpy.argmin(abs(x1-x1[0]) < 1.0e-6) nColumns = x0.size / nRows if nColumns != int(nColumns): _logger.warning("%f != %d", nColumns, int(nColumns)) raise ValueError("2D Selection not understood") transpose = True nRows = int(nRows) self._xScale = x0[0], x0[1] - x0[0] self._yScale = x1[0], x1[nRows] - x1[0] elif (len(x0) == shape[-2]) and (len(x1) == shape[-1]): self._xScale = x1[0], x1[1] - x1[0] self._yScale = x0[0], x0[1] - x0[0] if len(axesLabels) == 2: xLabel = axesLabels[1] yLabel = axesLabels[0] elif (len(x0) == shape[-1]) and (len(x1) == shape[-2]): self._yScale = x1[0], x1[1] - x1[0] self._xScale = x0[0], x0[1] - x0[0] if len(axesLabels) == 2: xLabel = axesLabels[0] yLabel = axesLabels[1] else: raise TypeError("2D Selection is not a regular mesh") self._xLabel = xLabel self._yLabel = yLabel dataObject.info['xlabel'] = xLabel dataObject.info['ylabel'] = yLabel self.dataObjectsList = [legend] self.dataObjectsDict = {legend:dataObject} shape = dataObject.data.shape if len(shape) == 2: self._nImages = 1 self._imageData = dataObject.data if hasattr(dataObject, 'm'): if dataObject.m is not None: for m in dataObject.m: if hasattr(m, "size"): if m.size == self._imageData.size: tmpView = m[:] tmpView.shape = shape self._imageData = self._imageData / tmpView.astype(numpy.float64) else: #let numpy raise the appropriate error self._imageData = self._imageData / numpy.float(m) else: self._imageData = self._imageData / numpy.float(m) self.slider.hide() self.setName(legend) else: self._nImages = 1 for dimension in dataObject.data.shape[:-2]: self._nImages *= dimension #This is a problem for dynamic data #dataObject.data.shape = self._nImages, shape[-2], shape[-1] self._imageData = self._getImageDataFromSingleIndex(0) self.slider.setRange(0, self._nImages - 1) self.slider.setValue(0) self.slider.show() self.setName(legend+" 0") if self._plotEnabled: self.plotImage(True) def _getAxesLabelsFromSelection(self, selection): labels = [] if "x" in selection: if "LabelNames" in selection: if selection["x"]: for idx in selection["x"]: labels.append(selection["LabelNames"][idx]) return labels def _getImageDataFromSingleIndex(self, index): legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] shape = dataObject.data.shape if len(shape) == 2: if index > 0: raise IndexError("Only one image in stack") data = dataObject.data if hasattr(dataObject, 'm'): if dataObject.m is not None: #is a list for m in dataObject.m: data = data / numpy.float(m) return data if len(shape) == 3: data = dataObject.data[index:index+1,:,:] data.shape = data.shape[1:] if hasattr(dataObject, 'm'): if dataObject.m is not None: for m in dataObject.m: if hasattr(m, "size"): if m.size == data.size: tmpView = m[:] tmpView.shape = data.shape data = data / tmpView.astype(numpy.float64) else: data = data / numpy.float(m) else: data = data / numpy.float(m) return data #I have to deduce the appropriate indices from the given index #always assuming C order acquisitionShape = dataObject.data.shape[:-2] if len(shape) == 4: j = index % acquisitionShape[-1] i = int(index/(acquisitionShape[-1]*acquisitionShape[-2])) data = dataObject.data[i, j] if hasattr(dataObject, 'm'): if dataObject.m is not None: for m in dataObject.m: if hasattr(m, "size"): if m.size == data.size: tmpView = m[:] tmpView.shape = data.shape data = data / tmpView.astype(numpy.float64) else: data = data / numpy.float(m) else: data = data / numpy.float(m) return data raise IndexError("Unhandled dimension") def setPlotEnabled(self, value=True): self._plotEnabled = value if value: if self._imageData is not None: self.plotImage(True) else: self.graphWidget.graph.clear() pass def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist=%s)", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] for sel in sellist: legend = sel['legend'] if legend in self.dataObjectsList: self.dataObjectsList = [] if legend in self.dataObjectsDict.keys(): self.dataObjectsDict = {} #For the time being I prefer to leave the last image plotted #self._imageData = 0 * self._imageData #self.plotImage(True) def _replaceSelection(self, selectionlist): _logger.debug("_replaceSelection(self, selectionlist=%s)", selectionlist) current = self.slider.value() self._addSelection(selectionlist) if current < self._nImages: self.showImage(current, moveslider=False) else: self.showImage(0, moveslider=True) def closeEvent(self, event): if self.ownCorrelator: self.correlator.close() RGBImageCalculator.RGBImageCalculator.closeEvent(self, event) def _showImageSliderSlot(self, index): self.showImage(index, moveslider=False) def showImage(self, index=0, moveslider=True): legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] self._imageData = self._getImageDataFromSingleIndex(index) self.plotImage(True) txt = "%s %d" % (legend, index) self.setName(txt) if "xlabel" in dataObject.info: self._xLabel = dataObject.info["xlabel"] else: self._xLabel = "Column" if "ylabel" in dataObject.info: self._yLabel = dataObject.info["ylabel"] else: self._yLabel = "Row" if moveslider: self.slider.setValue(index) def plotImage(self, update=True): self.graphWidget.graph.setGraphYLabel(self._yLabel) self.graphWidget.graph.setGraphXLabel(self._xLabel) self.graphWidget.setImageData(self._imageData, xScale=self._xScale, yScale=self._yScale) return self.graphWidget.plotImage(update=update) class TimerLoop: def __init__(self, function = None, period = 1000): self.__timer = qt.QTimer() if function is None: function = self.test self._function = function self.__setThread(function, period) #self._function = function def __setThread(self, function, period): self.__timer = qt.QTimer() self.__timer.timeout[()].connect(function) self.__timer.start(period) def test(self): _logger.info("Test function called") if __name__ == "__main__": from PyMca5 import DataObject import weakref import time def buildDataObject(arrayData): dataObject = DataObject.DataObject() dataObject.data = arrayData dataObject.info['selectiontype'] = "2D" dataObject.info['Key'] = id(dataObject) return dataObject def buildSelection(dataObject, name = "image_data0"): key = dataObject.info['Key'] def dataObjectDestroyed(ref, dataObjectKey=key): _logger.debug("dataObject distroyed key = %s", key) dataObjectRef=weakref.proxy(dataObject, dataObjectDestroyed) selection = {} selection['SourceType'] = 'SPS' selection['SourceName'] = 'spec' selection['Key'] = name selection['legend'] = selection['SourceName'] + " "+ name selection['imageselection'] = True selection['dataobject'] = dataObjectRef return selection a = 1000 b = 1000 period = 1000 x1 = numpy.arange(a * b).astype(numpy.float64) x1.shape= [a, b] x2 = numpy.transpose(x1) app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if len(sys.argv) > 1:PYMCA=True else:PYMCA = False if PYMCA: from PyMca5.PyMcaGui.pymca import PyMcaMain w = PyMcaMain.PyMcaMain() w.show() else: w = PyMcaImageWindow(usesilx=None) w.show() counter = 0 def function(period = period): global counter flag = counter % 6 if flag == 0: #add x1 print("Adding X1") dataObject = buildDataObject(x1) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 1: #add x2 print("Adding X2") dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X2') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 2: #add x1 print("Changing X1") dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 1: #add x2 print("Changing X2") dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 4: #replace x1 print("Replacing by new X1") dataObject = buildDataObject(x1-x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherReplaceSelectionSlot(selection) else: w._replaceSelection(selection) else: #replace by x2 print("Replacing by new X2") dataObject = buildDataObject(x2-x1) selection = buildSelection(dataObject, 'X2') if PYMCA: w.dispatcherReplaceSelectionSlot(selection) else: w._replaceSelection(selection) counter += 1 loop = TimerLoop(function = function, period = period) sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaMain.py0000644000000000000000000023164614741736366020366 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys, getopt import traceback import logging if sys.platform == 'win32': import ctypes from ctypes.wintypes import MAX_PATH nativeFileDialogs = None _logger = logging.getLogger(__name__) backend=None if __name__ == '__main__': options = '-f' longoptions = ['spec=', 'shm=', 'debug=', 'qt=', 'backend=', 'nativefiledialogs=', 'PySide=', 'binding=', 'logging='] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except getopt.error: print("%s" % sys.exc_info()[1]) sys.exit(1) keywords={} debugreport = 0 qtversion = None binding = None for opt, arg in opts: if opt in ('--spec'): keywords['spec'] = arg elif opt in ('--shm'): keywords['shm'] = arg elif opt in ('--debug'): if arg.lower() not in ['0', 'false']: debugreport = 1 _logger.setLevel(logging.DEBUG) # --debug is also parsed later for the global logging level elif opt in ('-f'): keywords['fresh'] = 1 elif opt in ('--qt'): qtversion = arg elif opt in ('--backend'): backend = arg elif opt in ('--nativefiledialogs'): if int(arg): nativeFileDialogs = True else: nativeFileDialogs = False elif opt in ('--PySide'): print("Please use --binding=PySide6") import PySide6.QtCore elif opt in ('--binding'): binding = arg.lower() if binding == "pyqt5": import PyQt5.QtCore elif binding == "pyside2": import PySide2.QtCore elif binding == "pyside6": import PySide6.QtCore elif binding == "pyqt6": import PyQt6.QtCore else: raise ValueError("Unknown Qt binding <%s>" % binding) from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel logging.basicConfig(level=getLoggingLevel(opts)) # We are going to read. Disable file locking. os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" _logger.info("%s set to %s" % ("HDF5_USE_FILE_LOCKING", os.environ["HDF5_USE_FILE_LOCKING"])) if binding is None: if qtversion == '3': raise NotImplementedError("Qt3 is no longer supported") elif qtversion == '4': raise NotImplementedError("Qt4 is no longer supported") elif qtversion == '5': try: import PyQt5.QtCore except ImportError: import PySide2.QtCore elif qtversion == '6': import PySide6.QtCore try: # make sure hdf5plugins are imported import hdf5plugin except Exception: _logger.info("Failed to import hdf5plugin") from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs QTVERSION = qt.qVersion() try: import silx # try to import silx prior to importing matplotlib to prevent # unnecessary warning import silx.gui.plot except Exception: pass from PyMca5.PyMcaGui.pymca import PyMcaMdi IconDict = PyMcaMdi.IconDict IconDict0 = PyMcaMdi.IconDict0 if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str try: from PyMca5.PyMcaGui.physics.xrf import XRFMCPyMca XRFMC_FLAG = True except Exception: XRFMC_FLAG = False try: from PyMca5.PyMcaGui.pymca import SumRulesTool SUMRULES_FLAG = True except Exception: SUMRULES_FLAG = False # prefer lazy import to avoid OpenCL related crashes on startup TOMOGUI_FLAG = True import PyMca5 from PyMca5 import PyMcaDataDir __version__ = PyMca5.version() if __name__ == "__main__": sys.excepthook = qt.exceptionHandler app = qt.QApplication(sys.argv) if sys.platform not in ["win32", "darwin"]: # some themes of Ubuntu 16.04 give black tool tips on black background app.setStyleSheet("QToolTip { color: #000000; background-color: #fff0cd; border: 1px solid black; }") mpath = PyMcaDataDir.PYMCA_DATA_DIR if mpath[-3:] == "exe": mpath = os.path.dirname(mpath) fname = os.path.join(mpath, 'PyMcaSplashImage.png') if not os.path.exists(fname): while len(mpath) > 3: fname = os.path.join(mpath, 'PyMcaSplashImage.png') if not os.path.exists(fname): mpath = os.path.dirname(mpath) else: break if os.path.exists(fname): pixmap = qt.QPixmap(QString(fname)) splash = qt.QSplashScreen(pixmap) else: splash = qt.QSplashScreen() splash.show() splash.raise_() from PyMca5.PyMcaGui.pymca import ChangeLog font = splash.font() font.setBold(1) splash.setFont(font) try: # there is a deprecation warning in Python 3.8 when # dealing with the alignement flags. alignment = int(qt.Qt.AlignLeft|qt.Qt.AlignBottom) splash.showMessage( 'PyMca %s' % __version__, alignment, qt.Qt.white) except Exception: # fall back to original implementation in case of troubles splash.showMessage( 'PyMca %s' % __version__, qt.Qt.AlignLeft|qt.Qt.AlignBottom, qt.Qt.white) if sys.platform == "darwin": qApp = qt.QApplication.instance() qApp.processEvents() from PyMca5.PyMcaGraph.Plot import Plot from PyMca5.PyMcaGui.pymca import ScanWindow from PyMca5.PyMcaGui.pymca import McaWindow from PyMca5.PyMcaGui.pymca import PyMcaImageWindow from PyMca5.PyMcaGui.pymca import PyMcaHKLImageWindow try: #This is to make sure it is properly frozen #and that Object3D is fully supported import OpenGL.GL OBJECT3D = False if ("PyQt4.QtOpenGL" in sys.modules) or \ ("PySide.QtOpenGL") in sys.modules or \ ("PySide6.QtOpenGL") in sys.modules or \ ("PySide2.QtOpenGL") in sys.modules or \ ("PyQt5.QtOpenGL") in sys.modules: OBJECT3D = True except Exception: _logger.info("pyopengl not installed") OBJECT3D = False # Silx OpenGL availability (former Object3D) try: import PyMca5.PyMcaGui.pymca.SilxGLWindow isSilxGLAvailable = True except ImportError: isSilxGLAvailable = False if isSilxGLAvailable: SceneGLWindow = PyMca5.PyMcaGui.pymca.SilxGLWindow else: SceneGLWindow = None try: from PyMca5.PyMcaGui.pymca import SilxScatterWindow except Exception: _logger.info("Cannot import SilxScatterWindow") # check that OpenGL is actually supported (ESRF rnice problems) OPENGL_DRIVERS_OK = True if sys.platform.startswith("linux"): import subprocess if subprocess.call("which glxinfo > /dev/null", shell=True) == 0: if subprocess.call("glxinfo > /dev/null", shell=True): OPENGL_DRIVERS_OK = False isSilxGLAvailable = False OBJECT3D = False _logger.warning("OpenGL disabled. Errors using glxinfo command") if OPENGL_DRIVERS_OK and isSilxGLAvailable: # additional test (takes care of disabled forwarding) try: from silx.gui.utils.glutils import isOpenGLAvailable isSilxGLAvailable = isOpenGLAvailable(version=(2, 1), runtimeCheck=True) if not isSilxGLAvailable: _logger.info("OpenGL >= 2.1 not available") if not isOpenGLAvailable(version=(1, 4), runtimeCheck=True): _logger.info("OpenGL >= 1.4 not available") OPENGL_DRIVERS_OK = False OBJECT3D = False except Exception: _logger.info("Cannot test OpenGL availability %s" % sys.exc_info()[1]) # PyMca 3D disabled in favor of silx OBJECT3D = isSilxGLAvailable _logger.info("SilxGL availability: %s", isSilxGLAvailable) from PyMca5.PyMcaGui.pymca import QDispatcher from PyMca5.PyMcaGui.physics.xrf import ElementsInfo from PyMca5.PyMcaGui.physics.xrf import PeakIdentifier from PyMca5.PyMcaGui.pymca import PyMcaBatch ###########import Fit2Spec from PyMca5.PyMcaGui.pymca import Mca2Edf try: from PyMca5.PyMcaGui.pymca import QStackWidget from PyMca5.PyMcaGui.pymca import StackSelector STACK = True except Exception: STACK = False from PyMca5.PyMcaGui.pymca import PyMcaPostBatch from PyMca5.PyMcaGui.pymca import RGBCorrelator from PyMca5.PyMcaGui.physics.xrf import MaterialEditor from PyMca5.PyMcaIO import ConfigDict from PyMca5 import PyMcaDirs XIA_CORRECT = False if QTVERSION > '4.3.0': try: from PyMca5.PyMcaCore import XiaCorrect XIA_CORRECT = True except Exception: pass SOURCESLIST = QDispatcher.QDataSource.source_types.keys() class PyMcaMain(PyMcaMdi.PyMcaMdi): def __init__(self, parent=None, name="PyMca", fl=None,**kw): if fl is None: fl = qt.Qt.WA_DeleteOnClose PyMcaMdi.PyMcaMdi.__init__(self, parent, name, fl) maxheight = qt.QDesktopWidget().height() if maxheight < 799 and maxheight > 0: self.setMinimumHeight(int(0.8*maxheight)) self.setMaximumHeight(int(0.9*maxheight)) self.setWindowTitle(name) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.changeLog = None self._widgetDict = {} self.initSourceBrowser() self.initSource() self.elementsInfo= None self.attenuationTool = None self.identifier = None self.__batch = None self.__mca2Edf = None self.__fit2Spec = None self.__correlator = None self.__imagingTool = None self._xrfmcTool = None self._sumRulesTool = None self.__reconsWidget = None self.openMenu = qt.QMenu() self.openMenu.addAction("PyMca Configuration", self.openSource) self.openMenu.addAction("Data Source", self.sourceWidget.sourceSelector._openFileSlot) self.openMenu.addAction("Load Training Data", self.loadTrainingData) self.trainingDataMenu = None self.__useTabWidget = True if not self.__useTabWidget: self.mcaWindow = McaWindow.McaWidget(self.mdi) self.scanWindow = ScanWindow.ScanWindow(self.mdi) self.imageWindowDict = None self.connectDispatcher(self.mcaWindow, self.sourceWidget) self.connectDispatcher(self.scanWindow, self.sourceWidget) self.mdi.addWindow(self.mcaWindow) self.mdi.addWindow(self.scanWindow) else: if backend is not None: Plot.defaultBackend = backend self.mainTabWidget = qt.QTabWidget(self.mdi) self.mainTabWidget.setWindowTitle("Main Window") self.mcaWindow = McaWindow.McaWindow(backend=backend) self.mcaWindow.showRoiWidget(qt.Qt.BottomDockWidgetArea) self.scanWindow = ScanWindow.ScanWindow(info=True, backend=backend) self.scanWindow._togglePointsSignal() if OBJECT3D or isSilxGLAvailable: self.glWindow = SceneGLWindow.SceneGLWindow() self.mainTabWidget.addTab(self.mcaWindow, "MCA") self.mainTabWidget.addTab(self.scanWindow, "SCAN") if OBJECT3D or isSilxGLAvailable: self.mainTabWidget.addTab(self.glWindow, "OpenGL") if QTVERSION < '5.0.0': self.mdi.addWindow(self.mainTabWidget) else: self.mdi.addSubWindow(self.mainTabWidget) #print "Markus patch" #self.mainTabWidget.show() #print "end Markus patch" self.mainTabWidget.showMaximized() if False: self.connectDispatcher(self.mcaWindow, self.sourceWidget) self.connectDispatcher(self.scanWindow, self.sourceWidget) else: self.imageWindowDict = {} self.imageWindowCorrelator = None self.sourceWidget.sigAddSelection.connect( \ self.dispatcherAddSelectionSlot) self.sourceWidget.sigRemoveSelection.connect( \ self.dispatcherRemoveSelectionSlot) self.sourceWidget.sigReplaceSelection.connect( \ self.dispatcherReplaceSelectionSlot) self.mainTabWidget.currentChanged[int].connect( \ self.currentTabIndexChanged) self.sourceWidget.sigOtherSignals.connect( \ self.dispatcherOtherSignalsSlot) if 0: if 'shm' in kw: if len(kw['shm']) >= 8: if kw['shm'][0:8] in ['MCA_DATA', 'XIA_DATA']: self.mcaWindow.showMaximized() self.toggleSource() else: self.mcaWindow.showMaximized() currentConfigDict = ConfigDict.ConfigDict() try: defaultFileName = PyMca5.getDefaultSettingsFile() self.configDir = os.path.dirname(defaultFileName) except Exception: if not ('fresh' in kw): raise if not ('fresh' in kw): if os.path.exists(defaultFileName): currentConfigDict.read(defaultFileName) self.setConfig(currentConfigDict) if ('spec' in kw) and ('shm' in kw): if len(kw['shm']) >= 8: #if kw['shm'][0:8] in ['MCA_DATA', 'XIA_DATA']: if kw['shm'][0:8] in ['MCA_DATA']: #self.mcaWindow.showMaximized() self.toggleSource() self._startupSelection(source=kw['spec'], selection=kw['shm']) else: self._startupSelection(source=kw['spec'], selection=None) else: self._startupSelection(source=kw['spec'], selection=None) def connectDispatcher(self, viewer, dispatcher=None): #I could connect sourceWidget to myself and then #pass the selections to the active window!! #That will be made in a next iteration I guess if dispatcher is None: dispatcher = self.sourceWidget dispatcher.sigAddSelection.connect(viewer._addSelection) dispatcher.sigRemoveSelection.connect(viewer._removeSelection) dispatcher.sigReplaceSelection.connect(viewer._replaceSelection) def currentTabIndexChanged(self, index): legend = "%s" % self.mainTabWidget.tabText(index) for key in self.imageWindowDict.keys(): if key == legend: value = True else: value = False self.imageWindowDict[key].setPlotEnabled(value) def _is2DSelection(self, ddict): if 'imageselection' in ddict: if ddict['imageselection']: return True if 'selection' in ddict: if ddict['selection'] is None: return False if 'selectiontype' in ddict['selection']: if ddict['selection']['selectiontype'] == '2D': return True return False def _isScatterSelection(self, ddict): if 'imageselection' in ddict: if ddict['imageselection']: return False if 'selection' in ddict: if ddict['selection'] is None: return False if "x" in ddict['selection']: if hasattr(ddict['selection']['x'], "__len__"): if len(ddict['selection']['x']) != 2: return False size0 = ddict['dataobject'].x[0].size size1 = ddict['dataobject'].x[1].size if size0 != size1: return False if hasattr(ddict['dataobject'], "y"): if ddict['dataobject'].y: if ddict['dataobject'].y[0].size != size0 * size1: return False if "PyMca5.PyMcaGui.pymca.SilxScatterWindow" in sys.modules: if silx.version_info > (0, 10, 2): return True return False def _is3DSelection(self, ddict): if self._is2DSelection(ddict): return False if 'selection' in ddict: if ddict['selection'] is None: return False if 'selectiontype' in ddict['selection']: if ddict['selection']['selectiontype'] == '3D': return True if 'x' in ddict['selection']: if hasattr(ddict['selection']['x'], "__len__"): if len(ddict['selection']['x']) > 1: return True return False def _isStackSelection(self, ddict): if self._is2DSelection(ddict): return False if self._is3DSelection(ddict): return False if 'selection' in ddict: if ddict['selection'] is None: return False if 'selectiontype' in ddict['selection']: if ddict['selection']['selectiontype'] == 'STACK': return True return False def dispatcherAddSelectionSlot(self, ddict): if self.__useTabWidget: if self.mainTabWidget.isHidden(): #make sure it is visible in case of being closed self.mainTabWidget.show() try: self._dispatcherAddSelectionSlot(ddict) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error: %s" % sys.exc_info()[1]) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _dispatcherAddSelectionSlot(self, dictOrList): _logger.info("self._dispatcherAddSelectionSlot(ddict), ddict = %s", dictOrList) if type(dictOrList) == type([]): ddict = dictOrList[0] else: ddict = dictOrList toadd = False if self._isScatterSelection(ddict): _logger.info("ScatterPlot selection") legend = ddict['legend'] if legend not in self.imageWindowDict.keys(): if OPENGL_DRIVERS_OK: backend = "gl" else: backend = "mpl" imageWindow = SilxScatterWindow.SilxScatterWindow(backend=backend) self.imageWindowDict[legend] = imageWindow self.imageWindowDict[legend].setPlotEnabled(True) if self.mainTabWidget.indexOf(self.imageWindowDict[legend]) < 0: self.mainTabWidget.addTab(self.imageWindowDict[legend], legend) self.imageWindowDict[legend]._addSelection(ddict) self.mainTabWidget.setCurrentWidget(imageWindow) return if self.mainTabWidget.indexOf(self.imageWindowDict[legend]) < 0: self.mainTabWidget.addTab(self.imageWindowDict[legend], legend) #self.imageWindowDict[legend].setPlotEnabled(False) self.imageWindowDict[legend]._addSelection(ddict) self.mainTabWidget.setCurrentWidget(self.imageWindowDict\ [legend]) else: self.imageWindowDict[legend]._addSelection(ddict) return elif self._is2DSelection(ddict): _logger.info("2D selection") if self.imageWindowCorrelator is None: self.imageWindowCorrelator = RGBCorrelator.RGBCorrelator() #toadd = True title = "ImageWindow RGB Correlator" self.imageWindowCorrelator.setWindowTitle(title) legend = ddict['legend'] if legend not in self.imageWindowDict.keys(): hkl = False try: motor_mne = ddict['dataobject'].info['motor_mne'].split() if ('phi' in motor_mne) and ('chi' in motor_mne): if ('mu' in motor_mne) and ('gam' in motor_mne) : if 'del' in motor_mne: #SIXC hkl = True if ('tth' in motor_mne) and ('th' in motor_mne): #FOURC hkl = True except Exception: pass if hkl: imageWindow = PyMcaHKLImageWindow.PyMcaHKLImageWindow( name=legend, correlator=self.imageWindowCorrelator, scanwindow=self.scanWindow) else: imageWindow = PyMcaImageWindow.PyMcaImageWindow( name=legend, correlator=self.imageWindowCorrelator, scanwindow=self.scanWindow, usesilx=None) self.imageWindowDict[legend] = imageWindow imageWindow.sigAddImageClicked.connect( \ self.imageWindowCorrelator.addImageSlot) imageWindow.sigRemoveImageClicked.connect( \ self.imageWindowCorrelator.removeImageSlot) imageWindow.sigReplaceImageClicked.connect( \ self.imageWindowCorrelator.replaceImageSlot) self.mainTabWidget.addTab(imageWindow, legend) if toadd: self.mainTabWidget.addTab(self.imageWindowCorrelator, "RGB Correlator") self.imageWindowDict[legend].setPlotEnabled(False) self.imageWindowDict[legend]._addSelection(ddict) self.mainTabWidget.setCurrentWidget(imageWindow) #self.imageWindowDict[legend].setPlotEnabled(True) return if self.mainTabWidget.indexOf(self.imageWindowDict[legend]) < 0: self.mainTabWidget.addTab(self.imageWindowDict[legend], legend) self.imageWindowDict[legend].setPlotEnabled(False) self.imageWindowDict[legend]._addSelection(ddict) self.mainTabWidget.setCurrentWidget(self.imageWindowDict\ [legend]) else: self.imageWindowDict[legend]._addSelection(ddict) elif self._isStackSelection(ddict): _logger.info("Stack selection") legend = ddict['legend'] widget = QStackWidget.QStackWidget() widget.notifyCloseEventToWidget(self) widget.setStack(ddict['dataobject']) widget.setWindowTitle(legend) widget.show() self._widgetDict[id(widget)] = widget else: if OBJECT3D or isSilxGLAvailable: if ddict['dataobject'].info['selectiontype'] == "1D": _logger.info("1D selection") self.mcaWindow._addSelection(dictOrList) self.scanWindow._addSelection(dictOrList) else: _logger.info("3D selection") self.mainTabWidget.setCurrentWidget(self.glWindow) self.glWindow._addSelection(dictOrList) else: _logger.info("1D selection") self.mcaWindow._addSelection(dictOrList) self.scanWindow._addSelection(dictOrList) def dispatcherRemoveSelectionSlot(self, ddict): try: return self._dispatcherRemoveSelectionSlot(ddict) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Error: %s" % sys.exc_info()[1] msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() def _dispatcherRemoveSelectionSlot(self, dictOrList): _logger.debug("self.dispatcherRemoveSelectionSlot(ddict), ddict = %s", dictOrList) if type(dictOrList) == type([]): ddict = dictOrList[0] else: ddict = dictOrList if self._is2DSelection(ddict) or self._isScatterSelection(ddict): legend = ddict['legend'] if legend in self.imageWindowDict.keys(): index = self.mainTabWidget.indexOf(self.imageWindowDict[legend]) if index >0: self.imageWindowDict[legend].close() self.imageWindowDict[legend].setParent(None) self.mainTabWidget.removeTab(index) self.imageWindowDict[legend]._removeSelection(ddict) del self.imageWindowDict[legend] elif self._is3DSelection(ddict): self.glWindow._removeSelection(dictOrList) else: self.mcaWindow._removeSelection(dictOrList) self.scanWindow._removeSelection(dictOrList) def dispatcherReplaceSelectionSlot(self, ddict): try: return self._dispatcherReplaceSelectionSlot(ddict) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Error: %s" % sys.exc_info()[1] msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() def _dispatcherReplaceSelectionSlot(self, dictOrList): _logger.debug("self.dispatcherReplaceSelectionSlot(ddict), ddict = %s", dictOrList) if type(dictOrList) == type([]): ddict = dictOrList[0] else: ddict = dictOrList if self._isScatterSelection(ddict) or self._is2DSelection(ddict): legend = ddict['legend'] for key in list(self.imageWindowDict.keys()): index = self.mainTabWidget.indexOf(self.imageWindowDict[key]) if key == legend: continue if index >= 0: self.imageWindowDict[key].close() self.imageWindowDict[key].setParent(None) self.mainTabWidget.removeTab(index) self.imageWindowDict[key]._removeSelection(ddict) del self.imageWindowDict[key] if legend in self.imageWindowDict.keys(): self.imageWindowDict[legend].setPlotEnabled(False) self.dispatcherAddSelectionSlot(ddict) index = self.mainTabWidget.indexOf(self.imageWindowDict[legend]) if index != self.mainTabWidget.currentIndex(): self.mainTabWidget.setCurrentWidget(self.imageWindowDict[legend]) if legend in self.imageWindowDict.keys(): # force an update self.imageWindowDict[legend].setPlotEnabled(True) self.imageWindowDict[legend].setPlotEnabled(False) elif self._is3DSelection(ddict): self.glWindow._replaceSelection(dictOrList) else: self.mcaWindow._replaceSelection(dictOrList) self.scanWindow._replaceSelection(dictOrList) def dispatcherOtherSignalsSlot(self, dictOrList): _logger.debug("self.dispatcherOtherSignalsSlot(ddict), ddict = %s", dictOrList) if type(dictOrList) == type([]): ddict = dictOrList[0] else: ddict = dictOrList if not self.__useTabWidget: return if ddict['event'] == "SelectionTypeChanged": if ddict['SelectionType'].upper() == "COUNTERS": self.mainTabWidget.setCurrentWidget(self.scanWindow) return for i in range(self.mainTabWidget.count()): if str(self.mainTabWidget.tabText(i)) == \ ddict['SelectionType']: self.mainTabWidget.setCurrentIndex(i) return if ddict['event'] == "SourceTypeChanged": pass return _logger.debug("Unhandled dict") def setConfig(self, configDict): if 'PyMca' in configDict: self.__configurePyMca(configDict['PyMca']) if 'ROI' in configDict: self.__configureRoi(configDict['ROI']) if 'Elements' in configDict: self.__configureElements(configDict['Elements']) if 'Fit' in configDict: self.__configureFit(configDict['Fit']) if 'ScanSimpleFit' in configDict: self.__configureScanSimpleFit(configDict['ScanSimpleFit']) if 'ScanCustomFit' in configDict: self.__configureScanCustomFit(configDict['ScanCustomFit']) def getConfig(self): d = {} d['PyMca'] = {} d['PyMca']['VERSION'] = __version__ d['PyMca']['ConfigDir'] = self.configDir d['PyMca']['nativeFileDialogs'] = PyMcaDirs.nativeFileDialogs #geometry d['PyMca']['Geometry'] ={} r = self.geometry() d['PyMca']['Geometry']['MainWindow'] = [r.x(), r.y(), r.width(), r.height()] r = self.splitter.sizes() d['PyMca']['Geometry']['Splitter'] = r r = self.mcaWindow.geometry() d['PyMca']['Geometry']['McaWindow'] = [r.x(), r.y(), r.width(), r.height()] #sources d['PyMca']['Sources'] = {} d['PyMca']['Sources']['lastFileFilter'] = self.sourceWidget.sourceSelector.lastFileFilter for source in SOURCESLIST: d['PyMca'][source] = {} if (self.sourceWidget.sourceSelector.lastInputDir is not None) and \ len(self.sourceWidget.sourceSelector.lastInputDir): d['PyMca'][source]['lastInputDir'] = self.sourceWidget.sourceSelector.lastInputDir try: PyMcaDirs.inputDir = self.sourceWidget.sourceSelector.lastInputDir except ValueError: pass else: d['PyMca'][source]['lastInputDir'] = "None" if source == "SpecFile": d['PyMca'][source]['SourceName'] = [] for key in self.sourceWidget.sourceList: if key.sourceType == source: d['PyMca'][source]['SourceName'].append(key.sourceName) elif source == "EdfFile": d['PyMca'][source]['SourceName'] = [] for key in self.sourceWidget.sourceList: if key.sourceType == source: d['PyMca'][source]['SourceName'].append(key.sourceName) #if key == "EDF Stack": # d['PyMca'][source]['SourceName'].append(self.sourceWidget.selectorWidget[source]._edfstack) #else: # d['PyMca'][source]['SourceName'].append(self.sourceWidget.selectorWidget[source].mapComboName[key]) elif source == "HDF5": d['PyMca'][source]['SourceName'] = [] for key in self.sourceWidget.sourceList: if key.sourceType == source: d['PyMca'][source]['SourceName'].append(key.sourceName) selectorWidget = self.sourceWidget.selectorWidget[source] if hasattr(selectorWidget,'setWidgetConfiguration'): d['PyMca'][source]['WidgetConfiguration'] = selectorWidget.getWidgetConfiguration() #d['PyMca'][source]['Selection'] = self.sourceWidget[source].getSelection() # McaWindow calibrations d["PyMca"]["McaWindow"] = {} d["PyMca"]["McaWindow"]["calibrations"] = self.mcaWindow.getCalibrations() #ROIs d['ROI'] = {} if self.mcaWindow.roiWidget is None: roilist = [] roidict = {} else: roilist, roidict = self.mcaWindow.roiWidget.getROIListAndDict() d['ROI']['roilist'] = roilist d['ROI']['roidict'] = {} d['ROI']['roidict'].update(roidict) #fit related d['Elements'] = {} d['Elements']['Material'] = {} d['Elements']['Material'].update(ElementsInfo.Elements.Material) d['Fit'] = {} if self.mcaWindow.advancedfit.configDir is not None: d['Fit'] ['ConfigDir'] = self.mcaWindow.advancedfit.configDir * 1 d['Fit'] ['Configuration'] = {} d['Fit'] ['Configuration'].update(self.mcaWindow.advancedfit.mcafit.configure()) d['Fit'] ['Information'] = {} d['Fit'] ['Information'].update(self.mcaWindow.advancedfit.info) d['Fit'] ['LastFit'] = {} d['Fit'] ['LastFit']['hidden'] = self.mcaWindow.advancedfit.isHidden() d['Fit'] ['LastFit']['xdata0'] = self.mcaWindow.advancedfit.mcafit.xdata0 d['Fit'] ['LastFit']['ydata0'] = self.mcaWindow.advancedfit.mcafit.ydata0 d['Fit'] ['LastFit']['sigmay0']= self.mcaWindow.advancedfit.mcafit.sigmay0 d['Fit'] ['LastFit']['fitdone']= self.mcaWindow.advancedfit._fitdone() #d['Fit'] ['LastFit']['fitdone']= 1 #d['Fit'] ['LastFit']['xmin'] = self.mcaWindow.advancedfit.mcafit.sigma0 #d['Fit'] ['LastFit']['xmax'] = self.mcaWindow.advancedfit.mcafit.sigma0 #ScanFit related d['ScanSimpleFit'] = {} d['ScanSimpleFit']['Configuration'] = {} try: d['ScanSimpleFit']['Configuration'].update( self.scanWindow.scanFit.getConfiguration()) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise _logger.warning("Error getting ScanFit configuration") return d def saveConfig(self, config, filename = None): d = ConfigDict.ConfigDict() d.update(config) if filename is None: filename = PyMca5.getDefaultSettingsFile() d.write(filename) def __configurePyMca(self, ddict): savedVersion = ddict.get("VERSION", '4.7.2') if 'ConfigDir' in ddict: self.configDir = ddict['ConfigDir'] if 'Geometry' in ddict: r = qt.QRect(*ddict['Geometry']['MainWindow']) self.setGeometry(r) key = 'Splitter' if key in ddict['Geometry'].keys(): self.splitter.setSizes(ddict['Geometry'][key]) key = 'McaWindow' if key in ddict['Geometry'].keys(): r = qt.QRect(*ddict['Geometry']['McaWindow']) self.mcaWindow.setGeometry(r) if hasattr(self.mcaWindow, "graph"): # this was the way of working of 4.x.x versions key = 'McaGraph' if key in ddict['Geometry'].keys(): r = qt.QRect(*ddict['Geometry']['McaGraph']) self.mcaWindow.graph.setGeometry(r) self.show() qApp = qt.QApplication.instance() qApp.processEvents() qApp.postEvent(self, qt.QResizeEvent(qt.QSize(ddict['Geometry']['MainWindow'][2]+1, ddict['Geometry']['MainWindow'][3]+1), qt.QSize(ddict['Geometry']['MainWindow'][2], ddict['Geometry']['MainWindow'][3]))) self.mcaWindow.showMaximized() native = ddict.get('nativeFileDialogs', True) if native in ["False", "0", 0]: native = False else: native = True PyMcaDirs.nativeFileDialogs = native if 'Sources' in ddict: if 'lastFileFilter' in ddict['Sources']: self.sourceWidget.sourceSelector.lastFileFilter = ddict['Sources']['lastFileFilter'] for source in SOURCESLIST: if source in ddict: if 'lastInputDir' in ddict[source]: if ddict[source] ['lastInputDir'] not in ["None", []]: self.sourceWidget.sourceSelector.lastInputDir = ddict[source] ['lastInputDir'] try: PyMcaDirs.inputDir = ddict[source] ['lastInputDir'] except ValueError: _logger.info("Cannot open directory <%s>" % ddict[source] ['lastInputDir']) pass if 'SourceName' in ddict[source]: if type(ddict[source]['SourceName']) != type([]): ddict[source]['SourceName'] = [ddict[source]['SourceName'] * 1] for SourceName0 in ddict[source]['SourceName']: if type(SourceName0) == type([]): SourceName = SourceName0[0] else: SourceName = SourceName0 if len(SourceName): try: if not os.path.exists(SourceName): continue self.sourceWidget.sourceSelector.openFile(SourceName, justloaded =1) continue #This event is not needed ndict = {} ndict["event"] = "NewSourceSelected" ndict["sourcelist"] = [SourceName] self.sourceWidget._sourceSelectorSlot(ndict) continue if source == "EdfFile": self.sourceWidget.selectorWidget[source].openFile(SourceName, justloaded=1) else: self.sourceWidget.selectorWidget[source].openFile(SourceName) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Error: %s\n opening file %s" % (sys.exc_info()[1],SourceName ) msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() if 'WidgetConfiguration' in ddict[source]: selectorWidget = self.sourceWidget.selectorWidget[source] if hasattr(selectorWidget,'setWidgetConfiguration'): try: selectorWidget.setWidgetConfiguration(ddict[source]['WidgetConfiguration']) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Error: %s\n configuring %s widget" % (sys.exc_info()[1], source ) msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() if "McaWindow" in ddict: self.mcaWindow.setCalibrations(ddict["McaWindow"]["calibrations"]) def __configureRoi(self, ddict): if 'roidict' in ddict: if 'roilist' in ddict: roilist = ddict['roilist'] if type(roilist) != type([]): roilist=[roilist] roidict = ddict['roidict'] if self.mcaWindow.roiWidget is None: self.mcaWindow.showRoiWidget(qt.Qt.BottomDockWidgetArea) self.mcaWindow.roiWidget.fillFromROIDict(roilist=roilist, roidict=roidict) def __configureElements(self, ddict): if 'Material' in ddict: ElementsInfo.Elements.Material.update(ddict['Material']) def __configureFit(self, d): if 'Configuration' in d: self.mcaWindow.advancedfit.configure(d['Configuration']) if not self.mcaWindow.advancedfit.isHidden(): self.mcaWindow.advancedfit._updateTop() if 'ConfigDir' in d: self.mcaWindow.advancedfit.configDir = d['ConfigDir'] * 1 if False and ('LastFit' in d): if (d['LastFit']['ydata0'] != None) and \ (d['LastFit']['ydata0'] != 'None'): self.mcaWindow.advancedfit.setdata(x=d['LastFit']['xdata0'], y=d['LastFit']['ydata0'], sigmay=d['LastFit']['sigmay0'], **d['Information']) if d['LastFit']['hidden'] == 'False': self.mcaWindow.advancedfit.show() self.mcaWindow.advancedfit.raise_() if d['LastFit']['fitdone']: try: self.mcaWindow.advancedfit.fit() except Exception: pass else: print("hidden") def __configureFit(self, d): if 'Configuration' in d: self.mcaWindow.advancedfit.mcafit.configure(d['Configuration']) if not self.mcaWindow.advancedfit.isHidden(): self.mcaWindow.advancedfit._updateTop() if 'ConfigDir' in d: self.mcaWindow.advancedfit.configDir = d['ConfigDir'] * 1 if False and ('LastFit' in d): if (d['LastFit']['ydata0'] != None) and \ (d['LastFit']['ydata0'] != 'None'): self.mcaWindow.advancedfit.setdata(x=d['LastFit']['xdata0'], y=d['LastFit']['ydata0'], sigmay=d['LastFit']['sigmay0'], **d['Information']) if d['LastFit']['hidden'] == 'False': self.mcaWindow.advancedfit.show() self.mcaWindow.advancedfit.raise_() if d['LastFit']['fitdone']: try: self.mcaWindow.advancedfit.fit() except Exception: pass else: _logger.info("hidden") def __configureScanCustomFit(self, ddict): pass def __configureScanSimpleFit(self, ddict): if 'Configuration' in ddict: self.scanWindow.scanFit.setConfiguration(ddict['Configuration']) def initMenuBar(self): if self.options["MenuFile"]: #build the actions #fileopen self.actionOpen = qt.QAction(self) self.actionOpen.setText(QString("&Open")) self.actionOpen.setIcon(self.Icons["fileopen"]) self.actionOpen.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_O)) self.actionOpen.triggered[bool].connect(self.onOpen) #filesaveas self.actionSaveAs = qt.QAction(self) self.actionSaveAs.setText(QString("&Save")) self.actionSaveAs.setIcon(self.Icons["filesave"]) self.actionSaveAs.setShortcut(\ qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_S)) self.actionSaveAs.triggered[bool].connect(self.onSaveAs) #filesave self.actionSave = qt.QAction(self) self.actionSave.setText(QString("Save &Default Settings")) #self.actionSave.setIcon(self.Icons["filesave"]) #self.actionSave.setShortcut(qt.Qt.CTRL|qt.Qt.Key_S) self.actionSave.triggered[bool].connect(self.onSave) #fileprint self.actionPrint = qt.QAction(self) self.actionPrint.setText(QString("&Print")) self.actionPrint.setIcon(self.Icons["fileprint"]) self.actionPrint.setShortcut(\ qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_P)) self.actionPrint.triggered[bool].connect(self.onPrint) #filequit self.actionQuit = qt.QAction(self) self.actionQuit.setText(QString("&Quit")) #self.actionQuit.setIcon(self.Icons["fileprint"]) self.actionQuit.setShortcut(\ qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_Q)) qApp = qt.QApplication.instance() self.actionQuit.triggered.connect(qApp.closeAllWindows) #self.menubar = qt.QMenuBar(self) self.menuFile= qt.QMenu(self.menuBar()) self.menuFile.addAction(self.actionOpen) self.menuFile.addAction(self.actionSaveAs) self.menuFile.addAction(self.actionSave) self.menuFile.addSeparator() self.menuFile.addAction(self.actionPrint) self.menuFile.addSeparator() self.menuFile.addAction(self.actionQuit) self.menuBar().addMenu(self.menuFile) self.menuFile.setTitle("&File") self.onInitMenuBar(self.menuBar()) if self.options["MenuTools"]: self.menuTools= qt.QMenu() #self.menuTools.setCheckable(1) self.menuTools.aboutToShow[()].connect(self.menuToolsAboutToShow) self.menuTools.setTitle("&Tools") self.menuBar().addMenu(self.menuTools) if self.options["MenuWindow"]: self.menuWindow= qt.QMenu() #self.menuWindow.setCheckable(1) self.menuWindow.aboutToShow[()].connect(self.menuWindowAboutToShow) self.menuWindow.setTitle("&Window") self.menuBar().addMenu(self.menuWindow) if self.options["MenuHelp"]: self.menuHelp= qt.QMenu(self) self.menuHelp.addAction("&Menu", self.onMenuHelp) self.menuHelp.addAction("&Data Display HOWTOs", self.onDisplayHowto) self.menuHelp.addAction("MCA &HOWTOs",self.onMcaHowto) self.menuHelp.addSeparator() self.menuHelp.addAction("&About", self.onAbout) self.menuHelp.addAction("Web Documentation", self.onWebDocumentation) self.menuHelp.addAction("Changes", self.onChanges) self.menuHelp.addAction("About &Qt",self.onAboutQt) self.menuBar().addSeparator() self.menuHelp.setTitle("&Help") self.menuBar().addMenu(self.menuHelp) self.menuBrowser = None self.displayBrowser = None self.mcaBrowser = None def initSourceBrowser(self): self.sourceFrame = qt.QWidget(self.splitter) self.splitter.insertWidget(0, self.sourceFrame) self.sourceFrame.setWindowTitle("Source Selector") self.sourceFrame.setWindowIcon(self.windowIcon()) #self.splitter.setResizeMode(self.sourceFrame,qt.QSplitter.KeepSize) self.sourceFrameLayout = qt.QVBoxLayout(self.sourceFrame) self.sourceFrameLayout.setContentsMargins(0, 0, 0, 0) self.sourceFrameLayout.setSpacing(0) #layout.setAutoAdd(1) sourceToolbar = qt.QWidget(self.sourceFrame) layout1 = qt.QHBoxLayout(sourceToolbar) #self.line1 = qt.QFrame(sourceToolbar,"line1") self.line1 = Line(sourceToolbar) self.line1.setFrameShape(qt.QFrame.HLine) self.line1.setFrameShadow(qt.QFrame.Sunken) self.line1.setFrameShape(qt.QFrame.HLine) layout1.addWidget(self.line1) #self.closelabel = qt.QLabel(sourceToolbar) self.closelabel = PixmapLabel(sourceToolbar) self.closelabel.setPixmap(qt.QPixmap(IconDict0['close'])) layout1.addWidget(self.closelabel) self.closelabel.setSizePolicy(qt.QSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed)) #self.sourceBrowserTab=qt.QTabWidget(self.sourceFrame) self.sourceFrameLayout.addWidget(sourceToolbar) #connections self.line1.sigLineDoubleClickEvent.connect(self.sourceReparent) self.closelabel.sigPixmapLabelMousePressEvent.connect(self.toggleSource) #tips self.line1.setToolTip("DoubleClick toggles floating window mode") self.closelabel.setToolTip("Hides Source Area") def sourceReparent(self,ddict = None): if self.sourceFrame.parent() is not None: self.sourceFrame.setParent(None) self.sourceFrame.move(self.cursor().pos()) self.sourceFrame.show() else: try: self.splitter.insertWidget(0, self.sourceFrame) except Exception: self.sourceFrame.setParent(self.splitter) def initSource(self): self.sourceWidget = QDispatcher.QDispatcher(self.sourceFrame) self.sourceFrameLayout.addWidget(self.sourceWidget) def _startupSelection(self, source, selection): self.sourceWidget.sourceSelector.openSource(source) if selection is None: return if len(selection) >= 8: if selection[0:8] == "MCA_DATA": ddict= {} ddict['event'] = "addSelection" ddict['SourceName'] = source ddict['Key'] = selection ddict["selection"] = {'cols': {'y': [1], 'x': [0]}} ddict["legend"] = ddict['SourceName'] + ' %s.c.1' %selection ddict["SourceType"] = 'SPS' self.sourceWidget._addSelectionSlot([ddict]) self.mcaWindow.controlWidget.calbox.setCurrentIndex(2) self.mcaWindow.calibration = self.mcaWindow.calboxoptions[2] self.mcaWindow.controlWidget._calboxactivated("Internal") else: return """ elif selection == "XIA_DATA": ddict= {} ddict['event'] = "addSelection" ddict['SourceName'] = "armando5" ddict['Key'] = selection ddict["selection"] = {'rows': {'y': [1], 'x': [0]}} ddict["legend"] = ddict['SourceName'] + ' XIA_DATA.c.1' ddict["SourceType"] = 'SPS' self.sourceWidget._addSelectionSlot([ddict]) """ def menuToolsAboutToShow(self): _logger.debug("menu ToolsAboutToShow") self.menuTools.clear() if self.sourceFrame.isHidden(): self.menuTools.addAction("Show Source",self.toggleSource) else: self.menuTools.addAction("Hide Source",self.toggleSource) self.menuTools.addAction("Elements Info",self.__elementsInfo) self.menuTools.addAction("Material Transmission",self.__attTool) self.menuTools.addAction("Identify Peaks",self.__peakIdentifier) self.menuTools.addAction("Batch Fitting",self.__batchFitting) self.menuTools.addAction("Convert Mca to Edf",self.__mca2EdfConversion) #self.menuTools.addAction("Fit to Specfile",self.__fit2SpecConversion) self.menuTools.addAction("RGB Correlator",self.__rgbCorrelator) if STACK: self.menuTools.addAction("ROI Imaging",self.__roiImaging) if XIA_CORRECT: self.menuTools.addAction("XIA Correct", self.__xiaCorrect) if XRFMC_FLAG: self.menuTools.addAction("XMI-MSIM PyMca", self._xrfmcPyMca) if SUMRULES_FLAG: self.menuTools.addAction("Sum Rules Tool", self._sumRules) _logger.debug("Fit to Specfile missing") if TOMOGUI_FLAG: self.menuTools.addAction("Tomography reconstruction", self.__tomoRecons) def fontdialog(self): fontd = qt.QFontDialog.getFont(self) if fontd[1]: qApp = qt.QApplication.instance() qApp.setFont(fontd[0],1) def toggleSource(self,**kw): _logger.debug("toggleSource called") if self.sourceFrame.isHidden(): self.sourceFrame.show() self.sourceFrame.raise_() else: self.sourceFrame.hide() def __elementsInfo(self): if self.elementsInfo is None: self.elementsInfo=ElementsInfo.ElementsInfo(None,"Elements Info") if self.elementsInfo.isHidden(): self.elementsInfo.show() self.elementsInfo.raise_() def __attTool(self): if self.attenuationTool is None: self.attenuationTool = MaterialEditor.MaterialEditor(toolmode=True) if self.attenuationTool.isHidden(): self.attenuationTool.show() self.attenuationTool.raise_() def __peakIdentifier(self): if self.identifier is None: self.identifier=PeakIdentifier.PeakIdentifier(energy=5.9, useviewer=1) self.identifier.mySlot() if self.identifier.isHidden(): self.identifier.show() self.identifier.raise_() def __batchFitting(self): if self.__batch is None: self.__batch = PyMcaBatch.McaBatchGUI(fl=0,actions=1) if self.__batch.isHidden(): self.__batch.show() self.__batch.raise_() def __mca2EdfConversion(self): if self.__mca2Edf is None: self.__mca2Edf = Mca2Edf.Mca2EdfGUI(fl=0,actions=1) if self.__mca2Edf.isHidden(): self.__mca2Edf.show() self.__mca2Edf.raise_() def __fit2SpecConversion(self): if self.__fit2Spec is None: self.__fit2Spec = Fit2Spec.Fit2SpecGUI(fl=0,actions=1) if self.__fit2Spec.isHidden(): self.__fit2Spec.show() self.__fit2Spec.raise_() def __rgbCorrelator(self): if self.__correlator is None: self.__correlator = [] fileTypeList = ["Batch Result Files (*dat)", "EDF Files (*edf)", "EDF Files (*ccd)", "All Files (*)"] message = "Open ONE Batch result .dat file or SEVERAL EDF files" filelist = self.__getStackOfFiles(fileTypeList, message) if filelist: filelist.sort() self.sourceWidget.sourceSelector.lastInputDir = os.path.dirname(filelist[0]) PyMcaDirs.inputDir = os.path.dirname(filelist[0]) self.__correlator.append(PyMcaPostBatch.PyMcaPostBatch()) for correlator in self.__correlator: if correlator.isHidden(): correlator.show() correlator.raise_() self.__correlator[-1].sigRGBCorrelatorSignal.connect( \ self._deleteCorrelator) if filelist: correlator.addFileList(filelist) def __sumRules(self): if self.__correlator is None: self.__correlator = [] def __tomoRecons(self): if self.__reconsWidget is None: try: from tomogui.gui.ProjectWidget \ import ProjectWindow as TomoguiProjectWindow except ImportError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "This functionality requires tomogui, silx and FreeART" msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() return self.__reconsWidget = TomoguiProjectWindow() if self.__reconsWidget.isHidden(): self.__reconsWidget.show() self.__reconsWidget.raise_() def _deleteCorrelator(self, ddict): n = len(self.__correlator) if ddict['event'] == "RGBCorrelatorClosed": for i in range(n): if id(self.__correlator[i]) == ddict["id"]: self.__correlator[i].deleteLater() del self.__correlator[i] break def __getStackOfFiles(self, typelist, message="", getfilter=False): wdir = PyMcaDirs.inputDir fileTypeList = typelist filterused = None #windows cannot handle thousands of files in a file dialog force Qt dialogs output = PyMcaFileDialogs.getFileList(self, filetypelist=typelist, message=message, currentdir=wdir, mode="OPEN", getfilter=getfilter, single=False, currentfilter=None, native=False) if getfilter: return output[0], output[1] else: return output def __roiImaging(self): if self.__imagingTool is None: rgbWidget = None try: widget = QStackWidget.QStackWidget(mcawidget=self.mcaWindow, rgbwidget=rgbWidget, primary=True) widget.notifyCloseEventToWidget(self) self.__imagingTool = id(widget) self._widgetDict[self.__imagingTool] = widget #w = StackSelector.StackSelector(self) #stack = w.getStack() widget.loadStack() widget.show() except IOError: widget = None del self._widgetDict[self.__imagingTool] self.__imagingTool = None msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Input Output Error: %s" % (sys.exc_info()[1]) msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() return except Exception: widget = None del self._widgetDict[self.__imagingTool] self.__imagingTool = None msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Error info = %s" % (sys.exc_info()[1]) msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() return else: widget = self._widgetDict[self.__imagingTool] if widget.isHidden(): widget.show() widget.raise_() def customEvent(self, event): if hasattr(event, 'dict'): ddict = event.dict if 'event' in ddict: if ddict['event'] == "closeEventSignal": if ddict['id'] in self._widgetDict: if ddict['id'] == self.__imagingTool: self.__imagingTool = None del self._widgetDict[ddict['id']] def closeEvent(self, event): if __name__ == "__main__": app = qt.QApplication.instance() allWidgets = app.allWidgets() for widget in allWidgets: try: # we cannot afford to crash here if id(widget) != id(self): if widget.parent() is None: widget.close() except Exception: _logger.debug("Error closing widget") from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() return PyMcaMdi.PyMcaMdi.closeEvent(self, event) def __xiaCorrect(self): qApp = qt.QApplication.instance() XiaCorrect.mainGUI(qApp) def _xrfmcPyMca(self): if self._xrfmcTool is None: self._xrfmcTool = XRFMCPyMca.XRFMCPyMca() self._xrfmcTool.show() self._xrfmcTool.raise_() def _sumRules(self): if self._sumRulesTool is None: self._sumRulesTool = SumRulesTool.SumRulesWindow() self._sumRulesTool.show() self._sumRulesTool.raise_() def onOpen(self): self.openMenu.exec(self.cursor().pos()) def onSave(self): self._saveAs() def onSaveAs(self): index = self.mainTabWidget.currentIndex() text = str(self.mainTabWidget.tabText(index)) self.saveMenu = qt.QMenu() self.saveMenu.addAction("PyMca Configuration", self._onSaveAs) if text.upper() == 'MCA': self.saveMenu.addAction("Active Mca", self.mcaWindow._saveIconSignal) elif text.upper() == 'SCAN': self.saveMenu.addAction("Active Scan", self.scanWindow._saveIconSignal) elif text in self.imageWindowDict.keys(): self.saveMenu.addAction("Active Image", self.imageWindowDict[text].graphWidget._saveIconSignal) self.saveMenu.exec(self.cursor().pos()) def _onSaveAs(self): cwd = os.getcwd() if os.path.exists(self.configDir): cwd = self.configDir outputFile = PyMcaFileDialogs.getFileList(self, filetypelist=['PyMca (*.ini)'], message="Provide output file", currentdir=cwd, mode="SAVE", getfilter=False, single=False, currentfilter=None, native=None) if not len(outputFile): return extension = ".ini" outputFile = outputFile[0] try: outputDir = os.path.dirname(outputFile) except Exception: outputDir = "." try: outputFile = os.path.basename(outputFile) except Exception: outputFile = "PyMca.ini" #always overwrite for the time being if len(outputFile) < len(extension[:]): outputFile += extension[:] elif outputFile[-4:] != extension[:]: outputFile += extension[:] filename = os.path.join(outputDir, outputFile) if os.path.exists(filename): try: os.remove(filename) except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) txt = "Input Output Error: %s" % (sys.exc_info()[1]) msg.setInformativeText(txt) msg.setDetailedText(traceback.format_exc()) msg.exec() return try: self._saveAs(filename) self.configDir = outputDir except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error Saving Configuration: %s" % (sys.exc_info()[1])) msg.exec() return def _saveAs(self, filename=None): if filename is None: filename = PyMca5.getDefaultSettingsFile() self.saveConfig(self.getConfig(), filename) def loadTrainingData(self): if self.trainingDataMenu is None: self.trainingDataMenu = qt.QMenu() self.trainingSources = {"XRF Analysis": os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'XRFSpectrum.mca'), "Tertiary Excitation": os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'Steel.spe')} self.trainingActions = [] for key in ["XRF Analysis", "Tertiary Excitation"]: action = qt.QAction(key, None) self.trainingActions.append(action) self.trainingDataMenu.addAction(action) try: source = None selectedAction = self.trainingDataMenu.exec(qt.QCursor.pos()) if selectedAction is not None: key = qt.safe_str(selectedAction.text()) source = self.trainingSources[key] self.sourceWidget.sourceSelector.openSource(source) # only in case of the steel sample we set the input dir to simplify accessing the supplied cfg file if key in ["Tertiary Excitation"]: # we do not change the input dir currently used by the source selector #self.sourceWidget.sourceSelector.lastInputDir = os.path.dirname(source) # but we change the input dir to allow easy loading of the config file from the # fit configuration window PyMcaDirs.inputDir = os.path.dirname(source) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Error opening data source") if source: msg.setText("Cannot open data source %s" % source) else: msg.setText("Cannot open data source") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def openSource(self,index=0): _logger.debug("index = %d ", index) if index <= 0: if os.path.exists(self.configDir): currentdir = self.configDir else: currentdir = None filename = PyMcaFileDialogs.getFileList(parent=self, filetypelist=['PyMca (*.ini)'], message="Select PyMca Configuration File", currentdir=currentdir, mode="OPEN", getfilter=False, single=False, currentfilter=None, native=None) if not len(filename): return filename = filename[0] currentConfigDict = ConfigDict.ConfigDict() self.configDir = os.path.dirname(filename) currentConfigDict.read(filename) self.setConfig(currentConfigDict) return else: index -= 1 source = SOURCESLIST[index] if self.sourceFrame.isHidden(): self.sourceFrame.show() self.sourceFrame.raise_() self.sourceBrowserTab.showPage(self.sourceWidget[source]) qApp = qt.QApplication.instance() qApp.processEvents() self.sourceWidget[source].openFile() def onMenuHelp(self): if self.menuBrowser is None: self.menuBrowser= qt.QTextBrowser() self.menuBrowser.setWindowTitle(QString("Main Menu Help")) ddir=PyMcaDataDir.PYMCA_DOC_DIR if not os.path.exists(os.path.join(ddir,"HTML","Menu.html")): ddir = os.path.dirname(ddir) self.menuBrowser.setSearchPaths([os.path.join(ddir,"HTML")]) self.menuBrowser.setSource(qt.QUrl(QString("Menu.html"))) self.menuBrowser.show() if self.menuBrowser.isHidden(): self.menuBrowser.show() self.menuBrowser.raise_() def onDisplayHowto(self): if self.displayBrowser is None: self.displayBrowser= qt.QTextBrowser() self.displayBrowser.setWindowTitle(QString("Data Display HOWTO")) ddir=PyMcaDataDir.PYMCA_DOC_DIR if not os.path.exists(os.path.join(ddir,"HTML","Display-HOWTO.html")): ddir = os.path.dirname(ddir) self.displayBrowser.setSearchPaths([os.path.join(ddir,"HTML")]) self.displayBrowser.setSource(qt.QUrl(QString("Display-HOWTO.html"))) self.displayBrowser.show() if self.displayBrowser.isHidden(): self.displayBrowser.show() self.displayBrowser.raise_() def onMcaHowto(self): if self.mcaBrowser is None: self.mcaBrowser= MyQTextBrowser() self.mcaBrowser.setWindowTitle(QString("MCA HOWTO")) ddir=PyMcaDataDir.PYMCA_DOC_DIR if not os.path.exists(ddir+"/HTML"+"/MCA-HOWTO.html"): ddir = os.path.dirname(ddir) self.mcaBrowser.setSearchPaths([os.path.join(ddir,"HTML"), os.path.join(ddir,"HTML", "PyMCA_files"), os.path.join(ddir,"HTML", "images")]) self.mcaBrowser.setSource(qt.QUrl(QString("MCA-HOWTO.html"))) #f = open(os.path.join(dir,"HTML","MCA-HOWTO.html")) #self.mcaBrowser.setHtml(f.read()) #f.close() self.mcaBrowser.show() if self.mcaBrowser.isHidden(): self.mcaBrowser.show() self.mcaBrowser.raise_() def onAbout(self): qt.QMessageBox.about(self, "PyMca", "PyMca Application\nVersion: "+__version__) #self.onDebug() def onWebDocumentation(self): import webbrowser url = "http://www.silx.org/doc/PyMca/dev/" webbrowser.open(url) def onChanges(self): if self.changeLog is None: self.changeLog = qt.QTextEdit() self.changeLog.setCursor(self.cursor()) self.changeLog.setWindowTitle("PyMCA %s Changes" % __version__) self.changeLog.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) # Does this belong to the data dir or the doc dir? mpath = PyMcaDataDir.PYMCA_DATA_DIR fname = os.path.join(mpath,'changelog.txt') if not os.path.exists(fname): while len(mpath) > 3: fname = os.path.join(mpath,'changelog.txt') #print "looking for ", fname if not os.path.exists(fname): mpath = os.path.dirname(mpath) else: break if os.path.exists(fname): self.log = ChangeLog.ChangeLog(textfile='changelog.txt') self.changeLog.setDocument(self.log) self.changeLog.setMinimumWidth(500) else: self.log = ChangeLog.ChangeLog() self.log.setPlainText('Cannot find file changelog.txt') self.changeLog.show() def onDebug(self): if "PyQt5.QtCore" in sys.modules: _logger.debug("Module name PyQt %s", qt.PYQT_VERSION_STR) for module in sys.modules.values(): try: if 'Revision' in module.__revision__: if module.__name__ != "__main__": _logger.debug("Module name = %s, %s", module.__name__, module.__revision__.replace("$", "")) except Exception: pass def onPrint(self): _logger.debug("onPrint called") if not self.scanWindow.isHidden(): self.scanWindow.printGraph() return if not self.__useTabWidget: self.mcaWindow.show() self.mcaWindow.raise_() else: self.mainTabWidget.setCurrentWidget(self.mcaWindow) self.mcaWindow.printGraph() if 0: # # GraphWindow operations # def openGraph(self,name="MCA Graph"): """ Creates a new GraphWindow on the MDI """ self.setFollowActiveWindow(0) #name= self.__getNewGraphName() if name == "MCA Graph": graph = McaWindow.McaWindow(self.mdi, name=name) graph.windowClosed[()].connect(self.closeGraph) graph.show() if len(self.mdi.windowList())==1: graph.showMaximized() else: self.windowTile() self.setFollowActiveWindow(1) def getActiveGraph(self): """ Return active GraphWindow instance or a new one """ graph= self.mdi.activeWindow() if graph is None: graph= self.openGraph() return graph def getGraph(self, name): """ Return GraphWindow instance indexed by name Or None if not found """ for graph in self.mdi.windowList(): if qt.safe_str(graph.caption())== name: return graph return None def closeGraph(self, name): """ Called after a graph is closed """ _logger.info("closeGraph", name) def __getGraphNames(self): return [ str(window.caption()) for window in self.mdi.windowList() ] def __getNewGraphName(self): names= self.__getGraphNames() idx= 0 while "Graph %d"%idx in names: idx += 1 return "Graph %d"%(idx) class MyQTextBrowser(qt.QTextBrowser): def myWrappedSource(self, name, ignored=None): if name == QString("./PyMCA.html") or ("PyMCA.html" in ("%s" % name)): if sys.platform == 'win32': ddir=PyMcaDataDir.PYMCA_DOC_DIR if not os.path.exists(os.path.join(ddir, "HTML", "PyMCA.html")): ddir = os.path.dirname(ddir) cmd = os.path.join(ddir,"HTML", "PyMCA.pdf") os.system('"%s"' % cmd) return try: self.report.show() except Exception: self.report = qt.QTextBrowser() self.report.setCaption(QString("PyMca Report")) ddir=PyMcaDataDir.PYMCA_DOC_DIR self.report.mimeSourceFactory().addFilePath(QString(ddir+"/HTML")) self.report.mimeSourceFactory().addFilePath(QString(ddir+"/HTML/PyMCA_files")) self.report.setSource(name) if self.report.isHidden(): self.report.show() self.report.raise_() else: if QTVERSION.startswith('6'): qt.QTextBrowser.doSetSource(self, name) else: qt.QTextBrowser.setSource(self, name) if QTVERSION.startswith('6'): def doSetSource(self, name, ignored=None): return self.myWrappedSource(name, ignored) else: def setSource(self, name): return self.myWrappedSource(name) class Line(qt.QFrame): sigLineDoubleClickEvent = qt.pyqtSignal(object) def mouseDoubleClickEvent(self,event): _logger.debug("Double Click Event") ddict={} ddict['event']="DoubleClick" ddict['data'] = event self.sigLineDoubleClickEvent.emit(ddict) class PixmapLabel(qt.QLabel): sigPixmapLabelMousePressEvent = qt.pyqtSignal(object) def mousePressEvent(self,event): _logger.debug("Mouse Press Event") ddict={} ddict['event']="MousePress" ddict['data'] = event self.sigPixmapLabelMousePressEvent.emit(ddict) if __name__ == '__main__': PROFILING = 0 if PROFILING: import profile import pstats PyMcaMainWidgetInstance = PyMcaMain(**keywords) if nativeFileDialogs is not None: PyMcaDirs.nativeFileDialogs = nativeFileDialogs if debugreport: PyMcaMainWidgetInstance.onDebug() app.lastWindowClosed.connect(app.quit) splash.finish(PyMcaMainWidgetInstance) PyMcaMainWidgetInstance.show() PyMcaMainWidgetInstance.raise_() PyMcaMainWidgetInstance.mcaWindow.replot() #try to interpret rest of command line arguments as data sources try: for source in args: PyMcaMainWidgetInstance.sourceWidget.sourceSelector.openSource(source) except Exception: msg = qt.QMessageBox(PyMcaMainWidgetInstance) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Error opening data source") msg.setText("Cannot open data source %s" % source) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() if PROFILING: profile.run('sys.exit(app.exec())',"test") p=pstats.Stats("test") p.strip_dirs().sort_stats(-1).print_stats() else: ret = app.exec() app = None sys.exit(ret) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaMdi.py0000644000000000000000000003763714741736366020217 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys, getopt, string import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict IconDict0 = PyMca_Icons.IconDict0 from .PyMca_help import HelpDict _logger = logging.getLogger(__name__) __version__ = "1.5" class PyMcaMdi(qt.QMainWindow): def __init__(self, parent=None, name="PyMca Mdi", fl=None, options={}): qt.QMainWindow.__init__(self, parent) self.setWindowTitle(name) if fl is None: fl = qt.Qt.WA_DeleteOnClose if QTVERSION > '5.0.0': if sys.platform.startswith("darwin"): self.menuBar().setNativeMenuBar(False) self.options= {} self.options["FileToolBar"]= options.get("FileToolBar", 1) self.options["WinToolBar"] = options.get("WinToolBar", 1) self.options["MenuFile"] = options.get("MenuFile", 1) self.options["MenuTools"] = options.get("MenuTools", 1) self.options["MenuWindow"] = options.get("MenuWindow", 1) self.options["MenuHelp"] = options.get("MenuHelp", 1) self.splitter = qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Horizontal) #self.splitterLayout = qt.QVBoxLayout(self.splitter) #self.splitterLayout.setContentsMargins(0, 0, 0, 0) #self.splitterLayout.setSpacing(0) self.printer= qt.QPrinter() if QTVERSION > '5.0.0': self.mdi = qt.QMdiArea(self.splitter) else: self.mdi = qt.QWorkspace(self.splitter) self.mdi.setScrollBarsEnabled(1) if not hasattr(self.mdi, "windowList"): # Qt5 self.mdi.windowList = self.mdi.subWindowList self.mdi.activeWindow = self.mdi.activeSubWindow self.mdi.tile = self.mdi.tileSubWindows self.mdi.cascade = self.mdi.cascadeSubWindows else: # Qt4 self.mdi.subWindowList = self.mdi.windowList self.mdi.activeSubWindow = self.mdi.activeWindow self.mdi.tileSubWindows = self.mdi.tile self.mdi.cascadeSubWindows = self.mdi.cascade #if QTVERSION > '4.0.0':self.mdi.setBackground(qt.QBrush(qt.QColor(238,234,238))) #self.setCentralWidget(self.mdi) #self.splitterLayout.addWidget(self.mdi) self.setCentralWidget(self.splitter) self.splitter.insertWidget(1, self.mdi) self.windowMapper = qt.QSignalMapper(self) if QTVERSION > '6.0.0': self.windowMapper.mappedObject[qt.QObject].connect(self.mdi.setActiveSubWindow) elif QTVERSION > '5.0.0': self.windowMapper.mapped[qt.QWidget].connect(self.mdi.setActiveSubWindow) else: self.windowMapper.mapped[qt.QWidget].connect(self.mdi.setActiveWindow) #self.setDockEnabled(qt.Qt.DockTop, 0) self.initIcons() if QTVERSION > '4.0.0': self.createActions() self.initMenuBar() self.initToolBar() self.followActiveWindow= 0 self.mdi.show() #self.resize(600,400) def createActions(self): #fileopen self.actionOpen = qt.QAction(self) self.actionOpen.setText(QString("&Open")) self.actionOpen.setIcon(self.Icons["fileopen"]) self.actionOpen.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_O)) self.actionOpen.triggered[bool].connect(self.onOpen) #filesaveas self.actionSaveAs = qt.QAction(self) self.actionSaveAs.setText(QString("&Save")) self.actionSaveAs.setIcon(self.Icons["filesave"]) self.actionSaveAs.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_S)) self.actionSaveAs.triggered[bool].connect(self.onSaveAs) #filesave self.actionSave = qt.QAction(self) self.actionSave.setText(QString("Save &Defaults")) #self.actionSave.setIcon(self.Icons["filesave"]) #self.actionSave.setShortcut(qt.Qt.CTRL|qt.Qt.Key_S) self.actionSave.triggered[bool].connect(self.onSave) #fileprint self.actionPrint = qt.QAction(self) self.actionPrint.setText(QString("&Print")) self.actionPrint.setIcon(self.Icons["fileprint"]) self.actionPrint.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_P)) self.actionPrint.triggered[bool].connect(self.onPrint) #filequit self.actionQuit = qt.QAction(self) self.actionQuit.setText(QString("&Quit")) #self.actionQuit.setIcon(self.Icons["fileprint"]) self.actionQuit.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_Q)) qApp = qt.QApplication.instance() self.actionQuit.triggered[bool].connect(qApp.closeAllWindows) def initIcons(self): self.Icons= {} for (name, icon) in IconDict.items(): pixmap= qt.QPixmap(icon) self.Icons[name]= qt.QIcon(pixmap) def initToolBar(self): if self.options["FileToolBar"]: self.fileToolBar= self.addToolBar("filetoolbar") self.fileToolBar.addAction(self.actionOpen) self.fileToolBar.addAction(self.actionSaveAs) self.fileToolBar.addAction(self.actionPrint) self.fileToolBar.addSeparator() self.onInitToolBar() if self.options["WinToolBar"]: self.winToolBar = self.addToolBar("wintoolbar") def onWinToolMenu(self, idx): _logger.debug("onWinToolMenu %d ", idx) for midx in self.winToolMenuIndex: self.winToolMenu.setItemChecked(midx, midx==idx) act= self.winToolMenuIndex.index(idx) self.winToolButton.setTextLabel(self.winToolMenuText[act]) if act==0: self.winToolMenuAction= self.windowCascade elif act==1: self.winToolMenuAction= self.windowTile elif act==2: self.winToolMenuAction= self.windowHorizontal elif act==3: self.winToolMenuAction= self.windowVertical self.onWinToolAction() def onWinToolAction(self): apply(self.winToolMenuAction, ()) # # Mdi windows geometry # def windowCascade(self): if self.followActiveWindow: self.__disconnectFollow() self.mdi.cascade() for window in self.mdi.windowList(): window.resize(0.7*self.mdi.width(),0.7*self.mdi.height()) if self.followActiveWindow: self.__connectFollow() def windowTile(self): if self.followActiveWindow: self.__disconnectFollow() self.mdi.tile() if self.followActiveWindow: self.__connectFollow() def windowHorizontal(self): #if self.followActiveWindow: self.__disconnectFollow() if not len(self.mdi.windowList()): return windowheight=float(self.mdi.height())/len(self.mdi.windowList()) i=0 for window in self.mdi.windowList(): window.parentWidget().showNormal() window.parentWidget().setGeometry(0, int(windowheight*i), self.mdi.width(),int(windowheight)) window.parentWidget().raise_() i+=1 self.mdi.update() self.update() #if self.followActiveWindow: self.__connectFollow() def windowVertical(self): #if self.followActiveWindow: self.__disconnectFollow() if not len(self.mdi.windowList()): return windowwidth=float(self.mdi.width())/len(self.mdi.windowList()) i=0 for window in self.mdi.windowList(): window.parentWidget().showNormal() window.parentWidget().setGeometry(int(windowwidth*i),0, int(windowwidth),self.mdi.height()) window.parentWidget().raise_() i+=1 self.mdi.update() self.update() #if self.followActiveWindow: self.__connectFollow() def windowFullScreen(self): if len(self.mdi.windowList()): self.mdi.activeWindow().showMaximized() def initMenuBar(self): if self.options["MenuFile"]: #self.menubar = qt.QMenuBar(self) self.menuFile= qt.QMenu() self.menuFile.addAction(self.actionOpen) self.menuFile.addAction(self.actionSaveAs) self.menuFile.addAction(self.actionSave) self.menuFile.addSeparator() self.menuFile.addAction(self.actionPrint) self.menuFile.addSeparator() self.menuFile.addAction(self.actionQuit) self.menuFile.setTitle("&File") self.menuBar().addMenu(self.menuFile) self.onInitMenuBar(self.menuBar()) if self.options["MenuTools"]: self.menuTools= qt.QMenu() #self.menuTools.setCheckable(1) self.menuTools.aboutToShow[()].connect(self.menuToolsAboutToShow) self.menuTools.setTitle("&Tools") self.menuBar().addMenu(self.menuTools) if self.options["MenuWindow"]: self.menuWindow= qt.QMenu() #self.menuWindow.setCheckable(1) self.menuWindow.aboutToShow[()].connect(self.menuWindowAboutToShow) self.menuWindow.setTitle("&Window") self.menuBar().addMenu(self.menuWindow) if self.options["MenuHelp"]: self.menuHelp= qt.QMenu() self.menuHelp.addAction("&About", self.onAbout) self.menuHelp.addAction("About &Qt",self.onAboutQt) self.menuBar().addSeparator() self.menuHelp.setTitle("&Help") self.menuBar().addMenu(self.menuHelp) def menuWindowAboutToShow(self): _logger.debug("menuWindowAboutToShow") self.menuWindow.clear() if len(self.mdi.windowList())==0: return self.menuWindow.addAction("&Cascade", self.windowCascade) self.menuWindow.addAction("&Tile", self.windowTile) self.menuWindow.addAction("&Tile Horizontally", self.windowHorizontal) self.menuWindow.addAction("&Tile Vertically", self.windowVertical) windows=self.mdi.windowList() if len(windows) > 0: self.menuWindow.addSeparator() num = 0 for window in windows: text = "&%d %s"%(num, str(window.windowTitle())) num += 1 action = self.menuWindow.addAction(text) action.setCheckable(True) action.setChecked(window == self.mdi.activeWindow()) action.triggered.connect(self.windowMapper.map) self.windowMapper.setMapping(action, window) def _windowMapperMapSlot(self): return self.windowMapper.map() def menuWindowActivated(self, idx=None): _logger.debug("menuWindowActivated idx = %s", idx) if idx is None: return if self.menuWindowMap[idx].isHidden(): self.menuWindowMap[idx].show() self.menuWindowMap[idx].raise_() self.menuWindowMap[idx].setFocus() def __connectFollow(self): self.mdi.windowActivated.connect(self.onWindowActivated) def __disconnectFollow(self): self.mdi.windowActivated.disconnect(self.onWindowActivated) def setFollowActiveWindow(self, follow): if follow != self.followActiveWindow: if not follow: self.__disconnectFollow() else: self.__connectFollow() self.followActiveWindow= follow def onWindowActivated(self, win): _logger.info("Window activated") pass # # Dock windows # def isCustomizable(self): nb= 0 for win in self.dockWindows(): nb += isinstance(win, DockWindow) return (nb>0) def customize(self, *args): dg= DockPlaceDialog(self, window=self, title="Tool Places") dg.exec_loop() # # Menus customization # def onInitMenuBar(self, menubar): pass def onInitFileToolBar(self, toolbar): pass def onInitToolBar(self): pass def onInitWinToolBar(self, toolbar): pass def menuToolsAboutToShow(self): _logger.debug("menuToolsAboutToShow") self.menuTools.clear() self.menuToolsMap= {} """ for win in self.dockWindows(): if isinstance(win, DockWindow): idx= self.menuTools.insertItem("%s"%str(win.caption()), self.menuToolsActivated) self.menuToolsMap[idx]= win self.menuTools.setItemChecked(idx, not win.isHidden()) """ if len(self.menuToolsMap.keys()): self.menuTools.insertSeparator() self.menuTools.insertItem("Customize", self.customize) def menuToolsActivated(self, idx): _logger.debug("menuToolsActivated idx = %s", idx) if self.menuTools.isItemChecked(idx): self.menuToolsMap[idx].hide() else: self.menuToolsMap[idx].show() # # Menus customization # def onInitMenuBar(self, menubar): pass def onInitFileToolBar(self, toolbar): pass def onInitToolBar(self): pass def onInitWinToolBar(self, toolbar): pass # # Menus callback # def onAboutQt(self): qt.QMessageBox.aboutQt(self, "About Qt") def onAbout(self): qt.QMessageBox.about(self, "MDI", "MDI Application Framework\nVersion: "+__version__) def onOpen(self): qt.QMessageBox.about(self, "Open", "Not implemented") def onSave(self): qt.QMessageBox.about(self, "Save", "Not implemented") def onSaveAs(self): qt.QMessageBox.about(self, "SaveAs", "Not implemented") def onPrint(self): qt.QMessageBox.about(self, "Print", "Not implemented") def main(args): app = qt.QApplication(args) #if sys.platform == 'win32': if 1: winpalette = qt.QPalette(qt.QColor(230,240,249),qt.QColor(238,234,238)) app.setPalette(winpalette) options = '' longoptions = ['spec=','shm='] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except getopt.error: _logger.error(sys.exc_info()[1]) sys.exit(1) # --- waiting widget kw={} for opt, arg in opts: if opt in ('--spec'): kw['spec'] = arg elif opt in ('--shm'): kw['shm'] = arg #demo = McaWindow.McaWidget(**kw) demo = PyMcaMdi() app.lastWindowClosed.connect(app.quit) demo.show() app.exec() if __name__ == '__main__': main(sys.argv) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaNexusWidget.py0000644000000000000000000002403514741736366021740 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import posixpath import h5py import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaCore.NexusDataSource import silxh5open from PyMca5.PyMcaGui.io.hdf5 import QNexusWidget from PyMca5.PyMcaGui.pymca import QStackWidget from PyMca5.PyMcaIO import HDF5Stack1D if hasattr(qt, 'QString'): QString = qt.QString else: QString = str _logger = logging.getLogger(__name__) class PyMcaNexusWidget(QNexusWidget.QNexusWidget): def __init__(self, parent=None, mca=True): QNexusWidget.QNexusWidget.__init__(self, parent=parent, mca=mca) def itemRightClickedSlot(self, ddict): is_numeric_dset = not (ddict['dtype'].startswith('|S') or ddict['dtype'].startswith('|U') or ddict['dtype'].startswith('|O') or ddict['dtype'].startswith('object') or ddict['dtype'] == '') filename = ddict['file'] fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] _hdf5WidgetDatasetMenu = qt.QMenu(self) if not is_numeric_dset: # handle a right click on a group or on a dataset of string type _hdf5WidgetDatasetMenu.addAction(QString("Show Information"), self._showInfoWidgetSlot) _hdf5WidgetDatasetMenu.addAction(QString("Copy Path to Clipboard"), self._copyPathSlot) else: # handle a right click on a numeric dataset _hdf5WidgetDatasetMenu.addAction(QString("Add to selection table"), self._addToSelectionTable) _hdf5WidgetDatasetMenu.addAction(QString("Show Information"), self._showInfoWidgetSlot) _hdf5WidgetDatasetMenu.addAction(QString("Copy Path to Clipboard"), self._copyPathSlot) info = self.getInfo(phynxFile, ddict['name']) interpretation = info.get('interpretation', "") stack1D = False stack2D = False nDim = len(ddict['shape'].split('x')) if nDim > 1: stack1D = True if nDim == 3: stack2D = True if interpretation.lower() in ['image']: stack1D = False if interpretation.lower() in ['spectrum']: stack2D = False if stack1D: _hdf5WidgetDatasetMenu.addAction(QString("Show as 1D Stack"), self._stack1DSignal) _hdf5WidgetDatasetMenu.addAction(QString("Load and show as 1D Stack"), self._loadStack1DSignal) if stack2D: _hdf5WidgetDatasetMenu.addAction(QString("Show as 2D Stack"), self._stack2DSignal) _hdf5WidgetDatasetMenu.addAction(QString("Load and show as 2D Stack"), self._loadStack2DSignal) self._lastItemDict = ddict _hdf5WidgetDatasetMenu.exec(qt.QCursor.pos()) self._lastItemDict= None return def _stack1DSignal(self): _logger.debug("_stack1DSignal") self._stackSignal(index=-1, load=False) def _loadStack1DSignal(self): _logger.debug("_stack1DSignal") self._stackSignal(index=-1, load=True) def _loadStack2DSignal(self): _logger.debug("_loadStack2DSignal") self._stackSignal(index=0, load=True) def _stack2DSignal(self, load=False): _logger.debug("_stack2DSignal") self._stackSignal(index=0, load=False) def _stackSignal(self, index=-1, load=False): ddict = self._lastItemDict filename = ddict['file'] name = ddict['name'] sel = {} sel['SourceName'] = self.data.sourceName * 1 sel['SourceType'] = "HDF5" fileIndex = self.data.sourceName.index(filename) phynxFile = self.data._sourceObjectList[fileIndex] title = filename + " " + name sel['selection'] = {} sel['selection']['sourcename'] = filename #single dataset selection scanlist = None sel['selection']['x'] = [] sel['selection']['y'] = [name] sel['selection']['m'] = [] sel['selection']['index'] = index self._checkWidgetDict() widget = QStackWidget.QStackWidget() widget.setWindowTitle(title) widget.notifyCloseEventToWidget(self) #different ways to fill the stack if h5py.version.version < '2.0': useInstance = True else: useInstance = False groupName = posixpath.dirname(name) if useInstance: #this crashes with h5py 1.x #this way it is not loaded into memory unless requested #and cannot crash because same instance is used stack = phynxFile[name] else: #create a new instance if os.path.exists(filename): # this already tries silx phynxFile = h5py.File(filename, "r") elif '%' in name: try: phynxFile = h5py.File(name, 'r', driver='family') except Exception: phynxFile = silxh5open(filename) else: phynxFile = silxh5open(filename) stack = phynxFile[name] # try to find out the "energy" axis axesList = [] xData = None try: group = phynxFile[groupName] if 'axes' in stack.attrs.keys(): axes = stack.attrs['axes'] if sys.version > '2.9': try: axes = axes.decode('utf-8') except Exception: _logger.warning("Cannot decode axes") axes = axes.split(":") for axis in axes: if axis in group.keys(): axesList.append(posixpath.join(groupName, axis)) if len(axesList): xData = phynxFile[axesList[index]][()] except Exception: # I cannot afford this Nexus specific things # to break the generic HDF5 functionality if _logger.getEffectiveLevel() == logging.DEBUG: raise axesList = [] #the only problem is that, if the shape is not of type (a, b, c), #it will not be possible to reshape it. In that case I have to #actually read the values nDim = len(stack.shape) if (load) or (nDim != 3): stack = stack[()] shape = stack.shape if index == 0: #Stack of images n = 1 for dim in shape[:-2]: n = n * dim stack.shape = n, shape[-2], shape[-1] if len(axesList): if xData.size != n: xData = None else: #stack of mca n = 1 for dim in shape[:-1]: n = n * dim if nDim != 3: stack.shape = 1, n, shape[-1] if len(axesList): if xData.size != shape[-1]: xData = None #index equal -1 should be able to handle it #if not, one would have to uncomment next line #index = 2 actualStack = DataObject.DataObject() actualStack.data = stack if xData is not None: actualStack.x = [xData] widget.setStack(actualStack, mcaindex=index) wid = id(widget) self._lastWidgetId = wid self._widgetDict[wid] = widget widget.show() if __name__ == "__main__": app = qt.QApplication(sys.argv) w = PyMcaNexusWidget() if 0: w.setFile(sys.argv[1]) else: from PyMca5.PyMcaCore import NexusDataSource dataSource = NexusDataSource.NexusDataSource(sys.argv[1:]) w.setDataSource(dataSource) def addSelection(sel): print(sel) def removeSelection(sel): print(sel) def replaceSelection(sel): print(sel) w.show() w.sigAddSelection.connect(addSelection) w.sigRemoveSelection.connect(removeSelection) w.sigReplaceSelection.connect(replaceSelection) sys.exit(app.exec()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMcaPostBatch.py0000644000000000000000000001253014741736366021356 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging _logger = logging.getLogger(__name__) if __name__ == "__main__": # We are going to read. Disable file locking. os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" _logger.info("%s set to %s" % ("HDF5_USE_FILE_LOCKING", os.environ["HDF5_USE_FILE_LOCKING"])) try: # make sure hdf5plugins are imported import hdf5plugin except Exception: _logger.info("Failed to import hdf5plugin") from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.pymca import RGBCorrelator if hasattr(qt, "QString"): QString = qt.QString QStringList = qt.QStringList else: QString = qt.safe_str QStringList = list QTVERSION = qt.qVersion() class PyMcaPostBatch(RGBCorrelator.RGBCorrelator): def addFileList(self, filelist): text = qt.safe_str(self.windowTitle()) if len(filelist) == 1: text += ": " + qt.safe_str(os.path.basename(filelist[0])) else: text += ": from " + qt.safe_str(os.path.basename(filelist[0])) + \ " to " + qt.safe_str(os.path.basename(filelist[-1])) self.setWindowTitle(text) self.controller.addFileList(filelist) def _getStackOfFiles(self): wdir = PyMcaDirs.inputDir fileTypeList = ["Batch Result Files (*dat)", "EDF Files (*edf)", "EDF Files (*ccd)", "TIFF Files (*tif *tiff *TIF *TIFF)", "Image Files (* jpg *jpeg *tif *tiff *png)", "All Files (*)"] message = "Open ONE Batch result file or SEVERAL EDF files" filelist = PyMcaFileDialogs.getFileList(parent=self, filetypelist=fileTypeList, message=message, currentdir=wdir, mode="OPEN", single=False) if filelist: PyMcaDirs.inputDir = os.path.dirname(filelist[0]) return filelist else: return [] def main(): from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel sys.excepthook = qt.exceptionHandler app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) import getopt options = '' longoptions = ["nativefiledialogs=", "transpose=", "fileindex=", "logging=", "debug=", "shape="] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) transpose = False image_shape = None for opt, arg in opts: if opt in '--nativefiledialogs': if int(arg): PyMcaDirs.nativeFileDialogs = True else: PyMcaDirs.nativeFileDialogs = False elif opt in '--transpose': if int(arg): transpose = True elif opt in '--fileindex': if int(arg): transpose = True elif opt in '--shape': if 'x' in arg: split_on = "x" else: split_on = "," image_shape = tuple(int(n) for n in arg.split(split_on)) logging.basicConfig(level=getLoggingLevel(opts)) filelist = args w = PyMcaPostBatch(image_shape=image_shape) w.layout().setContentsMargins(11, 11, 11, 11) if not filelist: filelist = w._getStackOfFiles() if filelist: w.addFileList(filelist) else: print("Usage:") print("python PyMcaPostBatch.py PyMCA_BATCH_RESULT_DOT_DAT_FILE") if transpose: w.transposeImages() w.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/PyMca_help.py0000644000000000000000000000530014741736366020553 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 E. Papillon, V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon & V.A. Sole - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" FileOpen= \ """ Click this button to open a new file.

You can also select the Open command from the File menu.""" FileSave= \ """Click this button to save the file you are editing.

You will be prompted for a filename.

You can also select the Save command from the File menu.""" SpecOpen= \ """ Click this button to open a new spec shared array.

You can also select then Open Spec command from the File menu.""" FilePrint= \ """Click this button to print the file you are editing.

You can also select the Print command from the File menu.""" FullScreen= \ """Maximize current active window.
The window will occupy all application window. """ NoFullScreen= \ """Redisplay all windows using current window geometry.
Window geometry could be:
Cascade, tile, tile horizontally or vertically """ HelpDict= { "fileopen": FileOpen, "filesave": FileSave, "specopen": SpecOpen, "fileprint": FilePrint, "fullscreen": FullScreen, "nofullscreen": NoFullScreen, } ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QDataSource.py0000644000000000000000000001644414741736366020720 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ Generic access to data sources. """ import sys import os from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from PyMca5.PyMcaCore import SpecFileDataSource from PyMca5.PyMcaCore import EdfFileDataSource from PyMca5.PyMcaIO import BlissSpecFile from PyMca5.PyMcaGui.io import QEdfFileWidget from PyMca5.PyMcaGui.io import QSpecFileWidget if sys.platform == "win32": source_types = { SpecFileDataSource.SOURCE_TYPE: SpecFileDataSource.SpecFileDataSource, EdfFileDataSource.SOURCE_TYPE: EdfFileDataSource.EdfFileDataSource} source_widgets = { SpecFileDataSource.SOURCE_TYPE: QSpecFileWidget.QSpecFileWidget, EdfFileDataSource.SOURCE_TYPE: QEdfFileWidget.QEdfFileWidget} sps = None else: from PyMca5.PyMcaGui.pymca import QSpsDataSource sps = QSpsDataSource.SpsDataSource.sps from PyMca5.PyMcaGui.io import QSpsWidget source_types = { SpecFileDataSource.SOURCE_TYPE: SpecFileDataSource.SpecFileDataSource, EdfFileDataSource.SOURCE_TYPE: EdfFileDataSource.EdfFileDataSource, QSpsDataSource.SOURCE_TYPE: QSpsDataSource.QSpsDataSource} source_widgets = { SpecFileDataSource.SOURCE_TYPE: QSpecFileWidget.QSpecFileWidget, EdfFileDataSource.SOURCE_TYPE: QEdfFileWidget.QEdfFileWidget, QSpsDataSource.SOURCE_TYPE: QSpsWidget.QSpsWidget} NEXUS = True try: from PyMca5.PyMcaCore import NexusDataSource from PyMca5.PyMcaGui.pymca import PyMcaNexusWidget import h5py except Exception: # HDF5 file format support is not mandatory NEXUS = False if NEXUS: source_types[NexusDataSource.SOURCE_TYPE] = NexusDataSource.NexusDataSource source_widgets[NexusDataSource.SOURCE_TYPE] = PyMcaNexusWidget.PyMcaNexusWidget def getSourceType(sourceName0): if type(sourceName0) == type([]): sourceName = sourceName0[0] else: sourceName = sourceName0 if BlissSpecFile.isBlissSpecFile(sourceName): # wrapped as SpecFile return SpecFileDataSource.SOURCE_TYPE if sps is not None: if sourceName in sps.getspeclist(): return QSpsDataSource.SOURCE_TYPE if not os.path.exists(sourceName): if ('%' in sourceName): try: f = h5py.File(sourceName, 'r', driver='family') f.close() f = None return NexusDataSource.SOURCE_TYPE except Exception: pass if os.path.exists(sourceName): f = open(sourceName, 'rb') tiff = False twoChars = f.read(2) if twoChars in [b'II', b'MM']: # tiff file f.close() return EdfFileDataSource.SOURCE_TYPE f.seek(0) line = f.readline() if not len(line.replace(b"\n",b"")): line = f.readline() f.close() if sourceName.lower().endswith('.cbf'): #pilatus CBF mccd = True elif len(line) < 2: mccd = False elif line[0:2] in [b"II",b"MM"]: #this also accounts for TIFF mccd = True elif sourceName.lower().endswith('.spe') and\ (line[0:1] not in [b'$', b'#']): #Roper images mccd = True else: mccd = False if line.startswith(b"{") or mccd: return EdfFileDataSource.SOURCE_TYPE elif sourceName.lower().endswith('edf.gz') or\ sourceName.lower().endswith('ccd.gz') or\ sourceName.lower().endswith('raw.gz') or\ sourceName.lower().endswith('edf.bz2') or\ sourceName.lower().endswith('ccd.bz2') or\ sourceName.lower().endswith('raw.bz2'): return EdfFileDataSource.SOURCE_TYPE else: if NEXUS: ishdf5 = False try: ishdf5 = h5py.is_hdf5(sourceName) except Exception: if sys.version > '2.9': if sourceName.endswith('.h5') or\ sourceName.endswith('.hdf') or\ sourceName.endswith('.nxs'): ishdf5 = True if ishdf5: return NexusDataSource.SOURCE_TYPE try: f = h5py.File(sourceName, 'r') f.close() f = None return NexusDataSource.SOURCE_TYPE except Exception: pass return SpecFileDataSource.SOURCE_TYPE elif (sourceName.startswith("tiled") and ("http" in sourceName)) or \ sourceName.startswith(r"http:/") or \ sourceName.startswith(r"https:/"): # only chance is to use silx via an h5py-like API return NexusDataSource.SOURCE_TYPE else: return QSpsDataSource.SOURCE_TYPE def QDataSource(name=None, source_type=None): if name is None: raise ValueError("Invalid Source Name") if source_type is None: source_type = getSourceType(name) try: sourceClass = source_types[source_type] except KeyError: #ERROR invalid source type raise TypeError("Invalid Source Type, source type should be one of %s" % source_types.keys()) return sourceClass(name) if __name__ == "__main__": try: sourcename=sys.argv[1] key =sys.argv[2] except Exception: print("Usage: QDataSource ") sys.exit() #one can use this: #obj = EdfFileDataSource(sourcename) #or this: obj = QDataSource(sourcename) #data = obj.getData(key,selection={'pos':(10,10),'size':(40,40)}) #data = obj.getData(key,selection={'pos':None,'size':None}) data = obj.getDataObject(key) print("info = ",data.info) print("data shape = ",data.data.shape) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QDispatcher.py0000644000000000000000000004356514741736366020760 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import traceback import logging from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() from PyMca5.PyMcaGui.io import QSourceSelector from . import QDataSource #import weakref _logger = logging.getLogger(__name__) class QDispatcher(qt.QWidget): sigAddSelection = qt.pyqtSignal(object) sigRemoveSelection = qt.pyqtSignal(object) sigReplaceSelection = qt.pyqtSignal(object) sigOtherSignals = qt.pyqtSignal(object) def __init__(self, parent=None, pluginsIcon=False): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.sourceList = [] fileTypeList = ["Spec Files (*mca)", "Spec Files (*dat)", "Spec Files (*spec)", "SPE Files (*SPE *spe)", "EDF Files (*edf)", "EDF Files (*ccd)", "TIFF Files (*.tif *.tiff *.TIF *.TIFF)", "CSV Files (*csv)", "JCAMP-DX Files (*.jdx *.JDX *.dx *.DX)"] if QDataSource.NEXUS: fileTypeList.append("HDF5 Files (*.nxs *.hdf *.h5 *.hdf5)") if "silx" in sys.modules: fileTypeList.append("HDF5-like Files (*)") fileTypeList.append("All Files (*)") self.sourceSelector = QSourceSelector.QSourceSelector(self, filetypelist=fileTypeList, pluginsIcon=pluginsIcon) if pluginsIcon: self.sourceSelector.pluginsButton.clicked.connect(self._pluginsClicked) self.pluginsCallback = None self.selectorWidget = {} self.tabWidget = qt.QTabWidget(self) #for the time being just files for src_widget in QDataSource.source_widgets.keys(): self.selectorWidget[src_widget] = QDataSource.source_widgets[src_widget]() self.tabWidget.addTab(self.selectorWidget[src_widget], src_widget) self.selectorWidget[src_widget].sigAddSelection.connect( \ self._addSelectionSlot) self.selectorWidget[src_widget].sigRemoveSelection.connect( \ self._removeSelectionSlot) self.selectorWidget[src_widget].sigReplaceSelection.connect( \ self._replaceSelectionSlot) if src_widget not in ['EdfFile']: self.selectorWidget[src_widget].sigOtherSignals.connect( \ self._otherSignalsSlot) self.mainLayout.addWidget(self.sourceSelector) self.mainLayout.addWidget(self.tabWidget) self.sourceSelector.sigSourceSelectorSignal.connect( \ self._sourceSelectorSlot) self.tabWidget.currentChanged[int].connect(self._tabChanged) def _addSelectionSlot(self, sel_list, event=None): _logger.debug("QDispatcher._addSelectionSlot") _logger.debug("sel_list = %s", sel_list) if event is None: event = "addSelection" i = 0 indices = [] index = [] affectedSources = [] for sel in sel_list: sourceName = sel['SourceName'] if not len(affectedSources): index += [i] elif sourceName == affectedSources[-1]: index += [i] else: indices.append(index) affectedSources.append(sourceName) index = [i] i += 1 indices.append(index) affectedSources.append(sourceName) affectedSourceIndex = -1 for affectedSource in affectedSources: affectedSourceIndex += 1 selectionList = [] lastEvent = None for source in self.sourceList: if source.sourceName == affectedSource: for selIndex in indices[affectedSourceIndex]: sel = sel_list[selIndex] #The dispatcher should be a singleton to work properly #implement a patch to make sure it is the targeted widget targetwidgetid = sel.get('targetwidgetid', None) if targetwidgetid not in [None, id(self)]: continue ddict = {} ddict.update(sel) ddict["event"] = event if lastEvent is None: lastEvent = event #we have found the source #this recovers the data and the info if True: #this creates a data object that is passed to everybody so #there is only one read out. #I should create a weakref to it in order to be informed #about its deletion. addToPoller = False if source.sourceType == "SPS": addToPoller = True elif "addToPoller" in sel: if sel["addToPoller"]: addToPoller = True if not addToPoller: try: dataObject = source.getDataObject(sel['Key'], selection=sel['selection']) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise error = sys.exc_info() text = "Failed to read data source.\n" text += "Source: %s\n" % source.sourceName text += "Key: %s\n" % sel['Key'] text += "Error: %s" % error[1] if QTVERSION < '4.0.0': qt.QMessageBox.critical(self, "%s" % error[0], text) else: msg = qt.QMessageBox(self) msg.setWindowTitle('Source Error') msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(text) msg.setDetailedText(\ traceback.format_exc()) continue else: dataObject = source.getDataObject(sel['Key'], selection=sel['selection'], poll=False) if dataObject is not None: dataObject.info['legend'] = sel['legend'] dataObject.info['targetwidgetid'] = targetwidgetid source.addToPoller(dataObject) else: #this may happen on deletion?? return if sel['Key'] == "SCAN_D": # I have to inform the widget about any possible # change in the associated environment #print source.sourceType #print source.sourceName #print sel['Key'] #print self.selectorWidget[source.sourceType] pass ddict['dataobject'] = dataObject selectionList.append(ddict) else: #this creates a weak reference to the source object #the clients will be able to retrieve the data #the problem is that 10 clients will requiere #10 read outs ddict["sourcereference"] = weakref.ref(source) selectionList.append(ddict) if lastEvent != event: if event.lower() == "addselection": self.sigAddSelection.emit(selectionList) selectionList = [] elif event.lower() == "replaceselection": self.sigReplaceSelection.emit(selectionList) selectionList = [] elif event.lower() == "removeselection": self.sigRemoveSelection.emit(selectionList) selectionList = [] else: _logger.warning("Unhandled dispatcher event = %s", event) del selectionList[-1] if len(selectionList): if event.lower() == "addselection": self.sigAddSelection.emit(selectionList) elif event.lower() == "replaceselection": self.sigReplaceSelection.emit(selectionList) elif event.lower() == "removeselection": self.sigRemoveSelection.emit(selectionList) lastEvent = None def _removeSelectionSlot(self, sel_list): _logger.debug("_removeSelectionSlot") _logger.debug("sel_list = %s", sel_list) for sel in sel_list: ddict = {} ddict.update(sel) ddict["event"] = "removeSelection" self.sigRemoveSelection.emit(ddict) def _replaceSelectionSlot(self, sel_list): _logger.debug("_replaceSelectionSlot") _logger.debug("sel_list = %s", sel_list) if len(sel_list) == 1: self._addSelectionSlot([sel_list[0]], event="replaceSelection") elif len(sel_list) > 1: self._addSelectionSlot([sel_list[0]], event="replaceSelection") self._addSelectionSlot(sel_list[1:], event="addSelection") def _otherSignalsSlot(self, ddict): self.sigOtherSignals.emit(ddict) def _sourceSelectorSlot(self, ddict): _logger.debug("_sourceSelectorSlot(self, ddict)") _logger.debug("ddict = %s", ddict) if ddict["event"] == "NewSourceSelected": # use the supplied filter in case of HDF5-like (silx) ffilter = ddict.get("filter", "None") if ffilter in [None, "None"]: source_type = None elif ffilter.startswith("HDF5"): source_type = QDataSource.NexusDataSource.SOURCE_TYPE else: source_type = None source = QDataSource.QDataSource(ddict["sourcelist"], source_type=source_type) self.sourceList.append(source) sourceType = source.sourceType self.selectorWidget[sourceType].setDataSource(source) self.tabWidget.setCurrentWidget(self.selectorWidget[sourceType]) #if sourceType == "SPS": if hasattr(source, "sigUpdated"): _logger.debug("connecting source of type %s" % sourceType) source.sigUpdated.connect(self._selectionUpdatedSlot) elif (ddict["event"] == "SourceSelected") or \ (ddict["event"] == "SourceReloaded"): found = 0 for source in self.sourceList: if source.sourceName == ddict["sourcelist"]: found = 1 break if not found: _logger.debug("WARNING: source not found") return sourceType = source.sourceType if ddict["event"] == "SourceReloaded": source.refresh() self.selectorWidget[sourceType].setDataSource(source) self.tabWidget.setCurrentWidget(self.selectorWidget[sourceType]) elif ddict["event"] == "SourceClosed": found = 0 for source in self.sourceList: if source.sourceName == ddict["sourcelist"]: found = 1 break if not found: _logger.debug("WARNING: source not found") return sourceType = source.sourceType del self.sourceList[self.sourceList.index(source)] for source in self.sourceList: if sourceType == source.sourceType: self.selectorWidget[sourceType].setDataSource(source) self.tabWidget.setCurrentWidget(self.selectorWidget[sourceType]) return #there is no other selection of that type if len(self.sourceList): source = self.sourceList[0] sourceType = source.sourceType self.selectorWidget[sourceType].setDataSource(source) else: self.selectorWidget[sourceType].setDataSource(None) self.tabWidget.setCurrentWidget(self.selectorWidget[sourceType]) elif ddict["event"] == "SourceClosed": _logger.debug("not implemented yet") def _selectionUpdatedSlot(self, ddict): _logger.debug("_selectionUpdatedSlot(self, dict=%s)", ddict) if 'selectionlist' in ddict: sel_list = ddict['selectionlist'] else: sel_list = [] for objectReference in ddict["id"]: targetwidgetid = ddict.get('targetwidgetid', None) if targetwidgetid not in [None, id(self)]: continue sel = {} sel['SourceName'] = ddict['SourceName'] sel['SourceType'] = ddict['SourceType'] sel['Key'] = ddict['Key'] if 0: sel['selection'] = objectReference.info['selection'] sel['legend'] = objectReference.info['legend'] if 'scanselection' in objectReference.info.keys(): sel['scanselection'] = objectReference.info['scanselection'] else: sel['selection'] = ddict['selection'] sel['legend'] = ddict['legend'] sel['scanselection'] = ddict['scanselection'] sel['imageselection'] = ddict['imageselection'] sel_list.append(sel) self._addSelectionSlot(sel_list) def _tabChanged(self, value): _logger.debug("self._tabChanged(value), value = %s", value) text = str(self.tabWidget.tabText(value)) ddict = {} ddict['SourceType'] = text if self.selectorWidget[text].data is not None: ddict['SourceType'] = self.selectorWidget[text].data.sourceType ddict['SourceName'] = self.selectorWidget[text].data.sourceName else: ddict['SourceName'] = None ddict['event'] = "SourceTypeChanged" self.sigOtherSignals.emit(ddict) def _pluginsClicked(self): ddict = {} value = self.tabWidget.currentIndex() text = str(self.tabWidget.tabText(value)) ddict['SourceType'] = text if self.selectorWidget[text].data is not None: ddict['SourceType'] = self.selectorWidget[text].data.sourceType ddict['SourceName'] = self.selectorWidget[text].data.sourceName else: ddict['SourceName'] = None _logger.info("%s", ddict) _logger.info("===========================") for source in self.sourceList: _logger.info(source) _logger.info(source.sourceType) sourceType = source.sourceType _logger.info(self.selectorWidget[sourceType].currentSelectionList()) # this seems unused (info is not defined) # if self.pluginsCallback is not None: # self.pluginsCallback(info) def test(): app = qt.QApplication([]) w = QDispatcher() w.show() app.lastWindowClosed.connect(app.quit) app.exec() if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QHDF5Stack1D.py0000644000000000000000000000632014741736366020517 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2015 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import HDF5Stack1D from PyMca5.PyMcaGui.pymca import QHDF5StackWizard class QHDF5Stack1D(HDF5Stack1D.HDF5Stack1D): def __init__(self, filelist=None, selection=None, scanlist=None, dtype=None): if (filelist is None) or (selection is None): wizard = QHDF5StackWizard.QHDF5StackWizard() if filelist is not None: wizard.setFileList(filelist) wizard.setStartId(1) ret = wizard.exec() if ret != qt.QDialog.Accepted: raise ValueError("Incomplete selection") filelist, selection, scanlist = wizard.getParameters() HDF5Stack1D.HDF5Stack1D.__init__(self, filelist, selection, scanlist=scanlist, dtype=dtype) def onBegin(self, nfiles): self.bars =qt.QWidget() self.bars.setWindowTitle("Reading progress") self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('Mca Progress:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.progressBar.setMaximum(nfiles) self.progressBar.setValue(0) self.bars.show() def onProgress(self,index): self.progressBar.setValue(index) def onEnd(self): self.bars.hide() del self.bars ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QHDF5StackWizard.py0000644000000000000000000004072014741736366021515 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import posixpath from PyMca5.PyMcaGui import PyMcaQt as qt safe_str = qt.safe_str from PyMca5.PyMcaGui.io.hdf5 import QNexusWidget from PyMca5.PyMcaCore import NexusDataSource from PyMca5 import PyMcaDirs import logging _logger = logging.getLogger(__name__) class IntroductionPage(qt.QWizardPage): def __init__(self, parent): qt.QWizardPage.__init__(self, parent) self.setTitle("HDF5 Stack Selection Wizard") text = "This wizard will help you to select the " text += "appropriate dataset(s) belonging to your stack" self.setSubTitle(text) class FileListPage(qt.QWizardPage): def __init__(self, parent): qt.QWizardPage.__init__(self, parent) self.setTitle("HDF5 Stack File Selection") text = "The files below belong to your stack" self.setSubTitle(text) self.fileList = [] self.inputDir = None self.mainLayout= qt.QVBoxLayout(self) listlabel = qt.QLabel(self) listlabel.setText("Input File list") self._listView = qt.QTextEdit(self) self._listView.setMaximumHeight(30*listlabel.sizeHint().height()) self._listView.setReadOnly(True) self._listButton = qt.QPushButton(self) self._listButton.setText('Browse') self._listButton.setAutoDefault(False) self.mainLayout.addWidget(listlabel) self.mainLayout.addWidget(self._listView) self.mainLayout.addWidget(self._listButton) self._listButton.clicked.connect(self.browseList) def setFileList(self, filelist): text = "" #filelist.sort() for ffile in filelist: text += "%s\n" % ffile self.fileList = filelist self._listView.setText(text) def validatePage(self): if not len(self.fileList): return False return True def browseList(self): if self.inputDir is None: self.inputDir = PyMcaDirs.inputDir if not os.path.exists(self.inputDir): self.inputDir = os.getcwd() wdir = self.inputDir filedialog = qt.QFileDialog(self) filedialog.setWindowTitle("Open a set of files") filedialog.setDirectory(wdir) if hasattr(filedialog, "setFilters"): filedialog.setFilters(["HDF5 Files (*.nxs *.h5 *.hdf *.hdf5)", "HDF5 Files (*.h5)", "HDF5 Files (*.hdf)", "HDF5 Files (*.hdf5)", "HDF5 Files (*.nxs)", "HDF5 Files (*)"]) else: filedialog.setNameFilters(["HDF5 Files (*.nxs *.h5 *.hdf *.hdf5)", "HDF5 Files (*.h5)", "HDF5 Files (*.hdf)", "HDF5 Files (*.hdf5)", "HDF5 Files (*.nxs)", "HDF5 Files (*)"]) filedialog.setModal(1) filedialog.setFileMode(filedialog.ExistingFiles) ret = filedialog.exec() if ret == qt.QDialog.Accepted: filelist0=filedialog.selectedFiles() else: self.raise_() return filelist = [] for f in filelist0: filelist.append(safe_str(f)) if len(filelist): self.setFileList(filelist) PyMcaDirs.inputDir = os.path.dirname(filelist[0]) self.inputDir = os.path.dirname(filelist[0]) self.raise_() class StackIndexWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) #self.mainLayout.setContentsMargins(0, 0, 0, 0) #self.mainLayout.setSpacing(0) self.buttonGroup = qt.QButtonGroup(self) i = 0 for text in ["1D data is first dimension", "1D data is last dimension"]: rButton = qt.QRadioButton(self) rButton.setText(text) self.mainLayout.addWidget(rButton) self.buttonGroup.addButton(rButton, i) i += 1 rButton.setChecked(True) self._stackIndex = -1 if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self._slot) else: # deprecated _logger.debug("Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self._slot) def _slot(self, button): if hasattr(button, "text"): # received a button pass else: # received an integer button = self.buttonGroup.button(button) if "first" in safe_str(button.text()).lower(): self._stackIndex = 0 else: self._stackIndex = -1 def setIndex(self, index): if index == 0: self._stackIndex = 0 self.buttonGroup.button(0).setChecked(True) else: self._stackIndex = -1 self.buttonGroup.button(1).setChecked(True) class DatasetSelectionPage(qt.QWizardPage): def __init__(self, parent): qt.QWizardPage.__init__(self, parent) self.setTitle("HDF5 Dataset Selection") text = "Double click on the datasets you want to consider " text += "and select the role they will play at the end by " text += "selecting the appropriate checkbox(es)" self.selection = None self.setSubTitle(text) self.mainLayout = qt.QVBoxLayout(self) self.nexusWidget = LocalQNexusWidget(self) self.nexusWidget.buttons.hide() self.mainLayout.addWidget(self.nexusWidget, 1) self.stackIndexWidget = StackIndexWidget(self) self.mainLayout.addWidget(self.stackIndexWidget, 0) def setFileList(self, filelist): self.dataSource = NexusDataSource.NexusDataSource(filelist[0]) self.nexusWidget.setDataSource(self.dataSource) phynxFile = self.dataSource._sourceObjectList[0] keys = list(phynxFile.keys()) if len(keys) != 1: return #check if it is an NXentry entry = phynxFile[keys[0]] attrs = list(entry.attrs) if 'NX_class' in attrs: attr = entry.attrs['NX_class'] if hasattr(attr, "decode"): try: attr = attr.decode('utf-8') except Exception: print("WARNING: Cannot decode NX_class attribute") attr = None else: attr = None if attr is None: return if attr not in ['NXentry', b'NXentry']: return #check if there is only one NXdata nxDataList = [] for key in entry.keys(): attr = entry[key].attrs.get('NX_class', None) if attr is None: continue if hasattr(attr, "decode"): try: attr = attr.decode('utf-8') except Exception: print("WARNING: Cannot decode NX_class attribute") continue if attr in ['NXdata', b'NXdata']: nxDataList.append(key) if len(nxDataList) != 1: return nxData = entry[nxDataList[0]] ddict = {'counters': [], 'aliases': []} signalList = [] axesList = [] interpretation = "" signal_key = nxData.attrs.get("signal") if signal_key is not None: # recent NXdata specification if hasattr(signal_key, "decode"): try: signal_key = signal_key.decode('utf-8') except AttributeError: print("WARNING: Cannot decode NX_class attribute") signal_dataset = nxData.get(signal_key) if signal_dataset is None: return interpretation = signal_dataset.attrs.get("interpretation", "") if hasattr(interpretation, "decode"): try: interpretation = interpretation.decode('utf-8') except AttributeError: print("WARNING: Cannot decode interpretation") axesList = list(nxData.attrs.get("axes", [])) if not axesList: # try the old method, still documented on nexusformat.org: # colon-delimited "array" of dataset names as a signal attr axes = signal_dataset.attrs.get('axes') if axes is not None: if hasattr(axes, "decode"): try: axes = axes.decode('utf-8') except AttributeError: print("WARNING: Cannot decode axes") axes = axes.split(":") axesList = [ax for ax in axes if ax in nxData] signalList.append(signal_key) else: # old specification for key in nxData.keys(): if 'signal' in nxData[key].attrs.keys(): if int(nxData[key].attrs['signal']) == 1: signalList.append(key) if len(signalList) == 1: if 'interpretation' in nxData[key].attrs.keys(): interpretation = nxData[key].attrs['interpretation'] if sys.version > '2.9': try: interpretation = interpretation.decode('utf-8') except Exception: print("WARNING: Cannot decode interpretation") if 'axes' in nxData[key].attrs.keys(): axes = nxData[key].attrs['axes'] if sys.version > '2.9': try: axes = axes.decode('utf-8') except Exception: print("WARNING: Cannot decode axes") axes = axes.split(":") for axis in axes: if axis in nxData.keys(): axesList.append(axis) if not len(signalList): return if interpretation in ["image", b"image"]: self.stackIndexWidget.setIndex(0) for signal_key in signalList: path = posixpath.join("/", nxDataList[0], signal_key) ddict['counters'].append(path) ddict['aliases'].append(posixpath.basename(signal_key)) for axis in axesList: path = posixpath.join("/", nxDataList[0], axis) ddict['counters'].append(path) ddict['aliases'].append(posixpath.basename(axis)) if sys.platform == "darwin" and\ len(ddict['counters']) > 3 and\ qt.qVersion().startswith('4.8'): # workaround a strange bug on Mac: # when the counter list has to be scrolled # the selected button also changes!!!! return self.nexusWidget.setWidgetConfiguration(ddict) if axesList and (interpretation in ["image", b"image"]): self.nexusWidget.cntTable.setCounterSelection({'y': [0], 'x': [1]}) elif axesList and (interpretation in ["spectrum", b"spectrum"]): self.nexusWidget.cntTable.setCounterSelection({'y': [0], 'x': [len(axesList)]}) else: self.nexusWidget.cntTable.setCounterSelection({'y': [0]}) def validatePage(self): cntSelection = self.nexusWidget.cntTable.getCounterSelection() cntlist = cntSelection['cntlist'] if not len(cntlist): text = "No dataset selection" self.showMessage(text) return False if not len(cntSelection['y']): text = "No dataset selected as y" self.showMessage(text) return False selection = {} selection['x'] = [] selection['y'] = [] selection['m'] = [] selection['index'] = self.stackIndexWidget._stackIndex for key in ['x', 'y', 'm']: if len(cntSelection[key]): for idx in cntSelection[key]: selection[key].append(cntlist[idx]) self.selection = selection return True def showMessage(self, text): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText(text) msg.exec() class ShapePage(qt.QWizardPage): def __init__(self, parent): qt.QWizardPage.__init__(self, parent) self.setTitle("HDF5 Map Shape Selection") text = "Adjust the shape of your map if necessary" self.setSubTitle(text) class LocalQNexusWidget(QNexusWidget.QNexusWidget): def __init__(self, parent=None, mca=False): QNexusWidget.QNexusWidget.__init__(self, parent=parent, mca=mca, buttons=True) def showInfoWidget(self, filename, name, dset=False): w = QNexusWidget.QNexusWidget.showInfoWidget(self, filename, name, dset) w.hide() w.setWindowModality(qt.Qt.ApplicationModal) w.show() class QHDF5StackWizard(qt.QWizard): def __init__(self, parent=None): qt.QWizard.__init__(self, parent) self.setWindowTitle("HDF5 Stack Wizard") #self._introduction = self.createIntroductionPage() self._fileList = self.createFileListPage() self._datasetSelection = self.createDatasetSelectionPage() #self._shape = self.createShapePage() #self.addPage(self._introduction) self.addPage(self._fileList) self.addPage(self._datasetSelection) #self.addPage(self._shape) #self.connect(qt.SIGNAL("currentIdChanged(int"), # currentChanged) def sizeHint(self): width = qt.QWizard.sizeHint(self).width() height = qt.QWizard.sizeHint(self).height() return qt.QSize(width, int(1.5 * height)) def createIntroductionPage(self): return IntroductionPage(self) def setFileList(self, filelist): self._fileList.setFileList(filelist) def createFileListPage(self): return FileListPage(self) def createDatasetSelectionPage(self): return DatasetSelectionPage(self) def createShapePage(self): return ShapePage(self) def initializePage(self, value): if value == 1: #dataset page self._datasetSelection.setFileList(self._fileList.fileList) def getParameters(self): return self._fileList.fileList,\ self._datasetSelection.selection,\ [x[0] for x in self._datasetSelection.nexusWidget.getSelectedEntries()] if __name__ == "__main__": import sys app = qt.QApplication(sys.argv) w = QHDF5StackWizard() ret = w.exec() if ret == qt.QDialog.Accepted: print(w.getParameters()) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QPyMcaMatplotlibSave.py0000644000000000000000000011422014741736366022535 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import traceback from io import StringIO import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaCore import PyMcaMatplotlibSave from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview from PyMca5 import PyMcaDirs from matplotlib import cm from matplotlib.font_manager import FontProperties from PyMca5.PyMcaGraph.backends.MatplotlibBackend import FigureCanvas from matplotlib.figure import Figure from matplotlib.colors import LinearSegmentedColormap, LogNorm, Normalize from matplotlib.ticker import MaxNLocator, AutoLocator _logger = logging.getLogger(__name__) class TopWidget(qt.QWidget): def __init__(self, parent = None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.labelList = ['Title', 'X Label', 'Y Label'] self.keyList = ['title', 'xlabel', 'ylabel'] self.lineEditList = [] for i in range(len(self.labelList)): label = qt.QLabel(self) label.setText(self.labelList[i]) lineEdit = qt.QLineEdit(self) self.mainLayout.addWidget(label, i, 0) self.mainLayout.addWidget(lineEdit, i, 1) self.lineEditList.append(lineEdit) def getParameters(self): ddict = {} i = 0 for label in self.keyList: ddict[label] = qt.safe_str(self.lineEditList[i].text()) i = i + 1 return ddict def setParameters(self, ddict): for label in ddict.keys(): if label.lower() in self.keyList: i = self.keyList.index(label) self.lineEditList[i].setText(ddict[label]) return class ButtonsWidget(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.updateButton = qt.QPushButton(self) self.updateButton.setText("Update") self.printButton = qt.QPushButton(self) self.printButton.setText("Print") self.saveButton = qt.QPushButton(self) self.saveButton.setText("Save") self.mainLayout.addWidget(self.updateButton) self.mainLayout.addWidget(self.printButton) self.mainLayout.addWidget(self.saveButton) class SaveImageSetup(qt.QWidget): def __init__(self, parent=None, image=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setColumnStretch(0, 1) self.mainLayout.setColumnStretch(1, 0) self.setWindowTitle("PyMca - Matplotlib save image") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.lastOutputDir = None self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) #top self.top = TopWidget(self) self.mainLayout.addWidget(self.top, 0, 0) #image self.imageWidget = QPyMcaMatplotlibImage(self, image) self.mainLayout.addWidget(self.imageWidget, 1, 0) #right self.right = RightWidget(self) self.mainLayout.addWidget(self.right, 1, 1) #buttons self._buttonContainer = ButtonsWidget(self) self.mainLayout.addWidget(self._buttonContainer, 0, 1) self._buttonContainer.updateButton.clicked.connect(\ self.updateClicked) self._buttonContainer.printButton.clicked.connect(self.printClicked) self._buttonContainer.saveButton.clicked.connect(self.saveClicked) def sizeHint(self): return qt.QSize(3 * qt.QWidget.sizeHint(self).width(), 3 * qt.QWidget.sizeHint(self).height()) def setImageData(self, image=None): self.imageWidget.imageData = image self.updateClicked() def setPixmapImage(self, image=None, bgr=False): #this is not to loose time plotting twice self.imageWidget.setPixmapImage(None, bgr) if image is None: self.right.setPixmapMode(False) else: self.right.setPixmapMode(True) #update configuration withoutplotting because of having #set the current pixmap to None self.updateClicked() #and plot self.imageWidget.setPixmapImage(image, bgr) def getParameters(self): ddict = self.imageWidget.getParameters() ddict.update(self.top.getParameters()) ddict.update(self.right.getParameters()) return ddict def setParameters(self, ddict): self.top.setParameters(ddict) self.imageWidget.setParameters(ddict) self.right.setParameters(ddict) def updateClicked(self): try: ddict = self.getParameters() self.imageWidget.setParameters(ddict) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error updating image:") msg.setInformativeText("%s" % sys.exc_info()[1]) msg.setDetailedText(traceback.format_exc()) msg.setWindowTitle('Matplotlib Save Image') msg.exec() def printClicked(self): try: pixmap = qt.QPixmap.grabWidget(self.imageWidget) self.printPreview.addPixmap(pixmap) if self.printPreview.isHidden(): self.printPreview.show() self.printPreview.raise_() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error printing image: %s" % sys.exc_info()[1]) msg.setWindowTitle('Matplotlib Save Image') msg.exec() def saveClicked(self): if self.lastOutputDir is None: self.lastOutputDir = PyMcaDirs.outputDir format_list = [] format_list.append('Graphics PNG *.png') format_list.append('Graphics EPS *.eps') format_list.append('Graphics SVG *.svg') outputFile, filterused = PyMcaFileDialogs.getFileList(self, filetypelist=format_list, message="Output File Selection", currentdir=self.lastOutputDir, mode="SAVE", getfilter=True, single=False, currentfilter=None, native=None) if not len(outputFile): return filterused = filterused.split() filedescription = filterused[0] filetype = filterused[1] extension = filterused[2] outputFile = outputFile[0] try: outputDir = os.path.dirname(outputFile) self.lastOutputDir = outputDir PyMcaDirs.outputDir = outputDir except Exception: outputDir = "." try: outputFile = os.path.basename(outputFile) except Exception: outputFile = outputFile #always overwrite for the time being if len(outputFile) < len(extension[1:]): outputFile += extension[1:] elif outputFile[-4:] != extension[1:]: outputFile += extension[1:] finalFile = os.path.join(outputDir, outputFile) if os.path.exists(finalFile): try: os.remove(finalFile) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Cannot overwrite file: %s" % sys.exc_info()[1]) msg.setWindowTitle('Matplotlib Save Image') msg.exec() return try: self.imageWidget.print_figure(finalFile, edgecolor='w', facecolor='w', format=finalFile[-3:], dpi=self.imageWidget.config['outputdpi']) except Exception: _logger.warning("trying to save using obsolete method") config = self.imageWidget.getParameters() try: s=PyMcaMatplotlibSave.PyMcaMatplotlibSaveImage(self.imageWidget.imageData) if self.imageWidget.pixmapImage is not None: s.setPixmapImage(self.imageWidget.pixmapImage) s.setParameters(config) s.saveImage(finalFile) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error saving file: %s" % sys.exc_info()[1]) msg.setWindowTitle('Matplotlib Save Image') msg.exec() class SimpleComboBox(qt.QComboBox): def __init__(self, parent=None, options=['1', '2', '3']): qt.QComboBox.__init__(self,parent) self.setOptions(options) self.setDuplicatesEnabled(False) self.setEditable(False) def setOptions(self,options=['1','2','3']): self.clear() for item in options: self.addItem(item) def setCurrentText(self, text): for i in range(self.count()): if qt.safe_str(self.itemText(i)) == text: self.setCurrentIndex(i) break class RightWidget(qt.QWidget): def __init__(self, parent = None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QVBoxLayout(self) self.gridWidget = qt.QWidget(self) self.gridLayout = qt.QGridLayout(self.gridWidget) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setSpacing(2) self.labelList = ['X Axis', 'Y Axis', 'N X Labels', 'N Y Labels', 'Origin', 'Interpolation', 'Colormap', 'Lin/Log Colormap', 'Colorbar', 'Contour', 'Contour Labels', 'Contour Label Format', 'Contour Levels', 'Contour Line Width', 'Image Background', 'X Pixel Size', 'Y Pixel Size', 'X Origin', 'Y Origin', 'Zoom X Min', 'Zoom X Max', 'Zoom Y Min', 'Zoom Y Max', 'Value Min', 'Value Max', 'Output dpi'] self.keyList = [] for label in self.labelList: self.keyList.append(label.lower().replace(' ','').replace('/',"")) self.comboBoxList = [] for i in range(len(self.labelList)): label = qt.QLabel(self) label.setText(self.labelList[i]) if self.labelList[i] in ['X Axis', 'Y Axis']: options = ['Off', 'On'] if self.labelList[i] in ['N X Labels', 'N Y Labels']: options = ['Auto', '1', '2', '3', '4', '5', '6', '7', '8', '9'] elif self.labelList[i] in ['Colormap']: options = ['Temperature','Grey', 'Yerg',\ 'Red', 'Green', 'Blue',\ 'Rainbow', 'Jet','Hot', 'Cool', 'Copper'] for candidate in ['spectral', 'Paired', 'Paired_r', 'PuBu', 'PuBu_r', 'RdBu', 'RdBu_r', 'gist_earth', 'gist_earth_r', 'Blues', 'Blues_r', 'YlGnBu', 'YlGnBu_r']: if hasattr(cm, candidate): options.append(candidate) elif self.labelList[i] in ['Lin/Log Colormap']: options = ['Linear','Logarithmic'] elif self.labelList[i] in ['Colorbar']: options = ['None', 'Vertical', 'Horizontal'] elif self.labelList[i] in ['Origin']: options = ['Lower', 'Upper'] elif self.labelList[i] in ['Interpolation']: options = ['Nearest', 'Bilinear'] elif self.labelList[i] in ['Contour']: options = ['Off', 'Line'] elif self.labelList[i] in ['Contour Labels']: options = ['On', 'Off'] elif self.labelList[i] in ['Contour Label Format']: options = ['%.3f', '%.2f', '%.1f', '%.0f', '%.1e', '%.2e', '%.3e'] elif self.labelList[i] in ['Contour Levels']: options = ["10", "9", "8", "7", "6", "5", "4", "3", "2", "1"] elif self.labelList[i] in ['Image Background']: options = ['Black', 'White', 'Grey'] if self.labelList[i] in ['Contour Levels']: line = qt.QSpinBox(self) line.setMinimum(1) line.setMaximum(1000) line.setValue(10) elif self.labelList[i] in ['Contour Line Width']: line = qt.QSpinBox(self) line.setMinimum(1) line.setMaximum(100) line.setValue(10) elif i <= self.labelList.index('Image Background'): line = SimpleComboBox(self, options) else: line = MyLineEdit(self) validator = qt.CLocaleQDoubleValidator(line) line.setValidator(validator) if 'Zoom' in self.labelList[i]: tip = "This zoom is in physical units.\n" tip += "This means pixel size corrected.\n" tip += "To disable zoom, just set both\n" tip += "limits to the same value." line.setToolTip(tip) line.setText('0.0') elif 'Origin' in self.labelList[i]: tip = "First pixel coordinates in physical units.\n" tip += "This means pixel size corrected.\n" line.setToolTip(tip) line.setText('0.0') elif 'Value' in self.labelList[i]: tip = "Clipping values of the data.\n" tip += "To disable clipping, just set both\n" tip += "limits to the same value." line.setToolTip(tip) line.setText('0.0') elif 'Output dpi' in self.labelList[i]: tip = "=Output file resolution." line.setToolTip(tip) line.setText("%d" % 100) else: line.setText('1.0') self.gridLayout.addWidget(label, i, 0) self.gridLayout.addWidget(line, i, 1) self.comboBoxList.append(line) self.mainLayout.addWidget(self.gridWidget) self.mainLayout.addWidget(qt.VerticalSpacer(self)) self.setPixmapMode(False) def setPixmapMode(self, flag): if flag: disable = ['Colormap', 'Lin/Log Colormap', 'Contour', 'Contour Labels', 'Contour Label Format', 'Contour Levels', 'Colorbar', 'Value Min','Value Max'] else: disable = ['Image Background'] for label in self.labelList: index = self.labelList.index(label) if label in disable: self.comboBoxList[index].setEnabled(False) else: self.comboBoxList[index].setEnabled(True) def getParameters(self): ddict = {} i = 0 for label in self.keyList: if i == self.labelList.index('Contour Levels'): ddict[label] = self.comboBoxList[i].value() elif i == self.labelList.index('Contour Line Width'): ddict[label] = self.comboBoxList[i].value() elif i > self.labelList.index('Image Background'): text = qt.safe_str(self.comboBoxList[i].text()) if len(text): if label in ['Output dpi', "N X Labels", "N Y Labels"]: if ddict[label] in ['Auto', 'auto', '0', 0]: ddict['label'] = 0 else: ddict[label] = int(text) else: ddict[label] = float(text) else: ddict[label] = None else: ddict[label] = qt.safe_str(self.comboBoxList[i].currentText()).lower() if (ddict[label] == 'none') or (ddict[label] == 'default'): ddict[label] = None i = i + 1 return ddict def setParameters(self, ddict): for label in ddict.keys(): if label.lower() in self.keyList: i = self.keyList.index(label) if i == self.labelList.index('Contour Levels'): self.comboBoxList[i].setValue(int(ddict[label])) elif i == self.labelList.index('Contour Line Width'): self.comboBoxList[i].setValue(int(ddict[label])) elif i > self.labelList.index('Image Background'): if ddict[label] is not None: if label in ['Output dpi']: self.comboBoxList[i].setText("%d" % int(ddict[label])) elif label in ['N X Labels', 'N Y Labels']: if ddict[label] in ['Auto', 'auto', '0', 0]: self.comboBoxList[i].setText("Auto") else: self.comboBoxList[i].setText("%d" %\ int(ddict[label])) else: self.comboBoxList[i].setText("%f" % ddict[label]) else: txt = ddict[label] if ddict[label] is not None: try: txt = ddict[label][0].upper() +\ ddict[label][1:].lower() except Exception: pass self.comboBoxList[i].setCurrentText(txt) return class MyLineEdit(qt.QLineEdit): def sizeHint(self): return qt.QSize(int(0.6 * qt.QLineEdit.sizeHint(self).width()), qt.QLineEdit.sizeHint(self).height()) class QPyMcaMatplotlibImage(FigureCanvas): def __init__(self, parent, imageData=None, dpi=100, size=(5, 5), xaxis='off', yaxis='off', xlabel='', ylabel='', nxlabels=0, nylabels=0, colorbar=None, title='', interpolation='nearest', colormap=None, linlogcolormap='linear', origin='lower', contour='off', contourlabels='on', contourlabelformat='%.3f', contourlevels=2, contourlinewidth=10, extent=None, xpixelsize=1.0, ypixelsize=1.0, xorigin=0.0, yorigin=0.0, xlimits=None, ylimits=None, vlimits=None): self.figure = Figure(figsize=size, dpi=dpi) #in inches #How to set this color equal to the other widgets color? #self.figure.set_facecolor('1.0') #self.figure.set_edgecolor('1.0') FigureCanvas.__init__(self, self.figure) FigureCanvas.setSizePolicy(self, qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding) self.imageData = imageData self.pixmapImage = None self.config={'xaxis':xaxis, 'yaxis':yaxis, 'title':title, 'xlabel':xlabel, 'ylabel':ylabel, 'nxlabels':nxlabels, 'nylabels':nylabels, 'colorbar':colorbar, 'colormap':colormap, 'linlogcolormap':linlogcolormap, 'interpolation':interpolation, 'origin':origin, 'contour':contour, 'contourlabels':contourlabels, 'contourlabelformat':contourlabelformat, 'contourlevels':contourlevels, 'contourlinewidth':contourlinewidth, 'extent':extent, 'imagebackground':'black', 'xorigin':xorigin, 'yorigin':yorigin, 'xpixelsize':xpixelsize, 'ypixelsize':ypixelsize, 'zoomxmin':None, 'zoomxmax':None, 'zoomymin':None, 'zoomymax':None, 'valuemin':None, 'valuemax':None, 'xlimits':xlimits, 'ylimits':ylimits, 'vlimits':vlimits, 'outputdpi':dpi} #generate own colormaps cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__redCmap = LinearSegmentedColormap('red',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0))} self.__greenCmap = LinearSegmentedColormap('green',cdict,256) cdict = {'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))} self.__blueCmap = LinearSegmentedColormap('blue',cdict,256) # Temperature as defined in spslut cdict = {'red': ((0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)), 'green': ((0.0, 0.0, 0.0), (0.25, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (0.25, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 0.0, 0.0))} #but limited to 256 colors for a faster display (of the colorbar) self.__temperatureCmap = LinearSegmentedColormap('temperature', cdict, 256) #reversed gray cdict = {'red': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'green': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)), 'blue': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0))} self.__reversedGrayCmap = LinearSegmentedColormap('yerg', cdict, 256) self.updateFigure() def updateFigure(self): self.figure.clear() if (self.imageData is None) and \ (self.pixmapImage is None): return # The axes self.axes = self.figure.add_axes([.15, .15, .75, .8]) if self.config['xaxis'] == 'off': self.axes.xaxis.set_visible(False) else: self.axes.xaxis.set_visible(True) nLabels = self.config['nxlabels'] if nLabels not in ['Auto', 'auto', '0', 0]: self.axes.xaxis.set_major_locator(MaxNLocator(nLabels)) else: self.axes.xaxis.set_major_locator(AutoLocator()) if self.config['yaxis'] == 'off': self.axes.yaxis.set_visible(False) else: self.axes.yaxis.set_visible(True) nLabels = self.config['nylabels'] if nLabels not in ['Auto', 'auto', '0', 0]: self.axes.yaxis.set_major_locator(MaxNLocator(nLabels)) else: self.axes.yaxis.set_major_locator(AutoLocator()) if self.pixmapImage is not None: self._updatePixmapFigure() return interpolation = self.config['interpolation'] origin = self.config['origin'] cmap = self.__temperatureCmap ccmap = cm.gray if self.config['colormap'] in ['grey','gray']: cmap = cm.gray ccmap = self.__temperatureCmap elif self.config['colormap'] in ['yarg','yerg']: cmap = self.__reversedGrayCmap ccmap = self.__temperatureCmap elif self.config['colormap']=='jet': cmap = cm.jet elif self.config['colormap']=='hot': cmap = cm.hot elif self.config['colormap']=='cool': cmap = cm.cool elif self.config['colormap']=='copper': cmap = cm.copper elif self.config['colormap']=='spectral': cmap = cm.spectral elif self.config['colormap']=='hsv': cmap = cm.hsv elif self.config['colormap']=='rainbow': cmap = cm.gist_rainbow elif self.config['colormap']=='red': cmap = self.__redCmap elif self.config['colormap']=='green': cmap = self.__greenCmap elif self.config['colormap']=='blue': cmap = self.__blueCmap elif self.config['colormap']=='temperature': cmap = self.__temperatureCmap elif self.config['colormap'] == 'paired': cmap = cm.Paired elif self.config['colormap'] == 'paired_r': cmap = cm.Paired_r elif self.config['colormap'] == 'pubu': cmap = cm.PuBu elif self.config['colormap'] == 'pubu_r': cmap = cm.PuBu_r elif self.config['colormap'] == 'rdbu': cmap = cm.RdBu elif self.config['colormap'] == 'rdbu_r': cmap = cm.RdBu_r elif self.config['colormap'] == 'gist_earth': cmap = cm.gist_earth elif self.config['colormap'] == 'gist_earth_r': cmap = cm.gist_earth_r elif self.config['colormap'] == 'blues': cmap = cm.Blues elif self.config['colormap'] == 'blues_r': cmap = cm.Blues_r elif self.config['colormap'] == 'ylgnbu': cmap = cm.YlGnBu elif self.config['colormap'] == 'ylgnbu_r': cmap = cm.YlGnBu_r else: _logger.warning("Unsupported colormap %s", self.config['colormap']) if self.config['extent'] is None: h, w = self.imageData.shape x0 = self.config['xorigin'] y0 = self.config['yorigin'] w = w * self.config['xpixelsize'] h = h * self.config['ypixelsize'] if origin == 'upper': extent = (x0, w+x0, h+y0, y0) else: extent = (x0, w+x0, y0, h+y0) else: extent = self.config['extent'] vlimits = self.__getValueLimits() if vlimits is None: imageData = self.imageData vmin = self.imageData.min() vmax = self.imageData.max() else: vmin = min(vlimits[0], vlimits[1]) vmax = max(vlimits[0], vlimits[1]) imageData = self.imageData.clip(vmin,vmax) if self.config['linlogcolormap'] != 'linear': if vmin <= 0: if vmax > 0: vmin = min(imageData[imageData>0]) else: vmin = 0.0 vmax = 1.0 self._image = self.axes.imshow(imageData.clip(vmin,vmax), interpolation=interpolation, origin=origin, cmap=cmap, extent=extent, norm=LogNorm(vmin, vmax)) else: self._image = self.axes.imshow(imageData, interpolation=interpolation, origin=origin, cmap=cmap, extent=extent, norm=Normalize(vmin, vmax)) ylim = self.axes.get_ylim() if self.config['colorbar'] is not None: barorientation = self.config['colorbar'] if barorientation == "vertical": xlim = self.axes.get_xlim() deltaX = abs(xlim[1] - xlim[0]) deltaY = abs(ylim[1] - ylim[0]) ratio = deltaY/ float(deltaX) shrink = ratio self._colorbar = self.figure.colorbar(self._image, fraction=0.046, pad=0.04, #shrink=shrink, aspect=20 * shrink, orientation=barorientation) if ratio < 0.51: nTicks = 5 if ratio < 0.2: nTicks = 3 try: tick_locator = MaxNLocator(nTicks) self._colorbar.locator = tick_locator self._colorbar.update_ticks() except Exception: _logger.warning("Colorbar error %s", sys.exc_info()) pass else: self._colorbar = self.figure.colorbar(self._image, orientation=barorientation) #contour plot if self.config['contour'] != 'off': dataMin = imageData.min() dataMax = imageData.max() ncontours = int(self.config['contourlevels']) levels = (numpy.arange(ncontours)) *\ (dataMax - dataMin)/float(ncontours) contourlinewidth = int(self.config['contourlinewidth'])/10. if self.config['contour'] == 'filled': self._contour = self.axes.contourf(imageData, levels, origin=origin, cmap=ccmap, extent=extent) else: self._contour = self.axes.contour(imageData, levels, origin=origin, cmap=ccmap, linewidths=contourlinewidth, extent=extent) if self.config['contourlabels'] != 'off': self.axes.clabel(self._contour, fontsize=9, inline=1, fmt=self.config['contourlabelformat']) if 0 and self.config['colorbar'] is not None: if barorientation == 'horizontal': barorientation = 'vertical' else: barorientation = 'horizontal' self._ccolorbar=self.figure.colorbar(self._contour, orientation=barorientation, extend='both') self.__postImage(ylim) def getParameters(self): return self.config def setParameters(self, ddict): self.config.update(ddict) self.updateFigure() def setPixmapImage(self, image=None, bgr=False): if image is None: self.pixmapImage = None self.updateFigure() return if bgr: self.pixmapImage = image * 1 self.pixmapImage[:,:,0] = image[:,:,2] self.pixmapImage[:,:,2] = image[:,:,0] else: self.pixmapImage = image shape = self.pixmapImage.shape self.pixmapMask = numpy.ones(shape, numpy.uint8) shape = self.pixmapImage.shape if 0: # This is slow, but I do not expect huge images for i in range(shape[0]): for j in range(shape[1]): if (self.pixmapImage[i,j,0] == 0): if (self.pixmapImage[i,j,1] == 0): if (self.pixmapImage[i,j,2] == 0): self.pixmapMask[i,j,0:3] = [0, 0, 0] else: #the image is RGBA, so the sum when there is nothing is 255 s = self.pixmapImage.sum(axis=-1) self.pixmapMask[s==255, 0:3] = 0 self.updateFigure() def _updatePixmapFigure(self): interpolation = self.config['interpolation'] origin = self.config['origin'] if self.config['extent'] is None: h= self.pixmapImage.shape[0] w= self.pixmapImage.shape[1] x0 = self.config['xorigin'] y0 = self.config['yorigin'] w = w * self.config['xpixelsize'] h = h * self.config['ypixelsize'] if origin == 'upper': extent = (x0, w+x0, h+y0, y0) else: extent = (x0, w+x0, y0, h+y0) else: extent = self.config['extent'] if self.config['imagebackground'].lower() == 'white': if 0: self.pixmapImage[:] = (self.pixmapImage * self.pixmapMask) +\ (self.pixmapMask == 0) * 255 else: self.pixmapImage[self.pixmapMask == 0] = 255 elif self.config['imagebackground'].lower() == 'grey': if 0: self.pixmapImage[:] = (self.pixmapImage * self.pixmapMask) +\ (self.pixmapMask == 0) * 128 else: self.pixmapImage[self.pixmapMask == 0] = 128 else: if 0: self.pixmapImage[:] = (self.pixmapImage * self.pixmapMask) else: self.pixmapImage[self.pixmapMask == 0]= 0 self._image = self.axes.imshow(self.pixmapImage, interpolation=interpolation, origin=origin, extent=extent) ylim = self.axes.get_ylim() self.__postImage(ylim) def __getValueLimits(self): if (self.config['valuemin'] is not None) and\ (self.config['valuemax'] is not None) and\ (self.config['valuemin'] != self.config['valuemax']): vlimits = (self.config['valuemin'], self.config['valuemax']) elif self.config['vlimits'] is not None: vlimits = self.config['vlimits'] else: vlimits = None return vlimits def __postImage(self, ylim): self.axes.set_title(self.config['title']) self.axes.set_xlabel(self.config['xlabel']) self.axes.set_ylabel(self.config['ylabel']) origin = self.config['origin'] if (self.config['zoomxmin'] is not None) and\ (self.config['zoomxmax'] is not None)and\ (self.config['zoomxmax'] != self.config['zoomxmin']): xlimits = (self.config['zoomxmin'], self.config['zoomxmax']) elif self.config['xlimits'] is not None: xlimits = self.config['xlimits'] else: xlimits = None if (self.config['zoomymin'] is not None) and\ (self.config['zoomymax'] is not None) and\ (self.config['zoomymax'] != self.config['zoomymin']): ylimits = (self.config['zoomymin'], self.config['zoomymax']) elif self.config['ylimits'] is not None: ylimits = self.config['ylimits'] else: ylimits = None if ylimits is None: self.axes.set_ylim(ylim[0],ylim[1]) else: ymin = min(ylimits) ymax = max(ylimits) if origin == "lower": self.axes.set_ylim(ymin, ymax) else: self.axes.set_ylim(ymax, ymin) if xlimits is not None: xmin = min(xlimits) xmax = max(xlimits) self.axes.set_xlim(xmin, xmax) self.draw() def test(): app = qt.QApplication([]) a=numpy.arange(256.) a.shape = 8, 32 w = SaveImageSetup(None, a) ddict = w.getParameters() ddict["colorbar"] = "vertical" w.setParameters(ddict) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QPyMcaMatplotlibSave1D.py0000644000000000000000000005636314741736366022737 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from matplotlib import __version__ as matplotlib_version from matplotlib.font_manager import FontProperties import matplotlib from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure _logger = logging.getLogger(__name__) colordict = {} colordict['blue'] = '#0000ff' colordict['red'] = '#ff0000' colordict['green'] = '#00ff00' colordict['black'] = '#000000' colordict['white'] = '#ffffff' colordict['pink'] = '#ff66ff' colordict['brown'] = '#a52a2a' colordict['orange'] = '#ff9900' colordict['violet'] = '#6600ff' colordict['grey'] = '#808080' colordict['yellow'] = '#ffff00' colordict['darkgreen'] = 'g' colordict['darkbrown'] = '#660000' colordict['magenta'] = 'm' colordict['cyan'] = 'c' colordict['bluegreen'] = '#33ffff' colorlist = [colordict['black'], colordict['red'], colordict['blue'], colordict['green'], colordict['pink'], colordict['brown'], colordict['cyan'], colordict['orange'], colordict['violet'], colordict['bluegreen'], colordict['grey'], colordict['magenta'], colordict['darkgreen'], colordict['darkbrown'], colordict['yellow']] class MatplotlibCurveTable(qt.QTableWidget): sigCurveTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) labels = ["Curve", "Alias", "Color", "Line Style", "Line Symbol"] n = len(labels) self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) rheight = self.horizontalHeader().sizeHint().height() self.setMinimumHeight(5*rheight) self.labels = labels def setCurveListAndDict(self, curvelist, curvedict): n = len(curvelist) self.setRowCount(n) if n < 1: return rheight = self.horizontalHeader().sizeHint().height() for i in range(n): self.setRowHeight(i, rheight) i = 0 #self.__disconnect = True for legend in curvelist: self.addCurve(i, legend, curvedict[legend]) i += 1 #self.__disconnect = False #self.resizeColumnToContents(0) #self.resizeColumnToContents(3) def addCurve(self, i, legend, ddict): j = 0 widget = self.cellWidget(i, j) if widget is None: widget = CheckBoxItem(self, i, j) self.setCellWidget(i, j, widget) widget.sigCheckBoxItemSignal.connect(self._mySlot) widget.setChecked(True) widget.setText(legend) #alias alias = ddict.get('alias', None) if alias is None: alias = legend j = 1 item = self.item(i, j) if item is None: item = qt.QTableWidgetItem(alias, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, j, item) else: item.setText(alias) #item.setFlags(qt.Qt.ItemIsEnabled | qt.Qt.ItemIsSelectable) #color j = 2 widget = self.cellWidget(i, j) if widget is None: options = list(colordict.keys()) options.sort() widget = ComboBoxItem(self, i, j, options=options) self.setCellWidget(i, j, widget) widget.sigComboBoxItemSignal.connect(self._mySlot) color = ddict['color'] if color == 'k': color = '#000000' for key in colordict.keys(): if colordict[key] == color: break idx = widget.findText(key) widget.setCurrentIndex(idx) #linestyle j = 3 widget = self.cellWidget(i, j) options = ['-','--','-.',':',''] if widget is None: widget = ComboBoxItem(self, i, j, options=options) self.setCellWidget(i, j, widget) widget.sigComboBoxItemSignal.connect(self._mySlot) idx = widget.findText(ddict['linestyle']) widget.setCurrentIndex(idx) #line marker j = 4 widget = self.cellWidget(i, j) options = ['','o','+','x','^'] if widget is None: widget = ComboBoxItem(self, i, j, options=options) self.setCellWidget(i, j, widget) widget.sigComboBoxItemSignal.connect(self._mySlot) idx = widget.findText(ddict['linemarker']) widget.setCurrentIndex(idx) def _mySlot(self, ddict): #if self.__disconnect: # return ddict = {} ddict['curvelist'] = [] ddict['curvedict'] = {} for i in range(self.rowCount()): widget = self.cellWidget(i, 0) legend = str(widget.text()) ddict['curvelist'].append(legend) ddict['curvedict'][legend] = {} alias = str(self.item(i, 1).text()) if widget.isChecked(): plot = 1 else: plot = 0 ddict['curvedict'][legend]['plot'] = plot ddict['curvedict'][legend]['alias'] = alias widget = self.cellWidget(i, 2) color = colordict[str(widget.currentText())] ddict['curvedict'][legend]['color'] = color widget = self.cellWidget(i, 3) linestyle = str(widget.currentText()) ddict['curvedict'][legend]['linestyle'] = linestyle widget = self.cellWidget(i, 4) linemarker = str(widget.currentText()) ddict['curvedict'][legend]['linemarker'] = linemarker self.sigCurveTableSignal.emit(ddict) class ComboBoxItem(qt.QComboBox): sigComboBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col, options=[1,2,3]): qt.QComboBox.__init__(self, parent) self.__row = row self.__col = col for option in options: self.addItem(option) self.activated[int].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "activated" ddict["item"] = value ddict["row"] = self.__row * 1 ddict["col"] = self.__col * 1 self.sigComboBoxItemSignal.emit(ddict) class CheckBoxItem(qt.QCheckBox): sigCheckBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): qt.QCheckBox.__init__(self, parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "clicked" ddict["state"] = value ddict["row"] = self.__row * 1 ddict["col"] = self.__col * 1 self.sigCheckBoxItemSignal.emit(ddict) class QPyMcaMatplotlibSaveDialog(qt.QDialog): def __init__(self, parent=None, **kw): qt.QDialog.__init__(self, parent) self.setWindowTitle("Matplotlib preview - Resize to your taste") self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._lastGoodSize = None self.axesLabelsWidget = qt.QWidget(self) layout = qt.QHBoxLayout(self.axesLabelsWidget) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) xLabelLabel = qt.QLabel(self.axesLabelsWidget) xLabelLabel.setText("X Axis Label: ") self.xLabelLine = qt.QLineEdit(self.axesLabelsWidget) yLabelLabel = qt.QLabel(self.axesLabelsWidget) yLabelLabel.setText("Y Axis Label: ") self.yLabelLine = qt.QLineEdit(self.axesLabelsWidget) layout.addWidget(xLabelLabel) layout.addWidget(self.xLabelLine) layout.addWidget(yLabelLabel) layout.addWidget(self.yLabelLine) self.curveTable = MatplotlibCurveTable(self) self.plot = QPyMcaMatplotlibSave(self, **kw) self.plot.setCurveTable(self.curveTable) self.actionsWidget = qt.QWidget(self) layout = qt.QHBoxLayout(self.actionsWidget) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) self.doNotShowAgain = qt.QCheckBox(self.actionsWidget) self.doNotShowAgain.setChecked(False) self.doNotShowAgain.setText("Don't show again this dialog") self.acceptButton = qt.QPushButton(self.actionsWidget) self.acceptButton.setText("Accept") self.acceptButton.setAutoDefault(False) self.dismissButton = qt.QPushButton(self.actionsWidget) self.dismissButton.setText("Dismiss") self.dismissButton.setAutoDefault(False) layout.addWidget(self.doNotShowAgain) layout.addWidget(qt.HorizontalSpacer(self.actionsWidget)) layout.addWidget(self.acceptButton) layout.addWidget(self.dismissButton) horizontal = False if horizontal: self.mainLayout.addWidget(self.axesLabelsWidget, 0, 0) self.mainLayout.addWidget(self.plot, 1, 0) self.mainLayout.addWidget(self.curveTable, 1, 1) self.mainLayout.addWidget(self.actionsWidget, 2, 0, 1, 2) self.mainLayout.setColumnStretch(0, 1) else: self.mainLayout.addWidget(self.axesLabelsWidget, 0, 0) self.mainLayout.addWidget(self.curveTable, 1, 0) self.mainLayout.addWidget(self.plot, 2, 0) self.mainLayout.addWidget(self.actionsWidget, 3, 0) self.mainLayout.setRowStretch(1, 1) self.xLabelLine.editingFinished[()].connect(self._xLabelSlot) self.yLabelLine.editingFinished[()].connect(self._yLabelSlot) self.acceptButton.clicked.connect(self.accept) self.dismissButton.clicked.connect(self.reject) def exec_(self): return self.exec() def exec(self): self.plot.draw() if self.doNotShowAgain.isChecked(): return qt.QDialog.Accepted else: if self._lastGoodSize is not None: self.resize(self._lastGoodSize) return qt.QDialog.exec(self) def accept(self): self._lastGoodSize = self.size() return qt.QDialog.accept(self) def _xLabelSlot(self): label = self.xLabelLine.text() if sys.version < '3.0': label = str(label) self.plot.setXLabel(label) self.plot.draw() def _yLabelSlot(self): label = self.yLabelLine.text() if sys.version < '3.0': label = str(label) self.plot.setYLabel(label) self.plot.draw() def setXLabel(self, label): self.xLabelLine.setText(label) self.plot.setXLabel(label) def setYLabel(self, label): self.yLabelLine.setText(label) self.plot.setYLabel(label) class QPyMcaMatplotlibSave(FigureCanvas): def __init__(self, parent=None, size = (7,3.5), dpi = 100, logx = False, logy = False, legends = True, bw = False): self.fig = Figure(figsize=size, dpi=dpi) #in inches FigureCanvas.__init__(self, self.fig) FigureCanvas.setSizePolicy(self, qt.QSizePolicy.Expanding, qt.QSizePolicy.Expanding) self.curveTable = None self.dpi=dpi ddict = {'logx':logx, 'logy': logy, 'legends':legends, 'bw':bw} self.ax=None self.curveList = [] self.curveDict = {} self.setParameters(ddict) #self.setBlackAndWhiteEnabled(bw) #self.setLogXEnabled(logx) #self.setLogYEnabled(logy) #self.setLegendsEnabled(legends) self.xmin = None self.xmax = None self.ymin = None self.ymax = None self.limitsSet = False def setCurveTable(self, table): self.curveTable = table self.curveTable.sigCurveTableSignal.connect(self.updateFromTable) def setParameters(self,kw): if 'bw' in kw: self.setBlackAndWhiteEnabled(kw['bw']) if 'logx' in kw: self.setLogXEnabled(kw['logx']) if 'logy' in kw: self.setLogYEnabled(kw['logy']) if 'legends' in kw: self.setLegendsEnabled(kw['legends']) self._dataCounter = 0 self.createAxes() def setBlackAndWhiteEnabled(self, flag): self._bw = flag if self._bw: self.colorList = ['k'] #only black self.styleList = ['-', ':', '-.', '--'] self.nColors = 1 else: self.colorList = colorlist self.styleList = ['-', '-.', ':'] self.nColors = len(colorlist) self._dataCounter = 0 self.nStyles = len(self.styleList) self.colorIndex = 0 self.styleIndex = 0 def setLogXEnabled(self, flag): self._logX = flag def setLogYEnabled(self, flag): self._logY = flag def setLegendsEnabled(self, flag): self._legend = flag self._legendList = [] def createAxes(self): self.fig.clear() if self.ax is not None: self.ax.cla() if not self._legend: if self._logY: ax = self.fig.add_axes([.15, .15, .75, .8]) else: ax = self.fig.add_axes([.15, .15, .75, .75]) else: if self._logY: ax = self.fig.add_axes([.15, .15, .7, .8]) else: ax = self.fig.add_axes([.15, .15, .7, .8]) ax.set_axisbelow(True) self.ax = ax if self._logY: self._axFunction = ax.semilogy else: self._axFunction = ax.plot self._legendList=[] self.curveList = [] self.curveDict = {} def setLimits(self, xmin, xmax, ymin, ymax): self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.limitsSet = True def _filterData(self, x, y): index = numpy.flatnonzero((self.xmin <= x) & (x <= self.xmax)&\ (self.ymin <= y) & (y <= self.ymax)) return index def _getColorAndStyle(self): color = self.colorList[self.colorIndex] style = self.styleList[self.styleIndex] self.colorIndex += 1 if self.colorIndex >= self.nColors: self.colorIndex = 0 self.styleIndex += 1 if self.styleIndex >= self.nStyles: self.styleIndex = 0 return color, style def addDataToPlot(self, x, y, legend = None, color = None, linewidth = None, linestyle = None, marker=None, alias = None,**kw): x = numpy.asarray(x) y = numpy.asarray(y) if self.limitsSet is not None: n = self._filterData(x, y) if not len(n): return #x = x[n] #y = y[n] n = max(x.shape) if n == 0: #nothing to plot _logger.debug("nothing to plot") return style = None if color is None: color, style = self._getColorAndStyle() if linestyle is None: if style is None: style = '-' else: style = linestyle if marker is None: marker = '' if linewidth is None:linewidth = 1.0 self._axFunction( x, y, linestyle = style, color=color, linewidth = linewidth, **kw) self._dataCounter += 1 if legend is None: #legend = "%02d" % self._dataCounter #01, 02, 03, ... legend = "%c" % (96+self._dataCounter) #a, b, c, .. self._legendList.append(legend) if legend not in self.curveList: self.curveList.append(legend) self.curveDict[legend] = {} self.curveDict[legend]['x'] = x self.curveDict[legend]['y'] = y self.curveDict[legend]['linestyle'] = style self.curveDict[legend]['color'] = color self.curveDict[legend]['linewidth'] = linewidth self.curveDict[legend]['linemarker'] = marker if alias is not None: self.curveDict[legend]['alias'] = alias self._legendList[-1] = alias if self.curveTable is not None: self.curveTable.setCurveListAndDict(self.curveList, self.curveDict) def setXLabel(self, label): self.ax.set_xlabel(label) def setYLabel(self, label): self.ax.set_ylabel(label) def setTitle(self, title): self.ax.set_title(title) def plotLegends(self, legendlist=None): if not self._legend:return if legendlist is None: legendlist = self._legendList if not len(legendlist):return loc = (1.01, 0.0) labelsep = 0.015 drawframe = True fontproperties = FontProperties(size=10) if len(legendlist) > 14: drawframe = False if matplotlib_version < '0.99.0': fontproperties = FontProperties(size=8) loc = (1.05, -0.2) else: if len(legendlist) < 18: #drawframe = True loc = (1.01, 0.0) elif len(legendlist) < 25: loc = (1.05, 0.0) fontproperties = FontProperties(size=8) elif len(legendlist) < 28: loc = (1.05, 0.0) fontproperties = FontProperties(size=6) else: loc = (1.05, -0.1) fontproperties = FontProperties(size=6) if matplotlib_version < '0.99.0': legend = self.ax.legend(legendlist, loc = loc, prop = fontproperties, labelsep = labelsep, pad = 0.15) else: legend = self.ax.legend(legendlist, loc = loc, prop = fontproperties, labelspacing = labelsep, borderpad = 0.15) legend.draw_frame(drawframe) def draw(self): if self.limitsSet: self.ax.set_xlim(self.xmin, self.xmax) self.ax.set_ylim(self.ymin, self.ymax) FigureCanvas.draw(self) def updateFromTable(self, ddict): #for line2D in self.ax.lines: # #label = line2D.get_label() # #if label == legend: # line2D.remove() xlabel = self.ax.get_xlabel() ylabel = self.ax.get_ylabel() if self.limitsSet: xlim = self.ax.get_xlim() ylim = self.ax.get_ylim() self.ax.cla() self.ax.set_xlabel(xlabel) self.ax.set_ylabel(ylabel) if self.limitsSet: self.ax.set_xlim(xlim) self.ax.set_ylim(ylim) legendList = [] curvelist = ddict['curvelist'] for legend in curvelist: if not ddict['curvedict'][legend]['plot']: continue x = self.curveDict[legend]['x'] y = self.curveDict[legend]['y'] alias = ddict['curvedict'][legend]['alias'] linestyle = self.curveDict[legend]['linestyle'] if 0: color = self.curveDict[legend]['color'] else: color = ddict['curvedict'][legend]['color'] linewidth = self.curveDict[legend]['linewidth'] linestyle = ddict['curvedict'][legend]['linestyle'] linemarker = ddict['curvedict'][legend]['linemarker'] if linestyle in ['None', '']: linestyle = '' if linemarker in ['None', '']: linemarker = '' self._axFunction( x, y, linestyle=linestyle, marker=linemarker, color=color, linewidth=linewidth) legendList.append(alias) if self._legend: self.plotLegends(legendList) self.draw() def saveFile(self, filename, format=None): if format is None: format = filename[-3:] if format.upper() not in ['EPS', 'PNG', 'SVG']: raise "Unknown format %s" % format if os.path.exists(filename): os.remove(filename) if self.limitsSet: self.ax.set_ylim(self.ymin, self.ymax) self.ax.set_xlim(self.xmin, self.xmax) #self.plotLegends() self.print_figure(filename, dpi=self.dpi) return if __name__ == "__main__": app = qt.QApplication([]) w0=QPyMcaMatplotlibSaveDialog(legends=True) w=w0.plot x = numpy.arange(1200.) w.setLimits(0, 1200., 0, 12000.) if len(sys.argv) > 2: n = int(sys.argv[2]) else: n = 14 for i in range(n): y = x * i w.addDataToPlot(x, y, legend="%d" % i) #w.setTitle('title') w0.setXLabel('Channel') w0.setYLabel('Counts') w.plotLegends() ret = w0.exec() if ret: w.saveFile("filename.png") print("Plot filename.png saved") w.setParameters({'logy':True, 'bw':True}) for i in range(n): y = x * i + 1 w.addDataToPlot(x,y, legend="%d" % i) #w.setTitle('title') w.setXLabel('Channel') w.setYLabel('Counts') w.plotLegends() ret = w0.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QSource.py0000644000000000000000000001715714741736366020130 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging import time import weakref from PyMca5.PyMcaGui import PyMcaQt as qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) SOURCE_EVENT = qt.QEvent.registerEventType() try: import thread except ImportError: import _thread as thread class SourceEvent(qt.QEvent): def __init__(self, ddict=None): if ddict is None: ddict = {} self.dict = ddict qt.QEvent.__init__(self, SOURCE_EVENT) class QSource(qt.QObject): sigUpdated = qt.pyqtSignal(object) def __init__(self): qt.QObject.__init__(self, None) #no parent self.surveyDict = {} self.selections = {} self.setPollTime(0.7) # 700 milliseconds self.pollerThreadId = None def setPollTime(self, pollTime): """Set polling time (in seconds)""" self._pollTime = max(pollTime, 0.1) return self._pollTime def getPollTime(self): return self._pollTime def addToPoller(self, dataObject): """Set polling for data object""" sourceName = dataObject.info['SourceName'] if sourceName != self.sourceName: raise KeyError("Trying to survey key %s on wrong source %s" % (self.sourceName,dataObject.info['SourceName'])) #that is general to any source key = dataObject.info['Key'] reference = id(dataObject) def dataObjectDestroyed(ref, dataObjectKey=key, dataObjectRef=reference): _logger.debug('data object destroyed, key was %s', dataObjectKey) _logger.debug('data object destroyed, ref was 0x%x', dataObjectRef) _logger.debug("self.surveyDict[key] = %s", self.surveyDict[key]) n = len(self.surveyDict[dataObjectKey]) if n > 0: ns = list(range(n)) newlist = [] for i in ns: try: if len(dir(self.surveyDict[dataObjectKey][i])): newlist.append(self.surveyDict[dataObjectKey][i]) except ReferenceError: pass self.surveyDict[dataObjectKey] = newlist if len(self.surveyDict[dataObjectKey]) == 0: del self.surveyDict[dataObjectKey] _logger.debug("SURVEY DICT AFTER DELETION = %s", self.surveyDict) return # create a weak reference to the dataObject and we call it dataObjectRef dataObjectRef=weakref.proxy(dataObject, dataObjectDestroyed) try: _logger.debug("Dealing with data object reference %s", dataObjectRef) if key not in self.surveyDict: self.surveyDict[key] = [dataObjectRef] self.selections[key] = [(id(dataObjectRef), dataObjectRef.info)] elif dataObjectRef not in self.surveyDict[key]: _logger.debug("dataObject reference ADDED") self.surveyDict[key].append(dataObjectRef) self.selections[key].append((id(dataObjectRef), dataObjectRef.info)) else: _logger.debug("dataObject reference IGNORED") except KeyError: print("ADDING BECAUSE OF KEY ERROR") self.surveyDict[key] = [dataObjectRef] self.selections[key] = [(id(dataObjectRef), dataObjectRef.info)] except ReferenceError: _logger.debug("NOT ADDED TO THE POLL dataObject = %s", dataObject) return if self.pollerThreadId is None: # start a new polling thread _logger.debug("starting new thread") self.pollerThreadId = thread.start_new_thread(self.__run, ()) def __run(self): _logger.debug("In QSource __run method") while len(self.surveyDict) > 0: #for key in self.surveyDict is dangerous # runtime error: dictionary changed during iteration # a mutex is needed _logger.debug("In loop") dummy = list(self.surveyDict.keys()) eventsToPost = {} #for key in self.surveyDict: for key in dummy: if key not in eventsToPost: eventsToPost[key] = [] if self.isUpdated(self.sourceName, key): _logger.debug("%s %s is updated", self.sourceName, key) try: if len(self.surveyDict[key]): #there are still instances of dataObjects event = SourceEvent() event.dict['Key'] = key event.dict['event'] = 'updated' event.dict['id'] = self.surveyDict[key] scanselection = False info = self.surveyDict[key][0].info if "scanselection" in info: scanselection = info['scanselection'] elif "selectiontype" in info: _logger.debug("selectiontype %s", info["selectiontype"]) if info["selectiontype"] == "1D": scanselection = True if (key == 'SCAN_D') or scanselection: event.dict['scanselection'] = True else: event.dict['scanselection'] = False eventsToPost[key].append(event) else: del self.surveyDict[key] del self.selections[key] except Exception: _logger.debug("error in loop %s", sys.exc_info()) del self.surveyDict[key] del self.selections[key] pass for key in eventsToPost: for event in eventsToPost[key]: qt.QApplication.postEvent(self, event) qt.QApplication.instance().processEvents() time.sleep(self._pollTime) _logger.debug("woke up") self.pollerThreadId = None self.selections = {} ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QSpsDataSource.py0000644000000000000000000001310014741736366021370 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys from PyMca5.PyMcaGui.pymca import QSource from PyMca5.PyMcaCore import SpsDataSource import logging _logger = logging.getLogger(__name__) qt = QSource.qt QTVERSION = qt.qVersion() SOURCE_TYPE = SpsDataSource.SOURCE_TYPE class QSpsDataSource(QSource.QSource): """Shared memory source The shared memory source object uses SPS through the SPSWrapper module to get access to shared memory zones created by Spec or Device Servers Emitted signals are : updated """ def __init__(self, sourceName): QSource.QSource.__init__(self) self.__dataSource = SpsDataSource.SpsDataSource(sourceName) #easy speed up by making a local reference self.sourceName = self.__dataSource.sourceName self.isUpdated = self.__dataSource.isUpdated self.sourceType = self.__dataSource.sourceType self.getKeyInfo = self.__dataSource.getKeyInfo self.refresh = self.__dataSource.refresh self.getSourceInfo = self.__dataSource.getSourceInfo def __getattr__(self,attr): if not attr.startswith("__"): #if not hasattr(qt.QObject, attr): if not hasattr(self, attr): try: return getattr(self.__dataSource, attr) except Exception: pass raise AttributeError def getDataObject(self,key_list,selection=None, poll=True): if poll: data = self.__dataSource.getDataObject(key_list,selection) self.addToPoller(data) return data else: return self.__dataSource.getDataObject(key_list,selection) def customEvent(self, event): ddict = event.dict if "SourceType" in ddict: if ddict["SourceType"] != SOURCE_TYPE: _logger.debug("Not a SPS event") return ddict['SourceName'] = self.__dataSource.sourceName ddict['SourceType'] = SOURCE_TYPE key = ddict['Key'] idtolook = [] ddict['selectionlist'] = [] if key in self.surveyDict: for object_ in self.surveyDict[key]: idtolook.append(id(object_)) if key in self.selections.keys(): n = len(self.selections[key]) if n: a = list(range(n)) a.reverse() legendlist = [] for i in a: objectId, info = self.selections[key][i] scanselection = 0 if 'scanselection' in info: scanselection = info['scanselection'] if info['legend'] in legendlist: if not scanselection: del self.selections[key][i] continue if objectId in idtolook: sel = {} sel['SourceName'] = self.__dataSource.sourceName sel['SourceType'] = SOURCE_TYPE sel['Key'] = key sel['selection'] = info['selection'] sel['legend'] = info['legend'] legendlist.append(info['legend']) sel['targetwidgetid'] = info.get('targetwidgetid', None) sel['scanselection'] = info.get('scanselection', False) sel['imageselection'] = info.get('imageselection', False) ddict['selectionlist'].append(sel) #else: del self.selections[key][i] self.sigUpdated.emit(ddict) else: print("No info????") if __name__ == "__main__": try: specname=sys.argv[1] arrayname=sys.argv[2] except Exception: print("Usage: SpsDataSource ") sys.exit() app=qt.QApplication([]) obj = QSpsDataSource(specname) def mytest(ddict): print(ddict['Key']) app.mytest = mytest data = obj.getDataObject(arrayname,poll=True) obj.sigUpdated.connect(mytest) app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QStack.py0000644000000000000000000000774214741736366017734 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import copy import time from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import EDFStack from PyMca5.PyMcaIO import SpecFileStack if sys.platform.startswith("darwin"): import threading QThread = threading.Thread else: QThread = qt.QThread DEBUG = 0 class SimpleThread(QThread): def __init__(self, function, *var, **kw): if kw is None:kw={} QThread.__init__(self) self._function = function self._var = var self._kw = kw self._result = None def run(self): if DEBUG: self._result = self._function(*self._var, **self._kw ) else: try: self._result = self._function(*self._var, **self._kw ) except Exception: self._result = ("Exception",) + sys.exc_info() class QSpecFileStack(SpecFileStack.SpecFileStack): def onBegin(self, nfiles): self.bars =qt.QWidget() self.bars.setWindowTitle("Reading progress") self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('Mca Progress:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.progressBar.setMaximum(nfiles) self.progressBar.setValue(0) self.bars.show() def onProgress(self,index): self.progressBar.setValue(index) def onEnd(self): self.bars.hide() del self.bars class QStack(EDFStack.EDFStack): def onBegin(self, nfiles): self.bars =qt.QWidget() self.bars.setWindowTitle("Reading progress") self.barsLayout = qt.QGridLayout(self.bars) self.barsLayout.setContentsMargins(2, 2, 2, 2) self.barsLayout.setSpacing(3) self.progressBar = qt.QProgressBar(self.bars) self.progressLabel = qt.QLabel(self.bars) self.progressLabel.setText('File Progress:') self.barsLayout.addWidget(self.progressLabel,0,0) self.barsLayout.addWidget(self.progressBar,0,1) self.progressBar.setMaximum(nfiles) self.progressBar.setValue(0) self.bars.show() def onProgress(self,index): self.progressBar.setValue(index) def onEnd(self): self.bars.hide() del self.bars ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/QStackWidget.py0000644000000000000000000020256614741736366021101 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import copy import traceback import numpy import weakref import logging _logger = logging.getLogger(__name__) if __name__ == "__main__": # We are going to read. Disable file locking. os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" _logger.info("%s set to %s" % ("HDF5_USE_FILE_LOCKING", os.environ["HDF5_USE_FILE_LOCKING"])) try: # make sure hdf5plugins are imported import hdf5plugin except Exception: _logger.info("Failed to import hdf5plugin") # we have to get the Qt binding prior to import PyMcaQt import getopt options = '' longoptions = ["fileindex=","old", "filepattern=", "begin=", "end=", "increment=", "nativefiledialogs=", "imagestack=", "image=", "backend=", "binding=", "logging=", "debug="] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) binding = None for opt, arg in opts: if opt in ('--debug'): if arg.lower() not in ['0', 'false']: debugreport = 1 _logger.setLevel(logging.DEBUG) # --debug is also parsed later for the global logging level elif opt in ('--binding'): binding = arg.lower() if binding == "pyqt5": import PyQt5.QtCore elif binding == "pyside2": import PySide2.QtCore elif binding == "pyside6": import PySide6.QtCore elif binding == "pyqt6": import PyQt6.QtCore else: raise ValueError("Unsupported Qt binding <%s>" % binding) from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel logging.basicConfig(level=getLoggingLevel(opts)) from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = qt.safe_str try: # try to import silx prior to importing matplotlib to prevent # unnecessary warning import silx.gui.plot except Exception: pass from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaGui.pymca import McaWindow from PyMca5.PyMcaCore import StackBase from PyMca5.PyMcaCore import McaStackExport from PyMca5.PyMcaGui.misc import CloseEventNotifyingWidget from PyMca5.PyMcaGui.plotting import MaskImageWidget convertToRowAndColumn = MaskImageWidget.convertToRowAndColumn from PyMca5.PyMcaGui.pymca import RGBCorrelator from PyMca5.PyMcaGui.pymca.RGBCorrelatorWidget import ImageShapeDialog from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.pymca import StackSelector from PyMca5 import PyMcaDirs from PyMca5.PyMcaIO import ArraySave HDF5 = ArraySave.HDF5 # _logger.setLevel(logging.DEBUG) QTVERSION = qt.qVersion() if _logger.getEffectiveLevel() == logging.DEBUG: StackBase.logger.setLevel(logging.DEBUG) class QStackWidget(StackBase.StackBase, CloseEventNotifyingWidget.CloseEventNotifyingWidget): def __init__(self, parent=None, mcawidget=None, rgbwidget=None, vertical=False, primary=True, **kw): StackBase.StackBase.__init__(self) CloseEventNotifyingWidget.CloseEventNotifyingWidget.__init__(self, parent) # keep backwards compatibility if "master" in kw: primary = kw["master"] self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.setWindowTitle("PyMCA - ROI Imaging Tool") screenHeight = qt.QDesktopWidget().height() if screenHeight > 0: if QTVERSION < '4.5.0': self.setMaximumHeight(int(0.99*screenHeight)) self.setMinimumHeight(int(0.5*screenHeight)) screenWidth = qt.QDesktopWidget().width() if screenWidth > 0: if QTVERSION < '4.5.0': self.setMaximumWidth(int(screenWidth)-5) self.setMinimumWidth(min(int(0.5*screenWidth),800)) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.mcaWidget = mcawidget self.rgbWidget = rgbwidget self.primary = primary self._secondaryList = None self._primaryStack = None self.stackSelector = None self._build(vertical=vertical) self._buildBottom() self._buildConnections() self.__ROIConnected = True def _build(self, vertical=False): box = qt.QSplitter(self) if vertical: box.setOrientation(qt.Qt.Vertical) boxmainlayout = qt.QVBoxLayout(box) else: box.setOrientation(qt.Qt.Horizontal) boxmainlayout = qt.QHBoxLayout(box) self.stackWindow = qt.QWidget(box) self.stackWindow.mainLayout = qt.QVBoxLayout(self.stackWindow) self.stackWindow.mainLayout.setContentsMargins(0, 0, 0, 0) self.stackWindow.mainLayout.setSpacing(0) self.stackWidget = MaskImageWidget.MaskImageWidget(self.stackWindow, selection=False, standalonesave=False, imageicons=False, aspect=True) self._stackSaveMenu = qt.QMenu() if HDF5: if self.primary: self._stackSaveMenu.addAction(QString("Export All Stacks Workspace"), self.exportStackList) self._stackSaveMenu.addAction(QString("Export Stack Workspace"), self.exportStack) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Spectra"), self.saveStackAsNeXusSpectra) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Images"), self.saveStackAsNeXusImages) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Compressed Spectra"), self.saveStackAsNeXusCompressedSpectra) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Compressed Images"), self.saveStackAsNeXusCompressedImages) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Float32 Spectra"), self.saveStackAsFloat32NeXusSpectra) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Float64 Spectra"), self.saveStackAsFloat64NeXusSpectra) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Float32 Images"), self.saveStackAsFloat32NeXusImages) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Float64 Images"), self.saveStackAsFloat64NeXusImages) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as HDF5 /data"), self.saveStackAsSimplestHDF5) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Monochromatic TIFF Images"), self.saveStackAsMonochromaticTiffImages) self._stackSaveMenu.addAction(QString("Save Zoomed Stack Region as Float32 TIFF Images"), self.saveStackAsFloat32TiffImages) self._stackSaveMenu.addAction(QString("Standard Graphics"), self.stackWidget.graphWidget._saveIconSignal) self.stackWidget.graphWidget.saveToolButton.clicked.connect( \ self._stackSaveToolButtonSignal) self.stackGraphWidget = self.stackWidget.graphWidget self.roiWindow = qt.QWidget(box) self.roiWindow.mainLayout = qt.QVBoxLayout(self.roiWindow) self.roiWindow.mainLayout.setContentsMargins(0, 0, 0, 0) self.roiWindow.mainLayout.setSpacing(0) standaloneSaving = True self.roiWidget = MaskImageWidget.MaskImageWidget(parent=self.roiWindow, rgbwidget=self.rgbWidget, selection=True, colormap=True, imageicons=True, standalonesave=standaloneSaving, profileselection=True, aspect=True) infotext = 'Toggle background subtraction from current image\n' infotext += 'subtracting a straight line between the ROI limits.' self.roiBackgroundIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) self.roiBackgroundButton = self.roiWidget.graphWidget._addToolButton(\ self.roiBackgroundIcon, self._roiSubtractBackgroundClicked, infotext, toggle=True, state=False, position=6) self.roiGraphWidget = self.roiWidget.graphWidget self.stackWindow.mainLayout.addWidget(self.stackWidget) self.roiWindow.mainLayout.addWidget(self.roiWidget) box.addWidget(self.stackWindow) box.addWidget(self.roiWindow) boxmainlayout.addWidget(self.stackWindow) boxmainlayout.addWidget(self.roiWindow) self.mainLayout.addWidget(box) #add some missing icons offset = 8 infotext = 'If checked, spectra will be added normalized to the number\n' infotext += 'of pixels. Be carefull if you are preparing a batch and you\n' infotext += 'fit the normalized spectra because the data in the batch will\n' infotext += 'have a different weight because they are not normalized.' self.normalizeIcon = qt.QIcon(qt.QPixmap(IconDict["normalize16"])) self.normalizeButton = self.stackGraphWidget._addToolButton( \ self.normalizeIcon, self.normalizeIconChecked, infotext, toggle=True, state=False, position=6) offset += 1 if self.primary: self.loadIcon = qt.QIcon(qt.QPixmap(IconDict["fileopen"])) self.loadStackButton = self.stackGraphWidget._addToolButton( \ self.loadIcon, self.loadSecondaryStack, 'Load another stack of same shape', position=offset) offset += 1 self.pluginIcon = qt.QIcon(qt.QPixmap(IconDict["plugin"])) infotext = "Call/Load Stack Plugins" self.stackGraphWidget._addToolButton(self.pluginIcon, self._pluginClicked, infotext, toggle=False, state=False, position=offset) def setStack(self, *var, **kw): self.stackWidget.setImageData(None) self.roiWidget.setImageData(None) StackBase.StackBase.setStack(self, *var, **kw) if (1 in self._stack.data.shape) and\ isinstance(self._stack.data, numpy.ndarray): oldshape = self._stack.data.shape dialog = ImageShapeDialog(self, shape=oldshape[0:2]) dialog.setModal(True) ret = dialog.exec() if ret: shape = dialog.getImageShape() dialog.close() del dialog self._stack.data.shape = [shape[0], shape[1], oldshape[2]] self.stackWidget.setImageData(None) self.roiWidget.setImageData(None) StackBase.StackBase.setStack(self, self._stack, **kw) if self._mcaMax is not None: self.addMcaMaxButton.show() else: self.addMcaMaxButton.hide() try: if 'SourceName' in self._stack.info: if type(self._stack.info['SourceName']) == type([]): if len(self._stack.info['SourceName']) == 1: title = qt.safe_str(self._stack.info['SourceName'][0]) else: f0 = qt.safe_str(self._stack.info['SourceName'][0]) f1 = qt.safe_str(self._stack.info['SourceName'][-1]) try: f0 = os.path.basename(f0) f1 = os.path.basename(f1) except Exception: pass title = "Stack from %s to %s" % (f0, f1) else: title = qt.safe_str(self._stack.info['SourceName']) self.setWindowTitle(title) except Exception: # TODO: give a reasonable title pass def normalizeIconChecked(self): pass def _roiSubtractBackgroundClicked(self): if not len(self._ROIImageList): return xScale = self._stack.info.get("xScale", None) yScale = self._stack.info.get("yScale", None) if self.roiBackgroundButton.isChecked(): self.roiWidget.graphWidget.graph.setGraphTitle( \ self._ROIImageNames[0] + " Net") self.roiWidget.setImageData(self._ROIImageList[0] - \ self._ROIImageList[-1], xScale=xScale, yScale=yScale) else: self.roiWidget.graphWidget.graph.setGraphTitle( \ self._ROIImageNames[0]) self.roiWidget.setImageData(self._ROIImageList[0], xScale=xScale, yScale=yScale) def _stackSaveToolButtonSignal(self): self._stackSaveMenu.exec(self.cursor().pos()) def _getOutputHDF5Filename(self, nexus=False): fileTypes = "HDF5 Files (*.h5)\nHDF5 Files (*.hdf)" message = "Enter output filename" wdir = PyMcaDirs.outputDir filename = PyMcaFileDialogs.getFileList(self, message=message, mode="SAVE", currentdir=wdir, filetypelist=[fileTypes], getfilter=False, single=True) if len(filename): filename = filename[0] if len(filename): try: fname = qt.safe_str(filename) if fname.endswith('.h5') or\ fname.endswith('.hdf'): return fname else: return fname + ".h5" except UnicodeEncodeError: msg = qt.QMessageBox(self) msg.setWindowTitle("Encoding error") msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please use ASCII characters in file name and path") msg.exec() return "" def _getOutputTiffFilename(self): fileTypes = "TIFF Files (*.tif *.tiff *.TIF *.TIFF)" message = "Enter output filename" wdir = PyMcaDirs.outputDir filename = PyMcaFileDialogs.getFileList(self, message=message, mode="SAVE", currentdir=wdir, filetypelist=[fileTypes], getfilter=False, single=True) if len(filename): filename = filename[0] if len(filename): try: fname = qt.safe_str(filename) if fname.endswith('.tif') or\ fname.endswith('.tiff') or\ fname.endswith('.TIF') or\ fname.endswith('.TIFF'): return fname else: return fname + ".tif" except UnicodeEncodeError: msg = qt.QMessageBox(self) msg.setWindowTitle("Encoding error") msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please use ASCII characters in file name and path") msg.exec() return "" def saveStackAsMonochromaticTiffImages(self, dtype=None): if dtype is None: dtype = self._stack.data.dtype if dtype in [numpy.uint32, numpy.uint64]: dtype = numpy.float32 elif dtype in [numpy.int32, numpy.int64]: dtype = numpy.float32 filename = self._getOutputTiffFilename() if not len(filename): return mcaIndex = self._stack.info.get('McaIndex', -1) dataView = self._getCroppedView() ArraySave.save3DArrayAsMonochromaticTiff(dataView, filename, labels=None, dtype=dtype, mcaindex=mcaIndex) def saveStackAsFloat32TiffImages(self): return self.saveStackAsMonochromaticTiffImages(dtype=numpy.float32) def _getCroppedView(self): mcaIndex = self._stack.info.get('McaIndex', -1) #get limits y0, y1 = self.stackWidget.graph.getGraphYLimits() x0, x1 = self.stackWidget.graph.getGraphXLimits() xScale = self._stack.info.get("xScale", None) yScale = self._stack.info.get("yScale", None) if mcaIndex in [0]: shape = [self._stack.data.shape[1], self._stack.data.shape[2]] elif mcaIndex in [1]: shape = [self._stack.data.shape[0], self._stack.data.shape[2]] else: shape = [self._stack.data.shape[0], self._stack.data.shape[1]] row0, col0 = convertToRowAndColumn( \ x0, y0, shape, xScale=xScale, yScale=yScale, safe=True) row1, col1 = convertToRowAndColumn( \ x1, y1, shape, xScale=xScale, yScale=yScale, safe=True) #this should go to array save ... shape = self._stack.data.shape if mcaIndex in [0]: row0 = int(max([row0+0.5, 0])) row1 = int(min([row1+0.5, self._stack.data.shape[1]])) col0 = int(max([col0+0.5, 0])) col1 = int(min([col1+0.5, self._stack.data.shape[2]])) view = self._stack.data[:, row0:row1+1, col0:col1+1] elif mcaIndex in [1]: row0 = int(max([row0+0.5, 0])) row1 = int(min([row1+0.5, self._stack.data.shape[0]])) col0 = int(max([col0+0.5, 0])) col1 = int(min([col1+0.5, self._stack.data.shape[2]])) view = self._stack.data[row0:row1+1, : , col0:col1+1] else: row0 = int(max([row0+0.5, 0])) row1 = int(min([row1+0.5, self._stack.data.shape[0]])) col0 = int(max([col0+0.5, 0])) col1 = int(min([col1+0.5, self._stack.data.shape[1]])) view = self._stack.data[row0:row1+1, col0:col1+1, :] return view def exportStackList(self, filename=None): if not self.primary: raise IOError("Only primary stacks can export all stacks") if filename is None: filename = self._getOutputHDF5Filename() if not len(filename): return # the user already confirmed overwriting and McaStackExport does not # delete an existing file if os.path.exists(filename): os.remove(filename) calibrationList = [] # primary, join all secondary stacks calibrationList.append(self.getActiveCurveCalibration()) if self._secondaryList is not None: for secondary in self._secondaryList: calibrationList.append(secondary.getActiveCurveCalibration()) McaStackExport.exportStackList(self.getStackDataObjectList(), filename, calibration=calibrationList) def exportStack(self, filename=None): if filename is None: filename = self._getOutputHDF5Filename() if not len(filename): return # the user already confirmed overwriting and McaStackExport does not # delete an existing file if os.path.exists(filename): os.remove(filename) # try to get the current calibration, not the one loaded calibration = self.getActiveCurveCalibration() # save the stack McaStackExport.exportStackList([self.getStackDataObject()], filename, calibration=[calibration]) def getActiveCurveCalibration(self): calibration = None try: xLabel = qt.safe_str(self.getGraphXLabel()) xData, y, legend, info = self.mcaWidget.getActiveCurve()[:4] if xLabel not in [None, 'Channels']: calibration = info.get("McaCalib", None) except Exception: _logger.info("Cannot obtain current calibration") return calibration def saveStackAsNeXus(self, dtype=None, interpretation=None, compression=False): mcaIndex = self._stack.info.get('McaIndex', -1) if interpretation is None: if mcaIndex in [0]: interpretation = "image" else: interpretation = "spectrum" if interpretation not in ["spectrum", "image"]: raise ValueError("Unknown data interpretation %s" % interpretation) filename = self._getOutputHDF5Filename() if not len(filename): return # get only the seen stack portion view = self._getCroppedView() # the current graph axis is saved axes = [None] * len(self._stack.data.shape) labels = [None] * len(self._stack.data.shape) try: xLabel = qt.safe_str(self.mcaWidget.getGraphXLabel()) except Exception: xLabel = None try: xData, y, legend, info = self.mcaWidget.getActiveCurve()[:4] except Exception: xData = self._mcaData0.x[0] xLabel = 'Channels' if interpretation == 'image': labels[0] = xLabel axes[0] = xData else: labels[-1] = xLabel axes[-1] = xData try: ArraySave.save3DArrayAsHDF5(view, filename, axes=axes, labels=labels, dtype=dtype, mode='nexus', mcaindex=mcaIndex, interpretation=interpretation, compression=compression) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Save error") msg.setText("An error has occured while saving the data:") msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def saveStackAsNeXusSpectra(self, compression=False): self.saveStackAsNeXus(interpretation="spectrum", compression=compression) def saveStackAsNeXusImages(self): self.saveStackAsNeXus(interpretation="image", compression=False) def saveStackAsNeXusCompressedSpectra(self): self.saveStackAsNeXusSpectra(compression=True) def saveStackAsNeXusCompressedImages(self): self.saveStackAsNeXus(interpretation="image", compression=True) def saveStackAsFloat32NeXusSpectra(self): self.saveStackAsNeXus(dtype=numpy.float32, interpretation="spectrum") def saveStackAsFloat64NeXusSpectra(self): self.saveStackAsNeXus(dtype=numpy.float64, interpretation="spectrum") def saveStackAsFloat32NeXusImages(self): self.saveStackAsNeXus(dtype=numpy.float32, interpretation="image") def saveStackAsFloat64NeXusImages(self): self.saveStackAsNeXus(dtype=numpy.float64, interpretation="image") def saveStackAsNeXusPlus(self): filename = self._getOutputHDF5Filename() if not len(filename): return ArraySave.save3DArrayAsHDF5(self._stack.data, filename, labels=None, dtype=None, mode='nexus+') def saveStackAsSimpleHDF5(self): filename = self._getOutputHDF5Filename() if not len(filename): return ArraySave.save3DArrayAsHDF5(self._stack.data, filename, labels=None, dtype=None, mode='simple') def saveStackAsSimplestHDF5(self): filename = self._getOutputHDF5Filename() if not len(filename): return view = self._getCroppedView() ArraySave.save3DArrayAsHDF5(view, filename, labels=None, dtype=None, mode='simplest') def loadStack(self): if self._stackImageData is not None: #clear with a small stack stack = DataObject.DataObject() stack.data = numpy.zeros((100, 100, 100), numpy.float32) self.setStack(stack) if self.stackSelector is None: self.stackSelector = StackSelector.StackSelector(self) stack = self.stackSelector.getStack() if (type(stack) == type([])) or isinstance(stack, list): #aifira like, two stacks self.setStack(stack[0]) self._secondaryList = None if len(stack) > 1: for i in range(1, len(stack)): if stack[i] is not None: secondary = QStackWidget(primary=False, rgbwidget=self.rgbWidget) secondary.setStack(stack[i]) if secondary is not None: if i == 1: self.setSecondary(secondary) else: self.addSecondary(secondary) else: self.setStack(stack) def loadSecondaryStack(self): if self._secondaryList is not None: actionList = ['Replace Secondary Stacks', 'Load Secondary Stacks', 'Show Secondary Stacks', 'Merge Secondary Stacks', 'Delete Secondary Stacks'] menu = qt.QMenu(self) for action in actionList: text = QString(action) menu.addAction(text) a = menu.exec(qt.QCursor.pos()) if a is None: return None if qt.safe_str(a.text()).startswith("Replace"): _logger.info("Replacing secondary stacks") self._closeSecondary() elif qt.safe_str(a.text()).startswith("Load"): _logger.info("Loading an additional secondary stack") #self._closeSecondary() elif qt.safe_str(a.text()).startswith("Show"): _logger.info("Showing all the secondary stacks") for secondary in self._secondaryList: secondary.show() secondary.raise_() return elif qt.safe_str(a.text()).startswith("Merge"): primaryStackDataObject = self.getStackDataObject() try: # Use views to ensure no casting is done in case of # different dtype to save memory. # This is risky when the original stack is integers # due to the possibility to overflow. for secondary in self._secondaryList: primaryStackDataObject.data[:] = \ primaryStackDataObject.data[:] + \ secondary.getStackData() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Stack Summing Error") msg.setText("An error has occurred while summing the primary and secondary stacks") msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() if "McaLiveTime" in primaryStackDataObject.info: try: for secondary in self._secondaryList: info = secondary.getStackInfo() if "McaLiveTime" in info: info["McaLiveTime"].shape = \ primaryStackDataObject.info["McaLiveTime"].shape primaryStackDataObject.info["McaLiveTime"] += \ info["McaLiveTime"] else: raise ValueError("No compatible time information") except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Stack Time Summing Error") txt = "An error has occurred cumulating the primary and secondary stack times\n" txt += "Time information is lost" del primaryStackDataObject.info["McaLiveTime"] msg.setText(txt) msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() self._closeSecondary() self.setStack(primaryStackDataObject) return else: _logger.info("Deleting all the secondary stacks") self._closeSecondary() return if self.stackSelector is None: self.stackSelector = StackSelector.StackSelector(self) try: stack = self.stackSelector.getStack() except Exception: txt = "%s" % sys.exc_info()[1] if txt.startswith("Incomplete selection"): return msg = qt.QMessageBox(self) msg.setWindowTitle("Error loading secondary stack") msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s: %s" % (sys.exc_info()[0], sys.exc_info()[1])) msg.exec() return if stack is None: return if (type(stack) == type([])) or (isinstance(stack, list)): #self._closeSecondary() for i in range(len(stack)): if stack[i] is not None: secondary = QStackWidget(primary=False, rgbwidget=widget.rgbWidget) secondary.setStack(stack[i]) widget.addSecondary(secondary) stack[i] = None else: secondary = QStackWidget(rgbwidget=self.rgbWidget, primary=False) secondary.setStack(stack) self.addSecondary(secondary) def _closeSecondary(self): if self._secondaryList is None: return for secondary in self._secondaryList: secondary.close() secondary = None self._secondaryList = None # make sure memory is released import gc gc.collect() def setSecondary(self, secondary): if self._secondaryList is None: self._secondaryList = [] for secondary in self._secondaryList: secondary.close() self._secondaryList = None self.addSecondary(secondary) def addSecondary(self, secondary): _logger.info("Adding secondary with id %d" % id(secondary)) if self._secondaryList is None: self._secondaryList = [] secondary.setSelectionMask(self.getSelectionMask()) secondary.show() secondary._setPrimary(self) self._secondaryList.append(secondary) def _setPrimary(self, primary=None): if self.primary: self._primaryStack = None return if primary is None: primary = self self._primaryStack = weakref.proxy(primary) def getStackDataObjectList(self): stackList = [] if self.primary: # primary, join all secondary stacks stackList.append(self.getStackDataObject()) if self._secondaryList is not None: for secondary in self._secondaryList: stackList.append(secondary.getStackDataObject()) else: # secondary, join primary stackList.append(self._primaryStack.getStackDataObject()) stackList.append(self.getStackDataObject()) return stackList def _pluginClicked(self): actionList = [] menu = qt.QMenu(self) text = QString("Reload Plugins") menu.addAction(text) actionList.append(text) text = QString("Set User Plugin Directory") menu.addAction(text) actionList.append(text) global _logger if _logger.getEffectiveLevel() == logging.DEBUG: text = QString("Toggle DEBUG mode OFF") else: text = QString("Toggle DEBUG mode ON") menu.addAction(text) actionList.append(text) menu.addSeparator() callableKeys = ["Dummy0", "Dummy1", "Dummy2"] additionalItems = [] SORTED = True for m in self.pluginList: if m == "PyMcaPlugins.StackPluginBase": continue module = sys.modules[m] if hasattr(module, 'MENU_TEXT'): text = QString(module.MENU_TEXT) else: text = os.path.basename(module.__file__) if text.endswith('.pyc'): text = text[:-4] elif text.endswith('.py'): text = text[:-3] text = QString(text) methods = self.pluginInstanceDict[m].getMethods() if not len(methods): continue if SORTED: additionalItems.append((text, m)) else: menu.addAction(text) actionList.append(text) callableKeys.append(m) additionalItems.sort() for text, m in additionalItems: if self.pluginInstanceDict[m].__doc__: tip = self.pluginInstanceDict[m].__doc__ action = qt.QAction(text, self) action.setToolTip(tip) menu.addAction(action) else: menu.addAction(text) actionList.append(text) callableKeys.append(m) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = actionList.index(a.text()) if idx == 0: n = self.getPlugins() if n < 1: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setText("Problem loading plugins") msg.exec() return if idx == 1: dirName = qt.safe_str(qt.QFileDialog.getExistingDirectory(self, "Enter user plugins directory", os.getcwd())) if len(dirName): pluginsDir = self.getPluginDirectoryList() pluginsDirList = [pluginsDir[0], dirName] self.setPluginDirectoryList(pluginsDirList) return if idx == 2: if _logger.getEffectiveLevel() == logging.DEBUG: _logger.setLevel(logging.DEBUG) StackBase.logger.setLevel(logging.DEBUG) else: _logger.setLevel(logging.NOTSET) StackBase.logger.setLevel(logging.NOTSET) return key = callableKeys[idx] methods = self.pluginInstanceDict[key].getMethods() if len(methods) == 1: idx = 0 else: actionList = [] #methods.sort() menu = qt.QMenu(self) for method in methods: text = QString(method) pixmap = self.pluginInstanceDict[key].getMethodPixmap(method) tip = QString(self.pluginInstanceDict[key].getMethodToolTip(\ method)) if pixmap is not None: action = qt.QAction(qt.QIcon(qt.QPixmap(pixmap)), text, self) else: action = qt.QAction(text, self) if tip is not None: action.setToolTip(tip) menu.addAction(action) actionList.append((text, pixmap, tip, action)) menu.hovered.connect(self._actionHovered) a = menu.exec(qt.QCursor.pos()) if a is None: return None idx = -1 for action in actionList: if a.text() == action[0]: idx = actionList.index(action) try: self.pluginInstanceDict[key].applyMethod(methods[idx]) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Plugin error") msg.setText("An error has occured while executing the plugin:") msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise def _actionHovered(self, action): tip = action.toolTip() if str(tip) != str(action.text()): qt.QToolTip.showText(qt.QCursor.pos(), tip) else: # hideText was introduced in Qt 4.2 if hasattr(qt.QToolTip, "hideText"): qt.QToolTip.hideText() else: qt.QToolTip.showText(qt.QCursor.pos(), "") def _buildBottom(self): n = 0 self.tab = None if self.mcaWidget is None: n += 1 if self.rgbWidget is None: n += 1 if n == 1: if self.mcaWidget is None: self.mcaWidget = McaWindow.McaWindow(self) self.mcaWidget.setWindowTitle("PyMCA - Mca Window") self.mainLayout.addWidget(self.mcaWidget) if self.rgbWidget is None: self.rgbWidget = RGBCorrelator.RGBCorrelator(self) self.mainLayout.addWidget(self.rgbWidget) elif n == 2: self.tab = qt.QTabWidget(self) self.mcaWidget = McaWindow.McaWindow() #vertical=False #self.mcaWidget.graph.setMinimumWidth(0.5 * \ # qt.QWidget.sizeHint(self).width()) self.tab.setMaximumHeight(int(1.3 * \ qt.QWidget.sizeHint(self).height())) self.mcaWidget.setWindowTitle("PyMCA - Mca Window") self.tab.addTab(self.mcaWidget, "MCA") self.rgbWidget = RGBCorrelator.RGBCorrelator() self.tab.addTab(self.rgbWidget, "RGB Correlator") self.mainLayout.addWidget(self.tab) self.mcaWidget.setMiddleROIMarkerFlag(True) def _buildAndConnectButtonBox(self): #the MCA selection self.mcaButtonBox = qt.QWidget(self.stackWindow) self.mcaButtonBoxLayout = qt.QHBoxLayout(self.mcaButtonBox) self.mcaButtonBoxLayout.setContentsMargins(0, 0, 0, 0) self.mcaButtonBoxLayout.setSpacing(0) self.addMcaButton = qt.QPushButton(self.mcaButtonBox) self.addMcaButton.setText("ADD MCA") self.addMcaMaxButton = qt.QPushButton(self.mcaButtonBox) self.addMcaMaxButton.setText("ADD MCA MAX") txt = 'Add spectrum of the maximum at each channel for the selected region.' self.addMcaMaxButton.setToolTip(txt) self.removeMcaButton = qt.QPushButton(self.mcaButtonBox) self.removeMcaButton.setText("REMOVE MCA") self.replaceMcaButton = qt.QPushButton(self.mcaButtonBox) self.replaceMcaButton.setText("REPLACE MCA") self.mcaButtonBoxLayout.addWidget(self.addMcaButton) self.mcaButtonBoxLayout.addWidget(self.addMcaMaxButton) self.mcaButtonBoxLayout.addWidget(self.removeMcaButton) self.mcaButtonBoxLayout.addWidget(self.replaceMcaButton) self.addMcaMaxButton.hide() self.stackWindow.mainLayout.addWidget(self.mcaButtonBox) self.addMcaButton.clicked.connect(self.__addMcaClicked) self.addMcaMaxButton.clicked.connect(self._addMcaMaxClicked) self.removeMcaButton.clicked.connect(self._removeMcaClicked) self.replaceMcaButton.clicked.connect(self._replaceMcaClicked) if self.rgbWidget is not None: # The IMAGE selection self.roiWidget.buildAndConnectImageButtonBox() def _buildConnections(self): self._buildAndConnectButtonBox() #ROI Image widgetList = [self.stackWidget, self.roiWidget] if self.rgbWidget is not None: if hasattr(self.rgbWidget, "sigMaskImageWidgetSignal"): widgetList.append(self.rgbWidget) for widget in widgetList: widget.sigMaskImageWidgetSignal.connect(self._maskImageWidgetSlot) #self.stackGraphWidget.graph.canvas().setMouseTracking(1) # infoText gives problems with recent matplotlib versions # self.stackGraphWidget.setInfoText(" X = ???? Y = ???? Z = ????") # self.stackGraphWidget.showInfo() self.stackGraphWidget.graph.sigPlotSignal.connect( \ self._stackGraphSignal) self.mcaWidget.sigROISignal.connect(self._mcaWidgetSignal) self.roiWidget.graphWidget.graph.sigPlotSignal.connect( \ self._stackGraphSignal) def showOriginalImage(self): self.stackGraphWidget.graph.setGraphTitle("Original Stack") if self._stackImageData is None: self.stackGraphWidget.graph.clear() return xScale = self._stack.info.get("xScale", None) yScale = self._stack.info.get("yScale", None) self.stackWidget.setImageData(self._stackImageData, xScale=xScale, yScale=yScale) def showOriginalMca(self): goodData = numpy.isfinite(self._mcaData0.y[0].sum()) if goodData: self.sendMcaSelection(self._mcaData0, action="ADD") def handleNonFiniteData(self): self._addMcaClicked(action="ADD") msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setWindowTitle("Non finite data") text = "Your data contain infinite values or nans.\n" text += "Pixels containing those values will be ignored." msg.setText(text) msg.exec() return def calculateROIImages(self, index1, index2, imiddle=None, energy=None): #overwrite base method to update the default energy with the one # currently used in the graph activeCurve = self.mcaWidget.getActiveCurve() if activeCurve is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Information) msg.setWindowTitle("No active curve selected") text = "Please select the MCA active curve." msg.setText(text) msg.exec() return x, y, legend, info = activeCurve[:4] return StackBase.StackBase.calculateROIImages(self, index1, index2, imiddle=imiddle, energy=x) def showROIImageList(self, imageList, image_names=None): xScale = self._stack.info.get("xScale", None) yScale = self._stack.info.get("yScale", None) if self.roiBackgroundButton.isChecked(): self.roiWidget.graphWidget.graph.setGraphTitle(image_names[0] + \ " Net") self.roiWidget.setImageData(imageList[0]-imageList[-1], xScale=xScale, yScale=yScale) else: self.roiWidget.graphWidget.graph.setGraphTitle(image_names[0]) self.roiWidget.setImageData(imageList[0], xScale=xScale, yScale=yScale) self._ROIImageList = imageList self._ROIImageNames = image_names self._stackROIImageListUpdated() def addImage(self, image, name, info=None, replace=False, replot=True): self.rgbWidget.addImage(image, name) if self.tab is None: if self.primary: self.rgbWidget.show() else: self.tab.setCurrentWidget(self.rgbWidget) def removeImage(self, title): self.rgbWidget.removeImage(title) def replaceImage(self, image, title, info=None, replace=True, replot=True): self.rgbWidget.reset() self.rgbWidget.addImage(image, title) if self.rgbWidget.isHidden(): self.rgbWidget.show() if self.tab is None: self.rgbWidget.show() self.rgbWidget.raise_() else: self.tab.setCurrentWidget(self.rgbWidget) def _addImageClicked(self, image, title): self.addImage(image, title) def _removeImageClicked(self, title): self.rgbWidget.removeImage(title) def _replaceImageClicked(self, image, title): self.replaceImage(image, title) def __getLegend(self): if self._selectionMask is None: legend = "Stack SUM" elif self._selectionMask.sum() == 0: legend = "Stack SUM" else: title = qt.safe_str(self.roiGraphWidget.graph.getGraphTitle()) legend = "Stack " + title + " selection" return legend def __addMcaClicked(self): self._addMcaClicked("ADD") def _addMcaMaxClicked(self): if self._mcaMax is not None: mask = self.getSelectionMask() if mask is not None: dataObject = self.calculateMcaDataObject(normalize=False, mask=mask, mcamax=True) legend = self.roiWidget.graphWidget.graph.getGraphTitle() + \ " Max Spectrum" else: dataObject = copy.deepcopy(self._mcaData0) dataObject.y = [self._mcaMax] legend = "Max Spectrum" self.sendMcaSelection(dataObject, key="Maximum", legend= legend, action="ADD") else: self.addMcaMaxButton.hide() def _addMcaClicked(self, action=None): if action in [None, False]: action = "ADD" if self._stackImageData is None: return if self.normalizeButton.isChecked(): dataObject = self.calculateMcaDataObject(normalize=True) else: dataObject = self.calculateMcaDataObject(normalize=False) legend = self.__getLegend() if self.normalizeButton.isChecked(): if self._selectionMask is None: npixels = self._stackImageData.shape[0] * \ self._stackImageData.shape[1] else: npixels = self._selectionMask.sum() if npixels == 0: npixels = self._stackImageData.shape[0] * \ self._stackImageData.shape[1] legend += "/%d" % npixels return self.sendMcaSelection(dataObject, key="Selection", legend=legend, action=action) def _removeMcaClicked(self): #remove the mca #dataObject = self.__mcaData0 #send a dummy object dataObject = DataObject.DataObject() legend = self.__getLegend() if self.normalizeButton.isChecked(): legend += "/" curves = self.mcaWidget.getAllCurves(just_legend=True) for curve in curves: if curve.startswith(legend): legend = curve break self.sendMcaSelection(dataObject, legend=legend, action="REMOVE") def _replaceMcaClicked(self): #replace the mca self.__ROIConnected = False self._addMcaClicked(action="REPLACE") self.__ROIConnected = True def sendMcaSelection(self, mcaObject, key=None, legend=None, action=None): if action is None: action = "ADD" if key is None: key = "SUM" if legend is None: legend = "Stack SUM" if self.normalizeButton.isChecked(): npixels = self._stackImageData.shape[0] *\ self._stackImageData.shape[1] legend += "/%d" % npixels sel = {} sel['SourceName'] = "EDF Stack" sel['Key'] = key sel['legend'] = legend sel['dataobject'] = mcaObject if action == "ADD": self.mcaWidget._addSelection([sel]) elif action == "REMOVE": self.mcaWidget._removeSelection([sel]) elif action == "REPLACE": self.mcaWidget._replaceSelection([sel]) elif action == "GET_CURRENT_SELECTION": return sel if self.tab is None: self.mcaWidget.show() self.mcaWidget.raise_() else: self.tab.setCurrentWidget(self.mcaWidget) def setSelectionMask(self, mask, instance_id=None): if mask is not None: if self._stackImageData is not None: if mask.shape != self._stackImageData.shape: _logger.info("Reshaping mask") mask.shape = self._stackImageData.shape self._selectionMask = mask if instance_id == id(self): return if self._secondaryList is not None: _logger.debug("PRIMARY stack setSelectionMask CALLED") elif self._primaryStack is not None: _logger.debug("SECONDARY stack setSelectionMask CALLED") #inform built in widgets widgetList = [self.stackWidget, self.roiWidget] for widget in widgetList: if instance_id != id(widget): if mask is None: if hasattr(widget, "_resetSelection"): widget._resetSelection(owncall=False) else: widget.setSelectionMask(mask, plot=True) else: widget.setSelectionMask(mask, plot=True) if self.rgbWidget is not None: if hasattr(self.rgbWidget, "setSelectionMask"): self.rgbWidget.setSelectionMask(mask, instance_id=instance_id) #inform secondary if self._secondaryList is not None: # This is a primary stack instance for secondary in self._secondaryList: instanceList = [id(secondary), id(secondary.stackWidget), id(secondary.roiWidget)] for key in secondary.pluginInstanceDict.keys(): instanceList.append(id(secondary.pluginInstanceDict[key])) if instance_id not in instanceList: # Originated by the primary stack _logger.warning("INFORMING SECONDARY STACK") secondary.setSelectionMask(mask, instance_id=id(self)) if self._primaryStack is not None: # This is a secondary instance instanceList = [id(self.stackWidget), id(self.roiWidget)] for key in self.pluginInstanceDict.keys(): instanceList.append(id(self.pluginInstanceDict[key])) if instance_id in instanceList: # Originated by the secondary _logger.debug("INFORMING PRIMARY STACK") self._primaryStack.setSelectionMask(mask, instance_id=id(self)) #Inform plugins for key in self.pluginInstanceDict.keys(): if key == "PyMcaPlugins.StackPluginBase": continue # I remove this optimization for the case the plugin # does not update itself the mask # if id(self.pluginInstanceDict[key]) != instance_id: self.pluginInstanceDict[key].selectionMaskUpdated() def getSelectionMask(self): return self._selectionMask def _maskImageWidgetSlot(self, ddict): if ddict['event'] == "selectionMaskChanged": self.setSelectionMask(ddict['current'], instance_id=ddict['id']) return if ddict['event'] == "resetSelection": self.setSelectionMask(None, instance_id=ddict['id']) return if ddict['event'] == "addImageClicked": self._addImageClicked(ddict['image'], ddict['title']) return if ddict['event'] == "replaceImageClicked": self._replaceImageClicked(ddict['image'], ddict['title']) return if ddict['event'] == "removeImageClicked": self._removeImageClicked(ddict['title']) return if ddict['event'] == "hFlipSignal": if ddict['id'] != id(self.stackWidget): self.stackWidget.graph.invertYAxis(ddict['current']) self.stackWidget.graph.replot() if ddict['id'] != id(self.roiWidget): self.roiWidget.graph.invertYAxis(ddict['current']) self.roiWidget.graph.replot() return def _stackGraphSignal(self, ddict): if ddict['event'] in ["mouseMoved", "MouseAt"]: x = round(ddict['y']) if x < 0: x = 0 y = round(ddict['x']) if y < 0: y = 0 if self._stackImageData is None: return limits = self._stackImageData.shape x = min(int(x), limits[0]-1) y = min(int(y), limits[1]-1) z = self._stackImageData[x, y] self.stackGraphWidget.setInfoText( \ " X = %d Y = %d Z = %.4g" % (y, x, z)) if ddict['event'] in ["mouseDoubleClicked"]: if ddict['button'] == "left": if self._stackImageData is None: return # x and y arrive in scaled coordinates # we need to convert them to row and column if None in [ddict['x'], ddict['y']]: _logger.debug("Signal from outside region %s", ddict) return xScale = self._stack.info.get("xScale", None) yScale = self._stack.info.get("yScale", None) row, column = MaskImageWidget.convertToRowAndColumn(ddict['x'], ddict['y'], self._stackImageData.shape, xScale=xScale, yScale=yScale, safe=True) ddict['row'] = row ddict['col'] = column selectionMask = numpy.zeros(self._stackImageData.shape, numpy.uint8) selectionMask[row, column] = 1 dataObject = self.calculateMcaDataObject(normalize=False, mask=selectionMask) mcaIndex = self._stack.info.get('McaIndex', -1) if mcaIndex in [-1, len(self._stack.data.shape) - 1]: try: positioners = self._stack.info.get("positioners", None) if positioners: def _to_index_mode(slice_idx, shape): if len(shape) == 2: return slice_idx[0] single_index = 0 for i in range(len(slice_idx)): v = 1 for j in range(i+1, len(shape) - 1): v *= shape[j] single_index += v * slice_idx[i] return single_index idx = _to_index_mode((row, column), self._stack.data.shape) motorNames = [] motorValues = [] for key, value in positioners.items(): motorNames.append(key) if hasattr(value, "__len__"): motorValues.append(value[idx]) else: motorValues.append(value) dataObject.info["MotorNames"] = motorNames dataObject.info["MotorValues"] = motorValues except Exception: _logger.warning("Error obtaining positioners") self.sendMcaSelection(dataObject, key="Selection", legend="MCA[%d,%d]" % (row, column), action="ADD") def _mcaWidgetSignal(self, ddict): if not self.__ROIConnected: return if ddict['event'] in ["currentROISignal", "ROISignal"]: self.updateROIImages(ddict) def getActiveCurve(self): legend = self.mcaWidget.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please select an active curve") msg.exec() return x, y, legend, info = self.mcaWidget.getActiveCurve()[:4] return x, y, legend, info def getGraphXLimits(self): return self.mcaWidget.getGraphXLimits() def getGraphYLimits(self): return self.mcaWidget.getGraphYLimits() def getGraphXLabel(self): return self.mcaWidget.getGraphXLabel() def getGraphYLabel(self): return self.mcaWidget.getGraphYLabel() def closeEvent(self, event): if self._secondaryList is not None: self._closeSecondary() # Inform plugins for key in self.pluginInstanceDict.keys(): self.pluginInstanceDict[key].stackClosed() CloseEventNotifyingWidget.CloseEventNotifyingWidget.closeEvent(self, event) if (self._primaryStack is None) and __name__ == "__main__": app = qt.QApplication.instance() allWidgets = app.allWidgets() for widget in allWidgets: try: # we cannot afford to crash here if id(widget) != id(self): if widget.parent() is None: widget.close() except Exception: _logger.debug("Error closing widget") from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() def test(): #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): stackData[:, :, i] = a * i stackData[0:10, :, :] = 0 w = QStackWidget() w.setStack(stackData, mcaindex=2) w.show() return w if __name__ == "__main__": sys.excepthook = qt.exceptionHandler try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: print("%s" % sys.exc_info()[1]) sys.exit(1) fileindex = 0 filepattern=None begin = None end = None imagestack=None increment=None backend=None PyMcaDirs.nativeFileDialogs=True for opt, arg in opts: if opt in '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt in '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt in '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt in '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt in '--fileindex': fileindex = int(arg) elif opt in ['--imagestack', "--image"]: imagestack = int(arg) elif opt in '--nativefiledialogs': if int(arg): PyMcaDirs.nativeFileDialogs = True else: PyMcaDirs.nativeFileDialogs = False elif opt in '--backend': backend = arg #elif opt in '--old': # import QEDFStackWidget # sys.exit(QEDFStackWidget.runAsMain()) if filepattern is not None: if (begin is None) or (end is None): raise ValueError("A file pattern needs at least a set of begin and end indices") app = qt.QApplication([]) if sys.platform not in ["win32", "darwin"]: # some themes of Ubuntu 16.04 give black tool tips on black background app.setStyleSheet("QToolTip { color: #000000; background-color: #fff0cd; border: 1px solid black; }") if backend is not None: # set the default backend try: from PyMca5.PyMcaGraph.Plot import Plot Plot.defaultBackend = backend except Exception: _logger.warning("WARNING: Cannot set backend to %s", backend) widget = QStackWidget() w = StackSelector.StackSelector(widget) if filepattern is not None: #ignore the args even if present stack = w.getStackFromPattern(filepattern, begin, end, increment=increment, imagestack=imagestack) else: stack = w.getStack(args, imagestack=imagestack) if (type(stack) == type([])) or (isinstance(stack, list)): #aifira like, two stacks widget.setStack(stack[0]) if len(stack) > 1: for i in range(1, len(stack)): if stack[i] is not None: secondary = QStackWidget(primary=False, rgbwidget=widget.rgbWidget) secondary.setStack(stack[i]) widget.addSecondary(secondary) stack = None else: widget.setStack(stack) widget.show() app.exec() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/RGBCorrelator.py0000644000000000000000000002140314741736366021203 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from PyMca5.PyMcaGui.pymca import RGBCorrelatorWidget qt = RGBCorrelatorWidget.qt if hasattr(qt, 'QString'): QString = qt.QString else: QString = str from PyMca5.PyMcaGui.plotting import RGBCorrelatorGraph from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave USE_MASK_WIDGET = False if USE_MASK_WIDGET: from PyMca5.PyMcaGui.plotting import MaskImageWidget MATPLOTLIB = True class RGBCorrelator(qt.QWidget): sigRGBCorrelatorSignal = qt.pyqtSignal(object) sigMaskImageWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, graph=None, bgrx=True, image_shape=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("PyMca RGB Correlator") self.setWindowIcon(qt.QIcon(qt.QPixmap(RGBCorrelatorGraph.IconDict['gioconda16']))) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(6) self.splitter = qt.QSplitter(self) self.splitter.setOrientation(qt.Qt.Horizontal) self.controller = RGBCorrelatorWidget.RGBCorrelatorWidget(self.splitter, image_shape=image_shape) self._y1AxisInverted = False self._imageBuffer = None self._matplotlibSaveImage = None standaloneSaving = True if graph is None: if MATPLOTLIB: standaloneSaving = False if USE_MASK_WIDGET: self.graphWidgetContainer = MaskImageWidget.MaskImageWidget(self.splitter, selection=True, imageicons=True, standalonesave=standaloneSaving, profileselection=False, polygon=True) self.graphWidget = self.graphWidgetContainer.graphWidget else: self.graphWidget = RGBCorrelatorGraph.RGBCorrelatorGraph(self.splitter, standalonesave=standaloneSaving) if not standaloneSaving: self.graphWidget.saveToolButton.clicked.connect( \ self._saveToolButtonSignal) self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Standard"), self.graphWidget._saveIconSignal) self._saveMenu.addAction(QString("Matplotlib") , self._saveMatplotlibImage) self.graph = self.graphWidget.graph #add flip Icon self.graphWidget.hFlipToolButton.clicked.connect( \ self._hFlipIconSignal) self._handleGraph = True else: self.graph = graph self._handleGraph = False #self.splitter.setStretchFactor(0,1) #self.splitter.setStretchFactor(1,1) self.mainLayout.addWidget(self.splitter) self.reset = self.controller.reset self.addImage = self.controller.addImage self.removeImage = self.controller.removeImage self.addImageSlot = self.controller.addImageSlot self.removeImageSlot = self.controller.removeImageSlot self.replaceImageSlot = self.controller.replaceImageSlot self.setImageShape = self.controller.setImageShape self.update = self.controller.update self.transposeImages = self.controller.transposeImages self.controller.sigRGBCorrelatorWidgetSignal.connect( \ self.correlatorSignalSlot) self.controller.sigMaskImageWidgetSignal.connect( \ self.maskImageSlot) def _hFlipIconSignal(self): if self._handleGraph: if self.graph.isYAxisInverted(): self.graph.invertYAxis(False) else: self.graph.invertYAxis(True) self.graph.replot() #this is not needed #self.controller.update() return def setSelectionMask(self, *var, **kw): self.controller.setSelectionMask(*var, **kw) def maskImageSlot(self, ddict): self.sigMaskImageWidgetSignal.emit(ddict) def correlatorSignalSlot(self, ddict): if 'image' in ddict: # keep the image buffer as an array self._imageBuffer = ddict['image'] size = ddict['size'] self._imageBuffer.shape = size[1],size[0],4 self._imageBuffer[:,:,3] = 255 self.graph.addImage(self._imageBuffer) self.graph.replot() def _saveToolButtonSignal(self): self._saveMenu.exec(self.cursor().pos()) def _saveMatplotlibImage(self): if self._matplotlibSaveImage is None: self._matplotlibSaveImage = QPyMcaMatplotlibSave.SaveImageSetup(None, None) self._matplotlibSaveImage.setWindowTitle("Matplotlib RGBCorrelator") #Qt is BGR while the others are RGB ... # This is not any longer a problem because we do not use PyQwt self._matplotlibSaveImage.setPixmapImage(self._imageBuffer, bgr=False) self._matplotlibSaveImage.show() self._matplotlibSaveImage.raise_() def closeEvent(self, event): ddict = {} ddict['event'] = "RGBCorrelatorClosed" ddict['id'] = id(self) self.controller.close() if self._matplotlibSaveImage is not None: self._matplotlibSaveImage.close() self.sigRGBCorrelatorSignal.emit(ddict) qt.QWidget.closeEvent(self, event) def show(self): if self.controller.isHidden(): self.controller.show() qt.QWidget.show(self) def test(): import logging app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if 0: graphWidget = RGBCorrelatorGraph.RGBCorrelatorGraph() graph = graphWidget.graph w = RGBCorrelator(graph=graph) else: w = RGBCorrelator() w.resize(800, 600) import getopt from PyMca5.PyMcaCore.LoggingLevel import getLoggingLevel options = '' longoptions = ["logging=", "debug="] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) logging.basicConfig(level=getLoggingLevel(opts)) filelist=args if len(filelist): try: import DataSource DataReader = DataSource.DataSource except Exception: import EdfFileDataSource DataReader = EdfFileDataSource.EdfFileDataSource for fname in filelist: source = DataReader(fname) for key in source.getSourceInfo()['KeyList']: dataObject = source.getDataObject(key) w.addImage(dataObject.data, os.path.basename(fname)+" "+key) else: print("This is a just test method using 100 x 100 matrices.") print("Run PyMcaPostBatch to have file loading capabilities.") array1 = numpy.arange(10000) array2 = numpy.resize(numpy.arange(10000), (100, 100)) array2 = numpy.transpose(array2) array3 = array1 * 1 w.addImage(array1) w.addImage(array2) w.addImage(array3) w.setImageShape([100, 100]) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/RGBCorrelatorSlider.py0000644000000000000000000001734414741736366022357 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui.misc import DoubleSlider qt = DoubleSlider.qt QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class RGBCorrelatorSlider(qt.QWidget): sigRGBCorrelatorSliderSignal = qt.pyqtSignal(object) def __init__(self, parent = None, scale = False, autoscalelimits=None): qt.QWidget.__init__(self, parent) self.__emitSignals = True self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self._buttonBox = qt.QWidget(self) self._buttonBoxLayout = qt.QGridLayout(self._buttonBox) self._buttonBoxLayout.setContentsMargins(0, 0, 0, 0) self._buttonBoxLayout.setSpacing(0) if autoscalelimits is None: self.fromA = 5.0 self.toB = 95.0 else: self.fromA = autoscalelimits[0] self.toB = autoscalelimits[1] if self.fromA > self.toB: self.fromA = autoscalelimits[1] self.toB = autoscalelimits[0] self.autoScaleButton = qt.QPushButton(self._buttonBox) self.autoScaleButton.setText("Autoscale") self.autoScaleFromAToBButton = qt.QPushButton(self._buttonBox) self.autoScaleFromAToBButton.setText("Autoscale %d-%d" % (int(self.fromA), int(self.toB))) self.autoScale90Button = qt.QPushButton(self._buttonBox) self.autoScale90Button.setText("Autoscale 0-90") self._buttonBoxLayout.addWidget(self.autoScaleButton, 0, 0) self._buttonBoxLayout.addWidget(self.autoScaleFromAToBButton, 0, 1) self._buttonBoxLayout.addWidget(self.autoScale90Button, 0, 2) self._gridBox = qt.QWidget(self) self._gridBoxLayout = qt.QGridLayout(self._gridBox) self._gridBoxLayout.setContentsMargins(0, 0, 0, 0) self._gridBoxLayout.setSpacing(0) redLabel = MyQLabel(self._gridBox, color = qt.Qt.red) redLabel.setText("RED") self.redSlider = DoubleSlider.DoubleSlider(self._gridBox) greenLabel = MyQLabel(self._gridBox, color = qt.Qt.green) greenLabel.setText("GREEN") self.greenSlider = DoubleSlider.DoubleSlider(self._gridBox) blueLabel = MyQLabel(self._gridBox, color = qt.Qt.blue) blueLabel.setText("BLUE") self.blueSlider = DoubleSlider.DoubleSlider(self._gridBox, scale = True) self._gridBoxLayout.addWidget(redLabel, 0, 0) self._gridBoxLayout.addWidget(self.redSlider, 0, 1) self._gridBoxLayout.addWidget(greenLabel, 1, 0) self._gridBoxLayout.addWidget(self.greenSlider, 1, 1) self._gridBoxLayout.addWidget(blueLabel, 2, 0) self._gridBoxLayout.addWidget(self.blueSlider, 2, 1) self.mainLayout.addWidget(self._buttonBox) self.mainLayout.addWidget(self._gridBox) self.redSlider.sigDoubleSliderValueChanged.connect(\ self._redSliderChanged) self.greenSlider.sigDoubleSliderValueChanged.connect(\ self._greenSliderChanged) self.blueSlider.sigDoubleSliderValueChanged.connect(\ self._blueSliderChanged) self.autoScaleButton.clicked.connect(self.autoScale) self.autoScaleFromAToBButton.clicked.connect(self.autoScaleFromAToB) self.autoScale90Button.clicked.connect(self.autoScale90) def autoScale(self): self.__emitSignals = False self.redSlider.setMinMax(0., 100.) self.greenSlider.setMinMax(0.0, 100.) self.blueSlider.setMinMax(0., 100.) self.__emitSignals = True self._allChangedSignal() def autoScaleFromAToB(self): self.__emitSignals = False self.redSlider.setMinMax( self.fromA, self.toB) self.greenSlider.setMinMax(self.fromA, self.toB) self.blueSlider.setMinMax(self.fromA, self.toB) self.__emitSignals = True self._allChangedSignal() def autoScale90(self): self.__emitSignals = False self.redSlider.setMinMax(0., 90.) self.greenSlider.setMinMax(0.0, 90.) self.blueSlider.setMinMax(0., 90.) self.__emitSignals = True self._allChangedSignal() def _allChangedSignal(self): ddict = {} ddict['event'] = "allChanged" ddict['red'] = self.redSlider.getMinMax() ddict['green'] = self.greenSlider.getMinMax() ddict['blue'] = self.blueSlider.getMinMax() self.sigRGBCorrelatorSliderSignal.emit(ddict) def _redSliderChanged(self, ddict): _logger.debug("RGBCorrelatorSlider._redSliderChanged()") if self.__emitSignals: ddict['event'] = "redChanged" self.sigRGBCorrelatorSliderSignal.emit(ddict) def _greenSliderChanged(self, ddict): _logger.debug("RGBCorrelatorSlider._greenSliderChanged()") if self.__emitSignals: ddict['event'] = "greenChanged" self.sigRGBCorrelatorSliderSignal.emit(ddict) def _blueSliderChanged(self, ddict): _logger.debug("RGBCorrelatorSlider._blueSliderChanged()") if self.__emitSignals: ddict['event'] = "blueChanged" self.sigRGBCorrelatorSliderSignal.emit(ddict) class MyQLabel(qt.QLabel): def __init__(self,parent=None,name=None,fl=0,bold=True, color= qt.Qt.red): qt.QLabel.__init__(self,parent) if qt.qVersion() <'4.0.0': self.color = color self.bold = bold else: palette = self.palette() role = self.foregroundRole() palette.setColor(role,color) self.setPalette(palette) self.font().setBold(bold) if qt.qVersion() < '4.0.0': def drawContents(self, painter): painter.font().setBold(self.bold) pal =self.palette() pal.setColor(qt.QColorGroup.Foreground,self.color) self.setPalette(pal) qt.QLabel.drawContents(self,painter) painter.font().setBold(0) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) def slot(ddict): print("received dict = ", ddict) w = RGBCorrelatorSlider() w.sigRGBCorrelatorSliderSignal.connect(slot) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/RGBCorrelatorTable.py0000644000000000000000000002177714741736366022171 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt DEBUG = 0 class RGBCorrelatorTable(qt.QTableWidget): sigRGBCorrelatorTableSignal = qt.pyqtSignal(object) def __init__(self, parent=None): qt.QTableWidget.__init__(self, parent) self.elementList = [] self.rSelection = [] self.gSelection = [] self.bSelection = [] labels = ['Element', 'R', 'G', 'B', 'Data Min', "Data Max"] self.setColumnCount(len(labels)) for i in range(len(labels)): item = self.horizontalHeaderItem(i) if item is None: item = qt.QTableWidgetItem(labels[i], qt.QTableWidgetItem.Type) item.setText(labels[i]) self.setHorizontalHeaderItem(i,item) rheight = self.horizontalHeader().sizeHint().height() self.setMinimumHeight(5*rheight) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) def build(self, elementlist): self.elementList = elementlist n = len(elementlist) self.setRowCount(n) if n > 0: rheight = self.horizontalHeader().sizeHint().height() for i in range(n): self.setRowHeight(i, rheight) self._addLine(i, elementlist[i]) self.resizeColumnToContents(1) self.resizeColumnToContents(2) self.resizeColumnToContents(3) def _addLine(self, i, cntlabel): #the counter name item = self.item(i, 0) if item is None: item = qt.QTableWidgetItem(cntlabel, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) self.setItem(i, 0, item) else: item.setText(cntlabel) #item is enabled and selectable item.setFlags(qt.Qt.ItemIsEnabled | qt.Qt.ItemIsSelectable) #the checkboxes for j in range(1, 4, 1): widget = self.cellWidget(i, j) if widget is None: widget = CheckBoxItem(self, i, j) self.setCellWidget(i, j, widget) widget.sigCheckBoxItemSignal.connect(self._mySlot) else: pass def _mySlot(self, ddict): row = ddict["row"] col = ddict["col"] if col == 1: if ddict["state"]: if row not in self.rSelection: self.rSelection.append(row) else: if row in self.rSelection: del self.rSelection[self.rSelection.index(row)] if len(self.rSelection) > 1: self.rSelection = self.rSelection[-1:] if col == 2: if ddict["state"]: if row not in self.gSelection: self.gSelection.append(row) else: if row in self.gSelection: del self.gSelection[self.gSelection.index(row)] if len(self.gSelection) > 1: self.gSelection = self.gSelection[-1:] if col == 3: if ddict["state"]: if row not in self.bSelection: self.bSelection.append(row) else: if row in self.bSelection: del self.bSelection[self.bSelection.index(row)] if len(self.bSelection) > 1: self.bSelection = self.bSelection[-1:] #I should check if there is a change ... self._update() def _emitSignal(self): ddict = self.getElementSelection() ddict['event'] = "updated" self.sigRGBCorrelatorTableSignal.emit(ddict) def _update(self): for i in range(self.rowCount()): j = 1 widget = self.cellWidget(i, j) if i in self.rSelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) j = 2 widget = self.cellWidget(i, j) if i in self.gSelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) j = 3 widget = self.cellWidget(i, j) if i in self.bSelection: if not widget.isChecked(): widget.setChecked(True) else: if widget.isChecked(): widget.setChecked(False) self._emitSignal() def getElementSelection(self): ddict = {} ddict['elementlist'] = self.elementList * 1 n = len(self.elementList) if n == 0: self.rSelection = [] self.gSelection = [] self.bSelection = [] if len(self.rSelection): if self.rSelection[0] >= n: self.rSelection = [] if len(self.gSelection): if self.gSelection[0] >= n: self.gSelection = [] if len(self.bSelection): if self.bSelection[0] >= n: self.bSelection = [] ddict['r'] = self.rSelection * 1 ddict['g'] = self.gSelection * 1 ddict['b'] = self.bSelection * 1 return ddict def setElementSelection(self, ddict): keys = ddict.keys() if 'elementlist' in keys: elementlist = ddict['elementlist'] else: elementlist = self.elementList * 1 if 'r' in keys: x = ddict['r'] else: x = [] if 'g' in keys: y = ddict['g'] else: y = [] if 'b' in keys: monitor = ddict['b'] else: monitor = [] self.rSelection = [] for item in x: if item < len(elementlist): counter = elementlist[item] if 0: if counter in self.elementList: self.rSelection.append(self.elementList.index(counter)) else: self.rSelection.append(item) self.gSelection = [] for item in y: if item < len(elementlist): counter = elementlist[item] if counter in self.elementList: self.gSelection.append(self.elementList.index(counter)) self.bSelection = [] for item in monitor: if item < len(elementlist): counter = elementlist[item] if counter in self.elementList: self.bSelection.append(self.elementList.index(counter)) self._update() class CheckBoxItem(qt.QCheckBox): sigCheckBoxItemSignal = qt.pyqtSignal(object) def __init__(self, parent, row, col): qt.QCheckBox.__init__(self, parent) self.__row = row self.__col = col self.clicked[bool].connect(self._mySignal) def _mySignal(self, value): ddict = {} ddict["event"] = "clicked" ddict["state"] = value ddict["row"] = self.__row * 1 ddict["col"] = self.__col * 1 self.sigCheckBoxItemSignal.emit(ddict) def main(): app = qt.QApplication([]) def slot(ddict): print("received dict = ", ddict) tab = RGBCorrelatorTable() tab.sigRGBCorrelatorTableSignal.connect(slot) tab.build(["Cnt1", "Cnt2", "Cnt3"]) tab.setElementSelection({'r':[1], 'g':[4], 'elementlist':["dummy", "Ca K", "Fe K", "Pb M", "U l"]}) tab.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/RGBCorrelatorWidget.py0000644000000000000000000020274414741736366022360 0ustar00rootroot# /*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import traceback import logging import warnings import re from . import RGBCorrelatorSlider from . import RGBCorrelatorTable from PyMca5.PyMcaGui.pymca import RGBImageCalculator from PyMca5 import spslut from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaIO import ArraySave from PyMca5 import PyMcaDirs from PyMca5.PyMcaCore import EdfFileDataSource from PyMca5.PyMcaGui.pymca import StackPluginResultsWindow from PyMca5.PyMcaGui.pymca import ExternalImagesWindow from PyMca5.PyMcaIO import TiffIO from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting import ScatterPlotCorrelatorWidget DataReader = EdfFileDataSource.EdfFileDataSource USE_STRING = False from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString QStringList = qt.QStringList else: QString = str QStringList = list QTVERSION = qt.qVersion() try: from PyMca5.PyMcaGui.math import NNMADialog NNMA = NNMADialog.NNMA from PyMca5.PyMcaGui.math import PCADialog PCA = PCADialog.PCA except Exception: NNMA = False PCA = False KMEANS = RGBImageCalculator.KMEANS try: import tomogui.gui.utils.icons from tomogui.gui.ProjectWidget import ProjectWindow as TomoguiProjWindow from PyMca5.PyMcaGui.pymca.TomographyRecons import TomoReconsDialog TOMOGUI_FLAG = True except Exception: TOMOGUI_FLAG = False # Use QDataSource for complete test but requires too many imports # TODO: then why have all format tests in the same module? # def isHdf5(filename): # import QDataSource # sourceType = QDataSource.getSourceType(filename).upper() # return sourceType.startswith("HDF5") try: import h5py except ImportError: h5py = None def isHdf5(filename): return os.path.splitext(filename)[-1].lower() in ( ".h5", ".nxs", ".hdf", ".hdf5", ) else: def isHdf5(filename): return h5py.is_hdf5(filename) from PyMca5.PyMcaGui.io.hdf5 import HDF5Widget from PyMca5.PyMcaIO import NexusUtils def isEdf(filename): # Complete Test but requires too many imports # TODO: then why have have all format tests in the same module? # import QDataSource # sourceType = QDataSource.getSourceType(filename).upper() # return sourceType.startswith("EDFFILE") with open(filename, "rb") as f: twoBytes = f.read(2) if sys.version < "3.0": twoChar = twoBytes else: try: twoChar = twoBytes.decode("utf-8") except Exception: twoChar = "__dummy__" filename = filename.lower() return ( twoChar in ["II", "MM", "\n{"] or twoChar[0] in ["{"] or filename.endswith("cbf") or (filename.endswith("spe") and twoChar[0] not in ["$"]) ) def isTif(filename): return os.path.splitext(filename)[-1].lower() in (".tif", ".tiff") def isQImageReadable(filename): return os.path.splitext(filename)[-1].lower() in ( ".jpg", ".jpeg", ".png", ".tif", ".tiff", ) def makeQimageBW(qimage): height = qimage.height() width = qimage.width() if qimage.format() == qt.QImage.Format_Indexed8: pixmap0 = numpy.frombuffer( qimage.bits().asstring(width * height), dtype=numpy.uint8 ) pixmap = numpy.zeros((height * width, 4), numpy.uint8) pixmap[:, 0] = pixmap0[:] pixmap[:, 1] = pixmap0[:] pixmap[:, 2] = pixmap0[:] pixmap[:, 3] = 255 pixmap.shape = height, width, 4 else: image = qimage.convertToFormat(qt.QImage.Format_ARGB32) pixmap0 = numpy.frombuffer( image.bits().asstring(width * height * 4), dtype=numpy.uint8 ) pixmap = numpy.array(pixmap0, copy=True) pixmap.shape = height, width, -1 return pixmap[:, :, 0] * 0.114 + pixmap[:, :, 1] * 0.587 + pixmap[:, :, 2] * 0.299 _logger = logging.getLogger(__name__) class RGBCorrelatorWidget(qt.QWidget): sigRGBCorrelatorWidgetSignal = qt.pyqtSignal(object) sigMaskImageWidgetSignal = qt.pyqtSignal(object) def __init__(self, parent=None, bgrx=False, replace=False, image_shape=None): qt.QWidget.__init__(self, parent) self.replaceOption = replace self.setWindowTitle("RGBCorrelatorWidget") self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(4) self.labelWidget = qt.QWidget(self) self.labelWidget.mainLayout = qt.QGridLayout(self.labelWidget) self.labelWidget.mainLayout.setContentsMargins(0, 0, 0, 0) self.labelWidget.mainLayout.setSpacing(0) alignment = qt.Qt.AlignVCenter | qt.Qt.AlignCenter self.toolBar = qt.QWidget(self) # hbox = qt.QWidget(self.labelWidget) hbox = self.toolBar hbox.mainLayout = qt.QHBoxLayout(hbox) hbox.mainLayout.setContentsMargins(0, 0, 0, 0) hbox.mainLayout.setSpacing(0) self.loadButton = qt.QToolButton(hbox) self.loadButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["fileopen"]))) self.loadButton.setToolTip("Load new images of the same size") self.saveButton = qt.QToolButton(hbox) self.saveButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["filesave"]))) self.saveButton.setToolTip("Save image data to file") self._saveFilter = None self.removeButton = qt.QToolButton(hbox) self.removeButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["remove"]))) self.removeButton.setToolTip("Remove the selected images") self.toggleSlidersButton = qt.QToolButton(hbox) self._slidersOffIcon = qt.QIcon(qt.QPixmap(IconDict["slidersoff"])) self._slidersOnIcon = qt.QIcon(qt.QPixmap(IconDict["sliderson"])) self.toggleSlidersButton.setIcon(self._slidersOffIcon) self.toggleSlidersButton.setToolTip("Toggle sliders show On/Off") self.statisticsDialog = None self.calculationDialog = None self.calculationButton = qt.QToolButton(hbox) self.calculationButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["sigma"]))) self.calculationButton.setToolTip("Operate with the images") self.profileImageListWidget = None self.profileButton = qt.QToolButton(hbox) self.profileButton.setIcon(qt.QIcon(qt.QPixmap(IconDict["diagonal"]))) self.profileButton.setToolTip("Show selected images profile") if TOMOGUI_FLAG: self.tomographyButton = qt.QToolButton(hbox) tomoguiIcon = tomogui.gui.utils.icons.getQIcon("tomogui") self.tomographyButton.setIcon(tomoguiIcon) self.tomographyButton.setToolTip("Run tomography reconstruction") self.tomographyButton.clicked.connect(self._showTomoReconsDialog) label1 = MyQLabel(self.labelWidget, color=qt.Qt.black) label1.setAlignment(alignment) label1.setText("Image Size") self.__sizeLabel = MyQLabel(self.labelWidget, bold=True, color=qt.Qt.red) self.__sizeLabel.setAlignment(alignment) self.__sizeLabel.setText("No image set") # self.__rowLineEdit = qt.QLineEdit(self.labelWidget) # self.__columnLineEdit = qt.QLineEdit(self.labelWidget) self.__imageResizeButton = qt.QPushButton(self.labelWidget) self.__imageResizeButton.setText("Reshape") hbox.mainLayout.addWidget(self.loadButton) hbox.mainLayout.addWidget(self.saveButton) hbox.mainLayout.addWidget(self.removeButton) hbox.mainLayout.addWidget(self.toggleSlidersButton) hbox.mainLayout.addWidget(self.calculationButton) hbox.mainLayout.addWidget(self.profileButton) if TOMOGUI_FLAG: hbox.mainLayout.addWidget(self.tomographyButton) hbox.mainLayout.addWidget(qt.HorizontalSpacer(self.toolBar)) # hbox.mainLayout.addWidget(label1) self.labelWidget.mainLayout.addWidget(label1, 0, 0) self.labelWidget.mainLayout.addWidget(self.__sizeLabel, 0, 1) # self.labelWidget.mainLayout.addWidget(self.__rowLineEdit, 1, 0) # self.labelWidget.mainLayout.addWidget(self.__columnLineEdit, 1, 1) self.labelWidget.mainLayout.addWidget(self.__imageResizeButton, 0, 2) self.colormapType = 0 self.buttonGroup = qt.QButtonGroup() g1 = qt.QPushButton(self.labelWidget) g1.setText("Linear") g2 = qt.QPushButton(self.labelWidget) g2.setText("Logarithmic") g3 = qt.QPushButton(self.labelWidget) g3.setText("Gamma") g1.setCheckable(True) g2.setCheckable(True) g3.setCheckable(True) self.buttonGroup.addButton(g1, 0) self.buttonGroup.addButton(g2, 1) self.buttonGroup.addButton(g3, 2) self.buttonGroup.setExclusive(True) self.buttonGroup.button(self.colormapType).setChecked(True) self.labelWidget.mainLayout.addWidget(g1, 1, 0) self.labelWidget.mainLayout.addWidget(g2, 1, 1) self.labelWidget.mainLayout.addWidget(g3, 1, 2) self.buttonGroup.setExclusive(True) self.sliderWidget = RGBCorrelatorSlider.RGBCorrelatorSlider( self, autoscalelimits=[5.0, 80.0] ) self.tableWidget = RGBCorrelatorTable.RGBCorrelatorTable(self) self.mainLayout.addWidget(self.toolBar) self.mainLayout.addWidget(self.labelWidget) self.mainLayout.addWidget(self.sliderWidget) self.mainLayout.addWidget(self.tableWidget) if bgrx: self.bgrx = "BGRX" else: self.bgrx = "RGBX" self._imageList = [] self._imageDict = {} if image_shape: self.__imageLength = numpy.prod(image_shape, dtype=int) self.__imageShape = tuple(image_shape) else: self.__imageLength = None self.__imageShape = None self.__imageLengthOriginal = self.__imageLength self.__imageShapeOriginal = self.__imageShape self.__redLabel = None self.__greenLabel = None self.__blueLabel = None self.__redImageData = None self.__greenImageData = None self.__blueImageData = None self.__redMin = 0.0 self.__redMax = 100.0 self.__greenMin = 0.0 self.__greenMax = 100.0 self.__blueMin = 0.0 self.__blueMax = 0.0 self.__redImage = None self.__greenImage = None self.__blueImage = None self.outputDir = None self.loadButton.clicked.connect(self._addFileList) self.saveButton.clicked.connect(self.saveButtonClicked) self._saveButtonMenu = qt.QMenu() self._saveButtonMenu.addAction(QString("Save all"), self.saveImageList) self._saveButtonMenu.addAction( QString("Save selected"), self.saveSelectedImages ) self.removeButton.clicked.connect(self.removeButtonClicked) self.toggleSlidersButton.clicked.connect(self.toggleSliders) self.calculationButton.clicked.connect(self._showCalculationDialog) self.profileButton.clicked.connect(self.profileSelectedImages) self._calculationMenu = None self.scatterPlotWidget = None self.pcaDialog = None self.nnmaDialog = None self.kMeansDialog = None self._tomoguiWindow = None self._lastMask = None self.__imageResizeButton.clicked.connect(self._imageResizeSlot) self.sliderWidget.sigRGBCorrelatorSliderSignal.connect(self._sliderSlot) self.tableWidget.sigRGBCorrelatorTableSignal.connect(self._tableSlot) if hasattr(self.buttonGroup, "idClicked"): self.buttonGroup.idClicked[int].connect(self._colormapTypeChange) else: # deprecated _logger.debug("Using deprecated signal") self.buttonGroup.buttonClicked[int].connect(self._colormapTypeChange) def _showCalculationDialog(self): if (not NNMA) and (not PCA) and (not KMEANS): return self.showCalculationDialog() if self._calculationMenu is None: self._calculationMenu = qt.QMenu() self._calculationMenu.addAction( QString("Image Statistics"), self.showStatisticsDialog ) self._calculationMenu.addAction( QString("Image Calculator"), self.showCalculationDialog ) self._calculationMenu.addAction( QString("Scatter Plot"), self.showScatterPlotDialog ) if PCA: if PCADialog.MDP: self._calculationMenu.addAction( QString("PCA/ICA Analysis"), self.showPCADialog ) else: self._calculationMenu.addAction( QString("PCA Analysis"), self.showPCADialog ) if NNMA: self._calculationMenu.addAction( QString("NNMA Analysis"), self.showNNMADialog ) if KMEANS: self._calculationMenu.addAction( QString("K-Means Clustering"), self.showKMeansDialog ) self._calculationMenu.exec(self.cursor().pos()) def _showTomoReconsDialog(self): def getSinograms(ids): datas = [] for id in ids: assert "image" in self._imageDict[id] datas.append(self._imageDict[id]["image"]) return datas assert TOMOGUI_FLAG is True diag = TomoReconsDialog(entries=self._imageList) if diag.exec(): if self._tomoguiWindow is None: self._tomoguiWindow = TomoguiProjWindow() self._tomoguiWindow.clean() reconsType = diag.getReconstructionType() sinoIDs = diag.getSinogramsToRecons() self._tomoguiWindow.setSinoToRecons( reconsType=reconsType, sinograms=getSinograms(sinoIDs), names=sinoIDs ) if diag.hasIt() is True: it = self._imageDict[diag.getIt()]["image"] self._tomoguiWindow.setIt(it=it, name=diag.getIt()) if diag.hasI0() is True: i0 = self._imageDict[diag.getI0()]["image"] self._tomoguiWindow.setI0(i0=i0, name=diag.getI0()) # by default do not reconstruct log self._tomoguiWindow.setLogRecons(False) self._tomoguiWindow.show() def toggleSliders(self): if self.sliderWidget.isHidden(): self.sliderWidget.show() self.toggleSlidersButton.setIcon(self._slidersOffIcon) else: self.sliderWidget.hide() self.toggleSlidersButton.setIcon(self._slidersOnIcon) def _sliderSlot(self, ddict): _logger.debug("RGBCorrelatorWidget._sliderSlot()") if self.__imageLength is None: return tableDict = self.tableWidget.getElementSelection() if ddict["event"] == "redChanged": self.__redMin = ddict["min"] self.__redMax = ddict["max"] if len(tableDict["r"]): self.__recolor(["r"]) elif ddict["event"] == "greenChanged": self.__greenMin = ddict["min"] self.__greenMax = ddict["max"] if len(tableDict["g"]): self.__recolor(["g"]) elif ddict["event"] == "blueChanged": self.__blueMin = ddict["min"] self.__blueMax = ddict["max"] if len(tableDict["b"]): self.__recolor(["b"]) elif ddict["event"] == "allChanged": self.__redMin = ddict["red"][0] self.__redMax = ddict["red"][1] self.__greenMin = ddict["green"][0] self.__greenMax = ddict["green"][1] self.__blueMin = ddict["blue"][0] self.__blueMax = ddict["blue"][1] if not len(tableDict["r"]): if not len(tableDict["g"]): if not len(tableDict["b"]): return self.__recolor(["r", "g", "b"]) def _tableSlot(self, ddict): _logger.debug("RGBCorrelatorWidget._tableSlot()") if self.__imageLength is None: return if ddict["r"] == []: ddict["r"] = None if ddict["g"] == []: ddict["g"] = None if ddict["b"] == []: ddict["b"] = None if ddict["r"] is None: self.__redImageData = numpy.zeros(self.__imageShape).astype(numpy.float64) self.__redLabel = None else: self.__redLabel = ddict["elementlist"][ddict["r"][0]] self.__redImageData = self._imageDict[self.__redLabel]["image"] if ddict["g"] is None: self.__greenImageData = numpy.zeros(self.__imageShape).astype(numpy.float64) self.__greenLabel = None else: self.__greenLabel = ddict["elementlist"][ddict["g"][0]] self.__greenImageData = self._imageDict[self.__greenLabel]["image"] if ddict["b"] is None: self.__blueImageData = numpy.zeros(self.__imageShape).astype(numpy.float64) self.__blueLabel = None else: self.__blueLabel = ddict["elementlist"][ddict["b"][0]] self.__blueImageData = self._imageDict[self.__blueLabel]["image"] self.__recolor(["r", "g", "b"]) def __recolor(self, color=None): if color is None: colorlist = ["r", "g", "b"] elif type(color) == type(""): colorlist = [color] else: colorlist = color * 1 ddict = {} ddict["event"] = "updated" if "r" in colorlist: # get slider label = self.__redLabel if label is None: valmin = 0.0 valmax = 1.0 else: valmin = self._imageDict[label]["min"] valmax = self._imageDict[label]["max"] delta = 0.01 * (valmax - valmin) valmin = valmin + delta * self.__redMin valmax = valmin + delta * self.__redMax if USE_STRING: red, size, minmax = self.getColorImage( self.__redImageData, spslut.RED, valmin, valmax, 0 ) self.__redImage = numpy.array(red).astype(numpy.uint8) ddict["red"] = red else: red, size, minmax = self.getColorImage( self.__redImageData, spslut.RED, valmin, valmax, 1 ) self.__redImage = red ddict["red"] = red.tobytes() ddict["size"] = size if "g" in colorlist: # get slider label = self.__greenLabel if label is None: valmin = 0.0 valmax = 1.0 else: valmin = self._imageDict[label]["min"] valmax = self._imageDict[label]["max"] delta = 0.01 * (valmax - valmin) valmin = valmin + delta * self.__greenMin valmax = valmin + delta * self.__greenMax if USE_STRING: green, size, minmax = self.getColorImage( self.__greenImageData, spslut.GREEN, valmin, valmax ) self.__greenImage = numpy.array(green).astype(numpy.uint8) ddict["green"] = green else: green, size, minmax = self.getColorImage( self.__greenImageData, spslut.GREEN, valmin, valmax, 1 ) self.__greenImage = green ddict["green"] = green.tobytes() ddict["size"] = size if "b" in colorlist: # get slider label = self.__blueLabel if label is None: valmin = 0.0 valmax = 1.0 else: valmin = self._imageDict[label]["min"] valmax = self._imageDict[label]["max"] # if valmax == valmin:valmax = valmin + 1 delta = 0.01 * (valmax - valmin) valmin = valmin + delta * self.__blueMin valmax = valmin + delta * self.__blueMax if USE_STRING: blue, size, minmax = self.getColorImage( self.__blueImageData, spslut.BLUE, valmin, valmax ) self.__blueImage = numpy.array(blue).astype(numpy.uint8) ddict["blue"] = blue else: blue, size, minmax = self.getColorImage( self.__blueImageData, spslut.BLUE, valmin, valmax, 1 ) self.__blueImage = blue ddict["blue"] = blue.tobytes() ddict["size"] = size image = self.__redImage + self.__greenImage + self.__blueImage ddict["image"] = image self.sigRGBCorrelatorWidgetSignal.emit(ddict) def _colormapTypeChange(self, val): self.colormapType = val self.__recolor() def getColorImage(self, image, colormap, datamin=None, datamax=None, arrayflag=0): COLORMAPLIST = [ spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP, spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY, ] if colormap not in COLORMAPLIST: raise ValueError("Unknown color scheme %s" % colormap) if (datamin is None) or (datamax is None): # spslut already calculates min and max # tmp = numpy.ravel(image) (image_buffer, size, minmax) = spslut.transform( image, (1, 0), (self.colormapType, 3.0), self.bgrx, colormap, 1, (0, 1), (0, 255), arrayflag, ) # (min(tmp),max(tmp))) else: (image_buffer, size, minmax) = spslut.transform( image, (1, 0), (self.colormapType, 3.0), self.bgrx, colormap, 0, (datamin, datamax), (0, 255), arrayflag, ) return image_buffer, size, minmax def addImage(self, image0, label=None): image = numpy.array(image0).astype(numpy.float64) if label is None: label = "Unnamed 00" i = 0 while label in self._imageList: i += 1 label = "Unnamed %02d" % i if not len(image): return firstTime = False if self.__imageLength is None: if not len(image.shape): return self.__imageLength = 1 for value in image.shape: self.__imageLength *= value if len(image.shape) == 1: image = numpy.resize(image, (image.shape[0], 1)) self.__imageShape = image.shape self._updateSizeLabel() firstTime = True if image.shape != self.__imageShape: length = 1 for value in image.shape: length *= value if length == self.__imageLength: image = numpy.resize( image, (self.__imageShape[0], self.__imageShape[1]) ) else: raise ValueError( "Image cannot be reshaped to %d x %d" % (self.__imageShape[0], self.__imageShape[1]) ) if label not in self._imageList: self._imageList.append(label) self._imageDict[label] = {} self._imageDict[label]["image"] = image tmp = numpy.ravel(image) self._imageDict[label]["min"] = min(tmp) self._imageDict[label]["max"] = max(tmp) self.tableWidget.build(self._imageList) i = 0 for label in self._imageList: mintext = "%g" % self._imageDict[label]["min"] maxtext = "%g" % self._imageDict[label]["max"] item = self.tableWidget.item(i, 4) if item is None: item = qt.QTableWidgetItem(mintext, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) item.setFlags(qt.Qt.ItemIsEnabled) self.tableWidget.setItem(i, 4, item) else: item.setText(mintext) item = self.tableWidget.item(i, 5) if item is None: item = qt.QTableWidgetItem(maxtext, qt.QTableWidgetItem.Type) item.setTextAlignment(qt.Qt.AlignHCenter | qt.Qt.AlignVCenter) item.setFlags(qt.Qt.ItemIsEnabled) self.tableWidget.setItem(i, 5, item) else: item.setText(maxtext) i += 1 if firstTime: self.tableWidget.setElementSelection({"r": [0]}) # , 'g':[0],'b':[0]}) self.sliderWidget.autoScaleFromAToB() # self.__recolor() # self.tableWidget._update() if self.calculationDialog is not None: self.calculationDialog.imageList = self._imageList self.calculationDialog.imageDict = self._imageDict def removeButtonClicked(self): itemList = self.tableWidget.selectedItems() labelList = [] nImages = len(self._imageList) for item in itemList: row = item.row() if row < nImages: labelList.append(self._imageList[row]) for label in labelList: self.removeImage(label) def removeImage(self, label): if label not in self._imageList: return self._imageDict[label] = {} del self._imageDict[label] del self._imageList[self._imageList.index(label)] if self.__redLabel == label: self.__redLabel = None if self.__greenLabel == label: self.__greenLabel = None if self.__blueLabel == label: self.__blueLabel = None self.tableWidget.build(self._imageList) self.tableWidget._update() if self.calculationDialog is not None: self.calculationDialog.imageList = self._imageList self.calculationDialog.imageDict = self._imageDict def removeImageSlot(self, ddict): if type(ddict) == type({}): self.removeImage(ddict["label"]) else: self.removeImage(ddict) def replaceImageSlot(self, ddict): self.reset() self.addImageSlot(ddict) def _imageResizeSlot(self): dialog = ImageShapeDialog(self, shape=self.__imageShape) dialog.setModal(True) ret = dialog.exec() if ret: shape = dialog.getImageShape() dialog.close() del dialog try: if (shape[0] * shape[1]) <= 0: self.reset() else: self.setImageShape(shape) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error reshaping: %s" % sys.exc_info()[1]) msg.exec() def setImageShape(self, shape): length = numpy.prod(shape, dtype=int) if self.__imageLength is None: self.__imageLength = length elif length != self.__imageLength: raise ValueError( "New length %d different of old length %d" % (length, self.__imageLength) ) self.__imageShape = shape self._updateSizeLabel() for key in self._imageDict.keys(): self._imageDict[key]["image"].shape = shape self.tableWidget._update() def transposeImages(self): if self.__imageLength is None: return shape = [self.__imageShape[0], self.__imageShape[1]] shape.reverse() length = 1 for value in shape: length *= value if length != self.__imageLength: raise ValueError( "New length %d different of old length %d" % (length, self.__imageLength) ) self.__imageShape = (shape[0], shape[1]) self._updateSizeLabel() for key in self._imageDict.keys(): self._imageDict[key]["image"] = self._imageDict[key]["image"].T self.tableWidget._update() def _updateSizeLabel(self): if self.__imageLength is None: self.__sizeLabel.setText("No image set") return text = "" n = len(self.__imageShape) for i in range(n): value = self.__imageShape[i] if i == (n - 1): text += " %d" % value else: text += " %d x" % value self.__sizeLabel.setText(text) def reset(self): # ask the possible graph client to delete the image self._tableSlot({"r": [], "g": [], "b": []}) self._imageList = [] self._imageDict = {} self.__imageLength = self.__imageLengthOriginal self.__imageShape = self.__imageShapeOriginal self.__redLabel = None self.__greenLabel = None self.__blueLabel = None self.__redImageData = None self.__greenImageData = None self.__blueImageData = None self.__redMin = 0.0 self.__redMax = 100.0 self.__greenMin = 0.0 self.__greenMax = 100.0 self.__blueMin = 0.0 self.__blueMax = 0.0 self.__redImage = None self.__greenImage = None self.__blueImage = None self._updateSizeLabel() self.tableWidget.setRowCount(0) def update(self): self.__recolor() def getOutputFileNameAndFilter(self): initdir = PyMcaDirs.outputDir if self.outputDir is not None: if os.path.exists(self.outputDir): initdir = self.outputDir formatlist = [ "ASCII Files *.dat", "EDF Files *.edf", "EDF(Float32) Files *.edf", "Single TIFF(Float32 Mono) Files *.tif", "Single TIFF(Mono) Files *.tif", "Several TIFF(Float32 Mono) Files *.tif", "Several TIFF(Mono) Files *.tif", "HDF5 Files *.h5 *.nxs *.hdf *.hdf5", "CSV(, separated) Files *.csv", "CSV(; separated) Files *.csv", "CSV(tab separated) Files *.csv", ] if self._saveFilter is None: self._saveFilter = formatlist[0] filelist, filterused = PyMcaFileDialogs.getFileList( parent=self, filetypelist=formatlist, message="Get output filename", currentdir=initdir, mode="SAVE", getfilter=True, single=True, currentfilter=self._saveFilter, native=False, ) self._saveFilter = "%s" % filterused if len(filelist): return filelist[0], filterused else: return "", filterused return filelist def getOutputFileName(self): initdir = PyMcaDirs.outputDir if self.outputDir is not None: if os.path.exists(self.outputDir): initdir = self.outputDir formatlist = [ "ASCII Files *.dat", "EDF Files *.edf", "EDF(Float32) Files *.edf", "TIFF(Float32 Mono) Files *.tif", "TIFF(Mono) Files *.tif", "HDF5 Files *.h5 *.nxs *.hdf *.hdf5", "CSV(, separated) Files *.csv", "CSV(; separated) Files *.csv", "CSV(tab separated) Files *.csv", ] if self._saveFilter in [None, ""]: self._saveFilter = formatlist[0] filename, self._saveFilter = PyMcaFileDialogs.getFileList( self, filetypelist=formatlist, message="Provide output file", currentdir=initdir, mode="SAVE", getfilter=True, single=False, currentfilter=self._saveFilter, native=None, ) if not len(filename): return "" filename = filename[0] if len(filename): self.outputDir = os.path.dirname(filename) filterused = "." + self._saveFilter[-3:] PyMcaDirs.outputDir = os.path.dirname(filename) if len(filename) < 4: filename = filename + filterused elif filename[-4:] != filterused: if filterused in [".tif"] and filename[-4:] == "tiff": # do not append .tif to the file name pass else: filename = filename + filterused return filename def getInputFileName(self, getfilter=False): initdir = PyMcaDirs.inputDir filedialog = qt.QFileDialog(self) filedialog.setFileMode(qt.QFileDialog.FileMode.ExistingFiles) filedialog.setAcceptMode(qt.QFileDialog.AcceptMode.AcceptOpen) filedialog.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict["gioconda16"]))) formatlist = [ "ASCII Files *dat", "EDF Files *edf", "EDF Files *ccd", "CSV Files *csv", "TIFF Files *tiff *tif", "HDF5 Files *.h5 *.nxs *.hdf *.hdf5", "TextImage Files *txt", "All Files *", ] strlist = QStringList() for f in formatlist: strlist.append(f) if hasattr(filedialog, "setFilters"): filedialog.setFilters(strlist) else: filedialog.setNameFilters(strlist) filedialog.setDirectory(initdir) ret = filedialog.exec() if not ret: if getfilter: return [""], None else: return [""] filename = filedialog.selectedFiles() filterused = None if len(filename): filename = ["%s" % fname for fname in filename] self.outputDir = os.path.dirname(filename[0]) PyMcaDirs.inputDir = os.path.dirname(filename[0]) if getfilter: if hasattr(filedialog, "selectedFilter"): filterused = "%s" % filedialog.selectedFilter() else: filterused = "%s" % filedialog.selectedNameFilter() else: filename = [""] if getfilter: return filename, filterused else: return filename def _addFileList(self): self.addFileList() def addFileList(self, filelist=None, filterused=None, ignoreStDev=True): if filelist is None: filelist, filterused = self.getInputFileName(getfilter=True) if not filelist: return if filterused is None: filterused = "" try: for uri in filelist: self._addSingleFile(uri, filterused=filterused, ignoreStDev=ignoreStDev) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error adding file: %s" % sys.exc_info()[1]) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise def addBatchDatFile(self, filename, ignoreStDev=True): warnings.warn("Use addFileList instead", DeprecationWarning) self.addFileList([filename], ignoreStDev=ignoreStDev) def _addSingleFile(self, uri, filterused=None, ignoreStDev=True): if not uri: return filename = uri.split("::")[0] self.outputDir = os.path.dirname(filename) if not os.path.isfile(filename): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s does not exist" % filename) msg.exec() return if filterused is None: filterused = "" if isTif(filename): try: self._addTifFile(filename, ignoreStDev=ignoreStDev) except Exception: _logger.debug("Built-in tif support unsuccessful") self._addQImageReadable(filename, ignoreStDev=ignoreStDev) elif isQImageReadable(filename): self._addQImageReadable(filename, ignoreStDev=ignoreStDev) elif isEdf(filename): self._addEdfFile(filename, ignoreStDev=ignoreStDev) elif isHdf5(filename.split("::")[0]): self._addHf5File(uri, ignoreStDev=ignoreStDev) elif filterused.upper().startswith("TEXTIMAGE"): self._addTxtFile(filename, ignoreStDev=ignoreStDev) else: extension = os.path.splitext(filename)[-1].lower() csv = extension == ".csv" self._addBatchDatFile(filename, csv=csv, ignoreStDev=ignoreStDev) def _ignoreStDevFile(self, filename): return bool(re.search(r"_s[A-Z][a-z_]", filename)) def _ignoreStDevLabel(self, label): return bool(re.match(r"s\([A-Z][a-z_]", label)) def _addEdfFile(self, filename, ignoreStDev=True): source = DataReader(filename) for key in source.getSourceInfo()["KeyList"]: dataObject = source.getDataObject(key) label = dataObject.info.get("Title", key) if ignoreStDev and self._ignoreStDevLabel(label): continue self.addImage(dataObject.data, os.path.basename(filename) + " " + label) def _addHf5File(self, uri, ignoreStDev=True): tmp = uri.split("::") if len(tmp) == 1: tmp = uri, None filename, h5path = tmp if h5py is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Cannot read file %s (h5py is missing)" % filename) msg.exec() return # URI exists? if h5path: with HDF5Widget.h5open(filename) as hdf5File: if not h5path in hdf5File: h5path = None # Prompt for missing HDF5 path if not h5path: tmp = HDF5Widget.getUri( parent=self, filename=filename, message="Select Group or Dataset" ) if not tmp: return tmp = tmp.split("::") if len(tmp) == 2: h5path = tmp[1] if not h5path: return # Add datasets from HDF5 path with HDF5Widget.h5open(filename) as hdf5File: if self.__imageLength: # Select datasets with the same number of elements def match(dset): return dset.size == self.__imageLength else: # Select only 1D or 2D datasets def match(dset): return dset.ndim == 1 or dset.ndim == 2 # If `h5path` is an instance of NXdata, only the signals # (including auxilary signals) are considered for `match`. datasets = NexusUtils.selectDatasets(hdf5File[h5path], match=match) if not datasets: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText( "No (valid) datasets were found in '{}::{}'".format( filename, h5path ) ) msg.exec() self._addHf5File(filename, ignoreStDev=ignoreStDev) elif len({dset.size for dset in datasets}) > 1: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText( "'{}::{}' contains datasets with different sizes. Select datasets separately.".format( filename, h5path ) ) msg.exec() self._addHf5File(filename, ignoreStDev=ignoreStDev) else: for dset in datasets: label = "/".join(dset.name.split("/")[-2:]) self.addImage(dset[()], label) def _addQImageReadable(self, filename, ignoreStDev=True): if ignoreStDev and self._ignoreStDevFile(filename): return qimage = qt.QImage(filename) if qimage.isNull(): msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Cannot read file %s as an image" % filename) msg.exec() else: # add as black and white self.addImage(makeQimageBW(qimage), os.path.basename(filename)) def _addTifFile(self, filename, ignoreStDev=True): tif = TiffIO.TiffIO(filename, mode="rb") nImages = tif.getNumberOfImages() for nImage in range(nImages): info = tif.getInfo(nImage)["info"] imgData = tif.getImage(nImage) title = os.path.basename(filename) label = info.get("Title", "1.%d" % (nImage)) if ignoreStDev and self._ignoreStDevLabel(label): continue title = os.path.basename(filename) + " " + label if len(imgData.shape) == 3: # color image colorIndex = 0 for component in ["R", "G", "B"]: self.addImage( imgData[:, :, colorIndex].astype(numpy.float64), title + "_" + component, ) colorIndex += 1 data = ( imgData[:, :, 0] * 0.114 + imgData[:, :, 1] * 0.587 + imgData[:, :, 2] * 0.299 ) self.addImage(data, title) else: self.addImage(imgData, title) def _addTxtFile(self, filename, ignoreStDev=True): if ignoreStDev and self._ignoreStDevFile(filename): return data = numpy.loadtxt(filename) self.addImage(data, os.path.basename(filename)) def _addBatchDatFile(self, filename, csv=False, ignoreStDev=True): self.outputDir = os.path.dirname(filename) if sys.platform == "win32": f = open(filename, "rb") else: f = open(filename, "r") lines = f.read() f.close() if (sys.version_info > (3, 0)) and hasattr(lines, "decode"): lines = lines.decode() lines = lines.replace("\r", "\n") lines = lines.replace("\n\n", "\n") lines = lines.replace(",", " ") lines = lines.replace("\t", " ") lines = lines.replace(";", " ") lines = lines.replace('"', "") lines = lines.split("\n") labels = lines[0].replace("\n", "").split(" ") i = 1 while not len(lines[-i].replace("\n", "")): i += 1 nlabels = len(labels) nrows = len(lines) - i if ignoreStDev and len(labels) > 4: iterationList = [] for i in range(2, len(labels)): if not self._ignoreStDevLabel(labels[i]): iterationList.append(i) else: iterationList = range(2, nlabels) totalArray = numpy.zeros((nrows, nlabels), numpy.float64) for i in range(nrows): totalArray[i, :] = [float(x) for x in lines[i + 1].split()] nrows = int(max(totalArray[:, 0]) + 1) ncols = int(max(totalArray[:, 1]) + 1) singleArray = numpy.zeros((nrows * ncols, 1), numpy.float64) for i in iterationList: singleArray[:, 0] = totalArray[:, i] * 1 self.addImage(numpy.resize(singleArray, (nrows, ncols)), labels[i]) def saveButtonClicked(self): self._saveButtonMenu.exec(self.cursor().pos()) def saveSelectedImages(self): itemList = self.tableWidget.selectedItems() saveList = [] imageList = [] nImages = len(self._imageList) for item in itemList: row = item.row() if row >= nImages: errorText = "Requested to save non existing \nimage number %d." % row qt.QMessageBox.critical(self, "ValueError", errorText) return saveList.append(row) saveList.sort() for index in saveList: imageList.append(self._imageList[index]) self.saveImageList(imagelist=imageList) def saveImageList(self, filename=None, imagelist=None): if imagelist is None: imageList = self._imageList else: imageList = imagelist if not len(imageList): qt.QMessageBox.information( self, "No Data", "Image list is empty.\nNothing to be saved" ) return if filename is None: filename, filterused = self.getOutputFileNameAndFilter() if not len(filename): return else: filterused = None datalist = [] labels = [] for label in imageList: datalist.append(self._imageDict[label]["image"]) # prevent problems when reading back the saved data labels.append(label.replace(" ", "_").replace(",", "_").replace(";", "_")) fileRoot = os.path.splitext(filename)[0] fileExtension = os.path.splitext(filename)[-1].lower() if fileExtension in [".edf"]: if "Float32" in self._saveFilter: dtype = numpy.float32 ArraySave.save2DArrayListAsEDF(datalist, filename, labels, dtype) else: ArraySave.save2DArrayListAsEDF(datalist, filename, labels) elif fileExtension in [".tif", ".tiff"]: if "Float32" in self._saveFilter: dtype = numpy.float32 else: dtype = None severalFiles = False if len(datalist) > 1: if filterused is not None: if filterused.lower().startswith("several"): severalFiles = True elif self._saveFilter.lower().startswith("several"): severalFiles = True if severalFiles: for idx in range(len(labels)): fname = fileRoot + labels[idx] + fileExtension ArraySave.save2DArrayListAsMonochromaticTiff( [datalist[idx]], fname, labels=[labels[idx]], dtype=dtype ) else: ArraySave.save2DArrayListAsMonochromaticTiff( datalist, filename, labels=labels, dtype=dtype ) elif fileExtension in [".csv"]: if "," in self._saveFilter: csvseparator = "," elif ";" in self._saveFilter: csvseparator = ";" else: csvseparator = "\t" ArraySave.save2DArrayListAsASCII( datalist, filename, labels, csv=True, csvseparator=csvseparator ) else: ArraySave.save2DArrayListAsASCII(datalist, filename, labels, csv=False) def showStatisticsDialog(self): if self.statisticsDialog is None: self.statisticsDialog = StackPluginResultsWindow.StackPluginResultsWindow( usetab=False ) self.statisticsDialog.setWindowTitle("Image Statistics") self.statisticsDialog.sigMaskImageWidgetSignal.connect(self.maskImageSlot) self.statisticsDialog.showStatsWidget() itemList = self.tableWidget.selectedItems() if len(itemList) < 1: images = [self._imageDict[x]["image"] for x in self._imageList] self.statisticsDialog.setStackPluginResults( images, image_names=self._imageList ) else: rowList = [] imageList = [] imageNames = [] for item in itemList: row = item.row() rowList.append(row) for index in rowList: name = self._imageList[index] imageList.append(self._imageDict[name]["image"]) imageNames.append(name) self.statisticsDialog.setStackPluginResults( imageList, image_names=imageNames ) self.statisticsDialog.setSelectionMask(self.getSelectionMask()) self.statisticsDialog.showStatsWidget() if self.statisticsDialog.isHidden(): self.statisticsDialog.show() self.statisticsDialog.raise_() def showCalculationDialog(self): if self.calculationDialog is None: selection = True self.calculationDialog = RGBImageCalculator.RGBImageCalculator( replace=self.replaceOption, selection=selection ) self.calculationDialog.sigAddImageClicked.connect(self.addImageSlot) self.calculationDialog.sigRemoveImageClicked.connect(self.removeImage) if self.replaceOption: self.calculationDialog.sigReplaceImageClicked.connect( self.replaceImageSlot ) if selection: self.calculationDialog.graphWidget.sigMaskImageWidgetSignal.connect( self.maskImageSlot ) self.calculationDialog.graphWidget.setSelectionMask( self.getSelectionMask() ) self.calculationDialog.imageList = self._imageList self.calculationDialog.imageDict = self._imageDict if self.calculationDialog.isHidden(): self.calculationDialog.graphWidget.setSelectionMask(self.getSelectionMask()) self.calculationDialog.show() self.calculationDialog.raise_() def showKMeansDialog(self): itemList = self.tableWidget.selectedItems() if len(itemList) < 1: errorText = "Please select at least one image" qt.QMessageBox.critical(self, "ValueError", errorText) return if self.kMeansDialog is None: selection = True self.kMeansDialog = RGBImageCalculator.RGBImageCalculator( math="kmeans", replace=self.replaceOption, selection=selection ) self.kMeansDialog.sigAddImageClicked.connect(self.addImageSlot) self.kMeansDialog.sigRemoveImageClicked.connect(self.removeImage) if self.replaceOption: self.kMeansDialog.sigReplaceImageClicked.connect(self.replaceImageSlot) if selection: self.kMeansDialog.graphWidget.sigMaskImageWidgetSignal.connect( self.maskImageSlot ) self.kMeansDialog.graphWidget.setSelectionMask(self.getSelectionMask()) # TODO: just pass a list or an array of images instead of a dict nImages = len(self._imageList) dataDict = {} for item in itemList: row = item.row() if row >= nImages: errorText = ( "Requested to work with non existing \nimage number %d." % row ) qt.QMessageBox.critical(self, "ValueError", errorText) return label = self._imageList[row] dataDict[label] = {"image": self._imageDict[label]["image"]} self.kMeansDialog.graphWidget.setImageData(None, clearmask=False) self.kMeansDialog.imageDict = dataDict if self.kMeansDialog.isHidden(): self.kMeansDialog.graphWidget.setSelectionMask(self.getSelectionMask()) self.kMeansDialog.show() self.kMeansDialog.raise_() def showScatterPlotDialog(self): if self.scatterPlotWidget is None: self.scatterPlotWidget = ( ScatterPlotCorrelatorWidget.ScatterPlotCorrelatorWidget( labels=("Legend", "X", "Y"), types=("Text", "RadioButton", "RadioButton"), ) ) self.scatterPlotWidget.sigMaskScatterWidgetSignal.connect( self.maskImageSlot ) # I should check if the list is to be updated instead of systematically # send it initialize = True for label in self._imageList: item = self._imageDict[label]["image"] if initialize: self.scatterPlotWidget.setSelectableItemList([item], labels=[label]) initialize = False else: self.scatterPlotWidget.addSelectableItem(item, label=label) self.scatterPlotWidget.setSelectionMask(self.getSelectionMask()) self.scatterPlotWidget.show() self.scatterPlotWidget.raise_() def getSelectedDataList(self): itemList = self.tableWidget.selectedItems() nImages = len(self._imageList) datalist = [] for item in itemList: row = item.row() if row >= nImages: errorText = ( "Requested to work with non existing \nimage number %d." % row ) qt.QMessageBox.critical(self, "ValueError", errorText) return label = self._imageList[row] datalist.append(self._imageDict[label]["image"]) return datalist def showPCADialog(self): if self.pcaDialog is None: selection = True self.pcaDialog = PCADialog.PCADialog(rgbwidget=self, selection=selection) self.pcaDialog.pcaWindow.buildAndConnectImageButtonBox(self.replaceOption) self.pcaDialog.pcaWindow.sigMaskImageWidgetSignal.connect( self.maskImageSlot ) datalist = self.getSelectedDataList() if len(datalist) < 2: errorText = "Please select at least two images" qt.QMessageBox.critical(self, "ValueError", errorText) return self.pcaDialog.setData(datalist) self.pcaDialog.pcaWindow.setSelectionMask(self.getSelectionMask()) self.pcaDialog.show() self.pcaDialog.raise_() def showNNMADialog(self): if self.nnmaDialog is None: selection = True self.nnmaDialog = NNMADialog.NNMADialog(rgbwidget=self, selection=selection) self.nnmaDialog.nnmaWindow.buildAndConnectImageButtonBox(self.replaceOption) self.nnmaDialog.nnmaWindow.sigMaskImageWidgetSignal.connect( self.maskImageSlot ) datalist = self.getSelectedDataList() if len(datalist) < 2: errorText = "Please select at least two images" qt.QMessageBox.critical(self, "ValueError", errorText) return self.nnmaDialog.setData(datalist) self.nnmaDialog.nnmaWindow.setSelectionMask(self.getSelectionMask()) self.nnmaDialog.show() self.nnmaDialog.raise_() def maskImageSlot(self, ddict): if ddict["event"] == "addImageClicked": ddict["label"] = ddict["title"] self.addImageSlot(ddict) return if ddict["event"] == "replaceImageClicked": ddict["label"] = ddict["title"] self.replaceImageSlot(ddict) return if ddict["event"] == "removeImageClicked": ddict["label"] = ddict["title"] self.removeImageSlot(ddict) return if ddict["event"] in [ "selectionMaskChanged", "resetSelection", "invertSelection", ]: mask = ddict.get("current", None) self.setSelectionMask(mask, instance_id=ddict["id"]) self.sigMaskImageWidgetSignal.emit(ddict) return def setSelectionMask(self, mask, instance_id=None): self._lastMask = mask widgetList = [] if self.statisticsDialog: widgetList.append(self.statisticsDialog) if self.calculationDialog: widgetList.append(self.calculationDialog.graphWidget) if self.kMeansDialog: widgetList.append(self.kMeansDialog.graphWidget) if self.pcaDialog: widgetList.append(self.pcaDialog.pcaWindow) if self.nnmaDialog: widgetList.append(self.nnmaDialog.nnmaWindow) if self.scatterPlotWidget: widgetList.append(self.scatterPlotWidget) for widget in widgetList: if id(widget) != instance_id: widget.setSelectionMask(mask) def getSelectionMask(self): return self._lastMask def addImageSlot(self, ddict): self.addImage(ddict["image"], ddict["label"]) def closeEvent(self, event): if self.calculationDialog is not None: self.calculationDialog.close() if self.profileImageListWidget is not None: self.profileImageListWidget.close() qt.QWidget.closeEvent(self, event) """ #This was for debugging #left out in order to skip PIL from the list of #packages when building binaries. def tiffExport(self, filename = "test.tif"): import Image Image.preinit() image = self.__redImage + self.__greenImage + self.__blueImage width = self.__imageShape[0] height = self.__imageShape[1] pilImage = Image.fromstring("RGBX",(width,height),image) if os.path.exists(filename): os.remove(filename) pilImage.save(filename) """ def profileSelectedImages(self): itemList = self.tableWidget.selectedItems() if len(itemList) < 1: errorText = "Please select at least one row in the table" qt.QMessageBox.critical(self, "ValueError", errorText) return profileList = [] imageList = [] imageNames = [] for item in itemList: row = item.row() profileList.append(row) for index in profileList: name = self._imageList[index] imageList.append(self._imageDict[name]["image"]) imageNames.append(name) self.profileImageList(imagelist=imageList, imagenames=imageNames) def profileImageList(self, imagelist=None, imagenames=None): if imagelist in [None, []]: return if self.profileImageListWidget is None: self.profileImageListWidget = ExternalImagesWindow.ExternalImagesWindow( None, crop=False, imageicons=False, profileselection=True, depthselection=True, ) self.profileImageListWidget.setImageList( imagelist=imagelist, imagenames=imagenames ) self.profileImageListWidget.show() class ImageShapeDialog(qt.QDialog): def __init__(self, parent=None, shape=None): qt.QDialog.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) label1 = MyQLabel(self, bold=False, color=qt.Qt.black) label1.setText("Number of rows = ") self.rows = qt.QLineEdit(self) self._size = None self.columns = qt.QLineEdit(self) if shape is not None: self.rows.setText("%g" % shape[0]) self.columns.setText("%g" % shape[1]) self._size = shape[0] * shape[1] self._shape = shape if QTVERSION < "4.0.0": self.setCaption("Resize %d x %d image" % (shape[0], shape[1])) else: self.setWindowTitle("Reshape %d x %d image" % (shape[0], shape[1])) label2 = MyQLabel(self, bold=False, color=qt.Qt.black) label2.setText("Number of columns = ") self.cancelButton = qt.QPushButton(self) self.cancelButton.setText("Dismiss") self.okButton = qt.QPushButton(self) self.okButton.setText("Accept") self.cancelButton.setAutoDefault(False) self.okButton.setAutoDefault(False) self.rows.editingFinished[()].connect(self._rowsChanged) self.columns.editingFinished[()].connect(self._columnsChanged) self.mainLayout.addWidget(label1, 0, 0) self.mainLayout.addWidget(self.rows, 0, 1) self.mainLayout.addWidget(label2, 1, 0) self.mainLayout.addWidget(self.columns, 1, 1) self.mainLayout.addWidget(self.cancelButton, 2, 0) self.mainLayout.addWidget(self.okButton, 2, 1) self.cancelButton.clicked.connect(self.reject) self.okButton.clicked.connect(self.accept) def _rowsChanged(self): if not self._size: return nrows, ncolumns = self.getImageShape() size = nrows * ncolumns if size and size != self._size: self.columns.setText("%g" % (self._size / float(nrows))) def _columnsChanged(self): if not self._size: return nrows, ncolumns = self.getImageShape() size = nrows * ncolumns if size and size != self._size: self.rows.setText("%g" % (self._size / float(ncolumns))) def getImageShape(self): text = "%s" % self.rows.text() if len(text): nrows = int(float(text)) else: nrows = 0 text = "%s" % self.columns.text() if len(text): ncolumns = int(float(text)) else: ncolumns = 0 return nrows, ncolumns def accept(self): if self._size is None: return qt.QDialog.accept(self) nrows, ncolumns = self.getImageShape() try: if (nrows * ncolumns) == self._size: return qt.QDialog.accept(self) else: self.rows.setText("%g" % self._shape[0]) self.columns.setText("%g" % self._shape[1]) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Invalid shape %d x %d" % (nrows, ncolumns)) msg.exec() except Exception: self.rows.setText("%g" % self._shape[0]) self.columns.setText("%g" % self._shape[1]) msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error reshaping: %s" % sys.exc_info()[1]) msg.exec() class MyQLabel(qt.QLabel): def __init__(self, parent=None, name=None, fl=0, bold=True, color=qt.Qt.red): qt.QLabel.__init__(self, parent) if qt.qVersion() < "4.0.0": self.color = color self.bold = bold else: palette = self.palette() role = self.foregroundRole() palette.setColor(role, color) self.setPalette(palette) self.font().setBold(bold) if qt.qVersion() < "4.0.0": def drawContents(self, painter): painter.font().setBold(self.bold) pal = self.palette() pal.setColor(qt.QColorGroup.Foreground, self.color) self.setPalette(pal) qt.QLabel.drawContents(self, painter) painter.font().setBold(0) def main(): from PyMca5.PyMcaGui.plotting import RGBCorrelatorGraph app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = qt.QSplitter() # containerLayout = qt.QHBoxLayout(container) w = RGBCorrelatorWidget(container) graph = RGBCorrelatorGraph.RGBCorrelatorGraph(container) def slot(ddict): if "image" in ddict: image_buffer = ddict["image"] size = ddict["size"] image_buffer.shape = size[1], size[0], 4 graph.graph.addImage(image_buffer) graph.graph.replot() w.sigRGBCorrelatorWidgetSignal.connect(slot) import getopt options = "" longoptions = [] opts, args = getopt.getopt(sys.argv[1:], options, longoptions) for opt, arg in opts: pass filelist = args if len(filelist): try: import DataSource DataReader = DataSource.DataSource except Exception: from PyMca5.PyMcaCore import EdfFileDataSource DataReader = EdfFileDataSource.EdfFileDataSource for fname in filelist: source = DataReader(fname) for key in source.getSourceInfo()["KeyList"]: dataObject = source.getDataObject(key) w.addImage(dataObject.data, os.path.basename(fname) + " " + key) else: array1 = numpy.arange(10000) array2 = numpy.resize(numpy.arange(10000), (100, 100)) array2 = numpy.transpose(array2) array3 = array1 * 1 w.addImage(array1) w.addImage(array2) w.addImage(array3) w.setImageShape([100, 100]) # containerLayout.addWidget(w) # containerLayout.addWidget(graph) container.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/RGBImageCalculator.py0000644000000000000000000004164214741736366022132 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging import traceback from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaGui.plotting import ColormapDialog from PyMca5 import spslut try: from PyMca5.PyMcaMath.mva import KMeansModule KMEANS = KMeansModule.KMEANS except Exception: KMEANS = False from . import QPyMcaMatplotlibSave MATPLOTLIB = True convertToRowAndColumn = MaskImageWidget.convertToRowAndColumn qt = MaskImageWidget.qt IconDict = MaskImageWidget.IconDict QTVERSION = qt.qVersion() COLORMAPLIST = [spslut.GREYSCALE, spslut.REVERSEGREY, spslut.TEMP, spslut.RED, spslut.GREEN, spslut.BLUE, spslut.MANY] _logger = logging.getLogger(__name__) class RGBImageCalculator(qt.QWidget): sigAddImageClicked = qt.pyqtSignal(object) sigRemoveImageClicked = qt.pyqtSignal(object) sigReplaceImageClicked = qt.pyqtSignal(object) def __init__(self, parent=None, math=True, replace=False, scanwindow=None, selection=False, usesilx=False): qt.QWidget.__init__(self, parent) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.setWindowTitle("PyMca - RGB Image Calculator") self._useSilx = usesilx self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.imageList = None self.imageDict = None self._imageData = None self._xScale = None self._yScale = None self.__imagePixmap = None self.__imageColormap = None self.__imageColormapDialog = None self.setDefaultColormap(2, logflag=False) self._y1AxisInverted = False self._matplotlibSaveImage = None self._build(math=math, replace=replace, scanwindow=scanwindow, selection=selection) def _buildMath(self): self.mathBox = qt.QWidget(self) self.mathBox.mainLayout = qt.QHBoxLayout(self.mathBox) self.mathLabel = qt.QLabel(self.mathBox) self.mathLabel.setText("New image = ") self.mathExpression = qt.QLineEdit(self.mathBox) text = "" text += "Enter a mathematical expression in which your images\n" text += "have to be identified by a number between curly brackets.\n" text += "In order to normalize image 1 by image 2: {1}/{2}\n" text += "The numbers go from 1 to the number of rows in the table.\n" text += "If you can suggest useful correlation functions please,\n" text += "do not hesitate to contact us in order to implement them." self.mathExpression.setToolTip(text) self.mathAction = qt.QToolButton(self.mathBox) self.mathAction.setText("CALCULATE") self.mathBox.mainLayout.addWidget(self.mathLabel) self.mathBox.mainLayout.addWidget(self.mathExpression) self.mathBox.mainLayout.addWidget(self.mathAction) self.mainLayout.addWidget(self.mathBox) self.mathAction.clicked.connect(self._calculateClicked) def _buildKMeansMath(self): self.mathBox = qt.QWidget(self) self.mathBox.mainLayout = qt.QHBoxLayout(self.mathBox) self.mathLabel = qt.QLabel(self.mathBox) self.mathLabel.setText("Please select number of clusters = ") self.mathExpression = qt.QSpinBox(self.mathBox) text = "" text += "Enter the number of desired clusters.\n" text += "It cannot be greater than the number of selected images." self.mathExpression.setMinimum(2) self.mathExpression.setMaximum(100) self.mathExpression.setValue(4) self.mathExpression.setToolTip(text) self.mathAction = qt.QToolButton(self.mathBox) self.mathAction.setText("CALCULATE") self.mathBox.mainLayout.addWidget(self.mathLabel) self.mathBox.mainLayout.addWidget(self.mathExpression) self.mathBox.mainLayout.addWidget(self.mathAction) self.mainLayout.addWidget(self.mathBox) self.mathAction.clicked.connect(self._calculateKMeansClicked) def _build(self, math=True, replace=False, scanwindow=False, selection=False): if math: if math == "kmeans": self._buildKMeansMath() else: self._buildMath() if selection: imageicons=True else: imageicons=False self.graphWidget = None if self._useSilx or self._useSilx is None: try: from PyMca5.PyMcaGui.plotting import SilxMaskImageWidget self.graphWidget = SilxMaskImageWidget.SilxMaskImageWidget() self.graphWidget.setAlphaSliderVisible(False) self.graphWidget.setBackgroundActionVisible(False) self.graphWidget.setMedianFilterWidgetVisible(False) self.graphWidget.setProfileToolbarVisible(True) self.graphWidget.setProfileToolbarVisible(True) self.graphWidget.setButtonBoxWidgetVisible(False) self.graphWidget.group.removeAction(\ self.graphWidget.getMaskAction()) self.graphWidget.slider.hide() self.graphWidget.graph = self.graphWidget.plot if not hasattr(self.graphWidget, "setXLabel"): self.graphWidget.setXLabel = \ self.graphWidget.plot.setGraphXLabel self.graphWidget.setYLabel = \ self.graphWidget.plot.setGraphYLabel self._useSilx = True except Exception: if self._useSilx: raise else: _logger.debug("Defaulting to not using silx") self._useSilx = False self.graphWidget = None if self.graphWidget is None: self._useSilx = False self.graphWidget = MaskImageWidget.MaskImageWidget(self, colormap=True, standalonesave=True, imageicons=imageicons, profileselection=True, selection=selection, scanwindow=scanwindow, aspect=True) self.nameBox = qt.QWidget(self) self.nameBox.mainLayout = qt.QHBoxLayout(self.nameBox) self.nameLabel = qt.QLabel(self.nameBox) self.nameLabel.setText("Image Name = ") #self.nameLabel.setText(qt.QString(qt.QChar(0x3A3))) self.name = qt.QLineEdit(self.nameBox) self.nameBox.mainLayout.addWidget(self.nameLabel) self.nameBox.mainLayout.addWidget(self.name) # The IMAGE selection #self.imageButtonBox = qt.QWidget(self) self.imageButtonBox = self.nameBox buttonBox = self.imageButtonBox #self.imageButtonBoxLayout = qt.QHBoxLayout(buttonBox) self.imageButtonBoxLayout = self.nameBox.mainLayout self.imageButtonBoxLayout.setContentsMargins(0, 0, 0, 0) self.imageButtonBoxLayout.setSpacing(0) self.addImageButton = qt.QPushButton(buttonBox) icon = qt.QIcon(qt.QPixmap(IconDict["rgb16"])) self.addImageButton.setIcon(icon) self.addImageButton.setText("ADD IMAGE") self.removeImageButton = qt.QPushButton(buttonBox) self.removeImageButton.setIcon(icon) self.removeImageButton.setText("REMOVE IMAGE") self.imageButtonBoxLayout.addWidget(self.addImageButton) self.imageButtonBoxLayout.addWidget(self.removeImageButton) if replace: self.replaceImageButton = qt.QPushButton(buttonBox) self.replaceImageButton.setIcon(icon) self.replaceImageButton.setText("REPLACE IMAGE") self.imageButtonBoxLayout.addWidget(self.replaceImageButton) #self.mainLayout.addWidget(self.nameBox) self.mainLayout.addWidget(self.graphWidget) self.mainLayout.addWidget(buttonBox) self.addImageButton.clicked.connect(self._addImageClicked) self.removeImageButton.clicked.connect(self._removeImageClicked) if replace: self.replaceImageButton.clicked.connect( \ self._replaceImageClicked) #it consumes too much CPU, therefore only on click #self.graphWidget.graph.canvas().setMouseTracking(1) if self._useSilx: self.graphWidget.showInfo() self.graphWidget.plot.sigPlotSignal.connect(\ self._graphSignal) else: self.graphWidget.graphWidget.showInfo() self.graphWidget.graphWidget.graph.sigPlotSignal.connect(\ self._graphSignal) def plotImage(self, update=True): self.graphWidget.setImageData(self._imageData, xScale=self._xScale, yScale=self._yScale) return self.graphWidget.plotImage(update=update) def _calculateClicked(self): _logger.debug("Calculate clicked") text = "%s" % self.mathExpression.text() if not len(text): qt.QMessageBox.critical(self, "Calculation Error", "Empty expression") return 1 expression = text * 1 name = text * 1 i = 1 for label in self.imageList: item = "{%d}" % i replacingChain ="self.imageDict[self.imageList[%d]]['image']" % (i-1) expression = expression.replace(item, replacingChain) if sys.version < '3.0': try: tmpLabel = label.decode() except UnicodeDecodeError: try: tmpLabel = label.decode('utf-8') except UnicodeDecodeError: try: tmpLabel = label.decode('latin-1') except UnicodeDecodeError: tmpLabel = "image_%0d" % i else: tmpLabel = label name = name.replace(item, tmpLabel) i = i + 1 try: self._imageData = 1 * eval(expression) except Exception: error = sys.exc_info() text = "Failed to evaluate expression:\n" text += "%s\n" % expression text += "%s" % error[1] qt.QMessageBox.critical(self,"%s" % error[0], text) return 1 self.setName("(%s)" % name) self.plotImage() def _calculateKMeansClicked(self): _logger.debug("Calculate k-means clicked") k = self.mathExpression.value() name = "k-means(%d)" % k # get dimensions keys = list(self.imageDict.keys()) key = keys[0] image = self.imageDict[key]['image'] shape = image.shape nSamples = image.size # build a stack (expected a small amount of images) data = numpy.zeros((nSamples, len(keys)), dtype=numpy.float64) i = 0 for key in self.imageDict: data[:, i] = self.imageDict[key]['image'].ravel() i += 1 try: self._imageData = KMeansModule.label(data, k, normalize=True).reshape(shape) except Exception: self._imageData = None text = "Failed to evaluate k-means(%d)\n" % k msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Save error") msg.setText(text) msg.setInformativeText(qt.safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return 1 self.setName("(%s)" % name) self.plotImage() def setName(self, name): self.name.setText(name) self.graphWidget.graph.setGraphTitle("%s" % name) def _addImageClicked(self): _logger.debug("Add image clicked") if self._imageData is None: return if len(self._imageData) == 0: return text = "%s" % self.name.text() if not len(text): qt.QMessageBox.critical(self, "Name Error", "Please give a name to the image") return 1 ddict = {} ddict['label'] = text ddict['image'] = self._imageData self.sigAddImageClicked.emit(ddict) def _removeImageClicked(self): _logger.debug("remove image clicked") text = "%s" % self.name.text() if not len(text): qt.QMessageBox.critical(self, "Name Error", "Please enter the image name") return 1 self.sigRemoveImageClicked.emit(text) def _replaceImageClicked(self): _logger.debug("replace image clicked") text = "%s" % self.name.text() if not len(text): qt.QMessageBox.critical(self, "Name Error", "Please enter the image name") return 1 ddict = {} ddict['label'] = text ddict['image'] = self._imageData self.sigReplaceImageClicked.emit(ddict) def setDefaultColormap(self, colormapindex, logflag=False): self.__defaultColormap = COLORMAPLIST[min(colormapindex, len(COLORMAPLIST)-1)] if logflag: self.__defaultColormapType = spslut.LOG else: self.__defaultColormapType = spslut.LINEAR def _graphSignal(self, ddict): if ddict['event'] in ["mouseMoved", "MouseAt"]: if self._imageData is None: self.graphWidget.setInfoText(" X = ???? Y = ???? Z =????") return r, c = convertToRowAndColumn(ddict['x'], ddict['y'], self._imageData.shape, xScale=self._xScale, yScale=self._yScale, safe=True) z = self._imageData[r, c] if hasattr(self.graphWidget, "setInfoText"): self.graphWidget.setInfoText(" X = %.4g Y = %.4g Z = %.7g" %\ (ddict['x'], ddict['y'], z)) else: self.graphWidget.graphWidget.setInfoText(" X = %.2f Y = %.2f Z = %.7g" %\ (ddict['x'], ddict['y'], z)) def closeEvent(self, event): if self.__imageColormapDialog is not None: self.__imageColormapDialog.close() if self._matplotlibSaveImage is not None: self._matplotlibSaveImage.close() qt.QWidget.closeEvent(self, event) def test(): app = qt.QApplication(sys.argv) w = RGBImageCalculator() array1 = numpy.arange(10000) array2 = numpy.transpose(array1) array3 = array1 * 1 array1.shape = [100,100] array2.shape = [100,100] array3.shape = [100,100] imageList = ["array1", "array2","array3"] imageDict = {"array1":{'image':array1}, "array2":{'image':array2}, "array3":{'image':array3}} w.imageList = imageList w.imageDict = imageDict w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ScanFit.py0000644000000000000000000003345214741736366020072 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.math.fitting import SpecfitGui from PyMca5.PyMcaMath.fitting import Specfit QTVERSION = qt.qVersion() class ScanFit(qt.QWidget): sigScanFitSignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="ScanFit", specfit=None, fl=0): #fl=qt.Qt.WDestructiveClose): qt.QWidget.__init__(self, parent) self.setWindowTitle(name) if specfit is None: self.specfit = Specfit.Specfit() else: self.specfit = specfit self.info = None layout = qt.QVBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) ############## self.headerlabel = qt.QLabel(self) self.headerlabel.setAlignment(qt.Qt.AlignHCenter) self.setHeader('Fit of XXXXXXXXXX from X XXXXX to XXXX<\b>') ############## if not len(self.specfit.theorylist): funsFile = "SpecfitFunctions.py" if not os.path.exists(funsFile): funsFile = os.path.join(os.path.dirname(Specfit.__file__), funsFile) self.specfit.importfun(funsFile) if 'Area Gaussians' not in self.specfit.theorylist: funsFile = "SpecfitFunctions.py" if not os.path.exists(funsFile): funsFile = os.path.join(os.path.dirname(Specfit.__file__), funsFile) self.specfit.importfun(funsFile) self.specfit.settheory('Area Gaussians') self.specfit.setbackground('Linear') fitconfig = {} fitconfig.update(self.specfit.fitconfig) fitconfig['WeightFlag'] = 0 fitconfig['ForcePeakPresence'] = 1 fitconfig['McaMode'] = 0 self.specfit.configure(**fitconfig) self.specfitGui = SpecfitGui.SpecfitGui(self, config=1, status=1, buttons=0, specfit=self.specfit, eh=self.specfit.eh) #self.specfitGui.updateGui(configuration=fitconfig) #self.setdata = self.specfit.setdata self.specfitGui.guiconfig.MCACheckBox.setEnabled(1) palette = self.specfitGui.guiconfig.MCACheckBox.palette() ############## hbox = qt.QWidget(self) hboxlayout = qt.QHBoxLayout(hbox) hboxlayout.setContentsMargins(0, 0, 0, 0) hboxlayout.setSpacing(0) self.estimatebutton = qt.QPushButton(hbox) self.estimatebutton.setText("Estimate") self.fitbutton = qt.QPushButton(hbox) self.fitbutton.setText("Fit") hboxlayout.addWidget(self.estimatebutton) hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) hboxlayout.addWidget(self.fitbutton) self.dismissbutton = qt.QPushButton(hbox) self.dismissbutton.setText("Dismiss") self.estimatebutton.clicked.connect(self.estimate) self.fitbutton.clicked.connect(self.fit) self.dismissbutton.clicked.connect(self.dismiss) self.specfitGui.sigSpecfitGuiSignal.connect(self._specfitGuiSignal) hboxlayout.addWidget(qt.HorizontalSpacer(hbox)) hboxlayout.addWidget(self.dismissbutton) layout.addWidget(self.headerlabel) layout.addWidget(self.specfitGui) layout.addWidget(hbox) def setData(self, *var, **kw): self.info = {} if 'legend' in kw: self.info['legend'] = kw['legend'] del kw['legend'] else: self.info['legend'] = 'Unknown Origin' if 'xlabel' in kw: self.info['xlabel'] = kw['xlabel'] del kw['xlabel'] else: self.info['xlabel'] = 'X' self.specfit.setdata(var, **kw) try: self.info['xmin'] = "%.3f" % self.specfit.xdata[0] except Exception: self.info['xmin'] = 'First' try: self.info['xmax'] = "%.3f" % self.specfit.xdata[-1] except Exception: self.info['xmax'] = 'Last' self.setHeader(text="Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax'])) def setheader(self, *var, **kw): return self.setHeader(*var, **kw) def setHeader(self, *var, **kw): if len(var): text = var[0] elif 'text' in kw: text = kw['text'] elif 'header' in kw: text = kw['header'] else: text = "" self.headerlabel.setText("%s<\b>" % text) def fit(self): if self.specfit.fitconfig['McaMode']: fitconfig = {} fitconfig.update(self.specfit.fitconfig) self.specfitGui.updateGui(configuration=fitconfig) #the Gui already takes care of mcafit self.specfitGui.estimate() else: #exception handler to be implemented #self.specfitGui.estimate() self.specfitGui.startfit() def estimate(self): fitconfig = {} fitconfig.update(self.specfit.fitconfig) self.specfitGui.updateGui(configuration=fitconfig) self.specfitGui.estimate() def _specfitGuiSignal(self, ddict): if not hasattr(ddict, "keys"): return if 'event' in ddict: if ddict['event'].upper() == "PRINT": h = self.__htmlheader() if __name__ == "__main__": self.__print(h + ddict['text']) else: ndict = {} ndict['event'] = "ScanFitPrint" ndict['text' ] = h + ddict['text'] ndict['info' ] = {} ndict['info'].update(self.info) self.sigScanFitSignal.emit(ndict) else: if self.info is None: self.info = {} ddict['info'] = {} ddict['info'].update(self.info) self.sigScanFitSignal.emit(ddict) def dismiss(self): self.close() def __htmlheader(self): try: header = "Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax']) except Exception: # I cannot afford any unicode, key or whatever error, so, # provide a default value for the label. header = 'Fit of XXXXXXXXXX from Channel XXXXX to XXXX' if self.specfit.fitconfig['WeightFlag']: weight = "YES" else: weight = "NO" if self.specfit.fitconfig['McaMode']: mode = "YES" else: mode = "NO" theory = self.specfit.fitconfig['fittheory'] bkg = self.specfit.fitconfig['fitbkg'] fwhm = self.specfit.fitconfig['FwhmPoints'] scaling = self.specfit.fitconfig['Yscaling'] h = "" h += "
" h += "%s" % header h += "

" h += "" h += "" h += " " h += " " h += " " % theory h += " " h += " " h += " " h += " " % weight h += " " h += " " h += " " h += " " % fwhm h += "" h += "" h += " " h += " " % bkg h += " " h += " " h += " " h += " " % mode h += " " h += " " h += " " h += " " % scaling h += "" h += "
Function:%sWeight:%sFWHM:%d
Background" h += " :%sMCA Mode:%sScaling:%g
" h += "
" return h def __print(self, text): printer = qt.QPrinter() if printer.setup(self): painter = qt.QPainter() if not(painter.begin(printer)): return 0 try: metrics = qt.QPaintDeviceMetrics(printer) dpiy = metrics.logicalDpiY() margin = int((2 / 2.54) * dpiy) # 2cm margin body = qt.QRect(0.5 * margin, margin, metrics.width() - margin, metrics.height() - 2 * margin) richtext = qt.QSimpleRichText(text, qt.QFont(), qt.QString(""), #0, qt.QStyleSheet.defaultSheet(), qt.QMimeSourceFactory.defaultFactory(), body.height()) view = qt.QRect(body) richtext.setWidth(painter,view.width()) page = 1 while(1): richtext.draw(painter,body.left(),body.top(), view,qt.QColorGroup()) view.moveBy(0, body.height()) painter.translate(0, -body.height()) painter.drawText(view.right() - painter.fontMetrics().maxWidth()*len(qt.QString.number(page)), view.bottom() - painter.fontMetrics().ascent() + 5,qt.QString.number(page)) if view.top() >= richtext.height(): break printer.newPage() page += 1 painter.end() except Exception: painter.end() msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec_loop() def getText(self): try: header = "Fit of %s from %s %s to %s" % (self.info['legend'], self.info['xlabel'], self.info['xmin'], self.info['xmax']) except Exception: # I cannot afford any unicode, key or whatever error, so, # provide a default value for the header text. header = 'Fit of XXXXXXXXXX from Channel XXXXX to XXXX' text = header + "\n" if self.specfit.fitconfig['WeightFlag']: weight = "YES" else: weight = "NO" if self.specfit.fitconfig['McaMode']: mode = "YES" else: mode = "NO" theory = self.specfit.fitconfig['fittheory'] bkg = self.specfit.fitconfig['fitbkg'] fwhm = self.specfit.fitconfig['FwhmPoints'] scaling = self.specfit.fitconfig['Yscaling'] text += "Fit Function: %s\n" % theory text += "Background: %s\n" % bkg text += "Weight: %s McaMode: %s FWHM: %d Yscaling: %f\n" % (weight[0], mode[0], fwhm, scaling) text += self.specfitGui.guiparameters.getText() return text def getConfiguration(self): return self.specfit.configure() def setConfiguration(self, fitconfig): self.specfit.configure(**fitconfig) self.specfitGui.updateGui(configuration=fitconfig) def main(): app = qt.QApplication([]) w = ScanFit() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == "__main__": main() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ScanFitToolButton.py0000644000000000000000000001355714741736366022130 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module defines a QToolButton opening a fit menu when clicked: - :class:`ScanFitToolButton` This button takes a plot object as constructor parameter. """ import silx.gui.icons from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.math.fitting import SimpleFitGui from PyMca5.PyMcaGui.pymca import ScanFit if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str class ScanFitToolButton(qt.QToolButton): def __init__(self, plot, parent=None): """QAction offering a menu with two fit options: simple fit and custom fit. :param plot: :class:`ScanWindow` instance on which to operate :param parent: Parent QObject. If parent is an action group the action will be automatically inserted into the group. """ qt.QToolButton.__init__(self, parent) self.setIcon(silx.gui.icons.getQIcon('math-fit')) self.setToolTip("Fit of Active Curve") self.clicked.connect(self._buttonClicked) self.plot = plot if not hasattr(self.plot, "scanFit"): self.scanFit = ScanFit.ScanFit() else: # ScanWindow can define a customized scanFit with custom fit functions self.scanFit = self.plot.scanFit self.scanFit.sigScanFitSignal.connect( self._scanFitSignalReceived) self.customFit = SimpleFitGui.SimpleFitGui() self.customFit.sigSimpleFitSignal.connect( self._customFitSignalReceived) self.fitButtonMenu = qt.QMenu() self.fitButtonMenu.addAction( QString("Simple Fit"), self._scanFitSignal) self.fitButtonMenu.addAction( QString("Customized Fit"), self._customFitSignal) self._scanFitLegend = None self._customFitLegend = None def _buttonClicked(self): """Display a menu to select simple fit or custom fit. Selecting simple fit calls :meth:`_scanFitSignal`. Selecting customized fit calls :meth:`_customFitSignal`. """ self.fitButtonMenu.exec(self.plot.cursor().pos()) def _getOneCurve(self): """Return active curve if any. Else return first curve, if any. Else return None :return: [x, y, legend, info, params] or None""" curve = self.plot.getActiveCurve() if curve is None: curves = self.plot.getAllCurves() if len(curves): curve = curves[0] return curve def _showFitWidget(self): """Initialize fit dialog widget and raise it. :attr:`_activeFitDialog` must be set to :attr:`scanFit` or :attr:`customFit` before this method is called. """ curve = self._getOneCurve() if curve is None: return x, y, legend, info, params = curve xmin, xmax = self.plot.getGraphXLimits() fitLegend = legend + " Fit" if fitLegend in self.plot.getAllCurves(just_legend=True): self.plot.removeCurve(fitLegend) if self._activeFitDialog is self.scanFit: self._scanFitLegend = fitLegend elif self._activeFitDialog is self.customFit: self._customFitLegend = fitLegend self._activeFitDialog.setData(x=x, y=y, xmin=xmin, xmax=xmax, legend=legend) if self._activeFitDialog.isHidden(): self._activeFitDialog.show() self._activeFitDialog.raise_() def _scanFitSignal(self): self._activeFitDialog = self.scanFit self._showFitWidget() def _customFitSignal(self): self._activeFitDialog = self.customFit self._showFitWidget() def _scanFitSignalReceived(self, ddict): if ddict['event'] == "FitFinished": xplot = self.scanFit.specfit.xdata * 1.0 yplot = self.scanFit.specfit.gendata(parameters=ddict['data']) self.plot.addCurve(x=xplot, y=yplot, legend=self._scanFitLegend, resetzoom=False) elif ddict['event'] == "ScanFitPrint": if hasattr(self.plot, "printHtml"): self.plot.printHtml(ddict['text']) def _customFitSignalReceived(self, ddict): if ddict['event'] == "FitFinished": xplot = ddict['x'] yplot = ddict['yfit'] self.plot.addCurve(xplot, yplot, legend=self._customFitLegend, resetzoom=False) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ScanWindow.py0000644000000000000000000021040414741736366020611 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module defines a :class:`ScanWindow` inheriting a :class:`PlotWindow` with additional tools and actions.""" __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging import numpy import time import traceback from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str if __name__ == "__main__": app = qt.QApplication([]) from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.plotting import PlotWindow from . import ScanFit from PyMca5.PyMcaMath import SimpleMath from PyMca5.PyMcaCore import DataObject import copy from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview from PyMca5.PyMcaCore import PyMcaDirs from PyMca5.PyMcaGui.pymca import ScanWindowInfoWidget #implement the plugins interface from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave1D MATPLOTLIB = True #force understanding of utf-8 encoding #otherways it cannot generate svg output try: import encodings.utf_8 except Exception: #not a big problem pass PLUGINS_DIR = None try: import PyMca5 if os.path.exists(os.path.join(os.path.dirname(PyMca5.__file__), "PyMcaPlugins")): from PyMca5 import PyMcaPlugins PLUGINS_DIR = os.path.dirname(PyMcaPlugins.__file__) else: directory = os.path.dirname(__file__) while True: if os.path.exists(os.path.join(directory, "PyMcaPlugins")): PLUGINS_DIR = os.path.join(directory, "PyMcaPlugins") break directory = os.path.dirname(directory) if len(directory) < 5: break userPluginsDirectory = PyMca5.getDefaultUserPluginsDirectory() if userPluginsDirectory is not None: if PLUGINS_DIR is None: PLUGINS_DIR = userPluginsDirectory else: PLUGINS_DIR = [PLUGINS_DIR, userPluginsDirectory] except Exception: pass _logger = logging.getLogger(__name__) class ScanWindow(PlotWindow.PlotWindow): def __init__(self, parent=None, name="Scan Window", specfit=None, backend=None, plugins=True, newplot=True, roi=True, fit=True, control=True, position=True, info=False, **kw): super(ScanWindow, self).__init__(parent, newplot=newplot, plugins=plugins, backend=backend, roi=roi, fit=fit, control=control, position=position, **kw) self.setDataMargins(0, 0, 0.025, 0.025) #self._togglePointsSignal() self.setPanWithArrowKeys(True) self.setWindowType("SCAN") # this two objects are the same self.dataObjectsList = self._curveList # but this is tricky self.dataObjectsDict = {} self.setWindowTitle(name) self.matplotlibDialog = None if PLUGINS_DIR is not None: if type(PLUGINS_DIR) == type([]): pluginDir = PLUGINS_DIR else: pluginDir = [PLUGINS_DIR] self.getPlugins(method="getPlugin1DInstance", directoryList=pluginDir) if info: self.scanWindowInfoWidget = ScanWindowInfoWidget.\ ScanWindowInfoWidget() self.infoDockWidget = qt.QDockWidget(self) self.infoDockWidget.layout().setContentsMargins(0, 0, 0, 0) self.infoDockWidget.setWidget(self.scanWindowInfoWidget) self.infoDockWidget.setWindowTitle(self.windowTitle()+(" Info")) self.addDockWidget(qt.Qt.BottomDockWidgetArea, self.infoDockWidget) controlMenu = qt.QMenu() controlMenu.addAction(QString("Show/Hide Legends"), self.toggleLegendWidget) controlMenu.addAction(QString("Show/Hide Info"), self._toggleInfoWidget) controlMenu.addAction(QString("Toggle Crosshair"), self.toggleCrosshairCursor) controlMenu.addAction(QString("Toggle Arrow Keys Panning"), self.toggleArrowKeysPanning) self.setControlMenu(controlMenu) else: self.scanWindowInfoWidget = None #self.fig = None if fit: self.scanFit = ScanFit.ScanFit(specfit=specfit) self.printPreview = PyMcaPrintPreview.PyMcaPrintPreview(modal = 0) self.simpleMath = SimpleMath.SimpleMath() self.outputDir = None self.outputFilter = None #signals if hasattr(self, "derivateToolButton"): # create the derivatives menu self.derivateToolButton.setPopupMode(qt.QToolButton.DelayedPopup) self.derivateOptionSelected = None self.derivateMenu = qt.QMenu() for item in self.simpleMath.derivateOptions: self.derivateMenu.addAction(item) self.derivateToolButton.setMenu(self.derivateMenu) tip = "Take Derivative of active curve" tip += ".\nLong press to configure" self.derivateToolButton.setToolTip(tip) self.derivateToolButton.triggered.connect(self._derivateTriggered) # this one was made in the base class #self.setCallback(self.graphCallback) if fit: from PyMca5.PyMcaGui.math.fitting import SimpleFitGui self.customFit = SimpleFitGui.SimpleFitGui() self.scanFit.sigScanFitSignal.connect(self._scanFitSignalReceived) self.customFit.sigSimpleFitSignal.connect( \ self._customFitSignalReceived) self.fitButtonMenu = qt.QMenu() self.fitButtonMenu.addAction(QString("Simple Fit"), self._simpleFitSignal) self.fitButtonMenu.addAction(QString("Customized Fit") , self._customFitSignal) def _derivateTriggered(self, action): text = action.text() tip = "Take %s derivative of active curve" % text tip += ".\nLong press to configure" self.derivateToolButton.setToolTip(tip) self.derivateOptionSelected = text self._deriveIconSignal() def _toggleInfoWidget(self): if self.infoDockWidget.isHidden(): self.infoDockWidget.show() legend = self.getActiveCurve(just_legend=True) if legend is not None: ddict ={} ddict['event'] = "curveClicked" ddict['label'] = legend ddict['legend'] = legend self.graphCallback(ddict) else: self.infoDockWidget.hide() def _buildLegendWidget(self): if self.legendWidget is None: super(ScanWindow, self)._buildLegendWidget() if hasattr(self, "infoDockWidget") and \ hasattr(self, "roiDockWidget"): self.tabifyDockWidget(self.infoDockWidget, self.roiDockWidget, self.legendDockWidget) elif hasattr(self, "infoDockWidget"): self.tabifyDockWidget(self.infoDockWidget, self.legendDockWidget) def _toggleROI(self, position=None): super(ScanWindow, self)._toggleROI(position=position) if hasattr(self, "infoDockWidget"): self.tabifyDockWidget(self.infoDockWidget, self.roiDockWidget) def setDispatcher(self, w): w.sigAddSelection.connect(self._addSelection) w.sigRemoveSelection.connect(self._removeSelection) w.sigReplaceSelection.connect(self._replaceSelection) def _addSelection(self, selectionlist, replot=True): """Add curves to plot and data objects to :attr:`dataObjectsDict` """ _logger.debug("_addSelection(self, selectionlist) " + str(selectionlist)) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] if len(self._curveList): activeCurve = self.getActiveCurve(just_legend=True) else: activeCurve = None nSelection = len(sellist) for selectionIndex in range(nSelection): sel = sellist[selectionIndex] if selectionIndex == (nSelection - 1): actualReplot = replot else: actualReplot = False source = sel['SourceName'] key = sel['Key'] legend = sel['legend'] #expected form sourcename + scan key if not ("scanselection" in sel): continue if sel['scanselection'] == "MCA": continue if not sel["scanselection"]: continue if len(key.split(".")) > 2: continue dataObject = sel['dataobject'] # only one-dimensional selections considered if dataObject.info["selectiontype"] != "1D": continue # there must be something to plot if not hasattr(dataObject, 'y'): continue if len(dataObject.y) == 0: # nothing to be plot continue else: for i in range(len(dataObject.y)): if numpy.isscalar(dataObject.y[i]): dataObject.y[i] = numpy.array([dataObject.y[i]]) if not hasattr(dataObject, 'x'): ylen = len(dataObject.y[0]) if ylen: xdata = numpy.arange(ylen).astype(numpy.float64) else: #nothing to be plot continue if getattr(dataObject, 'x', None) is None: ylen = len(dataObject.y[0]) if not ylen: # nothing to be plot continue xdata = numpy.arange(ylen).astype(numpy.float64) elif len(dataObject.x) > 1: _logger.debug("Mesh plots. Ignoring") continue else: if numpy.isscalar(dataObject.x[0]): dataObject.x[0] = numpy.array([dataObject.x[0]]) xdata = dataObject.x[0] sps_source = False if 'SourceType' in sel: if sel['SourceType'] == 'SPS': sps_source = True if sps_source: ycounter = -1 if 'selection' not in dataObject.info: dataObject.info['selection'] = copy.deepcopy(sel['selection']) for ydata in dataObject.y: xlabel = None ylabel = None ycounter += 1 if dataObject.m is None: mdata = [numpy.ones(len(ydata)).astype(numpy.float64)] elif len(dataObject.m[0]) > 0: if len(dataObject.m[0]) == len(ydata): index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) #A priori the graph only knows about plots ydata = ydata/mdata else: raise ValueError("Monitor data length different than counter data") else: mdata = [numpy.ones(len(ydata)).astype(numpy.float64)] ylegend = 'y%d' % ycounter if dataObject.info['selection'] is not None: if type(dataObject.info['selection']) == type({}): if 'x' in dataObject.info['selection']: #proper scan selection ilabel = dataObject.info['selection']['y'][ycounter] ylegend = dataObject.info['LabelNames'][ilabel] ylabel = ylegend if sel['selection']['x'] is not None: if len(dataObject.info['selection']['x']): xlabel = dataObject.info['LabelNames'] \ [dataObject.info['selection']['x'][0]] dataObject.info["xlabel"] = xlabel dataObject.info["ylabel"] = ylabel newLegend = legend + " " + ylegend self.dataObjectsDict[newLegend] = dataObject self.addCurve(xdata, ydata, legend=newLegend, info=dataObject.info, xlabel=xlabel, ylabel=ylabel, replot=False) # replot=actualReplot) if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): activeLegend = self.getActiveCurve(just_legend=True) if activeLegend is not None: if activeLegend == newLegend: self.scanWindowInfoWidget.updateFromDataObject\ (dataObject) else: dummyDataObject = DataObject.DataObject() dummyDataObject.y=[numpy.array([])] dummyDataObject.x=[numpy.array([])] self.scanWindowInfoWidget.updateFromDataObject(dummyDataObject) else: # we have to loop for all y values ycounter = -1 for ydata in dataObject.y: ylen = len(ydata) if ylen == 1: if len(xdata) > 1: ydata = ydata[0] * numpy.ones(len(xdata)).astype(numpy.float64) elif len(xdata) == 1: xdata = xdata[0] * numpy.ones(ylen).astype(numpy.float64) ycounter += 1 newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(dataObject.info) if dataObject.m is not None: for imon in range(len(dataObject.m)): if numpy.isscalar(dataObject.m[imon]): dataObject.m[imon] = \ numpy.array([dataObject.m[imon]]) if dataObject.m is None: mdata = numpy.ones(len(ydata)).astype(numpy.float64) elif len(dataObject.m[0]) > 0: if len(dataObject.m[0]) == len(ydata): index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) #A priori the graph only knows about plots ydata = ydata/mdata elif len(dataObject.m[0]) == 1: mdata = numpy.ones(len(ydata)).astype(numpy.float64) mdata *= dataObject.m[0][0] index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) #A priori the graph only knows about plots ydata = ydata/mdata else: raise ValueError("Monitor data length different than counter data") else: mdata = numpy.ones(len(ydata)).astype(numpy.float64) newDataObject.x = [xdata] newDataObject.y = [ydata] newDataObject.m = [mdata] newDataObject.info['selection'] = copy.deepcopy(sel['selection']) ylegend = 'y%d' % ycounter xlabel = None ylabel = None if sel['selection'] is not None: if type(sel['selection']) == type({}): if 'x' in sel['selection']: #proper scan selection newDataObject.info['selection']['x'] = sel['selection']['x'] newDataObject.info['selection']['y'] = [sel['selection']['y'][ycounter]] newDataObject.info['selection']['m'] = sel['selection']['m'] ilabel = newDataObject.info['selection']['y'][0] ylegend = newDataObject.info['LabelNames'][ilabel] ylabel = ylegend if len(newDataObject.info['selection']['x']): ilabel = newDataObject.info['selection']['x'][0] xlabel = newDataObject.info['LabelNames'][ilabel] else: xlabel = "Point number" if ('operations' in dataObject.info) and len(dataObject.y) == 1: newDataObject.info['legend'] = legend symbol = 'x' else: symbol = None newDataObject.info['legend'] = legend + " " + ylegend newDataObject.info['selectionlegend'] = legend yaxis = None if "plot_yaxis" in dataObject.info: yaxis = dataObject.info["plot_yaxis"] elif 'operations' in dataObject.info: if dataObject.info['operations'][-1] == 'derivate': yaxis = 'right' # do not keep unnecessary references self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(xdata, ydata, legend=newDataObject.info['legend'], info=newDataObject.info, symbol=symbol, yaxis=yaxis, xlabel=xlabel, ylabel=ylabel, replot=False) self.dataObjectsList = self._curveList try: if activeCurve is None: if len(self._curveList) > 0: activeCurve = self._curveList[0] ddict = {} ddict['event'] = "curveClicked" ddict['label'] = activeCurve self.graphCallback(ddict) finally: if replot: #self.replot() self.resetZoom() self.updateLegends() def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist)",selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] removelist = [] for sel in sellist: source = sel['SourceName'] key = sel['Key'] if not ("scanselection" in sel): continue if sel['scanselection'] == "MCA": continue if not sel["scanselection"]: continue if len(key.split(".")) > 2: continue legend = sel['legend'] # expected form sourcename + scan key if type(sel['selection']) == type({}): if 'y' in sel['selection']: for lName in ['cntlist', 'LabelNames']: if lName in sel['selection']: for index in sel['selection']['y']: removelist.append(legend +" "+\ sel['selection'][lName][index]) if len(removelist): self.removeCurves(removelist) def removeCurves(self, removeList, replot=True): for legend in removeList: if legend == removeList[-1]: self.removeCurve(legend, replot=replot) else: self.removeCurve(legend, replot=False) if legend in self.dataObjectsDict: del self.dataObjectsDict[legend] self.dataObjectsList = self._curveList def _replaceSelection(self, selectionlist): """Delete existing curves and data objects, then add new selection. """ _logger.debug("_replaceSelection(self, selectionlist) %s" % selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] doit = False for sel in sellist: if not ("scanselection" in sel): continue if sel['scanselection'] == "MCA": continue if not sel["scanselection"]: continue if len(sel["Key"].split(".")) > 2: continue dataObject = sel['dataobject'] if dataObject.info["selectiontype"] == "1D": if hasattr(dataObject, 'y'): doit = True break if not doit: return self.clearCurves() self.dataObjectsDict={} self.dataObjectsList=self._curveList self._addSelection(selectionlist, replot=True) def _handleMarkerEvent(self, ddict): if ddict['event'] == 'markerMoved': label = ddict['label'] if label.startswith('ROI'): return self._handleROIMarkerEvent(ddict) else: _logger.debug("Unhandled marker %s" % label) return def graphCallback(self, ddict): _logger.debug("graphCallback", ddict) if ddict['event'] in ['markerMoved', 'markerSelected']: self._handleMarkerEvent(ddict) elif ddict['event'] in ["mouseMoved", "MouseAt"]: if self._toggleCounter > 0: activeCurve = self.getActiveCurve() if activeCurve in [None, []]: self._handleMouseMovedEvent(ddict) else: x, y, legend, info = activeCurve[0:4] # calculate the maximum distance xMin, xMax = self.getGraphXLimits() maxXDistance = abs(xMax - xMin) yMin, yMax = self.getGraphYLimits() maxYDistance = abs(yMax - yMin) if (maxXDistance > 0.0) and (maxYDistance > 0.0): closestIndex = (pow((x - ddict['x'])/maxXDistance, 2) + \ pow((y - ddict['y'])/maxYDistance, 2)) else: closestIndex = (pow(x - ddict['x'], 2) + \ pow(y - ddict['y'], 2)) xText = '----' yText = '----' if len(closestIndex): closestIndex = closestIndex.argmin() xCurve = x[closestIndex] if abs(xCurve - ddict['x']) < (0.05 * maxXDistance): yCurve = y[closestIndex] if abs(yCurve - ddict['y']) < (0.05 * maxYDistance): xText = '%.7g' % xCurve yText = '%.7g' % yCurve if xText == '----': if self.getGraphCursor(): self._xPos.setStyleSheet("color: rgb(255, 0, 0);") self._yPos.setStyleSheet("color: rgb(255, 0, 0);") xText = '%.7g' % ddict['x'] yText = '%.7g' % ddict['y'] else: self._xPos.setStyleSheet("color: rgb(0, 0, 0);") self._yPos.setStyleSheet("color: rgb(0, 0, 0);") else: self._xPos.setStyleSheet("color: rgb(0, 0, 0);") self._yPos.setStyleSheet("color: rgb(0, 0, 0);") self._xPos.setText(xText) self._yPos.setText(yText) else: self._xPos.setStyleSheet("color: rgb(0, 0, 0);") self._yPos.setStyleSheet("color: rgb(0, 0, 0);") self._handleMouseMovedEvent(ddict) elif ddict['event'] in ["curveClicked", "legendClicked"]: legend = ddict["label"] if legend is None: if len(self.dataObjectsList): legend = self.dataObjectsList[0] else: return if legend not in self.dataObjectsList: _logger.debug("unknown legend %s" % legend) return #force the current x label to the appropriate value dataObject = self.dataObjectsDict[legend] if 'selection' in dataObject.info: ilabel = dataObject.info['selection']['y'][0] ylabel = dataObject.info['LabelNames'][ilabel] if len(dataObject.info['selection']['x']): ilabel = dataObject.info['selection']['x'][0] xlabel = dataObject.info['LabelNames'][ilabel] else: xlabel = "Point Number" if len(dataObject.info['selection']['m']): ilabel = dataObject.info['selection']['m'][0] ylabel += "/" + dataObject.info['LabelNames'][ilabel] else: xlabel = dataObject.info.get('xlabel', None) ylabel = dataObject.info.get('ylabel', None) if xlabel is not None: self.setGraphXLabel(xlabel) if ylabel is not None: self.setGraphYLabel(ylabel) self.setGraphTitle(legend) self.setActiveCurve(legend) #self.setGraphTitle(legend) if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): self.scanWindowInfoWidget.updateFromDataObject\ (dataObject) elif ddict['event'] == "removeCurveEvent": legend = ddict['legend'] self.removeCurves([legend]) elif ddict['event'] == "renameCurveEvent": legend = ddict['legend'] newlegend = ddict['newlegend'] if legend in self.dataObjectsDict: self.dataObjectsDict[newlegend]= copy.deepcopy(self.dataObjectsDict[legend]) self.dataObjectsDict[newlegend].info['legend'] = newlegend self.dataObjectsList.append(newlegend) self.removeCurves([legend], replot=False) self.newCurve(self.dataObjectsDict[newlegend].x[0], self.dataObjectsDict[newlegend].y[0], legend=self.dataObjectsDict[newlegend].info['legend']) #make sure the plot signal is forwarded because we have overwritten #its handling self.sigPlotSignal.emit(ddict) def _customFitSignalReceived(self, ddict): if ddict['event'] == "FitFinished": newDataObject = self.__customFitDataObject xplot = ddict['x'] yplot = ddict['yfit'] newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = [numpy.ones(len(yplot)).astype(numpy.float64)] #here I should check the log or linear status self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(xplot, yplot, legend=newDataObject.info['legend']) def _scanFitSignalReceived(self, ddict): _logger.debug("_scanFitSignalReceived", ddict) if ddict['event'] == "EstimateFinished": return if ddict['event'] == "FitFinished": newDataObject = self.__fitDataObject xplot = self.scanFit.specfit.xdata * 1.0 yplot = self.scanFit.specfit.gendata(parameters=ddict['data']) newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = [numpy.ones(len(yplot)).astype(numpy.float64)] self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(x=xplot, y=yplot, legend=newDataObject.info['legend']) def _fitIconSignal(self): _logger.debug("_fitIconSignal") self.fitButtonMenu.exec(self.cursor().pos()) def _simpleFitSignal(self): _logger.debug("_simpleFitSignal") self._QSimpleOperation("fit") def _customFitSignal(self): _logger.debug("_customFitSignal") self._QSimpleOperation("custom_fit") def _saveIconSignal(self): _logger.debug("_saveIconSignal") if self._ownSave: self._QSimpleOperation("save") else: self.emitIconSignal("save") def _averageIconSignal(self): _logger.debug("_averageIconSignal") self._QSimpleOperation("average") def _smoothIconSignal(self): _logger.debug("_smoothIconSignal") self._QSimpleOperation("smooth") def _getOutputFileName(self): #get outputfile self.outputDir = PyMcaDirs.outputDir if self.outputDir is None: self.outputDir = os.getcwd() wdir = os.getcwd() elif os.path.exists(self.outputDir): wdir = self.outputDir else: self.outputDir = os.getcwd() wdir = self.outputDir filterlist = ['Specfile MCA *.mca', 'Specfile Scan *.dat', 'Specfile MultiScan *.dat', 'Raw ASCII *.txt', '","-separated CSV *.csv', '";"-separated CSV *.csv', '"tab"-separated CSV *.csv', 'OMNIC CSV *.csv', 'Widget PNG *.png', 'Widget JPG *.jpg', 'Graphics PNG *.png', 'Graphics EPS *.eps', 'Graphics SVG *.svg'] fileList, fileFilter = PyMcaFileDialogs.getFileList(self, filetypelist=filterlist, message="Output File Selection", currentdir=wdir, single=True, mode="SAVE", getfilter=True, currentfilter=self.outputFilter) if not len(fileList): return filterused = fileFilter.split() filetype = filterused[1] extension = filterused[2] outdir = qt.safe_str(fileList[0]) try: self.outputDir = os.path.dirname(outdir) PyMcaDirs.outputDir = os.path.dirname(outdir) except Exception: print("setting output directory to default") self.outputDir = os.getcwd() try: outputFile = os.path.basename(outdir) except Exception: outputFile = outdir if len(outputFile) < 5: outputFile = outputFile + extension[-4:] elif outputFile[-4:] != extension[-4:]: outputFile = outputFile + extension[-4:] return os.path.join(self.outputDir, outputFile), filetype, filterused def _QSimpleOperation(self, operation): try: self._simpleOperation(operation) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _saveOperation(self, fileName, fileType, fileFilter): filterused = fileFilter filetype = fileType filename = fileName if os.path.exists(filename): os.remove(filename) if filterused[0].upper() == "WIDGET": fformat = filename[-3:].upper() if hasattr(qt.QPixmap, "grabWidget"): pixmap = qt.QPixmap.grabWidget(self) else: pixmap = self.grab() if not pixmap.save(filename, fformat): qt.QMessageBox.critical(self, "Save Error", "%s" % sys.exc_info()[1]) return try: if filename[-3:].upper() in ['EPS', 'PNG', 'SVG']: self.graphicsSave(filename) return except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Graphics Saving Error: %s" % (sys.exc_info()[1])) msg.exec() return systemline = os.linesep os.linesep = '\n' try: if sys.version < "3.0": ffile=open(filename, "wb") else: ffile=open(filename, "w", newline='') except IOError: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Input Output Error: %s" % (sys.exc_info()[1])) msg.exec() return x, y, legend, info = self.getActiveCurve() xlabel = info.get("xlabel", "X") ylabel = info.get("ylabel", "Y") if 0: if "selection" in info: if type(info['selection']) == type({}): if 'x' in info['selection']: #proper scan selection ilabel = info['selection']['y'][0] ylegend = info['LabelNames'][ilabel] ylabel = ylegend if info['selection']['x'] is not None: if len(info['selection']['x']): xlabel = info['LabelNames'] [info['selection']['x'][0]] else: xlabel = "Point number" try: if filetype in ['Scan', 'MultiScan']: ffile.write("#F %s\n" % filename) savingDate = "#D %s\n"%(time.ctime(time.time())) ffile.write(savingDate) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (xlabel, ylabel) ) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") if filetype == 'MultiScan': scan_n = 1 curveList = self.getAllCurves() for x, y, key, info in curveList: if key == legend: continue xlabel = info.get("xlabel", "X") ylabel = info.get("ylabel", "Y") if 0: if "selection" in info: if type(info['selection']) == type({}): if 'x' in info['selection']: #proper scan selection ilabel = info['selection']['y'][0] ylegend = info['LabelNames'][ilabel] ylabel = ylegend if info['selection']['x'] is not None: if len(info['selection']['x']): xlabel = info['LabelNames'] [info['selection']['x'][0]] else: xlabel = "Point number" scan_n += 1 ffile.write("#S %d %s\n" % (scan_n, key)) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (xlabel, ylabel) ) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") elif filetype == 'ASCII': for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) elif filetype == 'CSV': if "," in filterused[0]: csvseparator = "," elif ";" in filterused[0]: csvseparator = ";" elif "OMNIC" in filterused[0]: csvseparator = "," else: csvseparator = "\t" if "OMNIC" not in filterused[0]: ffile.write('"%s"%s"%s"\n' % (xlabel,csvseparator,ylabel)) for i in range(len(y)): ffile.write("%.7E%s%.7E\n" % (x[i], csvseparator,y[i])) else: ffile.write("#F %s\n" % filename) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (len(y), x[0], x[-1])) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (0, 1, 0)) ffile.write(self.array2SpecMca(y)) ffile.write("\n") ffile.close() os.linesep = systemline except: os.linesep = systemline raise return def _simpleOperation(self, operation): if operation == 'subtract': self._subtractOperation() return if operation == "save": #getOutputFileName filename = self._getOutputFileName() if filename is None: return self._saveOperation(filename[0], filename[1], filename[2]) return if operation != "average": #get active curve legend = self.getActiveCurveLegend() if legend is None:return found = False for key in self.dataObjectsList: if key == legend: found = True break if found: dataObject = self.dataObjectsDict[legend] else: print("I should not be here") print("active curve =",legend) print("but legend list = ",self.dataObjectsList) return y = dataObject.y[0] if dataObject.x is not None: x = dataObject.x[0] else: x = numpy.arange(len(y)).astype(numpy.float64) ilabel = dataObject.info['selection']['y'][0] ylabel = dataObject.info['LabelNames'][ilabel] if len(dataObject.info['selection']['x']): ilabel = dataObject.info['selection']['x'][0] xlabel = dataObject.info['LabelNames'][ilabel] else: xlabel = "Point Number" else: x = [] y = [] legend = "" i = 0 ndata = 0 for key in self._curveList: _logger.debug("key -> ", key) if key in self.dataObjectsDict: x.append(self.dataObjectsDict[key].x[0]) #only the first X if len(self.dataObjectsDict[key].y) == 1: y.append(self.dataObjectsDict[key].y[0]) else: sel_legend = self.dataObjectsDict[key].info['legend'] ilabel = 0 #I have to get the proper y associated to the legend if sel_legend in key: if key.index(sel_legend) == 0: label = key[len(sel_legend):] while (label.startswith(' ')): label = label[1:] if not len(label): break if label in self.dataObjectsDict[key].info['LabelNames']: ilabel = self.dataObjectsDict[key].info['LabelNames'].index(label) _logger.debug("LABEL = ", label) _logger.debug("ilabel = ", ilabel) y.append(self.dataObjectsDict[key].y[ilabel]) if i == 0: legend = key firstcurve = key i += 1 else: legend += " + " + key lastcurve = key ndata += 1 if ndata == 0: return #nothing to average dataObject = self.dataObjectsDict[firstcurve] #create the output data object newDataObject = DataObject.DataObject() newDataObject.data = None newDataObject.info = copy.deepcopy(dataObject.info) if 'selectionlegend' in newDataObject.info: del newDataObject.info['selectionlegend'] if not ('operations' in newDataObject.info): newDataObject.info['operations'] = [] newDataObject.info['operations'].append(operation) sel = {} sel['SourceType'] = "Operation" #get new x and new y if operation == "derivate": #xmin and xmax xlimits=self.getGraphXLimits() xplot, yplot = self.simpleMath.derivate(x, y, xlimits=xlimits, option=self.derivateOptionSelected) ilabel = dataObject.info['selection']['y'][0] ylabel = dataObject.info['LabelNames'][ilabel] newDataObject.info['LabelNames'][ilabel] = ylabel+"'" newDataObject.info['plot_yaxis'] = "right" sel['SourceName'] = legend sel['Key'] = "'" sel['legend'] = legend + sel['Key'] outputlegend = legend + sel['Key'] elif operation == "average": xplot, yplot = self.simpleMath.average(x, y) if len(legend) < 80: sel['SourceName'] = legend sel['Key'] = "" sel['legend'] = "(%s)/%d" % (legend, ndata) outputlegend = "(%s)/%d" % (legend, ndata) else: sel['SourceName'] = legend legend = "Average of %d from %s to %s" % (ndata, firstcurve, lastcurve) sel['Key'] = "" sel['legend'] = legend outputlegend = legend elif operation == "swapsign": xplot = x * 1 yplot = -y sel['SourceName'] = legend sel['Key'] = "" sel['legend'] = "-(%s)" % legend outputlegend = "-(%s)" % legend elif operation == "smooth": xplot = x * 1 yplot = self.simpleMath.smooth(y) sel['SourceName'] = legend sel['Key'] = "" sel['legend'] = "%s Smooth" % legend outputlegend = "%s Smooth" % legend if 'operations' in dataObject.info: if len(dataObject.info['operations']): if dataObject.info['operations'][-1] == "smooth": sel['legend'] = legend outputlegend = legend elif operation == "forceymintozero": xplot = x * 1 yplot = y - min(y) sel['SourceName'] = legend sel['Key'] = "" sel['legend'] = "(%s) - ymin" % legend outputlegend = "(%s) - ymin" % legend elif operation == "fit": #remove a existing fit if present xmin,xmax=self.getGraphXLimits() outputlegend = legend + " Fit" for key in self._curveList: if key == outputlegend: self.removeCurves([outputlegend], replot=False) break self.scanFit.setData(x = x, y = y, xmin = xmin, xmax = xmax, legend = legend) if self.scanFit.isHidden(): self.scanFit.show() self.scanFit.raise_() elif operation == "custom_fit": #remove a existing fit if present xmin, xmax=self.getGraphXLimits() outputlegend = legend + "Custom Fit" keyList = list(self._curveList) for key in keyList: if key == outputlegend: self.removeCurves([outputlegend], replot=False) break self.customFit.setData(x = x, y = y, xmin = xmin, xmax = xmax, legend = legend) if self.customFit.isHidden(): self.customFit.show() self.customFit.raise_() else: raise ValueError("Unknown operation %s" % operation) if operation not in ["fit", "custom_fit"]: newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = [numpy.ones(len(yplot)).astype(numpy.float64)] #and add it to the plot if True and (operation not in ['fit', 'custom_fit']): sel['dataobject'] = newDataObject sel['scanselection'] = True sel['selection'] = copy.deepcopy(dataObject.info['selection']) sel['selectiontype'] = "1D" if operation == 'average': self._replaceSelection([sel]) elif operation != 'fit': self._addSelection([sel]) else: self.__fitDataObject = newDataObject return else: newDataObject.info['legend'] = outputlegend if operation == 'fit': self.__fitDataObject = newDataObject return if operation == 'custom_fit': self.__customFitDataObject = newDataObject return self.dataObjectsDict[newDataObject.info['legend']] = newDataObject #here I should check the log or linear status self.addCurve(x=xplot, y=yplot, legend=newDataObject.info['legend'], replot=False) self.replot() def graphicsSave(self, filename): #use the plugin interface x, y, legend, info = self.getActiveCurve()[:4] curveList = self.getAllCurves() size = (6, 3) #in inches bw = False if len(curveList) > 1: legends = True else: legends = False if self.matplotlibDialog is None: self.matplotlibDialog = QPyMcaMatplotlibSave1D.\ QPyMcaMatplotlibSaveDialog(size=size, logx=self._logX, logy=self._logY, legends=legends, bw = bw) mtplt = self.matplotlibDialog.plot mtplt.setParameters({'logy':self._logY, 'logx':self._logX, 'legends':legends, 'bw':bw}) xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() mtplt.setLimits(xmin, xmax, ymin, ymax) legend0 = legend xdata = x ydata = y dataCounter = 1 alias = "%c" % (96+dataCounter) mtplt.addDataToPlot( xdata, ydata, legend=legend0, alias=alias ) for curve in curveList: xdata, ydata, legend, info = curve[0:4] if legend == legend0: continue dataCounter += 1 alias = "%c" % (96+dataCounter) mtplt.addDataToPlot( xdata, ydata, legend=legend, alias=alias ) if sys.version < '3.0': self.matplotlibDialog.setXLabel(qt.safe_str(self.getGraphXLabel())) self.matplotlibDialog.setYLabel(qt.safe_str(self.getGraphYLabel())) else: self.matplotlibDialog.setXLabel(self.getGraphXLabel()) self.matplotlibDialog.setYLabel(self.getGraphYLabel()) if legends: mtplt.plotLegends() ret = self.matplotlibDialog.exec() if ret == qt.QDialog.Accepted: mtplt.saveFile(filename) return def getActiveCurveLegend(self): return super(ScanWindow,self).getActiveCurve(just_legend=True) def _deriveIconSignal(self): _logger.debug("_deriveIconSignal") self._QSimpleOperation('derivate') def _swapSignIconSignal(self): _logger.debug("_swapSignIconSignal") self._QSimpleOperation('swapsign') def _yMinToZeroIconSignal(self): _logger.debug("_yMinToZeroIconSignal") self._QSimpleOperation('forceymintozero') def _subtractIconSignal(self): _logger.debug("_subtractIconSignal") self._QSimpleOperation('subtract') def _subtractOperation(self): #identical to twice the average with the negative active curve #get active curve legend = self.getActiveCurveLegend() if legend is None: return found = False for key in self.dataObjectsList: if key == legend: found = True break if found: dataObject = self.dataObjectsDict[legend] else: print("I should not be here") print("active curve =",legend) print("but legend list = ",self.dataObjectsList) return x = dataObject.x[0] y = dataObject.y[0] ilabel = dataObject.info['selection']['y'][0] ylabel = dataObject.info['LabelNames'][ilabel] if len(dataObject.info['selection']['x']): ilabel = dataObject.info['selection']['x'][0] xlabel = dataObject.info['LabelNames'][ilabel] else: xlabel = "Point Number" xActive = x yActive = y yActiveLegend = legend yActiveLabel = ylabel xActiveLabel = xlabel operation = "subtract" sel_list = [] i = 0 ndata = 0 keyList = list(self._curveList) for key in keyList: legend = "" x = [xActive] y = [-yActive] _logger.debug("key -> ", key) if key in self.dataObjectsDict: x.append(self.dataObjectsDict[key].x[0]) #only the first X if len(self.dataObjectsDict[key].y) == 1: y.append(self.dataObjectsDict[key].y[0]) ilabel = self.dataObjectsDict[key].info['selection']['y'][0] else: sel_legend = self.dataObjectsDict[key].info['legend'] ilabel = self.dataObjectsDict[key].info['selection']['y'][0] #I have to get the proper y associated to the legend if sel_legend in key: if key.index(sel_legend) == 0: label = key[len(sel_legend):] while (label.startswith(' ')): label = label[1:] if not len(label): break if label in self.dataObjectsDict[key].info['LabelNames']: ilabel = self.dataObjectsDict[key].info['LabelNames'].index(label) _logger.debug("LABEL = ", label) _logger.debug("ilabel = ", ilabel) y.append(self.dataObjectsDict[key].y[ilabel]) outputlegend = "(%s - %s)" % (key, yActiveLegend) ndata += 1 xplot, yplot = self.simpleMath.average(x, y) yplot *= 2 #create the output data object newDataObject = DataObject.DataObject() newDataObject.data = None newDataObject.info.update(self.dataObjectsDict[key].info) if not ('operations' in newDataObject.info): newDataObject.info['operations'] = [] newDataObject.info['operations'].append(operation) newDataObject.info['LabelNames'][ilabel] = "(%s - %s)" % \ (newDataObject.info['LabelNames'][ilabel], yActiveLabel) newDataObject.x = [xplot] newDataObject.y = [yplot] newDataObject.m = None sel = {} sel['SourceType'] = "Operation" sel['SourceName'] = key sel['Key'] = "" sel['legend'] = outputlegend sel['dataobject'] = newDataObject sel['scanselection'] = True sel['selection'] = copy.deepcopy(dataObject.info['selection']) #sel['selection']['y'] = [ilabel] sel['selectiontype'] = "1D" sel_list.append(sel) if True: #The legend menu was not working with the next line #but if works if I add the list self._replaceSelection(sel_list) else: oldlist = list(self.dataObjectsDict) self._addSelection(sel_list) self.removeCurves(oldlist) #The plugins interface def getGraphYLimits(self): #if the active curve is mapped to second axis #I should give the second axis limits return super(ScanWindow, self).getGraphYLimits() #end of plugins interface def addCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): if legend in self._curveList: if info is None: info = {} oldStuff = self.getCurve(legend) if len(oldStuff): oldX, oldY, oldLegend, oldInfo = oldStuff else: oldInfo = {} if color is None: color = info.get("plot_color", oldInfo.get("plot_color", None)) if symbol is None: symbol = info.get("plot_symbol",oldInfo.get("plot_symbol", None)) if linestyle is None: linestyle = info.get("plot_linestyle",oldInfo.get("plot_linestyle", None)) if yaxis is None: yaxis = info.get("plot_yaxis",oldInfo.get("plot_yaxis", None)) else: if info is None: info = {} if color is None: color = info.get("plot_color", None) if symbol is None: symbol = info.get("plot_symbol", None) if linestyle is None: linestyle = info.get("plot_linestyle", None) if yaxis is None: yaxis = info.get("plot_yaxis", None) if legend in self.dataObjectsDict: # the info is changing super(ScanWindow, self).addCurve(x, y, legend=legend, info=info, replace=replace, replot=replot, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) else: # create the data object self.newCurve(x, y, legend=legend, info=info, replace=replace, replot=replot, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) def newCurve(self, x, y, legend=None, info=None, replace=False, replot=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): if legend is None: legend = "Unnamed curve 1.1" if xlabel is None: xlabel = "X" if ylabel is None: ylabel = "Y" if info is None: info = {} # this is awfull but I have no other way to pass the plot information ... if color is not None: info["plot_color"] = color if symbol is not None: info["plot_symbol"] = symbol if linestyle is not None: info["plot_linestyle"] = linestyle if yaxis is not None: info["plot_yaxis"] = yaxis newDataObject = DataObject.DataObject() newDataObject.x = [x] newDataObject.y = [y] newDataObject.m = None newDataObject.info = copy.deepcopy(info) newDataObject.info['legend'] = legend newDataObject.info['SourceName'] = legend newDataObject.info['Key'] = "" newDataObject.info['selectiontype'] = "1D" newDataObject.info['LabelNames'] = [xlabel, ylabel] newDataObject.info['selection'] = {'x': [0], 'y': [1]} sel_list = [] sel = {} sel['SourceType'] = "Operation" sel['SourceName'] = legend sel['Key'] = "" sel['legend'] = legend sel['dataobject'] = newDataObject sel['scanselection'] = True sel['selection'] = {'x':[0], 'y':[1], 'm':[], 'cntlist':[xlabel, ylabel]} #sel['selection']['y'] = [ilabel] sel['selectiontype'] = "1D" sel_list.append(sel) if replace: self._replaceSelection(sel_list) else: self._addSelection(sel_list, replot=replot) def printGraph(self): if self.printPreview.printer is None: # setup needed self.printPreview.setup() self._printer = self.printPreview.printer if self._printer is None: # printer was not selected return #self._printer = None if PlotWindow.PlotWidget.SVG: svg = True self._svgRenderer = self.getSvgRenderer() else: svg = False if hasattr(self, "getWidgetHandle"): widget = self.getWidgetHandle() else: widget = self.centralWidget() if hasattr(widget, "grab"): pixmap = widget.grab() else: pixmap = qt.QPixmap.grabWidget(widget) title = None comment = None if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): info = self.scanWindowInfoWidget.getInfo() title = info['scan'].get('source', None) comment = info['scan'].get('scan', None)+"\n" h, k, l = info['scan'].get('hkl') if h != "----": comment += "H = %s K = %s L = %s\n" % (h, k, l) peak = info['graph']['peak'] peakAt = info['graph']['peakat'] fwhm = info['graph']['fwhm'] fwhmAt = info['graph']['fwhmat'] com = info['graph']['com'] mean = info['graph']['mean'] std = info['graph']['std'] minimum = info['graph']['min'] maximum = info['graph']['max'] delta = info['graph']['delta'] xLabel = self.getGraphXLabel() comment += "Peak %s at %s = %s\n" % (peak, xLabel, peakAt) comment += "FWHM %s at %s = %s\n" % (fwhm, xLabel, fwhmAt) comment += "COM = %s Mean = %s STD = %s\n" % (com, mean, std) comment += "Min = %s Max = %s Delta = %s\n" % (minimum, maximum, delta) if hasattr(self, "scanFit"): if not self.scanFit.isHidden(): if comment is None: comment = "" comment += "\n" comment += self.scanFit.getText() if svg: self.printPreview.addSvgItem(self._svgRenderer, title=None, comment=comment, commentPosition="LEFT") else: self.printPreview.addPixmap(pixmap, title=None, comment=comment, commentPosition="LEFT") if self.printPreview.isHidden(): self.printPreview.show() self.printPreview.raise_() def getSvgRenderer(self, printer=None): if printer is None: if self.printPreview.printer is None: # setup needed self.printPreview.setup() self._printer = self.printPreview.printer printer = self._printer if printer is None: # printer was not selected # return a renderer without adjusting the viewbox if sys.version < '3.0': import cStringIO as StringIO imgData = StringIO.StringIO() else: from io import StringIO imgData = StringIO() self.saveGraph(imgData, fileFormat='svg') imgData.flush() imgData.seek(0) svgData = imgData.read() imgData = None svgRenderer = qt.QSvgRenderer() svgRenderer._svgRawData = svgData svgRenderer._svgRendererData = qt.QXmlStreamReader(svgData) if not svgRenderer.load(svgRenderer._svgRendererData): raise RuntimeError("Cannot interpret svg data") return svgRenderer # we have what is to be printed if sys.version < '3.0': import cStringIO as StringIO imgData = StringIO.StringIO() else: from io import StringIO imgData = StringIO() self.saveGraph(imgData, fileFormat='svg') imgData.flush() imgData.seek(0) svgData = imgData.read() imgData = None svgRenderer = qt.QSvgRenderer() #svgRenderer = PlotWindow.PlotWindow.getSvgRenderer(self) # we have to specify the bounding box config = self.getPrintConfiguration() width = config['width'] height = config['height'] xOffset = config['xOffset'] yOffset = config['yOffset'] units = config['units'] keepAspectRatio = config['keepAspectRatio'] dpix = printer.logicalDpiX() dpiy = printer.logicalDpiY() # get the available space availableWidth = printer.width() availableHeight = printer.height() # convert the offsets to dpi if units.lower() in ['inch', 'inches']: xOffset = xOffset * dpix yOffset = yOffset * dpiy if width is not None: width = width * dpix if height is not None: height = height * dpiy elif units.lower() in ['cm', 'centimeters']: xOffset = (xOffset/2.54) * dpix yOffset = (yOffset/2.54) * dpiy if width is not None: width = (width/2.54) * dpix if height is not None: height = (height/2.54) * dpiy else: # page units xOffset = availableWidth * xOffset yOffset = availableHeight * yOffset if width is not None: width = availableWidth * width if height is not None: height = availableHeight * height availableWidth -= xOffset availableHeight -= yOffset if width is not None: if (availableWidth + 0.1) < width: txt = "Available width %f is less than requested width %f" % \ (availableWidth, width) raise ValueError(txt) availableWidth = width if height is not None: if (availableHeight + 0.1) < height: txt = "Available height %f is less than requested height %f" % \ (availableHeight, height) raise ValueError(txt) availableHeight = height if keepAspectRatio: #get the aspect ratio widget = self.getWidgetHandle() if widget is None: # does this make sense? graphWidth = availableWidth graphHeight = availableHeight else: graphWidth = float(widget.width()) graphHeight = float(widget.height()) graphRatio = graphHeight / graphWidth # that ratio has to be respected bodyWidth = availableWidth bodyHeight = availableWidth * graphRatio if bodyHeight > availableHeight: bodyHeight = availableHeight bodyWidth = bodyHeight / graphRatio else: bodyWidth = availableWidth bodyHeight = availableHeight body = qt.QRectF(xOffset, yOffset, bodyWidth, bodyHeight) # this does not work if I set the svgData before svgRenderer.setViewBox(body) svgRenderer._viewBox = body if not sys.version.startswith("2"): svgData = svgData.encode(encoding="utf-8", errors="replace") svgRenderer._svgRawData = svgData svgRenderer._svgRendererData = qt.QXmlStreamReader(svgData) if not svgRenderer.load(svgRenderer._svgRendererData): raise RuntimeError("Cannot interpret svg data") return svgRenderer def test(): w = ScanWindow() x = numpy.arange(1000.) y = 10 * x + 10000. * numpy.exp(-0.5*(x-500)*(x-500)/400) w.addCurve(x, y, legend="dummy", replot=True, replace=True) w.resetZoom() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == "__main__": test() app = None ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/ScanWindowInfoWidget.py0000644000000000000000000003670614741736366022604 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt import logging _logger = logging.getLogger(__name__) QTVERSION = qt.qVersion() """ This module implements an info widget containing : - source name, scan name - h,k,l infos - peak, peak position - fwhm, center of fwhm - center of mass """ DEBUG = 0 STATISTICS = 1 class SpecArithmetic(object): """ This class tries to mimic SPEC operations. Correct peak positions and fwhm information have to be made via a fit. """ def search_peak(self, xdata, ydata): """ Search a peak and its position in arrays xdata ad ydata. Return three integer: - peak position - peak value - index of peak position in array xdata This result may accelerate the fwhm search. """ ydata = numpy.asarray(ydata) ymax = ydata[numpy.isfinite(ydata)].max() idx = self.__give_index(ymax, ydata) return xdata[idx], ymax, idx def search_com(self, xdata,ydata): """ Return the center of mass in arrays xdata and ydata """ num = numpy.sum(xdata * ydata) denom = numpy.sum(ydata) if abs(denom) > 0: result = num / denom else: result = 0 return result def search_fwhm(self, xdata, ydata, peak=None, index=None): """ Search a fwhm and its center in arrays xdata and ydatas. If no fwhm is found, (0,0) is returned. peak and index which are coming from search_peak result, may accelerate calculation """ if peak is None or index is None: x, mypeak, index_peak = self.search_peak(xdata, ydata) else: mypeak = peak index_peak = index hm = mypeak / 2 idx = index_peak try: while ydata[idx] >= hm: idx -= 1 x0 = float(xdata[idx]) x1 = float(xdata[idx + 1]) y0 = float(ydata[idx]) y1 = float(ydata[idx + 1]) lhmx = (hm * (x1 - x0) - (y0 * x1) + (y1 * x0)) / (y1 - y0) except ZeroDivisionError: lhmx = 0 except IndexError: lhmx = xdata[0] idx = index_peak try: while ydata[idx] >= hm: idx += 1 x0 = float(xdata[idx - 1]) x1 = float(xdata[idx]) y0 = float(ydata[idx - 1]) y1 = float(ydata[idx]) uhmx = (hm * (x1 - x0) - (y0 * x1) + (y1 * x0)) / (y1 - y0) except ZeroDivisionError: uhmx = 0 except IndexError: uhmx = xdata[-1] fwhm = uhmx - lhmx cfwhm = (uhmx + lhmx) / 2 return fwhm, cfwhm def __give_index(self, elem,array): """ Return the index of elem in array """ mylist = array.tolist() return mylist.index(elem) class HKL(qt.QWidget): def __init__(self, parent=None, h="", k="", l=""): qt.QWidget.__init__(self, parent) layout = qt.QHBoxLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) hlabel = qt.QLabel(self) hlabel.setText('H:') self.h = qt.QLineEdit(self) self.h.setReadOnly(True) fmetrics = self.h.fontMetrics() fmtext = '##.####' if hasattr(fmetrics, "maxWidth"): width = fmetrics.maxWidth()*len(fmtext) else: #deprecated _logger.info("Using deprecated method") width = fmetrics.width(fmtext) self.h.setFixedWidth(width) klabel = qt.QLabel(self) klabel.setText('K:') self.k = qt.QLineEdit(self) self.k.setReadOnly(True) self.k.setFixedWidth(width) llabel = qt.QLabel(self) llabel.setText('L:') self.l = qt.QLineEdit(self) self.l.setReadOnly(True) self.l.setFixedWidth(width) self.setHKL(h, k, l) layout.addWidget(hlabel) layout.addWidget(self.h) layout.addWidget(klabel) layout.addWidget(self.k) layout.addWidget(llabel) layout.addWidget(self.l) def setHKL(self, h="", k="", l=""): dformat = "%.4f" if isinstance(h, str): self.h.setText(h) else: self.h.setText(dformat % h) if isinstance(k, str): self.k.setText(k) else: self.k.setText(dformat % k) if isinstance(l, str): self.l.setText(l) else: self.l.setText(dformat % l) class GraphInfoWidget(qt.QWidget): """Widget displaying statistics about curve data: peak info (x position, y value, fwhm, center of fwhm), max y value, min y value, delta y, mean y, center of mass of y values, standard deviation of y. This information is extracted directly from the curve data.""" def __init__(self, parent): qt.QWidget.__init__(self, parent) layout = qt.QGridLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) # peak peak = qt.QLabel(self) peak.setText("Peak: ") self.peak = qt.QLineEdit(self) self.peak.setReadOnly(True) hboxPeak = qt.QWidget(self) hboxPeak.l = qt.QHBoxLayout(hboxPeak) hboxPeak.l.setContentsMargins(0, 0, 0, 0) hboxPeak.l.setSpacing(0) peakAt = qt.QLabel(hboxPeak) peakAt.setText(" at:") self.peakAt = qt.QLineEdit(hboxPeak) self.peak.setReadOnly(True) hboxPeak.l.addWidget(peakAt) hboxPeak.l.addWidget(self.peakAt) # fwhm fwhm = qt.QLabel(self) fwhm.setText("Fwhm: ") self.fwhm = qt.QLineEdit(self) self.fwhm.setReadOnly(True) hboxFwhm = qt.QWidget(self) hboxFwhm.l = qt.QHBoxLayout(hboxFwhm) hboxFwhm.l.setContentsMargins(0, 0, 0, 0) hboxFwhm.l.setSpacing(0) fwhmAt = qt.QLabel(hboxFwhm) fwhmAt.setText(" at:") self.fwhmAt = qt.QLineEdit(hboxFwhm) self.fwhm.setReadOnly(True) hboxFwhm.l.addWidget(fwhmAt) hboxFwhm.l.addWidget(self.fwhmAt) # statistics # COM com = qt.QLabel(self) com.setText("COM:") self.com = qt.QLineEdit(self) self.com.setReadOnly(True) # mean mean = qt.QLabel(self) mean.setText("Mean:") self.mean = qt.QLineEdit(self) self.mean.setReadOnly(True) # STD std = qt.QLabel(self) std.setText("STD:") self.std = qt.QLineEdit(self) self.std.setReadOnly(True) # Max maximum = qt.QLabel(self) maximum.setText("Max:") self.maximum = qt.QLineEdit(self) self.maximum.setReadOnly(True) # Min minimum = qt.QLabel(self) minimum.setText("Min:") self.minimum = qt.QLineEdit(self) self.minimum.setReadOnly(True) # STD delta = qt.QLabel(self) delta.setText("Delta:") self.delta = qt.QLineEdit(self) self.delta.setReadOnly(True) layout.addWidget(peak, 0, 0) layout.addWidget(self.peak, 0, 1) layout.addWidget(hboxPeak, 0, 2) layout.addWidget(com, 0, 3) layout.addWidget(self.com, 0, 4) layout.addWidget(mean, 0, 5) layout.addWidget(self.mean, 0, 6) layout.addWidget(std, 0, 7) layout.addWidget(self.std, 0, 8) layout.addWidget(fwhm, 1, 0) layout.addWidget(self.fwhm, 1, 1) layout.addWidget(hboxFwhm, 1, 2) layout.addWidget(maximum, 1, 3) layout.addWidget(self.maximum, 1, 4) layout.addWidget(minimum, 1, 5) layout.addWidget(self.minimum, 1, 6) layout.addWidget(delta, 1, 7) layout.addWidget(self.delta, 1, 8) self.specArithmetic = SpecArithmetic() def updateFromDataObject(self, dataObject): ydata = numpy.ravel(dataObject.y[0]) ylen = len(ydata) if ylen: if dataObject.x is None: xdata = numpy.arange(ylen).astype(numpy.float64) elif not len(dataObject.x): xdata = numpy.arange(ylen).astype(numpy.float64) else: xdata = numpy.ravel(dataObject.x[0]) else: xdata = None self.updateFromXY(xdata, ydata) def updateFromXY(self, xdata, ydata): if len(ydata): peakpos, peak, myidx = self.specArithmetic.search_peak(xdata, ydata) com = self.specArithmetic.search_com(xdata, ydata) fwhm, cfwhm = self.specArithmetic.search_fwhm(xdata, ydata, peak=peak, index=myidx) ymax = max(ydata) ymin = min(ydata) ymean = sum(ydata) / len(ydata) if len(ydata) > 1: ystd = numpy.sqrt(sum((ydata - ymean) * (ydata - ymean)) / len(ydata)) else: ystd = 0 delta = ymax - ymin fformat = "%.7g" peakpos = fformat % peakpos peak = fformat % peak # myidx = "%d" % myidx com = fformat % com fwhm = fformat % fwhm cfwhm = fformat % cfwhm ymean = fformat % ymean ystd = fformat % ystd ymax = fformat % ymax ymin = fformat % ymin delta = fformat % delta else: peakpos = "----" peak = "----" # myidx = "----" com = "----" fwhm = "----" cfwhm = "----" ymean = "----" ystd = "----" ymax = "----" ymin = "----" delta = "----" self.peak.setText(peak) self.peakAt.setText(peakpos) self.fwhm.setText(fwhm) self.fwhmAt.setText(cfwhm) self.com.setText(com) self.mean.setText(ymean) self.std.setText(ystd) self.minimum.setText(ymin) self.maximum.setText(ymax) self.delta.setText(delta) def getInfo(self): ddict={} ddict['peak'] = self.peak.text() ddict['peakat'] = self.peakAt.text() ddict['fwhm'] = self.fwhm.text() ddict['fwhmat'] = self.fwhmAt.text() ddict['com'] = self.com.text() ddict['mean'] = self.mean.text() ddict['std'] = self.std.text() ddict['min'] = self.minimum.text() ddict['max'] = self.maximum.text() ddict['delta'] = self.delta.text() return ddict class ScanInfoWidget(qt.QWidget): """Widget displaying curve metadata: data source, first scan header line, H, K, L This information is extracted from the curve info dict.""" def __init__(self, parent=None): qt.QWidget.__init__(self, parent) layout = qt.QGridLayout(self) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(2) # scan info hBox = qt.QWidget(self) hBoxLayout = qt.QHBoxLayout(hBox) hBoxLayout.setContentsMargins(0, 0, 0, 0) hBoxLayout.setSpacing(0) sourceLabel = qt.QLabel(hBox) sourceLabel.setText('Source:') self.sourceLabel = qt.QLineEdit(hBox) self.sourceLabel.setReadOnly(True) hBoxLayout.addWidget(sourceLabel) hBoxLayout.addWidget(self.sourceLabel) scanLabel = qt.QLabel(self) scanLabel.setText('Scan: ') self.scanLabel = qt.QLineEdit(self) self.scanLabel.setReadOnly(True) self.hkl = HKL(self) layout.addWidget(hBox, 0, 0, 1, 7) # layout.addWidget(self.sourceLabel, 0, 1)#, 1, 9) layout.addWidget(scanLabel, 1, 0) layout.addWidget(self.scanLabel, 1, 1) layout.addWidget(self.hkl, 1, 4, 1, 3) def updateFromDataObject(self, dataObject): info = dataObject.info return self.updateFromInfoDict(info) def updateFromInfoDict(self, info): source = info.get('SourceName', None) if source is None: self.sourceLabel.setText("") else: if isinstance(source, str): self.sourceLabel.setText(source) else: self.sourceLabel.setText(source[0]) scan = info.get('Header', None) if scan is None: scan = "" if "envdict" in info: scan = info["envdict"].get('title', "") self.scanLabel.setText(scan) else: self.scanLabel.setText(scan[0]) hkl = info.get('hkl', None) if hkl is None: self.hkl.setHKL("----", "----", "----") else: self.hkl.setHKL(*hkl) def getInfo(self): ddict = {} ddict['source'] = self.sourceLabel.text() ddict['scan'] = self.scanLabel.text() ddict['hkl'] = ["%s" % self.hkl.h.text(), "%s" % self.hkl.k.text(), "%s" % self.hkl.l.text()] return ddict class ScanWindowInfoWidget(qt.QWidget): def __init__(self, parent = None): qt.QWidget.__init__(self, parent) layout = qt.QVBoxLayout(self) layout.setContentsMargins(2, 2, 2, 2) layout.setSpacing(2) self.scanInfo = ScanInfoWidget(self) self.graphInfo = GraphInfoWidget(self) layout.addWidget(self.scanInfo) layout.addWidget(self.graphInfo) def updateFromDataObject(self, dataObject): self.scanInfo.updateFromDataObject(dataObject) self.graphInfo.updateFromDataObject(dataObject) def updateFromXYInfo(self, xdata, ydata, info): self.scanInfo.updateFromInfoDict(info) self.graphInfo.updateFromXY(xdata, ydata) def getInfo(self): ddict = {} ddict['scan'] = self.scanInfo.getInfo() ddict['graph'] = self.graphInfo.getInfo() return ddict def test(): app = qt.QApplication([]) w = ScanWindowInfoWidget() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == '__main__': test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SilxExternalImagesWindow.py0000644000000000000000000002465114741736366023504 0ustar00rootroot# /*######################################################################### # Copyright (C) 2004-2017 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __authors__ = ["V.A. Sole", "P. Knobel"] __contact__ = "sole@esrf.fr" __license__ = "MIT" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.plotting import SilxMaskImageWidget class SilxExternalImagesWindow(SilxMaskImageWidget.SilxMaskImageWidget): """Widget displaying a single external image meant to be used as a background image underneath the stack data (e.g. sample photo). Crop and rotate operations can be applied to the image to align it with the data. It is technically possible to add multiple background image with different origins and sizes. They will all be plotted on the same background layer. But he crop and rotation operations will only be applied to the first image. """ def __init__(self, parent=None): SilxMaskImageWidget.SilxMaskImageWidget.__init__(self, parent=parent) # Additional actions added to action group self.cropIcon = qt.QIcon(qt.QPixmap(IconDict["crop"])) self.cropButton = qt.QToolButton(self) self.cropButton.setIcon(self.cropIcon) self.cropButton.setToolTip("Crop image to current zoomed area") self.cropButton.clicked.connect(self._cropIconChecked) self.hFlipIcon = qt.QIcon(qt.QPixmap(IconDict["gioconda16mirror"])) self.hFlipToolButton = qt.QToolButton(self) self.hFlipToolButton.setIcon(self.hFlipIcon) self.hFlipToolButton.setToolTip("Flip image and data, not the scale.") self._flipMenu = qt.QMenu() self._flipMenu.addAction(QString("Flip Image Left-Right"), self._flipLeftRight) self._flipMenu.addAction(QString("Flip Image Up-Down"), self._flipUpDown) self.hFlipToolButton.setMenu(self._flipMenu) self.hFlipToolButton.setPopupMode(qt.QToolButton.InstantPopup) self.rotateLeftIcon = qt.QIcon(qt.QPixmap(IconDict["rotate_left"])) self.rotateRightIcon = qt.QIcon(qt.QPixmap(IconDict["rotate_right"])) self.rotateButton = qt.QToolButton(self) self.rotateButton.setIcon(self.rotateLeftIcon) self.rotateButton.setToolTip("Rotate image by 90 degrees") self._rotateMenu = qt.QMenu() self.rotateLeftAction = qt.QAction(self.rotateLeftIcon, QString("Rotate left"), self) self.rotateLeftAction.triggered.connect(self._rotateLeft) self._rotateMenu.addAction(self.rotateLeftAction) self.rotateRightAction = qt.QAction(self.rotateRightIcon, QString("Rotate right"), self) self.rotateRightAction.triggered.connect(self._rotateRight) self._rotateMenu.addAction(self.rotateRightAction) self.rotateButton.setMenu(self._rotateMenu) self.rotateButton.setPopupMode(qt.QToolButton.InstantPopup) toolbar = qt.QToolBar("Image edition", parent=self) # custom widgets added to the end toolbar.addWidget(self.cropButton) toolbar.addWidget(self.hFlipToolButton) toolbar.addWidget(self.rotateButton) self.addToolBar(toolbar) # hide stack image slider, show transparency slider self.slider.hide() self.setAlphaSliderVisible(True) self.setImagesAlpha(0.) def _getCurrentBgHeightWidth(self): """Return height and width for the main bg image""" image = self._bg_images[0] ncols = image.shape[1] nrows = image.shape[0] width = ncols * self._bg_deltaXY[0][0] # X height = nrows * self._bg_deltaXY[0][1] # Y return height, width def _getAllBgHeightsWidths(self): widths = [] heights = [] for i, img in enumerate(self._bg_images): ncols = img.shape[1] nrows = img.shape[0] widths.append(ncols * self._bg_deltaXY[i][0]) heights.append(nrows * self._bg_deltaXY[i][1]) return heights, widths def _updateBgImages(self): """Reset background images after they changed""" heights, widths = self._getAllBgHeightsWidths() self.setBackgroundImages(self._bg_images, self._bg_labels, origins=self._bg_origins, widths=widths, heights=heights) def _cropIconChecked(self): """Crop first background image to the X and Y ranges currently displayed (crop to zoomed area)""" heights, widths = self._getAllBgHeightsWidths() xmin, xmax = self.plot.getGraphXLimits() ymin, ymax = self.plot.getGraphYLimits() # crop must select an area within the original image's bounds xmin = max(xmin, self._bg_origins[0][0]) xmax = min(xmax, self._bg_origins[0][0] + widths[0]) ymin = max(ymin, self._bg_origins[0][1]) ymax = min(ymax, self._bg_origins[0][1] + heights[0]) cols_min = int((xmin - self._bg_origins[0][0]) / self._bg_deltaXY[0][0]) cols_max = int((xmax - self._bg_origins[0][0]) / self._bg_deltaXY[0][0]) rows_min = int((ymin - self._bg_origins[0][1]) / self._bg_deltaXY[0][1]) rows_max = int((ymax - self._bg_origins[0][1]) / self._bg_deltaXY[0][1]) self._bg_images[0] = self._bg_images[0][rows_min:rows_max, cols_min:cols_max] # after a crop, we need to recalculate :attr:`_bg_deltaXY` self._updateBgScales(heights, widths) self._updateBgImages() self.sigMaskImageWidget.emit( {'event': "cropSignal"}) def _flipUpDown(self): """Flip 1st bg image upside down""" self._bg_images[0] = numpy.flipud(self._bg_images[0]) self.sigMaskImageWidget.emit( {'event': "flipUpDownSignal"}) self._updateBgImages() def _flipLeftRight(self): self._bg_images[0] = numpy.fliplr(self._bg_images[0]) self.sigMaskImageWidget.emit( {'event': "flipLeftRightSignal"}) self._updateBgImages() def _rotateRight(self): """Rotate the image 90 degrees clockwise. Depending on the Y axis orientation, the array must be rotated by 90 or 270 degrees.""" heights, widths = self._getAllBgHeightsWidths() if not self.plot.isYAxisInverted(): self._bg_images[0] = numpy.rot90(self._bg_images[0], 1) else: self._bg_images[0] = numpy.rot90(self._bg_images[0], 3) self.sigMaskImageWidget.emit( {'event': "rotateRight"}) self._updateBgScales(heights, widths) self._updateBgImages() def _rotateLeft(self): """Rotate the image 90 degrees counterclockwise. Depending on the Y axis orientation, the array must be rotated by 90 or 270 degrees.""" heights, widths = self._getAllBgHeightsWidths() if not self.plot.isYAxisInverted(): self._bg_images[0] = numpy.rot90(self._bg_images[0], 3) else: self._bg_images[0] = numpy.rot90(self._bg_images[0], 1) self.sigMaskImageWidget.emit( {'event': "rotateLeft"}) self._updateBgScales(heights, widths) self._updateBgImages() # overload methods to send the bg image in the signal def _addImageClicked(self): imageData = self.getFirstBgImageData() ddict = { 'event': "addImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) def _replaceImageClicked(self): imageData = self.getFirstBgImageData() ddict = { 'event': "replaceImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) def _removeImageClicked(self): imageData = self.getFirstBgImageData() ddict = { 'event': "removeImageClicked", 'image': imageData, 'title': self.plot.getGraphTitle(), 'id': id(self)} self.sigMaskImageWidget.emit(ddict) # overload show image to ensure the stack data # does not change the background title def showImage(self, index=0): SilxMaskImageWidget.SilxMaskImageWidget.showImage(self, index) if self._bg_labels: self.plot.setGraphTitle(self._bg_labels[0]) def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) data = numpy.arange(10000) data.shape = 50, 200 data[8:12, 48:52] = 10000 data[6:14, 146:154] = 10000 data[34:46, 44:56] = 0 data[32:48, 142:158] = 0 container = SilxExternalImagesWindow() container.setBackgroundImages([data]) container.show() def theSlot(ddict): print(ddict) container.sigMaskImageWidget.connect(theSlot) app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SilxGLWindow.py0000644000000000000000000005672414741736366021104 0ustar00rootroot#/*########################################################################## # Copyright (C) 2018-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __license__ = "MIT" import numpy import h5py import logging import os.path from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaIO import EDFStack from PyMca5.PyMcaIO import TiffStack from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from silx.gui.plot3d import SceneWindow from silx.gui import icons from silx.gui.utils.image import convertQImageToArray from silx.gui.colors import Colormap from silx.gui.plot3d import items from silx.math.calibration import ArrayCalibration _logger = logging.getLogger(__name__) def getPixmap(): """ Open an image file and return the filename and the data. Return ``None, None`` in case of failure. """ fileTypeList = ['Picture Files (*jpg *jpeg *tif *tiff *png)', 'EDF Files (*edf)', 'EDF Files (*ccd)', 'ADSC Files (*img)', 'EDF Files (*)'] fileList, filterUsed = PyMcaFileDialogs.getFileList( parent=None, filetypelist=fileTypeList, message="Please select one object data file", mode="OPEN", getfilter=True) if not fileList: return None, None fname = fileList[0] if filterUsed.split()[0] == "Picture": qimage = qt.QImage(fname) if qimage.isNull(): msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setText("Cannot read file %s as an image" % fname) msg.exec() return None, None return os.path.basename(fname), convertQImageToArray(qimage) if filterUsed.split()[0] in ["EDF", "ADSC"]: edf = EdfFile.EdfFile(fname) data = edf.GetData(0) return os.path.basename(fname), data return None, None def get4DStack(): """ Open a stack of image files in EDF or TIFF format, and return the data with metadata. :returns: legend, data, xScale, yScale, fileindex Legend and data are both ``None`` in case of failure. Scales are 2-tuples (originX, deltaX). fileindex indicates the dimension/axis in the data corresponding to the Z-axis. :raise IOError: If the data could not be read """ fileTypeList = ['EDF Z Stack (*edf *ccd)', 'EDF X Stack (*edf *ccd)', 'TIFF Stack (*tif *tiff)'] old = PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs * 1 PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs = False fileList, filterUsed = PyMcaFileDialogs.getFileList( parent=None, filetypelist=fileTypeList, message="Please select the object file(s)", mode="OPEN", getfilter=True) PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs = old if not fileList: return None, None if filterUsed.startswith('EDF Z'): fileindex = 2 else: fileindex = 1 filename = fileList[0] legend = os.path.basename(filename) if filterUsed.startswith('TIFF'): stack = TiffStack.TiffStack(dtype=numpy.float32, imagestack=False) stack.loadFileList(fileList, fileindex=1) else: stack = EDFStack.EDFStack(dtype=numpy.float32, imagestack=False) if len(fileList) == 1: stack.loadIndexedStack(filename, fileindex=fileindex) else: stack.loadFileList(fileList, fileindex=fileindex) if stack is None: raise IOError("Problem reading stack.") xScale = stack.info.get("xScale") yScale = stack.info.get("yScale") return legend, stack.data, xScale, yScale, fileindex def getChimeraStack(): """ Open an chimera file and return the filename and the data. Return ``None, None`` in case the user cancelled the file dialog. :raise IOError: If the data is not a 3D stack """ fileTypeList = ['Chimera Stack (*cmp)', 'Chimera Stack (*)'] old = PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs * 1 fileList, filterUsed = PyMcaFileDialogs.getFileList( parent=None, filetypelist=fileTypeList, message="Please select the object file(s)", mode="OPEN", getfilter=True) PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs = old if not fileList: return None, None filename = fileList[0] with h5py.File(filename, mode='r') as f: stack = f['Image/data'][...] if not isinstance(stack, numpy.ndarray) or stack.ndim != 3: raise IOError("Problem reading stack.") return os.path.basename(filename), stack def getMesh(): """ Read an image data file (EDF, ADSC), return the data and image name. This is then used to display the image as a height map. Returns *None, None* if the file dialog is cancelled or loaing fails. :return: legend, data """ fileTypeList = ['EDF Files (*edf)', 'EDF Files (*ccd)', 'ADSC Files (*img)', 'All Files (*)'] old = PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs * 1 PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs = False fileList, filterUsed = PyMcaFileDialogs.getFileList( parent=None, filetypelist=fileTypeList, message="Please select one object data file", mode="OPEN", getfilter=True) PyMcaFileDialogs.PyMcaDirs.nativeFileDialogs = old if not fileList: return None, None filename = fileList[0] edf = EdfFile.EdfFile(filename, access='rb') data = edf.GetData(0).astype(numpy.float32) return os.path.basename(filename), data def mean_isolevel(data): """Compute a default isosurface level: mean + 1 std :param numpy.ndarray data: The data to process :rtype: float """ data = data[numpy.isfinite(data)] if len(data) == 0: return 0 else: return numpy.mean(data) + numpy.std(data) class OpenAction(qt.QAction): """This action opens a menu with sub-actions to load data from a file, build a dataObject and add it to a :class:`SceneGlWindow`. """ def __init__(self, parent=None, sceneGlWindow=None): """ :param QWidget parent: Parent widget :param SceneGLWindow sceneGlWindow: :class:`SceneGlWindow` displaying the data. """ super(OpenAction, self).__init__(parent) self._sceneGlWindow = sceneGlWindow self.setIcon(icons.getQIcon("document-open")) self.setText("Load data from a file") self.setCheckable(False) self.triggered[bool].connect(self._openMenu) def _openMenu(self, checked): # note: opening a context menu over a QGLWidget causes a warning (fixed in Qt 5.4.1) # See: https://bugreports.qt.io/browse/QTBUG-42464 menu = qt.QMenu(self._sceneGlWindow) loadPixmapAction = qt.QAction("Pixmap", self) loadPixmapAction.triggered[bool].connect(self._onLoadPixmap) menu.addAction(loadPixmapAction) load3DMeshAction = qt.QAction("3D mesh", self) load3DMeshAction.triggered[bool].connect(self._onLoad3DMesh) menu.addAction(load3DMeshAction) load4DStackAction = qt.QAction("4D stack", self) load4DStackAction.triggered[bool].connect(self._onLoad4DStack) menu.addAction(load4DStackAction) loadChimeraAction = qt.QAction("4D chimera", self) loadChimeraAction.triggered[bool].connect(self._onLoadChimeraStack) menu.addAction(loadChimeraAction) a = menu.exec(qt.QCursor.pos()) def _onLoadPixmap(self, checked): legend, data = getPixmap() if legend is not None and data.ndim in [2, 3]: item3d = self._sceneGlWindow.getSceneWidget().addImage(data) item3d.setLabel(legend) if not isinstance(item3d, items.ImageRgba): item3d.setColormap(Colormap(name="temperature")) def _onLoad3DMesh(self, checked): legend, data = getMesh() if legend is None or data.ndim != 2: return xSize, ySize = data.shape x, y = numpy.meshgrid(numpy.arange(xSize), numpy.arange(ySize)) x = x.reshape(-1) y = y.reshape(-1) item3d = self._sceneGlWindow.getSceneWidget().add2DScatter(x=x, y=y, value=data) item3d.setVisualization("solid") # this is expensive for large images item3d.setHeightMap(True) item3d.setColormap(Colormap(name="temperature")) def _onLoad4DStack(self, checked): # todo: use fileIndex to decide the slicing direction of the cube legend, stackData, xScale, yScale, fileIndex = get4DStack() if legend is None: return origin = [0., 0., 0.] delta = [1., 1., 1.] if xScale is not None: origin[0] = xScale[0] delta[0] = xScale[1] if yScale is not None: origin[1] = yScale[0] delta[1] = yScale[1] # Uncomment this block for a stack of images (may be slow) # group = items.GroupItem() # group.setLabel(legend) # for i in range(stackData.shape[0]): # item3d = items.ImageData() # item3d.setData(stackData[i]) # item3d.setLabel("frame %d" % i) # origin[2] = i # shift each frame by 1 # item3d.setTranslation(*origin) # item3d.setScale(*delta) # group.addItem(item3d) # self._sceneGlWindow.getSceneWidget().addItem(group) item3d = self._sceneGlWindow.getSceneWidget().add3DScalarField(stackData) item3d.setLabel(legend) item3d.setTranslation(*origin) item3d.setScale(*delta) item3d.addIsosurface(mean_isolevel, "blue") for cp in item3d.getCutPlanes(): cp.setColormap(Colormap(name="temperature")) def _onLoadChimeraStack(self, checked): legend, data = getChimeraStack() if legend is None: return item3d = self._sceneGlWindow.getSceneWidget().add3DScalarField(data) item3d.setLabel(legend) item3d.addIsosurface(mean_isolevel, "blue") for cp in item3d.getCutPlanes(): cp.setColormap(Colormap(name="temperature")) class SceneGLWindow(SceneWindow.SceneWindow): def __init__(self, parent=None): super(SceneGLWindow, self).__init__(parent) self._openAction = OpenAction(parent=self.getOutputToolBar(), sceneGlWindow=self) # insert before first action self.getOutputToolBar().insertAction( self.getOutputToolBar().actions()[0], self._openAction) def _addSelection(self, selectionlist): _logger.debug("addSelection(self, selectionlist=%s)", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] for sel in sellist: legend = sel['legend'] # expected form sourcename + scan key dataObject = sel['dataobject'] # one-dimensional selections not considered if dataObject.info["selectiontype"] == "1D": continue # there must be something to plot if not hasattr(dataObject, 'y'): continue # there must be an x for a scan selection to reach here if not hasattr(dataObject, 'x'): continue # we have to loop for all y values # note: In addDataObject we currently only ever access y[0]. for ycounter, ydata in enumerate(dataObject.y): ylegend = 'y%d' % ycounter if sel['selection'] is not None: if type(sel['selection']) == type({}): if 'y' in sel['selection']: ilabel = sel['selection']['y'][ycounter] ylegend = dataObject.info['LabelNames'][ilabel] object3Dlegend = legend + " " + ylegend self.addDataObject(dataObject, legend=object3Dlegend) def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist=%s)", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] items = self.getSceneWidget().getItems() for sel in sellist: legend = sel['legend'] if 'LabelNames' in sel['selection']: labelNames = sel['selection']['LabelNames'] else: labelNames = sel['selection']['cntlist'] for ycounter in sel['selection']['y']: ylegend = labelNames[ycounter] object3Dlegend = legend + " " + ylegend for it in items: if it.getLabel() == object3Dlegend: self.getSceneWidget().removeItem(it) def _replaceSelection(self, selectionlist): _logger.debug("_replaceSelection(self, selectionlist=%s)", selectionlist) self.getSceneWidget().clearItems() self._addSelection(selectionlist) def addDataObject(self, dataObject, legend=None): if legend is None: legend = dataObject.info['legend'] nItemsBefore = len(self.getSceneWidget().getItems()) # we need to remove existing items with the same legend to_be_removed = [] for it in self.getSceneWidget().getItems(): if it.getLabel() == legend: to_be_removed.append(it) for _i in range(len(to_be_removed)): self.getSceneWidget().removeItem(to_be_removed.pop()) if dataObject.m is None or dataObject.m == []: data = dataObject.y[0] else: # I would have to check for the presence of zeros in monitor data = dataObject.y[0] / dataObject.m[0] if dataObject.x is None: # note: this does not seem to be possible if data is sent from the main selector, # at least 2 axs must be selected for the data to be sent to this widget if len(data.shape) == 3: item3d = self.getSceneWidget().add3DScalarField(data) item3d.addIsosurface(mean_isolevel, "blue") for cp in item3d.getCutPlanes(): cp.setColormap(Colormap(name="temperature")) elif len(data.shape) == 2: item3d = self.getSceneWidget().addImage(data) item3d.setColormap(Colormap(name="temperature")) else: raise NotImplementedError("case dataObject.x is None and ndim not in [2, 3]") # item3d = self.getSceneWidget().mesh(data) item3d.setLabel(legend) if (not nItemsBefore) or \ (len(self.getSceneWidget().getItems()) == 1): self.getSceneWidget().centerScene() return ndata = numpy.prod(data.shape) xDimList = [] for dataset in dataObject.x: xdim = numpy.prod(dataset.shape) xDimList.append(xdim) # case with one axis per signal dimension if len(dataObject.x) == len(data.shape) and \ numpy.prod(xDimList) == ndata: for axis_dim, data_dim in zip(xDimList, data.shape): if axis_dim != data_dim: text = "Dimensions mismatch: axes %s, data %s" % (xDimList, data.shape) raise ValueError(text) if len(data.shape) == 3: _logger.debug("CASE 1: 3D data with 3 axes") # 3D scalar field convention is ZYX zcal = ArrayCalibration(dataObject.x[0]) ycal = ArrayCalibration(dataObject.x[1]) xcal = ArrayCalibration(dataObject.x[2]) item3d = self.getSceneWidget().add3DScalarField(data) scales = [1., 1., 1.] origins = [0., 0., 0.] for i, cal in enumerate((xcal, ycal, zcal)): arr = cal.calibration_array origins[i] = arr[0] if not cal.is_affine() and len(arr) > 1: _logger.warning("axis is not linear. " "deltaX will be estimated") scales[i] = (arr[-1] - arr[0]) / (len(arr) - 1) else: scales[i] = cal.get_slope() # todo: check != 0 item3d.setScale(*scales) item3d.setTranslation(*origins) item3d.addIsosurface(mean_isolevel, "blue") for cp in item3d.getCutPlanes(): cp.setColormap(Colormap(name="temperature")) elif len(data.shape) == 2: _logger.debug("CASE 2: 2D data with 2 axes") ycal = ArrayCalibration(dataObject.x[0]) xcal = ArrayCalibration(dataObject.x[1]) item3d = self.getSceneWidget().addImage(data) origins = [xcal(0), ycal(0)] scales = [1., 1.] for i, cal in enumerate((xcal, ycal)): arr = cal.calibration_array if not cal.is_affine() and len(arr) > 1: _logger.warning("axis is not linear. " "deltaX will be estimated") scales[i] = (arr[-1] - arr[0]) / (len(arr) - 1) # TODO: do a scatter instead with numpy.meshgrid else: scales[i] = cal.get_slope() item3d.setTranslation(*origins) item3d.setScale(*scales) item3d.setColormap(Colormap(name="temperature")) elif len(data.shape) == 1: _logger.debug("CASE 3: 1D scatter (x and values)") item3d = self.getSceneWidget().add3DScatter(value=data, x=dataObject.x[0], y=numpy.zeros_like(data), z=data) item3d.setColormap(Colormap(name="temperature")) else: # this case was ignored in the original code, # so it probably cannot happen raise TypeError("Could not understand data dimensionality") item3d.setLabel(legend) if (not nItemsBefore) or \ (len(self.getSceneWidget().getItems()) == 1): self.getSceneWidget().centerScene() return elif len(data.shape) == 3 and len(xDimList) == 2: _logger.warning("Assuming last dimension") _logger.debug("CASE 1.1") if list(xDimList) != list(data.shape[0:1]): text = "Wrong dimensions:" text += " %dx%d != (%d, %d, %d)" % (xDimList[0], xDimList[1], data.shape[0], data.shape[1], data.shape[2]) raise ValueError(text) item3d = self.getSceneWidget().add3DScalarField(data) zcal = ArrayCalibration(dataObject.x[0]) ycal = ArrayCalibration(dataObject.x[1]) scales = [1., 1., 1.] origins = [0., 0., 0.] for i, cal in enumerate((ycal, zcal)): arr = cal.calibration_array origins[i + 1] = arr[0] if not cal.is_affine() and len(arr) > 1: _logger.warning("axis is not linear. " "deltaX will be estimated") scales[i + 1] = (arr[-1] - arr[0]) / (len(arr) - 1) else: scales[i + 1] = cal.get_slope() item3d.setScale(*scales) item3d.setTranslation(*origins) item3d.setLabel(legend) item3d.addIsosurface(mean_isolevel, "blue") for cp in item3d.getCutPlanes(): cp.setColormap(Colormap(name="temperature")) if (not nItemsBefore) or \ (len(self.getSceneWidget().getItems()) == 1): self.getSceneWidget().centerScene() return # I have to assume all the x are of 1 element or of as many elements as data axes = [numpy.zeros_like(data), numpy.zeros_like(data), numpy.zeros_like(data)] # overwrite initialized axes, if provided for xdataCounter, xdata in enumerate(dataObject.x): assert xdataCounter <= 2, \ "Wrong scatter dimensionality (more than 3 axes)" if numpy.prod(xdata.shape) == 1: axis = xdata * numpy.ones(ndata) else: axis = xdata axes[xdataCounter] = axis if len(dataObject.x) == 2: item3d = self.getSceneWidget().add2DScatter(x=axes[0], y=axes[1], value=data) item3d.setColormap(Colormap(name="temperature")) item3d.setVisualization("solid") # item3d.setHeightMap(True) else: # const_axes_indices = [] # for i, axis in axes: # if numpy.all(axis == axis[0]): # const_axes_indices.append(i) # if len(const_axes_indices) == 1: # item3d = self.getSceneWidget().add2DScatter(x=axes[0], ????? TODO # y=axes[1], ????? # value=data) # # TODO: rotate adequately # else: item3d = self.getSceneWidget().add3DScatter(x=axes[0], y=axes[1], z=axes[2], value=data) item3d.setColormap(Colormap(name="temperature")) item3d.setLabel(legend) if (not nItemsBefore) or \ (len(self.getSceneWidget().getItems()) == 1): self.getSceneWidget().centerScene() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SilxMcaWindow.py0000644000000000000000000020652114741736366021272 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import time import traceback import logging from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str if __name__ == "__main__": app = qt.QApplication([]) import copy from . import ScanWindow from . import McaCalibrationControlGUI from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui.physics.xrf import McaAdvancedFit from PyMca5.PyMcaGui.physics.xrf import McaCalWidget from PyMca5.PyMcaCore import DataObject from . import McaSimpleFit from PyMca5.PyMcaMath.fitting import Specfit from PyMca5.PyMcaGui.pymca.McaLegendselector import McaLegendsDockWidget from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict MATPLOTLIB = True # force understanding of utf-8 encoding # otherwise it cannot generate svg output try: import encodings.utf_8 except Exception: # not a big problem pass _logger = logging.getLogger(__name__) # _logger.setLevel(logging.DEBUG) class McaWindow(ScanWindow.ScanWindow): sigROISignal = qt.pyqtSignal(object) def __init__(self, parent=None, name="Mca Window", fit=True, backend=None, plugins=True, control=True, position=True, roi=True, specfit=None, info=False): ScanWindow.ScanWindow.__init__(self, parent, name=name, plugins=plugins, backend=backend, control=control, position=position, roi=roi, save=False, # we redefine this fit=False, # we redefine this info=info) self._plotType = "MCA" # needed by legacy plugins # this is tricky self.dataObjectsDict = {} self.outputDir = None self.outputFilter = None self.calibration = 'None' self.calboxoptions = ['None', 'Original (from Source)', 'Internal (from Source OR PyMca)'] self.caldict = {} self.calwidget = None self.peakmarker = None self.specfit = specfit if specfit is not None else Specfit.Specfit() self.simplefit = McaSimpleFit.McaSimpleFit(specfit=self.specfit) self.specfit.fitconfig['McaMode'] = 1 self.advancedfit = McaAdvancedFit.McaAdvancedFit() self._buildCalibrationControlWidget() self.setDefaultPlotLines(True) self.setDefaultPlotPoints(False) self._ownSignal = None self.setGraphGrid('major') self.connections() self.setGraphYLabel('Counts') # Fit icon self.fitIcon = qt.QIcon(qt.QPixmap(IconDict["fit"])) self.fitToolButton = qt.QToolButton(self) self.fitToolButton.setIcon(self.fitIcon) self.fitToolButton.setToolTip("Fit of Active Curve") self.fitToolButton.clicked.connect(self._fitButtonClicked) self.fitButtonMenu = qt.QMenu() self.fitButtonMenu.addAction(QString("Simple"), self.mcaSimpleFitSignal) self.fitButtonMenu.addAction(QString("Advanced"), self.mcaAdvancedFitSignal) if fit: self.toolBar().insertWidget(self.getMaskAction(), self.fitToolButton) # hide a bunch of PlotWindow and ScanWindow actions self.getOutputToolBar().getSaveAction().setVisible(False) self.getOutputToolBar().getPrintAction().setVisible(False) self.avgAction.setVisible(False) self.derivativeAction.setVisible(False) self.smoothAction.setVisible(False) self.swapSignAction.setVisible(False) self.yMinToZero.setVisible(False) self.subtractAction.setVisible(False) def getLegendsDockWidget(self): # customize the legendsdockwidget to handle curve renaming if self._legendsDockWidget is None: self._legendsDockWidget = McaLegendsDockWidget(plot=self) self._legendsDockWidget.hide() self.addTabbedDockWidget(self._legendsDockWidget) return self._legendsDockWidget def getCurvesRoiDockWidget(self): """Reimplemented to add the dock widget to the right of the plot. """ if self._curvesROIDockWidget is None: self._curvesROIDockWidget =\ ScanWindow.ScanWindow.getCurvesRoiDockWidget(self) self.addTabbedDockWidget(self._curvesROIDockWidget) self.addDockWidget(qt.Qt.RightDockWidgetArea, self._curvesROIDockWidget) return self._curvesROIDockWidget def _fitButtonClicked(self): self.fitButtonMenu.exec(self.cursor().pos()) def _buildCalibrationControlWidget(self): widget = self.centralWidget() self.controlWidget = McaCalibrationControlGUI.McaCalibrationControlGUI( widget) widget.layout().addWidget(self.controlWidget) self.controlWidget.sigMcaCalibrationControlGUISignal.connect( self.__anasignal) def connections(self): self.simplefit.sigMcaSimpleFitSignal.connect(self.__anasignal) self.advancedfit.sigMcaAdvancedFitSignal.connect(self.__anasignal) self.getCurvesRoiDockWidget().sigROISignal.connect(self.emitCurrentROISignal) def mcaSimpleFitSignal(self): legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('MCA Window Simple Fit') msg.exec() return x, y, info = self.getDataAndInfoFromLegend(legend) self.advancedfit.hide() self.simplefit.show() self.simplefit.setFocus() self.simplefit.raise_() if info is not None: xmin, xmax = self.getGraphXLimits() self.__simplefitcalmode = self.calibration curveinfo = info if self.calibration == 'None': calib = [0.0, 1.0, 0.0] else: calib = curveinfo.get('McaCalib', [0.0, 1.0, 0.0]) self.__simplefitcalibration = calib calibrationOrder = curveinfo.get('McaCalibOrder', 2) if calibrationOrder == 'TOF': x = calib[2] + calib[0] / pow(x - calib[1], 2) else: x = calib[0] + calib[1] * x + calib[2] * x * x self.simplefit.setdata(x=x, y=y, xmin=xmin, xmax=xmax, legend=legend) if self.specfit.fitconfig['McaMode']: self.simplefit.fit() else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error. Trying to fit fitted data?") msg.setWindowTitle('MCA Window Simple Fit') msg.exec() def getActiveCurve(self, just_legend=False): _logger.debug("Local MCA window getActiveCurve called!!!!") activeCurve = super(McaWindow, self).getActiveCurve(just_legend) if just_legend: return activeCurve if activeCurve in [None, []]: return None curveinfo = activeCurve.getInfo() xlabel = self.getGraphXLabel() ylabel = self.getGraphYLabel() curveinfo['xlabel'] = xlabel curveinfo['ylabel'] = ylabel activeCurve.setInfo(curveinfo) return activeCurve def getDataAndInfoFromLegend(self, legend): """ Tries to provide the requested curve in terms of the channels and not in the terms as it is displayed. """ xdata = None ydata = None info = None if legend in self.dataObjectsDict: # The data as displayed x, y, legend, curveinfo = self.getCurve(legend)[:4] # the data as first entered info = self.dataObjectsDict[legend].info if self.calibration == 'None': if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] return x, y, curveinfo elif 'McaCalibSource' in info: return x, y, info else: return x, y, curveinfo else: if 'McaCalib' in curveinfo: calib = curveinfo['McaCalib'] current = True else: calib = info['McaCalib'] current = False x0 = self.dataObjectsDict[legend].x[0] energy = calib[0] + calib[1] * x0 + calib[2] * x0 * x0 if numpy.allclose(x, energy): xdata = self.dataObjectsDict[legend].x[0] ydata = y if current: return xdata, ydata, curveinfo else: return xdata, ydata, info else: # return current data return x, y, curveinfo else: info = None xdata = None ydata = None return xdata, ydata, info def mcaAdvancedFitSignal(self): legend = self.getActiveCurve(just_legend=True) if legend in [None, []]: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('MCA Window') msg.exec() return x, y, info = self.getDataAndInfoFromLegend(legend) curveinfo = self.getCurve(legend).getInfo() xmin, xmax = self.getGraphXLimits() if self.calibration == 'None': if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] elif 'McaCalibSource' in info: calib = info['McaCalibSource'] else: calib = [0.0, 1.0, 0.0] else: calib = curveinfo['McaCalib'] energy = calib[0] + calib[1] * x + calib[2] * x * x i1 = min(numpy.nonzero(energy >= xmin)[0]) i2 = max(numpy.nonzero(energy <= xmax)[0]) xmin = x[i1] * 1.0 xmax = x[i2] * 1.0 if self.simplefit is not None: self.simplefit.hide() self.advancedfit.show() self.advancedfit.setFocus() self.advancedfit.raise_() if info is not None: xlabel = 'Channel' self.advancedfit.setData(x=x, y=y, xmin=xmin, xmax=xmax, legend=legend, xlabel=xlabel, calibration=calib, sourcename=info['SourceName'], time=info.get('McaLiveTime', None)) self.advancedfit.fit() else: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Error. Trying to fit fitted data?") msg.exec() return def __anasignal(self, ddict): _logger.debug("__anasignal called dict = %s", ddict) if ddict['event'] == 'clicked': # A button has been clicked if ddict['button'] == 'Source': pass elif ddict['button'] == 'Calibration': legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.exec() return else: x, y, info = self.getDataAndInfoFromLegend(legend) if info is None: return ndict = {legend: {'order': 1, 'A': 0.0, 'B': 1.0, 'C': 0.0}} if legend in self.caldict: ndict[legend].update(self.caldict[legend]) if abs(ndict[legend]['C']) > 0.0: ndict[legend]['order'] = self.caldict[legend].get('order', 2) elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][0] else: calib = info['McaCalib'] calibrationOrder = info.get('McaCalibOrder', 2) if len(calib) > 1: ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] if len(calib) > 2: ndict[legend]['order'] = calibrationOrder ndict[legend]['C'] = calib[2] caldialog = McaCalWidget.McaCalWidget(legend=legend, x=x, y=y, modal=1, caldict=ndict) ret = caldialog.exec() if ret == qt.QDialog.Accepted: self.caldict.update(caldialog.getDict()) item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() del caldialog elif ddict['button'] == 'CalibrationCopy': legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.exec() return else: x, y, info = self.getDataAndInfoFromLegend(legend) if info is None: return ndict = copy.deepcopy(self.caldict) if 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): sourcecal = info['McaCalib'][0] else: sourcecal = info['McaCalib'] else: sourcecal = [0.0, 1.0, 0.0] for curve in self.getAllCurves(just_legend=True): curveinfo = self.getCurve(curve)[3] if 'McaCalibSource' in curveinfo: key = "%s (Source)" % curve if key not in ndict: if curveinfo['McaCalibSource'] != [0.0, 1.0, 0.0]: ndict[key] = {'A': curveinfo['McaCalibSource'][0], 'B': curveinfo['McaCalibSource'][1], 'C': curveinfo['McaCalibSource'][2]} if curveinfo['McaCalibSource'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 if curve not in self.caldict.keys(): if curveinfo['McaCalib'] != [0.0, 1.0, 0.0]: if curveinfo['McaCalib'] != curveinfo['McaCalibSource']: key = "%s (PyMca)" % curve ndict[key] = {'A': curveinfo['McaCalib'][0], 'B': curveinfo['McaCalib'][1], 'C': curveinfo['McaCalib'][2]} if curveinfo['McaCalib'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 else: if curve not in self.caldict.keys(): if curveinfo['McaCalib'] != [0.0, 1.0, 0.0]: key = "%s (PyMca)" % curve ndict[key] = {'A': curveinfo['McaCalib'][0], 'B': curveinfo['McaCalib'][1], 'C': curveinfo['McaCalib'][2]} if curveinfo['McaCalib'][2] != 0.0: ndict[key]['order'] = 2 else: ndict[key]['order'] = 1 if not (legend in self.caldict): ndict[legend] = {} ndict[legend]['A'] = sourcecal[0] ndict[legend]['B'] = sourcecal[1] ndict[legend]['C'] = sourcecal[2] if sourcecal[2] != 0.0: ndict[legend]['order'] = 2 else: ndict[legend]['order'] = 1 caldialog = McaCalWidget.McaCalCopy(legend=legend, modal=1, caldict=ndict, sourcecal=sourcecal, fl=0) #info,x,y = self.getinfodatafromlegend(legend) #caldialog.graph.newCurve("fromlegend",x=x,y=y) ret = caldialog.exec() if ret == qt.QDialog.Accepted: self.caldict.update(caldialog.getDict()) item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() del caldialog elif ddict['button'] == 'CalibrationLoad': # item = dict['box'][0] itemtext = ddict['box'][1] filename = ddict['line_edit'] if not os.path.exists(filename): text = "Error. Calibration file %s not found " % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return cald = ConfigDict.ConfigDict() try: cald.read(filename) except Exception: text = "Error. Cannot read calibration file %s" % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return self.caldict.update(cald) options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) self.controlWidget.calbox.setCurrentIndex(options.index(itemtext)) self.calibration = itemtext * 1 self.controlWidget._calboxactivated(itemtext) except Exception: text = "Error. Problem updating combobox" msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return elif ddict['button'] == 'CalibrationSave': filename = ddict['line_edit'] cald = ConfigDict.ConfigDict() if os.path.exists(filename): try: os.remove(filename) except Exception: text = "Error. Problem deleting existing file %s" % filename msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText(text) msg.exec() return cald.update(self.caldict) cald.write(filename) elif ddict['button'] == 'Detector': pass elif ddict['button'] == 'Search': pass elif ddict['button'] == 'Fit': if ddict['box'][1] == 'Simple': self.mcasimplefitsignal() elif ddict['box'][1] == 'Advanced': self.mcaadvancedfitsignal() else: _logger.error("Unknown Fit Event") elif ddict['event'] == 'activated': # A comboBox has been selected if ddict['boxname'] == 'Source': pass elif ddict['boxname'] == 'Calibration': self.calibration = ddict['box'][1] self.clearMarkers() self.refresh() self.resetZoom() elif ddict['boxname'] == 'Detector': pass elif ddict['boxname'] == 'Search': pass elif ddict['boxname'] == 'ROI': if ddict['combotext'] == 'Add': pass elif ddict['combotext'] == 'Del': pass else: pass elif ddict['boxname'] == 'Fit': """ if dict['box'][1] == 'Simple': self.anacontainer.hide() else: self.anacontainer.show() """ pass else: _logger.debug("Unknown combobox %s", ddict['boxname']) elif ddict['event'] == 'EstimateFinished': pass elif (ddict['event'] == 'McaAdvancedFitFinished') or \ (ddict['event'] == 'McaAdvancedFitMatrixFinished'): x = ddict['result']['xdata'] yb = ddict['result']['continuum'] legend0 = ddict['info']['legend'] fitcalibration = [ddict['result']['fittedpar'][0], ddict['result']['fittedpar'][1], 0.0] if ddict['event'] == 'McaAdvancedFitMatrixFinished': legend = ddict['info']['legend'] + " Fit" legend3 = ddict['info']['legend'] + " Matrix" ymatrix = ddict['result']['ymatrix'] * 1.0 # copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType'] = 'AdvancedFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend3 newDataObject.info['Key'] = legend3 newDataObject.info['McaCalib'] = fitcalibration * 1 newDataObject.x = [x] newDataObject.y = [ymatrix] newDataObject.m = None self.dataObjectsDict[legend3] = newDataObject #self.graph.newCurve(legend3,x=x,y=ymatrix,logfilter=1) else: legend = ddict['info']['legend'] + " Fit" yfit = ddict['result']['yfit'] * 1.0 # copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType'] = 'AdvancedFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend newDataObject.info['Key'] = legend newDataObject.info['McaCalib'] = fitcalibration * 1 newDataObject.data = numpy.reshape(numpy.concatenate((x,yfit,yb),0),(3,len(x))) newDataObject.x = [x] newDataObject.y = [yfit] newDataObject.m = None self.dataObjectsDict[legend] = newDataObject #self.graph.newCurve(legend,x=x,y=yfit,logfilter=1) # the same for the background legend2 = ddict['info']['legend'] + " Bkg" newDataObject2 = DataObject.DataObject() newDataObject2.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject2.info['SourceType'] = 'AdvancedFit' newDataObject2.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject2.info['legend'] = legend2 newDataObject2.info['Key'] = legend2 newDataObject2.info['McaCalib'] = fitcalibration * 1 newDataObject2.data = None newDataObject2.x = [x] newDataObject2.y = [yb] newDataObject2.m = None self.dataObjectsDict[legend2] = newDataObject2 #self.graph.newCurve(legend2,x=x,y=yb,logfilter=1) if legend not in self.caldict: self.caldict[legend] = {} self.caldict[legend]['order'] = 1 self.caldict[legend]['A'] = ddict['result']['fittedpar'][0] self.caldict[legend]['B'] = ddict['result']['fittedpar'][1] self.caldict[legend]['C'] = 0.0 options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) # I only reset the graph scale after a fit, not on a matrix spectrum if ddict['event'] == 'McaAdvancedFitFinished': # get current limits if self.calibration == 'None': xmin, xmax = self.getGraphXLimits() emin = ddict['result']['fittedpar'][0] + \ ddict['result']['fittedpar'][1] * xmin emax = ddict['result']['fittedpar'][0] + \ ddict['result']['fittedpar'][1] * xmax else: emin, emax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() self.controlWidget.calbox.setCurrentIndex(options.index(legend)) self.calibration = legend self.controlWidget._calboxactivated(legend) self.setGraphYLimits(ymin, ymax) if emin < emax: self.setGraphXLimits(emin, emax) else: self.setGraphXLimits(emax, emin) except Exception: _logger.debug("Refreshing due to exception %s", sys.exc_info()[1]) self.refresh() elif ddict['event'] == 'McaFitFinished': mcaresult = ddict['data'] i = 0 xfinal = [] yfinal = [] ybfinal = [] regions = [] legend0 = ddict['info']['legend'] mcamode = True for result in mcaresult: i += 1 if result['chisq'] is not None: mcamode = result['fitconfig']['McaMode'] idx = numpy.nonzero((self.specfit.xdata0 >= result['xbegin']) & (self.specfit.xdata0 <= result['xend']))[0] x = numpy.take(self.specfit.xdata0, idx) y = self.specfit.gendata(x=x, parameters=result['paramlist']) nparb = len(self.specfit.bkgdict[self.specfit.fitconfig['fitbkg']][1]) yb = self.specfit.gendata(x=x, parameters=result['paramlist'][0:nparb]) xtoadd = numpy.take(self.dataObjectsDict[legend0].x[0], idx).tolist() if not len(xtoadd): continue xfinal = xfinal + xtoadd regions.append([xtoadd[0], xtoadd[-1]]) yfinal = yfinal + y.tolist() ybfinal = ybfinal + yb.tolist() # self.graph.newCurve(legend + 'Region %d' % i,x=x,y=yfit,logfilter=1) legend = legend0 + " SFit" if legend in self.dataObjectsDict.keys(): if legend in self.getAllCurves(just_legend=True): if mcamode: if not ('baseline' in self.dataObjectsDict[legend].info): self.removeCurve(legend) else: if 'baseline' in self.dataObjectsDict[legend].info: self.removeCurve(legend) # copy the original info from the curve newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(self.dataObjectsDict[legend0].info) newDataObject.info['SourceType'] = 'SimpleFit' newDataObject.info['SourceName'] = 1 * self.dataObjectsDict[legend0].info['SourceName'] newDataObject.info['legend'] = legend newDataObject.info['Key'] = legend newDataObject.info['CalMode'] = self.__simplefitcalmode newDataObject.info['McaCalib'] = self.__simplefitcalibration x = numpy.array(xfinal) yfit = numpy.array(yfinal) yb = numpy.array(ybfinal) newDataObject.x = [x] newDataObject.y = [yfit] newDataObject.m = [numpy.ones(len(yfit)).astype(numpy.float64)] if mcamode: newDataObject.info['regions'] = regions newDataObject.info['baseline'] = yb self.dataObjectsDict[legend] = newDataObject self.refresh() return elif ddict['event'] == 'McaTableFilled': if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif ddict['event'] == 'McaTableRowHeaderClicked': # I have to mark the peaks if ddict['row'] >= 0: pos = ddict['Position'] label = 'PEAK %d' % (ddict['row'] + 1) if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.addXMarker(pos, label, text=label, color='pink', draggable=False) self.peakmarker = label else: if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif ddict['event'] == 'McaTableClicked': if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif (ddict['event'] == 'McaAdvancedFitElementClicked' or ddict['event'] == 'ElementClicked'): # this has been moved to the fit window pass elif ddict['event'] in ['McaAdvancedFitPrint', 'McaSimpleFitPrint']: self.printHtml(ddict['text']) elif ddict['event'] == 'McaSimpleFitClosed': if self.peakmarker is not None: self.removeMarker(self.peakmarker) self.peakmarker = None elif ddict['event'] == 'selectionChanged': _logger.error("Selection changed event not implemented any more") else: _logger.debug("Unknown or ignored event %s", ddict['event']) def emitCurrentROISignal(self, ddict=None): """Emit a custom ROISignal with calibration info. Ignore the incoming signal emitted by CurvesRoiDockWidget""" currentRoi = self.getCurvesRoiDockWidget().currentROI if currentRoi is None: # could be a silx <= 0.7.0 bug if hasattr(self.getCurvesRoiDockWidget().roiWidget, "currentROI"): currentRoi = self.getCurvesRoiDockWidget().roiWidget.currentROI if currentRoi is None: _logger.debug("No current ROI") return # I have to get the current calibration if self.getGraphXLabel().upper() != "CHANNEL": # I have to get the energy A = self.controlWidget.calinfo.caldict['']['A'] B = self.controlWidget.calinfo.caldict['']['B'] C = self.controlWidget.calinfo.caldict['']['C'] order = self.controlWidget.calinfo.caldict['']['order'] else: A = 0.0 legend = self.getActiveCurve(just_legend=True) if legend in self.dataObjectsDict: try: A = self.dataObjectsDict[legend].x[0][0] except Exception: _logger.debug("X axis offset not found") B = 1.0 C = 0.0 order = 1 if hasattr(currentRoi, "getName"): # TODO: double-check ROIWidget.currentROI API after merging silx#1714 # silx.gui.plot.CurvesROIWidget.ROI object name = currentRoi.getName() else: # assume it is a string (silx <= 0.7.0) name = currentRoi roisDict = self.getCurvesRoiDockWidget().roiWidget.getRois() assert name in roisDict, "roiWidget.currentRoi not found in roiDict!" roi = roisDict[name] if isinstance(roi, dict): from_ = roi['from'] to_ = roi['to'] type_ = roi["type"] else: # silx >= 0.8.0 from_ = roi.getFrom() to_ = roi.getTo() type_ = roi.getType() ddict = { 'event': "ROISignal", 'name': name, 'from': from_, 'to': to_, 'type': type_, 'calibration': [A, B, C, order]} self.sigROISignal.emit(ddict) def _addSelection(self, selection, resetzoom=True, replot=None): _logger.debug("__add, selection = %s", selection) if replot is not None: _logger.warning( 'deprecated replot argument, use resetzoom instead') resetzoom = replot and resetzoom sellist = selection if isinstance(selection, list) else [selection] for sel in sellist: # force the selections to include their source for completeness? # source = sel['SourceName'] key = sel['Key'] if sel.get("scanselection", False) not in [False, "MCA"]: continue mcakeys = [key] for mca in mcakeys: legend = sel['legend'] dataObject = sel['dataobject'] info = dataObject.info if dataObject.info.get("selectiontype", "1D") != "1D": continue if numpy.isscalar(dataObject.y[0]): dataObject.y[0] = numpy.array([dataObject.y[0]]) data = dataObject.y[0] curveinfo = copy.deepcopy(info) curveinfo["ylabel"] = info.get("ylabel", "Counts") if dataObject.x is None: xhelp = None elif len(dataObject.x): if numpy.isscalar(dataObject.x[0]): dataObject.x[0] = numpy.array([dataObject.x[0]]) xhelp = dataObject.x[0] else: xhelp = None if xhelp is None: if 'Channel0' not in info: info['Channel0'] = 0.0 xhelp = info['Channel0'] + numpy.arange(len(data)).astype(numpy.float64) dataObject.x = [xhelp] ylen = len(data) if ylen == 1: if len(xhelp) > 1: data = data[0] * numpy.ones(len(xhelp)).astype(numpy.float64) dataObject.y = [data] elif len(xhelp) == 1: xhelp = xhelp[0] * numpy.ones(ylen).astype(numpy.float64) dataObject.x = [xhelp] if not hasattr(dataObject, 'm'): dataObject.m = None if dataObject.m is not None: for imon in range(len(dataObject.m)): if numpy.isscalar(dataObject.m[imon]): dataObject.m[imon] = \ numpy.array([dataObject.m[imon]]) if len(dataObject.m[0]) > 0: mdata = dataObject.m[0] if len(mdata) == len(data): mdata[data == 0] += 0.00000001 index = numpy.nonzero(mdata)[0] if not len(index): continue xhelp = numpy.take(xhelp, index) data = numpy.take(data, index) mdata = numpy.take(mdata, index) data = data / mdata dataObject.x = [xhelp * 1] dataObject.m = [numpy.ones(len(data)).astype(numpy.float64)] elif (len(mdata) == 1) or (ylen == 1): if mdata[0] == 0.0: continue data = data / mdata else: raise ValueError("Cannot normalize data") dataObject.y = [data] self.dataObjectsDict[legend] = dataObject if ('baseline' in info) and ('regions' in info): simplefitplot = True else: simplefitplot = False try: calib = [0.0, 1.0, 0.0] for inputkey in ['baseline', 'regions', 'McaLiveTime']: if inputkey in info: curveinfo[inputkey] = info[inputkey] curveinfo['McaCalib'] = calib if 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib0 = info['McaCalib'][info['McaDet'] - 1] else: calib0 = info['McaCalib'] if 'McaCalibSource' in info: curveinfo['McaCalibSource'] = info['McaCalibSource'] else: curveinfo['McaCalibSource'] = calib0 if self.calibration == self.calboxoptions[1]: if 'McaCalibSource' in curveinfo: calib = curveinfo['McaCalibSource'] elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][info['McaDet'] - 1] else: calib = info['McaCalib'] if len(calib) > 1: xdata = calib[0] + calib[1] * xhelp if len(calib) == 3: xdata = xdata + calib[2] * xhelp * xhelp curveinfo['McaCalib'] = calib if simplefitplot: inforegions = [] for region in info['regions']: inforegions.append([calib[0] + calib[1] * region[0] + calib[2] * region[0] * region[0], calib[0] + calib[1] * region[1] + calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) self.setGraphXLabel('Energy') elif self.calibration == self.calboxoptions[2]: calibrationOrder = None if legend in self.caldict: A = self.caldict[legend]['A'] B = self.caldict[legend]['B'] C = self.caldict[legend]['C'] calibrationOrder = self.caldict[legend]['order'] calib = [A, B, C] elif 'McaCalib' in info: if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][info['McaDet'] - 1] else: calib = info['McaCalib'] if len(calib) > 1: xdata = calib[0] + calib[1] * xhelp if len(calib) == 3: if calibrationOrder == 'TOF': xdata = calib[2] + calib[0] / pow(xhelp - calib[1], 2) else: xdata = xdata + calib[2] * xhelp * xhelp curveinfo['McaCalib'] = calib curveinfo['McaCalibOrder'] = calibrationOrder if simplefitplot: inforegions = [] for region in info['regions']: if calibrationOrder == 'TOF': inforegions.append([calib[2] + calib[0] / pow(region[0]-calib[1],2), calib[2] + calib[0] / pow(region[1]-calib[1],2)]) else: inforegions.append([calib[0] + calib[1] * region[0] + calib[2] * region[0] * region[0], calib[0] + calib[1] * region[1] + calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) if calibrationOrder in ["ID14", "ID18"]: self.setGraphXLabel('Time') else: self.setGraphXLabel('Energy') elif self.calibration == 'Fit': _logger.error("Not yet implemented") continue elif self.calibration in self.caldict.keys(): A = self.caldict[self.calibration]['A'] B = self.caldict[self.calibration]['B'] C = self.caldict[self.calibration]['C'] calibrationOrder = self.caldict[self.calibration]['order'] calib = [A, B, C] if calibrationOrder == 'TOF': xdata = C + (A / ((xhelp - B) * (xhelp - B))) else: xdata = calib[0] + \ calib[1] * xhelp + \ calib[2] * xhelp * xhelp curveinfo['McaCalib'] = calib curveinfo['McaCalibOrder'] = calibrationOrder if simplefitplot: inforegions = [] for region in info['regions']: if calibrationOrder == 'TOF': inforegions.append( [calib[2] + calib[0] / pow(region[0]-calib[1], 2), calib[2] + calib[0] / pow(region[1]-calib[1], 2)]) else: inforegions.append([calib[0] + calib[1] * region[0] + calib[2] * region[0] * region[0], calib[0] + calib[1] * region[1] + calib[2] * region[1] * region[1]]) self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xdata, data, legend=legend, info=curveinfo, own=True) if calibrationOrder in ["ID14", "ID18"]: self.setGraphXLabel('Time') else: self.setGraphXLabel('Energy') else: if simplefitplot: self.addCurve(xhelp, data, legend=legend, info=curveinfo, own=True) else: self.addCurve(xhelp, data, legend=legend, info=curveinfo, own=True) self.setGraphXLabel('Channel') except: del self.dataObjectsDict[legend] raise if resetzoom: self.resetZoom() def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist) %d", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] legendlist = [] for sel in sellist: key = sel['Key'] if "scanselection" in sel: if sel['scanselection'] not in [False, "MCA"]: continue mcakeys = [key] for mca in mcakeys: legend = sel['legend'] legendlist.append(legend) self.removeCurves(legendlist) def removeCurves(self, removelist): for legend in removelist: self.removeCurve(legend) def removeCurve(self, legend): super(McaWindow, self).removeCurve(legend) if legend in self.dataObjectsDict.keys(): del self.dataObjectsDict[legend] def _replaceSelection(self, selectionlist): _logger.debug("_replaceSelection(self, selectionlist) %s", selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] doit = False for sel in sellist: if sel.get('scanselection', False) not in [False, "MCA"]: continue doit = True break if not doit: return self.clearCurves() self.dataObjectsDict = {} self._addSelection(selectionlist) def setActiveCurve(self, legend): if legend is None: legend = self.getActiveCurve(just_legend=True) if legend is None: self.controlWidget.calinfo.AText.setText("?????") self.controlWidget.calinfo.BText.setText("?????") self.controlWidget.calinfo.CText.setText("?????") return # if legend in self.dataObjectsDict.keys(): # todo: unused block # x0 = self.dataObjectsDict[legend].x[0] # y = self.dataObjectsDict[legend].y[0] # # those are the actual data # if str(self.getGraphXLabel()).upper() != "CHANNEL": # # I have to get the energy # A = self.controlWidget.calinfo.caldict['']['A'] # B = self.controlWidget.calinfo.caldict['']['B'] # C = self.controlWidget.calinfo.caldict['']['C'] # order = self.controlWidget.calinfo.caldict['']['order'] # else: # A = 0.0 # B = 1.0 # C = 0.0 # order = 1 # calib = [A, B, C] # if order == "TOF": # x = calib[2] + calib[0] / pow(x0-calib[1], 2) # else: # x = calib[0] + \ # calib[1] * x0 + \ # calib[2] * x0 * x0 # else: if legend not in self.dataObjectsDict.keys(): _logger.error("Received legend = %s\nlegends recognized = %s\n" "Should not be here", legend, self.dataObjectsDict.keys()) return try: info = self.getCurve(legend)[3] calib = info['McaCalib'] self.controlWidget.calinfo.setParameters({'A': calib[0], 'B': calib[1], 'C': calib[2]}) except KeyError: self.controlWidget.calinfo.AText.setText("?????") self.controlWidget.calinfo.BText.setText("?????") self.controlWidget.calinfo.CText.setText("?????") xlabel = self.getGraphXLabel() ylabel = self.getGraphYLabel() super(McaWindow, self).setActiveCurve(legend) self.setGraphXLabel(xlabel) self.setGraphYLabel(ylabel) def saveOperation(self, outputFile, outputFilter): filterused = outputFilter.split() filetype =filterused[1] extension = filterused[-1] if filterused[0].upper().startswith("WIDGET"): return super(McaWindow, self).saveOperation(outputFile, outputFilter) elif outputFile[-3:].upper() in ['EPS', 'PNG', 'SVG']: return super(McaWindow, self).saveOperation(outputFile, outputFilter) # we need to recover characteristc MCA information # get active curve x, y, legend, info = self.getActiveCurve()[:4] if info is None: return ndict = {legend: {'order': 1, 'A': 0.0, 'B': 1.0, 'C': 0.0}} if self.getGraphXLabel().upper() == "CHANNEL": if legend in self.caldict: calibrationOrder = self.caldict[legend].get('McaCalibOrder',2) ndict[legend].update(self.caldict[legend]) if abs(ndict[legend]['C']) > 0.0: ndict[legend]['order'] = 2 elif 'McaCalib' in info: calibrationOrder = info.get('McaCalibOrder', 2) if type(info['McaCalib'][0]) == type([]): calib = info['McaCalib'][0] else: calib = info['McaCalib'] if len(calib) > 1: ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] if len(calib) > 2: ndict[legend]['order'] = 2 ndict[legend]['C'] = calib[2] elif legend in self.dataObjectsDict: calibrationOrder = self.dataObjectsDict[legend].info.get('McaCalibOrder', 2) if 'McaCalib' in self.dataObjectsDict[legend].info: calib = self.dataObjectsDict[legend].info['McaCalib'] ndict[legend]['A'] = calib[0] ndict[legend]['B'] = calib[1] ndict[legend]['C'] = calib[2] calib = [ndict[legend]['A'], ndict[legend]['B'], ndict[legend]['C']] if calibrationOrder == 'TOF': energy = calib[2] + calib[0] / pow(x - calib[1], 2) else: energy = calib[0] + calib[1] * x + calib[2] * x * x else: # I have it in energy A = self.controlWidget.calinfo.caldict['']['A'] B = self.controlWidget.calinfo.caldict['']['B'] C = self.controlWidget.calinfo.caldict['']['C'] order = self.controlWidget.calinfo.caldict['']['order'] ndict[legend] = {'order': order, 'A': A, 'B': B, 'C': C} calib = [A, B, C] energy = x * 1 if legend in self.dataObjectsDict.keys(): x0 = self.dataObjectsDict[legend].x[0] if order == 'TOF': x0 = calib[2] + calib[0] / pow(x0 - calib[1], 2) else: x0 = calib[0] + calib[1] * x0 + calib[2] * x0 * x0 if numpy.allclose(energy, x0): x = self.dataObjectsDict[legend].x[0] else: ndict[legend] = {'order': 1, 'A': 0.0, 'B': 1.0, 'C': 1.0} specFile = outputFile if os.path.exists(specFile): os.remove(specFile) try: systemline = os.linesep os.linesep = '\n' if sys.version < "3.0": ffile = open(specFile, 'wb') else: ffile = open(specFile, 'w', newline='') # This was giving problems on legends with a leading b # legend = legend.strip('') # legend = legend.strip('<\b>') if filetype == 'Scan': ffile.write("#F %s\n" % specFile) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("#N 3\n") ffile.write("#L channel counts energy\n") for i in range(len(y)): ffile.write("%.7g %.7g %.7g\n" % (x[i], y[i], energy[i])) ffile.write("\n") elif filetype == 'ASCII': for i in range(len(y)): ffile.write("%.7g %.7g %.7g\n" % (x[i], y[i], energy[i])) elif filetype == 'CSV': if "," in filterused[0]: csv = "," elif ";" in filterused[0]: csv = ";" elif "OMNIC" in filterused[0]: csv = "," else: csv = "\t" if "OMNIC" in filterused[0]: for i in range(len(y)): ffile.write("%.7E%s%.7E\n" % (energy[i], csv, y[i])) else: ffile.write('"channel"%s"counts"%s"energy"\n' % (csv, csv)) for i in range(len(y)): ffile.write("%.7E%s%.7E%s%.7E\n" % (x[i], csv, y[i], csv, energy[i])) else: ffile.write("#F %s\n" % specFile) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (len(y), x[0], x[-1])) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (ndict[legend]['A'], ndict[legend]['B'], ndict[legend]['C'])) ffile.write(self.array2SpecMca(y)) ffile.write("\n") ffile.close() except: os.linesep = systemline raise return def getCalibrations(self): return copy.deepcopy(self.caldict) def setCalibrations(self, ddict=None): if ddict is None: ddict = {} self.caldict = ddict item, text = self.controlWidget.calbox.getCurrent() options = [] for option in self.calboxoptions: options.append(option) for key in self.caldict.keys(): if key not in options: options.append(key) try: self.controlWidget.calbox.setOptions(options) except Exception: pass self.controlWidget.calbox.setCurrentIndex(item) self.refresh() # The plugins interface def _toggleLogY(self): _logger.debug("McaWindow _toggleLogY") # ensure call to addCurve does not change dataObjectsDict self._ownSignal = True try: self.setYAxisLogarithmic(not self.isYAxisLogarithmic()) finally: self._ownSignal = None def _toggleLogX(self): _logger.debug("McaWindow _toggleLogX") # ensure call to addCurve does not change dataObjectsDict self._ownSignal = True try: self.setXAxisLogarithmic(not self.isXAxisLogarithmic()) finally: self._ownSignal = None def getGraphYLimits(self): # if the active curve is mapped to second axis # I should give the second axis limits return super(McaWindow, self).getGraphYLimits() # end of plugins interface def addCurve(self, x, y, legend=None, info=None, replace=False, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, own=None, resetzoom=True, **kw): if "replot" in kw: _logger.warning("addCurve deprecated replot argument, " "use resetzoom instead") resetzoom = kw["replot"] and resetzoom all_legends = self.getAllCurves(just_legend=True) if legend in all_legends: if info is None: info = {} oldStuff = self.getCurve(legend) if oldStuff not in [[], None]: oldX, oldY, oldLegend, oldInfo, oldParams = oldStuff else: oldInfo = {} if color is None: color = info.get("plot_color", oldInfo.get("plot_color", None)) if symbol is None: symbol = info.get("plot_symbol", oldInfo.get("plot_symbol", None)) if linestyle is None: linestyle = info.get("plot_linestyle", oldInfo.get("plot_linestyle", None)) if yaxis is None: yaxis = info.get("plot_yaxis", oldInfo.get("plot_yaxis", None)) if xlabel is None: xlabel = self.getGraphXLabel() if ylabel is None: ylabel = self.getGraphYLabel() if own is None: own = self._ownSignal if own and (legend in self.dataObjectsDict): # The curve is already registered super(McaWindow, self).addCurve(x, y, legend=legend, info=info, replace=replace, resetzoom=resetzoom, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) else: if legend in self.dataObjectsDict: xChannels, yOrig, infoOrig = self.getDataAndInfoFromLegend(legend) calib = info.get('McaCalib', [0.0, 1.0, 0.0]) calibrationOrder = info.get('McaCalibOrder', 2) if calibrationOrder == 'TOF': xFromChannels = calib[2] + calib[0] / pow(xChannels-calib[1], 2) else: xFromChannels = calib[0] + \ calib[1] * xChannels + calib[2] * xChannels * xChannels if numpy.allclose(xFromChannels, x): x = xChannels # create the data object (Is this necessary????) self.newCurve(x, y, legend=legend, info=info, replace=replace, color=color, symbol=symbol, resetzoom=resetzoom, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, **kw) # activate first curve if not all_legends: self.setActiveCurve(legend) def newCurve(self, x, y, legend=None, info=None, replace=False, color=None, symbol=None, linestyle=None, resetzoom=True, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): if "replot" in kw: _logger.warning("addCurve deprecated replot argument, " "use resetzoom instead") resetzoom = kw["replot"] and resetzoom if info is None: info = {} if legend is None: legend = "Unnamed curve 1.1" # this is awfull but I have no other way to pass the plot information ... if color is not None: info["plot_color"] = color if symbol is not None: info["plot_symbol"] = symbol if linestyle is not None: info["plot_linestyle"] = linestyle if yaxis is None: yaxis = info.get("plot_yaxis", None) if yaxis is not None: info["plot_yaxis"] = yaxis newDataObject = DataObject.DataObject() newDataObject.x = [x] newDataObject.y = [y] newDataObject.m = None newDataObject.info = copy.deepcopy(info) newDataObject.info['legend'] = legend newDataObject.info['SourceName'] = legend newDataObject.info['Key'] = "" newDataObject.info['selectiontype'] = "1D" sel_list = [] sel = { 'SourceType': "Operation", 'SourceName': legend, 'Key': legend, 'legend': legend, 'dataobject': newDataObject, 'scanselection': False, 'selectiontype': "1D"} sel_list.append(sel) if replace: self._replaceSelection(sel_list) else: self._addSelection(sel_list, resetzoom=resetzoom) def refresh(self): _logger.debug(" DANGEROUS REFRESH CALLED") activeCurve = self.getActiveCurve(just_legend=True) # try to keep the same curve order legendList = self.getAllCurves(just_legend=True) dataObjectsKeyList = list(self.dataObjectsDict.keys()) sellist = [] for key in legendList: if key in dataObjectsKeyList: sel = {'SourceName': self.dataObjectsDict[key].info['SourceName'], 'dataobject': self.dataObjectsDict[key], 'legend': key, 'Key': self.dataObjectsDict[key].info['Key']} sellist.append(sel) for key in dataObjectsKeyList: if key not in legendList: sel = {'SourceName': self.dataObjectsDict[key].info['SourceName'], 'dataobject': self.dataObjectsDict[key], 'legend': key, 'Key': self.dataObjectsDict[key].info['Key']} sellist.append(sel) self.clearCurves() self._addSelection(sellist) if activeCurve is not None: self.setActiveCurve(activeCurve) self.resetZoom() def test(): w = McaWindow() x = numpy.arange(1000.) y = 10 * x + 10000. * numpy.exp(-0.5*(x-500)*(x-500)/400) w.addCurve(x, y, legend="dummy", replot=True, replace=True) w.resetZoom() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SilxScanWindow.py0000644000000000000000000013064014741736366021454 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This module defines a :class:`ScanWindow` inheriting a *silx* :class:`PlotWindow` with additional tools and actions. The main addition is a :class:`PluginsToolButton` button added to the toolbar, to open a menu with plugins.""" import os import copy import logging import numpy import sys import time import traceback from silx.gui.plot import PlotWindow from silx.gui.plot.PrintPreviewToolButton import SingletonPrintPreviewToolButton import PyMca5 from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.pymca import ScanWindowInfoWidget from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.PluginsToolButton import PluginsToolButton from PyMca5.PyMcaGui.math import SimpleActions from PyMca5.PyMcaGui.pymca import ScanFit from PyMca5.PyMcaGui.pymca.ScanFitToolButton import ScanFitToolButton from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave1D from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict, change_icons if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str PLUGINS_DIR = None if os.path.exists(os.path.join(os.path.dirname(PyMca5.__file__), "PyMcaPlugins")): from PyMca5 import PyMcaPlugins PLUGINS_DIR = os.path.dirname(PyMcaPlugins.__file__) else: directory = os.path.dirname(__file__) while True: if os.path.exists(os.path.join(directory, "PyMcaPlugins")): PLUGINS_DIR = os.path.join(directory, "PyMcaPlugins") break directory = os.path.dirname(directory) if len(directory) < 5: break userPluginsDirectory = PyMca5.getDefaultUserPluginsDirectory() if userPluginsDirectory is not None: if PLUGINS_DIR is None: PLUGINS_DIR = userPluginsDirectory else: PLUGINS_DIR = [PLUGINS_DIR, userPluginsDirectory] _logger = logging.getLogger(__name__) # _logger.setLevel(logging.DEBUG) class ScanWindowPrintPreviewButton(SingletonPrintPreviewToolButton): """This class allows to add title and comment if the plot has the methods getPrintPreviewTitle and getPrintPreviewCommentAndPosition.""" def _safeGetPlot(self): if hasattr(self, "getPlot"): plot = self.getPlot() elif hasattr(self, "plot"): plot = self.plot() elif hasattr(self, "_plot"): plot = self._plot else: plot = None return plot def getTitle(self): title = None plot = self._safeGetPlot() if plot is not None: if hasattr(plot, "getPrintPreviewTitle"): title = plot.getPrintPreviewTitle() return title def getCommentAndPosition(self): comment, position = None, None plot = self._safeGetPlot() if plot is not None: if hasattr(self._plot, "getPrintPreviewCommentAndPosition"): comment, position = plot.getPrintPreviewCommentAndPosition() return comment, position class BaseScanWindow(PlotWindow): """:class:`PlotWindow` augmented with plugins, fitting actions, a widget for displaying scan metadata and simple curve processing actions. """ def __init__(self, parent=None, name="Scan Window", fit=True, backend=None, plugins=True, control=True, position=True, roi=True, specfit=None, info=False, save=True): super(BaseScanWindow, self).__init__(parent, backend=backend, roi=roi, control=control, position=position, save=save, mask=False, colormap=False, aspectRatio=False, yInverted=False, copy=True, print_=False) self.setDataMargins(0, 0, 0.025, 0.025) self.setPanWithArrowKeys(True) self._plotType = "SCAN" # needed by legacy plugins self.setWindowTitle(name) # No context menu by default, execute zoomBack on right click plotArea = self.getWidgetHandle() plotArea.setContextMenuPolicy(qt.Qt.CustomContextMenu) plotArea.customContextMenuRequested.connect(self._zoomBack) # Toolbar: # hide interactive toolbar (zoom and pan mode buttons) self.getInteractiveModeToolBar().setVisible(False) # additional buttons self._mathToolBar = qt.QToolBar(self) self.addToolBar(self._mathToolBar) self.fitToolButton = None self.scanFit = None if fit: self.scanFit = ScanFit.ScanFit(specfit=specfit) self.fitToolButton = ScanFitToolButton(self) self.toolBar().insertWidget(self.getMaskAction(), # before MaskAction (hidden) self.fitToolButton) self.avgAction = SimpleActions.AverageAction(plot=self) self.derivativeAction = SimpleActions.DerivativeAction(plot=self) self.smoothAction = SimpleActions.SmoothAction(plot=self) self.swapSignAction = SimpleActions.SwapSignAction(plot=self) self.yMinToZero = SimpleActions.YMinToZeroAction(plot=self) self.subtractAction = SimpleActions.SubtractAction(plot=self) self._mathToolBar.addAction(self.avgAction) self._mathToolBar.addAction(self.derivativeAction) self._mathToolBar.addAction(self.smoothAction) self._mathToolBar.addAction(self.swapSignAction) self._mathToolBar.addAction(self.yMinToZero) self._mathToolBar.addAction(self.subtractAction) self.pluginsToolButton = None """Plugins tool button, used to load and call plugins. It inherits the PluginLoader API: - getPlugins - getPluginDirectoryList - setPluginDirectoryList It can be None, if plugins are disabled when initializing the ScanWindow. """ if plugins: self.pluginsToolButton = PluginsToolButton(plot=self) if PLUGINS_DIR is not None: if isinstance(PLUGINS_DIR, list): pluginDir = PLUGINS_DIR else: pluginDir = [PLUGINS_DIR] self.pluginsToolButton.getPlugins( method="getPlugin1DInstance", directoryList=pluginDir) self.pluginsAction = self._mathToolBar.addWidget(self.pluginsToolButton) self._printPreviewToolBar = qt.QToolBar(self) self._printPreviewToolBar.setMovable(False) self._printPreviewToolBar.setFloatable(False) self.addToolBar(self._printPreviewToolBar) self._printPreviewToolBar.addWidget(qt.HorizontalSpacer(self._printPreviewToolBar)) self.printPreview = ScanWindowPrintPreviewButton(parent=self._printPreviewToolBar, plot=self) self.printPreviewAction = self._printPreviewToolBar.addWidget(self.printPreview) self.scanWindowInfoWidget = None self.infoDockWidget = None if info: self.scanWindowInfoWidget = ScanWindowInfoWidget.\ ScanWindowInfoWidget() self.infoDockWidget = qt.QDockWidget(self) self.infoDockWidget.layout().setContentsMargins(0, 0, 0, 0) self.infoDockWidget.setWidget(self.scanWindowInfoWidget) self.infoDockWidget.setWindowTitle("Scan Info") self.addDockWidget(qt.Qt.BottomDockWidgetArea, self.infoDockWidget) self.sigActiveCurveChanged.connect(self.__updateInfoWidget) self.sigActiveCurveChanged.connect(self._updateGraphTitle) self.matplotlibDialog = None saveAction = self.getOutputToolBar().getSaveAction() for ext in ["png", "eps", "svg"]: name_filter = 'Customized graphics (*.%s)' % ext # if silx-kit/silx#2013 is merged, the following line can be removed for silx 0.9 saveAction.setFileFilter(dataKind='curve', # single curve case nameFilter=name_filter, func=self._graphicsSave) saveAction.setFileFilter(dataKind='curves', nameFilter=name_filter, func=self._graphicsSave) change_icons(self) def _customControlButtonMenu(self): """Display Options button sub-menu. Overloaded to add _toggleInfoAction""" # overloaded from PlotWindow to add "Show/Hide Info" controlMenu = self.controlButton.menu() controlMenu.clear() controlMenu.addAction(self.getLegendsDockWidget().toggleViewAction()) if self.infoDockWidget is not None: controlMenu.addAction(self.infoDockWidget.toggleViewAction()) controlMenu.addAction(self.getRoiAction()) controlMenu.addAction(self.getMaskAction()) controlMenu.addAction(self.getConsoleAction()) controlMenu.addSeparator() controlMenu.addAction(self.getCrosshairAction()) controlMenu.addAction(self.getPanWithArrowKeysAction()) def __updateInfoWidget(self, previous_legend, legend): """Called on active curve changed, to update the info widget""" x, y, legend, info, params = self.getCurve(legend) self.scanWindowInfoWidget.updateFromXYInfo(x, y, info) def _updateGraphTitle(self, previous_legend, legend): """Called on active curve changed, to update the graph title""" if legend is None and previous_legend is not None: self.setGraphTitle() elif legend is not None: self.setGraphTitle(legend) def setWindowType(self, wtype=None): if wtype not in [None, "SCAN", "MCA"]: raise AttributeError("Unsupported window type %s." % wtype) self._plotType = wtype def _zoomBack(self, pos): self.getLimitsHistory().pop() def _graphicsSave(self, plot, filename, nameFilter=""): # note: the method's signature must conform to # saveAction.setFileFilter requirements x, y, legend, info = plot.getActiveCurve()[:4] curveList = plot.getAllCurves() size = (6, 3) # in inches legends = len(curveList) > 1 if self.matplotlibDialog is None: self.matplotlibDialog = QPyMcaMatplotlibSave1D.\ QPyMcaMatplotlibSaveDialog(size=size, logx=plot.isXAxisLogarithmic(), logy=plot.isYAxisLogarithmic(), legends=legends, bw=False) mtplt = self.matplotlibDialog.plot mtplt.setParameters({'logy': plot.isXAxisLogarithmic(), 'logx': plot.isYAxisLogarithmic(), 'legends': legends, 'bw': False}) xmin, xmax = plot.getGraphXLimits() ymin, ymax = plot.getGraphYLimits() mtplt.setLimits(xmin, xmax, ymin, ymax) legend0 = legend dataCounter = 1 alias = "%c" % (96 + dataCounter) mtplt.addDataToPlot(x, y, legend=legend0, alias=alias) for curve in curveList: x, y, legend, info = curve[0:4] if legend == legend0: continue dataCounter += 1 alias = "%c" % (96 + dataCounter) mtplt.addDataToPlot(x, y, legend=legend, alias=alias) self.matplotlibDialog.setXLabel(plot.getGraphXLabel()) self.matplotlibDialog.setYLabel(plot.getGraphYLabel()) if legends: mtplt.plotLegends() ret = self.matplotlibDialog.exec() if ret == qt.QDialog.Accepted: mtplt.saveFile(filename) return def getPrintPreviewTitle(self): return None def getPrintPreviewCommentAndPosition(self): return None, None def printHtml(self, text): printer = qt.QPrinter() printDialog = qt.QPrintDialog(printer, self) if printDialog.exec(): document = qt.QTextDocument() document.setHtml(text) document.print_(printer) def array2SpecMca(self, data): """ Write a python array into a Spec array. Return the string containing the Spec array """ tmpstr = "@A " length = len(data) for idx in range(0, length, 16): if idx+15 < length: for i in range(0, 16): tmpstr += "%.8g " % data[idx+i] if idx+16 != length: tmpstr += "\\" else: for i in range(idx, length): tmpstr += "%.8g " % data[i] tmpstr += "\n" return tmpstr class ScanWindow(BaseScanWindow): """ScanWindow, adding dataObject management to BaseScanWindow """ def __init__(self, parent=None, name="Scan Window", fit=True, backend=None, plugins=True, control=True, position=True, roi=True, specfit=None, info=False, save=None): if save is None: _logger.info("__init__ save option unset using custom save") save = False BaseScanWindow.__init__(self, parent, name, fit, backend, plugins, control, position, roi, specfit, info, save) self.dataObjectsDict = {} self.outputDir = None self.outputFilter = None # custom save self.customSaveIcon = qt.QIcon(qt.QPixmap(IconDict["filesave"])) self.customSaveButton = qt.QToolButton(self) self.customSaveButton.setIcon(self.customSaveIcon) self.customSaveButton.setToolTip('Save as') self.customSaveButton.clicked.connect(self._saveIconSignal) self.getOutputToolBar().addWidget(self.customSaveButton) self.sigContentChanged.connect(self._handleContentChanged) @property def dataObjectsList(self): return self.getAllCurves(just_legend=True) @property def _curveList(self): return self.getAllCurves(just_legend=True) def _handleContentChanged(self, action, kind, legend): if action == 'remove' and kind == "curve": self.removeCurves([legend]) def setDispatcher(self, w): w.sigAddSelection.connect(self._addSelection) w.sigRemoveSelection.connect(self._removeSelection) w.sigReplaceSelection.connect(self._replaceSelection) def _addSelection(self, selectionlist, resetzoom=True, replot=None): """Add curves to plot and data objects to :attr:`dataObjectsDict` """ _logger.debug("_addSelection(self, selectionlist) " + str(selectionlist)) if replot is not None: _logger.warning( 'deprecated replot argument, use resetzoom instead') resetzoom = replot and resetzoom sellist = selectionlist if isinstance(selectionlist, list) else \ [selectionlist] if len(self.getAllCurves(just_legend=True)): activeCurve = self.getActiveCurve(just_legend=True) else: activeCurve = None nSelection = len(sellist) for selectionIndex in range(nSelection): sel = sellist[selectionIndex] key = sel['Key'] legend = sel['legend'] # expected form sourcename + scan key if "scanselection" not in sel or not sel["scanselection"] or \ sel['scanselection'] == "MCA": continue if len(key.split(".")) > 2: continue dataObject = sel['dataobject'] # only one-dimensional selections considered if dataObject.info["selectiontype"] != "1D": continue # there must be something to plot if not hasattr(dataObject, 'y'): continue if len(dataObject.y) == 0: # nothing to be plot continue else: for i in range(len(dataObject.y)): if numpy.isscalar(dataObject.y[i]): dataObject.y[i] = numpy.array([dataObject.y[i]]) if not hasattr(dataObject, 'x'): ylen = len(dataObject.y[0]) if ylen: xdata = numpy.arange(ylen).astype(numpy.float64) else: #nothing to be plot continue if getattr(dataObject, 'x', None) is None: ylen = len(dataObject.y[0]) if not ylen: # nothing to be plot continue xdata = numpy.arange(ylen).astype(numpy.float64) elif len(dataObject.x) > 1: # mesh plot continue else: if numpy.isscalar(dataObject.x[0]): dataObject.x[0] = numpy.array([dataObject.x[0]]) xdata = dataObject.x[0] if sel.get('SourceType') == "SPS": ycounter = -1 if 'selection' not in dataObject.info: dataObject.info['selection'] = copy.deepcopy(sel['selection']) for ydata in dataObject.y: xlabel = None ylabel = None ycounter += 1 # normalize ydata with monitor if dataObject.m is not None and len(dataObject.m[0]) > 0: if len(dataObject.m[0]) != len(ydata): raise ValueError("Monitor data length different than counter data") index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) # A priori the graph only knows about plots ydata = ydata / mdata ylegend = 'y%d' % ycounter if isinstance(dataObject.info['selection'], dict): if 'x' in dataObject.info['selection']: # proper scan selection ilabel = dataObject.info['selection']['y'][ycounter] ylegend = dataObject.info['LabelNames'][ilabel] ylabel = ylegend if sel['selection']['x'] is not None: if len(dataObject.info['selection']['x']): xlabel = dataObject.info['LabelNames'] \ [dataObject.info['selection']['x'][0]] dataObject.info["xlabel"] = xlabel dataObject.info["ylabel"] = ylabel newLegend = legend + " " + ylegend self.dataObjectsDict[newLegend] = dataObject self.addCurve(xdata, ydata, legend=newLegend, info=dataObject.info, xlabel=xlabel, ylabel=ylabel, resetzoom=False) if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): activeLegend = self.getActiveCurve(just_legend=True) if activeLegend == newLegend: self.scanWindowInfoWidget.updateFromXYInfo( \ xdata, ydata, dataObject.info) else: # we have to loop for all y values ycounter = -1 for ydata in dataObject.y: ylen = len(ydata) if ylen == 1 and len(xdata) > 1: ydata = ydata[0] * numpy.ones(len(xdata)).astype(numpy.float64) elif len(xdata) == 1: xdata = xdata[0] * numpy.ones(ylen).astype(numpy.float64) ycounter += 1 newDataObject = DataObject.DataObject() newDataObject.info = copy.deepcopy(dataObject.info) if dataObject.m is not None: for imon in range(len(dataObject.m)): if numpy.isscalar(dataObject.m[imon]): dataObject.m[imon] = \ numpy.array([dataObject.m[imon]]) if dataObject.m is None: mdata = numpy.ones(len(ydata)).astype(numpy.float64) elif len(dataObject.m[0]) == len(ydata): index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) # A priori the graph only knows about plots ydata = ydata / mdata elif len(dataObject.m[0]) == 1: mdata = numpy.ones(len(ydata)).astype(numpy.float64) mdata *= dataObject.m[0][0] index = numpy.nonzero(dataObject.m[0])[0] if not len(index): continue xdata = numpy.take(xdata, index) ydata = numpy.take(ydata, index) mdata = numpy.take(dataObject.m[0], index) # A priori the graph only knows about plots ydata = ydata / mdata else: raise ValueError("Monitor data length different than counter data") newDataObject.x = [xdata] newDataObject.y = [ydata] newDataObject.m = [mdata] newDataObject.info['selection'] = copy.deepcopy(sel['selection']) ylegend = 'y%d' % ycounter xlabel = None ylabel = None if isinstance(sel['selection'], dict) and 'x' in sel['selection']: # proper scan selection newDataObject.info['selection']['x'] = sel['selection']['x'] newDataObject.info['selection']['y'] = [sel['selection']['y'][ycounter]] newDataObject.info['selection']['m'] = sel['selection']['m'] ilabel = newDataObject.info['selection']['y'][0] ylegend = newDataObject.info['LabelNames'][ilabel] ylabel = ylegend if len(newDataObject.info['selection']['x']): ilabel = newDataObject.info['selection']['x'][0] xlabel = newDataObject.info['LabelNames'][ilabel] else: xlabel = "Point number" if ('operations' in dataObject.info) and len(dataObject.y) == 1: newDataObject.info['legend'] = legend symbol = 'x' else: symbol = None newDataObject.info['legend'] = legend + " " + ylegend newDataObject.info['selectionlegend'] = legend yaxis = None if "plot_yaxis" in dataObject.info: yaxis = dataObject.info["plot_yaxis"] elif 'operations' in dataObject.info: if dataObject.info['operations'][-1] == 'derivate': yaxis = 'right' self.dataObjectsDict[newDataObject.info['legend']] = newDataObject self.addCurve(xdata, ydata, legend=newDataObject.info['legend'], info=newDataObject.info, symbol=symbol, yaxis=yaxis, xlabel=xlabel, ylabel=ylabel, resetzoom=False) try: if activeCurve is None and self._curveList: self.setActiveCurve(self._curveList[0]) finally: if resetzoom: self.resetZoom() def _removeSelection(self, selectionlist): _logger.debug("_removeSelection(self, selectionlist) " + str(selectionlist)) sellist = selectionlist if isinstance(selectionlist, list) else \ [selectionlist] removelist = [] for sel in sellist: key = sel['Key'] if "scanselection" not in sel or not sel["scanselection"]: continue if sel['scanselection'] == "MCA": continue if len(key.split(".")) > 2: continue legend = sel['legend'] # expected form sourcename + scan key if isinstance(sel['selection'], dict) and 'y' in sel['selection']: for lName in ['cntlist', 'LabelNames']: if lName in sel['selection']: for index in sel['selection']['y']: removelist.append(legend + " " + sel['selection'][lName][index]) if len(removelist): self.removeCurves(removelist) def _replaceSelection(self, selectionlist): """Delete existing curves and data objects, then add new selection. """ _logger.debug("_replaceSelection(self, selectionlist) " + str(selectionlist)) sellist = selectionlist if isinstance(selectionlist, list) else \ [selectionlist] doit = False for sel in sellist: if "scanselection" not in sel or not sel["scanselection"]: continue if sel['scanselection'] == "MCA": continue if len(sel["Key"].split(".")) > 2: continue dataObject = sel['dataobject'] if dataObject.info["selectiontype"] == "1D": if hasattr(dataObject, 'y'): doit = True break if not doit: return self.clearCurves() self.dataObjectsDict = {} self._addSelection(selectionlist, resetzoom=True) def removeCurves(self, removeList): for legend in removeList: self.removeCurve(legend) if legend in self.dataObjectsDict: del self.dataObjectsDict[legend] def addCurve(self, x, y, legend=None, info=None, replace=False, resetzoom=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): """Add a curve. If a curve with the same legend already exists, the unspecified parameters (color, symbol, linestyle, yaxis) are assumed to be identical to the parameters of the existing curve.""" if "replot" in kw: _logger.warning("addCurve deprecated replot argument, " "use resetzoom instead") resetzoom = kw["replot"] and resetzoom if legend in self._curveList: if info is None: info = {} oldStuff = self.getCurve(legend) if oldStuff is not None: oldX, oldY, oldLegend, oldInfo, oldParams = oldStuff else: oldInfo = {} if color is None: color = info.get("plot_color", oldInfo.get("plot_color", None)) if symbol is None: symbol = info.get("plot_symbol", oldInfo.get("plot_symbol", None)) if linestyle is None: linestyle = info.get("plot_linestyle", oldInfo.get("plot_linestyle", None)) if yaxis is None: yaxis = info.get("plot_yaxis", oldInfo.get("plot_yaxis", None)) else: if info is None: info = {} if color is None: color = info.get("plot_color", None) if symbol is None: symbol = info.get("plot_symbol", None) if linestyle is None: linestyle = info.get("plot_linestyle", None) if yaxis is None: yaxis = info.get("plot_yaxis", None) if legend in self.dataObjectsDict: # the info is changing super(ScanWindow, self).addCurve( x, y, legend=legend, info=info, replace=replace, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, resetzoom=resetzoom, **kw) else: # create the data object self.newCurve( x, y, legend=legend, info=info, replace=replace, color=color, symbol=symbol, linestyle=linestyle, xlabel=xlabel, ylabel=ylabel, yaxis=yaxis, xerror=xerror, yerror=yerror, resetzoom=resetzoom, **kw) def newCurve(self, x, y, legend=None, info=None, replace=False, resetzoom=True, color=None, symbol=None, linestyle=None, xlabel=None, ylabel=None, yaxis=None, xerror=None, yerror=None, **kw): """ Create and add a data object to :attr:`dataObjectsDict` """ if "replot" in kw: _logger.warning("addCurve deprecated replot argument, " "use resetzoom instead") resetzoom = kw["replot"] and resetzoom if legend is None: legend = "Unnamed curve 1.1" if xlabel is None: xlabel = "X" if ylabel is None: ylabel = "Y" if info is None: info = {} if color is not None: info["plot_color"] = color if symbol is not None: info["plot_symbol"] = symbol if linestyle is not None: info["plot_linestyle"] = linestyle if yaxis is not None: info["plot_yaxis"] = yaxis newDataObject = DataObject.DataObject() newDataObject.x = [x] newDataObject.y = [y] newDataObject.m = None newDataObject.info = copy.deepcopy(info) newDataObject.info['legend'] = legend newDataObject.info['SourceName'] = legend newDataObject.info['Key'] = "" newDataObject.info['selectiontype'] = "1D" newDataObject.info['LabelNames'] = [xlabel, ylabel] newDataObject.info['selection'] = {'x': [0], 'y': [1]} sel = {'SourceType': "Operation", 'SourceName': legend, 'Key': "", 'legend': legend, 'dataobject': newDataObject, 'scanselection': True, 'selection': {'x': [0], 'y': [1], 'm': [], 'cntlist': [xlabel, ylabel]}, 'selectiontype': "1D"} sel_list = [sel] if replace: self._replaceSelection(sel_list) else: self._addSelection(sel_list, resetzoom=resetzoom) def getPrintPreviewTitle(self): title = None try: if len(self.getGraphTitle()): # there is already a title # no need to add a second one return title except Exception: logger.warning('Problem accessing ScanWindow plot title') if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): info = self.scanWindowInfoWidget.getInfo() title = info['scan'].get('source', None) return title def getPrintPreviewCommentAndPosition(self): comment = None position = None if self.scanWindowInfoWidget is not None: if not self.infoDockWidget.isHidden(): info = self.scanWindowInfoWidget.getInfo() title = info['scan'].get('source', None) comment = info['scan'].get('scan', None)+"\n" h, k, l = info['scan'].get('hkl') if h != "----": comment += "H = %s K = %s L = %s\n" % (h, k, l) peak = info['graph']['peak'] peakAt = info['graph']['peakat'] fwhm = info['graph']['fwhm'] fwhmAt = info['graph']['fwhmat'] com = info['graph']['com'] mean = info['graph']['mean'] std = info['graph']['std'] minimum = info['graph']['min'] maximum = info['graph']['max'] delta = info['graph']['delta'] xLabel = self.getGraphXLabel() comment += "Peak %s at %s = %s\n" % (peak, xLabel, peakAt) comment += "FWHM %s at %s = %s\n" % (fwhm, xLabel, fwhmAt) comment += "COM = %s Mean = %s STD = %s\n" % (com, mean, std) comment += "Min = %s Max = %s Delta = %s\n" % (minimum, maximum, delta) if hasattr(self, "scanFit"): if self.scanFit is not None: if not self.scanFit.isHidden(): if comment is None: comment = "" comment += "\n" comment += self.scanFit.getText() return comment, "LEFT" def _saveIconSignal(self): legend = self.getActiveCurve(just_legend=True) if legend is None: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setText("Please Select an active curve") msg.setWindowTitle('%s window' % self._plotType) msg.exec() return output = self._getOutputFileNameAndFilter() if output is None: return outputFile, outputFilter = output try: self.saveOperation(outputFile, outputFilter) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Save error") msg.setInformativeText("Saving Error: %s" % (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def saveOperation(self, outputFile, outputFilter): filterused = outputFilter.split() filetype = filterused[1] extension = filterused[-1] specFile = outputFile if os.path.exists(specFile): os.remove(specFile) # WIDGET format fformat = specFile[-3:].upper() if filterused[0].upper().startswith("WIDGET"): if hasattr(qt.QPixmap, "grabWidget"): pixmap = qt.QPixmap.grabWidget(self.getWidgetHandle()) else: pixmap = self.getWidgetHandle().grab() if not pixmap.save(specFile, fformat): qt.QMessageBox.critical( self, "Save Error", "%s" % "I could not save the file\nwith the desired format") return # GRAPHICS format if fformat in ['EPS', 'PNG', 'SVG']: try: self._graphicsSave(plot=self, filename=specFile) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Save error") msg.setInformativeText("Graphics Saving Error: %s" % (sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() return # TEXT based formats # This was giving problems on legends with a leading b # legend = legend.strip('') # legend = legend.strip('<\b>') x, y, legend, info = self.getActiveCurve()[:4] xlabel = info.get("xlabel", "X") ylabel = info.get("ylabel", "Y") try: systemline = os.linesep os.linesep = '\n' if sys.version < "3.0": ffile = open(specFile, 'wb') else: ffile = open(specFile, 'w', newline='') if filetype in ['Scan', 'MultiScan']: ffile.write("#F %s\n" % specFile) savingDate = "#D %s\n"%(time.ctime(time.time())) ffile.write(savingDate) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (xlabel, ylabel) ) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") if filetype == 'MultiScan': scan_n = 1 curveList = self.getAllCurves() for curve in curveList: x, y, key, info = curve[:4] if key == legend: continue xlabel = info.get("xlabel", "X") ylabel = info.get("ylabel", "Y") scan_n += 1 ffile.write("#S %d %s\n" % (scan_n, key)) ffile.write(savingDate) ffile.write("#N 2\n") ffile.write("#L %s %s\n" % (xlabel, ylabel) ) for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) ffile.write("\n") elif filetype == 'ASCII': for i in range(len(y)): ffile.write("%.7g %.7g\n" % (x[i], y[i])) elif filetype == 'CSV': if "," in filterused[0]: csvseparator = "," elif ";" in filterused[0]: csvseparator = ";" elif "OMNIC" in filterused[0]: csvseparator = "," else: csvseparator = "\t" if "OMNIC" not in filterused[0]: ffile.write('"%s"%s"%s"\n' % (xlabel,csvseparator,ylabel)) for i in range(len(y)): ffile.write("%.7E%s%.7E\n" % (x[i], csvseparator,y[i])) else: ffile.write("#F %s\n" % specFile) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("\n") ffile.write("#S 1 %s\n" % legend) ffile.write("#D %s\n"%(time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (len(y), x[0], x[-1])) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (0, 1, 0)) ffile.write(self.array2SpecMca(y)) ffile.write("\n") ffile.close() os.linesep = systemline except: os.linesep = systemline raise return def _getOutputFileNameAndFilter(self, format_list=None): """ returns outputfile, file type and filter used """ # get outputfile self.outputDir = PyMcaDirs.outputDir if self.outputDir is None: self.outputDir = os.getcwd() wdir = os.getcwd() elif os.path.exists(self.outputDir): wdir = self.outputDir else: self.outputDir = os.getcwd() wdir = self.outputDir if format_list is None: format_list = ['Specfile MCA *.mca', 'Specfile Scan *.dat'] if self._plotType != "MCA": format_list += ['Specfile MultiScan *.dat'] format_list += ['Raw ASCII *.txt', '","-separated CSV *.csv', '";"-separated CSV *.csv', '"tab"-separated CSV *.csv', 'OMNIC CSV *.csv', 'Widget PNG *.png', 'Widget JPG *.jpg', 'Graphics PNG *.png', 'Graphics EPS *.eps', 'Graphics SVG *.svg'] if self.outputFilter is None: self.outputFilter = format_list[0] fileList, fileFilter = PyMcaFileDialogs.getFileList( self, filetypelist=format_list, message="Output File Selection", currentdir=wdir, single=True, mode="SAVE", getfilter=True, currentfilter=self.outputFilter) if not len(fileList): return self.outputFilter = fileFilter filterused = self.outputFilter.split() filetype = filterused[1] extension = filterused[2] outdir = qt.safe_str(fileList[0]) try: self.outputDir = os.path.dirname(outdir) PyMcaDirs.outputDir = os.path.dirname(outdir) except Exception: self.outputDir = "." try: outputFile = os.path.basename(outdir) except Exception: outputFile = outdir if len(outputFile) < 5: outputFile = outputFile + extension[-4:] elif outputFile[-4:] != extension[-4:]: outputFile = outputFile + extension[-4:] return os.path.join(self.outputDir, outputFile), fileFilter def test(): import numpy app = qt.QApplication([]) w = ScanWindow(info=True) x = numpy.arange(1000.) y1 = 10 * x + 10000. * numpy.exp(-0.5*(x-500)*(x-500)/400) y2 = y1 + 5000. * numpy.exp(-0.5*(x-700)*(x-700)/200) y3 = y1 + 7000. * numpy.exp(-0.5*(x-200)*(x-200)/1000) w.addCurve(x, y1, legend="dummy1", info={"SourceName": "Synthetic data 1 (linear+gaussian)", "hkl": [1.1, 1.2, 1.3], "Header": ["#S 1 toto"]}) w.addCurve(x, y2, legend="dummy2", info={"SourceName": "Synthetic data 2", "hkl": [2.1, 2.2, 2.3], "Header": ["#S 2"]}) w.addCurve(x, y3, legend="dummy3", info={"SourceName": "Synthetic data 3", "hkl": ["3.1", 3.2, 3.3], "Header": ["#S 3"]}) w.resetZoom() app.lastWindowClosed.connect(app.quit) w.show() app.exec() if __name__ == "__main__": test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SilxScatterWindow.py0000644000000000000000000003704114741736366022176 0ustar00rootroot#/*########################################################################## # Copyright (C) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ import numpy from silx.gui import qt from silx.gui.plot import ScatterView, items from silx.gui.colors import Colormap DEBUG = 0 DEFAULT_SCATTER_SYMBOL = "s" DEFAULT_SCATTER_COLORMAP = "temperature" DEFAULT_SCATTER_VISUALIZATION = items.Scatter.Visualization.POINTS class ScatterViewUserDefault(ScatterView): _defaultColormap = None _defaultSymbol = None _defaultVisualization = None def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self._defaultColormap is None: self._defaultColormap = Colormap(DEFAULT_SCATTER_COLORMAP) if self._defaultSymbol is None: self._defaultSymbol = DEFAULT_SCATTER_SYMBOL if self._defaultVisualization is None: self._defaultVisualization= DEFAULT_SCATTER_VISUALIZATION # Apply defaults self.setColormap(self._defaultColormap.copy()) scatter = self.getScatterItem() scatter.setSymbol(self._defaultSymbol) scatter.setVisualization(self._defaultVisualization) # Connect to scatter item scatter.sigItemChanged.connect(self.__scatterItemChanged) def __scatterItemChanged(self, event): """Handle change of scatter item colormap and symbol""" if event is items.ItemChangedType.COLORMAP: ScatterViewUserDefault._defaultColormap = self.getScatterItem().getColormap().copy() elif event is items.ItemChangedType.SYMBOL: ScatterViewUserDefault._defaultSymbol = self.getScatterItem().getSymbol() elif event is items.ItemChangedType.VISUALIZATION_MODE: ScatterViewUserDefault._defaultVisualization = self.getScatterItem().getVisualization() class SilxScatterWindow(qt.QWidget): def __init__(self, parent=None, backend="gl"): super(SilxScatterWindow, self).__init__(parent) self.mainLayout = qt.QVBoxLayout(self) self.plot = ScatterViewUserDefault(self, backend=backend) #self.plot = ScatterView(self, backend=backend) self.plot.getPlotWidget().setDataMargins(0.05, 0.05, 0.05, 0.05) self.mainLayout.addWidget(self.plot) self._plotEnabled = True self.dataObjectsList = [] self.dataObjectsDict = {} self._xLabel = "X" self._yLabel = "Y" def _removeSelection(self, *var): if DEBUG: print("_removeSelection to be implemented") def _replaceSelection(self, *var): if DEBUG: print("_removeSelection to be implemented") def _addSelection(self, selectionlist): if DEBUG: print("_addSelection(self, selectionlist)",selectionlist) if type(selectionlist) == type([]): sellist = selectionlist else: sellist = [selectionlist] for sel in sellist: source = sel['SourceName'] key = sel['Key'] legend = sel['legend'] #expected form sourcename + scan key dataObject = sel['dataobject'] #only two-dimensional selections considered if dataObject.info.get("selectiontype", "1D") != "2D": continue if not hasattr(dataObject, "x"): raise TypeError("Not a scatter plot. No axes") elif len(dataObject.x) != 2: raise TypeError("Not a scatter plot. Invalid number of axes.") for i in range(len(dataObject.x)): if numpy.isscalar(dataObject.x[i]): dataObject.x[i] = numpy.array([dataObject.x[i]]) z = None if hasattr(dataObject, "y"): if dataObject.y not in [None, []]: z = dataObject.y if z is None: if hasattr(dataObject, "data"): if dataObject.data is not None: z = [dataObject.data] if z is None: raise TypeError("Not a scatter plot. No signal.") elif not len(z): raise TypeError("Not a scatter plot. No signal.") for i in range(len(z)): if numpy.isscalar(z[i]): z[i] = numpy.array([z[i]], dtype=numpy.float32) # we only deal with one signal, if there are more, they should be separated # in different selections x = numpy.ascontiguousarray(dataObject.x[0])[:] y = numpy.ascontiguousarray(dataObject.x[1])[:] data = numpy.ascontiguousarray(z[0], dtype=numpy.float32)[:] if (data.size == x.size) and (data.size == y.size): # standard scatter plot data.shape = 1, -1 nscatter = 1 elif (x.size == y.size) and ((data.size % x.size) == 0): # we have n items, assuming they follow C order we can collapse them to # something that can be viewed. In this case (scatter) we can sum. The # only problem is that if we have a multidimensional monitor we have to # normalize first. oldDataShape = data.shape n = 1 gotIt = False for i in range(len(oldDataShape)): n *= oldDataShape[i] if n == x.size: gotIt = True break if not gotIt: raise ValueError("Unmatched dimensions following C order") data.shape = xsize, oldDataShape[i+1:] nscatter = data.shape[0] else: raise ValueError("Unmatched dimensions among axes and signals") # deal with the monitor if hasattr(dataObject, 'm'): if dataObject.m is not None: for m in dataObject.m: if numpy.isscalar(m): data /= m elif m.size == 1: data /= m[0] elif (m.size == data.shape[0]) and (m.size == data[0].shape): # resolve an ambiguity, for instance, monitor has 10 values # and the data to be normalized are 10 x 10 if len(m.shape) > 1: # the monitor was multidimensional. # that implies normalization "per pixel" for i in range(data[0].shape): data[i] /= m.reshape(data[i].shape) else: # the monitor was unidimensional. # that implies normalization "per acquisition point" for i in range(m.size): data[i] /= m[i] elif m.size == data.shape[0]: for i in range(m.size): data[i] /= m[i] elif m.size == data[0].shape: for i in range(data[0].shape): data[i] /= m.reshape(data[i].shape) elif m.size == data.size: # potentially can take a lot of memory, numexpr? tmpView = m[:] tmpView.shape = data.shape data /= tmpView else: raise ValueError("Incompatible monitor data") while len(data.shape) > 2: # collapse any additional dimension by summing data = data.sum(dtype=numpy.float32, axis=-1).astype(numpy.float32) dataObject.data = data x.shape = -1 y.shape = -1 dataObject.x = [x, y] if len(self.dataObjectsList): resetZoom = False else: resetZoom = True if legend not in self.dataObjectsList: self.dataObjectsList.append(legend) self.dataObjectsDict[legend] = dataObject try: self._xLabel, self._yLabel = self._getXYLabels(dataObject.info) except Exception: self._xLabel, self._yLabel = "X", "Y" if self._plotEnabled: self.showData(0) if resetZoom: self.plot.getPlotWidget().resetZoom() def _getXYLabels(self, info): xLabel = "X" yLabel = "Y" if ("LabelNames" in info) and ("selection") in info: xLabel = info["LabelNames"][info["selection"]["x"][0]] yLabel = info["LabelNames"][info["selection"]["x"][1]] return xLabel, yLabel def showData(self, index=0, moveslider=True): if DEBUG: print("showData called") legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] shape = dataObject.data.shape x = dataObject.x[0] y = dataObject.x[1] #x.shape = -1 #y.shape = -1 values = dataObject.data[index] #values.shape = -1 item = self.plot.getScatterItem() if item is None: # only one scatter there self.plot.getPlotWidget().remove(kind="scatter") self.plot.getPlotWidget().addScatter(x, y, values, info=dataObject.info) else: # by using the OO API symbol and colormap are kept item.setData(x, y, values) item.setInfo(dataObject.info) self.plot.getPlotWidget().setGraphXLabel(self._xLabel) self.plot.getPlotWidget().setGraphYLabel(self._yLabel) txt = "%s %d" % (legend, index) #self.setName(txt) #if moveslider: # self.slider.setValue(index) def setPlotEnabled(self, value=True): self._plotEnabled = value if value: if len(self.dataObjectsList): self.showData() class TimerLoop: def __init__(self, function = None, period = 1000): self.__timer = qt.QTimer() if function is None: function = self.test self._function = function self.__setThread(function, period) #self._function = function def __setThread(self, function, period): self.__timer = qt.QTimer() self.__timer.timeout[()].connect(function) self.__timer.start(period) def test(self): print("Test function called") if __name__ == "__main__": from PyMca5 import DataObject import weakref import time import sys def buildDataObject(arrayData): dataObject = DataObject.DataObject() #dataObject.data = arrayData dataObject.y = [arrayData] x1, x0 = numpy.meshgrid(10 * numpy.arange(arrayData.shape[0]), numpy.arange(arrayData.shape[1])) dataObject.x = [x1, x0] dataObject.m = None dataObject.info['selectiontype'] = "2D" dataObject.info['Key'] = id(dataObject) return dataObject def buildSelection(dataObject, name = "image_data0"): key = dataObject.info['Key'] def dataObjectDestroyed(ref, dataObjectKey=key): if DEBUG: print("dataObject distroyed key = %s" % key) dataObjectRef=weakref.proxy(dataObject, dataObjectDestroyed) selection = {} selection['SourceType'] = 'SPS' selection['SourceName'] = 'spec' selection['Key'] = name selection['legend'] = selection['SourceName'] + " "+ name selection['imageselection'] = False selection['dataobject'] = dataObjectRef selection['selection'] = None return selection a = 1000 b = 1000 period = 1000 x1 = numpy.arange(a * b).astype(numpy.float64) x1.shape= [a, b] x2 = numpy.transpose(x1) print("INPUT SHAPES = ", x1.shape, x2.shape) app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) if len(sys.argv) > 1: PYMCA=True else: PYMCA = False if PYMCA: from PyMca5.PyMcaGui.pymca import PyMcaMain w = PyMcaMain.PyMcaMain() w.show() else: w = SilxScatterWindow() w.show() counter = 0 def function(period = period): global counter flag = counter % 6 if flag == 0: #add x1 print("Adding X1", x1.shape, x2.shape) dataObject = buildDataObject(x1) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 1: #add x2 print("Adding X2", x1.shape, x2.shape) dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X2') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 2: #add x1 print("Changing X1", x1.shape, x2.shape) dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 1: #add x2 print("Changing X2", x1.shape, x2.shape) dataObject = buildDataObject(x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherAddSelectionSlot(selection) else: w._addSelection(selection) elif flag == 4: #replace x1 print("Replacing by new X1", x1.shape, x2.shape) dataObject = buildDataObject(x1-x2) selection = buildSelection(dataObject, 'X1') if PYMCA: w.dispatcherReplaceSelectionSlot(selection) else: w._replaceSelection(selection) else: #replace by x2 print("Replacing by new X2", x1.shape, x2.shape) dataObject = buildDataObject(x2-x1) selection = buildSelection(dataObject, 'X2') if PYMCA: w.dispatcherReplaceSelectionSlot(selection) else: w._replaceSelection(selection) counter += 1 loop = TimerLoop(function = function, period = period) ret = app.exec() sys.exit(ret) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackBrowser.py0000644000000000000000000003163714741736366021157 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaGui.misc import FrameBrowser from PyMca5.PyMcaCore import DataObject qt = MaskImageWidget.qt IconDict = MaskImageWidget.IconDict _logger = logging.getLogger(__name__) class StackBrowser(MaskImageWidget.MaskImageWidget): def __init__(self, *var, **kw): ddict = {} ddict['usetab'] = kw.get("usetab", False) ddict['aspect'] = kw.get("aspect", True) ddict.update(kw) ddict['standalonesave'] = True MaskImageWidget.MaskImageWidget.__init__(self, *var, **ddict) self.setWindowTitle("Stack Browser") self.dataObjectsList = [] self.dataObjectsDict = {} self.nameBox = qt.QWidget(self) self.nameBox.mainLayout = qt.QHBoxLayout(self.nameBox) self.nameLabel = qt.QLabel(self.nameBox) self.nameLabel.setText("Image Name = ") self.name = qt.QLineEdit(self.nameBox) self.nameBox.mainLayout.addWidget(self.nameLabel) self.nameBox.mainLayout.addWidget(self.name) self.roiWidthLabel = qt.QLabel(self.nameBox) self.roiWidthLabel.setText("Width = ") self.roiWidthSpin = qt.QSpinBox(self.nameBox) self.roiWidthSpin.setMinimum(1) self.roiWidthSpin.setMaximum(9999) self.roiWidthSpin.setValue(1) self.roiWidthSpin.setSingleStep(2) self.nameBox.mainLayout.addWidget(self.roiWidthLabel) self.nameBox.mainLayout.addWidget(self.roiWidthSpin) self.slider = FrameBrowser.HorizontalSliderWithBrowser(self) self.slider.setRange(0, 0) self.mainLayout.addWidget(self.nameBox) self.mainLayout.addWidget(self.slider) self.roiWidthSpin.valueChanged[int].connect(self._roiWidthSlot) self.slider.valueChanged[int].connect(self._showImageSliderSlot) self.name.editingFinished[()].connect(self._nameSlot) self.backgroundIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) infotext = 'Toggle background image subtraction from current image\n' infotext += 'No action if no background image available.' self.backgroundIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) self.backgroundButton = self.graphWidget._addToolButton(\ self.backgroundIcon, self.subtractBackground, infotext, toggle = True, state = False, position = 6) self._backgroundSubtraction = False self.slider.hide() self.buildAndConnectImageButtonBox(replace=True) def setBackgroundImage(self, image=None): self._backgroundImage = image if self._backgroundSubtraction: self.subtractBackground() def setStackDataObject(self, stack, index=None, stack_name=None): if hasattr(stack, "info") and hasattr(stack, "data"): dataObject = stack else: dataObject = DataObject.DataObject() dataObject.info = {} dataObject.data = stack if dataObject.data is None: return if stack_name is None: legend = dataObject.info.get('SourceName', "Stack") else: legend = stack_name if index is None: mcaIndex = dataObject.info.get('McaIndex', 0) else: mcaIndex = index shape = dataObject.data.shape self.dataObjectsList = [legend] self.dataObjectsDict = {legend:dataObject} self._browsingIndex = mcaIndex if mcaIndex == 0: if len(shape) == 2: self._nImages = 1 self.setImageData(dataObject.data) self.slider.hide() self.name.setText(legend) else: self._nImages = 1 for dimension in dataObject.data.shape[:-2]: self._nImages *= dimension #This is a problem for dynamic data #dataObject.data.shape = self._nImages, shape[-2], shape[-1] data = self._getImageDataFromSingleIndex(0) self.setImageData(data) self.slider.setRange(0, self._nImages - 1) self.slider.setValue(0) self.slider.show() self.name.setText(legend+" 0") elif mcaIndex in [len(shape)-1, -1]: mcaIndex = -1 self._browsingIndex = mcaIndex if len(shape) == 2: self._nImages = 1 self.setImageData(dataObject.data) self.slider.hide() self.name.setText(legend) else: self._nImages = 1 for dimension in dataObject.data.shape[2:]: self._nImages *= dimension #This is a problem for dynamic data #dataObject.data.shape = self._nImages, shape[-2], shape[-1] data = self._getImageDataFromSingleIndex(0) self.setImageData(data) self.slider.setRange(0, self._nImages - 1) self.slider.setValue(0) self.slider.show() self.name.setText(legend+" 0") else: raise ValueError("Unsupported 1D index %d" % mcaIndex) if self._nImages > 1: self.showImage(0) else: self.plotImage() def subtractBackground(self): if self.backgroundButton.isChecked(): self._backgroundSubtraction = True else: self._backgroundSubtraction = False index = self.slider.value() self._showImageSliderSlot(index) def _roiWidthSlot(self, width): index = self.slider.value() self._showImageSliderSlot(index) def _getImageDataFromSingleIndex(self, index, width=None, background=None): if width is None: width = int(0.5*(self.roiWidthSpin.value() - 1)) if width < 1: width = 0 if background is None: background = self._backgroundSubtraction if not len(self.dataObjectsList): _logger.debug("nothing to show") return legend = self.dataObjectsList[0] if type(legend) == type([]): legend = legend[index] dataObject = self.dataObjectsDict[legend] shape = dataObject.data.shape if len(shape) == 2: if index > 0: raise IndexError("Only one image in stack") return dataObject.data if self._browsingIndex == 0: if len(shape) == 3: if width < 1: data = dataObject.data[index:index+1,:,:] data.shape = data.shape[1:] else: i0 = index - width i1 = index + width + 1 i0 = max(i0, 0) i1 = min(i1, shape[0]) if background: data = dataObject.data[i0:i1,:,:] backgroundData = 0.5*(i1-i0)*\ (data[0, :, :]+data[-1, :,:]) data = data.sum(axis=0) - backgroundData else: data = dataObject.data[i0:i1,:,:].sum(axis=0) data /= float(i1-i0) return data #I have to deduce the appropriate indices from the given index #always assuming C order acquisitionShape = dataObject.data.shape[:-2] if len(shape) == 4: if width < 1: j = index % acquisitionShape[-1] i = int(index/(acquisitionShape[-1]*acquisitionShape[-2])) return dataObject.data[i, j] else: npoints = (acquisitionShape[-1]*acquisitionShape[-2]) i0 = max(index - width, 0) i1 = min(index + width + 1, npoints) for tmpIndex in range(i0, i1): j = tmpIndex % acquisitionShape[-1] i = int(index/npoints) if tmpIndex == i0: data = dataObject.data[i, j] backgroundData = data * 1 elif tmpIndex == (i1-1): tmpData = dataObject.data[i, j] backgroundData = 0.5*(i1-i0)*\ (background+tmpData) data += tmpData else: data += dataObject.data[i, j] if background: data -= backgroundData data /= float(i1-i0) return data elif self._browsingIndex == -1: if len(shape) == 3: if width < 1: data = dataObject.data[:,:,index:index+1] data.shape = data.shape[0], data.shape[1] else: i0 = index - width i1 = index + width + 1 i0 = max(i0, 0) i1 = min(i1, shape[-1]) if background: data = dataObject.data[:,:,i0:i1] backgroundData = 0.5*(i1-i0)*\ (data[:, :, 0]+data[:,:,-1]) data = data.sum(axis=-1) - backgroundData else: data = dataObject.data[:,:,i0:i1].sum(axis=-1) data /= float(i1-i0) return data raise IndexError("Unhandled dimension") def _showImageSliderSlot(self, index): self.showImage(index, moveslider=False) def _nameSlot(self): txt = str(self.name.text()) if len(txt): self.graphWidget.graph.setGraphTitle(txt) else: self.name.setText(self.graphWidget.graph.getTitle()) def _buildTitle(self, legend, index): width = int(0.5*(self.roiWidthSpin.value() - 1)) if width < 1: title = "%s %d" % (legend, index) else: title = "%s average %d to %d" % (legend, index - width, index + width) if self._backgroundSubtraction: title += " Net" return title def showImage(self, index=0, moveslider=True): if not len(self.dataObjectsList): return legend = self.dataObjectsList[0] dataObject = self.dataObjectsDict[legend] data = self._getImageDataFromSingleIndex(index) txt = self._buildTitle(legend, index) self.graphWidget.graph.setGraphTitle(txt) self.name.setText(txt) if self._backgroundSubtraction and (self._backgroundImage is not None): self.setImageData(data - self._backgroundImage) else: self.setImageData(data, clearmask=False) if moveslider: self.slider.setValue(index) self.updateProfileSelectionWindow() if __name__ == "__main__": #create a dummy stack nrows = 100 ncols = 200 nchannels = 1024 a = numpy.ones((nrows, ncols), numpy.float64) stackData = numpy.zeros((nrows, ncols, nchannels), numpy.float64) for i in range(nchannels): stackData[:, :, i] = a * i app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) w = StackBrowser() w.setStackDataObject(stackData, index=0) w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackPluginResultsWindow.py0000644000000000000000000003755214741736366023546 0ustar00rootroot# /*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt if hasattr(qt, "QString"): QString = qt.QString else: QString = str from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaGui.plotting import MaskImageWidget from PyMca5.PyMcaGui.plotting import ScatterPlotCorrelatorWidget from PyMca5.PyMcaGui.pymca import ScanWindow from PyMca5.PyMcaGui.pymca import ImageListStatsWidget from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import ArraySave class StackPluginResultsWindow(MaskImageWidget.MaskImageWidget): def __init__(self, *var, **kw): ddict = {} ddict["usetab"] = kw.get("usetab", True) ddict["aspect"] = kw.get("aspect", True) ddict["profileselection"] = kw.get("profileselection", True) ddict.update(kw) ddict["standalonesave"] = False MaskImageWidget.MaskImageWidget.__init__(self, *var, **ddict) self.slider = qt.QSlider(self) self.slider.setOrientation(qt.Qt.Horizontal) self.slider.setMinimum(0) self.slider.setMaximum(0) if ddict["usetab"]: # The 1D graph self.spectrumGraph = ScanWindow.ScanWindow(self) self.spectrumGraph.enableOwnSave(False) self.spectrumGraph.sigIconSignal.connect(self._spectrumGraphIconSlot) self.spectrumGraph.saveMenu = qt.QMenu() self.spectrumGraph.saveMenu.addAction( QString("Save From Current"), self.saveCurrentSpectrum ) self.spectrumGraph.saveMenu.addAction( QString("Save From All"), self.saveAllSpectra ) self.mainTab.addTab(self.spectrumGraph, "VECTORS") self.mainLayout.addWidget(self.slider) self.slider.valueChanged[int].connect(self._showImage) self.imageList = None self.imageNames = None self.spectrumList = None self.spectrumNames = None self.spectrumGraphTitles = None standalonesave = kw.get("standalonesave", True) if standalonesave: self.graphWidget.saveToolButton.clicked.connect(self._saveToolButtonSignal) self._saveMenu = qt.QMenu() self._saveMenu.addAction(QString("Image Data"), self.saveImageList) self._saveMenu.addAction( QString("Standard Graphics"), self.graphWidget._saveIconSignal ) self._saveMenu.addAction(QString("Matplotlib"), self._saveMatplotlibImage) self.multiplyIcon = qt.QIcon(qt.QPixmap(IconDict["swapsign"])) infotext = "Multiply image by -1" self.multiplyButton = self.graphWidget._addToolButton( self.multiplyIcon, self._multiplyIconChecked, infotext, toggle=False, position=12, ) # The density plot widget self.__scatterPlotWidgetDataToUpdate = True self.scatterPlotWidget = ( ScatterPlotCorrelatorWidget.ScatterPlotCorrelatorWidget( None, labels=["Legend", "X", "Y"], types=["Text", "RadioButton", "RadioButton"], maxNRois=1, ) ) self.__scatterPlotWidgetDataToUpdate = True self.__maskToScatterConnected = True self.sigMaskImageWidgetSignal.connect(self._internalSlot) self.scatterPlotWidget.sigMaskScatterWidgetSignal.connect(self._internalSlot) # add the command to show it to the menu self.additionalSelectionMenu().addAction( QString("Show scatter plot"), self.showScatterPlot ) # The stats widget self.statsWidget = None def sizeHint(self): return qt.QSize(400, 400) def _multiplyIconChecked(self): if self.imageList is None: return index = self.slider.value() self.imageList[index] *= -1 if self.spectrumList is not None: self.spectrumList[index] *= -1 self._showImage(index) # scatter plot related self.__scatterPlotWidgetDataToUpdate = True self._updateScatterPlotWidget() def _showImage(self, index): if len(self.imageList): self.showImage(index, moveslider=False) if self.spectrumList is not None: legend = self.spectrumNames[index] x = self.xValues[index] y = self.spectrumList[index] self.spectrumGraph.addCurve(x, y, legend, replace=True, replot=False) if self.spectrumGraphTitles is not None: self.spectrumGraph.setGraphTitle(self.spectrumGraphTitles[index]) self.spectrumGraph.replot() def buildAndConnectImageButtonBox(self, replace=True, multiple=False): super(StackPluginResultsWindow, self).buildAndConnectImageButtonBox( replace=replace, multiple=multiple ) def showImage(self, index=0, moveslider=True): if self.imageList is None: return if len(self.imageList) == 0: return # first the title to update any related selection curve legend self.graphWidget.graph.setGraphTitle(self.imageNames[index]) self.setImageData(self.imageList[index]) if moveslider: self.slider.setValue(index) def setStackPluginResults( self, images, spectra=None, image_names=None, spectra_names=None, xvalues=None, spectra_titles=None, ): self.spectrumList = spectra if type(images) == type([]): self.imageList = images if image_names is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("Image %02d" % i) else: self.imageNames = image_names elif len(images.shape) == 3: nimages = images.shape[0] self.imageList = [0] * nimages for i in range(nimages): self.imageList[i] = images[i, :] if 0: # leave the data as they originally come if self.imageList[i].max() < 0: self.imageList[i] *= -1 if self.spectrumList is not None: self.spectrumList[i] *= -1 if image_names is None: self.imageNames = [] for i in range(nimages): self.imageNames.append("Image %02d" % i) else: self.imageNames = image_names if self.imageList is not None: self.slider.setMaximum(len(self.imageList) - 1) self.showImage(0) else: self.slider.setMaximum(0) if self.spectrumList is not None: if spectra_names is None: self.spectrumNames = [] for i in range(nimages): self.spectrumNames.append("Spectrum %02d" % i) else: self.spectrumNames = spectra_names if xvalues is None: self.xValues = [] for i in range(nimages): self.xValues.append(numpy.arange(len(self.spectrumList[0]))) else: self.xValues = xvalues self.spectrumGraphTitles = spectra_titles legend = self.spectrumNames[0] x = self.xValues[0] y = self.spectrumList[0] self.spectrumGraph.addCurve(x, y, legend, replace=True) if self.spectrumGraphTitles is not None: self.spectrumGraph.setGraphTitle(self.spectrumGraphTitles[0]) self.slider.setValue(0) # scatter plot related self.__scatterPlotWidgetDataToUpdate = True self._updateScatterPlotWidget() # stats widget if self.statsWidget is not None: self.statsWidget.setSelectionMask(self.getSelectionMask()) self.statsWidget.setImageList(self.imageList, image_names=self.imageNames) def _updateScatterPlotWidget(self): w = self.scatterPlotWidget if self.__scatterPlotWidgetDataToUpdate: for i in range(len(self.imageNames)): w.addSelectableItem(self.imageList[i], self.imageNames[i]) self.__scatterPlotWidgetDataToUpdate = False w.setPolygonSelectionMode() w.setSelectionMask(self.getSelectionMask()) def _internalSlot(self, ddict): if ddict["id"] == id(self): # signal generated by this instance # only the the scatter plot to be updated unless hidden if self.scatterPlotWidget.isHidden(): return if ddict["event"] in [ "selectionMaskChanged", "resetSelection", "invertSelection", ]: mask = self.getSelectionMask() if mask is None: mask = numpy.zeros(self.imageList[0].shape, numpy.uint8) self.scatterPlotWidget.setSelectionMask(mask) if self.statsWidget: self.statsWidget.setSelectionMask(mask) elif ddict["id"] == id(self.scatterPlotWidget): # signal generated by the scatter plot if ddict["event"] in [ "selectionMaskChanged", "resetSelection", "invertSelection", ]: mask = self.scatterPlotWidget.getSelectionMask() super(StackPluginResultsWindow, self).setSelectionMask(mask, plot=True) ddict["id"] = id(self) try: self.__maskToScatterConnected = False self.sigMaskImageWidgetSignal.emit(ddict) finally: self.__maskToScatterConnected = True def setSelectionMask(self, *var, **kw): super(StackPluginResultsWindow, self).setSelectionMask(*var, **kw) if not self.scatterPlotWidget.isHidden(): self._updateScatterPlotWidget() if self.statsWidget is not None: self.statsWidget.setSelectionMask(self.getSelectionMask()) def showScatterPlot(self): if self.scatterPlotWidget.isHidden(): # it needs update self._updateScatterPlotWidget() self.scatterPlotWidget.show() def saveImageList(self, filename=None, imagelist=None, labels=None): if self.imageList is None: return labels = [] for i in range(len(self.imageList)): labels.append(self.imageNames[i].replace(" ", "_")) return MaskImageWidget.MaskImageWidget.saveImageList( self, imagelist=self.imageList, labels=labels ) def _spectrumGraphIconSlot(self, ddict): if ddict["event"] == "iconClicked" and ddict["key"] == "save": self.spectrumGraph.saveMenu.exec(qt.QCursor.pos()) def saveCurrentSpectrum(self): return self.spectrumGraph._QSimpleOperation("save") def saveAllSpectra(self): fltrs = [ "Raw ASCII *.txt", '","-separated CSV *.csv', '";"-separated CSV *.csv', '"tab"-separated CSV *.csv', "OMNIC CSV *.csv", ] message = "Enter file name to be used as root" fileList, fileFilter = PyMcaFileDialogs.getFileList( parent=self, filetypelist=fltrs, message=message, currentdir=None, mode="SAVE", getfilter=True, single=True, currentfilter=None, native=None, ) if not len(fileList): return fileroot = fileList[0] dirname = os.path.dirname(fileroot) root, ext = os.path.splitext(os.path.basename(fileroot)) if ext not in [".txt", ".csv"]: root = root + ext ext = "" # get appropriate extensions and separators filterused = fileFilter.split() if filterused[0].startswith("Raw"): csv = False ext = "txt" csvseparator = " " elif filterused[0].startswith("OMNIC"): # extension is csv but saved as ASCII csv = False ext = "csv" csvseparator = "," else: csv = True ext = "csv" if "," in filterused[0]: csvseparator = "," elif ";" in filterused[0]: csvseparator = ";" elif "OMNIC" in filterused[0]: csvseparator = "," else: csvseparator = "\t" nSpectra = len(self.spectrumList) n = int(numpy.log10(nSpectra)) + 1 fmt = "_%" + "0%dd" % n + ".%s" for index in range(nSpectra): legend = self.spectrumNames[index] x = self.xValues[index] y = self.spectrumList[index] filename = os.path.join(dirname, root + fmt % (index, ext)) ArraySave.saveXY( x, y, filename, ylabel=legend, csv=csv, csvseparator=csvseparator ) def setImageList(self, imagelist): self.imageList = imagelist self.spectrumList = None if imagelist is not None: self.slider.setMaximum(len(self.imageList) - 1) self.showImage(0) def _addAllImageClicked(self): ddict = {} ddict["event"] = "addAllClicked" ddict["images"] = self.imageList ddict["titles"] = self.imageNames ddict["id"] = id(self) self.emitMaskImageSignal(ddict) def showStatsWidget(self): if self.statsWidget is None: self.statsWidget = ImageListStatsWidget.ImageListStatsWidget(self) self.layout().addWidget(self.statsWidget) self.statsWidget.setSelectionMask(self.getSelectionMask()) self.statsWidget.setImageList(self.imageList, image_names=self.imageNames) self.statsWidget.show() def test(): app = qt.QApplication([]) app.lastWindowClosed.connect(app.quit) container = StackPluginResultsWindow() data = numpy.arange(20000) data.shape = 2, 100, 100 data[1, 0:100, 0:50] = 100 container.setStackPluginResults( data, spectra=[numpy.arange(100.0), numpy.arange(100.0) + 10], image_names=["I1", "I2"], spectra_names=["V1", "V2"], ) container.show() container.showStatsWidget() def theSlot(ddict): print(ddict["event"]) container.sigMaskImageWidgetSignal.connect(theSlot) app.exec() if __name__ == "__main__": import numpy test() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackROIBatchWindow.py0000644000000000000000000002764714741736366022325 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui.io import ConfigurationFileDialogs try: import h5py hasH5py = True except ImportError: hasH5py = False DEBUG = 0 class StackROIBatchWindow(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("StackROIBatchWindow") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) # configuration file configLabel = qt.QLabel(self) configLabel.setText("ROI Configuration File:") self._configLine = qt.QLineEdit(self) self._configLine.setReadOnly(True) self._configButton = qt.QPushButton(self) self._configButton.setText("Browse") self._configButton.setAutoDefault(False) self._configButton.clicked.connect(self.browseConfigurationFile) # output directory outdirLabel = qt.QLabel(self) outdirLabel.setText("Output dir:") self._outdirLine = qt.QLineEdit(self) self._outdirLine.setReadOnly(True) self._outdirButton = qt.QPushButton(self) self._outdirButton.setText('Browse') self._outdirButton.setAutoDefault(False) self._outdirButton.clicked.connect(self.browseOutputDir) # output root outrootLabel = qt.QLabel(self) outrootLabel.setText("Output root:") self._outrootLabel = outrootLabel self._outrootLine = qt.QLineEdit(self) self._outrootLine.setReadOnly(False) self._outrootLine.setText("IMAGES") # output entry outentryLabel = qt.QLabel(self) outentryLabel.setText("Output entry:") self._outentryLine = qt.QLineEdit(self) self._outentryLine.setReadOnly(False) self._outentryLine.setText("ROI_images") # output process outnameLabel = qt.QLabel(self) outnameLabel.setText("Output process:") self._outnameLabel = outnameLabel self._outnameLine = qt.QLineEdit(self) self._outnameLine.setText("roi_sum") # process options boxLabel1 = qt.QLabel(self) boxLabel1.setText("Process options:") self._boxContainer1 = qt.QWidget(self) self._boxContainerLayout1 = qt.QHBoxLayout(self._boxContainer1) self._boxContainerLayout1.setContentsMargins(0, 0, 0, 0) self._boxContainerLayout1.setSpacing(0) # save options boxLabel2 = qt.QLabel(self) boxLabel2.setText("Save options:") self._boxContainer2 = qt.QWidget(self) self._boxContainerLayout2 = qt.QHBoxLayout(self._boxContainer2) self._boxContainerLayout2.setContentsMargins(0, 0, 0, 0) self._boxContainerLayout2.setSpacing(0) # Net ROI self._netBox = qt.QCheckBox(self._boxContainer1) self._netBox.setText("Calculate Net ROI") self._netBox.setChecked(True) self._netBox.setEnabled(False) # xAtMax self._xAtMaxBox = qt.QCheckBox(self._boxContainer1) self._xAtMaxBox.setText("Image X at Min/Max. Y") self._xAtMaxBox.setChecked(False) self._xAtMaxBox.setEnabled(True) text = "Calculate the channel of the maximum and\n" text += "the minimum value in the region.\n" self._xAtMaxBox.setToolTip(text) # generate tiff files self._tiffBox = qt.QCheckBox(self._boxContainer2) self._tiffBox.setText("TIFF") self._tiffBox.setChecked(False) self._tiffBox.setEnabled(True) # generate csv file self._csvBox = qt.QCheckBox(self._boxContainer2) self._csvBox.setText("CSV") self._csvBox.setChecked(False) self._csvBox.setEnabled(True) # generate dat file self._datBox = qt.QCheckBox(self._boxContainer2) self._datBox.setText("DAT") self._datBox.setChecked(False) self._datBox.setEnabled(True) # generate edf file self._edfBox = qt.QCheckBox(self._boxContainer2) self._edfBox.setText("EDF") self._edfBox.setChecked(True) self._edfBox.setEnabled(True) # generate hdf5 file self._h5Box = qt.QCheckBox(self._boxContainer2) self._h5Box.setText("HDF5") self._h5Box.setChecked(hasH5py) self._h5Box.setEnabled(hasH5py) self._h5Box.stateChanged.connect(self.toggleH5) self.toggleH5(hasH5py) # overwrite output self._overwriteBox = qt.QCheckBox(self._boxContainer2) self._overwriteBox.setText("Overwrite") self._overwriteBox.setChecked(True) self._overwriteBox.setEnabled(True) # generate mutipage file self._multipageBox = qt.QCheckBox(self._boxContainer2) self._multipageBox.setText("Multipage") self._multipageBox.setChecked(False) self._multipageBox.setEnabled(True) self._edfBox.stateChanged.connect(self.stateMultiPage) self._tiffBox.stateChanged.connect(self.stateMultiPage) self.stateMultiPage() self._boxContainerLayout1.addWidget(self._netBox) self._boxContainerLayout1.addWidget(self._xAtMaxBox) self._boxContainerLayout2.addWidget(self._h5Box) self._boxContainerLayout2.addWidget(self._edfBox) self._boxContainerLayout2.addWidget(self._csvBox) self._boxContainerLayout2.addWidget(self._datBox) self._boxContainerLayout2.addWidget(self._tiffBox) self._boxContainerLayout2.addWidget(self._overwriteBox) self._boxContainerLayout2.addWidget(self._multipageBox) i = 0 self.mainLayout.addWidget(configLabel, i, 0) self.mainLayout.addWidget(self._configLine, i, 1) self.mainLayout.addWidget(self._configButton, i, 2) i += 1 self.mainLayout.addWidget(outdirLabel, i, 0) self.mainLayout.addWidget(self._outdirLine, i, 1) self.mainLayout.addWidget(self._outdirButton, i, 2) i += 1 self.mainLayout.addWidget(outrootLabel, i, 0) self.mainLayout.addWidget(self._outrootLine, i, 1) i += 1 self.mainLayout.addWidget(outentryLabel, i, 0) self.mainLayout.addWidget(self._outentryLine, i, 1) i += 1 self.mainLayout.addWidget(outnameLabel, i, 0) self.mainLayout.addWidget(self._outnameLine, i, 1) i += 1 self.mainLayout.addWidget(boxLabel1, i, 0) self.mainLayout.addWidget(self._boxContainer1, i, 1, 1, 1) i += 1 self.mainLayout.addWidget(boxLabel2, i, 0) self.mainLayout.addWidget(self._boxContainer2, i, 1, 1, 1) def sizeHint(self): return qt.QSize(int(1.8 * qt.QWidget.sizeHint(self).width()), qt.QWidget.sizeHint(self).height()) def browseConfigurationFile(self): f = ConfigurationFileDialogs.getConfigurationFilePath(parent=self, message="Select a ROI configuration", mode="OPEN", single=True) if len(f): self._configLine.setText(f[0]) def browseOutputDir(self): f = PyMcaFileDialogs.getExistingDirectory(parent=self, message="Please select output directory", mode="OPEN") if len(f): self._outdirLine.setText(f) def toggleH5(self, state): h5Out = bool(state) self._outrootLabel.setEnabled(h5Out) self._outnameLabel.setEnabled(h5Out) for w in [self._outnameLine, self._outrootLine]: w.setReadOnly(not h5Out) w.setEnabled(h5Out) if h5Out: w.setStyleSheet("") else: w.setStyleSheet("color: gray; background-color: darkGray") def stateMultiPage(self, state=None): self._multipageBox.setEnabled(self._edfBox.isChecked() or self._tiffBox.isChecked()) def getParameters(self): ddict = {} process = {} ddict['process'] = process process['configuration'] = qt.safe_str(self._configLine.text()) process['net'] = int(self._netBox.isChecked()) process['xAtMinMax'] = int(self._xAtMaxBox.isChecked()) output = {} ddict['output'] = output output['outputDir'] = qt.safe_str(self._outdirLine.text()).replace(" ", "") output['outputRoot'] = qt.safe_str(self._outrootLine.text()).replace(" ", "") output['fileEntry'] = qt.safe_str(self._outentryLine.text()).replace(" ", "") output['fileProcess'] = qt.safe_str(self._outnameLine.text()).replace(" ", "") output['tif'] = int(self._tiffBox.isChecked()) output['csv'] = int(self._csvBox.isChecked()) output['dat'] = int(self._datBox.isChecked()) output['edf'] = int(self._edfBox.isChecked()) output['h5'] = int(self._h5Box.isChecked()) output['overwrite'] = int(self._overwriteBox.isChecked()) output['multipage'] = int(self._multipageBox.isChecked()) return ddict class StackROIBatchDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Stack ROI Batch Dialog") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.parametersWidget = StackROIBatchWindow(self) self.rejectButton= qt.QPushButton(self) self.rejectButton.setAutoDefault(False) self.rejectButton.setText("Cancel") self.acceptButton= qt.QPushButton(self) self.acceptButton.setAutoDefault(False) self.acceptButton.setText("OK") self.rejectButton.clicked.connect(self.reject) self.acceptButton.clicked.connect(self.accept) self.mainLayout.addWidget(self.parametersWidget, 0, 0, 5, 4) self.mainLayout.addWidget(self.rejectButton, 6, 1) self.mainLayout.addWidget(self.acceptButton, 6, 2) def getParameters(self): return self.parametersWidget.getParameters() if __name__ == "__main__": app = qt.QApplication([]) w = StackROIBatchDialog() ret = w.exec() if ret: print(w.getParameters()) #app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackROIWindow.py0000644000000000000000000001571114741736366021350 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.pymca import ExternalImagesWindow MaskImageWidget = ExternalImagesWindow.MaskImageWidget from PyMca5.PyMcaMath.PyMcaSciPy.signal import median medfilt2d = median.medfilt2d from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict class MedianParameters(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QHBoxLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(2) self.label = qt.QLabel(self) self.label.setText("Median filter width: ") self.widthSpin = qt.QSpinBox(self) self.widthSpin.setMinimum(1) self.widthSpin.setMaximum(99) self.widthSpin.setValue(1) self.widthSpin.setSingleStep(2) self.mainLayout.addWidget(self.label) self.mainLayout.addWidget(self.widthSpin) class StackROIWindow(ExternalImagesWindow.ExternalImagesWindow): def __init__(self, *var, **kw): original = kw['standalonesave'] kw['standalonesave'] = False ExternalImagesWindow.ExternalImagesWindow.__init__(self, *var, **kw) standalonesave = original if standalonesave: MaskImageWidget.MaskImageWidget.buildStandaloneSaveMenu(self) self.backgroundIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) infotext = 'Toggle background image subtraction from current image\n' infotext += 'No action if no background image available.' self.backgroundIcon = qt.QIcon(qt.QPixmap(IconDict["subtract"])) self.backgroundButton = self.graphWidget._addToolButton(\ self.backgroundIcon, self.subtractBackground, infotext, toggle = True, state = False, position = 6) self.buildAndConnectImageButtonBox() self._toggleSelectionMode() self._medianParameters = {'use':True, 'row_width':1, 'column_width':1} self._medianParametersWidget = MedianParameters(self) self._medianParametersWidget.widthSpin.setValue(1) self.layout().addWidget(self._medianParametersWidget) self._medianParametersWidget.widthSpin.valueChanged[int].connect( \ self.setKernelWidth) def setKernelWidth(self, value): kernelSize = numpy.asarray(value) if len(kernelSize.shape) == 0: kernelSize = [kernelSize.item()] * 2 self._medianParameters['row_width'] = kernelSize[0] self._medianParameters['column_width'] = kernelSize[1] self._medianParametersWidget.widthSpin.setValue(int(kernelSize[0])) current = self.slider.value() self.showImage(current, moveslider=False) def subtractBackground(self): current = self.slider.value() self.showImage(current, moveslider=False) def showImage(self, index=0, moveslider=True): if self.imageList is None: return if len(self.imageList) == 0: return backgroundIndex = None if self.backgroundButton.isChecked(): if self.imageNames is not None: i = -1 for imageName in self.imageNames: i += 1 if imageName.lower().endswith('background'): backgroundIndex = i break mfText = self._medianTitle() if backgroundIndex is None: if self.imageNames is None: self.graphWidget.graph.setGraphTitle(mfText+"Image %d" % index) else: self.graphWidget.graph.setGraphTitle(mfText+self.imageNames[index]) self.setImageData(self.imageList[index]) else: # TODO: Should the channel at max. and channel at min. be # recalculated? if self.imageNames is None: self.graphWidget.graph.setGraphTitle(mfText+"Image %d Net" % index) else: self.graphWidget.graph.setGraphTitle(mfText+self.imageNames[index]+ " Net") self.setImageData(self.imageList[index]-\ self.imageList[backgroundIndex]) if moveslider: self.slider.setValue(index) def _medianTitle(self): a = self._medianParameters['row_width'] b = self._medianParameters['column_width'] if max(a, b) > 1: return "MF(%d,%d) " % (a, b) else: return "" def setImageData(self, data, **kw): if self._medianParameters['use']: if max(self._medianParameters['row_width'], self._medianParameters['column_width']) > 1: data = medfilt2d(data,[self._medianParameters['row_width'], self._medianParameters['column_width']]) ExternalImagesWindow.ExternalImagesWindow.setImageData(self, data, **kw) def saveImageList(self, filename=None, imagelist=None, labels=None): if imagelist is None: #only the seen image return MaskImageWidget.MaskImageWidget.saveImageList(self, filename=filename) return ExternalImagesWindow.ExternalImagesWindow.saveImageList(\ filename=filename, imagelist=imagelist, labels=labels) ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackSelector.py0000644000000000000000000005301114741736366021302 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import copy import traceback import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5 import PyMcaDirs from PyMca5 import DataObject from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import MRCMap from PyMca5.PyMcaIO import OmnicMap from PyMca5.PyMcaIO import OpusDPTMap from PyMca5.PyMcaIO import LuciaMap from PyMca5.PyMcaIO import SupaVisioMap from PyMca5.PyMcaIO import AifiraMap from PyMca5.PyMcaIO import TextImageStack from PyMca5.PyMcaIO import TiffStack from PyMca5.PyMcaIO import RTXMap from PyMca5.PyMcaIO import LispixMap from PyMca5.PyMcaIO import RenishawMap from PyMca5.PyMcaIO import OmdaqLmf from PyMca5.PyMcaIO import JcampOpusStack from PyMca5.PyMcaIO import FsmMap from PyMca5.PyMcaIO import LabSpec6TxtMap from PyMca5.PyMcaIO import BrukerBCF from .QStack import QStack, QSpecFileStack try: from PyMca5.PyMcaGui.pymca import QHDF5Stack1D import h5py HDF5 = True except ImportError: HDF5 = False pass QTVERSION = qt.qVersion() _logger = logging.getLogger(__name__) class StackSelector(object): def __init__(self, parent=None): self.parent = parent def getStack(self, filelist=None, imagestack=None): if filelist in [None, []]: filelist, filefilter = self._getStackOfFiles(getfilter=True) else: filefilter = "" if not len(filelist): return None if filefilter in ["", "All Files (*)"]: if HDF5: if h5py.is_hdf5(filelist[0]): filefilter = "HDF5" fileindex = 0 begin = None end = None aifirafile = False if len(filelist): PyMcaDirs.inputDir = os.path.dirname(filelist[0]) #if we are dealing with HDF5, no more tests needed if not filefilter.upper().startswith('HDF5'): f = open(filelist[0], 'rb') #read 10 characters if sys.version < '3.0': line = f.read(10) else: try: line = str(f.read(10).decode()) except UnicodeDecodeError: #give a dummy value line = " " f.close() omnicfile = False if filefilter.upper().startswith('HDF5'): stack = QHDF5Stack1D.QHDF5Stack1D(filelist) omnicfile = True elif filefilter.upper().startswith('OPUS-DPT'): stack = OpusDPTMap.OpusDPTMap(filelist[0]) omnicfile = True elif filefilter.upper().startswith("AIFIRA"): stack = AifiraMap.AifiraMap(filelist[0]) omnicfile = True aifirafile = True elif filefilter.upper().startswith("SUPAVISIO"): stack = SupaVisioMap.SupaVisioMap(filelist[0]) omnicfile = True elif filefilter.upper().startswith("TEXTIMAGE"): imagestack = True fileindex = 0 stack = TextImageStack.TextImageStack(imagestack=True) elif filefilter.upper().startswith("LABSPEC6") and\ (filelist[0].upper().endswith("TIF") or\ filelist[0].upper().endswith("TIFF")): stack = TiffStack.TiffStack(imagestack=True) stack.loadFileList(filelist[0]) stack.info["FileIndex"] = 0 stack.info["McaIndex"] = 2 omnicfile = True elif filefilter.upper().startswith("LABSPEC6") and\ filelist[0].upper().endswith("TXT"): stack = LabSpec6TxtMap.LabSpec6TxtMap(filelist[0]) omnicfile = True elif filefilter.upper().startswith("IMAGE") and\ (filelist[0].upper().endswith("TIF") or\ filelist[0].upper().endswith("TIFF")): stack = TiffStack.TiffStack(imagestack=True) elif filefilter.upper().startswith("RENISHAW"): stack = RenishawMap.RenishawMap(filelist[0]) omnicfile = True elif filefilter.upper().startswith("PerkinElmer-FSM"): stack = FsmMap.FsmMap(filelist[0]) omnicfile = True elif filefilter == "" and\ (filelist[0].upper().endswith("TIF") or\ filelist[0].upper().endswith("TIFF")): stack = TiffStack.TiffStack(imagestack=True) elif filefilter.upper().startswith("IMAGE"): if imagestack is None: imagestack = True fileindex = 0 stack = QStack(imagestack=imagestack) elif line[0] == "{": if filelist[0].upper().endswith("RAW"): if imagestack is None: imagestack=True stack = QStack(imagestack=imagestack) elif line[0:2] in ["II", "MM"]: if imagestack is None: imagestack = True stack = QStack(imagestack=imagestack) elif line.startswith('Spectral'): stack = OmnicMap.OmnicMap(filelist[0]) omnicfile = True elif line.startswith('#\tDate'): stack = LuciaMap.LuciaMap(filelist[0]) omnicfile = True elif filelist[0].upper().endswith("RAW.GZ")or\ filelist[0].upper().endswith("EDF.GZ")or\ filelist[0].upper().endswith("CCD.GZ")or\ filelist[0].upper().endswith("RAW.BZ2")or\ filelist[0].upper().endswith("EDF.BZ2")or\ filelist[0].upper().endswith("CCD.BZ2")or\ filelist[0].upper().endswith(".CBF"): if imagestack is None: imagestack = True stack = QStack(imagestack=imagestack) elif filelist[0].upper().endswith(".RTX"): stack = RTXMap.RTXMap(filelist[0]) omnicfile = True elif filelist[0][-4:].upper() in ["PIGE", "PIGE"]: stack = SupaVisioMap.SupaVisioMap(filelist[0]) omnicfile = True elif filelist[0][-3:].upper() in ["RBS"]: stack = SupaVisioMap.SupaVisioMap(filelist[0]) omnicfile = True elif filelist[0][-3:].upper() in ["SPE"] and\ (line[0] not in ['$', '#']): #Roper Scientific format #handle it as MarCCD stack stack = QStack(imagestack=True) elif MRCMap.isMRCFile(filelist[0]): stack = MRCMap.MRCMap(filelist[0]) omnicfile = True imagestack = True elif LispixMap.isLispixMapFile(filelist[0]): stack = LispixMap.LispixMap(filelist[0]) omnicfile = True elif RenishawMap.isRenishawMapFile(filelist[0]): # This is dangerous. Any .txt file with four # columns would be accepted as a Renishaw Map # by other hand, I do not know how to handle # that case as a stack. _logger.info("RenishawMap") stack = RenishawMap.RenishawMap(filelist[0]) omnicfile = True elif OmdaqLmf.isOmdaqLmf(filelist[0]): _logger.info("OmdaqLmf") stack = OmdaqLmf.OmdaqLmf(filelist[0]) omnicfile = True elif FsmMap.isFsmFile(filelist[0]): _logger.info("FsmMap") stack = FsmMap.FsmMap(filelist[0]) omnicfile = True elif JcampOpusStack.isJcampOpusStackFile(filelist[0]): _logger.info("JcampOpusStack") stack = JcampOpusStack.JcampOpusStack(filelist[0]) omnicfile = True elif BrukerBCF.isBrukerBCFFile(filelist[0]): _logger.info("Bruker bcf") stack = BrukerBCF.BrukerBCF(filelist[0]) omnicfile = True else: stack = QSpecFileStack() if len(filelist) == 1: if not omnicfile: try: stack.loadIndexedStack(filelist[0], begin, end, fileindex=fileindex) except Exception: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText("%s" % sys.exc_info()[1]) msg.setDetailedText(traceback.format_exc()) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise elif len(filelist): if not omnicfile: try: stack.loadFileList(filelist, fileindex=fileindex) except Exception: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setText("%s" % sys.exc_info()[1]) msg.exec() if _logger.getEffectiveLevel() == logging.DEBUG: raise if aifirafile: primaryStack = DataObject.DataObject() primaryStack.info = copy.deepcopy(stack.info) primaryStack.data = stack.data[:, :, 0:1024] primaryStack.info['Dim_2'] = int(primaryStack.info['Dim_2'] / 2) secondaryStack = DataObject.DataObject() secondaryStack.info = copy.deepcopy(stack.info) secondaryStack.data = stack.data[:, :, 1024:] secondaryStack.info['Dim_2'] = int(secondaryStack.info['Dim_2'] / 2) return [primaryStack, secondaryStack] else: return stack def getStackFromPattern(self, filepattern, begin, end, increment=None, imagestack=None, fileindex=0): #get the first filename filename = filepattern % tuple(begin) if not os.path.exists(filename): raise IOError("Filename %s does not exist." % filename) #get the file list args = self.getFileListFromPattern(filepattern, begin, end, increment=increment) #get the file type f = open(args[0], 'rb') #read 10 characters line = f.read(10) f.close() if hasattr(line, "decode"): # convert to string ignoring errors line = line.decode("utf-8", "ignore") specfile = False marCCD = False if line.startswith("II") or line.startswith("MM"): marCCD = True if line[0] == "\n": line = line[1:] if line.startswith("{") or marCCD: if imagestack is None: if marCCD: imagestack = True if imagestack: #prevent any modification fileindex = 0 if filepattern is not None: #this dows not seem to put any trouble #(because of no redimensioning attempt) if False and (len(begin) != 1): raise IOError("EDF stack redimensioning not supported yet") stack = QStack(imagestack=imagestack) elif line.startswith('Spectral'): stack = OmnicMap.OmnicMap(args[0]) elif line.startswith('#\tDate:'): stack = LuciaMap.LuciaMap(args[0]) elif args[0][-4:].upper() in ["PIGE", "PIXE"]: stack = SupaVisioMap.SupaVisioMap(args[0]) elif args[0][-3:].upper() in ["RBS"]: stack = SupaVisioMap.SupaVisioMap(args[0]) elif args[0][-3:].lower() in [".h5", "nxs", "hdf", "hdf5"]: if not HDF5: raise IOError(\ "No HDF5 support while trying to read an HDF5 file") stack = QHDF5Stack1D.QHDF5Stack1D(args) elif args[0].upper().endswith("RAW.GZ")or\ args[0].upper().endswith("EDF.GZ")or\ args[0].upper().endswith("CCD.GZ")or\ args[0].upper().endswith("RAW.BZ2")or\ args[0].upper().endswith("EDF.BZ2")or\ args[0].upper().endswith("CCD.BZ2"): if imagestack is None: imagestack = True stack = QStack(imagestack=imagestack) else: if HDF5: if h5py.is_hdf5(args[0]): stack = QHDF5Stack1D.QHDF5Stack1D(args) else: stack = QSpecFileStack() specfile = True else: stack = QSpecFileStack() specfile = True if specfile and (len(begin) == 2): if increment is None: increment = [1] * len(begin) shape = (len(range(begin[0], end[0] + 1, increment[0])), len(range(begin[1], end[1] + 1, increment[1]))) stack.loadFileList(args, fileindex=fileindex, shape=shape) else: stack.loadFileList(args, fileindex=fileindex) return stack def _getFileList(self, fileTypeList, message=None, getfilter=None): if message is None: message = "Please select a file" if getfilter is None: getfilter = False wdir = PyMcaDirs.inputDir filterused = None if getfilter: filelist, filterused = PyMcaFileDialogs.getFileList(self.parent, filetypelist=fileTypeList, mode="OPEN", message=message, currentdir=wdir, getfilter=True, single=False, native=True) else: filelist = PyMcaFileDialogs.getFileList(self.parent, filetypelist=fileTypeList, mode="OPEN", message=message, currentdir=wdir, getfilter=False, single=False, native=True) if not(len(filelist)): return [] PyMcaDirs.inputDir = os.path.dirname(filelist[0]) if PyMcaDirs.outputDir is None: PyMcaDirs.outputDir = os.path.dirname(filelist[0]) if getfilter: return filelist, filterused else: return filelist def _getStackOfFiles(self, getfilter=None): if getfilter is None: getfilter = False fileTypeList = ["HDF5 Files (*.nxs *.hdf *.hdf5 *.h5)", "EDF Files (*edf *edf.gz)", "EDF Files (*ccd)", "Image Files (*edf *ccd *raw *edf.gz *ccd.gz *raw.gz *cbf)", "Image Files (*tif *tiff *TIF *TIFF)", "TextImage Files (*txt)", "Specfile Files (*mca)", "Specfile Files (*dat)", "OMNIC Files (*map)", "OPUS-DPT Files (*.DPT *.dpt)", "JCAMP-DX Files (*.JDX *.jdx *.DX *.dx)", "LabSpec6 Files (*.tif *.TIF *.TIFF *.TIFF *.txt *.TXT)", "RTX Files (*.rtx *.RTX)", "Lispix-RPL Files (*.rpl)", "Renishaw-ASCII Files (*.txt *.TXT)", "PerkinElmer-FSM Files (*.fsm *.FSM)", "AIFIRA Files (*DAT)", "SupaVisio Files (*pige *pixe *rbs)", "MRC files (*.mrc *.st)", "All Files (*)"] if not HDF5: idx = fileTypeList.index("HDF5 Files (*.nxs *.hdf *.hdf5 *.h5)") del fileTypeList[idx] if BrukerBCF.HAS_BCF_SUPPORT: idx = fileTypeList.index("RTX Files (*.rtx *.RTX)") fileTypeList.insert(idx+1, "BCF Files (*.bcf *.BCF)") message = "Open ONE indexed stack or SEVERAL files" return self._getFileList(fileTypeList, message=message, getfilter=getfilter) def getFileListFromPattern(self, pattern, begin, end, increment=None): if type(begin) == type(1): begin = [begin] if type(end) == type(1): end = [end] if len(begin) != len(end): raise ValueError(\ "Begin list and end list do not have same length") if increment is None: increment = [1] * len(begin) elif type(increment) == type(1): increment = [increment] if len(increment) != len(begin): raise ValueError(\ "Increment list and begin list do not have same length") fileList = [] if len(begin) == 1: for j in range(begin[0], end[0] + increment[0], increment[0]): fileList.append(pattern % (j)) elif len(begin) == 2: for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): fileList.append(pattern % (j, k)) elif len(begin) == 3: raise ValueError("Cannot handle three indices yet.") for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): for l in range(begin[2], end[2] + increment[2], increment[2]): fileList.append(pattern % (j, k, l)) else: raise ValueError("Cannot handle more than three indices.") return fileList if __name__ == "__main__": from PyMca5 import QStackWidget import getopt options = '' longoptions = ["fileindex=", "filepattern=", "begin=", "end=", "increment=", "nativefiledialogs=", "imagestack="] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: _logger.error(sys.exc_info()[1]) sys.exit(1) fileindex = 0 filepattern = None begin = None end = None imagestack = False increment = None for opt, arg in opts: if opt in '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt in '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt in '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt in '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt in '--fileindex': fileindex = int(arg) elif opt in '--imagestack': imagestack = int(arg) elif opt in '--nativefiledialogs': if int(arg): PyMcaDirs.nativeFileDialogs = True else: PyMcaDirs.nativeFileDialogs = False if filepattern is not None: if (begin is None) or (end is None): raise ValueError(\ "A file pattern needs at least a set of begin and end indices") app = qt.QApplication([]) widget = QStackWidget.QStackWidget() w = StackSelector(widget) if filepattern is not None: #ignore the args even if present stack = w.getStackFromPattern(filepattern, begin, end, increment=increment, imagestack=imagestack) else: stack = w.getStack(args, imagestack=imagestack) if type(stack) == type([]): #aifira like, two stacks widget.setStack(stack[0]) secondary = QStackWidget.QStackWidget(primary=False, rgbwidget=widget.rgbWidget) secondary.setStack(stack[1]) widget.setSecondary(secondary) stack = None else: widget.setStack(stack) widget.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackSimpleFitWindow.py0000644000000000000000000002446014741736366022614 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import traceback import time from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.math.fitting import SimpleFitGui from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5.PyMcaMath.fitting import StackSimpleFit from PyMca5.PyMcaIO import ArraySave from PyMca5.PyMcaGui.misc import CalculationThread safe_str = qt.safe_str class OutputParameters(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.outputDirLabel = qt.QLabel(self) self.outputDirLabel.setText("Output directory") self.outputDirLine = qt.QLineEdit(self) self.outputDirLine.setReadOnly(True) self.outputDirButton = qt.QPushButton(self) self.outputDirButton.setText("Browse") self.outputFileLabel = qt.QLabel(self) self.outputFileLabel.setText("Output file root") self.outputFileLine = qt.QLineEdit(self) self.outputFileLine.setReadOnly(True) self.outputDir = PyMcaDirs.outputDir self.outputFile = "StackSimpleFitOutput" self.setOutputDirectory(self.outputDir) self.setOutputFileBaseName(self.outputFile) self.mainLayout.addWidget(self.outputDirLabel, 0, 0) self.mainLayout.addWidget(self.outputDirLine, 0, 1) self.mainLayout.addWidget(self.outputDirButton, 0, 2) self.mainLayout.addWidget(self.outputFileLabel, 1, 0) self.mainLayout.addWidget(self.outputFileLine, 1, 1) self.outputDirButton.clicked.connect(self.browseDirectory) def getOutputDirectory(self): return safe_str(self.outputDirLine.text()) def getOutputFileBaseName(self): return safe_str(self.outputFileLine.text()) def setOutputDirectory(self, txt): if os.path.exists(txt): self.outputDirLine.setText(txt) self.outputDir = txt PyMcaDirs.outputDir = txt else: raise IOError("Directory does not exists") def setOutputFileBaseName(self, txt): if len(txt): self.outputFileLine.setText(txt) self.outputFile = txt def browseDirectory(self): wdir = self.outputDir outputDir = qt.QFileDialog.getExistingDirectory(self, "Please select output directory", wdir) if len(outputDir): self.setOutputDirectory(safe_str(outputDir)) class StackSimpleFitWindow(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle('Stack Fit Window') self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QVBoxLayout(self) self.mainLayout.setContentsMargins(2, 2, 2, 2) self.mainLayout.setSpacing(2) self.fitSetupWindow = SimpleFitGui.SimpleFitGui(self) self.fitSetupWindow.fitActions.dismissButton.hide() self.mainLayout.addWidget(self.fitSetupWindow) self.fitInstance = self.fitSetupWindow.fitModule self.stackFitInstance = StackSimpleFit.StackSimpleFit(fit=self.fitInstance) self.__mask = None self.importFunctions = self.fitSetupWindow.importFunctions self.outputParameters = OutputParameters(self) self.mainLayout.addWidget(self.outputParameters) self.startButton = qt.QPushButton(self) self.startButton.setText("FitStack") self.mainLayout.addWidget(self.startButton) self.startButton.clicked.connect(self.startStackFit) #progress handling self._total = 100 self._index = 0 self.stackFitInstance.setProgressCallback(self.progressBarUpdate) self.progressBar = qt.QProgressBar(self) self.mainLayout.addWidget(self.progressBar) #def setSpectrum(self, x, y, sigma=None, xmin=None, xmax=None): def setSpectrum(self, *var, **kw): self.fitSetupWindow.setData(*var, **kw) def setData(self, x, stack, data_index=-1, mask=None): self.stack_x = x self.stack_y = stack self.__mask = mask if hasattr(stack, "data") and\ hasattr(stack, "info"): data = stack.data else: data = stack if data_index < 0: data_index = range(len(data.shape))[data_index] self.data_index = data_index def setMask(self, mask): self.__mask = mask def processStack(self): self.stackFitInstance.processStack(mask=self.__mask) def startStackFit(self): xmin = self.fitInstance._fitConfiguration['fit']['xmin'] xmax = self.fitInstance._fitConfiguration['fit']['xmax'] self.stackFitInstance.setOutputDirectory(self.outputParameters.getOutputDirectory()) self.stackFitInstance.setOutputFileBaseName(self.outputParameters.getOutputFileBaseName()) self.stackFitInstance.setData(self.stack_x, self.stack_y, sigma=None, xmin=xmin, xmax=xmax) self.stackFitInstance.setDataIndex(self.data_index) #check filenames fileNames = self.stackFitInstance.getOutputFileNames() deleteFiles = None for key in fileNames.keys(): fileName = fileNames[key] if os.path.exists(fileName): msg = qt.QMessageBox() msg.setWindowTitle("Output file(s) exists") msg.setIcon(qt.QMessageBox.Information) msg.setText("Do you want to delete current output files?") msg.setStandardButtons(qt.QMessageBox.Yes|qt.QMessageBox.No) answer=msg.exec() if answer == qt.QMessageBox.Yes: deleteFiles = True else: deleteFiles = False break if deleteFiles == False: #nothing to be done (yet) return if deleteFiles: try: for key in fileNames.keys(): fileName = fileNames[key] if os.path.exists(fileName): os.remove(fileName) except Exception: qt.QMessageBox.critical(self, "Delete Error", "ERROR while deleting file:\n%s"% fileName, qt.QMessageBox.Ok, qt.QMessageBox.NoButton, qt.QMessageBox.NoButton) return try: self._startWork() except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Stack Fitting Error") msg.setText("Error has occured while processing the data") msg.setInformativeText(safe_str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() finally: self.progressBar.hide() self.setEnabled(True) def _startWork(self): self.setEnabled(False) self.progressBar.show() thread = CalculationThread.CalculationThread(parent=self, calculation_method=self.processStack) thread.start() self._total = 100 self._index = 0 while thread.isRunning(): time.sleep(2) qApp = qt.QApplication.instance() qApp.processEvents() self.progressBar.setMaximum(self._total) self.progressBar.setValue(self._index) self.progressBar.hide() self.setEnabled(True) if thread.result is not None: if len(thread.result): raise Exception(*thread.result[1:]) def progressBarUpdate(self, idx, total): self._index = int(idx) self._total = int(total) if idx % 10 == 0: print("Fited %d of %d" % (idx, total)) def threadFinished(self): self.setEnabled(True) if __name__ == "__main__": import numpy from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaMath.fitting import SimpleFitUserEstimatedFunctions as Functions x = numpy.arange(1000.) data = numpy.zeros((50, 1000), numpy.float64) #the peaks to be fitted p0 = [100., 300., 50., 200., 500., 30., 300., 800., 65] #generate the data to be fitted for i in range(data.shape[0]): nPeaks = 3 - i % 3 data[i,:] = SpecfitFuns.gauss(p0[:3*nPeaks],x) #the spectrum for setup y = data.sum(axis=0) oldShape = data.shape data.shape = 1,oldShape[0], oldShape[1] app = qt.QApplication([]) w = StackSimpleFitWindow() w.setSpectrum(x, y) w.setData(x, data) #w.importFunctions(Functions.__file__) #w.fitModule.setFitFunction('Gaussians') w.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/StackXASBatchWindow.py0000644000000000000000000001560314741736366022314 0ustar00rootroot#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PyMca_Icons IconDict = PyMca_Icons.IconDict from PyMca5.PyMcaGui.io import PyMcaFileDialogs DEBUG = 0 class StackXASBatchWindow(qt.QWidget): def __init__(self, parent=None): qt.QWidget.__init__(self, parent) self.setWindowTitle("StackXASBatchWindow") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(0, 0, 0, 0) # configuration file configLabel = qt.QLabel(self) configLabel.setText("XAS Configuration File:") self._configLine = qt.QLineEdit(self) self._configLine.setReadOnly(True) self._configButton = qt.QPushButton(self) self._configButton.setText("Browse") self._configButton.setAutoDefault(False) self._configButton.clicked.connect(self.browseConfigurationFile) # output directory outLabel = qt.QLabel(self) outLabel.setText("Output dir:") self._outLine = qt.QLineEdit(self) self._outLine.setReadOnly(True) self._outButton = qt.QPushButton(self) self._outButton.setText('Browse') self._outButton.setAutoDefault(False) self._outButton.clicked.connect(self.browseOutputDir) # output file name fileLabel = qt.QLabel(self) fileLabel.setText("Output file root:") self._fileLine = qt.QLineEdit(self) self._fileLine.setReadOnly(False) self._fileLine.setText("XAS_Result") boxLabel = qt.QLabel(self) boxLabel.setText("Options:") self._boxContainer = qt.QWidget(self) self._boxContainerLayout = qt.QHBoxLayout(self._boxContainer) self._boxContainerLayout.setContentsMargins(0, 0, 0, 0) self._boxContainerLayout.setSpacing(0) # Mask self._maskBox = qt.QCheckBox(self._boxContainer) self._maskBox.setText("Use selection mask") self._maskBox.setChecked(True) self._maskBox.setEnabled(False) text = "If pixels are currently selected, only the spectra\n" text += "associated to those pixels will be analyzed" self._maskBox.setToolTip(text) self._boxContainerLayout.addWidget(self._maskBox) self.mainLayout.addWidget(configLabel, 0, 0) self.mainLayout.addWidget(self._configLine, 0, 1) self.mainLayout.addWidget(self._configButton, 0, 2) self.mainLayout.addWidget(outLabel, 1, 0) self.mainLayout.addWidget(self._outLine, 1, 1) self.mainLayout.addWidget(self._outButton, 1, 2) self.mainLayout.addWidget(fileLabel, 2, 0) self.mainLayout.addWidget(self._fileLine, 2, 1) self.mainLayout.addWidget(boxLabel, 3, 0) self.mainLayout.addWidget(self._boxContainer, 3, 1, 1, 1) def sizeHint(self): return qt.QSize(int(1.8 * qt.QWidget.sizeHint(self).width()), qt.QWidget.sizeHint(self).height()) def browseConfigurationFile(self): f = PyMcaFileDialogs.getFileList(parent=self, filetypelist=["Configuration files (*.ini)", "Configuration files (*.cfg)"], message="Open a XAS configuration file", mode="OPEN", single=True) if len(f): self._configLine.setText(f[0]) def browseOutputDir(self): f = PyMcaFileDialogs.getExistingDirectory(parent=self, message="Please select output directory", mode="OPEN") if len(f): self._outLine.setText(f) def getParameters(self): ddict = {} ddict['configuration'] = qt.safe_str(self._configLine.text()) ddict['output_dir'] = qt.safe_str(self._outLine.text()) ddict['file_root'] = qt.safe_str(self._fileLine.text()) if self._maskBox.isChecked(): ddict['mask'] = 1 else: ddict['mask'] = 0 return ddict class StackXASBatchDialog(qt.QDialog): def __init__(self, parent=None): qt.QDialog.__init__(self, parent) self.setWindowTitle("Stack XAS Batch Dialog") self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict['gioconda16']))) self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(10, 10, 10, 10) self.parametersWidget = StackXASBatchWindow(self) self.rejectButton= qt.QPushButton(self) self.rejectButton.setAutoDefault(False) self.rejectButton.setText("Cancel") self.acceptButton= qt.QPushButton(self) self.acceptButton.setAutoDefault(False) self.acceptButton.setText("OK") self.rejectButton.clicked.connect(self.reject) self.acceptButton.clicked.connect(self.accept) self.mainLayout.addWidget(self.parametersWidget, 0, 0, 5, 4) self.mainLayout.addWidget(self.rejectButton, 6, 1) self.mainLayout.addWidget(self.acceptButton, 6, 2) def getParameters(self): return self.parametersWidget.getParameters() if __name__ == "__main__": app = qt.QApplication([]) w = StackXASBatchDialog() ret = w.exec() if ret: print(w.getParameters()) #app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/SumRulesTool.py0000644000000000000000000023661014741736366021161 0ustar00rootroot#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tonn Rueter - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging import os from os.path import isdir as osPathIsDir from os.path import basename as osPathBasename from os.path import join as osPathJoin import numpy from PyMca5.PyMcaMath.fitting.SpecfitFuns import upstep, downstep from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PlotWindow as DataDisplay from PyMca5.PyMcaPhysics.xrf import Elements from PyMca5.PyMcaIO import ConfigDict from PyMca5 import PyMcaDataDir, PyMcaDirs from PyMca5.PyMcaGui.io import QSpecFileWidget from PyMca5.PyMcaCore import SpecFileDataSource from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict if hasattr(qt, "QString"): QString = qt.QString else: QString = str QStringList = list if hasattr(qt, "QStringList"): QStringList = qt.QStringList else: QStringList = list _logger = logging.getLogger(__name__) NEWLINE = '\n' class Calculations(object): def __init__(self): pass def cumtrapz(self, y, x=None, dx=1.0): y = y[:] if x is None: x = numpy.arange(len(y), dtype=y.dtype) * dx else: x = x[:] if not numpy.all(numpy.diff(x) > 0.): # assure monotonically increasing x idx = numpy.argsort(x) x = numpy.take(x, idx) y = numpy.take(y, idx) # Avoid dublicates x.ravel() idx = numpy.nonzero(numpy.diff(x) > 0)[0] x = numpy.take(x, idx) y = numpy.take(y, idx) return numpy.cumsum(.5 * numpy.diff(x) * (y[1:] + y[:-1])) def magneticMoment(self, p, q, r, n, econf): """ Input ----- :param p: Integral over the (first) edge of the XMCD (difference) signal :type p: Float :param q: Integral over the (second) edge of the XMCD (difference) signal :type q: Float :param r: Integral over the complete XAS signal :type r: Float :param n: Electron occupation number of the sample material :type n: Float :param econf: Determines if material is of 3d or 4f type and thus the number of electronic states in the outer shell :type econf: String Returns the orbital resp. the spin part of the magnetic moment Paper references: 3d materials: Chen et al., Phys. Rev. Lett., 75(1), 152 4f materials: Krishnamurthy et al., Phys. Rev. B, 79(1), 014426 """ mOrbt, mSpin, mRatio = None, None, None # Check if r is non-zero if r == 0.: raise ZeroDivisionError() # Determine number of states in outer shell if econf == '3d': _logger.debug( 'Calculations.magneticMoment -- considering 3d material:' '\n\tp: %s, q: %s, r:%s', str(p), str(q), str(r)) nMax = 10. # Calculate Integrals if q is not None: #mOrbt = abs(-4./3. * q * (nMax - n) / (2.*r)) mOrbt = abs(-2./3. * q * (nMax - n) / r) if (q is not None) and (p is not None): #mSpin = abs((6.*p - 4.*q) * (nMax - n) / (2.*r)) mSpin = abs((3.*p - 2.*q) * (nMax - n) / r) mRatio = abs(2.*q/(9.*p-6.*q)) elif econf == '4f': _logger.debug('Calculations.magneticMoment -- considering 4f material:' '\n\tp: %s, q: %s, r:%s', str(p), str(q), str(r)) nMax = 14. if q is not None: mOrbt = abs(q * (nMax - n) / r) if (q is not None) and (p is not None) and (r is not None): mSpin = abs((3.*q - 5.*p) * (nMax - n) / (2. * r)) mRatio = mOrbt / mSpin else: raise ValueError('Calculations.magneticMoment -- Element must either be 3d or 4f type!') return mOrbt, mSpin, mRatio class MarkerSpinBox(qt.QDoubleSpinBox): intersectionsChangedSignal = qt.pyqtSignal() def __init__(self, window, plotWindow, label='', parent=None): qt.QDoubleSpinBox.__init__(self, parent) # Attributes self.label = label self.window = window self.plotWindow = plotWindow #self.graph = graph self.markerID = self.plotWindow.insertXMarker(0., legend=label, text=label) # Initialize self.setMinimum(0.) self.setMaximum(10000.) self.setValue(0.) # Connects self.plotWindow.sigPlotSignal.connect(self._handlePlotSignal) self.valueChanged.connect(self._valueChanged) def getIntersections(self): dataList = self.plotWindow.getAllCurves() resDict = {} pos = self.value() if not isinstance(pos, float): return for x, y, legend, info in dataList: res = float('NaN') if numpy.all(pos < x) or numpy.all(x < pos): continue #raise ValueError('Marker outside of data range') if pos in x: idx = numpy.where(x == pos) res = y[idx] else: # Intepolation needed, assume well # behaved data (c.f. copy routine) lesserIdx = numpy.nonzero(x < pos)[0][-1] greaterIdx = numpy.nonzero(x > pos)[0][0] dy = y[lesserIdx] - y[greaterIdx] dx = x[lesserIdx] - x[greaterIdx] res = dy/dx * (pos - x[lesserIdx]) + y[lesserIdx] resDict[legend] = (pos, res) return resDict def hideMarker(self): self.plotWindow.removeMarker(self.label) self.markerID = None def showMarker(self): self.plotWindow.removeMarker(self.label) self.markerID = self.plotWindow.insertXMarker( self.value(), legend=self.label, text=self.label, color='blue', selectable=False, draggable=True) def _setMarkerFollowMouse(self, windowTitle): windowTitle = str(windowTitle) if self.window == windowTitle: # Blue, Marker is active color = 'blue' draggable = True else: # Black, marker is inactive color = 'k' draggable = False # Make shure that the marker is deleted # If marker is not present, removeMarker just passes.. self.markerID = self.plotWindow.insertXMarker( self.value(), legend=self.label, text=self.label, color=color, selectable=False, draggable=draggable) def _handlePlotSignal(self, ddict): if ddict['event'] != 'markerMoving': return if ddict['label'] != self.label: return markerPos = ddict['x'] self.blockSignals(True) self.setValue(markerPos) self.blockSignals(False) self.intersectionsChangedSignal.emit() def _valueChanged(self, val): try: val = float(val) except ValueError: _logger.debug('_valueChanged -- Sorry, it ain\'t gonna float: %s', str(val)) return # Marker of same label as self.label gets replaced.. self.markerID = self.plotWindow.insertXMarker( val, legend=self.label, text=self.label, color='blue', selectable=False, draggable=True) self.intersectionsChangedSignal.emit() class LineEditDisplay(qt.QLineEdit): def __init__(self, controller, ddict=None, unit='', parent=None): qt.QLineEdit.__init__(self, parent) self.setReadOnly(True) self.setAlignment(qt.Qt.AlignRight) if ddict is None: self.ddict = {} else: self.ddict = ddict self.unit = unit self.setMaximumWidth(120) self.controller = controller if isinstance(self.controller, qt.QComboBox): if hasattr(self.controller, "textActivated"): self.controller.textActivated['QString'].connect(self.setText) else: self.controller.currentIndexChanged['QString'].connect(self.setText) elif isinstance(self.controller, qt.QDoubleSpinBox): # Update must be triggered otherwise #self.controller.valueChanged['QString'].connect(self.setText) pass else: raise ValueError('LineEditDisplay: Controller must be of type QComboBox or QDoubleSpinBox') #self.controller.destroyed.connect(self.destroy) def updateDict(self, ddict): # Only relevant if type(controller) == QComboBox self.ddict = ddict def updateUnit(self, unit): self.unit = unit def checkController(self): if isinstance(self.controller, qt.QComboBox): tmp = self.controller.currentText() elif isinstance(self.controller, qt.QDoubleSpinBox): tmp = self.controller.value() else: _logger.debug('LineEditDisplay.checkController -- Reached untreated case, setting empty string') tmp = '' self.setText(tmp) def setText(self, inp): inp = str(inp) if isinstance(self.controller, qt.QComboBox): if inp == '': text = '' else: tmp = self.ddict.get(inp,None) if tmp is not None: try: text = '%.2f meV'%(1000. * float(tmp)) except ValueError: text = 'NaN' else: text = '---' elif isinstance(self.controller, qt.QDoubleSpinBox): text = inp + ' ' + self.unit else: _logger.debug('LineEditDisplay.setText -- Reached untreated case, setting empty string') text = '' qt.QLineEdit.setText(self, text) class SumRulesWindow(qt.QMainWindow): # Curve labeling __xasBGmodel = 'xas BG model' # Tab names __tabElem = 'element' __tabBG = 'background' __tabInt = 'integration' # Marker names __preMin = 'Pre Min' __preMax = 'Pre Max' __postMin = 'Post Min' __postMax = 'Post Max' __intP = 'p' __intQ = 'q' __intR = 'r' # Lists tabList = [__tabElem, __tabBG, __tabInt] xasMarkerList = [__preMin, __preMax, __postMin, __postMax] xmcdMarkerList = [__intP, __intQ, __intR] edgeMarkerList = [] # Elements with 3d final state transitionMetals = ['Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu'] # Elements with 4f final state rareEarths = ['La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb'] elementsDict = { '' : [], '3d': transitionMetals, '4f': rareEarths } # Electron final states electronConfs = ['3d','4f'] # Occuring Transitions occuringTransitions = ['L3M4', 'L3M5', 'L2M4', 'M5O3','M4O3'] # Signals tabChangedSignal = qt.pyqtSignal('QString') def __init__(self, parent=None): qt.QMainWindow.__init__(self, parent) self.setWindowTitle('Sum Rules Tool') if hasattr(DataDisplay,'PlotWindow'): self.plotWindow = DataDisplay.PlotWindow( parent=self, backend=None, plugins=False, # Hide plugin tool button newplot=False, # Hide mirror active curve, ... functionality roi=False, # No ROI widget control=False, # Hide option button position=True, # Show x,y position display kw={'logx': False, # Hide logarithmic x-scale tool button 'logy': False, # Hide logarithmic y-scale tool button 'flip': False, # Hide whatever this does 'fit': False}) # Hide simple fit tool button self.plotWindow._buildLegendWidget() else: self.plotWindow = DataDisplay.ScanWindow(self) # Hide Buttons in the toolbar if hasattr(self.plotWindow,'scanWindowInfoWidget'): # Get rid of scanInfoWidget self.plotWindow.scanWindowInfoWidget.hide() self.plotWindow.graph.enablemarkermode() # Hide unnecessary buttons in the toolbar toolbarChildren = self.plotWindow.toolBar # QWidget.findChildren() matches # all child widgets with the specified type toolbarButtons = toolbarChildren.findChildren(qt.QToolButton) toolbarButtons[3].hide() # LogX toolbarButtons[4].hide() # LogY toolbarButtons[6].hide() # Simple Fit toolbarButtons[7].hide() # Average Plotted Curves toolbarButtons[8].hide() # Derivative toolbarButtons[9].hide() # Smooth toolbarButtons[11].hide() # Set active to zero toolbarButtons[12].hide() # Subtract active curve toolbarButtons[13].hide() # Save active curve toolbarButtons[14].hide() # Plugins else: self.plotWindow self.__savedConf = False self.__savedData = False # Marker Handling # spinboxDict connects marker movement to spinbox # keys() -> id(MarkerSpinBox) # values() -> MarkerSpinBox self.spinboxDict = {} self.valuesDict = dict( [(item, {}) for item in self.tabList]) # Tab Widget tabIdx = 0 self.tabWidget = qt.QTabWidget() for window in self.tabList: if window == self.__tabElem: # BEGIN sampleGB sampleGB = qt.QGroupBox('Sample definition') sampleLayout = qt.QVBoxLayout() sampleGB.setLayout(sampleLayout) # electron shell combo box self.elementEConfCB = qt.QComboBox() self.elementEConfCB.setMinimumWidth(100) self.elementEConfCB.addItems(['']+self.electronConfs) if hasattr(self.elementEConfCB, "textActivated"): self.elementEConfCB.textActivated['QString'].connect(self.setElectronConf) else: self.elementEConfCB.currentIndexChanged['QString'].connect(self.setElectronConf) elementEConfLayout = qt.QHBoxLayout() elementEConfLayout.setContentsMargins(0,0,0,0) elementEConfLayout.addWidget(qt.QLabel('Electron configuration')) elementEConfLayout.addWidget(qt.HorizontalSpacer()) elementEConfLayout.addWidget(self.elementEConfCB) elementEConfWidget = qt.QWidget() elementEConfWidget.setLayout(elementEConfLayout) sampleLayout.addWidget(elementEConfWidget) # Element selection combo box self.elementCB = qt.QComboBox() self.elementCB.setMinimumWidth(100) self.elementCB.addItems(['']) if hasattr(self.elementCB, "textActivated"): self.elementCB.textActivated['QString'].connect(self.getElementInfo) else: self.elementCB.currentIndexChanged['QString'].connect(self.getElementInfo) elementLayout = qt.QHBoxLayout() elementLayout.setContentsMargins(0,0,0,0) elementLayout.addWidget(qt.QLabel('Element')) elementLayout.addWidget(qt.HorizontalSpacer()) elementLayout.addWidget(self.elementCB) elementWidget = qt.QWidget() elementWidget.setLayout(elementLayout) sampleLayout.addWidget(elementWidget) # electron occupation number self.electronOccupation = qt.QLineEdit('e.g. 3.14') self.electronOccupation.setMaximumWidth(120) electronOccupationValidator = qt.CLocaleQDoubleValidator(self.electronOccupation) electronOccupationValidator.setBottom(0.) electronOccupationValidator.setTop(14.) self.electronOccupation.setValidator(electronOccupationValidator) electronOccupationLayout = qt.QHBoxLayout() electronOccupationLayout.setContentsMargins(0,0,0,0) electronOccupationLayout.addWidget(qt.QLabel('Electron Occupation Number')) electronOccupationLayout.addWidget(qt.HorizontalSpacer()) electronOccupationLayout.addWidget(self.electronOccupation) electronOccupationWidget = qt.QWidget() electronOccupationWidget.setLayout(electronOccupationLayout) sampleLayout.addWidget(electronOccupationWidget) # END sampleGB # BEGIN absorptionGB: X-ray absorption edge # selection combo box by transition (L3M1, etc.) absorptionGB = qt.QGroupBox('X-ray absorption edges') absorptionLayout = qt.QVBoxLayout() absorptionGB.setLayout(absorptionLayout) self.edge1CB = qt.QComboBox() self.edge1CB.setMinimumWidth(100) self.edge1CB.addItems(['']) self.edge1Line = LineEditDisplay(self.edge1CB) edge1Layout = qt.QHBoxLayout() edge1Layout.setContentsMargins(0,0,0,0) edge1Layout.addWidget(qt.QLabel('Edge 1')) edge1Layout.addWidget(qt.HorizontalSpacer()) edge1Layout.addWidget(self.edge1CB) edge1Layout.addWidget(self.edge1Line) edge1Widget = qt.QWidget() edge1Widget.setLayout(edge1Layout) absorptionLayout.addWidget(edge1Widget) self.edge2CB = qt.QComboBox() self.edge2CB.setMinimumWidth(100) self.edge2CB.addItems(['']) self.edge2Line = LineEditDisplay(self.edge2CB) edge2Layout = qt.QHBoxLayout() edge2Layout.setContentsMargins(0,0,0,0) edge2Layout.addWidget(qt.QLabel('Edge 2')) edge2Layout.addWidget(qt.HorizontalSpacer()) edge2Layout.addWidget(self.edge2CB) edge2Layout.addWidget(self.edge2Line) edge2Widget = qt.QWidget() edge2Widget.setLayout(edge2Layout) absorptionLayout.addWidget(edge2Widget) absorptionLayout.setAlignment(qt.Qt.AlignTop) # END absorptionGB # Combine sampleGB & absorptionGB in one Line topLineLayout = qt.QHBoxLayout() topLineLayout.setContentsMargins(0,0,0,0) topLineLayout.addWidget(sampleGB) topLineLayout.addWidget(absorptionGB) topLine = qt.QWidget() topLine.setLayout(topLineLayout) # BEGIN tab layouting elementTabLayout = qt.QVBoxLayout() elementTabLayout.setContentsMargins(1,1,1,1) elementTabLayout.addWidget(topLine) elementTabLayout.addWidget(qt.VerticalSpacer()) elementTabWidget = qt.QWidget() elementTabWidget.setLayout(elementTabLayout) self.tabWidget.addTab( elementTabWidget, window.upper()) self.tabWidget.setTabToolTip(tabIdx, 'Shortcut: F2\n' +'Define sample element here') # END tab layouting self.valuesDict[self.__tabElem]\ ['element'] = self.elementCB self.valuesDict[self.__tabElem]\ ['electron configuration'] = self.elementEConfCB self.valuesDict[self.__tabElem]\ ['electron occupation'] = self.electronOccupation self.valuesDict[self.__tabElem]\ ['edge1Transition'] = self.edge1CB self.valuesDict[self.__tabElem]\ ['edge2Transition'] = self.edge2CB self.valuesDict[self.__tabElem]\ ['edge1Energy'] = self.edge1Line self.valuesDict[self.__tabElem]\ ['edge2Energy'] = self.edge2Line self.valuesDict[self.__tabElem]['info'] = {} elif window == self.__tabBG: # BEGIN Pre/Post edge group box prePostLayout = qt.QGridLayout() prePostLayout.setContentsMargins(1,1,1,1) for idx, markerLabel in enumerate(self.xasMarkerList): # Estimate intial xpos by estimateInt markerWidget, spinbox = self.addMarker(window=window, label=markerLabel, xpos=0., unit='[eV]') self.valuesDict[self.__tabBG][markerLabel] = spinbox if idx == 0: posx, posy = 0,0 markerWidget.setContentsMargins(0,0,0,-8) elif idx == 1: posx, posy = 1,0 markerWidget.setContentsMargins(0,-8,0,0) elif idx == 2: posx, posy = 0,1 markerWidget.setContentsMargins(0,0,0,-8) elif idx == 3: posx, posy = 1,1 markerWidget.setContentsMargins(0,-8,0,0) else: raise IndexError('Index out of bounds: %d -> %s'\ %(idx, markerLabel)) prePostLayout.addWidget(markerWidget, posx, posy) prePostGB = qt.QGroupBox('Pre/Post edge') prePostGB.setLayout(prePostLayout) # END Pre/Post edge group box # BEGIN Edge group box numberOfEdges = 2 edgeLayout = qt.QVBoxLayout() edgeLayout.setContentsMargins(1,1,1,1) for idx in range(numberOfEdges): markerLabel = 'Edge %d'%(idx+1) self.edgeMarkerList += [markerLabel] markerWidget, spinbox = self.addMarker(window=window, label=markerLabel, xpos=0., unit='[eV]') self.valuesDict[self.__tabBG][markerLabel] = spinbox if idx == 0: markerWidget.setContentsMargins(0,0,0,-8) elif idx == (numberOfEdges-1): markerWidget.setContentsMargins(0,-8,0,0) else: markerWidget.setContentsMargins(0,-8,0,-8) edgeLayout.addWidget(markerWidget) markerWidget.setEnabled(False) edgeGB = qt.QGroupBox('Edge positions') edgeGB.setLayout(edgeLayout) # END Edge group box # BEGIN Background model group box stepRatio = qt.QDoubleSpinBox() stepRatio.setMaximumWidth(100) stepRatio.setAlignment(qt.Qt.AlignRight) stepRatio.setMinimum(0.) stepRatio.setMaximum(1.) stepRatio.setSingleStep(.025) stepRatio.setValue(.5) stepRatioLayout = qt.QHBoxLayout() stepRatioLayout.addWidget(qt.QLabel('Step ratio')) stepRatioLayout.addWidget(qt.HorizontalSpacer()) stepRatioLayout.addWidget(stepRatio) stepRatioWidget = qt.QWidget() stepRatioWidget.setContentsMargins(0,0,0,-8) stepRatioWidget.setLayout(stepRatioLayout) stepWidth = qt.QDoubleSpinBox() stepWidth.setMaximumWidth(100) stepWidth.setAlignment(qt.Qt.AlignRight) stepWidth.setMinimum(0.) stepWidth.setMaximum(1000.) stepWidth.setSingleStep(0.05) stepWidth.setValue(.0) # Start with step function stepWidthLayout = qt.QHBoxLayout() stepWidthLayout.addWidget(qt.QLabel('Step width [eV]')) stepWidthLayout.addWidget(qt.HorizontalSpacer()) stepWidthLayout.addWidget(stepWidth) stepWidthWidget = qt.QWidget() stepWidthWidget.setContentsMargins(0,-8,0,0) stepWidthWidget.setLayout(stepWidthLayout) fitControlLayout = qt.QVBoxLayout() fitControlLayout.addWidget(stepRatioWidget) fitControlLayout.addWidget(stepWidthWidget) fitControlGB = qt.QGroupBox('Background model control') fitControlGB.setLayout(fitControlLayout) # END Background model group box # Combine edge position and background model in single line sndLine = qt.QWidget() sndLineLayout = qt.QHBoxLayout() sndLineLayout.setContentsMargins(1,1,1,1) sndLine.setLayout(sndLineLayout) sndLineLayout.addWidget(edgeGB) sndLineLayout.addWidget(fitControlGB) # Insert into tab backgroundTabLayout = qt.QVBoxLayout() backgroundTabLayout.setContentsMargins(1,1,1,1) backgroundTabLayout.addWidget(prePostGB) backgroundTabLayout.addWidget(sndLine) backgroundTabLayout.addWidget(qt.VerticalSpacer()) backgroundWidget = qt.QWidget() backgroundWidget.setLayout(backgroundTabLayout) self.tabWidget.addTab( backgroundWidget, window.upper()) self.tabWidget.setTabToolTip(tabIdx, 'Shortcut: F3\n' +'Model background here.') stepRatio.valueChanged['double'].connect(self.estimateBG) stepWidth.valueChanged['double'].connect(self.estimateBG) self.valuesDict[self.__tabBG]\ ['Step Ratio'] = stepRatio self.valuesDict[self.__tabBG]\ ['Step Width'] = stepWidth elif window == self.__tabInt: # BEGIN Integral marker groupbox pqLayout = qt.QVBoxLayout() pqLayout.setContentsMargins(0,-8,0,-8) for markerLabel in self.xmcdMarkerList: markerWidget, spinbox = self.addMarker(window=window, label=markerLabel, xpos=0., unit='[eV]') self.valuesDict[self.__tabInt][markerLabel] = spinbox if markerLabel == self.xmcdMarkerList[0]: markerWidget.setContentsMargins(0,0,0,-8) elif markerLabel == self.xmcdMarkerList[-1]: # Last widget gets more content margin # at the bottom markerWidget.setContentsMargins(0,-8,0,0) else: markerWidget.setContentsMargins(0,-8,0,-8) integralVal = qt.QLineEdit() integralVal.setReadOnly(True) integralVal.setMaximumWidth(120) valLabel = qt.QLabel('Integral Value:') mwLayout = markerWidget.layout() mwLayout.addWidget(valLabel) mwLayout.addWidget(integralVal) pqLayout.addWidget(markerWidget) #spinbox.valueChanged.connect(self.calcMagneticMoments) spinbox.intersectionsChangedSignal.connect(self.calcMagneticMoments) key = 'Integral ' + markerLabel self.valuesDict[self.__tabInt][key] = integralVal pqGB = qt.QGroupBox('XAS/XMCD integrals') pqGB.setLayout(pqLayout) # END Integral marker groupbox # BEGIN magnetic moments groupbox mmLayout = qt.QVBoxLayout() mmLayout.setContentsMargins(0,-8,0,-8) text = 'Spin Magnetic Moment' mmLineLayout = qt.QHBoxLayout() self.mmSpin = qt.QLineEdit() self.mmSpin.setReadOnly(True) self.mmSpin.setMaximumWidth(120) mmLineLayout.addWidget(qt.QLabel(text)) mmLineLayout.addWidget(qt.HorizontalSpacer()) mmLineLayout.addWidget(qt.QLabel('mS = ')) mmLineLayout.addWidget(self.mmSpin) mmLineWidget = qt.QWidget() mmLineWidget.setLayout(mmLineLayout) mmLineWidget.setContentsMargins(0,0,0,-8) mmLayout.addWidget(mmLineWidget) text = 'Orbital Magnetic Moment' mmLineLayout = qt.QHBoxLayout() self.mmOrbt = qt.QLineEdit() self.mmOrbt.setReadOnly(True) self.mmOrbt.setMaximumWidth(120) mmLineLayout.addWidget(qt.QLabel(text)) mmLineLayout.addWidget(qt.HorizontalSpacer()) mmLineLayout.addWidget(qt.QLabel('mO = ')) mmLineLayout.addWidget(self.mmOrbt) mmLineWidget = qt.QWidget() mmLineWidget.setLayout(mmLineLayout) mmLineWidget.setContentsMargins(0,-8,0,-8) mmLayout.addWidget(mmLineWidget) text = 'Ratio Magnetic Moments' mmLineLayout = qt.QHBoxLayout() self.mmRatio = qt.QLineEdit() self.mmRatio.setReadOnly(True) self.mmRatio.setMaximumWidth(120) mmLineLayout.addWidget(qt.QLabel(text)) mmLineLayout.addWidget(qt.HorizontalSpacer()) mmLineLayout.addWidget(qt.QLabel('mO/mS = ')) mmLineLayout.addWidget(self.mmRatio) mmLineWidget = qt.QWidget() mmLineWidget.setLayout(mmLineLayout) mmLineWidget.setContentsMargins(0,-8,0,0) mmLayout.addWidget(mmLineWidget) mmGB = qt.QGroupBox('Magnetic moments') mmGB.setLayout(mmLayout) # END magnetic moments groupbox # Combine Integral marker groupbox and # magnetic moments groupbox in single line topLineLayout = qt.QHBoxLayout() topLineLayout.setContentsMargins(0,0,0,0) topLineLayout.addWidget(pqGB) topLineLayout.addWidget(mmGB) topLine = qt.QWidget() topLine.setLayout(topLineLayout) # BEGIN XMCD correction self.xmcdDetrend = qt.QCheckBox() self.xmcdDetrend.stateChanged['int'].connect(self.triggerDetrend) xmcdDetrendLayout = qt.QHBoxLayout() #xmcdDetrendLayout.setContentsMargins(0,0,0,1) xmcdDetrendLayout.addWidget(qt.QLabel( 'Detrend XMCD Signal (Subtracts linear fit of pre-edge Region from the signal)')) xmcdDetrendLayout.addWidget(qt.HorizontalSpacer()) xmcdDetrendLayout.addWidget(self.xmcdDetrend) xmcdDetrendWidget = qt.QWidget() xmcdDetrendWidget.setLayout(xmcdDetrendLayout) xmcdDetrendGB = qt.QGroupBox('XMCD Data Preprocessing') xmcdDetrendGB.setLayout(xmcdDetrendLayout) xmcdDetrendLayout.addWidget(xmcdDetrendWidget) # END XMCD correction xmcdTabLayout = qt.QVBoxLayout() xmcdTabLayout.setContentsMargins(2,2,2,2) xmcdTabLayout.addWidget(topLine) xmcdTabLayout.addWidget(xmcdDetrendGB) xmcdTabLayout.addWidget(qt.VerticalSpacer()) xmcdWidget = qt.QWidget() xmcdWidget.setLayout(xmcdTabLayout) self.tabWidget.addTab( xmcdWidget, window.upper()) self.tabWidget.setTabToolTip(tabIdx, 'Shortcut: F4\n' +'Assign Markers p, q and r here') self.valuesDict[self.__tabInt]\ ['Orbital Magnetic Moment'] = self.mmOrbt self.valuesDict[self.__tabInt]\ ['Spin Magnetic Moment'] = self.mmSpin self.valuesDict[self.__tabInt]\ ['Ratio Magnetic Moments'] = self.mmRatio self.valuesDict[self.__tabInt]\ ['XMCD Detrend'] = self.xmcdDetrend tabIdx += 1 # END TabWidget # Add to self.valuesDict self.tabWidget.currentChanged['int'].connect( self._handleTabChangedSignal) # Estimate button in bottom of plot window layout self.buttonEstimate = qt.QPushButton('Estimate', self) self.buttonEstimate.setToolTip( 'Shortcut: CRTL+E\n' +'Depending on the tab, estimate either the pre/post\n' +'edge regions and edge positions or the positions of\n' +'the p, q and r markers.') self.buttonEstimate.setShortcut(\ qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_E)) self.buttonEstimate.clicked.connect(self.estimate) self.buttonEstimate.setEnabled(False) self.plotWindow.toolBar.addSeparator() self.plotWindow.toolBar.addWidget(self.buttonEstimate) self.plotWindow.sigPlotSignal.connect(self._handlePlotSignal) # Layout mainWidget = qt.QWidget() mainLayout = qt.QVBoxLayout() mainLayout.addWidget(self.plotWindow) mainLayout.addWidget(self.tabWidget) mainLayout.setContentsMargins(1,1,1,1) mainWidget.setLayout(mainLayout) self.setCentralWidget(mainWidget) # # Data handling: # # Each is Tuple (x,y) # type(x),type(y) == ndarray self.xmcdData = None # XMCD Spectrum self.xasData = None # XAS Spectrum self.xasDataCorr = None # XAS minus Background model self.xasDataBG = None # XAS Backgrouns self.xmcdCorrData = None # Integrated spectra: Notice that the shape # diminished by one.. self.xmcdInt = None self.xasInt = None # # File (name) handling # self.dataInputFilename = None self.confFilename = None self.baseFilename = None self._createMenuBar() def _createMenuBar(self): # Creates empty menu bar, if none existed before menu = self.menuBar() menu.clear() # # 'File' Menu # ffile = menu.addMenu('&File') openAction = qt.QAction('&Open Spec File', self) openAction.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_O)) openAction.setStatusTip('Opened file') openAction.setToolTip('Opens a data file (*.spec)') openAction.triggered.connect(self.loadData) loadAction = qt.QAction('&Load Configuration', self) loadAction.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_L)) loadAction.setStatusTip('Loaded analysis file') loadAction.setToolTip('Loads an existing analysis file (*.sra)') loadAction.triggered.connect(self.loadConfiguration) saveConfAction = qt.QAction('&Save Configuration', self) saveConfAction.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_S)) saveConfAction.setStatusTip('Saved analysis file') saveConfAction.setToolTip('Save analysis in file (*.sra)') saveConfAction.triggered.connect(self.saveConfiguration) saveConfAsAction = qt.QAction('Save &Configuration as', self) saveConfAsAction.setShortcut(\ qt.QKeySequence(qt.Qt.SHIFT|qt.Qt.CTRL|qt.Qt.Key_S)) saveConfAsAction.setStatusTip('Saved analysis file') saveConfAsAction.setToolTip('Save analysis in file (*.sra)') saveConfAsAction.triggered.connect(self.saveConfigurationAs) saveDataAction = qt.QAction('Save &Data', self) saveDataAction.setShortcut(qt.QKeySequence(qt.Qt.CTRL|qt.Qt.Key_D)) saveDataAction.setStatusTip('Saved analysis file') saveDataAction.setToolTip('Save analysis in file (*.sra)') saveDataAction.triggered.connect(self.saveData) saveDataAsAction = qt.QAction('Save D&ata as', self) saveDataAsAction.setShortcut(\ qt.QKeySequence(qt.Qt.SHIFT|qt.Qt.CTRL|qt.Qt.Key_D)) saveDataAsAction.setStatusTip('Saved analysis file') saveDataAsAction.setToolTip('Save analysis in file (*.sra)') saveDataAsAction.triggered.connect(self.saveDataAs) # Populate the 'File' menu for action in [openAction, loadAction, 'sep', saveConfAction, saveConfAsAction, 'sep', saveDataAction, saveDataAsAction, 'sep']: if isinstance(action, qt.QAction): ffile.addAction(action) else: ffile.addSeparator() ffile.addAction('E&xit', self.close) # # 'Help' Menu # hhelp = menu.addMenu('&Help') showHelpFileAction = qt.QAction('Show &documentation', self) showHelpFileAction.setShortcut(qt.QKeySequence(qt.Qt.Key_F1)) showHelpFileAction.setStatusTip('') showHelpFileAction.setToolTip('Opens the documentation (html-file) in the systems native web browser') showHelpFileAction.triggered.connect(self.showInfoWindow) # Populate the 'Help' menu hhelp.addAction(showHelpFileAction) def showInfoWindow(self): """ Opens a web browser and displays the help file """ fileName = osPathJoin(PyMcaDataDir.PYMCA_DOC_DIR, "HTML", "SumRulesToolInfotext.html") helpFileName = qt.QDir(fileName) if not qt.QDesktopServices.openUrl(qt.QUrl(helpFileName.absolutePath())): os.system('"%s"' % fileName) def triggerDetrend(self, state): if (state == qt.Qt.Unchecked) or\ (state == qt.Qt.PartiallyChecked): # Replot original data self.xmcdCorrData = None else: ddict = self.getValuesDict() if self.xmcdData is None: return x, y = self.xmcdData preMin = ddict[self.__tabBG][self.__preMin] preMax = ddict[self.__tabBG][self.__preMax] mask = numpy.nonzero((preMin <= x) & (x <= preMax))[0] xFit = x.take(mask) yFit = y.take(mask) if (len(xFit) == 0) or (len(yFit) == 0): return # Fit linear model y = a*x + b a, b = numpy.polyfit(xFit, yFit, 1) trend = a*x + b self.xmcdCorrData = (x, y-trend) if self.getCurrentTab() == self.__tabInt: self.plotOnDemand(self.__tabInt) self.calcMagneticMoments() def calcMagneticMoments(self): ddict = self.valuesDict pqr = [] mathObj = Calculations() for marker in self.xmcdMarkerList: if marker in [self.__intP, self.__intQ]: if self.xmcdCorrData is not None: curve = 'xmcd corr Int' else: curve = 'xmcd Int' else: curve = 'xas Int' spinbox = ddict[self.__tabInt][marker] integralVals = spinbox.getIntersections() x, y = integralVals.get(curve, (float('NaN'),float('NaN'))) key = 'Integral ' + marker lineEdit = ddict[self.__tabInt][key] lineEdit.setText(str(y)) pqr += [y] p, q, r = pqr electronOccupation = ddict[self.__tabElem]['electron occupation'] try: n = float(electronOccupation.text()) except ValueError: _logger.debug('calcMM -- Could not convert electron occupation') return electronConfiguration = ddict[self.__tabElem]['electron configuration'] econf = str(electronConfiguration.currentText()) try: mmO, mmS, mmR = mathObj.magneticMoment(p,q,r,n,econf) except ValueError as e: _logger.debug(e) mmO, mmS, mmR = 3*['---'] self.mmOrbt.setText(str(mmO)) self.mmSpin.setText(str(mmS)) self.mmRatio.setText(str(mmR)) def loadData(self): dial = LoadDichorismDataDialog() dial.setDirectory(PyMcaDirs.outputDir) if dial.exec(): dataDict = dial.dataDict else: return # Reset calculated data self.xasDataCorr = None self.xasDataBG = None self.xmcdCorrData = None self.xmcdInt = None self.xasInt = None x = dataDict['x'] xas = dataDict['xas'] xmcd = dataDict['xmcd'] self.dataInputFilename = dataDict['fn'] self.setRawData(x, xas, 'xas') self.setRawData(x, xmcd, 'xmcd') def saveDataAs(self): self.baseFilename = None self.__savedData = False self.saveData() def saveData(self): # Saves spectral data that is calculated during # the evaluation process: # First scan: XAS BG-Modell XAS-BG # Second scan: XAS/XMCD integrals dataList = [self.xasData, self.xasDataCorr, self.xasDataBG, self.xmcdInt, self.xasInt] if None in dataList: msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Analysis Error') msg.setIcon(qt.QMessageBox.Warning) msg.setText('Analysis incomplete!\nCannot save generated data') msg.exec() return False if self.__savedData and self.baseFilename: pass else: ddict = self.getValuesDict() saveDir = PyMcaDirs.outputDir filters = 'spec File (*.spec);;All files (*.*)' baseFilename = qt.QFileDialog.getSaveFileName(self, 'Save Sum Rule Analysis Data', saveDir, filters) if len(baseFilename) == 0: # Leave self.baseFilename as it is.. #self.baseFilename = None return False else: self.baseFilename = str(baseFilename) if not self.baseFilename.endswith('.spec'): # Append extension later self.baseFilename += '.spec' # Create filenames specFilename = self.baseFilename baseName = osPathBasename(self.dataInputFilename) self.__savedData = False # Acquire filehandle try: specFilehandle = open(specFilename, 'wb') except IOError: msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Analysis Error') msg.setIcon(qt.QMessageBox.Warning) msg.setText('Unable to open file \'%s\''%specFilename) msg.exec() return False delim = ' ' # 1. Background Modell, XAS, XAS-Background # All share the same x-range xSpec, yXas = self.xasData xSpec, yBG = self.xasDataBG xSpec, yXasBG = self.xasDataCorr if self.xmcdCorrData: xInt, yXmcd = self.xmcdCorrData else: xInt, yXmcd = self.xmcdData dataSpec = numpy.vstack((xSpec, yXas, yBG, yXasBG, yXmcd)).T # 2. Integrals # Also share the same x-range xInt, yXasInt = self.xasInt xInt, yXmcdInt = self.xmcdInt dataInt = numpy.vstack((xInt, yXasInt, yXmcdInt)).T # Construct spectra output outSpec = '' outSpec += (NEWLINE + '#S 1 XAS data %s'%baseName + NEWLINE) outSpec += ('#N %d'%5 + NEWLINE) if self.xmcdCorrData: outSpec += ('#L x XAS Background model XAS corrected XMCD corrected' + NEWLINE) else: outSpec += ('#L x XAS Background model XAS corrected XMCD' + NEWLINE) for line in dataSpec: tmp = delim.join(['%f'%num for num in line]) outSpec += (tmp + NEWLINE) outSpec += (NEWLINE) # Construct integral output outInt = '' outInt += ('#S 2 Integral data %s'%baseName + NEWLINE) outInt += ('#N %d'%3 + NEWLINE) if self.xmcdCorrData: outInt += ('#L x XAS Int XMCD Int' + NEWLINE) else: outInt += ('#L x XAS Int XMCD Int corrected' + NEWLINE) for line in dataInt: tmp = delim.join(['%f'%num for num in line]) outInt += (tmp + NEWLINE) outInt += (NEWLINE) for output in [outSpec, outInt]: specFilehandle.write(output.encode('ascii')) specFilehandle.close() self.__savedData = True return True def saveConfigurationAs(self, shortcut=False): self.confFilename = None self.__savedConf = False self.saveConfiguration() def saveConfiguration(self): ddict = self.getValuesDict() if self.__savedConf and self.confFilename: filename = self.confFilename else: saveDir = PyMcaDirs.outputDir filters = 'Sum Rules Analysis files (*.sra);;All files (*.*)' filename = qt.QFileDialog.getSaveFileName(self, 'Save Sum Rule Analysis Configuration', saveDir, filters) if len(filename) == 0: return False else: filename = str(filename) if not filename.endswith('.sra'): filename += '.sra' self.confFilename = filename self.__savedConf = False confDict = ConfigDict.ConfigDict(self.getValuesDict()) try: confDict.write(filename) except IOError: msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Analysis Error') msg.setIcon(qt.QMessageBox.Warning) msg.setText('Unable to write configuration to \'%s\''%filename) msg.exec() return False self.__savedConf = True return True def loadConfiguration(self): confDict = ConfigDict.ConfigDict() loadDir = PyMcaDirs.outputDir filters = 'Sum Rules Analysis files (*.sra);;All files (*.*)' filename = qt.QFileDialog.getOpenFileName(self, 'Load Sum Rule Analysis Configuration', loadDir, filters) if type(filename) in [type(list()), type(tuple())]: if len(filename): filename = filename[0] if len(filename) == 0: return else: filename = str(filename) try: confDict.read(filename) except IOError: msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Analysis Error') msg.setIcon(qt.QMessageBox.Warning) msg.setText('Unable to read configuration file \'%s\''%filename) return try: self.setValuesDict(confDict) #keysLoaded = confDict.keys() #keysValues = self.valuesDict.keys() except KeyError as e: _logger.debug('loadConfiguration -- Key Error in \'%s\'', filename) _logger.debug('\tMessage: %s', e) msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Analysis Error') msg.setIcon(qt.QMessageBox.Warning) msg.setText('Malformed configuration file \'%s\''%filename) return self.__savedConf = True def close(self): if not self.__savedConf: msg = qt.QMessageBox() msg.setWindowTitle('Sum Rules Tool') msg.setIcon(qt.QMessageBox.Warning) msg.setText('The configuration has changed!\nAre you shure you want to close the window?') msg.setStandardButtons(qt.QMessageBox.Cancel | qt.QMessageBox.Discard) if msg.exec() == qt.QMessageBox.Cancel: return qt.QMainWindow.close(self) def setElectronConf(self, eConf): eConf = str(eConf) if len(eConf) == 0: self.electronOccupation.setDisabled(True) else: self.electronOccupation.setDisabled(False) # updates the element combo box self.elementCB.clear() elementsList = self.elementsDict[eConf] self.elementCB.addItems(['']+elementsList) def getElementInfo(self, symbol): ddict = {} symbol = str(symbol) if len(symbol) == 0: self.valuesDict[self.__tabElem]['info'] = {} return try: ddict = Elements.Element[symbol] except KeyError: msg = ('setElement -- \'%s\' not found in '%symbol) msg += 'Elements.Element dictionary' _logger.error(msg) # Update valuesDict self.valuesDict[self.__tabElem]['info'] = ddict # Update the EdgeCBs # Lookup all keys ending in 'xrays' keys = [item for item in ddict.keys() if item.endswith('xrays')] keys.sort() # keys is list of list, flatten it.. transitions = sum([ddict[key] for key in keys],[]) # Only take transitions that occur in the experiment transitions = [t for t in transitions if t in self.occuringTransitions] tmpDict = dict( [(transition, ddict[transition]['energy']) for transition in transitions]) for cb, ed in [(self.edge1CB, self.edge1Line), (self.edge2CB, self.edge2Line)]: curr = cb.currentText() cb.clear() ed.clear() ed.updateDict(tmpDict) cb.addItems(['']+transitions) # Try to set to old entry idx = cb.findText(QString(curr)) if idx < 0: idx = 0 cb.setCurrentIndex(idx) def getCurrentTab(self): idx = self.tabWidget.currentIndex() return self.tabList[idx] def getValuesDict(self): ddict = {} for tab, tabDict in self.valuesDict.items(): if tab not in ddict.keys(): ddict[tab] = {} for key, obj in tabDict.items(): value = None if isinstance(obj, MarkerSpinBox): value = obj.value() elif isinstance(obj, qt.QCheckBox): state = obj.checkState() if state == qt.Qt.Checked: value = True else: # Also covers state == qt.Qt.PartiallyChecked value = False elif isinstance(obj, qt.QComboBox): tmp = obj.currentText() value = str(tmp) elif isinstance(obj, LineEditDisplay) or\ isinstance(obj, qt.QLineEdit): tmp = str(obj.text()) try: value = float(tmp) except ValueError: value = tmp elif isinstance(obj, qt.QDoubleSpinBox): value = obj.value() elif isinstance(obj, dict): value = obj ddict[tab][key] = value return ddict def setValuesDict(self, ddict): markerList = (self.xasMarkerList + self.xmcdMarkerList) elementList = (self.transitionMetals + self.rareEarths + self.electronConfs) # Check as early as possible if element symbol is present try: symbol = ddict[self.__tabElem]['element'] self.getElementInfo(symbol) except KeyError: pass for tab, tabDict in ddict.items(): if tab not in self.valuesDict.keys(): raise KeyError('setValuesDict -- Tab not found') for key, value in tabDict.items(): if not isinstance(key, str): raise KeyError('setValuesDict -- Key is not str instance') obj = self.valuesDict[tab][key] if isinstance(obj, MarkerSpinBox): try: tmp = float(value) obj.setValue(tmp) except ValueError: if hasattr(self.plotWindow,'graph'): xmin, xmax = self.plotWindow.graph.getX1AxisLimits() else: xmin, xmax = self.plotWindow.getGraphXLimits() tmp = xmin + (xmax-xmin)/10. _logger.debug( 'setValuesDict -- Float conversion failed' ' while setting marker positions. Value: %s', value) elif isinstance(obj, qt.QCheckBox): if value == 'True': state = qt.Qt.Checked else: state = qt.Qt.Unchecked obj.setCheckState(state) elif isinstance(obj, qt.QDoubleSpinBox): try: tmp = float(value) obj.setValue(tmp) except ValueError: _logger.debug( 'setValuesDict -- Float conversion failed' ' while setting QDoubleSpinBox value. Value: %s', value) elif isinstance(obj, qt.QComboBox): idx = obj.findText(QString(value)) obj.setCurrentIndex(idx) elif isinstance(obj, LineEditDisplay): # Must be before isinstance(obj, qt.QLineEdit) # since LineEditDisplay inherits from QLineEdit obj.checkController() elif isinstance(obj, qt.QLineEdit): if value: tmp = str(value) obj.setText(tmp) else: obj.setText('???') elif isinstance(obj, dict): obj = value else: raise KeyError('setValuesDict -- \'%s\' not found'%key) # In case electron shell is set after element.. try: symbol = ddict[self.__tabElem]['element'] cb = self.valuesDict[self.__tabElem]['element'] idx = cb.findText(QString(symbol)) cb.setCurrentIndex(idx) except KeyError: pass def setRawData(self, x, y, identifier): if identifier not in ['xmcd', 'xas']: msg = 'Identifier must either be \'xmcd\' or \'xas\'' raise ValueError(msg) # Sort energy range sortedIdx = x.argsort() xSorted = x.take(sortedIdx)[:] ySorted = y.take(sortedIdx)[:] # Ensure strictly monotonically increasing energy range dx = numpy.diff(x) if not numpy.all(dx > 0.): mask = numpy.nonzero(dx) xSorted = numpy.take(xSorted, mask) ySorted = numpy.take(ySorted, mask) # Add spectrum to plotWindow using the if identifier == 'xmcd': self.xmcdData = (xSorted, ySorted) #self.plotWindow.graph.mapToY2(intLegend) elif identifier == 'xas': self.xasData = (xSorted, ySorted) # Trigger replot when data is added currIdx = self.tabWidget.currentIndex() self._handleTabChangedSignal(currIdx) def estimate(self): tab = self.getCurrentTab() if tab == self.__tabBG: self.estimatePrePostEdgePositions() elif tab == self.__tabInt: self.estimateInt() else: # Do nothing pass return def estimatePrePostEdgePositions(self): if self.xasData is None: return ddict = self.getValuesDict() edgeList = [ddict[self.__tabElem]['edge1Energy'], ddict[self.__tabElem]['edge2Energy']] filterEdgeList = lambda inp:\ float(inp.replace('meV',''))\ if (len(inp)>0 and inp!='---')\ else 0.0 # Use list comprehension instead of map(filterEdgeList, edgeList) edgeList = [filterEdgeList(edge) for edge in edgeList] x, y = self.xasData xLimMin, xLimMax = self.plotWindow.getGraphXLimits() xMin = x[0] xMax = x[-1] xLen = xMax - xMin xMiddle = .5 *(xMax + xMin) # Average step length (Watch out for uneven data!) xStep = (xMax + xMin) / float(len(x)) # Look for the index closest to the physical middle mask = numpy.nonzero(x <= xMiddle)[0] idxMid = mask[-1] factor = 10./100. edge1, edge2 = edgeList if edge1 == 0.: edge1 = xMin + 0.4 * (xMax - xMin) if edge2 == 0.: edge2 = xMin + 0.6 * (xMax - xMin) maxEdge = max(edge1, edge2) minEdge = min(edge1, edge2) preMax = minEdge - factor*xLen postMin = maxEdge + factor*xLen ddict[self.__tabBG][self.__preMin] = max(xMin,xLimMin+xStep) ddict[self.__tabBG][self.__preMax] = preMax ddict[self.__tabBG][self.__postMin] = postMin ddict[self.__tabBG][self.__postMax] = min(xMax,xLimMax-xStep) ddict[self.__tabBG]['Edge 1'] = edge1 ddict[self.__tabBG]['Edge 2'] = edge2 self.setValuesDict(ddict) self.estimateBG() def estimateInt(self): if self.xasDataCorr is None or\ self.xasInt is None or\ self.xmcdInt is None: # Nothing to do... return ddict = self.getValuesDict() x, y = self.xasData xMin = x[0] xMax = x[-1] xLen = xMax - xMin factor = 10./100. postMin = ddict[self.__tabBG][self.__postMin] postMax = ddict[self.__tabBG][self.__postMax] edge1 = ddict[self.__tabBG]['Edge 1'] edge2 = ddict[self.__tabBG]['Edge 2'] # Estimate intP if edge1 == 0.: intP = edge2 + factor * xLen elif edge2 == 0.: intP = edge1 + factor * xLen else: intP = min(edge1, edge2) + factor * xLen # Estimate intQ intQ = postMin + factor * xLen # Estimate intR intR = postMax - factor * xLen # Also estimate the p, q, r Markers: ddict[self.__tabInt][self.__intP] = intP ddict[self.__tabInt][self.__intQ] = intQ ddict[self.__tabInt][self.__intR] = intR self.setValuesDict(ddict) def estimateBG(self): # Removed default parameter val=None if self.xasData is None: return if self.tabWidget.currentIndex() != 1: # Only call from tab 1 return x, y = self.xasData ddict = self.getValuesDict() x01 = ddict[self.__tabBG]['Edge 1'] x02 = ddict[self.__tabBG]['Edge 2'] preMin = ddict[self.__tabBG][self.__preMin] preMax = ddict[self.__tabBG][self.__preMax] postMin = ddict[self.__tabBG][self.__postMin] postMax = ddict[self.__tabBG][self.__postMax] width = ddict[self.__tabBG]['Step Width'] ratio = ddict[self.__tabBG]['Step Ratio'] if preMin > preMax: tmp = preMin preMin = preMax preMax = tmp if postMin > postMax: tmp = preMin preMin = preMax preMax = tmp idxPre = numpy.nonzero((preMin <= x) & (x <= preMax))[0] idxPost = numpy.nonzero((postMin <= x) & (x <= postMax))[0] if (len(idxPre) == 0) or (len(idxPost) == 0): _logger.debug('estimateBG -- Somethings wrong with pre/post edge markers') return xPreMin = x[idxPre.min()] xPreMax = x[idxPre.max()] xPostMin = x[idxPost.min()] xPostMax = x[idxPost.max()] gap = abs(xPreMax - xPostMin) avgPre = numpy.average(y[idxPre]) avgPost = numpy.average(y[idxPost]) bottom = min(avgPre,avgPost) top = max(avgPre,avgPost) if avgPost >= avgPre: sign = 1. erf = upstep else: sign = -1. erf = downstep diff = abs(avgPost - avgPre) if x02 < x01: par1 = (ratio, x02, width) par2 = ((1.-ratio), x01, width) _logger.debug('estimateBG -- x02 < x01, using par1: %s and par2: %s', par1, par2) model = bottom + sign * diff * (erf(par1, x) + erf(par2, x)) else: par1 = (ratio, x01, width) par2 = ((1.-ratio), x02, width) _logger.debug('estimateBG -- x01 < x02, using par1: %s and par2: %s', par1, par2) model = bottom + sign * diff * (erf(par1, x) + erf(par2, x)) preModel = numpy.asarray(len(x)*[avgPre]) postModel = numpy.asarray(len(x)*[avgPost]) self.xasDataBG = x, model self.plotWindow.addCurve(x, model, self.__xasBGmodel, {}, replot=False) self.plotWindow.addCurve(x, preModel, 'Pre BG model', {}, replot=False) self.plotWindow.addCurve(x, postModel, 'Post BG model', {}, replot=False) if hasattr(self.plotWindow, 'graph'): self.plotWindow.graph.replot() else: self.plotWindow.replot() self.plotWindow.updateLegends() def plotOnDemand(self, window): # Remove all curves if hasattr(self.plotWindow,'graph'): legends = self.plotWindow.getAllCurves(just_legend=True) for legend in legends: self.plotWindow.removeCurve(legend, replot=False) else: self.plotWindow.clearCurves() if (self.xmcdData is None) or (self.xasData is None): # Nothing to do return xyList = [] mapToY2 = False window = window.lower() if window == self.__tabElem: if self.xmcdCorrData is not None: _logger.debug('plotOnDemand -- __tabElem: Using self.xmcdCorrData') xmcdX, xmcdY = self.xmcdCorrData xmcdLabel = 'xmcd corr' else: _logger.debug('plotOnDemand -- __tabElem: Using self.xmcdData') xmcdX, xmcdY = self.xmcdData xmcdLabel = 'xmcd' xasX, xasY = self.xasData xyList = [(xmcdX, xmcdY, xmcdLabel, {'plot_yaxis': 'right'}), (xasX, xasY, 'xas', {})] # At least one of the curve is going # to get plotted on secondary y axis mapToY2 = True elif window == self.__tabBG: xasX, xasY= self.xasData xyList = [(xasX, xasY, 'xas', {})] if self.xasDataBG is not None: xasBGX, xasBGY = self.xasDataBG xyList += [(xasBGX, xasBGY, self.__xasBGmodel, {})] elif window == self.__tabInt: if self.xasDataBG is None: self.xmcdInt = None self.xasInt = None return # Calculate xasDataCorr xBG, yBG = self.xasDataBG x, y = self.xasData self.xasDataCorr = x, y-yBG if self.xmcdCorrData is not None: _logger.debug('plotOnDemand -- __tabInt: Using self.xmcdCorrData') xmcdX, xmcdY = self.xmcdCorrData xmcdIntLabel = 'xmcd corr Int' else: _logger.debug('plotOnDemand -- __tabInt: Using self.xmcdData') xmcdX, xmcdY = self.xmcdData xmcdIntLabel = 'xmcd Int' mathObj = Calculations() xasX, xasY = self.xasDataCorr xmcdIntY = mathObj.cumtrapz(y=xmcdY, x=xmcdX) xmcdIntX = .5 * (xmcdX[1:] + xmcdX[:-1]) xasIntY = mathObj.cumtrapz(y=xasY, x=xasX) xasIntX = .5 * (xasX[1:] + xasX[:-1]) xyList = [(xmcdIntX, xmcdIntY, xmcdIntLabel, {'plot_yaxis': 'right'}), (xasX, xasY, 'xas corr', {}), (xasIntX, xasIntY, 'xas Int', {})] self.xmcdInt = xmcdIntX, xmcdIntY self.xasInt = xasIntX, xasIntY xmin, xmax = numpy.infty, -numpy.infty ymin, ymax = numpy.infty, -numpy.infty for x,y,legend,info in xyList: xmin = min(xmin, x.min()) xmax = max(xmax, x.max()) ymin = min(ymin, y.min()) ymax = max(ymax, y.max()) _logger.debug('plotOnDemand -- adding Curve..') """ if mapToY2: if hasattr(self.plotWindow, 'graph'): specLegend = self.plotWindow.dataObjectsList[-1] self.plotWindow.graph.mapToY2(specLegend) else: info['plot_yaxis'] = 'right' """ self.plotWindow.addCurve( x=x, y=y, legend=legend, info=info, replace=False, replot=True) # Assure margins in plot when using matplotlibbackend if not hasattr(self.plotWindow, 'graph'): _logger.debug('plotOnDemand -- Setting margins..\n' '\txmin: %s xmax: %s\n\tymin: %s ymax: %s', xmin, xmax , ymin, ymax) # Pass if no curves present curves = self.plotWindow.getAllCurves(just_legend=True) if len(curves) == 0: # At this point xymin, xymax should be infinite.. pass xmargin = 0.1 * (xmax - xmin) ymargin = 0.1 * (ymax - ymin) self.plotWindow.setGraphXLimits(xmin-xmargin, xmax+xmargin) self.plotWindow.setGraphYLimits(ymin-ymargin, ymax+ymargin) # Need to force replot here for correct display self.plotWindow.replot() self.plotWindow.updateLegends() def addMarker(self, window, label='X MARKER', xpos=None, unit=''): # Add spinbox controlling the marker spinbox = MarkerSpinBox(window, self.plotWindow, label) # Connects self.tabChangedSignal.connect(spinbox._setMarkerFollowMouse) if len(unit) > 0: text = label + ' ' + unit else: text = label # Widget & Layout spinboxWidget = qt.QWidget() spinboxLayout = qt.QHBoxLayout() spinboxLayout.addWidget(qt.QLabel(text)) spinboxLayout.addWidget(qt.HorizontalSpacer()) spinboxLayout.addWidget(spinbox) spinboxWidget.setLayout(spinboxLayout) return spinboxWidget, spinbox def _handlePlotSignal(self, ddict): #if 'marker' not in ddict: if ddict['event'] == 'markerMoved': if self.tabWidget.currentIndex() == 1: # 1 -> BG tab self.estimateBG() def _handleTabChangedSignal(self, idx): if idx >= len(self.tabList): _logger.info('Tab changed -- Index out of range') return tab = self.tabList[idx] self.plotOnDemand(window=tab) # Hide/Show markers depending on the selected tab # Problem: MarkerLabels are stored in markerList, # however the MarkerSpinBoxes are stores in # self.valuesDict ... # edgeMarkers & xasMarkers -> BACKGROUND tab # xmcdMarker -> INTEGRATION tab markerList = self.xasMarkerList\ + self.edgeMarkerList\ + self.xmcdMarkerList if tab == self.__tabBG: self.buttonEstimate.setEnabled(True) for marker in markerList: if (marker in self.xasMarkerList) or\ (marker in self.edgeMarkerList): sb = self.valuesDict[self.__tabBG][marker] sb.showMarker() else: sb = self.valuesDict[self.__tabInt][marker] sb.hideMarker() keys = [key for key in self.valuesDict[self.__tabElem].keys()\ if key.endswith('Transition')] ratioSB = self.valuesDict[self.__tabBG]['Step Ratio'] for idx, keyElem in enumerate(keys): keyBG = 'Edge %d'%(idx+1) sb = self.valuesDict[self.__tabBG][keyBG] parentWidget = sb.parent() parentWidget.setEnabled(True) self.estimateBG() elif tab == self.__tabInt: self.buttonEstimate.setEnabled(True) for marker in markerList: if marker in self.xmcdMarkerList: sb = self.valuesDict[self.__tabInt][marker] sb.showMarker() else: sb = self.valuesDict[self.__tabBG][marker] #sb.setValue(0.0) # Should be consistent with estimateBG sb.hideMarker() self.calcMagneticMoments() else: # tab == self.__tabElem: self.buttonEstimate.setEnabled(False) for marker in markerList: if marker in self.xmcdMarkerList: sb = self.valuesDict[self.__tabInt][marker] else: sb = self.valuesDict[self.__tabBG][marker] sb.showMarker() self.tabChangedSignal.emit(tab) def keyPressEvent(self, event): if event.key() == qt.Qt.Key_F2: # Switch to tab Element idx = self.tabList.index(self.__tabElem) self.tabWidget.setCurrentIndex(idx) elif event.key() == qt.Qt.Key_F3: # Switch to tab Background idx = self.tabList.index(self.__tabBG) self.tabWidget.setCurrentIndex(idx) elif event.key() == qt.Qt.Key_F4: # Switch to tab Integration idx = self.tabList.index(self.__tabInt) self.tabWidget.setCurrentIndex(idx) elif event.key() == qt.Qt.Key_F5: # Trigger estimation self.estimate() else: qt.QWidget.keyPressEvent(self, event) class LoadDichorismDataDialog(qt.QFileDialog): dataInputSignal = qt.pyqtSignal(object) def __init__(self, parent=None): #qt.QDialog.__init__(self, parent) qt.QFileDialog.__init__(self, parent) self.dataDict = {} self.validated = False self.setWindowTitle('Load Dichorism Data') if hasattr(self, "setNameFilters"): self.setNameFilters(['Spec Files (*.spec)', 'Text Files (*.txt; *.dat)', 'All Files (*.*)']) self.setOption(qt.QFileDialog.DontUseNativeDialog, True) else: self.setFilter('Spec Files (*.spec);;' +'Text Files (*.txt; *.dat);;' +'All Files (*.*)') # Take the QSpecFileWidget class as used # in the main window to select data and # insert it into a QFileDialog. Emit the # selected data at acceptance self.specFileWidget = QSpecFileWidget.QSpecFileWidget( parent=parent, autoreplace=False) # Hide the widget containing the Auto Add/Replace # checkboxes self.specFileWidget.autoAddBox.parent().hide() # Remove the tab widget, only the counter widget # is needed. Remember: close() only hides a widget # however the widget persists in the memory. #self.specFileWidget.mainTab.removeTab(1) self.specFileWidget.mainTab.hide() #self.counterTab = self.specFileWidget.mainTab.widget(0) self.specFileWidget.mainLayout.addWidget(self.specFileWidget.cntTable) self.specFileWidget.cntTable.show() # Change the table headers in cntTable # Note: By conicidence, the original SpecFileCntTable # has just enough columns as we need. Here, we rename # the last two: # 'y' -> 'XAS' # 'mon' -> 'XMCD' labels = ['Counter', 'X', 'XAS', 'XMCD'] table = self.specFileWidget.cntTable for idx in range(len(labels)): item = table.horizontalHeaderItem(idx) if item is None: item = qt.QTableWidgetItem(labels[idx], qt.QTableWidgetItem.Type) item.setText(labels[idx]) table.setHorizontalHeaderItem(idx,item) # Hide the widget containing the Add, Replace, ... # PushButtons self.specFileWidget.buttonBox.hide() # Change selection behavior/mode in the scan list so # that only a single scan can be selected at a time self.specFileWidget.list.setSelectionBehavior(qt.QAbstractItemView.SelectRows) self.specFileWidget.list.setSelectionMode(qt.QAbstractItemView.SingleSelection) # Tinker with the native layout of QFileDialog mainLayout = self.layout() mainLayout.addWidget(self.specFileWidget, 0, 4, 4, 1) # # Signals # self.currentChanged.connect(self.setDataSource) def setDataSource(self, filename): # Opens a spec file and allows to browse its # contents in the top right widget filename = str(filename) if osPathIsDir(filename): _logger.debug('LoadDichorismDataDialog.setDataSource -- Invalid path or filename..') return try: src = SpecFileDataSource.SpecFileDataSource(filename) except ValueError: return self.specFileWidget.setDataSource(src) def accept(self): llist = self.selectedFiles() if len(llist) == 1: filename = str(llist[0]) else: return self.processSelectedFile(filename) if self.validated: super(LoadDichorismDataDialog, self).accept() def processSelectedFile(self, filename): self.dataDict = {} filename = str(filename) scanList = self.specFileWidget.list.selectedItems() if len(scanList) == 0: self.errorMessageBox('No scan selected!') return else: scan = scanList[0] scanNo = str(scan.text(1)) table = self.specFileWidget.cntTable # ddict['x'] -> 'X' # ddict['y'] -> 'XAS' # ddict['m'] -> 'XMCD' ddict = table.getCounterSelection() colX = ddict['x'] colXas = ddict['y'] colXmcd = ddict['m'] # Check if only one is selected if len(colX) != 1: self.errorMessageBox('Single counter must be set as X') return else: colX = colX[0] if len(colXas) != 1: self.errorMessageBox('Single counter must be set as XAS') return else: colXas = colXas[0] if len(colXmcd) != 1: self.errorMessageBox('Single counter must be set as XMCD') return else: colXmcd = colXmcd[0] if colXas == colX: self.errorMessageBox('X and XAS use the same counter') return elif colX == colXmcd: self.errorMessageBox('X and XMCD use the same counter') return elif colXmcd == colXas: self.errorMessageBox('XAS and XMCD use the same counter') return # Extract data dataObj = self.specFileWidget.data.getDataObject(scanNo) # data has format (rows, cols) -> (steps, counters) self.dataDict['fn'] = filename self.dataDict['x'] = dataObj.data[:, colX] self.dataDict['xas'] = dataObj.data[:, colXas] self.dataDict['xmcd'] = dataObj.data[:, colXmcd] self.validated = True self.dataInputSignal.emit(self.dataDict) def errorMessageBox(self, msg): box = qt.QMessageBox() box.setWindowTitle('Sum Rules Load Data Error') box.setIcon(qt.QMessageBox.Warning) box.setText(msg) box.exec() if __name__ == '__main__': app = qt.QApplication([]) win = SumRulesWindow() #r'C:\Users\tonn\lab\datasets\sum_rules\sum_rules_4f_example_EuRhj2Si2' #win = DataDisplay.PlotWindow() #xmin, xmax = win.getGraphXLimits() #win.insertXMarker(50., draggable=True) #win = LoadDichorismDataDialog() #x, avgA, avgB, xmcd, xas = getData() #win.plotWindow.newCurve(x,xmcd, legend='xmcd', xlabel='ene_st', ylabel='zratio', info={}, replot=False, replace=False) #win.setRawData(x,xmcd, identifier='xmcd') #win.plotWindow.newCurve(x,xas, legend='xas', xlabel='ene_st', ylabel='zratio', info={}, replot=False, replace=False) #win.setRawData(x,xas, identifier='xas') #win = LoadDichorismDataDialog() win.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/TomographyRecons.py0000644000000000000000000003564614741736366022055 0ustar00rootroot#!/usr/bin/env python #/*########################################################################## # Copyright (C) 2004-2020 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "H. Payno- ESRF Data Analysis" __contact__ = "henri.payno@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.misc.SelectionTable import SelectionTable from tomogui.gui.datasource.QDataSourceWidget import QDataSourceWidget from tomogui.configuration.config import FBPConfig try: from freeart.configuration.config import _ReconsConfig except ImportError: from tomogui.third_party.configuration.config import _ReconsConfig class TomoRecons(qt.QWidget): """Widget to select what are the I0 sinogram, sinograms to reconstruct and the kind od reconstruction we want to run """ def __init__(self, parent=None, entries=None): qt.QWidget.__init__(self, parent) self.setLayout(qt.QVBoxLayout()) self._cbReconsType = QDataSourceWidget.getReconsTypeCombobox(parent=self) self.layout().addWidget(self._cbReconsType) self._widgetGiveItI0 = qt.QWidget(parent=self) self._widgetGiveItI0.setLayout(qt.QHBoxLayout()) self._giveItCheckBox = qt.QCheckBox('give It', parent=self._widgetGiveItI0) self._giveItCheckBox.setChecked(True) self._giveItCheckBox.setToolTip('It is needed in order to produce the ' 'absorption matrix and deduce the self' ' absorption matrices. If not ' 'available then you will have to give ' 'directly the absorption matrix and ' 'the self absorption matrices.') self._widgetGiveItI0.layout().addWidget(self._giveItCheckBox) self._giveI0CheckBox = qt.QCheckBox('give I0', parent=self._widgetGiveItI0) self._giveI0CheckBox.setChecked(True) self._giveI0CheckBox.setToolTip('I0 sinogram is used to normalized ' 'sinograms. If this is not available ' 'then you can enter a single value to ' 'normalize sinograms.') self._widgetGiveItI0.layout().addWidget(self._giveI0CheckBox) self.layout().addWidget(self._widgetGiveItI0) self._fbpSelectionTable = FBPSinoReconsSelectionTable(parent=self) self.layout().addWidget(self._fbpSelectionTable) self._txSelectionTable = TxSinoReconsSelectionTable(parent=self) self.layout().addWidget(self._txSelectionTable) self._fluoSelectionTable = FluoSinoReconsSelectionTable(parent=self) self.layout().addWidget(self._fluoSelectionTable) self._cbReconsType.currentIndexChanged.connect(self._updadeView) self._giveI0CheckBox.toggled.connect(self._txSelectionTable.setI0Enabled) self._giveI0CheckBox.toggled.connect(self._fluoSelectionTable.setI0Enabled) self._giveItCheckBox.toggled.connect(self._fluoSelectionTable.setItEnabled) self.setNames(entries) self._updadeView() def setNames(self, entries): if entries: assert(isinstance(entries, list) or isinstance(entries, tuple)) nEntries = len(entries) self._fbpSelectionTable.setRowCount(nEntries) self._txSelectionTable.setRowCount(nEntries) self._fluoSelectionTable.setRowCount(nEntries) for iEntry, entry in enumerate(entries): self._fbpSelectionTable.fillLine(iEntry, [entry, "", ""]) self._txSelectionTable.fillLine(iEntry, [entry, "", ""]) self._fluoSelectionTable.fillLine(iEntry, [entry, "", "", ""]) self._fbpSelectionTable.resizeColumnsToContents() self._txSelectionTable.resizeColumnsToContents() self._fluoSelectionTable.resizeColumnsToContents() def _updadeView(self): isFluoOrCompton = self.getReconsType() in (_ReconsConfig.FLUO_ID, _ReconsConfig.COMPTON_ID) self._fluoSelectionTable.setVisible(isFluoOrCompton) self._giveI0CheckBox.setVisible(self.getReconsType() != FBPConfig.FBP_ID) self._giveItCheckBox.setVisible(isFluoOrCompton) self._txSelectionTable.setVisible(self.getReconsType() == _ReconsConfig.TX_ID) self._fbpSelectionTable.setVisible(self.getReconsType() == FBPConfig.FBP_ID) def getReconsType(self): """ :return: the reconstruction type (FBP, fluo...) requested by the user """ return str(QDataSourceWidget.DICT_IDS[self._cbReconsType.currentText()]) def getI0(self): """ :return: the ID of the sinogram used as I0 """ if self.getReconsType() == FBPConfig.FBP_ID: return None elif self.getReconsType() == _ReconsConfig.TX_ID: return self._txSelectionTable.getI0Selection() elif self.getReconsType() in (_ReconsConfig.FLUO_ID, _ReconsConfig.COMPTON_ID): return self._fluoSelectionTable.getI0Selection() def getIt(self): """ :return: the Id of the sinogram used for It """ if self.getReconsType() in (FBPConfig.FBP_ID, _ReconsConfig.TX_ID): return None elif self.getReconsType() in (_ReconsConfig.FLUO_ID, _ReconsConfig.COMPTON_ID): return self._fluoSelectionTable.getItSelection() def getSinogramsToRecons(self): """ :return: the list of ID of the sinograms to reconstruct """ if self.getReconsType() == FBPConfig.FBP_ID: return self._fbpSelectionTable.getSinogramsToRecons() elif self.getReconsType() == _ReconsConfig.TX_ID: return self._txSelectionTable.getSinogramsToRecons() elif self.getReconsType() in (_ReconsConfig.FLUO_ID, _ReconsConfig.COMPTON_ID): return self._fluoSelectionTable.getSinogramsToRecons() def getMultipleRole(self): """ Check entries to check if one is selected in a multiple role (requested for I0, It, sinogram...) :return: None or the entries assigned to multiple roles. Each entry is associated to a list of role :rtype: dict """ if self.getReconsType() == FBPConfig.FBP_ID: return None if self.getReconsType() == _ReconsConfig.TX_ID: sinograms = self._txSelectionTable.getSinogramsToRecons() if not self._giveI0CheckBox.isChecked(): return None I0 = self._txSelectionTable.getI0Selection() if I0 and I0 in sinograms: return {I0: ['i0', 'sinogram to reconstruct']} else: return None elif self.getReconsType() in (_ReconsConfig.FLUO_ID, _ReconsConfig.COMPTON_ID): fluoSinograms = self._fluoSelectionTable.getSinogramsToRecons() I0 = self._fluoSelectionTable.getI0Selection() It = self._fluoSelectionTable.getItSelection() duplicated = {} if self._giveI0CheckBox.isChecked() and I0 in fluoSinograms: duplicated[I0] = ['i0', 'sinogram to reconstruct'] if self._giveI0CheckBox.isChecked() and \ self._giveItCheckBox.isChecked() and I0 == It: if I0 in duplicated: duplicated[I0].append('it') else: duplicated[I0] = ['i0', 'it'] elif self._giveItCheckBox.isChecked() and It in fluoSinograms: duplicated[It] = ['it', 'sinogram to reconstruct'] return None if len(duplicated) == 0 else duplicated def sizeHint(self): return qt.QSize(400, 600) class TomoReconsDialog(qt.QDialog): """Dialog to validate the sinogram selection for tomogui reconstruction """ class SinogramHasMultipleRoleInfoMessage(qt.QMessageBox): def __init__(self, sinoName, roles): qt.QMessageBox.__init__(self) self.setIcon(qt.QMessageBox.Warning) self.setText('Multiple role for a sinogram') self.setInformativeText( 'The sinogram %s is used in multiple roles (%s).' 'This seems like an incorrect selection and might bring' 'incoherent reconstruction. Continue ?' %(str(sinoName), "; ".join(roles))) self.yesButton = self.addButton(qt.QMessageBox.Ignore) self.noButton = self.addButton(qt.QMessageBox.Cancel) def __init__(self, parent=None, entries=None): qt.QDialog.__init__(self, parent) self.setWindowTitle('Sinogram selection for reconstruction') self.mainWidget = TomoRecons(parent=self, entries=entries) types = qt.QDialogButtonBox.Ok | qt.QDialogButtonBox.Cancel _buttons = qt.QDialogButtonBox(parent=self) _buttons.setStandardButtons(types) _buttons.button(qt.QDialogButtonBox.Ok).clicked.connect( self._okTriggered) _buttons.button(qt.QDialogButtonBox.Cancel).clicked.connect( self.reject) self.setLayout(qt.QVBoxLayout()) self.layout().addWidget(self.mainWidget) self.layout().addWidget(_buttons) def getReconstructionType(self): return self.mainWidget.getReconsType() def getSinogramsToRecons(self): return self.mainWidget.getSinogramsToRecons() def getIt(self): return self.mainWidget.getIt() def hasIt(self): return self.getIt() is not None def getI0(self): return self.mainWidget.getI0() def hasI0(self): return self.mainWidget.getI0() is not None def _okTriggered(self): if self.checkMultipleRole(): self.accept() def checkMultipleRole(self): """ :return: True if the current validation is correct. """ mSelections = self.mainWidget.getMultipleRole() if mSelections is not None: name = list(mSelections.keys())[0] diag = self.SinogramHasMultipleRoleInfoMessage(sinoName=name, roles=mSelections[name]) if diag.exec(): return diag.result() == qt.QDialogButtonBox.Ignore else: return False return True class FluoSinoReconsSelectionTable(SelectionTable): """Table to select the sinogram to reconstruct and in the case of the fluorescence reconstruction what are It, I0... sinograms""" LABELS = ["name", "sinogram to reconstruct", "I0", "It"] TYPES = ["Text", "CheckBox", "RadioButton", "RadioButton"] def __init__(self, parent=None): SelectionTable.__init__(self, parent) def getItSelection(self): nSelection = len(self.getSelection()['it']) if nSelection == 0: return None elif nSelection == 1: index = self.getSelection()['it'] assert(len(index) == 1) return self.getSelection()['name'][index[0]] else: raise ValueError('multiple sinogram set as I0, shouldn\'t happen') def getI0Selection(self): nSelection = len(self.getSelection()['i0']) if nSelection == 0: return None elif nSelection == 1: index = self.getSelection()['i0'] assert(len(index) == 1) return self.getSelection()['name'][index[0]] else: raise ValueError('multiple sinogram set as I0, shouldn\'t happen') def getSinogramsToRecons(self): sinograms = [] selections = self.getSelection() for iSino in selections['sinogram to reconstruct']: sinograms.append(selections['name'][iSino]) return sinograms def setI0Enabled(self, enabled): self.setColumnEnabled(index=2, enabled=enabled) def setItEnabled(self, enabled): self.setColumnEnabled(index=3, enabled=enabled) class TxSinoReconsSelectionTable(SelectionTable): """Table to select the sinogram to reconstruct and in the case of the fluorescence reconstruction what are It, I0... sinograms""" LABELS = ["name", "sinogram to reconstruct", "I0"] TYPES = ["Text", "CheckBox", "RadioButton"] def __init__(self, parent=None): SelectionTable.__init__(self, parent) def getI0Selection(self): nSelection = len(self.getSelection()['i0']) if nSelection == 0: return None elif nSelection == 1: index = self.getSelection()['i0'] assert(len(index) == 1) return self.getSelection()['name'][index[0]] else: raise ValueError('multiple sinogram set as I0, shouldn\'t happen') def getSinogramsToRecons(self): sinograms = [] selections = self.getSelection() for iSino in selections['sinogram to reconstruct']: sinograms.append(selections['name'][iSino]) return sinograms def setI0Enabled(self, enabled): self.setColumnEnabled(index=2, enabled=enabled) class FBPSinoReconsSelectionTable(SelectionTable): LABELS = ["name", "sinogram to reconstruct"] TYPES = ["Text", "CheckBox"] def __init__(self, parent=None): SelectionTable.__init__(self, parent) def getSinogramsToRecons(self): sinograms = [] selections = self.getSelection() for iSino in selections['sinogram to reconstruct']: sinograms.append(selections['name'][iSino]) return sinograms if __name__ == '__main__': app = qt.QApplication([]) widget = TomoReconsDialog(entries=["Cnt1", "Cnt2", "Cnt3", "Cnt4", "Cnt5"]) widget.show() app.exec() ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/XMCDWindow.py0000644000000000000000000023706214741736366020471 0ustar00rootroot# /*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tonn Rueter - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy, copy import logging import sys from os.path import splitext, basename, dirname, exists, join as pathjoin from PyMca5.PyMcaGui.plotting.PyMca_Icons import IconDict from PyMca5 import PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5 import PyMcaDataDir from PyMca5.PyMcaGui.pymca import ScanWindow if hasattr(qt, "QString"): QString = qt.QString QStringList = qt.QStringList else: QString = str QStringList = list _logger = logging.getLogger(__name__) if _logger.getEffectiveLevel() == logging.DEBUG: numpy.set_printoptions(threshold=50) NEWLINE = "\n" class TreeWidgetItem(qt.QTreeWidgetItem): __legendColumn = 1 def __init__(self, parent, itemList): qt.QTreeWidgetItem.__init__(self, parent, itemList) def __lt__(self, other): col = self.treeWidget().sortColumn() val = self.text(col) valOther = other.text(col) if val == valOther: ret = False elif val in ["---"]: ret = True elif col > self.__legendColumn: try: ret = float(val) < float(valOther) except ValueError: ret = val < valOther else: ret = val < valOther return ret class XMCDOptions(qt.QDialog): def __init__(self, parent, mList, full=True): qt.QDialog.__init__(self, parent) self.setWindowTitle("XLD/XMCD Options") self.setModal(True) self.motorList = mList self.saved = False # Buttons buttonOK = qt.QPushButton("OK") buttonOK.setToolTip("Accept the configuration") buttonCancel = qt.QPushButton("Cancel") buttonCancel.setToolTip("Return to XMCD Analysis\nwithout changes") if full: buttonSave = qt.QPushButton("Save") buttonSave.setToolTip("Save configuration to *.cfg-File") buttonLoad = qt.QPushButton("Load") buttonLoad.setToolTip("Load existing configuration from *.cfg-File") # OptionLists and ButtonGroups # GroupBox can be generated from self.getGroupBox normOpts = [ "No &normalization", "Normalize &after average", "Normalize &before average", ] xrangeOpts = [ "&First curve in sequence", "Active &curve", "&Use equidistant x-range", ] # ButtonGroups normBG = qt.QButtonGroup(self) xrangeBG = qt.QButtonGroup(self) # ComboBoxes normMeth = qt.QComboBox() normMeth.addItems( [ "(y-min(y))/trapz(max(y)-min(y),x)", "y/max(y)", "(y-min(y))/(max(y)-min(y))", "(y-min(y))/sum(max(y)-min(y))", ] ) normMeth.setEnabled(False) self.optsDict = { "normalization": normBG, "normalizationMethod": normMeth, "xrange": xrangeBG, } for idx in range(5): # key: motor0, motor1, ... key = "motor%d" % idx tmp = qt.QComboBox() tmp.addItems(mList) self.optsDict[key] = tmp # Subdivide into GroupBoxes normGroupBox = self.getGroupBox("Normalization", normOpts, normBG) xrangeGroupBox = self.getGroupBox("Interpolation x-range", xrangeOpts, xrangeBG) motorGroupBox = qt.QGroupBox("Motors") # Layouts mainLayout = qt.QVBoxLayout() buttonLayout = qt.QHBoxLayout() normLayout = qt.QHBoxLayout() motorLayout = qt.QGridLayout() if full: buttonLayout.addWidget(buttonSave) buttonLayout.addWidget(buttonLoad) buttonLayout.addWidget(qt.HorizontalSpacer()) buttonLayout.addWidget(buttonOK) buttonLayout.addWidget(buttonCancel) normLayout.addWidget(qt.QLabel("Method:")) normLayout.addWidget(normMeth) for idx in range(5): label = qt.QLabel("Motor %d:" % (idx + 1)) cbox = self.optsDict["motor%d" % idx] motorLayout.addWidget(label, idx, 0) motorLayout.addWidget(cbox, idx, 1) motorGroupBox.setLayout(motorLayout) normGroupBox.layout().addLayout(normLayout) mainLayout.addWidget(normGroupBox) mainLayout.addWidget(xrangeGroupBox) mainLayout.addWidget(motorGroupBox) mainLayout.addLayout(buttonLayout) self.setLayout(mainLayout) # Connects if full: buttonOK.clicked.connect(self.accept) else: buttonOK.clicked.connect(self._saveOptionsAndCloseSlot) buttonCancel.clicked.connect(self.close) if full: buttonSave.clicked.connect(self._saveOptionsSlot) buttonLoad.clicked.connect(self._loadOptionsSlot) # Keep normalization method selector disabled # when 'no normalization' selected normBG.button(0).toggled.connect(normMeth.setDisabled) def showEvent(self, event): # Plugin does not destroy Options Window when accepted # Reset self.saved manually self.saved = False qt.QDialog.showEvent(self, event) def updateMotorList(self, mList): for key, obj in self.optsDict.items(): if key.startswith("motor") and isinstance(obj, qt.QComboBox): curr = obj.currentText() obj.clear() obj.addItems(mList) idx = obj.findText(curr) if idx < 0: obj.setCurrentIndex(idx) else: # Motor not found in Motorlist, set to default obj.setCurrentIndex(idx) def getGroupBox(self, title, optionList, buttongroup=None): """ title : string optionList : List of strings buttongroup : qt.QButtonGroup Returns ------- GroupBox of QRadioButtons build from a given optionList. If buttongroup is specified, the buttons are organized in a QButtonGroup. """ first = True groupBox = qt.QGroupBox(title, None) gbLayout = qt.QVBoxLayout(None) gbLayout.addStretch(1) for idx, radioText in enumerate(optionList): radio = qt.QRadioButton(radioText) gbLayout.addWidget(radio) if buttongroup: buttongroup.addButton(radio, idx) if first: radio.setChecked(True) first = False groupBox.setLayout(gbLayout) return groupBox def normalizationMethod(self, ident): ret = None normDict = { "toMaximum": r"y/max(y)", "offsetAndMaximum": r"(y-min(y))/(max(y)-min(y))", "offsetAndCounts": r"(y-min(y))/sum(max(y)-min(y))", "offsetAndArea": r"(y-min(y))/trapz(max(y)-min(y),x)", } for name, eq in normDict.items(): if ident == name: return eq if ident == eq: return name raise ValueError("'%s' not found.") def _saveOptionsAndCloseSlot(self): return self.saveOptionsAndClose() def saveOptionsAndClose(self): if not self.saved: if not self.saveOptions(): return self.accept() def _saveOptionsSlot(self): return self.saveOptions() def saveOptions(self, filename=None): saveDir = PyMcaDirs.outputDir filter = ["PyMca (*.cfg)"] if filename is None: try: filename = PyMcaFileDialogs.getFileList( parent=self, filetypelist=filter, message="Save XLD/XMCD Analysis Configuration", mode="SAVE", single=True, )[0] except IndexError: # Returned list is empty return _logger.debug('saveOptions -- Filename: "%s"', filename) if len(filename) == 0: self.saved = False return False if not str(filename).endswith(".cfg"): filename += ".cfg" confDict = ConfigDict.ConfigDict() tmp = self.getOptions() for key, value in tmp.items(): if key.startswith("Motor") and len(value) == 0: tmp[key] = "None" confDict["XMCDOptions"] = tmp try: confDict.write(filename) except IOError: msg = qt.QMessageBox() msg.setWindowTitle("XLD/XMCD Options Error") msg.setText("Unable to write configuration to '%s'" % filename) msg.exec() self.saved = True return True def _loadOptionsSlot(self): return self.loadOptions() def loadOptions(self): openDir = PyMcaDirs.outputDir ffilter = "PyMca (*.cfg)" filename = qt.QFileDialog.getOpenFileName( self, "Load XLD/XMCD Analysis Configuration", openDir, ffilter ) confDict = ConfigDict.ConfigDict() try: confDict.read(filename) except IOError: msg = qt.QMessageBox() msg.setTitle("XMCD Options Error") msg.setText("Unable to read configuration file '%s'" % filename) return if "XMCDOptions" not in confDict: return try: self.setOptions(confDict["XMCDOptions"]) except ValueError as e: _logger.debug( "loadOptions -- int conversion failed:\n" "Invalid value for option '%s'", e, ) msg = qt.QMessageBox() msg.setWindowTitle("XMCD Options Error") msg.setText("Configuration file '%s' corruted" % filename) msg.exec() return except KeyError as e: _logger.debug( "loadOptions -- invalid identifier:\n" "option '%s' not found", e ) msg = qt.QMessageBox() msg.setWindowTitle("XMCD Options Error") msg.setText("Configuration file '%s' corruted" % filename) msg.exec() return self.saved = True def getOptions(self): ddict = {} for option, obj in self.optsDict.items(): if isinstance(obj, qt.QButtonGroup): ddict[option] = obj.checkedId() elif isinstance(obj, qt.QComboBox): tmp = str(obj.currentText()) if option == "normalizationMethod": tmp = self.normalizationMethod(tmp) if option.startswith("motor") and (not len(tmp)): tmp = "None" ddict[option] = tmp else: ddict[option] = "None" return ddict def getMotors(self): motors = sorted( [key for key in self.optsDict.keys() if key.startswith("motor")] ) return [str(self.optsDict[motor].currentText()) for motor in motors] def setOptions(self, ddict): for option in ddict.keys(): obj = self.optsDict[option] if isinstance(obj, qt.QComboBox): name = ddict[option] if option == "normalizationMethod": name = self.normalizationMethod(name) if option.startswith("Motor") and name == "None": name = "" idx = obj.findText(QString(name)) obj.setCurrentIndex(idx) elif isinstance(obj, qt.QButtonGroup): try: idx = int(ddict[option]) except ValueError: raise ValueError(option) button = self.optsDict[option].button(idx) if type(button) == type(qt.QRadioButton()): button.setChecked(True) class XMCDScanWindow(ScanWindow.ScanWindow): xmcdToolbarOptions = { "logx": False, "logy": False, "flip": False, "fit": False, "roi": False, } plotModifiedSignal = qt.pyqtSignal() saveOptionsSignal = qt.pyqtSignal("QString") def __init__(self, origin, parent=None): """ :param origin: Plot window containing the data on which the analysis is performed :type origin: ScanWindow :param parent: Parent Widget, None per default :type parent: QWidget """ ScanWindow.ScanWindow.__init__( self, parent, name="XLD/XMCD Analysis", specfit=None, plugins=False, newplot=False, **self.xmcdToolbarOptions ) if hasattr(self, "pluginsIconFlag"): self.pluginsIconFlag = False self.plotWindow = origin if hasattr(self, "scanWindowInfoWidget"): if self.scanWindowInfoWidget: self.scanWindowInfoWidget.hide() # Buttons to push spectra to main Window buttonWidget = qt.QWidget() buttonAdd = qt.QPushButton("Add", self) buttonAdd.setToolTip("Add active curve to main window") buttonReplace = qt.QPushButton("Replace", self) buttonReplace.setToolTip( "Replace all curves in main window " + "with active curve in analysis window" ) buttonAddAll = qt.QPushButton("Add all", self) buttonAddAll.setToolTip("Add all curves in analysis window " + "to main window") buttonReplaceAll = qt.QPushButton("Replace all", self) buttonReplaceAll.setToolTip( "Replace all curves in main window " + "with all curves from analysis window" ) self.graphBottomLayout.addWidget(qt.HorizontalSpacer()) self.graphBottomLayout.addWidget(buttonAdd) self.graphBottomLayout.addWidget(buttonAddAll) self.graphBottomLayout.addWidget(buttonReplace) self.graphBottomLayout.addWidget(buttonReplaceAll) buttonAdd.clicked.connect(self.add) buttonReplace.clicked.connect(self.replace) buttonAddAll.clicked.connect(self.addAll) buttonReplaceAll.clicked.connect(self.replaceAll) # Copy spectra from origin self.selectionDict = {"A": [], "B": []} self.curvesDict = {} self.optsDict = { "normAfterAvg": False, "normBeforeAvg": False, "useActive": False, "equidistant": False, "normalizationMethod": self.NormOffsetAndArea, } self.xRange = None # Keep track of Averages, XMCD and XAS curves by label self.avgA = None self.avgB = None self.xmcd = None self.xas = None if hasattr(self, "_buildLegendWidget"): self._buildLegendWidget() def sizeHint(self): if self.parent(): height = 0.5 * self.parent().height() else: height = self.height() return qt.QSize(self.width(), int(height)) def processOptions(self, options): tmp = { "equidistant": False, "useActive": False, "normAfterAvg": False, "normBeforeAvg": False, "normalizationMethod": None, } xRange = options["xrange"] normalization = options["normalization"] normMethod = options["normalizationMethod"] # xRange Options. Default: Use first scan if xRange == 1: tmp["useActive"] = True elif xRange == 2: tmp["equidistant"] = True # Normalization Options. Default: No Normalization if normalization == 1: tmp["normAfterAvg"] = True elif normalization == 2: tmp["normBeforeAvg"] = True # Normalization Method. Default: offsetAndArea tmp["normalizationMethod"] = self.setNormalizationMethod(normMethod) # Trigger reclaculation self.optsDict = tmp groupA = self.selectionDict["A"] groupB = self.selectionDict["B"] self.processSelection(groupA, groupB) def setNormalizationMethod(self, fname): if fname == "toMaximum": func = self.NormToMaximum elif fname == "offsetAndMaximum": func = self.NormToOffsetAndMaximum elif fname == "offsetAndCounts": func = self.NormOffsetAndCounts else: func = self.NormOffsetAndArea return func def NormToMaximum(self, x, y): ymax = numpy.max(y) ynorm = y / ymax return ynorm def NormToOffsetAndMaximum(self, x, y): ynorm = y - numpy.min(y) ymax = numpy.max(ynorm) ynorm /= ymax return ynorm def NormOffsetAndCounts(self, x, y): ynorm = y - numpy.min(y) ymax = numpy.sum(ynorm) ynorm /= ymax return ynorm def NormOffsetAndArea(self, x, y): ynorm = y - numpy.min(y) ymax = numpy.trapz(ynorm, x) ynorm /= ymax return ynorm def interpXRange(self, xRange=None, equidistant=False, xRangeList=None): """ Input ----- :param xRange : x-range on which all curves are interpolated if set to none, the first curve in xRangeList is used :type xRange: ndarray :param equidistant : Determines equidistant xrange on which all curves are interpolated xRangeList : List List of ndarray from which the overlap is determined. If set to none, self.curvesDict is used. Determines the interpolation x-range used for XMCD Analysis specified by the provided parameters. The interpolation x-range is limited by the maximal overlap between the curves present in the plot window. Returns ------- out : numpy array x-range between xmin and xmax containing n points """ if not xRangeList: # Default xRangeList: curvesDict sorted for legends keys = sorted(self.curvesDict.keys()) xRangeList = [self.curvesDict[k].x[0] for k in keys] if not len(xRangeList): _logger.debug("interpXRange -- Nothing to do") return None num = 0 xmin, xmax = self.plotWindow.getGraphXLimits() for x in xRangeList: if x.min() > xmin: xmin = x.min() if x.max() < xmax: xmax = x.max() if xmin >= xmax: raise ValueError("No overlap between curves") pass if equidistant: for x in xRangeList: curr = numpy.nonzero((x >= xmin) & (x <= xmax))[0].size num = curr if curr > num else num num = int(num) # Exclude first and last point out = numpy.linspace(xmin, xmax, num, endpoint=False)[1:] else: if xRange is not None: x = xRange else: x = xRangeList[0] # Ensure monotonically increasing x-range if not numpy.all(numpy.diff(x) > 0.0): mask = numpy.nonzero(numpy.diff(x) > 0.0)[0] x = numpy.take(x, mask) # Exclude the endpoints mask = numpy.nonzero((x > xmin) & (x < xmax))[0] out = numpy.sort(numpy.take(x, mask)) _logger.debug("interpXRange -- Resulting xrange:") _logger.debug("\tmin = %f", out.min()) _logger.debug("\tmax = %f", out.max()) _logger.debug("\tnum = %f", len(out)) return out def processSelection(self, groupA, groupB): """ Input ----- groupA, groupB : Lists of strings Contain the legends of curves selected to Group A resp. B """ # Clear analysis window all = self.getAllCurves(just_legend=True) self.removeCurves(all) self.avgB, self.avgA = None, None self.xas, self.xmcd = None, None self.selectionDict["A"] = groupA[:] self.selectionDict["B"] = groupB[:] self.curvesDict = self.copyCurves(groupA + groupB) if (len(self.curvesDict) == 0) or ( (len(self.selectionDict["A"]) == 0) and (len(self.selectionDict["B"]) == 0) ): # Nothing to do return # Make sure to use active curve when specified if self.optsDict["useActive"]: # Get active curve active = self.plotWindow.getActiveCurve() if active: _logger.debug("processSelection -- xrange: use active") x, y, leg, info = active[0:4] xRange = self.interpXRange(xRange=x) else: return elif self.optsDict["equidistant"]: _logger.debug("processSelection -- xrange: use equidistant") xRange = self.interpXRange(equidistant=True) else: _logger.debug("processSelection -- xrange: use first") xRange = self.interpXRange() if hasattr(self.plotWindow, "graph"): activeLegend = self.plotWindow.graph.getActiveCurve(justlegend=True) else: activeLegend = self.plotWindow.getActiveCurve(just_legend=True) if (not activeLegend) or (activeLegend not in self.curvesDict.keys()): # Use first curve in the series as xrange activeLegend = sorted(self.curvesDict.keys())[0] active = self.curvesDict[activeLegend] xlabel, ylabel = self.extractLabels(active.info) # Calculate averages and add them to the plot normalization = self.optsDict["normalizationMethod"] normBefore = self.optsDict["normBeforeAvg"] normAfter = self.optsDict["normAfterAvg"] for idx in ["A", "B"]: sel = self.selectionDict[idx] if not len(sel): continue xvalList = [] yvalList = [] for legend in sel: tmp = self.curvesDict[legend] if normBefore: xVals = tmp.x[0] yVals = normalization(xVals, tmp.y[0]) else: xVals = tmp.x[0] yVals = tmp.y[0] xvalList.append(xVals) yvalList.append(yVals) avg_x, avg_y = self.specAverage(xvalList, yvalList, xRange) if normAfter: avg_y = normalization(avg_x, avg_y) avgName = "avg_" + idx # info = {'xlabel': xlabel, 'ylabel': ylabel} info = {} if idx == "A": # info.update({'plot_color':'red'}) color = "red" else: # info.update({'plot_color':'blue'}) color = "blue" self.addCurve( avg_x, avg_y, legend=avgName, info=info, xlabel=xlabel, ylabel=ylabel, color=color, ) if idx == "A": self.avgA = self.dataObjectsList[-1] if idx == "B": self.avgB = self.dataObjectsList[-1] if self.avgA and self.avgB: self.performXMCD() self.performXAS() def copyCurves(self, selection): """ Input ----- selection : List Contains legends of curves to be processed Creates a deep copy of the curves present in the plot window. In order to avoid interpolation errors later on, it is ensured that the xranges of the data is strictly monotonically increasing. Returns ------- out : Dictionary Contains legends as keys and dataObjects as values. """ if not len(selection): return {} out = {} for legend in selection: tmp = self.plotWindow.dataObjectsDict.get(legend, None) if tmp: tmp = copy.deepcopy(tmp) xarr, yarr = tmp.x, tmp.y # if len(tmp.x) == len(tmp.y): xprocArr, yprocArr = [], [] for x, y in zip(xarr, yarr): # Sort idx = numpy.argsort(x, kind="mergesort") xproc = numpy.take(x, idx) yproc = numpy.take(y, idx) # Ravel, Increase xproc = xproc.ravel() idx = numpy.nonzero((xproc[1:] > xproc[:-1]))[0] xproc = numpy.take(xproc, idx) yproc = numpy.take(yproc, idx) xprocArr += [xproc] yprocArr += [yproc] tmp.x = xprocArr tmp.y = yprocArr out[legend] = tmp else: # TODO: Errorhandling, curve not found _logger.debug("copyCurves -- Retrieved none type curve") continue return out def specAverage(self, xarr, yarr, xRange=None): """ xarr : list List containing x-Values in 1-D numpy arrays yarr : list List containing y-Values in 1-D numpy arrays xRange : Numpy array x-Values used for interpolation. Must overlap with all arrays in xarr From the spectra given in xarr & yarr, the method determines the overlap in the x-range. For spectra with unequal x-ranges, the method interpolates all spectra on the values given in xRange and averages them. Returns ------- xnew, ynew : Numpy arrays or None Average spectrum. In case of invalid input, (None, None) tuple is returned. """ if (len(xarr) != len(yarr)) or (len(xarr) == 0) or (len(yarr) == 0): _logger.debug("specAverage -- invalid input!") _logger.debug("Array lengths do not match or are 0") return None, None same = True if xRange is None: x0 = xarr[0] else: x0 = xRange for x in xarr: if len(x0) == len(x): if numpy.all(x0 == x): pass else: same = False break else: same = False break xsort = [] ysort = [] for x, y in zip(xarr, yarr): if numpy.all(numpy.diff(x) > 0.0): # All values sorted xsort.append(x) ysort.append(y) else: # Sort values mask = numpy.argsort(x) xsort.append(x.take(mask)) ysort.append(y.take(mask)) if xRange is not None: xmin0 = xRange.min() xmax0 = xRange.max() else: xmin0 = xsort[0][0] xmax0 = xsort[0][-1] if (not same) or (xRange is None): # Determine global xmin0 & xmax0 for x in xsort: xmin = x.min() xmax = x.max() if xmin > xmin0: xmin0 = xmin if xmax < xmax0: xmax0 = xmax if xmax <= xmin: _logger.debug("specAverage --\n" "No overlap between spectra!") return numpy.array([]), numpy.array([]) # Clip xRange to maximal overlap in spectra if xRange is None: xRange = xsort[0] mask = numpy.nonzero((xRange >= xmin0) & (xRange <= xmax0))[0] xnew = numpy.take(xRange, mask) ynew = numpy.zeros(len(xnew)) # Perform average for x, y in zip(xsort, ysort): if same: ynew += y else: yinter = numpy.interp(xnew, x, y) ynew += numpy.asarray(yinter) num = len(yarr) ynew /= num return xnew, ynew def extractLabels(self, info): xlabel = "X" ylabel = "Y" sel = info.get("selection", None) labelNames = info.get("LabelNames", []) if not len(labelNames): pass elif len(labelNames) == 2: [xlabel, ylabel] = labelNames elif sel: xsel = sel.get("x", []) ysel = sel.get("y", []) if len(xsel) > 0: x = xsel[0] xlabel = labelNames[x] if len(ysel) > 0: y = ysel[0] ylabel = labelNames[y] return xlabel, ylabel def performXAS(self): keys = self.dataObjectsDict.keys() if (self.avgA in keys) and (self.avgB in keys): a = self.dataObjectsDict[self.avgA] b = self.dataObjectsDict[self.avgB] else: _logger.debug("performXAS -- Data not found: ") _logger.debug("\tavg_m = %f", self.avgA) _logger.debug("\tavg_p = %f", self.avgB) return if numpy.all(a.x[0] == b.x[0]): avg = 0.5 * (b.y[0] + a.y[0]) else: _logger.debug("performXAS -- x ranges are not the same! ") _logger.debug("Force interpolation") avg = self.performAverage([a.x[0], b.x[0]], [a.y[0], b.y[0]], b.x[0]) xmcdLegend = "XAS" xlabel, ylabel = self.extractLabels(a.info) # info = {'xlabel': xlabel, 'ylabel': ylabel, 'plot_color': 'pink'} info = {} self.addCurve( a.x[0], avg, legend=xmcdLegend, info=info, xlabel=xlabel, ylabel=ylabel, color="pink", ) self.xas = self.dataObjectsList[-1] def performXMCD(self): keys = self.dataObjectsDict.keys() if (self.avgA in keys) and (self.avgB in keys): a = self.dataObjectsDict[self.avgA] b = self.dataObjectsDict[self.avgB] else: _logger.debug("performXMCD -- Data not found:") return if numpy.all(a.x[0] == b.x[0]): diff = b.y[0] - a.y[0] else: _logger.debug("performXMCD -- x ranges are not the same! ") _logger.debug("Force interpolation using p Average xrange") # Use performAverage d = 2 * avg(y1, -y2) # and force interpolation on p-xrange diff = 2.0 * self.performAverage( [a.x[0], b.x[0]], [-a.y[0], b.y[0]], b.x[0] ) xmcdLegend = "XMCD" xlabel, ylabel = self.extractLabels(a.info) # info = {'xlabel': xlabel, 'ylabel': ylabel, 'plot_yaxis': 'right', 'plot_color': 'green'} info = {} self.addCurve( b.x[0], diff, legend=xmcdLegend, info=info, color="green", xlabel=xlabel, ylabel=ylabel, yaxis="right", ) # DELETE ME self.graph.mapToY2(' '.join([xmcdLegend, ylabel])) self._zoomReset() self.xmcd = self.dataObjectsList[-1] def selectionInfo(self, idx, key): """ Convenience function to retrieve values from the info dictionaries of the curves stored selectionDict. """ sel = self.selectionDict[idx] ret = "%s: " % idx for legend in sel: curr = self.curvesDict[legend] value = curr.info.get(key, None) if value: ret = " ".join([ret, value]) return ret def _saveIconSignalReplacement(self, motors=None): saveDir = PyMcaDirs.outputDir filter = "spec File (*.spec);;Any File (*.*)" try: (filelist, append, comment) = getSaveFileName( parent=self, caption="Save XMCD Analysis", filter=filter, directory=saveDir, ) filename = filelist[0] except IndexError: # Returned list is empty return except ValueError: # Returned list is empty return if append: specf = specfile.Specfile(filename) scanno = specf.scanno() + 1 else: scanno = 1 ext = splitext(filename)[1] if not len(ext): ext = ".spec" filename += ext try: if append: sepFile = splitext(basename(filename)) sepFileName = sepFile[0] + "_%.2d" % scanno + sepFile[1] sepFileName = pathjoin(dirname(filename), sepFileName) if scanno == 2: # Case: Scan appended to file containing # a single scan. Make sure, that the first # scan is also written to separate file and # the corresponding cfg-file is copied # 1. Create filename of first scan sepFirstFileName = sepFile[0] + "_01" + sepFile[1] sepFirstFileName = pathjoin(dirname(filename), sepFirstFileName) # 2. Guess filename of first config confname = sepFile[0] + ".cfg" confname = pathjoin(dirname(filename), confname) # 3. Create new filename of first config sepFirstConfName = sepFile[0] + "_01" + ".cfg" sepFirstConfName = pathjoin(dirname(filename), sepFirstConfName) # Copy contents firstSeparateFile = open(sepFirstFileName, "wb") firstSeparateConf = open(sepFirstConfName, "wb") filehandle = open(filename, "rb") confhandle = open(confname, "rb") firstFile = filehandle.read() firstConf = confhandle.read() firstSeparateFile.write(firstFile) firstSeparateConf.write(firstConf) firstSeparateFile.close() firstSeparateConf.close() filehandle = open(filename, "ab") separateFile = open(sepFileName, "wb") else: filehandle = open(filename, "wb") separateFile = None except IOError: msg = qt.QMessageBox(text="Unable to open '%s'" % filename) msg.exec() return title = "" legends = self.dataObjectsList tmpLegs = sorted(self.curvesDict.keys()) if len(tmpLegs) > 0: title += self.curvesDict[tmpLegs[0]].info.get("selectionlegend", "") # Keep plots in the order they were added! curves = [self.dataObjectsDict[leg] for leg in legends] yVals = [curve.y[0] for curve in curves] # xrange is the same for every curve xVals = [curves[0].x[0]] else: yVals = [] xVals = [] outArray = numpy.vstack([xVals, yVals]).T if not len(outArray): ncols = 0 elif len(outArray.shape) > 1: ncols = outArray.shape[1] else: ncols = 1 delim = " " title = "XMCD Analysis " + title header = "#S %d %s" % (scanno, title) + NEWLINE header += "#U00 Selected in Group " + self.selectionInfo("A", "Key") + NEWLINE header += "#U01 Selected in Group " + self.selectionInfo("B", "Key") + NEWLINE # Write Comments if len(comment) > 0: header += "#U02 User commentary:" + NEWLINE lines = comment.splitlines()[:97] for idx, line in enumerate(lines): header += "#U%.2d %s" % (idx + 3, line) + NEWLINE # Write motor mnemonics and positions of first selected scan if isinstance(motors, dict): if len(motors): motorNames = [x for x in motors] motorValues = [motors[x] for x in motors] motorNamesText = "" motorValuesText = "" motorsPerLine = 5 n = 0 while n < len(motors): idx = n // motorsPerLine motorNamesText += "#O%d" % idx motorValuesText += "#P%d" % idx for i in range( idx * motorsPerLine, min((idx + 1) * motorsPerLine, len(motors)) ): motorNamesText += " " + motorNames[i] motorValuesText += " " + motorValues[i] n += 1 motorNamesText += NEWLINE motorValuesText += NEWLINE header += motorNamesText header += motorValuesText header += "#N %d" % ncols + NEWLINE if ext == ".spec": if hasattr(self, "getGraphXLabel"): header += ( "#L " + self.getGraphXLabel() + " " + " ".join(legends) + NEWLINE ) else: header += ( "#L " + self.getGraphXTitle() + " " + " ".join(legends) + NEWLINE ) else: if hasattr(self, "getGraphXLabel"): header += ( "#L " + self.getGraphXLabel() + " " + " ".join(legends) + NEWLINE ) else: header += ( "#L " + self.getGraphXTitle() + " " + delim.join(legends) + NEWLINE ) for fh in [filehandle, separateFile]: if fh is not None: if sys.version < "3.0": fh.write(bytes(NEWLINE)) fh.write(bytes(header)) for line in outArray: tmp = delim.join(["%f" % num for num in line]) fh.write(bytes(tmp + NEWLINE)) fh.write(bytes(NEWLINE)) else: fh.write(bytes(NEWLINE, "ascii")) fh.write(bytes(header, "ascii")) for line in outArray: tmp = delim.join(["%f" % num for num in line]) fh.write(bytes(tmp + NEWLINE, "ascii")) fh.write(bytes(NEWLINE, "ascii")) fh.close() # Emit saveOptionsSignal to save config file self.saveOptionsSignal.emit(splitext(filename)[0]) if separateFile is not None: self.saveOptionsSignal.emit(splitext(sepFileName)[0]) def add(self): if len(self.dataObjectsList) == 0: return activeCurve = self.getActiveCurve() if activeCurve is None: return (xVal, yVal, legend, info) = activeCurve[0:4] # if 'selectionlegend' in info: # newLegend = info['selectionlegend'] # elif 'operation' in info: # newLegend = (str(operation) + ' ' + self.title) # else: # newLegend = (legend + ' ' + self.title) newLegend = legend self.plotWindow.addCurve(xVal, yVal, legend=newLegend, info=info) self.plotModifiedSignal.emit() def addAll(self): for curve in self.getAllCurves(): (xVal, yVal, legend, info) = curve[0:4] # if 'selectionlegend' in info: # newLegend = info['selectionlegend'] # elif 'operation' in info: # newLegend = (str(operation) + ' ' + self.title) # else: # newLegend = (legend + ' ' + self.title) newLegend = legend self.plotWindow.addCurve(xVal, yVal, legend=newLegend, info=info) self.plotModifiedSignal.emit() def replace(self): if len(self.dataObjectsList) == 0: return activeCurve = self.getActiveCurve() if activeCurve is None: return (xVal, yVal, legend, info) = activeCurve[0:4] if "selectionlegend" in info: newLegend = info["selectionlegend"] elif "operation" in info: newLegend = str(info["operation"]) + " " + self.title else: newLegend = legend + self.title self.plotWindow.addCurve(xVal, yVal, legend=newLegend, info=info, replace=True) self.plotModifiedSignal.emit() def replaceAll(self): allCurves = self.getAllCurves() for idx, curve in enumerate(allCurves): (xVal, yVal, legend, info) = curve[0:4] if "selectionlegend" in info: newLegend = info["selectionlegend"] elif "operation" in info: newLegend = str(info["operation"]) + " " + self.title else: newLegend = legend + " " + self.title if idx == 0: self.plotWindow.addCurve( xVal, yVal, legend=newLegend, info=info, replace=True ) else: self.plotWindow.addCurve(xVal, yVal, legend=newLegend, info=info) self.plotModifiedSignal.emit() class XMCDMenu(qt.QMenu): def __init__(self, parent, title=None): qt.QMenu.__init__(self, parent) if title: self.setTitle(title) def setActionList(self, actionList, update=False): """ List functions has to have the form (functionName, function) Default is ('', function) """ if not update: self.clear() for name, function in actionList: if name == "$SEPARATOR": self.addSeparator() continue if name != "": fName = name else: fName = function.func_name act = qt.QAction(fName, self) # Force triggered() instead of triggered(bool) # to ensure proper interaction with default parameters act.triggered.connect(function) self.addAction(act) class XMCDTreeWidget(qt.QTreeWidget): __colGroup = 0 __colLegend = 1 __colScanNo = 2 __colCounter = 3 selectionModifiedSignal = qt.pyqtSignal() def __init__(self, parent, groups=["B", "A", "D"], color=True): qt.QTreeWidget.__init__(self, parent) # Last identifier in groups is the ignore instruction self.groupList = groups self.actionList = [] self.contextMenu = qt.QMenu("Perform", self) self.color = color self.colorDict = { groups[0]: qt.QBrush(qt.QColor(220, 220, 255)), groups[1]: qt.QBrush(qt.QColor(255, 210, 210)), "": qt.QBrush(qt.QColor(255, 255, 255)), } def sizeHint(self): vscrollbar = self.verticalScrollBar() width = vscrollbar.width() for i in range(self.columnCount()): width += 2 + self.columnWidth(i) return qt.QSize(int(width), 20 * 22) def setContextMenu(self, menu): self.contextMenu = menu def contextMenuEvent(self, event): if event.reason() == event.Mouse: pos = event.globalPos() item = self.itemAt(event.pos()) else: pos = None sel = self.selectedItems() if sel: item = sel[0] else: item = self.currentItem() if item is None: self.invisibleRootItem().child(0) if item is not None: itemrect = self.visualItemRect(item) portrect = self.viewport().rect() itemrect.setLeft(portrect.left()) itemrect.setWidth(portrect.width()) pos = self.mapToGlobal(itemrect.bottomLeft()) if pos is not None: self.contextMenu.popup(pos) event.accept() def invertSelection(self): root = self.invisibleRootItem() for i in range(root.childCount()): if root.child(i).isSelected(): root.child(i).setSelected(False) else: root.child(i).setSelected(True) def getColumn(self, ncol, selectedOnly=False, convertType=str): """ Returns items in tree column ncol and converts them to convertType. If the conversion fails, the default type is a python string. If selectedOnly is set to True, only the selected the items of selected rows are returned. """ out = [] convert = convertType != str if ncol > (self.columnCount() - 1): _logger.debug("getColum -- Selected column out of bounds") raise IndexError("Selected column '%d' out of bounds" % ncol) if selectedOnly: sel = self.selectedItems() else: root = self.invisibleRootItem() sel = [root.child(i) for i in range(root.childCount())] for item in sel: tmp = str(item.text(ncol)) if convert: try: tmp = convertType(tmp) except (TypeError, ValueError): if convertType == float: tmp = float("NaN") else: _logger.debug("getColum -- Conversion failed!") raise TypeError out += [tmp] return out def build(self, items, headerLabels): """ (Re-) Builds the tree display headerLabels must be of type QStringList items must be of type [QStringList] (List of Lists) """ # Remember selection, then clear list sel = self.getColumn(self.__colLegend, True) self.clear() self.setHeaderLabels(headerLabels) for item in items: treeItem = TreeWidgetItem(self, item) if self.color: idx = str(treeItem.text(self.__colGroup)) for i in range(self.columnCount()): treeItem.setBackground(i, self.colorDict[idx]) if treeItem.text(self.__colLegend) in sel: treeItem.setSelected(True) def setSelectionAs(self, idx): """ Sets the items currently selected to the identifier given in idx. """ if idx not in self.groupList: raise ValueError("XMCDTreeWidget: invalid identifer '%s'" % idx) sel = self.selectedItems() if idx == self.groupList[-1]: # Last identifier in self.groupList # is the dummy identifier idx = "" for item in sel: item.setText(self.__colGroup, idx) if self.color: for i in range(self.columnCount()): item.setBackground(i, self.colorDict[idx]) self.selectionModifiedSignal.emit() def _setSelectionToSequenceSlot(self): """ Internal Slot to make sure there is no confusion with default arguments. """ return self.setSelectionToSequence() def setSelectionToSequence(self, seq=None, selectedOnly=False): """ Sets the group column (col 0) to seq. If sequence is None, a dialog window is shown. """ chk = True if selectedOnly: sel = self.selectedItems() else: root = self.invisibleRootItem() sel = [root.child(i) for i in range(root.childCount())] # Try to sort for scanNo # self.sortItems(self.__colLegend, qt.Qt.AscendingOrder) self.sortItems(self.__colScanNo, qt.Qt.AscendingOrder) if not seq: seq, chk = qt.QInputDialog.getText( None, "Sequence Dialog", "Valid identifiers are: " + ", ".join(self.groupList), qt.QLineEdit.Normal, "Enter sequence", ) seq = str(seq).upper() if not chk: return for idx in seq: if idx not in self.groupList: invalidMsg = qt.QMessageBox(None) invalidMsg.setText("Invalid identifier. Try again.") invalidMsg.setStandardButtons(qt.QMessageBox.Ok) invalidMsg.exec() return if len(sel) != len(seq): # Assume pattern and repeat seq = seq * (len(sel) // len(seq) + 1) # invalidMsg = qt.QMessageBox(None) # invalidMsg.setText('Sequence length does not match item count.') # invalidMsg.setStandardButtons(qt.QMessageBox.Ok) # invalidMsg.exec() for idx, item in zip(seq, sel): if idx == self.groupList[-1]: idx = "" item.setText(self.__colGroup, idx) if self.color: for i in range(self.columnCount()): item.setBackground(i, self.colorDict[idx]) self.selectionModifiedSignal.emit() def _clearSelectionSlot(self): """ Internal slot method. """ return self.clearSelection() def clearSelection(self, selectedOnly=True): """ Empties the groups column for the selected rows. """ if selectedOnly: sel = self.selectedItems() else: root = self.invisibleRootItem() sel = [root.child(i) for i in range(root.childCount())] for item in sel: item.setText(self.__colGroup, "") if self.color: for i in range(self.columnCount()): item.setBackground(i, self.colorDict[""]) self.selectionModifiedSignal.emit() def getSelection(self): """ Returns dictionary with where the keys are the identifiers ('D', 'A', 'B') and the values are (sorted) lists containing legends to which the respective identifier is assigned to. """ out = dict((group, []) for group in self.groupList) root = self.invisibleRootItem() for i in range(root.childCount()): item = root.child(i) group = str(item.text(0)) legend = str(item.text(1)) # nCols = item.columnCount() # legend = str(item.text(nCols-1)) if len(group) == 0: group = self.groupList[-1] out[group] += [legend] for value in out.values(): value.sort() return out class XMCDWidget(qt.QWidget): toolbarOptions = {"logx": False, "logy": False, "flip": False, "fit": False} setSelectionSignal = qt.pyqtSignal(object, object) def __init__(self, parent, plotWindow, beamline, nSelectors=5): """ Input ----- plotWindow : ScanWindow instance ScanWindow from which curves are passed for XLD/XMCD Analysis nSelectors : Int Number of columns show in the widget. Per default these are ... """ qt.QWidget.__init__(self, parent) self.setWindowIcon(qt.QIcon(qt.QPixmap(IconDict["peak"]))) self.plotWindow = plotWindow self.legendList = [] self.motorsList = [] self.infoList = [] # Set self.plotWindow before calling self._setLists! self._setLists() self.motorNamesList = [""] + self._getAllMotorNames() self.motorNamesList.sort() self.numCurves = len(self.legendList) # self.cBoxList = [] self.analysisWindow = XMCDScanWindow(origin=plotWindow, parent=None) self.analysisWindow.enableOwnSave(False) self.optsWindow = XMCDOptions(self, self.motorNamesList) helpFileName = pathjoin(PyMcaDataDir.PYMCA_DOC_DIR, "HTML", "XMCDInfotext.html") self.helpFileBrowser = qt.QTextBrowser() self.helpFileBrowser.setWindowTitle("XMCD Help") self.helpFileBrowser.setLineWrapMode(qt.QTextEdit.FixedPixelWidth) self.helpFileBrowser.setLineWrapColumnOrWidth(500) self.helpFileBrowser.resize(520, 300) try: helpFileHandle = open(helpFileName) helpFileHTML = helpFileHandle.read() helpFileHandle.close() self.helpFileBrowser.setHtml(helpFileHTML) except IOError: _logger.debug("XMCDWindow -- init: Unable to read help file") self.helpFileBrowser = None self.selectionDict = {"D": [], "B": [], "A": []} self.setSizePolicy(qt.QSizePolicy.MinimumExpanding, qt.QSizePolicy.Expanding) self.setWindowTitle("XLD/XMCD Analysis") buttonOptions = qt.QPushButton("Options", self) buttonOptions.setToolTip( "Set normalization and interpolation\n" + "method and motors shown" ) buttonInfo = qt.QPushButton("Info") buttonInfo.setToolTip( "Shows a describtion of the plugins features\n" + "and gives instructions on how to use it" ) updatePixmap = qt.QPixmap(IconDict["reload"]) buttonUpdate = qt.QPushButton(qt.QIcon(updatePixmap), "", self) buttonUpdate.setIconSize(qt.QSize(21, 21)) buttonUpdate.setToolTip( "Update curves in XMCD Analysis\n" + "by checking the plot window" ) self.list = XMCDTreeWidget(self) labels = ["Group", "Legend", "S#", "Counter"] + ([""] * nSelectors) ncols = len(labels) self.list.setColumnCount(ncols) self.list.setHeaderLabels(labels) self.list.setSortingEnabled(True) self.list.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) listContextMenu = XMCDMenu(None) listContextMenu.setActionList( [ ("Perform analysis", self.triggerXMCD), ("$SEPARATOR", None), ("Set as A", self.setAsA), ("Set as B", self.setAsB), ("Enter sequence", self.list._setSelectionToSequenceSlot), ("Remove selection", self.list._clearSelectionSlot), ("$SEPARATOR", None), ("Invert selection", self.list.invertSelection), ("Remove curve(s)", self.removeCurve_), ] ) self.list.setContextMenu(listContextMenu) self.expCBox = qt.QComboBox(self) self.expCBox.setToolTip( "Select configuration of predefined\n" + "experiment or configure new experiment" ) self.experimentsDict = { "Generic Dichroism": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "", "motor1": "", "motor2": "", "motor3": "", "motor4": "", }, "ID08: XMCD 9 Tesla Magnet": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "phaseD", "motor1": "magnet", "motor2": "", "motor3": "", "motor4": "", }, "ID08: XMCD 5 Tesla Magnet": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "PhaseD", "motor1": "oxPS", "motor2": "", "motor3": "", "motor4": "", }, "ID08: XLD 5 Tesla Magnet": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "PhaseD", "motor1": "", "motor2": "", "motor3": "", "motor4": "", }, "ID08: XLD 9 Tesla Magnet": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "phaseD", "motor1": "", "motor2": "", "motor3": "", "motor4": "", }, "ID12: XMCD (Flipper)": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "BRUKER", "motor1": "OXFORD", "motor2": "CRYO", "motor3": "", "motor4": "", }, "ID12: XMCD": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "Phase", "motor1": "PhaseA", "motor2": "BRUKER", "motor3": "OXFORD", "motor4": "CRYO", }, "ID12: XLD (quater wave plate)": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "", "motor1": "", "motor2": "", "motor3": "", "motor4": "", }, "ID32: XMCD / XMLD": { "xrange": 0, "normalization": 0, "normalizationMethod": "offsetAndArea", "motor0": "HU88CP", "motor1": "HU88AP", "motor2": "magnet", "motor3": "", "motor4": "", }, } self.expCBox.addItems( [ "Generic Dichroism", "ID08: XLD 9 Tesla Magnet", "ID08: XLD 5 Tesla Magnet", "ID08: XMCD 9 Tesla Magnet", "ID08: XMCD 5 Tesla Magnet", "ID12: XLD (quater wave plate)", "ID12: XMCD (Flipper)", "ID12: XMCD", "ID32: XMCD / XMLD", "Add new configuration", ] ) self.expCBox.insertSeparator(len(self.experimentsDict)) topLayout = qt.QHBoxLayout() topLayout.addWidget(buttonUpdate) topLayout.addWidget(buttonOptions) topLayout.addWidget(buttonInfo) topLayout.addWidget(qt.HorizontalSpacer(self)) topLayout.addWidget(self.expCBox) leftLayout = qt.QGridLayout() leftLayout.setContentsMargins(1, 1, 1, 1) leftLayout.setSpacing(2) leftLayout.addLayout(topLayout, 0, 0) leftLayout.addWidget(self.list, 1, 0) leftWidget = qt.QWidget(self) leftWidget.setLayout(leftLayout) self.analysisWindow.setSizePolicy( qt.QSizePolicy.Minimum, qt.QSizePolicy.Minimum ) # self.splitter = qt.QSplitter(qt.Qt.Horizontal, self) self.splitter = qt.QSplitter(qt.Qt.Vertical, self) self.splitter.addWidget(leftWidget) self.splitter.addWidget(self.analysisWindow) stretch = int(leftWidget.width()) # If window size changes, only the scan window size changes self.splitter.setStretchFactor(self.splitter.indexOf(self.analysisWindow), 1) mainLayout = qt.QVBoxLayout() mainLayout.setContentsMargins(0, 0, 0, 0) mainLayout.addWidget(self.splitter) self.setLayout(mainLayout) # Shortcuts self.updateShortcut = qt.QShortcut(qt.QKeySequence("F5"), self) self.updateShortcut.activated.connect(self.updatePlots) self.optionsWindowShortcut = qt.QShortcut(qt.QKeySequence("Alt+O"), self) self.optionsWindowShortcut.activated.connect(self.showOptionsWindow) self.helpFileShortcut = qt.QShortcut(qt.QKeySequence("F1"), self) self.helpFileShortcut.activated.connect(self.showInfoWindow) self.expSelectorShortcut = qt.QShortcut(qt.QKeySequence("Tab"), self) self.expSelectorShortcut.activated.connect(self.activateExpCB) self.saveShortcut = qt.QShortcut(qt.QKeySequence("Ctrl+S"), self) self.saveShortcut.activated.connect(self._saveIconSignal) # Connects self.expCBox.currentIndexChanged[int].connect(self.updateTree) if hasattr(self.expCBox, "textActivated"): self.expCBox.textActivated[str].connect(self.selectExperiment) else: self.expCBox.currentIndexChanged["QString"].connect(self.selectExperiment) self.list.selectionModifiedSignal.connect(self.updateSelectionDict) self.setSelectionSignal.connect(self.analysisWindow.processSelection) self.analysisWindow.saveOptionsSignal.connect(self.optsWindow.saveOptions) self.analysisWindow.sigIconSignal.connect(self._saveIconSignal) self.optsWindow.accepted.connect(self.updateTree) buttonUpdate.clicked.connect(self.updatePlots) buttonOptions.clicked.connect(self.showOptionsWindow) buttonInfo.clicked.connect(self.showInfoWindow) self.updateTree() self.list.sortByColumn(1, qt.Qt.AscendingOrder) def sizeHint(self): return self.list.sizeHint() + self.analysisWindow.sizeHint() def _saveIconSignal(self, ddict): key = ddict.get("key", None) if key and key == "save": if not len(self.selectionDict["A"]): msg = qt.QMessageBox() msg.setWindowTitle("XLD/XMCD Error") msg.setText("At lease one scan needs to be as A") msg.exec() return # extract the motors from the first curve selected as A legend = self.selectionDict["A"][0] idx = self.legendList.index(legend) motors = self.motorsList[idx] print(motors) self.analysisWindow._saveIconSignalReplacement(motors=motors) def activateExpCB(self): self.expCBox.setFocus(qt.Qt.TabFocusReason) def addExperiment(self): exp, chk = qt.QInputDialog.getText( self, "Configure new experiment", "Enter experiment title", qt.QLineEdit.Normal, "ID00: ", ) if chk and (not exp.isEmpty()): exp = str(exp) opts = XMCDOptions(self, self.motorNamesList, False) if opts.exec(): self.experimentsDict[exp] = opts.getOptions() cBox = self.expCBox new = [cBox.itemText(i) for i in range(cBox.count())][0:-2] new += [exp] new.append("Add new configuration") cBox.clear() cBox.addItems(new) cBox.insertSeparator(len(new) - 1) idx = cBox.findText([exp][0]) if idx < 0: cBox.setCurrentIndex(0) else: cBox.setCurrentIndex(idx) opts.destroy() idx = self.expCBox.findText(exp) if idx < 0: idx = 0 self.expCBox.setCurrentIndex(idx) def showOptionsWindow(self): if self.optsWindow.exec(): options = self.optsWindow.getOptions() self.analysisWindow.processOptions(options) def showInfoWindow(self): if self.helpFileBrowser is None: msg = qt.QMessageBox() msg.setWindowTitle("XLD/XMCD Error") msg.setText("No help file found.") msg.exec() return else: self.helpFileBrowser.show() self.helpFileBrowser.raise_() # Implement new assignment routines here BEGIN def selectExperiment(self, exp): exp = str(exp) if exp == "Add new configuration": self.addExperiment() self.updateTree() elif exp in self.experimentsDict: try: # Sets motors 0 to 4 in optsWindow self.optsWindow.setOptions(self.experimentsDict[exp]) except ValueError: self.optsWindow.setOptions(self.experimentsDict["Generic Dichroism"]) return # Get motor values from tree self.updateTree() values0 = numpy.array(self.list.getColumn(4, convertType=float)) values1 = numpy.array(self.list.getColumn(5, convertType=float)) values2 = numpy.array(self.list.getColumn(6, convertType=float)) values3 = numpy.array(self.list.getColumn(7, convertType=float)) values4 = numpy.array(self.list.getColumn(8, convertType=float)) # Determine p/m selection if exp.startswith("ID08: XLD"): values = values0 mask = numpy.where(numpy.isfinite(values))[0] minmax = values.take(mask) if len(minmax): vmin = minmax.min() vmax = minmax.max() vpivot = 0.5 * (vmax + vmin) else: vpivot = 0.0 values = numpy.array([float("NaN")] * len(self.legendList)) elif exp.startswith("ID08: XMCD"): mask = numpy.where(numpy.isfinite(values0))[0] polarization = values0.take(mask) values1 = values1.take(mask) signMagnets = numpy.sign(values1) if len(polarization) == 0: vpivot = 0.0 values = numpy.array([float("NaN")] * len(self.legendList)) elif ( numpy.all(signMagnets >= 0.0) or numpy.all(signMagnets <= 0.0) or numpy.all(signMagnets == 0.0) ): vmin = polarization.min() vmax = polarization.max() vpivot = 0.5 * (vmax + vmin) values = polarization else: vpivot = 0.0 values = polarization * signMagnets elif exp.startswith("ID12: XLD (quater wave plate)"): # Extract counters from third column counters = self.list.getColumn(3, convertType=str) polarization = [] for counter in counters: # Relevant counters Ihor, Iver resp. Ihor0, Iver0, etc. if "hor" in counter: pol = -1.0 elif "ver" in counter: pol = 1.0 else: pol = float("nan") polarization += [pol] values = numpy.asarray(polarization, dtype=float) vpivot = 0.0 elif exp.startswith("ID12: XMCD (Flipper)"): # Extract counters from third column counters = self.list.getColumn(1, convertType=str) polarization = [] for counter in counters: # Relevant counters: Fminus/Fplus resp. Rminus/Rplus if "minus" in counter: pol = 1.0 elif "plus" in counter: pol = -1.0 else: pol = float("nan") polarization += [pol] magnets = values0 + values1 + values2 values = numpy.asarray(polarization, dtype=float) * magnets vpivot = 0.0 elif exp.startswith("ID12: XMCD"): # Sum over phases.. polarization = values0 + values1 # ..and magnets magnets = values2 + values3 + values4 signMagnets = numpy.sign(magnets) if numpy.all(signMagnets == 0.0): values = polarization else: values = numpy.sign(polarization) * numpy.sign(magnets) vpivot = 0.0 else: values = numpy.array([float("NaN")] * len(self.legendList)) vpivot = 0.0 # Sequence is generate according to values and vpivot seq = "" for x in values: if str(x) == "nan": seq += "D" elif x < vpivot: # Minus group seq += "A" else: # Plus group seq += "B" self.list.setSelectionToSequence(seq) # Implement new assignment routines here END def triggerXMCD(self): groupA = self.selectionDict["A"] groupB = self.selectionDict["B"] self.analysisWindow.processSelection(groupA, groupB) def removeCurve_(self): sel = self.list.getColumn(1, selectedOnly=True, convertType=str) for legend in sel: self.plotWindow.removeCurve(legend) for selection in self.selectionDict.values(): if legend in selection: selection.remove(legend) # Remove from XMCDScanWindow.curvesDict if legend in self.analysisWindow.curvesDict.keys(): del self.analysisWindow.curvesDict[legend] # Remove from XMCDScanWindow.selectionDict for selection in self.analysisWindow.selectionDict.values(): if legend in selection: selection.remove(legend) self.updatePlots() def updateSelectionDict(self): # Get selDict from self.list. It consists of tree items: # {GROUP0: LIST_OF_LEGENDS_IN_GROUP0, # GROUP1: LIST_OF_LEGENDS_IN_GROUP1, # GROUP2: LIST_OF_LEGENDS_IN_GROUP2} selDict = self.list.getSelection() # self.selectionDict -> Uses ScanNumbers instead of legends... newDict = {} for idx, selList in selDict.items(): if idx not in newDict.keys(): newDict[idx] = [] for legend in selList: newDict[idx] += [legend] self.selectionDict = newDict self.setSelectionSignal.emit(self.selectionDict["A"], self.selectionDict["B"]) def updatePlots(self): self._setLists() self.motorNamesList = [""] + self._getAllMotorNames() self.motorNamesList.sort() self.optsWindow.updateMotorList(self.motorNamesList) self.updateTree() experiment = str(self.expCBox.currentText()) if experiment != "Generic Dichroism": self.selectExperiment(experiment) return def updateTree(self): mList = self.optsWindow.getMotors() labels = ["Group", "Legend", "S#", "Counter"] + mList items = [] for i in range(len(self.legendList)): # Loop through rows # Each row is represented by QStringList legend = self.legendList[i] values = self.motorsList[i] info = self.infoList[i] selection = "" # Determine Group from selectionDict for idx, v in self.selectionDict.items(): if (legend in v) and (idx != "D"): selection = idx break # Add filename, scanNo, counter # sourceName = info.get('SourceName','') # if isinstance(sourceName,list): # filename = basename(sourceName[0]) # else: # filename = basename(sourceName) filename = legend scanNo = info.get("Key", "") counter = info.get("ylabel", None) if counter is None: selDict = info.get("selection", {}) if len(selDict) == 0: counter = "" else: # When do multiple selections occur? try: yIdx = selDict["y"][0] cntList = selDict["cnt_list"] counter = cntList[yIdx] except Exception: counter = "" tmp = QStringList([selection, filename, scanNo, counter]) # Determine value for each motor for m in mList: if len(m) == 0: tmp.append("") else: tmp.append(str(values.get(m, "---"))) items.append(tmp) self.list.build(items, labels) for idx in range(self.list.columnCount()): self.list.resizeColumnToContents(idx) def setAsA(self): self.list.setSelectionAs("A") def setAsB(self): self.list.setSelectionAs("B") def _getAllMotorNames(self): names = [] for dic in self.motorsList: for key in dic.keys(): if key not in names: names.append(key) names.sort() return names def _convertInfoDictionary(self, infosList): ret = [] for info in infosList: motorNames = info.get("MotorNames", None) if motorNames is not None: if type(motorNames) == str: namesList = motorNames.split() elif type(motorNames) == list: namesList = motorNames else: namesList = [] else: namesList = [] motorValues = info.get("MotorValues", None) if motorNames is not None: if type(motorValues) == str: valuesList = motorValues.split() elif type(motorValues) == list: valuesList = motorValues else: valuesList = [] else: valuesList = [] if len(namesList) == len(valuesList): ret.append(dict(zip(namesList, valuesList))) else: _logger.warning("Number of motors and values does not match!") ret.append({}) return ret def _setLists(self): """ Curves retrieved from the main plot window using the Plugin1DBase getActiveCurve() resp. getAllCurves() member functions are tuple resp. a list of tuples containing x-data, y-data, legend and the info dictionary. _setLists splits these tuples into lists, thus setting the attributes self.legendList self.infoList self.motorsList """ if self.plotWindow is not None: curves = self.plotWindow.getAllCurves() else: _logger.debug( "_setLists -- Set self.plotWindow before calling self._setLists" ) return # nCurves = len(curves) self.legendList = [leg for (xvals, yvals, leg, info) in curves] self.infoList = [info for (xvals, yvals, leg, info) in curves] # Try to recover the scan number from the legend, if not set # Requires additional import: # from re import search as regexpSearch # for ddict in self.infoList: # key = ddict.get('Key','') # if len(key)== 0: # selectionlegend = ddict['selectionlegend'] # match = regexpSearch(r'(?<= )\d{1,5}\.\d{1}',selectionlegend) # if match: # scanNo = match.group(0) # ddict['Key'] = scanNo self.motorsList = self._convertInfoDictionary(self.infoList) class XMCDFileDialog(qt.QFileDialog): def __init__(self, parent, caption, directory, filter): qt.QFileDialog.__init__(self, parent, caption, directory, filter) saveOptsGB = qt.QGroupBox("Save options", self) self.appendBox = qt.QCheckBox("Append to existing file", self) self.commentBox = qt.QTextEdit("Enter comment", self) mainLayout = self.layout() optsLayout = qt.QGridLayout() optsLayout.addWidget(self.appendBox, 0, 0) optsLayout.addWidget(self.commentBox, 1, 0) saveOptsGB.setLayout(optsLayout) mainLayout.addWidget(saveOptsGB, 4, 0, 1, 3) self.appendBox.stateChanged.connect(self.appendChecked) def appendChecked(self, state): if state == qt.Qt.Unchecked: if hasattr(self, "setConfirmOverwrite"): self.setConfirmOverwrite(True) else: self.setOption(qt.QFileDialog.DontConfirmOverwrite, False) self.setFileMode(qt.QFileDialog.AnyFile) else: if hasattr(self, "setConfirmOverwrite"): self.setConfirmOverwrite(False) else: self.setOption(qt.QFileDialog.DontConfirmOverwrite, True) self.setFileMode(qt.QFileDialog.ExistingFile) def getSaveFileName(parent, caption, directory, filter): dial = XMCDFileDialog(parent, caption, directory, filter) dial.setAcceptMode(qt.QFileDialog.AcceptSave) append = None comment = None files = [] if dial.exec(): append = dial.appendBox.isChecked() comment = str(dial.commentBox.toPlainText()) if comment == "Enter comment": comment = "" files = [qt.safe_str(fn) for fn in dial.selectedFiles()] return (files, append, comment) def main(): # Create dummy ScanWindow swin = ScanWindow.ScanWindow() info0 = { "xlabel": "foo", "ylabel": "arb", "MotorNames": "oxPS PhaseA Phase BRUKER CRYO OXFORD", "MotorValues": "1 -6.27247094 -3.11222732 6.34150808 -34.75892563 21.99607165", } info1 = { "MotorNames": "PhaseD oxPS PhaseA Phase BRUKER CRYO OXFORD", "MotorValues": "0.470746882688 0.25876374531 -0.18515967 -28.31216591 18.54513221 -28.09735532 -26.78833172", } info2 = { "MotorNames": "PhaseD oxPS PhaseA Phase BRUKER CRYO OXFORD", "MotorValues": "-9.45353059 -25.37448851 24.37665651 18.88048044 -0.26018745 2 0.901968648111 ", } x = numpy.arange(100.0, 1100.0) y0 = ( 10 * x + 10000.0 * numpy.exp(-0.5 * (x - 500) ** 2 / 400) + 1500 * numpy.random.random(1000) ) y1 = ( 10 * x + 10000.0 * numpy.exp(-0.5 * (x - 600) ** 2 / 400) + 1500 * numpy.random.random(1000) ) y2 = ( 10 * x + 10000.0 * numpy.exp(-0.5 * (x - 400) ** 2 / 400) + 1500 * numpy.random.random(1000) ) swin.addCurve( x, y2, legend="Curve2", xlabel="ene_st2", ylabel="Ihor", info=info2, replot=False, replace=True, ) swin.addCurve( x, y0, legend="Curve0", xlabel="ene_st0", ylabel="Iver", info=info0, replot=False, replace=False, ) swin.addCurve( x, y1, legend="Curve1", xlabel="ene_st1", ylabel="Ihor", info=info1, replot=True, replace=False, ) # info['Key'] is overwritten when using newCurve swin.dataObjectsDict["Curve2 Ihor"].info["Key"] = "1.1" swin.dataObjectsDict["Curve0 Iver"].info["Key"] = "34.1" swin.dataObjectsDict["Curve1 Ihor"].info["Key"] = "123.1" w = XMCDWidget(None, swin, "ID08", nSelectors=5) w.show() return w # helpFileBrowser = qt.QTextBrowser() # helpFileBrowser.setLineWrapMode(qt.QTextEdit.FixedPixelWidth) # helpFileBrowser.setLineWrapColumnOrWidth(500) # helpFileBrowser.resize(520,400) # helpFileHandle = open('/home/truter/lab/XMCD_infotext.html') # helpFileHTML = helpFileHandle.read() # helpFileHandle.close() # helpFileBrowser.setHtml(helpFileHTML) # helpFileBrowser.show() if __name__ == "__main__": app = qt.QApplication([]) w = main() app.exec() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/XiaCorrectWizard.py������������������������������������������0000644�0000000�0000000�00000042230�14741736366�021761� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5 import PyMcaDirs import os.path class XiaCorrectionWidget(qt.QWizardPage): def __init__(self, parent=None): qt.QWizardPage.__init__(self, parent) layout= qt.QVBoxLayout(self) layout.setContentsMargins(10, 10, 10, 10) layout.setSpacing(5) self.deadCheck= qt.QCheckBox("DeadTime correction", self) self.liveCheck= qt.QCheckBox("LiveTime normalization", self) lineSep= qt.QFrame(self) lineSep.setFrameStyle(qt.QFrame.HLine|qt.QFrame.Sunken) optWidget= qt.QWidget(self) optLayout= qt.QHBoxLayout(optWidget) self.sumCheck= qt.QCheckBox("SUM or", optWidget) self.avgCheck= qt.QCheckBox("AVERAGE selected detectors", optWidget) optLayout.addWidget(self.sumCheck, 0) optLayout.addWidget(self.avgCheck, 1) layout.addWidget(self.deadCheck) layout.addWidget(self.liveCheck) layout.addWidget(lineSep) layout.addWidget(optWidget) self.sumCheck.toggled[bool].connect(self.__sumCheckChanged) self.avgCheck.toggled[bool].connect(self.__avgCheckChanged) sumWidget= qt.QWidget(self) sumLayout= qt.QHBoxLayout(sumWidget) sumLayout.setContentsMargins(0, 0, 0, 0) sumLayout.setSpacing(5) butWidget= qt.QWidget(sumWidget) butLayout= qt.QVBoxLayout(butWidget) butLayout.setContentsMargins(0, 0, 0, 0) butLayout.setSpacing(0) self.sumTable= qt.QTableWidget(sumWidget) self.sumTable.setRowCount(0) self.sumTable.setColumnCount(1) item = self.sumTable.horizontalHeaderItem(0) if item is None: item = qt.QTableWidgetItem("Detectors", qt.QTableWidgetItem.Type) item.setText("Detectors") self.sumTable.setHorizontalHeaderItem(0, item) self.sumTable.cellChanged[int,int].connect(self.__valueChanged) buttonAdd= qt.QPushButton("Add", butWidget) buttonDel= qt.QPushButton("Remove", butWidget) butLayout.addWidget(buttonAdd) butLayout.addWidget(buttonDel) butLayout.addStretch() buttonAdd.clicked.connect(self.__add) buttonDel.clicked.connect(self.__remove) sumLayout.addWidget(self.sumTable) sumLayout.addWidget(butWidget) layout.addWidget(sumWidget) def set(self, pars= {}): self.deadCheck.setChecked(pars.get("deadtime", 0)) self.liveCheck.setChecked(pars.get("livetime", 0)) sums= pars.get("sums", None) self.sumTable.setNumRows(0) if sums is None: self.sumCheck.setChecked(0) else: self.sumCheck.setChecked(1) for sum in sums: self.addSum(sum) def check(self): pars= self.get() if not pars["deadtime"] and not pars["livetime"] and pars["sums"] is None: qt.QMessageBox.warning(self, "No corections or sum", \ "You must at least choose one of livetime, deadtime or sum detectors.", \ qt.QMessageBox.Ok, qt.QMessageBox.NoButton) return None else: return pars def get(self): pars= {} pars["deadtime"]= int(self.deadCheck.isChecked()) pars["livetime"]= int(self.liveCheck.isChecked()) pars["avgflag"]= int(self.avgCheck.isChecked()) pars["sums"]= None if self.sumCheck.isChecked() or self.avgCheck.isChecked(): sums= [] for row in range(self.sumTable.rowCount()): dets= qt.safe_str(self.sumTable.item(row, 0).text()) if dets.find("All")!=-1: sums.append([]) else: sums.append([ int(det) for det in dets.split() ]) if len(sums): pars["sums"]= sums return pars def addSum(self, detectors= [], name=None): num= self.sumTable.rowCount() self.sumTable.setRowCount(num + 1) if len(detectors): itemText= " ".join(detectors) else: itemText= "All" item = self.sumTable.item(num, 0) if item is None: item = qt.QTableWidgetItem("Detectors", qt.QTableWidgetItem.Type) self.sumTable.setItem(num, 0, item) item.setText(itemText) def __add(self): if not self.sumCheck.isChecked() and not self.avgCheck.isChecked(): self.sumCheck.setChecked(1) else: self.addSum() def __remove(self): self.sumTable.removeRow(self.sumTable.currentRow()) if not self.sumTable.rowCount(): self.sumCheck.setChecked(0) def __valueChanged(self, row, col): if col==0: item = self.sumTable.item(row, col) if item is None: item = qt.QTableWidgetItem("", qt.QTableWidgetItem.Type) self.sumTable.setItem(row, col, item) text= qt.safe_str(item.text()) if text.find("All")!=-1 or text.find("all")!=-1 or text.find("-1")!=-1: item.setText("All") else: detsplit= text.replace(",", " ") detsplit= detsplit.replace(";", " ") detsplit= detsplit.replace(":", " ") detsplit= detsplit.split() dets= [] for det in detsplit: try: detno= int(det) except Exception: detno= -1 if detno>=0: dets.append(det) if len(dets): item.setText(' '.join(dets)) else: item.setText("All") def __sumCheckChanged(self, state): if state: if self.avgCheck.isChecked(): self.avgCheck.setChecked(0) if not self.sumTable.rowCount(): self.addSum() def __avgCheckChanged(self, state): if state: if self.sumCheck.isChecked(): self.sumCheck.setChecked(0) if not self.sumTable.rowCount(): self.addSum() class XiaInputWidget(qt.QWizardPage): def __init__(self, parent=None): qt.QWizardPage.__init__(self, parent) layout= qt.QVBoxLayout(self) layout.setContentsMargins(10, 10, 10, 10) layout.setSpacing(5) self.listFiles= qt.QListWidget(self) self.listFiles.setSelectionMode(qt.QAbstractItemView.ExtendedSelection) butWidget= qt.QWidget(self) butLayout= qt.QHBoxLayout(butWidget) butLayout.setContentsMargins(0, 0, 0, 0) butLayout.setSpacing(5) butRemove= qt.QPushButton("Remove", butWidget) butFiles= qt.QPushButton("Add Files", butWidget) butDirectory= qt.QPushButton("Add Directory", butWidget) butRemove.clicked.connect(self.__remove) butFiles.clicked.connect(self.__addFiles) butDirectory.clicked.connect(self.__addDirectory) butLayout.addWidget(butRemove) butLayout.addWidget(butFiles) butLayout.addWidget(butDirectory) layout.addWidget(self.listFiles) layout.addWidget(butWidget) def __addFiles(self): files = PyMcaFileDialogs.getFileList(self, filetypelist=["Edf Files (*.edf)", "All Files (*)"], message="Add XIA Edf Files", getfilter=False, mode="OPEN", single=False) for name in files: self.__addInFileList("file", name) def __addInFileList(self, type, name): itemname= "%s:%s"%(type, name) for i in range(self.listFiles.count()): item = self.listFiles.item(i) if qt.safe_str(item.text())==itemname: return 0 self.listFiles.addItem(itemname) return 1 def __addDirectory(self): directory = PyMcaFileDialogs.getExistingDirectory(self, message="Add Full Directory", mode="OPEN") if directory not in [None, ""]: self.__addInFileList("directory", directory) def __remove(self): todel= [] for i in range(self.listFiles.count()): item = self.listFiles.item(i) if item.isSelected(): todel.append(i) todel.reverse() for item in todel: self.listFiles.takeItem(item) def __getFileList(self): files= [] for i in range(self.listFiles.count()): item = self.listFiles.item(i) (type, name)= qt.safe_str(item.text()).split(":", 1) if type=="file": files.append(os.path.normpath(name)) else: files += [os.path.join(name, file) for file in os.listdir(name)] return files def get(self): pars= {} pars["files"]= self.__getFileList() return pars def check(self): pars= self.get() if not len(pars["files"]): return None else: return pars class XiaOutputWidget(qt.QWizardPage): DefaultOutname= "corr" def __init__(self, parent=None): qt.QWizardPage.__init__(self, parent) #, name, fl) layout= qt.QVBoxLayout(self) layout.setContentsMargins(10, 10, 10, 10) layout.setSpacing(5) topWidget= qt.QWidget(self) topLayout= qt.QGridLayout(topWidget) topLayout.setContentsMargins(0, 0, 0, 0) topLayout.setSpacing(5) dirLabel= qt.QLabel("Directory", topWidget) nameLabel= qt.QLabel("Prefix name", topWidget) topLayout.addWidget(dirLabel, 0, 0) topLayout.addWidget(nameLabel, 1, 0) self.directory= qt.QLineEdit(topWidget) self.outname= qt.QLineEdit(topWidget) topLayout.addWidget(self.directory, 0, 1) topLayout.addWidget(self.outname, 1, 1) self.directory.returnPressed[()].connect(self.__directoryCheck) butDirectory= qt.QPushButton("Find", topWidget) butOutname= qt.QPushButton("Default", topWidget) topLayout.addWidget(butDirectory, 0, 2) topLayout.addWidget(butOutname, 1, 2) butDirectory.clicked.connect(self.__openDirectory) butOutname.clicked.connect(self.__defaultOutname) lineSep= qt.QFrame(self) lineSep.setFrameStyle(qt.QFrame.HLine|qt.QFrame.Sunken) self.forceCheck= qt.QCheckBox("Force overwriting existing files", self) self.verboseCheck= qt.QCheckBox("Verbose mode", self) layout.addWidget(topWidget) layout.addWidget(lineSep) layout.addWidget(self.forceCheck) layout.addWidget(self.verboseCheck) layout.addStretch() self.__defaultOutname() def __openDirectory(self): wdir = PyMcaDirs.outputDir outfile = qt.QFileDialog(self) outfile.setWindowTitle("Set Output Directory") outfile.setModal(1) outfile.setDirectory(wdir) outfile.setFileMode(outfile.DirectoryOnly) ret = outfile.exec() directory = None if ret: directory = qt.safe_str(outfile.selectedFiles()[0]) outfile.close() else: outfile.close() del outfile if directory is not None: self.directory.setText(directory) def __directoryCheck(self): dirname= qt.safe_str(self.directory.text()) if len(dirname): if not os.path.isdir(dirname): qt.QMessageBox.warning(self, "Output Directory", \ "The output directory specified does not exist !!", \ qt.QMessageBox.Ok, qt.QMessageBox.NoButton) return 0 else: dirname= None return dirname def __defaultOutname(self): self.outname.setText(self.DefaultOutname) def get(self): pars= {} pars["force"]= int(self.forceCheck.isChecked()) pars["verbose"]= int(self.verboseCheck.isChecked()) pars["output"]= self.__directoryCheck() if pars["output"]==0: pars["output"]= None pars["name"]= qt.safe_str(self.outname.text()) if not len(pars["name"]): pars["name"]= self.DefaultOutname return pars def check(self): if self.__directoryCheck()==0: return None else: return self.get() class XiaRunWidget(qt.QWidget): sigStarted = qt.pyqtSignal(()) sigFinished = qt.pyqtSignal(()) def __init__(self, parent=None, name=None, fl=0): qt.QWidget.__init__(self, parent, name, fl) layout= qt.QVBoxLayout(self, 10, 5) self.logText= qt.QTextEdit(self) self.logText.setReadOnly(1) progressWidget= qt.QWidget(self) progressLayout= qt.QHBoxLayout(progressWidget, 0, 5) self.progressBar= qt.QProgressBar(progressWidget) self.startButton= qt.QPushButton("Start", progressWidget) font= self.startButton.font() font.setBold(1) self.startButton.setFont(font) progressLayout.addWidget(self.progressBar) progressLayout.addWidget(self.startButton) layout.addWidget(self.logText) layout.addWidget(progressWidget) self.startButton.clicked.connect(self.start) self.parameters= {} def set(self, pars): self.parameters= pars def start(self): self.sigStarted.emit(()) import time for idx in range(30): self.logText.append("%d"%idx) qApp = qt.QApplication.instance() qApp.processEvents() time.sleep(.5) print(idx) self.sigFinished.emit(()) class XiaCorrectWizard(qt.QWizard): def __init__(self, parent=None, name=None, modal=0, fl=0): qt.QWizard.__init__(self, parent) self.setModal(modal) #fl) self.setWindowTitle("Xia Correction Tool") self.resize(qt.QSize(400,300)) self.correction= XiaCorrectionWidget(self) self.input= XiaInputWidget(self) self.output= XiaOutputWidget(self) self.addPage(self.correction) #, "Corrections") self.addPage(self.input) #, "Input Files") self.addPage(self.output) #, "Output Directory") finish= self.button(qt.QWizard.FinishButton) font= finish.font() font.setBold(1) finish.setFont(font) finish.setText("Start") nnext = self.button(qt.QWizard.NextButton) nnext.clicked.connect(self.next) #self.setFinishEnabled(self.output, 1) self.output.setFinalPage(True) self.parameters= {} def next(self): widget= self.page(self.currentId() - 1) pars= widget.check() if pars is not None: self.parameters.update(pars) #qt.QWizard.next(self) def selected(self, name): if name==self.title(self.run): self.run.set(self.parameters) self.setBackEnabled(self.run, 0) def accept(self): pars= self.output.check() if pars is not None: self.parameters.update(pars) qt.QWizard.accept(self) def get(self): return self.parameters if __name__=="__main__": import sys app= qt.QApplication(sys.argv) wid= XiaCorrectWizard() app.setMainWidget(wid) app.lastWindowClosed.connect(app.quit) wid.show() app.exec() print(wid.get()) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaGui/pymca/__init__.py��������������������������������������������������0000644�0000000�0000000�00000000000�14741736366�020261� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8117664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/��������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�014625� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/APSMEDFileParser.py�������������������������������������������������0000644�0000000�0000000�00000013575�14741736366�020147� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys from PyMca5.PyMcaIO import MEDFile from PyMca5.PyMcaIO import SpecFileAbstractClass class APSMEDFileParser(object): def __init__(self, filename, sum_all=False): if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) self._medFileObject = MEDFile.MEDFile(filename) #read the data #potentially each detector could have a different number of channels #should I support that? header = [] header.append('#S 1 %s Unknown command' % os.path.basename(filename)) header.append('#D %s' % self._medFileObject.mcas[0].start_time) if sum_all: realtime = 0 livetime = 0 cal_offset = 0 cal_slope = 0 cal_quad = 0 n = float(len(self._medFileObject.mcas)) for mca in self._medFileObject.mcas: realtime += (mca.realtime / n) livetime += (mca.livetime / n) cal_offset += (cal_offset / n) cal_slope += (cal_slope / n) cal_quad += (cal_quad / n) data = [self._medFileObject.get_data(sum_all=sum_all)] # this makes no sense in any case header.append('#@CTIME %f %f %f' % (realtime, realtime, livetime)) header.append('#@CALIB %f %f %f' % (cal_offset, cal_slope, cal_quad)) else: data = [] for mca in self._medFileObject.mcas: header.append('#@CTIME %f %f %f' % (mca.realtime, mca.realtime, mca.livetime)) header.append('#@CALIB %f %f %f' % (mca.cal_offset, mca.cal_slope, mca.cal_quad)) data.append(mca.data) self.motorNames = [] motorValues = [] for item in self._medFileObject.env: name, value = item.split("=") self.motorNames.append(name) motorValues.append(value) header.append('#' + item) #create an abstract scan object self._scan = [APSMEDScan(data, scanheader=header, motor_values=motorValues)] #the methods below are called by PyMca on any SPEC file def __getitem__(self, item): return self._scan[item] def scanno(self): """ Gives back the number of scans in the file """ return len(self._scan) def list(self): return "1:1" def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0]) - 1) def allmotors(self): return self.motorNames class APSMEDScan(SpecFileAbstractClass.SpecFileAbstractScan): def __init__(self, data, scantype='MCA', identification="1.1", scanheader=None, labels=None, motor_values=None): SpecFileAbstractClass.SpecFileAbstractScan.__init__(self, data, scantype=scantype, identification=identification, scanheader=scanheader, labels=labels) if motor_values is None: motor_values = [] self.motorValues = motor_values def allmotorpos(self): return self.motorValues def isAPSMEDFile(filename): #Obviously I should put a better test than this one if not filename.upper().endswith(".XRF"): return False return True def test(filename): if isAPSMEDFile(filename): sf = APSMEDFileParser(filename) else: print("Not an APS Multi-element detector file") print(sf[0].header('S')) print(sf[0].header('D')) print(sf[0].header('ID13ds')) print(sf[0].alllabels()) print(dir(sf[0])) print("number of mcas = %s " % sf[0].nbmca()) try: import pylab for i in range(sf[0].nbmca()): pylab.plot(sf[0].mca(i + 1)) pylab.show() except ImportError: pass if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/AifiraMap.py��������������������������������������������������������0000644�0000000�0000000�00000006345�14741736366�017047� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaIO import PyMcaIOHelper DEBUG = 0 SOURCE_TYPE = "EdfFileStack" class AifiraMap(DataObject.DataObject): def __init__(self, filename): DataObject.DataObject.__init__(self) if sys.platform == 'win32': fid = open(filename, 'rb') else: fid = open(filename, 'r') self.sourceName = [filename] self.data = PyMcaIOHelper.readAifira(fid).astype(numpy.float64) nrows, ncols, nChannels = self.data.shape self.nSpectra = nrows * ncols fid.close() #fill the header self.header = [] self.nRows = nrows #arrange as an EDF Stack self.info = {} self.__nFiles = self.nSpectra / self.nRows self.__nImagesPerFile = 1 shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = self.__nFiles * self.__nImagesPerFile self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["FileIndex"] = 0 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 def main(): global DEBUG filename = None if len(sys.argv) > 1: filename = sys.argv[1] elif os.path.exists("./AIFIRA/010737.DAT"): filename = "./AIFIRA/010737.DAT" if filename is not None: DEBUG = 1 AifiraMap(filename) else: print("Please supply input filename") if __name__ == "__main__": main() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/ArraySave.py��������������������������������������������������������0000644�0000000�0000000�00000067434�14741736366�017121� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy import time import logging _logger = logging.getLogger(__name__) import sys try: from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaIO import TiffIO except ImportError: _logger.info("ArraySave.py is importing EdfFile and TiffIO from local directory") import EdfFile import TiffIO HDF5 = True try: import h5py if sys.version_info < (3, ): text_dtype = h5py.special_dtype(vlen=unicode) else: text_dtype = h5py.special_dtype(vlen=str) except ImportError: HDF5 = False def to_unicode(s): """Return string as unicode. :param s: A string (bytestring or unicode string). If s is a bytestring, it is assumed that it is utf-8 encoded text""" if hasattr(s, "decode"): return s.decode("utf-8") return s def to_h5py_utf8(str_list): """Convert a string or a list of strings to a variable length utf-8 string compatible with h5py. """ return numpy.array(str_list, dtype=text_dtype) def getDate(): localtime = time.localtime() gtime = time.gmtime() # year, month, day, hour, minute, second,\ # week_day, year_day, delta = time.localtime() year = localtime[0] month = localtime[1] day = localtime[2] hour = localtime[3] minute = localtime[4] second = localtime[5] # get the difference against Greenwich delta = hour - gtime[3] return u"%4d-%02d-%02dT%02d:%02d:%02d%+02d:00" % (year, month, day, hour, minute, second, delta) def saveXY(x, y, filename, xlabel=None, ylabel=None, csv=False, csvseparator=None, fmt=None): """ Convenience function to save two 1D arrays to file as pure ASCII (no header) or as CSV. - To save in EXCEL compatible format, csv=True and csvseparator="," - To save in OMNIC compatible format, csv=False and csvseparator="," """ if xlabel is None: xlabel = "x" if ylabel is None: ylabel = "y" root, ext = os.path.splitext(os.path.basename(filename)) if ext == '': if csv: filename += ".csv" else: filename += ".txt" if csvseparator is None: if csv: # CSV default separator set to colon csvseparator = "," else: # ASCII default separator set to double space csvseparator = " " if fmt is None: fmt = "%.7E%s%.7E\n" if os.path.exists(filename): try: os.remove(filename) except OSError: _logger.critical("Cannot delete output file <%s>" % filename) raise with open(filename, mode="wb") as ffile: if csv: # we write the header line ffile.write(('"%s"%s"%s"\n' % \ (xlabel, csvseparator, ylabel)).encode("utf-8")) for i in range(len(y)): ffile.write((fmt % (x[i], csvseparator, y[i])).encode("utf-8")) def save2DArrayListAsMultipleASCII(datalist, fileroot, labels=None, csv=False, csvseparator=";"): if type(datalist) != type([]): datalist = [datalist] if labels is not None: if len(labels) != len(datalist): raise ValueError("Incorrect number of labels") dirname = os.path.dirname(fileroot) root, ext = os.path.splitext(os.path.basename(fileroot)) if ext == '': if csv: ext = "csv" else: ext = "txt" n = int(numpy.log10(len(datalist))) + 1 fmt = "_%" + "0%dd" % n + ".%s" for i in range(len(datalist)): filename = os.path.join(dirname, root + fmt % (i, ext)) save2DArrayListAsASCII(datalist[i], filename, labels=labels, csv=csv, csvseparator=csvseparator) def save2DArrayListAsASCII(datalist, filename, labels=None, csv=False, csvseparator=";"): if type(datalist) != type([]): datalist = [datalist] r, c = datalist[0].shape ndata = len(datalist) if os.path.exists(filename): try: os.remove(filename) except OSError: _logger.critical("Cannot delete file <%s>" % filename) if labels is None: labels = [] for i in range(len(datalist)): labels.append("Array_%d" % i) if len(labels) != len(datalist): raise ValueError("Incorrect number of labels") if csv: header = '"row"%s"column"' % csvseparator for label in labels: header += '%s"%s"' % (csvseparator, label) else: header = "row column" for label in labels: header += " %s" % label filehandle = open(filename, 'w+') filehandle.write('%s\n' % header) fileline = "" if csv: for row in range(r): for col in range(c): fileline += "%d" % row fileline += "%s%d" % (csvseparator, col) for i in range(ndata): fileline += "%s%g" % (csvseparator, datalist[i][row, col]) fileline += "\n" filehandle.write("%s" % fileline) fileline = "" else: for row in range(r): for col in range(c): fileline += "%d" % row fileline += " %d" % col for i in range(ndata): fileline += " %g" % datalist[i][row, col] fileline += "\n" filehandle.write("%s" % fileline) fileline = "" filehandle.write("\n") filehandle.close() def save2DArrayListAsEDF(datalist, filename, labels=None, dtype=None): if type(datalist) != type([]): datalist = [datalist] ndata = len(datalist) if os.path.exists(filename): try: os.remove(filename) except OSError: pass if labels is None: labels = [] for i in range(ndata): labels.append("Array_%d" % i) if len(labels) != ndata: raise ValueError("Incorrect number of labels") edfout = EdfFile.EdfFile(filename, access="ab") for i in range(ndata): if dtype is None: edfout.WriteImage({'Title': labels[i]}, datalist[i], Append=1) else: edfout.WriteImage({'Title': labels[i]}, datalist[i].astype(dtype), Append=1) del edfout # force file close def save2DArrayListAsMonochromaticTiff(datalist, filename, labels=None, dtype=None): if type(datalist) != type([]): datalist = [datalist] ndata = len(datalist) if dtype is None: dtype = datalist[0].dtype for i in range(len(datalist)): dtypeI = datalist[i].dtype if dtypeI in [numpy.float32, numpy.float64] or\ dtypeI.str[-2] == 'f': dtype = numpy.float32 break elif dtypeI != dtype: dtype = numpy.float32 break if labels is None: labels = [] for i in range(ndata): labels.append("Array_%d" % i) if len(labels) != ndata: raise ValueError("Incorrect number of labels") multifile = False if type(filename) in [type([]), type((1,))]: if len(filename) == 1: fileList = filename elif len(filename) != len(labels): raise ValueError("Incorrect number of files") else: fileList = filename multifile = True else: fileList = [filename] savedData = 0 while savedData < ndata: if multifile: fname = fileList[savedData] else: fname = fileList[0] if os.path.exists(fname): try: os.remove(fname) except OSError: _logger.warning("Cannot remove file %s", fname) pass if (savedData == 0) or multifile: outfileInstance = TiffIO.TiffIO(fname, mode="wb+") if multifile: # multiple files if dtype is None: data = datalist[savedData] else: data = datalist[savedData].astype(dtype) outfileInstance.writeImage(data, info={'Title': labels[savedData]}) savedData += 1 else: # a single file for i in range(ndata): if i == 1: outfileInstance = TiffIO.TiffIO(fname, mode="rb+") if dtype is None: data = datalist[i] else: data = datalist[i].astype(dtype) outfileInstance.writeImage(data, info={'Title': labels[i]}) savedData += 1 outfileInstance.close() # force file close def openHDF5File(name, mode='a', **kwargs): """ Open an HDF5 file. Valid modes (like Python's file() modes) are: - r Readonly, file must exist - r+ Read/write, file must exist - w Create file, truncate if exists - w- Create file, fail if exists - a Read/write if exists, create otherwise (default) sorted_with is a callable function like python's builtin sorted, or None. """ h5file = h5py.File(name, mode, **kwargs) if h5file.mode != 'r' and len(h5file) == 0: if 'file_name' not in h5file.attrs: h5file.attrs.create('file_name', to_h5py_utf8(name)) if 'file_time' not in h5file.attrs: h5file.attrs.create('file_time', to_h5py_utf8(getDate())) if 'HDF5_version' not in h5file.attrs: txt = "%s" % h5py.version.hdf5_version h5file.attrs.create('HDF5_version', to_h5py_utf8(txt)) if 'HDF5_API_version' not in h5file.attrs: txt = "%s" % h5py.version.api_version h5file.attrs.create('HDF5_API_version', to_h5py_utf8(txt)) if 'h5py_version' not in h5file.attrs: txt = "%s" % h5py.version.version h5file.attrs.create('h5py_version', to_h5py_utf8(txt)) if 'creator' not in h5file.attrs: h5file.attrs.create('creator', to_h5py_utf8('PyMca')) # if 'format_version' not in self.attrs and len(h5file) == 0: # h5file.attrs['format_version'] = __format_version__ return h5file def getHDF5FileInstanceAndBuffer(filename, shape, buffername="data", dtype=numpy.float32, interpretation=None, compression=None): if not HDF5: raise IOError('h5py does not seem to be installed in your system') if os.path.exists(filename): try: os.remove(filename) except Exception: raise IOError("Cannot overwrite existing file!") hdf = openHDF5File(filename, 'a') entryName = "data" # entry nxEntry = hdf.require_group(entryName) if 'NX_class' not in nxEntry.attrs: nxEntry.attrs['NX_class'] = u'NXentry' elif nxEntry.attrs['NX_class'] not in [b'NXentry', u"NXentry"]: # should I raise an error? pass nxEntry['title'] = u"PyMca saved 3D Array" nxEntry['start_time'] = getDate() nxData = nxEntry.require_group('NXdata') if 'NX_class' not in nxData.attrs: nxData.attrs['NX_class'] = u'NXdata' elif nxData.attrs['NX_class'] in [b'NXdata', u'NXdata']: # should I raise an error? pass if compression: _logger.debug("Saving compressed and chunked dataset") chunk1 = int(shape[1] / 10) if chunk1 == 0: chunk1 = shape[1] for i in [11, 10, 8, 7, 5, 4]: if (shape[1] % i) == 0: chunk1 = int(shape[1] / i) break chunk2 = int(shape[2] / 10) if chunk2 == 0: chunk2 = shape[2] for i in [11, 10, 8, 7, 5, 4]: if (shape[2] % i) == 0: chunk2 = int(shape[2] / i) break data = nxData.require_dataset(buffername, shape=shape, dtype=dtype, chunks=(1, chunk1, chunk2), compression=compression) else: #no chunking _logger.debug("Saving not compressed and not chunked dataset") data = nxData.require_dataset(buffername, shape=shape, dtype=dtype, compression=None) nxData.attrs['signal'] = to_unicode(buffername) if interpretation is not None: data.attrs['interpretation'] = to_unicode(interpretation) for i in range(len(shape)): dim = numpy.arange(shape[i]).astype(numpy.float32) dset = nxData.require_dataset('dim_%d' % i, dim.shape, dim.dtype, dim, chunks=dim.shape) nxData.attrs["axes"] = to_h5py_utf8(['dim_%d' % i for i in range(len(shape))]) nxEntry['end_time'] = getDate() return hdf, data def save3DArrayAsMonochromaticTiff(data, filename, labels=None, dtype=None, mcaindex=-1): ndata = data.shape[mcaindex] if dtype is None: dtype = numpy.float32 if os.path.exists(filename): try: os.remove(filename) except OSError: pass if labels is None: labels = [] for i in range(ndata): labels.append("Array_%d" % i) if len(labels) != ndata: raise ValueError("Incorrect number of labels") outfileInstance = TiffIO.TiffIO(filename, mode="wb+") if mcaindex in [2, -1]: for i in range(ndata): if i == 1: outfileInstance = TiffIO.TiffIO(filename, mode="rb+") if dtype is None: tmpData = data[:, :, i] else: tmpData = data[:, :, i].astype(dtype) outfileInstance.writeImage(tmpData, info={'Title': labels[i]}) if (ndata > 10): print("Saved image %d of %d" % (i + 1, ndata)) _logger.info("Saved image %d of %d", i + 1, ndata) elif mcaindex == 1: for i in range(ndata): if i == 1: outfileInstance = TiffIO.TiffIO(filename, mode="rb+") if dtype is None: tmpData = data[:, i, :] else: tmpData = data[:, i, :].astype(dtype) outfileInstance.writeImage(tmpData, info={'Title': labels[i]}) if (ndata > 10): _logger.info("Saved image %d of %d", i + 1, ndata) print("Saved image %d of %d" % (i + 1, ndata)) else: for i in range(ndata): if i == 1: outfileInstance = TiffIO.TiffIO(filename, mode="rb+") if dtype is None: tmpData = data[i] else: tmpData = data[i].astype(dtype) outfileInstance.writeImage(tmpData, info={'Title': labels[i]}) if (ndata > 10): _logger.info("Saved image %d of %d", i + 1, ndata) print("Saved image %d of %d" % (i + 1, ndata)) outfileInstance.close() # force file close # it should be used to name the data that for the time being is named 'data'. def save3DArrayAsHDF5(data, filename, axes=None, labels=None, dtype=None, mode='nexus', mcaindex=-1, interpretation=None, compression=None): if not HDF5: raise IOError('h5py does not seem to be installed in your system') if (mcaindex == 0) and (interpretation in ["spectrum", None]): # stack of images to be saved as stack of spectra modify = True shape = [data.shape[1], data.shape[2], data.shape[0]] elif (mcaindex != 0) and (interpretation in ["image"]): # stack of spectra to be saved as stack of images modify = True shape = [data.shape[2], data.shape[0], data.shape[1]] else: modify = False shape = data.shape if dtype is None: dtype = data.dtype if mode.lower() in ['nexus', 'nexus+']: # raise IOError, 'NeXus data saving not implemented yet' if os.path.exists(filename): try: os.remove(filename) except Exception: raise IOError("Cannot overwrite existing file!") hdf = openHDF5File(filename, 'a') entryName = "data" # entry nxEntry = hdf.require_group(entryName) if 'NX_class' not in nxEntry.attrs: nxEntry.attrs['NX_class'] = u'NXentry' elif nxEntry.attrs['NX_class'] not in [b'NXentry', u'NXentry']: # should I raise an error? pass nxEntry['title'] = u"PyMca saved 3D Array" nxEntry['start_time'] = getDate() nxData = nxEntry.require_group('NXdata') if 'NX_class' not in nxData.attrs: nxData.attrs['NX_class'] = u'NXdata' elif nxData.attrs['NX_class'] not in [u'NXdata', b'NXdata']: # should I raise an error? pass if modify: if interpretation in [b"image", u"image"]: if compression: _logger.debug("Saving compressed and chunked dataset") #risk of taking a 10 % more space in disk chunk1 = int(shape[1] / 10) if chunk1 == 0: chunk1 = shape[1] for i in [11, 10, 8, 7, 5, 4]: if (shape[1] % i) == 0: chunk1 = int(shape[1] / i) break chunk2 = int(shape[2] / 10) for i in [11, 10, 8, 7, 5, 4]: if (shape[2] % i) == 0: chunk2 = int(shape[2] / i) break dset = nxData.require_dataset('data', shape=shape, dtype=dtype, chunks=(1, chunk1, chunk2), compression=compression) else: _logger.debug("Saving not compressed and not chunked dataset") #print not compressed -> Not chunked dset = nxData.require_dataset('data', shape=shape, dtype=dtype, compression=None) for i in range(data.shape[-1]): tmp = data[:, :, i:i + 1] tmp.shape = 1, shape[1], shape[2] dset[i, 0:shape[1], :] = tmp _logger.info("Saved item %d of %d", i + 1, data.shape[-1]) elif 0: # if I do not match the input and output shapes it takes ages # to save the images as spectra. However, it is much faster # when performing spectra operations. dset = nxData.require_dataset('data', shape=shape, dtype=dtype, chunks=(1, shape[1], shape[2])) for i in range(data.shape[1]): # shape[0] chunk = numpy.zeros((1, data.shape[2], data.shape[0]), dtype) for k in range(data.shape[0]): # shape[2] if 0: tmpData = data[k:k + 1] for j in range(data.shape[2]): # shape[1] tmpData.shape = data.shape[1], data.shape[2] chunk[0, j, k] = tmpData[i, j] else: tmpData = data[k:k + 1, i, :] tmpData.shape = -1 chunk[0, :, k] = tmpData _logger.info("Saving item %d of %d", i, data.shape[1]) dset[i, :, :] = chunk else: # if I do not match the input and output shapes it takes ages # to save the images as spectra. This is a very fast saving, but # the performance is awful when reading. if compression: _logger.debug("Saving compressed and chunked dataset") dset = nxData.require_dataset('data', shape=shape, dtype=dtype, chunks=(shape[0], shape[1], 1), compression=compression) else: _logger.debug("Saving not compressed and not chunked dataset") dset = nxData.require_dataset('data', shape=shape, dtype=dtype, compression=None) for i in range(data.shape[0]): tmp = data[i:i + 1, :, :] tmp.shape = shape[0], shape[1], 1 dset[:, :, i:i + 1] = tmp else: if compression: _logger.debug("Saving compressed and chunked dataset") chunk1 = int(shape[1] / 10) if chunk1 == 0: chunk1 = shape[1] for i in [11, 10, 8, 7, 5, 4]: if (shape[1] % i) == 0: chunk1 = int(shape[1] / i) break chunk2 = int(shape[2] / 10) if chunk2 == 0: chunk2 = shape[2] for i in [11, 10, 8, 7, 5, 4]: if (shape[2] % i) == 0: chunk2 = int(shape[2] / i) break _logger.debug("Used chunk size = (1, %d, %d)", chunk1, chunk2) dset = nxData.require_dataset('data', shape=shape, dtype=dtype, chunks=(1, chunk1, chunk2), compression=compression) else: _logger.debug("Saving not compressed and notchunked dataset") dset = nxData.require_dataset('data', shape=shape, dtype=dtype, compression=None) tmpData = numpy.zeros((1, data.shape[1], data.shape[2]), data.dtype) for i in range(data.shape[0]): tmpData[0:1] = data[i:i + 1] dset[i:i + 1] = tmpData[0:1] _logger.info("Saved item %d of %d", i + 1, data.shape[0]) nxData.attrs["signal"] = u'data' if interpretation is not None: dset.attrs['interpretation'] = to_unicode(interpretation) axesAttribute = [] for i in range(len(shape)): if axes is None: dim = numpy.arange(shape[i]).astype(numpy.float32) dimlabel = 'dim_%d' % i elif axes[i] is not None: dim = axes[i] try: if labels[i] in [None, 'None']: dimlabel = 'dim_%d' % i else: dimlabel = "%s" % labels[i] except Exception: dimlabel = 'dim_%d' % i else: dim = numpy.arange(shape[i]).astype(numpy.float32) dimlabel = 'dim_%d' % i axesAttribute.append(dimlabel) adset = nxData.require_dataset(dimlabel, dim.shape, dim.dtype, compression=None) adset[:] = dim[:] adset.attrs['axis'] = i + 1 nxData.attrs["axes"] = to_h5py_utf8([axAttr for axAttr in axesAttribute]) nxEntry['end_time'] = getDate() if mode.lower() == 'nexus+': # create link # Deprecated: g = h5py.h5g.open(hdf.fid, '/') g = h5py.h5g.open(hdf.id, '/') g.link('/data/NXdata/data', '/data/data', h5py.h5g.LINK_HARD) elif mode.lower() == 'simplest': if os.path.exists(filename): try: os.remove(filename) except Exception: raise IOError("Cannot overwrite existing file!") hdf = h5py.File(filename, 'a') if compression: hdf.require_dataset('data', shape=shape, dtype=dtype, data=data, chunks=(1, shape[1], shape[2]), compression=compression) else: hdf.require_dataset('data', shape=shape, data=data, dtype=dtype, compression=None) else: if os.path.exists(filename): try: os.remove(filename) except Exception: raise IOError("Cannot overwrite existing file!") shape = data.shape dtype = data.dtype hdf = h5py.File(filename, 'a') dataGroup = hdf.require_group('data') dataGroup.require_dataset('data', shape=shape, dtype=dtype, data=data, chunks=(1, shape[1], shape[2])) hdf.flush() hdf.close() def main(): a = numpy.arange(1000000.) a.shape = 20, 50, 1000 save3DArrayAsHDF5(a, '/test.h5', mode='nexus+', interpretation='image') getHDF5FileInstanceAndBuffer('/test2.h5', (100, 100, 100)) print("Date String = ", getDate()) if __name__ == "__main__": main() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/ArtaxFileParser.py��������������������������������������������������0000644�0000000�0000000�00000035501�14741736366�020246� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import types import logging _logger = logging.getLogger(__name__) #spx and rtx file formats based on XML import xml.etree.ElementTree as ElementTree from PyMca5.PyMcaIO import SpecFileAbstractClass def myFloat(x): try: return float(x) except ValueError: if ',' in x: try: return float(x.replace(',','.')) except Exception: return float(x) elif '.' in x: try: return float(x.replace('.',',')) except Exception: return float(x) else: raise class ArtaxFileParser(object): ''' Class to read ARTAX .spx or .rtx files ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the .spx or .rtx file. ''' if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) if not isArtaxFile(filename): raise IOError("This does not look as an Artax file") f = ElementTree.parse(filename) root = f.getroot() self._classDict = {} for classType in [#'TRTProject', #'TRTBase', #'TScanInfo', #'TRTImageData', 'TRTSpectrum']: content = root.findall(".//ClassInstance[@Type='%s']" % classType) self._classDict[classType] = content self.__artaxTScanInfo = self.__getArtaxTScanInfo(root) self._cacheScan = None self._file = os.path.abspath(filename) if self.scanno(): self._cacheScan = ArtaxScan(self._classDict["TRTSpectrum"][0], 0, self._file) self._lastScan = 0 @property def artaxTScanInfo(self): return self.__artaxTScanInfo def __getArtaxTScanInfo(self, root): # obtain some Artax Map specific information node = root.find(".//ClassInstance[@Type='TScanInfo']") scanInfoKeys = ["XFirst", "YFirst", "ZFirst", "XLast", "YLast", "ZLast", "MeasNo", # number of spectra "Mapping", "Picture", # number of pictures "Single"] scanInfo = {} if node: for child in node: if child.tag in scanInfoKeys: key = child.tag if key in ["Mapping", "Single"]: if child.text.upper() == "TRUE": scanInfo[key] = True else: scanInfo[key] = False else: scanInfo[key] = myFloat(child.text) for key in scanInfoKeys: if key in scanInfo: continue if key in ["Mapping", "Single"]: scanInfo[key] = False elif key in ["Picture"]: scanInfo[key] = 0 else: scanInfo[key] = numpy.nan # images # TODO: See to what these pictures correspond LOAD_PICTURES = False nPictures = scanInfo.get("Picture", 0) if LOAD_PICTURES and nPictures: import base64 import struct from PyMca5.PyMcaIO import TiffIO nodes = root.findall(".//ClassInstance[@Type='TRTImageData']") pictures = {} pictureList = [] for node in nodes: name = node.attrib["Name"] #print("name = ", name) pictureList.append(name) pictures[name] = {} for child in node: #print(child.tag) tag = child.tag try: if tag in ["PlaneCount", "ItemSize", "Width", "Height"]: pictures[name][tag] = int(child.text) else: pictures[name][tag] = myFloat(child.text) except Exception: pictures[name][tag] = child.text if tag.startswith("Plane") and tag not in ["PlaneCount"]: plane = node.find(".//" + tag) #print("plane = ", plane) pictures[name][tag] = {} for item in plane: pictures[name][tag][item.tag] = item.text #print(pictures[name][tag].keys()) #print(pictures[name].keys()) for name in pictures: picture = pictures[name] #print(picture["ItemSize"]) #print(picture["Width"]) #print(picture["Height"]) #print(picture.keys()) tiff = None for plane in range(picture["PlaneCount"]): key = "Plane%d" % plane #print(len(picture[key]["Data"])) #print(picture[key]["Size"]) data = numpy.zeros((picture["Height"] * picture["Width"]), dtype=numpy.uint8) decoded = base64.b64decode(picture[key]["Data"]) data[:] = struct.unpack("%dB" % int(picture[key]["Size"]), decoded) if tiff is None: tiff =TiffIO.TiffIO(name + ".tiff", "wb") else: tiff =TiffIO.TiffIO(name + ".tiff", "rb+") tiff.writeImage(data, info={"Title": key}) data.shape = picture["Height"], picture["Width"] picture[key]["Data"] = data tiff = None #print("pictures = ", pictures.keys()) #print("PictureList = ", pictureList) scanInfo["pictures"] = pictures # done with the Artax map specific information return scanInfo def scanno(self): return len(self._classDict["TRTSpectrum"]) def __getitem__(self, item): if item == self._lastScan and self._cacheScan: scan = self._cacheScan else: scan = ArtaxScan(self._classDict["TRTSpectrum"][item], item, self._file) self._lastScan = item self._cacheScan = scan return scan def list(self): return "1:%d" % self.scanno() def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def allmotors(self): if self.scanno(): return self._cacheScan._motorNames * 1 else: return [] class ArtaxScan(object): def __init__(self, spectrumNode, number, filename): self._node = spectrumNode self._number = number self.__data = None command = "" if "Name" in spectrumNode.keys(): command = "%s" % self._node.attrib["Name"] else: command = "TRTSpectrum %d" % number # we expect only one spectrum (if not we would use findall) self._spectra = [self._node.find(".//Channels")] # get the position(s) at which the spectrum was collected self._motorNames = [] self._motorValues = [] keyToSearch = ".//ClassInstance[@Type='TRTAxesHeader']//AxesParameter" positionsNode = self._node.find(keyToSearch) if positionsNode: for child in positionsNode: if "AxisName" in child.attrib: motorName = child.attrib["AxisName"] if "AxisPosition" in child.attrib: motorValue = myFloat(child.attrib["AxisPosition"]) self._motorNames.append(motorName) self._motorValues.append(motorValue) elif "PDHID" in command and "(X " in command and " Y " in command: # Aaron's approximation to Artax files # we should not crash because of it try: import re expr = r"(?:[XY] \d+(?:[.]\d*)?|[.]\d+)" XY = re.findall(expr, command) if len(XY) == 2: X, Y = XY self._motorNames = ["x", "y"] self._motorValues = [myFloat(X.split(" ")[-1]), myFloat(Y.split(" ")[-1])] except Exception: _logger.warning("Could not extract positions from %s" % command) # get the additional information info = {} infoKeys = ['HighVoltage', 'TubeCurrent', 'RealTime', 'LifeTime', 'DeadTime', 'ZeroPeakPosition', 'ZeroPeakFrequency', 'PulseDensity', 'Amplification', 'ShapingTime', 'Date','Time', 'ChannelCount','CalibAbs', 'CalibLin'] classTypeList = ['TRTSpectrumHeader', 'TRTGeneratorHeader', 'TRTSpectrumHardwareHeader'] for classType in classTypeList: nodeToSearch = ".//ClassInstance[@Type='%s']" % classType target = self._node.find(nodeToSearch) if target is None: _logger.debug("Unused class <%s>" % classType) continue for child in target: if child.tag in ["Date", "Time"]: info[child.tag] = child.text elif child.tag in infoKeys: info[child.tag] = myFloat(child.text) for key in infoKeys: if key not in info: _logger.debug("key not found %s" % key) self._command = command scanheader = [] scanheader.append("#S %d %s" % (self._number + 1, self.command())) i = 0 for key in infoKeys: scanheader.append("#U%d %s %s" % (i, key, info.get(key, "Unknown"))) i += 1 liveTime = info.get('LifeTime', None) realTime = info.get('RealTime', liveTime) if liveTime is not None: scanheader.append("#@CTIME %f %f %f" % (myFloat(realTime)/1000., myFloat(liveTime)/1000., myFloat(realTime)/1000.)) scanheader.append("#@CALIB %f %f 0" % (myFloat(info.get('CalibAbs', 0.0)), myFloat(info.get('CalibLin', 1.0)))) self._scanHeader = scanheader self._fileHeader = ["#F %s" % filename] if len(self._motorNames): spacing = " " * 4 motorsLine = "#O0%s" % spacing for mne in self._motorNames: motorsLine += "%s%s" % (spacing, mne) self._fileHeader.append(motorsLine) def _readSpectrum(self, channelsNode): if self.__data is None: self.__data = numpy.array([myFloat(x) for x in channelsNode.text.split(',')], dtype=numpy.float32) return self.__data def nbmca(self): return len(self._spectra) def mca(self, number): return self._readSpectrum(self._spectra[number - 1]) def alllabels(self): return [] def allmotorpos(self): return self._motorValues def command(self): return self._command def date(self): return self._data["TimeStamp"][self._number] def fileheader(self): return self._fileHeader def header(self, key): _logger.debug("Requested key = %s", key) _logger.debug("Requested key = %s", key) if key in ['S', '#S']: return self.fileheader()[0] elif key == 'N': return [] elif key == 'L': return [] elif key in ['D', '@CTIME', '@CALIB', '@CHANN']: for item in self._scanHeader: if item.startswith("#" + key): return [item] return [] elif key == "" or key == " ": return self._scanHeader else: return [] def order(self): return 1 def number(self): return self._number + 1 def lines(self): return 0 def isArtaxFile(filename): try: if filename[-3:].lower() not in ["rtx", "spx", "xml"]: return False with open(filename, 'rb') as f: # expected to read an xml file someChar = f.read(100) if b"xml version" in someChar: if filename[-3:].lower() == "xml": if b"TRTSpectrum" in someChar: return True else: return False return True except Exception: pass return False def test(filename): if isArtaxFile(filename): sf=ArtaxFileParser(filename) else: print("Not an Artax .spx or .rtx File") return sf = ArtaxFileParser(filename) print(sf[0].nbmca()) print(sf[0].mca(1)) print(sf[0].header('S')) #print(sf[0].header('D')) #print(sf[0].alllabels()) print(sf.allmotors()) print(sf[0].allmotorpos()) print(sf[0].header('@CTIME')) print(sf[0].header('@CALIB')) print(sf[0].header('')) if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/BAXSCSVFileParser.py������������������������������������������������0000644�0000000�0000000�00000021673�14741736366�020305� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaIO import SpecFileAbstractClass _logger = logging.getLogger(__name__) class BufferedFile(object): def __init__(self, filename): f = open(filename, 'r') self.__buffer = f.read() f.close() self.__buffer = self.__buffer.replace("\r", "\n") self.__buffer = self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") self.__currentLine = 0 def readline(self): if self.__currentLine >= len(self.__buffer): return "" line = self.__buffer[self.__currentLine] self.__currentLine += 1 return line def close(self): self.__buffer = [""] self.__currentLine = 0 return class BAXSCSVFileParser(object): def __init__(self, filename): if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) _fileObject = BufferedFile(filename) #Only one measurement per file header = [] ddict = {} line = _fileObject.readline() if not (line.startswith("Bruker AXS") or \ (("KTI" in line) and ("Spectrum" in line))): raise IOError("This does look as a Bruker AXS Handheld CSV file") _logger.info(line) if line.endswith("Simple CSV"): _logger.info("Simple CSV") version = "Simple CSV" while not line.startswith("1,") and len(line): header.append(line) line = _fileObject.readline() line = "1,0" elif line.endswith("Complete CSV"): _logger.info("Complete CSV") version = "Complete CSV" while not line.startswith("Spectrum:") and len(line): header.append(line) line = _fileObject.readline() line = _fileObject.readline() else: _logger.info("AXS Version < 5") version = None while not line.startswith("Channel#") and len(line): header.append(line) line = _fileObject.readline() header.append(line) line = _fileObject.readline() _logger.info("First data line = <%s>" % line) line = line.replace('"',"") splitLine = line.split(",") data = [] while(len(splitLine)): if len(splitLine[0]): try: data.append([float(x) for x in splitLine if len(x) > 0]) except ValueError: break else: break line = _fileObject.readline() line = line.replace('"',"") splitLine = line.split(",") _fileObject.close() dataColumnNames = [x for x in header[-1].split(",") if len(x) > 0] data = numpy.array(data, dtype=numpy.float64) #print(header) #print(data) labels=[] #create an abstract scan object self._scan = [BAXSCSVScan(data, scantype='MCA', scanheader=header, #labels=labels, #motor_values=self.motorValues, point=False, version=version)] def __getitem__(self, item): return self._scan[item] def scanno(self): """ Gives back the number of scans in the file """ return len(self_scan) def list(self): return "1:1" def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def allmotors(self): _logger.debug("BAXCSVFileParser allmotors called") return [] class BAXSCSVScan(SpecFileAbstractClass.SpecFileAbstractScan): def __init__(self, data, scantype='MCA', identification="1.1", scanheader=None, labels=None, motor_values=None, point=False, version=None): SpecFileAbstractClass.SpecFileAbstractScan.__init__(self, data, scantype=scantype, identification=identification, scanheader=scanheader, labels=labels, point=point) self._data = data self._version = version def nbmca(self): return 1 def mca(self, number): # it gives the last column (some files have three columns) # corresponding to channels, counts and (probably) corrected counts # this seems to be confirmed by the fact the Live Time is 0.0 in those # files if number <= 0: raise IndexError("Mca numbering starts at 1") elif number > self.nbmca(): raise IndexError("Only %d MCA's" % number) return self._data[:, -1] def header(self, key): if key == "@CALIB": gain = 1.0 offset = 0.0 for item in self.scanheader: if item.startswith("eV per channel,") or \ item.startswith("eVPerChannel,"): gain = 0.001 * float(item.split(",")[1]) elif item.startswith("StartingKeV,"): offset = float(item.split(",")[1]) return ["#@CALIB %f %f %f" % (offset, gain, 0.0)] elif key == "@CTIME": preset = -1 live = -1 duration = -1 for item in self.scanheader: if item.startswith("Duration Time,") or\ item.startswith("TotalElapsedTimeInSeconds"): duration = float(item.split(",")[1]) elif item.startswith("Live Time,") or \ item.startswith("LiveTimeInSeconds"): live = float(item.split(",")[1]) if self._version not in ["Simple CSV", "Complete CSV"]: if self._data.shape[1] == 3: # counts are already corrected live = duration if (preset > 0) and (duration > 0) and (live > 0): return ["#@CTIME %f %f %f" % (preset, live, duration)] elif (duration > 0) and (live > 0): return ["#@CTIME %f %f %f" % (duration, live, duration)] elif (live > 0): return ["#@CTIME %f %f %f" % (live, live, live)] elif (duration > 0): return ["#@CTIME %f %f %f" % (duration, duration, duration)] else: return [] else: return super(BAXSCSVScan, self).header(key) def isBAXSCSVFile(filename): f = open(filename, 'r') try: line = f.readline() f.close() except Exception: f.close() return False try: if filename.lower().endswith(".csv"): if line.startswith("Bruker AXS") or \ (("KTI" in line) and ("Spectrum" in line)): return True except Exception: pass return False def test(filename): if isBAXSCSVFile(filename): print("Bruker AXS File") sf=BAXSCSVFileParser(filename) else: print("Not a Bruker AXS File") print(sf[0].header('S')) print(sf[0].header('D')) print(sf[0].header('@CALIB')) print(sf[0].header('@CTIME')) print(sf[0].alllabels()) #print(sf[0].allmotorsvalues()) print(sf[0].nbmca()) print(sf[0].mca(1)) if __name__ == "__main__": test(sys.argv[1]) ���������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/BlissSpecFile.py����������������������������������������������������0000644�0000000�0000000�00000034545�14741736366�017710� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ This class exposes scan information stored by Bliss into redis as SPEC file. """ import os import sys import numpy import time import logging _logger = logging.getLogger(__name__) try: import RedisTools as redis HAS_REDIS = True except Exception: try: import PyMca5.PyMcaCore.RedisTools as redis HAS_REDIS = True except Exception: _logger.info("Cannot import PyMca5.PyMcaCore.RedisTools") HAS_REDIS = False if HAS_REDIS: from collections import OrderedDict class BlissSpecFile(object): def __init__(self, filename, nscans=10): """ filename is the name of the bliss session """ if not HAS_REDIS: raise ImportError("Could not import RedisTools") if filename not in redis.get_sessions_list(): raise IOError("Session <%s> not available" % filename) self._scan_nodes = [] self._session = filename self._filename = redis.get_session_filename(self._session) self._scan_nodes = redis.get_session_scan_list(self._session, self._filename) if len(self._scan_nodes) > nscans: self._scan_nodes = self._scan_nodes[-10:] self.list() self.__lastTime = 0 self.__lastKey = "0.0" def list(self): """ Return a string with all the scan keys separated by , """ _logger.debug("list method called") scanlist = ["%s" % scan.name.split("_")[0] for scan in self._scan_nodes] self._list = ["%s.1" % idx for idx in scanlist] return ",".join(scanlist) def __getitem__(self, item): """ Returns the scan data """ _logger.info("__getitem__ called %s" % item) t0 = time.time() key = self._list[item] if key == self.__lastKey and (t0 - self.__lastTime) < 1: # less than one second since last call, return cached value _logger.info("Returning cached value for key %s" % key) else: if key == self.__lastKey: _logger.info("Re-reading value for key %s" % key) self.__lastKey = key self.__lastItem = BlissSpecScan(self._scan_nodes[item]) self.__lastTime = time.time() return self.__lastItem def select(self, key): """ key is of the from s.o scan number, scan order """ _logger.info("select called %s" % key) n = self._list.index(key) return self.__getitem__(n) def scanno(self): """ Gives back the number of scans in the file """ _logger.debug("scanno called") return len(self._scan_nodes) def allmotors(self): _logger.debug("allmotors called") return [] def isUpdated(self): _logger.debug("BlissSpecFile is updated called") # get last scan scan_nodes = redis.get_session_scan_list(self._session, self._filename) if not len(scan_nodes): # if we get no scans, information was emptied/lost and we'll get errors in any case # just say the file was updated. Perhaps the application asks for an update return True scanlist = ["%s" % scan.name.split("_")[0] for scan in scan_nodes] keylist = ["%s.1" % idx for idx in scanlist] scankey = keylist[-1] # if the last node is different, there are new data if scankey != self._list[-1]: return True # if the number of points or of mcas in the last node are different there are new data # the problem is how to obtain the previous number of points and mcas but in any case # we are going to read again the last scan if self.__lastKey == scankey: # we have old data available previous_npoints = self.__lastItem.lines() previous_nmca = self.__lastItem.nbmca() # read back (I do not force to read for the time being) scan = self.select(scankey) npoints = scan.lines() nmca = scan.nbmca() if self.__lastKey == scankey: if npoints > previous_npoints or nmca > previous_nmca: _logger.info("BlissSpecFile <%s> updated. New last scan data" % self._session) return True # there might be new points or mcas in the last scan, but that is easy and fast # to check by the main application because data are in cache _logger.debug("BlissSpecFile <%s> NOT updated." % self._session) return False class BlissSpecScan(object): def __init__(self, scanNode): _logger.debug("__init__ called %s" % scanNode.name) self._node = scanNode self._identification = scanNode.name.split("_")[0] + ".1" self._scan_info = redis.scan_info(self._node) # check if there are 1D detectors top_master, channels = next(iter(scanNode.info["acquisition_chain"].items())) if len(channels["spectra"]): # for the time being only one MCA read self._spectra = redis.get_spectra(scanNode, unique=True) else: self._spectra = [] self._counters = None self._motors = self._scan_info.get("positioners", {}) def _read_counters(self, force=False): if force or not self._counters: _counters = redis.get_scan_data(self._node) try: _counters = self._sort_counters(_counters) except Exception: _logger.error("Error sorting counters %s" % sys.exc_info()[1]) self._counters = _counters def _sort_counters(self, counters): positioners = self.allmotors() title = self.command() tokens = title.split() scanned = [item for item in positioners if item in counters] if not len(scanned): scanned = [item for item in tokens if item in counters] # do nothing if there are no scanned motors assuming that the default # order will have the relevant items first if not len(scanned): return counters pure_counters = [item for item in counters if not (item in scanned)] # sort the pure counters if len(pure_counters) > 1: if sys.version_info > (3, 3): # sort irrespective of capital or lower case pure_counters.sort(key=str.casefold) else: # sort (capital letters first) pure_counters.sort() # sort the scanned motors if len(scanned) > 1: if sys.version_info > (3, 3): # sort irrespective of capital or lower case scanned.sort(key=str.casefold) else: # sort (capital letters first) scanned.sort() indices = [] offset = len(tokens) + len(scanned) for item in scanned: if item in tokens: indices.append((tokens.index(item), item)) else: indices.append((offset + scanned.index(item), item)) indices.sort() scanned = [item for idx, item in indices] ordered = OrderedDict() for key in scanned: ordered[key] = counters[key] for key in pure_counters: ordered[key] = counters[key] return ordered def alllabels(self): """ These are the labels associated to the counters """ _logger.debug("alllabels called") self._read_counters() return [key for key in self._counters] def allmotors(self): _logger.debug("allmotors called") positioners = self._motors.get("positioners_start", {}) return [key for key in positioners if not hasattr(positioners[key], "endswith")] def allmotorpos(self): _logger.debug("allmotorpos called") positioners = self._motors.get("positioners_start", {}) return [positioners[key] for key in positioners if not hasattr(positioners[key], "endswith")] def cols(self): _logger.debug("cols called") self._read_counters() return len(self._counters) def command(self): _logger.debug("command called") return self._scan_info.get("title", "No COMMAND") def data(self): # somehow I have to manage to get the same number of points in all counters _logger.info("data called") self._read_counters(force=True) counters = self._counters keys = list(counters.keys()) n_actual = len(counters[keys[0]]) n_expected = self.lines() data = numpy.empty((len(keys), n_expected), dtype=numpy.float32) i = 0 for key in keys: cdata = counters[key] n = cdata.size if n >= n_expected: data[i] = cdata[:n_expected] else: data[i, :n] = cdata data[i, n:n_expected] = numpy.nan i += 1 return data def datacol(self, col): _logger.debug("datacol called") return self.data()[col, :] def dataline(self,line): _logger.debug("dataline called") return self.data()[:, line] def date(self): _logger.debug("date called") text = 'sometime' text = self._scan_info.get("start_time", text) return self._scan_info.get("start_time_str", text) def fileheader(self, key=''): _logger.debug("fileheader called") # this implementations returns the scan header instead of the correct # keys #E (file), #D (date) #O0 (motor names) # self._read_counters() labels = '#L ' for label in self._counters: labels += ' '+label return ['#S %s %s' %(self._node.name.split("_")[0], self.command()), '#D %s' % self.date(), '#N %d' % self.cols(), labels] def header(self,key): _logger.debug("header called") if key == 'S': return self.fileheader()[0] elif key == 'D': return self.fileheader()[1] elif key == 'N': return self.fileheader()[-2] elif key == 'L': return self.fileheader()[-1] elif key == '@CALIB': output = [] return output elif key == '@CTIME': # expected to send Preset Time, Live Time, Real (Elapsed) Time output = [] return output elif key == "" or key == " ": return self.fileheader() else: output = [] return output def order(self): _logger.debug("order called") return 1 def number(self): _logger.debug("number called") return int(self._node.name.split("_")[0]) def lines(self): _logger.debug("lines called") self._read_counters() counters = self._counters if len(counters): nlines = 0 keyList = list(counters.keys()) for key in keyList: n = len(counters[key]) if n > nlines: nlines = n return nlines else: return 0 def nbmca(self): _logger.debug("nbmca called") if len(self._spectra): return len(self._spectra[0]) else: return 0 def mca(self,number): _logger.debug("mca called") if number <= 0: raise IndexError("Mca numbering starts at 1") elif number > self.nbmca(): raise IndexError("Only %d MCAs in file" % self.nbmca()) return self._spectra[0][number - 1] def isBlissSpecFile(filename): if os.path.exists(filename): return False try: if filename in redis.get_sessions_list(): return True except Exception: pass return False def test(filename): sf = BlissSpecFile(filename) print(sf[0].header('D')) print(sf[0].alllabels()) print(sf[0].nbmca()) if sf[0].nbmca(): print(sf[0].mca(1)) print(sf[0].header('S')) print(sf[0].allmotors()) print(sf[0].allmotorpos()) print(sf[0].header('@CTIME')) print(sf[0].header('@CALIB')) print(sf[0].header('')) print("Number of lines = ", sf[0].lines()) if sf[0].lines(): print("1st column = ", sf[0].datacol(0)) print("1st line = ", sf[0].dataline(0)) if sf.scanno() > 1: t0 = time.time() for i in range(sf.scanno()): #print(i) print(sf[i].header('S')) print(sf[i].header('D')) print(sf[i].alllabels()) print(sf[i].nbmca()) if sf[i].nbmca(): print(sf[i].mca(1)) print(sf[i].allmotors()) print(sf[i].allmotorpos()) print("elapsed = ", time.time() - t0) if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/BrukerBCF.py��������������������������������������������������������0000644�0000000�0000000�00000017174�14741736366�016765� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2022-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "26/10/2022" import sys import os import struct import numpy import base64 import logging _logger = logging.getLogger(__name__) try: from bcflight import bruker _logger.info("Bruker BCF file supported") HAS_BCF_SUPPORT = True except Exception: _logger.info("Bruker BCF file support not available") HAS_BCF_SUPPORT = False try: from PyMca5.PyMcaCore.Dataobject import DataObject except ImportError: _logger.info("Using built-in container") class DataObject: def __init__(self): self.info = {} self.data = numpy.array([]) SOURCE_TYPE = "EdfFileStack" class BrukerBCF(DataObject): def __init__(self, filename): if not isBrukerBCFFile(filename): raise IOError("Filename %s does not seem to be a Bruker bcf file") DataObject.__init__(self) reader = bruker.BCF_reader(filename) self.data = None # it seems the library performs a binning when downsampling. self._binning = 1 try: self.data = reader.parse_hypermap(downsample=self._binning, lazy=False) except Exception: if "MemoryError" in "%s" % (sys.exc_info()[0],): self._binning += 1 self.data = reader.parse_hypermap(downsample=self._binning, lazy=False) _logger.warning("Data downsampled to fit into memory") else: raise self.sourceName = filename self.info = {} self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["NumberOfFiles"] = 1 self.info["McaIndex"] = -1 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 # header information header_file = reader.get_file('EDSDatabase/HeaderData') header_byte_str = header_file.get_as_BytesIO_string().getvalue() hd_bt_str = bruker.fix_dec_patterns.sub(b'\\1.\\2', header_byte_str) xml_str = hd_bt_str root = bruker.ET.fromstring(xml_str) root = root.find("./ClassInstance[@Type='TRTSpectrumDatabase']") xScale, yScale = get_scales(root) self.info["xScale"] = xScale if xScale: self.info["xScale"][1] = xScale[1] * self._binning self.info["yScale"] = yScale if yScale: self.info["yScale"][1] = yScale[1] * self._binning self.info["McaCalib"] = get_calibration(root) if self._binning == 1: try: live_times = get_live_times(root) except Exception: _logger.warning("Error retrieving spectra live time") live_times = None self.info["live_time"] = live_times def get_scales(root): semData = root.find("./ClassInstance[@Type='TRTSEMData']") semData_dict = bruker.dictionarize(semData) if "DX" in semData_dict and "DY" in semData_dict: xScale = [0.0, semData_dict["DX"]] yScale = [0.0, semData_dict["DY"]] else: xScale = None yScale = None return xScale, yScale def get_calibration(root): spectrum_header = root.find(".//ClassInstance[@Type='TRTSpectrumHeader']") calibration = [0.0, 1.0, 0.0] if spectrum_header: spectrum_header_data = bruker.dictionarize(spectrum_header) calibrated = True for key in ["ChannelCount", "CalibAbs", "CalibLin"]: if key not in spectrum_header_data: calibrated = False break if calibrated: calibration = [spectrum_header_data["CalibAbs"], spectrum_header_data["CalibLin"], 0.0] return calibration def get_live_times(root): result = None image_nodes = root.findall("./ClassInstance[@Type='TRTImageData']") # for the time being we retrieve only one live_time image for node in image_nodes: if not node.get('Name'): continue name = node.get('Name') if name == "PixelTimes": width = int(node.find('./Width').text) height = int(node.find('./Height').text) dtype = 'u' + node.find('./ItemSize').text plane_count = int(node.find('./PlaneCount').text) if plane_count == 1: # can it be different for PixelTimes? image_data_node = node.find("./Plane0") decoded = base64.b64decode(image_data_node.find('./Data').text) result = numpy.frombuffer(decoded, dtype=dtype) result.shape = height, width # express in seconds result = (result * 1.0e-6).astype(numpy.float32) break return result def isBrukerBCFFile(filename): _logger.info("BrukerBCF.isBrukerBCFFile called %s" % filename) result = False try: owner = False if not hasattr(filename, "seek"): fid = open(filename, mode='rb') owner = True else: fid =filename fid.seek(0) eight_chars = fid.read(8) if hasattr(eight_chars, "decode"): if eight_chars == b"AAMVHFSS": if owner: fid.close() result = True else: if eight_chars == "AAMVHFSS": if owner: fid.close() result = True except Exception: if owner: fid.close() if result: _logger.info("It is a Bruker bcf file") else: _logger.info("Not a Bruker bcf file") return result if __name__ == "__main__": if len(sys.argv) > 1: filename = sys.argv[1] else: print("Usage: ") print("python BrukerBCF.py filename") sys.exit(0) print("is Bruker BCF File?", isBrukerBCFFile(filename)) stack = BrukerBCF(filename) print(stack.data) print("total counts = ", stack.data.sum()) print(stack.info) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/ConfigDict.py�������������������������������������������������������0000644�0000000�0000000�00000025607�14741736366�017231� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "E. Papillon & V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys if sys.version_info < (3,): import ConfigParser from StringIO import StringIO else: import configparser as ConfigParser from io import StringIO try: import numpy USE_NUMPY = True except ImportError: # do not use numpy, use lists USE_NUMPY = False class ConfigDict(dict): def __init__(self, defaultdict=None, initdict=None, filelist=None): if defaultdict is None: defaultdict = {} dict.__init__(self, defaultdict) self.default = defaultdict self.filelist = [] if initdict is not None: self.update(initdict) if filelist is not None: self.read(filelist) def reset(self): """ Revert to default values """ self.clear() self.update(self.default) def clear(self): """ Clear dictionary """ dict.clear(self) self.filelist = [] def _check(self): pass def __tolist(self, mylist): if mylist is None: return None if not isinstance(mylist, list): return [mylist] else: return mylist def getfiles(self): return self.filelist def getlastfile(self): return self.filelist[len(self.filelist) - 1] def __convert(self, option): return option def read(self, filelist, sections=None): """ read the input file list into the internal dictionary """ filelist = self.__tolist(filelist) sections = self.__tolist(sections) if not len(filelist): return hdf5files = [] for ffile in filelist: if not os.path.exists(ffile): if "::" in ffile: # check if we have received a URI fname, path = ffile.split("::") if os.path.exists(fname): try: import h5py except ImportError: raise IOError("File <%s> does not exist" % ffile) if h5py.is_hdf5(fname): with h5py.File(fname, "r") as h5: stringOrBytes = h5[path][()] if hasattr(stringOrBytes, "decode"): stringOrBytes = \ stringOrBytes.decode("utf-8") config = StringIO(stringOrBytes) self.readfp(config, sections=sections) hdf5files.append(ffile) else: raise IOError("File <%s> does not exist" % ffile) cleanlist = [fname for fname in filelist if fname not in hdf5files] cfg = ConfigParser.ConfigParser() cfg.optionxform = self.__convert cfg.read(cleanlist) self.__read(cfg, sections) for ffile in filelist: self.filelist.append([ffile, sections]) self._check() def readfp(self, filelike, sections=None): """ read the input file-like object into the internal dictionary """ cfg = ConfigParser.ConfigParser() cfg.optionxform = self.__convert #readfp was deprecated in Python 3.2 if hasattr(cfg, "read_file"): cfg.read_file(filelike) else: cfg.readfp(filelike) self.__read(cfg, sections) self._check() def read_file(self, *var, **kw): return self.readfp(*var, **kw) def __read(self, cfg, sections=None): cfgsect = cfg.sections() if sections is None: readsect = cfgsect else: readsect = [sect for sect in cfgsect if sect in sections] for sect in readsect: ddict = self for subsectw in sect.split('.'): subsect = subsectw.replace("_|_", ".") if not (subsect in ddict): ddict[subsect] = {} ddict = ddict[subsect] for opt in cfg.options(sect): ddict[opt] = self.__parse_data(cfg.get(sect, opt)) def __parse_data(self, data): if len(data): if data.find(',') == -1: # it is not a list if USE_NUMPY and (data[0] == '[') and (data[-1] == ']'): # this looks as an array try: return numpy.array([float(x) for x in data[1:-1].split()]) except ValueError: try: if (data[2] == '[') and (data[-3] == ']'): nrows = len(data[3:-3].split('] [')) indata = data[3:-3].replace('] [', ' ') indata = numpy.array([float(x) for x in indata.split()]) indata.shape = nrows, -1 return indata except ValueError: pass dataline = [line for line in data.splitlines()] if len(dataline) == 1: return self.__parse_line(dataline[0]) elif len(dataline) == 0: # do not return an empty list but an empty string return "" else: return [self.__parse_line(line) for line in dataline] def __parse_line(self, line): if line.find(',') != -1: if line.endswith(','): if ',' in line[:-1]: return [self.__parse_string(sstr.strip()) for sstr in line[:-1].split(',')] else: return [self.__parse_string(line[:-1].strip())] else: return [self.__parse_string(sstr.strip()) for sstr in line.split(',')] else: return self.__parse_string(line.strip()) def __parse_string(self, sstr): try: return int(sstr) except ValueError: try: return float(sstr) except ValueError: return sstr def tostring(self, sections=None): tmp = StringIO() sections = self.__tolist(sections) self.__write(tmp, self, sections) return tmp.getvalue() def write(self, filename, sections=None): """ Write the current dictionary to the given filename """ sections = self.__tolist(sections) with open(filename, "w") as fp: self.__write(fp, self, sections) def __write(self, fp, ddict, sections=None, secthead=None): dictkey = [] listkey = [] valkey = [] for key in ddict.keys(): if isinstance(ddict[key], list): listkey.append(key) elif isinstance(ddict[key], tuple): listkey.append(key) elif hasattr(ddict[key], 'keys'): dictkey.append(key) else: valkey.append(key) for key in valkey: if USE_NUMPY: if isinstance(ddict[key], numpy.ndarray): fp.write('%s =' % key + ' [ ' + ' '.join([str(val) for val in ddict[key]]) + ' ]\n') continue txt = '%s = %s\n' % (key, ddict[key]) if sys.version_info > (2, 9) and ("%" in txt): # when reading configparser needs to see % characters in pairs fp.write(txt.replace("%", "%%")) else: fp.write(txt) for key in listkey: fp.write('%s = ' % key) llist = [] sep = ', ' for item in ddict[key]: if isinstance(item, list): if len(item) == 1: llist.append('%s,' % item[0]) else: llist.append(', '.join([str(val) for val in item])) sep = '\n\t' else: llist.append(str(item)) fp.write('%s\n' % (sep.join(llist))) if 0: # this optimization method does not pass the tests. # disable it for the time being. if sections is not None: dictkey= [ key for key in dictkey if key in sections ] for key in dictkey: if secthead is None: newsecthead = key.replace(".", "_|_") else: newsecthead = '%s.%s' % (secthead, key.replace(".", "_|_")) #print "newsecthead = ", newsecthead fp.write('\n[%s]\n' % newsecthead) self.__write(fp, ddict[key], key, newsecthead) def prtdict(ddict, lvl=0): for key in ddict.keys(): if hasattr(ddict[key], 'keys'): print('\t' * lvl), print('+', key) prtdict(ddict[key], lvl + 1) else: print('\t' * lvl), print('-', key, '=', ddict[key]) def getDictFromPathOrUri(path): """ Takes as input an ini-like file or an HDF5 URI """ cfg = ConfigDict() cfg.read(path) return cfg def main(): if len(sys.argv) > 1: config = ConfigDict(filelist=sys.argv[1:]) prtdict(config) else: print("USAGE: %s <filelist>" % sys.argv[0]) if __name__ == '__main__': main() �������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/EDFStack.py���������������������������������������������������������0000644�0000000�0000000�00000102604�14741736366�016575� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaCore import EdfFileDataSource from PyMca5.PyMcaMisc import PhysicalMemory import numpy import sys import os import logging # Offer automatic conversion to HDF5 in case of lacking # memory to hold the Stack. HDF5 = False try: import h5py HDF5 = True except Exception: pass SOURCE_TYPE = "EdfFileStack" _logger = logging.getLogger(__name__) X_AXIS=0 Y_AXIS=1 Z_AXIS=2 class EDFStack(DataObject.DataObject): def __init__(self, filelist = None, imagestack=None, dtype=None): DataObject.DataObject.__init__(self) self.incrProgressBar=0 self.__keyList = [] if imagestack is None: self.__imageStack = False else: self.__imageStack = imagestack self.__dtype = dtype if filelist is not None: if type(filelist) != type([]): filelist = [filelist] if len(filelist) == 1: self.loadIndexedStack(filelist) else: self.loadFileList(filelist) def loadFileList(self, filelist, fileindex=0): if type(filelist) == type(''):filelist = [filelist] self.__keyList = [] self.sourceName = filelist self.__indexedStack = True self.sourceType = SOURCE_TYPE self.info = {} self.nbFiles=len(filelist) fileSampling = 1 mcaSampling = 1 #read first edf file #get information tempEdf=EdfFileDataSource.EdfFileDataSource(filelist[0]) keylist = tempEdf.getSourceInfo()['KeyList'] nImages = len(keylist) dataObject = tempEdf.getDataObject(keylist[0]) self.info.update(dataObject.info) if len(dataObject.data.shape) == 3: #this is already a stack self.data = dataObject.data self.__nFiles = 1 self.__nImagesPerFile = nImages shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i+1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = filelist[0] self.info["Size"] = 1 self.info["NumberOfFiles"] = 1 self.info["FileIndex"] = fileindex return arrRet = dataObject.data if self.__dtype is None: self.__dtype = arrRet.dtype self.onBegin(self.nbFiles) singleImageShape = arrRet.shape actualImageStack = False if (fileindex == 2) or (self.__imageStack): self.__imageStack = True if len(singleImageShape) == 1: #single line #be ready for specfile stack? self.onEnd() raise IOError("Not implemented yet") self.data = numpy.zeros((arrRet.shape[0], nImages, self.nbFiles), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[:,i, self.incrProgressBar] = pieceOfStack[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) self.onEnd() else: if nImages > 1: #this is not the common case #should I try to convert it to a standard one #using a 3D matrix or keep as 4D matrix? if self.nbFiles > 1: raise IOError(\ "Multiple files with multiple images implemented yet") self.data = numpy.zeros((arrRet.shape[0], arrRet.shape[1], nImages * self.nbFiles), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[:,:, nImages*self.incrProgressBar+i] = \ pieceOfStack[:,:] self.incrProgressBar += 1 else: #this is the common case try: # calculate needed megabytes if self.__dtype == numpy.float64: bytefactor = 8 else: bytefactor = 4 needed_ = self.nbFiles * \ arrRet.shape[0] *\ arrRet.shape[1] * bytefactor physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone() if physicalMemory is not None: # spare 5% or memory if physicalMemory < (1.05 * needed_): raise MemoryError("Not enough physical memory available") if self.__imageStack: self.data = numpy.zeros((self.nbFiles, arrRet.shape[0], arrRet.shape[1]), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') pieceOfStack=tempEdf.GetData(0) self.data[self.incrProgressBar] = pieceOfStack self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) actualImageStack = True else: self.data = numpy.zeros((arrRet.shape[0], arrRet.shape[1], self.nbFiles), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') pieceOfStack=tempEdf.GetData(0) self.data[:,:, self.incrProgressBar] = pieceOfStack self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) except (MemoryError, ValueError): hdf5done = False if HDF5 and (('PyMcaQt' in sys.modules) or\ ('PyMca.PyMcaQt' in sys.modules)): from PyMca5 import PyMcaQt as qt from PyMca5 import ArraySave msg=qt.QMessageBox.information( None, "Memory error\n", "Do you want to convert your data to HDF5?\n", qt.QMessageBox.Yes,qt.QMessageBox.No) if msg != qt.QMessageBox.No: hdf5file = qt.QFileDialog.getSaveFileName(None, "Please select output file name", os.path.dirname(filelist[0]), "HDF5 files *.h5") if not len(hdf5file): raise IOError("Invalid output file") hdf5file = qt.safe_str(hdf5file) if not hdf5file.endswith(".h5"): hdf5file += ".h5" hdf, self.data = ArraySave.getHDF5FileInstanceAndBuffer(hdf5file, (self.nbFiles, arrRet.shape[0], arrRet.shape[1])) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') pieceOfStack=tempEdf.GetData(0) self.data[self.incrProgressBar,:,:] = pieceOfStack[:,:] hdf.flush() self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) hdf5done = True if not hdf5done: for i in range(3): print("\7") samplingStep = None i = 2 while samplingStep is None: _logger.warning("**************************************************") _logger.warning(" Memory error!, attempting %dx%d sampling reduction ", i,i) _logger.warning("**************************************************") s1, s2 = arrRet[::i, ::i].shape try: self.data = numpy.zeros((s1, s2, self.nbFiles), self.__dtype) samplingStep = i except Exception: i += 1 self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') pieceOfStack=tempEdf.GetData(0) self.data[:,:, self.incrProgressBar] = pieceOfStack[ ::samplingStep,::samplingStep] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) self.onEnd() else: self.__imageStack = False if len(singleImageShape) == 1: #single line #be ready for specfile stack? raise IOError("Not implemented yet") self.data = numpy.zeros((self.nbFiles, arrRet.shape[0], nImages), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[self.incrProgressBar, :,i] = pieceOfStack[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) self.onEnd() else: if nImages > 1: #this is not the common case #should I try to convert it to a standard one #using a 3D matrix or kepp as 4D matrix? if self.nbFiles > 1: if (arrRet.shape[0] > 1) and\ (arrRet.shape[1] > 1): raise IOError(\ "Multiple files with multiple images not implemented yet") elif arrRet.shape[0] == 1: self.data = numpy.zeros((self.nbFiles, arrRet.shape[0] * nImages, arrRet.shape[1]), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[self.incrProgressBar, i,:] = \ pieceOfStack[:,:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) elif arrRet.shape[1] == 1: self.data = numpy.zeros((self.nbFiles, arrRet.shape[1] * nImages, arrRet.shape[0]), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[self.incrProgressBar, i,:] = \ pieceOfStack[:,:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) else: self.data = numpy.zeros((nImages * self.nbFiles, arrRet.shape[0], arrRet.shape[1]), self.__dtype) self.incrProgressBar=0 for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') for i in range(nImages): pieceOfStack=tempEdf.GetData(i) self.data[nImages*self.incrProgressBar+i, :,:] = pieceOfStack[:,:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) self.onEnd() else: if fileindex == 1: try: self.data = numpy.zeros((arrRet.shape[0], self.nbFiles, arrRet.shape[1]), self.__dtype) except Exception: try: self.data = numpy.zeros((arrRet.shape[0], self.nbFiles, arrRet.shape[1]), numpy.float32) except Exception: self.data = numpy.zeros((arrRet.shape[0], self.nbFiles, arrRet.shape[1]), numpy.int16) else: try: # calculate needed megabytes if self.__dtype == numpy.float64: bytefactor = 8 else: bytefactor = 4 needed_ = self.nbFiles * \ arrRet.shape[0] *\ arrRet.shape[1] * 4 physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone() if physicalMemory is not None: # spare 5% of memory if physicalMemory < (1.05 * needed_): raise MemoryError("Not enough physical memory available") self.data = numpy.zeros((self.nbFiles, arrRet.shape[0], arrRet.shape[1]), self.__dtype) except Exception: text = "Memory Error: Attempt subsampling or convert to HDF5" if 1: if 'PyMca5.PyMcaGui.PyMcaQt' in sys.modules: from PyMca5.PyMcaGui import PyMcaQt as qt msg=qt.QMessageBox.information( None, "Memory error\n", "Do you want to subsample your data?\n", qt.QMessageBox.Yes,qt.QMessageBox.No) if msg == qt.QMessageBox.No: raise MemoryError(text) self.data = None self.__dtype = numpy.float32 nTry = 0 while self.data is None: try: self.data = numpy.zeros((len(numpy.arange(self.nbFiles)[::fileSampling]), len(numpy.arange(arrRet.shape[0])[::mcaSampling]), arrRet.shape[1]), self.__dtype) _logger.warning("Subsampling data by %d x %d " % (fileSampling, mcaSampling)) _logger.warning("Data shape %d x %d x %d " % (self.data.shape[0], self.data.shape[1], self.data.shape[2])) except Exception: if 10 * fileSampling < self.nbFiles: fileSampling += 1 if 10 * mcaSampling < arrRet.shape[0]: mcaSampling += 1 nTry += 1 if nTry > 100: raise MemoryError("Memory Error and I could not subsample") elif HDF5 and ('PyMca5.PyMcaGui.PyMcaQt' in sys.modules): from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import ArraySave msg=qt.QMessageBox.information( None, "Memory error\n", "Do you want to convert your data to HDF5?\n", qt.QMessageBox.Yes,qt.QMessageBox.No) if msg == qt.QMessageBox.No: raise MemoryError(text) hdf5file = PyMcaFileDialogs.getFileList(parent=None, message="Please select output file name", currentdir=os.path.dirname(filelist[0]), mode="SAVE", single=True, filetypelist=["HDF5 files *.h5"]) if not len(hdf5file): raise IOError(\ "Invalid output file") hdf5file = qt.safe_str(hdf5file[0]) if not hdf5file.endswith(".h5"): hdf5file += ".h5" hdf, self.data = ArraySave.getHDF5FileInstanceAndBuffer(hdf5file, (self.nbFiles, arrRet.shape[0], arrRet.shape[1])) else: raise MemoryError("Memory Error") filelist = filelist[::fileSampling] self.sourceName = self.sourceName[::fileSampling] self.nbFiles = len(filelist) self.incrProgressBar=0 if fileindex == 1: for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') pieceOfStack=tempEdf.GetData(0) self.data[:,self.incrProgressBar,:] = pieceOfStack[:,:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar * fileSampling) else: # test for ID24 map ID24 = False if "_sample_" in filelist[0]: bckFile = filelist[0].replace("_sample_", "_samplebk_") if os.path.exists(bckFile): bckData = EdfFile.EdfFile(bckFile).GetData(0) else: bckData = 0 i0StartFile = filelist[0].replace("_sample_", "_I0start_") if os.path.exists(i0StartFile): ID24 = True id24idx = 0 i0Start = EdfFile.EdfFile(i0StartFile, 'rb').GetData(0).astype(numpy.float64) i0Start -= bckData i0EndFile = filelist[0].replace("_sample_", "_I0end_") i0Slope = 0.0 if os.path.exists(i0EndFile): i0End = EdfFile.EdfFile(i0EndFile, 'rb').GetData(0) - bckData i0Slope = (i0End-i0Start)/len(filelist) positionersFile = filelist[0].replace("_sample_", "_positioners_") if os.path.exists(positionersFile): positionersEdf = EdfFile.EdfFile(positionersFile, 'rb') self.info["positioners"] = {} for i in range(positionersEdf.GetNumImages()): motorName = positionersEdf.GetHeader(i).get("Title", "Motor_%02d" % i) motorValue = positionersEdf.GetData(i) self.info["positioners"][motorName] = motorValue for tempEdfFileName in filelist: tempEdf=EdfFile.EdfFile(tempEdfFileName, 'rb') if ID24: pieceOfStack=-numpy.log((tempEdf.GetData(0) - bckData)/(i0Start[0,:] + id24idx * i0Slope)) pieceOfStack[numpy.isfinite(pieceOfStack) == False] = 1 id24idx += 1 else: pieceOfStack=tempEdf.GetData(0) try: self.data[self.incrProgressBar, :,:] = pieceOfStack[::mcaSampling,:] except Exception: if pieceOfStack.shape[1] != arrRet.shape[1]: _logger.warning(" ERROR on file %s", tempEdfFileName) _logger.warning(" DIM 1 error Assuming missing data were at the end!!!") if pieceOfStack.shape[0] != arrRet.shape[0]: _logger.warning(" ERROR on file %s", tempEdfFileName) _logger.warning(" DIM 0 error Assuming missing data were at the end!!!") self.data[self.incrProgressBar, :pieceOfStack.shape[0], :pieceOfStack.shape[1]] = pieceOfStack[:, :] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar * fileSampling) self.onEnd() self.__nFiles = self.incrProgressBar self.__nImagesPerFile = nImages shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i+1,) self.info[key] = shape[i] if not isinstance(self.data, numpy.ndarray): hdf.flush() self.info["SourceType"] = "HDF5Stack1D" if self.__imageStack: self.info["McaIndex"] = 0 self.info["FileIndex"] = 1 else: self.info["McaIndex"] = 2 self.info["FileIndex"] = 0 self.info["SourceName"] = [hdf5file] self.info["NumberOfFiles"] = 1 self.info["Size"] = 1 elif actualImageStack: self.info["SourceType"] = SOURCE_TYPE self.info["McaIndex"] = 0 self.info["FileIndex"] = 1 self.info["SourceName"] = self.sourceName self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["Size"] = self.__nFiles * self.__nImagesPerFile else: self.info["SourceType"] = SOURCE_TYPE self.info["FileIndex"] = fileindex self.info["SourceName"] = self.sourceName self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["Size"] = self.__nFiles * self.__nImagesPerFile # try to use positioners to compute the scales (ID24 specific) xPositionerName = None yPositionerName = None if "positioners" in self.info and len(self.info["positioners"]) == 2: for k, v in self.info["positioners"].items(): if isinstance(v, numpy.ndarray) and v.ndim == 2: deltaDim1 = v[:, 1:] - v[:, :-1] deltaDim0 = v[1:, :] - v[:-1, :] if numpy.any(deltaDim1) and not numpy.any(deltaDim0): # positioner varying only along dim1 xPositionerName = k # should we check that all delta values are equal? deltaX = numpy.mean(deltaDim1) originX = v[0, 0] elif numpy.any(deltaDim0) and not numpy.any(deltaDim1): # positioner varying only along dim0 yPositionerName = k deltaY = numpy.mean(deltaDim0) originY = v[0, 0] if xPositionerName is not None and yPositionerName is not None: self.info["xScale"] = (originX, deltaX) self.info["yScale"] = (originY, deltaY) def onBegin(self, n): pass def onProgress(self, n): pass def onEnd(self): pass def loadIndexedStack(self,filename,begin=None,end=None, skip = None, fileindex=0): #if begin is None: begin = 0 if type(filename) == type([]): filename = filename[0] if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) name = os.path.basename(filename) n = len(name) i = 1 while (i <= n): c = name[n-i:n-i+1] if c in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break i += 1 suffix = name[n-i+1:] if len(name) == len(suffix): #just one file, one should use standard widget #and not this one. self.loadFileList(filename, fileindex=fileindex) else: nchain = [] while (i<=n): c = name[n-i:n-i+1] if c not in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break else: nchain.append(c) i += 1 number = "" nchain.reverse() for c in nchain: number += c fformat = "%" + "0%dd" % len(number) if (len(number) + len(suffix)) == len(name): prefix = "" else: prefix = name[0:n-i+1] prefix = os.path.join(os.path.dirname(filename),prefix) if not os.path.exists(prefix + number + suffix): _logger.error("Internal error in EDFStack " "file should exist: %s ", prefix + number + suffix) return i = 0 if begin is None: begin = 0 testname = prefix+fformat % begin+suffix while not os.path.exists(prefix+fformat % begin+suffix): begin += 1 testname = prefix+fformat % begin+suffix if len(testname) > len(filename):break i = begin else: i = begin if not os.path.exists(prefix+fformat % i+suffix): raise ValueError("Invalid start index file = %s" % \ (prefix+fformat % i+suffix)) f = prefix+fformat % i+suffix filelist = [] while os.path.exists(f): filelist.append(f) i += 1 if end is not None: if i > end: break f = prefix+fformat % i+suffix self.loadFileList(filelist, fileindex=fileindex) def getSourceInfo(self): sourceInfo = {} sourceInfo["SourceType"]=SOURCE_TYPE if self.__keyList == []: for i in range(1, self.__nFiles + 1): for j in range(1, self.__nImages + 1): self.__keyList.append("%d.%d" % (i,j)) sourceInfo["KeyList"]= self.__keyList def getKeyInfo(self, key): _logger.info("Not implemented") return {} def isIndexedStack(self): return self.__indexedStack def getZSelectionArray(self,z=0): return (self.data[:,:,z]).astype(numpy.float64) def getXYSelectionArray(self,coord=(0,0)): x,y=coord return (self.data[y,x,:]).astype(numpy.float64) if __name__ == "__main__": import time t0= time.time() stack = EDFStack() #stack.loadIndexedStack("Z:\COTTE\ch09\ch09__mca_0005_0000_0070.edf") stack.loadIndexedStack(r".\COTTE\ch09\ch09__mca_0005_0000_0070.edf") shape = stack.data.shape print("elapsed = %f" % (time.time() - t0)) #guess the MCA imax = 0 for i in range(len(shape)): if shape[i] > shape[imax]: imax = i print("selections ") print("getZSelectionArray shape = ", stack.getZSelectionArray().shape) print("getXYSelectionArray shape = ", stack.getXYSelectionArray().shape) ����������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/EdfFile.py����������������������������������������������������������0000644�0000000�0000000�00000156227�14741736366�016521� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Alexandre Gobbo, V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ EdfFile.py Generic class for Edf files manipulation. Interface: =========================== class EdfFile: __init__(self,FileName) GetNumImages(self) def GetData(self,Index, DataType="",Pos=None,Size=None): GetPixel(self,Index,Position) GetHeader(self,Index) GetStaticHeader(self,Index) WriteImage (self,Header,Data,Append=1,DataType="",WriteAsUnsigened=0,ByteOrder="") Edf format assumptions: =========================== The following details were assumed for this implementation: - Each Edf file contains a certain number of data blocks. - Each data block represents data stored in an one, two or three-dimensional array. - Each data block contains a header section, written in ASCII, and a data section of binary information. - The size of the header section in bytes is a multiple of 1024. The header is padded with spaces (0x20). If the header is not padded to a multiple of 1024, the file is recognized, but the output is always made in this format. - The header section starts by '{' and finishes by '}'. It is composed by several pairs 'keyword = value;'. The keywords are case insensitive, but the values are case sensitive. Each pair is put in a new line (they are separeted by 0x0A). In the end of each line, a semicolon (;) separes the pair of a comment, not interpreted. Exemple: { ; Exemple Header HeaderID = EH:000001:000000:000000 ; automatically generated ByteOrder = LowByteFirst ; DataType = FloatValue ; 4 bytes per pixel Size = 4000000 ; size of data section Dim_1= 1000 ; x coordinates Dim_2 = 1000 ; y coordinates (padded with spaces to complete 1024 bytes) } - There are some fields in the header that are required for this implementation. If any of these is missing, or inconsistent, it will be generated an error: Size: Represents size of data block Dim_1: size of x coordinates (Dim_2 for 2-dimensional images, and also Dim_3 for 3d) DataType ByteOrder - For the written images, these fields are automatically genereted: Size,Dim_1 (Dim_2 and Dim_3, if necessary), Byte Order, DataType, HeaderID and Image These fields are called here "static header", and can be retrieved by the method GetStaticHeader. Other header components are taken by GetHeader. Both methods returns a dictionary in which the key is the keyword of the pair. When writting an image through WriteImage method, the Header parameter should not contain the static header information, which is automatically generated. - The indexing of images through these functions is based just on the 0-based position in the file, the header items HeaderID and Image are not considered for referencing the images. - The data section contais a number of bytes equal to the value of Size keyword. Data section is going to be translated into an 1D, 2D or 3D Numpy Array, and accessed through GetData method call. """ ################################################################################ import sys import numpy import logging import os.path #, tempfile, shutil try: import gzip GZIP = True except Exception: GZIP = False try: import bz2 BZ2 = True except Exception: BZ2 = False try: from PyMca5.PyMcaIO import MarCCD MARCCD_SUPPORT = True except ImportError: #MarCCD MARCCD_SUPPORT = False try: from PyMca5.PyMcaIO import TiffIO TIFF_SUPPORT = True except ImportError: #MarCCD TIFF_SUPPORT = False try: from PyMca5.PyMcaIO import PilatusCBF PILATUS_CBF_SUPPORT = True except ImportError: PILATUS_CBF_SUPPORT = False try: from PyMca5.FastEdf import extended_fread CAN_USE_FASTEDF = 1 except Exception: CAN_USE_FASTEDF = 0 _logger = logging.getLogger(__name__) ################################################################################ # constants HEADER_BLOCK_SIZE = 1024 STATIC_HEADER_ELEMENTS = ("HeaderID", "Image", "ByteOrder", "DataType", "Dim_1", "Dim_2", "Dim_3", "Offset_1", "Offset_2", "Offset_3", "Size") STATIC_HEADER_ELEMENTS_CAPS = ("HEADERID", "IMAGE", "BYTEORDER", "DATATYPE", "DIM_1", "DIM_2", "DIM_3", "OFFSET_1", "OFFSET_2", "OFFSET_3", "SIZE") LOWER_CASE = 0 UPPER_CASE = 1 KEYS = 1 VALUES = 2 ############################################################################### class Image(object): """ """ def __init__(self): """ Constructor """ self.Header = {} self.StaticHeader = {} self.HeaderPosition = 0 self.DataPosition = 0 self.Size = 0 self.NumDim = 1 self.Dim1 = 0 self.Dim2 = 0 self.Dim3 = 0 self.DataType = "" #for i in STATIC_HEADER_ELEMENTS: self.StaticHeader[i]="" ################################################################################ class EdfFile(object): """ """ ############################################################################ #Interface def __init__(self, FileName, access=None, fastedf=None): """ Constructor @param FileName: Name of the file (either existing or to be created) @type FileName: string @param access: access mode "r" for reading (the file should exist) or "w" for writing (if the file does not exist, it does not matter). @type access: string @type fastedf= True to use the fastedf module @param fastedf= boolean """ self.Images = [] self.NumImages = 0 self.FileName = FileName self.File = 0 if fastedf is None: fastedf = 0 self.fastedf = fastedf self.ADSC = False self.MARCCD = False self.TIFF = False self.PILATUS_CBF = False self.SPE = False if sys.byteorder == "big": self.SysByteOrder = "HighByteFirst" else: self.SysByteOrder = "LowByteFirst" if hasattr(FileName, "seek") and\ hasattr(FileName, "read"): # this looks like a file descriptor ... self.__ownedOpen = False self.File = FileName try: self.FileName = self.File.name except AttributeError: self.FileName = self.File.filename elif FileName.lower().endswith('.gz'): if GZIP: self.__ownedOpen = False self.File = gzip.GzipFile(FileName) else: raise IOError("No gzip module support in this system") elif FileName.lower().endswith('.bz2'): if BZ2: self.__ownedOpen = False self.File = bz2.BZ2File(FileName) else: raise IOError("No bz2 module support in this system") else: self.__ownedOpen = True if self.File in [0, None]: if access is not None: if access[0].upper() == "R": if not os.path.isfile(self.FileName): raise IOError("File %s not found" % FileName) if 'b' not in access: access += 'b' try: if not os.path.isfile(self.FileName): #write access if access is None: #allow writing and reading access = "ab+" self.File = open(self.FileName, access) self.File.seek(0, 0) return if 'b' not in access: access += 'b' self.File = open(self.FileName, access) return else: if access is None: if (os.access(self.FileName, os.W_OK)): access = "r+b" else: access = "rb" self.File = open(self.FileName, access) self.File.seek(0, 0) twoChars = self.File.read(2) tiff = False if sys.version < '3.0': if twoChars in ["II", "MM"]: tiff = True elif twoChars in [eval('b"II"'), eval('b"MM"')]: tiff = True if tiff: fileExtension = os.path.splitext(self.FileName)[-1] if fileExtension.lower() in [".tif", ".tiff"] or\ sys.version > '2.9': if not TIFF_SUPPORT: raise IOError("TIFF support not implemented") else: self.TIFF = True elif not MARCCD_SUPPORT: if not TIFF_SUPPORT: raise IOError("MarCCD support not implemented") else: self.TIFF = True else: self.MARCCD = True if os.path.basename(FileName).upper().endswith('.CBF'): if not PILATUS_CBF_SUPPORT: raise IOError("CBF support not implemented") if twoChars[0] != "{": self.PILATUS_CBF = True elif os.path.basename(FileName).upper().endswith('.SPE'): if twoChars[0] != "$": self.SPE = True elif os.path.basename(FileName).upper().endswith('EDF.GZ') or\ os.path.basename(FileName).upper().endswith('CCD.GZ'): self.GZIP = True except Exception: try: self.File.close() except Exception: pass raise IOError("EdfFile: Error opening file") self.File.seek(0, 0) if self.TIFF: self._wrapTIFF() self.File.close() return if self.MARCCD: self._wrapMarCCD() self.File.close() return if self.PILATUS_CBF: self._wrapPilatusCBF() self.File.close() return if self.SPE: self._wrapSPE() self.File.close() return Index = 0 line = self.File.readline() selectedLines = [""] if sys.version > '2.6': selectedLines.append(eval('b""')) parsingHeader = False while line not in selectedLines: #decode to make sure I have character string #str to make sure python 2.x sees it as string and not unicode if sys.version < '3.0': if type(line) != type(str("")): line = "%s" % line else: try: line = str(line.decode()) except UnicodeDecodeError: try: line = str(line.decode('utf-8')) except UnicodeDecodeError: try: line = str(line.decode('latin-1')) except UnicodeDecodeError: line = "%s" % line if (line.count("{\n") >= 1) or (line.count("{\r\n") >= 1): parsingHeader = True Index = self.NumImages self.NumImages = self.NumImages + 1 self.Images.append(Image()) # Position = self.File.tell() if line.count("=") >= 1: listItems = line.split("=", 1) typeItem = listItems[0].strip() listItems = listItems[1].split(";", 1) valueItem = listItems[0].strip() if (typeItem == "HEADER_BYTES") and (Index == 0): self.ADSC = True break #if typeItem in self.Images[Index].StaticHeader.keys(): if typeItem.upper() in STATIC_HEADER_ELEMENTS_CAPS: self.Images[Index].StaticHeader[typeItem] = valueItem else: self.Images[Index].Header[typeItem] = valueItem if ((line.count("}\n") >= 1) or (line.count("}\r") >= 1)) and (parsingHeader): parsingHeader = False #for i in STATIC_HEADER_ELEMENTS_CAPS: # if self.Images[Index].StaticHeader[i]=="": # raise "Bad File Format" self.Images[Index].DataPosition = self.File.tell() #self.File.seek(int(self.Images[Index].StaticHeader["Size"]), 1) StaticPar = SetDictCase(self.Images[Index].StaticHeader, UPPER_CASE, KEYS) if "SIZE" in StaticPar.keys(): self.Images[Index].Size = int(StaticPar["SIZE"]) if self.Images[Index].Size <= 0: self.NumImages = Index line = self.File.readline() continue else: raise TypeError("EdfFile: Image doesn't have size information") if "DIM_1" in StaticPar.keys(): self.Images[Index].Dim1 = int(StaticPar["DIM_1"]) self.Images[Index].Offset1 = int(\ StaticPar.get("Offset_1", "0")) else: raise TypeError("EdfFile: Image doesn't have dimension information") if "DIM_2" in StaticPar.keys(): self.Images[Index].NumDim = 2 self.Images[Index].Dim2 = int(StaticPar["DIM_2"]) self.Images[Index].Offset2 = int(\ StaticPar.get("Offset_2", "0")) if "DIM_3" in StaticPar.keys(): self.Images[Index].NumDim = 3 self.Images[Index].Dim3 = int(StaticPar["DIM_3"]) self.Images[Index].Offset3 = int(\ StaticPar.get("Offset_3", "0")) if "DATATYPE" in StaticPar.keys(): self.Images[Index].DataType = StaticPar["DATATYPE"] else: raise TypeError("EdfFile: Image doesn't have datatype information") if "BYTEORDER" in StaticPar.keys(): self.Images[Index].ByteOrder = StaticPar["BYTEORDER"] else: raise TypeError("EdfFile: Image doesn't have byteorder information") self.File.seek(self.Images[Index].Size, 1) line = self.File.readline() if self.ADSC: self.File.seek(0, 0) self.NumImages = 1 #this is a bad implementation of fabio adscimage #please take a look at the fabio module of fable at sourceforge infile = self.File header_keys = [] header = {} try: """ read an adsc header """ line = infile.readline() bytesread = len(line) while '}' not in line: if '=' in line: (key, val) = line.split('=') header_keys.append(key.strip()) header[key.strip()] = val.strip(' ;\n') line = infile.readline() bytesread = bytesread + len(line) except Exception: raise Exception("Error processing adsc header") # banned by bzip/gzip??? try: infile.seek(int(header['HEADER_BYTES']), 0) except TypeError: # Gzipped does not allow a seek and read header is not # promising to stop in the right place infile.close() infile = self._open(fname, "rb") infile.read(int(header['HEADER_BYTES'])) binary = infile.read() infile.close() #now read the data into the array self.Images[Index].Dim1 = int(header['SIZE1']) self.Images[Index].Dim2 = int(header['SIZE2']) self.Images[Index].NumDim = 2 self.Images[Index].DataType = 'UnsignedShort' try: self.__data = numpy.reshape( numpy.array(numpy.frombuffer(binary, numpy.uint16)), (self.Images[Index].Dim2, self.Images[Index].Dim1)) except ValueError: raise IOError('Size spec in ADSC-header does not match ' + \ 'size of image data field') if 'little' in header['BYTE_ORDER']: self.Images[Index].ByteOrder = 'LowByteFirst' else: self.Images[Index].ByteOrder = 'HighByteFirst' if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper(): self.__data = self.__data.byteswap() self.Images[Index].ByteOrder = self.SysByteOrder self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1 self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2 self.Images[Index].StaticHeader['Offset_1'] = 0 self.Images[Index].StaticHeader['Offset_2'] = 0 self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType self.__makeSureFileIsClosed() def _wrapTIFF(self): self._wrappedInstance = TiffIO.TiffIO(self.File, cache_length = 0, mono_output=True) self.NumImages = self._wrappedInstance.getNumberOfImages() if self.NumImages < 1: return # wrapped image objects have to provide getInfo and getData # info = self._wrappedInstance.getInfo( index) # data = self._wrappedInstance.getData( index) # for the time being I am going to assume all the images # in the file have the same data type type data = None for Index in range(self.NumImages): info = self._wrappedInstance.getInfo(Index) self.Images.append(Image()) self.Images[Index].Dim1 = info['nRows'] self.Images[Index].Dim2 = info['nColumns'] self.Images[Index].NumDim = 2 if data is None: data = self._wrappedInstance.getData(0) self.Images[Index].DataType = self.__GetDefaultEdfType__(data.dtype) self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1 self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2 self.Images[Index].StaticHeader['Offset_1'] = 0 self.Images[Index].StaticHeader['Offset_2'] = 0 self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType self.Images[Index].Header.update(info) def _wrapMarCCD(self): mccd = MarCCD.MarCCD(self.File) self.NumImages = 1 self.__data = mccd.getData() self.__info = mccd.getInfo() self.Images.append(Image()) Index = 0 self.Images[Index].Dim1 = self.__data.shape[0] self.Images[Index].Dim2 = self.__data.shape[1] self.Images[Index].NumDim = 2 if self.__data.dtype == numpy.uint8: self.Images[Index].DataType = 'UnsignedByte' elif self.__data.dtype == numpy.uint16: self.Images[Index].DataType = 'UnsignedShort' else: self.Images[Index].DataType = 'UnsignedInteger' self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1 self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2 self.Images[Index].StaticHeader['Offset_1'] = 0 self.Images[Index].StaticHeader['Offset_2'] = 0 self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType self.Images[Index].Header.update(self.__info) def _wrapPilatusCBF(self): mccd = PilatusCBF.PilatusCBF(self.File) self.NumImages = 1 self.__data = mccd.getData() self.__info = mccd.getInfo() self.Images.append(Image()) Index = 0 self.Images[Index].Dim1 = self.__data.shape[0] self.Images[Index].Dim2 = self.__data.shape[1] self.Images[Index].NumDim = 2 if self.__data.dtype == numpy.uint8: self.Images[Index].DataType = 'UnsignedByte' elif self.__data.dtype == numpy.uint16: self.Images[Index].DataType = 'UnsignedShort' else: self.Images[Index].DataType = 'UnsignedInteger' self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1 self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2 self.Images[Index].StaticHeader['Offset_1'] = 0 self.Images[Index].StaticHeader['Offset_2'] = 0 self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType self.Images[Index].Header.update(self.__info) def _wrapSPE(self): if 0 and sys.version < '3.0': self.File.seek(42) xdim = numpy.int64(numpy.fromfile(self.File, numpy.int16, 1)[0]) self.File.seek(656) ydim = numpy.int64(numpy.fromfile(self.File, numpy.int16, 1)) self.File.seek(4100) self.__data = numpy.fromfile(self.File, numpy.uint16, int(xdim * ydim)) else: import struct self.File.seek(0) a = self.File.read() xdim = numpy.int64(struct.unpack('<h', a[42:44])[0]) ydim = numpy.int64(struct.unpack('<h', a[656:658])[0]) fmt = '<%dH' % int(xdim * ydim) self.__data = numpy.array(struct.unpack(fmt, a[4100:int(4100+ int(2 * xdim * ydim))])).astype(numpy.uint16) self.__data.shape = ydim, xdim Index = 0 self.Images.append(Image()) self.NumImages = 1 self.Images[Index].Dim1 = ydim self.Images[Index].Dim2 = xdim self.Images[Index].NumDim = 2 self.Images[Index].DataType = 'UnsignedShort' self.Images[Index].ByteOrder = 'LowByteFirst' if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper(): self.__data = self.__data.byteswap() self.Images[Index].StaticHeader['Dim_1'] = self.Images[Index].Dim1 self.Images[Index].StaticHeader['Dim_2'] = self.Images[Index].Dim2 self.Images[Index].StaticHeader['Offset_1'] = 0 self.Images[Index].StaticHeader['Offset_2'] = 0 self.Images[Index].StaticHeader['DataType'] = self.Images[Index].DataType def GetNumImages(self): """ Returns number of images of the object (and associated file) """ return self.NumImages def GetData(self, *var, **kw): try: self.__makeSureFileIsOpen() return self._GetData(*var, **kw) finally: self.__makeSureFileIsClosed() def _GetData(self, Index, DataType="", Pos=None, Size=None): """ Returns numpy array with image data Index: The zero-based index of the image in the file DataType: The edf type of the array to be returnd If ommited, it is used the default one for the type indicated in the image header Attention to the absence of UnsignedShort, UnsignedInteger and UnsignedLong types in Numpy Python Default relation between Edf types and NumPy's typecodes: SignedByte int8 b UnsignedByte uint8 B SignedShort int16 h UnsignedShort uint16 H SignedInteger int32 i UnsignedInteger uint32 I SignedLong int32 i UnsignedLong uint32 I Signed64 int64 (l in 64bit, q in 32 bit) Unsigned64 uint64 (L in 64bit, Q in 32 bit) FloatValue float32 f DoubleValue float64 d Pos: Tuple (x) or (x,y) or (x,y,z) that indicates the begining of data to be read. If ommited, set to the origin (0), (0,0) or (0,0,0) Size: Tuple, size of the data to be returned as x) or (x,y) or (x,y,z) if ommited, is the distance from Pos to the end. If Pos and Size not mentioned, returns the whole data. """ fastedf = self.fastedf if Index < 0 or Index >= self.NumImages: raise ValueError("EdfFile: Index out of limit") if fastedf is None:fastedf = 0 if Pos is None and Size is None: if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE: return self.__data elif self.TIFF: data = self._wrappedInstance.getData(Index) return data else: self.File.seek(self.Images[Index].DataPosition, 0) datatype = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index) try: datasize = self.__GetSizeNumpyType__(datatype) except TypeError: _logger.debug("What is the meaning of this error?") datasize = 8 if self.Images[Index].NumDim == 3: sizeToRead = self.Images[Index].Dim1 * \ self.Images[Index].Dim2 * \ self.Images[Index].Dim3 * datasize Data = numpy.array(numpy.frombuffer(self.File.read(sizeToRead), datatype)) Data = numpy.reshape(Data, (self.Images[Index].Dim3, self.Images[Index].Dim2, self.Images[Index].Dim1)) elif self.Images[Index].NumDim == 2: sizeToRead = self.Images[Index].Dim1 * \ self.Images[Index].Dim2 * datasize Data = numpy.array(numpy.frombuffer(self.File.read(sizeToRead), datatype)) #print "datatype = ",datatype #print "Data.type = ", Data.dtype.char #print "self.Images[Index].DataType ", self.Images[Index].DataType #print "Data.shape",Data.shape #print "datasize = ",datasize #print "sizeToRead ",sizeToRead #print "lenData = ", len(Data) Data = numpy.reshape(Data, (self.Images[Index].Dim2, self.Images[Index].Dim1)) elif self.Images[Index].NumDim == 1: sizeToRead = self.Images[Index].Dim1 * datasize Data = numpy.array(numpy.frombuffer(self.File.read(sizeToRead), datatype)) elif self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE: return self.__data[Pos[1]:(Pos[1] + Size[1]), Pos[0]:(Pos[0] + Size[0])] elif self.TIFF: data = self._wrappedInstance.getData(Index) return data[Pos[1]:(Pos[1] + Size[1]), Pos[0]:(Pos[0] + Size[0])] elif fastedf and CAN_USE_FASTEDF: type_ = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index) size_pixel = self.__GetSizeNumpyType__(type_) Data = numpy.array([], type_) if self.Images[Index].NumDim == 1: if Pos == None: Pos = (0,) if Size == None: Size = (0,) sizex = self.Images[Index].Dim1 Size = list(Size) if Size[0] == 0:Size[0] = sizex - Pos[0] self.File.seek((Pos[0] * size_pixel) + self.Images[Index].DataPosition, 0) Data = numpy.array(numpy.frombuffer(self.File.read(Size[0] * size_pixel), type_)) elif self.Images[Index].NumDim == 2: if Pos == None: Pos = (0, 0) if Size == None: Size = (0, 0) Size = list(Size) sizex, sizey = self.Images[Index].Dim1, self.Images[Index].Dim2 if Size[0] == 0:Size[0] = sizex - Pos[0] if Size[1] == 0:Size[1] = sizey - Pos[1] Data = numpy.zeros([Size[1], Size[0]], type_) self.File.seek((((Pos[1] * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0) extended_fread(Data, Size[0] * size_pixel , numpy.array([Size[1]]), numpy.array([sizex * size_pixel]) , self.File) elif self.Images[Index].NumDim == 3: if Pos == None: Pos = (0, 0, 0) if Size == None: Size = (0, 0, 0) Size = list(Size) sizex, sizey, sizez = self.Images[Index].Dim1, self.Images[Index].Dim2, self.Images[Index].Dim3 if Size[0] == 0:Size[0] = sizex - Pos[0] if Size[1] == 0:Size[1] = sizey - Pos[1] if Size[2] == 0:Size[2] = sizez - Pos[2] Data = numpy.zeros([Size[2], Size[1], Size[0]], type_) self.File.seek(((((Pos[2] * sizey + Pos[1]) * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0) extended_fread(Data, Size[0] * size_pixel , numpy.array([Size[2], Size[1]]), numpy.array([ sizey * sizex * size_pixel , sizex * size_pixel]) , self.File) else: if fastedf: _logger.info("I could not use fast routines") type_ = self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index) size_pixel = self.__GetSizeNumpyType__(type_) Data = numpy.array([], type_) if self.Images[Index].NumDim == 1: if Pos == None: Pos = (0,) if Size == None: Size = (0,) sizex = self.Images[Index].Dim1 Size = list(Size) if Size[0] == 0:Size[0] = sizex - Pos[0] self.File.seek((Pos[0] * size_pixel) + self.Images[Index].DataPosition, 0) Data = numpy.array(numpy.frombuffer(self.File.read(Size[0] * size_pixel), type_)) elif self.Images[Index].NumDim == 2: if Pos == None: Pos = (0, 0) if Size == None: Size = (0, 0) Size = list(Size) sizex, sizey = self.Images[Index].Dim1, self.Images[Index].Dim2 if Size[0] == 0:Size[0] = sizex - Pos[0] if Size[1] == 0:Size[1] = sizey - Pos[1] #print len(range(Pos[1],Pos[1]+Size[1])), "LECTURES OF ", Size[0], "POINTS" #print "sizex = ", sizex, "sizey = ", sizey Data = numpy.zeros((Size[1], Size[0]), type_) dataindex = 0 for y in range(Pos[1], Pos[1] + Size[1]): self.File.seek((((y * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0) line = numpy.array(numpy.frombuffer(self.File.read(Size[0] * size_pixel), type_)) Data[dataindex, :] = line[:] #Data=numpy.concatenate((Data,line)) dataindex += 1 #print "DataSize = ",Data.shape #print "Requested reshape = ",Size[1],'x',Size[0] #Data = numpy.reshape(Data, (Size[1],Size[0])) elif self.Images[Index].NumDim == 3: if Pos == None: Pos = (0, 0, 0) if Size == None: Size = (0, 0, 0) Size = list(Size) sizex, sizey, sizez = self.Images[Index].Dim1, self.Images[Index].Dim2, self.Images[Index].Dim3 if Size[0] == 0:Size[0] = sizex - Pos[0] if Size[1] == 0:Size[1] = sizey - Pos[1] if Size[2] == 0:Size[2] = sizez - Pos[2] for z in range(Pos[2], Pos[2] + Size[2]): for y in range(Pos[1], Pos[1] + Size[1]): self.File.seek(((((z * sizey + y) * sizex) + Pos[0]) * size_pixel) + self.Images[Index].DataPosition, 0) line = numpy.array(numpy.frombuffer(self.File.read(Size[0] * size_pixel), type_)) Data = numpy.concatenate((Data, line)) Data = numpy.reshape(Data, (Size[2], Size[1], Size[0])) if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper(): Data = Data.byteswap() if DataType != "": Data = self.__SetDataType__ (Data, DataType) return Data def _GetPixel(self, Index, Position): """ Returns double value of the pixel, regardless the format of the array Index: The zero-based index of the image in the file Position: Tuple with the coordinete (x), (x,y) or (x,y,z) """ if Index < 0 or Index >= self.NumImages: raise ValueError("EdfFile: Index out of limit") if len(Position) != self.Images[Index].NumDim: raise ValueError("EdfFile: coordinate with wrong dimension ") size_pixel = self.__GetSizeNumpyType__(self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index)) offset = Position[0] * size_pixel if self.Images[Index].NumDim > 1: size_row = size_pixel * self.Images[Index].Dim1 offset = offset + (Position[1] * size_row) if self.Images[Index].NumDim == 3: size_img = size_row * self.Images[Index].Dim2 offset = offset + (Position[2] * size_img) self.File.seek(self.Images[Index].DataPosition + offset, 0) Data = numpy.array(numpy.frombuffer( self.File.read(size_pixel), self.__GetDefaultNumpyType__(self.Images[Index].DataType, index=Index))) if self.SysByteOrder.upper() != self.Images[Index].ByteOrder.upper(): Data = Data.byteswap() Data = self.__SetDataType__ (Data, "DoubleValue") return Data[0] def GetPixel(self, Index, Position): """ Returns double value of the pixel, regardless the format of the array Index: The zero-based index of the image in the file Position: Tuple with the coordinete (x), (x,y) or (x,y,z) """ try: self.__makeSureFileIsOpen() return self._GetPixel(Index, Position) finally: self.__makeSureFileIsClosed() def GetHeader(self, Index): """ Returns dictionary with image header fields. Does not include the basic fields (static) defined by data shape, type and file position. These are get with GetStaticHeader method. Index: The zero-based index of the image in the file """ if Index < 0 or Index >= self.NumImages: raise ValueError("Index out of limit") #return self.Images[Index].Header ret = {} for i in self.Images[Index].Header.keys(): ret[i] = self.Images[Index].Header[i] return ret def GetStaticHeader(self, Index): """ Returns dictionary with static parameters Data format and file position dependent information (dim1,dim2,size,datatype,byteorder,headerId,Image) Index: The zero-based index of the image in the file """ if Index < 0 or Index >= self.NumImages: raise ValueError("Index out of limit") #return self.Images[Index].StaticHeader ret = {} for i in self.Images[Index].StaticHeader.keys(): ret[i] = self.Images[Index].StaticHeader[i] return ret def WriteImage(self, *var, **kw): try: self.__makeSureFileIsOpen() return self._WriteImage(*var, **kw) finally: self.__makeSureFileIsClosed() def _WriteImage (self, Header, Data, Append=1, DataType="", ByteOrder=""): """ Writes image to the file. Header: Dictionary containing the non-static header information (static information is generated according to position of image and data format Append: If equals to 0, overwrites the file. Otherwise, appends to the end of the file DataType: The data type to be saved to the file: SignedByte UnsignedByte SignedShort UnsignedShort SignedInteger UnsignedInteger SignedLong UnsignedLong FloatValue DoubleValue Default: according to Data array typecode: 1: SignedByte b: UnsignedByte s: SignedShort w: UnsignedShort i: SignedInteger l: SignedLong u: UnsignedLong f: FloatValue d: DoubleValue ByteOrder: Byte order of the data in file: HighByteFirst LowByteFirst Default: system's byte order """ if Append == 0: self.File.truncate(0) self.Images = [] self.NumImages = 0 Index = self.NumImages self.NumImages = self.NumImages + 1 self.Images.append(Image()) #self.Images[Index].StaticHeader["Dim_1"] = "%d" % Data.shape[1] #self.Images[Index].StaticHeader["Dim_2"] = "%d" % Data.shape[0] if len(Data.shape) == 1: self.Images[Index].Dim1 = Data.shape[0] self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1 self.Images[Index].Size = (Data.shape[0] * \ self.__GetSizeNumpyType__(Data.dtype)) elif len(Data.shape) == 2: self.Images[Index].Dim1 = Data.shape[1] self.Images[Index].Dim2 = Data.shape[0] self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1 self.Images[Index].StaticHeader["Dim_2"] = "%d" % self.Images[Index].Dim2 self.Images[Index].Size = (Data.shape[0] * Data.shape[1] * \ self.__GetSizeNumpyType__(Data.dtype)) self.Images[Index].NumDim = 2 elif len(Data.shape) == 3: self.Images[Index].Dim1 = Data.shape[2] self.Images[Index].Dim2 = Data.shape[1] self.Images[Index].Dim3 = Data.shape[0] self.Images[Index].StaticHeader["Dim_1"] = "%d" % self.Images[Index].Dim1 self.Images[Index].StaticHeader["Dim_2"] = "%d" % self.Images[Index].Dim2 self.Images[Index].StaticHeader["Dim_3"] = "%d" % self.Images[Index].Dim3 self.Images[Index].Size = (Data.shape[0] * Data.shape[1] * Data.shape[2] * \ self.__GetSizeNumpyType__(Data.dtype)) self.Images[Index].NumDim = 3 elif len(Data.shape) > 3: raise TypeError("EdfFile: Data dimension not supported") if DataType == "": self.Images[Index].DataType = self.__GetDefaultEdfType__(Data.dtype) else: self.Images[Index].DataType = DataType Data = self.__SetDataType__ (Data, DataType) if ByteOrder == "": self.Images[Index].ByteOrder = self.SysByteOrder else: self.Images[Index].ByteOrder = ByteOrder self.Images[Index].StaticHeader["Size"] = "%d" % self.Images[Index].Size self.Images[Index].StaticHeader["Image"] = Index + 1 self.Images[Index].StaticHeader["HeaderID"] = "EH:%06d:000000:000000" % self.Images[Index].StaticHeader["Image"] self.Images[Index].StaticHeader["ByteOrder"] = self.Images[Index].ByteOrder self.Images[Index].StaticHeader["DataType"] = self.Images[Index].DataType self.Images[Index].Header = {} self.File.seek(0, 2) StrHeader = "{\n" for i in STATIC_HEADER_ELEMENTS: if i in self.Images[Index].StaticHeader.keys(): StrHeader = StrHeader + ("%s = %s ;\n" % (i , self.Images[Index].StaticHeader[i])) for i in Header.keys(): StrHeader = StrHeader + ("%s = %s ;\n" % (i, Header[i])) self.Images[Index].Header[i] = Header[i] newsize = (((len(StrHeader) + 1) // HEADER_BLOCK_SIZE) + 1) * HEADER_BLOCK_SIZE - 2 newsize = int(newsize) StrHeader = StrHeader.ljust(newsize) StrHeader = StrHeader + "}\n" self.Images[Index].HeaderPosition = self.File.tell() self.File.write(StrHeader.encode()) self.Images[Index].DataPosition = self.File.tell() #if self.Images[Index].StaticHeader["ByteOrder"] != self.SysByteOrder: if self.Images[Index].ByteOrder.upper() != self.SysByteOrder.upper(): self.File.write((Data.byteswap()).tobytes()) else: self.File.write(Data.tobytes()) ############################################################################ #Internal Methods def __makeSureFileIsOpen(self): _logger.debug("Making sure file is open") if not self.__ownedOpen: return if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE: _logger.debug("Special case. Image is buffered") return if self.File in [0, None]: _logger.debug("File is None") elif self.File.closed: _logger.debug("Reopening closed file") accessMode = self.File.mode if accessMode == "w": accessMode = "a" elif accessMode == "wb": accessMode = "ab" fileName = self.File.name newFile = open(fileName, accessMode) self.File = newFile return def __makeSureFileIsClosed(self): _logger.debug("Making sure file is closed") if not self.__ownedOpen: return if self.ADSC or self.MARCCD or self.PILATUS_CBF or self.SPE: _logger.debug("Special case. Image is buffered") return if self.File in [0, None]: _logger.debug("File is None") elif not self.File.closed: _logger.debug("Closing file") self.File.close() return def __GetDefaultNumpyType__(self, EdfType, index=None): """ Internal method: returns NumPy type according to Edf type """ return self.GetDefaultNumpyType(EdfType, index) def __GetDefaultEdfType__(self, NumpyType): """ Internal method: returns Edf type according Numpy type """ if NumpyType in ["b", numpy.int8]: return "SignedByte" elif NumpyType in ["B", numpy.uint8]: return "UnsignedByte" elif NumpyType in ["h", numpy.int16]: return "SignedShort" elif NumpyType in ["H", numpy.uint16]: return "UnsignedShort" elif NumpyType in ["i", numpy.int32]: return "SignedInteger" elif NumpyType in ["I", numpy.uint32]: return "UnsignedInteger" elif NumpyType == "l": if sys.platform == 'linux2': return "Signed64" else: return "SignedLong" elif NumpyType == "L": if sys.platform == 'linux2': return "Unsigned64" else: return "UnsignedLong" elif NumpyType == numpy.int64: return "Signed64" elif NumpyType == numpy.uint64: return "Unsigned64" elif NumpyType in ["f", numpy.float32]: return "FloatValue" elif NumpyType in ["d", numpy.float64]: return "DoubleValue" else: raise TypeError("unknown NumpyType %s" % NumpyType) def __GetSizeNumpyType__(self, NumpyType): """ Internal method: returns size of NumPy's Array Types """ if NumpyType in ["b", numpy.int8]: return 1 elif NumpyType in ["B", numpy.uint8]: return 1 elif NumpyType in ["h", numpy.int16]: return 2 elif NumpyType in ["H", numpy.uint16]: return 2 elif NumpyType in ["i", numpy.int32]: return 4 elif NumpyType in ["I", numpy.uint32]: return 4 elif NumpyType == "l": if sys.platform == 'linux2': return 8 #64 bit else: return 4 #32 bit elif NumpyType == "L": if sys.platform == 'linux2': return 8 #64 bit else: return 4 #32 bit elif NumpyType in ["f", numpy.float32]: return 4 elif NumpyType in ["d", numpy.float64]: return 8 elif NumpyType == "Q": return 8 #unsigned 64 in 32 bit elif NumpyType == "q": return 8 #signed 64 in 32 bit elif NumpyType == numpy.uint64: return 8 elif NumpyType == numpy.int64: return 8 else: raise TypeError("unknown NumpyType %s" % NumpyType) def __SetDataType__ (self, Array, DataType): """ Internal method: array type convertion """ # AVOID problems not using FromEdfType= Array.dtype.char FromEdfType = Array.dtype ToEdfType = self.__GetDefaultNumpyType__(DataType) if ToEdfType != FromEdfType: aux = Array.astype(self.__GetDefaultNumpyType__(DataType)) return aux return Array def __del__(self): try: self.__makeSureFileIsClosed() except Exception: pass def GetDefaultNumpyType(self, EdfType, index=None): """ Returns NumPy type according Edf type """ if index is None:return GetDefaultNumpyType(EdfType) EdfType = EdfType.upper() if EdfType in ['SIGNED64'] :return numpy.int64 if EdfType in ['UNSIGNED64']:return numpy.uint64 if EdfType in ["SIGNEDLONG", "UNSIGNEDLONG"]: dim1 = 1 dim2 = 1 dim3 = 1 if hasattr(self.Images[index], "Dim1"): dim1 = self.Images[index].Dim1 if hasattr(self.Images[index], "Dim2"): dim2 = self.Images[index].Dim2 if dim2 <= 0: dim2 = 1 if hasattr(self.Images[index], "Dim3"): dim3 = self.Images[index].Dim3 if dim3 <= 0: dim3 = 1 if hasattr(self.Images[index], "Size"): size = self.Images[index].Size if size / (dim1 * dim2 * dim3) == 8: if EdfType == "UNSIGNEDLONG": return numpy.uint64 else: return numpy.int64 if EdfType == "UNSIGNEDLONG": return numpy.uint32 else: return numpy.int32 return GetDefaultNumpyType(EdfType) def GetDefaultNumpyType(EdfType): """ Returns NumPy type according Edf type """ EdfType = EdfType.upper() if EdfType == "SIGNEDBYTE": return numpy.int8 # "b" elif EdfType == "UNSIGNEDBYTE": return numpy.uint8 # "B" elif EdfType == "SIGNEDSHORT": return numpy.int16 # "h" elif EdfType == "UNSIGNEDSHORT": return numpy.uint16 # "H" elif EdfType == "SIGNEDINTEGER": return numpy.int32 # "i" elif EdfType == "UNSIGNEDINTEGER": return numpy.uint32 # "I" elif EdfType == "SIGNEDLONG": return numpy.int32 # "i" #ESRF acquisition is made in 32bit elif EdfType == "UNSIGNEDLONG": return numpy.uint32 # "I" #ESRF acquisition is made in 32bit elif EdfType == "SIGNED64": return numpy.int64 # "l" elif EdfType == "UNSIGNED64": return numpy.uint64 # "L" elif EdfType == "FLOATVALUE": return numpy.float32 # "f" elif EdfType == "FLOAT": return numpy.float32 # "f" elif EdfType == "DOUBLEVALUE": return numpy.float64 # "d" else: raise TypeError("unknown EdfType %s" % EdfType) def SetDictCase(Dict, Case, Flag): """ Returns dictionary with keys and/or values converted into upper or lowercase Dict: input dictionary Case: LOWER_CASE, UPPER_CASE Flag: KEYS, VALUES or KEYS | VALUES """ newdict = {} for i in Dict.keys(): newkey = i newvalue = Dict[i] if Flag & KEYS: if Case == LOWER_CASE: newkey = newkey.lower() else: newkey = newkey.upper() if Flag & VALUES: if Case == LOWER_CASE: newvalue = newvalue.lower() else: newvalue = newvalue.upper() newdict[newkey] = newvalue return newdict def GetRegion(Arr, Pos, Size): """Returns array with refion of Arr. Arr must be 1d, 2d or 3d Pos and Size are tuples in the format (x) or (x,y) or (x,y,z) Both parameters must have the same size as the dimention of Arr """ Dim = len(Arr.shape) if len(Pos) != Dim: return None if len(Size) != Dim: return None if (Dim == 1): SizeX = Size[0] if SizeX == 0: SizeX = Arr.shape[0] - Pos[0] ArrRet = numpy.take(Arr, range(Pos[0], Pos[0] + SizeX)) elif (Dim == 2): SizeX = Size[0] SizeY = Size[1] if SizeX == 0: SizeX = Arr.shape[1] - Pos[0] if SizeY == 0: SizeY = Arr.shape[0] - Pos[1] ArrRet = numpy.take(Arr, range(Pos[1], Pos[1] + SizeY)) ArrRet = numpy.take(ArrRet, range(Pos[0], Pos[0] + SizeX), 1) elif (Dim == 3): SizeX = Size[0] SizeY = Size[1] SizeZ = Size[2] if SizeX == 0: SizeX = Arr.shape[2] - Pos[0] if SizeY == 0: SizeX = Arr.shape[1] - Pos[1] if SizeZ == 0: SizeZ = Arr.shape[0] - Pos[2] ArrRet = numpy.take(Arr, range(Pos[2], Pos[2] + SizeZ)) ArrRet = numpy.take(ArrRet, range(Pos[1], Pos[1] + SizeY), 1) ArrRet = numpy.take(ArrRet, range(Pos[0], Pos[0] + SizeX), 2) else: ArrRet = None return ArrRet #EXAMPLE CODE: if __name__ == "__main__": if 1: # import os a = numpy.zeros((5, 10)) for i in range(5): for j in range(10): a[i, j] = 10 * i + j edf = EdfFile("armando.edf", access="ab+") edf.WriteImage({}, a) del edf #force to close the file inp = EdfFile("armando.edf") b = inp.GetData(0) out = EdfFile("armando2.edf") out.WriteImage({}, b) del out #force to close the file inp2 = EdfFile("armando2.edf") c = inp2.GetData(0) print("A SHAPE = ", a.shape) print("B SHAPE = ", b.shape) print("C SHAPE = ", c.shape) for i in range(5): print("A", a[i, :]) print("B", b[i, :]) print("C", c[i, :]) x = numpy.arange(100) x.shape = 5, 20 for item in ["SignedByte", "UnsignedByte", "SignedShort", "UnsignedShort", "SignedLong", "UnsignedLong", "Signed64", "Unsigned64", "FloatValue", "DoubleValue"]: fname = item + ".edf" if os.path.exists(fname): os.remove(fname) towrite = EdfFile(fname) towrite.WriteImage({}, x, DataType=item, Append=0) sys.exit(0) #Creates object based on file exe.edf exe = EdfFile("images/test_image.edf") x = EdfFile("images/test_getdata.edf") #Gets unsigned short data, storing in an signed long arr = exe.GetData(0, Pos=(100, 200), Size=(200, 400)) x.WriteImage({}, arr, 0) arr = exe.GetData(0, Pos=(100, 200)) x.WriteImage({}, arr) arr = exe.GetData(0, Size=(200, 400)) x.WriteImage({}, arr) arr = exe.GetData(0) x.WriteImage({}, arr) sys.exit() #Creates object based on file exe.edf exe = EdfFile("images/.edf") #Creates long array , filled with 0xFFFFFFFF(-1) la = numpy.zeros((100, 100)) la = la - 1 #Creates a short array, filled with 0xFFFF sa = numpy.zeros((100, 100)) sa = sa + 0xFFFF sa = sa.astype("s") #Writes long array, initializing file (append=0) exe.WriteImage({}, la, 0, "") #Appends short array with new header items exe.WriteImage({'Name': 'Alexandre', 'Date': '16/07/2001'}, sa) #Appends short array, in Edf type unsigned exe.WriteImage({}, sa, DataType="UnsignedShort") #Appends short array, in Edf type unsigned exe.WriteImage({}, sa, DataType="UnsignedLong") #Appends long array as a double, considering unsigned exe.WriteImage({}, la, DataType="DoubleValue", WriteAsUnsigened=1) #Gets unsigned short data, storing in an signed long ushort = exe.GetData(2, "SignedLong") #Makes an operation ushort = ushort - 0x10 #Saves Result as signed long exe.WriteImage({}, ushort) #Saves in the original format (unsigned short) OldHeader = exe.GetStaticHeader(2) exe.WriteImage({}, ushort, 1, OldHeader["DataType"]) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/Fit2DChiFileParser.py�����������������������������������������������0000644�0000000�0000000�00000012010�14741736366�020511� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from PyMca5.PyMcaIO import SpecFileAbstractClass class Fit2DChiFileParser(SpecFileAbstractClass.SpecFileAbstractClass): def __init__(self, filename): SpecFileAbstractClass.SpecFileAbstractClass.__init__(self, filename) if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) f = open(filename, 'r') self.__buffer = f.read() f.close() self.__buffer=self.__buffer.replace("\r", "\n") self.__buffer=self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") header = [self.__buffer[0]] a = self.__buffer[0].split(":") command = a[-1] labels = [] npoints = 0 self.__currentLine = 1 lenBuffer = len(self.__buffer) while (npoints == 0) and (self.__currentLine < lenBuffer): line = self.__buffer[self.__currentLine] self.__currentLine += 1 header.append(line) try: npoints = int(line) except Exception: labels.append(line) pass if len(labels[-1]) == 0: labels[-1] = "Intensity" if npoints == 0: raise IOError("Problem reading file. Number of points is 0.") data = numpy.zeros((npoints, len(labels)), numpy.float32) for i in range(npoints): if self.__currentLine < lenBuffer: line = self.__buffer[self.__currentLine] try: data[i,:] = [float(x) for x in line.split()] except ValueError: if i == 0: values = [float(x) for x in line.split()] nActualValues = len(values) if nActualValues < len(labels): labels = labels[-nActualValues:] data = numpy.zeros((npoints, len(labels)), numpy.float32) data[i,:] = values self.__currentLine += 1 continue raise self.__currentLine += 1 scanheader = ['#S 1 ' + command] self.scandata = [SpecFileAbstractClass.SpecFileAbstractScan(data, scantype="SCAN", identification="1.1", labels=labels, scanheader=scanheader)] x0 = data[0, 0] x1 = data[-1,0] delta = (x1-x0)/npoints data = data[:,1] scanheader = ['#S 2 ' + command] scanheader.append("#@CALIB %f %f 0" % (x0, delta)) self.scandata.append(SpecFileAbstractClass.SpecFileAbstractScan(data, scantype="MCA", identification="2.1", scanheader=scanheader)) def list(self): #We have two "scans" return "1:2" def isFit2DChiFile(filename): #Obviously I should put a better test than this one if not filename.upper().endswith(".CHI"): return False return True def test(filename): if isFit2DChiFile(filename): sf=Fit2DChiFileParser(filename) else: print("Not a Fit2D .Chi File") print(sf[0].alllabels()) print(dir(sf[0])) if __name__ == "__main__": test(sys.argv[1]) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/FsmMap.py�����������������������������������������������������������0000644�0000000�0000000�00000006575�14741736366�016406� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import re import struct import numpy import copy import logging from PyMca5 import DataObject from .FsmReader import isFsmFile, parseFile _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class FsmMap(DataObject.DataObject): ''' Class to read Perkin Elmenr .fsm files It reads the spectra into a DataObject instance. This class info member contains all the parsed information. This class data member contains the map itself as a 3D array. ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the .fsm file. It is expected to work with 1994 version FSM files ''' DataObject.DataObject.__init__(self) info, data = parseFile(filename) self.sourceName = [filename] #arrange as an EDF Stack self.info = {} self.data = data shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Title"] = info["Title"] self.info["Size"] = data.shape[0] * data.shape[1] self.info["FileIndex"] = 0 self.info["Channel0"] = 0.0 # scales self.info["McaCalib"] = [info.get("zStart", 0.0), info.get("zDelta", 1.0), 0.0] self.info["xScale"] = [info.get("xStart", 0.0), info.get("xDelta", 1.0), 0.0] self.info["yScale"] = [info.get("yStart", 0.0), info.get("yDelta", 1.0), 0.0] self.info['OmnicInfo'] = info �����������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/FsmReader.py��������������������������������������������������������0000644�0000000�0000000�00000013451�14741736366�017062� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import struct import numpy __doc__ = """ Reads IR maps from Perkin Elmer files. The files are structured in a set of blocks. The most relevant ones are: 5100 - Data 5101 - Coordinates """ def _parse5100(fid): # 5100 blockNameLength = struct.unpack('<H', fid.read(2))[0] #print("blockNameLength = ", blockNameLength) blockName = fid.read(blockNameLength) if hasattr(blockName, "decode"): blockName = blockName.decode("utf-8") #print("blockName = ", blockName) fmt = '<ddd' size = struct.calcsize(fmt) xDelta, yDelta, zDelta = struct.unpack(fmt, fid.read(size)) fmt = '<dd' size = struct.calcsize(fmt) zStart, zEnd = struct.unpack(fmt, fid.read(size)) dataMin, dataMax = struct.unpack(fmt, fid.read(size)) fmt = '<ddd' size = struct.calcsize(fmt) x0, y0, z0 = struct.unpack(fmt, fid.read(size)) fmt = '<iii' size = struct.calcsize(fmt) xLen, yLen, zLen = struct.unpack(fmt, fid.read(size)) # get the labels for i in range(4): length = struct.unpack('<h', fid.read(2))[0] text = fid.read(length) if hasattr(text, "decode"): text = text.decode("utf-8") if i == 0: xLabel = text elif i == 1: yLabel = text elif i == 3: zLabel = text else: wLabel = text #print("text%d = %s" % (i,text)) return {"xStart": x0, "yStart": y0, "zStart": z0, "xDelta": xDelta, "yDelta": yDelta, "zDelta": zDelta, "xLength": xLen, "yLength": yLen, "zLength": zLen, "labels": (xLabel, yLabel, zLabel, wLabel), "xLabel": xLabel, "yLabel": yLabel, "zLabel": zLabel, "dataMin": dataMin, "dataMax": dataMax} def parseFile(filename): fid = open(filename, mode='rb') # should we read the whole file into memory? signature = fid.read(4) if signature not in ["PEPE", b"PEPE"]: raise IOError("This does not look like a PE Fsm file") comment = fid.read(40) if hasattr(comment, "decode"): comment = comment.decode("utf-8") if hasattr(comment, "strip"): comment = comment.strip("\0") # read 6 bytes indicating block ID and block size blockHeader = fid.read(6) idx = 0 while len(blockHeader) == 6: blockId, blockSize = struct.unpack('<Hi', blockHeader) if blockId == 5100: info = _parse5100(fid) nRows = info["yLength"] nColumns = info["xLength"] data = None elif blockId == 5105: blockContent = fid.read(blockSize) # data are stored as 32 bit floats if data is None: tmpData = numpy.frombuffer(blockContent, dtype=numpy.float32) nChannels = tmpData.shape[0] data = numpy.zeros((nRows * nColumns, nChannels), dtype=numpy.float32) data[idx] = tmpData else: data[idx] = numpy.frombuffer(blockContent, dtype=numpy.float32) idx += 1 else: blockContent = fid.read(blockSize) if len(blockContent) < blockSize: raise IOError("Cannot read block %d" % blockId) blockHeader = fid.read(6) info["Title"] = comment data.shape = nRows, nColumns, nChannels return info, data def isFsmFile(filename): isSupported = False try: if not hasattr(filename, "seek"): fid = open(filename, mode='rb') owner = True else: fid =filename current = fid.tell() fid.seek(0) signature = fid.read(4) if signature in ["PEPE", b"PEPE"]: isSupported = True except Exception: isSupported = False if owner: fid.close() else: fid.seek(current) return isSupported if __name__ == "__main__": import sys filename = None if len(sys.argv) > 1: filename = sys.argv[1] print("is PE fms File?", isFsmFile(filename)) info, data = parseFile(filename) print(info) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/HDF5Stack1D.py������������������������������������������������������0000644�0000000�0000000�00000140000�14741736366�017042� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import posixpath import numpy import h5py import logging _logger = logging.getLogger(__name__) from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaMisc import PhysicalMemory from PyMca5.PyMcaCore import NexusDataSource from PyMca5.PyMcaCore import NexusTools SOURCE_TYPE = "HDF5Stack1D" class HDF5Stack1D(DataObject.DataObject): def __init__(self, filelist, selection, scanlist=None, dtype=None): DataObject.DataObject.__init__(self) #the data type of the generated stack self.__dtype0 = dtype self.__dtype = dtype if filelist is not None: if selection is not None: self.loadFileList(filelist, selection, scanlist) def loadFileList(self, filelist, selection, scanlist=None): """ loadFileList(self, filelist, y, scanlist=None, monitor=None, x=None) filelist is the list of file names belonging to the stack selection is a dictionary with the keys x, y, m. x is the path to the x data (the channels) in the spectrum, without the first level "directory". It is unused (for now). y is the path to the 1D data (the counts) in the spectrum, without the first level "directory" m is the path to the normalizing data (I0 or whatever) without the first level "directory". scanlist is the list of first level "directories" containing the 1D data Example: The actual path has the form: /whatever1/whatever2/counts That means scanlist = ["/whatever1"] and selection['y'] = "/whatever2/counts" """ _logger.info("filelist = %s", filelist) _logger.info("selection = %s", selection) _logger.info("scanlist = %s", scanlist) if scanlist is not None: if type(scanlist) not in (type([]), type(())): scanlist = [scanlist] # all the files in the same source hdfStack = NexusDataSource.NexusDataSource(filelist) # if there is more than one file, it is assumed all the files have # the same structure. tmpHdf = hdfStack._sourceObjectList[0] entryNames = [] for key in tmpHdf["/"].keys(): try: if isinstance(tmpHdf["/"+key], h5py.Group): entryNames.append(key) except KeyError: _logger.info("Broken link with key? <%s>" % key) # built the selection in terms of HDF terms # for the time being xSelectionList = selection.get('x', None) if not xSelectionList: xSelectionList = None if xSelectionList is not None: if type(xSelectionList) != type([]): xSelectionList = [xSelectionList] if len(xSelectionList): xSelection = xSelectionList[0] else: xSelection = None else: xSelection = None # only one y is taken ySelection = selection['y'] if type(ySelection) == type([]): ySelectionList = list(ySelection) ySelection = ySelection[0] else: ySelectionList = [ySelection] # monitor selection mSelection = selection.get('m', None) if mSelection: if type(mSelection) != type([]): mSelection = [mSelection] else: mSelection = None if type(mSelection) == type([]): if len(mSelection): mSelection = mSelection[0] else: mSelection = None else: mSelection = None USE_JUST_KEYS = False # deal with the pathological case where the scanlist corresponds # to a selected top level dataset if len(entryNames) == 0: if scanlist is not None: if (ySelection in scanlist) or \ (xSelection in scanlist) or \ (mSelection in scanlist): scanlist = None USE_JUST_KEYS = True else: USE_JUST_KEYS = True elif len(entryNames) == 1: # deal with the SOLEIL case of one entry but with different name # in different files USE_JUST_KEYS = True elif scanlist in [None, []]: USE_JUST_KEYS = True if USE_JUST_KEYS: # if the scanlist is None, it is assumed we are interested on all # the scans containing the selection, not that all the scans # contain the selection. scanlist = [] if 0: JUST_KEYS = False #expect same entry names in the files #Unfortunately this does not work for SOLEIL for entry in entryNames: path = "/" + entry + ySelection dirname = posixpath.dirname(path) base = posixpath.basename(path) try: file_entry = tmpHdf[dirname] if base in file_entry.keys(): scanlist.append(entry) except Exception: pass else: JUST_KEYS = True #expect same structure in the files even if the #names are different (SOLEIL ...) if len(entryNames): i = 0 for entry in entryNames: i += 1 path = "/" + entry + ySelection dirname = posixpath.dirname(path) base = posixpath.basename(path) try: file_entry = tmpHdf[dirname] if hasattr(file_entry, "keys"): if base in file_entry.keys(): # this is the case of a selection inside a group scanlist.append("1.%d" % i) except KeyError: _logger.warning("%s not in file, ignoring.", dirname) if not len(scanlist): if not ySelection.startswith("/"): path = "/" + ySelection else: path = ySelection dirname = posixpath.dirname(path) base = posixpath.basename(path) try: if dirname in tmpHdf["/"]: # this is the case of a dataset at top plevel # or having given the complete path if base in tmpHdf[dirname]: JUST_KEYS = False scanlist.append("") elif base in file_entry.keys(): JUST_KEYS = False scanlist.append("") except Exception: #it will crash later on pass else: JUST_KEYS = False scanlist.append("") else: try: # the ESRF uses "1.1" notation for the scans so this is ambiguous because # one does not know if the selection is based on scan name or scan order if scanlist[0] in entryNames: # assumed the selection is based on scan name JUST_KEYS = False else: number, order = [int(x) for x in scanlist[0].split(".")] JUST_KEYS = True except Exception: JUST_KEYS = False if not JUST_KEYS: for scan in scanlist: if scan.startswith("/"): t = scan[1:] else: t = scan if t not in entryNames: raise ValueError("Entry %s not in file" % scan) nFiles = len(filelist) nScans = len(scanlist) if JUST_KEYS: if not nScans: raise IOError("No entry contains the required data") _logger.debug("Retained number of files = %d", nFiles) _logger.debug("Retained number of scans = %d", nScans) # Now is to decide the number of mca ... # I assume all the scans contain the same number of mca if JUST_KEYS: path = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + ySelection if mSelection is not None: mpath = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + mSelection if xSelectionList is not None: xpathList = [] for xSelection in xSelectionList: xpath = "/" + entryNames[int(scanlist[0].split(".")[-1])-1] + xSelection xpathList.append(xpath) else: path = scanlist[0] + ySelection if mSelection is not None: mpath = scanlist[0] + mSelection if xSelectionList is not None: xpathList = [] for xSelection in xSelectionList: xpath = scanlist[0] + xSelection xpathList.append(xpath) yDataset = tmpHdf[path] if (self.__dtype is None) or (mSelection is not None): self.__dtype = yDataset.dtype if self.__dtype in [numpy.int16, numpy.uint16]: self.__dtype = numpy.float32 elif self.__dtype in [numpy.int32, numpy.uint32]: if mSelection: self.__dtype = numpy.float32 else: self.__dtype = numpy.float64 elif self.__dtype not in [numpy.float16, numpy.float32, numpy.float64]: # Some datasets form CLS (origin APS?) arrive as data format # equal to ">u2" and are not triggered as integer types _logger.debug("Not basic dataset type %s", self.__dtype) if ("%s" % self.__dtype).endswith("2"): self.__dtype = numpy.float32 else: if mSelection: self.__dtype = numpy.float32 else: self.__dtype = numpy.float64 # figure out the shape of the stack shape = yDataset.shape mcaIndex = selection.get('index', len(shape)-1) if mcaIndex == -1: mcaIndex = len(shape) - 1 _logger.debug("mcaIndex = %d", mcaIndex) considerAsImages = False dim0, dim1, mcaDim = self.getDimensions(nFiles, nScans, shape, index=mcaIndex) _logger.debug("Returned dimensions = %d, %d, %d" % (dim0, dim1, mcaDim)) try: if self.__dtype in [numpy.float32, numpy.int32]: bytefactor = 4 elif self.__dtype in [numpy.int16, numpy.uint16]: bytefactor = 2 elif self.__dtype in [numpy.int8, numpy.uint8]: bytefactor = 1 else: bytefactor = 8 neededMegaBytes = nFiles * dim0 * dim1 * (mcaDim * bytefactor/(1024*1024.)) _logger.info("Using %d bytes per item" % bytefactor) _logger.info("Needed %d Megabytes" % neededMegaBytes) physicalMemory = None if hasattr(PhysicalMemory, "getAvailablePhysicalMemoryOrNone"): physicalMemory = PhysicalMemory.getAvailablePhysicalMemoryOrNone() if not physicalMemory: physicalMemory = PhysicalMemory.getPhysicalMemoryOrNone() else: _logger.info("Available physical memory %.1f GBytes" % \ (physicalMemory/(1024*1024*1024.))) if physicalMemory is None: # 6 Gigabytes of available memory # should be a good compromise in 2018 physicalMemory = 6000 _logger.info("Assumed physical memory %.1f MBytes" % physicalMemory) else: physicalMemory /= (1024*1024.) _logger.info("Using physical memory %.1f GBytes" % (physicalMemory/1024)) if (neededMegaBytes > (0.95*physicalMemory))\ and (nFiles == 1) and (len(shape) == 3): if self.__dtype0 is None: if (bytefactor == 8) and (neededMegaBytes < (2*physicalMemory)): # try reading as float32 print("Forcing the use of float32 data") self.__dtype = numpy.float32 else: raise MemoryError("Force dynamic loading") else: raise MemoryError("Force dynamic loading") if (mcaIndex == 0) and ( nFiles == 1) and (nScans == 1) \ and (len(yDataset.shape) > 1): #keep the original arrangement but in memory self.data = numpy.zeros(yDataset.shape, self.__dtype) considerAsImages = True else: # force arrangement as spectra self.data = numpy.zeros((dim0, dim1, mcaDim), self.__dtype) DONE = False except (MemoryError, ValueError): # some versions report ValueError instead of MemoryError if (nFiles == 1) and (len(shape) == 3): _logger.warning("Attempting dynamic loading") if mSelection is not None: _logger.warning("Ignoring monitor") self.data = yDataset if mSelection is not None: mdtype = tmpHdf[mpath].dtype if mdtype not in [numpy.float64, numpy.float32]: mdtype = numpy.float64 mDataset = numpy.asarray(tmpHdf[mpath], dtype=mdtype) self.monitor = [mDataset] if xSelectionList is not None: if len(xpathList) == 1: xpath = xpathList[0] xDataset = tmpHdf[xpath][()] self.x = [xDataset] if h5py.version.version < '2.0': #prevent automatic closing keeping a reference #to the open file self._fileReference = hdfStack DONE = True else: # what to do if the number of dimensions is only 2? raise # get the positioners information associated to the path positioners = {} try: positionersGroup = NexusTools.getPositionersGroup(tmpHdf, path) for motorName, motorValues in positionersGroup.items(): positioners[motorName] = motorValues[()] except Exception: positionersGroup = None positioners = {} # get the mca information associated to the path mcaObjectPaths = NexusTools.getMcaObjectPaths(tmpHdf, path) _time = None _calibration = None _channels = None if considerAsImages: self._pathHasRelevantInfo = False else: numberOfRelevantInfoKeys = 0 for objectPath in mcaObjectPaths: if objectPath not in ["counts", "target"]: numberOfRelevantInfoKeys += 1 if numberOfRelevantInfoKeys: # not just "counts" or "target" self._pathHasRelevantInfo = True if "live_time" in mcaObjectPaths: if DONE: # hopefully it will fit into memory if mcaObjectPaths["live_time"] in tmpHdf: _time = tmpHdf[mcaObjectPaths["live_time"]][()] elif "::" in mcaObjectPaths["live_time"]: tmpFileName, tmpDatasetPath = \ mcaObjectPaths["live_time"].split("::") with h5py.File(tmpFileName, "r") as tmpH5: _time = tmpH5[tmpDatasetPath][()] else: del mcaObjectPaths["live_time"] else: # we have to have as many live times as MCA spectra _time = numpy.zeros( \ (self.data.shape[0] * self.data.shape[1]), dtype=numpy.float64) elif "elapsed_time" in mcaObjectPaths: if DONE: # hopefully it will fit into memory if mcaObjectPaths["elapsed_time"] in tmpHdf: _time = \ tmpHdf[mcaObjectPaths["elapsed_time"]][()] elif "::" in mcaObjectPaths["elapsed_time"]: tmpFileName, tmpDatasetPath = \ mcaObjectPaths["elapsed_time"].split("::") with h5py.File(tmpFileName, "r") as tmpH5: _time = tmpH5[tmpDatasetPath][()] else: del mcaObjectPaths["elapsed_time"] else: # we have to have as many elpased times as MCA spectra _time = numpy.zeros((self.data.shape[0] * self.data.shape[1]), numpy.float32) if "calibration" in mcaObjectPaths: if mcaObjectPaths["calibration"] in tmpHdf: _calibration = \ tmpHdf[mcaObjectPaths["calibration"]][()] elif "::" in mcaObjectPaths["calibration"]: tmpFileName, tmpDatasetPath = \ mcaObjectPaths["calibration"].split("::") with h5py.File(tmpFileName, "r") as tmpH5: _calibration = tmpH5[tmpDatasetPath][()] else: del mcaObjectPaths["calibration"] if "channels" in mcaObjectPaths: if mcaObjectPaths["channels"] in tmpHdf: _channels = \ tmpHdf[mcaObjectPaths["channels"]][()] elif "::" in mcaObjectPaths["channels"]: tmpFileName, tmpDatasetPath = \ mcaObjectPaths["channels"].split("::") with h5py.File(tmpFileName, "r") as tmpH5: _channels = tmpH5[tmpDatasetPath][()] else: del mcaObjectPaths["channels"] else: self._pathHasRelevantInfo = False if (not DONE) and (not considerAsImages): _logger.info("Data in memory as spectra") self.info["McaIndex"] = 2 n = 0 if dim0 == 1: self.onBegin(dim1) else: self.onBegin(dim0) self.incrProgressBar=0 for hdf in hdfStack._sourceObjectList: entryNames = list(hdf["/"].keys()) goodEntryNames = [] for entry in entryNames: tmpPath = "/" + entry try: if hasattr(hdf[tmpPath], "keys"): goodEntryNames.append(entry) except KeyError: _logger.info("Broken link with key? <%s>" % tmpPath) for scan in scanlist: IN_MEMORY = None nStart = n for ySelection in ySelectionList: n = nStart if JUST_KEYS: entryName = goodEntryNames[int(scan.split(".")[-1])-1] path = entryName + ySelection if mSelection is not None: mpath = entryName + mSelection mdtype = hdf[mpath].dtype if mdtype not in [numpy.float64, numpy.float32]: mdtype = numpy.float64 mDataset = numpy.asarray(hdf[mpath], dtype=mdtype) if xSelectionList is not None: xDatasetList = [] for xSelection in xSelectionList: xpath = entryName + xSelection xDataset = hdf[xpath][()] xDatasetList.append(xDataset) else: path = scan + ySelection if mSelection is not None: mpath = scan + mSelection mdtype = hdf[mpath].dtype if mdtype not in [numpy.float64, numpy.float32]: mdtype = numpy.float64 mDataset = numpy.asarray(hdf[mpath], dtype=mdtype) if xSelectionList is not None: xDatasetList = [] for xSelection in xSelectionList: xpath = scan + xSelection xDataset = hdf[xpath][()] xDatasetList.append(xDataset) try: yDataset = hdf[path] tmpShape = yDataset.shape totalBytes = numpy.ones((1,), yDataset.dtype).itemsize for nItems in tmpShape: totalBytes *= nItems # should one be conservative or just try? if (totalBytes/(1024.*1024.)) > (0.4 * physicalMemory): _logger.info("Force dynamic loading of spectra") #read from disk IN_MEMORY = False else: #read the data into memory _logger.info("Attempt to load whole map into memory") yDataset = hdf[path][()] IN_MEMORY = True except (MemoryError, ValueError): _logger.info("Dynamic loading of spectra") yDataset = hdf[path] IN_MEMORY = False nMcaInYDataset = 1 for dim in yDataset.shape: nMcaInYDataset *= dim nMcaInYDataset = int(nMcaInYDataset/mcaDim) timeData = None if _time is not None: if "live_time" in mcaObjectPaths: # it is assumed that all have the same structure!!! timePath = NexusTools.getMcaObjectPaths(hdf, path)["live_time"] elif "elapsed_time" in mcaObjectPaths: timePath = NexusTools.getMcaObjectPaths(hdf, path)["elapsed_time"] if timePath in hdf: timeData = hdf[timePath][()] elif "::" in timePath: externalFile, externalPath = timePath.split("::") with h5py.File(externalFile, "r") as timeHdf: timeData = timeHdf[externalPath][()] if mcaIndex != 0: if IN_MEMORY: yDataset.shape = -1, mcaDim if mSelection is not None: case = -1 nMonitorData = 1 for v in mDataset.shape: nMonitorData *= v if nMonitorData == nMcaInYDataset: mDataset.shape = nMcaInYDataset case = 0 elif nMonitorData == (nMcaInYDataset * mcaDim): case = 1 mDataset.shape = nMcaInYDataset, mcaDim if case == -1: raise ValueError(\ "I do not know how to handle this monitor data") if timeData is not None: case = -1 nTimeData = 1 for v in timeData.shape: nTimeData *= v if nTimeData == nMcaInYDataset: timeData.shape = nMcaInYDataset case = 0 _time[nStart: nStart + nMcaInYDataset] += timeData if case == -1: _logger.warning("I do not know how to handle this time data") _logger.warning("Ignoring time information") _time= None if (len(yDataset.shape) == 3) and\ (dim1 == yDataset.shape[1]): mca = 0 deltaI = int(yDataset.shape[1]/dim1) for ii in range(yDataset.shape[0]): i = int(n/dim1) yData = yDataset[ii:(ii+1)] yData.shape = -1, mcaDim if mSelection is not None: if case == 0: mData = numpy.outer(mDataset[mca:(mca+dim1)], numpy.ones((mcaDim))) self.data[i, :, :] += yData / mData elif case == 1: mData = mDataset[mca:(mca+dim1), :] mData.shape = -1, mcaDim self.data[i, :, :] += yData / mData else: self.data[i:(i+deltaI), :] += yData n += yDataset.shape[1] mca += dim1 else: for mca in range(nMcaInYDataset): i = int(n/dim1) j = n % dim1 if len(yDataset.shape) == 3: ii = int(mca/yDataset.shape[1]) jj = mca % yDataset.shape[1] yData = yDataset[ii, jj] elif len(yDataset.shape) == 2: yData = yDataset[mca,:] elif len(yDataset.shape) == 1: yData = yDataset if mSelection is not None: if case == 0: self.data[i, j, :] += yData / mDataset[mca] elif case == 1: self.data[i, j, :] += yData / mDataset[mca, :] else: self.data[i, j, :] += yData n += 1 else: if mSelection is not None: case = -1 nMonitorData = 1 for v in mDataset.shape: nMonitorData *= v if nMonitorData == yDataset.shape[0]: case = 3 mDataset.shape = yDataset.shape[0] elif nMonitorData == nMcaInYDataset: mDataset.shape = nMcaInYDataset case = 0 #elif nMonitorData == (yDataset.shape[1] * yDataset.shape[2]): # case = 1 # mDataset.shape = yDataset.shape[1], yDataset.shape[2] if case == -1: raise ValueError(\ "I do not know how to handle this monitor data") if IN_MEMORY: yDataset.shape = mcaDim, -1 if len(yDataset.shape) != 3: for mca in range(nMcaInYDataset): i = int(n/dim1) j = n % dim1 if len(yDataset.shape) == 3: ii = int(mca/yDataset.shape[2]) jj = mca % yDataset.shape[2] yData = yDataset[:, ii, jj] elif len(yDataset.shape) == 2: yData = yDataset[:, mca] elif len(yDataset.shape) == 1: yData = yDataset[:] if mSelection is not None: if case == 0: self.data[i, j, :] += yData / mDataset[mca] elif case == 1: self.data[i, j, :] += yData / mDataset[:, mca] elif case == 3: self.data[i, j, :] += yData / mDataset else: self.data[i, j, :] += yData n += 1 else: #stack of images to be read as MCA for nImage in range(yDataset.shape[0]): tmp = yDataset[nImage:(nImage+1)] if len(tmp.shape) == 3: i = int(n/dim1) j = n % dim1 if 0: #this loop is extremely SLOW!!!(and useless) for ii in range(tmp.shape[1]): for jj in range(tmp.shape[2]): self.data[i+ii, j+jj, nImage] += tmp[0, ii, jj] else: self.data[i:i+tmp.shape[1], j:j+tmp.shape[2], nImage] += tmp[0] if mSelection is not None: for mca in range(yDataset.shape[0]): i = int(n/dim1) j = n % dim1 yData = self.data[i, j, :] if case == 0: self.data[i, j, :] += yData / mDataset[mca] elif case == 1: self.data[i, j, :] += yData / mDataset[:, mca] n += 1 else: n += tmp.shape[1] * tmp.shape[2] yDataset = None if dim0 == 1: self.onProgress(j) if dim0 != 1: self.onProgress(i) self.onEnd() elif not DONE: # data into memory but as images self.info["McaIndex"] = mcaIndex for hdf in hdfStack._sourceObjectList: entryNames = list(hdf["/"].keys()) for scan in scanlist: for ySelection in ySelectionList: if JUST_KEYS: entryName = entryNames[int(scan.split(".")[-1])-1] path = entryName + ySelection if mSelection is not None: mpath = entryName + mSelection mDataset.shape if xSelectionList is not None: xDatasetList = [] for xSelection in xSelectionList: xpath = entryName + xSelection xDataset = hdf[xpath][()] xDatasetList.append(xDataset) else: path = scan + ySelection if mSelection is not None: mpath = scan + mSelection mdtype = hdf[mpath].dtype if mdtype not in [numpy.float64, numpy.float32]: mdtype = numpy.float64 mDataset = numpy.asarray(hdf[mpath], dtype=mdtype) if xSelectionList is not None: xDatasetList = [] for xSelection in xSelectionList: xpath = scan + xSelection xDataset = hdf[xpath][()] xDatasetList.append(xDataset) if mSelection is not None: nMonitorData = mDataset.size case = -1 yDatasetShape = yDataset.shape if nMonitorData == yDatasetShape[0]: #as many monitor data as images mDataset.shape = yDatasetShape[0] case = 0 elif nMonitorData == (yDatasetShape[1] * yDatasetShape[2]): #as many monitorData as pixels case = 1 mDataset.shape = yDatasetShape[1], yDatasetShape[2] if case == -1: raise ValueError(\ "I do not know how to handle this monitor data") if case == 0: for i in range(yDatasetShape[0]): self.data[i] += yDataset[i][()] / mDataset[i] elif case == 1: for i in range(yDataset.shape[0]): self.data[i] += yDataset[i] / mDataset else: for i in range(yDataset.shape[0]): self.data[i:i+1] += yDataset[i:i+1] else: self.info["McaIndex"] = mcaIndex if _time: nRequiredValues = 1 for i in range(len(self.data.shape)): if i != mcaIndex: nRequiredValues *= self.data.shape[i] if _time.size != nRequiredValues: _logger.warning("I do not know how to interpret the time information") _logger.warning("Ignoring time information") _time = None else: _time.shape = -1 self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = filelist self.info["Size"] = 1 self.info["NumberOfFiles"] = 1 if mcaIndex == 0: self.info["FileIndex"] = 1 else: self.info["FileIndex"] = 0 if _calibration is not None: self.info['McaCalib'] = _calibration else: self.info['McaCalib'] = [ 0.0, 1.0, 0.0] shape = self.data.shape nSpectra = 1 for i in range(len(shape)): key = 'Dim_%d' % (i+1,) self.info[key] = shape[i] if i != self.info['McaIndex']: nSpectra *= shape[i] self.info['Channel0'] = 0 # try to get scales scaleList = [] if xSelectionList is not None: if len(xDatasetList) == 1: xDataset = xDatasetList[0] if xDataset.size == shape[self.info['McaIndex']]: # assuming providing channels self.x = [xDataset.reshape(-1)] else: _logger.warning("Ignoring channels selection %s" % xSelectionList) elif len(xDatasetList) == len(self.data.shape): # assuming providing spatial coordinates and channels goodScale = 0 for i in range(len(self.data.shape)): dataset = xDatasetList[i] datasize = self.data.shape[i] if dataset.size == datasize: goodScale += 1 else: _logger.warning("Dimensions do not match %d != %d" % \ (dataset.size, datasize)) if goodScale == len(self.data.shape): scaleList = [] for i in range(len(self.data.shape)): dataset = xDatasetList[i].reshape(-1) datasize = self.data.shape[i] if i == mcaIndex: self.x = [dataset] else: origin = dataset[0] if dataset.size > 1: delta = numpy.mean(dataset[1:] - dataset[:-1], dtype=numpy.float32) else: delta = 1.0 scaleList.append([origin, delta]) if goodScale == 3: xScale = scaleList[1] yScale = scaleList[0] else: _logger.warning("Spatial dimensions ignored") else: _logger.warning("Ignoring dimension selections %s" % xSelectionList) elif len(xDatasetList) == (len(self.data.shape) - 1): scaleList = [] for i in range(len(self.data.shape)): if i == mcaIndex: continue dataset = xDatasetList[i].reshape(-1) datasize = self.data.shape[i] if dataset.size == datasize: origin = dataset[0] if dataset.size > 1: delta = numpy.mean(dataset[1:] - dataset[:-1], dtype=numpy.float32) else: delta = 1.0 scaleList.append([origin, delta]) else: _logger.warning("Dimensions do not match %d != %d" % \ (dataset.size, datasize)) if len(scaleList) == 2: xScale = scaleList[1] yScale = scaleList[0] else: _logger.warning("Ignoring dimension selections %s" % xSelectionList) else: _logger.warning("Ignoring axes selection %s" % xSelectionList) elif _channels is not None: _channels.shape = -1 self.x = [_channels] if _time is not None: self.info["McaLiveTime"] = _time if positionersGroup: self.info["positioners"] = positioners if (len(scaleList) == 0) and (nFiles == 1) and (nScans == 1) \ and (len(self.data.shape) == 3): # try to figure out the scales from the data layout originalDir = posixpath.dirname(mcaObjectPaths["counts"]) targetDir = posixpath.dirname(mcaObjectPaths["target"]) for countsDir in [originalDir, posixpath.join(originalDir, "map"), targetDir, posixpath.join(targetDir, "map")]: dims = [] for i in range(3): dimPath = posixpath.join(countsDir, "dim%d" % i) if dimPath in tmpHdf: item = tmpHdf[dimPath] elif "::" in tmpHdf: tmpFileName, tmpDatasetPath = dimPath.split("::") with h5py.File(tmpFileName, "r") as tmpH5: item = tmpH5[tmpDatasetPath][()] else: continue if hasattr(item, "shape") and hasattr(item, "size"): if item.size == self.data.shape[i]: dims.append(item[()].reshape(-1)) if len(dims) == len(self.data.shape): break if len(dims) == len(self.data.shape): scaleList = [] for i in range(len(self.data.shape)): if i == mcaIndex: continue dataset = dims[i] origin = dataset[0] if dataset.size > 1: delta = numpy.mean(dataset[1:] - dataset[:-1], dtype=numpy.float32) else: delta = 1.0 scaleList.append([origin, delta]) if len(scaleList) == 2: xScale = scaleList[1] yScale = scaleList[0] if len(self.data.shape) == 3: if len(scaleList) == 2: self.info["xScale"] = xScale self.info["yScale"] = yScale def getDimensions(self, nFiles, nScans, shape, index=None): #somebody may want to overwrite this """ Returns the shape of the final stack as (Dim0, Dim1, Nchannels) """ if index is None: index = -1 if index == -1: index = len(shape) - 1 _logger.debug("INDEX = %d", index) #figure out the shape of the stack if len(shape) == 0: #a scalar? raise ValueError("Selection corresponds to a scalar") elif len(shape) == 1: #nchannels nMca = 1 elif len(shape) == 2: if index == 0: #npoints x nchannels nMca = shape[1] else: #npoints x nchannels nMca = shape[0] elif len(shape) == 3: if index in [2, -1]: #dim1 x dim2 x nchannels nMca = shape[0] * shape[1] elif index == 0: nMca = shape[1] * shape[2] else: raise IndexError("Only first and last dimensions handled") else: nMca = 1 for i in range(len(shape)): if i == index: continue nMca *= shape[i] mcaDim = shape[index] _logger.debug("nMca = %d", nMca) _logger.debug("mcaDim = %s", mcaDim) # HDF allows to work directly from the files without loading # them into memory. if (nScans == 1) and (nFiles > 1): if nMca == 1: #specfile like case dim0 = nFiles dim1 = nMca * nScans # nScans is 1 else: #ESRF EDF like case dim0 = nFiles dim1 = nMca * nScans # nScans is 1 elif (nScans == 1) and (nFiles == 1): if nMca == 1: #specfile like single mca dim0 = nFiles # it is 1 dim1 = nMca * nScans # nScans is 1 elif len(shape) == 2: dim0 = nFiles # it is 1 dim1 = nMca * nScans # nScans is 1 elif len(shape) == 3: if index == 0: dim0 = shape[1] dim1 = shape[2] else: dim0 = shape[0] dim1 = shape[1] else: #specfile like multiple mca dim0 = nFiles # it is 1 dim1 = nMca * nScans # nScans is 1 elif (nScans > 1) and (nFiles == 1): if nMca == 1: #specfile like case dim0 = nFiles dim1 = nMca * nScans elif nMca > 1: if len(shape) == 1: #specfile like case dim0 = nFiles dim1 = nMca * nScans elif len(shape) == 2: dim0 = nScans dim1 = nMca #shape[0] elif len(shape) == 3: if (shape[0] == 1) or (shape[1] == 1): dim0 = nScans dim1 = nMca else: #The user will have to decide the shape dim0 = 1 dim1 = nScans * nMca else: #The user will have to decide the shape dim0 = 1 dim1 = nScans * nMca elif (nScans > 1) and (nFiles > 1): dim0 = nFiles dim1 = nMca * nScans else: #I should not reach this point raise ValueError("Unhandled case") return dim0, dim1, shape[index] def onBegin(self, n): pass def onProgress(self, n): pass def onEnd(self): pass ././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/HDF5Utils.py��������������������������������������������������������0000644�0000000�0000000�00000002362�14741736366�016720� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������import os import h5py from queue import Empty import multiprocessing def get_hdf5_group_keys(file_path, data_path=None): """Note: segmentation faults seem to be caused only when iterating the HDF5 root. """ os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" with h5py.File(file_path, mode="r") as group: if data_path: group = group[data_path] else: group = group["/"] # to preserve the order return list(group.keys()) def safe_hdf5_group_keys(file_path, data_path=None): return run_in_subprocess( get_hdf5_group_keys, file_path, data_path=data_path, default=list() ) def run_in_subprocess(target, *args, context=None, default=None, **kwargs): ctx = multiprocessing.get_context(context) queue = ctx.Queue(maxsize=1) p = ctx.Process( target=subprocess_main, args=(queue, target) + args, kwargs=kwargs, ) p.start() try: p.join() try: return queue.get(block=False) except Empty: return default finally: try: p.kill() except AttributeError: p.terminate() def subprocess_main(queue, method, *args, **kwargs): queue.put(method(*args, **kwargs)) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/JcampFileParser.py��������������������������������������������������0000644�0000000�0000000�00000020630�14741736366�020216� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import logging import sys import numpy import mmap import re import time from PyMca5.PyMcaIO import JcampReader from PyMca5.PyMcaIO import SpecFileAbstractClass if sys.version < "3": from StringIO import StringIO else: from io import StringIO _logger = logging.getLogger(__name__) class JcampFileParser(SpecFileAbstractClass.SpecFileAbstractClass): def __init__(self, filename, single=False): # get the number of entries in the file self.__lastEntryData = -1 t0 = time.time() if sys.maxsize > 2**32: self._useMMap = True else: self._useMMap = False _logger.debug("USING MMPA = %s", self._useMMap) if self._useMMap: # 64-bit supported f = open(filename, "rb") mm = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) a = [x.start() for x in re.finditer("##TITLE".encode("utf-8"), mm)] b = [x.end() for x in re.finditer("##END.*\n".encode("utf-8"), mm)] mm = None f.close() # we can have twice the TITLE before the first data block # we get rid of the second to have also the file header if len(a) > 1: if a[1] < b[0]: del a[1] self._scanLimits = [(start, end) for start, end in zip(a, b)] else: # 32-bit self._scanLimits = [] f = open(filename, "rb") entryStarted = False current = f.tell() line = f.readline() nLines = 0 while len(line): if entryStarted: if line.startswith("##END=".encode("utf-8")): lineEnd = nLines self._scanLimits.append((start, f.tell(), lineStart, lineEnd)) entryStarted = False if single: break elif line.startswith("##TITLE".encode("utf-8")): start = current lineStart = nLines entryStarted = True nLines += 1 current = f.tell() line = f.readline() f.close() _logger.debug("Elapsed CURRENT = %s", time.time() - t0) self._filename = os.path.abspath(filename) _logger.debug("PARSING FIRST ") t0 = time.time() self._parseEntryData(0) elapsed = time.time() - t0 _logger.debug("ELAPSED PER SCAN = %s", elapsed) _logger.debug("N SCANS = %s", self.scanno()) _logger.debug("EXPECTED = %s", elapsed * self.scanno()) def _parseEntryData(self, idx): if idx == self.__lastEntryData: # nothing to be done return if (idx < 0) or (idx >= len(self._scanLimits)): raise IndexError("Only %d entries in file. Requested %d" % (len(self._scanLimits), idx)) start, end = self._scanLimits[idx][0:2] if self._useMMap: #get the relevant file section f = open(self._filename, "rb") scanBuffer = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)[start:end] f.close() # the Reader expects to work with strings and not with bytes scanBuffer = scanBuffer.decode("utf-8") fileBlock = True else: #get the relevant file section f = open(self._filename, "r") start, end = self._scanLimits[idx][0:2] f.seek(start) scanBuffer = StringIO(f.read(1 + end - start)) f.close() fileBlock = False instance = JcampReader.JcampReader(scanBuffer, block=fileBlock) info = instance.info jcampDict = info x, y = instance.data title = jcampDict.get('TITLE', "Unknown scan") xLabel = jcampDict.get('XUNITS', 'channel') yLabel = jcampDict.get('YUNITS', 'counts') try: fileheader = instance._header except Exception: _logger.warning("JCampFileParser cannot access '_header' attribute") fileheader=None data = numpy.zeros((x.size, 2), numpy.float32) data[:, 0] = x data[:, 1] = y self.scandata = [] scanheader = ["#S %d %s" % (2*idx + 1, title), "#N 2", "#L %s %s" % (xLabel, yLabel)] scanData = JCAMPFileScan(data, scantype="SCAN", scanheader=scanheader, labels=[xLabel, yLabel], fileheader=fileheader) self.scandata.append(scanData) scanheader = ["#S %d %s" % (2*idx + 2, title)] if jcampDict['XYDATA'].upper() == '(X++(Y..Y))': # we can deal with the X axis via its calibration scanheader.append("#@CHANN %d %d %d 1" % (len(x), 0, len(x) - 1)) scanheader.append("#@CALIB %f %f 0" % (x[0], x[1] - x[0])) scantype = "MCA" scanData = JCAMPFileScan(data, scantype="MCA", scanheader=scanheader, #labels=[xLabel, yLabel], fileheader=fileheader) self.scandata.append(scanData) self.__lastEntryData = idx def __getitem__(self, item): if item < 0: item = self.scanno() - item idx = item // 2 self._parseEntryData(idx) return self.scandata[item % 2] def list(self): return '1:%d' % self.scanno() def scanno(self): return len(self.scandata) * len(self._scanLimits) class JCAMPFileScan(SpecFileAbstractClass.SpecFileAbstractScan): def __init__(self, data, scantype="SCAN", scanheader=None, labels=None, fileheader=None): SpecFileAbstractClass.SpecFileAbstractScan.__init__(self, data, scantype=scantype, scanheader=scanheader, labels=labels) self._data = data self._fileHeader = fileheader def fileheader(self, key=''): return self._fileHeader def nbmca(self): if self.scantype == 'SCAN': return 0 else: return 1 def mca(self, number): if number not in [1]: raise ValueError("Specfile mca numberig starts at 1") return self._data[:, number] def isJcampFile(filename): return JcampReader.isJcampFile(filename) if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python JCAMPFileParser.py filename") sys.exit(0) print(" isJCAMPFile = ", isJcampFile(sys.argv[1])) sf = JcampFileParser(sys.argv[1]) print("nscans = ", sf.scanno()) print("list = ", sf.list()) print("select = ", sf.select(sf.list()[0])) ��������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/JcampOpusStack.py���������������������������������������������������0000644�0000000�0000000�00000012745�14741736366�020106� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2017-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy from PyMca5.PyMcaIO import JcampFileParser from PyMca5.PyMcaCore import DataObject SOURCE_TYPE = "EdfFileStack" class JcampOpusStack(DataObject.DataObject): def __init__(self, filename): DataObject.DataObject.__init__(self) fileParser = JcampFileParser.JcampFileParser(filename, single=False) scan = fileParser[0] fileHeader = scan.fileheader() firstHeaderInfo = parseFileHeader(fileHeader) if scan.nbmca() == 0: scan = fileParser[1] nBlocks = firstHeaderInfo["BLOCKS"] nbmca = scan.nbmca() # take the last mca of the scan lastMca = scan.mca(nbmca) nChannels = lastMca.size calib = scan.header('@CALIB')[0] if len(calib): calib = [float(x) for x in calib.split()[1:]] else: calib = [0.0, 1.0, 0.0] chann = scan.header('@CHANN')[0] if len(chann): ctxt = chann.split() if len(ctxt) == 5: chann = float(ctxt[2]) else: chann = 0.0 else: chann = 0.0 # assume all mca have the same size, calibration, ... data = numpy.zeros((1, nBlocks, nChannels), dtype=numpy.float32) nScans = fileParser.scanno() mcaIndex = 0 for i in range(nScans): scan = fileParser[i] if scan.nbmca(): mcaData = scan.mca(scan.nbmca()) data[0, mcaIndex] = mcaData mcaIndex += 1 # make use of the collected information # shape xShape = firstHeaderInfo.get("$MAP_POINTS_IN_X", None) yShape = firstHeaderInfo.get("$MAP_POINTS_IN_Y", None) if (xShape is not None) and (yShape is not None): if xShape * yShape == nBlocks: data.shape = yShape, xShape, nChannels else: print("PRODUCT DOES NOT MATCH NUMBER OF BLOCKS") #scales xScale = [0.0, 1.0] yScale = [0.0, 1.0] xScale[0] = firstHeaderInfo.get("$MAP_ORIGIN_X", 0.0) xScale[1] = firstHeaderInfo.get("$MAP_DELTA_X", 1.0) yScale[0] = firstHeaderInfo.get("$MAP_ORIGIN_Y", 0.0) yScale[1] = firstHeaderInfo.get("$MAP_DELTA_Y", 1.0) self.sourceName = filename self.info = {} self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["NumberOfFiles"] = 1 self.info["McaIndex"] = 2 self.info["McaCalib"] = calib self.info["Channel0"] = chann self.info["xScale"] = xScale self.info["yScale"] = yScale self.data = data def parseFileHeader(lines): ddict = {} for line in lines: key, content = line.split("=") key = key[2:] if key in ["BLOCKS", "$MAP_POINTS_IN_X", "$MAP_POINTS_IN_Y"]: ddict[key] = int(content) else: try: ddict[key] = float(content) except Exception: ddict[key] = content return ddict def isJcampOpusStackFile(filename): if not JcampFileParser.isJcampFile(filename): return False # Parse the first scan jcamp = JcampFileParser.JcampFileParser(filename, single=True) scan = jcamp[0] header = parseFileHeader(scan.fileheader()) if "BLOCKS" in header: if header["BLOCKS"] > 1: return True return False if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python JCAMPFileParser.py filename") sys.exit(0) actualOpus = isJcampOpusStackFile(sys.argv[1]) print(" isJcampOpusStackFile = ", actualOpus) if actualOpus: stack = JcampOpusStack(sys.argv[1]) print("info = ", stack.info) #print("list = ", sf.list()) #print("select = ", sf.select(sf.list()[0])) ���������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/JcampReader.py������������������������������������������������������0000644�0000000�0000000�00000031324�14741736366�017366� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__=""" Minimalistic support to read and write JCAMP-DX files. The first three lines of a JCAMP-DX file have to be: ##TITLE= ##JCAMP-DX= JCAMP version number $$ Optional comment about the writing software ##DATA TYPE= The next two lines were considered mandatory in Applied Spectroscopy 42 (1998) 151-162. ##ORIGIN= ##OWNER= Then came several optional lines ##XUNITS= ##YUNITS= ##XFACTOR= ##YFACTOR= ##FIRSTX= ##LASTX= ##NPOINTS= ##FIRSTY= ##XYDATA=(X++(Y..Y)) data block ##END= """ import os import sys import re import numpy import logging patternKey=re.compile(r'^[#][#]\s*(?P<name>[^=]+)=(?P<value>.*)$') #patternNumber = re.compile(r'([+-]?\d+\.?\d*)') patternNumber = re.compile(r'[+-]?[0-9]+\.?[0-9]*(?:[eE][+-]?[0-9]+)?') _logger = logging.getLogger(__name__) text = '1.23 +2 456-7.98+5 10+3.4E+01 98-7.6E-2+3' _logger.debug("RESULT:") _logger.debug("\t%s", re.findall(patternNumber, text)) _logger.debug("EXPECTED:") _logger.debug("\t%s", ['1.23', '+2', '456', '-7.98', '+5', '10', '+3.4E+01', '98', '-7.6E-2', '+3']) class BufferedFile(object): def __init__(self, filenameOrBuffer, block=False): if block: self.__buffer = filenameOrBuffer elif hasattr(filenameOrBuffer, "read"): self.__buffer = filenameOrBuffer.read() elif os.path.exists(filenameOrBuffer): f = open(filenameOrBuffer, 'r') self.__buffer = f.read() f.close() else: raise IOError("File %s does not exists" % filenameOrBuffer) self.__buffer = self.__buffer.replace("\r", "\n") self.__buffer = self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") self.__currentLine = 0 def readline(self): if self.__currentLine >= len(self.__buffer): return "" line = self.__buffer[self.__currentLine] self.__currentLine += 1 return line def close(self): self.__buffer = [""] self.__currentLine = 0 return class JcampReader(object): def __init__(self, filenameOrBuffer, block=False): _fileObject = BufferedFile(filenameOrBuffer, block) # only one measurement per file ddict = {} header = [] # test we are actually using a JCAMP-DX file testKeys = ["TITLE", "JCAMP-DX", "DATA TYPE"] for i, key in enumerate(testKeys): line = _fileObject.readline() info = re.findall(patternKey, line) if len(info): actualKey = key.replace(" ","") if info[0][0].replace(" ", "").upper().startswith(actualKey): header.append(line) ddict[key] = info[0][1] else: raise IOError("This does not look as a JCAMP-DX file") line = _fileObject.readline() while not line.startswith("##XYDATA"): header.append(line) line = _fileObject.readline() key, value = re.findall(patternKey, line)[0] ddict["XYDATA"] = value.upper() header.append(line) # we are at the data block data = [] line = _fileObject.readline() while not line.startswith("##END"): data.append(line) line = _fileObject.readline() _fileObject.close() self._header = header self.info = self.parseHeader() self.data = self.parseData(data) """ import time t0 = time.time() self.info = self.parseHeader() print("elapsed parsing info = ", time.time() - t0) t0 = time.clock() for i in range(10000): self.data = self.parseDataOld(data) print("elapsed parsing data = ", (time.clock() - t0)/1000.) t0 = time.clock() for i in range(10000): self.dataNew = self.parseData(data) print("elapsed parsing dataNew = ", (time.clock() - t0)/1000.) print(self.dataNew[0] - self.data[0]).min() print(self.dataNew[0] - self.data[0]).max() print(self.dataNew[1] - self.data[1]).min() print(self.dataNew[1] - self.data[1]).max() """ def parseHeader(self, keyList=None): if keyList is None: keyList = ["TITLE", "JCAMP-DX", "DATA TYPE", "ORIGIN", "OWNER", "XUNITS", "YUNITS", "XFACTOR", "YFACTOR", "FIRSTX", "LASTX", "DELTAX", "NPOINTS", "FIRSTY", "XYDATA"] ddict = {} for line in self._header: for key in keyList: info = re.findall(patternKey, line) if len(info): actualKey = key.replace(" ","") if info[0][0].replace(" ", "").upper().startswith(actualKey): ddict[key] = info[0][1] return ddict def parseData(self, dataLines): if self.info['XYDATA'].upper().strip() not in ["(X++(Y..Y))", "(XY..XY)"]: raise IOError("Format <%s> not supported yet" % self.info['XYDATA']) if self.info['XYDATA'].upper().strip() == "(X++(Y..Y))": lines = [re.findall(patternNumber, x) for x in dataLines if len(x)] nLines = len(lines) yValues = numpy.fromiter( \ [item for sublist in lines for item in sublist[1:]], numpy.float64) nValues = [(len(x) - 1) for x in lines] # the y values are all there, but the x values are not lastX = float(self.info["LASTX"]) try: # try to apply the formula given in the article # the problem is that DELTAX is not mandatory firstX = float(self.info["FIRSTX"]) deltaX = float(self.info["DELTAX"]) nPoints = int(self.info.get("NPOINTS", 0)) if nPoints != len(yValues): _logger.warning("Number of points does not match number of values") nPoints = len(yValues) # this formula is given in the article x = firstX + numpy.arange(nPoints) * \ ((lastX - firstX) / (nPoints - 1.0)) except KeyError: #print("WRONG") xValues = numpy.fromiter( \ [item for sublist in lines for item in sublist[0:1]], numpy.float64) xValues.append(lastX) x = numpy.zeros((len(yValues),), dtype=numpy.float64) start = 0 nDataLines = len(nValues) for i in range(nDataLines): n = nValues[i] end = start + n if i == (nDataLines - 1): endpoint = True else: endpoint = False x[start:end] = numpy.linspace(xValues[i], xValues[i+1], n, endpoint=endpoint) start = end else: # XY, XY, ... values = [] for line in dataLines: values += [float(x) for x in re.findall(patternNumber, line)] values = numpy.array(values) x = values[0::2] yValues = values[1::2] xFactor = float(self.info.get("XFACTOR", 1.0)) yFactor = float(self.info.get("YFACTOR", 1.0)) return x * xFactor, numpy.asarray(yValues) * yFactor def parseDataOld(self, dataLines): if self.info['XYDATA'].upper().strip() not in ["(X++(Y..Y))", "(XY..XY)"]: raise IOError("Format <%s> not supported yet" % self.info['XYDATA']) if self.info['XYDATA'].upper().strip() == "(X++(Y..Y))": xValues = [] yValues = [] nValues = [] for line in dataLines: values = [float(x) for x in re.findall(patternNumber, line)] xValues.append(values[0]) yValues += values[1:] nValues.append(len(values) - 1) # the y values are all there, but the x values are not lastX = float(self.info["LASTX"]) try: # try to apply the formula given in the article # the problem is that DELTAX is not mandatory firstX = float(self.info["FIRSTX"]) deltaX = float(self.info["DELTAX"]) nPoints = int(self.info.get("NPOINTS", 0)) if nPoints != len(yValues): _logger.warning("Number of points does not match number of values") nPoints = len(yValues) # this formula is given in the article x = firstX + numpy.arange(nPoints) * \ ((lastX - firstX) / (nPoints - 1.0)) except KeyError: xValues.append(lastX) x = numpy.zeros((len(yValues),), dtype=numpy.float64) start = 0 nDataLines = len(nValues) for i in range(nDataLines): n = nValues[i] end = start + n if i == (nDataLines - 1): endpoint = True else: endpoint = False x[start:end] = numpy.linspace(xValues[i], xValues[i+1], n, endpoint=endpoint) start = end else: # XY, XY, ... values = [] for line in dataLines: values += [float(x) for x in re.findall(patternNumber, line)] values = numpy.array(values) x = values[0::2] yValues = values[1::2] xFactor = float(self.info.get("XFACTOR", 1.0)) yFactor = float(self.info.get("YFACTOR", 1.0)) return x * xFactor, numpy.array(yValues) * yFactor def isJcampFile(filename): try: testKeys = ["TITLE", "JCAMP-DX", "DATA TYPE"] # if read mode is 'rb' python 3 does not work lines = [] if not hasattr(filename, "readline"): fid = open(filename, mode='r') owner = True else: fid =filename for i in range(len(testKeys)): lines.append(fid.readline()) if owner: fid.close() for i, key in enumerate(testKeys): line = lines[i] info = re.findall(patternKey, line) if len(info): actualKey = key.replace(" ","") if info[0][0].replace(" ", "").upper().startswith(actualKey): continue else: return False return True except Exception: return False if __name__ == "__main__": filename = None if len(sys.argv) > 1: filename = sys.argv[1] print("is JCAMP-DX File?", isJcampFile(filename)) instance = JcampReader(filename) print(instance.info) x, y = instance.data try: import matplotlib.pylab as plt plt.figure(0) plt.plot(x, y) plt.xlabel(instance.info.get('XUNITS', 'X')) plt.ylabel(instance.info.get('YUNITS', 'Y')) plt.show() except Exception: pass ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/LabSpec6TxtMap.py���������������������������������������������������0000644�0000000�0000000�00000017053�14741736366�017751� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import re import struct import numpy import copy import logging from PyMca5 import DataObject _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class LabSpec6TxtMap(DataObject.DataObject): ''' Class to read LabSpec6 .map files exported as txt It reads the spectra into a DataObject instance. This class info member contains all the parsed information. This class data member contains the map itself as a 3D array. This class x member contains the abscisa of the spectra This class info["positioners"] contains the acquisition coordinates ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the .map file. It is expected to work with OMNIC versions 7.x and 8.x ''' DataObject.DataObject.__init__(self) fid = open(filename, 'r') data = fid.readlines() fid.close() fid = None headerInfo, x, spectra, positioners = self._parseContents(data) self.sourceName = [filename] self.data = spectra self.x = [x] self.info["positioners"] = {} if positioners.shape[1] > 0: self.info["positioners"]["X"] = numpy.array(positioners[:, 0], copy=True).reshape(-1) if positioners.shape[1] > 1: self.info["positioners"]["Y"] = numpy.array(positioners[:, 1], copy=True).reshape(-1) if positioners.shape[1] > 2: self.info["positioners"]["Z"] = numpy.array(positioners[:, 2], copy=True).reshape(-1) nSpectra = self.data.shape[0] nRows = 1 nColumns = 1 if nSpectra > 1: if self.info["positioners"]["X"][0] == \ self.info["positioners"]["X"][1]: for i in range(nSpectra - 1): if self.info["positioners"]["X"][i] == \ self.info["positioners"]["X"][i+1]: nRows += 1 else: break nColumns = nSpectra // nRows else: for i in range(1, nSpectra): if self.info["positioners"]["X"][i] != \ self.info["positioners"]["X"][0]: nColumns += 1 nRows = nSpectra // nColumns _logger.debug("DIMENSIONS X = %f Y=%d", nSpectra * 1.0 / nRows, nRows) self.data.shape = nRows, nColumns, -1 #arrange as an EDF Stack if positioners.shape[1] == 2 and (nSpectra > 1): xPositions = positioners[:, 0] yPositions = positioners[:, 1] deltaX = (xPositions[-1] - xPositions[0]) / (nRows - 1) deltaY = (yPositions[-1] - yPositions[0]) / (nColumns - 1) else: deltaX = None deltaY = None _logger.warning("Cannot calculate scales") shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = nSpectra self.info["NumberOfFiles"] = 1 self.info["FileIndex"] = 0 self.info["Channel0"] = 0.0 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info['HeaderInfo'] = headerInfo if deltaX and deltaY: if (abs(deltaX) > 0.0) and (abs(deltaY) > 0.0): self.info["xScale"] = [xPositions[0], deltaX] self.info["yScale"] = [yPositions[0], deltaY] def _parseContents(self, data): ''' Parameters: ----------- data : The contents of the .txt map file Returns: -------- A dictionary with acquisition information ''' # --- header --- i = 0 info = {} for line in data: if line.startswith("#"): tokens = line[1:].split("=") info[tokens[0]] = tokens[1].replace("\t","").replace("\n","") i += 1 else: break # --- Spectrum X values --- # two possibilities # exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') # [float(token) for tokein in exp.findall(string)] # or # [float(token) for token in re.split('\t|\n| ', string) if len(token)] exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') x = [float(token) for token in exp.findall(data[i])] i += 1 # spectra and positions n_channels = len(x) n_points = len(data[i:]) #print("Number of channels %s", n_channels) #print("Number of spectra %s", n_points) x = numpy.array(x, dtype=numpy.float32) values = [float(token) for token in re.split('\t|\n| ', data[i]) if len(token)] n_positioners = len(values) - n_channels spectra = numpy.zeros((n_points, n_channels), numpy.float32) positioners = numpy.zeros((n_points, n_positioners), numpy.float32) for j in range(n_points): line = data[j+i] values = [float(token) for token in exp.findall(line)] positioners[j, :] = values[:n_positioners] spectra[j, :] = values[n_positioners:] return info, x, spectra, positioners if __name__ == "__main__": filename = None _logger.setLevel(logging.DEBUG) if len(sys.argv) > 1: filename = sys.argv[1] elif os.path.exists("map.txt"): filename = "map.txt" if filename is not None: w = LabSpec6TxtMap(filename) print(type(w)) print(type(w.data[0:10])) print(w.data[0:10]) print("shape = ", w.data.shape) print(type(w.info)) print("INFO = ", w.info['HeaderInfo']) print("Positioners = ", w.info['positioners']) else: print("Please supply input filename") �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/LispixMap.py��������������������������������������������������������0000644�0000000�0000000�00000030567�14741736366�017127� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import struct import numpy import logging from PyMca5 import DataObject _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class LispixMap(DataObject.DataObject): ''' Class to read Lispix files (Raw file described by a header file) It reads the spectra into a DataObject instance. This class info member contains all the parsed information. This class data member contains the map itself as a 3D array. ''' def __init__(self, filename, native=False): ''' Parameters: ----------- filename : str Name of the input file. native : boolean (default False) If set to False, it will always return a stack of spectra. It set to True, it will return what it is specified in the original file. ''' dataFile, headerFile = _getDataAndDescriptionFileName(filename) description = _parseHeaderFile(headerFile) columns = description.get("width", None) rows = description.get("height", None) if columns is None: raise IOError("Missing width field") if rows is None: raise IOError("Missing height field") offset = description["offset"] channels = description["depth"] if description["data-type"] in ["float", "double"]: if description["data-length"] == 4: dtype = numpy.float32 fmt = "f" elif description["data-length"] == 8: dtype = numpy.float64 fmt = "d" else: raise ValueError("Out of standard float length %d" % description["data-length"]) elif description["data-type"] == "signed": if description["data-length"] == 1: dtype = numpy.int8 fmt = "b" elif description["data-length"] == 2: dtype = numpy.int16 fmt = "h" elif description["data-length"] == 4: dtype = numpy.int32 fmt = "l" elif description["data-length"] == 8: dtype = numpy.int64 fmt = "q" elif description["data-type"] == "unsigned": if description["data-length"] == 1: dtype = numpy.uint8 fmt = "B" elif description["data-length"] == 2: dtype = numpy.uint16 fmt = "H" elif description["data-length"] == 4: dtype = numpy.uint32 fmt = "L" elif description["data-length"] == 8: dtype = numpy.uint64 fmt = "Q" else: raise IOError("Unknown data-type: <%s>" % description["data-type"]) if (description["record-by"] == "image") and (not native): # we have to convert to stack of spectra to make sure all PyMca # functionalities (particularly fitting) are available if dtype in [numpy.int8, numpy.uint8, numpy.int16, numpy.uint16]: # force stack of spectra with floating point values self.data = numpy.zeros((rows, columns, channels), dtype=numpy.float32) else: self.data = numpy.zeros((rows, columns, channels), dtype=dtype) try: f =open(dataFile, "rb") dataBuffer = f.read(offset) if description["byte-order"] in ["big-endian", "high-endian"]: fmt = ">%d%s" % (rows * columns, fmt) else: fmt = "<%d%s" % (rows * columns, fmt) nBytes = struct.calcsize(fmt) for i in range(channels): tmpData = numpy.array(struct.unpack(fmt, f.read(nBytes)), dtype=self.data.dtype) tmpData.shape = rows, columns self.data[:, :, i] = tmpData finally: f.close() mcaIndex = 2 elif (offset == 0) and (dtype not in [numpy.int8, numpy.uint8, numpy.int16, numpy.uint16]): # direct, native readout using numpy self.data = numpy.fromfile(dataFile, dtype=dtype) native = True elif description["record-by"] == "image": if dtype in [numpy.int8, numpy.uint8, numpy.int16, numpy.uint16]: # force stack of spectra with floating point values self.data = numpy.zeros((channels, rows, columns), dtype=numpy.float32) else: self.data = numpy.zeros((channels, rows, columns), dtype=dtype) try: f =open(dataFile, "rb") dataBuffer = f.read(offset) if description["byte-order"] in ["big-endian", "high-endian"]: fmt = ">%d%s" % (rows * columns, fmt) else: fmt = "<%d%s" % (rows * columns, fmt) nBytes = struct.calcsize(fmt) for i in range(channels): tmpData = numpy.array(struct.unpack(fmt, f.read(nBytes)), dtype=self.data.dtype) tmpData.shape = rows, columns self.data[i] = tmpData finally: f.close() native = True elif description["record-by"] != "image": if dtype in [numpy.int8, numpy.uint8, numpy.int16, numpy.uint16]: # force stack of spectra with floating point values self.data = numpy.zeros((rows, columns, channels), dtype=numpy.float32) else: self.data = numpy.zeros((rows, columns, channels), dtype=dtype) try: f =open(dataFile, "rb") dataBuffer = f.read(offset) if description["byte-order"] in ["big-endian", "high-endian"]: fmt = ">%d%s" % (columns * channels, fmt) else: fmt = "<%d%s" % (columns * channels, fmt) nBytes = struct.calcsize(fmt) for i in range(rows): tmpData = numpy.array(struct.unpack(fmt, f.read(nBytes)), dtype=self.data.dtype) tmpData.shape = columns, channels self.data[i] = tmpData finally: f.close() native = True else: raise IOError("Unhandled reading case. I should not reach this point") if native: if description["record-by"] == "image": self.data.shape = channels, rows, columns mcaIndex = 0 elif description["record-by"] == "vector": self.data.shape = rows, columns, channels mcaIndex = 2 else: _logger.info("Assuming spectra") self.data.shape = rows, columns, channels mcaIndex = 2 self.sourceName = filename self.info = {} self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["NumberOfFiles"] = 1 self.info["McaIndex"] = mcaIndex self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 def _getDataAndDescriptionFileName(filename): """ Given a file name, returns the name of the associated raw data file and associated rpl description file. If the associated file is not existing, it returns None. """ tmpFileName = filename.lower() if tmpFileName.endswith(".raw"): dataDile = filename headerFile = filename[:-3] + "rpl" elif tmpFileName.endswith(".rpl"): headerFile = filename else: headerFile = "input file not .rpl" dataFile = "input file not .raw" if os.path.exists(headerFile): dataFile = headerFile[:-3] + "raw" else: headerFile = ".rpl file not found" dataFile = ".raw file not found" return dataFile, headerFile def _parseHeaderFile(headerFile): """ Given the input header file describing the data, returns a dictionary with the description of the binary data: key value width 187 # pixels per row height 184 # rows depth 4096 # images or spectrum points offset 0 # bytes to skip data-length 2 # bytes per pixel data-type unsigned # possible values: signed, unsigned or float byte-order little-endian # big-endian, little-endian, or dont-care record-by vector # image, vector, or dont-care """ f = open(headerFile, "r") data = f.readlines() f.close() numericKeyList = ["width", "height", "depth", "offset", "data-length"] asciiKeyList = ["data-type", "byte-order", "record-by"] otherKeys = [] description = {} description["depth"] = 1 description["offset"] = 0 description["data-length"] = 1 description["data-type"] = "unsigned" description["byte-order"] = "little-endian" for tmpLine in data: treated = False line = tmpLine.lower() for key in numericKeyList: if line.startswith(key): cleanLine = line.replace("\t", " ") cleanLine = cleanLine.replace("\n", "") cleanLine = cleanLine.replace("\r", "") content = cleanLine.split(key)[-1] content = int(content.strip(" ")) description[key.lower()] = content treated = True break if not treated: for key in asciiKeyList: if line.startswith(key): cleanLine = line.replace("\t", " ") cleanLine = cleanLine.replace("\n", "") cleanLine = cleanLine.replace("\r", "") content = cleanLine.split(key)[-1] content = content.strip(" ") description[key.lower()] = content.lower() treated = True break if not treated: content = line.replace("\t", " ") if len(content.strip(" ")): _logger.debug("Ignored line: %s", line) return description def isLispixMapFile(filename): dataFile, descriptionFile = _getDataAndDescriptionFileName(filename) if os.path.exists(descriptionFile) and os.path.exists(dataFile): return True return False if __name__ == "__main__": filename = None if len(sys.argv) > 1: filename = sys.argv[1] print("is Lispix File?", isLispixMapFile(filename)) instance = LispixMap(filename) print(instance.info) print(instance.data.size) �����������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/LuciaMap.py���������������������������������������������������������0000644�0000000�0000000�00000014102�14741736366�016677� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ from __future__ import with_statement __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import re import numpy from PyMca5.PyMcaCore import DataObject SOURCE_TYPE = "EdfFileStack" class LuciaMap(DataObject.DataObject): def __init__(self, filename, infofile=None): DataObject.DataObject.__init__(self) with open(filename, 'r') as f: data = f.read() data.replace("\r\n", "\n") self.sourceName = [filename] firstByte = data.index("\n\n") header = data[0:firstByte] #get rid of the date data = data[firstByte:] #leave only the '----' as separator data.replace("\r", "") data.replace("\n", "") sep = '-' while sep in data: sep = sep + '-' sep = sep[1:] data = data.split(sep) if len(data[0]) != len(data[-1]): if len(data[0]) > 1: del data[-1] else: del data[0] #get the number of channels exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') spectrum = [float(x) for x in exp.findall(data[0])] self.nChannels = len(spectrum) self.nSpectra = len(data) self.nRows = self.nSpectra #try to get the information if infofile is None: infofile = "" split = filename.split('_') if len(split) > 1: for i in range(len(split) - 1): if i == 0: infofile = split[i] else: infofile += "_" + split[i] infofile = infofile + "_Infos_" +\ split[-1].replace('.mca', '.dat') if os.path.exists(infofile): info = self._getInfo(infofile) if ('vwidth' in info) and ('vstep' in info): vwidth = info['vwidth'] vstep = info['vstep'] if abs(vstep) > 0: self.nRows = int((vwidth / vstep) + 1) #fill the header self.header = header #arrange as an EDF Stack self.info = {} self.__nFiles = 1 self.__nImagesPerFile = 1 #self.nRows = 41 self.nCols = self.nSpectra / self.nRows self.data = numpy.zeros((self.nRows, self.nCols, self.nChannels), numpy.float32) n = 0 for i in range(self.nRows): for j in range(self.nCols): s = data[n] spectrum = numpy.array([float(x) for x in exp.findall(s)]) self.data[i, j, :] = spectrum[:] n = n + 1 shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = self.__nFiles * self.__nImagesPerFile self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["FileIndex"] = 0 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 def _getInfo(self, filename): ''' This dictionary is to be internally normalized for the time being no I0 nor dead time ''' exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') #read the file in one go to minimize access to disk with open(filename) as f: data = f.readlines() ddict = {} for line in data: if line.startswith("# Horizontal center position"): ddict['center'] = [float(x) for x in exp.findall(line)][0] elif line.startswith("# Horizontal width"): ddict['hwidth'] = [float(x) for x in exp.findall(line)][0] elif line.startswith("# Horizontal step"): ddict['hstep'] = [float(x) for x in exp.findall(line)][0] elif line.startswith("# Vertical width"): ddict['vwidth'] = [float(x) for x in exp.findall(line)][0] elif line.startswith("# Vertical step"): ddict['vstep'] = [float(x) for x in exp.findall(line)][0] return ddict def main(): filename = None if len(sys.argv) > 1: filename = sys.argv[1] elif os.path.exists("S10S_6_01.mca"): filename = "S10S_6_01.mca" if filename is not None: w = LuciaMap(filename) print(w.info) else: print("Please supply input filename") if __name__ == "__main__": main() ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/MEDFile.py����������������������������������������������������������0000644�0000000�0000000�00000023441�14741736366�016417� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/python # Copyright (c) 2010 Matthew Newville, The University of Chicago # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # __license__ = "MIT" __author__ = "M. Newville - The University of Chicago" """ Simple interface to M. River's Multi-Element MCA Data Format M. Newville """ import numpy as np import re MIN_SLOPE = 1.e-7 def str_converter(strin, delim=None, converter=None): """convert a string of a delimited array to a list""" if delim is None: arr = strin.split() else: arr = re.split(delim, strin) conv = converter if hasattr(conv, '__call__'): return [conv(elem) for elem in arr] else: return arr def str2float(strin, delim=None): "string of floats to array of floats" return str_converter(strin, delim=delim, converter=float) def str2int(strin, delim=None): "string of integers to array of ints" return str_converter(strin, delim=delim, converter=int) def str2str(strin, delim=None): "string to array of strings" return str_converter(strin, delim=delim) class ROI(object): "simple Region of Interest" def __init__(self, index=0, left=-1, right=-1, name=None, spectra=None): self.index = index self.left = left self.right = right self.name = name self.spectra = np.array(spectra) self.__counts = -1 def __repr__(self): return "<ROI('%s' chan:[%i, %i])>" % (self.name, self.left, self.right) def counts(self): "total counts in roi" if self.spectra is None: return None return self.spectra[self.left:self.right+1].sum() class MCA(object): """ basic MCA spectra""" def __init__(self, data=None): self.npts = 1 self.data = data self.energy = None self.realtime = 0 self.livetime = 0 self.deadtime_correction = 1.0 self.cal_offset = 0 self.cal_slope = 0.010 self.cal_quad = 0 self.cal_tth = 0 self.rois = [] def __repr__(self): return "<MCA(%i points) %s>" % (self.npts, hex(id(self))) def chan2energy(self, i): "get energy from a channel number" if self.energy is not None: self.get_energy() return self.energy[i] def get_calibration(self): "return calibration constants" self.cal_slope = max(MIN_SLOPE, self.cal_slope) return (self.cal_offset, self.cal_slope, self.cal_quad) def get_energy(self): "return full energy array" if self.energy is not None: return self.energy idx = np.arange(self.npts) self.cal_slope = max(MIN_SLOPE, self.cal_slope) self.energy = self.cal_offset + idx * (self.cal_slope + idx * self.cal_quad) return self.energy class MEDFile(object): """MultiElement XRF Data File Format """ def __init__(self, filename=None): self.default_detector = 0 # "good" detector for energy calibration self.env = [] self.mcas = [] self.filename = filename if filename is not None: self.mca_read_file(filename) def get_calibration(self, detector=None): "get calibration constants" if detector is None: detector = self.default_detector return self.mcas[detector].get_calibration() def chan2energy(self, i, detector=None): "get energy from a channel number" if detector is None: detector = self.default_detector return self.mcas[detector].chan2energy(i) def get_energy(self, detector=None): "get energy array" if detector is None: detector = self.default_detector return self.mcas[detector].get_energy() def get_data(self, detector=None, sum_all=True): """ get detector data, if sum_all == False, just the 1 array is returned if sum_all == True, the sum of all detectors is returned, aligned to the energy of the specified detector""" if detector is None: detector = self.default_detector dat = self.mcas[detector].data if sum_all: enref = self.mcas[detector].get_energy() dat = np.zeros(len(enref)) for mca in self.mcas: et = mca.get_energy() dt = mca.data[:] dat = dat + np.interp(enref, et, dt) return dat def mca_read_file(self, fname): "read MCA data file" self.filename = fname f = open(fname) lines = f.readlines() f.close() mode = 'HEADER' nelem = 1 # tmp data for data and headers, and rois tmpdat = [] header = {} _roi_0, _roi_1, _roi_n = {}, {}, {} for line in lines: line = line.strip() if len(line) < 1: continue if mode == 'DATA': # data mode tmpdat.append(str2int(line)) else: words = [x.strip() for x in line.split(' ', 1)] if len(words) < 2: # note that 'Data:' line as 1 word. words.append('') tag, val = words[0], words[1] tag = tag.replace(':', '').lower() if tag == 'data': mode = 'DATA' elif tag == 'elements': nelem = int(val) elif tag in ('rois', 'real_time', 'live_time', 'cal_offset', 'cal_slope', 'cal_quad', 'two_theta'): header[tag] = str2float(val) elif tag == 'environment': self.env.append(val) elif tag.startswith('roi_'): x, sroi, item = tag.split('_') iroi = int(sroi) if item == "label": labels = str2str(val, delim=r'&') if labels[-1] == '': labels = labels[:-1] _roi_n[iroi] = labels elif item == "left": _roi_0[iroi] = str2int(val) elif item == "right": _roi_1[iroi] = str2int(val) else: header[tag] = val # find first valid detector, identify bad detectors self.mcas = [MCA() for i in range(nelem)] tmpdat = np.transpose(np.array(tmpdat)) for imca, mca in enumerate(self.mcas): mca.npts = int(header['channels']) mca.nrois = int(header['rois'][imca]) mca.start_time = header['date'] mca.realtime = header['real_time'][imca] mca.livetime = header['live_time'][imca] mca.cal_offset = header['cal_offset'][imca] mca.cal_slope = header['cal_slope'][imca] mca.cal_quad = header['cal_quad'][imca] mca.cal_tth = header['two_theta'][imca] mca.data = 1 * tmpdat[imca, :] for iroi in _roi_n: name = _roi_n[iroi][imca].strip() ileft = _roi_0[iroi][imca] iright = _roi_1[iroi][imca] mca.rois.append(ROI(index=iroi, left=ileft, right=iright, name=name, spectra=mca.data)) def write_ascii(self, fname, elem=None, sum_all=True): """write data to ASCII column file""" out = [] out.append("# XRF data from %s\n" % (self.filename)) if len(self.env)>0: out.append("# Extra PVs:\n") for i in self.env: out.append("# %s\n" % i) out.append("#-------------------------\n") out.append("# energy counts\n") en = self.get_energy() if elem is not None: dat = self.get_data(detector=elem) elif sum_all: dat = self.get_data() for i in ("%8.4f %i\n" % (ei, di) for ei, di in zip(en, dat)): out.append("%s"%i) f = open(fname, "w+") f.writelines(out) f.close() if __name__ == '__main__': try: import pylab HAS_PYLAB = True except ImportError: HAS_PYLAB = False xrf = MEDFile('test.xrf') energy = xrf.get_energy() d0 = xrf.get_data(detector=0, sum_all=False) d1 = xrf.get_data(detector=1, sum_all=False) d2 = xrf.get_data(detector=2, sum_all=False) d3 = xrf.get_data(detector=3, sum_all=False) dsum = xrf.get_data(detector=0, sum_all=True) xrf.write_ascii('test.dat') print(' ROIs from Element 2:') print(' ------------------') print(' Name | Sum ') for roi in xrf.mcas[1].rois: print(' %s = %d ' % (roi.name, roi.counts())) if HAS_PYLAB: pylab.plot(energy, dsum) pylab.show() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/MRCMap.py�����������������������������������������������������������0000644�0000000�0000000�00000014641�14741736366�016273� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import struct import numpy import logging from PyMca5 import DataObject if sys.version < '2.6': def bytes(x): return str(x) _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class MRCMap(DataObject.DataObject): ''' Class to read MRC files It reads the spectra into a DataObject instance. This class info member contains all the parsed information. This class data member contains the map itself as a 3D array. ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the input file. It is expected to work with files generated at BESSY with raw2mrc ''' DataObject.DataObject.__init__(self) try: fid = open(filename, 'rb') header = fid.read(1024) fid.close() except Exception: fid.close() raise if not _isMRCHeader(header): raise IOError("File does not seem to be an MRC file") self.sourceName = filename # check endianness flag = struct.unpack("4B", header[212:216])[0] if flag in [17, 18]: # high endian (Motorola) endianness = ">" else: # little endian (Intel) endianness = "<" fmt = endianness + "10i" tenIntegers = struct.unpack(fmt, header[0:40]) nColumns, nRows, nImages, mode = tenIntegers[0:4] fmt = endianness + "6f" sixFloats = struct.unpack(fmt, header[40:64]) fmt = endianness + "3i" threeIntegers = struct.unpack(fmt, header[64:76]) fmt = endianness + "3f" threeFloats = struct.unpack(fmt, header[76:88]) # number of bytes in extended header fmt = endianness + "i" offset = struct.unpack(fmt, header[92:96])[0] fmt = endianness + "ii" imodStamp, imodFlags = struct.unpack(fmt, header[152:160]) if mode == 0: # bytes dataFormat = endianness + "%dB" % (nRows * nColumns) elif mode == 1: # signed short integers (16 bit) dataFormat = endianness + "%dh" % (nRows * nColumns) elif mode == 2: # float dataFormat = endianness + "%df" % (nRows * nColumns) elif mode == 3: # two shorts, complex data dataFormat = endianness + "%dh" % (2 * nRows * nColumns) elif mode == 4: # two floats, complex data dataFormat = endianness + "%df" % (2 * nRows * nColumns) elif mode == 6: # unsigned 16 bit integers (non-standard) dataFormat = endianness + "%dH" % (nRows * nColumns) elif mode == 16: # unsigned char * 3(rgb data, non-standard) dataFormat = endianness + "%dB" % (3 * nRows * nColumns) else: raise IOError("Data format not undestood") if imodFlags == 1: # bytes stored as signed dataFormat = dataFormat.lower() data = numpy.zeros((nImages, nRows * nColumns), numpy.float64) fid = open(filename, 'rb') fileOffset = 1024 + offset fid.seek(fileOffset) dataSize= struct.calcsize(dataFormat) try: for i in range(nImages): tmpData = fid.read(dataSize) data[i] = struct.unpack(dataFormat, tmpData) fid.close() except Exception: fid.close() raise data.shape = nImages, nRows, nColumns self.data = data self.info = {} self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["NumberOfFiles"] = 1 self.info["McaIndex"] = 0 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 def _isMRCHeader(header): try: if sys.version < '3.0': test = "MAP " else: test = bytes("MAP ", "utf-8") if struct.unpack("4s", header[208:212])[0] == test: return True except Exception: pass return False def isMRCFile(filename): try: fid = open(filename, 'rb') header = fid.read(1024) fid.close() except Exception: fid.close() return False nColumns, nRows, nImages = struct.unpack("iii", header[0:12]) imodStamp, imodFlags = struct.unpack("ii", header[152:160]) #print(imodStamp, imodFlags) # system byte order #print("system ",sys.byteorder) return _isMRCHeader(header) if __name__ == "__main__": filename = None if len(sys.argv) > 1: filename = sys.argv[1] print("is MRC File?", isMRCFile(filename)) instance = MRCMap(filename) print(instance.info) print(instance.data) �����������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/MarCCD.py�����������������������������������������������������������0000644�0000000�0000000�00000016435�14741736366�016250� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "S. Petitdemange & V.A. Sole - ESRF Software Group" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import struct import numpy class MarCCD(object): def __init__(self, filename): if isinstance(filename, file): fd = filename else: # make sure we work with bytes fd = open(filename, 'rb') order = fd.read(2) if order == "II": #intel, little endian fileOrder = "little" elif order == "MM": #motorola, high endian fileOrder = "low" else: raise IOError("File is not a Mar CCD file, nor a TIFF file") if sys.byteorder != fileOrder: swap = True else: swap = False self.__header = MccdHeader(fd) info = {} info.update(self.__header.getFormat()) info.update(self.__header.getGonio()) info.update(self.__header.getDetector()) info.update(self.__header.getFile()) nbytes = info["nfast"]* info["nslow"] * info["depth"] depth = info["depth"] fd.seek(4096) if depth == 1: data = numpy.array(numpy.frombuffer(fd.read(nbytes), numpy.uint8)) elif depth == 2: data = numpy.array(numpy.frombuffer(fd.read(nbytes), numpy.uint16)) elif depth == 4: data = numpy.array(numpy.frombuffer(fd.read(nbytes), numpy.uint32)) if swap: data = data.byteswap() data.shape = info["nfast"], info["nslow"] self.__data = data self.__info = info if not isinstance(filename, file): fd.close() def getData(self, *var, **kw): return self.__data def getInfo(self, *var, **kw): return self.__info class MccdHeader(object): formatHead = ["nfast", "nslow", "depth"] gonioHead= [ "xtal_to_detector", "beam_x", "beam_y", "integration_time", "exposure_time", "readout_time", "nreads", "start_twotheta", "start_omega", "start_chi", "start_kappa", "start_phi", "start_delta", "start_gamma", "start_xtal_to_detector", "end_twotheta", "end_omega", "end_chi", "end_kappa", "end_phi", "end_delta", "end_gamma", "end_xtal_to_detector", "rotation_axis", "rotation_range", "detector_rotx", "detector_roty", "detector_rotz" ] detectorHead= [ "detector_type", "pixelsize_x", #nanometers "pixelsize_y" #nanometers ] fileHead= [ ("filetitle", 128), ("filepath", 128), ("filename", 64), ("acquire_timestamp", 32), ("header_timestamp", 32), ("save_timestamp", 32), ("file_comments", 512) ] def __init__(self, fd): self.gonioValue= [] self.detectorValue= [] self.fileValue= [] self.datasetValue= None self.__read(fd) self.__unpack() def __read(self, fp): fp.seek(1024) #standard TIFF header self.raw= fp.read(3072) #Mar CCD Header def __unpack(self): self.__unpack_format() #256 unsigned int self.__unpack_gonio() self.__unpack_detector() self.__unpack_file() self.__unpack_dataset() def __unpack_format(self): if 0: self.__format = struct.unpack("256I", self.raw[0:256*4]) else: self.__format = numpy.array(numpy.frombuffer(self.raw[0:256*4], numpy.uint32)) def __unpack_gonio(self): idx= 640 size= struct.calcsize("i") for nb in range(len(self.gonioHead)): self.gonioValue.append(struct.unpack("i", self.raw[idx+nb*size:idx+(nb+1)*size])[0]) def __unpack_detector(self): idx= 768 size= struct.calcsize("i") for nb in range(len(self.detectorHead)): self.detectorValue.append(struct.unpack("i", self.raw[idx+nb*size:idx+(nb+1)*size])[0]) def __unpack_file(self): idx= 1024 for (name, size) in self.fileHead: self.fileValue.append(self.raw[idx:idx+size].replace("\x00","")) idx= idx+size def __unpack_dataset(self): idx= 2048 txt = self.raw[idx:idx+512].replace("\x00", "") if len(txt): self.datasetValue= txt else: self.datasetValue= None def getFormat(self): fformat = {} #for i in range(19, 30): # print i, "VALUE =", self.__format[i] fformat['nfast'] = self.__format[20] #n pixels in one line fformat['nslow'] = self.__format[21] #n lines in image fformat['depth'] = self.__format[22] #n bytes per pixel return fformat def getGonio(self): gonio= {} for (name, value) in zip(self.gonioHead, self.gonioValue): gonio[name]= value return gonio def getDetector(self): det= {} for (name, value) in zip(self.detectorHead, self.detectorValue): det[name]= value return det def getFile(self): ffile= {} for (head, value) in zip(self.fileHead, self.fileValue): ffile[head[0]]= value return ffile def getDataset(self): return self.datasetValue if __name__ == "__main__": import os from PyMca5 import EdfFile #fd = open('Cu_ZnO_20289.mccd', 'rb') filename = sys.argv[1] mccd = MarCCD(filename) edfFile = filename+".edf" if os.path.exists(edfFile): os.remove(edfFile) edf = EdfFile.EdfFile(edfFile) edf.WriteImage(mccd.getInfo(),mccd.getData()) edf = None �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/NexusUtils.py�������������������������������������������������������0000644�0000000�0000000�00000051774�14741736366�017347� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import h5py import time import datetime import numpy import os import errno from collections import Counter from contextlib import contextmanager from .. import version try: unicode except NameError: unicode = str nxcharUnicode = h5py.special_dtype(vlen=unicode) nxcharBytes = h5py.special_dtype(vlen=bytes) def asNxChar(s, raiseExtended=True): """ Convert to Variable-length string (array or scalar). Uses UTF-8 encoding when possible, otherwise byte-strings are used (unless raiseExtended is set). :param s: string or sequence of strings string types: unicode, bytes, fixed-length numpy :param bool raiseExtended: raise UnicodeDecodeError for bytes with extended ASCII encoding :returns np.ndarray(nxcharUnicode or nxcharBytes): :raises UnicodeDecodeError: extended ASCII encoding """ try: # dtype=nxcharUnicode will not attempt decoding bytes # so readers will get UnicodeDecodeError when bytes # are extended ASCII encoded. So do this instead: numpy.array(s, dtype=unicode) except UnicodeDecodeError: # Reason: byte-string with extended ASCII encoding (e.g. Latin-1) # Solution: save as byte-string or raise exception # Remark: Clients will read back the data exactly as it is written. # However the HDF5 character set is h5py.h5t.CSET_ASCII # which is strictly speaking not correct. if raiseExtended: raise return numpy.array(s, dtype=nxcharBytes) else: return numpy.array(s, dtype=nxcharUnicode) PROGRAM_NAME = asNxChar('pymca') PROGRAM_VERSION = asNxChar(version()) DEFAULT_PLOT_NAME = 'plotselect' class LocalTZinfo(datetime.tzinfo): """ Local timezone """ _offset = datetime.timedelta(seconds=-time.altzone) _dst = datetime.timedelta(0) _name = time.tzname[time.daylight] def utcoffset(self, dt): return self.__class__._offset def dst(self, dt): return self.__class__._dst def tzname(self, dt): return self.__class__._name localtz = LocalTZinfo() def timestamp(): return asNxChar(datetime.datetime.now(tz=localtz).isoformat()) def mkdir(path): """ Create directory recursively when it does not exist :param str path: :raises OSError: """ try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise e def splitUri(uri): """ Split Uniform Resource Identifier (URI) :param str uri: URI :return tuple: filename(str), group(str) """ lst = uri.split('::') if len(lst) == 1: h5groupname = '' else: h5groupname = '/'.join(lst[1:]) return lst[0], '/' + h5groupname def iterup(h5group, includeself=True): """ Iterator which yields all parent h5py.Group's up till root :param h5py.Group h5group: :param bool includeself: :returns generator: """ if includeself: yield h5group while h5group.parent != h5group: h5group = h5group.parent yield h5group def isLink(parent, name): """ Check whether node is h5py.SoftLink or h5py.ExternalLink :param h5py.Group parent: :param str name: :returns bool: """ try: lnk = parent.get(name, default=None, getlink=True) except (KeyError, RuntimeError): return False else: return isinstance(lnk, (h5py.SoftLink, h5py.ExternalLink)) def h5Name(h5group): """ HDF5 Dataset of Group name :param h5py.Group h5group: :returns str: """ return h5group.name.split('/')[-1] def nxClass(h5group): """ Nexus class of existing h5py.Group (None when no Nexus instance) :param h5py.Group h5group: :returns str or None: """ return h5group.attrs.get('NX_class', None) def isNxClass(h5group, *classes): """ Nexus class of existing h5py.Group (None when no Nexus instance) :param h5py.Group h5group: :param *classes: list(str) of Nexus classes :returns bool: """ return nxClass(h5group) in classes def raiseIsNxClass(h5group, *classes): """ :param h5py.Group h5group: :param *classes: list(str) of Nexus classes :raises RuntimeError: """ if isNxClass(h5group, *classes): raise RuntimeError('Nexus class not in {}'.format(classes)) def raiseIsNotNxClass(h5group, *classes): """ :param h5py.Group h5group: :param *classes: list(str) of Nexus classes :raises RuntimeError: """ if not isNxClass(h5group, *classes): raise RuntimeError('Nexus class not in {}'.format(classes)) def nxClassNeedsInit(parent, name, nxclass): """ Check whether parent[name] needs Nexus initialization :param h5py.Group parent: :param str or None name: :param str nxclass: :returns bool: needs initialization :raises RuntimeError: wrong Nexus class """ if name is None: return nxclass != nxClass(parent) if name in parent: _nxclass = nxClass(parent[name]) if _nxclass != nxclass: raise RuntimeError('{} is an instance of {} instead of {}' .format(parent[name].name, _nxclass, nxclass)) return False else: parent.create_group(name) return True def updated(h5group): """ h5py.Group has changed :param h5py.Group h5group: """ tm = timestamp() for group in iterup(h5group): nxclass = nxClass(group) if nxclass is None: continue elif nxclass in [u'NXentry', u'NXsubentry']: updateDataset(group, 'end_time', tm) elif nxclass in [u'NXprocess', u'NXnote']: updateDataset(group, 'date', tm) elif nxclass == u'NXroot': group.attrs['file_update_time'] = tm def updateDataset(parent, name, data): """ :param h5py.Group parent: :param str name: :param data: """ if name in parent: parent[name][()] = data else: parent[name] = data def nxClassInit(parent, name, nxclass, parentclasses=None): """ Initialize Nexus class instance without default attributes and datasets :param h5py.Group parent: :param str name: :param str nxclass: :param tuple parentclasses: :raises RuntimeError: wrong Nexus class or parent not an Nexus class instance """ if parentclasses: raiseIsNotNxClass(parent, *parentclasses) else: raiseIsNxClass(parent, None) if nxClassNeedsInit(parent, name, nxclass): h5group = parent[name] h5group.attrs['NX_class'] = nxclass updated(h5group) def nxRootInit(h5group): """ Initialize NXroot instance :param h5py.Group h5group: :raises ValueError: not root :raises RuntimeError: wrong Nexus class """ if h5group.name != '/': raise ValueError('Group should be the root') if nxClassNeedsInit(h5group, None, u'NXroot'): h5group.attrs['file_time'] = timestamp() h5group.attrs['file_name'] = asNxChar(h5group.file.filename) h5group.attrs['HDF5_Version'] = asNxChar(h5py.version.hdf5_version) h5group.attrs['h5py_version'] = asNxChar(h5py.version.version) h5group.attrs['creator'] = PROGRAM_NAME h5group.attrs['NX_class'] = u'NXroot' updated(h5group) def nxEntryInit(parent, name): """ Initialize NXentry instance :param h5py.Group parent: :raises RuntimeError: wrong Nexus class or parent not NXroot """ raiseIsNotNxClass(parent, u'NXroot') if nxClassNeedsInit(parent, name, u'NXentry'): h5group = parent[name] updateDataset(h5group, 'start_time', timestamp()) h5group.attrs['NX_class'] = u'NXentry' updated(h5group) def nxNoteInit(parent, name, data=None, type=None): """ Initialize NXnote instance :param h5py.Group parent: :param str name: :param str data: :param str type: :raises RuntimeError: wrong Nexus class or parent not an Nexus class instance """ raiseIsNxClass(parent, None) if nxClassNeedsInit(parent, name, u'NXnote'): h5group = parent[name] h5group.attrs['NX_class'] = u'NXnote' update = True else: h5group = parent[name] update = False if data is not None: updateDataset(h5group, 'data', asNxChar(data)) update = True if type is not None: updateDataset(h5group, 'type', asNxChar(type)) update = True if update: updated(h5group) def nxProcessConfigurationInit(parent, configdict=None): """ Initialize NXnote instance :param h5py.Group parent: :param ConfigDict configdict: :raises RuntimeError: parent not NXprocess """ raiseIsNotNxClass(parent, u'NXprocess') if configdict is not None: data = configdict.tostring() type = 'ini' else: data = None type = None name = 'configuration' nxNoteInit(parent, name, data=data, type=type) updated(parent[name]) def nxProcessInit(parent, name, configdict=None): """ Initialize NXprocess instance :param h5py.Group parent: :param str name: :param ConfigDict configdict: :raises RuntimeError: wrong Nexus class or parent not NXentry """ raiseIsNotNxClass(parent, u'NXentry') if nxClassNeedsInit(parent, name, u'NXprocess'): h5group = parent[name] updateDataset(h5group, 'program', PROGRAM_NAME) updateDataset(h5group, 'version', PROGRAM_VERSION) h5group.attrs['NX_class'] = u'NXprocess' updated(h5group) else: h5group = parent[name] nxProcessConfigurationInit(h5group, configdict=configdict) nxClassInit(h5group, 'results', u'NXcollection') @contextmanager def nxRoot(path, mode='r', **kwargs): """ h5py.File context with NXroot initialization :param str path: :param str mode: h5py.File modes :param **kwargs: see h5py.File :returns contextmanager: """ if mode != 'r': mkdir(os.path.dirname(path)) with h5py.File(path, mode=mode, **kwargs) as h5file: nxRootInit(h5file) yield h5file def nxEntry(root, name): """ Get NXentry instance (initialize when missing) :param h5py.Group root: :param str name: :returns h5py.Group: """ nxEntryInit(root, name) return root[name] def nxProcess(entry, name, **kwargs): """ Get NXprocess instance (initialize when missing) :param h5py.Group entry: :param str name: :param **kwargs: see nxProcessInit :returns h5py.Group: """ nxProcessInit(entry, name, **kwargs) return entry[name] def nxCollection(parent, name): """ Get NXcollection instance (initialize when missing) :param h5py.Group parent: :param str name: :returns h5py.Group: """ nxClassInit(parent, name, u'NXcollection') return parent[name] def nxInstrument(parent, name='instrument'): """ Get NXinstrument instance (initialize when missing) :param h5py.Group parent: :param str name: :returns h5py.Group: """ nxClassInit(parent, name, u'NXinstrument', parentclasses=(u'NXentry',)) return parent[name] def nxSubEntry(parent, name): """ Get NXsubentry instance (initialize when missing) :param h5py.Group parent: :param str name: :returns h5py.Group: """ nxClassInit(parent, name, u'NXsubentry', parentclasses=(u'NXentry',)) return parent[name] def nxDetector(parent, name): """ Get NXdetector instance (initialize when missing) :param h5py.Group parent: :param str name: :returns h5py.Group: """ nxClassInit(parent, name, u'NXdetector', parentclasses=(u'NXinstrument',)) return parent[name] def nxData(parent, name): """ Get NXdata instance (initialize when missing) :param h5py.Group parent: :param str or None name: :returns h5py.Group: """ if name is None: name = DEFAULT_PLOT_NAME nxClassInit(parent, name, u'NXdata') return parent[name] def nxDataAddAxes(data, axes, append=True): """ Add axes to NXdata instance :param h5py.Group data: :param list(3-tuple) axes: name(str), value(None,h5py.Dataset,numpy.ndarray), attrs(dict) :param bool append: """ raiseIsNotNxClass(data, u'NXdata') if append: newaxes = data.attrs.get('axes', []) else: newaxes = [] for name, value, attrs in axes: if value is None: pass # is or will be created elsewhere elif isinstance(value, h5py.Dataset): if value.parent != data: data[name] = h5py.SoftLink(value.name) elif isinstance(value, dict): data.create_dataset(name, **value) else: data[name] = value if attrs: data[name].attrs.update(attrs) newaxes.append(name) if newaxes: data.attrs['axes'] = asNxChar(newaxes) updated(data) def nxDataGetSignals(data): """ Get NXdata signals (default signal first) :param h5py.Group data: :returns list(str): signal names (default first) """ signal = data.attrs.get('signal', None) auxsignals = data.attrs.get('auxiliary_signals', None) if signal is None: lst = [] else: lst = [signal] if auxsignals is not None: lst += auxsignals.tolist() return lst def nxDataSetSignals(data, signals): """ Set NXdata signals (default signal first) :param h5py.Group data: :param list(str) signals: """ if signals: data.attrs['signal'] = asNxChar(signals[0]) if len(signals) > 1: data.attrs['auxiliary_signals'] = asNxChar(signals[1:]) else: data.attrs.pop('auxiliary_signals', None) else: data.attrs.pop('signal', None) data.attrs.pop('auxiliary_signals', None) updated(data) def nxDataAddSignals(data, signals, append=True): """ Add signals to NXdata instance :param h5py.Group data: :param list(3-tuple) signals: name(str), value(None, h5py.Dataset, numpy.ndarray, dict), attrs(dict) :param bool append: """ raiseIsNotNxClass(data, u'NXdata') if append: newsignals = nxDataGetSignals(data) else: newsignals = [] for name, value, attrs in signals: if isinstance(value, dict): dset = value.get('data', None) if isinstance(dset, h5py.Dataset): value = dset if value is None: pass # is or will be created elsewhere elif isinstance(value, h5py.Dataset): if value.file.filename != data.file.filename: data[name] = h5py.ExternalLink(value.file.filename, value.name) elif value.parent != data: data[name] = h5py.SoftLink(value.name) elif isinstance(value, dict): data.create_dataset(name, **value) else: data[name] = value if attrs: data[name].attrs.update(attrs) newsignals.append(name) if newsignals: nxDataSetSignals(data, newsignals) def nxDataAddErrors(data, errors): """ For each dataset in "data", link to the corresponding dataset in "errors". :param h5py.Group data: :param h5py.Group errors: """ for name in data: dest = errors.get(name, None) if dest: data[name+'_errors'] = h5py.SoftLink(dest.name) def selectDatasets(root, match=None): """ Select datasets with given restrictions. In case of `root` is an NXdata instance, an additional restriction is imposed: the dataset must be specified as a signal (including auxilary signals). :param h5py.Group or h5py.Dataset root: :param match: restrict selection (callable, 'max_ndim', 'mostcommon_ndim') :returns list(h5py.Dataset): """ if match == 'max_ndim': match, post = None, match elif match == 'mostcommon_ndim': match, post = None, match else: post = None if not match: def match(dset): return True datasets = [] if isinstance(root, h5py.Dataset): if match(root): datasets = [root] else: labels = nxDataGetSignals(root) if not labels: labels = root.keys() for label in labels: dset = root.get(label, None) if not isinstance(dset, h5py.Dataset): continue if match(dset): datasets.append(dset) if post == 'max_ndim': ndimref = max(dset.ndim for dset in datasets) elif post == 'mostcommon_ndim': occurences = Counter(dset.ndim for dset in datasets) ndimref = occurences.most_common(1)[0][0] else: ndimref = None if ndimref is not None: datasets = [dset.ndim == ndimref for dset in datasets] return datasets def markDefault(h5node, nxentrylink=True): """ Mark HDF5 Dataset or Group as default (parents get notified as well) :param h5py.Group or h5py.Dataset h5node: :param bool nxentrylink: Use a direct link for the default of an NXentry instance """ path = h5node nxclass = nxClass(path) nxdata = None for parent in iterup(path.parent): parentnxclass = nxClass(parent) if parentnxclass == u'NXdata': # path becomes default signal of parent signals = nxDataGetSignals(parent) signal = h5Name(path) if signal in signals: signals.pop(signals.index(signal)) nxDataSetSignals(parent, [signal]+signals) updated(parent) elif nxclass == u'NXentry': # Set this entry as default of root parent.attrs['default'] = h5Name(path) updated(parent) elif parentnxclass is not None: if nxclass == u'NXdata': # Select the NXdata for plotting nxdata = path if nxdata: if parentnxclass == u'NXentry' and nxentrylink: # Instead of setting the default of parent to the selected NXdata, # create a direct link to the select NXData and set that link as # default of the parent plotname = DEFAULT_PLOT_NAME if isLink(parent, plotname): # parent already has plotname: delete because its merely a link del parent[plotname] if plotname in parent: # parent already has plotname: find non-existent plotname # unless plotname is the selected NXdata, in which case # nothing has to be done if parent[plotname].name != nxdata.name: fmt = plotname + '{}' i = 0 while fmt.format(i) in parent: i += 1 plotname = fmt.format(i) parent[plotname] = h5py.SoftLink(nxdata.name) else: parent[plotname] = h5py.SoftLink(nxdata.name) parent.attrs['default'] = plotname else: # Set default of parent to the selected NXdata parent.attrs['default'] = nxdata.name[len(parent.name)+1:] updated(parent) if parentnxclass == u'NXroot': break path = parent nxclass = parentnxclass ����././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/NumpyStack.py�������������������������������������������������������0000644�0000000�0000000�00000005045�14741736366�017310� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # Copyright (c) 2016 Diamond Light Source # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Aaron Parsons" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "Diamond Light Source" __doc__ = """ Convenience class to make an in-memory array look as if it would have been read from a set of EDF files. The purpose of using this class instead of using StackBase is to simplify the use of McaAdvancedFitBatch with in-memory arrays. """ from PyMca5.PyMcaCore import DataObject SOURCE_TYPE = "EdfFileStack" class NumpyStack(DataObject.DataObject): def __init__(self, inputArray): DataObject.DataObject.__init__(self) # we need this to be 3D with shape (y, x, spectrum) # take a view in order to avoid modification of input data y = inputArray[:] if y.ndim == 1: y.shape = 1, 1, -1 elif y.ndim == 2: oldShape = y.shape y.shape = 1, oldShape[0], oldShape[1] self.info['McaCalib'] = [0.0, 1.0, 0.0] self.info["McaIndex"] = 2 self.info['Channel0'] = 0 self.info['Dim_1'] = y.shape[0] self.info['Dim_2'] = y.shape[1] self.info['Dim_3'] = y.shape[2] self.info['SourceName'] = SOURCE_TYPE self.info['SourceType'] = SOURCE_TYPE self.data = y �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/OlympusCSVFileParser.py���������������������������������������������0000644�0000000�0000000�00000020676�14741736366�021222� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging _logger = logging.getLogger(__name__) class BufferedFile(object): def __init__(self, filename): f = open(filename, 'rb') self.__buffer = f.read() f.close() self.__buffer = self.__buffer.replace(b"\x00", b"") self.__buffer = self.__buffer.replace(b"\r", b"\n") self.__buffer = self.__buffer.replace(b"\n\n", b"\n") self.__buffer = self.__buffer.split(b"\n") self.__currentLine = 0 def readline(self): if self.__currentLine >= len(self.__buffer): return "" if self.__currentLine == 0: # if we try to decode the first two characters we get an error line = "TT" + self.__buffer[self.__currentLine][2:].decode("utf-8") else: line = self.__buffer[self.__currentLine].decode("utf-8") self.__currentLine += 1 return line def close(self): self.__buffer = [""] self.__currentLine = 0 return class OlympusCSVFileParser(object): def __init__(self, filename): if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) _fileObject = BufferedFile(filename) #Several measurement per file ddict = {} line = _fileObject.readline() if not line.startswith("TTTestID"): raise IOError("This does not look an Olympus CSV file") splitLine = line[2:].split("\t") nSpectra = len(splitLine) - 1 channel = 0 while(len(splitLine) > 1): key = splitLine[0] if len(key): ddict[key] = splitLine[1:] if key == "NumData": nChannels = int(splitLine[1]) ddict['data'] = numpy.zeros((nSpectra, nChannels), numpy.float64) else: ddict['data'][:, channel] = [float(x) for x in splitLine[1:]] channel += 1 line = _fileObject.readline() splitLine = line.split("\t") _fileObject.close() interestingMotors = ["VacPressure", "TubeVoltageSet", "AmbientPressure", "Realtime", "Livetime", "FilterPosition", "TubeCurrentMon", "TubeVoltageMon", "ExposureNum", "TubeCurrentSet"] self._motorNames = [] for key in ddict.keys(): #print("Key = ", key, "ken = ", len(ddict[key])) if key in interestingMotors: self._motorNames.append(key) self._data = ddict def __getitem__(self, item): motorValues = [] for key in self._motorNames: motorValues.append(float(self._data[key][item])) return OlympusCSVScan(self._data, item, motorValues=motorValues) def scanno(self): """ Gives back the number of scans in the file """ return self._data['data'].shape[0] def list(self): return "1:%d" % self.scanno() def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def allmotors(self): return self._motorNames class OlympusCSVScan(object): def __init__(self, data, number, motorValues=None): if motorValues is None: motorValues = [] self._data = data self._number = number self._motorValues = motorValues self._scanHeader = [self.fileheader()[0]] if "TimeStamp" in self._data: self._scanHeader.append("#D %s" % \ self._data["TimeStamp"][self._number]) #return the life time, the preset the elapsed? # to be safe, I return the LiveTime if "Livetime" in self._data: self._scanHeader.append("#@CTIME %s %s %s" % (self._data["Livetime"][self._number], self._data["Livetime"][self._number], self._data["Livetime"][self._number])) self._scanHeader.append("#@CHANN %d 0 %d 1" % (self._data["data"].shape[1], self._data["data"].shape[1]-1)) if "Offset" in self._data: if "Slope" in self._data: self._scanHeader.append("#@CALIB %s %s 0.0" % \ (self._data["Offset"][self._number], self._data["Slope"][self._number])) def nbmca(self): return 1 def mca(self, number): # it gives the last column (some files have three columns) # corresponding to channels, counts and (probably) corrected counts if number <= 0: raise IndexError("Mca numbering starts at 1") elif number > self.nbmca(): raise IndexError("Only %d MCA's" % number) return self._data['data'][self._number] def alllabels(self): return [] def allmotorpos(self): return self._motorValues def command(self): return self._data['TestID'][self._number] def date(self): return self._data["TimeStamp"][self._number] def fileheader(self): a = "#S %d %s" % (self._number + 1, self.command()) return [a] def header(self, key): _logger.debug("Requested key = %s", key) if key in ['S', '#S']: return self.fileheader()[0] elif key == 'N': return [] elif key == 'L': return [] elif key in ['D', '@CTIME', '@CALIB', '@CHANN']: for item in self._scanHeader: if item.startswith("#" + key): return [item] return [] elif key == "" or key == " ": return self._scanHeader else: return [] def order(self): return 1 def number(self): return self._number + 1 def lines(self): return 0 def isOlympusCSVFile(filename): f = open(filename, 'rb') try: line = f.read(14) except Exception: f.close() return False f.close() line = line.replace(b"\x00", b"") try: if filename.lower().endswith(".csv"): # expected chain b"\xff\xfeTestID" if line[2:].startswith(b"TestID"): return True except Exception: pass return False def test(filename): if isOlympusCSVFile(filename): sf=OlympusCSVFileParser(filename) else: print("Not an Olympus CSV File") return print(sf[0].header('S')) print(sf[0].header('D')) print(sf[0].alllabels()) #print(sf[0].allmotorsvalues()) print(sf[0].nbmca()) print(sf[0].mca(1)) if __name__ == "__main__": test(sys.argv[1]) ������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/OmdaqLmf.py���������������������������������������������������������0000644�0000000�0000000�00000022427�14741736366�016715� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import os import struct from PyMca5.PyMcaCore import DataObject import sys SOURCE_TYPE = "EdfFileStack" class OmdaqLmf(list): """ Table showing the RUNDATA and ADCINFO structure versions associated with each header version HV RUNDATA ADCINFO 1 1 1 2 2 1 3 3 1 4 4 2 5 5 3 6 6 3 7 6 4 8 7 4 9 8 5 10 8 6 11 8 7 """ GENERAL_SIZE = 6 RUNDATA_SIZE = {1:1043, 2:1047, 3:1055, 4:3604} # discrepancy with documentation def __init__(self, filelist): """ Parse a list of files into a list of stacks. One for each stack The maximum number of stacks is 8. An ADC with no hits will give a stack equal to None """ super(OmdaqLmf, self).__init__() for i in range(8): self.append(None) if type(filelist) not in [type([]), type((1,))]: filelist = [filelist] for fname in filelist: self.parseFile(fname) def parseFile(self, fname): f = open(fname, "rb") d = f.read() f.close() informationHeader = parseInformationHeader(d) if informationHeader["Identifier"] != 66: raise IOError("Not an OMDAQ File") if informationHeader["ListMode"] != 2: raise IOError("Not an list mode file") hv = informationHeader["HeaderVersion"] adc_offset = self.GENERAL_SIZE + self.RUNDATA_SIZE[hv] adc_list = parseAdcInfo(d, hv, offset=adc_offset) # the offset to the events is unclear, but we know they # are at the end of the file, how they end and the block size block_size = informationHeader["ListModeBlockSize"] n_blocks = len(d) // block_size for i in range(n_blocks): block_end = len(d) - i * block_size block_start = block_end - block_size events = parseLmfBlock(d[block_start:block_end], lmf_version=informationHeader["ListModeVersion"], offset=0) n_events = events.shape[0] for idx in range(n_events): adc, row, col, energy = events[idx] #print(adc, energy, row, col) nChannels = int(adc_list[adc]["Calibration"][-1]) if nChannels < 1: continue if self[adc] is None: self[adc] = DataObject.DataObject() self[adc].data = numpy.zeros((256, 256, nChannels), dtype=numpy.uint32) self[adc].info = {} self[adc].info["SourceType"] = SOURCE_TYPE try: name = adc_list[adc]["Name"] if hasattr(name, "decode"): name = name.decode("utf-8").strip(chr(0)) self[adc].info["SourceName"] = name except Exception: self[adc].info["SourceName"] = adc_list[adc]["Name"] self[adc].info["McaCalib"] = [\ adc_list[adc]["Calibration"][0], adc_list[adc]["Calibration"][1], 0.0] self[adc].info["Channel0"] = 0.0 nSpectra = 256 * 256 nRows = 256 nFiles = nSpectra // nRows self[adc].info["Size"] = nFiles self[adc].info["NumberOfFiles"] = nFiles self[adc].info["FileIndex"] = 0 if energy >= nChannels: continue self[adc].data[row, col, energy] += 1 def parseAdcInfo(block, header_version, offset=0): HV_ADC_OFFSETS = {1: 122, 2: 122, 3: 122, 4: 128} NMAX_ADC = 8 adc = [None] * NMAX_ADC fmt = "H3f9s" size = struct.calcsize(fmt) for i in range(NMAX_ADC): values = struct.unpack(fmt, block[offset:offset+size]) live = values[0] calibration = values[1:4] name = values[4] info = {} info["Live"] = live info["Name"] = name info["Calibration"] = calibration #print("ADC %d" % i) #print("Live = ", live) #print("Calibration = ", calibration) #print("Name = ", name) offset += HV_ADC_OFFSETS[header_version] adc[i] = info #sys.exit(0) return adc def parseLmfBlock(block, lmf_version=0, offset=0): EnergyMask = 0x0fff ChannelMask = 0x7000 if lmf_version < 2: fmt = "<BBH" else: fmt = "<III" # size of block header block_header_size = 20 size = struct.calcsize(fmt) block_start = offset + block_header_size block_end = len(block) while block[block_end - 2: block_end] == b'\xff\xff': block_end -= size offset = block_start n_events = (block_end - offset) // size events = numpy.zeros((n_events, 4), dtype=numpy.uint16) for event in range(n_events): row, col, adc_energy = struct.unpack(fmt, block[offset:offset+size]) adc = (adc_energy & ChannelMask) >> 12 energy = (adc_energy & EnergyMask) events[event] = adc, row, col, energy offset += size return events def parseInformationHeader(d): """ Parse the first 6 bytes of the buffer """ offset = 0 fmt = "B" size = struct.calcsize(fmt) HeaderVersion = struct.unpack(fmt, d[offset:offset+size])[0] offset += size #print("Header Version = ", HeaderVersion) fmt = "B" size = struct.calcsize(fmt) value = struct.unpack(fmt, d[offset:offset+size])[0] offset += size Identifier = value #print("Identifier (66) = ", value) fmt = "B" size = struct.calcsize(fmt) value = struct.unpack(fmt, d[offset:offset+size])[0] offset += size ListMode = value #print("List mode file (it has to be 2) = ", value) fmt = "B" size = struct.calcsize(fmt) value = struct.unpack(fmt, d[offset:offset+size])[0] offset += size ListModeVersion = value #print("LMF version number = ", value) fmt = "H" size = struct.calcsize(fmt) value = struct.unpack(fmt, d[offset:offset+size])[0] offset += size ListModeBlockSize = value #print("List mode block size in bytes = ", value) informationHeader = {} informationHeader["HeaderSize"] = offset informationHeader["HeaderVersion"] = HeaderVersion informationHeader["Identifier"] = Identifier informationHeader["ListMode"] = ListMode informationHeader["ListModeVersion"] = ListModeVersion informationHeader["ListModeBlockSize"] = ListModeBlockSize return informationHeader def isOmdaqLmf(fname): try: f = open(fname, "rb") d = f.read(6) f.close() except Exception: return False informationHeader = parseInformationHeader(d) #print(informationHeader) if informationHeader["Identifier"] != 66: # Not an OMDAQ file return False if informationHeader["ListMode"] != 2: # Not a list mode file return False else: return True if __name__ == "__main__": if len(sys.argv) > 1: fname = sys.argv[1] else: fname = "-42181.LMF" print("Is OMDAQ LMF File = ", isOmdaqLmf(fname)) omdaq = OmdaqLmf([fname]) for i in range(len(omdaq)): adc = omdaq[i] if adc is None: continue print("ADC = ", i + 1) print(adc.info) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/OmnicMap.py���������������������������������������������������������0000644�0000000�0000000�00000030745�14741736366�016722� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import re import struct import numpy import copy import logging from PyMca5 import DataObject _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class OmnicMap(DataObject.DataObject): ''' Class to read OMNIC .map files It reads the spectra into a DataObject instance. This class info member contains all the parsed information. This class data member contains the map itself as a 3D array. ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the .map file. It is expected to work with OMNIC versions 7.x and 8.x ''' DataObject.DataObject.__init__(self) fid = open(filename, 'rb') data = fid.read() fid.close() fid = None try: omnicInfo = self._getOmnicInfo(data) except Exception: omnicInfo = None self.sourceName = [filename] if sys.version < '3.0': searchedChain = "Spectrum " else: searchedChain = bytes("Spectrum ", 'utf-8') firstByte = data.index(searchedChain) s = data[firstByte:(firstByte + 100 - 16)] if sys.version >= '3.0': s = str(s) _logger.debug("firstByte = %d", firstByte) _logger.debug("s1 = %s ", s) exp = re.compile(r'(-?[0-9]+\.?[0-9]*)') tmpValues = exp.findall(s) spectrumIndex = int(tmpValues[0]) self.nSpectra = int(tmpValues[1]) if "X = " in s: xPosition = float(tmpValues[2]) yPosition = float(tmpValues[3]) else: # I have to calculate them from the scan xPosition, yPosition = self.getPositionFromIndexAndInfo(0, omnicInfo) _logger.debug("spectrumIndex, nSpectra, xPosition, yPosition = %d %d %f %f", spectrumIndex, self.nSpectra, xPosition, yPosition) if sys.version < '3.0': chain = "Spectrum" else: chain = bytes("Spectrum", 'utf-8') secondByte = data[(firstByte + 1):].index(chain) secondByte += firstByte + 1 _logger.debug("secondByte = %s", secondByte) self.nChannels = int((secondByte - firstByte - 100) / 4) _logger.debug("nChannels = %d", self.nChannels) self.firstSpectrumOffset = firstByte - 16 #fill the header self.header = [] oldXPosition = xPosition oldYPosition = yPosition self.nRows = 0 xPositions = numpy.zeros(self.nSpectra) yPositions = numpy.zeros(self.nSpectra) calculating = True for i in range(self.nSpectra): offset = int(firstByte + i * (100 + self.nChannels * 4)) if sys.version < '3.0': s = data[offset:(offset + 100 - 16)] else: s = str(data[offset:(offset + 100 - 16)]) tmpValues = exp.findall(s) spectrumIndex = int(tmpValues[0]) if "X = " in s: xPosition = float(tmpValues[2]) yPosition = float(tmpValues[3]) else: #I have to calculate them from the scan xPosition, yPosition = self.getPositionFromIndexAndInfo(i, omnicInfo) xPositions[i] = xPosition yPositions[i] = yPosition if calculating: if (abs(yPosition - oldYPosition) > 1.0e-6) and\ (abs(xPosition - oldXPosition) < 1.0e-6): calculating = False continue self.nRows += 1 _logger.debug("DIMENSIONS X = %f Y=%d", self.nSpectra * 1.0 / self.nRows, self.nRows) #arrange as an EDF Stack self.info = {} self.__nFiles = int(self.nSpectra / self.nRows) try: deltaX = (xPositions[-1] - xPositions[0]) / (self.nRows - 1) deltaY = (yPositions[-1] - yPositions[0]) / (self.__nFiles - 1) except Exception: deltaX = None deltaY = None _logger.warning("Cannot calculate scales") self.data = numpy.zeros((self.__nFiles, self.nRows, self.nChannels), dtype=numpy.float32) self.__nImagesPerFile = 1 offset = firstByte - 16 + 100 # starting position of the data delta = 100 + self.nChannels * 4 fmt = "%df" % self.nChannels for i in range(self.__nFiles): for j in range(self.nRows): # this approach is inneficient when compared to a direct # data readout, but it allows to deal with nan at the source tmpData = numpy.zeros((self.nChannels,), dtype=numpy.float32) tmpData[:] = struct.unpack(fmt,\ data[offset:(offset + delta - 100)]) finiteData = numpy.isfinite(tmpData) self.data[i, j, finiteData] = tmpData[finiteData] offset = int(offset + delta) shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = self.__nFiles * self.__nImagesPerFile self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["FileIndex"] = 0 self.info["Channel0"] = 0.0 if omnicInfo is not None: self.info['McaCalib'] = [omnicInfo['First X value'] * 1.0, omnicInfo['Data spacing'] * 1.0, 0.0] else: self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info['OmnicInfo'] = omnicInfo if deltaX and deltaY: if (deltaX > 0.0) and (deltaY > 0.0): self.info["xScale"] = [oldXPosition, deltaX] self.info["yScale"] = [oldYPosition, deltaY] self.info["positioners"] = {"X":xPositions, "Y":yPositions} def _getOmnicInfo(self, data): ''' Parameters: ----------- data : The contents of the .map file Returns: -------- A dictionary with acquisition information ''' #additional information fmt = "I" # unsigned long in 32-bit offset = 372 # 93*4 unsigned integers infoBlockIndex = (struct.unpack(fmt, data[offset:(offset + 4)])[0] - 204) / 4. infoBlockIndex = int(infoBlockIndex) #infoblock is the position of the information block offset = infoBlockIndex * 4 #read 13 unsigned integers nValues = 13 fmt = "%dI" % nValues values = struct.unpack(fmt, data[offset:(offset + 4 * nValues)]) ddict = {} ddict['Number of points'] = values[0] ddict['Number of scan points'] = values[6] ddict['Interferogram peak position'] = values[7] ddict['Number of sample scans'] = values[8] ddict['Number of FFT points'] = values[10] ddict['Number of background scans'] = values[12] offset = (infoBlockIndex + 3) * 4 nFloats = 47 fmt = "%df" % nFloats vFloats = struct.unpack(fmt, data[offset:(offset + 4 * nFloats)]) lastX = vFloats[0] firstX = vFloats[1] ddict['First X value'] = firstX ddict['Last X value'] = lastX ddict['Identifier for start indices of spectra'] = vFloats[14] ddict['Laser frequency'] = vFloats[16] ddict['Data spacing'] = (lastX - firstX) / (ddict['Number of points'] - 1.0) ddict['Background gain'] = vFloats[10] for key in ddict.keys(): _logger.debug("%s: %s", key, ddict[key]) ddict.update(self.getMapInformation(data)) return ddict def getMapInformation(self, data): ''' Internal method to help finding spectra coordinates Parameters: ----------- data : Contents of the .map file Returns: -------- Dictionary with map gemoetrical acquisition parameters ''' #look for the chain 'Position' if sys.version < '3.0': chain = 'Position' else: chain = bytes('Position', 'utf-8') offset = data.index(chain) positions = [offset] while True: try: a = data[(offset + 1):].index(chain) offset = a + offset + 1 positions.append(offset) except ValueError: break ddict = {} #map description position if (positions[1] - positions[0]) == 66: # reverse engineered magic number :-) mapDescriptionOffset = positions[0] - 90 mapDescription = struct.unpack('6f', data[mapDescriptionOffset:mapDescriptionOffset + 24]) y0, y1, deltaY, x0, x1, deltaX = mapDescription ddict['First map location'] = [x0, y0] ddict['Last map location'] = [x1, y1] ddict['Mapping stage X step size'] = deltaX ddict['Mapping stage Y step size'] = deltaY ddict['Number of spectra'] = abs((1 + ((y1 - y0) / deltaY)) * (1 + ((x1 - x0) / deltaX))) for key in ddict.keys(): _logger.debug("%s: %s", key, ddict[key]) return ddict def getOmnicInfo(self): """ Returns a dictionary with the parsed OMNIC information """ return copy.deepcopy(self.info['OmnicInfo']) def getPositionFromIndexAndInfo(self, index, info=None): ''' Internal method to obtain the position at which a spectrum was acquired Parameters: ----------- index : int Index of spectrum info : Dictionary Information recovered with _getOmnicInfo Returns: -------- x, y : floats Position at which the spectrum was acquired. ''' if info is None: return 0.0, 0.0 ddict = info #first variation on X and then on Y try: x0, y0 = ddict['First map location'] except KeyError: return 0.0, 0.0 x1, y1 = ddict['Last map location'] deltaX = ddict['Mapping stage X step size'] deltaY = ddict['Mapping stage Y step size'] nX = int(1.5 + ((x1 - x0) / deltaX)) x = x0 + (index % nX) * deltaX y = y0 + int(index / nX) * deltaY return x, y if __name__ == "__main__": filename = None if len(sys.argv) > 2: _logger.setLevel(logging.DEBUG) if len(sys.argv) > 1: filename = sys.argv[1] elif os.path.exists("SambaPhg_IR.map"): filename = "SambaPhg_IR.map" if filename is not None: w = OmnicMap(filename) print(type(w)) print(type(w.data[0:10])) print(w.data[0:10]) print("shape = ", w.data.shape) print(type(w.info)) print("INFO = ", w.info['OmnicInfo']) else: print("Please supply input filename") ���������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/OpusDPTMap.py�������������������������������������������������������0000644�0000000�0000000�00000006440�14741736366�017146� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5 import DataObject from PyMca5.PyMcaIO import specfilewrapper as specfile SOURCE_TYPE = "SpecFileStack" class OpusDPTMap(DataObject.DataObject): def __init__(self, filename): DataObject.DataObject.__init__(self) sf = specfile.Specfile(filename) scan = sf[1] data = scan.data() nMca, nchannels = data.shape nMca = nMca - 1 xValues = data[0, :] * 1 xValues.shape = -1 if 0: self.data = numpy.zeros((nMca, nchannels), numpy.float32) self.data[:, :] = data[1:, :] self.data.shape = 1, nMca, nchannels else: self.data = data[1:, :] self.data.shape = 1, nMca, nchannels data = None #perform a least squares adjustment to a line x = numpy.arange(nchannels).astype(numpy.float32) Sxy = numpy.dot(x, xValues.T) Sxx = numpy.dot(x, x.T) Sx = x.sum() Sy = xValues.sum() d = nchannels * Sxx - Sx * Sx zero = (Sxx * Sy - Sx * Sxy) / d gain = (nchannels * Sxy - Sx * Sy) / d #and fill the requested information to be identified as a stack self.info['SourceName'] = [filename] self.info["SourceType"] = "SpecFileStack" self.info["Size"] = 1, nMca, nchannels self.info["NumberOfFiles"] = 1 self.info["FileIndex"] = 0 self.info["McaCalib"] = [zero, gain, 0.0] self.info["Channel0"] = 0.0 def main(): import sys filename = None if len(sys.argv) > 1: filename = sys.argv[1] if filename is not None: OpusDPTMap(filename) else: print("Please supply input filename") if __name__ == "__main__": main() ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/OutputBuffer.py�����������������������������������������������������0000644�0000000�0000000�00000102364�14741736366�017646� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy import logging import time import re import itertools if sys.version_info[0] < 3: string_types = basestring, else: string_types = str, from contextlib import contextmanager from collections import defaultdict try: from collections.abc import MutableMapping except ImportError: from collections import MutableMapping from . import NexusUtils _logger = logging.getLogger(__name__) if NexusUtils.h5py is None: bufferTypes = list, numpy.ndarray else: bufferTypes = list, numpy.ndarray, NexusUtils.h5py.Dataset class OutputBuffer(MutableMapping): """ Dictionary enriched with memory allocation and save options. Implicite saving with context: outbuffer = OutputBuffer(...) with outbuffer.saveContext(): ... Explicite saving without context: outbuffer = OutputBuffer(...) ... outbuffer.save() """ def __init__(self, outputDir=None, outputRoot=None, fileEntry=None, fileProcess=None, suffix=None, h5=True, tif=False, edf=False, csv=False, dat=False, multipage=False, overwrite=False, nosave=False, dtype=None): """ Dictionary will be saved as: .h5 : outputDir/outputRoot+suffix.h5::/fileEntry/fileProcess .edf/.csv/.tif: outputDir/outputRoot/fileEntry+suffix.ext :param str outputDir: default: current working directory :param str outputRoot: default: "IMAGES" :param str fileEntry: default: "images" :param str fileProcess: default: "pymcaprocess" :param bool tif: :param bool edf: :param bool csv: :param bool dat: :param bool h5: :param bool multipage: all images in 1 file if the format allows it :param bool overwrite: :param str suffix: default: None :param bool nosave: prevent saving (everything will be in memory) :param dtype: force dtype on memory allocation """ self._inBufferContext = False self._inSaveContext = False self._buffers = {} self._info = {} self._results = {} self._labels = {} self._nxprocess = None self._labelFormats = defaultdict(lambda: '') self._defaultgroups = () self._defaultorder = () self._optionalimage = () self._configurationkey = 'configuration' self._forcedtype = dtype self.outputRootDefault = 'IMAGES' self.fileEntryDefault = 'images' self.fileProcessDefault = 'pymcaprocess' self.outputDir = outputDir self.outputRoot = outputRoot self.fileEntry = fileEntry self.fileProcess = fileProcess self.suffix = suffix self.tif = tif self.edf = edf self.csv = csv self.dat = dat self.h5 = h5 self.multipage = multipage self.overwrite = overwrite self.nosave = nosave def __getitem__(self, key): try: return self._buffers[key] except KeyError: return self._info[key] def __setitem__(self, key, value): if isinstance(value, bufferTypes): self.allocateMemory(key, data=value) else: self._info[key] = value def __delitem__(self, key): try: del self._buffers[key] except KeyError: del self._info[key] def __iter__(self): return itertools.chain(iter(self._buffers), iter(self._info)) def __len__(self): return len(self._buffers) + len(self._info) def __repr__(self): return "OutputBuffer(outputDir={}, outputRoot={}, fileEntry={}, suffix={})"\ .format(repr(self.outputDir), repr(self.outputRoot), repr(self.fileEntry), repr(self.suffix)) def hasAllocatedMemory(self): return bool(self._buffers) def labelFormat(self, group, prefix): """For single-page edf/tif file names """ self._labelFormats[group] = prefix @property def outputRoot(self): ret = self._outputRoot if ret: return ret else: return self.outputRootDefault @outputRoot.setter def outputRoot(self, value): self._checkBufferContext() self._outputRoot = value @property def fileEntry(self): ret = self._fileEntry if ret: return ret else: return self.fileEntryDefault @fileEntry.setter def fileEntry(self, value): self._checkBufferContext() self._fileEntry = value @property def fileProcess(self): ret = self._fileProcess if ret: return ret else: return self.fileProcessDefault @fileProcess.setter def fileProcess(self, value): self._checkBufferContext() self._fileProcess = value @property def extensions(self): lst = [] if self.h5: lst.append('.h5') if self.dat: lst.append('.dat') if self.csv: lst.append('.csv') if self.tif: lst.append('.tif') if self.edf: lst.append('.edf') return lst @extensions.setter def extensions(self, lst): for ext in lst: if ext.startswith('.'): attr = ext[1:] else: attr = ext if hasattr(self, attr): setattr(self, attr, True) @property def edf(self): return self._edf @edf.setter def edf(self, value): self._checkBufferContext() self._edf = value @property def tif(self): return self._tif @tif.setter def tif(self, value): self._checkBufferContext() self._tif = value @property def csv(self): return self._csv @csv.setter def csv(self, value): self._checkBufferContext() self._csv = value @property def dat(self): return self._dat @dat.setter def dat(self, value): self._checkBufferContext() self._dat = value @property def cfg(self): return self.csv or self.dat or self.edf or self.tif @property def overwrite(self): return self._overwrite @overwrite.setter def overwrite(self, value): self._checkBufferContext() self._overwrite = bool(value) @property def nosave(self): return self._nosave @nosave.setter def nosave(self, value): self._checkBufferContext() self._nosave = bool(value) def _checkBufferContext(self): if self._inBufferContext: raise RuntimeError('Buffer is locked') @property def outputDirLegacy(self): #return os.path.join(self.outputDir, self.outputRoot) # REMARK: do this to be compatible with the legacy code return os.path.join(self.outputDir, 'IMAGES') def filename(self, ext, suffix=None): if not suffix: suffix = "" if self.suffix: suffix += self.suffix if ext == '.h5': return os.path.join(self.outputDir, self.outputRoot+suffix+ext) else: return os.path.join(self.outputDirLegacy, self.fileEntry+suffix+ext) def allocateMemory(self, label, group=None, memtype='ram', **kwargs): """ :param str label: :param str group: group name of this dataset (in hdf5 this is the nxdata name) :param str memtype: ram or hdf5 :param **kwargs: see _allocateRam or _allocateHdf5 """ memtype = memtype.lower() if self._forcedtype is not None: kwargs['dtype'] = self._forcedtype if not group: group = label allocH5 = memtype in ('hdf5', 'h5', 'nx', 'nexus') if allocH5: allocH5 = False if self.nosave: _logger.info('Allocate in memory instead of Hdf5 (saving is disabled)') elif not self.h5: _logger.info('Allocate in memory instead of Hdf5 (h5 format is disabled)') elif NexusUtils.h5py is None: _logger.info('Allocate in memory instead of Hdf5 (h5py not installed)') elif not self.outputDir: _logger.warning('Allocate in memory instead of Hdf5 (no output directory specified)') else: allocH5 = True if allocH5: buffer = self._allocateHdf5(label, group=group, **kwargs) else: buffer = self._allocateRam(label, group=group, **kwargs) return buffer def _allocateRam(self, label, group=None, fill_value=None, dataAttrs=None, data=None, shape=None, dtype=None, labels=None, groupAttrs=None, **unused): """ :param str label: :param str group: group name of this dataset (in hdf5 this is the nxdata name) :param num fill_value: initial buffer item value :param dict dataAttrs: dataset attributes :param ndarray data: dataset or stack of datasets :param tuple shape: buffer shape :param dtype: buffer type :param list labels: for stack of datasets :param dict groupAttrs: nxdata attributes (e.g. axes) """ if data is not None: buffer = numpy.asarray(data, dtype=dtype) if fill_value is not None: buffer[:] = fill_value elif fill_value is None: buffer = numpy.empty(shape, dtype=dtype) elif fill_value == 0: buffer = numpy.zeros(shape, dtype=dtype) else: buffer = numpy.full(shape, fill_value, dtype=dtype) self._buffers[label] = buffer # Prepare Hdf5 dataset arguments if labels: names = self._labelsToHdf5Strings(labels) for lbl, name, data in zip(labels, names, buffer): self._addResult(group, lbl, name, data, dataAttrs, groupAttrs) else: name = self._labelsToHdf5Strings([label])[0] self._addResult(group, label, name, buffer, dataAttrs, groupAttrs) return buffer def _allocateHdf5(self, label, group=None, fill_value=None, dataAttrs=None, data=None, shape=None, dtype=None, labels=None, groupAttrs=None, **createkwargs): """ :param str or tuple label: :param str group: group name of this dataset (in hdf5 this is the nxdata name) :param num fill_value: initial buffer item value :param dict dataAttrs: dataset attributes :param ndarray data: dataset or stack of datasets :param tuple shape: buffer shape :param dtype: buffer type :param list labels: for stack of datasets :param dict groupAttrs: nxdata attributes (e.g. axes) :param **createkwargs: see h5py.Group.create_dataset """ if data is None and shape is None: raise ValueError("Provide 'data' or 'shape'") if data is None and dtype is None: raise ValueError("Missing 'dtype' argument") # Create Nxdata group (if not already there) nxdata = self._getNXdataGroup(group) # Create datasets (attributes will be handled later) if labels: names = self._labelsToHdf5Strings(labels) buffer = [] # TODO: list of datasets cannot be indexed like a numpy array if data is None: signalshape = shape[1:] for lbl, name in zip(labels, names): dset = nxdata.create_dataset(name, shape=signalshape, dtype=dtype, **createkwargs) if fill_value is not None: dset[()] = fill_value self._addResult(group, lbl, name, dset, dataAttrs, groupAttrs) buffer.append(dset) else: for lbl, name, signaldata in zip(labels, names, data): if dtype is not None: signaldata = signaldata.astype(dtype) dset = nxdata.create_dataset(name, data=signaldata, **createkwargs) if fill_value is not None: dset[()] = fill_value self._addResult(group, lbl, name, dset, dataAttrs, groupAttrs) buffer.append(dset) else: name = self._labelsToHdf5Strings([label])[0] if data is None: buffer = nxdata.create_dataset(name, shape=shape, dtype=dtype, **createkwargs) else: if dtype is not None: try: data = data.astype(dtype) except AttributeError: data = data[()].astype(dtype) buffer = nxdata.create_dataset(name, data=data, **createkwargs) if fill_value is not None: buffer[()] = fill_value self._addResult(group, label, name, buffer, dataAttrs, groupAttrs) self.flush() self._buffers[label] = buffer return buffer def _getNXdataGroup(self, group): """ Get h5py.Group (create when missing, verify class when present) :param str group: """ parent = self._nxprocess['results'] if group in parent: nxdata = parent[group] NexusUtils.raiseIsNotNxClass(nxdata, u'NXdata') else: nxdata = NexusUtils.nxData(parent, group) return nxdata def _addResult(self, group, label, h5name, buffer, dataAttrs, groupAttrs): # Prepare HDF5 output # group -> NXdata (h5py.group), label -> signal (h5py.dataset) info = self._results.get(group, None) if info is None: if groupAttrs: info = groupAttrs.copy() else: info = {} info['_signals'] = [] info['default'] = info.get('default', False) info['errors'] = info.get('errors', None) info['axes'] = info.get('axes', None) info['axesused'] = info.get('axesused', None) self._results[group] = info if dataAttrs is None: attrs = {} else: attrs = dataAttrs.copy() attrs['chunks'] = attrs.get('chunks', True) if buffer.ndim == 2: interpretation = 'image' else: interpretation = 'spectrum' attrs['interpretation'] = attrs.get('interpretation', interpretation) info['_signals'].append((h5name, {'data': buffer}, attrs)) # Groups labels labels = self._labels.get(group, None) if labels is None: self._labels[group] = labels = [] labels.append(label) # Mark as default (unmark others) if info['default']: self.markDefault(group) def labels(self, group, labeltype=None): """ :param str group: :param str labeltype: 'hdf5': dataset names used in h5 'filename': file names 'title': titles used in edf/dat/csv/tif else: join with space-separator :returns list: strings or tuples """ labels = self._labels.get(group, []) return self._labelsToStrings(group, labels, labeltype=labeltype) def _labelsToStrings(self, group, labels, labeltype=None): if not labels: return labels if labeltype == 'hdf5': return self._labelsToHdf5Strings(labels) elif labeltype == 'filename' or labeltype == 'title': prefix = self._labelFormats[group] return self._labelsToPathStrings(labels, prefix=prefix, filename=labeltype == 'filename') else: return labels @staticmethod def _labelsToPathStrings(labels, prefix='', separator='_', filename=False): """ Used for EDF files names and CSV titles For example: ('Fe-K', 'Layer1') -> `s(Fe-K)_Layer1` (title) -> `s(Fe_K)_Layer1` (filename) :param list(tuple) labels: :param str prefix: for decoration (for example s(...), w(...), ...) :param str separator: to join the tuples (regular expression) :param bool filename: file name or title """ if not labels: return [] out = [] def replbrackets(matchobj): return matchobj.group(1)+separator separators = {r'\-', ':', ';', '_'} separators -= {separator} separators = '[' + ''.join(separators) + ']+' for args in labels: if not isinstance(args, tuple): args = (args,) if prefix: args = ('{}({})'.format(prefix, args[0]), ) + args[1:] label = separator.join(args) # Replace spaces with separator label = re.sub(r'\s+', separator, label) if filename: # Replace separators label = re.sub(separators, separator, label) # Replace brackets with a trailing separator label = re.sub(r'\((.+)\)', replbrackets, label) label = re.sub(r'\[(.+)\]', replbrackets, label) label = re.sub(r'\{(.+)\}', replbrackets, label) # Remove non-alphanumeric characters (except . and separator) label = re.sub(r'[^0-9a-zA-Z\.'+separator+']+', '', label) # Remove trailing/leading separators label = re.sub('^'+separator+'+', '', label) label = re.sub(separator+'+$', '', label) # Remove repeated separators label = re.sub(separator+'+', separator, label) out.append(label) return out @staticmethod def _labelsToHdf5Strings(labels, separator='_', replace=(r'\s+',)): """ Used for hdf5 dataset names For example: ('Fe-K', 'Layer1') -> `Fe-K_Layer1` :param list(tuple) labels: :param str separator: to join the tuples (regular expression) :param tuple(str) replace: to be replaced by the `separator` (regular expressions) """ if not labels: return [] out = [] for args in labels: if not isinstance(args, tuple): args = (args,) for srepl in replace: args = tuple(re.sub(srepl, separator, s) for s in args) out.append(separator.join(args)) return out def markDefault(self, group): for groupname, info in self._results.items(): info['default'] = groupname == group @contextmanager def bufferContext(self, update=True): """ Prepare output buffers (HDF5: create file, NXentry and NXprocess) :param bool update: True: update existing NXprocess False: overwrite or raise an exception :raises RuntimeError: NXprocess exists and overwrite==False """ if self._inBufferContext: yield else: self._inBufferContext = True _logger.debug('Enter buffering context of {}'.format(self)) try: if self.h5: if self._nxprocess is None and self.outputDir: cleanup_funcs = [] try: with self._h5Context(cleanup_funcs, update=update): yield except: # clean-up and re-raise for func in cleanup_funcs: func() raise else: yield else: yield finally: self._inBufferContext = False _logger.debug('Exit buffering context of {}'.format(self)) @contextmanager def _h5Context(self, cleanup_funcs, update=True): """ Initialize NXprocess on enter and close/cleanup on exit """ if self.nosave: yield else: fileName = self.filename('.h5') existed = [False]*3 # h5file, nxentry, nxprocess existed[0] = os.path.exists(fileName) with NexusUtils.nxRoot(fileName, mode='a') as f: # Open/overwrite NXprocess: h5file::/entry/process entryname = self.fileEntry existed[1] = entryname in f entry = NexusUtils.nxEntry(f, entryname) procname = self.fileProcess if procname in entry: existed[2] = True path = entry[procname].name if update: _logger.debug('edit {}'.format(path)) elif self.overwrite: _logger.info('overwriting {}::{}'.format(fileName, path)) del entry[procname] existed[2] = False else: raise RuntimeError('{}::{} already exists'.format(fileName, path)) self._nxprocess = NexusUtils.nxProcess(entry, procname) try: with self._h5DatasetContext(f): yield except: # clean-up and re-raise if not existed[0]: cleanup_funcs.append(lambda: os.remove(fileName)) elif not existed[1]: del f[entryname] elif not existed[2]: del entry[procname] raise finally: self._nxprocess = None @contextmanager def _h5DatasetContext(self, f): """ Swap strings for dataset objects on enter and back on exit """ update = {} for k, v in self._buffers.items(): if isinstance(v, string_types): update[k] = f[v] self._buffers.update(update) try: yield finally: update = {} for k, v in self._buffers.items(): if isinstance(v, NexusUtils.h5py.Dataset): update[k] = v.name self._buffers.update(update) @contextmanager def saveContext(self, update=False): """ Same as `bufferContext` but with `save` when leaving the context. By default `update=False`: try overwriting (exception when not allowed) """ alreadyIn = self._inSaveContext if not alreadyIn: self._inSaveContext = True _logger.debug('Enter saving context of {}'.format(self)) with self.bufferContext(update=update): try: yield except: raise else: if not alreadyIn: self.save() finally: if not alreadyIn: self._inSaveContext = False _logger.debug('Exit saving context of {}'.format(self)) @contextmanager def Context(self, save=True, update=False): """ Either saveContext or bufferContext. By default `update=False`: try overwriting (exception when not allowed) """ if save: with self.saveContext(update=update): yield else: with self.bufferContext(update=update): yield def flush(self): if self._nxprocess is not None: self._nxprocess.file.flush() def save(self): """ Save result of XRF batch fitting. Preferrable use saveContext instead. HDF5 NXprocess will be updated, not overwritten. """ _logger.debug('Saving {}'.format(self)) if self.nosave: _logger.info('Fit results are not saved (saving is disabled)') return elif not (self.tif or self.edf or self.csv or self.dat or self.h5): _logger.warning('Fit results are not saved (all output formats disabled)') return elif not self.outputDir: _logger.warning('Fit results are not saved (no output directory specified)') return t0 = time.time() with self.bufferContext(update=True): if self.tif or self.edf or self.csv or self.dat: self._saveImages() if self.h5: self._saveH5() t = time.time() - t0 _logger.debug("Saving results elapsed = %f", t) def _imageList(self, onlylabels=False): imageFileLabels = [] if onlylabels: out = imageFileLabels else: imageTitleLabels = [] imageList = [] out = imageFileLabels, imageTitleLabels, imageList keys = list(self._buffers.keys()) groups = [] for key in self._defaultorder: if key in keys: groups.append(key) keys.pop(keys.index(key)) groups += sorted(keys) for group in groups: names = self.labels(group, labeltype='filename') buffer = self._buffers[group] if len(names) == len(buffer): # Stack of datasets mnames = self.labels(group, labeltype='title') for name, mname, bufferi in zip(names, mnames, buffer): imageFileLabels.append(name) if not onlylabels: imageTitleLabels.append(mname) imageList.append(bufferi[()]) else: # Single dataset if group.lower() in self._optionalimage: name = self._labelsToStrings(group, [group], labeltype='filename')[0] mname = self._labelsToStrings(group, [group], labeltype='title')[0] imageFileLabels.append(name) if not onlylabels: imageTitleLabels.append(mname) imageList.append(buffer[()]) return out def filenames(self, ext): if self.multipage or ext == '.h5': return [self.filename(ext)] else: labels = self._imageList(onlylabels=True) return [self.filename(ext, suffix="_" + label) for label in labels] def _saveImages(self): from PyMca5.PyMcaIO import ArraySave # List of images in deterministic order imageFileLabels, imageTitleLabels, imageList = self._imageList() if not imageFileLabels: return NexusUtils.mkdir(self.outputDirLegacy) if self.edf: if self.multipage: fileName = self.filename('.edf') self._checkOverwrite(fileName) ArraySave.save2DArrayListAsEDF(imageList, fileName, labels=imageTitleLabels) else: for label, title, image in zip(imageFileLabels, imageTitleLabels, imageList): fileName = self.filename('.edf', suffix="_" + label) self._checkOverwrite(fileName) ArraySave.save2DArrayListAsEDF([image], fileName, labels=[title]) if self.tif: if self.multipage: fileName = self.filename('.tif') self._checkOverwrite(fileName) ArraySave.save2DArrayListAsMonochromaticTiff(imageList, fileName, labels=imageTitleLabels, dtype=numpy.float32) else: for label, title, image in zip(imageFileLabels, imageTitleLabels, imageList): fileName = self.filename('.tif', suffix="_" + label) self._checkOverwrite(fileName) ArraySave.save2DArrayListAsMonochromaticTiff([image], fileName, labels=[title], dtype=numpy.float32) if self.csv or self.dat: # only same shapes can be saved goodIndices = [] for i in range(len(imageTitleLabels)): if imageList[i].shape == imageList[0].shape: goodIndices.append(i) else: txt = "Skip ASCII saving of badly shaped image {}".format(imageTitleLabels[i]) _logger.info(txt) if len(goodIndices) == len((imageTitleLabels)): goodImageList = imageList goodImageTitleLabels = imageTitleLabels else: goodImageList = [] goodImageTitleLabels = [] for i in goodIndices: goodImageList.append(imageList[i]) goodImageTitleLabels.append(imageTitleLabels[i]) if self.csv: fileName = self.filename('.csv') self._checkOverwrite(fileName) ArraySave.save2DArrayListAsASCII(goodImageList, fileName, csv=True, labels=goodImageTitleLabels) if self.dat: fileName = self.filename('.dat') self._checkOverwrite(fileName) ArraySave.save2DArrayListAsASCII(goodImageList, fileName, csv=False, labels=goodImageTitleLabels) if self.cfg and self._configurationkey in self: fileName = self.filename('.cfg') self._checkOverwrite(fileName) self[self._configurationkey].write(fileName) def _checkOverwrite(self, fileName): if os.path.exists(fileName): if self.overwrite: _logger.info('overwriting {}'.format(fileName)) else: raise RuntimeError('{} already exists'.format(fileName)) def _saveH5(self): nxprocess = self._nxprocess if nxprocess is None: return # Save fit configuration configdict = self.get(self._configurationkey, None) NexusUtils.nxProcessConfigurationInit(nxprocess, configdict=configdict) # Save allocated memory nxresults = nxprocess['results'] adderrors = [] markdefault = [] for group, info in self._results.items(): # Create group nxdata = self._getNXdataGroup(group) # Add signals NexusUtils.nxDataAddSignals(nxdata, info['_signals']) # Add axes axes = info.get('axes', None) axes_used = info.get('axesused', None) if axes: NexusUtils.nxDataAddAxes(nxdata, axes) if axes_used: axes = [(ax, None, None) for ax in axes_used] NexusUtils.nxDataAddAxes(nxdata, axes, append=False) # Add error links errors = info['errors'] if errors: adderrors.append((nxdata, errors)) # Default nxdata for visualization if info['default']: markdefault.append(nxdata) # Error links and default for visualization for nxdata, errors in adderrors: if errors in nxresults: NexusUtils.nxDataAddErrors(nxdata, nxresults[errors]) if markdefault: NexusUtils.markDefault(markdefault[-1]) else: for group in self._defaultgroups: if group in nxresults: NexusUtils.markDefault(nxresults[group]) break ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/PilatusCBF.py�������������������������������������������������������0000644�0000000�0000000�00000070445�14741736366�017154� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ Authors: Jerome Kieffer, ESRF email:jerome.kieffer@esrf.fr Cif Binary Files images are 2D images written by the Pilatus detector and others. They use a modified (simplified) byte-offset algorithm. """ __author__ = "Jerome Kieffer" __contact__ = "sole@esrf.fr" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __license__ = "MIT" import sys import os import numpy as np import logging if sys.version < '3': _fileClass = file else: import io _fileClass = io.IOBase _logger = logging.getLogger(__name__) DATA_TYPES = { "signed 8-bit integer" : np.int8, "signed 16-bit integer" : np.int16, "signed 32-bit integer" : np.int32 } MINIMUM_KEYS = ["X-Binary-Size-Fastest-Dimension", 'ByteOrder', 'Data type', 'X dimension', 'Y dimension', 'Number of readouts'] DEFAULT_VALUES = { "Data type": "signed 32-bit integer", "X-Binary-Size-Fastest-Dimension": 2463, "X-Binary-Element-Byte-Order": "LITTLE_ENDIAN" } class PilatusCBF(object): def __init__(self, filename): if isinstance(filename, _fileClass): fd = filename else: # make sure we read bytes fd = open(filename, 'rb') self.cif = CIF() self.__data = np.array([]) self.__info = {} #read the file if isinstance(filename, _fileClass): self.read(filename.name) else: self.read(filename) def getData(self, *var, **kw): return self.__data def getInfo(self, *var, **kw): return self.__info def _readheader(self, inStream): """ Read in a header in some CBF format from a string representing the binary stuff @param inStream: the binary image (without any CIF decorators) @type inStream: python string. """ if sys.platform < '3.0' or\ isinstance(inStream, str): sep = "\r\n" iSepPos = inStream.find(sep) if iSepPos < 0 or iSepPos > 80: sep = "\n" #switch back to unix representation lines = inStream.split(sep) for oneLine in lines[1:]: if len(oneLine) < 10: break try: key, val = oneLine.split(':' , 1) except ValueError: key, val = oneLine.split('=' , 1) key = key.strip() self.__header[key] = val.strip(" \"\n\r\t") else: sep = "\r\n".encode('utf-8') iSepPos = inStream.find(sep) if iSepPos < 0 or iSepPos > 80: sep = "\n".encode('utf-8') #switch back to unix representation lines = inStream.split(sep) for oneLine in lines[1:]: if len(oneLine) < 10: break try: key, val = oneLine.split(':'.encode('utf-8') , 1) except ValueError: key, val = oneLine.split('='.encode('utf-8') , 1) key = key.strip() self.__header[key.decode('utf-8')] = val.decode('utf-8').\ strip(" \"\n\r\t") missing = [] for item in MINIMUM_KEYS: if item not in self.__header.keys(): missing.append(item) if len(missing) > 0: _logger.debug("CBF file misses the keys %s", " ".join(missing)) def _readbinary_byte_offset(self, inStream): """ Read in a binary part of an x-CBF_BYTE_OFFSET compressed image @param inStream: the binary image (without any CIF decorators) @type inStream: python string. @return: a linear numpy array without shape and dtype set @rtype: numpy array """ def analyse(stream): """ Analyze a stream of char with any length of exception (2,4, or 8 bytes integers) @return list of NParrays """ listnpa = [] if sys.version < '3.0' or\ isinstance(stream, str): key16 = "\x80" key32 = "\x00\x80" key64 = "\x00\x00\x00\x80" else: # I avoid the b"..." syntax to try to keep python 2.5 compatibility # encoding with utf-8 does not work key16 = "\x80".encode('latin-1') key32 = "\x00\x80".encode('latin-1') key64 = "\x00\x040\x00\x80".encode('latin-1') # idx = 0 shift = 1 # position = 0 while True: # lns = len(stream) idx = stream.find(key16) if idx == -1: listnpa.append(np.array(np.frombuffer(stream, dtype="int8"))) break listnpa.append(np.array(np.frombuffer(stream[:idx], dtype="int8"))) # position += listnpa[-1].size if stream[idx + 1:idx + 3] == key32: if stream[idx + 3:idx + 7] == key64: listnpa.append(np.array(np.frombuffer(stream[idx + 7:idx + 15], dtype="int64"))) # position += 1 # print "loop64 x=%4i y=%4i in idx %4i lns %4i value=%s" % ((position % 2463), (position // 2463), idx, lns, listnpa[-1]) shift = 15 else: #32 bit int listnpa.append(np.array(np.frombuffer(stream[idx + 3:idx + 7], dtype="int32"))) # position += 1 # print "loop32 x=%4i y=%4i in idx %4i lns %4i value=%s" % ((position % 2463), (position // 2463), idx, lns, listnpa[-1]) shift = 7 else: #int16 listnpa.append(np.array(np.frombuffer(stream[idx + 1:idx + 3], dtype="int16"))) # position += 1 # print "loop16 x=%4i y=%4i in idx %4i lns %4i value=%s" % ((position % 2463), (position // 2463), idx, lns, listnpa[-1]) shift = 3 stream = stream[idx + shift:] return listnpa if sys.version < '3.0' or\ isinstance(inStream, str): starter = "\x0c\x1a\x04\xd5" else: # I avoid the b"..." syntax to try to keep python 2.5 compatibility # encoding with utf-8 does not work starter = "\x0c\x1a\x04\xd5".encode('latin-1') startPos = inStream.find(starter) + 4 data = inStream[ startPos: startPos + int(self.__header["X-Binary-Size"])] myData = np.hstack(analyse(data)).cumsum() assert len(myData) == self.dim1 * self.dim2 return myData def read(self, fname): self.__header = {} self.cif.loadCIF(fname, _bKeepComment=True) # backport contents of the CIF data to the headers for key in self.cif: if key != "_array_data.data": if isinstance(self.cif[key], str): self.__header[key] = self.cif[key].strip(" \"\n\r\t") else: self.__header[key] = self.cif[key].decode('utf-8').\ strip(" \"\n\r\t") if not "_array_data.data" in self.cif: raise IOError("CBF file %s is corrupt, cannot find data block with '_array_data.data' key" % fname) self._readheader(self.cif["_array_data.data"]) # Compute image size try: self.dim1 = int(self.__header['X-Binary-Size-Fastest-Dimension']) self.dim2 = int(self.__header['X-Binary-Size-Second-Dimension']) except Exception: raise Exception(IOError, "CBF file %s is corrupt, no dimensions in it" % fname) try: bytecode = DATA_TYPES[self.__header['X-Binary-Element-Type']] self.bpp = len(np.array(0, bytecode).tobytes()) except KeyError: bytecode = np.int32 self.bpp = 32 _logger.warning("Defaulting type to int32") if self.__header["conversions"] == "x-CBF_BYTE_OFFSET": self.__data = self._readbinary_byte_offset(self.cif["_array_data.data"]).astype(bytecode).reshape((self.dim2, self.dim1)) else: raise Exception(IOError, "Compression scheme not yet supported, please contact FABIO development team") self.__info = self.__header class CIF(dict): """ This is the CIF class, it represents the CIF dictionary as a a python dictionary thus inherits from the dict built in class. """ if sys.version < '3.0': EOL = ["\r", "\n", "\r\n", "\n\r"] BLANK = [" ", "\t"] + EOL START_COMMENT = ["\"", "\'"] BINARY_MARKER = "--CIF-BINARY-FORMAT-SECTION--" else: EOL = ["\r", "\n", "\r\n", "\n\r", "\r".encode('utf-8'), "\n".encode('utf-8'), "\r\n".encode('utf-8'), "\n\r".encode('utf-8')] BLANK = [" ", "\t", " ".encode('utf-8'), "\t".encode('utf-8')] + EOL START_COMMENT = ["\"", "\'", "\"".encode('utf-8'), "\'".encode('utf-8')] bBINARY_MARKER = "--CIF-BINARY-FORMAT-SECTION--".encode('utf-8') def __init__(self, _strFilename=None): """ Constructor of the class. @param _strFilename: the name of the file to open @type _strFilename: string """ dict.__init__(self) if _strFilename is not None: #load the file) self.loadCIF(_strFilename) def readCIF(self, _strFilename): """ Just call loadCIF: Load the CIF file and sets the CIF dictionary into the object @param _strFilename: the name of the file to open @type _strFilename: string """ self.loadCIF(_strFilename) def loadCIF(self, _strFilename, _bKeepComment=False): """Load the CIF file and returns the CIF dictionary into the object @param _strFilename: the name of the file to open @type _strFilename: string @param _strFilename: the name of the file to open @type _strFilename: string @return the """ if not os.path.isfile(_strFilename): _logger.error("I cannot find the file %s", _strFilename) raise IOError("I cannot find the file %s" % _strFilename) if _bKeepComment: self._parseCIF(open(_strFilename, "rb").read()) else: self._parseCIF(CIF._readCIF(_strFilename)) @staticmethod def isAscii(_strIn): """ Check if all characters in a string are ascii, @param _strIn: input string @type _strIn: python string @return: boolean @rtype: boolean """ bIsAcii = True for i in _strIn: if ord(i) > 127: bIsAcii = False break return bIsAcii @staticmethod def _readCIF(_strFilename): """ -Check if the filename containing the CIF data exists -read the cif file -removes the comments @param _strFilename: the name of the CIF file @type _strFilename: string @return: a string containing the raw data @rtype: string """ if not os.path.isfile(_strFilename): _logger.error("I cannot find the file %s", _strFilename) raise IOError("I cannot find the file %s" % _strFilename) lLinesRead = open(_strFilename, "r").readlines() sText = "" for sLine in lLinesRead: iPos = sLine.find("#") if iPos >= 0: if CIF.isAscii(sLine): sText += sLine[:iPos] + "\n" if iPos > 80: _logger.warning("Warning, this line is too long and could cause problems in PreQuest\n" "%s", sLine) else : sText += sLine if len(sLine.strip()) > 80 : _logger.warning("Warning, this line is too long and could cause problems in PreQuest\n" "%s", sLine) return sText def _parseCIF(self, sText): """ -Parses the text of a CIF file -Cut it in fields -Find all the loops and process -Find all the keys and values @param sText: the content of the CIF-file @type sText: string @return: Nothing, the data are incorporated at the CIF object dictionary @rtype: dictionary """ loopidx = [] looplen = [] loop = [] #first of all : separate the cif file in fields lFields = CIF._splitCIF(sText.strip()) #Then : look for loops for i in range(len(lFields)): if lFields[i].lower() in ["loop_", "loop_".encode('utf-8')]: loopidx.append(i) if len(loopidx) > 0: for i in loopidx: loopone, length, keys = CIF._analyseOneLoop(lFields, i) loop.append([keys, loopone]) looplen.append(length) for i in range(len(loopidx) - 1, -1, -1): f1 = lFields[:loopidx[i]] + lFields[loopidx[i] + looplen[i]:] lFields = f1 self["loop_"] = loop for i in range(len(lFields) - 1): if len(lFields[i + 1]) == 0 : lFields[i + 1] = "?" if lFields[i][0:1] in ["_", "_".encode('utf-8')] and \ lFields[i + 1][0:1] not in ["_", "_".encode('utf-8')]: if sys.version < '3.0' or\ isinstance(lFields[i], str): self[lFields[i]] = lFields[i + 1] else: self[lFields[i].decode('utf-8')] = lFields[i + 1] @staticmethod def _splitCIF(sText): """ Separate the text in fields as defined in the CIF @param sText: the content of the CIF-file @type sText: string @return: list of all the fields of the CIF @rtype: list """ lFields = [] while True: if len(sText) == 0: break elif sText[0:1] in ["'", "'".encode('utf-8')]: toTest = sText[0:1] idx = 0 bFinished = False while not bFinished: idx += 1 + sText[idx + 1:].find(sText[0]) ##########debuging in case we arrive at the end of the text if idx >= len(sText) - 1: lFields.append(sText[1:-1].strip()) sText = "" bFinished = True break if sText[idx + 1:idx + 2] in CIF.BLANK: lFields.append(sText[1:idx].strip()) sText1 = sText[idx + 1:] sText = sText1.strip() bFinished = True elif sText[0:1] in ['"', '"'.encode('utf-8')]: toTest = sText[0:1] idx = 0 bFinished = False while not bFinished: idx += 1 + sText[idx + 1:].find(toTest) ##########debuging in case we arrive at the end of the text if idx >= len(sText) - 1: # print sText,idx,len(sText) lFields.append(sText[1:-1].strip()) # print lFields[-1] sText = "" bFinished = True break if sText[idx + 1:idx + 2] in CIF.BLANK: lFields.append(sText[1:idx].strip()) #print lFields[-1] sText1 = sText[idx + 1:] sText = sText1.strip() bFinished = True elif sText[0:1] in [';', ';'.encode('utf-8')]: toTest = sText[0:1] if isinstance(sText, str): CIF_BINARY_MARKER = CIF.BINARY_MARKER else: CIF_BINARY_MARKER = CIF.bBINARY_MARKER if sText[1:].strip().find(CIF_BINARY_MARKER) == 0: idx = sText[32:].find(CIF_BINARY_MARKER) if idx == -1: idx = 0 else: idx += 32 + len(CIF_BINARY_MARKER) else: idx = 0 bFinished = False while not bFinished: idx += 1 + sText[idx + 1:].find(toTest) if sText[idx - 1:idx] in CIF.EOL: lFields.append(sText[1:idx - 1].strip()) sText1 = sText[idx + 1:] sText = sText1.strip() bFinished = True else: f = sText.split(None, 1)[0] lFields.append(f) #print lFields[-1] sText1 = sText[len(f):].strip() sText = sText1 return lFields @staticmethod def _analyseOneLoop(lFields, iStart): """Processes one loop in the data extraction of the CIF file @param lFields: list of all the words contained in the cif file @type lFields: list @param iStart: the starting index corresponding to the "loop_" key @type iStart: integer @return: the list of loop dictionaries, the length of the data extracted from the lFields and the list of all the keys of the loop. @rtype: tuple """ # in earch loop we first search the length of the loop # print lFields # curloop = {} loop = [] keys = [] i = iStart + 1 bFinished = False while not bFinished: if lFields[i][0] == "_": keys.append(lFields[i])#.lower()) i += 1 else: bFinished = True data = [] while True: if i >= len(lFields): break elif len(lFields[i]) == 0: break elif lFields[i][0] == "_": break elif lFields[i] in ["loop_", "stop_", "global_", "data_", "save_"]: break else: data.append(lFields[i]) i += 1 #print len(keys), len(data) k = 0 if len(data) < len(keys): element = {} for j in keys: if k < len(data): element[j] = data[k] else : element[j] = "?" k += 1 #print element loop.append(element) else: #print data #print keys for i in range(len(data) / len(keys)): element = {} for j in keys: element[j] = data[k] k += 1 # print element loop.append(element) # print loop return loop, 1 + len(keys) + len(data), keys ############################################################################################# ######## everything needed to write a cif file ######################################### ############################################################################################# def saveCIF(self, _strFilename="test.cif"): """Transforms the CIF object in string then write it into the given file @param _strFilename: the of the file to be written @type param: string """ #TODO We should definitly handle exception here try: fFile = open(_strFilename, "w") except IOError: _logger.error("Error during the opening of file for write : %s", _strFilename) return fFile.write(self._cif2str(_strFilename)) try: fFile.close() except IOError: _logger.error("Error during the closing of file for write : %s", _strFilename) raise def _cif2str(self, _strFilename): """converts a cif dictionary to a string according to the CIF syntax @param _strFilename: the name of the filename to be apppended in the header of the CIF file @type _strFilename: string @return : a sting that corresponds to the content of the CIF-file. @rtype: string """ sCifText = "" for i in __version__: sCifText += "# " + i + "\n" if self.exists("_chemical_name_common"): t = self["_chemical_name_common"].split()[0] else: t = os.path.splitext(os.path.split(_strFilename.strip())[1])[0] sCifText += "data_%s\n" % t #first of all get all the keys : lKeys = self.keys() lKeys.sort() for sKey in lKeys: if sKey == "loop_": continue sValue = str(self[sKey]) if sValue.find("\n") > -1: #should add value between ;; sLine = "%s \n;\n %s \n;\n" % (sKey, sValue) elif len(sValue.split()) > 1: #should add value between '' sLine = "%s '%s' \n" % (sKey, sValue) if len(sLine) > 80: sLine = "%s\n '%s' \n" % (sKey, sValue) else: sLine = "%s %s \n" % (sKey, sValue) if len(sLine) > 80: sLine = "%s\n %s \n" % (sKey, sValue) sCifText += sLine if "loop_" in self: for loop in self["loop_"]: sCifText += "loop_ \n" lKeys = loop[0] llData = loop[1] for sKey in lKeys: sCifText += " %s \n" % sKey for lData in llData: sLine = "" for key in lKeys: sRawValue = lData[key] if sRawValue.find("\n") > -1: #should add value between ;; sLine += "\n; %s \n;\n" % (sRawValue) sCifText += sLine sLine = "" else: if len(sRawValue.split()) > 1: #should add value between '' value = "'%s'" % (sRawValue) else: value = sRawValue if len(sLine) + len(value) > 78: sCifText += sLine + " \n" sLine = " " + value else: sLine += " " + value sCifText += sLine + " \n" sCifText += "\n" #print sCifText return sCifText def exists(self, sKey): """ Check if the key exists in the CIF and is non empty. @param sKey: CIF key @type sKey: string @param cif: CIF dictionary @return: True if the key exists in the CIF dictionary and is non empty @rtype: boolean """ bExists = False if sKey in self: if len(self[sKey]) >= 1: if self[sKey][0] not in ["?", "."]: bExists = True return bExists def existsInLoop(self, sKey): """ Check if the key exists in the CIF dictionary. @param sKey: CIF key @type sKey: string @param cif: CIF dictionary @return: True if the key exists in the CIF dictionary and is non empty @rtype: boolean """ if not self.exists("loop_"): return False bExists = False if not bExists: for i in self["loop_"]: for j in i[0]: if j == sKey: bExists = True return bExists def loadCHIPLOT(self, _strFilename): """Load the powder diffraction CHIPLOT file and returns the pd_CIF dictionary in the object @param _strFilename: the name of the file to open @type _strFilename: string @return: the CIF object corresponding to the powder diffraction @rtype: dictionary """ if not os.path.isfile(_strFilename): _logger.error("I cannot find the file %s", _strFilename) raise IOError("I cannot find the file %s" % _strFilename) lInFile = open(_strFilename, "r").readlines() self["_audit_creation_method"] = 'From 2-D detector using FIT2D and CIFfile' self["_pd_meas_scan_method"] = "fixed" self["_pd_spec_description"] = lInFile[0].strip() try: iLenData = int(lInFile[3]) except ValueError: iLenData = None lOneLoop = [] try: f2ThetaMin = float(lInFile[4].split()[0]) last = "" for sLine in lInFile[-20:]: if sLine.strip() != "": last = sLine.strip() f2ThetaMax = float(last.split()[0]) limitsOK = True except (ValueError, IndexError): limitsOK = False f2ThetaMin = 180.0 f2ThetaMax = 0 # print "limitsOK:", limitsOK for sLine in lInFile[4:]: sCleaned = sLine.split("#")[0].strip() data = sCleaned.split() if len(data) == 2 : if not limitsOK: f2Theta = float(data[0]) if f2Theta < f2ThetaMin : f2ThetaMin = f2Theta if f2Theta > f2ThetaMax : f2ThetaMax = f2Theta lOneLoop.append({ "_pd_meas_intensity_total": data[1] }) if not iLenData: iLenData = len(lOneLoop) assert (iLenData == len(lOneLoop)) self[ "_pd_meas_2theta_range_inc" ] = "%.4f" % ((f2ThetaMax - f2ThetaMin) / (iLenData - 1)) if self[ "_pd_meas_2theta_range_inc" ] < 0: self[ "_pd_meas_2theta_range_inc" ] = abs (self[ "_pd_meas_2theta_range_inc" ]) tmp = f2ThetaMax f2ThetaMax = f2ThetaMin f2ThetaMin = tmp self[ "_pd_meas_2theta_range_max" ] = "%.4f" % f2ThetaMax self[ "_pd_meas_2theta_range_min" ] = "%.4f" % f2ThetaMin self[ "_pd_meas_number_of_points" ] = str(iLenData) self["loop_"] = [ [ ["_pd_meas_intensity_total" ], lOneLoop ] ] @staticmethod def LoopHasKey(loop, key): "Returns True if the key (string) existe in the array called loop""" try: loop.index(key) return True except ValueError: return False if __name__ == "__main__": from PyMca5 import EdfFile #fd = open('Cu_ZnO_20289.mccd', 'rb') filename = sys.argv[1] cbf = PilatusCBF(filename) print(cbf.getInfo()) edfFile = filename+".edf" if os.path.exists(edfFile): os.remove(edfFile) edf = EdfFile.EdfFile(edfFile) edf.WriteImage(cbf.getInfo(), cbf.getData()) edf = None ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8117664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/PyMcaIOHelper/������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017226� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/PyMcaIOHelper/PyMcaIOHelper.c���������������������������������������0000644�0000000�0000000�00000015712�14741736366�022010� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include "Python.h" /* adding next line may raise errors ... #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <./numpy/arrayobject.h> #include <stdio.h> struct module_state { PyObject *error; }; #if PY_MAJOR_VERSION >= 3 #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) #else #define GETSTATE(m) (&_state) static struct module_state _state; #endif /* Function declarations */ static PyObject *PyMcaIOHelper_fillSupaVisio(PyObject *dummy, PyObject *args); static PyObject *PyMcaIOHelper_readAifira(PyObject *dummy, PyObject *args); /* Functions */ static PyObject * PyMcaIOHelper_fillSupaVisio(PyObject *self, PyObject *args) { PyObject *input; PyArrayObject *inputArray, *outputArray; int nChannels = 2048; unsigned short *dataPointer, x, y, ch; int i; npy_intp dimensions[3]; int maxy, maxch; unsigned int *outputPointer; if (!PyArg_ParseTuple(args, "O|d", &input, &nChannels)) return NULL; inputArray = (PyArrayObject *) PyArray_ContiguousFromObject(input, NPY_USHORT, 2,2); if (inputArray == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->error, "Cannot parse input array"); return NULL; } dataPointer = (unsigned short *) PyArray_DATA(inputArray); dataPointer++; dimensions[1] = *dataPointer++; dimensions[0] = *dataPointer++; dimensions[2] = nChannels; outputArray = (PyArrayObject *) PyArray_SimpleNew(3, dimensions, NPY_UINT); PyArray_FILLWBYTE(outputArray, 0); /* Do the job */ maxy=maxch=0; outputPointer = (unsigned int *) PyArray_DATA(outputArray); for (i = 3; i < PyArray_DIMS(inputArray)[0]; i++) { y = *dataPointer++; x = *dataPointer++; ch = *dataPointer++; if (ch >= nChannels) { printf("bad reading %d\n", ch); continue; } *(outputPointer+ (dimensions[1] * x + y) * nChannels + ch) += 1; } Py_DECREF(inputArray); return PyArray_Return(outputArray); } static PyObject * PyMcaIOHelper_readAifira(PyObject *self, PyObject *args) { PyObject *inputFileDescriptor; FILE *fd; #if PY_MAJOR_VERSION >= 3 int fh; #endif PyArrayObject *outputArray; int nChannels = 2048; unsigned short channel; unsigned char x, y; npy_intp dimensions[3]; unsigned int *outputPointer; struct module_state *st = GETSTATE(self); if (!PyArg_ParseTuple(args, "O", &inputFileDescriptor)) { PyErr_SetString(st->error, "Error parsing input arguments"); return NULL; } #if PY_MAJOR_VERSION >= 3 fh = PyObject_AsFileDescriptor(inputFileDescriptor); if (fh < 0) { return NULL; } fd = fdopen(fh, "r"); #else if (!PyFile_Check(inputFileDescriptor)) { PyErr_SetString(st->error, "Input is not a python file descriptor object"); return NULL; } fd = PyFile_AsFile(inputFileDescriptor); #endif if (!fd) { PyErr_SetString(st->error, "Cannot obtain FILE* from object"); return NULL; } dimensions[0] = 128; dimensions[1] = 128; dimensions[2] = nChannels; outputArray = (PyArrayObject *) PyArray_SimpleNew(3, dimensions, NPY_UINT); PyArray_FILLWBYTE(outputArray, 0); /* Do the job */ outputPointer = (unsigned int *) PyArray_DATA(outputArray); while(fscanf(fd, "%2c%c%c", (char *)&channel, &x, &y) == 3) { if (channel >= nChannels) { printf("bad reading %d\n", channel); continue; } if (x < 1) continue; if (y < 1) continue; if (x > 128) { printf("bad X reading %d\n", x); break; continue; } if (y > 128) { printf("bad Y reading %d\n", y); break; continue; } x -= 1; y -= 1; /* normally pixe data are in the second channel */ if (channel > 1023) { channel -= 1024; } else channel += 1024; *(outputPointer + (dimensions[1] * x + y) * nChannels + channel) += 1; } return PyArray_Return(outputArray); } /* Module methods */ static PyMethodDef PyMcaIOHelper_methods[] = { {"fillSupaVisio", PyMcaIOHelper_fillSupaVisio, METH_VARARGS}, {"readAifira", PyMcaIOHelper_readAifira, METH_VARARGS}, {NULL, NULL} }; /* ------------------------------------------------------- */ /* Module initialization */ #if PY_MAJOR_VERSION >= 3 static int PyMcaIOHelper_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int PyMcaIOHelper_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "PyMcaIOHelper", NULL, sizeof(struct module_state), PyMcaIOHelper_methods, NULL, PyMcaIOHelper_traverse, PyMcaIOHelper_clear, NULL }; #define INITERROR return NULL PyObject * PyInit_PyMcaIOHelper(void) #else #define INITERROR return void initPyMcaIOHelper(void) #endif { struct module_state *st; #if PY_MAJOR_VERSION >= 3 PyObject *module = PyModule_Create(&moduledef); #else PyObject *module = Py_InitModule("PyMcaIOHelper", PyMcaIOHelper_methods); #endif if (module == NULL) INITERROR; st = GETSTATE(module); st->error = PyErr_NewException("PyMcaIOHelper.Error", NULL, NULL); if (st->error == NULL) { Py_DECREF(module); INITERROR; } import_array(); #if PY_MAJOR_VERSION >= 3 return module; #endif } ������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/RTXMap.py�����������������������������������������������������������0000644�0000000�0000000�00000022501�14741736366�016321� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import types import logging _logger = logging.getLogger(__name__) #the file format is based on XML import xml.etree.ElementTree as ElementTree from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaIO import ArtaxFileParser from PyMca5.PyMcaIO import SpecFileStack #SOURCE_TYPE = "EdfFileStack" SOURCE_TYPE ="SpecFileStack" myFloat = ArtaxFileParser.myFloat class RTXMap(DataObject.DataObject): ''' Class to read ARTAX .rtx files ''' def __init__(self, filename): ''' Parameters: ----------- filename : str Name of the .rtx file. ''' if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) if 0: # this works but it is very slow DataObject.DataObject.__init__(self) stack = SpecFileStack.SpecFileStack(filename) self.data = stack.data self.info = stack.info return sf = ArtaxFileParser.ArtaxFileParser(filename) # get some Artax map specific information tScanInfo = sf.artaxTScanInfo # the rest is specfile like nScans = sf.scanno() scan = sf[0] calib0 = scan.header("@CALIB") ctime = scan.header("@CTIME") positioners = None motorNames = sf.allmotors() # assuming dictionaries are ordered if len(motorNames): # test if last scan also contains motors # processed files contain an additional sum spectrum if len(sf[-1].allmotorpos()) == 0: _logger.info("Last scan does not contain motors. Ignoring it") nScans -= 1 positioners = {} for mne in motorNames: positioners[mne] = numpy.zeros((nScans,), dtype=numpy.float32) if ctime: liveTime = numpy.zeros((nScans,), dtype=numpy.float32) spectrum = sf[0].mca(1) data = numpy.zeros((1, nScans, len(spectrum)), dtype=numpy.float32) for i in range(nScans): scan = sf[i] if ctime: ctime = scan.header("@CTIME")[0] liveTime[i] = myFloat(ctime.split()[-2]) if positioners: motorPos = scan.allmotorpos() for mneIdx in range(len(motorNames)): mne = motorNames[mneIdx] positioners[mne][i] = motorPos[mneIdx] data[0, i] = scan.mca(1) DataObject.DataObject.__init__(self) self.data = data if positioners: self.info["positioners"] = positioners if ctime: self.info["McaLiveTime"] = liveTime self.info["McaCalib"] = [myFloat(x) for x in calib0[0].split()[1:]] self.info["SourceName"] = os.path.abspath(filename) if tScanInfo.get("Mapping", False): _logger.info("Regular Artax Map") else: _logger.info("Non-regular Artax Map") # we are supposed to have a regular map # let's figure out the shape? # It seems the {AxisName}First and {AxisName}Last information is # not reliable to decide the scanned motors. axes = [] if positioners: for axis in positioners: # Axis0, Axis1, Axis2 typically named x, y, z if numpy.all(numpy.isfinite(positioners[axis])): axes.append(axis) if len(axes) in [0, 1]: # we do not need to figure out any regular shape return elif len(axes) == 2: # potentially variating X, Y and Z x = positioners[axes[0]] y = positioners[axes[1]] deltaX = x[-1] - x[0] deltaY = y[-1] - y[0] deltaZ = 0.0 elif len(axes) == 3: # potentially variating X, Y and Z x = positioners[axes[0]] y = positioners[axes[1]] z = positioners[axes[2]] deltaX = x[-1] - x[0] deltaY = y[-1] - y[0] deltaZ = z[-1] - z[0] else: # wait for the case to appear return epsilon = 1.0e-8 meshType = None if abs(deltaX) > epsilon and \ abs(deltaY) > epsilon and \ abs(deltaZ) > epsilon: # XYZ scan # do not try to figure out any shape _logger.info("XYZ scan") meshType = "XYZ" elif abs(deltaX) < epsilon: # Y and Z variating if abs(y[1] - y[0]) < epsilon: meshType = "ZY" else: meshType = "YZ" elif abs(deltaY) < epsilon: # X and Z variating if abs(x[1] - x[0]) < epsilon: meshType = "ZX" else: meshType = "XZ" elif abs(deltaZ) < epsilon: # X and Y variating if abs(x[1] - x[0]) < epsilon: meshType = "YX" else: meshType = "XY" else: _logger.info("Unknown scan type") if meshType in [None, "XYZ"]: # the only safe solution is a scatter plot return _logger.info("%s scan" % meshType) # the only safe solution is a scatter plot but attempt to # interpret as a regular map for axis in meshType: key=axis+"First" if not numpy.isfinite(tScanInfo[key]): meshType = None break if meshType == "XY": x = positioners[axes[0]] y = positioners[axes[1]] elif meshType == "YX": x = positioners[axes[1]] y = positioners[axes[0]] elif meshType == "XZ": x = positioners[axes[0]] y = positioners[axes[2]] elif meshType == "ZX": x = positioners[axes[2]] y = positioners[axes[0]] elif meshType == "YZ": x = positioners[axes[1]] y = positioners[axes[2]] elif meshType == "ZY": x = positioners[axes[2]] y = positioners[axes[1]] else: return if len(x) == 1 or len(y) == 1: return xFirst = x[0] xLast = x[-1] yFirst = y[0] yLast = y[-1] reasonableDeltaX = numpy.abs(x.max() - x.min()) / (1.0 + len(x)) reasonableDeltaY = numpy.abs(y.max() - y.min()) / (1.0 + len(y)) if numpy.abs(x[1] - x[0]) > reasonableDeltaX: x0 = x[0] i = 1 while (i < len(x)) and (numpy.abs(x[i] - x[0]) > reasonableDeltaX): i += 1 nColumns = i else: x0 = x[0] i = 0 while (i < len(x)) and (numpy.abs(x[i] - x[0]) < reasonableDeltaX): i += 1 nColumns = i # the scan can be in zig-zag # it is safer to rely on the scatter view if nScans % nColumns == 0: nRows = nScans // nColumns self.data.shape = nRows, nColumns, -1 self.info["xScale"] = [xFirst, (xLast - xFirst) / nColumns] self.info["yScale"] = [yFirst, (yLast - yFirst) / nRows] def isRTXMap(filename): try: if filename[-3:].lower() not in ["rtx", "spx"]: return False with open(filename, 'rb') as f: # expected to read an xml file someChar = f.read(20).decode() if "<" in someChar and "xml version" in someChar: return True except Exception: pass return False def test(filename): print("isRTXMap? = ", isRTXMap(filename)) a = RTXMap(filename) print("info = ", a.info) print("Data shape = ", a.data.shape) if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/RenishawMap.py������������������������������������������������������0000644�0000000�0000000�00000017161�14741736366�017432� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ from __future__ import with_statement __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module reads Renishaw Raman MAP measurements exported as .txt file. The native .wxd file has to be converted to .txt using Renishaw tools. The output ASCII file has no headers. It contains several columns, their meaning being different according to the type of data. Some possibilities: columns wavelength value z wavelength value time wavelength value y x wavelength value Of all the previous possibilities, this module only supports the last one. """ import os import sys import re import numpy from PyMca5.PyMcaCore import DataObject SOURCE_TYPE = "EdfFileStack" class RenishawMap(DataObject.DataObject): def __init__(self, filename, infofile=None): DataObject.DataObject.__init__(self) # allocate buffers greater than any spected number of channels x = numpy.zeros((10000,), numpy.float32) y = numpy.zeros((10000,), numpy.float32) wl = numpy.zeros((10000,), numpy.float32) data = numpy.zeros((10000,), numpy.float32) #import time #t0 = time.time() with open(filename, 'r') as f: nChannels = 0 for line in f: # read the first line if "X" in line.upper() and \ "Y" in line.upper() and \ "WAVE" in line.upper() and \ "INTENSITY" in line.upper(): continue y[nChannels], x[nChannels], wl[nChannels], data[nChannels] = \ [float(value) for value in line.split("\t")] if nChannels == 0: firstChannel = wl[0] elif wl[nChannels] == firstChannel: break nChannels += 1 if y[0] == y[nChannels]: firstChangesFirst = False else: firstChangesFirst = True nLines = nChannels + 1 + sum([1 for l in f]) #print("ELAPSED 0 = ", time.time() - t0) if nLines % nChannels: raise IOError("Not a regular Renishaw map or a not a complete file") nSpectra = int(nLines / nChannels) #print("N Channels = %d" % nChannels) #print("N Lines = %d" % nLines) #print("N Spectra = %f" % (nLines/nChannels)) rows = numpy.zeros((nSpectra,), numpy.float32) columns = numpy.zeros((nSpectra,), numpy.float32) wl = numpy.array(wl[:nChannels], dtype=numpy.float32) data = numpy.zeros((nSpectra, nChannels), numpy.float32) nRows = 0 nColumns = 0 #t0 = time.time() myFloat = numpy.float32 actualRows = [] actualColumns = [] indices = [None] * nSpectra with open(filename, 'r') as f: for i in range(nSpectra): for j in range(nChannels): line = f.readline() if "X" in line.upper() and \ "Y" in line.upper() and \ "WAVE" in line.upper() and \ "INTENSITY" in line.upper(): line = f.readline() if firstChangesFirst: column, row, dummy1, dummy2 = \ [float(value) for value in line.split("\t")] else: row, column, dummy1, dummy2 = \ [float(value) for value in line.split("\t")] #positions.append((row, column, i)) if row not in actualRows: actualRows.append(row) if column not in actualColumns: actualColumns.append(column) indices[i] = (actualRows.index(row), actualColumns.index(column)) nRows = len(actualRows) nColumns = len(actualColumns) #positions.sort() data.shape = nRows, nColumns, nChannels with open(filename, 'r') as f: for i in range(nSpectra): row, column = indices[i] for j in range(nChannels): line = f.readline() if "X" in line.upper() and \ "Y" in line.upper() and \ "WAVE" in line.upper() and \ "INTENSITY" in line.upper(): line = f.readline() d1, d2, d3, data[row, column, j] = \ [myFloat(value) for value in line.split("\t")] #print "nRows = ", nRows #print "nColumns= ", nColumns #print columns[::nColumns] #print rows[::nRows] #print "product = ", nRows * nColumns #print("ELAPSED tinal = ", time.time() - t0) # arrange as EDF stack self.sourceName = filename self.data = data self.info = {} shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = 1 self.info["NumberOfFiles"] = 1 self.info["FileIndex"] = 0 self.info["McaIndex"] = 2 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 self.x = [wl] def isRenishawMapFile(filename): try: if filename.endswith(".txt"): with open(filename, 'r') as f: line = f.readline().upper() if "X" in line and \ "Y" in line and \ "WAVE" in line and \ "INTENSITY" in line: line = f.readline() line = line.split("\t") y, x, wl, data = [float(item) for item in line] return True except Exception: # it is not a Renishaw map file pass return False if __name__ == "__main__": filename = None if len(sys.argv) > 1: filename = sys.argv[1] print("is Renishaw File?", isRenishawMapFile(filename)) instance = RenishawMap(filename) print(instance.info) print(instance.data.size) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/SPXFileParser.py����������������������������������������������������0000644�0000000�0000000�00000003671�14741736366�017644� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging _logger = logging.getLogger(__name__) warningMessage = "PyMca5.PyMcaIO.SPXFileParser deprecated.\n" warningMessage += "Please use PyMca5.PyMcaIO.ArtaxFileParser" _logger.warning(warningMessage) from PyMca5.PyMcaIO.ArtaxFileParser import * class SPXFileParser(ArtaxFileParser): pass if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/SRSFileParser.py����������������������������������������������������0000644�0000000�0000000�00000014410�14741736366�017632� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaIO import SpecFileAbstractClass _logger = logging.getLogger(__name__) class BufferedFile(object): def __init__(self, filename): f = open(filename, 'r') self.__buffer = f.read() f.close() self.__buffer = self.__buffer.replace("\r", "\n") self.__buffer = self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") self.__currentLine = 0 def readline(self): if self.__currentLine >= len(self.__buffer): return "" line = self.__buffer[self.__currentLine] self.__currentLine += 1 return line def close(self): self.__buffer = [""] self.__currentLine = 0 return class SRSFileParser(object): def __init__(self, filename, sum_all=False): if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) _fileObject = BufferedFile(filename) #Only one measurement per file header = [] header.append('#S 1 %s Unknown command' % os.path.basename(filename)) #read the data line = _fileObject.readline() self.motorNames = [] self.motorValues = [] readingMetaData = False endReached = False readingData = False data = [] while len(line)>1: if not readingData: header.append(line[:-1]) if readingMetaData: if '</MetaDataAtStart>' in line: readingMetaData = False elif '=' in line: key, value = line[:-1].split('=') if 'datestring' in key: header.append('#D %s' % value) elif 'scancommand' in key: header[0] = '#S 1 %s' % value else: self.motorNames.append(key) self.motorValues.append(value) elif '<MetaDataAtStart>' in line: readingMetaData = True elif '&END' in line: endReached = True elif endReached: if readingData: tmpLine = line[:-1].replace("\t", " ").split(" ") data.append([float(x) for x in tmpLine]) else: labels = line[:-1].replace("\t", " ").split(" ") readingData = True else: _logger.debug("Unhandled line %s", line[:-1]) line = _fileObject.readline() header.append("#N %d" % len(labels)) txt = "#L " for label in labels: txt += " %s" % label header.append(txt + "\n") data = numpy.array(data) #create an abstract scan object self._scan = [SRSScan(data, scantype='SCAN', scanheader=header, labels=labels, motor_values=self.motorValues, point=False)] _fileObject = None data = None #the methods below are called by PyMca on any SPEC file def __getitem__(self, item): return self._scan[item] def scanno(self): """ Gives back the number of scans in the file """ return len(self_scan) def list(self): return "1:1" def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def allmotors(self): return self.motorNames class SRSScan(SpecFileAbstractClass.SpecFileAbstractScan): def __init__(self, data, scantype='MCA', identification="1.1", scanheader=None, labels=None, motor_values=None,point=False): SpecFileAbstractClass.SpecFileAbstractScan.__init__(self, data, scantype=scantype, identification=identification, scanheader=scanheader, labels=labels,point=point) if motor_values is None: motor_values = [] self.motorValues = motor_values def allmotorpos(self): return self.motorValues def isSRSFile(filename): f = open(filename, mode = 'r') try: if '&SRS' in f.readline(): f.close() return True except Exception: pass f.close() return False def test(filename): if isSRSFile(filename): sf=SRSFileParser(filename) else: print("Not a SRS File") print(sf[0].header('S')) print(sf[0].header('D')) print(sf[0].alllabels()) print(sf[0].allmotors()) if __name__ == "__main__": test(sys.argv[1]) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/SpecFileAbstractClass.py��������������������������������������������0000644�0000000�0000000�00000016755�14741736366�021370� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ This class just puts in evidence the Specfile methods called from PyMca. It can be used to wrap other formats as specile """ import os import numpy import logging _logger = logging.getLogger(__name__) class SpecFileAbstractClass(object): def __init__(self, filename): if not os.path.exists(filename): return None self.motorNames = [] def list(self): """ If there is only one scan returns 1:1 with two scans returns 1:2 """ _logger.debug("list method called") return "1:1" def __getitem__(self, item): """ Returns the scan data """ _logger.debug("__getitem__ called") return self.scandata[item] def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def scanno(self): """ Gives back the number of scans in the file """ return 0 def allmotors(self): return self.motorNames class SpecFileAbstractScan(object): def __init__(self, data, scantype=None, identification=None, scanheader=None, labels=None,point=True): if identification is None:identification='1.1' if scantype is None:scantype='SCAN' self.scanheader = scanheader if hasattr(data, "shape"): if len(data.shape) == 1: data.shape = -1, 1 self.__point = point if scantype == 'SCAN': (rows, cols) = data.shape if self.__point: self.__data = numpy.zeros((rows, cols +1 ), numpy.float32) self.__data[:,0] = numpy.arange(rows) * 1.0 self.__data[:,1:] = data * 1 self.__cols = cols + 1 self.labels = ['Point'] else: self.__data = numpy.zeros((rows, cols), numpy.float32) self.__data[:,0:] = data * 1 self.__cols = cols self.labels = [] else: self.__data = data if isinstance(self.__data, numpy.ndarray): (rows, cols) = data.shape else: #we have a list of MCAs rows = 0 cols = len(data) self.__cols = cols self.labels = [] self.scantype = scantype self.rows = rows if labels is None: for i in range(cols): self.labels.append('Column %d' % i) else: for label in labels: self.labels.append('%s' % label) n = identification.split(".") self.__number = int(n[0]) self.__order = int(n[1]) def alllabels(self): """ These are the labels associated to the counters """ if self.scantype == 'SCAN': return self.labels else: return [] def allmotorpos(self): return [] def cols(self): return self.__cols def command(self): _logger.debug("command called") text = "" if self.scanheader is not None: if len(self.scanheader): text = self.scanheader[0] return text def data(self): return numpy.transpose(self.__data) def datacol(self,col): return self.__data[:,col] def dataline(self,line): return self.__data[line,:] def date(self): text = 'sometime' return text def fileheader(self): _logger.debug("file header called") labels = '#L ' for label in self.labels: labels += ' '+label if self.scanheader is None: if self.scantype == 'SCAN': return ['#S 1 Unknown command','#N %d' % self.cols(),labels] else: return ['#S 1 Unknown command'] else: _logger.debug("returning %s", self.scanheader) return self.scanheader def header(self,key): if key == 'S': return self.fileheader()[0] elif key == 'N':return self.fileheader()[-2] elif key == 'L':return self.fileheader()[-1] elif key == '@CALIB': output = [] if self.scanheader is None: return output for line in self.scanheader: if line.startswith(key) or\ line.startswith('#'+key): output.append(line) return output elif key == '@CTIME': # expected to send Preset Time, Live Time, Real (Elapsed) Time output = [] if self.scanheader is None: return output for line in self.scanheader: if line.startswith(key) or\ line.startswith('#'+key): output.append(line) return output elif key == "" or key == " ": return self.fileheader() elif self.scanheader is None: return [] else: output = [] for line in self.scanheader: if line.startswith("#"+key) or\ line.startswith(key): output.append(line) return output def order(self): return self.__order def number(self): return self.__number def lines(self): if self.scantype == 'SCAN': return self.rows else: return 0 def nbmca(self): if self.scantype == 'SCAN': return 0 else: return self.__cols def mca(self,number): if number <= 0: raise IndexError("Mca numbering starts at 1") elif number > self.nbmca(): raise IndexError("Only %d MCAs in file" % self.nbmca()) if hasattr(self.__data, "shape"): return self.__data[:,number-1] else: return self.__data[number-1] def test(): pass if __name__ == "__main__": test() �������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/SpecFileStack.py����������������������������������������������������0000644�0000000�0000000�00000054422�14741736366�017675� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaCore import SpecFileDataSource HDF5 = False try: import h5py HDF5 = True except Exception: pass SOURCE_TYPE = "SpecFileStack" _logger = logging.getLogger(__name__) X_AXIS = 0 Y_AXIS = 1 Z_AXIS = 2 class SpecFileStack(DataObject.DataObject): def __init__(self, filelist=None): DataObject.DataObject.__init__(self) self.incrProgressBar = 0 self.__keyList = [] if filelist is not None: if type(filelist) != type([]): filelist = [filelist] if len(filelist) == 1: self.loadIndexedStack(filelist) else: self.loadFileList(filelist) def loadFileList(self, filelist, fileindex=0, shape=None): if type(filelist) == type(''): filelist = [filelist] self.__keyList = [] self.sourceName = filelist self.__indexedStack = True self.sourceType = SOURCE_TYPE self.info = {} self.nbFiles = len(filelist) # read first file # get information tempInstance = SpecFileDataSource.SpecFileDataSource(filelist[0]) keylist = tempInstance.getSourceInfo()['KeyList'] nscans = len(keylist) # that is the number of scans nmca = 0 numberofdetectors = 0 for key in keylist: info = tempInstance.getKeyInfo(key) numberofmca = info['NbMca'] if numberofmca > 0: numberofdetectors = info['NbMcaDet'] scantype = info["ScanType"] if numberofmca: nmca += numberofmca if numberofdetectors == 0: raise ValueError("No MCA found in file %s" % filelist[0]) if (nscans > 1) and ((nmca // numberofdetectors) == nscans): SLOW_METHOD = True else: SLOW_METHOD = False # get last mca of first point key = "%s.1.%s" % (keylist[-1], numberofmca) dataObject = tempInstance._getMcaData(key) self.info.update(dataObject.info) arrRet = dataObject.data self.onBegin(self.nbFiles * nmca // numberofdetectors) self.incrProgressBar = 0 if info['NbMcaDet'] > 1: # Should I generate a map for each mca and not just for the last one as I am doing? iterlist = range(info['NbMcaDet'], info['NbMca'] + 1, info['NbMcaDet']) else: iterlist = [1] if SLOW_METHOD and shape is None: self.data = numpy.zeros((self.nbFiles, nmca // numberofdetectors, arrRet.shape[0]), arrRet.dtype.char) nTimes = self.nbFiles * (nmca // numberofdetectors) filecounter = 0 for key in ["McaLiveTime", "McaElapsedTime"]: if key in dataObject.info: self.info[key] = numpy.zeros((nTimes,), numpy.float32) # positioners key = "MotorNames" positioners = None if key in dataObject.info: positioners = {} for mne in dataObject.info[key]: positioners[mne] = numpy.zeros((nTimes,), numpy.float32) nTimes = -1 for tempFileName in filelist: tempInstance = SpecFileDataSource.SpecFileDataSource(tempFileName) mca_number = -1 for keyindex in keylist: info = tempInstance.getKeyInfo(keyindex) numberofmca = info['NbMca'] if numberofmca <= 0: continue # the positioners are for all the mca in the scan # only the last mca is read key = "%s.1.%s" % (keyindex, numberofmca) dataObject = tempInstance._getMcaData(key) arrRet = dataObject.data mca_number += 1 nTimes += 1 for i in iterlist: # mcadata = scan_obj.mca(i) self.data[filecounter, mca_number, :] = arrRet[:] self.incrProgressBar += 1 for timeKey in ["McaElapsedTime", "McaLiveTime"]: if timeKey in dataObject.info: self.info[timeKey][nTimes] = \ dataObject.info[timeKey] if positioners and "MotorNames" in dataObject.info: for mne in positioners: if mne in dataObject.info["MotorNames"]: mneIdx = \ dataObject.info["MotorNames"].index(mne) positioners[mne][nTimes] = \ dataObject.info["MotorValues"][mneIdx] self.onProgress(self.incrProgressBar) filecounter += 1 if positioners: self.info["positioners"] = positioners elif shape is None and (self.nbFiles == 1) and (iterlist == [1]): # it can only be here if there is one file # it can only be here if there is only one scan # it can only be here if there is only one detector self.data = numpy.zeros((1, numberofmca, arrRet.shape[0]), arrRet.dtype.char) # when reading fast we do not read the time information # therefore we have to remove it from the info self._cleanupTimeInfo() for tempFileName in filelist: tempInstance = specfile.Specfile(tempFileName) # it can only be here if there is one scan per file # prevent problems if the scan number is different # scan = tempInstance.select(keylist[-1]) scan = tempInstance[-1] iterationList = range(scan.nbmca()) for i in iterationList: # mcadata = scan_obj.mca(i) self.data[0, i, :] = scan.mca(i + 1)[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) filecounter = 1 elif shape is None: # it can only be here if there is one scan per file # when reading fast we do not read the time information # therefore we have to remove it from the info self._cleanupTimeInfo() try: self.data = numpy.zeros((self.nbFiles, numberofmca // numberofdetectors, arrRet.shape[0]), arrRet.dtype.char) filecounter = 0 for tempFileName in filelist: tempInstance = specfile.Specfile(tempFileName) # it can only be here if there is one scan per file # prevent problems if the scan number is different # scan = tempInstance.select(keylist[-1]) scan = tempInstance[-1] for i in iterlist: # mcadata = scan_obj.mca(i) self.data[filecounter, 0, :] = scan.mca(i)[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) filecounter += 1 except MemoryError: qtflag = False if ('PyQt4.QtCore' in sys.modules) or \ ('PySide' in sys.modules) or \ ('PyMca5.PyMcaGui.PyMcaQt' in sys.modules): qtflag = True hdf5done = False if HDF5 and qtflag: from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaIO import ArraySave msg = qt.QMessageBox.information( \ None, "Memory error\n", "Do you want to convert your data to HDF5?\n", qt.QMessageBox.Yes,qt.QMessageBox.No) if msg != qt.QMessageBox.No: hdf5file = qt.QFileDialog.getSaveFileName( \ None, "Please select output file name", os.path.dirname(filelist[0]), "HDF5 files *.h5") if not len(hdf5file): raise IOError("Invalid output file") hdf5file = qt.safe_str(hdf5file) if not hdf5file.endswith(".h5"): hdf5file += ".h5" # get the final shape from PyMca5.RGBCorrelatorWidget import ImageShapeDialog stackImageShape = self.nbFiles,\ int(numberofmca/numberofdetectors) dialog = ImageShapeDialog(None, shape = stackImageShape) dialog.setModal(True) ret = dialog.exec() if ret: stackImageShape = dialog.getImageShape() dialog.close() del dialog hdf, self.data = ArraySave.getHDF5FileInstanceAndBuffer( \ hdf5file, (stackImageShape[0], stackImageShape[1], arrRet.shape[0]), compression=None, interpretation="spectrum") nRow = 0 nCol = 0 for tempFileName in filelist: tempInstance = specfile.Specfile(tempFileName) # it can only be here if there is one scan per file # prevent problems if the scan number is different # scan = tempInstance.select(keylist[-1]) scan = tempInstance[-1] nRow = int(self.incrProgressBar / stackImageShape[1]) nCol = self.incrProgressBar % stackImageShape[1] for i in iterlist: # mcadata = scan_obj.mca(i) self.data[nRow, nCol, :] = scan.mca(i)[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) hdf5done = True hdf.flush() self.onEnd() self.info["SourceType"] = "HDF5Stack1D" self.info["McaIndex"] = 2 self.info["FileIndex"] = 0 self.info["SourceName"] = [hdf5file] self.info["NumberOfFiles"] = 1 self.info["Size"] = 1 return else: raise else: # time information not read self._cleanupTimeInfo() sampling_order = 1 s0 = shape[0] s1 = shape[1] MEMORY_ERROR = False try: self.data = numpy.zeros((shape[0], shape[1], arrRet.shape[0]), arrRet.dtype.char) except MemoryError: try: self.data = numpy.zeros((shape[0], shape[1], arrRet.shape[0]), numpy.float32) except MemoryError: MEMORY_ERROR = True while MEMORY_ERROR: try: for i in range(5): print("\7") sampling_order += 1 _logger.warning("**************************************************") _logger.warning(" Memory error!, attempting %dx%d sub-sampling ", sampling_order, sampling_order) _logger.warning("**************************************************") s0 = int(shape[0] / sampling_order) s1 = int(shape[1] / sampling_order) #if shape[0] % sampling_order: # s0 = s0 + 1 #if shape[1] % sampling_order: # s1 = s1 + 1 self.data = numpy.zeros((s0, s1, arrRet.shape[0]), numpy.float32) MEMORY_ERROR = False except MemoryError: pass filecounter = 0 for j in range(s0): filecounter = (j * sampling_order) * shape[1] for k in range(s1): tempFileName = filelist[filecounter] tempInstance = specfile.Specfile(tempFileName) if tempInstance is None: if not os.path.exists(tempFileName): _logger.error("File %s does not exists", tempFileName) raise IOError( "File %s does not exists" % tempFileName) scan = tempInstance.select(keylist[-1]) for i in iterlist: # sum the present mcas self.data[j, k, :] += scan.mca(i)[:] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) filecounter += sampling_order self.nbFiles = s0 * s1 self.onEnd() """ # Scan types # ---------- #SF_EMPTY = 0 # empty scan #SF_SCAN = 1 # non-empty scan #SF_MESH = 2 # mesh scan #SF_MCA = 4 # single mca #SF_NMCA = 8 # multi mca (more than 1 mca per acq) case = None if scantype == (SpecFileDataSource.SF_MESH + \ SpecFileDataSource.SF_MCA): # SINGLE MESH + SINGLE MCA # nfiles = 1 # nscans = 1 # nmca = 1 # there is a danger if it can be considered an indexed file ... pass elif scantype == (SpecFileDataSource.SF_MESH + \ SpecFileDataSource.SF_NMCA): # SINGLE MESH + MULTIPLE MCA # nfiles = 1 # nscans = 1 # nmca > 1 # there is a danger if it can be considered an indexed file ... #for the time being I take last mca pass elif scantype == (SpecFileDataSource.SF_SCAN+ \ SpecFileDataSource.SF_MCA): #Assumed scans containing always 1 detector pass elif scantype == (SpecFileDataSource.SF_MCA): #Assumed scans containing always 1 detector pass elif scantype == (SpecFileDataSource.SF_SCAN+ \ SpecFileDataSource.SF_NMCA): #Assumed scans containing the same number of detectors #for the time being I take last mca pass elif scantype == (SpecFileDataSource.SF_NMCA): #Assumed scans containing the same number of detectors #for the time being I take last mca pass else: raise ValueError, "Unhandled scan type = %s" % scantype """ self.__nFiles = self.nbFiles self.__nImagesPerFile = 1 shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i + 1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = self.__nFiles * self.__nImagesPerFile self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["FileIndex"] = fileindex def _cleanupTimeInfo(self): for timeKey in ["McaElapsedTime", "McaLiveTime"]: if timeKey in self.info: del self.info[timeKey] def onBegin(self, n): pass def onProgress(self, n): pass def onEnd(self): pass def loadIndexedStack(self,filename, begin=None, end=None, skip = None, fileindex=0): #if begin is None: begin = 0 if type(filename) == type([]): filename = filename[0] if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) name = os.path.basename(filename) n = len(name) i = 1 numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] while (i <= n): c = name[n - i:n - i + 1] if c in numbers: break i += 1 suffix = name[n - i + 1:] if len(name) == len(suffix): # just one file, one should use standard widget # and not this one. self.loadFileList(filename, fileindex=fileindex) else: nchain = [] while (i <= n): c = name[n - i:n - i + 1] if c not in numbers: break else: nchain.append(c) i += 1 number = "" nchain.reverse() for c in nchain: number += c fformat = "%" + "0%dd" % len(number) if (len(number) + len(suffix)) == len(name): prefix = "" else: prefix = name[0:n - i + 1] prefix = os.path.join(os.path.dirname(filename), prefix) if not os.path.exists(prefix + number + suffix): _logger.warning("Internal error in EDFStack") _logger.warning("file should exist: %s", prefix + number + suffix) return i = 0 if begin is None: begin = 0 testname = prefix + fformat % begin + suffix while not os.path.exists(prefix + fformat % begin + suffix): begin += 1 testname = prefix + fformat % begin + suffix if len(testname) > len(filename): break i = begin else: i = begin if not os.path.exists(prefix + fformat % i + suffix): raise ValueError("Invalid start index file = %s" % \ (prefix + fformat % i + suffix)) f = prefix + fformat % i + suffix filelist = [] while os.path.exists(f): filelist.append(f) i += 1 if end is not None: if i > end: break f = prefix + fformat % i + suffix self.loadFileList(filelist, fileindex=fileindex) def getSourceInfo(self): sourceInfo = {} sourceInfo["SourceType"] = SOURCE_TYPE if self.__keyList == []: for i in range(1, self.__nFiles + 1): for j in range(1, self.__nImages + 1): self.__keyList.append("%d.%d" % (i, j)) sourceInfo["KeyList"] = self.__keyList def getKeyInfo(self, key): _logger.info("Not implemented") return {} def isIndexedStack(self): return self.__indexedStack def getZSelectionArray(self, z=0): return (self.data[:, :, z]).astype(numpy.float64) def getXYSelectionArray(self, coord=(0, 0)): x, y = coord return (self.data[y, x, :]).astype(numpy.float64) if __name__ == "__main__": stack = SpecFileStack() if len(sys.argv) > 1: stack.loadIndexedStack(sys.argv[1]) else: print("Usage: python SpecFileStack.py indexed_file") ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/SupaVisioMap.py�����������������������������������������������������0000644�0000000�0000000�00000007016�14741736366�017572� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import struct import time import logging from PyMca5 import DataObject from PyMca5.PyMcaIO import PyMcaIOHelper _logger = logging.getLogger(__name__) SOURCE_TYPE = "EdfFileStack" class SupaVisioMap(DataObject.DataObject): def __init__(self, filename): DataObject.DataObject.__init__(self) fileSize = os.path.getsize(filename) fid = open(filename, 'rb') data=fid.read() fid.close() self.sourceName = [filename] e0 = time.time() values = struct.unpack("%dH" % (len(data)/2), data) data = numpy.array(values, numpy.uint16) #print values nrows = values[1] ncols = values[2] self.nSpectra = nrows * ncols data.shape = [len(data)/3, 3] self.nChannels = data[:,2].max() + 1 #fill the header self.header =[] self.nRows = nrows #arrange as an EDF Stack self.info = {} self.__nFiles = (self.nSpectra)/self.nRows self.__nImagesPerFile = 1 e0 = time.time() self.data = PyMcaIOHelper.fillSupaVisio(data).astype(numpy.float64); shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i+1,) self.info[key] = shape[i] self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["Size"] = self.__nFiles * self.__nImagesPerFile self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["FileIndex"] = 0 self.info["McaCalib"] = [0.0, 1.0, 0.0] self.info["Channel0"] = 0.0 if __name__ == "__main__": filename = None if len(sys.argv) > 1: filename = sys.argv[1] elif os.path.exists(r".\PIGE\010826.pige"): filename = r".\PIGE\010826.pige" if filename is not None: _logger.setLevel(logging.DEBUG) w = SupaVisioMap(filename) else: print("Please supply input filename") ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/TextImageStack.py���������������������������������������������������0000644�0000000�0000000�00000021243�14741736366�020065� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import sys import os import logging from PyMca5 import DataObject SOURCE_TYPE = "EdfFileStack" _logger = logging.getLogger(__name__) class TextImageStack(DataObject.DataObject): def __init__(self, filelist = None, imagestack=None, dtype=None): DataObject.DataObject.__init__(self) self.incrProgressBar=0 self.__keyList = [] if imagestack is None: self.__imageStack = True else: self.__imageStack = imagestack self.__dtype = dtype if filelist is not None: if type(filelist) != type([]): filelist = [filelist] if len(filelist) == 1: self.loadIndexedStack(filelist) else: self.loadFileList(filelist) def loadFileList(self, filelist, fileindex=0): if type(filelist) == type(''): filelist = [filelist] self.__keyList = [] self.sourceName = filelist self.__indexedStack = True self.sourceType = SOURCE_TYPE self.info = {} self.__nFiles=len(filelist) #read first file arrRet = numpy.loadtxt(filelist[0]) if self.__dtype is None: self.__dtype = arrRet.dtype self.__nImagesPerFile = 1 #try to allocate the memory shape = self.__nFiles, arrRet.shape[0], arrRet.shape[1] samplingStep = 1 try: self.data = numpy.zeros(shape, self.__dtype) except (MemoryError, ValueError): for i in range(3): print("\7") samplingStep = None i = 2 while samplingStep is None: _logger.warning("**************************************************") _logger.warning(" Memory error!, attempting %dx%d sampling reduction ", i, i) _logger.warning("**************************************************") s1, s2 = arrRet[::i, ::i].shape try: self.data = numpy.zeros((self.__nFiles, s1, s2), self.__dtype) samplingStep = i except (MemoryError, ValueError): i += 1 #fill the array self.onBegin(self.__nFiles) self.__imageStack = True self.incrProgressBar=0 if samplingStep == 1: for tempFileName in filelist: self.data[self.incrProgressBar]=numpy.loadtxt(tempFileName, dtype=self.__dtype) self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) else: for tempFileName in filelist: pieceOfStack=numpy.loadtxt(tempFileName, dtype=self.__dtype) self.data[self.incrProgressBar] = pieceOfStack[::samplingStep, ::samplingStep] self.incrProgressBar += 1 self.onProgress(self.incrProgressBar) self.onEnd() if self.__imageStack: self.info["McaIndex"] = 0 self.info["FileIndex"] = 1 else: self.info["McaIndex"] = 2 self.info["FileIndex"] = 0 self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName self.info["NumberOfFiles"] = self.__nFiles * 1 self.info["Size"] = self.__nFiles * self.__nImagesPerFile def onBegin(self, n): pass def onProgress(self, n): pass def onEnd(self): pass def loadIndexedStack(self,filename,begin=None,end=None, skip = None, fileindex=0): #if begin is None: begin = 0 if type(filename) == type([]): filename = filename[0] if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) name = os.path.basename(filename) n = len(name) i = 1 numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8','9'] while (i <= n): c = name[n-i:n-i+1] if c in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break i += 1 suffix = name[n-i+1:] if len(name) == len(suffix): #just one file, one should use standard widget #and not this one. self.loadFileList(filename, fileindex=fileindex) else: nchain = [] while (i<=n): c = name[n-i:n-i+1] if c not in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']: break else: nchain.append(c) i += 1 number = "" nchain.reverse() for c in nchain: number += c fformat = "%" + "0%dd" % len(number) if (len(number) + len(suffix)) == len(name): prefix = "" else: prefix = name[0:n-i+1] prefix = os.path.join(os.path.dirname(filename),prefix) if not os.path.exists(prefix + number + suffix): _logger.warning("Internal error in EDFStack") _logger.warning("file should exist: %s ", prefix + number + suffix) return i = 0 if begin is None: begin = 0 testname = prefix+fformat % begin+suffix while not os.path.exists(prefix+fformat % begin+suffix): begin += 1 testname = prefix+fformat % begin+suffix if len(testname) > len(filename):break i = begin else: i = begin if not os.path.exists(prefix+fformat % i+suffix): raise ValueError("Invalid start index file = %s" % \ (prefix+fformat % i+suffix)) f = prefix+fformat % i+suffix filelist = [] while os.path.exists(f): filelist.append(f) i += 1 if end is not None: if i > end: break f = prefix+fformat % i+suffix self.loadFileList(filelist, fileindex=fileindex) def getSourceInfo(self): sourceInfo = {} sourceInfo["SourceType"]=SOURCE_TYPE if self.__keyList == []: for i in range(1, self.__nFiles + 1): for j in range(1, self.__nImages + 1): self.__keyList.append("%d.%d" % (i,j)) sourceInfo["KeyList"]= self.__keyList def getKeyInfo(self, key): _logger.info("Not implemented") return {} def isIndexedStack(self): return self.__indexedStack def getZSelectionArray(self,z=0): return (self.data[:,:,z]).astype(numpy.float64) def getXYSelectionArray(self,coord=(0,0)): x,y=coord return (self.data[y,x,:]).astype(numpy.float64) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/ThermoEMSFileParser.py����������������������������������������������0000644�0000000�0000000�00000022537�14741736366�020777� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging _logger = logging.getLogger(__name__) class BufferedFile(object): def __init__(self, filename): f = open(filename, 'r') self.__buffer = f.read() f.close() self.__buffer = self.__buffer.replace("\r", "\n") self.__buffer = self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") self.__currentLine = 0 def readline(self): if self.__currentLine >= len(self.__buffer): return "" line = self.__buffer[self.__currentLine] self.__currentLine += 1 return line def close(self): self.__buffer = [""] self.__currentLine = 0 return class ThermoEMSFileParser(object): def __init__(self, filename): if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) _fileObject = BufferedFile(filename) #Only one measurement per file header = [] ddict = {} line = _fileObject.readline() ok = False if filename.lower().endswith(".ems"): if line.startswith("#FORMAT") or \ (("EMSA" in line) and ("Spectral" in line)): ok = True if not ok: raise IOError("This does look as a Thermo EMS file") while not line.startswith("#SPECTRUM"): splitLine = line.split(":") if len(splitLine) == 2: ddict[splitLine[0][1:].strip()] = splitLine[1] header.append(line) line = _fileObject.readline() header.append(line) line = _fileObject.readline().strip() line = line.replace(','," ") splitLine = line.split() data = [] while(len(splitLine)): if len(splitLine[0]): try: data.append([float(x) for x in splitLine if len(x) > 0]) except ValueError: break else: break line = _fileObject.readline().strip() line = line.replace(','," ") splitLine = line.split() _fileObject.close() data = numpy.array(data, dtype=numpy.float64) ddict["data"] = data interestingMotors = ["VacPressure", "TubeVoltageSet", "AmbientPressure", "Realtime", "Livetime", "FilterPosition", "TubeCurrentMon", "TubeVoltageMon", "ExposureNum", "TubeCurrentSet"] self._motorNames = [] for key in ddict.keys(): #print("Key = ", key, "ken = ", len(ddict[key])) if key in interestingMotors: self._motorNames.append(key) self._data = ddict def __getitem__(self, item): if item >= self.scanno(): raise IndexError("Only %d scans in file" % self.scanno) motorValues = [] for key in self._motorNames: motorValues.append(float(self._data[key][item])) return ThermoEMSScan(self._data, item, motorValues=motorValues) def scanno(self): """ Gives back the number of scans in the file """ return 1 def list(self): return "1:%d" % self.scanno() def select(self, key): """ key is of the from s.o scan number, scan order """ n = key.split(".") return self.__getitem__(int(n[0])-1) def allmotors(self): return self._motorNames class ThermoEMSScan(object): def __init__(self, data, number, motorValues=None): if motorValues is None: motorValues = [] self._data = data self._number = number self._motorValues = motorValues self._scanHeader = ["#S %d %s" % (number + 1,self._data['TITLE'])] if ("DATE" in self._data) and ("TIME" in self._data): self._scanHeader.append("#D %s %s" % \ (self._data["DATE"], self._data["TIME"])) #return the life time, the preset the elapsed? # to be safe, I return the LiveTime if "LIVETIME -s" in self._data: if "REALTIME -s" in self._data: self._scanHeader.append("#@CTIME %s %s %s" % (self._data["REALTIME -s"], self._data["LIVETIME -s"], self._data["LIVETIME -s"])) else: self._scanHeader.append("#@CTIME %s %s %s" % (self._data["LIVETIME -s"], self._data["LIVETIME -s"], self._data["LIVETIME -s"])) if ("CHOFFSET" in self._data) and ("NPOINTS" in self._data): self._scanHeader.append("#@CHANN %d %d %d 1" % (int(float(self._data["NPOINTS"])), int(float(self._data["CHOFFSET"])), int(float(self._data["NPOINTS"])-1))) else: self._scanHeader.append("#@CHANN %d 0 %d 1" % (self._data["data"].shape[0], self._data["data"].shape[0]-1)) if "OFFSET" in self._data: if "XPERCHAN" in self._data: self._scanHeader.append("#@CALIB %s %s 0.0" % \ (self._data["OFFSET"], self._data["XPERCHAN"])) def nbmca(self): return 1 def mca(self, number): # it gives the last column (some files have three columns) # corresponding to channels, counts and (probably) corrected counts if number <= 0: raise IndexError("Mca numbering starts at 1") elif number > self.nbmca(): raise IndexError("Only %d MCA's" % number) return self._data['data'][:, 1] def alllabels(self): return [] def allmotorpos(self): return self._motorValues def command(self): return self._data['TITLE'] def date(self): return self._data["DATE"] + " " + self._data["TIME"] def fileheader(self): return self._scanHeader #a = "#S %d %s" % (self._number + 1, self.command()) #return [a] def header(self, key): _logger.debug("Requested key = %s", key) if key in ['S', '#S']: return self.fileheader()[0] elif key == 'N': return [] elif key == 'L': return [] elif key in ['D', '@CTIME', '@CALIB', '@CHANN']: for item in self._scanHeader: if item.startswith("#" + key): return [item] return [] elif key == "" or key == " ": return self._scanHeader else: return [] def order(self): return 1 def number(self): return self._number + 1 def lines(self): return 0 def isThermoEMSFile(filename): f = open(filename, 'r') try: line = f.readline() except Exception: f.close() return False f.close() try: if filename.lower().endswith(".ems"): if line.startswith("#FORMAT") or \ (("EMSA" in line) and ("Spectral" in line)): return True except Exception: pass return False def test(filename): if isThermoEMSFile(filename): sf=ThermoEMSFileParser(filename) else: print("Not a Thermo EMS File") print(sf[0].header('S')) print(sf[0].header('D')) print(sf[0].alllabels()) #print(sf[0].allmotorsvalues()) print(sf[0].nbmca()) print(sf[0].mca(1)) if __name__ == "__main__": test(sys.argv[1]) �����������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/TiffIO.py�����������������������������������������������������������0000644�0000000�0000000�00000146643�14741736366�016344� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "25/10/2023" import sys import os import struct import numpy import logging logger = logging.getLogger(__name__) ALLOW_MULTIPLE_STRIPS = False TAG_ID = { 256:"NumberOfColumns", # S or L ImageWidth 257:"NumberOfRows", # S or L ImageHeight 258:"BitsPerSample", # S Number of bits per component 259:"Compression", # SHORT (1 - NoCompression, ... 262:"PhotometricInterpretation", # SHORT (0 - WhiteIsZero, 1 -BlackIsZero, 2 - RGB, 3 - Palette color 270:"ImageDescription", # ASCII 272:"Model", # ASCII 273:"StripOffsets", # S or L, for each strip, the byte offset of the strip 277:"SamplesPerPixel", # SHORT (>=3) only for RGB images 278:"RowsPerStrip", # S or L, number of rows in each back may be not for the last 279:"StripByteCounts", # S or L, The number of bytes in the strip AFTER any compression 305:"Software", # ASCII 306:"Date", # ASCII 320:"Colormap", # Colormap of Palette-color Images 339:"SampleFormat", # SHORT Interpretation of data in each pixel } # TILES ARE TO BE SUPPORTED TOO TAG_NUMBER_OF_COLUMNS = 256 TAG_NUMBER_OF_ROWS = 257 TAG_BITS_PER_SAMPLE = 258 TAG_PHOTOMETRIC_INTERPRETATION = 262 TAG_COMPRESSION = 259 TAG_IMAGE_DESCRIPTION = 270 TAG_MODEL = 272 TAG_STRIP_OFFSETS = 273 TAG_SAMPLES_PER_PIXEL = 277 TAG_ROWS_PER_STRIP = 278 TAG_STRIP_BYTE_COUNTS = 279 TAG_SOFTWARE = 305 TAG_DATE = 306 TAG_COLORMAP = 320 TAG_SAMPLE_FORMAT = 339 FIELD_TYPE = {1:('BYTE', "B"), 2:('ASCII', "s"), # string ending with binary zero 3:('SHORT', "H"), 4:('LONG', "I"), 5:('RATIONAL',"II"), 6:('SBYTE', "b"), 7:('UNDEFINED',"B"), 8:('SSHORT', "h"), 9:('SLONG', "i"), 10:('SRATIONAL',"ii"), 11:('FLOAT', "f"), 12:('DOUBLE', "d")} FIELD_TYPE_OUT = { 'B': 1, 's': 2, 'H': 3, 'I': 4, 'II': 5, 'b': 6, 'h': 8, 'i': 9, 'ii': 10, 'f': 11, 'd': 12} # sample formats (http://www.awaresystems.be/imaging/tiff/tiffflags/sampleformat.html) SAMPLE_FORMAT_UINT = 1 SAMPLE_FORMAT_INT = 2 SAMPLE_FORMAT_FLOAT = 3 # floating point SAMPLE_FORMAT_VOID = 4 # undefined data, usually assumed UINT SAMPLE_FORMAT_COMPLEXINT = 5 SAMPLE_FORMAT_COMPLEXIEEEFP = 6 class TiffIO(object): def __init__(self, filename, mode=None, cache_length=20, mono_output=False): if mode is None: mode = 'rb' if 'b' not in mode: mode = mode + 'b' if 'a' in mode.lower(): raise IOError("Mode %s makes no sense on TIFF files. Consider 'rb+'" % mode) if ('w' in mode): if '+' not in mode: mode += '+' if hasattr(filename, "seek") and\ hasattr(filename, "read"): fd = filename self._access = None else: # the b is needed to make sure we read bytes fd = open(filename, mode) self._access = mode self._initInternalVariables(fd) self._maxImageCacheLength = cache_length self._forceMonoOutput = mono_output def _initInternalVariables(self, fd=None): if fd is None: fd = self.fd else: self.fd = fd # read the order fd.seek(0) order = fd.read(2) if len(order): if order == b"II": # intel, little endian fileOrder = "little" self._structChar = '<' elif order == b"MM": # motorola, high endian fileOrder = "big" self._structChar = '>' else: raise IOError("File is not a Mar CCD file, nor a TIFF file") a = fd.read(2) fortyTwo = struct.unpack(self._structChar + "H", a)[0] if fortyTwo != 42: raise IOError("Invalid TIFF version %d" % fortyTwo) else: logger.debug("VALID TIFF VERSION") if sys.byteorder != fileOrder: swap = True else: swap = False else: if sys.byteorder == "little": self._structChar = '<' else: self._structChar = '>' swap = False self._swap = swap self._IFD = [] self._imageDataCacheIndex = [] self._imageDataCache = [] self._imageInfoCacheIndex = [] self._imageInfoCache = [] self.getImageFileDirectories(fd) def __makeSureFileIsOpen(self): if not self.fd.closed: return logger.debug("Reopening closed file") fileName = self.fd.name if self._access is None: # we do not own the file # open in read mode newFile = open(fileName, 'rb') else: newFile = open(fileName, self._access) self.fd = newFile def __makeSureFileIsClosed(self): if self._access is None: # we do not own the file logger.debug("Not closing not owned file") return if not self.fd.closed: self.fd.close() def close(self): return self.__makeSureFileIsClosed() def getNumberOfImages(self): # update for the case someone has done anything? self._updateIFD() return len(self._IFD) def _updateIFD(self): self.__makeSureFileIsOpen() self.getImageFileDirectories() self.__makeSureFileIsClosed() def getImageFileDirectories(self, fd=None): if fd is None: fd = self.fd else: self.fd = fd st = self._structChar fd.seek(4) self._IFD = [] nImages = 0 fmt = st + 'I' inStr = fd.read(struct.calcsize(fmt)) if not len(inStr): offsetToIFD = 0 else: offsetToIFD = struct.unpack(fmt, inStr)[0] logger.debug("Offset to first IFD = %d", offsetToIFD) while offsetToIFD != 0: self._IFD.append(offsetToIFD) nImages += 1 fd.seek(offsetToIFD) fmt = st + 'H' numberOfDirectoryEntries = struct.unpack(fmt, fd.read(struct.calcsize(fmt)))[0] logger.debug("Number of directory entries = %d", numberOfDirectoryEntries) fmt = st + 'I' fd.seek(offsetToIFD + 2 + 12 * numberOfDirectoryEntries) offsetToIFD = struct.unpack(fmt, fd.read(struct.calcsize(fmt)))[0] logger.debug("Next Offset to IFD = %d", offsetToIFD) # offsetToIFD = 0 logger.debug("Number of images found = %d", nImages) return nImages def _parseImageFileDirectory(self, nImage): offsetToIFD = self._IFD[nImage] st = self._structChar fd = self.fd fd.seek(offsetToIFD) fmt = st + 'H' numberOfDirectoryEntries = struct.unpack(fmt, fd.read(struct.calcsize(fmt)))[0] logger.debug("Number of directory entries = %d", numberOfDirectoryEntries) fmt = st + 'HHI4s' tagIDList = [] fieldTypeList = [] nValuesList = [] valueOffsetList = [] for i in range(numberOfDirectoryEntries): tagID, fieldType, nValues, valueOffset = struct.unpack(fmt, fd.read(12)) tagIDList.append(tagID) fieldTypeList.append(fieldType) nValuesList.append(nValues) if nValues == 1: ftype, vfmt = FIELD_TYPE[fieldType] if ftype not in ['ASCII', 'RATIONAL', 'SRATIONAL']: vfmt = st + vfmt data = valueOffset[0: struct.calcsize(vfmt)] if struct.calcsize(vfmt) > len(data): # I do not see how I can enter here # Add a 0 padding to have the expected size logger.warning("Data at tag id '%s' is smaller than expected", tagID) data = data + b"\x00" * (struct.calcsize(vfmt) - len(data)) actualValue = struct.unpack(vfmt, data)[0] valueOffsetList.append(actualValue) else: valueOffsetList.append(valueOffset) elif (nValues < 5) and (fieldType == 2): ftype, vfmt = FIELD_TYPE[fieldType] vfmt = st + "%d%s" % (nValues, vfmt) actualValue = struct.unpack(vfmt, valueOffset[0: struct.calcsize(vfmt)])[0] valueOffsetList.append(actualValue) else: valueOffsetList.append(valueOffset) if logger.getEffectiveLevel() == logging.DEBUG: if tagID in TAG_ID: logger.debug("tagID = %s", TAG_ID[tagID]) else: logger.debug("tagID = %d", tagID) logger.debug("fieldType = %s", FIELD_TYPE[fieldType][0]) logger.debug("nValues = %d", nValues) # if nValues == 1: # logger.debug("valueOffset = %s" % valueOffset) return tagIDList, fieldTypeList, nValuesList, valueOffsetList def _readIFDEntry(self, tag, tagIDList, fieldTypeList, nValuesList, valueOffsetList): fd = self.fd st = self._structChar idx = tagIDList.index(tag) nValues = nValuesList[idx] output = [] ftype, vfmt = FIELD_TYPE[fieldTypeList[idx]] vfmt = st + "%d%s" % (nValues, vfmt) requestedBytes = struct.calcsize(vfmt) if nValues == 1: output.append(valueOffsetList[idx]) elif requestedBytes < 5: output.append(valueOffsetList[idx]) else: fd.seek(struct.unpack(st + "I", valueOffsetList[idx])[0]) output = struct.unpack(vfmt, fd.read(requestedBytes)) if fieldTypeList[idx] == 2: # That's an ASCII tag cleaned_output = [] for raw in output: # remove the trailing \x00 index = raw.find(b"\x00") if index != -1: raw = raw[0:index] # read the data as text try: text = raw.decode("utf-8") except UnicodeDecodeError: logger.warning("TIFF file tag %d contains non ASCII/UTF-8 characters. ", tag) text = raw.decode("utf-8", errors='replace') # Use a valid ASCII character to limit ferther encoding error text = text.replace(u"\ufffd", "?") cleaned_output.append(text) if isinstance(output, tuple): output = tuple(cleaned_output) else: output = cleaned_output return output def getData(self, nImage, **kw): if nImage >= len(self._IFD): # update prior to raise an index error error self._updateIFD() return self._readImage(nImage, **kw) def getImage(self, nImage): return self.getData(nImage) def getInfo(self, nImage, **kw): if nImage >= len(self._IFD): # update prior to raise an index error error self._updateIFD() # current = self._IFD[nImage] return self._readInfo(nImage) def _readInfo(self, nImage, close=True): if nImage in self._imageInfoCacheIndex: logger.debug("Reading info from cache") return self._imageInfoCache[self._imageInfoCacheIndex.index(nImage)] # read the header self.__makeSureFileIsOpen() tagIDList, fieldTypeList, nValuesList, valueOffsetList = self._parseImageFileDirectory(nImage) # rows and columns nColumns = valueOffsetList[tagIDList.index(TAG_NUMBER_OF_COLUMNS)] nRows = valueOffsetList[tagIDList.index(TAG_NUMBER_OF_ROWS)] # bits per sample idx = tagIDList.index(TAG_BITS_PER_SAMPLE) nBits = valueOffsetList[idx] if nValuesList[idx] != 1: # this happens with RGB and friends, nBits is not a single value nBits = self._readIFDEntry(TAG_BITS_PER_SAMPLE, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if TAG_COLORMAP in tagIDList: idx = tagIDList.index(TAG_COLORMAP) tmpColormap = self._readIFDEntry(TAG_COLORMAP, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if max(tmpColormap) > 255: tmpColormap = numpy.array(tmpColormap, dtype=numpy.uint16) tmpColormap = (tmpColormap / 256.).astype(numpy.uint8) else: tmpColormap = numpy.array(tmpColormap, dtype=numpy.uint8) tmpColormap.shape = 3, -1 colormap = numpy.zeros((tmpColormap.shape[-1], 3), tmpColormap.dtype) colormap[:, :] = tmpColormap.T tmpColormap = None else: colormap = None # sample format if TAG_SAMPLE_FORMAT in tagIDList: sampleFormat = valueOffsetList[tagIDList.index(TAG_SAMPLE_FORMAT)] else: # set to unknown sampleFormat = SAMPLE_FORMAT_VOID # compression compression = False compression_type = 1 if TAG_COMPRESSION in tagIDList: compression_type = valueOffsetList[tagIDList.index(TAG_COMPRESSION)] if compression_type == 1: compression = False else: compression = True # photometric interpretation interpretation = 1 if TAG_PHOTOMETRIC_INTERPRETATION in tagIDList: interpretation = valueOffsetList[tagIDList.index(TAG_PHOTOMETRIC_INTERPRETATION)] else: logger.info("WARNING: Non standard TIFF. Photometric interpretation TAG missing") helpString = "" if TAG_IMAGE_DESCRIPTION in tagIDList: imageDescription = self._readIFDEntry(TAG_IMAGE_DESCRIPTION, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if type(imageDescription) in [type([1]), type((1,))]: imageDescription = helpString.join(imageDescription) else: imageDescription = "%d/%d" % (nImage + 1, len(self._IFD)) if TAG_MODEL in tagIDList: model = self._readIFDEntry(TAG_MODEL, tagIDList, fieldTypeList, nValuesList, valueOffsetList) else: model = None defaultSoftware = "Unknown Software" if TAG_SOFTWARE in tagIDList: software = self._readIFDEntry(TAG_SOFTWARE, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if isinstance(software, (tuple, list)): software =helpString.join(software) else: software = defaultSoftware if software == defaultSoftware: try: if sys.version < '3.0': if imageDescription.upper().startswith("IMAGEJ"): software = imageDescription.split("=")[0] elif hasattr(imageDescription, "decode"): tmpString = imageDescription.decode("utf-8") if tmpString.upper().startswith("IMAGEJ"): software = bytes(tmpString.split("=")[0], encoding='utf-8') except Exception: pass if TAG_DATE in tagIDList: date = self._readIFDEntry(TAG_DATE, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if type(date) in [type([1]), type((1,))]: date = helpString.join(date) else: date = "Unknown Date" stripOffsets = self._readIFDEntry(TAG_STRIP_OFFSETS, tagIDList, fieldTypeList, nValuesList, valueOffsetList) if TAG_ROWS_PER_STRIP in tagIDList: rowsPerStrip = self._readIFDEntry(TAG_ROWS_PER_STRIP, tagIDList, fieldTypeList, nValuesList, valueOffsetList)[0] else: rowsPerStrip = nRows logger.warning("Non standard TIFF. Rows per strip TAG missing") if TAG_STRIP_BYTE_COUNTS in tagIDList: stripByteCounts = self._readIFDEntry(TAG_STRIP_BYTE_COUNTS, tagIDList, fieldTypeList, nValuesList, valueOffsetList) else: logger.warning("Non standard TIFF. Strip byte counts TAG missing") if hasattr(nBits, 'index'): expectedSum = 0 for n in nBits: expectedSum += int(nRows * nColumns * n / 8) else: expectedSum = int(nRows * nColumns * nBits / 8) stripByteCounts = [expectedSum] if close: self.__makeSureFileIsClosed() if self._forceMonoOutput and (interpretation > 1): # color image but asked monochrome output nBits = 32 colormap = None sampleFormat = SAMPLE_FORMAT_FLOAT interpretation = 1 # we cannot rely on any cache in this case useInfoCache = False logger.debug("FORCED MONO") else: useInfoCache = True info = {} info["nRows"] = nRows info["nColumns"] = nColumns info["nBits"] = nBits info["compression"] = compression info["compression_type"] = compression_type info["imageDescription"] = imageDescription info["stripOffsets"] = stripOffsets # This contains the file offsets to the data positions info["rowsPerStrip"] = rowsPerStrip info["stripByteCounts"] = stripByteCounts # bytes in strip since I do not support compression info["software"] = software info["date"] = date info["colormap"] = colormap info["sampleFormat"] = sampleFormat info["photometricInterpretation"] = interpretation if model is not None: info["model"] = model infoDict = {} testString = 'PyMca' if software.startswith(testString): # str to make sure python 2.x sees it as string and not unicode if hasattr(imageDescription, "decode"): descriptionString = str(imageDescription.decode()) else: descriptionString = imageDescription # interpret the image description in terms of supplied # information at writing time items = descriptionString.split('=') for i in range(int(len(items) / 2)): key = "%s" % items[i * 2] # get rid of the \n at the end of the value value = "%s" % items[i * 2 + 1][:-1] infoDict[key] = value info['info'] = infoDict if (self._maxImageCacheLength > 0) and useInfoCache: self._imageInfoCacheIndex.insert(0, nImage) self._imageInfoCache.insert(0, info) if len(self._imageInfoCacheIndex) > self._maxImageCacheLength: self._imageInfoCacheIndex = self._imageInfoCacheIndex[:self._maxImageCacheLength] self._imageInfoCache = self._imageInfoCache[:self._maxImageCacheLength] return info def _readImage(self, nImage, **kw): logger.debug("Reading image %d", nImage) if 'close' in kw: close = kw['close'] else: close = True rowMin = kw.get('rowMin', None) rowMax = kw.get('rowMax', None) if nImage in self._imageDataCacheIndex: logger.debug("Reading image data from cache") return self._imageDataCache[self._imageDataCacheIndex.index(nImage)] self.__makeSureFileIsOpen() if self._forceMonoOutput: oldMono = True else: oldMono = False try: self._forceMonoOutput = False info = self._readInfo(nImage, close=False) self._forceMonoOutput = oldMono except Exception: logger.debug("Backtrace", exc_info=True) self._forceMonoOutput = oldMono raise compression = info['compression'] compression_type = info['compression_type'] if compression: if compression_type != 32773: raise IOError("Compressed TIFF images not supported except packbits") else: # PackBits compression logger.debug("Using PackBits compression") interpretation = info["photometricInterpretation"] if interpretation == 2: # RGB pass # raise IOError("RGB Image. Only grayscale images supported") elif interpretation == 3: # Palette Color Image pass # raise IOError("Palette-color Image. Only grayscale images supported") elif interpretation > 2: # Palette Color Image logger.warning("Only grayscale and RGB images supported") nRows = info["nRows"] nColumns = info["nColumns"] nBits = info["nBits"] colormap = info["colormap"] sampleFormat = info["sampleFormat"] if rowMin is None: rowMin = 0 if rowMax is None: rowMax = nRows - 1 if rowMin < 0: rowMin = nRows - rowMin if rowMax < 0: rowMax = nRows - rowMax if rowMax < rowMin: txt = "Max Row smaller than Min Row. Reverse selection not supported" raise NotImplementedError(txt) if rowMin >= nRows: raise IndexError("Image only has %d rows" % nRows) if rowMax >= nRows: raise IndexError("Image only has %d rows" % nRows) if sampleFormat == SAMPLE_FORMAT_FLOAT: if nBits == 32: dtype = numpy.float32 elif nBits == 64: dtype = numpy.float64 else: raise ValueError("Unsupported number of bits for a float: %d" % nBits) elif sampleFormat in [SAMPLE_FORMAT_UINT, SAMPLE_FORMAT_VOID]: if nBits in [8, (8, 8, 8), [8, 8, 8]]: dtype = numpy.uint8 elif nBits in [16, (16, 16, 16), [16, 16, 16]]: dtype = numpy.uint16 elif nBits in [32, (32, 32, 32), [32, 32, 32]]: dtype = numpy.uint32 elif nBits in [64, (64, 64, 64), [64, 64, 64]]: dtype = numpy.uint64 else: raise ValueError("Unsupported number of bits for unsigned int: %s" % (nBits,)) elif sampleFormat == SAMPLE_FORMAT_INT: if nBits in [8, (8, 8, 8), [8, 8, 8]]: dtype = numpy.int8 elif nBits in [16, (16, 16, 16), [16, 16, 16]]: dtype = numpy.int16 elif nBits in [32, (32, 32, 32), [32, 32, 32]]: dtype = numpy.int32 elif nBits in [64, (64, 64, 64), [64, 64, 64]]: dtype = numpy.int64 else: raise ValueError("Unsupported number of bits for signed int: %s" % (nBits,)) else: raise ValueError("Unsupported combination. Bits = %s Format = %d" % (nBits, sampleFormat)) if hasattr(nBits, 'index'): image = numpy.zeros((nRows, nColumns, len(nBits)), dtype=dtype) elif colormap is not None and (interpretation > 1): # should I use colormap dtype? image = numpy.zeros((nRows, nColumns, 3), dtype=dtype) else: image = numpy.zeros((nRows, nColumns), dtype=dtype) fd = self.fd st = self._structChar stripOffsets = info["stripOffsets"] # This contains the file offsets to the data positions rowsPerStrip = info["rowsPerStrip"] stripByteCounts = info["stripByteCounts"] # bytes in strip since I do not support compression rowStart = 0 if len(stripOffsets) == 1: bytesPerRow = int(stripByteCounts[0] / rowsPerStrip) nBytes = stripByteCounts[0] if nRows == rowsPerStrip: actualBytesPerRow = int(image.nbytes / nRows) if actualBytesPerRow != bytesPerRow: logger.warning("Bogus StripByteCounts information") bytesPerRow = actualBytesPerRow nBytes = (rowMax - rowMin + 1) * bytesPerRow fd.seek(stripOffsets[0] + rowMin * bytesPerRow) if self._swap: readout = numpy.array(numpy.frombuffer(fd.read(nBytes), dtype)).byteswap() else: readout = numpy.array(numpy.frombuffer(fd.read(nBytes), dtype)) if hasattr(nBits, 'index'): readout.shape = -1, nColumns, len(nBits) elif info['colormap'] is not None and (interpretation > 1): readout = colormap[readout] readout.shape = -1, nColumns, 3 else: readout.shape = -1, nColumns image[rowMin:rowMax + 1, :] = readout else: for i in range(len(stripOffsets)): # the amount of rows nRowsToRead = rowsPerStrip rowEnd = int(min(rowStart + nRowsToRead, nRows)) if rowEnd < rowMin: rowStart += nRowsToRead continue if (rowStart > rowMax): break # we are in position fd.seek(stripOffsets[i]) # the amount of bytes to read nBytes = stripByteCounts[i] if compression_type == 32773: try: bufferBytes = bytes() except Exception: # python 2.5 ... bufferBytes = "" # packBits readBytes = 0 # intermediate buffer tmpBuffer = fd.read(nBytes) while readBytes < nBytes: n = struct.unpack('b', tmpBuffer[readBytes:(readBytes + 1)])[0] readBytes += 1 if n >= 0: # should I prevent reading more than the # length of the chain? Let's python raise # the exception... bufferBytes += tmpBuffer[readBytes:\ readBytes + (n + 1)] readBytes += (n + 1) elif n > -128: bufferBytes += (-n + 1) * \ tmpBuffer[readBytes:(readBytes + 1)] readBytes += 1 else: # if read -128 ignore the byte continue if self._swap: readout = numpy.array(numpy.frombuffer(bufferBytes, dtype)).byteswap() else: readout = numpy.array(numpy.frombuffer(bufferBytes, dtype)) if hasattr(nBits, 'index'): readout.shape = -1, nColumns, len(nBits) elif info['colormap'] is not None: readout = colormap[readout] readout.shape = -1, nColumns, 3 else: readout.shape = -1, nColumns image[rowStart:rowEnd, :] = readout else: if 1: # use numpy if self._swap: readout = numpy.array(numpy.frombuffer(fd.read(nBytes), dtype)).byteswap() else: readout = numpy.array(numpy.frombuffer(fd.read(nBytes), dtype)) if hasattr(nBits, 'index'): readout.shape = -1, nColumns, len(nBits) elif colormap is not None: readout = colormap[readout] readout.shape = -1, nColumns, 3 else: readout.shape = -1, nColumns image[rowStart:rowEnd, :] = readout else: # using struct readout = numpy.array(struct.unpack(st+"%df" % int(nBytes/4), fd.read(nBytes)), dtype=dtype) if hasattr(nBits, 'index'): readout.shape = -1, nColumns, len(nBits) elif colormap is not None: readout = colormap[readout] readout.shape = -1, nColumns, 3 else: readout.shape = -1, nColumns image[rowStart:rowEnd, :] = readout rowStart += nRowsToRead if close: self.__makeSureFileIsClosed() if len(image.shape) == 3: # color image if self._forceMonoOutput: # color image, convert to monochrome image = (image[:, :, 0] * 0.114 + \ image[:, :, 1] * 0.587 + \ image[:, :, 2] * 0.299).astype(numpy.float32) if (rowMin == 0) and (rowMax == (nRows - 1)): self._imageDataCacheIndex.insert(0, nImage) self._imageDataCache.insert(0, image) if len(self._imageDataCacheIndex) > self._maxImageCacheLength: self._imageDataCacheIndex = self._imageDataCacheIndex[:self._maxImageCacheLength] self._imageDataCache = self._imageDataCache[:self._maxImageCacheLength] return image def writeImage(self, image0, info=None, software=None, date=None): if software is None: software = 'PyMca.TiffIO' # if date is None: # date = time.ctime() self.__makeSureFileIsOpen() fd = self.fd # prior to do anything, perform some tests if not len(image0.shape): raise ValueError("Empty image") if len(image0.shape) == 1: # get a different view image = image0[:] image.shape = 1, -1 else: image = image0 if image.dtype == numpy.float64: image = image.astype(numpy.float32) fd.seek(0) mode = fd.mode name = fd.name if 'w' in mode: # we have to overwrite the file self.__makeSureFileIsClosed() fd = None if os.path.exists(name): os.remove(name) fd = open(name, mode='wb+') self._initEmptyFile(fd) self.fd = fd # read the file size self.__makeSureFileIsOpen() fd = self.fd fd.seek(0, os.SEEK_END) endOfFile = fd.tell() if fd.tell() == 0: self._initEmptyFile(fd) fd.seek(0, os.SEEK_END) endOfFile = fd.tell() # init internal variables self._initInternalVariables(fd) st = self._structChar # get the image file directories nImages = self.getImageFileDirectories() logger.debug("File contains %d images", nImages) if nImages == 0: fd.seek(4) fmt = st + 'I' fd.write(struct.pack(fmt, endOfFile)) else: fd.seek(self._IFD[-1]) fmt = st + 'H' numberOfDirectoryEntries = struct.unpack(fmt, fd.read(struct.calcsize(fmt)))[0] fmt = st + 'I' pos = self._IFD[-1] + 2 + 12 * numberOfDirectoryEntries fd.seek(pos) fmt = st + 'I' fd.write(struct.pack(fmt, endOfFile)) fd.flush() # and we can write at the end of the file, find out the file length fd.seek(0, os.SEEK_END) # get the description information from the input information if not isinstance(info, dict): if hasattr(info, "decode") or hasattr(info, "encode"): # provided information is text like description = info else: # convert to a string representation description = "%s" % info else: description = "" for key in info.keys(): description += "%s=%s\n" % (key, info[key]) # get the image file directory outputIFD = self._getOutputIFD(image, description=description, software=software, date=date) # write the new IFD fd.write(outputIFD) # write the image if self._swap: fd.write(image.byteswap().tobytes()) else: fd.write(image.tobytes()) fd.flush() self.fd = fd self.__makeSureFileIsClosed() def _initEmptyFile(self, fd=None): if fd is None: fd = self.fd if sys.byteorder == "little": order = "II" # intel, little endian fileOrder = "little" self._structChar = '<' else: order = "MM" # motorola, high endian fileOrder = "big" self._structChar = '>' st = self._structChar if fileOrder == sys.byteorder: self._swap = False else: self._swap = True fd.seek(0) if sys.version < '3.0': fd.write(struct.pack(st + '2s', order)) fd.write(struct.pack(st + 'H', 42)) fd.write(struct.pack(st + 'I', 0)) else: fd.write(struct.pack(st + '2s', bytes(order, 'utf-8'))) fd.write(struct.pack(st + 'H', 42)) fd.write(struct.pack(st + 'I', 0)) fd.flush() def _getOutputIFD(self, image, description=None, software=None, date=None): # the tags have to be in order # the very minimum is # 256:"NumberOfColumns", # S or L ImageWidth # 257:"NumberOfRows", # S or L ImageHeight # 258:"BitsPerSample", # S Number of bits per component # 259:"Compression", # SHORT (1 - NoCompression, ... # 262:"PhotometricInterpretation", # SHORT (0 - WhiteIsZero, 1 -BlackIsZero, 2 - RGB, 3 - Palette color # 270:"ImageDescription", # ASCII # 273:"StripOffsets", # S or L, for each strip, the byte offset of the strip # 277:"SamplesPerPixel", # SHORT (>=3) only for RGB images # 278:"RowsPerStrip", # S or L, number of rows in each back may be not for the last # 279:"StripByteCounts", # S or L, The number of bytes in the strip AFTER any compression # 305:"Software", # ASCII # 306:"Date", # ASCII # 339:"SampleFormat", # SHORT Interpretation of data in each pixel nDirectoryEntries = 9 imageDescription = None if description is not None: descriptionLength = len(description) while descriptionLength < 4: description = description + " " descriptionLength = len(description) if hasattr(description, "encode"): # unicode, convert to bytes raw = description.encode("utf-8") elif hasattr(description, "decode"): # already bytes raw = description else: raw = "%s" % description if (sys.version_info[:2] > (2,6)) and hasattr(raw, "encode"): raw = raw.encode('utf-8', errors="ignore") imageDescription = struct.pack("%ds" % len(raw), raw) nDirectoryEntries += 1 # software if software is not None: softwareLength = len(software) while softwareLength < 4: software = software + " " softwareLength = len(software) if sys.version >= '3.0': software = bytes(software, 'utf-8') softwarePackedString = struct.pack("%ds" % softwareLength, software) nDirectoryEntries += 1 else: softwareLength = 0 if date is not None: dateLength = len(date) if sys.version >= '3.0': date = bytes(date, 'utf-8') datePackedString = struct.pack("%ds" % dateLength, date) dateLength = len(datePackedString) nDirectoryEntries += 1 else: dateLength = 0 if len(image.shape) == 2: nRows, nColumns = image.shape nChannels = 1 elif len(image.shape) == 3: nRows, nColumns, nChannels = image.shape else: raise RuntimeError("Image does not have the right shape") dtype = image.dtype bitsPerSample = int(dtype.str[-1]) * 8 # only uncompressed data compression = 1 # interpretation, black is zero if nChannels == 1: interpretation = 1 bitsPerSampleLength = 0 elif nChannels == 3: interpretation = 2 bitsPerSampleLength = 3 * 2 # To store 3 shorts nDirectoryEntries += 1 # For SamplesPerPixel else: raise RuntimeError( "Image with %d color channel(s) not supported" % nChannels) # image description if imageDescription is not None: descriptionLength = len(imageDescription) else: descriptionLength = 0 # strip offsets # we are putting them after the directory and the directory is # at the end of the file self.fd.seek(0, os.SEEK_END) endOfFile = self.fd.tell() if endOfFile == 0: # empty file endOfFile = 8 # rows per strip if ALLOW_MULTIPLE_STRIPS: # try to segment the image in several pieces if not (nRows % 4): rowsPerStrip = int(nRows / 4) elif not (nRows % 10): rowsPerStrip = int(nRows / 10) elif not (nRows % 8): rowsPerStrip = int(nRows / 8) elif not (nRows % 4): rowsPerStrip = int(nRows / 4) elif not (nRows % 2): rowsPerStrip = int(nRows / 2) else: rowsPerStrip = nRows else: rowsPerStrip = nRows # stripByteCounts stripByteCounts = int(nColumns * rowsPerStrip * bitsPerSample * nChannels / 8) if descriptionLength > 4: stripOffsets0 = endOfFile + dateLength + descriptionLength + \ 2 + 12 * nDirectoryEntries + 4 else: stripOffsets0 = endOfFile + dateLength + \ 2 + 12 * nDirectoryEntries + 4 if softwareLength > 4: stripOffsets0 += softwareLength stripOffsets0 += bitsPerSampleLength stripOffsets = [stripOffsets0] stripOffsetsLength = 0 stripOffsetsString = None st = self._structChar if rowsPerStrip != nRows: nStripOffsets = int(nRows / rowsPerStrip) fmt = st + 'I' stripOffsetsLength = struct.calcsize(fmt) * nStripOffsets stripOffsets0 += stripOffsetsLength # the length for the stripByteCounts will be the same stripOffsets0 += stripOffsetsLength stripOffsets = [] for i in range(nStripOffsets): value = stripOffsets0 + i * stripByteCounts stripOffsets.append(value) if i == 0: stripOffsetsString = struct.pack(fmt, value) stripByteCountsString = struct.pack(fmt, stripByteCounts) else: stripOffsetsString += struct.pack(fmt, value) stripByteCountsString += struct.pack(fmt, stripByteCounts) logger.debug("IMAGE WILL START AT %d", stripOffsets[0]) # sample format if dtype in [numpy.float32, numpy.float64] or\ dtype.str[-2] == 'f': sampleFormat = SAMPLE_FORMAT_FLOAT elif dtype in [numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64]: sampleFormat = SAMPLE_FORMAT_UINT elif dtype in [numpy.int8, numpy.int16, numpy.int32, numpy.int64]: sampleFormat = SAMPLE_FORMAT_INT else: raise ValueError("Unsupported data type %s" % dtype) info = {} info["nColumns"] = nColumns info["nRows"] = nRows info["nBits"] = bitsPerSample info["compression"] = compression info["photometricInterpretation"] = interpretation info["stripOffsets"] = stripOffsets if interpretation == 2: info["samplesPerPixel"] = 3 # No support for extra samples info["rowsPerStrip"] = rowsPerStrip info["stripByteCounts"] = stripByteCounts info["date"] = date info["sampleFormat"] = sampleFormat outputIFD = b"" fmt = st + "H" outputIFD += struct.pack(fmt, nDirectoryEntries) fmt = st + "HHII" outputIFD += struct.pack(fmt, TAG_NUMBER_OF_COLUMNS, FIELD_TYPE_OUT['I'], 1, info["nColumns"]) outputIFD += struct.pack(fmt, TAG_NUMBER_OF_ROWS, FIELD_TYPE_OUT['I'], 1, info["nRows"]) if info["photometricInterpretation"] == 1: fmt = st + 'HHIHH' outputIFD += struct.pack(fmt, TAG_BITS_PER_SAMPLE, FIELD_TYPE_OUT['H'], 1, info["nBits"], 0) elif info["photometricInterpretation"] == 2: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_BITS_PER_SAMPLE, FIELD_TYPE_OUT['H'], 3, info["stripOffsets"][0] - \ 2 * stripOffsetsLength - \ descriptionLength - \ dateLength - \ softwareLength - \ bitsPerSampleLength) else: raise RuntimeError("Unsupported photometric interpretation") fmt = st + 'HHIHH' outputIFD += struct.pack(fmt, TAG_COMPRESSION, FIELD_TYPE_OUT['H'], 1, info["compression"], 0) fmt = st + 'HHIHH' outputIFD += struct.pack(fmt, TAG_PHOTOMETRIC_INTERPRETATION, FIELD_TYPE_OUT['H'], 1, info["photometricInterpretation"], 0) if imageDescription is not None: descriptionLength = len(imageDescription) if descriptionLength > 4: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_IMAGE_DESCRIPTION, FIELD_TYPE_OUT['s'], descriptionLength, info["stripOffsets"][0]-\ 2*stripOffsetsLength-\ descriptionLength) else: #it has to have length 4 fmt = st + 'HHI%ds' % descriptionLength outputIFD += struct.pack(fmt, TAG_IMAGE_DESCRIPTION, FIELD_TYPE_OUT['s'], descriptionLength, imageDescription) if len(stripOffsets) == 1: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_STRIP_OFFSETS, FIELD_TYPE_OUT['I'], 1, info["stripOffsets"][0]) else: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_STRIP_OFFSETS, FIELD_TYPE_OUT['I'], len(stripOffsets), info["stripOffsets"][0]-2*stripOffsetsLength) if info["photometricInterpretation"] == 2: fmt = st + 'HHIHH' outputIFD += struct.pack(fmt, TAG_SAMPLES_PER_PIXEL, FIELD_TYPE_OUT['H'], 1, info["samplesPerPixel"], 0) fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_ROWS_PER_STRIP, FIELD_TYPE_OUT['I'], 1, info["rowsPerStrip"]) if len(stripOffsets) == 1: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_STRIP_BYTE_COUNTS, FIELD_TYPE_OUT['I'], 1, info["stripByteCounts"]) else: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_STRIP_BYTE_COUNTS, FIELD_TYPE_OUT['I'], len(stripOffsets), info["stripOffsets"][0]-stripOffsetsLength) if software is not None: if softwareLength > 4: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_SOFTWARE, FIELD_TYPE_OUT['s'], softwareLength, info["stripOffsets"][0]-\ 2*stripOffsetsLength-\ descriptionLength-softwareLength-dateLength) else: # it has to have length 4 fmt = st + 'HHI%ds' % softwareLength outputIFD += struct.pack(fmt, TAG_SOFTWARE, FIELD_TYPE_OUT['s'], softwareLength, softwarePackedString) if date is not None: fmt = st + 'HHII' outputIFD += struct.pack(fmt, TAG_DATE, FIELD_TYPE_OUT['s'], dateLength, info["stripOffsets"][0]-\ 2*stripOffsetsLength-\ descriptionLength-dateLength) fmt = st + 'HHIHH' outputIFD += struct.pack(fmt, TAG_SAMPLE_FORMAT, FIELD_TYPE_OUT['H'], 1, info["sampleFormat"],0) fmt = st + 'I' outputIFD += struct.pack(fmt, 0) if info["photometricInterpretation"] == 2: outputIFD += struct.pack('HHH', info["nBits"], info["nBits"], info["nBits"]) if softwareLength > 4: outputIFD += softwarePackedString if date is not None: outputIFD += datePackedString if imageDescription is not None: if descriptionLength > 4: outputIFD += imageDescription if stripOffsetsString is not None: outputIFD += stripOffsetsString outputIFD += stripByteCountsString return outputIFD if __name__ == "__main__": filename = sys.argv[1] dtype = numpy.uint16 if not os.path.exists(filename): print("Testing file creation") tif = TiffIO(filename, mode='wb+') data = numpy.arange(10000).astype(dtype) data.shape = 100, 100 tif.writeImage(data, info={'Title': '1st'}) tif = None if os.path.exists(filename): print("Testing image appending") tif = TiffIO(filename, mode='rb+') tif.writeImage((data * 2).astype(dtype), info={'Title': '2nd'}) tif = None tif = TiffIO(filename) print("Number of images = %d" % tif.getNumberOfImages()) for i in range(tif.getNumberOfImages()): info = tif.getInfo(i) for key in info: if key not in ["colormap"]: print("%s = %s" % (key, info[key])) elif info['colormap'] is not None: print("RED %s = %s" % (key, info[key][0:10, 0])) print("GREEN %s = %s" % (key, info[key][0:10, 1])) print("BLUE %s = %s" % (key, info[key][0:10, 2])) data = tif.getImage(i)[0, 0:10] print("data [0, 0:10] = ", data) ���������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/TiffStack.py��������������������������������������������������������0000644�0000000�0000000�00000035743�14741736366�017100� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from PyMca5 import DataObject from PyMca5.PyMcaIO import TiffIO if sys.version > '2.9': long = int SOURCE_TYPE = "TiffStack" class TiffArray(object): def __init__(self, filelist, shape, dtype, imagestack=True): self.__fileList = filelist self.__shape = shape self.__dtype = dtype self.__imageStack = imagestack if imagestack: self.__nImagesPerFile = int(shape[0]/len(filelist)) else: self.__nImagesPerFile = int(shape[-1]/len(filelist)) self.__oldFileNumber = -1 def __getitem__(self, args0): standardSlice = True indices = [] outputShape = [] scalarArgs = [] args = [] if not hasattr(args0, "__len__"): args0 = [args0] for i in range(len(self.__shape)): if i < len(args0): args.append(args0[i]) else: args.append(slice(None, None, None)) for i in range(len(args)): if isinstance(args[i], slice): start = args[i].start stop = args[i].stop step = args[i].step if start is None: start = 0 if stop is None: stop = self.__shape[i] if step is None: step = 1 if step < 1: raise ValueError("Step must be >= 1 (got %d)" % step) if start is None: start = 0 if start < 0: start = self.__shape[i]-start if stop < 0: stop = self.__shape[i]-stop if stop == start: raise ValueError("Zero-length selections are not allowed") indices.append(list(range(start, stop, step))) elif type(args[i]) == type([]): if len(args[i]): indices.append([int(x) for x in args[i]]) else: standardSlice = False elif type(args[i]) in [type(1), type(long(1))]: start = args[i] if start < 0: start = self.__shape[i] - start stop = start + 1 step = 1 start = args[i] args[i] = slice(start, stop, step) indices.append(list(range(start, stop, step))) scalarArgs.append(i) else: standardSlice = False if not standardSlice: print("args = ", args) raise NotImplemented("__getitem__(self, args) only works on slices") if len(indices) < 3: print("input args = ", args0) print("working args = ", args) print("indices = ", indices) raise NotImplemented("__getitem__(self, args) only works on slices") outputShape = [len(indices[0]), len(indices[1]), len(indices[2])] outputArray = numpy.zeros(outputShape, dtype=self.__dtype) # nbFiles = len(self.__fileList) nImagesPerFile = self.__nImagesPerFile if self.__imageStack: i = 0 rowMin = min(indices[1]) rowMax = max(indices[1]) for imageIndex in indices[0]: fileNumber = int(imageIndex/nImagesPerFile) if fileNumber != self.__oldFileNumber: self.__tmpInstance = TiffIO.TiffIO(self.__fileList[fileNumber], mode='rb+') self.__oldFileNumber = fileNumber imageNumber = imageIndex % nImagesPerFile imageData = self.__tmpInstance.getData(imageNumber, rowMin=rowMin, rowMax=rowMax) try: outputArray[i,:,:] = imageData[args[1],args[2]] except Exception: print("outputArray[i,:,:].shape =",outputArray[i,:,:].shape) print("imageData[args[1],args[2]].shape = " , imageData[args[1],args[2]].shape) print("input args = ", args0) print("working args = ", args) print("indices = ", indices) print("scalarArgs = ", scalarArgs) raise i += 1 else: i = 0 rowMin = min(indices[0]) rowMax = max(indices[0]) for imageIndex in indices[-1]: fileNumber = int(imageIndex/nImagesPerFile) if fileNumber != self.__oldFileNumber: self.__tmpInstance = TiffIO.TiffIO(self.__fileList[fileNumber], mode='rb+') self.__oldFileNumber = fileNumber imageNumber = imageIndex % nImagesPerFile imageData = self.__tmpInstance.getData(imageNumber, rowMin=rowMin, rowMax=rowMax) outputArray[:,:, i] = imageData[args[0],args[1]] i += 1 if len(scalarArgs): finalShape = [] for i in range(len(outputShape)): if i in scalarArgs: continue finalShape.append(outputShape[i]) outputArray.shape = finalShape return outputArray def getShape(self): return self.__shape shape = property(getShape) def getDtype(self): return self.__dtype dtype = property(getDtype) def getSize(self): s = 1 for item in self.__shape: s *= item return s size = property(getSize) class TiffStack(DataObject.DataObject): def __init__(self, filelist=None, imagestack=None, dtype=None): DataObject.DataObject.__init__(self) self.sourceType = SOURCE_TYPE if imagestack is None: self.__imageStack = True else: self.__imageStack = imagestack self.__dtype = dtype if filelist is not None: if type(filelist) != type([]): filelist = [filelist] if len(filelist) == 1: self.loadIndexedStack(filelist) else: self.loadFileList(filelist) def loadFileList(self, filelist, dynamic=False, fileindex=0): if type(filelist) != type([]): filelist = [filelist] #retain the file list self.sourceName = filelist #the number of files nbFiles=len(filelist) #the intance to access the first file fileInstance = TiffIO.TiffIO(filelist[0]) #the number of images per file nImagesPerFile = fileInstance.getNumberOfImages() #get the dimensions from the image itself tmpImage = fileInstance.getImage(0) if self.__dtype is None: self.__dtype = tmpImage.dtype nRows, nCols = tmpImage.shape #stack shape if self.__imageStack: shape = (nbFiles * nImagesPerFile, nRows, nCols) else: shape = (nRows, nCols, nbFiles * nImagesPerFile) #we can create the stack if not dynamic: try: data = numpy.zeros(shape, self.__dtype) except (MemoryError, ValueError): dynamic = True if not dynamic: imageIndex = 0 self.onBegin(nbFiles * nImagesPerFile) for i in range(nbFiles): tmpInstance =TiffIO.TiffIO(filelist[i]) for j in range(nImagesPerFile): tmpImage = tmpInstance.getImage(j) if self.__imageStack: data[imageIndex,:,:] = tmpImage else: data[:,:,imageIndex] = tmpImage imageIndex += 1 self.incrProgressBar = imageIndex self.onProgress(imageIndex) self.onEnd() if dynamic: data = TiffArray(filelist, shape, self.__dtype, imagestack=self.__imageStack) self.info = {} self.data = data shape = self.data.shape for i in range(len(shape)): key = 'Dim_%d' % (i+1,) self.info[key] = shape[i] if self.__imageStack: self.info["McaIndex"] = 0 self.info["FileIndex"] = 1 else: self.info["McaIndex"] = 2 self.info["FileIndex"] = 0 self.info["SourceType"] = SOURCE_TYPE self.info["SourceName"] = self.sourceName def loadIndexedStack(self,filename,begin=None,end=None, skip = None, fileindex=0): #if begin is None: begin = 0 if type(filename) == type([]): filename = filename[0] if not os.path.exists(filename): raise IOError("File %s does not exists" % filename) name = os.path.basename(filename) n = len(name) i = 1 numbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8','9'] while (i <= n): c = name[n-i:n-i+1] if c in numbers: break i += 1 suffix = name[n-i+1:] if len(name) == len(suffix): #just one file, one should use standard widget #and not this one. self.loadFileList(filename, fileindex=fileindex) else: nchain = [] while (i<=n): c = name[n-i:n-i+1] if c not in numbers: break else: nchain.append(c) i += 1 number = "" nchain.reverse() for c in nchain: number += c fformat = "%" + "0%dd" % len(number) if (len(number) + len(suffix)) == len(name): prefix = "" else: prefix = name[0:n-i+1] prefix = os.path.join(os.path.dirname(filename),prefix) if not os.path.exists(prefix + number + suffix): print("Internal error in TIFFStack") print("file should exist: %s " % (prefix + number + suffix)) return i = 0 if begin is None: begin = 0 testname = prefix+fformat % begin+suffix while not os.path.exists(prefix+fformat % begin+suffix): begin += 1 testname = prefix+fformat % begin+suffix if len(testname) > len(filename):break i = begin else: i = begin if not os.path.exists(prefix+fformat % i+suffix): raise ValueError("Invalid start index file = %s" % \ (prefix+fformat % i+suffix)) f = prefix+fformat % i+suffix filelist = [] while os.path.exists(f): filelist.append(f) i += 1 if end is not None: if i > end: break f = prefix+fformat % i+suffix self.loadFileList(filelist, fileindex=fileindex) def onBegin(self, n): pass def onProgress(self, n): pass def onEnd(self): pass def test(): from PyMca5 import StackBase testFileName = "TiffTest.tif" nrows = 2000 ncols = 2000 #create a dummy stack with 100 images nImages = 100 imagestack = True a = numpy.ones((nrows, ncols), numpy.float32) if not os.path.exists(testFileName): print("Creating test filename %s" % testFileName) tif = TiffIO.TiffIO(testFileName, mode = 'wb+') for i in range(nImages): data = (a * i).astype(numpy.float32) if i == 1: tif = TiffIO.TiffIO(testFileName, mode = 'rb+') tif.writeImage(data, info={'Title':'Image %d of %d' % (i+1, nImages)}) tif = None stackData = TiffStack(imagestack=imagestack) stackData.loadFileList([testFileName], dynamic=True) if 0: stack = StackBase.StackBase() stack.setStack(stackData) print("This should be 0 = %f" % stack.calculateROIImages(0, 0)['ROI'].sum()) print("This should be %f = %f" %\ (a.sum(),stack.calculateROIImages(1, 2)['ROI'].sum())) if imagestack: print("%f should be = %f" %\ (stackData.data[0:10,:,:].sum(), stack.calculateROIImages(0, 10)['ROI'].sum())) print("Test small ROI 10 should be = %f" %\ stackData.data[10:11,[10],11].sum()) print("Test small ROI 40 should be = %f" %\ stackData.data[10:11,[10,12,14,16],11].sum()) else: print("%f should be = %f" %\ (stackData.data[:,:, 0:10].sum(), stack.calculateROIImages(0, 10)['ROI'].sum())) print("Test small ROI %f" %\ stackData.data[10:11,[29],:].sum()) else: from PyMca5.PyMca import PyMcaQt as qt from PyMca5.PyMca import QStackWidget app = qt.QApplication([]) w = QStackWidget.QStackWidget() print("Setting stack") w.setStack(stackData) w.show() app.exec() if __name__ == "__main__": test() �����������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/__init__.py���������������������������������������������������������0000644�0000000�0000000�00000003247�14741736366�016753� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: # try to import hdf5plugin import hdf5plugin except Exception: # but do not crash just because of it pass ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8117664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/edf/����������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015363� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/edf/FastEdf.c�������������������������������������������������������0000644�0000000�0000000�00000023136�14741736366�017057� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* FastEdfo objects */ #include <Python.h> #include <./numpy/arrayobject.h> #include <stdio.h> static PyObject *ErrorObject; typedef struct { PyObject_HEAD PyObject *x_attr; /* Attributes dictionary */ } FastEdfoObject; staticforward PyTypeObject FastEdfo_Type; /* * Function prototypes */ static FastEdfoObject *newFastEdfoObject (PyObject *arg); static void FastEdfo_dealloc (FastEdfoObject *self); static int Alen = 0; #define FastEdfoObject_Check(v) ((v)->ob_type == &FastEdfo_Type) static FastEdfoObject * newFastEdfoObject(arg) PyObject *arg; { FastEdfoObject *self; self = PyObject_NEW(FastEdfoObject, &FastEdfo_Type); if (self == NULL) return NULL; self->x_attr = NULL; return self; } /* FastEdfo methods */ static void FastEdfo_dealloc(self) FastEdfoObject *self; { Py_XDECREF(self->x_attr); PyObject_DEL(self); } /* static PyObject * FastEdfo_demo(self, args) FastEdfoObject *self; PyObject *args; */ static PyObject * FastEdfo_demo(FastEdfoObject *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":demo")) return NULL; Py_INCREF(Py_None); return Py_None; } static PyMethodDef FastEdfo_methods[] = { {"demo", (PyCFunction)FastEdfo_demo, 1}, {NULL, NULL} /* sentinel */ }; static PyObject * FastEdfo_getattr(FastEdfoObject *self, char *name) { if (self->x_attr != NULL) { PyObject *v = PyDict_GetItemString(self->x_attr, name); if (v != NULL) { Py_INCREF(v); return v; } } return Py_FindMethod(FastEdfo_methods, (PyObject *)self, name); } static int FastEdfo_setattr(FastEdfoObject *self, char *name, PyObject *v) { if (self->x_attr == NULL) { self->x_attr = PyDict_New(); if (self->x_attr == NULL) return -1; } if (v == NULL) { int rv = PyDict_DelItemString(self->x_attr, name); if (rv < 0) PyErr_SetString(PyExc_AttributeError, "delete non-existing FastEdfo attribute"); return rv; } else return PyDict_SetItemString(self->x_attr, name, v); } statichere PyTypeObject FastEdfo_Type = { /* The ob_type field must be initialized in the module init function * to be portable to Windows without using C++. */ PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "FastEdfo", /*tp_name*/ sizeof(FastEdfoObject), /*tp_basicsize*/ 0, /*tp_itemsize*/ /* methods */ (destructor)FastEdfo_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ (getattrfunc)FastEdfo_getattr, /*tp_getattr*/ (setattrfunc)FastEdfo_setattr, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ }; /* --------------------------------------------------------------------- */ static PyObject *FastEdf_extended_fread(PyObject *self, PyObject *args) { PyObject *resultobj; char *arg1 ; int arg2 ; int arg3 ; int *arg4 = (int *) 0 ; int *arg5 = (int *) 0 ; FILE *arg6 = (FILE *) 0 ; PyArrayObject *tmp1 = NULL ; PyArrayObject *tmp3 = NULL ; PyArrayObject *tmp4 = NULL ; PyObject * obj0 = 0 ; PyObject * obj2 = 0 ; PyObject * obj3 = 0 ; PyObject * obj4 = 0 ; void extended_fread(char *, int, int,int *,int *,FILE *); long totalsize = 1; int sizeofunit=0; int i; if(!PyArg_ParseTuple(args,(char *)"OiOOO:extended_fread",&obj0,&arg2,&obj2,&obj3,&obj4)) goto fail; { tmp1 = (PyArrayObject *) obj0; if((tmp1)->flags %2 == 0) { PyErr_SetString(PyExc_ValueError," array has to be contiguous" ); return NULL; } arg1 = (char *)tmp1->data; } { tmp3 = (PyArrayObject *)PyArray_ContiguousFromObject(obj2, PyArray_INT, 1, 1); if(tmp3 == NULL) return NULL; arg3 = Alen = tmp3->dimensions[0]; arg4 = (int *)tmp3->data; } { tmp4 = (PyArrayObject *)PyArray_ContiguousFromObject(obj3, PyArray_INT, 1, 1); if(tmp4 == NULL) return NULL; if(tmp4->dimensions[0] != Alen) { PyErr_SetString(PyExc_ValueError, "Vectors must be same length."); return NULL; } arg5 = (int *)tmp4->data; { if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_CHAR ) sizeofunit=1; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_UBYTE ) sizeofunit=1; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_BYTE ) sizeofunit=1; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_SHORT ) sizeofunit=2; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_INT ) sizeofunit=4; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_LONG ) sizeofunit=4; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_FLOAT ) sizeofunit=4; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_DOUBLE ) sizeofunit=8; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_CFLOAT ) sizeofunit=8; if ( ((PyArrayObject *) obj0)->descr->type_num == PyArray_CDOUBLE ) sizeofunit=16; for(i=0; i<arg3; i++ ) { totalsize *= arg4[i] ; } if ( ( PyArray_Size( ( obj0) )) != totalsize*arg2/sizeofunit ) { printf("needed size = %li\n",totalsize*arg2/sizeofunit); PyErr_SetString(PyExc_ValueError, "You provided an array of the wrong size"); return NULL; } } } { arg6 = PyFile_AsFile(obj4); } extended_fread(arg1,arg2,arg3,arg4,arg5,arg6); Py_INCREF(Py_None); resultobj = Py_None; { if(tmp3){ Py_DECREF(tmp3); } } { if(tmp4) { Py_DECREF(tmp4); } } return resultobj; fail: { if(tmp3) { Py_DECREF(tmp3); } } { if(tmp4) { Py_DECREF(tmp4); } } return NULL; } void extended_fread( char *ptr, /* memory to write in */ int size_of_block, int ndims , int *dims , int *strides , FILE *stream ) { int pos; int oldpos; int count; #ifdef WIN32 int indexes[100]; #else int indexes[ndims]; #endif int i; int loop; int res; oldpos=0; pos=0; count = 0; /* printf("received\n"); printf("block = %d\n",size_of_block); printf("ndims = %d\n",ndims); printf("dims = %d %d\n",dims[0],dims[1]); printf("strides = %d\n",strides[0]); */ for(i=0; i<ndims; i++) { indexes[i]=0; } loop=ndims-1; indexes[ndims-1 ]=-1 ; pos=-strides[ndims-1]; while(1) { if(indexes[loop]< dims[loop]-1 ) { indexes[loop]++; pos += strides[loop]; for( i=loop+1; i<ndims; i++) { pos -= indexes[i]*strides[i]; indexes[i]=0; } res=fseek( stream, (pos-oldpos), SEEK_CUR ); if(res!=0) { /* throw ErrorExtendedFread_fseek_failed();*/ printf("Error 1/n"); break; } res=fread ( ( (char * ) ptr) +(count)*size_of_block , size_of_block, 1, stream ); if(res!=1) { /* throw ErrorExtendedFread_fseek_failed();*/ printf("Error 2/n"); break; } count++; oldpos = pos+ size_of_block; loop=ndims-1; /* for(i=0 ; i< ndims; i++) { printf(" %d ", indexes[i] ); } printf("\n"); */ }else { loop--; } if(loop==-1) { break; } } } /* List of functions defined in the module */ static PyMethodDef FastEdf_methods[] = { {"extended_fread", FastEdf_extended_fread, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; /* Initialization function for the module (*must* be called initFastEdf) */ DL_EXPORT(void) initFastEdf(void) { PyObject *m, *d; /* Initialize the type of the new type object here; doing it here * is required for portability to Windows without requiring C++. */ FastEdfo_Type.ob_type = &PyType_Type; /* Create the module and add the functions */ m = Py_InitModule("FastEdf", FastEdf_methods); import_array(); /* Add some symbolic constants to the module */ d = PyModule_GetDict(m); ErrorObject = PyErr_NewException("FastEdf.error", NULL, NULL); PyDict_SetItemString(d, "error", ErrorObject); } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/edf/setup.py��������������������������������������������������������0000644�0000000�0000000�00000005350�14741736366�017107� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """Setup script for the EDFFILE module distribution.""" import sys import glob try: import numpy except ImportError: text = "You must have numpy installed.\n" text += "See http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103\n" raise ImportError, text from distutils.core import setup from distutils.extension import Extension sources = glob.glob('*.c') if sys.platform == "win32": define_macros = [('WIN32',None)] else: define_macros = [] setup ( name = "FastEdf", version = "2.0", description = "fit functions module", author = "BLISS Group", author_email = "sole@esrf.fr", url = "http://www.esrf.fr/computing/bliss/", # Description of the modules and packages in the distribution #extra_path = 'Pybliss', ext_modules = [ Extension( name = 'FastEdf', sources = sources, define_macros = define_macros, include_dirs = [numpy.get_include()]), ], ) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8117664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/�����������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016417� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/MANIFEST.in������������������������������������������������0000644�0000000�0000000�00000000070�14741736366�020161� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������recursive-include include *.h recursive-include src *.c ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8117664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/include/���������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020042� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/include/Lists.h��������������������������������������������0000644�0000000�0000000�00000004300�14741736366�021315� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /*************************************************************************** * * File: Lists.h * * Description: Include file for dealing with lists. * * Author: Vicente Rey * * Created: 22 May 1995 * * (copyright by E.S.R.F. March 1995) * ***************************************************************************/ #ifndef LISTS_H #define LISTS_H /* #include <malloc.h> */ typedef struct _ObjectList { struct _ObjectList *next; struct _ObjectList *prev; void *contents; } ObjectList; typedef struct _ListHeader { struct _ObjectList *first; struct _ObjectList *last; } ListHeader; extern ObjectList * findInList ( ListHeader *list, int (*proc)(void *,void *), void *value ); extern long addToList ( ListHeader *list, void *object,long size); extern void unlinkFromList ( ListHeader *list, ObjectList *element); #endif /* LISTS_H */ ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/include/SpecFile.h�����������������������������������������0000644�0000000�0000000�00000027010�14741736366�021714� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /*************************************************************************** * * File: SpecFile.h * * Description: Include file for treating spec data files. * * Author: Vicente Rey * * Created: 2 March 1995 * * (copyright by E.S.R.F. March 1995) * ***************************************************************************/ #ifndef SPECFILE_H #define SPECFILE_H #include <math.h> #include <stdio.h> #include <fcntl.h> #include <time.h> #include <stdlib.h> /* #include <malloc.h> */ #include <string.h> #include <Lists.h> #ifdef _WINDOWS /* compiling on windows */ #include <windows.h> #include <io.h> #define SF_OPENFLAG O_RDONLY | O_BINARY #define SF_WRITEFLAG O_CREAT | O_WRONLY #define SF_UMASK 0666 #else /* if not windows */ #define SF_OPENFLAG O_RDONLY #define SF_WRITEFLAG O_CREAT | O_WRONLY #define SF_UMASK 0666 #endif #ifdef _GENLIB /* for windows dll generation */ #define DllExport __declspec (dllexport) #else #define DllExport #endif #ifdef SUN4 #define SEEK_SET 0 #define SEEK_CUR 1 #define SEEK_END 2 #endif /* * Defines. */ #define ROW 0 /* data_info index for no. of data rows */ #define COL 1 /* data_info index for no. of data columns*/ #define REG 2 /* data_info index for regular */ #define H 0 #define K 1 #define L 2 #define ABORTED -1 #define NOT_ABORTED 0 #define SF_ERR_NO_ERRORS 0 #define SF_ERR_MEMORY_ALLOC 1 #define SF_ERR_FILE_OPEN 2 #define SF_ERR_FILE_CLOSE 3 #define SF_ERR_FILE_READ 4 #define SF_ERR_FILE_WRITE 5 #define SF_ERR_LINE_NOT_FOUND 6 #define SF_ERR_SCAN_NOT_FOUND 7 #define SF_ERR_HEADER_NOT_FOUND 8 #define SF_ERR_LABEL_NOT_FOUND 9 #define SF_ERR_MOTOR_NOT_FOUND 10 #define SF_ERR_POSITION_NOT_FOUND 11 #define SF_ERR_LINE_EMPTY 12 #define SF_ERR_USER_NOT_FOUND 13 #define SF_ERR_COL_NOT_FOUND 14 #define SF_ERR_MCA_NOT_FOUND 15 typedef struct _SfCursor { long int scanno; /* nb of scans */ long int cursor; /* beginning of current scan */ long int hdafoffset; /* global offset of header after beginning of data */ long int datalines; /* contains nb of data lines */ long int dataoffset; /* contains data offset from begin of scan */ long int mcaspectra; /* contains nb of mca spectra in scan */ long int bytecnt; /* total file byte count */ long int what; /* scan of file block */ long int data; /* data flag */ long int file_header; /* address of file header for this scan */ long int fileh_size; /* size of it */ } SfCursor; typedef struct _SpecFile{ int fd; long m_time; char *sfname; struct _ListHeader list; long int no_scans; ObjectList *current; char *scanbuffer; long scanheadersize; char *filebuffer; long filebuffersize; long scansize; char **labels; long int no_labels; char **motor_names; long int no_motor_names; double *motor_pos; long int no_motor_pos; double **data; long *data_info; SfCursor cursor; short updating; } SpecFile; typedef struct _SpecFileOut{ SpecFile *sf; long *list; long list_size; long file_header; } SpecFileOut; typedef struct _SpecScan { long int index; long int scan_no; long int order; long int offset; long int size; long int last; long int file_header; long int data_offset; long int hdafter_offset; long int mcaspectra; } SpecScan; /* * Function declarations. */ /* * Init */ /* * init */ DllExport extern SpecFile *SfOpen ( char *name, int *error ); DllExport extern short SfUpdate ( SpecFile *sf,int *error ); DllExport extern int SfClose ( SpecFile *sf ); /* * indexes */ DllExport extern long SfScanNo ( SpecFile *sf ); DllExport extern long *SfList ( SpecFile *sf, int *error ); DllExport extern long SfCondList ( SpecFile *sf, long cond, long **scan_list, int *error ); DllExport extern long SfIndex ( SpecFile *sf, long number, long order ); DllExport extern long SfIndexes ( SpecFile *sf, long number, long **indexlist ); DllExport extern long SfNumber ( SpecFile *sf, long index ); DllExport extern long SfOrder ( SpecFile *sf, long index ); DllExport extern int SfNumberOrder ( SpecFile *sf, long index, long *number, long *order ); /* * Header */ DllExport extern char *SfCommand ( SpecFile *sf, long index, int *error ); DllExport extern long SfNoColumns ( SpecFile *sf, long index, int *error ); DllExport extern char *SfDate ( SpecFile *sf, long index, int *error ); DllExport extern long SfEpoch ( SpecFile *sf, long index, int *error ); DllExport extern long SfNoHeaderBefore ( SpecFile *sf, long index, int *error ); DllExport extern double *SfHKL ( SpecFile *sf, long index, int *error ); DllExport extern long SfHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error ); DllExport extern long SfGeometry ( SpecFile *sf, long index, char ***lines, int *error ); DllExport extern long SfFileHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error ); DllExport extern char *SfFileDate ( SpecFile *sf, long index, int *error ); DllExport extern char *SfUser ( SpecFile *sf, long index, int *error ); DllExport extern char *SfTitle ( SpecFile *sf, long index, int *error ); /* * Labels */ DllExport extern long SfAllLabels ( SpecFile *sf, long index, char ***labels, int *error ); DllExport extern char *SfLabel ( SpecFile *sf, long index, long column, int *error ); /* * Motors */ DllExport extern long SfAllMotors ( SpecFile *sf, long index, char ***names, int *error ); DllExport extern char * SfMotor ( SpecFile *sf, long index, long number, int *error ); DllExport extern long SfAllMotorPos ( SpecFile *sf, long index, double **pos, int *error ); DllExport extern double SfMotorPos ( SpecFile *sf, long index, long number, int *error ); DllExport extern double SfMotorPosByName ( SpecFile *sf, long index, char *name, int *error ); /* * Data */ DllExport extern long SfNoDataLines ( SpecFile *sf, long index, int *error ); DllExport extern int SfData ( SpecFile *sf, long index, double ***data, long **data_info, int *error ); DllExport extern long SfDataAsString ( SpecFile *sf, long index, char ***data, int *error ); DllExport extern long SfDataLine ( SpecFile *sf, long index, long line, double **data_line, int *error ); DllExport extern long SfDataCol ( SpecFile *sf, long index, long col, double **data_col, int *error ); DllExport extern long SfDataColByName ( SpecFile *sf, long index, char *label, double **data_col, int *error ); /* * MCA functions */ DllExport extern long SfNoMca ( SpecFile *sf, long index, int *error ); DllExport extern int SfGetMca ( SpecFile *sf, long index, long mcano, double **retdata, int *error ); DllExport extern long SfMcaCalib ( SpecFile *sf, long index, double **calib, int *error ); /* * Write and write related functions */ DllExport extern SpecFileOut *SfoInit ( SpecFile *sf, int *error ); DllExport extern void SfoClose ( SpecFileOut *sfo ); DllExport extern long SfoSelectAll ( SpecFileOut *sfo, int *error ); DllExport extern long SfoSelectOne ( SpecFileOut *sfo, long index, int *error ); DllExport extern long SfoSelect ( SpecFileOut *sfo, long *list, int *error ); DllExport extern long SfoSelectRange ( SpecFileOut *sfo, long begin, long end, int *error ); DllExport extern long SfoRemoveOne ( SpecFileOut *sfo, long index, int *error ); DllExport extern long SfoRemove ( SpecFileOut *sfo, long *list, int *error ); DllExport extern long SfoRemoveRange ( SpecFileOut *sfo, long begin, long end, int *error ); DllExport extern long SfoRemoveAll ( SpecFileOut *sfo, int *error ); DllExport extern long SfoWrite ( SpecFileOut *sfo, char *name, int *error ); DllExport extern long SfoGetList ( SpecFileOut *sfo, long **list, int *error ); /* * Memory free functions */ DllExport extern void freeArrNZ ( void ***ptr, long no_lines ); DllExport extern void freePtr ( void *ptr ); /* * Sf Tools */ DllExport extern void SfShow ( SpecFile *sf ); DllExport extern void SfShowScan ( SpecFile *sf ,long index); /* * Error */ DllExport extern char *SfError ( int code ); #endif /* SPECFILE_H */ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/include/SpecFileP.h����������������������������������������0000644�0000000�0000000�00000006017�14741736366�022040� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /*************************************************************************** * * File: SpecFileP.h * * Description: Include file for treating spec data files. * * Author: Vicente Rey * * Created: 2 March 1995 * * (copyright by E.S.R.F. March 1995) * ***************************************************************************/ #ifndef SPECFILE_P_H #define SPECFILE_P_H /* * Defines. */ #define FILE_HEADER 0 #define SCAN 1 #define FROM_SCAN 0 #define FROM_FILE 1 #define SF_COMMENT 'C' #define SF_DATE 'D' #define SF_EPOCH 'E' #define SF_FILE_NAME 'F' #define SF_GEOMETRY 'G' #define SF_INTENSITY 'I' #define SF_LABEL 'L' #define SF_MON_NORM 'M' #define SF_COLUMNS 'N' #define SF_MOTOR_NAMES 'O' #define SF_MOTOR_POSITIONS 'P' #define SF_RECIP_SPACE 'Q' #define SF_RESULTS 'R' #define SF_SCAN_NUM 'S' #define SF_TIME_NORM 'T' #define SF_USER_DEFINED 'U' #define SF_TEMPERATURE 'X' #define SF_MCA_DATA '@' /* * Library internal functions */ extern int sfSetCurrent ( SpecFile *sf, long index, int *error); extern ObjectList *findScanByIndex ( ListHeader *list, long index ); extern ObjectList *findScanByNo ( ListHeader *list, long scan_no, long order ); extern void freeArr ( void ***ptr, long lines ); extern void freeAllData ( SpecFile *sf ); extern long mulstrtod ( char *str, double **arr, int *error ); extern int sfGetHeaderLine ( SpecFile *sf, int from, char character, char **buf,int *error); #endif /* SPECFILE_P_H */ �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/include/locale_management.h��������������������������������0000644�0000000�0000000�00000002604�14741736366�023657� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2012-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #ifndef PyMca_LOCALE_MANAGEMENT_H #define PyMca_LOCALE_MANAGEMENT_H #include <locale.h> double PyMcaAtof(const char*); #endif ����������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/setup.py���������������������������������������������������0000644�0000000�0000000�00000007513�14741736366�020146� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__="""Setup script for the SPECFILE module distribution.""" import os, sys, glob try: import numpy except ImportError: text = "You must have numpy installed.\n" text += "See http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103\n" raise ImportError(text) from distutils.core import setup from distutils.extension import Extension SPECFILE_USE_GNU_SOURCE = os.getenv("SPECFILE_USE_GNU_SOURCE") if SPECFILE_USE_GNU_SOURCE is None: SPECFILE_USE_GNU_SOURCE = 0 if sys.platform.lower().startswith("linux"): print("WARNING:") print("A cleaner locale independent implementation") print("may be achieved setting SPECFILE_USE_GNU_SOURCE to 1") print("For instance running this script as:") print("SPECFILE_USE_GNU_SOURCE=1 python setup.py build") else: SPECFILE_USE_GNU_SOURCE = int(SPECFILE_USE_GNU_SOURCE) srcfiles = [ 'sfheader','sfinit','sflists','sfdata','sfindex', 'sflabel' ,'sfmca', 'sftools','locale_management','specfile_py'] if sys.version >= '3.0': srcfiles[-1] += '3' sources = [] for ffile in srcfiles: sources.append('src/'+ffile+'.c') if sys.platform == "win32": define_macros = [('WIN32',None)] elif os.name.lower().startswith('posix'): define_macros = [('SPECFILE_POSIX', None)] #this one is more efficient but keeps the locale #changed for longer time #define_macros = [('PYMCA_POSIX', None)] #the best choice is to have _GNU_SOURCE defined #as a compilation flag because that allows the #use of strtod_l if SPECFILE_USE_GNU_SOURCE: define_macros = [('_GNU_SOURCE', 1)] else: define_macros = [] setup ( name = "specfile", version = "3.2", description = "module to read SPEC datafiles", author = "BLISS Group", author_email = "rey@esrf.fr", url = "http://www.esrf.fr/computing/bliss/", ext_modules = [ Extension( name = 'specfile', sources = sources, define_macros = define_macros, include_dirs = ['include', numpy.get_include()], ), ], ) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8157663 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/�������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017206� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/locale_management.c������������������������������������0000644�0000000�0000000�00000004475�14741736366�023026� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 2012-2022 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ #define _GNU_SOURCE #include <stdlib.h> #include <locale_management.h> #include <string.h> double PyMcaAtof(const char * inputString) { #if defined(_MSC_VER) && defined(_MSC_FULL_VER) double result; _locale_t newLocale = _create_locale(LC_NUMERIC, "C"); result = _atof_l(inputString, newLocale); _free_locale(newLocale); return result; #elif defined __GLIBC__ || defined__GLIBCXX__ double result; locale_t newLocale = newlocale(LC_NUMERIC_MASK, "C", NULL); result = strtod_l(inputString, NULL, newLocale); freelocale(newLocale); return result; #elif defined SPECFILE_POSIX # ifndef LOCALE_NAME_MAX_LENGTH # define LOCALE_NAME_MAX_LENGTH 85 # endif char *currentLocaleBuffer; char *restoredLocaleBuffer; char localeBuffer[LOCALE_NAME_MAX_LENGTH + 1] = {'\0'}; double result; currentLocaleBuffer = setlocale(LC_NUMERIC, NULL); strcpy(localeBuffer, currentLocaleBuffer); setlocale(LC_NUMERIC, "C\0"); result = atof(inputString); restoredLocaleBuffer = setlocale(LC_NUMERIC, localeBuffer); return(result); #else return atof(inputString); #endif } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfdata.c�����������������������������������������������0000644�0000000�0000000�00000053040�14741736366�020625� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2020 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfdata.c * * Project: SpecFile library * * Description: Functions for getting data * * Author: V.Rey * * Date: $Date: 2005/07/04 15:02:38 $ * ************************************************************************/ /* * Log: $Log: sfdata.c,v $ * Log: Revision 1.8 2005/07/04 15:02:38 ahoms * Log: Fixed memory leak in SfNoDataLines * Log: * Log: Revision 1.7 2004/01/20 09:23:50 sole * Log: Small change in sfdata (ptr < (to-1)) changed to (ptr <= (to-1)) * Log: * Log: Revision 1.6 2003/03/06 16:56:40 sole * Log: Check if to is beyond the scan size in SfData (still not finished but it seems to solve a crash) * Log: * Log: Revision 1.5 2002/12/09 13:04:05 sole * Log: Added a check in SfNoDataLines * Log: * Log: Revision 1.4 2002/11/13 15:02:38 sole * Log: Removed some printing in SfData * Log: * Log: Revision 1.3 2002/11/12 16:22:07 sole * Log: WARNING: Developing version - Improved MCA reading and reading properly the end of the file. * Log: * Log: Revision 1.2 2002/11/12 13:15:52 sole * Log: 1st version from Armando. The idea behind is to take the last line only if it ends with \n * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:05:11 19:05:11 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA * */ #include <SpecFile.h> #include <SpecFileP.h> #include <locale_management.h> #include <ctype.h> /* * Define macro */ #define isnumber(this) ( isdigit(this) || this == '-' || this == '+' || this == '.' || this == 'E' || this == 'e') /* * Mca continuation character */ #define MCA_CONT '\\' #define D_INFO 3 /* * Declarations */ DllExport long SfNoDataLines ( SpecFile *sf, long index, int *error ); DllExport int SfData ( SpecFile *sf, long index, double ***retdata, long **retinfo, int *error ); DllExport long SfDataAsString ( SpecFile *sf, long index, char ***data, int *error ); DllExport long SfDataLine ( SpecFile *sf, long index, long line, double **data_line, int *error ); DllExport long SfDataCol ( SpecFile *sf, long index, long col, double **data_col, int *error ); DllExport long SfDataColByName( SpecFile *sf, long index, char *label, double **data_col, int *error ); /********************************************************************* * Function: long SfNoDataLines( sf, index, error ) * * Description: Gets number of data lines in a scan * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Number of data lines , * ( -1 ) => errors. * Possible errors: * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport long SfNoDataLines( SpecFile *sf, long index, int *error ) { long *dinfo = NULL; double **data = NULL; long nrlines = 0; int ret, i; ret = SfData(sf,index,&data,&dinfo,error); if (ret == -1) { return(-1); } if (dinfo == (long *) NULL){ return(-1); } if (dinfo[ROW] < 0){ printf("Negative number of points!\n"); /*free(dinfo);*/ return(-1); } nrlines = dinfo[ROW]; /* now free all stuff that SfData allocated */ for (i = 0; i < nrlines; i++) free(data[i]); free(data); free(dinfo); return nrlines; } /********************************************************************* * Function: int SfData(sf, index, data, data_info, error) * * Description: Gets data. * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) Data array * (4) Data info : [0] => no_lines * [1] => no_columns * [2] = ( 0 ) => regular * ( 1 ) => not regular ! * (5) error number * Returns: * ( 0 ) => OK * ( -1 ) => errors occured * Possible errors: * SF_ERR_MEMORY_ALLOC * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * SF_ERR_LINE_NOT_FOUND * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport int SfData( SpecFile *sf, long index, double ***retdata, long **retinfo, int *error ) { long *dinfo = NULL; double **data = NULL; double *dataline = NULL; long headersize; char *ptr, *from, *to; char strval[100]; double val; double valline[512]; long cols, maxcol=512; long rows; int i; /* locale function to be used */ double (*my_atof) (const char *); struct lconv * lc; lc=localeconv(); if (strcmp(lc->mon_decimal_point, ".") == 0) { my_atof = atof; } else { my_atof = PyMcaAtof; } if (index <= 0 ){ return(-1); } if (sfSetCurrent(sf,index,error) == -1 ) return(-1); /* * Copy if already there */ if (sf->data_info != (long *)NULL) { dinfo = ( long * ) malloc ( sizeof(long) * D_INFO); dinfo[ROW] = sf->data_info[ROW]; dinfo[COL] = sf->data_info[COL]; dinfo[REG] = sf->data_info[REG]; data = ( double **) malloc ( sizeof(double *) * dinfo[ROW]); for (i=0;i<dinfo[ROW];i++) { data[i] = (double *)malloc (sizeof(double) * dinfo[COL]); memcpy(data[i],sf->data[i],sizeof(double) * dinfo[COL]); } *retdata = data; *retinfo = dinfo; return(0); } /* * else do the job */ if ( ((SpecScan *)sf->current->contents)->data_offset == -1 ) { *retdata = data; *retinfo = dinfo; return(-1); } headersize = ((SpecScan *)sf->current->contents)->data_offset - ((SpecScan *)sf->current->contents)->offset; from = sf->scanbuffer + headersize; to = sf->scanbuffer + ((SpecScan *)sf->current->contents)->size; if (to > sf->scanbuffer+sf->scansize){ /* the -32 found "experimentaly" */ ptr = sf->scanbuffer+sf->scansize - 32; while (*ptr != '\n') ptr--; to=ptr; /*printf("I let it crash ...\n");*/ } i=0; ptr = from; rows = -1; cols = -1; /* * Alloc memory */ if ( (data = (double **) malloc (sizeof(double *)) ) == (double **)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } if ( (dinfo = (long *) malloc(sizeof(long) * D_INFO) ) == (long *)NULL) { free(data); *error = SF_ERR_MEMORY_ALLOC; return(-1); } ptr = from; dinfo[ROW] = dinfo[COL] = dinfo[REG] = 0; if(0){ /* * first characters of buffer */ while (*ptr == ' ') ptr++; /* get rid of empty spaces */ if (*ptr == '@') { /* * read all mca block: go while in buffer ( ptr < to - 1 ) * and while a newline is preceded by a slash */ for ( ptr = ptr + 2; (*ptr != '\n' || (*(ptr-1) == MCA_CONT)) && ptr < to ; ptr++); } if ( *ptr == '#') { /* Comment --> pass one line */ for (ptr = ptr + 1; *ptr != '\n';ptr++); } /* * continue */ ptr++; } for ( ; ptr < to; ptr++) { /* get a complete line */ i=0; cols=0; /*I should be at the start of a line */ while(*(ptr) != '\n'){ if (*(ptr-1) == '\n'){ /*I am at the start of a line */ while(*ptr == '#'){ if (ptr >= to) break; for (ptr = ptr; ptr < to;ptr++){ if (*ptr == '\n'){ break; } }; /* on exit is equal to newline */ if (ptr < to) { ptr++; } } if (*ptr == '@') { /* * read all mca block: go while in buffer ( ptr < to - 1 ) * and while a newline is preceded by a slash */ for ( ptr = ptr + 2; (*ptr != '\n' || (*(ptr-1) == MCA_CONT)) && ptr < to ; ptr++); if (ptr >= to){ break; } } while(*ptr == '#'){ if (ptr >= to) break; for (ptr = ptr; ptr < to;ptr++){ if (*ptr == '\n'){ break; } }; /* on exit is equal to newline */ if (ptr < to) { ptr++; } } /* first characters of buffer */ while (*ptr == ' ' && ptr < to) ptr++; /* get rid of empty spaces */ } /* * in the middle of a line */ if (*ptr == ' ' || *ptr == '\t' ) { strval[i] = '\0'; i = 0; val = my_atof(strval); valline[cols] = val; cols++; if (cols >= maxcol) return(-1); while(*(ptr+1) == ' ' || *(ptr+1) == '\t') ptr++; } else { if isnumber(*ptr){ strval[i] = *ptr; i++; } } if (ptr >= (to-1)){ break; } ptr++; } if ((*(ptr)== '\n') && (i != 0)){ strval[i] = '\0'; val = my_atof(strval); valline[cols] = val; cols++; if (cols >= maxcol) return(-1); /*while(*(ptr+1) == ' ' || *(ptr+1) == '\t') ptr++;*/ } /*printf("%c",*ptr);*/ /* diffract31 crash -> changed from i!=0 to i==0 */ /*cols>0 necessary scan 59 of 31oct98 */ if ((ptr < to) && (cols >0)) { rows++; /*cols++;*/ if (cols >= maxcol) return(-1); /* printf("Adding a new row, nrows = %ld, ncols= %ld\n",rows,cols);*/ /*printf("info col = %d cols = %d\n", dinfo[COL], cols);*/ if (dinfo[COL] != 0 && cols != dinfo[COL]) { ; /*diffract31 crash -> nextline uncommented */ dinfo[REG] = 1; } else { dinfo[COL] = cols; } if(dinfo[COL]==cols){ dataline = (double *)malloc(sizeof(double) * cols); memcpy(dataline,valline,sizeof(double) * cols); data = (double **) realloc ( data, sizeof(double) * (rows+1)); data[rows] = dataline; dinfo[ROW]=rows+1; }else{ printf("Error on scan %d line %d\n", (int) index, (int) (rows+1)); /* just ignore the line instead of stopping there with a break; */ rows--; } } } /* * make a copy in specfile structure */ if ( dinfo[ROW] != 0 && dinfo[REG] == 0) { if (sf->data_info != (long *)NULL){ printf("I should not be here!/n"); sf->data_info[ROW] = dinfo[ROW]; sf->data_info[COL] = dinfo[COL]; sf->data_info[REG] = dinfo[REG]; for (i=0;i<dinfo[ROW];i++) { sf->data[i]= (double *)realloc (sf->data[i],sizeof(double) * dinfo[COL]); if (sf->data[i] == (double *) NULL){ printf("Realloc problem"); return (-1); } memcpy(sf->data[i],data[i],sizeof(double) * dinfo[COL]); } *retdata = data; *retinfo = dinfo; return(0); }else{ sf->data_info = ( long * ) malloc ( sizeof(long) * D_INFO); sf->data_info[ROW] = dinfo[ROW]; sf->data_info[COL] = dinfo[COL]; sf->data_info[REG] = dinfo[REG]; sf->data = ( double **) malloc ( sizeof(double *) * dinfo[ROW]); if (sf->data == (double **) NULL){ printf("malloc1 problem"); return (-1); } for (i=0;i<dinfo[ROW];i++) { sf->data[i] = (double *)malloc (sizeof(double) * dinfo[COL]); if (sf->data[i] == (double *) NULL){ printf("malloc2 problem"); return (-1); } memcpy(sf->data[i],data[i],sizeof(double) * dinfo[COL]); } } } else { if (dinfo[REG] == 0) { ; /*printf("Not Freeing data:!\n");*/ /* I can be in the case of an mca without scan points */ /*free(data); return(-1);*/ } } *retinfo = dinfo; *retdata = data; return( 0 ); } DllExport long SfDataCol ( SpecFile *sf, long index, long col, double **retdata, int *error ) { double *datacol=NULL; long *dinfo = NULL; double **data = NULL; long selection; int i,ret; ret = SfData(sf,index,&data,&dinfo,error); if (ret == -1) { *error = SF_ERR_COL_NOT_FOUND; *retdata = datacol; return(-1); } if (col < 0) { selection = dinfo[COL] + col; } else { selection = col - 1; } if (selection > dinfo[COL] - 1) { selection=dinfo[COL] - 1; } if ( selection < 0 || selection > dinfo[COL] - 1) { *error = SF_ERR_COL_NOT_FOUND; if ( dinfo != (long *)NULL) { freeArrNZ((void ***)&data,dinfo[ROW]); } free(dinfo); return(-1); } datacol = (double *) malloc( sizeof(double) * dinfo[ROW]); if (datacol == (double *)NULL) { *error = SF_ERR_MEMORY_ALLOC; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); return(-1); } for (i=0;i<dinfo[ROW];i++) { datacol[i] = data[i][selection]; } ret = dinfo[ROW]; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); *retdata = datacol; return(ret); } DllExport long SfDataLine( SpecFile *sf, long index, long line, double **retdata, int *error ) { double *datarow=NULL; long *dinfo = NULL; double **data = NULL; long selection; int ret; ret = SfData(sf,index,&data,&dinfo,error); if (ret == -1) { *error = SF_ERR_LINE_NOT_FOUND; *retdata = datarow; return(-1); } if (line < 0) { selection = dinfo[ROW] + line; } else { selection = line - 1; } if ( selection < 0 || selection > dinfo[ROW] - 1) { *error = SF_ERR_LINE_NOT_FOUND; if ( dinfo != (long *)NULL) { freeArrNZ((void ***)&data,dinfo[ROW]); } free(dinfo); return(-1); } datarow = (double *) malloc( sizeof(double) * dinfo[COL]); if (datarow == (double *)NULL) { *error = SF_ERR_MEMORY_ALLOC; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); return(-1); } memcpy(datarow,data[selection],sizeof(double) * dinfo[COL]); ret = dinfo[COL]; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); *retdata = datarow; return(ret); } DllExport long SfDataColByName( SpecFile *sf, long index, char *label, double **retdata, int *error ) { double *datacol; long *dinfo = NULL; double **data = NULL; int i,ret; char **labels = NULL; long nb_lab, idx; short tofree=0; if ( sfSetCurrent(sf,index,error) == -1) { *retdata = (double *)NULL; return(-1); } if ( sf->no_labels != -1 ) { nb_lab = sf->no_labels; labels = sf->labels; } else { nb_lab = SfAllLabels(sf,index,&labels,error); tofree = 1; } if ( nb_lab == 0 || nb_lab == -1) { *retdata = (double *)NULL; return(-1); } for (idx=0;idx<nb_lab;idx++) if (!strcmp(label,labels[idx])) break; if ( idx == nb_lab ) { if (tofree) freeArrNZ((void ***)&labels,nb_lab); *error = SF_ERR_COL_NOT_FOUND; *retdata = (double *)NULL; return(-1); } ret = SfData(sf,index,&data,&dinfo,error); if (ret == -1) { *retdata = (double *)NULL; return(-1); } datacol = (double *) malloc( sizeof(double) * dinfo[ROW]); if (datacol == (double *)NULL) { *error = SF_ERR_MEMORY_ALLOC; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); *retdata = (double *)NULL; return(-1); } for (i=0;i<dinfo[ROW];i++) { datacol[i] = data[i][idx]; } ret = dinfo[ROW]; if ( dinfo != (long *)NULL) freeArrNZ((void ***)&data,dinfo[ROW]); free(dinfo); *retdata = datacol; return(ret); } DllExport long SfDataAsString( SpecFile *sf, long index, char ***retdata, int *error ) { char **data=NULL; char oneline[300]; char *from, *to, *ptr, *dataline; long headersize,rows; int i; if (sfSetCurrent(sf,index,error) == -1 ) return(-1); if ( ((SpecScan *)sf->current->contents)->data_offset == -1 ) { *retdata = data; return(-1); } data = (char **) malloc (sizeof(char *)); headersize = ((SpecScan *)sf->current->contents)->data_offset - ((SpecScan *)sf->current->contents)->offset; from = sf->scanbuffer + headersize; to = sf->scanbuffer + ((SpecScan *)sf->current->contents)->size; rows = -1; i = 0; /* * first characters of buffer */ ptr = from; if (isnumber(*ptr)) { rows++; oneline[i] = *ptr; i++; } else if (*ptr == '@') { /* * read all mca block: go while in buffer ( ptr < to - 1 ) * and while a newline is preceded by a slash */ for ( ptr = ptr + 2; (*(ptr+1) != '\n' || (*ptr == MCA_CONT)) && ptr < to - 1 ; ptr++); } /* * continue */ ptr++; for ( ; ptr < to - 1; ptr++) { /* * check for lines and for mca */ if ( *(ptr-1) == '\n' ) { if ( i != 0 ) { oneline[i-1] = '\0'; i = 0; dataline = (char *)strdup(oneline); data = (char **) realloc ( data, sizeof(char *) * (rows +1)); data[rows] = dataline; } if ( *ptr == '@') { /* Mca --> pass it all */ for ( ptr = ptr + 2; (*ptr != '\n' || (*(ptr-1) == MCA_CONT)) && ptr < to ; ptr++); } else if ( *ptr == '#') { /* Comment --> pass one line */ for (ptr = ptr + 1; *ptr != '\n';ptr++); } else if ( isnumber(*ptr) ) { rows++; oneline[i] = *ptr; i++; } } else { if (rows == -1) continue; oneline[i] = *ptr; i++; } } /* * last line */ if (rows != -1 && i) { oneline[i-1] = '\0'; dataline = (char *)strdup(oneline); data = (char **) realloc ( data, sizeof(char *) * (rows+1)); data[rows] = dataline; } *retdata = data; return(rows+1); } ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfheader.c���������������������������������������������0000644�0000000�0000000�00000053065�14741736366�021153� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfheader.c * * Project: SpecFile library * * Description: Functions to access file and scan headers * * Author: V.Rey * * Date: $Date: 2002/11/20 09:01:29 $ * ************************************************************************/ /* * Log: $Log: sfheader.c,v $ * Log: Revision 1.3 2002/11/20 09:01:29 sole * Log: Added free(line); in SfTitle * Log: * Log: Revision 1.2 2002/11/14 16:18:48 sole * Log: stupid bug removed * Log: * Log: Revision 1.1 2002/11/14 15:25:39 sole * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:05:09 19:05:09 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <SpecFile.h> #include <SpecFileP.h> /* * Function Declaration */ DllExport char * SfCommand ( SpecFile *sf, long index, int *error ); DllExport long SfNoColumns ( SpecFile *sf, long index, int *error ); DllExport char * SfDate ( SpecFile *sf, long index, int *error ); DllExport double * SfHKL ( SpecFile *sf, long index, int *error ); DllExport long SfEpoch ( SpecFile *sf, long index, int *error ); DllExport char * SfUser ( SpecFile *sf, long index, int *error ); DllExport char * SfTitle ( SpecFile *sf, long index, int *error ); DllExport char * SfFileDate ( SpecFile *sf, long index, int *error ); DllExport long SfNoHeaderBefore ( SpecFile *sf, long index, int *error ); DllExport long SfGeometry ( SpecFile *sf, long index, char ***lines, int *error); DllExport long SfHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error); DllExport long SfFileHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error); int sfGetHeaderLine ( SpecFile *sf, int from, char character, char **buf,int *error); /* * Internal functions */ static char *sfFindWord ( char *line, char *word, int *error ); static long sfFindLines ( char *from, char *to,char *string, char ***lines,int *error); static char *sfOneLine ( char *from, char *end, int *error); /********************************************************************* * Function: char *SfCommand( sf, index, error ) * * Description: Reads '#S' line ( without #S and scan number ). * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * String pointer, * NULL => errors. * Possible errors: * SF_ERR_MEMORY_ALLOC * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * SF_ERR_LINE_NOT_FOUND * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport char * SfCommand( SpecFile *sf, long index, int *error ) { char *ret_line=NULL; long cnt,start,length; char *ptr; /* * Choose scan */ if (sfSetCurrent(sf,index,error) == -1) return(ret_line); cnt = 3; for ( ptr = sf->scanbuffer + cnt; *ptr != ' ' ; ptr++,cnt++); for ( ptr = sf->scanbuffer + cnt; *ptr == ' ' || *ptr == '\t'; ptr++,cnt++); start = cnt; for ( ptr = sf->scanbuffer + cnt; *ptr != '\n' ; ptr++,cnt++); length = cnt - start; /* * Return the rest . */ ret_line = (char *) malloc ( sizeof(char) * ( length + 1) ); if (ret_line == (char *)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(ret_line); } ptr = sf->scanbuffer + start; memcpy(ret_line,ptr,sizeof(char) * length ); ret_line[length] = '\0'; return( ret_line ); } /********************************************************************* * Function: long SfNoColumns( sf, index, error ) * * Description: Gets number of columns in a scan * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Number of scan columns.(From #N line !) * ( -1 ) if errors occured. * Possible errors: * SF_ERR_MEMORY_ALLOC | => readHeader() * SF_ERR_LINE_NOT_FOUND * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport long SfNoColumns( SpecFile *sf, long index, int *error ) { long col = -1; char *buf=NULL; if ( sfSetCurrent(sf,index,error) == -1) return(-1); if ( sfGetHeaderLine( sf, FROM_SCAN, SF_COLUMNS, &buf, error) == -1) return(-1); col = atol( buf ); free(buf); return( col ); } /********************************************************************* * Function: char *SfDate( sf, index, error ) * * Description: Gets date from scan header * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Date.(From #D line !), * NULL => errors. * Possible errors: * SF_ERR_MEMORY_ALLOC | => readHeader() * SF_ERR_LINE_NOT_FOUND * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport char * SfDate(SpecFile *sf, long index, int *error ) { char *line=NULL; if ( sfSetCurrent(sf,index,error) == -1 ) return(line); if ( sfGetHeaderLine( sf, FROM_SCAN, SF_DATE, &line, error)) return((char *)NULL); return( line ); } /********************************************************************* * Function: double *SfHKL( sf, index, error ) * * Description: Reads '#Q' line. * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Poiter to a 3x1 dbl. array( HKL[0]=HKL[H]=H_value, * HKL[1]=HKL[K]=K_value, * HKL[2]=HKL[L]=L_value. * NULL => errors. * * Possible errors: * SF_ERR_LINE_EMPTY * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * SF_ERR_LINE_NOT_FOUND * SF_ERR_MEMORY_ALLOC | => mulstrtod() * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport double * SfHKL( SpecFile *sf, long index, int *error ) { char *line=NULL; double *HKL = NULL; long i; if ( sfSetCurrent(sf,index,error) == -1 ) return((double *)NULL); if ( sfGetHeaderLine( sf, FROM_SCAN, SF_RECIP_SPACE, &line, error) == -1 ) return((double *)NULL); /* * Convert into double . */ i = mulstrtod( line, &HKL, error ); free(line); if ( i < 0) return( (double *)NULL ); if ( i != 3 ) { *error = SF_ERR_LINE_EMPTY; free( HKL ); return( (double *)NULL ); } return( HKL ); } /********************************************************************* * Function: long SfEpoch( sf, index, error ) * * Description: Gets epoch from the last file header. * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Epoch.(From #E line !) * ( -1 ) if errors occured. * Possible errors: * SF_ERR_MEMORY_ALLOC | => readHeader() * SF_ERR_LINE_NOT_FOUND * SF_ERR_FILE_READ * SF_ERR_HEADER_NOT_FOUND * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport long SfEpoch( SpecFile *sf, long index, int *error ) { char *buf=NULL; long epoch = -1; if ( sfSetCurrent(sf,index,error) == -1 ) return(-1); if ( sfGetHeaderLine(sf,FROM_FILE,SF_EPOCH,&buf,error) == -1 ) return(-1); epoch = atol( buf ); free(buf); return( epoch ); } /********************************************************************* * Function: char SfFileDate( sf, index, error ) * * Description: Gets date from the last file header * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Date.(From #D line !) * NULL => errors. * * Possible errors: * SF_ERR_MEMORY_ALLOC | => readHeader() * SF_ERR_LINE_NOT_FOUND * SF_ERR_LINE_EMPTY * SF_ERR_FILE_READ * SF_ERR_HEADER_NOT_FOUND * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport char * SfFileDate( SpecFile *sf, long index, int *error ) { char *date = NULL; if ( sfSetCurrent(sf,index,error) == -1 ) return((char *)NULL); if ( sfGetHeaderLine(sf,FROM_FILE,SF_DATE,&date,error) == -1 ) return((char *)NULL); return( date ); } /********************************************************************* * Function: long SfNoHeaderBefore( sf, index, error ) * * Description: Gets number of scan header lines before data. * * Parameters: * Input : (1) File pointer * (2) Scan index * Output: * (3) error number * Returns: * Number of scan header lines before data , * ( -1 ) => errors. * Possible errors: * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport long SfNoHeaderBefore( SpecFile *sf, long index, int *error ) { if ( sfSetCurrent(sf,index,error) == -1 ) return(-1); /* * Obsolete... give some reasonable! */ return(-1); } /********************************************************************* * Function: char *SfUser( sf, index, error ) * * Description: Gets spec user information from the last file header * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * User.(From 1st #C line !) * Possible errors: * SF_ERR_MEMORY_ALLOC ||=> findWordInLine() * SF_ERR_LINE_NOT_FOUND | * SF_ERR_FILE_READ | * SF_ERR_SCAN_NOT_FOUND | => getFirstFileC() * SF_ERR_HEADER_NOT_FOUND | * SF_ERR_USER_NOT_FOUND * *********************************************************************/ DllExport char * SfUser( SpecFile *sf, long index, int *error ) { char *line=NULL; char *user; char word[] = "User ="; if (sfSetCurrent(sf,index,error) == -1) return((char *)NULL); if (sfGetHeaderLine( sf, FROM_FILE, SF_COMMENT, &line, error) == -1) return((char *)NULL); /* * Find user. */ user = sfFindWord( line, word, error ); if ( user == (char *) NULL) { *error = SF_ERR_USER_NOT_FOUND; return((char *)NULL); } free(line); return( user ); } /********************************************************************* * Function: long SfTitle( sf, index, error ) * * Description: Gets spec title information from the last file header * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Title.(From 1st #C line !) * NULL => errors. * Possible errors: * SF_ERR_LINE_EMPTY * SF_ERR_MEMORY_ALLOC * SF_ERR_LINE_NOT_FOUND | * SF_ERR_FILE_READ | * SF_ERR_SCAN_NOT_FOUND | => getFirstFileC() * SF_ERR_HEADER_NOT_FOUND | * *********************************************************************/ DllExport char * SfTitle( SpecFile *sf, long index, int *error ) { char *line=NULL; char *title; char *ptr; long i; if (sfSetCurrent(sf,index,error) == -1) return((char *)NULL); if (sfGetHeaderLine( sf, FROM_FILE, SF_COMMENT, &line, error) == -1) return((char *)NULL); /* * Get title.( first word ) */ ptr = line; for ( i=0,ptr=line ; *ptr!='\t' && *ptr!='\n' && *ptr!='\0' ; i++ ) { if ( *ptr==' ' ) { if ( *(++ptr)==' ' ) { break; } else ptr--; } ptr++; } if ( i==0 ) { *error = SF_ERR_LINE_EMPTY; return( (char *)NULL ); } title = (char *)malloc( sizeof(char) * ( i+1 ) ); if ( title == (char *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( title ); } memcpy( title, line, sizeof(char) * i ); /* Next line added by Armando, it may be wrong */ free(line); title[i] = '\0'; return( title ); } DllExport long SfGeometry ( SpecFile *sf, long index, char ***lines, int *error) { char string[] = " \0"; string[0] = SF_GEOMETRY; return(SfHeader(sf,index,string,lines,error)); } DllExport long SfHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error) { char *headbuf, *endheader; long nb_found; if (sfSetCurrent(sf,index,error) == -1) return(-1); headbuf = sf->scanbuffer; endheader = sf->scanbuffer + sf->scansize; nb_found = sfFindLines(headbuf, endheader,string, lines,error); if (nb_found == 0) { return SfFileHeader(sf,index,string,lines,error); } else { return nb_found; } } DllExport long SfFileHeader ( SpecFile *sf, long index, char *string, char ***lines, int *error) { char *headbuf, *endheader; if (sfSetCurrent(sf,index,error) == -1) return(-1); if (sf->filebuffersize > 0) { headbuf = sf->filebuffer; endheader = sf->filebuffer + sf->filebuffersize; return(sfFindLines(headbuf,endheader,string,lines,error)); } else { return 0; } } static long sfFindLines(char *from,char *to,char *string,char ***ret,int *error) { char **lines; long found; unsigned long j; char *ptr; short all=0; found = 0; ptr = from; if ( string == (char *) NULL || strlen(string) == 0) all = 1; /* * Allocate memory for an array of strings */ if ( (lines = (char **)malloc( sizeof(char *) )) == (char **)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return ( -1 ); } /* * First line */ if ( ptr[0] == '#' ) { if ( all ) { lines = (char **) realloc ( lines, (found+1) * sizeof(char *) ); lines[found] = sfOneLine(ptr,to,error); found++; } else if ( ptr[1] == string[0]) { for ( j=0; j < strlen(string) && ptr+j< to;j++) if ( ptr[j+1] != string[j]) break; if ( j == strlen(string)) { lines = (char **) realloc ( lines, (found+1) * sizeof(char *) ); lines[found] = sfOneLine(ptr,to,error); found++; } } } /* * The rest */ for ( ptr = from + 1;ptr < to - 1;ptr++) { if ( *(ptr - 1) == '\n' && *ptr == '#' ) { if ( all ) { lines = (char **) realloc ( lines, (found+1) * sizeof(char *) ); lines[found] = sfOneLine(ptr,to,error); found++; } else if ( *(ptr+1) == string[0]) { for ( j=0; j < strlen(string) && (ptr + j) < to;j++) if ( ptr[j+1] != string[j]) break; if ( j == strlen(string)) { lines = (char **) realloc ( lines, (found+1) * sizeof(char *) ); lines[found] = sfOneLine(ptr,to,error); found++; } } } } if (found) *ret = lines; else free(lines); return(found); } /********************************************************************* * Function: char *sfGetHeaderLine( SpecFile *sf, sf_char, end, error ) * * Description: Gets one '#sf_char' line. * * Parameters: * Input : (1) File pointer * (2) sf_character * (3) end ( where to stop the search ) * Output: * (4) error number * Returns: * Pointer to the line , * NULL in case of errors. * Possible errors: * SF_ERR_MEMORY_ALLOC * SF_ERR_FILE_READ | => findLine() * * Remark: The memory allocated should be freed by the application * *********************************************************************/ int sfGetHeaderLine( SpecFile *sf, int from , char sf_char, char **buf, int *error) { char *ptr,*headbuf; char *endheader; int found; found = 0; if ( from == FROM_SCAN ) { headbuf = sf->scanbuffer; endheader = sf->scanbuffer + sf->scanheadersize; } else if ( from == FROM_FILE ) { if ( sf->filebuffersize == 0 ) { *error = SF_ERR_LINE_NOT_FOUND; return(-1); } headbuf = sf->filebuffer; endheader = sf->filebuffer + sf->filebuffersize; } else { *error = SF_ERR_LINE_NOT_FOUND; return(-1); } if ( headbuf[0] == '#' && headbuf[1] == sf_char) { found = 1; ptr = headbuf; } else { for ( ptr = headbuf + 1;ptr < endheader - 1;ptr++) { if ( *(ptr - 1) == '\n' && *ptr == '#' && *(ptr+1) == sf_char) { found = 1; break; } } } if (!found) { *error = SF_ERR_LINE_NOT_FOUND; return(-1); } /* * Beginning of the thing after '#X ' */ ptr = ptr + 3; *buf = sfOneLine(ptr,endheader,error); return( 0 ); } static char * sfOneLine(char *from,char *end,int *error) { static char linebuf[5000]; char *ptr,*buf; long i; ptr = from; for(i=0;*ptr != '\n' && ptr < end;ptr++,i++) { linebuf[i] = *ptr; } linebuf[i]='\0'; buf = (char *) malloc ( i+1 ); if (buf == ( char * ) NULL ) { *error = SF_ERR_MEMORY_ALLOC; return((char *)NULL); } strcpy(buf,(char *)linebuf); return(buf); } /********************************************************************* * Function: char *sfFindWord( line, word, error ) * * Description: Looks for 'word' in given line and returns a * copy of the rest of the line after the found word . * * Parameters: * Input : (1) Line pointer * (2) Word pointer * Output: * (3) error number * Returns: * Rest of the line after word. * NULL => not found. * Possible errors: * SF_ERR_MEMORY_ALLOC * *********************************************************************/ static char * sfFindWord( char *line, char *word, int *error ) { char *ret; line = strstr( line, word ); if ( line == (char *)NULL ) { return( line ); } line += strlen( word ); /* * Delete blanks. */ while ( *line == ' ' || *line == '\t' ) line++; /* * Copy the rest. */ ret = (char *)malloc( sizeof(char) * ( 1 + strlen( line )) ); if ( ret == (char *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return(ret); } memcpy( ret, line, sizeof(char) * ( 1 + strlen( line )) ); return( ret ); } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfindex.c����������������������������������������������0000644�0000000�0000000�00000035466�14741736366�021037� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfindex.c * * Project: SpecFile library * * Description: functions for scan numbering * * Author: V.Rey * * Date: $Date: 2004/05/12 16:56:47 $ * ************************************************************************/ /* * Log: $Log: sfindex.c,v $ * Log: Revision 1.2 2004/05/12 16:56:47 sole * Log: Support for windows * Log: * Log: Revision 1.1 2003/03/06 16:59:05 sole * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:05:15 19:05:15 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ /* * File: sfindex.c * * Description: * * Project: * * Author: Vicente Rey Bakaikoa * * Date: March 2000 */ /* * $Log: sfindex.c,v $ * Revision 1.2 2004/05/12 16:56:47 sole * Support for windows * * Revision 1.1 2003/03/06 16:59:05 sole * Initial revision * * Revision 3.0 2000/12/20 14:17:19 rey * Python version available * * Revision 2.1 2000/07/31 19:05:15 19:05:15 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:26:55 13:26:55 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA * */ #include <SpecFile.h> #include <SpecFileP.h> #ifdef WIN32 #include <stdio.h> #include <stdlib.h> #else #include <unistd.h> #endif #include <ctype.h> #define ON_COMMENT 0 #define ON_ABO 1 #define ON_RES 2 /* * Declarations */ DllExport long * SfList ( SpecFile *sf, int *error ); DllExport long SfIndexes ( SpecFile *sf, long number, long **idxlist ); DllExport long SfIndex ( SpecFile *sf, long number, long order ); DllExport long SfCondList ( SpecFile *sf, long cond, long **scan_list, int *error ); DllExport long SfScanNo ( SpecFile *sf ); DllExport int SfNumberOrder ( SpecFile *sf, long index, long *number, long *order ); DllExport long SfNumber ( SpecFile *sf, long index ); DllExport long SfOrder ( SpecFile *sf, long index ); /* * Internal Functions */ static int checkAborted( SpecFile *sf, ObjectList *ptr, int *error ); /********************************************************************* * Function: long *SfList( sf, error ) * * Description: Creates an array with all scan numbers. * * Parameters: * Input : SpecFile pointer * Returns: * Array with scan numbers. * NULL if errors occured. * Possible errors: * SF_ERR_MEMORY_ALLOC * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long * SfList( SpecFile *sf, int *error ) { register ObjectList *ptr; long *scan_list; long i = 0; scan_list = (long *)malloc( sizeof(long) * (sf->no_scans) ); if ( scan_list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( scan_list ); } for ( ptr=sf->list.first ; ptr ; ptr=ptr->next ,i++) { scan_list[i] = ( ((SpecScan *)(ptr->contents))->scan_no ); } /*printf("scanlist[%li] = %li\n",i-1,scan_list[i-1]);*/ return( scan_list ); } /********************************************************************* * Function: long SfIndexes( sf, number , idxlist) * * Description: Creates an array with all indexes with the same scan * number. * * Parameters: * Input : SpecFile pointer * scan number * Output : array with scan indexes * Returns: * Number of indexes found * Possible errors: * None possible * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long SfIndexes( SpecFile *sf, long number, long **idxlist ) { ObjectList *ptr; long i; long *indexes; long *arr; i = 0; indexes = (long *)malloc(sf->no_scans * sizeof(long)); for (ptr = sf->list.first; ptr; ptr=ptr->next ) { if ( number == ((SpecScan *)(ptr->contents))->scan_no) { indexes[i] = ((SpecScan *)(ptr->contents))->index; i++; } } if (i == 0) arr = (long *) NULL; else { arr = (long *)malloc(sizeof(long) * i); memcpy(arr,indexes,sizeof(long) * i); } *idxlist = arr; free(indexes); return( i ); } /********************************************************************* * Function: long SfIndex( sf, number, order ) * * Description: Gets scan index from scan number and order. * * Parameters: * Input : (1) Scan number * (2) Scan order * Returns: * Index number. * (-1) if not found. * *********************************************************************/ DllExport long SfIndex( SpecFile *sf, long number, long order ) { ObjectList *ptr; ptr = findScanByNo( &(sf->list), number, order ); if ( ptr != (ObjectList *)NULL ) return( ((SpecScan *)(ptr->contents))->index ); return( -1 ); } /********************************************************************* * Function: long SfCondList( sf, cond, scan_list, error ) * * Description: Creates an array with all scan numbers. * * Parameters: * Input : (1) SpecFile pointer * (2) Condition : 0 => not aborted scans ( NOT_ABORTED ) * -1 => aborted scans ( ABORTED ) * nn => more than 'nn' data lines * Output: (3) Scan list * (4) error code * Returns: * Number of found scans. * ( -1 ) if errors occured. * Possible errors: * SF_ERR_MEMORY_ALLOC * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long SfCondList( SpecFile *sf, long cond, long **scan_list, int *error ) { register ObjectList *ptr; long *list; long i = 0; int retcheck; long index; *scan_list = (long *)NULL; list = (long *)malloc( sizeof(long) * (sf->no_scans) ); if ( list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } /* * Aborted scans . */ if ( cond < 0 ) { /* aborted scans */ for ( ptr=sf->list.first ; ptr ; ptr=ptr->next ) { retcheck = checkAborted( sf, ptr, error ); if ( retcheck < 0 ) { free( list ); return( -1 ); } else if ( retcheck > 0) { list[i] = ( ((SpecScan *)(ptr->contents))->scan_no ); i++; } } } else if ( cond == 0 ) { /* not aborted scans */ for ( ptr=sf->list.first ; ptr ; ptr=ptr->next ) { retcheck = checkAborted( sf, ptr, error ); if ( retcheck < 0 ) { free( list ); return( -1 ); } else if ( retcheck == 0 ) { list[i] = ( ((SpecScan *)(ptr->contents))->scan_no ); i++; } } } else { /* cond > 0 - more than n data_lines */ for ( ptr=sf->list.first ; ptr ; ptr=ptr->next ) { index = ( ((SpecScan *)(ptr->contents))->index ); if ( SfNoDataLines(sf,index,error) <= cond ) continue; list[i] = ( ((SpecScan *)(ptr->contents))->scan_no ); i++; } } *scan_list = ( long * ) malloc ( i * sizeof(long)); if ( *scan_list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } memcpy(*scan_list,list, i * sizeof(long)); free(list); return( i ); } /********************************************************************* * Function: long SfScanNo( sf ) * * Description: Gets number of scans. * * Parameters: * Input :(1) SpecFile pointer * Returns: * Number of scans. * *********************************************************************/ DllExport long SfScanNo( SpecFile *sf ) { return( sf->no_scans ); } /********************************************************************* * Function: int SfNumberOrder( sf, index, number, order ) * * Description: Gets scan number and order from index. * * Parameters: * Input : * (1) SpecFile pointer * (2) Scan index * Output: * (3) Scan number * (4) Scan order * Returns: * ( -1 ) => not found * ( 0 ) => found * *********************************************************************/ DllExport int SfNumberOrder( SpecFile *sf, long index, long *number, long *order ) { register ObjectList *list; *number = -1; *order = -1; /* * Find scan . */ list = findScanByIndex( &(sf->list), index ); if ( list == (ObjectList *)NULL ) return( -1 ); *number = ((SpecScan *)list->contents)->scan_no; *order = ((SpecScan *)list->contents)->order; return( 0 ); } /********************************************************************* * Function: long SfNumber( sf, index ) * * Description: Gets scan number from index. * * Parameters: * Input : (1) SpecFile pointer * (2) Scan index * Returns: * Scan number. * ( -1 ) => not found * *********************************************************************/ DllExport long SfNumber( SpecFile *sf, long index ) { register ObjectList *list; /* * Find scan . */ list = findScanByIndex( &(sf->list), index ); if ( list == (ObjectList *)NULL ) return( -1 ); return( ((SpecScan *)list->contents)->scan_no ); } /********************************************************************* * Function: long SfOrder( sf, index ) * * Description: Gets scan order from index. * * Parameters: * Input : (1) SpecFile pointer * (2) Scan index * Returns: * Scan order. * ( -1 ) => not found * *********************************************************************/ DllExport long SfOrder( SpecFile *sf, long index ) { register ObjectList *list; /* * Find scan . */ list = findScanByIndex( &(sf->list), index ); if ( list == (ObjectList *)NULL ) return( -1 ); return( ((SpecScan *)list->contents)->order ); } /********************************************************************* * Function: int checkAborted( sf, ptr, error ) * * Description: Checks if scan was aborted or not . * * Parameters: * Input : (1) SpecScan pointer * (2) Pointer to the scan * Output: (3) Error number * Returns: * (-1 ) : error * ( 0 ) : not aborted * ( 1 ) : aborted * Possible errors: * SF_ERR_MEMORY_ALLOC | => readHeader() * SF_ERR_FILE_READ * *********************************************************************/ static int checkAborted( SpecFile *sf, ObjectList *ptr, int *error ) { long nbytes; long data_lines,size,from; SpecScan *scan; char *buffer,*cptr,next; int state=ON_COMMENT; int aborted=0; long index; scan = ptr->contents; index = scan->index; data_lines = SfNoDataLines(sf,index,error); if ( scan->hdafter_offset == -1 && data_lines > 0) { return(0); } else if ( data_lines <= 0 ) { /* * maybe aborted on first point * we have to all to know ( but no data anyway ) */ size = scan->size; from = scan->offset; } else { size = scan->last - scan->hdafter_offset; from = scan->hdafter_offset; } lseek(sf->fd,from,SEEK_SET); buffer = ( char * ) malloc (size); nbytes = read(sf->fd,buffer,size); if (nbytes == -1 ) { *error = SF_ERR_FILE_READ; return(-1); } if (buffer[0] == '#' && buffer[1] == 'C') { state = ON_COMMENT; } for ( cptr = buffer + 1; cptr < buffer + nbytes - 1; cptr++) { /* * Comment line */ if ( *cptr == '#' && *(cptr+1) == 'C' && *(cptr-1) == '\n') { state = ON_COMMENT; } /* * Check aborted */ if ( *(cptr-1) == 'a' && *cptr == 'b' && *(cptr+1) == 'o') { if ( state == ON_COMMENT ) { state = ON_ABO; } } if ( *(cptr-1) == 'r' && *cptr == 't' && *(cptr+1) == 'e') { if ( state == ON_ABO) { aborted = 1; } } /* * Check resume line */ if ( *(cptr-1) == 'r' && *cptr == 'e' && *(cptr+1) == 's') { if ( state == ON_COMMENT ) { state = ON_RES; } } if ( *(cptr-1) == 'u' && *cptr == 'm' && *(cptr+1) == 'e') { if ( state == ON_RES) { aborted = 0; } } /* * If data line... aborted is aborted */ if ( *cptr == '\n' ) { next = *(cptr+1); if (isdigit(next) || next == '+' || next == '-' || next == '@') { aborted = 0; } } } free(buffer); return(aborted); /* * To be implemented * - return 0 = not aborted * - return 1 = aborted * - return -1 = error * * implementation: read whole scan * - go to header after offset * - read all till end of scan with size * - search for a line with a) #C ( comment ) then "aborted" */ return( 0 ); } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfinit.c�����������������������������������������������0000644�0000000�0000000�00000054136�14741736366�020666� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2024 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfinit.c * * Project: SpecFile library * * Description: Initialization routines ( open/update/close ) * * Author: V.Rey * * Date: $Date: 2005/05/25 13:01:32 $ * ************************************************************************/ /* * Log: $Log: sfinit.c,v $ * Log: Revision 1.5 2005/05/25 13:01:32 sole * Log: Back to revision 1.3 * Log: * Log: Revision 1.3 2004/05/12 16:57:32 sole * Log: windows support * Log: * Log: Revision 1.2 2002/11/12 13:23:43 sole * Log: Version with added support for the new sf->updating flag * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Log: Revision 2.2 2000/12/20 12:12:08 rey * Log: bug corrected with SfAllMotors * Log: * Revision 2.1 2000/07/31 19:04:42 19:04:42 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ /* * File: sfinit.c * * Description: This file implements basic routines on SPEC datafiles * SfOpen / SfClose / SfError * * SfUpdate is kept but it is obsolete * * Version: 2.0 * * Date: March 2000 * * Author: Vicente REY * * Copyright: E.S.R.F. European Synchrotron Radiation Facility (c) 2000 */ /* * $Log: sfinit.c,v $ * Revision 1.5 2005/05/25 13:01:32 sole * Back to revision 1.3 * * Revision 1.3 2004/05/12 16:57:32 sole * windows support * * Revision 1.2 2002/11/12 13:23:43 sole * Version with added support for the new sf->updating flag * * Revision 3.0 2000/12/20 14:17:19 rey * Python version available * * Revision 2.2 2000/12/20 12:12:08 rey * bug corrected with SfAllMotors * * Revision 2.1 2000/07/31 19:04:42 19:04:42 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:27:19 13:27:19 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA * * *********************************************************************/ #include <sys/types.h> #include <sys/stat.h> #include <errno.h> #include <fcntl.h> #include <ctype.h> #ifdef WIN32 #include <stdio.h> #include <stdlib.h> #else #include <unistd.h> #endif #include <SpecFile.h> #include <SpecFileP.h> /* * Defines */ #define ANY 0 #define NEWLINE 1 #define COMMENT 2 #define SF_ISFX ".sfI" #define SF_INIT 0 #define SF_READY 1 #define SF_MODIFIED 2 /* * Function declaration */ DllExport SpecFile * SfOpen ( char *name,int *error); DllExport SpecFile * SfOpen2 ( int fd, char *name,int *error); DllExport int SfClose ( SpecFile *sf); DllExport short SfUpdate ( SpecFile *sf, int *error); DllExport char * SfError ( int error); #ifdef linux char SF_SIGNATURE[] = "Linux 2ruru Sf2.0"; #else char SF_SIGNATURE[] = "2ruru Sf2.0"; #endif /* * Internal functions */ static short statusEnd ( char c2, char c1); static void sfStartBuffer ( SpecFile *sf, SfCursor *cursor, short status,char c0, char c1,int *error); static void sfNewLine ( SpecFile *sf, SfCursor *cursor, char c0,char c1,int *error); static void sfHeaderLine ( SpecFile *sf, SfCursor *cursor, char c,int *error); static void sfNewBlock ( SpecFile *sf, SfCursor *cursor, short how,int *error); static void sfSaveScan ( SpecFile *sf, SfCursor *cursor, int *error); static void sfAssignScanNumbers (SpecFile *sf); static void sfReadFile ( SpecFile *sf, SfCursor *cursor, int *error); static void sfResumeRead ( SpecFile *sf, SfCursor *cursor, int *error); #ifdef SPECFILE_USE_INDEX_FILE static short sfOpenIndex ( SpecFile *sf, SfCursor *cursor, int *error); static short sfReadIndex ( int sfi, SpecFile *sf, SfCursor *cursor, int *error); static void sfWriteIndex ( SpecFile *sf, SfCursor *cursor, int *error); #endif /* * errors */ typedef struct _errors { int code; char *message; } sf_errors ; static sf_errors errors[]={ { SF_ERR_MEMORY_ALLOC , "Memory allocation error ( SpecFile )" }, { SF_ERR_FILE_OPEN , "File open error ( SpecFile )" }, { SF_ERR_FILE_CLOSE , "File close error ( SpecFile )" }, { SF_ERR_FILE_READ , "File read error ( SpecFile )" }, { SF_ERR_FILE_WRITE , "File write error ( SpecFile )" }, { SF_ERR_LINE_NOT_FOUND , "Line not found error ( SpecFile )" }, { SF_ERR_SCAN_NOT_FOUND , "Scan not found error ( SpecFile )" }, { SF_ERR_HEADER_NOT_FOUND , "Header not found error ( SpecFile )" }, { SF_ERR_LABEL_NOT_FOUND , "Label not found error ( SpecFile )" }, { SF_ERR_MOTOR_NOT_FOUND , "Motor not found error ( SpecFile )" }, { SF_ERR_POSITION_NOT_FOUND , "Position not found error ( SpecFile )" }, { SF_ERR_LINE_EMPTY , "Line empty or wrong data error ( SpecFile )"}, { SF_ERR_USER_NOT_FOUND , "User not found error ( SpecFile )" }, { SF_ERR_COL_NOT_FOUND , "Column not found error ( SpecFile )" }, { SF_ERR_MCA_NOT_FOUND , "Mca not found ( SpecFile )" }, /* MUST be always the last one : */ { SF_ERR_NO_ERRORS , "OK ( SpecFile )" }, }; /********************************************************************* * Function: SpecFile *SfOpen( name, error) * * Description: Opens connection to Spec data file. * Creates index list in memory. * * Parameters: * Input : * (1) Filename * Output: * (2) error number * Returns: * SpecFile pointer. * NULL if not successful. * * Possible errors: * SF_ERR_FILE_OPEN * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport SpecFile * SfOpen(char *name, int *error) { int fd; fd = open(name,SF_OPENFLAG); return (SfOpen2(fd, name, error)); } /********************************************************************* * Function: SpecFile *SfOpen2( fd, name, error) * * Description: Opens connection to Spec data file. * Creates index list in memory. * * Parameters: * Input : * (1) Integer file handle * (2) Filename * Output: * (3) error number * Returns: * SpecFile pointer. * NULL if not successful. * * Possible errors: * SF_ERR_FILE_OPEN * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport SpecFile * SfOpen2(int fd, char *name,int *error) { SpecFile *sf; short idxret; SfCursor cursor; struct stat mystat; if ( fd == -1 ) { *error = SF_ERR_FILE_OPEN; return ( (SpecFile *) NULL ); } /* * Init specfile strucure */ #ifdef _WINDOWS static HANDLE hglb; hglb = GlobalAlloc(GPTR,sizeof(SpecFile)); sf = (SpecFile * ) GlobalLock(hglb); #else sf = (SpecFile *) malloc ( sizeof(SpecFile )); #endif stat(name,&mystat); sf->fd = fd; sf->m_time = mystat.st_mtime; sf->sfname = (char *)strdup(name); sf->list.first = (ObjectList *)NULL; sf->list.last = (ObjectList *)NULL; sf->no_scans = 0; sf->current = (ObjectList *)NULL; sf->scanbuffer = (char *)NULL; sf->scanheadersize = 0; sf->filebuffer = (char *)NULL; sf->filebuffersize = 0; sf->no_labels = -1; sf->labels = (char **)NULL; sf->no_motor_names = -1; sf->motor_names = (char **)NULL; sf->no_motor_pos = -1; sf->motor_pos = (double *)NULL; sf->data = (double **)NULL; sf->data_info = (long *)NULL; sf->updating = 0; /* * Init cursor */ cursor.bytecnt = 0; cursor.cursor = 0; cursor.scanno = 0; cursor.hdafoffset = -1; cursor.dataoffset = -1; cursor.mcaspectra = 0; cursor.what = 0; cursor.data = 0; cursor.file_header = 0; #ifdef SPECFILE_USE_INDEX_FILE /* * Check if index file * open it and continue from there */ idxret = sfOpenIndex(sf,&cursor,error); #else idxret = SF_INIT; #endif switch(idxret) { case SF_MODIFIED: sfResumeRead(sf,&cursor,error); sfReadFile(sf,&cursor,error); break; case SF_INIT: sfReadFile(sf,&cursor,error); break; case SF_READY: break; default: break; } sf->cursor = cursor; /* * Once is all done assign scan numbers and orders */ sfAssignScanNumbers(sf); #ifdef SPECFILE_USE_INDEX_FILE if (idxret != SF_READY) sfWriteIndex(sf,&cursor,error); #endif return(sf); } /********************************************************************* * * Function: int SfClose( sf ) * * Description: Closes a file previously opened with SfOpen() * and frees all memory . * Parameters: * Input: * File pointer * Returns: * 0 : close successful * -1 : errors occured * *********************************************************************/ DllExport int SfClose( SpecFile *sf ) { register ObjectList *ptr; register ObjectList *prevptr; freeAllData(sf); for( ptr=sf->list.last ; ptr ; ptr=prevptr ) { free( (SpecScan *)ptr->contents ); prevptr = ptr->prev; free( (ObjectList *)ptr ); } free ((char *)sf->sfname); if (sf->scanbuffer != NULL) free ((char *)sf->scanbuffer); if (sf->filebuffer != NULL) free ((char *)sf->filebuffer); if( close(sf->fd) ) { return( -1 ) ; } free ( sf ); sf = (SpecFile *)NULL; return ( 0 ); } /********************************************************************* * * Function: short SfUpdate( sf, error ) * * Description: Updates connection to Spec data file . * Appends to index list in memory. * * Parameters: * Input : * (1) sf (pointer to the index list in memory) * Output: * (2) error number * Returns: * ( 0 ) => Nothing done. * ( 1 ) => File was updated * * Possible errors: * SF_ERR_FILE_OPEN * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport short SfUpdate ( SpecFile *sf, int *error ) { struct stat mystat; long mtime; /*printf("In SfUpdate\n"); __asm("int3");*/ stat(sf->sfname,&mystat); mtime = mystat.st_mtime; if (sf->m_time != mtime) { sfResumeRead (sf,&(sf->cursor),error); sfReadFile (sf,&(sf->cursor),error); sf->m_time = mtime; sfAssignScanNumbers(sf); #ifdef SPECFILE_USE_INDEX_FILE sfWriteIndex (sf,&(sf->cursor),error); #endif return(1); }else{ return(0); } } /********************************************************************* * * Function: char *SfError( code ) * * Description: Returns the message associated with error 'code'. * * Parameters: * Input : error code * *********************************************************************/ DllExport char * SfError(int code ) { int i; for ( i=0 ; errors[i].code!=0 ; i++ ) { if ( errors[i].code == code ) break; } return( errors[i].message ); } static void sfReadFile(SpecFile *sf,SfCursor *cursor,int *error) { int fd; char *buffer,*ptr; long size,bytesread; short status; fd = sf->fd; size = 1024*1024; if ( (buffer = (char *) malloc(size)) == NULL ) { /* * Try smaller buffer */ size = 128 * 128; if ( (buffer = (char *) malloc(size)) == NULL ) { /* * Uhmmm */ *error = SF_ERR_MEMORY_ALLOC; free(sf->sfname); free(sf); sf = (SpecFile *)NULL; return; } } status = NEWLINE; while ((bytesread = read(fd,buffer,size)) > 0 ) { sfStartBuffer(sf,cursor,status,buffer[0],buffer[1],error); cursor->bytecnt++; for (ptr=buffer+1;ptr < buffer + bytesread -1; ptr++,cursor->bytecnt++) { if (*(ptr-1) == '\n' ) { sfNewLine(sf,cursor,*ptr,*(ptr+1),error); } } cursor->bytecnt++; status = statusEnd(buffer[bytesread-2],buffer[bytesread-1]); } free(buffer); sf->no_scans = cursor->scanno; if (sf->no_scans > 0) { /* * Save last */ sfSaveScan(sf,cursor,error); } return; } static void sfResumeRead ( SpecFile *sf, SfCursor *cursor, int *error) { cursor->bytecnt = cursor->cursor; cursor->what = 0; cursor->hdafoffset = -1; cursor->dataoffset = -1; cursor->mcaspectra = 0; cursor->data = 0; cursor->scanno--; sf->updating = 1; lseek(sf->fd,cursor->bytecnt,SEEK_SET); return; } #ifdef SPECFILE_USE_INDEX_FILE static short sfOpenIndex ( SpecFile *sf, SfCursor *cursor, int *error) { char *idxname; short namelength; int sfi; namelength = strlen(sf->sfname) + strlen(SF_ISFX) + 1; idxname = (char *)malloc(sizeof(char) * namelength); sprintf(idxname,"%s%s",sf->sfname,SF_ISFX); if ((sfi = open(idxname,SF_OPENFLAG)) == -1) { free(idxname); return(SF_INIT); } else { free(idxname); return(sfReadIndex(sfi,sf,cursor,error)); } } static short sfReadIndex ( int sfi, SpecFile *sf, SfCursor *cursor, int *error) { SfCursor filecurs; char buffer[200]; long bytesread,i=0; SpecScan scan; short modif = 0; long mtime; /* * read signature */ bytesread = read(sfi,buffer,sizeof(SF_SIGNATURE)); if (strcmp(buffer,SF_SIGNATURE) || bytesread == 0 ) { return(SF_INIT); } /* * read cursor and specfile structure */ if ( read(sfi,&mtime, sizeof(long)) == 0) return(SF_INIT); if ( read(sfi,&filecurs, sizeof(SfCursor)) == 0) return(SF_INIT); if (sf->m_time != mtime) modif = 1; while(read(sfi,&scan, sizeof(SpecScan))) { addToList(&(sf->list), (void *)&scan, (long)sizeof(SpecScan)); i++; } sf->no_scans = i; memcpy(cursor,&filecurs,sizeof(SfCursor)); if (modif) return(SF_MODIFIED); return(SF_READY); } static void sfWriteIndex ( SpecFile *sf, SfCursor *cursor, int *error) { int fdi; char *idxname; short namelength; ObjectList *obj; long mtime; namelength = strlen(sf->sfname) + strlen(SF_ISFX) + 1; idxname = (char *)malloc(sizeof(char) * namelength); sprintf(idxname,"%s%s",sf->sfname,SF_ISFX); /* if ((fdi = open(idxname,SF_WRITEFLAG,SF_UMASK)) == -1) { */ if ((fdi = open(idxname,O_CREAT | O_WRONLY,SF_UMASK)) == -1) { printf(" - cannot open. Error: (%d)\n",errno); free(idxname); return; } else { mtime = sf->m_time; write(fdi,SF_SIGNATURE,sizeof(SF_SIGNATURE)); /* * Swap bytes for linux */ write(fdi, (void *) &mtime, sizeof(long)); write(fdi, (void *) cursor, sizeof(SfCursor)); for( obj = sf->list.first; obj ; obj = obj->next) write(fdi,(void *) obj->contents, sizeof(SpecScan)); close(fdi); free(idxname); return; } } #endif /***************************************************************************** * * Function: static void sfStartBuffer() * * Description: start analyzing file buffer and takes into account the last * bytes of previous reading as defined in variable status * *****************************************************************************/ static void sfStartBuffer(SpecFile *sf,SfCursor *cursor,short status,char c0,char c1,int *error) { if ( status == ANY ) { return; } else if ( status == NEWLINE ) { sfNewLine(sf,cursor,c0,c1,error); } else if ( status == COMMENT ) { cursor->bytecnt--; sfHeaderLine(sf,cursor,c0,error); cursor->bytecnt++; } } /******************************************************************************* * * Function: static void statusEnd() * * Description: ends analysis of file buffer and returns a variable * indicating staus ( last character is COMMENT,NEWLINE of ANY ) * *******************************************************************************/ static short statusEnd(char c2,char c1) { if (c2=='\n' && c1=='#') { return(COMMENT); } else if (c1=='\n') { return(NEWLINE); } else { return(ANY); } } static void sfNewLine(SpecFile *sf,SfCursor *cursor,char c0,char c1,int *error) { if (c0 == '#') { sfHeaderLine(sf,cursor,c1,error); } else if (c0 == '@') { if ( cursor->data == 0 ) { cursor->dataoffset = cursor->bytecnt; cursor->data = 1; } cursor->mcaspectra++; } else if ( isdigit(c0) || c0 == '-' || c0 == '+' || c0 == ' ' || c0 == '\t') { if ( cursor->data == 0 ) { cursor->dataoffset = cursor->bytecnt; cursor->data = 1; } } } static void sfHeaderLine(SpecFile *sf,SfCursor *cursor,char c,int *error) { if ( c == 'S') { sfNewBlock(sf,cursor,SCAN,error); } else if ( c == 'F') { sfNewBlock(sf,cursor,FILE_HEADER,error); } else { if (cursor->data && cursor->hdafoffset == -1 ) cursor->hdafoffset = cursor->bytecnt; } } static void sfNewBlock(SpecFile *sf,SfCursor *cursor,short newblock,int *error) { /* * Dispatch opened block */ if (cursor->what == SCAN) { sfSaveScan(sf,cursor,error); } else if ( cursor->what == FILE_HEADER) { cursor->fileh_size = cursor->bytecnt - cursor->cursor + 1; } /* * Open new block */ if (newblock == SCAN) { cursor->scanno++; cursor->what = SCAN; } else { cursor->file_header = cursor->bytecnt; } cursor->what = newblock; cursor->hdafoffset = -1; cursor->dataoffset = -1; cursor->mcaspectra = 0; cursor->data = 0; cursor->cursor = cursor->bytecnt; } static void sfSaveScan(SpecFile *sf, SfCursor *cursor,int *error) { SpecScan scan; SpecScan *oldscan; register ObjectList *ptr; scan.index = cursor->scanno; scan.offset = cursor->cursor; scan.size = cursor->bytecnt - cursor->cursor; scan.last = cursor->bytecnt - 1; scan.data_offset = cursor->dataoffset; scan.hdafter_offset = cursor->hdafoffset; scan.mcaspectra = cursor->mcaspectra; scan.file_header = cursor->file_header; if(sf->updating == 1){ ptr = sf->list.last; oldscan=(SpecScan *)(ptr->contents); oldscan->index=scan.index; oldscan->offset=scan.offset; oldscan->size=scan.size; oldscan->last=scan.last; oldscan->data_offset=scan.data_offset; oldscan->hdafter_offset=scan.hdafter_offset; oldscan->mcaspectra=scan.mcaspectra; oldscan->file_header=scan.file_header; sf->updating=0; }else{ addToList( &(sf->list), (void *)&scan, (long) sizeof(SpecScan)); } } static void sfAssignScanNumbers(SpecFile *sf) { int i; long bytesread; char *ptr; char buffer[50]; char buffer2[50]; register ObjectList *object, *object2; SpecScan *scan, *scan2; for ( object = (sf->list).first; object; object=object->next) { scan = (SpecScan *) object->contents; lseek(sf->fd,scan->offset,SEEK_SET); bytesread = read(sf->fd,buffer,sizeof(buffer)); if (bytesread <= 4) { continue; } buffer[49] = '\0'; for ( ptr = buffer+3,i=0; *ptr != ' ';ptr++,i++) buffer2[i] = *ptr; buffer2[i] = '\0'; scan->scan_no = atol(buffer2); scan->order = 1; for ( object2 = (sf->list).first; object2 != object; object2=object2->next) { scan2 = (SpecScan *) object2->contents; if (scan2->scan_no == scan->scan_no) scan->order++; } } } void printCursor(SfCursor *cursor) { printf("<Cursor>\n"); printf(" - Bytecnt: %ld\n",cursor->bytecnt); printf(" - Cursor: %ld\n",cursor->cursor); printf(" - Scanno: %ld\n",cursor->scanno); } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sflabel.c����������������������������������������������0000644�0000000�0000000�00000041652�14741736366�021001� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2022 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sflabel.c * * Project: SpecFile library * * Description: Access to labels and motors * * Author: V.Rey * * Date: $Date: 2003/02/03 13:15:35 $ * ************************************************************************/ /* * Log: * $Log: sflabel.c,v $ * Revision 1.3 2003/02/03 13:15:35 rey * Small change in handling of empty spaces at the beginning of the label buffer * * Revision 1.2 2002/11/20 09:56:31 sole * Some macros leave more than 1 space between #L and the first label. * Routine modified to be able to deal with already collected data. * The offending macro(s) should be re-written. * * Revision 1.1 2002/11/20 08:21:34 sole * Initial revision * * Revision 3.0 2000/12/20 14:17:19 rey * Python version available * * Revision 2.2 2000/12/20 12:12:08 rey * bug corrected with SfAllMotors * * Revision 2.1 2000/07/31 19:05:10 19:05:10 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <SpecFile.h> #include <SpecFileP.h> #include <locale_management.h> /* * Declarations */ DllExport char * SfLabel ( SpecFile *sf, long index, long column, int *error ); DllExport long SfAllLabels ( SpecFile *sf, long index, char ***labels, int *error ); DllExport char * SfMotor ( SpecFile *sf, long index, long number, int *error ); DllExport long SfAllMotors ( SpecFile *sf, long index, char ***names, int *error ); DllExport double SfMotorPos ( SpecFile *sf, long index, long number, int *error ); DllExport double SfMotorPosByName( SpecFile *sf, long index, char *name, int *error ); DllExport long SfAllMotorPos ( SpecFile *sf, long index, double **pos, int *error ); #define BUFFER_SIZE 256 #define MIN(a, b) (((a) <= (b)) ? (a) : (b)) /********************************************************************* * Function: char *SfLabel( sf, index, column, error ) * * Description: Reads one label. * * Parameters: * Input : (1) SpecScan pointer * (2) Scan index * (3) Column number * Output: (4) Error number * Returns: * Pointer to the label , * or NULL if errors occured. * Possible errors: * SF_ERR_MEMORY_ALLOC | => getStrFromArr() * SF_ERR_LABEL_NOT_FOUND * SF_ERR_LINE_EMPTY | * SF_ERR_LINE_NOT_FOUND | * SF_ERR_SCAN_NOT_FOUND | => SfAllLabels() * SF_ERR_FILE_READ | * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport char * SfLabel( SpecFile *sf, long index, long column, int *error ) { char **labels=NULL; long no_labels; char *label=NULL; long selection; if (sfSetCurrent(sf,index,error) == -1) return((char *)NULL); if (sf->no_labels != -1 ) { no_labels = sf->no_labels; } else { no_labels = SfAllLabels(sf,index,&labels,error); } if (no_labels == 0 || no_labels == -1) return((char *)NULL); if ( column < 0 ) { selection = no_labels + column; } else { selection = column - 1; } if (selection < 0 || selection > no_labels - 1 ) { *error = SF_ERR_COL_NOT_FOUND; if (labels != (char **) NULL ) freeArrNZ((void ***)&labels,no_labels); return((char *)NULL); } if (labels != (char **)NULL) { label = (char *)strdup(labels[selection]); freeArrNZ((void ***)&labels,no_labels); } else { label = (char *) strdup(sf->labels[selection]); } return( label ); } /********************************************************************* * Function: long SfAllLabels( sf, index, labels, error ) * * Description: Reads all labels in #L lines * * Parameters: * Input : (1) SpecScan pointer * (2) Scan index * Output: (3) Labels * (4) Error number * Returns: * Number of labels * ( -1 ) if error. * Possible errors: * SF_ERR_MEMORY_ALLOC ||=> cpyStrArr(),lines2words() * SF_ERR_SCAN_NOT_FOUND | => SfHeader() * SF_ERR_FILE_READ | * SF_ERR_LINE_EMPTY * SF_ERR_LINE_NOT_FOUND * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long SfAllLabels( SpecFile *sf, long index, char ***labels, int *error ) { static char tmplab[BUFFER_SIZE]; char **labarr; char *onelabel; char *ptr, *buf=NULL; long no_labels = 0; short i; /* * select scan */ if (sfSetCurrent(sf,index,error) == -1) { *labels = NULL; return(0); } /* * Do not do it if already done */ if (sf->labels != (char **)NULL ) { labarr = (char **)malloc(sizeof(char *) * sf->no_labels); for ( i=0;i<sf->no_labels;i++) labarr[i] = (char *)strdup(sf->labels[i]); *labels = labarr; return(sf->no_labels); } /* * else.. */ if (sfGetHeaderLine(sf,FROM_SCAN,SF_LABEL,&buf,error) == -1) { *labels = NULL; return(0); } if ( buf[0] == '\0') { *labels = NULL; return(0); } if ( (labarr = (char **)malloc( sizeof(char *))) == (char **)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } no_labels = 0; i = 0; /* * avoid problem of having too many spaces at the beginning * with bad written macros -> added check for empty string * * get rid of spaces at the beginning of the string buffer */ ptr = buf; while((ptr < buf + strlen(buf) -1) && (*ptr == ' ')) ptr++; for (i=0;ptr < buf + strlen(buf) -1;ptr++,i++) { if (*ptr==' ' && *(ptr+1) == ' ') { /* two spaces delimits one label */ tmplab[MIN(i, BUFFER_SIZE-1)] = '\0'; labarr = (char **)realloc( labarr, (no_labels+1) * sizeof(char *)); onelabel = (char *) malloc (i+2); strcpy(onelabel,tmplab); labarr[no_labels] = onelabel; no_labels++; i=-1; for(;*(ptr+1) == ' ' && ptr < buf+strlen(buf)-1;ptr++); } else if (i < BUFFER_SIZE){ tmplab[i] = *ptr; } } if (*ptr != ' ') { tmplab[i] = *ptr; i++; } tmplab[i] = '\0'; labarr = (char **)realloc( labarr, (no_labels+1) * sizeof(char *)); onelabel = (char *) malloc (i+2); strcpy(onelabel,tmplab); labarr[no_labels] = onelabel; no_labels++; /* * Save in specfile structure */ sf->no_labels = no_labels; sf->labels = (char **) malloc( sizeof(char *) * no_labels); for (i=0;i<no_labels;i++) sf->labels[i] = (char *) strdup(labarr[i]); *labels = labarr; return( no_labels ); } /********************************************************************* * Function: long SfAllMotors( sf, index, names, error ) * * Description: Reads all motor names in #O lines (in file header) * * Parameters: * Input : (1) SpecScan pointer * (2) Scan index * Output: (3) Names * (4) Error number * Returns: * Number of found names * ( -1 ) if errors. * Possible errors: * SF_ERR_SCAN_NOT_FOUND * SF_ERR_LINE_NOT_FOUND * SF_ERR_LINE_EMPTY * SF_ERR_MEMORY_ALLOC || => cpyStrArr(),lines2words() * SF_ERR_FILE_READ | * SF_ERR_HEADER_NOT_FOUND | => SfFileHeader() * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long SfAllMotors( SpecFile *sf, long index, char ***names, int *error ) { char **lines; char *thisline, *endline; char **motarr; char *onemot; static char tmpmot[BUFFER_SIZE]; char *ptr; long motct = 0; long no_lines; short i,j; /* * go to scan */ if (sfSetCurrent(sf,index,error) == -1) { *names = NULL; return(0); } /* * if motor names for this scan have already been read */ if (sf->motor_names != (char **)NULL) { motarr = (char **)malloc(sizeof(char *) * sf->no_motor_names); for (i=0;i<sf->no_motor_names;i++) { motarr[i] = (char *) strdup (sf->motor_names[i]); } *names = motarr; return(sf->no_motor_names); } /* * else */ no_lines = SfHeader(sf, index,"O",&lines,error); if (no_lines == -1 || no_lines == 0 ) { *names = (char **) NULL; return(-1); } if ( (motarr = (char **)malloc( sizeof(char *))) == (char **)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } motct = 0; for (j=0;j<no_lines;j++) { thisline = lines[j] + 4; endline = thisline + strlen(thisline); for(ptr=thisline;*ptr == ' ';ptr++); for (i=0;ptr < endline -2;ptr++,i++) { if (*ptr==' ' && *(ptr+1) == ' ') { tmpmot[MIN(i, BUFFER_SIZE-1)] = '\0'; motarr = (char **)realloc( motarr, (motct+1) * sizeof(char *)); onemot = (char *) malloc (i+2); strcpy(onemot,tmpmot); motarr[motct] = onemot; motct++; i=-1; for(;*(ptr+1) == ' ' && ptr < endline -1;ptr++); } else if (i < BUFFER_SIZE) { tmpmot[i] = *ptr; } } if (*ptr != ' ') { tmpmot[i] = *ptr; i++; } ptr++; if (*ptr != ' ') { tmpmot[i] = *ptr; i++; } tmpmot[i] = '\0'; motarr = (char **)realloc( motarr, (motct+1) * sizeof(char *)); onemot = (char *) malloc (i+2); strcpy(onemot,tmpmot); motarr[motct] = onemot; motct++; } /* * Save in specfile structure */ sf->no_motor_names = motct; sf->motor_names = (char **)malloc(sizeof(char *) * motct); for (i=0;i<motct;i++) { sf->motor_names[i] = (char *)strdup(motarr[i]); } *names = motarr; return( motct ); } DllExport char * SfMotor( SpecFile *sf, long index, long motnum, int *error ) { char **motors=NULL; long nb_mot; char *motor=NULL; long selection; /* * go to scan */ if (sfSetCurrent(sf,index,error) == -1) { return((char *)NULL); } if ( sf->no_motor_names != -1 ) { nb_mot = sf->no_motor_names; } else { nb_mot = SfAllMotors(sf,index,&motors,error); } if (nb_mot == 0 || nb_mot == -1) return((char *)NULL); if ( motnum < 0 ) { selection = nb_mot + motnum; } else { selection = motnum - 1; } if (selection < 0 || selection > nb_mot - 1 ) { *error = SF_ERR_COL_NOT_FOUND; if (motors != (char **) NULL) freeArrNZ((void ***)&motors,nb_mot); return((char *)NULL); } if (motors != (char **) NULL) { motor = (char *)strdup(motors[selection]); freeArrNZ((void ***)&motors,nb_mot); } else { motor = (char *)strdup(sf->motor_names[selection]); } return( motor ); } DllExport long SfAllMotorPos ( SpecFile *sf, long index, double **retpos, int *error ) { char **lines; char *thisline, *endline; double *posarr; static double pos[400]; static char posstr[40]; char *ptr; long motct = 0; long no_lines; short i,j; /* locale function to be used */ double (*my_atof) (const char *); struct lconv * lc; lc=localeconv(); if (strcmp(lc->mon_decimal_point, ".") == 0) { my_atof = atof; } else { my_atof = PyMcaAtof; } if (sfSetCurrent(sf,index,error) == -1) { *retpos = (double *) NULL; return(0); } /* * if motors position for this scan have already been read */ if (sf->motor_pos != (double *)NULL) { posarr = (double *)malloc(sizeof(double) * sf->no_motor_pos); for (i=0;i<sf->no_motor_pos;i++) { posarr[i] = sf->motor_pos[i]; } *retpos = posarr; return(sf->no_motor_pos); } /* * else */ no_lines = SfHeader(sf, index,"P",&lines,error); if (no_lines == -1 || no_lines == 0 ) { *retpos = (double *) NULL; return(-1); } motct = 0; for (j=0;j<no_lines;j++) { thisline = lines[j] + 4; endline = thisline + strlen(thisline); for(ptr=thisline;*ptr == ' ';ptr++); for (i=0;ptr < endline -1;ptr++,i++) { if (*ptr==' ') { posstr[i] = '\0'; pos[motct] = my_atof(posstr); motct++; i=-1; for(;*(ptr+1) == ' ' && ptr < endline -1;ptr++); } else { posstr[i] = *ptr; } } if (*ptr != ' ') { posstr[i] = *ptr; i++; } posstr[i] = '\0'; pos[motct] = my_atof(posstr); motct++; } /* * Save in specfile structure */ sf->no_motor_pos = motct; sf->motor_pos = (double *)malloc(sizeof(double) * motct); memcpy(sf->motor_pos,pos,motct * sizeof(double)); /* * and return */ posarr = (double *) malloc ( sizeof(double) * motct ) ; memcpy(posarr,pos,motct * sizeof(double)); *retpos = posarr; return( motct ); } DllExport double SfMotorPos( SpecFile *sf, long index, long motnum, int *error ) { double *motorpos=NULL; long nb_mot; double retpos; long selection; if (sfSetCurrent(sf,index,error) == -1) return(HUGE_VAL); if (sf->no_motor_pos != -1 ) { nb_mot = sf->no_motor_pos; } else { nb_mot = SfAllMotorPos(sf,index,&motorpos,error); } if (nb_mot == 0 || nb_mot == -1) return(HUGE_VAL); if ( motnum < 0 ) { selection = nb_mot + motnum; } else { selection = motnum - 1; } if (selection < 0 || selection > nb_mot - 1 ) { *error = SF_ERR_COL_NOT_FOUND; if (motorpos != (double *)NULL) free(motorpos); return(HUGE_VAL); } if (motorpos != (double *)NULL) { retpos = motorpos[selection]; free(motorpos); } else { retpos = sf->motor_pos[selection]; } return( retpos ); } DllExport double SfMotorPosByName( SpecFile *sf, long index, char *name, int *error ) { char **motors=NULL; long nb_mot, idx, selection; short tofree=0; if (sfSetCurrent(sf,index,error) == -1) return(HUGE_VAL); if ( sf->no_motor_names != -1 ) { nb_mot = sf->no_motor_names; motors = sf->motor_names; } else { nb_mot = SfAllMotors(sf,index,&motors,error); tofree=1; } if (nb_mot == 0 || nb_mot == -1) return(HUGE_VAL); for (idx = 0;idx<nb_mot;idx++) { if (!strcmp(name,motors[idx])) break; } if (idx == nb_mot) { if (tofree) freeArrNZ((void ***)&motors,nb_mot); *error = SF_ERR_MOTOR_NOT_FOUND; return(HUGE_VAL); } selection = idx+1; return(SfMotorPos(sf,index,selection,error)); } ��������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sflists.c����������������������������������������������0000644�0000000�0000000�00000012730�14741736366�021053� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sflists.c * * Project: SpecFile library * * Description: Functions to handle lists * * Author: V.Rey * * Date: $Date: 2003/03/06 17:00:42 $ * ************************************************************************/ /* * Log: $Log: sflists.c,v $ * Log: Revision 1.1 2003/03/06 17:00:42 sole * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:03:25 19:03:25 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <Lists.h> /* * Function declaration */ ObjectList * findInList ( ListHeader *list, int (*proc)(void *,void *), void *value ); long addToList ( ListHeader *list, void *object, long size ); void unlinkFromList ( ListHeader *list, ObjectList *element ); static long linkToList ( ListHeader *list, void *object ); /********************************************************************* * Function: ObjectList *findInList( list, proc, value ) * * Description: Looks for an list element. * * Parameters: * Input : (1) ListHeader pointer * (2) Comp. procedure * (3) value * Returns: * Pointer to the found element , * NULL if not found . * *********************************************************************/ ObjectList * findInList( ListHeader *list, int (*proc)(void * , void *), void *value ) { register ObjectList *ptr; for ( ptr=list->first ; ptr ; ptr=ptr->next ) { if ( (*proc)(ptr->contents, value) ) { return( ptr ); } } return (ObjectList *)NULL; } /********************************************************************* * Function: int addToList( list, object, size ) * * Description: Adds an element to the list. * * Parameters: * Input : (1) List pointer * (2) Pointer to the new element * (3) Size of the new element * Returns: * ( 0 ) => OK * ( -1 ) => error * *********************************************************************/ long addToList( ListHeader *list, void *object, long size ) { void *newobj; if ( (newobj = (void *)malloc(size)) == (void *)NULL ) return( -1 ); memcpy(newobj, object, size); return( linkToList( list, newobj ) ); } /********************************************************************* * Function: int linkToList( list, object ) * * Description: Adds an element to the list. * * Parameters: * Input: (1) ListHeader pointer * (2) pointer to the new element * Returns: * ( 0 ) => OK * ( -1 ) => error * *********************************************************************/ static long linkToList( ListHeader *list, void *object ) { ObjectList *newobj; if ((newobj = (ObjectList *) malloc(sizeof(ObjectList))) == (ObjectList *) NULL) return( -1 ); newobj->contents = object; newobj->prev = list->last; newobj->next = NULL; if (list->first == (ObjectList *)NULL) { list->first = newobj; } else { (list->last)->next = newobj; } list->last = newobj; return( 0 ); } /********************************************************************* * Function: int unlinkFromList( list, element ) * * Description: Removes an element from the list. * * Parameters: * Input : (1) List pointer * (2) Pointer to the element * *********************************************************************/ void unlinkFromList( ListHeader *list, ObjectList *element ) { if ( element != (ObjectList *)NULL ) { if ( element->next != (ObjectList *)NULL ) { element->next->prev = element->prev; } else { list->last = element->prev ; } if ( element->prev != (ObjectList *)NULL ) { element->prev->next = element->next; } else { list->first = element->next; } free( element->contents ); free( element ); } } ����������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfmca.c������������������������������������������������0000644�0000000�0000000�00000021725�14741736366�020461� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 2000-2022 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfmca.c * * Project: SpecFile library * * Description: Access to MCA spectra * * Author: V.Rey * * Date: $Date: 2002/11/15 16:25:44 $ * ************************************************************************/ /* * Log: $Log: sfmca.c,v $ * Log: Revision 1.3 2002/11/15 16:25:44 sole * Log: free(retline) replaced by freeArrNZ((void ***) &retline,nb_lines); to eliminate the memory leak when reading mca * Log: * Log: Revision 1.2 2002/11/15 10:44:36 sole * Log: added free(retline) after call to SfHeader * Log: * Log: Revision 1.1 2002/11/15 10:17:38 sole * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:05:12 19:05:12 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <SpecFile.h> #include <SpecFileP.h> #include <locale_management.h> #include <ctype.h> #include <stdlib.h> /* * Define macro */ #define isnumber(this) ( isdigit(this) || this == '-' || this == '+' || this =='e' || this == 'E' || this == '.' ) /* * Mca continuation character */ #define MCA_CONT '\\' #define D_INFO 3 /* * Declarations */ DllExport long SfNoMca ( SpecFile *sf, long index, int *error ); DllExport int SfGetMca ( SpecFile *sf, long index, long mcano, double **retdata, int *error ); DllExport long SfMcaCalib ( SpecFile *sf, long index, double **calib, int *error ); /********************************************************************* * Function: long SfNoMca( sf, index, error ) * * Description: Gets number of mca spectra in a scan * * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) error number * Returns: * Number of data lines , * ( -1 ) => errors. * Possible errors: * SF_ERR_SCAN_NOT_FOUND * *********************************************************************/ DllExport long SfNoMca( SpecFile *sf, long index, int *error ) { if (sfSetCurrent(sf,index,error) == -1 ) return(-1); return( ((SpecScan *)sf->current->contents)->mcaspectra ); } /********************************************************************* * Function: int SfGetMca(sf, index, number, data, error) * * Description: Gets data. * Parameters: * Input : (1) File pointer * (2) Index * Output: * (3) Data array * (4) Data info : [0] => no_lines * [1] => no_columns * [2] = ( 0 ) => regular * ( 1 ) => not regular ! * (5) error number * Returns: * ( 0 ) => OK * ( -1 ) => errors occured * Possible errors: * SF_ERR_MEMORY_ALLOC * SF_ERR_FILE_READ * SF_ERR_SCAN_NOT_FOUND * SF_ERR_LINE_NOT_FOUND * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport int SfGetMca( SpecFile *sf, long index, long number, double **retdata, int *error ) { double *data = NULL; long headersize; int old_fashion; static char* last_from = NULL; static char* last_pos = NULL; static long last_number = 0; long int scanno = 0; static long int last_scanno = 0; char *ptr, *from, *to; char strval[100]; double val; int i,spect_no=0; long vals; long blocks=1, initsize=1024; /* locale function to be used */ double (*my_atof) (const char *); struct lconv * lc; lc=localeconv(); if (strcmp(lc->mon_decimal_point, ".") == 0) { my_atof = atof; } else { my_atof = PyMcaAtof; } headersize = ((SpecScan *)sf->current->contents)->data_offset - ((SpecScan *)sf->current->contents)->offset; scanno = ((SpecScan *)sf->current->contents)->scan_no; /* * check that mca number is available */ if (number < 1) { *error = SF_ERR_MCA_NOT_FOUND; *retdata = (double *)NULL; return(-1); } /* * Get MCA info from header */ from = sf->scanbuffer + headersize; to = sf->scanbuffer + ((SpecScan *)sf->current->contents)->size; old_fashion = 1; if (last_scanno == scanno) { if (last_from == from) { /* same scan as before */ if (number > last_number) { spect_no = last_number; old_fashion = 0; } } } if (old_fashion) { last_scanno = scanno; last_from = from; spect_no = 0; last_pos = from; } /* * go and find the beginning of spectrum */ ptr = last_pos; if ( *ptr == '@' ) { spect_no++; ptr++; last_pos = ptr; } while ( spect_no != number && ptr < to ) { if (*ptr == '@') spect_no++; ptr++; last_pos = ptr; } ptr++; if ( spect_no != number ) { *error = SF_ERR_MCA_NOT_FOUND; *retdata = (double *)NULL; return(-1); } last_number = spect_no; /* * Calculate size and book memory */ initsize = 2048; i = 0; vals = 0; /* * Alloc memory */ if ((data = (double *)malloc (sizeof(double) * initsize)) == (double *)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } /* * continue */ for ( ;(*(ptr+1) != '\n' || (*ptr == MCA_CONT)) && ptr < to - 1 ; ptr++) { if (*ptr == ' ' || *ptr == '\t' || *ptr == '\\' || *ptr == '\n') { if ( i ) { if ( vals%initsize == 0 ) { blocks++; if ((data = (double *)realloc (data, sizeof(double) * blocks * initsize)) == (double *)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } } strval[i] = '\0'; i = 0; val = my_atof(strval); data[vals] = val; vals++; } } else if (isnumber(*ptr)) { strval[i] = *ptr; i++; } } if (isnumber(*ptr)) { strval[i] = *ptr; strval[i+1] = '\0'; val = my_atof(strval); data[vals] = val; vals++; } else if (i>0) { strval[i] = '\0'; val = PyMcaAtof(strval); data[vals] = val; vals++; } *retdata = data; return( vals ); } DllExport long SfMcaCalib ( SpecFile *sf, long index, double **calib, int *error ) { long nb_lines; char **retline; char *strptr; double val1,val2,val3; double *retdata; nb_lines = SfHeader(sf,index,"@CALIB",&retline,error); if (nb_lines > 0) { strptr = retline[0] + 8; sscanf(strptr,"%lf %lf %lf",&val1,&val2,&val3); } else { *calib = (double *)NULL; return(-1); } retdata = (double *) malloc(sizeof(double) * 3 ); retdata[0] = val1; retdata[1] = val2; retdata[2] = val3; *calib = retdata; return(0); } �������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sftools.c����������������������������������������������0000644�0000000�0000000�00000035512�14741736366�021060� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sftools.c * * Project: SpecFile library * * Description: General library tools * * Author: V.Rey * * Date: $Date: 2004/05/12 16:57:02 $ * ************************************************************************/ /* * Log: $Log: sftools.c,v $ * Log: Revision 1.2 2004/05/12 16:57:02 sole * Log: Windows support * Log: * Log: Revision 1.1 2003/09/12 10:34:11 sole * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Log: Revision 2.2 2000/12/20 12:12:08 rey * Log: bug corrected with SfAllMotors * Log: * Revision 2.1 2000/07/31 19:05:07 19:05:07 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <SpecFile.h> #include <SpecFileP.h> #ifdef WIN32 #include <stdio.h> #include <stdlib.h> #else #include <unistd.h> #endif /* * Library Functions */ DllExport void freePtr ( void *ptr ); DllExport void freeArrNZ ( void ***ptr, long lines ); DllExport void SfShow (SpecFile *sf); DllExport void SfShowScan (SpecFile *sf, long index); /* * Function declaration */ void freeArr ( void ***ptr, long lines ); int sfSetCurrent ( SpecFile *sf, long index, int *error ); int sfSameFile ( SpecFile *sf, ObjectList *list ); int sfSameScan ( SpecFile *sf, long index ); int findIndex ( void *scan, void *number ); int findNoAndOr ( void *scan, void *number ); int findFirst ( void *scan, void *file_offset ); ObjectList *findScanByIndex ( ListHeader *list, long index ); ObjectList *findFirstInFile ( ListHeader *list, long file_offset ); ObjectList *findScanByNo ( ListHeader *list, long scan_no, long order ); long mulstrtod ( char *str, double **arr, int *error ); void freeAllData ( SpecFile *sf ); /* * Globals */ /********************************************************************* * Function: void sfSetCurrent( sf, list ) * * Description: Sets 'list' to current scan. * Updates SpecFile structure. * Parameters: * Input : (1) SpecFile pointer * (2) New scan * *********************************************************************/ int sfSetCurrent( SpecFile *sf, long index,int *error ) { ObjectList *list, *flist; SpecScan *scan, *fscan; long nbytes; long fileheadsize,start; /* * If same scan nothing to do */ if (sfSameScan(sf,index)) return(0); /* * It is a new scan. Free memory allocated for previous one. */ freeAllData(sf); /* * Find scan */ list = findScanByIndex(&(sf->list),index); if (list == (ObjectList *)NULL) { *error = SF_ERR_SCAN_NOT_FOUND; return(-1); } /* * Read full scan into buffer */ scan = list->contents; if (sf->scanbuffer != ( char * ) NULL) free(sf->scanbuffer); sf->scanbuffer = ( char *) malloc(scan->size); if (sf->scanbuffer == (char *)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } lseek(sf->fd,scan->offset,SEEK_SET); nbytes = read(sf->fd,sf->scanbuffer,scan->size); if ( nbytes == -1) { *error = SF_ERR_FILE_READ; return(-1); } if ( sf->scanbuffer[0] != '#' || sf->scanbuffer[1] != 'S') { *error = SF_ERR_FILE_READ; return(-1); } sf->scanheadersize = scan->data_offset - scan->offset; /* * if different file read fileheader also */ if (!sfSameFile(sf,list)) { if (sf->filebuffer != ( char * ) NULL) free(sf->filebuffer); start = scan->file_header; flist = findFirstInFile(&(sf->list),scan->file_header); if (flist == (ObjectList *) NULL) { fileheadsize = 0; sf->filebuffersize = fileheadsize; } else { fscan = flist->contents; fileheadsize = fscan->offset - start; } if (fileheadsize > 0) { sf->filebuffer = ( char *) malloc(fileheadsize); if (sf->filebuffer == (char *)NULL) { *error = SF_ERR_MEMORY_ALLOC; return(-1); } lseek(sf->fd,start,SEEK_SET); nbytes = read(sf->fd,sf->filebuffer,fileheadsize); if ( nbytes == -1) { *error = SF_ERR_FILE_READ; return(-1); } sf->filebuffersize = fileheadsize; } } sf->scansize = scan->size; sf->current = list; return(1); } /********************************************************************* * Function: int sfSameFile( sf, list ) * * Description: Checks if the current scan file header and * the new scan file header are the same. * Parameters: * Input : (1) SpecFile pointer * (2) New scan * Returns: * 1 - the same * 0 - not the same * *********************************************************************/ int sfSameFile( SpecFile *sf, ObjectList *list ) { if (sf->current) { return ( ((SpecScan *)sf->current->contents)->file_header == ((SpecScan *)list->contents)->file_header ); } else return(0); } /********************************************************************* * Function: int sfSameScan( sf, index ) * * Description: Checks if the current scan and * the new scan are the same. * Parameters: * Input : (1) SpecFile pointer * (2) New scan index * Returns: * 1 - the same * 0 - not the same * *********************************************************************/ int sfSameScan( SpecFile *sf, long index ) { if ( sf->current == (ObjectList *)NULL) return(0); return ( ((SpecScan *)sf->current->contents)->index == index ); } /********************************************************************* * Function: freePtr( ptr ); * * Description: Frees memory pointed to by 'ptr'. * * Parameters: * Input : (1) Pointer * *********************************************************************/ void freePtr( void *ptr ) { free( ptr ); } /********************************************************************* * Function: freeArrNZ( ptr, lines ); * * Description: Frees an array if 'lines' > zero. * * Parameters: * Input : (1) Array pointer * (2) No. of lines * *********************************************************************/ void freeArrNZ( void ***ptr, long lines ) { if ( *ptr != (void **)NULL && lines > 0 ) { for ( ; lines ; lines-- ) { free( (*ptr)[lines-1] ); } free( *ptr ); *ptr = ( void **)NULL ; } } /********************************************************************* * Function: freeArr( ptr, lines ); * * Description: Frees an array. * 'ptr' will be always freed !!! * * Parameters: * Input : (1) Array pointer * (2) No. of lines * *********************************************************************/ void freeArr( void ***ptr, long lines ) { if ( *ptr != (void **)NULL ) { if ( lines > 0 ) { for ( ; lines ; lines-- ) { free( (*ptr)[lines-1] ); } } free( *ptr ); *ptr = ( void **)NULL ; } } /********************************************************************* * Function: int findIndex( scan, number ) * * Description: Compares if number == scan index . * * Parameters: * Input : (1) SpecScan pointer * (2) number * Returns: * 0 : not found * 1 : found * *********************************************************************/ int findIndex( void *scan, void *number ) { return( ((SpecScan *)scan)->index == *(long *)number ); } /********************************************************************* * Function: int findFirst( scan, file_offset ) * * Description: Compares if scan offset > file_offset * * Parameters: * Input : (1) SpecScan pointer * (2) number * Returns: * 0 : not found * 1 : found * *********************************************************************/ int findFirst( void *scan, void *file_offset ) { return( ((SpecScan *)scan)->offset > *(long *)file_offset ); } /********************************************************************* * Function: int findNoAndOr( scan, number ) * ( Number * Order ) * * Description: Compares if number1 = scan number and * number2 = scan order * Parameters: * Input: (1) SpecScan pointer * (2) number[1] * Returns: * 0 : not found * 1 : found * *********************************************************************/ int findNoAndOr( void *scan, void *number ) { long *n = (long *)number; return( ( ((SpecScan *)scan)->scan_no == *n++ ) && ( ((SpecScan *)scan)->order == *n )); } /********************************************************************* * Function: ObjectList *findScanByIndex( list, index ) * * Description: Looks for a scan . * * Parameters: * Input: (1) List pointer * (2) scan index * Returns: * ObjectList pointer if found , * NULL if not. * *********************************************************************/ ObjectList * findScanByIndex( ListHeader *list, long index ) { return findInList( list, findIndex, (void *)&index ); } /********************************************************************* * Function: ObjectList findScanByNo( list, scan_no, order ) * * Description: Looks for a scan . * * Parameters: * Input: (1) List pointer * (2) scan number * (3) scan order * Returns: * ObjectList pointer if found , * NULL if not. * *********************************************************************/ ObjectList * findScanByNo( ListHeader *list, long scan_no, long order ) { long value[2]; value[0] = scan_no; value[1] = order; return( findInList( (void *)list, findNoAndOr, (void *)value) ); } /********************************************************************* * Function: ObjectList *findFirstInFile( list, file_offset ) * * Description: Looks for a scan . * * Parameters: * Input: (1) List pointer * (2) scan index * Returns: * ObjectList pointer if found , * NULL if not. * *********************************************************************/ ObjectList * findFirstInFile( ListHeader *list, long file_offset ) { return findInList( list, findFirst, (void *)&file_offset ); } /********************************************************************* * Function: long mulstrtod( str, arr, error ) * * Description: Converts string to data array.( double array ) * * Parameters: * Input : (1) String * * Output: * (2) Data array * (3) error number * Returns: * Number of values. * ( -1 ) in case of errors. * Possible errors: * SF_ERR_MEMORY_ALLOC * * Remark: The memory allocated should be freed by the application * *********************************************************************/ long mulstrtod( char *str, double **arr, int *error ) { int count,q,i=0; double *ret; char *str2; static double tmpret[200]; *arr = (double *)NULL; str2 = str; while( (q = sscanf(str2, "%lf%n", &(tmpret[i]), &count)) > 0 ) { i++; str2 += count; } str2++; if ( !i ) { return( i ); } ret = (double *)malloc( sizeof(double) * i ); if ( ret == (double *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } memcpy(ret, tmpret, i * sizeof(double) ); *arr = ret; return( i ); } void freeAllData(SpecFile *sf) { if (sf->motor_pos != (double *)NULL) { free(sf->motor_pos); sf->motor_pos = (double *)NULL; sf->no_motor_pos = -1; } if (sf->motor_names != (char **)NULL) { freeArrNZ((void ***)&(sf->motor_names),sf->no_motor_names); sf->motor_names = (char **)NULL; sf->no_motor_names = -1; } if (sf->labels != (char **)NULL) { freeArrNZ((void ***)&(sf->labels),sf->no_labels); sf->labels = (char **)NULL; sf->no_labels = -1; } if (sf->data_info != (long *)NULL) { freeArrNZ((void ***)&(sf->data),sf->data_info[ROW]); free(sf->data_info); sf->data = (double **)NULL; sf->data_info = (long *)NULL; } } DllExport void SfShow (SpecFile *sf) { printf("<Showing Info> - specfile: %s\n",sf->sfname); printf(" - no_scans: %ld\n",sf->no_scans); printf(" - current: %ld\n",((SpecScan*)sf->current->contents)->scan_no); printf(" Cursor:\n"); printf(" - no_scans: %ld\n",sf->cursor.scanno); printf(" - bytecnt: %ld\n",sf->cursor.bytecnt); } DllExport void SfShowScan (SpecFile *sf, long index) { int error; SpecScan *scan; printf("<Showing Info> - specfile: %s / idx %ld\n",sf->sfname,index); if (sfSetCurrent(sf,index,&error) == -1) { printf("Cannot get scan index %ld\n",index); } scan = (SpecScan *) sf->current->contents; printf(" - index: %ld\n",scan->index); printf(" - scan_no: %ld\n",scan->scan_no); printf(" - offset: %ld\n",scan->offset); printf(" - data_offset: %ld\n",scan->data_offset); } ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/sfwrite.c����������������������������������������������0000644�0000000�0000000�00000042313�14741736366�021047� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 1995-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ############################################################################*/ /************************************************************************ * * File: sfwrite.c * * Project: SpecFile library * * Description: Functions for scan output * * Author: V.Rey * * Date: $Date: 2003/09/12 13:20:35 $ * ************************************************************************/ /* * Log: $Log: sfwrite.c,v $ * Log: Revision 1.1 2003/09/12 13:20:35 rey * Log: Initial revision * Log: * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Revision 2.1 2000/07/31 19:05:14 19:05:14 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 2.0 2000/04/13 13:28:54 13:28:54 rey (Vicente Rey-Bakaikoa) * New version of the library. Complete rewrite * Adds support for MCA */ #include <SpecFile.h> #include <SpecFileP.h> #ifndef WIN32 #include <unistd.h> #endif /* * Declarations */ DllExport SpecFileOut *SfoInit ( SpecFile *sf, int *error ); DllExport void SfoClose ( SpecFileOut *sfo ); DllExport long SfoSelectAll ( SpecFileOut *sfo, int *error ); DllExport long SfoSelectOne ( SpecFileOut *sfo, long index, int *error ); DllExport long SfoSelect ( SpecFileOut *sfo, long *list, int *error ); DllExport long SfoSelectRange ( SpecFileOut *sfo, long begin, long end, int *error ); DllExport long SfoRemoveOne ( SpecFileOut *sfo, long index, int *error ); DllExport long SfoRemove ( SpecFileOut *sfo, long *list, int *error ); DllExport long SfoRemoveRange ( SpecFileOut *sfo, long begin, long end, int *error ); DllExport long SfoRemoveAll ( SpecFileOut *sfo, int *error ); DllExport long SfoWrite ( SpecFileOut *sfo, char *name, int *error ); DllExport long SfoGetList ( SpecFileOut *sfo, long **list, int *error ); /* * Internal functions */ static int sfoWriteOne(SpecFileOut *sfo,int output, long index,int *error); /********************************************************************* * Function: SpecFileOut *SfoInit( sf, error ) * * Description: Initializes a SpecFileOut structure: * - pointer to SpecFile * - list of scans to be copied * - size of this list * - last written file header * Parameters: * Input : (1) SpecFile pointer * * Output: * (2) error number * Returns: * Pointer to the initialized SpecFileOut structure. * NULL in case of an error. * * Possible errors: * SF_ERR_MEMOREY_ALLOC * * Remark: This function MUST be the FIRST called before * any other WRITE function is called ! * *********************************************************************/ DllExport SpecFileOut * SfoInit( SpecFile *sf, int *error ) { SpecFileOut *sfo; /* * Alloc memory */ sfo = (SpecFileOut *) malloc ( sizeof(SpecFileOut) ); if ( sfo == (SpecFileOut *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( (SpecFileOut *)NULL ); } /* * Initialize */ sfo->sf = sf; sfo->list = (long *)NULL; sfo->list_size = 0; sfo->file_header = -1; return( sfo ); } /********************************************************************* * Function: long SfoGetList( sfo, list, error ) * * Description: Makes a copy of the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * * Output: (2) Copy of the output list of spec scan indices. * (3) error code * Returns: * Number of scan indices in the output list , * ( 0 ) => list empty( (long *)NULL ) ), no errors * ( -1 ) in case of an error. * * Possible errors: * SF_ERR_MEMOREY_ALLOC * * Remark: The memory allocated should be freed by the application * *********************************************************************/ DllExport long SfoGetList( SpecFileOut *sfo, long **list, int *error ) { long i; *list = (long *)NULL; if ( sfo->list_size > 0 ) { *list = (long *)malloc( sfo->list_size * sizeof(long) ); if ( *list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } for ( i=0 ; i < sfo->list_size ; i++ ) { (*list)[i] = sfo->list[i]; } } else *list = (long *)NULL; return( sfo->list_size ); } /********************************************************************* * Function: long SfoSelectOne( sfo, index, error ) * * Description: Adds one scan index to the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * (2) Scan index * Output: * (3) error code * Returns: * ( -1 ) => error * Number of scan indices in the SpecFileOut list. * * Possible errors: * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport long SfoSelectOne( SpecFileOut *sfo, long index, int *error ) { long i; /* * Check if index exists or if it's out of range. */ if ( index > sfo->sf->no_scans || index < 1 ) { return( sfo->list_size ); } /* * Alloc memory for the new index and add it to the list. */ if ( sfo->list == (long *)NULL ) { sfo->list = (long *)malloc( sizeof(long) ); if ( sfo->list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } sfo->list_size = 1; } else { /* * Is the new index already in list ? */ for ( i=0 ; i<sfo->list_size ; i++ ) if ( index == sfo->list[i] ) return( sfo->list_size ); sfo->list = realloc( sfo->list, ++(sfo->list_size) * sizeof(long) ); if ( sfo->list == (long *)NULL ) { *error = SF_ERR_MEMORY_ALLOC; sfo->list_size = 0; return( -1 ); } } sfo->list[sfo->list_size-1] = index; printf("Adding scan %ld\n",index); return( sfo->list_size ); } /********************************************************************* * Function: long SfoSelect( sfo, list, error ) * * Description: Adds several scan indices to the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * (2) List scan indices (!The last element * MUST be a '0' !) * Output: * (3) error code * Returns: * ( -1 ) => error * Number of scan indices in the SpecFileOut list. * * Possible errors: * SF_ERR_MEMORY_ALLOC | => SfoSelectOne() * *********************************************************************/ DllExport long SfoSelect( SpecFileOut *sfo, long *list, int *error ) { for ( ; *list != 0 ; list++ ) { if ( SfoSelectOne( sfo, *list , error ) < 0 ) return( -1 ); } return( sfo->list_size ); } /********************************************************************* * Function: long SfoSelectRange( sfo, begin, end, error ) * * Description: Adds scan indices between 'begin' and 'end' * to the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * (2) First ... * (3) Last index to be added * Output: * (4) error code * Returns: * ( -1 ) => error * Number of scan indices in the SpecFileOut list. * * Possible errors: * SF_ERR_MEMORY_ALLOC | => SfoSelectOne() * *********************************************************************/ DllExport long SfoSelectRange( SpecFileOut *sfo, long begin, long end, int *error ) { long i; if ( begin > end ) { i=begin; begin = end; end = i; } if ( begin < 1 || end > sfo->sf->no_scans ) { return( sfo->list_size ); } for ( i=begin ; i<=end ; i++ ) { if ( SfoSelectOne( sfo, i , error ) < 0 ) return( -1 ); } return( sfo->list_size ); } /********************************************************************* * Function: long SfoSelectAll( sfo, error ) * * Description: Writes all scan indices in the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOutput pointer * Output: (2) error number * Returns: * ( -1 ) => error * Number of scan indices in the SpecFileOut list. * * Possible errors: * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport long SfoSelectAll( SpecFileOut *sfo, int *error ) { long i; if ( sfo->sf->no_scans > 0 ) { for ( i=1 ; i<=sfo->sf->no_scans ; i++ ) { if ( SfoSelectOne( sfo, i , error ) < 0 ) return( -1 ); } } return( sfo->list_size ); } /********************************************************************* * Function: long SfoRemoveOne( sfo, index, error ) * * Description: Removes one scan index from the SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * (2) Scan index to be removed * Output: * (3) error code * Returns: * Number of scans left , * ( 0 ) => list empty( (long *)NULL ) ), no errors * ( -1 ) => error. * * Possible errors: * SF_ERR_MEMORY_ALLOC * *********************************************************************/ DllExport long SfoRemoveOne( SpecFileOut *sfo, long index, int *error ) { long i; int found = 0; /* * Look for scan index and delete. */ for ( i=0 ; i < (sfo->list_size - found) ; i++ ) { if ( sfo->list[i] == index ) found = 1; if ( found ) sfo->list[i]=sfo->list[i+1]; } /* * Free unused memory */ if ( found ) { (sfo->list_size)--; sfo->list = realloc( sfo->list, sfo->list_size * sizeof(long) ); if ( sfo->list == (long *)NULL && sfo->list_size != 0 ) { *error = SF_ERR_MEMORY_ALLOC; return( -1 ); } } return( sfo->list_size ); } /********************************************************************* * Function: long SfoRemove( sfo, list, error ) * * Description: Removes several scans indices from the * SpecFileOut list. * * Parameters: * Input : (1) SpecFileOut pointer * (2) List of scan indices to be removed * ( !!! The last element MUST be a '0' !!! ) * Output: * (3) error code * Returns: * Number of scan indices left , * ( 0 ) => list empty( (long *)NULL ) ), no errors * ( -1 ) => error. * * Possible errors: * SF_ERR_MEMORY_ALLOC | => SfoRemoveOne() * *********************************************************************/ DllExport long SfoRemove( SpecFileOut *sfo, long *list, int *error ) { for ( ; *list != 0 ; list++ ) { if ( SfoRemoveOne( sfo, *list , error ) < 0 ) return( -1 ); } return( sfo->list_size ); } /********************************************************************* * Function: long SfoRemoveRange( sfo, begin, end, error ) * * Description: Removes scans indices from 'begin' to 'end' * from the SpecFileOut list. * * Parameters: * Input : * (1) SpecFileOut pointer * (2) First ... * (3) Last index to be removed * Output: * (4) error code * Returns: * Number of scan indices left , * ( 0 ) => list empty( (long *)NULL ) ), no errors * ( -1 ) => error. * * Possible errors: * SF_ERR_MEMORY_ALLOC | => SfoRemoveOne() * *********************************************************************/ DllExport long SfoRemoveRange( SpecFileOut *sfo, long begin, long end, int *error ) { long i; if ( begin > end ) { i=begin; begin = end; end = i; } if ( begin < 1 || end > sfo->sf->no_scans ) { return( sfo->list_size ); } for ( i=begin ; i <= end ; i++ ) { if ( SfoRemoveOne( sfo, i, error ) < 0 ) return( -1 ); } return( sfo->list_size ); } /********************************************************************* * Function: long SfoRemoveAll( sfo, error ) * * Description: Removes all scans indices * from the SpecFileOut list. * * Parameters: * Input : * (1) SpecFileOut pointer * Output: * (2) error code * Returns: * ( 0 ) => OK * *********************************************************************/ DllExport long SfoRemoveAll( SpecFileOut *sfo, int *error ) { free( sfo->list ); sfo->list = (long *)NULL; sfo->list_size = 0; sfo->file_header = -1; return( 0 ); } /********************************************************************* * Function: int SfoWrite( sfo, name, error ) * * Description: Writes (appends) SpecScans specified in the sfo->list * in the file 'name'. Related file headers are copied * too. * Parameters: * Input : (1) SpecFileOut pointer * (2) Output file name * Output: * (3) error number * Returns: * Number of written scans, * (-1 ) => Errors occured * Possible errors: * SF_ERR_FILE_WRITE | => cpyBlock() * SF_ERR_FILE_READ * SF_ERR_FILE_OPEN * SF_ERR_FILE_CLOSE * *********************************************************************/ DllExport long SfoWrite( SpecFileOut *sfo, char *name, int *error ) { int output; long i; if ( sfo == (SpecFileOut *)NULL || sfo->list_size<1 ) return( 0 ); /* * Open file */ if ( (output = open(name, O_CREAT | O_RDWR | O_APPEND, SF_UMASK )) == (int)NULL ) { *error = SF_ERR_FILE_OPEN; return( -1 ); } for ( i=0 ; i < sfo->list_size ; i++ ) sfoWriteOne(sfo,output,sfo->list[i],error); if ( close( output ) ) { *error = SF_ERR_FILE_CLOSE; return( -1 ); } return( sfo->list_size ); } /********************************************************************* * Function: int SfoClose( sfo ) * * Description: Frees all memory used by * SpecFileOut structure. * Parameters: * Input : (1) SpecFileOut pointer * * Remark: This function should be called after all * writing operations. * *********************************************************************/ DllExport void SfoClose( SpecFileOut *sfo ) { /* * Free memory. */ free( sfo->list ); free( sfo ); } static int sfoWriteOne(SpecFileOut *sfo,int output,long index,int *error) { long file_header,size; SpecFile *sf; if ( sfSetCurrent(sfo->sf,index,error) == -1 ) { *error = SF_ERR_SCAN_NOT_FOUND; return(-1); } /* * File header */ sf = sfo->sf; file_header = ((SpecScan *)sf->current->contents)->size; if (file_header != -1 && file_header != sfo->file_header ) { printf("Writing %ld bytes\n",sf->filebuffersize); write(output, (void *) sf->filebuffer, sf->filebuffersize); sfo->file_header = file_header; } /* * write scan */ size = ((SpecScan *)sf->current->contents)->size; if ( write(output,(void *) sf->scanbuffer,size) == -1 ) { *error = SF_ERR_FILE_WRITE; return(-1); } return(0); } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/specfile_py.c������������������������������������������0000644�0000000�0000000�00000111026�14741736366�021664� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This file is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # #############################################################################*/ /************************************************************************ * * File: specfile_py.c * * Project: SpecFile library * * Description: python interface to Specfile library * * Author: V.Rey * * Date: $Date: 2005/05/25 13:30:16 $ * ************************************************************************/ /* * Log: $Log: specfile_py.c,v $ * Log: Revision 1.9 2005/05/25 13:30:16 sole * Log: Enormous memory leak corrected * Log: * Log: Revision 1.8 2005/05/18 10:47:30 sole * Log: Problem with ifdef solved * Log: * Log: Revision 1.7 2004/05/21 12:33:02 sole * Log: Working windows version * Log: * Log: Revision 1.6 2003/03/06 17:02:09 sole * Log: Check for number of lines less than 0 * Log: (At most should be -1, but I let it as less than 0) * Log: * Log: Revision 1.5 2002/11/15 10:11:19 sole * Log: Memory leak corrected in scandata_data * Log: * Log: Revision 1.4 2002/11/15 09:29:23 sole * Log: PyArray_Return put back * Log: Several memory leaks removed. * Log: * Log: Revision 1.3 2002/11/12 13:11:29 sole * Log: <= -1 replaced by == -1 * Log: * * New command for Scandata: motorpos() * interfaces with the library function * SfMotorPosByName() * * Log: Revision 3.0 2000/12/20 14:17:19 rey * Log: Python version available * Log: * Log: Revision 2.2 2000/12/20 12:12:08 rey * Log: bug corrected with SfAllMotors * Log: * Revision 2.1 2000/07/31 19:03:11 19:03:11 rey (Vicente Rey-Bakaikoa) * SfUpdate and bug corrected in ReadIndex * * Revision 1.5 2000/02/16 13:58:27 13:58:27 rey (Vicente Rey-Bakaikoa) * Version before major changes for MCA support * * Revision 1.1 99/10/19 15:28:32 15:28:32 rey (Vicente Rey-Bakaikoa) * Initial revision * */ /************************************************************************ Copyright 1999 by European Synchrotron Radiation Facility, Grenoble, France ---------- All Rights Reserved ---------- Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the names of European Synchrotron Radiation Facility or ESRF or BLISS not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. EUROPEAN SYNCHROTRON RADIATION FACILITY DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL EUROPEAN SYNCHROTRON RADIATION FACILITY OR ESRF BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. **************************************************************************/ #ifdef WIN32 #ifdef _DEBUG #undef _DEBUG #include <Python.h> #define _DEBUG #else #include <Python.h> #endif #endif #ifndef WIN32 #include <Python.h> #endif /* adding next line may raise errors ... #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <numpy/arrayobject.h> #include <SpecFile.h> /* * Specfile exceptions */ static PyObject *ErrorObject; /* except specfile.error */ #define onError(message) \ {PyErr_SetString (ErrorObject,message); return NULL; } /* * Data types */ typedef struct { PyObject_HEAD SpecFile *sf; char *name; short length; } specfileobject; typedef struct { PyObject_HEAD specfileobject *file; long index; long cols; } scandataobject; staticforward PyTypeObject Specfiletype; staticforward PyTypeObject Scandatatype; #define is_specfileobject(v) ((v)->type == &Specfiletype) #define is_scandataobject(v) ((v)->type == &Scandatatype) /* * Function prototypes */ /* * Utility function */ static char * compList(long *nolist,long howmany); /* * Specfile methods */ static PyObject * specfile_list (PyObject *self,PyObject *args); static PyObject * specfile_allmotors (PyObject *self,PyObject *args); static PyObject * specfile_title (PyObject *self,PyObject *args); static PyObject * specfile_user (PyObject *self,PyObject *args); static PyObject * specfile_date (PyObject *self,PyObject *args); static PyObject * specfile_epoch (PyObject *self,PyObject *args); static PyObject * specfile_update (PyObject *self,PyObject *args); static PyObject * specfile_scanno (PyObject *self,PyObject *args); static PyObject * specfile_select (PyObject *self,PyObject *args); static PyObject * specfile_show (PyObject *self,PyObject *args); static struct PyMethodDef specfile_methods[] = { {"list", specfile_list, 1}, {"allmotors", specfile_allmotors, 1}, {"title", specfile_title, 1}, {"user", specfile_user, 1}, {"date", specfile_date, 1}, {"epoch", specfile_epoch, 1}, {"update", specfile_update, 1}, {"scanno", specfile_scanno, 1}, {"select", specfile_select, 1}, {"show", specfile_show, 1}, { NULL, NULL} }; /* * Specfile python basic operations */ static PyObject * specfile_open (char *filename); /* create */ static PyObject * specfile_close (PyObject *self); /* dealloc */ static Py_ssize_t specfile_noscans(PyObject *self); /* length */ static PyObject * specfile_scan (PyObject *self, Py_ssize_t index); /* item */ static int specfile_print (PyObject *self,FILE *fp, int flags); /* print*/ static PyObject * specfile_getattr(PyObject *self,char *name); /* getattr */ /* * Scandata methods */ static PyObject * scandata_data (PyObject *self,PyObject *args); static PyObject * scandata_dataline (PyObject *self,PyObject *args); static PyObject * scandata_datacol (PyObject *self,PyObject *args); static PyObject * scandata_alllabels (PyObject *self,PyObject *args); static PyObject * scandata_allmotors (PyObject *self,PyObject *args); static PyObject * scandata_allmotorpos (PyObject *self,PyObject *args); static PyObject * scandata_motorpos (PyObject *self,PyObject *args); static PyObject * scandata_hkl (PyObject *self,PyObject *args); static PyObject * scandata_number (PyObject *self,PyObject *args); static PyObject * scandata_order (PyObject *self,PyObject *args); static PyObject * scandata_command (PyObject *self,PyObject *args); static PyObject * scandata_date (PyObject *self,PyObject *args); static PyObject * scandata_cols (PyObject *self,PyObject *args); static PyObject * scandata_lines (PyObject *self,PyObject *args); static PyObject * scandata_header (PyObject *self,PyObject *args); static PyObject * scandata_fileheader (PyObject *self,PyObject *args); static PyObject * scandata_nbmca (PyObject *self,PyObject *args); static PyObject * scandata_mca (PyObject *self,PyObject *args); static PyObject * scandata_show (PyObject *self,PyObject *args); static struct PyMethodDef scandata_methods[] = { {"data", scandata_data, 1}, {"dataline", scandata_dataline, 1}, {"datacol", scandata_datacol, 1}, {"alllabels", scandata_alllabels, 1}, {"allmotors", scandata_allmotors, 1}, {"allmotorpos", scandata_allmotorpos, 1}, {"motorpos", scandata_motorpos, 1}, {"hkl", scandata_hkl, 1}, {"number", scandata_number, 1}, {"order", scandata_order, 1}, {"command", scandata_command, 1}, {"date", scandata_date, 1}, {"cols", scandata_cols, 1}, {"lines", scandata_lines, 1}, {"header", scandata_header, 1}, {"fileheader", scandata_fileheader, 1}, {"nbmca", scandata_nbmca, 1}, {"mca", scandata_mca, 1}, {"show", scandata_show, 1}, { NULL, NULL} }; /* * Scandata python basic operation */ static PyObject * scandata_new (void); /* create */ static PyObject * scandata_free (PyObject *self); /* dealloc */ static Py_ssize_t scandata_size (PyObject *self); /* length */ static PyObject * scandata_col (PyObject *self, Py_ssize_t index); /* item */ static PyObject * scandata_slice (PyObject *self, Py_ssize_t lidx, Py_ssize_t hidx); /* slice */ static int scandata_print (PyObject *self,FILE *fp, int flags); /* print*/ static PyObject * scandata_getattr(PyObject *self,char *name); /* getattr */ /* * module init */ #ifndef WIN32 void initspecfile(void); #endif /* * Creators */ static PyObject *specfiletype_new(PyObject *self,PyObject *args); static PyObject *scandatatype_new(PyObject *self,PyObject *args); /* * Specfile class * *************************************************/ /* * Instance methods */ static PyObject * specfile_list(PyObject *self,PyObject *args) { long *scanlist; long no_scans; int error = 0; char *strlist; PyObject *pstr; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; no_scans = SfScanNo(v->sf); scanlist = SfList(v->sf,&error); if ( scanlist == NULL || no_scans == 0) { PyErr_SetString(PyExc_TypeError,"Cannot get scan list for file"); return NULL; } else { strlist = (char *)compList(scanlist,no_scans); pstr = Py_BuildValue("s",strlist); free(scanlist); return pstr; } } static PyObject * specfile_allmotors(PyObject *self,PyObject *args) { int error,i; char **motornames; long nb_motors; PyObject *t,*x; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotors(v->sf,1,&motornames,&error); if ( nb_motors == -1 ) onError("cannot get motor names for specfile"); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyString_FromString(motornames[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * specfile_title(PyObject *self,PyObject *args) { int error; char *title; PyObject *pyo; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; title = SfTitle(v->sf,1,&error); if (title == NULL) onError("cannot get title for specfile") pyo = Py_BuildValue("s",title); free(title); return pyo; } static PyObject * specfile_user(PyObject *self,PyObject *args) { int error; char *user; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; user = SfUser(v->sf,1,&error); if (user != NULL) { free(user); return Py_BuildValue("s",user); } else { onError("cannot get user for specfile"); } } static PyObject * specfile_date(PyObject *self,PyObject *args) { int error; char *date; PyObject *pyo; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; date = SfFileDate(v->sf,1,&error); if (date == NULL) onError("cannot get data for specfile") pyo = Py_BuildValue("s",date); free(date); return pyo; } static PyObject * specfile_epoch(PyObject *self,PyObject *args) { int error; long epoch; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; epoch = SfEpoch(v->sf,1,&error); if (epoch != -1) { return Py_BuildValue("l",epoch); } else { onError("cannot get epoch for specfile"); } } static PyObject * specfile_update(PyObject *self,PyObject *args) { int error; short ret; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; ret = SfUpdate(v->sf,&error); if (ret == 1){ v->length = SfScanNo(v->sf); } return(Py_BuildValue("i",ret)); } static PyObject * specfile_scanno(PyObject *self,PyObject *args) { long scanno; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; scanno = v->length; return Py_BuildValue("l",scanno); } static PyObject * specfile_select(PyObject *self,PyObject *args) { int n,number,order,index; char *scanstr; int error; scandataobject *v; specfileobject *f = (specfileobject *)self; if (!PyArg_ParseTuple(args,"s",&scanstr)) { return NULL; } else { n = sscanf(scanstr,"%d.%d",&number,&order); if ( n < 1 || n > 2 ) onError("cannot decode scan number/order"); if ( n == 1) order = 1; } index = SfIndex(f->sf,number,order); if (index == -1 ) onError("scan not found"); v = PyObject_NEW(scandataobject,&Scandatatype); if (v == NULL) return NULL; v->file = f; v->index = index; v->cols = SfNoColumns(f->sf,v->index,&error); Py_INCREF(self); return (PyObject *) v; } static PyObject * specfile_show(PyObject *self,PyObject *args) { specfileobject *f = (specfileobject *)self; SfShow(f->sf); return (Py_BuildValue("l",0)); } /* * Basic specfiletype operations */ static PyObject * specfile_open(char *filename) { /* on x = specfile.Specfile(name) */ specfileobject *self; SpecFile *sf; int error; self = PyObject_NEW(specfileobject,&Specfiletype); if (self == NULL) return NULL; if (( sf = SfOpen(filename,&error)) == NULL ) onError("cannot open file"); self->sf = sf; self->length = SfScanNo(sf); self->name = (char *)strdup(filename); strcpy(self->name,filename); /* Py_INCREF(self); */ return (PyObject *)self; } static PyObject * specfile_close(PyObject *self) { specfileobject *f = (specfileobject *) self; SfClose(f->sf); free(f->name); PyObject_DEL(f); return NULL; } /* * Sequence type methods */ static Py_ssize_t specfile_noscans(PyObject *self) { int no_scans; specfileobject *f = (specfileobject *)self; no_scans = f->length; return (Py_ssize_t) no_scans; } static PyObject * specfile_scan(PyObject *self, Py_ssize_t index) { int error; scandataobject *v; specfileobject *f = (specfileobject *)self; if ( index < 0 || index >= f->length) { PyErr_SetString(PyExc_IndexError,"scan out of bounds"); return NULL; } v = PyObject_NEW(scandataobject,&Scandatatype); if (v == NULL) return NULL; v->file = f; v->index = (int) index+1; v->cols = SfNoColumns(f->sf,v->index,&error); Py_INCREF(self); return (PyObject *) v; } static int specfile_print(PyObject *self,FILE *fp,int flags) { int ok=0; specfileobject *f = (specfileobject *)self; fprintf(fp,"specfile('%s')", f->name); return ok; } static PyObject * specfile_getattr(PyObject *self,char *name) { return Py_FindMethod(specfile_methods,self,name); } /* * Type descriptors */ static PySequenceMethods specfile_as_sequence = { specfile_noscans, /* length len(sf) */ 0, /* concat sf1 + sf2 */ 0, /* repeat sf * n */ specfile_scan, /* item sf[i], in */ 0, /* slice sf[i:j] */ 0, /* asset sf[i] = v */ 0, /* slice ass. sf[i:j] = v */ }; static PyTypeObject Specfiletype = { /* type header */ #ifdef WIN32 PyObject_HEAD_INIT(NULL) #else PyObject_HEAD_INIT(&PyType_Type) #endif 0, "specfile", sizeof(specfileobject), 0, /* standard methods */ (destructor) specfile_close, /* tp-dealloc ref-count = 0 */ (printfunc) specfile_print, /* tp-print print sf */ (getattrfunc) specfile_getattr, /* tp-getattr sf.attr */ (setattrfunc) 0, /* tp-setattr sf.attr = v */ (cmpfunc) 0, /* tp-setattr sf1 > sf2 */ (reprfunc) 0, /* tp-repr 'sf', print sf */ /* type categories */ 0, /* tp as number +,-,.... */ &specfile_as_sequence, /* tp as sequence +,[i],[i:j]...*/ 0, /* tp as mapping [key], len, ...*/ /* more methods */ (hashfunc) 0, /* tp_hash dict(sf) */ /* (binaryfunc) 0, tp_call sf() */ /* (reprfunc) 0, tp_str str(x) */ }; /* end specfile class */ /* begin scandata */ static PyObject * scandata_data(PyObject *self,PyObject *args) { int error; int ret; double **data; long *data_info; int i,j; npy_intp dimensions[2]; SpecFile *sf; int idx,didx; PyArrayObject *r_array; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"") ) onError("wrong arguments for data"); ret = SfData(sf,idx,&data,&data_info,&error); if ( ret == -1 ) onError("cannot read data"); /* printf("DATA: %d rows / %d columns\n", data_info[1], data_info[0]);*/ dimensions[0] = data_info[1]; dimensions[1] = data_info[0]; r_array = (PyArrayObject *)PyArray_SimpleNew(2,dimensions,NPY_DOUBLE); /* * Copy * I should write a specfile function that copies all data in a * single pointer array */ for (i=0;i<dimensions[0];i++) { for (j=0;j<dimensions[1];j++) { didx = j + i * dimensions[1]; ((double *)PyArray_DATA(r_array))[didx] = data[j][i]; } } /* memcpy(array->data,data,PyArray_NBYTES(array)); */ freeArrNZ((void ***)&data,data_info[ROW]); free(data_info); if (data != (double **) NULL) { free(data); } /* return (PyObject *)array; */ return PyArray_Return(r_array); } static PyObject * scandata_dataline(PyObject *self,PyObject *args) { int error; int lineno; npy_intp ret; double *data; PyArrayObject *r_array; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"i",&lineno)) onError("cannot decode arguments for line data"); ret = SfDataLine(sf,idx,lineno,&data,&error); if (ret == -1 ) onError("cannot get data for line"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); memcpy(PyArray_DATA(r_array),data,PyArray_NBYTES(r_array)); return (PyObject *)r_array; } static PyObject * scandata_datacol(PyObject *self,PyObject *args) { int error; int colno; npy_intp ret; char *colname; double *data; PyArrayObject *r_array; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"i",&colno)) { PyErr_Clear() ; if (!PyArg_ParseTuple(args,"s",&colname)) { onError("cannot decode arguments for column data"); } else { ret = SfDataColByName(sf,idx,colname,&data,&error); } } else { ret = SfDataCol(sf,idx,colno,&data,&error); } if (ret == -1 ) onError("cannot get data for column"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if (data != (double *) NULL){ memcpy(PyArray_DATA(r_array),data,PyArray_NBYTES(r_array)); free(data); }else{ /* return an empty array? */ printf("I should return an empty array ...\n"); PyArray_FILLWBYTE(r_array, 0); } return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_alllabels (PyObject *self,PyObject *args) { int error,i; char **labels; long nb_labels; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_labels = SfAllLabels((v->file)->sf,v->index,&labels,&error); t = PyList_New(nb_labels); for ( i = 0 ;i<nb_labels;i++) { x = PyString_FromString(labels[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_allmotors (PyObject *self,PyObject *args) { int error,i; char **motors; long nb_motors; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotors((v->file)->sf,v->index,&motors,&error); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyString_FromString(motors[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_allmotorpos (PyObject *self,PyObject *args) { int error,i; double *motorpos; long nb_motors; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotorPos((v->file)->sf,v->index,&motorpos,&error); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyFloat_FromDouble(motorpos[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_motorpos (PyObject *self,PyObject *args) { char *motorname; int error; double motorpos; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&motorname)) { return NULL; } motorpos = SfMotorPosByName((v->file)->sf,v->index,motorname,&error); if (motorpos != HUGE_VAL) { return Py_BuildValue("f",motorpos); } else { onError("cannot get position for motor"); } } static PyObject * scandata_hkl (PyObject *self,PyObject *args) { int idx,error; double *hkl; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; hkl = SfHKL(sf,idx,&error); if (hkl == NULL) onError("cannot get data for column"); pyo = Py_BuildValue("ddd",hkl[0],hkl[1],hkl[2]); free(hkl); return pyo; } static PyObject * scandata_number (PyObject *self,PyObject *args) { int number,idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; number = SfNumber(sf,idx); return Py_BuildValue("i",number); } static PyObject * scandata_order (PyObject *self,PyObject *args) { int order,idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; order = SfOrder(sf,idx); return Py_BuildValue("i",order); } static PyObject * scandata_command (PyObject *self,PyObject *args) { int idx,error; char *command; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; command = SfCommand(sf,idx,&error); if (command == NULL) onError("cannot get command for scan") pyo = Py_BuildValue("s",command); free(command); return pyo; } static PyObject * scandata_date (PyObject *self,PyObject *args) { int idx,error; char *date; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; date = SfDate(sf,idx,&error); if (date == NULL) onError("cannot get date for scan"); pyo = Py_BuildValue("s",date); free(date); return pyo; } static PyObject * scandata_cols (PyObject *self,PyObject *args) { int cols,idx; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); cols = s->cols; if (cols == -1) onError("cannot get cols for scan"); return Py_BuildValue("l",cols); } static PyObject * scandata_lines (PyObject *self,PyObject *args) { int lines,idx,error; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; lines = SfNoDataLines(sf,idx,&error); /*if (lines == -1){*/ if (lines < 0){ onError("cannot get lines for scan"); lines=0; } return Py_BuildValue("l",lines); } static PyObject * scandata_fileheader (PyObject *self,PyObject *args) { int i,no_lines,idx,error; char **lines; char *searchstr; PyObject *t,*x; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&searchstr)) return NULL; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; no_lines = SfFileHeader(sf,idx,searchstr,&lines,&error); if (no_lines == -1) onError("cannot get lines for scan"); t = PyList_New(no_lines); for ( i = 0 ;i<no_lines;i++) { x = PyString_FromString(lines[i]); PyList_SetItem(t,i,x); } return t; return Py_BuildValue("l",no_lines); } static PyObject * scandata_header (PyObject *self,PyObject *args) { int i,no_lines,idx,error; char **lines; char *searchstr; PyObject *t,*x; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&searchstr)) return NULL; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; no_lines = SfHeader(sf,idx,searchstr,&lines,&error); if (no_lines == -1) onError("cannot get lines for scan"); t = PyList_New(no_lines); for ( i = 0 ;i<no_lines;i++) { x = PyString_FromString(lines[i]); PyList_SetItem(t,i,x); } return t; return Py_BuildValue("l",no_lines); } static PyObject * scandata_nbmca (PyObject *self,PyObject *args) { int nomca,idx,error; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; nomca = SfNoMca(sf,idx,&error); if (nomca == -1) onError("cannot get number of mca for scan"); pyo = Py_BuildValue("l",nomca); return pyo; } static PyObject * scandata_mca (PyObject *self,PyObject *args) { int error; npy_intp ret; long idx,mcano; double *mcadata = NULL; PyArrayObject *r_array; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"l",&mcano)) onError("cannot decode arguments for line data"); idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; ret = SfGetMca(sf,idx,mcano,&mcadata,&error); if (ret == -1) onError("cannot get mca for scan"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if (mcadata != (double *) NULL){ memcpy(PyArray_DATA(r_array),mcadata,PyArray_NBYTES(r_array)); free(mcadata); }else{ printf("I should give back an empty array\n"); } /* return (PyObject *)array; */ return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_show (PyObject *self,PyObject *args) { int idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; SfShowScan(sf,idx); return Py_BuildValue("l",0); } /* * Scandata basic python operations */ static PyObject * scandata_new(void) { /* on x = specfile.Scandata() */ scandataobject *self; self = PyObject_NEW(scandataobject,&Scandatatype); if (self == NULL) return NULL; self->file = NULL; self->index = -1; self->cols = 0; return (PyObject *)self; } static PyObject * scandata_free(PyObject *self) { scandataobject *s =(scandataobject *)self; specfileobject *f = s->file; Py_DECREF((PyObject *)f); PyObject_DEL(self); return NULL; } static Py_ssize_t scandata_size(PyObject *self) { scandataobject *s = (scandataobject *) self; return (Py_ssize_t) s->cols; } static PyObject * scandata_col(PyObject *self, Py_ssize_t index) { int error; npy_intp ret; double *data; PyArrayObject *r_array; SpecFile *sf; int idx,col; scandataobject *s = (scandataobject *) self; if ( index < 0 || index > (s->cols - 1) ) { PyErr_SetString(PyExc_IndexError,"column out of bounds"); return NULL; } sf = (s->file)->sf; idx = s->index; col = (int) (index + 1); ret = SfDataCol(sf,idx,col,&data,&error); if (ret == -1 ) onError("cannot get data for column"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if ( r_array == NULL ) onError("cannot get memory for array data"); if (data != (double *) NULL){ memcpy(PyArray_DATA(r_array),data,PyArray_NBYTES(r_array)); free(data); }else{ /* return an empty array? */ printf("I should return an empty array ...\n"); PyArray_FILLWBYTE(r_array, 0); } /* return (PyObject *)array; */ /* put back the PyArray_Return call instead of the previous line */ return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_slice(PyObject *self, Py_ssize_t ilow, Py_ssize_t ihigh) { return NULL; } static int scandata_print(PyObject *self,FILE *fp,int flags) { int ok=0; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { fprintf(fp,"scandata('empty')"); } else { sf = (s->file)->sf; fprintf(fp,"scandata('source: %s,scan: %d.%d')", (s->file)->name, (int) SfNumber(sf,idx), (int) SfOrder (sf,idx)); } return ok; } static PyObject * scandata_getattr(PyObject *self,char *name) { scandataobject *s = (scandataobject *)self; if (strcmp(name,"file") == 0) { return (PyObject *) s->file; } if (strcmp(name,"index") == 0) { return Py_BuildValue("l",s->index); } return Py_FindMethod(scandata_methods,self,name); } /* * Type descriptors */ static PySequenceMethods scandata_as_sequence = { scandata_size, /* length len(sf) */ 0, /* concat sf1 + sf2 */ 0, /* repeat sf * n */ scandata_col, /* item sf[i], in */ scandata_slice, /* slice sf[i:j] */ 0, /* asset sf[i] = v */ 0, /* slice ass. sf[i:j] = v */ }; static PyTypeObject Scandatatype = { /* type header */ #ifdef WIN32 PyObject_HEAD_INIT(NULL) #else PyObject_HEAD_INIT(&PyType_Type) #endif 0, "scandata", sizeof(scandataobject), 0, /* standard methods */ (destructor) scandata_free, /* tp-dealloc ref-count = 0 */ (printfunc) scandata_print, /* tp-print print sf */ (getattrfunc) scandata_getattr, /* tp-getattr sf.attr */ (setattrfunc) 0, /* tp-setattr sf.attr = v */ (cmpfunc) 0, /* tp-setattr sf1 > sf2 */ (reprfunc) 0, /* tp-repr 'sf', print sf */ /* type categories */ 0, /* tp as number +,-,.... */ &scandata_as_sequence, /* tp as sequence +,[i],[i:j]...*/ 0, /* tp as mapping [key], len, ...*/ /* more methods */ (hashfunc) 0, /* tp_hash dict(sf) */ /* (binaryfunc) 0, tp_call sf() */ /* (reprfunc) 0, tp_str str(x) */ }; /* end scandata */ /* * Class creators */ static struct PyMethodDef specfiletype_methods[] = { {"Specfile", specfiletype_new, 1}, {"Scandata", scandatatype_new, 1}, { NULL, NULL} }; static PyObject * specfiletype_new(self,args) PyObject *self; PyObject *args; { PyObject *ret; char *filename; #ifdef WIN32 PyObject *input; PyObject *bytesObject; if (!PyArg_ParseTuple(args, "O", &input)) { return NULL; } { if (PyUnicode_Check(input)) { bytesObject = PyUnicode_AsMBCSString(input); if (!bytesObject){ onError("Cannot generate String from object name attribute") } #ifndef PY_MINOR_VERSION #define PY_MINOR_VERSION 5 #endif #if PY_MINOR_VERSION > 5 filename = PyBytes_AsString(bytesObject); #else filename = PyString_AsString(bytesObject); #endif }else{ if (!PyArg_ParseTuple(args, "s", &filename)) { return NULL; } } } #else if (!PyArg_ParseTuple(args, "s", &filename)) { return NULL; } #endif ret = (PyObject *)specfile_open(filename); return ret; } static PyObject * scandatatype_new(self,args) PyObject *self; PyObject *args; { PyObject *ret; if (!PyArg_ParseTuple(args,"")) return NULL; ret = (PyObject *)scandata_new(); return ret; } /* * Module init */ DL_EXPORT(void) initspecfile(void) { PyObject *m,*d; Specfiletype.ob_type = &PyType_Type; Scandatatype.ob_type = &PyType_Type; m = Py_InitModule("specfile",specfiletype_methods); /* printf("Loading test specfile module\n");*/ import_array(); d = PyModule_GetDict(m); ErrorObject = Py_BuildValue("s","specfile.error"); PyDict_SetItemString(d,"error",ErrorObject); if (PyErr_Occurred()) Py_FatalError("can't initialize module specfile"); } /* * Utility functions */ static char * compList(long *nolist, long howmany) { long this,colon; char buf[30]; static char str[50000]; char *retstr; if (howmany < 1) { return((char *)NULL);} sprintf(buf,"%d",(int) nolist[0]); *str = '\0'; strcat(str,buf); colon=0; for(this=1;this<howmany;this++) { if ((nolist[this] - nolist[this-1]) == 1) { colon = 1; } else { if (colon) { sprintf(buf,":%d,%d",(int) nolist[this-1],(int) nolist[this]); colon=0; } else { sprintf(buf,",%d",(int) nolist[this]); } strcat(str,buf); } } if (howmany != 1 ) { if (colon) { sprintf(buf,":%d",(int) nolist[howmany-1]); strcat(str,buf); } } retstr = (char *)strdup(str); return(retstr); } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfile/src/specfile_py3.c�����������������������������������������0000644�0000000�0000000�00000102615�14741736366�021753� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This file is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # #############################################################################*/ #include <Python.h> /* adding next line may raise errors ... #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <numpy/arrayobject.h> #include <SpecFile.h> typedef struct { PyObject_HEAD /* Type-specific fields go here. */ SpecFile *sf; char *name; short length; } specfileobject; typedef struct { PyObject_HEAD specfileobject *file; long index; long cols; } scandataobject; static PyObject *SpecfileError; #define onError(message) \ {PyErr_SetString (SpecfileError, message); return NULL; } /*---------------------------*/ /* * Utility function */ static char * compList(long *nolist,long howmany); static PyObject * specfile_close(PyObject *self); /* dealloc */ static Py_ssize_t specfile_noscans(PyObject *self); /* length */ static PyObject * specfile_scan (PyObject *self, Py_ssize_t index); /* item */ static int specfile_print(PyObject *self,FILE *fp, int flags); /* print*/ /* * Specfile methods */ static PyObject * specfile_list (PyObject *self,PyObject *args); static PyObject * specfile_allmotors (PyObject *self,PyObject *args); static PyObject * specfile_title (PyObject *self,PyObject *args); static PyObject * specfile_user (PyObject *self,PyObject *args); static PyObject * specfile_date (PyObject *self,PyObject *args); static PyObject * specfile_epoch (PyObject *self,PyObject *args); static PyObject * specfile_update (PyObject *self,PyObject *args); static PyObject * specfile_scanno (PyObject *self,PyObject *args); static PyObject * specfile_select (PyObject *self,PyObject *args); static PyObject * specfile_show (PyObject *self,PyObject *args); static PyObject * specfile_list(PyObject *self,PyObject *args) { long *scanlist; long no_scans; int error = 0; char *strlist; PyObject *pstr; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; no_scans = SfScanNo(v->sf); scanlist = SfList(v->sf,&error); if ( scanlist == NULL || no_scans == 0) { PyErr_SetString(PyExc_TypeError,"Cannot get scan list for file"); return NULL; } else { strlist = (char *)compList(scanlist,no_scans); pstr = Py_BuildValue("s",strlist); free(scanlist); return pstr; } } static PyObject * specfile_allmotors(PyObject *self,PyObject *args) { int error,i; char **motornames; long nb_motors; PyObject *t,*x; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotors(v->sf,1,&motornames,&error); if ( nb_motors == -1 ) onError("cannot get motor names for specfile"); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyUnicode_FromString(motornames[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * specfile_title(PyObject *self,PyObject *args) { int error; char *title; PyObject *pyo; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; title = SfTitle(v->sf,1,&error); if (title == NULL) onError("cannot get title for specfile") pyo = Py_BuildValue("s",title); free(title); return pyo; } static PyObject * specfile_user(PyObject *self,PyObject *args) { int error; char *user; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; user = SfUser(v->sf,1,&error); if (user != NULL) { free(user); return Py_BuildValue("s",user); } else { onError("cannot get user for specfile"); } } static PyObject * specfile_date(PyObject *self,PyObject *args) { int error; char *date; PyObject *pyo; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; date = SfFileDate(v->sf,1,&error); if (date == NULL) onError("cannot get data for specfile") pyo = Py_BuildValue("s",date); free(date); return pyo; } static PyObject * specfile_epoch(PyObject *self,PyObject *args) { int error; long epoch; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; epoch = SfEpoch(v->sf,1,&error); if (epoch != -1) { return Py_BuildValue("l",epoch); } else { onError("cannot get epoch for specfile"); } } static PyObject * specfile_update(PyObject *self,PyObject *args) { int error; short ret; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; ret = SfUpdate(v->sf,&error); if (ret == 1){ v->length = SfScanNo(v->sf); } return(Py_BuildValue("i",ret)); } static PyObject * specfile_scanno(PyObject *self,PyObject *args) { long scanno; specfileobject *v = (specfileobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; scanno = v->length; return Py_BuildValue("l",scanno); } static PyObject * specfile_show(PyObject *self,PyObject *args) { specfileobject *f = (specfileobject *)self; SfShow(f->sf); return (Py_BuildValue("l",0)); } static struct PyMethodDef specfile_methods[] = { {"list", specfile_list, 1}, {"allmotors", specfile_allmotors, 1}, {"title", specfile_title, 1}, {"user", specfile_user, 1}, {"date", specfile_date, 1}, {"epoch", specfile_epoch, 1}, {"update", specfile_update, 1}, {"scanno", specfile_scanno, 1}, {"select", specfile_select, 1}, {"show", specfile_show, 1}, { NULL, NULL} }; static PySequenceMethods specfile_as_sequence = { specfile_noscans, /* length len(sf) */ 0, /* concat sf1 + sf2 */ 0, /* repeat sf * n */ specfile_scan, /* item sf[i], in */ 0, /* slice sf[i:j] */ 0, /* asset sf[i] = v */ 0, /* slice ass. sf[i:j] = v */ }; static PyTypeObject Specfiletype = { PyVarObject_HEAD_INIT(NULL, 0) "specfile", /* tp_name */ sizeof(specfileobject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)specfile_close,/* tp_dealloc */ (printfunc)specfile_print, /* tp-print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ 0, /* tp_repr */ 0, /* tp_as_number */ &specfile_as_sequence, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "specfile objects", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ specfile_methods, /* tp_methods */ 0, /*specfile_members,*/ /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /*(initproc)specfile_init,*/ /* tp_init */ 0, /* tp_alloc */ 0, /*specfile_new,0/ /* tp_new */ }; /*---------------------------*/ static PyObject * specfile_open(PyObject *self, PyObject *args) /* on x = specfile.Specfile(name) */ { PyObject *input; #ifdef WIN32 PyObject *bytesObject; #endif const char *filename; specfileobject *object; SpecFile *sf; int error; int fd; /* if (!PyArg_ParseTuple(args, "s", &filename)) return NULL; */ #ifdef WIN32 if (!PyArg_ParseTuple(args, "O", &input)) { return NULL; } { bytesObject = PyUnicode_AsMBCSString(input); if (!bytesObject){ onError("Cannot generate String from object name attribute") } filename = PyBytes_AsString(bytesObject); } #else if (!PyArg_ParseTuple(args, "s", &filename)) { return NULL; } #endif Specfiletype.tp_new = PyType_GenericNew; if (PyType_Ready(&Specfiletype) < 0) return NULL; object = (specfileobject *) _PyObject_New(&Specfiletype); if (object == NULL) return NULL; object->sf = NULL; object->name = (char *)strdup(filename); strcpy(object->name, filename); #ifdef WIN32 Py_DECREF(bytesObject); #endif if (( sf = SfOpen((char *) filename, &error)) == NULL ) { Py_DECREF(object); onError("cannot open file"); } object->sf = sf; object->length = (short) SfScanNo(sf); return (PyObject *) object; } static PyObject * specfile_close(PyObject *self) { specfileobject *f; f = (specfileobject *) self; if (f->sf) { SfClose(f->sf); } free(f->name); PyObject_DEL(f); return NULL; } /* * Sequence type methods */ static Py_ssize_t specfile_noscans(PyObject *self) { int no_scans; specfileobject *f; f = (specfileobject *) self; no_scans = f->length; return (Py_ssize_t) no_scans; } static int specfile_print(PyObject *self, FILE *fp, int flags) { int ok=0; specfileobject *f; printf("Called\n"); f = (specfileobject *)self; fprintf(fp, "specfile('%s')", f->name); return ok; } static PyObject * specfile_system(PyObject *self, PyObject *args) { const char *command; int sts; if (!PyArg_ParseTuple(args, "s", &command)) return NULL; sts = system(command); return PyLong_FromLong(sts); } /* end specfile class */ /* * Scandata methods */ static PyObject * scandata_data (PyObject *self,PyObject *args); static PyObject * scandata_dataline (PyObject *self,PyObject *args); static PyObject * scandata_datacol (PyObject *self,PyObject *args); static PyObject * scandata_alllabels (PyObject *self,PyObject *args); static PyObject * scandata_allmotors (PyObject *self,PyObject *args); static PyObject * scandata_allmotorpos (PyObject *self,PyObject *args); static PyObject * scandata_motorpos (PyObject *self,PyObject *args); static PyObject * scandata_hkl (PyObject *self,PyObject *args); static PyObject * scandata_number (PyObject *self,PyObject *args); static PyObject * scandata_order (PyObject *self,PyObject *args); static PyObject * scandata_command (PyObject *self,PyObject *args); static PyObject * scandata_date (PyObject *self,PyObject *args); static PyObject * scandata_cols (PyObject *self,PyObject *args); static PyObject * scandata_lines (PyObject *self,PyObject *args); static PyObject * scandata_header (PyObject *self,PyObject *args); static PyObject * scandata_fileheader (PyObject *self,PyObject *args); static PyObject * scandata_nbmca (PyObject *self,PyObject *args); static PyObject * scandata_mca (PyObject *self,PyObject *args); static PyObject * scandata_show (PyObject *self,PyObject *args); static struct PyMethodDef scandata_methods[] = { {"data", scandata_data, 1}, {"dataline", scandata_dataline, 1}, {"datacol", scandata_datacol, 1}, {"alllabels", scandata_alllabels, 1}, {"allmotors", scandata_allmotors, 1}, {"allmotorpos", scandata_allmotorpos, 1}, {"motorpos", scandata_motorpos, 1}, {"hkl", scandata_hkl, 1}, {"number", scandata_number, 1}, {"order", scandata_order, 1}, {"command", scandata_command, 1}, {"date", scandata_date, 1}, {"cols", scandata_cols, 1}, {"lines", scandata_lines, 1}, {"header", scandata_header, 1}, {"fileheader", scandata_fileheader, 1}, {"nbmca", scandata_nbmca, 1}, {"mca", scandata_mca, 1}, {"show", scandata_show, 1}, { NULL, NULL} }; /* * Scandata python basic operation */ static PyObject * scandata_new (void); /* create */ static PyObject * scandata_free (PyObject *self); /* dealloc */ static Py_ssize_t scandata_size (PyObject *self); /* length */ static PyObject * scandata_col (PyObject *self, Py_ssize_t index); /* item */ static PyObject * scandata_slice (PyObject *self, Py_ssize_t lidx, Py_ssize_t hidx); /* slice */ static int scandata_print (PyObject *self,FILE *fp, int flags); /* print*/ static PyObject * scandata_getattr(PyObject *self,char *name); /* getattr */ static Py_ssize_t scandata_size(PyObject *self) { scandataobject *s = (scandataobject *) self; return (Py_ssize_t) s->cols; } static PyObject * scandata_col(PyObject *self, Py_ssize_t index) { int error; npy_intp ret; double *data; PyArrayObject *r_array; SpecFile *sf; int idx,col; scandataobject *s = (scandataobject *) self; if ( index < 0 || index > (s->cols - 1) ) { PyErr_SetString(PyExc_IndexError,"column out of bounds"); return NULL; } sf = (s->file)->sf; idx = s->index; col = (int) (index + 1); ret = SfDataCol(sf,idx,col,&data,&error); if (ret == -1 ) onError("cannot get data for column"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if ( r_array == NULL ) onError("cannot get memory for array data"); if (data != (double *) NULL){ memcpy(PyArray_DATA(r_array), data, PyArray_NBYTES(r_array)); free(data); }else{ /* return an empty array? */ printf("I should return an empty array ...\n"); PyArray_FILLWBYTE(r_array, 0); } /* return (PyObject *)array; */ /* put back the PyArray_Return call instead of the previous line */ return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_slice(PyObject *self, Py_ssize_t ilow, Py_ssize_t ihigh) { return NULL; } static PyObject * scandata_data(PyObject *self,PyObject *args) { int error; int ret; double **data; long *data_info; int i,j; npy_intp dimensions[2]; SpecFile *sf; int idx,didx; PyArrayObject *r_array; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"") ) onError("wrong arguments for data"); ret = SfData(sf,idx,&data,&data_info,&error); if ( ret == -1 ) onError("cannot read data"); /* printf("DATA: %d rows / %d columns\n", data_info[1], data_info[0]);*/ dimensions[0] = data_info[1]; dimensions[1] = data_info[0]; r_array = (PyArrayObject *)PyArray_SimpleNew(2,dimensions,NPY_DOUBLE); /* * Copy * I should write a specfile function that copies all data in a * single pointer array */ for (i=0;i<dimensions[0];i++) { for (j=0;j<dimensions[1];j++) { didx = j + i * dimensions[1]; ((double *)PyArray_DATA(r_array))[didx] = data[j][i]; } } /* memcpy(array->data,data,PyArray_NBYTES(array)); */ freeArrNZ((void ***)&data,data_info[ROW]); free(data_info); if (data != (double **) NULL) { free(data); } /* return (PyObject *)array; */ return PyArray_Return(r_array); } static PyObject * scandata_dataline(PyObject *self,PyObject *args) { int error; int lineno; npy_intp ret; double *data; PyArrayObject *r_array; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"i",&lineno)) onError("cannot decode arguments for line data"); ret = SfDataLine(sf,idx,lineno,&data,&error); if (ret == -1 ) onError("cannot get data for line"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); memcpy(PyArray_DATA(r_array),data,PyArray_NBYTES(r_array)); return (PyObject *)r_array; } static PyObject * scandata_datacol(PyObject *self,PyObject *args) { int error; int colno; npy_intp ret; char *colname; double *data; PyArrayObject *r_array; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; if (!PyArg_ParseTuple(args,"i",&colno)) { PyErr_Clear() ; if (!PyArg_ParseTuple(args,"s",&colname)) { onError("cannot decode arguments for column data"); } else { ret = SfDataColByName(sf,idx,colname,&data,&error); } } else { ret = SfDataCol(sf,idx,colno,&data,&error); } if (ret == -1 ) onError("cannot get data for column"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if (data != (double *) NULL){ memcpy(PyArray_DATA(r_array),data,PyArray_NBYTES(r_array)); free(data); }else{ /* return an empty array? */ printf("I should return an empty array ...\n"); PyArray_FILLWBYTE(r_array, 0); } return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_alllabels (PyObject *self,PyObject *args) { int error,i; char **labels; long nb_labels; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_labels = SfAllLabels((v->file)->sf,v->index,&labels,&error); t = PyList_New(nb_labels); for ( i = 0 ;i<nb_labels;i++) { x = PyUnicode_FromString(labels[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_allmotors (PyObject *self,PyObject *args) { int error,i; char **motors; long nb_motors; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotors((v->file)->sf,v->index,&motors,&error); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyUnicode_FromString(motors[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_allmotorpos (PyObject *self,PyObject *args) { int error,i; double *motorpos; long nb_motors; PyObject *t,*x; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args, "")) return NULL; nb_motors = SfAllMotorPos((v->file)->sf,v->index,&motorpos,&error); t = PyList_New(nb_motors); for ( i = 0 ;i<nb_motors;i++) { x = PyFloat_FromDouble(motorpos[i]); PyList_SetItem(t,i,x); } return t; } static PyObject * scandata_motorpos (PyObject *self,PyObject *args) { char *motorname; int error; double motorpos; scandataobject *v = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&motorname)) { return NULL; } motorpos = SfMotorPosByName((v->file)->sf,v->index,motorname,&error); if (motorpos != HUGE_VAL) { return Py_BuildValue("f",motorpos); } else { onError("cannot get position for motor"); } } static PyObject * scandata_hkl (PyObject *self,PyObject *args) { int idx,error; double *hkl; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; hkl = SfHKL(sf,idx,&error); if (hkl == NULL) onError("cannot get data for column"); pyo = Py_BuildValue("ddd",hkl[0],hkl[1],hkl[2]); free(hkl); return pyo; } static PyObject * scandata_number (PyObject *self,PyObject *args) { int number,idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; number = SfNumber(sf,idx); return Py_BuildValue("i",number); } static PyObject * scandata_order (PyObject *self,PyObject *args) { int order,idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; sf = (s->file)->sf; idx = s->index; order = SfOrder(sf,idx); return Py_BuildValue("i",order); } static PyObject * scandata_command (PyObject *self,PyObject *args) { int idx,error; char *command; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; command = SfCommand(sf,idx,&error); if (command == NULL) onError("cannot get command for scan") pyo = Py_BuildValue("s",command); free(command); return pyo; } static PyObject * scandata_date (PyObject *self,PyObject *args) { int idx,error; char *date; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; date = SfDate(sf,idx,&error); if (date == NULL) onError("cannot get date for scan"); pyo = Py_BuildValue("s",date); free(date); return pyo; } static PyObject * scandata_cols (PyObject *self,PyObject *args) { int cols,idx; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); cols = s->cols; if (cols == -1) onError("cannot get cols for scan"); return Py_BuildValue("l",cols); } static PyObject * scandata_lines (PyObject *self,PyObject *args) { int lines,idx,error; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; lines = SfNoDataLines(sf,idx,&error); /*if (lines == -1){*/ if (lines < 0){ onError("cannot get lines for scan"); lines=0; } return Py_BuildValue("l",lines); } static PyObject * scandata_fileheader (PyObject *self,PyObject *args) { int i,no_lines,idx,error; char **lines; char *searchstr; PyObject *t,*x; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&searchstr)) return NULL; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; no_lines = SfFileHeader(sf,idx,searchstr,&lines,&error); if (no_lines == -1) onError("cannot get lines for scan"); t = PyList_New(no_lines); for ( i = 0 ;i<no_lines;i++) { x = PyUnicode_FromString(lines[i]); PyList_SetItem(t,i,x); } return t; return Py_BuildValue("l",no_lines); } static PyObject * scandata_header (PyObject *self,PyObject *args) { int i,no_lines,idx,error; char **lines; char *searchstr; PyObject *t,*x; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"s",&searchstr)) return NULL; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; no_lines = SfHeader(sf,idx,searchstr,&lines,&error); if (no_lines == -1) onError("cannot get lines for scan"); t = PyList_New(no_lines); for ( i = 0 ;i<no_lines;i++) { x = PyUnicode_FromString(lines[i]); PyList_SetItem(t,i,x); } return t; return Py_BuildValue("l",no_lines); } static PyObject * scandata_nbmca (PyObject *self,PyObject *args) { int nomca,idx,error; PyObject *pyo; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; nomca = SfNoMca(sf,idx,&error); if (nomca == -1) onError("cannot get number of mca for scan"); pyo = Py_BuildValue("l",nomca); return pyo; } static PyObject * scandata_mca (PyObject *self,PyObject *args) { int error; npy_intp ret; long idx,mcano; double *mcadata = NULL; PyArrayObject *r_array; SpecFile *sf; scandataobject *s = (scandataobject *) self; if (!PyArg_ParseTuple(args,"l",&mcano)) onError("cannot decode arguments for line data"); idx = s->index; if (idx == -1 ) { onError("empty scan data"); } sf = (s->file)->sf; ret = SfGetMca(sf,idx,mcano,&mcadata,&error); if (ret == -1) onError("cannot get mca for scan"); r_array = (PyArrayObject *)PyArray_SimpleNew(1,&ret,NPY_DOUBLE); if (mcadata != (double *) NULL){ memcpy(PyArray_DATA(r_array),mcadata,PyArray_NBYTES(r_array)); free(mcadata); }else{ printf("I should give back an empty array\n"); } /* return (PyObject *)array; */ return PyArray_Return(r_array); /* it does not work for solaris and linux I should check the call to PyErr_Occurred()) in Numeric/Src/arrayobject.c PyArray_Return(array); */ } static PyObject * scandata_show (PyObject *self,PyObject *args) { int idx; SpecFile *sf; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) onError("empty scan data"); sf = (s->file)->sf; SfShowScan(sf,idx); return Py_BuildValue("l",0); } /* * Scandata basic python operations */ static PySequenceMethods scandata_as_sequence = { scandata_size, /* length len(sf) */ 0, /* concat sf1 + sf2 */ 0, /* repeat sf * n */ scandata_col, /* item sf[i], in */ scandata_slice, /* slice sf[i:j] */ 0, /* asset sf[i] = v */ 0, /* slice ass. sf[i:j] = v */ }; static PyTypeObject Scandatatype = { PyVarObject_HEAD_INIT(NULL, 0) "scandata", /* tp_name */ sizeof(scandataobject), /* tp_basicsize */ 0, /* tp_itemsize */ (destructor)scandata_free, /* tp_dealloc */ (printfunc)scandata_print, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ 0, /* tp_repr */ 0, /* tp_as_number */ &scandata_as_sequence, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT, /* tp_flags */ "Scandata objects", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ scandata_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ 0, /* tp_init */ 0, /* tp_alloc */ 0, /* tp_new */ }; static PyObject * specfile_select(PyObject *self, PyObject *args) { int n,number,order,index; char *scanstr; int error; scandataobject *v; specfileobject *f = (specfileobject *)self; if (!PyArg_ParseTuple(args,"s",&scanstr)) { return NULL; } else { n = sscanf(scanstr,"%d.%d",&number,&order); if ( n < 1 || n > 2 ) onError("cannot decode scan number/order"); if ( n == 1) order = 1; } index = SfIndex(f->sf,number,order); if (index == -1 ) onError("scan not found"); Scandatatype.tp_new = PyType_GenericNew; if (PyType_Ready(&Scandatatype) < 0) return NULL; v = (scandataobject *) _PyObject_New(&Scandatatype); if (v == NULL) return NULL; v->file = f; v->index = index; v->cols = SfNoColumns(f->sf, v->index,&error); /* increment reference to Specfile instance */ Py_INCREF(self); return (PyObject *) v; } static PyObject * specfile_scan(PyObject *self, Py_ssize_t index) { int error; scandataobject *v; specfileobject *f; f = (specfileobject *) self; if ( index < 0 || index >= f->length) { PyErr_SetString(PyExc_IndexError,"scan out of bounds"); return NULL; } Scandatatype.tp_new = PyType_GenericNew; if (PyType_Ready(&Scandatatype) < 0) return NULL; v = (scandataobject *) _PyObject_New(&Scandatatype); if (v == NULL) return NULL; v->file = f; v->index = (int) index+1; v->cols = SfNoColumns(f->sf,v->index,&error); Py_INCREF(self); return (PyObject *) v; } static PyObject * scandata_free(PyObject *self) { scandataobject *s =(scandataobject *)self; specfileobject *f; f = s->file; Py_DECREF((PyObject *)f); PyObject_DEL(self); return NULL; } static int scandata_print(PyObject *self,FILE *fp,int flags) { int ok=0; SpecFile *sf; int idx; scandataobject *s = (scandataobject *) self; idx = s->index; if (idx == -1 ) { fprintf(fp,"scandata('empty')"); } else { sf = (s->file)->sf; fprintf(fp,"scandata('source: %s,scan: %d.%d')", (s->file)->name, (int) SfNumber(sf,idx), (int) SfOrder (sf,idx)); } return ok; } /*--------------------------------------------------*/ static PyMethodDef SpecfileMethods[] = { {"Specfile", specfile_open, METH_VARARGS, "Open a Specfile instance."}, {"system", specfile_system, METH_VARARGS, "Execute a shell command."}, {NULL, NULL, 0, NULL} /* Sentinel */ }; static struct PyModuleDef specfilemodule = { PyModuleDef_HEAD_INIT, "specfile", /* name of module */ NULL, /*spam_doc,*/ /* module documentation, may be NULL */ -1, /* size of per-interpreter state of the module, or -1 if the module keeps state in global variables. */ SpecfileMethods }; PyMODINIT_FUNC PyInit_specfile(void) { PyObject *m; m = PyModule_Create(&specfilemodule); if (m == NULL) return NULL; import_array(); SpecfileError = PyErr_NewException("specfile.error", NULL, NULL); Py_INCREF(SpecfileError); PyModule_AddObject(m, "error", SpecfileError); return m; } /* * Utility functions */ static char * compList(long *nolist,long howmany) { long this,colon; char buf[30]; static char str[50000]; char *retstr; if (howmany < 1) { return((char *)NULL);} sprintf(buf,"%d",(int) nolist[0]); *str = '\0'; strcat(str,buf); colon=0; for(this=1;this<howmany;this++) { if ((nolist[this] - nolist[this-1]) == 1) { colon = 1; } else { if (colon) { sprintf(buf,":%d,%d",(int) nolist[this-1],(int) nolist[this]); colon=0; } else { sprintf(buf,",%d",(int) nolist[this]); } strcat(str,buf); } } if (howmany != 1 ) { if (colon) { sprintf(buf,":%d",(int) nolist[howmany-1]); strcat(str,buf); } } retstr = (char *)strdup(str); return(retstr); } �������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/specfilewrapper.py��������������������������������������������������0000644�0000000�0000000�00000065664�14741736366�020422� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy import re import logging from PyMca5.PyMcaIO import specfile from PyMca5.PyMcaIO import Fit2DChiFileParser from PyMca5.PyMcaIO import APSMEDFileParser from PyMca5.PyMcaIO import SRSFileParser from PyMca5.PyMcaIO import BAXSCSVFileParser from PyMca5.PyMcaIO import OlympusCSVFileParser from PyMca5.PyMcaIO import ThermoEMSFileParser from PyMca5.PyMcaIO import JcampFileParser from PyMca5.PyMcaIO import BlissSpecFile _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaIO import ArtaxFileParser SPX = True except Exception: _logger.info("specfilewrapper cannot import ArtaxFileParser") SPX = False if sys.version >= '2.6': def safe_str(bytesObject): try: return str(bytesObject, 'utf-8') except UnicodeDecodeError: try: return str(bytesObject, 'latin-1') except Exception: try: return str(bytesObject, 'utf-16') except Exception: return str(bytesObject) else: def safe_str(*var, **kw): return str(var[0]) #python 2.5 does not have bytes function def bytes(*var, **kw): return var[0] def Specfile(filename): if BlissSpecFile.isBlissSpecFile(filename): return BlissSpecFile.BlissSpecFile(filename) if sys.version_info < (3, 0): f = open(filename) else: f = open(filename, 'r', errors="ignore") line0 = f.readline() if filename.upper().endswith('DTA'): #TwinMic single column file line = line0 * 1 line = line.replace('\r','') line = line.replace('\n','') line = line.replace('\t',' ') s = line.split(' ') if len(s) == 2: if len(s[-1]) == 0: try: float(s[0]) f.close() output = specfilewrapper(filename, dta=True) return output except Exception: #try to read in other way pass # this piece of code checks if we deal with a SPEC file # Prior to any data, all lines have to be either empty or starting # by the hash character. line = line0 while(len(line)): if len(line) > 1: if line[0:2] == '#S': if ('#SIGNALTYPE' in line) or \ ('#SPECTRUM' in line): line = "" break elif line[0] not in ['#', ' ', '\r']: line = "" break try: line = f.readline() except Exception: line = "" break f.close() # end of specfile identification amptek = False qxas = False if len(line): #it is a Specfile _logger.debug("This looks as a specfile") output=specfile.Specfile(filename) elif SPX and ArtaxFileParser.isArtaxFile(filename): _logger.debug("This looks as an Artax file") output = ArtaxFileParser.ArtaxFileParser(filename) else: _logger.debug("this does not look as a specfile") if len(line0) > 7: if line0.startswith('$SPEC_ID') or\ line0.startswith('$DATE_MEA') or\ line0.startswith('$MEAS_TIM') or\ line0.startswith('$Core_ID') or\ line0.startswith('$Section_ID'): qxas = True if (not qxas) and line0.startswith('<<'): amptek = True if (not qxas) and (not amptek) and Fit2DChiFileParser.isFit2DChiFile(filename): return Fit2DChiFileParser.Fit2DChiFileParser(filename) if (not qxas) and (not amptek) and APSMEDFileParser.isAPSMEDFile(filename): return APSMEDFileParser.APSMEDFileParser(filename) if (not qxas) and (not amptek) and SRSFileParser.isSRSFile(filename): _logger.debug("SRSFileParser") return SRSFileParser.SRSFileParser(filename) if (not qxas) and (not amptek) and BAXSCSVFileParser.isBAXSCSVFile(filename): _logger.debug("BAXSCSVFileParser") return BAXSCSVFileParser.BAXSCSVFileParser(filename) if (not qxas) and (not amptek) and \ OlympusCSVFileParser.isOlympusCSVFile(filename): _logger.debug("OlympusCSVFileParser") return OlympusCSVFileParser.OlympusCSVFileParser(filename) if (not qxas) and (not amptek) and \ ThermoEMSFileParser.isThermoEMSFile(filename): _logger.debug("ThermoEMSFileParser") return ThermoEMSFileParser.ThermoEMSFileParser(filename) if (not qxas) and (not amptek) and \ JcampFileParser.isJcampFile(filename): _logger.debug("JcampFileParser") return JcampFileParser.JcampFileParser(filename) output = specfilewrapper(filename, amptek=amptek, qxas=qxas) return output class specfilewrapper(object): def __init__(self, filename, amptek=None, qxas=None, dta=None): if amptek is None: amptek = False if qxas is None: qxas = False if dta is None: dta = False self.amptek = amptek self.qxas = qxas self.dta = dta self.ketek = None self.header = [] if self.dta: #TwinMic .dta files with only one spectrum if 0: f = open(filename, 'rb') raw_content = f.read() f.close() expr = r'([-+]?\d+)\t\r\n' self.data = [float(i) for i in re.split(expr,raw_content) if i != ''] self.data = numpy.array(self.data, numpy.float32) else: self.data = numpy.fromfile(filename, dtype=numpy.float32, sep='\t\r\n') self.header = ['#S1 %s' % os.path.basename(filename)] self.data.shape = -1, 1 self.scandata=[myscandata(self.data,'MCA','1.1', scanheader=self.header)] return if self.qxas: f = open(filename) else: f = BufferedFile(filename) line = f.readline() outdata = [] ncol0 = -1 nlines= 0 if amptek: if sys.version < '3.0': while "<<DATA>>" not in line: self.header.append(line.replace("\n","")) line = f.readline() else: while bytes("<<DATA>>", 'utf-8') not in line: self.header.append(safe_str(line.replace(bytes("\n", 'utf-8'), bytes("", 'utf-8')))) line = f.readline() elif qxas: line.replace("\n","") line.replace("\x00","") self._qxasHeader = {} self._qxasHeader['S'] = '#S1 '+ " Unlabelled Spectrum" while 1: self.header.append(line) if line.startswith('$SPEC_ID:'): line = f.readline().replace("\n","") line.replace("\x00","") self.header.append(line) self._qxasHeader['S'] = '#S1 '+ line if line.startswith('$DATE_MEA'): line = f.readline().replace("\n","") self.header.append(line) self._qxasHeader['D'] = line if line.startswith('$MEAS_TIM'): line = f.readline().replace("\n","") self.header.append(line) tmpList = [float(i) for i in line.split()] if len(tmpList) == 1: preset = tmpList[0] elapsed = preset else: preset, elapsed = tmpList[0:2] self._qxasHeader['@CTIME'] = ['#@CTIME %f %f %f' % (preset, preset, elapsed)] if line.startswith('$MCA_CAL'): try: line = f.readline().replace("\n","") self.header.append(line) if line.startswith('$'): continue line = f.readline().replace("\n","") self.header.append(line) if line.startswith('$'): continue coefficients = [float(i) for i in line.split()] if len(coefficients) == 2: coefficients.append(0.0) self._qxasHeader['@CALIB']= ['#@CALIB %f %f %f' %\ (coefficients[0], coefficients[1], coefficients[2])] except Exception: pass if line.startswith('$DATA:'): line = f.readline().replace("\n","") self.header.append(line) start, stop = [int(i) for i in line.split()] self._qxasHeader['@CHANN'] = ['#@CHANN %d %d %d 1' % (stop-start+1, start, stop)] break line = f.readline().replace("\n","") if qxas: outdata = [] line = f.readline().replace("\n","") while len(line): if line[0] == "$": break outdata += [float(x) for x in line.split()] line = f.readline().replace("\n","") nlines = len(outdata) f.close() self.data = numpy.resize(numpy.array(outdata).astype(numpy.float64),(nlines,1)) else: if sys.version < '3.0': line = line.replace(","," ") line = line.replace(";"," ") line = line.replace("\t"," ") line = line.replace("\r","\n") line = line.replace('"',"") line = line.replace('\n\n',"\n") else: tmpBytes = bytes(" ",'utf-8') line = line.replace(bytes(",",'utf-8'), tmpBytes) line = line.replace(bytes(";",'utf-8'), tmpBytes) line = line.replace(bytes("\t",'utf-8'), tmpBytes) tmpBytes = bytes("\n",'utf-8') line = line.replace(bytes("\r","utf-8"), tmpBytes) line = line.replace(bytes('"',"utf-8"), bytes("", "utf-8")) line = line.replace(bytes('\n\n',"utf-8"), tmpBytes) while(len(line)): values = line.split() if len(values): try: reals = [float(x) for x in values] ncols = len(reals) if ncol0 < 0:ncol0 = ncols if ncols == ncol0: outdata.append(reals) nlines += 1 except Exception: if len(line) > 1: if sys.version < '3.0': self.header.append(line.replace("\n","")) else: self.header.append(safe_str(line.replace(\ bytes("\n",'utf-8'),\ bytes("", 'utf-8')))) else: if len(line) > 1: if sys.version < '3.0': self.header.append(line.replace("\n","")) else: self.header.append(safe_str(line.replace(bytes("\n",'utf-8'), bytes("", 'utf-8')))) line = f.readline() if sys.version < '3.0': line = line.replace(","," ") line = line.replace(";"," ") line = line.replace("\t"," ") line = line.replace("\r","\n") line = line.replace('"',"") line = line.replace('\n\n',"\n") else: tmpBytes = bytes(" ",'utf-8') line = line.replace(bytes(",",'utf-8'), tmpBytes) line = line.replace(bytes(";",'utf-8'), tmpBytes) line = line.replace(bytes("\t",'utf-8'), tmpBytes) tmpBytes = bytes("\n",'utf-8') line = line.replace(bytes("\r","utf-8"), tmpBytes) line = line.replace(bytes('"',"utf-8"), bytes("", "utf-8")) line = line.replace(bytes('\n\n',"utf-8"), tmpBytes) f.close() self.data = numpy.resize(numpy.array(outdata).astype(numpy.float64),(nlines,ncol0)) if self.amptek: self.scandata=[myscandata(self.data,'MCA','1.1', scanheader=self.header)] elif self.qxas: self.scandata=[myscandata(self.data,'MCA','1.1', scanheader=self.header, qxas=self._qxasHeader)] else: labels = None if len(self.header) == 1: if len(self.header[0]) > 0: labels = self.header[0].split(" ") if len(labels) != ncol0: labels = None # check if it is a KETEK AXAS-D file ketek_keys = ["File Version = ", "Livetime = ", "Live Time: = ", "Realtime = ", "Real Time: = ", "Input Count Rate = ", "ICR: = ", "Output Count Rate = ", "OCR: = ", "= KETEK"] ketek_counter = 0 icr = None ocr = None live_time = None live_time = None real_time = None for line in self.header: for key in ketek_keys: if key in line: keylower = line.lower() if keylower.startswith("livetime =") or keylower.startswith("live time: = "): tokens = line.split(" = ")[-1].split() if tokens[-1] == "s": if "." in tokens[0]: live_time = float(tokens[0]) else: live_time = float(tokens[0] + "." + tokens[1]) elif keylower.startswith("realtime =") or keylower.startswith("real time: = "): tokens = line.split(" = ")[-1].split() if tokens[-1] == "s": if "." in tokens[0]: real_time = float(tokens[0]) else: real_time = float(tokens[0] + "." + tokens[1]) elif keylower.startswith("input count rate = ") or keylower.startswith("icr: = "): tokens = line.split(" = ")[-1].split() if "." in tokens[0]: icr = float(tokens[0]) else: icr = float(tokens[0] + "." + tokens[1]) elif keylower.startswith("output count rate = ") or keylower.startswith("ocr: = "): tokens = line.split(" = ")[-1].split() if "." in tokens[0]: ocr = float(tokens[0]) else: ocr = float(tokens[0] + "." + tokens[1]) ketek_counter += 1 break if ketek_counter >= 4: self.ketek = 1 if real_time and live_time: self._ketekHeader = {} self._ketekHeader['S'] = '#S1 '+ " Unlabelled Spectrum" if ocr and icr: live_time = real_time * ocr / icr _logger.info("Taking live time = real_time * ocr / icr") else: _logger.warning("Taking live time from file") self._ketekHeader['@CTIME'] = ['#@CTIME %f %f %f' % (real_time, live_time, real_time)] else: self._ketekHeader = None self.scandata=[myscandata(self.data,'MCA','1.1', fileheader=self.header, qxas=self._ketekHeader)] else: self.scandata=[myscandata(self.data,'SCAN','1.1', labels=labels, fileheader=self.header), myscandata(self.data,'MCA','2.1', fileheader=self.header)] def list(self): if self.amptek or self.qxas or self.dta or self.ketek: return "1:1" else: return "1:2" def __getitem__(self,item): return self.scandata[item] def __len__(self): return self.scanno() def select(self,i): n = i.split(".") return self.__getitem__(int(n[0]) - 1) def scanno(self): if self.amptek or self.qxas or self.dta or self.ketek: return 1 else: return 2 class myscandata(object): def __init__(self, data, scantype=None, identification=None, scanheader=None, qxas=None, labels=None, fileheader=None): if identification is None: identification='1.1' if scantype is None: scantype='SCAN' self.qxas = qxas self.scanheader = scanheader if fileheader is None: fileheader = [] self._fileheader = fileheader #print shape(data) (rows, cols) = numpy.shape(data) if scantype == 'SCAN': self.__data = numpy.zeros((rows, cols +1 ), numpy.float64) self.__data[:,0] = numpy.arange(rows) * 1.0 self.__data[:,1:] = data * 1 self.__cols = cols + 1 self.labels = ['Point'] if labels is None: for i in range(cols): self.labels.append('Column %d' % i) else: for label in labels: self.labels.append('%s' % label) else: self.__data = data self.__cols = cols self.labels = [] self.scantype = scantype self.rows = rows if scanheader is None: labels = '#L ' for label in self.labels: labels += ' '+label if self.scantype == 'SCAN': self.scanheader = ['#S1 Unknown command', '#N %d' % len(self.labels), labels] else: self.scanheader = ['#S1 Unknown command'] n = identification.split(".") self.__number = int(n[0]) self.__order = int(n[1]) def alllabels(self): if self.scantype == 'SCAN': return self.labels else: return [] def allmotorpos(self): return [] def cols(self): return self.__cols def command(self): _logger.debug("command called") if self.qxas is not None: if 'S' in self.qxas: text = self.qxas['S'] elif self.scanheader is not None: if len(self.scanheader): text = self.scanheader[0] return text def data(self): return numpy.transpose(self.__data) def datacol(self, col): # it is awful that starts at one ... if col <= 0: raise ValueError("Specfile column numberig starts at 1") return self.__data[:, col - 1] def dataline(self, line): # it is awful that starts at one ... if line <= 0: raise ValueError("Specfile line numberig starts at 1") return self.__data[line - 1,:] def date(self): text = 'sometime' if self.qxas is not None: if 'D' in self.qxas: return self.qxas['D'] elif self.scanheader is not None: for line in self.scanheader: if 'START_TIME' in line: text = "%s" % line break return text def fileheader(self, key=''): # key is there for compatibility _logger.debug("file header called") return self._fileheader def header(self, key): if self.qxas is not None: if key in self.qxas: return self.qxas[key] elif key == "" or key == " ": return self.scanheader if key == 'S': return self.scanheader[0] elif key == 'N': return self.scanheader[-2] elif key == 'L': return self.scanheader[-1] elif key == '@CALIB': output = [] if self.scanheader is None: return output if self.scanheader[0][0:2] == '<<': #amptek try: amptekCalibrationLines = [] amptekInCalibrationLines = False for line in self.scanheader: if '<<CALIBRATION>>' in line: amptekInCalibrationLines = True continue if line.startswith('<<'): amptekInCalibrationLines = False continue if amptekInCalibrationLines and\ ('LABEL' not in line): amptekCalibrationLines.append(line) n = len(amptekCalibrationLines) if n == 0 : return output if n == 1: #one point calibration x0,y0 = 0.0, 0.0 values = amptekCalibrationLines[0].split() x1,y1 = map(float,values) gain = (y1-y0)/(x1-x0) zero = y0 - gain * x0 elif n == 2: #two point calibration values = amptekCalibrationLines[0].split() x0,y0 = map(float,values) values = amptekCalibrationLines[1].split() x1,y1 = map(float,values) gain = (y1-y0)/(x1-x0) zero = y0 - gain * x0 else: x = numpy.zeros((n,), numpy.float64) y = numpy.zeros((n,), numpy.float64) for i in range(n): values = amptekCalibrationLines[i].split() x[i], y[i] = map(float,values) Sxy = numpy.dot(x, y.T) Sxx = numpy.dot(x, x.T) Sx = x.sum() Sy = y.sum() d = n * Sxx - Sx * Sx zero = (Sxx * Sy - Sx * Sxy)/d gain = (n * Sxy - Sx * Sy)/d output = ['#@CALIB %g %g 0' % (zero, gain)] except Exception: pass return output elif key == "" or key == " ": return self.scanheader else: return [] def order(self): return self.__order def number(self): return self.__number def lines(self): if self.scantype == 'SCAN': return self.rows else: return 0 def nbmca(self): if self.scantype == 'SCAN': return 0 else: return self.__cols def mca(self,number): if number <= 0: raise ValueError("Specfile mca numberig starts at 1") return self.__data[:,number-1] class BufferedFile(object): def __init__(self, filename): f = open(filename, 'rb') self.__buffer = f.read() f.close() if sys.version < '3.0': self.__buffer=self.__buffer.replace("\r", "\n") self.__buffer=self.__buffer.replace("\n\n", "\n") self.__buffer = self.__buffer.split("\n") else: tmp = bytes("\n", 'utf-8') self.__buffer=self.__buffer.replace(bytes("\r", 'utf-8'), tmp) self.__buffer=self.__buffer.replace(bytes("\n\n", 'utf-8'), tmp) self.__buffer = self.__buffer.split(tmp) self.__currentLine = 0 if sys.version < '3.0': def readline(self): if self.__currentLine >= len(self.__buffer): return "" line = self.__buffer[self.__currentLine] + "\n" self.__currentLine += 1 return line else: def readline(self): if self.__currentLine >= len(self.__buffer): return bytes("", 'utf-8') line = self.__buffer[self.__currentLine] + bytes("\n", 'utf-8') self.__currentLine += 1 return line def close(self): self.__currentLine = 0 return if __name__ == "__main__": filename = sys.argv[1] print(filename) sf=Specfile(filename) sf.list() print(sf[0].alllabels()) print(dir(sf[0])) ����������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8157663 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/����������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015432� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8157663 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Include/��������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017015� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Include/blissmalloc.h�������������������������������������������0000644�0000000�0000000�00000003273�14741736366�021506� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * * Copyright (c) 1998-2010 European Synchrotron Radiation Facility (ESRF) * * The software contained in this file "blissmalloc.h" is part of the set * of files designed to interface the shared-data structures used and defined * by the CSS "spec" package with other utility software. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ #if MALLOC_DEBUG struct pmem { void *data; long int size; char *file; int line; struct pmem *next; } ; #define malloc(N) _pmalloc(N,__FILE__,__LINE__) #define free(N) _pfree(N,__FILE__,__LINE__) #endif �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Include/spec_shm.h����������������������������������������������0000644�0000000�0000000�00000012202�14741736366�020773� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * @(#)spec_shm.h 6.7 11/20/13 CSS * * "spec" Release 6 * * Copyright (c) 1995-2010 Certified Scientific Software * * The software contained in this file "spec_shm.h" describes the * shared-data structures used and defined by the CSS "spec" package. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ #define SHM_MAGIC 0xCEBEC000 /* * Difference between SHM_VERSION 3 and 4 is the increase in * header size from 1024 to 4096 to put the data portion * on a memory page boundary. * * Difference between SHM_VERSION 4 and 5 is the addition of * the SHM_IS_FRAMES tag and the frame_size and latest_frames * elements of the shm_head structure. * * Difference between SHM_VERSION 5 and 6 is the addition of * metadata tail to data and info array to shm_head structure. */ #define SHM_VERSION 6 /* structure flags */ #define SHM_IS_STATUS 0x0001 #define SHM_IS_ARRAY 0x0002 #define SHM_IS_MASK 0x000F /* User can't change these bits */ #define SHM_IS_MCA 0x0010 #define SHM_IS_IMAGE 0x0020 #define SHM_IS_SCAN 0x0040 #define SHM_IS_INFO 0x0080 #define SHM_IS_FRAMES 0x0100 /* array data types */ #define SHM_DOUBLE 0 #define SHM_FLOAT 1 #define SHM_LONG 2 #define SHM_ULONG 3 #define SHM_SHORT 4 #define SHM_USHORT 5 #define SHM_CHAR 6 #define SHM_UCHAR 7 #define SHM_STRING 8 #define SHM_LONG64 9 #define SHM_ULONG64 10 #define NAME_LENGTH 32 #define INFO_LENGTH 512 /* * The meta_length field is not defined by the standard. * However, spec will use the following size for the * shared arrays it creates. Applications that use * the meta data should always check the meta_length * field and not rely on SHM_META_SIZE. */ #define SHM_META_SIZE 8192 /* size of metadata region added to tail of array */ #define SHM_OHEAD_SIZE 1024 /* Old header size */ #define SHM_HEAD_SIZE 4096 /* Header size puts data on page boundary */ #ifndef SPEC_TYPE_DEFS typedef int s32_t; typedef unsigned int u32_t; typedef long long s64_t; typedef unsigned long long u64_t; #endif struct shm_head { u32_t magic; /* magic number (SHM_MAGIC) */ u32_t type; /* one of the array data types */ u32_t version; /* version number of this struct */ u32_t rows; /* number of rows of array data */ u32_t cols; /* number of cols of array data */ u32_t utime; /* last-updated counter */ char name[NAME_LENGTH]; /* name of spec variable */ char spec_version[NAME_LENGTH]; /* name of spec process */ s32_t shmid; /* shared mem ID */ u32_t flags; /* more type info */ u32_t pid; /* process id of spec process */ /* * A frame can be a single MCA acquisition or a single image. * A 2D array can be considered a succession of MCA frames or * a succession of images. Since data is stored row-wise, * frames are defined by a number of rows. */ u32_t frame_size; /* number of rows per frame */ u32_t latest_frame; /* most recently updated frame */ /* * The metadata region added in SHM_VERSION 6 is located after * the array data. The meta_start element is the offset * from the start of the shared segment. */ u32_t meta_start; /* byte offset to metadata tail */ u32_t meta_length; /* byte length of metadata tail */ char pad[256]; /* space to expand */ char info[INFO_LENGTH]; /* arbitrary info */ }; #define SHM_MAX_IDS 256 struct shm_status { u32_t spec_state; u32_t utime; /* updated when ids[] changes */ s32_t ids[SHM_MAX_IDS]; /* shm ids for shared arrays */ /* more later */ }; struct shm_oheader { union { struct shm_head head; char pad[SHM_OHEAD_SIZE]; } head; void *data; }; struct shm_header { union { struct shm_head head; char pad[SHM_HEAD_SIZE]; } head; void *data; }; ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Include/sps.h���������������������������������������������������0000644�0000000�0000000�00000067260�14741736366�020015� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * * Copyright (c) 1998-2010 European Synchrotron Radiation Facility (ESRF) * Copyright (c) 1998-2013 Certified Scientific Software (CSS) * * The software contained in this file "sps.h" is designed to interface * the shared-data structures used and defined by the CSS "spec" package * with other utility software. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ /**************************************************************************** * @(#)sps.h 6.2 11/20/13 CSS * * "spec" Release 6 * * This file was mostly an ESRF creation, but includes code from and is * maintained by Certified Scientific Software. * ****************************************************************************/ /* Small documentation for the library: Your program might get a list of available arrays with the two functions ------------------------------------------------------------------------ SPS_GetNextSpec (flag) SPS_GetNextArray (specversion, flag) Just call the function SPS_GetNextSpec until a NULL pointer is returned. The first time you call the function you have to set the flag to 0 to indicate it should start from the beginning. For every spec version call the function SPS_GetNextArray to get all the shared memory arrays from this spec version. Example: for (i=0; spec_version = SPS_GetNextSpec (i) ; i++) for (j=0; array = SPS_GetNextArray (spec_version, j) ; j++) printf("%s %s\n",spec_version, array); Your program can know in which state a certain spec version is in ----------------------------------------------------------------- SPS_GetSpecState (version) The exact meaning of this flag will be documented Your program can get the data from the shared memory array with --------------------------------------------------------------- SPS_GetDataCopy (spec version, array, data format, &rows, &cols) You can get a copy of the array data in the format you want. Possible choices for the format are: SPS_DOUBLE SPS_FLOAT SPS_INT SPS_UINT SPS_SHORT SPS_USHORT SPS_CHAR SPS_UCHAR where DOUBLE and FLOAT are foating point numbers and the other integer values. The U is a short cut for unsigned. INT is stored in 4 byte, SHORT in 2 byte and CHAR in on byte. Only one private buffer per shared memory array is possible with this function. This buffer is reused at the next call to SPS_GetDataCopy. The buffer can be given back with the function SPS_FreeDataCopy (spec version, array name) but as there is only one per spec version this is rarely necessary. SPS_GetDataRow (version, array, data format, row, columns, &actual cols) SPS_GetDataCol (version, array, data format, col, rows, &actual rows) Will only give you one row or one column. This functions will use the same buffer as SPS_GetDataCopy. The buffer can be freed with SPS_FreeDataCopy but it is reused anyhow. To know if the values in your buffer still correspond to the data in the shared memory array, there is the function SPS_IsUpdated (spec version, array name) This function will return the integer value 1 if it is necessary to call SPS_GetDataCopy again. The function SPS_IsUpdated will tell you if the shared memory array has been updated since the last time you called this function. A return value of -1 indicated that this shared memory array is currently not accessible. To get this information, the function has to call the external program ipcs. It is therefore rather slow. Please lower the rate at which you call SPS_IsUpdated in this case. Example: for (;;) { if (SPS_IsUpdated ("spec","a_test") == 1) { printf("Changed:\n"); dbuf = SPS_GetDataCopy ("spec","a_test", SPS_DOUBLE, &rows, &cols); for (k_row = 0; k_row < rows; k_row ++) { for (k_col = 0; k_col < cols < 7; k_col ++) printf ("%10.10g ",*(double_buf + k_row * cols + k_col)); printf("\n"); } } sleep(1); } SPS_IsUpdated (spec version, array name) This function is an alternative form of the above. It returns the current update counter for this array or -1 if not longer updated. It is used in some cases where the simpler function SPS_IsUpdated is not sufficient (For example if you have multiple subroutines in your program which access the shared memory independently. The SPS routines can not distinguish between calls from the same subroutine twice or single calls from different subroutines) You should keep the old counter value and compare the returned value to the old. If it is changed you have to update your array. Functions to read shared memory string arrays for resources ----------------------------------------------------------- The shared memory string array must be organized in the format: identifier=value in a single row of a two dimensional array for these functions to work. SPS_GetEnvStr (spec_version, array, identifier) returns the value of this identifier or NULL if not found. The function SPS_PutEnvStr (spec_version, array, identifier, value) puts a value in a row of a 2 dimensional shared memory string array. If the identifier was already present before, its value will be updated. Example: 46.SPEC> shared string array text[10][100] #10 strings of max length 100 47.SPEC> p text xaxis=hello you yaxis=Counts new=23.45 SPS_GetEnvStr("spec", "text", "xaxis") returns "hello you" More functions to read data from the shared memory ------------------------------------------------- SPS_GetArrayInfo (spec version, array, &rows, &cols, &type, &flag) informs you about the properties of the shared memory array. SPS_GetDataPointer (spec version, array name, write_flag) returns a pointer to the data in the shared memory array. Do not keep this pointer around. The memory might have been deleted and recreated and this pointer will not point anymore to the right data. We recommand to call the SPS_GetPointer function before each operation on the shared memory. The write_flag tells the function if you would like to update the shared memory contents or just read it. If you want to make a copy of the data in the shared memory array to your own buffer or the copy your buffer to the shared memory you can use the functions: SPS_CopyFromShared (spec version, array name, &buffer, data format, items_in_buffer); SPS_CopyToShared (spec version, array name, &buffer, data format, items_in_buffer); SPS_CopyRowFromShared (spec version, array name, &buffer, data_format, row to copy, no of columns to copy, &actual columns copied) SPS_CopyColFromShared (spec version, array name, &buffer, data_format, column to copy, no of rows to copy, &actual rows copied) SPS_CopyRowToShared (spec version, array name, &buffer, data_format, row to copy, no of columns to copy, &actual columns copied) SPS_CopyColToShared (spec version, array name, &buffer, data_format, column to copy, no of rows to copy, &actual rows copied) These functions are a little bit different from the SPS_GetDataCopy function in that you will have to manage your buffer yourself. (Allocate the memory, free the memory, ...) SPS_AttachToArray (spec version, array_name, write_flag) can be called anytime. It will try to attach to the shared memory. If it fails to attach to the memory it will still remember the fact that you want to stay attached to the shared memory and will attach you the next time you call one of the SPS_ functions for this spec version and array. The write_flag has to be set to 1 if you want to write to this array in the future. SPS_DetachFromArray (spec version, array name) Detaches from the array or informs the library that we don't want to stay attached to the array. If you write to the shared memory you have to tell all the processes which are reading he shared memory that the contents has changed. To do that you can call SPS_UpdateDone (spec version, array name) If you need to know the number of bytes for a certain type call: SPS_Size (type) Creating your own shared memory arrays with ------------------------------------------- SPS_CreateArray (spec version, array name,rows,cols, data format, flags) This function creates shared memory arrays like SPEC would do that. For every spec version there is a shared memory array which holds information about this spec version. This function will create this information array together with the actual data array. If you want to create multiple arrays it is much more efficient to use always the same name for the spec version. You can not create a shared memory array for a spec version which already exists and has not been created by your process. SPS_CleanUpAll() is used to delete all the shared memory you created and free all the memory the libray allocated. Do not use any buffer pointer you got from the library from then onwards. You can continue to run and use the SPS_ functions again, but in most cases this incstruction will be called just before quiting the program. */ #define SPS_IS_ARRAY 0x0002 #define SPS_IS_MCA (0x0004|SPS_IS_ARRAY) #define SPS_IS_IMAGE (0x0008|SPS_IS_ARRAY) /* structure flags */ #define SPS_TAG_STATUS 0x0001 #define SPS_TAG_ARRAY 0x0002 #define SPS_TAG_MASK 0x000F /* User can't change these bits */ #define SPS_TAG_MCA 0x0010 #define SPS_TAG_IMAGE 0x0020 #define SPS_TAG_SCAN 0x0040 #define SPS_TAG_INFO 0x0080 #define SPS_TAG_FRAMES 0x0100 /* array data types */ #define SPS_DOUBLE 0 #define SPS_FLOAT 1 #define SPS_INT 2 #define SPS_UINT 3 #define SPS_SHORT 4 #define SPS_USHORT 5 #define SPS_CHAR 6 #define SPS_UCHAR 7 #define SPS_STRING 8 #define SPS_LONG 9 #define SPS_ULONG 10 #define SPS_LONG64 11 #define SPS_ULONG64 12 #ifndef SPEC_TYPE_DEFS typedef int s32_t; typedef unsigned int u32_t; typedef long long s64_t; typedef unsigned long long u64_t; #endif #ifdef __cplusplus extern "C" { #endif /* Input: Type code Returns: Size of this type i.e. SPS_INT returns 4 */ int SPS_Size(int type); /* char * SPS_GetNextSpec (int flag) Input: Flag to know if this is the first call to SPS_GetNextSpec 0: Get first in list, 1: Get next Returns: Name of the SPEC version or NULL if no more in the list */ char * SPS_GetNextSpec (int flag) ; /* char * SPS_GetNextArray (char * version, int flag) Input: version : name of SPEC version. Flag to know if this is the first call to SPS_GetNextArray 0: Get first in list, 1: Get next Returns: Name of the SPEC array name or NULL if no more in the list */ char * SPS_GetNextArray (char * fullname, int flag); /* Read the state the particular SPEC version is in for the moment Input: version : specversion with PID if necessary (spec(1234) or fourc) Returns: State */ int SPS_GetSpecState (char *version); /* Attaches to a SPEC array. Input: fullname specversion with PID if necessary (spec(1234) or fourc) array_name: The name of the SPEC array (i.e. MCA_DATA) write_flag: One if you intend to modify the shared memory Output: 0 if OK 1 if error */ int SPS_AttachToArray (char *fullname, char *array, int write_flag); int SPS_DetachFromArray (char *fullname, char* array); /* Gives you the pointer to the data area of the SPEC array. If the process is not currently attached it will be attached after the call. Input: fullname : Spec version array : Name of the array write_flag : Tells the routine if we would like to write to the array Returns: NULL error void * to the data area. Do not remember this pointer as most of the SPS_ functions can change itr (In case the other party quit and recreated the shared memory) */ void * SPS_GetDataPointer (char *fullname, char* array, int write_flag) ; /* You should return the pointer to the library if you do not use it anymore. If you returned the pointer as many times as you got it you will be detached from the shared memory and the pointer is not valid anymore. Input: fullname : Spec version array : Name of the array Returns: 0 success 1 error */ int SPS_ReturnDataPointer (void *pointer); /* Used to read a shared string array in where every line is in the format identifier=value Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value identifier : the identifier Result: NULL if we could not connect to the array or if the identifier did not exist value : Do not free this pointer. Do not just keep this pointer around but make a copy of the contents as the storage space is reused at every call to this function. */ char * SPS_GetEnvStr (char *spec_version, char *array_name, char *identifier); /* Used to write a shared string array in where every line is in the format identifier=value Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value identifier : the identifier set_value : The value you would like to put in the identifier Result: 1 error 0 success */ int SPS_PutEnvStr (char *spec_version, char *array_name, char *identifier, char *set_value); /* Get all the keys in an environment array Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value flag : 0 start from first key >0 get next key Result: NULL if no more keys in environment */ char * SPS_GetNextEnvKey (char *spec_version, char *array_name, int flag); /* Copies the data from the shared memory SPEC array to the user's buffer. The type of the data in the shared array and the type the user wants in his buffer is taken into account. The routine should work efficient even if both types are equal. The user has to provide the number of items in the buffer. This number is used to check for buffer overflow. If a possible buffer overflow is detected only the items_in_buffer are copied. Input: fullname : name of the specversion array: name of the array in SPEC buffer: pointer to our buffer my_type: In which format do we want the results items_in_buffer: buffersize in number of items of type my_type in buffer Returns: 0 success 1 overflow , but copy done -1 error Nothing done */ int SPS_CopyFromShared (char *fullname, char *array, void *buffer, int my_type, int items_in_buffer); /* Copies the data to the shared memory SPEC array from the user's buffer. The type of the data in the shared array and the type the user wants in his buffer is taken into account. The routine should work efficient even if both types are equal. The user has to provide the number of items in the buffer. This number is used to check for buffer overflow. If a possible buffer overflow is detected only the items_in_buffer are copied. Input: fullname : name of the specversion array: name of the array in SPEC buffer: pointer to our buffer my_type: In which format do we want the results items_in_buffer: buffersize in number of items of type my_type in buffer Returns: 0 success 1 overflow , but copy done -1 error Nothing done */ int SPS_CopyToShared (char *fullname, char *array, void *buffer, int my_type, int items_in_buffer); /* Copy the data in the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataCopy for fullname-array. Input: fullname : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) rows : pointer to integer. Will be filled with number of rows if not NULL cols : pointer to integer. Will be filled with number of cols if not NULL Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void * SPS_GetDataCopy (char *fullname, char *array, int my_type, int *rows_ptr, int *cols_ptr); int SPS_FreeDataCopy (char *fullname, char *array); /* Copy a row of data from the shared memory array to a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns you want to copy. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: 0 success 1 error */ int SPS_CopyRowFromShared (char *name, char *array, void *buf, int my_type, int row, int col, int *act_cols); /* Copy a column of data from the shared memory array to a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want to copy. If this is 0 then all the columns are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: 0 success 1 error */ int SPS_CopyColFromShared (char *name, char *array, void *buf, int my_type, int col, int row, int *act_rows); /* Copy a row of data to the shared memory array from a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns you want to copy. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: 0 success 1 error */ int SPS_CopyRowToShared (char *name, char *array, void *buf, int my_type, int row, int col, int *act_cols); /* Copy a column of data to the shared memory array from a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want to copy. If this is 0 then all the columns are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: 0 success 1 error */ int SPS_CopyColToShared (char *name, char *array, void *buf, int my_type, int col, int row, int *act_rows); /* Copy a row of data from the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataRow for fullname-array. Input: name : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns to you want. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void * SPS_GetDataRow (char *name, char *array, int my_type, int row, int col, int *act_cols); /* Copy a column of data from the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataCol, SPS_GetDataRow or SPS_GetData for fullname-array. Input: name : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want. If this is 0 then all the rows are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void * SPS_GetDataCol (char *name, char *array, int my_type, int col, int row, int *act_rows); /* Tells you if the data in the shared memory array changed since you last called this function with this opac pointer or since SPS_ConnectToArray if this is your first call to this function. If you are not currently attached to the memory the function will attach, read and detach after. Input: fullname and array Returns: 0 No change -1 Error - memory not longer updated 1 Contents changed - new valid data */ int SPS_IsUpdated (char *fullname, char *array); /* Returns the current update counter for this array or -1 if not longer updated. This function is used in some cases where the simpler function SPS_IsUpdated is not sufficient (For example if you have multiple subroutines in your program which access the shared memory independently. The SPS routines can not distinguish between calls from the same subroutine twice or single calls from different subroutines) You should keep the old counter value and compare the returned value to the old. If it is changed you have to update your array. Input: fullname and array Returns: update counter value -1 Error - memory not longer updated */ int SPS_UpdateCounter (char *fullname, char *array); /* Tells all the readers of the SPEC array that you updated its contents If you are not currently attached to the memory the function will attach, write and detach after. Input: fullname : Spec version array : Array in SPEC version Returns: 1 Error - memory not longer updated or no write permission 0 success */ int SPS_UpdateDone (char *fullname, char *array); /* Input: version : name of SPEC version. array_name : Name of this spec array rows : Pointer to integer to return number of rows in this array cols : Pointer to integer to return number of cols in this array type : Pointer - Of which data type is the data in this array. Possible values are: flag : Pointer More information about the contents of this array (does it contain data for MCA, CCD cameras other info .. ) Returns: Error code : 0 == no error */ int SPS_GetArrayInfo (char * spec_version, char * array_name, int *rows, int *cols, int *type, int *flag); /* Retrieve and return the Shared Memory Id (as with ipcs) Input: version : name of SPEC version. array_name : Name of this spec array Returns: shared memory identifier */ int SPS_GetShmId(char *spec_version, char *array_name); /* Creates a shared memory array and the shared memory structure for the spec version. You can only create new arrays for specversions which either do not exist or have been created by this process. After the call you are automatically attached to the shared memory. The process always stay attached to the shared memories he created. You can call all the other functions like Connect or Deconnect but you will always stay attached to the shared memory Input: spec_version: The specversion you will create the new array in arrayname: The name of the array rows: number of rows cols: number of columns type : The data type of the data stored in this array. flag: A flag to indicate the type of the array MCA data or CCD camera. Returns: 0 OK 1 Error */ int SPS_CreateArray (char * spec_version, char *arrayname, int rows, int cols, int type, int flags) ; /* Deletes everything which there is */ /* Should be called before you quit the program */ void SPS_CleanUpAll (void); /* The following require spec_shm.h with SHM_VERSION 6 */ char *SPS_GetMetaData(char *spec_version, char *array_name, u32_t *length); char *SPS_GetInfoString(char *spec_version, char *array_name); int SPS_PutMetaData(char *spec_version, char *array_name, char *data, u32_t length); int SPS_PutInfoString(char *spec_version, char *array_name, char *info); #ifdef __cplusplus } #endif ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Include/sps_lut.h�����������������������������������������������0000644�0000000�0000000�00000032207�14741736366�020672� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2018 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* FIXTHIS - double the type defines to make sps_lut independent */ #ifndef SPS_DOUBLE #define SPS_DOUBLE 0 #define SPS_FLOAT 1 #define SPS_INT 2 #define SPS_UINT 3 #define SPS_SHORT 4 #define SPS_USHORT 5 #define SPS_CHAR 6 #define SPS_UCHAR 7 #define SPS_STRING 8 #define SPS_LONG 9 #define SPS_ULONG 10 #endif /* contian description of how the colors are represented for the Xserver */ typedef struct XServer_Info { int byte_order; int pixel_size; unsigned int red_mask; unsigned int green_mask; unsigned int blue_mask; } XServer_Info; /* GILLES DOC is as usual absent ... but at least these are the different possibilities in the code: PCByteorder ServerByteorder pixel_size remapping ---------------------------------------------------- LSB LSB 3 b3 b2 b1 00 LSB LSB not 3 none LSB MSB 2 00 00 b1 b2 LSB MSB not 2 b1 b2 b3 00 LSB LSB 2 00 00 b4 b3 LSB LSB not 2 00 b4 b3 b2 LSB MSB always none with the union {b1 b2 b3 b4} is a long and MSB if from long = 1 follows that b1 = 1 (in our case LINUX is LSB and Solaris and HP are MSB) Normally you will have to get this information from the XServer */ /* High level function to transform data of a certain type (SPS_FLOAT, SPS_DOUBLE, SPS_INT, SPS_UINT, SPS_SHORT, SPS_USHORT, SPS_CHAR, SPS_UCHAR) into a representation suitable for display on a screen. The size of the input array is given in cols and rows. The data array can be reduced by a factor reduc. The number of output pixel in each direction will be divided by this factor. The values prows and pcols tell the size of this new array in pixel. The flag fastreduc can be set to do a faster reduction by not doing an average of the pixel to be reduced but skipping the pixels. The meth can be set to SPS_LINEAR, SPS_LOG or SPS_GAMMA to define in with way the data is mapped to the colors. The following formulas are used: SPS_LINEAR: mapdata = A * data + B SPS_LOG : mapdata = (A * log(data)) + B SPS_GAMMA : mapdata = A * pow(data, gamma) + B The autoscale flag has to be set to know if the minimum and maximum data values should be found automatically or if they are given in min, max. If autoscale is used the resulting minimum and maximum values are returned in min and max. If the method is not SPS_LINEAR, the routine will not return the smallest data value but the smallest positive data values. ! Check for SPS_SHORT SPS_USHORT SPS_CHAR SPS_UCHAR behaviour ! The values of mapmin and mapmax matter mainly when a hardware palette is used. Both values have to be in [0,255]. You can decide the minimum and maximum output value in this case. If you specify for example mapmin=100 and mapmax=250 you can leave colors for the window manager. If you would like to use your private colormap you could use mapmin=0 mapmax=250. In this example we leave 5 colors for other elements in our application starting from index 251 to 255. The mapbytes value tell the routine the depth of the display you will use. The distribution of colors in this bytes is assumed to be fixed. You can have the following cases: 0 : Hardware palette. The colors are given by the hardware. Only a value between mapmin and mapmax is produced. 2 : The RGB parts of the 16 bits are supposed to be 5 bits per color. The remaining bit is set to 0. 3 : The RGB parts of the 24 bits are supposed to be 8 bits per color. 4 : The RGB parts of the 32 bits are supposed to be 8 bits per color. The remaining 8 bits are set to 0. The additional parameter maptype is given to distinguish different distributions of the colorbits: SPS_NORMAL: Standard distribution (i.e. for 16 bits (5/5/5) for (R/G/B) SPS_16BIT : Special case for 16 bit depth (normally 15 bits) distribution is (5/5/6) for (R/G/B) The additional parameter maporder represent the byte order of the X server used. it can be either : SPS_LSB : low byte first SPS_MSB : high byte first The palette code describes the colors of the palette and is only used if we do not use a hardware palette. SPS_GREYSCALE : Gradient from white to black. There are 32 different colors possible on a 2 byte display and 256 on an 4 byte display. SPS_TEMP : A color range from red to blue. There are 128 different colors possible on a 2 byte display and 1024 on a 4 byte display. The palette is returned in palette. The palette is either 2 or 4 bytes deep and has pal_entries number of entries. This can be used to present a color bar to the user. To be able to asign data numbers to every entry in the color table you have to understand the different palette modes. They are to some extend explained in the documentation for SPS_MapData The palette data must not be freed!!!! The return values points to an array of 1, 2, or 4 byte pixels of the size prows pcols. The data should be freed when not longer in use. A return value of NULL indicates an error. */ void *SPS_PaletteArray (void *data, int type, int cols, int rows, int reduc, int fastreduc, int meth, double gamma, int autoscale, int mapmin, int mapmax, XServer_Info Xservinfo, int palette_code, double *min, double *max, int *pcols, int *prows, void **palette, int *pal_entries); /* Function to create a linear palette with 3 bytes used in mapbyte == 0 mode where we have a hardware palette which is managed outside the library. DO NOT FREE THE RETURN POINTER - it is used again in the library. The returned colormap contains 3 bytes per entry and max - min + 1 entries. The colormap is put between the values mapmin and mapmax. Outside this region the colors are set to the border values. */ unsigned char *SPS_SimplePalette ( int min, int max, XServer_Info Xservinfo, int palette_code); /* Get the data element from an array <data> of type and size cols * rows the position of the element is x cols and y rows */ double SPS_GetZdata(void *data, int type, int cols, int rows, int x, int y); /* Puts the data element from an array <data> of type and size cols * rows the position of the element is x cols and y rows to z */ void SPS_PutZdata(void *data, int type, int cols, int rows, int x, int y, double z); /* Calculate some statics on the array data of type. The size of the array is given with cols and rows. Calculated are: integral, average and std deviation */ void SPS_CalcStat(void *data, int type, int cols, int rows, double *integral, double *average, double *stddev); /* Calculate a histogram of the image. array in data type type with size rows * columns. From minimum to maximum in nbar steps. The result is put into two arrays xdata and ydata. With xdata being the xvalue and yvalue beiing the y-value of every histogram point. */ void SPS_GetDataDist(void *data, int type, int cols, int rows, double min, double max, int nbar, double **xdata, double **ydata); /* --------------------------- Lower Level ------------------------------ */ /* The following functions are called from the above functions */ /* Maps the data array of type type and size rows * cols either with a linear, logarithmic or gamma corrected scale. meth in this case SPS_LOG SPS_LINEAR or SPS_GAMMA. mapbytes and the data type will influence the outputdata in the following way: SPS_LINEAR: mapdata = A * data + B SPS_LOG : mapdata = (A * log(data)) + B SPS_GAMMA : mapdata = A * pow(data, gamma) + B mapbytes indicates the depth of the palette or is zero if a hardware palette is used. It can take the following values: 0 : Xmin will be maped to mapmin and Xmax to mapmax. mapmin and mapmax have to bin in [0,255]. This mode is thought to be used with hardware plalettes and the parameter pal is ignored. 2 : The color table is 2 bytes deep. In this case, for every color there are 5 bits and the last bit is ignored. The mapping is different depending on the type of the input data. SPS_INT, SPS_UINT, SPS_DOUBLE, SPS_FLOAT : The mapping is done according to the above formula. The color palette is supposed to contain the coresponding RGB values for each of the values between mapmin and mapmax. SPS_USHORT SPS_SHORT SPS_CHAR SPS_UCHAR : No mapping is done !!! The actual data values are used direcly as index in the color table. 3 or 4: The color table is 4 byte deep. There are 3 times 8 bit for RGB and 8 bit are ignored. The mapping is described above. Maybe a less confusing way how these parameters are interpreted is to think of the mapping and indexing process as sequential processes. In general the source data is first mapped to a range of values which are used as indexes in a table of colors. When there is a hardware palette (mode mapbytes = 0) then this routine has to produce values between 0 and 255. There values can be further restricted with mapmin and mapmax to allow other colors to stay in same color table. This can be used to give the window manager enough colors to operate without creating a private colormap. A standard setting is mapmin = 100 mapmax = 250. When there is no hardware palette, a palette has to be provided to the routine. Every entry of this palette is either 2bytes or 4bytes deep depending on the screen color depth. Because of performance reasons we do not want to map data first to other values and use these calculated values as an index into the palette if we can use the data directly as an index in the color table. Therefore there is a distinction between types which contain data with many different values (SPS_INT SPS_UINT SPS_FLOAT SPS_DOUBLE) and data with a restricted number of different values (SPS_SHORT SPS_USHORT SPS_CHAR SPS_UCHAR). This distinction complicates of course the calculation of the palette which has to be provided. The palette in the case of input types with restricted values must take into account scaling and the different ways of mapping (linear, log, gamma) as there is no other mapping taken place. The routine SPS_PaletteArray does take all this into acount and should be used in almost all cases. */ unsigned char *SPS_MapData(void *data, int type, int meth, int cols, int rows, double Xmin, double Xmax, double gamma, int mapmin, int mapmax, int mapbytes, void *pal); /* Produce a new array reduced by a factor of reduc. The reduction can be done either fast (by setting fastreduction to 1) which will skip reduc - 1 pixel or accurate by taking the average of all the pixels. The old array has row rows and col columns. The new array will have prows and pcols */ void *SPS_ReduceData (void *data, int type, int cols, int rows, int reduc, int *pcols, int *prows, int fastreduction); /* Search through an array startig at <data> of type <type>. The size of the array being rows * cols. The flag tells the function if it should calculate the min/max (1), the positive minimum (2) or both (3). Results are returned in min max minplus */ void SPS_FindMinMax(void *data, int type, int cols, int rows, double *min, double *max, double *minplus, int flag); #define SPS_LINEAR 0 #define SPS_LOG 1 #define SPS_GAMMA 2 #define SPS_GREYSCALE 1 #define SPS_TEMP 2 #define SPS_RED 3 #define SPS_GREEN 4 #define SPS_BLUE 5 #define SPS_REVERSEGREY 6 #define SPS_MANY 7 #define SPS_NORMAL 0 #define SPS_16BIT 1 #define SPS_LSB 0 #define SPS_MSB 1 �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/LICENSE���������������������������������������������������������0000644�0000000�0000000�00000003104�14741736366�016444� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * * Copyright (c) 1998-2011 Certified Scientific Software (CSS) * Copyright (c) 1998-2011 European Synchrotron Radiation Facility (ESRF) * * The software contained in the files "sps.h", "blissmalloc.h", "spec_shm.h", * "sps.c" and "sps_py.c", is designed to interface the shared-data structures * used and defined by the CSS "spec" package with other utility software. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of the software in these files (the "Software"), to deal in the Software * without restriction, including without limitation the rights to use, copy, modify, * merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * ****************************************************************************/ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/MANIFEST.in�����������������������������������������������������0000644�0000000�0000000�00000000070�14741736366�017174� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������recursive-include Include *.h recursive-include Src *.c ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8197665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Src/������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016161� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Src/sps.c�������������������������������������������������������0000644�0000000�0000000�00000270664�14741736366�017160� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * * Copyright (c) 1998-2016 European Synchrotron Radiation Facility (ESRF) * Copyright (c) 1998-2016 Certified Scientific Software (CSS) * * The software contained in this file "sps.c" is designed to interface * the shared-data structures used and defined by the CSS "spec" package * with other utility software. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ /**************************************************************************** * @(#)sps.c 6.9 05/11/16 CSS * * "spec" Release 6 * * This file was mostly an ESRF creation, but includes code from and is * maintained by Certified Scientific Software. * ****************************************************************************/ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <stdarg.h> #include <string.h> #include <ctype.h> #include <sys/types.h> #include <sys/ipc.h> #include <sys/shm.h> #include <signal.h> #include <spec_shm.h> #ifndef IPCS #define IPCS "LC_ALL=C ipcs -m" #endif #define SHM_MAX_ENTRIES 8192 #define SHM_MAX_STR_LEN 8192 #define SHM_CLEANUP 1 typedef struct shm_header SHM; /* id_buffer hold all the SPEC shared memory ids in the system The routine init_ShmIDs is used to fill this buffer (slow!) */ static u32_t id_buffer[SHM_MAX_ENTRIES]; static s32_t id_no = 0; /* The table SpecIDTab holds a table of all SPEC shmids for every spec version there is a table of array ids allocated in memory */ struct arrayid { char *name; u32_t id; }; struct specid { char *spec_version; u32_t id; u32_t pid; u32_t ids_utime; struct arrayid *array_names; s32_t arrayno; }; static struct specid SpecIDTab[SHM_MAX_ENTRIES]; static int SpecIDNo = 0; /* The structure sps_array is used as a handle to one array in a spec version. It holds the current state of this connection. Either not found yet, not attached yet, or attached */ typedef struct sps_array { SHM *shm; u32_t utime; char *spec; char *array; int write_flag; int attached; int stay_attached; int pointer_got_count; u32_t id; void *private_data_copy; size_t buffer_len; void *private_meta_copy; u32_t meta_len; void *private_info_copy; } *SPS_ARRAY; /* Linked list of shared memories I created or I created handles for Information is redundant and should be reduced as soon the interface to the outside world is stable */ struct shm_created { s32_t id; char *array_name; char *spec_version; int isstatus; struct shm_created *status_shm; int no_referenced; SHM *shm; SPS_ARRAY handle; int my_creation; struct shm_created *next; }; static struct shm_created *SHM_CREATED_HEAD = NULL; static SHM *attachArray(char *fullname, char *array, int read_only); static SHM *attachSpec(char *fullname); static SHM *create_master_shm(char *name); static SHM *create_shm(char *specversion, char *array, int rows, int cols, int type, int flags); static SPS_ARRAY add_private_shm(SHM *shm, char *fullname, char *array, int write_flag); static SPS_ARRAY convert_to_handle(char *spec_version, char *array_name); static char *GetNextAll(int flag); static char *composeVersion(char *version, u32_t pid); static int DeconnectArray(SPS_ARRAY private_shm); static int ReconnectToArray(SPS_ARRAY private_shm, int write_flag); static int SearchSpecVersions(void); static int checkSHM(SHM *shm, char *spec_version, char *name, u32_t type); static int delete_handle(SPS_ARRAY handle); static int extractVersion(char *fullname, char *name, u32_t *pid); static int find_ArrayIDX(int tab_idx, char *array_name); static int find_TabIDX(char *spec_version, u32_t pid); static int find_TabIDX_composed(char *fullname); static int getShmIDs(u32_t **id_ptr, char *spec_version, char *name, u32_t type); static int init_ShmIDs(void); static int iscomposed(char *fullname); static int TypedCopy(char *fullname, char *array, void *buffer, int my_type, int items_in_buffer, int direction); static int typedcp(void *t, int tt, void *f, int ft, int np, int rev, int offset); static int typedcp_private(SPS_ARRAY private_shm, void *buffer, int my_type, int items_in_buffer, int direction); static s32_t SearchArrayOnly(char *arrayname); static size_t typedsize(int t); static struct shm_created *ll_addnew_array(char *specversion, char *arrayname, int isstatus, struct shm_created *status, s32_t id, int my_creation, SHM *shm); static struct shm_created *ll_find_array(char *specversion, char *arrayname, int isstatus); static struct shm_created *ll_find_pointer(SHM *shm); static void *CopyDataRC(char *fullname, char *array, int my_type, int row, int col, int *act_copied, int use_row, int direction, void *my_buffer); static void *c_shmat(s32_t id, char *ptr, int flag); static void c_shmdt(void *ptr); static void *id_is_our_creation(u32_t id); static void *shm_is_our_creation(void *shm); static void SearchSpecArrays(char *fullname); static void delete_SpecIDTab(void); static void delete_id_from_list(u32_t id); static void delete_id_from_status(SHM *status, s32_t id); static void delete_shm(s32_t id); static void ll_delete_array(struct shm_created *todel); char *SPS_GetEnvStr(char *spec_version, char *array_name, char *identifier); char *SPS_GetNextArray(char *fullname, int flag); char *SPS_GetNextSpec(int flag); int SPS_CopyFromShared(char *name, char *array, void *buffer, int my_type, int items_in_buffer); int SPS_CopyToShared(char *name, char *array, void *buffer, int my_type, int items_in_buffer); int SPS_CreateArray(char *spec_version, char *arrayname, int rows, int cols, int type, int flags); int SPS_FreeDataCopy(char *fullname, char *array); int SPS_GetArrayInfo(char *spec_version, char *array_name, int *rows, int *cols, int *type, int *flag); int SPS_GetFrameSize(char *spec_version, char *array_name); int SPS_IsUpdated(char *fullname, char *array); int SPS_LatestFrame(char *fullname, char *array); int SPS_PutEnvStr(char *spec_version, char *array_name, char *identifier, char *set_value); int SPS_ReturnDataPointer(void *pointer); int SPS_Size(int type); int SPS_UpdateDone(char *fullname, char *array); s32_t SPS_GetSpecState(char *version); void *SPS_GetDataCol(char *name, char *array, int my_type, int col, int row, int *act_rows); void *SPS_GetDataCopy(char *fullname, char *array, int my_type, int *rows_ptr, int *cols_ptr); void *SPS_GetDataPointer(char *fullname, char*array, int write_flag); void *SPS_GetDataRow(char *name, char *array, int my_type, int row, int col, int *act_cols); void SPS_CleanUpAll(void); char *SPS_GetMetaData(char *spec_version, char *array_name, u32_t *length); char *SPS_GetInfoString(char *spec_version, char *array_name); int SPS_PutMetaData(char *spec_version, char *array_name, char *data, u32_t length); int SPS_PutInfoString(char *spec_version, char *array_name, char *info); #if SPS_DEBUG static int SPS_AttachToArray(char *fullname, char *array, int write_flag); static int SPS_DetachFromArray(char *fullname, char*array); #endif /* Our private attach and dettach to stay connected with the shared memory we created ourselves */ static void *c_shmat(s32_t id, char *ptr, int flag) { void *shm; if ((shm = id_is_our_creation(id))) return shm; return shmat(id, ptr, flag); } static void c_shmdt(void *ptr) { if (shm_is_our_creation(ptr) == NULL) shmdt(ptr); } /* Used internally. Finds the index in the SpecIDTab array with given spec_version and pid. For the moment the pid is only used to decide between two different versions of spec with the same name. Input: spec_version the name of the version to look for pid: the pid of the specversion or 0 if every pid. Returns: -1 if not found, idx otherwise */ static int find_TabIDX_composed(char *fullname) { int i; if (!fullname || !*fullname) return(-1); for (i = 0; i < SpecIDNo; i++) if (!strcmp(fullname, SpecIDTab[i].spec_version)) return(i); return(-1); } static int find_TabIDX(char *spec_version, u32_t pid) { int i, idx = -1; char *fullname; if (pid) fullname = composeVersion(spec_version, pid); else fullname = spec_version; if (!fullname || !*fullname) return(-1); for (i = 0; i < SpecIDNo; i++) if (!strcmp(fullname, SpecIDTab[i].spec_version)) { idx = i; break; } if (fullname != spec_version) free(fullname); return(idx); } static int find_ArrayIDX(int tab_idx, char *array_name) { int i; char *s; if (tab_idx >= SpecIDNo) return -1; for (i = 0; i < SpecIDTab[tab_idx].arrayno; i++) if ((s = SpecIDTab[tab_idx].array_names[i].name)) if (!strcmp(array_name, s)) return i; return(-1); } /* Used internally to combine the version and the pid to a string Input: version: spec version name pid: u32_t returns: NULL if error combined string of both version and pid i.e. fourc(12345) */ static char *composeVersion(char *version, u32_t pid) { int len; char *comb; len = (int) strlen(version) + 10; comb = (char *) malloc(len * sizeof(char)); if (comb == NULL) return(NULL); sprintf(comb, "%s(%u)", version, pid); return(comb); } /* Used internally to extract the version and the pid from a string Input: fullname: i.e. fourc(12345) or just pslits version: pointer to char array which has enough space memory for string will have to be freed pid: pointer to s32_t will contain pid returns: 1 if fullname contained a pid 0 if not */ static int extractVersion(char *fullname, char *name, u32_t *pid) { u32_t pid_buf; char version_buf[512]; if (sscanf(fullname,"%[^(](%u)", version_buf, &pid_buf) == 2) { if (name) strcpy(name, version_buf); if (pid) *pid = pid_buf; return 1; } else { if (name) strcpy(name, fullname); if (pid) *pid = 0; return 0; } } /* fast test to see if there is a chance that the pid is included in the name */ static int iscomposed(char *fullname) { return (strchr(fullname, '(')? 1:0); } static void delete_SpecIDTab(void) { int i,j; for (i = 0; i < SpecIDNo; i++) { for (j = 0; j < SpecIDTab[i].arrayno; j++) if (SpecIDTab[i].array_names[j].name) { free(SpecIDTab[i].array_names[j].name); SpecIDTab[i].array_names[j].name = NULL; } free(SpecIDTab[i].array_names); free(SpecIDTab[i].spec_version); } SpecIDNo = 0; } /* Create a list of all SpecVersions and their IDs. The result is stored in some internal array. This function uses ipcs to get the actual running version and produces the internal table. Fills in the array SpecIDTab[] with all the Specversions but every Specversion does not contain a list of all its arrays yet. To fill this in a call to the function SearchSpecArrays(xxx) has to be called for every Specversion */ static int SearchSpecVersions(void) { u32_t *id_ptr; SHM *shm; int i, j, n; int found; delete_SpecIDTab(); init_ShmIDs(); if ((SpecIDNo = getShmIDs(&id_ptr, NULL, NULL, SHM_IS_STATUS)) == 0) return 0; for (n = 0, i = 0; i < SpecIDNo; i++) { if ((shm = (SHM *) c_shmat(id_ptr[i], NULL, SHM_RDONLY)) == (SHM *) -1) continue; /* Find if the name of the spec_version is already used */ for (found = 0, j = 0; j < n; j++) if (strcmp(shm->head.head.spec_version,SpecIDTab[j].spec_version)== 0) found++; if (!found) { SpecIDTab[n].spec_version = (char *) strdup(shm->head.head.spec_version); } else { SpecIDTab[n].spec_version = composeVersion(shm->head.head.spec_version, shm->head.head.pid); } SpecIDTab[n].pid = shm->head.head.pid; SpecIDTab[n].id = id_ptr[i]; SpecIDTab[n].arrayno = 0; SpecIDTab[n].array_names = NULL; SpecIDTab[n].ids_utime = 0; n++; c_shmdt((void *) shm); } return SpecIDNo = n; } /* Fill in the internal memory structure struct specid SpecIDTab[] for the specversion fullname. The routine relys on the fact that every SPEC version has the status array with a list of shared memory ids which belong to this Specversion. Input: fullname : Name of the Version with possible pid (fourc, spec(123) */ static void SearchSpecArrays(char *fullname) { s32_t id; int found; int redone = 0; int i, si, no, idx; SHM *shm = NULL; struct shm_status *st; redo: found = ((si = find_TabIDX_composed(fullname)) == -1)? 0:1; if (found) { shm = (SHM *) c_shmat(SpecIDTab[si].id, NULL, SHM_RDONLY); } if (!found || !checkSHM(shm, SpecIDTab[si].spec_version, NULL, SHM_IS_STATUS)) { if (found && shm && shm != (SHM *) -1) c_shmdt((void *) shm); if (!redone) { redone = 1; SearchSpecVersions(); goto redo; } else return; } if (shm->head.head.version < 4) st = (struct shm_status *) &(((struct shm_oheader *)shm)->data); else st = (struct shm_status *) &(shm->data); /* Check if there was already an entry for all the arrays and if still uptodate */ if (SpecIDTab[si].arrayno) { if (SpecIDTab[si].ids_utime == st->utime) { c_shmdt((void *) shm); return; } else { for (i = 0; i < SpecIDTab[si].arrayno; i++) if (SpecIDTab[si].array_names[i].name) free(SpecIDTab[si].array_names[i].name); free(SpecIDTab[si].array_names); SpecIDTab[si].arrayno = 0; SpecIDTab[si].array_names = NULL; } } SpecIDTab[si].ids_utime = st->utime; for (no = 0, i = 0; i < SHM_MAX_IDS; i++) { if (st->ids[i] == -1) continue; no++; } SpecIDTab[si].arrayno = no; if (no) SpecIDTab[si].array_names = (struct arrayid *) malloc(sizeof(struct arrayid) * no); /* Make a table of all arraynames with their shm ids */ for (idx = 0, i = 0; idx < SHM_MAX_IDS; idx++) { SHM *shm_array; id = st->ids[idx]; /* the shared memory can change while we go through */ if (id == -1 || i >= no) /* therefore save id and check again i */ continue; shm_array = (SHM *) c_shmat(id, NULL, SHM_RDONLY); if (!checkSHM(shm_array, SpecIDTab[si].spec_version, NULL, 0)) { SpecIDTab[si].array_names[i].name = NULL; SpecIDTab[si].array_names[i].id = 0; if (shm_array && shm_array != (SHM *) -1) c_shmdt((void *) shm_array); i++; continue; } SpecIDTab[si].array_names[i].name = (char *) strdup(shm_array->head.head.name); SpecIDTab[si].array_names[i].id = id; c_shmdt((void *) shm_array); i++; } c_shmdt((void *) shm); } static s32_t SearchArrayOnly(char *arrayname) { u32_t *id_ptr; int no; if ((no = getShmIDs(&id_ptr, NULL, arrayname, SHM_IS_ARRAY)) == 0) { init_ShmIDs(); if ((no = getShmIDs(&id_ptr, NULL, arrayname, SHM_IS_ARRAY)) == 0) return -1; } return *id_ptr; /* Return the first array of the list of arrays */ } /* Get a list of all SPEC shared memory ids. This operation uses the external program ipcs and is therefore very slow. Input: None Returns: 1 if error, 0 if OK The SHM_INFO/SHM_STAT can bypass ipcs on Linux kernels, when those shmctl() commands are supported. */ static int init_ShmIDs(void) { int i, id, col = 0; SHM *shm; struct shmid_ds info; char *p, buf[256]; FILE *pd; #if defined(__linux__) int id_cnt, maxid; # ifndef SHM_STAT # define SHM_STAT 13 # define SHM_INFO 14 # endif pd = NULL; id_cnt = 0; if ((maxid = shmctl(0, SHM_INFO, (void *) buf)) < 0) #endif { if ((pd = (FILE*) popen(IPCS,"r")) == NULL) return 1; } id_no = 0; for (;;) { #if defined(__linux__) if (maxid == 0) return 1; if (maxid > 0) { if (id_cnt > maxid) break; id = shmctl(id_cnt++, SHM_STAT, (void *) buf); } else #endif { if (feof(pd)) break; if (fgets(p = buf, sizeof(buf) - 1, pd) == NULL) break; while (isspace(*p)) p++; if (col == 0) { /* Find column of ipcs output containing ID */ for (col = 1; *p; col++) { /* "shmid" is usual column header on Linux */ if (!strncasecmp(p, "shmid", 5)) break; /* "ID" is usual column header on Solaris/Mac */ if (!strncasecmp(p, "ID ", 3)) break; while (*p && !isspace(*p)) p++; while (isspace(*p)) p++; } if (!*p) col = 0; continue; } if (col == 0) continue; for (i = 1; i < col; i++) { while (*p && !isspace(*p)) p++; while (isspace(*p)) p++; } if (sscanf(p, "%d", &id) != 1) continue; } if ((shm = (SHM *) c_shmat(id, NULL, SHM_RDONLY)) == (SHM *) -1) continue; if (shm->head.head.magic != SHM_MAGIC) { c_shmdt((void *) shm); continue; } #if SHM_CLEANUP if (!id_is_our_creation(id)) { shmctl(id, IPC_STAT, &info); if (info.shm_nattch == 1) { c_shmdt((void *)shm); shmctl(id, IPC_RMID, NULL); continue; } } #endif if (id_no < SHM_MAX_ENTRIES) id_buffer[id_no++] = id; c_shmdt((void *)shm); } if (pd) pclose(pd); return 0; } /* Get all shared memory IDs which belong to a certain class. The shared memory ids on the system must be filled in first with init_ShmIDs() Input: **id_ptr : Will be filled out to a static temporary buffer with all the ids filled in. Do not free this buffer. Do not keep this pointer around for concecutive calls to this routine. spec_version : NULL or a specversion you are interested in name : NULL or an array name you are interested in type : 0 or a bitmap that must be set in the type field of the array (i.e. SHM_STATUS) */ static int getShmIDs(u32_t **id_ptr, char *spec_version, char *name, u32_t type) { u32_t id; int i, ids_no; SHM *shm; static u32_t ids[SHM_MAX_ENTRIES]; for (ids_no = 0, i = 0; i < id_no; i++) { id = id_buffer[i]; if ((shm = (SHM *) c_shmat(id, NULL, SHM_RDONLY)) == (SHM *) -1) continue; if (! checkSHM(shm, spec_version, name, type)) { c_shmdt((void *)shm); continue; } c_shmdt((void *)shm); if (ids_no < SHM_MAX_ENTRIES) { ids[ids_no++] = id; } } *id_ptr = ids; return ids_no; } /* Delete a list ids from our */ static void delete_id_from_list(u32_t id) { int i, j, k, l, no; struct arrayid *new_arrays, *old_arrays; for (i = 0; i < SpecIDNo; i++) { if (SpecIDTab[i].id == id) { /* Just set it to 0 if the id is a spec status shared memory */ SpecIDTab[i].id = 0; return; } for (j = 0; j < SpecIDTab[i].arrayno; j++) if (SpecIDTab[i].array_names[j].id == id) { /* Delete one id of the array shared memory */ old_arrays = SpecIDTab[i].array_names; if (SpecIDTab[i].array_names[j].name) free(SpecIDTab[i].array_names[j].name); no = SpecIDTab[i].arrayno -1; if (no) { new_arrays = (struct arrayid *) malloc(no * sizeof(struct arrayid)); if (new_arrays == NULL) { SpecIDTab[i].array_names[j].id = 0; SpecIDTab[i].array_names[j].name = NULL; return; } for (k = 0, l = 0; k < SpecIDTab[i].arrayno; k++) { if (k != j) { new_arrays[l].name = old_arrays[k].name; new_arrays[l].id = old_arrays[k].id; l++; } } } else new_arrays = NULL; SpecIDTab[i].arrayno = no; SpecIDTab[i].array_names = new_arrays; free(old_arrays); return; } } } /* Checks if a certain shm pointer belongs to the class of shared memory specified Input: shm: shared memory pointer to test spec_version: The name of the spec version or NULL for all name: The name of the array or NULL for all type: The type of the array (see spec_shm.h) Returns: 0 if not passed, 1 if this shm pointer has all the conditions given. */ static int checkSHM(SHM *shm, char *spec_version, char *name, u32_t type) { int id; struct shmid_ds info; char spec_name[512]; u32_t pid; if (shm == NULL || shm == (SHM *) -1) return(0); if (shm->head.head.magic != SHM_MAGIC) return(0); if (spec_version) { if (!iscomposed(spec_version)) { if (strcmp(shm->head.head.spec_version, spec_version)) return(0); } else { extractVersion(spec_version, spec_name, &pid); if (strcmp(shm->head.head.spec_version, spec_name)) return(0); if (shm->head.head.pid != pid) return(0); } } if (name && strcmp(shm->head.head.name, name)) return(0); if (type && (type&shm->head.head.flags) != type) return(0); /* check that id still in system */ id = shm->head.head.shmid; if (shmctl(id, IPC_STAT, &info) < 0) return(0); /* If we own process we can test if it is still running */ if (info.shm_perm.uid == getuid() && shm->head.head.pid && kill(shm->head.head.pid, 0) < 0) { #if SHM_CLEANUP if (!id_is_our_creation(id)) { if (info.shm_nattch == 1) shmctl(id, IPC_RMID, NULL); delete_id_from_list(id); } #endif return(0); } return(1); } /* Attaches to shared memory with given Spec version and array name. Input: spec_version: Name of the spec version array: Name of the array inside SPEC Returns: NULL if error pointer to SPEC shared memory shm_header */ static SHM *attachArray(char *fullname, char *array, int read_only) { int idx, arr_idx, i, id; SHM *shm; shm = NULL; if (fullname) { for (i = 0; i < 2; i++) { idx = find_TabIDX_composed(fullname); if (idx == -1) { SearchSpecVersions(); if ((idx = find_TabIDX_composed(fullname)) == -1) return NULL; } arr_idx = find_ArrayIDX(idx, array); if (arr_idx == -1) { SearchSpecArrays(fullname); if ((arr_idx = find_ArrayIDX(idx, array)) == -1) return NULL; } shm = (SHM *) c_shmat(SpecIDTab[idx].array_names[arr_idx].id, NULL, read_only? SHM_RDONLY:0); /* We might not be attached because the id is not longer valid */ if (shm != (SHM *) -1) break; SearchSpecVersions(); /* and retry */ } } else { /* Use another method of finding the shared mem */ if ((id = SearchArrayOnly(array)) != -1) shm = (SHM *) c_shmat(id, NULL, read_only? SHM_RDONLY:0); /* We might not be attached */ if (shm == (SHM *) -1) return NULL; else return shm; } if (!checkSHM(shm, fullname, array, 0)) { if (shm && shm != (SHM *) -1) c_shmdt((void *) shm); return NULL; } return shm; } /* Attaches to shared memory of a given Spec version Input: spec_version: Name of the spec version Returns: NULL if error pointer to SPEC shared memory shm_header */ static SHM *attachSpec(char *fullname) { int idx = -1; SHM *shm; /* Search in out index - if already known */ idx = find_TabIDX_composed(fullname); /* If not in our index then redo the search in the system */ if (idx == -1) { SearchSpecVersions(); if ((idx = find_TabIDX_composed(fullname)) == -1) return NULL; } /* Maybe we find a pointer in our table */ /* Attach to the shared memory in read-only mode */ shm = (SHM *) c_shmat(SpecIDTab[idx].id, NULL, SHM_RDONLY); /* Check that the shared memory is still valid */ if (!checkSHM(shm, fullname, NULL, 0)) { if (shm && shm != (SHM *) -1) c_shmdt((void *) shm); return NULL; } return shm; } /* How many bytes per data type -- perhaps a table would be smarter ... */ static size_t typedsize(int t) { switch (t) { case SHM_USHORT: return(sizeof(unsigned short)); case SHM_ULONG: return(sizeof(u32_t)); case SHM_ULONG64: return(sizeof(u64_t)); case SHM_SHORT: return(sizeof(short)); case SHM_LONG: return(sizeof(s32_t)); case SHM_LONG64: return(sizeof(s64_t)); case SHM_UCHAR: return(sizeof(unsigned char)); case SHM_CHAR: return(sizeof(char)); case SHM_STRING: return(sizeof(char)); case SHM_DOUBLE: return(sizeof(double)); case SHM_FLOAT: return(sizeof(float)); default: return(0); } } int SPS_Size(int t) { return (int) typedsize(t); } /* * If np < 0, if rev < 0 "to" pointer points to end of * destination buffer and fills in reverse order, else * if rev > 0 "from" pointer points to end of destination buffer. * if np > 0: rev == 0 normal copy * rev == 1 offset in from in every point (copy cols from shm) * rev == 2 offset in to in every point (copy cols to shm) */ #define ONECP(tto, tfrom) do {\ tto *a = (tto *) t; \ tfrom *b = (tfrom *) f; \ \ n = np; \ offs = offset; \ if (n > 0) { \ if (rev == 0) \ while (n--) \ *a++ = (tto) *b++; \ else if (rev == 1) \ while (n--) { \ *a++ = (tto) *b; \ b += offs; \ } \ else if (rev == 2) \ while (n--) { \ *a = (tto) *b++; \ a += offs; \ } \ } else if (rev < 0) \ while (n++) \ *a-- = (tto) *b++; \ else \ while (n++) \ *a++ = (tto) *b--; \ } while (0) static int typedcp(void *t, int tt, void *f, int ft, int np, int rev, int offset) { int n, offs; if (np == 0) return(0); if (ft == tt && np > 0 && rev == 0) { memcpy(t, f, np * typedsize(ft)); return(0); } switch (tt) { case SHM_LONG: switch (ft) { case SHM_DOUBLE: ONECP(s32_t, double); break; case SHM_FLOAT: ONECP(s32_t, float); break; case SHM_ULONG: ONECP(s32_t, u32_t); break; case SHM_ULONG64: ONECP(s32_t, u64_t); break; case SHM_USHORT: ONECP(s32_t, unsigned short); break; case SHM_UCHAR: ONECP(s32_t, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(s32_t, char); break; case SHM_SHORT: ONECP(s32_t, short); break; case SHM_LONG: ONECP(s32_t, s32_t); break; case SHM_LONG64: ONECP(s32_t, s64_t); break; } break; case SHM_ULONG: switch (ft) { case SHM_DOUBLE: ONECP(u32_t, double); break; case SHM_FLOAT: ONECP(u32_t, float); break; case SHM_ULONG: ONECP(u32_t, u32_t); break; case SHM_ULONG64: ONECP(u32_t, u64_t); break; case SHM_USHORT: ONECP(u32_t, unsigned short); break; case SHM_UCHAR: ONECP(u32_t, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(u32_t, char); break; case SHM_SHORT: ONECP(u32_t, short); break; case SHM_LONG: ONECP(u32_t, s32_t); break; case SHM_LONG64: ONECP(u32_t, s64_t); break; } break; case SHM_LONG64: switch (ft) { case SHM_DOUBLE: ONECP(s64_t, double); break; case SHM_FLOAT: ONECP(s64_t, float); break; case SHM_ULONG: ONECP(s64_t, u32_t); break; case SHM_ULONG64: ONECP(s64_t, u64_t); break; case SHM_USHORT: ONECP(s64_t, unsigned short); break; case SHM_UCHAR: ONECP(s64_t, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(s64_t, char); break; case SHM_SHORT: ONECP(s64_t, short); break; case SHM_LONG: ONECP(s64_t, s32_t); break; case SHM_LONG64: ONECP(s64_t, s64_t); break; } break; case SHM_ULONG64: switch (ft) { case SHM_DOUBLE: ONECP(u64_t, double); break; case SHM_FLOAT: ONECP(u64_t, float); break; case SHM_ULONG: ONECP(u64_t, u32_t); break; case SHM_ULONG64: ONECP(u64_t, u64_t); break; case SHM_USHORT: ONECP(u64_t, unsigned short); break; case SHM_UCHAR: ONECP(u64_t, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(u64_t, char); break; case SHM_SHORT: ONECP(u64_t, short); break; case SHM_LONG: ONECP(u64_t, s32_t); break; case SHM_LONG64: ONECP(u64_t, s64_t); break; } break; case SHM_USHORT: switch (ft) { case SHM_DOUBLE: ONECP(unsigned short, double); break; case SHM_FLOAT: ONECP(unsigned short, float); break; case SHM_ULONG: ONECP(unsigned short, u32_t); break; case SHM_ULONG64: ONECP(unsigned short, u64_t); break; case SHM_USHORT: ONECP(unsigned short, unsigned short); break; case SHM_UCHAR: ONECP(unsigned short, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(unsigned short, char); break; case SHM_SHORT: ONECP(unsigned short, short); break; case SHM_LONG: ONECP(unsigned short, s32_t); break; case SHM_LONG64: ONECP(unsigned short, s64_t); break; } break; case SHM_UCHAR: switch (ft) { case SHM_DOUBLE: ONECP(unsigned char, double); break; case SHM_FLOAT: ONECP(unsigned char, float); break; case SHM_ULONG: ONECP(unsigned char, u32_t); break; case SHM_ULONG64: ONECP(unsigned char, u64_t); break; case SHM_USHORT: ONECP(unsigned char, unsigned short); break; case SHM_UCHAR: ONECP(unsigned char, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(unsigned char, char); break; case SHM_SHORT: ONECP(unsigned char, short); break; case SHM_LONG: ONECP(unsigned char, s32_t); break; case SHM_LONG64: ONECP(unsigned char, s64_t); break; } break; case SHM_SHORT: switch (ft) { case SHM_DOUBLE: ONECP(short, double); break; case SHM_FLOAT: ONECP(short, float); break; case SHM_ULONG: ONECP(short, u32_t); break; case SHM_ULONG64: ONECP(short, u64_t); break; case SHM_USHORT: ONECP(short, unsigned short); break; case SHM_UCHAR: ONECP(short, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(short, char); break; case SHM_SHORT: ONECP(short, short); break; case SHM_LONG: ONECP(short, s32_t); break; case SHM_LONG64: ONECP(short, s64_t); break; } break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: switch (ft) { case SHM_DOUBLE: ONECP(char, double); break; case SHM_FLOAT: ONECP(char, float); break; case SHM_ULONG: ONECP(char, u32_t); break; case SHM_ULONG64: ONECP(char, u64_t); break; case SHM_USHORT: ONECP(char, unsigned short); break; case SHM_UCHAR: ONECP(char, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(char, char); break; case SHM_SHORT: ONECP(char, short); break; case SHM_LONG: ONECP(char, s32_t); break; case SHM_LONG64: ONECP(char, s64_t); break; } break; case SHM_FLOAT: switch (ft) { case SHM_DOUBLE: ONECP(float, double); break; case SHM_FLOAT: ONECP(float, float); break; case SHM_ULONG: ONECP(float, u32_t); break; case SHM_ULONG64: ONECP(float, u64_t); break; case SHM_USHORT: ONECP(float, unsigned short); break; case SHM_UCHAR: ONECP(float, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(float, char); break; case SHM_SHORT: ONECP(float, short); break; case SHM_LONG: ONECP(float, s32_t); break; case SHM_LONG64: ONECP(float, s64_t); break; } break; case SHM_DOUBLE: switch (ft) { case SHM_DOUBLE: ONECP(double, double); break; case SHM_FLOAT: ONECP(double, float); break; case SHM_ULONG: ONECP(double, u32_t); break; case SHM_ULONG64: ONECP(double, u64_t); break; case SHM_USHORT: ONECP(double, unsigned short); break; case SHM_UCHAR: ONECP(double, unsigned char); break; case SHM_STRING: /*FALLTHROUGH*/ case SHM_CHAR: ONECP(double, char); break; case SHM_SHORT: ONECP(double, short); break; case SHM_LONG: ONECP(double, s32_t); break; case SHM_LONG64: ONECP(double, s64_t); break; } break; } return(0); } /* char *SPS_GetNextSpec(int flag) Input: Flag to know if this is the first call to SPS_GetNextSpec 1: Get first in list, 0: Get next Returns: Name of the SPEC version or NULL if no more in the list */ char *SPS_GetNextSpec(int flag) { static int loop_count = 0; if (flag == 0) { SearchSpecVersions(); loop_count = 0; } else loop_count++; if (loop_count >= SpecIDNo) { loop_count = 0; return NULL; } else return SpecIDTab[loop_count].spec_version; } /* char *SPS_GetNextArray(char *version, int flag) Input: version : name of SPEC version, or NULL for all. Flag to know if this is the first call to SPS_GetNextArray 1: Get first in list, 0: Get next Returns: Name of the SPEC array name or NULL if no more in the list */ char *SPS_GetNextArray(char *fullname, int flag) { static int loop_count = 0; int idx = -1; if (fullname == NULL) return GetNextAll(flag); if (flag == 0) { SearchSpecArrays(fullname); loop_count = 0; } else loop_count++; idx = find_TabIDX_composed(fullname); if (idx == -1 || loop_count >= SpecIDTab[idx].arrayno || SpecIDTab[idx].array_names[loop_count].name == NULL) { loop_count = 0; return NULL; } else return SpecIDTab[idx].array_names[loop_count].name; } static char *GetNextAll(int flag) { static int loop_count = 0; static char *spec_version = NULL; int idx = -1; for (;;) { if (flag == 0 || spec_version == NULL) { loop_count = 0; if ((spec_version = SPS_GetNextSpec(flag)) == NULL) { return NULL; } SearchSpecArrays(spec_version); } else loop_count++; idx = find_TabIDX_composed(spec_version); if (idx == -1 || loop_count >= SpecIDTab[idx].arrayno || SpecIDTab[idx].array_names[loop_count].name == NULL) { spec_version = NULL; flag = 1; continue; } else return SpecIDTab[idx].array_names[loop_count].name; } } /* Read the state the particular SPEC version is in for the moment Input: version : specversion with PID if necessary (spec(1234) or fourc) Returns: State */ s32_t SPS_GetSpecState(char *version) { SHM *spec_shm; s32_t state = 0; struct shm_status *st; SPS_ARRAY private_shm; int was_attached; if ((private_shm = convert_to_handle(version, NULL)) == NULL) return -1; /* private_shm->stay_attached = 1; Always stay attached to the status */ was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return -1; spec_shm = private_shm->shm; if (spec_shm) { if (spec_shm->head.head.version < 4) st = (struct shm_status *) &(((struct shm_oheader *)spec_shm)->data); else st = (struct shm_status *) &(spec_shm->data); state = st->spec_state; } if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return state; } static SPS_ARRAY add_private_shm(SHM *shm, char *fullname, char *array, int write_flag) { SPS_ARRAY private_shm; private_shm = (SPS_ARRAY) malloc(sizeof(struct sps_array)); if (private_shm == NULL) { return NULL; } private_shm->shm = shm; if (shm) { private_shm->attached = 1; private_shm->utime = 0xffffffff; /*Called when creating shared mem */ private_shm->id = shm->head.head.shmid; private_shm->write_flag = write_flag; } else { private_shm->attached = 0; private_shm->id = 0; private_shm->write_flag = 0; private_shm->utime = 0xffffffff; /* Called when conv. from handle */ } private_shm->spec = fullname ? (char *) strdup(fullname) : NULL; private_shm->array = array ? (char *) strdup(array) : NULL; private_shm->private_data_copy = NULL; private_shm->buffer_len = 0; private_shm->private_info_copy = NULL; private_shm->private_meta_copy = NULL; private_shm->meta_len = 0; private_shm->stay_attached = 0; return private_shm; } static SPS_ARRAY convert_to_handle(char *spec_version, char *array_name) { struct shm_created *shm_list; SPS_ARRAY private_shm; if (spec_version == NULL && array_name == NULL) return NULL; /* Why would somebody want to do that */ shm_list = ll_find_array(spec_version, array_name, array_name? 0:1); /* If not in list then put it into the list if it is not the generic spec_version (NULL) */ if (shm_list == 0) { private_shm = add_private_shm(NULL, spec_version, array_name, 0); shm_list = ll_addnew_array(spec_version, array_name, array_name? 0:1, NULL, 0, 0, NULL); shm_list->handle = private_shm; } else { private_shm = shm_list->handle; if (shm_list->spec_version == NULL && private_shm->spec) shm_list->spec_version = (char *) strdup(private_shm->spec); } return private_shm; } #if SPS_DEBUG /* Attaches to a SPEC array. Returns a private opaque structure which user should not modify. To get the real data call Input: fullname specversion with PID if necessary (spec(1234) or fourc) array_name: The name of the SPEC array (i.e. MCA_DATA) write_flag: One if you intend to modify the shared memory Output: NULL if error opaque structure to attached memory */ static int SPS_AttachToArray(char *fullname, char *array, int write_flag) { SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return 1; private_shm->write_flag = write_flag; private_shm->stay_attached = 1; if (private_shm) ReconnectToArray(private_shm, 0); return 0; } /* Detaches from a SPEC array. The opaque pointer private_shm stays valid. If it is used in further calls the functions automatically try to reattach to the SPEC array. Input: fullname: Spec name array name of the array Returns: 1 error occured 0 everything OK */ static int SPS_DetachFromArray(char *fullname, char*array) { SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return 1; private_shm->stay_attached = 0; return DeconnectArray(private_shm); } #endif /* SPS_DEBUG */ static int DeconnectArray(SPS_ARRAY private_shm) { if (private_shm->attached) { c_shmdt((void *)private_shm->shm); private_shm->attached = 0; private_shm->shm = NULL; private_shm->pointer_got_count = 0; } return 0; } /* Reconnects to a shared memory SPEC array. The process is attached to this shared memory again. Input: Opac pointer from ConnectToArray returns: 1 error 0 success */ static int ReconnectToArray(SPS_ARRAY private_shm, int write_flag) { SHM *shm; if (write_flag && !private_shm->write_flag) { /*Reattach with write flag */ private_shm->write_flag = 1; shm = private_shm->shm; if (shm) { c_shmdt((void *) shm); private_shm->attached = 0; private_shm->shm = NULL; } } if (!private_shm->attached) { if (private_shm->id != 0) { shm = c_shmat(private_shm->id, NULL, private_shm->write_flag? 0:SHM_RDONLY); } else shm = NULL; } else shm = private_shm->shm; /* Check shm and try to get a new one if old one not longer valid */ if (!checkSHM(shm, private_shm->spec, private_shm->array, 0)) { if (shm && shm != (SHM *) -1) { c_shmdt((void *) shm); private_shm->attached = 0; private_shm->shm = NULL; } if (private_shm->array) { if ((shm = attachArray(private_shm->spec, private_shm->array, private_shm->write_flag? 0:1)) == NULL) return 1; } else { if ((shm = attachSpec(private_shm->spec)) == NULL) return 1; } } private_shm->shm = shm; private_shm->attached = (shm == NULL)? 0:1; private_shm->id = shm->head.head.shmid; /* If we are attached and the SPEC version is still unknown - update now */ if (shm && private_shm->spec == NULL) private_shm->spec = (char *) strdup(shm->head.head.spec_version); return 0; } /* Gives you the pointer to the data area of the SPEC array. If the process is not currently attached it will be attached after the call. Input: fullname : Spec version array : Name of the array Returns: NULL error void * to the data area. Do not remember this pointer as most of the SPS_ functions can change this pointer (In case the other party quit and recreated the shared memory) */ void *SPS_GetDataPointer(char *fullname, char *array, int write_flag) { SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return NULL; if (ReconnectToArray(private_shm, write_flag)) return NULL; private_shm->pointer_got_count++; if (private_shm->shm->head.head.version < 4) return &(((struct shm_oheader *)(private_shm->shm))->data); return &(private_shm->shm->data); } /* You should return the pointer to the library if you do not use it anymore. If you returned the pointer as many times as you got it you will be detached from the shared memory and the pointer is not valid anymore. Input: fullname : Spec version array : Name of the array Returns: 0 success 1 error */ int SPS_ReturnDataPointer(void *data) { SPS_ARRAY private_shm; struct shm_created *created; struct shm_head *sh; SHM *shm; /* Try old header size first, since it is smaller */ sh = (struct shm_head *) (((char *) data) - SHM_OHEAD_SIZE); if (sh->magic != SHM_MAGIC) sh = (struct shm_head *) (((char *) data) - SHM_HEAD_SIZE); if (sh->magic != SHM_MAGIC) return(1); shm = (SHM *) sh; if ((created = ll_find_pointer(shm)) == NULL) return 1; if ((private_shm = created->handle) == NULL) return 1; private_shm->pointer_got_count--; if (private_shm->pointer_got_count <= 0) { private_shm->pointer_got_count = 0; return DeconnectArray(private_shm); } return 0; } /* Copies the data from the shared memory SPEC array to the user's buffer. The type of the data in the shared array and the type the user wants in his buffer is taken into account. The routine should work efficient even if both types are equal. The user has to provide the number of items in the buffer. This number is used to check for buffer overflow. If a possible buffer overflow is detected only the items_in_buffer are copied. Input: fullname : name of the specversion array: name of the array in SPEC buffer: pointer to our buffer my_type: In which format do we want the results items_in_buffer: buffersize in number of items of type my_type in buffer Returns: 0 success 1 overflow, but copy done -1 error Nothing done */ int SPS_CopyFromShared(char *fullname, char *array, void *buffer, int my_type, int items_in_buffer) { return TypedCopy(fullname, array, buffer, my_type, items_in_buffer, 0); } /* Copies the data to the shared memory SPEC array from the user's buffer. The type of the data in the shared array and the type the user wants in his buffer is taken into account. The routine should work efficient even if both types are equal. The user has to provide the number of items in the buffer. This number is used to check for buffer overflow. If a possible buffer overflow is detected only the items_in_buffer are copied. Input: fullname : name of the specversion array: name of the array in SPEC buffer: pointer to our buffer my_type: In which format do we want the results items_in_buffer: buffersize in number of items of type my_type in buffer Returns: 0 success 1 overflow, but copy done -1 error Nothing done */ int SPS_CopyToShared(char *fullname, char *array, void *buffer, int my_type, int items_in_buffer) { return TypedCopy(fullname, array, buffer, my_type, items_in_buffer, 1); } /* Copies the data from the shared memory SPEC array to the user's buffer. The type of the data in the shared array and the type the user wants in his buffer is taken into account. The routine should work efficient even if both types are equal. The user has to provide the number of items in the buffer. This number is used to check for buffer overflow. If a possible buffer overflow is detected only the items_in_buffer are copied. Input: fullname : name of the specversion array: name of the array in SPEC buffer: pointer to our buffer my_type: In which format do we want the results items_in_buffer: buffersize in number of items of type my_type in buffer Returns: 0 success 1 overflow, but copy done -1 error Nothing done */ static int TypedCopy(char *fullname, char *array, void *buffer, int my_type, int items_in_buffer, int direction) { SPS_ARRAY private_shm; int was_attached, overflow; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return -1; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, direction)) return -1; overflow = typedcp_private(private_shm, buffer, my_type, items_in_buffer, direction); if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return overflow; } static int typedcp_private(SPS_ARRAY private_shm, void *buffer, int my_type, int items_in_buffer, int direction) { void *data_ptr; int rows, cols, type, n_to_copy, overflow; /* Do the data copy taking type and my_type into account */ rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; type = private_shm->shm->head.head.type; if (private_shm->shm->head.head.version < 4) data_ptr = &(((struct shm_oheader *)(private_shm->shm))->data); else data_ptr = &(private_shm->shm->data); if (rows * cols > items_in_buffer) { overflow = 1; n_to_copy = items_in_buffer; } else { overflow = 0; n_to_copy = rows*cols; } if (direction) { typedcp(data_ptr, type, buffer, my_type, n_to_copy, 0, 0); private_shm->shm->head.head.utime++; /* Updated */ } else { typedcp(buffer, my_type, data_ptr, type, n_to_copy, 0, 0); } return overflow; } /* Can be used to copy rows and columns from an to shared memory. The first parameter are standard see SPS_GetDataRow. use_row is 1 if it should copy rows. (One block of memory) direction is 1 if it should write to shared memory and 0 to read from shm my_buffer is NULL if it should copy to the internal buffer otherwise the buffer to copy from or to */ static void *CopyDataRC(char *fullname, char *array, int my_type, int row, int col, int *act_copied, int use_row, int direction, void *my_buffer) { int rows, cols, type; void *buffer = NULL; SPS_ARRAY private_shm; int was_attached; size_t size; void *data_ptr; int n_to_copy = 0; if (act_copied) *act_copied = 0; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, direction)) return NULL; rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; type = private_shm->shm->head.head.type; if ((use_row && (row < 0 || row >= rows)) || (!use_row && (col < 0 || col >= cols))) return NULL; size = (use_row? cols:rows) * (int) typedsize(my_type); /* full row/column */ if (my_buffer == NULL) { if (private_shm->private_data_copy == NULL || size > private_shm->buffer_len) { if (size > private_shm->buffer_len) { free(private_shm->private_data_copy); private_shm->private_data_copy = NULL; private_shm->buffer_len = 0; } if ((buffer = (void *) malloc(size)) == NULL) goto error; private_shm->private_data_copy = buffer; private_shm->buffer_len = size; } else buffer = private_shm->private_data_copy; } else buffer = my_buffer; if (private_shm->shm->head.head.version < 4) data_ptr = &(((struct shm_oheader *)(private_shm->shm))->data); else data_ptr = &(private_shm->shm->data); /* Do the data copy taking type and my_type into account */ if (use_row) { data_ptr = (void *) ((char*) data_ptr + cols * row * typedsize(my_type)); if (col == 0 || col > cols) n_to_copy = cols; else n_to_copy = col; if (direction) { typedcp(data_ptr, type, buffer, my_type, n_to_copy, 0, 0); private_shm->shm->head.head.utime++; /* Updated */ } else { typedcp(buffer, my_type, data_ptr, type, n_to_copy, 0, 0); } } else { data_ptr = (void *) ((char*) data_ptr + col * typedsize(my_type)); if (row == 0 || row > rows) n_to_copy = rows; else n_to_copy = row; if (direction) { typedcp(data_ptr, type, buffer, my_type, n_to_copy, 2, cols); private_shm->shm->head.head.utime++; /* Updated */ } else { typedcp(buffer, my_type, data_ptr, type, n_to_copy, 1, cols); } } error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); if (act_copied) *act_copied = n_to_copy; return buffer; } /* Copy a row of data from the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataRow for fullname-array. Input: name : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns to you want. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void *SPS_GetDataRow(char *name, char *array, int my_type, int row, int col, int *act_cols) { return CopyDataRC(name, array, my_type, row, col, act_cols, 1, 0, NULL); } /* Copy a column of data from the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataCol, SPS_GetDataRow or SPS_GetData for fullname-array. Input: name : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want. If this is 0 then all the rows are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void *SPS_GetDataCol(char *name, char *array, int my_type, int col, int row, int *act_rows) { return CopyDataRC(name, array, my_type, row, col, act_rows, 0, 0, NULL); } /* Copy a row of data from the shared memory array to a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns you want to copy. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: 0 success 1 error */ int SPS_CopyRowFromShared(char *name, char *array, void *buf, int my_type, int row, int col, int *act_cols) { return (CopyDataRC(name, array, my_type, row, col, act_cols, 1, 0, buf)? 0:1); } /* Copy a column of data from the shared memory array to a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want to copy. If this is 0 then all the columns are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: 0 success 1 error */ int SPS_CopyColFromShared(char *name, char *array, void *buf, int my_type, int col, int row, int *act_rows) { return (CopyDataRC(name, array, my_type, row, col, act_rows, 0, 0, buf)? 0:1); } /* Copy a row of data to the shared memory array from a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) row : integer. Which row do you want. col : integer. How many columns you want to copy. If this is 0 then all the columns are copied. act_cols : pointer to int. If not NULL then this is filled with the number of columns actually copied. Returns: 0 success 1 error */ int SPS_CopyRowToShared(char *name, char *array, void *buf, int my_type, int row, int col, int *act_cols) { return (CopyDataRC(name, array, my_type, row, col, act_cols, 1, 1, buf)? 0:1); } /* Copy a column of data to the shared memory array from a buffer. Input: name : The name of the specversion array : The name of the array in this SPEC version buf : A pointer to the buffer. my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) col : integer. Which column do you want. row : integer. How many rows you want to copy. If this is 0 then all the columns are copied. act_rows : pointer to int. If not NULL then this is filled with the number of rows actually copied. Returns: 0 success 1 error */ int SPS_CopyColToShared(char *name, char *array, void *buf, int my_type, int col, int row, int *act_rows) { return (CopyDataRC(name, array, my_type, row, col, act_rows, 0, 1, buf)? 0:1); } /* Copy the data in the shared memory array to a private buffer. Only one private buffer per shared memory array is allowed. You can call SPS_FreeDataCopy to free the memory by the buffer but it is not necessary. If the buffer is not freed it is reused the next time you call the function SPS_GetDataCopy for fullname-array. Input: fullname : The name of the specversion array : The name of the array in this SPEC version my_type : The data type how you would like to have the buffer. This data type does not have to be the same as the data type of the shared memory array. In this case it will be transformed in the data type you asked for (fast) rows : pointer to integer. Will be filled with number of rows if not NULL cols : pointer to integer. Will be filled with number of cols if not NULL Returns: Pointer to the data array (DO NOT USE free() to free this buffer) */ void *SPS_GetDataCopy(char *fullname, char *array, int my_type, int *rows_ptr, int *cols_ptr) { int rows, cols; void *buffer = NULL; SPS_ARRAY private_shm; int allocated = 0; int was_attached; size_t size; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return NULL; rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; if (rows_ptr) *rows_ptr = rows; if (cols_ptr) *cols_ptr = cols; size = rows * cols * typedsize(my_type); if (private_shm->private_data_copy == NULL || size > private_shm->buffer_len) { if (size > private_shm->buffer_len) { free(private_shm->private_data_copy); private_shm->private_data_copy = NULL; private_shm->buffer_len = 0; } if ((buffer = (void *) malloc(size)) == NULL) goto error; allocated = 1; private_shm->private_data_copy = buffer; private_shm->buffer_len = size; } if (typedcp_private(private_shm, private_shm->private_data_copy, my_type, rows * cols, 0)) { if (allocated) { free(buffer); buffer = NULL; } } else buffer = private_shm->private_data_copy; error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return buffer; } int SPS_FreeDataCopy(char *fullname, char *array) { SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return 1; if (private_shm && private_shm->private_data_copy != NULL) { free(private_shm->private_data_copy); private_shm->private_data_copy = NULL; private_shm->buffer_len = 0; } return 0; } int SPS_PutMetaData(char *fullname, char *array, char *meta, u32_t length) { SPS_ARRAY private_shm; int was_attached, ret = 0, len; struct shm_head *sh; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return(-1); if (meta == NULL) return(-1); was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 1)) return(-1); sh = &(private_shm->shm->head.head); if (sh->version < 6) { ret = -1; goto error; } if (length > sh->meta_length) len = sh->meta_length; else len = length; memcpy((char *) (private_shm->shm) + sh->meta_start, meta, len); error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return(ret); } char *SPS_GetMetaData(char *fullname, char *array, u32_t *length) { void *buffer = NULL; SPS_ARRAY private_shm; int was_attached; u32_t size; struct shm_head *sh; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return NULL; sh = &(private_shm->shm->head.head); if (sh->version < 6) goto error; size = sh->meta_length; if (private_shm->private_meta_copy == NULL || size > private_shm->meta_len) { if (size > private_shm->meta_len) { if (private_shm->private_meta_copy) free(private_shm->private_meta_copy); private_shm->private_meta_copy = NULL; private_shm->meta_len = 0; } if ((buffer = (void *) malloc(size ? size : 1)) == NULL) goto error; private_shm->private_meta_copy = buffer; private_shm->meta_len = size; ((char*)buffer)[0] = '\0'; } else buffer = private_shm->private_meta_copy; memcpy(buffer, (char *) (private_shm->shm) + sh->meta_start, size); *length = size; error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return buffer; } int SPS_PutInfoString(char *fullname, char *array, char *info) { SPS_ARRAY private_shm; int was_attached, ret = 0; struct shm_head *sh; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return(-1); if (info == NULL) return(-1); was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 1)) return(-1); sh = &(private_shm->shm->head.head); if (sh->version < 6) { ret = -1; goto error; } strncpy(sh->info, info, sizeof(sh->info)); error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return(ret); } char *SPS_GetInfoString(char *fullname, char *array) { void *buffer = NULL; SPS_ARRAY private_shm; int was_attached; struct shm_head *sh; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return NULL; sh = &(private_shm->shm->head.head); if (sh->version < 6) goto error; if (private_shm->private_info_copy == NULL) { if ((buffer = (void *) malloc(sizeof(sh->info))) == NULL) goto error; private_shm->private_info_copy = buffer; } memcpy(private_shm->private_info_copy, sh->info, sizeof(sh->info)); buffer = private_shm->private_info_copy; error: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return buffer; } /* Used to read a shared string array in where every line is in the format identifier=value Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value identifier : the identifier Result: NULL if we could not connect to the array or if the identifier did not exist value : Do not free this pointer. Do not just keep this pointer around but make a copy of the contents as the storage space is reused at every call to this function. */ char * SPS_GetEnvStr(char *spec_version, char *array_name, char *identifier) { int rows, cols; char *data; char id[SHM_MAX_STR_LEN + 1]; static char value[SHM_MAX_STR_LEN + 1]; SPS_ARRAY private_shm; char *res = NULL; int was_attached, i; char strange[SHM_MAX_STR_LEN + 1]; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return NULL; /* Can not attach */ if (private_shm->shm->head.head.type != SHM_STRING) goto back; /* Must be string type */ if (private_shm->shm->head.head.version < 4) data = (char *) &(((struct shm_oheader *)(private_shm->shm))->data); else data = (char *) &(private_shm->shm->data); rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; if (cols > SHM_MAX_STR_LEN) goto back; /* We better give up, our buffer might be too small */ for (i =0; i < rows; i++) { strcpy(strange, data + cols *i); /* sscanf core-dumps if in shared mem*/ if (sscanf(strange,"%[^=]=%[^\n]", id, value) == 2) { /* OK we have a pair */ if (strcmp(id, identifier) == 0) { res = value; break; } } } back: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return res; } /* Used to read all the keys from the enviroment string Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value Result: NULL if we could not connect to the array or if the identifier did not exist value : Do not free this pointer. Do not just keep this pointer around but make a copy of the contents as the storage space is reused at every call to this function. */ char * SPS_GetNextEnvKey(char *spec_version, char *array_name, int flag) { int rows, cols; char *data; char id[SHM_MAX_STR_LEN + 1]; SPS_ARRAY private_shm; char *res = NULL; int was_attached, i, parsed; char strange[SHM_MAX_STR_LEN + 1]; static int loop_count = 0; static int keyNO = 0; static char **keys=NULL; if (flag != 0) { if (loop_count >= keyNO) { loop_count = 0; if (keys != NULL) { for (i = 0; i < keyNO; i++) free(keys[i]); free(keys); keys = NULL; } return NULL; } else { res=keys[loop_count]; loop_count++; return res; } } if (keys != NULL) { for (i = 0; i < keyNO; i++) free(keys[i]); free(keys); keys = NULL; } loop_count = 0; keyNO = 0; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return NULL; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return NULL; /* Can not attach */ if (private_shm->shm->head.head.type != SHM_STRING) goto back; /* Must be string type */ if (private_shm->shm->head.head.version < 4) data = (char *) &(((struct shm_oheader *)(private_shm->shm))->data); else data = (char *) &(private_shm->shm->data); rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; if (cols > SHM_MAX_STR_LEN) goto back; /* We better give up, our buffer might be too small */ keys = malloc(sizeof(char *) * rows); for (i = 0; i < rows; i++) { char dummy[2]; strcpy(strange, data + cols *i); /* sscanf core-dumps if in shared mem*/ parsed = sscanf(strange,"%[^=]=%1[^\n]", id, dummy); if (parsed == 2) { /* OK we have a pair */ keys[i] = (char*) strdup(id); keyNO++; } else if (parsed == 1) { keys[i] = (char*) strdup(id); /* empty string */ } } back: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); if (keyNO) { loop_count = 1; return keys[0]; } else { free(keys); keys = NULL; return NULL; } } /* Used to write a shared string array in where every line is in the format identifier=value Input: spec_version : The spec version array_name : the shared memory string array which holds the lines id=value identifier : the identifier set_value : The value you would like to put in the identifier Result: 1 error 0 success */ int SPS_PutEnvStr(char *spec_version, char *array_name, char *identifier, char *set_value) { int rows, cols; char *data; SPS_ARRAY private_shm; int res = 1; int was_attached, i, use_row; char id[SHM_MAX_STR_LEN + 1], value[SHM_MAX_STR_LEN + 1], strange[SHM_MAX_STR_LEN + 1]; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return 1; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 1)) return 1; if (private_shm->shm->head.head.type != SHM_STRING) goto back; /* Must be string type */ if (!private_shm->write_flag) goto back; /* We can not write to this array */ if (private_shm->shm->head.head.version < 4) data = (char *) &(((struct shm_oheader *)(private_shm->shm))->data); else data = (char *) &(private_shm->shm->data); rows = private_shm->shm->head.head.rows; cols = private_shm->shm->head.head.cols; if ((int)(strlen(identifier) + strlen (value) + 2) > cols || cols > SHM_MAX_STR_LEN) goto back; /* We will no be able to fit that in */ for (i =0, use_row = -1; i < rows; i++) { strcpy(strange, data + cols *i); /* sscanf core-dumps if in shared mem*/ if (sscanf(strange,"%[^=]=%[^\n]", id, value) == 2) { /* OK we have a pair */ if (strcmp(id, identifier) == 0) { use_row = i; /* We can reuse this row */ break; } } else { use_row = i; /* Delete the entry which doesn't have the correct format */ break; } } if (use_row == -1) goto back; /* Sorry no more space in the array */ strcpy(data + cols * use_row, identifier); strcat(data + cols * use_row, "="); strcat(data + cols * use_row, set_value); private_shm->shm->head.head.utime++; /* Updated */ res = 0; /* Success - tell everybody*/ back: if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return res; } /* Tells you if the data in the shared memory array changed since you last called this function with these parameters or if this is your first call to this function. If you are not currently attached to the memory the function will attach, read and detach after. Input: fullname and array Returns: 0 No change -1 Error - memory not longer updated 1 Contents changed - new valid data */ int SPS_IsUpdated(char *fullname, char *array) { u32_t utime; int updated; int was_attached; u32_t id; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return -1; id = private_shm->id; utime = private_shm->utime; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return -1; private_shm->utime = private_shm->shm->head.head.utime; updated = (private_shm->id == id)? 0:1; if (!updated) updated = (private_shm->shm->head.head.utime == utime)? 0:1; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return updated; } int SPS_LatestFrame(char *fullname, char *array) { #if SHM_VERSION >= 5 int frame; int was_attached; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return(-1); was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return(-1); frame = private_shm->shm->head.head.latest_frame; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return(frame); #else return(0); #endif } /* Returns the current update counter for this array or -1 if not longer updated. This function is used in some cases where the simpler function SPS_IsUpdated is not sufficient (For example if you have multiple subroutines in your program which access the shared memory independently. The SPS routines can not distinguish between calls from the same subroutine twice or single calls from different subroutines) You should keep the old counter value and compare the returned value to the old. If it is changed you have to update your array. Input: fullname and array Returns: update counter value -1 Error - memory not longer updated */ int SPS_UpdateCounter(char *fullname, char *array) { int updated; int was_attached; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return -1; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return -1; private_shm->utime = private_shm->shm->head.head.utime; updated = private_shm->utime; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return updated; } /* Tells all the readers of the SPEC array that you updated its contents If you are not currently attached to the memory the function will attach, write and detach after. Input: fullname : Spec version array : Array in SPEC version Returns: 1 Error - memory not longer updated or no write permission 0 success */ int SPS_UpdateDone(char *fullname, char *array) { int was_attached; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(fullname, array)) == NULL) return 1; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 1)) return 1; if (private_shm->write_flag == 0) return 1; private_shm->utime = ++(private_shm->shm->head.head.utime); if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return 0; } /* Input: version : name of SPEC version. array_name : Name of this spec array rows : Pointer to integer to return number of rows in this array cols : Pointer to integer to return number of columns in this array type : Pointer - Which data type does the data in this array have. Possible values are: flag : Pointer More information about the contents of this array (does it contain data for MCA, CCD cameras other info ..) Returns: Error code : 0 == no error */ int SPS_GetArrayInfo(char *spec_version, char *array_name, int *rows, int *cols, int *type, int *flag) { int was_attached; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return 1; was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) { if (rows) *rows = 0; if (cols) *cols = 0; if (type) *type = 0; if (flag) *flag = 0; return 1; } if (rows) *rows = private_shm->shm->head.head.rows; if (cols) *cols = private_shm->shm->head.head.cols; if (type) *type = private_shm->shm->head.head.type; if (flag) *flag = private_shm->shm->head.head.flags; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return 0; } /* Input: version : name of SPEC version. array_name : Name of this spec array Returns: shared memory identifier */ int SPS_GetShmId(char *spec_version, char *array_name) { int was_attached; int shmid; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return -1; was_attached = private_shm->attached; shmid = (int) private_shm->id; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return shmid; } int SPS_GetFrameSize(char *spec_version, char *array_name) { #if SHM_VERSION >= 5 int frame_size; int was_attached; SPS_ARRAY private_shm; if ((private_shm = convert_to_handle(spec_version, array_name)) == NULL) return(-1); was_attached = private_shm->attached; if (ReconnectToArray(private_shm, 0)) return(-1); frame_size = private_shm->shm->head.head.frame_size; if (was_attached == 0 && private_shm->stay_attached == 0) DeconnectArray(private_shm); return(frame_size); #else return(0); #endif } static struct shm_created * ll_addnew_array(char *specversion, char *arrayname, int isstatus, struct shm_created *status, s32_t id, int my_creation, SHM *shm) { struct shm_created *created, **new_created; struct shm_created *new_array; for (created = SHM_CREATED_HEAD, new_created = & SHM_CREATED_HEAD; created; new_created = &(created->next), created = created->next) { } new_array = (struct shm_created *) malloc(sizeof(struct shm_created)); if (new_array == NULL) return NULL; new_array->next = NULL; new_array->no_referenced = 0; new_array->isstatus = isstatus; new_array->status_shm = status; new_array->id = id; new_array->my_creation = my_creation; new_array->handle = NULL; new_array->shm = shm; if (specversion) { if ((new_array->spec_version = (char *) strdup(specversion)) == NULL) { free(new_array); return NULL; } } else new_array->spec_version = NULL; if (arrayname) { if ((new_array->array_name = (char *) strdup(arrayname)) == NULL) { if (new_array->spec_version) free(new_array->spec_version); free(new_array); return NULL; } } else new_array->array_name = NULL; *new_created = new_array; return new_array; } static struct shm_created *ll_find_pointer(SHM *shm) { struct shm_created *created; for (created = SHM_CREATED_HEAD; created; created = created->next) { if (created->handle && created->handle->shm == shm) return created; } return NULL; } static struct shm_created * ll_find_array(char *specversion, char *arrayname, int isstatus) { struct shm_created *created; for (created = SHM_CREATED_HEAD; created; created = created->next) { if ((specversion == NULL || created->spec_version == NULL || strcmp(created->spec_version, specversion) == 0) && (arrayname == NULL || created->array_name == NULL || strcmp(created->array_name, arrayname) == 0) && created->isstatus == isstatus) { return created; } } return NULL; } static void * id_is_our_creation(u32_t id) { struct shm_created *created; for (created = SHM_CREATED_HEAD; created; created = created->next) if (created->id == (int) id) return (created->my_creation)? created->shm:NULL; return NULL; } static void * shm_is_our_creation(void *shm) { struct shm_created *created; for (created = SHM_CREATED_HEAD; created; created = created->next) if ((void *) created->shm == shm) return (created->my_creation)? created->shm:NULL; return NULL; } static void ll_delete_array(struct shm_created *todel) { struct shm_created *created, **new_created; for (created = SHM_CREATED_HEAD, new_created = & SHM_CREATED_HEAD; created; new_created = &(created->next), created = created->next) { if (created == todel) { *new_created = created->next; if (created->spec_version) free(created->spec_version); if (created->array_name) free(created->array_name); free(created); return; } } } static SHM * create_shm(char *specversion, char *array, int rows, int cols, int type, int flags) { int sflag = 0644, key = -1; s32_t id; size_t size; SHM *shm; if (key == -1) key = IPC_PRIVATE; else sflag |= IPC_CREAT; size = rows * cols * typedsize(type) + sizeof(SHM) + SHM_META_SIZE; id = shmget((key_t) key, size, sflag); /* * now put the structure into the shared memory * Remember to attach to it first */ if ((shm = (SHM *) shmat(id, (char*) 0, 0)) == (SHM *) -1) { return NULL; } #if defined(__linux__) /* Will be removed after last detach */ shmctl(id, IPC_RMID, NULL); #endif /* init header */ shm->head.head.magic = SHM_MAGIC; shm->head.head.type = type; shm->head.head.version = SHM_VERSION; shm->head.head.rows = rows; shm->head.head.cols = cols; shm->head.head.utime = 0; shm->head.head.shmid = id; shm->head.head.flags = flags; shm->head.head.pid = getpid(); strcpy(shm->head.head.name, array); strcpy(shm->head.head.spec_version, specversion); shm->head.head.meta_start = size - SHM_META_SIZE; shm->head.head.meta_length = SHM_META_SIZE; return shm; } static SHM * create_master_shm(char *name) { int sflag = 0644, key = -1; s32_t id; int size, i; SHM *shm; struct shm_status *st; if (key == -1) key = IPC_PRIVATE; else sflag |= IPC_CREAT; size = sizeof(struct shm_status) + sizeof(SHM); id = shmget((key_t) key, (size_t) size, sflag); if ((shm = (SHM *) shmat(id, NULL, 0)) == (SHM *) -1) { return NULL; } #if defined(__linux__) /* Will be removed after last detach */ shmctl(id, IPC_RMID, NULL); #endif /* init header */ shm->head.head.magic = SHM_MAGIC; shm->head.head.type = 0; shm->head.head.version = SHM_VERSION; shm->head.head.rows = 0; shm->head.head.cols = 0; shm->head.head.utime = 0; shm->head.head.shmid = id; shm->head.head.flags = SHM_IS_STATUS; shm->head.head.pid = getpid(); *(shm->head.head.name) = '\0'; strcpy(shm->head.head.spec_version, name); if (shm->head.head.version < 4) st = (struct shm_status *) &(((struct shm_oheader *)shm)->data); else st = (struct shm_status *) &(shm->data); st->spec_state = 0; st->utime = 0; /* updated when ids[] changes */ for (i = 0; i < SHM_MAX_IDS; i++) st->ids[i] = -1; /* shm ids for shared arrays */ return shm; } static void delete_shm(s32_t id) { shmctl(id, IPC_RMID, NULL); } static void delete_id_from_status(SHM *status, s32_t id) { struct shm_status *st; int i, j; if (status->head.head.version < 4) st = (struct shm_status *) &(((struct shm_oheader *)status)->data); else st = (struct shm_status *) &(status->data); for (i = 0; i < SHM_MAX_IDS; i++) if (st->ids[i] == id) { for (j = i; j < SHM_MAX_IDS -1; j++) st->ids[j] = st->ids[j+1]; break; } st->utime++; } /* Creates a shared memory array and the shared memory structure for the spec version. You can only create new arrays for specversions which either do not exist or have been created by this process. After the call you are automatically attached to the shared memory. The process always stay attached to the shared memories he created. You can call all the other functions like Connect or Deconnect but you will always stay attached to the shared memory Input: spec_version: The specversion you will create the new array in arrayname: The name of the array rows: number of rows cols: number of columns type : The data type of the data stored in this array. flag: A flag to indicate the type of the array MCA data or CCD camera. It is not necessary to specify SPS_IS_ARRAY here. This flag is always true for the arrays we can create with this function. Returns: 0 OK 1 Error */ int SPS_CreateArray(char *spec_version, char *arrayname, int rows, int cols, int type, int flags) { SHM *shm, *ashm; int i, idx; struct shm_status *st; struct shm_created *shm_array, *shm_status; SPS_ARRAY private_shm; flags |= SHM_IS_ARRAY; /* We can only create arrays with this function */ if (spec_version == NULL || arrayname == NULL) return 1; if ((shm_status = ll_find_array(spec_version, NULL, 1)) == NULL) { /* SearchSpecArrays (spec_version); */ /* Check if there is already a spec_version which exists */ if ((idx = find_TabIDX(spec_version, 0)) != -1) return 1; /* We can not add to a spec_version we not created*/ /* Create a spec_version */ if ((shm = create_master_shm(spec_version)) == NULL) return 1; if ((shm_status = ll_addnew_array(spec_version, NULL, 1, NULL, shm->head.head.shmid, 1, shm)) == NULL) { c_shmdt((void *)shm); return 1; } private_shm = add_private_shm(shm, spec_version, NULL, 1); shm_status->handle = private_shm; } else { if (shm_status->shm == NULL) { if ((shm = (SHM *) shmat(shm_status->id, NULL, 0)) == (SHM *) -1) { return 1; } shm_status->shm = shm; } else shm = shm_status->shm; } /* There is already an array with this name - delete it */ if ((shm_array = ll_find_array(spec_version, arrayname, 0)) != NULL) { if (shm_array->shm != NULL) shmdt((void *)shm_array->shm); delete_id_from_status(shm_array->status_shm->shm, shm_array->id); delete_shm(shm_array->id); ll_delete_array(shm_array); } /* Create the new array */ ashm = create_shm(spec_version, arrayname, rows, cols, type, flags); if (ashm == NULL) return 1; if ((shm_array = ll_addnew_array(spec_version, arrayname, 0, shm_status, ashm->head.head.shmid, 1, ashm)) == NULL) { shmdt((void*)ashm); return 1; } /* Add reference to this array to the STATUS array */ st = (struct shm_status *) &(shm->data); for (i = 0; i < SHM_MAX_IDS; i++) if (st->ids[i] == -1) break; st->ids[i] = ashm->head.head.shmid; st->utime++; private_shm = add_private_shm(ashm, spec_version, arrayname, 1); shm_array->handle = private_shm; return 0; } static int delete_handle(SPS_ARRAY handle) { if (handle == NULL) return 1; if (handle->buffer_len && handle->private_data_copy) free (handle->private_data_copy); if (handle->private_info_copy) free (handle->private_info_copy); if (handle->private_meta_copy) free (handle->private_meta_copy); if (handle->spec) free(handle->spec); if (handle->array) free(handle->array); free(handle); return 0; } /* Deletes everything which there is */ /* Should be called before you quit the program */ void SPS_CleanUpAll(void) { struct shm_created *created, *created_next; for (created = SHM_CREATED_HEAD; created;) { if (created->handle && created->handle->attached && created->handle->shm) shmdt ((void *)created->handle->shm); if (created->my_creation) { delete_shm(created->id); } if (created->handle) delete_handle (created->handle); if (created->array_name) free(created->array_name); if (created->spec_version) free(created->spec_version); created_next = created->next; free(created); created = created_next; } SHM_CREATED_HEAD = NULL; id_no = 0; delete_SpecIDTab(); } #if SPS_DEBUG #include <sys/time.h> static void bench_mark(); static void PrintIDDir() { int i, j; char *spec_version, *array; int rows,cols,type,flags; int state; double *double_buf=NULL; int k_row, k_col; for (i=0; (spec_version = SPS_GetNextSpec(i)); i++) { state = SPS_GetSpecState(spec_version); printf("%s state = 0x%x\n",spec_version, state); for (j=0; (array = SPS_GetNextArray(spec_version, j)); j++) { SPS_GetArrayInfo(spec_version, array, &rows, &cols, &type, &flags); printf(" %s: %dx%d type:%d flags:0x%x \n", array, rows, cols, type, flags); /* Reading data */ double_buf = SPS_GetDataCopy(spec_version, array, SHM_DOUBLE, &rows, &cols); for (k_row = 0; k_row < rows && k_row < 10; k_row++) { for (k_col = 0; k_col < cols && k_col < 7; k_col++) printf("%10.10g ",*(double_buf + k_row * cols + k_col)); printf("\n"); } SPS_FreeDataCopy(spec_version,array); } } } int main() { char buf[256]; char buf1[256],buf2[256], buf3[256], buf4[256]; char *str; int rows,cols,type, flag, flags; int i, j; s32_t *ptr; double *double_buf=NULL; int k_row, k_col; char *spec_version, *array; int state; printf("(C)reate,(*)(d)ir,(p)oll,(r)st,(e)nv,(w)rite env,(b)ench,(q)uit\n"); while (scanf("%s",buf) == 1) { switch (buf[0]) { case 'c': printf("spec_version array_name rows cols type flags\n"); scanf("%s %s %d %d %d %d",buf1,buf2,&rows,&cols, &type, &flag); SPS_CreateArray(buf1,buf2, rows, cols, type, flag); SPS_GetArrayInfo(buf1, buf2, &rows, &cols, &type, &flag); ptr = SPS_GetDataPointer(buf1, buf2, 1); if (type == SHM_LONG) { for (i = 0; i < rows; i++) for (j = 0; j < cols; j++) *(ptr + i * cols + j) = i * 100 + j; } break; case 'd': PrintIDDir(); break; case '*': for (j=0; (array = SPS_GetNextArray(NULL, j)); j++) { SPS_GetArrayInfo(NULL, array, &rows, &cols, &type, &flags); printf(" %s: %dx%d type:%d flags:0x%x \n", array, rows, cols, type, flags); /* Reading data */ double_buf = SPS_GetDataCopy(NULL, array, SHM_DOUBLE, &rows, &cols); for (k_row = 0; k_row < rows && k_row < 10; k_row++) { for (k_col = 0; k_col < cols && k_col < 7; k_col++) printf ("%10.10g ",*(double_buf + k_row * cols + k_col)); printf("\n"); } SPS_FreeDataCopy(NULL, array); } break; case 'q': exit(0); case 'b': bench_mark(); break; case 'r': SPS_CleanUpAll(); break; case 'e': printf("spec_version array_name identifier\n"); scanf("%s %s %s",buf1,buf2,buf3); if (buf1[0] == '*') spec_version = NULL; else spec_version = buf1; str = SPS_GetEnvStr(spec_version, buf2, buf3); printf("%s=<%s>\n",buf3,str ? str : "not found"); break; case 'w': printf("spec_version array_name identifier value\n"); scanf("%s %s %s %s",buf1,buf2,buf3,buf4); if (buf1[0] == '*') spec_version = NULL; else spec_version = buf1; printf("Result %d\n",SPS_PutEnvStr(spec_version, buf2, buf3, buf4)); break; case 'p': printf("Waiting for specversion hop array test\n"); printf("spec_version array_name\n"); scanf("%s %s",buf1,buf2); if (buf1[0] == '*') spec_version = NULL; else spec_version = buf1; SPS_AttachToArray(spec_version, buf2, 0); /* What I want to say here is that I would like to stay attached */ printf("Waiting for %s:%s\n",(spec_version == NULL)?"NULL":spec_version, buf2); for (;;) { if (SPS_IsUpdated(spec_version,buf2) == 1) { printf("Changed:\n"); double_buf = SPS_GetDataCopy(spec_version, buf2, SHM_DOUBLE, &rows, &cols); for (k_row = 0; k_row < rows && k_row < 10; k_row++) { for (k_col = 0; k_col < cols && k_col < 7; k_col++) printf("%10.10g ",*(double_buf + k_row * cols + k_col)); printf("\n"); } } sleep(1); } break; } } } /* Benchmark our routines */ static void bench(char *str) { static struct timeval start, stop; struct timezone tzp; if (str == (char *)NULL) { gettimeofday(&start, &tzp); } else { gettimeofday(&stop, &tzp); printf("Time in %s : %10.3f\n", str, (double)(stop.tv_sec-start.tv_sec) + (double)(stop.tv_usec-start.tv_usec) * (double)0.000001); start.tv_sec = stop.tv_sec; start.tv_usec = stop.tv_usec; } } static void bench_mark() { int i; printf("\n\ Version spec must run with\n\ shared array doubletest[1024][1024]\n\ shared long array longtest[1024][1024]\n\ shared string array text[200][200]\n\ array_op(\"fill\",doubletest,10000)\n\ array_op(\"fill\",longtest,10000)\n\ text[0][]=\"id=myvalue\"\n\ \n"); getchar(); bench(NULL); SPS_IsUpdated("not","found"); bench("SPS_IsUpdated non existing specversion not"); SPS_IsUpdated("not","found"); bench("SPS_IsUpdated non existing specversion not"); SPS_IsUpdated("spec","not"); bench("SPS_IsUpdated version spec, array not"); printf("\n"); SPS_GetDataCopy("spec", "doubletest", SHM_DOUBLE, NULL, NULL); bench("SPS_GetDataCopy version spec, array doubletest as double"); SPS_GetDataCopy("spec", "longtest", SHM_DOUBLE, NULL, NULL); bench("SPS_GetDataCopy version spec, array longtest as double"); printf("\n"); for (i=0;i<1000;i++) SPS_IsUpdated("spec","doubletest"); bench("SPS_IsUpdated version spec, array doubletest, 1000 times"); for (i=0;i<1000;i++) SPS_GetSpecState("spec"); bench("SPS_GetSpecState version spec, 1000 times"); for (i=0;i<1000;i++) SPS_GetEnvStr("spec","text","id"); bench("SPS_GetEnvStr version spec, array text, id, 1000 times"); printf("\n"); SPS_AttachToArray("spec","doubletest",0); SPS_AttachToArray("spec","longtest",0); SPS_AttachToArray("spec","text",0); bench("Attached and Staying attached now"); for (i=0;i<1000;i++) SPS_IsUpdated("spec","doubletest"); bench("SPS_IsUpdated version spec, array doubletest, 1000 times"); for (i=0;i<1000;i++) SPS_GetSpecState("spec"); bench("SPS_GetSpecState version spec, 1000 times"); for (i=0;i<1000;i++) SPS_GetEnvStr("spec","text","id"); bench("SPS_GetEnvStr version spec, array text, id, 1000 times"); printf("\n"); SPS_DetachFromArray("spec","doubletest"); SPS_DetachFromArray("spec","longtest"); SPS_DetachFromArray("spec","text"); bench("Detach and Staying detached now"); for (i=0;i<1000;i++) SPS_IsUpdated("spec","doubletest"); bench("SPS_IsUpdated version spec, array doubletest, 1000 times"); for (i=0;i<1000;i++) SPS_GetSpecState("spec"); bench("SPS_GetSpecState version spec, 1000 times"); for (i=0;i<1000;i++) SPS_GetEnvStr("spec","text","id"); bench("SPS_GetEnvStr version spec, array text, id, 1000 times"); printf("\nNow testing the NULL version tests\n"); for (i=0;i<1000;i++) SPS_GetEnvStr(NULL, "text","id"); bench("SPS_GetEnvStr NULL, array text, id, 1000 times"); for (i=0;i<1000;i++) SPS_IsUpdated(NULL, "doubletest"); bench("SPS_IsUpdated NULL, array doubletest, 1000 times"); printf("\nNow mix it\n"); for (i=0;i<1000;i++) { SPS_IsUpdated(NULL, "doubletest"); SPS_IsUpdated("spec", "doubletest"); } bench("SPS_IsUpdated NULL mixed, array doubletest, 1000 times"); printf("\n"); SPS_CreateArray("version","array",100,100,0,0); bench("SPS_CreateArray"); SPS_CleanUpAll(); bench("SPS_CleanUpAll"); } #endif ����������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Src/sps_lut.c���������������������������������������������������0000644�0000000�0000000�00000131674�14741736366�020041� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include <stdlib.h> #include <stdio.h> #include <string.h> /* AS + AM */ //#ifdef __linux__ #if 0 #warning "Assuming LINUX and using the functions lrint() and lrintf ()." #define _ISOC9X_SOURCE 1 #define _ISOC99_SOURCE 1 #define __USE_ISOC9X 1 #define __USE_ISOC99 1 #include <math.h> /*#elif (defined (WIN32) || defined (_WIN32)) #include <math.h>*/ #elif 0 /* Win32 doesn't seem to have these functions. ** Therefore implement inline versions of these functions here. */ __inline long int lrint (double flt) { int intgr; _asm { fld flt fistp intgr } ; return intgr ; } __inline long int lrintf (float flt) { int intgr; _asm { fld flt fistp intgr } ; return intgr ; } #else #include <math.h> #define lrint(dbl) ((int)(dbl)) #define lrintf(flt) ((int)(flt)) #endif #include <limits.h> /* #include <malloc.h> */ #include <sps.h> #include <sps_lut.h> #include <blissmalloc.h> #ifndef log10f #define log10f log10 #endif #ifndef powf #define powf pow #endif #ifndef DBL_MAX #define DBL_MAX 1.7976931348623157e+308 #endif #ifndef FLT_MAX #define FLT_MAX 3.402823466e+38f #endif /* machine dependent */ typedef union { struct { unsigned char dummy; unsigned char R; unsigned char G; unsigned char B; } c; unsigned int p; } RGB24bits; typedef union { struct { unsigned char b1; unsigned char b2; unsigned char b3; unsigned char b4; } c; unsigned int p; } swaptype; int SPS_Size_VLUT (int t) { switch (t) { case SPS_USHORT: return(sizeof(unsigned short)); case SPS_UINT: return(sizeof(unsigned int)); case SPS_SHORT: return(sizeof(short)); case SPS_INT: return(sizeof(int)); case SPS_UCHAR: return(sizeof(unsigned char)); case SPS_CHAR: return(sizeof(char)); case SPS_STRING: return(sizeof(char)); case SPS_DOUBLE: return(sizeof(double)); case SPS_FLOAT: return(sizeof(float)); case SPS_ULONG: return(sizeof(unsigned long)); case SPS_LONG: return(sizeof(long)); default: return(0); } } void *CreatePalette( int type, int meth, double min, double max, double gamma, int mapmin, int mapmax, XServer_Info Xservinfo, int palette_code); unsigned char *SPS_SimplePalette ( int min, int max, XServer_Info Xservinfo, int palette_code) { int type = SPS_USHORT, meth = SPS_LINEAR; int mapmin = 0, mapmax = 0; /* Is not used in this case USHORT LINEAR*/ double dmin = min, dmax = max, gamma = 0.0; if (Xservinfo.pixel_size == 1) Xservinfo.pixel_size = 3; return CreatePalette(type, meth, dmin, dmax, gamma, mapmin, mapmax, Xservinfo, palette_code); } void *SPS_PaletteArray (void *data, int type, int cols, int rows, int reduc, int fastreduc, int meth, double gamma, int autoscale, int mapmin, int mapmax, XServer_Info Xservinfo, int palette_code, double *min, double *max, int *pcols, int *prows, void **pal_return, int *pal_entries) { int calcminmax; void *ndata, *Xdata; void *palette = NULL; double use_min, use_max; double minplus = 0; *pal_entries = 0; *pal_return = NULL; if (Xservinfo.pixel_size != 1) { mapmin = 0; mapmax = 0xffff; /* do we really need more then 256 colors - maybe 0xff */ } /* Calculate the min max minplus of the data only if necessary */ /* Calc minplus is very fast if min alread > 0 - always calc minplus */ calcminmax = (autoscale ? 1 : 0 ) | ((meth != SPS_LINEAR) ? 2 : 0); if (calcminmax) SPS_FindMinMax(data, type, cols, rows, min, max, &minplus, calcminmax); /* Reduce the data with reduction factor - nothing done for reduc == 1 */ ndata = SPS_ReduceData(data, type, cols, rows, reduc, pcols, prows, fastreduc); if (ndata == NULL) return NULL; if (meth == SPS_LINEAR) { use_min = *min; use_max = *max; } else if (type == SPS_USHORT || type == SPS_SHORT || type == SPS_CHAR || type == SPS_UCHAR) { use_min = *min; /* Check - we treat signed types as unsigned ??? */ use_max = *max; /* Does the palette look like the user expects ??? */ } else { if (minplus == 0) { use_min = use_max = 1; /* No value above 0 */ } else { use_min = (*min > 0) ? *min : minplus ; /* Same as min if min > 0 */ use_max = ( *max > minplus ) ? *max : use_min; } } /* printf("use_min=%f minplus=%f min=%f\n", use_min, minplus, *min); printf("use_max=%f\n", use_max); */ /* Create the palette if we do not have a hardware palette */ palette = CreatePalette( type, meth, use_min, use_max, gamma, mapmin, mapmax, Xservinfo, palette_code); /* Produce an array with data between mapmin and mapmax for reference into the palette */ Xdata = SPS_MapData(ndata, type, meth, *pcols, *prows, use_min, use_max, gamma, mapmin, mapmax, Xservinfo.pixel_size, palette); if (Xdata == NULL) return NULL; if (ndata != data) free (ndata); if (Xservinfo.pixel_size != 1) { if (type == SPS_USHORT || type == SPS_SHORT || type == SPS_CHAR || type == SPS_UCHAR) { *pal_return = (void *) (((unsigned char *)palette) + (int )(Xservinfo.pixel_size * *min)); *pal_entries = (int) (*max - *min + 1); } else { *pal_return = (void *) (((unsigned char *)palette) + (int )(Xservinfo.pixel_size * mapmin)); *pal_entries = (int) (mapmax - mapmin + 1); } } if (meth != SPS_LINEAR) { *min = minplus; } return Xdata; } #define FINDMINMAX(ty, maxval) \ {\ register ty *c1=(ty *)data;\ register int i;\ register ty mmin, mmax, mminplus;\ int size = cols*rows; \ mmax = mmin = *c1;\ mminplus = maxval;\ if (dominmax && dominplus) { \ for (i=size;i;i--,c1++) {\ if (*c1 < mmin)\ mmin = *c1;\ if (*c1 > mmax)\ mmax = *c1;\ if ((*c1 < mminplus) && (*c1 > 0))\ mminplus = *c1;\ }\ } else if (dominmax) {\ for (i=size;i;i--,c1++) {\ if (*c1 < mmin)\ mmin = *c1;\ if (*c1 > mmax)\ mmax = *c1;\ }\ } else if (dominplus) {\ if ((min != NULL) && (*min > 0)) \ mminplus = (ty) (*min);\ else \ for (i=size;i;i--,c1++) {\ if ((*c1 < mminplus) && (*c1 > 0))\ mminplus = *c1;\ }\ }\ dmin = (double)mmin;\ dmax = (double)mmax;\ dminplus = (double)mminplus;\ } void SPS_FindMinMax(void *data, int type, int cols, int rows, double *min, double *max, double *minplus, int flag) { int dominmax = flag & 1; int dominplus = flag & 2; double dmin,dmax,dminplus; switch (type) { case SPS_DOUBLE : FINDMINMAX(double, DBL_MAX); break; case SPS_FLOAT : FINDMINMAX(float, FLT_MAX); break; case SPS_INT : FINDMINMAX(int, INT_MAX); break; case SPS_UINT : FINDMINMAX(unsigned int, UINT_MAX); break; case SPS_SHORT : FINDMINMAX(short, SHRT_MAX); break; case SPS_USHORT : FINDMINMAX(unsigned short, USHRT_MAX); break; case SPS_CHAR : FINDMINMAX(char, SCHAR_MAX); break; case SPS_UCHAR : FINDMINMAX(unsigned char, UCHAR_MAX); break; case SPS_LONG : FINDMINMAX(long, LONG_MAX); break; case SPS_ULONG : FINDMINMAX(unsigned long, ULONG_MAX); break; } if (dominmax) { *min = dmin; *max = dmax; } if (dominplus) *minplus = dminplus; } #define CALCDATA(ty, mty, mapty, logfct, powfct)\ {\ ty vmin, vmax;\ register ty val;\ register mapty *Xptr;\ register ty *ptr;\ register mty Au = (mty) A;\ register mty Bu = (mty) B;\ register mapty cmin = (mapty) mapmin, cmax = (mapty) mapmax;\ int size;\ vmin = (ty)Xmin;\ vmax = (ty)Xmax;\ if (Xmin > Xmax) {\ vmin = (ty)Xmax;\ vmax = (ty)Xmin;\ }\ size = cols*rows;\ ptr = (ty *)data;\ if (meth == SPS_LINEAR) {\ if (mapbytes == 1) {\ register mapty *Xend = (mapty *)Xdata+size; \ for (Xptr=(mapty *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = cmax ;\ else if (val > vmin) {\ *Xptr = (mapty)(Au * (mty) val + Bu) ;\ }else\ *Xptr = cmin ;\ }\ } else if (mapbytes == 3) {\ register unsigned char * Xend = (unsigned char *)Xdata + (3 * size); \ register unsigned int *palette = (unsigned int *)pal;\ register unsigned char *Xptr;\ register RGB24bits pval;\ for (Xptr=(unsigned char *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax) {\ pval.p = *(palette + mapmax) ;\ } else if (val > vmin) {\ pval.p = *(palette + lrint(Au * (mty) val + Bu)) ;\ } else {\ pval.p = *(palette + mapmin) ;\ } \ *Xptr = pval.c.R; Xptr++;\ *Xptr = pval.c.G; Xptr++;\ *Xptr = pval.c.B;\ } \ } else {\ register mapty *Xend = (mapty *)Xdata+size; \ register mapty *palette = (mapty *)pal;\ for (Xptr=(mapty *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = *(palette + mapmax) ;\ else if (val > vmin)\ *Xptr = *(palette + lrint(Au * (mty) val + Bu)) ;\ else\ *Xptr = *(palette + mapmin) ;\ }\ }\ }\ else if (meth == SPS_LOG) {\ if (mapbytes == 1) {\ register mapty *Xend = (mapty *)Xdata+size;\ for (Xptr=(mapty *)Xdata;Xptr != Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = cmax;\ else if (val > vmin)\ *Xptr = (mapty)(A * logfct((mty)val) + B);\ else\ *Xptr = cmin;\ }\ } else if (mapbytes == 3) {\ register unsigned char * Xend = (unsigned char *)Xdata + (3 * size); \ register unsigned int *palette = (unsigned int *)pal;\ register unsigned char *Xptr;\ register RGB24bits pval;\ for (Xptr=(unsigned char *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax) {\ pval.p = *(palette + mapmax) ;\ } else if (val > vmin) {\ pval.p = *(palette + lrint(A * logfct((mty) val) + B)) ;\ } else {\ pval.p = *(palette + mapmin) ;\ } \ *Xptr = pval.c.R; Xptr++;\ *Xptr = pval.c.G; Xptr++;\ *Xptr = pval.c.B;\ } \ } else {\ register mapty *Xend = (mapty *)Xdata+size; \ register mapty *palette = (mapty *)pal;\ for (Xptr=(mapty *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = *(palette + mapmax) ;\ else if (val > vmin) {\ *Xptr = *(palette + lrint(A * logfct((mty) val) + B)) ;\ } else\ *Xptr = *(palette + mapmin) ;\ }\ }\ }\ else if (meth == SPS_GAMMA) {\ if (mapbytes == 1) {\ register mapty *Xend = (mapty *)Xdata+size;\ for (Xptr=(mapty *)Xdata;Xptr != Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = cmax;\ else if (val > vmin)\ *Xptr = (mapty)(A *powfct((mty)val,(mty)gamma)+B);\ else\ *Xptr = cmin;\ }\ } else if (mapbytes == 3) {\ register unsigned char * Xend = (unsigned char *)Xdata + (3 * size); \ register unsigned int *palette = (unsigned int *)pal;\ register unsigned char *Xptr;\ register RGB24bits pval;\ for (Xptr=(unsigned char *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax) {\ pval.p = *(palette + mapmax) ;\ } else if (val > vmin) {\ pval.p = *(palette + lrint(A * powfct((mty) val, (mty) gamma) + B)) ;\ } else {\ pval.p = *(palette + mapmin) ;\ } \ *Xptr = pval.c.R; Xptr++;\ *Xptr = pval.c.G; Xptr++;\ *Xptr = pval.c.B;\ } \ } else {\ register mapty *Xend = (mapty *)Xdata+size;\ register mapty *palette = (mapty *)pal;\ for (Xptr=(mapty *)Xdata;Xptr != Xend;Xptr++,ptr++) {\ val=*ptr;\ if (val >= vmax)\ *Xptr = *(palette + mapmax) ;\ else if (val > vmin)\ *Xptr = *(palette + lrint (A * powfct((mty)val,(mty)gamma)+B)) ;\ else\ *Xptr = *(palette + mapmin) ;\ }\ }\ }\ } #define CALCDATA_NOMAP(ty, mapty)\ {\ register ty val;\ register ty *ptr = (ty *)data;\ int size = cols*rows;\ if (mapbytes == 3) {\ register unsigned char * Xend = (unsigned char *)Xdata + (3 * size); \ register unsigned int *palette = (unsigned int *)pal;\ register unsigned char *Xptr;\ register RGB24bits pval;\ for (Xptr=(unsigned char *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ pval.p = *(palette + val);\ *Xptr = pval.c.R; Xptr++;\ *Xptr = pval.c.G; Xptr++;\ *Xptr = pval.c.B;\ } \ } else {\ register mapty *Xend = (mapty *)Xdata+size; \ register mapty *palette = (mapty *)pal;\ register mapty *Xptr;\ for (Xptr=(mapty *)Xdata;Xptr!=Xend;Xptr++,ptr++) {\ val=*ptr;\ *Xptr = *(palette + val);\ }\ }\ } #define CALCPREDATA(ty, mty, mapty, logfct, powfct, premin , premax)\ {\ ty vmin, vmax;\ /*ty val;*/\ mapty *Xptr;\ mapty *fb;\ int lval;\ register ty *ptr;\ register mty Au = (mty) A;\ register mty Bu = (mty) B;\ mapty cmin=mapmin, cmax=mapmax;\ register mapty *Xend; \ vmin = (ty)Xmin;\ vmax = (ty)Xmax;\ if (Xmin > Xmax) {\ vmin = (ty)Xmax;\ vmax = (ty)Xmin;\ }\ fb=Xptr=(mapty*)malloc (sizeof(mapty)*(premax-premin+1));\ Xend = Xptr + (premax-premin+1);\ for (lval=premin;lval<=(int)vmin;lval++) \ *Xptr++=cmin;\ if (meth == SPS_LINEAR) {\ for (;lval<(int)vmax;lval++) \ *Xptr++ = (mapty)(Au * (mty) lval + Bu);\ } else if (meth == SPS_LOG) {\ for (;lval<(int)vmax;lval++) \ *Xptr++ = (mapty)(Au * logfct((mty)lval) + Bu);\ } else if (meth == SPS_GAMMA) {\ for (;lval<(int)vmax;lval++) \ *Xptr++ = (mapty)(Au * powfct((mty)lval,(mty)gamma) + Bu);\ }\ for (;Xptr < Xend;) \ *Xptr++ = cmax;\ \ ptr = (ty *)data;\ Xend = (mapty *)Xdata+cols*rows; \ for (Xptr=(mapty *)Xdata;Xptr!=Xend;Xptr++,ptr++) \ *Xptr=fb[*ptr];\ free (fb);\ } #define NOSTEPS 150 #define BINSTEPS 256 #define FASTLOG(ty, mapty)\ { \ int i;\ ty xi,x[256],*ptr;\ double ydbl;\ ty *xptr,*xmiddle=x+128;\ double ymin=mapmin,ymax=mapmax;\ unsigned char idx, *Xend = (mapty *)Xdata+cols*rows,*Xptr;\ int nosteps=mapmax - mapmin + 1;\ int v64=64,v32=32,v16=16,v8=8,v4=4,v2=2,v1=1,v01=1,v02=0;\ \ for (i=0;i<nosteps;i++) {\ ydbl = ymin + (double) i ;\ x[i] = (ty)pow((double)10,(ydbl-B)/A);\ }\ \ for (i=nosteps;i<BINSTEPS;i++) \ x[i] = x[NOSTEPS-1];\ \ if (x[0] > x[nosteps-1]) {\ v64=-64;v32=-32;v16=-16;v8=-8;v4=-4;v2=-2;v1=-1;v01=0;v02=1;\ }\ \ ptr = (ty *)data;\ for (Xptr=(mapty *)Xdata;Xptr != Xend;Xptr++,ptr++) {\ xptr = xmiddle;\ xi = *ptr;\ if (xi > *xptr)\ xptr += v64;\ else\ xptr -= v64;\ \ if (xi > *xptr)\ xptr += v32;\ else\ xptr -= v32;\ \ if (xi > *xptr)\ xptr += v16;\ else\ xptr -= v16;\ \ if (xi > *xptr)\ xptr += v8;\ else\ xptr -= v8;\ \ if (xi > *xptr)\ xptr += v4;\ else\ xptr -= v4;\ \ if (xi > *xptr)\ xptr += v2;\ else\ xptr -= v2;\ \ if (xi > *xptr)\ xptr += v1;\ else\ xptr -= v1;\ \ if (xi < *xptr)\ xptr -= v01;\ else \ xptr -= v02;\ \ idx = (unsigned char)(xptr - x);\ if (idx > nosteps - 1)\ *Xptr = (mapty)mapmax;\ else\ *Xptr = idx + mapmin;\ }\ } unsigned char *SPS_MapData(void *data, int type, int meth, int cols, int rows, double Xmin, double Xmax, double gamma, int mapmin, int mapmax, int mapbytes, void *pal) { double A, B, lmin, lmax; void *Xdata; int databytes ; /* mapbyte == 1 means that there is no palette - we output char */ databytes = mapbytes ? mapbytes : 1; Xdata = (void *)malloc(databytes * cols * rows); if (Xdata == NULL) { fprintf(stderr, "Malloc Error in CalcData (size = %d), Exit\n", cols*rows); return((unsigned char *)NULL); } if ((Xmax-Xmin) != 0) { if (meth == SPS_LINEAR) { lmin = Xmin; lmax = Xmax; } if (meth == SPS_LOG) { lmin = log10(Xmin); lmax = log10(Xmax); } if (meth == SPS_GAMMA) { lmin = pow(Xmin, gamma); lmax = pow(Xmax, gamma); } A = (mapmax - mapmin) / (lmax - lmin); B = mapmin - ((mapmax - mapmin) * lmin)/(lmax-lmin); } else { A = 1.0; B = 0.0; } switch (type) { case SPS_DOUBLE : if (mapbytes == 1) { /*###CHANGED - ALEXANDRE 11/09/2002*/ //if (meth == SPS_LOG) { // FASTLOG(double, unsigned char); //} else { CALCDATA(double, double, unsigned char, log10, pow); //} } else if (mapbytes == 2) { CALCDATA(double, double, unsigned short, log10, pow); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA(double, double, unsigned int, log10, pow); } break; case SPS_FLOAT : if (mapbytes == 1) { /*###CHANGED - ALEXANDRE 11/09/2002*/ //if (meth == SPS_LOG) { // FASTLOG(float, unsigned char); //} else { CALCDATA(float, float, unsigned char, log10f, powf); //} } else if (mapbytes == 2) { CALCDATA(float, float, unsigned short, log10f, powf); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA(float, float, unsigned int, log10f, powf); } break; case SPS_INT : if (mapbytes == 1) { if (meth == SPS_LOG) { FASTLOG(int, unsigned char); } else { CALCDATA(int, float, unsigned char, log10f, powf); } } else if (mapbytes == 2){ CALCDATA(int, float, unsigned short, log10f, powf); } else if (mapbytes == 4 || mapbytes == 3){ CALCDATA(int, float, unsigned int, log10f, powf); } break; case SPS_UINT : if (mapbytes == 1) { if (meth == SPS_LOG) { FASTLOG(unsigned int, unsigned char); } else { CALCDATA(unsigned int, float, unsigned char, log10f,powf); } } else if (mapbytes == 2){ CALCDATA(unsigned int, float, unsigned short, log10f, powf); } else if (mapbytes == 4 || mapbytes == 3){ CALCDATA(unsigned int, float, unsigned int, log10f, powf); } break; case SPS_SHORT : if (mapbytes == 1) { if (cols*rows > 100000) { CALCPREDATA(short, float, unsigned char, log10f,powf,(-32768),32767); } else { CALCDATA(short, float, unsigned char, log10f, powf); } } else if (mapbytes == 2) { CALCDATA_NOMAP(unsigned short, unsigned short); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA_NOMAP(unsigned short, unsigned int); } break; case SPS_USHORT : if (mapbytes == 1) { if (cols*rows > 100000) { CALCPREDATA(unsigned short,float,unsigned char,log10f, powf,0,65535); } else { CALCDATA(unsigned short, float, unsigned char, log10f,powf); } } else if (mapbytes == 2) { CALCDATA_NOMAP(unsigned short, unsigned short); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA_NOMAP(unsigned short, unsigned int); } break; case SPS_CHAR : if (mapbytes == 1) { CALCPREDATA(char, float, unsigned char, log10f, powf, (-128), 127); } else if (mapbytes == 2){ CALCDATA_NOMAP(unsigned char, unsigned short); } else if (mapbytes == 4 || mapbytes == 3){ CALCDATA_NOMAP(unsigned char, unsigned int); } break; case SPS_UCHAR : if (mapbytes == 1) { CALCPREDATA(unsigned char, float, unsigned char, log10f, powf, 0, 255); } else if (mapbytes == 2){ CALCDATA_NOMAP(unsigned char, unsigned short); } else if (mapbytes == 4 || mapbytes == 3){ CALCDATA_NOMAP(unsigned char, unsigned int); } break; case SPS_LONG : if (mapbytes == 1) { /*###CHANGED - ALEXANDRE 11/09/2002*/ //if (meth == SPS_LOG) { // FASTLOG(long, unsigned char); //} else { CALCDATA(long, double, unsigned char, log10, pow); //} } else if (mapbytes == 2) { CALCDATA(long, double, unsigned short, log10, pow); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA(long, double, unsigned int, log10, pow); } break; case SPS_ULONG : if (mapbytes == 1) { /*###CHANGED - ALEXANDRE 11/09/2002*/ //if (meth == SPS_LOG) { // FASTLOG(unsigned long, unsigned char); //} else { CALCDATA(unsigned long, double, unsigned char, log10, pow); //} } else if (mapbytes == 2) { CALCDATA(unsigned long, double, unsigned short, log10, pow); } else if (mapbytes == 4 || mapbytes == 3) { CALCDATA(unsigned long, double, unsigned int, log10, pow); } break; } return(Xdata); } #define CALCREDUCFAST(datat) \ {\ int l;\ register int i, red=reduc;\ register datat *gtr=data;\ register datat *ptr= (datat *) ndata;\ \ for (l=ph;l;l--) {\ for (i=pw;i;i--,ptr++,gtr+=red) \ *ptr = *gtr;\ gtr+=fastjump;\ }\ } #define CALCREDUC(datat,calct) \ {\ calct *line, r2;\ int linesize, k, l;\ datat *rline;\ register int i, j;\ register datat *gtr=data;\ register calct *ptr;\ \ r2 = reduc*reduc;\ line = (calct*) malloc (linesize=(sizeof(calct) * pw)); \ for (rline=(datat *)ndata,l=ph;l;l--,rline+=pw) {\ memset(line, 0,linesize);\ if (reduc == 2) {\ for (k=reduc;k;k--) {\ for (i=pw,ptr=line;i;i--,ptr++) {\ *ptr += (calct)*gtr++;\ *ptr += (calct)*gtr++;\ }\ gtr+=jump;\ }\ }\ else {\ for (k=reduc;k;k--) {\ for (i=pw,ptr=line;i;i--,ptr++) {\ for (j=reduc;j;j--,gtr++)\ *ptr += (calct)*gtr;\ }\ gtr+=jump;\ }\ }\ {\ register datat *str;\ register calct *ltr;\ register int k;\ for (str=rline,ltr=line,k=pw;k;k--,str++, ltr++)\ *str = (datat) (*ltr / r2);\ }\ }\ free(line);\ } void *SPS_ReduceData (void *data, int type, int cols, int rows, int reduc, int *pcols, int *prows, int fastreduction) { int pw, ph, jump, fastjump; void *ndata; int length = SPS_Size_VLUT(type); if (reduc == 1) { *pcols = cols; *prows = rows; return(data); } pw=*pcols = cols / reduc; if (pw == 0) { pw=*pcols = 1; } ph=*prows = rows / reduc; if (ph == 0) { ph=*prows = 1; } jump = cols%reduc; fastjump = jump + cols*(reduc-1); ndata = (void *)malloc(length * pw * ph); if (ndata == (void *)NULL) { fprintf(stderr, "Malloc Error in CalcReduction (size = %d), Exit\n", length * pw * ph); return NULL; } if (fastreduction) { switch (type) { case SPS_DOUBLE : CALCREDUCFAST(double); break; case SPS_FLOAT : CALCREDUCFAST(float); break; case SPS_INT : CALCREDUCFAST(int); break; case SPS_UINT : CALCREDUCFAST(unsigned int); break; case SPS_SHORT : CALCREDUCFAST(short); break; case SPS_USHORT : CALCREDUCFAST(unsigned short); break; case SPS_CHAR : CALCREDUCFAST(char); break; case SPS_UCHAR : CALCREDUCFAST(unsigned char); break; case SPS_LONG : CALCREDUCFAST(long); break; case SPS_ULONG : CALCREDUCFAST(unsigned long); break; } } else { switch (type) { case SPS_DOUBLE : CALCREDUC(double,double); break; case SPS_FLOAT : CALCREDUC(float,double); break; case SPS_INT : CALCREDUC(int,int); break; case SPS_UINT : CALCREDUC(unsigned int,unsigned int); break; case SPS_SHORT : CALCREDUC(short,int); break; case SPS_USHORT : CALCREDUC(unsigned short,unsigned int); break; case SPS_CHAR : CALCREDUC(char,short); break; case SPS_UCHAR : CALCREDUC(unsigned char,unsigned short); break; case SPS_LONG : CALCREDUC(long, long); break; case SPS_ULONG : CALCREDUC(unsigned long, unsigned long); break; } } return(ndata); } void FillSegment(int pcbyteorder, XServer_Info Xservinfo, unsigned int *val, int from, int to, double R1,double G1,double B1,double R2,double G2,double B2, int rbit,int gbit,int bbit,int rshift,int gshift,int bshift) { unsigned int *ptr; unsigned int R, G, B; unsigned int alpha; double Rcol, Gcol, Bcol, Rcst, Gcst, Bcst; double coef, width, rwidth, gwidth, bwidth; swaptype value; /* R = R1 + (R2 - R1) * (i-from) / (to - from) palette_col = (int)(R * (2**rbit-1) + 0.5) << rshift | (int)(G * (2**gbit-1) + 0.5) << gshift | (int)(B * (2**bbit-1) + 0.5) << bshift */ Rcol = (1<<rbit) - 1; Rcst = Rcol * R1 + 0.5; Gcol = (1<<gbit) - 1; Gcst = Gcol * G1 + 0.5; Bcol = (1<<bbit) - 1; Bcst = Bcol * B1 + 0.5; width = (double)(to - from); rwidth = Rcol * (R2 - R1) / width; gwidth = Gcol * (G2 - G1) / width; bwidth = Bcol * (B2 - B1) / width; if (rshift == 0) { alpha = 0xff000000; }else{ alpha = 0xff; } if (pcbyteorder == SPS_LSB) { if (Xservinfo.byte_order == SPS_LSB) { if (Xservinfo.pixel_size == 3) { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); value.p = (R << rshift) | (G << gshift) | (B << bshift); *ptr++ = value.c.b1 << 8 | value.c.b2 << 16 | value.c.b3 << 24; } } else { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); *ptr++ = alpha | ((R << rshift) | (G << gshift) | (B << bshift)); } } } else { if (Xservinfo.pixel_size == 2) { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); value.p = (R << rshift) | (G << gshift) | (B << bshift); *ptr++ = value.c.b1 << 8 | value.c.b2; } } else { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); value.p = (R << rshift) | (G << gshift) | (B << bshift); *ptr++ = value.c.b1 << 24 | value.c.b2 << 16 | value.c.b3 << 8; } } } } else { if (Xservinfo.byte_order == SPS_LSB) { if (Xservinfo.pixel_size == 2) { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); value.p = (R << rshift) | (G << gshift) | (B << bshift); *ptr++ = value.c.b4 << 8 | value.c.b3; } } else { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); value.p = (R << rshift) | (G << gshift) | (B << bshift); *ptr++ = value.c.b4 << 16 | value.c.b3 << 8 | value.c.b2; } } } else { for (ptr=val+from,coef=0;coef<to-from;coef++) { R = (unsigned int) (Rcst + rwidth * coef); G = (unsigned int) (Gcst + gwidth * coef); B = (unsigned int) (Bcst + bwidth * coef); *ptr++ = alpha | ((R << rshift) | (G << gshift) | (B << bshift)); } } } } unsigned int *CalcPalette (XServer_Info Xservinfo, int palette_type) { static unsigned int *full_palette = NULL; static int old_type = -1; static int old_mapbytes = -1; unsigned int col; int rbit, gbit, bbit, rshift, gshift, bshift, pcbyteorder; swaptype val; if (full_palette && (old_type != palette_type || old_mapbytes != Xservinfo.pixel_size)){ free(full_palette); full_palette = NULL; } if (full_palette == NULL) { full_palette = (void*) malloc (0x10000 * sizeof (unsigned int)); if (full_palette == NULL) { fprintf(stderr, "Error - can not malloc memory in FillPalette\n"); return NULL; } old_type = palette_type; old_mapbytes = Xservinfo.pixel_size; val.p = 1; if (val.c.b4 == 1) { pcbyteorder = SPS_MSB; } else { pcbyteorder = SPS_LSB; } col = Xservinfo.red_mask; rshift = 0; while ((col & 1) == 0) { col = col >> 1; rshift++; } rbit=0; while ((col & 1) == 1) { col = col >> 1; rbit++; } col = Xservinfo.green_mask; gshift = 0; while ((col & 1) == 0) { col = col >> 1; gshift++; } gbit=0; while ((col & 1) == 1) { col = col >> 1; gbit++; } col = Xservinfo.blue_mask; bshift = 0; while ((col & 1) == 0) { col = col >> 1; bshift++; } bbit=0; while ((col & 1) == 1) { col = col >> 1; bbit++; } if (palette_type == SPS_GREYSCALE) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x10000, 0, 0, 0, 1, 1, 1, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_TEMP) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x4000, 0, 0, 1, 0, 1, 1, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0x4000, 0x8000, 0, 1, 1, 0, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0x8000, 0xc000, 0, 1, 0, 1, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0xc000, 0x10000, 1, 1, 0, 1, 0, 0, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_RED) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x10000, 0, 0, 0, 1, 0, 0, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_GREEN) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x10000, 0, 0, 0, 0, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_BLUE) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x10000, 0, 0, 0, 0, 0, 1, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_REVERSEGREY) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x10000, 1, 1, 1, 0, 0, 0, rbit, gbit, bbit, rshift, gshift, bshift); } else if (palette_type == SPS_MANY) { FillSegment(pcbyteorder, Xservinfo, full_palette, 0, 0x2aaa, 0, 0, 1, 0, 1, 1, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0x2aaa, 0x5555, 0, 1, 1, 0, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0x5555, 0x8000, 0, 1, 0, 1, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0x8000, 0xaaaa, 1, 1, 0, 1, 0, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0xaaaa, 0xd555, 1, 0, 0, 1, 1, 0, rbit, gbit, bbit, rshift, gshift, bshift); FillSegment(pcbyteorder, Xservinfo, full_palette, 0xd555, 0x10000, 1, 1, 0, 1, 1, 1, rbit, gbit, bbit, rshift, gshift, bshift); } } return full_palette; } void FillPalette (XServer_Info Xservinfo, void *palette, int fmin, int fmax, int palette_type, int meth, double gamma) { double A, B, round_min; double lmin, lmax; unsigned int *full_palette; /* SPS_LINEAR: mapdata = A * data + B SPS_LOG : mapdata = (A * log(data)) + B SPS_GAMMA : mapdata = A * pow(data, gamma) + B */ if (fmin == 0 && meth != SPS_LINEAR) fmin = 1; if ((fmax - fmin) != 0) { if (meth == SPS_LINEAR) { lmin = fmin; lmax = fmax; } if (meth == SPS_LOG) { lmin = log10(fmin); lmax = log10(fmax); } if (meth == SPS_GAMMA) { lmin = pow(fmin, gamma); lmax = pow(fmax, gamma); } A = 0xffff / (lmax - lmin); B = - (0xffff * lmin) / (lmax - lmin); if (meth == SPS_LINEAR) { round_min = A * fmin + B; } if (meth == SPS_LOG) { round_min = (A * log10(fmin)) + B; } if (meth == SPS_GAMMA) { round_min = (A * pow(fmin,gamma)) + B; } if (round_min < 0.0 && round_min > -1E-5 ) B += round_min; } else { A = 1.0; B = 0.0; } /* The full palette has always 0x10000 entries of longs; */ full_palette = CalcPalette (Xservinfo, palette_type); /* Squeeze the palette into the data range */ if (Xservinfo.pixel_size == 2) { register unsigned short *pal = palette; register unsigned short *palend = palette; register int j = 0; pal += fmin ; palend += fmax; if (meth == SPS_LINEAR) { j = 0; while (pal <= palend) { *pal++ = *(full_palette + lrint (A * j++)); } } else if (meth == SPS_LOG) { j = fmin; while (pal <= palend) { *pal++ = *(full_palette + lrint (A * log10 (j++) + B)); } } else if (meth == SPS_GAMMA) { j = fmin; while (pal <= palend) { *pal++ = *(full_palette + lrint (A * pow(j++, gamma) + B)); } } } else if (Xservinfo.pixel_size == 4 || Xservinfo.pixel_size == 3) { register unsigned int *pal = palette; register unsigned int *palend = palette; register int j = 0; pal += fmin ; palend += fmax; if (meth == SPS_LINEAR) { j = 0; while (pal <= palend) { *pal++ = *(full_palette + lrint(A * j++)); } } else if (meth == SPS_LOG) { j = fmin; while (pal <= palend) { *pal++ = *(full_palette + lrint(A * log10 (j++) + B)); } } else if (meth == SPS_GAMMA) { j = fmin; while (pal <= palend) { *pal++ = *(full_palette + lrint(A * pow(j++, gamma) + B)); } } } } void *CreatePalette( int type, int meth, double min, double max, double gamma, int mapmin, int mapmax, XServer_Info Xservinfo, int palette_type) { int pmin, pmax; /* palette min max values */ int fmin, fmax; /* fill from these min max values */ int newsize; static void *palette = NULL; static int palette_size = 0; int memcorr = 2; void *old_palette, *palend; int palbytes; if (Xservinfo.pixel_size == 1) return NULL; /* Hardware Palette */ /* The palette of 3 byte results is 4 byte long */ palbytes = (Xservinfo.pixel_size == 3) ? 4 : Xservinfo.pixel_size; if ( type == SPS_FLOAT || type == SPS_DOUBLE || type == SPS_INT || type == SPS_UINT || type == SPS_LONG || type == SPS_ULONG) { /* In this case we map first to mapmin and mapmax and use these as an index in the palette */ fmin = pmin = 0 ; fmax = pmax = mapmax - mapmin; meth = SPS_LINEAR; /* We will always map to linear palettes as the mapping is not linear - this gives us a higher dynamic range*/ } else if (type == SPS_USHORT) { /* In all these cases we use the image values directly as an index in the palette */ pmin = 0 ; pmax = 0xffff; fmin = (int) min ; if (fmin < 0) fmin = 0; fmax = (int) max ; if (fmax > 0xffff) fmax = 0xffff; } else if (type == SPS_UCHAR) { pmin = 0 ; pmax = 0xff; fmin = (int) min ; if (fmin < 0) fmin = 0; fmax = (int) max ; if (fmax > 0xff) fmax = 0xff; } else if (type == SPS_SHORT ) { pmin = 0 ; pmax = 0xffff; fmin = (int) min + 0x8000; if (fmin < 0) fmin = 0; fmax = (int) max + 0x8000; if (fmax > 0xffff) fmax = 0xffff; memcorr = 3; } else if (type == SPS_CHAR ) { pmin = 0 ; pmax = 0xff; fmin = (int) min + 0x80; if (fmin < 0) fmin = 0; fmax = (int) max + 0x80; if (fmax > 0xff) fmax = 0xff; memcorr = 3; } /* Size of the alloc is the size of the memory group * 1.5 if we have unsigned values. This is done to be able to do the swap with one simple memcopy. memcorr is either 2 or 3. For 3 mapbytes == 3 the palette is still 4 bytes long; */ newsize = (memcorr * palbytes ) / 2 * (pmax - pmin + 1); if (palette && newsize > palette_size) { free (palette); palette = NULL; } if (palette == NULL) { palette = (void *) malloc(newsize); if (palette == NULL) { fprintf(stderr, "Malloc Error in CreatePalette (size = %d)\n", newsize); return NULL; } palette_size = newsize; } /* Prepare the swap by putting everything 1/2 size higher up */ if (memcorr == 3) { old_palette = palette; palette = (void *) ((char *) palette + newsize / 3); } /* Now let's fill the palette */ FillPalette (Xservinfo, palette, fmin, fmax, palette_type, meth, gamma); /* Now pad the low and high values */ if (pmin < fmin) { if (Xservinfo.pixel_size == 2) { register unsigned short *dest = ((unsigned short *) palette) + pmin; register unsigned short src = *(((unsigned short *) palette) + fmin); register unsigned short *end = ((unsigned short *) palette) + fmin; while (dest < end) *dest++ = src; } else if (Xservinfo.pixel_size == 4 || Xservinfo.pixel_size == 3) { register unsigned int *dest = ((unsigned int *) palette) + pmin; register unsigned int src = *(((unsigned int *) palette) + fmin); register unsigned int *end = ((unsigned int *) palette) + fmin; while (dest < end) *dest++ = src; } } if (pmax > fmax) { if (Xservinfo.pixel_size == 2) { register unsigned short *dest = ((unsigned short *) palette) + fmax +1; register unsigned short src = *(((unsigned short *) palette) + fmax); register unsigned short *end = ((unsigned short *) palette) + pmax; while (dest <= end) *dest++ = src; } else if (Xservinfo.pixel_size == 4 || Xservinfo.pixel_size == 3) { register unsigned int *dest = ((unsigned int *) palette) + fmax + 1; register unsigned int src = *(((unsigned int *) palette) + fmax); register unsigned int *end = ((unsigned int *) palette) + pmax; while (dest <= end) *dest++ = src; } } /* Now the palette has to be swaped over when we have signed image values */ if (memcorr == 3) { palette = old_palette; palend = (void *) ((char *) palette + newsize / 3 * 2); memcpy (palette, palend, newsize / 3); } return palette; } double SPS_GetZdata(void *data, int type, int cols, int rows, int x, int y) { int ind; ind = y*cols + x; if (ind >= (cols*rows)) ind = cols*rows-1; switch (type) { case SPS_DOUBLE : return(*((double *)data + ind)); break; case SPS_FLOAT : return((double)(*((float *)data + ind))); break; case SPS_INT : return((double)(*((int *)data + ind))); break; case SPS_UINT : return((double)(*((unsigned int *)data + ind))); break; case SPS_SHORT : return((double)(*((short *)data + ind))); break; case SPS_USHORT : return((double)(*((unsigned short *)data + ind))); break; case SPS_CHAR : return((double)(*((char *)data + ind))); break; case SPS_UCHAR : return((double)(*((unsigned char *)data + ind))); break; case SPS_LONG : return((double)(*((long *)data + ind))); break; case SPS_ULONG : return((double)(*((unsigned long *)data + ind))); break; } } void SPS_PutZdata(void *data, int type, int cols, int rows, int x, int y, double z) { int ind; ind = y*cols + x; if (ind >= (cols*rows)) ind = cols*rows-1; switch (type) { case SPS_DOUBLE : *((double *)data + ind) = z; break; case SPS_FLOAT : *((float *)data + ind) = (float) z; break; case SPS_INT : *((int *)data + ind) = (int )z; break; case SPS_UINT : *((unsigned int *)data + ind) = (unsigned int) z; break; case SPS_SHORT : *((short *)data + ind) = (short) z; break; case SPS_USHORT : *((unsigned short *)data + ind) = (unsigned short) z; break; case SPS_CHAR : *((char *)data + ind) = (char) z; break; case SPS_UCHAR : *((unsigned char *)data + ind) = (unsigned char) z; break; case SPS_LONG : *((long *)data + ind) = (long) z; break; case SPS_ULONG : *((unsigned long *)data + ind) = (unsigned long) z; break; } return; } #define CALCSTAT(ty, calct)\ {\ register calct integr=0;\ register ty *ptr;\ \ for (ptr=(ty *)data,i=n;i;ptr++,i--)\ integr += (calct)(*ptr);\ aver = (double)integr / (double)n;\ for (ptr=(ty *)data,i=n;i;ptr++,i--) {\ val = (double)(*ptr) - aver;\ std += (val*val);\ }\ integ = (double)integr;\ } void SPS_CalcStat(void *data, int type, int cols, int rows, double *integral, double *average, double *stddev) { double integ; int n; register double std=0.0, val, aver; register int i; int length = SPS_Size_VLUT(type); n = cols*rows; switch (type) { case SPS_DOUBLE : CALCSTAT(double,double); break; case SPS_FLOAT : CALCSTAT(float,double); break; case SPS_INT : CALCSTAT(int,double); break; case SPS_UINT : CALCSTAT(unsigned int,double); break; case SPS_SHORT : CALCSTAT(short,double); break; case SPS_USHORT : CALCSTAT(unsigned short,double); break; case SPS_CHAR : CALCSTAT(char,int); break; case SPS_UCHAR : CALCSTAT(unsigned char, unsigned int); break; case SPS_LONG : CALCSTAT(long,double); break; case SPS_ULONG : CALCSTAT(unsigned long,double); break; } std = std / (double)(n-1); std = sqrt(std); *integral = integ; *average = aver; *stddev = std; } #define DATADIST(ty)\ {\ register ty *ptr = (ty *)data;\ register double *dtr=*ydata;\ register int i, ind;\ for (i=n;i;i--, ptr++) {\ ind = (int)(((double)*ptr-min) / step);\ dtr[ind]++;\ }\ } void SPS_GetDataDist(void *data, int type, int cols, int rows, double min, double max, int nbar, double **xdata, double **ydata) { double step, val, start, *ptr; int n=cols*rows; step = (max - min) / (double)nbar; if (step == 0.0) { *xdata = (double *)malloc(sizeof(double)); if (*xdata == (double *)NULL) { fprintf(stderr, "Malloc Error in GetDataDistribution 1 (size=%lud), Exit\n", sizeof(double)); exit(2); } *ydata = (double *)malloc(sizeof(double)*2); /* on a honte */ if (*ydata == (double *)NULL) { fprintf(stderr, "Malloc Error in GetDataDistribution 2 (size=%lud), Exit\n", sizeof(double)*2); exit(2); } (*ydata)[0] = (*ydata)[1] = (double)(cols*rows); (*xdata)[0] = (double)max; return; } *xdata = (double *)malloc(sizeof(double)*nbar); if (*xdata == (double *)NULL) { fprintf(stderr, "Malloc Error in GetDataDistribution 3 (size=%lud), Exit\n", sizeof(double)*nbar); exit(2); } *ydata = (double *)malloc(sizeof(double)*(nbar+1)); /* on a honte */ if (*ydata == (double *)NULL) { fprintf(stderr, "Malloc Error in GetDataDistribution 4 (size=%lud), Exit\n", sizeof(double)*(nbar+1)); exit(2); } start = min + 0.5 * step; memset(*ydata, 0,(nbar+1)*sizeof(double)); /*** NOT SURE ***/ for (ptr=*xdata,val=start;val<max;val+=step,ptr++) *ptr = val; switch (type) { case SPS_DOUBLE : DATADIST(double); break; case SPS_FLOAT : DATADIST(float); break; case SPS_INT : DATADIST(int); break; case SPS_UINT : DATADIST(unsigned int); break; case SPS_SHORT : DATADIST(short); break; case SPS_USHORT : DATADIST(unsigned short); break; case SPS_CHAR : DATADIST(char); break; case SPS_UCHAR : DATADIST(unsigned char); break; case SPS_LONG : DATADIST(long); break; case SPS_ULONG : DATADIST(unsigned long); break; } (*ydata)[nbar-1] += (*ydata)[nbar]; /* on a honte pour *ptr = max */\ } ��������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Src/sps_py.c����������������������������������������������������0000644�0000000�0000000�00000060023�14741736366�017652� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/**************************************************************************** * * Copyright (c) 1998-2017 European Synchrotron Radiation Facility (ESRF) * * The software contained in this file "sps_py.c" is designed to interface * the shared-data structures used and defined by the CSS "spec" package * with other utility software. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * ****************************************************************************/ /* #include <stdlib.h> */ #include <sps.h> /* #include <stdio.h> */ #include <Python.h> /* adding next line may raise errors ... #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <numpy/arrayobject.h> struct module_state { PyObject *SPSError; }; #if PY_MAJOR_VERSION >= 3 #define PyInt_FromLong PyLong_FromLong #endif #if PY_MAJOR_VERSION >= 3 #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) #else #define GETSTATE(m) (&_state) static struct module_state _state; #endif void initsps(void); static void sps_cleanup(void); static int sps_type2py (int t) { switch (t) { case SPS_ULONG: return(NPY_UINT64); case SPS_USHORT: return(NPY_USHORT); case SPS_UINT: return(NPY_UINT32); case SPS_UCHAR: return(NPY_UBYTE); case SPS_SHORT: return(NPY_SHORT); case SPS_LONG: return(NPY_INT64); case SPS_INT: return(NPY_INT32); case SPS_CHAR: return(NPY_BYTE); case SPS_STRING: return(NPY_STRING); case SPS_FLOAT: return(NPY_FLOAT); case SPS_DOUBLE: return(NPY_DOUBLE); default: return(-1); } } static int sps_py2type (int t) { int type; switch (t) { case NPY_INT64: type = SPS_LONG; break; case NPY_UINT64: type = SPS_ULONG64; break; case NPY_INT32: type = SPS_INT; break; case NPY_UINT32: type = SPS_UINT; break; case NPY_USHORT: type = SPS_USHORT; break; case NPY_SHORT: type = SPS_SHORT; break; case NPY_UBYTE: type = SPS_UCHAR; break; case NPY_BYTE: type = SPS_CHAR; break; case NPY_FLOAT: type = SPS_FLOAT; break; case NPY_DOUBLE: type = SPS_DOUBLE; break; case NPY_STRING: type = SPS_STRING; break; default: type = -1; } return type; } static PyObject * sps_getkeylist(PyObject *self, PyObject *args) { char *spec_version=NULL, *array_name=NULL; int i; char *key; PyObject *list, *string; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } list = PyList_New(0); for (i=0; (key = SPS_GetNextEnvKey (spec_version,array_name, i)) ; i++) { #if PY_MAJOR_VERSION >= 3 string = PyUnicode_FromString(key); #else string = PyString_FromString(key); #endif PyList_Append (list, string); Py_DECREF(string); } return list; } static PyObject * sps_getarraylist(PyObject *self, PyObject *args) { char *spec_version=NULL; int i; char *array; PyObject *list, *string; if (!PyArg_ParseTuple(args, "|s", &spec_version)) { return NULL; } list = PyList_New(0); for (i=0; (array = SPS_GetNextArray (spec_version,i)) ; i++) { #if PY_MAJOR_VERSION >= 3 string = PyUnicode_FromString(array); #else string = PyString_FromString(array); #endif PyList_Append (list, string); Py_DECREF(string); } return list; } static PyObject * sps_getspeclist(PyObject *self, PyObject *args) { char *spec_version; int i; PyObject *list, *string; if (!PyArg_ParseTuple(args, "")) { return NULL; } list = PyList_New(0); for (i=0; (spec_version = SPS_GetNextSpec (i)) ; i++) { #if PY_MAJOR_VERSION >= 3 string = PyUnicode_FromString(spec_version); #else string = PyString_FromString(spec_version); #endif PyList_Append (list, string); Py_DECREF(string); } return list; } static PyObject *sps_isupdated(PyObject *self, PyObject *args) { char *spec_version, *array_name; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } return PyInt_FromLong(SPS_IsUpdated(spec_version, array_name)); } static PyObject *sps_updatecounter(PyObject *self, PyObject *args) { char *spec_version, *array_name; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } return PyInt_FromLong(SPS_UpdateCounter(spec_version, array_name)); } static PyObject *sps_updatedone(PyObject *self, PyObject *args) { char *spec_version, *array_name; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } return PyInt_FromLong(SPS_UpdateDone(spec_version, array_name)); } static PyObject *sps_getinfo(PyObject *self, PyObject *args) { char *spec_version, *array_name, *ret; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } ret = SPS_GetInfoString(spec_version, array_name); if (ret) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromString(ret); #else return PyString_FromString(ret); #endif } else { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Array Info cannot be read"); return NULL; } } static PyObject* sps_putinfo(PyObject *self, PyObject *args) { char *spec_version, *array_name, *info; Py_ssize_t info_len; if(!PyArg_ParseTuple(args, "sss#", &spec_version,&array_name, &info,&info_len)) return NULL; int ret = SPS_PutInfoString(spec_version,array_name,info); return PyInt_FromLong(ret); } static PyObject *sps_getmetadata(PyObject *self, PyObject *args) { char *spec_version, *array_name, *ret; u32_t length; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } ret = SPS_GetMetaData(spec_version, array_name, &length); if (ret) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromString(ret); #else return PyString_FromString(ret); #endif } else { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Array metadata cannot be read"); return NULL; } } static PyObject* sps_putmetadata(PyObject *self, PyObject *args) { char *spec_version, *array_name, *data; Py_ssize_t data_len; if(!PyArg_ParseTuple(args, "sss#", &spec_version,&array_name, &data,&data_len)) return NULL; int ret = SPS_PutMetaData(spec_version,array_name,data,(u32_t)data_len); return PyInt_FromLong(ret); } static PyObject *sps_getenvstr(PyObject *self, PyObject *args) { char *spec_version, *array_name, *key, *ret; if (!PyArg_ParseTuple(args, "sss", &spec_version, &array_name, &key)) { return NULL; } ret = SPS_GetEnvStr(spec_version, array_name, key); if (ret) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromString(ret); #else return PyString_FromString(ret); #endif } else { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Key not found"); return NULL; } } static PyObject *sps_putenvstr(PyObject *self, PyObject *args) { char *spec_version, *array_name, *key, *v; if (!PyArg_ParseTuple(args, "ssss", &spec_version, &array_name, &key, &v)) { return NULL; } if (SPS_PutEnvStr(spec_version, array_name, key, v)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error setting the environment string"); return NULL; } else { Py_INCREF(Py_None); return Py_None; } } static PyObject *sps_getarrayinfo(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } return Py_BuildValue("(iiii)", rows, cols, type, flag); } static PyObject *sps_attach(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag; npy_intp dims[2]; int ptype, stype; PyArrayObject *arrobj; void *data; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } if ((data = SPS_GetDataPointer(spec_version, array_name, 1)) == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting data pointer"); return NULL; } dims[0]=rows; dims[1]=cols; ptype = sps_type2py(type); stype = sps_py2type(ptype); if (type != stype) { SPS_ReturnDataPointer(data); struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Type of data in shared memory not supported"); return NULL; } if ((arrobj = (PyArrayObject*) PyArray_SimpleNewFromData(2, dims, ptype, data)) == NULL) { SPS_ReturnDataPointer(data); struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not create mathematical array"); return NULL; } return (PyObject*) arrobj; } static PyObject *sps_detach(PyObject *self, PyObject *args) { PyObject *in_arr; void *data; if (!PyArg_ParseTuple(args, "O", &in_arr)) { return NULL; } if (!PyArray_Check(in_arr)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Input must be the array returned by attach"); return NULL; } data = PyArray_DATA((PyArrayObject*) in_arr); if (SPS_ReturnDataPointer(data)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error detaching"); return NULL; } else { Py_INCREF(Py_None); return Py_None; } } static PyObject *sps_create(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type = SPS_DOUBLE, flag = 0; npy_intp dims[2]; int ptype, stype; PyArrayObject *arrobj; void *data; if (!PyArg_ParseTuple(args, "ssii|ii", &spec_version, &array_name, &rows, &cols, &type, &flag)) { return NULL; } if (SPS_CreateArray(spec_version, array_name, rows, cols, type, flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } if ((data = SPS_GetDataPointer(spec_version, array_name, 1)) == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting data pointer"); return NULL; } dims[0]=rows; dims[1]=cols; ptype = sps_type2py(type); stype = sps_py2type(ptype); if (type != stype) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Type of data in shared memory not supported"); return NULL; } if ((arrobj = (PyArrayObject*) PyArray_SimpleNewFromData(2, dims, ptype, data)) == NULL) { /* Should delete the array - don't have a lib function !!! FIXTHIS */ struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not create mathematical array"); return NULL; } return (PyObject*) arrobj; } static PyObject *sps_getshmid(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag; int shmid; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } shmid = SPS_GetShmId(spec_version, array_name); return Py_BuildValue("i", shmid); } static PyObject *sps_getdata(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag; npy_intp dims[2]; int ptype, stype; PyArrayObject *arrobj, *arrobj_nc; if (!PyArg_ParseTuple(args, "ss", &spec_version, &array_name)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } dims[0]=rows; dims[1]=cols; ptype = sps_type2py(type); if ((arrobj_nc = (PyArrayObject*) PyArray_SimpleNew(2, dims, ptype)) == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not create mathematical array"); return NULL; } if ((arrobj = (PyArrayObject*) PyArray_ContiguousFromObject( (PyObject*) arrobj_nc, ptype, 2, 2)) == NULL) { Py_DECREF(arrobj_nc); struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not make our array contiguous"); return NULL; } else Py_DECREF(arrobj_nc); stype = sps_py2type(ptype); SPS_CopyFromShared(spec_version, array_name, PyArray_DATA(arrobj), stype , rows * cols); return (PyObject*) arrobj; } static PyObject *sps_getdatarow(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag, in_row, in_col = 0; npy_intp dims[2]; int ptype, stype; PyArrayObject *arrobj, *arrobj_nc; if (!PyArg_ParseTuple(args, "ssi|i", &spec_version, &array_name, &in_row, &in_col)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } dims[0] = (in_col == 0) ? cols : in_col; ptype = sps_type2py(type); if ((arrobj_nc = (PyArrayObject*) PyArray_SimpleNew(1, dims, ptype)) == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not create mathematical array"); return NULL; } if ((arrobj = (PyArrayObject*) PyArray_ContiguousFromObject( (PyObject*) arrobj_nc, ptype, 1, 1)) == NULL) { Py_DECREF(arrobj_nc); struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not make our array contiguous"); return NULL; } else Py_DECREF(arrobj_nc); stype = sps_py2type(ptype); SPS_CopyRowFromShared(spec_version, array_name, PyArray_DATA(arrobj), stype , in_row, in_col, NULL); return (PyObject*) arrobj; } static PyObject *sps_getdatacol(PyObject *self, PyObject *args) { char *spec_version, *array_name; int rows, cols, type, flag, in_row = 0, in_col; npy_intp dims[2]; int ptype, stype; PyArrayObject *arrobj, *arrobj_nc; if (!PyArg_ParseTuple(args, "ssi|i", &spec_version, &array_name, &in_col, &in_row)) { return NULL; } if (SPS_GetArrayInfo(spec_version, array_name, &rows, &cols, &type, &flag)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error getting array info"); return NULL; } dims[0] = (in_row == 0) ? rows : in_row; ptype = sps_type2py(type); if ((arrobj_nc = (PyArrayObject*) PyArray_SimpleNew(1, dims, ptype)) == NULL) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not create mathematical array"); return NULL; } if ((arrobj = (PyArrayObject*) PyArray_ContiguousFromObject( (PyObject*) arrobj_nc, ptype, 1, 1)) == NULL) { Py_DECREF(arrobj_nc); struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Could not make our array contiguous"); return NULL; } else Py_DECREF(arrobj_nc); stype = sps_py2type(ptype); SPS_CopyColFromShared(spec_version, array_name, PyArray_DATA(arrobj), stype , in_col, in_row, NULL); return (PyObject*) arrobj; } static PyObject *sps_putdata(PyObject *self, PyObject *args) { char *spec_version, *array_name; int ptype, stype; PyObject *in_src; PyArrayObject *src; int no_items; if (!PyArg_ParseTuple(args, "ssO", &spec_version, &array_name, &in_src)) { return NULL; } if (!(src = (PyArrayObject*) PyArray_ContiguousFromObject(in_src, NPY_NOTYPE, 2, 2))) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Input Array is not a 2 dim array"); return NULL; } ptype = PyArray_DESCR(src)->type_num; stype = sps_py2type(ptype); if (ptype != sps_type2py(stype)) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Type of data in shared memory not supported"); Py_DECREF(src); return NULL; } no_items = (int) (PyArray_DIMS(src)[0] * PyArray_DIMS(src)[1]); if (SPS_CopyToShared(spec_version, array_name, PyArray_DATA(src), stype, no_items) == -1) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error copying data to shared memory"); Py_DECREF(src); return NULL; }else Py_DECREF(src); Py_INCREF(Py_None); return Py_None; } static PyObject *sps_putdatarow(PyObject *self, PyObject *args) { char *spec_version, *array_name; int ptype, stype; PyObject *in_src; PyArrayObject *src; int no_items; int in_row; if (!PyArg_ParseTuple(args, "ssiO", &spec_version, &array_name, &in_row, &in_src)) { return NULL; } if (!(src = (PyArrayObject*) PyArray_ContiguousFromObject(in_src, NPY_NOTYPE, 1, 1))) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Input Array is not a 1 dim array"); return NULL; } ptype = PyArray_DESCR(src)->type_num; stype = sps_py2type(ptype); if (ptype == -1) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Type of data in shared memory not supported"); Py_DECREF(src); return NULL; } no_items = (int) (PyArray_DIMS(src)[0]); if (SPS_CopyRowToShared(spec_version, array_name, PyArray_DATA(src), stype, in_row, no_items, NULL) == -1) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error copying data to shared memory"); Py_DECREF(src); return NULL; }else Py_DECREF(src); Py_INCREF(Py_None); return Py_None; } static PyObject *sps_putdatacol(PyObject *self, PyObject *args) { char *spec_version, *array_name; int ptype, stype; PyObject *in_src; PyArrayObject *src; int no_items; int in_col = 0; if (!PyArg_ParseTuple(args, "ssiO", &spec_version, &array_name, &in_col, &in_src)) { return NULL; } if (!(src = (PyArrayObject*) PyArray_ContiguousFromObject(in_src, NPY_NOTYPE, 1, 1))) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Input Array is not a 1 dim array"); return NULL; } ptype = PyArray_DESCR(src)->type_num; stype = sps_py2type(ptype); no_items = (int) PyArray_DIMS(src)[0]; if (SPS_CopyColToShared(spec_version, array_name, PyArray_DATA(src), stype, in_col, no_items, NULL) == -1) { struct module_state *st = GETSTATE(self); PyErr_SetString(st->SPSError, "Error copying data to shared memory"); Py_DECREF(src); return NULL; }else Py_DECREF(src); Py_INCREF(Py_None); return Py_None; } static void sps_cleanup() { SPS_CleanUpAll(); } static PyMethodDef SPSMethods[] = { { "getspeclist", sps_getspeclist,METH_VARARGS}, { "getarraylist", sps_getarraylist, METH_VARARGS}, { "isupdated", sps_isupdated, METH_VARARGS}, { "updatecounter", sps_updatecounter, METH_VARARGS}, { "getenv", sps_getenvstr, METH_VARARGS}, { "putenv", sps_putenvstr, METH_VARARGS}, { "getkeylist", sps_getkeylist, METH_VARARGS}, { "getshmid", sps_getshmid, METH_VARARGS}, { "getdata", sps_getdata, METH_VARARGS}, { "getdatarow", sps_getdatarow, METH_VARARGS}, { "getdatacol", sps_getdatacol, METH_VARARGS}, { "getarrayinfo", sps_getarrayinfo, METH_VARARGS}, { "attach", sps_attach, METH_VARARGS}, { "detach", sps_detach, METH_VARARGS}, { "create", sps_create, METH_VARARGS}, { "updatedone", sps_updatedone, METH_VARARGS}, { "putdata", sps_putdata, METH_VARARGS}, { "putdatarow", sps_putdatarow, METH_VARARGS}, { "putdatacol", sps_putdatacol, METH_VARARGS}, { "getinfo", sps_getinfo, METH_VARARGS}, { "putinfo", sps_putinfo, METH_VARARGS}, { "getmetadata", sps_getmetadata, METH_VARARGS}, { "putmetadata", sps_putmetadata, METH_VARARGS}, { NULL, NULL} }; #if PY_MAJOR_VERSION >= 3 static int SPS_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->SPSError); return 0; } static int SPS_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->SPSError); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "sps", /* m_name */ "Shared memory handling", /* m_doc */ sizeof(struct module_state), /* m_size */ SPSMethods, /* m_methods */ NULL, /* m_reload */ SPS_traverse, /* m_travers */ SPS_clear, /* m_clear */ NULL /* m_free */ }; #define INITERROR return NULL PyObject * PyInit_sps(void) #else #define INITERROR return void initsps() #endif { struct module_state *st; PyObject *d; //printf("Initializing sps\n"); /* Add some symbolic constants to the module */ #if PY_MAJOR_VERSION >= 3 PyObject *module = PyModule_Create(&moduledef); #else PyObject *module = Py_InitModule("sps", SPSMethods); #endif d = PyModule_GetDict(module); if (module == NULL) INITERROR; st = GETSTATE(module); PyDict_SetItemString(d, "DOUBLE", (PyObject *) PyInt_FromLong(SPS_DOUBLE)); PyDict_SetItemString(d, "FLOAT", (PyObject *) PyInt_FromLong(SPS_FLOAT)); PyDict_SetItemString(d, "INT", (PyObject *) PyInt_FromLong(SPS_INT)); PyDict_SetItemString(d, "UINT", (PyObject *) PyInt_FromLong(SPS_UINT)); PyDict_SetItemString(d, "SHORT", (PyObject *) PyInt_FromLong(SPS_SHORT)); PyDict_SetItemString(d, "USHORT", (PyObject *) PyInt_FromLong(SPS_USHORT)); PyDict_SetItemString(d, "CHAR", (PyObject *) PyInt_FromLong(SPS_CHAR)); PyDict_SetItemString(d, "UCHAR", (PyObject *) PyInt_FromLong(SPS_UCHAR)); PyDict_SetItemString(d, "STRING", (PyObject *) PyInt_FromLong(SPS_STRING)); PyDict_SetItemString(d, "IS_ARRAY", (PyObject *) PyInt_FromLong(SPS_IS_ARRAY)); PyDict_SetItemString(d, "IS_MCA", (PyObject *) PyInt_FromLong(SPS_IS_MCA)); PyDict_SetItemString(d, "IS_IMAGE", (PyObject *) PyInt_FromLong(SPS_IS_IMAGE)); PyDict_SetItemString(d, "TAG_STATUS", (PyObject *) PyInt_FromLong(SPS_TAG_STATUS)); PyDict_SetItemString(d, "TAG_ARRAY", (PyObject *) PyInt_FromLong(SPS_TAG_ARRAY)); PyDict_SetItemString(d, "TAG_MASK", (PyObject *) PyInt_FromLong(SPS_TAG_MASK)); PyDict_SetItemString(d, "TAG_MCA", (PyObject *) PyInt_FromLong(SPS_TAG_MCA)); PyDict_SetItemString(d, "TAG_IMAGE", (PyObject *) PyInt_FromLong(SPS_TAG_IMAGE)); PyDict_SetItemString(d, "TAG_SCAN", (PyObject *) PyInt_FromLong(SPS_TAG_SCAN)); PyDict_SetItemString(d, "TAG_INFO", (PyObject *) PyInt_FromLong(SPS_TAG_INFO)); PyDict_SetItemString(d, "TAG_FRAMES", (PyObject *) PyInt_FromLong(SPS_TAG_FRAMES)); st->SPSError = PyErr_NewException("sps.error", NULL, NULL); if (st->SPSError == NULL) { Py_DECREF(module); INITERROR; } Py_INCREF(st->SPSError); PyModule_AddObject(module, "error", st->SPSError); Py_AtExit(sps_cleanup); import_array(); #if PY_MAJOR_VERSION >= 3 return module; #endif } �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/Src/spslut_py.c�������������������������������������������������0000644�0000000�0000000�00000032651�14741736366�020405� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* spslut_py.c VERSION 4.0 */ /* $Revision: 1.7 $ * $Log: spslut_py.c,v $ * Revision 1.7 2005/02/10 23:37:48 sole * minor changes * * Revision 1.6 2005/02/10 17:44:58 sole * *** empty log message *** * * Revision 1.5 2005/02/10 16:17:15 sole * Removed some unused variables **/ /* CHANGES: [05-09-2002] A. Gobbo - Included min and max values to 8 bit colormaps [11-03-2002] A. Gobbo - Included modes BGR and BGRX [12-12-2001] A. Gobbo - Dimentions inverted in the returned array - Corrected memory leak bug */ #include <stdio.h> #include <Python.h> /* #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <numpy/arrayobject.h> #include <sps_lut.h> struct module_state { PyObject *error; }; #if PY_MAJOR_VERSION >= 3 #define PyInt_FromLong(x) PyLong_FromLong(x) #define GETSTATE(m) ((struct module_state*) PyModule_GetState(m)) #else #define GETSTATE(m) (&_state) static struct module_state _state; #endif #define onError(message) \ { struct module_state *st = GETSTATE(self);\ PyErr_SetString(st->error, message);\ return NULL; } /* Function declarations */ static PyObject *spslut_transform(PyObject *self, PyObject *args); static PyObject *spslut_transformarray(PyObject *self, PyObject *args); static PyObject *spslut_palette(PyObject *self, PyObject *args); /* Functions */ PyObject *new_pyimage(const char *mode, unsigned xsize, unsigned ysize, void *data) { #if PY_MAJOR_VERSION >= 3 return PyBytes_FromStringAndSize ((const char *)data, strlen(mode) * xsize * ysize); #else return PyString_FromStringAndSize ((const char *)data, strlen(mode) * xsize * ysize); #endif } static int natbyteorder() { union { struct { unsigned char b1; unsigned char b2; unsigned char b3; unsigned char b4; } c; unsigned long p; } val; val.p = 1; if (val.c.b4 == 1) { return SPS_MSB; } else { return SPS_LSB; } } static PyObject *spslut_transform(PyObject *self, PyObject *args) { void *data; int type, cols, rows, reduc, fastreduc, meth, autoscale, mapmin=0, mapmax=255; int palette_code; double gamma, min, max; XServer_Info Xservinfo; void *palette; int prows, pcols, pal_entries; void *r/*, *res*/; char *mode; PyArrayObject *src; PyObject *in_src; PyObject *res,*aux; int array_output=0; unsigned char *as_pointer, *as_r; npy_intp as_dim[2]; PyArrayObject *as_aux; if (!PyArg_ParseTuple(args, "O(ii)(id)sii(dd)|(ii)i", &in_src, &reduc, &fastreduc, &meth, &gamma, &mode, &palette_code, &autoscale, &min, &max,&mapmin, &mapmax, &array_output)) return NULL; if (strcmp(mode, "RGB") == 0) { Xservinfo.red_mask = 0x0000ff; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0xff0000; Xservinfo.pixel_size = 3; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "RGBX") == 0) { Xservinfo.red_mask = 0x0000ff; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0xff0000; Xservinfo.pixel_size = 4; Xservinfo.byte_order = natbyteorder(); } //###CHANGED - ALEXANDRE 11/03/2002 - Qt uses different order than Tkinter else if (strcmp(mode, "BGR") == 0) { Xservinfo.red_mask = 0xff0000; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0x0000ff; Xservinfo.pixel_size = 3; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "BGRX") == 0) { Xservinfo.red_mask = 0xff0000; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0x0000ff; Xservinfo.pixel_size = 4; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "L") == 0 || strcmp(mode, "P") == 0 ) { Xservinfo.pixel_size = 1; Xservinfo.byte_order = natbyteorder(); //mapmin = 0; //mapmax = 255; } else { onError("Mode must be RGB, RGBX, BGR, BGRX, L or P"); } if (!(src = (PyArrayObject*) PyArray_ContiguousFromObject(in_src, NPY_NOTYPE, 2, 2))) { onError("Input Array is not a 2x2 array"); } switch (PyArray_DESCR(src)->type_num) { case NPY_UINT: type = SPS_UINT; break; case NPY_ULONG: type = SPS_ULONG; break; case NPY_USHORT: type = SPS_USHORT; break; case NPY_LONG: type = SPS_LONG; break; case NPY_INT: type = SPS_INT; break; case NPY_SHORT: type = SPS_SHORT; break; case NPY_UBYTE: type = SPS_UCHAR; break; case NPY_BYTE: type = SPS_CHAR; break; case NPY_FLOAT: type = SPS_FLOAT; break; case NPY_DOUBLE: type = SPS_DOUBLE; break; default: onError("Input Array type not supported"); } data = PyArray_DATA(src); cols = (int) PyArray_DIMS(src)[1]; /*FIX THIS cols and rows are turned around */ rows = (int) PyArray_DIMS(src)[0]; /*###CHANGED - ALEXANDRE 24/07/2001*/ r = SPS_PaletteArray (data, type, cols, rows, reduc, fastreduc, meth, gamma, autoscale, mapmin, mapmax, Xservinfo, palette_code, &min, &max, &pcols, &prows, &palette, &pal_entries); if (r == 0) { onError("Error while trying to calculate the image"); } if (!array_output){ /*###CHANGED - ALEXANDRE 24/07/2001*/ aux=new_pyimage(mode, (unsigned) pcols, (unsigned) prows, r); res = Py_BuildValue("(O(i,i)(d,d))",aux,pcols, prows, min, max); free(r); Py_DECREF(aux); /*###CHANGED - ALEXANDRE 28/06/2002*/ Py_DECREF(src); return res; } as_dim[0] = strlen(mode); as_dim[1] = prows * pcols; as_aux = (PyArrayObject*) PyArray_SimpleNew(2, as_dim, NPY_UBYTE); if (as_aux == NULL){ free(r); Py_DECREF(src); return NULL; } as_pointer = (char *) PyArray_DATA(as_aux); as_r = (char *) r; memcpy(as_pointer, as_r, as_dim[0] * as_dim[1]); free(r); res = Py_BuildValue("(O(i,i)(d,d))",as_aux,pcols, prows, min, max); Py_DECREF(src); Py_DECREF(as_aux); return res; } static PyObject *spslut_transformarray(PyObject *self, PyObject *args) { void *data; int type, cols, rows, reduc, fastreduc, meth, autoscale, mapmin=0, mapmax=255; int palette_code; double gamma, min, max; XServer_Info Xservinfo; void *palette; int prows, pcols, pal_entries; void *r/*, *res*/; char *mode; unsigned char *as_pointer, *as_r; npy_intp as_dim[3]; PyArrayObject *src; PyObject *in_src; PyArrayObject *aux; if (!PyArg_ParseTuple(args, "O(ii)(id)sii(dd)|(ii)", &in_src, &reduc, &fastreduc, &meth, &gamma, &mode, &palette_code, &autoscale, &min, &max,&mapmin, &mapmax)) return NULL; if (strcmp(mode, "RGB") == 0) { Xservinfo.red_mask = 0x0000ff; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0xff0000; Xservinfo.pixel_size = 3; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "RGBX") == 0) { Xservinfo.red_mask = 0x0000ff; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0xff0000; Xservinfo.pixel_size = 4; Xservinfo.byte_order = natbyteorder(); } //###CHANGED - ALEXANDRE 11/03/2002 - Qt uses different order than Tkinter else if (strcmp(mode, "BGR") == 0) { Xservinfo.red_mask = 0xff0000; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0x0000ff; Xservinfo.pixel_size = 3; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "BGRX") == 0) { Xservinfo.red_mask = 0xff0000; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0x0000ff; Xservinfo.pixel_size = 4; Xservinfo.byte_order = natbyteorder(); } else if (strcmp(mode, "L") == 0 || strcmp(mode, "P") == 0 ) { Xservinfo.pixel_size = 1; Xservinfo.byte_order = natbyteorder(); //mapmin = 0; //mapmax = 255; } else { onError("Mode must be RGB, RGBX, BGR, BGRX, L or P"); } if (!(src = (PyArrayObject*) PyArray_ContiguousFromObject(in_src, NPY_NOTYPE, 2, 2))) { onError("spslut.transformarray: Input Array is not a 2x2 array"); } switch (PyArray_DESCR(src)->type_num) { case NPY_ULONG: type = SPS_ULONG; break; case NPY_UINT: type = SPS_UINT; break; case NPY_USHORT: type = SPS_USHORT; break; case NPY_LONG: type = SPS_LONG; break; case NPY_INT: type = SPS_INT; break; case NPY_SHORT: type = SPS_SHORT; break; case NPY_UBYTE: type = SPS_UCHAR; break; case NPY_BYTE: type = SPS_CHAR; break; case NPY_FLOAT: type = SPS_FLOAT; break; case NPY_DOUBLE: type = SPS_DOUBLE; break; default: onError("Input Array type not supported"); } data = PyArray_DATA(src); cols = (int) PyArray_DIMS(src)[1]; /*FIX THIS cols and rows are turned around */ rows = (int) PyArray_DIMS(src)[0]; /*###CHANGED - ALEXANDRE 24/07/2001*/ r = SPS_PaletteArray (data, type, cols, rows, reduc, fastreduc, meth, gamma, autoscale, mapmin, mapmax, Xservinfo, palette_code, &min, &max, &pcols, &prows, &palette, &pal_entries); if (r == 0) { onError("Error while trying to calculate the image"); } /*###CHANGED - ALEXANDRE 24/07/2001*/ as_dim[0] = strlen(mode); as_dim[1] = prows * pcols; /* printf("dim[0] = %d dim[1] = %d \"%s\" \n",as_dim[0],as_dim[1],mode); */ aux = (PyArrayObject*) PyArray_SimpleNew(2, as_dim, NPY_UBYTE); if (aux == NULL){ free(r); Py_DECREF(src); return NULL; } as_pointer = (char *) PyArray_DATA(aux); as_r = (char *) r; memcpy(as_pointer, as_r, as_dim[0] * as_dim[1]); free(r); Py_DECREF(src); return PyArray_Return(aux); } /* The simple palette always returns 4 bytes per entry */ static PyObject *spslut_palette(PyObject *self, PyObject *args) { int entries, palette_code; XServer_Info Xservinfo; void *r; char *mode; if (!PyArg_ParseTuple(args, "ii", &entries, &palette_code)) return NULL; mode = "RGBX"; Xservinfo.red_mask = 0x0000ff; Xservinfo.green_mask = 0x00ff00; Xservinfo.blue_mask = 0xff0000; Xservinfo.pixel_size = 4; Xservinfo.byte_order = natbyteorder(); r = SPS_SimplePalette ( 0, entries - 1, Xservinfo, palette_code); if (r == 0) { onError("Error calculating the palette"); } return new_pyimage(mode, 1, entries, r); } /* Module methods */ static PyMethodDef SPSLUT_Methods[] = { { "transform", spslut_transform, METH_VARARGS}, { "palette", spslut_palette, METH_VARARGS}, { "transformArray", spslut_transformarray, METH_VARARGS}, { NULL, NULL} }; /* ------------------------------------------------------- */ /* Module initialization */ #if PY_MAJOR_VERSION >= 3 static int SPSLUT_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int SPSLUT_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "spslut", NULL, sizeof(struct module_state), SPSLUT_Methods, NULL, SPSLUT_traverse, SPSLUT_clear, NULL }; #define INITERROR return NULL PyObject * PyInit_spslut(void) #else #define INITERROR return void initspslut(void) #endif { PyObject *d; struct module_state *st; #if PY_MAJOR_VERSION >= 3 PyObject *module = PyModule_Create(&moduledef); #else PyObject *module = Py_InitModule("spslut", SPSLUT_Methods); #endif if (module == NULL) INITERROR; st = GETSTATE(module); st->error = PyErr_NewException("SPSLUT.Error", NULL, NULL); if (st->error == NULL) { Py_DECREF(module); INITERROR; } import_array(); /* Add some symbolic constants to the module */ d = PyModule_GetDict(module); PyDict_SetItemString(d, "LINEAR", PyInt_FromLong(SPS_LINEAR)); PyDict_SetItemString(d, "LOG", PyInt_FromLong(SPS_LOG)); PyDict_SetItemString(d, "GAMMA", PyInt_FromLong(SPS_GAMMA)); PyDict_SetItemString(d, "GREYSCALE", PyInt_FromLong(SPS_GREYSCALE)); PyDict_SetItemString(d, "TEMP", PyInt_FromLong(SPS_TEMP)); PyDict_SetItemString(d, "RED", PyInt_FromLong(SPS_RED)); PyDict_SetItemString(d, "GREEN", PyInt_FromLong(SPS_GREEN)); PyDict_SetItemString(d, "BLUE", PyInt_FromLong(SPS_BLUE)); PyDict_SetItemString(d, "REVERSEGREY", PyInt_FromLong(SPS_REVERSEGREY)); PyDict_SetItemString(d, "MANY", PyInt_FromLong(SPS_MANY)); #if PY_MAJOR_VERSION >= 3 return module; #endif } ���������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/sps/setup.py��������������������������������������������������������0000644�0000000�0000000�00000006376�14741736366�017167� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """Setup script for the SPS module distribution.""" import os, sys, glob try: import numpy except ImportError: text = "You must have numpy installed.\n" text += "See http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103\n" raise ImportError(text) import platform from distutils.core import setup from distutils.extension import Extension if platform.system() == 'Linux' : extra_compile_args = ['-pthread'] #extra_compile_args = [] elif platform.system() == 'SunOS' : #extra_compile_args = ['-pthreads'] extra_compile_args = [] else: extra_compile_args = [] ext_modules = [Extension( name = 'spslut', sources=['Src/sps_lut.c', 'Src/spslut_py.c'], extra_compile_args = extra_compile_args, include_dirs = ['Include', numpy.get_include()], )] if sys.platform == "win32": define_macros = [('WIN32',None)] else: define_macros = [] ext_modules.append( Extension( name = 'sps', sources=['Src/sps.c', 'Src/sps_py.c'], extra_compile_args = extra_compile_args, include_dirs = ['Include', numpy.get_include()])) setup ( name = "sps", version = "1.0", description = "shared memory and spec", author = "BLISS Group", author_email = "rey@esrf.fr", url = "http://www.esrf.fr/computing/bliss/", # Description of the modules and packages in the distribution ext_modules = ext_modules) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaIO/spswrap.py����������������������������������������������������������0000644�0000000�0000000�00000016702�14741736366�016713� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys if sys.platform in ['win32']: def getspeclist(): return [] try: from . import sps STRING=sps.STRING CHAR=sps.CHAR DOUBLE=sps.DOUBLE FLOAT=sps.FLOAT SHORT=sps.SHORT UCHAR=sps.UCHAR USHORT=sps.USHORT TAG_ARRAY=sps.TAG_ARRAY TAG_MCA=sps.TAG_MCA TAG_IMAGE=sps.TAG_IMAGE TAG_SCAN=sps.TAG_SCAN TAG_INFO=sps.TAG_INFO TAG_MASK=sps.TAG_MASK TAG_STATUS=sps.TAG_STATUS IS_ARRAY=sps.IS_ARRAY IS_MCA=sps.IS_MCA IS_IMAGE=sps.IS_IMAGE error=sps.error updatecounter=sps.updatecounter TAG_FRAMES=sps.TAG_FRAMES except Exception: #make sure older versions of sps do not give troubles TAG_FRAMES=0x0100 #windows does not use it pass try: import json JSON = True except ImportError: JSON = False import threading import time spsdefaultoutput ={"axistitles": '', "xlabel": '', "ylabel": '', "title": '', "nopts": 0, "xbeg": 0, "xend": 0, "plotlist": [], "datafile": '/dev/null', "scantype": 16, "aborted": 0} spsdefaultarraylist={} spslock = threading.Lock() def getarrayinfo(spec,shm): result = [0,] * 4 spslock.acquire() try: result = sps.getarrayinfo (spec,shm) except Exception: pass spslock.release() return result def getarraylist( spec ): result = [] if specrunning(spec): spslock.acquire() try: result = sps.getarraylist( spec ) spsdefaultarraylist[spec]=result except Exception: print("Error reading memory", sys.exc_info()) pass spslock.release() else: if spec in spsdefaultarraylist: return spsdefaultarraylist[spec] else: spsdefaultarraylist[spec]=[] return result return result def isupdated(spec, shmenv): result = 0 spslock.acquire() try: result = sps.isupdated( spec, shmenv ) except Exception: pass spslock.release() return result def putenv(spec,shmenv,cmd,outp): result = None spslock.acquire() try: result = sps.putenv(spec,shmenv,cmd,outp) except Exception: pass spslock.release() return result def getenv(spec,shmenv,key): result = '' spslock.acquire() try: # if key != 'plotlist': result = sps.getenv(spec,shmenv,key) except sps.error: if key in spsdefaultoutput.keys(): result = spsdefaultoutput[key] pass spslock.release() return result def updatedone(spec,shmenv): result = 0 spslock.acquire() try: result = sps.updatedone(spec,shmenv) except Exception: pass spslock.release() return result def getdata(spec,shm): result = [] spslock.acquire() try: result = sps.getdata(spec,shm) except Exception: pass spslock.release() return result def getdatacol(spec,shm,idx): result = [] spslock.acquire() try: result = sps.getdatacol(spec,shm,idx) except Exception: pass spslock.release() return result def getdatarow(spec,shm,idx): result = [] spslock.acquire() try: result = sps.getdatarow(spec,shm,idx) except Exception: pass spslock.release() return result def getspeclist(): result = [] i = 0 spslock.acquire() try: result = sps.getspeclist() # Awful patch because sometimes we miss the # shared memory detection on old machines. # We just try a maximum of three times while (not len(result)) and (i < 2): time.sleep(0.050) result = sps.getspeclist() i = i + 1 if len(result):result.sort() except Exception: pass spslock.release() return result def getkeylist(spec,shmenv): result = [] spslock.acquire() try: result = sps.getkeylist(spec,shmenv) except Exception: pass spslock.release() return result def specrunning(spec): spec_list = getspeclist() if spec not in spec_list: return 0 else: return 1 def getmetadata(spec, shm): if hasattr(sps, "getmetadata"): try: metadata = sps.getmetadata(spec, shm) except Exception: # this error arrives when accessing old SPEC versions # with new versions of the library return None if metadata.strip(): if JSON: uncoded_data = json.loads(metadata) else: if shm != "SCAN_D": return None # try to put a minimum of protection if ("os." not in medatadata) and ("sys." not in metadata): try: uncoded_data = eval(metadata) except Exception: print("Error accessing SCAN_D information without json") return None else: print("NOT READ TO PREVENT PROBLEMS") else: # shared memory not populated yet return else: return None motors = {} metadata = {} if type(uncoded_data) in [type([]), type((1,))]: if len(uncoded_data) >= 2: motors = uncoded_data[0] metadata = uncoded_data[1] else: print("Unexpected metadata length %d instead of 2" % len(uncoded_data)) elif type(uncoded_data) == type({}): metadata = uncoded_data else: print("Cannot decode metadata") return motors, metadata def getinfo(spec, shm): try: return eval(sps.getinfo(spec, shm)) except Exception: return [] ��������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8197665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015207� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/ImageListStats.py�������������������������������������������������0000644�0000000�0000000�00000010276�14741736366�020473� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # Copyright (C) 2023-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy def arrayListMeanRatioAndMedianRatio(imageList, mask=None): # the input imageList can be a 3D array or a list of images # the mask accounts for selected pixels # non-finite values are excluded if mask is not None: mask = mask.flatten() result_mean = numpy.zeros((len(imageList), len(imageList)), dtype=numpy.float64) result_median = numpy.zeros((len(imageList), len(imageList)), dtype=numpy.float64) for i in range(len(imageList)): if mask is None: image0 = imageList[i].flatten() else: image0 = imageList[i].flatten()[mask > 0] for j in range(len(imageList)): if mask is None: image1 = imageList[j].flatten() else: image1 = imageList[j].flatten()[mask > 0] goodIndex = numpy.isfinite(image0) & numpy.isfinite(image1) image0 = image0[goodIndex] image1 = image1[goodIndex] mean_ratio = image0 / numpy.asarray(image1, dtype=numpy.float64) goodIndex = numpy.isfinite(mean_ratio) mean_ratio = mean_ratio[goodIndex] median_ratio = numpy.median(mean_ratio) mean_ratio = mean_ratio.sum() / mean_ratio.size result_mean[i, j] = mean_ratio result_median[i, j] = median_ratio return result_mean, result_median def arrayListPearsonCorrelation(imageList, mask=None): # the input imageList can be a 3D array or a list of images # the mask accounts for selected pixels # non-finite values are excluded if mask is not None: mask = mask.flatten() correlation = numpy.zeros((len(imageList), len(imageList)), dtype=numpy.float64) for i in range(len(imageList)): if mask is None: image0 = imageList[i].flatten() else: image0 = imageList[i].flatten()[mask > 0] for j in range(len(imageList)): if mask is None: image1 = imageList[j].flatten() else: image1 = imageList[j].flatten()[mask > 0] goodIndex = numpy.isfinite(image0) & numpy.isfinite(image1) image0 = image0[goodIndex] image1 = image1[goodIndex] image0_mean = image0.sum(dtype=numpy.float64) / image0.size image1_mean = image1.sum(dtype=numpy.float64) / image0.size image0 = image0 - image0_mean image1 = image1 - image1_mean cov = numpy.sum(image0 * image1) / image0.size stdImage0 = (numpy.sum(image0 * image0) / image0.size) ** 0.5 stdImage1 = (numpy.sum(image1 * image1) / image1.size) ** 0.5 correlation[i, j] = cov / (stdImage0 * stdImage1) return correlation ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/ImageRegistration.py����������������������������������������������0000644�0000000�0000000�00000020040�14741736366�021201� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# coding: utf8 #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Jérôme Kieffer and V.Armando Solé" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "20151002" __doc__ = "This is a python module to measure image offsets" import os, time import numpy from numpy.fft import fft2, ifft2, fftshift, ifftshift PYMCA = False SCIPY = False try: from PyMca5.PyMca import SpecfitFuns PYMCA = True except ImportError: try: import scipy.ndimage.interpolation SCIPY = True except Exception: print("Shift bilinear relaced by shiftFFT") def shiftFFT(img, shift): """ Shift an array using FFTs :param input: 2d numpy array :param shift: 2-tuple of float :return: shifted image """ d0, d1 = img.shape v0, v1 = shift f0 = ifftshift(numpy.arange(-d0 // 2, d0 // 2)) f1 = ifftshift(numpy.arange(-d1 // 2, d1 // 2)) m1, m0 = numpy.meshgrid(f1, f0) e0 = numpy.exp(-2j * numpy.pi * v0 * m0 / float(d0)) e1 = numpy.exp(-2j * numpy.pi * v1 * m1 / float(d1)) e = e0 * e1 out = ifft2(fft2(img) * e) return abs(out) def shiftBilinear(img, shift): """ Shift an array like scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") :param input: 2d numpy array :param shift: 2-tuple of float :return: shifted image """ shape = img.shape x = numpy.zeros((shape[0] * shape[1], 2), numpy.float64) x[:,0] = shift[0] + numpy.outer(numpy.arange(shape[0]), numpy.ones(shape[1])).reshape(-1) x[:,1] = shift[1] + numpy.outer(numpy.ones(shape[0]), numpy.arange(shape[1])).reshape(-1) shifted = SpecfitFuns.interpol([numpy.arange(shape[0]), numpy.arange(shape[1])], img, x) shifted.shape = shape[0], shape[1] return shifted def shiftImage(img, shift, method=None): """ Shift an array like scipy.ndimage.interpolation.shift(input, shift, mode="wrap", order="infinity") :param input: 2d numpy array :param shift: 2-tuple of float :param method: string set to PYMCA, SCIPY or FFT. Default is to try the first of those that is possible. :return: shifted image """ if method is None: if PYMCA: return shiftBilinear(img, shift) elif SCIPY: return scipy.ndimage.interpolation.shift(img, shift, mode="wrap") else: return shiftFFT(img, shift) elif method.lower() == "pymca": return shiftBilinear(img, shift) elif method.lower() == "scipy": return scipy.ndimage.interpolation.shift(img, shift, mode="wrap") else: return shiftFFT(img, shift) def measure_offset(img1, img2, method="fft", withLog=False): """ Measure the actual offset between 2 images. The first one is the reference. That means, if the image to be shifted is the second one, the shift has to be multiplied byt -1. :param img1: ndarray, first image :param img2: ndarray, second image, same shape as img1 :param withLog: shall we return logs as well ? boolean :return: tuple of floats with the offsets of the second respect to the first """ method = str(method) shape = img1.shape assert img2.shape == shape if 1: #use numpy fftpack if img1.dtype not in [numpy.float32, numpy.float64, numpy.float]: i1f = fft2(img1.astype(numpy.float32)) i2f = fft2(img2.astype(numpy.float32)) else: i1f = fft2(img1) i2f = fft2(img2) return measure_offset_from_ffts(i1f, i2f, withLog=withLog) def measure_offset_from_ffts(img0_fft2, img1_fft2, withLog=False): """ Convenience method to measure the actual offset between 2 images taing their FFTs as inpuy The first FFT one is the one of the reference. That means, if the image to be shifted is the second one, the shift has to be multiplied byt -1. :param img1: ndarray, FFT of first image :param img2: ndarray, FFT of the second image, same shape as img1 :param withLog: shall we return logs as well ? boolean :return: tuple of floats with the offsets of the second respect to the first """ shape = img0_fft2.shape logs = [] f0 = img0_fft2 f1 = img1_fft2 t0 = time.time() absf0 = abs(f0) absf1 = abs(f1) if 0: # one way to deal with zeros if (absf0 < 1.0e-20).any() or (absf1 < 1.0e-20).any(): ofsset = [0.0, 0.0] logs.append("MeasureOffset: empty or uniform image?") if withLog: return offset, logs else: return offset else: # this one seems better because numerator is expected to be zero idx = absf0 < 1.0e-20 if idx.any(): absf0[idx] = 1.0 idx = absf1 < 1.0e-20 if idx.any(): absf1[idx] = 1.0 res = abs(fftshift(ifft2((f0 * f1.conjugate()) / (absf0 * absf1)))) t1 = time.time() a0, a1 = numpy.unravel_index(numpy.argmax(res), shape) resmax = res[a0, a1] coarse_result = (shape[0]//2 - a0, shape[1] // 2 - a1) logs.append("ImageRegistration: coarse result : %d %d " % \ (coarse_result[0], coarse_result[1])) # refine a bit the position w = 3 x0 = 0.0 x1 = 0.0 total = 0.0 a00 = int(max(a0-w, 0)) a01 = int(min(a0+w+1, shape[0])) a10 = int(max(a1-w, 0)) a11 = int(min(a1+w+1, shape[1])) if a00 == a01: a01 = a00 + 1 if a10 == a11: a11 = a10 + 1 for i in range(a00, a01): for j in range(a10, a11): if res[i, j] > 0.1 * resmax: tmp = res[i, j] x0 += i * tmp x1 += j * tmp total += tmp offset = [shape[0]//2 - x0/total, shape[1] // 2 - x1/total] logs.append("MeasureOffset: fine result of the centered image: %.3f %.3fs " % (offset[0], offset[1])) t3 = time.time() logs.append("Total execution time %.3fs" % (t3 - t0)) if withLog: return offset, logs else: return offset def get_crop_indices(shape, shifts0, shifts1): """ Get the indices of the valid region to be used when aligning a set of images :param shitfs0: Shifts applied to the first dimension :param shitfs1: Shifts applied to the second dimension """ shifts0_min = numpy.min(shifts0) shifts0_max = numpy.max(shifts0) shifts1_min = numpy.min(shifts1) shifts1_max = numpy.max(shifts1) d0_start = int(numpy.ceil(shifts0_max)) d0_end = int(min(shape[0], numpy.floor(shape[0] + shifts0_min))) d1_start = int(numpy.ceil(shifts1_max)) d1_end = int(min(shape[1], numpy.floor(shape[1] + shifts1_min))) return d0_start, d0_end, d1_start, d1_end ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8197665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/�������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017170� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/__init__.py��������������������������������������������0000644�0000000�0000000�00000000000�14741736366�021276� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8197665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020445� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/LICENSE.txt�������������������������������������0000644�0000000�0000000�00000003201�14741736366�022273� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������The code here is a subset of the SciPy signal module. The same SciPy license below applies. Copyright (c) 2001, 2002 Enthought, Inc. All rights reserved. Copyright (c) 2003-2009 SciPy Developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of the Enthought nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/__init__.py�������������������������������������0000644�0000000�0000000�00000003245�14741736366�022571� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: from median import * except ImportError: from .median import medfilt2d, medfilt1d �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/median.py���������������������������������������0000644�0000000�0000000�00000010373�14741736366�022267� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: from . import mediantools except ImportError: from PyMca5.PyMcaSciPy.signal import mediantools from numpy import asarray def medfilt2d(input_data, kernel_size=None, conditional=0): """Median filter for 2-dimensional arrays. Description: Apply a median filter to the input array using a local window-size given by kernel_size (must be odd). Inputs: in -- An 2 dimensional input array. kernel_size -- A scalar or an length-2 list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. conditional -- If different from 0 implements a conditional median filter. Outputs: (out,) out -- An array the same size as input containing the median filtered result. """ image = asarray(input_data) if kernel_size is None: kernel_size = [3] * 2 kernel_size = asarray(kernel_size) if len(kernel_size.shape) == 0: kernel_size = [kernel_size.item()] * 2 kernel_size = asarray(kernel_size) for size in kernel_size: if (size % 2) != 1: raise ValueError("Each element of kernel_size should be odd.") return mediantools._medfilt2d(image, kernel_size, conditional) def medfilt1d(input_data, kernel_size=None, conditional=0): """Median filter 1-dimensional arrays. Description: Apply a median filter to the input array using a local window-size given by kernel_size (must be odd). Inputs: in -- An 1-dimensional input array. kernel_size -- A scalar or an length-2 list giving the size of the median filter window in each dimension. Elements of kernel_size should be odd. If kernel_size is a scalar, then this scalar is used as the size in each dimension. conditional -- If different from 0 implements a conditional median filter. Outputs: (out,) out -- An array the same size as input containing the median filtered result. """ image = asarray(input_data) oldShape = image.shape image.shape = -1, 1 if kernel_size is None: kernel_size = [3, 1] kernel_size = asarray(kernel_size) if len(kernel_size.shape) == 0: kernel_size = [kernel_size.item(), 1] kernel_size = asarray(kernel_size) for size in kernel_size: if (size % 2) != 1: image.shape = oldShape raise ValueError("Kernel_size should be odd.") output = mediantools._medfilt2d(image, kernel_size, conditional) output.shape = oldShape image.shape = oldShape return output ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/medianfilter.c����������������������������������0000644�0000000�0000000�00000030375�14741736366�023273� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* This is a shameless copy with minor mofifications of the medianfilter * provided with scipy. Therefore is distributed under the terms of the * scipy license. * * The purpose of having it separately is not to introduce a dependency * on scipy that is big and potentially difficult to built on some * platforms. * * Using this code outside PyMca: * * The check_malloc function has to be provided for error handling. * *--------------------------------------------------------------------*/ /* Subset of SIGTOOLS module by Travis Oliphant Copyright 2005 Travis Oliphant Permission to use, copy, modify, and distribute this software without fee is granted under the SciPy License. Copyright (c) 2001, 2002 Enthought, Inc. All rights reserved. Copyright (c) 2003-2009 SciPy Developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of the Enthought nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdlib.h> extern char *check_malloc (int); /* defined below */ void f_medfilt2(float*,float*,int*,int*, int); void d_medfilt2(double*,double*,int*,int*, int); void b_medfilt2(unsigned char*,unsigned char*,int*,int*,int); void short_medfilt2(short*, short*,int*,int*,int); void ushort_medfilt2(unsigned short*,unsigned short*,int*,int*,int); void int_medfilt2(int*, int*,int*,int*,int); void uint_medfilt2(unsigned int*,unsigned int*,int*,int*,int); void long_medfilt2(long*, long*,int*,int*,int); void ulong_medfilt2(unsigned long*,unsigned long*,int*,int*,int); /* The QUICK_SELECT routine is based on Hoare's Quickselect algorithm, * with unrolled recursion. * Author: Thouis R. Jones, 2008 */ #define ELEM_SWAP(t, a, x, y) {register t temp = (a)[x]; (a)[x] = (a)[y]; (a)[y] = temp;} #define FIRST_LOWEST(x, y, z) (((x) < (y)) && ((x) < (z))) #define FIRST_HIGHEST(x, y, z) (((x) > (y)) && ((x) > (z))) #define LOWEST_IDX(a, x, y) (((a)[x] < (a)[y]) ? (x) : (y)) #define HIGHEST_IDX(a, x, y) (((a)[x] > (a)[y]) ? (x) : (y)) /* if (l is index of lowest) {return lower of mid,hi} else if (l is index of highest) {return higher of mid,hi} else return l */ #define MEDIAN_IDX(a, l, m, h) (FIRST_LOWEST((a)[l], (a)[m], (a)[h]) ? LOWEST_IDX(a, m, h) : (FIRST_HIGHEST((a)[l], (a)[m], (a)[h]) ? HIGHEST_IDX(a, m, h) : (l))) #define QUICK_SELECT(NAME, TYPE) \ TYPE NAME(TYPE arr[], int n) \ { \ int lo, hi, mid, md; \ int median_idx; \ int ll, hh; \ TYPE piv; \ \ lo = 0; hi = n-1; \ median_idx = (n - 1) / 2; /* lower of middle values for even-length arrays */ \ \ while (1) { \ if ((hi - lo) < 2) { \ if (arr[hi] < arr[lo]) ELEM_SWAP(TYPE, arr, lo, hi); \ return arr[median_idx]; \ } \ \ mid = (hi + lo) / 2; \ /* put the median of lo,mid,hi at position lo - this will be the pivot */ \ md = MEDIAN_IDX(arr, lo, mid, hi); \ ELEM_SWAP(TYPE, arr, lo, md); \ \ /* Nibble from each end towards middle, swapping misordered items */ \ piv = arr[lo]; \ for (ll = lo+1, hh = hi;; ll++, hh--) { \ while (arr[ll] < piv) ll++; \ while (arr[hh] > piv) hh--; \ if (hh < ll) break; \ ELEM_SWAP(TYPE, arr, ll, hh); \ } \ /* move pivot to top of lower partition */ \ ELEM_SWAP(TYPE, arr, hh, lo); \ /* set lo, hi for new range to search */ \ if (hh < median_idx) /* search upper partition */ \ lo = hh+1; \ else if (hh > median_idx) /* search lower partition */ \ hi = hh-1; \ else \ return piv; \ } \ } /* 2-D median filter with zero-padding on edges. */ #define MEDIAN_FILTER_2D(NAME, TYPE, SELECT) \ void NAME(TYPE* in, TYPE* out, int* Nwin, int* Ns, int flag) \ { \ /* if flag is not 0, implements a conditional filter */ \ int nx, ny, hN[2]; \ int pre_x, pre_y, pos_x, pos_y; \ int subx, suby, k, totN; \ TYPE *myvals, *fptr1, *fptr2, *ptr1, *ptr2, minval=0, maxval=0; \ \ totN = Nwin[0] * Nwin[1]; \ myvals = (TYPE *) check_malloc( totN * sizeof(TYPE)); \ \ hN[0] = Nwin[0] >> 1; \ hN[1] = Nwin[1] >> 1; \ ptr1 = in; \ fptr1 = out; \ for (ny = 0; ny < Ns[0]; ny++) \ for (nx = 0; nx < Ns[1]; nx++) { \ pre_x = hN[1]; \ pre_y = hN[0]; \ pos_x = hN[1]; \ pos_y = hN[0]; \ if (nx < hN[1]) pre_x = nx; \ if (nx >= Ns[1] - hN[1]) pos_x = Ns[1] - nx - 1; \ if (ny < hN[0]) pre_y = ny; \ if (ny >= Ns[0] - hN[0]) pos_y = Ns[0] - ny - 1; \ fptr2 = myvals; \ ptr2 = ptr1 - pre_x - pre_y*Ns[1]; \ if (flag){ \ minval = maxval = *ptr1; \ for (suby = -pre_y; suby <= pos_y; suby++) { \ for (subx = -pre_x; subx <= pos_x; subx++){ \ minval = (*ptr2 < minval) ? *ptr2 : minval; \ maxval = (*ptr2 > maxval) ? *ptr2 : maxval; \ *fptr2++ = *ptr2++; \ } \ ptr2 += Ns[1] - (pre_x + pos_x + 1); \ } \ }else{ \ for (suby = -pre_y; suby <= pos_y; suby++) { \ for (subx = -pre_x; subx <= pos_x; subx++) \ *fptr2++ = *ptr2++; \ ptr2 += Ns[1] - (pre_x + pos_x + 1); \ } \ } \ if ((flag == 0) || (*ptr1 == minval) || (*ptr1 == maxval)){ \ ptr1++; \ \ k = (pre_x + pos_x + 1)*(pre_y + pos_y + 1); \ /* Prefer a shrinking window to zero padding */ \ if (k > totN){ \ k = totN; \ } \ *fptr1++ = SELECT(myvals, k); \ /* Zero pad alternative*/ \ /*for ( ; k < totN; k++) \ *fptr2++ = 0; \ \ *fptr1++ = SELECT(myvals,totN); */ \ }else{ \ *fptr1++ = *ptr1++; \ } \ } \ free(myvals); \ } /* define quick_select for floats, doubles, and unsigned characters */ QUICK_SELECT(f_quick_select, float) QUICK_SELECT(d_quick_select, double) QUICK_SELECT(b_quick_select, unsigned char) /*define quick_select for rest of common types */ QUICK_SELECT(short_quick_select, short); QUICK_SELECT(ushort_quick_select, unsigned short); QUICK_SELECT(int_quick_select, int); QUICK_SELECT(uint_quick_select, unsigned int); QUICK_SELECT(long_quick_select, long); QUICK_SELECT(ulong_quick_select, unsigned long); /* define medfilt for floats, doubles, and unsigned characters */ MEDIAN_FILTER_2D(f_medfilt2, float, f_quick_select) MEDIAN_FILTER_2D(d_medfilt2, double, d_quick_select) MEDIAN_FILTER_2D(b_medfilt2, unsigned char, b_quick_select) /* define medfilt for rest of common types */ MEDIAN_FILTER_2D(short_medfilt2, short, short_quick_select) MEDIAN_FILTER_2D(ushort_medfilt2, unsigned short, ushort_quick_select) MEDIAN_FILTER_2D(int_medfilt2, int, int_quick_select) MEDIAN_FILTER_2D(uint_medfilt2, unsigned int, uint_quick_select) MEDIAN_FILTER_2D(long_medfilt2, long, long_quick_select) MEDIAN_FILTER_2D(ulong_medfilt2, unsigned long, ulong_quick_select) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/PyMcaSciPy/signal/mediantools.c�����������������������������������0000644�0000000�0000000�00000020216�14741736366�023137� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Subset of SIGTOOLS module by Travis Oliphant Copyright 2005 Travis Oliphant Permission to use, copy, modify, and distribute this software without fee is granted under the SciPy License. Copyright (c) 2001, 2002 Enthought, Inc. All rights reserved. Copyright (c) 2003-2009 SciPy Developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. c. Neither the name of the Enthought nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Python.h" /* adding next line may raise errors ... #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include "numpy/arrayobject.h" #include <setjmp.h> typedef struct { char *data; int elsize; } Generic_ptr; typedef struct { char *data; npy_intp numels; int elsize; char *zero; /* Pointer to Representation of zero */ } Generic_Vector; typedef struct { char *data; int nd; npy_intp *dimensions; int elsize; npy_intp *strides; char *zero; /* Pointer to Representation of zero */ } Generic_Array; struct module_state { PyObject *error; }; #if PY_MAJOR_VERSION >= 3 #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) #else #define GETSTATE(m) (&_state) static struct module_state _state; #endif #define PYERR(message) \ {struct module_state *st = GETSTATE(self);\ PyErr_SetString(st->error, message);goto fail;} jmp_buf MALLOC_FAIL; char *check_malloc (int); char *check_malloc (int size) { char *the_block; the_block = (char *)malloc(size); if (the_block == NULL) { printf("\nERROR: unable to allocate %d bytes!\n", size); longjmp(MALLOC_FAIL,-1); } return(the_block); } static char doc_median2d[] = "filt = _median2d(data, size, conditional=0)"; extern void f_medfilt2(float*,float*,int*,int*,int); extern void d_medfilt2(double*,double*,int*,int*,int); extern void b_medfilt2(unsigned char*,unsigned char*,int*,int*,int); extern void short_medfilt2(short*, short*,int*,int*,int); extern void ushort_medfilt2(unsigned short*,unsigned short*,int*,int*,int); extern void int_medfilt2(int*, int*,int*,int*,int); extern void uint_medfilt2(unsigned int*,unsigned int*,int*,int*,int); extern void long_medfilt2(long*, long*,int*,int*,int); extern void ulong_medfilt2(unsigned long*,unsigned long*,int*,int*,int); static PyObject *mediantools_median2d(PyObject *self, PyObject *args) { PyObject *image=NULL, *size=NULL; int conditional_flag=0; int typenum; PyArrayObject *a_image=NULL, *a_size=NULL; PyArrayObject *a_out=NULL; int Nwin[2] = {3,3}; long *lhelp; int Idims[2] = {0, 0}; if (!PyArg_ParseTuple(args, "O|Oi", &image, &size, &conditional_flag)) return NULL; typenum = PyArray_ObjectType(image, 0); a_image = (PyArrayObject *)PyArray_ContiguousFromObject(image, typenum, 2, 2); if (a_image == NULL) goto fail; if (size != NULL) { a_size = (PyArrayObject *)PyArray_ContiguousFromObject(size, NPY_LONG, 1, 1); if (a_size == NULL) goto fail; if ((PyArray_NDIM(a_size) != 1) || (PyArray_DIMS(a_size)[0] < 2)) PYERR("Size must be a length two sequence"); lhelp = (long *) PyArray_DATA(a_size); Nwin[0] = (int) (*lhelp); Nwin[1] = (int) (*(lhelp++)); Idims[0] = (int) (PyArray_DIMS(a_image)[0]); Idims[1] = (int) (PyArray_DIMS(a_image)[1]); } a_out = (PyArrayObject *)PyArray_SimpleNew(2,PyArray_DIMS(a_image),typenum); if (a_out == NULL) goto fail; if (setjmp(MALLOC_FAIL)) { PYERR("Memory allocation error."); } else { switch (typenum) { case NPY_UBYTE: b_medfilt2((unsigned char *)PyArray_DATA(a_image), (unsigned char *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_FLOAT: f_medfilt2((float *)PyArray_DATA(a_image), (float *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_DOUBLE: d_medfilt2((double *)PyArray_DATA(a_image), (double *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_SHORT: short_medfilt2((short *)PyArray_DATA(a_image), (short *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_USHORT: ushort_medfilt2((unsigned short *)PyArray_DATA(a_image), (unsigned short *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_INT: int_medfilt2((int *)PyArray_DATA(a_image), (int *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_UINT: uint_medfilt2((unsigned int *)PyArray_DATA(a_image), (unsigned int *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_LONG: long_medfilt2((long *)PyArray_DATA(a_image), (long *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; case NPY_ULONG: ulong_medfilt2((unsigned long *)PyArray_DATA(a_image), (unsigned long *)PyArray_DATA(a_out),\ Nwin, Idims, conditional_flag); break; default: PYERR("Median filter unsupported data type."); } } Py_DECREF(a_image); Py_XDECREF(a_size); return PyArray_Return(a_out); fail: Py_XDECREF(a_image); Py_XDECREF(a_size); Py_XDECREF(a_out); return NULL; } static struct PyMethodDef mediantools_methods[] = { {"_medfilt2d", mediantools_median2d, METH_VARARGS, doc_median2d}, {NULL, NULL, 0} /* sentinel */ }; /* Initialization function for the module (*must* be called initmediantools) */ /* Module initialization */ #if PY_MAJOR_VERSION >= 3 static int mediantools_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int mediantools_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "mediantools", NULL, sizeof(struct module_state), mediantools_methods, NULL, mediantools_traverse, mediantools_clear, NULL }; #define INITERROR return NULL PyObject * PyInit_mediantools(void) #else #define INITERROR return void initmediantools(void) #endif { struct module_state *st; #if PY_MAJOR_VERSION >= 3 PyObject *module = PyModule_Create(&moduledef); #else PyObject *module = Py_InitModule("mediantools", mediantools_methods); #endif if (module == NULL) INITERROR; st = GETSTATE(module); st->error = PyErr_NewException("mediantools.Error", NULL, NULL); if (st->error == NULL) { Py_DECREF(module); INITERROR; } import_array(); PyImport_ImportModule("numpy.core.multiarray"); /* Check for errors */ if (PyErr_Occurred()) { PyErr_Print(); Py_FatalError("can't initialize module array"); } #if PY_MAJOR_VERSION >= 3 return module; #endif } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/SGModule.py�������������������������������������������������������0000644�0000000�0000000�00000014126�14741736366�017253� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# # The code to calculate the Savitzky-Golay filter coefficients # is a shameless copy of the sg_filter.py module from Uwe Schmitt # available from http://public.procoders.net/sg_filter # # Therefore PyMca author(s) do not claim any ownership of that code # and are very grateful to Uwe for making his code available to the # community. # # Copyright (C) 2008 Uwe Schmitt # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # __author__ = "Uwe Schitt" __copyright__ = "Uwe Schmitt" __license__ = "MIT" import numpy from numpy.linalg import solve ODD_SIGN = 1.0 __LAST_COEFF = None def calc_coeff(num_points, pol_degree, diff_order=0): """ calculates filter coefficients for symmetric savitzky-golay filter. see: http://www.nrbook.com/a/bookcpdf/c14-8.pdf num_points means that 2*num_points+1 values contribute to the smoother. pol_degree is degree of fitting polynomial diff_order is degree of implicit differentiation. 0 means that filter results in smoothing of function 1 means that filter results in smoothing the first derivative of function. and so on ... """ global __LAST_COEFF global __LAST_NUM_POINTS global __LAST_POL_DEGREE global __LAST_DIFF_ORDER if __LAST_COEFF is not None: if num_points == __LAST_NUM_POINTS: if pol_degree == __LAST_POL_DEGREE: if diff_order == __LAST_DIFF_ORDER: return __LAST_COEFF else: __LAST_NUM_POINTS = num_points __LAST_POL_DEGREE = pol_degree __LAST_DIFF_ORDER = diff_order # setup interpolation matrix # ... you might use other interpolation points # and maybe other functions than monomials .... x = numpy.arange(-num_points, num_points+1, dtype=numpy.int32) monom = lambda x, deg : pow(x, deg) A = numpy.zeros((2*num_points+1, pol_degree+1), numpy.float64) for i in range(2*num_points+1): for j in range(pol_degree+1): A[i,j] = monom(x[i], j) # calculate diff_order-th row of inv(A^T A) ATA = numpy.dot(A.transpose(), A) rhs = numpy.zeros((pol_degree+1,), numpy.float64) rhs[diff_order] = 1 wvec = solve(ATA, rhs) # calculate filter-coefficients coeff = numpy.dot(A, wvec) if (ODD_SIGN < 0) and (diff_order %2): coeff *= ODD_SIGN __LAST_COEFF = coeff return coeff def smooth(signal, coeff): """ applies coefficients calculated by calc_coeff() to signal """ N = numpy.size(coeff - 1) // 2 res = numpy.convolve(signal, coeff) return res[N:-N] def getSavitzkyGolay(spectrum, npoints=3, degree=1, order=0): coeff = calc_coeff(npoints, degree, order) N = numpy.size(coeff - 1) // 2 if order < 1: result = 1.0 * spectrum else: result = 0.0 * spectrum result[N:-N] = numpy.convolve(spectrum, coeff, mode='valid') return result def replaceStackWithSavitzkyGolay(stack, npoints=3, degree=1, order=0): coeff = calc_coeff(npoints, degree, order) N = numpy.size(coeff-1) // 2 convolve = numpy.convolve mcaIndex = -1 if hasattr(stack, "info") and hasattr(stack, "data"): actualData = stack.data mcaIndex = stack.info.get('McaIndex', -1) else: actualData = stack if not isinstance(actualData, numpy.ndarray): raise TypeError("This Plugin only supports numpy arrays") # take a view data = actualData[:] oldShape = data.shape if mcaIndex in [-1, len(data.shape)-1]: data.shape = -1, oldShape[-1] for i in range(data.shape[0]): data[i,N:-N] = convolve(data[i,:],coeff, mode='valid') if order > 0: data[i, :N] = data[i, N] data[i, -N:] = data[i,-(N+1)] data.shape = oldShape elif mcaIndex == 0: data.shape = oldShape[0], -1 for i in range(data.shape[-1]): data[N:-N, i] = convolve(data[:, i],coeff, mode='valid') if order > 0: data[:N, i] = data[N, i] data[-N:, i] = data[-(N+1), i] data.shape = oldShape else: raise ValueError("Invalid 1D index %d" % mcaIndex) return if getSavitzkyGolay(10*numpy.arange(10.), npoints=3, degree=1,order=1)[5] < 0: ODD_SIGN = -1 __LAST_COEFF= None if __name__ == "__main__": x=numpy.arange(100.) y=100*x print("Testing first derivative") yPrime=getSavitzkyGolay(y, npoints=3, degree=1,order=1) if abs(yPrime[50]-100.) > 1.0e-5: print("ERROR, got %f instead of 100." % yPrime[50]) else: print("OK") print("Testing second derivative") y=100*x*x yPrime=getSavitzkyGolay(y, npoints=3, degree=2,order=2) if abs(yPrime[50]-100.) > 1.0e-5: print("ERROR, got %f instead of 100." % yPrime[50]) else: print("OK") print("Testing third order derivative") y=100*x*x*x yPrime=getSavitzkyGolay(y, npoints=5, degree=3,order=3) if abs(yPrime[50]-100.) > 1.0e-5: print("ERROR, got %f instead of 100." % yPrime[50]) else: print("OK") ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/SNIPModule.py�����������������������������������������������������0000644�0000000�0000000�00000017027�14741736366�017516� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from .fitting import SpecfitFuns snip1d = SpecfitFuns.snip1d snip2d = SpecfitFuns.snip2d def getSpectrumBackground(spectrum, width, roi_min=None, roi_max=None, smoothing=1): if roi_min is None: roi_min = 0 if roi_max is None: roi_max = len(spectrum) background = spectrum * 1 background[roi_min:roi_max] = snip1d(spectrum[roi_min:roi_max], width, smoothing) return background getSnip1DBackground = getSpectrumBackground def subtractSnip1DBackgroundFromStack(stack, width, roi_min=None, roi_max=None, smoothing=1): mcaIndex = -1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data mcaIndex = stack.info.get('McaIndex', -1) else: data = stack if not isinstance(data, numpy.ndarray): raise TypeError("This Plugin only supports numpy arrays") if roi_min is None: roi_min = 0 if roi_max is None: roi_max = data.shape[mcaIndex] oldShape = data.shape if mcaIndex in [-1, len(data.shape)-1]: data.shape = -1, oldShape[-1] if roi_min > 0: data[:, 0:roi_min] = 0 if roi_max < oldShape[-1]: data[:, roi_max:] = 0 for i in range(data.shape[0]): data[i,roi_min:roi_max] -= snip1d(data[i,roi_min:roi_max], width, smoothing) data.shape = oldShape elif mcaIndex == 0: data.shape = oldShape[0], -1 for i in range(data.shape[-1]): data[roi_min:roi_max, i] -= snip1d(data[roi_min:roi_max, i], width, smoothing) data.shape = oldShape else: raise ValueError("Invalid 1D index %d" % mcaIndex) return def replaceStackWithSnip1DBackground(stack, width, roi_min=None, roi_max=None, smoothing=1): mcaIndex = -1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data mcaIndex = stack.info.get('McaIndex', -1) else: data = stack if not isinstance(data, numpy.ndarray): raise TypeError("This Plugin only supports numpy arrays") if roi_min is None: roi_min = 0 if roi_max is None: roi_max = data.shape[mcaIndex] oldShape = data.shape if mcaIndex in [-1, len(data.shape)-1]: data.shape = -1, oldShape[-1] if roi_min > 0: data[:, 0:roi_min] = 0 if roi_max < oldShape[-1]: data[:, roi_max:] = 0 for i in range(data.shape[0]): data[i,roi_min:roi_max] = snip1d(data[i,roi_min:roi_max], width, smoothing) data.shape = oldShape elif mcaIndex == 0: data.shape = oldShape[0], -1 for i in range(data.shape[-1]): data[roi_min:roi_max, i] = snip1d(data[roi_min:roi_max, i], width, smoothing) data.shape = oldShape else: raise ValueError("Invalid 1D index %d" % mcaIndex) return def getImageBackground(image, width, roi_min=None, roi_max=None, smoothing=1): if roi_min is None: roi_min = (0, 0) if roi_max is None: roi_max = image.shape background = image * 1 background[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]]=\ snip2d(image[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]], width, smoothing) return background getSnip2DBackground = getImageBackground def subtractSnip2DBackgroundFromStack(stack, width, roi_min=None, roi_max=None, smoothing=1, index=None): """ index is the dimension used to index the images """ if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data if index is None: index = stack.info.get('McaIndex', 0) else: data = stack if index is None: index = 2 if not isinstance(data, numpy.ndarray): raise TypeError("This Plugin only supports numpy arrays") if roi_min is None: roi_min = (0, 0) if roi_max is None: roi_max = tuple(data.shape[i] for i in range(3) if i != index) shape = data.shape if index == 0: if (roi_min[0] > 0) or (roi_min[1] > 0): data[:, 0:roi_min[0], 0:roi_min[1]] = 0 if roi_max[0] < (shape[1]-1): if roi_max[1] < (shape[2]-1): data[:, roi_max[0]:, roi_max[1]:] = 0 else: data[:, roi_max[0]:, :] = 0 else: if roi_max[1] < (shape[2]-1): data[:, :, roi_max[1]:] = 0 for i in range(shape[index]): data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]] -=\ snip2d(data[i,roi_min[0]:roi_max[0],roi_min[1]:roi_max[1]], width, smoothing) return if index == 1: if (roi_min[0] > 0) or (roi_min[1] > 0): data[0:roi_min[0], :, 0:roi_min[1]] = 0 if roi_max[0] < (shape[0]-1): if roi_max[1] < (shape[2]-1): data[roi_max[0]:, :, roi_max[1]:] = 0 else: data[roi_max[0]:, :, :] = 0 else: if roi_max[1] < (shape[2]-1): data[:, :, roi_max[1]:] = 0 for i in range(shape[index]): data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]] -=\ snip2d(data[roi_min[0]:roi_max[0], i, roi_min[1]:roi_max[1]], width, smoothing) return if index == 2: if (roi_min[0] > 0) or (roi_min[1] > 0): data[0:roi_min[0], 0:roi_min[1],:] = 0 if roi_max[0] < (shape[0]-1): if roi_max[1] < (shape[1]-1): data[roi_max[0]:, roi_max[1]:, :] = 0 else: data[roi_max[0]:, :, :] = 0 else: if roi_max[1] < (shape[2]-1): data[:, roi_max[1]:, :] = 0 for i in range(shape[index]): data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i] -=\ snip2d(data[roi_min[0]:roi_max[0],roi_min[1]:roi_max[1], i], width, smoothing) return ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/SimpleMath.py�����������������������������������������������������0000644�0000000�0000000�00000020605�14741736366�017636� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from . import SGModule _logger = logging.getLogger(__name__) class SimpleMath(object): derivateOptions = ["Single point", "SG Smoothed 3 point", "SG smoothed 5 point"] def derivate(self,xdata,ydata, xlimits=None, option=None): x=numpy.asarray(xdata, dtype=numpy.float64) y=numpy.asarray(ydata, dtype=numpy.float64) if xlimits is not None: i1=numpy.nonzero((xdata>=xlimits[0])&\ (xdata<=xlimits[1]))[0] x=numpy.take(x,i1) y=numpy.take(y,i1) # make sure data are strictly increasing deltax = x[1:] - x[:-1] i1=numpy.nonzero(abs(deltax)>0.0000001)[0] x=numpy.take(x, i1) y=numpy.take(y, i1) i1 = numpy.argsort(x) x=numpy.take(x, i1) y=numpy.take(y, i1) if option is None or option.startswith("SG"): minDelta = deltax[numpy.abs(deltax) > 0] if minDelta.size: minDelta = numpy.abs(minDelta).min() else: # all points are equal minDelta = 1.0 _logger.info("Using a delta between points of %f" % minDelta) xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta) yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1]) if len(yInter) > 499: _logger.info("Using 5 points interpolation") option = "SG smoothed 5 point" else: _logger.info("Using 3 points interpolation") option = "SG smoothed 3 point" npoints = int(option.split()[2]) degree = 1 order = 1 coeff = SGModule.calc_coeff(npoints, degree, order) N = int(numpy.size(coeff-1)/2) yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0] x = numpy.take(x, i1) result = numpy.interp(x, xInter[(N+1):-N], yInterPrime[1:], left=yInterPrime[1], right=yInterPrime[-1]) else: # single point derivative result = numpy.zeros((len(y),), dtype=numpy.float64) # loop implementation #for i in range(1, len(y)-1): # result[i] = 0.5 * \ # (((y[i] - y[i-1]) / (x[i] - x[i-1])) + \ # ((y[i+1] - y[i]) / (x[i+1] - x[i]))) result[1:-1] = 0.5 * \ (((y[1:-1] - y[0:-2]) / (x[1:-1] - x[0:-2])) + \ ((y[2:] - y[1:-1]) / (x[2:] - x[1:-1]))) # repeat first and last value for the first and last point? result[0] = result[1] result[-1] = result[-2] # prefer to return what is actually defined? result = result[1:-1] x = x[1:-1] return x, result def average(self, xarr, yarr, x=None): """ :param xarr : List containing x values in 1-D numpy arrays :param yarr : List containing y Values in 1-D numpy arrays :param x: x values of the final average spectrum (or None) :return: Average spectrum. In case of invalid input (None, None) tuple is returned. From the spectra given in xarr & yarr, the method determines the overlap in the x-range. For spectra with unequal x-ranges, the method interpolates all spectra on the values given in x if provided or the first curve and averages them. """ if (len(xarr) != len(yarr)) or\ (len(xarr) == 0) or (len(yarr) == 0): _logger.debug('specAverage -- invalid input!\n' 'Array lengths do not match or are 0') return None, None same = True if x == None: SUPPLIED = False x0 = xarr[0] else: SUPPLIED = True x0 = x for x in xarr: if len(x0) == len(x): if numpy.all(x0 == x): pass else: same = False break else: same = False break xsort = [] ysort = [] for (x,y) in zip(xarr, yarr): if numpy.all(numpy.diff(x) > 0.): # All values sorted xsort.append(x) ysort.append(y) else: # Sort values mask = numpy.argsort(x) xsort.append(x.take(mask)) ysort.append(y.take(mask)) if SUPPLIED: xmin0 = x0.min() xmax0 = x0.max() else: xmin0 = xsort[0][0] xmax0 = xsort[0][-1] if (not same) or (not SUPPLIED): # Determine global xmin0 & xmax0 for x in xsort: xmin = x.min() xmax = x.max() if xmin > xmin0: xmin0 = xmin if xmax < xmax0: xmax0 = xmax if xmax <= xmin: _logger.debug('specAverage -- \n' 'No overlap between spectra!') return numpy.array([]), numpy.array([]) # make sure x0 is sorted mask = numpy.argsort(x0) x0 = numpy.take(x0, mask) # Clip xRange to maximal overlap in spectra mask = numpy.nonzero((x0 >= xmin0) & (x0 <= xmax0))[0] xnew = numpy.take(x0, mask) ynew = numpy.zeros(len(xnew)) # Perform average for (x, y) in zip(xsort, ysort): if same: ynew += y else: yinter = numpy.interp(xnew, x, y) ynew += numpy.asarray(yinter) num = len(yarr) ynew /= num idx = numpy.isfinite(ynew) return xnew[idx], ynew[idx] def smooth(self, *var, **kw): """ smooth(self,*vars,**kw) Usage: self.smooth(y) self.smooth(y=y) self.smooth() """ if 'y' in kw: ydata=kw['y'] elif len(var) > 0: ydata=var[0] else: ydata=self.y f=[0.25,0.5,0.25] result=numpy.asarray(ydata, dtype=numpy.float64) if len(result) > 1: result[1:-1]=numpy.convolve(result,f,mode=0) result[0]=0.5*(result[0]+result[1]) result[-1]=0.5*(result[-1]+result[-2]) return result if __name__ == "__main__": x = numpy.arange(100.)*0.25 y = x*x + 2 * x a = SimpleMath() #print(a.average(x,y)) xplot, yprime = a.derivate(x, y) print("Found:") for i in range(0,10): print("x = %f y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2)) ���������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/SpecArithmetic.py�������������������������������������������������0000644�0000000�0000000�00000011075�14741736366�020500� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module implements several mathematical functions: - peak search - center of mass search - fwhm search WARNING : array are numpy.ndarray objects. """ import numpy def search_peak(xdata, ydata): """ Search a peak and its position in arrays xdata ad ydata. Return three integer: - peak position - peak value - index of peak position in array xdata This result may accelerate the fwhm search. """ ymax = max(ydata) idx = __give_index(ymax,ydata) return xdata[idx],ymax,idx def search_com(xdata,ydata): """ Return the center of mass in arrays xdata and ydata """ # make sure com is inside the region ydata = ydata - numpy.min(ydata) num = numpy.sum(xdata*ydata) denom = numpy.sum(ydata).astype(numpy.float64) try: result = num/denom except ZeroDivisionError: result = numpy.mean(x) return result def search_fwhm(xdata,ydata,peak=None,index=None): """ Search a fwhm and its center in arrays xdata and ydatas. If no fwhm is found, (0,0) is returned. peak and index which are coming from search_peak result, may accelerate calculation """ if peak is None or index is None: x,mypeak,index_peak = search_peak(xdata,ydata) else: mypeak = peak index_peak = index mymin = numpy.min(ydata) hm = (mypeak-mymin)/2 + mymin idx = index_peak lpeak = False upeak = False if numpy.any(ydata[0:idx] < hm): lpeak = True if numpy.any(ydata[idx:] < hm): upeak = True if lpeak and upeak: # it is a peak so we keep the data and half-max pass elif lpeak: # it is step-like data with a positive gradient ydata = numpy.gradient(ydata) hm = (numpy.max(ydata)-numpy.min(ydata))/2+numpy.min(ydata) else: # it is step-like data with a negative gradient ydata = -1*numpy.gradient(ydata) hm = (numpy.max(ydata)-numpy.min(ydata))/2+numpy.min(ydata) index_peak = numpy.argmax(ydata) idx = index_peak try: while ydata[idx] >= hm: idx = idx-1 x0 = xdata[idx] x1 = xdata[idx+1] y0 = ydata[idx] y1 = ydata[idx+1] lhmx = (hm*(x1-x0) - (y0*x1)+(y1*x0)) / (y1-y0) except ZeroDivisionError: lhmx = 0 except IndexError: lhmx = xdata[0] idx = index_peak try: while ydata[idx] >= hm: idx = idx+1 x0 = xdata[idx-1] x1 = xdata[idx] y0 = ydata[idx-1] y1 = ydata[idx] uhmx = (hm*(x1-x0) - (y0*x1)+(y1*x0)) / (y1-y0) except ZeroDivisionError: uhmx = 0 except IndexError: uhmx = xdata[-1] FWHM = uhmx - lhmx CFWHM = (uhmx+lhmx)/2 return FWHM,CFWHM def __give_index(elem,array): """ Return the index of elem in array """ mylist = array.tolist() return mylist.index(elem) def test(): pass if __name__ == '__main__': test() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/__init__.py�������������������������������������������������������0000644�0000000�0000000�00000003221�14741736366�017325� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from .fitting import SpecfitFuns, Gefit, Specfit from .mva import PCATools �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8237665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/����������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016653� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/Gefit.py��������������������������������������������������0000644�0000000�0000000�00000072573�14741736366�020310� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from numpy.linalg import inv import time # codes understood by the routine CFREE = 0 CPOSITIVE = 1 CQUOTED = 2 CFIXED = 3 CFACTOR = 4 CDELTA = 5 CSUM = 6 CIGNORED = 7 ONED = 0 def LeastSquaresFit(model, parameters0, data=None, maxiter = 100,constrains=None, weightflag = 0,model_deriv=None,deltachi=None,fulloutput=0, xdata=None,ydata=None,sigmadata=None,linear=None): """ Typical use: LeastSquaresFit(model_function, parameters, xdata=xvalues, ydata=yvalues) model_function - it has the form model_function(parameters, x) where parameters is a sequence containing the parameters to be refined and x is the array of values in which the function is to be evaluated. parameters - sequence with the initial values to be refined xdata - array with the x axis data points ydata - array with the y axis data points Additional keywords: sigmadata - array with the uncertainties associated to ydata (default is sqrt(y) ) weightflag - 0 Means no weighted fit 1 means weighted fit constrains - if provided, it is a 2D sequence of dimension (3, n_parameters) where, for each parameter denoted by the index i, the meaning is constrains[0][i] -> 0 - Free (Gefit.CFREE) 1 - Positive (Gefit.CPOSITIVE) 2 - Quoted (Gefit.CQUOTED) 3 - Fixed (Gefit.CFIXED) 4 - Factor (Gefit.CFACTOR) 5 - Delta (Gefit.CDELTA) 6 - Sum (Gefit.CSUM) constrains[1][i] -> Ignored if constrains[0][i] is 0, 1, 3 Min value of the parameter if constrains[0][i] is Gefit.CQUOTED Index of fitted parameter to which it is related constrains[2][i] -> Ignored if constrains[0][i] is 0, 1, 3 Max value of the parameter if constrains[0][i] is Gefit.CQUOTED Factor to apply to related parameter with index constrains[1][i] Difference with parameter with index constrains[1][i] Sum obtained when adding parameter with index constrains[1][i] model_deriv - function providing the derivatives of the fitting function respect to the fitted parameters. It will be called as model_deriv(parameters, index, x) where parameters are the current values of the fitting parameters, index is the fitting parameter index of which the the derivative has to be provided in the supplied array of x points. linear - Flag to indicate a linear fit instead of a non-linear. Default is non-linear fit (=false) maxiter - Maximum number of iterations (default is 100) Output: fitted_parameters, reduced_chi_square, uncertainties """ if constrains is None: constrains = [] parameters = numpy.asarray(parameters0, dtype=numpy.float64) if linear is None:linear=0 if deltachi is None: deltachi = 0.01 if ONED: data0 = numpy.array(data) x = data0[0:2,0] #import SimplePlot #SimplePlot.plot([data[:,0],data[:,1]],yname='Received data') else: if xdata is None: x=numpy.array([y[0] for y in data]) else: x=xdata if linear: return LinearLeastSquaresFit(model,parameters, data,maxiter, constrains,weightflag,model_deriv=model_deriv, deltachi=deltachi, fulloutput=fulloutput, xdata=xdata, ydata=ydata, sigmadata=sigmadata) elif len(constrains) == 0: try: model(parameters,x) constrains = [[],[],[]] for i in range(len(parameters0)): constrains[0].append(0) constrains[1].append(0) constrains[2].append(0) return RestreinedLeastSquaresFit(model,parameters, data,maxiter, constrains,weightflag, model_deriv=model_deriv, deltachi=deltachi, fulloutput=fulloutput, xdata=xdata, ydata=ydata, sigmadata=sigmadata) except TypeError: print("You should reconsider how to write your function") raise TypeError("You should reconsider how to write your function") else: return RestreinedLeastSquaresFit(model,parameters, data,maxiter, constrains,weightflag,model_deriv=model_deriv, deltachi=deltachi, fulloutput=fulloutput, xdata=xdata, ydata=ydata, sigmadata=sigmadata) def LinearLeastSquaresFit(model0,parameters0,data0,maxiter, constrains0,weightflag,model_deriv=None,deltachi=0.01,fulloutput=0, xdata=None, ydata=None, sigmadata=None): #get the codes: # 0 = Free 1 = Positive 2 = Quoted # 3 = Fixed 4 = Factor 5 = Delta # 6 = Sum 7 = ignored constrains = [[],[],[]] if len(constrains0) == 0: for i in range(len(parameters0)): constrains[0].append(0) constrains[1].append(0) constrains[2].append(0) else: for i in range(len(parameters0)): constrains[0].append(constrains0[0][i]) constrains[1].append(constrains0[1][i]) constrains[2].append(constrains0[2][i]) for i in range(len(parameters0)): if type(constrains[0][i]) == type('string'): #get the number if constrains[0][i] == "FREE": constrains[0][i] = CFREE elif constrains[0][i] == "POSITIVE": constrains[0][i] = CPOSITIVE elif constrains[0][i] == "QUOTED": constrains[0][i] = CQUOTED elif constrains[0][i] == "FIXED": constrains[0][i] = CFIXED elif constrains[0][i] == "FACTOR": constrains[0][i] = CFACTOR constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "DELTA": constrains[0][i] = CDELTA constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "SUM": constrains[0][i] = CSUM constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "IGNORED": constrains[0][i] = CIGNORED elif constrains[0][i] == "IGNORE": constrains[0][i] = CIGNORED else: #I should raise an exception #constrains[0][i] = 0 raise ValueError("Unknown constraint %s" % constrains[0][i]) if (constrains[0][i] == CQUOTED): raise ValueError("Linear fit cannot handle quoted constraint") # make a local copy of the function for an easy speed up ... model = model0 parameters = numpy.asarray(parameters0, dtype=numpy.float64) if data0 is not None: selfx = numpy.array([x[0] for x in data0]) selfy = numpy.array([x[1] for x in data0]) else: selfx = xdata selfy = ydata selfweight = numpy.ones(selfy.shape,numpy.float64) # nr0 = len(selfy) if data0 is not None: nc = len(data0[0]) else: if sigmadata is None: nc = 2 else: nc = 3 if weightflag == 1: if nc == 3: #dummy = abs(data[0:nr0:inc,2]) if data0 is not None: dummy = abs(numpy.array([x[2] for x in data0])) else: dummy = abs(numpy.array(sigmadata)) selfweight = 1.0 / (dummy + numpy.equal(dummy,0)) selfweight = selfweight * selfweight else: selfweight = 1.0 / (abs(selfy) + numpy.equal(abs(selfy),0)) #linear fit, use at own risk since there is no check for the #function being linear on its parameters. #Only the fixed constrains are handled properly x=selfx y=selfy weight = selfweight iiter = maxiter niter = 0 newpar = parameters.copy() while (iiter>0): niter+=1 chisq0, alpha0, beta,\ n_free, free_index, noigno, fitparam, derivfactor =ChisqAlphaBeta( model,newpar, x,y,weight,constrains,model_deriv=model_deriv, linear=1) nr, nc = alpha0.shape fittedpar = numpy.dot(beta, inv(alpha0)) #check respect of constraints (only positive is handled -force parameter to 0 and fix it-) error = 0 for i in range(n_free): if constrains [0] [free_index[i]] == CPOSITIVE: if fittedpar[0,i] < 0: #fix parameter to 0.0 and re-start the fit newpar[free_index[i]] = 0.0 constrains[0][free_index[i]] = CFIXED error = 1 if error:continue for i in range(n_free): newpar[free_index[i]] = fittedpar[0,i] newpar=numpy.array(getparameters(newpar,constrains)) iiter=-1 yfit = model(newpar,x) chisq = (weight * pow(y-yfit , 2)).sum() sigma0 = numpy.sqrt(abs(numpy.diag(inv(alpha0)))) sigmapar = getsigmaparameters(newpar,sigma0,constrains) lastdeltachi = chisq if not fulloutput: return newpar.tolist(), chisq/(len(y)-len(sigma0)), sigmapar.tolist() else: return newpar.tolist(), chisq/(len(y)-len(sigma0)), sigmapar.tolist(),niter,lastdeltachi def RestreinedLeastSquaresFit(model0,parameters0,data0,maxiter, constrains0,weightflag,model_deriv=None,deltachi=0.01,fulloutput=0, xdata=None, ydata=None, sigmadata=None): #get the codes: # 0 = Free 1 = Positive 2 = Quoted # 3 = Fixed 4 = Factor 5 = Delta # 6 = Sum 7 = ignored constrains=[[],[],[]] for i in range(len(parameters0)): constrains[0].append(constrains0[0][i]) constrains[1].append(constrains0[1][i]) constrains[2].append(constrains0[2][i]) for i in range(len(parameters0)): if type(constrains[0][i]) == type('string'): #get the number if constrains[0][i] == "FREE": constrains[0][i] = CFREE elif constrains[0][i] == "POSITIVE": constrains[0][i] = CPOSITIVE elif constrains[0][i] == "QUOTED": constrains[0][i] = CQUOTED elif constrains[0][i] == "FIXED": constrains[0][i] = CFIXED elif constrains[0][i] == "FACTOR": constrains[0][i] = CFACTOR constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "DELTA": constrains[0][i] = CDELTA constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "SUM": constrains[0][i] = CSUM constrains[1][i] = int(constrains[1][i]) elif constrains[0][i] == "IGNORED": constrains[0][i] = CIGNORED elif constrains[0][i] == "IGNORE": constrains[0][i] = CIGNORED else: #I should raise an exception #constrains[0][i] = 0 raise ValueError("Unknown constraint %s" % constrains[0][i]) # make a local copy of the function for an easy speed up ... model = model0 parameters = numpy.asarray(parameters0, dtype=numpy.float64) if ONED: data = numpy.array(data0) x = data[1:2,0] fittedpar = parameters.copy() flambda = 0.001 iiter = maxiter niter = 0 if ONED: selfx = data [:,0] selfy = data [:,1] else: if data0 is not None: selfx = numpy.array([x[0] for x in data0]) selfy = numpy.array([x[1] for x in data0]) else: selfx = xdata selfy = ydata selfweight = numpy.ones(selfy.shape,numpy.float64) if ONED: nr0, nc = data.shape else: nr0 = len(selfy) if data0 is not None: nc = len(data0[0]) else: if sigmadata is None: nc = 2 else: nc = 3 if weightflag == 1: if nc == 3: #dummy = abs(data[0:nr0:inc,2]) if ONED: dummy = abs(data [:,2]) else: if data0 is not None: dummy = abs(numpy.array([x[2] for x in data0])) else: dummy = abs(numpy.array(sigmadata)) selfweight = 1.0 / (dummy + numpy.equal(dummy,0)) selfweight = selfweight * selfweight else: selfweight = 1.0 / (abs(selfy) + numpy.equal(abs(selfy),0)) n_param = len(parameters) index = numpy.arange(0,nr0,2) while (iiter > 0): niter = niter + 1 if (niter < 2) and (n_param*3 < nr0): x=numpy.take(selfx,index) y=numpy.take(selfy,index) weight=numpy.take(selfweight,index) else: x=selfx y=selfy weight = selfweight chisq0, alpha0, beta,\ n_free, free_index, noigno, fitparam, derivfactor =ChisqAlphaBeta( model,fittedpar, x,y,weight,constrains,model_deriv=model_deriv) nr, nc = alpha0.shape flag = 0 lastdeltachi = chisq0 while flag == 0: newpar = parameters.copy() if(1): alpha = alpha0 + flambda * numpy.identity(nr) * alpha0 deltapar = numpy.dot(beta, inv(alpha)) else: #an attempt to increase accuracy #(it was unsuccessful) alphadiag=numpy.sqrt(numpy.diag(alpha0)) npar = len(numpy.sqrt(alphadiag)) narray = numpy.zeros((npar,npar),numpy.float64) for i in range(npar): for j in range(npar): narray[i,j] = alpha0[i,j]/(alphadiag[i]*alphadiag[j]) narray = inv(narray + flambda * numpy.identity(nr)) for i in range(npar): for j in range(npar): narray[i,j] = narray[i,j]/(alphadiag[i]*alphadiag[j]) deltapar = numpy.dot(beta, narray) pwork = numpy.zeros(deltapar.shape, numpy.float64) for i in range(n_free): if constrains [0] [free_index[i]] == CFREE: pwork [0] [i] = fitparam [i] + deltapar [0] [i] elif constrains [0] [free_index[i]] == CPOSITIVE: #abs method pwork [0] [i] = fitparam [i] + deltapar [0] [i] #square method #pwork [0] [i] = (numpy.sqrt(fitparam [i]) + deltapar [0] [i]) * \ # (numpy.sqrt(fitparam [i]) + deltapar [0] [i]) elif constrains [0] [free_index[i]] == CQUOTED: pmax=max(constrains[1] [free_index[i]], constrains[2] [free_index[i]]) pmin=min(constrains[1] [free_index[i]], constrains[2] [free_index[i]]) A = 0.5 * (pmax + pmin) B = 0.5 * (pmax - pmin) if (B != 0): pwork [0] [i] = A + \ B * numpy.sin(numpy.arcsin((fitparam[i] - A)/B)+ \ deltapar [0] [i]) else: print("Error processing constrained fit") print("Parameter limits are",pmin,' and ',pmax) print("A = ",A,"B = ",B) newpar [free_index[i]] = pwork [0] [i] newpar=numpy.array(getparameters(newpar,constrains)) workpar = numpy.take(newpar,noigno) #yfit = model(workpar.tolist(), x) yfit = model(workpar,x) chisq = (weight * pow(y-yfit, 2)).sum() if chisq > chisq0: flambda = flambda * 10.0 if flambda > 1000: flag = 1 iiter = 0 else: flag = 1 fittedpar = newpar.copy() lastdeltachi = (chisq0-chisq)/(chisq0+(chisq0==0)) if (lastdeltachi) < deltachi: iiter = 0 chisq0 = chisq flambda = flambda / 10.0 #print "iter = ",iter,"chisq = ", chisq iiter = iiter -1 sigma0 = numpy.sqrt(abs(numpy.diag(inv(alpha0)))) sigmapar = getsigmaparameters(fittedpar,sigma0,constrains) if not fulloutput: return fittedpar.tolist(), chisq/(len(yfit)-len(sigma0)), sigmapar.tolist() else: return fittedpar.tolist(), chisq/(len(yfit)-len(sigma0)), sigmapar.tolist(),niter,lastdeltachi def ChisqAlphaBeta(model0, parameters, x,y,weight, constrains,model_deriv=None,linear=None): if linear is None:linear=0 model = model0 #nr0, nc = data.shape n_param = len(parameters) n_free = 0 fitparam=[] free_index=[] noigno = [] derivfactor = [] for i in range(n_param): if constrains[0] [i] != CIGNORED: noigno.append(i) if constrains[0] [i] == CFREE: fitparam.append(parameters [i]) derivfactor.append(1.0) free_index.append(i) n_free += 1 elif constrains[0] [i] == CPOSITIVE: fitparam.append(abs(parameters[i])) derivfactor.append(1.0) #fitparam.append(numpy.sqrt(abs(parameters[i]))) #derivfactor.append(2.0*numpy.sqrt(abs(parameters[i]))) free_index.append(i) n_free += 1 elif constrains[0] [i] == CQUOTED: pmax=max(constrains[1] [i],constrains[2] [i]) pmin=min(constrains[1] [i],constrains[2] [i]) if ((pmax-pmin) > 0) & \ (parameters[i] <= pmax) & \ (parameters[i] >= pmin): A = 0.5 * (pmax + pmin) B = 0.5 * (pmax - pmin) if 1: fitparam.append(parameters[i]) derivfactor.append(B*numpy.cos(numpy.arcsin((parameters[i] - A)/B))) else: help0 = numpy.arcsin((parameters[i] - A)/B) fitparam.append(help0) derivfactor.append(B*numpy.cos(help0)) free_index.append(i) n_free += 1 elif (pmax-pmin) > 0: print("WARNING: Quoted parameter outside boundaries") print("Initial value = %f" % parameters[i]) print("Limits are %f and %f" % (pmin, pmax)) print("Parameter will be kept at its starting value") fitparam = numpy.array(fitparam, numpy.float64) alpha = numpy.zeros((n_free, n_free),numpy.float64) beta = numpy.zeros((1,n_free),numpy.float64) delta = (fitparam + numpy.equal(fitparam,0.0)) * 0.00001 nr = x.shape[0] ############## # Prior to each call to the function one has to re-calculate the # parameters pwork = parameters.copy() for i in range(n_free): pwork [free_index[i]] = fitparam [i] newpar = getparameters(pwork.tolist(),constrains) newpar = numpy.take(newpar,noigno) if n_free == 0: raise ValueError("No free parameters to fit") for i in range(n_free): if model_deriv is None: #pwork = parameters.copy() pwork [free_index[i]] = fitparam [i] + delta [i] newpar = getparameters(pwork.tolist(),constrains) newpar=numpy.take(newpar,noigno) f1 = model(newpar, x) pwork [free_index[i]] = fitparam [i] - delta [i] newpar = getparameters(pwork.tolist(),constrains) newpar=numpy.take(newpar,noigno) f2 = model(newpar, x) help0 = (f1-f2) / (2.0 * delta [i]) help0 = help0 * derivfactor[i] pwork [free_index[i]] = fitparam [i] #removed I resize outside the loop: #help0 = numpy.resize(help0,(1,nr)) else: help0=model_deriv(pwork,free_index[i],x) help0 = help0 * derivfactor[i] if i == 0 : deriv = help0 else: deriv = numpy.concatenate((deriv,help0), 0) #line added to resize outside the loop deriv=numpy.resize(deriv,(n_free,nr)) if linear: pseudobetahelp = weight * y else: newpar = getparameters(pwork.tolist(),constrains) newpar = numpy.take(newpar,noigno) yfit = model(newpar, x) deltay = y - yfit help0 = weight * deltay for i in range(n_free): derivi = numpy.resize(deriv [i,:], (1,nr)) if linear: if i==0: beta = numpy.resize(numpy.sum((pseudobetahelp * derivi),1),(1,1)) else: beta = numpy.concatenate((beta, numpy.resize(numpy.sum((pseudobetahelp * derivi),1),(1,1))), 1) else: help1 = numpy.resize(numpy.sum((help0 * derivi),1),(1,1)) if i == 0: beta = help1 else: beta = numpy.concatenate((beta, help1), 1) help1 = numpy.inner(deriv,weight*derivi) if i == 0: alpha = help1 else: alpha = numpy.concatenate((alpha, help1),1) if linear: #not used chisq = 0.0 else: chisq = (help0 * deltay).sum() return chisq, alpha, beta, \ n_free, free_index, noigno, fitparam, derivfactor def getparameters(parameters,constrains): # 0 = Free 1 = Positive 2 = Quoted # 3 = Fixed 4 = Factor 5 = Delta newparam=[] #first I make the free parameters #because the quoted ones put troubles for i in range(len(constrains [0])): if constrains[0][i] == CFREE: newparam.append(parameters[i]) elif constrains[0][i] == CPOSITIVE: #newparam.append(parameters[i] * parameters[i]) newparam.append(abs(parameters[i])) elif constrains[0][i] == CQUOTED: if 1: newparam.append(parameters[i]) else: pmax=max(constrains[1] [i],constrains[2] [i]) pmin=min(constrains[1] [i],constrains[2] [i]) A = 0.5 * (pmax + pmin) B = 0.5 * (pmax - pmin) newparam.append(A + B * numpy.sin(parameters[i])) elif abs(constrains[0][i]) == CFIXED: newparam.append(parameters[i]) else: newparam.append(parameters[i]) for i in range(len(constrains [0])): if constrains[0][i] == CFACTOR: newparam[i] = constrains[2][i]*newparam[int(constrains[1][i])] elif constrains[0][i] == CDELTA: newparam[i] = constrains[2][i]+newparam[int(constrains[1][i])] elif constrains[0][i] == CIGNORED: newparam[i] = 0 elif constrains[0][i] == CSUM: newparam[i] = constrains[2][i]-newparam[int(constrains[1][i])] return newparam def getsigmaparameters(parameters,sigma0,constrains): # 0 = Free 1 = Positive 2 = Quoted # 3 = Fixed 4 = Factor 5 = Delta n_free = 0 sigma_par = numpy.zeros(parameters.shape,numpy.float64) for i in range(len(constrains [0])): if constrains[0][i] == CFREE: sigma_par [i] = sigma0[n_free] n_free += 1 elif constrains[0][i] == CPOSITIVE: #sigma_par [i] = 2.0 * sigma0[n_free] sigma_par [i] = sigma0[n_free] n_free += 1 elif constrains[0][i] == CQUOTED: pmax = max(constrains [1] [i], constrains [2] [i]) pmin = min(constrains [1] [i], constrains [2] [i]) # A = 0.5 * (pmax + pmin) B = 0.5 * (pmax - pmin) if (B > 0) & (parameters [i] < pmax) & (parameters [i] > pmin): sigma_par [i] = abs(B * numpy.cos(parameters[i]) * sigma0[n_free]) n_free += 1 else: sigma_par [i] = parameters[i] elif abs(constrains[0][i]) == CFIXED: sigma_par[i] = parameters[i] for i in range(len(constrains [0])): if constrains[0][i] == CFACTOR: sigma_par [i] = constrains[2][i]*sigma_par[int(constrains[1][i])] elif constrains[0][i] == CDELTA: sigma_par [i] = sigma_par[int(constrains[1][i])] elif constrains[0][i] == CSUM: sigma_par [i] = sigma_par[int(constrains[1][i])] return sigma_par def fitpar2par(fitpar,constrains,free_index): newparam = [] for i in range(len(constrains [0])): if constrains[0][free_index[i]] == CFREE: newparam.append(fitpar[i]) elif constrains[0][free_index[i]] == CPOSITIVE: newparam.append(fitpar[i] * fitpar [i]) elif abs(constrains[0][free_index[i]]) == CQUOTED: pmax=max(constrains[1] [free_index[i]],constrains[2] [free_index[i]]) pmin=min(constrains[1] [free_index[i]],constrains[2] [free_index[i]]) A = 0.5 * (pmax + pmin) B = 0.5 * (pmax - pmin) newparam.append(A + B * numpy.sin(fitpar[i])) return newparam def gauss(param0,t0): param=numpy.array(param0) t=numpy.array(t0) dummy=2.3548200450309493*(t-param[3])/param[4] return param[0] + param[1] * t + param[2] * myexp(-0.5 * dummy * dummy) def myexp(x): # put a (bad) filter to avoid over/underflows # with no python looping return numpy.exp(x*numpy.less(abs(x),250))-1.0 * numpy.greater_equal(abs(x),250) def test(npoints): xx = numpy.arange(npoints) xx=numpy.resize(xx,(npoints,1)) #yy = 1000.0 * exp (- 0.5 * (xx * xx) /15)+ 2.0 * xx + 10.5 yy = gauss([10.5,2,1000.0,20.,15],xx) yy=numpy.resize(yy,(npoints,1)) sy = numpy.sqrt(abs(yy)) sy=numpy.resize(sy,(npoints,1)) data = numpy.concatenate((xx, yy, sy),1) parameters = [0.0,1.0,900.0, 25., 10] stime = time.time() if 0: #old fashion fittedpar, chisq, sigmapar = LeastSquaresFit(gauss,parameters,data) else: #easier to handle fittedpar, chisq, sigmapar = LeastSquaresFit(gauss,parameters, xdata=xx.reshape((-1,)), ydata=yy.reshape((-1,)), sigmadata=sy.reshape((-1,))) etime = time.time() print("Took ",etime - stime, "seconds") print("chi square = ",chisq) print("Fitted pars = ",fittedpar) print("Sigma pars = ",sigmapar) if __name__ == "__main__": import profile profile.run('test(10000)',"test") import pstats p=pstats.Stats("test") p.strip_dirs().sort_stats(-1).print_stats() �������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/LinearRegression.py���������������������������������������0000644�0000000�0000000�00000015051�14741736366�022511� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from numpy.linalg import inv import sys def linregress(x, y, sigmay=None, full_output=False): """ Linear fit to a straight line following P.R. Bevington: "Data Reduction and Error Analysis for the Physical Sciences" It tries to be an improved version of scipystats.linregress Parameters ---------- x, y : array_like two sets of measurements. Both arrays should have the same length. sigmay : The uncertainty on the y values Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line r_value : float correlation coefficient if full_output is true, an additional dictionary is returned with the keys sigma_slope: uncertainty on the slope sigma_intercept: uncertainty on the intercept stderr: float square root of the variance """ x = numpy.asarray(x, dtype=numpy.float64).flatten() y = numpy.asarray(y, dtype=numpy.float64).flatten() N = y.size if sigmay is None: sigmay = numpy.ones((N,), dtype=y.dtype) else: sigmay = numpy.asarray(sigmay, dtype=numpy.float64).flatten() w = 1.0 / (sigmay * sigmay + (sigmay == 0)) n = S = w.sum() Sx = (w * x).sum() Sy = (w * y).sum() Sxx = (w * x * x).sum() Sxy = ((w * x * y)).sum() Syy = ((w * y * y)).sum() # SSxx is identical to delta in Bevington book delta = SSxx = (S * Sxx - Sx * Sx) tmpValue = Sxx * Sy - Sx * Sxy intercept = tmpValue / delta SSxy = (S * Sxy - Sx * Sy) slope = SSxy / delta sigma_slope = numpy.sqrt(S /delta) sigma_intercept = numpy.sqrt(Sxx / delta) SSyy = (n * Syy - Sy * Sy) r_value = SSxy / numpy.sqrt(SSxx * SSyy) if r_value > 1.0: r_value = 1.0 if r_value < -1.0: r_value = -1.0 if not full_output: return slope, intercept, r_value ddict = {} # calculate the variance if N < 3: variance = 0.0 else: variance = ((y - intercept - slope * x) ** 2).sum() / (N - 2) ddict["variance"] = variance ddict["stderr"] = numpy.sqrt(variance) ddict["slope"] = slope ddict["intercept"] = intercept ddict["r_value"] = r_value ddict["sigma_intercept"] = numpy.sqrt(Sxx / SSxx) ddict["sigma_slope"] = numpy.sqrt(S / SSxx) return slope, intercept, r_value, ddict def main(argv=None): if argv is None: # Bevington data of Table 6-2 x = [0, 15, 30, 45, 60, 75, 90, 105, 120, 135] y = [106, 80, 98, 75, 74, 73, 49, 38, 37, 22] sigmay = numpy.sqrt(numpy.array(y)) slope, intercept, r, ddict = linregress(x, y, sigmay=sigmay, full_output=True) print("WEIGHTED DATA") print("LINREGRESS results") print("SLOPE = ", ddict["slope"], " +/- ", ddict["sigma_slope"]) print("INTERCEPT = ", ddict["intercept"], " +/- ", ddict["sigma_intercept"]) from PyMca5.PyMcaMath.linalg import lstsq derivatives = numpy.zeros((len(y), 2)) derivatives[:, 0] = numpy.array(x, dtype=numpy.float64) derivatives[:, 1] = 1.0 print("LEAST SQUARES RESULT") result = lstsq(derivatives, y, sigma_b=sigmay, weight=1, uncertainties=True) print("SLOPE = ", result[0][0], " +/- ", result[1][0]) print("INTERCEPT = ", result[0][1], " +/- ", result[1][1]) print("\n\n") # Bevington data of Table 6-1 x = [1, 2, 3, 4, 5, 6, 7, 8, 9] y = [15.6, 17.5, 36.6, 43.8, 58.2, 61.6, 64.2, 70.4, 98.8] print("UNWEIGHTED DATA") slope, intercept, r, ddict = linregress(x, y, sigmay=None, full_output=True) print("LINREGRESS results") print("SLOPE = ", ddict["slope"], " +/- ", ddict["sigma_slope"]) print("INTERCEPT = ", ddict["intercept"], " +/- ", ddict["sigma_intercept"]) derivatives = numpy.zeros((len(y), 2)) derivatives[:, 0] = numpy.array(x, dtype=numpy.float64) derivatives[:, 1] = 1.0 print("LEAST SQUARES RESULT") result = lstsq(derivatives, y, sigma_b=None, weight=0, uncertainties=True) print("SLOPE = ", result[0][0], " +/- ", result[1][0]) print("INTERCEPT = ", result[0][1], " +/- ", result[1][1]) print("\n\n") elif len(argv) > 1: # assume we have got a two (or three) column csv file data = numpy.loadtxt(argv[1]) x = data[:, 0] y = data[:, 1] if data.shape[1] > 2: sigmay = data[:, 2] else: sigmay = None slope, intercept, r, ddict = linregress(x, y, sigmay=sigmay, full_output=True) print("LINREGRESS results") print("SLOPE = ", ddict["slope"], " +/- ", ddict["sigma_slope"]) print("INTERCEPT = ", ddict["intercept"], " +/- ", ddict["sigma_intercept"]) else: print("RateLaw [csv_file_name]") return if __name__ == "__main__": main(sys.argv) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/RateLaw.py������������������������������������������������0000644�0000000�0000000�00000016515�14741736366�020603� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from numpy.linalg import inv import sys def linregress(x, y, sigmay=None, full_output=False): """ Linear fit to a straight line following P.R. Bevington: "Data Reduction and Error Analysis for the Physical Sciences" Parameters ---------- x, y : array_like two sets of measurements. Both arrays should have the same length. sigmay : The uncertainty on the y values Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line r_value : float correlation coefficient if full_output is true, an additional dictionary is returned with the keys sigma_slope: uncertainty on the slope sigma_intercept: uncertainty on the intercept stderr: float square root of the variance """ x = numpy.asarray(x, dtype=numpy.float64).flatten() y = numpy.asarray(y, dtype=numpy.float64).flatten() N = y.size if sigmay is None: sigmay = numpy.ones((N,), dtype=y.dtype) else: sigmay = numpy.asarray(sigmay, dtype=numpy.float64).flatten() w = 1.0 / (sigmay * sigmay + (sigmay == 0)) n = S = w.sum() Sx = (w * x).sum() Sy = (w * y).sum() Sxx = (w * x * x).sum() Sxy = ((w * x * y)).sum() Syy = ((w * y * y)).sum() # SSxx is identical to delta in Bevington book delta = SSxx = (S * Sxx - Sx * Sx) tmpValue = Sxx * Sy - Sx * Sxy intercept = tmpValue / delta SSxy = (S * Sxy - Sx * Sy) slope = SSxy / delta sigma_slope = numpy.sqrt(S /delta) sigma_intercept = numpy.sqrt(Sxx / delta) SSyy = (n * Syy - Sy * Sy) r_value = SSxy / numpy.sqrt(SSxx * SSyy) if r_value > 1.0: r_value = 1.0 if r_value < -1.0: r_value = -1.0 if not full_output: return slope, intercept, r_value ddict = {} # calculate the variance if N < 3: variance = 0.0 else: variance = ((y - intercept - slope * x) ** 2).sum() / (N - 2) ddict["variance"] = variance ddict["stderr"] = numpy.sqrt(variance) ddict["slope"] = slope ddict["intercept"] = intercept ddict["r_value"] = r_value ddict["sigma_intercept"] = numpy.sqrt(Sxx / SSxx) ddict["sigma_slope"] = numpy.sqrt(S / SSxx) return slope, intercept, r_value, ddict def rateLaw(x, y, sigmay=None, order=None, xmin=None, ymin=None, xmax=None, ymax=None): """ Perform a fit to y following the specified rate law order If xmin is not None, x values will be modified by subtraction/addition to match the desired xmin. If xmax is not None, x values will be divided by their maximum value and multiplied by yxax If ymin is not None, y values will be modified by subtraction/addition to match the desired ymin. If ymax is not None, y values will be divided by the maximum value and multiplied by ymax """ x = numpy.asarray(x, dtype=numpy.float64).flatten() y = numpy.asarray(y, dtype=numpy.float64).flatten() if xmin is not None: x = x - x.min() + xmin if ymin is not None: y = y - y.min() + ymin if xmax is not None: x = xmax * (x /x.max()) if ymax is not None: y = ymax * (y /y.max()) # we are going to perform a linear fit using different # transformations as function of the requested order. ddict = {} if order is None: orderList = [0, 1, 2] else: orderList = [order] labels = ["zero", "first", "second"] for orderNumber in orderList: label = labels[orderNumber] ddict["order"] = label if label == "zero": # [A] = [A]0 - kt yw = y xw = x elif label == "first": # [A] = [A]0 exp(-kt) # or # ln([A]) = ln([A]0) - kt idx = y > 0 yw = numpy.log(y[idx]) xw = x[idx] elif label == "second": # 1/[A] = 1/[A]0 + kt idx = (y != 0) yw = 1 / y[idx] xw = x[idx] else: raise ValueError("Unknown rate law order %s" % order) if yw.size < 2: # we cannot perform a linear fit with less than two points ddict[label] = None else: slope, intercept, r, full = linregress(xw, yw, full_output=True) ddict[label] = full ddict[label]["x"] = xw ddict[label]["y"] = yw if len(orderList) == 1: return slope, intercept, r else: return ddict def main(argv=None): if argv is None: # first order, k = 4.820e-04 x = [0, 600, 1200, 1800, 2400, 3000, 3600] y = [0.0365, 0.0274, 0.0206, 0.0157, 0.0117, 0.00860, 0.00640] order = "First" slope = "0.000482" print("Expected order: First") print("Expected slope: 0.000482") sigmay = None # second order, k = 1.3e-02 #x = [0, 900, 1800, 3600, 6000] #y = [1.72e-2, 1.43e-2, 1.23e-2, 9.52e-3, 7.3e-3] #order = "second" #slope = "0.013" elif len(argv) > 1: # assume we have got a two column csv file data = numpy.loadtxt(argv[1]) x = data[:, 0] y = data[:, 1] if data.shape[1] > 2: sigmay = data[:, 2] else: sigmay = None else: print("RateLaw [csv_file_name]") return result = rateLaw(x, y, sigmay = sigmay) labels = ["Zero", "First", "Second"] for key in labels: print(key + " Order") print("Interceptt = ", result[key.lower()]["intercept"]) print("Slope = ", result[key.lower()]["slope"]) print("r value = ", result[key.lower()]["r_value"]) print("stderr = ", result[key.lower()]["stderr"]) if __name__ == "__main__": main(sys.argv) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/SimpleFitAll.py�������������������������������������������0000644�0000000�0000000�00000044310�14741736366�021563� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2017-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ import sys import os import numpy import h5py import datetime import logging from PyMca5.PyMcaIO import ConfigDict import PyMca5 if sys.version_info < (3, ): text_dtype = h5py.special_dtype(vlen=unicode) else: text_dtype = h5py.special_dtype(vlen=str) _logger = logging.getLogger(__name__) CONS = ['FREE', 'POSITIVE', 'QUOTED', 'FIXED', 'FACTOR', 'DELTA', 'SUM', 'IGNORE'] def to_h5py_utf8(str_list): """Convert a string or a list of strings to a numpy array of unicode strings that can be written to HDF5 as utf-8. """ return numpy.array(str_list, dtype=text_dtype) def to_utf8(x): if hasattr(x, 'decode'): return x.decode('utf-8') else: return x class SimpleFitAll(object): """Fit module designed to fit a number of curves, and save its output to HDF5 - nexus.""" def __init__(self, fit): self.fit = fit self.curves_x = None self.curves_y = None self.curves_sigma = None self.legends = None self.xlabels = None self.ylabels = None self.xMin = None self.xMax = None self.outputDir = PyMca5.PyMcaDirs.outputDir self.outputFileName = None self._progress = 0.0 self._status = "Ready" self._currentFitIndex = None self._currentSigma = None self._nSpectra = None self.progressCallback = None # optimization variables self.__estimationPolicy = "always" self._currentFitStartTime = "" self._currentFitEndTime = "" def setProgressCallback(self, method): """ The method will be called as method(current_fit_index, total_fit_index) """ self.progressCallback = method def progressUpdate(self): """ This method returns a dictionary with the keys progress: A number between 0 and 100 indicating the fit progress status: Status of the calculation thread. """ ddict = { 'progress': self._progress, 'status': self._status} return ddict def setOutputDirectory(self, outputdir): self.outputDir = outputdir def setOutputFileName(self, outputfile): self.outputFileName = outputfile def setData(self, curves_x, curves_y, sigma=None, xmin=None, xmax=None, legends=None, xlabels=None, ylabels=None): """ :param curves_x: List of 1D arrays, one per curve, or single 1D array :param curves_y: List of 1D arrays, one per curve :param sigma: List of 1D arrays, one per curve, or single 1D array :param float xmin: :param float xmax: :param List[str] legends: List of curve legends. If None, defaults to ``["curve0", "curve1"...]`` """ self.curves_x = curves_x self.curves_y = curves_y self.curves_sigma = sigma self.xMin = xmin self.xMax = xmax self.legends = legends or ["curve%d" % i for i in range(len(curves_y))] self.xlabels = xlabels or ["X" for _cy in curves_y] self.ylabels = ylabels or ["Y" for _cy in curves_y] def setConfigurationFile(self, fname): if not os.path.exists(fname): raise IOError("File %s does not exist" % fname) w = ConfigDict.ConfigDict() w.read(fname) self.setConfiguration(w) def setConfiguration(self, ddict): self.fit.setConfiguration(ddict, try_import=True) def processAll(self): assert self.curves_y is not None, "You must first call setData()!" data = self.curves_y # create output file with h5py.File(self.getOutputFileName(), mode="w-") as h5f: h5f.attrs["NX_class"] = "NXroot" # get the total number of fits to be performed self._nSpectra = len(data) # a watcher to verify if a table can be generated self._referenceParameters = None # optimization self.__estimationPolicy = "always" backgroundPolicy = self.fit._fitConfiguration['fit']['background_estimation_policy'] functionPolicy = self.fit._fitConfiguration['fit']['function_estimation_policy'] if "Estimate always" in [functionPolicy, backgroundPolicy]: self.__estimationPolicy = "always" elif "Estimate once" in [functionPolicy, backgroundPolicy]: self.__estimationPolicy = "once" else: self.__estimationPolicy = "never" # initialize control variables self._parameters = None self._progress = 0 self._status = "Fitting" for i in range(self._nSpectra): self._progress = (i * 100.) / self._nSpectra try: self.processSpectrum(i) except Exception: _logger.error( "Error %s processing index = %d", sys.exc_info()[1], i) if _logger.getEffectiveLevel() == logging.DEBUG: raise self.onProcessSpectraFinished() self._status = "Ready" if self.progressCallback is not None: self.progressCallback(self._nSpectra, self._nSpectra) def processSpectrum(self, i): self._currentFitStartTime = datetime.datetime.now().isoformat() self.aboutToGetSpectrum(i) x, y, sigma, xmin, xmax = self.getFitInputValues(i) self.fit.setData(x, y, sigma=sigma, xmin=xmin, xmax=xmax) if self._parameters is None and self.__estimationPolicy != "never": _logger.debug("First estimation") self.fit.estimate() elif self.__estimationPolicy == "always": _logger.debug("Estimation due to settings") self.fit.estimate() else: _logger.debug("Using user estimation") self.estimateFinished() values, chisq, sigmaFromFit, niter, lastdeltachi = self.fit.startFit() self._currentSigma = abs(sigma + (sigma == 0)) if sigma is not None else\ numpy.sqrt(abs(y) + (y == 0)) self._currentFitEndTime = datetime.datetime.now().isoformat() self.fitOneSpectrumFinished() def getFitInputValues(self, index): """ Returns the fit parameters x, y, sigma, xmin, xmax """ # get y (always a list of 1D arrays) y = self.curves_y[index] # get x if self.curves_x is None: nValues = y.size x = numpy.arange(float(nValues)) x.shape = y.shape self.curves_x = x elif hasattr(self.curves_x, "shape") and len(self.curves_x.shape) == 1: # same x array for all curves x = self.curves_x else: # list of abscissas, one per curve x = self.curves_x[index] assert x.shape == y.shape if self.curves_sigma is None: return x, y, None, self.xMin, self.xMax # get sigma if hasattr(self.curves_sigma, "shape") and len(self.curves_sigma.shape) == 1: # only one sigma for all the y values sigma = self.curves_sigma else: sigma = self.curves_sigma[index] assert sigma.shape == y.shape return x, y, sigma, self.xMin, self.xMax def estimateFinished(self): _logger.debug("Estimate finished") def aboutToGetSpectrum(self, idx): _logger.debug("New spectrum %d", idx) self._currentFitIndex = idx if self.progressCallback is not None: self.progressCallback(idx, self._nSpectra) def fitOneSpectrumFinished(self): _logger.debug("fit finished") # get parameter results fitOutput = self.fit.getResult(configuration=False) result = fitOutput['result'] idx = self._currentFitIndex parNames = [x["name"] for x in self.fit.paramlist] if idx == 0: self._referenceParameters = parNames if self._referenceParameters is not None: if self._referenceParameters == parNames: _logger.info("Fit of spectrum %d has same parameters" % idx) else: _logger.info("Fit of spectrum %d has different parameters" % idx) self._referenceParameters = None if result is None: _logger.warning("result not valid for index %d", idx) return self._appendOneResultToHdf5(resultDict=fitOutput["result"]) def _appendOneResultToHdf5(self, resultDict): # Get all the necessary data (TODO: pass it to method as attrs) idx = self._currentFitIndex end_time = self._currentFitEndTime start_time = self._currentFitStartTime sigma = self._currentSigma legend = self.legends[idx] xlabel = self.xlabels[idx] ylabel = self.ylabels[idx] x, y, _inSigma, xMin, xMax = self.getFitInputValues(idx) fitted_data = self.fit.evaluateDefinedFunction(x) configIni = ConfigDict.ConfigDict(self.fit.getConfiguration()).tostring() fit_paramlist = self.fit.paramlist filename = self.getOutputFileName() # Write the data to file (append) self._entryNameFormat = "fit_%d" with h5py.File(filename, mode="r+") as h5f: entry = h5f.create_group(self._entryNameFormat % idx) entry.attrs["NX_class"] = to_h5py_utf8("NXentry") entry.attrs["default"] = to_h5py_utf8("fit_process/results/plot") entry.create_dataset("start_time", data=to_h5py_utf8(start_time)) entry.create_dataset("end_time", data=to_h5py_utf8(end_time)) entry.create_dataset("title", data=to_h5py_utf8("Fit of '%s'" % legend)) process = entry.create_group("fit_process") process.attrs["NX_class"] = to_h5py_utf8("NXprocess") process.create_dataset("program", data=to_h5py_utf8("pymca")) process.create_dataset("version", data=to_h5py_utf8(PyMca5.version())) process.create_dataset("date", data=to_h5py_utf8(end_time)) configuration = process.create_group("configuration") configuration.attrs["NX_class"] = to_h5py_utf8("NXnote") configuration.create_dataset("type", data=to_h5py_utf8("text/plain")) configuration.create_dataset("data", data=to_h5py_utf8(configIni)) configuration.create_dataset("file_name", data=to_h5py_utf8("SimpleFit.ini")) configuration.create_dataset("description", data=to_h5py_utf8("Fit configuration")) results = process.create_group("results") results.attrs["NX_class"] = to_h5py_utf8("NXcollection") estimation = results.create_group("estimation") estimation.attrs["NX_class"] = to_h5py_utf8("NXcollection") for p in fit_paramlist: pgroup = estimation.create_group(p["name"]) # constraint code can be an int, convert to str if numpy.issubdtype(numpy.array(p['code']).dtype, numpy.integer): pgroup.create_dataset('code', data=to_h5py_utf8(CONS[p['code']])) else: pgroup.create_dataset('code', data=to_h5py_utf8(p['code'])) pgroup.create_dataset('cons1', data=p['cons1']) pgroup.create_dataset('cons2', data=p['cons2']) pgroup.create_dataset('estimation', data=p['estimation']) for key, value in resultDict.items(): if not numpy.issubdtype(type(key), numpy.character): _logger.debug("skipping key %s (not a text string)", key) continue if key == "fittedvalues": output_key = "parameter_values" elif key == "parameters": output_key = "parameter_names" elif key == "sigma_values": output_key = "parameter_sigmas" else: output_key = key value_dtype = numpy.array(value).dtype if numpy.issubdtype(value_dtype, numpy.number) or\ numpy.issubdtype(value_dtype, numpy.bool_): # straightforward conversion to HDF5 results.create_dataset(output_key, data=value) elif numpy.issubdtype(value_dtype, numpy.character): # ensure utf-8 output results.create_dataset(output_key, data=to_h5py_utf8(value)) plot = results.create_group("plot") plot.attrs["NX_class"] = to_h5py_utf8("NXdata") plot.attrs["signal"] = to_h5py_utf8("raw_data") plot.attrs["auxiliary_signals"] = to_h5py_utf8(["fitted_data"]) plot.attrs["axes"] = to_h5py_utf8(["x"]) plot.attrs["title"] = to_h5py_utf8("Fit of '%s'" % legend) signal = plot.create_dataset("raw_data", data=y) if ylabel is not None: signal.attrs["long_name"] = to_h5py_utf8(ylabel) axis = plot.create_dataset("x", data=x) if xlabel is not None: axis.attrs["long_name"] = to_h5py_utf8(xlabel) if sigma is not None: plot.create_dataset("errors", data=sigma) plot.create_dataset("fitted_data", data=fitted_data) def getOutputFileName(self): return os.path.join(self.outputDir, self.outputFileName) def _isSummaryEntryAcceptable(self): if self._referenceParameters is not None: if self._nSpectra > 1: return True def _createSummaryEntry(self): filename = self.getOutputFileName() with h5py.File(filename, mode="r+") as h5f: for idx in range(self._nSpectra): inputEntryName = os.path.join("/", self._entryNameFormat % idx) inputEntry = h5f[inputEntryName] start_time = inputEntry["start_time"] end_time = inputEntry["end_time"] chisq = inputEntry["fit_process/results/chisq"] parameterValues = inputEntry["fit_process/results/parameter_values"] parameterErrors = inputEntry["fit_process/results/parameter_sigmas"] parameterNames = inputEntry["fit_process/results/parameter_names"] if idx == 0: entry = h5f.create_group("fit_summary") entry.attrs["NX_class"] = u"NXentry" entry.attrs["default"] = u"result" entry["start_time"] = to_h5py_utf8(datetime.datetime.now().isoformat()) result = entry.create_group("result") result.attrs["NX_class"] = u"NXdata" result.attrs["axes"] = to_h5py_utf8(["index"]) result.attrs["signal"] = to_h5py_utf8("chisq") result["index"] = numpy.arange(self._nSpectra) result.create_dataset("chisq", shape=(self._nSpectra,), dtype=numpy.float32) for parameter0 in parameterNames: parameter = to_utf8(parameter0) result.create_dataset(parameter, shape=(self._nSpectra,), dtype=numpy.float32) result.create_dataset(parameter + "_errors", shape=(self._nSpectra,), dtype=numpy.float32) result.create_dataset(parameter + "_estimation", shape=(self._nSpectra,), dtype=numpy.float32) result["chisq"][idx] = chisq for par in range(len(parameterNames)): parameter = to_utf8(parameterNames[par]) estimationName = "fit_process/results/estimation/%s/estimation" % \ parameter estimation = inputEntry[estimationName] result[parameter][idx] = parameterValues[par] result[parameter + "_errors"][idx] = parameterErrors[par] result[parameter + "_estimation"][idx] = estimation entry["end_time"] = to_h5py_utf8(datetime.datetime.now().isoformat()) first = self._entryNameFormat % 0 last = self._entryNameFormat % (self._nSpectra - 1) entry["title"] = "Summary of %s to %s" % (first, last) def onProcessSpectraFinished(self): _logger.debug("All curves processed") self._status = "Curves Fitting finished" if self._isSummaryEntryAcceptable(): self._createSummaryEntry() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/SimpleFitModule.py����������������������������������������0000644�0000000�0000000�00000110705�14741736366�022302� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import copy import logging import glob import types import logging from . import Gefit from . import SpecfitFuns from PyMca5 import getDefaultUserFitFunctionsDirectory _logger = logging.getLogger(__name__) _logger = logging.getLogger(__name__) class SimpleFit(object): def __init__(self): #no data available by default self._x0 = None self._y0 = None #get default configuration self.getDefaultConfiguration() #the list and dictionary of defined functions self._functionList = [] self._functionDict = {} #the current fit function self._stripFunction = None def getDefaultConfiguration(self): self._fitConfiguration = {} self._fitConfiguration['fit'] = {} self._fitConfiguration['fit']['fit_function'] = "None" self._fitConfiguration['fit']['function_flag'] = 1 self._fitConfiguration['fit']['background_function'] = "None" self._fitConfiguration['fit']['background_flag'] = 1 self._fitConfiguration['fit']['strip_function'] = "Strip" self._fitConfiguration['fit']['stripalgorithm'] = 0 self._fitConfiguration['fit']['strip_flag'] = 1 self._fitConfiguration['fit']['fit_algorithm'] = "Levenberg-Marquardt" self._fitConfiguration['fit']['weight'] = "NO Weight" self._fitConfiguration['fit']['maximum_fit_iterations'] = 10 self._fitConfiguration['fit']['background_estimation_policy'] = "Estimate always" self._fitConfiguration['fit']['function_estimation_policy'] = "Estimate always" self._fitConfiguration['fit']['minimum_delta_chi'] = 0.0010 self._fitConfiguration['fit']['use_limits'] = 0 self._fitConfiguration['fit']['xmin'] = 0. self._fitConfiguration['fit']['xmax'] = 1000. self._fitConfiguration['fit']['functions'] = [] #strip/snip background configuration related self._fitConfiguration['fit']['stripanchorsflag'] = 0 self._fitConfiguration['fit']['stripanchorslist'] = [] self._fitConfiguration['fit']['stripfilterwidth'] = 1 self._fitConfiguration['fit']['snipwidth'] = 10 self._fitConfiguration['fit']['stripwidth'] = 4 self._fitConfiguration['fit']['stripiterations'] = 5000 self._fitConfiguration['fit']['stripconstant'] = 1.0 self._fitConfiguration['functions'] = {} def configure(self, ddict=None): if ddict is None: return self.getConfiguration() else: return self.setConfiguration(ddict) def setConfiguration(self, ddict, try_import=False): oldConfig = self.getConfiguration() if ddict is None: return oldConfig if 'fit' in ddict: givenKeys = ddict['fit'].keys() for key in self._fitConfiguration['fit'].keys(): if key in givenKeys: self._fitConfiguration['fit'][key] = ddict['fit'][key] for key in ddict.keys(): if key in ['fit', 'functions']: continue self._fitConfiguration[key] = ddict[key] if 'functions' in ddict: functionNames = ddict['functions'].keys() for fName in functionNames: if fName not in self._fitConfiguration['functions'].keys(): if try_import: ffile = ddict['functions'][fName].get('file', None) if ffile is not None: self.importFunctions(ffile) else: _logger.warning("WARNING:Function %s not among defined functions", fName) continue self._fitConfiguration['functions'][fName]['configuration']=\ ddict['functions'][fName]['configuration'] configureMethod = self._fitConfiguration['functions'][fName]\ ['configure'] if configureMethod is not None: configureMethod(ddict['functions'][fName]['configuration']) #if data are present, update strip background if (self._x0 is None) or (self._y0 is None): return if (oldConfig['fit']['xmin'] != self._fitConfiguration['fit']['xmin']) or\ (oldConfig['fit']['xmax'] != self._fitConfiguration['fit']['xmax']): _logger.debug("SETTING DATA AGAIN") self.setData(self._x0, self._y0, xmin=self._fitConfiguration['fit']['xmin'], xmax=self._fitConfiguration['fit']['xmax']) return for key in ['strip_flag', 'stripanchorsflag', 'stripalgorithm', 'stripwidth', 'stripiterations', 'stripconstant']: if oldConfig['fit'][key] != self._fitConfiguration['fit'][key]: _logger.debug("RECALCULATING STRIP") self._getStripBackground() break if key == 'stripanchorsflag': if len(oldConfig['fit']['stripanchorslist']) !=\ len(self._fitConfiguration['fit']['stripanchorslist']): _logger.debug("ANCHORS CHANGE, RECALCULATING STRIP") self._getStripBackground() break def getConfiguration(self): ddict = {} for key in self._fitConfiguration.keys(): if key == 'functions': continue ddict[key] = copy.deepcopy(self._fitConfiguration[key]) ddict['functions'] = {} for key in self._fitConfiguration['functions'].keys(): ddict['functions'][key] = {} ddict['functions'][key]['configuration'] = copy.deepcopy(\ self._fitConfiguration['functions'][key]['configuration']) configureMethod = self._fitConfiguration['functions']\ [key]['configure'] if configureMethod is not None: currentFunctionConfig = configureMethod() for newKey in currentFunctionConfig.keys(): if newKey not in ['estimation']: ddict['functions'][key]['configuration'][newKey] = currentFunctionConfig[newKey] parameters = self._fitConfiguration['functions'][key]['parameters'] ddict['functions'][key]['parameters'] = parameters widget = self._fitConfiguration['functions'][key]['widget'] ddict['functions'][key]['widget'] = widget fname = self._fitConfiguration['functions'][key]['file'] ddict['functions'][key]['file'] = fname return ddict def setData(self, x, y, sigma=None, xmin=None, xmax=None, **kw): # make sure last fit result is not used self._fitResult = None idx = numpy.argsort(x) if sigma is not None: self._sigma = sigma[idx] else: self._sigma = None self._y0 = y[idx] self._x0 = x[idx] if sigma is not None: self._sigma0 = sigma[idx] xmin, xmax = self._getLimits(self._x0, xmin, xmax) idx = (self._x0 >= xmin) & (self._x0 <= xmax) self._x = self._x0[idx] self._y = self._y0[idx] self._fitConfiguration['fit']['xmin'] = xmin * 1.0 self._fitConfiguration['fit']['xmax'] = xmax * 1.0 if sigma is not None: self._sigma = self._sigma0[idx] _logger.debug("TODO: Make sure we have something to fit") #get strip/SNIP background self._z = self._getStripBackground() def importFunctions(self, modname): #modname can be a module or a file if type(modname) == types.ModuleType: newfun = modname elif os.path.exists(modname): sys.path.append(os.path.dirname(modname)) f=os.path.basename(os.path.splitext(modname)[0]) newfun=__import__(f) else: try: # try to use a module from PyMca # typically it will only work if using # SimpleFitUserEstimatedFunctions as module f=os.path.basename(os.path.splitext(modname)[0]) newfun=__import__(f) except Exception: raise ValueError("Cannot interprete/find %s" % modname) if isinstance(newfun.THEORY, dict): # silx fit theories self._importSilxFunctions(newfun) return theory = newfun.THEORY function=newfun.FUNCTION parameters = newfun.PARAMETERS try: estimate=newfun.ESTIMATE except Exception: estimate=None try: derivative=newfun.DERIVATIVE except Exception: derivative=None try: configure=newfun.CONFIGURE except Exception: configure=None try: widget=newfun.WIDGET except Exception: widget=None for i in range(len(theory)): ddict = {} functionName = theory[i] ddict['signature'] = 'pymca' ddict['function'] = function[i] ddict['parameters'] = parameters[i] ddict['default_parameters'] = None ddict['estimate'] = None ddict['derivative'] = None ddict['configure'] = None ddict['widget'] = None ddict['file'] = newfun.__file__ ddict['configuration'] = {} if estimate is not None: ddict['estimate'] = estimate[i] if derivative is not None: ddict['derivative'] = derivative[i] if configure is not None: ddict['configure'] = configure[i] if ddict['configure'] is not None: ddict['configuration'] = configure[i]() if ddict['estimate'] is None: ddict['configuration']['estimation'] = None if widget is not None: ddict['widget'] = widget[i] self._fitConfiguration['functions'][functionName] = ddict self._fitConfiguration['fit']['functions'].append(functionName) def _importSilxFunctions(self, mod): """ :param mod: Module defining silx fit theories """ theoryDict = mod.THEORY for name, theory in theoryDict.items(): assert not theory.pymca_legacy,\ "It makes no sense to wrap a PyMca fit theory " +\ "in a silx theory to load it back in PyMca" ddict = {} functionName = name ddict['signature'] = 'silx' ddict['function'] = self._wrapSilxFunction(theory.function) ddict['parameters'] = theory.parameters ddict['default_parameters'] = None ddict['estimate'] = self._wrapSilxEstimate(theory.estimate) ddict['derivative'] = self._wrapSilxDerivate(theory.derivative) ddict['configure'] = theory.configure ddict['widget'] = None ddict['file'] = mod.__file__ ddict['configuration'] = {} if theory.configure is not None: ddict['configuration'] = theory.configure() if ddict['estimate'] is None: ddict['configuration']['estimation'] = None self._fitConfiguration['functions'][functionName] = ddict self._fitConfiguration['fit']['functions'].append(functionName) def _wrapSilxEstimate(self, f): if f is None: return None def wrapped(xx, yy, zzz, xscaling=1.0, yscaling=None): estimated_param, constraints = f(xx, yy - zzz) pymca_constraints = numpy.array(constraints).transpose() return estimated_param, pymca_constraints return wrapped def _wrapSilxFunction(self, f): if f is None: return None def wrapped(pars, x): return f(x, *pars) return wrapped def _wrapSilxDerivate(self, f): if f is None: return None def wrapped(parameters, index, x): return f(x, parameters, index) return wrapped def loadUserFunctions(self): userDirectory = getDefaultUserFitFunctionsDirectory() fileList = glob.glob(os.path.join(userDirectory, "*.py")) # simple filter to prevent unnecessary imports filteredFileList = [] for fname in fileList: # in Python 3, rb implies bytes and not strings with open(fname, 'r') as f: for line in f: if line.strip().startswith("THEORY"): filteredFileList.append(fname) break for fname in filteredFileList: try: self.importFunctions(fname) except Exception: _logger.error("Could not import user fit functions %s", fname) def setFitFunction(self, name): if name in [None, "None", "NONE"]: self._fitConfiguration['fit']['fit_function'] = "None" return self._fitFunctionConfigured = False if name not in self._fitConfiguration['fit']['functions']: txt = "Function %s not among defined functions" % name raise KeyError(txt) self._fitConfiguration['fit']['fit_function'] = name def getFitFunction(self): return "%s" % self._fitConfiguration['fit']['fit_function'] def setBackgroundFunction(self, name): if name in [None, "None", "NONE"]: self._fitConfiguration['fit']['background_function'] = "None" return self._backgroundFunctionConfigured = False if name not in self._fitConfiguration['fit']['functions']: txt = "Function %s not among defined functions" % name raise KeyError(txt) self._fitConfiguration['fit']['background_function'] = name def getBackgroundFunction(self): return "%s" % self._fitConfiguration['fit']['background_function'] def _getLimits(self, x, xmin, xmax): if self._fitConfiguration['fit']['use_limits']: xmin = self._fitConfiguration['fit']['xmin'] xmax = self._fitConfiguration['fit']['xmax'] return xmin, xmax if xmin is None: xmin = x[0] if xmax is None: xmax = x[-1] return xmin, xmax def _getStripBackground(self, x=None, y=None): #this makes the assumption x are equally spaced #and I should build a spline if that is not the case #but I do not want to put a dependency on SciPy if y is not None: ywork = y else: ywork = self._y if x is not None: xwork = x else: xwork = self._x n=len(xwork) #loop for anchors anchorslist = [] if self._fitConfiguration['fit']['stripanchorsflag']: if self._fitConfiguration['fit']['stripanchorslist'] is not None: oldShape = xwork.shape ravelled = xwork ravelled.shape = -1 for channel in self._fitConfiguration['fit']['stripanchorslist']: if channel <= ravelled[0]:continue index = numpy.nonzero(ravelled >= channel)[0] if len(index): index = min(index) if index > 0: anchorslist.append(index) ravelled.shape = oldShape #work with smoothed data ysmooth = self._getSmooth(xwork, ywork) #SNIP algorithm if self._fitConfiguration['fit']['stripalgorithm'] in ["SNIP", 1]: _logger.debug("CALCULATING SNIP") if len(anchorslist) == 0: anchorslist = [0, len(ysmooth)-1] anchorslist.sort() result = 0.0 * ysmooth lastAnchor = 0 width = self._fitConfiguration['fit']['snipwidth'] for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < len(ysmooth)): result[lastAnchor:anchor] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:anchor], width, 0) lastAnchor = anchor if lastAnchor < len(ysmooth): result[lastAnchor:] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:], width, 0) return result #strip background niter = self._fitConfiguration['fit']['stripiterations'] if niter > 0: _logger.debug("CALCULATING STRIP") _logger.debug("iterations = ", niter) _logger.debug("constant = %s", self._fitConfiguration['fit']['stripconstant']) _logger.debug("width = %s", self._fitConfiguration['fit']['stripwidth']) _logger.debug("anchors = %s", anchorslist) result = SpecfitFuns.subac(ysmooth, self._fitConfiguration['fit']['stripconstant'], niter, self._fitConfiguration['fit']['stripwidth'], anchorslist) if niter > 1000: #make sure to get something smooth result = SpecfitFuns.subac(result, self._fitConfiguration['fit']['stripconstant'], 500,1, anchorslist) else: #make sure to get something smooth but with less than #500 iterations result = SpecfitFuns.subac(result, self._fitConfiguration['fit']['stripconstant'], int(self._fitConfiguration['fit']['stripwidth']*2), 1, anchorslist) else: _logger.debug("NO STRIP, NO SNIP") result = numpy.zeros(ysmooth.shape, numpy.float64) + min(ysmooth) return result def _getSmooth(self, x, y): f=[0.25,0.5,0.25] try: if hasattr(y, "shape"): if len(y.shape) > 1: result=SpecfitFuns.SavitskyGolay(numpy.ravel(y).astype(numpy.float64), self._fitConfiguration['fit']['stripfilterwidth']) else: result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float64), self._fitConfiguration['fit']['stripfilterwidth']) else: result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float64), self._fitConfiguration['fit']['stripfilterwidth']) except Exception: err = sys.exc_info()[1] raise ValueError("Unsuccessful Savitsky-Golay smoothing: %s" % err) result=numpy.array(y).astype(numpy.float64) if len(result) > 1: result[1:-1]=numpy.convolve(result,f,mode=0) result[0]=0.5*(result[0]+result[1]) result[-1]=0.5*(result[-1]+result[-2]) return result def fit(self): if self._y0 is None: self._setStatus("No data to be fitted") return self.estimate() self.startFit() return self.getResult() def estimate(self): self._fitResult = None if self._y0 is None: self._setStatus("No data to be fitted") return self._setStatus("Estimate started") backgroundDict = {'parameters':[]} fitFunctionDict = {'parameters':[]} backgroundParameters, backgroundConstraints = [], [[],[],[]] backgroundFunction = self.getBackgroundFunction() if self._fitConfiguration['fit']['background_flag']: if backgroundFunction not in [None, "None", "NONE"]: backgroundParameters, backgroundConstraints =\ self.estimateBackground() backgroundDict = self._fitConfiguration['functions']\ [backgroundFunction] self._setStatus("Background estimation finished") functionParameters, functionConstraints = [], [[],[],[]] fitFunction = self._fitConfiguration['fit']['fit_function'] if self._fitConfiguration['fit']['function_flag']: if fitFunction not in [None, "None", "NONE"]: functionParameters, functionConstraints=\ self.estimateFunction() fitFunctionDict = self._fitConfiguration['functions']\ [fitFunction] _logger.debug("ESTIMATION parameters = %s", functionParameters) _logger.debug("ESTIMATION constraints = %s", functionConstraints) self._setStatus("Fit function estimation finished") #estimations are made #Check if there can be conflicts between parameter names #because they can have same names in the background and #in the fit function conflict = False for parname in backgroundDict['parameters']: if parname in fitFunctionDict['parameters']: conflict = True break #build the parameter names self.final_theory=[] nBasePar = len(backgroundDict['parameters']) nActualPar = len(backgroundParameters) self.__nBackgroundParameters = nActualPar if nActualPar: for i in range(nActualPar): parname = backgroundDict['parameters'][i%nBasePar] if conflict: parname = "Bkg_"+parname if nBasePar < nActualPar: parname = parname + ("_%d" % (1+int(i/nBasePar))) self.final_theory.append(parname) nBasePar = len(fitFunctionDict['parameters']) nActualPar = len(functionParameters) if nActualPar: for i in range(nActualPar): parname = fitFunctionDict['parameters'][i%nBasePar] if nBasePar < nActualPar: parname = parname + ("_%d" % (1+int(i/nBasePar))) self.final_theory.append(parname) CONS=['FREE', 'POSITIVE', 'QUOTED', 'FIXED', 'FACTOR', 'DELTA', 'SUM', 'IGNORE'] self.paramlist=[] param = self.final_theory j=0 i=0 k=0 xmin=self._x.min() xmax=self._x.max() #print "xmin = ",xmin,"xmax = ",xmax for pname in self.final_theory: if i < len(backgroundParameters): self.paramlist.append({'name':pname, 'estimation':backgroundParameters[i], 'group':0, 'code':CONS[int(backgroundConstraints[0][i])], 'cons1':backgroundConstraints[1][i], 'cons2':backgroundConstraints[2][i], 'fitresult':0.0, 'sigma':0.0, 'xmin':xmin, 'xmax':xmax}) i=i+1 else: if (j % len(fitFunctionDict['parameters'])) == 0: k=k+1 if (CONS[int(functionConstraints[0][j])] == "FACTOR") or \ (CONS[int(functionConstraints[0][j])] == "DELTA"): functionConstraints[1][j] = functionConstraints[1][j] +\ len(backgroundParameters) self.paramlist.append({'name':pname, 'estimation':functionParameters[j], 'group':k, 'code':CONS[int(functionConstraints[0][j])], 'cons1':functionConstraints[1][j], 'cons2':functionConstraints[2][j], 'fitresult':0.0, 'sigma':0.0, 'xmin':xmin, 'xmax':xmax}) j=j+1 self._setStatus("Estimate finished") return self.paramlist def _setStatus(self, status): self.__status = status def getStatus(self): return self.__status def estimateBackground(self): fname = self.getBackgroundFunction() if fname is None: return [],[[],[],[]] ddict = self._fitConfiguration['functions'][fname] estimateFunction = ddict['estimate'] if estimateFunction is None: parameters = [] constraints = [[],[],[]] if ddict['configuration']['estimation'] is not None: estimation = ddict['configuration']['estimation'] defaultPar = estimation['parameters'] for parameter in defaultPar: parameters.append(estimation[parameter]['estimation']) constraints[0].append(estimation[parameter]['code']) constraints[1].append(estimation[parameter]['cons1']) constraints[2].append(estimation[parameter]['cons2']) else: defaultPar = ddict['parameters'] for parameter in defaultPar: parameters.append(0.0) constraints[0].append(0) constraints[1].append(0) constraints[2].append(0) return parameters, constraints parameters, constraints = estimateFunction(self._x, self._y, self._z) return parameters, constraints def estimateFunction(self): self._z = self._getStripBackground() fname = self.getFitFunction() if fname is None: return [],[[],[],[]] ddict = self._fitConfiguration['functions'][fname] estimateFunction = ddict['estimate'] if estimateFunction is None: parameters = [] constraints = [[],[],[]] if ddict['configuration']['estimation'] is not None: estimation = ddict['configuration']['estimation'] defaultPar = estimation['parameters'] for parameter in defaultPar: parameters.append(estimation[parameter]['estimation']) constraints[0].append(estimation[parameter]['code']) constraints[1].append(estimation[parameter]['cons1']) constraints[2].append(estimation[parameter]['cons2']) else: defaultPar = ddict['parameters'] for parameter in defaultPar: parameters.append(0.0) constraints[0].append(0) constraints[1].append(0) constraints[2].append(0) return parameters, constraints parameters, constraints = estimateFunction(self._x * 1, self._y * 1, self._z * 1) return parameters, constraints def startFit(self): if self._y0 is None: self._setStatus("No data to be fitted") return self._setStatus("Fit started") param_list = self.final_theory length = len(param_list) param_val = [] param_constrains = [[],[],[]] flagconstrained=0 for param in self.paramlist: #print param['name'],param['group'],param['estimation'] param_val.append(param['estimation']) if (param['code'] != 'FREE') & (param['code'] != 0) & \ (param['code'] != 0.0) : flagconstrained=1 param_constrains [0].append(param['code']) param_constrains [1].append(param['cons1']) param_constrains [2].append(param['cons2']) #weight handling if self._fitConfiguration['fit']['weight'] in ["NO Weight", 0]: weightflag = 0 else: weightflag = 1 _logger.debug("STILL TO HANDLE DERIVATIVES") model_deriv = self.modelFunctionDerivative if self._fitConfiguration['fit']['strip_flag']: y = self._y - self._z else: y = self._y self._fitResult = None if not flagconstrained: param_constrains = [] try: result = Gefit.LeastSquaresFit(self.modelFunction,param_val, xdata=self._x, ydata=y, sigmadata=self._sigma, constrains=param_constrains, weightflag=weightflag, model_deriv=model_deriv, fulloutput=True) except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise text = sys.exc_info()[1] if type(text) is not type(" "): text = text.args if len(text): text = text[0] else: text = '' self._setStatus('Fit error : %s' %text) raise self._fitResult = {} self._fitResult['fit_function'] = self.getFitFunction() self._fitResult['background_function'] = self.getBackgroundFunction() self._fitResult['fittedvalues'] = result[0] self._fitResult['chisq'] = result[1] self._fitResult['sigma_values'] = result[2] self._fitResult['niter'] = result[3] self._fitResult['lastdeltachi'] = result[4] self._fitResult['n_background_parameters'] = self.__nBackgroundParameters _logger.debug("Found parameters = %s", self._fitResult['fittedvalues']) i = 0 self._fitResult['parameters'] = [] for param in self.paramlist: if param['code'] != 'IGNORE': self._fitResult['parameters'].append(param['name']) param['fitresult'] = result[0][i] param['sigma'] = result[2][i] i += 1 self._setStatus("Fit finished") return result def modelFunction(self, pars, t): result = 0.0 * t nb = self.__nBackgroundParameters if nb: result += self._fitConfiguration['functions'][self.getBackgroundFunction()]\ ['function'](pars[0:nb], t) if len(self.paramlist) > nb: result += self._fitConfiguration['functions'][self.getFitFunction()]\ ['function'](pars[nb:], t) return result def numericDerivative(self, f, parameters, index, x): """ numericDerivative(self, f, parameters, index, x) calculates the numeric derivate of f(parameters, x) respect to the parameter indexed by the given index """ #numeric derivative x=numpy.array(x) delta = (parameters[index] + numpy.equal(parameters[index],0.0)) * 0.00001 #make a copy of the parameters newpar = parameters * 1 newpar[index] = parameters[index] + delta f1 = f(newpar, x) newpar[index] = parameters[index] - delta f2 = f(newpar, x) return (f1-f2) / (2.0 * delta) def modelFunctionDerivative(self, pars, index, x): return self.numericDerivative(self.modelFunction, pars, index, x) def getResult(self, configuration=False): #print " get results to be implemented" ddict = {} ddict['result'] = self._fitResult if configuration: ddict['configuration'] = self.getConfiguration() return ddict def _evaluateBackground(self, x=None): if x is None: x = self._x pars = self._fitResult['fittedvalues'] nb = self.__nBackgroundParameters if nb: y = self._fitConfiguration['functions'][self.getBackgroundFunction()]\ ['function'](pars[:nb], x) else: y = numpy.zeros(x.shape, numpy.float64) if self._fitConfiguration['fit']['strip_flag']: #If the x is not self._x, how to add the strip? try: y += self._z except Exception: _logger.warning("Cannot add strip background") return y def _evaluateFunction(self, x=None): if x is None: x = self._x pars = self._fitResult['fittedvalues'] nb = self.__nBackgroundParameters if len(self.paramlist) > nb: return self._fitConfiguration['functions'][self.getFitFunction()]\ ['function'](pars[nb:], x) else: return numpy.zeros(x.shape, numpy.float64) def evaluateDefinedFunction(self, x=None): if x is None: x = self._x y = self._evaluateBackground(x) y += self._evaluateFunction(x) return y def evaluateContributions(self, x=None): if x is None: x = self._x ddict = {} ddict["background"] = self._evaluateBackground(x) functionParameters, functionConstraints = [], [[],[],[]] fitFunction = self._fitConfiguration['fit']['fit_function'] if self._fitConfiguration['fit']['function_flag']: if fitFunction not in [None, "None", "NONE"]: fitFunctionDict = self._fitConfiguration['functions']\ [fitFunction] pars = self._fitResult['fittedvalues'] nb = self.__nBackgroundParameters ddict["contributions"] = [] ddict["function"] = numpy.zeros(x.shape, numpy.float64) nTotal = len(self.paramlist) if nTotal > nb: nParametersPerFunction = len(fitFunctionDict['parameters']) nContributions = (nTotal - nb) // nParametersPerFunction ddict["contributions"] = [None] * nContributions function = self._fitConfiguration['functions'] \ [self.getFitFunction()] ['function'] for i in range(nContributions): start = nb + i * nParametersPerFunction stop = start + nParametersPerFunction tmp = function(pars[start:stop], x) ddict["contributions"][i] = tmp ddict["function"] += tmp ddict["yfit"] = ddict["background"] + ddict["function"] return ddict def test(): from PyMca5.PyMca import SpecfitFunctions a=SpecfitFunctions.SpecfitFunctions() x = numpy.arange(1000).astype(numpy.float64) p1 = numpy.array([1500,100.,50.0]) p2 = numpy.array([1500,700.,50.0]) y = a.gauss(p1, x)+1 y = y + a.gauss(p2,x) fit = SimpleFit() fit.importFunctions(SpecfitFunctions) fit.setFitFunction('Gaussians') #fit.setBackgroundFunction('Gaussians') #fit.setBackgroundFunction('Constant') fit.setData(x, y) fit.fit() print("Expected parameters 1500,100.,50.0, 1500,700.,50.0") print("Found: ", fit.paramlist) from PyMca5.PyMca import PyMcaQt as qt from PyMca5.PyMca import Parameters a = qt.QApplication(sys.argv) a.lastWindowClosed.connect(a.quit) w =Parameters.Parameters() w.fillfromfit(fit.paramlist) w.show() a.exec() if __name__=="__main__": _logger.setLevel(logging.DEBUG) test() �����������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/SimpleFitUserEstimatedFunctions.py������������������������0000644�0000000�0000000�00000013057�14741736366�025526� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaMath.fitting import SpecfitFuns arctan = numpy.arctan exp = numpy.exp pi = numpy.pi class SimpleFitDefaultFunctions(object): def __init__(self): self.gaussian = SpecfitFuns.gauss self.areaGaussian = SpecfitFuns.agauss self.lorentzian = SpecfitFuns.lorentz self.areaLorentzian = SpecfitFuns.alorentz self.pseudoVoigt = SpecfitFuns.pvoigt self.areaPseudoVoigt = SpecfitFuns.apvoigt def hypermet(self,pars,x): """ Default hypermet function """ return SpecfitFuns.ahypermet(pars, x, 15, 0) def stepDown(self,pars,x): """ Complementary error function like. """ return 0.5*SpecfitFuns.downstep(pars,x) def stepUp(self,pars,x): """ Error function like. """ return 0.5*SpecfitFuns.upstep(pars,x) def slit(self,pars,x): """ Function to calulate slit width and knife edge cut """ return 0.5*SpecfitFuns.slit(pars,x) def atan(self, pars, x): result = 0.0 for i in range(len(pars) // 3): result += pars[3 * i + 0] * \ (0.5 + (arctan((1.0*x-pars[3 * i + 1])/pars[3 * i + 2])/pi)) return result def polynomial(self, pars, x): result = numpy.zeros(x.shape, numpy.float64) + pars[0] if len(pars) == 1: return result d = x * 1.0 for p in pars[1:]: result += p * d d *= d return result def exponential(self, pars, x): result = 0.0 for i in range(len(pars) // 2): result += pars[2 * i + 0] * exp(float(pars[2 * i + 1]) * x) return result fitfuns=SimpleFitDefaultFunctions() FUNCTION=[fitfuns.gaussian, fitfuns.lorentzian, fitfuns.pseudoVoigt, fitfuns.areaGaussian, fitfuns.areaLorentzian, fitfuns.areaPseudoVoigt, fitfuns.stepDown, fitfuns.stepUp, fitfuns.slit, fitfuns.atan, fitfuns.hypermet, fitfuns.polynomial, fitfuns.polynomial, fitfuns.polynomial, fitfuns.polynomial, fitfuns.polynomial, fitfuns.polynomial, fitfuns.exponential] PARAMETERS=[['Height','Position','Fwhm'], ['Height','Position','Fwhm'], ['Height','Position','Fwhm','Eta'], ['Area','Position','Fwhm'], ['Area','Position','Fwhm'], ['Area','Position','Fwhm','Eta'], ['Height','Position','FWHM'], ['Height','Position','FWHM'], ['Height','Position','FWHM','BeamFWHM'], ['Height','Position','Width'], ['G_Area','Position','FWHM', 'ST_Area','ST_Slope','LT_Area','LT_Slope','Step_H'], ['Constant'], ['Constant', 'Slope'], ['a(0)', 'a(1)', 'a(2)'], ['a(0)', 'a(1)', 'a(2)', 'a(3)'], ['a(0)', 'a(1)', 'a(2)', 'a(3)','a(4)'], ['a(0)', 'a(1)', 'a(2)', 'a(3)','a(4)', 'a(5)'], ['Factor', 'Slope'], ] THEORY=['User Estimated Gaussians', 'User Estimated Lorentzians', 'User Estimated Pseudo-Voigt', 'User Estimated Area Gaussians', 'User Estimated Area Lorentz', 'User Estimated Area Pseudo-Voigt', 'User Estimated Step Down', 'User Estimated Step Up', 'User Estimated Slit', 'User Estimated Atan', 'User Estimated Hypermet', 'User Estimated Constant', 'User Estimated First Order Polynomial', 'User Estimated Second Order Polynomial', 'User Estimated Third Order Polynomial', 'User Estimated Fourth Order Polynomial', 'User Estimated Fifth Order Polynomial', 'User Estimated Exponential', ] ESTIMATE = [] CONFIGURE = [] WIDGET = [] DERIVATIVE = [] for t in THEORY: ESTIMATE.append(None) CONFIGURE.append(None) WIDGET.append(None) DERIVATIVE.append(None) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/Specfit.py������������������������������������������������0000644�0000000�0000000�00000164101�14741736366�020634� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from . import SpecfitFuns from .Gefit import LeastSquaresFit from PyMca5.PyMcaCore import EventHandler _logger = logging.getLogger(__name__) class Specfit(object): #def __init__(self,x=None,y=None,sigmay=None): def __init__(self, *vars, **kw): self.fitconfig={} self.filterlist=[] self.filterdict={} self.theorydict={} self.theorylist=[] self.dataupdate=None if 'weight' in kw: self.fitconfig['WeightFlag']=kw['weight'] elif 'WeightFlag' in kw: self.fitconfig['WeightFlag']=kw['WeightFlag'] else: self.fitconfig['WeightFlag']=0 if 'mca' in kw: self.fitconfig['McaMode']=kw['mca'] elif 'McaMode' in kw: self.fitconfig['McaMode']=kw['McaMode'] else: self.fitconfig['McaMode']=0 if 'autofwhm' in kw: self.fitconfig['AutoFwhm']=kw['autofwhm'] elif 'AutoFwhm' in kw: self.fitconfig['AutoFwhm']=kw['AutoFwhm'] else: self.fitconfig['AutoFwhm']=0 if 'fwhm' in kw: self.fitconfig['FwhmPoints']=kw['fwhm'] elif 'FwhmPoints' in kw: self.fitconfig['FwhmPoints']=kw['FwhmPoints'] else: self.fitconfig['FwhmPoints']=8 if 'autoscaling' in kw: self.fitconfig['AutoScaling']=kw['autoscaling'] else: self.fitconfig['AutoScaling']=0 if 'Yscaling' in kw: self.fitconfig['Yscaling']=kw['Yscaling'] else: self.fitconfig['Yscaling']=1.0 if 'Sensitivity' in kw: self.fitconfig['Sensitivity']=kw['Sensitivity'] else: self.fitconfig['Sensitivity']=2.5 if 'ResidualsFlag' in kw: self.fitconfig['ResidualsFlag']=kw['ResidualsFlag'] elif 'Residuals' in kw: self.fitconfig['ResidualsFlag']=kw['Residuals'] else: self.fitconfig['ResidualsFlag']=0 if 'eh' in kw: self.eh=kw['eh'] else: self.eh=EventHandler.EventHandler() if len(self.theorydict.keys()): for key in self.theorydict.keys(): self.theorylist.append(key) self.bkgdict={'No Background':[self.bkg_none,[],None], 'Constant':[self.bkg_constant,['Constant'], self.estimate_builtin_bkg], 'Linear':[self.bkg_linear,['Constant','Slope'], self.estimate_builtin_bkg], 'Internal':[self.bkg_internal, ['Curvature','Iterations','Constant'], self.estimate_builtin_bkg]} #'Square Filter':[self.bkg_squarefilter, # ['Width','Constant'], # self.estimate_builtin_bkg]} self.bkglist=[] if self.bkgdict.keys() !=[]: for key in self.bkgdict.keys(): self.bkglist.append(key) self.fitconfig['fitbkg']='No Background' self.bkg_internal_oldx=numpy.array([]) self.bkg_internal_oldy=numpy.array([]) self.bkg_internal_oldpars=[0,0] self.bkg_internal_oldbkg=numpy.array([]) self.fitconfig['fittheory']=None self.xdata0=numpy.array([],numpy.float64) self.ydata0=numpy.array([],numpy.float64) self.sigmay0=numpy.array([],numpy.float64) self.xdata=numpy.array([],numpy.float64) self.ydata=numpy.array([],numpy.float64) self.sigmay=numpy.array([],numpy.float64) #if (y is not None): # self.setdata(x,y,sigmay) self.setdata(*vars,**kw) def setdata(self,*vars,**kw): if 'x' in kw: x=kw['x'] elif len(vars) >1: x=vars[0] else: x=None if 'y' in kw: y=kw['y'] elif len(vars) > 1: y=vars[1] elif len(vars) == 1: y=vars[0] else: y=None if 'sigmay' in kw: sigmay=kw['sigmay'] elif len(vars) >2: sigmay=vars[2] else: sigmay=None if y is None: return 1 else: self.ydata0=numpy.array(y) self.ydata=numpy.array(y) if x is None: self.xdata0=numpy.arange(len(self.ydata0)) self.xdata=numpy.arange(len(self.ydata0)) else: self.xdata0=numpy.array(x) self.xdata=numpy.array(x) if sigmay is None: dummy = numpy.sqrt(abs(self.ydata0)) self.sigmay0=numpy.reshape(dummy + numpy.equal(dummy,0),self.ydata0.shape) self.sigmay=numpy.reshape(dummy + numpy.equal(dummy,0),self.ydata0.shape) else: self.sigmay0=numpy.array(sigmay) self.sigmay=numpy.array(sigmay) if 'xmin' in kw: xmin=kw['xmin'] else: if len(self.xdata): xmin=min(self.xdata) if 'xmax' in kw: xmax=kw['xmax'] else: if len(self.xdata): xmax=max(self.xdata) if len(self.xdata): #sort the data i1=numpy.argsort(self.xdata) self.xdata=numpy.take(self.xdata,i1) self.ydata=numpy.take(self.ydata,i1) self.sigmay=numpy.take(self.sigmay,i1) #take the data between limits i1=numpy.nonzero((self.xdata >=xmin) & (self.xdata<=xmax))[0] self.xdata=numpy.take(self.xdata,i1) self.ydata=numpy.take(self.ydata,i1) self.sigmay=numpy.take(self.sigmay,i1) return 0 def filter(self,*vars,**kw): if len(vars) >0: xwork=vars[0] else: xwork=self.xdata0 if len(vars) >1: ywork=vars[1] else: ywork=self.ydata0 if len(vars) >2: sigmaywork=vars[2] else: sigmaywork=self.sigmay0 filterstatus=0 for i in self.filterlist: filterstatus += 1 try: xwork,ywork,sigmaywork=self.filterlist[i][0](xwork, ywork, sigmaywork, self.filterlist[i][1], self.filterlist[i][2]) except Exception: return filterstatus self.xdata=xwork self.ydata=ywork self.sigmay=sigmaywork return filterstatus def addfilter(self,filterfun,*vars,**kw): addfilterstatus=0 if 'filtername' in kw: filtername=kw['filtername'] else: kw['filtername']="Unknown" self.filterlist.append([filterfun,vars,kw]) return addfilterstatus def deletefilter(self,*vars,**kw): """ deletefilter(self,*vars,**kw) Deletes a filter from self.filterlist self.delete(2) just makes del(self.filterlist[2]) self.delete(filtername='sort') deletes any filter named sort """ if len(self.filterlist) == 0: return 100 varslist=list(vars) index=[] deleteerror=0 for item in varslist: if (type(item) == type([])) or \ (type(item) == type(())): for item0 in item: try: newindex=int(item0) except Exception: deleteerror=1 else: try: newindex=int(item0) except Exception: deleteerror=1 if newindex not in index: index.append(newindex) if 'filtername' in kw: newindex=0 atleast1=0 for item in self.filterlist: if item[2]['filtername'] == kw['filtername']: atleast1=1 if newindex not in index: index.append(newindex) if atleast1 == 0: deleteerror=2 if deleteerror: return deleteerror index.sort() index.reverse() imin=min(index) imax=max(index) if imin < 0: if imin < -len(self.filterlist): deleterror = 3 return deleteerror else: if imin >= len(self.filterlist): deleterror = 4 return deleteerror if imax < 0: if imax < -len(self.filterlist): deleterror = 3 return deleteerror else: if imax >= len(self.filterlist): deleterror = 4 return deleteerror for i in index: del(self.filterlist[i]) return 0 def addtheory(self, theory=None, function=None, parameters=None, estimate=None, configure=None, derivative=None): """ method addtheory(self, theory, function, parameters, estimate) Usage: self.addtheory(theory,function,parameters,estimate,configure=None) or self.addtheory(theory=theory, function=function, parameters=parameters, estimate=estimate) Input: theory: String with the name describing the function function: The actual function parameters: Parameters names ['p1','p2','p3',...] estimate: The initial parameters estimation function to be called if any configure: Optional function to be called to initialize parameters prior to fit derivative: Optional analytical derivative function. Its signature should be function(parameter_values, parameter_index, x) See Gefit.py module for more information. Output: Returns 0 if everything went fine or a positive number indicating the offending parameter """ if theory is None: return 1 if function is None: return 2 if parameters is None: return 3 self.theorydict[theory] = [function, parameters, estimate, configure, derivative] if theory not in self.theorylist: self.theorylist.append(theory) return 0 def addbackground(self, background=None, function=None, parameters=None, estimate=None): """ method addbackground(self, background, function, parameters, estimate) Usage: self.addbackground(background,function,parameters,estimate=None) Input: background: String with the name describing the function function: The actual function parameters: Parameters names ['p1','p2','p3',...] estimate: The initial parameters estimation function if any Output: Returns 0 if everything went fine or a positive number in- dicating the offending parameter """ if background is None: return 1 if function is None: return 2 if parameters is None: return 3 self.bkgdict[background] = [function, parameters, estimate] if background not in self.bkglist: self.bkglist.append(bkg) return 0 def settheory(self,theory): """ method: settheory(self,theory) Usage: self.settheory(theory) Input: theory: The name of the theory to be used. It has to be one of the keys of self.theorydict Output: returns 0 if everything went fine """ if theory in self.theorylist: self.fitconfig['fittheory']=theory self.theoryfun=self.theorydict[self.fitconfig['fittheory']][0] self.modelderiv = None if len(self.theorydict[self.fitconfig['fittheory']]) > 5: if self.theorydict[self.fitconfig['fittheory']][5] is not None: self.modelderiv = self.myderiv #I should generate a signal here ... return 0 else: return 1 def setbackground(self,theory): """ method: setbackground(self,background) Usage: self.setbackground(background) Input: theory: The name of the background to be used. It has to be one of the keys of self.bkgdict Output: returns 0 if everything went fine """ if theory in self.bkglist: self.fitconfig['fitbkg']=theory self.bkgfun=self.bkgdict[self.fitconfig['fitbkg']][0] #I should generate a signal here ... return 0 else: return 1 def fitfunction(self,pars,t): nb=len(self.bkgdict[self.fitconfig['fitbkg']][1]) #print "nb = ",nb #treat differently user and built in functions #if self.selected_th in self.conf.theory_list: if (0): if (nb>0): result = self.bkgfun(pars[0:nb],t) + \ self.theoryfun(pars[nb:len(pars)],t) else: result = self.theoryfun(pars,t) else: nu=len(self.theorydict[self.fitconfig['fittheory']][1]) niter=int((len(pars)-nb)/nu) u_term=numpy.zeros(numpy.shape(t),numpy.float64) if niter > 0: for i in range(niter): u_term= u_term+ \ self.theoryfun(pars[(nb+i*nu):(nb+(i+1)*nu)],t) if (nb>0): result = self.bkgfun(pars[0:nb],t) + u_term else: result = u_term if self.fitconfig['fitbkg'] == "Square Filter": result=result-pars[1] return pars[1]+self.squarefilter(result,pars[0]) else: return result def estimate(self,mcafit=0): """ Fill the parameters entries with an estimation made on the given data. """ self.state = 'Estimate in progress' self.chisq=None FitStatusChanged=self.eh.create('FitStatusChanged') self.eh.event(FitStatusChanged,data={'chisq':self.chisq, 'status':self.state}) CONS=['FREE', 'POSITIVE', 'QUOTED', 'FIXED', 'FACTOR', 'DELTA', 'SUM', 'IGNORE'] #make sure data are current if self.dataupdate is not None: if not mcafit: self.dataupdate() xx = self.xdata yy = self.ydata #estimate the background esti_bkg=self.estimate_bkg(xx,yy) bkg_esti_parameters = esti_bkg[0] bkg_esti_constrains = esti_bkg[1] try: zz = numpy.array(esti_bkg[2]) except Exception: zz = numpy.zeros(numpy.shape(yy),numpy.float64) #added scaling support yscaling=1.0 if 'AutoScaling' in self.fitconfig: if self.fitconfig['AutoScaling']: yscaling=self.guess_yscaling(y=yy) else: if 'Yscaling' in self.fitconfig: yscaling=self.fitconfig['Yscaling'] else: self.fitconfig['Yscaling']=yscaling else: self.fitconfig['AutoScaling']=0 if 'Yscaling' in self.fitconfig: yscaling=self.fitconfig['Yscaling'] else: self.fitconfig['Yscaling']=yscaling #estimate the function estimation = self.estimate_fun(xx,yy,zz,xscaling=1.0,yscaling=yscaling) fun_esti_parameters = estimation[0] fun_esti_constrains = estimation[1] #estimations are made #build the names self.final_theory=[] for i in self.bkgdict[self.fitconfig['fitbkg']][1]: self.final_theory.append(i) i=0 j=1 while (i < len(fun_esti_parameters)): for k in self.theorydict[self.fitconfig['fittheory']][1]: self.final_theory.append(k+"%d" % j) i=i+1 j=j+1 self.paramlist=[] param = self.final_theory j=0 i=0 k=0 xmin=min(xx) xmax=max(xx) #print "xmin = ",xmin,"xmax = ",xmax for pname in self.final_theory: if i < len(bkg_esti_parameters): self.paramlist.append({'name':pname, 'estimation':bkg_esti_parameters[i], 'group':0, 'code':CONS[int(bkg_esti_constrains[0][i])], 'cons1':bkg_esti_constrains[1][i], 'cons2':bkg_esti_constrains[2][i], 'fitresult':0.0, 'sigma':0.0, 'xmin':xmin, 'xmax':xmax}) i=i+1 else: if (j % len(self.theorydict[self.fitconfig['fittheory']][1])) == 0: k=k+1 if (CONS[int(fun_esti_constrains[0][j])] == "FACTOR") or \ (CONS[int(fun_esti_constrains[0][j])] == "DELTA"): fun_esti_constrains[1][j] = fun_esti_constrains[1][j] +\ len(bkg_esti_parameters) self.paramlist.append({'name':pname, 'estimation':fun_esti_parameters[j], 'group':k, 'code':CONS[int(fun_esti_constrains[0][j])], 'cons1':fun_esti_constrains[1][j], 'cons2':fun_esti_constrains[2][j], 'fitresult':0.0, 'sigma':0.0, 'xmin':xmin, 'xmax':xmax}) j=j+1 self.state = 'Ready to Fit' self.chisq=None self.eh.event(FitStatusChanged,data={'chisq':self.chisq, 'status':self.state}) return self.paramlist def estimate_bkg(self,xx,yy): if self.bkgdict[self.fitconfig['fitbkg']][2] is not None: return self.bkgdict[self.fitconfig['fitbkg']][2](xx,yy) else: return [],[[],[],[]] def estimate_fun(self,xx,yy,zz,xscaling=1.0,yscaling=None): if self.theorydict[self.fitconfig['fittheory']][2] is not None: return self.theorydict[self.fitconfig['fittheory']][2](xx, yy, zz, xscaling=xscaling, yscaling=yscaling) else: return [],[[],[],[]] def importfun(self,file): sys.path.append(os.path.dirname(file)) try: f=os.path.basename(os.path.splitext(file)[0]) newfun=__import__(f) except Exception: msg="Error importing module %s" % file #tkMessageBox.showerror('Error', msg) return 1 try: init = newfun.INIT init() except Exception: pass try: theory=newfun.THEORY except Exception: _logger.debug("No theory name") theory = "%s" % file try: parameters=newfun.PARAMETERS except Exception: #tkMessageBox.showerror('Error',"Missing PARAMETERS list") return 1 try: function=newfun.FUNCTION except Exception: #tkMessageBox.showerror('Error',"Missing FUNCTION") return 1 try: estimate=newfun.ESTIMATE except Exception: estimate=None try: derivative=newfun.DERIVATIVE except Exception: derivative=None try: configure=newfun.CONFIGURE except Exception: configure=None badluck=0 if type(theory) == type([]): for i in range(len(theory)): if derivative is not None: error=self.addtheory(theory[i], function[i], parameters[i], estimate[i], configure[i], derivative[i]) else: error=self.addtheory(theory[i], function[i], parameters[i], estimate[i], configure[i], None) if error: #tkMessageBox.showerror('Error',"Problem implementing user theory") badluck=1 else: error=self.addtheory(theory,function,parameters,estimate,configure,derivative) if error: #tkMessageBox.showerror('Error',"Problem implementing user theory") badluck=1 if badluck: _logger.warning("ERROR IMPORTING") return badluck def startfit(self,mcafit=0): """ Launch the fit routine """ if self.dataupdate is not None: if not mcafit: self.dataupdate() FitStatusChanged=self.eh.create('FitStatusChanged') self.state = 'Fit in progress' self.chisq=None self.eh.event(FitStatusChanged,data={'chisq':self.chisq, 'status':self.state}) param_list = self.final_theory length = len(param_list) param_val = [] param_constrains = [[],[],[]] flagconstrains=0 for param in self.paramlist: #print param['name'],param['group'],param['estimation'] param_val.append(param['estimation']) if (param['code'] != 'FREE') & (param['code'] != 0) & \ (param['code'] != 0.0) : flagconstrains=1 param_constrains [0].append(param['code']) param_constrains [1].append(param['cons1']) param_constrains [2].append(param['cons2']) data = [] i = 0 ywork=self.ydata*1.0 if self.fitconfig['fitbkg'] == "Square Filter": ywork=self.squarefilter(self.ydata,self.paramlist[0]['estimation']) for xval in self.xdata: if self.sigmay is None: data.append([xval,ywork[i]]) else: data.append([xval,ywork[i], self.sigmay[i]]) i = i + 1 try: if flagconstrains != 1: found = LeastSquaresFit(self.fitfunction,param_val,data, weightflag=self.fitconfig['WeightFlag'], model_deriv=self.modelderiv) else: found = LeastSquaresFit(self.fitfunction,param_val,data, constrains=param_constrains, weightflag=self.fitconfig['WeightFlag'], model_deriv=self.modelderiv) except Exception: #except 'LinearAlgebraError' : text = "%s" % sys.exc_info()[1] #if type(text) is not string._StringType: if type(text) is not type(" "): text = text.args if len(text): text = text[0] else: text = '' self.state = 'Fit error : %s' %text #print 'Fit error : %s' %text self.eh.event(FitStatusChanged,data={'chisq':self.chisq, 'status':self.state}) return i=0 for param in self.paramlist: if param['code'] != 'IGNORE': param['fitresult'] = found[0][i] param['sigma']= found[2][i] i = i + 1 self.chisq = found[1] self.state = 'Ready' self.eh.event(FitStatusChanged,data={'chisq':self.chisq, 'status':self.state}) def myderiv(self,param0,index,t0): nb=len(self.bkgdict[self.fitconfig['fitbkg']][1]) #nu=len(self.theorydict[self.fitconfig['fittheory']][1]) if index >= nb: if len(self.theorydict[self.fitconfig['fittheory']]) >5: if self.theorydict[self.fitconfig['fittheory']][5] is not None: return self.theorydict[self.fitconfig['fittheory']][5] (param0,index-nb,t0) else: return self.num_deriv(param0,index,t0) else: return self.num_deriv(param0,index,t0) else: return self.num_deriv(param0,index,t0) def num_deriv(self,param0,index,t0): #numerical derivative x=numpy.array(t0) delta = (param0[index] + numpy.equal(param0[index],0.0)) * 0.00001 newpar = param0.__copy__() newpar[index] = param0[index] + delta f1 = self.fitfunction(newpar, x) newpar[index] = param0[index] - delta f2 = self.fitfunction(newpar, x) return (f1-f2) / (2.0 * delta) def gendata(self,*vars,**kw): if 'x'in kw: x=kw['x'] elif len(vars) >0: x=vars[0] else: x=self.xdata if 'parameters' in kw: paramlist=kw['parameters'] elif 'paramlist' in kw: paramlist=kw['paramlist'] elif len(vars) >1: paramlist=vars[1] else: paramlist=self.paramlist noigno = [] for param in paramlist: if param['code'] != 'IGNORE': noigno.append(param['fitresult']) #next two lines gave problems with internal background after a zoom #newdata = self.fit_fun0(take(found[0],noigno).tolist(),numpy.array(self.xdata0)) #newdata = newdata * self.mondata0 newdata = self.fitfunction(noigno,numpy.array(x)) return newdata def bkg_constant(self,pars,x): """ Constant background """ return pars[0] * numpy.ones(numpy.shape(x),numpy.float64) def bkg_linear(self,pars,x): """ Linear background """ return pars[0] + pars [1] * x def bkg_internal(self,pars,x): """ Internal Background """ #fast #return self.zz #slow: recalculate the background as function of the parameters #yy=SpecfitFuns.subac(self.ydata*self.fitconfig['Yscaling'], # pars[0],pars[1]) if self.bkg_internal_oldpars[0] == pars[0]: if self.bkg_internal_oldpars[1] == pars[1]: if (len(x) == len(self.bkg_internal_oldx)) & \ (len(self.ydata) == len(self.bkg_internal_oldy)): #same parameters if numpy.sum(self.bkg_internal_oldx == x) == len(x): if numpy.sum(self.bkg_internal_oldy == self.ydata) == len(self.ydata): return self.bkg_internal_oldbkg + pars[2] * numpy.ones(numpy.shape(x),numpy.float64) self.bkg_internal_oldy=self.ydata self.bkg_internal_oldx=x self.bkg_internal_oldpars=pars try: idx = numpy.nonzero((self.xdata>=x[0]) & (self.xdata<=x[-1]))[0] except Exception: _logger.warning("ERROR %s", x) yy=numpy.take(self.ydata,idx) nrx=numpy.shape(x)[0] nry=numpy.shape(yy)[0] if nrx == nry: self.bkg_internal_oldbkg=SpecfitFuns.subac(yy,pars[0],pars[1]) return self.bkg_internal_oldbkg + pars[2] * numpy.ones(numpy.shape(x),numpy.float64) else: self.bkg_internal_oldbkg=SpecfitFuns.subac(numpy.take(yy,numpy.arange(0,nry,2)), pars[0],pars[1]) return self.bkg_internal_oldbkg + pars[2] * numpy.ones(numpy.shape(x),numpy.float64) def bkg_squarefilter(self,pars,x): """ Square filter Background """ #yy=self.squarefilter(self.ydata,pars[0]) return pars[1] * numpy.ones(numpy.shape(x),numpy.float64) def bkg_none(self,pars,x): """ Internal Background """ return numpy.zeros(x.shape,numpy.float64) def estimate_builtin_bkg(self,xx,yy): self.zz=SpecfitFuns.subac(yy,1.0001,1000) zz = self.zz npoints = len(zz) if self.fitconfig['fitbkg'] == 'Constant': #Constant background S = float(npoints) Sy = min(zz) fittedpar=[Sy] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) elif self.fitconfig['fitbkg'] == 'Internal': #Internal fittedpar=[1.000,10000,0.0] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) cons[0][0]= 3 cons[0][1]= 3 cons[0][2]= 3 elif self.fitconfig['fitbkg'] == 'No Background': #None fittedpar=[] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) elif self.fitconfig['fitbkg'] == 'Square Filter': fwhm=5 if 'AutoFwhm' in self.fitconfig: fwhm=self.guess_fwhm(y=y) elif 'fwhm' in self.fitconfig: fwhm=self.fitconfig['fwhm'] elif 'Fwhm' in self.fitconfig: fwhm=self.fitconfig['Fwhm'] elif 'FWHM' in self.fitconfig: fwhm=self.fitconfig['FWHM'] elif 'FwhmPoints' in self.fitconfig: fwhm=self.fitconfig['FwhmPoints'] #set an odd number if (fwhm % 2): fittedpar=[fwhm,0.0] else: fittedpar=[fwhm+1,0.0] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) cons[0][0]= 3 cons[0][1]= 3 else: S = float(npoints) Sy = numpy.sum(zz) Sx = float(numpy.sum(xx)) Sxx = float(numpy.sum(xx * xx)) Sxy = float(numpy.sum(xx * zz)) deno = S * Sxx - (Sx * Sx) if (deno != 0): bg = (Sxx * Sy - Sx * Sxy)/deno slop = (S * Sxy - Sx * Sy)/deno else: bg = 0.0 slop = 0.0 fittedpar=[bg/1.0,slop/1.0] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) return fittedpar,cons,zz def configure(self,**kw): """ Configure the current theory passing a dictionary to the supply method """ for key in self.fitconfig.keys(): if key in kw: self.fitconfig[key]=kw[key] result={} result.update(self.fitconfig) if self.fitconfig['fittheory'] is not None: if self.fitconfig['fittheory'] in self.theorydict.keys(): if self.theorydict[self.fitconfig['fittheory']][3] is not None: result.update(self.theorydict[self.fitconfig['fittheory']][3](**kw)) #take care of possible user interfaces for key in self.fitconfig.keys(): if key in result: self.fitconfig[key]=result[key] #make sure fitconfig is configured in case of having the same keys for key in self.fitconfig.keys(): if key in kw: self.fitconfig[key]=kw[key] if key == "fitbkg": error = self.setbackground(self.fitconfig[key]) if key == "fittheory": if self.fitconfig['fittheory'] is not None: error = self.settheory(self.fitconfig[key]) if error: _logger.warning("ERROR on background and/or theory configuration") result.update(self.fitconfig) return result def mcafit(self,*var,**kw): if (len(var) > 0) or (len(kw.keys()) > 0): if 'x' in kw: x=kw['x'] elif len(var) >1: x=var[0] else: x=None if 'y' in kw: y=kw['y'] elif len(var) == 1: y=var[0] elif len(var) > 1: y=var[1] else: y=self.ydata0 if 'sigmay' in kw: sigmay=kw['sigmay'] elif len(var) >2: sigmay=var[2] else: sigmay=None if x is None: x=numpy.arange(len(y)).astype(numpy.float64) if sigmay is None: self.setdata(x,y,**kw) else: self.setdata(x,y,sigmay,**kw) else: #make sure data are current if self.dataupdate is not None: self.dataupdate() y = self.ydata0 if 'debug' in kw: _logger.setLevel(logging.DEBUG) if 'Yscaling' in kw: if kw['Yscaling'] is not None: yscaling=kw['Yscaling'] elif 'yscaling' in kw: if kw['yscaling'] is not None: yscaling=kw['yscaling'] elif self.fitconfig['AutoScaling']: yscaling=self.guess_yscaling() else: yscaling=self.fitconfig['Yscaling'] if 'sensitivity' in kw: sensitivity=kw['sensitivity'] elif 'Sensitivity' in kw: sensitivity=kw['Sensitivity'] else: sensitivity=self.fitconfig['Sensitivity'] if 'fwhm' in kw: fwhm=kw['fwhm'] elif 'FwhmPoints' in kw: fwhm=kw['FwhmPoints'] elif self.fitconfig['AutoFwhm']: fwhm=self.guess_fwhm(y=y) else: fwhm=self.fitconfig['FwhmPoints'] fwhm=int(fwhm) #print self.fitconfig['FwhmPoints'] #print "yscaling = ",yscaling #print "fwhm = ",fwhm #print "sensitivity = ",sensitivity #removed this line self.fitconfig['fwhm']=fwhm #print "mca yscaling = ",yscaling,"fwhm = ",fwhm #needed to make sure same peaks are found self.configure(Yscaling=yscaling, #lowercase on purpose autoscaling=0, FwhmPoints=fwhm, Sensitivity=sensitivity) ysearch=self.ydata*yscaling npoints=len(ysearch) peaks=[] if npoints > (1.5)*fwhm: peaksidx=SpecfitFuns.seek(ysearch,0,npoints, fwhm, sensitivity) for idx in peaksidx: peaks.append(self.xdata[int(idx)]) _logger.debug("MCA Found peaks = %s", peaks) if len(peaks): regions=self.mcaregions(peaks,self.xdata[fwhm]-self.xdata[0]) else: regions=[] _logger.debug(" regions = %s", regions) #if the function needs a scaling just give it #removed estimate should deal with it #self.configure(Yscaling=yscaling,yscaling=yscaling) #removed, configure should deal with it #self.configure(fwhm=fwhm,FwhmPoints=fwhm) mcaresult=[] #import SimplePlot xmin0 = self.xdata[0] xmax0 = self.xdata[-1] for region in regions: if(0): idx=numpy.argsort(self.xdata0) self.xdata=numpy.take(self.xdata0,idx) self.ydata=numpy.take(self.ydata0,idx) #self.sigmay=numpy.take(self.sigmay0,idx) idx = numpy.nonzero((self.xdata>=region[0]) &\ (self.xdata<=region[1]))[0] self.xdata=numpy.take(self.xdata,idx) self.ydata=numpy.take(self.ydata,idx) self.setdata(self.xdata0,self.ydata0,self.sigmay0,xmin=region[0],xmax=region[1]) #SimplePlot.plot([self.xdata,self.ydata],yname='region to fit') if 0: #the calling program shoudl take care of sigma self.sigmay=numpy.sqrt(self.ydata/yscaling) self.sigmay=self.sigmay+numpy.equal(self.sigmay,0) self.estimate(mcafit=1) if self.state == 'Ready to Fit': self.startfit(mcafit=1) if self.chisq is not None: if self.fitconfig['ResidualsFlag']: while(self.chisq > 2.5): #awful fit, simple residuals search adding a gaussian(?) if (0): error=self.mcaresidualssearch_old() print("error = ",error) if not error: for param in self.paramlist: param['estimation']=param['fitresult'] self.startfit() newpar,newcons=self.mcaresidualssearch() if newpar != []: newg=1 for param in self.paramlist: newg=max(newg,int(float(param['group'])+1)) param['estimation']=param['fitresult'] i=-1 for pname in self.theorydict[self.fitconfig['fittheory']][1]: i=i+1 name=pname + "%d" % newg self.paramlist.append({'name':name, 'estimation':newpar[i], 'group':newg, 'code':newcons[0][i], 'cons1':newcons[1][i], 'cons2':newcons[2][i], 'fitresult':0.0, 'sigma':0.0}) self.startfit() else: break #import SimplePlot #SimplePlot.plot([self.xdata,(self.ydata-self.gendata())/self.sigmay], # xname='X',yname='Norm Residuals') mcaresult.append(self.mcagetresult()) self.setdata(self.xdata0,self.ydata0,xmin=xmin0,xmax=xmax0) #result=self.mcagetresult() #for (pos,area,sigma_area,mca_fwhm) in result['mca_areas']: # print "Pos = ",pos,"Area = ",area,"sigma_area =",sigma_area #for result in mcaresult: # for (pos,area,sigma_area,mca_fwhm) in result['mca_areas']: # print "Pos = ",pos,"Area = ",area,"sigma_area =",sigma_area return mcaresult def mcaregions(self,peaks,fwhm): mindelta=3.0*fwhm plusdelta=3.0*fwhm regions=[] xdata0 = min(self.xdata[0], self.xdata[-1]) xdata1 = max(self.xdata[0], self.xdata[-1]) for peak in peaks: x0=max(peak-mindelta, xdata0) x1=min(peak+plusdelta, xdata1) if regions == []: regions.append([x0,x1]) else: if x0 < regions[-1][0]: regions[-1][0]=x0 elif x0 < (regions[-1][1]): regions[-1][1]=x1 else: regions.append([x0,x1]) return regions def mcagetresult(self): result={} result['xbegin'] = min(self.xdata[0], self.xdata[-1]) result['xend'] = max(self.xdata[0], self.xdata[-1]) try: result['fitstate'] = self.state except Exception: result['fitstate'] = 'Unknown' result['fitconfig'] = self.fitconfig result['config'] = self.configure() result['paramlist'] = self.paramlist result['chisq'] = self.chisq result['mca_areas']=self.mcagetareas() return result def mcagetareas(self,**kw): if 'x' in kw: x=kw['x'] else: x=self.xdata if 'y' in kw: y=kw['y'] else: y=self.ydata if 'sigmay' in kw: sigmay=kw['sigmay'] else: sigmay=self.sigmay if 'parameters' in kw: paramlist=kw['parameters'] elif 'paramlist' in kw: paramlist=kw['paramlist'] else: paramlist=self.paramlist noigno = [] groups=[] for param in paramlist: if param['code'] != 'IGNORE': if (int(float(param['group'])) != 0): if param['group'] not in groups: groups.append(param['group']) result=[] for group in groups: noigno=[] pos=0 area=0 sigma_area=0 fwhm=0 for param in paramlist: if param['group'] != group: if param['code'] != 'IGNORE': noigno.append(param['fitresult']) else: if param['name'].find('Position') != -1: pos=param['fitresult'] if (param['name'].find('FWHM') != -1) | \ (param['name'].find('Fwhm') != -1) | \ (param['name'].find('fwhm') != -1): fwhm=param['fitresult'] #now I add everything around +/- 4 sigma #around the peak position sigma=fwhm/2.354 xmin = max(pos-3.99*sigma,min(x)) xmax = min(pos+3.99*sigma,max(x)) #xmin=min(x) #xmax=max(x) idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0] x_around=numpy.take(x,idx) y_around=numpy.take(y,idx) ybkg_around=numpy.take(self.fitfunction(noigno,x),idx) if 0: #only valid for MCA's!!! area=(numpy.sum(y_around-ybkg_around)) else: neto = y_around-ybkg_around deltax = x_around[1:] - x_around[0:-1] area=numpy.sum(neto[0:-1]*deltax) sigma_area=(numpy.sqrt(numpy.sum(y_around))) result.append([pos,area,sigma_area,fwhm]) #import SimplePlot #SimplePlot.plot([numpy.take(x,idx),y_around,ybkg_around]) #SimplePlot.plot([x,y,self.fitfunction(noigno,x)],yname='Peak Area') return result def guess_yscaling(self,*vars,**kw): if 'y' in kw: y=kw['y'] elif len(vars) > 0: y=vars[0] else: y=self.ydata zz=SpecfitFuns.subac(y,1.0,10) if 0: idx=numpy.nonzero(zz>(min(y/100.)))[0] yy=numpy.take(y,idx) yfit=numpy.take(zz,idx) elif 1: zz=numpy.convolve(y,[1.,1.,1.])/3.0 yy=y[1:-1] yfit=zz idx=numpy.nonzero(numpy.fabs(yy)>0.0)[0] yy=numpy.take(yy,idx) yfit=numpy.take(yfit,idx) else: yy=y yfit=zz #avoid case of dividing by 0 try: chisq=numpy.sum(((yy-yfit)*(yy-yfit))/(numpy.fabs(yy)*len(yy))) scaling=1./chisq except Exception: scaling=1.0 return scaling def guess_fwhm(self,**kw): if 'x' in kw: x=kw['x'] else: x=self.xdata if 'y' in kw: y=kw['y'] else: y=self.ydata #set at least a default value for the fwhm fwhm=4 zz=SpecfitFuns.subac(y,1.000,1000) yfit=y-zz #now I should do some sort of peak search ... maximum=max(yfit) idx=numpy.nonzero(yfit == maximum)[0] pos=numpy.take(x,idx)[-1] posindex=idx[-1] height=yfit[posindex] imin=posindex while ((yfit[imin] > 0.5*height) & (imin >0)): imin=imin - 1 imax=posindex while ((yfit[imax] > 0.5*height) & (imax <(len(yfit)-1))): imax=imax + 1 fwhm=max(imax-imin-1,fwhm) return fwhm def mcaresidualssearch(self,**kw): if 'y' in kw: y=kw['y'] else: y=self.ydata if 'x' in kw: x=kw['x'] else: x=self.xdata if 'sigmay' in kw: sigmay=kw['sigmay'] else: sigmay=self.sigmay if 'parameters' in kw: paramlist=kw['parameters'] elif 'paramlist' in kw: paramlist=kw['paramlist'] else: paramlist=self.paramlist newpar=[] newcodes=[[],[],[]] if self.fitconfig['fitbkg'] == 'Square Filter': y=self.squarefilter(y,paramlist[0]['estimation']) return newpar,newcodes areanotdone=1 #estimate the fwhm fwhm=10 fwhmcode='POSITIVE' fwhmcons1=0 fwhmcons2=0 i=-1 peaks=[] for param in paramlist: i=i+1 pname=param['name'] if (pname.find('FWHM') != -1) | \ (pname.find('Fwhm') != -1) | \ (pname.find('fwhm') != -1): fwhm=param['fitresult'] if (param['code'] == 'FREE') | \ (param['code'] == 'FIXED') | \ (param['code'] == 'QUOTED')| \ (param['code'] == 'POSITIVE')| \ (param['code'] == 0)| \ (param['code'] == 1)| \ (param['code'] == 2)| \ (param['code'] == 3): fwhmcode='FACTOR' fwhmcons1=i fwhmcons2=1.0 if pname.find('Position') != -1: peaks.append(param['fitresult']) #print "Residuals using fwhm = ",fwhm #calculate the residuals yfit = self.gendata(x=x,paramlist=paramlist) residuals=(y-yfit)/(sigmay+numpy.equal(sigmay,0.0)) #set to zero all the residuals around peaks for peak in peaks: idx=numpy.less(x,peak-0.8*fwhm)+numpy.greater(x,peak+0.8*fwhm) yfit=yfit*idx y=y*idx residuals=residuals*idx #estimate the position maxres=max(residuals) idx=numpy.nonzero(residuals == maxres)[0] pos=numpy.take(x,idx)[-1] #estimate the height! height=numpy.take(y-yfit,idx)[-1] if (height <= 0): return newpar,newcodes for pname in self.theorydict[self.fitconfig['fittheory']][1]: estimation=0.0 if pname.find('Position') != -1: estimation=pos code='QUOTED' cons1=pos-0.5*fwhm cons2=pos+0.5*fwhm elif pname.find('Area')!= -1: if areanotdone: areanotdone=0 area=(height * fwhm / (2.0*numpy.sqrt(2*numpy.log(2))))* \ numpy.sqrt(2*numpy.pi) if area <= 0: return [],[[],[],[]] estimation=area code='POSITIVE' cons1=0.0 cons2=0.0 else: estimation=0.0 code='FIXED' cons1=0.0 cons2=0.0 elif (pname.find('FWHM') != -1) | \ (pname.find('Fwhm') != -1) | \ (pname.find('fwhm') != -1): estimation=fwhm code=fwhmcode cons1=fwhmcons1 cons2=fwhmcons2 else: estimation=0.0 code='FIXED' cons1=0.0 cons2=0.0 newpar.append(estimation) newcodes[0].append(code) newcodes[1].append(cons1) newcodes[2].append(cons2) return newpar,newcodes def mcaresidualssearch_old(self,**kw): if 'y' in kw: y=kw['y'] else: y=self.ydata if 'x' in kw: x=kw['x'] else: x=self.xdata if 'sigmay' in kw: sigmay=kw['sigmay'] else: sigmay=self.sigmay if 'parameters' in kw: paramlist=kw['parameters'] elif 'paramlist' in kw: paramlist=kw['paramlist'] else: paramlist=self.paramlist areanotdone=1 newg=1 for param in self.paramlist: newg=max(newg,int(float(param['group'])+1)) if newg == 1: return areanotdone #estimate the fwhm fwhm=10 fwhmcode='POSITIVE' fwhmcons1=0 fwhmcons2=0 i=-1 peaks=[] for param in paramlist: i=i+1 pname=param['name'] if (pname.find('FWHM') != -1) | \ (pname.find('Fwhm') != -1) | \ (pname.find('fwhm') != -1): fwhm=param['fitresult'] if (param['code'] == 'FREE') | \ (param['code'] == 'FIXED') | \ (param['code'] == 'QUOTED')| \ (param['code'] == 'POSITIVE')| \ (param['code'] == 0)| \ (param['code'] == 1)| \ (param['code'] == 2)| \ (param['code'] == 3): fwhmcode='FACTOR' fwhmcons1=i fwhmcons2=1.0 if pname.find('Position') != -1: peaks.append(param['fitresult']) #calculate the residuals yfit = self.gendata(x=x,paramlist=paramlist) residuals=(y-yfit)/(sigmay + numpy.equal(sigmay,0.0)) #set to zero all the residuals around peaks for peak in peaks: idx=numpy.less(x,peak-0.8*fwhm)+numpy.greater(x,peak+0.8*fwhm) yfit=yfit*idx y=y*idx residuals=residuals*idx #estimate the position maxres=max(residuals) idx=numpy.nonzero(residuals == maxres)[0] pos=numpy.take(x,idx)[-1] #estimate the height! height=numpy.take(y-yfit,idx)[-1] for pname in self.theorydict[self.fitconfig['fittheory']][1]: estimation=0.0 name=pname+ "%d" % newg self.final_theory.append(pname) if pname.find('Position') != -1: estimation=pos code='QUOTED' cons1=pos-0.5*fwhm cons2=pos+0.5*fwhm elif pname.find('Area')!= -1: if areanotdone: areanotdone=0 estimation=(height * fwhm / (2.0*numpy.sqrt(2*numpy.log(2))))* \ numpy.sqrt(2*numpy.pi) code='POSITIVE' cons1=0.0 cons2=0.0 else: estimation=0.0 code='FIXED' cons1=0.0 cons2=0.0 elif (pname.find('FWHM') != -1) | \ (pname.find('Fwhm') != -1) | \ (pname.find('fwhm') != -1): estimation=fwhm code=fwhmcode cons1=fwhmcons1 cons2=fwhmcons2 else: estimation=0.0 code='FIXED' cons1=0.0 cons2=0.0 paramlist.append({'name':pname, 'estimation':estimation, 'group':newg, 'code':code, 'cons1':cons1, 'cons2':cons2, 'fitresult':0.0, 'sigma':0.0}) return areanotdone def numderiv(self,*vars,**kw): """ numeriv(self,*vars,**kw) Usage: self.numderiv(x,y) self.numderiv(x=x,y=y) self.numderiv() """ if 'y' in kw: ydata=kw['y'] elif len(vars) > 1: ydata=vars[1] else: ydata=self.y if 'x' in kw: xdata=kw['x'] elif len(vars) > 0: xdata=vars[0] else: xdata=self.x f=[1,-1] x=numpy.array(xdata) y=numpy.array(ydata) x,y = self.pretreat(x,y) deltax=numpy.convolve(x,f,mode=0) i1=numpy.nonzero(abs(deltax)>0.0000001)[0] deltay=numpy.convolve(y,f,mode=0) deno=numpy.take(deltax,i1) num=numpy.take(deltay,i1) #Still what to do with the first and last point ... try: derivfirst=numpy.array((y[1]-y[0])/(x[1]-x[0])) except Exception: derivfirst=numpy.array([]) try: derivlast= numpy.array((y[-1]-y[-2])/(x[-1]-x[-2])) except Exception: derivlast=numpy.array([]) result=numpy.zeros(len(i1)+1,numpy.float64) result[1:len(i1)]=0.5*((num[0:-1]/deno[0:-1])+\ (num[1:]/deno[1:])) if len(derivfirst): result[0]=derivfirst else: result[0]=result[1]*1.0 if len(derivlast): result[-1]=derivlast else: result[-1]=result[-2]*1.0 if type(ydata) == type(numpy.array([])): return result else: return result.list def pretreat(self,xdata,ydata,xmin=None,xmax=None,): if xmax is None: xmax = max(xdata) if xmin is None: xmin = min(xdata) #sort data i1=numpy.argsort(xdata) xdata=numpy.take(xdata,i1) ydata=numpy.take(ydata,i1) #take values between limits i1 = numpy.nonzero(xdata<=xmax)[0] xdata = numpy.take(xdata,i1) ydata = numpy.take(ydata,i1) i1 = numpy.nonzero(xdata>=xmin)[0] xdata = numpy.take(xdata,i1) ydata = numpy.take(ydata,i1) #OK with the pre-treatment return xdata,ydata def smooth(self,*vars,**kw): """ smooth(self,*vars,**kw) Usage: self.smooth(y) self.smooth(y=y) self.smooth() """ if 'y' in kw: ydata=kw['y'] elif len(vars) > 0: ydata=vars[0] else: ydata=self.y f=[0.25,0.5,0.25] result=numpy.array(ydata) if len(result) > 1: result[1:-1]=numpy.convolve(result,f,mode=0) result[0]=0.5*(result[0]+result[1]) result[-1]=0.5*(result[-1]+result[-2]) if type(ydata) == type(numpy.array([])): return result else: return result.list def squarefilter(self,*vars): if len(vars) > 0: y=vars[0] else: y=self.y if len(vars) > 1: width=vars[1] elif 'FwhmPoints' in self.fitconfig: width=self.fitconfig['FwhmPoints'] else: width=5 w = int(width) + ((int(width)+1) % 2) u = int(w/2) coef=numpy.zeros((2*u+w),numpy.float64) coef[0:u]=-0.5/float(u) coef[u:(u+w)]=1.0/float(w) coef[(u+w):len(coef)]=-0.5/float(u) if len(y) == 0: if type(y) == type([]): return [] else: return numpy.array([]) else: if len(y) < len(coef): return y else: result=numpy.zeros(len(y),numpy.float64) result[(w-1):-(w-1)]=numpy.convolve(y,coef,0) result[0:w-1]=result[w-1] result[-(w-1):]=result[-(w+1)] #import SimplePlot #SimplePlot.plot([self.xdata,y,result],yname='filter') return result def test(): from PyMca5.PyMcaMath.fitting import SpecfitFunctions a=SpecfitFunctions.SpecfitFunctions() x = numpy.arange(1000).astype(numpy.float64) p1 = numpy.array([1500,100.,50.0]) p2 = numpy.array([1500,700.,50.0]) y = a.gauss(p1,x)+1 y = y + a.gauss(p2,x) fit=Specfit() fit.setdata(x=x,y=y) fit.importfun(os.path.join(os.path.dirname(__file__),"SpecfitFunctions.py")) fit.settheory('Gaussians') #print fit.configure() fit.setbackground('Constant') if 1: fit.estimate() fit.startfit() else: fit.mcafit() print("Searched parameters = ",[1,1500,100.,50.0,1500,700.,50.0]) print("Obtained parameters : ") for param in fit.paramlist: print(param['name'],' = ',param['fitresult']) print("chisq = ",fit.chisq) if __name__ == "__main__": test() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/SpecfitFunctions.py���������������������������������������0000644�0000000�0000000�00000141232�14741736366�022525� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy import logging arctan = numpy.arctan from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaMath.fitting.Gefit import LeastSquaresFit _logger = logging.getLogger(__name__) try: HOME=os.getenv('HOME') except Exception: HOME=None if HOME is not None: os.environ['HOME'] = HOME else: os.environ['HOME'] = "." SPECFITFUNCTIONS_DEFAULTS={'FileAction':0, 'infile':os.environ['HOME']+'/.specfitdefaults.py', 'outfile':os.environ['HOME']+'/.specfitdefaults.py', 'Geometry':"600x400+50+50", 'NoConstrainsFlag':0, 'BackgroundIndex':1, #'TheoryIndex':0, 'PosFwhmFlag':1, 'HeightAreaFlag':1, 'SameFwhmFlag':1, 'PositionFlag':0, 'EtaFlag':0, 'WeightFlag':0, 'Yscaling':1.0, 'Xscaling':1.0, 'FwhmPoints':8, 'AutoFwhm':0, 'Sensitivity':2.5, 'ForcePeakPresence':0, 'McaMode':0, #Hypermet 'HypermetTails':15, 'QuotedFwhmFlag':0, 'MaxFwhm2InputRatio':1.5, 'MinFwhm2InputRatio':0.4, #short tail parameters 'MinGaussArea4ShortTail':50000., 'InitialShortTailAreaRatio':0.050, 'MaxShortTailAreaRatio':0.100, 'MinShortTailAreaRatio':0.0010, 'InitialShortTailSlopeRatio':0.70, 'MaxShortTailSlopeRatio':2.00, 'MinShortTailSlopeRatio':0.50, #long tail parameters 'MinGaussArea4LongTail':1000.0, 'InitialLongTailAreaRatio':0.050, 'MaxLongTailAreaRatio':0.300, 'MinLongTailAreaRatio':0.010, 'InitialLongTailSlopeRatio':20.0, 'MaxLongTailSlopeRatio':50.0, 'MinLongTailSlopeRatio':5.0, #step tail 'MinGaussHeight4StepTail':5000., 'InitialStepTailHeightRatio':0.002, 'MaxStepTailHeightRatio':0.0100, 'MinStepTailHeightRatio':0.0001, #Hypermet constraints 'QuotedPositionFlag':1, 'DeltaPositionFwhmUnits':0.5, 'SameSlopeRatioFlag':1, 'SameAreaRatioFlag':1} CFREE = 0 CPOSITIVE = 1 CQUOTED = 2 CFIXED = 3 CFACTOR = 4 CDELTA = 5 CSUM = 6 CIGNORED = 7 class SpecfitFunctions(object): def __init__(self,config=None): if config is None: self.config=SPECFITFUNCTIONS_DEFAULTS else: self.config=config def gauss(self,pars,x): """ A fit function. """ return SpecfitFuns.gauss(pars,x) def agauss(self,pars,x): """ A fit function. """ return SpecfitFuns.agauss(pars,x) def hypermet(self,pars,x): """ A fit function. """ return SpecfitFuns.ahypermet(pars,x,self.config['HypermetTails'],0) def lorentz(self,pars,x): """ Fit function. """ #return pars[0] + pars [1] * x + SpecfitFuns.lorentz(pars[2:len(pars)],x) return SpecfitFuns.lorentz(pars,x) def alorentz(self,pars,x): """ Fit function. """ return SpecfitFuns.alorentz(pars,x) def pvoigt(self,pars,x): """ Fit function. """ return SpecfitFuns.pvoigt(pars,x) #return pars[0] + pars [1] * x + SpecfitFuns.pvoigt(pars[2:len(pars)],x) def apvoigt(self,pars,x): """ Fit function. """ return SpecfitFuns.apvoigt(pars,x) #return pars[0] + pars [1] * x + SpecfitFuns.apvoigt(pars[2:len(pars)],x) def splitgauss(self,pars,x): """ Asymmetric gaussian. """ return SpecfitFuns.splitgauss(pars,x) def splitlorentz(self,pars,x): """ Asymmetric lorentz. """ return SpecfitFuns.splitlorentz(pars,x) def splitpvoigt(self,pars,x): """ Asymmetric pseudovoigt. """ return SpecfitFuns.splitpvoigt(pars,x) def stepdown(self,pars,x): """ A fit function. """ return SpecfitFuns.downstep(pars,x) def stepup(self,pars,x): """ A fit function. """ return SpecfitFuns.upstep(pars,x) def slit(self,pars,x): """ A fit function. """ return 0.5*SpecfitFuns.slit(pars,x) def atan(self, pars, x): return pars[0] * (0.5 + (arctan((1.0*x-pars[1])/pars[2]) / numpy.pi)) def periodic_gauss(self, pars, x): """ Fit function periodic_gauss(pars, x) pars = [npeaks, delta, height, position, fwhm] """ newpars = numpy.zeros((int(pars[0]), 3), numpy.float64) for i in range(int(pars[0])): newpars[i, 0] = pars[2] newpars[i, 1] = pars[3] + i * pars[1] newpars[:, 2] = pars[4] return SpecfitFuns.gauss(newpars,x) def gauss2(self,param0,t0): param=numpy.array(param0) t=numpy.array(t0) dummy=2.3548200450309493*(t-param[1])/param[2] return param[0] * self.myexp(-0.5 * dummy * dummy) def myexp(self,x): # put a (bad) filter to avoid over/underflows # with no python looping return numpy.exp(x * numpy.less(abs(x),250))-1.0*numpy.greater_equal(abs(x),250) def indexx(x): #adapted from runningReport (Mike Fletcher, Python newsgroup) set = map(None,x,range(len(x))) set.sort() #sorts by values and then by index return map(lambda x:x[1],set) def bkg_constant(self, pars, x): """ Constant background """ return pars[0] * numpy.ones_like(x) def bkg_linear(self, pars, x): """ Linear background """ return pars[0] + pars[1] * x def bkg_internal(self,pars,x): """ Internal Background """ #fast #return self.zz #slow: recalculate the background as function of the parameters #yy=SpecfitFuns.subac(self.ydata*self.fitconfig['Yscaling'], # pars[0],pars[1]) yy=SpecfitFuns.subac(self.ydata*1.0, pars[0],pars[1]) nrx=shape(x)[0] nry=shape(yy)[0] if nrx == nry: return SpecfitFuns.subac(yy,pars[0],pars[1]) else: return SpecfitFuns.subac(numpy.take(yy,numpy.arange(0,nry,2)),pars[0],pars[1]) def bkg_none(self,pars,x): """ Internal Background """ return numpy.zeros(x.shape,numpy.float64) def fun(self,param, t): gterm = param[2] * numpy.exp(-0.5 * ((t - param[3]) * (t - param[3]))/param[4]) #gterm = gterm + param[3] * numpy.exp(-0.5 * ((t - param[4]) * (t - param[4]))/param[5]) bterm = param[1] * t + param[0] return gterm + bterm def estimate(self,x,y,z,xscaling=1.0,yscaling=1.0): ngauss = input(' Number of Gaussians : ') ngauss=int(ngauss) if ngauss < 1: ngauss=1 newpar=[] for i in range(ngauss): _logger.info("Defining Gaussian numer %d ", i+1) newpar.append(input('Height = ')) newpar.append(input('Position = ')) newpar.append(input('FWHM = ')) #newpar.append(in) return newpar,numpy.zeros((3,len(newpar)),numpy.float64) def seek(self,y,x=None,yscaling=None, fwhm=None, sensitivity=None, mca=None): """ SpecfitFunctions.seek(self,y, x=None, yscaling=None,fwhm=None,sensitivity=None, mca=None) It searches for peaks in the y array. If x it is given, it gives back the closest x(s) to the position of the peak(s). Otherways it gives back the index of the closest point to the peak. """ if yscaling is None: yscaling=self.config['Yscaling'] if fwhm is None: if self.config['AutoFwhm']: fwhm=self.guess_fwhm(x=x,y=y) else: fwhm=self.config['FwhmPoints'] if sensitivity is None: sensitivity=self.config['Sensitivity'] if mca is None: mca=self.config['McaMode'] search_fwhm=int(max(fwhm,3)) search_sensitivity=max(1.0,sensitivity) mca=1.0 if mca: ysearch = numpy.array(y) * yscaling else: ysearch = numpy.ones([len(y) + 2 * search_fwhm,], numpy.float64) if y[0]: ysearch[0:(search_fwhm+1)]=ysearch[0:(search_fwhm+1)]*y[0]*yscaling else: ysearch[0:(search_fwhm+1)]=ysearch[0:(search_fwhm+1)]*yscaling*sum(y[0:3])/3.0 ysearch[-1:-(search_fwhm+1):-1]=ysearch[-1:-(search_fwhm+1):-1]*y[len(y)-1]*yscaling ysearch[search_fwhm:(search_fwhm+len(y))]=y*yscaling npoints=len(ysearch) if npoints > (1.5)*search_fwhm: peaks=SpecfitFuns.seek(ysearch,0,npoints, search_fwhm, search_sensitivity) else: peaks=[] if len(peaks) > 0: if mca == 0: for i in range(len(peaks)): peaks[i]=int(peaks[i]-search_fwhm) for i in peaks: if (i < 1) | (i > (npoints-1)): peaks.remove(i) if x is not None: if len(x) == len(y): for i in range(len(peaks)): peaks[i]=x[int(max(peaks[i],0))] #print "peaks found = ",peaks,"mca =",mca,"fwhm=",search_fwhm,\ # "sensi=",search_sensitivity,"scaling=",yscaling return peaks def guess_fwhm(self, **kw): if 'y' in kw: y=kw['y'] else: return self.config['FwhmPoints'] if 'x' in kw: x=kw['x'] else: x=numpy.arange(len(y))*1.0 #set at least a default value for the fwhm fwhm=4 zz=SpecfitFuns.subac(y,1.000,1000) yfit=y-zz #now I should do some sort of peak search ... maximum = max(yfit) idx = numpy.nonzero(yfit == maximum)[0] pos = numpy.take(x,idx)[-1] posindex = idx[-1] height = yfit[posindex] imin = posindex while ((yfit[imin] > 0.5*height) & (imin >0)): imin=imin - 1 imax=posindex while ((yfit[imax] > 0.5*height) & (imax <(len(yfit)-1))): imax=imax + 1 fwhm=max(imax-imin-1,fwhm) return fwhm def estimate_constant(self, xx, yy, zzz, xscaling=1.0, yscaling=None): estimated_par = [min(yy)] constraints = [[0], [0], [0]] return estimated_par, constraints def estimate_linear(self, xx, yy, zzz, xscaling=1.0, yscaling=None): # compute strip bg and use it to estimate the linear bg parameters zz = SpecfitFuns.subac(yy, 1.000, 10000) n = float(len(zz)) Sy = numpy.sum(zz) Sx = float(numpy.sum(xx)) Sxx = float(numpy.sum(xx * xx)) Sxy = float(numpy.sum(xx * zz)) deno = n * Sxx - (Sx * Sx) if deno != 0: bg = (Sxx * Sy - Sx * Sxy) / deno slope = (n * Sxy - Sx * Sy) / deno else: bg = 0.0 slope = 0.0 estimated_par = [bg, slope] # code = 0: FREE constraints = [[0, 0], [0, 0], [0, 0]] return estimated_par, constraints def estimate_gauss(self,xx,yy,zzz,xscaling=1.0,yscaling=None): if yscaling == None: try: yscaling=self.config['Yscaling'] except KeyError: yscaling=1.0 if yscaling == 0: yscaling=1.0 fittedpar=[] zz=SpecfitFuns.subac(yy,1.000,10000) npoints = len(zz) if self.config['AutoFwhm']: search_fwhm=self.guess_fwhm(x=xx,y=yy) else: search_fwhm=int(float(self.config['FwhmPoints'])) search_sens=float(self.config['Sensitivity']) search_mca=int(float(self.config['McaMode'])) if search_fwhm < 3: search_fwhm = 3 self.config['FwhmPoints']=3 if search_sens < 1: search_sens = 1 self.config['Sensitivity']=1 if npoints > 1.5*search_fwhm: peaks=self.seek(yy,fwhm=search_fwhm, sensitivity=search_sens, yscaling=yscaling, mca=search_mca) #print "estimate peaks = ",peaks #peaks=self.seek(yy-zz,fwhm=search_fwhm, # sensitivity=search_sens, # yscaling=yscaling, # mca=search_mca) else: peaks = [] if not len(peaks): mca = int(float(self.config.get('McaMode', 0))) forcePeak = int(float(self.config.get('ForcePeakPresence', 0))) if (not mca) and forcePeak: delta = yy - zz peaks = [int(numpy.nonzero(delta == delta.max())[0])] #print "peaks = ",peaks #print "peaks subac = ",self.seek(yy-zz,fwhm=search_fwhm, # sensitivity=search_sens, # yscaling=yscaling, # mca=search_mca) largest_index = 0 if len(peaks) > 0: j = 0 for i in peaks: if j == 0: sig=5*abs(xx[npoints-1]-xx[0])/npoints peakpos = xx[int(i)] if abs(peakpos) < 1.0e-16: peakpos = 0.0 param = numpy.array([yy[int(i)] - zz[int(i)], peakpos ,sig]) largest = param else: param2 = numpy.array([yy[int(i)] - zz [int(i)], xx[int(i)] ,sig]) param = numpy.concatenate((param,param2)) if (param2[0] > largest[0]): largest = param2 largest_index = j j = j + 1 xw = numpy.resize(xx,(npoints,1)) if (0): sy = numpy.sqrt(abs(yy)) yw = numpy.resize(yy-zz,(npoints,1)) sy = numpy.resize(sy,(npoints,1)) datawork = numpy.concatenate((xw,yw,sy),1) else: yw = numpy.resize(yy-zz,(npoints,1)) datawork = numpy.concatenate((xw,yw),1) cons = numpy.zeros((3,len(param)),numpy.float64) cons [0] [0:len(param):3] = CPOSITIVE #force peaks to stay around their position if (1): cons [0] [1:len(param):3] = CQUOTED #This does not work!!!! #FWHM should be given in terms of X not of points! #cons [1] [1:len(param):3] = param[1:len(param):3]-0.5*search_fwhm #cons [2] [1:len(param):3] = param[1:len(param):3]+0.5*search_fwhm if len(xw) > search_fwhm: fwhmx = numpy.fabs(xw[int(search_fwhm)]-xw[0]) cons [1] [1:len(param):3] = param[1:len(param):3]-0.5*fwhmx cons [2] [1:len(param):3] = param[1:len(param):3]+0.5*fwhmx else: cons [1] [1:len(param):3] = numpy.ones(shape(param[1:len(param):3]),numpy.float64)*min(xw) cons [2] [1:len(param):3] = numpy.ones(shape(param[1:len(param):3]),numpy.float64)*max(xw) if 0: cons [0] [2:len(param):3] = CFACTOR cons [1] [2:len(param):3] = 2 cons [2] [2:len(param):3] = 1.0 cons [0] [2] = CPOSITIVE cons [1] [2] = 0 cons [2] [2] = 0 else: cons [0] [2:len(param):3] = CPOSITIVE fittedpar, chisq, sigmapar = LeastSquaresFit(SpecfitFuns.gauss,param, datawork, weightflag=self.config['WeightFlag'], maxiter=4,constrains=cons.tolist()) #I already have the estimation #yw=yy-zz-SpecfitFuns.gauss(fittedpar,xx) #if DEBUG: # SimplePlot.plot([xx,yw]) #print self.seek(yw,\ # fwhm=search_fwhm,\ # sensitivity=search_sens,\ # yscaling=yscaling) #else: # #Use SPEC estimate ... # peakpos,height,myidx = SpecArithmetic.search_peak(xx,yy-zz) # fwhm,cfwhm = SpecArithmetic.search_fwhm(xx,yy-zz, # peak=peakpos,index=myidx) # xx = numpy.array(xx) # if npoints > 2: # #forget SPEC estimation of fwhm # fwhm=5*abs(xx[npoints-1]-xx[0])/npoints # fittedpar=[height,peakpos,fwhm] # largest=numpy.array([height,peakpos,fwhm]) # peaks=[peakpos] cons = numpy.zeros((3,len(fittedpar)),numpy.float64) j=0 for i in range(len(peaks)): #Setup height area constrains if self.config['NoConstrainsFlag'] == 0: if self.config['HeightAreaFlag']: #POSITIVE = 1 cons[0] [j] = 1 cons[1] [j] = 0 cons[2] [j] = 0 j=j+1 #Setup position constrains if self.config['NoConstrainsFlag'] == 0: if self.config['PositionFlag']: #QUOTED = 2 cons[0][j]=2 cons[1][j]=min(xx) cons[2][j]=max(xx) j=j+1 #Setup positive FWHM constrains if self.config['NoConstrainsFlag'] == 0: if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][j]=1 cons[1][j]=0 cons[2][j]=0 if self.config['SameFwhmFlag']: if (i != largest_index): #FACTOR=4 cons[0][j]=4 cons[1][j]=3*largest_index+2 cons[2][j]=1.0 j=j+1 return fittedpar,cons def estimate_lorentz(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) return fittedpar,cons def estimate_agauss(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) #get the number of found peaks npeaks=int(len(cons[0])/3) for i in range(npeaks): height = fittedpar[3*i] fwhm = fittedpar[3*i+2] fittedpar[3*i] = (height * fwhm / (2.0*numpy.sqrt(2*numpy.log(2))))*numpy.sqrt(2 * numpy.pi) return fittedpar,cons def estimate_alorentz(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) #get the number of found peaks npeaks=int(len(cons[0])/3) for i in range(npeaks): height = fittedpar[3*i] fwhm = fittedpar[3*i+2] fittedpar[3*i] = (height * fwhm * 0.5 * numpy.pi) return fittedpar,cons def estimate_splitgauss(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar, cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) #get the number of found peaks npeaks=int(len(cons[0])/3) estimated_parameters = [] estimated_constraints = numpy.zeros((3, 4*npeaks),numpy.float64) for i in range(npeaks): for j in range(3): estimated_parameters.append(fittedpar[3*i+j]) estimated_parameters.append(fittedpar[3*i+2]) estimated_constraints[0][4*i] = cons [0][3*i] estimated_constraints[0][4*i+1] = cons [0][3*i+1] estimated_constraints[0][4*i+2] = cons [0][3*i+2] estimated_constraints[0][4*i+3] = cons [0][3*i+2] estimated_constraints[1][4*i] = cons [1][3*i] estimated_constraints[1][4*i+1] = cons [1][3*i+1] estimated_constraints[1][4*i+2] = cons [1][3*i+2] estimated_constraints[1][4*i+3] = cons [1][3*i+2] estimated_constraints[2][4*i] = cons [2][3*i] estimated_constraints[2][4*i+1] = cons [2][3*i+1] estimated_constraints[2][4*i+2] = cons [2][3*i+2] estimated_constraints[2][4*i+3] = cons [2][3*i+2] if cons[0][3*i+2] == 4: #same FWHM case estimated_constraints[1][4*i+2] = int(cons[1][3*i+2]/3) * 4 + 2 estimated_constraints[1][4*i+3] = int(cons[1][3*i+2]/3) * 4 + 3 return estimated_parameters, estimated_constraints def estimate_splitlorentz(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar, cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) #get the number of found peaks npeaks=int(len(cons[0])/3) estimated_parameters = [] estimated_constraints = numpy.zeros((3, 4*npeaks),numpy.float64) for i in range(npeaks): for j in range(3): estimated_parameters.append(fittedpar[3*i+j]) estimated_parameters.append(fittedpar[3*i+2]) estimated_constraints[0][4*i] = cons [0][3*i] estimated_constraints[0][4*i+1] = cons [0][3*i+1] estimated_constraints[0][4*i+2] = cons [0][3*i+2] estimated_constraints[0][4*i+3] = cons [0][3*i+2] estimated_constraints[1][4*i] = cons [1][3*i] estimated_constraints[1][4*i+1] = cons [1][3*i+1] estimated_constraints[1][4*i+2] = cons [1][3*i+2] estimated_constraints[1][4*i+3] = cons [1][3*i+2] estimated_constraints[2][4*i] = cons [2][3*i] estimated_constraints[2][4*i+1] = cons [2][3*i+1] estimated_constraints[2][4*i+2] = cons [2][3*i+2] estimated_constraints[2][4*i+3] = cons [2][3*i+2] if cons[0][3*i+2] == 4: #same FWHM case estimated_constraints[1][4*i+2] = int(cons[1][3*i+2]/3) * 4 + 2 estimated_constraints[1][4*i+3] = int(cons[1][3*i+2]/3) * 4 + 3 return estimated_parameters, estimated_constraints def estimate_pvoigt(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) npeaks=int(len(cons[0])/3) newpar=[] newcons=numpy.zeros((3,4*npeaks),numpy.float64) #find out related parameters proper index if self.config['NoConstrainsFlag'] == 0: if self.config['SameFwhmFlag']: j=0 #get the index of the free FWHM for i in range(npeaks): if cons[0][3*i+2] != 4: j=i for i in range(npeaks): if i != j: cons[1][3*i+2] = 4*j+2 for i in range(npeaks): newpar.append(fittedpar[3*i]) newpar.append(fittedpar[3*i+1]) newpar.append(fittedpar[3*i+2]) newpar.append(0.5) newcons[0][4*i]=cons[0][3*i] newcons[0][4*i+1]=cons[0][3*i+1] newcons[0][4*i+2]=cons[0][3*i+2] newcons[1][4*i]=cons[1][3*i] newcons[1][4*i+1]=cons[1][3*i+1] newcons[1][4*i+2]=cons[1][3*i+2] newcons[2][4*i]=cons[2][3*i] newcons[2][4*i+1]=cons[2][3*i+1] newcons[2][4*i+2]=cons[2][3*i+2] #Eta constrains newcons[0][4*i+3]=0 newcons[1][4*i+3]=0 newcons[2][4*i+3]=0 if self.config['NoConstrainsFlag'] == 0: if self.config['EtaFlag']: #QUOTED=2 newcons[0][4*i+3]=2 newcons[1][4*i+3]=0.0 newcons[2][4*i+3]=1.0 return newpar,newcons def estimate_splitpvoigt(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) npeaks=int(len(cons[0])/3) newpar=[] newcons=numpy.zeros((3,5*npeaks),numpy.float64) #find out related parameters proper index if self.config['NoConstrainsFlag'] == 0: if self.config['SameFwhmFlag']: j=0 #get the index of the free FWHM for i in range(npeaks): if cons[0][3*i+2] != 4: j=i for i in range(npeaks): if i != j: cons[1][3*i+2] = 4*j+2 for i in range(npeaks): #height newpar.append(fittedpar[3*i]) #position newpar.append(fittedpar[3*i+1]) #fwhm1 newpar.append(fittedpar[3*i+2]) #fwhm2 equal to the first newpar.append(fittedpar[3*i+2]) #eta newpar.append(0.5) newcons[0][5*i]=cons[0][3*i] newcons[0][5*i+1]=cons[0][3*i+1] newcons[0][5*i+2]=cons[0][3*i+2] newcons[0][5*i+3]=cons[0][3*i+2] newcons[1][5*i]=cons[1][3*i] newcons[1][5*i+1]=cons[1][3*i+1] newcons[1][5*i+2]=cons[1][3*i+2] newcons[1][5*i+3]=cons[1][3*i+2] newcons[2][5*i]=cons[2][3*i] newcons[2][5*i+1]=cons[2][3*i+1] newcons[2][5*i+2]=cons[2][3*i+2] newcons[2][5*i+3]=cons[2][3*i+2] if cons[0][3*i+2] == 4: newcons[1][5*i+3] = newcons[1][5*i+2]+1 #Eta constrains newcons[0][5*i+4]=0 newcons[1][5*i+4]=0 newcons[2][5*i+4]=0 if self.config['NoConstrainsFlag'] == 0: if self.config['EtaFlag']: #QUOTED=2 newcons[0][5*i+4]=2 newcons[1][5*i+4]=0.0 newcons[2][5*i+4]=1.0 return newpar,newcons def estimate_apvoigt(self,xx,yy,zzz,xscaling=1.0,yscaling=None): fittedpar,cons = self.estimate_pvoigt(xx,yy,zzz,xscaling,yscaling) npeaks=int(len(cons[0])/4) for i in range(npeaks): height = fittedpar[4*i] fwhm = fittedpar[4*i+2] fittedpar[4*i] = 0.5*(height * fwhm * 0.5 * numpy.pi)+\ 0.5*(height * fwhm / (2.0*numpy.sqrt(2*numpy.log(2))))* numpy.sqrt(2 * numpy.pi) return fittedpar,cons def estimate_hypermet(self,xx,yy,zzz,xscaling=1.0,yscaling=None): """ if yscaling == None: try: yscaling=self.config['Yscaling'] except Exception: yscaling=1.0 if yscaling == 0: yscaling=1.0 """ fittedpar,cons = self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) npeaks=int(len(cons[0])/3) newpar=[] newcons=numpy.zeros((3,8*npeaks),numpy.float64) main_peak=0 #find out related parameters proper index if self.config['NoConstrainsFlag'] == 0: if self.config['SameFwhmFlag']: j=0 #get the index of the free FWHM for i in range(npeaks): if cons[0][3*i+2] != 4: j=i for i in range(npeaks): if i != j: cons[1][3*i+2] = 8*j+2 main_peak=j for i in range(npeaks): if fittedpar[3*i] > fittedpar[3*main_peak]: main_peak = i for i in range(npeaks): height = fittedpar[3*i] position=fittedpar[3*i+1] fwhm = fittedpar[3*i+2] area = (height * fwhm / (2.0*numpy.sqrt(2*numpy.log(2))))*numpy.sqrt(2 * numpy.pi) #the gaussian parameters newpar.append(area) newpar.append(position) newpar.append(fwhm) #print "area, pos , fwhm = ",area,position,fwhm #Avoid zero derivatives because of not calculating contribution g_term = 1 st_term = 1 lt_term = 1 step_term = 1 if self.config['HypermetTails'] != 0: g_term = self.config['HypermetTails'] & 1 st_term = (self.config['HypermetTails']>>1) & 1 lt_term = (self.config['HypermetTails']>>2) & 1 step_term = (self.config['HypermetTails']>>3) & 1 if g_term == 0: #fix the gaussian parameters newcons[0][8*i]=CFIXED newcons[0][8*i+1]=CFIXED newcons[0][8*i+2]=CFIXED #else: # newcons[0][8*i]=cons[0][3*i] # newcons[0][8*i+1]=cons[0][3*i+1] # newcons[0][8*i+2]=cons[0][3*i+2] # newcons[1][8*i]=cons[1][3*i] # newcons[1][8*i+1]=cons[1][3*i+1] # newcons[1][8*i+2]=cons[1][3*i+2] # newcons[2][8*i]=cons[2][3*i] # newcons[2][8*i+1]=cons[2][3*i+1] # newcons[2][8*i+2]=cons[2][3*i+2] #the short tail parameters if ((area*yscaling) < \ self.config['MinGaussArea4ShortTail']) | \ (st_term == 0): newpar.append(0.0) newpar.append(0.0) newcons[0][8*i+3]=CFIXED newcons[1][8*i+3]=0.0 newcons[2][8*i+3]=0.0 newcons[0][8*i+4]=CFIXED newcons[1][8*i+4]=0.0 newcons[2][8*i+4]=0.0 else: newpar.append(self.config['InitialShortTailAreaRatio']) newpar.append(self.config['InitialShortTailSlopeRatio']) newcons[0][8*i+3]=CQUOTED newcons[1][8*i+3]=self.config['MinShortTailAreaRatio'] newcons[2][8*i+3]=self.config['MaxShortTailAreaRatio'] newcons[0][8*i+4]=CQUOTED newcons[1][8*i+4]=self.config['MinShortTailSlopeRatio'] newcons[2][8*i+4]=self.config['MaxShortTailSlopeRatio'] #the long tail parameters if ((area*yscaling) < \ self.config['MinGaussArea4LongTail']) | \ (lt_term == 0): newpar.append(0.0) newpar.append(0.0) newcons[0][8*i+5]=CFIXED newcons[1][8*i+5]=0.0 newcons[2][8*i+5]=0.0 newcons[0][8*i+6]=CFIXED newcons[1][8*i+6]=0.0 newcons[2][8*i+6]=0.0 else: newpar.append(self.config['InitialLongTailAreaRatio']) newpar.append(self.config['InitialLongTailSlopeRatio']) newcons[0][8*i+5]=CQUOTED newcons[1][8*i+5]=self.config['MinLongTailAreaRatio'] newcons[2][8*i+5]=self.config['MaxLongTailAreaRatio'] newcons[0][8*i+6]=CQUOTED newcons[1][8*i+6]=self.config['MinLongTailSlopeRatio'] newcons[2][8*i+6]=self.config['MaxLongTailSlopeRatio'] #the step parameters if ((height*yscaling) < \ self.config['MinGaussHeight4StepTail'])| \ (step_term == 0): newpar.append(0.0) newcons[0][8*i+7]=CFIXED newcons[1][8*i+7]=0.0 newcons[2][8*i+7]=0.0 else: newpar.append(self.config['InitialStepTailHeightRatio']) newcons[0][8*i+7]=CQUOTED newcons[1][8*i+7]=self.config['MinStepTailHeightRatio'] newcons[2][8*i+7]=self.config['MaxStepTailHeightRatio'] #if self.config['NoConstrainsFlag'] == 1: # newcons=numpy.zeros((3,8*npeaks),numpy.float64) if npeaks > 0: if g_term: if self.config['HeightAreaFlag']: for i in range(npeaks): newcons[0] [8*i] = CPOSITIVE if self.config['PosFwhmFlag']: for i in range(npeaks): newcons[0] [8*i+2] = CPOSITIVE if self.config['SameFwhmFlag']: for i in range(npeaks): if i != main_peak: newcons[0] [8*i+2] = CFACTOR newcons[1] [8*i+2] = 8*main_peak+2 newcons[2] [8*i+2] = 1.0 if self.config['QuotedPositionFlag']: for i in range(npeaks): delta=self.config['DeltaPositionFwhmUnits'] * \ int(float(self.config['FwhmPoints'])) #that was delta in points #I need it in terms of FWHM delta=self.config['DeltaPositionFwhmUnits'] * fwhm newcons[0][8*i+1] = CQUOTED newcons[1][8*i+1] = newpar[8*i+1]-delta newcons[2][8*i+1] = newpar[8*i+1]+delta if self.config['SameSlopeRatioFlag']: for i in range(npeaks): if i != main_peak: newcons[0] [8*i+4] = CFACTOR newcons[1] [8*i+4] = 8*main_peak+4 newcons[2] [8*i+4] = 1.0 newcons[0] [8*i+6] = CFACTOR newcons[1] [8*i+6] = 8*main_peak+6 newcons[2] [8*i+6] = 1.0 if self.config['SameAreaRatioFlag']: for i in range(npeaks): if i != main_peak: newcons[0] [8*i+3] = CFACTOR newcons[1] [8*i+3] = 8*main_peak+3 newcons[2] [8*i+3] = 1.0 newcons[0] [8*i+5] = CFACTOR newcons[1] [8*i+5] = 8*main_peak+5 newcons[2] [8*i+5] = 1.0 return newpar,newcons def estimate_stepdown(self,xxx,yyy,zzz,xscaling=1.0,yscaling=1.0): crappyfilter=[-0.25,-0.75,0.0,0.75,0.25] cutoff = 2 yy = numpy.convolve(yyy, crappyfilter, mode=1)[2:-2] if max(yy) > 0: yy = yy * max(yyy)/max(yy) xx=xxx[2:-2] # use height and not area fittedpar,cons=self.estimate_gauss(xx,yy,zzz,xscaling,yscaling) npeaks=int(len(fittedpar)/3) largest_index=0 largest=[fittedpar[3*largest_index], fittedpar[3*largest_index+1], fittedpar[3*largest_index+2]] newcons=numpy.zeros((3,3),numpy.float64) for i in range(npeaks): if fittedpar[3*i] > largest[0]: largest_index=i largest=[fittedpar[3*largest_index], fittedpar[3*largest_index+1], fittedpar[3*largest_index+2]] largest[0] = max(yyy)-min(yyy) #Setup constrains if self.config['NoConstrainsFlag'] == 0: #Setup height constrains if self.config['HeightAreaFlag']: #POSITIVE = 1 cons[0] [0] = 1 cons[1] [0] = 0 cons[2] [0] = 0 #Setup position constrains if self.config['PositionFlag']: #QUOTED = 2 cons[0][1]=2 cons[1][1]=min(xxx) cons[2][1]=max(xxx) #Setup positive FWHM constrains if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][2]=1 cons[1][2]=0 cons[2][2]=0 return largest,cons def estimate_slit(self, xxx, yyy, zzz, xscaling=1.0, yscaling=1.0): largestup, cons = self.estimate_stepup(xxx, yyy, zzz, xscaling, yscaling) largestdown, cons = self.estimate_stepdown(xxx, yyy, zzz, xscaling, yscaling) height = 0.5*(largestup[0] + largestdown[0]) position = 0.5*(largestup[1] + largestdown[1]) fwhm = numpy.fabs(largestdown[1] - largestup[1]) beamfwhm = 0.5 * (largestup[2] + largestdown[1]) beamfwhm = min(beamfwhm, fwhm / 10.0) beamfwhm = max(beamfwhm,(max(xxx)-min(xxx))*3.0/len(xxx)) #own estimation yy=yyy-zzz height=max(yyy-zzz) i1=numpy.nonzero(yy>=0.5*height)[0] xx=numpy.take(xxx,i1) position=(xx[0]+xx[-1])/2.0 fwhm=xx[-1]-xx[0] largest=[height,position,fwhm,beamfwhm] cons=numpy.zeros((3,4),numpy.float64) #Setup constrains if self.config['NoConstrainsFlag'] == 0: #Setup height constrains if self.config['HeightAreaFlag']: #POSITIVE = 1 cons[0] [0] = 1 cons[1] [0] = 0 cons[2] [0] = 0 #Setup position constrains if self.config['PositionFlag']: #QUOTED = 2 cons[0][1]=2 cons[1][1]=min(xxx) cons[2][1]=max(xxx) #Setup positive FWHM constrains if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][2]=1 cons[1][2]=0 cons[2][2]=0 #Setup positive FWHM constrains if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][3]=1 cons[1][3]=0 cons[2][3]=0 return largest,cons def estimate_stepup(self, xxx, yyy, zzz, xscaling=1.0, yscaling=1.0): crappyfilter = [0.25, 0.75, 0.0, -0.75, -0.25] cutoff = 2 yy = numpy.convolve(yyy, crappyfilter, mode=1)[2:-2] if max(yy) > 0: yy = yy * max(yyy)/max(yy) xx = xxx[2:-2] fittedpar, cons = self.estimate_gauss(xx, yy, zzz, xscaling, yscaling) npeaks = int(len(fittedpar) / 3) largest_index = 0 largest = [fittedpar[3 * largest_index], fittedpar[3 * largest_index + 1], fittedpar[3 * largest_index + 2]] newcons=numpy.zeros((3,3),numpy.float64) for i in range(npeaks): if fittedpar[3*i] > largest[0]: largest_index=i largest=[fittedpar[3*largest_index], fittedpar[3*largest_index+1], fittedpar[3*largest_index+2]] largest[0] = max(yyy)-min(yyy) #Setup constrains if self.config['NoConstrainsFlag'] == 0: #Setup height constrains if self.config['HeightAreaFlag']: #POSITIVE = 1 cons[0] [0] = 1 cons[1] [0] = 0 cons[2] [0] = 0 #Setup position constrains if self.config['PositionFlag']: #QUOTED = 2 cons[0][1]=2 cons[1][1]=min(xxx) cons[2][1]=max(xxx) #Setup positive FWHM constrains if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][2]=1 cons[1][2]=0 cons[2][2]=0 return largest,cons def estimate_atan(self, *var, **kw): return self.estimate_stepup(*var, **kw) def estimate_periodic_gauss(self,xx,yy,zzz,xscaling=1.0,yscaling=None): if yscaling == None: try: yscaling=self.config['Yscaling'] except Exception: yscaling=1.0 if yscaling == 0: yscaling=1.0 fittedpar=[] zz=SpecfitFuns.subac(yy,1.000,10000) npoints = len(zz) if self.config['AutoFwhm']: search_fwhm=self.guess_fwhm(x=xx,y=yy) else: search_fwhm=int(float(self.config['FwhmPoints'])) search_sens=float(self.config['Sensitivity']) search_mca=int(float(self.config['McaMode'])) if search_fwhm < 3: search_fwhm = 3 self.config['FwhmPoints']=3 if search_sens < 1: search_sens = 1 self.config['Sensitivity']=1 if npoints > 1.5*search_fwhm: peaks=self.seek(yy,fwhm=search_fwhm, sensitivity=search_sens, yscaling=yscaling, mca=search_mca) else: peaks = [] npeaks = len(peaks) if not npeaks: fittedpar = [] cons = numpy.zeros((3,len(fittedpar)), numpy.float64) return fittedpar, cons fittedpar = [0.0, 0.0, 0.0, 0.0, 0.0] #The number of peaks fittedpar[0] = npeaks #The separation between peaks in x units delta = 0.0 height = 0.0 for i in range(npeaks): height += yy[int(peaks[i])] - zz [int(peaks[i])] if i != ((npeaks)-1): delta += (xx[int(peaks[i+1])] - xx[int(peaks[i])]) #delta between peaks if npeaks > 1: fittedpar[1] = delta/(npeaks-1) #starting height fittedpar[2] = height/npeaks #position of the first peak fittedpar[3] = xx[int(peaks[0])] #Estimate the fwhm fittedpar[4] = search_fwhm #setup constraints cons = numpy.zeros((3, 5), numpy.float64) cons [0] [0] = CFIXED #the number of gaussians if npeaks == 1: cons[0][1] = CFIXED #the delta between peaks else: cons[0][1] = CFREE #the delta between peaks j = 2 #Setup height area constrains if self.config['NoConstrainsFlag'] == 0: if self.config['HeightAreaFlag']: #POSITIVE = 1 cons[0] [j] = 1 cons[1] [j] = 0 cons[2] [j] = 0 j=j+1 #Setup position constrains if self.config['NoConstrainsFlag'] == 0: if self.config['PositionFlag']: #QUOTED = 2 cons[0][j]=2 cons[1][j]=min(xx) cons[2][j]=max(xx) j=j+1 #Setup positive FWHM constrains if self.config['NoConstrainsFlag'] == 0: if self.config['PosFwhmFlag']: #POSITIVE=1 cons[0][j]=1 cons[1][j]=0 cons[2][j]=0 j=j+1 return fittedpar,cons def configure(self, *vars, **kw): if len(vars) == 1: if isinstance(vars[0], dict): kw.update(vars[0]) for key in kw: notdone = 1 #take care of lower / upper case problems ... for config_key in self.config: if config_key.lower() == key.lower(): self.config[config_key] = kw[key] notdone = 0 if notdone: self.config[key] = kw[key] return self.config fitfuns=SpecfitFunctions() FUNCTION=[fitfuns.gauss, fitfuns.lorentz, fitfuns.agauss, fitfuns.alorentz, fitfuns.pvoigt, fitfuns.apvoigt, fitfuns.splitgauss, fitfuns.splitlorentz, fitfuns.splitpvoigt, fitfuns.stepdown, fitfuns.stepup, fitfuns.slit, fitfuns.atan, fitfuns.hypermet, fitfuns.periodic_gauss, fitfuns.bkg_constant, fitfuns.bkg_linear] PARAMETERS=[['Height','Position','FWHM'], ['Height','Position','Fwhm'], ['Area','Position','Fwhm'], ['Area','Position','Fwhm'], ['Height','Position','Fwhm','Eta'], ['Area','Position','Fwhm','Eta'], ['Height','Position','LowFWHM', 'HighFWHM'], ['Height','Position','LowFWHM', 'HighFWHM'], ['Height','Position','LowFWHM', 'HighFWHM', 'Eta'], ['Height','Position','FWHM'], ['Height','Position','FWHM'], ['Height','Position','FWHM','BeamFWHM'], ['Height','Position','Width'], ['G_Area','Position','FWHM', 'ST_Area','ST_Slope','LT_Area','LT_Slope','Step_H'], ['N', 'Delta', 'Height', 'Position', 'FWHM'], ['Constant'], ['Constant', 'Slope']] THEORY=['Gaussians', 'Lorentz', 'Area Gaussians', 'Area Lorentz', 'Pseudo-Voigt Line', 'Area Pseudo-Voigt', 'Split Gaussian', 'Split Lorentz', 'Split Pseudo-Voigt', 'Step Down', 'Step Up', 'Slit', 'Atan', 'Hypermet', 'Periodic Gaussians', 'Constant', 'Linear'] ESTIMATE=[fitfuns.estimate_gauss, fitfuns.estimate_lorentz, fitfuns.estimate_agauss, fitfuns.estimate_alorentz, fitfuns.estimate_pvoigt, fitfuns.estimate_apvoigt, fitfuns.estimate_splitgauss, fitfuns.estimate_splitlorentz, fitfuns.estimate_splitpvoigt, fitfuns.estimate_stepdown, fitfuns.estimate_stepup, fitfuns.estimate_slit, fitfuns.estimate_atan, fitfuns.estimate_hypermet, fitfuns.estimate_periodic_gauss, fitfuns.estimate_constant, fitfuns.estimate_linear] CONFIGURE=[fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure, fitfuns.configure] def test(a): from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaMath.fitting import Specfit from PyMca5.PyMcaGui.pymca import ScanWindow #print dir(a) x = numpy.arange(1000).astype(numpy.float64) p1 = numpy.array([1500,100.,50.0]) p2 = numpy.array([1500,700.,50.0]) y = a.gauss(p1,x)+1 y = y + a.gauss(p2,x) app=qt.QApplication([]) fit=Specfit.Specfit(x,y) fit.addtheory('Gaussians',a.gauss,['Height','Position','FWHM'], a.estimate_gauss) fit.settheory('Gaussians') fit.setbackground('Linear') fit.estimate() fit.startfit() yfit=fit.gendata(x=x,parameters=fit.paramlist) print("I set an offset of 1 to see the difference in log scale :-)") w = ScanWindow.ScanWindow() w.addCurve(x, y + 1, "Data + 1") w.addCurve(x, yfit, "Fit") w.show() app.exec() if __name__ == "__main__": test(fitfuns) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/StackSimpleFit.py�����������������������������������������0000644�0000000�0000000�00000041267�14741736366�022130� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5.PyMcaIO import ConfigDict from . import SimpleFitModule from PyMca5.PyMcaIO import ArraySave from PyMca5 import PyMcaDirs _logger = logging.getLogger(__name__) class StackSimpleFit(object): def __init__(self, fit=None): if fit is None: fit = SimpleFitModule.SimpleFit() self.fit = fit self.stack_y = None self.outputDir = PyMcaDirs.outputDir self.outputFile = None self.fixedLenghtOutput = True self._progress = 0.0 self._status = "Ready" self.progressCallback = None self.dataIndex = None # optimization variables self.mask = None self.__ALWAYS_ESTIMATE = True def setProgressCallback(self, method): """ The method will be called as method(current_fit_index, total_fit_index) """ self.progressCallback = method def progressUpdate(self): """ This methos returns a dictionary with the keys progress: A number between 0 and 100 indicating the fit progress status: Status of the calculation thread. """ ddict = {} ddict['progress'] = self._progress ddict['status'] = self._status return ddict def setOutputDirectory(self, outputdir): self.outputDir = outputdir def setOutputFileBaseName(self, outputfile): self.outputFile = outputfile def setData(self, stack_x, stack_y, sigma=None, xmin=None, xmax=None): self.stack_x = stack_x self.stack_y = stack_y self.stack_sigma = sigma self.xMin = xmin self.xMax = xmax def setDataIndex(self, data_index=None): self.dataIndex = data_index def setConfigurationFile(self, fname): if not os.path.exists(fname): raise IOError("File %s does not exist" % fname) w = ConfigDict.ConfigDict() w.read(fname) self.setConfiguration(w) def setConfiguration(self, ddict): self.fit.setConfiguration(ddict, try_import=True) def processStack(self, mask=None): self.mask = mask data_index = self.dataIndex if data_index == None: data_index = -1 if type(data_index) == type(1): data_index = [data_index] if len(data_index) > 1: raise IndexError("Only 1D fitting implemented for the time being") #this leaves the possibility to fit images by giving #two indices specifying the image dimensions self.stackDataIndexList = data_index stack = self.stack_y if stack is None: raise ValueError("No data to be processed") if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack #make sure all the indices are positive for i in range(len(data_index)): if data_index[i] < 0: data_index[i] = range(len(data.shape))[data_index[i]] #get the total number of fits to be performed outputDimension = [] nPixels = 1 for i in range(len(data.shape)): if not (i in data_index): nPixels *= data.shape[i] outputDimension.append(data.shape[i]) lenOutput = len(outputDimension) if lenOutput > 2: raise ValueError("Rank of output greater than 2") elif lenOutput == 2: self._nRows = outputDimension[0] self._nColumns = outputDimension[1] else: self._nRows = outputDimension[0] self._nColumns = 1 if self.mask is not None: if (self.mask.shape[0] != self._nRows) or\ (self.mask.shape[1] != self._nColumns): raise ValueError("Invalid mask shape for stack") else: self.mask = numpy.ones((self._nRows, self._nColumns), numpy.uint8) # optimization self.__ALWAYS_ESTIMATE = True backgroundPolicy = self.fit._fitConfiguration['fit'] \ ['background_estimation_policy'] functionPolicy = self.fit._fitConfiguration['fit'] \ ['function_estimation_policy'] if "Estimate always" not in [functionPolicy, backgroundPolicy]: self.__ALWAYS_ESTIMATE = False # initialize control variables self._parameters = None self._row = 0 self._column = -1 self._progress = 0 self._status = "Fitting" for i in range(nPixels): self._progress = (i * 100.)/ nPixels if (self._column+1) == self._nColumns: self._column = 0 self._row += 1 else: self._column += 1 try: if self.mask[self._row, self._column]: self.processStackData(i) except Exception: _logger.warning("Error %s processing index = %d, row = %d column = %d", sys.exc_info()[1], i, self._row, self._column) if _logger.getEffectiveLevel() == logging.DEBUG: raise self.onProcessStackFinished() self._status = "Ready" if self.progressCallback is not None: self.progressCallback(nPixels, nPixels) def processStackData(self, i): self.aboutToGetStackData(i) x, y, sigma, xmin, xmax = self.getFitInputValues(i) self.fit.setData(x, y, sigma=sigma, xmin=xmin, xmax=xmax) if self._parameters is None: _logger.debug("First estimation") self.fit.estimate() elif self.__ALWAYS_ESTIMATE: _logger.debug("Estimation due to settings") self.fit.estimate() self.estimateFinished() values, chisq, sigma, niter, lastdeltachi = self.fit.startFit() self.fitFinished() def getFitInputValues(self, index): """ Returns the fit parameters x, y, sigma, xmin, xmax """ row = self._row column = self._column data_index = self.stackDataIndexList[0] #get y yShape = self.stack_y.shape if len(yShape) == 3: if data_index == 0: y = self.stack_y[:, row, column] elif data_index == 1: y = self.stack_y[row, :, column] else: y = self.stack_y[row, column] elif len(yShape) == 2: if column > 0: raise ValueError("Column index > 0 on a single column stack") y = self.stack_y[row] else: raise TypeError("Unsupported y data shape lenght") #get x if self.stack_x is None: nValues = y.size x = numpy.arange(float(nValues)) x.shape = y.shape self.stack_x = x xShape = self.stack_x.shape xSize = self.stack_x.size sigma = None if xShape == yShape: #as many x as y, follow same criterium if len(xShape) == 3: if data_index == 0: x = self.stack_x[:, row, column] elif data_index == 1: x = self.stack_x[row, :, column] else: x = self.stack_x[row, column] elif len(xShape) == 2: if column > 0: raise ValueError("Column index > 0 on a single column stack") x = self.stack_x[row] else: raise TypeError("Unsupported x data shape lenght") elif xSize == y.size: #only one x for all the y values x = numpy.zeros(y.size, numpy.float64) x[:] = self.stack_x[:] x.shape = y.shape else: raise ValueError("Cannot handle incompatible X and Y values") if self.stack_sigma is None: return x, y, sigma, self.xMin, self.xMax # get sigma sigmaShape = self.stack_sigma.shape sigmaSize = self.stack_sigma.size if sigmaShape == yShape: #as many sigma as y, follow same criterium if len(sigmaShape) == 3: if data_index == 0: sigma = self.stack_sigma[:, row, column] elif data_index == 1: sigma = self.stack_sigma[row, :, column] else: sigma = self.stack_sigma[row, column] elif len(sigmaShape) == 2: if column > 0: raise ValueError("Column index > 0 on a single column stack") sigma = self.stack_sigma[row] else: raise TypeError("Unsupported sigma data shape lenght") elif sigmaSize == y.size: #only one sigma for all the y values sigma = numpy.zeros(y.size, numpy.float64) sgima[:] = self.stack_sigma[:] sigma.shape = y.shape else: raise ValueError("Cannot handle incompatible sigma and y values") return x, y, sigma, self.xMin, self.xMax def estimateFinished(self): _logger.debug("Estimate finished") def aboutToGetStackData(self, idx): _logger.debug("New spectrum %d", idx) self._currentFitIndex = idx if self.progressCallback is not None: self.progressCallback(idx, self._nRows * self._nColumns) if idx == 0: specfile = os.path.join(self.outputDir, self.outputFile+".spec") if os.path.exists(self.outputFile): os.remove(self.outputFile) def fitFinished(self): _logger.debug("fit finished") #get parameter results fitOutput = self.fit.getResult(configuration=False) result = fitOutput['result'] row= self._row column = self._column if result is None: _logger.warning("result not valid for row %d, column %d", row, column) return if self.fixedLenghtOutput and (self._parameters is None): #If it is the first fit, initialize results array imgdir = os.path.join(self.outputDir, "IMAGES") if not os.path.exists(imgdir): os.mkdir(imgdir) if not os.path.isdir(imgdir): msg= "%s does not seem to be a valid directory" % imgdir raise IOError(msg) self.imgDir = imgdir self._parameters = [] self._images = {} self._sigmas = {} for parameter in result['parameters']: self._parameters.append(parameter) self._images[parameter] = numpy.zeros((self._nRows, self._nColumns), numpy.float32) self._sigmas[parameter] = numpy.zeros((self._nRows, self._nColumns), numpy.float32) self._images['chisq'] = numpy.zeros((self._nRows, self._nColumns), numpy.float32) if self.fixedLenghtOutput: i = 0 for parameter in self._parameters: self._images[parameter] [row, column] =\ result['fittedvalues'][i] self._sigmas[parameter] [row, column] =\ result['sigma_values'][i] i += 1 self._images['chisq'][row, column] = result['chisq'] else: #specfile output always available specfile = self.getOutputFileNames()['specfile'] self._appendOneResultToSpecfile(specfile, result=fitOutput) def _appendOneResultToSpecfile(self, filename, result=None): if result is None: result = self.fit.getResult(configuration=False) scanNumber = self._currentFitIndex #open file in append mode fitResult = result['result'] fittedValues = fitResult['fittedvalues'] fittedParameters = fitResult['parameters'] chisq = fitResult['chisq'] text = "\n#S %d %s\n" % (scanNumber, "PyMca Stack Simple Fit") text += "#N %d\n" % (len(fittedParameters)+2) text += "#L N Chisq" for parName in fittedParameters: text += ' %s' % parName text += "\n" text += "1 %f" % chisq for parValue in fittedValues: text += "% .7E" % parValue text += "\n" sf = open(filename, 'ab') sf.write(text) sf.close() def getOutputFileNames(self): specfile = os.path.join(self.outputDir, self.outputFile+".spec") imgDir = os.path.join(self.outputDir, "IMAGES") filename = os.path.join(imgDir, self.outputFile) csv = filename + ".csv" edf = filename + ".edf" ddict = {} ddict['specfile'] = specfile ddict['csv'] = csv ddict['edf'] = edf return ddict def onProcessStackFinished(self): _logger.debug("Stack proccessed") self._status = "Stack Fitting finished" if self.fixedLenghtOutput: self._status = "Writing output files" nParameters = len(self._parameters) datalist = [None] * (2*len(self._sigmas.keys())+1) labels = [] for i in range(nParameters): parameter = self._parameters[i] datalist[2*i] = self._images[parameter] datalist[2*i + 1] = self._sigmas[parameter] labels.append(parameter) labels.append('s(%s)' % parameter) datalist[-1] = self._images['chisq'] labels.append('chisq') filenames = self.getOutputFileNames() csvName = filenames['csv'] edfName = filenames['edf'] ArraySave.save2DArrayListAsASCII(datalist, csvName, labels=labels, csv=True, csvseparator=";") ArraySave.save2DArrayListAsEDF(datalist, edfName, labels = labels, dtype=numpy.float32) def test(): import numpy from PyMca5.PyMcaMath.fitting import SpecfitFuns x = numpy.arange(1000.) data = numpy.zeros((50, 1000), numpy.float64) #the peaks to be fitted p0 = [100., 300., 50., 200., 500., 30., 300., 800., 65] #generate the data to be fitted for i in range(data.shape[0]): nPeaks = 3 - i % 3 data[i,:] = SpecfitFuns.gauss(p0[:3*nPeaks],x) oldShape = data.shape data.shape = 1,oldShape[0], oldShape[1] instance = StackSimpleFit() instance.setData(x, data) # TODO: Generate this file "on-the-fly" to be able to test everywhere instance.setConfigurationFile(r"C:\StackSimpleFit.cfg") instance.processStack() if __name__=="__main__": test() �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/__init__.py�����������������������������������������������0000644�0000000�0000000�00000000000�14741736366�020761� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8237665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/��������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020310� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/SpecfitFuns.c�������������������������������������0000644�0000000�0000000�00000356202�14741736366�022724� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include <Python.h> /* adding next line may raise errors #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION */ #include <./numpy/arrayobject.h> #include <math.h> #ifndef NPY_ARRAY_ENSURECOPY #define NPY_ARRAY_ENSURECOPY NPY_ENSURECOPY #endif struct module_state { PyObject *error; }; #if PY_MAJOR_VERSION >= 3 #define GETSTATE(m) ((struct module_state*)PyModule_GetState(m)) #else #define GETSTATE(m) (&_state) static struct module_state _state; #endif #define isARRAY(a) ((a) && PyArray_Check((PyArrayObject *)a)) #define A_SIZE(a) PyArray_Size((PyObject *) a) #define isARRAY(a) ((a) && PyArray_Check((PyArrayObject *)a)) #ifndef WIN32 #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #else #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #define M_PI 3.1415926535 #define erf myerf #define erfc myerfc #endif #define MAX_SAVITSKY_GOLAY_WIDTH 101 #define MIN_SAVITSKY_GOLAY_WIDTH 3 /* SNIP related functions */ void lls(double *data, int size); void lls_inv(double *data, int size); void snip1d(double *data, int size, int width); void snip1d_multiple(double *data, int n_channels, int snip_width, int n_spectra); void snip2d(double *data, int nrows, int ncolumns, int width); void snip3d(double *data, int nx, int ny, int nz, int width); void lsdf(double *data, int size, int fwhm, double f, double A, double M, double ratio); void smooth1d(double *data, int size); void smooth2d(double *data, int size0, int size1); void smooth3d(double *data, int size0, int size1, int size2); /* end of SNIP related functions */ /* --------------------------------------------------------------------- */ static PyObject * SpecfitFuns_snip1d(PyObject *self, PyObject *args) { PyObject *input; double width0 = 50.; int smooth_iterations = 0; int llsflag = 0; PyArrayObject *ret; double *doublePointer; int i, n, n_channels, n_spectra, width; if (!PyArg_ParseTuple(args, "Od|ii", &input, &width0, &smooth_iterations, &llsflag)) return NULL; ret = (PyArrayObject *) PyArray_FROMANY(input, NPY_DOUBLE, 1, 2, NPY_ARRAY_ENSURECOPY); if (ret == NULL){ printf("Cannot create 1D array from input\n"); return NULL; } if(PyArray_NDIM(ret) == 1) { n_spectra = 1; n_channels = (int) (PyArray_DIMS(ret)[0]); } else { n_spectra = (int) (PyArray_DIMS(ret)[0]); n_channels = (int) (PyArray_DIMS(ret)[1]); } width = (int )width0; for (n = 0; n < n_spectra; n++) { for (i=0; i<smooth_iterations; i++) { doublePointer = (double *) PyArray_DATA(ret); smooth1d(&(doublePointer[n*n_channels]), n_channels); } if (llsflag) { doublePointer = (double *) PyArray_DATA(ret); lls(&(doublePointer[n*n_channels]), n_channels); } } snip1d_multiple((double *) PyArray_DATA(ret), n_channels, width, n_spectra); for (n = 0; n < n_spectra; n++) { if (llsflag) { doublePointer = (double *) PyArray_DATA(ret); lls_inv(&(doublePointer[n*n_channels]), n_channels); } } return PyArray_Return(ret); } static PyObject * SpecfitFuns_snip2d(PyObject *self, PyObject *args) { PyObject *input; double width0 = 50.; int smooth_iterations = 0; int llsflag = 0; PyArrayObject *ret; int i, nrows, ncolumns, size, width; if (!PyArg_ParseTuple(args, "Od|ii", &input, &width0, &smooth_iterations, &llsflag)) return NULL; ret = (PyArrayObject *) PyArray_FROMANY(input, NPY_DOUBLE, 2, 2, NPY_ARRAY_ENSURECOPY); if (ret == NULL){ printf("Cannot create 2D array from input\n"); return NULL; } size = 1; for (i=0; i<PyArray_NDIM(ret); i++) { size = (int) (size * PyArray_DIMS(ret)[i]); } nrows = (int) PyArray_DIMS(ret)[0]; ncolumns = (int) PyArray_DIMS(ret)[1]; width = (int )width0; for (i=0; i<smooth_iterations; i++) { smooth2d((double *) PyArray_DATA(ret), nrows, ncolumns); } if (llsflag) { lls((double *) PyArray_DATA(ret), size); } snip2d((double *) PyArray_DATA(ret), nrows, ncolumns, width); if (llsflag) { lls_inv((double *) PyArray_DATA(ret), size); } return PyArray_Return(ret); } static PyObject * SpecfitFuns_snip3d(PyObject *self, PyObject *args) { PyObject *input; double width0 = 50.; int smooth_iterations = 0; int llsflag = 0; PyArrayObject *ret; int i, nx, ny, nz, size, width; if (!PyArg_ParseTuple(args, "Od|ii", &input, &width0, &smooth_iterations, &llsflag)) return NULL; ret = (PyArrayObject *) PyArray_FROMANY(input, NPY_DOUBLE, 3, 3, NPY_ARRAY_ENSURECOPY); if (ret == NULL){ printf("Cannot create 3D array from input\n"); return NULL; } size = 1; for (i=0; i<PyArray_NDIM(ret); i++) { size = (int) (size * PyArray_DIMS(ret)[i]); } nx = (int) PyArray_DIMS(ret)[0]; ny = (int) PyArray_DIMS(ret)[1]; nz = (int) PyArray_DIMS(ret)[2]; width = (int )width0; for (i=0; i<smooth_iterations; i++) { smooth3d((double *) PyArray_DATA(ret), nx, ny, nz); } if (llsflag) { lls((double *) PyArray_DATA(ret), size); } snip3d((double *) PyArray_DATA(ret), nx, ny, nz, width); if (llsflag) { lls_inv((double *) PyArray_DATA(ret), size); } return PyArray_Return(ret); } /* end SNIP algorithm */ /* Function SUBAC returning smoothed array */ static PyObject * SpecfitFuns_subacold(PyObject *self, PyObject *args) { PyObject *input; PyArrayObject *iarray, *ret; npy_intp n, dimensions[1]; double niter0 = 5000.; int i, j, niter = 5000; double t_old, t_mean, c = 1.0000; double *data; if (!PyArg_ParseTuple(args, "O|dd", &input, &c, &niter0)) return NULL; iarray = (PyArrayObject *) PyArray_CopyFromObject(input, NPY_DOUBLE,1,1); if (iarray == NULL) return NULL; niter = (int ) niter0; n = PyArray_DIMS(iarray)[0]; dimensions[0] = PyArray_DIMS(iarray)[0]; ret = (PyArrayObject *) PyArray_SimpleNew(1, dimensions, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(iarray); return NULL; } /* Do the job */ data = (double *) PyArray_DATA(iarray); for (i=0;i<niter;i++){ t_old = *(data); for (j=1;j<n-1;j++) { t_mean = 0.5 * (t_old + *(data+j+1)); t_old = *(data+j); if (t_old > (t_mean * c)) *(data+j) = t_mean; } /* t_mean = 0.5 * (t_old + *(data+n-1)); t_old = *(data+n-1); if (t_old > (t_mean * c)) *(data+n-1) = t_mean;*/ } ret = (PyArrayObject *) PyArray_Copy(iarray); Py_DECREF(iarray); if (ret == NULL) return NULL; return PyArray_Return(ret); } static PyObject * SpecfitFuns_subac(PyObject *self, PyObject *args) { PyObject *input; PyArrayObject *iarray, *ret, *anchors; int n; npy_intp dimensions[1]; double niter0 = 5000.; double deltai0= 1; PyObject *anchors0 = NULL; int i, j, k, l, deltai = 1,niter = 5000; double t_mean, c = 1.000; double *data, *retdata; int *anchordata; int nanchors, notdoit; int notdone=1; if (!PyArg_ParseTuple(args, "O|dddO", &input, &c, &niter0,&deltai0, &anchors0)) return NULL; iarray = (PyArrayObject *) PyArray_CopyFromObject(input, NPY_DOUBLE,1,1); if (iarray == NULL) return NULL; deltai= (int ) deltai0; if (deltai <=0) deltai = 1; niter = (int ) niter0; n = (int) PyArray_DIMS(iarray)[0]; dimensions[0] = PyArray_DIMS(iarray)[0]; ret = (PyArrayObject *) PyArray_SimpleNew(1, dimensions, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(iarray); return NULL; } PyArray_FILLWBYTE(ret, 0); memcpy(PyArray_DATA(ret), PyArray_DATA(iarray), PyArray_DIMS(iarray)[0] * sizeof(double)); if (n < (2*deltai+1)){ /*ret = (PyArrayObject *) PyArray_Copy(array);*/ Py_DECREF(iarray); return PyArray_Return(ret); } /* do the job */ data = (double *) PyArray_DATA(iarray); retdata = (double *) PyArray_DATA(ret); if (anchors0 != NULL) { if (PySequence_Check(anchors0)){ anchors = (PyArrayObject *) PyArray_ContiguousFromObject(anchors0, NPY_INT, 1, 1); if (anchors == NULL) { Py_DECREF(iarray); Py_DECREF(ret); return NULL; } anchordata = (int *) PyArray_DATA(anchors); nanchors = (int) PySequence_Size(anchors0); for (i=0;i<niter;i++){ for (j=deltai;j<n-deltai;j++) { notdoit = 0; for (k=0; k<nanchors; k++) { l =*(anchordata+k); if (j>(l-deltai)) { if (j<(l+deltai)) { notdoit = 1; break; } } } if (notdoit) continue; t_mean = 0.5 * (*(data+j-deltai) + *(data+j+deltai)); if (*(retdata+j) > (t_mean * c)) *(retdata+j) = t_mean; } memcpy(PyArray_DATA(iarray), PyArray_DATA(ret), PyArray_DIMS(iarray)[0] * sizeof(double)); } Py_DECREF(anchors); notdone = 0; } } if (notdone) { for (i=0;i<niter;i++){ for (j=deltai;j<n-deltai;j++) { t_mean = 0.5 * (*(data+j-deltai) + *(data+j+deltai)); if (*(retdata+j) > (t_mean * c)) *(retdata+j) = t_mean; } memcpy(PyArray_DATA(iarray), PyArray_DATA(ret), PyArray_DIMS(iarray)[0] * sizeof(double)); } } Py_DECREF(iarray); if (ret == NULL) return NULL; return PyArray_Return(ret); } static PyObject * SpecfitFuns_subacfast(PyObject *self, PyObject *args) { PyObject *input; PyArrayObject *iarray, *ret, *anchors; npy_intp n, dimensions[1]; double niter0 = 5000.; double deltai0= 1; PyObject *anchors0 = NULL; int i, j, k, l, deltai = 1,niter = 5000; double t_mean, c = 1.000; double *retdata; int *anchordata; int nanchors, notdoit; if (!PyArg_ParseTuple(args, "O|dddO", &input, &c, &niter0,&deltai0, &anchors0)) return NULL; iarray = (PyArrayObject *) PyArray_CopyFromObject(input, NPY_DOUBLE,1,1); if (iarray == NULL) return NULL; deltai= (int ) deltai0; if (deltai <=0) deltai = 1; niter = (int ) niter0; n = PyArray_DIMS(iarray)[0]; dimensions[0] = PyArray_DIMS(iarray)[0]; ret = (PyArrayObject *) PyArray_SimpleNew(1, dimensions, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(iarray); return NULL; } memcpy(PyArray_DATA(ret), PyArray_DATA(iarray), PyArray_DIMS(iarray)[0] * sizeof(double)); if (n < (2*deltai+1)){ /*ret = (PyArrayObject *) PyArray_Copy(array);*/ Py_DECREF(iarray); return PyArray_Return(ret); } /* do the job */ retdata = (double *) PyArray_DATA(ret); if (PySequence_Check(anchors0)){ anchors = (PyArrayObject *) PyArray_ContiguousFromObject(anchors0, NPY_INT, 1, 1); if (anchors == NULL) { Py_DECREF(iarray); Py_DECREF(ret); return NULL; } anchordata = (int *) PyArray_DATA(anchors); nanchors = (int) PySequence_Size(anchors0); memcpy(PyArray_DATA(iarray), PyArray_DATA(ret), PyArray_DIMS(iarray)[0] * sizeof(double)); for (i=0;i<niter;i++){ for (j=deltai;j<n-deltai;j++) { notdoit = 0; for (k=0; k<nanchors; k++) { l =*(anchordata+k); if (j>(l-deltai)) { if (j<(l+deltai)) { notdoit = 1; break; } } } if (notdoit) continue; t_mean = 0.5 * (*(retdata+j-deltai) + *(retdata+j+deltai)); if (*(retdata+j) > (t_mean * c)) *(retdata+j) = t_mean; } } Py_DECREF(anchors); } else { memcpy(PyArray_DATA(iarray), PyArray_DATA(ret), PyArray_DIMS(iarray)[0] * sizeof(double)); for (i=0;i<niter;i++){ for (j=deltai;j<n-deltai;j++) { t_mean = 0.5 * (*(retdata+j-deltai) + *(retdata+j+deltai)); if (*(retdata+j) > (t_mean * c)) *(retdata+j) = t_mean; } } } Py_DECREF(iarray); if (ret == NULL) return NULL; return PyArray_Return(ret); } static PyObject * SpecfitFuns_gauss(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2; double *px, *pret; const char *tpe; typedef struct { double height; double centroid; double fwhm; } gaussian; gaussian *pgauss; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; if (debug == 1){ tpe = input1->ob_type->tp_name; printf("C(iotest): input1 type of object = %s\n",tpe); /* j = PyObject_Length (input1); printf("Length = %d\n",j); for (i=0;i<j;i++){ printf("Element %d = %ld\n",i, PyInt_AsLong(PyList_GetItem(input1,i))); } */ } param = (PyArrayObject *) PyArray_ContiguousFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = pgauss[i].fwhm/(2.0*sqrt(2.0*log2)); dhelp = (*px - pgauss[i].centroid)/dhelp; if (dhelp <= 20) { *pret += pgauss[i].height * exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = pgauss[i].fwhm/(2.0*sqrt(2.0*log2)); dhelp = (*px - pgauss[i].centroid)/dhelp; if (dhelp <= 20) { *pret += pgauss[i].height * exp (-0.5 * dhelp * dhelp); } } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_agauss(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, dhelp0,log2, sqrt2PI,sigma,tosigma; double *px, *pret; typedef struct { double area; double centroid; double fwhm; } gaussian; gaussian *pgauss; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; sqrt2PI= sqrt(2.0*M_PI); tosigma=1.0/(2.0*sqrt(2.0*log2)); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ sigma = pgauss[i].fwhm*tosigma; dhelp = (*px - pgauss[i].centroid)/sigma; if (dhelp <= 35){ *pret += (pgauss[i].area/(sigma*sqrt2PI))* exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ sigma = pgauss[i].fwhm*tosigma; dhelp0 = pgauss[i].area/(sigma*sqrt2PI); px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); for (j=0;j<k;j++){ if (i==0) *pret = 0.0; dhelp = (*px - pgauss[i].centroid)/sigma; if (dhelp <= 35){ *pret += dhelp0 * exp (-0.5 * dhelp * dhelp); } pret++; px++; } } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_fastagauss(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k,expindex; double dhelp, dhelp0,log2, sqrt2PI,sigma,tosigma; double *px, *pret; static double EXP[5000]; typedef struct { double area; double centroid; double fwhm; } gaussian; gaussian *pgauss; /* initialisation */ if (EXP[0] < 1){ for (i=0;i<5000;i++){ EXP[i] = exp(-0.01 * i); } } /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; sqrt2PI= sqrt(2.0*M_PI); tosigma=1.0/(2.0*sqrt(2.0*log2)); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ sigma = pgauss[i].fwhm*tosigma; dhelp = (*px - pgauss[i].centroid)/sigma; if (dhelp <= 35){ *pret += (pgauss[i].area/(sigma*sqrt2PI))* exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ sigma = pgauss[i].fwhm*tosigma; dhelp0 = pgauss[i].area/(sigma*sqrt2PI); px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); for (j=0;j<k;j++){ if (i==0) *pret = 0.0; dhelp = (*px - pgauss[i].centroid)/sigma; if (dhelp <= 15){ dhelp = 0.5 * dhelp * dhelp; if (dhelp < 50){ expindex = (int) (dhelp * 100); *pret += dhelp0 * EXP[expindex]*(1.0 - (dhelp - 0.01 * expindex)) ; }else if (dhelp < 100) { expindex = (int) (dhelp * 10); *pret += dhelp0 * pow(EXP[expindex]*(1.0 - (dhelp - 0.1 * expindex)),10) ; }else if (dhelp < 1000){ expindex = (int) (dhelp); *pret += dhelp0 * pow(EXP[expindex]*(1.0 - (dhelp - expindex)),20) ; } } pret++; px++; } } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_splitgauss(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2; double *px, *pret; const char *tpe; typedef struct { double height; double centroid; double fwhm1; double fwhm2; } gaussian; gaussian *pgauss; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; if (debug == 1){ tpe = input1->ob_type->tp_name; printf("C(iotest): input1 type of object = %s\n",tpe); } param = (PyArrayObject *) PyArray_ContiguousFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%4) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d rows and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d rows and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - pgauss[i].centroid) * (2.0*sqrt(2.0*log2)); if (dhelp > 0) { dhelp = dhelp/pgauss[i].fwhm2; }else{ dhelp = dhelp/pgauss[i].fwhm1; } if (dhelp <= 20) { *pret += pgauss[i].height * exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; pgauss = (gaussian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - pgauss[i].centroid) * (2.0*sqrt(2.0*log2)); if (dhelp > 0) { dhelp = dhelp /pgauss[i].fwhm2; }else{ dhelp = dhelp /pgauss[i].fwhm1; } if (dhelp <= 20) { *pret += pgauss[i].height * exp (-0.5 * dhelp * dhelp); } } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_apvoigt(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2, sqrt2PI,sigma,tosigma; double *px, *pret; typedef struct { double area; double centroid; double fwhm; double eta; } pvoigtian; pvoigtian *ppvoigt; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%4) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - ppvoigt[i].centroid) / (0.5 * ppvoigt[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * \ (ppvoigt[i].area / (0.5 * M_PI * ppvoigt[i].fwhm * dhelp)); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - ppvoigt[i].centroid) / (0.5 * ppvoigt[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * \ (ppvoigt[i].area / (0.5 * M_PI * ppvoigt[i].fwhm * dhelp)); } pret++; px++; } } /* The lorentzian term is calculated */ /* Now it has to calculate the gaussian term */ log2 = 0.69314718055994529; sqrt2PI= sqrt(2.0*M_PI); tosigma=1.0/(2.0*sqrt(2.0*log2)); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ sigma = ppvoigt[i].fwhm * tosigma; dhelp = (*px - ppvoigt[i].centroid)/sigma; if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * \ (ppvoigt[i].area/(sigma*sqrt2PI)) \ * exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ sigma = ppvoigt[i].fwhm * tosigma; dhelp = (*px - ppvoigt[i].centroid)/sigma; if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * \ (ppvoigt[i].area/(sigma*sqrt2PI)) \ * exp (-0.5 * dhelp * dhelp); } } pret++; px++; } } /* word done */ Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_pvoigt(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2; double *px, *pret; typedef struct { double height; double centroid; double fwhm; double eta; } pvoigtian; pvoigtian *ppvoigt; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%4) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - ppvoigt[i].centroid) / (0.5 * ppvoigt[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * (ppvoigt[i].height / dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = (*px - ppvoigt[i].centroid) / (0.5 * ppvoigt[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * (ppvoigt[i].height / dhelp); } pret++; px++; } } /* The lorentzian term is calculated */ /* Now it has to calculate the gaussian term */ log2 = 0.69314718055994529; /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = ppvoigt[i].fwhm/(2.0*sqrt(2.0*log2)); dhelp = (*px - ppvoigt[i].centroid)/dhelp; if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * ppvoigt[i].height \ * exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = ppvoigt[i].fwhm/(2.0*sqrt(2.0*log2)); dhelp = (*px - ppvoigt[i].centroid)/dhelp; if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * ppvoigt[i].height \ * exp (-0.5 * dhelp * dhelp); } } pret++; px++; } } /* word done */ Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_splitpvoigt(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2; double *px, *pret; typedef struct { double height; double centroid; double fwhm1; double fwhm2; double eta; } pvoigtian; pvoigtian *ppvoigt; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%5) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d rows and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d rows and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/5);i++){ dhelp = (*px - ppvoigt[i].centroid); if (dhelp > 0){ dhelp = dhelp /(0.5 * ppvoigt[i].fwhm2); }else{ dhelp = dhelp /(0.5 * ppvoigt[i].fwhm1); } dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * (ppvoigt[i].height / dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/5);i++){ dhelp = (*px - ppvoigt[i].centroid); if (dhelp > 0){ dhelp = dhelp /(0.5 * ppvoigt[i].fwhm2); }else{ dhelp = dhelp /(0.5 * ppvoigt[i].fwhm1); } dhelp = 1.0 + (dhelp * dhelp); *pret += ppvoigt[i].eta * (ppvoigt[i].height / dhelp); } pret++; px++; } } /* The lorentzian term is calculated */ /* Now it has to calculate the gaussian term */ log2 = 0.69314718055994529; /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/5);i++){ dhelp = (*px - ppvoigt[i].centroid); if (dhelp >0){ dhelp = dhelp /(ppvoigt[i].fwhm2/(2.0*sqrt(2.0*log2))); }else{ dhelp = dhelp /(ppvoigt[i].fwhm1/(2.0*sqrt(2.0*log2))); } if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * ppvoigt[i].height \ * exp (-0.5 * dhelp * dhelp); } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ ppvoigt = (pvoigtian *) PyArray_DATA(param); for (i=0;i<(npars/5);i++){ dhelp = (*px - ppvoigt[i].centroid); if (dhelp > 0){ dhelp = dhelp /(ppvoigt[i].fwhm2/(2.0*sqrt(2.0*log2))); }else{ dhelp = dhelp /(ppvoigt[i].fwhm1/(2.0*sqrt(2.0*log2))); } if (dhelp <= 35) { *pret += (1.0 - ppvoigt[i].eta) * ppvoigt[i].height \ * exp (-0.5 * dhelp * dhelp); } } pret++; px++; } } /* word done */ Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_lorentz(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp; double *px, *pret; typedef struct { double height; double centroid; double fwhm; } lorentzian; lorentzian *plorentz; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = (*px - plorentz[i].centroid) / (0.5 * plorentz[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += (plorentz[i].height / dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = (*px - plorentz[i].centroid) / (0.5 * plorentz[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += (plorentz[i].height / dhelp); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_alorentz(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp; double *px, *pret; typedef struct { double area; double centroid; double fwhm; } lorentzian; lorentzian *plorentz; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = (*px - plorentz[i].centroid) / (0.5 * plorentz[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += plorentz[i].area /(0.5 * M_PI * plorentz[i].fwhm * dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = (*px - plorentz[i].centroid) / (0.5 * plorentz[i].fwhm); dhelp = 1.0 + (dhelp * dhelp); *pret += plorentz[i].area /(0.5 * M_PI * plorentz[i].fwhm * dhelp); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_splitlorentz(PyObject *self, PyObject *args) { PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp; double *px, *pret; typedef struct { double height; double centroid; double fwhm1; double fwhm2; } lorentzian; lorentzian *plorentz; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%4) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d rows and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d rows and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = *px - plorentz[i].centroid; if (dhelp > 0){ dhelp = dhelp /(0.5 * plorentz[i].fwhm2); }else{ dhelp = dhelp /(0.5 * plorentz[i].fwhm1); } dhelp = 1.0 + (dhelp * dhelp); *pret += (plorentz[i].height / dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; plorentz = (lorentzian *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = *px - plorentz[i].centroid; if (dhelp > 0){ dhelp = dhelp /(0.5 * plorentz[i].fwhm2); }else{ dhelp = dhelp /(0.5 * plorentz[i].fwhm1); } dhelp = 1.0 + (dhelp * dhelp); *pret += (plorentz[i].height / dhelp); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_downstep(PyObject *self, PyObject *args) { double erfc(double); PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, tosigma; double *px, *pret; typedef struct { double height; double centroid; double fwhm; } errorfc; errorfc *perrorfc; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); tosigma=1.0/(2.0*sqrt(2.0*log(2.0))); if (nd_x == 0){ *pret = 0; perrorfc = (errorfc *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = perrorfc[i].fwhm * tosigma; dhelp = (*px - perrorfc[i].centroid) / (sqrt(2)*dhelp); *pret += perrorfc[i].height * 0.5 * erfc(dhelp); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; perrorfc = (errorfc *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = perrorfc[i].fwhm * tosigma; dhelp = (*px - perrorfc[i].centroid) / (sqrt(2)*dhelp); *pret += perrorfc[i].height * 0.5 * erfc(dhelp); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_upstep(PyObject *self, PyObject *args) { double erf(double); PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, tosigma; double *px, *pret; typedef struct { double height; double centroid; double fwhm; } errorf; errorf *perrorf; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%3) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); tosigma=1.0/(2.0*sqrt(2.0*log(2.0))); if (nd_x == 0){ *pret = 0; perrorf = (errorf *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = perrorf[i].fwhm * tosigma; dhelp = (*px - perrorf[i].centroid) / (sqrt(2)*dhelp); *pret += perrorf[i].height * 0.5 * (1.0 + erf(dhelp)); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; perrorf = (errorf *) PyArray_DATA(param); for (i=0;i<(npars/3);i++){ dhelp = perrorf[i].fwhm * tosigma; dhelp = (*px - perrorf[i].centroid) / (sqrt(2)*dhelp); *pret += perrorf[i].height * 0.5 * (1.0 + erf(dhelp)); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_slit(PyObject *self, PyObject *args) { double erf(double); double erfc(double); PyObject *input1, *input2; int debug=0; PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, dhelp1,dhelp2,centroid1,centroid2,tosigma; double *px, *pret; typedef struct { double height; double position; double fwhm; double beamfwhm; } errorf; errorf *perrorf; /** statements **/ if (!PyArg_ParseTuple(args, "OO|i", &input1,&input2,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%4) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); tosigma=1.0/(2.0*sqrt(2.0*log(2.0))); if (nd_x == 0){ *pret = 0; perrorf = (errorf *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = perrorf[i].beamfwhm * tosigma; centroid1=perrorf[i].position - 0.5 * perrorf[i].fwhm; centroid2=perrorf[i].position + 0.5 * perrorf[i].fwhm; dhelp1 = (*px - centroid1) / (sqrt(2)*dhelp); dhelp2 = (*px - centroid2) / (sqrt(2)*dhelp); *pret += perrorf[i].height * 0.5 * (1.0 + erf(dhelp1))*erfc(dhelp2); } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; perrorf = (errorf *) PyArray_DATA(param); for (i=0;i<(npars/4);i++){ dhelp = perrorf[i].beamfwhm * tosigma; centroid1=perrorf[i].position - 0.5 * perrorf[i].fwhm; centroid2=perrorf[i].position + 0.5 * perrorf[i].fwhm; dhelp1 = (*px - centroid1) / (sqrt(2)*dhelp); dhelp2 = (*px - centroid2) / (sqrt(2)*dhelp); *pret += perrorf[i].height * 0.5 * (1.0 + erf(dhelp1))*erfc(dhelp2); } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_erfc(PyObject *self, PyObject *args) { double erfc(double); PyObject *input1; int debug=0; PyArrayObject *x; PyArrayObject *ret; int nd_x; npy_intp dim_x[2]; int j, k; double dhelp; double *px, *pret; /** statements **/ if (!PyArg_ParseTuple(args, "O|i", &input1,&debug)) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (x == NULL){ return NULL; } nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_x = %d\n",nd_x); } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if(debug !=0) { printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ dhelp = *px; *pret = erfc(dhelp); }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ dhelp = *px; *pret = erfc(dhelp); pret++; px++; } } Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_erf(PyObject *self, PyObject *args) { double erfc(double); double erf(double); PyObject *input1; int debug=0; PyArrayObject *x; PyArrayObject *ret; int nd_x; npy_intp dim_x[2]; int j, k; double dhelp; double *px, *pret; /** statements **/ if (!PyArg_ParseTuple(args, "O|i", &input1,&debug)) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (x == NULL){ return NULL; } nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_x = %d\n",nd_x); } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if(debug !=0) { printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if (nd_x == 0){ dhelp = *px; *pret = erf(dhelp); }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ dhelp = *px; *pret = erf(dhelp); pret++; px++; } } Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_ahypermet(PyObject *self, PyObject *args) { double erfc(double); PyObject *input1, *input2; int debug=0; int tails=15; int expected_pars; int g_term_flag, st_term_flag, lt_term_flag, step_term_flag; /*double g_term, st_term, lt_term, step_term;*/ PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2, sqrt2PI,tosigma; double x1, x2, x3, x4, x5, x6, x7, x8; double z0, z1, z2; double *px, *pret; typedef struct { double area; double position; double fwhm; double st_area_r; double st_slope_r; double lt_area_r; double lt_slope_r; double step_height_r; } hypermet; hypermet *phyper; /** statements **/ if (!PyArg_ParseTuple(args, "OO|ii", &input1,&input2,&tails,&debug)) return NULL; param = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } /* The gaussian terms must always be there */ if(tails <= 0){ /* I give back a matrix filled with zeros */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; }else{ PyArray_FILLWBYTE(ret, 0); Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } }else{ g_term_flag = tails & 1; st_term_flag = (tails>>1) & 1; lt_term_flag = (tails>>2) & 1; step_term_flag = (tails>>3) & 1; } if (debug){ printf("flags g = %d st = %d lt = %d step = %d\n",\ g_term_flag,st_term_flag,lt_term_flag,step_term_flag); } expected_pars = 3 + st_term_flag * 2+lt_term_flag * 2+step_term_flag * 1; expected_pars = 8; if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%expected_pars) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; sqrt2PI= sqrt(2.0*M_PI); tosigma=1.0/(2.0*sqrt(2.0*log2)); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); phyper = (hypermet *) PyArray_DATA(param); if (nd_x == 0){ *pret = 0; phyper = (hypermet *) PyArray_DATA(param); for (i=0;i<(npars/expected_pars);i++){ /* g_term = st_term = lt_term = step_term = 0; */ x1 = phyper[i].area; x2 = phyper[i].position; x3 = phyper[i].fwhm*tosigma; /* some intermediate variables */ z0 = *px - x2; z1 = x3 * 1.4142135623730950488; /*I should check for sigma = 0 */ if (x3 != 0) { z2 = (0.5 * z0 * z0) / (x3 * x3); }else{ /* I should raise an exception */ printf("Linear Algebra Error: Division by zero\n"); printf("Area=%f,Position=%f,FWHM=%f\n",x1,x2,phyper[i].fwhm); printf("ST_Area=%f,ST_Slope=%f\n",phyper[i].st_area_r,phyper[i].st_slope_r); printf("LT_Area=%f,LT_Slope=%f\n",phyper[i].lt_area_r,phyper[i].lt_slope_r); Py_DECREF(param); Py_DECREF(x); Py_DECREF(ret); return NULL; } if (g_term_flag){ if (z2 < 612) { *pret += exp (-z2) * (x1/(x3*sqrt2PI)); } } if (st_term_flag){ x4 = phyper[i].st_area_r; x5 = phyper[i].st_slope_r; if ((x5 != 0) && (x4 != 0)){ dhelp = x4 * 0.5 * erfc((z0/z1) + 0.5 * z1/x5); if (dhelp != 0.0){ if (fabs(z0/x5) <= 612){ *pret += ((x1 * dhelp)/x5) * exp(0.5 * (x3/x5) * (x3/x5)+ (z0/x5)); } } } } if (lt_term_flag){ x6 = phyper[i].lt_area_r; x7 = phyper[i].lt_slope_r; if ((x7 != 0) && (x6 != 0)){ dhelp = x6 * 0.5 * erfc((z0/z1) + 0.5 * z1/x7); if (fabs(z0/x7) <= 612){ *pret += ((x1 * dhelp)/x7) * exp(0.5 * (x3/x7) * (x3/x7)+(z0/x7)); } } } if (step_term_flag){ x8 = phyper[i].step_height_r; if ((x8 != 0) && (x3 != 0)){ *pret += x8 * (x1/(x3*sqrt2PI)) * 0.5 * erfc(z0/z1); } } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } for (j=0;j<k;j++){ *pret = 0; phyper = (hypermet *) PyArray_DATA(param); for (i=0;i<(npars/expected_pars);i++){ /* g_term = st_term = lt_term = step_term = 0; */ x1 = phyper[i].area; x2 = phyper[i].position; x3 = phyper[i].fwhm * tosigma; /* some intermediate variables */ z0 = *px - x2; z1 = x3 * 1.4142135623730950488; /*I should check for sigma = 0 */ if (x3 != 0) { z2 = (0.5 * z0 * z0) / (x3 * x3); }else{ /* I should raise an exception */ printf("Linear Algebra Error: Division by zero\n"); printf("Area=%f,Position=%f,FWHM=%f\n",x1,x2,phyper[i].fwhm); printf("ST_Area=%f,ST_Slope=%f\n",phyper[i].st_area_r,phyper[i].st_slope_r); printf("LT_Area=%f,LT_Slope=%f\n",phyper[i].lt_area_r,phyper[i].lt_slope_r); Py_DECREF(param); Py_DECREF(x); Py_DECREF(ret); return NULL; } if (g_term_flag){ if (z2 < 612) { *pret += exp (-z2) * (x1/(x3*sqrt2PI)); } } if (st_term_flag){ x4 = phyper[i].st_area_r; x5 = phyper[i].st_slope_r; if ((x5 != 0) && (x4 != 0)){ dhelp = x4 * 0.5 * erfc((z0/z1) + 0.5 * z1/x5); if (dhelp != 0){ if (fabs(z0/x5) <= 612){ *pret += ((x1 * dhelp)/x5) * exp(0.5 * (x3/x5) * (x3/x5)+ (z0/x5)); } } } } if (lt_term_flag){ x6 = phyper[i].lt_area_r; x7 = phyper[i].lt_slope_r; if ((x7 != 0) && (x6 != 0)){ dhelp = x6 * 0.5 * erfc((z0/z1) + 0.5 * z1/x7); if (fabs(z0/x7) <= 612){ *pret += ((x1 * dhelp)/x7) * exp(0.5 * (x3/x7) * (x3/x7)+ (z0/x7)); } } } if (step_term_flag){ x8 = phyper[i].step_height_r; if ((x8 != 0) && (x3 != 0)){ *pret += x8 * (x1/(x3*sqrt2PI)) * 0.5 * erfc(z0/z1); } } } pret++; px++; } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } double fastexp(double x) { int expindex; static double EXP[5000] = {0.0}; int i; /*initialize */ if (EXP[0] < 1){ for (i=0;i<5000;i++){ EXP[i] = exp(-0.01 * i); } } /*calculate*/ if (x < 0){ x = -x; if (x < 50){ expindex = (int) (x * 100); return EXP[expindex]*(1.0 - (x - 0.01 * expindex)) ; }else if (x < 100) { expindex = (int) (x * 10); return pow(EXP[expindex]*(1.0 - (x - 0.1 * expindex)),10) ; }else if (x < 1000){ expindex = (int) x; return pow(EXP[expindex]*(1.0 - (x - expindex)),20) ; }else if (x < 10000){ expindex = (int) (x * 0.1); return pow(EXP[expindex]*(1.0 - (x - 10.0 * expindex)),30) ; }else{ return 0; } }else{ if (x < 50){ expindex = (int) (x * 100); return 1.0/EXP[expindex]*(1.0 - (x - 0.01 * expindex)) ; }else if (x < 100) { expindex = (int) (x * 10); return pow(EXP[expindex]*(1.0 - (x - 0.1 * expindex)),-10) ; }else{ return exp(x); } } } static PyObject * SpecfitFuns_fastahypermet(PyObject *self, PyObject *args) { double erfc(double); double fastexp(double); PyObject *input1, *input2; int debug=0; int tails=15; int expected_pars; int g_term_flag, st_term_flag, lt_term_flag, step_term_flag; /*double g_term, st_term, lt_term, step_term;*/ PyArrayObject *param, *x; PyArrayObject *ret; int nd_param, nd_x, npars; npy_intp dim_param[2]; npy_intp dim_x[2]; int i, j, k; double dhelp, log2, sqrt2PI,tosigma; double x1, x2, x3, x4, x5, x6, x7, x8; double z0, z1, z2; double *px, *pret; typedef struct { double area; double position; double fwhm; double st_area_r; double st_slope_r; double lt_area_r; double lt_slope_r; double step_height_r; } hypermet; hypermet *phyper; /** statements **/ if (!PyArg_ParseTuple(args, "OO|ii", &input1,&input2,&tails,&debug)) return NULL; param = (PyArrayObject *) PyArray_ContiguousFromObject(input1, NPY_DOUBLE,0,0); if (param == NULL) return NULL; x = (PyArrayObject *) PyArray_ContiguousFromObject(input2, NPY_DOUBLE,0,0); if (x == NULL){ Py_DECREF(param); return NULL; } nd_param = PyArray_NDIM(param); nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_param = %d nd_x = %d\n",nd_param,nd_x); } if (nd_param == 1) { dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = 0; }else{ dim_param [0] = PyArray_DIMS(param)[0]; dim_param [1] = PyArray_DIMS(param)[1]; } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } /* The gaussian terms must always be there */ if(tails <= 0){ /* I give back a matrix filled with zeros */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; }else{ PyArray_FILLWBYTE(ret, 0); Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } }else{ g_term_flag = tails & 1; st_term_flag = (tails>>1) & 1; lt_term_flag = (tails>>2) & 1; step_term_flag = (tails>>3) & 1; } if (debug){ printf("flags g = %d st = %d lt = %d step = %d\n",\ g_term_flag,st_term_flag,lt_term_flag,step_term_flag); } expected_pars = 3 + st_term_flag * 2+lt_term_flag * 2+step_term_flag * 1; expected_pars = 8; if (nd_param == 1) { npars = (int) dim_param[0]; }else{ npars = (int) (dim_param[0] * dim_param[1]); } if ((npars%expected_pars) != 0) { printf("Incorrect number of parameters\n"); Py_DECREF(param); Py_DECREF(x); return NULL; } if(debug !=0) { printf("parameters %d raws and %d cols\n", (int)dim_param[0], (int)dim_param[1]); printf("nparameters = %d\n",npars); printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(param); Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); log2 = 0.69314718055994529; sqrt2PI= sqrt(2.0*M_PI); tosigma=1.0/(2.0*sqrt(2.0*log2)); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); phyper = (hypermet *) PyArray_DATA(param); if (nd_x == 0){ *pret = 0; phyper = (hypermet *) PyArray_DATA(param); for (i=0;i<(npars/expected_pars);i++){ /* g_term = st_term = lt_term = step_term = 0; */ x1 = phyper[i].area; x2 = phyper[i].position; x3 = phyper[i].fwhm*tosigma; /* some intermediate variables */ z0 = *px - x2; z1 = x3 * 1.4142135623730950488; /*I should check for sigma = 0 */ if (x3 != 0) { z2 = (0.5 * z0 * z0) / (x3 * x3); }else{ /* I should raise an exception */ printf("Linear Algebra Error: Division by zero\n"); printf("Area=%f,Position=%f,FWHM=%f\n",x1,x2,phyper[i].fwhm); printf("ST_Area=%f,ST_Slope=%f\n",phyper[i].st_area_r,phyper[i].st_slope_r); printf("LT_Area=%f,LT_Slope=%f\n",phyper[i].lt_area_r,phyper[i].lt_slope_r); Py_DECREF(param); Py_DECREF(x); Py_DECREF(ret); return NULL; } if (z2 < 100) { if (g_term_flag){ /* *pret += exp (-z2) * (x1/(x3*sqrt2PI));*/ *pret += fastexp (-z2) * (x1/(x3*sqrt2PI)); } } if (st_term_flag){ x4 = phyper[i].st_area_r; x5 = phyper[i].st_slope_r; if ((x5 != 0) && (x4 != 0)){ dhelp = x4 * 0.5 * erfc((z0/z1) + 0.5 * z1/x5); if (dhelp > 0.0){ if (fabs(z0/x5) <= 612){ /* *pret += ((x1 * dhelp)/x5) * exp(0.5 * (x3/x5) * (x3/x5)) \ * exp(z0/x5); */ *pret += ((x1 * dhelp)/x5) * fastexp(0.5 * (x3/x5) * (x3/x5)+(z0/x5)); } } } } if (lt_term_flag){ x6 = phyper[i].lt_area_r; x7 = phyper[i].lt_slope_r; if ((x7 != 0) && (x6 != 0)){ dhelp = x6 * 0.5 * erfc((z0/z1) + 0.5 * z1/x7); if (dhelp > 0.0){ if (fabs(z0/x7) <= 612){ *pret += ((x1 * dhelp)/x7) * fastexp(0.5 * (x3/x7) * (x3/x7)+(z0/x7)); } } } } if (step_term_flag){ x8 = phyper[i].step_height_r; if ((x8 != 0) && (x3 != 0)){ *pret += x8 * (x1/(x3*sqrt2PI)) * 0.5 * erfc(z0/z1); } } } }else{ k = 1; for (j=0;j<nd_x;j++){ k = (int) (dim_x [j] * k); } phyper = (hypermet *) PyArray_DATA(param); for (i=0;i<(npars/expected_pars);i++){ if (i == 0){ *pret = 0; }else{ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); } x1 = phyper[i].area; x2 = phyper[i].position; x3 = phyper[i].fwhm * tosigma; x4 = phyper[i].st_area_r; x5 = phyper[i].st_slope_r; x6 = phyper[i].lt_area_r; x7 = phyper[i].lt_slope_r; x8 = phyper[i].step_height_r; z1 = x3 * 1.4142135623730950488; for (j=0;j<k;j++){ /* some intermediate variables */ z0 = *px - x2; /*I should check for sigma = 0 */ if (x3 != 0) { z2 = (0.5 * z0 * z0) / (x3 * x3); }else{ /* I should raise an exception */ printf("Linear Algebra Error: Division by zero\n"); printf("Area=%f,Position=%f,FWHM=%f\n",x1,x2,phyper[i].fwhm); printf("ST_Area=%f,ST_Slope=%f\n",phyper[i].st_area_r,phyper[i].st_slope_r); printf("LT_Area=%f,LT_Slope=%f\n",phyper[i].lt_area_r,phyper[i].lt_slope_r); Py_DECREF(param); Py_DECREF(x); Py_DECREF(ret); return NULL; } if (z2 < 100){ if (g_term_flag){ /* *pret += exp (-z2) * (x1/(x3*sqrt2PI));*/ *pret += fastexp (-z2) * (x1/(x3*sqrt2PI)); } } /*include the short tail in the test is not a good idea */ if (st_term_flag){ if ((x5 != 0) && (x4 != 0)){ dhelp = (z0/z1) + 0.5 * z1/x5; if (dhelp < 10){ dhelp = x4 * 0.5 * erfc(dhelp); if (dhelp > 0){ if (fabs(z0/x5) <= 612){ *pret += ((x1 * dhelp)/x5) * fastexp(0.5 * (x3/x5) * (x3/x5) + (z0/x5)); } } } } } if (lt_term_flag){ if ((x7 != 0) && (x6 != 0)){ dhelp = (z0/z1) + 0.5 * z1/x7; if (dhelp < 10){ dhelp = x6 * 0.5 * erfc(dhelp); if (dhelp > 0){ if (fabs(z0/x7) <= 612){ *pret += ((x1 * dhelp)/x7) * fastexp(0.5 * (x3/x7) * (x3/x7)+(z0/x7)); } } } } } if (step_term_flag){ if ((x8 != 0) && (x3 != 0)){ *pret += x8 * (x1/(x3*sqrt2PI)) * 0.5 * erfc(z0/z1); } } pret++; px++; } } } Py_DECREF(param); Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_seek(PyObject *self, PyObject *args) { long SpecfitFuns_seek2(long , long, long, double, double, double, long, double, double, long, double *, long, long, double *, long *, double *, double *); /* required input parameters */ PyObject *input; /* The array containing the y values */ long BeginChannel; /* The first channel to start search */ long EndChannel; /* The last channel of the search */ double FWHM; /* The estimated FWHM in channels */ /* optional input parameters */ double Sensitivity = 3.5; double debug_info = 0; double relevance_info = 0; /* some other variables required by the fortran function */ long FixRegion = 1; /* Set to 1 if the program cannot adjust the fitting region */ double LowDistance = 5.0; double HighDistance = 3.0; long AddInEmpty = 0; long npeaks; long Ecal = 0; double E[2]; /* local variables */ PyArrayObject *yspec, *result; long i; long nchannels; long NMAX_PEAKS = 150; double peaks[150]; double relevances[150]; long seek_result; double *pvalues; long nd; npy_intp dimensions[2]; /* statements */ if (!PyArg_ParseTuple(args, "Olld|ddd", &input, &BeginChannel, &EndChannel, &FWHM, &Sensitivity, &debug_info, &relevance_info )) return NULL; yspec = (PyArrayObject *) PyArray_CopyFromObject(input, NPY_DOUBLE,0,0); if (yspec == NULL) return NULL; if (Sensitivity < 0.1) { Sensitivity = 3.25; } nd = PyArray_NDIM(yspec); if (nd == 0) { printf("I need at least a vector!\n"); Py_DECREF(yspec); return NULL; } nchannels = (long) PyArray_DIMS(yspec)[0]; if (nd > 1) { if (nchannels == 1){ nchannels = (long) PyArray_DIMS(yspec)[0]; } } pvalues = (double *) PyArray_DATA(yspec); seek_result=SpecfitFuns_seek2(BeginChannel, EndChannel, nchannels, FWHM, Sensitivity, debug_info, FixRegion, LowDistance, HighDistance, NMAX_PEAKS, pvalues, AddInEmpty, Ecal, E, &npeaks, peaks, relevances); Py_DECREF(yspec); if(seek_result != 0) { return NULL; } if (relevance_info) { dimensions [0] = npeaks; dimensions [1] = 2; result = (PyArrayObject *) PyArray_SimpleNew(2,dimensions,NPY_DOUBLE); pvalues = (double *) PyArray_DATA(result); for (i=0;i<npeaks;i++){ pvalues[2*i] = peaks[i]; pvalues[2*i + 1] = relevances[i]; } }else{ dimensions [0] = npeaks; result = (PyArrayObject *) PyArray_SimpleNew(1,dimensions,NPY_DOUBLE); pvalues = (double *) PyArray_DATA(result); for (i=0;i<npeaks;i++){ pvalues[i] = peaks[i]; } } return PyArray_Return(result); } long SpecfitFuns_seek2(long BeginChannel, long EndChannel, long nchannels, double FWHM, double Sensitivity,double debug_info, long FixRegion, double LowDistance, double HighDistance,long max_npeaks, double *yspec, long AddInEmpty, long Ecal,double *E, long *n_peaks, double *peaks, double *relevances) { /* local variables */ double sigma, sigma2, sigma4; long max_gfactor = 100; double gfactor[100]; long nr_factor; double sum_factors; double lowthreshold; double yspec2[2]; double nom; double den2; long begincalc, endcalc; long channel1; long lld; long cch; long cfac, cfac2; long ihelp1, ihelp2; long i, j; double peakstarted = 0; /* statements */ /* Make sure the peaks matrix is filled with zeros */ for (i=0;i<max_npeaks;i++){ peaks[i] = 0.0; relevances[i] = 0.0; } /* prepare the calculation of the Gaussian scaling factors */ sigma = FWHM / 2.35482; sigma2 = sigma * sigma; sigma4 = sigma2 * sigma2; lowthreshold = 0.01 / sigma2; sum_factors = 0.0; /* calculate the factors until lower threshold reached */ j = MIN(max_gfactor, ((EndChannel - BeginChannel -2)/2)-1); for (cfac=1;cfac<j+1;cfac++) { cfac2 = cfac * cfac; gfactor[cfac-1] = (sigma2 - cfac2) * exp (-cfac2/(sigma2*2.0)) / sigma4; sum_factors += gfactor[cfac-1]; /*printf("gfactor[%ld] = % g\n",cfac,gfactor[cfac-1]);*/ if ((gfactor[cfac-1] < lowthreshold) && (gfactor[cfac-1] > (-lowthreshold))){ break; } } /*printf("sum_factors = %g\n",sum_factors);*/ nr_factor = cfac; /* What comes now is specific to MCA spectra ... */ /*lld = 7;*/ lld = 0; while (yspec [lld] == 0) { lld++; } lld = lld + (int) (0.5 * FWHM); channel1 = BeginChannel - nr_factor - 1; channel1 = MAX (channel1, lld); begincalc = channel1+nr_factor+1; endcalc = MIN (EndChannel+nr_factor+1, nchannels-nr_factor-1); *n_peaks = 0; cch = begincalc; if(debug_info){ printf("nrfactor = %ld\n", nr_factor); printf("begincalc = %ld\n", begincalc); printf("endcalc = %ld\n", endcalc); } /* calculates smoothed value and variance at begincalc */ cch = MAX(BeginChannel,0); nom = yspec[cch] / sigma2; den2 = yspec[cch] / sigma4; for (cfac = 1; cfac < nr_factor; cfac++){ ihelp1 = cch-cfac; if (ihelp1 < 0){ ihelp1 = 0; } ihelp2 = cch+cfac; if (ihelp2 >= nchannels){ ihelp2 = nchannels-1; } nom += gfactor[cfac-1] * (yspec[ihelp2] + yspec [ihelp1]); den2 += gfactor[cfac-1] * gfactor[cfac-1] * (yspec[ihelp2] + yspec [ihelp1]); } /* now normalize the smoothed value to the standard deviation */ if (den2 <= 0.0) { yspec2[1] = 0.0; }else{ yspec2[1] = nom / sqrt(den2); } yspec[0] = yspec[1]; while (cch <= MIN(EndChannel,nchannels-2)){ /* calculate gaussian smoothed values */ yspec2[0] = yspec2[1]; cch++; nom = yspec[cch]/sigma2; den2 = yspec[cch] / sigma4; for (cfac = 1; cfac < nr_factor; cfac++){ ihelp1 = cch-cfac; if (ihelp1 < 0){ ihelp1 = 0; } ihelp2 = cch+cfac; if (ihelp2 >= nchannels){ ihelp2 = nchannels-1; } nom += gfactor[cfac-1] * (yspec[ihelp2] + yspec [ihelp1]); den2 += gfactor[cfac-1] * gfactor[cfac-1] * (yspec[ihelp2] + yspec [ihelp1]); } /* now normalize the smoothed value to the standard deviation */ if (den2 <= 0) { yspec2[1] = 0; }else{ yspec2[1] = nom / sqrt(den2); } /* if (cch == endcalc) yspec2[1] = 0.0; */ /* look if the current point falls in a peak */ if (yspec2[1] > Sensitivity) { if(peakstarted == 0){ if (yspec2[1] > yspec2[0]){ /* this second test is to prevent a peak from outside the region from being detected at the beginning of the search */ peakstarted=1; } } /* there is a peak */ if (debug_info){ printf("At cch = %ld y[cch] = %g\n",cch,yspec[cch]); printf("yspec2[0] = %g\n",yspec2[0]); printf("yspec2[1] = %g\n",yspec2[1]); printf("Sensitivity = %g\n",Sensitivity); } if(peakstarted == 1){ /* look for the top of the peak */ if (yspec2[1] < yspec2 [0]) { /* we are close to the top of the peak */ if (debug_info){ printf("we are close to the top of the peak\n"); } if (*n_peaks < max_npeaks) { peaks [*n_peaks] = cch-1; relevances [*n_peaks] = yspec2[0]; (*n_peaks)++; peakstarted=2; }else{ printf("Found too many peaks\n"); return (-2); } } } /* Doublet case */ if(peakstarted == 2){ if ((cch-peaks[(*n_peaks)-1]) > 0.6 * FWHM) { if (yspec2[1] > yspec2 [0]){ if(debug_info){ printf("We may have a doublet\n"); } peakstarted=1; } } } }else{ if (peakstarted==1){ /* We were on a peak but we did not find the top */ if(debug_info){ printf("We were on a peak but we did not find the top\n"); } } peakstarted=0; } } if(debug_info){ for (i=0;i< *n_peaks;i++){ printf("Peak %ld found at ",i+1); printf("index %g with y = %g\n",peaks[i],yspec[(long ) peaks[i]]); } } return (0); } double myerfc(double x) { double z; double t; double r; z=fabs(x); t=1.0/(1.0+0.5*z); r=t * exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.3740916 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223+t*0.17087277))))))))); if (x<0) r=2.0-r; return (r); } double myerf(double x) { double z; double t; double r; z=fabs(x); t=1.0/(1.0+0.5*z); r=t * exp(-z * z - 1.26551223 + t * (1.00002368 + t * (0.3740916 + t * (0.09678418 + t * (-0.18628806 + t * (0.27886807 + t * (-1.13520398 + t * (1.48851587 + t * (-0.82215223+t*0.17087277))))))))); if (x<0) r=2.0-r; return (1.0-r); } double fasterfc(double x) { double fasterf(double); return 1.0 - fasterf(x); } double fasterf(double z) { /* error <= 3.0E-07 */ double x; x=fabs(z); if (z>0){ return 1.0 - pow(1.+ 0.0705230784 * x + 0.0422820123 * pow(x,2) + 0.0092705272 * pow(x,3) + 0.0001520143 * pow(x,4) + 0.0002765672 * pow(x,5) + 0.0000430638 * pow(x,6),-16); }else{ return -1.0 + pow(1.+ 0.0705230784 * x + 0.0422820123 * pow(x,2) + 0.0092705272 * pow(x,3) + 0.0001520143 * pow(x,4) + 0.0002765672 * pow(x,5) + 0.0000430638 * pow(x,6),-16); } } static PyObject * SpecfitFuns_interpol(PyObject *self, PyObject *args) { /* required input parameters */ PyObject *xinput; /* The tuple containing the xdata arrays */ PyObject *yinput; /* The array containing the ydata values */ PyObject *xinter0; /* The array containing the x values */ /* local variables */ PyArrayObject *ydata, *result, **xdata, *xinter; npy_intp i, j, k, l, jl, ju, offset, badpoint; double value, *nvalue, *x1, *x2, *factors; double dhelp, yresult; double dummy = -1.0; npy_intp nd_y, nd_x, index1, *points, *indices, max_points; /*int dimensions[1];*/ npy_intp npoints; npy_intp dimensions[2]; npy_intp dim_xinter[2]; double *helppointer; /* statements */ if (!PyArg_ParseTuple(args, "OOO|d", &xinput, &yinput,&xinter0,&dummy)){ printf("Parsing error\n"); return NULL; } ydata = (PyArrayObject *) PyArray_CopyFromObject(yinput, NPY_DOUBLE,0,0); if (ydata == NULL){ printf("Copy from Object error!\n"); return NULL; } nd_y = PyArray_NDIM(ydata); if (nd_y == 0) { printf("I need at least a vector!\n"); Py_DECREF(ydata); return NULL; } /* for (i=0;i<nd_y;i++){ printf("Dimension %d = %d\n",i,PyArray_DIMS(ydata)[i]); } */ /* xdata parsing */ /* (PyArrayObject *) xdata = (PyArrayObject *) malloc(nd_y * sizeof(PyArrayObject));*/ xdata = (PyArrayObject **) malloc(nd_y * sizeof(PyArrayObject *)); if (xdata == NULL){ printf("Error in memory allocation\n"); return NULL; } if (PySequence_Size(xinput) != nd_y){ printf("xdata sequence of wrong length\n"); return NULL; } for (i=0;i<nd_y;i++){ /* printf("i = %d\n",i);*/ /*xdata[i] = (PyArrayObject *) PyArray_CopyFromObject(yinput,NPY_DOUBLE,0,0); */ xdata[i] = (PyArrayObject *) PyArray_CopyFromObject((PyObject *) (PySequence_Fast_GET_ITEM(xinput,i)), NPY_DOUBLE,0,0); if (xdata[i] == NULL){ printf("x Copy from Object error!\n"); for (j=0;j<i;j++){ Py_DECREF(xdata[j]); } free(xdata); Py_DECREF(ydata); return NULL; } } /* check x dimensions are appropriate */ j=0; for (i=0;i<nd_y;i++){ nd_x = PyArray_NDIM(xdata[i]); if (nd_x != 1) { printf("I need a vector!\n"); j++; break; } if (PyArray_DIMS(xdata[i])[0] != PyArray_DIMS(ydata)[i]){ printf("xdata[%d] does not have appropriate dimension\n", (int) i); j++; break; } } if (j) { for (i=0;i<nd_y;i++){ Py_DECREF(xdata[i]); } free(xdata); Py_DECREF(ydata); return NULL; } xinter = (PyArrayObject *) PyArray_ContiguousFromObject(xinter0, NPY_DOUBLE,0,0); if (PyArray_NDIM(xinter) == 1){ dim_xinter[0] = PyArray_DIMS(xinter)[0]; dim_xinter[1] = 0; if (dim_xinter[0] != nd_y){ printf("Wrong size\n"); for (j=0;j<nd_y;j++){ Py_DECREF(xdata[j]); } free(xdata); Py_DECREF(xinter); Py_DECREF(ydata); return NULL; } }else{ dim_xinter[0] = PyArray_DIMS(xinter)[0]; dim_xinter[1] = PyArray_DIMS(xinter)[1]; if (dim_xinter[1] != nd_y){ printf("Wrong size\n"); for (j=0;j<nd_y;j++){ Py_DECREF(xdata[j]); } free(xdata); Py_DECREF(xinter); Py_DECREF(ydata); return NULL; } } npoints = PyArray_DIMS(xinter)[0]; helppointer = (double *) PyArray_DATA(xinter); /* printf("npoints = %d\n",npoints); printf("ndimensions y = %d\n",nd_y); */ /* Parse the points to interpolate */ /* find the points to interpolate */ max_points = 1; for (j=0; j< nd_y; j++){ max_points = max_points * 2; } points = malloc(max_points * nd_y * sizeof(npy_intp)); indices = malloc(nd_y * sizeof(npy_intp)); for (i=0;i<nd_y;i++){ indices[i] = -1; } factors = malloc(nd_y * sizeof(double)); dimensions [0] = npoints; result = (PyArrayObject *) PyArray_SimpleNew(1,dimensions,NPY_DOUBLE); for (i=0;i<npoints;i++){ badpoint = 0; for (j=0; j< nd_y; j++){ index1 = -1; if (badpoint == 0){ value = *helppointer++; k=PyArray_DIMS(xdata[j])[0] - 1; nvalue = (double *) (PyArray_BYTES(xdata[j]) + k * (PyArray_STRIDES(xdata[j])[0])); /* test against other version valueold = PyFloat_AsDouble( PySequence_Fast_GET_ITEM(PySequence_Fast_GET_ITEM(xinter0,i),j)); if ( fabs(valueold-value) > 0.00001){ printf("i = %d, j= %d, oldvalue = %.5f, newvalue = %.5f\n",i,j,valueold, value); } */ if (value > *nvalue){ badpoint = 1; }else{ nvalue = (double *) (PyArray_DATA(xdata[j])); if (value < *nvalue){ badpoint = 1; } } if (badpoint == 0){ if (1){ k = PyArray_DIMS(xdata[j])[0]; jl = -1; ju = k-1; if (badpoint == 0){ while((ju-jl) > 1){ k = (ju+jl)/2; nvalue = (double *) (PyArray_BYTES(xdata[j]) + k * (PyArray_STRIDES(xdata[j])[0])); if (value >= *nvalue){ jl=k; }else{ ju=k; } } index1=jl; } } if (index1 < 0){ badpoint = 1; }else{ x1 = (double *) (PyArray_BYTES(xdata[j])+ index1 * (PyArray_STRIDES(xdata[j])[0])); x2 = (double *) (PyArray_BYTES(xdata[j])+(index1+1) * (PyArray_STRIDES(xdata[j])[0])); factors[j] = (value - *x1) / (*x2 - *x1); indices[j] = index1; } } }else{ helppointer++; } } if (badpoint == 1){ yresult = dummy; }else{ for (k=0;k<(max_points * nd_y);k++){ j = k % nd_y; if (nd_y > 1){ l = k /(2 * (nd_y - j) ); }else{ l = k; } if ( (l % 2 ) == 0){ points[k] = indices[j]; }else{ points[k] = indices[j] + 1; } /* printf("l = %d ,points[%d] = %d\n",l,k,points[k]);*/ } /* the points to interpolate */ yresult = 0.0; for (k=0;k<max_points;k++){ dhelp =1.0; offset = 0; for (j=0;j<nd_y;j++){ if (nd_y > 1){ l = ((nd_y * k) + j) /(2 * (nd_y - j) ); }else{ l = ((nd_y * k) + j); } offset += points[(nd_y * k) + j] * (PyArray_STRIDES(ydata)[j]); /*printf("factors[%d] = %g\n",j,factors[j]);*/ if ((l % 2) == 0){ dhelp = (1.0 - factors[j]) * dhelp; }else{ dhelp = factors[j] * dhelp; } } yresult += *((double *) (PyArray_BYTES(ydata) + offset)) * dhelp; } } *((double *) (PyArray_BYTES(result) + i*PyArray_STRIDES(result)[0])) = yresult; } free(points); free(indices); free(factors); for (i=0;i<nd_y;i++){ Py_DECREF(xdata[i]); } free(xdata); Py_DECREF(ydata); Py_DECREF(xinter); return PyArray_Return(result); } static PyObject * SpecfitFuns_voxelize(PyObject *self, PyObject *args) { /* required input parameters */ PyObject *grid_input; /* The float array containing the float grid */ PyObject *hits_input; /* The int array containing the number of hits */ PyObject *xinput; /* The tuple containing the double xdata arrays */ PyObject *yinput; /* The array containing the double ydata values */ PyObject *limits_input; /* The tuple containing the double xdata min and max values */ int use_datathreshold = 0; double data_threshold = 0.0; /* local variables */ PyArrayObject *grid, *hits, *ydata, **xdata, *limits; npy_intp index; npy_intp *delta_index; npy_intp i, j, goodpoint, grid_position; double value, limit0, limit1; npy_intp nd_grid; npy_intp npoints; double *data_pointer, *double_pointer; float *grid_pointerf; double *grid_pointerd; int *hits_pointer; int double_flag; /* statements */ if (!PyArg_ParseTuple(args, "OOOOO|id", &grid_input, &hits_input, &xinput, &yinput, &limits_input,&use_datathreshold, &data_threshold)){ printf("Parsing error\n"); return NULL; } grid = (PyArrayObject *) PyArray_ContiguousFromObject(grid_input, NPY_NOTYPE,0,0); switch (PyArray_DESCR(grid)->type_num){ case NPY_DOUBLE: double_flag = 1; break; default: double_flag = 0; } Py_DECREF(grid); if (double_flag){ grid = (PyArrayObject *) PyArray_ContiguousFromObject(grid_input, NPY_DOUBLE,0,0); } else { grid = (PyArrayObject *) PyArray_ContiguousFromObject(grid_input, NPY_FLOAT,0,0); } nd_grid = PyArray_NDIM(grid); if (nd_grid == 0) { printf("Grid should be at least a vector!\n"); Py_DECREF(grid); return NULL; } hits = (PyArrayObject *) PyArray_ContiguousFromObject(hits_input, NPY_INT,0,0); if (hits == NULL) { Py_DECREF(grid); return NULL; } if (PySequence_Size(xinput) != nd_grid){ printf("xdata sequence of wrong length\n"); Py_DECREF(grid); Py_DECREF(hits); return NULL; } if (PySequence_Size(limits_input) != (2*nd_grid)){ printf("limits sequence of wrong length\n"); Py_DECREF(grid); Py_DECREF(hits); return NULL; } ydata = (PyArrayObject *) PyArray_ContiguousFromObject(yinput, NPY_DOUBLE,0,0); if (ydata == NULL){ printf("Contiguous from object error!\n"); Py_DECREF(grid); Py_DECREF(hits); return NULL; } limits = (PyArrayObject *) PyArray_ContiguousFromObject(limits_input, NPY_DOUBLE,0,0); if (limits == NULL){ printf("Limits. Contiguous from object error!\n"); Py_DECREF(grid); Py_DECREF(ydata); Py_DECREF(hits); return NULL; } /* xdata parsing */ xdata = (PyArrayObject **) malloc(nd_grid * sizeof(PyArrayObject *)); if (xdata == NULL){ printf("Error in memory allocation\n"); Py_DECREF(grid); Py_DECREF(ydata); Py_DECREF(limits); Py_DECREF(hits); return NULL; } for (i=0;i<nd_grid;i++){ xdata[i] = (PyArrayObject *) PyArray_ContiguousFromObject((PyObject *) (PySequence_Fast_GET_ITEM(xinput,i)), NPY_DOUBLE,0,0); if (xdata[i] == NULL){ printf("x Copy from Object error!\n"); for (j=0;j<i;j++){ Py_DECREF(xdata[j]); } free(xdata); Py_DECREF(grid); Py_DECREF(ydata); Py_DECREF(limits); Py_DECREF(hits); return NULL; } } delta_index = (npy_intp *) malloc(nd_grid * sizeof(npy_intp)); if (delta_index == NULL){ printf("Error in memory allocation\n"); Py_DECREF(grid); Py_DECREF(ydata); Py_DECREF(limits); free(xdata); Py_DECREF(hits); return NULL; } delta_index[nd_grid-1] = 1; for (i=0; i < nd_grid; i++){ if (i==0){ delta_index[nd_grid-1] = 1; }else{ delta_index[nd_grid-1-i] = delta_index[nd_grid-i] * PyArray_DIMS(grid)[nd_grid-i]; } } /* get the number of points in each of the arrays */ npoints = 0; for (i=0; i<PyArray_NDIM(ydata);i++){ if (i==0) npoints = PyArray_DIMS(ydata)[0]; else npoints *= PyArray_DIMS(ydata)[i]; } /* do the work */ data_pointer = (double *) PyArray_DATA(ydata); grid_pointerf = (float *) PyArray_DATA(grid); grid_pointerd = (double *) PyArray_DATA(grid); hits_pointer = (int *) PyArray_DATA(hits); for (i=0;i<npoints;i++){ if (use_datathreshold){ if ((double) (*(data_pointer+i)) <= data_threshold) continue; } goodpoint = 1; grid_position = 0; for (j=0; j< nd_grid; j++){ double_pointer = (double *) PyArray_DATA(xdata[j]); value = *(double_pointer+i); double_pointer = (double *) PyArray_DATA(limits); limit0 = *(double_pointer+j); limit1 = *(double_pointer+j+nd_grid); index = (int)(PyArray_DIMS(grid)[j]*(value - limit0)/(limit1-limit0)); if ((index < 0) || (index >= PyArray_DIMS(grid)[j])) { /* this point is not going to contribute */ goodpoint = 0; break; } grid_position += index * delta_index[j]; } if (goodpoint){ if (double_flag) *(grid_pointerd+grid_position) += (double) (*(data_pointer+i)); else *(grid_pointerf+grid_position) += (float) (*(data_pointer+i)); *(hits_pointer+grid_position) += 1; } } Py_DECREF(grid); Py_DECREF(hits); Py_DECREF(ydata); Py_DECREF(limits); for (i=0;i<nd_grid;i++){ Py_DECREF(xdata[i]); } free(xdata); free(delta_index); Py_INCREF(Py_None); return Py_None; } static PyObject * SpecfitFuns_pileup(PyObject *self, PyObject *args) { PyObject *input1; int input2=0; double zero=0.0; double gain=1.0; int debug=0; PyArrayObject *x; PyArrayObject *ret; int nd_x; npy_intp dim_x[2]; int i, j, k; double *px, *pret, *pall; /** statements **/ if (!PyArg_ParseTuple(args, "O|iddi", &input1, &input2, &zero, &gain, &debug)) return NULL; x = (PyArrayObject *) PyArray_CopyFromObject(input1, NPY_DOUBLE,0,0); if (x == NULL) return NULL; nd_x = PyArray_NDIM(x); if(debug !=0) { printf("nd_x = %d\n",nd_x); } if (nd_x == 1) { dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = 0; }else{ if (nd_x == 0) { dim_x [0] = 0; dim_x [1] = 0; }else{ dim_x [0] = PyArray_DIMS(x)[0]; dim_x [1] = PyArray_DIMS(x)[1]; } } if(debug !=0) { printf("x %d raws and %d cols\n", (int)dim_x[0], (int)dim_x[1]); } /* Create the output array */ ret = (PyArrayObject *) PyArray_SimpleNew(nd_x, dim_x, NPY_DOUBLE); if (ret == NULL){ Py_DECREF(x); return NULL; } PyArray_FILLWBYTE(ret, 0); /* the pointer to the starting position of par data */ px = (double *) PyArray_DATA(x); pret = (double *) PyArray_DATA(ret); if(1){ *pret = 0; k = (int )(zero/gain); for (i=input2;i<dim_x[0];i++){ pall=(double *) PyArray_DATA(x); if ((i+k) >= 0) { pret = (double *) PyArray_DATA(ret)+(i+k); for (j=0;j<dim_x[0]-i-k;j++){ *pret += *px * (*pall); pall++; pret++; } } px++; } } Py_DECREF(x); return PyArray_Return(ret); } static PyObject * SpecfitFuns_SavitskyGolay(PyObject *self, PyObject *args) { PyObject *input; PyArrayObject *ret; int n, npoints; double dpoints = 5.; double coeff[MAX_SAVITSKY_GOLAY_WIDTH]; int i, j, m; double dhelp, den; double *data; double *output; if (!PyArg_ParseTuple(args, "O|d", &input, &dpoints)) return NULL; ret = (PyArrayObject *) PyArray_FROMANY(input, NPY_DOUBLE, 1, 1, NPY_ARRAY_ENSURECOPY); if (ret == NULL){ printf("Cannot create 1D array from input\n"); return NULL; } npoints = (int ) dpoints; if (!(npoints % 2)) npoints +=1; n = (int) PyArray_DIMS(ret)[0]; if((npoints < MIN_SAVITSKY_GOLAY_WIDTH) || (n < npoints)) { /* do not smooth data */ return PyArray_Return(ret); } /* calculate the coefficients */ m = (int) (npoints/2); den = (double) ((2*m-1) * (2*m+1) * (2*m + 3)); for (i=0; i<= m; i++){ coeff[m+i] = (double) (3 * (3*m*m + 3*m - 1 - 5*i*i )); coeff[m-i] = coeff[m+i]; } /* do the job */ output = (double *) PyArray_DATA(ret); /* simple smoothing at the beginning */ for (j=0; j<=(int)(npoints/3); j++) { smooth1d(output, m); } /* simple smoothing at the end */ for (j=0; j<=(int)(npoints/3); j++) { smooth1d((output+n-m-1), m); } /*one does not need the whole spectrum buffer, but code is clearer */ data = (double *) malloc(n * sizeof(double)); memcpy(data, output, n * sizeof(double)); /* the actual SG smoothing in the middle */ for (i=m; i<(n-m); i++){ dhelp = 0; for (j=-m;j<=m;j++) { dhelp += coeff[m+j] * (*(data+i+j)); } if(dhelp > 0.0){ *(output+i) = dhelp / den; } } free(data); return PyArray_Return(ret); } /* List of functions defined in the module */ static PyMethodDef SpecfitFuns_methods[] = { {"snip1d", SpecfitFuns_snip1d, METH_VARARGS}, {"snip2d", SpecfitFuns_snip2d, METH_VARARGS}, {"snip3d", SpecfitFuns_snip3d, METH_VARARGS}, {"subacold", SpecfitFuns_subacold, METH_VARARGS}, {"subac", SpecfitFuns_subac, METH_VARARGS}, {"subacfast", SpecfitFuns_subacfast, METH_VARARGS}, {"gauss", SpecfitFuns_gauss, METH_VARARGS}, {"agauss", SpecfitFuns_agauss, METH_VARARGS}, {"fastagauss", SpecfitFuns_fastagauss, METH_VARARGS}, {"alorentz", SpecfitFuns_alorentz, METH_VARARGS}, {"lorentz", SpecfitFuns_lorentz, METH_VARARGS}, {"apvoigt", SpecfitFuns_apvoigt, METH_VARARGS}, {"pvoigt", SpecfitFuns_pvoigt, METH_VARARGS}, {"downstep", SpecfitFuns_downstep, METH_VARARGS}, {"upstep", SpecfitFuns_upstep, METH_VARARGS}, {"slit", SpecfitFuns_slit, METH_VARARGS}, {"ahypermet", SpecfitFuns_ahypermet, METH_VARARGS}, {"fastahypermet", SpecfitFuns_fastahypermet, METH_VARARGS}, {"erfc", SpecfitFuns_erfc, METH_VARARGS}, {"erf", SpecfitFuns_erf, METH_VARARGS}, {"seek", SpecfitFuns_seek, METH_VARARGS}, {"interpol", SpecfitFuns_interpol, METH_VARARGS}, {"voxelize", SpecfitFuns_voxelize, METH_VARARGS}, {"pileup", SpecfitFuns_pileup, METH_VARARGS}, {"SavitskyGolay", SpecfitFuns_SavitskyGolay, METH_VARARGS}, {"splitgauss", SpecfitFuns_splitgauss, METH_VARARGS}, {"splitlorentz",SpecfitFuns_splitlorentz, METH_VARARGS}, {"splitpvoigt", SpecfitFuns_splitpvoigt, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; /* ------------------------------------------------------- */ /* Module initialization */ #if PY_MAJOR_VERSION >= 3 static int SpecfitFuns_traverse(PyObject *m, visitproc visit, void *arg) { Py_VISIT(GETSTATE(m)->error); return 0; } static int SpecfitFuns_clear(PyObject *m) { Py_CLEAR(GETSTATE(m)->error); return 0; } static struct PyModuleDef moduledef = { PyModuleDef_HEAD_INIT, "SpecfitFuns", NULL, sizeof(struct module_state), SpecfitFuns_methods, NULL, SpecfitFuns_traverse, SpecfitFuns_clear, NULL }; #define INITERROR return NULL PyObject * PyInit_SpecfitFuns(void) #else #define INITERROR return void initSpecfitFuns(void) #endif { struct module_state *st; #if PY_MAJOR_VERSION >= 3 PyObject *module = PyModule_Create(&moduledef); #else PyObject *module = Py_InitModule("SpecfitFuns", SpecfitFuns_methods); #endif if (module == NULL) INITERROR; st = GETSTATE(module); st->error = PyErr_NewException("SpecfitFuns.Error", NULL, NULL); if (st->error == NULL) { Py_DECREF(module); INITERROR; } import_array(); #if PY_MAJOR_VERSION >= 3 return module; #endif } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/setup.py������������������������������������������0000644�0000000�0000000�00000005365�14741736366�022042� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """Setup script for the SPECFITFUNS module distribution.""" import os, sys, glob try: import numpy except ImportError: text = "You must have numpy installed.\n" text += "See http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103\n" raise ImportError(text) from distutils.core import setup from distutils.extension import Extension sources = glob.glob('*.c') if sys.platform == "win32": define_macros = [('WIN32',None)] else: define_macros = [] setup ( name = "SpecfitFuns", version = "2.1", description = "fit functions module", author = "V.A. Sole - Software Group", author_email = "sole@esrf.fr", url = "http://www.esrf.fr/computing/bliss/", # Description of the modules and packages in the distribution ext_modules = [ Extension( name = 'SpecfitFuns', sources = sources, define_macros = define_macros, include_dirs = [numpy.get_include()] ), ], ) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/smoothnd.c����������������������������������������0000644�0000000�0000000�00000006415�14741736366�022324� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include <stdlib.h> #include <string.h> #include <math.h> #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) void smooth1d(double *data, int size); void smooth2d(double *data, int size0, int size1); void smooth3d(double *data, int size0, int size1, int size2); void smooth1d(double *data, int size) { long i; double oldy; double newy; if (size < 3) { return; } oldy = data[0]; for (i=0; i<(size-1); i++) { newy = 0.25 * (oldy + 2 * data[i] + data[i+1]); oldy = data[i]; data[i] = newy; } data[size-1] = 0.25 * oldy + 0.75 * data[size-1]; return; } void smooth2d(double *data, int size0, int size1) { long i, j; double *p; /* smooth the first dimension */ for (i=0; i < size0; i++) { smooth1d(&data[i*size1], size1); } /* smooth the 2nd dimension */ p = (double *) malloc(size0 * sizeof(double)); for (i=0; i < size1; i++) { for (j=0; j<size0; j++) { p[j] = data[j*size1+i]; } smooth1d(p, size0); } free(p); } void smooth3d(double *data, int size0, int size1, int size2) { long i, j, k, ihelp, jhelp; double *p; int size; size = size1*size2; /* smooth the first dimension */ for (i=0; i < size0; i++) { smooth2d(&data[i*size], size1, size2); } /* smooth the 2nd dimension */ size = size0 * size2; p = (double *) malloc(size * sizeof(double)); for (i=0; i < size1; i++) { ihelp = i * size2; for (j=0; j<size0; j++) { jhelp = j * size1 * size2 + ihelp; for(k=0; k<size2; k++) { p[j*size2+k] = data[jhelp+k]; } } smooth2d(p, size0, size2); } free(p); /* smooth the 3rd dimension */ size = size0 * size1; p = (double *) malloc(size * sizeof(double)); for (i=0; i < size2; i++) { for (j=0; j<size0; j++) { jhelp = j * size1 * size2 + i; for(k=0; k<size1; k++) { p[j*size1+k] = data[jhelp+k*size2]; } } smooth2d(p, size0, size1); } free(p); } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/snip1d.c������������������������������������������0000644�0000000�0000000�00000010043�14741736366�021657� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* Implementation of the algorithm SNIP in 1D described in Miroslav Morhac et al. Nucl. Instruments and Methods in Physics Research A401 (1997) 113-132. The original idea for 1D and the low-statistics-digital-filter (lsdf) come from C.G. Ryan et al. Nucl. Instruments and Methods in Physics Research B34 (1988) 396-402. */ #include <stdlib.h> #include <string.h> #include <math.h> #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) void lls(double *data, int size); void lls_inv(double *data, int size); void snip1d(double *data, int n_channels, int snip_width); void snip1d_multiple(double *data, int n_channels, int snip_width, int n_spectra); void lsdf(double *data, int size, int fwhm, double f, double A, double M, double ratio); void lls(double *data, int size) { int i; for (i=0; i< size; i++) { data[i] = log(log(sqrt(data[i]+1.0)+1.0)+1.0); } } void lls_inv(double *data, int size) { int i; double tmp; for (i=0; i< size; i++) { /* slightly different than the published formula because with the original formula: tmp = exp(exp(data[i]-1.0)-1.0); data[i] = tmp * tmp - 1.0; one does not recover the original data */ tmp = exp(exp(data[i])-1.0)-1.0; data[i] = tmp * tmp - 1.0; } } void lsdf(double *data, int size, int fwhm, double f, double A, double M, double ratio) { int channel, i, j; double L, R, S; int width; double dhelp; width = (int) (f * fwhm); for (channel=width; channel<(size-width); channel++) { i = width; while(i>0) { L=0; R=0; for(j=channel-i; j<channel; j++) { L += data[j]; } for(j=channel+1; j<channel+i; j++) { R += data[j]; } S = data[channel] + L + R; if (S<M) { data[channel] = S /(2*i+1); break; } dhelp = (R+1)/(L+1); if ((dhelp < ratio) && (dhelp > (1/ratio))) { if (S<(A*sqrt(data[channel]))) { data[channel] = S /(2*i+1); break; } } i=i-1; } } } void snip1d(double *data, int n_channels, int snip_width) { snip1d_multiple(data, n_channels, snip_width, 1); } void snip1d_multiple(double *data, int n_channels, int snip_width, int n_spectra) { int i; int j; int p; int offset; double *w; i = (int) (0.5 * snip_width); /* lsdf(data, size, i, 1.5, 75., 10., 1.3); */ w = (double *) malloc(n_channels * sizeof(double)); for (j=0; j < n_spectra; j++) { offset = j * n_channels; for (p = snip_width; p > 0; p--) { for (i=p; i<(n_channels - p); i++) { w[i] = MIN(data[i + offset], 0.5*(data[i + offset - p] + data[ i + offset + p])); } for (i=p; i<(n_channels - p); i++) { data[i+offset] = w[i]; } } } free(w); } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/snip2d.c������������������������������������������0000644�0000000�0000000�00000006576�14741736366�021700� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* Implementation of the algorithm SNIP in 2D described in Miroslav Morhac et al. Nucl. Instruments and Methods in Physics Research A401 (1997) 113-132. */ #include <stdlib.h> #include <string.h> #include <math.h> #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) void lls(double *data, int size); void lls_inv(double *data, int size); void snip2d(double *data, int nrows, int ncolumns, int width) { int i, j; int p; int size; double *w; double P1, P2, P3, P4; double S1, S2, S3, S4; double dhelp; int iminuspxncolumns; /* (i-p) * ncolumns */ int ixncolumns; /* i * ncolumns */ int ipluspxncolumns; /* (i+p) * ncolumns */ size = nrows * ncolumns; w = (double *) malloc(size * sizeof(double)); for (p=width; p > 0; p--) { for (i=p; i<(nrows-p); i++) { iminuspxncolumns = (i-p) * ncolumns; ixncolumns = i * ncolumns; ipluspxncolumns = (i+p) * ncolumns; for (j=p; j<(ncolumns-p); j++) { P4 = data[ iminuspxncolumns + (j-p)]; /* P4 = data[i-p][j-p] */ S4 = data[ iminuspxncolumns + j]; /* S4 = data[i-p][j] */ P2 = data[ iminuspxncolumns + (j+p)]; /* P2 = data[i-p][j+p] */ S3 = data[ ixncolumns + (j-p)]; /* S3 = data[i][j-p] */ S2 = data[ ixncolumns + (j+p)]; /* S2 = data[i][j+p] */ P3 = data[ ipluspxncolumns + (j-p)]; /* P3 = data[i+p][j-p] */ S1 = data[ ipluspxncolumns + j]; /* S1 = data[i+p][j] */ P1 = data[ ipluspxncolumns + (j+p)]; /* P1 = data[i+p][j+p] */ dhelp = 0.5*(P1+P3); S1 = MAX(S1, dhelp) - dhelp; dhelp = 0.5*(P1+P2); S2 = MAX(S2, dhelp) - dhelp; dhelp = 0.5*(P3+P4); S3 = MAX(S3, dhelp) - dhelp; dhelp = 0.5*(P2+P4); S4 = MAX(S4, dhelp) - dhelp; w[ixncolumns + j] = MIN(data[ixncolumns + j], 0.5 * (S1+S2+S3+S4) + 0.25 * (P1+P2+P3+P4)); } } for (i=p; i<(nrows-p); i++) { ixncolumns = i * ncolumns; for (j=p; j<(ncolumns-p); j++) { data[ixncolumns + j] = w[ixncolumns + j]; } } } free(w); } ����������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/fitting/specfit/snip3d.c������������������������������������������0000644�0000000�0000000�00000015162�14741736366�021670� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ /* Implementation of the algorithm SNIP in 3D described in Miroslav Morhac et al. Nucl. Instruments and Methods in Physics Research A401 (1997) 113-132. */ #include <stdlib.h> #include <string.h> #include <math.h> #define MIN(x, y) (((x) < (y)) ? (x) : (y)) #define MAX(x, y) (((x) > (y)) ? (x) : (y)) void lls(double *data, int size); void lls_inv(double *data, int size); void snip3d(double *data, int nx, int ny, int nz, int width) { int i, j, k; int p; int size; double *w; double P1, P2, P3, P4, P5, P6, P7, P8; double R1, R2, R3, R4, R5, R6; double S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12; double dhelp; long ioffset; long iplus; long imin; long joffset; long jplus; long jmin; size = nx * ny * nz; w = (double *) malloc(size * sizeof(double)); for (p=width; p > 0; p--) { for (i=p; i<(nx-p); i++) { ioffset = i * ny * nz; iplus = (i + p) * ny * nz; imin = (i - p) * ny * nz; for (j=p; j<(ny-p); j++) { joffset = j * nz; jplus = (j + p) * nz; jmin = (j - p) * nz; for (k=p; k<(nz-p); k++) { P1 = data[iplus + jplus + k-p]; /* P1 = data[i+p][j+p][k-p] */ P2 = data[imin + jplus + k-p]; /* P2 = data[i-p][j+p][k-p] */ P3 = data[iplus + jmin + k-p]; /* P3 = data[i+p][j-p][k-p] */ P4 = data[imin + jmin + k-p]; /* P4 = data[i-p][j-p][k-p] */ P5 = data[iplus + jplus + k+p]; /* P5 = data[i+p][j+p][k+p] */ P6 = data[imin + jplus + k+p]; /* P6 = data[i-p][j+p][k+p] */ P7 = data[imin + jmin + k+p]; /* P7 = data[i-p][j-p][k+p] */ P8 = data[iplus + jmin + k+p]; /* P8 = data[i+p][j-p][k+p] */ S1 = data[iplus + joffset + k-p]; /* S1 = data[i+p][j][k-p] */ S2 = data[ioffset + jmin + k-p]; /* S2 = data[i][j+p][k-p] */ S3 = data[imin + joffset + k-p]; /* S3 = data[i-p][j][k-p] */ S4 = data[ioffset + jmin + k-p]; /* S4 = data[i][j-p][k-p] */ S5 = data[imin + joffset + k+p]; /* S5 = data[i-p][j][k+p] */ S6 = data[ioffset + jplus + k+p]; /* S6 = data[i][j+p][k+p] */ S7 = data[imin + joffset + k+p]; /* S7 = data[i-p][j][k+p] */ S8 = data[ioffset + jmin + k+p]; /* S8 = data[i][j-p][k+p] */ S9 = data[imin + jplus + k]; /* S9 = data[i-p][j+p][k] */ S10 = data[imin + jmin + k]; /* S10 = data[i-p][j-p][k] */ S11 = data[iplus + jmin + k]; /* S11 = data[i+p][j-p][k] */ S12 = data[iplus + jplus + k]; /* S12 = data[i+p][j+p][k] */ R1 = data[ioffset + joffset + k-p]; /* R1 = data[i][j][k-p] */ R2 = data[ioffset + joffset + k+p]; /* R2 = data[i][j][k+p] */ R3 = data[imin + joffset + k]; /* R3 = data[i-p][j][k] */ R4 = data[iplus + joffset + k]; /* R4 = data[i+p][j][k] */ R5 = data[ioffset + jplus + k]; /* R5 = data[i][j+p][k] */ R6 = data[ioffset + jmin + k]; /* R6 = data[i][j-p][k] */ dhelp = 0.5*(P1+P3); S1 = MAX(S1, dhelp) - dhelp; dhelp = 0.5*(P1+P2); S2 = MAX(S2, dhelp) - dhelp; dhelp = 0.5*(P2+P4); S3 = MAX(S3, dhelp) - dhelp; dhelp = 0.5*(P3+P4); S4 = MAX(S4, dhelp) - dhelp; dhelp = 0.5*(P5+P8); /* Different from paper (P5+P7) but according to drawing */ S5 = MAX(S5, dhelp) - dhelp; dhelp = 0.5*(P5+P6); S6 = MAX(S6, dhelp) - dhelp; dhelp = 0.5*(P6+P7); /* Different from paper (P6+P8) but according to drawing */ S7 = MAX(S7, dhelp) - dhelp; dhelp = 0.5*(P7+P8); S8 = MAX(S8, dhelp) - dhelp; dhelp = 0.5*(P2+P6); S9 = MAX(S9, dhelp) - dhelp; dhelp = 0.5*(P4+P7); /* Different from paper (P4+P8) but according to drawing */ S10 = MAX(S10, dhelp) - dhelp; dhelp = 0.5*(P3+P8); /* Different from paper (P1+P5) but according to drawing */ S11 = MAX(S11, dhelp) - dhelp; dhelp = 0.5*(P1+P5); /* Different from paper (P3+P7) but according to drawing */ S12 = MAX(S12, dhelp) - dhelp; /* The published formulae correspond to have: P7 and P8 interchanged, and S11 and S12 interchanged with respect to the published drawing */ dhelp = 0.5 * (S1+S2+S3+S4) + 0.25 * (P1+P2+P3+P4); R1 = MAX(R1, dhelp) - dhelp; dhelp = 0.5 * (S5+S6+S7+S8) + 0.25 * (P5+P6+P7+P8); R2 = MAX(R2, dhelp) - dhelp; dhelp = 0.5 * (S3+S7+S9+S10) + 0.25 * (P2+P4+P6+P7); /* Again same P7 and P8 change */ R3 = MAX(R3, dhelp) - dhelp; dhelp = 0.5 * (S1+S5+S11+S12) + 0.25 * (P1+P3+P5+P8); /* Again same P7 and P8 change */ R4 = MAX(R4, dhelp) - dhelp; dhelp = 0.5 * (S2+S6+S9+S12) + 0.25 * (P1+P2+P5+P6); /* Again same S11 and S12 change */ R5 = MAX(R5, dhelp) - dhelp; dhelp = 0.5 * (S4+S8+S10+S11) + 0.25 * (P3+P4+P7+P8); /* Again same S11 and S12 change */ R6 = MAX(R6, dhelp) - dhelp; dhelp = 0.5 * (R1 + R2 + R3 + R4 + R5 + R6) +\ 0.25 * (S1 + S2 + S3 + S4 + S5 + S6) +\ 0.25 * (S7 + S8 + S9 + S10 + S11 + S12) +\ 0.125 * (P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8); w[ioffset + joffset + k] = MIN(data[ioffset + joffset + k], dhelp); } } } for (i=p; i<(nx-p); i++) { ioffset = i * ny * nz; for (j=p; j<(ny-p); j++) { joffset = j * nz; for (k=p; k<(nz-p); k++) { data[ioffset + joffset + k] = w[ioffset + joffset + k]; } } } } free(w); } ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/linalg.py���������������������������������������������������������0000644�0000000�0000000�00000052727�14741736366�017053� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import sys __doc__ = """ lstsq Similar function to the numpy lstsq function with a more rigorous uncertainty treatement besides other optimizations in view of simultaneously solving several equations of the form `a x = b`. linregress Similar function to the scipy.stats linregress function handling uncertainties on the input values. """ # fit to a straight line def linregress(x, y, sigmay=None, full_output=False): """ Linear fit to a straight line following P.R. Bevington: "Data Reduction and Error Analysis for the Physical Sciences" Parameters ---------- x, y : array_like two sets of measurements. Both arrays should have the same length. sigmay : The uncertainty on the y values Returns ------- slope : float slope of the regression line intercept : float intercept of the regression line r_value : float correlation coefficient if full_output is true, an additional dictionary is returned with the keys slope : float slope of the regression line intercept : float intercept of the regression line r_value : float correlation coefficient sigma_slope: uncertainty on the slope sigma_intercept: uncertainty on the intercept stderr: float square root of the variance """ x = numpy.asarray(x, dtype=numpy.float64).flatten() y = numpy.asarray(y, dtype=numpy.float64).flatten() N = y.size if sigmay is None: sigmay = numpy.ones((N,), dtype=y.dtype) else: sigmay = numpy.asarray(sigmay, dtype=numpy.float64).flatten() w = 1.0 / (sigmay * sigmay + (sigmay == 0)) n = S = w.sum() Sx = (w * x).sum() Sy = (w * y).sum() Sxx = (w * x * x).sum() Sxy = ((w * x * y)).sum() Syy = ((w * y * y)).sum() # SSxx is identical to delta in Bevington book delta = SSxx = (S * Sxx - Sx * Sx) tmpValue = Sxx * Sy - Sx * Sxy intercept = tmpValue / delta SSxy = (S * Sxy - Sx * Sy) slope = SSxy / delta sigma_slope = numpy.sqrt(S /delta) sigma_intercept = numpy.sqrt(Sxx / delta) SSyy = (n * Syy - Sy * Sy) r_value = SSxy / numpy.sqrt(SSxx * SSyy) if r_value > 1.0: r_value = 1.0 if r_value < -1.0: r_value = -1.0 if not full_output: return slope, intercept, r_value ddict = {} # calculate the variance if N < 3: variance = 0.0 else: variance = ((y - intercept - slope * x) ** 2).sum() / (N - 2) ddict["variance"] = variance ddict["stderr"] = numpy.sqrt(variance) ddict["slope"] = slope ddict["intercept"] = intercept ddict["r_value"] = r_value ddict["sigma_intercept"] = numpy.sqrt(Sxx / SSxx) ddict["sigma_slope"] = numpy.sqrt(S / SSxx) return slope, intercept, r_value, ddict # Linear Least Squares def lstsq(a, b, rcond=None, sigma_b=None, weight=False, uncertainties=True, covariances=False, digested_output=False, svd=True, last_svd=None): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : array_like, shape (M, N) "Model" matrix. b : array_like, shape (M,) or (M, K) Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. sigma_b : uncertainties on the b values or None. If sigma_b has shape (M,) or (M, 1) and b has dimension (M, K), the uncertainty will be the same for all spectra. weight: 0 - No data weighting. Uncertainty of 1 for each data point. 1 - Statistical weight. Weighted fit using the supplied experimental uncertainties or the square root of the b values. svd: If not true, a simple matrix inversion will be used in case of weighting with unequal data weights. Ignored in any other cases. last_svd: Tuple containing U, s, V of the weighted model matrix or None. This is to prevent recalculation on repeated fits. uncertainties: If False, no uncertainties will be calculated unless the covariance matrix is requested. covariances: If True, an array of covariance matrix/matrices will be returned. digested_output: If True, returns a dictionary with explicit keys Returns ------- x : ndarray, shape (N,) or (N, K) Least-squares solution. The shape of `x` depends on the shape of `b`. uncertainties: ndarray, shape (N,) or (N, K) covariances: ndarray, shape (N, N) or (K, N, N) Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print m, c 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ a = numpy.asarray(a, dtype=numpy.float64) b = numpy.asarray(b, dtype=numpy.float64) a_shape = a.shape b_shape = b.shape original = b_shape if len(a_shape) != 2: raise ValueError("Model matrix must be two dimensional") if len(b_shape) == 1: b.shape = b_shape[0], 1 b_shape = b.shape m = a.shape[0] n = a.shape[1] if m != b.shape[0]: raise ValueError('Incompatible dimensions between A and b matrices') fastest = False if weight: if sigma_b is not None: # experimental uncertainties provided these are the ones to use (if any) w = numpy.abs(numpy.asarray(sigma_b, dtype=numpy.float64)) w = w + numpy.equal(w, 0) if w.size == b_shape[0]: # same uncertainty for every spectrum fastest = True w.shape = b.shape[0] else: w.shape = b_shape else: # "statistical" weight # we are asked to somehow weight the data but no uncertainties provided # assume the uncertainties are the square root of the b values ... w = numpy.sqrt(numpy.abs(b)) w = w + numpy.equal(w, 0) else: # we have an unweighted fit with no uncertainties # assume all the uncertainties equal to 1 fastest = True w = numpy.ones(b.shape, numpy.float64) if len(w.shape) == 1: w.shape = -1, 1 if covariances: covarianceMatrix = numpy.zeros((b_shape[1], n, n), numpy.float64) if not weight: # no weight is applied # get the SVD decomposition of the A matrix # One could avoid calculating U, s, V each time ... if last_svd is not None: U, s, V = last_svd else: U, s, V = numpy.linalg.svd(a, full_matrices=False) if rcond is None: s_cutoff = max(m, n) * numpy.finfo(numpy.float64).eps elif rcond == -1: s_cutoff = n * numpy.finfo(numpy.float64).eps else: s_cutoff = rcond * s[0] s[s < s_cutoff] = numpy.inf # and get the parameters s.shape = -1 dummy = numpy.dot(V.T, numpy.eye(n)*(1./s)) parameters = numpy.dot(dummy, numpy.dot(U.T, b)) parameters.shape = n, b.shape[1] if uncertainties or covariances: # get the uncertainties #(in the no-weight case without experimental uncertainties, # the uncertainties on the data points are ignored and the # uncertainty on the fitted parameters are independent of the input data!!!!) if fastest: # This is correct for all weights equal to 1 _covariance = numpy.dot(dummy, dummy.T) sigmapar = numpy.sqrt(numpy.diag(_covariance)) sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1])) sigmapar.shape = n, b_shape[1] if covariances: covarianceMatrix[:] = _covariance elif covariances: # loop in order not to use potentially big matrices # but calculates the covariance matrices # It only makes sense if the covariance matrix is requested sigmapar = numpy.zeros((n, b_shape[1]), numpy.float64) for k in range(b_shape[1]): pseudoData = numpy.eye(b_shape[0]) * w[:, k] tmpTerm = numpy.dot(dummy, numpy.dot(U.T, pseudoData)) _covariance[:, :] = numpy.dot(tmpTerm, tmpTerm.T) sigmapar[:, k] = numpy.sqrt(numpy.diag(_covariance)) covarianceMatrix[k] = _covariance else: # loop in order not to use potentially big matrices # but not calculating the covariance matrix d = numpy.zeros(b.shape, numpy.float64) sigmapar = numpy.zeros((n, b_shape[1])) for k in range(b_shape[0]): d[k] = w[k] sigmapar += (numpy.dot(dummy, numpy.dot(U.T, d))) ** 2 d[k] = 0.0 sigmapar[:, :] = numpy.sqrt(sigmapar) elif fastest: # same weight for all spectra # it could be made by the calling routine, because it is equivalent to supplying a # different model and different independent values ... # That way one could avoid calculating U, s, V each time A = a / w b = b / w # get the SVD decomposition of the A matrix if last_svd is not None: U, s, V = last_svd else: U, s, V = numpy.linalg.svd(A, full_matrices=False) if rcond is None: s_cutoff = n * numpy.finfo(numpy.float64).eps else: s_cutoff = rcond * s[0] s[s < s_cutoff] = numpy.inf # and get the parameters s.shape = -1 dummy = numpy.dot(V.T, numpy.eye(n)*(1./s)) parameters = numpy.dot(dummy, numpy.dot(U.T, b)) parameters.shape = n, b.shape[1] if uncertainties or covariances: _covariance = numpy.dot(dummy, dummy.T) sigmapar = numpy.sqrt(numpy.diag(_covariance)) sigmapar = numpy.outer(sigmapar, numpy.ones(b_shape[1])) sigmapar.shape = n, b_shape[1] if covariances: covarianceMatrix[:] = _covariance else: parameters = numpy.zeros((n, b_shape[1]), numpy.float64) sigmapar = numpy.zeros((n, b_shape[1]), numpy.float64) if svd: # SVD - slower by a factor 2 for i in range(b_shape[1]): tmpWeight = w[:, i:i+1] tmpData = b[:, i:i+1] / tmpWeight A = a / tmpWeight U, s, V = numpy.linalg.svd(A, full_matrices=False) if rcond is None: s_cutoff = n * numpy.finfo(numpy.float64).eps else: s_cutoff = rcond * s[0] s[s < s_cutoff] = numpy.inf s.shape = -1 dummy = numpy.dot(V.T, numpy.eye(n)*(1./s)) parameters[:, i:i+1] = numpy.dot(dummy, numpy.dot(U.T, tmpData)) if uncertainties or covariances: # get the uncertainties _covariance = numpy.dot(dummy, dummy.T) sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance)) if covariances: covarianceMatrix[i] = _covariance elif 1: # Pure matrix inversion (faster than SVD) # I do not seem to gain anything by re-using the storage #alpha = numpy.empty((n, n), numpy.float64) #beta = numpy.empty((n, 1), numpy.float64) for i in range(b_shape[1]): tmpWeight = w[:, i:i+1] A = a / tmpWeight tmpData = b[:, i:i+1] / tmpWeight #numpy.dot(A.T, A, alpha) #numpy.dot(A.T, tmpData, beta) alpha = numpy.dot(A.T, A) beta = numpy.dot(A.T, tmpData) try: _covariance = numpy.linalg.inv(alpha) except Exception: print("Exception") print("Exception", sys.exc_info()[1]) continue parameters[:, i:i+1] = numpy.dot(_covariance, beta) if uncertainties: sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance)) if covariances: covarianceMatrix[i] = covariance else: # Matrix inversion with buffers does not improve bufferProduct = numpy.empty((n, n + 1), numpy.float64) bufferAB = numpy.empty((b_shape[0], n+1), numpy.float64) alpha = numpy.empty((n, n), numpy.float64) for i in range(b_shape[1]): tmpWeight = w[:, i:i+1] A = a / tmpWeight tmpData = b[:, i:i+1] / tmpWeight bufferAB [:, :n] = A bufferAB [:, n:n+1] = tmpData numpy.dot(A.T, bufferAB, bufferProduct) alpha[:, :] = bufferProduct[:n, :n] beta = bufferProduct[:,n] try: _covariance = numpy.linalg.inv(alpha) except Exception: print("Exception") print("Exception", sys.exc_inf()) continue parameters[:, i] = numpy.dot(_covariance, beta) if uncertainties: sigmapar[:, i] = numpy.sqrt(numpy.diag(_covariance)) if covariances: covarianceMatrix[i] = covariance if len(original) == 1: parameters.shape = -1 if covariances: sigmapar.shape = parameters.shape if len(original) == 1: covarianceMatrix.shape = parameters.shape[0], parameters.shape[0] result = [parameters, sigmapar, covarianceMatrix] elif uncertainties: sigmapar.shape = parameters.shape result = [parameters, sigmapar] else: result = [parameters] if digested_output: ddict = {} ddict['parameters'] = result[0] if len(result) > 1: ddict['uncertainties'] = result[1] elif covariances: ddict['covariances'] = result[2] if svd or fastest: ddict['svd'] = (U, s, V) return ddict else: return result def getModelMatrixFromFunction(model_function, dummy_parameters, xdata, derivative=None): nPoints = xdata.size nParameters = len(dummy_parameters) modelMatrix = numpy.zeros((nPoints, nParameters) , numpy.float64) pwork = dummy_parameters * 1 for i in range(len(dummy_parameters)): fitparam = dummy_parameters[i] if derivative is None: delta = (pwork[i] + numpy.equal(fitparam, 0.0)) * 0.00001 pwork[i] = fitparam + delta f1 = model_function(pwork, xdata) pwork[i] = fitparam - delta f2 = model_function(pwork, xdata) help0 = (f1-f2) / (2.0 * delta) pwork[i] = fitparam else: help0 = derivative(pwork, i, xdata) help0.shape = -1 modelMatrix[:, i] = help0 return modelMatrix def modelFunction(p, x): return p[0] + (p[1] + p[2] * x) * x def test1(): x = numpy.arange(10000.) x.shape = -1, 1 y = modelFunction([100., 50., 4.], x) A = getModelMatrixFromFunction(modelFunction, [0.0, 0.0, 0.0], x) parameters, uncertainties = lstsq(A, y, uncertainties=True, weight=False) print("Expected = 100., 50., 4.") print("Obtained = %f, %f, %f" % (parameters[0], parameters[1], parameters[2])) def test2(): import time try: from PyMca5.PyMca import Gefit GEFIT = True def f(p, x): return p[1] * x + p[0] except Exception: GEFIT = False data = "0 0.8214 0.1 1 2.8471 0.3 2 4.852 0.5 3 7.5347 0.7 4 10.2464 0.9 5 10.2707 1.1 6 12.8011 1.3 7 13.7108 1.5 8 17.8501 1.7 9 15.3667 1.9 10 19.3933 2.1" data = numpy.array([float(x) for x in data.split()]) data.shape = -1, 3 # the model matrix for a straight line A = numpy.ones((data.shape[0],2), numpy.float64) A[:, 1] = data[:, 0] print("Unweighted results:") t0 = time.time() y = numpy.ones((data.shape[0], 1000), numpy.float64) * data[:, 1:2] sigmay = numpy.ones((data.shape[0], 1000), numpy.float64) * data[:, 2:3] parameters, uncertainties = lstsq(A, y, #sigma_b=sigmay, #sigma_b=numpy.ones(sigmay.shape), uncertainties=True, weight=False) print("Elapsed Module = %f" % (time.time() - t0)) print("Parameters = %f, %f" % (parameters[0,100], parameters[1, 100])) print("Uncertainties = %f, %f" % (uncertainties[0,100], uncertainties[1, 100])) if GEFIT: t0 = time.time() for i in range(y.shape[1]): parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0], xdata=data[:,0], ydata=data[:,1], sigmadata=data[:,2], weightflag=0, linear=1) print("Elapsed Gefit = %f" % (time.time() - t0)) print("Gefit results:") print("Parameters = %f, %f" % (parameters[0], parameters[1])) print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1])) print("Mathematica results:") print("Parameters = %f, %f" % (1.57043, 1.78945)) print("Uncertainties = %f, %f" % (0.68363, 0.11555)) print("Weighted results") t0 = time.time() #parameters, uncertainties = lstsq(A, data[:, 1], sigma_b=data[:,2], parameters, uncertainties = lstsq(A, y, sigma_b=numpy.outer(data[:,2], numpy.ones((1000, 1))), uncertainties=True, weight=True) print("Elapsed Module = %f" % (time.time() - t0)) print("Parameters = %f, %f" % (parameters[0, 100], parameters[1, 100])) print("Uncertainties = %f, %f" % (uncertainties[0, 100], uncertainties[1, 100])) if GEFIT: t0 = time.time() parameters, chisq, uncertainties = Gefit.LeastSquaresFit(f, [0.0, 0.0], xdata=data[:,0], ydata=data[:,1], sigmadata=data[:,2], weightflag=1, linear=1) print("Elapsed Gefit = %f" % (time.time() - t0)) print("Gefit results:") print("Parameters = %f, %f" % (parameters[0], parameters[1])) print("Uncertainties = %f, %f" % (uncertainties[0], uncertainties[1])) print("Mathematica results:") print("Parameters = %f, %f" % (0.843827, 1.97982)) print("Uncertainties = %f, %f" % (0.092449, 0.07262)) return data if __name__ == "__main__": test1() test2() �����������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8237665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/��������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015772� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/KMeansModule.py�����������������������������������������������0000644�0000000�0000000�00000010465�14741736366�020705� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaMath.mva import _cython_kmeans as _kmeans KMEANS = "_kmeans" except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise else: _logger.warning("Cannot load built-in K-means.\n %s" % sys.exc_info()[1]) KMEANS = None try: from sklearn.cluster import KMeans KMEANS = "sklearn" except Exception: pass if KMEANS: _logger.info("kmeans default to <%s>" % KMEANS) else: _logger.info("kmeans disabled") def _labelCythonKMeans(x, k): labels, means, iterations, converged = _kmeans.kmeans(x, k) return { "labels": numpy.asarray(labels, dtype=numpy.int32), "means": means, "iterations": iterations, "converged": converged, } def _labelMdp(x, k): from mdp.nodes import KMeansClassifier classifier = KMeansClassifier(k) for i in range(x.shape[0]): classifier.train(x[i : i + 1]) # classifier.train(x) labels = classifier.label(x) return {"labels": numpy.asarray(labels, dtype=numpy.int32)} def _labelScikitLearn(x, k): from sklearn.cluster import KMeans km = KMeans(n_clusters=k, init="k-means++", n_init=10) km.fit(x) labels = km.labels_ # labels = km.predict(x) converged = len(km.cluster_centers_) == len(labels) return { "labels": numpy.asarray(labels, dtype=numpy.int32), "means": km.cluster_centers_, "iterations": km.n_iter_, "converged": converged, } def kmeans(x, k, method=None, normalize=True): """ x is a 2D array [n_samples, n_features] k is the desired number of clusters """ assert len(x.shape) == 2 # collapse the information to deal with inf and NaNs raws = x.sum(axis=1, dtype=numpy.float64) good = numpy.isfinite(raws) finiteData = numpy.all(good) data = numpy.ascontiguousarray(x[good]) if normalize: datamin = data.min(axis=0) deltas = data.max(axis=0) - datamin deltas[deltas < 1.0e-200] = 1 data = (data - datamin) / deltas if method is None: method = KMEANS if method == "mdp": result = _labelMdp(data, k) elif method == "sklearn": result = _labelScikitLearn(data, k) elif method.endswith("kmeans"): result = _labelCythonKMeans(data, k) elif "mdp" in sys.modules: result = _labelMdp(data, k) else: raise ValueError("Unknown clustering <%s>" % method) if not finiteData: _logger.info("Data contains inf or NaNs") actualResult = -numpy.ones(raws.shape, dtype=numpy.int32) actualResult[good] = result["labels"] result["labels"] = actualResult return result def label(*var, **kw): return kmeans(*var, **kw)["labels"] �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/Lanczos.py����������������������������������������������������0000644�0000000�0000000�00000043004�14741736366�017765� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # # Copyright (c) 2002-2023 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "A. Mirone - ESRF" __license__ = "MIT" import math sparsamodulo=0 PARALLEL=0 import numpy import numpy.linalg try: import numpy.core._dotblas as dotblas except ImportError: dotblas = numpy import random ###################################### ## interfaccia per sparse # __class__ # static .getClass4Vect() # object .gohersch() # object .goherschMax() # object .goherschMin() ###################################### ## interfaccia per vettori # __class__ === class4vect # class Vector(dim) # object.set_value(n,v) # object.set_all_random(v) class LanczosNumericMatrix(object): tipo=numpy.float64 def __init__(self, mR): self.mR=mR self.dim= self.mR[0].shape[0] self.shift=0.0 def Moltiplica(self,res,v): if( len(self.mR)==1 ): res.vr[:]+=dotblas.dot(self.mR[0],v.vr) else: res.vr[:]+=dotblas.dot(self.mR[0],dotblas.dot(self.mR[1],v.vr)) if( self.shift !=0.0): res.add_from_vect_with_fact(v,self.shift) def trasforma(self, fattore, addendo): self.shift+=addendo if( fattore!=1): self.mR[0][:]=self.mR[0]*numpy.array([fattore], self.tipo) def getClass4Vect(self): return LanczosNumericVector class LanczosNumericVector(object): tipo=numpy.float64 def __init__(self, *dim): if( dim!=(0,) ): self.vr=numpy.zeros(dim,self.tipo) else: pass def __getitem__(self, i): res=LanczosNumericVector(0) res.vr=self.vr[i] return res def mat_mult(self, evect , q): self.vr[:evect.shape[0]]=dotblas.dot(evect.astype(self.tipo),q.vr[:evect.shape[1]]) def dividebyarray(self,prec): self.vr[:]=self.vr/prec def multbyarray(self,prec): self.vr[:]=self.vr*prec def len(self): return len(self.vr) def copy(self): duma=numpy.array(self.vr) res=numpy.Vector(0) res.vr=duma return res def copy_to_a_from_b(self,b): self.vr[:]=b.vr def set_value(self, n, val): self.vr[n]=val def set_to_zero(self): self.vr[:]=0 def set_to_one(self): self.vr[:]=1 def set_all_random(self, v): self.vr[:]=[random.random() for i in range(len(self.vr)) ] def scalare(self,b ): resR =numpy.sum(self.vr*b.vr) return resR def sqrtscalare(self,b): assert( self is b) return numpy.sqrt( self.scalare(b) ) def normalizzaauto(self): norma = self.sqrtscalare(self) self.vr[:]=self.vr/norma def normalizza(self,norma): self.vr.normalizza(norma) def rescale(self,fact): if(fact==0.0): self.set_to_zero() else: norma=1.0/fact self.normalizza(norma) def add_from_vect(self, b): self.vr[:]=self.vr+b.vr def add_from_vect_with_fact(self, b, fact): self.vr[:]=self.vr+numpy.array([fact],self.tipo)*b.vr def REAL(a): if( type(a)==type(1.0+1.0j) ): return a.real else: return a def Real(x): if( x.__class__ == complex): return x.real else: return x class Lanczos: dump_count=0; countdumpab=0 def __init__(self, sparse, metrica=None, tol=1.0e-15): self.matrice=sparse self.metrica=metrica self.class4sparse = sparse.__class__ try: self.class4vect = self.class4sparse.getClass4Vect() except Exception: self.class4vect = sparse.getClass4Vect() self.nsteps = 0 self.dim=self.matrice.dim self.q = None self.alpha = None self.beta = None self.omega=None self.tol = tol self.maxIt = 50 self.old = False def diagoCustom(self, minDim=5, shift=None): if shift is None: self.matrice.gohersch() shift = - self.matrice.goherschMax() self.cerca(minDim, shift) for ne in range(len(self.eval)): self.eval[ne] = self.eval[ne] - shift def passeggia(self, k, m, start, gram=0, NT=4): if k<0 or m>self.nsteps: print("k = ",k," m = ",m," nsteps = ",self.nsteps) print("Something wrong in passe k<0 or m>nsteps") raise ValueError(\ "Lanczos. Something wrong in passe k<0 or m>nsteps") sn = math.sqrt(float(self.dim)) eu = 1.1e-16 eusn = eu*sn if k==0: self.class4vect.copy_to_a_from_b(self.q[0],start) if self.metrica is None: self.q[0].normalizzaauto() else: self.tmp4met.set_to_zero() self.metrica.Moltiplica( self.tmp4met , self.q[0] ) tmpfat = math.sqrt(REAL(self.class4vect.scalare(self.q[0] , self.tmp4met))) self.q[0].normalizza(tmpfat) # self.q[0].dumptofile("q_0") p= self.class4vect(self.dim) for i in range(k,m): p.set_to_zero() # self.q[i].dumptofile("qbef_"+str(self.dump_count) ) self.matrice.Moltiplica(p,self.q[i]) if self.metrica is not None: self.tmp4met.set_to_zero() self.metrica.Moltiplica(self.tmp4met , self.q[i]) self.alpha[i] = REAL(self.class4vect.scalare(p , self.tmp4met)) else: self.alpha[i] = REAL(self.class4vect.scalare(p , self.q[i])) # p.dumptofile("p"+str(self.dump_count) ) self.dump_count+=1 if i==k: p.add_from_vect_with_fact( self.q[k] , -self.alpha[k] ) for l in range(k): p.add_from_vect_with_fact( self.q[l] , -self.beta[l] ) else: # self.q[i].dumptofile("q_i"+str(self.dump_count) ) # self.q[i-1].dumptofile("q_im1"+str(self.dump_count) ) p.add_from_vect_with_fact(self.q[i] , -self.alpha[i] ) p.add_from_vect_with_fact(self.q[i-1] , -self.beta[i-1] ) # p.dumptofile("pp"+str(self.dump_count) ) self.dump_count+=1 if self.metrica is not None: self.tmp4met.set_to_zero() self.metrica.Moltiplica(self.tmp4met , p) self.beta[i] = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met))) else: self.beta[i]=self.class4vect.sqrtscalare(p,p) self.omega[i,i]=1. max0 = 0.0 if self.beta[i] != 0: #and not scipy.isnan(self.beta[i]): for j in range(i+1): self.omega[i+1,j] = eusn if j<k: add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \ * abs(self.omega[i,j]) if i!=k: add += self.beta[j]*abs(self.omega[i,k]) if i>0 and j!=i-1: add += self.beta[i-1]*abs(self.omega[i-1,j]) self.omega[i+1,j] += add / self.beta[i] elif j==k : add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \ * abs(self.omega[i,j]) for w in range(k): add += self.beta[w]*abs(self.omega[i,w]) if i!=k+1: add += self.beta[k]*abs(self.omega[i,k+1]) if i>0 and i!=k+1: add += self.beta[i-1]*abs(self.omega[i-1,k]) self.omega[i+1,j] += add / self.beta[i] elif j<i : add = 2 * eusn + abs(self.alpha[j]-self.alpha[i]) \ * abs(self.omega[i,j]) if i!=j+1: add += self.beta[j]*abs(self.omega[i,j+1]) if i>0 and j>0: add += self.beta[j-1]*abs(self.omega[i-1,j-1]) if i>0 and i!=j+1: add += self.beta[i-1]*abs(self.omega[i-1,j]) self.omega[i+1,j] += add / self.beta[i] else: add = eusn if i>0: add += self.beta[i-1]*abs(self.omega[i,i-1] ) self.omega[i+1,j] += add / self.beta[i] self.omega[j,i+1] = self.omega[i+1,j] max0 += self.omega[i+1,j]**2 if self.beta[i]==0 or max0>eu or gram : ## if self.beta[i]==0 or max0>0. : if i>0: #print " GRAMO self.beta[i]==0 or max0>eu and i>0", i," ", self.dump_count self.GramSchmidt(self.q[i],i, NT) if self.metrica is None: self.q[i].normalizzaauto() else: self.tmp4met.set_to_zero() self.metrica.Moltiplica( self.tmp4met , self.q[i] ) tmpfat = math.sqrt(REAL(self.class4vect.scalare(self.q[i] , self.tmp4met))) self.q[i].normalizza(tmpfat) p.set_to_zero() self.matrice.Moltiplica(p, self.q[i]) if self.metrica is not None: self.tmp4met.set_to_zero() self.metrica.Moltiplica(self.tmp4met , self.q[i]) self.alpha[i] = REAL(self.class4vect.scalare(p , self.tmp4met)) else: self.alpha[i] = REAL(self.class4vect.scalare(p , self.q[i])) #print " GRAMO bis ", i ## print self.alpha[:20] ## raise " OK " if self.metrica is None: self.GramSchmidt(p,i+1,NT) self.beta[i] = self.class4vect.sqrtscalare(p,p) p.normalizzaauto() else: # p.add_from_vect_with_fact( self.q[i] , -self.alpha[i] ) # p.add_from_vect_with_fact( self.q[i-1] , -self.beta[i-1] ) self.GramSchmidt(p,i+1,NT) self.tmp4met.set_to_zero() self.metrica.Moltiplica(self.tmp4met , p) tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met))) self.beta[i] = tmpfat p.normalizza(tmpfat) if i>0: condition = eu * \ math.sqrt(self.dim * (self.alpha[i]**2+\ self.beta[i-1]**2)) else: condition = eu * math.sqrt(self.dim * (self.alpha[i]**2)) if self.beta[i]< condition: self.beta[i]=0. p.set_all_random(1.0) self.GramSchmidt(p,i+1) if self.metrica is None: p.normalizzaauto() else: self.tmp4met.set_to_zero() self.metrica.Moltiplica( self.tmp4met , p ) tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met))) p.normalizza(tmpfat) for l in range(i) : self.omega[i,l]=self.omega[l,i]=eusn for l in range(i+1): self.omega[i+1,l]=self.omega[l,i+1]=eusn else: if self.metrica is None: p.normalizzaauto() else: self.tmp4met.set_to_zero() self.metrica.Moltiplica( self.tmp4met , p ) tmpfat = math.sqrt(REAL(self.class4vect.scalare(p , self.tmp4met))) p.normalizza(tmpfat) # p.dumptofile("normprelude"+str(self.dump_count)) self.class4vect.copy_to_a_from_b(self.q[i+1],p) def GramSchmidt(self, vect , n, NT=4): for h in range(NT): if self.metrica is None : for i in range(n): s=self.class4vect.scalare( self.q[i], vect) vect.add_from_vect_with_fact(self.q[i],-s) else: self.tmp4met.set_to_zero() self.metrica.Moltiplica(self.tmp4met, vect) for i in range(n): s=self.class4vect.scalare( self.q[i], self.tmp4met) vect.add_from_vect_with_fact(self.q[i],-s) def allocaMemory(self): self.alpha = numpy.zeros(self.nsteps,numpy.float64) self.beta = numpy.zeros(self.nsteps,numpy.float64) self.omega = numpy.zeros((self.nsteps+1,self.nsteps+1),numpy.float64) self.evect = numpy.zeros((self.nsteps,self.nsteps),numpy.float64) self.eval = numpy.zeros((self.nsteps),numpy.float64) self.oldalpha = numpy.zeros((self.nsteps),numpy.float64) self.q=self.class4vect(self.nsteps+1,self.dim) if self.metrica is not None: self.tmp4met = self.class4vect( self.dim ) def cerca(self, nd, shift): self.shift=shift self.matrice.trasforma(1.0, shift) m = min(4*nd, self.dim) self.nsteps = m self.allocaMemory() vect_init = self.class4vect(self.dim) # vect_init.set_value(0,1.0) vect_init.set_all_random(1.0) # vect_init.set_to_one() k=0 nc=0 self.passeggia(k,m,vect_init) while nc<nd : #print " DIAGONALIZZAZIONE " self.diago(k,m) nc = self.converged(m) if k and not numpy.any(abs(self.beta[:k])>self.tol) : break if (nc+2*nd) >= m: k=m-1 else: k=nc+2*nd #print "KKKKKKKKK " , k self.ricipolla(k,m) self.countdumpab+=1 #print " k,m , dim", k, m, self.dim # return m # sentinell self.passeggia(k,m,self.q[m]) if m==self.dim: return m else: return k def converged(self, m): for j in range(1,m): for i in range(m-j): if abs(self.eval[i]) < abs(self.eval[i+1]): self.eval[i],self.eval[i+1]=self.eval[i+1],self.eval[i] self.evect[i:i+2]= numpy.array(self.evect[i+1],self.evect[i]) # print "eval", self.eval[0:m] res = 0 if self.old: while res<m: #print self.oldalpha[res] if (abs(self.eval[res]-self.oldalpha[res])\ /abs(self.oldalpha[res])>self.tol): break res+=1 else: self.old=True self.oldalpha[0:m]=self.eval[0:m] return res def ricipolla(self, k,m): #print "k,m",k,m self.alpha[0:k]= self.eval[0:k] self.beta[0:k] = self.beta[m-1]*self.evect[0:k,m-1] #print "beta beta",self.beta,self.beta[m-1],self.evect[0:k,m-1] # E = self.evect[0:k,0:m].copy() a=self.class4vect(k, self.dim ) #print " LANCIO mat MULT " self.class4vect.mat_mult(a, self.evect[0:k,0:m] , self.q) for i in range(k): a[i].normalizzaauto() self.class4vect.copy_to_a_from_b( self.q[i] , a[i] ) a=None self.class4vect.copy_to_a_from_b(self.q[k] , self.q[m] ) o = self.omega[0:m,0:m].copy() o = dotblas.dot(o, numpy.transpose(self.evect)) for i in range(k): self.omega[i,k]=self.omega[k,i]=o[i,k] o = dotblas.dot(self.evect,o) self.omega[0:k,0:k]=o[0:k,0:k] def diago(self, k, m): mat = numpy.zeros([m,m], numpy.float64) mat.shape=[m*m] mat[0:m*m:m+1] = self.alpha mat[k*m+k+1:m*m:m+1] =self.beta[k:m-1] mat[(k+1)*m+k:m*m:m+1] =self.beta[k:m-1] mat.shape=[m,m] mat[ k ,0:k ] = self.beta[:k] mat[ 0:k, k ] = self.beta[:k] self.eval,self.evect = numpy.linalg.eigh(mat) def solveEigenSystem( S_base , nsearchedeigen, shift=None, metrica=None, tol=1.0e-15): lnczs=Lanczos( S_base , metrica=metrica, tol=tol) lnczs.diagoCustom(minDim=nsearchedeigen, shift=shift) return lnczs.eval, lnczs.q ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/NNMAModule.py�������������������������������������������������0000644�0000000�0000000�00000037416�14741736366�020265� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#*/########################################################################### # Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # * copyright notice, this list of conditions and the following # * disclaimer in the documentation and/or other materials provided # * with the distribution. Neither the name of the <ORGANIZATION> # * nor the names of its contributors may be used to endorse or # * promote products derived from this software without specific # * prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #*/########################################################################### __author__ = "Uwe Schmitt uschmitt@mineway.de, wrapped by V.A. Sole - ESRF" __license__ = "BSD" __doc__ = """ This module is a simple wrapper to the py_nnma module of Uwe Schmitt (uschmitt@mineway.de) in order to integrate it into PyMca. What follows is the documentation of py_nnma py_nnma: python modules for nonnegative matrix approximation (NNMA) (c) 2009 Uwe Schmitt, uschmitt@mineway.de NNMA minimizes dist(Y, A X) where: Y >= 0, m x n A >= 0, m x k X >= 0, n x k k < min(m,n) dist(A,B) can be || A - B ||_fro or KL(A,B) This moudule provides the following functions: NMF, NMFKL, SNMF, RRI, ALS, GDCLS, GDCLS_L1, FNMAI, FNMAI_SPARSE, NNSC and FastHALS The common parameters when calling such a function are: input: Y -- the matrix for decomposition, maybe dense from numpy or sparse from scipy.sparse package k -- number of components to estimate Astart Xstart -- matrices to start iterations. Maybe None for using random start matrices. eps -- termination swell value maxcount -- max number of iterations to be performed verbose -- if False: produce no output durint interations if integer: give all 'verbose' itetations some output about current state of iterations output: A, X -- result matrices of algorithm obj -- value of objective function of last iteration count -- number of iterations done converged -- flag: indicates if iterations stoped within max number of iterations The following extra parameters exist depending on algorithm: RRI : damping parameter 'psi' (default: 1e-12) SNMF : sparsity parameter 'sparse_par' (default: 0) ALS : regularization parameter 'regul' for stabilizing iterations (default value 0). needed if objective value jitters. GCDLS : 'regul' for l2-smoothness of X (default 0) GDCLS_L1 : 'regul' for l1-smoothness of X (default 0) FNMAI : 'stabil' for stabilizing algorithm (default value 1e-12) 'alpha' for stepsize (default value 0.1) 'tau' for number of inner iterations (default value 2) FNMAI_SPARSE : as FNMAI plus 'regul' for l1-smoothness of X (default 0) NNSC : 'alpha' for stepsize of gradient update of A 'sparse_par' for sparsity This module is based on: - Daniel D. Lee and H. Sebastian Seung: "Algorithms for non-negative matrix factorization", in Advances in Neural Information Processing 13 (Proc. NIPS*2000) MIT Press, 2001. "Learning the parts of objects by non-negative matrix factorization", Nature, vol. 401, no. 6755, pp. 788-791, 1999. - A. Cichocki and A-H. Phan: "Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations", IEICE Transaction on Fundamentals, in print March 2009. - P. O. Hoyer "Non-negative Matrix Factorization with sparseness constraints", Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004. - Dongmin Kim, Suvrit Sra,Inderjit S. Dhillon: "Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem" SIAM Data Mining (SDM), Apr. 2007 - Ngoc-Diep Ho: dissertation from http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-06052008-235205/ ############################################################################# Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. Neither the name of the <ORGANIZATION> * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific * prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy import logging from . import py_nnma _logger = logging.getLogger(__name__) function_list = ['FNMAI', 'ALS', 'FastHALS', 'GDCLS'] function_dict = {"NNSC": py_nnma.NNSC, "FNMAI_SPARSE": py_nnma.FNMAI_SPARSE, "FNMAI": py_nnma.FNMAI, "GDCLS_L1": py_nnma.GDCLS_L1, "GDCLS": py_nnma.GDCLS, "ALS": py_nnma.ALS, "NMFKL": py_nnma.NMFKL, "NMF": py_nnma.NMF, "RRI": py_nnma.RRI, "FastHALS": py_nnma.FastHALS, "SNMF": py_nnma.SNMF, } VERBOSE = _logger.getEffectiveLevel() == logging.DEBUG def nnma(stack, ncomponents, binning=None, mask=None, spectral_mask=None, function=None, eps=5e-5, verbose=VERBOSE, maxcount=1000, kmeans=False): if kmeans: raise ValueError("K Means not supported by this module") #I take the defaults for the other parameters param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3) if function is None: function = 'FNMAI' nnma_function = function_dict[function] if binning is None: binning = 1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data[:] else: data = stack[:] oldShape = data.shape if len(data.shape) == 3: r, c, N = data.shape else: r, N = data.shape c = 1 if isinstance(data, numpy.ndarray): dataView = data[:] dataView.shape = r * c, N if spectral_mask is not None: if binning > 1: dataView.shape = r * c, N // binning, binning dataView = numpy.sum(dataView, axis=-1, dtype=numpy.float32) N = N // binning try: data = numpy.zeros((r*c, N), numpy.float32) except MemoryError: text = "Memory Error: Higher binning may help." raise TypeError(text) idx = spectral_mask > 0 data[:, idx] = dataView[:, idx] else: if binning > 1: dataView.shape = r * c, N // binning, binning data = numpy.sum(dataView , axis=-1, dtype=numpy.float32) N = N // binning else: data.shape = r * c, N else: # we have to build the data dynamically oldData = data N = int(N/binning) try: data = numpy.zeros((r, c, N), numpy.float32) except MemoryError: text = "NNMAModule only works properly on numpy arrays.\n" text += "Memory Error: Higher binning may help." raise TypeError(text) if binning == 1: if spectral_mask is None: if len(oldShape) == 3: for i in range(data.shape[0]): data[i] = oldData[i] else: data.shape = r * c, N for i in range(data.shape[0]): data[i] = oldData[i] else: idx = spectral_mask > 0 if len(oldShape) == 3: for i in range(data.shape[0]): data[i, :, idx] = oldData[i, :, idx] else: data.shape = r * c, N for i in range(data.shape[0]): data[i, idx] = oldData[i, idx] data.shape = r * c, N else: if spectral_mask is None: if len(oldShape) == 3: for i in range(data.shape[0]): tmpData = oldData[i, :, :] tmpData.shape = c, N, binning data[i, :] = numpy.sum(tmpData, axis=-1, dtype=numpy.float32) else: data.shape = r * c, N for i in range(data.shape[0]): tmpData = oldData[i] tmpData.shape = N, binning data[i] = numpy.sum(tmpData, axis=-1, dtype=numpy.float32) else: idx = spectral_mask > 0 if len(oldShape) == 3: for i in range(data.shape[0]): tmpData = oldData[i, :, :] tmpData.shape = 1, -1, N, binning data[i, :, idx] = numpy.sum(tmpData, axis=-1, dtype=numpy.float32)[0, :, idx] else: data.shape = r * c, N for i in range(data.shape[0]): tmpData = oldData[i] tmpData.shape = 1, N, binning data[i, idx] = numpy.sum(tmpData, axis=-1, dtype=numpy.float32)[0, idx] data.shape = r * c, N if mask is not None: # the mask contains the good data maskview = mask[:] maskview.shape = -1 data = data[maskview,:] #mindata = data.min() #numpy.add(data, -mindata+1, data) #I do not know the meaning of these paramenters #py_nnma.scale(newdata) param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3) #Start tolerance #1E+3 is conservative/fast #1E-3 is probably slow Astart = None Xstart = None #for i in range(start_ncomponents, ncomponents): converged = False while not converged: A, X, obj, count, converged = nnma_function(data, ncomponents, Astart, Xstart, eps=eps, maxcount=maxcount, verbose=verbose, **param) if not converged: print("WARNING: Possible problems converging") #if binning > 1: # numpy.add(data, mindata-1, data) #data.shape = oldShape images = A.T if 0: images.shape = ncomponents, r, c return images, numpy.ones((ncomponents), numpy.float32),X #order and scale images according to Gerd Wellenreuthers' recipe #normalize all maps to be in the range [0, 1] for i in range(ncomponents): norm_factor = numpy.max(images[i, :]) if norm_factor > 0: images[i, :] *= 1.0/norm_factor X[i, :] *= norm_factor #sort NNMA-spectra and maps total_nnma_intensity = [] for i in range(ncomponents): total_nnma_intensity += [[numpy.sum(images[i,:])*\ numpy.sum(X[i,:]), i]] sorted_idx = [item[1] for item in sorted(total_nnma_intensity)] sorted_idx.reverse() #original data intensity original_intensity = numpy.sum(data) #final values new_images = numpy.zeros((ncomponents, r*c), numpy.float32) new_vectors = numpy.zeros((X.shape[0], X.shape[1]), numpy.float32) values = numpy.zeros((ncomponents,), numpy.float32) for i in range(ncomponents): idx = sorted_idx[i] if 1: if mask is None: new_images[i, :] = images[idx, :] else: new_images[i, maskview] = images[idx, :] else: #imaging the projected sum gives same results Atmp = images[idx, :] Atmp.shape = -r*c, 1 Xtmp = X[idx,:] Xtmp.shape = 1, -1 new_images[i, maskview] = numpy.sum(numpy.dot(Atmp, Xtmp), axis=1) new_vectors[i,:] = X[idx,:] values[i] = 100.*total_nnma_intensity[idx][0]/original_intensity new_images.shape = ncomponents, r, c return new_images, values, new_vectors if __name__ == "__main__": from PyMca.PyMcaIO import EDFStack from PyMca.PyMcaIO import EdfFile import os import sys import time inputfile = r"D:\DATA\COTTE\ch09\ch09__mca_0005_0000_0000.edf" if len(sys.argv) > 1: inputfile = sys.argv[1] print(inputfile) elif os.path.exists(inputfile): print("Using a default test case") else: print("Usage:") print("python NNMAModule.py indexed_edf_stack") sys.exit(0) stack = EDFStack.EDFStack(inputfile) r0, c0, n0 = stack.data.shape ncomponents = 10 outfile = os.path.basename(inputfile)+"ICA.edf" e0 = time.time() images, eigenvalues, eigenvectors = nnma(stack.data, ncomponents, binning=1) print("elapsed = %f" % (time.time() - e0)) if os.path.exists(outfile): os.remove(outfile) f = EdfFile.EdfFile(outfile) for i in range(ncomponents): f.WriteImage({}, images[i,:]) sys.exit(0) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/PCAModule.py��������������������������������������������������0000644�0000000�0000000�00000115465�14741736366�020140� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole & A. Mirone - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import time import logging import numpy import numpy.linalg try: import numpy.core._dotblas as dotblas except ImportError: # _dotblas was removed in numpy 1.10 #print("WARNING: Not using BLAS, PCA calculation will be slower") dotblas = numpy try: import mdp MDP = True except Exception: # MDP can raise other errors than just an import error MDP = False from . import Lanczos from . import PCATools _logger = logging.getLogger(__name__) # Make these functions accept arguments not relevant to # them in order to simplify having a common graphical interface def lanczosPCA(stack, ncomponents=10, binning=None, legacy=True, **kw): _logger.debug("lanczosPCA") if binning is None: binning = 1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack if not isinstance(data, numpy.ndarray): raise TypeError(\ "lanczosPCA is only supported when using numpy arrays") #wrapmatrix = "double" wrapmatrix = "single" dtype = numpy.float64 if wrapmatrix == "double": data = data.astype(dtype) if len(data.shape) == 3: r, c, N = data.shape data.shape = r * c, N else: r, N = data.shape c = 1 npixels = r * c if binning > 1: # data.shape may fails with non-contiguous arrays # use reshape. data = numpy.reshape(data, [data.shape[0], data.shape[1] / binning, binning]) data = numpy.sum(data, axis=-1) N /= binning if ncomponents > N: raise ValueError("Number of components too high.") avg = numpy.sum(data, 0) / (1.0 * npixels) numpy.subtract(data, avg, data) Lanczos.LanczosNumericMatrix.tipo = dtype Lanczos.LanczosNumericVector.tipo = dtype if wrapmatrix == "single": SM = [dotblas.dot(data.T, data).astype(dtype)] SM = Lanczos.LanczosNumericMatrix(SM) else: SM = Lanczos.LanczosNumericMatrix([data.T.astype(dtype), data.astype(dtype)]) eigenvalues, eigenvectors = Lanczos.solveEigenSystem(SM, ncomponents, shift=0.0, tol=1.0e-15) SM = None numpy.add(data, avg, data) images = numpy.zeros((ncomponents, npixels), data.dtype) vectors = numpy.zeros((ncomponents, N), dtype) for i in range(ncomponents): vectors[i, :] = eigenvectors[i].vr images[i, :] = dotblas.dot(data, (eigenvectors[i].vr).astype(data.dtype)) data = None images.shape = ncomponents, r, c if legacy: return images, eigenvalues, vectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": vectors, "average": avg, "pixels": npixels, #"variance": ???????, } def lanczosPCA2(stack, ncomponents=10, binning=None, legacy=True, **kw): """ This is a fast method, but it may loose information """ if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack # check we have received a numpy.ndarray and not an HDF5 group # or other type of dynamically loaded data if not isinstance(data, numpy.ndarray): raise TypeError(\ "lanczosPCA2 is only supported when using numpy arrays") r, c, N = data.shape npixels = r * c # number of pixels data.shape = r * c, N if npixels < 2000: BINNING = 2 if npixels < 5000: BINNING = 4 elif npixels < 10000: BINNING = 8 elif npixels < 20000: BINNING = 10 elif npixels < 30000: BINNING = 15 elif npixels < 60000: BINNING = 20 else: BINNING = 30 if BINNING is not None: dataorig = data reminder = npixels % BINNING if reminder: data = data[0:BINNING * int(npixels / BINNING), :] data.shape = data.shape[0] / BINNING, BINNING, data.shape[1] data = numpy.swapaxes(data, 1, 2) data = numpy.sum(data, axis=-1) rc = int(r * c / BINNING) tipo = numpy.float64 neig = ncomponents + 5 # it does not create the covariance matrix but performs two multiplications rappmatrix = "doppia" # it creates the covariance matrix but performs only one multiplication rappmatrix = "singola" # calcola la media ndata = len(data) mediadata = numpy.sum(data, axis=0) / numpy.array([ndata], data.dtype) numpy.subtract(data, mediadata, data) Lanczos.LanczosNumericMatrix.tipo = tipo Lanczos.LanczosNumericVector.tipo = tipo if rappmatrix == "singola": SM = [dotblas.dot(data.T, data).astype(tipo)] SM = Lanczos.LanczosNumericMatrix(SM) else: SM = Lanczos.LanczosNumericMatrix([data.T.astype(tipo), data.astype(tipo)]) # calculate eigenvalues and eigenvectors ev, eve = Lanczos.solveEigenSystem(SM, neig, shift=0.0, tol=1.0e-7) SM = None rc = rc * BINNING newmat = numpy.zeros((r * c, neig), numpy.float64) data = data.astype(tipo) # numpy in-place addition to make sure not intermediate copies are made numpy.add(data, mediadata, data) for i in range(neig): newmat[:, i] = dotblas.dot(dataorig, (eve[i].vr).astype(dataorig.dtype)) newcov = dotblas.dot(newmat.T, newmat) evals, evects = numpy.linalg.eigh(newcov) nuovispettri = dotblas.dot(evects, eve.vr[:neig]) images = numpy.zeros((ncomponents, npixels), data.dtype) vectors = numpy.zeros((ncomponents, N), tipo) for i in range(ncomponents): vectors[i, :] = nuovispettri[-1 - i, :] images[i, :] = dotblas.dot(newmat, evects[-1 - i].astype(dataorig.dtype)) images.shape = ncomponents, r, c return images, evals, vectors if legacy: return images, eigenvalues, vectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": vectors, "average": mediadata, "pixels": ndata, #"variance": ???????, } def multipleArrayCovariancePCA(stackList0, **kw): return multipleArrayPCA(stackList0, scale=False, **kw) def multipleArrayCorrelationPCA(stackList0, **kw): return multipleArrayPCA(stackList0, scale=True, **kw) def multipleArrayPCA(stackList0, ncomponents=10, binning=None, legacy=True, scale=False, **kw): """ Given a list of arrays, calculate the requested principal components from the matrix resulting from their column concatenation. Therefore, all the input arrays must have the same number of rows. """ stackList = [None] * len(stackList0) i = 0 for stack in stackList0: if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack stackList[i] = data i += 1 stack = stackList[0] if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack if not isinstance(data, numpy.ndarray): raise TypeError(\ "multipleArrayPCA is only supported when using numpy arrays") if len(data.shape) == 3: r, c = data.shape[:2] npixels = r * c else: c = None r = data.shape[0] npixels = r #reshape and subtract mean to all the input data shapeList = [] avgList = [] eigenvectorLength = 0 for i in range(len(stackList)): shape = stackList[i].shape eigenvectorLength += shape[-1] shapeList.append(shape) stackList[i].shape = npixels, -1 avg = numpy.sum(stackList[i], 0) / (1.0 * npixels) numpy.subtract(stackList[i], avg, stackList[i]) avgList.append(avg) #create the needed storage space for the covariance matrix covMatrix = numpy.zeros((eigenvectorLength, eigenvectorLength), numpy.float32) rowOffset = 0 indexDict = {} for i in range(len(stackList)): iVectorLength = shapeList[i][-1] colOffset = 0 for j in range(len(stackList)): jVectorLength = shapeList[j][-1] if i <= j: covMatrix[rowOffset:(rowOffset + iVectorLength), colOffset:(colOffset + jVectorLength)] =\ dotblas.dot(stackList[i].T, stackList[j])/(npixels-1) if i < j: key = "%02d%02d" % (i, j) indexDict[key] = (rowOffset, rowOffset + iVectorLength, colOffset, colOffset + jVectorLength) else: key = "%02d%02d" % (j, i) rowMin, rowMax, colMin, colMax = indexDict[key] covMatrix[rowOffset:(rowOffset + iVectorLength), colOffset:(colOffset + jVectorLength)] =\ covMatrix[rowMin:rowMax, colMin:colMax].T colOffset += jVectorLength rowOffset += iVectorLength indexDict = None #I have the covariance matrix, calculate the eigenvectors and eigenvalues totalVariance = numpy.array(numpy.diag(covMatrix), copy=True) # use the correlation matrix if required normalizeToUnitStandardDeviation = scale #option to normalize to unit standard deviation if normalizeToUnitStandardDeviation: for i in range(covMatrix.shape[0]): if totalVariance[i] > 0: covMatrix[i, :] /= numpy.sqrt(totalVariance[i]) covMatrix[:, i] /= numpy.sqrt(totalVariance[i]) totalVariance = numpy.diag(covMatrix).sum() evalues, evectors = numpy.linalg.eigh(covMatrix) covMatrix = None _logger.info("Total Variance = %s", totalVariance) # The total variance should also be the sum of all the eigenvalues calculatedTotalVariance = evalues.sum() if abs(totalVariance - calculatedTotalVariance) > \ (0.0001 * calculatedTotalVariance): _logger.warning("Discrepancy on total variance") _logger.warning("Variance from matrix = %s", totalVariance) _logger.warning("Variance from sum of eigenvalues = %s", calculatedTotalVariance) images = numpy.zeros((ncomponents, npixels), numpy.float32) eigenvectors = numpy.zeros((ncomponents, eigenvectorLength), numpy.float32) eigenvalues = numpy.zeros((ncomponents,), numpy.float32) a = [(evalues[i], i) for i in range(len(evalues))] a.sort() a.reverse() totalExplainedVariance = 0.0 for i0 in range(ncomponents): i = a[i0][1] eigenvalues[i0] = evalues[i] partialExplainedVariance = 100. * evalues[i] / \ calculatedTotalVariance _logger.info("PC%02d Explained variance %.5f %% " %\ (i0 + 1, partialExplainedVariance)) totalExplainedVariance += partialExplainedVariance eigenvectors[i0, :] = evectors[:, i] #print("NORMA = ", numpy.dot(evectors[:, i].T, evectors[:, i])) _logger.info("Total explained variance = %.2f %% " % totalExplainedVariance) # figure out if eigenvectors are to be multiplied by -1 for i0 in range(ncomponents): if eigenvectors[i0].sum() < 0.0: _logger.info("PC%02d multiplied by -1" % i0) eigenvectors[i0] *= -1 for i in range(ncomponents): colOffset = 0 for j in range(len(stackList)): jVectorLength = shapeList[j][-1] images[i, :] +=\ dotblas.dot(stackList[j], eigenvectors[i, colOffset:(colOffset + jVectorLength)]) colOffset += jVectorLength #restore shapes and values for i in range(len(stackList)): numpy.add(stackList[i], avgList[i], stackList[i]) stackList[i].shape = shapeList[i] if c is None: images.shape = ncomponents, r, 1 else: images.shape = ncomponents, r, c if legacy: return images, eigenvalues, eigenvectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": eigenvectors, "average": avgList, "pixels": npixels, "variance": calculatedTotalVariance} def expectationMaximizationPCA(stack, ncomponents=10, binning=None, legacy=True, **kw): """ This is a fast method when the number of components is small """ _logger.debug("expectationMaximizationPCA") #This part is common to all ... if binning is None: binning = 1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data else: data = stack if len(data.shape) == 3: r, c, N = data.shape data.shape = r * c, N else: r, N = data.shape c = 1 if binning > 1: data = numpy.reshape(data, [data.shape[0], data.shape[1] / binning, binning]) data = numpy.sum(data, axis=-1) N /= binning if ncomponents > N: raise ValueError("Number of components too high.") #end of common part avg = numpy.sum(data, axis=0, dtype=numpy.float64) / (1.0 * r * c) numpy.subtract(data, avg, data) dataw = data * 1 images = numpy.zeros((ncomponents, r * c), data.dtype) eigenvalues = numpy.zeros((ncomponents,), data.dtype) eigenvectors = numpy.zeros((ncomponents, N), data.dtype) for i in range(ncomponents): #generate a random vector p = numpy.random.random(N) #10 iterations seems to be fairly accurate, but it is #slow when reaching "noise" components. #A variation threshold of 1 % seems to be acceptable. tmod_old = 0 tmod = 0.02 j = 0 max_iter = 7 while ((abs(tmod - tmod_old) / tmod) > 0.01) and (j < max_iter): tmod_old = tmod t = 0.0 for k in range(r * c): t += dotblas.dot(dataw[k, :], p.T) * dataw[k, :] tmod = numpy.sqrt(numpy.sum(t * t)) p = t / tmod j += 1 eigenvectors[i, :] = p #subtract the found component from the dataset for k in range(r * c): dataw[k, :] -= dotblas.dot(dataw[k, :], p.T) * p # calculate eigenvalues via the Rayleigh Quotients: # eigenvalue = \ # (Eigenvector.T * Covariance * EigenVector)/ (Eigenvector.T * Eigenvector) for i in range(ncomponents): tmp = dotblas.dot(data, eigenvectors[i, :].T) eigenvalues[i] = \ dotblas.dot(tmp.T, tmp) / dotblas.dot(eigenvectors[i, :].T, eigenvectors[i, :]) #Generate the eigenimages for i0 in range(ncomponents): images[i0, :] = dotblas.dot(data, eigenvectors[i0, :]) #restore the original data numpy.add(data, avg, data) #reshape the images images.shape = ncomponents, r, c if legacy: return images, eigenvalues, eigenvectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": eigenvectors, "average": avg, "pixels": r * c, # This method does not calculate the covariance matrix #"variance": calculatedTotalVariance, } def numpyCovariancePCA(stack, ncomponents=10, binning=None, legacy=True, **kw): mask = kw.get("mask", None) spectral_mask = kw.get("spectral_mask", None) force = kw.get("force", True) return numpyPCA(stack, ncomponents=ncomponents, binning=binning, legacy=legacy, center=True, scale=False, mask=mask, spectral_mask=spectral_mask, force=force) def numpyCorrelationPCA(stack, ncomponents=10, binning=None, legacy=True, **kw): mask = kw.get("mask", None) spectral_mask = kw.get("spectral_mask", None) force = kw.get("force", True) return numpyPCA(stack, ncomponents=ncomponents, binning=binning, legacy=legacy, center=True, scale=True, mask=mask, spectral_mask=spectral_mask, force=force) def numpyPCA(stack, ncomponents=10, binning=None, legacy=True, center=True, scale=False, mask=None, spectral_mask=None, force=True, **kw): """ This is a covariance method using numpy """ _logger.debug("PCAModule.numpyPCA called") if hasattr(stack, "info"): index = stack.info.get('McaIndex', -1) elif "index" in kw: index = kw["index"] else: print("WARNING: Assuming index is -1 in numpyPCA") index = -1 return PCATools.numpyPCA(stack, index=index, ncomponents=ncomponents, binning=binning, legacy=legacy, center=center, scale=scale, mask=mask, spectral_mask=spectral_mask, force=force) def mdpPCASVDFloat32(stack, ncomponents=10, binning=None, mask=None, spectral_mask=None, legacy=True, **kw): return mdpPCA(stack, ncomponents, binning=binning, dtype='float32', svd='True', mask=mask, spectral_mask=spectral_mask, legacy=legacy, **kw) def mdpPCASVDFloat64(stack, ncomponents=10, binning=None, mask=None, spectral_mask=None, legacy=True, **kw): return mdpPCA(stack, ncomponents, binning=binning, dtype='float64', svd='True', mask=mask, spectral_mask=spectral_mask, legacy=legacy, **kw) def mdpICAFloat32(stack, ncomponents=10, binning=None, mask=None, spectral_mask=None, legacy=True, **kw): return mdpICA(stack, ncomponents, binning=binning, dtype='float32', svd='True', mask=mask, spectral_mask=spectral_mask, legacy=legacy, **kw) def mdpICAFloat64(stack, ncomponents=10, binning=None, mask=None, spectral_mask=None, legacy=True, **kw): return mdpICA(stack, ncomponents, binning=binning, dtype='float64', svd='True', mask=mask, spectral_mask=spectral_mask, legacy=legacy, **kw) def mdpPCA(stack, ncomponents=10, binning=None, dtype='float64', svd='True', mask=None, spectral_mask=None, legacy=True, **kw): _logger.debug("MDP Method") _logger.debug("binning = %s", binning) _logger.debug("dtype = %s", dtype) _logger.debug("svd = %s", svd) for key in kw: _logger.info("mdpPCA Key ignored: %s", key) #This part is common to all ... if binning is None: binning = 1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data[:] else: data = stack[:] oldShape = data.shape if len(data.shape) == 3: r, c, N = data.shape # data can be dynamically loaded if isinstance(data, numpy.ndarray): data.shape = r * c, N else: r, N = data.shape c = 1 if binning > 1: if isinstance(data, numpy.ndarray): data = numpy.reshape(data, [data.shape[0], data.shape[1] // binning, binning]) data = numpy.sum(data, axis=-1) N = int(N / binning) if ncomponents > N: if binning == 1: if data.shape != oldShape: data.shape = oldShape raise ValueError("Number of components too high.") #end of common part #begin the specific coding pca = mdp.nodes.PCANode(output_dim=ncomponents, dtype=dtype, svd=svd) shape = data.shape if len(data.shape) == 3: step = 10 if r > step: last = step * (int(r / step) - 1) for i in range(0, last, step): for j in range(step): print("Training data %d out of %d" % (i + j + 1, r)) tmpData = data[i:(i + step), :, :] if binning > 1: tmpData.shape = (step * shape[1], shape[2] // binning, binning) tmpData = numpy.sum(tmpData, axis=-1) else: tmpData.shape = step * shape[1], shape[2] if spectral_mask is None: pca.train(tmpData) else: pca.train(tmpData[:, spectral_mask > 0]) tmpData = None last = i + step else: last = 0 if binning > 1: for i in range(last, r): print("Training data %d out of %d" % (i + 1, r)) tmpData = data[i, :, :] tmpData.shape = shape[1], shape[2] // binning, binning tmpData = numpy.sum(tmpData, axis=-1) if spectral_mask is None: pca.train(tmpData) else: pca.train(tmpData[:, spectral_mask > 0]) tmpData = None else: for i in range(last, r): print("Training data %d out of %d" % (i + 1, r)) if spectral_mask is None: pca.train(data[i, :, :]) else: pca.train(data[i, :, spectral_mask > 0]) else: if data.shape[0] > 10000: step = 1000 last = step * (int(data.shape[0] / step) - 1) if spectral_mask is None: for i in range(0, last, step): print("Training data from %d to %d of %d" %\ (i + 1, i + step, data.shape[0])) pca.train(data[i:(i + step), :]) print("Training data from %d to end of %d" %\ (i + step + 1, data.shape[0])) pca.train(data[(i + step):, :]) else: for i in range(0, last, step): print("Training data from %d to %d of %d" %\ (i + 1, i + step, data.shape[0])) pca.train(data[i:(i + step), spectral_mask > 0]) # TODO i is undefined here in the print statement print("Training data from %d to end of %d" %\ (i + step + 1, data.shape[0])) pca.train(data[(i + step):, spectral_mask > 0]) elif data.shape[0] > 1000: i = int(data.shape[0] / 2) if spectral_mask is None: pca.train(data[:i, :]) else: pca.train(data[:i, spectral_mask > 0]) _logger.debug("Half training") if spectral_mask is None: pca.train(data[i:, :]) else: pca.train(data[i:, spectral_mask > 0]) _logger.debug("Full training") else: if spectral_mask is None: pca.train(data) else: pca.train(data[:, spectral_mask > 0]) pca.stop_training() # avg = pca.avg eigenvalues = pca.d eigenvectors = pca.v.T proj = pca.get_projmatrix(transposed=0) if len(data.shape) == 3: images = numpy.zeros((ncomponents, r, c), data.dtype) for i in range(r): print("Building images. Projecting data %d out of %d" % (i + 1, r)) if binning > 1: if spectral_mask is None: tmpData = data[i, :, :] else: tmpData = data[i, :, spectral_mask > 0] tmpData.shape = data.shape[1], data.shape[2] // binning, binning tmpData = numpy.sum(tmpData, axis=-1) images[:, i, :] = numpy.dot(proj.astype(data.dtype), tmpData.T) else: if spectral_mask is None: images[:, i, :] = numpy.dot(proj.astype(data.dtype), data[i, :, :].T) else: images[:, i, :] = numpy.dot(proj.astype(data.dtype), data[i, :, spectral_mask > 0].T) else: if spectral_mask is None: images = numpy.dot(proj.astype(data.dtype), data.T) else: images = numpy.dot(proj.astype(data.dtype), data[:, spectral_mask > 0].T) #make sure the shape of the original data is not modified if hasattr(stack, "info") and hasattr(stack, "data"): if stack.data.shape != oldShape: stack.data.shape = oldShape else: if stack.shape != oldShape: stack.shape = oldShape if spectral_mask is not None: eigenvectors = numpy.zeros((ncomponents, N), pca.v.dtype) for i in range(ncomponents): eigenvectors[i, spectral_mask > 0] = pca.v.T[i] #reshape the images images.shape = ncomponents, r, c if legacy: return images, eigenvalues, eigenvectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": eigenvectors, #"average": avgSpectrum, #"pixels": calculatedPixels, #"variance": calculatedTotalVariance, } def mdpICA(stack, ncomponents=10, binning=None, dtype='float64', svd='True', mask=None, spectral_mask=None, legacy=True, **kw): for key in kw: print("mdpICA Key ignored: %s" % key) #This part is common to all ... if binning is None: binning = 1 if hasattr(stack, "info") and hasattr(stack, "data"): data = stack.data[:] else: data = stack[:] oldShape = data.shape if len(data.shape) == 3: r, c, N = data.shape if isinstance(data, numpy.ndarray): data.shape = r * c, N else: r, N = data.shape c = 1 if binning > 1: if isinstance(data, numpy.ndarray): data = numpy.reshape(data, [data.shape[0], data.shape[1] // binning, binning]) data = numpy.sum(data, axis=-1) N = N // binning if ncomponents > N: if binning == 1: if data.shape != oldShape: data.shape = oldShape raise ValueError("Number of components too high.") if 1: if (mdp.__version__ >= "2.5"): _logger.debug("TDSEPNone") ica = mdp.nodes.TDSEPNode(white_comp=ncomponents, verbose=False, dtype="float64", white_parm={'svd': svd}) t0 = time.time() shape = data.shape if len(data.shape) == 3: if r > 10: step = 10 last = step * (int(r / step) - 1) for i in range(0, last, step): print("Training data from %d to %d out of %d" %\ (i + 1, i + step, r)) tmpData = data[i:(i + step), :, :] if binning > 1: tmpData.shape = (step * shape[1], shape[2] // binning, binning) tmpData = numpy.sum(tmpData, axis=-1) else: tmpData.shape = step * shape[1], shape[2] if spectral_mask is None: ica.train(tmpData) else: ica.train(tmpData[:, spectral_mask > 0]) tmpData = None last = i + step else: last = 0 if binning > 1: for i in range(last, r): print("Training data %d out of %d" % (i + 1, r)) tmpData = data[i, :, :] tmpData.shape = shape[1], shape[2] // binning, binning tmpData = numpy.sum(tmpData, axis=-1) if spectral_mask is None: ica.train(tmpData) else: ica.train(tmpData[:, spectral_mask > 0]) tmpData = None else: for i in range(last, r): print("Training data %d out of %d" % (i + 1, r)) if spectral_mask is None: ica.train(data[i, :, :]) else: ica.train(data[i, :, spectral_mask > 0]) else: if data.shape[0] > 10000: step = 1000 last = step * (int(data.shape[0] / step) - 1) for i in range(0, last, step): print("Training data from %d to %d of %d" %\ (i + 1, i + step, data.shape[0])) if spectral_mask is None: ica.train(data[i:(i + step), :]) else: ica.train(data[i:(i + step), spectral_mask > 0]) print("Training data from %d to end of %d" %\ (i + step + 1, data.shape[0])) if spectral_mask is None: ica.train(data[(i + step):, :]) else: ica.train(data[(i + step):, spectral_mask > 0]) elif data.shape[0] > 1000: i = int(data.shape[0] / 2) if spectral_mask is None: ica.train(data[:i, :]) else: ica.train(data[:i, spectral_mask > 0]) _logger.debug("Half training") if spectral_mask is None: ica.train(data[i:, :]) else: ica.train(data[i:, spectral_mask > 0]) _logger.debug("Full training") else: if spectral_mask is None: ica.train(data) else: ica.train(data[:, spectral_mask > 0]) ica.stop_training() _logger.debug("training elapsed = %f", time.time() - t0) else: if 0: print("ISFANode (alike)") ica = mdp.nodes.TDSEPNode(white_comp=ncomponents, verbose=False, dtype='float64', white_parm={'svd':svd}) elif 1: _logger.debug("FastICANode") ica = mdp.nodes.FastICANode(white_comp=ncomponents, verbose=False, dtype=dtype) else: _logger.debug("CuBICANode") ica = mdp.nodes.CuBICANode(white_comp=ncomponents, verbose=False, dtype=dtype) ica.train(data) ica.stop_training() #output = ica.execute(data) proj = ica.get_projmatrix(transposed=0) # These are the PCA data eigenvalues = ica.white.d * 1 eigenvectors = ica.white.v.T * 1 vectors = numpy.zeros((ncomponents * 2, N), data.dtype) if spectral_mask is None: vectors[0:ncomponents, :] = proj * 1 # ica components? vectors[ncomponents:, :] = eigenvectors else: vectors = numpy.zeros((2 * ncomponents, N), eigenvectors.dtype) vectors[0:ncomponents, spectral_mask > 0] = proj * 1 vectors[ncomponents:, spectral_mask > 0] = eigenvectors if (len(data.shape) == 3): images = numpy.zeros((2 * ncomponents, r, c), data.dtype) for i in range(r): _logger.info("Building images. Projecting data %d out of %d", i + 1, r) if binning > 1: if spectral_mask is None: tmpData = data[i, :, :] else: tmpData = data[i, :, spectral_mask > 0] tmpData.shape = (data.shape[1], data.shape[2] // binning, binning) tmpData = numpy.sum(tmpData, axis=-1) tmpData = ica.white.execute(tmpData) else: if spectral_mask is None: tmpData = ica.white.execute(data[i, :, :]) else: tmpData = ica.white.execute(data[i, :, spectral_mask > 0]) images[ncomponents:(2 * ncomponents), i, :] = tmpData.T[:, :] images[0:ncomponents, i, :] =\ numpy.dot(tmpData, ica.filters).T[:, :] else: images = numpy.zeros((2 * ncomponents, r * c), data.dtype) if spectral_mask is None: images[0:ncomponents, :] =\ numpy.dot(proj.astype(data.dtype), data.T) else: tmpData = data[:, spectral_mask > 0] images[0:ncomponents, :] =\ numpy.dot(proj.astype(data.dtype), tmpData.T) proj = ica.white.get_projmatrix(transposed=0) if spectral_mask is None: images[ncomponents:(2 * ncomponents), :] =\ numpy.dot(proj.astype(data.dtype), data.T) else: images[ncomponents:(2 * ncomponents), :] =\ numpy.dot(proj.astype(data.dtype), data[:, spectral_mask > 0].T) images.shape = 2 * ncomponents, r, c else: ica = mdp.nodes.FastICANode(white_comp=ncomponents, verbose=False, dtype=dtype) ica.train(data) output = ica.execute(data) proj = ica.get_projmatrix(transposed=0) # These are the PCA data # make sure no reference to the ica module is kept to make sure # memory is relased. eigenvalues = ica.white.d * 1 eigenvectors = ica.white.v.T * 1 images = numpy.zeros((2 * ncomponents, r * c), data.dtype) vectors = numpy.zeros((ncomponents * 2, N), data.dtype) vectors[0:ncomponents, :] = proj * 1 # ica components? vectors[ncomponents:, :] = eigenvectors images[0:ncomponents, :] = numpy.dot(proj.astype(data.dtype), data.T) proj = ica.white.get_projmatrix(transposed=0) images[ncomponents:(2 * ncomponents), :] =\ numpy.dot(proj.astype(data.dtype), data.T) images.shape = 2 * ncomponents, r, c if binning == 1: if data.shape != oldShape: data.shape = oldShape if legacy: return images, eigenvalues, vectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": vectors, #"average": avgSpectrum, #"pixels": calculatedPixels, #"variance": calculatedTotalVariance, } def main(): from PyMca.PyMcaIO import EDFStack from PyMca.PyMcaIO import EdfFile import sys inputfile = r"D:\DATA\COTTE\ch09\ch09__mca_0005_0000_0000.edf" if len(sys.argv) > 1: inputfile = sys.argv[1] print(inputfile) elif os.path.exists(inputfile): print("Using a default test case") else: print("Usage:") print("python PCAModule.py indexed_edf_stack") sys.exit(0) stack = EDFStack.EDFStack(inputfile) r0, c0, n0 = stack.data.shape ncomponents = 5 outfile = os.path.basename(inputfile) + "ICA.edf" e0 = time.time() images, eigenvalues, eigenvectors = mdpICA(stack.data, ncomponents, binning=1, svd=True, dtype='float64') #images, eigenvalues, eigenvectors = lanczosPCA2(stack.data, # ncomponents, # binning=1) if os.path.exists(outfile): os.remove(outfile) f = EdfFile.EdfFile(outfile) for i in range(ncomponents): f.WriteImage({}, images[i, :]) stack.data.shape = r0, c0, n0 print("PCA Elapsed = %f" % (time.time() - e0)) print("eigenvectors PCA2 = ", eigenvectors[0, 200:230]) stack = None stack = EDFStack.EDFStack(inputfile) e0 = time.time() images2, eigenvalues, eigenvectors = mdpPCA(stack.data, ncomponents, binning=1) stack.data.shape = r0, c0, n0 print("MDP Elapsed = %f" % (time.time() - e0)) print("eigenvectors MDP = ", eigenvectors[0, 200:230]) if os.path.exists(outfile): os.remove(outfile) f = EdfFile.EdfFile(outfile) for i in range(ncomponents): f.WriteImage({}, images[i, :]) for i in range(ncomponents): f.WriteImage({}, images2[i, :]) f = None if __name__ == "__main__": main() �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/PCATools.py���������������������������������������������������0000644�0000000�0000000�00000104645�14741736366�020011� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2021 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import logging import time import numpy import numpy.linalg try: # make a explicit import to warn about missing optimized libraries import numpy.core._dotblas as dotblas except ImportError: # _dotblas was removed in numpy 1.10 #print("WARNING: Not using BLAS/ATLAS, PCA calculation will be slower") dotblas = numpy _logger = logging.getLogger(__name__) def getCovarianceMatrix(stack, index=None, binning=None, dtype=numpy.float64, force=True, center=True, weights=None, spatial_mask=None): """ Calculate the covariance matrix of input data (stack) array. The input array is to be understood as a set of observables (spectra) taken at different instances (for instance spatial coordinates). :param stack: Array of data. Dimension greater than one. :type stack: Numpy ndarray. :param index: Integer specifying the array dimension containing the "observables". Only the first the first (index = 0) or the last dimension (index = -1 or index = (ndimensions - 1)) supported. :type index: Integer (default is -1 to indicate it is the last dimension of input array) :param binning: Current implementation corresponds to a sampling of the spectral data and not to an actual binning. This may change in future versions. :type binning: Positive integer (default 1) :param dtype: Keyword indicating the data type of the returned covariance matrix. :type dtype: A valid numpy data type (default numpy.float64) :param force: Indicate how to calculate the covariance matrix: - False : Perform the product data.T * data in one call - True : Perform the product data.T * data progressively (smaller memory footprint) :type force: Boolean (default True) :param center: Indicate if the mean is to be subtracted from the observables. :type center: Boolean (default True) :param weights: Weight to be applied to each observable. It can therefore be used as a spectral mask setting the weight to 0 on the values to ignore. :type weights: Numpy ndarray of same size as the observables or None (default). :spatial_mask: Array of size n where n is the number of measurement instances. In mapping experiments, n would be equal to the number of pixels. :type spatial_mask: Numpy array of unsigned bytes (numpy.uint8) or None (default). :returns: The covMatrix, the average spectrum and the number of used pixels. """ # the 1D mask = weights should correspond to the values, before or after # sampling? it could be handled as weights to be applied to the # spectra. That would allow two uses, as mask and as weights, at # the cost of a multiplication. # the spatial_mask accounts for pixels to be considered. It allows # to calculate the covariance matrix of a subset or to deal with # non finite data (NaN, +inf, -inf, ...). The calling program # should set the mask. # recover the actual data to work with if hasattr(stack, "info") and hasattr(stack, "data"): #we are dealing with a PyMca data object data = stack.data if index is None: index = stack.info.get("McaWindex", -1) else: data = stack if index is None: index = -1 oldShape = data.shape if index not in [0, -1, len(oldShape) - 1]: data = None raise IndexError("1D index must be one of 0, -1 or %d" % len(oldShape)) if index < 0: actualIndex = len(oldShape) + index else: actualIndex = index # the number of spatial pixels nPixels = 1 for i in range(len(oldShape)): if i != actualIndex: nPixels *= oldShape[i] # remove inf or nan #image_data = data.sum(axis=actualIndex) #spatial_mask = numpy.isfinite(image_data) # # the starting number of channels or of images N = oldShape[actualIndex] # our binning (better said sampling) is spectral, in order not to # affect the spatial resolution if binning is None: binning = 1 if spatial_mask is not None: cleanMask = spatial_mask[:].reshape(nPixels) usedPixels = cleanMask.sum() badMask = numpy.array(spatial_mask < 1, dtype=cleanMask.dtype) badMask.shape = nPixels else: cleanMask = None usedPixels = nPixels nChannels = int(N / binning) if weights is None: weights = numpy.ones(N, numpy.float64) if weights.size == nChannels: # binning was taken into account cleanWeights = weights[:] else: cleanWeights = weights[::binning] # end of checking part eigenvectorLength = nChannels if (not force)and isinstance(data, numpy.ndarray): _logger.debug("Memory consuming calculation") #make a direct calculation (memory cosuming) #take a view to the data dataView = data[:] if index in [0]: #reshape the view to allow the matrix multiplication dataView.shape = -1, nPixels cleanWeights.shape = -1, 1 dataView = dataView[::binning] * cleanWeights if cleanMask is not None: dataView[:, badMask] = 0 sumSpectrum = dataView.sum(axis=1, dtype=numpy.float64) #and return the standard covariance matrix as a matrix product covMatrix = dotblas.dot(dataView, dataView.T)\ / float(usedPixels - 1) else: #the last index dataView.shape = nPixels, -1 cleanWeights.shape = 1, -1 dataView = dataView[:, ::binning] * cleanWeights if cleanMask is not None: cleanMask.shape = -1 if 0: for i in range(dataView.shape[-1]): dataView[badMask, i] = 0 else: dataView[badMask] = 0 sumSpectrum = dataView.sum(axis=0, dtype=numpy.float64) #and return the standard covariance matrix as a matrix product covMatrix = dotblas.dot(dataView.T, dataView )\ / float(usedPixels - 1) if center: averageMatrix = numpy.outer(sumSpectrum, sumSpectrum)\ / (usedPixels * (usedPixels - 1)) covMatrix -= averageMatrix averageMatrix = None return covMatrix, sumSpectrum / usedPixels, usedPixels # we are dealing with dynamically loaded data _logger.debug("DYNAMICALLY LOADED DATA") #create the needed storage space for the covariance matrix try: covMatrix = numpy.zeros((eigenvectorLength, eigenvectorLength), dtype=dtype) sumSpectrum = numpy.zeros((eigenvectorLength,), numpy.float64) except: #make sure no reference to the original input data is kept cleanWeights = None covMatrix = None averageMatrix = None data = None raise # workaround a problem with h5py try: if actualIndex in [0]: testException = data[0:1] else: if len(data.shape) == 2: testException = data[0:1, -1] elif len(data.shape) == 3: testException = data[0:1, 0:1, -1] except AttributeError: txt = "%s" % type(data) if 'h5py' in txt: _logger.warning("Implementing h5py workaround") import h5py data = h5py.Dataset(data.id) else: raise if actualIndex in [0]: # divider is used to decide the fraction of images to keep in memory # in order to limit file access on dynamically loaded data. # Since two chunks of the same size are used, the amount of memory # needed is twice the data size divided by the divider. # For instance, divider = 10 implies the data to be read 5.5 times # from disk while having a memory footprint of about one fifth of # the dataset size. step = 0 divider = 10 while step < 1: step = int(oldShape[index] / divider) divider -= 2 if divider <= 0: step = oldShape[index] break _logger.debug("Reading chunks of %d images", step) nImagesRead = 0 if (binning == 1) and oldShape[index] >= step: chunk1 = numpy.zeros((step, nPixels), numpy.float64) chunk2 = numpy.zeros((nPixels, step), numpy.float64) if spatial_mask is not None: badMask.shape = -1 cleanMask.shape = -1 i = 0 while i < N: iToRead = min(step, N - i) #get step images for the first chunk chunk1[0:iToRead] = data[i:i + iToRead].reshape(iToRead, -1) if spatial_mask is not None: chunk1[0:iToRead, badMask] = 0 sumSpectrum[i:i + iToRead] = chunk1[0:iToRead].sum(axis=1) if center: average = sumSpectrum[i:i + iToRead] / usedPixels average.shape = iToRead, 1 chunk1[0:iToRead] -= average if spatial_mask is not None: chunk1[0:iToRead, badMask] = 0 nImagesRead += iToRead j = 0 while j <= i: #get step images for the second chunk if j == i: jToRead = iToRead if 0: for k in range(0, jToRead): chunk2[:, k] = chunk1[k] else: chunk2[:, 0:jToRead] = chunk1[0:jToRead, :].T else: #get step images for the second chunk jToRead = min(step, nChannels - j) # with loop: #for k in range(0, jToRead): # chunk2[:,k] = data[(j+k):(j+k+1)].reshape(1,-1) # if spatial_mask is not None: # chunk2[badMask[(j+k):(j+k+1),k]] = 0 # equivalent without loop: chunk2[:, 0:jToRead] =\ data[j:(j + jToRead)].reshape(jToRead, -1).T if spatial_mask is not None: chunk2[badMask, 0:jToRead] = 0 nImagesRead += jToRead if center: average = \ chunk2[:, 0:jToRead].sum(axis=0) / usedPixels average.shape = 1, jToRead chunk2[:, 0:jToRead] -= average if spatial_mask is not None: chunk2[badMask, 0:jToRead] = 0 # dot product if (iToRead != step) or (jToRead != step): covMatrix[i: (i + iToRead), j: (j + jToRead)] =\ dotblas.dot(chunk1[:iToRead, :nPixels], chunk2[:nPixels, :jToRead]) else: covMatrix[i: (i + iToRead), j: (j + jToRead)] =\ dotblas.dot(chunk1, chunk2) if i != j: covMatrix[j: (j + jToRead), i: (i + iToRead)] =\ covMatrix[i: (i + iToRead), j: (j + jToRead)].T # increment j j += jToRead i += iToRead chunk1 = None chunk2 = None _logger.debug("totalImages Read = %s", nImagesRead) elif (binning > 1) and (oldShape[index] >= step): chunk1 = numpy.zeros((step, nPixels), numpy.float64) chunk2 = numpy.zeros((nPixels, step), numpy.float64) #one by one reading till we fill the chunks imagesToRead = numpy.arange(0, oldShape[index], binning) i = int(imagesToRead[weights > 0][0]) spectrumIndex = 0 nImagesRead = 0 while i < N: # fill chunk1 jj = 0 for iToRead in range(0, int(min(step * binning, N - i)), binning): chunk1[jj] = data[i + iToRead].reshape(1, -1) * \ weights[i + iToRead] jj += 1 sumSpectrum[spectrumIndex:(spectrumIndex + jj)] = \ chunk1[0:jj].sum(axis=1) if center: average = \ sumSpectrum[spectrumIndex:(spectrumIndex + jj)] / nPixels average.shape = jj, 1 chunk1[0:jj] -= average nImagesRead += jj iToRead = jj j = 0 while j <= i: # get step images for the second chunk if j == i: jToRead = iToRead chunk2[:, 0:jToRead] = chunk1[0:jToRead, :].T else: # get step images for the second chunk jj = 0 for jToRead in range(0, int(min(step * binning, N - j)), binning): chunk2[:, jj] =\ data[j + jToRead].reshape(1, -1)\ * weights[j + jToRead] jj += 1 nImagesRead += jj if center: average = chunk2[:, 0:jj].sum(axis=0) / nPixels average.shape = 1, jj chunk2 -= average jToRead = jj # dot product if (iToRead != step) or (jToRead != step): covMatrix[i:(i + iToRead), j:(j + jToRead)] =\ dotblas.dot(chunk1[:iToRead, :nPixels], chunk2[:nPixels, :jToRead]) else: covMatrix[i:(i + iToRead), j:(j + jToRead)] =\ dotblas.dot(chunk1, chunk2) if i != j: covMatrix[j:(j + jToRead), i:(i + iToRead)] =\ covMatrix[i:(i + iToRead), j:(j + jToRead)].T # increment j j += jToRead * step i += iToRead * step chunk1 = None chunk2 = None else: raise ValueError("PCATools.getCovarianceMatrix: Unhandled case") # should one divide by N or by N-1 ?? if we use images, we # assume the observables are the images, not the spectra!!! # so, covMatrix /= nChannels is wrong and one has to use: covMatrix /= usedPixels else: # the data are already arranged as (nPixels, nChannels) and we # basically have to return data.T * data to get back the covariance # matrix as (nChannels, nChannels) # if someone had the bad idea to store the data in HDF5 with a chunk # size based on the pixels and not on the spectra a loop based on # reading spectrum per spectrum can be very slow step = 0 divider = 10 while step < 1: step = int(nPixels / divider) divider -= 1 if divider <= 0: step = nPixels break step = nPixels _logger.debug("Reading chunks of %d spectra", step) cleanWeights.shape = 1, -1 if len(data.shape) == 2: if cleanMask is not None: badMask.shape = -1 tmpData = numpy.zeros((step, nChannels), numpy.float64) k = 0 while k < nPixels: kToRead = min(step, nPixels - k) tmpData[0:kToRead] = data[k: k + kToRead, ::binning] if cleanMask is not None: tmpData[badMask[k: k + kToRead]] = 0 a = tmpData[0:kToRead] * cleanWeights sumSpectrum += a.sum(axis=0) covMatrix += dotblas.dot(a.T, a) a = None k += kToRead tmpData = None elif len(data.shape) == 3: if oldShape[0] == 1: #close to the previous case tmpData = numpy.zeros((step, nChannels), numpy.float64) if cleanMask is not None: badMask.shape = data.shape[0], data.shape[1] for i in range(oldShape[0]): k = 0 while k < oldShape[1]: kToRead = min(step, oldShape[1] - k) tmpData[0:kToRead] = data[i, k:k + kToRead, ::binning]\ * cleanWeights if cleanMask is not None: tmpData[0:kToRead][badMask[i, k: k + kToRead]] = 0 a = tmpData[0:kToRead] sumSpectrum += a.sum(axis=0) covMatrix += dotblas.dot(a.T, a) a = None k += kToRead tmpData = None elif oldShape[1] == 1: # almost identical to the previous case tmpData = numpy.zeros((step, nChannels), numpy.float64) if cleanMask is not None: badMask.shape = data.shape[0], data.shape[1] for i in range(oldShape[1]): k = 0 while k < oldShape[0]: kToRead = min(step, oldShape[0] - k) tmpData[0:kToRead] = data[k: k + kToRead, i, ::binning]\ * cleanWeights if cleanMask is not None: tmpData[0:kToRead][badMask[k: k + kToRead, i]] = 0 a = tmpData[0:kToRead] sumSpectrum += a.sum(axis=0) covMatrix += dotblas.dot(a.T, a) a = None k += kToRead tmpData = None elif oldShape[0] < 21: if step > oldShape[1]: step = oldShape[1] tmpData = numpy.zeros((step, nChannels), numpy.float64) if cleanMask is not None: badMask.shape = data.shape[0], data.shape[1] for i in range(oldShape[0]): k = 0 while k < oldShape[1]: kToRead = min(step, oldShape[1] - k) tmpData[0:kToRead] = data[i, k: k + kToRead, ::binning]\ * cleanWeights if cleanMask is not None: tmpData[0:kToRead][badMask[i, k: k + kToRead]] = 0 a = tmpData[0:kToRead] sumSpectrum += a.sum(axis=0) covMatrix += dotblas.dot(a.T, a) a = None k += kToRead tmpData = None else: # I should choose the sizes in terms of the size # of the dataset if oldShape[0] < 41: # divide by 10 deltaRow = 4 elif oldShape[0] < 101: # divide by 10 deltaRow = 10 else: # take pieces of one tenth deltaRow = int(oldShape[0] / 10) deltaCol = oldShape[1] tmpData = numpy.zeros((deltaRow, deltaCol, nChannels), numpy.float64) if cleanMask is not None: badMask.shape = data.shape[0], data.shape[1] i = 0 while i < oldShape[0]: iToRead = min(deltaRow, oldShape[0] - i) kToRead = iToRead * oldShape[1] tmpData[:iToRead] = data[i:(i + iToRead), :, ::binning] if cleanMask is not None: tmpData[0:iToRead][badMask[i:(i + iToRead), :]] = 0 a = tmpData[:iToRead] a.shape = kToRead, nChannels a *= cleanWeights if 0: #weight each spectrum a /= (a.sum(axis=1).reshape(-1, 1)) sumSpectrum += a.sum(axis=0) covMatrix += dotblas.dot(a.T, a) a = None i += iToRead # should one divide by N or by N-1 ?? covMatrix /= usedPixels - 1 if center: # the n-1 appears again here averageMatrix = numpy.outer(sumSpectrum, sumSpectrum)\ / (usedPixels * (usedPixels - 1)) covMatrix -= averageMatrix averageMatrix = None return covMatrix, sumSpectrum / usedPixels, usedPixels def numpyPCA(stack, index=-1, ncomponents=10, binning=None, center=True, scale=True, mask=None, spectral_mask=None, legacy=True, force=True): _logger.debug("PCATools.numpyPCA") _logger.debug("index = %d", index) _logger.debug("center = %s", center) _logger.debug("scale = %s", scale) # recover the actual data to work with if hasattr(stack, "info") and hasattr(stack, "data"): #we are dealing with a PyMca data object data = stack.data else: data = stack oldShape = data.shape if index not in [0, -1, len(oldShape) - 1]: data = None raise IndexError("1D index must be one of 0, -1 or %d, got %d" %\ (len(oldShape) - 1, index)) if index < 0: actualIndex = len(oldShape) + index else: actualIndex = index # workaround a problem with h5py try: if actualIndex in [0]: testException = data[0:1] else: if len(data.shape) == 2: testException = data[0:1,-1] elif len(data.shape) == 3: testException = data[0:1,0:1,-1] except AttributeError: txt = "%s" % type(data) if 'h5py' in txt: _logger.warning("Implementing h5py workaround") import h5py data = h5py.Dataset(data.id) else: raise # the number of spatial pixels nPixels = 1 for i in range(len(oldShape)): if i != actualIndex: nPixels *= oldShape[i] # the number of channels nChannels = oldShape[actualIndex] if binning is None: binning = 1 N = int(nChannels / binning) if ncomponents > N: msg = "Requested %d components for a maximum of %d" % (ncomponents, N) raise ValueError(msg) cov, avgSpectrum, calculatedPixels = getCovarianceMatrix(stack, index=index, binning=binning, force=force, center=center, spatial_mask=mask, weights=spectral_mask) # the total variance is the sum of the elements of the diagonal totalVariance = numpy.array(numpy.diag(cov), copy=True) standardDeviation = numpy.sqrt(totalVariance) standardDeviation = standardDeviation + (standardDeviation == 0) _logger.info("Total Variance = %s", totalVariance.sum()) normalizeToUnitStandardDeviation = scale #option to normalize to unit standard deviation if normalizeToUnitStandardDeviation: for i in range(cov.shape[0]): if totalVariance[i] > 0: cov[i, :] /= numpy.sqrt(totalVariance[i]) cov[:, i] /= numpy.sqrt(totalVariance[i]) t0 = time.time() totalVariance = numpy.diag(cov).sum() evalues, evectors = numpy.linalg.eigh(cov) # The total variance should also be the sum of all the eigenvalues calculatedTotalVariance = evalues.sum() if abs(totalVariance - calculatedTotalVariance) > \ (0.0001 * calculatedTotalVariance): _logger.info("WARNING: Discrepancy on total variance") _logger.info("Variance from covariance matrix = %s", totalVariance) _logger.info("Variance from sum of eigenvalues = %s", calculatedTotalVariance) _logger.debug("Eig elapsed = %s", time.time() - t0) cov = None dtype = numpy.float32 images = numpy.zeros((ncomponents, nPixels), dtype) eigenvectors = numpy.zeros((ncomponents, N), dtype) eigenvalues = numpy.zeros((ncomponents,), dtype) # sort eigenvalues if 1: a = [(evalues[i], i) for i in range(len(evalues))] a.sort() a.reverse() totalExplainedVariance = 0.0 for i0 in range(ncomponents): i = a[i0][1] eigenvalues[i0] = evalues[i] partialExplainedVariance = 100. * evalues[i] / \ calculatedTotalVariance _logger.info("PC%02d Explained variance %.5f %% ", i0 + 1, partialExplainedVariance) totalExplainedVariance += partialExplainedVariance eigenvectors[i0, :] = evectors[:, i] #print("NORMA = ", numpy.dot(evectors[:, i].T, evectors[:, i])) _logger.info("Total explained variance = %.2f %% ", totalExplainedVariance) else: idx = numpy.argsort(evalues) eigenvalues[:] = evalues[idx] eigenvectors[:, :] = evectors[:, idx].T # figure out if eigenvectors are to be multiplied by -1 if avgSpectrum.sum() > 0: for i0 in range(ncomponents): if eigenvectors[i0].sum() < 0.0: _logger.info("PC%02d multiplied by -1" % i0) eigenvectors[i0] *= -1 # calculate the projections # Subtracting the average and normalizing to standard deviation gives worse results. # Versions 5.0.0 to 5.1.0 implemented that behavior as default. # When dealing with the CH1777 test dataset the Sb signal was less contrasted against # the Ca signal. # Clearly the user should have control about subtracting the average or not and # normalizing to the standard deviation or not. subtractAndNormalize = False if actualIndex in [0]: for i in range(oldShape[actualIndex]): if subtractAndNormalize: tmpData = (data[i].reshape(1, -1) - avgSpectrum[i]) / standardDeviation[i] else: tmpData = data[i].reshape(1, -1) for j in range(ncomponents): images[j:j + 1, :] += tmpData * eigenvectors[j, i] if len(oldShape) == 3: # reshape the images images.shape = ncomponents, oldShape[1], oldShape[2] else: # array of spectra if len(oldShape) == 2: for i in range(nPixels): tmpData = data[i, :] tmpData.shape = 1, nChannels if subtractAndNormalize: tmpData = (tmpData[:, ::binning] - avgSpectrum) / standardDeviation else: tmpData = tmpData[:, ::binning] for j in range(ncomponents): images[j, i] = numpy.dot(tmpData, eigenvectors[j]) # reshape the images images.shape = ncomponents, nPixels elif len(oldShape) == 3: i = 0 for r in range(oldShape[0]): for c in range(oldShape[1]): tmpData = data[r, c, :] tmpData.shape = 1, nChannels if subtractAndNormalize: tmpData = (tmpData[:, ::binning] - avgSpectrum) / standardDeviation else: tmpData = tmpData[:, ::binning] for j in range(ncomponents): images[j, i] = numpy.dot(tmpData, eigenvectors[j]) i += 1 # reshape the images images.shape = ncomponents, oldShape[0], oldShape[1] if legacy: return images, eigenvalues, eigenvectors else: return {"scores": images, "eigenvalues": eigenvalues, "eigenvectors": eigenvectors, "average": avgSpectrum, "pixels": calculatedPixels, "variance": calculatedTotalVariance, "covariance":cov} def test(): x = numpy.array([[0.0, 2.0, 3.0], [3.0, 0.0, -1.0], [4.0, -4.0, 4.0], [4.0, 4.0, 4.0]]) shape0 = x.shape print("x:") print(x) print("Numpy covariance matrix. It uses (n-1)") print(numpy.cov(x.T)) avg = x.sum(axis=0).reshape(-1, 1) / x.shape[0] print("Average = ", avg) print("OPERATION") print(numpy.dot((x.T - avg), (x.T - avg).T) / (x.shape[0] - 1)) print("PCATools.getCovarianceMatrix(x, force=True)") x.shape = 1, shape0[0], shape0[1] pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=True) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x, force=True) using spatial_mask") x.shape = 1, shape0[0], shape0[1] dataSum = x.sum(axis=-1) spatial_mask = numpy.isfinite(dataSum) pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=True, spatial_mask=spatial_mask) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x, force=False)") x.shape = 1, shape0[0], shape0[1] pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=False) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x, force=False) using spatial_mask") x.shape = 1, shape0[0], shape0[1] y = numpy.zeros((2, shape0[0], shape0[1])) y[0] = x[0] y[1, :, :] = numpy.nan dataSum = y.sum(axis=-1) spatial_mask = numpy.isfinite(dataSum) pymcaCov, pymcaAvg, nData = getCovarianceMatrix(y, force=False, spatial_mask=spatial_mask) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x, force=True) using spatial_mask") y[1, :, :] = numpy.nan dataSum = y.sum(axis=-1) spatial_mask = numpy.isfinite(dataSum) pymcaCov, pymcaAvg, nData = getCovarianceMatrix(y, force=True, spatial_mask=spatial_mask) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x)") x.shape = shape0[0], 1, shape0[1] pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("MDP") import mdp pca = mdp.nodes.PCANode(dtype=numpy.float64) x.shape = shape0 pca.train(x) # access to a protected member to prevent # deletion of the covariance matrix when using # stop_training. pca._stop_training(debug=True) print("MDP covariance matrix. It uses (n-1)") print(pca.cov_mtx) print("Average = ", pca.avg) print("TEST AS IMAGES") stack = numpy.zeros((shape0[-1], shape0[0], 1), numpy.float64) for i in range(stack.shape[0]): stack[i, :, 0] = x[:, i] x = stack print("PCATools.getCovarianceMatrix(x) force=True") pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, index=0, force=True) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x) force=True) use_spatialMask") y = numpy.zeros((shape0[-1], shape0[0], 2), numpy.float64) y[:, :, 0] = x[:, :, 0] y[:, :, 1] = numpy.nan dataSum = y.sum(axis=0) spatial_mask = numpy.isfinite(dataSum) pymcaCov, pymcaAvg, nData = getCovarianceMatrix(y, index=0, force=True, spatial_mask=spatial_mask) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) print("PCATools.getCovarianceMatrix(x), force=False") pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, index=0, force=False) print("PyMca covariance matrix. It uses (n-1)") print(pymcaCov) print("Average = ", pymcaAvg) if __name__ == "__main__": test() �������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/__init__.py���������������������������������������������������0000644�0000000�0000000�00000000000�14741736366�020100� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8277664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/_cython_kmeans/�����������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020773� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8277664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/_cython_kmeans/default/���������������������������������������0000755�0000000�0000000�00000000000�14741736404�022417� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/_cython_kmeans/default/kmeans.c�������������������������������0000644�0000000�0000000�00004230644�14741736366�024065� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Generated by Cython 0.29.33 */ #ifndef PY_SSIZE_T_CLEAN #define PY_SSIZE_T_CLEAN #endif /* PY_SSIZE_T_CLEAN */ #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else #define CYTHON_ABI "0_29_33" #define CYTHON_HEX_VERSION 0x001D21F0 #define CYTHON_FUTURE_DIVISION 0 #include <stddef.h> #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #define __PYX_COMMA , #ifndef HAVE_LONG_LONG #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #if PY_VERSION_HEX < 0x03050000 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #undef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 1 #undef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 0 #undef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 0 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 0 #endif #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 0 #endif #elif defined(PY_NOGIL) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 1 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #ifndef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 1 #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 1 #endif #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) #define CYTHON_USE_PYTYPE_LOOKUP 1 #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #elif !defined(CYTHON_USE_PYLONG_INTERNALS) #define CYTHON_USE_PYLONG_INTERNALS 1 #endif #ifndef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 1 #endif #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #if PY_VERSION_HEX < 0x030300F0 || PY_VERSION_HEX >= 0x030B00A2 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #elif !defined(CYTHON_USE_UNICODE_WRITER) #define CYTHON_USE_UNICODE_WRITER 1 #endif #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #elif !defined(CYTHON_FAST_THREAD_STATE) #define CYTHON_FAST_THREAD_STATE 1 #endif #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL (PY_VERSION_HEX < 0x030A0000) #endif #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) #endif #ifndef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #elif !defined(CYTHON_USE_EXC_INFO_STACK) #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) #endif #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 1 #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) #endif #if CYTHON_USE_PYLONG_INTERNALS #if PY_MAJOR_VERSION < 3 #include "longintrepr.h" #endif #undef SHIFT #undef BASE #undef MASK #ifdef SIZEOF_VOID_P enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; #endif #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifndef __has_cpp_attribute #define __has_cpp_attribute(x) 0 #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif #ifndef CYTHON_MAYBE_UNUSED_VAR # if defined(__cplusplus) template<class T> void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } # else # define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) # endif #endif #ifndef CYTHON_NCP_UNUSED # if CYTHON_COMPILING_IN_CPYTHON # define CYTHON_NCP_UNUSED # else # define CYTHON_NCP_UNUSED CYTHON_UNUSED # endif #endif #define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) #ifdef _MSC_VER #ifndef _MSC_STDINT_H_ #if _MSC_VER < 1300 typedef unsigned char uint8_t; typedef unsigned int uint32_t; #else typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; #endif #endif #else #include <stdint.h> #endif #ifndef CYTHON_FALLTHROUGH #if defined(__cplusplus) && __cplusplus >= 201103L #if __has_cpp_attribute(fallthrough) #define CYTHON_FALLTHROUGH [[fallthrough]] #elif __has_cpp_attribute(clang::fallthrough) #define CYTHON_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] #endif #endif #ifndef CYTHON_FALLTHROUGH #if __has_attribute(fallthrough) #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) #else #define CYTHON_FALLTHROUGH #endif #endif #if defined(__clang__ ) && defined(__apple_build_version__) #if __apple_build_version__ < 7000000 #undef CYTHON_FALLTHROUGH #define CYTHON_FALLTHROUGH #endif #endif #endif #ifndef CYTHON_INLINE #if defined(__clang__) #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) #elif defined(__GNUC__) #define CYTHON_INLINE __inline__ #elif defined(_MSC_VER) #define CYTHON_INLINE __inline #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_INLINE inline #else #define CYTHON_INLINE #endif #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #define __Pyx_DefaultClassType PyType_Type #if PY_VERSION_HEX >= 0x030B00A1 static CYTHON_INLINE PyCodeObject* __Pyx_PyCode_New(int a, int k, int l, int s, int f, PyObject *code, PyObject *c, PyObject* n, PyObject *v, PyObject *fv, PyObject *cell, PyObject* fn, PyObject *name, int fline, PyObject *lnos) { PyObject *kwds=NULL, *argcount=NULL, *posonlyargcount=NULL, *kwonlyargcount=NULL; PyObject *nlocals=NULL, *stacksize=NULL, *flags=NULL, *replace=NULL, *call_result=NULL, *empty=NULL; const char *fn_cstr=NULL; const char *name_cstr=NULL; PyCodeObject* co=NULL; PyObject *type, *value, *traceback; PyErr_Fetch(&type, &value, &traceback); if (!(kwds=PyDict_New())) goto end; if (!(argcount=PyLong_FromLong(a))) goto end; if (PyDict_SetItemString(kwds, "co_argcount", argcount) != 0) goto end; if (!(posonlyargcount=PyLong_FromLong(0))) goto end; if (PyDict_SetItemString(kwds, "co_posonlyargcount", posonlyargcount) != 0) goto end; if (!(kwonlyargcount=PyLong_FromLong(k))) goto end; if (PyDict_SetItemString(kwds, "co_kwonlyargcount", kwonlyargcount) != 0) goto end; if (!(nlocals=PyLong_FromLong(l))) goto end; if (PyDict_SetItemString(kwds, "co_nlocals", nlocals) != 0) goto end; if (!(stacksize=PyLong_FromLong(s))) goto end; if (PyDict_SetItemString(kwds, "co_stacksize", stacksize) != 0) goto end; if (!(flags=PyLong_FromLong(f))) goto end; if (PyDict_SetItemString(kwds, "co_flags", flags) != 0) goto end; if (PyDict_SetItemString(kwds, "co_code", code) != 0) goto end; if (PyDict_SetItemString(kwds, "co_consts", c) != 0) goto end; if (PyDict_SetItemString(kwds, "co_names", n) != 0) goto end; if (PyDict_SetItemString(kwds, "co_varnames", v) != 0) goto end; if (PyDict_SetItemString(kwds, "co_freevars", fv) != 0) goto end; if (PyDict_SetItemString(kwds, "co_cellvars", cell) != 0) goto end; if (PyDict_SetItemString(kwds, "co_linetable", lnos) != 0) goto end; if (!(fn_cstr=PyUnicode_AsUTF8AndSize(fn, NULL))) goto end; if (!(name_cstr=PyUnicode_AsUTF8AndSize(name, NULL))) goto end; if (!(co = PyCode_NewEmpty(fn_cstr, name_cstr, fline))) goto end; if (!(replace = PyObject_GetAttrString((PyObject*)co, "replace"))) goto cleanup_code_too; if (!(empty = PyTuple_New(0))) goto cleanup_code_too; // unfortunately __pyx_empty_tuple isn't available here if (!(call_result = PyObject_Call(replace, empty, kwds))) goto cleanup_code_too; Py_XDECREF((PyObject*)co); co = (PyCodeObject*)call_result; call_result = NULL; if (0) { cleanup_code_too: Py_XDECREF((PyObject*)co); co = NULL; } end: Py_XDECREF(kwds); Py_XDECREF(argcount); Py_XDECREF(posonlyargcount); Py_XDECREF(kwonlyargcount); Py_XDECREF(nlocals); Py_XDECREF(stacksize); Py_XDECREF(replace); Py_XDECREF(call_result); Py_XDECREF(empty); if (type) { PyErr_Restore(type, value, traceback); } return co; } #else #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #endif #define __Pyx_DefaultClassType PyType_Type #endif #ifndef Py_TPFLAGS_CHECKTYPES #define Py_TPFLAGS_CHECKTYPES 0 #endif #ifndef Py_TPFLAGS_HAVE_INDEX #define Py_TPFLAGS_HAVE_INDEX 0 #endif #ifndef Py_TPFLAGS_HAVE_NEWBUFFER #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #ifndef METH_STACKLESS #define METH_STACKLESS 0 #endif #if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) #ifndef METH_FASTCALL #define METH_FASTCALL 0x80 #endif typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) #define PyObject_Malloc(s) PyMem_Malloc(s) #define PyObject_Free(p) PyMem_Free(p) #define PyObject_Realloc(p) PyMem_Realloc(p) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 #define PyMem_RawMalloc(n) PyMem_Malloc(n) #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) #define PyMem_RawFree(p) PyMem_Free(p) #endif #if CYTHON_COMPILING_IN_PYSTON #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) #else #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) #endif #if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #elif PY_VERSION_HEX >= 0x03060000 #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() #elif PY_VERSION_HEX >= 0x03000000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #else #define __Pyx_PyThreadState_Current _PyThreadState_Current #endif #if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) #include "pythread.h" #define Py_tss_NEEDS_INIT 0 typedef int Py_tss_t; static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { *key = PyThread_create_key(); return 0; } static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); *key = Py_tss_NEEDS_INIT; return key; } static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { PyObject_Free(key); } static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { return *key != Py_tss_NEEDS_INIT; } static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { PyThread_delete_key(*key); *key = Py_tss_NEEDS_INIT; } static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { return PyThread_set_key_value(*key, value); } static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { return PyThread_get_key_value(*key); } #endif #if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) #define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) #else #define __Pyx_PyDict_NewPresized(n) PyDict_New() #endif #if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS #define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) #else #define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #if PY_VERSION_HEX >= 0x030C0000 #define __Pyx_PyUnicode_READY(op) (0) #else #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ 0 : _PyUnicode_Ready((PyObject *)(op))) #endif #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) #if PY_VERSION_HEX >= 0x030C0000 #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_LENGTH(u)) #else #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x03090000 #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : ((PyCompactUnicodeObject *)(u))->wstr_length)) #else #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) #endif #endif #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 #define PyUnicode_2BYTE_KIND 2 #define PyUnicode_4BYTE_KIND 4 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) #define PyObject_ASCII(o) PyObject_Repr(o) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #ifndef PyObject_Unicode #define PyObject_Unicode PyObject_Str #endif #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #if PY_VERSION_HEX >= 0x030900A4 #define __Pyx_SET_REFCNT(obj, refcnt) Py_SET_REFCNT(obj, refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SET_SIZE(obj, size) #else #define __Pyx_SET_REFCNT(obj, refcnt) Py_REFCNT(obj) = (refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SIZE(obj) = (size) #endif #if CYTHON_ASSUME_SAFE_MACROS #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) #else #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) #endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY #ifndef PyUnicode_InternFromString #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) #endif #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsHash_t #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyMethod_New(func, self, klass) ((self) ? ((void)(klass), PyMethod_New(func, self)) : __Pyx_NewRef(func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif #if CYTHON_USE_ASYNC_SLOTS #if PY_VERSION_HEX >= 0x030500B1 #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif #ifndef __Pyx_PyAsyncMethodsStruct typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; } __Pyx_PyAsyncMethodsStruct; #endif #if defined(_WIN32) || defined(WIN32) || defined(MS_WINDOWS) #if !defined(_USE_MATH_DEFINES) #define _USE_MATH_DEFINES #endif #endif #include <math.h> #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) #define __Pyx_truncl trunc #else #define __Pyx_truncl truncl #endif #define __PYX_MARK_ERR_POS(f_index, lineno) \ { __pyx_filename = __pyx_f[f_index]; (void)__pyx_filename; __pyx_lineno = lineno; (void)__pyx_lineno; __pyx_clineno = __LINE__; (void)__pyx_clineno; } #define __PYX_ERR(f_index, lineno, Ln_error) \ { __PYX_MARK_ERR_POS(f_index, lineno) goto Ln_error; } #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #define __PYX_HAVE__kmeans #define __PYX_HAVE_API__kmeans /* Early includes */ #include <string.h> #include <stdio.h> #include "numpy/arrayobject.h" #include "numpy/ndarrayobject.h" #include "numpy/ndarraytypes.h" #include "numpy/arrayscalars.h" #include "numpy/ufuncobject.h" /* NumPy API declarations from "numpy/__init__.pxd" */ #include "pythread.h" #include <stdlib.h> #include "pystate.h" #ifdef _OPENMP #include <omp.h> #endif /* _OPENMP */ #if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_uchar_cast(c) ((unsigned char)c) #define __Pyx_long_cast(x) ((long)x) #define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ (sizeof(type) < sizeof(Py_ssize_t)) ||\ (sizeof(type) > sizeof(Py_ssize_t) &&\ likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX) &&\ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ v == (type)PY_SSIZE_T_MIN))) ||\ (sizeof(type) == sizeof(Py_ssize_t) &&\ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { return (size_t) i < (size_t) limit; } #if defined (__cplusplus) && __cplusplus >= 201103L #include <cstdlib> #define __Pyx_sst_abs(value) std::abs(value) #elif SIZEOF_INT >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) #elif defined (_MSC_VER) #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) #define __Pyx_sst_abs(value) __builtin_llabs(value) #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); #define __Pyx_PySequence_Tuple(obj)\ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject*); #if CYTHON_ASSUME_SAFE_MACROS #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) #else #define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) #endif #define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; /* Header.proto */ #if !defined(CYTHON_CCOMPLEX) #if defined(__cplusplus) #define CYTHON_CCOMPLEX 1 #elif defined(_Complex_I) #define CYTHON_CCOMPLEX 1 #else #define CYTHON_CCOMPLEX 0 #endif #endif #if CYTHON_CCOMPLEX #ifdef __cplusplus #include <complex> #else #include <complex.h> #endif #endif #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) #undef _Complex_I #define _Complex_I 1.0fj #endif static const char *__pyx_f[] = { "kmeans.pyx", "__init__.pxd", "stringsource", "type.pxd", }; /* NoFastGil.proto */ #define __Pyx_PyGILState_Ensure PyGILState_Ensure #define __Pyx_PyGILState_Release PyGILState_Release #define __Pyx_FastGIL_Remember() #define __Pyx_FastGIL_Forget() #define __Pyx_FastGilFuncInit() /* MemviewSliceStruct.proto */ struct __pyx_memoryview_obj; typedef struct { struct __pyx_memoryview_obj *memview; char *data; Py_ssize_t shape[8]; Py_ssize_t strides[8]; Py_ssize_t suboffsets[8]; } __Pyx_memviewslice; #define __Pyx_MemoryView_Len(m) (m.shape[0]) /* Atomics.proto */ #include <pythread.h> #ifndef CYTHON_ATOMICS #define CYTHON_ATOMICS 1 #endif #define __PYX_CYTHON_ATOMICS_ENABLED() CYTHON_ATOMICS #define __pyx_atomic_int_type int #if CYTHON_ATOMICS && (__GNUC__ >= 5 || (__GNUC__ == 4 &&\ (__GNUC_MINOR__ > 1 ||\ (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ >= 2)))) #define __pyx_atomic_incr_aligned(value) __sync_fetch_and_add(value, 1) #define __pyx_atomic_decr_aligned(value) __sync_fetch_and_sub(value, 1) #ifdef __PYX_DEBUG_ATOMICS #warning "Using GNU atomics" #endif #elif CYTHON_ATOMICS && defined(_MSC_VER) && CYTHON_COMPILING_IN_NOGIL #include <intrin.h> #undef __pyx_atomic_int_type #define __pyx_atomic_int_type long #pragma intrinsic (_InterlockedExchangeAdd) #define __pyx_atomic_incr_aligned(value) _InterlockedExchangeAdd(value, 1) #define __pyx_atomic_decr_aligned(value) _InterlockedExchangeAdd(value, -1) #ifdef __PYX_DEBUG_ATOMICS #pragma message ("Using MSVC atomics") #endif #else #undef CYTHON_ATOMICS #define CYTHON_ATOMICS 0 #ifdef __PYX_DEBUG_ATOMICS #warning "Not using atomics" #endif #endif typedef volatile __pyx_atomic_int_type __pyx_atomic_int; #if CYTHON_ATOMICS #define __pyx_add_acquisition_count(memview)\ __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview)) #define __pyx_sub_acquisition_count(memview)\ __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview)) #else #define __pyx_add_acquisition_count(memview)\ __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #define __pyx_sub_acquisition_count(memview)\ __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #endif /* ForceInitThreads.proto */ #ifndef __PYX_FORCE_INIT_THREADS #define __PYX_FORCE_INIT_THREADS 0 #endif /* BufferFormatStructs.proto */ #define IS_UNSIGNED(type) (((type) -1) > 0) struct __Pyx_StructField_; #define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) typedef struct { const char* name; struct __Pyx_StructField_* fields; size_t size; size_t arraysize[8]; int ndim; char typegroup; char is_unsigned; int flags; } __Pyx_TypeInfo; typedef struct __Pyx_StructField_ { __Pyx_TypeInfo* type; const char* name; size_t offset; } __Pyx_StructField; typedef struct { __Pyx_StructField* field; size_t parent_offset; } __Pyx_BufFmt_StackElem; typedef struct { __Pyx_StructField root; __Pyx_BufFmt_StackElem* head; size_t fmt_offset; size_t new_count, enc_count; size_t struct_alignment; int is_complex; char enc_type; char new_packmode; char enc_packmode; char is_valid_array; } __Pyx_BufFmt_Context; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":689 * # in Cython to enable them only on the right systems. * * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t */ typedef npy_int8 __pyx_t_5numpy_int8_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":690 * * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t */ typedef npy_int16 __pyx_t_5numpy_int16_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":691 * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< * ctypedef npy_int64 int64_t * #ctypedef npy_int96 int96_t */ typedef npy_int32 __pyx_t_5numpy_int32_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":692 * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< * #ctypedef npy_int96 int96_t * #ctypedef npy_int128 int128_t */ typedef npy_int64 __pyx_t_5numpy_int64_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":696 * #ctypedef npy_int128 int128_t * * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t */ typedef npy_uint8 __pyx_t_5numpy_uint8_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":697 * * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t */ typedef npy_uint16 __pyx_t_5numpy_uint16_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":698 * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< * ctypedef npy_uint64 uint64_t * #ctypedef npy_uint96 uint96_t */ typedef npy_uint32 __pyx_t_5numpy_uint32_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":699 * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< * #ctypedef npy_uint96 uint96_t * #ctypedef npy_uint128 uint128_t */ typedef npy_uint64 __pyx_t_5numpy_uint64_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":703 * #ctypedef npy_uint128 uint128_t * * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< * ctypedef npy_float64 float64_t * #ctypedef npy_float80 float80_t */ typedef npy_float32 __pyx_t_5numpy_float32_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":704 * * ctypedef npy_float32 float32_t * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< * #ctypedef npy_float80 float80_t * #ctypedef npy_float128 float128_t */ typedef npy_float64 __pyx_t_5numpy_float64_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":713 * # The int types are mapped a bit surprising -- * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t # <<<<<<<<<<<<<< * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t */ typedef npy_long __pyx_t_5numpy_int_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":714 * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< * ctypedef npy_longlong longlong_t * */ typedef npy_longlong __pyx_t_5numpy_long_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":715 * ctypedef npy_long int_t * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< * * ctypedef npy_ulong uint_t */ typedef npy_longlong __pyx_t_5numpy_longlong_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":717 * ctypedef npy_longlong longlong_t * * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t */ typedef npy_ulong __pyx_t_5numpy_uint_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":718 * * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulonglong_t * */ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":719 * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< * * ctypedef npy_intp intp_t */ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":721 * ctypedef npy_ulonglong ulonglong_t * * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< * ctypedef npy_uintp uintp_t * */ typedef npy_intp __pyx_t_5numpy_intp_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":722 * * ctypedef npy_intp intp_t * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< * * ctypedef npy_double float_t */ typedef npy_uintp __pyx_t_5numpy_uintp_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":724 * ctypedef npy_uintp uintp_t * * ctypedef npy_double float_t # <<<<<<<<<<<<<< * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t */ typedef npy_double __pyx_t_5numpy_float_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":725 * * ctypedef npy_double float_t * ctypedef npy_double double_t # <<<<<<<<<<<<<< * ctypedef npy_longdouble longdouble_t * */ typedef npy_double __pyx_t_5numpy_double_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":726 * ctypedef npy_double float_t * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cfloat cfloat_t */ typedef npy_longdouble __pyx_t_5numpy_longdouble_t; /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< float > __pyx_t_float_complex; #else typedef float _Complex __pyx_t_float_complex; #endif #else typedef struct { float real, imag; } __pyx_t_float_complex; #endif static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< double > __pyx_t_double_complex; #else typedef double _Complex __pyx_t_double_complex; #endif #else typedef struct { double real, imag; } __pyx_t_double_complex; #endif static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); /*--- Type declarations ---*/ struct __pyx_array_obj; struct __pyx_MemviewEnum_obj; struct __pyx_memoryview_obj; struct __pyx_memoryviewslice_obj; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":728 * ctypedef npy_longdouble longdouble_t * * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t */ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":729 * * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< * ctypedef npy_clongdouble clongdouble_t * */ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":730 * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cdouble complex_t */ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":732 * ctypedef npy_clongdouble clongdouble_t * * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew1(a): */ typedef npy_cdouble __pyx_t_5numpy_complex_t; struct __pyx_fuse_0__pyx_opt_args_6kmeans_kmeans; struct __pyx_fuse_1__pyx_opt_args_6kmeans_kmeans; /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ struct __pyx_fuse_0__pyx_opt_args_6kmeans_kmeans { int __pyx_n; npy_intp max_iter; PyArrayObject *init; PyObject *rng; }; struct __pyx_fuse_1__pyx_opt_args_6kmeans_kmeans { int __pyx_n; npy_intp max_iter; PyArrayObject *init; PyObject *rng; }; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_array_obj { PyObject_HEAD struct __pyx_vtabstruct_array *__pyx_vtab; char *data; Py_ssize_t len; char *format; int ndim; Py_ssize_t *_shape; Py_ssize_t *_strides; Py_ssize_t itemsize; PyObject *mode; PyObject *_format; void (*callback_free_data)(void *); int free_data; int dtype_is_object; }; /* "View.MemoryView":280 * * @cname('__pyx_MemviewEnum') * cdef class Enum(object): # <<<<<<<<<<<<<< * cdef object name * def __init__(self, name): */ struct __pyx_MemviewEnum_obj { PyObject_HEAD PyObject *name; }; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_memoryview_obj { PyObject_HEAD struct __pyx_vtabstruct_memoryview *__pyx_vtab; PyObject *obj; PyObject *_size; PyObject *_array_interface; PyThread_type_lock lock; __pyx_atomic_int acquisition_count[2]; __pyx_atomic_int *acquisition_count_aligned_p; Py_buffer view; int flags; int dtype_is_object; __Pyx_TypeInfo *typeinfo; }; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_memoryviewslice_obj { struct __pyx_memoryview_obj __pyx_base; __Pyx_memviewslice from_slice; PyObject *from_object; PyObject *(*to_object_func)(char *); int (*to_dtype_func)(char *, PyObject *); }; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_vtabstruct_array { PyObject *(*get_memview)(struct __pyx_array_obj *); }; static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_vtabstruct_memoryview { char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); }; static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_vtabstruct__memoryviewslice { struct __pyx_vtabstruct_memoryview __pyx_base; }; static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; /* --- Runtime support code (head) --- */ /* Refnanny.proto */ #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil)\ if (acquire_gil) {\ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ PyGILState_Release(__pyx_gilstate_save);\ } else {\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil)\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext()\ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif #define __Pyx_XDECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_XDECREF(tmp);\ } while (0) #define __Pyx_DECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_DECREF(tmp);\ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif /* GetBuiltinName.proto */ static PyObject *__Pyx_GetBuiltinName(PyObject *name); /* RaiseArgTupleInvalid.proto */ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /* RaiseDoubleKeywords.proto */ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /* ParseKeywords.proto */ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); /* PyDictContains.proto */ static CYTHON_INLINE int __Pyx_PyDict_ContainsTF(PyObject* item, PyObject* dict, int eq) { int result = PyDict_Contains(dict, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* DictGetItem.proto */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key); #define __Pyx_PyObject_Dict_GetItem(obj, name)\ (likely(PyDict_CheckExact(obj)) ?\ __Pyx_PyDict_GetItem(obj, name) : PyObject_GetItem(obj, name)) #else #define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) #define __Pyx_PyObject_Dict_GetItem(obj, name) PyObject_GetItem(obj, name) #endif /* PyCFunctionFastCall.proto */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); #else #define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) #endif /* PyFunctionFastCall.proto */ #if CYTHON_FAST_PYCALL #define __Pyx_PyFunction_FastCall(func, args, nargs)\ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); #else #define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) #endif #define __Pyx_BUILD_ASSERT_EXPR(cond)\ (sizeof(char [1 - 2*!(cond)]) - 1) #ifndef Py_MEMBER_SIZE #define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) #endif #if CYTHON_FAST_PYCALL static size_t __pyx_pyframe_localsplus_offset = 0; #include "frameobject.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif #define __Pxy_PyFrame_Initialize_Offsets()\ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) #define __Pyx_PyFrame_GetLocalsplus(frame)\ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) #endif // CYTHON_FAST_PYCALL #endif /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif /* PyObjectCallMethO.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); #endif /* PyObjectCallOneArg.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; #define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; #define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign #define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) #else #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #endif #else #define __Pyx_PyErr_Clear() PyErr_Clear() #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /* UnicodeAsUCS4.proto */ static CYTHON_INLINE Py_UCS4 __Pyx_PyUnicode_AsPy_UCS4(PyObject*); /* object_ord.proto */ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyObject_Ord(c)\ (likely(PyUnicode_Check(c)) ? (long)__Pyx_PyUnicode_AsPy_UCS4(c) : __Pyx__PyObject_Ord(c)) #else #define __Pyx_PyObject_Ord(c) __Pyx__PyObject_Ord(c) #endif static long __Pyx__PyObject_Ord(PyObject* c); /* SetItemInt.proto */ #define __Pyx_SetItemInt(o, i, v, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_SetItemInt_Fast(o, (Py_ssize_t)i, v, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list assignment index out of range"), -1) :\ __Pyx_SetItemInt_Generic(o, to_py_func(i), v))) static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v); static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, int wraparound, int boundscheck); /* IterFinish.proto */ static CYTHON_INLINE int __Pyx_IterFinish(void); /* PyObjectCallNoArg.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func); #else #define __Pyx_PyObject_CallNoArg(func) __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL) #endif /* PyObjectGetMethod.proto */ static int __Pyx_PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method); /* PyObjectCallMethod0.proto */ static PyObject* __Pyx_PyObject_CallMethod0(PyObject* obj, PyObject* method_name); /* RaiseNeedMoreValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); /* UnpackItemEndCheck.proto */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); /* RaiseNoneIterError.proto */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); /* UnpackTupleError.proto */ static void __Pyx_UnpackTupleError(PyObject *, Py_ssize_t index); /* UnpackTuple2.proto */ #define __Pyx_unpack_tuple2(tuple, value1, value2, is_tuple, has_known_size, decref_tuple)\ (likely(is_tuple || PyTuple_Check(tuple)) ?\ (likely(has_known_size || PyTuple_GET_SIZE(tuple) == 2) ?\ __Pyx_unpack_tuple2_exact(tuple, value1, value2, decref_tuple) :\ (__Pyx_UnpackTupleError(tuple, 2), -1)) :\ __Pyx_unpack_tuple2_generic(tuple, value1, value2, has_known_size, decref_tuple)) static CYTHON_INLINE int __Pyx_unpack_tuple2_exact( PyObject* tuple, PyObject** value1, PyObject** value2, int decref_tuple); static int __Pyx_unpack_tuple2_generic( PyObject* tuple, PyObject** value1, PyObject** value2, int has_known_size, int decref_tuple); /* dict_iter.proto */ static CYTHON_INLINE PyObject* __Pyx_dict_iterator(PyObject* dict, int is_dict, PyObject* method_name, Py_ssize_t* p_orig_length, int* p_is_dict); static CYTHON_INLINE int __Pyx_dict_iter_next(PyObject* dict_or_iter, Py_ssize_t orig_length, Py_ssize_t* ppos, PyObject** pkey, PyObject** pvalue, PyObject** pitem, int is_dict); /* PyObjectCall2Args.proto */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); /* GetItemInt.proto */ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); /* ListAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_PyList_Append(L,x) PyList_Append(L,x) #endif /* PyDictVersioning.proto */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS #define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ (version_var) = __PYX_GET_DICT_VERSION(dict);\ (cache_var) = (value); #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ (VAR) = __pyx_dict_cached_value;\ } else {\ (VAR) = __pyx_dict_cached_value = (LOOKUP);\ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ }\ } static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); #else #define __PYX_GET_DICT_VERSION(dict) (0) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); #endif /* GetModuleGlobalName.proto */ #if CYTHON_USE_DICT_VERSIONS #define __Pyx_GetModuleGlobalName(var, name) do {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } while(0) #define __Pyx_GetModuleGlobalNameUncached(var, name) do {\ PY_UINT64_T __pyx_dict_version;\ PyObject *__pyx_dict_cached_value;\ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } while(0) static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); #else #define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) #define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); #endif /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /* HasAttr.proto */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /* MemviewSliceInit.proto */ #define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d #define __Pyx_MEMVIEW_DIRECT 1 #define __Pyx_MEMVIEW_PTR 2 #define __Pyx_MEMVIEW_FULL 4 #define __Pyx_MEMVIEW_CONTIG 8 #define __Pyx_MEMVIEW_STRIDED 16 #define __Pyx_MEMVIEW_FOLLOW 32 #define __Pyx_IS_C_CONTIG 1 #define __Pyx_IS_F_CONTIG 2 static int __Pyx_init_memviewslice( struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference); static CYTHON_INLINE int __pyx_add_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); #define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) #define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) #define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) #define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* None.proto */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); /* ArgTypeTest.proto */ #define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ __Pyx__ArgTypeTest(obj, type, name, exact)) static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); /* GetTopmostException.proto */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); #endif /* SaveResetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); #else #define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) #define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) #endif /* PyErrExceptionMatches.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); #else #define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) #endif /* GetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); #endif /* IncludeStringH.proto */ #include <string.h> /* BytesEquals.proto */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /* UnicodeEquals.proto */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /* StrEquals.proto */ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals #else #define __Pyx_PyString_Equals __Pyx_PyBytes_Equals #endif /* DivInt[Py_ssize_t].proto */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t, Py_ssize_t); /* UnaryNegOverflows.proto */ #define UNARY_NEG_WOULD_OVERFLOW(x)\ (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ /* ObjectGetItem.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); #else #define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) #endif /* decode_c_string_utf16.proto */ static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 0; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16LE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = -1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16BE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } /* decode_c_string.proto */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); /* GetAttr3.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); /* ExtTypeTest.proto */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /* SwapException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); #endif /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /* FastTypeChecks.proto */ #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) #define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif #define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ /* ListCompAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len)) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) #endif /* ListExtend.proto */ static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { #if CYTHON_COMPILING_IN_CPYTHON PyObject* none = _PyList_Extend((PyListObject*)L, v); if (unlikely(!none)) return -1; Py_DECREF(none); return 0; #else return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); #endif } /* DivInt[long].proto */ static CYTHON_INLINE long __Pyx_div_long(long, long); /* PySequenceContains.proto */ static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { int result = PySequence_Contains(seq, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* ImportFrom.proto */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /* PyObject_GenericGetAttrNoDict.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr #endif /* PyObject_GenericGetAttr.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr #endif /* SetVTable.proto */ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /* PyObjectGetAttrStrNoError.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name); /* SetupReduce.proto */ static int __Pyx_setup_reduce(PyObject* type_obj); /* TypeImport.proto */ #ifndef __PYX_HAVE_RT_ImportType_proto #define __PYX_HAVE_RT_ImportType_proto enum __Pyx_ImportType_CheckSize { __Pyx_ImportType_CheckSize_Error = 0, __Pyx_ImportType_CheckSize_Warn = 1, __Pyx_ImportType_CheckSize_Ignore = 2 }; static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); #endif /* FetchCommonType.proto */ static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type); /* CythonFunctionShared.proto */ #define __Pyx_CyFunction_USED 1 #define __Pyx_CYFUNCTION_STATICMETHOD 0x01 #define __Pyx_CYFUNCTION_CLASSMETHOD 0x02 #define __Pyx_CYFUNCTION_CCLASS 0x04 #define __Pyx_CyFunction_GetClosure(f)\ (((__pyx_CyFunctionObject *) (f))->func_closure) #define __Pyx_CyFunction_GetClassObj(f)\ (((__pyx_CyFunctionObject *) (f))->func_classobj) #define __Pyx_CyFunction_Defaults(type, f)\ ((type *)(((__pyx_CyFunctionObject *) (f))->defaults)) #define __Pyx_CyFunction_SetDefaultsGetter(f, g)\ ((__pyx_CyFunctionObject *) (f))->defaults_getter = (g) typedef struct { PyCFunctionObject func; #if PY_VERSION_HEX < 0x030500A0 PyObject *func_weakreflist; #endif PyObject *func_dict; PyObject *func_name; PyObject *func_qualname; PyObject *func_doc; PyObject *func_globals; PyObject *func_code; PyObject *func_closure; PyObject *func_classobj; void *defaults; int defaults_pyobjects; size_t defaults_size; // used by FusedFunction for copying defaults int flags; PyObject *defaults_tuple; PyObject *defaults_kwdict; PyObject *(*defaults_getter)(PyObject *); PyObject *func_annotations; } __pyx_CyFunctionObject; static PyTypeObject *__pyx_CyFunctionType = 0; #define __Pyx_CyFunction_Check(obj) (__Pyx_TypeCheck(obj, __pyx_CyFunctionType)) static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject* op, PyMethodDef *ml, int flags, PyObject* qualname, PyObject *self, PyObject *module, PyObject *globals, PyObject* code); static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *m, size_t size, int pyobjects); static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *m, PyObject *tuple); static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *m, PyObject *dict); static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *m, PyObject *dict); static int __pyx_CyFunction_init(void); /* FusedFunction.proto */ typedef struct { __pyx_CyFunctionObject func; PyObject *__signatures__; PyObject *type; PyObject *self; } __pyx_FusedFunctionObject; static PyObject *__pyx_FusedFunction_New(PyMethodDef *ml, int flags, PyObject *qualname, PyObject *closure, PyObject *module, PyObject *globals, PyObject *code); static int __pyx_FusedFunction_clear(__pyx_FusedFunctionObject *self); static PyTypeObject *__pyx_FusedFunctionType = NULL; static int __pyx_FusedFunction_init(void); #define __Pyx_FusedFunction_USED /* CLineInTraceback.proto */ #ifdef CYTHON_CLINE_IN_TRACEBACK #define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) #else static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); #endif /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; int code_line; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); /* AddTraceback.proto */ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); static void __Pyx_ReleaseBuffer(Py_buffer *view); #else #define __Pyx_GetBuffer PyObject_GetBuffer #define __Pyx_ReleaseBuffer PyBuffer_Release #endif /* BufferStructDeclare.proto */ typedef struct { Py_ssize_t shape, strides, suboffsets; } __Pyx_Buf_DimInfo; typedef struct { size_t refcount; Py_buffer pybuffer; } __Pyx_Buffer; typedef struct { __Pyx_Buffer *rcbuffer; char *data; __Pyx_Buf_DimInfo diminfo[8]; } __Pyx_LocalBuf_ND; /* MemviewSliceIsContig.proto */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim); /* OverlappingSlices.proto */ static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize); /* Capsule.proto */ static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); /* IsLittleEndian.proto */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); /* BufferFormatCheck.proto */ static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type); /* TypeInfoCompare.proto */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); /* MemviewSliceValidateAndInit.proto */ static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_float(PyObject *, int writable_flag); /* GCCDiagnostics.proto */ #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) #define __Pyx_HAS_GCC_DIAGNOSTIC #endif /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_double(PyObject *, int writable_flag); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(PyObject *, int writable_flag); /* MemviewDtypeToObject.proto */ static CYTHON_INLINE PyObject *__pyx_memview_get_double(const char *itemp); static CYTHON_INLINE int __pyx_memview_set_double(const char *itemp, PyObject *obj); /* MemviewDtypeToObject.proto */ static CYTHON_INLINE PyObject *__pyx_memview_get_nn___pyx_t_5numpy_int32_t(const char *itemp); static CYTHON_INLINE int __pyx_memview_set_nn___pyx_t_5numpy_int32_t(const char *itemp, PyObject *obj); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_float(PyObject *, int writable_flag); /* MemviewDtypeToObject.proto */ static CYTHON_INLINE PyObject *__pyx_memview_get_float(const char *itemp); static CYTHON_INLINE int __pyx_memview_set_float(const char *itemp, PyObject *obj); /* RealImag.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus #define __Pyx_CREAL(z) ((z).real()) #define __Pyx_CIMAG(z) ((z).imag()) #else #define __Pyx_CREAL(z) (__real__(z)) #define __Pyx_CIMAG(z) (__imag__(z)) #endif #else #define __Pyx_CREAL(z) ((z).real) #define __Pyx_CIMAG(z) ((z).imag) #endif #if defined(__cplusplus) && CYTHON_CCOMPLEX\ && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) #define __Pyx_SET_CREAL(z,x) ((z).real(x)) #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) #else #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_float(a, b) ((a)==(b)) #define __Pyx_c_sum_float(a, b) ((a)+(b)) #define __Pyx_c_diff_float(a, b) ((a)-(b)) #define __Pyx_c_prod_float(a, b) ((a)*(b)) #define __Pyx_c_quot_float(a, b) ((a)/(b)) #define __Pyx_c_neg_float(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_float(z) ((z)==(float)0) #define __Pyx_c_conj_float(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_float(z) (::std::abs(z)) #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_float(z) ((z)==0) #define __Pyx_c_conj_float(z) (conjf(z)) #if 1 #define __Pyx_c_abs_float(z) (cabsf(z)) #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); #endif #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_double(a, b) ((a)==(b)) #define __Pyx_c_sum_double(a, b) ((a)+(b)) #define __Pyx_c_diff_double(a, b) ((a)-(b)) #define __Pyx_c_prod_double(a, b) ((a)*(b)) #define __Pyx_c_quot_double(a, b) ((a)/(b)) #define __Pyx_c_neg_double(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_double(z) ((z)==(double)0) #define __Pyx_c_conj_double(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_double(z) (::std::abs(z)) #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_double(z) ((z)==0) #define __Pyx_c_conj_double(z) (conj(z)) #if 1 #define __Pyx_c_abs_double(z) (cabs(z)) #define __Pyx_c_pow_double(a, b) (cpow(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); #endif #endif /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntFromPy.proto */ static CYTHON_INLINE Py_intptr_t __Pyx_PyInt_As_Py_intptr_t(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_Py_intptr_t(Py_intptr_t value); /* BytesContains.proto */ static CYTHON_INLINE int __Pyx_BytesContains(PyObject* bytes, char character); /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_int32(npy_int32 value); /* CIntFromPy.proto */ static CYTHON_INLINE npy_int32 __Pyx_PyInt_As_npy_int32(PyObject *); /* ImportNumPyArray.proto */ static PyObject *__pyx_numpy_ndarray = NULL; static PyObject* __Pyx_ImportNumPyArrayTypeIfAvailable(void); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); /* CIntFromPy.proto */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); /* InitStrings.proto */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self); /* proto*/ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto*/ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ /* Module declarations from 'cython.view' */ /* Module declarations from 'cython' */ /* Module declarations from 'cpython.buffer' */ /* Module declarations from 'libc.string' */ /* Module declarations from 'libc.stdio' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.type' */ static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; /* Module declarations from 'cpython' */ /* Module declarations from 'cpython.object' */ /* Module declarations from 'cpython.ref' */ /* Module declarations from 'cpython.mem' */ /* Module declarations from 'numpy' */ /* Module declarations from 'numpy' */ static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; static PyTypeObject *__pyx_ptype_5numpy_generic = 0; static PyTypeObject *__pyx_ptype_5numpy_number = 0; static PyTypeObject *__pyx_ptype_5numpy_integer = 0; static PyTypeObject *__pyx_ptype_5numpy_signedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_unsignedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_inexact = 0; static PyTypeObject *__pyx_ptype_5numpy_floating = 0; static PyTypeObject *__pyx_ptype_5numpy_complexfloating = 0; static PyTypeObject *__pyx_ptype_5numpy_flexible = 0; static PyTypeObject *__pyx_ptype_5numpy_character = 0; static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; /* Module declarations from 'kmeans' */ static PyTypeObject *__pyx_array_type = 0; static PyTypeObject *__pyx_MemviewEnum_type = 0; static PyTypeObject *__pyx_memoryview_type = 0; static PyTypeObject *__pyx_memoryviewslice_type = 0; static PyObject *generic = 0; static PyObject *strided = 0; static PyObject *indirect = 0; static PyObject *contiguous = 0; static PyObject *indirect_contiguous = 0; static int __pyx_memoryview_thread_locks_used; static PyThread_type_lock __pyx_memoryview_thread_locks[8]; static CYTHON_INLINE void __pyx_fuse_0__pyx_f_6kmeans__compute_means(__Pyx_memviewslice, __Pyx_memviewslice, __Pyx_memviewslice, __Pyx_memviewslice); /*proto*/ static CYTHON_INLINE void __pyx_fuse_1__pyx_f_6kmeans__compute_means(__Pyx_memviewslice, __Pyx_memviewslice, __Pyx_memviewslice, __Pyx_memviewslice); /*proto*/ static PyObject *__pyx_fuse_0__pyx_f_6kmeans_kmeans(__Pyx_memviewslice, npy_intp, int __pyx_skip_dispatch, struct __pyx_fuse_0__pyx_opt_args_6kmeans_kmeans *__pyx_optional_args); /*proto*/ static PyObject *__pyx_fuse_1__pyx_f_6kmeans_kmeans(__Pyx_memviewslice, npy_intp, int __pyx_skip_dispatch, struct __pyx_fuse_1__pyx_opt_args_6kmeans_kmeans *__pyx_optional_args); /*proto*/ static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ static void *__pyx_align_pointer(void *, size_t); /*proto*/ static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ static PyObject *_unellipsify(PyObject *, int); /*proto*/ static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_float = { "float", NULL, sizeof(float), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_5numpy_int32_t = { "int32_t", NULL, sizeof(__pyx_t_5numpy_int32_t), { 0 }, 0, IS_UNSIGNED(__pyx_t_5numpy_int32_t) ? 'U' : 'I', IS_UNSIGNED(__pyx_t_5numpy_int32_t), 0 }; #define __Pyx_MODULE_NAME "kmeans" extern int __pyx_module_is_main_kmeans; int __pyx_module_is_main_kmeans = 0; /* Implementation of 'kmeans' */ static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_TypeError; static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_ImportError; static PyObject *__pyx_builtin_MemoryError; static PyObject *__pyx_builtin_enumerate; static PyObject *__pyx_builtin_Ellipsis; static PyObject *__pyx_builtin_id; static PyObject *__pyx_builtin_IndexError; static const char __pyx_k_O[] = "O"; static const char __pyx_k_c[] = "c"; static const char __pyx_k_k[] = "k"; static const char __pyx_k_s[] = "s"; static const char __pyx_k__3[] = "()"; static const char __pyx_k__4[] = "|"; static const char __pyx_k_id[] = "id"; static const char __pyx_k_np[] = "np"; static const char __pyx_k_dot[] = "dot"; static const char __pyx_k_min[] = "min"; static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_out[] = "out"; static const char __pyx_k_rng[] = "rng"; static const char __pyx_k_args[] = "args"; static const char __pyx_k_base[] = "base"; static const char __pyx_k_data[] = "data"; static const char __pyx_k_dict[] = "__dict__"; static const char __pyx_k_init[] = "init"; static const char __pyx_k_kind[] = "kind"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_mode[] = "mode"; static const char __pyx_k_name[] = "name"; static const char __pyx_k_ndim[] = "ndim"; static const char __pyx_k_pack[] = "pack"; static const char __pyx_k_size[] = "size"; static const char __pyx_k_step[] = "step"; static const char __pyx_k_stop[] = "stop"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_ASCII[] = "ASCII"; static const char __pyx_k_array[] = "array"; static const char __pyx_k_class[] = "__class__"; static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_empty[] = "empty"; static const char __pyx_k_error[] = "error"; static const char __pyx_k_finfo[] = "finfo"; static const char __pyx_k_flags[] = "flags"; static const char __pyx_k_float[] = "float"; static const char __pyx_k_int32[] = "int32"; static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_range[] = "range"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_split[] = "split"; static const char __pyx_k_start[] = "start"; static const char __pyx_k_strip[] = "strip"; static const char __pyx_k_astype[] = "astype"; static const char __pyx_k_double[] = "double"; static const char __pyx_k_encode[] = "encode"; static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; static const char __pyx_k_kmeans[] = "kmeans"; static const char __pyx_k_kwargs[] = "kwargs"; static const char __pyx_k_name_2[] = "__name__"; static const char __pyx_k_normal[] = "normal"; static const char __pyx_k_pickle[] = "pickle"; static const char __pyx_k_random[] = "random"; static const char __pyx_k_reduce[] = "__reduce__"; static const char __pyx_k_struct[] = "struct"; static const char __pyx_k_unpack[] = "unpack"; static const char __pyx_k_update[] = "update"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_randint[] = "randint"; static const char __pyx_k_Ellipsis[] = "Ellipsis"; static const char __pyx_k_defaults[] = "defaults"; static const char __pyx_k_getstate[] = "__getstate__"; static const char __pyx_k_itemsize[] = "itemsize"; static const char __pyx_k_max_iter[] = "max_iter"; static const char __pyx_k_pyx_type[] = "__pyx_type"; static const char __pyx_k_setstate[] = "__setstate__"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_pyx_state[] = "__pyx_state"; static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; static const char __pyx_k_IndexError[] = "IndexError"; static const char __pyx_k_ValueError[] = "ValueError"; static const char __pyx_k_kmeans_pyx[] = "kmeans.pyx"; static const char __pyx_k_pyx_result[] = "__pyx_result"; static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; static const char __pyx_k_signatures[] = "signatures"; static const char __pyx_k_ImportError[] = "ImportError"; static const char __pyx_k_MemoryError[] = "MemoryError"; static const char __pyx_k_PickleError[] = "PickleError"; static const char __pyx_k_RandomState[] = "RandomState"; static const char __pyx_k_numpy_random[] = "numpy.random"; static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; static const char __pyx_k_stringsource[] = "stringsource"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; static const char __pyx_k_random_integers[] = "random_integers"; static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; static const char __pyx_k_pyx_fuse_0kmeans[] = "__pyx_fuse_0kmeans"; static const char __pyx_k_pyx_fuse_1kmeans[] = "__pyx_fuse_1kmeans"; static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_strided_and_direct[] = "<strided and direct>"; static const char __pyx_k_strided_and_indirect[] = "<strided and indirect>"; static const char __pyx_k_contiguous_and_direct[] = "<contiguous and direct>"; static const char __pyx_k_MemoryView_of_r_object[] = "<MemoryView of %r object>"; static const char __pyx_k_MemoryView_of_r_at_0x_x[] = "<MemoryView of %r at 0x%x>"; static const char __pyx_k_contiguous_and_indirect[] = "<contiguous and indirect>"; static const char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; static const char __pyx_k_No_matching_signature_found[] = "No matching signature found"; static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; static const char __pyx_k_strided_and_direct_or_indirect[] = "<strided and direct or indirect>"; static const char __pyx_k_Parallelized_k_means_module_Ori[] = "\nParallelized k-means module.\nOriginal version by David Warde-Farley, February 2012.\nLicensed under the 3-clause BSD.\n\nFROM gist.github.com/dwf/2200359\n"; static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; static const char __pyx_k_Cannot_assign_to_read_only_memor[] = "Cannot assign to read-only memoryview"; static const char __pyx_k_Cannot_create_writable_memory_vi[] = "Cannot create writable memory view from read-only memoryview"; static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; static const char __pyx_k_Expected_at_least_d_argument_s_g[] = "Expected at least %d argument%s, got %d"; static const char __pyx_k_Function_call_with_ambiguous_arg[] = "Function call with ambiguous argument types"; static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))"; static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; static const char __pyx_k_init_if_provided_must_have_shape[] = "init if provided must have shape (k, data.shape[1])"; static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; static const char __pyx_k_rng_argument_unused_if_init_is_p[] = "rng argument unused if init is provided"; static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; static PyObject *__pyx_n_s_ASCII; static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; static PyObject *__pyx_kp_s_Cannot_assign_to_read_only_memor; static PyObject *__pyx_kp_s_Cannot_create_writable_memory_vi; static PyObject *__pyx_kp_s_Cannot_index_with_type_s; static PyObject *__pyx_n_s_Ellipsis; static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; static PyObject *__pyx_kp_s_Expected_at_least_d_argument_s_g; static PyObject *__pyx_kp_s_Function_call_with_ambiguous_arg; static PyObject *__pyx_n_s_ImportError; static PyObject *__pyx_kp_s_Incompatible_checksums_0x_x_vs_0; static PyObject *__pyx_n_s_IndexError; static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; static PyObject *__pyx_n_s_MemoryError; static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; static PyObject *__pyx_kp_s_MemoryView_of_r_object; static PyObject *__pyx_kp_s_No_matching_signature_found; static PyObject *__pyx_n_b_O; static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; static PyObject *__pyx_n_s_PickleError; static PyObject *__pyx_n_s_RandomState; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_View_MemoryView; static PyObject *__pyx_kp_s__3; static PyObject *__pyx_kp_s__4; static PyObject *__pyx_n_s_allocate_buffer; static PyObject *__pyx_n_s_args; static PyObject *__pyx_n_s_array; static PyObject *__pyx_n_s_astype; static PyObject *__pyx_n_s_base; static PyObject *__pyx_n_s_c; static PyObject *__pyx_n_u_c; static PyObject *__pyx_n_s_class; static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; static PyObject *__pyx_n_s_data; static PyObject *__pyx_n_s_defaults; static PyObject *__pyx_n_s_dict; static PyObject *__pyx_n_s_dot; static PyObject *__pyx_n_s_double; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_empty; static PyObject *__pyx_n_s_encode; static PyObject *__pyx_n_s_enumerate; static PyObject *__pyx_n_s_error; static PyObject *__pyx_n_s_finfo; static PyObject *__pyx_n_s_flags; static PyObject *__pyx_n_s_float; static PyObject *__pyx_n_s_format; static PyObject *__pyx_n_s_fortran; static PyObject *__pyx_n_u_fortran; static PyObject *__pyx_n_s_getstate; static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_init; static PyObject *__pyx_kp_s_init_if_provided_must_have_shape; static PyObject *__pyx_n_s_int32; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; static PyObject *__pyx_n_s_k; static PyObject *__pyx_n_s_kind; static PyObject *__pyx_n_s_kmeans; static PyObject *__pyx_kp_s_kmeans_pyx; static PyObject *__pyx_n_s_kwargs; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_max_iter; static PyObject *__pyx_n_s_memview; static PyObject *__pyx_n_s_min; static PyObject *__pyx_n_s_mode; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_new; static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; static PyObject *__pyx_n_s_normal; static PyObject *__pyx_n_s_np; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; static PyObject *__pyx_n_s_numpy_random; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_out; static PyObject *__pyx_n_s_pack; static PyObject *__pyx_n_s_pickle; static PyObject *__pyx_n_s_pyx_PickleError; static PyObject *__pyx_n_s_pyx_checksum; static PyObject *__pyx_n_s_pyx_fuse_0kmeans; static PyObject *__pyx_n_s_pyx_fuse_1kmeans; static PyObject *__pyx_n_s_pyx_getbuffer; static PyObject *__pyx_n_s_pyx_result; static PyObject *__pyx_n_s_pyx_state; static PyObject *__pyx_n_s_pyx_type; static PyObject *__pyx_n_s_pyx_unpickle_Enum; static PyObject *__pyx_n_s_pyx_vtable; static PyObject *__pyx_n_s_randint; static PyObject *__pyx_n_s_random; static PyObject *__pyx_n_s_random_integers; static PyObject *__pyx_n_s_range; static PyObject *__pyx_n_s_reduce; static PyObject *__pyx_n_s_reduce_cython; static PyObject *__pyx_n_s_reduce_ex; static PyObject *__pyx_n_s_rng; static PyObject *__pyx_kp_s_rng_argument_unused_if_init_is_p; static PyObject *__pyx_n_s_s; static PyObject *__pyx_n_s_setstate; static PyObject *__pyx_n_s_setstate_cython; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_signatures; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_split; static PyObject *__pyx_n_s_start; static PyObject *__pyx_n_s_step; static PyObject *__pyx_n_s_stop; static PyObject *__pyx_kp_s_strided_and_direct; static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; static PyObject *__pyx_kp_s_strided_and_indirect; static PyObject *__pyx_kp_s_stringsource; static PyObject *__pyx_n_s_strip; static PyObject *__pyx_n_s_struct; static PyObject *__pyx_n_s_test; static PyObject *__pyx_kp_s_unable_to_allocate_array_data; static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; static PyObject *__pyx_n_s_unpack; static PyObject *__pyx_n_s_update; static PyObject *__pyx_pf_6kmeans_kmeans(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_signatures, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs, CYTHON_UNUSED PyObject *__pyx_v_defaults); /* proto */ static PyObject *__pyx_pf_6kmeans_2__pyx_fuse_0kmeans(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, npy_intp __pyx_v_max_iter, PyArrayObject *__pyx_v_init, PyObject *__pyx_v_rng); /* proto */ static PyObject *__pyx_pf_6kmeans_4__pyx_fuse_1kmeans(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, npy_intp __pyx_v_max_iter, PyArrayObject *__pyx_v_init, PyObject *__pyx_v_rng); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_2; static PyObject *__pyx_int_112105877; static PyObject *__pyx_int_136983863; static PyObject *__pyx_int_184977713; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_k_; static PyObject *__pyx_k__2; static npy_intp __pyx_k__7; static PyArrayObject *__pyx_k__8; static PyObject *__pyx_k__9; static npy_intp __pyx_k__12; static PyArrayObject *__pyx_k__13; static PyObject *__pyx_k__14; static PyObject *__pyx_tuple__5; static PyObject *__pyx_tuple__6; static PyObject *__pyx_slice__31; static PyObject *__pyx_tuple__10; static PyObject *__pyx_tuple__11; static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__16; static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; static PyObject *__pyx_tuple__21; static PyObject *__pyx_tuple__22; static PyObject *__pyx_tuple__23; static PyObject *__pyx_tuple__24; static PyObject *__pyx_tuple__25; static PyObject *__pyx_tuple__26; static PyObject *__pyx_tuple__27; static PyObject *__pyx_tuple__28; static PyObject *__pyx_tuple__29; static PyObject *__pyx_tuple__30; static PyObject *__pyx_tuple__32; static PyObject *__pyx_tuple__33; static PyObject *__pyx_tuple__34; static PyObject *__pyx_tuple__35; static PyObject *__pyx_tuple__36; static PyObject *__pyx_tuple__38; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_tuple__42; static PyObject *__pyx_tuple__43; static PyObject *__pyx_codeobj__37; static PyObject *__pyx_codeobj__44; /* Late includes */ /* "kmeans.pyx":21 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef inline void _compute_means(double_or_float[:, :] data, # <<<<<<<<<<<<<< * np.int32_t[:] assign, * double_or_float[:, :] means, */ static CYTHON_INLINE void __pyx_fuse_0__pyx_f_6kmeans__compute_means(__Pyx_memviewslice __pyx_v_data, __Pyx_memviewslice __pyx_v_assign, __Pyx_memviewslice __pyx_v_means, __Pyx_memviewslice __pyx_v_counts) { npy_intp __pyx_v_ndata; CYTHON_UNUSED npy_intp __pyx_v_nfeat; npy_intp __pyx_v_k; npy_intp __pyx_v_example; npy_intp __pyx_v_feature; npy_intp __pyx_v_centroid; __Pyx_RefNannyDeclarations npy_intp __pyx_t_1; npy_intp __pyx_t_2; npy_intp __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; npy_intp __pyx_t_6; npy_intp __pyx_t_7; npy_intp __pyx_t_8; int __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; __Pyx_RefNannySetupContext("__pyx_fuse_0_compute_means", 0); /* "kmeans.pyx":65 * # Convenience variables and loop indices. * cdef: * np.npy_intp ndata = data.shape[0] # <<<<<<<<<<<<<< * np.npy_intp nfeat = data.shape[1] * np.npy_intp k = means.shape[0] */ __pyx_v_ndata = (__pyx_v_data.shape[0]); /* "kmeans.pyx":66 * cdef: * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] # <<<<<<<<<<<<<< * np.npy_intp k = means.shape[0] * np.npy_intp example, feature, centroid */ __pyx_v_nfeat = (__pyx_v_data.shape[1]); /* "kmeans.pyx":67 * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] * np.npy_intp k = means.shape[0] # <<<<<<<<<<<<<< * np.npy_intp example, feature, centroid * */ __pyx_v_k = (__pyx_v_means.shape[0]); /* "kmeans.pyx":71 * * # Zero the counts vector before repopulating it. * for centroid in range(k): # <<<<<<<<<<<<<< * counts[centroid] = 0 * # Count the number of times each centroid occurs in the assignments. */ __pyx_t_1 = __pyx_v_k; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_centroid = __pyx_t_3; /* "kmeans.pyx":72 * # Zero the counts vector before repopulating it. * for centroid in range(k): * counts[centroid] = 0 # <<<<<<<<<<<<<< * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): */ __pyx_t_4 = __pyx_v_centroid; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) )) = 0; } /* "kmeans.pyx":74 * counts[centroid] = 0 * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): # <<<<<<<<<<<<<< * counts[assign[example]] += 1 * # Main worker loop: for each feature, start by zeroing its value */ __pyx_t_1 = __pyx_v_ndata; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_example = __pyx_t_3; /* "kmeans.pyx":75 * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): * counts[assign[example]] += 1 # <<<<<<<<<<<<<< * # Main worker loop: for each feature, start by zeroing its value * # for every centroid, then compute the sum of all examples assigned */ __pyx_t_4 = __pyx_v_example; __pyx_t_5 = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_4 * __pyx_v_assign.strides[0]) ))); *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_5 * __pyx_v_counts.strides[0]) )) += 1; } /* "kmeans.pyx":79 * # for every centroid, then compute the sum of all examples assigned * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): # <<<<<<<<<<<<<< * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_1 = __pyx_v_nfeat; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_3 = (__pyx_t_1 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_3 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_4, __pyx_t_5, __pyx_t_6, __pyx_t_7, __pyx_t_8, __pyx_t_9) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for lastprivate(__pyx_v_centroid) lastprivate(__pyx_v_example) firstprivate(__pyx_v_feature) lastprivate(__pyx_v_feature) #endif /* _OPENMP */ for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_3; __pyx_t_2++){ { __pyx_v_feature = (npy_intp)(0 + 1 * __pyx_t_2); /* Initialize private variables to invalid values */ __pyx_v_centroid = ((npy_intp)0xbad0bad0); __pyx_v_example = ((npy_intp)0xbad0bad0); /* "kmeans.pyx":80 * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): * for centroid in range(k): # <<<<<<<<<<<<<< * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: */ __pyx_t_6 = __pyx_v_k; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_centroid = __pyx_t_8; /* "kmeans.pyx":82 * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] = 0. * for example in range(ndata): */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_9 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))) > 0) != 0); if (__pyx_t_9) { /* "kmeans.pyx":83 * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: * means[centroid, feature] = 0. # <<<<<<<<<<<<<< * for example in range(ndata): * means[assign[example], feature] += data[example, feature] */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_5 = __pyx_v_feature; *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_4 * __pyx_v_means.strides[0]) ) + __pyx_t_5 * __pyx_v_means.strides[1]) )) = 0.; /* "kmeans.pyx":82 * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] = 0. * for example in range(ndata): */ } } /* "kmeans.pyx":84 * if counts[centroid] > 0: * means[centroid, feature] = 0. * for example in range(ndata): # <<<<<<<<<<<<<< * means[assign[example], feature] += data[example, feature] * for centroid in range(k): */ __pyx_t_6 = __pyx_v_ndata; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_example = __pyx_t_8; /* "kmeans.pyx":85 * means[centroid, feature] = 0. * for example in range(ndata): * means[assign[example], feature] += data[example, feature] # <<<<<<<<<<<<<< * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. */ __pyx_t_5 = __pyx_v_example; __pyx_t_4 = __pyx_v_feature; __pyx_t_10 = __pyx_v_example; __pyx_t_11 = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_10 * __pyx_v_assign.strides[0]) ))); __pyx_t_12 = __pyx_v_feature; *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_11 * __pyx_v_means.strides[0]) ) + __pyx_t_12 * __pyx_v_means.strides[1]) )) += (*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_data.data + __pyx_t_5 * __pyx_v_data.strides[0]) ) + __pyx_t_4 * __pyx_v_data.strides[1]) ))); } /* "kmeans.pyx":86 * for example in range(ndata): * means[assign[example], feature] += data[example, feature] * for centroid in range(k): # <<<<<<<<<<<<<< * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: */ __pyx_t_6 = __pyx_v_k; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_centroid = __pyx_t_8; /* "kmeans.pyx":88 * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] /= counts[centroid] * else: */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_9 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))) > 0) != 0); if (__pyx_t_9) { /* "kmeans.pyx":89 * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: * means[centroid, feature] /= counts[centroid] # <<<<<<<<<<<<<< * else: * means[centroid, feature] = 0. */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_5 = __pyx_v_centroid; __pyx_t_10 = __pyx_v_feature; *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_5 * __pyx_v_means.strides[0]) ) + __pyx_t_10 * __pyx_v_means.strides[1]) )) /= (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))); /* "kmeans.pyx":88 * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] /= counts[centroid] * else: */ goto __pyx_L21; } /* "kmeans.pyx":91 * means[centroid, feature] /= counts[centroid] * else: * means[centroid, feature] = 0. # <<<<<<<<<<<<<< * * */ /*else*/ { __pyx_t_4 = __pyx_v_centroid; __pyx_t_10 = __pyx_v_feature; *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_4 * __pyx_v_means.strides[0]) ) + __pyx_t_10 * __pyx_v_means.strides[1]) )) = 0.; } __pyx_L21:; } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":79 * # for every centroid, then compute the sum of all examples assigned * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): # <<<<<<<<<<<<<< * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L9; } __pyx_L9:; } } /* "kmeans.pyx":21 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef inline void _compute_means(double_or_float[:, :] data, # <<<<<<<<<<<<<< * np.int32_t[:] assign, * double_or_float[:, :] means, */ /* function exit code */ __Pyx_RefNannyFinishContext(); } static CYTHON_INLINE void __pyx_fuse_1__pyx_f_6kmeans__compute_means(__Pyx_memviewslice __pyx_v_data, __Pyx_memviewslice __pyx_v_assign, __Pyx_memviewslice __pyx_v_means, __Pyx_memviewslice __pyx_v_counts) { npy_intp __pyx_v_ndata; CYTHON_UNUSED npy_intp __pyx_v_nfeat; npy_intp __pyx_v_k; npy_intp __pyx_v_example; npy_intp __pyx_v_feature; npy_intp __pyx_v_centroid; __Pyx_RefNannyDeclarations npy_intp __pyx_t_1; npy_intp __pyx_t_2; npy_intp __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; npy_intp __pyx_t_6; npy_intp __pyx_t_7; npy_intp __pyx_t_8; int __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; __Pyx_RefNannySetupContext("__pyx_fuse_1_compute_means", 0); /* "kmeans.pyx":65 * # Convenience variables and loop indices. * cdef: * np.npy_intp ndata = data.shape[0] # <<<<<<<<<<<<<< * np.npy_intp nfeat = data.shape[1] * np.npy_intp k = means.shape[0] */ __pyx_v_ndata = (__pyx_v_data.shape[0]); /* "kmeans.pyx":66 * cdef: * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] # <<<<<<<<<<<<<< * np.npy_intp k = means.shape[0] * np.npy_intp example, feature, centroid */ __pyx_v_nfeat = (__pyx_v_data.shape[1]); /* "kmeans.pyx":67 * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] * np.npy_intp k = means.shape[0] # <<<<<<<<<<<<<< * np.npy_intp example, feature, centroid * */ __pyx_v_k = (__pyx_v_means.shape[0]); /* "kmeans.pyx":71 * * # Zero the counts vector before repopulating it. * for centroid in range(k): # <<<<<<<<<<<<<< * counts[centroid] = 0 * # Count the number of times each centroid occurs in the assignments. */ __pyx_t_1 = __pyx_v_k; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_centroid = __pyx_t_3; /* "kmeans.pyx":72 * # Zero the counts vector before repopulating it. * for centroid in range(k): * counts[centroid] = 0 # <<<<<<<<<<<<<< * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): */ __pyx_t_4 = __pyx_v_centroid; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) )) = 0; } /* "kmeans.pyx":74 * counts[centroid] = 0 * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): # <<<<<<<<<<<<<< * counts[assign[example]] += 1 * # Main worker loop: for each feature, start by zeroing its value */ __pyx_t_1 = __pyx_v_ndata; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_example = __pyx_t_3; /* "kmeans.pyx":75 * # Count the number of times each centroid occurs in the assignments. * for example in range(ndata): * counts[assign[example]] += 1 # <<<<<<<<<<<<<< * # Main worker loop: for each feature, start by zeroing its value * # for every centroid, then compute the sum of all examples assigned */ __pyx_t_4 = __pyx_v_example; __pyx_t_5 = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_4 * __pyx_v_assign.strides[0]) ))); *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_5 * __pyx_v_counts.strides[0]) )) += 1; } /* "kmeans.pyx":79 * # for every centroid, then compute the sum of all examples assigned * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): # <<<<<<<<<<<<<< * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_1 = __pyx_v_nfeat; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_3 = (__pyx_t_1 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_3 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_10, __pyx_t_11, __pyx_t_12, __pyx_t_4, __pyx_t_5, __pyx_t_6, __pyx_t_7, __pyx_t_8, __pyx_t_9) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for lastprivate(__pyx_v_centroid) lastprivate(__pyx_v_example) firstprivate(__pyx_v_feature) lastprivate(__pyx_v_feature) #endif /* _OPENMP */ for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_3; __pyx_t_2++){ { __pyx_v_feature = (npy_intp)(0 + 1 * __pyx_t_2); /* Initialize private variables to invalid values */ __pyx_v_centroid = ((npy_intp)0xbad0bad0); __pyx_v_example = ((npy_intp)0xbad0bad0); /* "kmeans.pyx":80 * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): * for centroid in range(k): # <<<<<<<<<<<<<< * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: */ __pyx_t_6 = __pyx_v_k; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_centroid = __pyx_t_8; /* "kmeans.pyx":82 * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] = 0. * for example in range(ndata): */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_9 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))) > 0) != 0); if (__pyx_t_9) { /* "kmeans.pyx":83 * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: * means[centroid, feature] = 0. # <<<<<<<<<<<<<< * for example in range(ndata): * means[assign[example], feature] += data[example, feature] */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_5 = __pyx_v_feature; *((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_4 * __pyx_v_means.strides[0]) ) + __pyx_t_5 * __pyx_v_means.strides[1]) )) = 0.; /* "kmeans.pyx":82 * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] = 0. * for example in range(ndata): */ } } /* "kmeans.pyx":84 * if counts[centroid] > 0: * means[centroid, feature] = 0. * for example in range(ndata): # <<<<<<<<<<<<<< * means[assign[example], feature] += data[example, feature] * for centroid in range(k): */ __pyx_t_6 = __pyx_v_ndata; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_example = __pyx_t_8; /* "kmeans.pyx":85 * means[centroid, feature] = 0. * for example in range(ndata): * means[assign[example], feature] += data[example, feature] # <<<<<<<<<<<<<< * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. */ __pyx_t_5 = __pyx_v_example; __pyx_t_4 = __pyx_v_feature; __pyx_t_10 = __pyx_v_example; __pyx_t_11 = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_10 * __pyx_v_assign.strides[0]) ))); __pyx_t_12 = __pyx_v_feature; *((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_11 * __pyx_v_means.strides[0]) ) + __pyx_t_12 * __pyx_v_means.strides[1]) )) += (*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_data.data + __pyx_t_5 * __pyx_v_data.strides[0]) ) + __pyx_t_4 * __pyx_v_data.strides[1]) ))); } /* "kmeans.pyx":86 * for example in range(ndata): * means[assign[example], feature] += data[example, feature] * for centroid in range(k): # <<<<<<<<<<<<<< * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: */ __pyx_t_6 = __pyx_v_k; __pyx_t_7 = __pyx_t_6; for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) { __pyx_v_centroid = __pyx_t_8; /* "kmeans.pyx":88 * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] /= counts[centroid] * else: */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_9 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))) > 0) != 0); if (__pyx_t_9) { /* "kmeans.pyx":89 * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: * means[centroid, feature] /= counts[centroid] # <<<<<<<<<<<<<< * else: * means[centroid, feature] = 0. */ __pyx_t_4 = __pyx_v_centroid; __pyx_t_5 = __pyx_v_centroid; __pyx_t_10 = __pyx_v_feature; *((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_5 * __pyx_v_means.strides[0]) ) + __pyx_t_10 * __pyx_v_means.strides[1]) )) /= (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_counts.data + __pyx_t_4 * __pyx_v_counts.strides[0]) ))); /* "kmeans.pyx":88 * for centroid in range(k): * # Only normalize if counts[centroid] is non-zero to avoid NaN. * if counts[centroid] > 0: # <<<<<<<<<<<<<< * means[centroid, feature] /= counts[centroid] * else: */ goto __pyx_L21; } /* "kmeans.pyx":91 * means[centroid, feature] /= counts[centroid] * else: * means[centroid, feature] = 0. # <<<<<<<<<<<<<< * * */ /*else*/ { __pyx_t_4 = __pyx_v_centroid; __pyx_t_10 = __pyx_v_feature; *((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_4 * __pyx_v_means.strides[0]) ) + __pyx_t_10 * __pyx_v_means.strides[1]) )) = 0.; } __pyx_L21:; } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":79 * # for every centroid, then compute the sum of all examples assigned * # to it, and finally normalize. * for feature in prange(nfeat, nogil=True): # <<<<<<<<<<<<<< * for centroid in range(k): * # If a centroid has no points assigned to it, leave it alone. */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L9; } __pyx_L9:; } } /* "kmeans.pyx":21 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef inline void _compute_means(double_or_float[:, :] data, # <<<<<<<<<<<<<< * np.int32_t[:] assign, * double_or_float[:, :] means, */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ /* Python wrapper */ static PyObject *__pyx_pw_6kmeans_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_6kmeans_kmeans[] = "kmeans(signatures, args, kwargs, defaults)\n\n assign, means, iterations, converged = kmeans(data, k, max_iter=1000,\n init=None, rng=None)\n Run k-means on a dense matrix of features, parallelizing\n computations with OpenMP and BLAS where possible.\n Parameters\n ----------\n data : ndarray, 2-dimensional, float64\n Matrix of features with training examples indexed along\n the first dimension and features indexed along the second.\n k : int\n Number of centroids (\"means\") to use.\n max_iter : int, optional\n Maximum number of iterations of the algorithm to run\n (default is 1000).\n rng : RandomState object or seed, optional\n A random number generator instance to use for initialization\n in the absence of `init`, or a seed with which to create one.\n See the docstring for `numpy.random.RandomState` for\n details on the accepted seed formats. Default is `None`,\n in which case `RandomState` will try to seed itself\n from the system random number generator or with the clock.\n init : ndarray, 2-dimensional, float64, optional\n An initial set of centroids to use instead of the default\n initialization. This array **must** be of shape\n `(k, data.shape[1])` if it is provided, and **will be\n overwritten**.\n Returns\n -------\n means : ndarray, 2-dimensional, float64\n A matrix of shape `(k, data.shape[0])`, with each row\n representing a centroid vector. If `init` was provided, this\n will be the exact same array, but with the contents replaced\n with the values of the centroids after k-means has terminated.\n assign : ndarray, 1-dimensional, int32/int64 (platform dependent)\n A vector with one entry per training example, indicating\n the index of the closest centroid at termination.\n iteration : int\n The number of ite""rations of k-means actually performed. This\n will be less than or equal to `max_iter` specified in the\n input arguments.\n converged : boolean\n A boolean flag indicating whether or not the algorithm\n converged (i.e. False if the assignments changed in the\n last iteration). This disambiguates the rare but feasible\n case where convergence took place just as `max_iter` was\n reached.\n Notes\n -----\n The main bottleneck of k-means is the distance matrix computation.\n This implementation uses `numpy.dot` for this, so you should\n ensure that your installation of NumPy is linked against a good\n multithreaded BLAS implementation for optimal performance. If\n NumPy is linked against the Intel Math Kernel Library (as it will\n be if you are using the full version of the Enthought Python\n Distribution), make sure the environment variable `MKL_NUM_THREADS`\n is set to the number of cores you wish it to use.\n Significant gains can be made by parallelizing the quantization\n and centroid computation as well. This implementation uses OpenMP\n to parallelize mean computation over *features* (columns of\n the data matrix) and quantization over *training examples*. Make\n sure `OMP_NUM_THREADS` is set to the desired number of worker\n threads/CPU cores.\n "; static PyMethodDef __pyx_mdef_6kmeans_1kmeans = {"kmeans", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6kmeans_1kmeans, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6kmeans_kmeans}; static PyObject *__pyx_pw_6kmeans_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_signatures = 0; PyObject *__pyx_v_args = 0; PyObject *__pyx_v_kwargs = 0; CYTHON_UNUSED PyObject *__pyx_v_defaults = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_fused_cpdef (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_signatures,&__pyx_n_s_args,&__pyx_n_s_kwargs,&__pyx_n_s_defaults,0}; PyObject* values[4] = {0,0,0,0}; values[2] = __pyx_k_; values[3] = __pyx_k__2; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_signatures)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_args)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_fused_cpdef", 1, 4, 4, 1); __PYX_ERR(0, 97, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kwargs); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_defaults); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_fused_cpdef") < 0)) __PYX_ERR(0, 97, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); } __pyx_v_signatures = values[0]; __pyx_v_args = values[1]; __pyx_v_kwargs = values[2]; __pyx_v_defaults = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_fused_cpdef", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 97, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("kmeans.__pyx_fused_cpdef", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6kmeans_kmeans(__pyx_self, __pyx_v_signatures, __pyx_v_args, __pyx_v_kwargs, __pyx_v_defaults); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6kmeans_kmeans(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_signatures, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs, CYTHON_UNUSED PyObject *__pyx_v_defaults) { PyObject *__pyx_v_dest_sig = NULL; Py_ssize_t __pyx_v_i; PyTypeObject *__pyx_v_ndarray = 0; __Pyx_memviewslice __pyx_v_memslice; Py_ssize_t __pyx_v_itemsize; CYTHON_UNUSED int __pyx_v_dtype_signed; char __pyx_v_kind; PyObject *__pyx_v_arg = NULL; PyObject *__pyx_v_dtype = NULL; PyObject *__pyx_v_arg_base = NULL; PyObject *__pyx_v_candidates = NULL; PyObject *__pyx_v_sig = NULL; int __pyx_v_match_found; PyObject *__pyx_v_src_sig = NULL; PyObject *__pyx_v_dst_type = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; Py_ssize_t __pyx_t_5; PyObject *__pyx_t_6 = NULL; long __pyx_t_7; __Pyx_memviewslice __pyx_t_8; Py_ssize_t __pyx_t_9; int __pyx_t_10; int __pyx_t_11; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; PyObject *__pyx_t_14 = NULL; Py_ssize_t __pyx_t_15; Py_ssize_t __pyx_t_16; Py_ssize_t __pyx_t_17; int __pyx_t_18; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("kmeans", 0); __Pyx_INCREF(__pyx_v_kwargs); __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyList_SET_ITEM(__pyx_t_1, 0, Py_None); __pyx_v_dest_sig = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_v_kwargs != Py_None); __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_kwargs); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_3 = ((!__pyx_t_4) != 0); __pyx_t_2 = __pyx_t_3; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { __Pyx_INCREF(Py_None); __Pyx_DECREF_SET(__pyx_v_kwargs, Py_None); } __pyx_t_1 = ((PyObject *)__Pyx_ImportNumPyArrayTypeIfAvailable()); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_ndarray = ((PyTypeObject*)__pyx_t_1); __pyx_t_1 = 0; __pyx_v_itemsize = -1L; if (unlikely(__pyx_v_args == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_5 = PyTuple_GET_SIZE(((PyObject*)__pyx_v_args)); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_2 = ((0 < __pyx_t_5) != 0); if (__pyx_t_2) { if (unlikely(__pyx_v_args == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_1 = PyTuple_GET_ITEM(((PyObject*)__pyx_v_args), 0); __Pyx_INCREF(__pyx_t_1); __pyx_v_arg = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6; } __pyx_t_3 = (__pyx_v_kwargs != Py_None); __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L7_bool_binop_done; } if (unlikely(__pyx_v_kwargs == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_4 = (__Pyx_PyDict_ContainsTF(__pyx_n_s_data, ((PyObject*)__pyx_v_kwargs), Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_3 = (__pyx_t_4 != 0); __pyx_t_2 = __pyx_t_3; __pyx_L7_bool_binop_done:; if (__pyx_t_2) { if (unlikely(__pyx_v_kwargs == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_1 = __Pyx_PyDict_GetItem(((PyObject*)__pyx_v_kwargs), __pyx_n_s_data); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_arg = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6; } /*else*/ { if (unlikely(__pyx_v_args == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_5 = PyTuple_GET_SIZE(((PyObject*)__pyx_v_args)); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_1 = PyInt_FromSsize_t(__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyTuple_New(3); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_int_2); __Pyx_GIVEREF(__pyx_int_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_int_2); __Pyx_INCREF(__pyx_n_s_s); __Pyx_GIVEREF(__pyx_n_s_s); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_n_s_s); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_Expected_at_least_d_argument_s_g, __pyx_t_6); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_L6:; while (1) { __pyx_t_2 = (__pyx_v_ndarray != ((PyTypeObject*)Py_None)); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { __pyx_t_3 = __Pyx_TypeCheck(__pyx_v_arg, __pyx_v_ndarray); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_arg, __pyx_n_s_dtype); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_v_dtype = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L12; } __pyx_t_2 = __pyx_memoryview_check(__pyx_v_arg); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_arg, __pyx_n_s_base); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_v_arg_base = __pyx_t_6; __pyx_t_6 = 0; __pyx_t_3 = __Pyx_TypeCheck(__pyx_v_arg_base, __pyx_v_ndarray); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_arg_base, __pyx_n_s_dtype); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_v_dtype = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L13; } /*else*/ { __Pyx_INCREF(Py_None); __pyx_v_dtype = Py_None; } __pyx_L13:; goto __pyx_L12; } /*else*/ { __Pyx_INCREF(Py_None); __pyx_v_dtype = Py_None; } __pyx_L12:; __pyx_v_itemsize = -1L; __pyx_t_2 = (__pyx_v_dtype != Py_None); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_dtype, __pyx_n_s_itemsize); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyIndex_AsSsize_t(__pyx_t_6); if (unlikely((__pyx_t_5 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_itemsize = __pyx_t_5; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_dtype, __pyx_n_s_kind); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_Ord(__pyx_t_6); if (unlikely(__pyx_t_7 == ((long)(long)(Py_UCS4)-1))) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_kind = __pyx_t_7; __pyx_v_dtype_signed = (__pyx_v_kind == 'i'); switch (__pyx_v_kind) { case 'i': case 'u': break; case 'f': __pyx_t_2 = (((sizeof(double)) == __pyx_v_itemsize) != 0); if (__pyx_t_2) { } else { __pyx_t_3 = __pyx_t_2; goto __pyx_L16_bool_binop_done; } __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_arg, __pyx_n_s_ndim); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyIndex_AsSsize_t(__pyx_t_6); if (unlikely((__pyx_t_5 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_2 = ((((Py_ssize_t)__pyx_t_5) == 2) != 0); __pyx_t_3 = __pyx_t_2; __pyx_L16_bool_binop_done:; if (__pyx_t_3) { if (unlikely(__Pyx_SetItemInt(__pyx_v_dest_sig, 0, __pyx_n_s_double, long, 1, __Pyx_PyInt_From_long, 1, 0, 0) < 0)) __PYX_ERR(0, 97, __pyx_L1_error) goto __pyx_L10_break; } __pyx_t_2 = (((sizeof(float)) == __pyx_v_itemsize) != 0); if (__pyx_t_2) { } else { __pyx_t_3 = __pyx_t_2; goto __pyx_L19_bool_binop_done; } __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_arg, __pyx_n_s_ndim); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyIndex_AsSsize_t(__pyx_t_6); if (unlikely((__pyx_t_5 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_2 = ((((Py_ssize_t)__pyx_t_5) == 2) != 0); __pyx_t_3 = __pyx_t_2; __pyx_L19_bool_binop_done:; if (__pyx_t_3) { if (unlikely(__Pyx_SetItemInt(__pyx_v_dest_sig, 0, __pyx_n_s_float, long, 1, __Pyx_PyInt_From_long, 1, 0, 0) < 0)) __PYX_ERR(0, 97, __pyx_L1_error) goto __pyx_L10_break; } break; case 'c': break; case 'O': break; default: break; } } } __pyx_t_2 = ((__pyx_v_itemsize == -1L) != 0); if (!__pyx_t_2) { } else { __pyx_t_3 = __pyx_t_2; goto __pyx_L22_bool_binop_done; } __pyx_t_2 = ((__pyx_v_itemsize == (sizeof(double))) != 0); __pyx_t_3 = __pyx_t_2; __pyx_L22_bool_binop_done:; if (__pyx_t_3) { __pyx_t_8 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_v_arg, 0); __pyx_v_memslice = __pyx_t_8; __pyx_t_3 = (__pyx_v_memslice.memview != 0); if (__pyx_t_3) { __PYX_XDEC_MEMVIEW((&__pyx_v_memslice), 1); if (unlikely(__Pyx_SetItemInt(__pyx_v_dest_sig, 0, __pyx_n_s_double, long, 1, __Pyx_PyInt_From_long, 1, 0, 0) < 0)) __PYX_ERR(0, 97, __pyx_L1_error) goto __pyx_L10_break; } /*else*/ { PyErr_Clear(); } } __pyx_t_2 = ((__pyx_v_itemsize == -1L) != 0); if (!__pyx_t_2) { } else { __pyx_t_3 = __pyx_t_2; goto __pyx_L26_bool_binop_done; } __pyx_t_2 = ((__pyx_v_itemsize == (sizeof(float))) != 0); __pyx_t_3 = __pyx_t_2; __pyx_L26_bool_binop_done:; if (__pyx_t_3) { __pyx_t_8 = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(__pyx_v_arg, 0); __pyx_v_memslice = __pyx_t_8; __pyx_t_3 = (__pyx_v_memslice.memview != 0); if (__pyx_t_3) { __PYX_XDEC_MEMVIEW((&__pyx_v_memslice), 1); if (unlikely(__Pyx_SetItemInt(__pyx_v_dest_sig, 0, __pyx_n_s_float, long, 1, __Pyx_PyInt_From_long, 1, 0, 0) < 0)) __PYX_ERR(0, 97, __pyx_L1_error) goto __pyx_L10_break; } /*else*/ { PyErr_Clear(); } } if (unlikely(__Pyx_SetItemInt(__pyx_v_dest_sig, 0, Py_None, long, 1, __Pyx_PyInt_From_long, 1, 0, 0) < 0)) __PYX_ERR(0, 97, __pyx_L1_error) goto __pyx_L10_break; } __pyx_L10_break:; __pyx_t_6 = PyList_New(0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_v_candidates = ((PyObject*)__pyx_t_6); __pyx_t_6 = 0; __pyx_t_5 = 0; if (unlikely(__pyx_v_signatures == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_1 = __Pyx_dict_iterator(((PyObject*)__pyx_v_signatures), 1, ((PyObject *)NULL), (&__pyx_t_9), (&__pyx_t_10)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = __pyx_t_1; __pyx_t_1 = 0; while (1) { __pyx_t_11 = __Pyx_dict_iter_next(__pyx_t_6, __pyx_t_9, &__pyx_t_5, &__pyx_t_1, NULL, NULL, __pyx_t_10); if (unlikely(__pyx_t_11 == 0)) break; if (unlikely(__pyx_t_11 == -1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XDECREF_SET(__pyx_v_sig, __pyx_t_1); __pyx_t_1 = 0; __pyx_v_match_found = 0; __pyx_t_13 = __Pyx_PyObject_GetAttrStr(__pyx_v_sig, __pyx_n_s_strip); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __pyx_t_14 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_13))) { __pyx_t_14 = PyMethod_GET_SELF(__pyx_t_13); if (likely(__pyx_t_14)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_13); __Pyx_INCREF(__pyx_t_14); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_13, function); } } __pyx_t_12 = (__pyx_t_14) ? __Pyx_PyObject_Call2Args(__pyx_t_13, __pyx_t_14, __pyx_kp_s__3) : __Pyx_PyObject_CallOneArg(__pyx_t_13, __pyx_kp_s__3); __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __pyx_t_13 = __Pyx_PyObject_GetAttrStr(__pyx_t_12, __pyx_n_s_split); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_13))) { __pyx_t_12 = PyMethod_GET_SELF(__pyx_t_13); if (likely(__pyx_t_12)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_13); __Pyx_INCREF(__pyx_t_12); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_13, function); } } __pyx_t_1 = (__pyx_t_12) ? __Pyx_PyObject_Call2Args(__pyx_t_13, __pyx_t_12, __pyx_kp_s__4) : __Pyx_PyObject_CallOneArg(__pyx_t_13, __pyx_kp_s__4); __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_XDECREF_SET(__pyx_v_src_sig, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_15 = PyList_GET_SIZE(__pyx_v_dest_sig); if (unlikely(__pyx_t_15 == ((Py_ssize_t)-1))) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_16 = __pyx_t_15; for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) { __pyx_v_i = __pyx_t_17; __pyx_t_1 = PyList_GET_ITEM(__pyx_v_dest_sig, __pyx_v_i); __Pyx_INCREF(__pyx_t_1); __Pyx_XDECREF_SET(__pyx_v_dst_type, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_v_dst_type != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_src_sig, __pyx_v_i, Py_ssize_t, 1, PyInt_FromSsize_t, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_13 = PyObject_RichCompare(__pyx_t_1, __pyx_v_dst_type, Py_EQ); __Pyx_XGOTREF(__pyx_t_13); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_13); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; if (__pyx_t_2) { __pyx_v_match_found = 1; goto __pyx_L34; } /*else*/ { __pyx_v_match_found = 0; goto __pyx_L32_break; } __pyx_L34:; } } __pyx_L32_break:; __pyx_t_2 = (__pyx_v_match_found != 0); if (__pyx_t_2) { __pyx_t_18 = __Pyx_PyList_Append(__pyx_v_candidates, __pyx_v_sig); if (unlikely(__pyx_t_18 == ((int)-1))) __PYX_ERR(0, 97, __pyx_L1_error) } } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_2 = (PyList_GET_SIZE(__pyx_v_candidates) != 0); __pyx_t_3 = ((!__pyx_t_2) != 0); if (__pyx_t_3) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_9 = PyList_GET_SIZE(__pyx_v_candidates); if (unlikely(__pyx_t_9 == ((Py_ssize_t)-1))) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_t_3 = ((__pyx_t_9 > 1) != 0); if (__pyx_t_3) { __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(0, 97, __pyx_L1_error) } /*else*/ { __Pyx_XDECREF(__pyx_r); if (unlikely(__pyx_v_signatures == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_6 = __Pyx_PyDict_GetItem(((PyObject*)__pyx_v_signatures), PyList_GET_ITEM(__pyx_v_candidates, 0)); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; } /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_12); __Pyx_XDECREF(__pyx_t_13); __Pyx_XDECREF(__pyx_t_14); __Pyx_AddTraceback("kmeans.__pyx_fused_cpdef", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_dest_sig); __Pyx_XDECREF(__pyx_v_ndarray); __Pyx_XDECREF(__pyx_v_arg); __Pyx_XDECREF(__pyx_v_dtype); __Pyx_XDECREF(__pyx_v_arg_base); __Pyx_XDECREF(__pyx_v_candidates); __Pyx_XDECREF(__pyx_v_sig); __Pyx_XDECREF(__pyx_v_src_sig); __Pyx_XDECREF(__pyx_v_dst_type); __Pyx_XDECREF(__pyx_v_kwargs); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pw_6kmeans_3__pyx_fuse_0kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyObject *__pyx_pw_6kmeans_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyObject *__pyx_fuse_0__pyx_f_6kmeans_kmeans(__Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, CYTHON_UNUSED int __pyx_skip_dispatch, struct __pyx_fuse_0__pyx_opt_args_6kmeans_kmeans *__pyx_optional_args) { npy_intp __pyx_v_max_iter = __pyx_k__7; PyArrayObject *__pyx_v_init = __pyx_k__8; PyObject *__pyx_v_rng = __pyx_k__9; int __pyx_v_centroid; int __pyx_v_feature; int __pyx_v_example; npy_intp __pyx_v_ndata; npy_intp __pyx_v_nfeat; PyObject *__pyx_v_data_dtype = 0; PyObject *__pyx_v_dists = 0; __Pyx_memviewslice __pyx_v_mindist = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_counts = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_distsview = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_m_sqnorm = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_means = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_assign = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_argmin = { 0, 0, { 0 }, { 0 }, { 0 } }; double __pyx_v_minusinf; PyObject *__pyx_v_iteration = NULL; int __pyx_v_converged; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; PyObject *__pyx_t_6 = NULL; __Pyx_memviewslice __pyx_t_7 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyObject *__pyx_t_8 = NULL; __Pyx_memviewslice __pyx_t_9 = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_t_10 = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_t_11; int __pyx_t_12; double __pyx_t_13; Py_ssize_t __pyx_t_14; PyObject *(*__pyx_t_15)(PyObject *); npy_intp __pyx_t_16; npy_intp __pyx_t_17; npy_intp __pyx_t_18; npy_intp __pyx_t_19; npy_intp __pyx_t_20; int __pyx_t_21; Py_ssize_t __pyx_t_22; Py_ssize_t __pyx_t_23; Py_ssize_t __pyx_t_24; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_fuse_0kmeans", 0); if (__pyx_optional_args) { if (__pyx_optional_args->__pyx_n > 0) { __pyx_v_max_iter = __pyx_optional_args->max_iter; if (__pyx_optional_args->__pyx_n > 1) { __pyx_v_init = __pyx_optional_args->init; if (__pyx_optional_args->__pyx_n > 2) { __pyx_v_rng = __pyx_optional_args->rng; } } } } __Pyx_INCREF(__pyx_v_rng); /* "kmeans.pyx":166 * cdef: * int centroid, feature, example * np.npy_intp ndata = data.shape[0] # <<<<<<<<<<<<<< * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype */ __pyx_v_ndata = (__pyx_v_data.shape[0]); /* "kmeans.pyx":167 * int centroid, feature, example * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] # <<<<<<<<<<<<<< * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) */ __pyx_v_nfeat = (__pyx_v_data.shape[1]); /* "kmeans.pyx":168 * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype # <<<<<<<<<<<<<< * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_array); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_2 = PyFloat_FromDouble((*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_data.data + __pyx_t_4 * __pyx_v_data.strides[0]) ) + __pyx_t_5 * __pyx_v_data.strides[1]) )))); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyList_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyList_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_6); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_dtype); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_data_dtype = __pyx_t_3; __pyx_t_3 = 0; /* "kmeans.pyx":169 * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) # <<<<<<<<<<<<<< * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) * np.int32_t[:] counts = np.empty(k, dtype=np.int32) */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_6); __pyx_t_3 = 0; __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 169, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_dists = __pyx_t_3; __pyx_t_3 = 0; /* "kmeans.pyx":170 * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) # <<<<<<<<<<<<<< * np.int32_t[:] counts = np.empty(k, dtype=np.int32) * # Allocate space for the assignment indices, distance matrix, the means. */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 170, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_mindist = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "kmeans.pyx":171 * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) * np.int32_t[:] counts = np.empty(k, dtype=np.int32) # <<<<<<<<<<<<<< * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_8) < 0) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_6, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_counts = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":173 * np.int32_t[:] counts = np.empty(k, dtype=np.int32) * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists # <<<<<<<<<<<<<< * double_or_float[:] m_sqnorm = np.empty(k, dtype=data_dtype) * double_or_float[:, :] means */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_v_dists, PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 173, __pyx_L1_error) __pyx_v_distsview = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":174 * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists * double_or_float[:] m_sqnorm = np.empty(k, dtype=data_dtype) # <<<<<<<<<<<<<< * double_or_float[:, :] means * # Declare variables for the current assignments and current argmin. */ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_8, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 174, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, __pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_3, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_m_sqnorm = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "kmeans.pyx":180 * # convergence at a memory cost of (pointer width * ndata). * np.int32_t[:] assign * np.int32_t[:] argmin = np.empty(ndata, dtype=np.int32) # <<<<<<<<<<<<<< * double_or_float minusinf * */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_int32); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_argmin = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":183 * double_or_float minusinf * * if init is not None: # <<<<<<<<<<<<<< * if rng is not None: * raise ValueError('rng argument unused if init is provided') */ __pyx_t_11 = (((PyObject *)__pyx_v_init) != Py_None); __pyx_t_12 = (__pyx_t_11 != 0); if (__pyx_t_12) { /* "kmeans.pyx":184 * * if init is not None: * if rng is not None: # <<<<<<<<<<<<<< * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: */ __pyx_t_12 = (__pyx_v_rng != Py_None); __pyx_t_11 = (__pyx_t_12 != 0); if (unlikely(__pyx_t_11)) { /* "kmeans.pyx":185 * if init is not None: * if rng is not None: * raise ValueError('rng argument unused if init is provided') # <<<<<<<<<<<<<< * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 185, __pyx_L1_error) /* "kmeans.pyx":184 * * if init is not None: * if rng is not None: # <<<<<<<<<<<<<< * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: */ } /* "kmeans.pyx":186 * if rng is not None: * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: # <<<<<<<<<<<<<< * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') */ __pyx_t_12 = (((__pyx_v_init->dimensions[0]) != __pyx_v_k) != 0); if (!__pyx_t_12) { } else { __pyx_t_11 = __pyx_t_12; goto __pyx_L6_bool_binop_done; } __pyx_t_12 = (((__pyx_v_init->dimensions[1]) != __pyx_v_nfeat) != 0); __pyx_t_11 = __pyx_t_12; __pyx_L6_bool_binop_done:; if (unlikely(__pyx_t_11)) { /* "kmeans.pyx":187 * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' # <<<<<<<<<<<<<< * 'data.shape[1])') * means = init */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 187, __pyx_L1_error) /* "kmeans.pyx":186 * if rng is not None: * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: # <<<<<<<<<<<<<< * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') */ } /* "kmeans.pyx":189 * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') * means = init # <<<<<<<<<<<<<< * assign = np.empty(ndata, dtype=np.int32) * else: */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(((PyObject *)__pyx_v_init), PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 189, __pyx_L1_error) __pyx_v_means = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":190 * 'data.shape[1])') * means = init * assign = np.empty(ndata, dtype=np.int32) # <<<<<<<<<<<<<< * else: * means = np.empty((k, nfeat), dtype=data_dtype) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_int32); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_t_1) < 0) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_6, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_assign = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":183 * double_or_float minusinf * * if init is not None: # <<<<<<<<<<<<<< * if rng is not None: * raise ValueError('rng argument unused if init is provided') */ goto __pyx_L3; } /* "kmeans.pyx":192 * assign = np.empty(ndata, dtype=np.int32) * else: * means = np.empty((k, nfeat), dtype=data_dtype) # <<<<<<<<<<<<<< * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): */ /*else*/ { __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_nfeat); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_6); __pyx_t_1 = 0; __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 192, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_means = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":194 * means = np.empty((k, nfeat), dtype=data_dtype) * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): # <<<<<<<<<<<<<< * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) */ __pyx_t_11 = __Pyx_HasAttr(__pyx_v_rng, __pyx_n_s_random_integers); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(0, 194, __pyx_L1_error) __pyx_t_12 = ((!(__pyx_t_11 != 0)) != 0); if (__pyx_t_12) { /* "kmeans.pyx":195 * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): * rng = np.random.RandomState(rng) # <<<<<<<<<<<<<< * assign = rng.randint(0, k, size=ndata).astype(np.int32) * # Compute the means from the random initial assignments. */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_random); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_RandomState); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_6, __pyx_v_rng) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_rng); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_rng, __pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":194 * means = np.empty((k, nfeat), dtype=data_dtype) * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): # <<<<<<<<<<<<<< * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) */ } /* "kmeans.pyx":196 * if not hasattr(rng, 'random_integers'): * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) # <<<<<<<<<<<<<< * # Compute the means from the random initial assignments. * _compute_means(data, assign, means, counts) */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_rng, __pyx_n_s_randint); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_int_0); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_size, __pyx_t_8) < 0) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, __pyx_t_6); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_astype); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_int32); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_8, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_2); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_assign = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":198 * assign = rng.randint(0, k, size=ndata).astype(np.int32) * # Compute the means from the random initial assignments. * _compute_means(data, assign, means, counts) # <<<<<<<<<<<<<< * * minusinf = np.finfo(data_dtype).min # how to write np.inf */ __pyx_fuse_0__pyx_f_6kmeans__compute_means(__pyx_v_data, __pyx_v_assign, __pyx_v_means, __pyx_v_counts); } __pyx_L3:; /* "kmeans.pyx":200 * _compute_means(data, assign, means, counts) * * minusinf = np.finfo(data_dtype).min # how to write np.inf # <<<<<<<<<<<<<< * for iteration in range(max_iter): * # Quantization step: compute squared distance between every point */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_finfo); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_6, __pyx_v_data_dtype) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_data_dtype); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_min); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_13 = __pyx_PyFloat_AsDouble(__pyx_t_2); if (unlikely((__pyx_t_13 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_minusinf = __pyx_t_13; /* "kmeans.pyx":201 * * minusinf = np.finfo(data_dtype).min # how to write np.inf * for iteration in range(max_iter): # <<<<<<<<<<<<<< * # Quantization step: compute squared distance between every point * # and every mean. */ __pyx_t_2 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_max_iter); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_builtin_range, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (likely(PyList_CheckExact(__pyx_t_1)) || PyTuple_CheckExact(__pyx_t_1)) { __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __pyx_t_14 = 0; __pyx_t_15 = NULL; } else { __pyx_t_14 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_15 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_15)) __PYX_ERR(0, 201, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; for (;;) { if (likely(!__pyx_t_15)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_14 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_14); __Pyx_INCREF(__pyx_t_1); __pyx_t_14++; if (unlikely(0 < 0)) __PYX_ERR(0, 201, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_2, __pyx_t_14); __pyx_t_14++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } else { if (__pyx_t_14 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_14); __Pyx_INCREF(__pyx_t_1); __pyx_t_14++; if (unlikely(0 < 0)) __PYX_ERR(0, 201, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_2, __pyx_t_14); __pyx_t_14++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } } else { __pyx_t_1 = __pyx_t_15(__pyx_t_2); if (unlikely(!__pyx_t_1)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 201, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_1); } __Pyx_XDECREF_SET(__pyx_v_iteration, __pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":206 * # The distance between each of the data points and each of the means * # can be computed by a matrix product (times -2) plus squared norms. * np.dot(data, means.T, out=dists) # <<<<<<<<<<<<<< * * # Compute the squared norm of each of the centroids (necessary */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_dot); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __pyx_memoryview_fromslice(__pyx_v_data, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_10 = __pyx_v_means; __PYX_INC_MEMVIEW(&__pyx_t_10, 1); if (unlikely(__pyx_memslice_transpose(&__pyx_t_10) == 0)) __PYX_ERR(0, 206, __pyx_L1_error) __pyx_t_8 = __pyx_memoryview_fromslice(__pyx_t_10, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __PYX_XDEC_MEMVIEW(&__pyx_t_10, 1); __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_8); __pyx_t_1 = 0; __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_8, __pyx_n_s_out, __pyx_v_dists) < 0) __PYX_ERR(0, 206, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_3, __pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":210 * # Compute the squared norm of each of the centroids (necessary * # for determining relative distances below). * for centroid in prange(k, nogil=True): # <<<<<<<<<<<<<< * m_sqnorm[centroid] = 0. * for feature in range(nfeat): */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_16 = __pyx_v_k; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_18 = (__pyx_t_16 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_18 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_24, __pyx_t_4, __pyx_t_5) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for firstprivate(__pyx_v_centroid) lastprivate(__pyx_v_centroid) lastprivate(__pyx_v_feature) #endif /* _OPENMP */ for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_18; __pyx_t_17++){ { __pyx_v_centroid = (int)(0 + 1 * __pyx_t_17); /* Initialize private variables to invalid values */ __pyx_v_feature = ((int)0xbad0bad0); /* "kmeans.pyx":211 * # for determining relative distances below). * for centroid in prange(k, nogil=True): * m_sqnorm[centroid] = 0. # <<<<<<<<<<<<<< * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * */ __pyx_t_5 = __pyx_v_centroid; *((double *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_5 * __pyx_v_m_sqnorm.strides[0]) )) = 0.; /* "kmeans.pyx":212 * for centroid in prange(k, nogil=True): * m_sqnorm[centroid] = 0. * for feature in range(nfeat): # <<<<<<<<<<<<<< * m_sqnorm[centroid] += (means[centroid, feature] * * means[centroid, feature]) */ __pyx_t_19 = __pyx_v_nfeat; __pyx_t_20 = __pyx_t_19; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { __pyx_v_feature = __pyx_t_21; /* "kmeans.pyx":213 * m_sqnorm[centroid] = 0. * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * # <<<<<<<<<<<<<< * means[centroid, feature]) * */ __pyx_t_5 = __pyx_v_centroid; __pyx_t_4 = __pyx_v_feature; /* "kmeans.pyx":214 * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * * means[centroid, feature]) # <<<<<<<<<<<<<< * * # Determine the minimum distance cluster to each example. Note that */ __pyx_t_22 = __pyx_v_centroid; __pyx_t_23 = __pyx_v_feature; /* "kmeans.pyx":213 * m_sqnorm[centroid] = 0. * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * # <<<<<<<<<<<<<< * means[centroid, feature]) * */ __pyx_t_24 = __pyx_v_centroid; *((double *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_24 * __pyx_v_m_sqnorm.strides[0]) )) += ((*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_5 * __pyx_v_means.strides[0]) ) + __pyx_t_4 * __pyx_v_means.strides[1]) ))) * (*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_22 * __pyx_v_means.strides[0]) ) + __pyx_t_23 * __pyx_v_means.strides[1]) )))); } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":210 * # Compute the squared norm of each of the centroids (necessary * # for determining relative distances below). * for centroid in prange(k, nogil=True): # <<<<<<<<<<<<<< * m_sqnorm[centroid] = 0. * for feature in range(nfeat): */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L15; } __pyx_L15:; } } /* "kmeans.pyx":219 * # we are actually determining max(m'x - 0.5 * m'm) which is equivalent * # to min(x'x - 2 * m'x + m'm), since the first term never changes. * for example in prange(ndata, nogil=True): # <<<<<<<<<<<<<< * # Initialize the min and argmin to invalid values. * argmin[example] = -1 */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_18 = __pyx_v_ndata; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_16 = (__pyx_t_18 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_16 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_12, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_4) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for lastprivate(__pyx_v_centroid) firstprivate(__pyx_v_example) lastprivate(__pyx_v_example) #endif /* _OPENMP */ for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17++){ { __pyx_v_example = (int)(0 + 1 * __pyx_t_17); /* Initialize private variables to invalid values */ __pyx_v_centroid = ((int)0xbad0bad0); /* "kmeans.pyx":221 * for example in prange(ndata, nogil=True): * # Initialize the min and argmin to invalid values. * argmin[example] = -1 # <<<<<<<<<<<<<< * mindist[example] = minusinf * for centroid in range(k): */ __pyx_t_23 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_23 * __pyx_v_argmin.strides[0]) )) = -1; /* "kmeans.pyx":222 * # Initialize the min and argmin to invalid values. * argmin[example] = -1 * mindist[example] = minusinf # <<<<<<<<<<<<<< * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] */ __pyx_t_23 = __pyx_v_example; *((double *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_23 * __pyx_v_mindist.strides[0]) )) = __pyx_v_minusinf; /* "kmeans.pyx":223 * argmin[example] = -1 * mindist[example] = minusinf * for centroid in range(k): # <<<<<<<<<<<<<< * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: */ __pyx_t_19 = __pyx_v_k; __pyx_t_20 = __pyx_t_19; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { __pyx_v_centroid = __pyx_t_21; /* "kmeans.pyx":224 * mindist[example] = minusinf * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] # <<<<<<<<<<<<<< * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] */ __pyx_t_23 = __pyx_v_centroid; __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; *((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_22 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) )) -= (0.5 * (*((double *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_23 * __pyx_v_m_sqnorm.strides[0]) )))); /* "kmeans.pyx":225 * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: # <<<<<<<<<<<<<< * mindist[example] = distsview[example, centroid] * argmin[example] = centroid */ __pyx_t_23 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; __pyx_t_22 = __pyx_v_example; __pyx_t_12 = (((*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_23 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) ))) > (*((double *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_22 * __pyx_v_mindist.strides[0]) )))) != 0); if (__pyx_t_12) { /* "kmeans.pyx":226 * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] # <<<<<<<<<<<<<< * argmin[example] = centroid * */ __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; __pyx_t_23 = __pyx_v_example; *((double *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_23 * __pyx_v_mindist.strides[0]) )) = (*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_22 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) ))); /* "kmeans.pyx":227 * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] * argmin[example] = centroid # <<<<<<<<<<<<<< * * # Check previous assignment against current assignment to determine if */ __pyx_t_4 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_4 * __pyx_v_argmin.strides[0]) )) = __pyx_v_centroid; /* "kmeans.pyx":225 * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: # <<<<<<<<<<<<<< * mindist[example] = distsview[example, centroid] * argmin[example] = centroid */ } } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":219 * # we are actually determining max(m'x - 0.5 * m'm) which is equivalent * # to min(x'x - 2 * m'x + m'm), since the first term never changes. * for example in prange(ndata, nogil=True): # <<<<<<<<<<<<<< * # Initialize the min and argmin to invalid values. * argmin[example] = -1 */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L28; } __pyx_L28:; } } /* "kmeans.pyx":234 * # TODO: Do this check in the parallel loop above using a with * # parallel() block. * converged = True # <<<<<<<<<<<<<< * for example in range(ndata): * if argmin[example] != assign[example]: */ __pyx_v_converged = 1; /* "kmeans.pyx":235 * # parallel() block. * converged = True * for example in range(ndata): # <<<<<<<<<<<<<< * if argmin[example] != assign[example]: * converged = False */ __pyx_t_16 = __pyx_v_ndata; __pyx_t_17 = __pyx_t_16; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_17; __pyx_t_21+=1) { __pyx_v_example = __pyx_t_21; /* "kmeans.pyx":236 * converged = True * for example in range(ndata): * if argmin[example] != assign[example]: # <<<<<<<<<<<<<< * converged = False * assign[example] = argmin[example] */ __pyx_t_4 = __pyx_v_example; __pyx_t_22 = __pyx_v_example; __pyx_t_12 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_4 * __pyx_v_argmin.strides[0]) ))) != (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_22 * __pyx_v_assign.strides[0]) )))) != 0); if (__pyx_t_12) { /* "kmeans.pyx":237 * for example in range(ndata): * if argmin[example] != assign[example]: * converged = False # <<<<<<<<<<<<<< * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. */ __pyx_v_converged = 0; /* "kmeans.pyx":236 * converged = True * for example in range(ndata): * if argmin[example] != assign[example]: # <<<<<<<<<<<<<< * converged = False * assign[example] = argmin[example] */ } /* "kmeans.pyx":238 * if argmin[example] != assign[example]: * converged = False * assign[example] = argmin[example] # <<<<<<<<<<<<<< * # If the assignment has changed, recompute means and continue the loop. * if not converged: */ __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_4 * __pyx_v_assign.strides[0]) )) = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_22 * __pyx_v_argmin.strides[0]) ))); } /* "kmeans.pyx":240 * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. * if not converged: # <<<<<<<<<<<<<< * _compute_means(data, assign, means, counts) * else: */ __pyx_t_12 = ((!(__pyx_v_converged != 0)) != 0); if (__pyx_t_12) { /* "kmeans.pyx":241 * # If the assignment has changed, recompute means and continue the loop. * if not converged: * _compute_means(data, assign, means, counts) # <<<<<<<<<<<<<< * else: * break */ __pyx_fuse_0__pyx_f_6kmeans__compute_means(__pyx_v_data, __pyx_v_assign, __pyx_v_means, __pyx_v_counts); /* "kmeans.pyx":240 * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. * if not converged: # <<<<<<<<<<<<<< * _compute_means(data, assign, means, counts) * else: */ goto __pyx_L41; } /* "kmeans.pyx":243 * _compute_means(data, assign, means, counts) * else: * break # <<<<<<<<<<<<<< * return assign, means, iteration + 1, converged */ /*else*/ { goto __pyx_L10_break; } __pyx_L41:; /* "kmeans.pyx":201 * * minusinf = np.finfo(data_dtype).min # how to write np.inf * for iteration in range(max_iter): # <<<<<<<<<<<<<< * # Quantization step: compute squared distance between every point * # and every mean. */ } __pyx_L10_break:; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "kmeans.pyx":244 * else: * break * return assign, means, iteration + 1, converged # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_fromslice(__pyx_v_assign, 1, (PyObject *(*)(char *)) __pyx_memview_get_nn___pyx_t_5numpy_int32_t, (int (*)(char *, PyObject *)) __pyx_memview_set_nn___pyx_t_5numpy_int32_t, 0);; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_memoryview_fromslice(__pyx_v_means, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(!__pyx_v_iteration)) { __Pyx_RaiseUnboundLocalError("iteration"); __PYX_ERR(0, 244, __pyx_L1_error) } __pyx_t_8 = __Pyx_PyInt_AddObjC(__pyx_v_iteration, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_3 = __Pyx_PyBool_FromLong(__pyx_v_converged); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_8); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 3, __pyx_t_3); __pyx_t_2 = 0; __pyx_t_1 = 0; __pyx_t_8 = 0; __pyx_t_3 = 0; __pyx_r = ((PyObject*)__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L0; /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __PYX_XDEC_MEMVIEW(&__pyx_t_7, 1); __Pyx_XDECREF(__pyx_t_8); __PYX_XDEC_MEMVIEW(&__pyx_t_9, 1); __PYX_XDEC_MEMVIEW(&__pyx_t_10, 1); __Pyx_AddTraceback("kmeans.kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_data_dtype); __Pyx_XDECREF(__pyx_v_dists); __PYX_XDEC_MEMVIEW(&__pyx_v_mindist, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_counts, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_distsview, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_m_sqnorm, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_means, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_assign, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_argmin, 1); __Pyx_XDECREF(__pyx_v_iteration); __Pyx_XDECREF(__pyx_v_rng); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static PyObject *__pyx_pw_6kmeans_3__pyx_fuse_0kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_fuse_0__pyx_mdef_6kmeans_3__pyx_fuse_0kmeans = {"__pyx_fuse_0kmeans", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6kmeans_3__pyx_fuse_0kmeans, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6kmeans_kmeans}; static PyObject *__pyx_pw_6kmeans_3__pyx_fuse_0kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { __Pyx_memviewslice __pyx_v_data = { 0, 0, { 0 }, { 0 }, { 0 } }; npy_intp __pyx_v_k; npy_intp __pyx_v_max_iter; PyArrayObject *__pyx_v_init = 0; PyObject *__pyx_v_rng = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_fuse_0kmeans (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_data,&__pyx_n_s_k,&__pyx_n_s_max_iter,&__pyx_n_s_init,&__pyx_n_s_rng,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = (PyObject *)__pyx_k__8; values[4] = __pyx_k__9; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_data)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_k)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_fuse_0kmeans", 0, 2, 5, 1); __PYX_ERR(0, 97, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_iter); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_init); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_rng); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_fuse_0kmeans") < 0)) __PYX_ERR(0, 97, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_data = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_data.memview)) __PYX_ERR(0, 97, __pyx_L3_error) __pyx_v_k = __Pyx_PyInt_As_Py_intptr_t(values[1]); if (unlikely((__pyx_v_k == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 97, __pyx_L3_error) if (values[2]) { __pyx_v_max_iter = __Pyx_PyInt_As_Py_intptr_t(values[2]); if (unlikely((__pyx_v_max_iter == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 98, __pyx_L3_error) } else { __pyx_v_max_iter = __pyx_k__7; } __pyx_v_init = ((PyArrayObject *)values[3]); __pyx_v_rng = values[4]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_fuse_0kmeans", 0, 2, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 97, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("kmeans.__pyx_fuse_0kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_init), __pyx_ptype_5numpy_ndarray, 1, "init", 0))) __PYX_ERR(0, 98, __pyx_L1_error) __pyx_r = __pyx_pf_6kmeans_2__pyx_fuse_0kmeans(__pyx_self, __pyx_v_data, __pyx_v_k, __pyx_v_max_iter, __pyx_v_init, __pyx_v_rng); /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6kmeans_2__pyx_fuse_0kmeans(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, npy_intp __pyx_v_max_iter, PyArrayObject *__pyx_v_init, PyObject *__pyx_v_rng) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; struct __pyx_fuse_0__pyx_opt_args_6kmeans_kmeans __pyx_t_2; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_fuse_0kmeans", 0); __Pyx_XDECREF(__pyx_r); if (unlikely(!__pyx_v_data.memview)) { __Pyx_RaiseUnboundLocalError("data"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_2.__pyx_n = 3; __pyx_t_2.max_iter = __pyx_v_max_iter; __pyx_t_2.init = __pyx_v_init; __pyx_t_2.rng = __pyx_v_rng; __pyx_t_1 = __pyx_fuse_0__pyx_f_6kmeans_kmeans(__pyx_v_data, __pyx_v_k, 0, &__pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("kmeans.__pyx_fuse_0kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __PYX_XDEC_MEMVIEW(&__pyx_v_data, 1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pw_6kmeans_5__pyx_fuse_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyObject *__pyx_pw_6kmeans_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyObject *__pyx_fuse_1__pyx_f_6kmeans_kmeans(__Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, CYTHON_UNUSED int __pyx_skip_dispatch, struct __pyx_fuse_1__pyx_opt_args_6kmeans_kmeans *__pyx_optional_args) { npy_intp __pyx_v_max_iter = __pyx_k__12; PyArrayObject *__pyx_v_init = __pyx_k__13; PyObject *__pyx_v_rng = __pyx_k__14; int __pyx_v_centroid; int __pyx_v_feature; int __pyx_v_example; npy_intp __pyx_v_ndata; npy_intp __pyx_v_nfeat; PyObject *__pyx_v_data_dtype = 0; PyObject *__pyx_v_dists = 0; __Pyx_memviewslice __pyx_v_mindist = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_counts = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_distsview = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_m_sqnorm = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_means = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_assign = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_argmin = { 0, 0, { 0 }, { 0 }, { 0 } }; float __pyx_v_minusinf; PyObject *__pyx_v_iteration = NULL; int __pyx_v_converged; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; PyObject *__pyx_t_6 = NULL; __Pyx_memviewslice __pyx_t_7 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyObject *__pyx_t_8 = NULL; __Pyx_memviewslice __pyx_t_9 = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_t_10 = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_t_11; int __pyx_t_12; float __pyx_t_13; Py_ssize_t __pyx_t_14; PyObject *(*__pyx_t_15)(PyObject *); npy_intp __pyx_t_16; npy_intp __pyx_t_17; npy_intp __pyx_t_18; npy_intp __pyx_t_19; npy_intp __pyx_t_20; int __pyx_t_21; Py_ssize_t __pyx_t_22; Py_ssize_t __pyx_t_23; Py_ssize_t __pyx_t_24; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_fuse_1kmeans", 0); if (__pyx_optional_args) { if (__pyx_optional_args->__pyx_n > 0) { __pyx_v_max_iter = __pyx_optional_args->max_iter; if (__pyx_optional_args->__pyx_n > 1) { __pyx_v_init = __pyx_optional_args->init; if (__pyx_optional_args->__pyx_n > 2) { __pyx_v_rng = __pyx_optional_args->rng; } } } } __Pyx_INCREF(__pyx_v_rng); /* "kmeans.pyx":166 * cdef: * int centroid, feature, example * np.npy_intp ndata = data.shape[0] # <<<<<<<<<<<<<< * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype */ __pyx_v_ndata = (__pyx_v_data.shape[0]); /* "kmeans.pyx":167 * int centroid, feature, example * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] # <<<<<<<<<<<<<< * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) */ __pyx_v_nfeat = (__pyx_v_data.shape[1]); /* "kmeans.pyx":168 * np.npy_intp ndata = data.shape[0] * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype # <<<<<<<<<<<<<< * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_array); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_2 = PyFloat_FromDouble((*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_data.data + __pyx_t_4 * __pyx_v_data.strides[0]) ) + __pyx_t_5 * __pyx_v_data.strides[1]) )))); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyList_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyList_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_6); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_dtype); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 168, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_data_dtype = __pyx_t_3; __pyx_t_3 = 0; /* "kmeans.pyx":169 * np.npy_intp nfeat = data.shape[1] * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) # <<<<<<<<<<<<<< * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) * np.int32_t[:] counts = np.empty(k, dtype=np.int32) */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_6); __pyx_t_3 = 0; __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 169, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_dists = __pyx_t_3; __pyx_t_3 = 0; /* "kmeans.pyx":170 * data_dtype = np.array([data[0,0]]).dtype * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) # <<<<<<<<<<<<<< * np.int32_t[:] counts = np.empty(k, dtype=np.int32) * # Allocate space for the assignment indices, distance matrix, the means. */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 170, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_ds_float(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(0, 170, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_mindist = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "kmeans.pyx":171 * dists = np.empty((ndata, k), dtype=data_dtype) * double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) * np.int32_t[:] counts = np.empty(k, dtype=np.int32) # <<<<<<<<<<<<<< * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int32); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_8) < 0) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_6, __pyx_t_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_8, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_counts = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":173 * np.int32_t[:] counts = np.empty(k, dtype=np.int32) * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists # <<<<<<<<<<<<<< * double_or_float[:] m_sqnorm = np.empty(k, dtype=data_dtype) * double_or_float[:, :] means */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(__pyx_v_dists, PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 173, __pyx_L1_error) __pyx_v_distsview = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":174 * # Allocate space for the assignment indices, distance matrix, the means. * double_or_float[:, :] distsview = dists * double_or_float[:] m_sqnorm = np.empty(k, dtype=data_dtype) # <<<<<<<<<<<<<< * double_or_float[:, :] means * # Declare variables for the current assignments and current argmin. */ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_empty); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_8, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 174, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, __pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_7 = __Pyx_PyObject_to_MemoryviewSlice_ds_float(__pyx_t_3, PyBUF_WRITABLE); if (unlikely(!__pyx_t_7.memview)) __PYX_ERR(0, 174, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_m_sqnorm = __pyx_t_7; __pyx_t_7.memview = NULL; __pyx_t_7.data = NULL; /* "kmeans.pyx":180 * # convergence at a memory cost of (pointer width * ndata). * np.int32_t[:] assign * np.int32_t[:] argmin = np.empty(ndata, dtype=np.int32) # <<<<<<<<<<<<<< * double_or_float minusinf * */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_empty); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_int32); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 180, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_argmin = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":183 * double_or_float minusinf * * if init is not None: # <<<<<<<<<<<<<< * if rng is not None: * raise ValueError('rng argument unused if init is provided') */ __pyx_t_11 = (((PyObject *)__pyx_v_init) != Py_None); __pyx_t_12 = (__pyx_t_11 != 0); if (__pyx_t_12) { /* "kmeans.pyx":184 * * if init is not None: * if rng is not None: # <<<<<<<<<<<<<< * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: */ __pyx_t_12 = (__pyx_v_rng != Py_None); __pyx_t_11 = (__pyx_t_12 != 0); if (unlikely(__pyx_t_11)) { /* "kmeans.pyx":185 * if init is not None: * if rng is not None: * raise ValueError('rng argument unused if init is provided') # <<<<<<<<<<<<<< * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 185, __pyx_L1_error) /* "kmeans.pyx":184 * * if init is not None: * if rng is not None: # <<<<<<<<<<<<<< * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: */ } /* "kmeans.pyx":186 * if rng is not None: * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: # <<<<<<<<<<<<<< * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') */ __pyx_t_12 = (((__pyx_v_init->dimensions[0]) != __pyx_v_k) != 0); if (!__pyx_t_12) { } else { __pyx_t_11 = __pyx_t_12; goto __pyx_L6_bool_binop_done; } __pyx_t_12 = (((__pyx_v_init->dimensions[1]) != __pyx_v_nfeat) != 0); __pyx_t_11 = __pyx_t_12; __pyx_L6_bool_binop_done:; if (unlikely(__pyx_t_11)) { /* "kmeans.pyx":187 * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' # <<<<<<<<<<<<<< * 'data.shape[1])') * means = init */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 187, __pyx_L1_error) /* "kmeans.pyx":186 * if rng is not None: * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: # <<<<<<<<<<<<<< * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') */ } /* "kmeans.pyx":189 * raise ValueError('init if provided must have shape (k, ' * 'data.shape[1])') * means = init # <<<<<<<<<<<<<< * assign = np.empty(ndata, dtype=np.int32) * else: */ __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(((PyObject *)__pyx_v_init), PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 189, __pyx_L1_error) __pyx_v_means = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":190 * 'data.shape[1])') * means = init * assign = np.empty(ndata, dtype=np.int32) # <<<<<<<<<<<<<< * else: * means = np.empty((k, nfeat), dtype=data_dtype) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_int32); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_t_1) < 0) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_6, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_assign = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":183 * double_or_float minusinf * * if init is not None: # <<<<<<<<<<<<<< * if rng is not None: * raise ValueError('rng argument unused if init is provided') */ goto __pyx_L3; } /* "kmeans.pyx":192 * assign = np.empty(ndata, dtype=np.int32) * else: * means = np.empty((k, nfeat), dtype=data_dtype) # <<<<<<<<<<<<<< * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): */ /*else*/ { __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_nfeat); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_6); __pyx_t_1 = 0; __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_v_data_dtype) < 0) __PYX_ERR(0, 192, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_10 = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_10.memview)) __PYX_ERR(0, 192, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_means = __pyx_t_10; __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; /* "kmeans.pyx":194 * means = np.empty((k, nfeat), dtype=data_dtype) * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): # <<<<<<<<<<<<<< * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) */ __pyx_t_11 = __Pyx_HasAttr(__pyx_v_rng, __pyx_n_s_random_integers); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(0, 194, __pyx_L1_error) __pyx_t_12 = ((!(__pyx_t_11 != 0)) != 0); if (__pyx_t_12) { /* "kmeans.pyx":195 * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): * rng = np.random.RandomState(rng) # <<<<<<<<<<<<<< * assign = rng.randint(0, k, size=ndata).astype(np.int32) * # Compute the means from the random initial assignments. */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_random); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_RandomState); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_6, __pyx_v_rng) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_rng); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_rng, __pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":194 * means = np.empty((k, nfeat), dtype=data_dtype) * # Randomly initialize assignments to uniformly drawn training points. * if not hasattr(rng, 'random_integers'): # <<<<<<<<<<<<<< * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) */ } /* "kmeans.pyx":196 * if not hasattr(rng, 'random_integers'): * rng = np.random.RandomState(rng) * assign = rng.randint(0, k, size=ndata).astype(np.int32) # <<<<<<<<<<<<<< * # Compute the means from the random initial assignments. * _compute_means(data, assign, means, counts) */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_rng, __pyx_n_s_randint); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_int_0); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_ndata); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_size, __pyx_t_8) < 0) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, __pyx_t_6); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_astype); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_int32); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_8, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_2); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_assign = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "kmeans.pyx":198 * assign = rng.randint(0, k, size=ndata).astype(np.int32) * # Compute the means from the random initial assignments. * _compute_means(data, assign, means, counts) # <<<<<<<<<<<<<< * * minusinf = np.finfo(data_dtype).min # how to write np.inf */ __pyx_fuse_1__pyx_f_6kmeans__compute_means(__pyx_v_data, __pyx_v_assign, __pyx_v_means, __pyx_v_counts); } __pyx_L3:; /* "kmeans.pyx":200 * _compute_means(data, assign, means, counts) * * minusinf = np.finfo(data_dtype).min # how to write np.inf # <<<<<<<<<<<<<< * for iteration in range(max_iter): * # Quantization step: compute squared distance between every point */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_finfo); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_6, __pyx_v_data_dtype) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_data_dtype); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_min); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_13 = __pyx_PyFloat_AsFloat(__pyx_t_2); if (unlikely((__pyx_t_13 == (float)-1) && PyErr_Occurred())) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_minusinf = __pyx_t_13; /* "kmeans.pyx":201 * * minusinf = np.finfo(data_dtype).min # how to write np.inf * for iteration in range(max_iter): # <<<<<<<<<<<<<< * # Quantization step: compute squared distance between every point * # and every mean. */ __pyx_t_2 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_max_iter); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_CallOneArg(__pyx_builtin_range, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (likely(PyList_CheckExact(__pyx_t_1)) || PyTuple_CheckExact(__pyx_t_1)) { __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __pyx_t_14 = 0; __pyx_t_15 = NULL; } else { __pyx_t_14 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_15 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_15)) __PYX_ERR(0, 201, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; for (;;) { if (likely(!__pyx_t_15)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_14 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_14); __Pyx_INCREF(__pyx_t_1); __pyx_t_14++; if (unlikely(0 < 0)) __PYX_ERR(0, 201, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_2, __pyx_t_14); __pyx_t_14++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } else { if (__pyx_t_14 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_1 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_14); __Pyx_INCREF(__pyx_t_1); __pyx_t_14++; if (unlikely(0 < 0)) __PYX_ERR(0, 201, __pyx_L1_error) #else __pyx_t_1 = PySequence_ITEM(__pyx_t_2, __pyx_t_14); __pyx_t_14++; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); #endif } } else { __pyx_t_1 = __pyx_t_15(__pyx_t_2); if (unlikely(!__pyx_t_1)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 201, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_1); } __Pyx_XDECREF_SET(__pyx_v_iteration, __pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":206 * # The distance between each of the data points and each of the means * # can be computed by a matrix product (times -2) plus squared norms. * np.dot(data, means.T, out=dists) # <<<<<<<<<<<<<< * * # Compute the squared norm of each of the centroids (necessary */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_dot); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __pyx_memoryview_fromslice(__pyx_v_data, 2, (PyObject *(*)(char *)) __pyx_memview_get_float, (int (*)(char *, PyObject *)) __pyx_memview_set_float, 0);; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_10 = __pyx_v_means; __PYX_INC_MEMVIEW(&__pyx_t_10, 1); if (unlikely(__pyx_memslice_transpose(&__pyx_t_10) == 0)) __PYX_ERR(0, 206, __pyx_L1_error) __pyx_t_8 = __pyx_memoryview_fromslice(__pyx_t_10, 2, (PyObject *(*)(char *)) __pyx_memview_get_float, (int (*)(char *, PyObject *)) __pyx_memview_set_float, 0);; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __PYX_XDEC_MEMVIEW(&__pyx_t_10, 1); __pyx_t_10.memview = NULL; __pyx_t_10.data = NULL; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_8); __pyx_t_1 = 0; __pyx_t_8 = 0; __pyx_t_8 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (PyDict_SetItem(__pyx_t_8, __pyx_n_s_out, __pyx_v_dists) < 0) __PYX_ERR(0, 206, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_3, __pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":210 * # Compute the squared norm of each of the centroids (necessary * # for determining relative distances below). * for centroid in prange(k, nogil=True): # <<<<<<<<<<<<<< * m_sqnorm[centroid] = 0. * for feature in range(nfeat): */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_16 = __pyx_v_k; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_18 = (__pyx_t_16 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_18 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_24, __pyx_t_4, __pyx_t_5) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for firstprivate(__pyx_v_centroid) lastprivate(__pyx_v_centroid) lastprivate(__pyx_v_feature) #endif /* _OPENMP */ for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_18; __pyx_t_17++){ { __pyx_v_centroid = (int)(0 + 1 * __pyx_t_17); /* Initialize private variables to invalid values */ __pyx_v_feature = ((int)0xbad0bad0); /* "kmeans.pyx":211 * # for determining relative distances below). * for centroid in prange(k, nogil=True): * m_sqnorm[centroid] = 0. # <<<<<<<<<<<<<< * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * */ __pyx_t_5 = __pyx_v_centroid; *((float *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_5 * __pyx_v_m_sqnorm.strides[0]) )) = 0.; /* "kmeans.pyx":212 * for centroid in prange(k, nogil=True): * m_sqnorm[centroid] = 0. * for feature in range(nfeat): # <<<<<<<<<<<<<< * m_sqnorm[centroid] += (means[centroid, feature] * * means[centroid, feature]) */ __pyx_t_19 = __pyx_v_nfeat; __pyx_t_20 = __pyx_t_19; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { __pyx_v_feature = __pyx_t_21; /* "kmeans.pyx":213 * m_sqnorm[centroid] = 0. * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * # <<<<<<<<<<<<<< * means[centroid, feature]) * */ __pyx_t_5 = __pyx_v_centroid; __pyx_t_4 = __pyx_v_feature; /* "kmeans.pyx":214 * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * * means[centroid, feature]) # <<<<<<<<<<<<<< * * # Determine the minimum distance cluster to each example. Note that */ __pyx_t_22 = __pyx_v_centroid; __pyx_t_23 = __pyx_v_feature; /* "kmeans.pyx":213 * m_sqnorm[centroid] = 0. * for feature in range(nfeat): * m_sqnorm[centroid] += (means[centroid, feature] * # <<<<<<<<<<<<<< * means[centroid, feature]) * */ __pyx_t_24 = __pyx_v_centroid; *((float *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_24 * __pyx_v_m_sqnorm.strides[0]) )) += ((*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_5 * __pyx_v_means.strides[0]) ) + __pyx_t_4 * __pyx_v_means.strides[1]) ))) * (*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_means.data + __pyx_t_22 * __pyx_v_means.strides[0]) ) + __pyx_t_23 * __pyx_v_means.strides[1]) )))); } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":210 * # Compute the squared norm of each of the centroids (necessary * # for determining relative distances below). * for centroid in prange(k, nogil=True): # <<<<<<<<<<<<<< * m_sqnorm[centroid] = 0. * for feature in range(nfeat): */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L15; } __pyx_L15:; } } /* "kmeans.pyx":219 * # we are actually determining max(m'x - 0.5 * m'm) which is equivalent * # to min(x'x - 2 * m'x + m'm), since the first term never changes. * for example in prange(ndata, nogil=True): # <<<<<<<<<<<<<< * # Initialize the min and argmin to invalid values. * argmin[example] = -1 */ { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { __pyx_t_18 = __pyx_v_ndata; if ((1 == 0)) abort(); { #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) (x) #define unlikely(x) (x) #endif __pyx_t_16 = (__pyx_t_18 - 0 + 1 - 1/abs(1)) / 1; if (__pyx_t_16 > 0) { #ifdef _OPENMP #pragma omp parallel private(__pyx_t_12, __pyx_t_19, __pyx_t_20, __pyx_t_21, __pyx_t_22, __pyx_t_23, __pyx_t_4) #endif /* _OPENMP */ { #ifdef _OPENMP #pragma omp for lastprivate(__pyx_v_centroid) firstprivate(__pyx_v_example) lastprivate(__pyx_v_example) #endif /* _OPENMP */ for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17++){ { __pyx_v_example = (int)(0 + 1 * __pyx_t_17); /* Initialize private variables to invalid values */ __pyx_v_centroid = ((int)0xbad0bad0); /* "kmeans.pyx":221 * for example in prange(ndata, nogil=True): * # Initialize the min and argmin to invalid values. * argmin[example] = -1 # <<<<<<<<<<<<<< * mindist[example] = minusinf * for centroid in range(k): */ __pyx_t_23 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_23 * __pyx_v_argmin.strides[0]) )) = -1; /* "kmeans.pyx":222 * # Initialize the min and argmin to invalid values. * argmin[example] = -1 * mindist[example] = minusinf # <<<<<<<<<<<<<< * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] */ __pyx_t_23 = __pyx_v_example; *((float *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_23 * __pyx_v_mindist.strides[0]) )) = __pyx_v_minusinf; /* "kmeans.pyx":223 * argmin[example] = -1 * mindist[example] = minusinf * for centroid in range(k): # <<<<<<<<<<<<<< * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: */ __pyx_t_19 = __pyx_v_k; __pyx_t_20 = __pyx_t_19; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) { __pyx_v_centroid = __pyx_t_21; /* "kmeans.pyx":224 * mindist[example] = minusinf * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] # <<<<<<<<<<<<<< * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] */ __pyx_t_23 = __pyx_v_centroid; __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; *((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_22 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) )) -= (0.5 * (*((float *) ( /* dim=0 */ (__pyx_v_m_sqnorm.data + __pyx_t_23 * __pyx_v_m_sqnorm.strides[0]) )))); /* "kmeans.pyx":225 * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: # <<<<<<<<<<<<<< * mindist[example] = distsview[example, centroid] * argmin[example] = centroid */ __pyx_t_23 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; __pyx_t_22 = __pyx_v_example; __pyx_t_12 = (((*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_23 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) ))) > (*((float *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_22 * __pyx_v_mindist.strides[0]) )))) != 0); if (__pyx_t_12) { /* "kmeans.pyx":226 * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] # <<<<<<<<<<<<<< * argmin[example] = centroid * */ __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_centroid; __pyx_t_23 = __pyx_v_example; *((float *) ( /* dim=0 */ (__pyx_v_mindist.data + __pyx_t_23 * __pyx_v_mindist.strides[0]) )) = (*((float *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_distsview.data + __pyx_t_22 * __pyx_v_distsview.strides[0]) ) + __pyx_t_4 * __pyx_v_distsview.strides[1]) ))); /* "kmeans.pyx":227 * if distsview[example, centroid] > mindist[example]: * mindist[example] = distsview[example, centroid] * argmin[example] = centroid # <<<<<<<<<<<<<< * * # Check previous assignment against current assignment to determine if */ __pyx_t_4 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_4 * __pyx_v_argmin.strides[0]) )) = __pyx_v_centroid; /* "kmeans.pyx":225 * for centroid in range(k): * distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] * if distsview[example, centroid] > mindist[example]: # <<<<<<<<<<<<<< * mindist[example] = distsview[example, centroid] * argmin[example] = centroid */ } } } } } } } #if ((defined(__APPLE__) || defined(__OSX__)) && (defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))) #undef likely #undef unlikely #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #endif } /* "kmeans.pyx":219 * # we are actually determining max(m'x - 0.5 * m'm) which is equivalent * # to min(x'x - 2 * m'x + m'm), since the first term never changes. * for example in prange(ndata, nogil=True): # <<<<<<<<<<<<<< * # Initialize the min and argmin to invalid values. * argmin[example] = -1 */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L28; } __pyx_L28:; } } /* "kmeans.pyx":234 * # TODO: Do this check in the parallel loop above using a with * # parallel() block. * converged = True # <<<<<<<<<<<<<< * for example in range(ndata): * if argmin[example] != assign[example]: */ __pyx_v_converged = 1; /* "kmeans.pyx":235 * # parallel() block. * converged = True * for example in range(ndata): # <<<<<<<<<<<<<< * if argmin[example] != assign[example]: * converged = False */ __pyx_t_16 = __pyx_v_ndata; __pyx_t_17 = __pyx_t_16; for (__pyx_t_21 = 0; __pyx_t_21 < __pyx_t_17; __pyx_t_21+=1) { __pyx_v_example = __pyx_t_21; /* "kmeans.pyx":236 * converged = True * for example in range(ndata): * if argmin[example] != assign[example]: # <<<<<<<<<<<<<< * converged = False * assign[example] = argmin[example] */ __pyx_t_4 = __pyx_v_example; __pyx_t_22 = __pyx_v_example; __pyx_t_12 = (((*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_4 * __pyx_v_argmin.strides[0]) ))) != (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_22 * __pyx_v_assign.strides[0]) )))) != 0); if (__pyx_t_12) { /* "kmeans.pyx":237 * for example in range(ndata): * if argmin[example] != assign[example]: * converged = False # <<<<<<<<<<<<<< * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. */ __pyx_v_converged = 0; /* "kmeans.pyx":236 * converged = True * for example in range(ndata): * if argmin[example] != assign[example]: # <<<<<<<<<<<<<< * converged = False * assign[example] = argmin[example] */ } /* "kmeans.pyx":238 * if argmin[example] != assign[example]: * converged = False * assign[example] = argmin[example] # <<<<<<<<<<<<<< * # If the assignment has changed, recompute means and continue the loop. * if not converged: */ __pyx_t_22 = __pyx_v_example; __pyx_t_4 = __pyx_v_example; *((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_assign.data + __pyx_t_4 * __pyx_v_assign.strides[0]) )) = (*((__pyx_t_5numpy_int32_t *) ( /* dim=0 */ (__pyx_v_argmin.data + __pyx_t_22 * __pyx_v_argmin.strides[0]) ))); } /* "kmeans.pyx":240 * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. * if not converged: # <<<<<<<<<<<<<< * _compute_means(data, assign, means, counts) * else: */ __pyx_t_12 = ((!(__pyx_v_converged != 0)) != 0); if (__pyx_t_12) { /* "kmeans.pyx":241 * # If the assignment has changed, recompute means and continue the loop. * if not converged: * _compute_means(data, assign, means, counts) # <<<<<<<<<<<<<< * else: * break */ __pyx_fuse_1__pyx_f_6kmeans__compute_means(__pyx_v_data, __pyx_v_assign, __pyx_v_means, __pyx_v_counts); /* "kmeans.pyx":240 * assign[example] = argmin[example] * # If the assignment has changed, recompute means and continue the loop. * if not converged: # <<<<<<<<<<<<<< * _compute_means(data, assign, means, counts) * else: */ goto __pyx_L41; } /* "kmeans.pyx":243 * _compute_means(data, assign, means, counts) * else: * break # <<<<<<<<<<<<<< * return assign, means, iteration + 1, converged */ /*else*/ { goto __pyx_L10_break; } __pyx_L41:; /* "kmeans.pyx":201 * * minusinf = np.finfo(data_dtype).min # how to write np.inf * for iteration in range(max_iter): # <<<<<<<<<<<<<< * # Quantization step: compute squared distance between every point * # and every mean. */ } __pyx_L10_break:; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "kmeans.pyx":244 * else: * break * return assign, means, iteration + 1, converged # <<<<<<<<<<<<<< */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_fromslice(__pyx_v_assign, 1, (PyObject *(*)(char *)) __pyx_memview_get_nn___pyx_t_5numpy_int32_t, (int (*)(char *, PyObject *)) __pyx_memview_set_nn___pyx_t_5numpy_int32_t, 0);; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_memoryview_fromslice(__pyx_v_means, 2, (PyObject *(*)(char *)) __pyx_memview_get_float, (int (*)(char *, PyObject *)) __pyx_memview_set_float, 0);; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(!__pyx_v_iteration)) { __Pyx_RaiseUnboundLocalError("iteration"); __PYX_ERR(0, 244, __pyx_L1_error) } __pyx_t_8 = __Pyx_PyInt_AddObjC(__pyx_v_iteration, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_3 = __Pyx_PyBool_FromLong(__pyx_v_converged); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 244, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_6, 2, __pyx_t_8); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 3, __pyx_t_3); __pyx_t_2 = 0; __pyx_t_1 = 0; __pyx_t_8 = 0; __pyx_t_3 = 0; __pyx_r = ((PyObject*)__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L0; /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __PYX_XDEC_MEMVIEW(&__pyx_t_7, 1); __Pyx_XDECREF(__pyx_t_8); __PYX_XDEC_MEMVIEW(&__pyx_t_9, 1); __PYX_XDEC_MEMVIEW(&__pyx_t_10, 1); __Pyx_AddTraceback("kmeans.kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_data_dtype); __Pyx_XDECREF(__pyx_v_dists); __PYX_XDEC_MEMVIEW(&__pyx_v_mindist, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_counts, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_distsview, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_m_sqnorm, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_means, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_assign, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_argmin, 1); __Pyx_XDECREF(__pyx_v_iteration); __Pyx_XDECREF(__pyx_v_rng); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static PyObject *__pyx_pw_6kmeans_5__pyx_fuse_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_fuse_1__pyx_mdef_6kmeans_5__pyx_fuse_1kmeans = {"__pyx_fuse_1kmeans", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6kmeans_5__pyx_fuse_1kmeans, METH_VARARGS|METH_KEYWORDS, __pyx_doc_6kmeans_kmeans}; static PyObject *__pyx_pw_6kmeans_5__pyx_fuse_1kmeans(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { __Pyx_memviewslice __pyx_v_data = { 0, 0, { 0 }, { 0 }, { 0 } }; npy_intp __pyx_v_k; npy_intp __pyx_v_max_iter; PyArrayObject *__pyx_v_init = 0; PyObject *__pyx_v_rng = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_fuse_1kmeans (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_data,&__pyx_n_s_k,&__pyx_n_s_max_iter,&__pyx_n_s_init,&__pyx_n_s_rng,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = (PyObject *)__pyx_k__13; values[4] = __pyx_k__14; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_data)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_k)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_fuse_1kmeans", 0, 2, 5, 1); __PYX_ERR(0, 97, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_max_iter); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_init); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_rng); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_fuse_1kmeans") < 0)) __PYX_ERR(0, 97, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_data = __Pyx_PyObject_to_MemoryviewSlice_dsds_float(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_data.memview)) __PYX_ERR(0, 97, __pyx_L3_error) __pyx_v_k = __Pyx_PyInt_As_Py_intptr_t(values[1]); if (unlikely((__pyx_v_k == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 97, __pyx_L3_error) if (values[2]) { __pyx_v_max_iter = __Pyx_PyInt_As_Py_intptr_t(values[2]); if (unlikely((__pyx_v_max_iter == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 98, __pyx_L3_error) } else { __pyx_v_max_iter = __pyx_k__12; } __pyx_v_init = ((PyArrayObject *)values[3]); __pyx_v_rng = values[4]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_fuse_1kmeans", 0, 2, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 97, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("kmeans.__pyx_fuse_1kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_init), __pyx_ptype_5numpy_ndarray, 1, "init", 0))) __PYX_ERR(0, 98, __pyx_L1_error) __pyx_r = __pyx_pf_6kmeans_4__pyx_fuse_1kmeans(__pyx_self, __pyx_v_data, __pyx_v_k, __pyx_v_max_iter, __pyx_v_init, __pyx_v_rng); /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6kmeans_4__pyx_fuse_1kmeans(CYTHON_UNUSED PyObject *__pyx_self, __Pyx_memviewslice __pyx_v_data, npy_intp __pyx_v_k, npy_intp __pyx_v_max_iter, PyArrayObject *__pyx_v_init, PyObject *__pyx_v_rng) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; struct __pyx_fuse_1__pyx_opt_args_6kmeans_kmeans __pyx_t_2; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_fuse_1kmeans", 0); __Pyx_XDECREF(__pyx_r); if (unlikely(!__pyx_v_data.memview)) { __Pyx_RaiseUnboundLocalError("data"); __PYX_ERR(0, 97, __pyx_L1_error) } __pyx_t_2.__pyx_n = 3; __pyx_t_2.max_iter = __pyx_v_max_iter; __pyx_t_2.init = __pyx_v_init; __pyx_t_2.rng = __pyx_v_rng; __pyx_t_1 = __pyx_fuse_1__pyx_f_6kmeans_kmeans(__pyx_v_data, __pyx_v_k, 0, &__pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("kmeans.__pyx_fuse_1kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __PYX_XDEC_MEMVIEW(&__pyx_v_data, 1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, <void*>a) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":735 * * cdef inline object PyArray_MultiIterNew1(a): * return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew2(a, b): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 735, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, <void*>a) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, <void*>a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":738 * * cdef inline object PyArray_MultiIterNew2(a, b): * return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew3(a, b, c): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 738, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, <void*>a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":741 * * cdef inline object PyArray_MultiIterNew3(a, b, c): * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":744 * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 744, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":747 * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<< * * cdef inline tuple PyDataType_SHAPE(dtype d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 747, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return <tuple>d.subarray.shape * else: */ __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); if (__pyx_t_1) { /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":751 * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape # <<<<<<<<<<<<<< * else: * return () */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return <tuple>d.subarray.shape * else: */ } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":753 * return <tuple>d.subarray.shape * else: * return () # <<<<<<<<<<<<<< * * */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_empty_tuple); __pyx_r = __pyx_empty_tuple; goto __pyx_L0; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_array_base", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":929 * * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< * PyArray_SetBaseObject(arr, base) * */ Py_INCREF(__pyx_v_base); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":930 * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< * * cdef inline object get_array_base(ndarray arr): */ (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { PyObject *__pyx_v_base; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("get_array_base", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":933 * * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< * if base is NULL: * return None */ __pyx_v_base = PyArray_BASE(__pyx_v_arr); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return <object>base */ __pyx_t_1 = ((__pyx_v_base == NULL) != 0); if (__pyx_t_1) { /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":935 * base = PyArray_BASE(arr) * if base is NULL: * return None # <<<<<<<<<<<<<< * return <object>base * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return <object>base */ } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":936 * if base is NULL: * return None * return <object>base # <<<<<<<<<<<<<< * * # Versions of the import_* functions which are more suitable for */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_base)); __pyx_r = ((PyObject *)__pyx_v_base); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_array", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":942 * cdef inline int import_array() except -1: * try: * __pyx_import_array() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.multiarray failed to import") */ __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 942, __pyx_L3_error) /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":943 * try: * __pyx_import_array() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.multiarray failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 943, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 944, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 944, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_umath", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":948 * cdef inline int import_umath() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 948, __pyx_L3_error) /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":949 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 949, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 950, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 950, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_ufunc", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":954 * cdef inline int import_ufunc() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 954, __pyx_L3_error) /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":955 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 955, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":956 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef extern from *: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 956, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 956, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_timedelta64_object", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":978 * bool * """ * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type)); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_datetime64_object", 0); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":993 * bool * """ * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type)); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) { npy_datetime __pyx_r; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1003 * also needed. That can be found using `get_datetime64_unit`. * """ * return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) { npy_timedelta __pyx_r; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1010 * returns the int64 value underlying scalar numpy timedelta64 object * """ * return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) { NPY_DATETIMEUNIT __pyx_r; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1017 * returns the unit part of the dtype for a numpy datetime64 object. * """ * return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<< */ __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base); goto __pyx_L0; /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* Python wrapper */ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; Py_ssize_t __pyx_v_itemsize; PyObject *__pyx_v_format = 0; PyObject *__pyx_v_mode = 0; int __pyx_v_allocate_buffer; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = ((PyObject *)__pyx_n_s_c); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(2, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(2, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_allocate_buffer); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 123, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = ((PyObject*)values[0]); __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 123, __pyx_L3_error) __pyx_v_format = values[2]; __pyx_v_mode = values[3]; if (values[4]) { __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 124, __pyx_L3_error) } else { /* "View.MemoryView":124 * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< * * cdef int idx */ __pyx_v_allocate_buffer = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 123, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(2, 123, __pyx_L1_error) if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(2, 123, __pyx_L1_error) } __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { int __pyx_v_idx; Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_dim; PyObject **__pyx_v_p; char __pyx_v_order; int __pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; char *__pyx_t_7; int __pyx_t_8; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; Py_ssize_t __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); __Pyx_INCREF(__pyx_v_format); /* "View.MemoryView":130 * cdef PyObject **p * * self.ndim = <int> len(shape) # <<<<<<<<<<<<<< * self.itemsize = itemsize * */ if (unlikely(__pyx_v_shape == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(2, 130, __pyx_L1_error) } __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(2, 130, __pyx_L1_error) __pyx_v_self->ndim = ((int)__pyx_t_1); /* "View.MemoryView":131 * * self.ndim = <int> len(shape) * self.itemsize = itemsize # <<<<<<<<<<<<<< * * if not self.ndim: */ __pyx_v_self->itemsize = __pyx_v_itemsize; /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 134, __pyx_L1_error) /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ } /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 137, __pyx_L1_error) /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ } /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ __pyx_t_2 = PyBytes_Check(__pyx_v_format); __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_4) { /* "View.MemoryView":140 * * if not isinstance(format, bytes): * format = format.encode('ASCII') # <<<<<<<<<<<<<< * self._format = format # keep a reference to the byte string * self.format = self._format */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_3 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_n_s_ASCII) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_n_s_ASCII); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ } /* "View.MemoryView":141 * if not isinstance(format, bytes): * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< * self.format = self._format * */ if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||((void)PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(2, 141, __pyx_L1_error) __pyx_t_3 = __pyx_v_format; __Pyx_INCREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __Pyx_GOTREF(__pyx_v_self->_format); __Pyx_DECREF(__pyx_v_self->_format); __pyx_v_self->_format = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":142 * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string * self.format = self._format # <<<<<<<<<<<<<< * * */ if (unlikely(__pyx_v_self->_format == Py_None)) { PyErr_SetString(PyExc_TypeError, "expected bytes, NoneType found"); __PYX_ERR(2, 142, __pyx_L1_error) } __pyx_t_7 = __Pyx_PyBytes_AsWritableString(__pyx_v_self->_format); if (unlikely((!__pyx_t_7) && PyErr_Occurred())) __PYX_ERR(2, 142, __pyx_L1_error) __pyx_v_self->format = __pyx_t_7; /* "View.MemoryView":145 * * * self._shape = <Py_ssize_t *> PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< * self._strides = self._shape + self.ndim * */ __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); /* "View.MemoryView":146 * * self._shape = <Py_ssize_t *> PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< * * if not self._shape: */ __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 149, __pyx_L1_error) /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ } /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ __pyx_t_8 = 0; __pyx_t_3 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_3); __pyx_t_1 = 0; for (;;) { if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_1); __Pyx_INCREF(__pyx_t_5); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(2, 152, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_3, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_5); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 152, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_9; __pyx_v_idx = __pyx_t_8; __pyx_t_8 = (__pyx_t_8 + 1); /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":154 * for idx, dim in enumerate(shape): * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< * self._shape[idx] = dim * */ __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_6); __pyx_t_5 = 0; __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_6); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 154, __pyx_L1_error) /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ } /* "View.MemoryView":155 * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim # <<<<<<<<<<<<<< * * cdef char order */ (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 158, __pyx_L1_error) if (__pyx_t_4) { /* "View.MemoryView":159 * cdef char order * if mode == 'fortran': * order = b'F' # <<<<<<<<<<<<<< * self.mode = u'fortran' * elif mode == 'c': */ __pyx_v_order = 'F'; /* "View.MemoryView":160 * if mode == 'fortran': * order = b'F' * self.mode = u'fortran' # <<<<<<<<<<<<<< * elif mode == 'c': * order = b'C' */ __Pyx_INCREF(__pyx_n_u_fortran); __Pyx_GIVEREF(__pyx_n_u_fortran); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_fortran; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ goto __pyx_L10; } /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 161, __pyx_L1_error) if (likely(__pyx_t_4)) { /* "View.MemoryView":162 * self.mode = u'fortran' * elif mode == 'c': * order = b'C' # <<<<<<<<<<<<<< * self.mode = u'c' * else: */ __pyx_v_order = 'C'; /* "View.MemoryView":163 * elif mode == 'c': * order = b'C' * self.mode = u'c' # <<<<<<<<<<<<<< * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) */ __Pyx_INCREF(__pyx_n_u_c); __Pyx_GIVEREF(__pyx_n_u_c); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_c; /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ goto __pyx_L10; } /* "View.MemoryView":165 * self.mode = u'c' * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< * * self.len = fill_contig_strides_array(self._shape, self._strides, */ /*else*/ { __pyx_t_3 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 165, __pyx_L1_error) } __pyx_L10:; /* "View.MemoryView":167 * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) * * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< * itemsize, self.ndim, order) * */ __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); /* "View.MemoryView":170 * itemsize, self.ndim, order) * * self.free_data = allocate_buffer # <<<<<<<<<<<<<< * self.dtype_is_object = format == b'O' * if allocate_buffer: */ __pyx_v_self->free_data = __pyx_v_allocate_buffer; /* "View.MemoryView":171 * * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< * if allocate_buffer: * */ __pyx_t_10 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_10); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 171, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_v_self->dtype_is_object = __pyx_t_4; /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ __pyx_t_4 = (__pyx_v_allocate_buffer != 0); if (__pyx_t_4) { /* "View.MemoryView":175 * * * self.data = <char *>malloc(self.len) # <<<<<<<<<<<<<< * if not self.data: * raise MemoryError("unable to allocate array data.") */ __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); /* "View.MemoryView":176 * * self.data = <char *>malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":177 * self.data = <char *>malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 177, __pyx_L1_error) /* "View.MemoryView":176 * * self.data = <char *>malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = <PyObject **> self.data * for i in range(self.len / itemsize): */ __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_4) { /* "View.MemoryView":180 * * if self.dtype_is_object: * p = <PyObject **> self.data # <<<<<<<<<<<<<< * for i in range(self.len / itemsize): * p[i] = Py_None */ __pyx_v_p = ((PyObject **)__pyx_v_self->data); /* "View.MemoryView":181 * if self.dtype_is_object: * p = <PyObject **> self.data * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< * p[i] = Py_None * Py_INCREF(Py_None) */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(2, 181, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(2, 181, __pyx_L1_error) } __pyx_t_1 = __Pyx_div_Py_ssize_t(__pyx_v_self->len, __pyx_v_itemsize); __pyx_t_9 = __pyx_t_1; for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_9; __pyx_t_11+=1) { __pyx_v_i = __pyx_t_11; /* "View.MemoryView":182 * p = <PyObject **> self.data * for i in range(self.len / itemsize): * p[i] = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ (__pyx_v_p[__pyx_v_i]) = Py_None; /* "View.MemoryView":183 * for i in range(self.len / itemsize): * p[i] = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * @cname('getbuffer') */ Py_INCREF(Py_None); } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = <PyObject **> self.data * for i in range(self.len / itemsize): */ } /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_format); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_v_bufmode; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; char *__pyx_t_4; Py_ssize_t __pyx_t_5; int __pyx_t_6; Py_ssize_t *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":187 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 # <<<<<<<<<<<<<< * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = -1; /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 188, __pyx_L1_error) __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":189 * cdef int bufmode = -1 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ goto __pyx_L3; } /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 190, __pyx_L1_error) __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":191 * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") */ __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ } __pyx_L3:; /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 193, __pyx_L1_error) /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ } /* "View.MemoryView":194 * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data # <<<<<<<<<<<<<< * info.len = self.len * info.ndim = self.ndim */ __pyx_t_4 = __pyx_v_self->data; __pyx_v_info->buf = __pyx_t_4; /* "View.MemoryView":195 * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data * info.len = self.len # <<<<<<<<<<<<<< * info.ndim = self.ndim * info.shape = self._shape */ __pyx_t_5 = __pyx_v_self->len; __pyx_v_info->len = __pyx_t_5; /* "View.MemoryView":196 * info.buf = self.data * info.len = self.len * info.ndim = self.ndim # <<<<<<<<<<<<<< * info.shape = self._shape * info.strides = self._strides */ __pyx_t_6 = __pyx_v_self->ndim; __pyx_v_info->ndim = __pyx_t_6; /* "View.MemoryView":197 * info.len = self.len * info.ndim = self.ndim * info.shape = self._shape # <<<<<<<<<<<<<< * info.strides = self._strides * info.suboffsets = NULL */ __pyx_t_7 = __pyx_v_self->_shape; __pyx_v_info->shape = __pyx_t_7; /* "View.MemoryView":198 * info.ndim = self.ndim * info.shape = self._shape * info.strides = self._strides # <<<<<<<<<<<<<< * info.suboffsets = NULL * info.itemsize = self.itemsize */ __pyx_t_7 = __pyx_v_self->_strides; __pyx_v_info->strides = __pyx_t_7; /* "View.MemoryView":199 * info.shape = self._shape * info.strides = self._strides * info.suboffsets = NULL # <<<<<<<<<<<<<< * info.itemsize = self.itemsize * info.readonly = 0 */ __pyx_v_info->suboffsets = NULL; /* "View.MemoryView":200 * info.strides = self._strides * info.suboffsets = NULL * info.itemsize = self.itemsize # <<<<<<<<<<<<<< * info.readonly = 0 * */ __pyx_t_5 = __pyx_v_self->itemsize; __pyx_v_info->itemsize = __pyx_t_5; /* "View.MemoryView":201 * info.suboffsets = NULL * info.itemsize = self.itemsize * info.readonly = 0 # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ __pyx_v_info->readonly = 0; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":204 * * if flags & PyBUF_FORMAT: * info.format = self.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_4 = __pyx_v_self->format; __pyx_v_info->format = __pyx_t_4; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ goto __pyx_L5; } /* "View.MemoryView":206 * info.format = self.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.obj = self */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L5:; /* "View.MemoryView":208 * info.format = NULL * * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":212 * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* Python wrapper */ static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":214 * def __dealloc__(array self): * if self.callback_free_data != NULL: * self.callback_free_data(self.data) # <<<<<<<<<<<<<< * elif self.free_data: * if self.dtype_is_object: */ __pyx_v_self->callback_free_data(__pyx_v_self->data); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ goto __pyx_L3; } /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ __pyx_t_1 = (__pyx_v_self->free_data != 0); if (__pyx_t_1) { /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":217 * elif self.free_data: * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< * self._strides, self.ndim, False) * free(self.data) */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ } /* "View.MemoryView":219 * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) * free(self.data) # <<<<<<<<<<<<<< * PyObject_Free(self._shape) * */ free(__pyx_v_self->data); /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ } __pyx_L3:; /* "View.MemoryView":220 * self._strides, self.ndim, False) * free(self.data) * PyObject_Free(self._shape) # <<<<<<<<<<<<<< * * @property */ PyObject_Free(__pyx_v_self->_shape); /* "View.MemoryView":212 * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":224 * @property * def memview(self): * return self.get_memview() # <<<<<<<<<<<<<< * * @cname('get_memview') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_memview", 0); /* "View.MemoryView":228 * @cname('get_memview') * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< * return memoryview(self, flags, self.dtype_is_object) * */ __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); /* "View.MemoryView":229 * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.get_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* Python wrapper */ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":232 * * def __len__(self): * return self._shape[0] # <<<<<<<<<<<<<< * * def __getattr__(self, attr): */ __pyx_r = (__pyx_v_self->_shape[0]); goto __pyx_L0; /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* Python wrapper */ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getattr__", 0); /* "View.MemoryView":235 * * def __getattr__(self, attr): * return getattr(self.memview, attr) # <<<<<<<<<<<<<< * * def __getitem__(self, item): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* Python wrapper */ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":238 * * def __getitem__(self, item): * return self.memview[item] # <<<<<<<<<<<<<< * * def __setitem__(self, item, value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* Python wrapper */ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); /* "View.MemoryView":241 * * def __setitem__(self, item, value): * self.memview[item] = value # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 241, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(2, 241, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array___reduce_cython__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array_2__setstate_cython__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { struct __pyx_array_obj *__pyx_v_result = 0; struct __pyx_array_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("array_cwrapper", 0); /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":250 * * if buf == NULL: * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ goto __pyx_L3; } /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ /*else*/ { __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_3 = 0; /* "View.MemoryView":253 * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) # <<<<<<<<<<<<<< * result.data = buf * */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 253, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(2, 253, __pyx_L1_error) /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); __pyx_t_5 = 0; /* "View.MemoryView":254 * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) * result.data = buf # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->data = __pyx_v_buf; } __pyx_L3:; /* "View.MemoryView":256 * result.data = buf * * return result # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(((PyObject *)__pyx_r)); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* Python wrapper */ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_name = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; PyObject* values[1] = {0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(2, 282, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); } __pyx_v_name = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 282, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__", 0); /* "View.MemoryView":283 * cdef object name * def __init__(self, name): * self.name = name # <<<<<<<<<<<<<< * def __repr__(self): * return self.name */ __Pyx_INCREF(__pyx_v_name); __Pyx_GIVEREF(__pyx_v_name); __Pyx_GOTREF(__pyx_v_self->name); __Pyx_DECREF(__pyx_v_self->name); __pyx_v_self->name = __pyx_v_name; /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* function exit code */ __pyx_r = 0; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* Python wrapper */ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":285 * self.name = name * def __repr__(self): * return self.name # <<<<<<<<<<<<<< * * cdef generic = Enum("<strided and direct or indirect>") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->name); __pyx_r = __pyx_v_self->name; goto __pyx_L0; /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum___reduce_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_v_state = 0; PyObject *__pyx_v__dict = 0; int __pyx_v_use_setstate; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":5 * cdef object _dict * cdef bint use_setstate * state = (self.name,) # <<<<<<<<<<<<<< * _dict = getattr(self, '__dict__', None) * if _dict is not None: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_self->name); __Pyx_GIVEREF(__pyx_v_self->name); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_self->name); __pyx_v_state = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":6 * cdef bint use_setstate * state = (self.name,) * _dict = getattr(self, '__dict__', None) # <<<<<<<<<<<<<< * if _dict is not None: * state += (_dict,) */ __pyx_t_1 = __Pyx_GetAttr3(((PyObject *)__pyx_v_self), __pyx_n_s_dict, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v__dict = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ __pyx_t_2 = (__pyx_v__dict != Py_None); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":8 * _dict = getattr(self, '__dict__', None) * if _dict is not None: * state += (_dict,) # <<<<<<<<<<<<<< * use_setstate = True * else: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v__dict); __Pyx_GIVEREF(__pyx_v__dict); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v__dict); __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_state, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_state, ((PyObject*)__pyx_t_4)); __pyx_t_4 = 0; /* "(tree fragment)":9 * if _dict is not None: * state += (_dict,) * use_setstate = True # <<<<<<<<<<<<<< * else: * use_setstate = self.name is not None */ __pyx_v_use_setstate = 1; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ goto __pyx_L3; } /* "(tree fragment)":11 * use_setstate = True * else: * use_setstate = self.name is not None # <<<<<<<<<<<<<< * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state */ /*else*/ { __pyx_t_3 = (__pyx_v_self->name != Py_None); __pyx_v_use_setstate = __pyx_t_3; } __pyx_L3:; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ __pyx_t_3 = (__pyx_v_use_setstate != 0); if (__pyx_t_3) { /* "(tree fragment)":13 * use_setstate = self.name is not None * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state # <<<<<<<<<<<<<< * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_1); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_state); __pyx_t_4 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ } /* "(tree fragment)":15 * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_state); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1); __pyx_t_5 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.Enum.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_state); __Pyx_XDECREF(__pyx_v__dict); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum_2__setstate_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":17 * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) # <<<<<<<<<<<<<< */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||((void)PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 17, __pyx_L1_error) __pyx_t_1 = __pyx_unpickle_Enum__set_state(__pyx_v_self, ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 17, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.Enum.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory */ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { Py_intptr_t __pyx_v_aligned_p; size_t __pyx_v_offset; void *__pyx_r; int __pyx_t_1; /* "View.MemoryView":301 * cdef void *align_pointer(void *memory, size_t alignment) nogil: * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory # <<<<<<<<<<<<<< * cdef size_t offset * */ __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); /* "View.MemoryView":305 * * with cython.cdivision(True): * offset = aligned_p % alignment # <<<<<<<<<<<<<< * * if offset > 0: */ __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ __pyx_t_1 = ((__pyx_v_offset > 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":308 * * if offset > 0: * aligned_p += alignment - offset # <<<<<<<<<<<<<< * * return <void *> aligned_p */ __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ } /* "View.MemoryView":310 * aligned_p += alignment - offset * * return <void *> aligned_p # <<<<<<<<<<<<<< * * */ __pyx_r = ((void *)__pyx_v_aligned_p); goto __pyx_L0; /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* Python wrapper */ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_obj = 0; int __pyx_v_flags; int __pyx_v_dtype_is_object; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(2, 346, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype_is_object); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 346, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_obj = values[0]; __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 346, __pyx_L3_error) if (values[2]) { __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 346, __pyx_L3_error) } else { __pyx_v_dtype_is_object = ((int)0); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 346, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); /* "View.MemoryView":347 * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj # <<<<<<<<<<<<<< * self.flags = flags * if type(self) is memoryview or obj is not None: */ __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); __Pyx_GOTREF(__pyx_v_self->obj); __Pyx_DECREF(__pyx_v_self->obj); __pyx_v_self->obj = __pyx_v_obj; /* "View.MemoryView":348 * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj * self.flags = flags # <<<<<<<<<<<<<< * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) */ __pyx_v_self->flags = __pyx_v_flags; /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: */ __pyx_t_2 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)__pyx_memoryview_type)); __pyx_t_3 = (__pyx_t_2 != 0); if (!__pyx_t_3) { } else { __pyx_t_1 = __pyx_t_3; goto __pyx_L4_bool_binop_done; } __pyx_t_3 = (__pyx_v_obj != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (__pyx_t_1) { /* "View.MemoryView":350 * self.flags = flags * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None */ __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 350, __pyx_L1_error) /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":352 * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; /* "View.MemoryView":353 * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if not __PYX_CYTHON_ATOMICS_ENABLED(): */ Py_INCREF(Py_None); /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ } /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ __pyx_t_1 = ((!(__PYX_CYTHON_ATOMICS_ENABLED() != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); if (__pyx_t_1) { /* "View.MemoryView":358 * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: */ __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); /* "View.MemoryView":359 * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< * if self.lock is NULL: * self.lock = PyThread_allocate_lock() */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":361 * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< * if self.lock is NULL: * raise MemoryError */ __pyx_v_self->lock = PyThread_allocate_lock(); /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":363 * self.lock = PyThread_allocate_lock() * if self.lock is NULL: * raise MemoryError # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ PyErr_NoMemory(); __PYX_ERR(2, 363, __pyx_L1_error) /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ } /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":366 * * if flags & PyBUF_FORMAT: * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< * else: * self.dtype_is_object = dtype_is_object */ __pyx_t_2 = (((__pyx_v_self->view.format[0]) == 'O') != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L12_bool_binop_done; } __pyx_t_2 = (((__pyx_v_self->view.format[1]) == '\x00') != 0); __pyx_t_1 = __pyx_t_2; __pyx_L12_bool_binop_done:; __pyx_v_self->dtype_is_object = __pyx_t_1; /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ goto __pyx_L11; } /* "View.MemoryView":368 * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( */ /*else*/ { __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; } __pyx_L11:; /* "View.MemoryView":370 * self.dtype_is_object = dtype_is_object * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< * <void *> &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL */ __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); /* "View.MemoryView":372 * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( * <void *> &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL # <<<<<<<<<<<<<< * * def __dealloc__(memoryview self): */ __pyx_v_self->typeinfo = NULL; /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* Python wrapper */ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { int __pyx_v_i; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyThread_type_lock __pyx_t_6; PyThread_type_lock __pyx_t_7; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ __pyx_t_1 = (__pyx_v_self->obj != Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":376 * def __dealloc__(memoryview self): * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< * elif (<__pyx_buffer *> &self.view).obj == Py_None: * */ __Pyx_ReleaseBuffer((&__pyx_v_self->view)); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ goto __pyx_L3; } /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ __pyx_t_2 = ((((Py_buffer *)(&__pyx_v_self->view))->obj == Py_None) != 0); if (__pyx_t_2) { /* "View.MemoryView":379 * elif (<__pyx_buffer *> &self.view).obj == Py_None: * * (<__pyx_buffer *> &self.view).obj = NULL # <<<<<<<<<<<<<< * Py_DECREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = NULL; /* "View.MemoryView":380 * * (<__pyx_buffer *> &self.view).obj = NULL * Py_DECREF(Py_None) # <<<<<<<<<<<<<< * * cdef int i */ Py_DECREF(Py_None); /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ } __pyx_L3:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":385 * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 */ __pyx_t_3 = __pyx_memoryview_thread_locks_used; __pyx_t_4 = __pyx_t_3; for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); if (__pyx_t_2) { /* "View.MemoryView":387 * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); if (__pyx_t_2) { /* "View.MemoryView":390 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< * break * else: */ __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); __pyx_t_7 = (__pyx_memoryview_thread_locks[__pyx_v_i]); /* "View.MemoryView":389 * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break */ (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_6; (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_7; /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ } /* "View.MemoryView":391 * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break # <<<<<<<<<<<<<< * else: * PyThread_free_lock(self.lock) */ goto __pyx_L6_break; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ } } /*else*/ { /* "View.MemoryView":393 * break * else: * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< * * cdef char *get_item_pointer(memoryview self, object index) except NULL: */ PyThread_free_lock(__pyx_v_self->lock); } __pyx_L6_break:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf */ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { Py_ssize_t __pyx_v_dim; char *__pyx_v_itemp; PyObject *__pyx_v_idx = NULL; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t __pyx_t_3; PyObject *(*__pyx_t_4)(PyObject *); PyObject *__pyx_t_5 = NULL; Py_ssize_t __pyx_t_6; char *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_item_pointer", 0); /* "View.MemoryView":397 * cdef char *get_item_pointer(memoryview self, object index) except NULL: * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf # <<<<<<<<<<<<<< * * for dim, idx in enumerate(index): */ __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); /* "View.MemoryView":399 * cdef char *itemp = <char *> self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ __pyx_t_1 = 0; if (likely(PyList_CheckExact(__pyx_v_index)) || PyTuple_CheckExact(__pyx_v_index)) { __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; __pyx_t_4 = NULL; } else { __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 399, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_4)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } else { if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } } else { __pyx_t_5 = __pyx_t_4(__pyx_t_2); if (unlikely(!__pyx_t_5)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 399, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_5); } __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_1; __pyx_t_1 = (__pyx_t_1 + 1); /* "View.MemoryView":400 * * for dim, idx in enumerate(index): * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< * * return itemp */ __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 400, __pyx_L1_error) __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(2, 400, __pyx_L1_error) __pyx_v_itemp = __pyx_t_7; /* "View.MemoryView":399 * cdef char *itemp = <char *> self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":402 * itemp = pybuffer_index(&self.view, itemp, idx, dim) * * return itemp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_itemp; goto __pyx_L0; /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_idx); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* Python wrapper */ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_indices = NULL; char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; char *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":407 * def __getitem__(memoryview self, object index): * if index is Ellipsis: * return self # <<<<<<<<<<<<<< * * have_slices, indices = _unellipsify(index, self.view.ndim) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __pyx_r = ((PyObject *)__pyx_v_self); goto __pyx_L0; /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ } /* "View.MemoryView":409 * return self * * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * cdef char *itemp */ __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (likely(__pyx_t_3 != Py_None)) { PyObject* sequence = __pyx_t_3; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(2, 409, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); #else __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 409, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_4; __pyx_t_4 = 0; __pyx_v_indices = __pyx_t_5; __pyx_t_5 = 0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 412, __pyx_L1_error) if (__pyx_t_2) { /* "View.MemoryView":413 * cdef char *itemp * if have_slices: * return memview_slice(self, indices) # <<<<<<<<<<<<<< * else: * itemp = self.get_item_pointer(indices) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 413, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ } /* "View.MemoryView":415 * return memview_slice(self, indices) * else: * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< * return self.convert_item_to_object(itemp) * */ /*else*/ { __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == ((char *)NULL))) __PYX_ERR(2, 415, __pyx_L1_error) __pyx_v_itemp = __pyx_t_6; /* "View.MemoryView":416 * else: * itemp = self.get_item_pointer(indices) * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< * * def __setitem__(memoryview self, object index, object value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 416, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_indices); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* Python wrapper */ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_obj = NULL; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); __Pyx_INCREF(__pyx_v_index); /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ __pyx_t_1 = (__pyx_v_self->view.readonly != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 420, __pyx_L1_error) /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ } /* "View.MemoryView":422 * raise TypeError("Cannot assign to read-only memoryview") * * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * if have_slices: */ __pyx_t_2 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (likely(__pyx_t_2 != Py_None)) { PyObject* sequence = __pyx_t_2; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(2, 422, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 422, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_3; __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 424, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":425 * * if have_slices: * obj = self.is_slice(value) # <<<<<<<<<<<<<< * if obj: * self.setitem_slice_assignment(self[index], obj) */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 425, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_obj = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 426, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":427 * obj = self.is_slice(value) * if obj: * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< * else: * self.setitem_slice_assign_scalar(self[index], value) */ __pyx_t_2 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_2, __pyx_v_obj); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ goto __pyx_L5; } /* "View.MemoryView":429 * self.setitem_slice_assignment(self[index], obj) * else: * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< * else: * self.setitem_indexed(index, value) */ /*else*/ { __pyx_t_4 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_memoryview_type))))) __PYX_ERR(2, 429, __pyx_L1_error) __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_4), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L5:; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ goto __pyx_L4; } /* "View.MemoryView":431 * self.setitem_slice_assign_scalar(self[index], value) * else: * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< * * cdef is_slice(self, obj): */ /*else*/ { __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 431, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L4:; /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_obj); __Pyx_XDECREF(__pyx_v_index); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_slice", 0); __Pyx_INCREF(__pyx_v_obj); /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, __pyx_memoryview_type); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); __Pyx_XGOTREF(__pyx_t_5); /*try:*/ { /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_6 = __Pyx_PyInt_From_int(((__pyx_v_self->flags & (~PyBUF_WRITABLE)) | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":437 * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) # <<<<<<<<<<<<<< * except TypeError: * return None */ __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 437, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ } __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L9_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; /* "View.MemoryView":438 * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) * except TypeError: # <<<<<<<<<<<<<< * return None * */ __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(2, 438, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":439 * self.dtype_is_object) * except TypeError: * return None # <<<<<<<<<<<<<< * * return obj */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L7_except_return; } goto __pyx_L6_except_error; __pyx_L6_except_error:; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L1_error; __pyx_L7_except_return:; __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L0; __pyx_L9_try_end:; } /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ } /* "View.MemoryView":441 * return None * * return obj # <<<<<<<<<<<<<< * * cdef setitem_slice_assignment(self, dst, src): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_obj); __pyx_r = __pyx_v_obj; goto __pyx_L0; /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_obj); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { __Pyx_memviewslice __pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_src_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; __Pyx_memviewslice *__pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(2, 447, __pyx_L1_error) __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 447, __pyx_L1_error) /* "View.MemoryView":448 * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< * src.ndim, dst.ndim, self.dtype_is_object) * */ if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(2, 448, __pyx_L1_error) __pyx_t_2 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice)); if (unlikely(__pyx_t_2 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 448, __pyx_L1_error) /* "View.MemoryView":449 * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ __pyx_t_6 = __pyx_memoryview_copy_contents((__pyx_t_1[0]), (__pyx_t_2[0]), __pyx_t_4, __pyx_t_5, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 447, __pyx_L1_error) /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { int __pyx_v_array[0x80]; void *__pyx_v_tmp; void *__pyx_v_item; __Pyx_memviewslice *__pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_tmp_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; char const *__pyx_t_6; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); /* "View.MemoryView":453 * cdef setitem_slice_assign_scalar(self, memoryview dst, value): * cdef int array[128] * cdef void *tmp = NULL # <<<<<<<<<<<<<< * cdef void *item * */ __pyx_v_tmp = NULL; /* "View.MemoryView":458 * cdef __Pyx_memviewslice *dst_slice * cdef __Pyx_memviewslice tmp_slice * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< * * if <size_t>self.view.itemsize > sizeof(array): */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 458, __pyx_L1_error) __pyx_v_dst_slice = __pyx_t_1; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if <size_t>self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ __pyx_t_2 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); if (__pyx_t_2) { /* "View.MemoryView":461 * * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< * if tmp == NULL: * raise MemoryError */ __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); /* "View.MemoryView":462 * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ __pyx_t_2 = ((__pyx_v_tmp == NULL) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":463 * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: * raise MemoryError # <<<<<<<<<<<<<< * item = tmp * else: */ PyErr_NoMemory(); __PYX_ERR(2, 463, __pyx_L1_error) /* "View.MemoryView":462 * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ } /* "View.MemoryView":464 * if tmp == NULL: * raise MemoryError * item = tmp # <<<<<<<<<<<<<< * else: * item = <void *> array */ __pyx_v_item = __pyx_v_tmp; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if <size_t>self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ goto __pyx_L3; } /* "View.MemoryView":466 * item = tmp * else: * item = <void *> array # <<<<<<<<<<<<<< * * try: */ /*else*/ { __pyx_v_item = ((void *)__pyx_v_array); } __pyx_L3:; /* "View.MemoryView":468 * item = <void *> array * * try: # <<<<<<<<<<<<<< * if self.dtype_is_object: * (<PyObject **> item)[0] = <PyObject *> value */ /*try:*/ { /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * (<PyObject **> item)[0] = <PyObject *> value * else: */ __pyx_t_2 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_2) { /* "View.MemoryView":470 * try: * if self.dtype_is_object: * (<PyObject **> item)[0] = <PyObject *> value # <<<<<<<<<<<<<< * else: * self.assign_item_from_object(<char *> item, value) */ (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * (<PyObject **> item)[0] = <PyObject *> value * else: */ goto __pyx_L8; } /* "View.MemoryView":472 * (<PyObject **> item)[0] = <PyObject *> value * else: * self.assign_item_from_object(<char *> item, value) # <<<<<<<<<<<<<< * * */ /*else*/ { __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 472, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L8:; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ __pyx_t_2 = ((__pyx_v_self->view.suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":477 * * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, * item, self.dtype_is_object) */ __pyx_t_3 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 477, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ } /* "View.MemoryView":478 * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< * item, self.dtype_is_object) * finally: */ __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); } /* "View.MemoryView":481 * item, self.dtype_is_object) * finally: * PyMem_Free(tmp) # <<<<<<<<<<<<<< * * cdef setitem_indexed(self, index, value): */ /*finally:*/ { /*normal exit:*/{ PyMem_Free(__pyx_v_tmp); goto __pyx_L7; } __pyx_L6_error:; /*exception exit:*/{ __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_10, &__pyx_t_11, &__pyx_t_12); if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9) < 0)) __Pyx_ErrFetch(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); __Pyx_XGOTREF(__pyx_t_10); __Pyx_XGOTREF(__pyx_t_11); __Pyx_XGOTREF(__pyx_t_12); __pyx_t_4 = __pyx_lineno; __pyx_t_5 = __pyx_clineno; __pyx_t_6 = __pyx_filename; { PyMem_Free(__pyx_v_tmp); } if (PY_MAJOR_VERSION >= 3) { __Pyx_XGIVEREF(__pyx_t_10); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_12); __Pyx_ExceptionReset(__pyx_t_10, __pyx_t_11, __pyx_t_12); } __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ErrRestore(__pyx_t_7, __pyx_t_8, __pyx_t_9); __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __pyx_lineno = __pyx_t_4; __pyx_clineno = __pyx_t_5; __pyx_filename = __pyx_t_6; goto __pyx_L1_error; } __pyx_L7:; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations char *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_indexed", 0); /* "View.MemoryView":484 * * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< * self.assign_item_from_object(itemp, value) * */ __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == ((char *)NULL))) __PYX_ERR(2, 484, __pyx_L1_error) __pyx_v_itemp = __pyx_t_1; /* "View.MemoryView":485 * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 485, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_v_struct = NULL; PyObject *__pyx_v_bytesitem = 0; PyObject *__pyx_v_result = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; int __pyx_t_8; PyObject *__pyx_t_9 = NULL; size_t __pyx_t_10; int __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":490 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef bytes bytesitem * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 490, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":493 * cdef bytes bytesitem * * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< * try: * result = struct.unpack(self.view.format, bytesitem) */ __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 493, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); /*try:*/ { /* "View.MemoryView":495 * bytesitem = itemp[:self.view.itemsize] * try: * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< * except struct.error: * raise ValueError("Unable to convert item to object") */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = NULL; __pyx_t_8 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_7)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_7); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_8 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_9); if (__pyx_t_7) { __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; } __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_9, 0+__pyx_t_8, __pyx_t_6); __Pyx_INCREF(__pyx_v_bytesitem); __Pyx_GIVEREF(__pyx_v_bytesitem); PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ } /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ /*else:*/ { __pyx_t_10 = strlen(__pyx_v_self->view.format); __pyx_t_11 = ((__pyx_t_10 == 1) != 0); if (__pyx_t_11) { /* "View.MemoryView":500 * else: * if len(self.view.format) == 1: * return result[0] # <<<<<<<<<<<<<< * return result * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 500, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6_except_return; /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ } /* "View.MemoryView":501 * if len(self.view.format) == 1: * return result[0] * return result # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_result); __pyx_r = __pyx_v_result; goto __pyx_L6_except_return; } __pyx_L3_error:; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /* "View.MemoryView":496 * try: * result = struct.unpack(self.view.format, bytesitem) * except struct.error: # <<<<<<<<<<<<<< * raise ValueError("Unable to convert item to object") * else: */ __Pyx_ErrFetch(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_1, __pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_ErrRestore(__pyx_t_1, __pyx_t_5, __pyx_t_9); __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_9 = 0; if (__pyx_t_8) { __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_1) < 0) __PYX_ERR(2, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_1); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__25, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 497, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(2, 497, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L1_error; __pyx_L6_except_return:; __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L0; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesitem); __Pyx_XDECREF(__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_v_struct = NULL; char __pyx_v_c; PyObject *__pyx_v_bytesvalue = 0; Py_ssize_t __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; char *__pyx_t_11; char *__pyx_t_12; char *__pyx_t_13; char *__pyx_t_14; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":506 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef char c * cdef bytes bytesvalue */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 506, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ __pyx_t_2 = PyTuple_Check(__pyx_v_value); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "View.MemoryView":512 * * if isinstance(value, tuple): * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< * else: * bytesvalue = struct.pack(self.view.format, value) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||((void)PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 512, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ goto __pyx_L3; } /* "View.MemoryView":514 * bytesvalue = struct.pack(self.view.format, *value) * else: * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< * * for i, c in enumerate(bytesvalue): */ /*else*/ { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_1); __Pyx_INCREF(__pyx_v_value); __Pyx_GIVEREF(__pyx_v_value); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); __pyx_t_1 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||((void)PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 514, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; } __pyx_L3:; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = 0; if (unlikely(__pyx_v_bytesvalue == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); __PYX_ERR(2, 516, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_bytesvalue); __pyx_t_10 = __pyx_v_bytesvalue; __pyx_t_12 = PyBytes_AS_STRING(__pyx_t_10); __pyx_t_13 = (__pyx_t_12 + PyBytes_GET_SIZE(__pyx_t_10)); for (__pyx_t_14 = __pyx_t_12; __pyx_t_14 < __pyx_t_13; __pyx_t_14++) { __pyx_t_11 = __pyx_t_14; __pyx_v_c = (__pyx_t_11[0]); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ __pyx_v_i = __pyx_t_9; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = (__pyx_t_9 + 1); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; } __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesvalue); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; char *__pyx_t_5; void *__pyx_t_6; int __pyx_t_7; Py_ssize_t __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ __pyx_t_2 = ((__pyx_v_flags & PyBUF_WRITABLE) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L4_bool_binop_done; } __pyx_t_2 = (__pyx_v_self->view.readonly != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__26, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 522, __pyx_L1_error) /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ } /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_ND) != 0); if (__pyx_t_1) { /* "View.MemoryView":525 * * if flags & PyBUF_ND: * info.shape = self.view.shape # <<<<<<<<<<<<<< * else: * info.shape = NULL */ __pyx_t_4 = __pyx_v_self->view.shape; __pyx_v_info->shape = __pyx_t_4; /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ goto __pyx_L6; } /* "View.MemoryView":527 * info.shape = self.view.shape * else: * info.shape = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_STRIDES: */ /*else*/ { __pyx_v_info->shape = NULL; } __pyx_L6:; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); if (__pyx_t_1) { /* "View.MemoryView":530 * * if flags & PyBUF_STRIDES: * info.strides = self.view.strides # <<<<<<<<<<<<<< * else: * info.strides = NULL */ __pyx_t_4 = __pyx_v_self->view.strides; __pyx_v_info->strides = __pyx_t_4; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ goto __pyx_L7; } /* "View.MemoryView":532 * info.strides = self.view.strides * else: * info.strides = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_INDIRECT: */ /*else*/ { __pyx_v_info->strides = NULL; } __pyx_L7:; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); if (__pyx_t_1) { /* "View.MemoryView":535 * * if flags & PyBUF_INDIRECT: * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< * else: * info.suboffsets = NULL */ __pyx_t_4 = __pyx_v_self->view.suboffsets; __pyx_v_info->suboffsets = __pyx_t_4; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ goto __pyx_L8; } /* "View.MemoryView":537 * info.suboffsets = self.view.suboffsets * else: * info.suboffsets = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ /*else*/ { __pyx_v_info->suboffsets = NULL; } __pyx_L8:; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":540 * * if flags & PyBUF_FORMAT: * info.format = self.view.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_5 = __pyx_v_self->view.format; __pyx_v_info->format = __pyx_t_5; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ goto __pyx_L9; } /* "View.MemoryView":542 * info.format = self.view.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.buf = self.view.buf */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L9:; /* "View.MemoryView":544 * info.format = NULL * * info.buf = self.view.buf # <<<<<<<<<<<<<< * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize */ __pyx_t_6 = __pyx_v_self->view.buf; __pyx_v_info->buf = __pyx_t_6; /* "View.MemoryView":545 * * info.buf = self.view.buf * info.ndim = self.view.ndim # <<<<<<<<<<<<<< * info.itemsize = self.view.itemsize * info.len = self.view.len */ __pyx_t_7 = __pyx_v_self->view.ndim; __pyx_v_info->ndim = __pyx_t_7; /* "View.MemoryView":546 * info.buf = self.view.buf * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< * info.len = self.view.len * info.readonly = self.view.readonly */ __pyx_t_8 = __pyx_v_self->view.itemsize; __pyx_v_info->itemsize = __pyx_t_8; /* "View.MemoryView":547 * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize * info.len = self.view.len # <<<<<<<<<<<<<< * info.readonly = self.view.readonly * info.obj = self */ __pyx_t_8 = __pyx_v_self->view.len; __pyx_v_info->len = __pyx_t_8; /* "View.MemoryView":548 * info.itemsize = self.view.itemsize * info.len = self.view.len * info.readonly = self.view.readonly # <<<<<<<<<<<<<< * info.obj = self * */ __pyx_t_1 = __pyx_v_self->view.readonly; __pyx_v_info->readonly = __pyx_t_1; /* "View.MemoryView":549 * info.len = self.view.len * info.readonly = self.view.readonly * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":556 * @property * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< * transpose_memslice(&result.from_slice) * return result */ __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 556, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(2, 556, __pyx_L1_error) __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":557 * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< * return result * */ __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 557, __pyx_L1_error) /* "View.MemoryView":558 * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) * return result # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":562 * @property * def base(self): * return self.obj # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->obj); __pyx_r = __pyx_v_self->obj; goto __pyx_L0; /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_length; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":566 * @property * def shape(self): * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_length = (__pyx_t_2[0]); __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_stride; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__27, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 572, __pyx_L1_error) /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ } /* "View.MemoryView":574 * raise ValueError("Buffer view does not expose strides") * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_v_stride = (__pyx_t_3[0]); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; Py_ssize_t *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__28, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ } /* "View.MemoryView":581 * return (-1,) * self.view.ndim * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { __pyx_t_4 = __pyx_t_6; __pyx_v_suboffset = (__pyx_t_4[0]); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":585 * @property * def ndim(self): * return self.view.ndim # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 585, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":589 * @property * def itemsize(self): * return self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 589, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":593 * @property * def nbytes(self): * return self.size * self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_v_result = NULL; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ __pyx_t_1 = (__pyx_v_self->_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":598 * def size(self): * if self._size is None: * result = 1 # <<<<<<<<<<<<<< * * for length in self.view.shape[:self.view.ndim]: */ __Pyx_INCREF(__pyx_int_1); __pyx_v_result = __pyx_int_1; /* "View.MemoryView":600 * result = 1 * * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< * result *= length * */ __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 600, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); __pyx_t_6 = 0; /* "View.MemoryView":601 * * for length in self.view.shape[:self.view.ndim]: * result *= length # <<<<<<<<<<<<<< * * self._size = result */ __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 601, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); __pyx_t_6 = 0; } /* "View.MemoryView":603 * result *= length * * self._size = result # <<<<<<<<<<<<<< * * return self._size */ __Pyx_INCREF(__pyx_v_result); __Pyx_GIVEREF(__pyx_v_result); __Pyx_GOTREF(__pyx_v_self->_size); __Pyx_DECREF(__pyx_v_self->_size); __pyx_v_self->_size = __pyx_v_result; /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ } /* "View.MemoryView":605 * self._size = result * * return self._size # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->_size); __pyx_r = __pyx_v_self->_size; goto __pyx_L0; /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* Python wrapper */ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":609 * def __len__(self): * if self.view.ndim >= 1: * return self.view.shape[0] # <<<<<<<<<<<<<< * * return 0 */ __pyx_r = (__pyx_v_self->view.shape[0]); goto __pyx_L0; /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ } /* "View.MemoryView":611 * return self.view.shape[0] * * return 0 # <<<<<<<<<<<<<< * * def __repr__(self): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) */ /* Python wrapper */ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":614 * * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":615 * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) # <<<<<<<<<<<<<< * * def __str__(self): */ __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 615, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); /* "View.MemoryView":614 * * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) * */ /* Python wrapper */ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__str__", 0); /* "View.MemoryView":618 * * def __str__(self): * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_c_contig", 0); /* "View.MemoryView":624 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'C', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 624, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":625 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< * * def is_f_contig(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 625, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_f_contig", 0); /* "View.MemoryView":630 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'F', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 630, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":631 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< * * def copy(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 631, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_mslice; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy", 0); /* "View.MemoryView":635 * def copy(self): * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &mslice) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); /* "View.MemoryView":637 * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS * * slice_copy(self, &mslice) # <<<<<<<<<<<<<< * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); /* "View.MemoryView":638 * * slice_copy(self, &mslice) * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_C_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 638, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":643 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< * * def copy_fortran(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 643, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy_fortran", 0); /* "View.MemoryView":647 * def copy_fortran(self): * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &src) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); /* "View.MemoryView":649 * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS * * slice_copy(self, &src) # <<<<<<<<<<<<<< * dst = slice_copy_contig(&src, "fortran", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); /* "View.MemoryView":650 * * slice_copy(self, &src) * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_F_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 650, __pyx_L1_error) __pyx_v_dst = __pyx_t_1; /* "View.MemoryView":655 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 655, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview___reduce_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__29, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview_2__setstate_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__30, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { struct __pyx_memoryview_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); /* "View.MemoryView":660 * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< * result.typeinfo = typeinfo * return result */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_o); __Pyx_GIVEREF(__pyx_v_o); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":661 * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo # <<<<<<<<<<<<<< * return result * */ __pyx_v_result->typeinfo = __pyx_v_typeinfo; /* "View.MemoryView":662 * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_check') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("memoryview_check", 0); /* "View.MemoryView":666 * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): * return isinstance(o, memoryview) # <<<<<<<<<<<<<< * * cdef tuple _unellipsify(object index, int ndim): */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, __pyx_memoryview_type); __pyx_r = __pyx_t_1; goto __pyx_L0; /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { PyObject *__pyx_v_tup = NULL; PyObject *__pyx_v_result = NULL; int __pyx_v_have_slices; int __pyx_v_seen_ellipsis; CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; PyObject *__pyx_v_item = NULL; Py_ssize_t __pyx_v_nslices; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; Py_ssize_t __pyx_t_5; PyObject *(*__pyx_t_6)(PyObject *); PyObject *__pyx_t_7 = NULL; Py_ssize_t __pyx_t_8; int __pyx_t_9; int __pyx_t_10; PyObject *__pyx_t_11 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_unellipsify", 0); /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ __pyx_t_1 = PyTuple_Check(__pyx_v_index); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":674 * """ * if not isinstance(index, tuple): * tup = (index,) # <<<<<<<<<<<<<< * else: * tup = index */ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_index); __Pyx_GIVEREF(__pyx_v_index); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); __pyx_v_tup = __pyx_t_3; __pyx_t_3 = 0; /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ goto __pyx_L3; } /* "View.MemoryView":676 * tup = (index,) * else: * tup = index # <<<<<<<<<<<<<< * * result = [] */ /*else*/ { __Pyx_INCREF(__pyx_v_index); __pyx_v_tup = __pyx_v_index; } __pyx_L3:; /* "View.MemoryView":678 * tup = index * * result = [] # <<<<<<<<<<<<<< * have_slices = False * seen_ellipsis = False */ __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 678, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_result = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":679 * * result = [] * have_slices = False # <<<<<<<<<<<<<< * seen_ellipsis = False * for idx, item in enumerate(tup): */ __pyx_v_have_slices = 0; /* "View.MemoryView":680 * result = [] * have_slices = False * seen_ellipsis = False # <<<<<<<<<<<<<< * for idx, item in enumerate(tup): * if item is Ellipsis: */ __pyx_v_seen_ellipsis = 0; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ __Pyx_INCREF(__pyx_int_0); __pyx_t_3 = __pyx_int_0; if (likely(PyList_CheckExact(__pyx_v_tup)) || PyTuple_CheckExact(__pyx_v_tup)) { __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; __pyx_t_6 = NULL; } else { __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 681, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_6)) { if (likely(PyList_CheckExact(__pyx_t_4))) { if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } else { if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } } else { __pyx_t_7 = __pyx_t_6(__pyx_t_4); if (unlikely(!__pyx_t_7)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 681, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_7); } __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); __pyx_t_7 = 0; __Pyx_INCREF(__pyx_t_3); __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_7; __pyx_t_7 = 0; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(2, 684, __pyx_L1_error) __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { __Pyx_INCREF(__pyx_slice__31); __Pyx_GIVEREF(__pyx_slice__31); PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__31); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":685 * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True # <<<<<<<<<<<<<< * else: * result.append(slice(None)) */ __pyx_v_seen_ellipsis = 1; /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ goto __pyx_L7; } /* "View.MemoryView":687 * seen_ellipsis = True * else: * result.append(slice(None)) # <<<<<<<<<<<<<< * have_slices = True * else: */ /*else*/ { __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__31); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 687, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":688 * else: * result.append(slice(None)) * have_slices = True # <<<<<<<<<<<<<< * else: * if not isinstance(item, slice) and not PyIndex_Check(item): */ __pyx_v_have_slices = 1; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ goto __pyx_L6; } /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ /*else*/ { __pyx_t_2 = PySlice_Check(__pyx_v_item); __pyx_t_10 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); __pyx_t_1 = __pyx_t_10; __pyx_L9_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":691 * else: * if not isinstance(item, slice) and not PyIndex_Check(item): * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< * * have_slices = have_slices or isinstance(item, slice) */ __pyx_t_7 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_11 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_7); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_Raise(__pyx_t_11, 0, 0, 0); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __PYX_ERR(2, 691, __pyx_L1_error) /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ } /* "View.MemoryView":693 * raise TypeError("Cannot index with type '%s'" % type(item)) * * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< * result.append(item) * */ __pyx_t_10 = (__pyx_v_have_slices != 0); if (!__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = PySlice_Check(__pyx_v_item); __pyx_t_2 = (__pyx_t_10 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L11_bool_binop_done:; __pyx_v_have_slices = __pyx_t_1; /* "View.MemoryView":694 * * have_slices = have_slices or isinstance(item, slice) * result.append(item) # <<<<<<<<<<<<<< * * nslices = ndim - len(result) */ __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 694, __pyx_L1_error) } __pyx_L6:; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":696 * result.append(item) * * nslices = ndim - len(result) # <<<<<<<<<<<<<< * if nslices: * result.extend([slice(None)] * nslices) */ __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(2, 696, __pyx_L1_error) __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ __pyx_t_1 = (__pyx_v_nslices != 0); if (__pyx_t_1) { /* "View.MemoryView":698 * nslices = ndim - len(result) * if nslices: * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< * * return have_slices or nslices, tuple(result) */ __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 698, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { __Pyx_INCREF(__pyx_slice__31); __Pyx_GIVEREF(__pyx_slice__31); PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__31); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 698, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ } /* "View.MemoryView":700 * result.extend([slice(None)] * nslices) * * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): */ __Pyx_XDECREF(__pyx_r); if (!__pyx_v_have_slices) { } else { __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L14_bool_binop_done; } __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; __pyx_L14_bool_binop_done:; __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = PyTuple_New(2); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_11, 1, __pyx_t_4); __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_r = ((PyObject*)__pyx_t_11); __pyx_t_11 = 0; goto __pyx_L0; /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_tup); __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XDECREF(__pyx_v_item); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); /* "View.MemoryView":703 * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") */ __pyx_t_2 = (__pyx_v_suboffsets + __pyx_v_ndim); for (__pyx_t_3 = __pyx_v_suboffsets; __pyx_t_3 < __pyx_t_2; __pyx_t_3++) { __pyx_t_1 = __pyx_t_3; __pyx_v_suboffset = (__pyx_t_1[0]); /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__32, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __PYX_ERR(2, 705, __pyx_L1_error) /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ } } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { int __pyx_v_new_ndim; int __pyx_v_suboffset_dim; int __pyx_v_dim; __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; __Pyx_memviewslice *__pyx_v_p_src; struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; __Pyx_memviewslice *__pyx_v_p_dst; int *__pyx_v_p_suboffset_dim; Py_ssize_t __pyx_v_start; Py_ssize_t __pyx_v_stop; Py_ssize_t __pyx_v_step; int __pyx_v_have_start; int __pyx_v_have_stop; int __pyx_v_have_step; PyObject *__pyx_v_index = NULL; struct __pyx_memoryview_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; struct __pyx_memoryview_obj *__pyx_t_4; char *__pyx_t_5; int __pyx_t_6; Py_ssize_t __pyx_t_7; PyObject *(*__pyx_t_8)(PyObject *); PyObject *__pyx_t_9 = NULL; Py_ssize_t __pyx_t_10; int __pyx_t_11; Py_ssize_t __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memview_slice", 0); /* "View.MemoryView":713 * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< * cdef bint negative_step * cdef __Pyx_memviewslice src, dst */ __pyx_v_new_ndim = 0; __pyx_v_suboffset_dim = -1; /* "View.MemoryView":720 * * * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< * * cdef _memoryviewslice memviewsliceobj */ (void)(memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst)))); /* "View.MemoryView":724 * cdef _memoryviewslice memviewsliceobj * * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 724, __pyx_L1_error) } } #endif /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":727 * * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview # <<<<<<<<<<<<<< * p_src = &memviewsliceobj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 727, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":728 * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, &src) */ __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ goto __pyx_L3; } /* "View.MemoryView":730 * p_src = &memviewsliceobj.from_slice * else: * slice_copy(memview, &src) # <<<<<<<<<<<<<< * p_src = &src * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); /* "View.MemoryView":731 * else: * slice_copy(memview, &src) * p_src = &src # <<<<<<<<<<<<<< * * */ __pyx_v_p_src = (&__pyx_v_src); } __pyx_L3:; /* "View.MemoryView":737 * * * dst.memview = p_src.memview # <<<<<<<<<<<<<< * dst.data = p_src.data * */ __pyx_t_4 = __pyx_v_p_src->memview; __pyx_v_dst.memview = __pyx_t_4; /* "View.MemoryView":738 * * dst.memview = p_src.memview * dst.data = p_src.data # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_v_p_src->data; __pyx_v_dst.data = __pyx_t_5; /* "View.MemoryView":743 * * * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< * cdef int *p_suboffset_dim = &suboffset_dim * cdef Py_ssize_t start, stop, step */ __pyx_v_p_dst = (&__pyx_v_dst); /* "View.MemoryView":744 * * cdef __Pyx_memviewslice *p_dst = &dst * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< * cdef Py_ssize_t start, stop, step * cdef bint have_start, have_stop, have_step */ __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ __pyx_t_6 = 0; if (likely(PyList_CheckExact(__pyx_v_indices)) || PyTuple_CheckExact(__pyx_v_indices)) { __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; __pyx_t_8 = NULL; } else { __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 748, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_8)) { if (likely(PyList_CheckExact(__pyx_t_3))) { if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } else { if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } } else { __pyx_t_9 = __pyx_t_8(__pyx_t_3); if (unlikely(!__pyx_t_9)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 748, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_9); } __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); __pyx_t_9 = 0; __pyx_v_dim = __pyx_t_6; __pyx_t_6 = (__pyx_t_6 + 1); /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); if (__pyx_t_2) { /* "View.MemoryView":753 * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< * 0, 0, 0, # have_{start,stop,step} * False) */ __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 753, __pyx_L1_error) /* "View.MemoryView":750 * for dim, index in enumerate(indices): * if PyIndex_Check(index): * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 750, __pyx_L1_error) /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ goto __pyx_L6; } /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ __pyx_t_2 = (__pyx_v_index == Py_None); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":757 * False) * elif index is None: * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 */ (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; /* "View.MemoryView":758 * elif index is None: * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 */ (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; /* "View.MemoryView":759 * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< * new_ndim += 1 * else: */ (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; /* "View.MemoryView":760 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 # <<<<<<<<<<<<<< * else: * start = index.start or 0 */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ goto __pyx_L6; } /* "View.MemoryView":762 * new_ndim += 1 * else: * start = index.start or 0 # <<<<<<<<<<<<<< * stop = index.stop or 0 * step = index.step or 0 */ /*else*/ { __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 762, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 762, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 762, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L7_bool_binop_done; } __pyx_t_10 = 0; __pyx_L7_bool_binop_done:; __pyx_v_start = __pyx_t_10; /* "View.MemoryView":763 * else: * start = index.start or 0 * stop = index.stop or 0 # <<<<<<<<<<<<<< * step = index.step or 0 * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 763, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 763, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 763, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = 0; __pyx_L9_bool_binop_done:; __pyx_v_stop = __pyx_t_10; /* "View.MemoryView":764 * start = index.start or 0 * stop = index.stop or 0 * step = index.step or 0 # <<<<<<<<<<<<<< * * have_start = index.start is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 764, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 764, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 764, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = 0; __pyx_L11_bool_binop_done:; __pyx_v_step = __pyx_t_10; /* "View.MemoryView":766 * step = index.step or 0 * * have_start = index.start is not None # <<<<<<<<<<<<<< * have_stop = index.stop is not None * have_step = index.step is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_start = __pyx_t_1; /* "View.MemoryView":767 * * have_start = index.start is not None * have_stop = index.stop is not None # <<<<<<<<<<<<<< * have_step = index.step is not None * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 767, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_stop = __pyx_t_1; /* "View.MemoryView":768 * have_start = index.start is not None * have_stop = index.stop is not None * have_step = index.step is not None # <<<<<<<<<<<<<< * * slice_memviewslice( */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 768, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_step = __pyx_t_1; /* "View.MemoryView":770 * have_step = index.step is not None * * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 770, __pyx_L1_error) /* "View.MemoryView":776 * have_start, have_stop, have_step, * True) * new_ndim += 1 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); } __pyx_L6:; /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":780 * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< * memviewsliceobj.to_dtype_func, * memview.dtype_is_object) */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 780, __pyx_L1_error) } /* "View.MemoryView":781 * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< * memview.dtype_is_object) * else: */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 781, __pyx_L1_error) } /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 779, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 779, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ } /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ /*else*/ { __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":785 * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 784, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 784, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); __Pyx_XDECREF(__pyx_v_index); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { Py_ssize_t __pyx_v_new_shape; int __pyx_v_negative_step; int __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ __pyx_t_1 = ((__pyx_v_start < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":832 * * if start < 0: * start += shape # <<<<<<<<<<<<<< * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ } /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ __pyx_t_1 = (0 <= __pyx_v_start); if (__pyx_t_1) { __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); } __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":834 * start += shape * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< * else: * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 834, __pyx_L1_error) /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ } /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ goto __pyx_L3; } /* "View.MemoryView":837 * else: * * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< * * if have_step and step == 0: */ /*else*/ { __pyx_t_1 = ((__pyx_v_have_step != 0) != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L6_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step < 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L6_bool_binop_done:; __pyx_v_negative_step = __pyx_t_2; /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ __pyx_t_1 = (__pyx_v_have_step != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L9_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step == 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L9_bool_binop_done:; if (__pyx_t_2) { /* "View.MemoryView":840 * * if have_step and step == 0: * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 840, __pyx_L1_error) /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ } /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ __pyx_t_2 = (__pyx_v_have_start != 0); if (__pyx_t_2) { /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":845 * if have_start: * if start < 0: * start += shape # <<<<<<<<<<<<<< * if start < 0: * start = 0 */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":847 * start += shape * if start < 0: * start = 0 # <<<<<<<<<<<<<< * elif start >= shape: * if negative_step: */ __pyx_v_start = 0; /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ } /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ goto __pyx_L12; } /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":850 * elif start >= shape: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = shape */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L14; } /* "View.MemoryView":852 * start = shape - 1 * else: * start = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ /*else*/ { __pyx_v_start = __pyx_v_shape; } __pyx_L14:; /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ } __pyx_L12:; /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ goto __pyx_L11; } /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":855 * else: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = 0 */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L15; } /* "View.MemoryView":857 * start = shape - 1 * else: * start = 0 # <<<<<<<<<<<<<< * * if have_stop: */ /*else*/ { __pyx_v_start = 0; } __pyx_L15:; } __pyx_L11:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ __pyx_t_2 = (__pyx_v_have_stop != 0); if (__pyx_t_2) { /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":861 * if have_stop: * if stop < 0: * stop += shape # <<<<<<<<<<<<<< * if stop < 0: * stop = 0 */ __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":863 * stop += shape * if stop < 0: * stop = 0 # <<<<<<<<<<<<<< * elif stop > shape: * stop = shape */ __pyx_v_stop = 0; /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ } /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ goto __pyx_L17; } /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":865 * stop = 0 * elif stop > shape: * stop = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ __pyx_v_stop = __pyx_v_shape; /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ } __pyx_L17:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ goto __pyx_L16; } /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":868 * else: * if negative_step: * stop = -1 # <<<<<<<<<<<<<< * else: * stop = shape */ __pyx_v_stop = -1L; /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ goto __pyx_L19; } /* "View.MemoryView":870 * stop = -1 * else: * stop = shape # <<<<<<<<<<<<<< * * if not have_step: */ /*else*/ { __pyx_v_stop = __pyx_v_shape; } __pyx_L19:; } __pyx_L16:; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":873 * * if not have_step: * step = 1 # <<<<<<<<<<<<<< * * */ __pyx_v_step = 1; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ } /* "View.MemoryView":877 * * with cython.cdivision(True): * new_shape = (stop - start) // step # <<<<<<<<<<<<<< * * if (stop - start) - step * new_shape: */ __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); if (__pyx_t_2) { /* "View.MemoryView":880 * * if (stop - start) - step * new_shape: * new_shape += 1 # <<<<<<<<<<<<<< * * if new_shape < 0: */ __pyx_v_new_shape = (__pyx_v_new_shape + 1); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ } /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":883 * * if new_shape < 0: * new_shape = 0 # <<<<<<<<<<<<<< * * */ __pyx_v_new_shape = 0; /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ } /* "View.MemoryView":886 * * * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset */ (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); /* "View.MemoryView":887 * * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< * dst.suboffsets[new_ndim] = suboffset * */ (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; /* "View.MemoryView":888 * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< * * */ (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; } __pyx_L3:; /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":892 * * if suboffset_dim[0] < 0: * dst.data += start * stride # <<<<<<<<<<<<<< * else: * dst.suboffsets[suboffset_dim[0]] += start * stride */ __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ goto __pyx_L23; } /* "View.MemoryView":894 * dst.data += start * stride * else: * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< * * if suboffset >= 0: */ /*else*/ { __pyx_t_3 = (__pyx_v_suboffset_dim[0]); (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); } __pyx_L23:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset */ __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = (<char **> dst.data)[0] + suboffset * else: */ __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":899 * if not is_slice: * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset # <<<<<<<<<<<<<< * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " */ __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = (<char **> dst.data)[0] + suboffset * else: */ goto __pyx_L26; } /* "View.MemoryView":901 * dst.data = (<char **> dst.data)[0] + suboffset * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< * "must be indexed and not sliced", dim) * else: */ /*else*/ { /* "View.MemoryView":902 * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< * else: * suboffset_dim[0] = new_ndim */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 901, __pyx_L1_error) } __pyx_L26:; /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset */ goto __pyx_L25; } /* "View.MemoryView":904 * "must be indexed and not sliced", dim) * else: * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< * * return 0 */ /*else*/ { (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; } __pyx_L25:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ } /* "View.MemoryView":906 * suboffset_dim[0] = new_ndim * * return 0 # <<<<<<<<<<<<<< * * */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_suboffset; Py_ssize_t __pyx_v_itemsize; char *__pyx_v_resultp; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("pybuffer_index", 0); /* "View.MemoryView":914 * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< * cdef Py_ssize_t itemsize = view.itemsize * cdef char *resultp */ __pyx_v_suboffset = -1L; /* "View.MemoryView":915 * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< * cdef char *resultp * */ __pyx_t_1 = __pyx_v_view->itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":919 * * if view.ndim == 0: * shape = view.len / itemsize # <<<<<<<<<<<<<< * stride = itemsize * else: */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(2, 919, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(2, 919, __pyx_L1_error) } __pyx_v_shape = __Pyx_div_Py_ssize_t(__pyx_v_view->len, __pyx_v_itemsize); /* "View.MemoryView":920 * if view.ndim == 0: * shape = view.len / itemsize * stride = itemsize # <<<<<<<<<<<<<< * else: * shape = view.shape[dim] */ __pyx_v_stride = __pyx_v_itemsize; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ goto __pyx_L3; } /* "View.MemoryView":922 * stride = itemsize * else: * shape = view.shape[dim] # <<<<<<<<<<<<<< * stride = view.strides[dim] * if view.suboffsets != NULL: */ /*else*/ { __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); /* "View.MemoryView":923 * else: * shape = view.shape[dim] * stride = view.strides[dim] # <<<<<<<<<<<<<< * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] */ __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":925 * stride = view.strides[dim] * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< * * if index < 0: */ __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ } } __pyx_L3:; /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":928 * * if index < 0: * index += view.shape[dim] # <<<<<<<<<<<<<< * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) */ __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":930 * index += view.shape[dim] * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * if index >= shape: */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 930, __pyx_L1_error) /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ } /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":933 * * if index >= shape: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * resultp = bufp + index * stride */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 933, __pyx_L1_error) /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":935 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * resultp = bufp + index * stride # <<<<<<<<<<<<<< * if suboffset >= 0: * resultp = (<char **> resultp)[0] + suboffset */ __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = (<char **> resultp)[0] + suboffset * */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":937 * resultp = bufp + index * stride * if suboffset >= 0: * resultp = (<char **> resultp)[0] + suboffset # <<<<<<<<<<<<<< * * return resultp */ __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = (<char **> resultp)[0] + suboffset * */ } /* "View.MemoryView":939 * resultp = (<char **> resultp)[0] + suboffset * * return resultp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_resultp; goto __pyx_L0; /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { int __pyx_v_ndim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; int __pyx_v_i; int __pyx_v_j; int __pyx_r; int __pyx_t_1; Py_ssize_t *__pyx_t_2; long __pyx_t_3; long __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; int __pyx_t_7; int __pyx_t_8; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":946 * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< * * cdef Py_ssize_t *shape = memslice.shape */ __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; __pyx_v_ndim = __pyx_t_1; /* "View.MemoryView":948 * cdef int ndim = memslice.memview.view.ndim * * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< * cdef Py_ssize_t *strides = memslice.strides * */ __pyx_t_2 = __pyx_v_memslice->shape; __pyx_v_shape = __pyx_t_2; /* "View.MemoryView":949 * * cdef Py_ssize_t *shape = memslice.shape * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< * * */ __pyx_t_2 = __pyx_v_memslice->strides; __pyx_v_strides = __pyx_t_2; /* "View.MemoryView":953 * * cdef int i, j * for i in range(ndim / 2): # <<<<<<<<<<<<<< * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] */ __pyx_t_3 = __Pyx_div_long(__pyx_v_ndim, 2); __pyx_t_4 = __pyx_t_3; for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_4; __pyx_t_1+=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":954 * cdef int i, j * for i in range(ndim / 2): * j = ndim - 1 - i # <<<<<<<<<<<<<< * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] */ __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); /* "View.MemoryView":955 * for i in range(ndim / 2): * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< * shape[i], shape[j] = shape[j], shape[i] * */ __pyx_t_5 = (__pyx_v_strides[__pyx_v_j]); __pyx_t_6 = (__pyx_v_strides[__pyx_v_i]); (__pyx_v_strides[__pyx_v_i]) = __pyx_t_5; (__pyx_v_strides[__pyx_v_j]) = __pyx_t_6; /* "View.MemoryView":956 * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: */ __pyx_t_6 = (__pyx_v_shape[__pyx_v_j]); __pyx_t_5 = (__pyx_v_shape[__pyx_v_i]); (__pyx_v_shape[__pyx_v_i]) = __pyx_t_6; (__pyx_v_shape[__pyx_v_j]) = __pyx_t_5; /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); if (!__pyx_t_8) { } else { __pyx_t_7 = __pyx_t_8; goto __pyx_L6_bool_binop_done; } __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); __pyx_t_7 = __pyx_t_8; __pyx_L6_bool_binop_done:; if (__pyx_t_7) { /* "View.MemoryView":959 * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< * * return 1 */ __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 959, __pyx_L1_error) /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ } } /* "View.MemoryView":961 * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * * return 1 # <<<<<<<<<<<<<< * * */ __pyx_r = 1; goto __pyx_L0; /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = 0; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* Python wrapper */ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":979 * * def __dealloc__(self): * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":983 * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: * return self.to_object_func(itemp) # <<<<<<<<<<<<<< * else: * return memoryview.convert_item_to_object(self, itemp) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 983, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ } /* "View.MemoryView":985 * return self.to_object_func(itemp) * else: * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 985, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":989 * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< * else: * memoryview.assign_item_from_object(self, itemp, value) */ __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 989, __pyx_L1_error) /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ goto __pyx_L3; } /* "View.MemoryView":991 * self.to_dtype_func(itemp, value) * else: * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< * * @property */ /*else*/ { __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 991, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":995 * @property * def base(self): * return self.from_object # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->from_object); __pyx_r = __pyx_v_self->from_object; goto __pyx_L0; /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice___reduce_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__33, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice_2__setstate_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__34, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_TypeInfo *__pyx_t_4; Py_buffer __pyx_t_5; Py_ssize_t *__pyx_t_6; Py_ssize_t *__pyx_t_7; Py_ssize_t *__pyx_t_8; Py_ssize_t __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_fromslice", 0); /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if <PyObject *> memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); if (__pyx_t_1) { /* "View.MemoryView":1010 * * if <PyObject *> memviewslice.memview == Py_None: * return None # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if <PyObject *> memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ } /* "View.MemoryView":1015 * * * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< * * result.from_slice = memviewslice */ __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1017 * result = _memoryviewslice(None, 0, dtype_is_object) * * result.from_slice = memviewslice # <<<<<<<<<<<<<< * __PYX_INC_MEMVIEW(&memviewslice, 1) * */ __pyx_v_result->from_slice = __pyx_v_memviewslice; /* "View.MemoryView":1018 * * result.from_slice = memviewslice * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< * * result.from_object = (<memoryview> memviewslice.memview).base */ __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); /* "View.MemoryView":1020 * __PYX_INC_MEMVIEW(&memviewslice, 1) * * result.from_object = (<memoryview> memviewslice.memview).base # <<<<<<<<<<<<<< * result.typeinfo = memviewslice.memview.typeinfo * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1020, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __Pyx_GOTREF(__pyx_v_result->from_object); __Pyx_DECREF(__pyx_v_result->from_object); __pyx_v_result->from_object = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":1021 * * result.from_object = (<memoryview> memviewslice.memview).base * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< * * result.view = memviewslice.memview.view */ __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; /* "View.MemoryView":1023 * result.typeinfo = memviewslice.memview.typeinfo * * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim */ __pyx_t_5 = __pyx_v_memviewslice.memview->view; __pyx_v_result->__pyx_base.view = __pyx_t_5; /* "View.MemoryView":1024 * * result.view = memviewslice.memview.view * result.view.buf = <void *> memviewslice.data # <<<<<<<<<<<<<< * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None */ __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); /* "View.MemoryView":1025 * result.view = memviewslice.memview.view * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim # <<<<<<<<<<<<<< * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; /* "View.MemoryView":1026 * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; /* "View.MemoryView":1027 * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: */ Py_INCREF(Py_None); /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ __pyx_t_1 = ((((struct __pyx_memoryview_obj *)__pyx_v_memviewslice.memview)->flags & PyBUF_WRITABLE) != 0); if (__pyx_t_1) { /* "View.MemoryView":1030 * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< * else: * result.flags = PyBUF_RECORDS_RO */ __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ goto __pyx_L4; } /* "View.MemoryView":1032 * result.flags = PyBUF_RECORDS * else: * result.flags = PyBUF_RECORDS_RO # <<<<<<<<<<<<<< * * result.view.shape = <Py_ssize_t *> result.from_slice.shape */ /*else*/ { __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS_RO; } __pyx_L4:; /* "View.MemoryView":1034 * result.flags = PyBUF_RECORDS_RO * * result.view.shape = <Py_ssize_t *> result.from_slice.shape # <<<<<<<<<<<<<< * result.view.strides = <Py_ssize_t *> result.from_slice.strides * */ __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); /* "View.MemoryView":1035 * * result.view.shape = <Py_ssize_t *> result.from_slice.shape * result.view.strides = <Py_ssize_t *> result.from_slice.strides # <<<<<<<<<<<<<< * * */ __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); /* "View.MemoryView":1038 * * * result.view.suboffsets = NULL # <<<<<<<<<<<<<< * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: */ __pyx_v_result->__pyx_base.view.suboffsets = NULL; /* "View.MemoryView":1039 * * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets */ __pyx_t_7 = (__pyx_v_result->from_slice.suboffsets + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->from_slice.suboffsets; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_v_suboffset = (__pyx_t_6[0]); /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break */ __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1041 * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets # <<<<<<<<<<<<<< * break * */ __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); /* "View.MemoryView":1042 * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break # <<<<<<<<<<<<<< * * result.view.len = result.view.itemsize */ goto __pyx_L6_break; /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break */ } } __pyx_L6_break:; /* "View.MemoryView":1044 * break * * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< * for length in result.view.shape[:ndim]: * result.view.len *= length */ __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; /* "View.MemoryView":1045 * * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< * result.view.len *= length * */ __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1045, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1046 * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: * result.view.len *= length # <<<<<<<<<<<<<< * * result.to_object_func = to_object_func */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; } /* "View.MemoryView":1048 * result.view.len *= length * * result.to_object_func = to_object_func # <<<<<<<<<<<<<< * result.to_dtype_func = to_dtype_func * */ __pyx_v_result->to_object_func = __pyx_v_to_object_func; /* "View.MemoryView":1049 * * result.to_object_func = to_object_func * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; /* "View.MemoryView":1051 * result.to_dtype_func = to_dtype_func * * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_get_slice_from_memoryview') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; __Pyx_memviewslice *__pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_slice_from_memview", 0); /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1058 * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): * obj = memview # <<<<<<<<<<<<<< * return &obj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 1058, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":1059 * if isinstance(memview, _memoryviewslice): * obj = memview * return &obj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, mslice) */ __pyx_r = (&__pyx_v_obj->from_slice); goto __pyx_L0; /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ } /* "View.MemoryView":1061 * return &obj.from_slice * else: * slice_copy(memview, mslice) # <<<<<<<<<<<<<< * return mslice * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); /* "View.MemoryView":1062 * else: * slice_copy(memview, mslice) * return mslice # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_slice_copy') */ __pyx_r = __pyx_v_mslice; goto __pyx_L0; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_obj); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { int __pyx_v_dim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; Py_ssize_t *__pyx_v_suboffsets; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; Py_ssize_t __pyx_t_5; __Pyx_RefNannySetupContext("slice_copy", 0); /* "View.MemoryView":1069 * cdef (Py_ssize_t*) shape, strides, suboffsets * * shape = memview.view.shape # <<<<<<<<<<<<<< * strides = memview.view.strides * suboffsets = memview.view.suboffsets */ __pyx_t_1 = __pyx_v_memview->view.shape; __pyx_v_shape = __pyx_t_1; /* "View.MemoryView":1070 * * shape = memview.view.shape * strides = memview.view.strides # <<<<<<<<<<<<<< * suboffsets = memview.view.suboffsets * */ __pyx_t_1 = __pyx_v_memview->view.strides; __pyx_v_strides = __pyx_t_1; /* "View.MemoryView":1071 * shape = memview.view.shape * strides = memview.view.strides * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< * * dst.memview = <__pyx_memoryview *> memview */ __pyx_t_1 = __pyx_v_memview->view.suboffsets; __pyx_v_suboffsets = __pyx_t_1; /* "View.MemoryView":1073 * suboffsets = memview.view.suboffsets * * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< * dst.data = <char *> memview.view.buf * */ __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); /* "View.MemoryView":1074 * * dst.memview = <__pyx_memoryview *> memview * dst.data = <char *> memview.view.buf # <<<<<<<<<<<<<< * * for dim in range(memview.view.ndim): */ __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); /* "View.MemoryView":1076 * dst.data = <char *> memview.view.buf * * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] */ __pyx_t_2 = __pyx_v_memview->view.ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_dim = __pyx_t_4; /* "View.MemoryView":1077 * * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 */ (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); /* "View.MemoryView":1078 * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 * */ (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); /* "View.MemoryView":1079 * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object') */ if ((__pyx_v_suboffsets != 0)) { __pyx_t_5 = (__pyx_v_suboffsets[__pyx_v_dim]); } else { __pyx_t_5 = -1L; } (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_5; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { __Pyx_memviewslice __pyx_v_memviewslice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy", 0); /* "View.MemoryView":1085 * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< * return memoryview_copy_from_slice(memview, &memviewslice) * */ __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); /* "View.MemoryView":1086 * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object_from_slice') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1086, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { PyObject *(*__pyx_v_to_object_func)(char *); int (*__pyx_v_to_dtype_func)(char *, PyObject *); PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *(*__pyx_t_3)(char *); int (*__pyx_t_4)(char *, PyObject *); PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1097 * * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: */ __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; __pyx_v_to_object_func = __pyx_t_3; /* "View.MemoryView":1098 * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< * else: * to_object_func = NULL */ __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; __pyx_v_to_dtype_func = __pyx_t_4; /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ goto __pyx_L3; } /* "View.MemoryView":1100 * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: * to_object_func = NULL # <<<<<<<<<<<<<< * to_dtype_func = NULL * */ /*else*/ { __pyx_v_to_object_func = NULL; /* "View.MemoryView":1101 * else: * to_object_func = NULL * to_dtype_func = NULL # <<<<<<<<<<<<<< * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, */ __pyx_v_to_dtype_func = NULL; } __pyx_L3:; /* "View.MemoryView":1103 * to_dtype_func = NULL * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< * to_object_func, to_dtype_func, * memview.dtype_is_object) */ __Pyx_XDECREF(__pyx_r); /* "View.MemoryView":1105 * return memoryview_fromslice(memviewslice[0], memview.view.ndim, * to_object_func, to_dtype_func, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 1103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { Py_ssize_t __pyx_r; int __pyx_t_1; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ __pyx_t_1 = ((__pyx_v_arg < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1113 * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: * return -arg # <<<<<<<<<<<<<< * else: * return arg */ __pyx_r = (-__pyx_v_arg); goto __pyx_L0; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ } /* "View.MemoryView":1115 * return -arg * else: * return arg # <<<<<<<<<<<<<< * * @cname('__pyx_get_best_slice_order') */ /*else*/ { __pyx_r = __pyx_v_arg; goto __pyx_L0; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { int __pyx_v_i; Py_ssize_t __pyx_v_c_stride; Py_ssize_t __pyx_v_f_stride; char __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1123 * """ * cdef int i * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< * cdef Py_ssize_t f_stride = 0 * */ __pyx_v_c_stride = 0; /* "View.MemoryView":1124 * cdef int i * cdef Py_ssize_t c_stride = 0 * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_f_stride = 0; /* "View.MemoryView":1126 * cdef Py_ssize_t f_stride = 0 * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1128 * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1129 * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * for i in range(ndim): */ goto __pyx_L4_break; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ } } __pyx_L4_break:; /* "View.MemoryView":1131 * break * * for i in range(ndim): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] */ __pyx_t_1 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_1; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1133 * for i in range(ndim): * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1134 * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): */ goto __pyx_L7_break; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ } } __pyx_L7_break:; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1137 * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): * return 'C' # <<<<<<<<<<<<<< * else: * return 'F' */ __pyx_r = 'C'; goto __pyx_L0; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ } /* "View.MemoryView":1139 * return 'C' * else: * return 'F' # <<<<<<<<<<<<<< * * @cython.cdivision(True) */ /*else*/ { __pyx_r = 'F'; goto __pyx_L0; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; Py_ssize_t __pyx_v_dst_extent; Py_ssize_t __pyx_v_src_stride; Py_ssize_t __pyx_v_dst_stride; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; /* "View.MemoryView":1149 * * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] */ __pyx_v_src_extent = (__pyx_v_src_shape[0]); /* "View.MemoryView":1150 * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] */ __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); /* "View.MemoryView":1151 * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_stride = dst_strides[0] * */ __pyx_v_src_stride = (__pyx_v_src_strides[0]); /* "View.MemoryView":1152 * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ __pyx_t_2 = ((__pyx_v_src_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } /* "View.MemoryView":1156 * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize * dst_extent) * else: */ __pyx_t_2 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); if (__pyx_t_2) { __pyx_t_2 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); } __pyx_t_3 = (__pyx_t_2 != 0); __pyx_t_1 = __pyx_t_3; __pyx_L5_bool_binop_done:; /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ if (__pyx_t_1) { /* "View.MemoryView":1157 * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent))); /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ goto __pyx_L4; } /* "View.MemoryView":1159 * memcpy(dst_data, src_data, itemsize * dst_extent) * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize) * src_data += src_stride */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1160 * else: * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< * src_data += src_stride * dst_data += dst_stride */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize)); /* "View.MemoryView":1161 * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * else: */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1162 * memcpy(dst_data, src_data, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L4:; /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): */ goto __pyx_L3; } /* "View.MemoryView":1164 * dst_data += dst_stride * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * _copy_strided_to_strided(src_data, src_strides + 1, * dst_data, dst_strides + 1, */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1165 * else: * for i in range(dst_extent): * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< * dst_data, dst_strides + 1, * src_shape + 1, dst_shape + 1, */ _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); /* "View.MemoryView":1169 * src_shape + 1, dst_shape + 1, * ndim - 1, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1170 * ndim - 1, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L3:; /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ /* function exit code */ } /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { /* "View.MemoryView":1175 * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< * src.shape, dst.shape, ndim, itemsize) * */ _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ /* function exit code */ } /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_size; Py_ssize_t __pyx_r; Py_ssize_t __pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; /* "View.MemoryView":1181 * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize # <<<<<<<<<<<<<< * * for shape in src.shape[:ndim]: */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_size = __pyx_t_1; /* "View.MemoryView":1183 * cdef Py_ssize_t shape, size = src.memview.view.itemsize * * for shape in src.shape[:ndim]: # <<<<<<<<<<<<<< * size *= shape * */ __pyx_t_3 = (__pyx_v_src->shape + __pyx_v_ndim); for (__pyx_t_4 = __pyx_v_src->shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_shape = (__pyx_t_2[0]); /* "View.MemoryView":1184 * * for shape in src.shape[:ndim]: * size *= shape # <<<<<<<<<<<<<< * * return size */ __pyx_v_size = (__pyx_v_size * __pyx_v_shape); } /* "View.MemoryView":1186 * size *= shape * * return size # <<<<<<<<<<<<<< * * @cname('__pyx_fill_contig_strides_array') */ __pyx_r = __pyx_v_size; goto __pyx_L0; /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { int __pyx_v_idx; Py_ssize_t __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ __pyx_t_1 = ((__pyx_v_order == 'F') != 0); if (__pyx_t_1) { /* "View.MemoryView":1199 * * if order == 'F': * for idx in range(ndim): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ __pyx_t_2 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_idx = __pyx_t_4; /* "View.MemoryView":1200 * if order == 'F': * for idx in range(ndim): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * else: */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1201 * for idx in range(ndim): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * else: * for idx in range(ndim - 1, -1, -1): */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ goto __pyx_L3; } /* "View.MemoryView":1203 * stride *= shape[idx] * else: * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ /*else*/ { for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { __pyx_v_idx = __pyx_t_2; /* "View.MemoryView":1204 * else: * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1205 * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * * return stride */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } } __pyx_L3:; /* "View.MemoryView":1207 * stride *= shape[idx] * * return stride # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_data_to_temp') */ __pyx_r = __pyx_v_stride; goto __pyx_L0; /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { int __pyx_v_i; void *__pyx_v_result; size_t __pyx_v_itemsize; size_t __pyx_v_size; void *__pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; struct __pyx_memoryview_obj *__pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1221 * cdef void *result * * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef size_t size = slice_get_size(src, ndim) * */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1222 * * cdef size_t itemsize = src.memview.view.itemsize * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< * * result = malloc(size) */ __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); /* "View.MemoryView":1224 * cdef size_t size = slice_get_size(src, ndim) * * result = malloc(size) # <<<<<<<<<<<<<< * if not result: * _err(MemoryError, NULL) */ __pyx_v_result = malloc(__pyx_v_size); /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1226 * result = malloc(size) * if not result: * _err(MemoryError, NULL) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 1226, __pyx_L1_error) /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ } /* "View.MemoryView":1229 * * * tmpslice.data = <char *> result # <<<<<<<<<<<<<< * tmpslice.memview = src.memview * for i in range(ndim): */ __pyx_v_tmpslice->data = ((char *)__pyx_v_result); /* "View.MemoryView":1230 * * tmpslice.data = <char *> result * tmpslice.memview = src.memview # <<<<<<<<<<<<<< * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] */ __pyx_t_4 = __pyx_v_src->memview; __pyx_v_tmpslice->memview = __pyx_t_4; /* "View.MemoryView":1231 * tmpslice.data = <char *> result * tmpslice.memview = src.memview * for i in range(ndim): # <<<<<<<<<<<<<< * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1232 * tmpslice.memview = src.memview * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< * tmpslice.suboffsets[i] = -1 * */ (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); /* "View.MemoryView":1233 * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, */ (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1235 * tmpslice.suboffsets[i] = -1 * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< * ndim, order) * */ (void)(__pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order)); /* "View.MemoryView":1239 * * * for i in range(ndim): # <<<<<<<<<<<<<< * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1241 * for i in range(ndim): * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< * * if slice_is_contig(src[0], order, ndim): */ (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ } } /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1244 * * if slice_is_contig(src[0], order, ndim): * memcpy(result, src.data, size) # <<<<<<<<<<<<<< * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) */ (void)(memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size)); /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ goto __pyx_L9; } /* "View.MemoryView":1246 * memcpy(result, src.data, size) * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< * * return result */ /*else*/ { copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); } __pyx_L9:; /* "View.MemoryView":1248 * copy_strided_to_strided(src, tmpslice, ndim, itemsize) * * return result # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = NULL; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_extents", 0); /* "View.MemoryView":1256 * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % * (i, extent1, extent2)) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err_dim') */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; /* "View.MemoryView":1255 * cdef int _err_extents(int i, Py_ssize_t extent1, * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< * (i, extent1, extent2)) * */ __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(2, 1255, __pyx_L1_error) /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_dim", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1260 * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err') */ __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_INCREF(__pyx_v_error); __pyx_t_3 = __pyx_v_error; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 1260, __pyx_L1_error) /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":1265 * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< * else: * raise error */ __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_error); __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 1265, __pyx_L1_error) /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ } /* "View.MemoryView":1267 * raise error(msg.decode('ascii')) * else: * raise error # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_contents') */ /*else*/ { __Pyx_Raise(__pyx_v_error, 0, 0, 0); __PYX_ERR(2, 1267, __pyx_L1_error) } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { void *__pyx_v_tmpdata; size_t __pyx_v_itemsize; int __pyx_v_i; char __pyx_v_order; int __pyx_v_broadcasting; int __pyx_v_direct_copy; __Pyx_memviewslice __pyx_v_tmp; int __pyx_v_ndim; int __pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; void *__pyx_t_7; int __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1278 * Check for overlapping memory and verify the shapes. * """ * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< * cdef size_t itemsize = src.memview.view.itemsize * cdef int i */ __pyx_v_tmpdata = NULL; /* "View.MemoryView":1279 * """ * cdef void *tmpdata = NULL * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef int i * cdef char order = get_best_order(&src, src_ndim) */ __pyx_t_1 = __pyx_v_src.memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1281 * cdef size_t itemsize = src.memview.view.itemsize * cdef int i * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< * cdef bint broadcasting = False * cdef bint direct_copy = False */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); /* "View.MemoryView":1282 * cdef int i * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False # <<<<<<<<<<<<<< * cdef bint direct_copy = False * cdef __Pyx_memviewslice tmp */ __pyx_v_broadcasting = 0; /* "View.MemoryView":1283 * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False * cdef bint direct_copy = False # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice tmp * */ __pyx_v_direct_copy = 0; /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1287 * * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ goto __pyx_L3; } /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1289 * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< * * cdef int ndim = max(src_ndim, dst_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ } __pyx_L3:; /* "View.MemoryView":1291 * broadcast_leading(&dst, dst_ndim, src_ndim) * * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< * * for i in range(ndim): */ __pyx_t_3 = __pyx_v_dst_ndim; __pyx_t_4 = __pyx_v_src_ndim; if (((__pyx_t_3 > __pyx_t_4) != 0)) { __pyx_t_5 = __pyx_t_3; } else { __pyx_t_5 = __pyx_t_4; } __pyx_v_ndim = __pyx_t_5; /* "View.MemoryView":1293 * cdef int ndim = max(src_ndim, dst_ndim) * * for i in range(ndim): # <<<<<<<<<<<<<< * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: */ __pyx_t_5 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_5; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); if (__pyx_t_2) { /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1296 * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: * broadcasting = True # <<<<<<<<<<<<<< * src.strides[i] = 0 * else: */ __pyx_v_broadcasting = 1; /* "View.MemoryView":1297 * if src.shape[i] == 1: * broadcasting = True * src.strides[i] = 0 # <<<<<<<<<<<<<< * else: * _err_extents(i, dst.shape[i], src.shape[i]) */ (__pyx_v_src.strides[__pyx_v_i]) = 0; /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ goto __pyx_L7; } /* "View.MemoryView":1299 * src.strides[i] = 0 * else: * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< * * if src.suboffsets[i] >= 0: */ /*else*/ { __pyx_t_6 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1299, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ } /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":1302 * * if src.suboffsets[i] >= 0: * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< * * if slices_overlap(&src, &dst, ndim, itemsize): */ __pyx_t_6 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1302, __pyx_L1_error) /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ } } /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); if (__pyx_t_2) { /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1307 * * if not slice_is_contig(src, order, ndim): * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ } /* "View.MemoryView":1309 * order = get_best_order(&dst, ndim) * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< * src = tmp * */ __pyx_t_7 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_7 == ((void *)NULL))) __PYX_ERR(2, 1309, __pyx_L1_error) __pyx_v_tmpdata = __pyx_t_7; /* "View.MemoryView":1310 * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) * src = tmp # <<<<<<<<<<<<<< * * if not broadcasting: */ __pyx_v_src = __pyx_v_tmp; /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1316 * * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ goto __pyx_L12; } /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1318 * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< * * if direct_copy: */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ } __pyx_L12:; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_2 = (__pyx_v_direct_copy != 0); if (__pyx_t_2) { /* "View.MemoryView":1322 * if direct_copy: * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1323 * * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) */ (void)(memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim))); /* "View.MemoryView":1324 * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * free(tmpdata) * return 0 */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1325 * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1326 * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * if order == 'F' == get_best_order(&dst, ndim): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ __pyx_t_2 = (__pyx_v_order == 'F'); if (__pyx_t_2) { __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); } __pyx_t_8 = (__pyx_t_2 != 0); if (__pyx_t_8) { /* "View.MemoryView":1331 * * * transpose_memslice(&src) # <<<<<<<<<<<<<< * transpose_memslice(&dst) * */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1331, __pyx_L1_error) /* "View.MemoryView":1332 * * transpose_memslice(&src) * transpose_memslice(&dst) # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1332, __pyx_L1_error) /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1334 * transpose_memslice(&dst) * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1335 * * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * */ copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1336 * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * free(tmpdata) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1338 * refcount_copying(&dst, dtype_is_object, ndim, True) * * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1339 * * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_broadcast_leading') */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim, int __pyx_v_ndim_other) { int __pyx_v_i; int __pyx_v_offset; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; /* "View.MemoryView":1346 * int ndim_other) nogil: * cdef int i * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); /* "View.MemoryView":1348 * cdef int offset = ndim_other - ndim * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1349 * * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] */ (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); /* "View.MemoryView":1350 * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * */ (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1351 * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< * * for i in range(offset): */ (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); } /* "View.MemoryView":1353 * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * * for i in range(offset): # <<<<<<<<<<<<<< * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] */ __pyx_t_1 = __pyx_v_offset; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1354 * * for i in range(offset): * mslice.shape[i] = 1 # <<<<<<<<<<<<<< * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 */ (__pyx_v_mslice->shape[__pyx_v_i]) = 1; /* "View.MemoryView":1355 * for i in range(offset): * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< * mslice.suboffsets[i] = -1 * */ (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); /* "View.MemoryView":1356 * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * */ (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ /* function exit code */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { int __pyx_t_1; /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ __pyx_t_1 = (__pyx_v_dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":1369 * * if dtype_is_object: * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< * dst.strides, ndim, inc) * */ __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ /* function exit code */ } /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { __Pyx_RefNannyDeclarations #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); /* "View.MemoryView":1376 * Py_ssize_t *strides, int ndim, * bint inc) with gil: * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_refcount_objects_in_slice') */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ /* function exit code */ __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); /* "View.MemoryView":1383 * cdef Py_ssize_t i * * for i in range(shape[0]): # <<<<<<<<<<<<<< * if ndim == 1: * if inc: */ __pyx_t_1 = (__pyx_v_shape[0]); __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF((<PyObject **> data)[0]) */ __pyx_t_4 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_4) { /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF((<PyObject **> data)[0]) * else: */ __pyx_t_4 = (__pyx_v_inc != 0); if (__pyx_t_4) { /* "View.MemoryView":1386 * if ndim == 1: * if inc: * Py_INCREF((<PyObject **> data)[0]) # <<<<<<<<<<<<<< * else: * Py_DECREF((<PyObject **> data)[0]) */ Py_INCREF((((PyObject **)__pyx_v_data)[0])); /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF((<PyObject **> data)[0]) * else: */ goto __pyx_L6; } /* "View.MemoryView":1388 * Py_INCREF((<PyObject **> data)[0]) * else: * Py_DECREF((<PyObject **> data)[0]) # <<<<<<<<<<<<<< * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, */ /*else*/ { Py_DECREF((((PyObject **)__pyx_v_data)[0])); } __pyx_L6:; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF((<PyObject **> data)[0]) */ goto __pyx_L5; } /* "View.MemoryView":1390 * Py_DECREF((<PyObject **> data)[0]) * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, inc) * */ /*else*/ { /* "View.MemoryView":1391 * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, * ndim - 1, inc) # <<<<<<<<<<<<<< * * data += strides[0] */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); } __pyx_L5:; /* "View.MemoryView":1393 * ndim - 1, inc) * * data += strides[0] # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { /* "View.MemoryView":1402 * size_t itemsize, void *item, * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1403 * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) */ __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1405 * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ /* function exit code */ } /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_extent; int __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; Py_ssize_t __pyx_t_4; /* "View.MemoryView":1413 * size_t itemsize, void *item) nogil: * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t extent = shape[0] * */ __pyx_v_stride = (__pyx_v_strides[0]); /* "View.MemoryView":1414 * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_extent = (__pyx_v_shape[0]); /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1417 * * if ndim == 1: * for i in range(extent): # <<<<<<<<<<<<<< * memcpy(data, item, itemsize) * data += stride */ __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1418 * if ndim == 1: * for i in range(extent): * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< * data += stride * else: */ (void)(memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize)); /* "View.MemoryView":1419 * for i in range(extent): * memcpy(data, item, itemsize) * data += stride # <<<<<<<<<<<<<< * else: * for i in range(extent): */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ goto __pyx_L3; } /* "View.MemoryView":1421 * data += stride * else: * for i in range(extent): # <<<<<<<<<<<<<< * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) */ /*else*/ { __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1422 * else: * for i in range(extent): * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, itemsize, item) * data += stride */ __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1424 * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) * data += stride # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } } __pyx_L3:; /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ /* function exit code */ } /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum = {"__pyx_unpickle_Enum", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v___pyx_type = 0; long __pyx_v___pyx_checksum; PyObject *__pyx_v___pyx_state = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_unpickle_Enum (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_pyx_type,&__pyx_n_s_pyx_checksum,&__pyx_n_s_pyx_state,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_type)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_checksum)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 1); __PYX_ERR(2, 1, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_state)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 2); __PYX_ERR(2, 1, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_unpickle_Enum") < 0)) __PYX_ERR(2, 1, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); } __pyx_v___pyx_type = values[0]; __pyx_v___pyx_checksum = __Pyx_PyInt_As_long(values[1]); if (unlikely((__pyx_v___pyx_checksum == (long)-1) && PyErr_Occurred())) __PYX_ERR(2, 1, __pyx_L3_error) __pyx_v___pyx_state = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 1, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(__pyx_self, __pyx_v___pyx_type, __pyx_v___pyx_checksum, __pyx_v___pyx_state); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_v___pyx_PickleError = 0; PyObject *__pyx_v___pyx_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum", 0); /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_t_1, __pyx_tuple__35, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":5 * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError # <<<<<<<<<<<<<< * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_PickleError); __Pyx_GIVEREF(__pyx_n_s_PickleError); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_PickleError); __pyx_t_4 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_4, __pyx_n_s_PickleError); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_1); __pyx_v___pyx_PickleError = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":6 * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) # <<<<<<<<<<<<<< * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_INCREF(__pyx_v___pyx_PickleError); __pyx_t_1 = __pyx_v___pyx_PickleError; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_6, __pyx_t_5) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(2, 6, __pyx_L1_error) /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ } /* "(tree fragment)":7 * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) # <<<<<<<<<<<<<< * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_MemviewEnum_type), __pyx_n_s_new); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_5, __pyx_v___pyx_type) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v___pyx_type); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v___pyx_result = __pyx_t_4; __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result */ __pyx_t_3 = (__pyx_v___pyx_state != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { /* "(tree fragment)":9 * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) # <<<<<<<<<<<<<< * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||((void)PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 9, __pyx_L1_error) __pyx_t_4 = __pyx_unpickle_Enum__set_state(((struct __pyx_MemviewEnum_obj *)__pyx_v___pyx_result), ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result */ } /* "(tree fragment)":10 * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result # <<<<<<<<<<<<<< * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v___pyx_result); __pyx_r = __pyx_v___pyx_result; goto __pyx_L0; /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v___pyx_PickleError); __Pyx_XDECREF(__pyx_v___pyx_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *__pyx_v___pyx_result, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum__set_state", 0); /* "(tree fragment)":12 * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] # <<<<<<<<<<<<<< * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(2, 12, __pyx_L1_error) } __pyx_t_1 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __Pyx_GOTREF(__pyx_v___pyx_result->name); __Pyx_DECREF(__pyx_v___pyx_result->name); __pyx_v___pyx_result->name = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(2, 13, __pyx_L1_error) } __pyx_t_3 = PyTuple_GET_SIZE(__pyx_v___pyx_state); if (unlikely(__pyx_t_3 == ((Py_ssize_t)-1))) __PYX_ERR(2, 13, __pyx_L1_error) __pyx_t_4 = ((__pyx_t_3 > 1) != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_4 = __Pyx_HasAttr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 13, __pyx_L1_error) __pyx_t_5 = (__pyx_t_4 != 0); __pyx_t_2 = __pyx_t_5; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { /* "(tree fragment)":14 * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) # <<<<<<<<<<<<<< */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(2, 14, __pyx_L1_error) } __pyx_t_6 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_8, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum__set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static struct __pyx_vtabstruct_array __pyx_vtable_array; static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_array_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_array_obj *)o); p->__pyx_vtab = __pyx_vtabptr_array; p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_array(PyObject *o) { struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_array___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->mode); Py_CLEAR(p->_format); (*Py_TYPE(o)->tp_free)(o); } static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_array___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { PyObject *v = __Pyx_PyObject_GenericGetAttr(o, n); if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); v = __pyx_array___getattr__(o, n); } return v; } static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(o); } static PyMethodDef __pyx_methods_array[] = { {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_array_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_array_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_array[] = { {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_array = { __pyx_array___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_array, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_array = { __pyx_array___len__, /*mp_length*/ __pyx_array___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_array = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_array_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_array = { PyVarObject_HEAD_INIT(0, 0) "kmeans.array", /*tp_name*/ sizeof(struct __pyx_array_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_array, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif 0, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ __pyx_tp_getattro_array, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_array, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_array, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_array, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { struct __pyx_MemviewEnum_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_MemviewEnum_obj *)o); p->name = Py_None; Py_INCREF(Py_None); return o; } static void __pyx_tp_dealloc_Enum(PyObject *o) { struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); Py_CLEAR(p->name); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { int e; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; if (p->name) { e = (*v)(p->name, a); if (e) return e; } return 0; } static int __pyx_tp_clear_Enum(PyObject *o) { PyObject* tmp; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; tmp = ((PyObject*)p->name); p->name = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); return 0; } static PyMethodDef __pyx_methods_Enum[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_MemviewEnum = { PyVarObject_HEAD_INIT(0, 0) "kmeans.Enum", /*tp_name*/ sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_Enum, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_MemviewEnum___repr__, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_Enum, /*tp_traverse*/ __pyx_tp_clear_Enum, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_Enum, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ __pyx_MemviewEnum___init__, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_Enum, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryview_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_memoryview_obj *)o); p->__pyx_vtab = __pyx_vtabptr_memoryview; p->obj = Py_None; Py_INCREF(Py_None); p->_size = Py_None; Py_INCREF(Py_None); p->_array_interface = Py_None; Py_INCREF(Py_None); p->view.obj = NULL; if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_memoryview(PyObject *o) { struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryview___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->obj); Py_CLEAR(p->_size); Py_CLEAR(p->_array_interface); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; if (p->obj) { e = (*v)(p->obj, a); if (e) return e; } if (p->_size) { e = (*v)(p->_size, a); if (e) return e; } if (p->_array_interface) { e = (*v)(p->_array_interface, a); if (e) return e; } if (p->view.obj) { e = (*v)(p->view.obj, a); if (e) return e; } return 0; } static int __pyx_tp_clear_memoryview(PyObject *o) { PyObject* tmp; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; tmp = ((PyObject*)p->obj); p->obj = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_size); p->_size = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_array_interface); p->_array_interface = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); Py_CLEAR(p->view.obj); return 0; } static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_memoryview___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(o); } static PyMethodDef __pyx_methods_memoryview[] = { {"is_c_contig", (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, 0}, {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_memoryview[] = { {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, (char *)0, 0}, {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, (char *)0, 0}, {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, (char *)0, 0}, {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, (char *)0, 0}, {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, (char *)0, 0}, {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, (char *)0, 0}, {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, (char *)0, 0}, {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, (char *)0, 0}, {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_memoryview = { __pyx_memoryview___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_memoryview, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_memoryview = { __pyx_memoryview___len__, /*mp_length*/ __pyx_memoryview___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_memoryview = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_memoryview_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_memoryview = { PyVarObject_HEAD_INIT(0, 0) "kmeans.memoryview", /*tp_name*/ sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_memoryview___repr__, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ __pyx_memoryview___str__, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_memoryview, /*tp_traverse*/ __pyx_tp_clear_memoryview, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_memoryview, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_memoryview, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_memoryview, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryviewslice_obj *p; PyObject *o = __pyx_tp_new_memoryview(t, a, k); if (unlikely(!o)) return 0; p = ((struct __pyx_memoryviewslice_obj *)o); p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; p->from_object = Py_None; Py_INCREF(Py_None); p->from_slice.memview = NULL; return o; } static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryviewslice___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->from_object); PyObject_GC_Track(o); __pyx_tp_dealloc_memoryview(o); } static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; if (p->from_object) { e = (*v)(p->from_object, a); if (e) return e; } return 0; } static int __pyx_tp_clear__memoryviewslice(PyObject *o) { PyObject* tmp; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; __pyx_tp_clear_memoryview(o); tmp = ((PyObject*)p->from_object); p->from_object = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); __PYX_XDEC_MEMVIEW(&p->from_slice, 1); return 0; } static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(o); } static PyMethodDef __pyx_methods__memoryviewslice[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_memoryviewslice = { PyVarObject_HEAD_INIT(0, 0) "kmeans._memoryviewslice", /*tp_name*/ sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___repr__, /*tp_repr*/ #else 0, /*tp_repr*/ #endif 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___str__, /*tp_str*/ #else 0, /*tp_str*/ #endif 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ "Internal class for passing memoryview slices to Python", /*tp_doc*/ __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ __pyx_tp_clear__memoryviewslice, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods__memoryviewslice, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets__memoryviewslice, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new__memoryviewslice, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 #if CYTHON_PEP489_MULTI_PHASE_INIT static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ static int __pyx_pymod_exec_kmeans(PyObject* module); /*proto*/ static PyModuleDef_Slot __pyx_moduledef_slots[] = { {Py_mod_create, (void*)__pyx_pymod_create}, {Py_mod_exec, (void*)__pyx_pymod_exec_kmeans}, {0, NULL} }; #endif static struct PyModuleDef __pyx_moduledef = { PyModuleDef_HEAD_INIT, "kmeans", __pyx_k_Parallelized_k_means_module_Ori, /* m_doc */ #if CYTHON_PEP489_MULTI_PHASE_INIT 0, /* m_size */ #else -1, /* m_size */ #endif __pyx_methods /* m_methods */, #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_moduledef_slots, /* m_slots */ #else NULL, /* m_reload */ #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif #ifndef CYTHON_SMALL_CODE #if defined(__clang__) #define CYTHON_SMALL_CODE #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define CYTHON_SMALL_CODE __attribute__((cold)) #else #define CYTHON_SMALL_CODE #endif #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_assign_to_read_only_memor, __pyx_k_Cannot_assign_to_read_only_memor, sizeof(__pyx_k_Cannot_assign_to_read_only_memor), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_create_writable_memory_vi, __pyx_k_Cannot_create_writable_memory_vi, sizeof(__pyx_k_Cannot_create_writable_memory_vi), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, {&__pyx_kp_s_Expected_at_least_d_argument_s_g, __pyx_k_Expected_at_least_d_argument_s_g, sizeof(__pyx_k_Expected_at_least_d_argument_s_g), 0, 0, 1, 0}, {&__pyx_kp_s_Function_call_with_ambiguous_arg, __pyx_k_Function_call_with_ambiguous_arg, sizeof(__pyx_k_Function_call_with_ambiguous_arg), 0, 0, 1, 0}, {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, {&__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_k_Incompatible_checksums_0x_x_vs_0, sizeof(__pyx_k_Incompatible_checksums_0x_x_vs_0), 0, 0, 1, 0}, {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, {&__pyx_kp_s_No_matching_signature_found, __pyx_k_No_matching_signature_found, sizeof(__pyx_k_No_matching_signature_found), 0, 0, 1, 0}, {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, {&__pyx_n_s_PickleError, __pyx_k_PickleError, sizeof(__pyx_k_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_RandomState, __pyx_k_RandomState, sizeof(__pyx_k_RandomState), 0, 0, 1, 1}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_View_MemoryView, __pyx_k_View_MemoryView, sizeof(__pyx_k_View_MemoryView), 0, 0, 1, 1}, {&__pyx_kp_s__3, __pyx_k__3, sizeof(__pyx_k__3), 0, 0, 1, 0}, {&__pyx_kp_s__4, __pyx_k__4, sizeof(__pyx_k__4), 0, 0, 1, 0}, {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, {&__pyx_n_s_array, __pyx_k_array, sizeof(__pyx_k_array), 0, 0, 1, 1}, {&__pyx_n_s_astype, __pyx_k_astype, sizeof(__pyx_k_astype), 0, 0, 1, 1}, {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, {&__pyx_n_s_data, __pyx_k_data, sizeof(__pyx_k_data), 0, 0, 1, 1}, {&__pyx_n_s_defaults, __pyx_k_defaults, sizeof(__pyx_k_defaults), 0, 0, 1, 1}, {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, {&__pyx_n_s_dot, __pyx_k_dot, sizeof(__pyx_k_dot), 0, 0, 1, 1}, {&__pyx_n_s_double, __pyx_k_double, sizeof(__pyx_k_double), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, {&__pyx_n_s_finfo, __pyx_k_finfo, sizeof(__pyx_k_finfo), 0, 0, 1, 1}, {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, {&__pyx_n_s_float, __pyx_k_float, sizeof(__pyx_k_float), 0, 0, 1, 1}, {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_init, __pyx_k_init, sizeof(__pyx_k_init), 0, 0, 1, 1}, {&__pyx_kp_s_init_if_provided_must_have_shape, __pyx_k_init_if_provided_must_have_shape, sizeof(__pyx_k_init_if_provided_must_have_shape), 0, 0, 1, 0}, {&__pyx_n_s_int32, __pyx_k_int32, sizeof(__pyx_k_int32), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, {&__pyx_n_s_k, __pyx_k_k, sizeof(__pyx_k_k), 0, 0, 1, 1}, {&__pyx_n_s_kind, __pyx_k_kind, sizeof(__pyx_k_kind), 0, 0, 1, 1}, {&__pyx_n_s_kmeans, __pyx_k_kmeans, sizeof(__pyx_k_kmeans), 0, 0, 1, 1}, {&__pyx_kp_s_kmeans_pyx, __pyx_k_kmeans_pyx, sizeof(__pyx_k_kmeans_pyx), 0, 0, 1, 0}, {&__pyx_n_s_kwargs, __pyx_k_kwargs, sizeof(__pyx_k_kwargs), 0, 0, 1, 1}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_max_iter, __pyx_k_max_iter, sizeof(__pyx_k_max_iter), 0, 0, 1, 1}, {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, {&__pyx_n_s_min, __pyx_k_min, sizeof(__pyx_k_min), 0, 0, 1, 1}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, {&__pyx_n_s_normal, __pyx_k_normal, sizeof(__pyx_k_normal), 0, 0, 1, 1}, {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, {&__pyx_n_s_numpy_random, __pyx_k_numpy_random, sizeof(__pyx_k_numpy_random), 0, 0, 1, 1}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_out, __pyx_k_out, sizeof(__pyx_k_out), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, {&__pyx_n_s_pyx_PickleError, __pyx_k_pyx_PickleError, sizeof(__pyx_k_pyx_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_pyx_checksum, __pyx_k_pyx_checksum, sizeof(__pyx_k_pyx_checksum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_fuse_0kmeans, __pyx_k_pyx_fuse_0kmeans, sizeof(__pyx_k_pyx_fuse_0kmeans), 0, 0, 1, 1}, {&__pyx_n_s_pyx_fuse_1kmeans, __pyx_k_pyx_fuse_1kmeans, sizeof(__pyx_k_pyx_fuse_1kmeans), 0, 0, 1, 1}, {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, {&__pyx_n_s_pyx_result, __pyx_k_pyx_result, sizeof(__pyx_k_pyx_result), 0, 0, 1, 1}, {&__pyx_n_s_pyx_state, __pyx_k_pyx_state, sizeof(__pyx_k_pyx_state), 0, 0, 1, 1}, {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, {&__pyx_n_s_randint, __pyx_k_randint, sizeof(__pyx_k_randint), 0, 0, 1, 1}, {&__pyx_n_s_random, __pyx_k_random, sizeof(__pyx_k_random), 0, 0, 1, 1}, {&__pyx_n_s_random_integers, __pyx_k_random_integers, sizeof(__pyx_k_random_integers), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, {&__pyx_n_s_rng, __pyx_k_rng, sizeof(__pyx_k_rng), 0, 0, 1, 1}, {&__pyx_kp_s_rng_argument_unused_if_init_is_p, __pyx_k_rng_argument_unused_if_init_is_p, sizeof(__pyx_k_rng_argument_unused_if_init_is_p), 0, 0, 1, 0}, {&__pyx_n_s_s, __pyx_k_s, sizeof(__pyx_k_s), 0, 0, 1, 1}, {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_signatures, __pyx_k_signatures, sizeof(__pyx_k_signatures), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_split, __pyx_k_split, sizeof(__pyx_k_split), 0, 0, 1, 1}, {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_stringsource, __pyx_k_stringsource, sizeof(__pyx_k_stringsource), 0, 0, 1, 0}, {&__pyx_n_s_strip, __pyx_k_strip, sizeof(__pyx_k_strip), 0, 0, 1, 1}, {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 71, __pyx_L1_error) __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(0, 97, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(0, 185, __pyx_L1_error) __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 944, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(2, 149, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(2, 152, __pyx_L1_error) __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(2, 406, __pyx_L1_error) __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(2, 615, __pyx_L1_error) __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(2, 834, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_No_matching_signature_found); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_Function_call_with_ambiguous_arg); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); /* "kmeans.pyx":185 * if init is not None: * if rng is not None: * raise ValueError('rng argument unused if init is provided') # <<<<<<<<<<<<<< * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' */ __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_rng_argument_unused_if_init_is_p); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__10); __Pyx_GIVEREF(__pyx_tuple__10); /* "kmeans.pyx":187 * raise ValueError('rng argument unused if init is provided') * if init.shape[0] != k or init.shape[1] != nfeat: * raise ValueError('init if provided must have shape (k, ' # <<<<<<<<<<<<<< * 'data.shape[1])') * means = init */ __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_init_if_provided_must_have_shape); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(0, 187, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__11); __Pyx_GIVEREF(__pyx_tuple__11); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(1, 944, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__15); __Pyx_GIVEREF(__pyx_tuple__15); /* "../../../../../../../Program Files/Python311/Lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(1, 950, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__16); __Pyx_GIVEREF(__pyx_tuple__16); /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(2, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__17); __Pyx_GIVEREF(__pyx_tuple__17); /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_tuple__18 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(2, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__18); __Pyx_GIVEREF(__pyx_tuple__18); /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(2, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__19); __Pyx_GIVEREF(__pyx_tuple__19); /* "View.MemoryView":177 * self.data = <char *>malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(2, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__20); __Pyx_GIVEREF(__pyx_tuple__20); /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_tuple__21 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(2, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__21); __Pyx_GIVEREF(__pyx_tuple__21); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__23); __Pyx_GIVEREF(__pyx_tuple__23); /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_s_Cannot_assign_to_read_only_memor); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(2, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(2, 497, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_tuple__26 = PyTuple_Pack(1, __pyx_kp_s_Cannot_create_writable_memory_vi); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(2, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__26); __Pyx_GIVEREF(__pyx_tuple__26); /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_tuple__27 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__27)) __PYX_ERR(2, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__27); __Pyx_GIVEREF(__pyx_tuple__27); /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __pyx_tuple__28 = PyTuple_New(1); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__28); __Pyx_INCREF(__pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_tuple__28, 0, __pyx_int_neg_1); __Pyx_GIVEREF(__pyx_tuple__28); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__29 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__29)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__29); __Pyx_GIVEREF(__pyx_tuple__29); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__30 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__30); __Pyx_GIVEREF(__pyx_tuple__30); /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_slice__31 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__31)) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice__31); __Pyx_GIVEREF(__pyx_slice__31); /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_tuple__32 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__32)) __PYX_ERR(2, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__32); __Pyx_GIVEREF(__pyx_tuple__32); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__33 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__33)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__33); __Pyx_GIVEREF(__pyx_tuple__33); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__34 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__34)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__34); __Pyx_GIVEREF(__pyx_tuple__34); __pyx_tuple__35 = PyTuple_Pack(3, __pyx_int_184977713, __pyx_int_136983863, __pyx_int_112105877); if (unlikely(!__pyx_tuple__35)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__35); __Pyx_GIVEREF(__pyx_tuple__35); /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ __pyx_tuple__36 = PyTuple_Pack(5, __pyx_n_s_data, __pyx_n_s_k, __pyx_n_s_max_iter, __pyx_n_s_init, __pyx_n_s_rng); if (unlikely(!__pyx_tuple__36)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__36); __Pyx_GIVEREF(__pyx_tuple__36); __pyx_codeobj__37 = (PyObject*)__Pyx_PyCode_New(5, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__36, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_kmeans_pyx, __pyx_n_s_pyx_fuse_0kmeans, 97, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__37)) __PYX_ERR(0, 97, __pyx_L1_error) /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("<strided and direct or indirect>") # <<<<<<<<<<<<<< * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") */ __pyx_tuple__38 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__38)) __PYX_ERR(2, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__38); __Pyx_GIVEREF(__pyx_tuple__38); /* "View.MemoryView":288 * * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("<strided and indirect>") * */ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(2, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "View.MemoryView":289 * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_tuple__40 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(2, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); /* "View.MemoryView":292 * * * cdef contiguous = Enum("<contiguous and direct>") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("<contiguous and indirect>") * */ __pyx_tuple__41 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__41)) __PYX_ERR(2, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); /* "View.MemoryView":293 * * cdef contiguous = Enum("<contiguous and direct>") * cdef indirect_contiguous = Enum("<contiguous and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_tuple__42 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__42)) __PYX_ERR(2, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__42); __Pyx_GIVEREF(__pyx_tuple__42); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_tuple__43 = PyTuple_Pack(5, __pyx_n_s_pyx_type, __pyx_n_s_pyx_checksum, __pyx_n_s_pyx_state, __pyx_n_s_pyx_PickleError, __pyx_n_s_pyx_result); if (unlikely(!__pyx_tuple__43)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__43); __Pyx_GIVEREF(__pyx_tuple__43); __pyx_codeobj__44 = (PyObject*)__Pyx_PyCode_New(3, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__43, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_stringsource, __pyx_n_s_pyx_unpickle_Enum, 1, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__44)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { /* InitThreads.init */ #if defined(WITH_THREAD) && PY_VERSION_HEX < 0x030700F0 PyEval_InitThreads(); #endif if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_112105877 = PyInt_FromLong(112105877L); if (unlikely(!__pyx_int_112105877)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_136983863 = PyInt_FromLong(136983863L); if (unlikely(!__pyx_int_136983863)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_184977713 = PyInt_FromLong(184977713L); if (unlikely(!__pyx_int_184977713)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ static int __Pyx_modinit_global_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); /*--- Global init code ---*/ generic = Py_None; Py_INCREF(Py_None); strided = Py_None; Py_INCREF(Py_None); indirect = Py_None; Py_INCREF(Py_None); contiguous = Py_None; Py_INCREF(Py_None); indirect_contiguous = Py_None; Py_INCREF(Py_None); __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); /*--- Variable export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); /*--- Function export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_init_code(void) { __Pyx_RefNannyDeclarations int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); /*--- Type init code ---*/ __pyx_vtabptr_array = &__pyx_vtable_array; __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_array.tp_print = 0; #endif if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) __pyx_array_type = &__pyx_type___pyx_array; if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 280, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_MemviewEnum.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_MemviewEnum.tp_dictoffset && __pyx_type___pyx_MemviewEnum.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_MemviewEnum.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 280, __pyx_L1_error) __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryview.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryview.tp_dictoffset && __pyx_type___pyx_memoryview.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryview.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) __pyx_memoryview_type = &__pyx_type___pyx_memoryview; __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryviewslice.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryviewslice.tp_dictoffset && __pyx_type___pyx_memoryviewslice.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryviewslice.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_type_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); /*--- Type import code ---*/ __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 sizeof(PyTypeObject), #else sizeof(PyHeapTypeObject), #endif __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(3, 9, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 199, __pyx_L1_error) __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 222, __pyx_L1_error) __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 226, __pyx_L1_error) __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 238, __pyx_L1_error) __pyx_ptype_5numpy_generic = __Pyx_ImportType(__pyx_t_1, "numpy", "generic", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_generic) __PYX_ERR(1, 770, __pyx_L1_error) __pyx_ptype_5numpy_number = __Pyx_ImportType(__pyx_t_1, "numpy", "number", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_number) __PYX_ERR(1, 772, __pyx_L1_error) __pyx_ptype_5numpy_integer = __Pyx_ImportType(__pyx_t_1, "numpy", "integer", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_integer) __PYX_ERR(1, 774, __pyx_L1_error) __pyx_ptype_5numpy_signedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "signedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_signedinteger) __PYX_ERR(1, 776, __pyx_L1_error) __pyx_ptype_5numpy_unsignedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "unsignedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_unsignedinteger) __PYX_ERR(1, 778, __pyx_L1_error) __pyx_ptype_5numpy_inexact = __Pyx_ImportType(__pyx_t_1, "numpy", "inexact", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_inexact) __PYX_ERR(1, 780, __pyx_L1_error) __pyx_ptype_5numpy_floating = __Pyx_ImportType(__pyx_t_1, "numpy", "floating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_floating) __PYX_ERR(1, 782, __pyx_L1_error) __pyx_ptype_5numpy_complexfloating = __Pyx_ImportType(__pyx_t_1, "numpy", "complexfloating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_complexfloating) __PYX_ERR(1, 784, __pyx_L1_error) __pyx_ptype_5numpy_flexible = __Pyx_ImportType(__pyx_t_1, "numpy", "flexible", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_flexible) __PYX_ERR(1, 786, __pyx_L1_error) __pyx_ptype_5numpy_character = __Pyx_ImportType(__pyx_t_1, "numpy", "character", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_character) __PYX_ERR(1, 788, __pyx_L1_error) __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 826, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_variable_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); /*--- Variable import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); /*--- Function import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } #ifndef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #elif PY_MAJOR_VERSION < 3 #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" void #else #define __Pyx_PyMODINIT_FUNC void #endif #else #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" PyObject * #else #define __Pyx_PyMODINIT_FUNC PyObject * #endif #endif #if PY_MAJOR_VERSION < 3 __Pyx_PyMODINIT_FUNC initkmeans(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC initkmeans(void) #else __Pyx_PyMODINIT_FUNC PyInit_kmeans(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC PyInit_kmeans(void) #if CYTHON_PEP489_MULTI_PHASE_INIT { return PyModuleDef_Init(&__pyx_moduledef); } static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { #if PY_VERSION_HEX >= 0x030700A1 static PY_INT64_T main_interpreter_id = -1; PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); if (main_interpreter_id == -1) { main_interpreter_id = current_id; return (unlikely(current_id == -1)) ? -1 : 0; } else if (unlikely(main_interpreter_id != current_id)) #else static PyInterpreterState *main_interpreter = NULL; PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; if (!main_interpreter) { main_interpreter = current_interpreter; } else if (unlikely(main_interpreter != current_interpreter)) #endif { PyErr_SetString( PyExc_ImportError, "Interpreter change detected - this module can only be loaded into one interpreter per process."); return -1; } return 0; } static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { PyObject *value = PyObject_GetAttrString(spec, from_name); int result = 0; if (likely(value)) { if (allow_none || value != Py_None) { result = PyDict_SetItemString(moddict, to_name, value); } Py_DECREF(value); } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); } else { result = -1; } return result; } static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { PyObject *module = NULL, *moddict, *modname; if (__Pyx_check_single_interpreter()) return NULL; if (__pyx_m) return __Pyx_NewRef(__pyx_m); modname = PyObject_GetAttrString(spec, "name"); if (unlikely(!modname)) goto bad; module = PyModule_NewObject(modname); Py_DECREF(modname); if (unlikely(!module)) goto bad; moddict = PyModule_GetDict(module); if (unlikely(!moddict)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; return module; bad: Py_XDECREF(module); return NULL; } static CYTHON_SMALL_CODE int __pyx_pymod_exec_kmeans(PyObject *__pyx_pyinit_module) #endif #endif { PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; static PyThread_type_lock __pyx_t_4[8]; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannyDeclarations #if CYTHON_PEP489_MULTI_PHASE_INIT if (__pyx_m) { if (__pyx_m == __pyx_pyinit_module) return 0; PyErr_SetString(PyExc_RuntimeError, "Module 'kmeans' has already been imported. Re-initialisation is not supported."); return -1; } #elif PY_MAJOR_VERSION >= 3 if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_kmeans(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pxy_PyFrame_Initialize_Offsets __Pxy_PyFrame_Initialize_Offsets(); #endif __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pyx_CyFunction_USED if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Coroutine_USED if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_AsyncGen_USED if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(WITH_THREAD) && PY_VERSION_HEX < 0x030700F0 && defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS PyEval_InitThreads(); #endif /*--- Module creation code ---*/ #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_m = __pyx_pyinit_module; Py_INCREF(__pyx_m); #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("kmeans", __pyx_methods, __pyx_k_Parallelized_k_means_module_Ori, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_b); __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_cython_runtime); if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Initialize various global constants etc. ---*/ if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif if (__pyx_module_is_main_kmeans) { if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name_2, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) if (!PyDict_GetItemString(modules, "kmeans")) { if (unlikely(PyDict_SetItemString(modules, "kmeans", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) } } #endif /*--- Builtin init code ---*/ if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Global type/function init code ---*/ (void)__Pyx_modinit_global_init_code(); (void)__Pyx_modinit_variable_export_code(); (void)__Pyx_modinit_function_export_code(); if (unlikely(__Pyx_modinit_type_init_code() < 0)) __PYX_ERR(0, 1, __pyx_L1_error) if (unlikely(__Pyx_modinit_type_import_code() < 0)) __PYX_ERR(0, 1, __pyx_L1_error) (void)__Pyx_modinit_variable_import_code(); (void)__Pyx_modinit_function_import_code(); /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /* "kmeans.pyx":10 * cimport cython * from cython.parallel import prange * import numpy as np # <<<<<<<<<<<<<< * cimport numpy as np * from numpy.random import normal */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 10, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":12 * import numpy as np * cimport numpy as np * from numpy.random import normal # <<<<<<<<<<<<<< * * */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_normal); __Pyx_GIVEREF(__pyx_n_s_normal); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_normal); __pyx_t_2 = __Pyx_Import(__pyx_n_s_numpy_random, __pyx_t_1, -1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_normal); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_normal, __pyx_t_1) < 0) __PYX_ERR(0, 12, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "kmeans.pyx":98 * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, * np.npy_intp max_iter=1000, np.ndarray init=None, # <<<<<<<<<<<<<< * rng=None): * """ */ __pyx_t_2 = __Pyx_PyInt_From_long(0x3E8); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_1, 1, Py_None); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); __pyx_t_2 = 0; /* "kmeans.pyx":98 * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, * np.npy_intp max_iter=1000, np.ndarray init=None, # <<<<<<<<<<<<<< * rng=None): * """ */ __pyx_t_2 = __Pyx_PyInt_From_long(0x3E8); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 98, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_k_ = __pyx_t_2; __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_INCREF(Py_None); __pyx_k__2 = Py_None; __Pyx_GIVEREF(Py_None); /* "kmeans.pyx":97 * @cython.wraparound(False) * @cython.embedsignature(True) * cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, # <<<<<<<<<<<<<< * np.npy_intp max_iter=1000, np.ndarray init=None, * rng=None): */ __pyx_k__7 = 0x3E8; __Pyx_INCREF(Py_None); __pyx_k__8 = ((PyArrayObject *)Py_None); __Pyx_GIVEREF(Py_None); __Pyx_INCREF(Py_None); __pyx_k__9 = Py_None; __Pyx_GIVEREF(Py_None); __pyx_k__7 = 0x3E8; __Pyx_INCREF(Py_None); __pyx_k__8 = ((PyArrayObject *)Py_None); __Pyx_GIVEREF(Py_None); __Pyx_INCREF(Py_None); __pyx_k__9 = Py_None; __Pyx_GIVEREF(Py_None); __pyx_k__12 = 0x3E8; __Pyx_INCREF(Py_None); __pyx_k__13 = ((PyArrayObject *)Py_None); __Pyx_GIVEREF(Py_None); __Pyx_INCREF(Py_None); __pyx_k__14 = Py_None; __Pyx_GIVEREF(Py_None); __pyx_k__12 = 0x3E8; __Pyx_INCREF(Py_None); __pyx_k__13 = ((PyArrayObject *)Py_None); __Pyx_GIVEREF(Py_None); __Pyx_INCREF(Py_None); __pyx_k__14 = Py_None; __Pyx_GIVEREF(Py_None); __pyx_t_2 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_FusedFunction_New(&__pyx_fuse_0__pyx_mdef_6kmeans_3__pyx_fuse_0kmeans, 0, __pyx_n_s_pyx_fuse_0kmeans, NULL, __pyx_n_s_kmeans, __pyx_d, ((PyObject *)__pyx_codeobj__37)); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_CyFunction_SetDefaultsTuple(__pyx_t_3, __pyx_t_1); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_double, __pyx_t_3) < 0) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_FusedFunction_New(&__pyx_fuse_1__pyx_mdef_6kmeans_5__pyx_fuse_1kmeans, 0, __pyx_n_s_pyx_fuse_1kmeans, NULL, __pyx_n_s_kmeans, __pyx_d, ((PyObject *)__pyx_codeobj__37)); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_CyFunction_SetDefaultsTuple(__pyx_t_3, __pyx_t_1); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_float, __pyx_t_3) < 0) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __pyx_FusedFunction_New(&__pyx_mdef_6kmeans_1kmeans, 0, __pyx_n_s_kmeans, NULL, __pyx_n_s_kmeans, __pyx_d, ((PyObject *)__pyx_codeobj__37)); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_CyFunction_SetDefaultsTuple(__pyx_t_3, __pyx_t_1); ((__pyx_FusedFunctionObject *) __pyx_t_3)->__signatures__ = __pyx_t_2; __Pyx_GIVEREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_kmeans, __pyx_t_3) < 0) __PYX_ERR(0, 97, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "kmeans.pyx":1 * """ # <<<<<<<<<<<<<< * Parallelized k-means module. * Original version by David Warde-Farley, February 2012. */ __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":210 * info.obj = self * * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * def __dealloc__(array self): */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_array_type); /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("<strided and direct or indirect>") # <<<<<<<<<<<<<< * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__38, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(generic); __Pyx_DECREF_SET(generic, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":288 * * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("<strided and indirect>") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__39, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(strided); __Pyx_DECREF_SET(strided, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":289 * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__40, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect); __Pyx_DECREF_SET(indirect, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":292 * * * cdef contiguous = Enum("<contiguous and direct>") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("<contiguous and indirect>") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__41, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(contiguous); __Pyx_DECREF_SET(contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":293 * * cdef contiguous = Enum("<contiguous and direct>") * cdef indirect_contiguous = Enum("<contiguous and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__42, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect_contiguous); __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":317 * * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ * PyThread_allocate_lock(), */ __pyx_memoryview_thread_locks_used = 0; /* "View.MemoryView":318 * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< * PyThread_allocate_lock(), * PyThread_allocate_lock(), */ __pyx_t_4[0] = PyThread_allocate_lock(); __pyx_t_4[1] = PyThread_allocate_lock(); __pyx_t_4[2] = PyThread_allocate_lock(); __pyx_t_4[3] = PyThread_allocate_lock(); __pyx_t_4[4] = PyThread_allocate_lock(); __pyx_t_4[5] = PyThread_allocate_lock(); __pyx_t_4[6] = PyThread_allocate_lock(); __pyx_t_4[7] = PyThread_allocate_lock(); memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_4, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); /* "View.MemoryView":551 * info.obj = self * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 551, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 551, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryview_type); /* "View.MemoryView":997 * return self.from_object * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 997, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 997, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryviewslice_type); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum, NULL, __pyx_n_s_View_MemoryView); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pyx_unpickle_Enum, __pyx_t_1) < 0) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /*--- Wrapped vars code ---*/ goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); if (__pyx_m) { if (__pyx_d) { __Pyx_AddTraceback("init kmeans", __pyx_clineno, __pyx_lineno, __pyx_filename); } Py_CLEAR(__pyx_m); } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init kmeans"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if CYTHON_PEP489_MULTI_PHASE_INIT return (__pyx_m != NULL) ? 0 : -1; #elif PY_MAJOR_VERSION >= 3 return __pyx_m; #else return; #endif } /* --- Runtime support code --- */ /* Refnanny */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule(modname); if (!m) goto end; p = PyObject_GetAttrString(m, "RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* PyObjectGetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #endif /* GetBuiltinName */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } /* RaiseArgTupleInvalid */ static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } /* RaiseDoubleKeywords */ static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } /* ParseKeywords */ static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**name) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**argname) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } /* DictGetItem */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { PyObject *value; value = PyDict_GetItemWithError(d, key); if (unlikely(!value)) { if (!PyErr_Occurred()) { if (unlikely(PyTuple_Check(key))) { PyObject* args = PyTuple_Pack(1, key); if (likely(args)) { PyErr_SetObject(PyExc_KeyError, args); Py_DECREF(args); } } else { PyErr_SetObject(PyExc_KeyError, key); } } return NULL; } Py_INCREF(value); return value; } #endif /* PyCFunctionFastCall */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); int flags = PyCFunction_GET_FLAGS(func); assert(PyCFunction_Check(func)); assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); assert(nargs >= 0); assert(nargs == 0 || args != NULL); /* _PyCFunction_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); } else { return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); } } #endif /* PyFunctionFastCall */ #if CYTHON_FAST_PYCALL static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { PyFrameObject *f; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject **fastlocals; Py_ssize_t i; PyObject *result; assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) { return NULL; } fastlocals = __Pyx_PyFrame_GetLocalsplus(f); for (i = 0; i < na; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } result = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return result; } #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *closure; #if PY_MAJOR_VERSION >= 3 PyObject *kwdefs; #endif PyObject *kwtuple, **k; PyObject **d; Py_ssize_t nd; Py_ssize_t nk; PyObject *result; assert(kwargs == NULL || PyDict_Check(kwargs)); nk = kwargs ? PyDict_Size(kwargs) : 0; if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } if ( #if PY_MAJOR_VERSION >= 3 co->co_kwonlyargcount == 0 && #endif likely(kwargs == NULL || nk == 0) && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); goto done; } else if (nargs == 0 && argdefs != NULL && co->co_argcount == Py_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ args = &PyTuple_GET_ITEM(argdefs, 0); result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); goto done; } } if (kwargs != NULL) { Py_ssize_t pos, i; kwtuple = PyTuple_New(2 * nk); if (kwtuple == NULL) { result = NULL; goto done; } k = &PyTuple_GET_ITEM(kwtuple, 0); pos = i = 0; while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { Py_INCREF(k[i]); Py_INCREF(k[i+1]); i += 2; } nk = i / 2; } else { kwtuple = NULL; k = NULL; } closure = PyFunction_GET_CLOSURE(func); #if PY_MAJOR_VERSION >= 3 kwdefs = PyFunction_GET_KW_DEFAULTS(func); #endif if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } else { d = NULL; nd = 0; } #if PY_MAJOR_VERSION >= 3 result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, kwdefs, closure); #else result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, closure); #endif Py_XDECREF(kwtuple); done: Py_LeaveRecursiveCall(); return result; } #endif #endif /* PyObjectCall */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = Py_TYPE(func)->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = (*call)(func, arg, kw); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; cfunc = PyCFunction_GET_FUNCTION(func); self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallOneArg */ #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); if (unlikely(!args)) return NULL; Py_INCREF(arg); PyTuple_SET_ITEM(args, 0, arg); result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, &arg, 1); } #endif if (likely(PyCFunction_Check(func))) { if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { return __Pyx_PyObject_CallMethO(func, arg); #if CYTHON_FAST_PYCCALL } else if (__Pyx_PyFastCFunction_Check(func)) { return __Pyx_PyCFunction_FastCall(func, &arg, 1); #endif } } return __Pyx__PyObject_CallOneArg(func, arg); } #else static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_Pack(1, arg); if (unlikely(!args)) return NULL; result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } #endif /* PyErrFetchRestore */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; } #endif /* RaiseException */ #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } if (PyType_Check(type)) { #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } } __Pyx_PyThreadState_assign __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { int is_subclass = PyObject_IsSubclass(instance_class, type); if (!is_subclass) { instance_class = NULL; } else if (unlikely(is_subclass == -1)) { goto bad; } else { type = instance_class; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } if (cause) { PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { #if CYTHON_COMPILING_IN_PYPY PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); Py_INCREF(tb); PyErr_Restore(tmp_type, tmp_value, tb); Py_XDECREF(tmp_tb); #else PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } #endif } bad: Py_XDECREF(owned_instance); return; } #endif /* UnicodeAsUCS4 */ static CYTHON_INLINE Py_UCS4 __Pyx_PyUnicode_AsPy_UCS4(PyObject* x) { Py_ssize_t length; #if CYTHON_PEP393_ENABLED length = PyUnicode_GET_LENGTH(x); if (likely(length == 1)) { return PyUnicode_READ_CHAR(x, 0); } #else length = PyUnicode_GET_SIZE(x); if (likely(length == 1)) { return PyUnicode_AS_UNICODE(x)[0]; } #if Py_UNICODE_SIZE == 2 else if (PyUnicode_GET_SIZE(x) == 2) { Py_UCS4 high_val = PyUnicode_AS_UNICODE(x)[0]; if (high_val >= 0xD800 && high_val <= 0xDBFF) { Py_UCS4 low_val = PyUnicode_AS_UNICODE(x)[1]; if (low_val >= 0xDC00 && low_val <= 0xDFFF) { return 0x10000 + (((high_val & ((1<<10)-1)) << 10) | (low_val & ((1<<10)-1))); } } } #endif #endif PyErr_Format(PyExc_ValueError, "only single character unicode strings can be converted to Py_UCS4, " "got length %" CYTHON_FORMAT_SSIZE_T "d", length); return (Py_UCS4)-1; } /* object_ord */ static long __Pyx__PyObject_Ord(PyObject* c) { Py_ssize_t size; if (PyBytes_Check(c)) { size = PyBytes_GET_SIZE(c); if (likely(size == 1)) { return (unsigned char) PyBytes_AS_STRING(c)[0]; } #if PY_MAJOR_VERSION < 3 } else if (PyUnicode_Check(c)) { return (long)__Pyx_PyUnicode_AsPy_UCS4(c); #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) } else if (PyByteArray_Check(c)) { size = PyByteArray_GET_SIZE(c); if (likely(size == 1)) { return (unsigned char) PyByteArray_AS_STRING(c)[0]; } #endif } else { PyErr_Format(PyExc_TypeError, "ord() expected string of length 1, but %.200s found", Py_TYPE(c)->tp_name); return (long)(Py_UCS4)-1; } PyErr_Format(PyExc_TypeError, "ord() expected a character, but string of length %zd found", size); return (long)(Py_UCS4)-1; } /* SetItemInt */ static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v) { int r; if (!j) return -1; r = PyObject_SetItem(o, j, v); Py_DECREF(j); return r; } static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = (!wraparound) ? i : ((likely(i >= 0)) ? i : i + PyList_GET_SIZE(o)); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o)))) { PyObject* old = PyList_GET_ITEM(o, n); Py_INCREF(v); PyList_SET_ITEM(o, n, v); Py_DECREF(old); return 1; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_ass_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return -1; PyErr_Clear(); } } return m->sq_ass_item(o, i, v); } } #else #if CYTHON_COMPILING_IN_PYPY if (is_list || (PySequence_Check(o) && !PyDict_Check(o))) #else if (is_list || PySequence_Check(o)) #endif { return PySequence_SetItem(o, i, v); } #endif return __Pyx_SetItemInt_Generic(o, PyInt_FromSsize_t(i), v); } /* IterFinish */ static CYTHON_INLINE int __Pyx_IterFinish(void) { #if CYTHON_FAST_THREAD_STATE PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* exc_type = tstate->curexc_type; if (unlikely(exc_type)) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) { PyObject *exc_value, *exc_tb; exc_value = tstate->curexc_value; exc_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; Py_DECREF(exc_type); Py_XDECREF(exc_value); Py_XDECREF(exc_tb); return 0; } else { return -1; } } return 0; #else if (unlikely(PyErr_Occurred())) { if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { PyErr_Clear(); return 0; } else { return -1; } } return 0; #endif } /* PyObjectCallNoArg */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, NULL, 0); } #endif #if defined(__Pyx_CyFunction_USED) && defined(NDEBUG) if (likely(PyCFunction_Check(func) || __Pyx_CyFunction_Check(func))) #else if (likely(PyCFunction_Check(func))) #endif { if (likely(PyCFunction_GET_FLAGS(func) & METH_NOARGS)) { return __Pyx_PyObject_CallMethO(func, NULL); } } return __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL); } #endif /* PyObjectGetMethod */ static int __Pyx_PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method) { PyObject *attr; #if CYTHON_UNPACK_METHODS && CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_PYTYPE_LOOKUP PyTypeObject *tp = Py_TYPE(obj); PyObject *descr; descrgetfunc f = NULL; PyObject **dictptr, *dict; int meth_found = 0; assert (*method == NULL); if (unlikely(tp->tp_getattro != PyObject_GenericGetAttr)) { attr = __Pyx_PyObject_GetAttrStr(obj, name); goto try_unpack; } if (unlikely(tp->tp_dict == NULL) && unlikely(PyType_Ready(tp) < 0)) { return 0; } descr = _PyType_Lookup(tp, name); if (likely(descr != NULL)) { Py_INCREF(descr); #if PY_MAJOR_VERSION >= 3 #ifdef __Pyx_CyFunction_USED if (likely(PyFunction_Check(descr) || (Py_TYPE(descr) == &PyMethodDescr_Type) || __Pyx_CyFunction_Check(descr))) #else if (likely(PyFunction_Check(descr) || (Py_TYPE(descr) == &PyMethodDescr_Type))) #endif #else #ifdef __Pyx_CyFunction_USED if (likely(PyFunction_Check(descr) || __Pyx_CyFunction_Check(descr))) #else if (likely(PyFunction_Check(descr))) #endif #endif { meth_found = 1; } else { f = Py_TYPE(descr)->tp_descr_get; if (f != NULL && PyDescr_IsData(descr)) { attr = f(descr, obj, (PyObject *)Py_TYPE(obj)); Py_DECREF(descr); goto try_unpack; } } } dictptr = _PyObject_GetDictPtr(obj); if (dictptr != NULL && (dict = *dictptr) != NULL) { Py_INCREF(dict); attr = __Pyx_PyDict_GetItemStr(dict, name); if (attr != NULL) { Py_INCREF(attr); Py_DECREF(dict); Py_XDECREF(descr); goto try_unpack; } Py_DECREF(dict); } if (meth_found) { *method = descr; return 1; } if (f != NULL) { attr = f(descr, obj, (PyObject *)Py_TYPE(obj)); Py_DECREF(descr); goto try_unpack; } if (descr != NULL) { *method = descr; return 0; } PyErr_Format(PyExc_AttributeError, #if PY_MAJOR_VERSION >= 3 "'%.50s' object has no attribute '%U'", tp->tp_name, name); #else "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(name)); #endif return 0; #else attr = __Pyx_PyObject_GetAttrStr(obj, name); goto try_unpack; #endif try_unpack: #if CYTHON_UNPACK_METHODS if (likely(attr) && PyMethod_Check(attr) && likely(PyMethod_GET_SELF(attr) == obj)) { PyObject *function = PyMethod_GET_FUNCTION(attr); Py_INCREF(function); Py_DECREF(attr); *method = function; return 1; } #endif *method = attr; return 0; } /* PyObjectCallMethod0 */ static PyObject* __Pyx_PyObject_CallMethod0(PyObject* obj, PyObject* method_name) { PyObject *method = NULL, *result = NULL; int is_method = __Pyx_PyObject_GetMethod(obj, method_name, &method); if (likely(is_method)) { result = __Pyx_PyObject_CallOneArg(method, obj); Py_DECREF(method); return result; } if (unlikely(!method)) goto bad; result = __Pyx_PyObject_CallNoArg(method); Py_DECREF(method); bad: return result; } /* RaiseNeedMoreValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* UnpackItemEndCheck */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { if (unlikely(retval)) { Py_DECREF(retval); __Pyx_RaiseTooManyValuesError(expected); return -1; } return __Pyx_IterFinish(); } /* RaiseNoneIterError */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* UnpackTupleError */ static void __Pyx_UnpackTupleError(PyObject *t, Py_ssize_t index) { if (t == Py_None) { __Pyx_RaiseNoneNotIterableError(); } else if (PyTuple_GET_SIZE(t) < index) { __Pyx_RaiseNeedMoreValuesError(PyTuple_GET_SIZE(t)); } else { __Pyx_RaiseTooManyValuesError(index); } } /* UnpackTuple2 */ static CYTHON_INLINE int __Pyx_unpack_tuple2_exact( PyObject* tuple, PyObject** pvalue1, PyObject** pvalue2, int decref_tuple) { PyObject *value1 = NULL, *value2 = NULL; #if CYTHON_COMPILING_IN_PYPY value1 = PySequence_ITEM(tuple, 0); if (unlikely(!value1)) goto bad; value2 = PySequence_ITEM(tuple, 1); if (unlikely(!value2)) goto bad; #else value1 = PyTuple_GET_ITEM(tuple, 0); Py_INCREF(value1); value2 = PyTuple_GET_ITEM(tuple, 1); Py_INCREF(value2); #endif if (decref_tuple) { Py_DECREF(tuple); } *pvalue1 = value1; *pvalue2 = value2; return 0; #if CYTHON_COMPILING_IN_PYPY bad: Py_XDECREF(value1); Py_XDECREF(value2); if (decref_tuple) { Py_XDECREF(tuple); } return -1; #endif } static int __Pyx_unpack_tuple2_generic(PyObject* tuple, PyObject** pvalue1, PyObject** pvalue2, int has_known_size, int decref_tuple) { Py_ssize_t index; PyObject *value1 = NULL, *value2 = NULL, *iter = NULL; iternextfunc iternext; iter = PyObject_GetIter(tuple); if (unlikely(!iter)) goto bad; if (decref_tuple) { Py_DECREF(tuple); tuple = NULL; } iternext = Py_TYPE(iter)->tp_iternext; value1 = iternext(iter); if (unlikely(!value1)) { index = 0; goto unpacking_failed; } value2 = iternext(iter); if (unlikely(!value2)) { index = 1; goto unpacking_failed; } if (!has_known_size && unlikely(__Pyx_IternextUnpackEndCheck(iternext(iter), 2))) goto bad; Py_DECREF(iter); *pvalue1 = value1; *pvalue2 = value2; return 0; unpacking_failed: if (!has_known_size && __Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); bad: Py_XDECREF(iter); Py_XDECREF(value1); Py_XDECREF(value2); if (decref_tuple) { Py_XDECREF(tuple); } return -1; } /* dict_iter */ static CYTHON_INLINE PyObject* __Pyx_dict_iterator(PyObject* iterable, int is_dict, PyObject* method_name, Py_ssize_t* p_orig_length, int* p_source_is_dict) { is_dict = is_dict || likely(PyDict_CheckExact(iterable)); *p_source_is_dict = is_dict; if (is_dict) { #if !CYTHON_COMPILING_IN_PYPY *p_orig_length = PyDict_Size(iterable); Py_INCREF(iterable); return iterable; #elif PY_MAJOR_VERSION >= 3 static PyObject *py_items = NULL, *py_keys = NULL, *py_values = NULL; PyObject **pp = NULL; if (method_name) { const char *name = PyUnicode_AsUTF8(method_name); if (strcmp(name, "iteritems") == 0) pp = &py_items; else if (strcmp(name, "iterkeys") == 0) pp = &py_keys; else if (strcmp(name, "itervalues") == 0) pp = &py_values; if (pp) { if (!*pp) { *pp = PyUnicode_FromString(name + 4); if (!*pp) return NULL; } method_name = *pp; } } #endif } *p_orig_length = 0; if (method_name) { PyObject* iter; iterable = __Pyx_PyObject_CallMethod0(iterable, method_name); if (!iterable) return NULL; #if !CYTHON_COMPILING_IN_PYPY if (PyTuple_CheckExact(iterable) || PyList_CheckExact(iterable)) return iterable; #endif iter = PyObject_GetIter(iterable); Py_DECREF(iterable); return iter; } return PyObject_GetIter(iterable); } static CYTHON_INLINE int __Pyx_dict_iter_next( PyObject* iter_obj, CYTHON_NCP_UNUSED Py_ssize_t orig_length, CYTHON_NCP_UNUSED Py_ssize_t* ppos, PyObject** pkey, PyObject** pvalue, PyObject** pitem, int source_is_dict) { PyObject* next_item; #if !CYTHON_COMPILING_IN_PYPY if (source_is_dict) { PyObject *key, *value; if (unlikely(orig_length != PyDict_Size(iter_obj))) { PyErr_SetString(PyExc_RuntimeError, "dictionary changed size during iteration"); return -1; } if (unlikely(!PyDict_Next(iter_obj, ppos, &key, &value))) { return 0; } if (pitem) { PyObject* tuple = PyTuple_New(2); if (unlikely(!tuple)) { return -1; } Py_INCREF(key); Py_INCREF(value); PyTuple_SET_ITEM(tuple, 0, key); PyTuple_SET_ITEM(tuple, 1, value); *pitem = tuple; } else { if (pkey) { Py_INCREF(key); *pkey = key; } if (pvalue) { Py_INCREF(value); *pvalue = value; } } return 1; } else if (PyTuple_CheckExact(iter_obj)) { Py_ssize_t pos = *ppos; if (unlikely(pos >= PyTuple_GET_SIZE(iter_obj))) return 0; *ppos = pos + 1; next_item = PyTuple_GET_ITEM(iter_obj, pos); Py_INCREF(next_item); } else if (PyList_CheckExact(iter_obj)) { Py_ssize_t pos = *ppos; if (unlikely(pos >= PyList_GET_SIZE(iter_obj))) return 0; *ppos = pos + 1; next_item = PyList_GET_ITEM(iter_obj, pos); Py_INCREF(next_item); } else #endif { next_item = PyIter_Next(iter_obj); if (unlikely(!next_item)) { return __Pyx_IterFinish(); } } if (pitem) { *pitem = next_item; } else if (pkey && pvalue) { if (__Pyx_unpack_tuple2(next_item, pkey, pvalue, source_is_dict, source_is_dict, 1)) return -1; } else if (pkey) { *pkey = next_item; } else { *pvalue = next_item; } return 1; } /* PyObjectCall2Args */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { PyObject *args, *result = NULL; #if CYTHON_FAST_PYCALL if (PyFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyFunction_FastCall(function, args, 2); } #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyCFunction_FastCall(function, args, 2); } #endif args = PyTuple_New(2); if (unlikely(!args)) goto done; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); Py_INCREF(function); result = __Pyx_PyObject_Call(function, args, NULL); Py_DECREF(args); Py_DECREF(function); done: return result; } /* GetItemInt */ static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyList_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyTuple_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; PyErr_Clear(); } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } /* PyDictVersioning */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { PyObject *dict = Py_TYPE(obj)->tp_dict; return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; } static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { PyObject **dictptr = NULL; Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; if (offset) { #if CYTHON_COMPILING_IN_CPYTHON dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); #else dictptr = _PyObject_GetDictPtr(obj); #endif } return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; } static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { PyObject *dict = Py_TYPE(obj)->tp_dict; if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) return 0; return obj_dict_version == __Pyx_get_object_dict_version(obj); } #endif /* GetModuleGlobalName */ #if CYTHON_USE_DICT_VERSIONS static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) #else static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) #endif { PyObject *result; #if !CYTHON_AVOID_BORROWED_REFS #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } else if (unlikely(PyErr_Occurred())) { return NULL; } #else result = PyDict_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } #endif #else result = PyObject_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } PyErr_Clear(); #endif return __Pyx_GetBuiltinName(name); } /* GetAttr */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else if (likely(PyString_Check(n))) #endif return __Pyx_PyObject_GetAttrStr(o, n); #endif return PyObject_GetAttr(o, n); } /* HasAttr */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { PyObject *r; if (unlikely(!__Pyx_PyBaseString_Check(n))) { PyErr_SetString(PyExc_TypeError, "hasattr(): attribute name must be string"); return -1; } r = __Pyx_GetAttr(o, n); if (unlikely(!r)) { PyErr_Clear(); return 0; } else { Py_DECREF(r); return 1; } } /* MemviewSliceInit */ static int __Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference) { __Pyx_RefNannyDeclarations int i, retval=-1; Py_buffer *buf = &memview->view; __Pyx_RefNannySetupContext("init_memviewslice", 0); if (unlikely(memviewslice->memview || memviewslice->data)) { PyErr_SetString(PyExc_ValueError, "memviewslice is already initialized!"); goto fail; } if (buf->strides) { for (i = 0; i < ndim; i++) { memviewslice->strides[i] = buf->strides[i]; } } else { Py_ssize_t stride = buf->itemsize; for (i = ndim - 1; i >= 0; i--) { memviewslice->strides[i] = stride; stride *= buf->shape[i]; } } for (i = 0; i < ndim; i++) { memviewslice->shape[i] = buf->shape[i]; if (buf->suboffsets) { memviewslice->suboffsets[i] = buf->suboffsets[i]; } else { memviewslice->suboffsets[i] = -1; } } memviewslice->memview = memview; memviewslice->data = (char *)buf->buf; if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { Py_INCREF(memview); } retval = 0; goto no_fail; fail: memviewslice->memview = 0; memviewslice->data = 0; retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } #ifndef Py_NO_RETURN #define Py_NO_RETURN #endif static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN { va_list vargs; char msg[200]; #if PY_VERSION_HEX >= 0x030A0000 || defined(HAVE_STDARG_PROTOTYPES) va_start(vargs, fmt); #else va_start(vargs); #endif vsnprintf(msg, 200, fmt, vargs); va_end(vargs); Py_FatalError(msg); } static CYTHON_INLINE int __pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)++; PyThread_release_lock(lock); return result; } static CYTHON_INLINE int __pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)--; PyThread_release_lock(lock); return result; } static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int first_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) return; if (unlikely(__pyx_get_slice_count(memview) < 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); first_time = __pyx_add_acquisition_count(memview) == 0; if (unlikely(first_time)) { if (have_gil) { Py_INCREF((PyObject *) memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_INCREF((PyObject *) memview); PyGILState_Release(_gilstate); } } } static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int last_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) { memslice->memview = NULL; return; } if (unlikely(__pyx_get_slice_count(memview) <= 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); last_time = __pyx_sub_acquisition_count(memview) == 1; memslice->data = NULL; if (unlikely(last_time)) { if (have_gil) { Py_CLEAR(memslice->memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_CLEAR(memslice->memview); PyGILState_Release(_gilstate); } } else { memslice->memview = NULL; } } /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a + b); if (likely((x^a) >= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* None */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* ArgTypeTest */ static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } else if (exact) { #if PY_MAJOR_VERSION == 2 if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; #endif } else { if (likely(__Pyx_TypeCheck(obj, type))) return 1; } PyErr_Format(PyExc_TypeError, "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", name, type->tp_name, Py_TYPE(obj)->tp_name); return 0; } /* GetTopmostException */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate) { _PyErr_StackItem *exc_info = tstate->exc_info; while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && exc_info->previous_item != NULL) { exc_info = exc_info->previous_item; } return exc_info; } #endif /* SaveResetException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); *type = exc_info->exc_type; *value = exc_info->exc_value; *tb = exc_info->exc_traceback; #else *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; #endif Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); } static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = type; exc_info->exc_value = value; exc_info->exc_traceback = tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } #endif /* PyErrExceptionMatches */ #if CYTHON_FAST_THREAD_STATE static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i<n; i++) { if (exc_type == PyTuple_GET_ITEM(tuple, i)) return 1; } #endif for (i=0; i<n; i++) { if (__Pyx_PyErr_GivenExceptionMatches(exc_type, PyTuple_GET_ITEM(tuple, i))) return 1; } return 0; } static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err) { PyObject *exc_type = tstate->curexc_type; if (exc_type == err) return 1; if (unlikely(!exc_type)) return 0; if (unlikely(PyTuple_Check(err))) return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); } #endif /* GetException */ #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) #endif { PyObject *local_type, *local_value, *local_tb; #if CYTHON_FAST_THREAD_STATE PyObject *tmp_type, *tmp_value, *tmp_tb; local_type = tstate->curexc_type; local_value = tstate->curexc_value; local_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(&local_type, &local_value, &local_tb); #endif PyErr_NormalizeException(&local_type, &local_value, &local_tb); #if CYTHON_FAST_THREAD_STATE if (unlikely(tstate->curexc_type)) #else if (unlikely(PyErr_Occurred())) #endif goto bad; #if PY_MAJOR_VERSION >= 3 if (local_tb) { if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) goto bad; } #endif Py_XINCREF(local_tb); Py_XINCREF(local_type); Py_XINCREF(local_value); *type = local_type; *value = local_value; *tb = local_tb; #if CYTHON_FAST_THREAD_STATE #if CYTHON_USE_EXC_INFO_STACK { _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = local_type; exc_info->exc_value = local_value; exc_info->exc_traceback = local_tb; } #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(local_type, local_value, local_tb); #endif return 0; bad: *type = 0; *value = 0; *tb = 0; Py_XDECREF(local_type); Py_XDECREF(local_value); Py_XDECREF(local_tb); return -1; } /* BytesEquals */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result; #if CYTHON_USE_UNICODE_INTERNALS && (PY_VERSION_HEX < 0x030B0000) Py_hash_t hash1, hash2; hash1 = ((PyBytesObject*)s1)->ob_shash; hash2 = ((PyBytesObject*)s2)->ob_shash; if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { return (equals == Py_NE); } #endif result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } /* UnicodeEquals */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) return -1; length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } #if CYTHON_USE_UNICODE_INTERNALS { Py_hash_t hash1, hash2; #if CYTHON_PEP393_ENABLED hash1 = ((PyASCIIObject*)s1)->hash; hash2 = ((PyASCIIObject*)s2)->hash; #else hash1 = ((PyUnicodeObject*)s1)->hash; hash2 = ((PyUnicodeObject*)s2)->hash; #endif if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { goto return_ne; } } #endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } /* DivInt[Py_ssize_t] */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t a, Py_ssize_t b) { Py_ssize_t q = a / b; Py_ssize_t r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* ObjectGetItem */ #if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr = NULL; Py_ssize_t key_value; PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; if (unlikely(!(m && m->sq_item))) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); return NULL; } key_value = __Pyx_PyIndex_AsSsize_t(index); if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); } if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { PyErr_Clear(); PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); } return NULL; } static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; if (likely(m && m->mp_subscript)) { return m->mp_subscript(obj, key); } return __Pyx_PyObject_GetIndex(obj, key); } #endif /* decode_c_string */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { Py_ssize_t length; if (unlikely((start < 0) | (stop < 0))) { size_t slen = strlen(cstring); if (unlikely(slen > (size_t) PY_SSIZE_T_MAX)) { PyErr_SetString(PyExc_OverflowError, "c-string too long to convert to Python"); return NULL; } length = (Py_ssize_t) slen; if (start < 0) { start += length; if (start < 0) start = 0; } if (stop < 0) stop += length; } if (unlikely(stop <= start)) return __Pyx_NewRef(__pyx_empty_unicode); length = stop - start; cstring += start; if (decode_func) { return decode_func(cstring, length, errors); } else { return PyUnicode_Decode(cstring, length, encoding, errors); } } /* GetAttr3 */ static PyObject *__Pyx_GetAttr3Default(PyObject *d) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) return NULL; __Pyx_PyErr_Clear(); Py_INCREF(d); return d; } static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) { PyObject *r = __Pyx_GetAttr(o, n); return (likely(r)) ? r : __Pyx_GetAttr3Default(d); } /* ExtTypeTest */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } if (likely(__Pyx_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); return 0; } /* SwapException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = *type; exc_info->exc_value = *value; exc_info->exc_traceback = *tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = *type; tstate->exc_value = *value; tstate->exc_traceback = *tb; #endif *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); PyErr_SetExcInfo(*type, *value, *tb); *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #endif /* Import */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if ((1) && (strchr(__Pyx_MODULE_NAME, '.'))) { module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; } #endif if (!module) { #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } bad: #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } /* FastTypeChecks */ #if CYTHON_COMPILING_IN_CPYTHON static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { while (a) { a = a->tp_base; if (a == b) return 1; } return b == &PyBaseObject_Type; } static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (a == b) return 1; mro = a->tp_mro; if (likely(mro)) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } return __Pyx_InBases(a, b); } #if PY_MAJOR_VERSION == 2 static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { PyObject *exception, *value, *tb; int res; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&exception, &value, &tb); res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } if (!res) { res = PyObject_IsSubclass(err, exc_type2); if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } } __Pyx_ErrRestore(exception, value, tb); return res; } #else static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; if (!res) { res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); } return res; } #endif static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; assert(PyExceptionClass_Check(exc_type)); n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i<n; i++) { if (exc_type == PyTuple_GET_ITEM(tuple, i)) return 1; } #endif for (i=0; i<n; i++) { PyObject *t = PyTuple_GET_ITEM(tuple, i); #if PY_MAJOR_VERSION < 3 if (likely(exc_type == t)) return 1; #endif if (likely(PyExceptionClass_Check(t))) { if (__Pyx_inner_PyErr_GivenExceptionMatches2(exc_type, NULL, t)) return 1; } else { } } return 0; } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject* exc_type) { if (likely(err == exc_type)) return 1; if (likely(PyExceptionClass_Check(err))) { if (likely(PyExceptionClass_Check(exc_type))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, NULL, exc_type); } else if (likely(PyTuple_Check(exc_type))) { return __Pyx_PyErr_GivenExceptionMatchesTuple(err, exc_type); } else { } } return PyErr_GivenExceptionMatches(err, exc_type); } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *exc_type1, PyObject *exc_type2) { assert(PyExceptionClass_Check(exc_type1)); assert(PyExceptionClass_Check(exc_type2)); if (likely(err == exc_type1 || err == exc_type2)) return 1; if (likely(PyExceptionClass_Check(err))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, exc_type1, exc_type2); } return (PyErr_GivenExceptionMatches(err, exc_type1) || PyErr_GivenExceptionMatches(err, exc_type2)); } #endif /* DivInt[long] */ static CYTHON_INLINE long __Pyx_div_long(long a, long b) { long q = a / b; long r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* ImportFrom */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } /* PyObject_GenericGetAttrNoDict */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { PyErr_Format(PyExc_AttributeError, #if PY_MAJOR_VERSION >= 3 "'%.50s' object has no attribute '%U'", tp->tp_name, attr_name); #else "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(attr_name)); #endif return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { PyObject *descr; PyTypeObject *tp = Py_TYPE(obj); if (unlikely(!PyString_Check(attr_name))) { return PyObject_GenericGetAttr(obj, attr_name); } assert(!tp->tp_dictoffset); descr = _PyType_Lookup(tp, attr_name); if (unlikely(!descr)) { return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); } Py_INCREF(descr); #if PY_MAJOR_VERSION < 3 if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) #endif { descrgetfunc f = Py_TYPE(descr)->tp_descr_get; if (unlikely(f)) { PyObject *res = f(descr, obj, (PyObject *)tp); Py_DECREF(descr); return res; } } return descr; } #endif /* PyObject_GenericGetAttr */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { return PyObject_GenericGetAttr(obj, attr_name); } return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); } #endif /* SetVTable */ static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); #endif if (!ob) goto bad; if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) goto bad; Py_DECREF(ob); return 0; bad: Py_XDECREF(ob); return -1; } /* PyObjectGetAttrStrNoError */ static void __Pyx_PyObject_GetAttrStr_ClearAttributeError(void) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (likely(__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) __Pyx_PyErr_Clear(); } static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name) { PyObject *result; #if CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_TYPE_SLOTS && PY_VERSION_HEX >= 0x030700B1 PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro == PyObject_GenericGetAttr)) { return _PyObject_GenericGetAttrWithDict(obj, attr_name, NULL, 1); } #endif result = __Pyx_PyObject_GetAttrStr(obj, attr_name); if (unlikely(!result)) { __Pyx_PyObject_GetAttrStr_ClearAttributeError(); } return result; } /* SetupReduce */ static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { int ret; PyObject *name_attr; name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name_2); if (likely(name_attr)) { ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); } else { ret = -1; } if (unlikely(ret < 0)) { PyErr_Clear(); ret = 0; } Py_XDECREF(name_attr); return ret; } static int __Pyx_setup_reduce(PyObject* type_obj) { int ret = 0; PyObject *object_reduce = NULL; PyObject *object_getstate = NULL; PyObject *object_reduce_ex = NULL; PyObject *reduce = NULL; PyObject *reduce_ex = NULL; PyObject *reduce_cython = NULL; PyObject *setstate = NULL; PyObject *setstate_cython = NULL; PyObject *getstate = NULL; #if CYTHON_USE_PYTYPE_LOOKUP getstate = _PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate); #else getstate = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_getstate); if (!getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (getstate) { #if CYTHON_USE_PYTYPE_LOOKUP object_getstate = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_getstate); #else object_getstate = __Pyx_PyObject_GetAttrStrNoError((PyObject*)&PyBaseObject_Type, __pyx_n_s_getstate); if (!object_getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (object_getstate != getstate) { goto __PYX_GOOD; } } #if CYTHON_USE_PYTYPE_LOOKUP object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #else object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #endif reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto __PYX_BAD; if (reduce_ex == object_reduce_ex) { #if CYTHON_USE_PYTYPE_LOOKUP object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #else object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #endif reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto __PYX_BAD; if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { reduce_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_reduce_cython); if (likely(reduce_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (reduce == object_reduce || PyErr_Occurred()) { goto __PYX_BAD; } setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); if (!setstate) PyErr_Clear(); if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { setstate_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_setstate_cython); if (likely(setstate_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (!setstate || PyErr_Occurred()) { goto __PYX_BAD; } } PyType_Modified((PyTypeObject*)type_obj); } } goto __PYX_GOOD; __PYX_BAD: if (!PyErr_Occurred()) PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); ret = -1; __PYX_GOOD: #if !CYTHON_USE_PYTYPE_LOOKUP Py_XDECREF(object_reduce); Py_XDECREF(object_reduce_ex); Py_XDECREF(object_getstate); Py_XDECREF(getstate); #endif Py_XDECREF(reduce); Py_XDECREF(reduce_ex); Py_XDECREF(reduce_cython); Py_XDECREF(setstate); Py_XDECREF(setstate_cython); return ret; } /* TypeImport */ #ifndef __PYX_HAVE_RT_ImportType #define __PYX_HAVE_RT_ImportType static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size) { PyObject *result = 0; char warning[200]; Py_ssize_t basicsize; #ifdef Py_LIMITED_API PyObject *py_basicsize; #endif result = PyObject_GetAttrString(module, class_name); if (!result) goto bad; if (!PyType_Check(result)) { PyErr_Format(PyExc_TypeError, "%.200s.%.200s is not a type object", module_name, class_name); goto bad; } #ifndef Py_LIMITED_API basicsize = ((PyTypeObject *)result)->tp_basicsize; #else py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); if (!py_basicsize) goto bad; basicsize = PyLong_AsSsize_t(py_basicsize); Py_DECREF(py_basicsize); py_basicsize = 0; if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) goto bad; #endif if ((size_t)basicsize < size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { PyOS_snprintf(warning, sizeof(warning), "%s.%s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; } return (PyTypeObject *)result; bad: Py_XDECREF(result); return NULL; } #endif /* FetchCommonType */ static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type) { PyObject* fake_module; PyTypeObject* cached_type = NULL; fake_module = PyImport_AddModule((char*) "_cython_" CYTHON_ABI); if (!fake_module) return NULL; Py_INCREF(fake_module); cached_type = (PyTypeObject*) PyObject_GetAttrString(fake_module, type->tp_name); if (cached_type) { if (!PyType_Check((PyObject*)cached_type)) { PyErr_Format(PyExc_TypeError, "Shared Cython type %.200s is not a type object", type->tp_name); goto bad; } if (cached_type->tp_basicsize != type->tp_basicsize) { PyErr_Format(PyExc_TypeError, "Shared Cython type %.200s has the wrong size, try recompiling", type->tp_name); goto bad; } } else { if (!PyErr_ExceptionMatches(PyExc_AttributeError)) goto bad; PyErr_Clear(); if (PyType_Ready(type) < 0) goto bad; if (PyObject_SetAttrString(fake_module, type->tp_name, (PyObject*) type) < 0) goto bad; Py_INCREF(type); cached_type = type; } done: Py_DECREF(fake_module); return cached_type; bad: Py_XDECREF(cached_type); cached_type = NULL; goto done; } /* CythonFunctionShared */ #include <structmember.h> static PyObject * __Pyx_CyFunction_get_doc(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *closure) { if (unlikely(op->func_doc == NULL)) { if (op->func.m_ml->ml_doc) { #if PY_MAJOR_VERSION >= 3 op->func_doc = PyUnicode_FromString(op->func.m_ml->ml_doc); #else op->func_doc = PyString_FromString(op->func.m_ml->ml_doc); #endif if (unlikely(op->func_doc == NULL)) return NULL; } else { Py_INCREF(Py_None); return Py_None; } } Py_INCREF(op->func_doc); return op->func_doc; } static int __Pyx_CyFunction_set_doc(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp = op->func_doc; if (value == NULL) { value = Py_None; } Py_INCREF(value); op->func_doc = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_name(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { if (unlikely(op->func_name == NULL)) { #if PY_MAJOR_VERSION >= 3 op->func_name = PyUnicode_InternFromString(op->func.m_ml->ml_name); #else op->func_name = PyString_InternFromString(op->func.m_ml->ml_name); #endif if (unlikely(op->func_name == NULL)) return NULL; } Py_INCREF(op->func_name); return op->func_name; } static int __Pyx_CyFunction_set_name(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; #if PY_MAJOR_VERSION >= 3 if (unlikely(value == NULL || !PyUnicode_Check(value))) #else if (unlikely(value == NULL || !PyString_Check(value))) #endif { PyErr_SetString(PyExc_TypeError, "__name__ must be set to a string object"); return -1; } tmp = op->func_name; Py_INCREF(value); op->func_name = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_qualname(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(op->func_qualname); return op->func_qualname; } static int __Pyx_CyFunction_set_qualname(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; #if PY_MAJOR_VERSION >= 3 if (unlikely(value == NULL || !PyUnicode_Check(value))) #else if (unlikely(value == NULL || !PyString_Check(value))) #endif { PyErr_SetString(PyExc_TypeError, "__qualname__ must be set to a string object"); return -1; } tmp = op->func_qualname; Py_INCREF(value); op->func_qualname = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_self(__pyx_CyFunctionObject *m, CYTHON_UNUSED void *closure) { PyObject *self; self = m->func_closure; if (self == NULL) self = Py_None; Py_INCREF(self); return self; } static PyObject * __Pyx_CyFunction_get_dict(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { if (unlikely(op->func_dict == NULL)) { op->func_dict = PyDict_New(); if (unlikely(op->func_dict == NULL)) return NULL; } Py_INCREF(op->func_dict); return op->func_dict; } static int __Pyx_CyFunction_set_dict(__pyx_CyFunctionObject *op, PyObject *value, CYTHON_UNUSED void *context) { PyObject *tmp; if (unlikely(value == NULL)) { PyErr_SetString(PyExc_TypeError, "function's dictionary may not be deleted"); return -1; } if (unlikely(!PyDict_Check(value))) { PyErr_SetString(PyExc_TypeError, "setting function's dictionary to a non-dict"); return -1; } tmp = op->func_dict; Py_INCREF(value); op->func_dict = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_globals(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(op->func_globals); return op->func_globals; } static PyObject * __Pyx_CyFunction_get_closure(CYTHON_UNUSED __pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { Py_INCREF(Py_None); return Py_None; } static PyObject * __Pyx_CyFunction_get_code(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = (op->func_code) ? op->func_code : Py_None; Py_INCREF(result); return result; } static int __Pyx_CyFunction_init_defaults(__pyx_CyFunctionObject *op) { int result = 0; PyObject *res = op->defaults_getter((PyObject *) op); if (unlikely(!res)) return -1; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS op->defaults_tuple = PyTuple_GET_ITEM(res, 0); Py_INCREF(op->defaults_tuple); op->defaults_kwdict = PyTuple_GET_ITEM(res, 1); Py_INCREF(op->defaults_kwdict); #else op->defaults_tuple = PySequence_ITEM(res, 0); if (unlikely(!op->defaults_tuple)) result = -1; else { op->defaults_kwdict = PySequence_ITEM(res, 1); if (unlikely(!op->defaults_kwdict)) result = -1; } #endif Py_DECREF(res); return result; } static int __Pyx_CyFunction_set_defaults(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value) { value = Py_None; } else if (value != Py_None && !PyTuple_Check(value)) { PyErr_SetString(PyExc_TypeError, "__defaults__ must be set to a tuple object"); return -1; } Py_INCREF(value); tmp = op->defaults_tuple; op->defaults_tuple = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_defaults(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->defaults_tuple; if (unlikely(!result)) { if (op->defaults_getter) { if (__Pyx_CyFunction_init_defaults(op) < 0) return NULL; result = op->defaults_tuple; } else { result = Py_None; } } Py_INCREF(result); return result; } static int __Pyx_CyFunction_set_kwdefaults(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value) { value = Py_None; } else if (value != Py_None && !PyDict_Check(value)) { PyErr_SetString(PyExc_TypeError, "__kwdefaults__ must be set to a dict object"); return -1; } Py_INCREF(value); tmp = op->defaults_kwdict; op->defaults_kwdict = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_kwdefaults(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->defaults_kwdict; if (unlikely(!result)) { if (op->defaults_getter) { if (__Pyx_CyFunction_init_defaults(op) < 0) return NULL; result = op->defaults_kwdict; } else { result = Py_None; } } Py_INCREF(result); return result; } static int __Pyx_CyFunction_set_annotations(__pyx_CyFunctionObject *op, PyObject* value, CYTHON_UNUSED void *context) { PyObject* tmp; if (!value || value == Py_None) { value = NULL; } else if (!PyDict_Check(value)) { PyErr_SetString(PyExc_TypeError, "__annotations__ must be set to a dict object"); return -1; } Py_XINCREF(value); tmp = op->func_annotations; op->func_annotations = value; Py_XDECREF(tmp); return 0; } static PyObject * __Pyx_CyFunction_get_annotations(__pyx_CyFunctionObject *op, CYTHON_UNUSED void *context) { PyObject* result = op->func_annotations; if (unlikely(!result)) { result = PyDict_New(); if (unlikely(!result)) return NULL; op->func_annotations = result; } Py_INCREF(result); return result; } static PyGetSetDef __pyx_CyFunction_getsets[] = { {(char *) "func_doc", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0}, {(char *) "__doc__", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0}, {(char *) "func_name", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0}, {(char *) "__name__", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0}, {(char *) "__qualname__", (getter)__Pyx_CyFunction_get_qualname, (setter)__Pyx_CyFunction_set_qualname, 0, 0}, {(char *) "__self__", (getter)__Pyx_CyFunction_get_self, 0, 0, 0}, {(char *) "func_dict", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0}, {(char *) "__dict__", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0}, {(char *) "func_globals", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0}, {(char *) "__globals__", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0}, {(char *) "func_closure", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0}, {(char *) "__closure__", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0}, {(char *) "func_code", (getter)__Pyx_CyFunction_get_code, 0, 0, 0}, {(char *) "__code__", (getter)__Pyx_CyFunction_get_code, 0, 0, 0}, {(char *) "func_defaults", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0}, {(char *) "__defaults__", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0}, {(char *) "__kwdefaults__", (getter)__Pyx_CyFunction_get_kwdefaults, (setter)__Pyx_CyFunction_set_kwdefaults, 0, 0}, {(char *) "__annotations__", (getter)__Pyx_CyFunction_get_annotations, (setter)__Pyx_CyFunction_set_annotations, 0, 0}, {0, 0, 0, 0, 0} }; static PyMemberDef __pyx_CyFunction_members[] = { {(char *) "__module__", T_OBJECT, offsetof(PyCFunctionObject, m_module), PY_WRITE_RESTRICTED, 0}, {0, 0, 0, 0, 0} }; static PyObject * __Pyx_CyFunction_reduce(__pyx_CyFunctionObject *m, CYTHON_UNUSED PyObject *args) { #if PY_MAJOR_VERSION >= 3 Py_INCREF(m->func_qualname); return m->func_qualname; #else return PyString_FromString(m->func.m_ml->ml_name); #endif } static PyMethodDef __pyx_CyFunction_methods[] = { {"__reduce__", (PyCFunction)__Pyx_CyFunction_reduce, METH_VARARGS, 0}, {0, 0, 0, 0} }; #if PY_VERSION_HEX < 0x030500A0 #define __Pyx_CyFunction_weakreflist(cyfunc) ((cyfunc)->func_weakreflist) #else #define __Pyx_CyFunction_weakreflist(cyfunc) ((cyfunc)->func.m_weakreflist) #endif static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject *op, PyMethodDef *ml, int flags, PyObject* qualname, PyObject *closure, PyObject *module, PyObject* globals, PyObject* code) { if (unlikely(op == NULL)) return NULL; op->flags = flags; __Pyx_CyFunction_weakreflist(op) = NULL; op->func.m_ml = ml; op->func.m_self = (PyObject *) op; Py_XINCREF(closure); op->func_closure = closure; Py_XINCREF(module); op->func.m_module = module; op->func_dict = NULL; op->func_name = NULL; Py_INCREF(qualname); op->func_qualname = qualname; op->func_doc = NULL; op->func_classobj = NULL; op->func_globals = globals; Py_INCREF(op->func_globals); Py_XINCREF(code); op->func_code = code; op->defaults_pyobjects = 0; op->defaults_size = 0; op->defaults = NULL; op->defaults_tuple = NULL; op->defaults_kwdict = NULL; op->defaults_getter = NULL; op->func_annotations = NULL; return (PyObject *) op; } static int __Pyx_CyFunction_clear(__pyx_CyFunctionObject *m) { Py_CLEAR(m->func_closure); Py_CLEAR(m->func.m_module); Py_CLEAR(m->func_dict); Py_CLEAR(m->func_name); Py_CLEAR(m->func_qualname); Py_CLEAR(m->func_doc); Py_CLEAR(m->func_globals); Py_CLEAR(m->func_code); Py_CLEAR(m->func_classobj); Py_CLEAR(m->defaults_tuple); Py_CLEAR(m->defaults_kwdict); Py_CLEAR(m->func_annotations); if (m->defaults) { PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m); int i; for (i = 0; i < m->defaults_pyobjects; i++) Py_XDECREF(pydefaults[i]); PyObject_Free(m->defaults); m->defaults = NULL; } return 0; } static void __Pyx__CyFunction_dealloc(__pyx_CyFunctionObject *m) { if (__Pyx_CyFunction_weakreflist(m) != NULL) PyObject_ClearWeakRefs((PyObject *) m); __Pyx_CyFunction_clear(m); PyObject_GC_Del(m); } static void __Pyx_CyFunction_dealloc(__pyx_CyFunctionObject *m) { PyObject_GC_UnTrack(m); __Pyx__CyFunction_dealloc(m); } static int __Pyx_CyFunction_traverse(__pyx_CyFunctionObject *m, visitproc visit, void *arg) { Py_VISIT(m->func_closure); Py_VISIT(m->func.m_module); Py_VISIT(m->func_dict); Py_VISIT(m->func_name); Py_VISIT(m->func_qualname); Py_VISIT(m->func_doc); Py_VISIT(m->func_globals); Py_VISIT(m->func_code); Py_VISIT(m->func_classobj); Py_VISIT(m->defaults_tuple); Py_VISIT(m->defaults_kwdict); if (m->defaults) { PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m); int i; for (i = 0; i < m->defaults_pyobjects; i++) Py_VISIT(pydefaults[i]); } return 0; } static PyObject *__Pyx_CyFunction_descr_get(PyObject *func, PyObject *obj, PyObject *type) { #if PY_MAJOR_VERSION < 3 __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; if (m->flags & __Pyx_CYFUNCTION_STATICMETHOD) { Py_INCREF(func); return func; } if (m->flags & __Pyx_CYFUNCTION_CLASSMETHOD) { if (type == NULL) type = (PyObject *)(Py_TYPE(obj)); return __Pyx_PyMethod_New(func, type, (PyObject *)(Py_TYPE(type))); } if (obj == Py_None) obj = NULL; #endif return __Pyx_PyMethod_New(func, obj, type); } static PyObject* __Pyx_CyFunction_repr(__pyx_CyFunctionObject *op) { #if PY_MAJOR_VERSION >= 3 return PyUnicode_FromFormat("<cyfunction %U at %p>", op->func_qualname, (void *)op); #else return PyString_FromFormat("<cyfunction %s at %p>", PyString_AsString(op->func_qualname), (void *)op); #endif } static PyObject * __Pyx_CyFunction_CallMethod(PyObject *func, PyObject *self, PyObject *arg, PyObject *kw) { PyCFunctionObject* f = (PyCFunctionObject*)func; PyCFunction meth = f->m_ml->ml_meth; Py_ssize_t size; switch (f->m_ml->ml_flags & (METH_VARARGS | METH_KEYWORDS | METH_NOARGS | METH_O)) { case METH_VARARGS: if (likely(kw == NULL || PyDict_Size(kw) == 0)) return (*meth)(self, arg); break; case METH_VARARGS | METH_KEYWORDS: return (*(PyCFunctionWithKeywords)(void*)meth)(self, arg, kw); case METH_NOARGS: if (likely(kw == NULL || PyDict_Size(kw) == 0)) { size = PyTuple_GET_SIZE(arg); if (likely(size == 0)) return (*meth)(self, NULL); PyErr_Format(PyExc_TypeError, "%.200s() takes no arguments (%" CYTHON_FORMAT_SSIZE_T "d given)", f->m_ml->ml_name, size); return NULL; } break; case METH_O: if (likely(kw == NULL || PyDict_Size(kw) == 0)) { size = PyTuple_GET_SIZE(arg); if (likely(size == 1)) { PyObject *result, *arg0; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS arg0 = PyTuple_GET_ITEM(arg, 0); #else arg0 = PySequence_ITEM(arg, 0); if (unlikely(!arg0)) return NULL; #endif result = (*meth)(self, arg0); #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_DECREF(arg0); #endif return result; } PyErr_Format(PyExc_TypeError, "%.200s() takes exactly one argument (%" CYTHON_FORMAT_SSIZE_T "d given)", f->m_ml->ml_name, size); return NULL; } break; default: PyErr_SetString(PyExc_SystemError, "Bad call flags in " "__Pyx_CyFunction_Call. METH_OLDARGS is no " "longer supported!"); return NULL; } PyErr_Format(PyExc_TypeError, "%.200s() takes no keyword arguments", f->m_ml->ml_name); return NULL; } static CYTHON_INLINE PyObject *__Pyx_CyFunction_Call(PyObject *func, PyObject *arg, PyObject *kw) { return __Pyx_CyFunction_CallMethod(func, ((PyCFunctionObject*)func)->m_self, arg, kw); } static PyObject *__Pyx_CyFunction_CallAsMethod(PyObject *func, PyObject *args, PyObject *kw) { PyObject *result; __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *) func; if ((cyfunc->flags & __Pyx_CYFUNCTION_CCLASS) && !(cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD)) { Py_ssize_t argc; PyObject *new_args; PyObject *self; argc = PyTuple_GET_SIZE(args); new_args = PyTuple_GetSlice(args, 1, argc); if (unlikely(!new_args)) return NULL; self = PyTuple_GetItem(args, 0); if (unlikely(!self)) { Py_DECREF(new_args); #if PY_MAJOR_VERSION > 2 PyErr_Format(PyExc_TypeError, "unbound method %.200S() needs an argument", cyfunc->func_qualname); #else PyErr_SetString(PyExc_TypeError, "unbound method needs an argument"); #endif return NULL; } result = __Pyx_CyFunction_CallMethod(func, self, new_args, kw); Py_DECREF(new_args); } else { result = __Pyx_CyFunction_Call(func, args, kw); } return result; } static PyTypeObject __pyx_CyFunctionType_type = { PyVarObject_HEAD_INIT(0, 0) "cython_function_or_method", sizeof(__pyx_CyFunctionObject), 0, (destructor) __Pyx_CyFunction_dealloc, 0, 0, 0, #if PY_MAJOR_VERSION < 3 0, #else 0, #endif (reprfunc) __Pyx_CyFunction_repr, 0, 0, 0, 0, __Pyx_CyFunction_CallAsMethod, 0, 0, 0, 0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, 0, (traverseproc) __Pyx_CyFunction_traverse, (inquiry) __Pyx_CyFunction_clear, 0, #if PY_VERSION_HEX < 0x030500A0 offsetof(__pyx_CyFunctionObject, func_weakreflist), #else offsetof(PyCFunctionObject, m_weakreflist), #endif 0, 0, __pyx_CyFunction_methods, __pyx_CyFunction_members, __pyx_CyFunction_getsets, 0, 0, __Pyx_CyFunction_descr_get, 0, offsetof(__pyx_CyFunctionObject, func_dict), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, #if PY_VERSION_HEX >= 0x030400a1 0, #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, #endif }; static int __pyx_CyFunction_init(void) { __pyx_CyFunctionType = __Pyx_FetchCommonType(&__pyx_CyFunctionType_type); if (unlikely(__pyx_CyFunctionType == NULL)) { return -1; } return 0; } static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *func, size_t size, int pyobjects) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults = PyObject_Malloc(size); if (unlikely(!m->defaults)) return PyErr_NoMemory(); memset(m->defaults, 0, size); m->defaults_pyobjects = pyobjects; m->defaults_size = size; return m->defaults; } static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *func, PyObject *tuple) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults_tuple = tuple; Py_INCREF(tuple); } static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *func, PyObject *dict) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->defaults_kwdict = dict; Py_INCREF(dict); } static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *func, PyObject *dict) { __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func; m->func_annotations = dict; Py_INCREF(dict); } /* FusedFunction */ static PyObject * __pyx_FusedFunction_New(PyMethodDef *ml, int flags, PyObject *qualname, PyObject *closure, PyObject *module, PyObject *globals, PyObject *code) { PyObject *op = __Pyx_CyFunction_Init( PyObject_GC_New(__pyx_CyFunctionObject, __pyx_FusedFunctionType), ml, flags, qualname, closure, module, globals, code ); if (likely(op)) { __pyx_FusedFunctionObject *fusedfunc = (__pyx_FusedFunctionObject *) op; fusedfunc->__signatures__ = NULL; fusedfunc->type = NULL; fusedfunc->self = NULL; PyObject_GC_Track(op); } return op; } static void __pyx_FusedFunction_dealloc(__pyx_FusedFunctionObject *self) { PyObject_GC_UnTrack(self); Py_CLEAR(self->self); Py_CLEAR(self->type); Py_CLEAR(self->__signatures__); __Pyx__CyFunction_dealloc((__pyx_CyFunctionObject *) self); } static int __pyx_FusedFunction_traverse(__pyx_FusedFunctionObject *self, visitproc visit, void *arg) { Py_VISIT(self->self); Py_VISIT(self->type); Py_VISIT(self->__signatures__); return __Pyx_CyFunction_traverse((__pyx_CyFunctionObject *) self, visit, arg); } static int __pyx_FusedFunction_clear(__pyx_FusedFunctionObject *self) { Py_CLEAR(self->self); Py_CLEAR(self->type); Py_CLEAR(self->__signatures__); return __Pyx_CyFunction_clear((__pyx_CyFunctionObject *) self); } static PyObject * __pyx_FusedFunction_descr_get(PyObject *self, PyObject *obj, PyObject *type) { __pyx_FusedFunctionObject *func, *meth; func = (__pyx_FusedFunctionObject *) self; if (func->self || func->func.flags & __Pyx_CYFUNCTION_STATICMETHOD) { Py_INCREF(self); return self; } if (obj == Py_None) obj = NULL; meth = (__pyx_FusedFunctionObject *) __pyx_FusedFunction_New( ((PyCFunctionObject *) func)->m_ml, ((__pyx_CyFunctionObject *) func)->flags, ((__pyx_CyFunctionObject *) func)->func_qualname, ((__pyx_CyFunctionObject *) func)->func_closure, ((PyCFunctionObject *) func)->m_module, ((__pyx_CyFunctionObject *) func)->func_globals, ((__pyx_CyFunctionObject *) func)->func_code); if (!meth) return NULL; if (func->func.defaults) { PyObject **pydefaults; int i; if (!__Pyx_CyFunction_InitDefaults((PyObject*)meth, func->func.defaults_size, func->func.defaults_pyobjects)) { Py_XDECREF((PyObject*)meth); return NULL; } memcpy(meth->func.defaults, func->func.defaults, func->func.defaults_size); pydefaults = __Pyx_CyFunction_Defaults(PyObject *, meth); for (i = 0; i < meth->func.defaults_pyobjects; i++) Py_XINCREF(pydefaults[i]); } Py_XINCREF(func->func.func_classobj); meth->func.func_classobj = func->func.func_classobj; Py_XINCREF(func->__signatures__); meth->__signatures__ = func->__signatures__; Py_XINCREF(type); meth->type = type; Py_XINCREF(func->func.defaults_tuple); meth->func.defaults_tuple = func->func.defaults_tuple; if (func->func.flags & __Pyx_CYFUNCTION_CLASSMETHOD) obj = type; Py_XINCREF(obj); meth->self = obj; return (PyObject *) meth; } static PyObject * _obj_to_str(PyObject *obj) { if (PyType_Check(obj)) return PyObject_GetAttr(obj, __pyx_n_s_name_2); else return PyObject_Str(obj); } static PyObject * __pyx_FusedFunction_getitem(__pyx_FusedFunctionObject *self, PyObject *idx) { PyObject *signature = NULL; PyObject *unbound_result_func; PyObject *result_func = NULL; if (self->__signatures__ == NULL) { PyErr_SetString(PyExc_TypeError, "Function is not fused"); return NULL; } if (PyTuple_Check(idx)) { PyObject *list = PyList_New(0); Py_ssize_t n = PyTuple_GET_SIZE(idx); PyObject *sep = NULL; int i; if (unlikely(!list)) return NULL; for (i = 0; i < n; i++) { int ret; PyObject *string; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS PyObject *item = PyTuple_GET_ITEM(idx, i); #else PyObject *item = PySequence_ITEM(idx, i); if (unlikely(!item)) goto __pyx_err; #endif string = _obj_to_str(item); #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_DECREF(item); #endif if (unlikely(!string)) goto __pyx_err; ret = PyList_Append(list, string); Py_DECREF(string); if (unlikely(ret < 0)) goto __pyx_err; } sep = PyUnicode_FromString("|"); if (likely(sep)) signature = PyUnicode_Join(sep, list); __pyx_err: ; Py_DECREF(list); Py_XDECREF(sep); } else { signature = _obj_to_str(idx); } if (!signature) return NULL; unbound_result_func = PyObject_GetItem(self->__signatures__, signature); if (unbound_result_func) { if (self->self || self->type) { __pyx_FusedFunctionObject *unbound = (__pyx_FusedFunctionObject *) unbound_result_func; Py_CLEAR(unbound->func.func_classobj); Py_XINCREF(self->func.func_classobj); unbound->func.func_classobj = self->func.func_classobj; result_func = __pyx_FusedFunction_descr_get(unbound_result_func, self->self, self->type); } else { result_func = unbound_result_func; Py_INCREF(result_func); } } Py_DECREF(signature); Py_XDECREF(unbound_result_func); return result_func; } static PyObject * __pyx_FusedFunction_callfunction(PyObject *func, PyObject *args, PyObject *kw) { __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *) func; int static_specialized = (cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD && !((__pyx_FusedFunctionObject *) func)->__signatures__); if (cyfunc->flags & __Pyx_CYFUNCTION_CCLASS && !static_specialized) { return __Pyx_CyFunction_CallAsMethod(func, args, kw); } else { return __Pyx_CyFunction_Call(func, args, kw); } } static PyObject * __pyx_FusedFunction_call(PyObject *func, PyObject *args, PyObject *kw) { __pyx_FusedFunctionObject *binding_func = (__pyx_FusedFunctionObject *) func; Py_ssize_t argc = PyTuple_GET_SIZE(args); PyObject *new_args = NULL; __pyx_FusedFunctionObject *new_func = NULL; PyObject *result = NULL; PyObject *self = NULL; int is_staticmethod = binding_func->func.flags & __Pyx_CYFUNCTION_STATICMETHOD; int is_classmethod = binding_func->func.flags & __Pyx_CYFUNCTION_CLASSMETHOD; if (binding_func->self) { Py_ssize_t i; new_args = PyTuple_New(argc + 1); if (!new_args) return NULL; self = binding_func->self; #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_INCREF(self); #endif Py_INCREF(self); PyTuple_SET_ITEM(new_args, 0, self); for (i = 0; i < argc; i++) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS PyObject *item = PyTuple_GET_ITEM(args, i); Py_INCREF(item); #else PyObject *item = PySequence_ITEM(args, i); if (unlikely(!item)) goto bad; #endif PyTuple_SET_ITEM(new_args, i + 1, item); } args = new_args; } else if (binding_func->type) { if (argc < 1) { PyErr_SetString(PyExc_TypeError, "Need at least one argument, 0 given."); return NULL; } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS self = PyTuple_GET_ITEM(args, 0); #else self = PySequence_ITEM(args, 0); if (unlikely(!self)) return NULL; #endif } if (self && !is_classmethod && !is_staticmethod) { int is_instance = PyObject_IsInstance(self, binding_func->type); if (unlikely(!is_instance)) { PyErr_Format(PyExc_TypeError, "First argument should be of type %.200s, got %.200s.", ((PyTypeObject *) binding_func->type)->tp_name, Py_TYPE(self)->tp_name); goto bad; } else if (unlikely(is_instance == -1)) { goto bad; } } #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_XDECREF(self); self = NULL; #endif if (binding_func->__signatures__) { PyObject *tup; if (is_staticmethod && binding_func->func.flags & __Pyx_CYFUNCTION_CCLASS) { tup = PyTuple_Pack(3, args, kw == NULL ? Py_None : kw, binding_func->func.defaults_tuple); if (unlikely(!tup)) goto bad; new_func = (__pyx_FusedFunctionObject *) __Pyx_CyFunction_CallMethod( func, binding_func->__signatures__, tup, NULL); } else { tup = PyTuple_Pack(4, binding_func->__signatures__, args, kw == NULL ? Py_None : kw, binding_func->func.defaults_tuple); if (unlikely(!tup)) goto bad; new_func = (__pyx_FusedFunctionObject *) __pyx_FusedFunction_callfunction(func, tup, NULL); } Py_DECREF(tup); if (unlikely(!new_func)) goto bad; Py_XINCREF(binding_func->func.func_classobj); Py_CLEAR(new_func->func.func_classobj); new_func->func.func_classobj = binding_func->func.func_classobj; func = (PyObject *) new_func; } result = __pyx_FusedFunction_callfunction(func, args, kw); bad: #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS) Py_XDECREF(self); #endif Py_XDECREF(new_args); Py_XDECREF((PyObject *) new_func); return result; } static PyMemberDef __pyx_FusedFunction_members[] = { {(char *) "__signatures__", T_OBJECT, offsetof(__pyx_FusedFunctionObject, __signatures__), READONLY, 0}, {0, 0, 0, 0, 0}, }; static PyMappingMethods __pyx_FusedFunction_mapping_methods = { 0, (binaryfunc) __pyx_FusedFunction_getitem, 0, }; static PyTypeObject __pyx_FusedFunctionType_type = { PyVarObject_HEAD_INIT(0, 0) "fused_cython_function", sizeof(__pyx_FusedFunctionObject), 0, (destructor) __pyx_FusedFunction_dealloc, 0, 0, 0, #if PY_MAJOR_VERSION < 3 0, #else 0, #endif 0, 0, 0, &__pyx_FusedFunction_mapping_methods, 0, (ternaryfunc) __pyx_FusedFunction_call, 0, 0, 0, 0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE, 0, (traverseproc) __pyx_FusedFunction_traverse, (inquiry) __pyx_FusedFunction_clear, 0, 0, 0, 0, 0, __pyx_FusedFunction_members, __pyx_CyFunction_getsets, &__pyx_CyFunctionType_type, 0, __pyx_FusedFunction_descr_get, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, #if PY_VERSION_HEX >= 0x030400a1 0, #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, #endif }; static int __pyx_FusedFunction_init(void) { __pyx_FusedFunctionType_type.tp_base = __pyx_CyFunctionType; __pyx_FusedFunctionType = __Pyx_FetchCommonType(&__pyx_FusedFunctionType_type); if (__pyx_FusedFunctionType == NULL) { return -1; } return 0; } /* CLineInTraceback */ #ifndef CYTHON_CLINE_IN_TRACEBACK static int __Pyx_CLineForTraceback(CYTHON_UNUSED PyThreadState *tstate, int c_line) { PyObject *use_cline; PyObject *ptype, *pvalue, *ptraceback; #if CYTHON_COMPILING_IN_CPYTHON PyObject **cython_runtime_dict; #endif if (unlikely(!__pyx_cython_runtime)) { return c_line; } __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); #if CYTHON_COMPILING_IN_CPYTHON cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); if (likely(cython_runtime_dict)) { __PYX_PY_DICT_LOOKUP_IF_MODIFIED( use_cline, *cython_runtime_dict, __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) } else #endif { PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); if (use_cline_obj) { use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; Py_DECREF(use_cline_obj); } else { PyErr_Clear(); use_cline = NULL; } } if (!use_cline) { c_line = 0; (void) PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); } else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { c_line = 0; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); return c_line; } #endif /* CodeObjectCache */ static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = start + (end - start) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, ((size_t)new_max) * sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } /* AddTraceback */ #include "compile.h" #include "frameobject.h" #include "traceback.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = NULL; PyObject *py_funcname = NULL; #if PY_MAJOR_VERSION < 3 PyObject *py_srcfile = NULL; py_srcfile = PyString_FromString(filename); if (!py_srcfile) goto bad; #endif if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; funcname = PyUnicode_AsUTF8(py_funcname); if (!funcname) goto bad; #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); if (!py_funcname) goto bad; #endif } #if PY_MAJOR_VERSION < 3 py_code = __Pyx_PyCode_New( 0, 0, 0, 0, 0, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); #else py_code = PyCode_NewEmpty(filename, funcname, py_line); #endif Py_XDECREF(py_funcname); // XDECREF since it's only set on Py3 if cline return py_code; bad: Py_XDECREF(py_funcname); #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_srcfile); #endif return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject *ptype, *pvalue, *ptraceback; if (c_line) { c_line = __Pyx_CLineForTraceback(tstate, c_line); } py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) { /* If the code object creation fails, then we should clear the fetched exception references and propagate the new exception */ Py_XDECREF(ptype); Py_XDECREF(pvalue); Py_XDECREF(ptraceback); goto bad; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( tstate, /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ __pyx_d, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); return -1; } static void __Pyx_ReleaseBuffer(Py_buffer *view) { PyObject *obj = view->obj; if (!obj) return; if (PyObject_CheckBuffer(obj)) { PyBuffer_Release(view); return; } if ((0)) {} view->obj = NULL; Py_DECREF(obj); } #endif /* MemviewSliceIsContig */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) { int i, index, step, start; Py_ssize_t itemsize = mvs.memview->view.itemsize; if (order == 'F') { step = 1; start = 0; } else { step = -1; start = ndim - 1; } for (i = 0; i < ndim; i++) { index = start + step * i; if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize) return 0; itemsize *= mvs.shape[index]; } return 1; } /* OverlappingSlices */ static void __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, void **out_start, void **out_end, int ndim, size_t itemsize) { char *start, *end; int i; start = end = slice->data; for (i = 0; i < ndim; i++) { Py_ssize_t stride = slice->strides[i]; Py_ssize_t extent = slice->shape[i]; if (extent == 0) { *out_start = *out_end = start; return; } else { if (stride > 0) end += stride * (extent - 1); else start += stride * (extent - 1); } } *out_start = start; *out_end = end + itemsize; } static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize) { void *start1, *end1, *start2, *end2; __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); return (start1 < end2) && (start2 < end1); } /* Capsule */ static CYTHON_INLINE PyObject * __pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) { PyObject *cobj; #if PY_VERSION_HEX >= 0x02070000 cobj = PyCapsule_New(p, sig, NULL); #else cobj = PyCObject_FromVoidPtr(p, NULL); #endif return cobj; } /* IsLittleEndian */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) { union { uint32_t u32; uint8_t u8[4]; } S; S.u32 = 0x01020304; return S.u8[0] == 4; } /* BufferFormatCheck */ static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type) { stack[0].field = &ctx->root; stack[0].parent_offset = 0; ctx->root.type = type; ctx->root.name = "buffer dtype"; ctx->root.offset = 0; ctx->head = stack; ctx->head->field = &ctx->root; ctx->fmt_offset = 0; ctx->head->parent_offset = 0; ctx->new_packmode = '@'; ctx->enc_packmode = '@'; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->is_complex = 0; ctx->is_valid_array = 0; ctx->struct_alignment = 0; while (type->typegroup == 'S') { ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = 0; type = type->fields->type; } } static int __Pyx_BufFmt_ParseNumber(const char** ts) { int count; const char* t = *ts; if (*t < '0' || *t > '9') { return -1; } else { count = *t++ - '0'; while (*t >= '0' && *t <= '9') { count *= 10; count += *t++ - '0'; } } *ts = t; return count; } static int __Pyx_BufFmt_ExpectNumber(const char **ts) { int number = __Pyx_BufFmt_ParseNumber(ts); if (number == -1) PyErr_Format(PyExc_ValueError,\ "Does not understand character buffer dtype format string ('%c')", **ts); return number; } static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { PyErr_Format(PyExc_ValueError, "Unexpected format string character: '%c'", ch); } static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { switch (ch) { case '?': return "'bool'"; case 'c': return "'char'"; case 'b': return "'signed char'"; case 'B': return "'unsigned char'"; case 'h': return "'short'"; case 'H': return "'unsigned short'"; case 'i': return "'int'"; case 'I': return "'unsigned int'"; case 'l': return "'long'"; case 'L': return "'unsigned long'"; case 'q': return "'long long'"; case 'Q': return "'unsigned long long'"; case 'f': return (is_complex ? "'complex float'" : "'float'"); case 'd': return (is_complex ? "'complex double'" : "'double'"); case 'g': return (is_complex ? "'complex long double'" : "'long double'"); case 'T': return "a struct"; case 'O': return "Python object"; case 'P': return "a pointer"; case 's': case 'p': return "a string"; case 0: return "end"; default: return "unparseable format string"; } } static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return 2; case 'i': case 'I': case 'l': case 'L': return 4; case 'q': case 'Q': return 8; case 'f': return (is_complex ? 8 : 4); case 'd': return (is_complex ? 16 : 8); case 'g': { PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); return 0; } case 'O': case 'P': return sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(short); case 'i': case 'I': return sizeof(int); case 'l': case 'L': return sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(float) * (is_complex ? 2 : 1); case 'd': return sizeof(double) * (is_complex ? 2 : 1); case 'g': return sizeof(long double) * (is_complex ? 2 : 1); case 'O': case 'P': return sizeof(void*); default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } typedef struct { char c; short x; } __Pyx_st_short; typedef struct { char c; int x; } __Pyx_st_int; typedef struct { char c; long x; } __Pyx_st_long; typedef struct { char c; float x; } __Pyx_st_float; typedef struct { char c; double x; } __Pyx_st_double; typedef struct { char c; long double x; } __Pyx_st_longdouble; typedef struct { char c; void *x; } __Pyx_st_void_p; #ifdef HAVE_LONG_LONG typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_st_float) - sizeof(float); case 'd': return sizeof(__Pyx_st_double) - sizeof(double); case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } /* These are for computing the padding at the end of the struct to align on the first member of the struct. This will probably the same as above, but we don't have any guarantees. */ typedef struct { short x; char c; } __Pyx_pad_short; typedef struct { int x; char c; } __Pyx_pad_int; typedef struct { long x; char c; } __Pyx_pad_long; typedef struct { float x; char c; } __Pyx_pad_float; typedef struct { double x; char c; } __Pyx_pad_double; typedef struct { long double x; char c; } __Pyx_pad_longdouble; typedef struct { void *x; char c; } __Pyx_pad_void_p; #ifdef HAVE_LONG_LONG typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { switch (ch) { case 'c': return 'H'; case 'b': case 'h': case 'i': case 'l': case 'q': case 's': case 'p': return 'I'; case '?': case 'B': case 'H': case 'I': case 'L': case 'Q': return 'U'; case 'f': case 'd': case 'g': return (is_complex ? 'C' : 'R'); case 'O': return 'O'; case 'P': return 'P'; default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { if (ctx->head == NULL || ctx->head->field == &ctx->root) { const char* expected; const char* quote; if (ctx->head == NULL) { expected = "end"; quote = ""; } else { expected = ctx->head->field->type->name; quote = "'"; } PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected %s%s%s but got %s", quote, expected, quote, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); } else { __Pyx_StructField* field = ctx->head->field; __Pyx_StructField* parent = (ctx->head - 1)->field; PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), parent->type->name, field->name); } } static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { char group; size_t size, offset, arraysize = 1; if (ctx->enc_type == 0) return 0; if (ctx->head->field->type->arraysize[0]) { int i, ndim = 0; if (ctx->enc_type == 's' || ctx->enc_type == 'p') { ctx->is_valid_array = ctx->head->field->type->ndim == 1; ndim = 1; if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %zu", ctx->head->field->type->arraysize[0], ctx->enc_count); return -1; } } if (!ctx->is_valid_array) { PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", ctx->head->field->type->ndim, ndim); return -1; } for (i = 0; i < ctx->head->field->type->ndim; i++) { arraysize *= ctx->head->field->type->arraysize[i]; } ctx->is_valid_array = 0; ctx->enc_count = 1; } group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); do { __Pyx_StructField* field = ctx->head->field; __Pyx_TypeInfo* type = field->type; if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); } else { size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); } if (ctx->enc_packmode == '@') { size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); size_t align_mod_offset; if (align_at == 0) return -1; align_mod_offset = ctx->fmt_offset % align_at; if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; if (ctx->struct_alignment == 0) ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, ctx->is_complex); } if (type->size != size || type->typegroup != group) { if (type->typegroup == 'C' && type->fields != NULL) { size_t parent_offset = ctx->head->parent_offset + field->offset; ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = parent_offset; continue; } if ((type->typegroup == 'H' || group == 'H') && type->size == size) { } else { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } } offset = ctx->head->parent_offset + field->offset; if (ctx->fmt_offset != offset) { PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); return -1; } ctx->fmt_offset += size; if (arraysize) ctx->fmt_offset += (arraysize - 1) * size; --ctx->enc_count; while (1) { if (field == &ctx->root) { ctx->head = NULL; if (ctx->enc_count != 0) { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } break; } ctx->head->field = ++field; if (field->type == NULL) { --ctx->head; field = ctx->head->field; continue; } else if (field->type->typegroup == 'S') { size_t parent_offset = ctx->head->parent_offset + field->offset; if (field->type->fields->type == NULL) continue; field = field->type->fields; ++ctx->head; ctx->head->field = field; ctx->head->parent_offset = parent_offset; break; } else { break; } } } while (ctx->enc_count); ctx->enc_type = 0; ctx->is_complex = 0; return 0; } static PyObject * __pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) { const char *ts = *tsp; int i = 0, number, ndim; ++ts; if (ctx->new_count != 1) { PyErr_SetString(PyExc_ValueError, "Cannot handle repeated arrays in format string"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ndim = ctx->head->field->type->ndim; while (*ts && *ts != ')') { switch (*ts) { case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; default: break; } number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) return PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %d", ctx->head->field->type->arraysize[i], number); if (*ts != ',' && *ts != ')') return PyErr_Format(PyExc_ValueError, "Expected a comma in format string, got '%c'", *ts); if (*ts == ',') ts++; i++; } if (i != ndim) return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", ctx->head->field->type->ndim, i); if (!*ts) { PyErr_SetString(PyExc_ValueError, "Unexpected end of format string, expected ')'"); return NULL; } ctx->is_valid_array = 1; ctx->new_count = 1; *tsp = ++ts; return Py_None; } static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { int got_Z = 0; while (1) { switch(*ts) { case 0: if (ctx->enc_type != 0 && ctx->head == NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; if (ctx->head != NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } return ts; case ' ': case '\r': case '\n': ++ts; break; case '<': if (!__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '>': case '!': if (__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '=': case '@': case '^': ctx->new_packmode = *ts++; break; case 'T': { const char* ts_after_sub; size_t i, struct_count = ctx->new_count; size_t struct_alignment = ctx->struct_alignment; ctx->new_count = 1; ++ts; if (*ts != '{') { PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; ctx->enc_count = 0; ctx->struct_alignment = 0; ++ts; ts_after_sub = ts; for (i = 0; i != struct_count; ++i) { ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); if (!ts_after_sub) return NULL; } ts = ts_after_sub; if (struct_alignment) ctx->struct_alignment = struct_alignment; } break; case '}': { size_t alignment = ctx->struct_alignment; ++ts; if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; if (alignment && ctx->fmt_offset % alignment) { ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); } } return ts; case 'x': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->fmt_offset += ctx->new_count; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->enc_packmode = ctx->new_packmode; ++ts; break; case 'Z': got_Z = 1; ++ts; if (*ts != 'f' && *ts != 'd' && *ts != 'g') { __Pyx_BufFmt_RaiseUnexpectedChar('Z'); return NULL; } CYTHON_FALLTHROUGH; case '?': case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': case 'l': case 'L': case 'q': case 'Q': case 'f': case 'd': case 'g': case 'O': case 'p': if ((ctx->enc_type == *ts) && (got_Z == ctx->is_complex) && (ctx->enc_packmode == ctx->new_packmode) && (!ctx->is_valid_array)) { ctx->enc_count += ctx->new_count; ctx->new_count = 1; got_Z = 0; ++ts; break; } CYTHON_FALLTHROUGH; case 's': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_count = ctx->new_count; ctx->enc_packmode = ctx->new_packmode; ctx->enc_type = *ts; ctx->is_complex = got_Z; ++ts; ctx->new_count = 1; got_Z = 0; break; case ':': ++ts; while(*ts != ':') ++ts; ++ts; break; case '(': if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; break; default: { int number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; ctx->new_count = (size_t)number; } } } } /* TypeInfoCompare */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) { int i; if (!a || !b) return 0; if (a == b) return 1; if (a->size != b->size || a->typegroup != b->typegroup || a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { if (a->typegroup == 'H' || b->typegroup == 'H') { return a->size == b->size; } else { return 0; } } if (a->ndim) { for (i = 0; i < a->ndim; i++) if (a->arraysize[i] != b->arraysize[i]) return 0; } if (a->typegroup == 'S') { if (a->flags != b->flags) return 0; if (a->fields || b->fields) { if (!(a->fields && b->fields)) return 0; for (i = 0; a->fields[i].type && b->fields[i].type; i++) { __Pyx_StructField *field_a = a->fields + i; __Pyx_StructField *field_b = b->fields + i; if (field_a->offset != field_b->offset || !__pyx_typeinfo_cmp(field_a->type, field_b->type)) return 0; } return !a->fields[i].type && !b->fields[i].type; } } return 1; } /* MemviewSliceValidateAndInit */ static int __pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) { if (buf->shape[dim] <= 1) return 1; if (buf->strides) { if (spec & __Pyx_MEMVIEW_CONTIG) { if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { if (unlikely(buf->strides[dim] != sizeof(void *))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly contiguous " "in dimension %d.", dim); goto fail; } } else if (unlikely(buf->strides[dim] != buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } if (spec & __Pyx_MEMVIEW_FOLLOW) { Py_ssize_t stride = buf->strides[dim]; if (stride < 0) stride = -stride; if (unlikely(stride < buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } } else { if (unlikely(spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1)) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not contiguous in " "dimension %d", dim); goto fail; } else if (unlikely(spec & (__Pyx_MEMVIEW_PTR))) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not indirect in " "dimension %d", dim); goto fail; } else if (unlikely(buf->suboffsets)) { PyErr_SetString(PyExc_ValueError, "Buffer exposes suboffsets but no strides"); goto fail; } } return 1; fail: return 0; } static int __pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) { if (spec & __Pyx_MEMVIEW_DIRECT) { if (unlikely(buf->suboffsets && buf->suboffsets[dim] >= 0)) { PyErr_Format(PyExc_ValueError, "Buffer not compatible with direct access " "in dimension %d.", dim); goto fail; } } if (spec & __Pyx_MEMVIEW_PTR) { if (unlikely(!buf->suboffsets || (buf->suboffsets[dim] < 0))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly accessible " "in dimension %d.", dim); goto fail; } } return 1; fail: return 0; } static int __pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) { int i; if (c_or_f_flag & __Pyx_IS_F_CONTIG) { Py_ssize_t stride = 1; for (i = 0; i < ndim; i++) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not fortran contiguous."); goto fail; } stride = stride * buf->shape[i]; } } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { Py_ssize_t stride = 1; for (i = ndim - 1; i >- 1; i--) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not C contiguous."); goto fail; } stride = stride * buf->shape[i]; } } return 1; fail: return 0; } static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj) { struct __pyx_memoryview_obj *memview, *new_memview; __Pyx_RefNannyDeclarations Py_buffer *buf; int i, spec = 0, retval = -1; __Pyx_BufFmt_Context ctx; int from_memoryview = __pyx_memoryview_check(original_obj); __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) original_obj)->typeinfo)) { memview = (struct __pyx_memoryview_obj *) original_obj; new_memview = NULL; } else { memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( original_obj, buf_flags, 0, dtype); new_memview = memview; if (unlikely(!memview)) goto fail; } buf = &memview->view; if (unlikely(buf->ndim != ndim)) { PyErr_Format(PyExc_ValueError, "Buffer has wrong number of dimensions (expected %d, got %d)", ndim, buf->ndim); goto fail; } if (new_memview) { __Pyx_BufFmt_Init(&ctx, stack, dtype); if (unlikely(!__Pyx_BufFmt_CheckString(&ctx, buf->format))) goto fail; } if (unlikely((unsigned) buf->itemsize != dtype->size)) { PyErr_Format(PyExc_ValueError, "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", buf->itemsize, (buf->itemsize > 1) ? "s" : "", dtype->name, dtype->size, (dtype->size > 1) ? "s" : ""); goto fail; } if (buf->len > 0) { for (i = 0; i < ndim; i++) { spec = axes_specs[i]; if (unlikely(!__pyx_check_strides(buf, i, ndim, spec))) goto fail; if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec))) goto fail; } if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag))) goto fail; } if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, new_memview != NULL) == -1)) { goto fail; } retval = 0; goto no_fail; fail: Py_XDECREF(new_memview); retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_dsds_float(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED), (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 2, &__Pyx_TypeInfo_float, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* CIntFromPyVerify */ #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) #define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ {\ func_type value = func_value;\ if (sizeof(target_type) < sizeof(func_type)) {\ if (unlikely(value != (func_type) (target_type) value)) {\ func_type zero = 0;\ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ return (target_type) -1;\ if (is_unsigned && unlikely(value < zero))\ goto raise_neg_overflow;\ else\ goto raise_overflow;\ }\ }\ return (target_type) value;\ } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_nn___pyx_t_5numpy_int32_t(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_nn___pyx_t_5numpy_int32_t, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* MemviewDtypeToObject */ static CYTHON_INLINE PyObject *__pyx_memview_get_double(const char *itemp) { return (PyObject *) PyFloat_FromDouble(*(double *) itemp); } static CYTHON_INLINE int __pyx_memview_set_double(const char *itemp, PyObject *obj) { double value = __pyx_PyFloat_AsDouble(obj); if ((value == (double)-1) && PyErr_Occurred()) return 0; *(double *) itemp = value; return 1; } /* MemviewDtypeToObject */ static CYTHON_INLINE PyObject *__pyx_memview_get_nn___pyx_t_5numpy_int32_t(const char *itemp) { return (PyObject *) __Pyx_PyInt_From_npy_int32(*(__pyx_t_5numpy_int32_t *) itemp); } static CYTHON_INLINE int __pyx_memview_set_nn___pyx_t_5numpy_int32_t(const char *itemp, PyObject *obj) { __pyx_t_5numpy_int32_t value = __Pyx_PyInt_As_npy_int32(obj); if ((value == ((npy_int32)-1)) && PyErr_Occurred()) return 0; *(__pyx_t_5numpy_int32_t *) itemp = value; return 1; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_float(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_float, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* MemviewDtypeToObject */ static CYTHON_INLINE PyObject *__pyx_memview_get_float(const char *itemp) { return (PyObject *) PyFloat_FromDouble(*(float *) itemp); } static CYTHON_INLINE int __pyx_memview_set_float(const char *itemp, PyObject *obj) { float value = __pyx_PyFloat_AsFloat(obj); if ((value == (float)-1) && PyErr_Occurred()) return 0; *(float *) itemp = value; return 1; } /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return ::std::complex< float >(x, y); } #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return x + y*(__pyx_t_float_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { __pyx_t_float_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabsf(b.real) >= fabsf(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { float r = b.imag / b.real; float s = (float)(1.0) / (b.real + b.imag * r); return __pyx_t_float_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { float r = b.real / b.imag; float s = (float)(1.0) / (b.imag + b.real * r); return __pyx_t_float_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else { float denom = b.real * b.real + b.imag * b.imag; return __pyx_t_float_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrtf(z.real*z.real + z.imag*z.imag); #else return hypotf(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; float r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { float denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_float(a, a); case 3: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, a); case 4: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if ((b.imag == 0) && (a.real >= 0)) { z.real = powf(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2f(0.0, -1.0); } } else { r = __Pyx_c_abs_float(a); theta = atan2f(a.imag, a.real); } lnr = logf(r); z_r = expf(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cosf(z_theta); z.imag = z_r * sinf(z_theta); return z; } #endif #endif /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return ::std::complex< double >(x, y); } #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return x + y*(__pyx_t_double_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { __pyx_t_double_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabs(b.real) >= fabs(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { double r = b.imag / b.real; double s = (double)(1.0) / (b.real + b.imag * r); return __pyx_t_double_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { double r = b.real / b.imag; double s = (double)(1.0) / (b.imag + b.real * r); return __pyx_t_double_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else { double denom = b.real * b.real + b.imag * b.imag; return __pyx_t_double_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrt(z.real*z.real + z.imag*z.imag); #else return hypot(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; double r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { double denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_double(a, a); case 3: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, a); case 4: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if ((b.imag == 0) && (a.real >= 0)) { z.real = pow(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2(0.0, -1.0); } } else { r = __Pyx_c_abs_double(a); theta = atan2(a.imag, a.real); } lnr = log(r); z_r = exp(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cos(z_theta); z.imag = z_r * sin(z_theta); return z; } #endif #endif /* MemviewSliceCopyTemplate */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object) { __Pyx_RefNannyDeclarations int i; __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; struct __pyx_memoryview_obj *from_memview = from_mvs->memview; Py_buffer *buf = &from_memview->view; PyObject *shape_tuple = NULL; PyObject *temp_int = NULL; struct __pyx_array_obj *array_obj = NULL; struct __pyx_memoryview_obj *memview_obj = NULL; __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); for (i = 0; i < ndim; i++) { if (unlikely(from_mvs->suboffsets[i] >= 0)) { PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " "indirect dimensions (axis %d)", i); goto fail; } } shape_tuple = PyTuple_New(ndim); if (unlikely(!shape_tuple)) { goto fail; } __Pyx_GOTREF(shape_tuple); for(i = 0; i < ndim; i++) { temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); if(unlikely(!temp_int)) { goto fail; } else { PyTuple_SET_ITEM(shape_tuple, i, temp_int); temp_int = NULL; } } array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); if (unlikely(!array_obj)) { goto fail; } __Pyx_GOTREF(array_obj); memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( (PyObject *) array_obj, contig_flag, dtype_is_object, from_mvs->memview->typeinfo); if (unlikely(!memview_obj)) goto fail; if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) goto fail; if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, dtype_is_object) < 0)) goto fail; goto no_fail; fail: __Pyx_XDECREF(new_mvs.memview); new_mvs.memview = NULL; new_mvs.data = NULL; no_fail: __Pyx_XDECREF(shape_tuple); __Pyx_XDECREF(temp_int); __Pyx_XDECREF(array_obj); __Pyx_RefNannyFinishContext(); return new_mvs; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE Py_intptr_t __Pyx_PyInt_As_Py_intptr_t(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const Py_intptr_t neg_one = (Py_intptr_t) -1, const_zero = (Py_intptr_t) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(Py_intptr_t) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (Py_intptr_t) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (Py_intptr_t) 0; case 1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, digit, digits[0]) case 2: if (8 * sizeof(Py_intptr_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 2 * PyLong_SHIFT) { return (Py_intptr_t) (((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; case 3: if (8 * sizeof(Py_intptr_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 3 * PyLong_SHIFT) { return (Py_intptr_t) (((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; case 4: if (8 * sizeof(Py_intptr_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 4 * PyLong_SHIFT) { return (Py_intptr_t) (((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (Py_intptr_t) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(Py_intptr_t) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (Py_intptr_t) 0; case -1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, digit, +digits[0]) case -2: if (8 * sizeof(Py_intptr_t) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 2: if (8 * sizeof(Py_intptr_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { return (Py_intptr_t) ((((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case -3: if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 3: if (8 * sizeof(Py_intptr_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { return (Py_intptr_t) ((((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case -4: if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 4 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 4: if (8 * sizeof(Py_intptr_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 4 * PyLong_SHIFT) { return (Py_intptr_t) ((((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; } #endif if (sizeof(Py_intptr_t) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else Py_intptr_t val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (Py_intptr_t) -1; } } else { Py_intptr_t val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (Py_intptr_t) -1; val = __Pyx_PyInt_As_Py_intptr_t(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to Py_intptr_t"); return (Py_intptr_t) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to Py_intptr_t"); return (Py_intptr_t) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_Py_intptr_t(Py_intptr_t value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const Py_intptr_t neg_one = (Py_intptr_t) -1, const_zero = (Py_intptr_t) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(Py_intptr_t) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(Py_intptr_t) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(Py_intptr_t) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(Py_intptr_t), little, !is_unsigned); } } /* BytesContains */ static CYTHON_INLINE int __Pyx_BytesContains(PyObject* bytes, char character) { const Py_ssize_t length = PyBytes_GET_SIZE(bytes); char* char_start = PyBytes_AS_STRING(bytes); return memchr(char_start, (unsigned char)character, (size_t)length) != NULL; } /* CIntFromPy */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) case -2: if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -3: if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -4: if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; } #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int"); return (int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_npy_int32(npy_int32 value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const npy_int32 neg_one = (npy_int32) -1, const_zero = (npy_int32) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(npy_int32) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(npy_int32) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(npy_int32) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(npy_int32) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(npy_int32) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(npy_int32), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE npy_int32 __Pyx_PyInt_As_npy_int32(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const npy_int32 neg_one = (npy_int32) -1, const_zero = (npy_int32) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(npy_int32) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(npy_int32, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (npy_int32) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (npy_int32) 0; case 1: __PYX_VERIFY_RETURN_INT(npy_int32, digit, digits[0]) case 2: if (8 * sizeof(npy_int32) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) >= 2 * PyLong_SHIFT) { return (npy_int32) (((((npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0])); } } break; case 3: if (8 * sizeof(npy_int32) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) >= 3 * PyLong_SHIFT) { return (npy_int32) (((((((npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0])); } } break; case 4: if (8 * sizeof(npy_int32) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) >= 4 * PyLong_SHIFT) { return (npy_int32) (((((((((npy_int32)digits[3]) << PyLong_SHIFT) | (npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (npy_int32) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(npy_int32) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(npy_int32, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(npy_int32) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(npy_int32, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (npy_int32) 0; case -1: __PYX_VERIFY_RETURN_INT(npy_int32, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(npy_int32, digit, +digits[0]) case -2: if (8 * sizeof(npy_int32) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 2 * PyLong_SHIFT) { return (npy_int32) (((npy_int32)-1)*(((((npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; case 2: if (8 * sizeof(npy_int32) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 2 * PyLong_SHIFT) { return (npy_int32) ((((((npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; case -3: if (8 * sizeof(npy_int32) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 3 * PyLong_SHIFT) { return (npy_int32) (((npy_int32)-1)*(((((((npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; case 3: if (8 * sizeof(npy_int32) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 3 * PyLong_SHIFT) { return (npy_int32) ((((((((npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; case -4: if (8 * sizeof(npy_int32) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 4 * PyLong_SHIFT) { return (npy_int32) (((npy_int32)-1)*(((((((((npy_int32)digits[3]) << PyLong_SHIFT) | (npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; case 4: if (8 * sizeof(npy_int32) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(npy_int32, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(npy_int32) - 1 > 4 * PyLong_SHIFT) { return (npy_int32) ((((((((((npy_int32)digits[3]) << PyLong_SHIFT) | (npy_int32)digits[2]) << PyLong_SHIFT) | (npy_int32)digits[1]) << PyLong_SHIFT) | (npy_int32)digits[0]))); } } break; } #endif if (sizeof(npy_int32) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(npy_int32, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(npy_int32) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(npy_int32, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else npy_int32 val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (npy_int32) -1; } } else { npy_int32 val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (npy_int32) -1; val = __Pyx_PyInt_As_npy_int32(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to npy_int32"); return (npy_int32) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to npy_int32"); return (npy_int32) -1; } /* ImportNumPyArray */ static PyObject* __Pyx__ImportNumPyArray(void) { PyObject *numpy_module, *ndarray_object = NULL; numpy_module = __Pyx_Import(__pyx_n_s_numpy, NULL, 0); if (likely(numpy_module)) { ndarray_object = PyObject_GetAttrString(numpy_module, "ndarray"); Py_DECREF(numpy_module); } if (unlikely(!ndarray_object)) { PyErr_Clear(); } if (unlikely(!ndarray_object || !PyObject_TypeCheck(ndarray_object, &PyType_Type))) { Py_XDECREF(ndarray_object); Py_INCREF(Py_None); ndarray_object = Py_None; } return ndarray_object; } static CYTHON_INLINE PyObject* __Pyx_ImportNumPyArrayTypeIfAvailable(void) { if (unlikely(!__pyx_numpy_ndarray)) { __pyx_numpy_ndarray = __Pyx__ImportNumPyArray(); } Py_INCREF(__pyx_numpy_ndarray); return __pyx_numpy_ndarray; } /* CIntFromPy */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) case -2: if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -3: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -4: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; } #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to long"); return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(int) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const char neg_one = (char) -1, const_zero = (char) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(char) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (char) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case 1: __PYX_VERIFY_RETURN_INT(char, digit, digits[0]) case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 2 * PyLong_SHIFT) { return (char) (((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 3 * PyLong_SHIFT) { return (char) (((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 4 * PyLong_SHIFT) { return (char) (((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (char) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(char) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case -1: __PYX_VERIFY_RETURN_INT(char, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(char, digit, +digits[0]) case -2: if (8 * sizeof(char) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) (((char)-1)*(((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) ((((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -3: if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) ((((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -4: if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) ((((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; } #endif if (sizeof(char) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(char, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else char val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (char) -1; } } else { char val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (char) -1; val = __Pyx_PyInt_As_char(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to char"); return (char) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to char"); return (char) -1; } /* CheckBinaryVersion */ static int __Pyx_check_binary_version(void) { char ctversion[5]; int same=1, i, found_dot; const char* rt_from_call = Py_GetVersion(); PyOS_snprintf(ctversion, 5, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); found_dot = 0; for (i = 0; i < 4; i++) { if (!ctversion[i]) { same = (rt_from_call[i] < '0' || rt_from_call[i] > '9'); break; } if (rt_from_call[i] != ctversion[i]) { same = 0; break; } } if (!same) { char rtversion[5] = {'\0'}; char message[200]; for (i=0; i<4; ++i) { if (rt_from_call[i] == '.') { if (found_dot) break; found_dot = 1; } else if (rt_from_call[i] < '0' || rt_from_call[i] > '9') { break; } rtversion[i] = rt_from_call[i]; } PyOS_snprintf(message, sizeof(message), "compiletime version %s of module '%.100s' " "does not match runtime version %s", ctversion, __Pyx_MODULE_NAME, rtversion); return PyErr_WarnEx(NULL, message, 1); } return 0; } /* InitStrings */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; if (PyObject_Hash(*t->p) == -1) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT #if !CYTHON_PEP393_ENABLED static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif *length = PyBytes_GET_SIZE(defenc); return defenc_c; } #else static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (likely(PyUnicode_IS_ASCII(o))) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else return PyUnicode_AsUTF8AndSize(o, length); #endif } #endif #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { int retval; if (unlikely(!x)) return -1; retval = __Pyx_PyObject_IsTrue(x); Py_DECREF(x); return retval; } static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { #if PY_MAJOR_VERSION >= 3 if (PyLong_Check(result)) { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", type_name, type_name, Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; #endif const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x) || PyLong_Check(x))) #else if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; res = m->nb_long(x); } #else if (likely(m && m->nb_int)) { name = "int"; res = m->nb_int(x); } #endif #else if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { res = PyNumber_Int(x); } #endif if (likely(res)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else if (unlikely(!PyLong_CheckExact(res))) { #endif return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) { if (sizeof(Py_ssize_t) >= sizeof(long)) return PyInt_AS_LONG(b); else return PyInt_AsSsize_t(b); } #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)b)->ob_digit; const Py_ssize_t size = Py_SIZE(b); if (likely(__Pyx_sst_abs(size) <= 1)) { ival = likely(size) ? digits[0] : 0; if (size == -1) ival = -ival; return ival; } else { switch (size) { case 2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; } } #endif return PyLong_AsSsize_t(b); } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject* o) { if (sizeof(Py_hash_t) == sizeof(Py_ssize_t)) { return (Py_hash_t) __Pyx_PyIndex_AsSsize_t(o); #if PY_MAJOR_VERSION < 3 } else if (likely(PyInt_CheckExact(o))) { return PyInt_AS_LONG(o); #endif } else { Py_ssize_t ival; PyObject *x; x = PyNumber_Index(o); if (!x) return -1; ival = PyInt_AsLong(x); Py_DECREF(x); return ival; } } static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } #endif /* Py_PYTHON_H */ ��������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/_cython_kmeans/kmeans.pyx�������������������������������������0000644�0000000�0000000�00000025765�14741736366�023041� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������""" Parallelized k-means module. Original version by David Warde-Farley, February 2012. Licensed under the 3-clause BSD. FROM gist.github.com/dwf/2200359 """ cimport cython from cython.parallel import prange import numpy as np cimport numpy as np from numpy.random import normal ctypedef fused double_or_float: double float @cython.boundscheck(False) @cython.wraparound(False) cdef inline void _compute_means(double_or_float[:, :] data, np.int32_t[:] assign, double_or_float[:, :] means, np.int32_t[:] counts): """ _compute_means(data, assign, means, counts) Compute the new centroids given the assignments in `assign`, leaving the results in `means`. Parameters ---------- data : ndarray, 2-dimensional, float64 Matrix of features with training examples indexed along the first dimension and features indexed along the second. assign : ndarray, 1-dimensional, int32/int64 (platform dependent) A vector of length `data.shape[0]` containing an index into `means`, indicating to which centroid a training example is assigned. means : ndarray, 2-dimensional, float64 A matrix of shape `(k, data.shape[0])`, with each row representing a centroid vector. This array be overwritten by this function. counts : ndarray, 2-dimensional, int32/int64 (platform dependent) A vector of length `k` indicating the number of training examples assigned to each centroid. This array wil be overwritten by this function. Notes ----- The data in `counts` argument at call time is never actually used, it is simply made an argument to this function to avoid reallocating a new buffer on every mean computation (which can be a slight performance hit if the number of centroids is substantial). This parallelizes over features (columns of `data` and `means`) using OpenMP via Cython's `cython.parallel.prange`. Parallelizing over examples would also be possible but would result in slightly different results compared with a non-parallel version due to the non-associativity of floating point addition. Cython currently gives the warning "buffer unpacking not optimized away" due to this being an inline function. This should be fixed in the next release, at which point we will reap the full benefits of inlining this. """ # Convenience variables and loop indices. cdef: np.npy_intp ndata = data.shape[0] np.npy_intp nfeat = data.shape[1] np.npy_intp k = means.shape[0] np.npy_intp example, feature, centroid # Zero the counts vector before repopulating it. for centroid in range(k): counts[centroid] = 0 # Count the number of times each centroid occurs in the assignments. for example in range(ndata): counts[assign[example]] += 1 # Main worker loop: for each feature, start by zeroing its value # for every centroid, then compute the sum of all examples assigned # to it, and finally normalize. for feature in prange(nfeat, nogil=True): for centroid in range(k): # If a centroid has no points assigned to it, leave it alone. if counts[centroid] > 0: means[centroid, feature] = 0. for example in range(ndata): means[assign[example], feature] += data[example, feature] for centroid in range(k): # Only normalize if counts[centroid] is non-zero to avoid NaN. if counts[centroid] > 0: means[centroid, feature] /= counts[centroid] else: means[centroid, feature] = 0. @cython.boundscheck(False) @cython.wraparound(False) @cython.embedsignature(True) cpdef tuple kmeans(double_or_float[:, :] data, np.npy_intp k, np.npy_intp max_iter=1000, np.ndarray init=None, rng=None): """ assign, means, iterations, converged = kmeans(data, k, max_iter=1000, init=None, rng=None) Run k-means on a dense matrix of features, parallelizing computations with OpenMP and BLAS where possible. Parameters ---------- data : ndarray, 2-dimensional, float64 Matrix of features with training examples indexed along the first dimension and features indexed along the second. k : int Number of centroids ("means") to use. max_iter : int, optional Maximum number of iterations of the algorithm to run (default is 1000). rng : RandomState object or seed, optional A random number generator instance to use for initialization in the absence of `init`, or a seed with which to create one. See the docstring for `numpy.random.RandomState` for details on the accepted seed formats. Default is `None`, in which case `RandomState` will try to seed itself from the system random number generator or with the clock. init : ndarray, 2-dimensional, float64, optional An initial set of centroids to use instead of the default initialization. This array **must** be of shape `(k, data.shape[1])` if it is provided, and **will be overwritten**. Returns ------- means : ndarray, 2-dimensional, float64 A matrix of shape `(k, data.shape[0])`, with each row representing a centroid vector. If `init` was provided, this will be the exact same array, but with the contents replaced with the values of the centroids after k-means has terminated. assign : ndarray, 1-dimensional, int32/int64 (platform dependent) A vector with one entry per training example, indicating the index of the closest centroid at termination. iteration : int The number of iterations of k-means actually performed. This will be less than or equal to `max_iter` specified in the input arguments. converged : boolean A boolean flag indicating whether or not the algorithm converged (i.e. False if the assignments changed in the last iteration). This disambiguates the rare but feasible case where convergence took place just as `max_iter` was reached. Notes ----- The main bottleneck of k-means is the distance matrix computation. This implementation uses `numpy.dot` for this, so you should ensure that your installation of NumPy is linked against a good multithreaded BLAS implementation for optimal performance. If NumPy is linked against the Intel Math Kernel Library (as it will be if you are using the full version of the Enthought Python Distribution), make sure the environment variable `MKL_NUM_THREADS` is set to the number of cores you wish it to use. Significant gains can be made by parallelizing the quantization and centroid computation as well. This implementation uses OpenMP to parallelize mean computation over *features* (columns of the data matrix) and quantization over *training examples*. Make sure `OMP_NUM_THREADS` is set to the desired number of worker threads/CPU cores. """ cdef: int centroid, feature, example np.npy_intp ndata = data.shape[0] np.npy_intp nfeat = data.shape[1] data_dtype = np.array([data[0,0]]).dtype dists = np.empty((ndata, k), dtype=data_dtype) double_or_float[:] mindist = np.empty(ndata, dtype=data_dtype) np.int32_t[:] counts = np.empty(k, dtype=np.int32) # Allocate space for the assignment indices, distance matrix, the means. double_or_float[:, :] distsview = dists double_or_float[:] m_sqnorm = np.empty(k, dtype=data_dtype) double_or_float[:, :] means # Declare variables for the current assignments and current argmin. # Storing the current argmin separately lets us easily check for # convergence at a memory cost of (pointer width * ndata). np.int32_t[:] assign np.int32_t[:] argmin = np.empty(ndata, dtype=np.int32) double_or_float minusinf if init is not None: if rng is not None: raise ValueError('rng argument unused if init is provided') if init.shape[0] != k or init.shape[1] != nfeat: raise ValueError('init if provided must have shape (k, ' 'data.shape[1])') means = init assign = np.empty(ndata, dtype=np.int32) else: means = np.empty((k, nfeat), dtype=data_dtype) # Randomly initialize assignments to uniformly drawn training points. if not hasattr(rng, 'random_integers'): rng = np.random.RandomState(rng) assign = rng.randint(0, k, size=ndata).astype(np.int32) # Compute the means from the random initial assignments. _compute_means(data, assign, means, counts) minusinf = np.finfo(data_dtype).min # how to write np.inf for iteration in range(max_iter): # Quantization step: compute squared distance between every point # and every mean. # The distance between each of the data points and each of the means # can be computed by a matrix product (times -2) plus squared norms. np.dot(data, means.T, out=dists) # Compute the squared norm of each of the centroids (necessary # for determining relative distances below). for centroid in prange(k, nogil=True): m_sqnorm[centroid] = 0. for feature in range(nfeat): m_sqnorm[centroid] += (means[centroid, feature] * means[centroid, feature]) # Determine the minimum distance cluster to each example. Note that # we are actually determining max(m'x - 0.5 * m'm) which is equivalent # to min(x'x - 2 * m'x + m'm), since the first term never changes. for example in prange(ndata, nogil=True): # Initialize the min and argmin to invalid values. argmin[example] = -1 mindist[example] = minusinf for centroid in range(k): distsview[example, centroid] -= 0.5 * m_sqnorm[centroid] if distsview[example, centroid] > mindist[example]: mindist[example] = distsview[example, centroid] argmin[example] = centroid # Check previous assignment against current assignment to determine if # we've converged. NOTE: Don't do this with prange as sometimes the # variable will not get set correctly. # TODO: Do this check in the parallel loop above using a with # parallel() block. converged = True for example in range(ndata): if argmin[example] != assign[example]: converged = False assign[example] = argmin[example] # If the assignment has changed, recompute means and continue the loop. if not converged: _compute_means(data, assign, means, counts) else: break return assign, means, iteration + 1, converged �����������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/_cython_kmeans/setup.py���������������������������������������0000644�0000000�0000000�00000002005�14741736366�022511� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������import glob import os import sys if "bdist_wheel" in sys.argv: from setuptools import setup, Extension else: try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension import numpy if sys.platform.startswith("win"): extra_compile_args = ["/openmp"] extra_link_args= [] else: extra_compile_args = ["-fopenmp"] extra_link_args=['-fopenmp'] include_dirs = [numpy.get_include()] #define_macros = [('NPY_NO_DEPRECATED_API', 'NPY_1_7_API_VERSION')] define_macros = [] def buildExtension(): module = Extension(name="kmeans", sources=['kmeans.pyx'], include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, #language="c++", ) return module ext_modules = [buildExtension()] setup(name='kmeans', ext_modules=ext_modules) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8277664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017433� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/LICENSE�����������������������������������������������0000644�0000000�0000000�00000004052�14741736366�020450� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Copyright (c) 2008 Uwe Schmitt, uschmitt@mineway.de 2007 D. Kim, S. Sra and I. S. Dhillon All rights reserved. The algoritm FNMA^I was published 28 Dec 2007 in "Statistical Ana- lyis and Data Mining" under the title "Fast Projection-Based Methods for the Least Squares Nonnegative Matrix Approximation Problem" Sparse coded NNMA from: [1] P.O. Hoyer, "Non-negative sparse coding", Neural Networks for Signal Processing XII (Proc. IEEE Workshop on Neural Networks for Signal Processing 2002, Martigny, Switzerland) pp. 557-565, 2002. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. Neither the name of the <ORGANIZATION> * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific * prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/README������������������������������������������������0000644�0000000�0000000�00000000134�14741736366�020320� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������If you are interested on py_nnma, please download from: http://public.procoders.net/nnma/ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/__init__.py�������������������������������������������0000644�0000000�0000000�00000004010�14741736366�021546� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#encoding:latin-1 #*/########################################################################### # Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # * copyright notice, this list of conditions and the following # * disclaimer in the documentation and/or other materials provided # * with the distribution. Neither the name of the <ORGANIZATION> # * nor the names of its contributors may be used to endorse or # * promote products derived from this software without specific # * prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #*/########################################################################### __copyright__ = "Uwe Schmitt, uschmitt@gateway.de" __license__ = "BSD" __doc__=""" Routines for nonnegative matrix approximation (nnma) """ import sys import os try: from .nnma import * except ImportError: if sys.version > '2.6': sys.path.append(os.path.dirname(__file__)) from nnma import * ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/nnma.py�����������������������������������������������0000644�0000000�0000000�00000052031�14741736366�020746� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#encoding:latin-1 #*/########################################################################### # Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # * copyright notice, this list of conditions and the following # * disclaimer in the documentation and/or other materials provided # * with the distribution. Neither the name of the <ORGANIZATION> # * nor the names of its contributors may be used to endorse or # * promote products derived from this software without specific # * prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #*/########################################################################### import numpy as np try: import scipy.sparse as sp has_sparse = True is_sparse = lambda A: isinstance(A, sp.spmatrix) except ImportError: has_sparse = False is_sparse = lambda A: False import math __doc__ = """ py_nnma: python modules for nonnegative matrix approximation (NNMA) (c) 2009 Uwe Schmitt, uschmitt@mineway.de NNMA minimizes dist(Y, A X) where: Y >= 0, m x n A >= 0, m x k X >= 0, n x k k < min(m,n) dist(A,B) can be || A - B ||_fro or KL(A,B) This moudule provides the following functions: NMF, NMFKL, SNMF, RRI, ALS, GDCLS, GDCLS_L1, FNMAI, FNMAI_SPARSE, NNSC and FastHALS The common parameters when calling such a function are: input: Y -- the matrix for decomposition, maybe dense from numpy or sparse from scipy.sparse package k -- number of componnets to estimate Astart Xstart -- matrices to start iterations. Maybe None for using random start matrices. eps -- termination swell value maxcount -- max number of iterations to be performed verbose -- if False: produce no output durint interations if integer: give all 'verbose' itetations some output about current state of iterations output: A, X -- result matrices of algorithm obj -- value of objective function of last iteration count -- number of iterations done converged -- flag: indicates if iterations stoped within max number of iterations The following extra parameters exist depending on algorithm: RRI : damping parameter 'psi' (default: 1e-12) SNMF : sparsity parameter 'sparse_par' (default: 0) ALS : regularization parameter 'regul' for stabilizing iterations (default value 0). needed if objective value jitters. GCDLS : 'regul' for l2-smoothness of X (default 0) GDCLS_L1 : 'regul' for l1-smoothness of X (default 0) FNMAI : 'stabil' for stabilizing algorithm (default value 1e-12) 'alpha' for stepsize (default value 0.1) 'tau' for number of inner iterations (default value 2) FNMAI_SPARSE : as FNMAI plus 'regul' for l1-smoothness of X (default 0) NNSC : 'alpha' for stepsize of gradient update of A 'sparse_par' for sparsity ############################################################################# Copyright (c) 2009 Uwe Schmitt, uschmitt@mineway.de All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. Neither the name of the <ORGANIZATION> * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific * prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This module is based on: - Daniel D. Lee and H. Sebastian Seung: "Algorithms for non-negative matrix factorization", in Advances in Neural Information Processing 13 (Proc. NIPS*2000) MIT Press, 2001. "Learning the parts of objects by non-negative matrix factorization", Nature, vol. 401, no. 6755, pp. 788-791, 1999. - A. Cichocki and A-H. Phan: "Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations", IEICE Transaction on Fundamentals, in print March 2009. - P. O. Hoyer "Non-negative Matrix Factorization with sparseness constraints", Journal of Machine Learning Research, vol. 5, pp. 1457-1469, 2004. - Dongmin Kim, Suvrit Sra,Inderjit S. Dhillon: "Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem" SIAM Data Mining (SDM), Apr. 2007 - Ngoc-Diep Ho: dissertation from http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-06052008-235205/ """ __license__ = "BSD" # # helper functions for handling sparse and dense matrices from numpy # and scipy.sparse # def divide_sparse_matrix(A, by): assert isinstance(A, sp.spmatrix), "wrong format" A = A.tocoo() A.data /= by[A.row, A.col] return A def divide_matrix(A, by): if is_sparse(A): return divide_sparse_matrix(A, by) elif isinstance(A, np.ndarray): return A / by else: raise TypeError("wrong matrix format %s" % type(A)) def dot(A, B): if is_sparse(A) and is_sparse(B): return (A*B).todense() elif is_sparse(A): return A*B elif is_sparse(B): return (B.transpose() * A.T).T else: return np.dot(A, B) def diff(A, B): E = A - B # if A is sparse E is np.matrix # if A is dense E is np.ndarray # so: convert np.matrix to np.ndarray if needed: if isinstance(E, np.matrix): return E.A return E def flatten(A): if is_sparse(A): return A.todense().flatten().A else: return A.flatten() def frob_norm(A): if is_sparse(A): return math.sqrt( (A.data**2).sum()) else: return np.linalg.norm(A) def transpose(A): if is_sparse(A): return sp.csr_matrix(A.transpose()) else: return A.T def get_scaling_vector(A, p=1.0): if is_sparse(A): dd = ((A**p).tocsc().sum(axis=0).A)**(1.0/p) else: dd = ((A**p).sum(axis=0))**(1.0/p) return dd def coerced(Y): # csr is faster for matrix-vector or matrix-matrix products if is_sparse(Y): if isinstance(Y, sp.csc_matrix): YT = sp.csr_matrix(Y.T) Y = sp.csr_matrix(Y) elif isinstance(Y, sp.csr_matrix): YT = sp.csr_matrix(Y.T) elif isinstance(Y, np.ndarray): YT = Y.T return Y, YT # # building blocks for nnma algorithms ## def GradA(Y, YT, A, X, **param): """ dPhi(Y, A, X) / dA with Phi(Y, A, X) = || Y - A X ||_fro """ XXT = np.dot(X, X.T) return np.dot(A, XXT) - dot(Y, X.T) def GradX(Y, YT ,A, X, **param): """ dPhi(Y, A, X) / dX with Phi(Y, A, X) = || Y - A X ||_fro """ ATA = np.dot(A.T, A) return np.dot(ATA, X) - dot(A.T, Y) def GradA_step(Y, YT, A, X, **param): alpha = param.get("alpha", 1e-3) A = A - alpha * GradA(Y, YT, A, X, **param) #A /= np.sqrt((A*A).sum(axis=0)) A[A<0] = 0 return A def GradX_step(Y, YT, A, X, **param): alpha = param.get("alpha", 1e-6) X = X - alpha * GradX(Y, YT, A, X, **param) X[X<0] = 0 return X def A_mult_update_kl_div(Y, YT, A, X, **param): """ update A for minimization of KL(Y || A X) """ AX = np.dot(A, X) Y_by_AX = divide_matrix(Y, 1e-9+AX) F = dot(Y_by_AX, X.T) / X.sum(axis=1).T return A*F def X_mult_update_kl_div(Y, YT, A, X, **param): """ update V for minimization of KL(Y || A X) """ AX = np.dot(A, X) Y_by_AX = divide_matrix(Y, 1e-9+AX) F = dot(transpose(Y_by_AX), A).T return X* (F.T / A.sum(axis=0)).T def A_mult_update(Y, YT, A, X, **param): """ Lee and Sung multiplicative update """ AXXT = np.dot(A, np.dot(X, X.T)) F = dot(Y, X.T)/(1e-9 + AXXT) return A*F def X_mult_update(Y, YT, A, X, **param): """ Lee and Sung multiplicative update """ ATAX = np.dot(np.dot(A.T, A),X) ATY = dot(YT, A).T F = ATY/(1e-9 + ATAX) return X*F def X_mult_update_nnsc(Y, YT, A, X, **param): """ Lee and Sung multiplicative update """ regul=param.get("sparse_par", 1e-9) ATAX = np.dot(np.dot(A.T, A),X) ATY = dot(YT, A).T F = ATY/(regul + ATAX) return X*F def A_inexact_lsq_update(Y, YT, A, X, **param): """ ALS fixed point update """ regul=param.get("regul", 0.0) XXT = np.dot(X, X.T) YXT = dot(Y, X.T) A = np.dot(YXT, np.linalg.pinv(XXT + regul*np.eye(XXT.shape[0]))) A[A<0] = 0 return A def X_inexact_lsq_update(Y, YT, A, X, **param): """ ALS fixed point update """ regul=param.get("regul", 0.0) ATA = np.dot(A.T, A) ATY = dot(YT, A).T X = np.dot(np.linalg.pinv(ATA + regul*np.eye(ATA.shape[0])), ATY) X[X<0] = 0 return X def X_inexact_lsq_update_l1regul(Y, YT, A, X, **param): """ ALS fixed point update with L1 regularization for X """ regul=param.get("regul", 0.0) ATA = np.dot(A.T, A) ATY = dot(YT, A).T X = np.dot(np.linalg.pinv(ATA+1e-12*np.eye(ATA.shape[0])),ATY-regul) X[X<0] = 0 return X def FNMAI_A_update(Y, YT, A, X, **param): """ FNMAI (Kim et al) update for A """ stabil=param.get("stabil", 1e-12) alpha=param.get("alpha", 0.1) tau=param.get("tau", 2) k = A.shape[1] a = max(1e-9, stabil) for _ in range(tau): G = GradA(Y, YT, A, X) Iplus = (A==0) & (G>0) G[Iplus] = 0 G = np.dot(G, np.linalg.pinv(np.dot(X,X.T)+a*np.eye(k))) G[Iplus] = 0 A -= alpha*G A[A<0] = 0 return A def FNMAI_X_update(Y, YT, A, X, **param): """ FNMAI (Kim et al) update for V """ stabil=param.get("stabil", 1e-12) alpha=param.get("alpha", 0.1) tau=param.get("tau", 2) k = A.shape[1] a = max(1e-9, stabil) for _ in range(tau): G = GradX(Y, YT, A, X) Iplus = (X==0) & (G>0) G[Iplus] = 0 G = np.dot(np.linalg.pinv(np.dot(A.T,A)+a*np.eye(k)), G) G[Iplus] = 0 X -= alpha*G X[X<0] = 0 return X def FastHALS_X_update(Y, YT, A, X, **param): W = dot(YT, A) V = dot(A.T, A) k = A.shape[1] for i in range(k): xi = X[i,:] xi += W[:,i]-dot(X.T, V[:,i]) xi[xi<0] = 0 X[i,:] = xi return X def FastHALS_A_update(Y, YT, A, X, **param): P = dot(Y, X.T) Q = dot(X, X.T) k = A.shape[1] for i in range(k): ai = A[:,i] ai = ai*Q[i,i] + P[:,i]-dot(A, Q[:,i]) ai[ai<0] = 0 ai /= np.linalg.norm(ai) A[:,i] = ai return A # # All NNMA algorithms have the same structure which is implemented # in AlgorunnerTemplate # class AlgorunnerTemplate(object): def frob_dist(self, Y, A, X): """ frobenius distance between Y and A X """ return np.linalg.norm(Y - np.dot(A,X)) def kl_divergence(self, Y, A, X): """ kullbach leibler divergence D(Y | A X) """ AXvec = np.dot(A, X).flatten() Yvec = flatten(Y) return (Yvec*np.log(Yvec/AXvec)-Yvec+AXvec).sum() dist = frob_dist # default case def init_factors(self, Y, k, A=None, X=None): """ generate start matrices U, V """ m, n = Y.shape # sample start matrices if A is None: A = np.random.rand(m,k) elif isinstance(A, np.matrix): A = A.A if X is None: X = np.random.rand(k,n) elif isinstance(X, np.matrix): X = X.A # scale A, X with alpha such that || Y - alpha AX ||_fro is # minimized AX = np.dot(A,X).flatten() # alpha = < Y.flatten(), AX.flatten() > / < AX.flatten(),AX.flatten() > if is_sparse(Y): # can we improve this confirming memory usage ???? alpha = np.diag(dot(Y, np.dot(A,X).T)).sum()/np.dot(AX, AX) else: alpha = np.dot(Y.flatten(), AX)/np.dot(AX,AX) A /= math.sqrt(alpha) X /= math.sqrt(alpha) return A, X param_update = None # default, may be overidden by method which # adapts parametes from iteration to iteration def __call__(self, Y, k, A=None, X=None, eps=1e-5, maxcount=1000, verbose=False, **param): """ basic template for NNMA iterations """ m, n = Y.shape if k<1 or k>m or k>n: raise ValueError("number k of components is invalid") Y, YT = coerced(Y) A, X = self.init_factors(Y, k, A, X) count = 0 obj_old = 1e99 param = param.copy() # works for sparse and for dense matrices: # calculate frobenius norm of Y nrm_Y = frob_norm(Y) while True: A, X = self.update(Y, YT, A, X, **param) if np.any(np.isnan(A)) or np.any(np.isinf(A)) or \ np.any(np.isnan(X)) or np.any(np.isinf(X)): if verbose: print("RESTART") A, X = self.init_factors(Y, k) count = 0 count += 1 # relative distance which is independeant to scaling of A obj = self.dist(Y, A, X) / nrm_Y delta_obj = obj-obj_old if verbose: # each 'verbose' iterations report about actual state if count % verbose == 0: print("count=%6d obj=%E d_obj=%E" %(count, obj, delta_obj)) if count >= maxcount: break # delta_obj should be "almost negative" and small enough: if -eps < delta_obj <= 1e-12: break obj_old = obj if self.param_update is not None: self.param_update(param) if verbose: print("FINISHED:") print("count=%6d obj=%E d_obj=%E" %(count, obj, delta_obj)) return A, X, obj, count, count < maxcount # # Most NNMA algorithms have global updates of U and V which can be # combined with the following base class: # class FactorizedNNMA(AlgorunnerTemplate): def __init__(self, update_A, update_X, param_update = None): self.update_A = update_A self.update_X = update_X self.param_update = param_update def update(self, Y, YT, A, X, **param): A = self.update_A(Y, YT, A, X, **param) X = self.update_X(Y, YT, A, X, **param) return A, X class SNMF_(AlgorunnerTemplate): """ W. Liu, N. Zheng, and X. Lu.: "Non-negative matrix factorization for visual coding". In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP2003), 2003 """ # use kullbach-level distance dist = AlgorunnerTemplate.kl_divergence def update(self, Y, YT, A, X, **param): sparse_par = param.get("sparse_par", 0.0) A /= A.sum(axis=0)+1e-9 AX = np.dot(A, X) Y_by_AX = divide_matrix(Y, 1e-9+AX) X *= dot(Y_by_AX.T, A).T / (1.0 + sparse_par) AX = np.dot(A, X) Y_by_AX = divide_matrix(Y, 1e-9+AX) F = dot(Y_by_AX, X.T) / ( X.T.sum(axis=0) + 1e-9) A *= F return A, X class RRI_(AlgorunnerTemplate): """ Runtime optimisations from Cichocki applied to Damped rank one residual iteration from Ngoc-Diep Ho. """ def update(self, Y, YT, A, X, **param): E = diff(Y, np.dot(A,X)) psi = param.get("psi", 1e-12) for j in range(A.shape[1]): aj = A[:,j] xj = X[j,:] Rt = E + np.outer(aj, xj) xj = np.dot(Rt.T, aj)+psi*xj xj[xj<0]= 0 fac = np.linalg.norm(aj)**2 xj /= fac+psi aj = np.dot(Rt, xj)+psi*aj aj[aj<0]= 0 fac = np.linalg.norm(xj)**2 aj /= fac+psi A[:,j] = aj X[j,:] = xj E = Rt - np.outer(aj, xj) return A, X # # create algorithms objects # SNMF = SNMF_() RRI = RRI_() # classical algorithme with frobenius norm for calculating # objective function NMF = FactorizedNNMA(A_mult_update, X_mult_update) # classical algorithme with kl divergence or calculating # objective function NMFKL = FactorizedNNMA(A_mult_update_kl_div, X_mult_update_kl_div) # Stabilized alternating least sqaures with decreasing regularization # from Cichocki et al. def regul_dec(param): param["regul"] = param.get("regul", 0)* .9 ALS = FactorizedNNMA(A_inexact_lsq_update, X_inexact_lsq_update, regul_dec) # GDCLS from # "Document clustering using nonnegative matrix factorization" # Information Processing and Management # Volume 42 , Issue 2 (March 2006) t # Pages: 373 - 386 , GDCLS = FactorizedNNMA(A_mult_update, X_inexact_lsq_update) #Fast Newton-type Method from Kim et al FNMAI = FactorizedNNMA(FNMAI_A_update, FNMAI_X_update) # own algorithms for approximation of Y ~ A X # replace l2-regularisation when updating X by l1-regularization # for getting spare coordinates GDCLS_L1 = FactorizedNNMA(A_mult_update, X_inexact_lsq_update_l1regul) # replace FNMAI_X_update by l1 regulraized least squares update FNMAI_SPARSE = FactorizedNNMA(FNMAI_A_update, \ X_inexact_lsq_update_l1regul) # Hoyers sparse coding algorithm NNSC = FactorizedNNMA(GradA_step, X_mult_update_nnsc) # FastHALS from Cichocki and Phan FastHALS = FactorizedNNMA(FastHALS_A_update, FastHALS_X_update) if __name__ == "__main__": # test all routines ! param = dict(alpha=.1, tau=2, regul=1e-2, sparse_par=1e-1, psi=1e-3) nc = 10 B = np.random.rand(30,nc) C = np.random.rand(nc,20) A = np.dot(B, C) import sys, time def run(name, routine, verbose=0): print("run %12s" % name,) sys.stdout.flush() start = time.time() X,Y,obj,count,converged = routine(A, 10, eps=5e-5, verbose=verbose, maxcount=1000, **param) print("obj = %E count=%5d converged=%d TIME=%.2f secs" % \ (obj,count, converged, time.time()-start)) print("\nTEST WITH DENSE MATRIX\n") run("NNSC", NNSC, verbose=0) run("FNMAI_SPARSE", FNMAI_SPARSE) run("FNMAI", FNMAI) run("GDCLS_L1", GDCLS_L1) run("GDCLS", GDCLS) run("ALS", ALS) run("NMFKL", NMFKL) run("NMF", NMF) run("RRI", RRI) run("FastHALS", FastHALS) run("SNMF", SNMF) if has_sparse: print("\nTEST WITH SPARSE MATRIX\n") A = sp.csc_matrix(A) run("NNSC", NNSC, verbose=0) run("FNMAI_SPARSE", FNMAI_SPARSE) run("FNMAI", FNMAI) run("GDCLS_L1", GDCLS_L1) run("GDCLS", GDCLS) run("ALS", ALS) run("NMFKL", NMFKL) run("NMF", NMF) run("RRI", RRI) run("FastHALS", FastHALS) run("SNMF", SNMF) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/mva/py_nnma/setup.py����������������������������������������������0000644�0000000�0000000�00000004055�14741736366�021160� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #encoding:latin-1 #*/########################################################################### # Copyright (c) 2008 Uwe Schmitt, uschmitt@mineway.de # 2007 D. Kim, S. Sra and I. S. Dhillon # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # * copyright notice, this list of conditions and the following # * disclaimer in the documentation and/or other materials provided # * with the distribution. Neither the name of the <ORGANIZATION> # * nor the names of its contributors may be used to endorse or # * promote products derived from this software without specific # * prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #*/########################################################################### from distutils.core import setup #from setuptools import setup setup(name='py_nnma', version='2.1', description='Nonnegative matrix approximation', author='Uwe Schmitt', author_email='uschmitt@mineway.de', py_modules=['__init__', 'nnma'] ) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8317664 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/�������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016154� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/__init__.py��������������������������������������������������0000644�0000000�0000000�00000003211�14741736366�020271� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������__contact__ = "jerome.kieffer@esrf.eu" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ Module Sift for calculating SIFT keypoint using PyOpenCL """ version = "0.2.0" import os sift_home = os.path.dirname(os.path.abspath(__file__)) import sys, logging logging.basicConfig() from .plan import SiftPlan from .match import MatchPlan from .alignment import LinearAlign _logger = logging.getLogger(__name__) _logger.warning("The sift module in PyMca is deprecated. " "You should import sift from the silx library.") ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/algebra.cl���������������������������������������������������0000644�0000000�0000000�00000004211�14741736366�020076� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� typedef float4 keypoint; /** * \brief Linear combination of two matrices * * @param u: Pointer to global memory with the input data of the first matrix * @param a: float scalar which multiplies the first matrix * @param v: Pointer to global memory with the input data of the second matrix * @param b: float scalar which multiplies the second matrix * @param w: Pointer to global memory with the output data * @param width: integer, number of columns the matrices * @param height: integer, number of lines of the matrices * * Nota: updated to have coalesced access on dim[0] */ __kernel void combine( __global float *u, float a, __global float *v, float b, __global float *w, int dog, int width, int height) { int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); if (gid0 < width && gid1 < height) { int index = gid0 + width * gid1; int index_dog = dog * width * height + index; w[index_dog] = a * u[index] + b * v[index]; } } /** * \brief Deletes the (-1,-1,-1,-1) in order to get a more "compact" keypoints vector Also arranges the keypoints coordinates in the SIFT order : (x:col,y:row,sigma,angle) * (initially we had (peak,r,c,sigma), but at this stage peak is not useful anymore) * * * @param keypoints: Pointer to global memory with the keypoints * @param output: Pointer to global memory with the output * @param counter: Pointer to global memory with the shared counter in the output * @param start_keypoint: start compaction at this index. counter should be equal to start at the begining. * @param end_keypoint: index of last keypoints * */ __kernel void compact( __global keypoint* keypoints, __global keypoint* output, __global int* counter, int start_keypoint, int end_keypoint) { int gid0 = (int) get_global_id(0); if (gid0 < start_keypoint){ output[gid0] = keypoints[gid0]; } else if (gid0 < end_keypoint) { keypoint k = keypoints[gid0]; if (k.s1 != -1) { //Coordinates are never negative /*k.s0 = (float) k.s2; //col k.s2 = k.s3; //sigma k.s3 = 0.0; //angle */ int old = atomic_inc(counter); if (old < end_keypoint) output[old] = k; } } } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/alignment.py�������������������������������������������������0000644�0000000�0000000�00000041353�14741736366�020521� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python # -*- coding: utf8 -*- # # Project: Sift implementation in Python + OpenCL # https://github.com/kif/sift_pyocl # """ Contains classes for image alignment on a reference images. """ from __future__ import division, print_function, with_statement __authors__ = ["Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "2013-07-24" __status__ = "beta" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os, gc from threading import Semaphore import numpy from .param import par from .opencl import ocl, pyopencl from .utils import calc_size, kernel_size, sizeof, matching_correction import logging logger = logging.getLogger("sift.alignment") from pyopencl import mem_flags as MF from . import MatchPlan, SiftPlan try: import feature except ImportError: feature = None def arrow_start(kplist): x_ref = kplist.x y_ref = kplist.y angle_ref = kplist.angle scale_ref = kplist.scale x_ref2 = kplist.x + scale_ref * numpy.cos(angle_ref) y_ref2 = kplist.y + scale_ref * numpy.sin(angle_ref) return x_ref2, y_ref2 def transform_pts(matrix, offset, x, y): nx = -offset[1] + y * matrix[1, 0] + x * matrix[1, 1] ny = -offset[0] + x * matrix[0, 1] + y * matrix[0, 0] return nx, ny class LinearAlign(object): """ Align images on a reference image based on an Afine transformation (bi-linear + offset) """ kernel_file = "transform" def __init__(self, image, devicetype="CPU", profile=False, device=None, max_workgroup_size=128, ROI=None, extra=0, context=None, init_sigma=None): """ Constructor of the class :param image: reference image on which other image should be aligned :param devicetype: Kind of prefered devce :param profile:collect profiling information ? :param device: 2-tuple of integer. see clinfo :param max_workgroup_size: set to 1 for macOSX on CPU :param ROI: Region of interest: to be implemented :param extra: extra space around the image, can be an integer, or a 2 tuple in YX convention: TODO! :param init_sigma: bluring width, you should have good reasons to modify the 1.6 default value... """ self.profile = bool(profile) self.events = [] self.program = None self.ref = numpy.ascontiguousarray(image, numpy.float32) self.buffers = {} self.shape = image.shape self.max_workgroup_size = max_workgroup_size if len(self.shape) == 3: self.RGB = True self.shape = self.shape[:2] elif len(self.shape) == 2: self.RGB = False else: raise RuntimeError("Unable to process image of shape %s" % (tuple(self.shape,))) if "__len__" not in dir(extra): self.extra = (int(extra), int(extra)) else: self.extra = extra[:2] self.outshape = tuple(i + 2 * j for i, j in zip(self.shape, self.extra)) self.ROI = ROI if self.RGB: if self.max_workgroup_size == 1: self.wg = (1, 1, 1) else: self.wg = (4, 8, 4) else: if self.max_workgroup_size == 1: self.wg = (1, 1) else: self.wg = (8, 4) if context: self.ctx = context device_name = self.ctx.devices[0].name.strip() platform_name = self.ctx.devices[0].platform.name.strip() platform = ocl.get_platform(platform_name) device = platform.get_device(device_name) self.device = platform.id, device.id else: if device is None: self.device = ocl.select_device(type=devicetype, best=True) else: self.device = device self.ctx = pyopencl.Context(devices=[pyopencl.get_platforms()[self.device[0]].get_devices()[self.device[1]]]) self.sift = SiftPlan(template=image, context=self.ctx, profile=self.profile, max_workgroup_size=max_workgroup_size, init_sigma=init_sigma) self.ref_kp = self.sift.keypoints(image) if self.ROI is not None: kpx = numpy.round(self.ref_kp.x).astype(numpy.int32) kpy = numpy.round(self.ref_kp.y).astype(numpy.int32) masked = self.ROI[(kpy, kpx)].astype(bool) logger.warning("Reducing keypoint list from %i to %i because of the ROI" % (self.ref_kp.size, masked.sum())) self.ref_kp = self.ref_kp[masked] self.match = MatchPlan(context=self.ctx, profile=self.profile, max_workgroup_size=max_workgroup_size) # Allocate reference keypoints on the GPU within match context: self.buffers["ref_kp_gpu"] = pyopencl.array.to_device(self.match.queue, self.ref_kp) # TODO optimize match so that the keypoint2 can be optional self.fill_value = 0 # print self.ctx.devices[0] if self.profile: self.queue = pyopencl.CommandQueue(self.ctx, properties=pyopencl.command_queue_properties.PROFILING_ENABLE) else: self.queue = pyopencl.CommandQueue(self.ctx) self._compile_kernels() self._allocate_buffers() self.sem = Semaphore() self.relative_transfo = None def __del__(self): """ Destructor: release all buffers """ self._free_kernels() self._free_buffers() self.queue = None self.ctx = None gc.collect() def _allocate_buffers(self): """ All buffers are allocated here """ if self.RGB: self.buffers["input"] = pyopencl.array.empty(self.queue, shape=self.shape + (3,), dtype=numpy.uint8) self.buffers["output"] = pyopencl.array.empty(self.queue, shape=self.outshape + (3,), dtype=numpy.uint8) else: self.buffers["input"] = pyopencl.array.empty(self.queue, shape=self.shape, dtype=numpy.float32) self.buffers["output"] = pyopencl.array.empty(self.queue, shape=self.outshape, dtype=numpy.float32) self.buffers["matrix"] = pyopencl.array.empty(self.queue, shape=(2, 2), dtype=numpy.float32) self.buffers["offset"] = pyopencl.array.empty(self.queue, shape=(1, 2), dtype=numpy.float32) def _free_buffers(self): """ free all memory allocated on the device """ for buffer_name in self.buffers: if self.buffers[buffer_name] is not None: try: del self.buffers[buffer_name] self.buffers[buffer_name] = None except pyopencl.LogicError: logger.error("Error while freeing buffer %s" % buffer_name) def _compile_kernels(self): """ Call the OpenCL compiler """ kernel_directory = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(os.path.join(kernel_directory, self.kernel_file + ".cl")): while (".zip" in kernel_directory) and (len(kernel_directory) > 4): kernel_directory = os.path.dirname(kernel_directory) kernel_directory = os.path.join(kernel_directory, "sift_kernels") kernel_file = os.path.join(kernel_directory, self.kernel_file + ".cl") kernel_src = open(kernel_file).read() try: program = pyopencl.Program(self.ctx, kernel_src).build() except pyopencl.MemoryError as error: raise MemoryError(error) self.program = program def _free_kernels(self): """ free all kernels """ self.program = None def align(self, img, shift_only=False, return_all=False, double_check=False, relative=False, orsa=False): """ Align image on reference image :param img: numpy array containing the image to align to reference :param return_all: return in addition ot the image, keypoints, matching keypoints, and transformations as a dict :param reltive: update reference keypoints with those from current image to perform relative alignment :return: aligned image or all informations """ logger.debug("ref_keypoints: %s" % self.ref_kp.size) if self.RGB: data = numpy.ascontiguousarray(img, numpy.uint8) else: data = numpy.ascontiguousarray(img, numpy.float32) with self.sem: cpy = pyopencl.enqueue_copy(self.queue, self.buffers["input"].data, data) if self.profile:self.events.append(("Copy H->D", cpy)) cpy.wait() kp = self.sift.keypoints(self.buffers["input"]) # print("ref %s img %s" % (self.buffers["ref_kp_gpu"].shape, kp.shape)) logger.debug("mod image keypoints: %s" % kp.size) raw_matching = self.match.match(self.buffers["ref_kp_gpu"], kp, raw_results=True) # print(raw_matching.max(axis=0)) matching = numpy.recarray(shape=raw_matching.shape, dtype=MatchPlan.dtype_kp) len_match = raw_matching.shape[0] if len_match == 0: logger.warning("No matching keypoints") return matching[:, 0] = self.ref_kp[raw_matching[:, 0]] matching[:, 1] = kp[raw_matching[:, 1]] if orsa: if feature: matching = feature.sift_orsa(matching, self.shape, 1) else: logger.warning("feature is not available. No ORSA filtering") if (len_match < 3 * 6) or (shift_only): # 3 points per DOF if shift_only: logger.debug("Shift Only mode: Common keypoints: %s" % len_match) else: logger.warning("Shift Only mode: Common keypoints: %s" % len_match) dx = matching[:, 1].x - matching[:, 0].x dy = matching[:, 1].y - matching[:, 0].y matrix = numpy.identity(2, dtype=numpy.float32) offset = numpy.array([+numpy.median(dy), +numpy.median(dx)], numpy.float32) else: logger.debug("Common keypoints: %s" % len_match) transform_matrix = matching_correction(matching) offset = numpy.array([transform_matrix[5], transform_matrix[2]], dtype=numpy.float32) matrix = numpy.empty((2, 2), dtype=numpy.float32) matrix[0, 0], matrix[0, 1] = transform_matrix[4], transform_matrix[3] matrix[1, 0], matrix[1, 1] = transform_matrix[1], transform_matrix[0] if double_check and (len_match >= 3 * 6): # and abs(matrix - numpy.identity(2)).max() > 0.1: logger.warning("Validating keypoints, %s,%s" % (matrix, offset)) dx = matching[:, 1].x - matching[:, 0].x dy = matching[:, 1].y - matching[:, 0].y dangle = matching[:, 1].angle - matching[:, 0].angle dscale = numpy.log(matching[:, 1].scale / matching[:, 0].scale) distance = numpy.sqrt(dx * dx + dy * dy) outlayer = numpy.zeros(distance.shape, numpy.int8) outlayer += abs((distance - distance.mean()) / distance.std()) > 4 outlayer += abs((dangle - dangle.mean()) / dangle.std()) > 4 outlayer += abs((dscale - dscale.mean()) / dscale.std()) > 4 print(outlayer) outlayersum = outlayer.sum() if outlayersum > 0 and not numpy.isinf(outlayersum): matching2 = matching[outlayer == 0] transform_matrix = matching_correction(matching2) offset = numpy.array([transform_matrix[5], transform_matrix[2]], dtype=numpy.float32) matrix = numpy.empty((2, 2), dtype=numpy.float32) matrix[0, 0], matrix[0, 1] = transform_matrix[4], transform_matrix[3] matrix[1, 0], matrix[1, 1] = transform_matrix[1], transform_matrix[0] if relative: #update stable part to perform a relative alignment self.ref_kp = kp if self.ROI is not None: kpx = numpy.round(self.ref_kp.x).astype(numpy.int32) kpy = numpy.round(self.ref_kp.y).astype(numpy.int32) masked = self.ROI[(kpy, kpx)].astype(bool) logger.warning("Reducing keypoint list from %i to %i because of the ROI" % (self.ref_kp.size, masked.sum())) self.ref_kp = self.ref_kp[masked] self.buffers["ref_kp_gpu"] = pyopencl.array.to_device(self.match.queue, self.ref_kp) transfo = numpy.zeros((3, 3), dtype=numpy.float64) transfo[:2, :2] = matrix transfo[0, 2] = offset[0] transfo[1, 2] = offset[1] transfo[2, 2] = 1 if self.relative_transfo is None: self.relative_transfo = transfo else: self.relative_transfo = numpy.dot(transfo, self.relative_transfo) matrix = numpy.ascontiguousarray(self.relative_transfo[:2, :2], dtype=numpy.float32) offset = numpy.ascontiguousarray(self.relative_transfo[:2, 2], dtype=numpy.float32) # print(self.relative_transfo) cpy1 = pyopencl.enqueue_copy(self.queue, self.buffers["matrix"].data, matrix) cpy2 = pyopencl.enqueue_copy(self.queue, self.buffers["offset"].data, offset) if self.profile: self.events += [("Copy matrix", cpy1), ("Copy offset", cpy2)] if self.RGB: shape = (4, self.shape[1], self.shape[0]) transform = self.program.transform_RGB else: shape = self.shape[1], self.shape[0] transform = self.program.transform ev = transform(self.queue, calc_size(shape, self.wg), self.wg, self.buffers["input"].data, self.buffers["output"].data, self.buffers["matrix"].data, self.buffers["offset"].data, numpy.int32(self.shape[1]), numpy.int32(self.shape[0]), numpy.int32(self.outshape[1]), numpy.int32(self.outshape[0]), self.sift.buffers["min"].get()[0], numpy.int32(1)) if self.profile: self.events += [("transform", ev)] result = self.buffers["output"].get() # print (self.buffers["offset"]) if return_all: # corr = numpy.dot(matrix, numpy.vstack((matching[:, 1].y, matching[:, 1].x))).T - \ # offset.T - numpy.vstack((matching[:, 0].y, matching[:, 0].x)).T corr = numpy.dot(matrix, numpy.vstack((matching[:, 0].y, matching[:, 0].x))).T + offset.T - numpy.vstack((matching[:, 1].y, matching[:, 1].x)).T rms = numpy.sqrt((corr * corr).sum(axis= -1).mean()) # Todo: calculate the RMS of deplacement and return it: return {"result":result, "keypoint":kp, "matching":matching, "offset":offset, "matrix": matrix, "rms":rms} return result def log_profile(self): """ If we are in debugging mode, prints out all timing for every single OpenCL call """ t = 0.0 orient = 0.0 descr = 0.0 if self.profile: for e in self.events: if "__len__" in dir(e) and len(e) >= 2: et = 1e-6 * (e[1].profile.end - e[1].profile.start) print("%50s:\t%.3fms" % (e[0], et)) t += et �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/convolution.cl�����������������������������������������������0000644�0000000�0000000�00000004310�14741736366�021060� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Separate convolution with global memory access The borders are handled directly in the kernel (by symetrization), so the input image does not need to be pre-processed */ #define MAX_CONST_SIZE 16384 __kernel void horizontal_convolution( const __global float * input, __global float * output, __constant float * filter __attribute__((max_constant_size(MAX_CONST_SIZE))), int FILTER_SIZE, int IMAGE_W, int IMAGE_H ) { int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); int HALF_FILTER_SIZE = (FILTER_SIZE % 2 == 1 ? (FILTER_SIZE)/2 : (FILTER_SIZE+1)/2); if (gid1 < IMAGE_H && gid0 < IMAGE_W) { // int pos = gid0* IMAGE_W + gid1; int pos = gid1*IMAGE_W + gid0; int fIndex = 0; float sum = 0.0f; int c = 0; int newpos = 0; int debug=0; for (c = -HALF_FILTER_SIZE ; c < FILTER_SIZE-HALF_FILTER_SIZE ; c++) { newpos = pos + c; if (gid0 + c < 0) { //debug=1; newpos= pos - 2*gid0 - c - 1; } else if (gid0 + c > IMAGE_W -1 ) { newpos= (gid1+2)*IMAGE_W - gid0 -c -1; //newpos= pos - c+1; //newpos - 2*c; //debug = 1; } sum += input[ newpos ] * filter[ fIndex ]; fIndex += 1; } output[pos]=sum; } } __kernel void vertical_convolution( const __global float * input, __global float * output, __constant float * filter __attribute__((max_constant_size(MAX_CONST_SIZE))), int FILTER_SIZE, int IMAGE_W, int IMAGE_H ) { int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); if (gid1 < IMAGE_H && gid0 < IMAGE_W) { int HALF_FILTER_SIZE = (FILTER_SIZE % 2 == 1 ? (FILTER_SIZE)/2 : (FILTER_SIZE+1)/2); // int pos = gid0 * IMAGE_W + gid1; int pos = gid1 * IMAGE_W + gid0; int fIndex = 0; float sum = 0.0f; int r = 0,newpos=0; int debug=0; for (r = -HALF_FILTER_SIZE ; r < FILTER_SIZE-HALF_FILTER_SIZE ; r++) { newpos = pos + r * (IMAGE_W); if (gid1+r < 0) { newpos = gid0 -(r+1)*IMAGE_W - gid1*IMAGE_W; //debug=1; } else if (gid1+r > IMAGE_H -1) { newpos= (IMAGE_H-1)*IMAGE_W + gid0 + (IMAGE_H - r)*IMAGE_W - gid1*IMAGE_W; } sum += input[ newpos ] * filter[ fIndex ]; fIndex += 1; } output[pos]=sum; if (debug == 1) output[pos]=0; } } /* */ ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/gaussian.cl��������������������������������������������������0000644�0000000�0000000�00000007712�14741736366�020324� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* * Project: SIFT: An algorithm for image alignement * Kernel for gaussian signal generation. * * * Copyright (C) 2013 European Synchrotron Radiation Facility * Grenoble, France * All rights reserved. * * Principal authors: J. Kieffer (kieffer@esrf.fr) * Last revision: 26/06/2013 * * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * **/ #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 1024 #endif /** * \brief gaussian: Initialize a vector with a gaussian function. * * This is a 3 part kernel with first the computation of the gaussisan then a parallel * reduction summation and a normalization. * This kernel must be run with size == workgroup * * * @param data: Float pointer to global memory storing the vector. * @param sigma: width of the gaussian * @param size: size of the function * **/ __kernel void gaussian( __global float *data, const float sigma, const int SIZE ) { int lid = get_local_id(0); // int wd = get_work_dim(0); DEFINE WG are compile time //allocate a shared memory of size floats __local float gaus[WORKGROUP_SIZE]; __local float sum[WORKGROUP_SIZE]; if(lid < SIZE){ float x = ((float)lid - ((float)SIZE - 1.0f)/2.0f) / sigma; float y = exp(-x * x / 2.0f); gaus[lid] = y / sigma / sqrt(2.0f * M_PI_F); sum[lid] = gaus[lid]; } else sum[lid] = 0.0f; // Now we sum all in shared memory barrier(CLK_LOCAL_MEM_FENCE); if (SIZE > 512){ if (lid < 512) { sum[lid] += sum[lid + 512]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 256){ if (lid < 256){ sum[lid] += sum[lid + 256]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 128){ if (lid < 128) { sum[lid] += sum[lid + 128]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 64){ if (lid < 64) { sum[lid] += sum[lid + 64]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 32){ if (lid < 32) { sum[lid] += sum[lid + 32]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 16){ if (lid < 16){ sum[lid] += sum[lid + 16]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 8){ if (lid < 8 ){ sum[lid] += sum[lid + 8 ]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 4 ){ if (lid < 4 ){ sum[lid] += sum[lid + 4 ]; } barrier(CLK_LOCAL_MEM_FENCE); } if (SIZE > 2 ){ if (lid < 2 ){ sum[lid] += sum[lid + 2 ]; } barrier(CLK_LOCAL_MEM_FENCE); } if (lid == 0) sum[0] += sum[1]; barrier(CLK_LOCAL_MEM_FENCE); // Now we normalize the gaussian curve if(lid < SIZE){ data[lid] = gaus[lid] / sum[0]; } }������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/image.cl�����������������������������������������������������0000644�0000000�0000000�00000027723�14741736366�017600� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/** * * Kernels for images processing * * A thread handles one keypoint -- any group size can do * * */ /* Keypoint structure : (amplitude, row, column, sigma) k.x == k.s0 : amplitude k.y == k.s1 : row k.z == k.s2 : column k.w == k.s3 : sigma */ typedef float4 keypoint; //#define MIN(i,j) ( (i)<(j) ? (i):(j) ) //#define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 128 #endif /* Do not use __constant memory for large (usual) images */ #define MAX_CONST_SIZE 16384 /** * \brief Gradient of a grayscale image * * The gradient is computed using central differences in the interior and first differences at the boundaries. * * @param igray: Pointer to global memory with the input data of the grayscale image * @param grad: Pointer to global memory with the output norm of the gradient * @param ori: Pointer to global memory with the output orientation of the gradient * @param width: integer number of columns of the input image * @param height: integer number of lines of the input image */ __kernel void compute_gradient_orientation( __global float* igray, // __attribute__((max_constant_size(MAX_CONST_SIZE))), __global float *grad, __global float *ori, int width, int height) { int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); if (gid1 < height && gid0 < width) { float xgrad, ygrad; int pos = gid1*width+gid0; if (gid0 == 0) xgrad = 2.0f * (igray[pos+1] - igray[pos]); else if (gid0 == width-1) xgrad = 2.0f * (igray[pos] - igray[pos-1]); else xgrad = igray[pos+1] - igray[pos-1]; if (gid1 == 0) ygrad = 2.0f * (igray[pos] - igray[pos + width]); else if (gid1 == height-1) ygrad = 2.0f * (igray[pos - width] - igray[pos]); else ygrad = igray[pos - width] - igray[pos + width]; grad[pos] = sqrt((xgrad * xgrad + ygrad * ygrad)); ori[pos] = atan2 (-ygrad,xgrad); } } /** * \brief Local minimum or maximum detection in scale space * * IMPORTANT: * -The output have to be Memset to (-1,-1,-1,-1) * -This kernel must not be launched with s = 0 or s = nb_of_dogs (=4 for SIFT) * * @param DOGS: Pointer to global memory with ALL the coutiguously pre-allocated Differences of Gaussians * @param border_dist: integer, distance between inner image and borders (SIFT takes 5) * @param peak_thresh: float, threshold (SIFT takes 255.0 * 0.04 / 3.0) * @param output: Pointer to global memory output *filled with (-1,-1,-1,-1)* by default for invalid keypoints * @param octsize: initially 1 then twiced at each new octave * @param EdgeThresh0: initial upper limit of the curvatures ratio, to test if the point is on an edge * @param EdgeThresh: upper limit of the curvatures ratio, to test if the point is on an edge * @param counter: pointer to the current position in keypoints vector -- shared between threads * @param nb_keypoints: Maximum number of keypoints: size of the keypoints vector * @param scale: the scale in the DoG, i.e the index of the current DoG (this is not the std !) * @param total_width: integer number of columns of ALL the (contiguous) DOGs. We have total_height = height * @param width: integer number of columns of a DOG. * @param height: integer number of lines of a DOG */ /* TODO: -check fabs(val) outside this kernel ? It would avoid the "if" -confirm usage of fabs instead of fabsf -confirm the need to return -atan2() rather than atan2 ; to be coherent with python */ __kernel void local_maxmin( __global float* DOGS, __global keypoint* output, int border_dist, float peak_thresh, int octsize, float EdgeThresh0, float EdgeThresh, __global int* counter, int nb_keypoints, int scale, int width, int height) { int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); /* As the DOGs are contiguous, we have to test if (gid0,gid1) is actually in DOGs[s] */ if ((gid1 < height - border_dist) && (gid0 < width - border_dist) && (gid1 >= border_dist) && (gid0 >= border_dist)) { int index_dog_prev = (scale-1)*(width*height); int index_dog =scale*(width*height); int index_dog_next =(scale+1)*(width*height); float res = 0.0f; float val = DOGS[index_dog + gid0 + width*gid1]; /* The following condition is part of the keypoints refinement: we eliminate the low-contrast points NOTE: "fabsf" instead of "fabs" should be used, for "fabs" if for doubles. Used "fabs" to be coherent with python */ if (fabs(val) > (0.8 * peak_thresh)) { int c,r,pos; int ismax = 0, ismin = 0; if (val > 0.0) ismax = 1; else ismin = 1; for (r = gid1 - 1; r <= gid1 + 1; r++) { for (c = gid0 - 1; c <= gid0 + 1; c++) { pos = r*width + c; if (ismax == 1) //if (val > 0.0) if (DOGS[index_dog_prev+pos] > val || DOGS[index_dog+pos] > val || DOGS[index_dog_next+pos] > val) ismax = 0; if (ismin == 1) //else if (DOGS[index_dog_prev+pos] < val || DOGS[index_dog+pos] < val || DOGS[index_dog_next+pos] < val) ismin = 0; } } if (ismax == 1 || ismin == 1) res = val; /* At this point, we know if "val" is a local extremum or not We have to test if this value lies on an edge (keypoints refinement) This is done by testing the ratio of the principal curvatures, given by the product and the sum of the Hessian eigenvalues */ pos = gid1*width+gid0; float H00 = DOGS[index_dog+(gid1-1)*width+gid0] - 2.0 * DOGS[index_dog+pos] + DOGS[index_dog+(gid1+1)*width+gid0], H11 = DOGS[index_dog+pos-1] - 2.0 * DOGS[index_dog+pos] + DOGS[index_dog+pos+1], H01 = ( (DOGS[index_dog+(gid1+1)*width+gid0+1] - DOGS[index_dog+(gid1+1)*width+gid0-1]) - (DOGS[index_dog+(gid1-1)*width+gid0+1] - DOGS[index_dog+(gid1-1)*width+gid0-1])) / 4.0; float det = H00 * H11 - H01 * H01, trace = H00 + H11; /* If (trace^2)/det < thresh, the Keypoint is OK. Note that the following "EdgeThresh" seem to be the inverse of the ratio upper limit */ float edthresh = (octsize <= 1 ? EdgeThresh0 : EdgeThresh); if (det < edthresh * trace * trace) res = 0.0f; /* At this stage, res != 0.0f iff the current pixel is a good keypoint */ if (res != 0.0f) { int old = atomic_inc(counter); keypoint k = 0.0; //no malloc, for this is a float4 k.s0 = val; k.s1 = (float) gid1; k.s2 = (float) gid0; k.s3 = (float) scale; if (old < nb_keypoints) output[old]=k; } }//end "value >thresh" }//end "in the inner image" } /** * \brief From the (temporary) keypoints, create a vector of interpolated keypoints * (this is the last step of keypoints refinement) * Note that we take the value (-1,-1,-1) for invalid keypoints. This creates "holes" in the vector. NOTE: the keypoints vector is not compacted yet * * @param DOGS: Pointer to global memory with ALL the coutiguously pre-allocated Differences of Gaussians * @param keypoints: Pointer to global memory with current keypoints vector. It will be modified with the interpolated points * @param actual_nb_keypoints: actual number of keypoints previously found, i.e previous "counter" final value * @param peak_thresh: we are not counting the interpolated values if below the threshold (par.PeakThresh = 255.0*0.04/3.0) * @param InitSigma: float "par.InitSigma" in SIFT (1.6 by default) * @param width: integer number of columns of the DoG * @param height: integer number of lines of the DoG */ __kernel void interp_keypoint( __global float* DOGS, __global keypoint* keypoints, int start_keypoints, int end_keypoints, float peak_thresh, float InitSigma, int width, int height) { //int gid1 = (int) get_global_id(1); int gid0 = (int) get_global_id(0); if ((gid0 >= start_keypoints) && (gid0 < end_keypoints)) { keypoint k = keypoints[gid0]; int r = (int) k.s1; int c = (int) k.s2; int scale = (int) k.s3; if (r != -1) { int index_dog_prev = (scale-1)*(width*height); int index_dog =scale*(width*height); int index_dog_next =(scale+1)*(width*height); //pre-allocating variables before entering into the loop float g0, g1, g2, H00, H11, H22, H01, H02, H12, H10, H20, H21, K00, K11, K22, K01, K02, K12, K10, K20, K21, solution0, solution1, solution2, det, peakval; int pos = r*width+c; int loop = 1, movesRemain = 5; int newr = r, newc = c; //this loop replaces the recursive "InterpKeyPoint" while (loop == 1) { r = newr, c = newc; //values got as parameters of InterpKeyPoint()" in sift.cpp pos = newr*width+newc; //Fill in the values of the gradient from pixel differences g0 = (DOGS[index_dog_next+pos] - DOGS[index_dog_prev+pos]) / 2.0f; g1 = (DOGS[index_dog+(newr+1)*width+newc] - DOGS[index_dog+(newr-1)*width+newc]) / 2.0f; g2 = (DOGS[index_dog+pos+1] - DOGS[index_dog+pos-1]) / 2.0f; //Fill in the values of the Hessian from pixel differences H00 = DOGS[index_dog_prev+pos] - 2.0f * DOGS[index_dog+pos] + DOGS[index_dog_next+pos]; H11 = DOGS[index_dog+(newr-1)*width+newc] - 2.0f * DOGS[index_dog+pos] + DOGS[index_dog+(newr+1)*width+newc]; H22 = DOGS[index_dog+pos-1] - 2.0f * DOGS[index_dog+pos] + DOGS[index_dog+pos+1]; H01 = ( (DOGS[index_dog_next+(newr+1)*width+newc] - DOGS[index_dog_next+(newr-1)*width+newc]) - (DOGS[index_dog_prev+(newr+1)*width+newc] - DOGS[index_dog_prev+(newr-1)*width+newc])) / 4.0f; H02 = ( (DOGS[index_dog_next+pos+1] - DOGS[index_dog_next+pos-1]) -(DOGS[index_dog_prev+pos+1] - DOGS[index_dog_prev+pos-1])) / 4.0f; H12 = ( (DOGS[index_dog+(newr+1)*width+newc+1] - DOGS[index_dog+(newr+1)*width+newc-1]) - (DOGS[index_dog+(newr-1)*width+newc+1] - DOGS[index_dog+(newr-1)*width+newc-1])) / 4.0f; H10 = H01; H20 = H02; H21 = H12; //inversion of the Hessian : det*K = H^(-1) det = -(H02*H11*H20) + H01*H12*H20 + H02*H10*H21 - H00*H12*H21 - H01*H10*H22 + H00*H11*H22; K00 = H11*H22 - H12*H21; K01 = H02*H21 - H01*H22; K02 = H01*H12 - H02*H11; K10 = H12*H20 - H10*H22; K11 = H00*H22 - H02*H20; K12 = H02*H10 - H00*H12; K20 = H10*H21 - H11*H20; K21 = H01*H20 - H00*H21; K22 = H00*H11 - H01*H10; /* x = -H^(-1)*g As the Taylor Serie is calcualted around the current keypoint, the position of the true extremum x_opt is exactly the "offset" between x and x_opt ("x" is the origin) */ solution0 = -(g0*K00 + g1*K01 + g2*K02)/det; //"offset" in sigma solution1 = -(g0*K10 + g1*K11 + g2*K12)/det; //"offset" in r solution2 = -(g0*K20 + g1*K21 + g2*K22)/det; //"offset" in c //interpolated DoG magnitude at this peak peakval = DOGS[index_dog+pos] + 0.5f * (solution0*g0+solution1*g1+solution2*g2); /* Move to an adjacent (row,col) location if quadratic interpolation is larger than 0.6 units in some direction. The movesRemain counter allows only a fixed number of moves to prevent possibility of infinite loops. */ if (solution1 > 0.6f && newr < height - 3) newr++; //if the extremum is too far (along "r" here), we get closer if we can else if (solution1 < -0.6f && newr > 3) newr--; if (solution2 > 0.6f && newc < width - 3) newc++; else if (solution2 < -0.6f && newc > 3) newc--; /* Loop test */ if (movesRemain > 0 && (newr != r || newc != c)) movesRemain--; else loop = 0; }//end of the "keypoints interpolation" big loop /* Do not create a keypoint if interpolation still remains far outside expected limits, or if magnitude of peak value is below threshold (i.e., contrast is too low). */ keypoint ki = 0.0f; //float4 if (fabs(solution0) <= 1.5f && fabs(solution1) <= 1.5f && fabs(solution2) <= 1.5f && fabs(peakval) >= peak_thresh) { ki.s0 = peakval; ki.s1 = /*k.s1*/ r + solution1; ki.s2 = /*k.s2*/ c + solution2; ki.s3 = InitSigma * pow(2.0f, (((float) scale) + solution0) / 3.0f); //3.0 is "par.Scales" } else { //the keypoint was not correctly interpolated : we reject it ki.s0 = -1.0f; ki.s1 = -1.0f; ki.s2 = -1.0f; ki.s3 = -1.0f; } keypoints[gid0]=ki; /* Better return here and compute histogram in another kernel */ } } } ���������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/interpolation.cl���������������������������������������������0000644�0000000�0000000�00000002735�14741736366�021401� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#define ABS(i) ( (i<0.0f) ? (-i):(i) ) void __kernel interpolate(image3d_t volume, sampler_t sampler, global float* img, int img_width, int img_height, global float* point, global float3* norm) { int pos_x = get_global_id(0); int pos_y = get_global_id(1); if ((pos_x>=img_width)||(pos_y>img_height)) return; float3 n_norm = normalize(norm[0]); float3 u_norm, v_norm; float3 pos; float nx = n_norm.x, ny = n_norm.y, nz = n_norm.z; float ax = ABS(nx), ay = ABS(ny), az = ABS(nz); if ((ax>=az) && (ay>=az)) //z smallest u_norm = (float3)( -ny, nx, 0.0f); else if ((ax>=ay) && (az>=ay)) //y smallest u_norm = (float3)( -nz, 0.0f, nx); else if ((ay>=ax) && (az>=ax)) //x smallest u_norm = (float3)( 0.0f, -nz, ny); v_norm = cross(n_norm,u_norm); // u_norm, v_norm, n_norm is a direct orthonormal ref float3 tx=(float3)(u_norm.x,v_norm.x,n_norm.x); float3 ty=(float3)(u_norm.y,v_norm.y,n_norm.y); float3 tz=(float3)(u_norm.z,v_norm.z,n_norm.z); //transposed version float3 pos_uvn = (float3)(2.0f*((float)pos_x/(float)img_width)-1.0f, 2.0f*((float)pos_y/(float)img_height)-1.0f, 0.0f); float4 pos_xyz = (float4)(dot(tx,pos_uvn)+point[0], dot(ty,pos_uvn)+point[1], dot(tz,pos_uvn)+point[2], 0.0f); float4 res = read_imagef(volume, sampler, pos_xyz); img[pos_x+img_width*pos_y] = res.x; } �����������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/interpolation.py���������������������������������������������0000644�0000000�0000000�00000006214�14741736366�021427� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/python __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pyopencl,pyopencl.array import numpy ctx = pyopencl.create_some_context() queue = pyopencl.CommandQueue(ctx, properties=pyopencl.command_queue_properties.PROFILING_ENABLE) x, y, z = numpy.ogrid[-10:10:0.05, -10:10:0.05, -10:10:0.05] r=numpy.sqrt(x*x+y*y+z*z) data = ((x * x - y * y + z * z) * numpy.exp(-r)).astype("float32") gpu_vol = pyopencl.image_from_array(ctx, data, 1) shape = (500, 500) img = numpy.empty(shape,dtype=numpy.float32) gpu_img = pyopencl.array.empty(queue, shape, numpy.float32) prg = open("interpolation.cl").read() sampler = pyopencl.Sampler(ctx, True, # normalized coordinates pyopencl.addressing_mode.CLAMP_TO_EDGE, pyopencl.filter_mode.LINEAR) prg = pyopencl.Program(ctx, prg).build() n = pyopencl.array.to_device(queue, numpy.array([1, 1, 1], dtype=numpy.float32)) c = pyopencl.array.to_device(queue, numpy.array([0.5, 0.5, 0.5], dtype=numpy.float32)) prg.interpolate(queue, (512, 512), (16, 16), gpu_vol, sampler, gpu_img.data, numpy.int32(shape[1]), numpy.int32(shape[1]), c.data, n.data) img = gpu_img.get() #timing: evt = [] evt.append(pyopencl.enqueue_copy(queue, n.data, (2.0*numpy.random.random(3)-1).astype(numpy.float32))) evt.append(pyopencl.enqueue_copy(queue, c.data, numpy.random.random(3).astype(numpy.float32))) evt.append(prg.interpolate(queue, (512, 512), (16, 16), gpu_vol, sampler, gpu_img.data, numpy.int32(shape[1]), numpy.int32(shape[0]), c.data, n.data)) evt.append(pyopencl.enqueue_copy(queue, img, gpu_img.data)) print("Timings: %.3fms %.3fms %.3fms %.3fms total: %.3fms" % (1e-6 * (evt[0].profile.end - evt[0].profile.start), 1e-6 * (evt[1].profile.end - evt[1].profile.start), 1e-6 * (evt[2].profile.end - evt[2].profile.start), 1e-6 * (evt[3].profile.end - evt[3].profile.start), 1e-6 * (evt[-1].profile.end - evt[0].profile.start))) from pylab import * imshow(img) show() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/keypoints_cpu.cl���������������������������������������������0000644�0000000�0000000�00000022571�14741736366�021406� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Kernels for keypoints processing For CPUs, one keypoint is handled by one thread */ typedef float4 keypoint; #define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 128 #endif /** * \brief Assign an orientation to the keypoints. This is done by creating a Gaussian weighted histogram * of the gradient directions in the region. The histogram is smoothed and the largest peak selected. * The results are in the range of -PI to PI. * * Warning: * -At this stage, a keypoint is: (peak,r,c,sigma) After this function, it will be (c,r,sigma,angle) * * @param keypoints: Pointer to global memory with current keypoints vector. * @param grad: Pointer to global memory with gradient norm previously calculated * @param ori: Pointer to global memory with gradient orientation previously calculated * @param counter: Pointer to global memory with actual number of keypoints previously found * @param hist: Pointer to shared memory with histogram (36 values per thread) * @param octsize: initially 1 then twiced at each octave * @param OriSigma : a SIFT parameter, default is 1.5. Warning : it is not "InitSigma". * @param nb_keypoints : maximum number of keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient */ __kernel void orientation_assignment( __global keypoint* keypoints, __global float* grad, __global float* ori, __global int* counter, int octsize, float OriSigma, //WARNING: (1.5), it is not "InitSigma (=1.6)" int nb_keypoints, int keypoints_start, int keypoints_end, int grad_width, int grad_height) { int gid0 = get_global_id(0); keypoint k = keypoints[gid0]; if (!(keypoints_start <= gid0 && gid0 < keypoints_end && k.s1 >=0.0f )) return; int bin, prev=0, next=0; int i,j,r,c; int old; float distsq, gval, angle, interp=0.0; float hist_prev,hist_curr,hist_next; float hist[36]; //memset for (i=0; i<36; i++) hist[i] = 0.0f; int row = (int) (k.s1 + 0.5), col = (int) (k.s2 + 0.5); float sigma = OriSigma * k.s3; int radius = (int) (sigma * 3.0); int rmin = MAX(0,row - radius); int cmin = MAX(0,col - radius); int rmax = MIN(row + radius,grad_height - 2); int cmax = MIN(col + radius,grad_width - 2); for (r = rmin; r <= rmax; r++) { for (c = cmin; c <= cmax; c++) { gval = grad[r*grad_width+c]; float dif = (r - k.s1); distsq = dif*dif; dif = (c - k.s2); distsq += dif*dif; //distsq = (r-k.s1)*(r-k.s1) + (c-k.s2)*(c-k.s2); if (gval > 0.0f && distsq < ((float) (radius*radius)) + 0.5f) { angle = ori[r*grad_width+c]; bin = (int) (36.0f * (angle + M_PI_F + 0.001f) / (2.0f * M_PI_F)); //why this offset ? if (bin >= 0 && bin <= 36) { bin = MIN(bin, 35); hist[bin] += exp(- distsq / (2.0f*sigma*sigma)) * gval; } } } } /* Apply smoothing 6 times for accurate Gaussian approximation */ for (j = 0; j < 6; j++) { float prev, temp; //it is CRUCIAL to re-define "prev" here, for the line below... otherwise, it won't work prev = hist[35]; for (i = 0; i < 36; i++) { temp = hist[i]; hist[i] = ( prev + hist[i] + hist[(i + 1 == 36) ? 0 : i + 1] ) / 3.0; prev = temp; } } /* Find maximum value in histogram */ float maxval = 0.0f; int argmax = 0; for (i=0; i<36; i++) { if (maxval < hist[i]) { maxval = hist[i]; argmax = i; } } /* This maximum value in the histogram is defined as the orientation of our current keypoint */ prev = (argmax == 0 ? 35 : argmax - 1); next = (argmax == 35 ? 0 : argmax + 1); hist_prev = hist[prev]; hist_next = hist[next]; if (maxval < 0.0f) { hist_prev = -hist_prev; maxval = -maxval; hist_next = -hist_next; } interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * maxval + hist_next); angle = 2.0f * M_PI_F * (argmax + 0.5f + interp) / 36.0f - M_PI_F; k.s0 = k.s2 *octsize; //c k.s1 = k.s1 *octsize; //r k.s2 = k.s3 *octsize; //sigma k.s3 = angle; //angle keypoints[gid0] = k; /* An orientation is now assigned to our current keypoint. We can create new keypoints of same (x,y,sigma) but a different angle. For every local peak in histogram, every peak of value >= 80% of maxval generates a new keypoint */ for (i=0; i < 36; i++) { int prev = (i == 0 ? 35 : i - 1); int next = (i == 35 ? 0 : i + 1); float hist_prev = hist[prev]; float hist_curr = hist[i]; float hist_next = hist[next]; if (hist_curr > hist_prev && hist_curr > hist_next && hist_curr >= 0.8f * maxval && i != argmax) { if (hist_curr < 0.0f) { hist_prev = -hist_prev; hist_curr = -hist_curr; hist_next = -hist_next; } float interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * hist_curr + hist_next); float angle = 2.0f * M_PI_F * (i + 0.5f + interp) /36.0 - M_PI_F; if (angle >= -M_PI_F && angle <= M_PI_F) { k.s3 = angle; old = atomic_inc(counter); if (old < nb_keypoints) keypoints[old] = k; } } //end "val >= 80%*maxval" } } /* ** * \brief Compute a SIFT descriptor for each keypoint. * * @param keypoints: Pointer to global memory with current keypoints vector * @param descriptor: Pointer to global memory with the output SIFT descriptor, cast to uint8 * //@param tmp_descriptor: Pointer to shared memory with temporary computed float descriptors * @param grad: Pointer to global memory with gradient norm previously calculated * @param oril: Pointer to global memory with gradient orientation previously calculated * @param keypoints_start : index start for keypoints * @param keypoints_end: end index for keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient * * */ __kernel void descriptor( __global keypoint* keypoints, __global unsigned char *descriptors, __global float* grad, __global float* orim, int octsize, int keypoints_start, // int keypoints_end, __global int* keypoints_end, //passing counter value to avoid to read it each time int grad_width, int grad_height) { int gid0 = get_global_id(0); keypoint k = keypoints[gid0]; if (!(keypoints_start <= gid0 && gid0 < *keypoints_end && k.s1 >=0.0f)) return; int i,j,u,v,old; __local volatile float tmp_descriptors[128]; for (i=0; i<128; i++) tmp_descriptors[i] = 0.0f; float rx, cx; float row = k.s1/octsize, col = k.s0/octsize, angle = k.s3; int irow = (int) (row + 0.5f), icol = (int) (col + 0.5f); float sine = sin((float) angle), cosine = cos((float) angle); float spacing = k.s2/octsize * 3.0f; int iradius = (int) ((1.414f * spacing * 2.5f) + 0.5f); for (i = -iradius; i <= iradius; i++) { for (j = -iradius; j <= iradius; j++) { rx = ((cosine * i - sine * j) - (row - irow)) / spacing + 1.5f; cx = ((sine * i + cosine * j) - (col - icol)) / spacing + 1.5f; if ((rx > -1.0f && rx < 4.0f && cx > -1.0f && cx < 4.0f && (irow +i) >= 0 && (irow +i) < grad_height && (icol+j) >= 0 && (icol+j) < grad_width)) { float mag = grad[(int)(icol+j) + (int)(irow+i)*grad_width] * exp(- 0.125f*((rx - 1.5f) * (rx - 1.5f) + (cx - 1.5f) * (cx - 1.5f)) ); float ori = orim[(int)(icol+j)+(int)(irow+i)*grad_width] - angle; while (ori > 2.0f*M_PI_F) ori -= 2.0f*M_PI_F; while (ori < 0.0f) ori += 2.0f*M_PI_F; int orr, rindex, cindex, oindex; float rweight, cweight; float oval = 4.0f*ori*M_1_PI_F; int ri = (int)((rx >= 0.0f) ? rx : rx - 1.0f), ci = (int)((cx >= 0.0f) ? cx : cx - 1.0f), oi = (int)((oval >= 0.0f) ? oval : oval - 1.0f); float rfrac = rx - ri, cfrac = cx - ci, ofrac = oval - oi; if ((ri >= -1 && ri < 4 && oi >= 0 && oi <= 8 && rfrac >= 0.0f && rfrac <= 1.0f)) { for (int r = 0; r < 2; r++) { rindex = ri + r; if ((rindex >=0 && rindex < 4)) { float rweight = (float) (mag * (float) ((r == 0) ? 1.0f - rfrac : rfrac)); for (int c = 0; c < 2; c++) { cindex = ci + c; if ((cindex >=0 && cindex < 4)) { cweight = rweight * ((c == 0) ? 1.0f - cfrac : cfrac); for (orr = 0; orr < 2; orr++) { oindex = oi + orr; if (oindex >= 8) { /* Orientation wraps around at PI. */ oindex = 0; } tmp_descriptors[(rindex*4 + cindex)*8+oindex] += cweight * ((orr == 0) ? 1.0f - ofrac : ofrac); //1.0f; } //end "for orr" } //end "valid cindex" } //end "for c" } //end "valid rindex" } //end "for r" } } //end "sample in boundaries" } } //end "i loop" /* At this point, we have a descriptor associated with our keypoint. We have to normalize it, then cast to 1-byte integer */ // Normalization float norm = 0; for (i = 0; i < 128; i++) norm+=tmp_descriptors[i]*tmp_descriptors[i]; norm = rsqrt(norm); for (i=0; i < 128; i++) { tmp_descriptors[i] *= norm; } //Threshold to 0.2 of the norm, for invariance to illumination bool changed = false; norm = 0; for (i = 0; i < 128; i++) { if (tmp_descriptors[i] > 0.2f) { tmp_descriptors[i] = 0.2f; changed = true; } norm += tmp_descriptors[i]*tmp_descriptors[i]; } //if values have been changed, we have to normalize again... if (changed == true) { norm = rsqrt(norm); for (i=0; i < 128; i++) tmp_descriptors[i] *= norm; } //finally, cast to integer int intval; for (i = 0; i < 128; i++) { intval = (int)(512.0 * tmp_descriptors[i]); descriptors[128*gid0+i] = (unsigned char) MIN(255, intval); } } ���������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/keypoints_gpu1.cl��������������������������������������������0000644�0000000�0000000�00000017354�14741736366�021476� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Kernels for keypoints processing A *group of threads* handles one keypoint, for additional information is required in the keypoint neighborhood WARNING: local workgroup size must be at least 128 for orientation_assignment For descriptors (so far) : we use shared memory to store temporary 128-histogram (1 per keypoint) therefore, we need 128*N*4 bytes for N keypoints. We have -- 16 KB per multiprocessor for <=1.3 compute capability (GTX <= 295), that allows to process N<=30 keypoints per thread -- 48 KB per multiprocessor for >=2.x compute capability (GTX >= 465, Quadro 4000), that allows to process N<=95 keypoints per thread */ typedef float4 keypoint; #define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 128 #endif /* Descriptors kernel -- optimized for compute capability <=1.3 (GTX <= 295) Turns out that it takes more memory ! The previous kernel uses (128*8+128)*4 = 4608 Bytes in shared memory, plus 4 bytes for the header. This is 4612B per block. Cuda Profiler tells that there are 6 blocks active per SM (8 max for CC==2.0), so 4612*6=27672 Bytes of shared mem are used. see also: http://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications (2nd table) * @param keypoints: Pointer to global memory with current keypoints vector * @param descriptor: Pointer to global memory with the output SIFT descriptor, cast to uint8 * @param grad: Pointer to global memory with gradient norm previously calculated * @param orim: Pointer to global memory with gradient orientation previously calculated * @param octsize: the size of the current octave (1, 2, 4, 8...) * @param keypoints_start : index start for keypoints * @param keypoints_end: end index for keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient This kernel has to be run with as (8,4,4) workgroup size */ __kernel void descriptor( __global keypoint* keypoints, __global unsigned char *descriptors, __global float* grad, __global float* orim, int octsize, int keypoints_start, // int keypoints_end, __global int* keypoints_end, //passing counter value to avoid to read it each time int grad_width, int grad_height) { int lid0 = get_local_id(0); //[0,8[ int lid1 = get_local_id(1); //[0,4[ int lid2 = get_local_id(2); //[0,4[ int lid = (lid0*4+lid1)*4+lid2; //[0,128[ int groupid = get_group_id(0); keypoint k = keypoints[groupid]; if (!(keypoints_start <= groupid && groupid < *keypoints_end && k.s1 >=0.0f)) return; int i,j,j2; __local volatile float histogram[128]; __local volatile float hist2[128*8]; float rx, cx; float row = k.s1/octsize, col = k.s0/octsize, angle = k.s3; int irow = (int) (row + 0.5f), icol = (int) (col + 0.5f); float sine = sin((float) angle), cosine = cos((float) angle); float spacing = k.s2/octsize * 3.0f; int radius = (int) ((1.414f * spacing * 2.5f) + 0.5f); int imin = -64 +32*lid1, jmin = -64 +32*lid2; int imax = imin+32, jmax = jmin+32; //memset histogram[lid] = 0.0f; for (i=0; i < 8; i++) hist2[lid*8+i] = 0.0f; for (i=imin; i < imax; i++) { for (j2=jmin/8; j2 < jmax/8; j2++) { j=j2*8+lid0; rx = ((cosine * i - sine * j) - (row - irow)) / spacing + 1.5f; cx = ((sine * i + cosine * j) - (col - icol)) / spacing + 1.5f; if ((rx > -1.0f && rx < 4.0f && cx > -1.0f && cx < 4.0f && (irow +i) >= 0 && (irow +i) < grad_height && (icol+j) >= 0 && (icol+j) < grad_width)) { float mag = grad[icol+j + (irow+i)*grad_width] * exp(- 0.125f*((rx - 1.5f) * (rx - 1.5f) + (cx - 1.5f) * (cx - 1.5f)) ); float ori = orim[icol+j+(irow+i)*grad_width] - angle; while (ori > 2.0f*M_PI_F) ori -= 2.0f*M_PI_F; while (ori < 0.0f) ori += 2.0f*M_PI_F; int orr, rindex, cindex, oindex; float rweight, cweight; float oval = 4.0f*ori*M_1_PI_F; int ri = (int)((rx >= 0.0f) ? rx : rx - 1.0f), ci = (int)((cx >= 0.0f) ? cx : cx - 1.0f), oi = (int)((oval >= 0.0f) ? oval : oval - 1.0f); float rfrac = rx - ri, cfrac = cx - ci, ofrac = oval - oi; if ((ri >= -1 && ri < 4 && oi >= 0 && oi <= 8 && rfrac >= 0.0f && rfrac <= 1.0f)) { for (int r = 0; r < 2; r++) { rindex = ri + r; if ((rindex >=0 && rindex < 4)) { rweight = mag * ((r == 0) ? 1.0f - rfrac : rfrac); for (int c = 0; c < 2; c++) { cindex = ci + c; if ((cindex >=0 && cindex < 4)) { cweight = rweight * ((c == 0) ? 1.0f - cfrac : cfrac); for (orr = 0; orr < 2; orr++) { oindex = oi + orr; if (oindex >= 8) { /* Orientation wraps around at PI. */ oindex = 0; } int bin = (rindex*4 + cindex)*8+oindex; //value in [0,128[ /* Bank conflict ? shared[base+S*tid] : no conflict if "S" has no common factors with 16 (half-warp) i.e if "S" is odd If we want to be sure there are no bank conflicts, we can force the stride to be odd : S=9. This leads to creating a 128*9 vector "hist2". The unused parts do not need to be padded since we know that bin is in [0,128[. hist2 = [idx=0|...|idx=7|PADDED|idx=0|...|idx=7|PADDED|idx=0|...] where idx = (r*2+c)*orr is the index of "lid0", in [0,8[ */ hist2[lid0+8*bin] += cweight * ((orr == 0) ? 1.0f - ofrac : ofrac); } //end "for orr" } //end "valid cindex" } //end "for c" } //end "valid rindex" } //end "for r" } }//end "in the boundaries" } //end j loop }//end i loop barrier(CLK_LOCAL_MEM_FENCE); histogram[lid] += hist2[lid*8]+hist2[lid*8+1]+hist2[lid*8+2]+hist2[lid*8+3]+hist2[lid*8+4]+hist2[lid*8+5]+hist2[lid*8+6]+hist2[lid*8+7]; barrier(CLK_LOCAL_MEM_FENCE); //memset of 128 values of hist2 before re-use hist2[lid] = histogram[lid]*histogram[lid]; /* Normalization and thre work shared by the 16 threads (8 values per thread) */ //parallel reduction to normalize vector if (lid < 64) { hist2[lid] += hist2[lid+64]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 32) { hist2[lid] += hist2[lid+32]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 16) { hist2[lid] += hist2[lid+16]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 8) { hist2[lid] += hist2[lid+8]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 4) { hist2[lid] += hist2[lid+4]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 2) { hist2[lid] += hist2[lid+2]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid == 0) hist2[0] = rsqrt(hist2[1]+hist2[0]); barrier(CLK_LOCAL_MEM_FENCE); //now we have hist2[0] = 1/sqrt(sum(hist[i]^2)) histogram[lid] *= hist2[0]; //Threshold to 0.2 of the norm, for invariance to illumination __local int changed[1]; if (lid == 0) changed[0] = 0; if (histogram[lid] > 0.2f) { histogram[lid] = 0.2f; atomic_inc(changed); } barrier(CLK_LOCAL_MEM_FENCE); //if values have changed, we have to re-normalize if (changed[0]) { hist2[lid] = histogram[lid]*histogram[lid]; if (lid < 64) { hist2[lid] += hist2[lid+64]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 32) { hist2[lid] += hist2[lid+32]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 16) { hist2[lid] += hist2[lid+16]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 8) { hist2[lid] += hist2[lid+8]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 4) { hist2[lid] += hist2[lid+4]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 2) { hist2[lid] += hist2[lid+2]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid == 0) hist2[0] = rsqrt(hist2[0]+hist2[1]); barrier(CLK_LOCAL_MEM_FENCE); histogram[lid] *= hist2[0]; } barrier(CLK_LOCAL_MEM_FENCE); //finally, cast to integer descriptors[128*groupid+lid] = (unsigned char) MIN(255,(unsigned char)(512.0f*histogram[lid])); } ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/keypoints_gpu2.cl��������������������������������������������0000644�0000000�0000000�00000021104�14741736366�021463� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Kernels for keypoints processing A *group of threads* handles one keypoint, for additional information is required in the keypoint neighborhood WARNING: local workgroup size must be at least 128 for orientation_assignment For descriptors (so far) : we use shared memory to store temporary 128-histogram (1 per keypoint) therefore, we need 128*N*4 bytes for N keypoints. We have -- 16 KB per multiprocessor for <=1.3 compute capability (GTX <= 295), that allows to process N<=30 keypoints per thread -- 48 KB per multiprocessor for >=2.x compute capability (GTX >= 465, Quadro 4000), that allows to process N<=95 keypoints per thread Those kernel are optimized for compute capability >=2.0 (generation Fermi and Kepler ) */ typedef float4 keypoint; #define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 128 #endif /* * * \brief Compute a SIFT descriptor for each keypoint. * WARNING: THE WORKGROUP SIZE MUST BE (8,8,8) -- see below for explanations * * * Like in sift.cpp, keypoints are eventually cast to 1-byte integer, for memory sake. * However, calculations need to be on float, so we need a temporary descriptors vector in shared memory. * * We have to examine the [-iradius,iradius]^2 zone, maximum [-43,43]^2 * To the next power of two, this is a 128*128 zone. Hence, we cannot use one thread per pixel. * Like in SIFT, we divide the patch in 4x4 subregions, each being handled by one thread. * This is, one thread handles at most 32x32=1024 pixels. * For memory, we take 16x16=256 pixels per thread, so we can use a 2D shared memory (32*32*4=4096). * Additionally, a third dimension in the workgroup (size 8) enables coalesced memory access and more paralellization. * * * @param keypoints: Pointer to global memory with current keypoints vector * @param descriptor: Pointer to global memory with the output SIFT descriptor, cast to uint8 * @param grad: Pointer to global memory with gradient norm previously calculated * @param orim: Pointer to global memory with gradient orientation previously calculated * @param octsize: the size of the current octave (1, 2, 4, 8...) * @param keypoints_start : index start for keypoints * @param keypoints_end: end index for keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient -par.MagFactor = 3 //"1.5 sigma" -OriSize = 8 //number of bins in the local histogram -par.IndexSigma = 1.0 */ __kernel void descriptor( __global keypoint* keypoints, __global unsigned char *descriptors, __global float* grad, __global float* orim, int octsize, int keypoints_start, // int keypoints_end, __global int* keypoints_end, //passing counter value to avoid to read it each time int grad_width, int grad_height) { int lid0 = get_local_id(0); //[0,8[ int lid1 = get_local_id(1); //[0,8[ int lid2 = get_local_id(2); //[0,8[ int lid = (lid0*8+lid1)*8+lid2; //[0,512[ to limit to [0,128[ int groupid = get_group_id(0); keypoint k = keypoints[groupid]; if (!(keypoints_start <= groupid && groupid < *keypoints_end && k.s1 >=0.0f)) return; int i,j,j2; __local volatile float histogram[128]; //for "final" histogram __local volatile float hist2[128]; //for temporary histogram __local volatile unsigned int hist3[128*8]; //for the atomic_add float rx, cx; float one_octsize = 1.0f/octsize; float row = k.s1*one_octsize, col = k.s0*one_octsize; int irow = (int) ((k.s1*one_octsize) + 0.5f), icol = (int) ((k.s0*one_octsize) + 0.5f); float sine = sin((float) k.s3), cosine = cos((float) k.s3); float spacing = k.s2*one_octsize * 3.0f; int radius = (int) ((1.414f * (k.s2*one_octsize * 3.0f) * 2.5f) + 0.5f); int imin = -64 +16*lid1, jmin = -64 +16*lid2; int imax = imin+16, jmax = jmin+16; //memset for (i=0; i < 2; i++) { hist3[i*512+lid] = 0; } if (lid < 128) { histogram[lid] = 0.0f; hist2[lid] = 0.0f; } for (i=imin; i < imax; i++) { for (j2=jmin/8; j2 < jmax/8; j2++) { j=j2*8+lid0; rx = ((cosine * i - sine * j) - (row - irow)) / spacing + 1.5f; cx = ((sine * i + cosine * j) - (col - icol)) / spacing + 1.5f; if ((rx > -1.0f && rx < 4.0f && cx > -1.0f && cx < 4.0f && (irow +i) >= 0 && (irow +i) < grad_height && (icol+j) >= 0 && (icol+j) < grad_width)) { float mag = grad[icol+j + (irow+i)*grad_width] * exp(- 0.125f*((rx - 1.5f) * (rx - 1.5f) + (cx - 1.5f) * (cx - 1.5f)) ); float ori = orim[icol+j+(irow+i)*grad_width] - k.s3; while (ori > 2.0f*M_PI_F) ori -= 2.0f*M_PI_F; while (ori < 0.0f) ori += 2.0f*M_PI_F; int orr, rindex, cindex, oindex; float rweight, cweight; float oval = 4.0f*ori*M_1_PI_F; int ri = (int)((rx >= 0.0f) ? rx : rx - 1.0f), ci = (int)((cx >= 0.0f) ? cx : cx - 1.0f), oi = (int)((oval >= 0.0f) ? oval : oval - 1.0f); float rfrac = rx - ri, cfrac = cx - ci, ofrac = oval - oi; if ((ri >= -1 && ri < 4 && oi >= 0 && oi <= 8 && rfrac >= 0.0f && rfrac <= 1.0f)) { for (int r = 0; r < 2; r++) { rindex = ri + r; if ((rindex >=0 && rindex < 4)) { rweight = mag * ((r == 0) ? 1.0f - rfrac : rfrac); for (int c = 0; c < 2; c++) { cindex = ci + c; if ((cindex >=0 && cindex < 4)) { cweight = rweight * ((c == 0) ? 1.0f - cfrac : cfrac); for (orr = 0; orr < 2; orr++) { oindex = oi + orr; if (oindex >= 8) { /* Orientation wraps around at PI. */ oindex = 0; } int bin = (rindex*4 + cindex)*8+oindex; //value in [0,128[ // hist2[8*bin+lid0] += cweight * ((orr == 0) ? 1.0f - ofrac : ofrac); //we do not have atomic_add on floats, but we know the upper limit of this float //take its 5 first (decimal) digits atomic_add(hist3+bin*8+lid0, (unsigned int) (100000*(cweight * ((orr == 0) ? 1.0f - ofrac : ofrac)))); } //end "for orr" } //end "valid cindex" } //end "for c" } //end "valid rindex" } //end "for r" } }//end "in the boundaries" } //end j loop }//end i loop /* barrier(CLK_LOCAL_MEM_FENCE); if (lid < 128) histogram[lid] += hist2[lid*8]+hist2[lid*8+1]+hist2[lid*8+2]+hist2[lid*8+3] +hist2[lid*8+4]+hist2[lid*8+5]+hist2[lid*8+6]+hist2[lid*8+7]; */ barrier(CLK_LOCAL_MEM_FENCE); if (lid < 128) histogram[lid] += (float) ((hist3[lid*8]+hist3[lid*8+1]+hist3[lid*8+2]+hist3[lid*8+3] +hist3[lid*8+4]+hist3[lid*8+5]+hist3[lid*8+6]+hist3[lid*8+7])*0.00001f); barrier(CLK_LOCAL_MEM_FENCE); //memset of 128 values of hist2 before re-use if (lid < 128) hist2[lid] = histogram[lid]*histogram[lid]; /* Normalization and thre work shared by the 16 threads (8 values per thread) */ //parallel reduction to normalize vector if (lid < 64) { hist2[lid] += hist2[lid+64]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 32) { hist2[lid] += hist2[lid+32]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 16) { hist2[lid] += hist2[lid+16]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 8) { hist2[lid] += hist2[lid+8]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 4) { hist2[lid] += hist2[lid+4]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 2) { hist2[lid] += hist2[lid+2]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid == 0) hist2[0] = rsqrt(hist2[1]+hist2[0]); barrier(CLK_LOCAL_MEM_FENCE); //now we have hist2[0] = 1/sqrt(sum(hist[i]^2)) if (lid < 128) { histogram[lid] *= hist2[0]; //Threshold to 0.2 of the norm, for invariance to illumination __local int changed[1]; if (lid == 0) changed[0] = 0; if (histogram[lid] > 0.2f) { histogram[lid] = 0.2f; atomic_inc(changed); } barrier(CLK_LOCAL_MEM_FENCE); //if values have changed, we have to re-normalize if (changed[0]) { hist2[lid] = histogram[lid]*histogram[lid]; if (lid < 64) { hist2[lid] += hist2[lid+64]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 32) { hist2[lid] += hist2[lid+32]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 16) { hist2[lid] += hist2[lid+16]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 8) { hist2[lid] += hist2[lid+8]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 4) { hist2[lid] += hist2[lid+4]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid < 2) { hist2[lid] += hist2[lid+2]; } barrier(CLK_LOCAL_MEM_FENCE); if (lid == 0) hist2[0] = rsqrt(hist2[0]+hist2[1]); barrier(CLK_LOCAL_MEM_FENCE); histogram[lid] *= hist2[0]; } barrier(CLK_LOCAL_MEM_FENCE); //finally, cast to integer descriptors[128*groupid+lid] = (unsigned char) MIN(255,(unsigned char)(512.0f*histogram[lid])); } //end "if lid < 128" } ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/match.py�����������������������������������������������������0000644�0000000�0000000�00000032656�14741736366�017645� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python # -*- coding: utf8 -*- # # Project: Sift implementation in Python + OpenCL # https://github.com/kif/sift_pyocl # """ Contains a class for creating a matching plan, allocating arrays, compiling kernels and other things like that """ from __future__ import division __authors__ = ["Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "2013-07-23" __status__ = "beta" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time, math, os, logging, sys, threading import gc import numpy from .param import par from .opencl import ocl, pyopencl from .utils import calc_size, kernel_size, sizeof logger = logging.getLogger("sift.match") from pyopencl import mem_flags as MF class MatchPlan(object): """ Plan to compare sets of SIFT keypoint siftp = sift.MatchPlan(devicetype="GPU") kp = siftp.match(kp1,kp2) kp is a nx132 array. the second dimension is composed of x,y, scale and angle as well as 128 floats describing the keypoint """ kernels = {"matching_gpu":64, "matching_cpu":16, "memset":128, } dtype_kp = numpy.dtype([('x', numpy.float32), ('y', numpy.float32), ('scale', numpy.float32), ('angle', numpy.float32), ('desc', (numpy.uint8, 128)) ]) def __init__(self, size=16384, devicetype="CPU", profile=False, device=None, max_workgroup_size=128, roi=None, context=None): """ Constructor of the class: :param size: size of the input keypoint-list alocated on the GPU. :param devicetype: can be CPU or GPU :param profile: set to true to activate profiling information collection :param device: 2-tuple of integer, see clinfo :param max_workgroup_size: CPU on MacOS, limit to 1 :param roi: Region Of Interest: TODO :param context: Use an external context (discard devicetype and device options) """ self.profile = bool(profile) self.max_workgroup_size = max_workgroup_size if max_workgroup_size != 128: #default value self.kernels = {} for k, v in self.__class__.kernels.items(): self.kernels[k] = min(v, max_workgroup_size) self.events = [] self.kpsize = size self.buffers = {} self.programs = {} self.memory = None self.octave_max = None self.red_size = None if context: self.ctx = context device_name = self.ctx.devices[0].name.strip() platform_name = self.ctx.devices[0].platform.name.strip() platform = ocl.get_platform(platform_name) device = platform.get_device(device_name) self.device = platform.id, device.id else: if device is None: self.device = ocl.select_device(type=devicetype, memory=self.memory, best=True) else: self.device = device self.ctx = pyopencl.Context(devices=[pyopencl.get_platforms()[self.device[0]].get_devices()[self.device[1]]]) if profile: self.queue = pyopencl.CommandQueue(self.ctx, properties=pyopencl.command_queue_properties.PROFILING_ENABLE) else: self.queue = pyopencl.CommandQueue(self.ctx) # self._calc_workgroups() self._compile_kernels() self._allocate_buffers() self.debug = [] self._sem = threading.Semaphore() self.devicetype = ocl.platforms[self.device[0]].devices[self.device[1]].type if (self.devicetype == "CPU"): self.USE_CPU = True else: self.USE_CPU = False self.matching_kernel = "matching_gpu" if not(self.USE_CPU) else "matching_cpu" self.roi = None if roi: self.set_roi(roi) def __del__(self): """ Destructor: release all buffers """ self._free_kernels() self._free_buffers() self.queue = None self.ctx = None gc.collect() def _allocate_buffers(self): self.buffers[ "Kp_1" ] = pyopencl.array.empty(self.queue, (self.kpsize,), dtype=self.dtype_kp) self.buffers[ "Kp_2" ] = pyopencl.array.empty(self.queue, (self.kpsize,), dtype=self.dtype_kp) # self.buffers[ "tmp" ] = pyopencl.array.empty(self.queue, (self.kpsize,), dtype=self.dtype_kp) self.buffers[ "match" ] = pyopencl.array.empty(self.queue, (self.kpsize, 2), dtype=numpy.int32) self.buffers["cnt" ] = pyopencl.array.empty(self.queue, 1, dtype=numpy.int32) def _free_buffers(self): """ free all memory allocated on the device """ for buffer_name in self.buffers: if self.buffers[buffer_name] is not None: try: del self.buffers[buffer_name] self.buffers[buffer_name] = None except pyopencl.LogicError: logger.error("Error while freeing buffer %s" % buffer_name) def _compile_kernels(self): """ Call the OpenCL compiler """ kernel_directory = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(os.path.join(kernel_directory, "matching_gpu" + ".cl")): while (".zip" in kernel_directory) and (len(kernel_directory) > 4): kernel_directory = os.path.dirname(kernel_directory) kernel_directory = os.path.join(kernel_directory, "sift_kernels") for kernel in self.kernels: kernel_file = os.path.join(kernel_directory, kernel + ".cl") kernel_src = open(kernel_file).read() wg_size = self.kernels[kernel] try: program = pyopencl.Program(self.ctx, kernel_src).build('-D WORKGROUP_SIZE=%s' % wg_size) except pyopencl.MemoryError as error: raise MemoryError(error) except pyopencl.RuntimeError as error: if kernel == "keypoints": logger.warning("Failed compiling kernel '%s' with workgroup size %s: %s: use low_end alternative", kernel, wg_size, error) self.LOW_END = True else: logger.error("Failed compiling kernel '%s' with workgroup size %s: %s", kernel, wg_size, error) raise error self.programs[kernel] = program def _free_kernels(self): """ free all kernels """ self.programs = {} def match(self, nkp1, nkp2, raw_results=False): """ calculate the matching of 2 keypoint list :param nkp1, nkp2: numpy 1D recarray of keypoints or equivalent GPU buffer :param raw_results: if true return the 2D array of indexes of matching keypoints (not the actual keypoints) TODO: implement the ROI ... """ assert len(nkp1.shape) == 1 # Nota: nkp1.ndim is not valid for gpu_arrays assert len(nkp2.shape) == 1 assert type(nkp1) in [numpy.core.records.recarray, pyopencl.array.Array] assert type(nkp2) in [numpy.core.records.recarray, pyopencl.array.Array] result = None with self._sem: if type(nkp1) == numpy.core.records.recarray: if nkp1.size > self.buffers[ "Kp_1" ].size: logger.warning("increasing size of keypoint vector 1 to %i" % nkp1.size) self.buffers[ "Kp_1" ] = pyopencl.array.empty(self.queue, (nkp1.size,), dtype=self.dtype_kp) kpt1_gpu = self.buffers[ "Kp_1" ] self._reset_buffer1() evt1 = pyopencl.enqueue_copy(self.queue, kpt1_gpu.data, nkp1) if self.profile: self.events.append(("copy H->D KP_1", evt1)) else: kpt1_gpu = nkp1 if type(nkp2) == numpy.core.records.recarray: if nkp2.size > self.buffers[ "Kp_2" ].size: logger.warning("increasing size of keypoint vector 2 to %i" % nkp2.size) self.buffers[ "Kp_2" ] = pyopencl.array.empty(self.queue, (nkp2.size,), dtype=self.dtype_kp) kpt2_gpu = self.buffers[ "Kp_2" ] self._reset_buffer2() evt2 = pyopencl.enqueue_copy(self.queue, kpt2_gpu.data, nkp2) if self.profile: self.events.append(("copy H->D KP_1", evt1)) else: kpt2_gpu = nkp2 if min(kpt1_gpu.size, kpt2_gpu.size) > self.buffers[ "match" ].shape[0]: self.kpsize = min(kpt1_gpu.size, kpt2_gpu.size) self.buffers[ "match" ] = pyopencl.array.empty(self.queue, (self.kpsize, 2), dtype=numpy.int32) self._reset_output() evt = self.programs[self.matching_kernel].matching(self.queue, calc_size((nkp1.size,), (self.kernels[self.matching_kernel],)), (self.kernels[self.matching_kernel],), kpt1_gpu.data, kpt2_gpu.data, self.buffers[ "match" ].data, self.buffers[ "cnt" ].data, numpy.int32(self.kpsize), numpy.float32(par.MatchRatio * par.MatchRatio), numpy.int32(nkp1.size), numpy.int32(nkp2.size)) if self.profile: self.events.append(("matching", evt)) size = self.buffers["cnt"].get()[0] match = numpy.empty(shape=(size, 2), dtype=numpy.int32) cpyD2H = pyopencl.enqueue_copy(self.queue, match, self.buffers[ "match" ].data) if self.profile: self.events.append(("copy D->H match", cpyD2H)) if raw_results: result = match else: result = numpy.recarray(shape=(size, 2), dtype=self.dtype_kp) result[:, 0] = nkp1[match[:size, 0]] result[:, 1] = nkp2[match[:size, 1]] return result def _reset_buffer(self): """Reseet all buffers""" self._reset_buffer1() self._reset_buffer2() self._reset_output() def _reset_buffer1(self): ev1 = self.programs["memset"].memset_kp(self.queue, calc_size((self.buffers[ "Kp_1" ].size,), (self.kernels["memset"],)), (self.kernels["memset"],), self.buffers[ "Kp_1" ].data, numpy.float32(-1.0), numpy.uint8(0), numpy.int32(self.buffers[ "Kp_1" ].size)) if self.profile: self.events.append(("memset Kp1", ev1)) def _reset_buffer2(self): ev2 = self.programs["memset"].memset_kp(self.queue, calc_size((self.buffers[ "Kp_2" ].size,), (self.kernels["memset"],)), (self.kernels["memset"],), self.buffers[ "Kp_2" ].data, numpy.float32(-1.0), numpy.uint8(0), numpy.int32(self.buffers[ "Kp_2" ].size)) if self.profile: self.events.append(("memset Kp2", ev2)) def _reset_output(self): ev3 = self.programs["memset"].memset_int(self.queue, calc_size((self.buffers[ "match" ].size,), (self.kernels["memset"],)), (self.kernels["memset"],), self.buffers[ "match" ].data, numpy.int32(-1), numpy.int32(self.buffers[ "match" ].size)) ev4 = self.programs["memset"].memset_int(self.queue, (1,), (1,), self.buffers[ "cnt" ].data, numpy.int32(0), numpy.int32(1)) if self.profile: self.events += [("memset match", ev3), ("memset cnt", ev4), ] def reset_timer(self): """ Resets the profiling timers """ with self._sem: self.events = [] def set_roi(self, roi): """ Defines the region of interest :param roi: region of interest as 2D numpy array with non zero where valid pixels are. """ with self._sem: self.roi = numpy.ascontiguousarray(roi, numpy.int8) self.buffers["ROI"] = pyopencl.array.to_device(self.queue, self.roi) def unset_roi(self): """ Unset the region of interest """ with self._sem: self.roi = None self.buffers["ROI"] = None ����������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/matching_cpu.cl����������������������������������������������0000644�0000000�0000000�00000013013�14741736366�021142� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define DOUBLEMIN(a,b,c,d) ((a) < (c) ? ((b) < (c) ? (int2)(a,b) : (int2)(a,c)) : ((a) < (d) ? (int2)(c,a) : (int2)(c,d))) #define ABS4(q1,q2) (int) (((int) (q1.s0 < q2.s0 ? q2.s0-q1.s0 : q1.s0-q2.s0)) + ((int) (q1.s1 < q2.s1 ? q2.s1-q1.s1 : q1.s1-q2.s1))+ ((int) (q1.s2 < q2.s2 ? q2.s2-q1.s2 : q1.s2-q2.s2)) + ((int) (q1.s3 < q2.s3 ? q2.s3-q1.s3 : q1.s3-q2.s3))) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 64 #endif /* Keypoint (c, r, s, angle) without its descriptor */ typedef float4 keypoint; /* Keypoint with its descriptor */ typedef struct t_keypoint { keypoint kp; unsigned char desc[128]; } t_keypoint; /* * * \brief Compute SIFT descriptors matching for two lists of descriptors. * * "Slow version", should work on CPU * * @param keypoints1 Pointer to global memory with the first list of keypoints * @param keypoints: Pointer to global memory with the second list of keypoints * @param matchings: Pointer to global memory with the output pair of matchings (keypoint1, keypoint2) * @param counter: Pointer to global memory with the resulting number of matchings * @param max_nb_match: Absolute size limit for the resulting list of pairs * @param ratio_th: threshold for distances ; two descriptors whose distance is below this will not be considered as near. Default for sift.cpp implementation is 0.73*0.73 for L1 distance * @param size1: end index for processing list 1 * @param size2: end index for processing list 2 * * NOTE: a keypoint is (x,y,s,angle,[descriptors]) * */ __kernel void matching( __global t_keypoint* keypoints1, __global t_keypoint* keypoints2, __global int2* matchings, __global int* counter, int max_nb_match, float ratio_th, int size1, int size2) { int gid0 = get_global_id(0); if (!(0 <= gid0 && gid0 < size1)) return; float dist1 = 1000000000000.0f, dist2 = 1000000000000.0f; //HUGE_VALF ? int current_min = 0; int old; //pre-fetch unsigned char desc1[128]; for (int i = 0; i<128; i++) desc1[i] = ((keypoints1[gid0]).desc)[i]; //each thread gid0 makes a loop on the second list for (int i = 0; i<size2; i++) { //L1 distance between desc1[gid0] and desc2[i] int dist = 0; for (int j=0; j<128; j++) { //1 thread handles 4 values (uint4) = unsigned char dval1 = desc1[j], dval2 = ((keypoints2[i]).desc)[j]; dist += ((dval1 > dval2) ? (dval1 - dval2) : (-dval1 + dval2)); } if (dist < dist1) { //candidate better than the first dist2 = dist1; dist1 = dist; current_min = i; } else if (dist < dist2) { //candidate better than the second (but not the first) dist2 = dist; } }//end "i loop" if (dist2 != 0 && dist1/dist2 < ratio_th) { int2 pair = 0; pair.s0 = gid0; pair.s1 = current_min; old = atomic_inc(counter); if (old < max_nb_match) matchings[old] = pair; } } /* * * \brief Compute SIFT descriptors matching for two lists of descriptors, discarding descriptors outside a region of interest. * * This version should work on CPU. * * @param keypoints1 Pointer to global memory with the first list of keypoints * @param keypoints: Pointer to global memory with the second list of keypoints * @param valid: Pointer to global memory with the region of interest (binary picture) * @param roi_width: Width of the Region Of Interest * @param roi_height: Height of the Region Of Interest * @param matchings: Pointer to global memory with the output pair of matchings (keypoint1, keypoint2) * @param counter: Pointer to global memory with the resulting number of matchings * @param max_nb_match: Absolute size limit for the resulting list of pairs * @param ratio_th: threshold for distances ; two descriptors whose distance is below this will not be considered as near. Default for sift.cpp implementation is 0.73*0.73 for L1 distance * @param size1: end index for processing list 1 * @param size2: end index for processing list 2 * * NOTE: a keypoint is (x,y,s,angle,[descriptors]) * */ __kernel void matching_valid( __global t_keypoint* keypoints1, __global t_keypoint* keypoints2, __global char* valid, int roi_width, int roi_height, __global int2* matchings, __global int* counter, int max_nb_match, float ratio_th, int size1, int size2) { int gid0 = get_global_id(0); if (!(0 <= gid0 && gid0 < size1)) return; float dist1 = 1000000000000.0f, dist2 = 1000000000000.0f; //HUGE_VALF ? int current_min = 0; int old; keypoint kp = keypoints1[gid0].kp; int c = kp.s0, r = kp.s1; //processing only valid keypoints if (r < roi_height && c < roi_width && valid[r*roi_width+c] == 0) return; //pre-fetch unsigned char desc1[128]; for (int i = 0; i<128; i++) desc1[i] = ((keypoints1[gid0]).desc)[i]; //each thread gid0 makes a loop on the second list for (int i = 0; i<size2; i++) { //L1 distance between desc1[gid0] and desc2[i] int dist = 0; for (int j=0; j<128; j++) { //1 thread handles 4 values kp = keypoints2[i].kp; c = kp.s0, r = kp.s1; if (r < roi_height && c < roi_width && valid[r*roi_width+c] != 0) { unsigned char dval1 = desc1[j], dval2 = ((keypoints2[i]).desc)[j]; dist += ((dval1 > dval2) ? (dval1 - dval2) : (-dval1 + dval2)); } } if (dist < dist1) { //candidate better than the first dist2 = dist1; dist1 = dist; current_min = i; } else if (dist < dist2) { //candidate better than the second (but not the first) dist2 = dist; } }//end "i loop" if (dist2 != 0 && dist1/dist2 < ratio_th) { int2 pair = 0; pair.s0 = gid0; pair.s1 = current_min; old = atomic_inc(counter); if (old < max_nb_match) matchings[old] = pair; } } ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/matching_gpu.cl����������������������������������������������0000644�0000000�0000000�00000025707�14741736366�021163� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define DOUBLEMIN(a,b,c,d) ((a) < (c) ? ((b) < (c) ? (int2)(a,b) : (int2)(a,c)) : ((a) < (d) ? (int2)(c,a) : (int2)(c,d))) #define ABS4(q1,q2) (int) (((int) (q1.s0 < q2.s0 ? q2.s0-q1.s0 : q1.s0-q2.s0)) + ((int) (q1.s1 < q2.s1 ? q2.s1-q1.s1 : q1.s1-q2.s1))+ ((int) (q1.s2 < q2.s2 ? q2.s2-q1.s2 : q1.s2-q2.s2)) + ((int) (q1.s3 < q2.s3 ? q2.s3-q1.s3 : q1.s3-q2.s3))) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 64 #endif /* Keypoint (c, r, s, angle) without its descriptor */ typedef float4 keypoint; /* Keypoint with its descriptor */ typedef struct t_keypoint { keypoint kp; unsigned char desc[128]; } t_keypoint; /* * * \brief Compute SIFT descriptors matching for two lists of descriptors. * * This version is optimized for GPU (vectorized instructions). * As a descriptor value is a 1-byte data, we are reading 4 descriptor values at the same time in order to get coalesced memory access aligned on 32bits. * This kernel works well if launched with a workgroup size of 64. * * @param keypoints1 Pointer to global memory with the first list of keypoints * @param keypoints: Pointer to global memory with the second list of keypoints * @param matchings: Pointer to global memory with the output pair of matchings (keypoint1, keypoint2) * @param counter: Pointer to global memory with the resulting number of matchings * @param max_nb_match: Absolute size limit for the resulting list of pairs * @param ratio_th: threshold for distances ; two descriptors whose distance is below this will not be considered as near. Default for sift.cpp implementation is 0.73*0.73 for L1 distance * @param size1: end index for processing list 1 * @param size2: end index for processing list 2 * * NOTE: a keypoint is (x,y,s,angle,[descriptors]) * */ __kernel void matching( __global t_keypoint* keypoints1, __global t_keypoint* keypoints2, __global int2* matchings, __global int* counter, int max_nb_match, float ratio_th, int size1, int size2) { int gid0 = get_global_id(0); if (!(0 <= gid0 && gid0 < size1)) return; float dist1 = 1000000000000.0f, dist2 = 1000000000000.0f; //HUGE_VALF ? int current_min = 0; int old; //pre-fetch uchar4 desc1[32]; for (int i = 0; i<32; i++) desc1[i] = (uchar4) (((keypoints1[gid0]).desc)[4*i], ((keypoints1[gid0]).desc)[4*i+1], ((keypoints1[gid0]).desc)[4*i+2], ((keypoints1[gid0]).desc)[4*i+3]); //each thread gid0 makes a loop on the second list for (int i = 0; i<size2; i++) { //L1 distance between desc1[gid0] and desc2[i] int dist = 0; for (int j=0; j<32; j++) { //1 thread handles 4 values uchar4 dval1 = desc1[j]; uchar4 dval2 = (uchar4) (((keypoints2[i]).desc)[4*j], ((keypoints2[i]).desc)[4*j+1],((keypoints2[i]).desc)[4*j+2],((keypoints2[i]).desc)[4*j+3]); dist += ABS4(dval1,dval2); } if (dist < dist1) { //candidate better than the first dist2 = dist1; dist1 = dist; current_min = i; } else if (dist < dist2) { //candidate better than the second (but not the first) dist2 = dist; } }//end "i loop" if (dist2 != 0 && dist1/dist2 < ratio_th) { int2 pair = 0; pair.s0 = gid0; pair.s1 = current_min; old = atomic_inc(counter); if (old < max_nb_match) matchings[old] = pair; } } /* * * \brief Compute SIFT descriptors matching for two lists of descriptors, discarding descriptors outside a region of interest. * * This version is optimized for GPU (vectorized instructions). * As a descriptor value is a 1-byte data, we are reading 4 descriptor values at the same time in order to get coalesced memory access aligned on 32bits. * This kernel works well if launched with a workgroup size of 64. * * @param keypoints1 Pointer to global memory with the first list of keypoints * @param keypoints: Pointer to global memory with the second list of keypoints * @param valid: Pointer to global memory with the region of interest (binary picture) * @param roi_width: Width of the Region Of Interest * @param roi_height: Height of the Region Of Interest * @param matchings: Pointer to global memory with the output pair of matchings (keypoint1, keypoint2) * @param counter: Pointer to global memory with the resulting number of matchings * @param max_nb_match: Absolute size limit for the resulting list of pairs * @param ratio_th: threshold for distances ; two descriptors whose distance is below this will not be considered as near. Default for sift.cpp implementation is 0.73*0.73 for L1 distance * @param size1: end index for processing list 1 * @param size2: end index for processing list 2 * * NOTE: a keypoint is (x,y,s,angle,[descriptors]) * */ __kernel void matching_valid( __global t_keypoint* keypoints1, __global t_keypoint* keypoints2, __global char* valid, int roi_width, int roi_height, __global int2* matchings, __global int* counter, int max_nb_match, float ratio_th, int size1, int size2) { int gid0 = get_global_id(0); if (!(0 <= gid0 && gid0 < size1)) return; float dist1 = 1000000000000.0f, dist2 = 1000000000000.0f; //HUGE_VALF ? int current_min = 0; int old; keypoint kp = keypoints1[gid0].kp; int c = kp.s0, r = kp.s1; //processing only valid keypoints if (r < roi_height && c < roi_width && valid[r*roi_width+c] == 0) return; //pre-fetch uchar4 desc1[32]; for (int i = 0; i<32; i++) desc1[i] = (uchar4) (((keypoints1[gid0]).desc)[4*i], ((keypoints1[gid0]).desc)[4*i+1], ((keypoints1[gid0]).desc)[4*i+2], ((keypoints1[gid0]).desc)[4*i+3]); //each thread gid0 makes a loop on the second list for (int i = 0; i<size2; i++) { //L1 distance between desc1[gid0] and desc2[i] int dist = 0; for (int j=0; j<32; j++) { //1 thread handles 4 values kp = keypoints2[i].kp; c = kp.s0, r = kp.s1; if (r < roi_height && c < roi_width && valid[r*roi_width+c] != 0) { uchar4 dval1 = desc1[j]; uchar4 dval2 = (uchar4) (((keypoints2[i]).desc)[4*j], ((keypoints2[i]).desc)[4*j+1],((keypoints2[i]).desc)[4*j+2],((keypoints2[i]).desc)[4*j+3]); dist += ABS4(dval1,dval2); } } if (dist < dist1) { //candidate better than the first dist2 = dist1; dist1 = dist; current_min = i; } else if (dist < dist2) { //candidate better than the second (but not the first) dist2 = dist; } }//end "i loop" if (dist2 != 0 && dist1/dist2 < ratio_th) { int2 pair = 0; pair.s0 = gid0; pair.s1 = current_min; old = atomic_inc(counter); if (old < max_nb_match) matchings[old] = pair; } } /* DO NOT USE ! Slow version. Let L2 be the length of "keypoints2" and W be the workgroup size. Each thread of the workgroup handles L2/W keypoints : [lid0*L2/W, (lid0+1)*L2/W[ , and gives a pair of "best distance / second-best distance" (d1,d2) Then, we take d1 = min{(d1,d2) | all threads} and d2 = second_min {(d1,d2) | all threads} ----------------------------------------------- | thread 0 | thread 1 | ... | thread (W-1) | ----------------------------------------------- <----------> L2/W keypoints For this kernel W = 64 DO NOT USE ! This version is actually slower than the first one, certainly the fact that we are reading "unsigned char". */ __kernel void matching_v2( __global t_keypoint* keypoints1, __global t_keypoint* keypoints2, __global int2* matchings, __global int* counter, int max_nb_keypoints, float ratio_th, int end) { int gid = get_group_id(0); int lid0 = get_local_id(0); if (!(0 <= gid && gid < end)) return; float dist1 = 1000000000000.0f, dist2 = 1000000000000.0f; int current_min = 0; int old; __local unsigned char desc1[64]; //store the descriptor of keypoint we are looking (in list 1) __local int3 candidates[64]; __local int3 parallel[64]; //for the parallel reduction for (int i = 0; i < 2; i++) desc1[i*64+lid0] = ((keypoints1[gid]).desc)[i*64+lid0]; barrier(CLK_LOCAL_MEM_FENCE); int frac = (end >> 6)+1; //fraction of the list that will be processed by a thread int low_bound = lid0*frac; int up_bound = MIN(low_bound+frac,end); for (int i = low_bound; i<up_bound; i++) { unsigned int dist = 0; for (int j=0; j<128; j++) { unsigned char dval1 = desc1[j], dval2 = ((keypoints2[i]).desc)[j]; dist += ((dval1 > dval2) ? (dval1 - dval2) : (-dval1 + dval2)); } if (dist < dist1) { dist2 = dist1; dist1 = dist; current_min = i; } else if (dist < dist2) { dist2 = dist; } }//end "i loop" candidates[lid0] = (int3) (dist1, dist2, current_min); barrier(CLK_LOCAL_MEM_FENCE); //Now each block has its pair of best candidates (dist1,dist2) at position current_min //Find the global minimum and the "second minimum" : (min1,min2) unsigned int d1_0, d2_0, d1_1, d2_1, cmin_0, cmin_1, dist0; int2 sol; //parallel reduction if (lid0 < 32) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; d1_1 = candidates[lid0+32].s0; d2_1 = candidates[lid0+32].s1; cmin_0 = candidates[lid0].s2; cmin_1 = candidates[lid0+32].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); candidates[lid0] = (int3) (sol.s0, sol.s1, (sol.s0 == d1_0 ? cmin_0 : cmin_1)); } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 < 16) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; cmin_0 = candidates[lid0].s2; d1_1 = candidates[lid0+16].s0; d2_1 = candidates[lid0+16].s1; cmin_1 = candidates[lid0+16].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); candidates[lid0] = (int3) (sol.s0, sol.s1, (sol.s0 == d1_0 ? cmin_0 : cmin_1)); } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 < 8) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; cmin_0 = candidates[lid0].s2; d1_1 = candidates[lid0+8].s0; d2_1 = candidates[lid0+8].s1; cmin_1 = candidates[lid0+8].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); candidates[lid0] = (int3) (sol.s0, sol.s1, (sol.s0 == d1_0 ? cmin_0 : cmin_1)); } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 < 4) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; cmin_0 = candidates[lid0].s2; d1_1 = candidates[lid0+4].s0; d2_1 = candidates[lid0+4].s1; cmin_1 = candidates[lid0+4].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); candidates[lid0] = (int3) (sol.s0, sol.s1, (sol.s0 == d1_0 ? cmin_0 : cmin_1)); } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 < 2) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; cmin_0 = candidates[lid0].s2; d1_1 = candidates[lid0+2].s0; d2_1 = candidates[lid0+2].s1; cmin_1 = candidates[lid0+2].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); candidates[lid0] = (int3) (sol.s0, sol.s1, (sol.s0 == d1_0 ? cmin_0 : cmin_1)); } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 == 0) { d1_0 = candidates[lid0].s0; d2_0 = candidates[lid0].s1; cmin_0 = candidates[lid0].s2; d1_1 = candidates[lid0+1].s0; d2_1 = candidates[lid0+1].s1; cmin_1 = candidates[lid0+1].s2; sol = (int2) DOUBLEMIN(d1_0,d2_0,d1_1,d2_1); float dist10 = (float) sol.s0, dist20 = (float) sol.s1; unsigned int index_abs_min = (sol.s0 == d1_0 ? cmin_0 : cmin_1); if (dist20 != 0 && dist10/dist20 < ratio_th && gid <= index_abs_min) { int2 pair = 0; pair.s0 = gid; pair.s1 = index_abs_min; old = atomic_inc(counter); if (old < max_nb_keypoints) matchings[old] = pair; } }//end lid0 == 0 } ���������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/memset.cl����������������������������������������������������0000644�0000000�0000000�00000005763�14741736366�020010� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* * Project: SIFT: An algorithm for image alignement * Kernel for image pre-processing: Normalization, ... * * * Copyright (C) 2013 European Synchrotron Radiation Facility * Grenoble, France * All rights reserved. * * Principal authors: J. Kieffer (kieffer@esrf.fr) * Last revision: 16/07/2013 * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * **/ /* Keypoint (x, y, scale, angle) without its descriptor */ typedef float4 keypoint; /* Keypoint with its descriptor */ typedef struct t_keypoint { float x, y, scale, angle; unsigned char desc[128]; } t_keypoint; /** * \brief Fills a float-array with the given value. * * @param array: Pointer to global memory with the data as float array * @param value: Value used for filling * @param SIZE: Size if the array */ __kernel void memset_float( __global float *array, const float value, const int SIZE ){ int gid = get_global_id(0); if (gid<SIZE){ array[gid] = value; } } /** * \brief Fills a int-array with the given value. * * @param array: Pointer to global memory with the data as float array * @param value: Value used for filling * @param SIZE: Size if the array */ __kernel void memset_int( __global int *array, const int value, const int SIZE ){ int gid = get_global_id(0); if (gid<SIZE){ array[gid] = value; } } /** * \brief Fills an array of keypoints with the given value. * * @param array: Pointer to global memory with the data as float array * @param value: Value used for filling * @param SIZE: Size if the array */ __kernel void memset_kp( __global t_keypoint *array, const float fvalue, const unsigned char uvalue, const int SIZE ){ int gid = get_global_id(0); if (gid<SIZE){ t_keypoint kp; kp.x = fvalue; kp.y = fvalue; kp.scale = fvalue; kp.angle = fvalue; for (int i=0;i<128;i++){ kp.desc[i] = uvalue; } array[gid] = kp; } } �������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/opencl.py����������������������������������������������������0000644�0000000�0000000�00000024474�14741736366�020030� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #-*- coding: utf8 -*- # # Project: Sift implementation in Python + OpenCL # https://github.com/kif/sift_pyocl # """ Automatic selection of OpenCL devices """ from __future__ import division __authors__ = ["Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "2013-05-28" __status__ = "beta" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os, logging logger = logging.getLogger("sift.opencl") try: import pyopencl, pyopencl.array # from pyFAI.opencl import ocl except ImportError: logger.error("Unable to import pyOpenCl. Please install it from: http://pypi.python.org/pypi/pyopencl") pyopencl = None FLOP_PER_CORE = {"GPU": 64, # GPU, Fermi at least perform 64 flops per cycle/multicore, G80 were at 24 or 48 ... "CPU": 4 # CPU, at least intel's have 4 operation per cycle } NVIDIA_FLOP_PER_CORE = {(1, 0): 24, # Guessed ! (1, 1): 24, # Measured on G98 [Quadro NVS 295] (1, 2): 24, # Guessed ! (1, 3): 24, # measured on a GT285 (GT200) (2, 0): 64, # Measured on a 580 (GF110) (2, 1): 96, # Measured on Quadro2000 GF106GL (3, 0): 384, # Guessed! (3, 5): 384} # Measured on K20 AMD_FLOP_PER_CORE = 160 # Measured on a M7820 10 core, 700MHz 1120GFlops class Device(object): """ Simple class that contains the structure of an OpenCL device """ def __init__(self, name="None", type=None, version=None, driver_version=None, extensions="", memory=None, available=None, cores=None, frequency=None, flop_core=None, id=0): self.name = name.strip() self.type = type self.version = version self.driver_version = driver_version self.extensions = extensions.split() self.memory = memory self.available = available self.cores = cores self.frequency = frequency self.id = id if not flop_core: flop_core = FLOP_PER_CORE.get(type, 1) if cores and frequency: self.flops = cores * frequency * flop_core else: self.flops = flop_core def __repr__(self): return "%s" % self.name class Platform(object): """ Simple class that contains the structure of an OpenCL platform """ def __init__(self, name="None", vendor="None", version=None, extensions=None, id=0): self.name = name.strip() self.vendor = vendor.strip() self.version = version self.extensions = extensions.split() self.devices = [] self.id = id def __repr__(self): return "%s" % self.name def add_device(self, device): self.devices.append(device) def get_device(self, key): """ Return a device according to key :param key: identifier for a device, either it's id (int) or it's name :type key: int or str """ out = None try: devid = int(key) except ValueError: for a_dev in self.devices: if a_dev.name == key: out = a_dev else: if len(self.devices) > devid > 0: out = self.devices[devid] return out class OpenCL(object): """ Simple class that wraps the structure ocl_tools_extended.h """ platforms = [] if pyopencl: for id, platform in enumerate(pyopencl.get_platforms()): pypl = Platform(platform.name, platform.vendor, platform.version, platform.extensions, id) for idd, device in enumerate(platform.get_devices()): #################################################### # Nvidia does not report int64 atomics (we are using) ... # this is a hack around as any nvidia GPU with double-precision supports int64 atomics #################################################### extensions = device.extensions if (pypl.vendor == "NVIDIA Corporation") and ('cl_khr_fp64' in extensions): extensions += ' cl_khr_int64_base_atomics cl_khr_int64_extended_atomics' devtype = pyopencl.device_type.to_string(device.type) if (pypl.vendor == "NVIDIA Corporation") and (devtype == "GPU") and "compute_capability_major_nv" in dir(device): comput_cap = device.compute_capability_major_nv, device.compute_capability_minor_nv flop_core = NVIDIA_FLOP_PER_CORE.get(comput_cap, min(NVIDIA_FLOP_PER_CORE.values())) elif (pypl.vendor == "Advanced Micro Devices, Inc.") and (devtype == "GPU"): flop_core = AMD_FLOP_PER_CORE elif devtype == "CPU": flop_core = FLOP_PER_CORE.get(devtype, 1) else: flop_core = 1 pydev = Device(device.name, devtype, device.version, device.driver_version, extensions, device.global_mem_size, bool(device.available), device.max_compute_units, device.max_clock_frequency, flop_core, idd) pypl.add_device(pydev) platforms.append(pypl) del platform, device, pypl, devtype, extensions, pydev def __repr__(self): out = ["OpenCL devices:"] for platformid, platform in enumerate(self.platforms): out.append("[%s] %s: " % (platformid, platform.name) + ", ".join(["(%s,%s) %s" % (platformid, deviceid, dev.name) for deviceid, dev in enumerate(platform.devices)])) return os.linesep.join(out) def get_platform(self, key): """ Return a platform according :param key: identifier for a platform, either an Id (int) or it's name :type key: int or str """ out = None try: platid = int(key) except ValueError: for a_plat in self.platforms: if a_plat.name == key: out = a_plat else: if len(self.platforms) > platid > 0: out = self.platforms[platid] return out def select_device(self, type="ALL", memory=None, extensions=[], best=True): """ Select a device based on few parameters (at the end, keep the one with most memory) :param type: "gpu" or "cpu" or "all" .... :param memory: minimum amount of memory (int) :param extensions: list of extensions to be present :param best: shall we look for the """ type = type.upper() best_found = None for platformid, platform in enumerate(self.platforms): for deviceid, device in enumerate(platform.devices): if (type in ["ALL", "DEF"]) or (device.type == type): if (memory is None) or (memory <= device.memory): found = True for ext in extensions: if ext not in device.extensions: found = False if found: if not best: return platformid, deviceid else: if not best_found: best_found = platformid, deviceid, device.flops elif best_found[2] < device.flops: best_found = platformid, deviceid, device.flops if best_found: return best_found[0], best_found[1] def create_context(self, devicetype="ALL", useFp64=False, platformid=None, deviceid=None): """ Choose a device and initiate a context. Devicetypes can be GPU,gpu,CPU,cpu,DEF,ACC,ALL. Suggested are GPU,CPU. For each setting to work there must be such an OpenCL device and properly installed. E.g.: If Nvidia driver is installed, GPU will succeed but CPU will fail. The AMD SDK kit is required for CPU via OpenCL. :param devicetype: string in ["cpu","gpu", "all", "acc"] :param useFp64: boolean specifying if double precision will be used :param platformid: integer :param devid: integer :return: OpenCL context on the selected device """ if (platformid is not None) and (deviceid is not None): platformid = int(platformid) deviceid = int(deviceid) else: if useFp64: ids = ocl.select_device(type=devicetype, extensions=["cl_khr_int64_base_atomics"]) else: ids = ocl.select_device(type=devicetype) if ids: platformid = ids[0] deviceid = ids[1] if (platformid is not None) and (deviceid is not None): ctx = pyopencl.Context(devices=[pyopencl.get_platforms()[platformid].get_devices()[deviceid]]) else: logger.warn("Last chance to get an OpenCL device ... probably not the one requested") ctx = pyopencl.create_some_context(interactive=False) return ctx if pyopencl: ocl = OpenCL() else: ocl = None ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/orientation_cpu.cl�������������������������������������������0000644�0000000�0000000�00000011746�14741736366�021716� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Kernels for keypoints processing For CPUs, one keypoint is handled by one thread */ typedef float4 keypoint; #define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 1 #endif /** * \brief Assign an orientation to the keypoints. This is done by creating a Gaussian weighted histogram * of the gradient directions in the region. The histogram is smoothed and the largest peak selected. * The results are in the range of -PI to PI. * * Warning: * -At this stage, a keypoint is: (peak,r,c,sigma) * After this function, it will be (c,r,sigma,angle) * * Workgroup size: (1,) * * @param keypoints: Pointer to global memory with current keypoints vector. * @param grad: Pointer to global memory with gradient norm previously calculated * @param ori: Pointer to global memory with gradient orientation previously calculated * @param counter: Pointer to global memory with actual number of keypoints previously found * @param hist: Pointer to shared memory with histogram (36 values per thread) * @param octsize: initially 1 then twiced at each octave * @param OriSigma : a SIFT parameter, default is 1.5. Warning : it is not "InitSigma". * @param nb_keypoints : maximum number of keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient */ __kernel void orientation_assignment( __global keypoint* keypoints, __global float* grad, __global float* ori, __global int* counter, int octsize, float OriSigma, //WARNING: (1.5), it is not "InitSigma (=1.6)" int nb_keypoints, int keypoints_start, int keypoints_end, int grad_width, int grad_height) { int gid0 = get_global_id(0); keypoint k = keypoints[gid0]; if (!(keypoints_start <= gid0 && gid0 < keypoints_end && k.s1 >=0.0f )) return; int bin, prev=0, next=0; int i,j,r,c; int old; float distsq, gval, angle, interp=0.0; float hist_prev,hist_curr,hist_next; float hist[36]; //memset for (i=0; i<36; i++) hist[i] = 0.0f; int row = (int) (k.s1 + 0.5), col = (int) (k.s2 + 0.5); float sigma = OriSigma * k.s3; int radius = (int) (sigma * 3.0); int rmin = MAX(0,row - radius); int cmin = MAX(0,col - radius); int rmax = MIN(row + radius,grad_height - 2); int cmax = MIN(col + radius,grad_width - 2); for (r = rmin; r <= rmax; r++) { for (c = cmin; c <= cmax; c++) { gval = grad[r*grad_width+c]; float dif = (r - k.s1); distsq = dif*dif; dif = (c - k.s2); distsq += dif*dif; //distsq = (r-k.s1)*(r-k.s1) + (c-k.s2)*(c-k.s2); if (gval > 0.0f && distsq < ((float) (radius*radius)) + 0.5f) { angle = ori[r*grad_width+c]; bin = (int) (36.0f * (angle + M_PI_F + 0.001f) / (2.0f * M_PI_F)); //why this offset ? if (bin >= 0 && bin <= 36) { bin = MIN(bin, 35); hist[bin] += exp(- distsq / (2.0f*sigma*sigma)) * gval; } } } } /* Apply smoothing 6 times for accurate Gaussian approximation */ for (j = 0; j < 6; j++) { float prev, temp; //it is CRUCIAL to re-define "prev" here, for the line below... otherwise, it won't work prev = hist[35]; for (i = 0; i < 36; i++) { temp = hist[i]; hist[i] = ( prev + hist[i] + hist[(i + 1 == 36) ? 0 : i + 1] ) / 3.0; prev = temp; } } /* Find maximum value in histogram */ float maxval = 0.0f; int argmax = 0; for (i=0; i<36; i++) { if (maxval < hist[i]) { maxval = hist[i]; argmax = i; } } /* This maximum value in the histogram is defined as the orientation of our current keypoint */ prev = (argmax == 0 ? 35 : argmax - 1); next = (argmax == 35 ? 0 : argmax + 1); hist_prev = hist[prev]; hist_next = hist[next]; if (maxval < 0.0f) { hist_prev = -hist_prev; maxval = -maxval; hist_next = -hist_next; } interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * maxval + hist_next); angle = 2.0f * M_PI_F * (argmax + 0.5f + interp) / 36.0f - M_PI_F; k.s0 = k.s2 *octsize; //c k.s1 = k.s1 *octsize; //r k.s2 = k.s3 *octsize; //sigma k.s3 = angle; //angle keypoints[gid0] = k; /* An orientation is now assigned to our current keypoint. We can create new keypoints of same (x,y,sigma) but a different angle. For every local peak in histogram, every peak of value >= 80% of maxval generates a new keypoint */ for (i=0; i < 36; i++) { int prev = (i == 0 ? 35 : i - 1); int next = (i == 35 ? 0 : i + 1); float hist_prev = hist[prev]; float hist_curr = hist[i]; float hist_next = hist[next]; if (hist_curr > hist_prev && hist_curr > hist_next && hist_curr >= 0.8f * maxval && i != argmax) { if (hist_curr < 0.0f) { hist_prev = -hist_prev; hist_curr = -hist_curr; hist_next = -hist_next; } float interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * hist_curr + hist_next); float angle = 2.0f * M_PI_F * (i + 0.5f + interp) /36.0 - M_PI_F; if (angle >= -M_PI_F && angle <= M_PI_F) { k.s3 = angle; old = atomic_inc(counter); if (old < nb_keypoints) keypoints[old] = k; } } //end "val >= 80%*maxval" } } ��������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/orientation_gpu.cl�������������������������������������������0000644�0000000�0000000�00000021120�14741736366�021705� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Kernels for keypoints orientation processing A *group of threads* handles one keypoint, for additional information is required in the keypoint neighborhood WARNING: local workgroup size must be at least 128 for orientation_assignment Workgroup Size: (128,) For descriptors (so far) : we use shared memory to store temporary 128-histogram (1 per keypoint) therefore, we need 128*N*4 bytes for N keypoints. We have -- 16 KB per multiprocessor for <=1.3 compute capability (GTX <= 295), that allows to process N<=30 keypoints per thread -- 48 KB per multiprocessor for >=2.x compute capability (GTX >= 465, Quadro 4000), that allows to process N<=95 keypoints per thread */ typedef float4 keypoint; #define MIN(i,j) ( (i)<(j) ? (i):(j) ) #define MAX(i,j) ( (i)<(j) ? (j):(i) ) #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 128 #endif /** * \brief Assign an orientation to the keypoints. This is done by creating a Gaussian weighted histogram * of the gradient directions in the region. The histogram is smoothed and the largest peak selected. * The results are in the range of -PI to PI. * * Warning: * -At this stage, a keypoint is: (peak,r,c,sigma) After this function, it will be (c,r,sigma,angle) * * @param keypoints: Pointer to global memory with current keypoints vector. * @param grad: Pointer to global memory with gradient norm previously calculated * @param ori: Pointer to global memory with gradient orientation previously calculated * @param counter: Pointer to global memory with actual number of keypoints previously found * @param hist: Pointer to shared memory with histogram (36 values per thread) * @param octsize: initially 1 then twiced at each octave * @param OriSigma : a SIFT parameter, default is 1.5. Warning : it is not "InitSigma". * @param nb_keypoints : maximum number of keypoints * @param grad_width: integer number of columns of the gradient * @param grad_height: integer num of lines of the gradient */ /* par.OriBins = 36 par.OriHistThresh = 0.8; -replace "36" by an external paramater ? -replace "0.8" by an external parameter ? TODO: -Memory optimization --Use less registers (re-use, calculation instead of assignation) --Use local memory for float histogram[36] -Speed-up --Less access to global memory (k.s1 is OK because this is a register) --leave the loops as soon as possible --Avoid divisions */ __kernel void orientation_assignment( __global keypoint* keypoints, __global float* grad, __global float* ori, __global int* counter, int octsize, float OriSigma, //WARNING: (1.5), it is not "InitSigma (=1.6)" int nb_keypoints, int keypoints_start, int keypoints_end, int grad_width, int grad_height) { int lid0 = get_local_id(0); int groupid = get_group_id(0); // Process only valid points if ((groupid< keypoints_start) || (groupid >= keypoints_end)) return; keypoint k = keypoints[groupid]; if (k.s1 < 0.0f ) return; int bin, prev=0, next=0; int old; float distsq, gval, angle, interp=0.0; float hist_prev,hist_curr,hist_next; __local volatile float hist[36]; __local volatile float hist2[WORKGROUP_SIZE]; __local volatile int pos[WORKGROUP_SIZE]; float prev2,temp2; float ONE_3 = 1.0f / 3.0f; float ONE_18 = 1.0f / 18.0f; //memset for "pos" and "hist2" pos[lid0] = -1; hist2[lid0] = 0.0f; if (lid0 <36) hist[lid0] = 0.0f; int row = (int) (k.s1 + 0.5), col = (int) (k.s2 + 0.5); /* Look at pixels within 3 sigma around the point and sum their Gaussian weighted gradient magnitudes into the histogram. */ float sigma = OriSigma * k.s3; int radius = (int) (sigma * 3.0); int rmin = MAX(0,row - radius); int cmin = MAX(0,col - radius); int rmax = MIN(row + radius,grad_height - 2); int cmax = MIN(col + radius,grad_width - 2); int i,j,r,c; for (r = rmin; r <= rmax; r++) { //memset for "pos" and "hist2" pos[lid0] = -1; hist2[lid0] = 0.0f; c = cmin + lid0; pos[lid0] = -1; hist2[lid0] = 0.0f; //do not forget to memset before each re-use... if (c <= cmax){ gval = grad[r*grad_width+c]; distsq = (r-k.s1)*(r-k.s1) + (c-k.s2)*(c-k.s2); if (gval > 0.0f && distsq < ((radius*radius) + 0.5f)) { // Ori is in range of -PI to PI. angle = ori[r*grad_width+c]; bin = (int) (18.0f * (angle + M_PI_F) * M_1_PI_F); if (bin<0) bin+=36; if (bin>35) bin-=36; hist2[lid0] = exp(- distsq / (2.0f*sigma*sigma)) * gval; pos[lid0] = bin; } } barrier(CLK_LOCAL_MEM_FENCE); //We are missing atomic operations on floats in OpenCL... if (lid0 == 0) { //this has to be done here ! if not, pos[] is erased ! for (i=0; i < WORKGROUP_SIZE; i++) if (pos[i] != -1) hist[pos[i]] += hist2[i]; } barrier(CLK_LOCAL_MEM_FENCE); } // Apply smoothing 6 times for accurate Gaussian approximation for (j=0; j<6; j++) { if (lid0 == 0) { hist2[0] = hist[0]; //save unmodified hist hist[0] = (hist[35] + hist[0] + hist[1]) * ONE_3; } barrier(CLK_LOCAL_MEM_FENCE); if (0 < lid0 && lid0 < 35) { hist2[lid0]=hist[lid0]; hist[lid0] = (hist2[lid0-1] + hist[lid0] + hist[lid0+1]) * ONE_3; } barrier(CLK_LOCAL_MEM_FENCE); if (lid0 == 35) { hist[35] = (hist2[34] + hist[35] + hist[0]) * ONE_3; } barrier(CLK_LOCAL_MEM_FENCE); } hist2[lid0] = 0.0f; /* Find maximum value in histogram */ float maxval = 0.0f; int argmax = 0; //memset for "pos" and "hist2" pos[lid0] = -1; hist2[lid0] = 0.0f; // Parallel reduction if (lid0<32){ if (lid0+32<36){ if (hist[lid0]>hist[lid0+32]){ hist2[lid0] = hist[lid0]; pos[lid0] = lid0; }else{ hist2[lid0] = hist[lid0+32]; pos[lid0] = lid0+32; } }else{ hist2[lid0] = hist[lid0]; pos[lid0] = lid0; } } //now we have hist2[0..32[ that takes [32..36[ into account barrier(CLK_LOCAL_MEM_FENCE); if (lid0<16){ if (hist2[lid0+16]>hist2[lid0]){ hist2[lid0] = hist2[lid0+16]; pos[lid0] = pos[lid0+16]; } } barrier(CLK_LOCAL_MEM_FENCE); if (lid0<8 ){ if (hist2[lid0+ 8]>hist2[lid0]){ hist2[lid0] = hist2[lid0+ 8]; pos[lid0] = pos[lid0+ 8]; } } barrier(CLK_LOCAL_MEM_FENCE); if (lid0<04){ if (hist2[lid0+04]>hist2[lid0]){ hist2[lid0] = hist2[lid0+04]; pos[lid0] = pos[lid0+04]; } } barrier(CLK_LOCAL_MEM_FENCE); if (lid0<02){ if (hist2[lid0+02]>hist2[lid0]){ hist2[lid0] = hist2[lid0+02]; pos[lid0] = pos[lid0+02]; } } barrier(CLK_LOCAL_MEM_FENCE); if (lid0==0){ if (hist2[1]>hist2[0]){ hist2[0]=hist2[1]; pos[0] = pos[1]; } argmax = pos[0]; maxval = hist2[0]; /* This maximum value in the histogram is defined as the orientation of our current keypoint NOTE: a "true" keypoint has his coordinates multiplied by "octsize" (cf. SIFT) */ prev = (argmax == 0 ? 35 : argmax - 1); next = (argmax == 35 ? 0 : argmax + 1); hist_prev = hist[prev]; hist_next = hist[next]; /* //values are positive... if (maxval < 0.0f) { hist_prev = -hist_prev; //do not directly use hist[prev] which is shared maxval = -maxval; hist_next = -hist_next; } */ interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * maxval + hist_next); angle = (argmax + 0.5f + interp) * ONE_18; if (angle<0.0f) angle+=2.0f; else if (angle>2.0f) angle-=2.0f; k.s0 = k.s2 *octsize; //c k.s1 = k.s1 *octsize; //r k.s2 = k.s3 *octsize; //sigma k.s3 = (angle-1.0f)*M_PI_F; //angle keypoints[groupid] = k; // use local memory to communicate with other threads pos[0] = argmax; hist2[0] = maxval; hist2[1] = k.s0; hist2[2] = k.s1; hist2[3] = k.s2; hist2[4] = k.s3; } barrier(CLK_LOCAL_MEM_FENCE); //broadcast these values to all threads k = (float4) (hist2[1], hist2[2], hist2[3], hist2[4]); argmax = pos[0]; maxval = hist2[0]; /* An orientation is now assigned to our current keypoint. We can create new keypoints of same (x,y,sigma) but a different angle. For every local peak in histogram, every peak of value >= 80% of maxval generates a new keypoint */ // return; if (lid0 < 36 && lid0 != argmax) { i = lid0; prev = (i == 0 ? 35 : i - 1); next = (i == 35 ? 0 : i + 1); hist_prev = hist[prev]; hist_curr = hist[i]; hist_next = hist[next]; if (hist_curr > hist_prev && hist_curr > hist_next && hist_curr >= 0.8f * maxval) { /* //all values are positive... if (hist_curr < 0.0f) { hist_prev = -hist_prev; hist_curr = -hist_curr; hist_next = -hist_next; } */ interp = 0.5f * (hist_prev - hist_next) / (hist_prev - 2.0f * hist_curr + hist_next); angle = (i + 0.5f + interp) * ONE_18; if (angle<0.0f) angle+=2.0f; else if (angle>2.0f) angle-=2.0f; k.s3 = (angle-1.0f)*M_PI_F; old = atomic_inc(counter); if (old < nb_keypoints) keypoints[old] = k; } //end "val >= 80%*maxval" } } ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/param.py�����������������������������������������������������0000644�0000000�0000000�00000004750�14741736366�017643� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������__contact__ = "jerome.kieffer@esrf.eu" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" class Enum(dict): """ Simple class half way between a dict and a class, behaving as an enum """ def __getattr__(self, name): if name in self: return self[name] raise AttributeError par = Enum(OctaveMax=100000, DoubleImSize=0, order=3, InitSigma=1.6, BorderDist=5, Scales=3, PeakThresh=255.0 * 0.04 / 3.0, EdgeThresh=0.06, EdgeThresh1=0.08, #To detect an edge response, we require the ratio of smallest #to largest principle curvatures of the DOG function #(eigenvalues of the Hessian) to be below a threshold. For #efficiency, we use Harris' idea of requiring the determinant to #be above par.EdgeThresh times the squared trace, as for eigenvalues #A and B, det = AB, trace = A+B. So if A = 10B, then det = 10B**2, #and trace**2 = (11B)**2 = 121B**2, so par.EdgeThresh = 10/121 = #0.08 to require ratio of eigenvalues less than 10. OriBins=36, OriSigma=1.5, OriHistThresh=0.8, MaxIndexVal=0.2, MagFactor=3, IndexSigma=1.0, IgnoreGradSign=0, MatchRatio=0.73, MatchXradius=1000000.0, MatchYradius=1000000.0, noncorrectlylocalized=0) ������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/plan.py������������������������������������������������������0000644�0000000�0000000�00000124315�14741736366�017475� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python # -*- coding: utf8 -*- # # This code implements the SIFT algorithm # The SIFT algorithm belongs to the University of British Columbia. It is # protected by patent US6711293. If you are on a country where this pattent # applies (like the USA), please check if you are allowed to use it. The # University of British Columbia does not require a license for its use for # non-commercial research applications. # # Project: Sift implementation in Python + OpenCL # https://github.com/kif/sift_pyocl # """ Contains a class for creating a plan, allocating arrays, compiling kernels and other things like that """ from __future__ import division, print_function __authors__ = ["Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "2013-07-19" __status__ = "beta" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time, math, os, logging, threading # import sys import gc import numpy from .param import par from .opencl import ocl, pyopencl from .utils import calc_size, kernel_size # , sizeof logger = logging.getLogger("sift.plan") class SiftPlan(object): """ How to calculate a set of SIFT keypoint on an image: siftp = sift.SiftPlan(img.shape,img.dtype,devicetype="GPU") kp = siftp.keypoints(img) kp is a nx132 array. the second dimension is composed of x,y, scale and angle as well as 128 floats describing the keypoint """ kernels = {"convolution":1024, # key: name value max local workgroup size "preprocess": 1024, "algebra": 1024, "image":1024, "gaussian":1024, "reductions":1024, "orientation_cpu":1, "orientation_gpu":128, "keypoints_gpu1":(8, 4, 4), "keypoints_gpu2":(8, 8, 8), "keypoints_cpu":1, "memset":128, } # "keypoints":128} converter = {numpy.dtype(numpy.uint8):"u8_to_float", numpy.dtype(numpy.uint16):"u16_to_float", numpy.dtype(numpy.int32):"s32_to_float", numpy.dtype(numpy.int64):"s64_to_float", # numpy.float64:"double_to_float", } sigmaRatio = 2.0 ** (1.0 / par.Scales) PIX_PER_KP = 10 # pre_allocate buffers for keypoints dtype_kp = numpy.dtype([('x', numpy.float32), ('y', numpy.float32), ('scale', numpy.float32), ('angle', numpy.float32), ('desc', (numpy.uint8, 128)) ]) def __init__(self, shape=None, dtype=None, devicetype="CPU", template=None, profile=False, device=None, PIX_PER_KP=None, max_workgroup_size=128, context=None, init_sigma=None): """ Contructor of the class :param shape: shape of the input image :param dtype: data type of the input image :param devicetype: can be 'CPU' or 'GPU' :param template: extract shape and dtype from an image :param profile: collect timing info :param device: 2-tuple of integers :param PIX_PER_KP: number of keypoint pre-allocated: 1 for 10 pixel :param max_workgroup_size: set to 1 under macosX :param context: provide an external context :param init_sigma: bluring width, you should have good reasons to modify the 1.6 default value """ if init_sigma is None: init_sigma = par.InitSigma # no test on the values, just make sure it is a float self._initSigma = float(init_sigma) self.buffers = {} self.programs = {} if template is not None: self.shape = template.shape self.dtype = template.dtype else: self.shape = shape self.dtype = numpy.dtype(dtype) if len(self.shape) == 3: self.RGB = True self.shape = self.shape[:2] elif len(self.shape) == 2: self.RGB = False else: raise RuntimeError("Unable to process image of shape %s" % (tuple(self.shape,))) if PIX_PER_KP : self.PIX_PER_KP = int(PIX_PER_KP) self.profile = bool(profile) self.max_workgroup_size = max_workgroup_size self.events = [] self._sem = threading.Semaphore() self.scales = [] # in XY order self.procsize = [] # same as procsize but with dimension in (X,Y) not (slow, fast) self.wgsize = [] self.kpsize = None self.memory = None self.octave_max = None self.red_size = None self._calc_scales() self._calc_memory() self.LOW_END = 0 if context: self.ctx = context device_name = self.ctx.devices[0].name.strip() platform_name = self.ctx.devices[0].platform.name.strip() platform = ocl.get_platform(platform_name) device = platform.get_device(device_name) self.device = platform.id, device.id else: if device is None: self.device = ocl.select_device(type=devicetype, memory=self.memory, best=True) if device is None: self.device = ocl.select_device(memory=self.memory, best=True) logger.warning('Unable to find suitable device, selecting device: %s,%s' % self.device) else: self.device = device self.ctx = pyopencl.Context(devices=[pyopencl.get_platforms()[self.device[0]].get_devices()[self.device[1]]]) if profile: self.queue = pyopencl.CommandQueue(self.ctx, properties=pyopencl.command_queue_properties.PROFILING_ENABLE) else: self.queue = pyopencl.CommandQueue(self.ctx) self._calc_workgroups() self._compile_kernels() self._allocate_buffers() self.debug = [] self.cnt = numpy.empty(1, dtype=numpy.int32) self.devicetype = ocl.platforms[self.device[0]].devices[self.device[1]].type if (self.devicetype == "CPU"): self.USE_CPU = True else: self.USE_CPU = False def __del__(self): """ Destructor: release all buffers """ self._free_kernels() self._free_buffers() self.queue = None self.ctx = None gc.collect() def _calc_scales(self): """ Nota scales are in XY order """ shape = self.shape[-1::-1] self.scales = [tuple(numpy.int32(i) for i in shape)] min_size = 2 * par.BorderDist + 2 while min(shape) > min_size: shape = tuple(numpy.int32(i // 2) for i in shape) self.scales.append(shape) self.scales.pop() self.octave_max = len(self.scales) def _calc_memory(self): """ Estimates the memory footprint of all buffer to ensure it fits on the device """ # Just the context + kernel takes about 75MB on the GPU self.memory = 75 * 2 ** 20 size_of_float = numpy.dtype(numpy.float32).itemsize size_of_input = numpy.dtype(self.dtype).itemsize # raw images: size = self.shape[0] * self.shape[1] self.memory += size * size_of_input # initial_image (no raw_float) if self.RGB: self.memory += 2 * size * (size_of_input) # one of three was already counted nr_blur = par.Scales + 3 # 3 blurs and 2 tmp nr_dogs = par.Scales + 2 self.memory += size * (nr_blur + nr_dogs) * size_of_float self.kpsize = int(self.shape[0] * self.shape[1] // self.PIX_PER_KP) # Is the number of kp independant of the octave ? int64 causes problems with pyopencl self.memory += self.kpsize * size_of_float * 4 * 2 # those are array of float4 to register keypoints, we need two of them self.memory += self.kpsize * 128 # stores the descriptors: 128 unsigned chars self.memory += 4 # keypoint index Counter wg_float = min(self.max_workgroup_size, numpy.sqrt(self.shape[0] * self.shape[1])) self.red_size = 2 ** (int(math.ceil(math.log(wg_float, 2)))) self.memory += 4 * 2 * self.red_size # temporary storage for reduction ######################################################################## # Calculate space for gaussian kernels ######################################################################## curSigma = 1.0 if par.DoubleImSize else 0.5 if self._initSigma > curSigma: sigma = math.sqrt(self._initSigma ** 2 - curSigma ** 2) size = kernel_size(sigma, True) logger.debug("pre-Allocating %s float for init blur" % size) self.memory += size * size_of_float prevSigma = self._initSigma for i in range(par.Scales + 2): increase = prevSigma * math.sqrt(self.sigmaRatio ** 2 - 1.0) size = kernel_size(increase, True) logger.debug("pre-Allocating %s float for blur sigma: %s" % (size, increase)) self.memory += size * size_of_float prevSigma *= self.sigmaRatio def _allocate_buffers(self): """ All buffers are allocated here """ shape = self.shape if self.dtype != numpy.float32: if self.RGB: rgbshape = self.shape[0], self.shape[1], 3 self.buffers["raw"] = pyopencl.array.empty(self.queue, rgbshape, dtype=self.dtype) else: self.buffers["raw"] = pyopencl.array.empty(self.queue, shape, dtype=self.dtype) self.buffers[ "Kp_1" ] = pyopencl.array.empty(self.queue, (self.kpsize, 4), dtype=numpy.float32) self.buffers[ "Kp_2" ] = pyopencl.array.empty(self.queue, (self.kpsize, 4), dtype=numpy.float32) self.buffers[ "descr" ] = pyopencl.array.empty(self.queue, (self.kpsize, 128), dtype=numpy.uint8) self.buffers["cnt" ] = pyopencl.array.empty(self.queue, 1, dtype=numpy.int32) self.buffers["descriptors"] = pyopencl.array.empty(self.queue, (self.kpsize, 128), dtype=numpy.uint8) self.buffers["tmp"] = pyopencl.array.empty(self.queue, shape, dtype=numpy.float32) self.buffers["ori"] = pyopencl.array.empty(self.queue, shape, dtype=numpy.float32) for scale in range(par.Scales + 3): self.buffers[scale ] = pyopencl.array.empty(self.queue, shape, dtype=numpy.float32) self.buffers["DoGs" ] = pyopencl.array.empty(self.queue, (par.Scales + 2, shape[0], shape[1]), dtype=numpy.float32) wg_float = min(512.0, numpy.sqrt(self.shape[0] * self.shape[1])) # wg = 2 ** (int(math.ceil(math.log(wg_float, 2)))) self.buffers["max_min"] = pyopencl.array.empty(self.queue, (self.red_size, 2), dtype=numpy.float32) # temporary buffer for max/min reduction self.buffers["min"] = pyopencl.array.empty(self.queue, (1), dtype=numpy.float32) self.buffers["max"] = pyopencl.array.empty(self.queue, (1), dtype=numpy.float32) self.buffers["255"] = pyopencl.array.to_device(self.queue, numpy.array([255.0], dtype=numpy.float32)) ######################################################################## # Allocate space for gaussian kernels ######################################################################## curSigma = 1.0 if par.DoubleImSize else 0.5 if self._initSigma > curSigma: sigma = math.sqrt(self._initSigma ** 2 - curSigma ** 2) self._init_gaussian(sigma) prevSigma = self._initSigma for i in range(par.Scales + 2): increase = prevSigma * math.sqrt(self.sigmaRatio ** 2 - 1.0) self._init_gaussian(increase) prevSigma *= self.sigmaRatio def _init_gaussian(self, sigma): """ Create a buffer of the right size according to the width of the gaussian ... :param sigma: width of the gaussian, the length of the function will be 8*sigma + 1 Same calculation done on CPU x = numpy.arange(size) - (size - 1.0) / 2.0 gaussian = numpy.exp(-(x / sigma) ** 2 / 2.0).astype(numpy.float32) gaussian /= gaussian.sum(dtype=numpy.float32) """ name = "gaussian_%s" % sigma size = kernel_size(sigma, True) wg_size = 2 ** int(math.ceil(math.log(size) / math.log(2))) logger.debug("Allocating %s float for blur sigma: %s" % (size, sigma)) if wg_size > self.max_workgroup_size: # compute on CPU x = numpy.arange(size) - (size - 1.0) / 2.0 gaus = numpy.exp(-(x / sigma) ** 2 / 2.0).astype(numpy.float32) gaus /= gaus.sum(dtype=numpy.float32) gaussian_gpu = pyopencl.array.to_device(self.queue, gaus) else: gaussian_gpu = pyopencl.array.empty(self.queue, size, dtype=numpy.float32) evt = self.programs["gaussian"].gaussian(self.queue, (wg_size,), (wg_size,), gaussian_gpu.data, # __global float *data, numpy.float32(sigma), # const float sigma, numpy.int32(size)) # const int SIZE if self.profile: self.events.append(("gaussian %s" % sigma, evt)) self.buffers[name] = gaussian_gpu def _free_buffers(self): """ free all memory allocated on the device """ for buffer_name in self.buffers: if self.buffers[buffer_name] is not None: try: del self.buffers[buffer_name] self.buffers[buffer_name] = None except pyopencl.LogicError: logger.error("Error while freeing buffer %s" % buffer_name) def _compile_kernels(self): """ Call the OpenCL compiler """ kernel_directory = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists(os.path.join(kernel_directory, "algebra" + ".cl")): while (".zip" in kernel_directory) and (len(kernel_directory) > 4): kernel_directory = os.path.dirname(kernel_directory) kernel_directory = os.path.join(kernel_directory, "sift_kernels") for kernel in self.kernels: kernel_file = os.path.join(kernel_directory, kernel + ".cl") kernel_src = open(kernel_file).read() if "__len__" not in dir(self.kernels[kernel]): wg_size = min(self.max_workgroup_size, self.kernels[kernel]) else: wg_size = self.max_workgroup_size try: program = pyopencl.Program(self.ctx, kernel_src).build('-D WORKGROUP_SIZE=%s' % wg_size) except pyopencl.MemoryError as error: raise MemoryError(error) except pyopencl.RuntimeError as error: if kernel == "keypoints_gpu2": logger.warning("Failed compiling kernel '%s' with workgroup size %s: %s: use low_end alternative", kernel, wg_size, error) self.LOW_END += 1 elif kernel == "keypoints_gpu1": logger.warning("Failed compiling kernel '%s' with workgroup size %s: %s: use CPU alternative", kernel, wg_size, error) self.LOW_END += 1 else: logger.error("Failed compiling kernel '%s' with workgroup size %s: %s", kernel, wg_size, error) raise error self.programs[kernel] = program def _free_kernels(self): """ free all kernels """ self.programs = {} def _calc_workgroups(self): """ First try to guess the best workgroup size, then calculate all global worksize Nota: The workgroup size is limited by the device The workgroup size is limited to the 2**n below then image size (hence changes with octaves) The second dimension of the wg size should be large, the first small: i.e. (1,64) The processing size should be a multiple of workgroup size. """ device = self.ctx.devices[0] # max_work_group_size = device.max_work_group_size max_work_item_sizes = device.max_work_item_sizes # we recalculate the shapes ... shape = self.shape min_size = 2 * par.BorderDist + 2 self.max_workgroup_size = min(self.max_workgroup_size, max_work_item_sizes[0]) while min(shape) > min_size: wg = (min(2 ** int(math.ceil(math.log(shape[-1], 2))), self.max_workgroup_size), 1) self.wgsize.append(wg) self.procsize.append(calc_size(shape[-1::-1], wg)) shape = tuple(i // 2 for i in shape) def keypoints(self, image): """ Calculates the keypoints of the image :param image: ndimage of 2D (or 3D if RGB) """ self.reset_timer() with self._sem: total_size = 0 keypoints = [] descriptors = [] assert image.shape[:2] == self.shape assert image.dtype == self.dtype t0 = time.time() if self.dtype == numpy.float32: if type(image) == pyopencl.array.Array: evt = pyopencl.enqueue_copy(self.queue, self.buffers[0].data, image.data) else: evt = pyopencl.enqueue_copy(self.queue, self.buffers[0].data, image) if self.profile:self.events.append(("copy H->D", evt)) elif (len(image.shape) == 3) and (self.dtype == numpy.uint8) and (self.RGB): if type(image) == pyopencl.array.Array: evt = pyopencl.enqueue_copy(self.queue, self.buffers["raw"].data, image.data) else: evt = pyopencl.enqueue_copy(self.queue, self.buffers["raw"].data, image) if self.profile:self.events.append(("copy H->D", evt)) # print self.procsize[0], self.wgsize[0] evt = self.programs["preprocess"].rgb_to_float(self.queue, self.procsize[0], self.wgsize[0], self.buffers["raw"].data, self.buffers[0].data, *self.scales[0]) if self.profile:self.events.append(("RGB -> float", evt)) elif self.dtype in self.converter: program = self.programs["preprocess"].__getattr__(self.converter[self.dtype]) evt = pyopencl.enqueue_copy(self.queue, self.buffers["raw"].data, image) if self.profile:self.events.append(("copy H->D", evt)) evt = program(self.queue, self.procsize[0], self.wgsize[0], self.buffers["raw"].data, self.buffers[0].data, *self.scales[0]) if self.profile:self.events.append(("convert -> float", evt)) else: raise RuntimeError("invalid input format error") k1 = self.programs["reductions"].max_min_global_stage1(self.queue, (self.red_size * self.red_size,), (self.red_size,), self.buffers[0].data, self.buffers["max_min"].data, numpy.uint32(self.shape[0] * self.shape[1])) k2 = self.programs["reductions"].max_min_global_stage2(self.queue, (self.red_size,), (self.red_size,), self.buffers["max_min"].data, self.buffers["max"].data, self.buffers["min"].data) if self.profile: self.events.append(("max_min_stage1", k1)) self.events.append(("max_min_stage2", k2)) evt = self.programs["preprocess"].normalizes(self.queue, self.procsize[0], self.wgsize[0], self.buffers[0].data, self.buffers["min"].data, self.buffers["max"].data, self.buffers["255"].data, *self.scales[0]) if self.profile:self.events.append(("normalize", evt)) # octSize = 1.0 curSigma = 1.0 if par.DoubleImSize else 0.5 octave = 0 if self._initSigma > curSigma: logger.debug("Bluring image to achieve std: %f", self._initSigma) sigma = math.sqrt(self._initSigma ** 2 - curSigma ** 2) self._gaussian_convolution(self.buffers[0], self.buffers[0], sigma, 0) # else: # pyopencl.enqueue_copy(self.queue, dest=self.buffers[(0, "G_1")].data, src=self.buffers["input"].data) for octave in range(self.octave_max): kp, descriptor = self._one_octave(octave) logger.info("in octave %i found %i kp" % (octave, kp.shape[0])) if kp.shape[0] > 0: keypoints.append(kp) descriptors.append(descriptor) total_size += kp.shape[0] ######################################################################## # Merge keypoints in central memory ######################################################################## output = numpy.recarray(shape=(total_size,), dtype=self.dtype_kp) last = 0 for ds, desc in zip(keypoints, descriptors): l = ds.shape[0] if l > 0: output[last:last + l].x = ds[:, 0] output[last:last + l].y = ds[:, 1] output[last:last + l].scale = ds[:, 2] output[last:last + l].angle = ds[:, 3] output[last:last + l].desc = desc last += l logger.info("Execution time: %.3fms" % (1000 * (time.time() - t0))) # self.count_kp(output) return output def _gaussian_convolution(self, input_data, output_data, sigma, octave=0): """ Calculate the gaussian convolution with precalculated kernels. :param input_data: pyopencl array with input :param output_data: pyopencl array with result :param sigma: width of the gaussian :param octave: related to the size on the input images * Uses a temporary buffer * Needs gaussian kernel to be available on device """ temp_data = self.buffers["tmp"] gaussian = self.buffers["gaussian_%s" % sigma] k1 = self.programs["convolution"].horizontal_convolution(self.queue, self.procsize[octave], self.wgsize[octave], input_data.data, temp_data.data, gaussian.data, numpy.int32(gaussian.size), *self.scales[octave]) k2 = self.programs["convolution"].vertical_convolution(self.queue, self.procsize[octave], self.wgsize[octave], temp_data.data, output_data.data, gaussian.data, numpy.int32(gaussian.size), *self.scales[octave]) if self.profile: self.events += [("Blur sigma %s octave %s" % (sigma, octave), k1), ("Blur sigma %s octave %s" % (sigma, octave), k2)] def _one_octave(self, octave): """ Does all scales within an octave :param octave: number of the octave """ prevSigma = self._initSigma logger.info("Calculating octave %i" % octave) wgsize = (128,) # (max(self.wgsize[octave]),) #TODO: optimize kpsize32 = numpy.int32(self.kpsize) self._reset_keypoints() octsize = numpy.int32(2 ** octave) last_start = numpy.int32(0) for scale in range(par.Scales + 2): sigma = prevSigma * math.sqrt(self.sigmaRatio ** 2 - 1.0) logger.info("Octave %i scale %s blur with sigma %s" % (octave, scale, sigma)) ######################################################################## # Calculate gaussian blur and DoG ######################################################################## self._gaussian_convolution(self.buffers[scale], self.buffers[scale + 1], sigma, octave) prevSigma *= self.sigmaRatio evt = self.programs["algebra"].combine(self.queue, self.procsize[octave], self.wgsize[octave], self.buffers[scale + 1].data, numpy.float32(-1.0), self.buffers[scale].data, numpy.float32(+1.0), self.buffers["DoGs"].data, numpy.int32(scale), *self.scales[octave]) if self.profile:self.events.append(("DoG %s %s" % (octave, scale), evt)) for scale in range(1, par.Scales + 1): # print("Before local_maxmin, cnt is %s %s %s" % (self.buffers["cnt"].get()[0], self.procsize[octave], self.wgsize[octave])) evt = self.programs["image"].local_maxmin(self.queue, self.procsize[octave], self.wgsize[octave], self.buffers["DoGs"].data, # __global float* DOGS, self.buffers["Kp_1"].data, # __global keypoint* output, numpy.int32(par.BorderDist), # int border_dist, numpy.float32(par.PeakThresh), # float peak_thresh, octsize, # int octsize, numpy.float32(par.EdgeThresh1), # float EdgeThresh0, numpy.float32(par.EdgeThresh), # float EdgeThresh, self.buffers["cnt"].data, # __global int* counter, kpsize32, # int nb_keypoints, numpy.int32(scale), # int scale, *self.scales[octave]) # int width, int height) if self.profile:self.events.append(("local_maxmin %s %s" % (octave, scale), evt)) # print("after local_max_min:") # print(self.buffers["Kp_1"].get()[:5]) # self.debug_holes("After local_maxmin %s %s" % (octave, scale)) procsize = calc_size((self.kpsize,), wgsize) # Refine keypoints # kp_counter = self.buffers["cnt"].get()[0] cp_evt = pyopencl.enqueue_copy(self.queue, self.cnt, self.buffers["cnt"].data) # kp_counter = self.cnt[0] # TODO: modify interp_keypoint so that it reads end_keypoint from GPU memory evt = self.programs["image"].interp_keypoint(self.queue, procsize, wgsize, self.buffers["DoGs"].data, # __global float* DOGS, self.buffers["Kp_1"].data, # __global keypoint* keypoints, last_start, # int start_keypoint, self.cnt[0], # int end_keypoint, numpy.float32(par.PeakThresh), # float peak_thresh, numpy.float32(self._initSigma), # float InitSigma, *self.scales[octave]) # int width, int height) if self.profile: self.events += [("get cnt", cp_evt), ("interp_keypoint %s %s" % (octave, scale), evt) ] # self.debug_holes("After interp_keypoint %s %s" % (octave, scale)) newcnt = self._compact(last_start) # print("after compaction:") # print(self.buffers["Kp_1"].get()[:5]) # self.debug_holes("After compact %s %s" % (octave, scale)) # self.debug.append(self.buffers[ scale)].get()) evt = self.programs["image"].compute_gradient_orientation(self.queue, self.procsize[octave], self.wgsize[octave], self.buffers[scale].data, # __global float* igray, self.buffers["tmp"].data, # __global float *grad, self.buffers["ori"].data, # __global float *ori, *self.scales[octave]) # int width,int height if self.profile:self.events.append(("compute_gradient_orientation %s %s" % (octave, scale), evt)) # Orientation assignement: 1D kernel, rather heavy kernel if newcnt and newcnt > last_start: # launch kernel only if neededwgsize = (128,) if self.USE_CPU: file_to_use = "orientation_cpu" # logger.info("Computing orientation with CPU-optimized kernels") else: file_to_use = "orientation_gpu" wgsize2 = self.kernels[file_to_use], procsize = int(newcnt * wgsize2[0]), # print "orientation_assignment:", procsize, wgsize2, last_start, self.buffers["cnt"].get()[0], newcnt # self.debug.append(grad.get()) # self.debug.append(ori.get()) evt = self.programs[file_to_use].orientation_assignment(self.queue, procsize, wgsize2, self.buffers["Kp_1"].data, # __global keypoint* keypoints, self.buffers["tmp"].data, # __global float* grad, self.buffers["ori"].data, # __global float* ori, self.buffers["cnt"].data, # __global int* counter, octsize, # int octsize, numpy.float32(par.OriSigma), # float OriSigma, //WARNING: (1.5), it is not "InitSigma (=1.6)" kpsize32, # int max of nb_keypoints, numpy.int32(last_start), # int keypoints_start, newcnt, # int keypoints_end, *self.scales[octave]) # int grad_width, int grad_height) # newcnt = self.buffers["cnt"].get()[0] #do not forget to update numbers of keypoints, modified above ! evt_cp = pyopencl.enqueue_copy(self.queue, self.cnt, self.buffers["cnt"].data) newcnt = self.cnt[0] # do not forget to update numbers of keypoints, modified above ! if self.USE_CPU or self.LOW_END == 2: file_to_use = "keypoints_cpu" logger.info("Computing descriptors with CPU optimized kernels") wgsize2 = self.kernels[file_to_use], procsize2 = int(newcnt * wgsize2[0]), else: if self.LOW_END == 1 : file_to_use = "keypoints_gpu1" logger.info("Computing descriptors with older-GPU optimized kernels") wgsize2 = self.kernels[file_to_use] else: file_to_use = "keypoints_gpu2" logger.info("Computing descriptors with newer-GPU optimized kernels") wgsize2 = self.kernels[file_to_use] procsize2 = int(newcnt * wgsize2[0]), wgsize2[1], wgsize2[2] try: evt2 = self.programs[file_to_use].descriptor(self.queue, procsize2, wgsize2, self.buffers["Kp_1"].data, # __global keypoint* keypoints, self.buffers["descriptors"].data, # ___global unsigned char *descriptors self.buffers["tmp"].data, # __global float* grad, self.buffers["ori"].data, # __global float* ori, octsize, # int octsize, numpy.int32(last_start), # int keypoints_start, self.buffers["cnt"].data, # int* keypoints_end, *self.scales[octave]) # int grad_width, int grad_height) except pyopencl.RuntimeError as error: self.LOW_END += 1 logger.error("Descriptor failed with %s. Switching to lower_end mode" % error) if self.USE_CPU or self.LOW_END == 2: file_to_use = "keypoints_cpu" logger.info("Computing descriptors with CPU optimized kernels") wgsize2 = self.kernels[file_to_use], procsize2 = int(newcnt * wgsize2[0]), else: if self.LOW_END == 1 : file_to_use = "keypoints_gpu1" logger.info("Computing descriptors with older-GPU optimized kernels") wgsize2 = self.kernels[file_to_use] else: file_to_use = "keypoints_gpu2" logger.info("Computing descriptors with newer-GPU optimized kernels") wgsize2 = self.kernels[file_to_use] procsize2 = int(newcnt * wgsize2[0]), wgsize2[1], wgsize2[2] evt2 = self.programs[file_to_use].descriptor(self.queue, procsize2, wgsize2, self.buffers["Kp_1"].data, # __global keypoint* keypoints, self.buffers["descriptors"].data, # ___global unsigned char *descriptors self.buffers["tmp"].data, # __global float* grad, self.buffers["ori"].data, # __global float* ori, octsize, # int octsize, numpy.int32(last_start), # int keypoints_start, self.buffers["cnt"].data, # int* keypoints_end, *self.scales[octave]) # int grad_width, int grad_height) if self.profile: self.events += [("orientation_assignment %s %s" % (octave, scale), evt), ("copy cnt D->H", evt_cp), ("descriptors %s %s" % (octave, scale), evt2)] # self.debug_holes("After orientation %s %s" % (octave, scale)) # last_start = self.buffers["cnt"].get()[0] evt_cp = pyopencl.enqueue_copy(self.queue, self.cnt, self.buffers["cnt"].data) last_start = self.cnt[0] if self.profile: self.events.append(("copy cnt D->H", evt_cp)) ######################################################################## # Rescale all images to populate all octaves ######################################################################## if octave < self.octave_max - 1: evt = self.programs["preprocess"].shrink(self.queue, self.procsize[octave + 1], self.wgsize[octave + 1], self.buffers[par.Scales].data, self.buffers[0].data, numpy.int32(2), numpy.int32(2), self.scales[octave][0], self.scales[octave][1], *self.scales[octave + 1]) if self.profile: self.events.append(("shrink %s->%s" % (self.scales[octave], self.scales[octave + 1]), evt)) results = numpy.empty((last_start, 4), dtype=numpy.float32) descriptors = numpy.empty((last_start, 128), dtype=numpy.uint8) if last_start: evt = pyopencl.enqueue_copy(self.queue, results, self.buffers["Kp_1"].data) evt2 = pyopencl.enqueue_copy(self.queue, descriptors, self.buffers["descriptors"].data) if self.profile: self.events += [("copy D->H", evt), ("copy D->H", evt2)] return results, descriptors def _compact(self, start=numpy.int32(0)): """ Compact the vector of keypoints starting from start :param start: start compacting at this adress. Before just copy :type start: numpy.int32 """ wgsize = self.max_workgroup_size, # (max(self.wgsize[0]),) #TODO: optimize kpsize32 = numpy.int32(self.kpsize) # kp_counter = self.buffers["cnt"].get()[0] cp0_evt = pyopencl.enqueue_copy(self.queue, self.cnt, self.buffers["cnt"].data) kp_counter = self.cnt[0] procsize = calc_size((self.kpsize,), wgsize) if kp_counter > 0.9 * self.kpsize: logger.warning("Keypoint counter overflow risk: counted %s / %s" % (kp_counter, self.kpsize)) logger.info("Compact %s -> %s / %s" % (start, kp_counter, self.kpsize)) # self.buffers["cnt"].set(numpy.array([start], dtype=numpy.int32)) self.cnt[0] = start cp1_evt = pyopencl.enqueue_copy(self.queue, self.buffers["cnt"].data, self.cnt) evt = self.programs["algebra"].compact(self.queue, procsize, wgsize, self.buffers["Kp_1"].data, # __global keypoint* keypoints, self.buffers["Kp_2"].data, # __global keypoint* output, self.buffers["cnt"].data, # __global int* counter, start, # int start, kp_counter) # int nbkeypoints # newcnt = self.buffers["cnt"].get()[0] cp2_evt = pyopencl.enqueue_copy(self.queue, self.cnt, self.buffers["cnt"].data) # print("After compaction, %i (-%i)" % (newcnt, kp_counter - newcnt)) # swap keypoints: self.buffers["Kp_1"], self.buffers["Kp_2"] = self.buffers["Kp_2"], self.buffers["Kp_1"] # memset buffer Kp_2 # self.buffers["Kp_2"].fill(-1, self.queue) mem_evt = self.programs["memset"].memset_float(self.queue, calc_size((4 * self.kpsize,), wgsize), wgsize, self.buffers["Kp_2"].data, numpy.float32(-1), numpy.int32(4 * self.kpsize)) if self.profile: self.events += [("copy cnt D->H", cp0_evt), ("copy cnt H->D", cp1_evt), ("compact", evt), ("copy cnt D->H", cp2_evt), ("memset 2", mem_evt) ] return self.cnt[0] def _reset_keypoints(self): """ Todo: implement directly in OpenCL instead of relying on pyOpenCL """ wg_size = min(self.max_workgroup_size, self.kernels["memset"]), evt1 = self.programs["memset"].memset_float(self.queue, calc_size((4 * self.kpsize,), wg_size), wg_size, self.buffers["Kp_1"].data, numpy.float32(-1), numpy.int32(4 * self.kpsize)) # evt2 = self.programs["memset"].memset_float(self.queue, calc_size((4 * self.kpsize,), wg_size), wg_size, self.buffers["Kp_2"].data, numpy.float32(-1), numpy.int32(4 * self.kpsize)) evt3 = self.programs["memset"].memset_int(self.queue, (1,), (1,), self.buffers["cnt"].data, numpy.int32(0), numpy.int32(1)) if self.profile: self.events += [("memset 1", evt1), ("memset cnt", evt3)] # self.buffers["Kp_1"].fill(-1, self.queue) # self.buffers["Kp_2"].fill(-1, self.queue) # self.buffers["cnt"].fill(0, self.queue) def count_kp(self, output): """ Print the number of keypoint per octave """ kpt = 0 for octave, data in enumerate(output): if output.shape[0] > 0: ksum = (data[:, 1] != -1.0).sum() kpt += ksum print("octave %i kp count %i/%i size %s ratio:%s" % (octave, ksum, self.kpsize, self.scales[octave], 1000.0 * ksum / self.scales[octave][1] / self.scales[octave][0])) print("Found total %i guess %s pixels per keypoint" % (kpt, self.shape[0] * self.shape[1] / kpt)) def debug_holes(self, label=""): print("%s %s" % (label, numpy.where(self.buffers["Kp_1"].get()[:, 1] == -1)[0])) def log_profile(self): """ If we are in debugging mode, prints out all timing for every single OpenCL call """ t = 0.0 orient = 0.0 descr = 0.0 if self.profile: for e in self.events: if "__len__" in dir(e) and len(e) >= 2: et = 1e-6 * (e[1].profile.end - e[1].profile.start) print("%50s:\t%.3fms" % (e[0], et)) t += et if "orient" in e[0]: orient += et if "descriptors" in e[0]: descr += et print("_"*80) print("%50s:\t%.3fms" % ("Total execution time", t)) print("%50s:\t%.3fms" % ("Total Orientation assignment", orient)) print("%50s:\t%.3fms" % ("Total Descriptors", descr)) def reset_timer(self): """ Resets the profiling timers """ with self._sem: self.events = [] if __name__ == "__main__": # Prepare debugging import scipy.misc lena = scipy.misc.lena() s = SiftPlan(template=lena) s.keypoints(lena) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/preprocess.cl������������������������������������������������0000644�0000000�0000000�00000027244�14741736366�020701� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* * Project: SIFT: An algorithm for image alignement * Kernel for image pre-processing: Normalization, ... * * * Copyright (C) 2013 European Synchrotron Radiation Facility * Grenoble, France * All rights reserved. * * Principal authors: J. Kieffer (kieffer@esrf.fr) * Last revision: 30/05/2013 * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * **/ //OpenCL extensions are silently defined by opencl compiler at compile-time: #ifdef DEBUG #ifdef cl_amd_printf #pragma OPENCL EXTENSION cl_amd_printf : enable #elif defined(cl_intel_printf) #pragma OPENCL EXTENSION cl_intel_printf : enable #else #define printf(...) #endif #endif #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 1024 #endif #define MAX_CONST_SIZE 16384 /** * \brief Cast values of an array of uint8 into a float output array. * * @param array_int: Pointer to global memory with the input data as unsigned8 array * @param array_float: Pointer to global memory with the output data as float array * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image */ __kernel void u8_to_float( __global unsigned char *array_int, __global float *array_float, const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if ((get_global_id(0)<IMAGE_W) && (get_global_id(1) < IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); array_float[i]=(float)array_int[i]; } //end test in image }//end kernel /** * \brief cast values of an array of uint16 into a float output array. * * @param array_int: Pointer to global memory with the input data as unsigned16 array * @param array_float: Pointer to global memory with the output data as float array * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image */ __kernel void u16_to_float(__global unsigned short *array_int, __global float *array_float, const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if ((get_global_id(0)<IMAGE_W) && (get_global_id(1) < IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); array_float[i]=(float)array_int[i]; } }//end kernel /** * \brief convert values of an array of int32 into a float output array. * * @param array_int: Pointer to global memory with the data in int * @param array_float: Pointer to global memory with the data in float * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image */ __kernel void s32_to_float( __global int *array_int, __global float *array_float, const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if ((get_global_id(0)<IMAGE_W) && (get_global_id(1) < IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); array_float[i] = (float)(array_int[i]); }//end test in image }//end kernel /** * \brief convert values of an array of int64 into a float output array. * * @param array_int: Pointer to global memory with the data in int * @param array_float: Pointer to global memory with the data in float * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image */ __kernel void s64_to_float( __global long *array_int, __global float *array_float, const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if ((get_global_id(0)<IMAGE_W) && (get_global_id(1) < IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); array_float[i] = (float)(array_int[i]); }//end test in image }//end kernel /** * \brief convert values of an array of float64 into a float output array. * * @param array_int: Pointer to global memory with the data in double * @param array_float: Pointer to global memory with the data in float * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image * * COMMENTED OUT AS THIS RUNS ONLY ON GPU WITH FP64 */ //__kernel void //double_to_float(__global double *array_int, // __global float *array_float, // const int IMAGE_W, // const int IMAGE_H //) //{ // int i = get_global_id(0) * IMAGE_W + get_global_id(1); // //Global memory guard for padding // if(i < IMAGE_W*IMAGE_H) // array_float[i] = (float)(array_int[i]); //}//end kernel /** * \brief convert RGB of an array of 3xuint8 into a float output array. * * @param array_int: Pointer to global memory with the data in int * @param array_float: Pointer to global memory with the data in float * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image * * WARNING: still untested (formula is the same as PIL) */ __kernel void rgb_to_float( __global unsigned char *array_int, __global float *array_float, const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if ((get_global_id(0)<IMAGE_W) && (get_global_id(1) < IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); array_float[i] = 0.299f*array_int[3*i] + 0.587f*array_int[3*i+1] + 0.114f*array_int[3*i+2]; } //end test in image }//end kernel /** * \brief Performs normalization of image between 0 and max_out (255) in place. * * * @param image Float pointer to global memory storing the image. * @param min_in: Minimum value in the input array * @param max_in: Maximum value in the input array * @param max_out: Maximum value in the output array (255 adviced) * @param IMAGE_W: Width of the image * @param IMAGE_H: Height of the image * **/ __kernel void normalizes( __global float *image, __constant float * min_in __attribute__((max_constant_size(MAX_CONST_SIZE))), __constant float * max_in __attribute__((max_constant_size(MAX_CONST_SIZE))), __constant float * max_out __attribute__((max_constant_size(MAX_CONST_SIZE))), const int IMAGE_W, const int IMAGE_H ) { //Global memory guard for padding if((get_global_id(0) < IMAGE_W) && (get_global_id(1)<IMAGE_H)){ int i = get_global_id(0) + IMAGE_W * get_global_id(1); image[i] = max_out[0]*(image[i]-min_in[0])/(max_in[0]-min_in[0]); };//end if in IMAGE };//end kernel /** * \brief shrink: Subsampling of the image_in into a smaller image_out. * * * @param image_in Float pointer to global memory storing the big image. * @param image_ou Float pointer to global memory storing the small image. * @param scale_w: Minimum value in the input array * @param scale_h: Maximum value in the input array * @param IMAGE_W: Width of the output image * @param IMAGE_H: Height of the output image * **/ __kernel void shrink(const __global float *image_in, __global float *image_out, const int scale_w, const int scale_h, const int LARGE_W, const int LARGE_H, const int SMALL_W, const int SMALL_H ) { int gid0=get_global_id(0), gid1=get_global_id(1); int j,i = gid0 + SMALL_W * gid1; //Global memory guard for padding if ((gid0 < SMALL_W) && (gid1 <SMALL_H)) { j = gid0 * scale_w + gid1 * scale_h * LARGE_W; image_out[i] = image_in[j]; };//end if in IMAGE };//end kernel /** * \brief bin: resampling of the image_in into a smaller image_out with higher dynamics. * * * @param image_in Float pointer to global memory storing the big image. * @param image_ou Float pointer to global memory storing the small image. * @param scale_width: Binning factor in horizontal * @param scale_heigth: Binning factor in vertical * @param orig_width: Original image size in horizontal * @param orig_heigth: Original image size in vertical * @param binned_width: Width of the output binned image * @param binned_heigth: Height of the output binned image * * Nota: this is a 2D kernel. This is non working and non TESTED !!! **/ __kernel void bin( const __global float *image_in, __global float *image_out, const int scale_width, const int scale_heigth, const int orig_width, const int orig_heigth, const int binned_width, const int binned_heigth ) { int gid0=get_global_id(0), gid1=get_global_id(1); //Global memory guard for padding if((gid0 < binned_width) && (gid1 < binned_heigth) ){ int j,i = gid0 + binned_width * gid1; float data=0.0f; int w, h, big_h, big_w; for (h=gid1 * scale_heigth; h<(gid1+1) * scale_heigth; h++){ if (h>=orig_heigth){ big_h = 2*orig_heigth - h - 1; }else{ big_h = h; } for (w=gid0*scale_width; w<(gid0+1)*scale_width; w++){ if (w>=orig_width){ big_w = 2*orig_width - w - 1; }else{ big_w = w; } j = big_h * orig_width + big_w; data += image_in[j]; };//end for horiz };//end for vertical image_out[i] = data/((float)(scale_width*scale_heigth)); };//end if in IMAGE };//end kernel /** * \brief gaussian: Initialize a vector with a gaussian function. * * * @param data: Float pointer to global memory storing the vector. * @param sigma: width of the gaussian * @param size: size of the function * **/ __kernel void gaussian( __global float *data, const float sigma, const int SIZE ) { int gid=get_global_id(0); if(gid < SIZE){ float x = ((float)gid - ((float)SIZE - 1.0f)/2.0f) / sigma; float y = exp(-x * x / 2.0f); data[gid] = y / sigma / sqrt(2.0f * M_PI_F); } } /** * \brief divide_cst: divide a vector by a constant. * * * @param data: Float pointer to global memory storing the vector. * @param value: calc data/value * @param size: size of the vector * **/ __kernel void divide_cst( __global float *data, __global float *value, const int SIZE ) { int gid=get_global_id(0); if(gid < SIZE){ data[gid] = data[gid] / value[0]; } } ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/reductions.cl������������������������������������������������0000644�0000000�0000000�00000015474�14741736366�020675� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* * Project: SIFT: An algorithm for image alignement * kernel for maximum and minimum calculation * * * Copyright (C) 2013 European Synchrotron Radiation Facility * Grenoble, France * All rights reserved. * * Principal authors: J. Kieffer (kieffer@esrf.fr) * Last revision: 21/06/2013 * * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * */ #ifndef WORKGROUP_SIZE #define WORKGROUP_SIZE 1024 #endif #define REDUCE(a, b) ((float2)(fmax(a.x,b.x),fmin(a.y,b.y))) #define READ_AND_MAP(i) ((float2)(data[i],data[i])) /** * \brief max_min_global_stage1: Look for the maximum an the minimum of an array. stage1 * * optimal workgroup size: 2^n greater than sqrt(SIZE), limited to 512 * optimal total item size: (workgroup size)^2 * if SIZE >total item size: adjust seq_count. * * @param data: Float pointer to global memory storing the vector of data. * @param out: Float2 pointer to global memory storing the temporary results (workgroup size) * @param seq_count: how many blocksize each thread should read * @param SIZE: size of the * **/ __kernel void max_min_global_stage1( __global const float *data, __global float2 *out, unsigned int SIZE){ __local volatile float2 ldata[WORKGROUP_SIZE]; unsigned int group_size = min((unsigned int) get_local_size(0), (unsigned int) WORKGROUP_SIZE); unsigned int lid = get_local_id(0); float2 acc; unsigned int big_block = group_size * get_num_groups(0); unsigned int i = lid + group_size * get_group_id(0); //get_global_id(0); if (lid<SIZE) acc = READ_AND_MAP(lid); else acc = READ_AND_MAP(0); while (i<SIZE){ acc = REDUCE(acc, READ_AND_MAP(i)); i += big_block; //get_global_size(0); } ldata[lid] = acc; barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 512) && ((lid + 512)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 512]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 256) && ((lid + 256)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 256]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 128) && ((lid + 128)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 128]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 64 ) && ((lid + 64 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 64 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 32 ) && ((lid + 32 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 32 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 16 ) && ((lid + 16 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 16 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 8 ) && ((lid + 8 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 8 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 4 ) && ((lid + 4 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 4 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 2 ) && ((lid + 2 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 2 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 1 ) && ((lid + 1 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 1 ]); } barrier(CLK_LOCAL_MEM_FENCE); out[get_group_id(0)] = ldata[0]; } /** * \brief global_max_min: Look for the maximum an the minimum of an array. * * * * @param data2: Float2 pointer to global memory storing the vector of pre-reduced data (workgroup size). * @param maximum: Float pointer to global memory storing the maximum value * @param minumum: Float pointer to global memory storing the minimum value * **/ __kernel void max_min_global_stage2( __global const float2 *data2, __global float *maximum, __global float *minimum){ __local float2 ldata[WORKGROUP_SIZE]; unsigned int lid = get_local_id(0); unsigned int group_size = min((unsigned int) get_local_size(0), (unsigned int) WORKGROUP_SIZE); float2 acc = (float2)(-1.0f, -1.0f); if (lid<=group_size){ ldata[lid] = data2[lid]; }else{ ldata[lid] = acc; } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 512) && ((lid + 512)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 512]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 256) && ((lid + 256)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 256]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 128) && ((lid + 128)<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 128]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 64 ) && ((lid + 64 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 64 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 32 ) && ((lid + 32 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 32 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 16 ) && ((lid + 16 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 16 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 8 ) && ((lid + 8 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 8 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 4 ) && ((lid + 4 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 4 ]); } barrier(CLK_LOCAL_MEM_FENCE); if ((lid<group_size) && (lid < 2 ) && ((lid + 2 )<group_size)){ ldata[lid] = REDUCE(ldata[lid], ldata[lid + 2 ]); } barrier(CLK_LOCAL_MEM_FENCE); if (lid == 0 ){ if ( 1 < group_size){ acc = REDUCE(ldata[0], ldata[1]); }else{ acc = ldata[0]; } maximum[0] = acc.x; minimum[0] = acc.y; } } ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/sift.py������������������������������������������������������0000644�0000000�0000000�00000002343�14741736366�017504� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������__contact__ = "jerome.kieffer@esrf.eu" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from .param import par ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/transform.cl�������������������������������������������������0000644�0000000�0000000�00000011405�14741736366�020517� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* * * Computes the transformation to correct the image given a set of parameters * [[a b c] * [d e f]] * * = [matrix, offset] * * @param image: Pointer to global memory with the input image * @param output: Pointer to global memory with the outpu image * @param matrix: "float4" struct for the transformation matrix * @param offset: "float2" struct for the offset vector * @param image_width Image width * @param image_height Image height * @param output_width Output width, can differ from image width * @param output_height Ouput height, can differ from image height * @param fill: Default value to fill the image with * @param mode: Interpolation mode. 0 = no interpolation, 1 = bilinear interpolation * */ __kernel void transform( __global float* image, __global float* output, __global float4* matrix, __global float2* offset, int image_width, int image_height, int output_width, int output_height, float fill, int mode) { int gid0 = get_global_id(0); int gid1 = get_global_id(1); float4 mat = *matrix; float2 off = *offset; if (!(gid0 < output_width && gid1 < output_height)) return; int x = gid0, y = gid1; float tx = dot(mat.s23,(float2) (y,x)), //be careful to the order that differs from Python...Here Fortran convention is used ty = dot(mat.s01,(float2) (y,x)); tx += off.s1; ty += off.s0; int tx_next = ((int) tx) +1, tx_prev = (int) tx, ty_next = ((int) ty) +1, ty_prev = (int) ty; float interp = fill; if (0.0f <= tx && tx < image_width && 0.0f <= ty && ty < image_height) { if (mode == 1) { //bilinear interpolation float image_p = image[ty_prev*image_width+tx_prev], image_x = image[ty_prev*image_width+tx_next], image_y = image[ty_next*image_width+tx_prev], image_n = image[ty_next*image_width+tx_next]; if (tx_next >= image_width) { image_x = fill; image_n = fill; } if (ty_next >= image_height) { image_y = fill; image_n = fill; } //bilinear interpolation float interp1 = ((float) (tx_next - tx)) * image_p + ((float) (tx - tx_prev)) * image_x, interp2 = ((float) (tx_next - tx)) * image_y + ((float) (tx - tx_prev)) * image_n; interp = ((float) (ty_next - ty)) * interp1 + ((float) (ty - ty_prev)) * interp2; } else { //no interpolation interp = image[((int) ty)*image_width+((int) tx)]; } } //to be coherent with scipy.ndimage.interpolation.affine_transform float u = -0.5; //-0.95 float v = -0.5; if (tx >= image_width+u) { interp = fill; } if (ty >= image_height+v) { interp = fill; } output[gid1*output_width+gid0] = interp; } /* * Same as previously except that dim0 [0..4[ is the color (R,G,B), 4 is never used * dim1 [0..width[ * dim2 [0..height[ * */ __kernel void transform_RGB( __global unsigned char* image, __global unsigned char* output, __global float4* matrix, __global float2* offset, int image_width, int image_height, int output_width, int output_height, float fill, int mode) { int color = get_global_id(0); int gid0 = get_global_id(1); int gid1 = get_global_id(2); float4 mat = *matrix; float2 off = *offset; if (!(gid0 < output_width && gid1 < output_height && color<3)) return; int x = gid0, y = gid1; float tx = dot(mat.s23,(float2) (y,x)), //be careful to the order that differs from Python...Here Fortran convention is used ty = dot(mat.s01,(float2) (y,x)); tx += off.s1; ty += off.s0; int tx_next = ((int) tx) +1, tx_prev = (int) tx, ty_next = ((int) ty) +1, ty_prev = (int) ty; float interp = fill; if (0.0f <= tx && tx < image_width && 0.0f <= ty && ty < image_height) { if (mode == 1) { //bilinear interpolation float image_p = image[3*(ty_prev*image_width+tx_prev) + color], image_x = image[3*(ty_prev*image_width+tx_next) + color], image_y = image[3*(ty_next*image_width+tx_prev) + color], image_n = image[3*(ty_next*image_width+tx_next) + color]; if (tx_next >= image_width) { image_x = fill; image_n = fill; } if (ty_next >= image_height) { image_y = fill; image_n = fill; } //bilinear interpolation float interp1 = ((float) (tx_next - tx)) * image_p + ((float) (tx - tx_prev)) * image_x, interp2 = ((float) (tx_next - tx)) * image_y + ((float) (tx - tx_prev)) * image_n; interp = ((float) (ty_next - ty)) * interp1 + ((float) (ty - ty_prev)) * interp2; } else { //no interpolation interp = image[ 3 * (((int) ty)*image_width+((int) tx)) + color]; } } //to be coherent with scipy.ndimage.interpolation.affine_transform float u = -0.5; //-0.95 float v = -0.5; if (tx >= image_width+u) { interp = fill; } if (ty >= image_height+v) { interp = fill; } output[3*(gid1*output_width+gid0) + color] = interp; } �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMath/sift/utils.py�����������������������������������������������������0000644�0000000�0000000�00000010646�14741736366�017704� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python # -*- coding: utf8 -*- # # Project: Sift implementation in Python + OpenCL # https://github.com/kif/sift_pyocl # """ Contains a class for creating a plan, allocating arrays, compiling kernels and other things like that """ from __future__ import division __authors__ = ["Jérôme Kieffer"] __contact__ = "jerome.kieffer@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "2013-06-13" __status__ = "beta" __license__ = """ Copyright (c) J. Kieffer, European Synchrotron Radiation Facility Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from math import ceil import numpy def calc_size(shape, blocksize): """ Calculate the optimal size for a kernel according to the workgroup size """ if "__len__" in dir(blocksize): return tuple((int(i) + int(j) - 1) & ~(int(j) - 1) for i, j in zip(shape, blocksize)) else: return tuple((int(i) + int(blocksize) - 1) & ~(int(blocksize) - 1) for i in shape) def kernel_size(sigma, odd=False, cutoff=4): """ Calculate the optimal kernel size for a convolution with sigma :param sigma: width of the gaussian :param odd: enforce the kernel to be odd (more precise ?) """ size = int(ceil(2 * cutoff * sigma + 1)) if odd and size % 2 == 0: size += 1 return size def sizeof(shape, dtype="uint8"): """ Calculate the number of bytes needed to allocate for a given structure :param shape: size or tuple of sizes :param dtype: data type """ itemsize = numpy.dtype(dtype).itemsize cnt = 1 if "__len__" in dir(shape): for dim in shape: cnt *= dim else: cnt = int(shape) return cnt * itemsize def _gcd(a, b): """Calculate the greatest common divisor of a and b""" while b: a, b = b, a%b return a def matching_correction(matching): ''' Given the matching between two list of keypoints, return the linear transformation to correct kp2 with respect to kp1 ''' N = matching.shape[0] #solving normals equations for least square fit X = numpy.zeros((2*N,6)) X[::2,2:] = 1,0,0,0 X[::2,0] = matching.x[:,0] X[::2,1] = matching.y[:,0] X[1::2,0:3] = 0,0,0 X[1::2,3] = matching.x[:,0] X[1::2,4] = matching.y[:,0] X[1::2,5] = 1 y = numpy.zeros((2*N,1)) y[::2,0] = matching.x[:,1] y[1::2,0] = matching.y[:,1] A = numpy.dot(X.transpose(),X) sol = numpy.dot(numpy.linalg.inv(A),numpy.dot(X.transpose(),y)) # sol = numpy.dot(numpy.linalg.pinv(X),y) #pseudo-inverse is slower # MSE = numpy.linalg.norm(y - numpy.dot(X,sol))**2/N #Mean Squared Error, if needed return sol def bin2RGB(img): """ Perform a 2x2 binning of the image """ dtype = img.dtype if dtype == numpy.uint8: out_dtype = numpy.int32 else: out_dtype = dtype shape = img.shape if len(shape) == 3: new_shape = shape[0] // 2, shape[1] // 2, shape[2] new_img = img else: new_shape = shape[0] // 2, shape[1] // 2, 1 new_img = img.reshape((shape[0], shape[1], 1)) out = numpy.zeros(new_shape, dtype=out_dtype) out += new_img[::2,::2,:] out += new_img[1::2,::2,:] out += new_img[1::2,1::2,:] out += new_img[::2,1::2,:] out /= 4 if len(shape) != 3: out.shape = new_shape[0],new_shape[1] if dtype == numpy.uint8: return out.astype(dtype) else: return out ������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMisc/������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015211� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMisc/PhysicalMemory.py�������������������������������������������������0000644�0000000�0000000�00000013034�14741736366�020540� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import ctypes import traceback import logging _logger = logging.getLogger(__name__) def loadCLibrary(name="libc.so"): try: libc = ctypes.CDLL(name) except OSError: text = traceback.format_exc() if "invalid ELF header" in text: library = text.split(": ") if len(library) > 1: libraryFile = library[1] if os.path.exists(libraryFile): # to read some line f = open(libraryFile, 'r') for i in range(10): line = f.readline() if name in line: f.close() lineSplit = line.split(name) libraryFile = lineSplit[0].split()[-1] +\ name+\ lineSplit[1].split()[0] break libraryFile = line[line.index(libraryFile):].split()[0] libc = ctypes.CDLL(libraryFile) else: raise return libc if sys.platform == 'win32': class MEMORYSTATUSEX(ctypes.Structure): _fields_ = [ ("dwLength", ctypes.c_ulong), ("dwMemoryLoad", ctypes.c_ulong), ("ullTotalPhys", ctypes.c_ulonglong), ("ullAvailPhys", ctypes.c_ulonglong), ("ullTotalPageFile", ctypes.c_ulonglong), ("ullAvailPageFile", ctypes.c_ulonglong), ("ullTotalVirtual", ctypes.c_ulonglong), ("ullAvailVirtual", ctypes.c_ulonglong), ("sullAvailExtendedVirtual", ctypes.c_ulonglong), ] def __init__(self): # have to initialize this to the size of MEMORYSTATUSEX self.dwLength = ctypes.sizeof(self) super(MEMORYSTATUSEX, self).__init__() def getPhysicalMemory(): #print("MemoryLoad: %d%%" % (stat.dwMemoryLoad)) #print("Physical memory = %d" % stat.ullTotalPhys) #print(stat.ullAvailPhys) stat = MEMORYSTATUSEX() ctypes.windll.kernel32.GlobalMemoryStatusEx(ctypes.byref(stat)) return stat.ullTotalPhys def getAvailablePhysicalMemory(): stat = MEMORYSTATUSEX() ctypes.windll.kernel32.GlobalMemoryStatusEx(ctypes.byref(stat)) value = stat.ullAvailPhys return value def getAvailablePhysicalMemoryOrNone(): try: value = getAvailablePhysicalMemory() if value < 0: # Value makes no sense. # return None as requested in case of failure print("WARNING: Returned physical memory does not make sense %d" % \ value) return None else: return value except Exception: return None elif sys.platform.startswith('linux'): def getPhysicalMemory(): return os.sysconf('SC_PAGESIZE') * os.sysconf('SC_PHYS_PAGES') elif sys.platform == 'darwin': def getPhysicalMemory(): libc = loadCLibrary("libc.dylib") memsize = ctypes.c_uint64(0) length = ctypes.c_size_t(ctypes.sizeof(memsize)) name = "hw.memsize" if hasattr(name, "encode"): # Passing a string was returning 0 memory size under Python 3.5 name = name.encode() libc.sysctlbyname(name, ctypes.byref(memsize), ctypes.byref(length), None, 0) return memsize.value else: def getPhysicalMemory(): return None def getPhysicalMemoryOrNone(): try: value = getPhysicalMemory() if value <= 0: # Value makes no sense. # return None as requested in case of failure _logger.warning("WARNING: Returned physical memory does not make sense %d", value) return None else: return value except Exception: return None if __name__ == "__main__": print("Physical memory = %d" % getPhysicalMemory()) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMisc/ProfilingUtils.py�������������������������������������������������0000644�0000000�0000000�00000011126�14741736366�020545� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: import tracemalloc import linecache except ImportError: tracemalloc = None import cProfile import pstats try: from StringIO import StringIO except ImportError: from io import StringIO import os import logging from contextlib import contextmanager logger = logging.getLogger(__name__) def print_malloc_snapshot(snapshot, key_type='lineno', limit=10, units='KB'): """ :param tracemalloc.Snapshot snapshot: :param str key_type: :param int limit: limit number of lines :param str units: B, KB, MB, GB """ n = ['b', 'kb', 'mb', 'gb'].index(units.lower()) sunits, units = units, 1024**n snapshot = snapshot.filter_traces(( tracemalloc.Filter(False, "<frozen importlib._bootstrap>"), tracemalloc.Filter(False, "<unknown>"), )) top_stats = snapshot.statistics(key_type) total = sum(stat.size for stat in top_stats) print('================Memory profile================') for index, stat in enumerate(top_stats, 1): frame = stat.traceback[0] # replace "/path/to/module/file.py" with "module/file.py" #filename = os.sep.join(frame.filename.split(os.sep)[-2:]) filename = frame.filename print("#%s: %s:%s: %.1f %s" % (index, filename, frame.lineno, stat.size / units, sunits)) line = linecache.getline(frame.filename, frame.lineno).strip() if line: print(' %s' % line) if index >= limit: break other = top_stats[index:] if other: size = sum(stat.size for stat in other) print("%s other: %.1f %s" % (len(other), size / units, sunits)) print("Total allocated size: %.1f %s" % (total / units, sunits)) print('============================================') @contextmanager def print_malloc_context(**kwargs): """ :param **kwargs: see print_malloc_snapshot """ if tracemalloc is None: logger.error('tracemalloc required') return tracemalloc.start() yield snapshot = tracemalloc.take_snapshot() print_malloc_snapshot(snapshot, **kwargs) @contextmanager def print_time_context(restrictions=None, sortby='cumtime'): pr = cProfile.Profile() pr.enable() yield pr.disable() s = StringIO() ps = pstats.Stats(pr, stream=s).sort_stats(sortby) if restrictions is None: restrictions = (0.1,) ps.print_stats(*restrictions) print('================Time profile================') print(s.getvalue()) print('============================================') @contextmanager def profile(memory=True, time=True, memlimit=10, restrictions=None, sortby='cumtime'): if not memory and not time: yield elif memory and time: with print_time_context(restrictions=restrictions, sortby=sortby): with print_malloc_context(limit=memlimit): yield elif memory: with print_malloc_context(limit=memlimit): yield else: with print_time_context(restrictions=restrictions, sortby=sortby): yield ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaMisc/__init__.py�������������������������������������������������������0000644�0000000�0000000�00000000000�14741736366�017317� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/���������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015740� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/SixCircle.py���������������������������������������������������0000644�0000000�0000000�00000040445�14741736366�020215� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Methods to convert single point or complete images to reciprocal space. It is fully vectorized and therefore very fast for converting complete images. """ import numpy cos = numpy.cos sin = numpy.sin class SixCircle(object): def __init__(self): self._energy = None self._lambda = None self._K = 1.0 self._ub = None self.setLambda(1.0) self.setUB([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]) def setUB(self, ublist): """ :param ublist: the ub matrix element values :type ublist: list, tuple or array to convert to a 3x3 matrix """ self._ub = numpy.array(ublist, copy=True, dtype=numpy.float64) self._ub.shape = 3, 3 def getUB(self): """ :return: the ub matrix element values :rtype: list(float) """ a = self._ub * 1 a.shape = -1 return a.tolist() def setEnergy(self, energy): """ :param energy: the energy to set in KeV :type energy: float """ self._lambda = 12.39842 / energy self._energy = energy self.update() def getEnergy(self): """ :return: the energy in KeV :rtype: float """ return self._energy def setLambda(self, value): """ :param value: the wavelength to set in Angstroms :type value: float """ self._lambda = value self._energy = 12.39842 / value self.update() def getLambda(self): """ :return: the wavelength in Angstroms :rtype: float """ return self._lambda def update(self): """ compute K from the wavelength value """ self._K = (2 * numpy.pi) / self._lambda def getPhiMatrix(self, phi): """ :param phi: the phi angle in degree :type phi: float :return: the rotation matrix of the phi axis for a given angle :rtype: numpy.ndarray """ angle = numpy.radians(phi) cphi = cos(angle) sphi = sin(angle) return numpy.array([[cphi, sphi, 0.0], [-sphi, cphi, 0.0], [0.0, 0.0, 1.0]], numpy.float64) def getChiMatrix(self, chi): """ :param chi: the chi angle in degree :type chi: float :return: the rotation matrix of the chi :rtype: numpy.ndarray """ angle = numpy.radians(chi) cchi = cos(angle) schi = sin(angle) return numpy.array([[cchi, 0.0, schi], [0.0, 1.0, 0.0], [-schi, 0.0, cchi]], numpy.float64) def getThetaMatrix(self, th): """ :param th: the theta angle in Degree :type th: float :return: the rotation matrix of the theta axis :rtype: numpy.ndarray """ angle = numpy.radians(th) cth = cos(angle) sth = sin(angle) return numpy.array([[cth, sth, 0], [-sth, cth, 0], [0, 0, 1]], numpy.float64) def getDeltaMatrix(self, delta): """ :param delta: the delta angle in Degree :type delta: float :return: the rotation matrix of the delta axis :rtype: numpy.ndarray """ angle = numpy.radians(delta) cdel = cos(angle) sdel = sin(angle) return numpy.array([[cdel, sdel, 0], [-sdel, cdel, 0], [0, 0, 1]], numpy.float64) def getGammaMatrix(self, gamma): """ :param gamma: the gamma angle in Degree :type gamma: float :return: the rotation matrix of the gamma axis :rtype: numpy.ndarray """ angle = numpy.radians(gamma) cgam = cos(angle) sgam = sin(angle) return numpy.array([[1.0, 0.0, 0.0], [0.0, cgam, -sgam], [0.0, sgam, cgam]], numpy.float64) def getMuMatrix(self, mu): """ :param mu: the mu angle in degree :type mu: float :return: the rotation matrix of the mu axis :rtype: numpy.ndarray """ angle = numpy.radians(mu) cmu = cos(angle) smu = sin(angle) return numpy.array([[1.0, 0.0, 0.0], [0.0, cmu, -smu], [0.0, smu, cmu]], numpy.float64) def _getDeltaDotGammaMatrix(self, delta, gamma, gamma_first=False): """ :param delta: the delta angles in Degrees :type delta: numpy.ndarray (1D) :param gamma: the gamma values in Degrees :type gamma: numpy.ndarray (1D) :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: all the rotation matrix of all the delta, gamma combinations :rtype: numpy.ndarray (3x3, len(delta) * len(gamma)) """ delr = numpy.radians(delta) gamr = numpy.radians(gamma) if gamma_first: cgam, cdel = numpy.meshgrid(numpy.cos(gamr), numpy.cos(delr)) sgam, sdel = numpy.meshgrid(numpy.sin(gamr), numpy.sin(delr)) else: #this is to give the same result as Didier and not the transpose cdel, cgam = numpy.meshgrid(numpy.cos(delr), numpy.cos(gamr)) sdel, sgam = numpy.meshgrid(numpy.sin(delr), numpy.sin(gamr)) deltaDotGamma = numpy.zeros((3, 3, len(delta), len(gamma)), numpy.float64) # 1st row of dot(deltamatrix, gammaMatrix) deltaDotGamma[0, 0, :] = cdel deltaDotGamma[0, 1, :] = (sdel * cgam)[:] deltaDotGamma[0, 2, :] = -sdel * sgam # 2nd row of dot(deltaMatrix, gammaMatrix) deltaDotGamma[1, 0, :] = -sdel deltaDotGamma[1, 1, :] = cdel * cgam deltaDotGamma[1, 2, :] = -cdel * sgam # 3rd row of dot(deltaMatrix, gammaMatrix) deltaDotGamma[2, 0, :] = 0.0 deltaDotGamma[2, 1, :] = sgam deltaDotGamma[2, 2, :] = cgam deltaDotGamma.shape = 3, 3, len(delta) * len(gamma) return deltaDotGamma def getQMu(self, phi=0., chi=0., theta=0., mu=0., delta=0., gamma=0., gamma_first=False): """ :param phi: angle in Degrees :type phi: float :param chi: angle in Degrees :type chi: float :param theta: angle in Degrees :type theta: float :param mu: angle in Degrees :type mu: float :param delta: angle in Degrees :type delta: float or numpy.ndarray :param gamma: angle in Degrees :type gamma: float or numpy.ndarray :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: Q coordinates for all the given delta, gamma values :rtype: numpy.ndarray (len(delta), len(gamma), 3) """ PHIi = self.getPhiMatrix(phi).T CHIi = self.getChiMatrix(chi).T THi = self.getThetaMatrix(theta).T MUi = self.getMuMatrix(mu).T tmpArray = numpy.dot(PHIi, numpy.dot(CHIi, numpy.dot(THi, MUi))) Q = self.getQLab(mu=mu, delta=delta, gamma=gamma, gamma_first=gamma_first) Q.shape = 3, -1 Q = numpy.transpose(numpy.dot(tmpArray, Q)) if type(delta) in [type(1.0), type(1)]: lendelta = 1 else: lendelta = len(delta) if type(gamma) in [type(1.0), type(1)]: lengamma = 1 else: lengamma = len(gamma) Q.shape = lengamma, lendelta, 3 return Q def getQSurface(self, phi=0., chi=0., theta=0., mu=0., delta=0., gamma=0., gamma_first=False): """ :param phi: angle in Degrees :type phi: float :param chi: angle in Degrees :type chi: float :param theta: angle in Degrees :type theta: float :param mu: angle in Degrees :type mu: float :param delta: angle in Degrees :type delta: float or numpy.ndarray :param gamma: angle in Degrees :type gamma: float or numpy.ndarray :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: Q values for all the given delta, gamma values This is only true if the diffractometer has been properly aligned. """ PHIi = self.getPhiMatrix(phi).T CHIi = self.getChiMatrix(chi).T THi = self.getThetaMatrix(theta).T MUi = self.getMuMatrix(mu).T tmpArray = numpy.dot(PHIi, numpy.dot(CHIi, numpy.dot(THi, MUi))) Q = self.getQLab(mu=mu, delta=delta, gamma=gamma, gamma_first=gamma_first) Q.shape = 3, -1 return (numpy.dot(tmpArray, Q)) def getQLab(self, mu=0.0, delta=0.0, gamma=0.0, gamma_first=False): """ :param mu: angle in Degrees :type mu: float :param delta: angle in Degrees :type delta: float or numpy.ndarray :param gamma: angle in Degrees :type gamma: float or numpy.ndarray :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: the Q coordinates in the Lab system :rtype: numpy.ndarray () Q = Kf - Ki = (2 * pi / lambda) * (MU DELTA GAMMA - I) * (0, 1, 0) This gives (transforming angles to radians): (2*pi/lambda) * ( sin(delta) cos(gamma), cos(mu) cos(delta) cos(gamma) - sin(mu) sin(gamma) - 1, sin(mu) cos(delta) cos(gamma) + cos(mu) sin(gamma)) or, in terms of DG = numpy.dot(DELTA, GAMMA): (2*pi/lambda) * ( DG[0,1], cos(mu)* DG[1,1] - sin(mu) * DG[2,1] - 1 sin(mu)* DG[1,1] + cos(mu) * DG[2,1]) """ alpha = numpy.radians(mu) cmu = cos(alpha) smu = sin(alpha) alpha = numpy.radians(delta) cdel = cos(alpha) sdel = sin(alpha) alpha = numpy.radians(gamma) cgam = cos(alpha) sgam = sin(alpha) if isinstance(delta, numpy.ndarray) or \ isinstance(gamma, numpy.ndarray): if gamma_first: cgam, cdel = numpy.meshgrid(cgam, cdel) sgam, sdel = numpy.meshgrid(sgam, sdel) else: # this is to give the same result as Didier and not the transpose cdel, cgam = numpy.meshgrid(cdel, cgam) sdel, sgam = numpy.meshgrid(sdel, sgam) Q = numpy.zeros((3, sdel.shape[0], sdel.shape[1]), numpy.float64) Q[0, :, :] = sdel * cgam Q[1, :, :] = cmu * cdel * cgam - smu * sgam - 1 Q[2, :, :] = smu * cdel * cgam + cmu * sgam else: Q = numpy.zeros((3, 1), numpy.float64) Q[0, 0] = sdel * cgam Q[1, 0] = cmu * cdel * cgam - smu * sgam - 1 Q[2, 0] = smu * cdel * cgam + cmu * sgam return Q * self._K def getHKL(self, phi=0., chi=0., theta=0., mu=0., delta=0., gamma=0., gamma_first=False): """ :param phi: angle in Degrees :type phi: float :param chi: angle in Degrees :type chi: float :param theta: angle in Degrees :type theta: float :param mu: angle in Degrees :type mu: float :param delta: angle in Degrees :type delta: float or numpy.ndarray :param gamma: angle in Degrees :type gamma: float or numpy.ndarray :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: HKL values for all the given delta, gamma values """ PHIi = self.getPhiMatrix(phi).T CHIi = self.getChiMatrix(chi).T THi = self.getThetaMatrix(theta).T MUi = self.getMuMatrix(mu).T UBi = numpy.linalg.inv(self._ub) tmpArray = numpy.dot(UBi, numpy.dot(PHIi, numpy.dot(CHIi, numpy.dot(THi, MUi)))) Q = self.getQLab(mu=mu, delta=delta, gamma=gamma, gamma_first=gamma_first) Q.shape = 3, -1 return (numpy.dot(tmpArray, Q)) def getHKL(wavelength, ub, phi=0., chi=0., theta=0., mu=0., delta=0., gamma=0., gamma_first=False): """ A convenience function that takes the whole input in one go. :param wavelength: the wavelength in Angstroms :type wavelength: float :param ub: the ub matrix element values :type ub: list(float) :param phi: angle in Degrees :type phi: float :param chi: angle in Degrees :type chi: float :param theta: angle in Degrees :type theta: float :param mu: angle in Degrees :type mu: float :param delta: angle in Degrees :type delta: float or numpy.ndarray :param gamma: angle in Degrees :type gamma: float or numpy.ndarray :param gamma_first: if delta and gamma are arrays, which one variates first. :type gamma_first: boolean :return: HKL values for all the given delta, gamma values """ a = SixCircle() a.setLambda(wavelength) a.setUB(ub) return a.getHKL(delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma, gamma_first=gamma_first) def main(): wavelength = 0.363504 UB = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] UB[0] = -4.080 UB[1] = 0.000 UB[2] = 0.000 UB[3] = 0.000 UB[4] = 4.080 UB[5] = 0.000 UB[6] = 0.000 UB[7] = 0.000 UB[8] = -4.080 d = SixCircle() d.setLambda(wavelength) d.setUB(UB) print("H = 0 K = 0 L = 1") delta, theta, chi, phi, mu, gamma = 13.5558, 6.77779, -90, 0.0, 0.0, 0.0 print(d.getHKL(delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma)) print("H = 0 K = 1 L = 0") delta, theta, chi, phi, mu, gamma = 13.5558, 96.77779, -90, 0.0, 0.0, 0.0 print(d.getHKL(delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma)) print("H = 1 K = 1 L = 1") delta, theta, chi, phi, mu, gamma = 23.5910, 47.0595, -135., 0.0, 0.0, 0.0 print(d.getHKL(delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma)) print("H = 2 K = -1 L = 0") delta, theta, chi, phi, mu, gamma = 30.6035, -11.2635, 180.0, 0.0, 0.0, 0.0 print(d.getHKL(delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma)) print("H = 2 K = -1 L = 0") print(getHKL(wavelength, UB, delta=delta, theta=theta, chi=chi, phi=phi, mu=mu, gamma=gamma)) if __name__ == "__main__": main() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/__init__.py����������������������������������������������������0000644�0000000�0000000�00000003312�14741736366�020057� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os __path__ += [os.path.join(os.path.dirname(__file__), "xrf")] __path__ += [os.path.join(os.path.dirname(__file__), "xas")] ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/�����������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016533� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/XASClass.py������������������������������������������������0000644�0000000�0000000�00000152654�14741736366�020552� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "M. Sanchez del Rio & V.A. Sole - ESRF" __doc__ = """Processing of XAS data. For the time being, processing is very basic. For state-of-the-art XAS you should take a look at dedicated packages like IFEFFIT or Viper/XANES dactyloscope. Hopefully this module can be enhanced to use those packages if present.""" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy import logging import numpy import time from PyMca5.PyMca import XASNormalization from PyMca5.PyMca import linalg try: from PyMca5.PyMca import _xas _XAS = True except ImportError: _XAS = False _logger = logging.getLogger(__name__) def polynom(x, parameters): if hasattr(x, 'shape'): output = numpy.zeros(x.shape) else: output = 0.0 for i in range(len(parameters)): output += parameters[i] * pow(x, i) return output def victoreen(x, parameters): return parameters[0] * pow(x, -3) + parameters[1] * pow(x, -4) def modifiedVictoreen(x, parameters): return parameters[0] * pow(x, -3) + parameters[1] def e2k(energy, e0=0.0): r""" e2k(energy,e0=0.0): converts from E (eV) to k (A^-1) note: we use the convention that points with E<e0 will have negative k """ codata_ec = numpy.array(1.602176565e-19) codata_me = numpy.array(9.10938291e-31) codata_h = numpy.array(6.62606957e-34) codata_hbar = codata_h/2.0/numpy.pi #; converts a set in energy to a set in k #; the negative energies (below edge) are treated as negative k tmpx = energy - e0 ccte = numpy.sqrt(codata_ec*2*codata_me/codata_hbar/codata_hbar)*1e-10 tmpxx = ((tmpx > 0) * 2-1) * numpy.sqrt(numpy.abs(tmpx)) * ccte return tmpxx def k2e(kvalues): codata_ec = numpy.array(1.602176565e-19) codata_me = numpy.array(9.10938291e-31) codata_h = numpy.array(6.62606957e-34) codata_hbar = codata_h/2.0/numpy.pi #; converts a set in k to energy #; the negative energies (below edge) are treated as negative k ccte = numpy.power(codata_hbar,2) / (2 / codata_me / codata_ec * 1e20) tmpx = kvalues tmpx = ((tmpx > 0) * 2-1) * tmpx * tmpx * ccte return tmpx def polspl_evaluate(set2,xl,xh,c,nc,nr): r""" polspl_evaluate(set2,xl,xh,c,nc,nr): for internal use of postedge PURPOSE: evaluate the combined spline fitted from its coefficients. INPUTS: set2: the set with the original data xl,xh arrays contain nr adjacent ranges over which to fit individual polynomials. c array containing the polynomial coefficients resulting from the fit nc array that specifies how many poly coeffs to use in each range nr the number of adjacent ranges OUTPUTS: a variable to receive a set with the same abscissas of the input one and the coordinates evaluated from the fit parameters MODIFICATION HISTORY: Written by: Manuel Sanchez del Rio. ESRF, February, 1993 2009-05-13 srio@esrf.eu updated doc 2014-12-04 srio@esrf.eu Translated to python """ fit = set2*0.0 #;change xl(1) and xh(nr) to extrapolate the fit xl[1] = numpy.min(set2[0,:]) xh[nr] = numpy.max(set2[0,:]) #; #; calculatest the first point #; xval=set2[0,0] yval=0.0 for k in range(1,int(nc[1]+1)): yval = yval+ c[k] * numpy.power(xval,(k-1)) fit[0,0] = xval fit[1,0] = yval #; #; now the rest of the points #; if _logger.getEffectiveLevel() == logging.DEBUG: fit2 = fit *1 for i in range(len(set2[0,:])): # loop over all the points for j in range(1,int(nr+1)): # loop over the # of intervals if ((set2[0,i] > xl[j]) and (set2[0,i] <= xh[j])): cstart=numpy.sum(nc[0:j]) xval = set2[0,i] yval = 0.0 for k in range(1,int(nc[j]+1)): yval = yval+ c[cstart+k] * numpy.power(xval,(k-1)) fit2[0,i] = xval fit2[1,i] = yval for j in range(1,int(nr+1)): # loop over the # of intervals idx = (set2[0, :] > xl[j]) & (set2[0,:] <= xh[j]) xval = set2[0, idx] cstart=numpy.sum(nc[0:j]) yval = 0.0 * xval for k in range(1,int(nc[j]+1)): yval += c[cstart+k] * numpy.power(xval,(k-1)) fit[0, idx] = xval fit[1, idx] = yval if _logger.getEffectiveLevel() == logging.DEBUG: _logger.debug("GOOD? = %s", numpy.allclose(fit, fit2)) return fit def polspl(x,y,w,npts,xl,xh,nr,nc): r""" polspl(x,y,w,npts,xl,xh,nr,nc): for internal use of postedge PURPOSE: polynomial spline least squares fit to data points Y(I). only the function and it's first derivative are matched at the knots, in order to give more degrees of freedom in the fit. INPUTS: x(i),i=1,npts abscissas y(i),i=1,npts ordinates w(i),i=1,npts weighting factor in least squares fit fit minimizes the sum of w(i)*(y(i)-poly(x(i)))**2 if uniform weighting is desired, w(i) must be 1. npts: points in x,y arrays. xl,xh arrays contain NR adjacent ranges over which to fit individual polynomials. Array nc specifies how many poly coeffs to use in each range. OUTPUTS: array with all coeffs, the first nc(1) of which belong to the first range, the second nc(2) of which belong to the second range, and so forth. SIDE EFFECTS: Quite inefficient, because it uses a lot of loops inherited from the Fortran code. However, for small set of data it is useful. PROCEDURE: (Translated from a Fortran Code) The method here is to fit ordinary polynomials in X, not B-splines, in order to save space on a mini-computer. This means that the is rather poorly conditioned, and hence the limits on the degree of the polynomial. The method of solution is Lagrange's undetermined multipliers for the knot constraints and gaussian elimination to solve the linear system. MODIFICATION HISTORY: Written by: Manuel Sanchez del Rio. ESRF February, 1993 2014-12-04 srio@esrf.eu Translated to python this subroutine is a translation of the fortran subroutine poslpl.for (found in the Frascati's package of EXAFS data analysis) which header states: SUBROUTINE POLSPL(X,Y,W,NPTS,XL,XH,NR,C,NC) C C POLYNOMIAL SPLINE LEAST SQUARES FIT TO DATA POINTS Y(I). C ONLY THE FUNCTION AND IT'S FIRST DERIVATIVE ARE MATCHED AT THE KNOTS, C IN ORDER TO GIVE MORE DEGREES OF FREEDOM IN THE FIT. C C X(I),I=1,NPTS ABSCISSAS C Y(I),I=1,NPTS ORDINATES C W(I),I=1,NPTS WEIGHTING FACTOR IN LEAST SQUARES FIT C FIT MINIMIZES THE SUM OF W(I)*(Y(I)-POLY(X(I)))**2 C IF UNIFORM WEIGHTING IS DESIRED, W(I) MUST BE 1. C C NPTS POINTS IN X,Y ARRAYS. XL,XH ARRAYS CONTAIN NR ADJACENT RANGES C OVER WHICH TO FIT INDIVIDUAL POLYNOMIALS. ARRAY NC SPECIFIES C HOW MANY POLY COEFFS TO USE IN EACH RANGE. ARRAY C RETURNS C ALL COEFFS, THE FIRST NC(1) OF WHICH BELONG TO THE FIRST RANGE, C THE SECOND NC(2) OF WHICH BELONG TO THE SECOND RANGE, AND SO FORTH. C C THE METHOD HERE IS TO FIT ORDINARY POLYNOMIALS IN X, NOT B-SPLINES, C IN ORDER TO SAVE SPACE ON A MINI-COMPUTER. THIS MEANS THAT THE C FIT IS RATHER POORLY CONDITIONED, AND HENCE THE LIMITS ON THE C DEGREE OF THE POLYNOMIAL. THE METHOD OF SOLUTION IS LAGRANGE'S C UNDETERMINED MULTIPLIERS FOR THE KNOT CONSTRAINTS AND GAUSSIAN C ELIMINATION TO SOLVE THE LINEAR SYSTEM. C """ # ; # ; few definitions # ; df = numpy.zeros(26) a = numpy.zeros((36,37)) nbs = numpy.zeros(11,dtype=int) xk = numpy.zeros(10) c = numpy.zeros(36) j=0 i=0 ne_idl=0 n = 0 k = 0 ibl = 0 ns = 0 ns1 = 0 nbs[1]=1 for i in range(1,nr+1): n=n+int(nc[i]) nbs[i+1]=n+1 if xl[i] < xh[i]: pass else: t=xl[i] xl[i]=xh[i] xh[i]=t n=n+2*(nr-1) n1=n+1 xl[nr+1]=0. xh[nr+1]=0. # this loop ... for ibl in range(1,nr+1): xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) if (xl[ibl] > xl[ibl+1]): xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) ns=nbs[ibl] ne_idl=nbs[ibl+1]-1 for i in range(1, npts+1): if((x[i] < xl[ibl]) or (x[i] > xh[ibl])): pass else: df[ns]=1.0 ns1=ns+1 for j in range(ns1,ne_idl+1): df[j]=df[j-1]*x[i] for j in range(ns,ne_idl+1): for k in range(j,ne_idl+1): a[j,k]=a[j,k]+df[j]*df[k]*w[i] a[j,n1]=a[j,n1]+df[j]*y[i]*w[i] # ... has to be faster ncol=nbs[nr+1]-1 nk=nr-1 if (nk == 0): pass else: for ik in range(1,nk+1): ncol=ncol+1 ns=nbs[ik] ne_idl=nbs[ik+1]-1 a[ns,ncol]=-1. ns=ns+1 for i in range(ns,ne_idl+1): a[i,ncol]=a[i-1,ncol]*xk[ik] ncol=ncol+1 a[ns,ncol]=-1. ns=ns+1 if (ns > ne_idl): pass else: for i in range(ns,ne_idl+1): a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) ncol=ncol-1 ns=nbs[ik+1] ne_idl=nbs[ik+2]-1 a[ns,ncol]=1.0 ns=ns+1 for i in range(ns,ne_idl+1): a[i,ncol]=a[i-1,ncol]*xk[ik] ncol=ncol+1 a[ns,ncol]=1.0 ns=ns+1 if (ns > ne_idl): pass else: for i in range(ns,ne_idl+1): a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1)) for i in range(1,n+1): i1=i-1 for j in range(1,i1+1): a[i,j]=a[j,i] nm1=n-1 for i in range(1,nm1+1): i1=i+1 m=i t=numpy.abs(a[i,i]) for j in range(i1,n+1): if (t >= numpy.abs(a[j,i])): pass else: m=j t=numpy.abs(a[j,i]) if (m == i): pass else: for j in range(1,n1+1): t=a[i,j] a[i,j]=a[m,j] a[m,j]=t for j in range(i1,n+1): t=a[j,i]/a[i,i] for k in range(i1,n1+1): a[j,k]=a[j,k]-t*a[i,k] c[n]=a[n,n1]/a[n,n] for i in range(1,nm1+1): ni=n-i t=a[ni,n1] ni1=ni+1 for j in range(ni1,n+1): t=t-c[j]*a[ni,j] c[ni]=t/a[ni,ni] return c def polspl_test(): r""" polspl_test(): to test polspl () """ set22 = numpy.loadtxt('set22.dat') set22 = set22.T npts = len(set22[1,:]) w = numpy.ones(npts+1) xx = numpy.zeros(npts+1) yy = numpy.zeros(npts+1) #w=w*0.0+1.0 xx[1:npts+1]=set22[0,:] yy[1:npts+1]=set22[1,:] xl = numpy.array( [ 0.0000000, 0.0000000, \ 7.6354497, 15.270899, 0.0000000,\ 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 ]) xh = numpy.array( [ 0.0000000, 7.6354497,\ 15.270899, 22.906349, 0.0000000, 0.0000000,\ 0.0000000, 0.0000000, 0.0000000, 0.0000000 ] ) nc = numpy.array( [ 0.0000000, 4.0000000,\ 4.0000000, 4.0000000, 0.0000000, 0.0000000,\ 0.0000000, 0.0000000, 0.0000000, 0.0000000 ], dtype=numpy.int32) nr = 3 c = polspl(xx,yy,w,npts,xl,xh,nr,nc) #print("set22.shape",set22.shape) fit = polspl_evaluate(set22,xl,xh,c,nc,nr) #print("fit.shape",fit.shape) #print("c: ",c) #print("fit: ",fit) return def postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None, full=False): r""" postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None) PURPOSE: This procedure calculates the post edge fit of a xafs spectrum INPUTS: set2: input set of data KEYWORD PARAMETERS: kmin the bottom limit for the fit (defaults kmin=0) kmax the upper limit for the fit (defaults max) OUTPUTS: a set with the fit MODIFICATION HISTORY: Written by: Manuel Sanchez del Rio. ESRF February, 1993 1996-08-13 MSR (srio@esrf.fr) changes wmenu->wmenu2 and xtext->widget_message 1998-10-01 srio@esrf.fr adapts for delia. 2000-02-12 MSR (srio@esrf.fr) adds Dialog_Parent keyword 2014-12-04 srio@esrf.eu Translated to python """ #Note that in/out arrays are numpy way: numpy.array((npoints,2)) xl = numpy.zeros(10) xh = numpy.zeros(10) c = numpy.zeros(36) nc = numpy.zeros(10, numpy.int32) if len(polDegree) > 10: _logger.warning("Error: Maximum number of intervals is 10") _logger.warning(" Number of intervals forced to 10") polDegree = polDegree[0:9] x1 = 0.0 # set2[:,0].min() x2 = set2[:,0].max() if kmin != None: x1 = kmin if kmax != None: x2 = kmax xrange1 = [x1,x2] _logger.debug("++++++++++++++++++%s", xrange1) if knots not in [None, []]: if len(knots) == len(polDegree): if knots[0] > kmin: knots = [kmin] + list(knots) elif knots[-1] < kmax: knots = list(knots) + [kmax] elif len(knots) == (len(polDegree) - 1): # probably just given the intermediate knots if knots[0] > kmin: knots = [kmin] + list(knots) if knots[-1] < kmax: knots = list(knots) + [kmax] if ( (len(polDegree)+1) != len(knots) ): _logger.warning("Error: dimension of knots must be dimension of polDegree+1") _logger.warning(" Forced automatic (equidistant) knot definition.") knots = None else: xrange1 = knots[0],knots[-1] nr = len(polDegree) xl[1] = xrange1[0] xh[nr] = xrange1[1] for i in range(1,nr+1): nc[i] = polDegree[i-1] + 1 if knots == None: step = (xh[nr]-xl[1])/float(nr) for i in range(1,nr): xl[i+1] = xl[i] + step xh[i] = xl[i+1] else: for i in range(1,nr): xl[i+1] = knots[i] xh[i] = xl[i+1] # # select only points in selected interval # goodi = (set2[:,0] >= xrange1[0]) & (set2[:,0] <= xrange1[1]) set22 = set2[goodi,:] _logger.debug(' Number of fitting points: %d', len(set22[:,0])) _logger.debug(' polynomials used for fitting: %d', nr) _logger.debug('# degree min max') for i in range(1,nr+1): _logger.debug("%d %9d %9.2f %9.2f ", i, nc[i]-1, xl[i], xh[i]) # ; # ; call spline # ; npts = len(set22[:,0]) w = numpy.ones(npts+1) xx = numpy.zeros(npts+1) yy = numpy.zeros(npts+1) xx[1:] = set22[:,0] yy[1:] = set22[:,1] #t0 = time.time() if _XAS: c = _xas.polspl(xx,yy,w,npts,xl,xh,nr,nc) if _logger.getEffectiveLevel() == logging.DEBUG: t0 = time.time() c2 = polspl(xx,yy,w,npts,xl,xh,nr,nc) _logger.debug("polspl elapsed = %s", time.time() - t0) _logger.debug("OK? %s", numpy.allclose(c, c2)) else: c = polspl(xx,yy,w,npts,xl,xh,nr,nc) #TODO: polspl_evaluate receives and returns arrays like IDL (2,npoints) #t0 = time.time() fit0 = polspl_evaluate(set2.T,xl,xh,c,nc,nr) #print("polspl_evaluate elapsed = ", time.time() - t0) if full: xNodes = numpy.zeros((nr-1,), dtype=numpy.float32) yNodes = numpy.zeros((nr-1,), dtype=numpy.float32) for j in range(1,int(nr)): # loop over the # of intervals xval = xh[j] cstart=numpy.sum(nc[0:j]) yval = 0.0 for k in range(1,int(nc[j]+1)): yval += c[cstart+k] * numpy.power(xval,(k-1)) xNodes[j-1] = xval yNodes[j-1] = yval return fit0.T, xNodes, yNodes else: return fit0.T def postEdge0(k, mu, kmin=None, kmax=None, degrees=(3, 3, 3), knots=None, full=False): set0 = numpy.zeros((k.size, 2), dtype=k.dtype) set0[:, 0] = k set0[:, 1] = mu return postEdge(set0, kmin, kmax, degrees, knots=knots, full=full) def getFTWindowWeights(tk, window="Gaussian", windpar=0.2, wrange=None): r""" window_ftr(setin,window=1,windpar=0.2,wrange=None) PURPOSE: This procedure calculates and applies a weighting window to a set INPUTS: setin: either: numpy.array(npoints,ncols) set of data (CASE A) numpy.array(npoints) array of abscissas (CASE B) OUTPUT: depends on the case: CASE A: numpy.array(npoints,ncol) set with the weigted set (in index [:,1]) CASE B: numpy.array(npoints) the values of the weights KEYWORD PARAMETERS: window = kind of window: 0 Gaussian Window (default) 1 Hanning Window 2 Box 3 Parzen (triangular) 4 Welch 5 Hamming 6 Tukey 7 Papul windpar Parameter for windowing If WINDOW=(2,3,4,5,6) this sets the width of the apodization (default=0.2) wrange = [xmin,xmax] the limits of the window. If wrange is not set, the take the minimum and maximum values of the abscisas. The window has value zero outside this interval. MODIFICATION HISTORY: Written by: Manuel Sanchez del Rio. ESRF March, 1993 96-08-14 MSR (srio@esrf.fr) adds names keyword. 06-03-14 srio@esrf.fr always exits "names" 2014-12-03 srio@esrf.eu translated to python ;- """ names = ['Gaussian', 'Hanning', 'Box','Parzen','Welch', 'Hamming', 'Tukey', 'Papul', 'Kaiser'] if hasattr(window, "lower"): window = window[0].upper() + window[1:].lower() else: window = names[window] _logger.debug("Using window %s", window) if wrange == None: xmax = tk.max() xmin = tk.min() else: xmin = wrange[0] xmax = wrange[1] xp = (xmax + xmin) / 2. xm = xmax - xmin apo1 = xmin + windpar apo2 = xmax - windpar npoint = len(tk) wind = numpy.ones(npoint, dtype=numpy.float64) if window in ["Gaussian", "Gauss"]: wind = numpy.power((tk - xp)/xm, 2) wind = numpy.exp(-wind * 9.2) elif window == "Hanning": for i in range(npoint): if tk[i] <= apo1: wind[i] = 0.5*(1.0-numpy.cos(numpy.pi*(tk[i]-xmin)/windpar)) if tk[i] >= apo2: wind[i] = 0.5*(1.0+numpy.cos(numpy.pi*(tk[i]-apo2)/windpar)) elif window == "Box": for i in range(npoint): if tk[i] <= apo1: wind[i] = 0.0 if tk[i] >= apo2: wind[i] = 0.0 elif window in ["Parzen", "Triangle", "Triangular"]: for i in range(npoint): if tk[i] <= apo1: wind[i] = (tk[i]-xmin)/windpar if tk[i] >= apo2: wind[i] = 1 - (tk[i]-apo2)/windpar elif window == "Welch": for i in range(npoint): if tk[i] <= apo1: wind[i] = 1.0 - numpy.power( ( (tk[i]-apo1) / windpar), 2) if tk[i] >= apo2: wind[i] = 1.0 - numpy.power( (tk[i]-apo2) / windpar, 2 ) elif window == "Hamming": for i in range(npoint): if tk[i] <= apo1: wind[i] = 1.08 - (.54+0.46*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar)) if tk[i] >= apo2: wind[i] = 1.08 - (.54-0.46*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar)) elif window == "Tukey": for i in range(npoint): if tk[i] <= apo1: wind[i] = 1.0 - numpy.power(numpy.cos(0.5*numpy.pi*(tk[i]-xmin)/windpar),2) if tk[i] >= apo2: wind[i] = numpy.power(numpy.cos(-0.5*numpy.pi*(tk[i]-apo2)/windpar),2) elif window == "Papul": for i in range(npoint): if tk[i] <= apo1: a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-xmin)/windpar) + \ (1.-(tk[i]-xmin)/windpar)*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar) wind[i] = 1.0 - a if tk[i] >= apo2: a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-apo2)/windpar) + \ (1.-(tk[i]-apo2)/windpar)*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar) wind[i] = a elif _XAS and window in ["Kaiser", "Kasel"]: wind= (_xas.j0(windpar * numpy.sqrt(1. - 4.0 * pow((tk-xp)/xm, 2))) - 1.0)/ (_xas.j0(windpar) - 1.0) else: raise ValueError("Window <%s> not implemented" % window) return wind def getFT(k, exafs, npoints=2048, rrange=(0.0, 7.0), krange=None, kstep=0.02, kweight=0, window="gaussian", apodization=0.2, wweights=None): if krange is not None: idx = (k >= krange[0]) & (k <= krange[1]) k = k[idx] exafs = exafs[idx] if wweights is None: wweights = getFTWindowWeights(k, window=window, windpar=apodization, wrange=krange) if 0: set3 = numpy.zeros((k.size, 2), dtype=numpy.float64) set3[:, 0] = k set3[:, 1] = exafs * wweights setFT = exex.fastftr(set3,npoint=npoints,rrange=[0.,7.],kstep=0.02) # ; # ; creates the input interpolated values # ; interpolatedDataX = numpy.linspace(0.0, npoints-1, npoints) * kstep interpolatedDataY = numpy.interp( interpolatedDataX , k, wweights * exafs * pow(k, kweight), left=0.0, right=0.0) # ; calculates the fft and generates the conjugated variable (rr) ff = numpy.fft.ifft(interpolatedDataY) rstep = numpy.pi / npoints / kstep rr = numpy.linspace(0.0, npoints-1, npoints) * rstep # ; # ; prepare the results # ; coef = npoints * kstep / numpy.sqrt(numpy.pi) * numpy.sqrt(2.) f12 = coef*numpy.real(ff) # real part of fft f13 = coef*numpy.imag(ff)*(-1.) # imaginary part of fft # ; # ; cut the results to the selected interval in r (rrange) # ; goodi = (rr >= rrange[0]) & (rr <= rrange[1]) f13 = f13[goodi] f12 = f12[goodi] f10 = rr[goodi] f11 = numpy.sqrt( f12*f12 + f13*f13) # ; # ; define the result array # ; fourier = numpy.zeros((len(f10),4)) fourier[:,0] = f10 fourier[:,1] = f11 fourier[:,2] = f12 fourier[:,3] = f13 #print("OK = ", numpy.allclose(fourier, setFT)) ddict = {} ddict["Set"] = fourier ddict["InterpolatedK"] = interpolatedDataX ddict["InterpolatedSignal"] = interpolatedDataY ddict["KWeight"] = kweight ddict["K"] = k ddict["WindowWeight"] = wweights ddict["FTRadius"] = f10 ddict["FTIntensity"] = f11 ddict["FTReal"] = f12 ddict["FTImaginary"] = f13 return ddict def getBackFT(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None): r""" fastbftr(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None) PURPOSE: This procedure calculates the Back Fast Fourier Transform of a set INPUTS: fourier: a 4 col set with r,modulus,real and imaginary part of a Fourier Transform of an Exafs spectum, as produced by FTR or FASTFTR procedures KEYWORD PARAMETERS: krange=[kmin,kmax] : range of the conjugated variable for the transformation (default = [2,15]) npoint= number of points of the the fft calculation (default = 4096) rstep = when this keyword is set then the fourier set is interpolated using the indicated value as step. Otherwise the fourier set is not interpolated. rmin = the mimimun r for the back fourier filtering rmax = the maximum r for the back fourier filtering OUTPUTS: This procedure returns a 4-columns set (backftr) with the conjugated variable (k) in column 0, the real part of the BFT in col 1, the modulus in col 2 and the phase in col 3. MODIFICATION HISTORY: Written by: Manuel Sanchez del Rio. ESRF March, 1993 98-10-26 srio@esrf.fr uses Dialog_Message for error messages. 20141204 srio@esrf.eu Translated to python """ kmin = krange[0] kmax = krange[1] npt = len(fourier[:,0]) fou = numpy.zeros((npoint,4)) if rmin == None: rmin = (fourier[:,0]).min() if rmax == None: rmax = (fourier[:,0]).max() #; #; fill "fou" set #; if rstep == None: #;--- no interpolation nn = int(npt/2) rstep = fourier[nn+1,0] - fourier[nn,0] rstep2 = fourier[nn+2,0] - fourier[nn+1,0] rdiff = numpy.abs (rstep - rstep2) _logger.debug(' back rstep = %f', rstep) _logger.debug(' rdiff = %f', rdiff) if (rdiff >= 1e-6): raise ValueError("r griding is not regular; Use rstep keyword -> Abort") #return fou ptstart = int(rmin/rstep) _logger.debug(' ptstart = %d', ptstart) _logger.debug(' ptstart+npt = %d', ptstart+npt) fou[ptstart:ptstart+npt,:]=fourier else: #;--- interpolation fou[:,0] = numpy.linspace(0,0,npoint-1,npoint)*rstep fou[:,1] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,1],left=0.0,right=0.0) fou[:,2] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,2],left=0.0,right=0.0) fou[:,3] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,3],left=0.0,right=0.0) #; #; call back fft #; c = fou[:,2] - 1.0j * fou[:,3] af = numpy.fft.fft(c) #; #; create the array of the conjugated variable #; kstep = numpy.pi/npoint/rstep kk = numpy.linspace(0.0,npoint-1,npoint)*kstep #; #; prepare the output array #; coef = npoint*kstep/numpy.sqrt(numpy.pi)*numpy.sqrt(2.) # coefficienu used for direct fft coef1 = 2./coef # 2 because we are only afr = coef1 * af.real # real part of back fft afi = coef1 * af.imag # imaginary part of back fft #; #; cut the results to the selected interval in k (krange) #; goodi = (kk >= kmin) & (kk <= kmax) afr = afr[goodi] afi = afi[goodi] afk = kk[goodi] nptout = len(afr) #; #; define the output set #; backftr = numpy.zeros((nptout,4)) backftr[:,0] = afk # the conjugated variable (k [A^-1]) backftr[:,1] = afr # the real part of backftr or atra backftr[:,2] = numpy.sqrt(afr*afr+afi*afi) # the modulus of backftr backftr[:,3] = numpy.arctan2(afi,afr) # the phase return backftr class XASClass(object): def __init__(self, backend=None): # This lists are to be updated as larch or any other backend # is available self._e0MethodList = ("Manual", "Auto - No Smooth", "Auto - 3pt SG", "Auto - 5pt SG", "Auto - 7pt SG", "Auto - 9pt SG") self._e0MethodDict = { "Manual": {"function": self._calculateE0, "vars":None, "kw":None}, "Auto - No Smooth": {"function": self._calculateE0, "vars":None, "kw":None}, "Auto - 3pt SG": {"function": self._calculateE0, "vars":None, "kw":None}, "Auto - 5pt SG": {"function": self._calculateE0, "vars":None, "kw":None}, "Auto - 7pt SG": {"function": self._calculateE0, "vars":None, "kw":None}, "Auto - 9pt SG": {"function": self._calculateE0, "vars":None, "kw":None}} # list of polynomials available self._polynomList = ['Modif. Victoreen', 'Victoreen', 'Constant', 'Linear', 'Parabolic', 'Cubic'] self._polynomDict = { "Modif. Victoreen":{"function":modifiedVictoreen, "vars":None, "kw":None}, "Victoreen":{"function":victoreen, "vars":None, "kw":None}, "Constant":{"function":polynom, "vars":None, "kw":None}, "Linear":{"function":polynom, "vars":None, "kw":None}, "Parabolic":{"function":polynom, "vars":None, "kw":None}, "Cubic":{"function":polynom, "vars":None, "kw":None}} self._configuration = self.getDefaultConfiguration(backend) self._processingPending = True self._energy = None self._mu = None def getDefaultConfiguration(self, backend=None): configuration = {} if backend in [None, "Default", "DefaultBackend"]: configuration["DefaultBackend"] = {} config = configuration["DefaultBackend"] else: raise ValueError("Only default backend supported") config = configuration[backend] # normalization # E0 and pre-edge will be used for EXAFS extraction # PostEdge will only be used for the normalized spectrum # because EXAFS extraction follows its own methods # None parameters are to be derived from input spectrum config["Normalization"] = {} ddict = config["Normalization"] ddict["E0Method"] = "Auto - 5pt SG" ddict["E0Value"] = None ddict["E0MinValue"] = None ddict["E0MaxValue"] = None ddict["JumpNormalizationMethod"] = "Flattened" ddict["JumpNormalizationMethodList"] = ["Constant", "Flattened"] # limits to be used (relative to E0) ddict["PreEdge"] = {} ddict["PreEdge"] ["Method"] = "Polynomial" ddict["PreEdge"] ["Polynomial"] = "Linear" # Regions is a single list with 2 * n values delimiting n regions. ddict["PreEdge"] ["Regions"] = [-1000., -40.] ddict["PostEdge"] = {} ddict["PostEdge"] ["Method"] = "Polynomial" ddict["PostEdge"] ["Polynomial"] = "Linear" ddict["PostEdge"] ["Regions"] = [20., 500.] # EXAFS config["EXAFS"] = {} ddict = config["EXAFS"] # k grid # None parameters are to be derived from spectrum ddict["Grid"] = {} ddict["KMin"] = None ddict["KMax"] = None ddict["KWeight"] = 0 ddict["Delta"] = None ddict["Nodes"] = None # extraction ddict["Normalization"] = "Fit" #ddict["Normalization"] = "Jump" # Normalization possibilities: Fit, Jump, Extrapolation" ddict["ExtractionMethod"] = "Knots" # Implement "Knots", "Victoreen", "Modif. Victoreen" ddict["Knots"] = {} ddict["Knots"] ["Number"] = 3 ddict["Knots"] ["Values"] = None ddict["Knots"] ["Orders"] = [3, 2, 2, 3] # one more than knots # FT """ window = kind of window: 1 Gaussian Window (default) 2 Hanning Window 3 Box 4 Parzen (triangular) 5 Welch 6 Hamming 7 Tukey 8 Papul windpar Parameter for windowing If WINDOW=(2,3,4,5,6) this sets the width of the apodization (default=0.2) wrange = [xmin,xmax] the limits of the window. If wrange is not set, the take the minimum and maximum values of the abscisas. The window has value zero outside this interval. """ config["FT"] = {} ddict = config["FT"] ddict["Window"] = "Gaussian" ddict["WindowList"] = ["Gaussian", "Hanning", "Box", "Parzen", "Welch", "Hamming", "Tukey", "Papul"] ddict["WindowApodization"] = 0.02 ddict["WindowRange"] = None ddict["KStep"] = 0.04 ddict["Points"] = 2048 ddict["Range"] = [0.0, 7.0] # Back-FT config["BFT"] = {} ddict = config["BFT"] ddict["KRange"] = [2.0, 12.0] ddict["Points"] = 2048 ddict["Range"] = [0.0, 6.0] return configuration def setConfiguration(self, configuration, backend=None): if backend not in [None, "Default", "DefaultBackend"]: raise ValueError("Only default backend implemented") else: if "DefaultBackend" in configuration: inputConfig = configuration["DefaultBackend"] else: inputConfig = configuration backend = "DefaultBackend" currentConfig = self.getConfiguration(backend=backend) newConfiguration = \ self.mergeConfigurationDicts(currentConfig, inputConfig) self._configuration[backend] = newConfiguration self._processingPending = True def mergeConfigurationDicts(self, referenceDict, inputDict): destinationDict = {} referenceKeys = list(referenceDict.keys()) for referenceKey in referenceKeys: ref = referenceDict[referenceKey] referenceLower = referenceKey.lower() treated = False for key in inputDict: if key.lower() == referenceLower: if hasattr(referenceDict[referenceKey], "keys"): inp = inputDict[key] destinationDict[referenceKey] = \ self.mergeConfigurationDicts(ref, inp) else: destinationDict[referenceKey] = inputDict[key] treated = True break if not treated: if hasattr(referenceDict[referenceKey], "keys"): destinationDict[referenceKey] = copy.deepcopy(ref) else: destinationDict[referenceKey] = ref return destinationDict def getConfiguration(self, backend=None): if backend not in [None, "Default", "DefaultBackend", "All", "all"]: raise ValueError("Only default backend implemented") if backend in ["all", "All"]: return copy.deepcopy(self._configuration) else: return copy.deepcopy(self._configuration["DefaultBackend"]) def setSpectrum(self, energy, mu, units=None, sanitize=True): self._lastE0CalculationDict = None energy0 = numpy.array(energy, dtype=numpy.float64, copy=True) mu0 = numpy.array(mu, dtype=numpy.float64, copy=True) energy0.shape = -1 mu0.shape = -1 self._equidistant = False # TODO: This should become a function to be called on its own # make sure data are sorted idx = energy.argsort(kind='mergesort') energy = numpy.take(energy0, idx) mu = numpy.take(mu0, idx) # make sure data are strictly increasing delta = energy[1:] - energy[:-1] dmin = delta.min() dmax = delta.max() if delta.min() <= 1.0e-10: # force data to be strictly increasing # although we do not consider last point idx = numpy.nonzero(delta>0)[0] energy = numpy.take(energy, idx) mu = numpy.take(mu, idx) delta = None if dmin == dmax: equidistant = True else: equidistant = False if units is None: if (energy[-1] - energy[0]) < 10: units = "keV" else: units = "eV" if units.lower() not in ["kev", "ev"]: raise ValueError("Unhandled units %s" % units) elif units.lower() == "kev": energy *= 1000. energy0 *= 1000. # everything went well, update internal variables self._energy0 = energy0 self._mu0 = mu0 self._energy = energy self._mu = mu self._units = units self._equidistant = equidistant def processSpectrum(self): e0 = self.calculateE0() ddict = self.normalize() """ return {"Jump": jump, "NormalizedEnergy": energy, "NormalizedMu":normalizedSpectrum, "NormalizedBackground": data["PreEdge"], "NormalizedSignal":data["PostEdge"]} """ ddict["Energy"] = self._energy ddict["Mu"] = self._mu cleanMu = self._mu - ddict["NormalizedBackground"] kValues = e2k(self._energy - e0) ddict.update(self.postEdge(kValues, cleanMu)) dataSet = numpy.zeros((cleanMu.size, 2), numpy.float64) dataSet[:, 0] = kValues dataSet[:, 1] = cleanMu # normalization exafs = (cleanMu - ddict["PostEdgeB"]) / ddict["PostEdgeB"] ddict["EXAFSEnergy"] = k2e(kValues) ddict["EXAFSKValues"] = kValues ddict["EXAFSSignal"] = cleanMu if ddict["KWeight"]: exafs *= pow(kValues, ddict["KWeight"]) ddict["EXAFSNormalized"] = exafs set2 = dataSet * 1 set2[:,1] = exafs #remove points with k<2 goodi = (set2[:,0] >= ddict["KMin"]) & (set2[:,0] <= ddict["KMax"]) set2 = set2[goodi,:] #plotSet(set2,xtitle="k [$A^{-1}$]",ytitle="$\chi$", toptitle=" CUCU EXAFS") # FT # window if 0: set2 = exex.window_ftr(set2,window=8,windpar=3) setFT = exex.fastftr(set2,npoint=4096,rrange=[0.,7.],kstep=0.02) else: #setFT = getFT(set2[:,0], set2[:, 1], npoints=2048, # krange=(ddict["KMin"], ddict["KMax"]),\ # rrange=[0.,7.],kstep=0.02) setFT = self.fourierTransform(set2[:,0], set2[:, 1], kMin=ddict["KMin"], kMax=ddict["KMax"]) ddict["FT"] = setFT if 0: # BFT setBFT = getBackFT(setFT["Set"],rmin=1.0,rmax=3.0,krange=[2.0,20.0]) ddict["BFT"] = setBFT return ddict def fourierTransform(self, k, mu, kMin=None, kMax=None, backend=None): if backend not in [None, "Default", "DefaultBackend"]: raise ValueError("Only default backend implemented") else: backend = "DefaultBackend" config = self._configuration[backend]["FT"] if kMin is None: kMin = k.min() if kMax is None: kMax = k.max() kRange = config["WindowRange"] if config["WindowRange"] in [None, "None"]: kRange = [kMin, kMax] else: kRange = [max(kRange[0], kMin), min(kRange[1], kMax)] return getFT(k, mu, npoints=config["Points"], krange=kRange,\ window=config.get("Window", "Gaussian"), apodization=config.get("WindowApodization", 0.02), rrange=config["Range"], kstep=config["KStep"]) def postEdge(self, k, mu, backend=None): if backend not in [None, "Default", "DefaultBackend"]: raise ValueError("Only default backend implemented") else: backend = "DefaultBackend" config = self._configuration[backend]["EXAFS"] method = config["ExtractionMethod"] # Grid kMin = config["KMin"] kMax = config["KMax"] kWeight = config["KWeight"] if kMin is None: kMin = 2 if kMax is None: kMax = k.max() else: kMax = min(k.max(), kMax) number = config["Knots"].get("Number", 0) if number == 0: knots = None if not hasattr(config["Knots"]["Orders"], "__len__"): config["Knots"]["Orders"] = [config["Knots"]["Orders"]] else: knots = config["Knots"]["Values"] if not hasattr(knots, "__len__"): knots = [knots] fit0, xNodes, yNodes = postEdge0(k, mu, kMin, kMax, config["Knots"]["Orders"], knots=knots, full=True) ddict = {} ddict["PostEdgeK"] = fit0[:, 0] ddict["PostEdgeB"] = fit0[:, 1] ddict["KnotsX"] = xNodes ddict["KnotsY"] = yNodes ddict["KMin"] = kMin ddict["KMax"] = kMax ddict["KWeight"] = kWeight # TODO: add polynomials? return ddict def calculateE0(self, energy=None, mu=None, backend=None): self._lastE0CalculationDict = None if energy is None: energy = self._energy if mu is None: mu = self._mu if backend not in [None, "Default", "DefaultBackend"]: raise ValueError("Only default backend implemented") else: backend = "DefaultBackend" config = self._configuration[backend]["Normalization"] method = config["E0Method"] fun = self._e0MethodDict[method]["function"] varList = self._e0MethodDict[method]["vars"] kwDict = self._e0MethodDict[method]["kw"] if (varList is None) and (kwDict is None): outputDict = fun(energy, mu, config) elif varList is None: outputDict = fun(energy, mu, config, **kwDict) else: outputDict = fun(energy, mu, config, *varList) return outputDict["edge"] def _calculateE0(self, energy, mu, config): method = config["E0Method"] methodLower = method.lower() e0 = config["E0Value"] eMin = config["E0MinValue"] eMax = config["E0MaxValue"] if eMin is None: eMin = energy.min() if eMax is None: eMax = energy.max() if (e0 is None) and methodLower.endswith("manual"): raise ValueError("Edge energy not set") if (id(energy) == id(self._energy)) and self._equidistant: # data do not need to be interpolated _logger.debug("NO INTERPOLATION") eWork = energy muWork = mu else: nWorkingPoints = 10 * energy.size eWork = numpy.linspace(energy[1], energy[-2], nWorkingPoints) muWork = numpy.interp(eWork, energy, mu, mu[0], mu[-1]) eWork.shape = -1 muWork.shape = -1 methodLower = method.lower() if methodLower.endswith("manual"): return {"edge":e0} elif methodLower.endswith("no smooth"): idx = numpy.gradient(muWork).argmax() return eWork[idx] elif methodLower.endswith("3pt sg"): npoints = 3 elif methodLower.endswith("5pt sg"): npoints = 5 elif methodLower.endswith("7pt sg"): npoints = 7 elif methodLower.endswith("9pt sg"): npoints = 9 else: raise ValueError("Method <%s> not implemented" % method) # Returning dictionary can contain: # The edge energy (mandatory) # The interpolated spectrum (if any) # The derivative spectrum (if any) ddict = XASNormalization.getE0SavitzkyGolay(eWork, muWork, \ points=npoints, full=True) self._lastE0CalculationDict = ddict return ddict def _getRegionsData(self, x0, y0, regions): x = x0[:] y = y0[:] x.shape = -1 y.shape = -1 i = 0 for region in regions: xmin, xmax = region toidx = numpy.nonzero((x >=xmin) & (x <= xmax))[0] if i == 0: i = 1 idx = toidx else: idx = numpy.concatenate((idx, toidx), axis = 0) xOut = numpy.take(x, idx) yOut = numpy.take(y, idx) return xOut, yOut def normalize(self, energy=None, mu=None, backend=None): if energy is None: energy = self._energy else: self._lastE0CalculationDict = None if mu is None: mu = self._mu else: self._lastE0CalculationDict = None if backend not in [None, "Default", "DefaultBackend"]: raise ValueError("Only default backend implemented") else: backend = "DefaultBackend" config = self._configuration[backend]["Normalization"] # reference values eMin = energy.min() eMax = energy.max() # e0 if self._lastE0CalculationDict is None: e0 = self.calculateE0(energy, mu, backend=backend) else: e0 = self._lastE0CalculationDict["edge"] parameters = {} data = {} for key in ["PreEdge", "PostEdge"]: # pre-edge # Regions is a single list with 2 * n values delimiting n regions. regions = config [key] ["Regions"] edgeMethod = config[key]["Method"] if edgeMethod.lower() != "polynomial": raise ValueError("Only normalization with polynomials implemented") method = config[key]["Polynomial"] methodLower = method.lower() if regions is None: if key == "PreEdge": regions = [-1000., -40.] else: regions = [20., 1000.] workingRegions = [] if key == "PreEdge": plotMin = eMax for i in range(0, len(regions), 2): vMin = e0 + regions[2 * i] vMax = e0 + regions[2 * i + 1] if vMin < eMin: vMin = eMin if vMax < eMin: vMax = 0.5 * (eMin + e0) if vMin < plotMin: plotMin = vMin workingRegions.append([vMin, vMax]) else: plotMax = eMin for i in range(0, len(regions), 2): vMin = e0 + regions[2 * i] vMax = e0 + regions[2 * i + 1] if vMin > eMax: vMin = 0.5 * (e0 + eMax) if vMax < eMin: vMax = eMax if vMax > plotMax: plotMax = vMax workingRegions.append([vMin, vMax]) x, y = self._getRegionsData(energy, mu, workingRegions) if methodLower == "constant": modelMatrix = numpy.ones((x.size, 1), numpy.float64) #parameters[key] = y.mean() elif methodLower == "linear": modelMatrix = numpy.empty((x.size, 2), numpy.float64) modelMatrix[:, 0] = 1.0 modelMatrix[:, 1] = x elif methodLower == "parabolic": modelMatrix = numpy.empty((x.size, 3), numpy.float64) modelMatrix[:, 0] = 1.0 modelMatrix[:, 1] = x modelMatrix[:, 2] = pow(x, 2) elif methodLower == "cubic": modelMatrix = numpy.empty((x.size, 4), numpy.float64) modelMatrix[:, 0] = 1.0 modelMatrix[:, 1] = x modelMatrix[:, 2] = pow(x, 2) modelMatrix[:, 3] = pow(x, 3) elif methodLower == "victoreen": modelMatrix = numpy.empty((x.size, 2), numpy.float64) modelMatrix[:,0] = pow(x, -3) modelMatrix[:,1] = pow(x, -4) elif methodLower == "modif. victoreen": modelMatrix = numpy.empty((x.size, 2), numpy.float64) modelMatrix[:,0] = pow(x, -3) modelMatrix[:,1] = 1.0 else: raise ValueError("Unhandled %s polynomial <%s> " % \ (key, config[key]["Polynomial"])) # if only one point has been picked from region if len(y) == 1: if methodLower != 'constant': _logger.warning('Only one data point in region, ' 'assuming constant function.') parameters[key] = y else: parameters[key] = linalg.lstsq(modelMatrix, y, uncertainties=False, weight=False)[0] fun = self._polynomDict[method]["function"] if key == "PreEdge": funPre = fun data[key] = fun(energy, parameters[key]) jump = fun(e0, parameters["PostEdge"]) - \ funPre(e0, parameters["PreEdge"]) #normalizedSpectrum = (mu - data["PreEdge"])/(data["PostEdge"] jumpMethod = config.get("JumpNormalizationMethod", "Flattened") normalizedSpectrum = (mu - data["PreEdge"])/jump if jumpMethod in [0, "Constant", "constant"]: jumpMethod = "Constant" pass elif jumpMethod in [1, "Flattened", "flattened", "Flatten", "flatten"]: jumpMethod = "Flattened" i = numpy.argmin(energy < e0) normalizedSpectrum[i:] *= (jump / \ (data["PostEdge"] - data["PreEdge"])[i:]) else: _logger.warning("WARNING: Undefined jump normalization method. Assume Flattened") jumpMethod = "Flattened" i = numpy.argmin(energy < e0) normalizedSpectrum[i:] *= (jump / \ (data["PostEdge"] - data["PreEdge"])[i:]) return {"Jump": jump, "JumpNormalizationMethod":jumpMethod, "Edge":e0, "NormalizedEnergy": energy, "NormalizedMu":normalizedSpectrum, "NormalizedBackground": data["PreEdge"], "NormalizedSignal":data["PostEdge"], "NormalizedPlotMin": plotMin, "NormalizedPlotMax":plotMax} if __name__ == "__main__": import os import sys from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR if len(sys.argv) > 1: fileName = sys.argv[1] else: fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Ge.dat") if len(sys.argv) > 2: cfg = sys.argv[2] else: cfg = None scan = specfile.Specfile(fileName)[0] data = scan.data() if data.shape[0] == 2: energy = data[0, :] mu = data[1, :] else: energy = None mu = None labels = scan.alllabels() i = 0 for label in labels: if label.lower() == "energy": energy = data[i, :] elif label.lower() in ["counts", "mu", "absorption"]: mu = data[i, :] i = i + 1 if (energy is None) or (mu is None): if len(labels) == 3: if labels[0].lower() == "point": energy = data[1, :] mu = data[2, :] else: energy = data[0, :] mu = data[1, :] else: energy = data[0, :] mu = data[1, :] exafs = XASClass() if cfg is not None: from PyMca5.PyMca import ConfigDict config = ConfigDict.ConfigDict() config.read(cfg) exafs.setConfiguration(config['XASParameters']) exafs.setSpectrum(energy, mu) if 0: print("exafs.calculateE0 = ", exafs.calculateE0()) ddict = exafs.normalize() print("Jump = ", ddict["Jump"]) else: t0 = time.time() ddict = exafs.processSpectrum() print("Elapsed = ", time.time() - t0) #sys.exit() from PyMca5.PyMca import PyMcaQt as qt app = qt.QApplication([]) from silx.gui.plot import Plot1D w = Plot1D() w.addCurve(energy, mu, legend="original") w.addCurve(ddict["NormalizedEnergy"], ddict["NormalizedMu"], legend="Mu", yaxis="right") w.addCurve(ddict["NormalizedEnergy"], ddict["NormalizedSignal"], legend="Post") w.addCurve(ddict["NormalizedEnergy"], ddict["NormalizedBackground"], legend="Pre") w.resetZoom() w.show() exafs = Plot1D() idx = (ddict["EXAFSKValues"] >= ddict["KMin"]) & \ (ddict["EXAFSKValues"] <= ddict["KMax"]) exafs.addCurve(ddict["EXAFSKValues"][idx], ddict["EXAFSNormalized"][idx], legend="Normalized EXAFS") exafs.show() #""" ft = Plot1D() ft.addCurve(ddict["FT"]["FTRadius"], ddict["FT"]["FTIntensity"]) ft.resetZoom() ft.show() #""" app.exec() ������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/XASNormalization.py����������������������������������������0000644�0000000�0000000�00000045350�14741736366�022325� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __doc__ = """This set of routines performs normalization of X-ray absorption spectra for qualitative/preliminary analysis. For state-of-the-art XAS you should take a look at dedicated and well-tested packages like IFEFFIT or Viper/XANES dactyloscope """ __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaMath import SGModule from PyMca5.PyMcaMath.fitting.Gefit import LeastSquaresFit _logger = logging.getLogger(__name__) if _logger.getEffectiveLevel() == logging.DEBUG: from pylab import * def e2k(energy, e0=0.0, units="eV"): r""" e2k(energy, e0=0.0): converts from E (eV) to k (A^-1) note: we use the convention that points with E<e0 will have negative k """ energy = numpy.asarray(energy, dtype=numpy.float64) if units.lower() != "ev": energy *= 1000. e0 *= 1000. codata_ec = numpy.array(1.602176565e-19) codata_me = numpy.array(9.10938291e-31) codata_h = numpy.array(6.62606957e-34) codata_hbar = codata_h/2.0/numpy.pi #; converts a set in energy to a set in k #; the negative energies (below edge) are treated as negative k tmpx = energy - e0 ccte = numpy.sqrt(codata_ec*2*codata_me/codata_hbar/codata_hbar)*1e-10 tmpxx = ((tmpx > 0) * 2-1) * numpy.sqrt(numpy.abs(tmpx)) * ccte return tmpxx def k2e(kValues): r""" k2e(x): converts from k (A^-1) to E (eV) The negative energies (below edge) are treated as negative k """ codata_ec = numpy.array(1.602176565e-19) codata_me = numpy.array(9.10938291e-31) codata_h = numpy.array(6.62606957e-34) codata_hbar = codata_h/2.0/numpy.pi #; converts a set in k to energy #; the negative energies (below edge) are treated as negative k ccte = numpy.power(codata_hbar,2) / 2 / codata_me / codata_ec * 1e20 tmpx = kValues tmpx = ((tmpx > 0) * 2-1) * tmpx * tmpx * ccte return tmpx def polynom(parameter_list, x): if hasattr(x, 'shape'): output = numpy.zeros(x.shape) else: output = 0.0 for i in range(len(parameter_list)): output += parameter_list[i] * pow(x, i) return output def polynomDerivative(parameter_list, parameter_index, x): return pow(x, parameter_index) def victoreen(parameter_list, x): return parameter_list[0] * pow(x, -3) + parameter_list[1] * pow(x, -4) def victoreenDerivative(parameter_list, parameter_index, x): if parameter_index == 0: return pow(x, -3) else: return pow(x, -4) def modifiedVictoreen(parameter_list, x): return parameter_list[0] * pow(x, -3) + parameter_list[1] def modifiedVictoreenDerivative(parameter_list, parameter_index, x): if parameter_index == 0: return pow(x, -3) else: return numpy.ones(x.shape, dtype=numpy.float64) def getE0SavitzkyGolay(energy, mu, points=5, full=False): # It does not check anything, data have to be prepared before!!! # take the first derivative yPrime = SGModule.getSavitzkyGolay(mu, npoints=points, degree=2, order=1) xPrime = energy[:] # get the index at maximum value iMax = numpy.argmax(yPrime) # get the center of mass w = points selection = yPrime[iMax-w:iMax+w+1] edge = (selection * xPrime[iMax-w:iMax+w+1]).sum(dtype=numpy.float64)/\ selection.sum(dtype=numpy.float64) if full: # return intermediate information return {"edge":edge, "iMax": iMax, "xPrime": xPrime, "yPrime": yPrime} else: # return the corresponding x value return edge def estimateXANESEdge(spectrum, energy=None, npoints=5, full=False, sanitize=True): if sanitize: if energy is None: energy = numpy.arange(len(spectrum)) x = numpy.asarray(energy, dtype=numpy.float64) y = numpy.asarray(spectrum, dtype=numpy.float64) # make sure data are sorted idx = energy.argsort(kind='mergesort') x = numpy.take(energy, idx) y = numpy.take(spectrum, idx) # make sure data are strictly increasing delta = x[1:] - x[:-1] dmin = delta.min() dmax = delta.max() if delta.min() <= 1.0e-10: # force data are strictly increasing # although we do not consider last point idx = numpy.nonzero(delta>0)[0] x = numpy.take(x, idx) y = numpy.take(y, idx) delta = None # use a regularly spaced spectrum if dmax != dmin: # choose the number of points or deduce it from # the input data length? nchannels = 10 * x.size xi = numpy.linspace(x[1], x[-2], nchannels).reshape(-1, 1) x.shape = -1 y.shape = -1 y = SpecfitFuns.interpol([x], y, xi, y.min()) x = xi else: # take views x = energy[:] y = spectrum[:] x.shape = -1 y.shape = -1 # Sorted and regularly spaced values sortedX = x sortedY = y ddict = getE0SavitzkyGolay(sortedX, sortedY, points=npoints, full=full) if full: # return intermediate information return ddict["edge"], sortedX, sortedY, ddict["xPrime"], ddict["yPrime"] else: # return the corresponding x value return ddict def getRegionsData(x0, y0, regions, edge=0.0): """ x - 1D array y - 1D array of the same dimension as x regions - List of (xmin, xmax) values defining the regions. edge - Supplied edge energy The default is 0. That means regions are absolute energies. The actual regions are defined as (xmin + edge, xmax + edge) """ # take a view of the data x = x0[:] y = y0[:] x.shape = -1 y.shape = -1 i = 0 for region in regions: xmin = region[0] + edge xmax = region[1] + edge toidx = numpy.nonzero((x >= xmin) & (x <= xmax))[0] if i == 0: i = 1 idx = toidx else: idx = numpy.concatenate((idx, toidx), axis=0) xOut = numpy.take(x, idx) yOut = numpy.take(y, idx) if len(x0.shape) == 1: xOut.shape = -1 yOut.shape = -1 elif x0.shape[0] == 1: xOut.shape = 1, -1 yOut.shape = 1, -1 else: xOut.shape = -1, 1 yOut.shape = -1, 1 return xOut, yOut def XASNormalization(spectrum, energy=None, edge=None, pre_edge_regions=None, post_edge_regions=None, algorithm='polynomial', algorithm_parameters=None): if algorithm not in SUPPORTED_ALGORITHMS: raise ValueError("Unsupported algorithm %s" % algorithm) if energy is None: energy = numpy.arange(len(spectrum)) if edge in [None, 'Auto']: edge = estimateXANESEdge(spectrum, energy=energy) if pre_edge_regions is None: # divide pre-edge zone in 4 regions and take the 3rd? if edge < 200: # data assumed to be in keV pre_edge_regions = [[-0.4, -0.05]] else: # data assumend to be in eV pre_edge_regions = [[-400., -50.]] if post_edge_regions is None: #divide post-edge by 20 and leave out the first one? if edge < 200: # data assumed to be in keV post_edge_regions = [[0.020, energy.max()-edge]] else: # data assumend to be in eV post_edge_regions = [[20., energy.max()-edge]] return SUPPORTED_ALGORITHMS[algorithm](spectrum, energy, edge, pre_edge_regions, post_edge_regions, parameters=algorithm_parameters) def XASPolynomialNormalization(spectrum, energy, edge=None, pre_edge_regions=None, post_edge_regions=None, parameters=None): if edge in [None, 'Auto']: edge = estimateXANESEdge(spectrum, energy=energy) if parameters is None: parameters = {} pre_edge_order = parameters.get('pre_edge_order', 1) post_edge_order = parameters.get('post_edge_order', 3) xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions, edge=edge) xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions, edge=edge) # get the proper pre-edge function to be used pre_edge_function = polynom if pre_edge_order in [0, 'Constant']: pre_edge_order = 0 elif pre_edge_order in [1, 'Linear']: pre_edge_order = 1 elif pre_edge_order in [2, 'Parabolic']: pre_edge_order = 2 elif pre_edge_order in [3, 'Cubic']: pre_edge_order = 3 elif pre_edge_order in [-1, 'Victoreen']: pre_edge_order = -1 pre_edge_function = victoreen elif pre_edge_order in [-2, 'Modif. Victoreen']: pre_edge_order = -2 pre_edge_function = modifiedVictoreen else: # case of arriving with a 4th order polynom, for instance pass # calculate pre-edge if pre_edge_order == 0: prePol = [yPre.mean()] elif pre_edge_order > 0: p = numpy.arange(pre_edge_order + 1).astype(numpy.float64) prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre, model_deriv=polynomDerivative, weightflag=0, linear=1)[0] elif pre_edge_order == -1: p = numpy.array([1.0, 1.0]) prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre, model_deriv=victoreenDerivative, weightflag=0, linear=1)[0] elif pre_edge_order == -2: p = numpy.array([1.0, 1.0]) prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre, model_deriv=modifiedVictoreenDerivative, weightflag=0, linear=1)[0] # get the proper post-edge function to be used post_edge_function = polynom if post_edge_order in [0, 'Constant']: post_edge_order = 0 elif post_edge_order in [1, 'Linear']: post_edge_order = 1 elif post_edge_order in [2, 'Parabolic']: post_edge_order = 2 elif post_edge_order in [3, 'Cubic']: post_edge_order = 3 elif post_edge_order in [-1, 'Victoreen']: post_edge_order = -1 post_edge_function = victoreen elif post_edge_order in [-2, 'Modif. Victoreen']: post_edge_order = -2 post_edge_function = modifiedVictoreen else: # case of arriving with a 4th order polynom, for instance pass # calculate post-edge baseLine = pre_edge_function(prePol, xPost) if post_edge_order == 0: # just take the average postPol = [(yPost-baseLine).mean()] normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))/postPol[0] elif post_edge_order > 0: p = numpy.arange(post_edge_order + 1).astype(numpy.float64) postPol = LeastSquaresFit(post_edge_function, p, xdata=xPost, ydata=yPost-baseLine, model_deriv=polynomDerivative, weightflag=0, linear=1)[0] normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\ /post_edge_function(postPol, energy) elif post_edge_order == -1: p = numpy.array([1.0, 1.0]) postPol = LeastSquaresFit(post_edge_function, p, xdata=xPost, ydata=yPost-baseLine, model_deriv=victoreenDerivative, weightflag=0, linear=1)[0] normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\ /post_edge_function(postPol, energy) elif post_edge_order == -2: p = numpy.array([1.0, 1.0]) postPol = LeastSquaresFit(post_edge_function, p, xdata=xPost, ydata=yPost-baseLine, model_deriv=modifiedVictoreenDerivative, weightflag=0, linear=1)[0] normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\ /post_edge_function(postPol, energy) jump = post_edge_function(postPol, edge) if _logger.getEffectiveLevel() == logging.DEBUG: plot(energy, spectrum, 'o') plot(xPre, pre_edge_function(prePol, xPre), 'r') plot(xPost, post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y') show() return energy, normalizedSpectrum, edge, jump, pre_edge_function, prePol, post_edge_function, postPol def XASVictoreenNormalization(spectrum, energy, edge=None, pre_edge_regions=None, post_edge_regions=None, parameters=None): if edge in [None, 'Auto']: edge = estimateXANESEdge(spectrum, energy=energy) if parameters is None: parameters = {} xPre, yPre = getRegionsData(energy, spectrum, pre_edge_regions) xPost, yPost = getRegionsData(energy, spectrum, post_edge_regions) pre_edge_order = parameters.get('pre_edge_order', 1) post_edge_order = parameters.get('post_edge_order', 1) if pre_edge_order in [1, -1, 'Victoreen']: pre_edge_function = victoreen else: pre_edge_function = modifiedVictoreen if post_edge_order in [1, -1, 'Victoreen']: post_edge_function = victoreen else: post_edge_function = modifiedVictoreen p = numpy.array([1.0, 1.0]) prePol = LeastSquaresFit(pre_edge_function, p, xdata=xPre, ydata=yPre, weightflag=0, linear=1)[0] postPol = LeastSquaresFit(post_edge_function, p, xdata=xPost, ydata=yPost-pre_edge_function(prePol, xPost), weightflag=0, linear=1)[0] normalizedSpectrum = (spectrum - pre_edge_function(prePol, energy))\ /post_edge_function(postPol, energy) if _logger.getEffectiveLevel() == logging.DEBUG: _logger.info("VICTOREEN") plot(energy, spectrum, 'o') plot(xPre, pre_edge_function(prePol, xPre), 'r') plot(xPost, post_edge_function(postPol, xPost)+pre_edge_function(prePol, xPost), 'y') show() return energy, normalizedSpectrum, edge SUPPORTED_ALGORITHMS = {"polynomial":XASPolynomialNormalization, "victoreen": XASVictoreenNormalization} if __name__ == "__main__": import sys from PyMca.PyMcaIO import specfilewrapper as specfile import time sf = specfile.Specfile(sys.argv[1]) scan = sf[0] data = scan.data() energy = data[0, :] spectrum = data[1, :] n = 100 t0 = time.time() for i in range(n): edge = estimateXANESEdge(spectrum+i, energy=energy) print("EDGE ELAPSED = ", (time.time() - t0)/float(n)) print("EDGE = %f" % edge) if _logger.getEffectiveLevel() == logging.DEBUG: n = 1 else: n = 100 t0 = time.time() for i in range(n): nEne0, nSpe0 = XASNormalization(spectrum+i, energy, edge=edge, algorithm='polynomial', algorithm_parameters={'pre_edge_order':0, 'post_edge_order':0})[0:2] print("ELAPSED 0 = ", (time.time() - t0)/float(n)) t0 = time.time() for i in range(n): nEneP, nSpeP = XASNormalization(spectrum+i, energy, edge=edge, algorithm='polynomial', algorithm_parameters={'pre_edge_order':1, 'post_edge_order':2})[0:2] print("ELAPSED Poly = ", (time.time() - t0)/float(n)) t0 = time.time() for i in range(n): nEneV, nSpeV = XASNormalization(spectrum+i, energy, edge=edge, algorithm='polynomial', algorithm_parameters={'pre_edge_order':'Victoreen', 'post_edge_order':'Victoreen'})[0:2] print("ELAPSED Victoreen = ", (time.time() - t0)/float(n)) if _logger.getEffectiveLevel() == logging.DEBUG: #plot(energy, spectrum, 'b') plot(nEne0, nSpe0, 'k', label='Polynomial') plot(nEneP, nSpeP, 'b', label='Polynomial') plot(nEneV, nSpeV, 'r', label='Victoreen') show() ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/XASSelfattenuationCorrection.py����������������������������0000644�0000000�0000000�00000025720�14741736366�024673� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Ana Sancho Tomas and V.A. Sole" __license__ = "MIT" __doc__ = """This module corrects fuorescence XAS spectra for selfattenuation. The implemented algorithm is valid for infinite samples. For state-of-the-art XAS analysis you should take a look at dedicated and well-tested packages like IFEFFIT or Viper/XANES dactyloscope """ import copy import numpy from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaPhysics.xrf import Elements def isValidConfiguration(configuration): return True, "OK" class XASSelfattenuationCorrection(object): def __init__(self, configuration=None): self.setConfiguration(configuration) def setConfiguration(self, configuration): if configuration is None: self._configuration = None return good, message = isValidConfiguration(configuration) if not good: raise RuntimeError(message) elif good and self._configuration in [None, {}]: self._configuration = copy.deepcopy(configuration) else: keyList = list(self._configuration.keys()) for key in keyList: if key in configuration.keys(): self._configuration[key] = copy.deepcopy(configuration[key]) def getConfiguration(self): return copy.deepcopy(self._configuration) def loadConfiguration(self, filename): ddict = ConfigDict.ConfigDict() ddict.read(filename) self.setConfiguration(ddict) def saveConfiguration(self, filename): ddict = ConfigDict.ConfigDict() config = self.getConfiguration() for key in config.keys(): ddict[key] = config[key] ddict.write(filename) def correctNormalizedSpectrum(self, energy0, spectrum): """ """ element = self._configuration['XAS']['element'] material = self._configuration['XAS'].get('material', element) edge = self._configuration['XAS']['edge'] alphaIn, alphaOut = self._configuration['XAS']['angles'] edgeEnergy = Elements.Element[element]['binding'][edge] userEdgeEnergy = self._configuration['XAS'].get('energy', edgeEnergy) energy = numpy.array(energy0, dtype=numpy.float64) #PyMca data ar in keV but XAS data are usually in eV if 0.5 * (energy[0] + energy[-1])/edgeEnergy > 100: # if the user did not do stupid things most likely # the energy was given in eV energy *= 0.001 if userEdgeEnergy/edgeEnergy > 100: userEdgeEnergy *= 0.001 # forget about multilayers for the time being # Elements.getMaterialMassFractions(materialList, massFractionsList) massFractions = Elements.getMaterialMassFractions([material], [1.0]) # calculate the total mass attenuation coefficients at the given energies # exciting the given element shell and not exciting it EPDL = Elements.PyMcaEPDL97 totalCrossSection = 0.0 totalCrossSectionBackground = 0.0 for ele in massFractions.keys(): # make sure EPDL97 respects the Elements energies if EPDL.EPDL97_DICT[ele]['original']: EPDL.setElementBindingEnergies(ele, Elements.Element[ele]['binding']) if ele == element: # make sure we respect the user energy if abs(userEdgeEnergy-edgeEnergy) > 0.01: newBinding = Elements.Element[ele]['binding'] newBinding[edge] = userEdgeEnergy try: EPDL.setElementBindingEnergies(ele, newBinding) crossSections = EPDL.getElementCrossSections(ele, energy) EPDL.setElementBindingEnergies(ele, Elements.Element[ele]['binding']) except: EPDL.setElementBindingEnergies(ele, Elements.Element[ele]['binding']) raise else: crossSections = EPDL.getElementCrossSections(ele, energy) else: crossSections = EPDL.getElementCrossSections(ele, energy) total = numpy.array(crossSections['total']) tmpFloat = massFractions[ele] * total totalCrossSection += tmpFloat if ele != element: totalCrossSectionBackground += tmpFloat else: edgeCrossSections = numpy.array(crossSections[edge]) muSampleJump = massFractions[ele] * edgeCrossSections totalCrossSectionBackground += massFractions[ele] *\ (total - edgeCrossSections) # calculate the mass attenuation coefficient of the sample at the fluorescent energy # assume we are detecting the main fluorescence line of the element shell if edge == 'K': rays = Elements.Element[element]["Ka xrays"] elif edge[0] == 'L': rays = Elements.Element[element][edge + " xrays"] elif edge[0] == 'M': rays = [] for transition in Elements.Element[element]['M xrays']: if transition.startswith(edge): rays.append(transition) lineList = [] for label in rays: ene = Elements.Element[element][label]['energy'] rate = Elements.Element[element][label]['rate'] lineList.append([ene, rate, label]) # whithin 50 eV lines considered the same lineList = Elements._filterPeaks(lineList, ethreshold=0.050) # now take the returned line with the highest intensity fluoLine = lineList[0] for line in lineList: if line[1] > fluoLine[1]: fluoLine = line # and calculate the sample total mass attenuation muTotalFluorescence = 0.0 for ele in massFractions.keys(): crossSections = EPDL.getElementCrossSections(ele, fluoLine[0]) muTotalFluorescence += massFractions[ele] * crossSections['total'][0] #define some convenience variables sinIn = numpy.sin(numpy.deg2rad(alphaIn)) sinOut= numpy.sin(numpy.deg2rad(alphaOut)) g = sinIn / sinOut if 1: # thick sample idx = numpy.where(muSampleJump > 0.0)[0][0] muSampleJump[0:idx] = muSampleJump[idx] ALPHA = g * (muTotalFluorescence/muSampleJump) + totalCrossSectionBackground/muSampleJump return (spectrum * ALPHA)/(1 + ALPHA - spectrum) elif 1: # all samples (to be tested) d = thickness * density idx = numpy.where(muSampleJump > 0.0)[0][0] muSampleJump[0:idx] = muSampleJump[idx] ALPHA = g * (muTotalFluorescence/muSampleJump) + totalCrossSectionBackground/muSampleJump thickTarget0 = (spectrum * ALPHA)/(1 + ALPHA - spectrum) # Iterate to find the solution x = spectrum t = (ALPHA + 1) * d * muSampleJump/sinIn if t.max() < 0.001: A = 1 - t else: A = numpy.exp(-t) t = (ALPHA * d * muSampleJump/sinIn) if t.max() < 0.001: B = 1.0 - t else: B = numpy.exp(-t) delta = 10.0 i = 0 while (delta > 1.0e-5) and (i < 30): old = x x = thickTarget0 * (1.0 - A) / \ (1.0 - B * numpy.exp(- x * d * muSampleJump/sinIn)) delta = numpy.abs(x - old).max() i += 1 return x else: thickness = 1.0 density = 1.0e-6 # FORMULA Booth and Bridges ALPHA = g * muTotalFluorescence + totalCrossSection tmpFloat0 = density * thickness * ALPHA / sinIn tmpFloat1 = numpy.exp(-tmpFloat0) BETA = (muSampleJump * tmpFloat0) * tmpFloat1 GAMMA = 1.0 - tmpFloat1 b = GAMMA * ( ALPHA - muSampleJump * spectrum + BETA) discriminant = b*b + 4 * ALPHA * BETA * GAMMA * (spectrum - 1.0) return 1 + (-b + numpy.sqrt(discriminant))/(2 * BETA) if __name__ == "__main__": from PyMca.PyMcaIO import specfilewrapper instance = XASSelfattenuationCorrection() configuration = {} configuration['XAS'] = {} configuration['XAS']['material'] = 'Pd' configuration['XAS']['element'] = 'Pd' configuration['XAS']['edge'] = 'L3' configuration['XAS']['energy'] = Elements.Element['Pd']['binding']['L3'] configuration['XAS']['angles'] = [45., 45.] instance.setConfiguration(configuration) normalizedFile = specfilewrapper.Specfile('norm501.dat') normalizedScan = normalizedFile[0] energy, spectrum = normalizedScan[0], normalizedScan[1] normalizedScan = None normalizedFile = None correctedSpectrum = instance.correctNormalizedSpectrum(energy, spectrum) from matplotlib import pyplot as pl pl.plot(energy, spectrum, 'b') pl.plot(energy, correctedSpectrum, 'r') pl.show() normalizedFile = specfilewrapper.Specfile('PdL3Fabrice.DAT') normalizedScan = normalizedFile[0] data = normalizedScan.data() energy = data[1, :] spectrum = data[2, :] corr = data[3, :] normalizedScan = None normalizedFile = None correctedSpectrum = instance.correctNormalizedSpectrum(energy, spectrum) pl.plot(energy, spectrum, 'b') pl.plot(energy, corr, 'y') pl.plot(energy, correctedSpectrum, 'r') pl.show() ������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/XASStackBatch.py�������������������������������������������0000644�0000000�0000000�00000034202�14741736366�021500� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Module to process a stack of absorption spectra. """ import os import numpy import h5py import posixpath import logging from PyMca5.PyMca import XASClass from PyMca5.PyMcaIO import ConfigDict import time _logger = logging.getLogger(__name__) class XASStackBatch(object): def __init__(self, analyzer=None): if analyzer is None: analyzer = XASClass.XASClass() self._analyzer = analyzer def setConfiguration(self, configuration): if "XASParameters" in configuration: self._analyzer.setConfiguration(configuration["XASParameters"]) else: self._analyzer.setConfiguration(configuration) def setConfigurationFile(self, ffile): if not os.path.exists(ffile): raise IOError("File <%s> does not exists" % ffile) configuration = ConfigDict.ConfigDict() configuration.read(ffile) self.setConfiguration(configuration) def processMultipleSpectra(self, x, y, xmin=None, xmax=None, configuration=None, ysum=None, weight=None, mask=None, directory=None, name=None, entry=None): """ This method performs the actual work. :param x: 1D array containing the x axis (usually the channels) of the spectra. :param y: 3D array containing the spectra as [nrows, ncolumns, nchannels] :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow) :return: A dictionary with the results as keys. """ t0 = time.time() if configuration is not None: self._analyzer.setConfiguration(configuration) # read the current configuration config = self._analyzer.getConfiguration() # if weight is None: # dictated by the current configuration pass else: _logger.warning("WARNING: weight not handled yet") weightPolicy = 0 # no weight #weightPolicy = 1 # use average weight from the sum spectrum #weightPolicy = 2 # individual pixel weights (slow) if hasattr(x, "value"): # hdf5 dataset x = x.value if hasattr(y, "info") and hasattr(y, "data"): data = y.data mcaIndex = y.info.get("McaIndex", -1) else: data = y mcaIndex = -1 if len(data.shape) != 3: txt = "For the time being only three dimensional arrays supported" raise IndexError(txt) if mcaIndex not in [-1, 2]: txt = "For the time being only mca arrays supported" raise IndexError(txt) firstSpectrum = None if ysum is not None: firstSpectrum = ysum if weightPolicy: # if the cumulated spectrum is present it should be better nRows = data.shape[0] nColumns = data.shape[1] nPixels = nRows * nColumns if ysum is not None: firstSpectrum = ysum elif weightPolicy == 1: # we need to calculate the sum spectrum to derive the uncertainties totalSpectra = data.shape[0] * data.shape[1] jStep = min(5000, data.shape[1]) ysum = numpy.zeros((data.shape[mcaIndex],), numpy.float64) for i in range(0, data.shape[0]): if i == 0: chunk = numpy.zeros((data.shape[0], jStep), numpy.float64) jStart = 0 while jStart < data.shape[1]: jEnd = min(jStart + jStep, data.shape[1]) ysum += data[i, jStart:jEnd, :].sum(axis=0, dtype=numpy.float64) jStart = jEnd firstSpectrum = ysum else: firstSpectrum = data[0, :, :].sum(axis=0, dtype=numpy.float64) if firstSpectrum is None: firstSpectrum = data[0, 0, :] # TODO: Check if only one X and it is well behaved in order to # avoid unnecessary calculation on each spectrum self._analyzer.setSpectrum(x, firstSpectrum) # initialize the output arrays ddict = self._analyzer.processSpectrum() # initialize the arrays from the first results entry0 = "PyMcaResults" usedEnergy = ddict["Energy"] usedMu = ddict["Mu"] normalizedIdx = (ddict["NormalizedEnergy"] >= ddict["NormalizedPlotMin"]) & \ (ddict["NormalizedEnergy"] <= ddict["NormalizedPlotMax"]) normalizedSpectrumX = ddict["NormalizedEnergy"][normalizedIdx] normalizedSpectrumY = ddict["NormalizedMu"][normalizedIdx] exafsIdx = (ddict["EXAFSKValues"] >= ddict["KMin"]) & \ (ddict["EXAFSKValues"] <= ddict["KMax"]) exafsSpectrumX = ddict["EXAFSKValues"][exafsIdx] exafsSpectrumY = ddict["EXAFSNormalized"][exafsIdx] xFT = ddict["FT"]["FTRadius"] yFT = ddict["FT"]["FTIntensity"] if directory is None: directory = os.getcwd() if name is None: name = "XAS_Result" fname = os.path.join(directory, name) if entry is None: entry = posixpath.join("xas_analysis") else: entry = posixpath.join(entry, "xas_analysis") if not fname.endswith(".h5"): fname = fname + ".h5" out = h5py.File(fname, "w") e0Path = posixpath.join(entry, "edge") jumpPath = posixpath.join(entry, "jump") spectrumXPath = posixpath.join(entry, "spectrum", "energy") spectrumYPath = posixpath.join(entry, "spectrum", "mu") normalizedXPath = posixpath.join(entry, "normalized", "energy") normalizedYPath = posixpath.join(entry, "normalized", "mu") exafsXPath = posixpath.join(entry, "exafs", "k") exafsYPath = posixpath.join(entry, "exafs", "signal") ftXPath = posixpath.join(entry, "FT", "Radius") ftYPath = posixpath.join(entry, "FT", "Intensity") ftImaginaryPath = posixpath.join(entry, "FT", "Imaginary") iXMin = 0 iXMax = data.shape[-1] - 1 e0 = out.require_dataset(e0Path, shape=data.shape[:-1], dtype=numpy.float32, chunks=None, compression=None) jump = out.require_dataset(jumpPath, shape=data.shape[:-1], dtype=numpy.float32, chunks=None, compression=None) shape = list(data.shape[:-1]) + [usedEnergy.size] spectrumX = out.require_dataset(spectrumXPath, shape=[usedEnergy.size], dtype=numpy.float32, chunks=None, compression=None) spectrumY = out.require_dataset(spectrumYPath, shape=shape, dtype=numpy.float32, chunks=None, compression=None) shape = list(data.shape[:-1]) + [normalizedSpectrumX.size] normalizedX = out.require_dataset(normalizedXPath, shape=[normalizedSpectrumX.size], dtype=numpy.float32, chunks=None, compression=None) normalizedY = out.require_dataset(normalizedYPath, shape=shape, dtype=numpy.float32, chunks=None, compression=None) shape = list(data.shape[:-1]) + [exafsSpectrumX.size] exafsX = out.require_dataset(exafsXPath, shape=[exafsSpectrumX.size], dtype=numpy.float32, chunks=None, compression=None) exafsY = out.require_dataset(exafsYPath, shape=shape, dtype=numpy.float32, chunks=None, compression=None) shape = list(data.shape[:-1]) + [xFT.size] ftX = out.require_dataset(ftXPath, shape=[xFT.size], dtype=numpy.float32, chunks=None, compression=None) ftY = out.require_dataset(ftYPath, shape=shape, dtype=numpy.float32, chunks=None, compression=None) ftImaginary = out.require_dataset(ftImaginaryPath, shape=shape, dtype=numpy.float32, chunks=None, compression=None) spectrumX[:] = ddict["Energy"] normalizedX[:] = ddict["NormalizedEnergy"][normalizedIdx] exafsX[:] = ddict["EXAFSKValues"][exafsIdx] ftX[:] = ddict["FT"]["FTRadius"] t0 = time.time() totalSpectra = data.shape[0] * data.shape[1] jStep = min(100, data.shape[1]) if weightPolicy == 2: SVD = False sigma_b = None elif weightPolicy == 1: # the +1 is to prevent misbehavior due to weights less than 1.0 sigma_b = 1 + numpy.sqrt(dummySpectrum)/nPixels SVD = True else: SVD = True sigma_b = None last_svd = None #for i in range(10): for i in range(0, data.shape[0]): #print(i) #chunks of nColumns spectra if i == 0: chunk = numpy.zeros((jStep, iXMax-iXMin+1), numpy.float64) jStart = 0 j = 0 while jStart < data.shape[1]: jEnd = min(jStart + jStep, data.shape[1]) #chunk[:,:(jEnd - jStart)] = data[i, jStart:jEnd, iXMin:iXMax+1].T spectra = data[i, jStart:jEnd, iXMin:iXMax+1] nSpectra = spectra.shape[0] for spectrumNumber in range(nSpectra): if mask is not None: if mask[i, j] == 0: continue self._analyzer.setSpectrum(x, spectra[spectrumNumber]) ddict = self._analyzer.processSpectrum() spectrumY[i, j] = ddict["Mu"] e0[i, j] = ddict["Edge"] jump[i, j] = ddict["Jump"] #normalizedX[i, j] = ddict["NormalizedEnergy"][normalizedIdx] normalizedY[i, j] = ddict["NormalizedMu"][normalizedIdx] #exafsX[i, j] = ddict["EXAFSKValues"][exafsIdx] exafsY[i, j] = ddict["EXAFSNormalized"][exafsIdx] #ftX[i, j] = ddict["FT"]["FTRadius"] ftY[i, j] = ddict["FT"]["FTIntensity"] ftImaginary[i, j] = ddict["FT"]["FTImaginary"] j +=1 jStart = jEnd outputDict = {} outputDict["names"] = ["Jump", "Edge"] output = numpy.zeros((2, e0.shape[0], e0.shape[1]), dtype = e0.dtype) output[0, :] = jump.value output[1, :] = e0.value outputDict["images"] = output out.flush() out.close() t = time.time() - t0 _logger.debug("First fit elapsed = %f", t) _logger.debug("Spectra per second = %f", data.shape[0]*data.shape[1]/float(t)) t0 = time.time() return outputDict if __name__ == "__main__": _logger.setLevel(logging.DEBUG) analyzer = XASClass.XASClass() instance = XASStackBatch(analyzer=analyzer) configurationFile = "test.ini" dataFile = h5py.File("testdata.h5", "r") for entry in dataFile: data = dataFile[entry]["data"] energy = dataFile[entry]["energy"] break instance.setConfigurationFile(configurationFile) instance.processMultipleSpectra(energy, data) dataFile.close() ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/__init__.py������������������������������������������������0000644�0000000�0000000�00000000000�14741736366�020641� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017465� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/�����������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020771� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx���������������������������������������0000644�0000000�0000000�00000014770�14741736366�022505� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython import numpy cimport numpy from polspl cimport polspl as _polspl from bessel0 cimport j0Single, j0Multiple def j0(x): if hasattr(x, "__len__"): return _besselMultiple(x) else: return _besselSingle(x) def _besselMultiple(x): result = numpy.array(x, copy=True, dtype=numpy.float64) cdef double[:] c_x = result cdef int c_npts = c_x.size j0Multiple(&c_x[0], c_npts) return result def _besselSingle(double x): return j0Single(x) def polspl(x, y, w, npts, xl, xh, nr, nc): c = numpy.zeros((36,), dtype=numpy.float64) cdef double[:] c_c = c cdef double[:] c_x = numpy.ascontiguousarray(x, dtype=numpy.float64) cdef double[:] c_y = numpy.ascontiguousarray(y, dtype=numpy.float64) cdef double[:] c_w = numpy.ascontiguousarray(w, dtype=numpy.float64) cdef int c_npts = npts cdef double[:] c_xl = numpy.ascontiguousarray(xl, dtype=numpy.float64) cdef double[:] c_xh = numpy.ascontiguousarray(xh, dtype=numpy.float64) cdef int c_nr = nr cdef int[:] c_nc = numpy.ascontiguousarray(nc, dtype=numpy.int32) cdef int c_sizeC = c_c.size _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) return c def polspl2(x,y,w,npts,xl0,xh0,nr,nc): # ; # ; few definitions # ; cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xl0 = \ numpy.ascontiguousarray(xl0, numpy.float64) cdef double * xl = <double *> buffer_xl0.data cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \ numpy.ascontiguousarray(xh0, numpy.float64) cdef double * xh = <double *> buffer_xh0.data df = numpy.zeros(26) a = numpy.zeros((36,37)) nbs = numpy.zeros(11,dtype=int) cdef double[:] xk0 = numpy.zeros(10) cdef double * xk = &xk0[0] c = numpy.zeros(36) cdef int j=0 cdef int i=0 ne_idl=0 n = 0 cdef int k = 0 cdef int ibl = 0 cdef int ns = 0 cdef int ns1 = 0 nbs[1]=1 for i in range(1,nr+1): n=n+int(nc[i]) nbs[i+1]=n+1 if xl[i] < xh[i]: pass else: t=xl[i] xl[i]=xh[i] xh[i]=t n=n+2*(nr-1) n1=n+1 xl[nr+1]=0. xh[nr+1]=0. # this loop ... for ibl in range(1,nr+1): xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) if (xl[ibl] > xl[ibl+1]): xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) ns=nbs[ibl] ne_idl=nbs[ibl+1]-1 for i in range(1, npts+1): if((x[i] < xl[ibl]) or (x[i] > xh[ibl])): pass else: df[ns]=1.0 ns1=ns+1 for j in range(ns1,ne_idl+1): df[j]=df[j-1]*x[i] for j in range(ns,ne_idl+1): for k in range(j,ne_idl+1): a[j,k]=a[j,k]+df[j]*df[k]*w[i] a[j,n1]=a[j,n1]+df[j]*y[i]*w[i] # ... has to be faster ncol=nbs[nr+1]-1 nk=nr-1 if (nk == 0): pass else: for ik in range(1,nk+1): ncol=ncol+1 ns=nbs[ik] ne_idl=nbs[ik+1]-1 a[ns,ncol]=-1. ns=ns+1 for i in range(ns,ne_idl+1): a[i,ncol]=a[i-1,ncol]*xk[ik] ncol=ncol+1 a[ns,ncol]=-1. ns=ns+1 if (ns > ne_idl): pass else: for i in range(ns,ne_idl+1): a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) ncol=ncol-1 ns=nbs[ik+1] ne_idl=nbs[ik+2]-1 a[ns,ncol]=1.0 ns=ns+1 for i in range(ns,ne_idl+1): a[i,ncol]=a[i-1,ncol]*xk[ik] ncol=ncol+1 a[ns,ncol]=1.0 ns=ns+1 if (ns > ne_idl): pass else: for i in range(ns,ne_idl+1): a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1)) for i in range(1,n+1): i1=i-1 for j in range(1,i1+1): a[i,j]=a[j,i] nm1=n-1 for i in range(1,nm1+1): i1=i+1 m=i t=numpy.abs(a[i,i]) for j in range(i1,n+1): if (t >= numpy.abs(a[j,i])): pass else: m=j t=numpy.abs(a[j,i]) if (m == i): pass else: for j in range(1,n1+1): t=a[i,j] a[i,j]=a[m,j] a[m,j]=t for j in range(i1,n+1): t=a[j,i]/a[i,i] for k in range(i1,n1+1): a[j,k]=a[j,k]-t*a[i,k] c[n]=a[n,n1]/a[n,n] for i in range(1,nm1+1): ni=n-i t=a[ni,n1] ni1=ni+1 for j in range(ni1,n+1): t=t-c[j]*a[ni,j] c[ni]=t/a[ni,ni] return c ��������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/bessel0.pxd������������������������������������0000644�0000000�0000000�00000003010�14741736366�023044� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython cdef extern from "bessel0.h": double j0Single(double) void j0Multiple(double *, int) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8357666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/default/���������������������������������������0000755�0000000�0000000�00000000000�14741736404�022415� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/default/_xas.c���������������������������������0000644�0000000�0000000�00003756526�14741736366�023552� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������/* Generated by Cython 0.29.32 */ #ifndef PY_SSIZE_T_CLEAN #define PY_SSIZE_T_CLEAN #endif /* PY_SSIZE_T_CLEAN */ #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else #define CYTHON_ABI "0_29_32" #define CYTHON_HEX_VERSION 0x001D20F0 #define CYTHON_FUTURE_DIVISION 0 #include <stddef.h> #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #define __PYX_COMMA , #ifndef HAVE_LONG_LONG #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #if PY_VERSION_HEX < 0x03050000 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #undef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 1 #undef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 0 #undef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 0 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC (PYPY_VERSION_HEX >= 0x07030900) #endif #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 0 #endif #elif defined(PY_NOGIL) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #define CYTHON_COMPILING_IN_NOGIL 1 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #ifndef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 1 #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 1 #endif #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #define CYTHON_COMPILING_IN_NOGIL 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) #define CYTHON_USE_PYTYPE_LOOKUP 1 #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #elif !defined(CYTHON_USE_PYLONG_INTERNALS) #define CYTHON_USE_PYLONG_INTERNALS 1 #endif #ifndef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 1 #endif #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #if PY_VERSION_HEX < 0x030300F0 || PY_VERSION_HEX >= 0x030B00A2 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #elif !defined(CYTHON_USE_UNICODE_WRITER) #define CYTHON_USE_UNICODE_WRITER 1 #endif #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #elif !defined(CYTHON_FAST_THREAD_STATE) #define CYTHON_FAST_THREAD_STATE 1 #endif #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL (PY_VERSION_HEX < 0x030A0000) #endif #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) #endif #ifndef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) #endif #if PY_VERSION_HEX >= 0x030B00A4 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #elif !defined(CYTHON_USE_EXC_INFO_STACK) #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) #endif #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC #define CYTHON_UPDATE_DESCRIPTOR_DOC 1 #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) #endif #if CYTHON_USE_PYLONG_INTERNALS #if PY_MAJOR_VERSION < 3 #include "longintrepr.h" #endif #undef SHIFT #undef BASE #undef MASK #ifdef SIZEOF_VOID_P enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; #endif #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifndef __has_cpp_attribute #define __has_cpp_attribute(x) 0 #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif #ifndef CYTHON_MAYBE_UNUSED_VAR # if defined(__cplusplus) template<class T> void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } # else # define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) # endif #endif #ifndef CYTHON_NCP_UNUSED # if CYTHON_COMPILING_IN_CPYTHON # define CYTHON_NCP_UNUSED # else # define CYTHON_NCP_UNUSED CYTHON_UNUSED # endif #endif #define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) #ifdef _MSC_VER #ifndef _MSC_STDINT_H_ #if _MSC_VER < 1300 typedef unsigned char uint8_t; typedef unsigned int uint32_t; #else typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; #endif #endif #else #include <stdint.h> #endif #ifndef CYTHON_FALLTHROUGH #if defined(__cplusplus) && __cplusplus >= 201103L #if __has_cpp_attribute(fallthrough) #define CYTHON_FALLTHROUGH [[fallthrough]] #elif __has_cpp_attribute(clang::fallthrough) #define CYTHON_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] #endif #endif #ifndef CYTHON_FALLTHROUGH #if __has_attribute(fallthrough) #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) #else #define CYTHON_FALLTHROUGH #endif #endif #if defined(__clang__ ) && defined(__apple_build_version__) #if __apple_build_version__ < 7000000 #undef CYTHON_FALLTHROUGH #define CYTHON_FALLTHROUGH #endif #endif #endif #ifndef CYTHON_INLINE #if defined(__clang__) #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) #elif defined(__GNUC__) #define CYTHON_INLINE __inline__ #elif defined(_MSC_VER) #define CYTHON_INLINE __inline #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_INLINE inline #else #define CYTHON_INLINE #endif #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #define __Pyx_DefaultClassType PyType_Type #if PY_VERSION_HEX >= 0x030B00A1 static CYTHON_INLINE PyCodeObject* __Pyx_PyCode_New(int a, int k, int l, int s, int f, PyObject *code, PyObject *c, PyObject* n, PyObject *v, PyObject *fv, PyObject *cell, PyObject* fn, PyObject *name, int fline, PyObject *lnos) { PyObject *kwds=NULL, *argcount=NULL, *posonlyargcount=NULL, *kwonlyargcount=NULL; PyObject *nlocals=NULL, *stacksize=NULL, *flags=NULL, *replace=NULL, *call_result=NULL, *empty=NULL; const char *fn_cstr=NULL; const char *name_cstr=NULL; PyCodeObject* co=NULL; PyObject *type, *value, *traceback; PyErr_Fetch(&type, &value, &traceback); if (!(kwds=PyDict_New())) goto end; if (!(argcount=PyLong_FromLong(a))) goto end; if (PyDict_SetItemString(kwds, "co_argcount", argcount) != 0) goto end; if (!(posonlyargcount=PyLong_FromLong(0))) goto end; if (PyDict_SetItemString(kwds, "co_posonlyargcount", posonlyargcount) != 0) goto end; if (!(kwonlyargcount=PyLong_FromLong(k))) goto end; if (PyDict_SetItemString(kwds, "co_kwonlyargcount", kwonlyargcount) != 0) goto end; if (!(nlocals=PyLong_FromLong(l))) goto end; if (PyDict_SetItemString(kwds, "co_nlocals", nlocals) != 0) goto end; if (!(stacksize=PyLong_FromLong(s))) goto end; if (PyDict_SetItemString(kwds, "co_stacksize", stacksize) != 0) goto end; if (!(flags=PyLong_FromLong(f))) goto end; if (PyDict_SetItemString(kwds, "co_flags", flags) != 0) goto end; if (PyDict_SetItemString(kwds, "co_code", code) != 0) goto end; if (PyDict_SetItemString(kwds, "co_consts", c) != 0) goto end; if (PyDict_SetItemString(kwds, "co_names", n) != 0) goto end; if (PyDict_SetItemString(kwds, "co_varnames", v) != 0) goto end; if (PyDict_SetItemString(kwds, "co_freevars", fv) != 0) goto end; if (PyDict_SetItemString(kwds, "co_cellvars", cell) != 0) goto end; if (PyDict_SetItemString(kwds, "co_linetable", lnos) != 0) goto end; if (!(fn_cstr=PyUnicode_AsUTF8AndSize(fn, NULL))) goto end; if (!(name_cstr=PyUnicode_AsUTF8AndSize(name, NULL))) goto end; if (!(co = PyCode_NewEmpty(fn_cstr, name_cstr, fline))) goto end; if (!(replace = PyObject_GetAttrString((PyObject*)co, "replace"))) goto cleanup_code_too; if (!(empty = PyTuple_New(0))) goto cleanup_code_too; // unfortunately __pyx_empty_tuple isn't available here if (!(call_result = PyObject_Call(replace, empty, kwds))) goto cleanup_code_too; Py_XDECREF((PyObject*)co); co = (PyCodeObject*)call_result; call_result = NULL; if (0) { cleanup_code_too: Py_XDECREF((PyObject*)co); co = NULL; } end: Py_XDECREF(kwds); Py_XDECREF(argcount); Py_XDECREF(posonlyargcount); Py_XDECREF(kwonlyargcount); Py_XDECREF(nlocals); Py_XDECREF(stacksize); Py_XDECREF(replace); Py_XDECREF(call_result); Py_XDECREF(empty); if (type) { PyErr_Restore(type, value, traceback); } return co; } #else #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #endif #define __Pyx_DefaultClassType PyType_Type #endif #ifndef Py_TPFLAGS_CHECKTYPES #define Py_TPFLAGS_CHECKTYPES 0 #endif #ifndef Py_TPFLAGS_HAVE_INDEX #define Py_TPFLAGS_HAVE_INDEX 0 #endif #ifndef Py_TPFLAGS_HAVE_NEWBUFFER #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #ifndef METH_STACKLESS #define METH_STACKLESS 0 #endif #if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) #ifndef METH_FASTCALL #define METH_FASTCALL 0x80 #endif typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) #define PyObject_Malloc(s) PyMem_Malloc(s) #define PyObject_Free(p) PyMem_Free(p) #define PyObject_Realloc(p) PyMem_Realloc(p) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 #define PyMem_RawMalloc(n) PyMem_Malloc(n) #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) #define PyMem_RawFree(p) PyMem_Free(p) #endif #if CYTHON_COMPILING_IN_PYSTON #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) #else #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) #endif #if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #elif PY_VERSION_HEX >= 0x03060000 #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() #elif PY_VERSION_HEX >= 0x03000000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #else #define __Pyx_PyThreadState_Current _PyThreadState_Current #endif #if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) #include "pythread.h" #define Py_tss_NEEDS_INIT 0 typedef int Py_tss_t; static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { *key = PyThread_create_key(); return 0; } static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); *key = Py_tss_NEEDS_INIT; return key; } static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { PyObject_Free(key); } static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { return *key != Py_tss_NEEDS_INIT; } static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { PyThread_delete_key(*key); *key = Py_tss_NEEDS_INIT; } static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { return PyThread_set_key_value(*key, value); } static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { return PyThread_get_key_value(*key); } #endif #if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) #define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) #else #define __Pyx_PyDict_NewPresized(n) PyDict_New() #endif #if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS #define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) #else #define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #if defined(PyUnicode_IS_READY) #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ 0 : _PyUnicode_Ready((PyObject *)(op))) #else #define __Pyx_PyUnicode_READY(op) (0) #endif #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) #if defined(PyUnicode_IS_READY) && defined(PyUnicode_GET_SIZE) #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x03090000 #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : ((PyCompactUnicodeObject *)(u))->wstr_length)) #else #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) #endif #else #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_LENGTH(u)) #endif #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 #define PyUnicode_2BYTE_KIND 2 #define PyUnicode_4BYTE_KIND 4 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) #define PyObject_ASCII(o) PyObject_Repr(o) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #ifndef PyObject_Unicode #define PyObject_Unicode PyObject_Str #endif #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #if PY_VERSION_HEX >= 0x030900A4 #define __Pyx_SET_REFCNT(obj, refcnt) Py_SET_REFCNT(obj, refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SET_SIZE(obj, size) #else #define __Pyx_SET_REFCNT(obj, refcnt) Py_REFCNT(obj) = (refcnt) #define __Pyx_SET_SIZE(obj, size) Py_SIZE(obj) = (size) #endif #if CYTHON_ASSUME_SAFE_MACROS #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) #else #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) #endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY #ifndef PyUnicode_InternFromString #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) #endif #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsHash_t #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyMethod_New(func, self, klass) ((self) ? ((void)(klass), PyMethod_New(func, self)) : __Pyx_NewRef(func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif #if CYTHON_USE_ASYNC_SLOTS #if PY_VERSION_HEX >= 0x030500B1 #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif #ifndef __Pyx_PyAsyncMethodsStruct typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; } __Pyx_PyAsyncMethodsStruct; #endif #if defined(_WIN32) || defined(WIN32) || defined(MS_WINDOWS) #if !defined(_USE_MATH_DEFINES) #define _USE_MATH_DEFINES #endif #endif #include <math.h> #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) #define __Pyx_truncl trunc #else #define __Pyx_truncl truncl #endif #define __PYX_MARK_ERR_POS(f_index, lineno) \ { __pyx_filename = __pyx_f[f_index]; (void)__pyx_filename; __pyx_lineno = lineno; (void)__pyx_lineno; __pyx_clineno = __LINE__; (void)__pyx_clineno; } #define __PYX_ERR(f_index, lineno, Ln_error) \ { __PYX_MARK_ERR_POS(f_index, lineno) goto Ln_error; } #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #define __PYX_HAVE__PyMca5__PyMcaPhysics__xas___xas #define __PYX_HAVE_API__PyMca5__PyMcaPhysics__xas___xas /* Early includes */ #include <string.h> #include <stdio.h> #include "numpy/arrayobject.h" #include "numpy/ndarrayobject.h" #include "numpy/ndarraytypes.h" #include "numpy/arrayscalars.h" #include "numpy/ufuncobject.h" /* NumPy API declarations from "numpy/__init__.pxd" */ #include "polspl.h" #include "bessel0.h" #include "pythread.h" #include <stdlib.h> #include "pystate.h" #ifdef _OPENMP #include <omp.h> #endif /* _OPENMP */ #if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_uchar_cast(c) ((unsigned char)c) #define __Pyx_long_cast(x) ((long)x) #define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ (sizeof(type) < sizeof(Py_ssize_t)) ||\ (sizeof(type) > sizeof(Py_ssize_t) &&\ likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX) &&\ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ v == (type)PY_SSIZE_T_MIN))) ||\ (sizeof(type) == sizeof(Py_ssize_t) &&\ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { return (size_t) i < (size_t) limit; } #if defined (__cplusplus) && __cplusplus >= 201103L #include <cstdlib> #define __Pyx_sst_abs(value) std::abs(value) #elif SIZEOF_INT >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) #elif defined (_MSC_VER) #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) #define __Pyx_sst_abs(value) __builtin_llabs(value) #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); #define __Pyx_PySequence_Tuple(obj)\ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject*); #if CYTHON_ASSUME_SAFE_MACROS #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) #else #define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) #endif #define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; /* Header.proto */ #if !defined(CYTHON_CCOMPLEX) #if defined(__cplusplus) #define CYTHON_CCOMPLEX 1 #elif defined(_Complex_I) #define CYTHON_CCOMPLEX 1 #else #define CYTHON_CCOMPLEX 0 #endif #endif #if CYTHON_CCOMPLEX #ifdef __cplusplus #include <complex> #else #include <complex.h> #endif #endif #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) #undef _Complex_I #define _Complex_I 1.0fj #endif static const char *__pyx_f[] = { "PyMca5\\PyMcaPhysics\\xas\\_xas\\cython\\_xas.pyx", "__init__.pxd", "stringsource", "type.pxd", }; /* MemviewSliceStruct.proto */ struct __pyx_memoryview_obj; typedef struct { struct __pyx_memoryview_obj *memview; char *data; Py_ssize_t shape[8]; Py_ssize_t strides[8]; Py_ssize_t suboffsets[8]; } __Pyx_memviewslice; #define __Pyx_MemoryView_Len(m) (m.shape[0]) /* Atomics.proto */ #include <pythread.h> #ifndef CYTHON_ATOMICS #define CYTHON_ATOMICS 1 #endif #define __PYX_CYTHON_ATOMICS_ENABLED() CYTHON_ATOMICS #define __pyx_atomic_int_type int #if CYTHON_ATOMICS && (__GNUC__ >= 5 || (__GNUC__ == 4 &&\ (__GNUC_MINOR__ > 1 ||\ (__GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ >= 2)))) #define __pyx_atomic_incr_aligned(value) __sync_fetch_and_add(value, 1) #define __pyx_atomic_decr_aligned(value) __sync_fetch_and_sub(value, 1) #ifdef __PYX_DEBUG_ATOMICS #warning "Using GNU atomics" #endif #elif CYTHON_ATOMICS && defined(_MSC_VER) && CYTHON_COMPILING_IN_NOGIL #include <intrin.h> #undef __pyx_atomic_int_type #define __pyx_atomic_int_type long #pragma intrinsic (_InterlockedExchangeAdd) #define __pyx_atomic_incr_aligned(value) _InterlockedExchangeAdd(value, 1) #define __pyx_atomic_decr_aligned(value) _InterlockedExchangeAdd(value, -1) #ifdef __PYX_DEBUG_ATOMICS #pragma message ("Using MSVC atomics") #endif #else #undef CYTHON_ATOMICS #define CYTHON_ATOMICS 0 #ifdef __PYX_DEBUG_ATOMICS #warning "Not using atomics" #endif #endif typedef volatile __pyx_atomic_int_type __pyx_atomic_int; #if CYTHON_ATOMICS #define __pyx_add_acquisition_count(memview)\ __pyx_atomic_incr_aligned(__pyx_get_slice_count_pointer(memview)) #define __pyx_sub_acquisition_count(memview)\ __pyx_atomic_decr_aligned(__pyx_get_slice_count_pointer(memview)) #else #define __pyx_add_acquisition_count(memview)\ __pyx_add_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #define __pyx_sub_acquisition_count(memview)\ __pyx_sub_acquisition_count_locked(__pyx_get_slice_count_pointer(memview), memview->lock) #endif /* BufferFormatStructs.proto */ #define IS_UNSIGNED(type) (((type) -1) > 0) struct __Pyx_StructField_; #define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0) typedef struct { const char* name; struct __Pyx_StructField_* fields; size_t size; size_t arraysize[8]; int ndim; char typegroup; char is_unsigned; int flags; } __Pyx_TypeInfo; typedef struct __Pyx_StructField_ { __Pyx_TypeInfo* type; const char* name; size_t offset; } __Pyx_StructField; typedef struct { __Pyx_StructField* field; size_t parent_offset; } __Pyx_BufFmt_StackElem; typedef struct { __Pyx_StructField root; __Pyx_BufFmt_StackElem* head; size_t fmt_offset; size_t new_count, enc_count; size_t struct_alignment; int is_complex; char enc_type; char new_packmode; char enc_packmode; char is_valid_array; } __Pyx_BufFmt_Context; /* ForceInitThreads.proto */ #ifndef __PYX_FORCE_INIT_THREADS #define __PYX_FORCE_INIT_THREADS 0 #endif /* NoFastGil.proto */ #define __Pyx_PyGILState_Ensure PyGILState_Ensure #define __Pyx_PyGILState_Release PyGILState_Release #define __Pyx_FastGIL_Remember() #define __Pyx_FastGIL_Forget() #define __Pyx_FastGilFuncInit() /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":689 * # in Cython to enable them only on the right systems. * * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t */ typedef npy_int8 __pyx_t_5numpy_int8_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":690 * * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t */ typedef npy_int16 __pyx_t_5numpy_int16_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":691 * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< * ctypedef npy_int64 int64_t * #ctypedef npy_int96 int96_t */ typedef npy_int32 __pyx_t_5numpy_int32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":692 * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< * #ctypedef npy_int96 int96_t * #ctypedef npy_int128 int128_t */ typedef npy_int64 __pyx_t_5numpy_int64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":696 * #ctypedef npy_int128 int128_t * * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t */ typedef npy_uint8 __pyx_t_5numpy_uint8_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":697 * * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t */ typedef npy_uint16 __pyx_t_5numpy_uint16_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":698 * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< * ctypedef npy_uint64 uint64_t * #ctypedef npy_uint96 uint96_t */ typedef npy_uint32 __pyx_t_5numpy_uint32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":699 * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< * #ctypedef npy_uint96 uint96_t * #ctypedef npy_uint128 uint128_t */ typedef npy_uint64 __pyx_t_5numpy_uint64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":703 * #ctypedef npy_uint128 uint128_t * * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< * ctypedef npy_float64 float64_t * #ctypedef npy_float80 float80_t */ typedef npy_float32 __pyx_t_5numpy_float32_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":704 * * ctypedef npy_float32 float32_t * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< * #ctypedef npy_float80 float80_t * #ctypedef npy_float128 float128_t */ typedef npy_float64 __pyx_t_5numpy_float64_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":713 * # The int types are mapped a bit surprising -- * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t # <<<<<<<<<<<<<< * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t */ typedef npy_long __pyx_t_5numpy_int_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":714 * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< * ctypedef npy_longlong longlong_t * */ typedef npy_longlong __pyx_t_5numpy_long_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":715 * ctypedef npy_long int_t * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< * * ctypedef npy_ulong uint_t */ typedef npy_longlong __pyx_t_5numpy_longlong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":717 * ctypedef npy_longlong longlong_t * * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t */ typedef npy_ulong __pyx_t_5numpy_uint_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":718 * * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulonglong_t * */ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":719 * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< * * ctypedef npy_intp intp_t */ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":721 * ctypedef npy_ulonglong ulonglong_t * * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< * ctypedef npy_uintp uintp_t * */ typedef npy_intp __pyx_t_5numpy_intp_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":722 * * ctypedef npy_intp intp_t * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< * * ctypedef npy_double float_t */ typedef npy_uintp __pyx_t_5numpy_uintp_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":724 * ctypedef npy_uintp uintp_t * * ctypedef npy_double float_t # <<<<<<<<<<<<<< * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t */ typedef npy_double __pyx_t_5numpy_float_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":725 * * ctypedef npy_double float_t * ctypedef npy_double double_t # <<<<<<<<<<<<<< * ctypedef npy_longdouble longdouble_t * */ typedef npy_double __pyx_t_5numpy_double_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":726 * ctypedef npy_double float_t * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cfloat cfloat_t */ typedef npy_longdouble __pyx_t_5numpy_longdouble_t; /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< float > __pyx_t_float_complex; #else typedef float _Complex __pyx_t_float_complex; #endif #else typedef struct { float real, imag; } __pyx_t_float_complex; #endif static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< double > __pyx_t_double_complex; #else typedef double _Complex __pyx_t_double_complex; #endif #else typedef struct { double real, imag; } __pyx_t_double_complex; #endif static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); /*--- Type declarations ---*/ struct __pyx_array_obj; struct __pyx_MemviewEnum_obj; struct __pyx_memoryview_obj; struct __pyx_memoryviewslice_obj; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":728 * ctypedef npy_longdouble longdouble_t * * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t */ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":729 * * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< * ctypedef npy_clongdouble clongdouble_t * */ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":730 * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cdouble complex_t */ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":732 * ctypedef npy_clongdouble clongdouble_t * * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew1(a): */ typedef npy_cdouble __pyx_t_5numpy_complex_t; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_array_obj { PyObject_HEAD struct __pyx_vtabstruct_array *__pyx_vtab; char *data; Py_ssize_t len; char *format; int ndim; Py_ssize_t *_shape; Py_ssize_t *_strides; Py_ssize_t itemsize; PyObject *mode; PyObject *_format; void (*callback_free_data)(void *); int free_data; int dtype_is_object; }; /* "View.MemoryView":280 * * @cname('__pyx_MemviewEnum') * cdef class Enum(object): # <<<<<<<<<<<<<< * cdef object name * def __init__(self, name): */ struct __pyx_MemviewEnum_obj { PyObject_HEAD PyObject *name; }; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_memoryview_obj { PyObject_HEAD struct __pyx_vtabstruct_memoryview *__pyx_vtab; PyObject *obj; PyObject *_size; PyObject *_array_interface; PyThread_type_lock lock; __pyx_atomic_int acquisition_count[2]; __pyx_atomic_int *acquisition_count_aligned_p; Py_buffer view; int flags; int dtype_is_object; __Pyx_TypeInfo *typeinfo; }; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_memoryviewslice_obj { struct __pyx_memoryview_obj __pyx_base; __Pyx_memviewslice from_slice; PyObject *from_object; PyObject *(*to_object_func)(char *); int (*to_dtype_func)(char *, PyObject *); }; /* "View.MemoryView":106 * * @cname("__pyx_array") * cdef class array: # <<<<<<<<<<<<<< * * cdef: */ struct __pyx_vtabstruct_array { PyObject *(*get_memview)(struct __pyx_array_obj *); }; static struct __pyx_vtabstruct_array *__pyx_vtabptr_array; /* "View.MemoryView":331 * * @cname('__pyx_memoryview') * cdef class memoryview(object): # <<<<<<<<<<<<<< * * cdef object obj */ struct __pyx_vtabstruct_memoryview { char *(*get_item_pointer)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*is_slice)(struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_slice_assignment)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*setitem_slice_assign_scalar)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *); PyObject *(*setitem_indexed)(struct __pyx_memoryview_obj *, PyObject *, PyObject *); PyObject *(*convert_item_to_object)(struct __pyx_memoryview_obj *, char *); PyObject *(*assign_item_from_object)(struct __pyx_memoryview_obj *, char *, PyObject *); }; static struct __pyx_vtabstruct_memoryview *__pyx_vtabptr_memoryview; /* "View.MemoryView":967 * * @cname('__pyx_memoryviewslice') * cdef class _memoryviewslice(memoryview): # <<<<<<<<<<<<<< * "Internal class for passing memoryview slices to Python" * */ struct __pyx_vtabstruct__memoryviewslice { struct __pyx_vtabstruct_memoryview __pyx_base; }; static struct __pyx_vtabstruct__memoryviewslice *__pyx_vtabptr__memoryviewslice; /* --- Runtime support code (head) --- */ /* Refnanny.proto */ #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil)\ if (acquire_gil) {\ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ PyGILState_Release(__pyx_gilstate_save);\ } else {\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil)\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext()\ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif #define __Pyx_XDECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_XDECREF(tmp);\ } while (0) #define __Pyx_DECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_DECREF(tmp);\ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif /* GetBuiltinName.proto */ static PyObject *__Pyx_GetBuiltinName(PyObject *name); /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /* HasAttr.proto */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /* PyDictVersioning.proto */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS #define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ (version_var) = __PYX_GET_DICT_VERSION(dict);\ (cache_var) = (value); #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ (VAR) = __pyx_dict_cached_value;\ } else {\ (VAR) = __pyx_dict_cached_value = (LOOKUP);\ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ }\ } static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); #else #define __PYX_GET_DICT_VERSION(dict) (0) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); #endif /* GetModuleGlobalName.proto */ #if CYTHON_USE_DICT_VERSIONS #define __Pyx_GetModuleGlobalName(var, name) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } #define __Pyx_GetModuleGlobalNameUncached(var, name) {\ PY_UINT64_T __pyx_dict_version;\ PyObject *__pyx_dict_cached_value;\ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); #else #define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) #define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); #endif /* PyCFunctionFastCall.proto */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); #else #define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) #endif /* PyFunctionFastCall.proto */ #if CYTHON_FAST_PYCALL #define __Pyx_PyFunction_FastCall(func, args, nargs)\ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); #else #define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) #endif #define __Pyx_BUILD_ASSERT_EXPR(cond)\ (sizeof(char [1 - 2*!(cond)]) - 1) #ifndef Py_MEMBER_SIZE #define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) #endif #if CYTHON_FAST_PYCALL static size_t __pyx_pyframe_localsplus_offset = 0; #include "frameobject.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif #define __Pxy_PyFrame_Initialize_Offsets()\ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) #define __Pyx_PyFrame_GetLocalsplus(frame)\ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) #endif // CYTHON_FAST_PYCALL #endif /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif /* PyObjectCall2Args.proto */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); /* PyObjectCallMethO.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); #endif /* PyObjectCallOneArg.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); /* BufferIndexError.proto */ static void __Pyx_RaiseBufferIndexError(int axis); /* MemviewSliceInit.proto */ #define __Pyx_BUF_MAX_NDIMS %(BUF_MAX_NDIMS)d #define __Pyx_MEMVIEW_DIRECT 1 #define __Pyx_MEMVIEW_PTR 2 #define __Pyx_MEMVIEW_FULL 4 #define __Pyx_MEMVIEW_CONTIG 8 #define __Pyx_MEMVIEW_STRIDED 16 #define __Pyx_MEMVIEW_FOLLOW 32 #define __Pyx_IS_C_CONTIG 1 #define __Pyx_IS_F_CONTIG 2 static int __Pyx_init_memviewslice( struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference); static CYTHON_INLINE int __pyx_add_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); static CYTHON_INLINE int __pyx_sub_acquisition_count_locked( __pyx_atomic_int *acquisition_count, PyThread_type_lock lock); #define __pyx_get_slice_count_pointer(memview) (memview->acquisition_count_aligned_p) #define __pyx_get_slice_count(memview) (*__pyx_get_slice_count_pointer(memview)) #define __PYX_INC_MEMVIEW(slice, have_gil) __Pyx_INC_MEMVIEW(slice, have_gil, __LINE__) #define __PYX_XDEC_MEMVIEW(slice, have_gil) __Pyx_XDEC_MEMVIEW(slice, have_gil, __LINE__) static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *, int, int); static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *, int, int); /* RaiseArgTupleInvalid.proto */ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /* RaiseDoubleKeywords.proto */ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /* ParseKeywords.proto */ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); /* ExtTypeTest.proto */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /* IsLittleEndian.proto */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void); /* BufferFormatCheck.proto */ static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts); static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type); /* BufferGetAndValidate.proto */ #define __Pyx_GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)\ ((obj == Py_None || obj == NULL) ?\ (__Pyx_ZeroBuffer(buf), 0) :\ __Pyx__GetBufferAndValidate(buf, obj, dtype, flags, nd, cast, stack)) static int __Pyx__GetBufferAndValidate(Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack); static void __Pyx_ZeroBuffer(Py_buffer* buf); static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info); static Py_ssize_t __Pyx_minusones[] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static Py_ssize_t __Pyx_zeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* SetItemInt.proto */ #define __Pyx_SetItemInt(o, i, v, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_SetItemInt_Fast(o, (Py_ssize_t)i, v, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list assignment index out of range"), -1) :\ __Pyx_SetItemInt_Generic(o, to_py_func(i), v))) static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v); static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, int wraparound, int boundscheck); /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* GetItemInt.proto */ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_SubtractObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceSubtract(op1, op2) : PyNumber_Subtract(op1, op2)) #endif /* ObjectGetItem.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); #else #define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) #endif /* PyIntCompare.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, long intval, long inplace); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; #define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; #define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign #define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) #else #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #endif #else #define __Pyx_PyErr_Clear() PyErr_Clear() #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif /* GetTopmostException.proto */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); #endif /* SaveResetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); #else #define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) #define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) #endif /* PyErrExceptionMatches.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); #else #define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) #endif /* GetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); #endif /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /* ArgTypeTest.proto */ #define __Pyx_ArgTypeTest(obj, type, none_allowed, name, exact)\ ((likely((Py_TYPE(obj) == type) | (none_allowed && (obj == Py_None)))) ? 1 :\ __Pyx__ArgTypeTest(obj, type, name, exact)) static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact); /* IncludeStringH.proto */ #include <string.h> /* BytesEquals.proto */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /* UnicodeEquals.proto */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /* StrEquals.proto */ #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Equals __Pyx_PyUnicode_Equals #else #define __Pyx_PyString_Equals __Pyx_PyBytes_Equals #endif /* DivInt[Py_ssize_t].proto */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t, Py_ssize_t); /* UnaryNegOverflows.proto */ #define UNARY_NEG_WOULD_OVERFLOW(x)\ (((x) < 0) & ((unsigned long)(x) == 0-(unsigned long)(x))) static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *); /*proto*/ /* decode_c_string_utf16.proto */ static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 0; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16LE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = -1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } static CYTHON_INLINE PyObject *__Pyx_PyUnicode_DecodeUTF16BE(const char *s, Py_ssize_t size, const char *errors) { int byteorder = 1; return PyUnicode_DecodeUTF16(s, size, errors, &byteorder); } /* decode_c_string.proto */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)); /* GetAttr3.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); /* RaiseNeedMoreValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); /* RaiseNoneIterError.proto */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); /* SwapException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb); #endif /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /* FastTypeChecks.proto */ #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) #define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif #define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ /* ListCompAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_ListComp_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len)) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_ListComp_Append(L,x) PyList_Append(L,x) #endif /* ListExtend.proto */ static CYTHON_INLINE int __Pyx_PyList_Extend(PyObject* L, PyObject* v) { #if CYTHON_COMPILING_IN_CPYTHON PyObject* none = _PyList_Extend((PyListObject*)L, v); if (unlikely(!none)) return -1; Py_DECREF(none); return 0; #else return PyList_SetSlice(L, PY_SSIZE_T_MAX, PY_SSIZE_T_MAX, v); #endif } /* ListAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); __Pyx_SET_SIZE(list, len + 1); return 0; } return PyList_Append(list, x); } #else #define __Pyx_PyList_Append(L,x) PyList_Append(L,x) #endif /* None.proto */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); /* DivInt[long].proto */ static CYTHON_INLINE long __Pyx_div_long(long, long); /* PySequenceContains.proto */ static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { int result = PySequence_Contains(seq, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* ImportFrom.proto */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /* PyObject_GenericGetAttrNoDict.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr #endif /* PyObject_GenericGetAttr.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr #endif /* SetVTable.proto */ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /* PyObjectGetAttrStrNoError.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name); /* SetupReduce.proto */ static int __Pyx_setup_reduce(PyObject* type_obj); /* TypeImport.proto */ #ifndef __PYX_HAVE_RT_ImportType_proto #define __PYX_HAVE_RT_ImportType_proto enum __Pyx_ImportType_CheckSize { __Pyx_ImportType_CheckSize_Error = 0, __Pyx_ImportType_CheckSize_Warn = 1, __Pyx_ImportType_CheckSize_Ignore = 2 }; static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); #endif /* CLineInTraceback.proto */ #ifdef CYTHON_CLINE_IN_TRACEBACK #define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) #else static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); #endif /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; int code_line; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); /* AddTraceback.proto */ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags); static void __Pyx_ReleaseBuffer(Py_buffer *view); #else #define __Pyx_GetBuffer PyObject_GetBuffer #define __Pyx_ReleaseBuffer PyBuffer_Release #endif /* BufferStructDeclare.proto */ typedef struct { Py_ssize_t shape, strides, suboffsets; } __Pyx_Buf_DimInfo; typedef struct { size_t refcount; Py_buffer pybuffer; } __Pyx_Buffer; typedef struct { __Pyx_Buffer *rcbuffer; char *data; __Pyx_Buf_DimInfo diminfo[8]; } __Pyx_LocalBuf_ND; /* MemviewSliceIsContig.proto */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim); /* OverlappingSlices.proto */ static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize); /* Capsule.proto */ static CYTHON_INLINE PyObject *__pyx_capsule_create(void *p, const char *sig); /* TypeInfoCompare.proto */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b); /* MemviewSliceValidateAndInit.proto */ static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj); /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_double(PyObject *, int writable_flag); /* MemviewDtypeToObject.proto */ static CYTHON_INLINE PyObject *__pyx_memview_get_double(const char *itemp); static CYTHON_INLINE int __pyx_memview_set_double(const char *itemp, PyObject *obj); /* GCCDiagnostics.proto */ #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) #define __Pyx_HAS_GCC_DIAGNOSTIC #endif /* ObjectToMemviewSlice.proto */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_int(PyObject *, int writable_flag); /* RealImag.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus #define __Pyx_CREAL(z) ((z).real()) #define __Pyx_CIMAG(z) ((z).imag()) #else #define __Pyx_CREAL(z) (__real__(z)) #define __Pyx_CIMAG(z) (__imag__(z)) #endif #else #define __Pyx_CREAL(z) ((z).real) #define __Pyx_CIMAG(z) ((z).imag) #endif #if defined(__cplusplus) && CYTHON_CCOMPLEX\ && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) #define __Pyx_SET_CREAL(z,x) ((z).real(x)) #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) #else #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_float(a, b) ((a)==(b)) #define __Pyx_c_sum_float(a, b) ((a)+(b)) #define __Pyx_c_diff_float(a, b) ((a)-(b)) #define __Pyx_c_prod_float(a, b) ((a)*(b)) #define __Pyx_c_quot_float(a, b) ((a)/(b)) #define __Pyx_c_neg_float(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_float(z) ((z)==(float)0) #define __Pyx_c_conj_float(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_float(z) (::std::abs(z)) #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_float(z) ((z)==0) #define __Pyx_c_conj_float(z) (conjf(z)) #if 1 #define __Pyx_c_abs_float(z) (cabsf(z)) #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); #endif #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_double(a, b) ((a)==(b)) #define __Pyx_c_sum_double(a, b) ((a)+(b)) #define __Pyx_c_diff_double(a, b) ((a)-(b)) #define __Pyx_c_prod_double(a, b) ((a)*(b)) #define __Pyx_c_quot_double(a, b) ((a)/(b)) #define __Pyx_c_neg_double(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_double(z) ((z)==(double)0) #define __Pyx_c_conj_double(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_double(z) (::std::abs(z)) #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_double(z) ((z)==0) #define __Pyx_c_conj_double(z) (conj(z)) #if 1 #define __Pyx_c_abs_double(z) (cabs(z)) #define __Pyx_c_pow_double(a, b) (cpow(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); #endif #endif /* MemviewSliceCopyTemplate.proto */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object); /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *); /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); /* InitStrings.proto */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self); /* proto*/ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto*/ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src); /* proto*/ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/ /* Module declarations from 'cython.view' */ /* Module declarations from 'cython' */ /* Module declarations from 'cpython.buffer' */ /* Module declarations from 'libc.string' */ /* Module declarations from 'libc.stdio' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.type' */ static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; /* Module declarations from 'cpython' */ /* Module declarations from 'cpython.object' */ /* Module declarations from 'cpython.ref' */ /* Module declarations from 'cpython.mem' */ /* Module declarations from 'numpy' */ /* Module declarations from 'numpy' */ static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; static PyTypeObject *__pyx_ptype_5numpy_generic = 0; static PyTypeObject *__pyx_ptype_5numpy_number = 0; static PyTypeObject *__pyx_ptype_5numpy_integer = 0; static PyTypeObject *__pyx_ptype_5numpy_signedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_unsignedinteger = 0; static PyTypeObject *__pyx_ptype_5numpy_inexact = 0; static PyTypeObject *__pyx_ptype_5numpy_floating = 0; static PyTypeObject *__pyx_ptype_5numpy_complexfloating = 0; static PyTypeObject *__pyx_ptype_5numpy_flexible = 0; static PyTypeObject *__pyx_ptype_5numpy_character = 0; static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; /* Module declarations from 'polspl' */ /* Module declarations from 'bessel0' */ /* Module declarations from 'PyMca5.PyMcaPhysics.xas._xas' */ static PyTypeObject *__pyx_array_type = 0; static PyTypeObject *__pyx_MemviewEnum_type = 0; static PyTypeObject *__pyx_memoryview_type = 0; static PyTypeObject *__pyx_memoryviewslice_type = 0; static PyObject *generic = 0; static PyObject *strided = 0; static PyObject *indirect = 0; static PyObject *contiguous = 0; static PyObject *indirect_contiguous = 0; static int __pyx_memoryview_thread_locks_used; static PyThread_type_lock __pyx_memoryview_thread_locks[8]; static struct __pyx_array_obj *__pyx_array_new(PyObject *, Py_ssize_t, char *, char *, char *); /*proto*/ static void *__pyx_align_pointer(void *, size_t); /*proto*/ static PyObject *__pyx_memoryview_new(PyObject *, int, int, __Pyx_TypeInfo *); /*proto*/ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *); /*proto*/ static PyObject *_unellipsify(PyObject *, int); /*proto*/ static PyObject *assert_direct_dimensions(Py_ssize_t *, int); /*proto*/ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *, PyObject *); /*proto*/ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int *, Py_ssize_t, Py_ssize_t, Py_ssize_t, int, int, int, int); /*proto*/ static char *__pyx_pybuffer_index(Py_buffer *, char *, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memslice_transpose(__Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice, int, PyObject *(*)(char *), int (*)(char *, PyObject *), int); /*proto*/ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *); /*proto*/ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *, __Pyx_memviewslice *); /*proto*/ static Py_ssize_t abs_py_ssize_t(Py_ssize_t); /*proto*/ static char __pyx_get_best_slice_order(__Pyx_memviewslice *, int); /*proto*/ static void _copy_strided_to_strided(char *, Py_ssize_t *, char *, Py_ssize_t *, Py_ssize_t *, Py_ssize_t *, int, size_t); /*proto*/ static void copy_strided_to_strided(__Pyx_memviewslice *, __Pyx_memviewslice *, int, size_t); /*proto*/ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *, int); /*proto*/ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *, Py_ssize_t *, Py_ssize_t, int, char); /*proto*/ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *, __Pyx_memviewslice *, char, int); /*proto*/ static int __pyx_memoryview_err_extents(int, Py_ssize_t, Py_ssize_t); /*proto*/ static int __pyx_memoryview_err_dim(PyObject *, char *, int); /*proto*/ static int __pyx_memoryview_err(PyObject *, char *); /*proto*/ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice, __Pyx_memviewslice, int, int, int); /*proto*/ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *, int, int); /*proto*/ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *, int, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_refcount_objects_in_slice(char *, Py_ssize_t *, Py_ssize_t *, int, int); /*proto*/ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *, int, size_t, void *, int); /*proto*/ static void __pyx_memoryview__slice_assign_scalar(char *, Py_ssize_t *, Py_ssize_t *, int, size_t, void *); /*proto*/ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *, PyObject *); /*proto*/ static __Pyx_TypeInfo __Pyx_TypeInfo_double = { "double", NULL, sizeof(double), { 0 }, 0, 'R', 0, 0 }; static __Pyx_TypeInfo __Pyx_TypeInfo_int = { "int", NULL, sizeof(int), { 0 }, 0, IS_UNSIGNED(int) ? 'U' : 'I', IS_UNSIGNED(int), 0 }; #define __Pyx_MODULE_NAME "PyMca5.PyMcaPhysics.xas._xas" extern int __pyx_module_is_main_PyMca5__PyMcaPhysics__xas___xas; int __pyx_module_is_main_PyMca5__PyMcaPhysics__xas___xas = 0; /* Implementation of 'PyMca5.PyMcaPhysics.xas._xas' */ static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_ImportError; static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_MemoryError; static PyObject *__pyx_builtin_enumerate; static PyObject *__pyx_builtin_TypeError; static PyObject *__pyx_builtin_Ellipsis; static PyObject *__pyx_builtin_id; static PyObject *__pyx_builtin_IndexError; static const char __pyx_k_O[] = "O"; static const char __pyx_k_a[] = "a"; static const char __pyx_k_c[] = "c"; static const char __pyx_k_i[] = "i"; static const char __pyx_k_j[] = "j"; static const char __pyx_k_k[] = "k"; static const char __pyx_k_m[] = "m"; static const char __pyx_k_n[] = "n"; static const char __pyx_k_t[] = "t"; static const char __pyx_k_w[] = "w"; static const char __pyx_k_x[] = "x"; static const char __pyx_k_y[] = "y"; static const char __pyx_k_df[] = "df"; static const char __pyx_k_i1[] = "i1"; static const char __pyx_k_id[] = "id"; static const char __pyx_k_ik[] = "ik"; static const char __pyx_k_j0[] = "j0"; static const char __pyx_k_n1[] = "n1"; static const char __pyx_k_nc[] = "nc"; static const char __pyx_k_ni[] = "ni"; static const char __pyx_k_nk[] = "nk"; static const char __pyx_k_nr[] = "nr"; static const char __pyx_k_ns[] = "ns"; static const char __pyx_k_xh[] = "xh"; static const char __pyx_k_xk[] = "xk"; static const char __pyx_k_xl[] = "xl"; static const char __pyx_k_abs[] = "abs"; static const char __pyx_k_c_c[] = "c_c"; static const char __pyx_k_c_w[] = "c_w"; static const char __pyx_k_c_x[] = "c_x"; static const char __pyx_k_c_y[] = "c_y"; static const char __pyx_k_ibl[] = "ibl"; static const char __pyx_k_len[] = "__len__"; static const char __pyx_k_nbs[] = "nbs"; static const char __pyx_k_new[] = "__new__"; static const char __pyx_k_ni1[] = "ni1"; static const char __pyx_k_nm1[] = "nm1"; static const char __pyx_k_ns1[] = "ns1"; static const char __pyx_k_obj[] = "obj"; static const char __pyx_k_xh0[] = "xh0"; static const char __pyx_k_xk0[] = "xk0"; static const char __pyx_k_xl0[] = "xl0"; static const char __pyx_k_base[] = "base"; static const char __pyx_k_c_nc[] = "c_nc"; static const char __pyx_k_c_nr[] = "c_nr"; static const char __pyx_k_c_xh[] = "c_xh"; static const char __pyx_k_c_xl[] = "c_xl"; static const char __pyx_k_copy[] = "copy"; static const char __pyx_k_dict[] = "__dict__"; static const char __pyx_k_main[] = "__main__"; static const char __pyx_k_mode[] = "mode"; static const char __pyx_k_name[] = "name"; static const char __pyx_k_ncol[] = "ncol"; static const char __pyx_k_ndim[] = "ndim"; static const char __pyx_k_npts[] = "npts"; static const char __pyx_k_pack[] = "pack"; static const char __pyx_k_size[] = "size"; static const char __pyx_k_step[] = "step"; static const char __pyx_k_stop[] = "stop"; static const char __pyx_k_test[] = "__test__"; static const char __pyx_k_ASCII[] = "ASCII"; static const char __pyx_k_array[] = "array"; static const char __pyx_k_class[] = "__class__"; static const char __pyx_k_dtype[] = "dtype"; static const char __pyx_k_error[] = "error"; static const char __pyx_k_flags[] = "flags"; static const char __pyx_k_int32[] = "int32"; static const char __pyx_k_numpy[] = "numpy"; static const char __pyx_k_power[] = "power"; static const char __pyx_k_range[] = "range"; static const char __pyx_k_shape[] = "shape"; static const char __pyx_k_start[] = "start"; static const char __pyx_k_zeros[] = "zeros"; static const char __pyx_k_c_npts[] = "c_npts"; static const char __pyx_k_encode[] = "encode"; static const char __pyx_k_format[] = "format"; static const char __pyx_k_import[] = "__import__"; static const char __pyx_k_name_2[] = "__name__"; static const char __pyx_k_ne_idl[] = "ne_idl"; static const char __pyx_k_pickle[] = "pickle"; static const char __pyx_k_polspl[] = "polspl"; static const char __pyx_k_reduce[] = "__reduce__"; static const char __pyx_k_result[] = "result"; static const char __pyx_k_struct[] = "struct"; static const char __pyx_k_unpack[] = "unpack"; static const char __pyx_k_update[] = "update"; static const char __pyx_k_c_sizeC[] = "c_sizeC"; static const char __pyx_k_float64[] = "float64"; static const char __pyx_k_fortran[] = "fortran"; static const char __pyx_k_memview[] = "memview"; static const char __pyx_k_polspl2[] = "polspl2"; static const char __pyx_k_Ellipsis[] = "Ellipsis"; static const char __pyx_k_getstate[] = "__getstate__"; static const char __pyx_k_itemsize[] = "itemsize"; static const char __pyx_k_pyx_type[] = "__pyx_type"; static const char __pyx_k_setstate[] = "__setstate__"; static const char __pyx_k_TypeError[] = "TypeError"; static const char __pyx_k_enumerate[] = "enumerate"; static const char __pyx_k_pyx_state[] = "__pyx_state"; static const char __pyx_k_reduce_ex[] = "__reduce_ex__"; static const char __pyx_k_IndexError[] = "IndexError"; static const char __pyx_k_ValueError[] = "ValueError"; static const char __pyx_k_buffer_xh0[] = "buffer_xh0"; static const char __pyx_k_buffer_xl0[] = "buffer_xl0"; static const char __pyx_k_pyx_result[] = "__pyx_result"; static const char __pyx_k_pyx_vtable[] = "__pyx_vtable__"; static const char __pyx_k_ImportError[] = "ImportError"; static const char __pyx_k_MemoryError[] = "MemoryError"; static const char __pyx_k_PickleError[] = "PickleError"; static const char __pyx_k_besselSingle[] = "_besselSingle"; static const char __pyx_k_pyx_checksum[] = "__pyx_checksum"; static const char __pyx_k_stringsource[] = "stringsource"; static const char __pyx_k_pyx_getbuffer[] = "__pyx_getbuffer"; static const char __pyx_k_reduce_cython[] = "__reduce_cython__"; static const char __pyx_k_besselMultiple[] = "_besselMultiple"; static const char __pyx_k_View_MemoryView[] = "View.MemoryView"; static const char __pyx_k_allocate_buffer[] = "allocate_buffer"; static const char __pyx_k_dtype_is_object[] = "dtype_is_object"; static const char __pyx_k_pyx_PickleError[] = "__pyx_PickleError"; static const char __pyx_k_setstate_cython[] = "__setstate_cython__"; static const char __pyx_k_ascontiguousarray[] = "ascontiguousarray"; static const char __pyx_k_pyx_unpickle_Enum[] = "__pyx_unpickle_Enum"; static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback"; static const char __pyx_k_strided_and_direct[] = "<strided and direct>"; static const char __pyx_k_strided_and_indirect[] = "<strided and indirect>"; static const char __pyx_k_contiguous_and_direct[] = "<contiguous and direct>"; static const char __pyx_k_MemoryView_of_r_object[] = "<MemoryView of %r object>"; static const char __pyx_k_MemoryView_of_r_at_0x_x[] = "<MemoryView of %r at 0x%x>"; static const char __pyx_k_contiguous_and_indirect[] = "<contiguous and indirect>"; static const char __pyx_k_Cannot_index_with_type_s[] = "Cannot index with type '%s'"; static const char __pyx_k_Invalid_shape_in_axis_d_d[] = "Invalid shape in axis %d: %d."; static const char __pyx_k_itemsize_0_for_cython_array[] = "itemsize <= 0 for cython.array"; static const char __pyx_k_PyMca5_PyMcaPhysics_xas__xas[] = "PyMca5.PyMcaPhysics.xas._xas"; static const char __pyx_k_unable_to_allocate_array_data[] = "unable to allocate array data."; static const char __pyx_k_strided_and_direct_or_indirect[] = "<strided and direct or indirect>"; static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; static const char __pyx_k_Buffer_view_does_not_expose_stri[] = "Buffer view does not expose strides"; static const char __pyx_k_Can_only_create_a_buffer_that_is[] = "Can only create a buffer that is contiguous in memory."; static const char __pyx_k_Cannot_assign_to_read_only_memor[] = "Cannot assign to read-only memoryview"; static const char __pyx_k_Cannot_create_writable_memory_vi[] = "Cannot create writable memory view from read-only memoryview"; static const char __pyx_k_Empty_shape_tuple_for_cython_arr[] = "Empty shape tuple for cython.array"; static const char __pyx_k_Incompatible_checksums_0x_x_vs_0[] = "Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))"; static const char __pyx_k_Indirect_dimensions_not_supporte[] = "Indirect dimensions not supported"; static const char __pyx_k_Invalid_mode_expected_c_or_fortr[] = "Invalid mode, expected 'c' or 'fortran', got %s"; static const char __pyx_k_Out_of_bounds_on_buffer_access_a[] = "Out of bounds on buffer access (axis %d)"; static const char __pyx_k_PyMca5_PyMcaPhysics_xas__xas_cyt[] = "PyMca5\\PyMcaPhysics\\xas\\_xas\\cython\\_xas.pyx"; static const char __pyx_k_Unable_to_convert_item_to_object[] = "Unable to convert item to object"; static const char __pyx_k_got_differing_extents_in_dimensi[] = "got differing extents in dimension %d (got %d and %d)"; static const char __pyx_k_no_default___reduce___due_to_non[] = "no default __reduce__ due to non-trivial __cinit__"; static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; static const char __pyx_k_unable_to_allocate_shape_and_str[] = "unable to allocate shape and strides."; static PyObject *__pyx_n_s_ASCII; static PyObject *__pyx_kp_s_Buffer_view_does_not_expose_stri; static PyObject *__pyx_kp_s_Can_only_create_a_buffer_that_is; static PyObject *__pyx_kp_s_Cannot_assign_to_read_only_memor; static PyObject *__pyx_kp_s_Cannot_create_writable_memory_vi; static PyObject *__pyx_kp_s_Cannot_index_with_type_s; static PyObject *__pyx_n_s_Ellipsis; static PyObject *__pyx_kp_s_Empty_shape_tuple_for_cython_arr; static PyObject *__pyx_n_s_ImportError; static PyObject *__pyx_kp_s_Incompatible_checksums_0x_x_vs_0; static PyObject *__pyx_n_s_IndexError; static PyObject *__pyx_kp_s_Indirect_dimensions_not_supporte; static PyObject *__pyx_kp_s_Invalid_mode_expected_c_or_fortr; static PyObject *__pyx_kp_s_Invalid_shape_in_axis_d_d; static PyObject *__pyx_n_s_MemoryError; static PyObject *__pyx_kp_s_MemoryView_of_r_at_0x_x; static PyObject *__pyx_kp_s_MemoryView_of_r_object; static PyObject *__pyx_n_b_O; static PyObject *__pyx_kp_s_Out_of_bounds_on_buffer_access_a; static PyObject *__pyx_n_s_PickleError; static PyObject *__pyx_n_s_PyMca5_PyMcaPhysics_xas__xas; static PyObject *__pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_kp_s_Unable_to_convert_item_to_object; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_n_s_View_MemoryView; static PyObject *__pyx_n_s_a; static PyObject *__pyx_n_s_abs; static PyObject *__pyx_n_s_allocate_buffer; static PyObject *__pyx_n_s_array; static PyObject *__pyx_n_s_ascontiguousarray; static PyObject *__pyx_n_s_base; static PyObject *__pyx_n_s_besselMultiple; static PyObject *__pyx_n_s_besselSingle; static PyObject *__pyx_n_s_buffer_xh0; static PyObject *__pyx_n_s_buffer_xl0; static PyObject *__pyx_n_s_c; static PyObject *__pyx_n_u_c; static PyObject *__pyx_n_s_c_c; static PyObject *__pyx_n_s_c_nc; static PyObject *__pyx_n_s_c_npts; static PyObject *__pyx_n_s_c_nr; static PyObject *__pyx_n_s_c_sizeC; static PyObject *__pyx_n_s_c_w; static PyObject *__pyx_n_s_c_x; static PyObject *__pyx_n_s_c_xh; static PyObject *__pyx_n_s_c_xl; static PyObject *__pyx_n_s_c_y; static PyObject *__pyx_n_s_class; static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_kp_s_contiguous_and_direct; static PyObject *__pyx_kp_s_contiguous_and_indirect; static PyObject *__pyx_n_s_copy; static PyObject *__pyx_n_s_df; static PyObject *__pyx_n_s_dict; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_dtype_is_object; static PyObject *__pyx_n_s_encode; static PyObject *__pyx_n_s_enumerate; static PyObject *__pyx_n_s_error; static PyObject *__pyx_n_s_flags; static PyObject *__pyx_n_s_float64; static PyObject *__pyx_n_s_format; static PyObject *__pyx_n_s_fortran; static PyObject *__pyx_n_u_fortran; static PyObject *__pyx_n_s_getstate; static PyObject *__pyx_kp_s_got_differing_extents_in_dimensi; static PyObject *__pyx_n_s_i; static PyObject *__pyx_n_s_i1; static PyObject *__pyx_n_s_ibl; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_s_ik; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_int32; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_kp_s_itemsize_0_for_cython_array; static PyObject *__pyx_n_s_j; static PyObject *__pyx_n_s_j0; static PyObject *__pyx_n_s_k; static PyObject *__pyx_n_s_len; static PyObject *__pyx_n_s_m; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_memview; static PyObject *__pyx_n_s_mode; static PyObject *__pyx_n_s_n; static PyObject *__pyx_n_s_n1; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_nbs; static PyObject *__pyx_n_s_nc; static PyObject *__pyx_n_s_ncol; static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_ne_idl; static PyObject *__pyx_n_s_new; static PyObject *__pyx_n_s_ni; static PyObject *__pyx_n_s_ni1; static PyObject *__pyx_n_s_nk; static PyObject *__pyx_n_s_nm1; static PyObject *__pyx_kp_s_no_default___reduce___due_to_non; static PyObject *__pyx_n_s_npts; static PyObject *__pyx_n_s_nr; static PyObject *__pyx_n_s_ns; static PyObject *__pyx_n_s_ns1; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_kp_s_numpy_core_multiarray_failed_to; static PyObject *__pyx_kp_s_numpy_core_umath_failed_to_impor; static PyObject *__pyx_n_s_obj; static PyObject *__pyx_n_s_pack; static PyObject *__pyx_n_s_pickle; static PyObject *__pyx_n_s_polspl; static PyObject *__pyx_n_s_polspl2; static PyObject *__pyx_n_s_power; static PyObject *__pyx_n_s_pyx_PickleError; static PyObject *__pyx_n_s_pyx_checksum; static PyObject *__pyx_n_s_pyx_getbuffer; static PyObject *__pyx_n_s_pyx_result; static PyObject *__pyx_n_s_pyx_state; static PyObject *__pyx_n_s_pyx_type; static PyObject *__pyx_n_s_pyx_unpickle_Enum; static PyObject *__pyx_n_s_pyx_vtable; static PyObject *__pyx_n_s_range; static PyObject *__pyx_n_s_reduce; static PyObject *__pyx_n_s_reduce_cython; static PyObject *__pyx_n_s_reduce_ex; static PyObject *__pyx_n_s_result; static PyObject *__pyx_n_s_setstate; static PyObject *__pyx_n_s_setstate_cython; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_start; static PyObject *__pyx_n_s_step; static PyObject *__pyx_n_s_stop; static PyObject *__pyx_kp_s_strided_and_direct; static PyObject *__pyx_kp_s_strided_and_direct_or_indirect; static PyObject *__pyx_kp_s_strided_and_indirect; static PyObject *__pyx_kp_s_stringsource; static PyObject *__pyx_n_s_struct; static PyObject *__pyx_n_s_t; static PyObject *__pyx_n_s_test; static PyObject *__pyx_kp_s_unable_to_allocate_array_data; static PyObject *__pyx_kp_s_unable_to_allocate_shape_and_str; static PyObject *__pyx_n_s_unpack; static PyObject *__pyx_n_s_update; static PyObject *__pyx_n_s_w; static PyObject *__pyx_n_s_x; static PyObject *__pyx_n_s_xh; static PyObject *__pyx_n_s_xh0; static PyObject *__pyx_n_s_xk; static PyObject *__pyx_n_s_xk0; static PyObject *__pyx_n_s_xl; static PyObject *__pyx_n_s_xl0; static PyObject *__pyx_n_s_y; static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_j0(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_2_besselMultiple(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_4_besselSingle(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_x); /* proto */ static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_6polspl(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x, PyObject *__pyx_v_y, PyObject *__pyx_v_w, PyObject *__pyx_v_npts, PyObject *__pyx_v_xl, PyObject *__pyx_v_xh, PyObject *__pyx_v_nr, PyObject *__pyx_v_nc); /* proto */ static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_8polspl2(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x, PyObject *__pyx_v_y, PyObject *__pyx_v_w, PyObject *__pyx_v_npts, PyObject *__pyx_v_xl0, PyObject *__pyx_v_xh0, PyObject *__pyx_v_nr, PyObject *__pyx_v_nc); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr); /* proto */ static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item); /* proto */ static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /* proto */ static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name); /* proto */ static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object); /* proto */ static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /* proto */ static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self); /* proto */ static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state); /* proto */ static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_float_1_0; static PyObject *__pyx_float_neg_1_; static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_2; static PyObject *__pyx_int_10; static PyObject *__pyx_int_11; static PyObject *__pyx_int_26; static PyObject *__pyx_int_36; static PyObject *__pyx_int_37; static PyObject *__pyx_int_112105877; static PyObject *__pyx_int_136983863; static PyObject *__pyx_int_184977713; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; static PyObject *__pyx_tuple__4; static PyObject *__pyx_tuple__5; static PyObject *__pyx_tuple__6; static PyObject *__pyx_tuple__7; static PyObject *__pyx_tuple__8; static PyObject *__pyx_tuple__9; static PyObject *__pyx_slice__21; static PyObject *__pyx_tuple__10; static PyObject *__pyx_tuple__11; static PyObject *__pyx_tuple__12; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__14; static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__16; static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; static PyObject *__pyx_tuple__22; static PyObject *__pyx_tuple__23; static PyObject *__pyx_tuple__24; static PyObject *__pyx_tuple__25; static PyObject *__pyx_tuple__26; static PyObject *__pyx_tuple__28; static PyObject *__pyx_tuple__30; static PyObject *__pyx_tuple__32; static PyObject *__pyx_tuple__34; static PyObject *__pyx_tuple__36; static PyObject *__pyx_tuple__37; static PyObject *__pyx_tuple__38; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_codeobj__27; static PyObject *__pyx_codeobj__29; static PyObject *__pyx_codeobj__31; static PyObject *__pyx_codeobj__33; static PyObject *__pyx_codeobj__35; static PyObject *__pyx_codeobj__42; /* Late includes */ /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":35 * from bessel0 cimport j0Single, j0Multiple * * def j0(x): # <<<<<<<<<<<<<< * if hasattr(x, "__len__"): * return _besselMultiple(x) */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_1j0(PyObject *__pyx_self, PyObject *__pyx_v_x); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_1j0 = {"j0", (PyCFunction)__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_1j0, METH_O, 0}; static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_1j0(PyObject *__pyx_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("j0 (wrapper)", 0); __pyx_r = __pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_j0(__pyx_self, ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_j0(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("j0", 0); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":36 * * def j0(x): * if hasattr(x, "__len__"): # <<<<<<<<<<<<<< * return _besselMultiple(x) * else: */ __pyx_t_1 = __Pyx_HasAttr(__pyx_v_x, __pyx_n_s_len); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(0, 36, __pyx_L1_error) __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":37 * def j0(x): * if hasattr(x, "__len__"): * return _besselMultiple(x) # <<<<<<<<<<<<<< * else: * return _besselSingle(x) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_besselMultiple); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 37, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_v_x) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_x); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 37, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":36 * * def j0(x): * if hasattr(x, "__len__"): # <<<<<<<<<<<<<< * return _besselMultiple(x) * else: */ } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":39 * return _besselMultiple(x) * else: * return _besselSingle(x) # <<<<<<<<<<<<<< * * def _besselMultiple(x): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_besselSingle); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_v_x) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_x); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 39, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":35 * from bessel0 cimport j0Single, j0Multiple * * def j0(x): # <<<<<<<<<<<<<< * if hasattr(x, "__len__"): * return _besselMultiple(x) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas.j0", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":41 * return _besselSingle(x) * * def _besselMultiple(x): # <<<<<<<<<<<<<< * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_3_besselMultiple(PyObject *__pyx_self, PyObject *__pyx_v_x); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_3_besselMultiple = {"_besselMultiple", (PyCFunction)__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_3_besselMultiple, METH_O, 0}; static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_3_besselMultiple(PyObject *__pyx_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_besselMultiple (wrapper)", 0); __pyx_r = __pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_2_besselMultiple(__pyx_self, ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_2_besselMultiple(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x) { PyObject *__pyx_v_result = NULL; __Pyx_memviewslice __pyx_v_c_x = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_c_npts; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_memviewslice __pyx_t_6 = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_t_7; Py_ssize_t __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_besselMultiple", 0); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":42 * * def _besselMultiple(x): * result = numpy.array(x, copy=True, dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_x = result * cdef int c_npts = c_x.size */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_array); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_x); __pyx_t_3 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_copy, Py_True) < 0) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 42, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = __pyx_t_5; __pyx_t_5 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":43 * def _besselMultiple(x): * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result # <<<<<<<<<<<<<< * cdef int c_npts = c_x.size * j0Multiple(&c_x[0], c_npts) */ __pyx_t_6 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_v_result, PyBUF_WRITABLE); if (unlikely(!__pyx_t_6.memview)) __PYX_ERR(0, 43, __pyx_L1_error) __pyx_v_c_x = __pyx_t_6; __pyx_t_6.memview = NULL; __pyx_t_6.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":44 * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result * cdef int c_npts = c_x.size # <<<<<<<<<<<<<< * j0Multiple(&c_x[0], c_npts) * return result */ __pyx_t_5 = __pyx_memoryview_fromslice(__pyx_v_c_x, 1, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 44, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_size); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 44, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 44, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_c_npts = __pyx_t_7; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":45 * cdef double[:] c_x = result * cdef int c_npts = c_x.size * j0Multiple(&c_x[0], c_npts) # <<<<<<<<<<<<<< * return result * */ __pyx_t_8 = 0; __pyx_t_7 = -1; if (__pyx_t_8 < 0) { __pyx_t_8 += __pyx_v_c_x.shape[0]; if (unlikely(__pyx_t_8 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_8 >= __pyx_v_c_x.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 45, __pyx_L1_error) } j0Multiple((&(*((double *) ( /* dim=0 */ (__pyx_v_c_x.data + __pyx_t_8 * __pyx_v_c_x.strides[0]) )))), __pyx_v_c_npts); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":46 * cdef int c_npts = c_x.size * j0Multiple(&c_x[0], c_npts) * return result # <<<<<<<<<<<<<< * * def _besselSingle(double x): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_result); __pyx_r = __pyx_v_result; goto __pyx_L0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":41 * return _besselSingle(x) * * def _besselMultiple(x): # <<<<<<<<<<<<<< * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __PYX_XDEC_MEMVIEW(&__pyx_t_6, 1); __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas._besselMultiple", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_result); __PYX_XDEC_MEMVIEW(&__pyx_v_c_x, 1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":48 * return result * * def _besselSingle(double x): # <<<<<<<<<<<<<< * return j0Single(x) * */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_5_besselSingle(PyObject *__pyx_self, PyObject *__pyx_arg_x); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_5_besselSingle = {"_besselSingle", (PyCFunction)__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_5_besselSingle, METH_O, 0}; static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_5_besselSingle(PyObject *__pyx_self, PyObject *__pyx_arg_x) { double __pyx_v_x; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_besselSingle (wrapper)", 0); assert(__pyx_arg_x); { __pyx_v_x = __pyx_PyFloat_AsDouble(__pyx_arg_x); if (unlikely((__pyx_v_x == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 48, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas._besselSingle", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_4_besselSingle(__pyx_self, ((double)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_4_besselSingle(CYTHON_UNUSED PyObject *__pyx_self, double __pyx_v_x) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_besselSingle", 0); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":49 * * def _besselSingle(double x): * return j0Single(x) # <<<<<<<<<<<<<< * * def polspl(x, y, w, npts, xl, xh, nr, nc): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyFloat_FromDouble(j0Single(__pyx_v_x)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 49, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":48 * return result * * def _besselSingle(double x): # <<<<<<<<<<<<<< * return j0Single(x) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas._besselSingle", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":51 * return j0Single(x) * * def polspl(x, y, w, npts, xl, xh, nr, nc): # <<<<<<<<<<<<<< * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_7polspl(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_7polspl = {"polspl", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_7polspl, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_7polspl(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_x = 0; PyObject *__pyx_v_y = 0; PyObject *__pyx_v_w = 0; PyObject *__pyx_v_npts = 0; PyObject *__pyx_v_xl = 0; PyObject *__pyx_v_xh = 0; PyObject *__pyx_v_nr = 0; PyObject *__pyx_v_nc = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("polspl (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_x,&__pyx_n_s_y,&__pyx_n_s_w,&__pyx_n_s_npts,&__pyx_n_s_xl,&__pyx_n_s_xh,&__pyx_n_s_nr,&__pyx_n_s_nc,0}; PyObject* values[8] = {0,0,0,0,0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_x)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_y)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 1); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_w)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 2); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_npts)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 3); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xl)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 4); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xh)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 5); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 6: if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 6); __PYX_ERR(0, 51, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 7: if (likely((values[7] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, 7); __PYX_ERR(0, 51, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "polspl") < 0)) __PYX_ERR(0, 51, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); values[4] = PyTuple_GET_ITEM(__pyx_args, 4); values[5] = PyTuple_GET_ITEM(__pyx_args, 5); values[6] = PyTuple_GET_ITEM(__pyx_args, 6); values[7] = PyTuple_GET_ITEM(__pyx_args, 7); } __pyx_v_x = values[0]; __pyx_v_y = values[1]; __pyx_v_w = values[2]; __pyx_v_npts = values[3]; __pyx_v_xl = values[4]; __pyx_v_xh = values[5]; __pyx_v_nr = values[6]; __pyx_v_nc = values[7]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("polspl", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 51, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas.polspl", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_6polspl(__pyx_self, __pyx_v_x, __pyx_v_y, __pyx_v_w, __pyx_v_npts, __pyx_v_xl, __pyx_v_xh, __pyx_v_nr, __pyx_v_nc); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_6polspl(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x, PyObject *__pyx_v_y, PyObject *__pyx_v_w, PyObject *__pyx_v_npts, PyObject *__pyx_v_xl, PyObject *__pyx_v_xh, PyObject *__pyx_v_nr, PyObject *__pyx_v_nc) { PyObject *__pyx_v_c = NULL; __Pyx_memviewslice __pyx_v_c_c = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_c_x = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_c_y = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_c_w = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_c_npts; __Pyx_memviewslice __pyx_v_c_xl = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_memviewslice __pyx_v_c_xh = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_c_nr; __Pyx_memviewslice __pyx_v_c_nc = { 0, 0, { 0 }, { 0 }, { 0 } }; int __pyx_v_c_sizeC; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; __Pyx_memviewslice __pyx_t_5 = { 0, 0, { 0 }, { 0 }, { 0 } }; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; __Pyx_memviewslice __pyx_t_8 = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_t_9; Py_ssize_t __pyx_t_10; Py_ssize_t __pyx_t_11; Py_ssize_t __pyx_t_12; Py_ssize_t __pyx_t_13; Py_ssize_t __pyx_t_14; Py_ssize_t __pyx_t_15; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("polspl", 0); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":52 * * def polspl(x, y, w, npts, xl, xh, nr, nc): * c = numpy.zeros((36,), dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_c = c * cdef double[:] c_x = numpy.ascontiguousarray(x, */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_tuple__2, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_c = __pyx_t_4; __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":53 * def polspl(x, y, w, npts, xl, xh, nr, nc): * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c # <<<<<<<<<<<<<< * cdef double[:] c_x = numpy.ascontiguousarray(x, * dtype=numpy.float64) */ __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_v_c, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 53, __pyx_L1_error) __pyx_v_c_c = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":54 * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c * cdef double[:] c_x = numpy.ascontiguousarray(x, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_y = numpy.ascontiguousarray(y, */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_x); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":55 * cdef double[:] c_c = c * cdef double[:] c_x = numpy.ascontiguousarray(x, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_y = numpy.ascontiguousarray(y, * dtype=numpy.float64) */ __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_t_6) < 0) __PYX_ERR(0, 55, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":54 * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c * cdef double[:] c_x = numpy.ascontiguousarray(x, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_y = numpy.ascontiguousarray(y, */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_6, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 54, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_c_x = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":56 * cdef double[:] c_x = numpy.ascontiguousarray(x, * dtype=numpy.float64) * cdef double[:] c_y = numpy.ascontiguousarray(y, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_w = numpy.ascontiguousarray(w, */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_numpy); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_v_y); __Pyx_GIVEREF(__pyx_v_y); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_v_y); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":57 * dtype=numpy.float64) * cdef double[:] c_y = numpy.ascontiguousarray(y, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_w = numpy.ascontiguousarray(w, * dtype=numpy.float64) */ __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 57, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 57, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float64); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 57, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_3) < 0) __PYX_ERR(0, 57, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":56 * cdef double[:] c_x = numpy.ascontiguousarray(x, * dtype=numpy.float64) * cdef double[:] c_y = numpy.ascontiguousarray(y, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_w = numpy.ascontiguousarray(w, */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_6, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_3, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 56, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_c_y = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":58 * cdef double[:] c_y = numpy.ascontiguousarray(y, * dtype=numpy.float64) * cdef double[:] c_w = numpy.ascontiguousarray(w, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int c_npts = npts */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_w); __Pyx_GIVEREF(__pyx_v_w); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_w); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":59 * dtype=numpy.float64) * cdef double[:] c_w = numpy.ascontiguousarray(w, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int c_npts = npts * cdef double[:] c_xl = numpy.ascontiguousarray(xl, */ __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 59, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 59, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 59, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_1) < 0) __PYX_ERR(0, 59, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":58 * cdef double[:] c_y = numpy.ascontiguousarray(y, * dtype=numpy.float64) * cdef double[:] c_w = numpy.ascontiguousarray(w, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int c_npts = npts */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_3, __pyx_t_6); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_1, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 58, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_c_w = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":60 * cdef double[:] c_w = numpy.ascontiguousarray(w, * dtype=numpy.float64) * cdef int c_npts = npts # <<<<<<<<<<<<<< * cdef double[:] c_xl = numpy.ascontiguousarray(xl, * dtype=numpy.float64) */ __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_v_npts); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 60, __pyx_L1_error) __pyx_v_c_npts = __pyx_t_7; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":61 * dtype=numpy.float64) * cdef int c_npts = npts * cdef double[:] c_xl = numpy.ascontiguousarray(xl, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_xh = numpy.ascontiguousarray(xh, */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_xl); __Pyx_GIVEREF(__pyx_v_xl); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_xl); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":62 * cdef int c_npts = npts * cdef double[:] c_xl = numpy.ascontiguousarray(xl, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_xh = numpy.ascontiguousarray(xh, * dtype=numpy.float64) */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 62, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 62, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_float64); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 62, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(0, 62, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":61 * dtype=numpy.float64) * cdef int c_npts = npts * cdef double[:] c_xl = numpy.ascontiguousarray(xl, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef double[:] c_xh = numpy.ascontiguousarray(xh, */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 61, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 61, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_c_xl = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":63 * cdef double[:] c_xl = numpy.ascontiguousarray(xl, * dtype=numpy.float64) * cdef double[:] c_xh = numpy.ascontiguousarray(xh, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int c_nr = nr */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 63, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 63, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 63, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_xh); __Pyx_GIVEREF(__pyx_v_xh); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_xh); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":64 * dtype=numpy.float64) * cdef double[:] c_xh = numpy.ascontiguousarray(xh, * dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef int c_nr = nr * cdef int[:] c_nc = numpy.ascontiguousarray(nc, */ __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_numpy); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_float64); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_4) < 0) __PYX_ERR(0, 64, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":63 * cdef double[:] c_xl = numpy.ascontiguousarray(xl, * dtype=numpy.float64) * cdef double[:] c_xh = numpy.ascontiguousarray(xh, # <<<<<<<<<<<<<< * dtype=numpy.float64) * cdef int c_nr = nr */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_2, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 63, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_5 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_4, PyBUF_WRITABLE); if (unlikely(!__pyx_t_5.memview)) __PYX_ERR(0, 63, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_c_xh = __pyx_t_5; __pyx_t_5.memview = NULL; __pyx_t_5.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":65 * cdef double[:] c_xh = numpy.ascontiguousarray(xh, * dtype=numpy.float64) * cdef int c_nr = nr # <<<<<<<<<<<<<< * cdef int[:] c_nc = numpy.ascontiguousarray(nc, * dtype=numpy.int32) */ __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_v_nr); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 65, __pyx_L1_error) __pyx_v_c_nr = __pyx_t_7; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":66 * dtype=numpy.float64) * cdef int c_nr = nr * cdef int[:] c_nc = numpy.ascontiguousarray(nc, # <<<<<<<<<<<<<< * dtype=numpy.int32) * cdef int c_sizeC = c_c.size */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_numpy); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_nc); __Pyx_GIVEREF(__pyx_v_nc); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_nc); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":67 * cdef int c_nr = nr * cdef int[:] c_nc = numpy.ascontiguousarray(nc, * dtype=numpy.int32) # <<<<<<<<<<<<<< * cdef int c_sizeC = c_c.size * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ */ __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_int32); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_dtype, __pyx_t_6) < 0) __PYX_ERR(0, 67, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":66 * dtype=numpy.float64) * cdef int c_nr = nr * cdef int[:] c_nc = numpy.ascontiguousarray(nc, # <<<<<<<<<<<<<< * dtype=numpy.int32) * cdef int c_sizeC = c_c.size */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_8 = __Pyx_PyObject_to_MemoryviewSlice_ds_int(__pyx_t_6, PyBUF_WRITABLE); if (unlikely(!__pyx_t_8.memview)) __PYX_ERR(0, 66, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_c_nc = __pyx_t_8; __pyx_t_8.memview = NULL; __pyx_t_8.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":68 * cdef int[:] c_nc = numpy.ascontiguousarray(nc, * dtype=numpy.int32) * cdef int c_sizeC = c_c.size # <<<<<<<<<<<<<< * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ * &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) */ __pyx_t_6 = __pyx_memoryview_fromslice(__pyx_v_c_c, 1, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_size); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_7 = __Pyx_PyInt_As_int(__pyx_t_2); if (unlikely((__pyx_t_7 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 68, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_c_sizeC = __pyx_t_7; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":69 * dtype=numpy.int32) * cdef int c_sizeC = c_c.size * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ # <<<<<<<<<<<<<< * &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) * return c */ __pyx_t_9 = 0; __pyx_t_7 = -1; if (__pyx_t_9 < 0) { __pyx_t_9 += __pyx_v_c_x.shape[0]; if (unlikely(__pyx_t_9 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_9 >= __pyx_v_c_x.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 69, __pyx_L1_error) } __pyx_t_10 = 0; __pyx_t_7 = -1; if (__pyx_t_10 < 0) { __pyx_t_10 += __pyx_v_c_y.shape[0]; if (unlikely(__pyx_t_10 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_10 >= __pyx_v_c_y.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 69, __pyx_L1_error) } __pyx_t_11 = 0; __pyx_t_7 = -1; if (__pyx_t_11 < 0) { __pyx_t_11 += __pyx_v_c_w.shape[0]; if (unlikely(__pyx_t_11 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_11 >= __pyx_v_c_w.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 69, __pyx_L1_error) } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":70 * cdef int c_sizeC = c_c.size * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ * &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) # <<<<<<<<<<<<<< * return c * */ __pyx_t_12 = 0; __pyx_t_7 = -1; if (__pyx_t_12 < 0) { __pyx_t_12 += __pyx_v_c_xl.shape[0]; if (unlikely(__pyx_t_12 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_12 >= __pyx_v_c_xl.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 70, __pyx_L1_error) } __pyx_t_13 = 0; __pyx_t_7 = -1; if (__pyx_t_13 < 0) { __pyx_t_13 += __pyx_v_c_xh.shape[0]; if (unlikely(__pyx_t_13 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_13 >= __pyx_v_c_xh.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 70, __pyx_L1_error) } __pyx_t_14 = 0; __pyx_t_7 = -1; if (__pyx_t_14 < 0) { __pyx_t_14 += __pyx_v_c_nc.shape[0]; if (unlikely(__pyx_t_14 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_14 >= __pyx_v_c_nc.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 70, __pyx_L1_error) } __pyx_t_15 = 0; __pyx_t_7 = -1; if (__pyx_t_15 < 0) { __pyx_t_15 += __pyx_v_c_c.shape[0]; if (unlikely(__pyx_t_15 < 0)) __pyx_t_7 = 0; } else if (unlikely(__pyx_t_15 >= __pyx_v_c_c.shape[0])) __pyx_t_7 = 0; if (unlikely(__pyx_t_7 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_7); __PYX_ERR(0, 70, __pyx_L1_error) } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":69 * dtype=numpy.int32) * cdef int c_sizeC = c_c.size * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ # <<<<<<<<<<<<<< * &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) * return c */ polspl((&(*((double *) ( /* dim=0 */ (__pyx_v_c_x.data + __pyx_t_9 * __pyx_v_c_x.strides[0]) )))), (&(*((double *) ( /* dim=0 */ (__pyx_v_c_y.data + __pyx_t_10 * __pyx_v_c_y.strides[0]) )))), (&(*((double *) ( /* dim=0 */ (__pyx_v_c_w.data + __pyx_t_11 * __pyx_v_c_w.strides[0]) )))), __pyx_v_c_npts, (&(*((double *) ( /* dim=0 */ (__pyx_v_c_xl.data + __pyx_t_12 * __pyx_v_c_xl.strides[0]) )))), (&(*((double *) ( /* dim=0 */ (__pyx_v_c_xh.data + __pyx_t_13 * __pyx_v_c_xh.strides[0]) )))), (&(*((int *) ( /* dim=0 */ (__pyx_v_c_nc.data + __pyx_t_14 * __pyx_v_c_nc.strides[0]) )))), __pyx_v_c_nr, (&(*((double *) ( /* dim=0 */ (__pyx_v_c_c.data + __pyx_t_15 * __pyx_v_c_c.strides[0]) )))), __pyx_v_c_sizeC); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":71 * _polspl(&c_x[0], &c_y[0], &c_w[0], c_npts, \ * &c_xl[0], &c_xh[0], &c_nc[0], c_nr, &c_c[0], c_sizeC) * return c # <<<<<<<<<<<<<< * * def polspl2(x,y,w,npts,xl0,xh0,nr,nc): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_c); __pyx_r = __pyx_v_c; goto __pyx_L0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":51 * return j0Single(x) * * def polspl(x, y, w, npts, xl, xh, nr, nc): # <<<<<<<<<<<<<< * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __PYX_XDEC_MEMVIEW(&__pyx_t_5, 1); __Pyx_XDECREF(__pyx_t_6); __PYX_XDEC_MEMVIEW(&__pyx_t_8, 1); __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas.polspl", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_c); __PYX_XDEC_MEMVIEW(&__pyx_v_c_c, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_x, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_y, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_w, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_xl, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_xh, 1); __PYX_XDEC_MEMVIEW(&__pyx_v_c_nc, 1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":73 * return c * * def polspl2(x,y,w,npts,xl0,xh0,nr,nc): # <<<<<<<<<<<<<< * * # ; */ /* Python wrapper */ static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_9polspl2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_9polspl2 = {"polspl2", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_9polspl2, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_6PyMca5_12PyMcaPhysics_3xas_4_xas_9polspl2(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_x = 0; PyObject *__pyx_v_y = 0; PyObject *__pyx_v_w = 0; PyObject *__pyx_v_npts = 0; PyObject *__pyx_v_xl0 = 0; PyObject *__pyx_v_xh0 = 0; PyObject *__pyx_v_nr = 0; PyObject *__pyx_v_nc = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("polspl2 (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_x,&__pyx_n_s_y,&__pyx_n_s_w,&__pyx_n_s_npts,&__pyx_n_s_xl0,&__pyx_n_s_xh0,&__pyx_n_s_nr,&__pyx_n_s_nc,0}; PyObject* values[8] = {0,0,0,0,0,0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7); CYTHON_FALLTHROUGH; case 7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6); CYTHON_FALLTHROUGH; case 6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5); CYTHON_FALLTHROUGH; case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_x)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_y)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 1); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_w)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 2); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (likely((values[3] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_npts)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 3); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 4: if (likely((values[4] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xl0)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 4); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 5: if (likely((values[5] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_xh0)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 5); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 6: if (likely((values[6] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nr)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 6); __PYX_ERR(0, 73, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 7: if (likely((values[7] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, 7); __PYX_ERR(0, 73, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "polspl2") < 0)) __PYX_ERR(0, 73, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 8) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[3] = PyTuple_GET_ITEM(__pyx_args, 3); values[4] = PyTuple_GET_ITEM(__pyx_args, 4); values[5] = PyTuple_GET_ITEM(__pyx_args, 5); values[6] = PyTuple_GET_ITEM(__pyx_args, 6); values[7] = PyTuple_GET_ITEM(__pyx_args, 7); } __pyx_v_x = values[0]; __pyx_v_y = values[1]; __pyx_v_w = values[2]; __pyx_v_npts = values[3]; __pyx_v_xl0 = values[4]; __pyx_v_xh0 = values[5]; __pyx_v_nr = values[6]; __pyx_v_nc = values[7]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("polspl2", 1, 8, 8, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 73, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas.polspl2", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_8polspl2(__pyx_self, __pyx_v_x, __pyx_v_y, __pyx_v_w, __pyx_v_npts, __pyx_v_xl0, __pyx_v_xh0, __pyx_v_nr, __pyx_v_nc); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_6PyMca5_12PyMcaPhysics_3xas_4_xas_8polspl2(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_x, PyObject *__pyx_v_y, PyObject *__pyx_v_w, PyObject *__pyx_v_npts, PyObject *__pyx_v_xl0, PyObject *__pyx_v_xh0, PyObject *__pyx_v_nr, PyObject *__pyx_v_nc) { PyArrayObject *__pyx_v_buffer_xl0 = 0; double *__pyx_v_xl; PyArrayObject *__pyx_v_buffer_xh0 = 0; double *__pyx_v_xh; PyObject *__pyx_v_df = NULL; PyObject *__pyx_v_a = NULL; PyObject *__pyx_v_nbs = NULL; __Pyx_memviewslice __pyx_v_xk0 = { 0, 0, { 0 }, { 0 }, { 0 } }; double *__pyx_v_xk; PyObject *__pyx_v_c = NULL; int __pyx_v_j; int __pyx_v_i; PyObject *__pyx_v_ne_idl = NULL; PyObject *__pyx_v_n = NULL; int __pyx_v_k; int __pyx_v_ibl; int __pyx_v_ns; int __pyx_v_ns1; PyObject *__pyx_v_t = NULL; PyObject *__pyx_v_n1 = NULL; PyObject *__pyx_v_ncol = NULL; PyObject *__pyx_v_nk = NULL; PyObject *__pyx_v_ik = NULL; PyObject *__pyx_v_i1 = NULL; PyObject *__pyx_v_nm1 = NULL; int __pyx_v_m; PyObject *__pyx_v_ni = NULL; PyObject *__pyx_v_ni1 = NULL; __Pyx_LocalBuf_ND __pyx_pybuffernd_buffer_xh0; __Pyx_Buffer __pyx_pybuffer_buffer_xh0; __Pyx_LocalBuf_ND __pyx_pybuffernd_buffer_xl0; __Pyx_Buffer __pyx_pybuffer_buffer_xl0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyArrayObject *__pyx_t_7 = NULL; PyArrayObject *__pyx_t_8 = NULL; __Pyx_memviewslice __pyx_t_9 = { 0, 0, { 0 }, { 0 }, { 0 } }; Py_ssize_t __pyx_t_10; long __pyx_t_11; long __pyx_t_12; long __pyx_t_13; int __pyx_t_14; double __pyx_t_15; Py_ssize_t __pyx_t_16; int __pyx_t_17; long __pyx_t_18; int __pyx_t_19; long __pyx_t_20; long __pyx_t_21; int __pyx_t_22; long __pyx_t_23; long __pyx_t_24; int __pyx_t_25; PyObject *(*__pyx_t_26)(PyObject *); Py_ssize_t __pyx_t_27; PyObject *__pyx_t_28 = NULL; PyObject *__pyx_t_29 = NULL; PyObject *__pyx_t_30 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("polspl2", 0); __pyx_pybuffer_buffer_xl0.pybuffer.buf = NULL; __pyx_pybuffer_buffer_xl0.refcount = 0; __pyx_pybuffernd_buffer_xl0.data = NULL; __pyx_pybuffernd_buffer_xl0.rcbuffer = &__pyx_pybuffer_buffer_xl0; __pyx_pybuffer_buffer_xh0.pybuffer.buf = NULL; __pyx_pybuffer_buffer_xh0.refcount = 0; __pyx_pybuffernd_buffer_xh0.data = NULL; __pyx_pybuffernd_buffer_xh0.rcbuffer = &__pyx_pybuffer_buffer_xh0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":80 * * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xl0 = \ * numpy.ascontiguousarray(xl0, numpy.float64) # <<<<<<<<<<<<<< * cdef double * xl = <double *> buffer_xl0.data * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \ */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_5 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_5 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_xl0, __pyx_t_4}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_xl0, __pyx_t_4}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else #endif { __pyx_t_6 = PyTuple_New(2+__pyx_t_5); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_v_xl0); __Pyx_GIVEREF(__pyx_v_xl0); PyTuple_SET_ITEM(__pyx_t_6, 0+__pyx_t_5, __pyx_v_xl0); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_6, 1+__pyx_t_5, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_6, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 80, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 80, __pyx_L1_error) __pyx_t_7 = ((PyArrayObject *)__pyx_t_1); { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer, (PyObject*)__pyx_t_7, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack) == -1)) { __pyx_v_buffer_xl0 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer.buf = NULL; __PYX_ERR(0, 79, __pyx_L1_error) } else {__pyx_pybuffernd_buffer_xl0.diminfo[0].strides = __pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_buffer_xl0.diminfo[0].shape = __pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer.shape[0]; } } __pyx_t_7 = 0; __pyx_v_buffer_xl0 = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":81 * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xl0 = \ * numpy.ascontiguousarray(xl0, numpy.float64) * cdef double * xl = <double *> buffer_xl0.data # <<<<<<<<<<<<<< * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \ * numpy.ascontiguousarray(xh0, numpy.float64) */ __pyx_v_xl = ((double *)__pyx_v_buffer_xl0->data); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":83 * cdef double * xl = <double *> buffer_xl0.data * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \ * numpy.ascontiguousarray(xh0, numpy.float64) # <<<<<<<<<<<<<< * cdef double * xh = <double *> buffer_xh0.data * df = numpy.zeros(26) */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_ascontiguousarray); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_float64); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; __pyx_t_5 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_5 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_3, __pyx_v_xh0, __pyx_t_4}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_3, __pyx_v_xh0, __pyx_t_4}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else #endif { __pyx_t_2 = PyTuple_New(2+__pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (__pyx_t_3) { __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __pyx_t_3 = NULL; } __Pyx_INCREF(__pyx_v_xh0); __Pyx_GIVEREF(__pyx_v_xh0); PyTuple_SET_ITEM(__pyx_t_2, 0+__pyx_t_5, __pyx_v_xh0); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 1+__pyx_t_5, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_2, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 83, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 83, __pyx_L1_error) __pyx_t_8 = ((PyArrayObject *)__pyx_t_1); { __Pyx_BufFmt_StackElem __pyx_stack[1]; if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer, (PyObject*)__pyx_t_8, &__Pyx_TypeInfo_double, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack) == -1)) { __pyx_v_buffer_xh0 = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer.buf = NULL; __PYX_ERR(0, 82, __pyx_L1_error) } else {__pyx_pybuffernd_buffer_xh0.diminfo[0].strides = __pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_buffer_xh0.diminfo[0].shape = __pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer.shape[0]; } } __pyx_t_8 = 0; __pyx_v_buffer_xh0 = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":84 * cdef numpy.ndarray[double, ndim=1, mode='c'] buffer_xh0 = \ * numpy.ascontiguousarray(xh0, numpy.float64) * cdef double * xh = <double *> buffer_xh0.data # <<<<<<<<<<<<<< * df = numpy.zeros(26) * a = numpy.zeros((36,37)) */ __pyx_v_xh = ((double *)__pyx_v_buffer_xh0->data); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":85 * numpy.ascontiguousarray(xh0, numpy.float64) * cdef double * xh = <double *> buffer_xh0.data * df = numpy.zeros(26) # <<<<<<<<<<<<<< * a = numpy.zeros((36,37)) * nbs = numpy.zeros(11,dtype=int) */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_numpy); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 85, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 85, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_6, __pyx_int_26) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_int_26); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 85, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_df = __pyx_t_1; __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":86 * cdef double * xh = <double *> buffer_xh0.data * df = numpy.zeros(26) * a = numpy.zeros((36,37)) # <<<<<<<<<<<<<< * nbs = numpy.zeros(11,dtype=int) * cdef double[:] xk0 = numpy.zeros(10) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zeros); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_2, __pyx_tuple__3) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_tuple__3); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_a = __pyx_t_1; __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":87 * df = numpy.zeros(26) * a = numpy.zeros((36,37)) * nbs = numpy.zeros(11,dtype=int) # <<<<<<<<<<<<<< * cdef double[:] xk0 = numpy.zeros(10) * cdef double * xk = &xk0[0] */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 87, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 87, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 87, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, ((PyObject *)(&PyInt_Type))) < 0) __PYX_ERR(0, 87, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_tuple__4, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 87, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_nbs = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":88 * a = numpy.zeros((36,37)) * nbs = numpy.zeros(11,dtype=int) * cdef double[:] xk0 = numpy.zeros(10) # <<<<<<<<<<<<<< * cdef double * xk = &xk0[0] * c = numpy.zeros(36) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 88, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 88, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_2 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_1, __pyx_int_10) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_int_10); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 88, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_9 = __Pyx_PyObject_to_MemoryviewSlice_ds_double(__pyx_t_2, PyBUF_WRITABLE); if (unlikely(!__pyx_t_9.memview)) __PYX_ERR(0, 88, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_xk0 = __pyx_t_9; __pyx_t_9.memview = NULL; __pyx_t_9.data = NULL; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":89 * nbs = numpy.zeros(11,dtype=int) * cdef double[:] xk0 = numpy.zeros(10) * cdef double * xk = &xk0[0] # <<<<<<<<<<<<<< * c = numpy.zeros(36) * cdef int j=0 */ __pyx_t_10 = 0; __pyx_t_5 = -1; if (__pyx_t_10 < 0) { __pyx_t_10 += __pyx_v_xk0.shape[0]; if (unlikely(__pyx_t_10 < 0)) __pyx_t_5 = 0; } else if (unlikely(__pyx_t_10 >= __pyx_v_xk0.shape[0])) __pyx_t_5 = 0; if (unlikely(__pyx_t_5 != -1)) { __Pyx_RaiseBufferIndexError(__pyx_t_5); __PYX_ERR(0, 89, __pyx_L1_error) } __pyx_v_xk = (&(*((double *) ( /* dim=0 */ (__pyx_v_xk0.data + __pyx_t_10 * __pyx_v_xk0.strides[0]) )))); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":90 * cdef double[:] xk0 = numpy.zeros(10) * cdef double * xk = &xk0[0] * c = numpy.zeros(36) # <<<<<<<<<<<<<< * cdef int j=0 * cdef int i=0 */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_numpy); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_6, __pyx_int_36) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_int_36); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 90, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_c = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":91 * cdef double * xk = &xk0[0] * c = numpy.zeros(36) * cdef int j=0 # <<<<<<<<<<<<<< * cdef int i=0 * ne_idl=0 */ __pyx_v_j = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":92 * c = numpy.zeros(36) * cdef int j=0 * cdef int i=0 # <<<<<<<<<<<<<< * ne_idl=0 * n = 0 */ __pyx_v_i = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":93 * cdef int j=0 * cdef int i=0 * ne_idl=0 # <<<<<<<<<<<<<< * n = 0 * cdef int k = 0 */ __Pyx_INCREF(__pyx_int_0); __pyx_v_ne_idl = __pyx_int_0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":94 * cdef int i=0 * ne_idl=0 * n = 0 # <<<<<<<<<<<<<< * cdef int k = 0 * cdef int ibl = 0 */ __Pyx_INCREF(__pyx_int_0); __pyx_v_n = __pyx_int_0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":95 * ne_idl=0 * n = 0 * cdef int k = 0 # <<<<<<<<<<<<<< * cdef int ibl = 0 * cdef int ns = 0 */ __pyx_v_k = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":96 * n = 0 * cdef int k = 0 * cdef int ibl = 0 # <<<<<<<<<<<<<< * cdef int ns = 0 * cdef int ns1 = 0 */ __pyx_v_ibl = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":97 * cdef int k = 0 * cdef int ibl = 0 * cdef int ns = 0 # <<<<<<<<<<<<<< * cdef int ns1 = 0 * */ __pyx_v_ns = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":98 * cdef int ibl = 0 * cdef int ns = 0 * cdef int ns1 = 0 # <<<<<<<<<<<<<< * * nbs[1]=1 */ __pyx_v_ns1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":100 * cdef int ns1 = 0 * * nbs[1]=1 # <<<<<<<<<<<<<< * for i in range(1,nr+1): * n=n+int(nc[i]) */ if (unlikely(__Pyx_SetItemInt(__pyx_v_nbs, 1, __pyx_int_1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1) < 0)) __PYX_ERR(0, 100, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":101 * * nbs[1]=1 * for i in range(1,nr+1): # <<<<<<<<<<<<<< * n=n+int(nc[i]) * nbs[i+1]=n+1 */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_2); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = 1; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":102 * nbs[1]=1 * for i in range(1,nr+1): * n=n+int(nc[i]) # <<<<<<<<<<<<<< * nbs[i+1]=n+1 * if xl[i] < xh[i]: */ __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_nc, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyNumber_Int(__pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Add(__pyx_v_n, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_n, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":103 * for i in range(1,nr+1): * n=n+int(nc[i]) * nbs[i+1]=n+1 # <<<<<<<<<<<<<< * if xl[i] < xh[i]: * pass */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_13 = (__pyx_v_i + 1); if (unlikely(__Pyx_SetItemInt(__pyx_v_nbs, __pyx_t_13, __pyx_t_2, long, 1, __Pyx_PyInt_From_long, 0, 1, 1) < 0)) __PYX_ERR(0, 103, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":104 * n=n+int(nc[i]) * nbs[i+1]=n+1 * if xl[i] < xh[i]: # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_14 = (((__pyx_v_xl[__pyx_v_i]) < (__pyx_v_xh[__pyx_v_i])) != 0); if (__pyx_t_14) { goto __pyx_L5; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":107 * pass * else: * t=xl[i] # <<<<<<<<<<<<<< * xl[i]=xh[i] * xh[i]=t */ /*else*/ { __pyx_t_2 = PyFloat_FromDouble((__pyx_v_xl[__pyx_v_i])); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":108 * else: * t=xl[i] * xl[i]=xh[i] # <<<<<<<<<<<<<< * xh[i]=t * */ (__pyx_v_xl[__pyx_v_i]) = (__pyx_v_xh[__pyx_v_i]); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":109 * t=xl[i] * xl[i]=xh[i] * xh[i]=t # <<<<<<<<<<<<<< * * n=n+2*(nr-1) */ __pyx_t_15 = __pyx_PyFloat_AsDouble(__pyx_v_t); if (unlikely((__pyx_t_15 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 109, __pyx_L1_error) (__pyx_v_xh[__pyx_v_i]) = __pyx_t_15; } __pyx_L5:; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":111 * xh[i]=t * * n=n+2*(nr-1) # <<<<<<<<<<<<<< * n1=n+1 * xl[nr+1]=0. */ __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyNumber_Multiply(__pyx_int_2, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Add(__pyx_v_n, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_n, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":112 * * n=n+2*(nr-1) * n1=n+1 # <<<<<<<<<<<<<< * xl[nr+1]=0. * xh[nr+1]=0. */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 112, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_n1 = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":113 * n=n+2*(nr-1) * n1=n+1 * xl[nr+1]=0. # <<<<<<<<<<<<<< * xh[nr+1]=0. * */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 113, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_16 = __Pyx_PyIndex_AsSsize_t(__pyx_t_2); if (unlikely((__pyx_t_16 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 113, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; (__pyx_v_xl[__pyx_t_16]) = 0.; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":114 * n1=n+1 * xl[nr+1]=0. * xh[nr+1]=0. # <<<<<<<<<<<<<< * * # this loop ... */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 114, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_16 = __Pyx_PyIndex_AsSsize_t(__pyx_t_2); if (unlikely((__pyx_t_16 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 114, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; (__pyx_v_xh[__pyx_t_16]) = 0.; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":117 * * # this loop ... * for ibl in range(1,nr+1): # <<<<<<<<<<<<<< * xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) * if (xl[ibl] > xl[ibl+1]): */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 117, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_2); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 117, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = 1; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_ibl = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":118 * # this loop ... * for ibl in range(1,nr+1): * xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) # <<<<<<<<<<<<<< * if (xl[ibl] > xl[ibl+1]): * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) */ (__pyx_v_xk[__pyx_v_ibl]) = (.5 * ((__pyx_v_xh[__pyx_v_ibl]) + (__pyx_v_xl[(__pyx_v_ibl + 1)]))); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":119 * for ibl in range(1,nr+1): * xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) * if (xl[ibl] > xl[ibl+1]): # <<<<<<<<<<<<<< * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) * ns=nbs[ibl] */ __pyx_t_14 = (((__pyx_v_xl[__pyx_v_ibl]) > (__pyx_v_xl[(__pyx_v_ibl + 1)])) != 0); if (__pyx_t_14) { /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":120 * xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) * if (xl[ibl] > xl[ibl+1]): * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) # <<<<<<<<<<<<<< * ns=nbs[ibl] * ne_idl=nbs[ibl+1]-1 */ (__pyx_v_xk[__pyx_v_ibl]) = (.5 * ((__pyx_v_xl[__pyx_v_ibl]) + (__pyx_v_xh[(__pyx_v_ibl + 1)]))); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":119 * for ibl in range(1,nr+1): * xk[ibl]=.5*(xh[ibl]+xl[ibl+1]) * if (xl[ibl] > xl[ibl+1]): # <<<<<<<<<<<<<< * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) * ns=nbs[ibl] */ } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":121 * if (xl[ibl] > xl[ibl+1]): * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) * ns=nbs[ibl] # <<<<<<<<<<<<<< * ne_idl=nbs[ibl+1]-1 * for i in range(1, npts+1): */ __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_nbs, __pyx_v_ibl, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 121, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_17 = __Pyx_PyInt_As_int(__pyx_t_2); if (unlikely((__pyx_t_17 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 121, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ns = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":122 * xk[ibl]=.5*(xl[ibl]+xh[ibl+1]) * ns=nbs[ibl] * ne_idl=nbs[ibl+1]-1 # <<<<<<<<<<<<<< * for i in range(1, npts+1): * if((x[i] < xl[ibl]) or (x[i] > xh[ibl])): */ __pyx_t_13 = (__pyx_v_ibl + 1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_nbs, __pyx_t_13, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_t_2, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_ne_idl, __pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":123 * ns=nbs[ibl] * ne_idl=nbs[ibl+1]-1 * for i in range(1, npts+1): # <<<<<<<<<<<<<< * if((x[i] < xl[ibl]) or (x[i] > xh[ibl])): * pass */ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_npts, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 123, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_1); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 123, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_18 = __pyx_t_13; for (__pyx_t_17 = 1; __pyx_t_17 < __pyx_t_18; __pyx_t_17+=1) { __pyx_v_i = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":124 * ne_idl=nbs[ibl+1]-1 * for i in range(1, npts+1): * if((x[i] < xl[ibl]) or (x[i] > xh[ibl])): # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyFloat_FromDouble((__pyx_v_xl[__pyx_v_ibl])); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyObject_RichCompare(__pyx_t_1, __pyx_t_2, Py_LT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_19 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_19 < 0)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!__pyx_t_19) { } else { __pyx_t_14 = __pyx_t_19; goto __pyx_L12_bool_binop_done; } __pyx_t_6 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = PyFloat_FromDouble((__pyx_v_xh[__pyx_v_ibl])); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyObject_RichCompare(__pyx_t_6, __pyx_t_2, Py_GT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_19 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_19 < 0)) __PYX_ERR(0, 124, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_14 = __pyx_t_19; __pyx_L12_bool_binop_done:; if (__pyx_t_14) { goto __pyx_L11; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":127 * pass * else: * df[ns]=1.0 # <<<<<<<<<<<<<< * ns1=ns+1 * for j in range(ns1,ne_idl+1): */ /*else*/ { if (unlikely(__Pyx_SetItemInt(__pyx_v_df, __pyx_v_ns, __pyx_float_1_0, int, 1, __Pyx_PyInt_From_int, 0, 1, 1) < 0)) __PYX_ERR(0, 127, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":128 * else: * df[ns]=1.0 * ns1=ns+1 # <<<<<<<<<<<<<< * for j in range(ns1,ne_idl+1): * df[j]=df[j-1]*x[i] */ __pyx_v_ns1 = (__pyx_v_ns + 1); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":129 * df[ns]=1.0 * ns1=ns+1 * for j in range(ns1,ne_idl+1): # <<<<<<<<<<<<<< * df[j]=df[j-1]*x[i] * for j in range(ns,ne_idl+1): */ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 129, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_20 = __Pyx_PyInt_As_long(__pyx_t_1); if (unlikely((__pyx_t_20 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 129, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_21 = __pyx_t_20; for (__pyx_t_22 = __pyx_v_ns1; __pyx_t_22 < __pyx_t_21; __pyx_t_22+=1) { __pyx_v_j = __pyx_t_22; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":130 * ns1=ns+1 * for j in range(ns1,ne_idl+1): * df[j]=df[j-1]*x[i] # <<<<<<<<<<<<<< * for j in range(ns,ne_idl+1): * for k in range(j,ne_idl+1): */ __pyx_t_23 = (__pyx_v_j - 1); __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_df, __pyx_t_23, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(__Pyx_SetItemInt(__pyx_v_df, __pyx_v_j, __pyx_t_6, int, 1, __Pyx_PyInt_From_int, 0, 1, 1) < 0)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":131 * for j in range(ns1,ne_idl+1): * df[j]=df[j-1]*x[i] * for j in range(ns,ne_idl+1): # <<<<<<<<<<<<<< * for k in range(j,ne_idl+1): * a[j,k]=a[j,k]+df[j]*df[k]*w[i] */ __pyx_t_6 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 131, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_20 = __Pyx_PyInt_As_long(__pyx_t_6); if (unlikely((__pyx_t_20 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 131, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_21 = __pyx_t_20; for (__pyx_t_22 = __pyx_v_ns; __pyx_t_22 < __pyx_t_21; __pyx_t_22+=1) { __pyx_v_j = __pyx_t_22; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":132 * df[j]=df[j-1]*x[i] * for j in range(ns,ne_idl+1): * for k in range(j,ne_idl+1): # <<<<<<<<<<<<<< * a[j,k]=a[j,k]+df[j]*df[k]*w[i] * a[j,n1]=a[j,n1]+df[j]*y[i]*w[i] */ __pyx_t_6 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 132, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_23 = __Pyx_PyInt_As_long(__pyx_t_6); if (unlikely((__pyx_t_23 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 132, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_24 = __pyx_t_23; for (__pyx_t_25 = __pyx_v_j; __pyx_t_25 < __pyx_t_24; __pyx_t_25+=1) { __pyx_v_k = __pyx_t_25; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":133 * for j in range(ns,ne_idl+1): * for k in range(j,ne_idl+1): * a[j,k]=a[j,k]+df[j]*df[k]*w[i] # <<<<<<<<<<<<<< * a[j,n1]=a[j,n1]+df[j]*y[i]*w[i] * # ... has to be faster */ __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_k); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_2); __pyx_t_6 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_df, __pyx_v_j, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_GetItemInt(__pyx_v_df, __pyx_v_k, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = PyNumber_Multiply(__pyx_t_1, __pyx_t_6); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_GetItemInt(__pyx_v_w, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = PyNumber_Multiply(__pyx_t_4, __pyx_t_6); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyNumber_Add(__pyx_t_2, __pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_k); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_4, __pyx_t_6) < 0)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":134 * for k in range(j,ne_idl+1): * a[j,k]=a[j,k]+df[j]*df[k]*w[i] * a[j,n1]=a[j,n1]+df[j]*y[i]*w[i] # <<<<<<<<<<<<<< * # ... has to be faster * */ __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_6); __Pyx_INCREF(__pyx_v_n1); __Pyx_GIVEREF(__pyx_v_n1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_n1); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_df, __pyx_v_j, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_y, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyNumber_Multiply(__pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_w, __pyx_v_i, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Add(__pyx_t_6, __pyx_t_4); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_4); __Pyx_INCREF(__pyx_v_n1); __Pyx_GIVEREF(__pyx_v_n1); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_v_n1); __pyx_t_4 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_6, __pyx_t_2) < 0)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } } __pyx_L11:; } } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":137 * # ... has to be faster * * ncol=nbs[nr+1]-1 # <<<<<<<<<<<<<< * nk=nr-1 * */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = __Pyx_PyObject_GetItem(__pyx_v_nbs, __pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_t_6, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_ncol = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":138 * * ncol=nbs[nr+1]-1 * nk=nr-1 # <<<<<<<<<<<<<< * * if (nk == 0): */ __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_v_nr, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 138, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_nk = __pyx_t_2; __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":140 * nk=nr-1 * * if (nk == 0): # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_2 = __Pyx_PyInt_EqObjC(__pyx_v_nk, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_14 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_14 < 0)) __PYX_ERR(0, 140, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_14) { goto __pyx_L20; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":143 * pass * else: * for ik in range(1,nk+1): # <<<<<<<<<<<<<< * ncol=ncol+1 * ns=nbs[ik] */ /*else*/ { __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_nk, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_int_1); __Pyx_GIVEREF(__pyx_int_1); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_int_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_range, __pyx_t_6, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (likely(PyList_CheckExact(__pyx_t_2)) || PyTuple_CheckExact(__pyx_t_2)) { __pyx_t_6 = __pyx_t_2; __Pyx_INCREF(__pyx_t_6); __pyx_t_16 = 0; __pyx_t_26 = NULL; } else { __pyx_t_16 = -1; __pyx_t_6 = PyObject_GetIter(__pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_26 = Py_TYPE(__pyx_t_6)->tp_iternext; if (unlikely(!__pyx_t_26)) __PYX_ERR(0, 143, __pyx_L1_error) } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; for (;;) { if (likely(!__pyx_t_26)) { if (likely(PyList_CheckExact(__pyx_t_6))) { if (__pyx_t_16 >= PyList_GET_SIZE(__pyx_t_6)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_2 = PyList_GET_ITEM(__pyx_t_6, __pyx_t_16); __Pyx_INCREF(__pyx_t_2); __pyx_t_16++; if (unlikely(0 < 0)) __PYX_ERR(0, 143, __pyx_L1_error) #else __pyx_t_2 = PySequence_ITEM(__pyx_t_6, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); #endif } else { if (__pyx_t_16 >= PyTuple_GET_SIZE(__pyx_t_6)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_2 = PyTuple_GET_ITEM(__pyx_t_6, __pyx_t_16); __Pyx_INCREF(__pyx_t_2); __pyx_t_16++; if (unlikely(0 < 0)) __PYX_ERR(0, 143, __pyx_L1_error) #else __pyx_t_2 = PySequence_ITEM(__pyx_t_6, __pyx_t_16); __pyx_t_16++; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 143, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); #endif } } else { __pyx_t_2 = __pyx_t_26(__pyx_t_6); if (unlikely(!__pyx_t_2)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(0, 143, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_2); } __Pyx_XDECREF_SET(__pyx_v_ik, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":144 * else: * for ik in range(1,nk+1): * ncol=ncol+1 # <<<<<<<<<<<<<< * ns=nbs[ik] * ne_idl=nbs[ik+1]-1 */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_ncol, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 144, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF_SET(__pyx_v_ncol, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":145 * for ik in range(1,nk+1): * ncol=ncol+1 * ns=nbs[ik] # <<<<<<<<<<<<<< * ne_idl=nbs[ik+1]-1 * a[ns,ncol]=-1. */ __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_v_nbs, __pyx_v_ik); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 145, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_2); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 145, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ns = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":146 * ncol=ncol+1 * ns=nbs[ik] * ne_idl=nbs[ik+1]-1 # <<<<<<<<<<<<<< * a[ns,ncol]=-1. * ns=ns+1 */ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_v_ik, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 146, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_nbs, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 146, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_SubtractObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 146, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_ne_idl, __pyx_t_2); __pyx_t_2 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":147 * ns=nbs[ik] * ne_idl=nbs[ik+1]-1 * a[ns,ncol]=-1. # <<<<<<<<<<<<<< * ns=ns+1 * for i in range(ns,ne_idl+1): */ __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 147, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 147, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_ncol); __pyx_t_2 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_4, __pyx_float_neg_1_) < 0)) __PYX_ERR(0, 147, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":148 * ne_idl=nbs[ik+1]-1 * a[ns,ncol]=-1. * ns=ns+1 # <<<<<<<<<<<<<< * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] */ __pyx_v_ns = (__pyx_v_ns + 1); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":149 * a[ns,ncol]=-1. * ns=ns+1 * for i in range(ns,ne_idl+1): # <<<<<<<<<<<<<< * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 149, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = __pyx_v_ns; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":150 * ns=ns+1 * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] # <<<<<<<<<<<<<< * ncol=ncol+1 * a[ns,ncol]=-1. */ __pyx_t_4 = __Pyx_PyInt_From_long((__pyx_v_i - 1)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_4); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_ncol); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_27 = __Pyx_PyIndex_AsSsize_t(__pyx_v_ik); if (unlikely((__pyx_t_27 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 150, __pyx_L1_error) __pyx_t_2 = PyFloat_FromDouble((__pyx_v_xk[__pyx_t_27])); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyNumber_Multiply(__pyx_t_4, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_ncol); __pyx_t_2 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_4, __pyx_t_1) < 0)) __PYX_ERR(0, 150, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":151 * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 # <<<<<<<<<<<<<< * a[ns,ncol]=-1. * ns=ns+1 */ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_ncol, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 151, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF_SET(__pyx_v_ncol, __pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":152 * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 * a[ns,ncol]=-1. # <<<<<<<<<<<<<< * ns=ns+1 * if (ns > ne_idl): */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_ncol); __pyx_t_1 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_4, __pyx_float_neg_1_) < 0)) __PYX_ERR(0, 152, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":153 * ncol=ncol+1 * a[ns,ncol]=-1. * ns=ns+1 # <<<<<<<<<<<<<< * if (ns > ne_idl): * pass */ __pyx_v_ns = (__pyx_v_ns + 1); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":154 * a[ns,ncol]=-1. * ns=ns+1 * if (ns > ne_idl): # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyObject_RichCompare(__pyx_t_4, __pyx_v_ne_idl, Py_GT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 154, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_14 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_14 < 0)) __PYX_ERR(0, 154, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_14) { goto __pyx_L25; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":157 * pass * else: * for i in range(ns,ne_idl+1): # <<<<<<<<<<<<<< * a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) * ncol=ncol-1 */ /*else*/ { __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 157, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_1); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 157, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = __pyx_v_ns; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":158 * else: * for i in range(ns,ne_idl+1): * a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) # <<<<<<<<<<<<<< * ncol=ncol-1 * ns=nbs[ik+1] */ __pyx_t_1 = __Pyx_PyInt_From_long(((__pyx_v_ns - __pyx_v_i) - 2)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_numpy); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_power); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_27 = __Pyx_PyIndex_AsSsize_t(__pyx_v_ik); if (unlikely((__pyx_t_27 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 158, __pyx_L1_error) __pyx_t_2 = PyFloat_FromDouble((__pyx_v_xk[__pyx_t_27])); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_28 = __Pyx_PyInt_From_long(((__pyx_v_i - __pyx_v_ns) + 1)); if (unlikely(!__pyx_t_28)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_28); __pyx_t_29 = NULL; __pyx_t_17 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_29 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_29)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_29); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_17 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_29, __pyx_t_2, __pyx_t_28}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_17, 2+__pyx_t_17); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_28); __pyx_t_28 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_29, __pyx_t_2, __pyx_t_28}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_17, 2+__pyx_t_17); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_28); __pyx_t_28 = 0; } else #endif { __pyx_t_30 = PyTuple_New(2+__pyx_t_17); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); if (__pyx_t_29) { __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_30, 0, __pyx_t_29); __pyx_t_29 = NULL; } __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_30, 0+__pyx_t_17, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_28); PyTuple_SET_ITEM(__pyx_t_30, 1+__pyx_t_17, __pyx_t_28); __pyx_t_2 = 0; __pyx_t_28 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_30, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_4); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_ncol); __pyx_t_4 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_1, __pyx_t_3) < 0)) __PYX_ERR(0, 158, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } } __pyx_L25:; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":159 * for i in range(ns,ne_idl+1): * a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) * ncol=ncol-1 # <<<<<<<<<<<<<< * ns=nbs[ik+1] * ne_idl=nbs[ik+2]-1 */ __pyx_t_3 = __Pyx_PyInt_SubtractObjC(__pyx_v_ncol, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 159, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF_SET(__pyx_v_ncol, __pyx_t_3); __pyx_t_3 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":160 * a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1)) * ncol=ncol-1 * ns=nbs[ik+1] # <<<<<<<<<<<<<< * ne_idl=nbs[ik+2]-1 * a[ns,ncol]=1.0 */ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_v_ik, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 160, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_v_nbs, __pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 160, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_1); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 160, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_ns = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":161 * ncol=ncol-1 * ns=nbs[ik+1] * ne_idl=nbs[ik+2]-1 # <<<<<<<<<<<<<< * a[ns,ncol]=1.0 * ns=ns+1 */ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_ik, __pyx_int_2, 2, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 161, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_v_nbs, __pyx_t_1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 161, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_SubtractObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 161, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_ne_idl, __pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":162 * ns=nbs[ik+1] * ne_idl=nbs[ik+2]-1 * a[ns,ncol]=1.0 # <<<<<<<<<<<<<< * ns=ns+1 * for i in range(ns,ne_idl+1): */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_ncol); __pyx_t_1 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_3, __pyx_float_1_0) < 0)) __PYX_ERR(0, 162, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":163 * ne_idl=nbs[ik+2]-1 * a[ns,ncol]=1.0 * ns=ns+1 # <<<<<<<<<<<<<< * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] */ __pyx_v_ns = (__pyx_v_ns + 1); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":164 * a[ns,ncol]=1.0 * ns=ns+1 * for i in range(ns,ne_idl+1): # <<<<<<<<<<<<<< * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 */ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_3); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 164, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = __pyx_v_ns; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":165 * ns=ns+1 * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] # <<<<<<<<<<<<<< * ncol=ncol+1 * a[ns,ncol]=1.0 */ __pyx_t_3 = __Pyx_PyInt_From_long((__pyx_v_i - 1)); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_3); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_ncol); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_27 = __Pyx_PyIndex_AsSsize_t(__pyx_v_ik); if (unlikely((__pyx_t_27 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 165, __pyx_L1_error) __pyx_t_1 = PyFloat_FromDouble((__pyx_v_xk[__pyx_t_27])); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyNumber_Multiply(__pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_ncol); __pyx_t_1 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_3, __pyx_t_4) < 0)) __PYX_ERR(0, 165, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":166 * for i in range(ns,ne_idl+1): * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 # <<<<<<<<<<<<<< * a[ns,ncol]=1.0 * ns=ns+1 */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_ncol, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 166, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF_SET(__pyx_v_ncol, __pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":167 * a[i,ncol]=a[i-1,ncol]*xk[ik] * ncol=ncol+1 * a[ns,ncol]=1.0 # <<<<<<<<<<<<<< * ns=ns+1 * if (ns > ne_idl): */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_ncol); __pyx_t_4 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_3, __pyx_float_1_0) < 0)) __PYX_ERR(0, 167, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":168 * ncol=ncol+1 * a[ns,ncol]=1.0 * ns=ns+1 # <<<<<<<<<<<<<< * if (ns > ne_idl): * pass */ __pyx_v_ns = (__pyx_v_ns + 1); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":169 * a[ns,ncol]=1.0 * ns=ns+1 * if (ns > ne_idl): # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_ns); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_ne_idl, Py_GT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_14 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_14 < 0)) __PYX_ERR(0, 169, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_14) { goto __pyx_L30; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":172 * pass * else: * for i in range(ns,ne_idl+1): # <<<<<<<<<<<<<< * a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1)) * */ /*else*/ { __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_ne_idl, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 172, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 172, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = __pyx_v_ns; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":173 * else: * for i in range(ns,ne_idl+1): * a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1)) # <<<<<<<<<<<<<< * * for i in range(1,n+1): */ __pyx_t_4 = __Pyx_PyInt_From_long(((__pyx_v_i - __pyx_v_ns) + 2)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_numpy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_30 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_power); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_27 = __Pyx_PyIndex_AsSsize_t(__pyx_v_ik); if (unlikely((__pyx_t_27 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 173, __pyx_L1_error) __pyx_t_1 = PyFloat_FromDouble((__pyx_v_xk[__pyx_t_27])); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_28 = __Pyx_PyInt_From_long(((__pyx_v_i - __pyx_v_ns) + 1)); if (unlikely(!__pyx_t_28)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_28); __pyx_t_2 = NULL; __pyx_t_17 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_30))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_30); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_30); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_30, function); __pyx_t_17 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_30)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_t_1, __pyx_t_28}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_30, __pyx_temp+1-__pyx_t_17, 2+__pyx_t_17); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_28); __pyx_t_28 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_30)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_t_1, __pyx_t_28}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_30, __pyx_temp+1-__pyx_t_17, 2+__pyx_t_17); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_28); __pyx_t_28 = 0; } else #endif { __pyx_t_29 = PyTuple_New(2+__pyx_t_17); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_29, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_29, 0+__pyx_t_17, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_28); PyTuple_SET_ITEM(__pyx_t_29, 1+__pyx_t_17, __pyx_t_28); __pyx_t_1 = 0; __pyx_t_28 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_30, __pyx_t_29, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; } __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; __pyx_t_30 = PyNumber_Multiply(__pyx_t_4, __pyx_t_3); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __Pyx_INCREF(__pyx_v_ncol); __Pyx_GIVEREF(__pyx_v_ncol); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_ncol); __pyx_t_3 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_4, __pyx_t_30) < 0)) __PYX_ERR(0, 173, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; } } __pyx_L30:; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":143 * pass * else: * for ik in range(1,nk+1): # <<<<<<<<<<<<<< * ncol=ncol+1 * ns=nbs[ik] */ } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __pyx_L20:; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":175 * a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1)) * * for i in range(1,n+1): # <<<<<<<<<<<<<< * i1=i-1 * for j in range(1,i1+1): */ __pyx_t_6 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_6); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 175, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = 1; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":176 * * for i in range(1,n+1): * i1=i-1 # <<<<<<<<<<<<<< * for j in range(1,i1+1): * a[i,j]=a[j,i] */ __pyx_t_6 = __Pyx_PyInt_From_long((__pyx_v_i - 1)); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_i1, __pyx_t_6); __pyx_t_6 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":177 * for i in range(1,n+1): * i1=i-1 * for j in range(1,i1+1): # <<<<<<<<<<<<<< * a[i,j]=a[j,i] * nm1=n-1 */ __pyx_t_6 = __Pyx_PyInt_AddObjC(__pyx_v_i1, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_6); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 177, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_18 = __pyx_t_13; for (__pyx_t_17 = 1; __pyx_t_17 < __pyx_t_18; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":178 * i1=i-1 * for j in range(1,i1+1): * a[i,j]=a[j,i] # <<<<<<<<<<<<<< * nm1=n-1 * */ __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_30 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_30); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_30); __pyx_t_6 = 0; __pyx_t_30 = 0; __pyx_t_30 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_6); __pyx_t_4 = 0; __pyx_t_6 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_3, __pyx_t_30) < 0)) __PYX_ERR(0, 178, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; } } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":179 * for j in range(1,i1+1): * a[i,j]=a[j,i] * nm1=n-1 # <<<<<<<<<<<<<< * * for i in range(1,nm1+1): */ __pyx_t_30 = __Pyx_PyInt_SubtractObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 179, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_v_nm1 = __pyx_t_30; __pyx_t_30 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":181 * nm1=n-1 * * for i in range(1,nm1+1): # <<<<<<<<<<<<<< * i1=i+1 * m=i */ __pyx_t_30 = __Pyx_PyInt_AddObjC(__pyx_v_nm1, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 181, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_30); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 181, __pyx_L1_error) __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = 1; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":182 * * for i in range(1,nm1+1): * i1=i+1 # <<<<<<<<<<<<<< * m=i * t=numpy.abs(a[i,i]) */ __pyx_t_30 = __Pyx_PyInt_From_long((__pyx_v_i + 1)); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 182, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_XDECREF_SET(__pyx_v_i1, __pyx_t_30); __pyx_t_30 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":183 * for i in range(1,nm1+1): * i1=i+1 * m=i # <<<<<<<<<<<<<< * t=numpy.abs(a[i,i]) * for j in range(i1,n+1): */ __pyx_v_m = __pyx_v_i; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":184 * i1=i+1 * m=i * t=numpy.abs(a[i,i]) # <<<<<<<<<<<<<< * for j in range(i1,n+1): * if (t >= numpy.abs(a[j,i])): */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_numpy); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_abs); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = PyTuple_New(2); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_29, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_29, 1, __pyx_t_4); __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_29); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __pyx_t_29 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_29 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_29)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_29); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_30 = (__pyx_t_29) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_29, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_4); __Pyx_XDECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_30); __pyx_t_30 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":185 * m=i * t=numpy.abs(a[i,i]) * for j in range(i1,n+1): # <<<<<<<<<<<<<< * if (t >= numpy.abs(a[j,i])): * pass */ __pyx_t_30 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_30); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 185, __pyx_L1_error) __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; __pyx_t_18 = __Pyx_PyInt_As_long(__pyx_v_i1); if (unlikely((__pyx_t_18 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 185, __pyx_L1_error) __pyx_t_20 = __pyx_t_13; for (__pyx_t_17 = __pyx_t_18; __pyx_t_17 < __pyx_t_20; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":186 * t=numpy.abs(a[i,i]) * for j in range(i1,n+1): * if (t >= numpy.abs(a[j,i])): # <<<<<<<<<<<<<< * pass * else: */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_numpy); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_abs); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_29); __pyx_t_6 = 0; __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_3); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_30 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_3, __pyx_t_29) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_29); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_30, Py_GE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; __pyx_t_14 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_14 < 0)) __PYX_ERR(0, 186, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_14) { goto __pyx_L41; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":189 * pass * else: * m=j # <<<<<<<<<<<<<< * t=numpy.abs(a[j,i]) * if (m == i): */ /*else*/ { __pyx_v_m = __pyx_v_j; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":190 * else: * m=j * t=numpy.abs(a[j,i]) # <<<<<<<<<<<<<< * if (m == i): * pass */ __Pyx_GetModuleGlobalName(__pyx_t_30, __pyx_n_s_numpy); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_t_29 = __Pyx_PyObject_GetAttrStr(__pyx_t_30, __pyx_n_s_abs); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_30); __pyx_t_30 = 0; __pyx_t_30 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_30)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_30); __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_30); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_30); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_3); __pyx_t_30 = 0; __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_6); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_29))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_29); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_29); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_29, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_29, __pyx_t_6, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_29, __pyx_t_3); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_DECREF_SET(__pyx_v_t, __pyx_t_4); __pyx_t_4 = 0; } __pyx_L41:; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":191 * m=j * t=numpy.abs(a[j,i]) * if (m == i): # <<<<<<<<<<<<<< * pass * else: */ __pyx_t_14 = ((__pyx_v_m == __pyx_v_i) != 0); if (__pyx_t_14) { goto __pyx_L42; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":194 * pass * else: * for j in range(1,n1+1): # <<<<<<<<<<<<<< * t=a[i,j] * a[i,j]=a[m,j] */ /*else*/ { __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_n1, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 194, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 194, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_20 = __pyx_t_13; for (__pyx_t_17 = 1; __pyx_t_17 < __pyx_t_20; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":195 * else: * for j in range(1,n1+1): * t=a[i,j] # <<<<<<<<<<<<<< * a[i,j]=a[m,j] * a[m,j]=t */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_29); __pyx_t_4 = 0; __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_3); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_t, __pyx_t_29); __pyx_t_29 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":196 * for j in range(1,n1+1): * t=a[i,j] * a[i,j]=a[m,j] # <<<<<<<<<<<<<< * a[m,j]=t * for j in range(i1,n+1): */ __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_m); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_29); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3); __pyx_t_29 = 0; __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_29); __pyx_t_4 = 0; __pyx_t_29 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_6, __pyx_t_3) < 0)) __PYX_ERR(0, 196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":197 * t=a[i,j] * a[i,j]=a[m,j] * a[m,j]=t # <<<<<<<<<<<<<< * for j in range(i1,n+1): * t=a[j,i]/a[i,i] */ __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_m); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_29 = PyTuple_New(2); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_29, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_29, 1, __pyx_t_6); __pyx_t_3 = 0; __pyx_t_6 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_29, __pyx_v_t) < 0)) __PYX_ERR(0, 197, __pyx_L1_error) __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; } } __pyx_L42:; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":198 * a[i,j]=a[m,j] * a[m,j]=t * for j in range(i1,n+1): # <<<<<<<<<<<<<< * t=a[j,i]/a[i,i] * for k in range(i1,n1+1): */ __pyx_t_29 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 198, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_29); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 198, __pyx_L1_error) __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __pyx_t_20 = __Pyx_PyInt_As_long(__pyx_v_i1); if (unlikely((__pyx_t_20 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 198, __pyx_L1_error) __pyx_t_18 = __pyx_t_13; for (__pyx_t_17 = __pyx_t_20; __pyx_t_17 < __pyx_t_18; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":199 * a[m,j]=t * for j in range(i1,n+1): * t=a[j,i]/a[i,i] # <<<<<<<<<<<<<< * for k in range(i1,n1+1): * a[j,k]=a[j,k]-t*a[i,k] */ __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_29); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_6); __pyx_t_29 = 0; __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_3); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_29); __pyx_t_3 = 0; __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyNumber_Divide(__pyx_t_6, __pyx_t_29); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_DECREF_SET(__pyx_v_t, __pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":200 * for j in range(i1,n+1): * t=a[j,i]/a[i,i] * for k in range(i1,n1+1): # <<<<<<<<<<<<<< * a[j,k]=a[j,k]-t*a[i,k] * c[n]=a[n,n1]/a[n,n] */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_n1, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_21 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_21 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 200, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_23 = __Pyx_PyInt_As_long(__pyx_v_i1); if (unlikely((__pyx_t_23 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 200, __pyx_L1_error) __pyx_t_24 = __pyx_t_21; for (__pyx_t_22 = __pyx_t_23; __pyx_t_22 < __pyx_t_24; __pyx_t_22+=1) { __pyx_v_k = __pyx_t_22; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":201 * t=a[j,i]/a[i,i] * for k in range(i1,n1+1): * a[j,k]=a[j,k]-t*a[i,k] # <<<<<<<<<<<<<< * c[n]=a[n,n1]/a[n,n] * for i in range(1,nm1+1): */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_k); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_29); __pyx_t_4 = 0; __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_6); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_k); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_4); __pyx_t_6 = 0; __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyNumber_Multiply(__pyx_v_t, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyNumber_Subtract(__pyx_t_29, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_k); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_29); __pyx_t_3 = 0; __pyx_t_29 = 0; if (unlikely(PyObject_SetItem(__pyx_v_a, __pyx_t_6, __pyx_t_4) < 0)) __PYX_ERR(0, 201, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } } } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":202 * for k in range(i1,n1+1): * a[j,k]=a[j,k]-t*a[i,k] * c[n]=a[n,n1]/a[n,n] # <<<<<<<<<<<<<< * for i in range(1,nm1+1): * ni=n-i */ __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_n); __Pyx_GIVEREF(__pyx_v_n); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_n); __Pyx_INCREF(__pyx_v_n1); __Pyx_GIVEREF(__pyx_v_n1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_n1); __pyx_t_6 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_n); __Pyx_GIVEREF(__pyx_v_n); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_n); __Pyx_INCREF(__pyx_v_n); __Pyx_GIVEREF(__pyx_v_n); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_n); __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_4); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyNumber_Divide(__pyx_t_6, __pyx_t_29); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; if (unlikely(PyObject_SetItem(__pyx_v_c, __pyx_v_n, __pyx_t_4) < 0)) __PYX_ERR(0, 202, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":203 * a[j,k]=a[j,k]-t*a[i,k] * c[n]=a[n,n1]/a[n,n] * for i in range(1,nm1+1): # <<<<<<<<<<<<<< * ni=n-i * t=a[ni,n1] */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_nm1, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 203, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_11 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 203, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_12 = __pyx_t_11; for (__pyx_t_5 = 1; __pyx_t_5 < __pyx_t_12; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":204 * c[n]=a[n,n1]/a[n,n] * for i in range(1,nm1+1): * ni=n-i # <<<<<<<<<<<<<< * t=a[ni,n1] * ni1=ni+1 */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = PyNumber_Subtract(__pyx_v_n, __pyx_t_4); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF_SET(__pyx_v_ni, __pyx_t_29); __pyx_t_29 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":205 * for i in range(1,nm1+1): * ni=n-i * t=a[ni,n1] # <<<<<<<<<<<<<< * ni1=ni+1 * for j in range(ni1,n+1): */ __pyx_t_29 = PyTuple_New(2); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_INCREF(__pyx_v_ni); __Pyx_GIVEREF(__pyx_v_ni); PyTuple_SET_ITEM(__pyx_t_29, 0, __pyx_v_ni); __Pyx_INCREF(__pyx_v_n1); __Pyx_GIVEREF(__pyx_v_n1); PyTuple_SET_ITEM(__pyx_t_29, 1, __pyx_v_n1); __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_29); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":206 * ni=n-i * t=a[ni,n1] * ni1=ni+1 # <<<<<<<<<<<<<< * for j in range(ni1,n+1): * t=t-c[j]*a[ni,j] */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_ni, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_XDECREF_SET(__pyx_v_ni1, __pyx_t_4); __pyx_t_4 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":207 * t=a[ni,n1] * ni1=ni+1 * for j in range(ni1,n+1): # <<<<<<<<<<<<<< * t=t-c[j]*a[ni,j] * c[ni]=t/a[ni,ni] */ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_n, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 207, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_13 = __Pyx_PyInt_As_long(__pyx_t_4); if (unlikely((__pyx_t_13 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 207, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_18 = __Pyx_PyInt_As_long(__pyx_v_ni1); if (unlikely((__pyx_t_18 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 207, __pyx_L1_error) __pyx_t_20 = __pyx_t_13; for (__pyx_t_17 = __pyx_t_18; __pyx_t_17 < __pyx_t_20; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":208 * ni1=ni+1 * for j in range(ni1,n+1): * t=t-c[j]*a[ni,j] # <<<<<<<<<<<<<< * c[ni]=t/a[ni,ni] * */ __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_c, __pyx_v_j, int, 1, __Pyx_PyInt_From_int, 0, 1, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_29 = __Pyx_PyInt_From_int(__pyx_v_j); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __pyx_t_6 = PyTuple_New(2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_v_ni); __Pyx_GIVEREF(__pyx_v_ni); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_v_ni); __Pyx_GIVEREF(__pyx_t_29); PyTuple_SET_ITEM(__pyx_t_6, 1, __pyx_t_29); __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_6); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyNumber_Multiply(__pyx_t_4, __pyx_t_29); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __pyx_t_29 = PyNumber_Subtract(__pyx_v_t, __pyx_t_6); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF_SET(__pyx_v_t, __pyx_t_29); __pyx_t_29 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":209 * for j in range(ni1,n+1): * t=t-c[j]*a[ni,j] * c[ni]=t/a[ni,ni] # <<<<<<<<<<<<<< * * return c */ __pyx_t_29 = PyTuple_New(2); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_INCREF(__pyx_v_ni); __Pyx_GIVEREF(__pyx_v_ni); PyTuple_SET_ITEM(__pyx_t_29, 0, __pyx_v_ni); __Pyx_INCREF(__pyx_v_ni); __Pyx_GIVEREF(__pyx_v_ni); PyTuple_SET_ITEM(__pyx_t_29, 1, __pyx_v_ni); __pyx_t_6 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_t_29); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; __pyx_t_29 = __Pyx_PyNumber_Divide(__pyx_v_t, __pyx_t_6); if (unlikely(!__pyx_t_29)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_29); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(PyObject_SetItem(__pyx_v_c, __pyx_v_ni, __pyx_t_29) < 0)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_DECREF(__pyx_t_29); __pyx_t_29 = 0; } /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":211 * c[ni]=t/a[ni,ni] * * return c # <<<<<<<<<<<<<< * */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_c); __pyx_r = __pyx_v_c; goto __pyx_L0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":73 * return c * * def polspl2(x,y,w,npts,xl0,xh0,nr,nc): # <<<<<<<<<<<<<< * * # ; */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_6); __PYX_XDEC_MEMVIEW(&__pyx_t_9, 1); __Pyx_XDECREF(__pyx_t_28); __Pyx_XDECREF(__pyx_t_29); __Pyx_XDECREF(__pyx_t_30); { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer); __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} __Pyx_AddTraceback("PyMca5.PyMcaPhysics.xas._xas.polspl2", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; goto __pyx_L2; __pyx_L0:; __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_buffer_xh0.rcbuffer->pybuffer); __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_buffer_xl0.rcbuffer->pybuffer); __pyx_L2:; __Pyx_XDECREF((PyObject *)__pyx_v_buffer_xl0); __Pyx_XDECREF((PyObject *)__pyx_v_buffer_xh0); __Pyx_XDECREF(__pyx_v_df); __Pyx_XDECREF(__pyx_v_a); __Pyx_XDECREF(__pyx_v_nbs); __PYX_XDEC_MEMVIEW(&__pyx_v_xk0, 1); __Pyx_XDECREF(__pyx_v_c); __Pyx_XDECREF(__pyx_v_ne_idl); __Pyx_XDECREF(__pyx_v_n); __Pyx_XDECREF(__pyx_v_t); __Pyx_XDECREF(__pyx_v_n1); __Pyx_XDECREF(__pyx_v_ncol); __Pyx_XDECREF(__pyx_v_nk); __Pyx_XDECREF(__pyx_v_ik); __Pyx_XDECREF(__pyx_v_i1); __Pyx_XDECREF(__pyx_v_nm1); __Pyx_XDECREF(__pyx_v_ni); __Pyx_XDECREF(__pyx_v_ni1); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, <void*>a) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":735 * * cdef inline object PyArray_MultiIterNew1(a): * return PyArray_MultiIterNew(1, <void*>a) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew2(a, b): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 735, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":734 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, <void*>a) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, <void*>a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":738 * * cdef inline object PyArray_MultiIterNew2(a, b): * return PyArray_MultiIterNew(2, <void*>a, <void*>b) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew3(a, b, c): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 738, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":737 * return PyArray_MultiIterNew(1, <void*>a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":741 * * cdef inline object PyArray_MultiIterNew3(a, b, c): * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":740 * return PyArray_MultiIterNew(2, <void*>a, <void*>b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":744 * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 744, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":743 * return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":747 * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) # <<<<<<<<<<<<<< * * cdef inline tuple PyDataType_SHAPE(dtype d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 747, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":746 * return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return <tuple>d.subarray.shape * else: */ __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); if (__pyx_t_1) { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":751 * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape # <<<<<<<<<<<<<< * else: * return () */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":750 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return <tuple>d.subarray.shape * else: */ } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":753 * return <tuple>d.subarray.shape * else: * return () # <<<<<<<<<<<<<< * * */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_empty_tuple); __pyx_r = __pyx_empty_tuple; goto __pyx_L0; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":749 * return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return <tuple>d.subarray.shape */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_array_base", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":929 * * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< * PyArray_SetBaseObject(arr, base) * */ Py_INCREF(__pyx_v_base); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":930 * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< * * cdef inline object get_array_base(ndarray arr): */ (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":928 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { PyObject *__pyx_v_base; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("get_array_base", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":933 * * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< * if base is NULL: * return None */ __pyx_v_base = PyArray_BASE(__pyx_v_arr); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return <object>base */ __pyx_t_1 = ((__pyx_v_base == NULL) != 0); if (__pyx_t_1) { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":935 * base = PyArray_BASE(arr) * if base is NULL: * return None # <<<<<<<<<<<<<< * return <object>base * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":934 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return <object>base */ } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":936 * if base is NULL: * return None * return <object>base # <<<<<<<<<<<<<< * * # Versions of the import_* functions which are more suitable for */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_base)); __pyx_r = ((PyObject *)__pyx_v_base); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":932 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_array", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":942 * cdef inline int import_array() except -1: * try: * __pyx_import_array() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.multiarray failed to import") */ __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 942, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":943 * try: * __pyx_import_array() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.multiarray failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 943, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 944, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 944, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":941 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * __pyx_import_array() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":940 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * __pyx_import_array() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_umath", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":948 * cdef inline int import_umath() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 948, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":949 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 949, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 950, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 950, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":947 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":946 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("import_ufunc", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":954 * cdef inline int import_ufunc() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 954, __pyx_L3_error) /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":955 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 955, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":956 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef extern from *: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 956, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 956, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":953 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":952 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_timedelta64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_timedelta64_object", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":978 * bool * """ * return PyObject_TypeCheck(obj, &PyTimedeltaArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyTimedeltaArrType_Type)); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":966 * * * cdef inline bint is_timedelta64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.timedelta64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ static CYTHON_INLINE int __pyx_f_5numpy_is_datetime64_object(PyObject *__pyx_v_obj) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_datetime64_object", 0); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":993 * bool * """ * return PyObject_TypeCheck(obj, &PyDatetimeArrType_Type) # <<<<<<<<<<<<<< * * */ __pyx_r = PyObject_TypeCheck(__pyx_v_obj, (&PyDatetimeArrType_Type)); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":981 * * * cdef inline bint is_datetime64_object(object obj): # <<<<<<<<<<<<<< * """ * Cython equivalent of `isinstance(obj, np.datetime64)` */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ static CYTHON_INLINE npy_datetime __pyx_f_5numpy_get_datetime64_value(PyObject *__pyx_v_obj) { npy_datetime __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1003 * also needed. That can be found using `get_datetime64_unit`. * """ * return (<PyDatetimeScalarObject*>obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyDatetimeScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":996 * * * cdef inline npy_datetime get_datetime64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy datetime64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ static CYTHON_INLINE npy_timedelta __pyx_f_5numpy_get_timedelta64_value(PyObject *__pyx_v_obj) { npy_timedelta __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1010 * returns the int64 value underlying scalar numpy timedelta64 object * """ * return (<PyTimedeltaScalarObject*>obj).obval # <<<<<<<<<<<<<< * * */ __pyx_r = ((PyTimedeltaScalarObject *)__pyx_v_obj)->obval; goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1006 * * * cdef inline npy_timedelta get_timedelta64_value(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the int64 value underlying scalar numpy timedelta64 object */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ static CYTHON_INLINE NPY_DATETIMEUNIT __pyx_f_5numpy_get_datetime64_unit(PyObject *__pyx_v_obj) { NPY_DATETIMEUNIT __pyx_r; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1017 * returns the unit part of the dtype for a numpy datetime64 object. * """ * return <NPY_DATETIMEUNIT>(<PyDatetimeScalarObject*>obj).obmeta.base # <<<<<<<<<<<<<< */ __pyx_r = ((NPY_DATETIMEUNIT)((PyDatetimeScalarObject *)__pyx_v_obj)->obmeta.base); goto __pyx_L0; /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":1013 * * * cdef inline NPY_DATETIMEUNIT get_datetime64_unit(object obj) nogil: # <<<<<<<<<<<<<< * """ * returns the unit part of the dtype for a numpy datetime64 object. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* Python wrapper */ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_array___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; Py_ssize_t __pyx_v_itemsize; PyObject *__pyx_v_format = 0; PyObject *__pyx_v_mode = 0; int __pyx_v_allocate_buffer; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_itemsize,&__pyx_n_s_format,&__pyx_n_s_mode,&__pyx_n_s_allocate_buffer,0}; PyObject* values[5] = {0,0,0,0,0}; values[3] = ((PyObject *)__pyx_n_s_c); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_itemsize)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 1); __PYX_ERR(2, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_format)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, 2); __PYX_ERR(2, 123, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_allocate_buffer); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 123, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = ((PyObject*)values[0]); __pyx_v_itemsize = __Pyx_PyIndex_AsSsize_t(values[1]); if (unlikely((__pyx_v_itemsize == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 123, __pyx_L3_error) __pyx_v_format = values[2]; __pyx_v_mode = values[3]; if (values[4]) { __pyx_v_allocate_buffer = __Pyx_PyObject_IsTrue(values[4]); if (unlikely((__pyx_v_allocate_buffer == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 124, __pyx_L3_error) } else { /* "View.MemoryView":124 * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, * mode="c", bint allocate_buffer=True): # <<<<<<<<<<<<<< * * cdef int idx */ __pyx_v_allocate_buffer = ((int)1); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 3, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 123, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_shape), (&PyTuple_Type), 1, "shape", 1))) __PYX_ERR(2, 123, __pyx_L1_error) if (unlikely(((PyObject *)__pyx_v_format) == Py_None)) { PyErr_Format(PyExc_TypeError, "Argument '%.200s' must not be None", "format"); __PYX_ERR(2, 123, __pyx_L1_error) } __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(((struct __pyx_array_obj *)__pyx_v_self), __pyx_v_shape, __pyx_v_itemsize, __pyx_v_format, __pyx_v_mode, __pyx_v_allocate_buffer); /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ goto __pyx_L0; __pyx_L1_error:; __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array___cinit__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, PyObject *__pyx_v_format, PyObject *__pyx_v_mode, int __pyx_v_allocate_buffer) { int __pyx_v_idx; Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_dim; PyObject **__pyx_v_p; char __pyx_v_order; int __pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; char *__pyx_t_7; int __pyx_t_8; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; Py_ssize_t __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); __Pyx_INCREF(__pyx_v_format); /* "View.MemoryView":130 * cdef PyObject **p * * self.ndim = <int> len(shape) # <<<<<<<<<<<<<< * self.itemsize = itemsize * */ if (unlikely(__pyx_v_shape == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(2, 130, __pyx_L1_error) } __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_shape); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(2, 130, __pyx_L1_error) __pyx_v_self->ndim = ((int)__pyx_t_1); /* "View.MemoryView":131 * * self.ndim = <int> len(shape) * self.itemsize = itemsize # <<<<<<<<<<<<<< * * if not self.ndim: */ __pyx_v_self->itemsize = __pyx_v_itemsize; /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ __pyx_t_2 = ((!(__pyx_v_self->ndim != 0)) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 134, __pyx_L1_error) /* "View.MemoryView":133 * self.itemsize = itemsize * * if not self.ndim: # <<<<<<<<<<<<<< * raise ValueError("Empty shape tuple for cython.array") * */ } /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ __pyx_t_2 = ((__pyx_v_itemsize <= 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 137, __pyx_L1_error) /* "View.MemoryView":136 * raise ValueError("Empty shape tuple for cython.array") * * if itemsize <= 0: # <<<<<<<<<<<<<< * raise ValueError("itemsize <= 0 for cython.array") * */ } /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ __pyx_t_2 = PyBytes_Check(__pyx_v_format); __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_4) { /* "View.MemoryView":140 * * if not isinstance(format, bytes): * format = format.encode('ASCII') # <<<<<<<<<<<<<< * self._format = format # keep a reference to the byte string * self.format = self._format */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_format, __pyx_n_s_encode); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_3 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_n_s_ASCII) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_n_s_ASCII); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF_SET(__pyx_v_format, __pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":139 * raise ValueError("itemsize <= 0 for cython.array") * * if not isinstance(format, bytes): # <<<<<<<<<<<<<< * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string */ } /* "View.MemoryView":141 * if not isinstance(format, bytes): * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string # <<<<<<<<<<<<<< * self.format = self._format * */ if (!(likely(PyBytes_CheckExact(__pyx_v_format))||((__pyx_v_format) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_v_format)->tp_name), 0))) __PYX_ERR(2, 141, __pyx_L1_error) __pyx_t_3 = __pyx_v_format; __Pyx_INCREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __Pyx_GOTREF(__pyx_v_self->_format); __Pyx_DECREF(__pyx_v_self->_format); __pyx_v_self->_format = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":142 * format = format.encode('ASCII') * self._format = format # keep a reference to the byte string * self.format = self._format # <<<<<<<<<<<<<< * * */ if (unlikely(__pyx_v_self->_format == Py_None)) { PyErr_SetString(PyExc_TypeError, "expected bytes, NoneType found"); __PYX_ERR(2, 142, __pyx_L1_error) } __pyx_t_7 = __Pyx_PyBytes_AsWritableString(__pyx_v_self->_format); if (unlikely((!__pyx_t_7) && PyErr_Occurred())) __PYX_ERR(2, 142, __pyx_L1_error) __pyx_v_self->format = __pyx_t_7; /* "View.MemoryView":145 * * * self._shape = <Py_ssize_t *> PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) # <<<<<<<<<<<<<< * self._strides = self._shape + self.ndim * */ __pyx_v_self->_shape = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * __pyx_v_self->ndim) * 2))); /* "View.MemoryView":146 * * self._shape = <Py_ssize_t *> PyObject_Malloc(sizeof(Py_ssize_t)*self.ndim*2) * self._strides = self._shape + self.ndim # <<<<<<<<<<<<<< * * if not self._shape: */ __pyx_v_self->_strides = (__pyx_v_self->_shape + __pyx_v_self->ndim); /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ __pyx_t_4 = ((!(__pyx_v_self->_shape != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 149, __pyx_L1_error) /* "View.MemoryView":148 * self._strides = self._shape + self.ndim * * if not self._shape: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate shape and strides.") * */ } /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ __pyx_t_8 = 0; __pyx_t_3 = __pyx_v_shape; __Pyx_INCREF(__pyx_t_3); __pyx_t_1 = 0; for (;;) { if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_1); __Pyx_INCREF(__pyx_t_5); __pyx_t_1++; if (unlikely(0 < 0)) __PYX_ERR(2, 152, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_3, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 152, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_5); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 152, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_9; __pyx_v_idx = __pyx_t_8; __pyx_t_8 = (__pyx_t_8 + 1); /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ __pyx_t_4 = ((__pyx_v_dim <= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":154 * for idx, dim in enumerate(shape): * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) # <<<<<<<<<<<<<< * self._shape[idx] = dim * */ __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_idx); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_10 = PyTuple_New(2); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_6); __pyx_t_5 = 0; __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyString_Format(__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_t_10); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_6); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 154, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 154, __pyx_L1_error) /* "View.MemoryView":153 * * for idx, dim in enumerate(shape): * if dim <= 0: # <<<<<<<<<<<<<< * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim */ } /* "View.MemoryView":155 * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) * self._shape[idx] = dim # <<<<<<<<<<<<<< * * cdef char order */ (__pyx_v_self->_shape[__pyx_v_idx]) = __pyx_v_dim; /* "View.MemoryView":152 * * * for idx, dim in enumerate(shape): # <<<<<<<<<<<<<< * if dim <= 0: * raise ValueError("Invalid shape in axis %d: %d." % (idx, dim)) */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_fortran, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 158, __pyx_L1_error) if (__pyx_t_4) { /* "View.MemoryView":159 * cdef char order * if mode == 'fortran': * order = b'F' # <<<<<<<<<<<<<< * self.mode = u'fortran' * elif mode == 'c': */ __pyx_v_order = 'F'; /* "View.MemoryView":160 * if mode == 'fortran': * order = b'F' * self.mode = u'fortran' # <<<<<<<<<<<<<< * elif mode == 'c': * order = b'C' */ __Pyx_INCREF(__pyx_n_u_fortran); __Pyx_GIVEREF(__pyx_n_u_fortran); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_fortran; /* "View.MemoryView":158 * * cdef char order * if mode == 'fortran': # <<<<<<<<<<<<<< * order = b'F' * self.mode = u'fortran' */ goto __pyx_L10; } /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ __pyx_t_4 = (__Pyx_PyString_Equals(__pyx_v_mode, __pyx_n_s_c, Py_EQ)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(2, 161, __pyx_L1_error) if (likely(__pyx_t_4)) { /* "View.MemoryView":162 * self.mode = u'fortran' * elif mode == 'c': * order = b'C' # <<<<<<<<<<<<<< * self.mode = u'c' * else: */ __pyx_v_order = 'C'; /* "View.MemoryView":163 * elif mode == 'c': * order = b'C' * self.mode = u'c' # <<<<<<<<<<<<<< * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) */ __Pyx_INCREF(__pyx_n_u_c); __Pyx_GIVEREF(__pyx_n_u_c); __Pyx_GOTREF(__pyx_v_self->mode); __Pyx_DECREF(__pyx_v_self->mode); __pyx_v_self->mode = __pyx_n_u_c; /* "View.MemoryView":161 * order = b'F' * self.mode = u'fortran' * elif mode == 'c': # <<<<<<<<<<<<<< * order = b'C' * self.mode = u'c' */ goto __pyx_L10; } /* "View.MemoryView":165 * self.mode = u'c' * else: * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) # <<<<<<<<<<<<<< * * self.len = fill_contig_strides_array(self._shape, self._strides, */ /*else*/ { __pyx_t_3 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_v_mode); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 165, __pyx_L1_error) } __pyx_L10:; /* "View.MemoryView":167 * raise ValueError("Invalid mode, expected 'c' or 'fortran', got %s" % mode) * * self.len = fill_contig_strides_array(self._shape, self._strides, # <<<<<<<<<<<<<< * itemsize, self.ndim, order) * */ __pyx_v_self->len = __pyx_fill_contig_strides_array(__pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_itemsize, __pyx_v_self->ndim, __pyx_v_order); /* "View.MemoryView":170 * itemsize, self.ndim, order) * * self.free_data = allocate_buffer # <<<<<<<<<<<<<< * self.dtype_is_object = format == b'O' * if allocate_buffer: */ __pyx_v_self->free_data = __pyx_v_allocate_buffer; /* "View.MemoryView":171 * * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' # <<<<<<<<<<<<<< * if allocate_buffer: * */ __pyx_t_10 = PyObject_RichCompare(__pyx_v_format, __pyx_n_b_O, Py_EQ); __Pyx_XGOTREF(__pyx_t_10); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 171, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 171, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_v_self->dtype_is_object = __pyx_t_4; /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ __pyx_t_4 = (__pyx_v_allocate_buffer != 0); if (__pyx_t_4) { /* "View.MemoryView":175 * * * self.data = <char *>malloc(self.len) # <<<<<<<<<<<<<< * if not self.data: * raise MemoryError("unable to allocate array data.") */ __pyx_v_self->data = ((char *)malloc(__pyx_v_self->len)); /* "View.MemoryView":176 * * self.data = <char *>malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ __pyx_t_4 = ((!(__pyx_v_self->data != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":177 * self.data = <char *>malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_MemoryError, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(2, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(2, 177, __pyx_L1_error) /* "View.MemoryView":176 * * self.data = <char *>malloc(self.len) * if not self.data: # <<<<<<<<<<<<<< * raise MemoryError("unable to allocate array data.") * */ } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = <PyObject **> self.data * for i in range(self.len / itemsize): */ __pyx_t_4 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_4) { /* "View.MemoryView":180 * * if self.dtype_is_object: * p = <PyObject **> self.data # <<<<<<<<<<<<<< * for i in range(self.len / itemsize): * p[i] = Py_None */ __pyx_v_p = ((PyObject **)__pyx_v_self->data); /* "View.MemoryView":181 * if self.dtype_is_object: * p = <PyObject **> self.data * for i in range(self.len / itemsize): # <<<<<<<<<<<<<< * p[i] = Py_None * Py_INCREF(Py_None) */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(2, 181, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_self->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(2, 181, __pyx_L1_error) } __pyx_t_1 = __Pyx_div_Py_ssize_t(__pyx_v_self->len, __pyx_v_itemsize); __pyx_t_9 = __pyx_t_1; for (__pyx_t_11 = 0; __pyx_t_11 < __pyx_t_9; __pyx_t_11+=1) { __pyx_v_i = __pyx_t_11; /* "View.MemoryView":182 * p = <PyObject **> self.data * for i in range(self.len / itemsize): * p[i] = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ (__pyx_v_p[__pyx_v_i]) = Py_None; /* "View.MemoryView":183 * for i in range(self.len / itemsize): * p[i] = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * @cname('getbuffer') */ Py_INCREF(Py_None); } /* "View.MemoryView":179 * raise MemoryError("unable to allocate array data.") * * if self.dtype_is_object: # <<<<<<<<<<<<<< * p = <PyObject **> self.data * for i in range(self.len / itemsize): */ } /* "View.MemoryView":172 * self.free_data = allocate_buffer * self.dtype_is_object = format == b'O' * if allocate_buffer: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":123 * cdef bint dtype_is_object * * def __cinit__(array self, tuple shape, Py_ssize_t itemsize, format not None, # <<<<<<<<<<<<<< * mode="c", bint allocate_buffer=True): * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.array.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_format); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_array_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(((struct __pyx_array_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_2__getbuffer__(struct __pyx_array_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_v_bufmode; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; char *__pyx_t_4; Py_ssize_t __pyx_t_5; int __pyx_t_6; Py_ssize_t *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":187 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 # <<<<<<<<<<<<<< * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = -1; /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_c, Py_EQ)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 188, __pyx_L1_error) __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":189 * cdef int bufmode = -1 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS */ __pyx_v_bufmode = (PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":188 * def __getbuffer__(self, Py_buffer *info, int flags): * cdef int bufmode = -1 * if self.mode == u"c": # <<<<<<<<<<<<<< * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": */ goto __pyx_L3; } /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_self->mode, __pyx_n_u_fortran, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 190, __pyx_L1_error) __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":191 * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS # <<<<<<<<<<<<<< * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") */ __pyx_v_bufmode = (PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS); /* "View.MemoryView":190 * if self.mode == u"c": * bufmode = PyBUF_C_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * elif self.mode == u"fortran": # <<<<<<<<<<<<<< * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): */ } __pyx_L3:; /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ __pyx_t_1 = ((!((__pyx_v_flags & __pyx_v_bufmode) != 0)) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 193, __pyx_L1_error) /* "View.MemoryView":192 * elif self.mode == u"fortran": * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): # <<<<<<<<<<<<<< * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data */ } /* "View.MemoryView":194 * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data # <<<<<<<<<<<<<< * info.len = self.len * info.ndim = self.ndim */ __pyx_t_4 = __pyx_v_self->data; __pyx_v_info->buf = __pyx_t_4; /* "View.MemoryView":195 * raise ValueError("Can only create a buffer that is contiguous in memory.") * info.buf = self.data * info.len = self.len # <<<<<<<<<<<<<< * info.ndim = self.ndim * info.shape = self._shape */ __pyx_t_5 = __pyx_v_self->len; __pyx_v_info->len = __pyx_t_5; /* "View.MemoryView":196 * info.buf = self.data * info.len = self.len * info.ndim = self.ndim # <<<<<<<<<<<<<< * info.shape = self._shape * info.strides = self._strides */ __pyx_t_6 = __pyx_v_self->ndim; __pyx_v_info->ndim = __pyx_t_6; /* "View.MemoryView":197 * info.len = self.len * info.ndim = self.ndim * info.shape = self._shape # <<<<<<<<<<<<<< * info.strides = self._strides * info.suboffsets = NULL */ __pyx_t_7 = __pyx_v_self->_shape; __pyx_v_info->shape = __pyx_t_7; /* "View.MemoryView":198 * info.ndim = self.ndim * info.shape = self._shape * info.strides = self._strides # <<<<<<<<<<<<<< * info.suboffsets = NULL * info.itemsize = self.itemsize */ __pyx_t_7 = __pyx_v_self->_strides; __pyx_v_info->strides = __pyx_t_7; /* "View.MemoryView":199 * info.shape = self._shape * info.strides = self._strides * info.suboffsets = NULL # <<<<<<<<<<<<<< * info.itemsize = self.itemsize * info.readonly = 0 */ __pyx_v_info->suboffsets = NULL; /* "View.MemoryView":200 * info.strides = self._strides * info.suboffsets = NULL * info.itemsize = self.itemsize # <<<<<<<<<<<<<< * info.readonly = 0 * */ __pyx_t_5 = __pyx_v_self->itemsize; __pyx_v_info->itemsize = __pyx_t_5; /* "View.MemoryView":201 * info.suboffsets = NULL * info.itemsize = self.itemsize * info.readonly = 0 # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ __pyx_v_info->readonly = 0; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":204 * * if flags & PyBUF_FORMAT: * info.format = self.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_4 = __pyx_v_self->format; __pyx_v_info->format = __pyx_t_4; /* "View.MemoryView":203 * info.readonly = 0 * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.format * else: */ goto __pyx_L5; } /* "View.MemoryView":206 * info.format = self.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.obj = self */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L5:; /* "View.MemoryView":208 * info.format = NULL * * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":186 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * cdef int bufmode = -1 * if self.mode == u"c": */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":212 * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* Python wrapper */ static void __pyx_array___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_array___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_array___pyx_pf_15View_dot_MemoryView_5array_4__dealloc__(struct __pyx_array_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ __pyx_t_1 = ((__pyx_v_self->callback_free_data != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":214 * def __dealloc__(array self): * if self.callback_free_data != NULL: * self.callback_free_data(self.data) # <<<<<<<<<<<<<< * elif self.free_data: * if self.dtype_is_object: */ __pyx_v_self->callback_free_data(__pyx_v_self->data); /* "View.MemoryView":213 * * def __dealloc__(array self): * if self.callback_free_data != NULL: # <<<<<<<<<<<<<< * self.callback_free_data(self.data) * elif self.free_data: */ goto __pyx_L3; } /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ __pyx_t_1 = (__pyx_v_self->free_data != 0); if (__pyx_t_1) { /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ __pyx_t_1 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":217 * elif self.free_data: * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, # <<<<<<<<<<<<<< * self._strides, self.ndim, False) * free(self.data) */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_self->data, __pyx_v_self->_shape, __pyx_v_self->_strides, __pyx_v_self->ndim, 0); /* "View.MemoryView":216 * self.callback_free_data(self.data) * elif self.free_data: * if self.dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) */ } /* "View.MemoryView":219 * refcount_objects_in_slice(self.data, self._shape, * self._strides, self.ndim, False) * free(self.data) # <<<<<<<<<<<<<< * PyObject_Free(self._shape) * */ free(__pyx_v_self->data); /* "View.MemoryView":215 * if self.callback_free_data != NULL: * self.callback_free_data(self.data) * elif self.free_data: # <<<<<<<<<<<<<< * if self.dtype_is_object: * refcount_objects_in_slice(self.data, self._shape, */ } __pyx_L3:; /* "View.MemoryView":220 * self._strides, self.ndim, False) * free(self.data) * PyObject_Free(self._shape) # <<<<<<<<<<<<<< * * @property */ PyObject_Free(__pyx_v_self->_shape); /* "View.MemoryView":212 * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") * * def __dealloc__(array self): # <<<<<<<<<<<<<< * if self.callback_free_data != NULL: * self.callback_free_data(self.data) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_5array_7memview___get__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_5array_7memview___get__(struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":224 * @property * def memview(self): * return self.get_memview() # <<<<<<<<<<<<<< * * @cname('get_memview') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = ((struct __pyx_vtabstruct_array *)__pyx_v_self->__pyx_vtab)->get_memview(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":223 * * @property * def memview(self): # <<<<<<<<<<<<<< * return self.get_memview() * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.memview.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ static PyObject *__pyx_array_get_memview(struct __pyx_array_obj *__pyx_v_self) { int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_memview", 0); /* "View.MemoryView":228 * @cname('get_memview') * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE # <<<<<<<<<<<<<< * return memoryview(self, flags, self.dtype_is_object) * */ __pyx_v_flags = ((PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT) | PyBUF_WRITABLE); /* "View.MemoryView":229 * cdef get_memview(self): * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 229, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":227 * * @cname('get_memview') * cdef get_memview(self): # <<<<<<<<<<<<<< * flags = PyBUF_ANY_CONTIGUOUS|PyBUF_FORMAT|PyBUF_WRITABLE * return memoryview(self, flags, self.dtype_is_object) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.array.get_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* Python wrapper */ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_array___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_array___pyx_pf_15View_dot_MemoryView_5array_6__len__(struct __pyx_array_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":232 * * def __len__(self): * return self._shape[0] # <<<<<<<<<<<<<< * * def __getattr__(self, attr): */ __pyx_r = (__pyx_v_self->_shape[0]); goto __pyx_L0; /* "View.MemoryView":231 * return memoryview(self, flags, self.dtype_is_object) * * def __len__(self): # <<<<<<<<<<<<<< * return self._shape[0] * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* Python wrapper */ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr); /*proto*/ static PyObject *__pyx_array___getattr__(PyObject *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getattr__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_attr)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_8__getattr__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_attr) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getattr__", 0); /* "View.MemoryView":235 * * def __getattr__(self, attr): * return getattr(self.memview, attr) # <<<<<<<<<<<<<< * * def __getitem__(self, item): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetAttr(__pyx_t_1, __pyx_v_attr); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 235, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":234 * return self._shape[0] * * def __getattr__(self, attr): # <<<<<<<<<<<<<< * return getattr(self.memview, attr) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getattr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* Python wrapper */ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item); /*proto*/ static PyObject *__pyx_array___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_array___pyx_pf_15View_dot_MemoryView_5array_10__getitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":238 * * def __getitem__(self, item): * return self.memview[item] # <<<<<<<<<<<<<< * * def __setitem__(self, item, value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_v_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":237 * return getattr(self.memview, attr) * * def __getitem__(self, item): # <<<<<<<<<<<<<< * return self.memview[item] * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.array.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* Python wrapper */ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value); /*proto*/ static int __pyx_array___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v_item), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_array___pyx_pf_15View_dot_MemoryView_5array_12__setitem__(struct __pyx_array_obj *__pyx_v_self, PyObject *__pyx_v_item, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); /* "View.MemoryView":241 * * def __setitem__(self, item, value): * self.memview[item] = value # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_memview); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 241, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_t_1, __pyx_v_item, __pyx_v_value) < 0)) __PYX_ERR(2, 241, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":240 * return self.memview[item] * * def __setitem__(self, item, value): # <<<<<<<<<<<<<< * self.memview[item] = value * */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_array_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array___reduce_cython__(((struct __pyx_array_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array___reduce_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__12, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_array_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_array_2__setstate_cython__(((struct __pyx_array_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_array_2__setstate_cython__(CYTHON_UNUSED struct __pyx_array_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__13, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.array.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ static struct __pyx_array_obj *__pyx_array_new(PyObject *__pyx_v_shape, Py_ssize_t __pyx_v_itemsize, char *__pyx_v_format, char *__pyx_v_mode, char *__pyx_v_buf) { struct __pyx_array_obj *__pyx_v_result = 0; struct __pyx_array_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("array_cwrapper", 0); /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ __pyx_t_1 = ((__pyx_v_buf == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":250 * * if buf == NULL: * result = array(shape, itemsize, format, mode.decode('ASCII')) # <<<<<<<<<<<<<< * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(4); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 3, __pyx_t_4); __pyx_t_2 = 0; __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 250, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":249 * cdef array result * * if buf == NULL: # <<<<<<<<<<<<<< * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: */ goto __pyx_L3; } /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ /*else*/ { __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyBytes_FromString(__pyx_v_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_mode, 0, strlen(__pyx_v_mode), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyTuple_New(4); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 3, __pyx_t_3); __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_3 = 0; /* "View.MemoryView":253 * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) # <<<<<<<<<<<<<< * result.data = buf * */ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 253, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_allocate_buffer, Py_False) < 0) __PYX_ERR(2, 253, __pyx_L1_error) /* "View.MemoryView":252 * result = array(shape, itemsize, format, mode.decode('ASCII')) * else: * result = array(shape, itemsize, format, mode.decode('ASCII'), # <<<<<<<<<<<<<< * allocate_buffer=False) * result.data = buf */ __pyx_t_5 = __Pyx_PyObject_Call(((PyObject *)__pyx_array_type), __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 252, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_array_obj *)__pyx_t_5); __pyx_t_5 = 0; /* "View.MemoryView":254 * result = array(shape, itemsize, format, mode.decode('ASCII'), * allocate_buffer=False) * result.data = buf # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->data = __pyx_v_buf; } __pyx_L3:; /* "View.MemoryView":256 * result.data = buf * * return result # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(((PyObject *)__pyx_r)); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":245 * * @cname("__pyx_array_new") * cdef array array_cwrapper(tuple shape, Py_ssize_t itemsize, char *format, # <<<<<<<<<<<<<< * char *mode, char *buf): * cdef array result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.array_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* Python wrapper */ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_MemviewEnum___init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_name = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_name,0}; PyObject* values[1] = {0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_name)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(2, 282, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 1) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); } __pyx_v_name = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 282, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.Enum.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), __pyx_v_name); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum___init__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v_name) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__", 0); /* "View.MemoryView":283 * cdef object name * def __init__(self, name): * self.name = name # <<<<<<<<<<<<<< * def __repr__(self): * return self.name */ __Pyx_INCREF(__pyx_v_name); __Pyx_GIVEREF(__pyx_v_name); __Pyx_GOTREF(__pyx_v_self->name); __Pyx_DECREF(__pyx_v_self->name); __pyx_v_self->name = __pyx_v_name; /* "View.MemoryView":282 * cdef class Enum(object): * cdef object name * def __init__(self, name): # <<<<<<<<<<<<<< * self.name = name * def __repr__(self): */ /* function exit code */ __pyx_r = 0; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* Python wrapper */ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_MemviewEnum___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_MemviewEnum___pyx_pf_15View_dot_MemoryView_4Enum_2__repr__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":285 * self.name = name * def __repr__(self): * return self.name # <<<<<<<<<<<<<< * * cdef generic = Enum("<strided and direct or indirect>") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->name); __pyx_r = __pyx_v_self->name; goto __pyx_L0; /* "View.MemoryView":284 * def __init__(self, name): * self.name = name * def __repr__(self): # <<<<<<<<<<<<<< * return self.name * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum___reduce_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum___reduce_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self) { PyObject *__pyx_v_state = 0; PyObject *__pyx_v__dict = 0; int __pyx_v_use_setstate; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":5 * cdef object _dict * cdef bint use_setstate * state = (self.name,) # <<<<<<<<<<<<<< * _dict = getattr(self, '__dict__', None) * if _dict is not None: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_self->name); __Pyx_GIVEREF(__pyx_v_self->name); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_self->name); __pyx_v_state = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":6 * cdef bint use_setstate * state = (self.name,) * _dict = getattr(self, '__dict__', None) # <<<<<<<<<<<<<< * if _dict is not None: * state += (_dict,) */ __pyx_t_1 = __Pyx_GetAttr3(((PyObject *)__pyx_v_self), __pyx_n_s_dict, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v__dict = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ __pyx_t_2 = (__pyx_v__dict != Py_None); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":8 * _dict = getattr(self, '__dict__', None) * if _dict is not None: * state += (_dict,) # <<<<<<<<<<<<<< * use_setstate = True * else: */ __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v__dict); __Pyx_GIVEREF(__pyx_v__dict); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v__dict); __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_state, __pyx_t_1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_state, ((PyObject*)__pyx_t_4)); __pyx_t_4 = 0; /* "(tree fragment)":9 * if _dict is not None: * state += (_dict,) * use_setstate = True # <<<<<<<<<<<<<< * else: * use_setstate = self.name is not None */ __pyx_v_use_setstate = 1; /* "(tree fragment)":7 * state = (self.name,) * _dict = getattr(self, '__dict__', None) * if _dict is not None: # <<<<<<<<<<<<<< * state += (_dict,) * use_setstate = True */ goto __pyx_L3; } /* "(tree fragment)":11 * use_setstate = True * else: * use_setstate = self.name is not None # <<<<<<<<<<<<<< * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state */ /*else*/ { __pyx_t_3 = (__pyx_v_self->name != Py_None); __pyx_v_use_setstate = __pyx_t_3; } __pyx_L3:; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ __pyx_t_3 = (__pyx_v_use_setstate != 0); if (__pyx_t_3) { /* "(tree fragment)":13 * use_setstate = self.name is not None * if use_setstate: * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state # <<<<<<<<<<<<<< * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_1, 2, Py_None); __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 13, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_1); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_v_state); __pyx_t_4 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "(tree fragment)":12 * else: * use_setstate = self.name is not None * if use_setstate: # <<<<<<<<<<<<<< * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: */ } /* "(tree fragment)":15 * return __pyx_unpickle_Enum, (type(self), 0xb068931, None), state * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_pyx_unpickle_Enum); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_GIVEREF(((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self)))); __Pyx_INCREF(__pyx_int_184977713); __Pyx_GIVEREF(__pyx_int_184977713); PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_184977713); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_state); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1); __pyx_t_5 = 0; __pyx_t_1 = 0; __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L0; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * cdef tuple state * cdef object _dict */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.Enum.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_state); __Pyx_XDECREF(__pyx_v__dict); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_MemviewEnum_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_MemviewEnum_2__setstate_cython__(((struct __pyx_MemviewEnum_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_MemviewEnum_2__setstate_cython__(struct __pyx_MemviewEnum_obj *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":17 * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): * __pyx_unpickle_Enum__set_state(self, __pyx_state) # <<<<<<<<<<<<<< */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 17, __pyx_L1_error) __pyx_t_1 = __pyx_unpickle_Enum__set_state(__pyx_v_self, ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 17, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":16 * else: * return __pyx_unpickle_Enum, (type(self), 0xb068931, state) * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(self, __pyx_state) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.Enum.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory */ static void *__pyx_align_pointer(void *__pyx_v_memory, size_t __pyx_v_alignment) { Py_intptr_t __pyx_v_aligned_p; size_t __pyx_v_offset; void *__pyx_r; int __pyx_t_1; /* "View.MemoryView":301 * cdef void *align_pointer(void *memory, size_t alignment) nogil: * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory # <<<<<<<<<<<<<< * cdef size_t offset * */ __pyx_v_aligned_p = ((Py_intptr_t)__pyx_v_memory); /* "View.MemoryView":305 * * with cython.cdivision(True): * offset = aligned_p % alignment # <<<<<<<<<<<<<< * * if offset > 0: */ __pyx_v_offset = (__pyx_v_aligned_p % __pyx_v_alignment); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ __pyx_t_1 = ((__pyx_v_offset > 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":308 * * if offset > 0: * aligned_p += alignment - offset # <<<<<<<<<<<<<< * * return <void *> aligned_p */ __pyx_v_aligned_p = (__pyx_v_aligned_p + (__pyx_v_alignment - __pyx_v_offset)); /* "View.MemoryView":307 * offset = aligned_p % alignment * * if offset > 0: # <<<<<<<<<<<<<< * aligned_p += alignment - offset * */ } /* "View.MemoryView":310 * aligned_p += alignment - offset * * return <void *> aligned_p # <<<<<<<<<<<<<< * * */ __pyx_r = ((void *)__pyx_v_aligned_p); goto __pyx_L0; /* "View.MemoryView":299 * * @cname('__pyx_align_pointer') * cdef void *align_pointer(void *memory, size_t alignment) nogil: # <<<<<<<<<<<<<< * "Align pointer memory on a given boundary" * cdef Py_intptr_t aligned_p = <Py_intptr_t> memory */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* Python wrapper */ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_memoryview___cinit__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_obj = 0; int __pyx_v_flags; int __pyx_v_dtype_is_object; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__cinit__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_obj,&__pyx_n_s_flags,&__pyx_n_s_dtype_is_object,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_obj)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_flags)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, 1); __PYX_ERR(2, 346, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype_is_object); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(2, 346, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_obj = values[0]; __pyx_v_flags = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_flags == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 346, __pyx_L3_error) if (values[2]) { __pyx_v_dtype_is_object = __Pyx_PyObject_IsTrue(values[2]); if (unlikely((__pyx_v_dtype_is_object == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 346, __pyx_L3_error) } else { __pyx_v_dtype_is_object = ((int)0); } } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__cinit__", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 346, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_obj, __pyx_v_flags, __pyx_v_dtype_is_object); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview___cinit__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj, int __pyx_v_flags, int __pyx_v_dtype_is_object) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__cinit__", 0); /* "View.MemoryView":347 * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj # <<<<<<<<<<<<<< * self.flags = flags * if type(self) is memoryview or obj is not None: */ __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); __Pyx_GOTREF(__pyx_v_self->obj); __Pyx_DECREF(__pyx_v_self->obj); __pyx_v_self->obj = __pyx_v_obj; /* "View.MemoryView":348 * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): * self.obj = obj * self.flags = flags # <<<<<<<<<<<<<< * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) */ __pyx_v_self->flags = __pyx_v_flags; /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: */ __pyx_t_2 = (((PyObject *)Py_TYPE(((PyObject *)__pyx_v_self))) == ((PyObject *)__pyx_memoryview_type)); __pyx_t_3 = (__pyx_t_2 != 0); if (!__pyx_t_3) { } else { __pyx_t_1 = __pyx_t_3; goto __pyx_L4_bool_binop_done; } __pyx_t_3 = (__pyx_v_obj != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (__pyx_t_1) { /* "View.MemoryView":350 * self.flags = flags * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) # <<<<<<<<<<<<<< * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None */ __pyx_t_4 = __Pyx_GetBuffer(__pyx_v_obj, (&__pyx_v_self->view), __pyx_v_flags); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 350, __pyx_L1_error) /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_t_1 = ((((PyObject *)__pyx_v_self->view.obj) == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":352 * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = Py_None; /* "View.MemoryView":353 * if <PyObject *> self.view.obj == NULL: * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if not __PYX_CYTHON_ATOMICS_ENABLED(): */ Py_INCREF(Py_None); /* "View.MemoryView":351 * if type(self) is memoryview or obj is not None: * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: # <<<<<<<<<<<<<< * (<__pyx_buffer *> &self.view).obj = Py_None * Py_INCREF(Py_None) */ } /* "View.MemoryView":349 * self.obj = obj * self.flags = flags * if type(self) is memoryview or obj is not None: # <<<<<<<<<<<<<< * __Pyx_GetBuffer(obj, &self.view, flags) * if <PyObject *> self.view.obj == NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ __pyx_t_1 = ((!(__PYX_CYTHON_ATOMICS_ENABLED() != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ __pyx_t_1 = ((__pyx_memoryview_thread_locks_used < 8) != 0); if (__pyx_t_1) { /* "View.MemoryView":358 * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: */ __pyx_v_self->lock = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); /* "View.MemoryView":359 * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 # <<<<<<<<<<<<<< * if self.lock is NULL: * self.lock = PyThread_allocate_lock() */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used + 1); /* "View.MemoryView":357 * if not __PYX_CYTHON_ATOMICS_ENABLED(): * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: # <<<<<<<<<<<<<< * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":361 * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() # <<<<<<<<<<<<<< * if self.lock is NULL: * raise MemoryError */ __pyx_v_self->lock = PyThread_allocate_lock(); /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ __pyx_t_1 = ((__pyx_v_self->lock == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":363 * self.lock = PyThread_allocate_lock() * if self.lock is NULL: * raise MemoryError # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ PyErr_NoMemory(); __PYX_ERR(2, 363, __pyx_L1_error) /* "View.MemoryView":362 * if self.lock is NULL: * self.lock = PyThread_allocate_lock() * if self.lock is NULL: # <<<<<<<<<<<<<< * raise MemoryError * */ } /* "View.MemoryView":360 * self.lock = __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] * __pyx_memoryview_thread_locks_used += 1 * if self.lock is NULL: # <<<<<<<<<<<<<< * self.lock = PyThread_allocate_lock() * if self.lock is NULL: */ } /* "View.MemoryView":355 * Py_INCREF(Py_None) * * if not __PYX_CYTHON_ATOMICS_ENABLED(): # <<<<<<<<<<<<<< * global __pyx_memoryview_thread_locks_used * if __pyx_memoryview_thread_locks_used < THREAD_LOCKS_PREALLOCATED: */ } /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":366 * * if flags & PyBUF_FORMAT: * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') # <<<<<<<<<<<<<< * else: * self.dtype_is_object = dtype_is_object */ __pyx_t_2 = (((__pyx_v_self->view.format[0]) == 'O') != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L12_bool_binop_done; } __pyx_t_2 = (((__pyx_v_self->view.format[1]) == '\x00') != 0); __pyx_t_1 = __pyx_t_2; __pyx_L12_bool_binop_done:; __pyx_v_self->dtype_is_object = __pyx_t_1; /* "View.MemoryView":365 * raise MemoryError * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: */ goto __pyx_L11; } /* "View.MemoryView":368 * self.dtype_is_object = (self.view.format[0] == b'O' and self.view.format[1] == b'\0') * else: * self.dtype_is_object = dtype_is_object # <<<<<<<<<<<<<< * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( */ /*else*/ { __pyx_v_self->dtype_is_object = __pyx_v_dtype_is_object; } __pyx_L11:; /* "View.MemoryView":370 * self.dtype_is_object = dtype_is_object * * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( # <<<<<<<<<<<<<< * <void *> &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL */ __pyx_v_self->acquisition_count_aligned_p = ((__pyx_atomic_int *)__pyx_align_pointer(((void *)(&(__pyx_v_self->acquisition_count[0]))), (sizeof(__pyx_atomic_int)))); /* "View.MemoryView":372 * self.acquisition_count_aligned_p = <__pyx_atomic_int *> align_pointer( * <void *> &self.acquisition_count[0], sizeof(__pyx_atomic_int)) * self.typeinfo = NULL # <<<<<<<<<<<<<< * * def __dealloc__(memoryview self): */ __pyx_v_self->typeinfo = NULL; /* "View.MemoryView":346 * cdef __Pyx_TypeInfo *typeinfo * * def __cinit__(memoryview self, object obj, int flags, bint dtype_is_object=False): # <<<<<<<<<<<<<< * self.obj = obj * self.flags = flags */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_AddTraceback("View.MemoryView.memoryview.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* Python wrapper */ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryview___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_2__dealloc__(struct __pyx_memoryview_obj *__pyx_v_self) { int __pyx_v_i; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyThread_type_lock __pyx_t_6; PyThread_type_lock __pyx_t_7; __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ __pyx_t_1 = (__pyx_v_self->obj != Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":376 * def __dealloc__(memoryview self): * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) # <<<<<<<<<<<<<< * elif (<__pyx_buffer *> &self.view).obj == Py_None: * */ __Pyx_ReleaseBuffer((&__pyx_v_self->view)); /* "View.MemoryView":375 * * def __dealloc__(memoryview self): * if self.obj is not None: # <<<<<<<<<<<<<< * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: */ goto __pyx_L3; } /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ __pyx_t_2 = ((((Py_buffer *)(&__pyx_v_self->view))->obj == Py_None) != 0); if (__pyx_t_2) { /* "View.MemoryView":379 * elif (<__pyx_buffer *> &self.view).obj == Py_None: * * (<__pyx_buffer *> &self.view).obj = NULL # <<<<<<<<<<<<<< * Py_DECREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_self->view))->obj = NULL; /* "View.MemoryView":380 * * (<__pyx_buffer *> &self.view).obj = NULL * Py_DECREF(Py_None) # <<<<<<<<<<<<<< * * cdef int i */ Py_DECREF(Py_None); /* "View.MemoryView":377 * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) * elif (<__pyx_buffer *> &self.view).obj == Py_None: # <<<<<<<<<<<<<< * * (<__pyx_buffer *> &self.view).obj = NULL */ } __pyx_L3:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ __pyx_t_2 = ((__pyx_v_self->lock != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":385 * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): # <<<<<<<<<<<<<< * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 */ __pyx_t_3 = __pyx_memoryview_thread_locks_used; __pyx_t_4 = __pyx_t_3; for (__pyx_t_5 = 0; __pyx_t_5 < __pyx_t_4; __pyx_t_5+=1) { __pyx_v_i = __pyx_t_5; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ __pyx_t_2 = (((__pyx_memoryview_thread_locks[__pyx_v_i]) == __pyx_v_self->lock) != 0); if (__pyx_t_2) { /* "View.MemoryView":387 * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 # <<<<<<<<<<<<<< * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( */ __pyx_memoryview_thread_locks_used = (__pyx_memoryview_thread_locks_used - 1); /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ __pyx_t_2 = ((__pyx_v_i != __pyx_memoryview_thread_locks_used) != 0); if (__pyx_t_2) { /* "View.MemoryView":390 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) # <<<<<<<<<<<<<< * break * else: */ __pyx_t_6 = (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]); __pyx_t_7 = (__pyx_memoryview_thread_locks[__pyx_v_i]); /* "View.MemoryView":389 * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break */ (__pyx_memoryview_thread_locks[__pyx_v_i]) = __pyx_t_6; (__pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used]) = __pyx_t_7; /* "View.MemoryView":388 * if __pyx_memoryview_thread_locks[i] is self.lock: * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) */ } /* "View.MemoryView":391 * __pyx_memoryview_thread_locks[i], __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used] = ( * __pyx_memoryview_thread_locks[__pyx_memoryview_thread_locks_used], __pyx_memoryview_thread_locks[i]) * break # <<<<<<<<<<<<<< * else: * PyThread_free_lock(self.lock) */ goto __pyx_L6_break; /* "View.MemoryView":386 * if self.lock != NULL: * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: # <<<<<<<<<<<<<< * __pyx_memoryview_thread_locks_used -= 1 * if i != __pyx_memoryview_thread_locks_used: */ } } /*else*/ { /* "View.MemoryView":393 * break * else: * PyThread_free_lock(self.lock) # <<<<<<<<<<<<<< * * cdef char *get_item_pointer(memoryview self, object index) except NULL: */ PyThread_free_lock(__pyx_v_self->lock); } __pyx_L6_break:; /* "View.MemoryView":384 * cdef int i * global __pyx_memoryview_thread_locks_used * if self.lock != NULL: # <<<<<<<<<<<<<< * for i in range(__pyx_memoryview_thread_locks_used): * if __pyx_memoryview_thread_locks[i] is self.lock: */ } /* "View.MemoryView":374 * self.typeinfo = NULL * * def __dealloc__(memoryview self): # <<<<<<<<<<<<<< * if self.obj is not None: * __Pyx_ReleaseBuffer(&self.view) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf */ static char *__pyx_memoryview_get_item_pointer(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { Py_ssize_t __pyx_v_dim; char *__pyx_v_itemp; PyObject *__pyx_v_idx = NULL; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t __pyx_t_3; PyObject *(*__pyx_t_4)(PyObject *); PyObject *__pyx_t_5 = NULL; Py_ssize_t __pyx_t_6; char *__pyx_t_7; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_item_pointer", 0); /* "View.MemoryView":397 * cdef char *get_item_pointer(memoryview self, object index) except NULL: * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf # <<<<<<<<<<<<<< * * for dim, idx in enumerate(index): */ __pyx_v_itemp = ((char *)__pyx_v_self->view.buf); /* "View.MemoryView":399 * cdef char *itemp = <char *> self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ __pyx_t_1 = 0; if (likely(PyList_CheckExact(__pyx_v_index)) || PyTuple_CheckExact(__pyx_v_index)) { __pyx_t_2 = __pyx_v_index; __Pyx_INCREF(__pyx_t_2); __pyx_t_3 = 0; __pyx_t_4 = NULL; } else { __pyx_t_3 = -1; __pyx_t_2 = PyObject_GetIter(__pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = Py_TYPE(__pyx_t_2)->tp_iternext; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 399, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_4)) { if (likely(PyList_CheckExact(__pyx_t_2))) { if (__pyx_t_3 >= PyList_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyList_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } else { if (__pyx_t_3 >= PyTuple_GET_SIZE(__pyx_t_2)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_2, __pyx_t_3); __Pyx_INCREF(__pyx_t_5); __pyx_t_3++; if (unlikely(0 < 0)) __PYX_ERR(2, 399, __pyx_L1_error) #else __pyx_t_5 = PySequence_ITEM(__pyx_t_2, __pyx_t_3); __pyx_t_3++; if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 399, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif } } else { __pyx_t_5 = __pyx_t_4(__pyx_t_2); if (unlikely(!__pyx_t_5)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 399, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_5); } __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_5); __pyx_t_5 = 0; __pyx_v_dim = __pyx_t_1; __pyx_t_1 = (__pyx_t_1 + 1); /* "View.MemoryView":400 * * for dim, idx in enumerate(index): * itemp = pybuffer_index(&self.view, itemp, idx, dim) # <<<<<<<<<<<<<< * * return itemp */ __pyx_t_6 = __Pyx_PyIndex_AsSsize_t(__pyx_v_idx); if (unlikely((__pyx_t_6 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 400, __pyx_L1_error) __pyx_t_7 = __pyx_pybuffer_index((&__pyx_v_self->view), __pyx_v_itemp, __pyx_t_6, __pyx_v_dim); if (unlikely(__pyx_t_7 == ((char *)NULL))) __PYX_ERR(2, 400, __pyx_L1_error) __pyx_v_itemp = __pyx_t_7; /* "View.MemoryView":399 * cdef char *itemp = <char *> self.view.buf * * for dim, idx in enumerate(index): # <<<<<<<<<<<<<< * itemp = pybuffer_index(&self.view, itemp, idx, dim) * */ } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":402 * itemp = pybuffer_index(&self.view, itemp, idx, dim) * * return itemp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_itemp; goto __pyx_L0; /* "View.MemoryView":395 * PyThread_free_lock(self.lock) * * cdef char *get_item_pointer(memoryview self, object index) except NULL: # <<<<<<<<<<<<<< * cdef Py_ssize_t dim * cdef char *itemp = <char *> self.view.buf */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.get_item_pointer", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_idx); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* Python wrapper */ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index); /*proto*/ static PyObject *__pyx_memoryview___getitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_4__getitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_indices = NULL; char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; char *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__getitem__", 0); /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ __pyx_t_1 = (__pyx_v_index == __pyx_builtin_Ellipsis); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":407 * def __getitem__(memoryview self, object index): * if index is Ellipsis: * return self # <<<<<<<<<<<<<< * * have_slices, indices = _unellipsify(index, self.view.ndim) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_self)); __pyx_r = ((PyObject *)__pyx_v_self); goto __pyx_L0; /* "View.MemoryView":406 * * def __getitem__(memoryview self, object index): * if index is Ellipsis: # <<<<<<<<<<<<<< * return self * */ } /* "View.MemoryView":409 * return self * * have_slices, indices = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * cdef char *itemp */ __pyx_t_3 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (likely(__pyx_t_3 != Py_None)) { PyObject* sequence = __pyx_t_3; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(2, 409, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_4 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_5 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); #else __pyx_t_4 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 409, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); #endif __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 409, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_4; __pyx_t_4 = 0; __pyx_v_indices = __pyx_t_5; __pyx_t_5 = 0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 412, __pyx_L1_error) if (__pyx_t_2) { /* "View.MemoryView":413 * cdef char *itemp * if have_slices: * return memview_slice(self, indices) # <<<<<<<<<<<<<< * else: * itemp = self.get_item_pointer(indices) */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((PyObject *)__pyx_memview_slice(__pyx_v_self, __pyx_v_indices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 413, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":412 * * cdef char *itemp * if have_slices: # <<<<<<<<<<<<<< * return memview_slice(self, indices) * else: */ } /* "View.MemoryView":415 * return memview_slice(self, indices) * else: * itemp = self.get_item_pointer(indices) # <<<<<<<<<<<<<< * return self.convert_item_to_object(itemp) * */ /*else*/ { __pyx_t_6 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_indices); if (unlikely(__pyx_t_6 == ((char *)NULL))) __PYX_ERR(2, 415, __pyx_L1_error) __pyx_v_itemp = __pyx_t_6; /* "View.MemoryView":416 * else: * itemp = self.get_item_pointer(indices) * return self.convert_item_to_object(itemp) # <<<<<<<<<<<<<< * * def __setitem__(memoryview self, object index, object value): */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->convert_item_to_object(__pyx_v_self, __pyx_v_itemp); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 416, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":405 * * * def __getitem__(memoryview self, object index): # <<<<<<<<<<<<<< * if index is Ellipsis: * return self */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.__getitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_indices); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* Python wrapper */ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value); /*proto*/ static int __pyx_memoryview___setitem__(PyObject *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setitem__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v_index), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_6__setitem__(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { PyObject *__pyx_v_have_slices = NULL; PyObject *__pyx_v_obj = NULL; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setitem__", 0); __Pyx_INCREF(__pyx_v_index); /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ __pyx_t_1 = (__pyx_v_self->view.readonly != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__14, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 420, __pyx_L1_error) /* "View.MemoryView":419 * * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: # <<<<<<<<<<<<<< * raise TypeError("Cannot assign to read-only memoryview") * */ } /* "View.MemoryView":422 * raise TypeError("Cannot assign to read-only memoryview") * * have_slices, index = _unellipsify(index, self.view.ndim) # <<<<<<<<<<<<<< * * if have_slices: */ __pyx_t_2 = _unellipsify(__pyx_v_index, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (likely(__pyx_t_2 != Py_None)) { PyObject* sequence = __pyx_t_2; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(2, 422, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 422, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(2, 422, __pyx_L1_error) } __pyx_v_have_slices = __pyx_t_3; __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_index, __pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_have_slices); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 424, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":425 * * if have_slices: * obj = self.is_slice(value) # <<<<<<<<<<<<<< * if obj: * self.setitem_slice_assignment(self[index], obj) */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->is_slice(__pyx_v_self, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 425, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_obj = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_v_obj); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 426, __pyx_L1_error) if (__pyx_t_1) { /* "View.MemoryView":427 * obj = self.is_slice(value) * if obj: * self.setitem_slice_assignment(self[index], obj) # <<<<<<<<<<<<<< * else: * self.setitem_slice_assign_scalar(self[index], value) */ __pyx_t_2 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assignment(__pyx_v_self, __pyx_t_2, __pyx_v_obj); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 427, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":426 * if have_slices: * obj = self.is_slice(value) * if obj: # <<<<<<<<<<<<<< * self.setitem_slice_assignment(self[index], obj) * else: */ goto __pyx_L5; } /* "View.MemoryView":429 * self.setitem_slice_assignment(self[index], obj) * else: * self.setitem_slice_assign_scalar(self[index], value) # <<<<<<<<<<<<<< * else: * self.setitem_indexed(index, value) */ /*else*/ { __pyx_t_4 = __Pyx_PyObject_GetItem(((PyObject *)__pyx_v_self), __pyx_v_index); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (!(likely(((__pyx_t_4) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_4, __pyx_memoryview_type))))) __PYX_ERR(2, 429, __pyx_L1_error) __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_slice_assign_scalar(__pyx_v_self, ((struct __pyx_memoryview_obj *)__pyx_t_4), __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 429, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L5:; /* "View.MemoryView":424 * have_slices, index = _unellipsify(index, self.view.ndim) * * if have_slices: # <<<<<<<<<<<<<< * obj = self.is_slice(value) * if obj: */ goto __pyx_L4; } /* "View.MemoryView":431 * self.setitem_slice_assign_scalar(self[index], value) * else: * self.setitem_indexed(index, value) # <<<<<<<<<<<<<< * * cdef is_slice(self, obj): */ /*else*/ { __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->setitem_indexed(__pyx_v_self, __pyx_v_index, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 431, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_L4:; /* "View.MemoryView":418 * return self.convert_item_to_object(itemp) * * def __setitem__(memoryview self, object index, object value): # <<<<<<<<<<<<<< * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.memoryview.__setitem__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_have_slices); __Pyx_XDECREF(__pyx_v_obj); __Pyx_XDECREF(__pyx_v_index); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ static PyObject *__pyx_memoryview_is_slice(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_obj) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_slice", 0); __Pyx_INCREF(__pyx_v_obj); /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_obj, __pyx_memoryview_type); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_3, &__pyx_t_4, &__pyx_t_5); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); __Pyx_XGOTREF(__pyx_t_5); /*try:*/ { /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_6 = __Pyx_PyInt_From_int(((__pyx_v_self->flags & (~PyBUF_WRITABLE)) | PyBUF_ANY_CONTIGUOUS)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":437 * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) # <<<<<<<<<<<<<< * except TypeError: * return None */ __pyx_t_7 = __Pyx_PyBool_FromLong(__pyx_v_self->dtype_is_object); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 437, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); /* "View.MemoryView":436 * if not isinstance(obj, memoryview): * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, # <<<<<<<<<<<<<< * self.dtype_is_object) * except TypeError: */ __pyx_t_8 = PyTuple_New(3); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_INCREF(__pyx_v_obj); __Pyx_GIVEREF(__pyx_v_obj); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_v_obj); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_7); __pyx_t_6 = 0; __pyx_t_7 = 0; __pyx_t_7 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_8, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 436, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_obj, __pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ } __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; goto __pyx_L9_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; /* "View.MemoryView":438 * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) * except TypeError: # <<<<<<<<<<<<<< * return None * */ __pyx_t_9 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_9) { __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_6) < 0) __PYX_ERR(2, 438, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GOTREF(__pyx_t_8); __Pyx_GOTREF(__pyx_t_6); /* "View.MemoryView":439 * self.dtype_is_object) * except TypeError: * return None # <<<<<<<<<<<<<< * * return obj */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L7_except_return; } goto __pyx_L6_except_error; __pyx_L6_except_error:; /* "View.MemoryView":435 * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): * try: # <<<<<<<<<<<<<< * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, * self.dtype_is_object) */ __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L1_error; __pyx_L7_except_return:; __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_XGIVEREF(__pyx_t_5); __Pyx_ExceptionReset(__pyx_t_3, __pyx_t_4, __pyx_t_5); goto __pyx_L0; __pyx_L9_try_end:; } /* "View.MemoryView":434 * * cdef is_slice(self, obj): * if not isinstance(obj, memoryview): # <<<<<<<<<<<<<< * try: * obj = memoryview(obj, self.flags & ~PyBUF_WRITABLE | PyBUF_ANY_CONTIGUOUS, */ } /* "View.MemoryView":441 * return None * * return obj # <<<<<<<<<<<<<< * * cdef setitem_slice_assignment(self, dst, src): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_obj); __pyx_r = __pyx_v_obj; goto __pyx_L0; /* "View.MemoryView":433 * self.setitem_indexed(index, value) * * cdef is_slice(self, obj): # <<<<<<<<<<<<<< * if not isinstance(obj, memoryview): * try: */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.memoryview.is_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_obj); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ static PyObject *__pyx_memoryview_setitem_slice_assignment(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_dst, PyObject *__pyx_v_src) { __Pyx_memviewslice __pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_src_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; __Pyx_memviewslice *__pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assignment", 0); /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ if (!(likely(((__pyx_v_src) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_src, __pyx_memoryview_type))))) __PYX_ERR(2, 447, __pyx_L1_error) __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_src), (&__pyx_v_src_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 447, __pyx_L1_error) /* "View.MemoryView":448 * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], # <<<<<<<<<<<<<< * src.ndim, dst.ndim, self.dtype_is_object) * */ if (!(likely(((__pyx_v_dst) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_dst, __pyx_memoryview_type))))) __PYX_ERR(2, 448, __pyx_L1_error) __pyx_t_2 = __pyx_memoryview_get_slice_from_memoryview(((struct __pyx_memoryview_obj *)__pyx_v_dst), (&__pyx_v_dst_slice)); if (unlikely(__pyx_t_2 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 448, __pyx_L1_error) /* "View.MemoryView":449 * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) # <<<<<<<<<<<<<< * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_src, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_4 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_dst, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(2, 449, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":447 * cdef __Pyx_memviewslice src_slice * * memoryview_copy_contents(get_slice_from_memview(src, &src_slice)[0], # <<<<<<<<<<<<<< * get_slice_from_memview(dst, &dst_slice)[0], * src.ndim, dst.ndim, self.dtype_is_object) */ __pyx_t_6 = __pyx_memoryview_copy_contents((__pyx_t_1[0]), (__pyx_t_2[0]), __pyx_t_4, __pyx_t_5, __pyx_v_self->dtype_is_object); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 447, __pyx_L1_error) /* "View.MemoryView":443 * return obj * * cdef setitem_slice_assignment(self, dst, src): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice dst_slice * cdef __Pyx_memviewslice src_slice */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assignment", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ static PyObject *__pyx_memoryview_setitem_slice_assign_scalar(struct __pyx_memoryview_obj *__pyx_v_self, struct __pyx_memoryview_obj *__pyx_v_dst, PyObject *__pyx_v_value) { int __pyx_v_array[0x80]; void *__pyx_v_tmp; void *__pyx_v_item; __Pyx_memviewslice *__pyx_v_dst_slice; __Pyx_memviewslice __pyx_v_tmp_slice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; char const *__pyx_t_6; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_slice_assign_scalar", 0); /* "View.MemoryView":453 * cdef setitem_slice_assign_scalar(self, memoryview dst, value): * cdef int array[128] * cdef void *tmp = NULL # <<<<<<<<<<<<<< * cdef void *item * */ __pyx_v_tmp = NULL; /* "View.MemoryView":458 * cdef __Pyx_memviewslice *dst_slice * cdef __Pyx_memviewslice tmp_slice * dst_slice = get_slice_from_memview(dst, &tmp_slice) # <<<<<<<<<<<<<< * * if <size_t>self.view.itemsize > sizeof(array): */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_dst, (&__pyx_v_tmp_slice)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 458, __pyx_L1_error) __pyx_v_dst_slice = __pyx_t_1; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if <size_t>self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ __pyx_t_2 = ((((size_t)__pyx_v_self->view.itemsize) > (sizeof(__pyx_v_array))) != 0); if (__pyx_t_2) { /* "View.MemoryView":461 * * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) # <<<<<<<<<<<<<< * if tmp == NULL: * raise MemoryError */ __pyx_v_tmp = PyMem_Malloc(__pyx_v_self->view.itemsize); /* "View.MemoryView":462 * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ __pyx_t_2 = ((__pyx_v_tmp == NULL) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":463 * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: * raise MemoryError # <<<<<<<<<<<<<< * item = tmp * else: */ PyErr_NoMemory(); __PYX_ERR(2, 463, __pyx_L1_error) /* "View.MemoryView":462 * if <size_t>self.view.itemsize > sizeof(array): * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: # <<<<<<<<<<<<<< * raise MemoryError * item = tmp */ } /* "View.MemoryView":464 * if tmp == NULL: * raise MemoryError * item = tmp # <<<<<<<<<<<<<< * else: * item = <void *> array */ __pyx_v_item = __pyx_v_tmp; /* "View.MemoryView":460 * dst_slice = get_slice_from_memview(dst, &tmp_slice) * * if <size_t>self.view.itemsize > sizeof(array): # <<<<<<<<<<<<<< * tmp = PyMem_Malloc(self.view.itemsize) * if tmp == NULL: */ goto __pyx_L3; } /* "View.MemoryView":466 * item = tmp * else: * item = <void *> array # <<<<<<<<<<<<<< * * try: */ /*else*/ { __pyx_v_item = ((void *)__pyx_v_array); } __pyx_L3:; /* "View.MemoryView":468 * item = <void *> array * * try: # <<<<<<<<<<<<<< * if self.dtype_is_object: * (<PyObject **> item)[0] = <PyObject *> value */ /*try:*/ { /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * (<PyObject **> item)[0] = <PyObject *> value * else: */ __pyx_t_2 = (__pyx_v_self->dtype_is_object != 0); if (__pyx_t_2) { /* "View.MemoryView":470 * try: * if self.dtype_is_object: * (<PyObject **> item)[0] = <PyObject *> value # <<<<<<<<<<<<<< * else: * self.assign_item_from_object(<char *> item, value) */ (((PyObject **)__pyx_v_item)[0]) = ((PyObject *)__pyx_v_value); /* "View.MemoryView":469 * * try: * if self.dtype_is_object: # <<<<<<<<<<<<<< * (<PyObject **> item)[0] = <PyObject *> value * else: */ goto __pyx_L8; } /* "View.MemoryView":472 * (<PyObject **> item)[0] = <PyObject *> value * else: * self.assign_item_from_object(<char *> item, value) # <<<<<<<<<<<<<< * * */ /*else*/ { __pyx_t_3 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, ((char *)__pyx_v_item), __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 472, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L8:; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ __pyx_t_2 = ((__pyx_v_self->view.suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":477 * * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) # <<<<<<<<<<<<<< * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, * item, self.dtype_is_object) */ __pyx_t_3 = assert_direct_dimensions(__pyx_v_self->view.suboffsets, __pyx_v_self->view.ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 477, __pyx_L6_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":476 * * * if self.view.suboffsets != NULL: # <<<<<<<<<<<<<< * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, */ } /* "View.MemoryView":478 * if self.view.suboffsets != NULL: * assert_direct_dimensions(self.view.suboffsets, self.view.ndim) * slice_assign_scalar(dst_slice, dst.view.ndim, self.view.itemsize, # <<<<<<<<<<<<<< * item, self.dtype_is_object) * finally: */ __pyx_memoryview_slice_assign_scalar(__pyx_v_dst_slice, __pyx_v_dst->view.ndim, __pyx_v_self->view.itemsize, __pyx_v_item, __pyx_v_self->dtype_is_object); } /* "View.MemoryView":481 * item, self.dtype_is_object) * finally: * PyMem_Free(tmp) # <<<<<<<<<<<<<< * * cdef setitem_indexed(self, index, value): */ /*finally:*/ { /*normal exit:*/{ PyMem_Free(__pyx_v_tmp); goto __pyx_L7; } __pyx_L6_error:; /*exception exit:*/{ __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_10, &__pyx_t_11, &__pyx_t_12); if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9) < 0)) __Pyx_ErrFetch(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); __Pyx_XGOTREF(__pyx_t_10); __Pyx_XGOTREF(__pyx_t_11); __Pyx_XGOTREF(__pyx_t_12); __pyx_t_4 = __pyx_lineno; __pyx_t_5 = __pyx_clineno; __pyx_t_6 = __pyx_filename; { PyMem_Free(__pyx_v_tmp); } if (PY_MAJOR_VERSION >= 3) { __Pyx_XGIVEREF(__pyx_t_10); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_12); __Pyx_ExceptionReset(__pyx_t_10, __pyx_t_11, __pyx_t_12); } __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ErrRestore(__pyx_t_7, __pyx_t_8, __pyx_t_9); __pyx_t_7 = 0; __pyx_t_8 = 0; __pyx_t_9 = 0; __pyx_t_10 = 0; __pyx_t_11 = 0; __pyx_t_12 = 0; __pyx_lineno = __pyx_t_4; __pyx_clineno = __pyx_t_5; __pyx_filename = __pyx_t_6; goto __pyx_L1_error; } __pyx_L7:; } /* "View.MemoryView":451 * src.ndim, dst.ndim, self.dtype_is_object) * * cdef setitem_slice_assign_scalar(self, memoryview dst, value): # <<<<<<<<<<<<<< * cdef int array[128] * cdef void *tmp = NULL */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_slice_assign_scalar", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ static PyObject *__pyx_memoryview_setitem_indexed(struct __pyx_memoryview_obj *__pyx_v_self, PyObject *__pyx_v_index, PyObject *__pyx_v_value) { char *__pyx_v_itemp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations char *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("setitem_indexed", 0); /* "View.MemoryView":484 * * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) # <<<<<<<<<<<<<< * self.assign_item_from_object(itemp, value) * */ __pyx_t_1 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->get_item_pointer(__pyx_v_self, __pyx_v_index); if (unlikely(__pyx_t_1 == ((char *)NULL))) __PYX_ERR(2, 484, __pyx_L1_error) __pyx_v_itemp = __pyx_t_1; /* "View.MemoryView":485 * cdef setitem_indexed(self, index, value): * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __pyx_t_2 = ((struct __pyx_vtabstruct_memoryview *)__pyx_v_self->__pyx_vtab)->assign_item_from_object(__pyx_v_self, __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 485, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":483 * PyMem_Free(tmp) * * cdef setitem_indexed(self, index, value): # <<<<<<<<<<<<<< * cdef char *itemp = self.get_item_pointer(index) * self.assign_item_from_object(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.setitem_indexed", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_convert_item_to_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_v_struct = NULL; PyObject *__pyx_v_bytesitem = 0; PyObject *__pyx_v_result = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; int __pyx_t_8; PyObject *__pyx_t_9 = NULL; size_t __pyx_t_10; int __pyx_t_11; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":490 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef bytes bytesitem * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 490, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":493 * cdef bytes bytesitem * * bytesitem = itemp[:self.view.itemsize] # <<<<<<<<<<<<<< * try: * result = struct.unpack(self.view.format, bytesitem) */ __pyx_t_1 = __Pyx_PyBytes_FromStringAndSize(__pyx_v_itemp + 0, __pyx_v_self->view.itemsize - 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 493, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_bytesitem = ((PyObject*)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_2, &__pyx_t_3, &__pyx_t_4); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); __Pyx_XGOTREF(__pyx_t_4); /*try:*/ { /* "View.MemoryView":495 * bytesitem = itemp[:self.view.itemsize] * try: * result = struct.unpack(self.view.format, bytesitem) # <<<<<<<<<<<<<< * except struct.error: * raise ValueError("Unable to convert item to object") */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_unpack); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = NULL; __pyx_t_8 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_7)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_7); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_8 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_v_bytesitem}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_9 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_9); if (__pyx_t_7) { __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_7); __pyx_t_7 = NULL; } __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_9, 0+__pyx_t_8, __pyx_t_6); __Pyx_INCREF(__pyx_v_bytesitem); __Pyx_GIVEREF(__pyx_v_bytesitem); PyTuple_SET_ITEM(__pyx_t_9, 1+__pyx_t_8, __pyx_v_bytesitem); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_9, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 495, __pyx_L3_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_result = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ } /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ /*else:*/ { __pyx_t_10 = strlen(__pyx_v_self->view.format); __pyx_t_11 = ((__pyx_t_10 == 1) != 0); if (__pyx_t_11) { /* "View.MemoryView":500 * else: * if len(self.view.format) == 1: * return result[0] # <<<<<<<<<<<<<< * return result * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_GetItemInt(__pyx_v_result, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 500, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L6_except_return; /* "View.MemoryView":499 * raise ValueError("Unable to convert item to object") * else: * if len(self.view.format) == 1: # <<<<<<<<<<<<<< * return result[0] * return result */ } /* "View.MemoryView":501 * if len(self.view.format) == 1: * return result[0] * return result # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_result); __pyx_r = __pyx_v_result; goto __pyx_L6_except_return; } __pyx_L3_error:; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /* "View.MemoryView":496 * try: * result = struct.unpack(self.view.format, bytesitem) * except struct.error: # <<<<<<<<<<<<<< * raise ValueError("Unable to convert item to object") * else: */ __Pyx_ErrFetch(&__pyx_t_1, &__pyx_t_5, &__pyx_t_9); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_error); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_1, __pyx_t_6); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_ErrRestore(__pyx_t_1, __pyx_t_5, __pyx_t_9); __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_9 = 0; if (__pyx_t_8) { __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_1) < 0) __PYX_ERR(2, 496, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_1); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_t_6 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 497, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_Raise(__pyx_t_6, 0, 0, 0); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __PYX_ERR(2, 497, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "View.MemoryView":494 * * bytesitem = itemp[:self.view.itemsize] * try: # <<<<<<<<<<<<<< * result = struct.unpack(self.view.format, bytesitem) * except struct.error: */ __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L1_error; __pyx_L6_except_return:; __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_XGIVEREF(__pyx_t_4); __Pyx_ExceptionReset(__pyx_t_2, __pyx_t_3, __pyx_t_4); goto __pyx_L0; } /* "View.MemoryView":487 * self.assign_item_from_object(itemp, value) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memoryview.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesitem); __Pyx_XDECREF(__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryview_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_v_struct = NULL; char __pyx_v_c; PyObject *__pyx_v_bytesvalue = 0; Py_ssize_t __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; Py_ssize_t __pyx_t_9; PyObject *__pyx_t_10 = NULL; char *__pyx_t_11; char *__pyx_t_12; char *__pyx_t_13; char *__pyx_t_14; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":506 * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" * import struct # <<<<<<<<<<<<<< * cdef char c * cdef bytes bytesvalue */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_struct, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 506, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_struct = __pyx_t_1; __pyx_t_1 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ __pyx_t_2 = PyTuple_Check(__pyx_v_value); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "View.MemoryView":512 * * if isinstance(value, tuple): * bytesvalue = struct.pack(self.view.format, *value) # <<<<<<<<<<<<<< * else: * bytesvalue = struct.pack(self.view.format, value) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PySequence_Tuple(__pyx_v_value); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = PyNumber_Add(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_6, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 512, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; /* "View.MemoryView":511 * cdef Py_ssize_t i * * if isinstance(value, tuple): # <<<<<<<<<<<<<< * bytesvalue = struct.pack(self.view.format, *value) * else: */ goto __pyx_L3; } /* "View.MemoryView":514 * bytesvalue = struct.pack(self.view.format, *value) * else: * bytesvalue = struct.pack(self.view.format, value) # <<<<<<<<<<<<<< * * for i, c in enumerate(bytesvalue): */ /*else*/ { __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_struct, __pyx_n_s_pack); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyBytes_FromString(__pyx_v_self->view.format); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, __pyx_t_1, __pyx_v_value}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_t_1); __Pyx_INCREF(__pyx_v_value); __Pyx_GIVEREF(__pyx_v_value); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_value); __pyx_t_1 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (!(likely(PyBytes_CheckExact(__pyx_t_4))||((__pyx_t_4) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "bytes", Py_TYPE(__pyx_t_4)->tp_name), 0))) __PYX_ERR(2, 514, __pyx_L1_error) __pyx_v_bytesvalue = ((PyObject*)__pyx_t_4); __pyx_t_4 = 0; } __pyx_L3:; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = 0; if (unlikely(__pyx_v_bytesvalue == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' is not iterable"); __PYX_ERR(2, 516, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_bytesvalue); __pyx_t_10 = __pyx_v_bytesvalue; __pyx_t_12 = PyBytes_AS_STRING(__pyx_t_10); __pyx_t_13 = (__pyx_t_12 + PyBytes_GET_SIZE(__pyx_t_10)); for (__pyx_t_14 = __pyx_t_12; __pyx_t_14 < __pyx_t_13; __pyx_t_14++) { __pyx_t_11 = __pyx_t_14; __pyx_v_c = (__pyx_t_11[0]); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ __pyx_v_i = __pyx_t_9; /* "View.MemoryView":516 * bytesvalue = struct.pack(self.view.format, value) * * for i, c in enumerate(bytesvalue): # <<<<<<<<<<<<<< * itemp[i] = c * */ __pyx_t_9 = (__pyx_t_9 + 1); /* "View.MemoryView":517 * * for i, c in enumerate(bytesvalue): * itemp[i] = c # <<<<<<<<<<<<<< * * @cname('getbuffer') */ (__pyx_v_itemp[__pyx_v_i]) = __pyx_v_c; } __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; /* "View.MemoryView":503 * return result * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * """Only used if instantiated manually by the user, or if Cython doesn't * know how to convert the type""" */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_10); __Pyx_AddTraceback("View.MemoryView.memoryview.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_struct); __Pyx_XDECREF(__pyx_v_bytesvalue); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_memoryview_getbuffer(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_8__getbuffer__(struct __pyx_memoryview_obj *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; char *__pyx_t_5; void *__pyx_t_6; int __pyx_t_7; Py_ssize_t __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ __pyx_t_2 = ((__pyx_v_flags & PyBUF_WRITABLE) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L4_bool_binop_done; } __pyx_t_2 = (__pyx_v_self->view.readonly != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__16, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 522, __pyx_L1_error) /* "View.MemoryView":521 * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: # <<<<<<<<<<<<<< * raise ValueError("Cannot create writable memory view from read-only memoryview") * */ } /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_ND) != 0); if (__pyx_t_1) { /* "View.MemoryView":525 * * if flags & PyBUF_ND: * info.shape = self.view.shape # <<<<<<<<<<<<<< * else: * info.shape = NULL */ __pyx_t_4 = __pyx_v_self->view.shape; __pyx_v_info->shape = __pyx_t_4; /* "View.MemoryView":524 * raise ValueError("Cannot create writable memory view from read-only memoryview") * * if flags & PyBUF_ND: # <<<<<<<<<<<<<< * info.shape = self.view.shape * else: */ goto __pyx_L6; } /* "View.MemoryView":527 * info.shape = self.view.shape * else: * info.shape = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_STRIDES: */ /*else*/ { __pyx_v_info->shape = NULL; } __pyx_L6:; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_STRIDES) != 0); if (__pyx_t_1) { /* "View.MemoryView":530 * * if flags & PyBUF_STRIDES: * info.strides = self.view.strides # <<<<<<<<<<<<<< * else: * info.strides = NULL */ __pyx_t_4 = __pyx_v_self->view.strides; __pyx_v_info->strides = __pyx_t_4; /* "View.MemoryView":529 * info.shape = NULL * * if flags & PyBUF_STRIDES: # <<<<<<<<<<<<<< * info.strides = self.view.strides * else: */ goto __pyx_L7; } /* "View.MemoryView":532 * info.strides = self.view.strides * else: * info.strides = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_INDIRECT: */ /*else*/ { __pyx_v_info->strides = NULL; } __pyx_L7:; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_INDIRECT) != 0); if (__pyx_t_1) { /* "View.MemoryView":535 * * if flags & PyBUF_INDIRECT: * info.suboffsets = self.view.suboffsets # <<<<<<<<<<<<<< * else: * info.suboffsets = NULL */ __pyx_t_4 = __pyx_v_self->view.suboffsets; __pyx_v_info->suboffsets = __pyx_t_4; /* "View.MemoryView":534 * info.strides = NULL * * if flags & PyBUF_INDIRECT: # <<<<<<<<<<<<<< * info.suboffsets = self.view.suboffsets * else: */ goto __pyx_L8; } /* "View.MemoryView":537 * info.suboffsets = self.view.suboffsets * else: * info.suboffsets = NULL # <<<<<<<<<<<<<< * * if flags & PyBUF_FORMAT: */ /*else*/ { __pyx_v_info->suboffsets = NULL; } __pyx_L8:; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ __pyx_t_1 = ((__pyx_v_flags & PyBUF_FORMAT) != 0); if (__pyx_t_1) { /* "View.MemoryView":540 * * if flags & PyBUF_FORMAT: * info.format = self.view.format # <<<<<<<<<<<<<< * else: * info.format = NULL */ __pyx_t_5 = __pyx_v_self->view.format; __pyx_v_info->format = __pyx_t_5; /* "View.MemoryView":539 * info.suboffsets = NULL * * if flags & PyBUF_FORMAT: # <<<<<<<<<<<<<< * info.format = self.view.format * else: */ goto __pyx_L9; } /* "View.MemoryView":542 * info.format = self.view.format * else: * info.format = NULL # <<<<<<<<<<<<<< * * info.buf = self.view.buf */ /*else*/ { __pyx_v_info->format = NULL; } __pyx_L9:; /* "View.MemoryView":544 * info.format = NULL * * info.buf = self.view.buf # <<<<<<<<<<<<<< * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize */ __pyx_t_6 = __pyx_v_self->view.buf; __pyx_v_info->buf = __pyx_t_6; /* "View.MemoryView":545 * * info.buf = self.view.buf * info.ndim = self.view.ndim # <<<<<<<<<<<<<< * info.itemsize = self.view.itemsize * info.len = self.view.len */ __pyx_t_7 = __pyx_v_self->view.ndim; __pyx_v_info->ndim = __pyx_t_7; /* "View.MemoryView":546 * info.buf = self.view.buf * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize # <<<<<<<<<<<<<< * info.len = self.view.len * info.readonly = self.view.readonly */ __pyx_t_8 = __pyx_v_self->view.itemsize; __pyx_v_info->itemsize = __pyx_t_8; /* "View.MemoryView":547 * info.ndim = self.view.ndim * info.itemsize = self.view.itemsize * info.len = self.view.len # <<<<<<<<<<<<<< * info.readonly = self.view.readonly * info.obj = self */ __pyx_t_8 = __pyx_v_self->view.len; __pyx_v_info->len = __pyx_t_8; /* "View.MemoryView":548 * info.itemsize = self.view.itemsize * info.len = self.view.len * info.readonly = self.view.readonly # <<<<<<<<<<<<<< * info.obj = self * */ __pyx_t_1 = __pyx_v_self->view.readonly; __pyx_v_info->readonly = __pyx_t_1; /* "View.MemoryView":549 * info.len = self.view.len * info.readonly = self.view.readonly * info.obj = self # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "View.MemoryView":520 * * @cname('getbuffer') * def __getbuffer__(self, Py_buffer *info, int flags): # <<<<<<<<<<<<<< * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_1T___get__(struct __pyx_memoryview_obj *__pyx_v_self) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":556 * @property * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) # <<<<<<<<<<<<<< * transpose_memslice(&result.from_slice) * return result */ __pyx_t_1 = __pyx_memoryview_copy_object(__pyx_v_self); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 556, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (!(likely(((__pyx_t_1) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_1, __pyx_memoryviewslice_type))))) __PYX_ERR(2, 556, __pyx_L1_error) __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":557 * def T(self): * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) # <<<<<<<<<<<<<< * return result * */ __pyx_t_2 = __pyx_memslice_transpose((&__pyx_v_result->from_slice)); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 557, __pyx_L1_error) /* "View.MemoryView":558 * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) * return result # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":555 * * @property * def T(self): # <<<<<<<<<<<<<< * cdef _memoryviewslice result = memoryview_copy(self) * transpose_memslice(&result.from_slice) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.T.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4base___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":562 * @property * def base(self): * return self.obj # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->obj); __pyx_r = __pyx_v_self->obj; goto __pyx_L0; /* "View.MemoryView":561 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.obj * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_5shape___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_length; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":566 * @property * def shape(self): * return tuple([length for length in self.view.shape[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyList_New(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_4 = __pyx_v_self->view.shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_length = (__pyx_t_2[0]); __pyx_t_5 = PyInt_FromSsize_t(__pyx_v_length); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(__Pyx_ListComp_Append(__pyx_t_1, (PyObject*)__pyx_t_5))) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __pyx_t_5 = PyList_AsTuple(((PyObject*)__pyx_t_1)); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 566, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":565 * * @property * def shape(self): # <<<<<<<<<<<<<< * return tuple([length for length in self.view.shape[:self.view.ndim]]) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview.shape.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_7strides___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_stride; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ __pyx_t_1 = ((__pyx_v_self->view.strides == NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 572, __pyx_L1_error) /* "View.MemoryView":570 * @property * def strides(self): * if self.view.strides == NULL: # <<<<<<<<<<<<<< * * raise ValueError("Buffer view does not expose strides") */ } /* "View.MemoryView":574 * raise ValueError("Buffer view does not expose strides") * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = (__pyx_v_self->view.strides + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.strides; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_v_stride = (__pyx_t_3[0]); __pyx_t_6 = PyInt_FromSsize_t(__pyx_v_stride); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (unlikely(__Pyx_ListComp_Append(__pyx_t_2, (PyObject*)__pyx_t_6))) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } __pyx_t_6 = PyList_AsTuple(((PyObject*)__pyx_t_2)); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 574, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; /* "View.MemoryView":569 * * @property * def strides(self): # <<<<<<<<<<<<<< * if self.view.strides == NULL: * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.strides.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_10suboffsets___get__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; Py_ssize_t *__pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ __pyx_t_1 = ((__pyx_v_self->view.suboffsets == NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_tuple__18, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":578 * @property * def suboffsets(self): * if self.view.suboffsets == NULL: # <<<<<<<<<<<<<< * return (-1,) * self.view.ndim * */ } /* "View.MemoryView":581 * return (-1,) * self.view.ndim * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = (__pyx_v_self->view.suboffsets + __pyx_v_self->view.ndim); for (__pyx_t_6 = __pyx_v_self->view.suboffsets; __pyx_t_6 < __pyx_t_5; __pyx_t_6++) { __pyx_t_4 = __pyx_t_6; __pyx_v_suboffset = (__pyx_t_4[0]); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_suboffset); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (unlikely(__Pyx_ListComp_Append(__pyx_t_3, (PyObject*)__pyx_t_2))) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __pyx_t_2 = PyList_AsTuple(((PyObject*)__pyx_t_3)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 581, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":577 * * @property * def suboffsets(self): # <<<<<<<<<<<<<< * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.suboffsets.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4ndim___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":585 * @property * def ndim(self): * return self.view.ndim # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->view.ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 585, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":584 * * @property * def ndim(self): # <<<<<<<<<<<<<< * return self.view.ndim * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.ndim.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_8itemsize___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":589 * @property * def itemsize(self): * return self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 589, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":588 * * @property * def itemsize(self): # <<<<<<<<<<<<<< * return self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.itemsize.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_6nbytes___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":593 * @property * def nbytes(self): * return self.size * self.view.itemsize # <<<<<<<<<<<<<< * * @property */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_self->view.itemsize); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_Multiply(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 593, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":592 * * @property * def nbytes(self): # <<<<<<<<<<<<<< * return self.size * self.view.itemsize * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.nbytes.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_10memoryview_4size___get__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_v_result = NULL; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; Py_ssize_t *__pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ __pyx_t_1 = (__pyx_v_self->_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":598 * def size(self): * if self._size is None: * result = 1 # <<<<<<<<<<<<<< * * for length in self.view.shape[:self.view.ndim]: */ __Pyx_INCREF(__pyx_int_1); __pyx_v_result = __pyx_int_1; /* "View.MemoryView":600 * result = 1 * * for length in self.view.shape[:self.view.ndim]: # <<<<<<<<<<<<<< * result *= length * */ __pyx_t_4 = (__pyx_v_self->view.shape + __pyx_v_self->view.ndim); for (__pyx_t_5 = __pyx_v_self->view.shape; __pyx_t_5 < __pyx_t_4; __pyx_t_5++) { __pyx_t_3 = __pyx_t_5; __pyx_t_6 = PyInt_FromSsize_t((__pyx_t_3[0])); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 600, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_6); __pyx_t_6 = 0; /* "View.MemoryView":601 * * for length in self.view.shape[:self.view.ndim]: * result *= length # <<<<<<<<<<<<<< * * self._size = result */ __pyx_t_6 = PyNumber_InPlaceMultiply(__pyx_v_result, __pyx_v_length); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 601, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF_SET(__pyx_v_result, __pyx_t_6); __pyx_t_6 = 0; } /* "View.MemoryView":603 * result *= length * * self._size = result # <<<<<<<<<<<<<< * * return self._size */ __Pyx_INCREF(__pyx_v_result); __Pyx_GIVEREF(__pyx_v_result); __Pyx_GOTREF(__pyx_v_self->_size); __Pyx_DECREF(__pyx_v_self->_size); __pyx_v_self->_size = __pyx_v_result; /* "View.MemoryView":597 * @property * def size(self): * if self._size is None: # <<<<<<<<<<<<<< * result = 1 * */ } /* "View.MemoryView":605 * self._size = result * * return self._size # <<<<<<<<<<<<<< * * def __len__(self): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->_size); __pyx_r = __pyx_v_self->_size; goto __pyx_L0; /* "View.MemoryView":596 * * @property * def size(self): # <<<<<<<<<<<<<< * if self._size is None: * result = 1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.memoryview.size.__get__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* Python wrapper */ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self); /*proto*/ static Py_ssize_t __pyx_memoryview___len__(PyObject *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__len__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static Py_ssize_t __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_10__len__(struct __pyx_memoryview_obj *__pyx_v_self) { Py_ssize_t __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__len__", 0); /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ __pyx_t_1 = ((__pyx_v_self->view.ndim >= 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":609 * def __len__(self): * if self.view.ndim >= 1: * return self.view.shape[0] # <<<<<<<<<<<<<< * * return 0 */ __pyx_r = (__pyx_v_self->view.shape[0]); goto __pyx_L0; /* "View.MemoryView":608 * * def __len__(self): * if self.view.ndim >= 1: # <<<<<<<<<<<<<< * return self.view.shape[0] * */ } /* "View.MemoryView":611 * return self.view.shape[0] * * return 0 # <<<<<<<<<<<<<< * * def __repr__(self): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":607 * return self._size * * def __len__(self): # <<<<<<<<<<<<<< * if self.view.ndim >= 1: * return self.view.shape[0] */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) */ /* Python wrapper */ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_12__repr__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__repr__", 0); /* "View.MemoryView":614 * * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":615 * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) # <<<<<<<<<<<<<< * * def __str__(self): */ __pyx_t_2 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 615, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); /* "View.MemoryView":614 * * def __repr__(self): * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, # <<<<<<<<<<<<<< * id(self)) * */ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":613 * return 0 * * def __repr__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r at 0x%x>" % (self.base.__class__.__name__, * id(self)) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) * */ /* Python wrapper */ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_memoryview___str__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_14__str__(struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__str__", 0); /* "View.MemoryView":618 * * def __str__(self): * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_base); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyString_Format(__pyx_kp_s_MemoryView_of_r_object, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 618, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":617 * id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * return "<MemoryView of %r object>" % (self.base.__class__.__name__,) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_c_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_c_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_16is_c_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_c_contig", 0); /* "View.MemoryView":624 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'C', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 624, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":625 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'C', self.view.ndim) # <<<<<<<<<<<<<< * * def is_f_contig(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'C', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 625, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":621 * * * def is_c_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_c_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* Python wrapper */ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_is_f_contig(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("is_f_contig (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_18is_f_contig(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice *__pyx_v_mslice; __Pyx_memviewslice __pyx_v_tmp; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice *__pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("is_f_contig", 0); /* "View.MemoryView":630 * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) # <<<<<<<<<<<<<< * return slice_is_contig(mslice[0], 'F', self.view.ndim) * */ __pyx_t_1 = __pyx_memoryview_get_slice_from_memoryview(__pyx_v_self, (&__pyx_v_tmp)); if (unlikely(__pyx_t_1 == ((__Pyx_memviewslice *)NULL))) __PYX_ERR(2, 630, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":631 * cdef __Pyx_memviewslice tmp * mslice = get_slice_from_memview(self, &tmp) * return slice_is_contig(mslice[0], 'F', self.view.ndim) # <<<<<<<<<<<<<< * * def copy(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_memviewslice_is_contig((__pyx_v_mslice[0]), 'F', __pyx_v_self->view.ndim)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 631, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":627 * return slice_is_contig(mslice[0], 'C', self.view.ndim) * * def is_f_contig(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice *mslice * cdef __Pyx_memviewslice tmp */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.is_f_contig", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_20copy(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_mslice; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy", 0); /* "View.MemoryView":635 * def copy(self): * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &mslice) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_F_CONTIGUOUS)); /* "View.MemoryView":637 * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS * * slice_copy(self, &mslice) # <<<<<<<<<<<<<< * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_mslice)); /* "View.MemoryView":638 * * slice_copy(self, &mslice) * mslice = slice_copy_contig(&mslice, "c", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_C_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_mslice), ((char *)"c"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_C_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 638, __pyx_L1_error) __pyx_v_mslice = __pyx_t_1; /* "View.MemoryView":643 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &mslice) # <<<<<<<<<<<<<< * * def copy_fortran(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_mslice)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 643, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":633 * return slice_is_contig(mslice[0], 'F', self.view.ndim) * * def copy(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice mslice * cdef int flags = self.flags & ~PyBUF_F_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* Python wrapper */ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_memoryview_copy_fortran(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("copy_fortran (wrapper)", 0); __pyx_r = __pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_memoryview___pyx_pf_15View_dot_MemoryView_10memoryview_22copy_fortran(struct __pyx_memoryview_obj *__pyx_v_self) { __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; int __pyx_v_flags; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_memviewslice __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("copy_fortran", 0); /* "View.MemoryView":647 * def copy_fortran(self): * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS # <<<<<<<<<<<<<< * * slice_copy(self, &src) */ __pyx_v_flags = (__pyx_v_self->flags & (~PyBUF_C_CONTIGUOUS)); /* "View.MemoryView":649 * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS * * slice_copy(self, &src) # <<<<<<<<<<<<<< * dst = slice_copy_contig(&src, "fortran", self.view.ndim, * self.view.itemsize, */ __pyx_memoryview_slice_copy(__pyx_v_self, (&__pyx_v_src)); /* "View.MemoryView":650 * * slice_copy(self, &src) * dst = slice_copy_contig(&src, "fortran", self.view.ndim, # <<<<<<<<<<<<<< * self.view.itemsize, * flags|PyBUF_F_CONTIGUOUS, */ __pyx_t_1 = __pyx_memoryview_copy_new_contig((&__pyx_v_src), ((char *)"fortran"), __pyx_v_self->view.ndim, __pyx_v_self->view.itemsize, (__pyx_v_flags | PyBUF_F_CONTIGUOUS), __pyx_v_self->dtype_is_object); if (unlikely(PyErr_Occurred())) __PYX_ERR(2, 650, __pyx_L1_error) __pyx_v_dst = __pyx_t_1; /* "View.MemoryView":655 * self.dtype_is_object) * * return memoryview_copy_from_slice(self, &dst) # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_copy_object_from_slice(__pyx_v_self, (&__pyx_v_dst)); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 655, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":645 * return memoryview_copy_from_slice(self, &mslice) * * def copy_fortran(self): # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice src, dst * cdef int flags = self.flags & ~PyBUF_C_CONTIGUOUS */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView.memoryview.copy_fortran", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview___reduce_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryview_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryview_2__setstate_cython__(((struct __pyx_memoryview_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryview_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryview_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ static PyObject *__pyx_memoryview_new(PyObject *__pyx_v_o, int __pyx_v_flags, int __pyx_v_dtype_is_object, __Pyx_TypeInfo *__pyx_v_typeinfo) { struct __pyx_memoryview_obj *__pyx_v_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_cwrapper", 0); /* "View.MemoryView":660 * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) # <<<<<<<<<<<<<< * result.typeinfo = typeinfo * return result */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_flags); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_o); __Pyx_GIVEREF(__pyx_v_o); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_o); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryview_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 660, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryview_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":661 * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo # <<<<<<<<<<<<<< * return result * */ __pyx_v_result->typeinfo = __pyx_v_typeinfo; /* "View.MemoryView":662 * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_check') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":659 * * @cname('__pyx_memoryview_new') * cdef memoryview_cwrapper(object o, int flags, bint dtype_is_object, __Pyx_TypeInfo *typeinfo): # <<<<<<<<<<<<<< * cdef memoryview result = memoryview(o, flags, dtype_is_object) * result.typeinfo = typeinfo */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_cwrapper", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ static CYTHON_INLINE int __pyx_memoryview_check(PyObject *__pyx_v_o) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("memoryview_check", 0); /* "View.MemoryView":666 * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): * return isinstance(o, memoryview) # <<<<<<<<<<<<<< * * cdef tuple _unellipsify(object index, int ndim): */ __pyx_t_1 = __Pyx_TypeCheck(__pyx_v_o, __pyx_memoryview_type); __pyx_r = __pyx_t_1; goto __pyx_L0; /* "View.MemoryView":665 * * @cname('__pyx_memoryview_check') * cdef inline bint memoryview_check(object o): # <<<<<<<<<<<<<< * return isinstance(o, memoryview) * */ /* function exit code */ __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ static PyObject *_unellipsify(PyObject *__pyx_v_index, int __pyx_v_ndim) { PyObject *__pyx_v_tup = NULL; PyObject *__pyx_v_result = NULL; int __pyx_v_have_slices; int __pyx_v_seen_ellipsis; CYTHON_UNUSED PyObject *__pyx_v_idx = NULL; PyObject *__pyx_v_item = NULL; Py_ssize_t __pyx_v_nslices; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; Py_ssize_t __pyx_t_5; PyObject *(*__pyx_t_6)(PyObject *); PyObject *__pyx_t_7 = NULL; Py_ssize_t __pyx_t_8; int __pyx_t_9; int __pyx_t_10; PyObject *__pyx_t_11 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("_unellipsify", 0); /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ __pyx_t_1 = PyTuple_Check(__pyx_v_index); __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":674 * """ * if not isinstance(index, tuple): * tup = (index,) # <<<<<<<<<<<<<< * else: * tup = index */ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 674, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_index); __Pyx_GIVEREF(__pyx_v_index); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_index); __pyx_v_tup = __pyx_t_3; __pyx_t_3 = 0; /* "View.MemoryView":673 * full slices. * """ * if not isinstance(index, tuple): # <<<<<<<<<<<<<< * tup = (index,) * else: */ goto __pyx_L3; } /* "View.MemoryView":676 * tup = (index,) * else: * tup = index # <<<<<<<<<<<<<< * * result = [] */ /*else*/ { __Pyx_INCREF(__pyx_v_index); __pyx_v_tup = __pyx_v_index; } __pyx_L3:; /* "View.MemoryView":678 * tup = index * * result = [] # <<<<<<<<<<<<<< * have_slices = False * seen_ellipsis = False */ __pyx_t_3 = PyList_New(0); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 678, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_result = ((PyObject*)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":679 * * result = [] * have_slices = False # <<<<<<<<<<<<<< * seen_ellipsis = False * for idx, item in enumerate(tup): */ __pyx_v_have_slices = 0; /* "View.MemoryView":680 * result = [] * have_slices = False * seen_ellipsis = False # <<<<<<<<<<<<<< * for idx, item in enumerate(tup): * if item is Ellipsis: */ __pyx_v_seen_ellipsis = 0; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ __Pyx_INCREF(__pyx_int_0); __pyx_t_3 = __pyx_int_0; if (likely(PyList_CheckExact(__pyx_v_tup)) || PyTuple_CheckExact(__pyx_v_tup)) { __pyx_t_4 = __pyx_v_tup; __Pyx_INCREF(__pyx_t_4); __pyx_t_5 = 0; __pyx_t_6 = NULL; } else { __pyx_t_5 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_v_tup); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 681, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_6)) { if (likely(PyList_CheckExact(__pyx_t_4))) { if (__pyx_t_5 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } else { if (__pyx_t_5 >= PyTuple_GET_SIZE(__pyx_t_4)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_7 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_5); __Pyx_INCREF(__pyx_t_7); __pyx_t_5++; if (unlikely(0 < 0)) __PYX_ERR(2, 681, __pyx_L1_error) #else __pyx_t_7 = PySequence_ITEM(__pyx_t_4, __pyx_t_5); __pyx_t_5++; if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); #endif } } else { __pyx_t_7 = __pyx_t_6(__pyx_t_4); if (unlikely(!__pyx_t_7)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 681, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_7); } __Pyx_XDECREF_SET(__pyx_v_item, __pyx_t_7); __pyx_t_7 = 0; __Pyx_INCREF(__pyx_t_3); __Pyx_XDECREF_SET(__pyx_v_idx, __pyx_t_3); __pyx_t_7 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 681, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = __pyx_t_7; __pyx_t_7 = 0; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ __pyx_t_2 = (__pyx_v_item == __pyx_builtin_Ellipsis); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ __pyx_t_1 = ((!(__pyx_v_seen_ellipsis != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_t_8 = PyObject_Length(__pyx_v_tup); if (unlikely(__pyx_t_8 == ((Py_ssize_t)-1))) __PYX_ERR(2, 684, __pyx_L1_error) __pyx_t_7 = PyList_New(1 * ((((__pyx_v_ndim - __pyx_t_8) + 1)<0) ? 0:((__pyx_v_ndim - __pyx_t_8) + 1))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < ((__pyx_v_ndim - __pyx_t_8) + 1); __pyx_temp++) { __Pyx_INCREF(__pyx_slice__21); __Pyx_GIVEREF(__pyx_slice__21); PyList_SET_ITEM(__pyx_t_7, __pyx_temp, __pyx_slice__21); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_7); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /* "View.MemoryView":685 * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True # <<<<<<<<<<<<<< * else: * result.append(slice(None)) */ __pyx_v_seen_ellipsis = 1; /* "View.MemoryView":683 * for idx, item in enumerate(tup): * if item is Ellipsis: * if not seen_ellipsis: # <<<<<<<<<<<<<< * result.extend([slice(None)] * (ndim - len(tup) + 1)) * seen_ellipsis = True */ goto __pyx_L7; } /* "View.MemoryView":687 * seen_ellipsis = True * else: * result.append(slice(None)) # <<<<<<<<<<<<<< * have_slices = True * else: */ /*else*/ { __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_slice__21); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 687, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":688 * else: * result.append(slice(None)) * have_slices = True # <<<<<<<<<<<<<< * else: * if not isinstance(item, slice) and not PyIndex_Check(item): */ __pyx_v_have_slices = 1; /* "View.MemoryView":682 * seen_ellipsis = False * for idx, item in enumerate(tup): * if item is Ellipsis: # <<<<<<<<<<<<<< * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) */ goto __pyx_L6; } /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ /*else*/ { __pyx_t_2 = PySlice_Check(__pyx_v_item); __pyx_t_10 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = ((!(PyIndex_Check(__pyx_v_item) != 0)) != 0); __pyx_t_1 = __pyx_t_10; __pyx_L9_bool_binop_done:; if (unlikely(__pyx_t_1)) { /* "View.MemoryView":691 * else: * if not isinstance(item, slice) and not PyIndex_Check(item): * raise TypeError("Cannot index with type '%s'" % type(item)) # <<<<<<<<<<<<<< * * have_slices = have_slices or isinstance(item, slice) */ __pyx_t_7 = __Pyx_PyString_FormatSafe(__pyx_kp_s_Cannot_index_with_type_s, ((PyObject *)Py_TYPE(__pyx_v_item))); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __pyx_t_11 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_7); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 691, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_Raise(__pyx_t_11, 0, 0, 0); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __PYX_ERR(2, 691, __pyx_L1_error) /* "View.MemoryView":690 * have_slices = True * else: * if not isinstance(item, slice) and not PyIndex_Check(item): # <<<<<<<<<<<<<< * raise TypeError("Cannot index with type '%s'" % type(item)) * */ } /* "View.MemoryView":693 * raise TypeError("Cannot index with type '%s'" % type(item)) * * have_slices = have_slices or isinstance(item, slice) # <<<<<<<<<<<<<< * result.append(item) * */ __pyx_t_10 = (__pyx_v_have_slices != 0); if (!__pyx_t_10) { } else { __pyx_t_1 = __pyx_t_10; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = PySlice_Check(__pyx_v_item); __pyx_t_2 = (__pyx_t_10 != 0); __pyx_t_1 = __pyx_t_2; __pyx_L11_bool_binop_done:; __pyx_v_have_slices = __pyx_t_1; /* "View.MemoryView":694 * * have_slices = have_slices or isinstance(item, slice) * result.append(item) # <<<<<<<<<<<<<< * * nslices = ndim - len(result) */ __pyx_t_9 = __Pyx_PyList_Append(__pyx_v_result, __pyx_v_item); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 694, __pyx_L1_error) } __pyx_L6:; /* "View.MemoryView":681 * have_slices = False * seen_ellipsis = False * for idx, item in enumerate(tup): # <<<<<<<<<<<<<< * if item is Ellipsis: * if not seen_ellipsis: */ } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":696 * result.append(item) * * nslices = ndim - len(result) # <<<<<<<<<<<<<< * if nslices: * result.extend([slice(None)] * nslices) */ __pyx_t_5 = PyList_GET_SIZE(__pyx_v_result); if (unlikely(__pyx_t_5 == ((Py_ssize_t)-1))) __PYX_ERR(2, 696, __pyx_L1_error) __pyx_v_nslices = (__pyx_v_ndim - __pyx_t_5); /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ __pyx_t_1 = (__pyx_v_nslices != 0); if (__pyx_t_1) { /* "View.MemoryView":698 * nslices = ndim - len(result) * if nslices: * result.extend([slice(None)] * nslices) # <<<<<<<<<<<<<< * * return have_slices or nslices, tuple(result) */ __pyx_t_3 = PyList_New(1 * ((__pyx_v_nslices<0) ? 0:__pyx_v_nslices)); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 698, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); { Py_ssize_t __pyx_temp; for (__pyx_temp=0; __pyx_temp < __pyx_v_nslices; __pyx_temp++) { __Pyx_INCREF(__pyx_slice__21); __Pyx_GIVEREF(__pyx_slice__21); PyList_SET_ITEM(__pyx_t_3, __pyx_temp, __pyx_slice__21); } } __pyx_t_9 = __Pyx_PyList_Extend(__pyx_v_result, __pyx_t_3); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 698, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":697 * * nslices = ndim - len(result) * if nslices: # <<<<<<<<<<<<<< * result.extend([slice(None)] * nslices) * */ } /* "View.MemoryView":700 * result.extend([slice(None)] * nslices) * * return have_slices or nslices, tuple(result) # <<<<<<<<<<<<<< * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): */ __Pyx_XDECREF(__pyx_r); if (!__pyx_v_have_slices) { } else { __pyx_t_4 = __Pyx_PyBool_FromLong(__pyx_v_have_slices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L14_bool_binop_done; } __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_nslices); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __pyx_t_4; __pyx_t_4 = 0; __pyx_L14_bool_binop_done:; __pyx_t_4 = PyList_AsTuple(__pyx_v_result); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_11 = PyTuple_New(2); if (unlikely(!__pyx_t_11)) __PYX_ERR(2, 700, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_11, 1, __pyx_t_4); __pyx_t_3 = 0; __pyx_t_4 = 0; __pyx_r = ((PyObject*)__pyx_t_11); __pyx_t_11 = 0; goto __pyx_L0; /* "View.MemoryView":668 * return isinstance(o, memoryview) * * cdef tuple _unellipsify(object index, int ndim): # <<<<<<<<<<<<<< * """ * Replace all ellipses with full slices and fill incomplete indices with */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("View.MemoryView._unellipsify", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF(__pyx_v_tup); __Pyx_XDECREF(__pyx_v_result); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XDECREF(__pyx_v_item); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ static PyObject *assert_direct_dimensions(Py_ssize_t *__pyx_v_suboffsets, int __pyx_v_ndim) { Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assert_direct_dimensions", 0); /* "View.MemoryView":703 * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") */ __pyx_t_2 = (__pyx_v_suboffsets + __pyx_v_ndim); for (__pyx_t_3 = __pyx_v_suboffsets; __pyx_t_3 < __pyx_t_2; __pyx_t_3++) { __pyx_t_1 = __pyx_t_3; __pyx_v_suboffset = (__pyx_t_1[0]); /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ __pyx_t_4 = ((__pyx_v_suboffset >= 0) != 0); if (unlikely(__pyx_t_4)) { /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_Raise(__pyx_t_5, 0, 0, 0); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __PYX_ERR(2, 705, __pyx_L1_error) /* "View.MemoryView":704 * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * raise ValueError("Indirect dimensions not supported") * */ } } /* "View.MemoryView":702 * return have_slices or nslices, tuple(result) * * cdef assert_direct_dimensions(Py_ssize_t *suboffsets, int ndim): # <<<<<<<<<<<<<< * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.assert_direct_dimensions", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ static struct __pyx_memoryview_obj *__pyx_memview_slice(struct __pyx_memoryview_obj *__pyx_v_memview, PyObject *__pyx_v_indices) { int __pyx_v_new_ndim; int __pyx_v_suboffset_dim; int __pyx_v_dim; __Pyx_memviewslice __pyx_v_src; __Pyx_memviewslice __pyx_v_dst; __Pyx_memviewslice *__pyx_v_p_src; struct __pyx_memoryviewslice_obj *__pyx_v_memviewsliceobj = 0; __Pyx_memviewslice *__pyx_v_p_dst; int *__pyx_v_p_suboffset_dim; Py_ssize_t __pyx_v_start; Py_ssize_t __pyx_v_stop; Py_ssize_t __pyx_v_step; int __pyx_v_have_start; int __pyx_v_have_stop; int __pyx_v_have_step; PyObject *__pyx_v_index = NULL; struct __pyx_memoryview_obj *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; struct __pyx_memoryview_obj *__pyx_t_4; char *__pyx_t_5; int __pyx_t_6; Py_ssize_t __pyx_t_7; PyObject *(*__pyx_t_8)(PyObject *); PyObject *__pyx_t_9 = NULL; Py_ssize_t __pyx_t_10; int __pyx_t_11; Py_ssize_t __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memview_slice", 0); /* "View.MemoryView":713 * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): * cdef int new_ndim = 0, suboffset_dim = -1, dim # <<<<<<<<<<<<<< * cdef bint negative_step * cdef __Pyx_memviewslice src, dst */ __pyx_v_new_ndim = 0; __pyx_v_suboffset_dim = -1; /* "View.MemoryView":720 * * * memset(&dst, 0, sizeof(dst)) # <<<<<<<<<<<<<< * * cdef _memoryviewslice memviewsliceobj */ (void)(memset((&__pyx_v_dst), 0, (sizeof(__pyx_v_dst)))); /* "View.MemoryView":724 * cdef _memoryviewslice memviewsliceobj * * assert memview.view.ndim > 0 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ #ifndef CYTHON_WITHOUT_ASSERTIONS if (unlikely(!Py_OptimizeFlag)) { if (unlikely(!((__pyx_v_memview->view.ndim > 0) != 0))) { PyErr_SetNone(PyExc_AssertionError); __PYX_ERR(2, 724, __pyx_L1_error) } } #endif /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":727 * * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview # <<<<<<<<<<<<<< * p_src = &memviewsliceobj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 727, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_memviewsliceobj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":728 * if isinstance(memview, _memoryviewslice): * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, &src) */ __pyx_v_p_src = (&__pyx_v_memviewsliceobj->from_slice); /* "View.MemoryView":726 * assert memview.view.ndim > 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * memviewsliceobj = memview * p_src = &memviewsliceobj.from_slice */ goto __pyx_L3; } /* "View.MemoryView":730 * p_src = &memviewsliceobj.from_slice * else: * slice_copy(memview, &src) # <<<<<<<<<<<<<< * p_src = &src * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_src)); /* "View.MemoryView":731 * else: * slice_copy(memview, &src) * p_src = &src # <<<<<<<<<<<<<< * * */ __pyx_v_p_src = (&__pyx_v_src); } __pyx_L3:; /* "View.MemoryView":737 * * * dst.memview = p_src.memview # <<<<<<<<<<<<<< * dst.data = p_src.data * */ __pyx_t_4 = __pyx_v_p_src->memview; __pyx_v_dst.memview = __pyx_t_4; /* "View.MemoryView":738 * * dst.memview = p_src.memview * dst.data = p_src.data # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_v_p_src->data; __pyx_v_dst.data = __pyx_t_5; /* "View.MemoryView":743 * * * cdef __Pyx_memviewslice *p_dst = &dst # <<<<<<<<<<<<<< * cdef int *p_suboffset_dim = &suboffset_dim * cdef Py_ssize_t start, stop, step */ __pyx_v_p_dst = (&__pyx_v_dst); /* "View.MemoryView":744 * * cdef __Pyx_memviewslice *p_dst = &dst * cdef int *p_suboffset_dim = &suboffset_dim # <<<<<<<<<<<<<< * cdef Py_ssize_t start, stop, step * cdef bint have_start, have_stop, have_step */ __pyx_v_p_suboffset_dim = (&__pyx_v_suboffset_dim); /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ __pyx_t_6 = 0; if (likely(PyList_CheckExact(__pyx_v_indices)) || PyTuple_CheckExact(__pyx_v_indices)) { __pyx_t_3 = __pyx_v_indices; __Pyx_INCREF(__pyx_t_3); __pyx_t_7 = 0; __pyx_t_8 = NULL; } else { __pyx_t_7 = -1; __pyx_t_3 = PyObject_GetIter(__pyx_v_indices); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = Py_TYPE(__pyx_t_3)->tp_iternext; if (unlikely(!__pyx_t_8)) __PYX_ERR(2, 748, __pyx_L1_error) } for (;;) { if (likely(!__pyx_t_8)) { if (likely(PyList_CheckExact(__pyx_t_3))) { if (__pyx_t_7 >= PyList_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyList_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } else { if (__pyx_t_7 >= PyTuple_GET_SIZE(__pyx_t_3)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_9 = PyTuple_GET_ITEM(__pyx_t_3, __pyx_t_7); __Pyx_INCREF(__pyx_t_9); __pyx_t_7++; if (unlikely(0 < 0)) __PYX_ERR(2, 748, __pyx_L1_error) #else __pyx_t_9 = PySequence_ITEM(__pyx_t_3, __pyx_t_7); __pyx_t_7++; if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 748, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); #endif } } else { __pyx_t_9 = __pyx_t_8(__pyx_t_3); if (unlikely(!__pyx_t_9)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); else __PYX_ERR(2, 748, __pyx_L1_error) } break; } __Pyx_GOTREF(__pyx_t_9); } __Pyx_XDECREF_SET(__pyx_v_index, __pyx_t_9); __pyx_t_9 = 0; __pyx_v_dim = __pyx_t_6; __pyx_t_6 = (__pyx_t_6 + 1); /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ __pyx_t_2 = (PyIndex_Check(__pyx_v_index) != 0); if (__pyx_t_2) { /* "View.MemoryView":753 * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, * index, 0, 0, # start, stop, step # <<<<<<<<<<<<<< * 0, 0, 0, # have_{start,stop,step} * False) */ __pyx_t_10 = __Pyx_PyIndex_AsSsize_t(__pyx_v_index); if (unlikely((__pyx_t_10 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 753, __pyx_L1_error) /* "View.MemoryView":750 * for dim, index in enumerate(indices): * if PyIndex_Check(index): * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_t_10, 0, 0, 0, 0, 0, 0); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 750, __pyx_L1_error) /* "View.MemoryView":749 * * for dim, index in enumerate(indices): * if PyIndex_Check(index): # <<<<<<<<<<<<<< * slice_memviewslice( * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], */ goto __pyx_L6; } /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ __pyx_t_2 = (__pyx_v_index == Py_None); __pyx_t_1 = (__pyx_t_2 != 0); if (__pyx_t_1) { /* "View.MemoryView":757 * False) * elif index is None: * p_dst.shape[new_ndim] = 1 # <<<<<<<<<<<<<< * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 */ (__pyx_v_p_dst->shape[__pyx_v_new_ndim]) = 1; /* "View.MemoryView":758 * elif index is None: * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 # <<<<<<<<<<<<<< * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 */ (__pyx_v_p_dst->strides[__pyx_v_new_ndim]) = 0; /* "View.MemoryView":759 * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 # <<<<<<<<<<<<<< * new_ndim += 1 * else: */ (__pyx_v_p_dst->suboffsets[__pyx_v_new_ndim]) = -1L; /* "View.MemoryView":760 * p_dst.strides[new_ndim] = 0 * p_dst.suboffsets[new_ndim] = -1 * new_ndim += 1 # <<<<<<<<<<<<<< * else: * start = index.start or 0 */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); /* "View.MemoryView":756 * 0, 0, 0, # have_{start,stop,step} * False) * elif index is None: # <<<<<<<<<<<<<< * p_dst.shape[new_ndim] = 1 * p_dst.strides[new_ndim] = 0 */ goto __pyx_L6; } /* "View.MemoryView":762 * new_ndim += 1 * else: * start = index.start or 0 # <<<<<<<<<<<<<< * stop = index.stop or 0 * step = index.step or 0 */ /*else*/ { __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 762, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 762, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 762, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L7_bool_binop_done; } __pyx_t_10 = 0; __pyx_L7_bool_binop_done:; __pyx_v_start = __pyx_t_10; /* "View.MemoryView":763 * else: * start = index.start or 0 * stop = index.stop or 0 # <<<<<<<<<<<<<< * step = index.step or 0 * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 763, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 763, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 763, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L9_bool_binop_done; } __pyx_t_10 = 0; __pyx_L9_bool_binop_done:; __pyx_v_stop = __pyx_t_10; /* "View.MemoryView":764 * start = index.start or 0 * stop = index.stop or 0 * step = index.step or 0 # <<<<<<<<<<<<<< * * have_start = index.start is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 764, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(2, 764, __pyx_L1_error) if (!__pyx_t_1) { __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else { __pyx_t_12 = __Pyx_PyIndex_AsSsize_t(__pyx_t_9); if (unlikely((__pyx_t_12 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 764, __pyx_L1_error) __pyx_t_10 = __pyx_t_12; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L11_bool_binop_done; } __pyx_t_10 = 0; __pyx_L11_bool_binop_done:; __pyx_v_step = __pyx_t_10; /* "View.MemoryView":766 * step = index.step or 0 * * have_start = index.start is not None # <<<<<<<<<<<<<< * have_stop = index.stop is not None * have_step = index.step is not None */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_start); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_start = __pyx_t_1; /* "View.MemoryView":767 * * have_start = index.start is not None * have_stop = index.stop is not None # <<<<<<<<<<<<<< * have_step = index.step is not None * */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_stop); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 767, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_stop = __pyx_t_1; /* "View.MemoryView":768 * have_start = index.start is not None * have_stop = index.stop is not None * have_step = index.step is not None # <<<<<<<<<<<<<< * * slice_memviewslice( */ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_index, __pyx_n_s_step); if (unlikely(!__pyx_t_9)) __PYX_ERR(2, 768, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_1 = (__pyx_t_9 != Py_None); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_have_step = __pyx_t_1; /* "View.MemoryView":770 * have_step = index.step is not None * * slice_memviewslice( # <<<<<<<<<<<<<< * p_dst, p_src.shape[dim], p_src.strides[dim], p_src.suboffsets[dim], * dim, new_ndim, p_suboffset_dim, */ __pyx_t_11 = __pyx_memoryview_slice_memviewslice(__pyx_v_p_dst, (__pyx_v_p_src->shape[__pyx_v_dim]), (__pyx_v_p_src->strides[__pyx_v_dim]), (__pyx_v_p_src->suboffsets[__pyx_v_dim]), __pyx_v_dim, __pyx_v_new_ndim, __pyx_v_p_suboffset_dim, __pyx_v_start, __pyx_v_stop, __pyx_v_step, __pyx_v_have_start, __pyx_v_have_stop, __pyx_v_have_step, 1); if (unlikely(__pyx_t_11 == ((int)-1))) __PYX_ERR(2, 770, __pyx_L1_error) /* "View.MemoryView":776 * have_start, have_stop, have_step, * True) * new_ndim += 1 # <<<<<<<<<<<<<< * * if isinstance(memview, _memoryviewslice): */ __pyx_v_new_ndim = (__pyx_v_new_ndim + 1); } __pyx_L6:; /* "View.MemoryView":748 * cdef bint have_start, have_stop, have_step * * for dim, index in enumerate(indices): # <<<<<<<<<<<<<< * if PyIndex_Check(index): * slice_memviewslice( */ } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":780 * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, # <<<<<<<<<<<<<< * memviewsliceobj.to_dtype_func, * memview.dtype_is_object) */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 780, __pyx_L1_error) } /* "View.MemoryView":781 * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, # <<<<<<<<<<<<<< * memview.dtype_is_object) * else: */ if (unlikely(!__pyx_v_memviewsliceobj)) { __Pyx_RaiseUnboundLocalError("memviewsliceobj"); __PYX_ERR(2, 781, __pyx_L1_error) } /* "View.MemoryView":779 * * if isinstance(memview, _memoryviewslice): * return memoryview_fromslice(dst, new_ndim, # <<<<<<<<<<<<<< * memviewsliceobj.to_object_func, * memviewsliceobj.to_dtype_func, */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, __pyx_v_memviewsliceobj->to_object_func, __pyx_v_memviewsliceobj->to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 779, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 779, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; /* "View.MemoryView":778 * new_ndim += 1 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * return memoryview_fromslice(dst, new_ndim, * memviewsliceobj.to_object_func, */ } /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ /*else*/ { __Pyx_XDECREF(((PyObject *)__pyx_r)); /* "View.MemoryView":785 * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_dst, __pyx_v_new_ndim, NULL, NULL, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 784, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); /* "View.MemoryView":784 * memview.dtype_is_object) * else: * return memoryview_fromslice(dst, new_ndim, NULL, NULL, # <<<<<<<<<<<<<< * memview.dtype_is_object) * */ if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_memoryview_type))))) __PYX_ERR(2, 784, __pyx_L1_error) __pyx_r = ((struct __pyx_memoryview_obj *)__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L0; } /* "View.MemoryView":712 * * @cname('__pyx_memview_slice') * cdef memoryview memview_slice(memoryview memview, object indices): # <<<<<<<<<<<<<< * cdef int new_ndim = 0, suboffset_dim = -1, dim * cdef bint negative_step */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("View.MemoryView.memview_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_memviewsliceobj); __Pyx_XDECREF(__pyx_v_index); __Pyx_XGIVEREF((PyObject *)__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ static int __pyx_memoryview_slice_memviewslice(__Pyx_memviewslice *__pyx_v_dst, Py_ssize_t __pyx_v_shape, Py_ssize_t __pyx_v_stride, Py_ssize_t __pyx_v_suboffset, int __pyx_v_dim, int __pyx_v_new_ndim, int *__pyx_v_suboffset_dim, Py_ssize_t __pyx_v_start, Py_ssize_t __pyx_v_stop, Py_ssize_t __pyx_v_step, int __pyx_v_have_start, int __pyx_v_have_stop, int __pyx_v_have_step, int __pyx_v_is_slice) { Py_ssize_t __pyx_v_new_shape; int __pyx_v_negative_step; int __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ __pyx_t_1 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_1) { /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ __pyx_t_1 = ((__pyx_v_start < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":832 * * if start < 0: * start += shape # <<<<<<<<<<<<<< * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":831 * if not is_slice: * * if start < 0: # <<<<<<<<<<<<<< * start += shape * if not 0 <= start < shape: */ } /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ __pyx_t_1 = (0 <= __pyx_v_start); if (__pyx_t_1) { __pyx_t_1 = (__pyx_v_start < __pyx_v_shape); } __pyx_t_2 = ((!(__pyx_t_1 != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":834 * start += shape * if not 0 <= start < shape: * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) # <<<<<<<<<<<<<< * else: * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"Index out of bounds (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 834, __pyx_L1_error) /* "View.MemoryView":833 * if start < 0: * start += shape * if not 0 <= start < shape: # <<<<<<<<<<<<<< * _err_dim(IndexError, "Index out of bounds (axis %d)", dim) * else: */ } /* "View.MemoryView":829 * cdef bint negative_step * * if not is_slice: # <<<<<<<<<<<<<< * * if start < 0: */ goto __pyx_L3; } /* "View.MemoryView":837 * else: * * negative_step = have_step != 0 and step < 0 # <<<<<<<<<<<<<< * * if have_step and step == 0: */ /*else*/ { __pyx_t_1 = ((__pyx_v_have_step != 0) != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L6_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step < 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L6_bool_binop_done:; __pyx_v_negative_step = __pyx_t_2; /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ __pyx_t_1 = (__pyx_v_have_step != 0); if (__pyx_t_1) { } else { __pyx_t_2 = __pyx_t_1; goto __pyx_L9_bool_binop_done; } __pyx_t_1 = ((__pyx_v_step == 0) != 0); __pyx_t_2 = __pyx_t_1; __pyx_L9_bool_binop_done:; if (__pyx_t_2) { /* "View.MemoryView":840 * * if have_step and step == 0: * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Step may not be zero (axis %d)"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 840, __pyx_L1_error) /* "View.MemoryView":839 * negative_step = have_step != 0 and step < 0 * * if have_step and step == 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Step may not be zero (axis %d)", dim) * */ } /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ __pyx_t_2 = (__pyx_v_have_start != 0); if (__pyx_t_2) { /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":845 * if have_start: * if start < 0: * start += shape # <<<<<<<<<<<<<< * if start < 0: * start = 0 */ __pyx_v_start = (__pyx_v_start + __pyx_v_shape); /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ __pyx_t_2 = ((__pyx_v_start < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":847 * start += shape * if start < 0: * start = 0 # <<<<<<<<<<<<<< * elif start >= shape: * if negative_step: */ __pyx_v_start = 0; /* "View.MemoryView":846 * if start < 0: * start += shape * if start < 0: # <<<<<<<<<<<<<< * start = 0 * elif start >= shape: */ } /* "View.MemoryView":844 * * if have_start: * if start < 0: # <<<<<<<<<<<<<< * start += shape * if start < 0: */ goto __pyx_L12; } /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ __pyx_t_2 = ((__pyx_v_start >= __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":850 * elif start >= shape: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = shape */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":849 * start = 0 * elif start >= shape: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L14; } /* "View.MemoryView":852 * start = shape - 1 * else: * start = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ /*else*/ { __pyx_v_start = __pyx_v_shape; } __pyx_L14:; /* "View.MemoryView":848 * if start < 0: * start = 0 * elif start >= shape: # <<<<<<<<<<<<<< * if negative_step: * start = shape - 1 */ } __pyx_L12:; /* "View.MemoryView":843 * * * if have_start: # <<<<<<<<<<<<<< * if start < 0: * start += shape */ goto __pyx_L11; } /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":855 * else: * if negative_step: * start = shape - 1 # <<<<<<<<<<<<<< * else: * start = 0 */ __pyx_v_start = (__pyx_v_shape - 1); /* "View.MemoryView":854 * start = shape * else: * if negative_step: # <<<<<<<<<<<<<< * start = shape - 1 * else: */ goto __pyx_L15; } /* "View.MemoryView":857 * start = shape - 1 * else: * start = 0 # <<<<<<<<<<<<<< * * if have_stop: */ /*else*/ { __pyx_v_start = 0; } __pyx_L15:; } __pyx_L11:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ __pyx_t_2 = (__pyx_v_have_stop != 0); if (__pyx_t_2) { /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":861 * if have_stop: * if stop < 0: * stop += shape # <<<<<<<<<<<<<< * if stop < 0: * stop = 0 */ __pyx_v_stop = (__pyx_v_stop + __pyx_v_shape); /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ __pyx_t_2 = ((__pyx_v_stop < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":863 * stop += shape * if stop < 0: * stop = 0 # <<<<<<<<<<<<<< * elif stop > shape: * stop = shape */ __pyx_v_stop = 0; /* "View.MemoryView":862 * if stop < 0: * stop += shape * if stop < 0: # <<<<<<<<<<<<<< * stop = 0 * elif stop > shape: */ } /* "View.MemoryView":860 * * if have_stop: * if stop < 0: # <<<<<<<<<<<<<< * stop += shape * if stop < 0: */ goto __pyx_L17; } /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ __pyx_t_2 = ((__pyx_v_stop > __pyx_v_shape) != 0); if (__pyx_t_2) { /* "View.MemoryView":865 * stop = 0 * elif stop > shape: * stop = shape # <<<<<<<<<<<<<< * else: * if negative_step: */ __pyx_v_stop = __pyx_v_shape; /* "View.MemoryView":864 * if stop < 0: * stop = 0 * elif stop > shape: # <<<<<<<<<<<<<< * stop = shape * else: */ } __pyx_L17:; /* "View.MemoryView":859 * start = 0 * * if have_stop: # <<<<<<<<<<<<<< * if stop < 0: * stop += shape */ goto __pyx_L16; } /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ /*else*/ { __pyx_t_2 = (__pyx_v_negative_step != 0); if (__pyx_t_2) { /* "View.MemoryView":868 * else: * if negative_step: * stop = -1 # <<<<<<<<<<<<<< * else: * stop = shape */ __pyx_v_stop = -1L; /* "View.MemoryView":867 * stop = shape * else: * if negative_step: # <<<<<<<<<<<<<< * stop = -1 * else: */ goto __pyx_L19; } /* "View.MemoryView":870 * stop = -1 * else: * stop = shape # <<<<<<<<<<<<<< * * if not have_step: */ /*else*/ { __pyx_v_stop = __pyx_v_shape; } __pyx_L19:; } __pyx_L16:; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ __pyx_t_2 = ((!(__pyx_v_have_step != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":873 * * if not have_step: * step = 1 # <<<<<<<<<<<<<< * * */ __pyx_v_step = 1; /* "View.MemoryView":872 * stop = shape * * if not have_step: # <<<<<<<<<<<<<< * step = 1 * */ } /* "View.MemoryView":877 * * with cython.cdivision(True): * new_shape = (stop - start) // step # <<<<<<<<<<<<<< * * if (stop - start) - step * new_shape: */ __pyx_v_new_shape = ((__pyx_v_stop - __pyx_v_start) / __pyx_v_step); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ __pyx_t_2 = (((__pyx_v_stop - __pyx_v_start) - (__pyx_v_step * __pyx_v_new_shape)) != 0); if (__pyx_t_2) { /* "View.MemoryView":880 * * if (stop - start) - step * new_shape: * new_shape += 1 # <<<<<<<<<<<<<< * * if new_shape < 0: */ __pyx_v_new_shape = (__pyx_v_new_shape + 1); /* "View.MemoryView":879 * new_shape = (stop - start) // step * * if (stop - start) - step * new_shape: # <<<<<<<<<<<<<< * new_shape += 1 * */ } /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ __pyx_t_2 = ((__pyx_v_new_shape < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":883 * * if new_shape < 0: * new_shape = 0 # <<<<<<<<<<<<<< * * */ __pyx_v_new_shape = 0; /* "View.MemoryView":882 * new_shape += 1 * * if new_shape < 0: # <<<<<<<<<<<<<< * new_shape = 0 * */ } /* "View.MemoryView":886 * * * dst.strides[new_ndim] = stride * step # <<<<<<<<<<<<<< * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset */ (__pyx_v_dst->strides[__pyx_v_new_ndim]) = (__pyx_v_stride * __pyx_v_step); /* "View.MemoryView":887 * * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape # <<<<<<<<<<<<<< * dst.suboffsets[new_ndim] = suboffset * */ (__pyx_v_dst->shape[__pyx_v_new_ndim]) = __pyx_v_new_shape; /* "View.MemoryView":888 * dst.strides[new_ndim] = stride * step * dst.shape[new_ndim] = new_shape * dst.suboffsets[new_ndim] = suboffset # <<<<<<<<<<<<<< * * */ (__pyx_v_dst->suboffsets[__pyx_v_new_ndim]) = __pyx_v_suboffset; } __pyx_L3:; /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ __pyx_t_2 = (((__pyx_v_suboffset_dim[0]) < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":892 * * if suboffset_dim[0] < 0: * dst.data += start * stride # <<<<<<<<<<<<<< * else: * dst.suboffsets[suboffset_dim[0]] += start * stride */ __pyx_v_dst->data = (__pyx_v_dst->data + (__pyx_v_start * __pyx_v_stride)); /* "View.MemoryView":891 * * * if suboffset_dim[0] < 0: # <<<<<<<<<<<<<< * dst.data += start * stride * else: */ goto __pyx_L23; } /* "View.MemoryView":894 * dst.data += start * stride * else: * dst.suboffsets[suboffset_dim[0]] += start * stride # <<<<<<<<<<<<<< * * if suboffset >= 0: */ /*else*/ { __pyx_t_3 = (__pyx_v_suboffset_dim[0]); (__pyx_v_dst->suboffsets[__pyx_t_3]) = ((__pyx_v_dst->suboffsets[__pyx_t_3]) + (__pyx_v_start * __pyx_v_stride)); } __pyx_L23:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset */ __pyx_t_2 = ((!(__pyx_v_is_slice != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = (<char **> dst.data)[0] + suboffset * else: */ __pyx_t_2 = ((__pyx_v_new_ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":899 * if not is_slice: * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset # <<<<<<<<<<<<<< * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " */ __pyx_v_dst->data = ((((char **)__pyx_v_dst->data)[0]) + __pyx_v_suboffset); /* "View.MemoryView":898 * if suboffset >= 0: * if not is_slice: * if new_ndim == 0: # <<<<<<<<<<<<<< * dst.data = (<char **> dst.data)[0] + suboffset * else: */ goto __pyx_L26; } /* "View.MemoryView":901 * dst.data = (<char **> dst.data)[0] + suboffset * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " # <<<<<<<<<<<<<< * "must be indexed and not sliced", dim) * else: */ /*else*/ { /* "View.MemoryView":902 * else: * _err_dim(IndexError, "All dimensions preceding dimension %d " * "must be indexed and not sliced", dim) # <<<<<<<<<<<<<< * else: * suboffset_dim[0] = new_ndim */ __pyx_t_3 = __pyx_memoryview_err_dim(__pyx_builtin_IndexError, ((char *)"All dimensions preceding dimension %d must be indexed and not sliced"), __pyx_v_dim); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 901, __pyx_L1_error) } __pyx_L26:; /* "View.MemoryView":897 * * if suboffset >= 0: * if not is_slice: # <<<<<<<<<<<<<< * if new_ndim == 0: * dst.data = (<char **> dst.data)[0] + suboffset */ goto __pyx_L25; } /* "View.MemoryView":904 * "must be indexed and not sliced", dim) * else: * suboffset_dim[0] = new_ndim # <<<<<<<<<<<<<< * * return 0 */ /*else*/ { (__pyx_v_suboffset_dim[0]) = __pyx_v_new_ndim; } __pyx_L25:; /* "View.MemoryView":896 * dst.suboffsets[suboffset_dim[0]] += start * stride * * if suboffset >= 0: # <<<<<<<<<<<<<< * if not is_slice: * if new_ndim == 0: */ } /* "View.MemoryView":906 * suboffset_dim[0] = new_ndim * * return 0 # <<<<<<<<<<<<<< * * */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":809 * * @cname('__pyx_memoryview_slice_memviewslice') * cdef int slice_memviewslice( # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * Py_ssize_t shape, Py_ssize_t stride, Py_ssize_t suboffset, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.slice_memviewslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ static char *__pyx_pybuffer_index(Py_buffer *__pyx_v_view, char *__pyx_v_bufp, Py_ssize_t __pyx_v_index, Py_ssize_t __pyx_v_dim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_suboffset; Py_ssize_t __pyx_v_itemsize; char *__pyx_v_resultp; char *__pyx_r; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("pybuffer_index", 0); /* "View.MemoryView":914 * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 # <<<<<<<<<<<<<< * cdef Py_ssize_t itemsize = view.itemsize * cdef char *resultp */ __pyx_v_suboffset = -1L; /* "View.MemoryView":915 * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 * cdef Py_ssize_t itemsize = view.itemsize # <<<<<<<<<<<<<< * cdef char *resultp * */ __pyx_t_1 = __pyx_v_view->itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ __pyx_t_2 = ((__pyx_v_view->ndim == 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":919 * * if view.ndim == 0: * shape = view.len / itemsize # <<<<<<<<<<<<<< * stride = itemsize * else: */ if (unlikely(__pyx_v_itemsize == 0)) { PyErr_SetString(PyExc_ZeroDivisionError, "integer division or modulo by zero"); __PYX_ERR(2, 919, __pyx_L1_error) } else if (sizeof(Py_ssize_t) == sizeof(long) && (!(((Py_ssize_t)-1) > 0)) && unlikely(__pyx_v_itemsize == (Py_ssize_t)-1) && unlikely(UNARY_NEG_WOULD_OVERFLOW(__pyx_v_view->len))) { PyErr_SetString(PyExc_OverflowError, "value too large to perform division"); __PYX_ERR(2, 919, __pyx_L1_error) } __pyx_v_shape = __Pyx_div_Py_ssize_t(__pyx_v_view->len, __pyx_v_itemsize); /* "View.MemoryView":920 * if view.ndim == 0: * shape = view.len / itemsize * stride = itemsize # <<<<<<<<<<<<<< * else: * shape = view.shape[dim] */ __pyx_v_stride = __pyx_v_itemsize; /* "View.MemoryView":918 * cdef char *resultp * * if view.ndim == 0: # <<<<<<<<<<<<<< * shape = view.len / itemsize * stride = itemsize */ goto __pyx_L3; } /* "View.MemoryView":922 * stride = itemsize * else: * shape = view.shape[dim] # <<<<<<<<<<<<<< * stride = view.strides[dim] * if view.suboffsets != NULL: */ /*else*/ { __pyx_v_shape = (__pyx_v_view->shape[__pyx_v_dim]); /* "View.MemoryView":923 * else: * shape = view.shape[dim] * stride = view.strides[dim] # <<<<<<<<<<<<<< * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] */ __pyx_v_stride = (__pyx_v_view->strides[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ __pyx_t_2 = ((__pyx_v_view->suboffsets != NULL) != 0); if (__pyx_t_2) { /* "View.MemoryView":925 * stride = view.strides[dim] * if view.suboffsets != NULL: * suboffset = view.suboffsets[dim] # <<<<<<<<<<<<<< * * if index < 0: */ __pyx_v_suboffset = (__pyx_v_view->suboffsets[__pyx_v_dim]); /* "View.MemoryView":924 * shape = view.shape[dim] * stride = view.strides[dim] * if view.suboffsets != NULL: # <<<<<<<<<<<<<< * suboffset = view.suboffsets[dim] * */ } } __pyx_L3:; /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":928 * * if index < 0: * index += view.shape[dim] # <<<<<<<<<<<<<< * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) */ __pyx_v_index = (__pyx_v_index + (__pyx_v_view->shape[__pyx_v_dim])); /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index < 0) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":930 * index += view.shape[dim] * if index < 0: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * if index >= shape: */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 930, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 930, __pyx_L1_error) /* "View.MemoryView":929 * if index < 0: * index += view.shape[dim] * if index < 0: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":927 * suboffset = view.suboffsets[dim] * * if index < 0: # <<<<<<<<<<<<<< * index += view.shape[dim] * if index < 0: */ } /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ __pyx_t_2 = ((__pyx_v_index >= __pyx_v_shape) != 0); if (unlikely(__pyx_t_2)) { /* "View.MemoryView":933 * * if index >= shape: * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) # <<<<<<<<<<<<<< * * resultp = bufp + index * stride */ __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyString_Format(__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_IndexError, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 933, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(2, 933, __pyx_L1_error) /* "View.MemoryView":932 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * if index >= shape: # <<<<<<<<<<<<<< * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * */ } /* "View.MemoryView":935 * raise IndexError("Out of bounds on buffer access (axis %d)" % dim) * * resultp = bufp + index * stride # <<<<<<<<<<<<<< * if suboffset >= 0: * resultp = (<char **> resultp)[0] + suboffset */ __pyx_v_resultp = (__pyx_v_bufp + (__pyx_v_index * __pyx_v_stride)); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = (<char **> resultp)[0] + suboffset * */ __pyx_t_2 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":937 * resultp = bufp + index * stride * if suboffset >= 0: * resultp = (<char **> resultp)[0] + suboffset # <<<<<<<<<<<<<< * * return resultp */ __pyx_v_resultp = ((((char **)__pyx_v_resultp)[0]) + __pyx_v_suboffset); /* "View.MemoryView":936 * * resultp = bufp + index * stride * if suboffset >= 0: # <<<<<<<<<<<<<< * resultp = (<char **> resultp)[0] + suboffset * */ } /* "View.MemoryView":939 * resultp = (<char **> resultp)[0] + suboffset * * return resultp # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_resultp; goto __pyx_L0; /* "View.MemoryView":912 * * @cname('__pyx_pybuffer_index') * cdef char *pybuffer_index(Py_buffer *view, char *bufp, Py_ssize_t index, # <<<<<<<<<<<<<< * Py_ssize_t dim) except NULL: * cdef Py_ssize_t shape, stride, suboffset = -1 */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView.pybuffer_index", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ static int __pyx_memslice_transpose(__Pyx_memviewslice *__pyx_v_memslice) { int __pyx_v_ndim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; int __pyx_v_i; int __pyx_v_j; int __pyx_r; int __pyx_t_1; Py_ssize_t *__pyx_t_2; long __pyx_t_3; long __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; int __pyx_t_7; int __pyx_t_8; int __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":946 * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: * cdef int ndim = memslice.memview.view.ndim # <<<<<<<<<<<<<< * * cdef Py_ssize_t *shape = memslice.shape */ __pyx_t_1 = __pyx_v_memslice->memview->view.ndim; __pyx_v_ndim = __pyx_t_1; /* "View.MemoryView":948 * cdef int ndim = memslice.memview.view.ndim * * cdef Py_ssize_t *shape = memslice.shape # <<<<<<<<<<<<<< * cdef Py_ssize_t *strides = memslice.strides * */ __pyx_t_2 = __pyx_v_memslice->shape; __pyx_v_shape = __pyx_t_2; /* "View.MemoryView":949 * * cdef Py_ssize_t *shape = memslice.shape * cdef Py_ssize_t *strides = memslice.strides # <<<<<<<<<<<<<< * * */ __pyx_t_2 = __pyx_v_memslice->strides; __pyx_v_strides = __pyx_t_2; /* "View.MemoryView":953 * * cdef int i, j * for i in range(ndim / 2): # <<<<<<<<<<<<<< * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] */ __pyx_t_3 = __Pyx_div_long(__pyx_v_ndim, 2); __pyx_t_4 = __pyx_t_3; for (__pyx_t_1 = 0; __pyx_t_1 < __pyx_t_4; __pyx_t_1+=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":954 * cdef int i, j * for i in range(ndim / 2): * j = ndim - 1 - i # <<<<<<<<<<<<<< * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] */ __pyx_v_j = ((__pyx_v_ndim - 1) - __pyx_v_i); /* "View.MemoryView":955 * for i in range(ndim / 2): * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] # <<<<<<<<<<<<<< * shape[i], shape[j] = shape[j], shape[i] * */ __pyx_t_5 = (__pyx_v_strides[__pyx_v_j]); __pyx_t_6 = (__pyx_v_strides[__pyx_v_i]); (__pyx_v_strides[__pyx_v_i]) = __pyx_t_5; (__pyx_v_strides[__pyx_v_j]) = __pyx_t_6; /* "View.MemoryView":956 * j = ndim - 1 - i * strides[i], strides[j] = strides[j], strides[i] * shape[i], shape[j] = shape[j], shape[i] # <<<<<<<<<<<<<< * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: */ __pyx_t_6 = (__pyx_v_shape[__pyx_v_j]); __pyx_t_5 = (__pyx_v_shape[__pyx_v_i]); (__pyx_v_shape[__pyx_v_i]) = __pyx_t_6; (__pyx_v_shape[__pyx_v_j]) = __pyx_t_5; /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_i]) >= 0) != 0); if (!__pyx_t_8) { } else { __pyx_t_7 = __pyx_t_8; goto __pyx_L6_bool_binop_done; } __pyx_t_8 = (((__pyx_v_memslice->suboffsets[__pyx_v_j]) >= 0) != 0); __pyx_t_7 = __pyx_t_8; __pyx_L6_bool_binop_done:; if (__pyx_t_7) { /* "View.MemoryView":959 * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") # <<<<<<<<<<<<<< * * return 1 */ __pyx_t_9 = __pyx_memoryview_err(__pyx_builtin_ValueError, ((char *)"Cannot transpose memoryview with indirect dimensions")); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(2, 959, __pyx_L1_error) /* "View.MemoryView":958 * shape[i], shape[j] = shape[j], shape[i] * * if memslice.suboffsets[i] >= 0 or memslice.suboffsets[j] >= 0: # <<<<<<<<<<<<<< * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * */ } } /* "View.MemoryView":961 * _err(ValueError, "Cannot transpose memoryview with indirect dimensions") * * return 1 # <<<<<<<<<<<<<< * * */ __pyx_r = 1; goto __pyx_L0; /* "View.MemoryView":945 * * @cname('__pyx_memslice_transpose') * cdef int transpose_memslice(__Pyx_memviewslice *memslice) nogil except 0: # <<<<<<<<<<<<<< * cdef int ndim = memslice.memview.view.ndim * */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.transpose_memslice", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = 0; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* Python wrapper */ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self); /*proto*/ static void __pyx_memoryviewslice___dealloc__(PyObject *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__ (wrapper)", 0); __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_memoryviewslice___pyx_pf_15View_dot_MemoryView_16_memoryviewslice___dealloc__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__dealloc__", 0); /* "View.MemoryView":979 * * def __dealloc__(self): * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) # <<<<<<<<<<<<<< * * cdef convert_item_to_object(self, char *itemp): */ __PYX_XDEC_MEMVIEW((&__pyx_v_self->from_slice), 1); /* "View.MemoryView":978 * cdef int (*to_dtype_func)(char *, object) except 0 * * def __dealloc__(self): # <<<<<<<<<<<<<< * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("convert_item_to_object", 0); /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ __pyx_t_1 = ((__pyx_v_self->to_object_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":983 * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: * return self.to_object_func(itemp) # <<<<<<<<<<<<<< * else: * return memoryview.convert_item_to_object(self, itemp) */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_v_self->to_object_func(__pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 983, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "View.MemoryView":982 * * cdef convert_item_to_object(self, char *itemp): * if self.to_object_func != NULL: # <<<<<<<<<<<<<< * return self.to_object_func(itemp) * else: */ } /* "View.MemoryView":985 * return self.to_object_func(itemp) * else: * return memoryview.convert_item_to_object(self, itemp) # <<<<<<<<<<<<<< * * cdef assign_item_from_object(self, char *itemp, object value): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_memoryview_convert_item_to_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 985, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; } /* "View.MemoryView":981 * __PYX_XDEC_MEMVIEW(&self.from_slice, 1) * * cdef convert_item_to_object(self, char *itemp): # <<<<<<<<<<<<<< * if self.to_object_func != NULL: * return self.to_object_func(itemp) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.convert_item_to_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("assign_item_from_object", 0); /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ __pyx_t_1 = ((__pyx_v_self->to_dtype_func != NULL) != 0); if (__pyx_t_1) { /* "View.MemoryView":989 * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) # <<<<<<<<<<<<<< * else: * memoryview.assign_item_from_object(self, itemp, value) */ __pyx_t_2 = __pyx_v_self->to_dtype_func(__pyx_v_itemp, __pyx_v_value); if (unlikely(__pyx_t_2 == ((int)0))) __PYX_ERR(2, 989, __pyx_L1_error) /* "View.MemoryView":988 * * cdef assign_item_from_object(self, char *itemp, object value): * if self.to_dtype_func != NULL: # <<<<<<<<<<<<<< * self.to_dtype_func(itemp, value) * else: */ goto __pyx_L3; } /* "View.MemoryView":991 * self.to_dtype_func(itemp, value) * else: * memoryview.assign_item_from_object(self, itemp, value) # <<<<<<<<<<<<<< * * @property */ /*else*/ { __pyx_t_3 = __pyx_memoryview_assign_item_from_object(((struct __pyx_memoryview_obj *)__pyx_v_self), __pyx_v_itemp, __pyx_v_value); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 991, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; /* "View.MemoryView":987 * return memoryview.convert_item_to_object(self, itemp) * * cdef assign_item_from_object(self, char *itemp, object value): # <<<<<<<<<<<<<< * if self.to_dtype_func != NULL: * self.to_dtype_func(itemp, value) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.assign_item_from_object", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView_16_memoryviewslice_4base___get__(struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); /* "View.MemoryView":995 * @property * def base(self): * return self.from_object # <<<<<<<<<<<<<< * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->from_object); __pyx_r = __pyx_v_self->from_object; goto __pyx_L0; /* "View.MemoryView":994 * * @property * def base(self): # <<<<<<<<<<<<<< * return self.from_object * */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_1__reduce_cython__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice___reduce_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice___reduce_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__reduce_cython__", 0); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 2, __pyx_L1_error) /* "(tree fragment)":1 * def __reduce_cython__(self): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__reduce_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* Python wrapper */ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state); /*proto*/ static PyObject *__pyx_pw___pyx_memoryviewslice_3__setstate_cython__(PyObject *__pyx_v_self, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate_cython__ (wrapper)", 0); __pyx_r = __pyx_pf___pyx_memoryviewslice_2__setstate_cython__(((struct __pyx_memoryviewslice_obj *)__pyx_v_self), ((PyObject *)__pyx_v___pyx_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf___pyx_memoryviewslice_2__setstate_cython__(CYTHON_UNUSED struct __pyx_memoryviewslice_obj *__pyx_v_self, CYTHON_UNUSED PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__setstate_cython__", 0); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 4, __pyx_L1_error) /* "(tree fragment)":3 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): # <<<<<<<<<<<<<< * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView._memoryviewslice.__setstate_cython__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ static PyObject *__pyx_memoryview_fromslice(__Pyx_memviewslice __pyx_v_memviewslice, int __pyx_v_ndim, PyObject *(*__pyx_v_to_object_func)(char *), int (*__pyx_v_to_dtype_func)(char *, PyObject *), int __pyx_v_dtype_is_object) { struct __pyx_memoryviewslice_obj *__pyx_v_result = 0; Py_ssize_t __pyx_v_suboffset; PyObject *__pyx_v_length = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_TypeInfo *__pyx_t_4; Py_buffer __pyx_t_5; Py_ssize_t *__pyx_t_6; Py_ssize_t *__pyx_t_7; Py_ssize_t *__pyx_t_8; Py_ssize_t __pyx_t_9; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_fromslice", 0); /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if <PyObject *> memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ __pyx_t_1 = ((((PyObject *)__pyx_v_memviewslice.memview) == Py_None) != 0); if (__pyx_t_1) { /* "View.MemoryView":1010 * * if <PyObject *> memviewslice.memview == Py_None: * return None # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "View.MemoryView":1009 * cdef _memoryviewslice result * * if <PyObject *> memviewslice.memview == Py_None: # <<<<<<<<<<<<<< * return None * */ } /* "View.MemoryView":1015 * * * result = _memoryviewslice(None, 0, dtype_is_object) # <<<<<<<<<<<<<< * * result.from_slice = memviewslice */ __pyx_t_2 = __Pyx_PyBool_FromLong(__pyx_v_dtype_is_object); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); PyTuple_SET_ITEM(__pyx_t_3, 0, Py_None); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_0); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)__pyx_memoryviewslice_type), __pyx_t_3, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1015, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result = ((struct __pyx_memoryviewslice_obj *)__pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1017 * result = _memoryviewslice(None, 0, dtype_is_object) * * result.from_slice = memviewslice # <<<<<<<<<<<<<< * __PYX_INC_MEMVIEW(&memviewslice, 1) * */ __pyx_v_result->from_slice = __pyx_v_memviewslice; /* "View.MemoryView":1018 * * result.from_slice = memviewslice * __PYX_INC_MEMVIEW(&memviewslice, 1) # <<<<<<<<<<<<<< * * result.from_object = (<memoryview> memviewslice.memview).base */ __PYX_INC_MEMVIEW((&__pyx_v_memviewslice), 1); /* "View.MemoryView":1020 * __PYX_INC_MEMVIEW(&memviewslice, 1) * * result.from_object = (<memoryview> memviewslice.memview).base # <<<<<<<<<<<<<< * result.typeinfo = memviewslice.memview.typeinfo * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_memviewslice.memview), __pyx_n_s_base); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1020, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_2); __Pyx_GOTREF(__pyx_v_result->from_object); __Pyx_DECREF(__pyx_v_result->from_object); __pyx_v_result->from_object = __pyx_t_2; __pyx_t_2 = 0; /* "View.MemoryView":1021 * * result.from_object = (<memoryview> memviewslice.memview).base * result.typeinfo = memviewslice.memview.typeinfo # <<<<<<<<<<<<<< * * result.view = memviewslice.memview.view */ __pyx_t_4 = __pyx_v_memviewslice.memview->typeinfo; __pyx_v_result->__pyx_base.typeinfo = __pyx_t_4; /* "View.MemoryView":1023 * result.typeinfo = memviewslice.memview.typeinfo * * result.view = memviewslice.memview.view # <<<<<<<<<<<<<< * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim */ __pyx_t_5 = __pyx_v_memviewslice.memview->view; __pyx_v_result->__pyx_base.view = __pyx_t_5; /* "View.MemoryView":1024 * * result.view = memviewslice.memview.view * result.view.buf = <void *> memviewslice.data # <<<<<<<<<<<<<< * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None */ __pyx_v_result->__pyx_base.view.buf = ((void *)__pyx_v_memviewslice.data); /* "View.MemoryView":1025 * result.view = memviewslice.memview.view * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim # <<<<<<<<<<<<<< * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) */ __pyx_v_result->__pyx_base.view.ndim = __pyx_v_ndim; /* "View.MemoryView":1026 * result.view.buf = <void *> memviewslice.data * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None # <<<<<<<<<<<<<< * Py_INCREF(Py_None) * */ ((Py_buffer *)(&__pyx_v_result->__pyx_base.view))->obj = Py_None; /* "View.MemoryView":1027 * result.view.ndim = ndim * (<__pyx_buffer *> &result.view).obj = Py_None * Py_INCREF(Py_None) # <<<<<<<<<<<<<< * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: */ Py_INCREF(Py_None); /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ __pyx_t_1 = ((((struct __pyx_memoryview_obj *)__pyx_v_memviewslice.memview)->flags & PyBUF_WRITABLE) != 0); if (__pyx_t_1) { /* "View.MemoryView":1030 * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: * result.flags = PyBUF_RECORDS # <<<<<<<<<<<<<< * else: * result.flags = PyBUF_RECORDS_RO */ __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS; /* "View.MemoryView":1029 * Py_INCREF(Py_None) * * if (<memoryview>memviewslice.memview).flags & PyBUF_WRITABLE: # <<<<<<<<<<<<<< * result.flags = PyBUF_RECORDS * else: */ goto __pyx_L4; } /* "View.MemoryView":1032 * result.flags = PyBUF_RECORDS * else: * result.flags = PyBUF_RECORDS_RO # <<<<<<<<<<<<<< * * result.view.shape = <Py_ssize_t *> result.from_slice.shape */ /*else*/ { __pyx_v_result->__pyx_base.flags = PyBUF_RECORDS_RO; } __pyx_L4:; /* "View.MemoryView":1034 * result.flags = PyBUF_RECORDS_RO * * result.view.shape = <Py_ssize_t *> result.from_slice.shape # <<<<<<<<<<<<<< * result.view.strides = <Py_ssize_t *> result.from_slice.strides * */ __pyx_v_result->__pyx_base.view.shape = ((Py_ssize_t *)__pyx_v_result->from_slice.shape); /* "View.MemoryView":1035 * * result.view.shape = <Py_ssize_t *> result.from_slice.shape * result.view.strides = <Py_ssize_t *> result.from_slice.strides # <<<<<<<<<<<<<< * * */ __pyx_v_result->__pyx_base.view.strides = ((Py_ssize_t *)__pyx_v_result->from_slice.strides); /* "View.MemoryView":1038 * * * result.view.suboffsets = NULL # <<<<<<<<<<<<<< * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: */ __pyx_v_result->__pyx_base.view.suboffsets = NULL; /* "View.MemoryView":1039 * * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: # <<<<<<<<<<<<<< * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets */ __pyx_t_7 = (__pyx_v_result->from_slice.suboffsets + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->from_slice.suboffsets; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_v_suboffset = (__pyx_t_6[0]); /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break */ __pyx_t_1 = ((__pyx_v_suboffset >= 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1041 * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets # <<<<<<<<<<<<<< * break * */ __pyx_v_result->__pyx_base.view.suboffsets = ((Py_ssize_t *)__pyx_v_result->from_slice.suboffsets); /* "View.MemoryView":1042 * if suboffset >= 0: * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break # <<<<<<<<<<<<<< * * result.view.len = result.view.itemsize */ goto __pyx_L6_break; /* "View.MemoryView":1040 * result.view.suboffsets = NULL * for suboffset in result.from_slice.suboffsets[:ndim]: * if suboffset >= 0: # <<<<<<<<<<<<<< * result.view.suboffsets = <Py_ssize_t *> result.from_slice.suboffsets * break */ } } __pyx_L6_break:; /* "View.MemoryView":1044 * break * * result.view.len = result.view.itemsize # <<<<<<<<<<<<<< * for length in result.view.shape[:ndim]: * result.view.len *= length */ __pyx_t_9 = __pyx_v_result->__pyx_base.view.itemsize; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; /* "View.MemoryView":1045 * * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: # <<<<<<<<<<<<<< * result.view.len *= length * */ __pyx_t_7 = (__pyx_v_result->__pyx_base.view.shape + __pyx_v_ndim); for (__pyx_t_8 = __pyx_v_result->__pyx_base.view.shape; __pyx_t_8 < __pyx_t_7; __pyx_t_8++) { __pyx_t_6 = __pyx_t_8; __pyx_t_2 = PyInt_FromSsize_t((__pyx_t_6[0])); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1045, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_XDECREF_SET(__pyx_v_length, __pyx_t_2); __pyx_t_2 = 0; /* "View.MemoryView":1046 * result.view.len = result.view.itemsize * for length in result.view.shape[:ndim]: * result.view.len *= length # <<<<<<<<<<<<<< * * result.to_object_func = to_object_func */ __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_result->__pyx_base.view.len); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyNumber_InPlaceMultiply(__pyx_t_2, __pyx_v_length); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_9 = __Pyx_PyIndex_AsSsize_t(__pyx_t_3); if (unlikely((__pyx_t_9 == (Py_ssize_t)-1) && PyErr_Occurred())) __PYX_ERR(2, 1046, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_result->__pyx_base.view.len = __pyx_t_9; } /* "View.MemoryView":1048 * result.view.len *= length * * result.to_object_func = to_object_func # <<<<<<<<<<<<<< * result.to_dtype_func = to_dtype_func * */ __pyx_v_result->to_object_func = __pyx_v_to_object_func; /* "View.MemoryView":1049 * * result.to_object_func = to_object_func * result.to_dtype_func = to_dtype_func # <<<<<<<<<<<<<< * * return result */ __pyx_v_result->to_dtype_func = __pyx_v_to_dtype_func; /* "View.MemoryView":1051 * result.to_dtype_func = to_dtype_func * * return result # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_get_slice_from_memoryview') */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_result)); __pyx_r = ((PyObject *)__pyx_v_result); goto __pyx_L0; /* "View.MemoryView":1001 * * @cname('__pyx_memoryview_fromslice') * cdef memoryview_fromslice(__Pyx_memviewslice memviewslice, # <<<<<<<<<<<<<< * int ndim, * object (*to_object_func)(char *), */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.memoryview_fromslice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_result); __Pyx_XDECREF(__pyx_v_length); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ static __Pyx_memviewslice *__pyx_memoryview_get_slice_from_memoryview(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_mslice) { struct __pyx_memoryviewslice_obj *__pyx_v_obj = 0; __Pyx_memviewslice *__pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("get_slice_from_memview", 0); /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1058 * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): * obj = memview # <<<<<<<<<<<<<< * return &obj.from_slice * else: */ if (!(likely(((((PyObject *)__pyx_v_memview)) == Py_None) || likely(__Pyx_TypeTest(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type))))) __PYX_ERR(2, 1058, __pyx_L1_error) __pyx_t_3 = ((PyObject *)__pyx_v_memview); __Pyx_INCREF(__pyx_t_3); __pyx_v_obj = ((struct __pyx_memoryviewslice_obj *)__pyx_t_3); __pyx_t_3 = 0; /* "View.MemoryView":1059 * if isinstance(memview, _memoryviewslice): * obj = memview * return &obj.from_slice # <<<<<<<<<<<<<< * else: * slice_copy(memview, mslice) */ __pyx_r = (&__pyx_v_obj->from_slice); goto __pyx_L0; /* "View.MemoryView":1057 * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * obj = memview * return &obj.from_slice */ } /* "View.MemoryView":1061 * return &obj.from_slice * else: * slice_copy(memview, mslice) # <<<<<<<<<<<<<< * return mslice * */ /*else*/ { __pyx_memoryview_slice_copy(__pyx_v_memview, __pyx_v_mslice); /* "View.MemoryView":1062 * else: * slice_copy(memview, mslice) * return mslice # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_slice_copy') */ __pyx_r = __pyx_v_mslice; goto __pyx_L0; } /* "View.MemoryView":1054 * * @cname('__pyx_memoryview_get_slice_from_memoryview') * cdef __Pyx_memviewslice *get_slice_from_memview(memoryview memview, # <<<<<<<<<<<<<< * __Pyx_memviewslice *mslice) except NULL: * cdef _memoryviewslice obj */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("View.MemoryView.get_slice_from_memview", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_obj); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ static void __pyx_memoryview_slice_copy(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_dst) { int __pyx_v_dim; Py_ssize_t *__pyx_v_shape; Py_ssize_t *__pyx_v_strides; Py_ssize_t *__pyx_v_suboffsets; __Pyx_RefNannyDeclarations Py_ssize_t *__pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; Py_ssize_t __pyx_t_5; __Pyx_RefNannySetupContext("slice_copy", 0); /* "View.MemoryView":1069 * cdef (Py_ssize_t*) shape, strides, suboffsets * * shape = memview.view.shape # <<<<<<<<<<<<<< * strides = memview.view.strides * suboffsets = memview.view.suboffsets */ __pyx_t_1 = __pyx_v_memview->view.shape; __pyx_v_shape = __pyx_t_1; /* "View.MemoryView":1070 * * shape = memview.view.shape * strides = memview.view.strides # <<<<<<<<<<<<<< * suboffsets = memview.view.suboffsets * */ __pyx_t_1 = __pyx_v_memview->view.strides; __pyx_v_strides = __pyx_t_1; /* "View.MemoryView":1071 * shape = memview.view.shape * strides = memview.view.strides * suboffsets = memview.view.suboffsets # <<<<<<<<<<<<<< * * dst.memview = <__pyx_memoryview *> memview */ __pyx_t_1 = __pyx_v_memview->view.suboffsets; __pyx_v_suboffsets = __pyx_t_1; /* "View.MemoryView":1073 * suboffsets = memview.view.suboffsets * * dst.memview = <__pyx_memoryview *> memview # <<<<<<<<<<<<<< * dst.data = <char *> memview.view.buf * */ __pyx_v_dst->memview = ((struct __pyx_memoryview_obj *)__pyx_v_memview); /* "View.MemoryView":1074 * * dst.memview = <__pyx_memoryview *> memview * dst.data = <char *> memview.view.buf # <<<<<<<<<<<<<< * * for dim in range(memview.view.ndim): */ __pyx_v_dst->data = ((char *)__pyx_v_memview->view.buf); /* "View.MemoryView":1076 * dst.data = <char *> memview.view.buf * * for dim in range(memview.view.ndim): # <<<<<<<<<<<<<< * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] */ __pyx_t_2 = __pyx_v_memview->view.ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_dim = __pyx_t_4; /* "View.MemoryView":1077 * * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] # <<<<<<<<<<<<<< * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 */ (__pyx_v_dst->shape[__pyx_v_dim]) = (__pyx_v_shape[__pyx_v_dim]); /* "View.MemoryView":1078 * for dim in range(memview.view.ndim): * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] # <<<<<<<<<<<<<< * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 * */ (__pyx_v_dst->strides[__pyx_v_dim]) = (__pyx_v_strides[__pyx_v_dim]); /* "View.MemoryView":1079 * dst.shape[dim] = shape[dim] * dst.strides[dim] = strides[dim] * dst.suboffsets[dim] = suboffsets[dim] if suboffsets else -1 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object') */ if ((__pyx_v_suboffsets != 0)) { __pyx_t_5 = (__pyx_v_suboffsets[__pyx_v_dim]); } else { __pyx_t_5 = -1L; } (__pyx_v_dst->suboffsets[__pyx_v_dim]) = __pyx_t_5; } /* "View.MemoryView":1065 * * @cname('__pyx_memoryview_slice_copy') * cdef void slice_copy(memoryview memview, __Pyx_memviewslice *dst): # <<<<<<<<<<<<<< * cdef int dim * cdef (Py_ssize_t*) shape, strides, suboffsets */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ static PyObject *__pyx_memoryview_copy_object(struct __pyx_memoryview_obj *__pyx_v_memview) { __Pyx_memviewslice __pyx_v_memviewslice; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy", 0); /* "View.MemoryView":1085 * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) # <<<<<<<<<<<<<< * return memoryview_copy_from_slice(memview, &memviewslice) * */ __pyx_memoryview_slice_copy(__pyx_v_memview, (&__pyx_v_memviewslice)); /* "View.MemoryView":1086 * cdef __Pyx_memviewslice memviewslice * slice_copy(memview, &memviewslice) * return memoryview_copy_from_slice(memview, &memviewslice) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_object_from_slice') */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_memoryview_copy_object_from_slice(__pyx_v_memview, (&__pyx_v_memviewslice)); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1086, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "View.MemoryView":1082 * * @cname('__pyx_memoryview_copy_object') * cdef memoryview_copy(memoryview memview): # <<<<<<<<<<<<<< * "Create a new memoryview object" * cdef __Pyx_memviewslice memviewslice */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("View.MemoryView.memoryview_copy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ static PyObject *__pyx_memoryview_copy_object_from_slice(struct __pyx_memoryview_obj *__pyx_v_memview, __Pyx_memviewslice *__pyx_v_memviewslice) { PyObject *(*__pyx_v_to_object_func)(char *); int (*__pyx_v_to_dtype_func)(char *, PyObject *); PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *(*__pyx_t_3)(char *); int (*__pyx_t_4)(char *, PyObject *); PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("memoryview_copy_from_slice", 0); /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ __pyx_t_1 = __Pyx_TypeCheck(((PyObject *)__pyx_v_memview), __pyx_memoryviewslice_type); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "View.MemoryView":1097 * * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func # <<<<<<<<<<<<<< * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: */ __pyx_t_3 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_object_func; __pyx_v_to_object_func = __pyx_t_3; /* "View.MemoryView":1098 * if isinstance(memview, _memoryviewslice): * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func # <<<<<<<<<<<<<< * else: * to_object_func = NULL */ __pyx_t_4 = ((struct __pyx_memoryviewslice_obj *)__pyx_v_memview)->to_dtype_func; __pyx_v_to_dtype_func = __pyx_t_4; /* "View.MemoryView":1096 * cdef int (*to_dtype_func)(char *, object) except 0 * * if isinstance(memview, _memoryviewslice): # <<<<<<<<<<<<<< * to_object_func = (<_memoryviewslice> memview).to_object_func * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func */ goto __pyx_L3; } /* "View.MemoryView":1100 * to_dtype_func = (<_memoryviewslice> memview).to_dtype_func * else: * to_object_func = NULL # <<<<<<<<<<<<<< * to_dtype_func = NULL * */ /*else*/ { __pyx_v_to_object_func = NULL; /* "View.MemoryView":1101 * else: * to_object_func = NULL * to_dtype_func = NULL # <<<<<<<<<<<<<< * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, */ __pyx_v_to_dtype_func = NULL; } __pyx_L3:; /* "View.MemoryView":1103 * to_dtype_func = NULL * * return memoryview_fromslice(memviewslice[0], memview.view.ndim, # <<<<<<<<<<<<<< * to_object_func, to_dtype_func, * memview.dtype_is_object) */ __Pyx_XDECREF(__pyx_r); /* "View.MemoryView":1105 * return memoryview_fromslice(memviewslice[0], memview.view.ndim, * to_object_func, to_dtype_func, * memview.dtype_is_object) # <<<<<<<<<<<<<< * * */ __pyx_t_5 = __pyx_memoryview_fromslice((__pyx_v_memviewslice[0]), __pyx_v_memview->view.ndim, __pyx_v_to_object_func, __pyx_v_to_dtype_func, __pyx_v_memview->dtype_is_object); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 1103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; /* "View.MemoryView":1089 * * @cname('__pyx_memoryview_copy_object_from_slice') * cdef memoryview_copy_from_slice(memoryview memview, __Pyx_memviewslice *memviewslice): # <<<<<<<<<<<<<< * """ * Create a new memoryview object from a given memoryview object and slice. */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView.memoryview_copy_from_slice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ static Py_ssize_t abs_py_ssize_t(Py_ssize_t __pyx_v_arg) { Py_ssize_t __pyx_r; int __pyx_t_1; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ __pyx_t_1 = ((__pyx_v_arg < 0) != 0); if (__pyx_t_1) { /* "View.MemoryView":1113 * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: * return -arg # <<<<<<<<<<<<<< * else: * return arg */ __pyx_r = (-__pyx_v_arg); goto __pyx_L0; /* "View.MemoryView":1112 * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: * if arg < 0: # <<<<<<<<<<<<<< * return -arg * else: */ } /* "View.MemoryView":1115 * return -arg * else: * return arg # <<<<<<<<<<<<<< * * @cname('__pyx_get_best_slice_order') */ /*else*/ { __pyx_r = __pyx_v_arg; goto __pyx_L0; } /* "View.MemoryView":1111 * * * cdef Py_ssize_t abs_py_ssize_t(Py_ssize_t arg) nogil: # <<<<<<<<<<<<<< * if arg < 0: * return -arg */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ static char __pyx_get_best_slice_order(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim) { int __pyx_v_i; Py_ssize_t __pyx_v_c_stride; Py_ssize_t __pyx_v_f_stride; char __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1123 * """ * cdef int i * cdef Py_ssize_t c_stride = 0 # <<<<<<<<<<<<<< * cdef Py_ssize_t f_stride = 0 * */ __pyx_v_c_stride = 0; /* "View.MemoryView":1124 * cdef int i * cdef Py_ssize_t c_stride = 0 * cdef Py_ssize_t f_stride = 0 # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_f_stride = 0; /* "View.MemoryView":1126 * cdef Py_ssize_t f_stride = 0 * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1128 * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_c_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1129 * if mslice.shape[i] > 1: * c_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * for i in range(ndim): */ goto __pyx_L4_break; /* "View.MemoryView":1127 * * for i in range(ndim - 1, -1, -1): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * c_stride = mslice.strides[i] * break */ } } __pyx_L4_break:; /* "View.MemoryView":1131 * break * * for i in range(ndim): # <<<<<<<<<<<<<< * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] */ __pyx_t_1 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_1; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ __pyx_t_2 = (((__pyx_v_mslice->shape[__pyx_v_i]) > 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1133 * for i in range(ndim): * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] # <<<<<<<<<<<<<< * break * */ __pyx_v_f_stride = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1134 * if mslice.shape[i] > 1: * f_stride = mslice.strides[i] * break # <<<<<<<<<<<<<< * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): */ goto __pyx_L7_break; /* "View.MemoryView":1132 * * for i in range(ndim): * if mslice.shape[i] > 1: # <<<<<<<<<<<<<< * f_stride = mslice.strides[i] * break */ } } __pyx_L7_break:; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ __pyx_t_2 = ((abs_py_ssize_t(__pyx_v_c_stride) <= abs_py_ssize_t(__pyx_v_f_stride)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1137 * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): * return 'C' # <<<<<<<<<<<<<< * else: * return 'F' */ __pyx_r = 'C'; goto __pyx_L0; /* "View.MemoryView":1136 * break * * if abs_py_ssize_t(c_stride) <= abs_py_ssize_t(f_stride): # <<<<<<<<<<<<<< * return 'C' * else: */ } /* "View.MemoryView":1139 * return 'C' * else: * return 'F' # <<<<<<<<<<<<<< * * @cython.cdivision(True) */ /*else*/ { __pyx_r = 'F'; goto __pyx_L0; } /* "View.MemoryView":1118 * * @cname('__pyx_get_best_slice_order') * cdef char get_best_order(__Pyx_memviewslice *mslice, int ndim) nogil: # <<<<<<<<<<<<<< * """ * Figure out the best memory access order for a given slice. */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ static void _copy_strided_to_strided(char *__pyx_v_src_data, Py_ssize_t *__pyx_v_src_strides, char *__pyx_v_dst_data, Py_ssize_t *__pyx_v_dst_strides, Py_ssize_t *__pyx_v_src_shape, Py_ssize_t *__pyx_v_dst_shape, int __pyx_v_ndim, size_t __pyx_v_itemsize) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; CYTHON_UNUSED Py_ssize_t __pyx_v_src_extent; Py_ssize_t __pyx_v_dst_extent; Py_ssize_t __pyx_v_src_stride; Py_ssize_t __pyx_v_dst_stride; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; Py_ssize_t __pyx_t_4; Py_ssize_t __pyx_t_5; Py_ssize_t __pyx_t_6; /* "View.MemoryView":1149 * * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] */ __pyx_v_src_extent = (__pyx_v_src_shape[0]); /* "View.MemoryView":1150 * cdef Py_ssize_t i * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] */ __pyx_v_dst_extent = (__pyx_v_dst_shape[0]); /* "View.MemoryView":1151 * cdef Py_ssize_t src_extent = src_shape[0] * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t dst_stride = dst_strides[0] * */ __pyx_v_src_stride = (__pyx_v_src_strides[0]); /* "View.MemoryView":1152 * cdef Py_ssize_t dst_extent = dst_shape[0] * cdef Py_ssize_t src_stride = src_strides[0] * cdef Py_ssize_t dst_stride = dst_strides[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_dst_stride = (__pyx_v_dst_strides[0]); /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ __pyx_t_2 = ((__pyx_v_src_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } __pyx_t_2 = ((__pyx_v_dst_stride > 0) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L5_bool_binop_done; } /* "View.MemoryView":1156 * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize * dst_extent) * else: */ __pyx_t_2 = (((size_t)__pyx_v_src_stride) == __pyx_v_itemsize); if (__pyx_t_2) { __pyx_t_2 = (__pyx_v_itemsize == ((size_t)__pyx_v_dst_stride)); } __pyx_t_3 = (__pyx_t_2 != 0); __pyx_t_1 = __pyx_t_3; __pyx_L5_bool_binop_done:; /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ if (__pyx_t_1) { /* "View.MemoryView":1157 * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, (__pyx_v_itemsize * __pyx_v_dst_extent))); /* "View.MemoryView":1155 * * if ndim == 1: * if (src_stride > 0 and dst_stride > 0 and # <<<<<<<<<<<<<< * <size_t> src_stride == itemsize == <size_t> dst_stride): * memcpy(dst_data, src_data, itemsize * dst_extent) */ goto __pyx_L4; } /* "View.MemoryView":1159 * memcpy(dst_data, src_data, itemsize * dst_extent) * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * memcpy(dst_data, src_data, itemsize) * src_data += src_stride */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1160 * else: * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) # <<<<<<<<<<<<<< * src_data += src_stride * dst_data += dst_stride */ (void)(memcpy(__pyx_v_dst_data, __pyx_v_src_data, __pyx_v_itemsize)); /* "View.MemoryView":1161 * for i in range(dst_extent): * memcpy(dst_data, src_data, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * else: */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1162 * memcpy(dst_data, src_data, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * else: * for i in range(dst_extent): */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L4:; /* "View.MemoryView":1154 * cdef Py_ssize_t dst_stride = dst_strides[0] * * if ndim == 1: # <<<<<<<<<<<<<< * if (src_stride > 0 and dst_stride > 0 and * <size_t> src_stride == itemsize == <size_t> dst_stride): */ goto __pyx_L3; } /* "View.MemoryView":1164 * dst_data += dst_stride * else: * for i in range(dst_extent): # <<<<<<<<<<<<<< * _copy_strided_to_strided(src_data, src_strides + 1, * dst_data, dst_strides + 1, */ /*else*/ { __pyx_t_4 = __pyx_v_dst_extent; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1165 * else: * for i in range(dst_extent): * _copy_strided_to_strided(src_data, src_strides + 1, # <<<<<<<<<<<<<< * dst_data, dst_strides + 1, * src_shape + 1, dst_shape + 1, */ _copy_strided_to_strided(__pyx_v_src_data, (__pyx_v_src_strides + 1), __pyx_v_dst_data, (__pyx_v_dst_strides + 1), (__pyx_v_src_shape + 1), (__pyx_v_dst_shape + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize); /* "View.MemoryView":1169 * src_shape + 1, dst_shape + 1, * ndim - 1, itemsize) * src_data += src_stride # <<<<<<<<<<<<<< * dst_data += dst_stride * */ __pyx_v_src_data = (__pyx_v_src_data + __pyx_v_src_stride); /* "View.MemoryView":1170 * ndim - 1, itemsize) * src_data += src_stride * dst_data += dst_stride # <<<<<<<<<<<<<< * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, */ __pyx_v_dst_data = (__pyx_v_dst_data + __pyx_v_dst_stride); } } __pyx_L3:; /* "View.MemoryView":1142 * * @cython.cdivision(True) * cdef void _copy_strided_to_strided(char *src_data, Py_ssize_t *src_strides, # <<<<<<<<<<<<<< * char *dst_data, Py_ssize_t *dst_strides, * Py_ssize_t *src_shape, Py_ssize_t *dst_shape, */ /* function exit code */ } /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ static void copy_strided_to_strided(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize) { /* "View.MemoryView":1175 * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: * _copy_strided_to_strided(src.data, src.strides, dst.data, dst.strides, # <<<<<<<<<<<<<< * src.shape, dst.shape, ndim, itemsize) * */ _copy_strided_to_strided(__pyx_v_src->data, __pyx_v_src->strides, __pyx_v_dst->data, __pyx_v_dst->strides, __pyx_v_src->shape, __pyx_v_dst->shape, __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1172 * dst_data += dst_stride * * cdef void copy_strided_to_strided(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *dst, * int ndim, size_t itemsize) nogil: */ /* function exit code */ } /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ static Py_ssize_t __pyx_memoryview_slice_get_size(__Pyx_memviewslice *__pyx_v_src, int __pyx_v_ndim) { Py_ssize_t __pyx_v_shape; Py_ssize_t __pyx_v_size; Py_ssize_t __pyx_r; Py_ssize_t __pyx_t_1; Py_ssize_t *__pyx_t_2; Py_ssize_t *__pyx_t_3; Py_ssize_t *__pyx_t_4; /* "View.MemoryView":1181 * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize # <<<<<<<<<<<<<< * * for shape in src.shape[:ndim]: */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_size = __pyx_t_1; /* "View.MemoryView":1183 * cdef Py_ssize_t shape, size = src.memview.view.itemsize * * for shape in src.shape[:ndim]: # <<<<<<<<<<<<<< * size *= shape * */ __pyx_t_3 = (__pyx_v_src->shape + __pyx_v_ndim); for (__pyx_t_4 = __pyx_v_src->shape; __pyx_t_4 < __pyx_t_3; __pyx_t_4++) { __pyx_t_2 = __pyx_t_4; __pyx_v_shape = (__pyx_t_2[0]); /* "View.MemoryView":1184 * * for shape in src.shape[:ndim]: * size *= shape # <<<<<<<<<<<<<< * * return size */ __pyx_v_size = (__pyx_v_size * __pyx_v_shape); } /* "View.MemoryView":1186 * size *= shape * * return size # <<<<<<<<<<<<<< * * @cname('__pyx_fill_contig_strides_array') */ __pyx_r = __pyx_v_size; goto __pyx_L0; /* "View.MemoryView":1179 * * @cname('__pyx_memoryview_slice_get_size') * cdef Py_ssize_t slice_get_size(__Pyx_memviewslice *src, int ndim) nogil: # <<<<<<<<<<<<<< * "Return the size of the memory occupied by the slice in number of bytes" * cdef Py_ssize_t shape, size = src.memview.view.itemsize */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ static Py_ssize_t __pyx_fill_contig_strides_array(Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, Py_ssize_t __pyx_v_stride, int __pyx_v_ndim, char __pyx_v_order) { int __pyx_v_idx; Py_ssize_t __pyx_r; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ __pyx_t_1 = ((__pyx_v_order == 'F') != 0); if (__pyx_t_1) { /* "View.MemoryView":1199 * * if order == 'F': * for idx in range(ndim): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ __pyx_t_2 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_idx = __pyx_t_4; /* "View.MemoryView":1200 * if order == 'F': * for idx in range(ndim): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * else: */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1201 * for idx in range(ndim): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * else: * for idx in range(ndim - 1, -1, -1): */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } /* "View.MemoryView":1198 * cdef int idx * * if order == 'F': # <<<<<<<<<<<<<< * for idx in range(ndim): * strides[idx] = stride */ goto __pyx_L3; } /* "View.MemoryView":1203 * stride *= shape[idx] * else: * for idx in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * strides[idx] = stride * stride *= shape[idx] */ /*else*/ { for (__pyx_t_2 = (__pyx_v_ndim - 1); __pyx_t_2 > -1; __pyx_t_2-=1) { __pyx_v_idx = __pyx_t_2; /* "View.MemoryView":1204 * else: * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride # <<<<<<<<<<<<<< * stride *= shape[idx] * */ (__pyx_v_strides[__pyx_v_idx]) = __pyx_v_stride; /* "View.MemoryView":1205 * for idx in range(ndim - 1, -1, -1): * strides[idx] = stride * stride *= shape[idx] # <<<<<<<<<<<<<< * * return stride */ __pyx_v_stride = (__pyx_v_stride * (__pyx_v_shape[__pyx_v_idx])); } } __pyx_L3:; /* "View.MemoryView":1207 * stride *= shape[idx] * * return stride # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_data_to_temp') */ __pyx_r = __pyx_v_stride; goto __pyx_L0; /* "View.MemoryView":1189 * * @cname('__pyx_fill_contig_strides_array') * cdef Py_ssize_t fill_contig_strides_array( # <<<<<<<<<<<<<< * Py_ssize_t *shape, Py_ssize_t *strides, Py_ssize_t stride, * int ndim, char order) nogil: */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ static void *__pyx_memoryview_copy_data_to_temp(__Pyx_memviewslice *__pyx_v_src, __Pyx_memviewslice *__pyx_v_tmpslice, char __pyx_v_order, int __pyx_v_ndim) { int __pyx_v_i; void *__pyx_v_result; size_t __pyx_v_itemsize; size_t __pyx_v_size; void *__pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; struct __pyx_memoryview_obj *__pyx_t_4; int __pyx_t_5; int __pyx_t_6; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1221 * cdef void *result * * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef size_t size = slice_get_size(src, ndim) * */ __pyx_t_1 = __pyx_v_src->memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1222 * * cdef size_t itemsize = src.memview.view.itemsize * cdef size_t size = slice_get_size(src, ndim) # <<<<<<<<<<<<<< * * result = malloc(size) */ __pyx_v_size = __pyx_memoryview_slice_get_size(__pyx_v_src, __pyx_v_ndim); /* "View.MemoryView":1224 * cdef size_t size = slice_get_size(src, ndim) * * result = malloc(size) # <<<<<<<<<<<<<< * if not result: * _err(MemoryError, NULL) */ __pyx_v_result = malloc(__pyx_v_size); /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ __pyx_t_2 = ((!(__pyx_v_result != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1226 * result = malloc(size) * if not result: * _err(MemoryError, NULL) # <<<<<<<<<<<<<< * * */ __pyx_t_3 = __pyx_memoryview_err(__pyx_builtin_MemoryError, NULL); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(2, 1226, __pyx_L1_error) /* "View.MemoryView":1225 * * result = malloc(size) * if not result: # <<<<<<<<<<<<<< * _err(MemoryError, NULL) * */ } /* "View.MemoryView":1229 * * * tmpslice.data = <char *> result # <<<<<<<<<<<<<< * tmpslice.memview = src.memview * for i in range(ndim): */ __pyx_v_tmpslice->data = ((char *)__pyx_v_result); /* "View.MemoryView":1230 * * tmpslice.data = <char *> result * tmpslice.memview = src.memview # <<<<<<<<<<<<<< * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] */ __pyx_t_4 = __pyx_v_src->memview; __pyx_v_tmpslice->memview = __pyx_t_4; /* "View.MemoryView":1231 * tmpslice.data = <char *> result * tmpslice.memview = src.memview * for i in range(ndim): # <<<<<<<<<<<<<< * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1232 * tmpslice.memview = src.memview * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] # <<<<<<<<<<<<<< * tmpslice.suboffsets[i] = -1 * */ (__pyx_v_tmpslice->shape[__pyx_v_i]) = (__pyx_v_src->shape[__pyx_v_i]); /* "View.MemoryView":1233 * for i in range(ndim): * tmpslice.shape[i] = src.shape[i] * tmpslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, */ (__pyx_v_tmpslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1235 * tmpslice.suboffsets[i] = -1 * * fill_contig_strides_array(&tmpslice.shape[0], &tmpslice.strides[0], itemsize, # <<<<<<<<<<<<<< * ndim, order) * */ (void)(__pyx_fill_contig_strides_array((&(__pyx_v_tmpslice->shape[0])), (&(__pyx_v_tmpslice->strides[0])), __pyx_v_itemsize, __pyx_v_ndim, __pyx_v_order)); /* "View.MemoryView":1239 * * * for i in range(ndim): # <<<<<<<<<<<<<< * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 */ __pyx_t_3 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_3; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ __pyx_t_2 = (((__pyx_v_tmpslice->shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1241 * for i in range(ndim): * if tmpslice.shape[i] == 1: * tmpslice.strides[i] = 0 # <<<<<<<<<<<<<< * * if slice_is_contig(src[0], order, ndim): */ (__pyx_v_tmpslice->strides[__pyx_v_i]) = 0; /* "View.MemoryView":1240 * * for i in range(ndim): * if tmpslice.shape[i] == 1: # <<<<<<<<<<<<<< * tmpslice.strides[i] = 0 * */ } } /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ __pyx_t_2 = (__pyx_memviewslice_is_contig((__pyx_v_src[0]), __pyx_v_order, __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1244 * * if slice_is_contig(src[0], order, ndim): * memcpy(result, src.data, size) # <<<<<<<<<<<<<< * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) */ (void)(memcpy(__pyx_v_result, __pyx_v_src->data, __pyx_v_size)); /* "View.MemoryView":1243 * tmpslice.strides[i] = 0 * * if slice_is_contig(src[0], order, ndim): # <<<<<<<<<<<<<< * memcpy(result, src.data, size) * else: */ goto __pyx_L9; } /* "View.MemoryView":1246 * memcpy(result, src.data, size) * else: * copy_strided_to_strided(src, tmpslice, ndim, itemsize) # <<<<<<<<<<<<<< * * return result */ /*else*/ { copy_strided_to_strided(__pyx_v_src, __pyx_v_tmpslice, __pyx_v_ndim, __pyx_v_itemsize); } __pyx_L9:; /* "View.MemoryView":1248 * copy_strided_to_strided(src, tmpslice, ndim, itemsize) * * return result # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_result; goto __pyx_L0; /* "View.MemoryView":1210 * * @cname('__pyx_memoryview_copy_data_to_temp') * cdef void *copy_data_to_temp(__Pyx_memviewslice *src, # <<<<<<<<<<<<<< * __Pyx_memviewslice *tmpslice, * char order, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.copy_data_to_temp", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = NULL; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ static int __pyx_memoryview_err_extents(int __pyx_v_i, Py_ssize_t __pyx_v_extent1, Py_ssize_t __pyx_v_extent2) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_extents", 0); /* "View.MemoryView":1256 * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % * (i, extent1, extent2)) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err_dim') */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_i); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PyInt_FromSsize_t(__pyx_v_extent1); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_extent2); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1256, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_t_3); __pyx_t_1 = 0; __pyx_t_2 = 0; __pyx_t_3 = 0; /* "View.MemoryView":1255 * cdef int _err_extents(int i, Py_ssize_t extent1, * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % # <<<<<<<<<<<<<< * (i, extent1, extent2)) * */ __pyx_t_3 = __Pyx_PyString_Format(__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1255, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(2, 1255, __pyx_L1_error) /* "View.MemoryView":1253 * * @cname('__pyx_memoryview_err_extents') * cdef int _err_extents(int i, Py_ssize_t extent1, # <<<<<<<<<<<<<< * Py_ssize_t extent2) except -1 with gil: * raise ValueError("got differing extents in dimension %d (got %d and %d)" % */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_extents", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ static int __pyx_memoryview_err_dim(PyObject *__pyx_v_error, char *__pyx_v_msg, int __pyx_v_dim) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err_dim", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1260 * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: * raise error(msg.decode('ascii') % dim) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_err') */ __pyx_t_2 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_dim); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyUnicode_Format(__pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_INCREF(__pyx_v_error); __pyx_t_3 = __pyx_v_error; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1260, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(2, 1260, __pyx_L1_error) /* "View.MemoryView":1259 * * @cname('__pyx_memoryview_err_dim') * cdef int _err_dim(object error, char *msg, int dim) except -1 with gil: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii') % dim) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("View.MemoryView._err_dim", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ static int __pyx_memoryview_err(PyObject *__pyx_v_error, char *__pyx_v_msg) { int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("_err", 0); __Pyx_INCREF(__pyx_v_error); /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ __pyx_t_1 = ((__pyx_v_msg != NULL) != 0); if (unlikely(__pyx_t_1)) { /* "View.MemoryView":1265 * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: * raise error(msg.decode('ascii')) # <<<<<<<<<<<<<< * else: * raise error */ __pyx_t_3 = __Pyx_decode_c_string(__pyx_v_msg, 0, strlen(__pyx_v_msg), NULL, NULL, PyUnicode_DecodeASCII); if (unlikely(!__pyx_t_3)) __PYX_ERR(2, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_v_error); __pyx_t_4 = __pyx_v_error; __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(2, 1265, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(2, 1265, __pyx_L1_error) /* "View.MemoryView":1264 * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: * if msg != NULL: # <<<<<<<<<<<<<< * raise error(msg.decode('ascii')) * else: */ } /* "View.MemoryView":1267 * raise error(msg.decode('ascii')) * else: * raise error # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_copy_contents') */ /*else*/ { __Pyx_Raise(__pyx_v_error, 0, 0, 0); __PYX_ERR(2, 1267, __pyx_L1_error) } /* "View.MemoryView":1263 * * @cname('__pyx_memoryview_err') * cdef int _err(object error, char *msg) except -1 with gil: # <<<<<<<<<<<<<< * if msg != NULL: * raise error(msg.decode('ascii')) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("View.MemoryView._err", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __Pyx_XDECREF(__pyx_v_error); __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif return __pyx_r; } /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ static int __pyx_memoryview_copy_contents(__Pyx_memviewslice __pyx_v_src, __Pyx_memviewslice __pyx_v_dst, int __pyx_v_src_ndim, int __pyx_v_dst_ndim, int __pyx_v_dtype_is_object) { void *__pyx_v_tmpdata; size_t __pyx_v_itemsize; int __pyx_v_i; char __pyx_v_order; int __pyx_v_broadcasting; int __pyx_v_direct_copy; __Pyx_memviewslice __pyx_v_tmp; int __pyx_v_ndim; int __pyx_r; Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; void *__pyx_t_7; int __pyx_t_8; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; /* "View.MemoryView":1278 * Check for overlapping memory and verify the shapes. * """ * cdef void *tmpdata = NULL # <<<<<<<<<<<<<< * cdef size_t itemsize = src.memview.view.itemsize * cdef int i */ __pyx_v_tmpdata = NULL; /* "View.MemoryView":1279 * """ * cdef void *tmpdata = NULL * cdef size_t itemsize = src.memview.view.itemsize # <<<<<<<<<<<<<< * cdef int i * cdef char order = get_best_order(&src, src_ndim) */ __pyx_t_1 = __pyx_v_src.memview->view.itemsize; __pyx_v_itemsize = __pyx_t_1; /* "View.MemoryView":1281 * cdef size_t itemsize = src.memview.view.itemsize * cdef int i * cdef char order = get_best_order(&src, src_ndim) # <<<<<<<<<<<<<< * cdef bint broadcasting = False * cdef bint direct_copy = False */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_src), __pyx_v_src_ndim); /* "View.MemoryView":1282 * cdef int i * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False # <<<<<<<<<<<<<< * cdef bint direct_copy = False * cdef __Pyx_memviewslice tmp */ __pyx_v_broadcasting = 0; /* "View.MemoryView":1283 * cdef char order = get_best_order(&src, src_ndim) * cdef bint broadcasting = False * cdef bint direct_copy = False # <<<<<<<<<<<<<< * cdef __Pyx_memviewslice tmp * */ __pyx_v_direct_copy = 0; /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ __pyx_t_2 = ((__pyx_v_src_ndim < __pyx_v_dst_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1287 * * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) # <<<<<<<<<<<<<< * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_src), __pyx_v_src_ndim, __pyx_v_dst_ndim); /* "View.MemoryView":1286 * cdef __Pyx_memviewslice tmp * * if src_ndim < dst_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: */ goto __pyx_L3; } /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ __pyx_t_2 = ((__pyx_v_dst_ndim < __pyx_v_src_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1289 * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: * broadcast_leading(&dst, dst_ndim, src_ndim) # <<<<<<<<<<<<<< * * cdef int ndim = max(src_ndim, dst_ndim) */ __pyx_memoryview_broadcast_leading((&__pyx_v_dst), __pyx_v_dst_ndim, __pyx_v_src_ndim); /* "View.MemoryView":1288 * if src_ndim < dst_ndim: * broadcast_leading(&src, src_ndim, dst_ndim) * elif dst_ndim < src_ndim: # <<<<<<<<<<<<<< * broadcast_leading(&dst, dst_ndim, src_ndim) * */ } __pyx_L3:; /* "View.MemoryView":1291 * broadcast_leading(&dst, dst_ndim, src_ndim) * * cdef int ndim = max(src_ndim, dst_ndim) # <<<<<<<<<<<<<< * * for i in range(ndim): */ __pyx_t_3 = __pyx_v_dst_ndim; __pyx_t_4 = __pyx_v_src_ndim; if (((__pyx_t_3 > __pyx_t_4) != 0)) { __pyx_t_5 = __pyx_t_3; } else { __pyx_t_5 = __pyx_t_4; } __pyx_v_ndim = __pyx_t_5; /* "View.MemoryView":1293 * cdef int ndim = max(src_ndim, dst_ndim) * * for i in range(ndim): # <<<<<<<<<<<<<< * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: */ __pyx_t_5 = __pyx_v_ndim; __pyx_t_3 = __pyx_t_5; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) != (__pyx_v_dst.shape[__pyx_v_i])) != 0); if (__pyx_t_2) { /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ __pyx_t_2 = (((__pyx_v_src.shape[__pyx_v_i]) == 1) != 0); if (__pyx_t_2) { /* "View.MemoryView":1296 * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: * broadcasting = True # <<<<<<<<<<<<<< * src.strides[i] = 0 * else: */ __pyx_v_broadcasting = 1; /* "View.MemoryView":1297 * if src.shape[i] == 1: * broadcasting = True * src.strides[i] = 0 # <<<<<<<<<<<<<< * else: * _err_extents(i, dst.shape[i], src.shape[i]) */ (__pyx_v_src.strides[__pyx_v_i]) = 0; /* "View.MemoryView":1295 * for i in range(ndim): * if src.shape[i] != dst.shape[i]: * if src.shape[i] == 1: # <<<<<<<<<<<<<< * broadcasting = True * src.strides[i] = 0 */ goto __pyx_L7; } /* "View.MemoryView":1299 * src.strides[i] = 0 * else: * _err_extents(i, dst.shape[i], src.shape[i]) # <<<<<<<<<<<<<< * * if src.suboffsets[i] >= 0: */ /*else*/ { __pyx_t_6 = __pyx_memoryview_err_extents(__pyx_v_i, (__pyx_v_dst.shape[__pyx_v_i]), (__pyx_v_src.shape[__pyx_v_i])); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1299, __pyx_L1_error) } __pyx_L7:; /* "View.MemoryView":1294 * * for i in range(ndim): * if src.shape[i] != dst.shape[i]: # <<<<<<<<<<<<<< * if src.shape[i] == 1: * broadcasting = True */ } /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ __pyx_t_2 = (((__pyx_v_src.suboffsets[__pyx_v_i]) >= 0) != 0); if (__pyx_t_2) { /* "View.MemoryView":1302 * * if src.suboffsets[i] >= 0: * _err_dim(ValueError, "Dimension %d is not direct", i) # <<<<<<<<<<<<<< * * if slices_overlap(&src, &dst, ndim, itemsize): */ __pyx_t_6 = __pyx_memoryview_err_dim(__pyx_builtin_ValueError, ((char *)"Dimension %d is not direct"), __pyx_v_i); if (unlikely(__pyx_t_6 == ((int)-1))) __PYX_ERR(2, 1302, __pyx_L1_error) /* "View.MemoryView":1301 * _err_extents(i, dst.shape[i], src.shape[i]) * * if src.suboffsets[i] >= 0: # <<<<<<<<<<<<<< * _err_dim(ValueError, "Dimension %d is not direct", i) * */ } } /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ __pyx_t_2 = (__pyx_slices_overlap((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize) != 0); if (__pyx_t_2) { /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ __pyx_t_2 = ((!(__pyx_memviewslice_is_contig(__pyx_v_src, __pyx_v_order, __pyx_v_ndim) != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1307 * * if not slice_is_contig(src, order, ndim): * order = get_best_order(&dst, ndim) # <<<<<<<<<<<<<< * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) */ __pyx_v_order = __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim); /* "View.MemoryView":1306 * if slices_overlap(&src, &dst, ndim, itemsize): * * if not slice_is_contig(src, order, ndim): # <<<<<<<<<<<<<< * order = get_best_order(&dst, ndim) * */ } /* "View.MemoryView":1309 * order = get_best_order(&dst, ndim) * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) # <<<<<<<<<<<<<< * src = tmp * */ __pyx_t_7 = __pyx_memoryview_copy_data_to_temp((&__pyx_v_src), (&__pyx_v_tmp), __pyx_v_order, __pyx_v_ndim); if (unlikely(__pyx_t_7 == ((void *)NULL))) __PYX_ERR(2, 1309, __pyx_L1_error) __pyx_v_tmpdata = __pyx_t_7; /* "View.MemoryView":1310 * * tmpdata = copy_data_to_temp(&src, &tmp, order, ndim) * src = tmp # <<<<<<<<<<<<<< * * if not broadcasting: */ __pyx_v_src = __pyx_v_tmp; /* "View.MemoryView":1304 * _err_dim(ValueError, "Dimension %d is not direct", i) * * if slices_overlap(&src, &dst, ndim, itemsize): # <<<<<<<<<<<<<< * * if not slice_is_contig(src, order, ndim): */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ __pyx_t_2 = ((!(__pyx_v_broadcasting != 0)) != 0); if (__pyx_t_2) { /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'C', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1316 * * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) # <<<<<<<<<<<<<< * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'C', __pyx_v_ndim); /* "View.MemoryView":1315 * * * if slice_is_contig(src, 'C', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): */ goto __pyx_L12; } /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ __pyx_t_2 = (__pyx_memviewslice_is_contig(__pyx_v_src, 'F', __pyx_v_ndim) != 0); if (__pyx_t_2) { /* "View.MemoryView":1318 * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): * direct_copy = slice_is_contig(dst, 'F', ndim) # <<<<<<<<<<<<<< * * if direct_copy: */ __pyx_v_direct_copy = __pyx_memviewslice_is_contig(__pyx_v_dst, 'F', __pyx_v_ndim); /* "View.MemoryView":1317 * if slice_is_contig(src, 'C', ndim): * direct_copy = slice_is_contig(dst, 'C', ndim) * elif slice_is_contig(src, 'F', ndim): # <<<<<<<<<<<<<< * direct_copy = slice_is_contig(dst, 'F', ndim) * */ } __pyx_L12:; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_2 = (__pyx_v_direct_copy != 0); if (__pyx_t_2) { /* "View.MemoryView":1322 * if direct_copy: * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1323 * * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) */ (void)(memcpy(__pyx_v_dst.data, __pyx_v_src.data, __pyx_memoryview_slice_get_size((&__pyx_v_src), __pyx_v_ndim))); /* "View.MemoryView":1324 * refcount_copying(&dst, dtype_is_object, ndim, False) * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * free(tmpdata) * return 0 */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1325 * memcpy(dst.data, src.data, slice_get_size(&src, ndim)) * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1326 * refcount_copying(&dst, dtype_is_object, ndim, True) * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * if order == 'F' == get_best_order(&dst, ndim): */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1320 * direct_copy = slice_is_contig(dst, 'F', ndim) * * if direct_copy: # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ } /* "View.MemoryView":1312 * src = tmp * * if not broadcasting: # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ __pyx_t_2 = (__pyx_v_order == 'F'); if (__pyx_t_2) { __pyx_t_2 = ('F' == __pyx_get_best_slice_order((&__pyx_v_dst), __pyx_v_ndim)); } __pyx_t_8 = (__pyx_t_2 != 0); if (__pyx_t_8) { /* "View.MemoryView":1331 * * * transpose_memslice(&src) # <<<<<<<<<<<<<< * transpose_memslice(&dst) * */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_src)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1331, __pyx_L1_error) /* "View.MemoryView":1332 * * transpose_memslice(&src) * transpose_memslice(&dst) # <<<<<<<<<<<<<< * * refcount_copying(&dst, dtype_is_object, ndim, False) */ __pyx_t_5 = __pyx_memslice_transpose((&__pyx_v_dst)); if (unlikely(__pyx_t_5 == ((int)0))) __PYX_ERR(2, 1332, __pyx_L1_error) /* "View.MemoryView":1328 * return 0 * * if order == 'F' == get_best_order(&dst, ndim): # <<<<<<<<<<<<<< * * */ } /* "View.MemoryView":1334 * transpose_memslice(&dst) * * refcount_copying(&dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1335 * * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) # <<<<<<<<<<<<<< * refcount_copying(&dst, dtype_is_object, ndim, True) * */ copy_strided_to_strided((&__pyx_v_src), (&__pyx_v_dst), __pyx_v_ndim, __pyx_v_itemsize); /* "View.MemoryView":1336 * refcount_copying(&dst, dtype_is_object, ndim, False) * copy_strided_to_strided(&src, &dst, ndim, itemsize) * refcount_copying(&dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * free(tmpdata) */ __pyx_memoryview_refcount_copying((&__pyx_v_dst), __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1338 * refcount_copying(&dst, dtype_is_object, ndim, True) * * free(tmpdata) # <<<<<<<<<<<<<< * return 0 * */ free(__pyx_v_tmpdata); /* "View.MemoryView":1339 * * free(tmpdata) * return 0 # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_broadcast_leading') */ __pyx_r = 0; goto __pyx_L0; /* "View.MemoryView":1270 * * @cname('__pyx_memoryview_copy_contents') * cdef int memoryview_copy_contents(__Pyx_memviewslice src, # <<<<<<<<<<<<<< * __Pyx_memviewslice dst, * int src_ndim, int dst_ndim, */ /* function exit code */ __pyx_L1_error:; { #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_AddTraceback("View.MemoryView.memoryview_copy_contents", __pyx_clineno, __pyx_lineno, __pyx_filename); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } __pyx_r = -1; __pyx_L0:; return __pyx_r; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ static void __pyx_memoryview_broadcast_leading(__Pyx_memviewslice *__pyx_v_mslice, int __pyx_v_ndim, int __pyx_v_ndim_other) { int __pyx_v_i; int __pyx_v_offset; int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; /* "View.MemoryView":1346 * int ndim_other) nogil: * cdef int i * cdef int offset = ndim_other - ndim # <<<<<<<<<<<<<< * * for i in range(ndim - 1, -1, -1): */ __pyx_v_offset = (__pyx_v_ndim_other - __pyx_v_ndim); /* "View.MemoryView":1348 * cdef int offset = ndim_other - ndim * * for i in range(ndim - 1, -1, -1): # <<<<<<<<<<<<<< * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] */ for (__pyx_t_1 = (__pyx_v_ndim - 1); __pyx_t_1 > -1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "View.MemoryView":1349 * * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] # <<<<<<<<<<<<<< * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] */ (__pyx_v_mslice->shape[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->shape[__pyx_v_i]); /* "View.MemoryView":1350 * for i in range(ndim - 1, -1, -1): * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] # <<<<<<<<<<<<<< * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * */ (__pyx_v_mslice->strides[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->strides[__pyx_v_i]); /* "View.MemoryView":1351 * mslice.shape[i + offset] = mslice.shape[i] * mslice.strides[i + offset] = mslice.strides[i] * mslice.suboffsets[i + offset] = mslice.suboffsets[i] # <<<<<<<<<<<<<< * * for i in range(offset): */ (__pyx_v_mslice->suboffsets[(__pyx_v_i + __pyx_v_offset)]) = (__pyx_v_mslice->suboffsets[__pyx_v_i]); } /* "View.MemoryView":1353 * mslice.suboffsets[i + offset] = mslice.suboffsets[i] * * for i in range(offset): # <<<<<<<<<<<<<< * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] */ __pyx_t_1 = __pyx_v_offset; __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1354 * * for i in range(offset): * mslice.shape[i] = 1 # <<<<<<<<<<<<<< * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 */ (__pyx_v_mslice->shape[__pyx_v_i]) = 1; /* "View.MemoryView":1355 * for i in range(offset): * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] # <<<<<<<<<<<<<< * mslice.suboffsets[i] = -1 * */ (__pyx_v_mslice->strides[__pyx_v_i]) = (__pyx_v_mslice->strides[0]); /* "View.MemoryView":1356 * mslice.shape[i] = 1 * mslice.strides[i] = mslice.strides[0] * mslice.suboffsets[i] = -1 # <<<<<<<<<<<<<< * * */ (__pyx_v_mslice->suboffsets[__pyx_v_i]) = -1L; } /* "View.MemoryView":1342 * * @cname('__pyx_memoryview_broadcast_leading') * cdef void broadcast_leading(__Pyx_memviewslice *mslice, # <<<<<<<<<<<<<< * int ndim, * int ndim_other) nogil: */ /* function exit code */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ static void __pyx_memoryview_refcount_copying(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_dtype_is_object, int __pyx_v_ndim, int __pyx_v_inc) { int __pyx_t_1; /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ __pyx_t_1 = (__pyx_v_dtype_is_object != 0); if (__pyx_t_1) { /* "View.MemoryView":1369 * * if dtype_is_object: * refcount_objects_in_slice_with_gil(dst.data, dst.shape, # <<<<<<<<<<<<<< * dst.strides, ndim, inc) * */ __pyx_memoryview_refcount_objects_in_slice_with_gil(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1368 * * * if dtype_is_object: # <<<<<<<<<<<<<< * refcount_objects_in_slice_with_gil(dst.data, dst.shape, * dst.strides, ndim, inc) */ } /* "View.MemoryView":1364 * * @cname('__pyx_memoryview_refcount_copying') * cdef void refcount_copying(__Pyx_memviewslice *dst, bint dtype_is_object, # <<<<<<<<<<<<<< * int ndim, bint inc) nogil: * */ /* function exit code */ } /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ static void __pyx_memoryview_refcount_objects_in_slice_with_gil(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { __Pyx_RefNannyDeclarations #ifdef WITH_THREAD PyGILState_STATE __pyx_gilstate_save = __Pyx_PyGILState_Ensure(); #endif __Pyx_RefNannySetupContext("refcount_objects_in_slice_with_gil", 0); /* "View.MemoryView":1376 * Py_ssize_t *strides, int ndim, * bint inc) with gil: * refcount_objects_in_slice(data, shape, strides, ndim, inc) # <<<<<<<<<<<<<< * * @cname('__pyx_memoryview_refcount_objects_in_slice') */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, __pyx_v_shape, __pyx_v_strides, __pyx_v_ndim, __pyx_v_inc); /* "View.MemoryView":1373 * * @cname('__pyx_memoryview_refcount_objects_in_slice_with_gil') * cdef void refcount_objects_in_slice_with_gil(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * bint inc) with gil: */ /* function exit code */ __Pyx_RefNannyFinishContext(); #ifdef WITH_THREAD __Pyx_PyGILState_Release(__pyx_gilstate_save); #endif } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ static void __pyx_memoryview_refcount_objects_in_slice(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, int __pyx_v_inc) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; __Pyx_RefNannySetupContext("refcount_objects_in_slice", 0); /* "View.MemoryView":1383 * cdef Py_ssize_t i * * for i in range(shape[0]): # <<<<<<<<<<<<<< * if ndim == 1: * if inc: */ __pyx_t_1 = (__pyx_v_shape[0]); __pyx_t_2 = __pyx_t_1; for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) { __pyx_v_i = __pyx_t_3; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF((<PyObject **> data)[0]) */ __pyx_t_4 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_4) { /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF((<PyObject **> data)[0]) * else: */ __pyx_t_4 = (__pyx_v_inc != 0); if (__pyx_t_4) { /* "View.MemoryView":1386 * if ndim == 1: * if inc: * Py_INCREF((<PyObject **> data)[0]) # <<<<<<<<<<<<<< * else: * Py_DECREF((<PyObject **> data)[0]) */ Py_INCREF((((PyObject **)__pyx_v_data)[0])); /* "View.MemoryView":1385 * for i in range(shape[0]): * if ndim == 1: * if inc: # <<<<<<<<<<<<<< * Py_INCREF((<PyObject **> data)[0]) * else: */ goto __pyx_L6; } /* "View.MemoryView":1388 * Py_INCREF((<PyObject **> data)[0]) * else: * Py_DECREF((<PyObject **> data)[0]) # <<<<<<<<<<<<<< * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, */ /*else*/ { Py_DECREF((((PyObject **)__pyx_v_data)[0])); } __pyx_L6:; /* "View.MemoryView":1384 * * for i in range(shape[0]): * if ndim == 1: # <<<<<<<<<<<<<< * if inc: * Py_INCREF((<PyObject **> data)[0]) */ goto __pyx_L5; } /* "View.MemoryView":1390 * Py_DECREF((<PyObject **> data)[0]) * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, inc) * */ /*else*/ { /* "View.MemoryView":1391 * else: * refcount_objects_in_slice(data, shape + 1, strides + 1, * ndim - 1, inc) # <<<<<<<<<<<<<< * * data += strides[0] */ __pyx_memoryview_refcount_objects_in_slice(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_inc); } __pyx_L5:; /* "View.MemoryView":1393 * ndim - 1, inc) * * data += strides[0] # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + (__pyx_v_strides[0])); } /* "View.MemoryView":1379 * * @cname('__pyx_memoryview_refcount_objects_in_slice') * cdef void refcount_objects_in_slice(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, bint inc): * cdef Py_ssize_t i */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ static void __pyx_memoryview_slice_assign_scalar(__Pyx_memviewslice *__pyx_v_dst, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item, int __pyx_v_dtype_is_object) { /* "View.MemoryView":1402 * size_t itemsize, void *item, * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) # <<<<<<<<<<<<<< * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 0); /* "View.MemoryView":1403 * bint dtype_is_object) nogil: * refcount_copying(dst, dtype_is_object, ndim, False) * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, # <<<<<<<<<<<<<< * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) */ __pyx_memoryview__slice_assign_scalar(__pyx_v_dst->data, __pyx_v_dst->shape, __pyx_v_dst->strides, __pyx_v_ndim, __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1405 * _slice_assign_scalar(dst.data, dst.shape, dst.strides, ndim, * itemsize, item) * refcount_copying(dst, dtype_is_object, ndim, True) # <<<<<<<<<<<<<< * * */ __pyx_memoryview_refcount_copying(__pyx_v_dst, __pyx_v_dtype_is_object, __pyx_v_ndim, 1); /* "View.MemoryView":1399 * * @cname('__pyx_memoryview_slice_assign_scalar') * cdef void slice_assign_scalar(__Pyx_memviewslice *dst, int ndim, # <<<<<<<<<<<<<< * size_t itemsize, void *item, * bint dtype_is_object) nogil: */ /* function exit code */ } /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ static void __pyx_memoryview__slice_assign_scalar(char *__pyx_v_data, Py_ssize_t *__pyx_v_shape, Py_ssize_t *__pyx_v_strides, int __pyx_v_ndim, size_t __pyx_v_itemsize, void *__pyx_v_item) { CYTHON_UNUSED Py_ssize_t __pyx_v_i; Py_ssize_t __pyx_v_stride; Py_ssize_t __pyx_v_extent; int __pyx_t_1; Py_ssize_t __pyx_t_2; Py_ssize_t __pyx_t_3; Py_ssize_t __pyx_t_4; /* "View.MemoryView":1413 * size_t itemsize, void *item) nogil: * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] # <<<<<<<<<<<<<< * cdef Py_ssize_t extent = shape[0] * */ __pyx_v_stride = (__pyx_v_strides[0]); /* "View.MemoryView":1414 * cdef Py_ssize_t i * cdef Py_ssize_t stride = strides[0] * cdef Py_ssize_t extent = shape[0] # <<<<<<<<<<<<<< * * if ndim == 1: */ __pyx_v_extent = (__pyx_v_shape[0]); /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ __pyx_t_1 = ((__pyx_v_ndim == 1) != 0); if (__pyx_t_1) { /* "View.MemoryView":1417 * * if ndim == 1: * for i in range(extent): # <<<<<<<<<<<<<< * memcpy(data, item, itemsize) * data += stride */ __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1418 * if ndim == 1: * for i in range(extent): * memcpy(data, item, itemsize) # <<<<<<<<<<<<<< * data += stride * else: */ (void)(memcpy(__pyx_v_data, __pyx_v_item, __pyx_v_itemsize)); /* "View.MemoryView":1419 * for i in range(extent): * memcpy(data, item, itemsize) * data += stride # <<<<<<<<<<<<<< * else: * for i in range(extent): */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } /* "View.MemoryView":1416 * cdef Py_ssize_t extent = shape[0] * * if ndim == 1: # <<<<<<<<<<<<<< * for i in range(extent): * memcpy(data, item, itemsize) */ goto __pyx_L3; } /* "View.MemoryView":1421 * data += stride * else: * for i in range(extent): # <<<<<<<<<<<<<< * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) */ /*else*/ { __pyx_t_2 = __pyx_v_extent; __pyx_t_3 = __pyx_t_2; for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) { __pyx_v_i = __pyx_t_4; /* "View.MemoryView":1422 * else: * for i in range(extent): * _slice_assign_scalar(data, shape + 1, strides + 1, # <<<<<<<<<<<<<< * ndim - 1, itemsize, item) * data += stride */ __pyx_memoryview__slice_assign_scalar(__pyx_v_data, (__pyx_v_shape + 1), (__pyx_v_strides + 1), (__pyx_v_ndim - 1), __pyx_v_itemsize, __pyx_v_item); /* "View.MemoryView":1424 * _slice_assign_scalar(data, shape + 1, strides + 1, * ndim - 1, itemsize, item) * data += stride # <<<<<<<<<<<<<< * * */ __pyx_v_data = (__pyx_v_data + __pyx_v_stride); } } __pyx_L3:; /* "View.MemoryView":1409 * * @cname('__pyx_memoryview__slice_assign_scalar') * cdef void _slice_assign_scalar(char *data, Py_ssize_t *shape, # <<<<<<<<<<<<<< * Py_ssize_t *strides, int ndim, * size_t itemsize, void *item) nogil: */ /* function exit code */ } /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* Python wrapper */ static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static PyMethodDef __pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum = {"__pyx_unpickle_Enum", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum, METH_VARARGS|METH_KEYWORDS, 0}; static PyObject *__pyx_pw_15View_dot_MemoryView_1__pyx_unpickle_Enum(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v___pyx_type = 0; long __pyx_v___pyx_checksum; PyObject *__pyx_v___pyx_state = 0; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__pyx_unpickle_Enum (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_pyx_type,&__pyx_n_s_pyx_checksum,&__pyx_n_s_pyx_state,0}; PyObject* values[3] = {0,0,0}; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_type)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_checksum)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 1); __PYX_ERR(2, 1, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pyx_state)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, 2); __PYX_ERR(2, 1, __pyx_L3_error) } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__pyx_unpickle_Enum") < 0)) __PYX_ERR(2, 1, __pyx_L3_error) } } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { goto __pyx_L5_argtuple_error; } else { values[0] = PyTuple_GET_ITEM(__pyx_args, 0); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[2] = PyTuple_GET_ITEM(__pyx_args, 2); } __pyx_v___pyx_type = values[0]; __pyx_v___pyx_checksum = __Pyx_PyInt_As_long(values[1]); if (unlikely((__pyx_v___pyx_checksum == (long)-1) && PyErr_Occurred())) __PYX_ERR(2, 1, __pyx_L3_error) __pyx_v___pyx_state = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__pyx_unpickle_Enum", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(2, 1, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(__pyx_self, __pyx_v___pyx_type, __pyx_v___pyx_checksum, __pyx_v___pyx_state); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_15View_dot_MemoryView___pyx_unpickle_Enum(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v___pyx_type, long __pyx_v___pyx_checksum, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_v___pyx_PickleError = 0; PyObject *__pyx_v___pyx_result = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum", 0); /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_t_1, __pyx_tuple__25, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { /* "(tree fragment)":5 * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError # <<<<<<<<<<<<<< * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_PickleError); __Pyx_GIVEREF(__pyx_n_s_PickleError); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_PickleError); __pyx_t_4 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_4, __pyx_n_s_PickleError); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 5, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_1); __pyx_v___pyx_PickleError = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":6 * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) # <<<<<<<<<<<<<< * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: */ __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v___pyx_checksum); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = __Pyx_PyString_Format(__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_INCREF(__pyx_v___pyx_PickleError); __pyx_t_1 = __pyx_v___pyx_PickleError; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_6, __pyx_t_5) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(2, 6, __pyx_L1_error) /* "(tree fragment)":4 * cdef object __pyx_PickleError * cdef object __pyx_result * if __pyx_checksum not in (0xb068931, 0x82a3537, 0x6ae9995): # <<<<<<<<<<<<<< * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) */ } /* "(tree fragment)":7 * from pickle import PickleError as __pyx_PickleError * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) # <<<<<<<<<<<<<< * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_MemviewEnum_type), __pyx_n_s_new); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_4 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_5, __pyx_v___pyx_type) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v___pyx_type); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 7, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v___pyx_result = __pyx_t_4; __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result */ __pyx_t_3 = (__pyx_v___pyx_state != Py_None); __pyx_t_2 = (__pyx_t_3 != 0); if (__pyx_t_2) { /* "(tree fragment)":9 * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) # <<<<<<<<<<<<<< * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): */ if (!(likely(PyTuple_CheckExact(__pyx_v___pyx_state))||((__pyx_v___pyx_state) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_v___pyx_state)->tp_name), 0))) __PYX_ERR(2, 9, __pyx_L1_error) __pyx_t_4 = __pyx_unpickle_Enum__set_state(((struct __pyx_MemviewEnum_obj *)__pyx_v___pyx_result), ((PyObject*)__pyx_v___pyx_state)); if (unlikely(!__pyx_t_4)) __PYX_ERR(2, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "(tree fragment)":8 * raise __pyx_PickleError("Incompatible checksums (0x%x vs (0xb068931, 0x82a3537, 0x6ae9995) = (name))" % __pyx_checksum) * __pyx_result = Enum.__new__(__pyx_type) * if __pyx_state is not None: # <<<<<<<<<<<<<< * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result */ } /* "(tree fragment)":10 * if __pyx_state is not None: * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result # <<<<<<<<<<<<<< * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v___pyx_result); __pyx_r = __pyx_v___pyx_result; goto __pyx_L0; /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v___pyx_PickleError); __Pyx_XDECREF(__pyx_v___pyx_result); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ static PyObject *__pyx_unpickle_Enum__set_state(struct __pyx_MemviewEnum_obj *__pyx_v___pyx_result, PyObject *__pyx_v___pyx_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; Py_ssize_t __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__pyx_unpickle_Enum__set_state", 0); /* "(tree fragment)":12 * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] # <<<<<<<<<<<<<< * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(2, 12, __pyx_L1_error) } __pyx_t_1 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 12, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __Pyx_GOTREF(__pyx_v___pyx_result->name); __Pyx_DECREF(__pyx_v___pyx_result->name); __pyx_v___pyx_result->name = __pyx_t_1; __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "object of type 'NoneType' has no len()"); __PYX_ERR(2, 13, __pyx_L1_error) } __pyx_t_3 = PyTuple_GET_SIZE(__pyx_v___pyx_state); if (unlikely(__pyx_t_3 == ((Py_ssize_t)-1))) __PYX_ERR(2, 13, __pyx_L1_error) __pyx_t_4 = ((__pyx_t_3 > 1) != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_4 = __Pyx_HasAttr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(2, 13, __pyx_L1_error) __pyx_t_5 = (__pyx_t_4 != 0); __pyx_t_2 = __pyx_t_5; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { /* "(tree fragment)":14 * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): * __pyx_result.__dict__.update(__pyx_state[1]) # <<<<<<<<<<<<<< */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v___pyx_result), __pyx_n_s_dict); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_update); if (unlikely(!__pyx_t_7)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(__pyx_v___pyx_state == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(2, 14, __pyx_L1_error) } __pyx_t_6 = __Pyx_GetItemInt_Tuple(__pyx_v___pyx_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_6)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_7))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_8, __pyx_t_6) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 14, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":13 * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): # <<<<<<<<<<<<<< * __pyx_result.__dict__.update(__pyx_state[1]) */ } /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("View.MemoryView.__pyx_unpickle_Enum__set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } static struct __pyx_vtabstruct_array __pyx_vtable_array; static PyObject *__pyx_tp_new_array(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_array_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_array_obj *)o); p->__pyx_vtab = __pyx_vtabptr_array; p->mode = ((PyObject*)Py_None); Py_INCREF(Py_None); p->_format = ((PyObject*)Py_None); Py_INCREF(Py_None); if (unlikely(__pyx_array___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_array(PyObject *o) { struct __pyx_array_obj *p = (struct __pyx_array_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && (!PyType_IS_GC(Py_TYPE(o)) || !_PyGC_FINALIZED(o))) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_array___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->mode); Py_CLEAR(p->_format); (*Py_TYPE(o)->tp_free)(o); } static PyObject *__pyx_sq_item_array(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_array(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_array___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_tp_getattro_array(PyObject *o, PyObject *n) { PyObject *v = __Pyx_PyObject_GenericGetAttr(o, n); if (!v && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); v = __pyx_array___getattr__(o, n); } return v; } static PyObject *__pyx_getprop___pyx_array_memview(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_5array_7memview_1__get__(o); } static PyMethodDef __pyx_methods_array[] = { {"__getattr__", (PyCFunction)__pyx_array___getattr__, METH_O|METH_COEXIST, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_array_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_array_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_array[] = { {(char *)"memview", __pyx_getprop___pyx_array_memview, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_array = { __pyx_array___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_array, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_array = { __pyx_array___len__, /*mp_length*/ __pyx_array___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_array, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_array = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_array_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_array = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaPhysics.xas._xas.array", /*tp_name*/ sizeof(struct __pyx_array_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_array, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif 0, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_array, /*tp_as_sequence*/ &__pyx_tp_as_mapping_array, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ __pyx_tp_getattro_array, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_array, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_array, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_array, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_array, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyObject *__pyx_tp_new_Enum(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { struct __pyx_MemviewEnum_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_MemviewEnum_obj *)o); p->name = Py_None; Py_INCREF(Py_None); return o; } static void __pyx_tp_dealloc_Enum(PyObject *o) { struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); Py_CLEAR(p->name); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_Enum(PyObject *o, visitproc v, void *a) { int e; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; if (p->name) { e = (*v)(p->name, a); if (e) return e; } return 0; } static int __pyx_tp_clear_Enum(PyObject *o) { PyObject* tmp; struct __pyx_MemviewEnum_obj *p = (struct __pyx_MemviewEnum_obj *)o; tmp = ((PyObject*)p->name); p->name = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); return 0; } static PyMethodDef __pyx_methods_Enum[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_MemviewEnum_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_MemviewEnum = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaPhysics.xas._xas.Enum", /*tp_name*/ sizeof(struct __pyx_MemviewEnum_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_Enum, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_MemviewEnum___repr__, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_Enum, /*tp_traverse*/ __pyx_tp_clear_Enum, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_Enum, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ __pyx_MemviewEnum___init__, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_Enum, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct_memoryview __pyx_vtable_memoryview; static PyObject *__pyx_tp_new_memoryview(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryview_obj *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_memoryview_obj *)o); p->__pyx_vtab = __pyx_vtabptr_memoryview; p->obj = Py_None; Py_INCREF(Py_None); p->_size = Py_None; Py_INCREF(Py_None); p->_array_interface = Py_None; Py_INCREF(Py_None); p->view.obj = NULL; if (unlikely(__pyx_memoryview___cinit__(o, a, k) < 0)) goto bad; return o; bad: Py_DECREF(o); o = 0; return NULL; } static void __pyx_tp_dealloc_memoryview(PyObject *o) { struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryview___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->obj); Py_CLEAR(p->_size); Py_CLEAR(p->_array_interface); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_memoryview(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; if (p->obj) { e = (*v)(p->obj, a); if (e) return e; } if (p->_size) { e = (*v)(p->_size, a); if (e) return e; } if (p->_array_interface) { e = (*v)(p->_array_interface, a); if (e) return e; } if (p->view.obj) { e = (*v)(p->view.obj, a); if (e) return e; } return 0; } static int __pyx_tp_clear_memoryview(PyObject *o) { PyObject* tmp; struct __pyx_memoryview_obj *p = (struct __pyx_memoryview_obj *)o; tmp = ((PyObject*)p->obj); p->obj = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_size); p->_size = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->_array_interface); p->_array_interface = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); Py_CLEAR(p->view.obj); return 0; } static PyObject *__pyx_sq_item_memoryview(PyObject *o, Py_ssize_t i) { PyObject *r; PyObject *x = PyInt_FromSsize_t(i); if(!x) return 0; r = Py_TYPE(o)->tp_as_mapping->mp_subscript(o, x); Py_DECREF(x); return r; } static int __pyx_mp_ass_subscript_memoryview(PyObject *o, PyObject *i, PyObject *v) { if (v) { return __pyx_memoryview___setitem__(o, i, v); } else { PyErr_Format(PyExc_NotImplementedError, "Subscript deletion not supported by %.200s", Py_TYPE(o)->tp_name); return -1; } } static PyObject *__pyx_getprop___pyx_memoryview_T(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_1T_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4base_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_shape(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_5shape_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_strides(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_7strides_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_suboffsets(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_10suboffsets_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_ndim(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4ndim_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_itemsize(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_8itemsize_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_nbytes(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_6nbytes_1__get__(o); } static PyObject *__pyx_getprop___pyx_memoryview_size(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_10memoryview_4size_1__get__(o); } static PyMethodDef __pyx_methods_memoryview[] = { {"is_c_contig", (PyCFunction)__pyx_memoryview_is_c_contig, METH_NOARGS, 0}, {"is_f_contig", (PyCFunction)__pyx_memoryview_is_f_contig, METH_NOARGS, 0}, {"copy", (PyCFunction)__pyx_memoryview_copy, METH_NOARGS, 0}, {"copy_fortran", (PyCFunction)__pyx_memoryview_copy_fortran, METH_NOARGS, 0}, {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryview_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_memoryview[] = { {(char *)"T", __pyx_getprop___pyx_memoryview_T, 0, (char *)0, 0}, {(char *)"base", __pyx_getprop___pyx_memoryview_base, 0, (char *)0, 0}, {(char *)"shape", __pyx_getprop___pyx_memoryview_shape, 0, (char *)0, 0}, {(char *)"strides", __pyx_getprop___pyx_memoryview_strides, 0, (char *)0, 0}, {(char *)"suboffsets", __pyx_getprop___pyx_memoryview_suboffsets, 0, (char *)0, 0}, {(char *)"ndim", __pyx_getprop___pyx_memoryview_ndim, 0, (char *)0, 0}, {(char *)"itemsize", __pyx_getprop___pyx_memoryview_itemsize, 0, (char *)0, 0}, {(char *)"nbytes", __pyx_getprop___pyx_memoryview_nbytes, 0, (char *)0, 0}, {(char *)"size", __pyx_getprop___pyx_memoryview_size, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PySequenceMethods __pyx_tp_as_sequence_memoryview = { __pyx_memoryview___len__, /*sq_length*/ 0, /*sq_concat*/ 0, /*sq_repeat*/ __pyx_sq_item_memoryview, /*sq_item*/ 0, /*sq_slice*/ 0, /*sq_ass_item*/ 0, /*sq_ass_slice*/ 0, /*sq_contains*/ 0, /*sq_inplace_concat*/ 0, /*sq_inplace_repeat*/ }; static PyMappingMethods __pyx_tp_as_mapping_memoryview = { __pyx_memoryview___len__, /*mp_length*/ __pyx_memoryview___getitem__, /*mp_subscript*/ __pyx_mp_ass_subscript_memoryview, /*mp_ass_subscript*/ }; static PyBufferProcs __pyx_tp_as_buffer_memoryview = { #if PY_MAJOR_VERSION < 3 0, /*bf_getreadbuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getwritebuffer*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getsegcount*/ #endif #if PY_MAJOR_VERSION < 3 0, /*bf_getcharbuffer*/ #endif __pyx_memoryview_getbuffer, /*bf_getbuffer*/ 0, /*bf_releasebuffer*/ }; static PyTypeObject __pyx_type___pyx_memoryview = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaPhysics.xas._xas.memoryview", /*tp_name*/ sizeof(struct __pyx_memoryview_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_memoryview, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_memoryview___repr__, /*tp_repr*/ 0, /*tp_as_number*/ &__pyx_tp_as_sequence_memoryview, /*tp_as_sequence*/ &__pyx_tp_as_mapping_memoryview, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ __pyx_memoryview___str__, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ &__pyx_tp_as_buffer_memoryview, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ 0, /*tp_doc*/ __pyx_tp_traverse_memoryview, /*tp_traverse*/ __pyx_tp_clear_memoryview, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_memoryview, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_memoryview, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_memoryview, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static struct __pyx_vtabstruct__memoryviewslice __pyx_vtable__memoryviewslice; static PyObject *__pyx_tp_new__memoryviewslice(PyTypeObject *t, PyObject *a, PyObject *k) { struct __pyx_memoryviewslice_obj *p; PyObject *o = __pyx_tp_new_memoryview(t, a, k); if (unlikely(!o)) return 0; p = ((struct __pyx_memoryviewslice_obj *)o); p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_memoryview*)__pyx_vtabptr__memoryviewslice; p->from_object = Py_None; Py_INCREF(Py_None); p->from_slice.memview = NULL; return o; } static void __pyx_tp_dealloc__memoryviewslice(PyObject *o) { struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); { PyObject *etype, *eval, *etb; PyErr_Fetch(&etype, &eval, &etb); __Pyx_SET_REFCNT(o, Py_REFCNT(o) + 1); __pyx_memoryviewslice___dealloc__(o); __Pyx_SET_REFCNT(o, Py_REFCNT(o) - 1); PyErr_Restore(etype, eval, etb); } Py_CLEAR(p->from_object); PyObject_GC_Track(o); __pyx_tp_dealloc_memoryview(o); } static int __pyx_tp_traverse__memoryviewslice(PyObject *o, visitproc v, void *a) { int e; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; e = __pyx_tp_traverse_memoryview(o, v, a); if (e) return e; if (p->from_object) { e = (*v)(p->from_object, a); if (e) return e; } return 0; } static int __pyx_tp_clear__memoryviewslice(PyObject *o) { PyObject* tmp; struct __pyx_memoryviewslice_obj *p = (struct __pyx_memoryviewslice_obj *)o; __pyx_tp_clear_memoryview(o); tmp = ((PyObject*)p->from_object); p->from_object = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); __PYX_XDEC_MEMVIEW(&p->from_slice, 1); return 0; } static PyObject *__pyx_getprop___pyx_memoryviewslice_base(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_15View_dot_MemoryView_16_memoryviewslice_4base_1__get__(o); } static PyMethodDef __pyx_methods__memoryviewslice[] = { {"__reduce_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_1__reduce_cython__, METH_NOARGS, 0}, {"__setstate_cython__", (PyCFunction)__pyx_pw___pyx_memoryviewslice_3__setstate_cython__, METH_O, 0}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets__memoryviewslice[] = { {(char *)"base", __pyx_getprop___pyx_memoryviewslice_base, 0, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PyTypeObject __pyx_type___pyx_memoryviewslice = { PyVarObject_HEAD_INIT(0, 0) "PyMca5.PyMcaPhysics.xas._xas._memoryviewslice", /*tp_name*/ sizeof(struct __pyx_memoryviewslice_obj), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc__memoryviewslice, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___repr__, /*tp_repr*/ #else 0, /*tp_repr*/ #endif 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ #if CYTHON_COMPILING_IN_PYPY __pyx_memoryview___str__, /*tp_str*/ #else 0, /*tp_str*/ #endif 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ "Internal class for passing memoryview slices to Python", /*tp_doc*/ __pyx_tp_traverse__memoryviewslice, /*tp_traverse*/ __pyx_tp_clear__memoryviewslice, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods__memoryviewslice, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets__memoryviewslice, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ 0, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new__memoryviewslice, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800) 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 0, /*tp_pypy_flags*/ #endif }; static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 #if CYTHON_PEP489_MULTI_PHASE_INIT static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ static int __pyx_pymod_exec__xas(PyObject* module); /*proto*/ static PyModuleDef_Slot __pyx_moduledef_slots[] = { {Py_mod_create, (void*)__pyx_pymod_create}, {Py_mod_exec, (void*)__pyx_pymod_exec__xas}, {0, NULL} }; #endif static struct PyModuleDef __pyx_moduledef = { PyModuleDef_HEAD_INIT, "_xas", 0, /* m_doc */ #if CYTHON_PEP489_MULTI_PHASE_INIT 0, /* m_size */ #else -1, /* m_size */ #endif __pyx_methods /* m_methods */, #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_moduledef_slots, /* m_slots */ #else NULL, /* m_reload */ #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif #ifndef CYTHON_SMALL_CODE #if defined(__clang__) #define CYTHON_SMALL_CODE #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define CYTHON_SMALL_CODE __attribute__((cold)) #else #define CYTHON_SMALL_CODE #endif #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_ASCII, __pyx_k_ASCII, sizeof(__pyx_k_ASCII), 0, 0, 1, 1}, {&__pyx_kp_s_Buffer_view_does_not_expose_stri, __pyx_k_Buffer_view_does_not_expose_stri, sizeof(__pyx_k_Buffer_view_does_not_expose_stri), 0, 0, 1, 0}, {&__pyx_kp_s_Can_only_create_a_buffer_that_is, __pyx_k_Can_only_create_a_buffer_that_is, sizeof(__pyx_k_Can_only_create_a_buffer_that_is), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_assign_to_read_only_memor, __pyx_k_Cannot_assign_to_read_only_memor, sizeof(__pyx_k_Cannot_assign_to_read_only_memor), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_create_writable_memory_vi, __pyx_k_Cannot_create_writable_memory_vi, sizeof(__pyx_k_Cannot_create_writable_memory_vi), 0, 0, 1, 0}, {&__pyx_kp_s_Cannot_index_with_type_s, __pyx_k_Cannot_index_with_type_s, sizeof(__pyx_k_Cannot_index_with_type_s), 0, 0, 1, 0}, {&__pyx_n_s_Ellipsis, __pyx_k_Ellipsis, sizeof(__pyx_k_Ellipsis), 0, 0, 1, 1}, {&__pyx_kp_s_Empty_shape_tuple_for_cython_arr, __pyx_k_Empty_shape_tuple_for_cython_arr, sizeof(__pyx_k_Empty_shape_tuple_for_cython_arr), 0, 0, 1, 0}, {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, {&__pyx_kp_s_Incompatible_checksums_0x_x_vs_0, __pyx_k_Incompatible_checksums_0x_x_vs_0, sizeof(__pyx_k_Incompatible_checksums_0x_x_vs_0), 0, 0, 1, 0}, {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, {&__pyx_kp_s_Indirect_dimensions_not_supporte, __pyx_k_Indirect_dimensions_not_supporte, sizeof(__pyx_k_Indirect_dimensions_not_supporte), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_mode_expected_c_or_fortr, __pyx_k_Invalid_mode_expected_c_or_fortr, sizeof(__pyx_k_Invalid_mode_expected_c_or_fortr), 0, 0, 1, 0}, {&__pyx_kp_s_Invalid_shape_in_axis_d_d, __pyx_k_Invalid_shape_in_axis_d_d, sizeof(__pyx_k_Invalid_shape_in_axis_d_d), 0, 0, 1, 0}, {&__pyx_n_s_MemoryError, __pyx_k_MemoryError, sizeof(__pyx_k_MemoryError), 0, 0, 1, 1}, {&__pyx_kp_s_MemoryView_of_r_at_0x_x, __pyx_k_MemoryView_of_r_at_0x_x, sizeof(__pyx_k_MemoryView_of_r_at_0x_x), 0, 0, 1, 0}, {&__pyx_kp_s_MemoryView_of_r_object, __pyx_k_MemoryView_of_r_object, sizeof(__pyx_k_MemoryView_of_r_object), 0, 0, 1, 0}, {&__pyx_n_b_O, __pyx_k_O, sizeof(__pyx_k_O), 0, 0, 0, 1}, {&__pyx_kp_s_Out_of_bounds_on_buffer_access_a, __pyx_k_Out_of_bounds_on_buffer_access_a, sizeof(__pyx_k_Out_of_bounds_on_buffer_access_a), 0, 0, 1, 0}, {&__pyx_n_s_PickleError, __pyx_k_PickleError, sizeof(__pyx_k_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_PyMca5_PyMcaPhysics_xas__xas, __pyx_k_PyMca5_PyMcaPhysics_xas__xas, sizeof(__pyx_k_PyMca5_PyMcaPhysics_xas__xas), 0, 0, 1, 1}, {&__pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_k_PyMca5_PyMcaPhysics_xas__xas_cyt, sizeof(__pyx_k_PyMca5_PyMcaPhysics_xas__xas_cyt), 0, 0, 1, 0}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_kp_s_Unable_to_convert_item_to_object, __pyx_k_Unable_to_convert_item_to_object, sizeof(__pyx_k_Unable_to_convert_item_to_object), 0, 0, 1, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_n_s_View_MemoryView, __pyx_k_View_MemoryView, sizeof(__pyx_k_View_MemoryView), 0, 0, 1, 1}, {&__pyx_n_s_a, __pyx_k_a, sizeof(__pyx_k_a), 0, 0, 1, 1}, {&__pyx_n_s_abs, __pyx_k_abs, sizeof(__pyx_k_abs), 0, 0, 1, 1}, {&__pyx_n_s_allocate_buffer, __pyx_k_allocate_buffer, sizeof(__pyx_k_allocate_buffer), 0, 0, 1, 1}, {&__pyx_n_s_array, __pyx_k_array, sizeof(__pyx_k_array), 0, 0, 1, 1}, {&__pyx_n_s_ascontiguousarray, __pyx_k_ascontiguousarray, sizeof(__pyx_k_ascontiguousarray), 0, 0, 1, 1}, {&__pyx_n_s_base, __pyx_k_base, sizeof(__pyx_k_base), 0, 0, 1, 1}, {&__pyx_n_s_besselMultiple, __pyx_k_besselMultiple, sizeof(__pyx_k_besselMultiple), 0, 0, 1, 1}, {&__pyx_n_s_besselSingle, __pyx_k_besselSingle, sizeof(__pyx_k_besselSingle), 0, 0, 1, 1}, {&__pyx_n_s_buffer_xh0, __pyx_k_buffer_xh0, sizeof(__pyx_k_buffer_xh0), 0, 0, 1, 1}, {&__pyx_n_s_buffer_xl0, __pyx_k_buffer_xl0, sizeof(__pyx_k_buffer_xl0), 0, 0, 1, 1}, {&__pyx_n_s_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 0, 1, 1}, {&__pyx_n_u_c, __pyx_k_c, sizeof(__pyx_k_c), 0, 1, 0, 1}, {&__pyx_n_s_c_c, __pyx_k_c_c, sizeof(__pyx_k_c_c), 0, 0, 1, 1}, {&__pyx_n_s_c_nc, __pyx_k_c_nc, sizeof(__pyx_k_c_nc), 0, 0, 1, 1}, {&__pyx_n_s_c_npts, __pyx_k_c_npts, sizeof(__pyx_k_c_npts), 0, 0, 1, 1}, {&__pyx_n_s_c_nr, __pyx_k_c_nr, sizeof(__pyx_k_c_nr), 0, 0, 1, 1}, {&__pyx_n_s_c_sizeC, __pyx_k_c_sizeC, sizeof(__pyx_k_c_sizeC), 0, 0, 1, 1}, {&__pyx_n_s_c_w, __pyx_k_c_w, sizeof(__pyx_k_c_w), 0, 0, 1, 1}, {&__pyx_n_s_c_x, __pyx_k_c_x, sizeof(__pyx_k_c_x), 0, 0, 1, 1}, {&__pyx_n_s_c_xh, __pyx_k_c_xh, sizeof(__pyx_k_c_xh), 0, 0, 1, 1}, {&__pyx_n_s_c_xl, __pyx_k_c_xl, sizeof(__pyx_k_c_xl), 0, 0, 1, 1}, {&__pyx_n_s_c_y, __pyx_k_c_y, sizeof(__pyx_k_c_y), 0, 0, 1, 1}, {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_kp_s_contiguous_and_direct, __pyx_k_contiguous_and_direct, sizeof(__pyx_k_contiguous_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_contiguous_and_indirect, __pyx_k_contiguous_and_indirect, sizeof(__pyx_k_contiguous_and_indirect), 0, 0, 1, 0}, {&__pyx_n_s_copy, __pyx_k_copy, sizeof(__pyx_k_copy), 0, 0, 1, 1}, {&__pyx_n_s_df, __pyx_k_df, sizeof(__pyx_k_df), 0, 0, 1, 1}, {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_dtype_is_object, __pyx_k_dtype_is_object, sizeof(__pyx_k_dtype_is_object), 0, 0, 1, 1}, {&__pyx_n_s_encode, __pyx_k_encode, sizeof(__pyx_k_encode), 0, 0, 1, 1}, {&__pyx_n_s_enumerate, __pyx_k_enumerate, sizeof(__pyx_k_enumerate), 0, 0, 1, 1}, {&__pyx_n_s_error, __pyx_k_error, sizeof(__pyx_k_error), 0, 0, 1, 1}, {&__pyx_n_s_flags, __pyx_k_flags, sizeof(__pyx_k_flags), 0, 0, 1, 1}, {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, {&__pyx_n_s_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 0, 1, 1}, {&__pyx_n_u_fortran, __pyx_k_fortran, sizeof(__pyx_k_fortran), 0, 1, 0, 1}, {&__pyx_n_s_getstate, __pyx_k_getstate, sizeof(__pyx_k_getstate), 0, 0, 1, 1}, {&__pyx_kp_s_got_differing_extents_in_dimensi, __pyx_k_got_differing_extents_in_dimensi, sizeof(__pyx_k_got_differing_extents_in_dimensi), 0, 0, 1, 0}, {&__pyx_n_s_i, __pyx_k_i, sizeof(__pyx_k_i), 0, 0, 1, 1}, {&__pyx_n_s_i1, __pyx_k_i1, sizeof(__pyx_k_i1), 0, 0, 1, 1}, {&__pyx_n_s_ibl, __pyx_k_ibl, sizeof(__pyx_k_ibl), 0, 0, 1, 1}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_s_ik, __pyx_k_ik, sizeof(__pyx_k_ik), 0, 0, 1, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_int32, __pyx_k_int32, sizeof(__pyx_k_int32), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_kp_s_itemsize_0_for_cython_array, __pyx_k_itemsize_0_for_cython_array, sizeof(__pyx_k_itemsize_0_for_cython_array), 0, 0, 1, 0}, {&__pyx_n_s_j, __pyx_k_j, sizeof(__pyx_k_j), 0, 0, 1, 1}, {&__pyx_n_s_j0, __pyx_k_j0, sizeof(__pyx_k_j0), 0, 0, 1, 1}, {&__pyx_n_s_k, __pyx_k_k, sizeof(__pyx_k_k), 0, 0, 1, 1}, {&__pyx_n_s_len, __pyx_k_len, sizeof(__pyx_k_len), 0, 0, 1, 1}, {&__pyx_n_s_m, __pyx_k_m, sizeof(__pyx_k_m), 0, 0, 1, 1}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_memview, __pyx_k_memview, sizeof(__pyx_k_memview), 0, 0, 1, 1}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, {&__pyx_n_s_n, __pyx_k_n, sizeof(__pyx_k_n), 0, 0, 1, 1}, {&__pyx_n_s_n1, __pyx_k_n1, sizeof(__pyx_k_n1), 0, 0, 1, 1}, {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_nbs, __pyx_k_nbs, sizeof(__pyx_k_nbs), 0, 0, 1, 1}, {&__pyx_n_s_nc, __pyx_k_nc, sizeof(__pyx_k_nc), 0, 0, 1, 1}, {&__pyx_n_s_ncol, __pyx_k_ncol, sizeof(__pyx_k_ncol), 0, 0, 1, 1}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, {&__pyx_n_s_ne_idl, __pyx_k_ne_idl, sizeof(__pyx_k_ne_idl), 0, 0, 1, 1}, {&__pyx_n_s_new, __pyx_k_new, sizeof(__pyx_k_new), 0, 0, 1, 1}, {&__pyx_n_s_ni, __pyx_k_ni, sizeof(__pyx_k_ni), 0, 0, 1, 1}, {&__pyx_n_s_ni1, __pyx_k_ni1, sizeof(__pyx_k_ni1), 0, 0, 1, 1}, {&__pyx_n_s_nk, __pyx_k_nk, sizeof(__pyx_k_nk), 0, 0, 1, 1}, {&__pyx_n_s_nm1, __pyx_k_nm1, sizeof(__pyx_k_nm1), 0, 0, 1, 1}, {&__pyx_kp_s_no_default___reduce___due_to_non, __pyx_k_no_default___reduce___due_to_non, sizeof(__pyx_k_no_default___reduce___due_to_non), 0, 0, 1, 0}, {&__pyx_n_s_npts, __pyx_k_npts, sizeof(__pyx_k_npts), 0, 0, 1, 1}, {&__pyx_n_s_nr, __pyx_k_nr, sizeof(__pyx_k_nr), 0, 0, 1, 1}, {&__pyx_n_s_ns, __pyx_k_ns, sizeof(__pyx_k_ns), 0, 0, 1, 1}, {&__pyx_n_s_ns1, __pyx_k_ns1, sizeof(__pyx_k_ns1), 0, 0, 1, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_kp_s_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 0, 1, 0}, {&__pyx_kp_s_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 0, 1, 0}, {&__pyx_n_s_obj, __pyx_k_obj, sizeof(__pyx_k_obj), 0, 0, 1, 1}, {&__pyx_n_s_pack, __pyx_k_pack, sizeof(__pyx_k_pack), 0, 0, 1, 1}, {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, {&__pyx_n_s_polspl, __pyx_k_polspl, sizeof(__pyx_k_polspl), 0, 0, 1, 1}, {&__pyx_n_s_polspl2, __pyx_k_polspl2, sizeof(__pyx_k_polspl2), 0, 0, 1, 1}, {&__pyx_n_s_power, __pyx_k_power, sizeof(__pyx_k_power), 0, 0, 1, 1}, {&__pyx_n_s_pyx_PickleError, __pyx_k_pyx_PickleError, sizeof(__pyx_k_pyx_PickleError), 0, 0, 1, 1}, {&__pyx_n_s_pyx_checksum, __pyx_k_pyx_checksum, sizeof(__pyx_k_pyx_checksum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_getbuffer, __pyx_k_pyx_getbuffer, sizeof(__pyx_k_pyx_getbuffer), 0, 0, 1, 1}, {&__pyx_n_s_pyx_result, __pyx_k_pyx_result, sizeof(__pyx_k_pyx_result), 0, 0, 1, 1}, {&__pyx_n_s_pyx_state, __pyx_k_pyx_state, sizeof(__pyx_k_pyx_state), 0, 0, 1, 1}, {&__pyx_n_s_pyx_type, __pyx_k_pyx_type, sizeof(__pyx_k_pyx_type), 0, 0, 1, 1}, {&__pyx_n_s_pyx_unpickle_Enum, __pyx_k_pyx_unpickle_Enum, sizeof(__pyx_k_pyx_unpickle_Enum), 0, 0, 1, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, {&__pyx_n_s_reduce_cython, __pyx_k_reduce_cython, sizeof(__pyx_k_reduce_cython), 0, 0, 1, 1}, {&__pyx_n_s_reduce_ex, __pyx_k_reduce_ex, sizeof(__pyx_k_reduce_ex), 0, 0, 1, 1}, {&__pyx_n_s_result, __pyx_k_result, sizeof(__pyx_k_result), 0, 0, 1, 1}, {&__pyx_n_s_setstate, __pyx_k_setstate, sizeof(__pyx_k_setstate), 0, 0, 1, 1}, {&__pyx_n_s_setstate_cython, __pyx_k_setstate_cython, sizeof(__pyx_k_setstate_cython), 0, 0, 1, 1}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1}, {&__pyx_n_s_step, __pyx_k_step, sizeof(__pyx_k_step), 0, 0, 1, 1}, {&__pyx_n_s_stop, __pyx_k_stop, sizeof(__pyx_k_stop), 0, 0, 1, 1}, {&__pyx_kp_s_strided_and_direct, __pyx_k_strided_and_direct, sizeof(__pyx_k_strided_and_direct), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_direct_or_indirect, __pyx_k_strided_and_direct_or_indirect, sizeof(__pyx_k_strided_and_direct_or_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_strided_and_indirect, __pyx_k_strided_and_indirect, sizeof(__pyx_k_strided_and_indirect), 0, 0, 1, 0}, {&__pyx_kp_s_stringsource, __pyx_k_stringsource, sizeof(__pyx_k_stringsource), 0, 0, 1, 0}, {&__pyx_n_s_struct, __pyx_k_struct, sizeof(__pyx_k_struct), 0, 0, 1, 1}, {&__pyx_n_s_t, __pyx_k_t, sizeof(__pyx_k_t), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_kp_s_unable_to_allocate_array_data, __pyx_k_unable_to_allocate_array_data, sizeof(__pyx_k_unable_to_allocate_array_data), 0, 0, 1, 0}, {&__pyx_kp_s_unable_to_allocate_shape_and_str, __pyx_k_unable_to_allocate_shape_and_str, sizeof(__pyx_k_unable_to_allocate_shape_and_str), 0, 0, 1, 0}, {&__pyx_n_s_unpack, __pyx_k_unpack, sizeof(__pyx_k_unpack), 0, 0, 1, 1}, {&__pyx_n_s_update, __pyx_k_update, sizeof(__pyx_k_update), 0, 0, 1, 1}, {&__pyx_n_s_w, __pyx_k_w, sizeof(__pyx_k_w), 0, 0, 1, 1}, {&__pyx_n_s_x, __pyx_k_x, sizeof(__pyx_k_x), 0, 0, 1, 1}, {&__pyx_n_s_xh, __pyx_k_xh, sizeof(__pyx_k_xh), 0, 0, 1, 1}, {&__pyx_n_s_xh0, __pyx_k_xh0, sizeof(__pyx_k_xh0), 0, 0, 1, 1}, {&__pyx_n_s_xk, __pyx_k_xk, sizeof(__pyx_k_xk), 0, 0, 1, 1}, {&__pyx_n_s_xk0, __pyx_k_xk0, sizeof(__pyx_k_xk0), 0, 0, 1, 1}, {&__pyx_n_s_xl, __pyx_k_xl, sizeof(__pyx_k_xl), 0, 0, 1, 1}, {&__pyx_n_s_xl0, __pyx_k_xl0, sizeof(__pyx_k_xl0), 0, 0, 1, 1}, {&__pyx_n_s_y, __pyx_k_y, sizeof(__pyx_k_y), 0, 0, 1, 1}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {0, 0, 0, 0, 0, 0, 0} }; static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 101, __pyx_L1_error) __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 944, __pyx_L1_error) __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(2, 134, __pyx_L1_error) __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(2, 149, __pyx_L1_error) __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(2, 152, __pyx_L1_error) __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(2, 2, __pyx_L1_error) __pyx_builtin_Ellipsis = __Pyx_GetBuiltinName(__pyx_n_s_Ellipsis); if (!__pyx_builtin_Ellipsis) __PYX_ERR(2, 406, __pyx_L1_error) __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(2, 615, __pyx_L1_error) __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(2, 834, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":52 * * def polspl(x, y, w, npts, xl, xh, nr, nc): * c = numpy.zeros((36,), dtype=numpy.float64) # <<<<<<<<<<<<<< * cdef double[:] c_c = c * cdef double[:] c_x = numpy.ascontiguousarray(x, */ __pyx_tuple_ = PyTuple_Pack(1, __pyx_int_36); if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); __pyx_tuple__2 = PyTuple_Pack(1, __pyx_tuple_); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(0, 52, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":86 * cdef double * xh = <double *> buffer_xh0.data * df = numpy.zeros(26) * a = numpy.zeros((36,37)) # <<<<<<<<<<<<<< * nbs = numpy.zeros(11,dtype=int) * cdef double[:] xk0 = numpy.zeros(10) */ __pyx_tuple__3 = PyTuple_Pack(2, __pyx_int_36, __pyx_int_37); if (unlikely(!__pyx_tuple__3)) __PYX_ERR(0, 86, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__3); __Pyx_GIVEREF(__pyx_tuple__3); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":87 * df = numpy.zeros(26) * a = numpy.zeros((36,37)) * nbs = numpy.zeros(11,dtype=int) # <<<<<<<<<<<<<< * cdef double[:] xk0 = numpy.zeros(10) * cdef double * xk = &xk0[0] */ __pyx_tuple__4 = PyTuple_Pack(1, __pyx_int_11); if (unlikely(!__pyx_tuple__4)) __PYX_ERR(0, 87, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__4); __Pyx_GIVEREF(__pyx_tuple__4); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":944 * __pyx_import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(1, 944, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); /* "../../Program Files/Python310/lib/site-packages/numpy/__init__.pxd":950 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_tuple__6 = PyTuple_Pack(1, __pyx_kp_s_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(1, 950, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); /* "View.MemoryView":134 * * if not self.ndim: * raise ValueError("Empty shape tuple for cython.array") # <<<<<<<<<<<<<< * * if itemsize <= 0: */ __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_s_Empty_shape_tuple_for_cython_arr); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(2, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__7); __Pyx_GIVEREF(__pyx_tuple__7); /* "View.MemoryView":137 * * if itemsize <= 0: * raise ValueError("itemsize <= 0 for cython.array") # <<<<<<<<<<<<<< * * if not isinstance(format, bytes): */ __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_s_itemsize_0_for_cython_array); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(2, 137, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__8); __Pyx_GIVEREF(__pyx_tuple__8); /* "View.MemoryView":149 * * if not self._shape: * raise MemoryError("unable to allocate shape and strides.") # <<<<<<<<<<<<<< * * */ __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_shape_and_str); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(2, 149, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__9); __Pyx_GIVEREF(__pyx_tuple__9); /* "View.MemoryView":177 * self.data = <char *>malloc(self.len) * if not self.data: * raise MemoryError("unable to allocate array data.") # <<<<<<<<<<<<<< * * if self.dtype_is_object: */ __pyx_tuple__10 = PyTuple_Pack(1, __pyx_kp_s_unable_to_allocate_array_data); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(2, 177, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__10); __Pyx_GIVEREF(__pyx_tuple__10); /* "View.MemoryView":193 * bufmode = PyBUF_F_CONTIGUOUS | PyBUF_ANY_CONTIGUOUS * if not (flags & bufmode): * raise ValueError("Can only create a buffer that is contiguous in memory.") # <<<<<<<<<<<<<< * info.buf = self.data * info.len = self.len */ __pyx_tuple__11 = PyTuple_Pack(1, __pyx_kp_s_Can_only_create_a_buffer_that_is); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(2, 193, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__11); __Pyx_GIVEREF(__pyx_tuple__11); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__12 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__12)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__12); __Pyx_GIVEREF(__pyx_tuple__12); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__13 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); /* "View.MemoryView":420 * def __setitem__(memoryview self, object index, object value): * if self.view.readonly: * raise TypeError("Cannot assign to read-only memoryview") # <<<<<<<<<<<<<< * * have_slices, index = _unellipsify(index, self.view.ndim) */ __pyx_tuple__14 = PyTuple_Pack(1, __pyx_kp_s_Cannot_assign_to_read_only_memor); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(2, 420, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__14); __Pyx_GIVEREF(__pyx_tuple__14); /* "View.MemoryView":497 * result = struct.unpack(self.view.format, bytesitem) * except struct.error: * raise ValueError("Unable to convert item to object") # <<<<<<<<<<<<<< * else: * if len(self.view.format) == 1: */ __pyx_tuple__15 = PyTuple_Pack(1, __pyx_kp_s_Unable_to_convert_item_to_object); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(2, 497, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__15); __Pyx_GIVEREF(__pyx_tuple__15); /* "View.MemoryView":522 * def __getbuffer__(self, Py_buffer *info, int flags): * if flags & PyBUF_WRITABLE and self.view.readonly: * raise ValueError("Cannot create writable memory view from read-only memoryview") # <<<<<<<<<<<<<< * * if flags & PyBUF_ND: */ __pyx_tuple__16 = PyTuple_Pack(1, __pyx_kp_s_Cannot_create_writable_memory_vi); if (unlikely(!__pyx_tuple__16)) __PYX_ERR(2, 522, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__16); __Pyx_GIVEREF(__pyx_tuple__16); /* "View.MemoryView":572 * if self.view.strides == NULL: * * raise ValueError("Buffer view does not expose strides") # <<<<<<<<<<<<<< * * return tuple([stride for stride in self.view.strides[:self.view.ndim]]) */ __pyx_tuple__17 = PyTuple_Pack(1, __pyx_kp_s_Buffer_view_does_not_expose_stri); if (unlikely(!__pyx_tuple__17)) __PYX_ERR(2, 572, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__17); __Pyx_GIVEREF(__pyx_tuple__17); /* "View.MemoryView":579 * def suboffsets(self): * if self.view.suboffsets == NULL: * return (-1,) * self.view.ndim # <<<<<<<<<<<<<< * * return tuple([suboffset for suboffset in self.view.suboffsets[:self.view.ndim]]) */ __pyx_tuple__18 = PyTuple_New(1); if (unlikely(!__pyx_tuple__18)) __PYX_ERR(2, 579, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__18); __Pyx_INCREF(__pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_tuple__18, 0, __pyx_int_neg_1); __Pyx_GIVEREF(__pyx_tuple__18); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__19 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__19)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__19); __Pyx_GIVEREF(__pyx_tuple__19); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__20 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__20)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__20); __Pyx_GIVEREF(__pyx_tuple__20); /* "View.MemoryView":684 * if item is Ellipsis: * if not seen_ellipsis: * result.extend([slice(None)] * (ndim - len(tup) + 1)) # <<<<<<<<<<<<<< * seen_ellipsis = True * else: */ __pyx_slice__21 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__21)) __PYX_ERR(2, 684, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice__21); __Pyx_GIVEREF(__pyx_slice__21); /* "View.MemoryView":705 * for suboffset in suboffsets[:ndim]: * if suboffset >= 0: * raise ValueError("Indirect dimensions not supported") # <<<<<<<<<<<<<< * * */ __pyx_tuple__22 = PyTuple_Pack(1, __pyx_kp_s_Indirect_dimensions_not_supporte); if (unlikely(!__pyx_tuple__22)) __PYX_ERR(2, 705, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__22); __Pyx_GIVEREF(__pyx_tuple__22); /* "(tree fragment)":2 * def __reduce_cython__(self): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") */ __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(2, 2, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__23); __Pyx_GIVEREF(__pyx_tuple__23); /* "(tree fragment)":4 * raise TypeError("no default __reduce__ due to non-trivial __cinit__") * def __setstate_cython__(self, __pyx_state): * raise TypeError("no default __reduce__ due to non-trivial __cinit__") # <<<<<<<<<<<<<< */ __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_s_no_default___reduce___due_to_non); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); __pyx_tuple__25 = PyTuple_Pack(3, __pyx_int_184977713, __pyx_int_136983863, __pyx_int_112105877); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(2, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":35 * from bessel0 cimport j0Single, j0Multiple * * def j0(x): # <<<<<<<<<<<<<< * if hasattr(x, "__len__"): * return _besselMultiple(x) */ __pyx_tuple__26 = PyTuple_Pack(1, __pyx_n_s_x); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(0, 35, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__26); __Pyx_GIVEREF(__pyx_tuple__26); __pyx_codeobj__27 = (PyObject*)__Pyx_PyCode_New(1, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__26, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_n_s_j0, 35, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__27)) __PYX_ERR(0, 35, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":41 * return _besselSingle(x) * * def _besselMultiple(x): # <<<<<<<<<<<<<< * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result */ __pyx_tuple__28 = PyTuple_Pack(4, __pyx_n_s_x, __pyx_n_s_result, __pyx_n_s_c_x, __pyx_n_s_c_npts); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__28); __Pyx_GIVEREF(__pyx_tuple__28); __pyx_codeobj__29 = (PyObject*)__Pyx_PyCode_New(1, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__28, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_n_s_besselMultiple, 41, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__29)) __PYX_ERR(0, 41, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":48 * return result * * def _besselSingle(double x): # <<<<<<<<<<<<<< * return j0Single(x) * */ __pyx_tuple__30 = PyTuple_Pack(2, __pyx_n_s_x, __pyx_n_s_x); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(0, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__30); __Pyx_GIVEREF(__pyx_tuple__30); __pyx_codeobj__31 = (PyObject*)__Pyx_PyCode_New(1, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__30, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_n_s_besselSingle, 48, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__31)) __PYX_ERR(0, 48, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":51 * return j0Single(x) * * def polspl(x, y, w, npts, xl, xh, nr, nc): # <<<<<<<<<<<<<< * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c */ __pyx_tuple__32 = PyTuple_Pack(19, __pyx_n_s_x, __pyx_n_s_y, __pyx_n_s_w, __pyx_n_s_npts, __pyx_n_s_xl, __pyx_n_s_xh, __pyx_n_s_nr, __pyx_n_s_nc, __pyx_n_s_c, __pyx_n_s_c_c, __pyx_n_s_c_x, __pyx_n_s_c_y, __pyx_n_s_c_w, __pyx_n_s_c_npts, __pyx_n_s_c_xl, __pyx_n_s_c_xh, __pyx_n_s_c_nr, __pyx_n_s_c_nc, __pyx_n_s_c_sizeC); if (unlikely(!__pyx_tuple__32)) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__32); __Pyx_GIVEREF(__pyx_tuple__32); __pyx_codeobj__33 = (PyObject*)__Pyx_PyCode_New(8, 0, 19, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__32, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_n_s_polspl, 51, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__33)) __PYX_ERR(0, 51, __pyx_L1_error) /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":73 * return c * * def polspl2(x,y,w,npts,xl0,xh0,nr,nc): # <<<<<<<<<<<<<< * * # ; */ __pyx_tuple__34 = PyTuple_Pack(36, __pyx_n_s_x, __pyx_n_s_y, __pyx_n_s_w, __pyx_n_s_npts, __pyx_n_s_xl0, __pyx_n_s_xh0, __pyx_n_s_nr, __pyx_n_s_nc, __pyx_n_s_buffer_xl0, __pyx_n_s_xl, __pyx_n_s_buffer_xh0, __pyx_n_s_xh, __pyx_n_s_df, __pyx_n_s_a, __pyx_n_s_nbs, __pyx_n_s_xk0, __pyx_n_s_xk, __pyx_n_s_c, __pyx_n_s_j, __pyx_n_s_i, __pyx_n_s_ne_idl, __pyx_n_s_n, __pyx_n_s_k, __pyx_n_s_ibl, __pyx_n_s_ns, __pyx_n_s_ns1, __pyx_n_s_t, __pyx_n_s_n1, __pyx_n_s_ncol, __pyx_n_s_nk, __pyx_n_s_ik, __pyx_n_s_i1, __pyx_n_s_nm1, __pyx_n_s_m, __pyx_n_s_ni, __pyx_n_s_ni1); if (unlikely(!__pyx_tuple__34)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__34); __Pyx_GIVEREF(__pyx_tuple__34); __pyx_codeobj__35 = (PyObject*)__Pyx_PyCode_New(8, 0, 36, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__34, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_PyMca5_PyMcaPhysics_xas__xas_cyt, __pyx_n_s_polspl2, 73, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__35)) __PYX_ERR(0, 73, __pyx_L1_error) /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("<strided and direct or indirect>") # <<<<<<<<<<<<<< * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") */ __pyx_tuple__36 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct_or_indirect); if (unlikely(!__pyx_tuple__36)) __PYX_ERR(2, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__36); __Pyx_GIVEREF(__pyx_tuple__36); /* "View.MemoryView":288 * * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("<strided and indirect>") * */ __pyx_tuple__37 = PyTuple_Pack(1, __pyx_kp_s_strided_and_direct); if (unlikely(!__pyx_tuple__37)) __PYX_ERR(2, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__37); __Pyx_GIVEREF(__pyx_tuple__37); /* "View.MemoryView":289 * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_tuple__38 = PyTuple_Pack(1, __pyx_kp_s_strided_and_indirect); if (unlikely(!__pyx_tuple__38)) __PYX_ERR(2, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__38); __Pyx_GIVEREF(__pyx_tuple__38); /* "View.MemoryView":292 * * * cdef contiguous = Enum("<contiguous and direct>") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("<contiguous and indirect>") * */ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_direct); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(2, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "View.MemoryView":293 * * cdef contiguous = Enum("<contiguous and direct>") * cdef indirect_contiguous = Enum("<contiguous and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_tuple__40 = PyTuple_Pack(1, __pyx_kp_s_contiguous_and_indirect); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(2, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_tuple__41 = PyTuple_Pack(5, __pyx_n_s_pyx_type, __pyx_n_s_pyx_checksum, __pyx_n_s_pyx_state, __pyx_n_s_pyx_PickleError, __pyx_n_s_pyx_result); if (unlikely(!__pyx_tuple__41)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); __pyx_codeobj__42 = (PyObject*)__Pyx_PyCode_New(3, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__41, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_stringsource, __pyx_n_s_pyx_unpickle_Enum, 1, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__42)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); __pyx_float_1_0 = PyFloat_FromDouble(1.0); if (unlikely(!__pyx_float_1_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_neg_1_ = PyFloat_FromDouble(-1.); if (unlikely(!__pyx_float_neg_1_)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_10 = PyInt_FromLong(10); if (unlikely(!__pyx_int_10)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_11 = PyInt_FromLong(11); if (unlikely(!__pyx_int_11)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_26 = PyInt_FromLong(26); if (unlikely(!__pyx_int_26)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_36 = PyInt_FromLong(36); if (unlikely(!__pyx_int_36)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_37 = PyInt_FromLong(37); if (unlikely(!__pyx_int_37)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_112105877 = PyInt_FromLong(112105877L); if (unlikely(!__pyx_int_112105877)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_136983863 = PyInt_FromLong(136983863L); if (unlikely(!__pyx_int_136983863)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_184977713 = PyInt_FromLong(184977713L); if (unlikely(!__pyx_int_184977713)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ static int __Pyx_modinit_global_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); /*--- Global init code ---*/ generic = Py_None; Py_INCREF(Py_None); strided = Py_None; Py_INCREF(Py_None); indirect = Py_None; Py_INCREF(Py_None); contiguous = Py_None; Py_INCREF(Py_None); indirect_contiguous = Py_None; Py_INCREF(Py_None); __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); /*--- Variable export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); /*--- Function export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_init_code(void) { __Pyx_RefNannyDeclarations int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); /*--- Type init code ---*/ __pyx_vtabptr_array = &__pyx_vtable_array; __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview; if (PyType_Ready(&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_array.tp_print = 0; #endif if (__Pyx_SetVtable(__pyx_type___pyx_array.tp_dict, __pyx_vtabptr_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_array) < 0) __PYX_ERR(2, 106, __pyx_L1_error) __pyx_array_type = &__pyx_type___pyx_array; if (PyType_Ready(&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 280, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_MemviewEnum.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_MemviewEnum.tp_dictoffset && __pyx_type___pyx_MemviewEnum.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_MemviewEnum.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_MemviewEnum) < 0) __PYX_ERR(2, 280, __pyx_L1_error) __pyx_MemviewEnum_type = &__pyx_type___pyx_MemviewEnum; __pyx_vtabptr_memoryview = &__pyx_vtable_memoryview; __pyx_vtable_memoryview.get_item_pointer = (char *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_get_item_pointer; __pyx_vtable_memoryview.is_slice = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_is_slice; __pyx_vtable_memoryview.setitem_slice_assignment = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_slice_assignment; __pyx_vtable_memoryview.setitem_slice_assign_scalar = (PyObject *(*)(struct __pyx_memoryview_obj *, struct __pyx_memoryview_obj *, PyObject *))__pyx_memoryview_setitem_slice_assign_scalar; __pyx_vtable_memoryview.setitem_indexed = (PyObject *(*)(struct __pyx_memoryview_obj *, PyObject *, PyObject *))__pyx_memoryview_setitem_indexed; __pyx_vtable_memoryview.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryview_convert_item_to_object; __pyx_vtable_memoryview.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryview_assign_item_from_object; if (PyType_Ready(&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryview.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryview.tp_dictoffset && __pyx_type___pyx_memoryview.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryview.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryview.tp_dict, __pyx_vtabptr_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryview) < 0) __PYX_ERR(2, 331, __pyx_L1_error) __pyx_memoryview_type = &__pyx_type___pyx_memoryview; __pyx_vtabptr__memoryviewslice = &__pyx_vtable__memoryviewslice; __pyx_vtable__memoryviewslice.__pyx_base = *__pyx_vtabptr_memoryview; __pyx_vtable__memoryviewslice.__pyx_base.convert_item_to_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *))__pyx_memoryviewslice_convert_item_to_object; __pyx_vtable__memoryviewslice.__pyx_base.assign_item_from_object = (PyObject *(*)(struct __pyx_memoryview_obj *, char *, PyObject *))__pyx_memoryviewslice_assign_item_from_object; __pyx_type___pyx_memoryviewslice.tp_base = __pyx_memoryview_type; if (PyType_Ready(&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type___pyx_memoryviewslice.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type___pyx_memoryviewslice.tp_dictoffset && __pyx_type___pyx_memoryviewslice.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type___pyx_memoryviewslice.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type___pyx_memoryviewslice.tp_dict, __pyx_vtabptr__memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) if (__Pyx_setup_reduce((PyObject*)&__pyx_type___pyx_memoryviewslice) < 0) __PYX_ERR(2, 967, __pyx_L1_error) __pyx_memoryviewslice_type = &__pyx_type___pyx_memoryviewslice; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_type_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); /*--- Type import code ---*/ __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 sizeof(PyTypeObject), #else sizeof(PyHeapTypeObject), #endif __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(3, 9, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 199, __pyx_L1_error) __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 222, __pyx_L1_error) __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 226, __pyx_L1_error) __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 238, __pyx_L1_error) __pyx_ptype_5numpy_generic = __Pyx_ImportType(__pyx_t_1, "numpy", "generic", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_generic) __PYX_ERR(1, 770, __pyx_L1_error) __pyx_ptype_5numpy_number = __Pyx_ImportType(__pyx_t_1, "numpy", "number", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_number) __PYX_ERR(1, 772, __pyx_L1_error) __pyx_ptype_5numpy_integer = __Pyx_ImportType(__pyx_t_1, "numpy", "integer", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_integer) __PYX_ERR(1, 774, __pyx_L1_error) __pyx_ptype_5numpy_signedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "signedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_signedinteger) __PYX_ERR(1, 776, __pyx_L1_error) __pyx_ptype_5numpy_unsignedinteger = __Pyx_ImportType(__pyx_t_1, "numpy", "unsignedinteger", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_unsignedinteger) __PYX_ERR(1, 778, __pyx_L1_error) __pyx_ptype_5numpy_inexact = __Pyx_ImportType(__pyx_t_1, "numpy", "inexact", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_inexact) __PYX_ERR(1, 780, __pyx_L1_error) __pyx_ptype_5numpy_floating = __Pyx_ImportType(__pyx_t_1, "numpy", "floating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_floating) __PYX_ERR(1, 782, __pyx_L1_error) __pyx_ptype_5numpy_complexfloating = __Pyx_ImportType(__pyx_t_1, "numpy", "complexfloating", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_complexfloating) __PYX_ERR(1, 784, __pyx_L1_error) __pyx_ptype_5numpy_flexible = __Pyx_ImportType(__pyx_t_1, "numpy", "flexible", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_flexible) __PYX_ERR(1, 786, __pyx_L1_error) __pyx_ptype_5numpy_character = __Pyx_ImportType(__pyx_t_1, "numpy", "character", sizeof(PyObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_character) __PYX_ERR(1, 788, __pyx_L1_error) __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 826, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_variable_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); /*--- Variable import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_import_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); /*--- Function import code ---*/ __Pyx_RefNannyFinishContext(); return 0; } #ifndef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #elif PY_MAJOR_VERSION < 3 #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" void #else #define __Pyx_PyMODINIT_FUNC void #endif #else #ifdef __cplusplus #define __Pyx_PyMODINIT_FUNC extern "C" PyObject * #else #define __Pyx_PyMODINIT_FUNC PyObject * #endif #endif #if PY_MAJOR_VERSION < 3 __Pyx_PyMODINIT_FUNC init_xas(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC init_xas(void) #else __Pyx_PyMODINIT_FUNC PyInit__xas(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC PyInit__xas(void) #if CYTHON_PEP489_MULTI_PHASE_INIT { return PyModuleDef_Init(&__pyx_moduledef); } static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { #if PY_VERSION_HEX >= 0x030700A1 static PY_INT64_T main_interpreter_id = -1; PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); if (main_interpreter_id == -1) { main_interpreter_id = current_id; return (unlikely(current_id == -1)) ? -1 : 0; } else if (unlikely(main_interpreter_id != current_id)) #else static PyInterpreterState *main_interpreter = NULL; PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; if (!main_interpreter) { main_interpreter = current_interpreter; } else if (unlikely(main_interpreter != current_interpreter)) #endif { PyErr_SetString( PyExc_ImportError, "Interpreter change detected - this module can only be loaded into one interpreter per process."); return -1; } return 0; } static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { PyObject *value = PyObject_GetAttrString(spec, from_name); int result = 0; if (likely(value)) { if (allow_none || value != Py_None) { result = PyDict_SetItemString(moddict, to_name, value); } Py_DECREF(value); } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); } else { result = -1; } return result; } static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { PyObject *module = NULL, *moddict, *modname; if (__Pyx_check_single_interpreter()) return NULL; if (__pyx_m) return __Pyx_NewRef(__pyx_m); modname = PyObject_GetAttrString(spec, "name"); if (unlikely(!modname)) goto bad; module = PyModule_NewObject(modname); Py_DECREF(modname); if (unlikely(!module)) goto bad; moddict = PyModule_GetDict(module); if (unlikely(!moddict)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; return module; bad: Py_XDECREF(module); return NULL; } static CYTHON_SMALL_CODE int __pyx_pymod_exec__xas(PyObject *__pyx_pyinit_module) #endif #endif { PyObject *__pyx_t_1 = NULL; static PyThread_type_lock __pyx_t_2[8]; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; __Pyx_RefNannyDeclarations #if CYTHON_PEP489_MULTI_PHASE_INIT if (__pyx_m) { if (__pyx_m == __pyx_pyinit_module) return 0; PyErr_SetString(PyExc_RuntimeError, "Module '_xas' has already been imported. Re-initialisation is not supported."); return -1; } #elif PY_MAJOR_VERSION >= 3 if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit__xas(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pxy_PyFrame_Initialize_Offsets __Pxy_PyFrame_Initialize_Offsets(); #endif __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pyx_CyFunction_USED if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Coroutine_USED if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_AsyncGen_USED if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(WITH_THREAD) && PY_VERSION_HEX < 0x030700F0 && defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS PyEval_InitThreads(); #endif /*--- Module creation code ---*/ #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_m = __pyx_pyinit_module; Py_INCREF(__pyx_m); #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("_xas", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_b); __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_cython_runtime); if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); /*--- Initialize various global constants etc. ---*/ if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif if (__pyx_module_is_main_PyMca5__PyMcaPhysics__xas___xas) { if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name_2, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) if (!PyDict_GetItemString(modules, "PyMca5.PyMcaPhysics.xas._xas")) { if (unlikely(PyDict_SetItemString(modules, "PyMca5.PyMcaPhysics.xas._xas", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) } } #endif /*--- Builtin init code ---*/ if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error) /*--- Global type/function init code ---*/ (void)__Pyx_modinit_global_init_code(); (void)__Pyx_modinit_variable_export_code(); (void)__Pyx_modinit_function_export_code(); if (unlikely(__Pyx_modinit_type_init_code() < 0)) __PYX_ERR(0, 1, __pyx_L1_error) if (unlikely(__Pyx_modinit_type_import_code() < 0)) __PYX_ERR(0, 1, __pyx_L1_error) (void)__Pyx_modinit_variable_import_code(); (void)__Pyx_modinit_function_import_code(); /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":30 * #############################################################################*[inserted by cython to avoid comment closer]/ * cimport cython * import numpy # <<<<<<<<<<<<<< * cimport numpy * from polspl cimport polspl as _polspl */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 30, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_numpy, __pyx_t_1) < 0) __PYX_ERR(0, 30, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":35 * from bessel0 cimport j0Single, j0Multiple * * def j0(x): # <<<<<<<<<<<<<< * if hasattr(x, "__len__"): * return _besselMultiple(x) */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_1j0, NULL, __pyx_n_s_PyMca5_PyMcaPhysics_xas__xas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 35, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_j0, __pyx_t_1) < 0) __PYX_ERR(0, 35, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":41 * return _besselSingle(x) * * def _besselMultiple(x): # <<<<<<<<<<<<<< * result = numpy.array(x, copy=True, dtype=numpy.float64) * cdef double[:] c_x = result */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_3_besselMultiple, NULL, __pyx_n_s_PyMca5_PyMcaPhysics_xas__xas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_besselMultiple, __pyx_t_1) < 0) __PYX_ERR(0, 41, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":48 * return result * * def _besselSingle(double x): # <<<<<<<<<<<<<< * return j0Single(x) * */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_5_besselSingle, NULL, __pyx_n_s_PyMca5_PyMcaPhysics_xas__xas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 48, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_besselSingle, __pyx_t_1) < 0) __PYX_ERR(0, 48, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":51 * return j0Single(x) * * def polspl(x, y, w, npts, xl, xh, nr, nc): # <<<<<<<<<<<<<< * c = numpy.zeros((36,), dtype=numpy.float64) * cdef double[:] c_c = c */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_7polspl, NULL, __pyx_n_s_PyMca5_PyMcaPhysics_xas__xas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_polspl, __pyx_t_1) < 0) __PYX_ERR(0, 51, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":73 * return c * * def polspl2(x,y,w,npts,xl0,xh0,nr,nc): # <<<<<<<<<<<<<< * * # ; */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_6PyMca5_12PyMcaPhysics_3xas_4_xas_9polspl2, NULL, __pyx_n_s_PyMca5_PyMcaPhysics_xas__xas); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_polspl2, __pyx_t_1) < 0) __PYX_ERR(0, 73, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx":1 * #/[inserted by cython to avoid comment start]*########################################################################## # <<<<<<<<<<<<<< * # * # The PyMca X-Ray Fluorescence Toolkit */ __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":210 * info.obj = self * * __pyx_getbuffer = capsule(<void *> &__pyx_array_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * def __dealloc__(array self): */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_array_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_array_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_array_type); /* "View.MemoryView":287 * return self.name * * cdef generic = Enum("<strided and direct or indirect>") # <<<<<<<<<<<<<< * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__36, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 287, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(generic); __Pyx_DECREF_SET(generic, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":288 * * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default # <<<<<<<<<<<<<< * cdef indirect = Enum("<strided and indirect>") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__37, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 288, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(strided); __Pyx_DECREF_SET(strided, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":289 * cdef generic = Enum("<strided and direct or indirect>") * cdef strided = Enum("<strided and direct>") # default * cdef indirect = Enum("<strided and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__38, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 289, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect); __Pyx_DECREF_SET(indirect, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":292 * * * cdef contiguous = Enum("<contiguous and direct>") # <<<<<<<<<<<<<< * cdef indirect_contiguous = Enum("<contiguous and indirect>") * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__39, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 292, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(contiguous); __Pyx_DECREF_SET(contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":293 * * cdef contiguous = Enum("<contiguous and direct>") * cdef indirect_contiguous = Enum("<contiguous and indirect>") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)__pyx_MemviewEnum_type), __pyx_tuple__40, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 293, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_XGOTREF(indirect_contiguous); __Pyx_DECREF_SET(indirect_contiguous, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_1); __pyx_t_1 = 0; /* "View.MemoryView":317 * * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 # <<<<<<<<<<<<<< * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ * PyThread_allocate_lock(), */ __pyx_memoryview_thread_locks_used = 0; /* "View.MemoryView":318 * DEF THREAD_LOCKS_PREALLOCATED = 8 * cdef int __pyx_memoryview_thread_locks_used = 0 * cdef PyThread_type_lock[THREAD_LOCKS_PREALLOCATED] __pyx_memoryview_thread_locks = [ # <<<<<<<<<<<<<< * PyThread_allocate_lock(), * PyThread_allocate_lock(), */ __pyx_t_2[0] = PyThread_allocate_lock(); __pyx_t_2[1] = PyThread_allocate_lock(); __pyx_t_2[2] = PyThread_allocate_lock(); __pyx_t_2[3] = PyThread_allocate_lock(); __pyx_t_2[4] = PyThread_allocate_lock(); __pyx_t_2[5] = PyThread_allocate_lock(); __pyx_t_2[6] = PyThread_allocate_lock(); __pyx_t_2[7] = PyThread_allocate_lock(); memcpy(&(__pyx_memoryview_thread_locks[0]), __pyx_t_2, sizeof(__pyx_memoryview_thread_locks[0]) * (8)); /* "View.MemoryView":551 * info.obj = self * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 551, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryview_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 551, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryview_type); /* "View.MemoryView":997 * return self.from_object * * __pyx_getbuffer = capsule(<void *> &__pyx_memoryview_getbuffer, "getbuffer(obj, view, flags)") # <<<<<<<<<<<<<< * * */ __pyx_t_1 = __pyx_capsule_create(((void *)(&__pyx_memoryview_getbuffer)), ((char *)"getbuffer(obj, view, flags)")); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 997, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_memoryviewslice_type->tp_dict, __pyx_n_s_pyx_getbuffer, __pyx_t_1) < 0) __PYX_ERR(2, 997, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_memoryviewslice_type); /* "(tree fragment)":1 * def __pyx_unpickle_Enum(__pyx_type, long __pyx_checksum, __pyx_state): # <<<<<<<<<<<<<< * cdef object __pyx_PickleError * cdef object __pyx_result */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_15View_dot_MemoryView_1__pyx_unpickle_Enum, NULL, __pyx_n_s_View_MemoryView); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_pyx_unpickle_Enum, __pyx_t_1) < 0) __PYX_ERR(2, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "(tree fragment)":11 * __pyx_unpickle_Enum__set_state(<Enum> __pyx_result, __pyx_state) * return __pyx_result * cdef __pyx_unpickle_Enum__set_state(Enum __pyx_result, tuple __pyx_state): # <<<<<<<<<<<<<< * __pyx_result.name = __pyx_state[0] * if len(__pyx_state) > 1 and hasattr(__pyx_result, '__dict__'): */ /*--- Wrapped vars code ---*/ goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); if (__pyx_m) { if (__pyx_d) { __Pyx_AddTraceback("init PyMca5.PyMcaPhysics.xas._xas", __pyx_clineno, __pyx_lineno, __pyx_filename); } Py_CLEAR(__pyx_m); } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init PyMca5.PyMcaPhysics.xas._xas"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if CYTHON_PEP489_MULTI_PHASE_INIT return (__pyx_m != NULL) ? 0 : -1; #elif PY_MAJOR_VERSION >= 3 return __pyx_m; #else return; #endif } /* --- Runtime support code --- */ /* Refnanny */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule(modname); if (!m) goto end; p = PyObject_GetAttrString(m, "RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* PyObjectGetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #endif /* GetBuiltinName */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } /* GetAttr */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else if (likely(PyString_Check(n))) #endif return __Pyx_PyObject_GetAttrStr(o, n); #endif return PyObject_GetAttr(o, n); } /* HasAttr */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { PyObject *r; if (unlikely(!__Pyx_PyBaseString_Check(n))) { PyErr_SetString(PyExc_TypeError, "hasattr(): attribute name must be string"); return -1; } r = __Pyx_GetAttr(o, n); if (unlikely(!r)) { PyErr_Clear(); return 0; } else { Py_DECREF(r); return 1; } } /* PyDictVersioning */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { PyObject *dict = Py_TYPE(obj)->tp_dict; return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; } static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { PyObject **dictptr = NULL; Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; if (offset) { #if CYTHON_COMPILING_IN_CPYTHON dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); #else dictptr = _PyObject_GetDictPtr(obj); #endif } return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; } static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { PyObject *dict = Py_TYPE(obj)->tp_dict; if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) return 0; return obj_dict_version == __Pyx_get_object_dict_version(obj); } #endif /* GetModuleGlobalName */ #if CYTHON_USE_DICT_VERSIONS static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) #else static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) #endif { PyObject *result; #if !CYTHON_AVOID_BORROWED_REFS #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } else if (unlikely(PyErr_Occurred())) { return NULL; } #else result = PyDict_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } #endif #else result = PyObject_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } PyErr_Clear(); #endif return __Pyx_GetBuiltinName(name); } /* PyCFunctionFastCall */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); int flags = PyCFunction_GET_FLAGS(func); assert(PyCFunction_Check(func)); assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); assert(nargs >= 0); assert(nargs == 0 || args != NULL); /* _PyCFunction_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); } else { return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); } } #endif /* PyFunctionFastCall */ #if CYTHON_FAST_PYCALL static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { PyFrameObject *f; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject **fastlocals; Py_ssize_t i; PyObject *result; assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) { return NULL; } fastlocals = __Pyx_PyFrame_GetLocalsplus(f); for (i = 0; i < na; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } result = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return result; } #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *closure; #if PY_MAJOR_VERSION >= 3 PyObject *kwdefs; #endif PyObject *kwtuple, **k; PyObject **d; Py_ssize_t nd; Py_ssize_t nk; PyObject *result; assert(kwargs == NULL || PyDict_Check(kwargs)); nk = kwargs ? PyDict_Size(kwargs) : 0; if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } if ( #if PY_MAJOR_VERSION >= 3 co->co_kwonlyargcount == 0 && #endif likely(kwargs == NULL || nk == 0) && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); goto done; } else if (nargs == 0 && argdefs != NULL && co->co_argcount == Py_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ args = &PyTuple_GET_ITEM(argdefs, 0); result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); goto done; } } if (kwargs != NULL) { Py_ssize_t pos, i; kwtuple = PyTuple_New(2 * nk); if (kwtuple == NULL) { result = NULL; goto done; } k = &PyTuple_GET_ITEM(kwtuple, 0); pos = i = 0; while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { Py_INCREF(k[i]); Py_INCREF(k[i+1]); i += 2; } nk = i / 2; } else { kwtuple = NULL; k = NULL; } closure = PyFunction_GET_CLOSURE(func); #if PY_MAJOR_VERSION >= 3 kwdefs = PyFunction_GET_KW_DEFAULTS(func); #endif if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } else { d = NULL; nd = 0; } #if PY_MAJOR_VERSION >= 3 result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, kwdefs, closure); #else result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, closure); #endif Py_XDECREF(kwtuple); done: Py_LeaveRecursiveCall(); return result; } #endif #endif /* PyObjectCall */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = Py_TYPE(func)->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = (*call)(func, arg, kw); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCall2Args */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { PyObject *args, *result = NULL; #if CYTHON_FAST_PYCALL if (PyFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyFunction_FastCall(function, args, 2); } #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyCFunction_FastCall(function, args, 2); } #endif args = PyTuple_New(2); if (unlikely(!args)) goto done; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); Py_INCREF(function); result = __Pyx_PyObject_Call(function, args, NULL); Py_DECREF(args); Py_DECREF(function); done: return result; } /* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; cfunc = PyCFunction_GET_FUNCTION(func); self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallOneArg */ #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); if (unlikely(!args)) return NULL; Py_INCREF(arg); PyTuple_SET_ITEM(args, 0, arg); result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, &arg, 1); } #endif if (likely(PyCFunction_Check(func))) { if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { return __Pyx_PyObject_CallMethO(func, arg); #if CYTHON_FAST_PYCCALL } else if (__Pyx_PyFastCFunction_Check(func)) { return __Pyx_PyCFunction_FastCall(func, &arg, 1); #endif } } return __Pyx__PyObject_CallOneArg(func, arg); } #else static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_Pack(1, arg); if (unlikely(!args)) return NULL; result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } #endif /* BufferIndexError */ static void __Pyx_RaiseBufferIndexError(int axis) { PyErr_Format(PyExc_IndexError, "Out of bounds on buffer access (axis %d)", axis); } /* MemviewSliceInit */ static int __Pyx_init_memviewslice(struct __pyx_memoryview_obj *memview, int ndim, __Pyx_memviewslice *memviewslice, int memview_is_new_reference) { __Pyx_RefNannyDeclarations int i, retval=-1; Py_buffer *buf = &memview->view; __Pyx_RefNannySetupContext("init_memviewslice", 0); if (unlikely(memviewslice->memview || memviewslice->data)) { PyErr_SetString(PyExc_ValueError, "memviewslice is already initialized!"); goto fail; } if (buf->strides) { for (i = 0; i < ndim; i++) { memviewslice->strides[i] = buf->strides[i]; } } else { Py_ssize_t stride = buf->itemsize; for (i = ndim - 1; i >= 0; i--) { memviewslice->strides[i] = stride; stride *= buf->shape[i]; } } for (i = 0; i < ndim; i++) { memviewslice->shape[i] = buf->shape[i]; if (buf->suboffsets) { memviewslice->suboffsets[i] = buf->suboffsets[i]; } else { memviewslice->suboffsets[i] = -1; } } memviewslice->memview = memview; memviewslice->data = (char *)buf->buf; if (__pyx_add_acquisition_count(memview) == 0 && !memview_is_new_reference) { Py_INCREF(memview); } retval = 0; goto no_fail; fail: memviewslice->memview = 0; memviewslice->data = 0; retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } #ifndef Py_NO_RETURN #define Py_NO_RETURN #endif static void __pyx_fatalerror(const char *fmt, ...) Py_NO_RETURN { va_list vargs; char msg[200]; #if PY_VERSION_HEX >= 0x030A0000 || defined(HAVE_STDARG_PROTOTYPES) va_start(vargs, fmt); #else va_start(vargs); #endif vsnprintf(msg, 200, fmt, vargs); va_end(vargs); Py_FatalError(msg); } static CYTHON_INLINE int __pyx_add_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)++; PyThread_release_lock(lock); return result; } static CYTHON_INLINE int __pyx_sub_acquisition_count_locked(__pyx_atomic_int *acquisition_count, PyThread_type_lock lock) { int result; PyThread_acquire_lock(lock, 1); result = (*acquisition_count)--; PyThread_release_lock(lock); return result; } static CYTHON_INLINE void __Pyx_INC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int first_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) return; if (unlikely(__pyx_get_slice_count(memview) < 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); first_time = __pyx_add_acquisition_count(memview) == 0; if (unlikely(first_time)) { if (have_gil) { Py_INCREF((PyObject *) memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_INCREF((PyObject *) memview); PyGILState_Release(_gilstate); } } } static CYTHON_INLINE void __Pyx_XDEC_MEMVIEW(__Pyx_memviewslice *memslice, int have_gil, int lineno) { int last_time; struct __pyx_memoryview_obj *memview = memslice->memview; if (unlikely(!memview || (PyObject *) memview == Py_None)) { memslice->memview = NULL; return; } if (unlikely(__pyx_get_slice_count(memview) <= 0)) __pyx_fatalerror("Acquisition count is %d (line %d)", __pyx_get_slice_count(memview), lineno); last_time = __pyx_sub_acquisition_count(memview) == 1; memslice->data = NULL; if (unlikely(last_time)) { if (have_gil) { Py_CLEAR(memslice->memview); } else { PyGILState_STATE _gilstate = PyGILState_Ensure(); Py_CLEAR(memslice->memview); PyGILState_Release(_gilstate); } } else { memslice->memview = NULL; } } /* RaiseArgTupleInvalid */ static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } /* RaiseDoubleKeywords */ static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } /* ParseKeywords */ static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**name) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (__Pyx_PyUnicode_GET_LENGTH(**argname) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } /* ExtTypeTest */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } if (likely(__Pyx_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); return 0; } /* IsLittleEndian */ static CYTHON_INLINE int __Pyx_Is_Little_Endian(void) { union { uint32_t u32; uint8_t u8[4]; } S; S.u32 = 0x01020304; return S.u8[0] == 4; } /* BufferFormatCheck */ static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx, __Pyx_BufFmt_StackElem* stack, __Pyx_TypeInfo* type) { stack[0].field = &ctx->root; stack[0].parent_offset = 0; ctx->root.type = type; ctx->root.name = "buffer dtype"; ctx->root.offset = 0; ctx->head = stack; ctx->head->field = &ctx->root; ctx->fmt_offset = 0; ctx->head->parent_offset = 0; ctx->new_packmode = '@'; ctx->enc_packmode = '@'; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->is_complex = 0; ctx->is_valid_array = 0; ctx->struct_alignment = 0; while (type->typegroup == 'S') { ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = 0; type = type->fields->type; } } static int __Pyx_BufFmt_ParseNumber(const char** ts) { int count; const char* t = *ts; if (*t < '0' || *t > '9') { return -1; } else { count = *t++ - '0'; while (*t >= '0' && *t <= '9') { count *= 10; count += *t++ - '0'; } } *ts = t; return count; } static int __Pyx_BufFmt_ExpectNumber(const char **ts) { int number = __Pyx_BufFmt_ParseNumber(ts); if (number == -1) PyErr_Format(PyExc_ValueError,\ "Does not understand character buffer dtype format string ('%c')", **ts); return number; } static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) { PyErr_Format(PyExc_ValueError, "Unexpected format string character: '%c'", ch); } static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) { switch (ch) { case '?': return "'bool'"; case 'c': return "'char'"; case 'b': return "'signed char'"; case 'B': return "'unsigned char'"; case 'h': return "'short'"; case 'H': return "'unsigned short'"; case 'i': return "'int'"; case 'I': return "'unsigned int'"; case 'l': return "'long'"; case 'L': return "'unsigned long'"; case 'q': return "'long long'"; case 'Q': return "'unsigned long long'"; case 'f': return (is_complex ? "'complex float'" : "'float'"); case 'd': return (is_complex ? "'complex double'" : "'double'"); case 'g': return (is_complex ? "'complex long double'" : "'long double'"); case 'T': return "a struct"; case 'O': return "Python object"; case 'P': return "a pointer"; case 's': case 'p': return "a string"; case 0: return "end"; default: return "unparseable format string"; } } static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return 2; case 'i': case 'I': case 'l': case 'L': return 4; case 'q': case 'Q': return 8; case 'f': return (is_complex ? 8 : 4); case 'd': return (is_complex ? 16 : 8); case 'g': { PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g').."); return 0; } case 'O': case 'P': return sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(short); case 'i': case 'I': return sizeof(int); case 'l': case 'L': return sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(float) * (is_complex ? 2 : 1); case 'd': return sizeof(double) * (is_complex ? 2 : 1); case 'g': return sizeof(long double) * (is_complex ? 2 : 1); case 'O': case 'P': return sizeof(void*); default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } typedef struct { char c; short x; } __Pyx_st_short; typedef struct { char c; int x; } __Pyx_st_int; typedef struct { char c; long x; } __Pyx_st_long; typedef struct { char c; float x; } __Pyx_st_float; typedef struct { char c; double x; } __Pyx_st_double; typedef struct { char c; long double x; } __Pyx_st_longdouble; typedef struct { char c; void *x; } __Pyx_st_void_p; #ifdef HAVE_LONG_LONG typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_st_float) - sizeof(float); case 'd': return sizeof(__Pyx_st_double) - sizeof(double); case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } /* These are for computing the padding at the end of the struct to align on the first member of the struct. This will probably the same as above, but we don't have any guarantees. */ typedef struct { short x; char c; } __Pyx_pad_short; typedef struct { int x; char c; } __Pyx_pad_int; typedef struct { long x; char c; } __Pyx_pad_long; typedef struct { float x; char c; } __Pyx_pad_float; typedef struct { double x; char c; } __Pyx_pad_double; typedef struct { long double x; char c; } __Pyx_pad_longdouble; typedef struct { void *x; char c; } __Pyx_pad_void_p; #ifdef HAVE_LONG_LONG typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong; #endif static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) { switch (ch) { case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1; case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short); case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int); case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long); #ifdef HAVE_LONG_LONG case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG); #endif case 'f': return sizeof(__Pyx_pad_float) - sizeof(float); case 'd': return sizeof(__Pyx_pad_double) - sizeof(double); case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double); case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*); default: __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) { switch (ch) { case 'c': return 'H'; case 'b': case 'h': case 'i': case 'l': case 'q': case 's': case 'p': return 'I'; case '?': case 'B': case 'H': case 'I': case 'L': case 'Q': return 'U'; case 'f': case 'd': case 'g': return (is_complex ? 'C' : 'R'); case 'O': return 'O'; case 'P': return 'P'; default: { __Pyx_BufFmt_RaiseUnexpectedChar(ch); return 0; } } } static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) { if (ctx->head == NULL || ctx->head->field == &ctx->root) { const char* expected; const char* quote; if (ctx->head == NULL) { expected = "end"; quote = ""; } else { expected = ctx->head->field->type->name; quote = "'"; } PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected %s%s%s but got %s", quote, expected, quote, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex)); } else { __Pyx_StructField* field = ctx->head->field; __Pyx_StructField* parent = (ctx->head - 1)->field; PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'", field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex), parent->type->name, field->name); } } static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) { char group; size_t size, offset, arraysize = 1; if (ctx->enc_type == 0) return 0; if (ctx->head->field->type->arraysize[0]) { int i, ndim = 0; if (ctx->enc_type == 's' || ctx->enc_type == 'p') { ctx->is_valid_array = ctx->head->field->type->ndim == 1; ndim = 1; if (ctx->enc_count != ctx->head->field->type->arraysize[0]) { PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %zu", ctx->head->field->type->arraysize[0], ctx->enc_count); return -1; } } if (!ctx->is_valid_array) { PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d", ctx->head->field->type->ndim, ndim); return -1; } for (i = 0; i < ctx->head->field->type->ndim; i++) { arraysize *= ctx->head->field->type->arraysize[i]; } ctx->is_valid_array = 0; ctx->enc_count = 1; } group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex); do { __Pyx_StructField* field = ctx->head->field; __Pyx_TypeInfo* type = field->type; if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') { size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex); } else { size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex); } if (ctx->enc_packmode == '@') { size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex); size_t align_mod_offset; if (align_at == 0) return -1; align_mod_offset = ctx->fmt_offset % align_at; if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset; if (ctx->struct_alignment == 0) ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type, ctx->is_complex); } if (type->size != size || type->typegroup != group) { if (type->typegroup == 'C' && type->fields != NULL) { size_t parent_offset = ctx->head->parent_offset + field->offset; ++ctx->head; ctx->head->field = type->fields; ctx->head->parent_offset = parent_offset; continue; } if ((type->typegroup == 'H' || group == 'H') && type->size == size) { } else { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } } offset = ctx->head->parent_offset + field->offset; if (ctx->fmt_offset != offset) { PyErr_Format(PyExc_ValueError, "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected", (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset); return -1; } ctx->fmt_offset += size; if (arraysize) ctx->fmt_offset += (arraysize - 1) * size; --ctx->enc_count; while (1) { if (field == &ctx->root) { ctx->head = NULL; if (ctx->enc_count != 0) { __Pyx_BufFmt_RaiseExpected(ctx); return -1; } break; } ctx->head->field = ++field; if (field->type == NULL) { --ctx->head; field = ctx->head->field; continue; } else if (field->type->typegroup == 'S') { size_t parent_offset = ctx->head->parent_offset + field->offset; if (field->type->fields->type == NULL) continue; field = field->type->fields; ++ctx->head; ctx->head->field = field; ctx->head->parent_offset = parent_offset; break; } else { break; } } } while (ctx->enc_count); ctx->enc_type = 0; ctx->is_complex = 0; return 0; } static PyObject * __pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp) { const char *ts = *tsp; int i = 0, number, ndim; ++ts; if (ctx->new_count != 1) { PyErr_SetString(PyExc_ValueError, "Cannot handle repeated arrays in format string"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ndim = ctx->head->field->type->ndim; while (*ts && *ts != ')') { switch (*ts) { case ' ': case '\f': case '\r': case '\n': case '\t': case '\v': continue; default: break; } number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i]) return PyErr_Format(PyExc_ValueError, "Expected a dimension of size %zu, got %d", ctx->head->field->type->arraysize[i], number); if (*ts != ',' && *ts != ')') return PyErr_Format(PyExc_ValueError, "Expected a comma in format string, got '%c'", *ts); if (*ts == ',') ts++; i++; } if (i != ndim) return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d", ctx->head->field->type->ndim, i); if (!*ts) { PyErr_SetString(PyExc_ValueError, "Unexpected end of format string, expected ')'"); return NULL; } ctx->is_valid_array = 1; ctx->new_count = 1; *tsp = ++ts; return Py_None; } static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) { int got_Z = 0; while (1) { switch(*ts) { case 0: if (ctx->enc_type != 0 && ctx->head == NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; if (ctx->head != NULL) { __Pyx_BufFmt_RaiseExpected(ctx); return NULL; } return ts; case ' ': case '\r': case '\n': ++ts; break; case '<': if (!__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '>': case '!': if (__Pyx_Is_Little_Endian()) { PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler"); return NULL; } ctx->new_packmode = '='; ++ts; break; case '=': case '@': case '^': ctx->new_packmode = *ts++; break; case 'T': { const char* ts_after_sub; size_t i, struct_count = ctx->new_count; size_t struct_alignment = ctx->struct_alignment; ctx->new_count = 1; ++ts; if (*ts != '{') { PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'"); return NULL; } if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; ctx->enc_count = 0; ctx->struct_alignment = 0; ++ts; ts_after_sub = ts; for (i = 0; i != struct_count; ++i) { ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts); if (!ts_after_sub) return NULL; } ts = ts_after_sub; if (struct_alignment) ctx->struct_alignment = struct_alignment; } break; case '}': { size_t alignment = ctx->struct_alignment; ++ts; if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_type = 0; if (alignment && ctx->fmt_offset % alignment) { ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment); } } return ts; case 'x': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->fmt_offset += ctx->new_count; ctx->new_count = 1; ctx->enc_count = 0; ctx->enc_type = 0; ctx->enc_packmode = ctx->new_packmode; ++ts; break; case 'Z': got_Z = 1; ++ts; if (*ts != 'f' && *ts != 'd' && *ts != 'g') { __Pyx_BufFmt_RaiseUnexpectedChar('Z'); return NULL; } CYTHON_FALLTHROUGH; case '?': case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I': case 'l': case 'L': case 'q': case 'Q': case 'f': case 'd': case 'g': case 'O': case 'p': if ((ctx->enc_type == *ts) && (got_Z == ctx->is_complex) && (ctx->enc_packmode == ctx->new_packmode) && (!ctx->is_valid_array)) { ctx->enc_count += ctx->new_count; ctx->new_count = 1; got_Z = 0; ++ts; break; } CYTHON_FALLTHROUGH; case 's': if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL; ctx->enc_count = ctx->new_count; ctx->enc_packmode = ctx->new_packmode; ctx->enc_type = *ts; ctx->is_complex = got_Z; ++ts; ctx->new_count = 1; got_Z = 0; break; case ':': ++ts; while(*ts != ':') ++ts; ++ts; break; case '(': if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL; break; default: { int number = __Pyx_BufFmt_ExpectNumber(&ts); if (number == -1) return NULL; ctx->new_count = (size_t)number; } } } } /* BufferGetAndValidate */ static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) { if (unlikely(info->buf == NULL)) return; if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL; __Pyx_ReleaseBuffer(info); } static void __Pyx_ZeroBuffer(Py_buffer* buf) { buf->buf = NULL; buf->obj = NULL; buf->strides = __Pyx_zeros; buf->shape = __Pyx_zeros; buf->suboffsets = __Pyx_minusones; } static int __Pyx__GetBufferAndValidate( Py_buffer* buf, PyObject* obj, __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack) { buf->buf = NULL; if (unlikely(__Pyx_GetBuffer(obj, buf, flags) == -1)) { __Pyx_ZeroBuffer(buf); return -1; } if (unlikely(buf->ndim != nd)) { PyErr_Format(PyExc_ValueError, "Buffer has wrong number of dimensions (expected %d, got %d)", nd, buf->ndim); goto fail; } if (!cast) { __Pyx_BufFmt_Context ctx; __Pyx_BufFmt_Init(&ctx, stack, dtype); if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail; } if (unlikely((size_t)buf->itemsize != dtype->size)) { PyErr_Format(PyExc_ValueError, "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)", buf->itemsize, (buf->itemsize > 1) ? "s" : "", dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : ""); goto fail; } if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones; return 0; fail:; __Pyx_SafeReleaseBuffer(buf); return -1; } /* SetItemInt */ static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v) { int r; if (!j) return -1; r = PyObject_SetItem(o, j, v); Py_DECREF(j); return r; } static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = (!wraparound) ? i : ((likely(i >= 0)) ? i : i + PyList_GET_SIZE(o)); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o)))) { PyObject* old = PyList_GET_ITEM(o, n); Py_INCREF(v); PyList_SET_ITEM(o, n, v); Py_DECREF(old); return 1; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_ass_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return -1; PyErr_Clear(); } } return m->sq_ass_item(o, i, v); } } #else #if CYTHON_COMPILING_IN_PYPY if (is_list || (PySequence_Check(o) && !PyDict_Check(o))) #else if (is_list || PySequence_Check(o)) #endif { return PySequence_SetItem(o, i, v); } #endif return __Pyx_SetItemInt_Generic(o, PyInt_FromSsize_t(i), v); } /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a + b); if (likely((x^a) >= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* GetItemInt */ static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyList_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyTuple_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; PyErr_Clear(); } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a - b); if (likely((x^a) >= 0 || (x^~b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_subtract(op1, op2); } } x = a - b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla - llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("subtract", return NULL) result = ((double)a) - (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceSubtract : PyNumber_Subtract)(op1, op2); } #endif /* ObjectGetItem */ #if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr; Py_ssize_t key_value; PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; if (unlikely(!(m && m->sq_item))) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); return NULL; } key_value = __Pyx_PyIndex_AsSsize_t(index); if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); } if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { PyErr_Clear(); PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); } return NULL; } static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; if (likely(m && m->mp_subscript)) { return m->mp_subscript(obj, key); } return __Pyx_PyObject_GetIndex(obj, key); } #endif /* PyIntCompare */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED long inplace) { if (op1 == op2) { Py_RETURN_TRUE; } #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long a = PyInt_AS_LONG(op1); if (a == b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { int unequal; unsigned long uintval; Py_ssize_t size = Py_SIZE(op1); const digit* digits = ((PyLongObject*)op1)->ob_digit; if (intval == 0) { if (size == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } else if (intval < 0) { if (size >= 0) Py_RETURN_FALSE; intval = -intval; size = -size; } else { if (size <= 0) Py_RETURN_FALSE; } uintval = (unsigned long) intval; #if PyLong_SHIFT * 4 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 4)) { unequal = (size != 5) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[4] != ((uintval >> (4 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 3 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 3)) { unequal = (size != 4) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 2 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 2)) { unequal = (size != 3) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 1 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 1)) { unequal = (size != 2) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif unequal = (size != 1) || (((unsigned long) digits[0]) != (uintval & (unsigned long) PyLong_MASK)); if (unequal == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); if ((double)a == (double)b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } return ( PyObject_RichCompare(op1, op2, Py_EQ)); } /* PyErrFetchRestore */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; } #endif /* GetTopmostException */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate) { _PyErr_StackItem *exc_info = tstate->exc_info; while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && exc_info->previous_item != NULL) { exc_info = exc_info->previous_item; } return exc_info; } #endif /* SaveResetException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); *type = exc_info->exc_type; *value = exc_info->exc_value; *tb = exc_info->exc_traceback; #else *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; #endif Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); } static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = type; exc_info->exc_value = value; exc_info->exc_traceback = tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } #endif /* PyErrExceptionMatches */ #if CYTHON_FAST_THREAD_STATE static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i<n; i++) { if (exc_type == PyTuple_GET_ITEM(tuple, i)) return 1; } #endif for (i=0; i<n; i++) { if (__Pyx_PyErr_GivenExceptionMatches(exc_type, PyTuple_GET_ITEM(tuple, i))) return 1; } return 0; } static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err) { PyObject *exc_type = tstate->curexc_type; if (exc_type == err) return 1; if (unlikely(!exc_type)) return 0; if (unlikely(PyTuple_Check(err))) return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); } #endif /* GetException */ #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) #endif { PyObject *local_type, *local_value, *local_tb; #if CYTHON_FAST_THREAD_STATE PyObject *tmp_type, *tmp_value, *tmp_tb; local_type = tstate->curexc_type; local_value = tstate->curexc_value; local_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(&local_type, &local_value, &local_tb); #endif PyErr_NormalizeException(&local_type, &local_value, &local_tb); #if CYTHON_FAST_THREAD_STATE if (unlikely(tstate->curexc_type)) #else if (unlikely(PyErr_Occurred())) #endif goto bad; #if PY_MAJOR_VERSION >= 3 if (local_tb) { if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) goto bad; } #endif Py_XINCREF(local_tb); Py_XINCREF(local_type); Py_XINCREF(local_value); *type = local_type; *value = local_value; *tb = local_tb; #if CYTHON_FAST_THREAD_STATE #if CYTHON_USE_EXC_INFO_STACK { _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = local_type; exc_info->exc_value = local_value; exc_info->exc_traceback = local_tb; } #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(local_type, local_value, local_tb); #endif return 0; bad: *type = 0; *value = 0; *tb = 0; Py_XDECREF(local_type); Py_XDECREF(local_value); Py_XDECREF(local_tb); return -1; } /* RaiseException */ #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } if (PyType_Check(type)) { #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } } __Pyx_PyThreadState_assign __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { int is_subclass = PyObject_IsSubclass(instance_class, type); if (!is_subclass) { instance_class = NULL; } else if (unlikely(is_subclass == -1)) { goto bad; } else { type = instance_class; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } if (cause) { PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { #if CYTHON_COMPILING_IN_PYPY PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); Py_INCREF(tb); PyErr_Restore(tmp_type, tmp_value, tb); Py_XDECREF(tmp_tb); #else PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } #endif } bad: Py_XDECREF(owned_instance); return; } #endif /* ArgTypeTest */ static int __Pyx__ArgTypeTest(PyObject *obj, PyTypeObject *type, const char *name, int exact) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } else if (exact) { #if PY_MAJOR_VERSION == 2 if ((type == &PyBaseString_Type) && likely(__Pyx_PyBaseString_CheckExact(obj))) return 1; #endif } else { if (likely(__Pyx_TypeCheck(obj, type))) return 1; } PyErr_Format(PyExc_TypeError, "Argument '%.200s' has incorrect type (expected %.200s, got %.200s)", name, type->tp_name, Py_TYPE(obj)->tp_name); return 0; } /* BytesEquals */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result; #if CYTHON_USE_UNICODE_INTERNALS && (PY_VERSION_HEX < 0x030B0000) Py_hash_t hash1, hash2; hash1 = ((PyBytesObject*)s1)->ob_shash; hash2 = ((PyBytesObject*)s2)->ob_shash; if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { return (equals == Py_NE); } #endif result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } /* UnicodeEquals */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) return -1; length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } #if CYTHON_USE_UNICODE_INTERNALS { Py_hash_t hash1, hash2; #if CYTHON_PEP393_ENABLED hash1 = ((PyASCIIObject*)s1)->hash; hash2 = ((PyASCIIObject*)s2)->hash; #else hash1 = ((PyUnicodeObject*)s1)->hash; hash2 = ((PyUnicodeObject*)s2)->hash; #endif if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { goto return_ne; } } #endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } /* DivInt[Py_ssize_t] */ static CYTHON_INLINE Py_ssize_t __Pyx_div_Py_ssize_t(Py_ssize_t a, Py_ssize_t b) { Py_ssize_t q = a / b; Py_ssize_t r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* decode_c_string */ static CYTHON_INLINE PyObject* __Pyx_decode_c_string( const char* cstring, Py_ssize_t start, Py_ssize_t stop, const char* encoding, const char* errors, PyObject* (*decode_func)(const char *s, Py_ssize_t size, const char *errors)) { Py_ssize_t length; if (unlikely((start < 0) | (stop < 0))) { size_t slen = strlen(cstring); if (unlikely(slen > (size_t) PY_SSIZE_T_MAX)) { PyErr_SetString(PyExc_OverflowError, "c-string too long to convert to Python"); return NULL; } length = (Py_ssize_t) slen; if (start < 0) { start += length; if (start < 0) start = 0; } if (stop < 0) stop += length; } if (unlikely(stop <= start)) return __Pyx_NewRef(__pyx_empty_unicode); length = stop - start; cstring += start; if (decode_func) { return decode_func(cstring, length, errors); } else { return PyUnicode_Decode(cstring, length, encoding, errors); } } /* GetAttr3 */ static PyObject *__Pyx_GetAttr3Default(PyObject *d) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) return NULL; __Pyx_PyErr_Clear(); Py_INCREF(d); return d; } static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) { PyObject *r = __Pyx_GetAttr(o, n); return (likely(r)) ? r : __Pyx_GetAttr3Default(d); } /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* RaiseNeedMoreValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* RaiseNoneIterError */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* SwapException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = *type; exc_info->exc_value = *value; exc_info->exc_traceback = *tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = *type; tstate->exc_value = *value; tstate->exc_traceback = *tb; #endif *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #else static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb); PyErr_SetExcInfo(*type, *value, *tb); *type = tmp_type; *value = tmp_value; *tb = tmp_tb; } #endif /* Import */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if ((1) && (strchr(__Pyx_MODULE_NAME, '.'))) { module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; } #endif if (!module) { #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } bad: #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } /* FastTypeChecks */ #if CYTHON_COMPILING_IN_CPYTHON static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { while (a) { a = a->tp_base; if (a == b) return 1; } return b == &PyBaseObject_Type; } static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (a == b) return 1; mro = a->tp_mro; if (likely(mro)) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } return __Pyx_InBases(a, b); } #if PY_MAJOR_VERSION == 2 static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { PyObject *exception, *value, *tb; int res; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&exception, &value, &tb); res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } if (!res) { res = PyObject_IsSubclass(err, exc_type2); if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } } __Pyx_ErrRestore(exception, value, tb); return res; } #else static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; if (!res) { res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); } return res; } #endif static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; assert(PyExceptionClass_Check(exc_type)); n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i<n; i++) { if (exc_type == PyTuple_GET_ITEM(tuple, i)) return 1; } #endif for (i=0; i<n; i++) { PyObject *t = PyTuple_GET_ITEM(tuple, i); #if PY_MAJOR_VERSION < 3 if (likely(exc_type == t)) return 1; #endif if (likely(PyExceptionClass_Check(t))) { if (__Pyx_inner_PyErr_GivenExceptionMatches2(exc_type, NULL, t)) return 1; } else { } } return 0; } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject* exc_type) { if (likely(err == exc_type)) return 1; if (likely(PyExceptionClass_Check(err))) { if (likely(PyExceptionClass_Check(exc_type))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, NULL, exc_type); } else if (likely(PyTuple_Check(exc_type))) { return __Pyx_PyErr_GivenExceptionMatchesTuple(err, exc_type); } else { } } return PyErr_GivenExceptionMatches(err, exc_type); } static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *exc_type1, PyObject *exc_type2) { assert(PyExceptionClass_Check(exc_type1)); assert(PyExceptionClass_Check(exc_type2)); if (likely(err == exc_type1 || err == exc_type2)) return 1; if (likely(PyExceptionClass_Check(err))) { return __Pyx_inner_PyErr_GivenExceptionMatches2(err, exc_type1, exc_type2); } return (PyErr_GivenExceptionMatches(err, exc_type1) || PyErr_GivenExceptionMatches(err, exc_type2)); } #endif /* None */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* DivInt[long] */ static CYTHON_INLINE long __Pyx_div_long(long a, long b) { long q = a / b; long r = a - q*b; q -= ((r != 0) & ((r ^ b) < 0)); return q; } /* ImportFrom */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } /* PyObject_GenericGetAttrNoDict */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { PyErr_Format(PyExc_AttributeError, #if PY_MAJOR_VERSION >= 3 "'%.50s' object has no attribute '%U'", tp->tp_name, attr_name); #else "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(attr_name)); #endif return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { PyObject *descr; PyTypeObject *tp = Py_TYPE(obj); if (unlikely(!PyString_Check(attr_name))) { return PyObject_GenericGetAttr(obj, attr_name); } assert(!tp->tp_dictoffset); descr = _PyType_Lookup(tp, attr_name); if (unlikely(!descr)) { return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); } Py_INCREF(descr); #if PY_MAJOR_VERSION < 3 if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) #endif { descrgetfunc f = Py_TYPE(descr)->tp_descr_get; if (unlikely(f)) { PyObject *res = f(descr, obj, (PyObject *)tp); Py_DECREF(descr); return res; } } return descr; } #endif /* PyObject_GenericGetAttr */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { return PyObject_GenericGetAttr(obj, attr_name); } return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); } #endif /* SetVTable */ static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); #endif if (!ob) goto bad; if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) goto bad; Py_DECREF(ob); return 0; bad: Py_XDECREF(ob); return -1; } /* PyObjectGetAttrStrNoError */ static void __Pyx_PyObject_GetAttrStr_ClearAttributeError(void) { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign if (likely(__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError))) __Pyx_PyErr_Clear(); } static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name) { PyObject *result; #if CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_TYPE_SLOTS && PY_VERSION_HEX >= 0x030700B1 PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro == PyObject_GenericGetAttr)) { return _PyObject_GenericGetAttrWithDict(obj, attr_name, NULL, 1); } #endif result = __Pyx_PyObject_GetAttrStr(obj, attr_name); if (unlikely(!result)) { __Pyx_PyObject_GetAttrStr_ClearAttributeError(); } return result; } /* SetupReduce */ static int __Pyx_setup_reduce_is_named(PyObject* meth, PyObject* name) { int ret; PyObject *name_attr; name_attr = __Pyx_PyObject_GetAttrStr(meth, __pyx_n_s_name_2); if (likely(name_attr)) { ret = PyObject_RichCompareBool(name_attr, name, Py_EQ); } else { ret = -1; } if (unlikely(ret < 0)) { PyErr_Clear(); ret = 0; } Py_XDECREF(name_attr); return ret; } static int __Pyx_setup_reduce(PyObject* type_obj) { int ret = 0; PyObject *object_reduce = NULL; PyObject *object_getstate = NULL; PyObject *object_reduce_ex = NULL; PyObject *reduce = NULL; PyObject *reduce_ex = NULL; PyObject *reduce_cython = NULL; PyObject *setstate = NULL; PyObject *setstate_cython = NULL; PyObject *getstate = NULL; #if CYTHON_USE_PYTYPE_LOOKUP getstate = _PyType_Lookup((PyTypeObject*)type_obj, __pyx_n_s_getstate); #else getstate = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_getstate); if (!getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (getstate) { #if CYTHON_USE_PYTYPE_LOOKUP object_getstate = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_getstate); #else object_getstate = __Pyx_PyObject_GetAttrStrNoError((PyObject*)&PyBaseObject_Type, __pyx_n_s_getstate); if (!object_getstate && PyErr_Occurred()) { goto __PYX_BAD; } #endif if (object_getstate != getstate) { goto __PYX_GOOD; } } #if CYTHON_USE_PYTYPE_LOOKUP object_reduce_ex = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #else object_reduce_ex = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce_ex); if (!object_reduce_ex) goto __PYX_BAD; #endif reduce_ex = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce_ex); if (unlikely(!reduce_ex)) goto __PYX_BAD; if (reduce_ex == object_reduce_ex) { #if CYTHON_USE_PYTYPE_LOOKUP object_reduce = _PyType_Lookup(&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #else object_reduce = __Pyx_PyObject_GetAttrStr((PyObject*)&PyBaseObject_Type, __pyx_n_s_reduce); if (!object_reduce) goto __PYX_BAD; #endif reduce = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_reduce); if (unlikely(!reduce)) goto __PYX_BAD; if (reduce == object_reduce || __Pyx_setup_reduce_is_named(reduce, __pyx_n_s_reduce_cython)) { reduce_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_reduce_cython); if (likely(reduce_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce, reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_reduce_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (reduce == object_reduce || PyErr_Occurred()) { goto __PYX_BAD; } setstate = __Pyx_PyObject_GetAttrStr(type_obj, __pyx_n_s_setstate); if (!setstate) PyErr_Clear(); if (!setstate || __Pyx_setup_reduce_is_named(setstate, __pyx_n_s_setstate_cython)) { setstate_cython = __Pyx_PyObject_GetAttrStrNoError(type_obj, __pyx_n_s_setstate_cython); if (likely(setstate_cython)) { ret = PyDict_SetItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate, setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; ret = PyDict_DelItem(((PyTypeObject*)type_obj)->tp_dict, __pyx_n_s_setstate_cython); if (unlikely(ret < 0)) goto __PYX_BAD; } else if (!setstate || PyErr_Occurred()) { goto __PYX_BAD; } } PyType_Modified((PyTypeObject*)type_obj); } } goto __PYX_GOOD; __PYX_BAD: if (!PyErr_Occurred()) PyErr_Format(PyExc_RuntimeError, "Unable to initialize pickling for %s", ((PyTypeObject*)type_obj)->tp_name); ret = -1; __PYX_GOOD: #if !CYTHON_USE_PYTYPE_LOOKUP Py_XDECREF(object_reduce); Py_XDECREF(object_reduce_ex); Py_XDECREF(object_getstate); Py_XDECREF(getstate); #endif Py_XDECREF(reduce); Py_XDECREF(reduce_ex); Py_XDECREF(reduce_cython); Py_XDECREF(setstate); Py_XDECREF(setstate_cython); return ret; } /* TypeImport */ #ifndef __PYX_HAVE_RT_ImportType #define __PYX_HAVE_RT_ImportType static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size) { PyObject *result = 0; char warning[200]; Py_ssize_t basicsize; #ifdef Py_LIMITED_API PyObject *py_basicsize; #endif result = PyObject_GetAttrString(module, class_name); if (!result) goto bad; if (!PyType_Check(result)) { PyErr_Format(PyExc_TypeError, "%.200s.%.200s is not a type object", module_name, class_name); goto bad; } #ifndef Py_LIMITED_API basicsize = ((PyTypeObject *)result)->tp_basicsize; #else py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); if (!py_basicsize) goto bad; basicsize = PyLong_AsSsize_t(py_basicsize); Py_DECREF(py_basicsize); py_basicsize = 0; if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) goto bad; #endif if ((size_t)basicsize < size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { PyOS_snprintf(warning, sizeof(warning), "%s.%s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; } return (PyTypeObject *)result; bad: Py_XDECREF(result); return NULL; } #endif /* CLineInTraceback */ #ifndef CYTHON_CLINE_IN_TRACEBACK static int __Pyx_CLineForTraceback(CYTHON_NCP_UNUSED PyThreadState *tstate, int c_line) { PyObject *use_cline; PyObject *ptype, *pvalue, *ptraceback; #if CYTHON_COMPILING_IN_CPYTHON PyObject **cython_runtime_dict; #endif if (unlikely(!__pyx_cython_runtime)) { return c_line; } __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); #if CYTHON_COMPILING_IN_CPYTHON cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); if (likely(cython_runtime_dict)) { __PYX_PY_DICT_LOOKUP_IF_MODIFIED( use_cline, *cython_runtime_dict, __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) } else #endif { PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); if (use_cline_obj) { use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; Py_DECREF(use_cline_obj); } else { PyErr_Clear(); use_cline = NULL; } } if (!use_cline) { c_line = 0; (void) PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); } else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { c_line = 0; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); return c_line; } #endif /* CodeObjectCache */ static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = start + (end - start) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, ((size_t)new_max) * sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } /* AddTraceback */ #include "compile.h" #include "frameobject.h" #include "traceback.h" #if PY_VERSION_HEX >= 0x030b00a6 #ifndef Py_BUILD_CORE #define Py_BUILD_CORE 1 #endif #include "internal/pycore_frame.h" #endif static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = NULL; PyObject *py_funcname = NULL; #if PY_MAJOR_VERSION < 3 PyObject *py_srcfile = NULL; py_srcfile = PyString_FromString(filename); if (!py_srcfile) goto bad; #endif if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); if (!py_funcname) goto bad; funcname = PyUnicode_AsUTF8(py_funcname); if (!funcname) goto bad; #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); if (!py_funcname) goto bad; #endif } #if PY_MAJOR_VERSION < 3 py_code = __Pyx_PyCode_New( 0, 0, 0, 0, 0, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); #else py_code = PyCode_NewEmpty(filename, funcname, py_line); #endif Py_XDECREF(py_funcname); // XDECREF since it's only set on Py3 if cline return py_code; bad: Py_XDECREF(py_funcname); #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_srcfile); #endif return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject *ptype, *pvalue, *ptraceback; if (c_line) { c_line = __Pyx_CLineForTraceback(tstate, c_line); } py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) { /* If the code object creation fails, then we should clear the fetched exception references and propagate the new exception */ Py_XDECREF(ptype); Py_XDECREF(pvalue); Py_XDECREF(ptraceback); goto bad; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( tstate, /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ __pyx_d, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } #if PY_MAJOR_VERSION < 3 static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_array_type)) return __pyx_array_getbuffer(obj, view, flags); if (__Pyx_TypeCheck(obj, __pyx_memoryview_type)) return __pyx_memoryview_getbuffer(obj, view, flags); PyErr_Format(PyExc_TypeError, "'%.200s' does not have the buffer interface", Py_TYPE(obj)->tp_name); return -1; } static void __Pyx_ReleaseBuffer(Py_buffer *view) { PyObject *obj = view->obj; if (!obj) return; if (PyObject_CheckBuffer(obj)) { PyBuffer_Release(view); return; } if ((0)) {} view->obj = NULL; Py_DECREF(obj); } #endif /* MemviewSliceIsContig */ static int __pyx_memviewslice_is_contig(const __Pyx_memviewslice mvs, char order, int ndim) { int i, index, step, start; Py_ssize_t itemsize = mvs.memview->view.itemsize; if (order == 'F') { step = 1; start = 0; } else { step = -1; start = ndim - 1; } for (i = 0; i < ndim; i++) { index = start + step * i; if (mvs.suboffsets[index] >= 0 || mvs.strides[index] != itemsize) return 0; itemsize *= mvs.shape[index]; } return 1; } /* OverlappingSlices */ static void __pyx_get_array_memory_extents(__Pyx_memviewslice *slice, void **out_start, void **out_end, int ndim, size_t itemsize) { char *start, *end; int i; start = end = slice->data; for (i = 0; i < ndim; i++) { Py_ssize_t stride = slice->strides[i]; Py_ssize_t extent = slice->shape[i]; if (extent == 0) { *out_start = *out_end = start; return; } else { if (stride > 0) end += stride * (extent - 1); else start += stride * (extent - 1); } } *out_start = start; *out_end = end + itemsize; } static int __pyx_slices_overlap(__Pyx_memviewslice *slice1, __Pyx_memviewslice *slice2, int ndim, size_t itemsize) { void *start1, *end1, *start2, *end2; __pyx_get_array_memory_extents(slice1, &start1, &end1, ndim, itemsize); __pyx_get_array_memory_extents(slice2, &start2, &end2, ndim, itemsize); return (start1 < end2) && (start2 < end1); } /* Capsule */ static CYTHON_INLINE PyObject * __pyx_capsule_create(void *p, CYTHON_UNUSED const char *sig) { PyObject *cobj; #if PY_VERSION_HEX >= 0x02070000 cobj = PyCapsule_New(p, sig, NULL); #else cobj = PyCObject_FromVoidPtr(p, NULL); #endif return cobj; } /* TypeInfoCompare */ static int __pyx_typeinfo_cmp(__Pyx_TypeInfo *a, __Pyx_TypeInfo *b) { int i; if (!a || !b) return 0; if (a == b) return 1; if (a->size != b->size || a->typegroup != b->typegroup || a->is_unsigned != b->is_unsigned || a->ndim != b->ndim) { if (a->typegroup == 'H' || b->typegroup == 'H') { return a->size == b->size; } else { return 0; } } if (a->ndim) { for (i = 0; i < a->ndim; i++) if (a->arraysize[i] != b->arraysize[i]) return 0; } if (a->typegroup == 'S') { if (a->flags != b->flags) return 0; if (a->fields || b->fields) { if (!(a->fields && b->fields)) return 0; for (i = 0; a->fields[i].type && b->fields[i].type; i++) { __Pyx_StructField *field_a = a->fields + i; __Pyx_StructField *field_b = b->fields + i; if (field_a->offset != field_b->offset || !__pyx_typeinfo_cmp(field_a->type, field_b->type)) return 0; } return !a->fields[i].type && !b->fields[i].type; } } return 1; } /* MemviewSliceValidateAndInit */ static int __pyx_check_strides(Py_buffer *buf, int dim, int ndim, int spec) { if (buf->shape[dim] <= 1) return 1; if (buf->strides) { if (spec & __Pyx_MEMVIEW_CONTIG) { if (spec & (__Pyx_MEMVIEW_PTR|__Pyx_MEMVIEW_FULL)) { if (unlikely(buf->strides[dim] != sizeof(void *))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly contiguous " "in dimension %d.", dim); goto fail; } } else if (unlikely(buf->strides[dim] != buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } if (spec & __Pyx_MEMVIEW_FOLLOW) { Py_ssize_t stride = buf->strides[dim]; if (stride < 0) stride = -stride; if (unlikely(stride < buf->itemsize)) { PyErr_SetString(PyExc_ValueError, "Buffer and memoryview are not contiguous " "in the same dimension."); goto fail; } } } else { if (unlikely(spec & __Pyx_MEMVIEW_CONTIG && dim != ndim - 1)) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not contiguous in " "dimension %d", dim); goto fail; } else if (unlikely(spec & (__Pyx_MEMVIEW_PTR))) { PyErr_Format(PyExc_ValueError, "C-contiguous buffer is not indirect in " "dimension %d", dim); goto fail; } else if (unlikely(buf->suboffsets)) { PyErr_SetString(PyExc_ValueError, "Buffer exposes suboffsets but no strides"); goto fail; } } return 1; fail: return 0; } static int __pyx_check_suboffsets(Py_buffer *buf, int dim, CYTHON_UNUSED int ndim, int spec) { if (spec & __Pyx_MEMVIEW_DIRECT) { if (unlikely(buf->suboffsets && buf->suboffsets[dim] >= 0)) { PyErr_Format(PyExc_ValueError, "Buffer not compatible with direct access " "in dimension %d.", dim); goto fail; } } if (spec & __Pyx_MEMVIEW_PTR) { if (unlikely(!buf->suboffsets || (buf->suboffsets[dim] < 0))) { PyErr_Format(PyExc_ValueError, "Buffer is not indirectly accessible " "in dimension %d.", dim); goto fail; } } return 1; fail: return 0; } static int __pyx_verify_contig(Py_buffer *buf, int ndim, int c_or_f_flag) { int i; if (c_or_f_flag & __Pyx_IS_F_CONTIG) { Py_ssize_t stride = 1; for (i = 0; i < ndim; i++) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not fortran contiguous."); goto fail; } stride = stride * buf->shape[i]; } } else if (c_or_f_flag & __Pyx_IS_C_CONTIG) { Py_ssize_t stride = 1; for (i = ndim - 1; i >- 1; i--) { if (unlikely(stride * buf->itemsize != buf->strides[i] && buf->shape[i] > 1)) { PyErr_SetString(PyExc_ValueError, "Buffer not C contiguous."); goto fail; } stride = stride * buf->shape[i]; } } return 1; fail: return 0; } static int __Pyx_ValidateAndInit_memviewslice( int *axes_specs, int c_or_f_flag, int buf_flags, int ndim, __Pyx_TypeInfo *dtype, __Pyx_BufFmt_StackElem stack[], __Pyx_memviewslice *memviewslice, PyObject *original_obj) { struct __pyx_memoryview_obj *memview, *new_memview; __Pyx_RefNannyDeclarations Py_buffer *buf; int i, spec = 0, retval = -1; __Pyx_BufFmt_Context ctx; int from_memoryview = __pyx_memoryview_check(original_obj); __Pyx_RefNannySetupContext("ValidateAndInit_memviewslice", 0); if (from_memoryview && __pyx_typeinfo_cmp(dtype, ((struct __pyx_memoryview_obj *) original_obj)->typeinfo)) { memview = (struct __pyx_memoryview_obj *) original_obj; new_memview = NULL; } else { memview = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( original_obj, buf_flags, 0, dtype); new_memview = memview; if (unlikely(!memview)) goto fail; } buf = &memview->view; if (unlikely(buf->ndim != ndim)) { PyErr_Format(PyExc_ValueError, "Buffer has wrong number of dimensions (expected %d, got %d)", ndim, buf->ndim); goto fail; } if (new_memview) { __Pyx_BufFmt_Init(&ctx, stack, dtype); if (unlikely(!__Pyx_BufFmt_CheckString(&ctx, buf->format))) goto fail; } if (unlikely((unsigned) buf->itemsize != dtype->size)) { PyErr_Format(PyExc_ValueError, "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "u byte%s) " "does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "u byte%s)", buf->itemsize, (buf->itemsize > 1) ? "s" : "", dtype->name, dtype->size, (dtype->size > 1) ? "s" : ""); goto fail; } if (buf->len > 0) { for (i = 0; i < ndim; i++) { spec = axes_specs[i]; if (unlikely(!__pyx_check_strides(buf, i, ndim, spec))) goto fail; if (unlikely(!__pyx_check_suboffsets(buf, i, ndim, spec))) goto fail; } if (unlikely(buf->strides && !__pyx_verify_contig(buf, ndim, c_or_f_flag))) goto fail; } if (unlikely(__Pyx_init_memviewslice(memview, ndim, memviewslice, new_memview != NULL) == -1)) { goto fail; } retval = 0; goto no_fail; fail: Py_XDECREF(new_memview); retval = -1; no_fail: __Pyx_RefNannyFinishContext(); return retval; } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_double(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_double, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* MemviewDtypeToObject */ static CYTHON_INLINE PyObject *__pyx_memview_get_double(const char *itemp) { return (PyObject *) PyFloat_FromDouble(*(double *) itemp); } static CYTHON_INLINE int __pyx_memview_set_double(const char *itemp, PyObject *obj) { double value = __pyx_PyFloat_AsDouble(obj); if ((value == (double)-1) && PyErr_Occurred()) return 0; *(double *) itemp = value; return 1; } /* CIntFromPyVerify */ #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) #define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ {\ func_type value = func_value;\ if (sizeof(target_type) < sizeof(func_type)) {\ if (unlikely(value != (func_type) (target_type) value)) {\ func_type zero = 0;\ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ return (target_type) -1;\ if (is_unsigned && unlikely(value < zero))\ goto raise_neg_overflow;\ else\ goto raise_overflow;\ }\ }\ return (target_type) value;\ } /* ObjectToMemviewSlice */ static CYTHON_INLINE __Pyx_memviewslice __Pyx_PyObject_to_MemoryviewSlice_ds_int(PyObject *obj, int writable_flag) { __Pyx_memviewslice result = { 0, 0, { 0 }, { 0 }, { 0 } }; __Pyx_BufFmt_StackElem stack[1]; int axes_specs[] = { (__Pyx_MEMVIEW_DIRECT | __Pyx_MEMVIEW_STRIDED) }; int retcode; if (obj == Py_None) { result.memview = (struct __pyx_memoryview_obj *) Py_None; return result; } retcode = __Pyx_ValidateAndInit_memviewslice(axes_specs, 0, PyBUF_RECORDS_RO | writable_flag, 1, &__Pyx_TypeInfo_int, stack, &result, obj); if (unlikely(retcode == -1)) goto __pyx_fail; return result; __pyx_fail: result.memview = NULL; result.data = NULL; return result; } /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return ::std::complex< float >(x, y); } #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return x + y*(__pyx_t_float_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { __pyx_t_float_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabsf(b.real) >= fabsf(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { float r = b.imag / b.real; float s = (float)(1.0) / (b.real + b.imag * r); return __pyx_t_float_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { float r = b.real / b.imag; float s = (float)(1.0) / (b.imag + b.real * r); return __pyx_t_float_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else { float denom = b.real * b.real + b.imag * b.imag; return __pyx_t_float_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrtf(z.real*z.real + z.imag*z.imag); #else return hypotf(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; float r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { float denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_float(a, a); case 3: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, a); case 4: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = powf(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2f(0.0, -1.0); } } else { r = __Pyx_c_abs_float(a); theta = atan2f(a.imag, a.real); } lnr = logf(r); z_r = expf(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cosf(z_theta); z.imag = z_r * sinf(z_theta); return z; } #endif #endif /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return ::std::complex< double >(x, y); } #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return x + y*(__pyx_t_double_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { __pyx_t_double_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabs(b.real) >= fabs(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { double r = b.imag / b.real; double s = (double)(1.0) / (b.real + b.imag * r); return __pyx_t_double_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { double r = b.real / b.imag; double s = (double)(1.0) / (b.imag + b.real * r); return __pyx_t_double_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else { double denom = b.real * b.real + b.imag * b.imag; return __pyx_t_double_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrt(z.real*z.real + z.imag*z.imag); #else return hypot(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; double r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { double denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_double(a, a); case 3: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, a); case 4: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = pow(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2(0.0, -1.0); } } else { r = __Pyx_c_abs_double(a); theta = atan2(a.imag, a.real); } lnr = log(r); z_r = exp(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cos(z_theta); z.imag = z_r * sin(z_theta); return z; } #endif #endif /* MemviewSliceCopyTemplate */ static __Pyx_memviewslice __pyx_memoryview_copy_new_contig(const __Pyx_memviewslice *from_mvs, const char *mode, int ndim, size_t sizeof_dtype, int contig_flag, int dtype_is_object) { __Pyx_RefNannyDeclarations int i; __Pyx_memviewslice new_mvs = { 0, 0, { 0 }, { 0 }, { 0 } }; struct __pyx_memoryview_obj *from_memview = from_mvs->memview; Py_buffer *buf = &from_memview->view; PyObject *shape_tuple = NULL; PyObject *temp_int = NULL; struct __pyx_array_obj *array_obj = NULL; struct __pyx_memoryview_obj *memview_obj = NULL; __Pyx_RefNannySetupContext("__pyx_memoryview_copy_new_contig", 0); for (i = 0; i < ndim; i++) { if (unlikely(from_mvs->suboffsets[i] >= 0)) { PyErr_Format(PyExc_ValueError, "Cannot copy memoryview slice with " "indirect dimensions (axis %d)", i); goto fail; } } shape_tuple = PyTuple_New(ndim); if (unlikely(!shape_tuple)) { goto fail; } __Pyx_GOTREF(shape_tuple); for(i = 0; i < ndim; i++) { temp_int = PyInt_FromSsize_t(from_mvs->shape[i]); if(unlikely(!temp_int)) { goto fail; } else { PyTuple_SET_ITEM(shape_tuple, i, temp_int); temp_int = NULL; } } array_obj = __pyx_array_new(shape_tuple, sizeof_dtype, buf->format, (char *) mode, NULL); if (unlikely(!array_obj)) { goto fail; } __Pyx_GOTREF(array_obj); memview_obj = (struct __pyx_memoryview_obj *) __pyx_memoryview_new( (PyObject *) array_obj, contig_flag, dtype_is_object, from_mvs->memview->typeinfo); if (unlikely(!memview_obj)) goto fail; if (unlikely(__Pyx_init_memviewslice(memview_obj, ndim, &new_mvs, 1) < 0)) goto fail; if (unlikely(__pyx_memoryview_copy_contents(*from_mvs, new_mvs, ndim, ndim, dtype_is_object) < 0)) goto fail; goto no_fail; fail: __Pyx_XDECREF(new_mvs.memview); new_mvs.memview = NULL; new_mvs.data = NULL; no_fail: __Pyx_XDECREF(shape_tuple); __Pyx_XDECREF(temp_int); __Pyx_XDECREF(array_obj); __Pyx_RefNannyFinishContext(); return new_mvs; } /* CIntFromPy */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) case -2: if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -3: if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -4: if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; } #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int"); return (int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const int neg_one = (int) -1, const_zero = (int) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(int) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const long neg_one = (long) -1, const_zero = (long) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) case -2: if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -3: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -4: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; } #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to long"); return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } /* CIntFromPy */ static CYTHON_INLINE char __Pyx_PyInt_As_char(PyObject *x) { #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif const char neg_one = (char) -1, const_zero = (char) 0; #ifdef __Pyx_HAS_GCC_DIAGNOSTIC #pragma GCC diagnostic pop #endif const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(char) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(char, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (char) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case 1: __PYX_VERIFY_RETURN_INT(char, digit, digits[0]) case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 2 * PyLong_SHIFT) { return (char) (((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 3 * PyLong_SHIFT) { return (char) (((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) >= 4 * PyLong_SHIFT) { return (char) (((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (char) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(char) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (char) 0; case -1: __PYX_VERIFY_RETURN_INT(char, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(char, digit, +digits[0]) case -2: if (8 * sizeof(char) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) (((char)-1)*(((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 2: if (8 * sizeof(char) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { return (char) ((((((char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -3: if (8 * sizeof(char) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 3: if (8 * sizeof(char) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { return (char) ((((((((char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case -4: if (8 * sizeof(char) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) (((char)-1)*(((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; case 4: if (8 * sizeof(char) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(char, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(char) - 1 > 4 * PyLong_SHIFT) { return (char) ((((((((((char)digits[3]) << PyLong_SHIFT) | (char)digits[2]) << PyLong_SHIFT) | (char)digits[1]) << PyLong_SHIFT) | (char)digits[0]))); } } break; } #endif if (sizeof(char) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(char, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(char) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(char, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else char val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (char) -1; } } else { char val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (char) -1; val = __Pyx_PyInt_As_char(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to char"); return (char) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to char"); return (char) -1; } /* CheckBinaryVersion */ static int __Pyx_check_binary_version(void) { char ctversion[5]; int same=1, i, found_dot; const char* rt_from_call = Py_GetVersion(); PyOS_snprintf(ctversion, 5, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION); found_dot = 0; for (i = 0; i < 4; i++) { if (!ctversion[i]) { same = (rt_from_call[i] < '0' || rt_from_call[i] > '9'); break; } if (rt_from_call[i] != ctversion[i]) { same = 0; break; } } if (!same) { char rtversion[5] = {'\0'}; char message[200]; for (i=0; i<4; ++i) { if (rt_from_call[i] == '.') { if (found_dot) break; found_dot = 1; } else if (rt_from_call[i] < '0' || rt_from_call[i] > '9') { break; } rtversion[i] = rt_from_call[i]; } PyOS_snprintf(message, sizeof(message), "compiletime version %s of module '%.100s' " "does not match runtime version %s", ctversion, __Pyx_MODULE_NAME, rtversion); return PyErr_WarnEx(NULL, message, 1); } return 0; } /* InitStrings */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; if (PyObject_Hash(*t->p) == -1) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT #if !CYTHON_PEP393_ENABLED static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif *length = PyBytes_GET_SIZE(defenc); return defenc_c; } #else static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (likely(PyUnicode_IS_ASCII(o))) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else return PyUnicode_AsUTF8AndSize(o, length); #endif } #endif #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { int retval; if (unlikely(!x)) return -1; retval = __Pyx_PyObject_IsTrue(x); Py_DECREF(x); return retval; } static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { #if PY_MAJOR_VERSION >= 3 if (PyLong_Check(result)) { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", type_name, type_name, Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; #endif const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x) || PyLong_Check(x))) #else if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; res = m->nb_long(x); } #else if (likely(m && m->nb_int)) { name = "int"; res = m->nb_int(x); } #endif #else if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { res = PyNumber_Int(x); } #endif if (likely(res)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else if (unlikely(!PyLong_CheckExact(res))) { #endif return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) { if (sizeof(Py_ssize_t) >= sizeof(long)) return PyInt_AS_LONG(b); else return PyInt_AsSsize_t(b); } #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)b)->ob_digit; const Py_ssize_t size = Py_SIZE(b); if (likely(__Pyx_sst_abs(size) <= 1)) { ival = likely(size) ? digits[0] : 0; if (size == -1) ival = -ival; return ival; } else { switch (size) { case 2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; } } #endif return PyLong_AsSsize_t(b); } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject* o) { if (sizeof(Py_hash_t) == sizeof(Py_ssize_t)) { return (Py_hash_t) __Pyx_PyIndex_AsSsize_t(o); #if PY_MAJOR_VERSION < 3 } else if (likely(PyInt_CheckExact(o))) { return PyInt_AS_LONG(o); #endif } else { Py_ssize_t ival; PyObject *x; x = PyNumber_Index(o); if (!x) return -1; ival = PyInt_AsLong(x); Py_DECREF(x); return ival; } } static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } #endif /* Py_PYTHON_H */ ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/cython/polspl.pxd�������������������������������������0000644�0000000�0000000�00000003052�14741736366�023026� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ cimport cython cdef extern from "polspl.h": void polspl(double *, double *, double *, int, double *, double *, int *, int, double *, int) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8397665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/include/����������������������������������������������0000755�0000000�0000000�00000000000�14741736404�021110� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/include/bessel0.h�������������������������������������0000644�0000000�0000000�00000002476�14741736366�022636� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ double j0Single(double); void j0Multiple(double *, int); ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/include/polspl.h��������������������������������������0000644�0000000�0000000�00000002562�14741736366�022606� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ void polspl(double *, double *, double *, int, \ double *, double *, int *, int, double *, int); ����������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/setup.py����������������������������������������������0000644�0000000�0000000�00000005330�14741736366�021207� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python #/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import glob import os import sys import numpy from distutils.core import setup, Extension try: html = False if html: import Cython.Compiler.Options Cython.Compiler.Options.annotate = True from Cython.Distutils import build_ext except Exception: build_ext = None c_files = [os.path.join('src', 'polspl.c'), os.path.join('src', 'bessel0.c')] if build_ext: src = [os.path.join('cython', '_xas.pyx')] else: src = glob.glob(os.path.join('cython', '*.c')) src += c_files if sys.platform == 'win32': extra_compile_args = [] extra_link_args = [] else: # OpenMP and auto-vectorization flags for Colormap and MinMax # extra_compile_args = ['-fopenmp', '-ftree-vectorize'] # extra_link_args = ['-fopenmp'] extra_compile_args = [] extra_link_args = [] setup( name='_xas', ext_modules=[Extension( name="_xas", sources=src, include_dirs=[numpy.get_include(), os.path.join(os.getcwd(), "include")], extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, language="c", )], cmdclass={'build_ext': build_ext}, ) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8397665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/src/��������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�020254� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/src/bessel0.c�����������������������������������������0000644�0000000�0000000�00000005577�14741736366�022002� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include <math.h> #include "bessel0.h" void j0Multiple(double *x, int n) { int i; for (i=0; i < n; i++) { x[i] = j0Single(x[i]); } } double j0Single(double x) { double f0, theta0; double tmpDouble; double tmpDouble3; if (x < 0) x = -x; if (x > 3) { /* Abramowitz and Stegun 9.4.3 */ /* Absolute error < 1.6E-08 */ tmpDouble = 3. / x; tmpDouble3 = pow(tmpDouble, 3); f0 = 0.79788456 - tmpDouble * (0.00000077 + 0.00552740 * tmpDouble) + \ tmpDouble3 * ( 0.00137237 * tmpDouble - 0.00009513) + \ tmpDouble3 * (0.00014476 * tmpDouble3 - 0.00072805 * tmpDouble * tmpDouble); theta0 = x - 0.78539816 - 0.04166397 * tmpDouble - \ 0.00003954 * tmpDouble * tmpDouble + \ tmpDouble3 * (0.00262573 - 0.00054125 * tmpDouble) + \ tmpDouble3 * (0.00013558 * tmpDouble3 - 0.00029333 * tmpDouble * tmpDouble); return pow(x, -0.5) * f0 * cos(theta0); } else { /* Abramowitz and Stegun 9.4.1 */ /* Absolute error < 5.0E-08 */ tmpDouble = pow(x/3., 2); tmpDouble = 1.0 - 2.2499997 * tmpDouble + \ 1.2656208 * tmpDouble * tmpDouble - \ 0.3163866 * tmpDouble * tmpDouble * tmpDouble + \ 0.0444479 * tmpDouble * tmpDouble * tmpDouble * tmpDouble - \ 0.0039444 * tmpDouble * tmpDouble * tmpDouble * tmpDouble * tmpDouble + \ 0.0002100 * tmpDouble * tmpDouble * tmpDouble * tmpDouble * tmpDouble * tmpDouble; return tmpDouble; } } ���������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xas/_xas/src/polspl.c������������������������������������������0000644�0000000�0000000�00000012447�14741736366�021750� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # Copyright (c) 2004-2015 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ #include <stdlib.h> #include <stdio.h> #include <math.h> #include "polspl.h" #define POLABS(x) (x>0) ? x : -x void polspl(double *xx, double *yy, double *w, int npts, \ double *xl, double *xh, int *nc, int nr, \ double *c, int csize) /* c must have enough memory to host Sum(nc[i] * nr) */ { int i,j,ibl,k,nk,ik,m,n,n1,ns,ne,ncol,i1,ni,ni1,nm1,ns1; double df[26], a[36][37]; double t; double xk[10]; int p, nbs[11]; for (i=0; i < 26; i++) { df[i] = 0.0; } for (i=0; i < 11; i++) { nbs[i] = 0; } for (i=0; i < 10; i++) { xk[i] = 0.0; } for (i=0; i < 36; i++) { for (j=0; j < 37; j++) { a[i][j] = 0.0; } } n = 0; nbs[1] = 1; for(i=1; i < nr+1 ;i++){ n = n + nc[i]; nbs[i+1] = n + 1 ; if(xl[i] >= xh[i]){ t = xl[i]; xl[i] = xh[i]; xh[i] = t; } } n = n + 2 * (nr - 1); n1 = n + 1; xl[nr + 1] = 0.0; xh[nr + 1] = 0.0; for(ibl=1; ibl < nr + 1 ;ibl++){ xk[ibl] = 0.5 * (xh[ibl] + xl[ibl+1]); if(xl[ibl] > xl[ibl+1]) { xk[ibl] = 0.5 * (xl[ibl] + xh[ibl+1]); } ns = nbs[ibl]; ne = nbs[ibl+1] - 1; for(i=1; i < npts+1 ; i++){ if((xx[i] >= xl[ibl]) && (xx[i] <= xh[ibl])){ df[ns] = 1.0; ns1 = ns + 1; for(j=ns1; j<ne+1 ;j++) { df[j] = df[j-1] * xx[i]; } for(j=ns; j<ne + 1 ;j++) { for(k=j; k< ne + 1;k++) { a[j][k] = a[j][k] + df[j] * df[k] * w[i]; } a[j][n1] = a[j][n1] + df[j] * yy[i] * w[i]; } } } } ncol = nbs[nr+1] - 1; nk = nr - 1; if(nk != 0 ) { for(ik=1; ik<nk+1 ;ik++) { ncol++; ns = nbs[ik]; ne = nbs[ik+1] -1 ; a[ns][ncol] = -1.0; ns++; for(i=ns; i<ne+1 ; i++) { a[i][ncol] = a[i-1][ncol] * xk[ik]; } ncol++; a[ns][ncol] = -1.0; ns++; if(ns <= ne) { for(i=ns; i<ne+1 ;i++) { p = i - ns + 1; a[i][ncol] = (ns - i -2) * pow(xk[ik], p); } } ncol--; ns = nbs[ik+1]; ne = nbs[ik+2]-1 ; a[ns][ncol] = 1.0; ns++; for(i=ns; i < ne +1; i++) { a[i][ncol] = a[i-1][ncol]*xk[ik]; } ncol++; a[ns][ncol] = 1.0; ns++; if (ns <= ne) { for(i=ns; i<ne+1 ;i++) { p = i -ns + 1; a[i][ncol] = (i - ns + 2) * pow(xk[ik], p); } } } } for(i=1; i<n+1 ;i++) { i1 = i-1 ; for(j=1; j<i1+1 ;j++) { a[i][j] = a[j][i]; } } nm1 = n -1; for(i=1; i<nm1+1 ;i++) { i1 = i + 1; m = i; t = POLABS(a[i][i]); for(j=i1; j<n+1 ;j++) { if(t < POLABS(a[j][i])) { m = j; t = POLABS(a[j][i]); } } if(m != i) { for(j=1; j<n1+1 ;j++) { t = a[i][j]; a[i][j] = a[m][j]; a[m][j] = t; } } for(j=i1; j<n1+1 ;j++) { t = a[j][i] / a[i][i]; for(k=i1; k<n1+1 ;k++) { a[j][k] = a[j][k] - t * a[i][k]; } } } c[n] = a[n][n1] / a[n][n]; for(i=1; i<nm1+1 ;i++) { ni = n - i; t = a[ni][n1]; ni1 = ni + 1; for(j=ni1; j<n+1 ;j++) { t = t - c[j] * a[ni][j]; } if (ni == 0) printf("t = %f, a = %f\n", t, a[0][0]); c[ni] = t / a[ni][ni]; } } �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8437665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/�����������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�016537� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/BindingEnergies.py�����������������������������������������0000644�0000000�0000000�00000006146�14741736366�022163� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5 import getDataFile from PyMca5.PyMcaIO import specfile filename = getDataFile("BindingEnergies.dat") sf = specfile.Specfile(filename) ElementShells = sf[0].alllabels() ElementBinding = numpy.transpose(sf[0].data()).tolist() sf = None Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def main(): import sys if len(sys.argv) > 1: ele = sys.argv[1] if ele in Elements: z = Elements.index(ele) + 1 for shell in ElementShells: i = ElementShells.index(shell) if ElementBinding[z - 1][i] > 0.0: print(shell, ElementBinding[z - 1][i]) sys.exit() print("Usage:") print("python BindingEnergies.py [element]") if __name__ == "__main__": main() ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/ClassMcaTheory.py������������������������������������������0000644�0000000�0000000�00000444437�14741736366�022021� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import sys import numpy import copy import logging from .Strategies import STRATEGIES from . import ConcentrationsTool FISX = ConcentrationsTool.FISX if FISX: FisxHelper = ConcentrationsTool.FisxHelper from . import Elements from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaMath.fitting import Gefit from PyMca5 import PyMcaDataDir _logger = logging.getLogger(__name__) #"python ClassMcaTheory.py -s1.1 --file=03novs060sum.mca --pkm=McaTheory.dat --continuum=0 --strip=1 --sumflag=1 --maxiter=4" CONTINUUM_LIST = [None,'Constant','Linear','Parabolic','Linear Polynomial','Exp. Polynomial'] OLDESCAPE = 0 MAX_ATTENUATION = 1.0E-300 class McaTheory(object): def __init__(self, initdict=None, filelist=None, **kw): self.ydata0 = None self.xdata0 = None self.sigmay0 = None self.__lastTime = None self.strategyInstances = {} self.__toBeConfigured = False self.useFisxEscape(False) if initdict is None: dirname = PyMcaDataDir.PYMCA_DATA_DIR initdict = os.path.join(dirname, "McaTheory.cfg") if not os.path.exists(initdict): #Frozen version deals differently with the path dirname = os.path.dirname(dirname) initdict = os.path.join(dirname, "McaTheory.cfg") if not os.path.exists(initdict): if dirname.lower().endswith(".zip"): dirname = os.path.dirname(dirname) initdict = os.path.join(dirname, "McaTheory.cfg") if os.path.exists(initdict): self.config = ConfigDict.ConfigDict(filelist=initdict) else: print("Cannot find file McaTheory.cfg") raise IOError("File %s does not exist" % initdict) else: if os.path.exists(initdict.split('::')[0]): self.config = ConfigDict.ConfigDict(filelist = initdict) else: raise IOError("File %s does not exist" % initdict) self.config = {} self.config['fit'] = {} self.config['attenuators'] = {} if 'config' in kw: self.config.update(kw['config']) SpecfitFuns.fastagauss([1.0,10.0,1.0],numpy.arange(10.)) self.config['fit']['sumflag'] = kw.get('sumflag',self.config['fit']['sumflag']) self.config['fit']['escapeflag'] = kw.get('escapeflag', self.config['fit']['escapeflag']) self.config['fit']['continuum'] = kw.get('continuum', self.config['fit']['continuum']) self.config['fit']['stripflag'] = kw.get('stripflag', self.config['fit']['stripflag']) self.config['fit']['maxiter'] = kw.get('maxiter',self.config['fit']['maxiter']) self.config['fit']['hypermetflag']= kw.get('hypermetflag',self.config['fit']['hypermetflag']) self.attflag = kw.get('attenuatorsflag',1) self.lastxmin = None self.lastxmax = None self.laststrip = None self.laststripconstant = None self.laststripiterations = None self.laststripalgorithm = None self.lastsnipwidth = None self.laststripwidth = None self.laststripfilterwidth = None self.laststripanchorsflag = None self.laststripanchorslist = None self.disableOptimizedLinearFit() self.__configure() self.startFit = self.startfit #incompatible with multiple energies #Elements.registerUpdate(self._updateCallback) def useFisxEscape(self, flag=None): if flag: if FisxHelper.xcom is None: FisxHelper.xcom =FisxHelper.getElementsInstance() xcom = FisxHelper.xcom if hasattr(xcom, "setEscapeCacheEnabled"): xcom.setEscapeCacheEnabled(1) self.__USE_FISX_ESCAPE = True else: self.__USE_FISX_ESCAPE = False else: self.__USE_FISX_ESCAPE = False def enableOptimizedLinearFit(self): self._batchFlag = True def disableOptimizedLinearFit(self): self._batchFlag = False self.linearMatrix = None def setConfiguration(self, ddict): """ The current fit configuration dictionary is updated, but not replaced, by the input dictionary. It returns a copy of the final fit configuration. """ return self.configure(ddict) def getConfiguration(self): """ returns a copy of the current fit configuration parameters """ return self.configure() def getStartingConfiguration(self): # same output as calling configure but with the calling program # knowing what is going on (no warning) if self.__toBeConfigured: return copy.deepcopy(self.__originalConfiguration) else: return self.configure() def configure(self, newdict=None): if newdict in [None, {}]: if self.__toBeConfigured: _logger.debug("WARNING: This configuration is the one of last fit.\n" "It does not correspond to the one of next fit.") return copy.deepcopy(self.config) self.config.update(newdict) self.__toBeConfigured = False self.__configure() return copy.deepcopy(self.config) def _updateCallback(self): print("no update callback") #self.config['fit']['energy'] = Elements.Element['Fe']['buildparameters']['energy'] #self.__configure() def __configure(self): self.linearMatrix = None #user attenuators key self.config['userattenuators'] = self.config.get('userattenuators',{}) #multilayer key self.config['multilayer'] = self.config.get('multilayer',{}) #update Elements material information self.config['materials'] = self.config.get('materials',{}) for material in self.config['materials'].keys(): Elements.Material[material] = copy.deepcopy(self.config['materials'][material]) #that was it #default peak shape parameters for pseudo-voigt function self.config['peakshape']['eta_factor'] = self.config['peakshape'].get('eta_factor', 0.02) self.config['peakshape']['fixedeta_factor'] = self.config['peakshape'].get('fixedeta_factor', 0) self.config['peakshape']['deltaeta_factor'] = self.config['peakshape'].get('deltaeta_factor', self.config['peakshape']['eta_factor']) #fit function self.config['fit']['fitfunction'] = self.config['fit'].get('fitfunction', None) if self.config['fit']['fitfunction'] is None: if self.config['fit']['hypermetflag']: self.config['fit']['fitfunction'] = 0 else: self.config['fit']['fitfunction'] = 1 #default strip function parameters self.config['fit']['stripalgorithm'] = self.config['fit'].get('stripalgorithm',0) self.config['fit']['snipwidth'] = self.config['fit'].get('snipwidth', 30) #linear fitting option self.config['fit']['linearfitflag'] = self.config['fit'].get('linearfitflag', 0) self.config['fit']['fitweight'] = self.config['fit'].get('fitweight', 1) self.config['fit']['energy'] = self.config['fit'].get('energy',None) if type(self.config['fit']['energy']) == type(""): self.config['fit']['energy'] = None self.config['fit']['energyweight'] = [1.0] self.config['fit']['energyflag'] = [1] self.config['fit']['energyscatter'] = [1] elif type(self.config['fit']['energy']) == type([]): pass else: self.config['fit']['energy']=[self.config['fit']['energy']] self.config['fit']['energyweight'] = [1.0] self.config['fit']['energyflag'] = [1] self.config['fit']['energyscatter'] = [1] maxenergy = None energylist= None if self.config['fit']['energy'] is not None: if max(self.config['fit']['energyflag']) == 0: energylist = None else: energylist = [] energyweight = [] energyflag = [] energyscatter = [] for i in range(len(self.config['fit']['energy'])): if self.config['fit']['energy'][i] == "None": self.config['fit']['energy'][i] = None if self.config['fit']['energyflag'][i]: if self.config['fit']['energy'][i] is not None: energyflag.append(self.config['fit']['energyflag'][i]) energylist.append(self.config['fit']['energy'][i]) energyweight.append(self.config['fit']['energyweight'][i]) if 'energyscatter' in self.config['fit']: energyscatter.append(self.config['fit']['energyscatter'][i]) elif i==1: energyscatter.append(1) else: energyscatter.append(0) if maxenergy is None:maxenergy=self.config['fit']['energy'][i] if maxenergy < self.config['fit']['energy'][i]: maxenergy = self.config['fit']['energy'][i] self.config['fit']['scatterflag'] = self.config['fit'].get('scatterflag',0) self.config['fit']['deltaonepeak'] = self.config['fit'].get('deltaonepeak',0.010) self.config['fit']['linpolorder'] = self.config['fit'].get('linpolorder',6) self.config['fit']['exppolorder'] = self.config['fit'].get('exppolorder',6) self.config['fit']['stripconstant']= self.config['fit'].get('stripconstant',1.0) self.config['fit']['stripwidth']= int(self.config['fit'].get('stripwidth',1)) self.config['fit']['stripfilterwidth']= int(self.config['fit'].get('stripfilterwidth',5)) self.config['fit']['stripiterations'] = int(self.config['fit'].get('stripiterations',20000)) self.config['fit']['stripanchorsflag']= int(self.config['fit'].get('stripanchorsflag',0)) self.config['fit']['stripanchorslist']= self.config['fit'].get('stripanchorslist',[0,0,0,0]) deltaonepeak = self.config['fit']['deltaonepeak'] detele = self.config['detector']['detele'] detene = self.config['detector'].get('detene', 1.7420) self.config['detector']['detene'] = detene ethreshold = self.config['detector'].get('ethreshold', 0.020) nthreshold = self.config['detector'].get('nthreshold', 4) ithreshold = self.config['detector'].get('ithreshold', 1.0E-07) self.config['detector']['ethreshold'] = ethreshold self.config['detector']['ithreshold'] = ithreshold self.config['detector']['nthreshold'] = nthreshold usematrix = 0 attenuatorlist =[] userattenuatorlist =[] filterlist = [] funnyfilters = [] detector = None multilayerlist = None self._fluoRates = None if self.attflag: for userattenuator in self.config['userattenuators']: if self.config['userattenuators'][userattenuator]["use"]: userattenuatorlist.append(self.config['userattenuators'][userattenuator]) for attenuator in self.config['attenuators'].keys(): if not self.config['attenuators'][attenuator][0]: continue # this should not be needed any longer #if len(self.config['attenuators'][attenuator]) == 4: # self.config['attenuators'][attenuator].append(1.0) if attenuator.upper() == "MATRIX": if self.config['attenuators'][attenuator][0]: usematrix = 1 matrix = self.config['attenuators'][attenuator][1:4] alphain= self.config['attenuators'][attenuator][4] alphaout= self.config['attenuators'][attenuator][5] else: usematrix = 0 break elif attenuator.upper() == "DETECTOR": detector = self.config['attenuators'][attenuator][1:] elif attenuator.upper()[0:-1] == "BEAMFILTER": filterlist.append(self.config['attenuators'][attenuator][1:]) else: if len(self.config['attenuators'][attenuator]) > 4: if abs(self.config['attenuators'][attenuator][4]-1.0) > 1.0e-10: #funny attenuator funnyfilters.append( \ self.config['attenuators'][attenuator][1:]) else: attenuatorlist.append( \ self.config['attenuators'][attenuator][1:]) else: attenuatorlist.append( \ self.config['attenuators'][attenuator][1:]) if usematrix: layerkeys = list(self.config['multilayer'].keys()) if len(layerkeys): layerkeys.sort() for layer in layerkeys: if self.config['multilayer'][layer][0]: if multilayerlist is None:multilayerlist = [] multilayerlist.append(self.config['multilayer'][layer][1:]) if (maxenergy is not None) and usematrix: #sort the peaks by atomic number data = [] for element in self.config['peaks'].keys(): if len(element) > 1: ele = element[0:1].upper()+element[1:2].lower() else: ele = element.upper() if maxenergy != Elements.Element[ele]['buildparameters']['energy']: Elements.updateDict (energy= maxenergy) if type(self.config['peaks'][element]) == type([]): for peak in self.config['peaks'][element]: data.append([Elements.getz(ele),ele,peak]) else: for peak in [self.config['peaks'][element]]: data.append([Elements.getz(ele),ele,peak]) data.sort() #build the peaks description PEAKS0 = [] PEAKS0NAMES = [] PEAKS0ESCAPE = [] PEAKSW=[] if self.config['fit']['fitfunction'] == 0: HYPERMET = self.config['fit']['hypermetflag'] else: HYPERMET = 0 noise = self.config['detector']['noise'] fano = self.config['detector']['fano'] elementsList =[] for item in data: if len(item[1]) > 1: elementsList.append(item[1][0].upper()+\ item[1][1].lower()) else: elementsList.append(item[1][0].upper()) #import time #t0=time.time() if matrix[0].upper() != "MULTILAYER": multilayer = [matrix * 1] else: if multilayerlist is not None: multilayer = multilayerlist * 1 else: text = "Your matrix is not properly defined.\n" text += "If you used the graphical interface,\n" text += "Please check the MATRIX tab" raise ValueError(text) self._fluoRates=Elements.getMultilayerFluorescence(multilayer, energylist, layerList = None, weightList = energyweight, flagList = energyflag, fulloutput=1, attenuators=attenuatorlist, alphain = alphain, alphaout = alphaout, #elementsList = elementsList, elementsList = data, cascade = True, detector=detector, funnyfilters=funnyfilters, beamfilters=filterlist, forcepresent=1, userattenuators=userattenuatorlist) dict = self._fluoRates[0] # this will not be needed once fisx replaces the Elements module if 'fisx' in self.config: if 'corrections' in self.config['fisx']: del self.config['fisx']['corrections'] if 'secondary' in self.config['fisx']: del self.config['fisx']['secondary'] self.config['fisx'] = {} secondary = False if 'concentrations' in self.config: secondary = self.config['concentrations'].get('usemultilayersecondary', False) if secondary and FISX: self.config['fisx'] = {} self.config['fisx']['corrections'] = FisxHelper.getFisxCorrectionFactorsFromFitConfiguration(self.config, elementsFromMatrix=False) self.config['fisx']['secondary'] = secondary # done with the calculation of the corrections to the total rate. For accurate line ratios, # the correction is to be applied layer by layer. # TODO:That implies the future use of fisx library for *everything* #print "getMatrixFluorescence elapsed = ",time.time()-t0 for item in data: newpeaks = [] newpeaksnames = [] element = item[1] if len(element) > 1: ele = element[0:1].upper()+element[1:2].lower() else: ele = element.upper() rays= item[2] +' xrays' if not rays in dict[ele]['rays']:continue for transition in dict[ele][rays]: if dict[ele][transition]['rate'] > 0.0: fwhm = numpy.sqrt(noise*noise + \ 0.00385 *dict[ele][transition]['energy']* fano*2.3548*2.3548) newpeaks.append([dict[ele][transition]['rate'], dict[ele][transition]['energy'], fwhm,0.0]) # 1.00,eta]) newpeaksnames.append(transition) #if ele == 'Au': #if 0: # print transition, 'energy = ',dict[ele][transition]['energy'],\ # 'rate = ',dict[ele][transition]['rate'],' fwhm =',fwhm ####################################### #--- renormalize to account for filter effects --- div = sum([x[0] for x in newpeaks]) try: for i in range(len(newpeaks)): newpeaks[i][0] /= div except ZeroDivisionError: text = "Intensity of %s %s is zero\n"% (ele, rays) text += "Too high attenuation?" raise ZeroDivisionError(text) #--- sort --- div=[[newpeaks[i][1],newpeaks[i][0],newpeaksnames[i]] for i in range(len(newpeaks))] div.sort() #print "before = ",len(newpeaksnames) div = Elements._filterPeaks(div, ethreshold = deltaonepeak, ithreshold = 0.00005, #ithreshold = ithreshold, nthreshold = None, keeptotalrate=True) newpeaks = [[x[1],x[0],0.00385*x[0]*fano*2.3548*2.3548,0.0] for x in div] newpeaksnames = [x[2] for x in div] #print "after = ",len(newpeaksnames) #print "newpeaks = ",newpeaks if not len(newpeaks): text = "No %s for element %s" % (rays, ele) text += "\nToo high attenuation?" raise ValueError(text) (r,c)=(numpy.array(newpeaks)).shape PEAKS0ESCAPE.append([]) _nescape_ = 0 if self.config['fit']['escapeflag']: if self.__USE_FISX_ESCAPE: _logger.debug("Using fisx escape") xcom = FisxHelper.xcom detector_composition = Elements.getMaterialMassFractions([detele], [1.0]) xcom.updateEscapeCache(detector_composition, [newpeaks[i][1] for i in range(len(newpeaks))], energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) for i in range(len(newpeaks)): _esc_ = xcom.getEscape(detector_composition, newpeaks[i][1], energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) _esc_ = [[_esc_[x]["energy"], _esc_[x]["rate"], x[:-3].replace("_"," ")] for x in _esc_] _esc_ = Elements._filterPeaks(_esc_, ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold, absoluteithreshold=True, keeptotalrate=False) PEAKS0ESCAPE[-1].append(_esc_) _nescape_ += len(_esc_) else: for i in range(len(newpeaks)): _esc_ = Elements.getEscape([detele,1.0,1.0], newpeaks[i][1], ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold) PEAKS0ESCAPE[-1].append(_esc_) _nescape_ += len(_esc_) PEAKS0.append(numpy.array(newpeaks)) PEAKS0NAMES.append(newpeaksnames) #print ele,"PEAKS0ESCAPE[-1] = ",PEAKS0ESCAPE[-1] if not HYPERMET: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r,3+1),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_),3+1), numpy.float64)) else: PEAKSW.append(numpy.ones((r,3+1),numpy.float64)) else: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r,3+5),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_),3+5), numpy.float64)) else: PEAKSW.append(numpy.ones((r,3+5),numpy.float64)) ####################################### else: if usematrix and (maxenergy is None): text = "Invalid energy for matrix configuration.\n" text += "Please check your BEAM parameters." raise ValueError(text) elif ((not usematrix) and (self.config['fit']['energy'] is None)) or \ ((not usematrix) and (self.config['fit']['energy'] == [None])) or\ ((not usematrix) and (self.config['fit']['energy'] == ["None"])) or\ ((not usematrix) and (energylist is None)) or\ ((not usematrix) and (len(energylist) == 1)): #print "OLD METHOD" data = [] for element in self.config['peaks'].keys(): if len(element) > 1: ele = element[0:1].upper()+element[1:2].lower() else: ele = element.upper() if maxenergy != Elements.Element[ele]['buildparameters']['energy']: Elements.updateDict (energy= maxenergy) if type(self.config['peaks'][element]) == type([]): for peak in self.config['peaks'][element]: data.append([Elements.getz(ele),ele,peak]) else: for peak in [self.config['peaks'][element]]: data.append([Elements.getz(ele),ele,peak]) data.sort() #build the peaks description PEAKS0 = [] PEAKS0NAMES = [] PEAKS0ESCAPE = [] PEAKSW=[] if self.config['fit']['fitfunction'] == 0: HYPERMET = self.config['fit']['hypermetflag'] else: HYPERMET = 0 noise = self.config['detector']['noise'] fano = self.config['detector']['fano'] for item in data: newpeaks = [] newpeaksnames = [] element = item[1] if len(element) > 1: ele = element[0:1].upper()+element[1:2].lower() else: ele = element.upper() rays= item[2] +' xrays' if not rays in Elements.Element[ele]['rays']:continue eta = 0.0 for transition in Elements.Element[ele][rays]: eta = 0.0 fwhm = numpy.sqrt(noise*noise + \ 0.00385 *Elements.Element[ele][transition]['energy']* fano*2.3548*2.3548) newpeaks.append([Elements.Element[ele][transition]['rate'], Elements.Element[ele][transition]['energy'], fwhm,eta]) # 1.00,eta]) newpeaksnames.append(transition) if self.attflag: transmissionenergies = [x[1] for x in newpeaks] oldfunnyfactor = None for attenuator in self.config['attenuators'].keys(): if self.config['attenuators'][attenuator][0]: formula = self.config['attenuators'][attenuator][1] thickness= self.config['attenuators'][attenuator][2] * \ self.config['attenuators'][attenuator][3] if len(self.config['attenuators'][attenuator]) == 4: funnyfactor = 1.0 else: funnyfactor = self.config['attenuators'][attenuator][4] if attenuator.upper() != "MATRIX": #coeffs = thickness * numpy.array(Elements.getmassattcoef(formula,transmissionenergies)['total']) coeffs = thickness * numpy.array(Elements.getMaterialMassAttenuationCoefficients(formula,1.0,transmissionenergies)['total']) try: if attenuator.upper() != "DETECTOR": if abs(funnyfactor-1.0) > 1.0e-10: #we have a funny attenuator if (funnyfactor < 0.0) or (funnyfactor > 1.0): text = "Funny factor should be between 0.0 and 1.0., got %g" % attenuator[4] raise ValueError(text) if oldfunnyfactor is None: #only has to be multiplied once!!! oldfunnyfactor = funnyfactor trans = funnyfactor * numpy.exp(-coeffs) + \ (1.0 - funnyfactor) else: if abs(oldfunnyfactor-funnyfactor) > 0.0001: text = "All funny type attenuators must have same openning fraction" raise ValueError(text) trans = numpy.exp(-coeffs) else: #standard trans = numpy.exp(-coeffs) else: trans = (1.0 - numpy.exp(-coeffs)) except OverflowError: if coeffs < 0: raise ValueError("Positive exponent on transmission term") else: if attenuator.upper() == "DETECTOR": trans = 1.0 else: trans = 0.0 for i in range(len(newpeaks)): #if ele == 'Pb': # print "energy = %.3f ratio=%.5f transmission = %.5g final=%.5g" % (newpeaks[i][1], newpeaks[i][0],trans[i],trans[i] * newpeaks[i][0]) newpeaks[i][0] *= trans[i] if newpeaks[i][0] < MAX_ATTENUATION: newpeaks[i][0] = 0.0 else: #add the excitation energy #excitation energy = self.config['fit']['energy'] or be registered to # elements callback try: alphaIn = self.config['attenuators'][attenuator][4] except Exception: print("warning, alphaIn set to 45 degrees") alphaIn = 45.0 try: alphaOut = self.config['attenuators'][attenuator][5] except Exception: print("warning, alphaOut set to 45 degrees") alphaOut = 45.0 matrixExcitationEnergy = Elements.Element[ele]['buildparameters']['energy'] #matrixExcitationEnergy = self.config['fit']['energy'] if matrixExcitationEnergy is not None: transmissionenergies.append(matrixExcitationEnergy) #transmissionenergies.append(self.config['fit']['energy']) coeffs = Elements.getMaterialMassAttenuationCoefficients(formula,1.0,transmissionenergies)['total'] sinAlphaIn = numpy.sin(alphaIn * (numpy.pi)/180.) sinAlphaOut = numpy.sin(alphaOut * (numpy.pi)/180.) #if ele == 'Pb': # oldRatio = [] for i in range(len(newpeaks)): #thick target term trans = 1.0/(coeffs[-1] + coeffs[i] * (sinAlphaIn/sinAlphaOut)) if thickness > 0.0: if abs(sinAlphaIn) > 0.0: expterm = -((coeffs[-1]/sinAlphaIn) +(coeffs[i]/sinAlphaOut)) * thickness if expterm > 0.0: raise ValueError("Positive exponent on transmission term") if expterm < 30: #avoid overflow error in frozen versions try: expterm = numpy.exp(expterm) except OverflowError: expterm = 0.0 trans *= (1.0 - expterm) #if ele == 'Pb': # oldRatio.append(newpeaks[i][0]) # print "energy = %.3f ratio=%.5f transmission = %.5g final=%.5g" % (newpeaks[i][1], newpeaks[i][0],trans,trans * newpeaks[i][0]) newpeaks[i][0] *= trans if newpeaks[i][0] < MAX_ATTENUATION: newpeaks[i][0] = 0.0 del transmissionenergies[-1] else: raise ValueError(\ "Invalid excitation energy") # user attenuators for userattenuator in self.config['userattenuators']: if self.config['userattenuators'][userattenuator]["use"]: ttrans = Elements.getTableTransmission( self.config['userattenuators'][userattenuator], [x[1] for x in newpeaks]) for i in range(len(newpeaks)): newpeaks[i][0] *= ttrans[i] #--- renormalize div = sum([x[0] for x in newpeaks]) try: for i in range(len(newpeaks)): newpeaks[i][0] /= div except ZeroDivisionError: text = "Intensity of %s %s is zero\n"% (ele, rays) text += "Too high attenuation?" raise ZeroDivisionError(text) """ if ele == 'Pb': dummyNew = [[newpeaks[i][1],oldRatio[i],newpeaks[i][0],newpeaks[i][0]/ oldRatio[i] ] for i in range(len(newpeaks))] dummyNew.sort() for i in range(len(newpeaks)): print "FINAL energy = %.3f oldratio = %.5g newratio=%.5g new/old = %.5g" % (dummyNew[i][0], dummyNew[i][1], dummyNew[i][2], dummyNew[i][3]) """ #--- sort --- div=[[newpeaks[i][1],newpeaks[i],newpeaksnames[i]] for i in range(len(newpeaks))] div.sort() newpeaks =[div[i][1] for i in range(len(div))] newpeaksnames=[div[i][2] for i in range(len(div))] #print "BEFORE " #for i in range(len(newpeaksnames)): # print newpeaksnames[i], newpeaks[i][1], newpeaks[i][0] tojoint=[] if len(newpeaks) > 1: if 0: #if ele == "Kr": print("ELEMENTS FILTERING ") testPeaks = [[div[i][0], div[i][1][0], div[i][2]] for i in range(len(div))] testPeaks = Elements._filterPeaks(testPeaks, ethreshold=deltaonepeak, keeptotalrate=True) for i in range(len(testPeaks)): print(testPeaks[i][2], testPeaks[i][0], testPeaks[i][1]) for i in range(len(newpeaks)): for j in range(i,len(newpeaks)): if i != j: if abs(newpeaks[i][1]-newpeaks[j][1]) < deltaonepeak: if len(tojoint): if (i in tojoint[-1]) and (j in tojoint[-1]): pass elif (i in tojoint[-1]): tojoint[-1].append(j) elif (j in tojoint[-1]): tojoint[-1].append(i) else: tojoint.append([i,j]) else: tojoint.append([i,j]) if len(tojoint): mix=[] mixname=[] for _group in tojoint: rate = 0.0 for i in _group: rate += newpeaks[i][0] ene = 0.0 fwhm = 0.0 eta = 0.0 j = 0 for i in _group: if j == 0: _threshold = newpeaks[i][0] transition = newpeaksnames[i] j = 1 ene += newpeaks[i][0] * newpeaks[i][1]/rate fwhm += newpeaks[i][0] * newpeaks[i][2]/rate eta += newpeaks[i][0] * newpeaks[i][3]/rate if newpeaks[i][0] > _threshold: _threshold = newpeaks[i][0] transition=newpeaksnames[i] mix.append([rate,ene,fwhm,eta]) mixname.append(transition) for i in range(1,len(tojoint)+1): for j in range(1,len(tojoint[-i])+1): del newpeaks[tojoint[-i][-j]] del newpeaksnames[tojoint[-i][-j]] for peak in mix: newpeaks.append(peak) for peakname in mixname: newpeaksnames.append(peakname) #if ele == "Fe": if 0: for i in range(len(newpeaks)): print(newpeaksnames[i],newpeaks[i]) #print "len newpeaks = ",len(newpeaks) (r,c)=(numpy.array(newpeaks)).shape PEAKS0ESCAPE.append([]) _nescape_ = 0 if self.config['fit']['escapeflag']: if self.__USE_FISX_ESCAPE: _logger.debug("Using fisx escape") xcom = FisxHelper.xcom detector_composition = Elements.getMaterialMassFractions([detele], [1.0]) xcom.updateEscapeCache(detector_composition, [newpeaks[i][1] for i in range(len(newpeaks))], energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) for i in range(len(newpeaks)): _esc_ = xcom.getEscape(detector_composition, newpeaks[i][1], energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) _esc_ = [[_esc_[x]["energy"], _esc_[x]["rate"], x[:-3].replace("_"," ")] for x in _esc_] _esc_ = Elements._filterPeaks(_esc_, ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold, absoluteithreshold=True, keeptotalrate=False) PEAKS0ESCAPE[-1].append(_esc_) _nescape_ += len(_esc_) else: for i in range(len(newpeaks)): _esc_ = Elements.getEscape([detele,1.0,1.0], newpeaks[i][1], ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold) PEAKS0ESCAPE[-1].append(_esc_) _nescape_ += len(_esc_) PEAKS0.append(numpy.array(newpeaks)) PEAKS0NAMES.append(newpeaksnames) #print ele,"PEAKS0ESCAPE[-1] = ",PEAKS0ESCAPE[-1] if not HYPERMET: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r,3 + 1),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_),3 + 1), numpy.float64)) else: PEAKSW.append(numpy.ones((r,3 + 1),numpy.float64)) else: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r,3+5),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_),3+5), numpy.float64)) else: PEAKSW.append(numpy.ones((r,3+5),numpy.float64)) elif (not usematrix) and (len(energylist) > 1): raise ValueError("Multiple energies require a matrix definition") else: print("Unknown case") print("usematrix = ",usematrix) print("self.config['fit']['energy'] =",self.config['fit']['energy']) raise ValueError("Unhandled Sample Matrix and Energy combination") ############### #add scatter peak if energylist is not None: if len(energylist) and \ (self.config['fit']['scatterflag']): for scatterindex in range(len(energylist)): if energyscatter[scatterindex]: ene = energylist[scatterindex] #print "ene = ",ene,"scatterindex = ",scatterindex #print "scatter for first energy" if ene > 0.2: for i in range(2): ene = energylist[scatterindex] if i == 1: try: alphaIn = self.config['attenuators']['Matrix'][4] except Exception: print("WARNING: Matrix incident angle set to 45 deg.") alphaIn = 45.0 try: alphaOut = self.config['attenuators']['Matrix'][5] except Exception: print("WARNING: Matrix outgoing angle set to 45 deg.") alphaOut = 45.0 scatteringAngle = (alphaIn + alphaOut) if len(self.config['attenuators']['Matrix']) == 8: if self.config['attenuators']['Matrix'][6]: scatteringAngle = self.config['attenuators']\ ['Matrix'][7] scatteringAngle = scatteringAngle * numpy.pi/180. ene = ene / (1.0 + (ene/511.0) * (1.0 - numpy.cos(scatteringAngle))) fwhm = numpy.sqrt(noise*noise + \ 0.00385 *ene* fano*2.3548*2.3548) PEAKS0.append(numpy.array([[1.0, ene, fwhm, 0.0]])) PEAKS0NAMES.append(['Scatter %03d' % scatterindex]) PEAKS0ESCAPE.append([]) _nescape_ = 0 if self.config['fit']['escapeflag']: if self.__USE_FISX_ESCAPE: _logger.debug("Using fisx escape") xcom = FisxHelper.xcom detector_composition = Elements.getMaterialMassFractions([detele], [1.0]) xcom.updateEscapeCache(detector_composition, [ene], energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) _esc_ = xcom.getEscape(detector_composition, ene, energyThreshold=ethreshold, intensityThreshold=ithreshold, nThreshold=nthreshold) _esc_ = [[_esc_[x]["energy"], _esc_[x]["rate"], x[:-3].replace("_"," ")] for x in _esc_] _esc_ = Elements._filterPeaks(_esc_, ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold, absoluteithreshold=True, keeptotalrate=False) else: _esc_ = Elements.getEscape([detele,1.0,1.0], ene, ethreshold=ethreshold, ithreshold=ithreshold, nthreshold=nthreshold) PEAKS0ESCAPE[-1].append(_esc_) _nescape_ += len(_esc_) r = 1 if not HYPERMET: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r, 3 + 1),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_), 3 + 1), numpy.float64)) else: PEAKSW.append(numpy.ones((r, 3 + 1),numpy.float64)) else: if self.config['fit']['escapeflag']: if OLDESCAPE: PEAKSW.append(numpy.ones((2*r, 3+5),numpy.float64)) else: PEAKSW.append(numpy.ones(((r+_nescape_),3+5), numpy.float64)) else: PEAKSW.append(numpy.ones((r,3+5),numpy.float64)) ######### PARAMETERS=['Zero','Gain','Noise','Fano','Sum'] CONTINUUM = self.config['fit']['continuum'] #CONTINUUM_LIST = [None,'Constant','Linear','Parabolic', # 'Linear Polynomial','Exp. Polynomial'] if CONTINUUM < CONTINUUM_LIST.index('Linear Polynomial'): PARAMETERS.append('Constant') PARAMETERS.append('1st Order') if CONTINUUM >2: PARAMETERS.append('2nd Order') elif CONTINUUM == CONTINUUM_LIST.index('Linear Polynomial'): for i in range(self.config['fit']['linpolorder']+1): PARAMETERS.append('A%d' % i) elif CONTINUUM == CONTINUUM_LIST.index('Exp. Polynomial'): for i in range(self.config['fit']['exppolorder']+1): PARAMETERS.append('A%d' % i) if HYPERMET: PARAMETERS.append('ST AreaR') PARAMETERS.append('ST SlopeR') PARAMETERS.append('LT AreaR') PARAMETERS.append('LT SlopeR') PARAMETERS.append('STEP HeightR') else: PARAMETERS.append('Eta Factor') NGLOBAL = len(PARAMETERS) for item in data: PARAMETERS.append(item[1]+" "+item[2]) if energylist is not None: if len(energylist) and \ (self.config['fit']['scatterflag']): for scatterindex in range(len(energylist)): if energyscatter[scatterindex]: ene = energylist[scatterindex] #print "ene = ",ene,"scatterindex = ",scatterindex #print "scatter for first energy" if ene > 0.2: PARAMETERS.append("Scatter Peak%03d" % scatterindex) PARAMETERS.append("Scatter Compton%03d" % scatterindex) #PARAMETERS.append("Scatter Peak") #PARAMETERS.append("Scatter Compton") self.PEAKS0 = PEAKS0 self.PEAKS0ESCAPE = PEAKS0ESCAPE #for i in range(len(PEAKS0)): # print self.PEAKS0[i] # print self.PEAKS0ESCAPE[i] self.PEAKS0NAMES= PEAKS0NAMES self.PEAKSW = PEAKSW self.FASTER = 1 self.__HYPERMET = HYPERMET self.NGLOBAL = NGLOBAL self.PARAMETERS = PARAMETERS self.ESCAPE = self.config['fit']['escapeflag'] self.__SUM = self.config['fit']['sumflag'] self.__CONTINUUM = CONTINUUM self.MAXITER = self.config['fit']['maxiter'] self.STRIP = self.config['fit']['stripflag'] #if self.laststrip is not None: self.__mycounter = 0 calculateStrip = False if (self.STRIP != self.laststrip) or \ (self.config['fit']['stripalgorithm'] != self.laststripalgorithm) or \ (self.config['fit']['stripfilterwidth'] != self.laststripfilterwidth) or \ (self.config['fit']['stripanchorsflag'] != self.laststripanchorsflag) or \ (self.config['fit']['stripanchorslist'] != self.laststripanchorslist): calculateStrip = True if not calculateStrip: if self.config['fit']['stripalgorithm'] == 1: #checking if needed to calculate SNIP if (self.config['fit']['snipwidth'] != self.lastsnipwidth): calculateStrip = True else: #checking if needed to calculate strip if (self.config['fit']['stripiterations'] != self.laststripiterations) or \ (self.config['fit']['stripwidth'] != self.laststripwidth) or \ (self.config['fit']['stripconstant'] != self.laststripconstant): calculateStrip = True if (self.lastxmin != self.config['fit']['xmin']) or\ (self.lastxmax != self.config['fit']['xmax']): if self.ydata0 is not None: _logger.debug("Limits changed") self.setData(x=self.xdata0, y=self.ydata0, sigmay=self.sigmay0, xmin = self.config['fit']['xmin'], xmax = self.config['fit']['xmax'], time = self.__lastTime) return if hasattr(self, "xdata"): if self.STRIP: if calculateStrip: _logger.debug("Calling to calculate non analytical background in config") self.__getselfzz() else: _logger.debug("Using previous non analytical background in config") self.datatofit = numpy.concatenate((self.xdata, self.ydata-self.zz, self.sigmay),1) self.laststrip = 1 else: _logger.debug("Using previous data") self.datatofit = numpy.concatenate((self.xdata, self.ydata, self.sigmay),1) self.laststrip = 0 def setdata(self, *var, **kw): print("ClassMcaTheory.setdata deprecated, please use setData") return self.setData(*var, **kw) def setData(self,*var,**kw): """ Method to update the data to be fitted. It accepts several combinations of input arguments, the simplest to take into account is: setData(x, y sigmay=None, xmin=None, xmax=None) x corresponds to the spectrum channels y corresponds to the spectrum counts sigmay is the uncertainty associated to the counts. If not given, Poisson statistics will be assumed. If the fit configuration is set to no weight, it will not be used. xmin and xmax define the limits to be considered for performing the fit. If the fit configuration flag self.config['fit']['use_limit'] is set, they will be ignored. If xmin and xmax are not given, the whole given spectrum will be considered for fitting. time (seconds) is the factor associated to the flux, only used when using a strategy based on concentrations """ if self.__toBeConfigured: _logger.debug("setData RESTORE ORIGINAL CONFIGURATION") self.configure(self.__originalConfiguration) if 'x' in kw: x=kw['x'] elif len(var) >1: x=var[0] else: x=None if 'y' in kw: y=kw['y'] elif len(var) > 1: y=var[1] elif len(var) == 1: y=var[0] else: y=None if 'sigmay' in kw: sigmay=kw['sigmay'] elif len(var) >2: sigmay=var[2] else: sigmay=None if y is None: return 1 else: self.ydata0=numpy.array(y) self.ydata=numpy.array(y) if x is None: self.xdata0=numpy.arange(len(self.ydata0)) self.xdata=numpy.arange(len(self.ydata0)) else: self.xdata0=numpy.array(x) self.xdata=numpy.array(x) if sigmay is None: dummy = numpy.sqrt(abs(self.ydata0)) self.sigmay0=numpy.reshape(dummy + numpy.equal(dummy,0),self.ydata0.shape) self.sigmay=numpy.reshape(dummy + numpy.equal(dummy,0),self.ydata0.shape) else: self.sigmay0=numpy.array(sigmay) self.sigmay=numpy.array(sigmay) timeFactor = kw.get("time", None) self.__lastTime = timeFactor if timeFactor is None: if "concentrations" in self.config: if self.config["concentrations"].get("useautotime", False): if not self.config["concentrations"]["usematrix"]: msg = "Requested to use time from data but not present!!" raise ValueError(msg) elif self.config["concentrations"].get("useautotime", False): self.config["concentrations"]["time"] = timeFactor xmin = self.config['fit']['xmin'] if not self.config['fit']['use_limit']: if 'xmin' in kw: xmin=kw['xmin'] if xmin is not None: self.config['fit']['xmin'] = xmin else: xmin=min(self.xdata) elif len(self.xdata): xmin=min(self.xdata) xmax = self.config['fit']['xmax'] if not self.config['fit']['use_limit']: if 'xmax' in kw: xmax=kw['xmax'] if xmax is not None: self.config['fit']['xmax'] = xmax else: xmax=max(self.xdata) elif len(self.xdata): xmax=max(self.xdata) self.lastxmin = xmin self.lastxmax = xmax if len(self.xdata): #sort the data i1=numpy.argsort(self.xdata) self.xdata=numpy.take(self.xdata,i1) self.ydata=numpy.take(self.ydata,i1) self.sigmay=numpy.take(self.sigmay,i1) #take the data between limits i1=numpy.nonzero((self.xdata >=xmin) & (self.xdata<=xmax))[0] self.xdata=numpy.take(self.xdata,i1) n=len(self.xdata) #Calculate the background just of the regions gives better results #self.zz=SpecfitFuns.subac(self.ydata,1.000,20000) #self.zz =numpy.take(self.zz,i1) self.ydata=numpy.take(self.ydata,i1) #calculate the background here gives better results if not self.config['fit']['linearfitflag']: self.__getselfzz() else: if self.STRIP: self.__getselfzz() else: self.laststrip = None self.zz = numpy.zeros((n,1),numpy.float64) self.sigmay=numpy.take(self.sigmay,i1) self.xdata = numpy.resize(self.xdata,(n,1)) self.ydata = numpy.resize(self.ydata,(n,1)) self.sigmay= numpy.resize(self.sigmay,(n,1)) if self.STRIP: self.datatofit = numpy.concatenate((self.xdata, self.ydata-self.zz, self.sigmay),1) self.laststrip = 1 else: self.datatofit = numpy.concatenate((self.xdata,self.ydata,self.sigmay),1) if self.config['fit']['linearfitflag']: self.laststrip = None else: self.laststrip = 0 def getLastTime(self): return self.__lastTime def __smooth(self,y): f=[0.25,0.5,0.25] try: if hasattr(y, "shape"): if len(y.shape) > 1: result=SpecfitFuns.SavitskyGolay(numpy.ravel(y).astype(numpy.float64), self.config['fit']['stripfilterwidth']) else: result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float64), self.config['fit']['stripfilterwidth']) else: result=SpecfitFuns.SavitskyGolay(numpy.array(y).astype(numpy.float64), self.config['fit']['stripfilterwidth']) except Exception: print("Unsuccessful Savitsky-Golay smoothing: %s" % sys.exc_info()) raise result=numpy.array(y).astype(numpy.float64) if len(result) > 1: result[1:-1]=numpy.convolve(result,f,mode=0) result[0]=0.5*(result[0]+result[1]) result[-1]=0.5*(result[-1]+result[-2]) return result def __getselfzz(self): n=len(self.xdata) #loop for anchors anchorslist = [] if self.config['fit']['stripanchorsflag']: if self.config['fit']['stripanchorslist'] is not None: ravelled = numpy.ravel(self.xdata) for channel in self.config['fit']['stripanchorslist']: if channel <= ravelled[0]:continue index = numpy.nonzero(ravelled >= channel)[0] if len(index): index = min(index) if index > 0: anchorslist.append(index) #work with smoothed data ysmooth = numpy.ravel(self.__smooth(self.ydata)) #SNIP algorithm if self.config['fit']['stripalgorithm'] == 1: _logger.debug("CALCULATING SNIP") if len(anchorslist) == 0: anchorslist = [0, len(ysmooth)-1] anchorslist.sort() self.zz = 0.0 * ysmooth lastAnchor = 0 width = self.config['fit']['snipwidth'] for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < len(ysmooth)): self.zz[lastAnchor:anchor] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:anchor], width, 0) lastAnchor = anchor if lastAnchor < len(ysmooth): self.zz[lastAnchor:] =\ SpecfitFuns.snip1d(ysmooth[lastAnchor:], width, 0) self.zz.shape = n, 1 self.laststripalgorithm = self.config['fit']['stripalgorithm'] self.lastsnipwidth = self.config['fit']['snipwidth'] self.laststripfilterwidth = self.config['fit']['stripfilterwidth'] self.laststripanchorsflag = self.config['fit']['stripanchorsflag'] self.laststripanchorslist = self.config['fit']['stripanchorslist'] return #strip background niter = self.config['fit']['stripiterations'] if niter > 0: _logger.debug("CALCULATING STRIP") if (niter > 1000) and (self.config['fit']['stripwidth'] == 1): self.zz=SpecfitFuns.subac(ysmooth, self.config['fit']['stripconstant'], niter/20,4, anchorslist) self.zz=SpecfitFuns.subac(self.zz, self.config['fit']['stripconstant'], niter/4, self.config['fit']['stripwidth'], anchorslist) else: self.zz=SpecfitFuns.subac(ysmooth, self.config['fit']['stripconstant'], niter, self.config['fit']['stripwidth'], anchorslist) if niter > 1000: #make sure to get something smooth self.zz = SpecfitFuns.subac(self.zz, self.config['fit']['stripconstant'], 500,1, anchorslist) else: #make sure to get something smooth but with less than #500 iterations self.zz = SpecfitFuns.subac(self.zz, self.config['fit']['stripconstant'], int(self.config['fit']['stripwidth']*2), 1, anchorslist) self.zz = numpy.resize(self.zz,(n,1)) else: self.zz = numpy.zeros((n,1),numpy.float64) + min(ysmooth) self.laststripalgorithm = self.config['fit']['stripalgorithm'] self.laststripwidth = self.config['fit']['stripwidth'] self.laststripfilterwidth = self.config['fit']['stripfilterwidth'] self.laststripconstant = self.config['fit']['stripconstant'] self.laststripiterations = self.config['fit']['stripiterations'] self.laststripanchorsflag = self.config['fit']['stripanchorsflag'] self.laststripanchorslist = self.config['fit']['stripanchorslist'] def getPeakMatrixContribution(self,param0,t0=None,hypermet=None, continuum=None,summing=None): """ For the time being a huge copy paste from mcatheory """ if continuum is None: continuum = self.__CONTINUUM if hypermet is None: hypermet = self.__HYPERMET if summing is None: summing = self.__SUM param= numpy.array(param0) #param= numpy.ones(param.shape, numpy.float64) if t0 is None:t0 = self.xdata x = numpy.array(t0) matrix = numpy.zeros((len(x),len(param)-self.NGLOBAL)).astype(numpy.float64) zero = param[0] gain = param[1] energy=zero + gain * x #print energy noise= param[2] * param[2] fano = param[3] * 2.3548*2.3548*0.00385 #t=time.time() PEAKS0 = self.PEAKS0 PEAKS0ESCAPE = self.PEAKS0ESCAPE PEAKSW = self.PEAKSW PARAMETERS = self.PARAMETERS FASTER = 0 for i in range(len(param[self.NGLOBAL:])): result = 0 * energy if self.ESCAPE: #area = param[NGLOBAL+i] (r,c) = (PEAKS0[i]).shape PEAKSW[i][0:r,0] = PEAKS0[i][:,0] * 1 * gain PEAKSW[i][0:r,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][0:r,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) #escape if OLDESCAPE: PEAKSW[i][r:,0] = PEAKSW[i][0:r,0] * PEAKS0[i][:,3] PEAKSW[i][r:,1] = PEAKS0[i][:,1] - self.config['detector']['detene'] PEAKSW[i][r:,2] = numpy.sqrt(noise + \ (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) else: ii=0 j=0 for esc_group in PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] PEAKSW[i][j+r,0] = PEAKSW[i][ii,0] * esc_rate PEAKSW[i][j+r,1] = esc_ene j = j + 1 ii = ii + 1 PEAKSW[i][r:, 2] = numpy.sqrt(noise + \ (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) (rw,cw) = (PEAKSW[i]).shape if 0 and self.PARAMETERS[self.NGLOBAL+i] =='Fe K': for ii in range(rw): if ii < r: print(self.PARAMETERS[self.NGLOBAL+i],"PEAK ",ii,PEAKSW[i][ii]) else: print(self.PARAMETERS[self.NGLOBAL+i],"PEAKesc ",ii,PEAKSW[i][ii]) #print PARAMETERS[self.NGLOBAL+i] #print PEAKSW[i][:,1] #print PEAKS0ESCAPE[i] #for j in range(PEAKSW[i].shape[0]): # print "H = ", PEAKSW[i][j*r,0],"E = ",PEAKSW[i][j*r,1] #if HYPERMET: if hypermet: PEAKSW[i] [0:r,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [0:r,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [0:r,7] = param[PARAMETERS.index('STEP HeightR')] #neglect tails in escape peaks PEAKSW[i] [r:,3] = 0.0 PEAKSW[i] [r:,5] = 0.0 PEAKSW[i] [r:,7] = 0.0 if not FASTER: #if HYPERMET: if hypermet: if i == 0: result = SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: result += SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: if i == 0: result = SpecfitFuns.apvoigt(PEAKSW[i],energy) else: result += SpecfitFuns.apvoigt(PEAKSW[i],energy) else: PEAKSW[i][:,0] = PEAKS0[i][:,0] * param[self.NGLOBAL+i] * gain PEAKSW[i][:,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][:,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) if hypermet: PEAKSW[i] [:,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [:,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [:,7] = param[PARAMETERS.index('STEP HeightR')] else: #pseudo voigt PEAKSW[i] [:,3] = param[PARAMETERS.index('Eta Factor')] if not FASTER: if hypermet: if i == 0: result = SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: result += SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: if i == 0: result = SpecfitFuns.apvoigt(PEAKSW[i],energy) else: result += SpecfitFuns.apvoigt(PEAKSW[i],energy) #print "shape = ",result.shape #print "matrix = ",matrix.shape matrix[:,i] = result[:,0] return matrix def linearMcaTheory(self, param0, t0, hypermet=None, continuum=None, summing=None): if continuum is None: continuum = self.__CONTINUUM if hypermet is None: hypermet = self.__HYPERMET if summing is None: summing = self.__SUM param= numpy.array(param0) x = numpy.array(t0) zero = param[0] gain = param[1] #the loop in mcatheory is replaced by this single line if len(self.PEAKSW[:]): result = numpy.sum(param[self.NGLOBAL:] * self.linearMatrix, 1) else: result = 0.0 * x if continuum: result += self.continuum(param,x) if summing: xmin=int(x[0]) return result+param[4]*SpecfitFuns.pileup(result, xmin, zero, gain) else: return result def mcatheory(self,param0,t0,hypermet=None,continuum=None,summing=None): if continuum is None: continuum = self.__CONTINUUM if hypermet is None: hypermet = self.__HYPERMET if summing is None: summing = self.__SUM param= numpy.array(param0) x = numpy.array(t0) zero = param[0] gain = param[1] energy=zero + gain * x #print energy noise= param[2] * param[2] fano = param[3] * 2.3548*2.3548*0.00385 #t=time.time() PEAKS0 = self.PEAKS0 PEAKS0ESCAPE = self.PEAKS0ESCAPE PEAKSW = self.PEAKSW PARAMETERS = self.PARAMETERS FASTER = self.FASTER for i in range(len(param[self.NGLOBAL:])): if self.ESCAPE: #area = param[NGLOBAL+i] (r,c) = (PEAKS0[i]).shape PEAKSW[i][0:r,0] = PEAKS0[i][:,0] * param[self.NGLOBAL+i] * gain PEAKSW[i][0:r,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][0:r,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) #escape if OLDESCAPE: PEAKSW[i][r:,0] = PEAKSW[i][0:r,0] * PEAKS0[i][:,3] PEAKSW[i][r:,1] = PEAKS0[i][:,1] - self.config['detector']['detene'] PEAKSW[i][r:,2] = numpy.sqrt(noise + \ (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) else: ii=0 j=0 for esc_group in PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] PEAKSW[i][j+r,0] = PEAKSW[i][ii,0] * esc_rate PEAKSW[i][j+r,1] = esc_ene j = j + 1 ii = ii + 1 PEAKSW[i][r:, 2] = numpy.sqrt(noise + \ (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) (rw,cw) = (PEAKSW[i]).shape if 0 and self.PARAMETERS[self.NGLOBAL+i] =='Fe K': for ii in range(rw): if ii < r: print(self.PARAMETERS[self.NGLOBAL+i],"PEAK ",ii,PEAKSW[i][ii]) else: print(self.PARAMETERS[self.NGLOBAL+i],"PEAKesc ",ii,PEAKSW[i][ii]) #print PARAMETERS[self.NGLOBAL+i] #print PEAKSW[i][:,1] #print PEAKS0ESCAPE[i] #for j in range(PEAKSW[i].shape[0]): # print "H = ", PEAKSW[i][j*r,0],"E = ",PEAKSW[i][j*r,1] #if HYPERMET: if hypermet: PEAKSW[i] [0:r,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [0:r,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [0:r,7] = param[PARAMETERS.index('STEP HeightR')] #neglect tails in escape peaks PEAKSW[i] [r:,3] = 0.0 PEAKSW[i] [r:,5] = 0.0 PEAKSW[i] [r:,7] = 0.0 else: PEAKSW[i] [:,3] = param[PARAMETERS.index('Eta Factor')] if not FASTER: print("not FASTER") #if HYPERMET: if hypermet: if i == 0: result = SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: result += SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: if i == 0: result = SpecfitFuns.apvoigt(PEAKSW[i],energy) else: result += SpecfitFuns.apvoigt(PEAKSW[i],energy) else: PEAKSW[i][:,0] = PEAKS0[i][:,0] * param[self.NGLOBAL+i] * gain PEAKSW[i][:,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][:,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) if hypermet: PEAKSW[i] [:,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [:,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [:,7] = param[PARAMETERS.index('STEP HeightR')] else: PEAKSW[i] [:,3] = param[PARAMETERS.index('Eta Factor')] if not FASTER: if hypermet: if i == 0: result = SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: result += SpecfitFuns.ahypermet(PEAKSW[i],energy,hypermet) else: if i == 0: result = SpecfitFuns.apvoigt(PEAKSW[i],energy) else: result += SpecfitFuns.apvoigt(PEAKSW[i],energy) #print PARAMETERS[self.NGLOBAL+4] #print self.PEAKS0NAMES[4] #print PEAKSW[4] #print "loop takes ",time.time()-t #loop takes 0.006 seconds #t=time.time() if FASTER: if len(PEAKSW[:]): a=numpy.concatenate(PEAKSW[:]) #t=time.time() #result = SpecfitFuns.agauss(a,energy) #if HYPERMET: if hypermet: result = SpecfitFuns.fastahypermet(a,energy,hypermet) else: result = SpecfitFuns.apvoigt(a,energy) else: result = 0.0 * x #print "eval = ",time.time()-t #evaluation takes 0.058 seconds #with less peaks 0.036 #with tabulated function 0.018 if continuum: result += self.continuum(param,x) if summing: if 0: pileup = numpy.arange(3*len(x))*0.0 sumfactor = param[4] xmin=int(x[0]) offset = zero / gain for i in range(len(result)): pileup[i+xmin-offset:i+len(result)+xmin-i-offset] += sumfactor * result[i] *result[0:len(result)-i] return result+pileup[0:len(result)] else: #summing takes 0.0047 seconds xmin=int(x[0]) return result+param[4]*SpecfitFuns.pileup(result, xmin, zero, gain) else: return result def continuum(self,param,x): #CONTINUUM_LIST = [None,'Constant','Linear','Parabolic','Linear Polynomial','Exp. Polynomial'] if self.__CONTINUUM == CONTINUUM_LIST.index('Constant'): return param[self.PARAMETERS.index('Constant')] + 0.0 * x elif self.__CONTINUUM == CONTINUUM_LIST.index('Linear'): return param[self.PARAMETERS.index('Constant')] + \ param[self.PARAMETERS.index('1st Order')] * x elif self.__CONTINUUM == CONTINUUM_LIST.index('Parabolic'): return param[self.PARAMETERS.index('Constant')] + \ param[self.PARAMETERS.index('1st Order')] * x +\ param[self.PARAMETERS.index('2nd Order')] * x * x elif self.__CONTINUUM == CONTINUUM_LIST.index('Linear Polynomial'): energy = param[0] + param[1] * (x - numpy.sum(x)/len(x)) if self.__HYPERMET: return self.linpol(param[(self.PARAMETERS.index('Sum')+1):self.NGLOBAL-5],energy) else: return self.linpol(param[(self.PARAMETERS.index('Sum')+1):self.NGLOBAL-1],energy) elif self.__CONTINUUM == CONTINUUM_LIST.index('Exp. Polynomial'): energy = param[0] + param[1] * (x - numpy.sum(x)/len(x)) if self.__HYPERMET: return self.exppol(param[(self.PARAMETERS.index('Sum')+1):self.NGLOBAL-5],energy) else: return self.exppol(param[(self.PARAMETERS.index('Sum')+1):self.NGLOBAL-1],energy) else: return 0.0 * x def num_deriv(self, param0,index,t0): #numerical derivative x=numpy.array(t0) delta = (param0[index] + numpy.equal(param0[index],0.0)) * 0.00001 newpar = param0.copy() newpar[index] = param0[index] + delta f1 = self.mcatheory(newpar, x) newpar[index] = param0[index] - delta f2 = self.mcatheory(newpar, x) return (f1-f2) / (2.0 * delta) def linearMcaTheoryDerivative(self, param0, index, t0): NGLOBAL = self.NGLOBAL if index > NGLOBAL-1: return self.linearMatrix[:, index-NGLOBAL] PARAMETERS = self.PARAMETERS if self.__CONTINUUM and (PARAMETERS[index] == 'Constant'): return numpy.ones(len(t0)).astype(numpy.float64) elif self.__CONTINUUM and (PARAMETERS[index] == '1st Order'): return numpy.array(t0).astype(numpy.float64) elif self.__CONTINUUM and (PARAMETERS[index] == '2nd Order'): a = numpy.array(t0).astype(numpy.float64) return a*a elif (self.__CONTINUUM == CONTINUUM_LIST.index('Linear Polynomial')) and \ (PARAMETERS[index] == ( 'A%d' % (index-PARAMETERS.index('Sum')-1))): param=numpy.asarray(param0) x=numpy.asarray(t0) zero = param[0] gain = param[1] * 1.0 energy=zero + gain * x energy -= numpy.sum(energy)/len(energy) return pow(energy,index-PARAMETERS.index('Sum')-1) elif self.__CONTINUUM == CONTINUUM_LIST.index('Exp. Polynomial') and \ PARAMETERS[index] == ('A%d' % (index-PARAMETERS.index('Sum')-1)): text = "Linear Least-Squares Fit incompatible\n" text += "with Exponential Background" raise ValueError(text) else: #I guess I will not arrive here #numerical derivative #print "index = ",index x=numpy.array(t0) delta = (param0[index] + numpy.equal(param0[index],0.0)) * 0.00001 newpar = param0.copy() newpar[index] = param0[index] + delta f1 = self.linearMcaTheory(newpar, x) newpar[index] = param0[index] - delta f2 = self.linearMcaTheory(newpar, x) #print "f1,f2,delta = ",f1,f2,delta return (f1-f2) / (2.0 * delta) def analyticalDerivative(self, param0, index, t0): """ analyticalDerivative(self, parameters, index, x) Internal function to calculate the derivative of the fitting function f(parameters, x) respect to the parameter given by the index at the array of points x. """ NGLOBAL = self.NGLOBAL HYPERMET = self.__HYPERMET PARAMETERS = self.PARAMETERS ESCAPE = self.ESCAPE PEAKS0 = self.PEAKS0 if index > NGLOBAL-1: param=numpy.array(param0) x=numpy.array(t0) zero = param[0] gain = param[1] * 1.0 energy=zero + gain * x #print energy noise= param[2]*param[2] fano = param[3]*2.3548*2.3548*0.00385 i=index-NGLOBAL #for i in range(len(param[index-4]))): if ESCAPE: (r,c) = (PEAKS0[i]).shape if OLDESCAPE: if HYPERMET: dummy = numpy.ones((2*r,3+5*(HYPERMET > 0)), numpy.float64) else: dummy = numpy.ones((2*r,3+1), numpy.float64) dummy[0:r,0] = PEAKS0[i][:,0] * gain dummy[0:r,1] = PEAKS0[i][:,1] * 1.0 dummy[0:r,2] = numpy.sqrt(noise+ PEAKS0[i][:,1] * fano) dummy[r:,0] = PEAKS0[i][:,0] * gain * PEAKS0[i][:,3] dummy[r:,1] = PEAKS0[i][:,1] - self.config['detector']['detene'] dummy[r:,2] = numpy.sqrt(noise + (dummy[r:,1]>0) * dummy[r:,1] * fano) else: n_escape_lines = self.PEAKSW[i].shape[0] - r #if 1:print "nlines = ",r, "n escape lines =",n_escape_lines if HYPERMET: dummy = numpy.ones((r + n_escape_lines, 3+5*(HYPERMET > 0)), numpy.float64) else: dummy = numpy.ones((r + n_escape_lines, 3+1), numpy.float64) dummy[0:r,0] = PEAKS0[i][:,0] * gain dummy[0:r,1] = PEAKS0[i][:,1] * 1.0 dummy[0:r,2] = numpy.sqrt(noise+ PEAKS0[i][:,1] * fano) ii=0 j=0 for esc_group in self.PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] dummy[j+r, 0] = dummy[ii,0] * esc_rate dummy[j+r, 1] = esc_ene j = j + 1 ii = ii + 1 dummy[r:, 2] = numpy.sqrt(noise + (dummy[r:,1]>0) * dummy[r:,1] * fano) #for jj in range(r+n_escape_lines): # print index, dummy[jj, 1], dummy[jj, 0], dummy[jj, 2] else: (r,c) = (PEAKS0[i]).shape if HYPERMET: dummy = numpy.ones((r,3+5*(HYPERMET > 0)),numpy.float64) else: dummy = numpy.ones((r,3+1),numpy.float64) dummy[0:r,0] = PEAKS0[i][:,0] * gain dummy[0:r,1] = PEAKS0[i][:,1] * 1.0 dummy[0:r,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) if HYPERMET: dummy[0:r,3] = param[PARAMETERS.index('ST AreaR')] dummy[r:,3] = 0.0 dummy[:,4] = param[PARAMETERS.index('ST SlopeR')] dummy[0:r,5] = param[PARAMETERS.index('LT AreaR')] dummy[r:,5] = 0.0 dummy[:,6] = param[PARAMETERS.index('LT SlopeR')] dummy[0:r,7] = param[PARAMETERS.index('STEP HeightR')] dummy[r:,7] = 0.0 else: dummy[0:,3] = param[PARAMETERS.index('Eta Factor')] if self.FASTER: if HYPERMET: return SpecfitFuns.fastahypermet(dummy,energy,HYPERMET) else: return SpecfitFuns.apvoigt(dummy,energy) else: if HYPERMET: return SpecfitFuns.ahypermet(dummy,energy,HYPERMET) else: return SpecfitFuns.apvoigt(dummy,energy) elif HYPERMET and (PARAMETERS[index] == 'ST AreaR'): param=numpy.array(param0) x=numpy.array(t0) param[index] = 1.0 return self.mcatheory(param,x,hypermet=2,continuum=0) elif HYPERMET and (PARAMETERS[index] == 'LT AreaR'): param=numpy.array(param0) x=numpy.array(t0) param[index] = 1.0 return self.mcatheory(param,x,hypermet=4,continuum=0) elif HYPERMET and (PARAMETERS[index] == 'STEP HeightR'): param=numpy.array(param0) x=numpy.array(t0) param[index] = 1.0 return self.mcatheory(param,x,hypermet=8,continuum=0) elif self.__CONTINUUM and (PARAMETERS[index] == 'Constant'): return numpy.ones(len(t0)) elif self.__CONTINUUM and (PARAMETERS[index] == '1st Order'): return numpy.array(t0) elif self.__CONTINUUM and (PARAMETERS[index] == '2nd Order'): return numpy.array(t0)*numpy.array(t0) elif (self.__CONTINUUM == CONTINUUM_LIST.index('Linear Polynomial')) and \ (PARAMETERS[index] == ( 'A%d' % (index-PARAMETERS.index('Sum')-1))): param=numpy.array(param0) x=numpy.array(t0) zero = param[0] gain = param[1] * 1.0 energy=zero + gain * x energy -= numpy.sum(energy)/len(energy) return pow(energy,index-PARAMETERS.index('Sum')-1) elif self.__CONTINUUM == CONTINUUM_LIST.index('Exp. Polynomial') and \ PARAMETERS[index] == ('A%d' % (index-PARAMETERS.index('Sum')-1)): param=numpy.array(param0) x=numpy.array(t0) zero = param[0] gain = param[1] * 1.0 energy=zero + gain * x energy -= numpy.sum(energy)/len(energy) if HYPERMET: parameters = param[(PARAMETERS.index('Sum')+1):NGLOBAL-5] else: parameters = param[(PARAMETERS.index('Sum')+1):NGLOBAL] return self.exppol_deriv(parameters,index-PARAMETERS.index('Sum')-1,energy) else: #numerical derivative #print "index = ",index x=numpy.array(t0) delta = (param0[index] + numpy.equal(param0[index],0.0)) * 0.00001 newpar = param0.copy() newpar[index] = param0[index] + delta f1 = self.mcatheory(newpar, x) newpar[index] = param0[index] - delta f2 = self.mcatheory(newpar, x) #print "f1,f2,delta = ",f1,f2,delta return (f1-f2) / (2.0 * delta) def estimate(self): if self.__toBeConfigured: _logger.debug("CONFIGURING FROM ESTIMATION") self.configure(self.__originalConfiguration) self.parameters, self.codes = self.specfitestimate(self.xdata, self.ydata,self.zz) #self.estimatelinpoly(self.xdata, self.ydata,self.zz) #self.estimateexppoly(self.xdata, self.ydata,self.zz) #print self.codes[:,3] def specfitestimate(self,x,y,z,xscaling=1.0,yscaling=1.0): if self.PARAMETERS is None: self.__configure() PARAMETERS = self.PARAMETERS HYPERMET = self.__HYPERMET NGLOBAL = self.NGLOBAL CONTINUUM = self.__CONTINUUM #linear fit flag linearfit = self.config['fit'].get("linearfitflag", 0) newpar=[] #default parameters from config zero = self.config['detector']['zero'] if self.config['detector']['fixedzero'] or linearfit: pass elif abs(zero) < 1.0E-10: #try to avoid a zero derivative because #the initial zero is too small zero = 0.0 gain = self.config['detector']['gain'] sumfactor = self.config['detector']['sum'] newpar.append(zero) newpar.append(gain) newpar.append(self.config['detector']['noise']) newpar.append(self.config['detector']['fano']) newpar.append(sumfactor) ##################### if CONTINUUM == CONTINUUM_LIST.index('Linear Polynomial'): if linearfit: #no need to estimate background backpar = [] for i in range(self.config['fit']['linpolorder']+1): backpar.append(0.0) backcodes=numpy.zeros((3,len(backpar)),numpy.float64) else: backpar,backcodes=self.estimatelinpol(self.xdata, self.ydata,self.zz) elif CONTINUUM == CONTINUUM_LIST.index('Exp. Polynomial'): if linearfit: if 1: text = "Linear fit is incompatible with current implementation\n" text += "of the Exponential Polynomial background" raise ValueError(text) else: #no need to estimate background backpar = [] for i in range(self.config['fit']['exppolorder']+1): backpar.append(0.0) backcodes=numpy.zeros((3,len(backpar)),numpy.float64) else: backpar,backcodes=self.estimateexppol(self.xdata, self.ydata,self.zz) else: backpar = [] if HYPERMET: for i in range(5,NGLOBAL-5): backpar.append(0.0) else: for i in range(5,NGLOBAL-1): backpar.append(0.0) backcodes=numpy.zeros((3,len(backpar)),numpy.float64) if CONTINUUM == 0: backcodes[0,:] = Gefit.CFIXED elif CONTINUUM == CONTINUUM_LIST.index('Constant'): backcodes[0,1] = Gefit.CFIXED for par in backpar: newpar.append(par) #initial areas if HYPERMET: hypermetflag = HYPERMET # g_term = hypermetflag & 1 st_term = (hypermetflag >>1) & 1 lt_term = (hypermetflag >>2) & 1 step_term = (hypermetflag >>3) & 1 st_area = self.config['peakshape']['st_arearatio'] st_slope = self.config['peakshape']['st_sloperatio'] lt_area = self.config['peakshape']['lt_arearatio'] lt_slope = self.config['peakshape']['lt_sloperatio'] step_height = self.config['peakshape']['step_heightratio'] if st_term: newpar.append(st_area) newpar.append(st_slope) else: newpar.append(0.0) newpar.append(st_slope) if lt_term: newpar.append(lt_area) newpar.append(lt_slope) else: newpar.append(0.0) newpar.append(lt_slope) if step_term: newpar.append(step_height) else: newpar.append(0.0) else: eta_factor = self.config['peakshape']['eta_factor'] newpar.append(eta_factor) if not linearfit: for i in range(len(PARAMETERS)-NGLOBAL): newpar.append(10000.0) else: for i in range(len(PARAMETERS)-NGLOBAL): newpar.append(1.0) # the codes codes = numpy.zeros((3,len(newpar)),numpy.float64) codes[0,:] = Gefit.CPOSITIVE # POSITIVE codes[0,0:4] = Gefit.CQUOTED # QUOTED if self.__SUM==0: newpar[PARAMETERS.index('Sum')] = 0.0 codes[0,PARAMETERS.index('Sum')] = Gefit.CFIXED else: codes[0,PARAMETERS.index('Sum')] = Gefit.CQUOTED for i in range(len(backpar)): newpar[PARAMETERS.index('Sum')+i+1] = backpar[i] codes [0,PARAMETERS.index('Sum')+i+1]= backcodes[0,i] codes [1,PARAMETERS.index('Sum')+i+1]= backcodes[1,i] codes [2,PARAMETERS.index('Sum')+i+1]= backcodes[2,i] #in case of linear fit all non linear parameters have to be fixed to the initial values if self.config['detector']['fixedzero'] or linearfit :codes[0,PARAMETERS.index('Zero')] = Gefit.CFIXED if self.config['detector']['fixedgain'] or linearfit :codes[0,PARAMETERS.index('Gain')] = Gefit.CFIXED if self.config['detector']['fixednoise']or linearfit :codes[0,PARAMETERS.index('Noise')]= Gefit.CFIXED if self.config['detector']['fixedfano'] or linearfit :codes[0,PARAMETERS.index('Fano')] = Gefit.CFIXED if self.config['detector']['fixedsum'] or linearfit :codes[0,PARAMETERS.index('Sum')] = Gefit.CFIXED codes[1,0] = newpar[0] - self.config['detector']['deltazero'] codes[1,1] = newpar[1] - self.config['detector']['deltagain'] codes[1,2] = newpar[2] - self.config['detector']['deltanoise'] codes[1,3] = newpar[3] - self.config['detector']['deltafano'] codes[1,4] = newpar[4] - self.config['detector']['deltasum'] codes[2,0] = newpar[0] + self.config['detector']['deltazero'] codes[2,1] = newpar[1] + self.config['detector']['deltagain'] codes[2,2] = newpar[2] + self.config['detector']['deltanoise'] codes[2,3] = newpar[3] + self.config['detector']['deltafano'] codes[2,4] = newpar[4] + self.config['detector']['deltasum'] if HYPERMET: i = PARAMETERS.index('ST AreaR') for j in range(5): codes[0,i+j] = Gefit.CFIXED if st_term: i = PARAMETERS.index('ST AreaR') codes[0,i] = Gefit.CQUOTED if self.config['peakshape']['fixedst_arearatio'] or linearfit:codes[0,i] = Gefit.CFIXED codes[1,i] = newpar[i] + self.config['peakshape']['deltast_arearatio'] codes[2,i] = newpar[i] - self.config['peakshape']['deltast_arearatio'] i = PARAMETERS.index('ST SlopeR') codes[0,i] = Gefit.CQUOTED if self.config['peakshape']['fixedst_sloperatio'] or linearfit:codes[0,i] = Gefit.CFIXED codes[1,i] = newpar[i] + self.config['peakshape']['deltast_sloperatio'] codes[2,i] = newpar[i] - self.config['peakshape']['deltast_sloperatio'] if lt_term: i = PARAMETERS.index('LT AreaR') codes[0,i] = Gefit.CQUOTED if self.config['peakshape']['fixedlt_arearatio'] or linearfit:codes[0,i] = Gefit.CFIXED codes[1,i] = newpar[i] + self.config['peakshape']['deltalt_arearatio'] codes[2,i] = newpar[i] - self.config['peakshape']['deltalt_arearatio'] i = PARAMETERS.index('LT SlopeR') codes[0,i] = Gefit.CQUOTED if self.config['peakshape']['fixedlt_sloperatio'] or linearfit:codes[0,i] = Gefit.CFIXED codes[1,i] = newpar[i] + self.config['peakshape']['deltalt_sloperatio'] codes[2,i] = newpar[i] - self.config['peakshape']['deltalt_sloperatio'] if step_term: i = PARAMETERS.index('STEP HeightR') codes[0,i] = Gefit.CQUOTED if self.config['peakshape']['fixedstep_heightratio'] or linearfit:codes[0,i] = Gefit.CFIXED codes[1,i] = newpar[i] + self.config['peakshape']['deltastep_heightratio'] codes[2,i] = newpar[i] - self.config['peakshape']['deltastep_heightratio'] else: i = PARAMETERS.index('Eta Factor') codes[0, i] = Gefit.CQUOTED if self.config['peakshape']['fixedeta_factor'] or linearfit: codes[0,i] = Gefit.CFIXED codes[1,i] = max(newpar[i] + self.config['peakshape']['deltaeta_factor'], 0.0) codes[2,i] = min(newpar[i] - self.config['peakshape']['deltaeta_factor'], 1.0) #""" #firstshot=mcatheory(newpar,x) #a linear fit does not need an initial estimate of the areas noise = pow(self.config['detector']['noise'], 2) fano = self.config['detector']['fano'] * 2.3548*2.3548*0.00385 if not linearfit: for i in range(len(PARAMETERS)-NGLOBAL): rates = self.PEAKS0[i][:, 0] positions = (self.PEAKS0[i][:, 1] - zero)/gain # fwhms = (self.PEAKS0[i][:, 2])/gain i1 = numpy.nonzero((positions >= x[0]) & (positions <= x[-1]))[0] # numpy.take uses by default axis=None # Numeric.take uses by default axis=0 inpeaks = numpy.take(self.PEAKS0[i],i1, axis=0) if len(inpeaks): fmax = max(inpeaks[:,0]) jmax = 0 for j in range(len(inpeaks[:,1])): if fmax < inpeaks[j,0]: fmax = inpeaks[j,0] jmax = j j = jmax position = (inpeaks[j,1] - zero)/gain fwhm = (inpeaks[j,2])/gain n = max(numpy.nonzero(numpy.ravel(x)<=position)[0]) height = numpy.ravel(y - z)[n] #area = ((height * fwhm/2.3548)*sqrt(2*3.14159))/fmax area = ((height * fwhm/2.3548)*numpy.sqrt(2*3.14159)) newpar[i+NGLOBAL] = area elif not self.config['fit']['escapeflag']: #peaks outside fitting region #force zero area newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED else: #peaks outside fitting region #prior to force them to zero area, let's #check if their escape peaks fall into the #fitting region #print "expected shape = ",self.PEAKSW[i].shape #print "n escape lines = ",self.PEAKSW[i].shape[0] - len(rates) #get the number of escape lines to get a proper buffer n_escape_lines = self.PEAKSW[i].shape[0] - len(rates) peak_buffer = numpy.zeros((n_escape_lines, 3)).astype(numpy.float64) ii=0 jj=0 for esc_group in self.PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] peak_buffer[jj,0] = self.PEAKS0[i][ii,0] * esc_rate peak_buffer[jj,1] = esc_ene jj = jj + 1 ii = ii + 1 peak_buffer[:, 2] = numpy.sqrt(noise + \ (peak_buffer[:,1]>0) * peak_buffer[:,1] * \ fano) rates = peak_buffer[:,0] positions = (peak_buffer[:,1] - zero)/gain i1 = numpy.nonzero((positions >= x[0]) & (positions <= x[-1]))[0] inpeaks = numpy.take(peak_buffer, i1, axis=0) if len(inpeaks): fmax = max(inpeaks[:,0]) jmax = 0 for j in range(len(inpeaks[:,1])): if fmax < inpeaks[j,0]: fmax = inpeaks[j,0] jmax = j if fmax <= 0: newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED else: j = jmax position = (inpeaks[j,1] - zero)/gain fwhm = (inpeaks[j,2])/gain n = max(numpy.nonzero(numpy.ravel(x)<=position)[0]) height = numpy.ravel(y - z)[n] #area = ((height * fwhm/2.3548)*sqrt(2*3.14159))/fmax area = ((height * fwhm/2.3548)*numpy.sqrt(2*3.14159)) newpar[i+NGLOBAL] = area/fmax #print PARAMETERS[i+NGLOBAL], "index = ", i + NGLOBAL #print "Starting area = ", area/fmax #print "alternative = ", area else: #none of the escape peaks falls into the fitting region newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED else: #import time #e0 = time.time() if self.linearMatrix is None: self.__oldLinearFixed = [] for i in range(len(PARAMETERS)-NGLOBAL): positions = (self.PEAKS0[i][:,1] - zero)/gain i1 = numpy.nonzero((positions >= x[0]) & (positions <= x[-1]))[0] inpeaks = numpy.take(self.PEAKS0[i],i1,axis=0) if len(inpeaks): continue elif not self.config['fit']['escapeflag']: #peaks outside fitting region #force zero area newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED self.__oldLinearFixed.append(i) continue #peaks outside fitting region #prior to force them to zero area, let's #check if their escape peaks fall into the #fitting region #get the number of escape lines to get a proper buffer rates = self.PEAKS0[i][:,0] n_escape_lines = self.PEAKSW[i].shape[0] - len(rates) peak_buffer = numpy.zeros((n_escape_lines, 3)).astype(numpy.float64) ii=0 jj=0 for esc_group in self.PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] peak_buffer[jj,0] = self.PEAKS0[i][ii,0] * esc_rate peak_buffer[jj,1] = esc_ene jj = jj + 1 ii = ii + 1 peak_buffer[:, 2] = numpy.sqrt(noise + \ (peak_buffer[:,1]>0) * peak_buffer[:,1] * \ fano) rates = peak_buffer[:,0] positions = (peak_buffer[:,1] - zero)/gain i1 = numpy.nonzero((positions >= x[0]) & (positions <= x[-1]))[0] inpeaks = numpy.take(peak_buffer,i1, axis=0) if len(inpeaks): continue else: newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED self.__oldLinearFixed.append(i) else: for i in self.__oldLinearFixed: newpar[i+NGLOBAL] = 0.0 codes[0,i+NGLOBAL]= Gefit.CFIXED #print "Elapsed = ",time.time() - e0 if self._batchFlag and self.linearMatrix is None: self.linearMatrix = self.getPeakMatrixContribution(newpar) return newpar, codes def startfit(self,digest=0, linear=None, currentIteration=None): if self.__toBeConfigured: self.estimate() if linear is None: linear = self.config['fit'].get("linearfitflag", 0) if linear and self._batchFlag and (self.linearMatrix is not None): fitresult = Gefit.LeastSquaresFit(self.linearMcaTheory, self.parameters, self.datatofit, constrains=self.codes, weightflag=self.config['fit']['fitweight'], maxiter=self.MAXITER, model_deriv=self.linearMcaTheoryDerivative, deltachi=self.config['fit']['deltachi'], fulloutput=1, linear=linear) if self.__SUM: #This is a patch but the alternative is #to forbid linear fits with pile-up. self.parameters = fitresult[0] zero = self.parameters[0] gain = self.parameters[1] xw = self.datatofit[:,0] yfitw = self.mcatheory(fitresult[0], xw,summing=0) pileup= self.parameters[4]*SpecfitFuns.pileup(yfitw,int(xw[0]), zero, gain) self.datatofit[:,1] -= pileup fitresult = Gefit.LeastSquaresFit(self.linearMcaTheory, self.parameters, self.datatofit, constrains=self.codes, weightflag=self.config['fit']['fitweight'], maxiter=self.MAXITER, model_deriv=self.linearMcaTheoryDerivative, deltachi=self.config['fit']['deltachi'], fulloutput=1, linear=linear) else: fitresult = Gefit.LeastSquaresFit(self.mcatheory, self.parameters, self.datatofit, constrains=self.codes, weightflag=self.config['fit']['fitweight'], maxiter=self.MAXITER, model_deriv=self.analyticalDerivative, deltachi=self.config['fit']['deltachi'], fulloutput=1, linear=linear) if self.__SUM and linear: #This is a patch but the alternative is #to forbid linear fits with pile-up. self.parameters = fitresult[0] zero = self.parameters[0] gain = self.parameters[1] xw = self.datatofit[:,0] yfitw = self.mcatheory(fitresult[0], xw,summing=0) pileup= self.parameters[4]*SpecfitFuns.pileup(yfitw,int(xw[0]), zero, gain) self.datatofit[:,1] -= pileup fitresult = Gefit.LeastSquaresFit(self.mcatheory, self.parameters, self.datatofit, constrains=self.codes, weightflag=self.config['fit']['fitweight'], maxiter=self.MAXITER, model_deriv=self.analyticalDerivative, deltachi=self.config['fit']['deltachi'], fulloutput=1, linear=linear) self.fittedpar=fitresult[0] self.chisq =fitresult[1] self.sigmapar =fitresult[2] self.__niter =fitresult[3] self.__lastdeltachi = fitresult[4] callStrategy = False if currentIteration is None: if self.config['fit'].get("strategyflag", False): callStrategy = True self.__originalConfiguration = copy.deepcopy(self.config) elif currentIteration > 0: callStrategy = True self.__toBeConfigured = False if callStrategy: try: # get the strategy to be applied strategyKey = self.config['fit']["strategy"] if strategyKey not in self.strategyInstances: self.strategyInstances[strategyKey] = STRATEGIES[strategyKey]() strategyInstance = self.strategyInstances[strategyKey] # digestresult takes about 0.1 seconds per iteration import time t0 = time.time() newConfig, iteration = strategyInstance.applyStrategy( \ self.digestresult(), self._fluoRates, currentIteration=currentIteration) #print("Strategy elapsed = ", time.time() - t0) if (iteration >= 0) and (len(newConfig.keys())): print("RECONFIGURING") t0 = time.time() self.configure(newConfig) print("RECONFIGURING elapsed = ", time.time() - t0) self.estimate() if digest: fitresult = self.startfit(digest=digest, linear=linear, currentIteration=iteration)[0] else: fitresult = self.startfit(digest=digest, linear=linear, currentIteration=iteration) self.fittedpar=fitresult[0] self.chisq =fitresult[1] self.sigmapar =fitresult[2] self.__niter =fitresult[3] self.__lastdeltachi = fitresult[4] except Exception: _logger.error( \ "Exception during strategy. Restoring configuration") self.configure(self.__originalConfiguration) raise self.digest = digest if digest: digestedResult = self.digestresult() #self.result=self.digestresult() if currentIteration is None: if callStrategy: # restore old configuration with the new materials self.__originalConfiguration["materials"].update(\ self.config["materials"]) self.__toBeConfigured = True return fitresult, digestedResult else: if currentIteration is None: if callStrategy: # restore old configuration with the new materials self.__originalConfiguration["materials"].update(\ self.config["materials"]) self.__toBeConfigured = True return fitresult def imagingDigestResult(self): """ minimalist dictionary for imaging purposes """ i = 0 result = {} result['groups'] = [] result["chisq"] = self.chisq n= self.NGLOBAL for group in self.PARAMETERS[n:]: # fitatea = self.fittedpar[n + i] sigmaarea = self.sigmapar[n + i] [ele, group0] = group.split() result['groups'].append(group) result[group] = {} result[group]['peaks'] = self.PEAKS0NAMES[i] if self.__HYPERMET: result[group]['fitarea'] = self.fittedpar[n+i] * \ (1.0 + self.fittedpar[self.PARAMETERS.index('ST AreaR')]) else: result[group]['fitarea'] = self.fittedpar[n+i] result[group]['sigmaarea'] = sigmaarea i += 1 return result def digestresult(self,outfile=None, info=None): param = self.fittedpar xw = numpy.ravel(self.xdata) if self.STRIP: yw = numpy.ravel(self.ydata-self.zz) else: yw = numpy.ravel(self.ydata) #print "delta yw actual data = ",numpy.sum(self.datatofit[:,1] - yw) sy = numpy.ravel(self.sigmay) zzw = numpy.ravel(self.zz) zero = param[0] gain = param[1] energyw=zero + gain * xw #print energy yfitw = self.mcatheory(param,xw,summing=0) pileup= param[4]*SpecfitFuns.pileup(yfitw,int(xw[0]), zero, gain) yfitw += pileup # + numpy.ravel(self.zz) #reduced chi square weightw = 1.0 / (sy + numpy.equal(sy,0)) weightw = weightw * weightw nfree_par = numpy.sum(self.codes[0,:] < 3) prechisq = weightw * (yw - yfitw) *(yw - yfitw)/ (len(yw) - nfree_par) #print "CHISQ = ",numpy.sum(prechisq) n = self.NGLOBAL gain = self.fittedpar[self.PARAMETERS.index('Gain')] result={} result['xdata'] = xw result['energy'] = energyw result['ydata'] = numpy.ravel(self.ydata) if self.STRIP: result['yfit'] = yfitw + zzw else: result['yfit'] = yfitw if self.__CONTINUUM: if self.STRIP: result['continuum']= self.continuum(param,xw) + zzw else: result['continuum']= self.continuum(param,xw) * 1.0 elif self.STRIP: result['continuum']= zzw else: result['continuum']= 0.0 * xw result['pileup'] = pileup result['parameters']= self.PARAMETERS #result['parameters']= self.parameters result['fittedpar'] = self.fittedpar result['chisq'] = self.chisq result['sigmapar'] = self.sigmapar result['config'] = {} result['config'].update(self.config) result['config']['fit']['continuum_name']=CONTINUUM_LIST[self.__CONTINUUM] result['groups'] = [] PEAKSW = copy.deepcopy(self.getpeaksw(self.fittedpar)) """ #EVALUATION: if FASTER: a=numpy.concatenate(PEAKSW[:]) #t=time.time() #result = SpecfitFuns.agauss(a,energy) #if HYPERMET: if hypermet: result = SpecfitFuns.fastahypermet(a,energy,hypermet) else: result = SpecfitFuns.fastagauss(a,energy) """ i = 0 for group in self.PARAMETERS[n:]: fitarea = self.fittedpar[n+i] sigmaarea = self.sigmapar[n+i] [ele, group0] = group.split() result['groups'].append(group) result[group] = {} result[group]['peaks'] = self.PEAKS0NAMES[i] if self.__HYPERMET: result[group]['fitarea'] = self.fittedpar[n+i] * \ (1.0 + self.fittedpar[self.PARAMETERS.index('ST AreaR')]) else: result[group]['fitarea'] = self.fittedpar[n+i] result[group]['sigmaarea'] = sigmaarea result[group]['statistics'] = 0 j = 0 p = PEAKSW[i][:,:] if self.__HYPERMET: contrib = SpecfitFuns.fastahypermet(p, energyw,self.__HYPERMET) else: contrib = SpecfitFuns.apvoigt(p, energyw) result["y" + group] = contrib index = [] for peak in result[group]['peaks']: result[group][peak] = {} result[group][peak]['ratio'] = self.PEAKS0[i][j,0] result[group][peak]['energy'] = PEAKSW[i][j,1] result[group][peak]['fwhm'] = PEAKSW[i][j,2] result[group][peak]['statistics']= 0 #detailed parameters peakpos = result[group][peak]['energy'] sigma = result[group][peak]['fwhm']/2.3548 index0 = numpy.nonzero(((peakpos-3*sigma)<energyw) & (energyw<(peakpos+3*sigma)))[0] if len(index0): chisq = numpy.sum(numpy.take(prechisq,index0))*len(yw)/len(index0) else: chisq = 0.000 for ind in index0: if ind not in index: index.append(ind) result[group][peak]['chisq'] = chisq if fitarea == 0: result[group][peak]['fitarea'] = 0.0 result[group][peak]['sigmaarea'] = 0.0 elif self.__HYPERMET: result[group][peak]['fitarea'] = PEAKSW[i][j,0] * (1.0 + PEAKSW[i] [j,3]) / gain result[group][peak]['sigmaarea'] = result[group][peak]['fitarea']* \ abs(sigmaarea/fitarea) else: result[group][peak]['fitarea'] = PEAKSW[i][j,0] / gain result[group][peak]['sigmaarea'] = result[group][peak]['fitarea'] * abs(sigmaarea/fitarea) if len(index0): if result[group][peak]['fitarea'] > 0: result[group][peak]['statistics'] = numpy.take(self.ydata, index0).sum() pseudoArea = numpy.take(contrib, index0).sum() result[group]['statistics'] += result[group][peak]['ratio']*\ abs(result[group][peak]['statistics']-pseudoArea) j += 1 result[group]['escapepeaks'] = [] if self.ESCAPE: if OLDESCAPE: result[group]['escapepeaks'] = self.PEAKS0NAMES[i] j = 0 for peak0 in result[group]['peaks']: (r,c) = (self.PEAKS0[i]).shape peak = peak0+"esc" result[group][peak] = {} result[group][peak]['energy'] = PEAKSW[i][j+r,1] result[group][peak]['fwhm'] = PEAKSW[i][j+r,2] result[group][peak]['ratio'] = self.PEAKS0[i][j,3] chisq = 0.0 if result[group][peak]['ratio'] > 0: peakpos = result[group][peak]['energy'] sigma = result[group][peak]['fwhm']/2.3548 index0 = numpy.nonzero(((peakpos-4*sigma)<energyw) & (energyw<(peakpos+4*sigma)))[0] if len(index0): chisq = numpy.sum(numpy.take(prechisq,index0))*len(yw)/len(index0) else: #chisq = -1 chisq = 0.000 result[group][peak]['chisq'] = chisq if 1: """ if self.__HYPERMET: result[group][peak]['fitarea'] = PEAKSW[r][j,0] * (1.0 + PEAKSW[r] [j,3]) result[group][peak]['sigmaarea'] = PEAKSW[r][j,0] * (1.0 + PEAKSW[r] [j,3]) * \ abs(sigmaarea/fitarea) else: """ if fitarea != 0.0: result[group][peak]['fitarea'] = PEAKSW[i][j+r,0] /gain result[group][peak]['sigmaarea'] = result[group][peak]['fitarea'] * abs(sigmaarea/fitarea) else: result[group][peak]['fitarea'] = 0.0 result[group][peak]['sigmaarea'] = 0.0 j += 1 else: result[group]['escapepeaks'] = [] j = 0 ii = 0 (r,c) = (self.PEAKS0[i]).shape #result[group]['escapepeaks'] = self.PEAKS0NAMES[i] for _esc_group in self.PEAKS0ESCAPE[i]: peak0 = result[group]['peaks'][ii] #if group == 'Fe K':print "_esc_group = ",_esc_group for esc_line in _esc_group: _name_root_ = peak0+" "+esc_line[2].replace(' ','_') peak = _name_root_+"esc" if _name_root_ not in result[group]['escapepeaks']: result[group]['escapepeaks']+=[peak0+" "+esc_line[2].replace(' ','_')] result[group][peak] = {} (rw,cw) = (PEAKSW[i]).shape result[group][peak]['energy'] = PEAKSW[i][j+r,1] result[group][peak]['fwhm'] = PEAKSW[i][j+r,2] result[group][peak]['ratio'] = esc_line[1] result[group][peak]['statistics']= 0 #if group == 'Fe K':print "peak =",peak," energy = ",PEAKSW[i][j+r,1] chisq = 0.0 if result[group][peak]['ratio'] > 0: peakpos = result[group][peak]['energy'] sigma = result[group][peak]['fwhm']/2.3548 index0 = numpy.nonzero(((peakpos-3*sigma)<energyw) & (energyw<(peakpos+3*sigma)))[0] if len(index0): chisq = numpy.sum(numpy.take(prechisq,index0))*len(yw)/len(index0) else: #chisq = -1 chisq = 0.000 result[group][peak]['chisq'] = chisq if 1: """ if self.__HYPERMET: result[group][peak]['fitarea'] = PEAKSW[r][j,0] * (1.0 + PEAKSW[r] [j,3]) result[group][peak]['sigmaarea'] = PEAKSW[r][j,0] * (1.0 + PEAKSW[r] [j,3]) * \ abs(sigmaarea/fitarea) else: """ if fitarea != 0.0: result[group][peak]['fitarea'] = PEAKSW[i][j+r,0] /gain result[group][peak]['sigmaarea'] = result[group][peak]['fitarea'] * abs(sigmaarea/fitarea) else: result[group][peak]['fitarea'] = 0.0 result[group][peak]['sigmaarea'] = 0.0 if len(index0): if result[group][peak]['fitarea'] > 0: result[group][peak]['statistics'] = numpy.take(self.ydata, index0).sum() pseudoArea = numpy.take(contrib, index0).sum() result[group]['statistics'] += result[group][peak]['ratio']*\ abs(result[group][peak]['statistics']-pseudoArea) j = j + 1 ii=ii+1 #areaenergies.sort() index.sort() #print "areaenergies",areaenergies[0],areaenergies[-1] #index = numpy.nonzero((energyw>=areaenergies[0]) & (energyw <=areaenergies[-1])) energy = numpy.take(energyw ,index) yfit = numpy.take(yfitw ,index) if 0: #this takes into account summing ... buff = self.PEAKS0[i][:,0] * 1.0 self.PEAKS0[i][:,0] = 0.0 yconw = self.mcatheory(self.fittedpar,xw) self.PEAKS0[i][:,0] = buff * 1.0 ycon = numpy.take(yconw ,index) else: #(r,c) = (self.PEAKS0[i]).shape #p = PEAKSW[i][0:r,:] if 0: p = PEAKSW[i][:,:] if self.__HYPERMET: contrib = SpecfitFuns.fastahypermet(p,energy,self.__HYPERMET) else: contrib = SpecfitFuns.apvoigt(p,energy) else: contrib = numpy.take(contrib ,index) ycon = yfit - contrib y = numpy.take(yw ,index) #pmcaarea = numpy.sum(y-(yfit-contrib)) pmcaarea = numpy.sum(y-ycon) result[group]['mcaarea'] = pmcaarea result[group]['statistics'] = max(pmcaarea, result[group]['fitarea']) +\ result[group]['statistics'] #pmcasigmaarea = numpy.sqrt(numpy.sum(numpy.where(y<0, -y, y))) #result[group]['mcasigmaarea'] = pmcasigmaarea i+=1 result['niter'] = self.__niter * 1 result['lastdeltachi'] = self.__lastdeltachi * 1.0 if outfile is not None: try: os.remove(outfile) except Exception: pass if info is not None: d=ConfigDict.ConfigDict({'result':result, 'info':info}) else: d=ConfigDict.ConfigDict({'result':result}) d.write(outfile) return result def getpeaksw(self,param,hypermet=None,continuum=None): if continuum is None: continuum = self.__CONTINUUM if hypermet is None: hypermet = self.__HYPERMET # zero = param[0] gain = param[1] #energy=zero + gain * x #print energy noise= param[2] * param[2] fano = param[3] * 2.3548*2.3548*0.00385 #t=time.time() PEAKS0 = self.PEAKS0 PEAKS0ESCAPE = self.PEAKS0ESCAPE PEAKSW = self.PEAKSW PARAMETERS = self.PARAMETERS for i in range(len(param[self.NGLOBAL:])): if self.ESCAPE: #area = param[NGLOBAL+i] (r,c) = (PEAKS0[i]).shape PEAKSW[i][0:r,0] = PEAKS0[i][:,0] * param[self.NGLOBAL+i] * gain PEAKSW[i][0:r,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][0:r,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) #escape if OLDESCAPE: PEAKSW[i][r:,0] = PEAKSW[i][0:r,0] * PEAKS0[i][:,3] PEAKSW[i][r:,1] = PEAKS0[i][:,1] - self.config['detector']['detene'] PEAKSW[i][r:,2] = numpy.sqrt(noise + (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) else: ii=0 j=0 for esc_group in PEAKS0ESCAPE[i]: for esc_line in esc_group: esc_ene = esc_line[0] * 1.0 esc_rate = esc_line[1] PEAKSW[i][j+r,0] = PEAKSW[i][ii,0] * esc_rate PEAKSW[i][j+r,1] = esc_ene j = j + 1 ii = ii + 1 PEAKSW[i][r:, 2] = numpy.sqrt(noise + \ (PEAKSW[i][r:,1]>0) * PEAKSW[i][r:,1] * fano) #if HYPERMET: if hypermet: PEAKSW[i] [0:r,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [0:r,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [0:r,7] = param[PARAMETERS.index('STEP HeightR')] #neglect tails in escape peaks PEAKSW[i] [r:,3] = 0.0 PEAKSW[i] [r:,5] = 0.0 PEAKSW[i] [r:,7] = 0.0 else: # area = param[self.NGLOBAL + i] PEAKSW[i][:,0] = PEAKS0[i][:,0] * param[self.NGLOBAL+i] * gain PEAKSW[i][:,1] = PEAKS0[i][:,1] * 1.0 PEAKSW[i][:,2] = numpy.sqrt(noise + PEAKS0[i][:,1] * fano) if hypermet: PEAKSW[i] [:,3] = param[PARAMETERS.index('ST AreaR')] PEAKSW[i] [:,4] = param[PARAMETERS.index('ST SlopeR')] PEAKSW[i] [:,5] = param[PARAMETERS.index('LT AreaR')] PEAKSW[i] [:,6] = param[PARAMETERS.index('LT SlopeR')] PEAKSW[i] [:,7] = param[PARAMETERS.index('STEP HeightR')] return PEAKSW # UTILITIES # def roifit(self,x, y, background = None, width=None): if width is None: width = 200. if width > 10 : width = width / 1000. xw = numpy.ravel(numpy.array(x)) if background is not None: yw = numpy.ravel(numpy.array(y) - numpy.array(background)) else: yw = numpy.ravel(y) zero = self.config['detector']['zero'] gain = self.config['detector']['gain'] energy = zero + gain * xw ddict={} for group in self.PARAMETERS[self.NGLOBAL:]: ele,shell = group.split() if ele not in Elements.Element.keys(): continue lines = self.__getlines(ele,shell,width) ddict[group] = {} for line in lines: emin = Elements.Element[ele][line]['energy'] - 0.5 * width emax = Elements.Element[ele][line]['energy'] + 0.5 * width i1 = numpy.nonzero((energy >= emin) & (energy <= emax))[0] ddict[group][line + " ROI"] = numpy.sum(numpy.take(yw,i1)) return ddict def __getlines(self, ele, shell, width, threshold = 0.010): rays = shell + " xrays" ratelines = [] linestotreat = [] if rays not in Elements.Element[ele]['rays']:return {} for transition in Elements.Element[ele][rays]: if Elements.Element[ele][transition]['rate'] > threshold: ratelines.append ([Elements.Element[ele][transition]['rate'], transition]) linestotreat.append(transition) #sort according rate ratelines.sort() ratelines.reverse() lines = [] for rate,transition in ratelines: #print " rate, transition, energy = ",rate, transition, Elements.Element[ele][transition]['energy'] if not len(linestotreat):break if transition in linestotreat: linestotreatcopy = linestotreat * 1 for line in linestotreatcopy: if abs(Elements.Element[ele][line]['energy'] - \ Elements.Element[ele][transition]['energy']) < width: del linestotreat[linestotreat.index(line)] lines.append(transition) return lines def smooth(self,ydata,ntimes=1): f=[0.25,0.5,0.25] result=numpy.array(ydata) if len(result > 1): for i in range(ntimes): result[1:-1]=numpy.convolve(result,f,mode=0) result[0]=0.5*(result[0]+result[1]) result[-1]=0.5*(result[-1]+result[-2]) return result def __getmcaareas(self,param=None): #one should calculate Ka and Kb separately to search for errors!!!! #one should calculate the reduced chis square in that area!!! if param is None: param = self.fittedpar xw = numpy.ravel(self.xdata) yw = numpy.ravel(self.ydata) sy = numpy.ravel(self.sigmay) zero = param[0] gain = param[1] energy=zero + gain * xw #print energy noise= param[2] * param[2] fano = param[3] * 2.3548*2.3548*0.00385 areas=[] chisq=[] yfitw = self.mcatheory(param,xw) + numpy.ravel(self.zz) #reduced chi square weightw = 1.0 / (sy + numpy.equal(sy,0)) weightw = weightw * weightw nfree_par = numpy.sum(self.codes[0,:] < 3) #chisqtotal = (numpy.sum((yw - yfitted) * (yw - yfitted) * weight))/(len(yw) - nfree_par) for i in range(len(self.PARAMETERS[self.NGLOBAL:])): j = 0 for peakpos in self.PEAKS0[i][:,1]: sigma = numpy.sqrt(noise + peakpos * fano)/2.3548 index = numpy.nonzero(((peakpos-3*sigma)<energy) & (energy<(peakpos+3*sigma)))[0] x = numpy.take(xw ,index) y = numpy.take(yw ,index) yfit = numpy.take(yfitw ,index) weight= numpy.take(weightw,index) #store =param[self.NGLOBAL+i] * 1.0 store = self.PEAKS0[i][j,0] * 1.0 self.PEAKS0[i][j,0] = 0.0 ycalc = self.mcatheory(param,x) self.PEAKS0[i][j,0] = store * 1.0 areas.append(numpy.sum(y-ycalc)) chisq.append(numpy.sum((y - yfit) * (y - yfit) * weight/(len(y) - nfree_par))) j += 1 return areas,chisq def detectMissingPeaks(self,ordata,fitdata,meanfwhm,separation=0.4): orpeaks = SpecfitFuns.seek(ordata,0,len(ordata), meanfwhm,3) fitpeaks = SpecfitFuns.seek(fitdata,0,len(fitdata),meanfwhm,3) missingpeaks = [] for orpeak in orpeaks: considered = 0 for fitpeak in fitpeaks: if (abs(fitpeak-orpeak) <= separation * meanfwhm): considered = 1 if not considered: missingpeaks.append(orpeak) return missingpeaks def exppol(self,p0,x): p=numpy.array(p0) xw=numpy.array(x) y = 0.0 * xw for i in range(1,len(p)): y+= p[i] * pow(xw,i) #return p[0]*self.myexp(y) return p[0]*numpy.exp(y) def exppol_deriv(self,p0,index,x): p=numpy.array(p0) xw=numpy.array(x) if index == 0: p[0]=1.0 return self.exppol(p,xw) else: return self.exppol(p,xw)*pow(xw,index) def myexp(self,x): # put a (bad) filter to avoid over/underflows # with no python looping return numpy.exp(x*numpy.less(abs(x),250)) def linpol(self,p0,x): p=numpy.array(p0) xw=numpy.array(x) y = p[0]* numpy.ones(len(x)) for i in range(1,len(p)): y+= p[i] * pow(xw,i) return y def linpol_deriv(self,p0,index,x): xw=numpy.array(x) if index==0: return numpy.ones(len(x)).astype(numpy.float64) else: return pow(xw,index) def estimatelinpol(self,x,y,z,xscaling=1.0,yscaling=1.0): #initial fit on zz n=len(z) xmean = numpy.sum(x)/len(x) xmean = 0 xw=numpy.resize(x-xmean,(n,1)) zw=numpy.resize(z,(n,1)) sw=numpy.ones((n,1)) datatofit = numpy.concatenate((xw, zw, sw),1) p=[] for i in range(self.config['fit']['linpolorder']+1): p.append(0.0) fitresult = Gefit.LeastSquaresFit(self.linpol, p, datatofit, #constrains=self.codes, weightflag=self.config['fit']['fitweight'], maxiter=10, model_deriv=self.linpol_deriv, #deltachi=self.config['fit']['deltachi'], fulloutput=1) fittedpar=fitresult[0] return fittedpar,numpy.zeros((3,len(fittedpar)),numpy.float64) def estimateexppol(self,x,y,z,xscaling=1.0,yscaling=1.0): #initial fit on zz i1=numpy.nonzero(numpy.ravel(z)>0.0)[0] n=len(i1) zero = self.config['detector']['zero'] gain = self.config['detector']['gain'] xmean = numpy.sum(x)/len(x) xw=zero+gain*numpy.resize(numpy.take(x,i1)-xmean,(n,1)) zw=numpy.resize(numpy.log(numpy.take(z,i1)),(n,1)) sw=numpy.ones((n,1)) datatofit = numpy.concatenate((xw, zw, sw),1) p=[] for i in range(self.config['fit']['exppolorder']+1): p.append(0.0) fitresult = Gefit.LeastSquaresFit(self.linpol, p, datatofit, #constrains=self.codes, #weightflag=1, maxiter=40, model_deriv=self.linpol_deriv, #deltachi=self.config['fit']['deltachi'], fulloutput=1) fittedpar=fitresult[0] fittedpar[0] = numpy.exp(fittedpar[0]) return fittedpar,numpy.zeros((3,len(fittedpar)),numpy.float64) class ClassMcaTheory(McaTheory): pass """ def agauss(param0,t0): param=resize(ravel(array(param0)),(len(param0),3)) t=array(t0) result=t*0.0 for param in param0: sigma=param[2]/2.3548200450309493 dummy=(t-param[1])/sigma result += 0.3989422804014327*(param[0]/sigma) * myexp(-0.5 * dummy * dummy) return result def myexp(x): # put a (bad) filter to avoid over/underflows # with no python looping return exp(x*less(abs(x),250))-1.0*greater_equal(abs(x),250) def expini(nmax): global EXP EXP = exp(-arange(0,nmax,0.01)) def myexp2(x): i = array(map(int,x * 100)) return take(EXP,i) * (1.0 - (x - 0.01 * i)) """ def test(inputfile=None,scankey=None,pkm=None, continuum=0,stripflag=1,maxiter=10,sumflag=1, hypermetflag=1,plotflag=0,escapeflag=1,attenuatorsflag=1,outfile=None): import sys from PyMca5.PyMca import specfilewrapper as specfile mcafit = McaTheory(initdict=None,maxiter=maxiter,sumflag=sumflag, continuum=continuum,escapeflag=escapeflag,stripflag=stripflag,hypermetflag=hypermetflag, attenuatorsflag=attenuatorsflag) initdict=ConfigDict.ConfigDict() initdict.read(pkm) t0=time.time() config = mcafit.configure(initdict) print("configuration time ",time.time()-t0) xmin = config['fit']['xmin'] xmax = config['fit']['xmax'] if inputfile is None: print("USAGE") print("python -m PyMca5.PyMcaPhysics.xrf.ClassMcaTheory.py -s1.1 --file=filename --cfg=cfgfile [--plotflag=1]") #python ClassMcaTheory.py -s2.1 --file=ch09__mca_0005.mca --pkm=TEST.cfg --continuum=0 --stripflag=1 --sumflag=1 --maxiter=4 sys.exit(0) print("assuming is a specfile ...") sf=specfile.Specfile(inputfile) if scankey is None: scan=sf[0] else: scan=sf.select(scankey) mcadata=scan.mca(1) y0= numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 t0=time.time() mcafit.setData(x,y0,xmin=xmin,xmax=xmax) print("set data time",time.time()-t0) mcafit.estimate() print("estimation time ",time.time()-t0) #fitresult, mcafitresult=mcafit.startfit(digest=1) fitresult = mcafit.startfit(digest=0) mcafitresult = mcafit.digestresult(outfile) print("fit took ",time.time()-t0) fittedpar=fitresult[0] chisq =fitresult[1] sigmapar =fitresult[2] i = 0 print("chisq = ",chisq) for param in mcafit.PARAMETERS: if i < mcafit.NGLOBAL: print(param, ' = ',fittedpar[i],' +/- ',sigmapar[i]) else: print(param, ' = ',fittedpar[i],' +/- ',sigmapar[i]) #,'mcaarea = ',areas[i-mcafit.NGLOBAL] i += 1 i = 0 #mcafit.digestresult() for group in mcafitresult['groups']: print(group,mcafitresult[group]['fitarea'],' +/- ', \ mcafitresult[group]['sigmaarea'],mcafitresult[group]['mcaarea']) #print("##################### ROI fitting ######################") #print(mcafit.roifit(mcafit.xdata,mcafit.ydata)) if plotflag: from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.pymca import ScanWindow app = qt.QApplication(sys.argv) graph = ScanWindow.ScanWindow() xw = numpy.ravel(mcafit.xdata) yfit0 = mcafit.mcatheory(fittedpar,xw)+numpy.ravel(mcafit.zz) xw = xw*fittedpar[1]+fittedpar[0] graph.addCurve(mcafitresult['energy'],mcafitresult['ydata'], "Input Data") graph.addCurve(mcafitresult['energy'],mcafitresult['yfit'],"Fitted Data") graph.addCurve(mcafitresult['energy'], mcafitresult['continuum']+mcafitresult['pileup'], "Summing") graph.addCurve(mcafitresult['energy'],mcafitresult['continuum'],"Continuum") graph.show() app.exec() PROFILING = 0 if __name__ == "__main__": import time t0=time.time() if PROFILING: import profile import pstats profile.run('test()',"test") p=pstats.Stats("test") p.strip_dirs().sort_stats(-1).print_stats() else: import getopt if 1: #try: options = 'f:s:o' longoptions = ['file=','scan=','pkm=','cfg=', 'output=','continuum=','stripflag=', 'maxiter=','sumflag=','escapeflag=','hypermetflag=','plotflag=', 'attenuatorsflag=','outfile='] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) inputfile = None outfile = None scan = None pkm = None maxiter = 100 sumflag = 0 hypermetflag = 1 plotflag = 0 stripflag = 1 escapeflag= 1 continuum = 0 attenuatorsflag = 1 for opt,arg in opts: if opt in ('-f','--file'): inputfile = arg if opt in ('-s','--scan'): scan = arg if opt in ('--pkm','--cfg'): pkm = arg if opt in ('--continuum'): continuum = int(float(arg)) if opt in ('--strip'): strip = int(float(arg)) if opt in ('--maxiter'): maxiter = int(float(arg)) if opt in ('--sumflag'): sumflag = int(float(arg)) if opt in ('--escapeflag'): escapeflag = int(float(arg)) if opt in ('--stripflag'): stripflag = int(float(arg)) if opt in ('--plotflag'): plotflag = int(float(arg)) if opt in ('--hypermetflag'): hypermetflag = int(float(arg)) if opt in ('--attenuatorsflag'): attenuatorsflag = int(float(arg)) if opt in ('--outfile'): outfile = arg test(inputfile=inputfile,scankey=scan,pkm=pkm, maxiter=maxiter,continuum=continuum,stripflag=stripflag,sumflag=sumflag, hypermetflag=hypermetflag,escapeflag=escapeflag,plotflag=plotflag, attenuatorsflag=attenuatorsflag,outfile=outfile) print("TIME = ",time.time()-t0) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/CoherentScattering.py��������������������������������������0000644�0000000�0000000�00000007650�14741736366�022723� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5.PyMcaIO import ConfigDict from PyMca5 import PyMcaDataDir dirmod = PyMcaDataDir.PYMCA_DATA_DIR ffile = os.path.join(dirmod, "attdata") ffile = os.path.join(ffile, "atomsf.dict") if not os.path.exists(ffile): #freeze does bad things with the path ... dirmod = os.path.dirname(dirmod) ffile = os.path.join(dirmod, "attdata") ffile = os.path.join(ffile, "atomsf.dict") if not os.path.exists(ffile): if dirmod.lower().endswith(".zip"): dirmod = os.path.dirname(dirmod) ffile = os.path.join(dirmod, "attdata") ffile = os.path.join(ffile, "atomsf.dict") if not os.path.exists(ffile): print("Cannot find file ", ffile) raise IOError("Cannot find file %s" % ffile) COEFFICIENTS = ConfigDict.ConfigDict() COEFFICIENTS.read(ffile) KEVTOANG = 12.39852000 R0 = 2.82E-13 #electron radius in cm def getElementFormFactor(ele, theta, energy): """ Usage: getFormFactor(ele,theta, energy): ele - Element theta - Scattering angle or array of scattering angles in degrees energy- Photon Energy in keV This routine calculates the atomic form factor in electron units using a four gaussians approximation """ wavelength = KEVTOANG / energy x = numpy.sin(theta*(numpy.pi/360.0)) / wavelength x = x * x c0= COEFFICIENTS[ele]['c'][0] c = COEFFICIENTS[ele]['c'][1:] b = COEFFICIENTS[ele]['b'] return c0 + (c[0] * numpy.exp(-b[0]*x)) + \ (c[1] * numpy.exp(-b[1]*x)) + \ (c[2] * numpy.exp(-b[2]*x)) + \ (c[3] * numpy.exp(-b[3]*x)) def getElementCoherentDifferentialCrossSection(ele, theta, energy, p1=None): if p1 is None: p1=0.0 if (p1 > 1.0) or (p1 < -1): raise ValueError(\ "Invalid degree of linear polarization respect to the scattering plane") thetasin2 = pow(numpy.sin(theta*numpy.pi/180.0),2) return (1.0+ 0.5 *(p1-1.0) * thetasin2) * \ pow(R0*getElementFormFactor(ele, theta, energy),2) if __name__ == "__main__": import sys if len(sys.argv) > 3: ele = sys.argv[1] theta = float(sys.argv[2]) energy= float(sys.argv[3]) print(getElementFormFactor(ele, theta, energy)) else: print("Usage:") print("python CoherentScattering.py Element Theta(deg) Energy(kev)") ����������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/ConcentrationsTool.py��������������������������������������0000644�0000000�0000000�00000117013�14741736366�022752� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import copy import numpy from . import Elements from .XRFMC import XRFMCHelper FISX = False try: from . import FisxHelper FISX = True except ImportError: print("WARNING: fisx features not available") class ConcentrationsConversion(object): def getConcentrationsAsHtml(self, concentrations=None): text = "" if concentrations is None: return text result = concentrations #the header if 'mmolar' in result: mmolarflaglist = [False, True] else: mmolarflaglist = [False] for mmolarflag in mmolarflaglist: text += "\n" text += "<H2><a NAME=""%s""></a><FONT color=#009999>" %\ 'Concentrations' if mmolarflag: text += "%s:" % 'mM Concentrations' else: text += "%s:" % 'Concentrations' text += "</FONT></H2>" text += "<br>" labels = ['Element', 'Group', 'Fit Area', 'Sigma Area'] if mmolarflag: labels += ['mM concentration'] else: labels += ['Mass fraction'] #the table if 'layerlist' in result: # somehow the new McaAdvancedFitBatch sends an empty string # instead of an empty list like the McaAdvancedFitWindow if result['layerlist'] == "": result['layerlist'] = [] if type(result['layerlist']) != type([]): result['layerlist'] = [result['layerlist']] for label in result['layerlist']: labels += [label] lemmon = ("#%x%x%x" % (255, 250, 205)).upper() white = '#FFFFFF' hcolor = ("#%x%x%x" % (230, 240, 249)).upper() text += "<CENTER>" text += "<nobr>" text += '<table width="80%" border="0" cellspacing="1" cellpadding="1" >' text += "<tr>" for l in range(len(labels)): if l < 2: text += '<td align="left" bgcolor=%s><b>%s</b></td>' %\ (hcolor, labels[l]) elif l == 2: text += '<td align="center" bgcolor=%s><b>%s</b></td>' %\ (hcolor, labels[l]) else: text += '<td align="right" bgcolor=%s><b>%s</b></td>' %\ (hcolor, labels[l]) text += "</tr>" line = 0 for group in result['groups']: text += ("<tr>") element, group0 = group.split() fitarea = "%.6e" % result['fitarea'][group] sigmaarea = "%.2e" % result['sigmaarea'][group] area = "%.6e" % result['area'][group] if mmolarflag: fraction = "%.4g" % result['mmolar'][group] else: fraction = "%.4g" % result['mass fraction'][group] if 'Expected Area' in labels: fields = [element, group0, fitarea, sigmaarea, area, fraction] else: fields = [element, group0, fitarea, sigmaarea, fraction] if 'layerlist' in result: for layer in result['layerlist']: if result[layer]['mass fraction'][group] < 0.0: fraction = "Unknown" else: if mmolarflag: fraction = "%.4g" % result[layer]['mmolar'][group] else: fraction = "%.4g" % result[layer]['mass fraction'][group] fields += [fraction] if line % 2: color = lemmon else: color = white i = 0 for field in fields: if (i<2): text += '<td align="left" bgcolor=%s>%s</td>' % (color, field) else: text += '<td align="right" bgcolor=%s>%s</td>' % (color, field) i += 1 text += '</tr>' line += 1 text += ("</table>") text += ("</nobr>") text += "</CENTER>" return text def getConcentrationsAsAscii(self, concentrations=None): text = "" if concentrations is None: return text result = concentrations #the table if 'mmolar' in result: mmolarflaglist = [False, True] else: mmolarflaglist = [False] for mmolarflag in mmolarflaglist: labels = ['Element', 'Group', 'Fit_Area', 'Sigma_Area'] if mmolarflag: labels += ['mM_Concentration'] else: labels += ['Mass_fraction'] if 'layerlist' in result: if result['layerlist'] == "": result['layerlist'] = [] if type(result['layerlist']) != type([]): result['layerlist'] = [result['layerlist']] for label in result['layerlist']: labels += [label.replace(' ', '')] for l in labels: text += "%s " % l text += ("\n") for group in result['groups']: element, group0 = group.split() fitarea = "%.6e" % result['fitarea'][group] sigmaarea = "%.2e" % result['sigmaarea'][group] area = "%.6e" % result['area'][group] if mmolarflag: fraction = "%.4g" % result['mmolar'][group] else: fraction = "%.4g" % result['mass fraction'][group] if 'Expected Area' in labels: fields = [element, group0, fitarea, sigmaarea, area, fraction] else: fields = [element, group0, fitarea, sigmaarea, fraction] if 'layerlist' in result: for layer in result['layerlist']: if result[layer]['mass fraction'][group] < 0.0: fraction = "Unknown" else: if mmolarflag: fraction = "%.4g" %\ result[layer]['mmolar'][group] else: fraction = "%.4g" %\ result[layer]['mass fraction'][group] fields += [fraction] for field in fields: text += '%s ' % (field) text += '\n' return text class ConcentrationsTool(object): def __init__(self, config=None, fitresult=None): self.config = {} self.config['usematrix'] = 0 self.config['useattenuators'] = 1 self.config['usemultilayersecondary'] = 0 self.config['usexrfmc'] = 0 self.config['flux'] = 1.0E10 self.config['time'] = 1.0 self.config['area'] = 30.0 self.config['distance'] = 10.0 self.config['reference'] = "Auto" self.config['mmolarflag'] = 0 if config is not None: self.configure(config) self.fitresult = fitresult def configure(self, ddict=None): if ddict is None: ddict = {} for key in ddict: if key in self.config.keys(): self.config[key] = ddict[key] return copy.deepcopy(self.config) def processFitResult(self, config=None, fitresult=None, elementsfrommatrix=False, fluorates=None, addinfo=False): # I should check if fit was successful ... if fitresult is None: fitresult = self.fitresult else: self.fitresult = fitresult if config is None: config = self.config else: self.config = config if 'usemultilayersecondary' not in self.config: self.config['usemultilayersecondary'] = 0 if 'usexrfmc' not in self.config: self.config['usexrfmc'] = 0 secondary = self.config['usemultilayersecondary'] xrfmcSecondary = self.config['usexrfmc'] if secondary and xrfmcSecondary: txt = "Only one of built-in fisx secondary and Monte Carlo correction can be used" raise ValueError(txt) if secondary and (not FISX): raise ImportError("Module fisx does not seem to be available") # get attenuators and matrix from fit attenuators = [] userattenuators = [] beamfilters = [] funnyfilters = [] matrix = None detectoratt = None multilayer = None for attenuator in fitresult['result']['config']['attenuators'].keys(): if not fitresult['result']['config']['attenuators'][attenuator][0]: continue if attenuator.upper() == "MATRIX": matrix = fitresult['result']['config']['attenuators'][attenuator][1:4] alphain = fitresult['result']['config']['attenuators'][attenuator][4] alphaout = fitresult['result']['config']['attenuators'][attenuator][5] elif attenuator.upper()[:-1] == "BEAMFILTER": beamfilters.append(fitresult['result']['config']['attenuators']\ [attenuator][1:]) elif attenuator.upper() == "DETECTOR": detectoratt = fitresult['result']['config']['attenuators'][attenuator][1:] else: if len(fitresult['result']['config']['attenuators'][attenuator]) == 4: # using an old fit configuration file without funny filters fitresult['result']['config']['attenuators'][attenuator].append(1.0) if abs(fitresult['result']['config']['attenuators'][attenuator][4]-1.0) > 1.0e-10: #funny attenuator funnyfilters.append(fitresult['result']['config']['attenuators']\ [attenuator][1:]) else: attenuators.append(fitresult['result']['config']['attenuators']\ [attenuator][1:]) for userattenuator in fitresult['result']['config']['userattenuators']: if fitresult['result']['config']['userattenuators'][userattenuator]: userattenuators.append(fitresult['result']['config']\ ['userattenuators'][userattenuator]) if matrix is None: raise ValueError("Invalid or undefined sample matrix") if matrix[0].upper() == "MULTILAYER": layerlist = list(fitresult['result']['config']['multilayer'].keys()) layerlist.sort() for layer in layerlist: if fitresult['result']['config']['multilayer'][layer][0]: if multilayer is None: multilayer = [] multilayer.append(fitresult['result']['config']['multilayer'][layer][1:]) if not Elements.isValidMaterial(multilayer[-1][0]): raise ValueError("Material %s is not defined" % multilayer[-1][0]) else: layerlist = ["Layer0"] multilayer = [matrix] if not Elements.isValidMaterial(matrix[0]): raise ValueError("Material %s is not defined" % matrix[0]) if xrfmcSecondary and (len(layerlist) > 1): txt = "Multilayer Monte Carlo correction not implemented yet" raise ValueError(txt) energyList = fitresult['result']['config']['fit']['energy'] if energyList is None: raise ValueError("Invalid energy") if type(energyList) != type([]): energyList = [energyList] flagList = [1] weightList = [1.0] else: flagList = fitresult['result']['config']['fit']['energyflag'] weightList = fitresult['result']['config']['fit']['energyweight'] finalEnergy = [] finalWeight = [] finalFlag = [] for idx in range(len(energyList)): if flagList[idx]: energy = energyList[idx] if energy is None: raise ValueError(\ "Energy %d isn't a valid energy" % idx) if energy <= 0.001: raise ValueError(\ "Energy %d with value %f isn't a valid energy" %\ (idx, energy)) if weightList[idx] is None: raise ValueError(\ "Weight %d isn't a valid weight" % idx) if weightList[idx] < 0.0: raise ValueError(\ "Weight %d with value %f isn't a valid weight" %\ (idx, weightList[idx])) finalEnergy.append(energy) finalWeight.append(weightList[idx]) finalFlag.append(1) totalWeight = sum(weightList) if totalWeight == 0.0: raise ValueError("Sum of energy weights is 0.0") weightList = [x / totalWeight for x in finalWeight] energyList = finalEnergy flagList = finalFlag # get elements list from fit, not from matrix groupsList = fitresult['result']['groups'] * 1 if type(groupsList) != type([]): groupsList = [groupsList] todelete = [] for i in range(len(groupsList)): ele = groupsList[i].split()[0] if len(ele) > 2: todelete.append(i) if len(todelete): todelete.reverse() for i in todelete: del groupsList[i] elements = [] newelements = [] for group in groupsList: splitted = group.split() ele = splitted[0] newelements.append([Elements.getz(splitted[0]), splitted[0], splitted[1]]) if len(elements): if elements[-1] != ele: elements.append(ele) else: elements.append(ele) newelements.sort() elements.sort() if not config['useattenuators']: attenuators = None funnyfilters = None userattenuators = None #import time #t0=time.time() if elementsfrommatrix: newelementsList = [] for ilayer in range(len(multilayer)): pseudomatrix = multilayer[ilayer] eleDict = Elements.getMaterialMassFractions([pseudomatrix[0]], [1.0]) if eleDict == {}: raise ValueError(\ "Invalid layer material %s" % pseudomatrix[0]) keys = eleDict.keys() for ele in keys: for group in newelements: if ele == group[1]: if not group in newelementsList: newelementsList.append(group) newelementsList.sort() fluo0 = Elements.getMultilayerFluorescence(multilayer, energyList, layerList=None, weightList=weightList, flagList=weightList, fulloutput=1, beamfilters=beamfilters * 1, attenuators=attenuators * 1, userattenuators=userattenuators * 1, elementsList=newelementsList * 1, alphain=alphain, alphaout=alphaout, cascade=True, detector=detectoratt, funnyfilters=funnyfilters * 1, forcepresent=0, secondary=False) fluototal = fluo0[0] fluolist = fluo0[1:] else: if matrix[0].upper() != "MULTILAYER": multilayer = [matrix * 1] if fluorates is None: fluo0 = Elements.getMultilayerFluorescence(multilayer, energyList, layerList=None, weightList=weightList, flagList=flagList, fulloutput=1, beamfilters=beamfilters * 1, attenuators=attenuators * 1, userattenuators=userattenuators * 1, elementsList=newelements * 1, alphain=alphain, alphaout=alphaout, cascade=True, detector=detectoratt, funnyfilters=funnyfilters * 1, forcepresent=1, secondary=False) else: fluo0 = fluorates fluototal = fluo0[0] fluolist = fluo0[1:] #I'll need total fluo element by element at some point #print "getMatrixFluorescence elapsed = ",time.time()-t0 if config['usematrix']: present = [] referenceLayerDict = {} materialComposition = [] for ilayer in range(len(multilayer)): pseudomatrix = multilayer[ilayer] * 1 #get elemental composition from matrix materialComposition.append(Elements.getMaterialMassFractions([pseudomatrix[0]], [1.0])) keys = materialComposition[-1].keys() materialElements = [[Elements.getz(x), x] for x in keys] materialElements.sort() for z, key in materialElements: for ele in elements: if key == ele: present.append(key) if not (ele in referenceLayerDict): referenceLayerDict[ele] = [] referenceLayerDict[ele].append(ilayer) if len(present) == 0: text = "Matrix must contain at least one fitted element\n" text += "in order to estimate flux and efficiency from it." raise ValueError(text) referenceElement = config['reference'].replace(' ', "") if len(referenceElement) and (referenceElement.upper() != 'AUTO'): if Elements.isValidFormula(referenceElement): if len(referenceElement) == 2: referenceElement = referenceElement.upper()[0] +\ referenceElement.lower()[1] elif len(referenceElement) == 1: referenceElement = referenceElement.upper()[0] if not (referenceElement in elements): text = "Element %s not among fitted elements" % referenceElement raise ValueError(text) elif not (referenceElement in present): text = "Element %s not among matrix elements" % referenceElement raise ValueError(text) referenceLayers = referenceLayerDict[referenceElement] else: text = "Element %s not a valid element" % referenceElement raise ValueError(text) elif len(present) == 1: referenceElement = present[0] referenceLayers = referenceLayerDict[referenceElement] else: # how to choose? Best fitted, largest fit area or # greater concentration? or better to give a weight to # the different shells, energies , ...? referenceElement = present[0] fom = self._figureOfMerit(present[0],fluototal,fitresult) for key in present: #if materialComposition[key] > materialComposition[referenceElement]: # referenceElement = key newfom = self._figureOfMerit(key,fluototal,fitresult) if newfom > fom: fom = newfom referenceElement = key referenceLayers = referenceLayerDict[referenceElement] referenceTransitions = None for group in groupsList: item = group.split() element = item[0] if element == referenceElement: transitions = item[1] + " xrays" if referenceTransitions is None: referenceTransitions = transitions referenceGroup = group elif (referenceTransitions[0] == transitions[0]) and\ (referenceTransitions[0] == 'L'): # this prevents selecting L1 and selects L3 although # given the appropriate area, L2 can be a safer choice. referenceGroup = group referenceTransitions = transitions elif referenceTransitions is not None: break theoretical = 0.0 for ilayer in referenceLayers: if elementsfrommatrix: theoretical += fluolist[ilayer][referenceElement]['rates'][referenceTransitions] * \ fluolist[ilayer][referenceElement]['mass fraction'] else: theoretical += materialComposition[ilayer][referenceElement] * \ fluolist[ilayer][referenceElement]['rates'][referenceTransitions] if theoretical <= 0.0: raise ValueError(\ "Theoretical rate is almost 0.0 Impossible to determine flux") else: if (config['distance'] > 0.0) and (config['area'] > 0.0): #solidangle = config['area']/(4.0 * numpy.pi * pow(config['distance'],2)) radius2 = config['area']/numpy.pi solidangle = 0.5 * (1.0 - (config['distance']/numpy.sqrt(pow(config['distance'],2)+ radius2))) else: solidangle = 1.0 flux = fitresult['result'][referenceGroup]['fitarea'] / (theoretical * solidangle) else: referenceElement = None referenceTransitions = None #solidangle = config['area']/(4.0 * numpy.pi * pow(config['distance'],2)) radius2 = config['area']/numpy.pi solidangle = 0.5 * (1.0 - (config['distance']/numpy.sqrt(pow(config['distance'],2)+ radius2))) flux = config['flux'] * config['time'] #print "OBTAINED FLUX * SOLID ANGLE= ",flux * solidangle #print "flux * time = ",flux #print "actual solid angle = ",0.5 * (1.0 - (config['distance']/sqrt(pow(config['distance'],2)+ config['area']/pi))) #print "solid angle factor= ",solidangle #ele = 'Pb' #rays = "L xrays" #print "theoretical = ",fluototal[ele]['rates'][rays] #print "expected = ",flux * solidangle * fluototal[ele]['rates'][rays] #for ilayer in range(len(multilayer)): # print "ilayer = ",ilayer, "theoretical = ",fluolist[ilayer][ele]['rates'][rays] # print "ilayer = ",ilayer, "expected = ",flux * solidangle * fluolist[ilayer][ele]['rates'][rays] ddict = {} ddict['groups'] = groupsList ddict['elements'] = elements ddict['mass fraction'] = {} if 'mmolarflag' in config: if config['mmolarflag']: ddict['mmolar'] = {} else: config['mmolarflag'] = 0 ddict['area'] = {} ddict['fitarea'] = {} ddict['sigmaarea'] = {} fluo = fluototal for group in groupsList: item = group.split() element = item[0] transitions = item[1] + " xrays" if element in fluo.keys(): if transitions in fluo[element]: #this SHOULD be with concentration one theoretical = fluo[element]['rates'][transitions] * 1.0 expected = theoretical * flux * solidangle concentration = fitresult['result'][group]['fitarea']/expected else: theoretical = 0.0 concentration = 0.0 else: theoretical = 0.0 concentration = 0.0 #ddict['area'][group] = theoretical * flux * solidangle * concentration ddict['fitarea'][group] = fitresult['result'][group]['fitarea'] ddict['sigmaarea'][group] = fitresult['result'][group]['sigmaarea'] if elementsfrommatrix: if element in fluo.keys(): ddict['mass fraction'][group] = 1.0 * fluo[element]['mass fraction'] else: ddict['mass fraction'][group] = 0.0 ddict['area'][group] = theoretical * flux * solidangle *\ ddict['mass fraction'][group] else: ddict['mass fraction'][group] = concentration ddict['area'][group] = theoretical * flux * solidangle if config['mmolarflag']: #mM = (mass_fraction * density)/atomic_weight ddict['mmolar'] [group]= 1000000. *\ (multilayer[0][1] * ddict['mass fraction'][group])/Elements.Element[element]['mass'] #I have the globals/average values now I calculate layer per layer #if necessary ddict['layerlist'] = [] if matrix[0].upper() == "MULTILAYER": ilayer = 0 for layer in layerlist: if fitresult['result']['config']['multilayer'][layer][0]: ddict['layerlist'].append(layer) ddict[layer] = {} dict2 = ddict[layer] dict2['groups'] = groupsList dict2['elements'] = elements dict2['mass fraction'] = {} if config['mmolarflag']: dict2['mmolar'] = {} dict2['area'] = {} dict2['fitarea'] = {} fluo = fluolist[ilayer] for group in groupsList: item = group.split() element = item[0] transitions = item[1] + " xrays" if element in fluo.keys(): if transitions in fluo[element]: theoretical = fluo[element]['rates'][transitions] * 1 expected = theoretical * flux * solidangle if expected > 0.0: concentration = fitresult['result'][group]['fitarea']/expected else: concentration = -1 else: theoretical = 0.0 concentration = 0.0 else: theoretical = 0.0 concentration = 0.0 dict2['fitarea'][group] = 1 * fitresult['result'][group]['fitarea'] if elementsfrommatrix: if element in fluo.keys(): dict2['mass fraction'][group] = 1 * fluo[element]['mass fraction'] else: dict2['mass fraction'][group] = 0.0 #I calculate matrix in optimized form, #so I have to multiply by the mass fraction dict2['area'][group] = theoretical * flux * solidangle *\ dict2['mass fraction'][group] else: dict2['mass fraction'][group] = concentration dict2['area'][group] = theoretical * flux * solidangle if config['mmolarflag']: #mM = (mass_fraction * density)/atomic_weight dict2['mmolar'][group] = 1000000. *\ (multilayer[ilayer][1] * dict2['mass fraction'][group]) /\ Elements.Element[element]['mass'] #if group == "Pb L": # print "layer", ilayer,'area ', dict2['area'][group] # print "layer", ilayer,'mass fraction =', dict2['mass fraction'][group] ilayer += 1 if elementsfrommatrix: for group in groupsList: ddict['area'][group] = 0.0 for layer in ddict['layerlist']: if group in ddict[layer]['area'].keys(): ddict['area'][group] += ddict[layer]['area'][group] if (not elementsfrommatrix) and (xrfmcSecondary or secondary): corrections = None if xrfmcSecondary: if 'xrfmc' in fitresult: corrections = fitresult['xrfmc'].get('corrections', None) if corrections is None: if 'xrfmc' in fitresult['result']: corrections = fitresult['result']['xrfmc'].get('corrections', None) if corrections is None: # try to see if they were in the configuration if 'xrfmc' in fitresult['result']['config']: corrections = fitresult['result']['config']['xrfmc'].get('corrections', None) if corrections is None: # calculate the corrections corrections = XRFMCHelper.getXRFMCCorrectionFactors(fitresult['result']['config']) if not ('xrfmc' in fitresult): fitresult['xrfmc'] = {} fitresult['xrfmc']['corrections'] = corrections elif secondary: corrections = None if 'fisx' in fitresult: corrections = fitresult['fisx'].get('corrections', None) if corrections is not None: if fitresult['fisx']['secondary'] != secondary: # it was calculated with wrong secondary level corrections = None if corrections is None: # try to see if they were in the configuration # in principle this would be the most appropriate place to be # unless matrix/configuration has been somehow updated. if 'fisx' in fitresult['result']['config']: corrections = fitresult['result']['config']['fisx'].get('corrections', None) if corrections is not None: # check they were corrected with proper secondary level if fitresult['result']['config']['fisx'].get("secondary", -1) != \ secondary: corrections = None if corrections is None: # calculate the corrections oldValue = fitresult['result']['config']['concentrations']['usemultilayersecondary'] fitresult['result']['config']['concentrations']['usemultilayersecondary'] = secondary corrections = FisxHelper.getFisxCorrectionFactorsFromFitConfiguration( \ fitresult['result']['config'], elementsFromMatrix=False) fitresult['result']['config']['concentrations']['usemultilayersecondary'] = oldValue if not ('fisx' in fitresult['result']): fitresult['fisx'] = {} fitresult['fisx']['corrections'] = copy.deepcopy(corrections) fitresult['fisx']['secondary'] = secondary if referenceElement is not None: referenceLines = referenceTransitions.split()[0] referenceCorrection = corrections[referenceElement][referenceLines]\ ['correction_factor'][-1] # the flux has to be corrected too!!! flux = flux /referenceCorrection else: referenceCorrection = 1.0 # now we have to apply the corrections for group in groupsList: item = group.split() element = item[0] lines = item[1] if element in corrections: if config['mmolarflag']: if ddict['mass fraction'][group] > 0.0: conversionFactor = ddict['mmolar'][group] / ddict['mass fraction'][group] else: conversionFactor = 1.0 correction = corrections[element][item[1]]['correction_factor'][-1] / \ referenceCorrection ddict['mass fraction'][group] /= correction if config['mmolarflag']: ddict['mmolar'][group] = ddict['mass fraction'][group] * conversionFactor if (matrix[0].upper() == "MULTILAYER") and (not xrfmcSecondary): iLayer = 0 for layer in layerlist: if fitresult['result']['config']['multilayer'][layer][0]: if config['mmolarflag']: if dict2['mass fraction'][group] > 0.0: conversionFactor = dict2['mmolar'][group] / dict2['mass fraction'][group] else: conversionFactor = 1.0 dict2 = ddict[layer] layerKey = "layer %d" % iLayer correction = corrections[element][item[1]][layerKey] \ ['correction_factor'][-1] / referenceCorrection dict2['mass fraction'][group] /= correction if config['mmolarflag']: dict2['mmolar'][group] = dict2['mass fraction'][group] * \ conversionFactor iLayer += 1 if addinfo: addInfo = {} addInfo['ReferenceElement'] = referenceElement addInfo['ReferenceTransitions'] = referenceTransitions addInfo['SolidAngle'] = solidangle if config['time'] > 0.0: addInfo['Time'] = config['time'] else: addInfo['Time'] = 1.0 addInfo['Flux'] = flux / addInfo['Time'] addInfo['I0'] = flux addInfo['DetectorDistance'] = config['distance'] addInfo['DetectorArea'] = config['area'] return ddict , addInfo else: return ddict def _figureOfMerit(self, element, fluo, fitresult): weight = 0.0 for transitions in fluo[element]['rates'].keys(): if fluo[element]['rates'][transitions] > 0.0: if (transitions[0] == "K") and (Elements.getz(element) > 18): factor = 2.0 elif (transitions[0] == "L") and (Elements.getz(element) > 54): factor = 1.5 else: factor = 1.0 group = element + " " + transitions.split()[0] if group in fitresult['result']['groups']: fitarea = fitresult['result'][group]['fitarea'] weightHelp = fitarea * fluo[element]['rates'][transitions] * factor * \ fluo[element]['mass fraction'] if weightHelp > weight: weight = weightHelp return weight def main(): import sys import getopt from PyMca5.PyMcaIO import ConfigDict if len(sys.argv) > 1: options = '' longoptions = ['flux=', 'time=', 'area=', 'distance=', 'attenuators=', 'usematrix='] tool = ConcentrationsTool() opts, args = getopt.getopt( sys.argv[1:], options, longoptions) config = tool.configure() for opt, arg in opts: if opt in ('--flux'): config['flux'] = float(arg) elif opt in ('--area'): config['area'] = float(arg) elif opt in ('--time'): config['time'] = float(arg) elif opt in ('--distance'): config['distance'] = float(arg) elif opt in ('--attenuators'): config['useattenuators'] = int(float(arg)) elif opt in ('--usematrix'): config['usematrix'] = int(float(arg)) tool.configure(config) filelist = args for filename in filelist: d = ConfigDict.ConfigDict() d.read(filename) for material in d['result']['config']['materials'].keys(): Elements.Material[material] =\ copy.deepcopy(d['result']['config']['materials'][material]) print(tool.processFitResult(fitresult=d, elementsfrommatrix=True)) else: print("Usage:") print("ConcentrationsTool [--flux=xxxx --area=xxxx] fitresultfile") if __name__ == "__main__": main() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/ElementHtml.py���������������������������������������������0000644�0000000�0000000�00000032054�14741736366�021342� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from . import Elements class ElementHtml(object): def __init__(self,element=None): self.element = None def gethtml(self,element=None): if element is None:element = self.element if element is None:return "" ele = element #text="<center><b><font color=red size=5>Summary</font></b></center>" text="" if ele not in Elements.Element.keys(): text+="<br><b><font color=blue size=4>Unknown Element</font></b>" return text symbol = Elements.getsymbol(Elements.getz(ele)) omegak = Elements.Element[ele]['omegak'] omegal = [ Elements.Element[ele]['omegal1'], Elements.Element[ele]['omegal2'], Elements.Element[ele]['omegal3'] ] omegam = [ Elements.Element[ele]['omegam1'], Elements.Element[ele]['omegam2'], Elements.Element[ele]['omegam3'], Elements.Element[ele]['omegam4'], Elements.Element[ele]['omegam5'] ] #text+="<center> text+="<br><b><font color=blue size=4>Element Info</font></b>" #text+="</center>" if 0: text+="<br><b><font size=3>Name = %s</font></b>" % Elements.Element[ele]['name'] text+="<br><b><font size=3>Symbol = %s</font></b>" % symbol text+="<br><b><font size=3>At. Number = %d</font></b>" % Elements.Element[ele]['Z'] text+="<br><b><font size=3>At. Weight = %.5f</font></b>" % Elements.Element[ele]['mass'] text+="<br><b><font size=3>Density = %.5f</font></b>" % Elements.Element[ele]['density'] else: hcolor = 'white' finalcolor = 'white' text+="<nobr><table>" #symbol text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>Symbol</font></b>" text+="</td>" text+='<td align="center" bgcolor="%s">' % finalcolor text+="<b><font size=3>=</font></b>" text+="</td>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%s </font></b>" % symbol text+="</td>" #Z text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>At. Number</font></b>" text+="</td>" text+='<td align="center" bgcolor="%s">' % finalcolor text+="<b><font size=3>=</font></b>" text+="</td>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%d </font></b>" % Elements.Element[ele]['Z'] text+="</td>" #name text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>Name</font></b>" text+="</td>" text+='<td align="center" bgcolor="%s">' % finalcolor text+="<b><font size=3>=</font></b>" text+="</td>" text+='<td align="left" bgcolor="%s">' % finalcolor name = Elements.Element[ele]['name'][0].upper()+Elements.Element[ele]['name'][1:] text+="<b><font size=3>%s </font></b>" % name text+="</td>" #mass text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>At. Weight</font></b>" text+="</td>" text+='<td align="center" bgcolor="%s">' % finalcolor text+="<b><font size=3>=</font></b>" text+="</td>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.5f </font></b>" % Elements.Element[ele]['mass'] text+="</td>" #density text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>Density</font></b>" text+="</td>" text+='<td align="center" bgcolor="%s">' % finalcolor text+="<b><font size=3>=</font></b>" text+="</td>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.5f g/cm3</font></b>" % Elements.Element[ele]['density'] text+="</td>" text+="</tr>" text+="</table>" # Shell propierties hcolor = 'white' finalcolor = 'white' if Elements.Element[ele]['Z'] > 2: text+="<br><b><font color=blue size=4>Fluorescence Yields</font></b>" text+="<nobr><table><tr>" text+='<td align="left" bgcolor="%s"><b>' % hcolor text+='Shell' text+="</b></td>" text+='<td align="right" bgcolor="%s"><b>' % hcolor text+='Yield' text+="</b></td>" text+="</tr>" text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%s </font></b>" % "K" text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.3e </font></b>" % omegak text+="</td>" for i in range(len(omegal)): if omegal[i] > 0.0: text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>L%d </font></b>" % (i+1) text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.3e </font></b>" % omegal[i] text+="</td>" for i in range(len(omegam)): if omegam[i] > 0.0: text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>M%d </font></b>" % (i+1) text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.3e </font></b>" % omegam[i] text+="</td>" text+="</tr>" text+="</table>" hcolor = 'white' finalcolor = 'white' f = ['f12','f13','f23'] ck = [] doit = 0 for item in f: value = Elements.Element[ele]['CosterKronig']['L'][item] if value > 0:doit=1 ck.append(value) if doit: text+="<br><b><font color=blue size=4>L-Shell Coster-Kronig</font></b>" text+="<nobr><table><tr>" for item in f: text+='<td align="left" bgcolor="%s"><b>' % hcolor text+=item text+="</b></td>" text+="</tr>" text+="<tr>" for i in range(len(f)): text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.3f </font></b>" % ck[i] text+="</td>" text+="</tr>" text+="</table>" #M shell fs = [[ 'f12', 'f13', 'f14', 'f15'], ['f23', 'f24', 'f25'], ['f34', 'f35'], ['f45']] doit = 0 for f in fs: for item in f: value = Elements.Element[ele]['CosterKronig']['M'][item] if value > 0:doit=1 if doit: text+="<br><b><font color=blue size=4>M-Shell Coster-Kronig</font></b>" text+="<nobr><table>" for f in fs: text+="<tr>" for item in f: text+='<td align="left" bgcolor="%s"><b>' % hcolor text+=item text+="</b></td>" text+="</tr>" text+="<tr>" for item in f: text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.3f </font></b>" % Elements.Element[ele]['CosterKronig']['M'][item] text+="</td>" text+="</tr>" text+="</table>" hcolor = 'white' finalcolor = 'white' for rays in Elements.Element[ele]['rays']: if rays == "Ka xrays":continue if rays == "Kb xrays":continue #text+="<center>" text+="<br><b><font color=blue size=4>%s Emission Energies</font></b>" % rays[0:-1] #text+="</center>" if 0: for transition in Elements.Element[ele][rays]: text+="<br><b><font size=3>%s energy = %.5f rate = %.5f</font></b>" % (transition,Elements.Element[ele][transition]['energy'], Elements.Element[ele][transition]['rate']) else: text+="<nobr><table><tr>" text+='<td align="left" bgcolor="%s"><b>' % hcolor text+='Line' text+="</b></td>" text+='<td align="right" bgcolor="%s"><b>' % hcolor text+='Energy (keV)' text+="</b></td>" text+='<td align="right" bgcolor="%s"><b>' % hcolor text+='Rate' text+="</b></td>" text+="</tr>" for transition in Elements.Element[ele][rays]: transitiontext = transition.replace('*','') text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%s </font></b>" % transitiontext text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.5f</font></b>" % Elements.Element[ele][transition]['energy'] text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.5f </font></b>" % Elements.Element[ele][transition]['rate'] text+="</td>" text+="</tr>" text+="</table>" hcolor = 'white' finalcolor = 'white' #text+="<center>" text+="<br><b><font color=blue size=4>%s Binding Energies</font></b>" % "Electron" #text+="</center>" text+="<nobr><table><tr>" text+='<td align="left" bgcolor="%s"><b>' % hcolor text+='Shell' text+="</b></td>" text+='<td align="right" bgcolor="%s"><b>' % hcolor text+='Energy (keV)' text+="</b></td>" text+="</tr>" for shell in Elements.ElementShells: if Elements.Element[ele]['binding'][shell] > 0.0: text+="<tr>" text+='<td align="left" bgcolor="%s">' % finalcolor text+="<b><font size=3>%s </font></b>" % shell text+="</td>" text+='<td align="right" bgcolor="%s">' % finalcolor text+="<b><font size=3>%.5f </font></b>" % Elements.Element[ele]['binding'][shell] text+="</td>" text+="</tr>" text+="</table>" return text if __name__ == "__main__": import sys from PyMca5 import PyMcaQt as qt app = qt.QApplication(sys.argv) if len(sys.argv) > 1: ele = sys.argv[1] else: ele = "Fe" w= qt.QWidget() l=qt.QVBoxLayout(w) html = ElementHtml() text = qt.QTextEdit(w) text.insertHtml(html.gethtml(ele)) text.setReadOnly(1) l.addWidget(text) w.show() app.exec() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/Elements.py������������������������������������������������0000644�0000000�0000000�00000410501�14741736366�020675� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2025 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" LOGLOG = True import sys import os import numpy import re import weakref import types from PyMca5.PyMcaIO import ConfigDict from . import CoherentScattering from . import IncoherentScattering from . import PyMcaEPDL97 from PyMca5 import PyMcaDataDir """ Constant Symbol 2006 CODATA value Relative uncertainty Electron relative atomic mass Ar(e) 5.485 799 0943(23) x 10-4 4.2 x 10-10 Molar mass constant Mu 0.001 kg/mol defined Rydberg constant R 10 973 731.568 527(73) m-1 6.6 x 10-12 Planck constant h 6.626 068 96(33) x 10-34 Js 5.0 x 10-8 Speed of light c 299 792 458 m/s defined Fine structure constant alpha 7.297 352 5376(50) x 10-3 6.8 x 10-10 Avogadro constant NA 6.022 141 79(30) x 10+23 mol-1 5.0 x 10-8 """ MINENERGY = 0.175 AVOGADRO_NUMBER = 6.02214179E23 # # Symbol Atomic Number x y ( positions on table ) # name, mass, density # ElementsInfo = [ ["H", 1, 1,1, "hydrogen", 1.00800, 0.08988 ], ["He", 2, 18,1, "helium", 4.00300, 0.17860 ], ["Li", 3, 1,2, "lithium", 6.94000, 534.000 ], ["Be", 4, 2,2, "beryllium", 9.01200, 1848.00 ], ["B", 5, 13,2, "boron", 10.8110, 2340.00 ], ["C", 6, 14,2, "carbon", 12.0100, 1580.00 ], ["N", 7, 15,2, "nitrogen", 14.0080, 1.25000 ], ["O", 8, 16,2, "oxygen", 16.0000, 1.42900 ], ["F", 9, 17,2, "fluorine", 19.0000, 1108.00 ], ["Ne", 10, 18,2, "neon", 20.1830, 0.90020 ], ["Na", 11, 1,3, "sodium", 22.9970, 970.000 ], ["Mg", 12, 2,3, "magnesium", 24.3200, 1740.00 ], ["Al", 13, 13,3, "aluminium", 26.9700, 2720.00 ], ["Si", 14, 14,3, "silicon", 28.0860, 2330.00 ], ["P", 15, 15,3, "phosphorus", 30.9750, 1820.00 ], ["S", 16, 16,3, "sulphur", 32.0660, 2000.00 ], ["Cl", 17, 17,3, "chlorine", 35.4570, 1560.00 ], ["Ar", 18, 18,3, "argon", 39.9440, 1.78400 ], ["K", 19, 1,4, "potassium", 39.1020, 862.000 ], ["Ca", 20, 2,4, "calcium", 40.0800, 1550.00 ], ["Sc", 21, 3,4, "scandium", 44.9600, 2992.00 ], ["Ti", 22, 4,4, "titanium", 47.9000, 4540.00 ], ["V", 23, 5,4, "vanadium", 50.9420, 6110.00 ], ["Cr", 24, 6,4, "chromium", 51.9960, 7190.00 ], ["Mn", 25, 7,4, "manganese", 54.9400, 7420.00 ], ["Fe", 26, 8,4, "iron", 55.8500, 7860.00 ], ["Co", 27, 9,4, "cobalt", 58.9330, 8900.00 ], ["Ni", 28, 10,4, "nickel", 58.6900, 8900.00 ], ["Cu", 29, 11,4, "copper", 63.5400, 8940.00 ], ["Zn", 30, 12,4, "zinc", 65.3800, 7140.00 ], ["Ga", 31, 13,4, "gallium", 69.7200, 5903.00 ], ["Ge", 32, 14,4, "germanium", 72.5900, 5323.00 ], ["As", 33, 15,4, "arsenic", 74.9200, 5730.00 ], ["Se", 34, 16,4, "selenium", 78.9600, 4790.00 ], ["Br", 35, 17,4, "bromine", 79.9200, 3120.00 ], ["Kr", 36, 18,4, "krypton", 83.8000, 3.74000 ], ["Rb", 37, 1,5, "rubidium", 85.4800, 1532.00 ], ["Sr", 38, 2,5, "strontium", 87.6200, 2540.00 ], ["Y", 39, 3,5, "yttrium", 88.9050, 4405.00 ], ["Zr", 40, 4,5, "zirconium", 91.2200, 6530.00 ], ["Nb", 41, 5,5, "niobium", 92.9060, 8570.00 ], ["Mo", 42, 6,5, "molybdenum", 95.9500, 10220.0 ], ["Tc", 43, 7,5, "technetium", 99.0000, 11500.0 ], ["Ru", 44, 8,5, "ruthenium", 101.0700, 12410.0 ], ["Rh", 45, 9,5, "rhodium", 102.9100, 12440.0 ], ["Pd", 46, 10,5, "palladium", 106.400, 12160.0 ], ["Ag", 47, 11,5, "silver", 107.880, 10500.0 ], ["Cd", 48, 12,5, "cadmium", 112.410, 8650.00 ], ["In", 49, 13,5, "indium", 114.820, 7280.00 ], ["Sn", 50, 14,5, "tin", 118.690, 5310.00 ], ["Sb", 51, 15,5, "antimony", 121.760, 6691.00 ], ["Te", 52, 16,5, "tellurium", 127.600, 6240.00 ], ["I", 53, 17,5, "iodine", 126.910, 4940.00 ], ["Xe", 54, 18,5, "xenon", 131.300, 5.90000 ], ["Cs", 55, 1,6, "caesium", 132.910, 1873.00 ], ["Ba", 56, 2,6, "barium", 137.360, 3500.00 ], ["La", 57, 3,6, "lanthanum", 138.920, 6150.00 ], ["Ce", 58, 4,9, "cerium", 140.130, 6670.00 ], ["Pr", 59, 5,9, "praseodymium",140.920, 6769.00 ], ["Nd", 60, 6,9, "neodymium", 144.270, 6960.00 ], ["Pm", 61, 7,9, "promethium", 147.000, 6782.00 ], ["Sm", 62, 8,9, "samarium", 150.350, 7536.00 ], ["Eu", 63, 9,9, "europium", 152.000, 5259.00 ], ["Gd", 64, 10,9, "gadolinium", 157.260, 7950.00 ], ["Tb", 65, 11,9, "terbium", 158.930, 8272.00 ], ["Dy", 66, 12,9, "dysprosium", 162.510, 8536.00 ], ["Ho", 67, 13,9, "holmium", 164.940, 8803.00 ], ["Er", 68, 14,9, "erbium", 167.270, 9051.00 ], ["Tm", 69, 15,9, "thulium", 168.940, 9332.00 ], ["Yb", 70, 16,9, "ytterbium", 173.040, 6977.00 ], ["Lu", 71, 17,9, "lutetium", 174.990, 9842.00 ], ["Hf", 72, 4,6, "hafnium", 178.500, 13300.0 ], ["Ta", 73, 5,6, "tantalum", 180.950, 16600.0 ], ["W", 74, 6,6, "tungsten", 183.920, 19300.0 ], ["Re", 75, 7,6, "rhenium", 186.200, 21020.0 ], ["Os", 76, 8,6, "osmium", 190.200, 22500.0 ], ["Ir", 77, 9,6, "iridium", 192.200, 22420.0 ], ["Pt", 78, 10,6, "platinum", 195.090, 21370.0 ], ["Au", 79, 11,6, "gold", 197.200, 19370.0 ], ["Hg", 80, 12,6, "mercury", 200.610, 13546.0 ], ["Tl", 81, 13,6, "thallium", 204.390, 11860.0 ], ["Pb", 82, 14,6, "lead", 207.210, 11340.0 ], ["Bi", 83, 15,6, "bismuth", 209.000, 9800.00 ], ["Po", 84, 16,6, "polonium", 209.000, 9320.00 ], ["At", 85, 17,6, "astatine", 210.000, 0 ], ["Rn", 86, 18,6, "radon", 222.000, 9.73000 ], ["Fr", 87, 1,7, "francium", 223.000, 0 ], ["Ra", 88, 2,7, "radium", 226.000, 5500.00 ], ["Ac", 89, 3,7, "actinium", 227.000, 0 ], ["Th", 90, 4,10, "thorium", 232.000, 11700.0 ], ["Pa", 91, 5,10, "proactinium",231.03588, 15370.0 ], ["U", 92, 6,10, "uranium", 238.070, 19050.0 ], ["Np", 93, 7,10, "neptunium", 237.000, 20250.0 ], ["Pu", 94, 8,10, "plutonium", 239.100, 19700.0 ], ["Am", 95, 9,10, "americium", 243, 13670.0 ], ["Cm", 96, 10,10, "curium", 247, 13510.0 ], ["Bk", 97, 11,10, "berkelium", 247, 13250.0 ], ["Cf", 98, 12,10, "californium",251, 15100.0 ], ["Es", 99, 13,10, "einsteinium",252, 0 ], ["Fm", 100, 14,10, "fermium", 257, 0 ], ["Md", 101, 15,10, "mendelevium",258, 0 ], ["No", 102, 16,10, "nobelium", 259, 0 ], ["Lr", 103, 17,10, "lawrencium", 262, 0 ], ["Rf", 104, 4,7, "rutherfordium",261, 0 ], ["Db", 105, 5,7, "dubnium", 262, 0 ], ["Sg", 106, 6,7, "seaborgium", 266, 0 ], ["Bh", 107, 7,7, "bohrium", 264, 0 ], ["Hs", 108, 8,7, "hassium", 269, 0 ], ["Mt", 109, 9,7, "meitnerium", 268, 0 ], ] ElementList= [ elt[0] for elt in ElementsInfo ] from . import BindingEnergies ElementShells = BindingEnergies.ElementShells[1:] ElementBinding = BindingEnergies.ElementBinding from . import KShell from . import LShell from . import MShell #Scofield's photoelectric dictionary from . import Scofield1973 ElementShellTransitions = [KShell.ElementKShellTransitions, KShell.ElementKAlphaTransitions, KShell.ElementKBetaTransitions, LShell.ElementLShellTransitions, LShell.ElementL1ShellTransitions, LShell.ElementL2ShellTransitions, LShell.ElementL3ShellTransitions, MShell.ElementMShellTransitions, MShell.ElementM1ShellTransitions, MShell.ElementM2ShellTransitions, MShell.ElementM3ShellTransitions, MShell.ElementM4ShellTransitions, MShell.ElementM5ShellTransitions] ElementShellRates = [KShell.ElementKShellRates, KShell.ElementKAlphaRates, KShell.ElementKBetaRates, LShell.ElementLShellRates, LShell.ElementL1ShellRates, LShell.ElementL2ShellRates, LShell.ElementL3ShellRates, MShell.ElementMShellRates, MShell.ElementM1ShellRates, MShell.ElementM2ShellRates, MShell.ElementM3ShellRates, MShell.ElementM4ShellRates, MShell.ElementM5ShellRates] ElementXrays = ['K xrays', 'Ka xrays', 'Kb xrays', 'L xrays','L1 xrays','L2 xrays','L3 xrays','M xrays', 'M1 xrays', 'M2 xrays', 'M3 xrays', 'M4 xrays', 'M5 xrays'] def getsymbol(z): if (z > 0) and (z<=len(ElementList)): return ElementsInfo[int(z)-1][0] else: return None def getname(z): if (z > 0) and (z<=len(ElementList)): return ElementsInfo[int(z)-1][4] else: return None def getz(ele): if ele in ElementList: return ElementList.index(ele)+1 else: return None #fluorescence yields def getomegak(ele): index = KShell.ElementKShellConstants.index('omegaK') return KShell.ElementKShellValues[getz(ele)-1][index] def getomegal1(ele): index = LShell.ElementL1ShellConstants.index('omegaL1') return LShell.ElementL1ShellValues[getz(ele)-1][index] def getomegal2(ele): index = LShell.ElementL2ShellConstants.index('omegaL2') return LShell.ElementL2ShellValues[getz(ele)-1][index] def getomegal3(ele): index = LShell.ElementL3ShellConstants.index('omegaL3') return LShell.ElementL3ShellValues[getz(ele)-1][index] def getomegam1(ele): return MShell.getomegam1(ele) def getomegam2(ele): return MShell.getomegam2(ele) def getomegam3(ele): return MShell.getomegam3(ele) def getomegam4(ele): return MShell.getomegam4(ele) def getomegam5(ele): return MShell.getomegam5(ele) #CosterKronig def getCosterKronig(ele): return LShell.getCosterKronig(ele) #Jump ratios following Veigele: Atomic Data Tables 5 (1973) 51-111. p 54 and 55 VEIGELE = True def getjkVeigele(z): return (125.0/z) + 3.5 def getjl1Veigele(z): return 1.2 def getjl2Veigele(z): return 1.4 def getjl3Veigele(z): return (80.0/z) + 1.5 def getjm1Veigele(z): return 1.1 def getjm2Veigele(z): return 1.1 def getjm3Veigele(z): return 1.2 def getjm4Veigele(z): return 1.5 def getjm5Veigele(z): return (225.0/z) - 0.35 def getjk(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjkVeigele(z) ele = getsymbol(z) if 'JK' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JK']*1.0 else: return None def getjl1(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjl1Veigele(z) ele = getsymbol(z) if 'JL1' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JL1']*1.0 else: return None def getjl2(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjl2Veigele(z) ele = getsymbol(z) if 'JL2' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JL2']*1.0 else: return None def getjl3(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjl3Veigele(z) ele = getsymbol(z) if 'JL3' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JL3']*1.0 else: return None def getjm1(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjm1Veigele(z) ele = getsymbol(z) if 'JM1' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JM1']*1.0 else: return None def getjm2(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjm2Veigele(z) ele = getsymbol(z) if 'JM3' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JM2']*1.0 else: return None def getjm3(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjm3Veigele(z) ele = getsymbol(z) if 'JM3' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JM3']*1.0 else: return None def getjm4(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjm4Veigele(z) ele = getsymbol(z) if 'JM4' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JM4']*1.0 else: return None def getjm5(z, veigele=None): if z > 101:z=101 if veigele is None: veigele = VEIGELE if VEIGELE: return getjm5Veigele(z) ele = getsymbol(z) if 'JM5' in Scofield1973.dict[ele].keys(): return Scofield1973.dict[ele]['JM5']*1.0 else: return None def getLJumpWeight(ele,excitedshells=[1.0,1.0,1.0]): """ wjump represents the probability for a vacancy to be created on the respective L-Shell by direct photoeffect on that shell """ z = getz(ele) #weights due to photoeffect jl = [getjl1(z), getjl2(z), getjl3(z)] wjump = [] i = 0 cum = 0.00 for jump in jl: if jump is not None: v = excitedshells[i]*(jump-1.0)/jump else: v = 0.0 wjump.append(v) cum += v i+=1 for i in range(len(wjump)): if cum > 0.0: wjump[i] = wjump[i] / cum else: wjump[i] = 0.0 return wjump def getMJumpWeight(ele,excitedshells=[1.0,1.0,1.0,1.0,1.0]): """ wjump represents the probability for a vacancy to be created on the respective M-Shell by direct photoeffect on that shell """ z = getz(ele) #weights due to photoeffect jm = [getjm1(z), getjm2(z), getjm3(z), getjm4(z), getjm5(z)] wjump = [] i = 0 cum = 0.00 for jump in jm: if jump is not None: v = excitedshells[i]*(jump-1.0)/jump else: v = 0.0 wjump.append(v) cum += v i+=1 for i in range(len(wjump)): if cum > 0.0: wjump[i] = wjump[i] / cum else: wjump[i] = 0.0 return wjump def getPhotoWeight(ele,shelllist,energy, normalize = None, totals = None): #shellist = ['M1', 'M2', 'M3', 'M4', 'M5'] # or ['L1', 'L2', 'L3'] if normalize is None:normalize = True if totals is None: totals = False w = [] z = getz(ele) if z > 101: element = getsymbol(101) if z > 104: elework = getsymbol(104) else: elework = ele else: elework = ele element = ele if totals and (energy < 1.0): raise ValueError("Incompatible combination") elif (energy < 1.0): #make sure the binding energies are correct if PyMcaEPDL97.EPDL97_DICT[ele]['original']: #make sure the binding energies are those used by this module and not EADL ones PyMcaEPDL97.setElementBindingEnergies(ele, Element[ele]['binding']) return PyMcaEPDL97.getPhotoelectricWeights(ele, shelllist, energy, normalize=normalize, totals=False) elif totals: totalPhoto = [] logf = numpy.log expf = numpy.exp for key in shelllist: wi = 0.0 totalPhotoi = 0.0 if key != "all other": bindingE = Element[elework]['binding'][key] else: bindingE = 0.001 if (key == "all other") and (key not in Scofield1973.dict[element].keys()): doit = False else: doit = True if doit and bindingE > 0.0: if energy >= bindingE: deltae = energy - bindingE if key != "all other": ework = Scofield1973.dict[element]['binding'][key]+deltae else: ework = energy if ework > Scofield1973.dict[element]['energy'][-1]: #take last wi = Scofield1973.dict[element][key][-1] totalPhotoi=Scofield1973.dict[element]['total'][-1] else: #interpolate i=0 while (Scofield1973.dict[element]['energy'][i] < ework): i+=1 #if less than 5 eV take that value (Scofield calculations #do not seem to be self-consistent in tems of energy grid #and binding energy -see Lead with e=2.5 -> ework = 2.506 #that is below the binding energy of Scofield) if False and (Scofield1973.dict[element]['energy'][i] - ework) < 0.005: #this does not work for Cd and E=3.5376" print("Not interpolate for key = ",key,'ework = ',ework,"taken ",Scofield1973.dict[element]['energy'][i]) wi = Scofield1973.dict[element][key][i] elif (key != 'all other') and Scofield1973.dict[element]['energy'][i-1] < Scofield1973.dict[element]['binding'][key]: wi = Scofield1973.dict[element][key][i] totalPhotoi = Scofield1973.dict[element]['total'][i] elif Scofield1973.dict[element][key][i-1] <= 0.0: #equivalent to previous case, solves problem of Fr at excitation = 3.0 wi = Scofield1973.dict[element][key][i] totalPhotoi = Scofield1973.dict[element]['total'][i] else: #if element == "Fr": # print "energy = ",energy," ework = ",ework # print Scofield1973.dict[element]['energy'][i] # print Scofield1973.dict[element]['energy'][i-1] # print Scofield1973.dict[element][key][i] # print Scofield1973.dict[element][key][i-1] # print type( Scofield1973.dict[element][key][i-1] ) x2 = logf(Scofield1973.dict[element]['energy'][i]) x1 = logf(Scofield1973.dict[element]['energy'][i-1]) y2 = logf(Scofield1973.dict[element][key][i]) y1 = logf(Scofield1973.dict[element][key][i-1]) slope = (y2 - y1)/(x2 - x1) wi = expf(y1 + slope * (logf(ework) - x1)) if totals: y2 = logf(Scofield1973.dict[element]['total'][i]) y1 = logf(Scofield1973.dict[element]['total'][i-1]) totalPhotoi = expf(y1 + slope * (logf(ework) - x1)) w += [wi] if totals: totalPhoto += [totalPhotoi] if normalize: total = sum(w) for i in range(len(w)): if total > 0.0: w[i] = w[i]/total else: w[i] = 0.0 if totals: return w, totalPhoto else: return w def _getFluorescenceWeights(ele, energy, normalize = None, cascade = None): if normalize is None:normalize = True if cascade is None:cascade = False if sys.version < '3.0': if type(ele) in types.StringTypes: pass else: ele = getsymbol(int(ele)) else: #python 3 if type(ele) == type(" "): #unicode, fine pass elif 'bytes' in str(type(ele)): #bytes object, convert to unicode ele = ele.decode() else: ele = getsymbol(int(ele)) wall = getPhotoWeight(ele,['K','L1','L2','L3','M1','M2','M3','M4','M5','all other'],energy, normalize=True) #weights due to Coster - Kronig transitions #k shell is not affected ck= LShell.getCosterKronig(ele) if cascade and (sum(wall[1:4]) > 0.0) and (wall[0] > 0.0): #l shell (considering holes due to k shell transitions) #I assume that approximately the auger transitions give #single equaly distributed vacancies # I guess this will be better than ignoring them if Element[ele]['omegak'] > 0.001: auger = 0.32 * (1.0 - Element[ele]['omegak']) #assume rest goes to other shells ... cor = [auger, auger + Element[ele]['KL2']['rate'] * Element[ele]['omegak'], auger + Element[ele]['KL3']['rate'] * Element[ele]['omegak']] w = [wall[1]+cor[0] * wall[0], wall[2]+cor[1] * wall[0], wall[3]+cor[2] * wall[0]] else: cor = 0.3 * wall[0] w = [wall[1]+cor, wall[2]+cor, wall[3]+cor] else: #l shell (neglecting holes due to k shell transitions) w = [wall[1], wall[2], wall[3]] w[0] = w[0] w[1] = w[1] + ck['f12'] * w[0] w[2] = w[2] + ck['f13'] * w[0] + ck['f23'] * w[1] wall[1] = w[0] * 1.0 wall[2] = w[1] * 1.0 wall[3] = w[2] * 1.0 #mshell ck= MShell.getCosterKronig(ele) if cascade and (sum(wall[4:]) > 0): cor = [0.0, 0.0, 0.0, 0.0, 0.0] augercor = 0.0 if wall[0] > 0.0: #K shell if 'KM2' in Element[ele]['K xrays']: cor[1] += wall[0] * Element[ele]['KM2']['rate'] * \ Element[ele]['omegak'] if 'KM3' in Element[ele]['K xrays']: cor[2] += wall[0] * Element[ele]['KM3']['rate'] * \ Element[ele]['omegak'] #auger K transitions (5 % total of shells M1, M2, M3) cor[0] += wall[0] * 0.05 * (1.0 - Element[ele]['omegak']) cor[1] += wall[0] * 0.05 * (1.0 - Element[ele]['omegak']) cor[2] += wall[0] * 0.05 * (1.0 - Element[ele]['omegak']) cor[3] += wall[0] * 0.01 * (1.0 - Element[ele]['omegak']) cor[4] += wall[0] * 0.01 * (1.0 - Element[ele]['omegak']) if sum(wall[1:4]) > 0: #L shell #X rays I can take them rigorously mlist = ['M1','M2','M3','M4','M5'] i = 0 #for the auger I take 95% of the value and #equally distribute it among the shells augerfactor = 0.95/ 5.0 augercor = 0.0 for key in ['L1 xrays', 'L2 xrays', 'L3 xrays']: i = i + 1 if i == 1: omega=Element[ele]['omegal1'] auger= 1.0 - omega \ - Element[ele]['CosterKronig']['L']['f12'] \ - Element[ele]['CosterKronig']['L']['f13'] augercor += augerfactor * auger elif i == 2: omega=Element[ele]['omegal2'] auger= 1.0 - omega \ - Element[ele]['CosterKronig']['L']['f23'] augercor += augerfactor * auger elif i == 3: omega=Element[ele]['omegal3'] auger= 1.0 - omega augercor += augerfactor * auger else: print("Error unknown shell, Please report") omega = 0.0 #for the elements #I consider Coster-Kronig for L1 if (i == 1) and (Element[ele]['Z'] >= 80): #f13 is the main transition if Element[ele]['Z'] >= 90: #L1-L3M5 is ~ 40 % #L1-L3M4 is ~ 32 % #rest is other shells cor[3] += 0.32 * wall[1] * \ Element[ele]['CosterKronig']['L']['f13'] cor[4] += 0.43 * wall[1] * \ Element[ele]['CosterKronig']['L']['f13'] if Element[ele]['Z'] > 90: cor[2] += 0.5 * wall[1] * \ Element[ele]['CosterKronig']['L']['f13'] else: #L1-L3M5 is ~ 43 % #L1-L3M4 is ~ 32 % #rest is other shells cor[3] += 0.32 * wall[1] * \ Element[ele]['CosterKronig']['L']['f13'] cor[4] += 0.44 * wall[1] * \ Element[ele]['CosterKronig']['L']['f13'] #L2 elif (i == 2) and (Element[ele]['Z'] >= 90): if Element[ele]['Z'] >= 94: #L2-L3M5 ~ 3 % #L2-L3M4 ~ 50% cor[3] += 0.50 * wall[2] * \ Element[ele]['CosterKronig']['L']['f23'] cor[4] += 0.03 * wall[2] * \ Element[ele]['CosterKronig']['L']['f23'] else: #L2-L3M5 ~ 6 % cor[4] += 0.06 * wall[2] * \ Element[ele]['CosterKronig']['L']['f23'] elif (i==3): #missing pages from article pass if key in Element[ele]: for t in Element[ele][key]: if t[2:] in mlist: index = mlist.index(t[2:]) cor[index] += Element[ele][t]['rate'] * \ wall[i] * omega cor[0] += augercor cor[1] += augercor cor[2] += augercor cor[3] += augercor cor[4] += augercor w = [wall[4]+cor[0], wall[5]+cor[1], wall[6]+cor[2], wall[7]+cor[3], wall[8]+cor[4]] else: w = [wall[4], wall[5], wall[6], wall[7], wall[8]] w[0] = w[0] w[1] = w[1] + ck['f12'] * w[0] w[2] = w[2] + ck['f13'] * w[0] + ck['f23'] * w[1] w[3] = w[3] + ck['f14'] * w[0] + ck['f24'] * w[1] + ck['f34'] * w[2] w[4] = w[4] + ck['f15'] * w[0] + ck['f25'] * w[1] + ck['f35'] * w[2] +\ ck['f45'] * w[3] wall[4] = w[0] * 1.0 wall[5] = w[1] * 1.0 wall[6] = w[2] * 1.0 wall[7] = w[3] * 1.0 wall[8] = w[4] * 1.0 #weights due to omega omega = [ getomegak(ele), getomegal1(ele), getomegal2(ele), getomegal3(ele), getomegam1(ele), getomegam2(ele), getomegam3(ele), getomegam4(ele), getomegam5(ele)] w = wall[0:9] for i in range(len(w)): w[i] *= omega[i] if normalize: cum = sum(w) for i in range(len(w)): if cum > 0.0: w[i] /= cum return w def getEscape(matrix, energy, ethreshold=None, ithreshold=None, nthreshold = None, alphain = None, cascade = None, fluorescencemode=None): """ getEscape(matrixlist, energy, ethreshold=None, ithreshold=None, nthreshold = None, alphain = None) matrixlist is a list of the form [material, density, thickness] energy is the incident beam energy ethreshold is the difference in keV between two peaks to be considered the same ithreshold is the minimum absolute peak intensity to consider nthreshold is maximum number of escape peaks to consider alphain is the incoming beam angle with detector surface It gives back a list of the form [[energy0, intensity0, label0], [energy1, intensity1, label1], .... [energyn, intensityn, labeln]] with the escape energies, intensities and labels """ if alphain is None: alphain = 90.0 if fluorescencemode is None:fluorescencemode = False sinAlphaIn = numpy.sin(alphain * (numpy.pi)/180.) sinAlphaOut = 1.0 elementsList = None if cascade is None:cascade=False if elementsList is None: #get material elements and concentrations eleDict = getMaterialMassFractions([matrix[0]], [1.0]) if eleDict == {}: return {} #sort the elements according to atomic number (not needed because the output will be a dictionary) keys = eleDict.keys() elementsList = [[getz(x),x] for x in keys] elementsList.sort() #do the job outputDict = {} shelllist = ['K', 'L1', 'L2', 'L3','M1', 'M2', 'M3', 'M4', 'M5'] for z,ele in elementsList: #use own unfiltered dictionary elementDict = _getUnfilteredElementDict(ele, energy) outputDict[ele] ={} outputDict[ele]['mass fraction'] = eleDict[ele] outputDict[ele]['rates'] = {} #get the fluorescence term for all shells fluoWeights = _getFluorescenceWeights(ele, energy, normalize = False, cascade=cascade) outputDict[ele]['rays'] = elementDict['rays'] * 1 for rays in elementDict['rays']: outputDict[ele][rays] = [] rates = [] energies = [] transitions = elementDict[rays] for transition in transitions: outputDict[ele][rays] += [transition] outputDict[ele][transition]={} outputDict[ele][transition]['rate'] = 0.0 if transition[0] == "K": """ if transition[-1] == 'a': elif transition[-1] == 'b': else: """ rates.append(fluoWeights[0] * elementDict[transition]['rate']) else: rates.append(fluoWeights[shelllist.index(transition[0:2])] * elementDict[transition]['rate']) ene = elementDict[transition]['energy'] energies += [ene] outputDict[ele][transition]['energy'] = ene if ene < 0.0: print("element = ", ele, "transition = ", transition, "exc. energy = ", energy) #matrix term formula = matrix[0] thickness = matrix[1] * matrix[2] energies += [energy] allcoeffs = getMaterialMassAttenuationCoefficients(formula,1.0,energies) mutotal = allcoeffs['total'] #muphoto = allcoeffs['photo'] muphoto = getMaterialMassAttenuationCoefficients(ele,1.0,energy)['photo'] # correct respect to Reed and Ware # because there can be more than one element and # I also weight the mass fraction notalone = (muphoto[-1]/mutotal[-1]) *\ 0.5 * outputDict[ele]['mass fraction'] del energies[-1] i = 0 for transition in transitions: trans = (mutotal[i]/sinAlphaOut)/(mutotal[-1]/sinAlphaIn) trans = notalone * \ (1.0 - trans * numpy.log(1.0 + 1.0/trans)) if thickness > 0.0: #extremely thin case trans0 = notalone * thickness * mutotal[-1]/sinAlphaIn trans = min(trans0, trans) rates[i] *= trans outputDict[ele][transition]['rate'] = rates[i] i += 1 outputDict[ele]['rates'][rays] = sum(rates) #outputDict[ele][rays]= Element[ele]['rays'] * 1 peaklist = [] for key in outputDict: rays = [] if 'M xrays' in outputDict[key]: rays += outputDict[key]['M xrays'] if 'L xrays' in outputDict[key]: rays += outputDict[key]['L xrays'] if 'K xrays' in outputDict[key]: rays += outputDict[key]['K xrays'] for label in rays: if fluorescencemode: peaklist.append([outputDict[key][label]['energy'], outputDict[key][label]['rate'], key+' '+label.replace('*','')]) else: peaklist.append([energy - outputDict[key][label]['energy'], outputDict[key][label]['rate'], key+' '+label.replace('*','')]) return _filterPeaks(peaklist, ethreshold = ethreshold, ithreshold = ithreshold, nthreshold = nthreshold, absoluteithreshold = True, keeptotalrate = False) #return outputDict def _filterPeaks(peaklist, ethreshold = None, ithreshold = None, nthreshold = None, absoluteithreshold=None, keeptotalrate=None): """ Given a list of peaks of the form [[energy0, intensity0, label0], [energy1, intensity1, label1], .... [energyn, intensityn, labeln]] gives back a filtered list of the same form ethreshold -> peaks within that threshold are considered one ithreshold -> intensity threshold relative to maximum unless absoluteithreshold is set to True The total rate is kept unless keeptotal rate is set to false (for instance for the escape peak calculation """ if absoluteithreshold is None:absoluteithreshold=False if keeptotalrate == None: keeptotalrate = True div = [] for i in range(len(peaklist)): if peaklist[i][1] > 0.0: div.append([peaklist[i][0],[peaklist[i][1],peaklist[i][0]],peaklist[i][2]]) #div =[[peaklist[i][0],[peaklist[i][1],peaklist[i][0]],peaklist[i][2]] for i in range(len(peaklist))] div.sort() totalrate = sum([x[1] for x in peaklist]) newpeaks =[div[i][1] for i in range(len(div))] newpeaksnames=[div[i][2] for i in range(len(div))] tojoint=[] deltaonepeak = ethreshold mix = [] if len(newpeaks) > 1: for i in range(len(newpeaks)): #print "i = ",i,"energy = ",newpeaks[i][1], \ # " rate = ",newpeaks[i][0], \ # "name = ",newpeaksnames[i] for j in range(i,len(newpeaks)): if i != j: if abs(newpeaks[i][1]-newpeaks[j][1]) < deltaonepeak: if len(tojoint): if (i in tojoint[-1]) and (j in tojoint[-1]): #print "i and j already there" pass elif (i in tojoint[-1]): #print "i was there" tojoint[-1]+=[j] elif (j in tojoint[-1]): #print "j was there" tojoint[-1]+=[i] else: tojoint.append([i,j]) else: tojoint.append([i,j]) if len(tojoint): mix=[] iDelete = [] for _group in tojoint: rate = 0.0 rateMax = 0.0 for i in _group: rate += newpeaks[i][0] if newpeaks[i][0] > rateMax: rateMax = newpeaks[i][0] iMax = i iDelete += [i] transition = newpeaksnames[iMax] ene = 0.0 for i in _group: ene += newpeaks[i][0] * newpeaks[i][1]/rate mix.append([ene,rate,transition]) iDelete.sort() iDelete.reverse() for i in iDelete: del newpeaks[i] del newpeaksnames[i] output = [] for i in range(len(newpeaks)): output.append([newpeaks[i][1], newpeaks[i][0], newpeaksnames [i]]) for peak in mix: output.append(peak) output.sort() #intensity threshold if len(output) <= 1:return output if ithreshold is not None: imax = max([x[1] for x in output]) if absoluteithreshold: threshold = ithreshold else: threshold = ithreshold * imax for i in range(-len(output)+1,1): if output[i][1] < threshold: del output[i] #number threshold if nthreshold is not None: if nthreshold < len(output): div = [[x[1],x] for x in output] div.sort() div.reverse() div = div[:nthreshold] output = [x[1] for x in div] output.sort() #recover original rates if keeptotalrate: currenttotal = sum([x[1] for x in output]) if currenttotal > 0: totalrate = totalrate/currenttotal output = [[x[0],x[1]*totalrate,x[2]] for x in output] return output def _getAttFilteredElementDict(elementsList, attenuators=None, detector=None, funnyfilters=None, energy=None, userattenuators=None): if energy is None: energy = 100. if attenuators is None: attenuators = [] if userattenuators is None: userattenuators = [] if funnyfilters is None: funnyfilters = [] outputDict = {} for group in elementsList: ele = group[1] * 1 if not (ele in outputDict): outputDict[ele] = {} outputDict[ele]['rays'] = [] raysforloop = [group[2] + " xrays"] elementDict = _getUnfilteredElementDict(ele, energy) for rays in raysforloop: if rays not in elementDict:continue else:outputDict[ele]['rays'].append(rays) outputDict[ele][rays] = [] rates = [] energies = [] transitions = elementDict[rays] for transition in transitions: outputDict[ele][rays] += [transition] outputDict[ele][transition]={} ene = elementDict[transition]['energy'] * 1 energies += [ene] rates.append(elementDict[transition]['rate'] * 1.0) outputDict[ele][transition]['energy'] = ene #I do not know if to include this loop in the previous one (because rates are 0.0 sometimes) #attenuators coeffs = numpy.zeros(len(energies), numpy.float64) for attenuator in attenuators: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] coeffs += thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = numpy.exp(-coeffs) except OverflowError: #deal with underflows reported as overflows trans = numpy.zeros(len(energies), numpy.float64) for i in range(len(energies)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") else: try: trans[i] = numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass #funnyfilters (only make sense to have more than one if same opening and aligned) coeffs = numpy.zeros(len(energies), numpy.float64) funnyfactor = None for attenuator in funnyfilters: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] if funnyfactor is None: funnyfactor = attenuator[3] else: if abs(attenuator[3]-funnyfactor) > 0.0001: raise ValueError("All funny type filters must have same openning fraction") coeffs += thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) if funnyfactor is None: for i in range(len(rates)): rates[i] *= trans[i] else: try: transFunny = funnyfactor * numpy.exp(-coeffs) +\ (1.0 - funnyfactor) except OverflowError: #deal with underflows reported as overflows transFunny = numpy.zeros(len(energies), numpy.float64) for i in range(len(energies)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in funnyfilters transmission term") else: try: transFunny[i] = numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass transFunny = funnyfactor * transFunny + \ (1.0 - funnyfactor) for i in range(len(rates)): rates[i] *= (trans[i] * transFunny[i]) #user attenuators if userattenuators: utrans = numpy.ones((len(energies),), numpy.float64) for userattenuator in userattenuators: utrans *= getTableTransmission(userattenuator, energies) for i in range(len(rates)): rates[i] *= utrans[i] #detector term if detector is not None: formula = detector[0] thickness = detector[1] * detector[2] coeffs = thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = (1.0 - numpy.exp(-coeffs)) except OverflowError: #deal with underflows reported as overflows trans = numpy.ones(len(energies), numpy.float64) for i in range(len(energies)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in detector transmission term") else: try: trans[i] = 1.0 - numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass for i in range(len(rates)): rates[i] *= trans[i] i = 0 for transition in transitions: outputDict[ele][transition]['rate'] = rates[i] * 1 i += 1 return outputDict def getMultilayerFluorescence(multilayer0, energyList, layerList = None, weightList=None, flagList = None, fulloutput = None, beamfilters = None, elementsList = None, attenuators = None, userattenuators = None, alphain = None, alphaout = None, cascade = None, detector= None, funnyfilters=None, forcepresent=None, secondary=None): if multilayer0 is None: return [] if secondary: print("Use fisx library ro deal with secondary excitation") print("Ignoring secondary excitation request") secondary=False if len(multilayer0): if type(multilayer0[0]) != type([]): multilayer=[multilayer0 * 1] else: multilayer=multilayer0 * 1 if fulloutput is None:fulloutput = 0 if (type(energyList) != type([])) and \ (type(energyList) != numpy.ndarray): energyList = [energyList] energyList = numpy.array(energyList, dtype=numpy.float64) if layerList is None: layerList = list(range(len(multilayer))) if type(layerList) != type([]): layerList = [layerList] if elementsList is not None: if type(elementsList) != type([]): elementsList = [elementsList] if weightList is not None: if (type(weightList) != type([])) and \ (type(weightList) != numpy.ndarray): weightList = [weightList] weightList = numpy.array(weightList, dtype=numpy.float64) else: weightList = numpy.ones(len(energyList)).astype(numpy.float64) if flagList is not None: if (type(flagList) != type([])) and \ (type(flagList) != numpy.ndarray): flagList = [flagList] flagList = numpy.array(flagList) else: flagList = numpy.ones(len(energyList)).astype(numpy.float64) optimized = 0 if beamfilters is None:beamfilters = [] if len(beamfilters): if type(beamfilters[0]) != type([]): beamfilters=[beamfilters] if elementsList is not None: if len(elementsList): if type(elementsList[0]) == type([]): if len(elementsList[0]) == 3: optimized = 1 if attenuators is None: attenuators = [] if userattenuators is None: userattenuators = [] if beamfilters is None: beamfilters = [] if alphain is None: alphain = 45.0 if alphaout is None: alphaout = 45.0 if alphain >= 0: sinAlphaIn = numpy.sin(alphain * numpy.pi / 180.) else: sinAlphaIn = numpy.sin(-alphain * numpy.pi / 180.) sinAlphaOut = numpy.sin(alphaout * numpy.pi / 180.) origattenuators = attenuators * 1 newbeamfilters = beamfilters * 1 if alphain < 0: ilayerindexes = list(range(len(multilayer))) ilayerindexes.reverse() for ilayer in ilayerindexes: newbeamfilters.append(multilayer[ilayer] * 1) newbeamfilters[-1][2] = newbeamfilters[-1][2]/sinAlphaIn del newbeamfilters[-1] #normalize incoming beam i0 = numpy.nonzero(flagList>0)[0] weightList = numpy.take(weightList, i0).astype(numpy.float64) energyList = numpy.take(energyList, i0).astype(numpy.float64) flagList = numpy.take(flagList, i0).astype(numpy.float64) #normalize selected weights total = sum(weightList) if 0: #old way for beamfilter in beamfilters: formula = beamfilter[0] thickness = beamfilter[1] * beamfilter[2] coeffs = thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energyList)['total']) try: trans = numpy.exp(-coeffs) except OverflowError: for coef in coeffs: if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") trans = 0.0 * coeffs weightList = weightList * trans else: pass #new way will be made later #formula = [] #thickness = [] #for beamfilter in newbeamfilters: # formula.append(beamfilter[0] * 1) # thickness.append(beamfilter[1] * beamfilter[2]) #trans = getMaterialTransmission(formula, thickness, energyList, # density=1.0, thickness = sum(thickness))['transmission'] #weightList = weightList * trans if total <= 0.0: raise ValueError("Sum of weights lower or equal to 0") weightList = weightList / total #forcepresent is to set concentration 1 for the fit #useless if elementsList is not given if forcepresent is None:forcepresent=0 forcedElementsList = [] if elementsList is not None: if forcepresent: forcedElementsList = elementsList * 1 keys = [] for ilayer in list(range(len(multilayer))): pseudomatrix = multilayer[ilayer] * 1 eleDict = getMaterialMassFractions([pseudomatrix[0]], [1.0]) keys += eleDict.keys() for ele in keys: todelete = [] for i in list(range(len(forcedElementsList))): group = forcedElementsList[i] if optimized: groupElement = group[1] * 1 else: groupElement = group * 1 if ele == groupElement: todelete.append(i) todelete.reverse() for i in todelete: del forcedElementsList[i] else: forcedElementsList = [] #print "forcedElementsList = ",forcedElementsList #import time #t0 = time.time() result = [] dictListList = [] elementsListFinal = [] for ilayer in list(range(len(multilayer))): dictList = [] if ilayer > 0: #arrange attenuators origattenuators.append(multilayer[ilayer-1] * 1) origattenuators[-1][2] = origattenuators[-1][2]/sinAlphaOut #arrange beamfilters if alphain >= 0: newbeamfilters.append(multilayer[ilayer-1] * 1) newbeamfilters[-1][2] = newbeamfilters[-1][2]/sinAlphaIn else: del newbeamfilters[-1] if 0: print(multilayer[ilayer], "beamfilters =", newbeamfilters) print(multilayer[ilayer], "attenuators =", origattenuators) if ilayer not in layerList:continue pseudomatrix = multilayer[ilayer] * 1 newelementsList = [] eleDict = getMaterialMassFractions([pseudomatrix[0]], [1.0]) if eleDict == {}: raise ValueError("Invalid layer material %s" % pseudomatrix[0]) keys = list(eleDict.keys()) if elementsList is None: newelementsList = keys for key in keys: if key not in elementsListFinal: elementsListFinal.append(key) else: newelementsList = [] if optimized: for ele in keys: for group in elementsList: if ele == group[1]: newelementsList.append(group) else: for ele in keys: for group in elementsList: if ele == group: newelementsList.append(group) for group in forcedElementsList: newelementsList.append(group * 1) if optimized: eleDict[group[1] * 1] = {} eleDict[group[1] * 1] = 1.0 else: eleDict[group * 1] = {} eleDict[group * 1] = 1.0 if not len(newelementsList): dictList.append({}) result.append({}) continue #here I could recalculate the dictionary if optimized: userElementDict = _getAttFilteredElementDict(newelementsList, attenuators=origattenuators, userattenuators=userattenuators, detector=detector, funnyfilters=funnyfilters, energy=max(energyList)) workattenuators = None workuserattenuators = None workdetector = None workfunnyfilters = None else: userElementDict = None workattenuators = origattenuators * 1 workuserattenuators = userattenuators * 1 if detector is not None: workdetector = detector * 1 else: workdetector = None if funnyfilters is not None: workfunnyfilters = funnyfilters * 1 else: workfunnyfilters = None newweightlist = numpy.ones(weightList.shape,numpy.float64) if len(newbeamfilters): coeffs = numpy.zeros(len(energyList), numpy.float64) for beamfilter in newbeamfilters: formula = beamfilter[0] thickness = beamfilter[1] * beamfilter[2] coeffs += thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energyList)['total']) try: trans = numpy.exp(-coeffs) except OverflowError: #deal with underflows reported as overflows trans = numpy.zeros(len(energyList), numpy.float64) for i in range(len(energyList)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") else: try: trans[i] = numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass newweightlist = weightList * trans else: newweightlist = weightList * 1 #nobody warrants the list ordered if optimized: newelementsListWork = newelementsList * 1 else: newelementsListWork = [newelementsList * 1] matrixmutotalexcitation = getMaterialMassAttenuationCoefficients(pseudomatrix[0], 1.0, energyList)['total'] for justone in newelementsListWork: if optimized: if justone[2].upper()[0] == 'K': shellIdent = 'K' elif len(justone[2]) == 2: shellIdent = justone[2].upper() elif justone[2].upper() == 'L': shellIdent = 'L3' elif justone[2].upper() == 'M': shellIdent = 'M5' else: raise ValueError("Unknown Element shell %s" % justone[2]) bindingEnergy = Element[justone[1]]['binding'][shellIdent] nrgi = numpy.nonzero(energyList >= bindingEnergy)[0] if len(nrgi) == 0:nrgi=[0] justoneList = [justone] matrixmutotalfluorescence = None if len(nrgi) > 1: #calculate all the matrix mass attenuation coefficients #for the fluorescent energies outside the energy loop. #the energy list could also be taken out of this loop. element_energies = [] for item in userElementDict[justone[1]][justone[2]+ " xrays"]: element_energies.append(userElementDict[justone[1]]\ [item]['energy']) matrixmutotalfluorescence = getMaterialMassAttenuationCoefficients(pseudomatrix[0], 1.0, element_energies)['total'] else: matrixmutotalfluorescence = None else: justoneList = justone nrgi = range(len(energyList)) matrixmutotalfluorescence= None for iene in nrgi: energy = energyList[iene] * 1.0 #print "before origattenuators = ",origattenuators dict = getFluorescence(pseudomatrix, energy, attenuators = workattenuators, userattenuators = workuserattenuators, alphain = alphain, alphaout = alphaout, #elementsList = newelementsList, elementsList = justoneList, cascade = cascade, detector = workdetector, funnyfilters = workfunnyfilters, userElementDict = userElementDict, matrixmutotalfluorescence=matrixmutotalfluorescence, matrixmutotalexcitation=matrixmutotalexcitation[iene]*1.0) #print "after origattenuators = ",origattenuators if optimized: #give back with concentration 1 for ele in dict.keys(): dict[ele]['weight'] = newweightlist[iene] * 1.0 dict[ele]['mass fraction'] = eleDict[ele] * 1.0 else: #already corrected for concentration for ele in dict.keys(): dict[ele]['weight'] = newweightlist[iene] * eleDict[ele] dict[ele]['mass fraction'] = eleDict[ele] * 1.0 #if ele == "Cl":print "dict[ele]['mass fraction'] ",eleDict[ele] dictList.append(dict) if optimized: pass else: newelementsList = [[getz(x),x] for x in newelementsList] if fulloutput: result.append(_combineMatrixFluorescenceDict(dictList, newelementsList)) dictListList += dictList #print "total elapsed = ",time.time() - t0 if fulloutput: if optimized: return [_combineMatrixFluorescenceDict(dictListList, elementsList)] + result else: newelementsList = [[getz(x),x] for x in (elementsListFinal + forcedElementsList)] return [_combineMatrixFluorescenceDict(dictListList, newelementsList)] +result else: if optimized: return _combineMatrixFluorescenceDict(dictListList, elementsList) else: newelementsList = [[getz(x),x] for x in (elementsListFinal + forcedElementsList)] return _combineMatrixFluorescenceDict(dictListList, newelementsList) def _combineMatrixFluorescenceDict(dictList, elementsList0): finalDict = {} elementsList = [[x[0], x[1]] for x in elementsList0] for z,ele in elementsList: #print ele finalDict[ele] = {} finalDict[ele]['rates'] = {} finalDict[ele]['mass fraction'] = {} finalDict[ele]['rays']=[] for dict in dictList: if not (ele in dict):continue if not len(dict[ele]['rays']):continue finalDict[ele]['mass fraction'] = dict[ele]['mass fraction'] * 1.0 for key in dict[ele]['rates'].keys(): if key not in finalDict[ele]['rates']: if not ('weight' in dict[ele]): dict[ele]['weight']=dict['weight'] * 1.0 finalDict[ele]['rates'][key] = dict[ele]['rates'][key] * dict[ele]['weight'] else: if not ('weight' in dict[ele]): dict[ele]['weight']=dict['weight'] * 1.0 finalDict[ele]['rates'][key] += dict[ele]['rates'][key] * dict[ele]['weight'] for transitions0 in dict[ele]['rays']: #try to avoid creation of new references transitions = transitions0 * 1 if transitions not in dict[ele]['rates'].keys(): continue if transitions not in finalDict[ele]['rays']: finalDict[ele]['rays'].append(transitions) finalDict[ele][transitions] = [] if not (dict[ele]['weight'] > 0.0): continue else: w = dict[ele]['weight'] for transition0 in dict[ele][transitions]: transition = transition0 * 1 #print ele,"transition = ",transition if not (transition in finalDict[ele]): finalDict[ele][transition] = {'rate':0.0, 'energy':dict[ele][transition]['energy'] * 1} if transition not in finalDict[ele][transitions]: finalDict[ele][transitions].append(transition) if transition not in finalDict[ele].keys(): finalDict[ele][transition] = {'rate':0.0} if transition in dict[ele]: if transition in finalDict[ele]: finalDict[ele][transition]['rate'] += w * dict[ele][transition]['rate'] else: finalDict[ele][transition] = {} finalDict[ele][transition]['rate'] = w * dict[ele][transition]['rate'] else: print(dict[ele][transitions]) print(transition) print("is this an error?") sys.exit(0) return finalDict def getScattering(matrix, energy, attenuators = None, alphain = None, alphaout = None, elementsList = None, cascade=None, detector=None): if alphain is None: alphain = 45.0 if alphaout is None: alphaout = 45.0 sinAlphaIn = numpy.sin(alphain * (numpy.pi)/180.) sinAlphaOut = numpy.sin(alphaout * (numpy.pi)/180.) if attenuators is None: attenuators = [] if len(attenuators): if type(attenuators[0]) != type([]): attenuators=[attenuators] if detector is not None: if type(detector) != type([]): raise TypeError("Detector must be a list as [material, density, thickness]") elif len(detector) != 3: raise ValueError("Detector must have the form [material, density, thickness]") if energy is None: raise ValueError("Invalid Energy") if elementsList is None: #get material elements and concentrations eleDict = getMaterialMassFractions([matrix[0]], [1.0]) if eleDict == {}: return {} #sort the elements according to atomic number (not needed because the output will be a dictionary) keys = eleDict.keys() elementsList = [[getz(x),x] for x in keys] elementsList.sort() else: if (type(elementsList) != type([])) and (type(elementsList) != types.TupleType): elementsList = [elementsList] elementsList = [[getz(x),x] for x in elementsList] elementsList.sort() eleDict = {} for z, ele in elementsList: eleDict[ele] = 1.0 if energy <= 0.10: raise ValueError("Invalid Energy %.5g keV" % energy) #do the job outputDict = {} for z,ele in elementsList: outputDict[ele] ={} outputDict[ele]['mass fraction'] = eleDict[ele] outputDict[ele]['rates'] = {} outputDict[ele]['rays'] = ['Coherent','Compton'] for rays in outputDict[ele]['rays']: theta = alphain + alphaout outputDict[ele][rays] = {} if rays == 'Coherent': outputDict[ele][rays]['energy'] = energy rates=[getElementCoherentDifferentialCrossSection(ele, theta, energy)] else: outputDict[ele][rays]['energy'] = IncoherentScattering.getComptonScatteringEnergy(energy, theta) rates=[getElementComptonDifferentialCrossSection(ele, theta, energy)] ene = outputDict[ele][rays]['energy'] energies =[ene] #I do not know if to include this loop in the previous one (because rates are 0.0 sometimes) #attenuators for attenuator in attenuators: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] coeffs = thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = numpy.exp(-coeffs) except OverflowError: #deal with underflows reported as overflows trans = numpy.zeros(len(energies), numpy.float64) for i in range(len(energies)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") else: try: trans[i] = numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass trans = trans for i in range(len(rates)): rates[i] *= trans[i] #detector term if detector is not None: formula = detector[0] thickness = detector[1] * detector[2] coeffs = thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = (1.0 - numpy.exp(-coeffs)) except OverflowError: #deal with underflows reported as overflows trans = numpy.ones(len(rates), numpy.float64) for i in range(len(rates)): coef = coeffs[i] if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") else: try: trans[i] = 1.0 - numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass for i in range(len(rates)): rates[i] *= trans[i] #matrix term formula = matrix[0] thickness = matrix[1] * matrix[2] energies += [energy] allcoeffs = getMaterialMassAttenuationCoefficients(formula,1.0,energies) mutotal = allcoeffs['total'] del energies[-1] i = 0 if 1: #thick target term trans = outputDict[ele]['mass fraction'] * 1.0/(mutotal[-1] + mutotal[i] * (sinAlphaIn/sinAlphaOut)) #correction term if thickness > 0.0: if abs(sinAlphaIn) > 0.0: try: expterm = numpy.exp(-((mutotal[-1]/sinAlphaIn) +(mutotal[i]/sinAlphaOut)) * thickness) except OverflowError: if -((mutotal[-1]/sinAlphaIn) +(mutotal[i]/sinAlphaOut)) * thickness > 0.0: raise ValueError("Positive exponent in transmission term") expterm = 0.0 trans *= (1.0 - expterm) #if ele == 'Pb': # oldRatio.append(newpeaks[i][0]) # print "energy = %.3f ratio=%.5f transmission = %.5g final=%.5g" % (newpeaks[i][1], newpeaks[i][0],trans,trans * newpeaks[i][0]) rates[i] *= trans outputDict[ele][rays]['rate'] = rates[i] outputDict[ele]['rates'][rays] = sum(rates) #outputDict[ele][rays]= Element[ele]['rays'] * 1 return outputDict def getFluorescence(matrix, energy, attenuators = None, alphain = None, alphaout = None, elementsList = None, cascade=None, detector=None, funnyfilters=None, userElementDict=None, matrixmutotalfluorescence=None, matrixmutotalexcitation=None, userattenuators=None): """ getFluorescence(matrixlist, energy, attenuators = None, alphain = None, alphaout = None, elementsList = None, cascade=None, detector=None) matrixlist is a list of the form [material, density, thickness] energy is the incident beam energy attenuators is a list of the form [[material1, density1, thickness1],....] alphain is the incoming beam angle with sample surface alphaout is the outgoing beam angle with sample surface if a given elements list is given, the fluorescence rate will be calculated for ONLY for those elements without taking into account if they are present in the matrix and considering a mass fraction of 1 to all of them. This should allow a program to fit directly concentrations. cascade is a flag to consider vacancy propagation (it is a crude approximation) detector is just one attenuator more but treated as (1 - Transmission) [material, density, thickness] These formulae are strictly valid only for parallel beams. Needs to be corrected for detector efficiency (at least solid angle) and incoming intensity. Secondary transitions are neglected. """ if alphain is None: alphain = 45.0 if alphaout is None: alphaout = 45.0 if userElementDict is None:userElementDict = {} bottomExcitation = False if (alphain < 0.0) and (alphaout < 0.0): #it is the same sinAlphaIn = numpy.sin(-alphain * (numpy.pi)/180.) sinAlphaOut = numpy.sin(-alphaout * (numpy.pi)/180.) elif (alphain < 0.0) and (alphaout > 0.0): #bottom excitation #print "bottom excitation case" bottomExcitation = True sinAlphaIn = numpy.sin(-alphain * (numpy.pi)/180.) sinAlphaOut = numpy.sin(alphaout * (numpy.pi)/180.) else: sinAlphaIn = numpy.sin(alphain * (numpy.pi)/180.) sinAlphaOut = numpy.sin(alphaout * (numpy.pi)/180.) if cascade is None:cascade=False if attenuators is None: attenuators = [] if userattenuators is None: userattenuators = [] if len(attenuators): if type(attenuators[0]) != type([]): attenuators=[attenuators] if funnyfilters is None: funnyfilters = [] if len(funnyfilters): if type(funnyfilters[0]) != type([]): funnyfilters=[funnyfilters] if detector is not None: if type(detector) != type([]): raise TypeError(\ "Detector must be a list as [material, density, thickness]") elif len(detector) != 3: raise ValueError(\ "Detector must have the form [material, density, thickness]") if energy is None: raise ValueError("Invalid Energy") elementsRays = None if elementsList is None: #get material elements and concentrations eleDict = getMaterialMassFractions([matrix[0]], [1.0]) if eleDict == {}: return {} #sort the elements according to atomic number #(not needed because the output will be a dictionary) keys = eleDict.keys() elementsList = [[getz(x),x] for x in keys] elementsList.sort() else: if (type(elementsList) != type([])) and\ (type(elementsList) != types.TupleType): elementsList = [elementsList] if len(elementsList[0]) == 3: raysforloopindex = 0 elementsList.sort() elementsRays = [x[2] for x in elementsList] elementsList = [[x[0],x[1]] for x in elementsList] else: elementsList = [[getz(x),x] for x in elementsList] elementsList.sort() eleDict = {} for z, ele in elementsList: eleDict[ele] = 1.0 if energy <= 0.10: raise ValueError("Invalid Energy %.5g keV" % energy) #do the job outputDict = {} shelllist = ['K', 'L1', 'L2', 'L3','M1', 'M2', 'M3', 'M4', 'M5'] for z,ele in elementsList: #use own unfiltered dictionary if ele in userElementDict: elementDict = userElementDict[ele] else: elementDict = _getUnfilteredElementDict(ele, energy) if not (ele in outputDict): outputDict[ele] ={} outputDict[ele]['mass fraction'] = eleDict[ele] if not ('rates' in outputDict[ele]): outputDict[ele]['rates'] = {} #get the fluorescence term for all shells fluoWeights = _getFluorescenceWeights(ele, energy, normalize = False, cascade=cascade) outputDict[ele]['rays'] = elementDict['rays'] * 1 if elementsRays is None: raysforloop = elementDict['rays'] else: if type(elementsRays[raysforloopindex]) != type([]): raysforloop = [elementsRays[raysforloopindex] + " xrays"] else: raysforloop = [] for item in elementsRays[raysforloopindex]: raysforloop.append(item + " xrays") raysforloopindex +=1 for rays in raysforloop: if rays not in elementDict['rays']:continue outputDict[ele][rays] = [] rates = [] energies = [] transitions = elementDict[rays] for transition in transitions: outputDict[ele][rays] += [transition] outputDict[ele][transition]={} outputDict[ele][transition]['rate'] = 0.0 if transition[0] == "K": rates.append(fluoWeights[0] * elementDict[transition]['rate']) else: rates.append(fluoWeights[shelllist.index(transition[0:2])] * elementDict[transition]['rate']) ene = elementDict[transition]['energy'] energies += [ene] outputDict[ele][transition]['energy'] = ene #I do not know if to include this loop in the previous one (because rates are 0.0 sometimes) #attenuators coeffs = numpy.zeros(len(energies), numpy.float64) for attenuator in attenuators: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] coeffs += thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = numpy.exp(-coeffs) except OverflowError: for coef in coeffs: if coef < 0.0: raise ValueError("Positive exponent in attenuators transmission term") trans = 0.0 * coeffs #funnyfilters coeffs = numpy.zeros(len(energies), numpy.float64) funnyfactor = None for attenuator in funnyfilters: formula = attenuator[0] thickness = attenuator[1] * attenuator[2] if funnyfactor is None: funnyfactor = attenuator[3] else: if abs(attenuator[3] - funnyfactor) > 0.0001: raise ValueError(\ "All funny type filters must have same openning fraction") coeffs += thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) if funnyfactor is None: for i in range(len(rates)): rates[i] *= trans[i] else: try: transFunny = funnyfactor * numpy.exp(-coeffs) +\ (1.0 - funnyfactor) except OverflowError: #deal with underflows reported as overflows transFunny = numpy.zeros(len(energies), numpy.float64) for i in range(len(energies)): coef = coeffs[i] if coef < 0.0: raise ValueError(\ "Positive exponent in funnyfilters transmission term") else: try: transFunny[i] = numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass transFunny = funnyfactor * transFunny + \ (1.0 - funnyfactor) for i in range(len(rates)): rates[i] *= (trans[i] * transFunny[i]) #user attenuators if userattenuators: utrans = numpy.ones((len(energies),), numpy.float64) for userattenuator in userattenuators: utrans *= getTableTransmission(userattenuator, energies) for i in range(len(rates)): rates[i] *= utrans[i] #detector term if detector is not None: formula = detector[0] thickness = detector[1] * detector[2] coeffs = thickness * numpy.array(getMaterialMassAttenuationCoefficients(formula,1.0,energies)['total']) try: trans = (1.0 - numpy.exp(-coeffs)) except OverflowError: #deal with underflows reported as overflows trans = numpy.ones(len(rates), numpy.float64) for i in range(len(rates)): coef = coeffs[i] if coef < 0.0: raise ValueError(\ "Positive exponent in attenuators transmission term") else: try: trans[i] = 1.0 - numpy.exp(-coef) except OverflowError: #if we are here we know it is not an overflow and trans[i] has the proper value pass for i in range(len(rates)): rates[i] *= trans[i] #matrix term formula = matrix[0] thickness = matrix[1] * matrix[2] energies += [energy] if matrixmutotalfluorescence is None: allcoeffs = getMaterialMassAttenuationCoefficients(formula,1.0,energies) mutotal = allcoeffs['total'] else: mutotal = matrixmutotalfluorescence * 1 if matrixmutotalexcitation is None: mutotal.append(getMaterialMassAttenuationCoefficients(formula, 1.0, energy)['total'][0]) else: mutotal.append(matrixmutotalexcitation) #muphoto = allcoeffs['photo'] muphoto = getMaterialMassAttenuationCoefficients(ele,1.0,energy)['photo'] del energies[-1] i = 0 for transition in transitions: #thick target term if rates[i] <= 0.0:trans=0.0 else: if bottomExcitation: denominator = (mutotal[-1] - mutotal[i] * (sinAlphaIn/sinAlphaOut)) if denominator == 0.0: trans = thickness/sinAlphaIn trans = -outputDict[ele]['mass fraction'] *\ muphoto[-1] * trans *\ numpy.exp(-trans*mutotal[-1]) else: trans = -outputDict[ele]['mass fraction'] *\ muphoto[-1]/denominator #correction term if thickness > 0.0: try: expterm = numpy.exp(-(mutotal[-1]/sinAlphaIn) * thickness) -\ numpy.exp(-(mutotal[i]/sinAlphaOut) * thickness) except OverflowError: #print "overflow" if ((-(mutotal[-1]/sinAlphaIn) * thickness) > 0.0) or\ ((-(mutotal[i]/sinAlphaOut) * thickness) > 0.0): raise ValueError("Positive exponent in transmission term") expterm = 0.0 trans *= expterm else: raise ValueError("Incorrect target density and/or thickness") if trans < 0.0: print("trans lower than 0.0. Reset to 0.0") trans = 0.0 else: trans = outputDict[ele]['mass fraction'] *\ muphoto[-1]/(mutotal[-1] + mutotal[i] * (sinAlphaIn/sinAlphaOut)) #correction term if thickness > 0.0: if abs(sinAlphaIn) > 0.0: try: expterm = numpy.exp(-((mutotal[-1]/sinAlphaIn) +(mutotal[i]/sinAlphaOut)) * thickness) except OverflowError: #print "overflow" if -((mutotal[-1]/sinAlphaIn) +(mutotal[i]/sinAlphaOut)) * thickness > 0.0: raise ValueError(\ "Positive exponent in transmission term") expterm = 0.0 trans *= (1.0 - expterm) #if ele == 'Pb': # oldRatio.append(newpeaks[i][0]) # print "energy = %.3f ratio=%.5f transmission = %.5g final=%.5g" % (newpeaks[i][1], newpeaks[i][0],trans,trans * newpeaks[i][0]) rates[i] *= trans outputDict[ele][transition]['rate'] = rates[i] i += 1 outputDict[ele]['rates'][rays] = sum(rates) #outputDict[ele][rays]= Element[ele]['rays'] * 1 return outputDict def getLWeights(ele,energy=None, normalize = None, shellist = None): if normalize is None:normalize = True if shellist is None: shellist = ['L1', 'L2', 'L3'] if type(ele) == type(" "): pass else: ele = getsymbol(int(ele)) if energy is None: #Use the L shell jumps w = getLJumpWeight(ele,excitedshells=[1.0,1.0,1.0]) #weights due to Coster Kronig transitions and fluorescence yields ck= LShell.getCosterKronig(ele) w[0] = w[0] w[1] = w[1] + ck['f12'] * w[0] w[2] = w[2] + ck['f13'] * w[0] + ck['f23'] * w[1] omega = [ getomegal1(ele), getomegal2(ele), getomegal3(ele)] for i in range(len(w)): w[i] *= omega[i] else: #Take into account the cascade as in the getFluorescence method #The PyMCA fit was already using that when there was a matrix but #it was not shown in the Elements Info window. allweights = _getFluorescenceWeights(ele, energy, normalize = False, cascade = True) w = allweights[1:4] if normalize: cum = sum(w) if cum > 0.0: for i in range(len(w)): w[i] /= cum return w def getMWeights(ele,energy=None, normalize = None, shellist = None): if normalize is None:normalize = True if shellist is None: shellist = ['M1', 'M2', 'M3', 'M4', 'M5'] if type(ele) == type(" "): pass else: ele = getsymbol(int(ele)) if energy is None: w = getMJumpWeight(ele,excitedshells=[1.0,1.0,1.0,1.0,1.0]) #weights due to Coster Kronig transitions and fluorescence yields ck= MShell.getCosterKronig(ele) w[0] = w[0] w[1] = w[1] + ck['f12'] * w[0] w[2] = w[2] + ck['f13'] * w[0] + ck['f23'] * w[1] w[3] = w[3] + ck['f14'] * w[0] + ck['f24'] * w[1] + ck['f34'] * w[2] w[4] = w[4] + ck['f15'] * w[0] + ck['f25'] * w[1] + ck['f35'] * w[2] + ck['f45'] * w[3] omega = [ getomegam1(ele), getomegam2(ele), getomegam3(ele), getomegam4(ele), getomegam5(ele)] for i in range(len(w)): w[i] *= omega[i] else: #Take into account the cascade as in the getFluorescence method #The PyMCA fit was already using that when there was a matrix but #it was not shown in the Elements Info window. allweights = _getFluorescenceWeights(ele, energy, normalize = False, cascade = True) w = allweights[4:9] if normalize: cum = sum(w) for i in range(len(w)): if cum > 0.0: w[i] /= cum return w def getxrayenergy(symbol,transition): if len(symbol) > 1: ele = symbol[0].upper() + symbol[1].lower() else: ele = symbol.upper() trans = transition.upper() z = getz(ele) if z > len(ElementBinding): #Give the bindings of the last element energies = ElementBinding[-1] else: energies = ElementBinding[z-1] if len(trans) == 2: trans=trans[0:2]+'2' if trans[0:1] == 'K': i=1 emax = energies[ElementShells.index('K')+1] elif trans[0:2] in ElementShells: i=2 emax = energies[ElementShells.index(trans[0:2])+1] else: #print transition #print "Shell %s not in Element %s Shells" % (trans[0:2], ele) return -1 if trans[i:i+2] in ElementShells: emin = energies[ElementShells.index(trans[i:i+2])+1] else: if (z > 80) and (trans[i:i+2] == "Q1"): emin = 0.003 else: #print "HERE ",trans[i:i+2],transition,z #print "Final shell %s not in Element %s Shells" % (trans[i:i+1], ele) return -1 if emin > emax: if z != 13: print("Warning, negative energy!") print("Please report this message:") print("Symbol=",symbol) print("emin = ",emin) print("emax = ",emax) print("z = ",z) print("transition = ",transition) print("the transition will be ignored") return emax - emin def isValidFormula(compound): #Avoid Fe 2 or Fe-2 or SRM-1832 being considered as valid formulae for c in [" ", "-", "_"]: if c in compound: return False #single element case if compound in Element.keys():return True try: elts= [ w for w in re.split('[0-9]', compound) if w != '' ] nbs= [ int(w) for w in re.split('[a-zA-Z]', compound) if w != '' ] except Exception: return False if len(elts)==1 and len(nbs)==0: if type(elts) == type([]): return False if elts in Element.keys(): return True else: return False if (len(elts)==0 and len(nbs)==0) or (len(elts) != len(nbs)):return False return True def isValidMaterial(compound): if compound in Material.keys():return True elif isValidFormula(compound):return True else:return False def getMaterialKey(compound): matkeys = Material.keys() if compound in matkeys:return compound compoundHigh = compound.upper() matkeysHigh = [] for key in matkeys: matkeysHigh.append(key.upper()) if compoundHigh in matkeysHigh: index = matkeysHigh.index(compoundHigh) return matkeys[index] return None def getmassattcoef(compound, energy=None): """ Usage: getmassattcoef(element symbol/composite, energy in kev) Computes mass attenuation coefficients for a single element or a compound. It gets the info from files generated by XCOM If energy is not given, it gives back a dictionary with the form: dict['energy'] = [energies] dict['coherent'] = [coherent scattering cross section(energies)] dict['compton'] = [incoherent scattering cross section(energies)] dict['photo'] = [photoelectic effect cross section(energies)] dict['pair'] = [pair production cross section(energies)] dict['total'] = [total cross section] A compound is defined with a string as follow: 'C22H10N2O5' means 22 * C, 10 * H, 2 * N, 5 * O xsection = SUM(xsection(zi)*ni*ai) / SUM(ai*ni) zi = Z of each element ni = number of element zi ai = atomic weight of element zi Result in cm2/g """ #single element case if compound in Element.keys(): return getelementmassattcoef(compound,energy) elts= [ w for w in re.split('[0-9]', compound) if w != '' ] nbs= [ int(w) for w in re.split('[a-zA-Z]', compound) if w != '' ] if len(elts)==1 and len(nbs)==0: if elts in Element.keys(): return getelementmassattcoef(compound,energy) else: return {} if (len(elts)==0 and len(nbs)==0) or (len(elts) != len(nbs)): return {} fraction = [Element[elt]['mass'] *nb for (elt, nb) in zip(elts, nbs) ] div = sum(fraction) fraction = [x/div for x in fraction] #print "fraction = ",fraction ddict={} ddict['energy'] = [] ddict['coherent'] = [] ddict['compton'] = [] ddict['photo'] = [] ddict['pair'] = [] ddict['total'] = [] eltindex = 0 if energy is None: energy=[] for ele in elts: xcom_data = getelementmassattcoef(ele,None)['energy'] for ene in xcom_data: if ene not in energy: energy.append(ene) energy.sort() for ele in elts: xcom_data = getelementmassattcoef(ele,None) #now I have to interpolate at the different energies if not hasattr(energy, "__len__"): energy =[energy] eneindex = 0 for ene in energy: if ene < 1.0: if PyMcaEPDL97.EPDL97_DICT[ele]['original']: #make sure the binding energies are those used by this module and not EADL ones PyMcaEPDL97.setElementBindingEnergies(ele, Element[ele]['binding']) tmpDict = PyMcaEPDL97.getElementCrossSections(ele, ene) cohe = tmpDict['coherent'][0] comp = tmpDict['compton'][0] photo = tmpDict['photo'][0] pair = 0.0 else: i0=max(numpy.nonzero(xcom_data['energy'] <= ene)[0]) i1=min(numpy.nonzero(xcom_data['energy'] >= ene)[0]) if (i1 == i0) or (i0>i1): cohe=xcom_data['coherent'][i1] comp=xcom_data['compton'][i1] photo=xcom_data['photo'][i1] pair=xcom_data['pair'][i1] else: if LOGLOG: A=xcom_data['energylog10'][i0] B=xcom_data['energylog10'][i1] logene = numpy.log10(ene) c2=(logene-A)/(B-A) c1=(B-logene)/(B-A) else: A=xcom_data['energy'][i0] B=xcom_data['energy'][i1] c2=(ene-A)/(B-A) c1=(B-ene)/(B-A) cohe= pow(10.0,c2*xcom_data['coherentlog10'][i1]+\ c1*xcom_data['coherentlog10'][i0]) comp= pow(10.0,c2*xcom_data['comptonlog10'][i1]+\ c1*xcom_data['comptonlog10'][i0]) photo=pow(10.0,c2*xcom_data['photolog10'][i1]+\ c1*xcom_data['photolog10'][i0]) if xcom_data['pair'][i1] > 0.0: c2 = c2*numpy.log10(xcom_data['pair'][i1]) if xcom_data['pair'][i0] > 0.0: c1 = c1*numpy.log10(xcom_data['pair'][i0]) pair = pow(10.0,c1+c2) else: pair =0.0 else: pair =0.0 if eltindex == 0: ddict['energy'].append(ene) ddict['coherent'].append(cohe *fraction[eltindex]) ddict['compton'].append(comp *fraction[eltindex]) ddict['photo'].append(photo *fraction[eltindex]) ddict['pair'].append(pair*fraction[eltindex]) ddict['total'].append((cohe+comp+photo+pair)*fraction[eltindex]) else: ddict['coherent'][eneindex] += cohe *fraction[eltindex] ddict['compton'] [eneindex] += comp *fraction[eltindex] ddict['photo'] [eneindex] += photo *fraction[eltindex] ddict['pair'] [eneindex] += pair *fraction[eltindex] ddict['total'] [eneindex] += (cohe+comp+photo+pair) * fraction[eltindex] eneindex += 1 eltindex += 1 return ddict def __materialInCompoundList(lst): for item in lst: if item in Material.keys(): return True return False def getTableTransmission(tableDict, energy): """ tableDict is a dictionary containing the keys energy and transmission. It gets the transmission at the given energy by linear interpolation. The energy is in keV. Values below the lowest energy get transmission equal to the first table value. Values above the greates energy get transmission equal to the last table value. """ # use a lazy import from fisx import TransmissionTable tTable = TransmissionTable() if type(tableDict) == type([]): tTable.setTransmissionTableFromLists(tableDict[0], tableDict[1]) else: tTable.setTransmissionTableFromLists(tableDict["energy"], tableDict["transmission"]) return tTable.getTransmission(energy) def getMaterialTransmission(compoundList0, fractionList0, energy0 = None, density=None, thickness=None, listoutput=True): """ Usage: getMaterialTransmission(compoundList, fractionList, energy = None, density=None, thickness=None): Input compoundlist - List of elements, compounds or materials fractionlist - List of floats indicating the amount of respective material energy - Photon energy (it can be a list) density - Density in g/cm3 (default is 1.0) thickness - Thickness in cm (default is 1.0) The product density * thickness has to be in g/cm2 Output Detailed dictionary. """ if density is None: density = 1.0 if thickness is None: thickness = 1.0 dict = getMaterialMassAttenuationCoefficients(compoundList0, fractionList0, energy0) energy = numpy.array(dict['energy'],numpy.float64) mu = numpy.array(dict['total'],numpy.float64) * density * thickness if energy0 is not None: if type(energy0) != type([]): listoutput = False if listoutput: dict['energy'] = energy.tolist() dict['density'] = density dict['thickness'] = thickness dict['transmission'] = numpy.exp(-mu).tolist() else: dict['energy'] = energy dict['density'] = density dict['thickness'] = thickness dict['transmission'] = numpy.exp(-mu) return dict def getMaterialMassFractions(compoundList0, fractionList0): return getMaterialMassAttenuationCoefficients(compoundList0, fractionList0, None, massfractions=True) def getMaterialMassAttenuationCoefficients(compoundList0, fractionList0, energy0 = None,massfractions=False): """ Usage: getMaterialMassAttenuationCoefficients(compoundList, fractionList, energy = None,massfractions=False) compoundList - List of compounds into the material fractionList - List of masses of each compound energy - Energy at which the values are desired massfractions- Flag to supply mass fractions on output """ if type(compoundList0) != type([]): compoundList = [compoundList0] else: compoundList = compoundList0 if type(fractionList0) == numpy.ndarray: fractionList = fractionList0.tolist() elif type(fractionList0) != type([]): fractionList = [fractionList0] else: fractionList = fractionList0 fractionList = [float(x) for x in fractionList] while __materialInCompoundList(compoundList): total=sum(fractionList) compoundFractionList = [x/total for x in fractionList] #allow materials in compoundList newcompound = [] newfraction = [] deleteitems = [] for compound in compoundList: if compound in Material.keys(): if type(Material[compound]['CompoundList']) != type([]): Material[compound]['CompoundList']=[Material[compound]['CompoundList']] if type(Material[compound]['CompoundFraction']) != type([]): Material[compound]['CompoundFraction']=[Material[compound]['CompoundFraction']] Material[compound]['CompoundFraction'] = [float(x) for x in Material[compound]['CompoundFraction']] total = sum(Material[compound]['CompoundFraction']) j = compoundList.index(compound) compoundfraction = fractionList[j] i = 0 for item in Material[compound]['CompoundList']: newcompound.append(item) newfraction.append(Material[compound]['CompoundFraction'][i] * compoundfraction /total) i += 1 deleteitems.append(j) if len(deleteitems): deleteitems.reverse() for i in deleteitems: del compoundList[i] del fractionList[i] for i in range(len(newcompound)): compoundList.append(newcompound[i]) fractionList.append(newfraction[i]) total=sum(fractionList) compoundFractionList = [float(x)/total for x in fractionList] materialElements = {} energy = energy0 if energy0 is not None: if type(energy0) == type(2.): energy = [energy0] elif type(energy0) == type(1): energy = [1.0 * energy0] elif type(energy0) == numpy.ndarray: energy = energy0.tolist() for compound, compoundFraction in zip(compoundList, compoundFractionList): elts=[] #get energy list if compound in Element.keys(): elts=[compound] nbs =[1] else: elts= [ w for w in re.split('[0-9]', compound) if w != '' ] try: nbs= [ int(w) for w in re.split('[a-zA-Z]', compound) if w != '' ] except Exception: raise ValueError("Compound '%s' not understood" % compound) if len(elts)==1 and len(nbs)==0: elts=[compound] nbs =[1] if (len(elts)==0 and len(nbs)==0) or (len(elts) != len(nbs)): print("compound %s not understood" % compound) raise ValueError("compound %s not understood" % compound) #the proportion of the element in that compound times the compound fraction fraction = [Element[elt]['mass'] *nb for (elt, nb) in zip(elts, nbs) ] div = compoundFraction/sum(fraction) fraction = [x * div for x in fraction] if energy is None: #get energy list energy = [] for ele in elts: xcom_data = getelementmassattcoef(ele,None)['energy'] for ene in xcom_data: if ene not in energy: energy.append(ene) for ele in elts: if ele not in materialElements.keys(): materialElements[ele] = fraction[elts.index(ele)] else: materialElements[ele] += fraction[elts.index(ele)] if massfractions == True: return materialElements if energy0 is None: energy.sort() #I have the energy grid, the elements and their fractions dict={} dict['energy'] = [] dict['coherent'] = [] dict['compton'] = [] dict['photo'] = [] dict['pair'] = [] dict['total'] = [] eltindex = 0 for ele in materialElements.keys(): if 'xcom' in Element[ele]: xcom_data = Element[ele]['xcom'] else: xcom_data = getelementmassattcoef(ele,None) #now I have to interpolate at the different energies if (type(energy) != type([])): energy =[energy] eneindex = 0 for ene in energy: if ene < 1.0: if PyMcaEPDL97.EPDL97_DICT[ele]['original']: #make sure the binding energies are those used by this module and not EADL ones PyMcaEPDL97.setElementBindingEnergies(ele, Element[ele]['binding']) tmpDict = PyMcaEPDL97.getElementCrossSections(ele, ene) cohe = tmpDict['coherent'][0] comp = tmpDict['compton'][0] photo = tmpDict['photo'][0] pair = 0.0 else: i0=max(numpy.nonzero(xcom_data['energy'] <= ene)[0]) i1=min(numpy.nonzero(xcom_data['energy'] >= ene)[0]) if (i1 == i0) or (i0>i1): cohe=xcom_data['coherent'][i1] comp=xcom_data['compton'][i1] photo=xcom_data['photo'][i1] pair=xcom_data['pair'][i1] else: if LOGLOG: A=xcom_data['energylog10'][i0] B=xcom_data['energylog10'][i1] logene = numpy.log10(ene) c2=(logene-A)/(B-A) c1=(B-logene)/(B-A) else: A=xcom_data['energy'][i0] B=xcom_data['energy'][i1] c2=(ene-A)/(B-A) c1=(B-ene)/(B-A) cohe= pow(10.0,c2*xcom_data['coherentlog10'][i1]+\ c1*xcom_data['coherentlog10'][i0]) comp= pow(10.0,c2*xcom_data['comptonlog10'][i1]+\ c1*xcom_data['comptonlog10'][i0]) photo=pow(10.0,c2*xcom_data['photolog10'][i1]+\ c1*xcom_data['photolog10'][i0]) if xcom_data['pair'][i1] > 0.0: c2 = c2*numpy.log10(xcom_data['pair'][i1]) if xcom_data['pair'][i0] > 0.0: c1 = c1*numpy.log10(xcom_data['pair'][i0]) pair = pow(10.0,c1+c2) else: pair =0.0 else: pair =0.0 if eltindex == 0: dict['energy'].append(ene) dict['coherent'].append(cohe * materialElements[ele]) dict['compton'].append(comp * materialElements[ele]) dict['photo'].append(photo * materialElements[ele]) dict['pair'].append(pair* materialElements[ele]) dict['total'].append((cohe+comp+photo+pair)* materialElements[ele]) else: dict['coherent'][eneindex] += cohe * materialElements[ele] dict['compton'] [eneindex] += comp * materialElements[ele] dict['photo'] [eneindex] += photo * materialElements[ele] dict['pair'] [eneindex] += pair * materialElements[ele] dict['total'] [eneindex] += (cohe+comp+photo+pair) * materialElements[ele] eneindex += 1 eltindex += 1 return dict def getcandidates(energy,threshold=None,targetrays=None): if threshold is None: threshold = 0.010 if targetrays is None: targetrays=['K', 'L1', 'L2', 'L3', 'M'] if type(energy) != type([]): energy = [energy] if type(targetrays) != type([]): targetrays = [targetrays] #K lines lines ={} index = 0 for ene in energy: lines[index] = {'energy':ene, 'elements':[]} for ele in ElementList: for ray in targetrays: rays = ray + " xrays" if 'rays' in Element[ele]: for transition in Element[ele][rays]: e = Element[ele][transition]['energy'] r = Element[ele][transition]['rate'] if abs(ene-e) < threshold: if ele not in lines[index]['elements']: lines[index]['elements'].append(ele) lines[index][ele]=[] lines[index][ele].append([transition, e, r]) index += 1 return lines def getElementFormFactor(ele, theta, energy): if ele in CoherentScattering.COEFFICIENTS.keys(): return CoherentScattering.getElementFormFactor(ele, theta, energy) else: try: z = int(ele) ele = getsymbol(z) return CoherentScattering.getElementFormFactor(ele, theta, energy) except Exception: raise ValueError("Unknown element %s" % ele) def getElementCoherentDifferentialCrossSection(ele, theta, energy, p1=None): #if ele in CoherentScattering.COEFFICIENTS.keys(): if ele in ElementList: value=CoherentScattering.\ getElementCoherentDifferentialCrossSection(ele, theta, energy, p1) else: try: z = int(ele) ele = getsymbol(z) value=CoherentScattering.\ getElementCoherentDifferentialCrossSection(ele, theta, energy, p1) except Exception: raise ValueError("Unknown element %s" % ele) #convert from cm2/atom to cm2/g return (value * AVOGADRO_NUMBER)/ Element[ele]['mass'] def getElementIncoherentScatteringFunction(ele, theta, energy): if ele in ElementList: value = IncoherentScattering.\ getElementIncoherentScatteringFunction(ele, theta, energy) else: try: z = int(ele) ele = getsymbol(z) value = IncoherentScattering.\ getElementIncoherentScatteringFunction(ele, theta, energy) except Exception: raise ValueError("Unknown element %s" % ele) return value def getElementComptonDifferentialCrossSection(ele, theta, energy, p1=None): if ele in ElementList: value = IncoherentScattering.\ getElementComptonDifferentialCrossSection(ele, theta, energy, p1) else: try: z = int(ele) ele = getsymbol(z) value = IncoherentScattering.\ getElementComptonDifferentialCrossSection(ele, theta, energy, p1) except Exception: raise ValueError("Unknown element %s" % ele) return (value * 6.022142E23)/ Element[ele]['mass'] def getelementmassattcoef(ele,energy=None): """ Usage: getelementmassattcoef(element symbol, energy in kev) It gets the info from files generated by XCOM If energy is not given, it gives back a dictionary with the form: dict['energy'] = [energies] dict['coherent'] = [coherent scattering cross section(energies)] dict['compton'] = [incoherent scattering cross section(energies)] dict['photo'] = [photoelectic effect cross section(energies)] dict['pair'] = [pair production cross section(energies)] dict['total'] = [total cross section] """ if 'xcom' not in Element[ele].keys(): dirmod = PyMcaDataDir.PYMCA_DATA_DIR #read xcom file #print dirmod+"/"+ele+".mat" xcomfile = os.path.join(dirmod, "attdata") xcomfile = os.path.join(xcomfile, ele+".mat") if not os.path.exists(xcomfile): #freeze does bad things with the path ... dirmod = os.path.dirname(dirmod) xcomfile = os.path.join(dirmod, "attdata") xcomfile = os.path.join(xcomfile, ele+".mat") if dirmod.lower().endswith(".zip"): dirmod = os.path.dirname(dirmod) xcomfile = os.path.join(dirmod, "attdata") xcomfile = os.path.join(xcomfile, ele+".mat") if not os.path.exists(xcomfile): print("Cannot find file ",xcomfile) raise IOError("Cannot find %s" % xcomfile) f = open(xcomfile, 'r') line=f.readline() while (line.split('ENERGY')[0] == line): line = f.readline() Element[ele]['xcom'] = {} Element[ele]['xcom']['energy'] =[] Element[ele]['xcom']['coherent'] =[] Element[ele]['xcom']['compton'] =[] Element[ele]['xcom']['photo'] =[] Element[ele]['xcom']['pair'] =[] Element[ele]['xcom']['total'] =[] line = f.readline() while (line.split('COHERENT')[0] == line): line = line.split() for value in line: Element[ele]['xcom']['energy'].append(float(value)*1000.) line = f.readline() Element[ele]['xcom']['energy']=numpy.array(Element[ele]['xcom']['energy']) line = f.readline() while (line.split('INCOHERENT')[0] == line): line = line.split() for value in line: Element[ele]['xcom']['coherent'].append(float(value)) line = f.readline() Element[ele]['xcom']['coherent']=numpy.array(Element[ele]['xcom']['coherent']) line = f.readline() while (line.split('PHOTO')[0] == line): line = line.split() for value in line: Element[ele]['xcom']['compton'].append(float(value)) line = f.readline() Element[ele]['xcom']['compton']=numpy.array(Element[ele]['xcom']['compton']) line = f.readline() while (line.split('PAIR')[0] == line): line = line.split() for value in line: Element[ele]['xcom']['photo'].append(float(value)) line = f.readline() line = f.readline() while (line.split('PAIR')[0] == line): line = line.split() for value in line: Element[ele]['xcom']['pair'].append(float(value)) line = f.readline() i = 0 line = f.readline() while (len(line)): line = line.split() for value in line: Element[ele]['xcom']['pair'][i] += float(value) i += 1 line = f.readline() f.close() if sys.version >= '3.0': # next line gave problems under under windows # just try numpy.argsort([1,1,1,1,1]) under linux and windows to see # what I mean # i1=numpy.argsort(Element[ele]['xcom']['energy']) did not work # (uses quicksort and gives problems with Pb not passing tests) i1=numpy.argsort(Element[ele]['xcom']['energy'], kind='mergesort') else: sset = map(None,Element[ele]['xcom']['energy'],range(len(Element[ele]['xcom']['energy']))) sset.sort() i1=numpy.array([x[1] for x in sset]) Element[ele]['xcom']['energy']=numpy.take(Element[ele]['xcom']['energy'],i1) Element[ele]['xcom']['coherent']=numpy.take(Element[ele]['xcom']['coherent'],i1) Element[ele]['xcom']['compton']=numpy.take(Element[ele]['xcom']['compton'],i1) Element[ele]['xcom']['photo']=numpy.take(Element[ele]['xcom']['photo'],i1) Element[ele]['xcom']['pair']=numpy.take(Element[ele]['xcom']['pair'],i1) if Element[ele]['xcom']['coherent'][0] <= 0: Element[ele]['xcom']['coherent'][0] = Element[ele]['xcom']['coherent'][1] * 1.0 try: Element[ele]['xcom']['energylog10']=numpy.log10(Element[ele]['xcom']['energy']) Element[ele]['xcom']['coherentlog10']=numpy.log10(Element[ele]['xcom']['coherent']) Element[ele]['xcom']['comptonlog10']=numpy.log10(Element[ele]['xcom']['compton']) Element[ele]['xcom']['photolog10']=numpy.log10(Element[ele]['xcom']['photo']) except Exception: raise ValueError("Problem calculating logaritm of %s.mat file data" % ele) for i in range(0,len(Element[ele]['xcom']['energy'])): Element[ele]['xcom']['total'].append(Element[ele]['xcom']['coherent'][i]+\ Element[ele]['xcom']['compton'] [i]+\ Element[ele]['xcom']['photo'] [i]+\ Element[ele]['xcom']['pair'] [i]) if energy is None: return Element[ele]['xcom'] ddict={} ddict['energy'] = [] ddict['coherent'] = [] ddict['compton'] = [] ddict['photo'] = [] ddict['pair'] = [] ddict['total'] = [] if not hasattr(energy, "__len__"): energy =[energy] for ene in energy: if ene < 1.0: if PyMcaEPDL97.EPDL97_DICT[ele]['original']: #make sure the binding energies are those used by this module and not EADL ones PyMcaEPDL97.setElementBindingEnergies(ele, Element[ele]['binding']) tmpDict = PyMcaEPDL97.getElementCrossSections(ele, ene) cohe = tmpDict['coherent'][0] comp = tmpDict['compton'][0] photo = tmpDict['photo'][0] pair = 0.0 else: i0=max(numpy.nonzero(Element[ele]['xcom']['energy'] <= ene)[0]) i1=min(numpy.nonzero(Element[ele]['xcom']['energy'] >= ene)[0]) if i1 <= i0: cohe=Element[ele]['xcom']['coherent'][i1] comp=Element[ele]['xcom']['compton'][i1] photo=Element[ele]['xcom']['photo'][i1] pair=Element[ele]['xcom']['pair'][i1] else: if LOGLOG: A=Element[ele]['xcom']['energylog10'][i0] B=Element[ele]['xcom']['energylog10'][i1] logene = numpy.log10(ene) c2=(logene-A)/(B-A) c1=(B-logene)/(B-A) else: A=Element[ele]['xcom']['energy'][i0] B=Element[ele]['xcom']['energy'][i1] c2=(ene-A)/(B-A) c1=(B-ene)/(B-A) cohe= pow(10.0,c2*Element[ele]['xcom']['coherentlog10'][i1]+\ c1*Element[ele]['xcom']['coherentlog10'][i0]) comp= pow(10.0,c2*Element[ele]['xcom']['comptonlog10'][i1]+\ c1*Element[ele]['xcom']['comptonlog10'][i0]) photo=pow(10.0,c2*Element[ele]['xcom']['photolog10'][i1]+\ c1*Element[ele]['xcom']['photolog10'][i0]) if Element[ele]['xcom']['pair'][i1] > 0.0: c2 = c2*numpy.log10(Element[ele]['xcom']['pair'][i1]) if Element[ele]['xcom']['pair'][i0] > 0.0: c1 = c1*numpy.log10(Element[ele]['xcom']['pair'][i0]) pair = pow(10.0,c1+c2) else: pair =0.0 else: pair =0.0 ddict['energy'].append(ene) ddict['coherent'].append(cohe) ddict['compton'].append(comp) ddict['photo'].append(photo) ddict['pair'].append(pair) ddict['total'].append(cohe+comp+photo+pair) return ddict def getElementLShellRates(symbol,energy=None,photoweights = None): """ getElementLShellRates(symbol,energy=None, photoweights = None) gives LShell branching ratios at a given energy weights due to photoeffect, fluorescence and Coster-Kronig transitions are calculated and used unless photoweights is False, in that case weights = [1.0, 1.0, 1.0, 1.0, 1.0] """ if photoweights is None:photoweights=True if photoweights: weights = getLWeights(symbol,energy=energy) else: weights = [1.0, 1.0, 1.0] z = getz(symbol) index = z-1 shellrates = numpy.arange(len(LShell.ElementLShellTransitions)).astype(numpy.float64) shellrates[0] = z shellrates[1] = 0 lo = 0 if 'Z' in LShell.ElementL1ShellTransitions[0:2]:lo=1 if 'TOTAL' in LShell.ElementL1ShellTransitions[0:2]:lo=lo+1 n1 = len(LShell.ElementL1ShellTransitions) rates = numpy.array(LShell.ElementL1ShellRates[index]).astype(numpy.float64) shellrates[lo:n1] = (rates[lo:] / (sum(rates[lo:]) + (sum(rates[lo:])==0))) * weights[0] n2 = n1 + len(LShell.ElementL2ShellTransitions) - lo rates = numpy.array(LShell.ElementL2ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[lo:] / (sum(rates[lo:]) + (sum(rates[lo:])==0))) * weights[1] n1 = n2 n2 = n1 + len(LShell.ElementL3ShellTransitions) - lo rates = numpy.array(LShell.ElementL3ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[lo:] / (sum(rates[lo:]) + (sum(rates[lo:])==0))) * weights[2] return shellrates def getElementMShellRates(symbol,energy=None, photoweights = None): """ getElementMShellRates(symbol,energy=None, photoweights = None) gives MShell branching ratios at a given energy weights due to photoeffect, fluorescence and Coster-Kronig transitions are calculated and used unless photoweights is False, in that case weights = [1.0, 1.0, 1.0, 1.0, 1.0] """ if photoweights is None:photoweights=True if photoweights: weights = getMWeights(symbol,energy=energy) else: weights = [1.0, 1.0, 1.0, 1.0, 1.0] z = getz(symbol) index = z-1 shellrates = numpy.arange(len(MShell.ElementMShellTransitions)).astype(numpy.float64) shellrates[0] = z shellrates[1] = 0 n1 = len(MShell.ElementM1ShellTransitions) rates = numpy.array(MShell.ElementM1ShellRates[index]).astype(numpy.float64) shellrates[2:n1] = (rates[2:] / (sum(rates[2:]) + (sum(rates[2:])==0))) * weights[0] n2 = n1 + len(MShell.ElementM2ShellTransitions) - 2 rates = numpy.array(MShell.ElementM2ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[2:] / (sum(rates[2:]) + (sum(rates[2:])==0))) * weights[1] n1 = n2 n2 = n1 + len(MShell.ElementM3ShellTransitions) - 2 rates = numpy.array(MShell.ElementM3ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[2:] / (sum(rates[2:]) + (sum(rates[2:])==0))) * weights[2] n1 = n2 n2 = n1 + len(MShell.ElementM4ShellTransitions) - 2 rates = numpy.array(MShell.ElementM4ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[2:] / (sum(rates[2:]) + (sum(rates[2:])==0)))* weights[3] n1 = n2 n2 = n1 + len(MShell.ElementM5ShellTransitions) - 2 rates = numpy.array(MShell.ElementM5ShellRates[index]).astype(numpy.float64) shellrates[n1:n2] = (rates[2:] / (sum(rates[2:]) + (sum(rates[2:])==0)))* weights[4] return shellrates def _getUnfilteredElementDict(symbol, energy, photoweights=None): if photoweights == None:photoweights = False ddict = {} if len(symbol) > 1: ele = symbol[0].upper() + symbol[1].lower() else: ele = symbol.upper() #fill the dictionary ddict['rays']=[] z = getz(ele) for n in range(len(ElementXrays)): rays = ElementXrays[n] if (rays == 'L xrays'): shellrates = getElementLShellRates(ele,energy=energy,photoweights=photoweights) elif (rays == 'M xrays'): shellrates = getElementMShellRates(ele,energy=energy,photoweights=photoweights) else: shellrates = ElementShellRates[n][z-1] shelltransitions = ElementShellTransitions[n] ddict[rays] = [] minenergy = MINENERGY if 'TOTAL' in shelltransitions: indexoffset = 2 else: indexoffset = 1 for i in range(indexoffset, len(shelltransitions)): rate = shellrates [i] transition = shelltransitions[i] if n==0:ddict[transition] = {} if (rays == "Ka xrays"): xenergy = getxrayenergy(ele,transition.replace('a','')) elif (rays == "Kb xrays"): xenergy = getxrayenergy(ele,transition.replace('b','')) else: xenergy = getxrayenergy(ele,transition.replace('*','')) if xenergy > minenergy: ddict[transition] = {} ddict[rays].append(transition) ddict[transition]['energy'] = xenergy ddict[transition]['rate'] = rate if rays not in ddict['rays']: ddict['rays'].append(rays) ddict['buildparameters']={} ddict['buildparameters']['energy'] = energy ddict['buildparameters']['minenergy'] = minenergy ddict['buildparameters']['minrate'] = 0.0 return ddict def _updateElementDict(symbol, dict, energy=None, minenergy=MINENERGY, minrate=0.0010, normalize = None, photoweights = None): if normalize is None: normalize = True if photoweights is None: photoweights = True if len(symbol) > 1: ele = symbol[0].upper() + symbol[1].lower() else: ele = symbol[0].upper() #reset existing dictionary if 'rays' in dict: for rays in dict['rays']: for transition in dict[rays]: #print("transition deleted = ",transition) del dict[transition] #print "rays deleted = ",rays del dict[rays] #fill the dictionary dict['rays']=[] z = getz(ele) for n in range(len(ElementXrays)): rays = ElementXrays[n] if rays == 'L xrays': shellrates = getElementLShellRates(ele,energy=energy,photoweights=photoweights) elif rays == 'M xrays': shellrates = getElementMShellRates(ele,energy=energy,photoweights=photoweights) else: shellrates = ElementShellRates[n][z-1] shelltransitions = ElementShellTransitions[n] dict[rays] = [] if 'TOTAL' in shelltransitions: transitionoffset = 2 else: transitionoffset = 1 maxrate = max(shellrates[transitionoffset:]) cum = 0.0 if maxrate > minrate: for i in range(transitionoffset, len(shelltransitions)): rate = shellrates [i] if (rate/maxrate) > minrate: transition = shelltransitions[i] if (rays == "Ka xrays"): xenergy = getxrayenergy(ele,transition.replace('a','')) elif (rays == "Kb xrays"): xenergy = getxrayenergy(ele,transition.replace('b','')) else: xenergy = getxrayenergy(ele,transition.replace('*','')) if (xenergy > minenergy) or (n == 0) : dict[transition] = {} dict[rays].append(transition) dict[transition]['energy'] = xenergy dict[transition]['rate'] = rate cum += rate if rays not in dict['rays']: dict['rays'].append(rays) #cum = 1.00 if normalize: if cum > 0.0: for transition in dict[rays]: dict[transition]['rate'] /= cum dict['buildparameters']={} dict['buildparameters']['energy'] = energy dict['buildparameters']['minenergy'] = minenergy dict['buildparameters']['minrate'] = minrate def updateDict(energy=None, minenergy=MINENERGY, minrate=0.0010, cb=True): for ele in ElementList: _updateElementDict(ele, Element[ele], energy=energy, minenergy=minenergy, minrate=minrate) if cb: _updateCallback() return def _getMaterialDict(): cDict = ConfigDict.ConfigDict() dirmod = PyMcaDataDir.PYMCA_DATA_DIR matdict = os.path.join(dirmod,"attdata") matdict = os.path.join(matdict,"MATERIALS.DICT") if not os.path.exists(matdict): #freeze does bad things with the path ... dirmod = os.path.dirname(dirmod) matdict = os.path.join(dirmod, "attdata") matdict = os.path.join(matdict, "MATERIALS.DICT") if not os.path.exists(matdict): if dirmod.lower().endswith(".zip"): dirmod = os.path.dirname(dirmod) matdict = os.path.join(dirmod, "attdata") matdict = os.path.join(matdict, "MATERIALS.DICT") if not os.path.exists(matdict): print("Cannot find file ", matdict) #raise IOError("Cannot find %s" % matdict) return {} cDict.read(matdict) return cDict class BoundMethodWeakref: """Helper class to get a weakref to a bound method""" def __init__(self, bound_method, onDelete=None): def remove(ref): if self.deleteCb is not None: self.deleteCb(self) self.deleteCb = onDelete self.func_ref = weakref.ref(bound_method.im_func, remove) self.obj_ref = weakref.ref(bound_method.im_self, remove) def __call__(self): obj = self.obj_ref() if obj is not None: func = self.func_ref() if func is not None: return func.__get__(obj) def __cmp__( self, other ): """Compare with another reference""" if not isinstance (other,self.__class__): return cmp( self.__class__, type(other) ) return cmp( self.func_ref, other.func_ref) and cmp( self.obj_ref, other.obj_ref) _registeredCallbacks=[] def registerUpdate(callback): if not hasattr(callback, "__call__"): raise TypeError("It should be a callable method") def delCallback(ref): try: i = _registeredCallbacks.index(ref) del _registeredCallbacks[i] except Exception: pass if hasattr(callback, 'im_self') and callback.im_self is not None: ref = BoundMethodWeakref(callback, delCallback) else: # function weakref ref = weakref.ref(callback, delCallback) if ref not in _registeredCallbacks: _registeredCallbacks.append(ref) def _updateCallback(): for methodref in _registeredCallbacks: method = methodref() if method is not None: method() Element={} for ele in ElementList: z = getz(ele) Element[ele]={} Element[ele]['Z'] = z Element[ele]['name'] = ElementsInfo[z-1][4] Element[ele]['mass'] = ElementsInfo[z-1][5] Element[ele]['density'] = ElementsInfo[z-1][6]/1000. Element[ele]['binding'] = {} i=0 for shell in ElementShells: i = i + 1 if z > len(ElementBinding): #Give the bindings of the last element Element[ele]['binding'][shell] = ElementBinding[-1][i] else: Element[ele]['binding'][shell] = ElementBinding[z-1][i] #fluorescence yields Element[ele]['omegak'] = getomegak(ele) Element[ele]['omegal1'] = getomegal1(ele) Element[ele]['omegal2'] = getomegal2(ele) Element[ele]['omegal3'] = getomegal3(ele) Element[ele]['omegam1'] = getomegam1(ele) Element[ele]['omegam2'] = getomegam2(ele) Element[ele]['omegam3'] = getomegam3(ele) Element[ele]['omegam4'] = getomegam4(ele) Element[ele]['omegam5'] = getomegam5(ele) #Coster-Kronig Element[ele]['CosterKronig'] = {} Element[ele]['CosterKronig']['L'] = getCosterKronig(ele) Element[ele]['CosterKronig']['M'] = MShell.getCosterKronig(ele) #jump ratios #xrays #Element[ele]['rays']=[] #updateElementDict(ele, Element[ele], energy=None, minenergy=0.399, minrate=0.001,cb=False) Material = _getMaterialDict() updateDict() if __name__ == "__main__": if len(sys.argv) > 1: ele = sys.argv[1] if ele in Element.keys(): print("Symbol = ",getsymbol(getz(ele))) print("Atomic Number = ",getz(ele)) print("Name = ",getname(getz(ele))) print("K-shell yield = ",Element[ele]['omegak']) print("L1-shell yield = ",Element[ele]['omegal1']) print("L2-shell yield = ",Element[ele]['omegal2']) print("L3-shell yield = ",Element[ele]['omegal3']) print("M1-shell yield = ",Element[ele]['omegam1']) print("M2-shell yield = ",Element[ele]['omegam2']) print("M3-shell yield = ",Element[ele]['omegam3']) print("M4-shell yield = ",Element[ele]['omegam4']) print("M5-shell yield = ",Element[ele]['omegam5']) print("L Coster-Kronig= ",Element[ele]['CosterKronig']['L']) print("M Coster-Kronig= ",Element[ele]['CosterKronig']['M']) if len(sys.argv) > 2: def testCallback(): print("callback called") registerUpdate(testCallback) e = float(sys.argv[2]) if 0: _updateElementDict(ele,Element[ele],energy=e) else: import time t0=time.time() updateDict(energy=e) print("update took ",time.time() - t0) for rays in Element[ele]['rays']: print(rays,":") for transition in Element[ele][rays]: print("%s energy = %.5f rate = %.5f" %\ (transition,Element[ele][transition]['energy'], Element[ele][transition]['rate'])) if len(sys.argv) > 2: LOGLOG = False print("OLD VALUES") print(getmassattcoef(ele,float(sys.argv[2]))) LOGLOG = True print("NEW VALUES") print(getmassattcoef(ele,float(sys.argv[2]))) if len(sys.argv) >3: print(getcandidates(float(sys.argv[2]), threshold=float(sys.argv[3]))) else: print(getcandidates(float(sys.argv[2]))) else: print(getmassattcoef(ele,[10.,11,12,12.5])) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/FastXRFLinearFit.py����������������������������������������0000644�0000000�0000000�00000146372�14741736366�022210� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Module to perform a fast linear fit on a stack of fluorescence spectra. """ import os import numpy import logging import time import h5py import collections from . import ClassMcaTheory from . import ConcentrationsTool from PyMca5.PyMcaMath.linalg import lstsq from PyMca5.PyMcaMath.fitting import Gefit from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaIO import ConfigDict from .XRFBatchFitOutput import OutputBuffer from PyMca5.PyMcaCore import McaStackView _logger = logging.getLogger(__name__) class FastXRFLinearFit(object): def __init__(self, mcafit=None): self._config = None if mcafit is None: self._mcaTheory = ClassMcaTheory.McaTheory() else: self._mcaTheory = mcafit def setFitConfiguration(self, configuration): self._mcaTheory.setConfiguration(configuration) self._config = self._mcaTheory.getConfiguration() def setFitConfigurationFile(self, ffile): if not os.path.exists(ffile.split('::')[0]): raise IOError("File <%s> does not exists" % ffile) configuration = ConfigDict.ConfigDict() configuration.read(ffile) self.setFitConfiguration(configuration) def fitMultipleSpectra(self, x=None, y=None, xmin=None, xmax=None, configuration=None, concentrations=False, ysum=None, weight=None, refit=True, livetime=None, outbuffer=None, save=True, **outbufferinitargs): """ This method performs the actual fit. The y keyword is the only mandatory input argument. :param x: 1D array containing the x axis (usually the channels) of the spectra. :param y: nD array containing the spectra :param xmin: lower limit of the fitting region :param xmax: upper limit of the fitting region :param ysum: sum spectrum :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow) :param concentrations: 0 Means no calculation, 1 Calculate elemental concentrations :param refit: if False, no check for negative results. Default is True. :param livetime: It will be used if not different from None and concentrations are to be calculated by using fundamental parameters with automatic time. The default is None. :param outbuffer: :param save: set to False to postpone saving the in-memory buffers :return OutputBuffer: works like a dict """ # Parse data x, data, mcaIndex, livetime = self._fitParseData(x=x, y=y, livetime=livetime) # Calculation needs buffer for memory allocation (memory or H5) if outbuffer is None: outbuffer = OutputBuffer(**outbufferinitargs) with outbuffer.Context(save=save): t0 = time.time() # Configure fit nSpectra = data.size // data.shape[mcaIndex] configorg, config, weight, weightPolicy, \ autotime, liveTimeFactor = self._fitConfigure( configuration=configuration, concentrations=concentrations, livetime=livetime, weight=weight, nSpectra=nSpectra) outbuffer['configuration'] = configorg # Sum spectrum if ysum is None: if weightPolicy == 1: # we need to calculate the sum spectrum # to derive the uncertainties sumover = 'all' elif not concentrations: # one spectrum is enough sumover = 'first pixel' else: sumover = 'first vector' yref = self._fitReferenceSpectrum(data=data, mcaIndex=mcaIndex, sumover=sumover) else: yref = ysum # Get the basis of the linear models (i.e. derivative to peak areas) if xmin is None: xmin = config['fit']['xmin'] if xmax is None: xmax = config['fit']['xmax'] dtypeCalculcation = self._fitDtypeCalculation(data) self._mcaTheory.setData(x=x, y=yref, xmin=xmin, xmax=xmax) derivatives, freeNames, nFree, nFreeBkg = self._fitCreateModel(dtype=dtypeCalculcation) # Background anchor points (if any) anchorslist = self._fitBkgAnchorList(config=config) # MCA trimming: [iXMin:iXMax] iXMin, iXMax = self._fitMcaTrimInfo(x=x) sliceChan = slice(iXMin, iXMax) nObs = iXMax-iXMin # Least-squares parameters if weightPolicy == 2: # Individual spectrum weights (assumed Poisson) SVD = False sigma_b = None elif weightPolicy == 1: # Average weight from sum spectrum (assume Poisson) # the +1 is to prevent misbehavior due to weights less than 1.0 sigma_b = 1 + numpy.sqrt(yref[sliceChan])/nSpectra sigma_b = sigma_b.reshape(-1, 1) SVD = True else: # No weights SVD = True sigma_b = None lstsq_kwargs = {'svd': SVD, 'sigma_b': sigma_b, 'weight': weight} # Allocate output buffers stackShape = data.shape imageShape = list(stackShape) imageShape.pop(mcaIndex) imageShape = tuple(imageShape) paramShape = (nFree,) + imageShape dtypeResult = self._fitDtypeResult(data) dataAttrs = {} #{'units':'counts'}) paramAttrs = {'errors': 'uncertainties', 'default': not concentrations} results = outbuffer.allocateMemory('parameters', shape=paramShape, dtype=dtypeResult, labels=freeNames, dataAttrs=dataAttrs, groupAttrs=paramAttrs, memtype='ram') uncertainties = outbuffer.allocateMemory('uncertainties', shape=paramShape, dtype=dtypeResult, labels=freeNames, dataAttrs=dataAttrs, groupAttrs=None, memtype='ram') fitAttrs = {} if outbuffer.saveDataDiagnostics: # Generic axes dataAxesNames = ['dim{}'.format(i) for i in range(data.ndim)] dataAxes = [(name, numpy.arange(n, dtype=dtypeResult), {}) for name, n in zip(dataAxesNames, stackShape)] # MCA axis: use energy and add channels as extra (unused) axis xdata = self._mcaTheory.xdata0.flatten() zero, gain = self._mcaTheory.parameters[:2] xenergy = zero + gain*xdata dataAxesNames[mcaIndex] = 'energy' dataAxes[mcaIndex] = 'energy', xenergy.astype(dtypeResult), {'units': 'keV'} dataAxes.append(('channels', xdata.astype(numpy.float32), {})) fitAttrs['axes'] = dataAxes fitAttrs['axesused'] = dataAxesNames if outbuffer.saveDataDiagnostics: derivAttrs = {} derivAttrs['axes'] = [('energy', xenergy.astype(dtypeResult), {'units': 'keV'}), ('channels', xdata.astype(numpy.float32), {})] derivAttrs['axesused'] = ["energy"] _derivatives = outbuffer.allocateMemory('derivatives', shape=(nFree, xdata.size), dtype=derivatives.dtype, fill_value=numpy.nan, labels=freeNames, dataAttrs=dataAttrs, groupAttrs=derivAttrs, memtype='ram') _derivatives[:, iXMin:iXMax] = derivatives.T dataAttrs = {} if outbuffer.saveFOM: nFreeParameters = outbuffer.allocateMemory('nFreeParameters', group='diagnostics', shape=imageShape, fill_value=nFree, dtype=numpy.int32, dataAttrs=dataAttrs, groupAttrs=None, memtype='ram') nObservations = outbuffer.allocateMemory('nObservations', group='diagnostics', shape=imageShape, fill_value=nObs, dtype=numpy.int32, dataAttrs=dataAttrs, groupAttrs=None, memtype='ram') else: nFreeParameters = None if outbuffer.saveFit: fitmodel = outbuffer.allocateMemory('model', group='fit', shape=stackShape, dtype=dtypeResult, chunks=True, fill_value=0, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') idx = [slice(None)]*fitmodel.ndim idx[mcaIndex] = slice(0, iXMin) fitmodel[tuple(idx)] = numpy.nan idx[mcaIndex] = slice(iXMax, None) fitmodel[tuple(idx)] = numpy.nan else: fitmodel = None _logger.debug("Configuration elapsed = %f", time.time() - t0) t0 = time.time() # Fit all spectra self._fitLstSqAll(data=data, sliceChan=sliceChan, mcaIndex=mcaIndex, derivatives=derivatives, fitmodel=fitmodel, results=results, uncertainties=uncertainties, config=config, anchorslist=anchorslist, lstsq_kwargs=lstsq_kwargs) t = time.time() - t0 _logger.debug("First fit elapsed = %f", t) if t > 0.: _logger.debug("Spectra per second = %f", numpy.prod(imageShape)/float(t)) t0 = time.time() # Refit spectra with negative peak areas if refit: self._fitLstSqNegative(data=data, sliceChan=sliceChan, mcaIndex=mcaIndex, derivatives=derivatives, fitmodel=fitmodel, results=results, uncertainties=uncertainties, config=config, anchorslist=anchorslist, lstsq_kwargs=lstsq_kwargs, freeNames=freeNames, nFreeBkg=nFreeBkg, nFreeParameters=nFreeParameters) t = time.time() - t0 _logger.debug("Fit of negative peaks elapsed = %f", t) t0 = time.time() # Return results as a dictionary if outbuffer.saveData: outbuffer.allocateMemory('data', group='fit', data=data, dtype=dtypeResult, chunks=True, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') if outbuffer.saveResiduals: residuals = outbuffer.allocateMemory('residuals', group='fit', data=data, dtype=dtypeResult, chunks=True, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') residuals[()] -= fitmodel if concentrations: t0 = time.time() labels, concentrations = self._fitDeriveMassFractions(config=config, nFreeBkg=nFreeBkg, results=results, autotime=autotime, liveTimeFactor=liveTimeFactor) dataAttrs = {} #{'units':'dimensionless'}) massfracAttrs = {'default': True} outbuffer.allocateMemory('massfractions', data=concentrations, labels=labels, dataAttrs=dataAttrs, groupAttrs=massfracAttrs, memtype='ram') t = time.time() - t0 _logger.debug("Calculation of concentrations elapsed = %f", t) return outbuffer @staticmethod def _fitParseData(x=None, y=None, livetime=None): """Parse the input data (MCA and livetime) """ # Extract counts if y is None: raise RuntimeError("y keyword argument is mandatory!") if hasattr(y, "info") and hasattr(y, "data"): data = y.data mcaIndex = y.info.get("McaIndex", -1) else: data = y mcaIndex = -1 # Extract channels if x is None: if hasattr(y, "info") and hasattr(y, "x"): x = y.x[0] if livetime is None: if hasattr(y, "info"): if "McaLiveTime" in y.info: livetime = y.info["McaLiveTime"] # At least 2D ndim = data.ndim if ndim == 0: shape = (1, 1) elif ndim == 1: shape = (1, data.size) else: shape = None if shape is not None: data = data.reshape(shape) if livetime is not None: livetime = livetime.reshape(shape) return x, data, mcaIndex, livetime def _fitConfigure(self, configuration=None, concentrations=False, livetime=None, weight=None, nSpectra=None): """Prepare configuration for fitting """ if configuration is not None: self._mcaTheory.setConfiguration(configuration) elif self._config is None: raise ValueError("Fit configuration missing") else: _logger.debug("Setting default configuration") self._mcaTheory.setConfiguration(self._config) # read the current configuration # it is a copy, we can modify it at will configorg = self._mcaTheory.getConfiguration() config = self._mcaTheory.getConfiguration() toReconfigure = False # if concentrations and use times, it needs to be reconfigured # without using times and correct later on. If the concentrations # are to be calculated from internal standard there is no need to # raise an exception either. autotime = 0 liveTimeFactor = 1.0 if not concentrations: # ignore any time information to prevent unnecessary errors when # setting the fitting data whithout the time information if config['concentrations'].get("useautotime", 0): config['concentrations']["useautotime"] = 0 toReconfigure = True elif config["concentrations"]["usematrix"]: if config['concentrations'].get("useautotime", 0): config['concentrations']["useautotime"] = 0 toReconfigure = True else: # we are calculating concentrations from fundamental parameters autotime = config['concentrations'].get("useautotime", 0) if autotime: if livetime is None: txt = "Automatic time requested but no time information provided" raise RuntimeError(txt) elif numpy.isscalar(livetime): liveTimeFactor = \ float(config['concentrations']["time"]) / livetime elif livetime.size == nSpectra: liveTimeFactor = \ float(config['concentrations']["time"]) / livetime else: raise RuntimeError( "Number of live times not equal number of spectra") config['concentrations']["useautotime"] = 0 toReconfigure = True # use of strategies is not supported for the time being strategy = config['fit'].get('strategyflag', 0) if strategy: raise RuntimeError("Strategies are incompatible with fast fit") # background if config['fit']['stripflag']: if config['fit']['stripalgorithm'] == 1: _logger.debug("SNIP") else: raise RuntimeError("Please use the faster SNIP background") if weight is None: # dictated by the file weight = config['fit']['fitweight'] if weight: # individual pixel weights (slow) weightPolicy = 2 else: # No weight weightPolicy = 0 elif weight == 1: # use average weight from the sum spectrum weightPolicy = 1 if not config['fit']['fitweight']: config['fit']['fitweight'] = 1 toReconfigure = True elif weight == 2: # individual pixel weights (slow) weightPolicy = 2 if not config['fit']['fitweight']: config['fit']['fitweight'] = 1 toReconfigure = True weight = 1 else: # No weight weightPolicy = 0 if config['fit']['fitweight']: config['fit']['fitweight'] = 0 toReconfigure = True weight = 0 if not config['fit']['linearfitflag']: # make sure we force a linear fit config['fit']['linearfitflag'] = 1 toReconfigure = True if toReconfigure: # we must configure again the fit self._mcaTheory.setConfiguration(config) # make sure we calculate the matrix of the contributions self._mcaTheory.enableOptimizedLinearFit() return configorg, config, weight, weightPolicy, \ autotime, liveTimeFactor def _fitReferenceSpectrum(self, data=None, mcaIndex=None, sumover='all'): """Get sum spectrum """ dtype = self._fitDtypeCalculation(data) if sumover == 'all': nMca = 20, 'MB' _logger.debug('Add spectra in chunks of {}'.format(nMca)) datastack = McaStackView.FullView(data, mcaAxis=mcaIndex, nMca=nMca) yref = numpy.zeros((data.shape[mcaIndex],), dtype) for key, chunk in datastack.items(): yref += chunk.sum(axis=0, dtype=dtype) elif sumover == 'first vector': # Sum spectrum of the first row ndim = data.ndim idx = [0]*ndim while mcaIndex < 0: mcaIndex += ndim idx[mcaIndex] = slice(None) for axis in range(data.ndim-1, -1, -1): if idx[axis] != slice(None): idx[axis] = slice(None) break axis = int(axis > mcaIndex) yref = data[tuple(idx)].sum(axis=axis, dtype=dtype) else: # First spectrum idx = [0]*data.ndim idx[mcaIndex] = slice(None) yref = data[tuple(idx)].astype(dtype) return yref def _fitCreateModel(self, dtype=None): """Get linear model for fitting """ # Initialize the derivatives self._mcaTheory.estimate() # now we can get the derivatives respect to the free parameters # These are the "derivatives" respect to the peaks # linearMatrix = self._mcaTheory.linearMatrix # but we are still missing the derivatives from the background nFree = 0 freeNames = [] nFreeBkg = 0 for iParam, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][iParam] != ClassMcaTheory.Gefit.CFIXED: nFree += 1 freeNames.append(param) if iParam < self._mcaTheory.NGLOBAL: nFreeBkg += 1 if nFree == 0: txt = "No free parameters to be fitted!\n" txt += "No peaks inside fitting region?" raise ValueError(txt) # build the matrix of derivatives derivatives = None idx = 0 for iParam, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][iParam] == ClassMcaTheory.Gefit.CFIXED: continue deriv = self._mcaTheory.linearMcaTheoryDerivative(self._mcaTheory.parameters, iParam, self._mcaTheory.xdata) deriv.shape = -1 if derivatives is None: derivatives = numpy.zeros((deriv.shape[0], nFree), dtype=dtype) derivatives[:, idx] = deriv idx += 1 return derivatives, freeNames, nFree, nFreeBkg def _fitBkgAnchorList(self, config=None): """Get anchors for background subtraction """ xdata = self._mcaTheory.xdata # trimmed if config['fit']['stripflag']: anchorslist = [] if config['fit']['stripanchorsflag']: if config['fit']['stripanchorslist'] is not None: ravelled = numpy.ravel(xdata) for channel in config['fit']['stripanchorslist']: if channel <= ravelled[0]: continue index = numpy.nonzero(ravelled >= channel)[0] if len(index): index = min(index) if index > 0: anchorslist.append(index) if len(anchorslist) == 0: anchorslist = [0, self._mcaTheory.ydata.size - 1] anchorslist.sort() else: anchorslist = None return anchorslist def _fitMcaTrimInfo(self, x=None): """Start and end channels for MCA trimming """ xdata = self._mcaTheory.xdata # find the indices to be used for selecting the appropriate data # if the original x data were not ordered we have a problem # TODO: check for original ordering. if x is None: # we have an enumerated channels axis iXMin = xdata[0] iXMax = xdata[-1] else: iXMin = numpy.nonzero(x <= xdata[0])[0][-1] iXMax = numpy.nonzero(x >= xdata[-1])[0][0] # numpy 1.11.0 returns an array on previous expression # and then complains about a future deprecation warning # because of using an array and not an scalar in the selection if hasattr(iXMin, "shape"): if len(iXMin.shape): iXMin = iXMin[0] if hasattr(iXMax, "shape"): if len(iXMax.shape): iXMax = iXMax[0] return iXMin, iXMax+1 def _dataChunkIter(self, slicecls, data=None, fitmodel=None, **kwargs): dtype = self._fitDtypeResult(data) datastack = slicecls(data, dtype=dtype, readonly=True, **kwargs) chunkItems = datastack.items(keyType='select') if fitmodel is not None: modelstack = slicecls(fitmodel, dtype=dtype, readonly=False, **kwargs) modeliter = modelstack.items() chunkItems = McaStackView.izipChunkItems(chunkItems, modeliter) return chunkItems def _fitLstSqAll(self, data=None, sliceChan=None, mcaIndex=None, derivatives=None, results=None, uncertainties=None, fitmodel=None, config=None, anchorslist=None, lstsq_kwargs=None): """ Fit all spectra """ nChan, nFree = derivatives.shape bkgsub = bool(config['fit']['stripflag']) nMca = 1, 'MB' _logger.debug('Fit spectra in chunks of {}'.format(nMca)) chunkItems = self._dataChunkIter(McaStackView.FullView, data=data, fitmodel=fitmodel, mcaSlice=sliceChan, mcaAxis=mcaIndex, nMca=nMca) for chunk in chunkItems: if fitmodel is None: (idx, idxShape), chunk = chunk chunkModel = None else: ((idx, idxShape), chunk), (_, chunkModel) = chunk chunkModel = chunkModel.T chunk = chunk.T # Subtract background if bkgsub: self._fitBkgSubtract(chunk, config=config, anchorslist=anchorslist, fitmodel=chunkModel) # Solve linear system of equations ddict = lstsq(derivatives, chunk, digested_output=True, **lstsq_kwargs) lstsq_kwargs['last_svd'] = ddict.get('svd', None) # Save results idx = (slice(None),) + idx idxShape = (nFree,) + idxShape results[idx] = ddict['parameters'].reshape(idxShape) uncertainties[idx] = ddict['uncertainties'].reshape(idxShape) if chunkModel is not None: if bkgsub: chunkModel += numpy.dot(derivatives, ddict['parameters']) else: chunkModel[()] = numpy.dot(derivatives, ddict['parameters']) def _fitLstSqReduced(self, data=None, sliceChan=None, mcaIndex=None, derivatives=None, results=None, uncertainties=None, fitmodel=None, config=None, anchorslist=None, lstsq_kwargs=None, mask=None, skipNames=None, skipParams=None, nFreeParameters=None, nmin=None): """ Fit reduced number of spectra (mask) with a reduced model (skipped parameters will be set to zero) """ npixels = int(mask.sum()) nMca = 1, 'MB' if npixels < nmin: _logger.debug("Not worth refitting #%d pixels", npixels) for iFree, name in zip(skipParams, skipNames): results[iFree][mask] = 0.0 uncertainties[iFree][mask] = 0.0 _logger.debug("%d pixels of parameter %s set to zero", npixels, name) if nFreeParameters is not None: nFreeParameters[mask] = 0 else: _logger.debug("Refitting #{} spectra in chunks of {}".format(npixels, nMca)) nChan, nFreeOrg = derivatives.shape idxFree = [i for i in range(nFreeOrg) if i not in skipParams] nFree = len(idxFree) A = derivatives[:, idxFree] lstsq_kwargs['last_svd'] = None # Fit all selected spectra in one chunk bkgsub = bool(config['fit']['stripflag']) chunkItems = self._dataChunkIter(McaStackView.MaskedView, data=data, fitmodel=fitmodel, mask=mask, mcaSlice=sliceChan, mcaAxis=mcaIndex, nMca=nMca) for chunk in chunkItems: if fitmodel is None: (idx, idxShape), chunk = chunk chunkModel = None else: ((idx, idxShape), chunk), (_, chunkModel) = chunk chunkModel = chunkModel.T chunk = chunk.T # Subtract background if bkgsub: self._fitBkgSubtract(chunk, config=config, anchorslist=anchorslist, fitmodel=chunkModel) # Solve linear system of equations ddict = lstsq(A, chunk, digested_output=True, **lstsq_kwargs) lstsq_kwargs['last_svd'] = ddict.get('svd', None) # Save results iParam = 0 for iFree in range(nFreeOrg): if iFree in skipParams: results[iFree][idx] = 0.0 uncertainties[iFree][idx] = 0.0 else: results[iFree][idx] = ddict['parameters'][iParam]\ .reshape(idxShape) uncertainties[iFree][idx] = ddict['uncertainties'][iParam]\ .reshape(idxShape) iParam += 1 if chunkModel is not None: if bkgsub: chunkModel += numpy.dot(A, ddict['parameters']) else: chunkModel[()] = numpy.dot(A, ddict['parameters']) if nFreeParameters is not None: nFreeParameters[idx] = nFree @staticmethod def _fitDtypeResult(data): if data.dtype not in [numpy.float32, numpy.float64]: if hasattr(data, "itemsize"): if data.itemsize < 5: return numpy.float32 elif hasattr(data, "nbytes"): if (data.nbytes / data.size) < 5: return numpy.float32 return numpy.float64 else: return data.dtype @staticmethod def _fitDtypeCalculation(data): # TODO: always 64bit? return numpy.float64 @staticmethod def _fitBkgSubtract(spectra, config=None, anchorslist=None, fitmodel=None): """Subtract brackground from data and add it to fit model """ for k in range(spectra.shape[1]): # obtain the smoothed spectrum background = SpecfitFuns.SavitskyGolay(spectra[:, k], config['fit']['stripfilterwidth']) lastAnchor = 0 for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < background.size): background[lastAnchor:anchor] =\ SpecfitFuns.snip1d(background[lastAnchor:anchor], config['fit']['snipwidth'], 0) lastAnchor = anchor if lastAnchor < background.size: background[lastAnchor:] =\ SpecfitFuns.snip1d(background[lastAnchor:], config['fit']['snipwidth'], 0) spectra[:, k] -= background if fitmodel is not None: fitmodel[:, k] = background def _fitLstSqNegative(self, data=None, freeNames=None, nFreeBkg=None, results=None, **kwargs): """Refit pixels with negative peak areas (remove the parameters from the model) """ nFree = len(freeNames) iIter = 1 nIter = 2 * (nFree - nFreeBkg) + iIter negativePresent = True while negativePresent: # Pixels with negative peak areas negList = [] for iFree in range(nFreeBkg, nFree): negMask = results[iFree] < 0 nNeg = negMask.sum() if nNeg > 0: negList.append((nNeg, iFree, negMask)) # No refit needed when no negative peak areas if not negList: negativePresent = False continue # Set negative peak areas to zero when # the maximal iterations is reached if iIter > nIter: for nNeg, iFree, negMask in negList: results[iFree][negMask] = 0.0 _logger.warning("%d pixels of parameter %s forced to zero", nNeg, freeNames[iFree]) continue # Bad pixels: use peak area with the most negative values negList.sort() negList.reverse() badParameters = [] badParameters.append(negList[0][1]) badMask = negList[0][2] # Combine with masks of all other peak areas # (unless none of them has negative pixels) # This is done to prevent endless loops: # if two or more parameters have common negative pixels # and one of them remains negative when forcing other one to zero for iFree, (nNeg, iFree, negMask) in enumerate(negList): if iFree not in badParameters and nNeg: combMask = badMask & negMask if combMask.sum(): badParameters.append(iFree) badMask = combMask # Fit with a reduced model (skipped parameters are fixed at zero) badNames = [freeNames[iFree] for iFree in badParameters] nmin = 0.0025 * badMask.size _logger.debug("Refit iteration #{}. Fixed to zero: {}" .format(iIter, badNames)) self._fitLstSqReduced(data=data, mask=badMask, skipParams=badParameters, skipNames=badNames, results=results, nmin=nmin, **kwargs) iIter += 1 def _fitDeriveMassFractions(self, config=None, results=None, nFreeBkg=None, autotime=None, liveTimeFactor=None): """Calculate concentrations from peak areas """ # check if an internal reference is used and if it is set to auto cTool = ConcentrationsTool.ConcentrationsTool() cToolConf = cTool.configure() cToolConf.update(config['concentrations']) fitreference = False if config['concentrations']['usematrix']: _logger.debug("USING MATRIX") if config['concentrations']['reference'].upper() == "AUTO": fitreference = True elif autotime: # we have to calculate with the time in the configuration # and correct later on cToolConf["autotime"] = 0 fitresult = {} if fitreference: # we have to fit the "reference" spectrum just to get the reference element mcafitresult = self._mcaTheory.startfit(digest=0, linear=True) # if one of the elements has zero area this cannot be made directly fitresult['result'] = self._mcaTheory.imagingDigestResult() fitresult['result']['config'] = config concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf, fitresult=fitresult, elementsfrommatrix=False, fluorates=self._mcaTheory._fluoRates, addinfo=True) # and we have to make sure that all the areas are positive for group in fitresult['result']['groups']: if fitresult['result'][group]['fitarea'] <= 0.0: # give a tiny area fitresult['result'][group]['fitarea'] = 1.0e-6 config['concentrations']['reference'] = addInfo['ReferenceElement'] else: fitresult['result'] = {} fitresult['result']['config'] = config fitresult['result']['groups'] = [] idx = 0 for iParam, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][iParam] == Gefit.CFIXED: continue if iParam < self._mcaTheory.NGLOBAL: # background pass else: fitresult['result']['groups'].append(param) fitresult['result'][param] = {} # we are just interested on the factor to be applied to the area to get the # concentrations fitresult['result'][param]['fitarea'] = 1.0 fitresult['result'][param]['sigmaarea'] = 1.0 idx += 1 concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf, fitresult=fitresult, elementsfrommatrix=False, fluorates=self._mcaTheory._fluoRates, addinfo=True) nValues = 1 if len(concentrationsResult['layerlist']) > 1: nValues += len(concentrationsResult['layerlist']) nElements = len(list(concentrationsResult['mass fraction'].keys())) massShape = list(results.shape) massShape[0] = nValues * nElements massFractions = numpy.zeros(massShape, dtype=results.dtype) referenceElement = addInfo['ReferenceElement'] referenceTransitions = addInfo['ReferenceTransitions'] _logger.debug("Reference <%s> transition <%s>", referenceElement, referenceTransitions) labels = [] if referenceElement in ["", None, "None"]: _logger.debug("No reference") counter = 0 for i, group in enumerate(fitresult['result']['groups']): if group.lower().startswith("scatter"): _logger.debug("skept %s", group) continue labels.append(group) if counter == 0: if hasattr(liveTimeFactor, "shape"): liveTimeFactor.shape = results[nFreeBkg+i].shape massFractions[counter] = liveTimeFactor * \ results[nFreeBkg+i] * \ (concentrationsResult['mass fraction'][group] / \ fitresult['result'][group]['fitarea']) counter += 1 if len(concentrationsResult['layerlist']) > 1: for layer in concentrationsResult['layerlist']: labels.append((group, layer)) massFractions[counter] = liveTimeFactor * \ results[nFreeBkg+i] * \ (concentrationsResult[layer]['mass fraction'][group] / \ fitresult['result'][group]['fitarea']) counter += 1 else: _logger.debug("With reference") idx = None testGroup = referenceElement+ " " + referenceTransitions.split()[0] for i, group in enumerate(fitresult['result']['groups']): if group == testGroup: idx = i if idx is None: raise ValueError("Invalid reference: <%s> <%s>" %\ (referenceElement, referenceTransitions)) group = fitresult['result']['groups'][idx] referenceArea = fitresult['result'][group]['fitarea'] referenceConcentrations = concentrationsResult['mass fraction'][group] goodIdx = results[nFreeBkg+idx] > 0 massFractions[idx] = referenceConcentrations counter = 0 for i, group in enumerate(fitresult['result']['groups']): if group.lower().startswith("scatter"): _logger.debug("skept %s", group) continue labels.append(group) goodI = results[nFreeBkg+i] > 0 tmp = results[nFreeBkg+idx][goodI] massFractions[counter][goodI] = (results[nFreeBkg+i][goodI]/(tmp + (tmp == 0))) *\ ((referenceArea/fitresult['result'][group]['fitarea']) *\ (concentrationsResult['mass fraction'][group])) counter += 1 if len(concentrationsResult['layerlist']) > 1: for layer in concentrationsResult['layerlist']: labels.append((group, layer)) massFractions[counter][goodI] = (results[nFreeBkg+i][goodI]/(tmp + (tmp == 0))) *\ ((referenceArea/fitresult['result'][group]['fitarea']) *\ (concentrationsResult[layer]['mass fraction'][group])) counter += 1 return labels, massFractions def getFileListFromPattern(pattern, begin, end, increment=None): if type(begin) == type(1): begin = [begin] if type(end) == type(1): end = [end] if len(begin) != len(end): raise ValueError(\ "Begin list and end list do not have same length") if increment is None: increment = [1] * len(begin) elif type(increment) == type(1): increment = [increment] if len(increment) != len(begin): raise ValueError( "Increment list and begin list do not have same length") fileList = [] if len(begin) == 1: for j in range(begin[0], end[0] + increment[0], increment[0]): fileList.append(pattern % (j)) elif len(begin) == 2: for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): fileList.append(pattern % (j, k)) elif len(begin) == 3: raise ValueError("Cannot handle three indices yet.") for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): for l in range(begin[2], end[2] + increment[2], increment[2]): fileList.append(pattern % (j, k, l)) else: raise ValueError("Cannot handle more than three indices.") return fileList def prepareDataStack(fileList): if (not os.path.exists(fileList[0])) and \ os.path.exists(fileList[0].split("::")[0]): # odo convention to get a dataset form an HDF5 fname, dataPath = fileList[0].split("::") # compared to the ROI imaging tool, this way of reading puts data # into memory while with the ROI imaging tool, there is a check. if 0: import h5py h5 = h5py.File(fname, "r") dataStack = h5[dataPath][:] h5.close() else: from PyMca5.PyMcaIO import HDF5Stack1D # this way reads information associated to the dataset (if present) if dataPath.startswith("/"): pathItems = dataPath[1:].split("/") else: pathItems = dataPath.split("/") if len(pathItems) > 1: scanlist = ["/" + pathItems[0]] selection = {"y":"/" + "/".join(pathItems[1:])} else: selection = {"y":dataPath} scanlist = None print(selection) print("scanlist = ", scanlist) dataStack = HDF5Stack1D.HDF5Stack1D([fname], selection, scanlist=scanlist) else: from PyMca5.PyMca import EDFStack dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32) return dataStack def main(): import sys import getopt options = '' longoptions = ['cfg=', 'outdir=', 'concentrations=', 'weight=', 'refit=', 'tif=', 'edf=', 'csv=', 'h5=', 'dat=', 'filepattern=', 'begin=', 'end=', 'increment=', 'outroot=', 'outentry=', 'outprocess=', 'diagnostics=', 'debug=', 'overwrite=', 'multipage='] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: print(sys.exc_info()[1]) sys.exit(1) outputDir = None outputRoot = "" fileEntry = "" fileProcess = "" refit = None filepattern = None begin = None end = None increment = None backend = None weight = 0 tif = 0 edf = 0 csv = 0 h5 = 1 dat = 0 concentrations = 0 diagnostics = 0 debug = 0 overwrite = 1 multipage = 0 for opt, arg in opts: if opt == '--cfg': configurationFile = arg elif opt == '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt == '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt == '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt == '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt == '--outdir': outputDir = arg elif opt == '--weight': weight = int(arg) elif opt == '--refit': refit = int(arg) elif opt == '--concentrations': concentrations = int(arg) elif opt == '--diagnostics': diagnostics = int(arg) elif opt == '--outroot': outputRoot = arg elif opt == '--outentry': fileEntry = arg elif opt == '--outprocess': fileProcess = arg elif opt in ('--tif', '--tiff'): tif = int(arg) elif opt == '--edf': edf = int(arg) elif opt == '--csv': csv = int(arg) elif opt == '--h5': h5 = int(arg) elif opt == '--dat': dat = int(arg) elif opt == '--debug': debug = int(arg) elif opt == '--overwrite': overwrite = int(arg) elif opt == '--multipage': multipage = int(arg) logging.basicConfig() if debug: _logger.setLevel(logging.DEBUG) else: _logger.setLevel(logging.INFO) if filepattern is not None: if (begin is None) or (end is None): raise ValueError(\ "A file pattern needs at least a set of begin and end indices") if filepattern is not None: fileList = getFileListFromPattern(filepattern, begin, end, increment=increment) else: fileList = args if refit is None: refit = 0 _logger.warning("--refit=%d taken as default" % refit) if len(fileList): dataStack = prepareDataStack(fileList) else: print("OPTIONS:", longoptions) sys.exit(0) if outputDir is None: print("RESULTS WILL NOT BE SAVED: No output directory specified") t0 = time.time() fastFit = FastXRFLinearFit() fastFit.setFitConfigurationFile(configurationFile) print("Main configuring Elapsed = % s " % (time.time() - t0)) outbuffer = OutputBuffer(outputDir=outputDir, outputRoot=outputRoot, fileEntry=fileEntry, fileProcess=fileProcess, diagnostics=diagnostics, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, multipage=multipage, overwrite=overwrite) from PyMca5.PyMcaMisc import ProfilingUtils with ProfilingUtils.profile(memory=debug, time=debug): with outbuffer.saveContext(): outbuffer = fastFit.fitMultipleSpectra(y=dataStack, weight=weight, refit=refit, concentrations=concentrations, outbuffer=outbuffer) print("Total Elapsed = % s " % (time.time() - t0)) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main() ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/FisxHelper.py����������������������������������������������0000644�0000000�0000000�00000141331�14741736366�021174� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import logging from fisx import DataDir from fisx import Elements as FisxElements from fisx import Material from fisx import Detector try: from fisx import Beam except ImportError: # old fisx version Beam = None from fisx import XRF import time import sys import numpy xcom = None _logger = logging.getLogger(__name__) try: from concurrent.futures import ThreadPoolExecutor except Exception: _logger.info("Cannot import ThreadPoolExecutor") ThreadPoolExecutor = None def getElementsInstance(dataDir=None, bindingEnergies=None, xcomFile=None): if dataDir is None: dataDir = DataDir.FISX_DATA_DIR try: from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR as pymcaDataDir from PyMca5 import getDataFile except Exception: _logger.info("Using fisx shell constants and ratios") pymcaDataDir = None if bindingEnergies is None: if pymcaDataDir is None: bindingEnergies = os.path.join(dataDir, "BindingEnergies.dat") else: bindingEnergies = getDataFile("BindingEnergies.dat") if xcomFile is None: if pymcaDataDir is None: xcomFile = os.path.join(dataDir, "XCOM_CrossSections.dat") else: xcomFile = getDataFile("XCOM_CrossSections.dat") t0 = time.time() instance = FisxElements(dataDir, bindingEnergies, xcomFile) _logger.debug("Shell constants") # the files should be taken from PyMca to make sure the same data are used for key in ["K", "L", "M"]: fname = instance.getShellConstantsFile(key) if sys.version > '3.0': # we have to make sure we have got a string if hasattr(fname, "decode"): fname = fname.decode("latin-1") _logger.debug("Before %s", fname) if pymcaDataDir is not None: fname = getDataFile(key + "ShellConstants.dat") else: fname = os.path.join(os.path.dirname(fname), key + "ShellConstants.dat") instance.setShellConstantsFile(key, fname) _logger.debug("After %s", instance.getShellConstantsFile(key)) _logger.debug("Radiative transitions") for key in ["K", "L", "M"]: fname = instance.getShellRadiativeTransitionsFile(key) if sys.version > '3.0': # we have to make sure we have got a string ... if hasattr(fname, "decode"): fname = fname.decode("latin-1") _logger.debug("Before %s", fname) if pymcaDataDir is not None: fname = getDataFile(key + "ShellRates.dat") else: fname = os.path.join(os.path.dirname(fname), key + "ShellRates.dat") instance.setShellRadiativeTransitionsFile(key, fname) _logger.debug("After %s ", instance.getShellRadiativeTransitionsFile(key)) _logger.debug("Reading Elapsed = %s", time.time() - t0) return instance def getMultilayerFluorescence(multilayerSample, energyList, layerList = None, weightList=None, flagList = None, fulloutput = None, beamFilters = None, elementsList = None, attenuatorList = None, userattenuatorList = None, alphaIn = None, alphaOut = None, cascade = None, detector= None, elementsFromMatrix=False, secondary=None, materials=None, secondaryCalculationLimit=None, cache=1): if secondary is None: secondary=0 if secondaryCalculationLimit is None: secondaryCalculationLimit=0.0 if cache: cache = 1 else: cache = 0 _logger.info("Library requested to use secondary = %s", secondary) _logger.info("Library requested to use secondary limit = %s", secondaryCalculationLimit) _logger.info("Library requested to use cache = %d", cache) global xcom if xcom is None: _logger.debug("Getting fisx elements instance") xcom = getElementsInstance() if materials is not None: _logger.debug("Deleting materials") xcom.removeMaterials() for material in materials: _logger.debug("Adding material making sure no duplicates") xcom.addMaterial(material, errorOnReplace=1) # the instance _logger.debug("creating XRF instance") xrf = XRF() # the beam energies if not len(energyList): raise ValueError("Empty list of beam energies!!!") _logger.debug("setting beam") xrf.setBeam(energyList, weights=weightList, characteristic=flagList) # the beam filters (if any) if beamFilters is None: beamFilters = [] """ Due to wrapping constraints, the filter list must have the form: [[Material name or formula0, density0, thickness0, funny factor0], [Material name or formula1, density1, thickness1, funny factor1], ... [Material name or formulan, densityn, thicknessn, funny factorn]] Unless you know what you are doing, the funny factors must be 1.0 """ _logger.debug("setting beamFilters") xrf.setBeamFilters(beamFilters) # the sample description """ Due to wrapping constraints, the list must have the form: [[Material name or formula0, density0, thickness0, funny factor0], [Material name or formula1, density1, thickness1, funny factor1], ... [Material name or formulan, densityn, thicknessn, funny factorn]] Unless you know what you are doing, the funny factors must be 1.0 """ _logger.debug("setting sample") xrf.setSample(multilayerSample) # the attenuators if attenuatorList is not None: if len(attenuatorList) > 0: _logger.debug("setting attenuators") xrf.setAttenuators(attenuatorList) # the user attenuators if userattenuatorList is not None: i = 0 for userAttenuator in userattenuatorList: if isinstance(userAttenuator, tuple) or \ isinstance(userAttenuator, list): energy = userAttenuator[0] transmission = userAttenuator[1] if len(userAttenuator) == 4: name = userAttenuator[2] comment = userAttenuator[3] else: if userattenuatorList[userAttenuator]["use"]: energy = userattenuatorList[userAttenuator]["energy"] transmission = userattenuatorList[userAttenuator]["transmission"] name = userattenuatorList[userAttenuator].get("name", "UserFilter%d" % i) name = userattenuatorList[userAttenuator].get("comment","") else: continue ttable = TransmissionTable() ttable.setTransmissionTableFromLists(energy, transmission, name, comment) xrf.setTransmissionTable(ttable) # the geometry _logger.debug("setting Geometry") if alphaIn is None: alphaIn = 45 if alphaOut is None: alphaOut = 45 xrf.setGeometry(alphaIn, alphaOut) # the detector _logger.debug("setting Detector") if detector is not None: # Detector can be a list as [material, density, thickness] # or a Detector instance if isinstance(detector, Detector): detectorInstance = detector elif len(detector) == 3: detectorInstance = Detector(detector[0], density=detector[1], thickness=detector[2]) else: detectorInstance = Detector(detector[0], density=detector[1], thickness=detector[2], funny=detector[3]) else: detectorInstance = Detector("") xrf.setDetector(detectorInstance) if detectorInstance.getActiveArea() > 0.0: useGeometricEfficiency = 1 else: useGeometricEfficiency = 0 if elementsList in [None, []]: raise ValueError("Element list not specified") if len(elementsList): if len(elementsList[0]) == 3: # PyMca can send [atomic number, element, peak] actualElementsList = [x[1] + " " + x[2] for x in elementsList] elif len(elementsList[0]) == 2: actualElementsList = [x[0] + " " + x[1] for x in elementsList] else: actualElementsList = elementsList matrixElementsList = [] for peak in actualElementsList: ele = peak.split()[0] considerIt = False for layer in multilayerSample: composition = xcom.getComposition(layer[0]) if ele in composition: considerIt = True if considerIt: if peak not in matrixElementsList: matrixElementsList.append(peak) if elementsFromMatrix: elementsList = matrixElementsList t0 = time.time() if cache: # enabling the cascade cache gets a (miserable) 15 % speed up _logger.debug("FisxHelper Using cache") else: _logger.debug("FisxHelper Not using cache") treatedElements = [] emittedLines = [] for actualElement in actualElementsList: element = actualElement.split()[0] if element not in treatedElements: if cache: lines = xcom.getEmittedXRayLines(element) sampleEnergies = [lines[key] for key in lines] for e in sampleEnergies: if e not in emittedLines: emittedLines.append(e) treatedElements.append(element) for layer in multilayerSample: composition = xcom.getComposition(layer[0]) for element in composition.keys(): if element not in treatedElements: if cache: lines = xcom.getEmittedXRayLines(element) sampleEnergies = [lines[key] for key in lines] for e in sampleEnergies: if e not in emittedLines: emittedLines.append(e) treatedElements.append(element) if attenuatorList is not None: for layer in attenuatorList: composition = xcom.getComposition(layer[0]) for element in composition.keys(): if element not in treatedElements: if cache: lines = xcom.getEmittedXRayLines(element) sampleEnergies = [lines[key] for key in lines] for e in sampleEnergies: if e not in emittedLines: emittedLines.append(e) treatedElements.append(element) if hasattr(xcom, "updateCache"): composition = detectorInstance.getComposition(xcom) for element in composition.keys(): if element not in treatedElements: if cache: lines = xcom.getEmittedXRayLines(element) sampleEnergies = [lines[key] for key in lines] for e in sampleEnergies: if e not in emittedLines: emittedLines.append(e) treatedElements.append(element) for element in actualElementsList: if element.split()[0] not in treatedElements: treatedElements.append(element.split()[0]) for element in treatedElements: # this limit seems overestimated but still reasonable if xcom.getCacheSize(element) > 5000: _logger.info("Clearing cache for %s" % element) xcom.clearCache(element) if cache: _logger.info("Updating cache for %s" % element) xcom.updateCache(element, energyList) xcom.updateCache(element, emittedLines) else: # should I clear the cache to be sure? # for the time being, yes. _logger.info("No cache. Clearing cache for %s" % element) xcom.clearCache(element) xcom.setCacheEnabled(element, cache) _logger.info("Element %s cache size = %d", element, xcom.getCacheSize(element)) for element in actualElementsList: xcom.setElementCascadeCacheEnabled(element.split()[0], cache) if hasattr(xcom, "updateEscapeCache") and \ hasattr(xcom, "setEscapeCacheEnabled"): if detector is not None: for element in actualElementsList: if cache: lines = xcom.getEmittedXRayLines(element.split()[0]) lines_energy = [lines[key] for key in lines] for e in lines_energy: if e not in emittedLines: emittedLines.append(e) if not cache: if hasattr(xcom, "clearEscapeCache"): # the method is there but nor wrapped yet xcom.clearEscapeCache() xcom.setEscapeCacheEnabled(cache) if cache: xcom.updateEscapeCache(detectorInstance.getComposition(xcom), emittedLines, energyThreshold=detectorInstance.getEscapePeakEnergyThreshold(), \ intensityThreshold=detectorInstance.getEscapePeakIntensityThreshold(), \ nThreshold=detectorInstance.getEscapePeakNThreshold(), \ alphaIn=detectorInstance.getEscapePeakAlphaIn(), thickness=0) # No escape by the back considered yet else: _logger.debug("NOT CALLING UPDATE CACHE") _logger.info("C++ elapsed filling cache = %s", time.time() - t0) _logger.debug("Calling getMultilayerFluorescence") nSampleLayers = len(multilayerSample) nEnergies = len(energyList) #secondary = 2 #print(" SECONDARY = ", secondary) if Beam and ThreadPoolExecutor and secondary and (nEnergies > 4 or nSampleLayers > 1): if (secondary <= 1) and (nSampleLayers > nEnergies): # one thread per layer # Sample layer parallelization _logger.info("Threading by layers") t0 = time.time() pool = ThreadPoolExecutor(max_workers=min(os.cpu_count(), nSampleLayers)) ele = [x.split()[0] for x in actualElementsList] family = [x.split()[1] for x in actualElementsList] future = [None] * nSampleLayers for i in range(nSampleLayers): future[i] = pool.submit(xrf.getFluorescence, ele, xcom, i, family, secondary=secondary, useGeometricEfficiency=useGeometricEfficiency, useMassFractions=elementsFromMatrix, secondaryCalculationLimit=secondaryCalculationLimit) fluorescence = {} for i in range(len(future)): partialFluorescence = future[i].result() for peakFamily in partialFluorescence: if peakFamily not in fluorescence: fluorescence[peakFamily] = partialFluorescence[peakFamily] continue for layer in partialFluorescence[peakFamily]: if layer not in fluorescence[peakFamily]: fluorescence[peakFamily][layer] = partialFluorescence[peakFamily][layer] continue for transition in partialFluorescence[peakFamily][layer]: msg = "This point should not be reached with layer parallerisation" _logger.critical(msg) if transition not in fluorescence[peakFamily][layer]: fluorescence[peakFamily][layer][transition] = \ partialFluorescence[peakFamily][layer][transition] continue for key in partialFluorescence[peakFamily][layer][transition]: if key not in fluorescence[peakFamily][layer][transition]: fluorescence[peakFamily][layer][transition][key] = \ partialFluorescence[peakFamily][layer][transition][key] continue elif (secondary <= 1) and (len(energyList) < 2) and len(actualElementsList) > 4: # elements parallelization cannot work with tertiary excitation # the speed up does not seem to be huge _logger.info("Threading by elements") t0 = time.time() max_workers = min(os.cpu_count(), int(len(actualElementsList)/2)) pool = ThreadPoolExecutor(max_workers=max_workers) ele = [x.split()[0] for x in actualElementsList] family = [x.split()[1] for x in actualElementsList] partialActualElementsList = [None] * max_workers future = [None] * max_workers for i in range(max_workers): partialActualElementsList = actualElementsList[i::max_workers] future[i] = pool.submit(xrf.getMultilayerFluorescence, partialActualElementsList, xcom, secondary=secondary, useGeometricEfficiency=useGeometricEfficiency, useMassFractions=elementsFromMatrix, secondaryCalculationLimit=secondaryCalculationLimit) fluorescence = {} for i in range(len(future)): partialFluorescence = future[i].result() for peakFamily in partialFluorescence: if peakFamily not in fluorescence: fluorescence[peakFamily] = partialFluorescence[peakFamily] continue msg = "This point should not be reached with element parallerisation" _logger.critical(msg) else: # multiple energies parallelization _logger.info("Threading by energies") t0 = time.time() max_workers = min(os.cpu_count(), int(len(energyList)/2)) _logger.info("Number of workers = ", max_workers) pool = ThreadPoolExecutor(max_workers=max_workers) ele = [x.split()[0] for x in actualElementsList] family = [x.split()[1] for x in actualElementsList] beamList = [None] * max_workers future = [None] * max_workers # the beam is automatically normalized totalBeamWeight = numpy.sum(weightList, dtype=numpy.float64) beamWeight = [None] * max_workers for i in range(max_workers): beamList[i] = Beam() beamList[i].setBeam(energyList[i::max_workers], weightList[i::max_workers]) beamWeight[i] = numpy.sum(weightList[i::max_workers], dtype=numpy.float64) future[i] = pool.submit(xrf.getMultilayerFluorescence, actualElementsList, xcom, secondary=secondary, useGeometricEfficiency=useGeometricEfficiency, useMassFractions=elementsFromMatrix, secondaryCalculationLimit=secondaryCalculationLimit, overwritingBeam=beamList[i]) fluorescence = {} for i in range(len(future)): partialFluorescence = future[i].result() for peakFamily in partialFluorescence: if peakFamily not in fluorescence: fluorescence[peakFamily] = {} for layer in partialFluorescence[peakFamily]: if layer not in fluorescence[peakFamily]: fluorescence[peakFamily][layer] = {} for transition in partialFluorescence[peakFamily][layer]: if transition not in fluorescence[peakFamily][layer]: fluorescence[peakFamily][layer][transition] = {} for key in partialFluorescence[peakFamily][layer][transition]: if key not in fluorescence[peakFamily][layer][transition]: fluorescence[peakFamily][layer][transition][key] = 0.0 fluorescence[peakFamily][layer][transition][key] += \ partialFluorescence[peakFamily][layer][transition][key]* \ beamWeight[i] / totalBeamWeight expectedFluorescence = fluorescence print("THREADING ELAPSED = %s", time.time() - t0) else: # No possibility to use threads or no need _logger.info("No Threading") t0 = time.time() expectedFluorescence = xrf.getMultilayerFluorescence(actualElementsList, xcom, secondary=secondary, useGeometricEfficiency=useGeometricEfficiency, useMassFractions=elementsFromMatrix, secondaryCalculationLimit=secondaryCalculationLimit) if 0: # This whould be equivalent overwritingBeam = Beam() overwritingBeam.setBeam(energyList, weights=weightList) expectedFluorescence = xrf.getMultilayerFluorescence(actualElementsList, xcom, secondary=secondary, useGeometricEfficiency=useGeometricEfficiency, useMassFractions=elementsFromMatrix, secondaryCalculationLimit=secondaryCalculationLimit, overwritingBeam=overwritingBeam) print("C++ elapsed TWO = %s", time.time() - t0) # check if the two dictionnaries are idential # print("Are they equal ? = ", _compareResults(fluorescence, expectedFluorescence)) # expectedFluorescence = fluorescence if not elementsFromMatrix: # If one element was present in one layer and not on others, PyMca only # calculated contributions from the layers in which the element was # present for peakFamily in matrixElementsList: element, family = peakFamily.split()[0:2] key = element + " " + family if key in expectedFluorescence: # those layers where the amount of the material was 0 have # to present no contribution for iLayer in range(len(expectedFluorescence[key])): layerMaterial = multilayerSample[iLayer][0] if element not in xcom.getComposition(layerMaterial): expectedFluorescence[key][iLayer] = {} return expectedFluorescence def _compareResults(fluorescence, expectedFluorescence, atol=1.0e-6, rtol=1.0e-4): """ Returns 0 if not equal, 1 if equal within tolerance, 2 if identical """ if fluorescence == expectedFluorescence: return 2 for peakFamily in expectedFluorescence: for layer in expectedFluorescence[peakFamily]: for transition in expectedFluorescence[peakFamily][layer]: for key in expectedFluorescence[peakFamily][layer][transition]: if expectedFluorescence[peakFamily][layer][transition][key] != \ fluorescence[peakFamily][layer][transition][key]: tmpDouble = expectedFluorescence[peakFamily][layer][transition][key] \ - fluorescence[peakFamily][layer][transition][key] relative = tmpDouble/max(fluorescence[peakFamily][layer][transition][key], expectedFluorescence[peakFamily][layer][transition][key]) if abs(tmpDouble) > atol or (relative > rtol): print("Offending key = %s" % key) print("delta = %f" % tmpDouble) print("relative = %f" % relative) print(expectedFluorescence[peakFamily][layer][transition][key]) print(fluorescence[peakFamily][layer][transition][key]) return 0 return 1 def _getFisxMaterials(fitConfiguration): """ Given a PyMca fir configuration, return the list of fisx materials to be used by the library for calculation purposes. """ global xcom if xcom is None: xcom = getElementsInstance() # define all the needed materials inputMaterialDict = fitConfiguration.get("materials", {}) inputMaterialList = list(inputMaterialDict.keys()) nMaterials = len(inputMaterialList) fisxMaterials = [] processedMaterialList = [] nIter = 10000 while (len(processedMaterialList) != nMaterials) and (nIter > 0): nIter -= 1 for i in range(nMaterials): materialName = inputMaterialList[i] if materialName in processedMaterialList: # already defined pass else: thickness = inputMaterialDict[materialName].get("Thickness", 1.0) if thickness <= 0: raise ValueError("Invalid thickness %f" % thickness) density = inputMaterialDict[materialName].get("Density", 1.0) if density == 0.0: raise ValueError("Invalid density %f" % density) comment = inputMaterialDict[materialName].get("Comment", "") if type(comment) in [type([])]: # the user may have put a comma in the comment leading to # misinterpretation of the string as a list if len(comment) == 0: comment = "" elif len(comment) == 1: comment = comment[0] else: actualComment = comment[0] for commentPiece in comment[1:]: actualComment = actualComment + "," + commentPiece comment = actualComment if not len(comment): comment = "" compoundList = inputMaterialDict[materialName]["CompoundList"] fractionList = inputMaterialDict[materialName]["CompoundFraction"] if not hasattr(fractionList, "__getitem__"): compoundList = [compoundList] fractionList = [fractionList] composition = {} for n in range(len(compoundList)): if fractionList[n] > 0.0: composition[compoundList[n]] = fractionList[n] else: _logger.info("ignoring %s, fraction = %s", compoundList[n], fractionList[n]) # check the composition is expressed in terms of elements # and not in terms of other undefined materials totallyDefined = True for element in composition: #check if it can be understood if element in processedMaterialList: # already defined continue elif not len(xcom.getComposition(element)): # compound not understood # probably we have a material defined in terms of other material totallyDefined = False if totallyDefined: try: fisxMaterial = Material(materialName, density=density, thickness=thickness, comment=comment) fisxMaterial.setComposition(composition) fisxMaterials.append(fisxMaterial) except Exception: if len(materialName): raise TypeError("Error defining material <%s>" % \ materialName) processedMaterialList.append(materialName) if len(processedMaterialList) < nMaterials: txt = "Undefined materials. " for material in inputMaterialList: if material not in processedMaterialList: txt += "\nCannot define material <%s>\nComposition " % material compoundList = inputMaterialDict[material]["CompoundList"] fractionList = inputMaterialDict[material]["CompoundFraction"] for compound in compoundList: if not len(xcom.getComposition(compound)): if compound not in processedMaterialList: if compound + " " in processedMaterialList: txt += "contains <%s> (defined as <%s>), " % (compound, compound + " ") else: txt += "contains <%s> (undefined)," % compound _logger.info(txt) raise KeyError(txt) return fisxMaterials def _getBeam(fitConfiguration): inputEnergy = fitConfiguration['fit'].get('energy', None) if inputEnergy in [None, ""]: raise ValueError("Beam energy has to be specified") if not hasattr(inputEnergy, "__len__"): energyList = [inputEnergy] weightList = [1.0] characteristicList = [1] else: energyList = [] weightList = [] characteristicList = [] for i in range(len(inputEnergy)): if fitConfiguration['fit']['energyflag'][i]: energy = fitConfiguration['fit']['energy'][i] if energy is not None: if fitConfiguration['fit']['energyflag'][i]: weight = fitConfiguration['fit']['energyweight'][i] if weight > 0.0: energyList.append(energy) weightList.append(weight) if 'energyscatter' in fitConfiguration['fit']: characteristicList.append(fitConfiguration['fit'] \ ['energyscatter'][i]) elif i == 0: characteristicList.append(1) else: characteristicList.append(0) return energyList, weightList, characteristicList def _getUserAttenuators(fitConfiguration): return _getUserattenuators(fitConfiguration) def _getUserattenuators(fitConfiguration): userattenuatorList =[] userattenuators = fitConfiguration.get('userattenuators', {}) for userattenuator in userattenuators.keys(): ddict = userattenuators[userattenuator] if ddict["use"]: userattenuatorList.append([ddict["energy"], ddict["transmission"], ddict["name"], ddict["comment"]]) return userattenuatorList def _getFiltersMatrixAttenuatorsDetectorGeometry(fitConfiguration): useMatrix = False attenuatorList =[] filterList = [] detector = None for attenuator in list(fitConfiguration['attenuators'].keys()): if not fitConfiguration['attenuators'][attenuator][0]: # set to be ignored continue #if len(fitConfiguration['attenuators'][attenuator]) == 4: # fitConfiguration['attenuators'][attenuator].append(1.0) if attenuator.upper() == "MATRIX": if fitConfiguration['attenuators'][attenuator][0]: useMatrix = True matrix = fitConfiguration['attenuators'][attenuator][1:4] alphaIn= fitConfiguration['attenuators'][attenuator][4] alphaOut= fitConfiguration['attenuators'][attenuator][5] else: useMatrix = False elif attenuator.upper() == "DETECTOR": detector = fitConfiguration['attenuators'][attenuator][1:5] elif attenuator.upper().startswith("BEAMFILTER"): filterList.append(fitConfiguration['attenuators'][attenuator][1:5]) else: attenuatorList.append(fitConfiguration['attenuators'][attenuator][1:5]) if not useMatrix: raise ValueError("Sample matrix has to be specified!") if matrix[0].upper() == "MULTILAYER": multilayerSample = [] layerKeys = list(fitConfiguration['multilayer'].keys()) if len(layerKeys): layerKeys.sort() for layer in layerKeys: if fitConfiguration['multilayer'][layer][0]: multilayerSample.append(fitConfiguration['multilayer'][layer][1:]) else: multilayerSample = [matrix] return filterList, multilayerSample, attenuatorList, detector, \ alphaIn, alphaOut def _getPeakList(fitConfiguration): elementsList = [] for element in fitConfiguration['peaks'].keys(): if len(element) > 1: ele = element[0:1].upper() + element[1:2].lower() else: ele = element.upper() if type(fitConfiguration['peaks'][element]) == type([]): for peak in fitConfiguration['peaks'][element]: elementsList.append(ele + " " + peak) else: for peak in [fitConfiguration['peaks'][element]]: elementsList.append(ele + " " + peak) elementsList.sort() return elementsList def _getFisxDetector(fitConfiguration, attenuatorsDetector=None): distance = fitConfiguration["concentrations"]["distance"] area = fitConfiguration["concentrations"]["area"] detectorMaterial = fitConfiguration["detector"]["detele"] if attenuatorsDetector is None: # user is not interested on accounting for detection efficiency if fitConfiguration["fit"]["escapeflag"]: # but wants to account for escape peaks # we can forget about efficiency but not about detector composition # assign "infinite" efficiency density = 0.0 thickness = 0.0 fisxDetector = Detector(detectorMaterial, density=density, thickness=thickness) else: # user is not interested on considering the escape peaks fisxDetector = None else: # make sure information is consistent if attenuatorsDetector[0] not in [detectorMaterial, detectorMaterial+"1"]: _logger.warning("%s not equal to %s", attenuatorsDetector[0], detectorMaterial) msg = "Inconsistent detector material between DETECTOR and ATTENUATORS tab" msg += "\n%s not equal to %s" % (attenuatorsDetector[0], detectorMaterial) raise ValueError(msg) if len(attenuatorsDetector) == 3: fisxDetector = Detector(detectorMaterial, density=attenuatorsDetector[1], thickness=attenuatorsDetector[2]) else: fisxDetector = Detector(detectorMaterial, density=attenuatorsDetector[1], thickness=attenuatorsDetector[2], funny=attenuatorsDetector[3]) fisxDetector.setActiveArea(area) fisxDetector.setDistance(distance) if fisxDetector is not None: nThreshold = fitConfiguration["detector"]["nthreshold"] fisxDetector.setMaximumNumberOfEscapePeaks(nThreshold) return fisxDetector def _getSecondaryCalculationLimitFromFitConfiguration(fitConfiguration): try: limit = float(\ fitConfiguration["concentrations"]["secondarycalculationlimit"]) except Exception: _logger.debug("Exception. Forcing no limit") limit = 0.0 return limit def getMultilayerFluorescenceFromFitConfiguration(fitConfiguration, elementsFromMatrix=False, secondaryCalculationLimit=None): return _fisxFromFitConfigurationAction(fitConfiguration, action="fluorescence", elementsFromMatrix=elementsFromMatrix, secondaryCalculationLimit= \ secondaryCalculationLimit) def getFisxCorrectionFactorsFromFitConfiguration(fitConfiguration, elementsFromMatrix=False, secondaryCalculationLimit=None): return _fisxFromFitConfigurationAction(fitConfiguration, action="correction", elementsFromMatrix=elementsFromMatrix, secondaryCalculationLimit= \ secondaryCalculationLimit) def _fisxFromFitConfigurationAction(fitConfiguration, action=None, elementsFromMatrix=False, \ secondaryCalculationLimit=None): if action is None: raise ValueError("Please specify action") if secondaryCalculationLimit is None: secondaryCalculationLimit = \ _getSecondaryCalculationLimitFromFitConfiguration(fitConfiguration) # This is highly inefficient because one has to perform all the parsing # that has been already made when configuring the fit. However, this is # currently the simplest implementation that can work as standalone given # the fit configuration # the fisx materials list fisxMaterials = _getFisxMaterials(fitConfiguration) # extract beam parameters energyList, weightList, characteristicList = _getBeam(fitConfiguration) # extract beamFilters, matrix, geometry, attenuators and detector filterList, multilayerSample, attenuatorList, detector, alphaIn, alphaOut \ = _getFiltersMatrixAttenuatorsDetectorGeometry(fitConfiguration) # extract transmission tables used as atenuators userattenuatorList = _getUserattenuators(fitConfiguration) # The elements and families to be considered elementsList = _getPeakList(fitConfiguration) # The detection setup detectorInstance = _getFisxDetector(fitConfiguration, detector) try: secondary = fitConfiguration["concentrations"]["usemultilayersecondary"] except Exception: _logger.warning("Exception. Forcing tertiary") secondary = 2 if action.upper() == "FLUORESCENCE": return getMultilayerFluorescence(multilayerSample, energyList, weightList = weightList, flagList = characteristicList, fulloutput = None, beamFilters = filterList, elementsList = elementsList, attenuatorList = attenuatorList, userattenuatorList = userattenuatorList, alphaIn = alphaIn, alphaOut = alphaOut, cascade = None, detector = detectorInstance, elementsFromMatrix=elementsFromMatrix, secondary=secondary, materials=fisxMaterials, secondaryCalculationLimit= \ secondaryCalculationLimit) else: if secondary == 0: # otherways it is meaning less to call the function secondary = 2 return getFisxCorrectionFactors(multilayerSample, energyList, weightList = weightList, flagList = characteristicList, fulloutput = None, beamFilters = filterList, elementsList = elementsList, attenuatorList = attenuatorList, userattenuatorList = userattenuatorList, alphaIn = alphaIn, alphaOut = alphaOut, cascade = None, detector = detectorInstance, elementsFromMatrix=elementsFromMatrix, secondary=secondary, materials=fisxMaterials, secondaryCalculationLimit= \ secondaryCalculationLimit) def getFisxCorrectionFactors(*var, **kw): expectedFluorescence = getMultilayerFluorescence(*var, **kw) ddict = {} transitions = ['K', 'Ka', 'Kb', 'L', 'L1', 'L2', 'L3', 'M'] if kw["secondary"] == 2: nItems = 3 else: nItems = 2 for key in expectedFluorescence: element, family = key.split() if element not in ddict: ddict[element] = {} if family not in transitions: raise KeyError("Invalid transition family: %s" % family) if family not in ddict[element]: ddict[element][family] = {'total':0.0, 'correction_factor':[1.0] * nItems, 'counts':[0.0] * nItems} for iLayer in range(len(expectedFluorescence[key])): layerOutput = expectedFluorescence[key][iLayer] layerKey = "layer %d" % iLayer if layerKey not in ddict[element][family]: ddict[element][family][layerKey] = {'total':0.0, 'correction_factor':[1.0] * nItems, 'counts':[0.0] * nItems} for line in layerOutput: rate = layerOutput[line]["rate"] primary = layerOutput[line]["primary"] secondary = layerOutput[line]["secondary"] tertiary = layerOutput[line].get("tertiary", 0.0) if rate <= 0.0: continue # primary counts tmpDouble = rate * (primary / (primary + secondary + tertiary)) ddict[element][family]["counts"][0] += tmpDouble secondaryCounts = rate * \ ((primary + secondary)/ (primary + secondary + tertiary)) ddict[element][family]["counts"][1] += secondaryCounts if nItems == 3: ddict[element][family]["counts"][2] += rate ddict[element][family]["total"] += rate #layer by layer information ddict[element][family][layerKey]["counts"][0] += tmpDouble ddict[element][family][layerKey]["counts"][1] += secondaryCounts if nItems == 3: ddict[element][family][layerKey]["counts"][2] += rate ddict[element][family][layerKey]["total"] += rate for element in ddict: for family in ddict[element]: # second order includes tertiary!!! firstOrder = ddict[element][family]["counts"][0] secondOrder = ddict[element][family]["counts"][1] ddict[element][family]["correction_factor"][1] = \ secondOrder / firstOrder if nItems == 3: thirdOrder = ddict[element][family]["counts"][2] ddict[element][family]["correction_factor"][2] = \ thirdOrder / firstOrder i = 0 layerKey = "layer %d" % i while layerKey in ddict[element][family]: firstOrder = ddict[element][family][layerKey]["counts"][0] secondOrder = ddict[element][family][layerKey]["counts"][1] if firstOrder <= 0: if secondOrder > 0.0: _logger.warning("Inconsistency? secondary with no primary?") ddict[element][family][layerKey]["correction_factor"][1] = 1 if nItems == 3: ddict[element][family][layerKey]["correction_factor"][2] = 1 else: ddict[element][family][layerKey]["correction_factor"][1] =\ secondOrder / firstOrder if nItems == 3: ddict[element][family][layerKey]["correction_factor"][2] =\ thirdOrder / firstOrder i += 1 layerKey = "layer %d" % i return ddict def getFisxCorrectionFactorsFromFitConfigurationFile(fileName, elementsFromMatrix=False, secondaryCalculationLimit=None): from PyMca5.PyMca import ConfigDict d = ConfigDict.ConfigDict() d.read(fileName) return getFisxCorrectionFactorsFromFitConfiguration(d, elementsFromMatrix=elementsFromMatrix, secondaryCalculationLimit= \ secondaryCalculationLimit) if __name__ == "__main__": _logger.setLevel(logging.DEBUG) if len(sys.argv) < 2: print("Usage: python FisxHelper FitConfigurationFile [element] [matrix_flag]") sys.exit(0) fileName = sys.argv[1] if len(sys.argv) > 2: element = sys.argv[2] if len(sys.argv) > 3: matrix = int(sys.argv[3]) print(getFisxCorrectionFactorsFromFitConfigurationFile(\ fileName, elementsFromMatrix=matrix))[element] else: print(getFisxCorrectionFactorsFromFitConfigurationFile(fileName)) \ [element] else: print(getFisxCorrectionFactorsFromFitConfigurationFile(fileName)) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/GenerateXCOMCrossSections.py�������������������������������0000644�0000000�0000000�00000011343�14741736366�024065� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Generate specfile from XCOM generated files" import sys import os import numpy from PyMca5.PyMcaPhysics import Elements def getHeader(filename): text = '#F %s\n' % filename text += '#U00 This file is a direct conversion to specfile format of \n' text += '#U01 the XCOM selected-arrays output.\n' text += '#U02 \n' text += '#U03 XCOM itself can be found at:\n' text += '#U04 http://www.nist.gov/pml/data/xcom/index.cfm\n' text += '\n' return text if __name__ == "__main__": if len(sys.argv) < 3: print("Usage:") print("python GenerateXCOMTotalCrossSections SPEC_output_filename Barns_flag") sys.exit(0) fname = sys.argv[1] if os.path.exists(fname): os.remove(fname) if int(sys.argv[2]): BARNS = True else: BARNS = False print("BARNS = %s" % BARNS) outfile = open(fname, 'wb') outfile.write(getHeader(fname)) for i in range(1, 101): ele = Elements.getsymbol(i) print("i = %d element = %s" % (i, ele)) # force data readout dataDict = Elements.getelementmassattcoef(ele) # pure XCOM data dataDict = Elements.Element[ele]['xcom'] # energy (keV) energy = dataDict['energy'] # coherent (cm2/g) cohe = dataDict['coherent'] # incoherent incohe = dataDict['compton'] # photoelectric photo = dataDict['photo'] # photoelectric pair = dataDict['pair'] # total total = dataDict['total'] # convert to keV and cut at 500 keV not done for XCOM # indices = numpy.nonzero(energy<=500.) # energy = energy[indices] # photo = photo[indices] # cohe = cohe[indices] # incohe = incohe[indices] # I do not cut at 500 keV. I need to take the pair production total = photo + cohe + incohe + pair #now I am ready to write a Specfile text = '#S %d %s\n' % (i, ele) text += '#N 5\n' labels = '#L PhotonEnergy[keV]' labels += ' Rayleigh(coherent)[barn/atom]' labels += ' Compton(incoherent)[barn/atom]' labels += ' CoherentPlusIncoherent[barn/atom]' labels += ' Photoelectric[barn/atom]' labels += ' PairProduction[barn/atom]' labels += ' TotalCrossSection[barn/atom]\n' if not BARNS: labels = labels.replace("barn/atom", "cm2/g") factor = 1.0 else: factor = Elements.Element[ele]['mass'] /(1.0E-24*AVOGADRO_NUMBER) text += labels if 0: fformat = "%g %g %g %g %g %g %g\n" else: fformat = "%.6E %.6E %.6E %.6E %.6E %.6E %.6E\n" outfile.write(text) for n in range(len(energy)): line = fformat % (energy[n], cohe[n] * factor, incohe[n] * factor, (cohe[n] + incohe[n]) * factor, photo[n] * factor, pair[n] * factor, total[n] * factor) outfile.write(line) outfile.write('\n') outfile.close() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/IncoherentScattering.py������������������������������������0000644�0000000�0000000�00000014234�14741736366�023246� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5.PyMcaIO import ConfigDict from PyMca5 import PyMcaDataDir ElementList= ['H','He','Li','Be','B','C','N','O','F','Ne', 'Na','Mg','Al','Si','P','S','Cl','Ar','K','Ca','Sc','Ti','V','Cr','Mn','Fe','Co','Ni','Cu','Zn', 'Ga','Ge','As','Se','Br','Kr', 'Rb','Sr','Y','Zr','Nb','Mo','Tc','Ru','Rh','Pd','Ag','Cd', 'In','Sn','Sb','Te','I','Xe','Cs','Ba','La','Ce','Pr','Nd', 'Pm','Sm','Eu','Gd','Tb','Dy','Ho','Er','Tm','Yb','Lu','Hf', 'Ta','W','Re','Os','Ir','Pt','Au','Hg','Tl','Pb','Bi','Po','At', 'Rn','Fr','Ra','Ac','Th','Pa','U','Np','Pu','Am','Cm','Bk','Cf', 'Es','Fm','Md','No','Lr','Rf','Db','Sg','Bh','Hs','Mt'] dirmod = PyMcaDataDir.PYMCA_DATA_DIR ffile = os.path.join(dirmod,"attdata") ffile = os.path.join(ffile,"incoh.dict") if not os.path.exists(ffile): #freeze does bad things with the path ... dirmod = os.path.dirname(dirmod) ffile = os.path.join(dirmod, "attdata") ffile = os.path.join(ffile, "incoh.dict") if not os.path.exists(ffile): if dirmod.lower().endswith(".zip"): dirmod = os.path.dirname(dirmod) ffile = os.path.join(dirmod,"attdata") ffile = os.path.join(ffile, "incoh.dict") if not os.path.exists(ffile): print("Cannot find file ", ffile) raise IOError("Cannot find file %s" % ffile) COEFFICIENTS = ConfigDict.ConfigDict() COEFFICIENTS.read(ffile) xvalues = COEFFICIENTS['ISCADT']['XSVAL'] svalues = numpy.reshape(COEFFICIENTS['ISCADT']['SCATF'], (100, len(xvalues))) #svalues = COEFFICIENTS['ISCADT']['SCATF'] #print svalues[100:110] KEVTOANG = 12.39852000 R0 = 2.82E-13 #electron radius in cm def getZ(ele): if ele in ElementList: return float(ElementList.index(ele)+1) else: return None def getElementComptonFormFactor(ele, theta, energy): return getElementIncoherentScatteringFunction(ele, theta, energy) def getComptonScatteringEnergy(energy, theta): return energy/(1.0 + \ (energy/511.) * (1 - numpy.cos(theta*(numpy.pi / 180.0)))) def getElementIncoherentScatteringFunction(ele, theta, energy): """ Usage: getIncoherentScatteringFunction(ele,theta, energy): ele - Element theta - Scattering angle in degrees energy- Photon Energy in keV This routine calculates the incoherent scattering function in electron units an interpolation to EGS4 tabulation of S(x,Z)/Z """ if ele in ElementList: z = getZ(ele) else: z = float(ele) wavelength = KEVTOANG / energy sinhalftheta = numpy.sin(theta * (numpy.pi / 360.0)) #Hubbel just give this term x = sinhalftheta / wavelength #print "x old = ",x e = energy/511.0 #Fajardo uses: x = x * numpy.sqrt(1.0 + e* (e+2.0)* pow(sinhalftheta, 2))/ \ (1.0 + 2.0 * e * pow(sinhalftheta, 2)) #print "x new = ",x ilow = 0 ihigh = 44 i = 22 while (ihigh - ilow) > 1: if x < xvalues[i]:ihigh = i else:ilow =i i = int((ihigh+ilow)/2) if z > 100: if ihigh == ilow: value = svalues[int(99),ilow] else: A = (x - xvalues[ilow])/(xvalues[ihigh]-xvalues[ilow]) value = ((1.0 - A ) * svalues[int(99),ilow] + \ A * svalues[int(99),ihigh]) value = value * (z/100.) else: if ihigh == ilow: value = svalues[int(z-1),ilow] else: A = (x - xvalues[ilow])/(xvalues[ihigh]-xvalues[ilow]) value = ((1.0 - A ) * svalues[int(z-1),ilow] + \ A * svalues[int(z-1),ihigh]) return value def getElementComptonDifferentialCrossSection(ele, theta, energy, p1=None): if p1 is None:p1=0.0 if (p1 > 1.0) or (p1 < -1): raise ValueError(\ "Invalid degree of linear polarization respect to the scattering plane") thetasin2 = pow(numpy.sin(theta * numpy.pi / 180.0), 2) thetacos = numpy.cos(theta * numpy.pi/180.0) e = energy/(1.0 + (energy/511.) * (1.0 - thetacos)) return 0.5 * ((e/energy) + (energy/e) + (p1-1.0) * thetasin2) * \ pow(R0*(e/energy)*getElementIncoherentScatteringFunction(ele, theta, energy),2) getElementIncoherentDifferentialCrossSection=\ getElementComptonDifferentialCrossSection if __name__ == "__main__": import sys if len(sys.argv) > 3: ele = sys.argv[1] theta = float(sys.argv[2]) energy= float(sys.argv[3]) print(getElementComptonFormFactor(ele, theta, energy)) else: print("Usage:") print("python IncoherentScatteringFunction.py Element Theta(deg) Energy(kev)") ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/KShell.py��������������������������������������������������0000644�0000000�0000000�00000012141�14741736366�020301� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5 import getDataFile from PyMca5.PyMcaIO import specfile sf=specfile.Specfile(getDataFile("KShellRates.dat")) ElementKShellTransitions = sf[0].alllabels() ElementKShellRates = numpy.transpose(sf[0].data()).tolist() ElementKAlphaTransitions = [] ElementKBetaTransitions = [] for transition in ElementKShellTransitions: if transition[0] == 'K': if transition[1] == 'L': ElementKAlphaTransitions.append(transition) else: ElementKBetaTransitions.append(transition) elif transition[0] == 'Z': ElementKAlphaTransitions.append(transition) ElementKBetaTransitions.append(transition) else: #TOTAL column meaningless pass filedata = sf[0].data() ndata = sf[0].lines() ElementKAlphaRates = filedata[0] * 1 ElementKAlphaRates.shape = [ndata, 1] ElementKBetaRates = filedata[0] * 1 ElementKBetaRates.shape = [ndata, 1] for transition in ElementKAlphaTransitions: if transition[0] != 'Z': data = filedata[ElementKShellTransitions.index(transition)] * 1 data.shape = [ndata, 1] ElementKAlphaRates = numpy.concatenate((ElementKAlphaRates, data), axis = 1) for transition in ElementKBetaTransitions: if transition[0] != 'Z': data = filedata[ElementKShellTransitions.index(transition)] * 1 data.shape = [ndata, 1] ElementKBetaRates = numpy.concatenate((ElementKBetaRates, data), axis = 1) for i in range(len(ElementKAlphaTransitions)): if ElementKAlphaTransitions[i] != 'Z': ElementKAlphaTransitions[i] = ElementKAlphaTransitions[i] + "a" for i in range(len(ElementKBetaTransitions)): if ElementKBetaTransitions[i] != 'Z': ElementKBetaTransitions[i] = ElementKBetaTransitions[i] + "b" ElementKAlphaRates = ElementKAlphaRates.tolist() ElementKBetaRates = ElementKBetaRates.tolist() sf=specfile.Specfile(getDataFile("KShellConstants.dat")) ElementKShellConstants = sf[0].alllabels() ElementKShellValues = numpy.transpose(sf[0].data()).tolist() sf=None Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getsymbol(z): return Elements[z-1] def getz(ele): return Elements.index(ele)+1 #fluorescence yields def getomegak(ele): index = ElementKShellConstants.index('omegaK') return ElementKShellValues[getz(ele)-1][index] #Jump ratios following Veigele: Atomic Data Tables 5 (1973) 51-111. p 54 and 55 def getjk(z): return (125.0/z) + 3.5 if __name__ == "__main__": import sys if len(sys.argv) > 1: ele = sys.argv[1] if ele in Elements: z = getz(ele) print("Atomic Number = ",z) print("K-shell yield = ",getomegak(ele)) print("K-shell jump = ",getjk(z)) �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/LShell.py��������������������������������������������������0000644�0000000�0000000�00000024634�14741736366�020314� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5.PyMcaIO import specfile from PyMca5 import getDataFile sf=specfile.Specfile(getDataFile("LShellRates.dat")) ElementL1ShellTransitions = sf[0].alllabels() ElementL2ShellTransitions = sf[1].alllabels() ElementL3ShellTransitions = sf[2].alllabels() ElementL1ShellRates = numpy.transpose(sf[0].data()).tolist() ElementL2ShellRates = numpy.transpose(sf[1].data()).tolist() ElementL3ShellRates = numpy.transpose(sf[2].data()).tolist() sf=specfile.Specfile(getDataFile("LShellConstants.dat")) ElementL1ShellConstants = sf[0].alllabels() ElementL2ShellConstants = sf[1].alllabels() ElementL3ShellConstants = sf[2].alllabels() ElementL1ShellValues = numpy.transpose(sf[0].data()).tolist() ElementL2ShellValues = numpy.transpose(sf[1].data()).tolist() ElementL3ShellValues = numpy.transpose(sf[2].data()).tolist() sf=None fname = getDataFile("EADL97_LShellConstants.dat") sf = specfile.Specfile(fname) EADL97_ElementL1ShellConstants = sf[0].alllabels() EADL97_ElementL2ShellConstants = sf[1].alllabels() EADL97_ElementL3ShellConstants = sf[2].alllabels() EADL97_ElementL1ShellValues = numpy.transpose(sf[0].data()).tolist() EADL97_ElementL2ShellValues = numpy.transpose(sf[1].data()).tolist() EADL97_ElementL3ShellValues = numpy.transpose(sf[2].data()).tolist() EADL97 = True sf = None Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getsymbol(z): return Elements[z-1] def getz(ele): return Elements.index(ele)+1 #fluorescence yields def getomegal1(ele): zEle = getz(ele) index = ElementL1ShellConstants.index('omegaL1') value = ElementL1ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: #extend with EADL97 values if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementL1ShellConstants.index('omegaL1') value = EADL97_ElementL1ShellValues[zEle-1][index] return value def getomegal2(ele): zEle = getz(ele) index = ElementL2ShellConstants.index('omegaL2') value = ElementL2ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: #extend with EADL97 values if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementL2ShellConstants.index('omegaL2') value = EADL97_ElementL2ShellValues[zEle-1][index] return value def getomegal3(ele): zEle = getz(ele) index = ElementL3ShellConstants.index('omegaL3') value = ElementL3ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: #extend with EADL97 values if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementL3ShellConstants.index('omegaL3') value = EADL97_ElementL3ShellValues[zEle-1][index] return value def getCosterKronig(ele): ck = {} transitions = [ 'f12', 'f13', 'f23'] zEle = getz(ele) if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... EADL_z = 99 else: EADL_z = zEle ckEADL = {} ckSum = 0.0 for t in transitions: if t in ElementL1ShellConstants: index = ElementL1ShellConstants.index(t) ck[t] = ElementL1ShellValues[zEle-1][index] if EADL97: #extend with EADL97 values index = EADL97_ElementL1ShellConstants.index(t) ckEADL[t] = EADL97_ElementL1ShellValues[EADL_z-1][index] elif t in ElementL2ShellConstants: index = ElementL2ShellConstants.index(t) ck[t] = ElementL2ShellValues[zEle-1][index] if EADL97: #extend with EADL97 values index = EADL97_ElementL2ShellConstants.index(t) ckEADL[t] = EADL97_ElementL2ShellValues[EADL_z-1][index] elif t in ElementL3ShellConstants: index = ElementL3ShellConstants.index(t) ck[t] = ElementL3ShellValues[zEle-1][index] if EADL97: #extend with EADL97 values index = EADL97_ElementL3ShellConstants.index(t) ckEADL[t] = EADL97_ElementL3ShellValues[EADL_z-1][index] else: print("%s not in L-Shell Coster-Kronig transitions" % t) continue ckSum += ck[t] if ckSum > 0.0: #I do not force EADL97 because of compatibility #with previous versions. I may offer forcing to #EADL97 in the future. return ck elif EADL97: #extended values if defined #for instance, the region from Mg to Cl return ckEADL else: return ck #Jump ratios following Veigele: Atomic Data Tables 5 (1973) 51-111. p 54 and 55 def getjl1(z): return 1.2 def getjl2(z): return 1.4 def getjl3(z): return (80.0/z) + 1.5 def getwjump(ele,excitedshells=[1.0,1.0,1.0]): """ wjump represents the probability for a vacancy to be created on the respective L-Shell by direct photoeffect on that shell """ z = getz(ele) #weights due to photoeffect jl = [getjl1(z), getjl2(z), getjl3(z)] wjump = [] i = 0 cum = 0.00 for jump in jl: v = excitedshells[i]*(jump-1.0)/jump wjump.append(v) cum += v i+=1 for i in range(len(wjump)): wjump[i] = wjump[i] / cum return wjump def getweights(ele,excitedshells=None): if type(ele) == type(" "): pass else: ele = getsymbol(int(ele)) if excitedshells == None:excitedshells=[1.0,1.0,1.0] w = getwjump(ele,excitedshells) #weights due to Coster Kronig transitions and fluorescence yields ck= getCosterKronig(ele) w[0] *= 1.0 w[1] *= (1.0 + ck['f12'] * w[0]) w[2] *= (1.0 + ck['f13'] * w[0] + ck['f23'] * w[1]) omega = [ getomegal1(ele), getomegal2(ele), getomegal3(ele)] for i in range(len(w)): w[i] *= omega[i] cum = sum(w) for i in range(len(w)): if cum > 0.0: w[i] /= cum return w if 'TOTAL' in ElementL1ShellTransitions: labeloffset = 2 else: labeloffset = 1 ElementLShellTransitions = ElementL1ShellTransitions + \ ElementL2ShellTransitions[labeloffset:] + \ ElementL3ShellTransitions[labeloffset:] for i in range(len(ElementLShellTransitions)): ElementLShellTransitions[i]+="*" nele = len(ElementL1ShellRates) elements = range(1,nele+1) weights = [] for ele in elements: weights.append(getweights(ele)) weights = numpy.array(weights).astype(numpy.float64) ElementLShellRates = numpy.zeros((len(ElementL1ShellRates), len(ElementLShellTransitions)), numpy.float64) ElementLShellRates[:,0] = numpy.arange(len(ElementL1ShellRates)) + 1 n1 = len(ElementL1ShellTransitions) lo = labeloffset ElementLShellRates[:,lo:n1] = numpy.array(ElementL1ShellRates).astype(numpy.float64)[:,lo:] * \ numpy.resize(weights[:,0],(nele,1)) n2 = n1 + len(ElementL2ShellTransitions) - lo ElementLShellRates[:,n1:n2] = numpy.array(ElementL2ShellRates).astype(numpy.float64)[:,lo:]* \ numpy.resize(weights[:,1],(nele,1)) n1 = n2 n2 = n1 + len(ElementL3ShellTransitions) - lo ElementLShellRates[:,n1:n2] = numpy.array(ElementL3ShellRates).astype(numpy.float64)[:,lo:]* \ numpy.resize(weights[:,2],(nele,1)) if __name__ == "__main__": import sys if len(sys.argv) > 1: ele = sys.argv[1] if ele in Elements: z = getz(ele) print("Atomic Number = ",z) print("L1-shell yield = ",getomegal1(ele)) print("L2-shell yield = ",getomegal2(ele)) print("L3-shell yield = ",getomegal3(ele)) print("L1-shell jump = ",getjl1(z)) print("L2-shell jump = ",getjl2(z)) print("L3-shell jump = ",getjl3(z)) print("Coster-Kronig = ",getCosterKronig(ele)) ����������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/LegacyFastXRFLinearFit.py����������������������������������0000644�0000000�0000000�00000116351�14741736366�023327� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Module to perform a fast linear fit on a stack of fluorescence spectra. """ import os import numpy import logging from PyMca5.PyMcaMath.linalg import lstsq from . import ClassMcaTheory from PyMca5.PyMcaMath.fitting import Gefit from . import ConcentrationsTool from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaIO import ConfigDict import time _logger = logging.getLogger(__name__) class FastXRFLinearFit(object): def __init__(self, mcafit=None): self._config = None if mcafit is None: self._mcaTheory = ClassMcaTheory.McaTheory() else: self._mcaTheory = mcafit def setFitConfiguration(self, configuration): self._mcaTheory.setConfiguration(configuration) self._config = self._mcaTheory.getConfiguration() def setFitConfigurationFile(self, ffile): if not os.path.exists(ffile): raise IOError("File <%s> does not exists" % ffile) configuration = ConfigDict.ConfigDict() configuration.read(ffile) self.setFitConfiguration(configuration) def fitMultipleSpectra(self, x=None, y=None, xmin=None, xmax=None, configuration=None, concentrations=False, ysum=None, weight=None, refit=True, livetime=None): """ This method performs the actual fit. The y keyword is the only mandatory input argument. :param x: 1D array containing the x axis (usually the channels) of the spectra. :param y: 3D array containing the spectra as [nrows, ncolumns, nchannels] :param xmin: lower limit of the fitting region :param xmax: upper limit of the fitting region :param weight: 0 Means no weight, 1 Use an average weight, 2 Individual weights (slow) :param concentrations: 0 Means no calculation, 1 Calculate them :param refit: if False, no check for negative results. Default is True. :livetime: It will be used if not different from None and concentrations are to be calculated by using fundamental parameters with automatic time. The default is None. :return: A dictionary with the parameters, uncertainties, concentrations and names as keys. """ if y is None: raise RuntimeError("y keyword argument is mandatory!") if hasattr(y, "info") and hasattr(y, "data"): data = y.data mcaIndex = y.info.get("McaIndex", -1) else: data = y mcaIndex = -1 if x is None: if hasattr(y, "info") and hasattr(y, "x"): x = y.x[0] if livetime is None: if hasattr(y, "info"): if "McaLiveTime" in y.info: livetime = y.info["McaLiveTime"] t0 = time.time() if configuration is not None: self._mcaTheory.setConfiguration(configuration) elif self._config is None: raise ValueError("Fit configuration missing") else: _logger.debug("Setting default configuration") self._mcaTheory.setConfiguration(self._config) # read the current configuration # it is a copy, we can modify it at will config = self._mcaTheory.getConfiguration() if xmin is None: xmin = config['fit']['xmin'] if xmax is None: xmax = config['fit']['xmax'] toReconfigure = False # if concentrations and use times, it needs to be reconfigured # without using times and correct later on. If the concentrations # are to be calculated from internal standard there is no need to # raise an exception either. autotime = 0 liveTimeFactor = 1.0 if not concentrations: # ignore any time information to prevent unnecessary errors when # setting the fitting data whithout the time information if config['concentrations'].get("useautotime", 0): config['concentrations']["useautotime"] = 0 toReconfigure = True elif config["concentrations"]["usematrix"]: if config['concentrations'].get("useautotime", 0): config['concentrations']["useautotime"] = 0 toReconfigure = True else: # we are calculating concentrations from fundamental parameters autotime = config['concentrations'].get("useautotime", 0) nSpectra = data.size // data.shape[mcaIndex] if autotime: if livetime is None: txt = "Automatic time requested but no time information provided" raise RuntimeError(txt) elif numpy.isscalar(livetime): liveTimeFactor = \ float(config['concentrations']["time"]) / livetime elif livetime.size == nSpectra: liveTimeFactor = \ float(config['concentrations']["time"]) / livetime else: raise RuntimeError( \ "Number of live times not equal number of spectra") config['concentrations']["useautotime"] = 0 toReconfigure = True # use of strategies is not supported for the time being strategy = config['fit'].get('strategyflag', 0) if strategy: raise RuntimeError("Strategies are incompatible with fast fit") # background if config['fit']['stripflag']: if config['fit']['stripalgorithm'] == 1: _logger.debug("SNIP") else: raise RuntimeError("Please use the faster SNIP background") if weight is None: # dictated by the file weight = config['fit']['fitweight'] if weight: # individual pixel weights (slow) weightPolicy = 2 else: # No weight weightPolicy = 0 elif weight == 1: # use average weight from the sum spectrum weightPolicy = 1 if not config['fit']['fitweight']: config['fit']['fitweight'] = 1 toReconfigure = True elif weight == 2: # individual pixel weights (slow) weightPolicy = 2 if not config['fit']['fitweight']: config['fit']['fitweight'] = 1 toReconfigure = True weight = 1 else: # No weight weightPolicy = 0 if config['fit']['fitweight']: config['fit']['fitweight'] = 0 toReconfigure = True weight = 0 if not config['fit']['linearfitflag']: #make sure we force a linear fit config['fit']['linearfitflag'] = 1 toReconfigure = True if toReconfigure: # we must configure again the fit self._mcaTheory.setConfiguration(config) if len(data.shape) != 3: txt = "For the time being only three dimensional arrays supported" raise IndexError(txt) elif mcaIndex not in [-1, 2]: txt = "For the time being only mca arrays supported" raise IndexError(txt) else: # if the cumulated spectrum is present it should be better nRows = data.shape[0] nColumns = data.shape[1] nPixels = nRows * nColumns if ysum is not None: firstSpectrum = ysum elif weightPolicy == 1: # we need to calculate the sum spectrum to derive the uncertainties totalSpectra = data.shape[0] * data.shape[1] jStep = min(5000, data.shape[1]) ysum = numpy.zeros((data.shape[mcaIndex],), numpy.float64) for i in range(0, data.shape[0]): if i == 0: chunk = numpy.zeros((data.shape[0], jStep), numpy.float64) jStart = 0 while jStart < data.shape[1]: jEnd = min(jStart + jStep, data.shape[1]) ysum += data[i, jStart:jEnd, :].sum(axis=0, dtype=numpy.float64) jStart = jEnd firstSpectrum = ysum elif not concentrations: # just one spectrum is enough for the setup firstSpectrum = data[0, 0, :] else: firstSpectrum = data[0, :, :].sum(axis=0, dtype=numpy.float64) # make sure we calculate the matrix of the contributions self._mcaTheory.enableOptimizedLinearFit() # initialize the fit # print("xmin = ", xmin) # print("xmax = ", xmax) # print("firstShape = ", firstSpectrum.shape) self._mcaTheory.setData(x=x, y=firstSpectrum, xmin=xmin, xmax=xmax) # and initialize the derivatives self._mcaTheory.estimate() # now we can get the derivatives respect to the free parameters # These are the "derivatives" respect to the peaks # linearMatrix = self._mcaTheory.linearMatrix # but we are still missing the derivatives from the background nFree = 0 freeNames = [] nFreeBackgroundParameters = 0 for i, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][i] != ClassMcaTheory.Gefit.CFIXED: nFree += 1 freeNames.append(param) if i < self._mcaTheory.NGLOBAL: nFreeBackgroundParameters += 1 if nFree == 0: txt = "No free parameters to be fitted!\n" txt += "No peaks inside fitting region?" raise ValueError(txt) #build the matrix of derivatives derivatives = None idx = 0 for i, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][i] == ClassMcaTheory.Gefit.CFIXED: continue deriv= self._mcaTheory.linearMcaTheoryDerivative(self._mcaTheory.parameters, i, self._mcaTheory.xdata) deriv.shape = -1 if derivatives is None: derivatives = numpy.zeros((deriv.shape[0], nFree), numpy.float64) derivatives[:, idx] = deriv idx += 1 #loop for anchors xdata = self._mcaTheory.xdata if config['fit']['stripflag']: anchorslist = [] if config['fit']['stripanchorsflag']: if config['fit']['stripanchorslist'] is not None: ravelled = numpy.ravel(xdata) for channel in config['fit']['stripanchorslist']: if channel <= ravelled[0]:continue index = numpy.nonzero(ravelled >= channel)[0] if len(index): index = min(index) if index > 0: anchorslist.append(index) if len(anchorslist) == 0: anchorlist = [0, self._mcaTheory.ydata.size - 1] anchorslist.sort() # find the indices to be used for selecting the appropriate data # if the original x data were not ordered we have a problem # TODO: check for original ordering. if x is None: # we have an enumerated channels axis iXMin = xdata[0] iXMax = xdata[-1] else: iXMin = numpy.nonzero(x <= xdata[0])[0][-1] iXMax = numpy.nonzero(x >= xdata[-1])[0][0] # numpy 1.11.0 returns an array on previous expression # and then complains about a future deprecation warning # because of using an array and not an scalar in the selection if hasattr(iXMin, "shape"): if len(iXMin.shape): iXMin = iXMin[0] if hasattr(iXMax, "shape"): if len(iXMax.shape): iXMax = iXMax[0] dummySpectrum = firstSpectrum[iXMin:iXMax+1].reshape(-1, 1) # print("dummy = ", dummySpectrum.shape) # allocate the output buffer results = numpy.zeros((nFree, nRows, nColumns), numpy.float32) uncertainties = numpy.zeros((nFree, nRows, nColumns), numpy.float32) #perform the initial fit _logger.debug("Configuration elapsed = %f", time.time() - t0) t0 = time.time() totalSpectra = data.shape[0] * data.shape[1] jStep = min(100, data.shape[1]) if weightPolicy == 2: SVD = False sigma_b = None elif weightPolicy == 1: # the +1 is to prevent misbehavior due to weights less than 1.0 sigma_b = 1 + numpy.sqrt(dummySpectrum)/nPixels SVD = True else: SVD = True sigma_b = None last_svd = None for i in range(0, data.shape[0]): #print(i) #chunks of nColumns spectra if i == 0: chunk = numpy.zeros((dummySpectrum.shape[0], jStep), numpy.float64) jStart = 0 while jStart < data.shape[1]: jEnd = min(jStart + jStep, data.shape[1]) chunk[:,:(jEnd - jStart)] = data[i, jStart:jEnd, iXMin:iXMax+1].T if config['fit']['stripflag']: for k in range(jStep): # obtain the smoothed spectrum background=SpecfitFuns.SavitskyGolay(chunk[:, k], config['fit']['stripfilterwidth']) lastAnchor = 0 for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < background.size): background[lastAnchor:anchor] =\ SpecfitFuns.snip1d(background[lastAnchor:anchor], config['fit']['snipwidth'], 0) lastAnchor = anchor if lastAnchor < background.size: background[lastAnchor:] =\ SpecfitFuns.snip1d(background[lastAnchor:], config['fit']['snipwidth'], 0) chunk[:, k] -= background # perform the multiple fit to all the spectra in the chunk #print("SHAPES") #print(derivatives.shape) #print(chunk[:,:(jEnd - jStart)].shape) ddict=lstsq(derivatives, chunk[:,:(jEnd - jStart)], sigma_b=sigma_b, weight=weight, digested_output=True, svd=SVD, last_svd=last_svd) last_svd = ddict.get('svd', None) parameters = ddict['parameters'] results[:, i, jStart:jEnd] = parameters uncertainties[:, i, jStart:jEnd] = ddict['uncertainties'] jStart = jEnd t = time.time() - t0 _logger.debug("First fit elapsed = %f", t) if t > 0.: _logger.debug("Spectra per second = %f", data.shape[0]*data.shape[1]/float(t)) t0 = time.time() # cleanup zeros # start with the parameter with the largest amount of negative values if refit: negativePresent = True else: negativePresent = False nFits = 0 while negativePresent: zeroList = [] #totalNegative = 0 for i in range(nFree): #we have to skip the background parameters if i >= nFreeBackgroundParameters: t = results[i] < 0 tsum = t.sum() if tsum > 0: zeroList.append((tsum, i, t)) #totalNegative += tsum #print("totalNegative = ", totalNegative) if len(zeroList) == 0: negativePresent = False continue if nFits > (2 * (nFree - nFreeBackgroundParameters)): # we are probably in an endless loop # force negative pixels for item in zeroList: i = item[1] badMask = item[2] results[i][badMask] = 0.0 _logger.warning("WARNING: %d pixels of parameter %s forced to zero", item[0], freeNames[i]) continue zeroList.sort() zeroList.reverse() badParameters = [] badParameters.append(zeroList[0][1]) badMask = zeroList[0][2] if 1: # prevent and endless loop if two or more parameters have common pixels where they are # negative and one of them remains negative when forcing other one to zero for i, item in enumerate(zeroList): if item[1] not in badParameters: if item[0] > 0: #check if they have common negative pixels t = badMask * item[-1] if t.sum() > 0: badParameters.append(item[1]) badMask = t if badMask.sum() < (0.0025 * nPixels): # fit not worth for i in badParameters: results[i][badMask] = 0.0 uncertainties[i][badMask] = 0.0 _logger.debug("WARNING: %d pixels of parameter %s set to zero", badMask.sum(), freeNames[i]) else: _logger.debug("Number of secondary fits = %d", nFits + 1) nFits += 1 A = derivatives[:, [i for i in range(nFree) if i not in badParameters]] #assume we'll not have too many spectra if data.dtype not in [numpy.float32, numpy.float64]: if data.itemsize < 5: data_dtype = numpy.float32 else: data_dtype = numpy.floa64 else: data_dtype = data.dtype try: if data.dtype != data_dtype: spectra = numpy.zeros((int(badMask.sum()), 1 + iXMax - iXMin), data_dtype) spectra[:] = data[badMask, iXMin:iXMax+1] else: spectra = data[badMask, iXMin:iXMax+1] spectra.shape = badMask.sum(), -1 except TypeError: # in case of dynamic arrays, two dimensional indices are not # supported by h5py spectra = numpy.zeros((int(badMask.sum()), 1 + iXMax - iXMin), data_dtype) selectedIndices = numpy.nonzero(badMask > 0) tmpData = numpy.zeros((1, 1 + iXMax - iXMin), data_dtype) oldDataRow = -1 j = 0 for i in range(len(selectedIndices[0])): j = selectedIndices[0][i] if j != oldDataRow: tmpData = data[j] olddataRow = j spectra[i] = tmpData[selectedIndices[1][i], iXMin:iXMax+1] spectra = spectra.T # if config['fit']['stripflag']: for k in range(spectra.shape[1]): # obtain the smoothed spectrum background=SpecfitFuns.SavitskyGolay(spectra[:, k], config['fit']['stripfilterwidth']) lastAnchor = 0 for anchor in anchorslist: if (anchor > lastAnchor) and (anchor < background.size): background[lastAnchor:anchor] =\ SpecfitFuns.snip1d(background[lastAnchor:anchor], config['fit']['snipwidth'], 0) lastAnchor = anchor if lastAnchor < background.size: background[lastAnchor:] =\ SpecfitFuns.snip1d(background[lastAnchor:], config['fit']['snipwidth'], 0) spectra[:, k] -= background ddict = lstsq(A, spectra, sigma_b=sigma_b, weight=weight, digested_output=True, svd=SVD) idx = 0 for i in range(nFree): if i in badParameters: results[i][badMask] = 0.0 uncertainties[i][badMask] = 0.0 else: results[i][badMask] = ddict['parameters'][idx] uncertainties[i][badMask] = ddict['uncertainties'][idx] idx += 1 if refit: t = time.time() - t0 _logger.debug("Fit of negative peaks elapsed = %f", t) t0 = time.time() outputDict = {'parameters':results, 'uncertainties':uncertainties, 'names':freeNames} if concentrations: # check if an internal reference is used and if it is set to auto #################################################### # CONCENTRATIONS cTool = ConcentrationsTool.ConcentrationsTool() cToolConf = cTool.configure() cToolConf.update(config['concentrations']) fitFirstSpectrum = False if config['concentrations']['usematrix']: _logger.debug("USING MATRIX") if config['concentrations']['reference'].upper() == "AUTO": fitFirstSpectrum = True elif autotime: # we have to calculate with the time in the configuration # and correct later on cToolConf["autotime"] = 0 fitresult = {} if fitFirstSpectrum: # we have to fit the "reference" spectrum just to get the reference element mcafitresult = self._mcaTheory.startfit(digest=0, linear=True) # if one of the elements has zero area this cannot be made directly fitresult['result'] = self._mcaTheory.imagingDigestResult() fitresult['result']['config'] = config concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf, fitresult=fitresult, elementsfrommatrix=False, fluorates=self._mcaTheory._fluoRates, addinfo=True) # and we have to make sure that all the areas are positive for group in fitresult['result']['groups']: if fitresult['result'][group]['fitarea'] <= 0.0: # give a tiny area fitresult['result'][group]['fitarea'] = 1.0e-6 config['concentrations']['reference'] = addInfo['ReferenceElement'] else: fitresult['result'] = {} fitresult['result']['config'] = config fitresult['result']['groups'] = [] idx = 0 for i, param in enumerate(self._mcaTheory.PARAMETERS): if self._mcaTheory.codes[0][i] == Gefit.CFIXED: continue if i < self._mcaTheory.NGLOBAL: # background pass else: fitresult['result']['groups'].append(param) fitresult['result'][param] = {} # we are just interested on the factor to be applied to the area to get the # concentrations fitresult['result'][param]['fitarea'] = 1.0 fitresult['result'][param]['sigmaarea'] = 1.0 idx += 1 concentrationsResult, addInfo = cTool.processFitResult(config=cToolConf, fitresult=fitresult, elementsfrommatrix=False, fluorates=self._mcaTheory._fluoRates, addinfo=True) nValues = 1 if len(concentrationsResult['layerlist']) > 1: nValues += len(concentrationsResult['layerlist']) nElements = len(list(concentrationsResult['mass fraction'].keys())) massFractions = numpy.zeros((nValues * nElements, nRows, nColumns), numpy.float32) referenceElement = addInfo['ReferenceElement'] referenceTransitions = addInfo['ReferenceTransitions'] _logger.debug("Reference <%s> transition <%s>", referenceElement, referenceTransitions) if referenceElement in ["", None, "None"]: _logger.debug("No reference") counter = 0 for i, group in enumerate(fitresult['result']['groups']): if group.lower().startswith("scatter"): _logger.debug("skept %s", group) continue outputDict['names'].append("C(%s)" % group) if counter == 0: if hasattr(liveTimeFactor, "shape"): liveTimeFactor.shape = results[nFreeBackgroundParameters+i].shape massFractions[counter] = liveTimeFactor * \ results[nFreeBackgroundParameters+i] * \ (concentrationsResult['mass fraction'][group] / \ fitresult['result'][group]['fitarea']) counter += 1 if len(concentrationsResult['layerlist']) > 1: for layer in concentrationsResult['layerlist']: outputDict['names'].append("C(%s)-%s" % (group, layer)) massFractions[counter] = liveTimeFactor * \ results[nFreeBackgroundParameters+i] * \ (concentrationsResult[layer]['mass fraction'][group] / \ fitresult['result'][group]['fitarea']) counter += 1 else: _logger.debug("With reference") idx = None testGroup = referenceElement+ " " + referenceTransitions.split()[0] for i, group in enumerate(fitresult['result']['groups']): if group == testGroup: idx = i if idx is None: raise ValueError("Invalid reference: <%s> <%s>" %\ (referenceElement, referenceTransitions)) group = fitresult['result']['groups'][idx] referenceArea = fitresult['result'][group]['fitarea'] referenceConcentrations = concentrationsResult['mass fraction'][group] goodIdx = results[nFreeBackgroundParameters+idx] > 0 massFractions[idx] = referenceConcentrations counter = 0 for i, group in enumerate(fitresult['result']['groups']): if group.lower().startswith("scatter"): _logger.debug("skept %s", group) continue outputDict['names'].append("C(%s)" % group) goodI = results[nFreeBackgroundParameters+i] > 0 tmp = results[nFreeBackgroundParameters+idx][goodI] massFractions[counter][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\ ((referenceArea/fitresult['result'][group]['fitarea']) *\ (concentrationsResult['mass fraction'][group])) counter += 1 if len(concentrationsResult['layerlist']) > 1: for layer in concentrationsResult['layerlist']: outputDict['names'].append("C(%s)-%s" % (group, layer)) massFractions[counter][goodI] = (results[nFreeBackgroundParameters+i][goodI]/(tmp + (tmp == 0))) *\ ((referenceArea/fitresult['result'][group]['fitarea']) *\ (concentrationsResult[layer]['mass fraction'][group])) counter += 1 outputDict['concentrations'] = massFractions t = time.time() - t0 _logger.debug("Calculation of concentrations elapsed = %f", t) #################################################### return outputDict def getFileListFromPattern(pattern, begin, end, increment=None): if type(begin) == type(1): begin = [begin] if type(end) == type(1): end = [end] if len(begin) != len(end): raise ValueError(\ "Begin list and end list do not have same length") if increment is None: increment = [1] * len(begin) elif type(increment) == type(1): increment = [increment] if len(increment) != len(begin): raise ValueError(\ "Increment list and begin list do not have same length") fileList = [] if len(begin) == 1: for j in range(begin[0], end[0] + increment[0], increment[0]): fileList.append(pattern % (j)) elif len(begin) == 2: for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): fileList.append(pattern % (j, k)) elif len(begin) == 3: raise ValueError("Cannot handle three indices yet.") for j in range(begin[0], end[0] + increment[0], increment[0]): for k in range(begin[1], end[1] + increment[1], increment[1]): for l in range(begin[2], end[2] + increment[2], increment[2]): fileList.append(pattern % (j, k, l)) else: raise ValueError("Cannot handle more than three indices.") return fileList def save(result, outputDir, fileRoot=None, tif=False, csv=True): from PyMca5.PyMca import ArraySave if 'concentrations' in result: imageNames = result['names'] images = numpy.concatenate((result['parameters'], result['concentrations']), axis=0) else: images = result['parameters'] imageNames = result['names'] nImages = images.shape[0] if fileRoot in [None, ""]: fileRoot = "images" if not os.path.exists(outputDir): os.mkdir(outputDir) imagesDir = os.path.join(outputDir, "IMAGES") if not os.path.exists(imagesDir): os.mkdir(imagesDir) imageList = [None] * (nImages + len(result['uncertainties'])) fileImageNames = [None] * (nImages + len(result['uncertainties'])) j = 0 for i in range(nImages): name = imageNames[i].replace(" ","-") fileImageNames[j] = name imageList[j] = images[i] j += 1 if not imageNames[i].startswith("C("): # fitted parameter fileImageNames[j] = "s(%s)" % name imageList[j] = result['uncertainties'][i] j += 1 fileName = os.path.join(imagesDir, fileRoot+".edf") ArraySave.save2DArrayListAsEDF(imageList, fileName, labels=fileImageNames) if csv: ext = '.csv' else: ext = '.dat' fileName = os.path.join(imagesDir, fileRoot+ext) ArraySave.save2DArrayListAsASCII(imageList, fileName, csv=csv, labels=fileImageNames) if tif: i = 0 for i in range(len(fileImageNames)): label = fileImageNames[i] if label.startswith("s("): continue elif label.startswith("C("): mass_fraction = "_" + label[2:-1] + "_mass_fraction" else: mass_fraction = "_" + label fileName = os.path.join(imagesDir, fileRoot + mass_fraction + ".tif") ArraySave.save2DArrayListAsMonochromaticTiff([imageList[i]], fileName, labels=[label], dtype=numpy.float32) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) _logger.setLevel(logging.DEBUG) import glob import sys import getopt from PyMca5.PyMca import EDFStack options = '' longoptions = ['cfg=', 'outdir=', 'concentrations=', 'weight=', 'refit=', 'tif=', #'listfile=', 'filepattern=', 'begin=', 'end=', 'increment=', "outfileroot="] try: opts, args = getopt.getopt( sys.argv[1:], options, longoptions) except Exception: print(sys.exc_info()[1]) sys.exit(1) fileRoot = "" outputDir = None refit = None fileindex = 0 filepattern=None begin = None end = None increment=None backend=None weight=0 tif=0 concentrations=0 for opt, arg in opts: if opt in ('--cfg'): configurationFile = arg elif opt in '--begin': if "," in arg: begin = [int(x) for x in arg.split(",")] else: begin = [int(arg)] elif opt in '--end': if "," in arg: end = [int(x) for x in arg.split(",")] else: end = int(arg) elif opt in '--increment': if "," in arg: increment = [int(x) for x in arg.split(",")] else: increment = int(arg) elif opt in '--filepattern': filepattern = arg.replace('"', '') filepattern = filepattern.replace("'", "") elif opt in '--outdir': outputDir = arg elif opt in '--weight': weight = int(arg) elif opt in '--refit': refit = int(arg) elif opt in '--concentrations': concentrations = int(arg) elif opt in '--outfileroot': fileRoot = arg elif opt in ['--tif', '--tiff']: tif = int(arg) if filepattern is not None: if (begin is None) or (end is None): raise ValueError(\ "A file pattern needs at least a set of begin and end indices") if filepattern is not None: fileList = getFileListFromPattern(filepattern, begin, end, increment=increment) else: fileList = args if refit is None: refit = 0 print("WARNING: --refit=%d taken as default" % refit) if len(fileList): if (not os.path.exists(fileList[0])) and \ os.path.exists(fileList[0].split("::")[0]): # odo convention to get a dataset form an HDF5 fname, dataPath = fileList[0].split("::") # compared to the ROI imaging tool, this way of reading puts data # into memory while with the ROI imaging tool, there is a check. if 0: import h5py h5 = h5py.File(fname, "r") dataStack = h5[dataPath][:] h5.close() else: from PyMca5.PyMcaIO import HDF5Stack1D # this way reads information associated to the dataset (if present) if dataPath.startswith("/"): pathItems = dataPath[1:].split("/") else: pathItems = dataPath.split("/") if len(pathItems) > 1: scanlist = ["/" + pathItems[0]] selection = {"y":"/" + "/".join(pathItems[1:])} else: selection = {"y":dataPath} scanlist = None print(selection) print("scanlist = ", scanlist) dataStack = HDF5Stack1D.HDF5Stack1D([fname], selection, scanlist=scanlist) else: dataStack = EDFStack.EDFStack(fileList, dtype=numpy.float32) else: print("OPTIONS:", longoptions) sys.exit(0) if outputDir is None: print("RESULTS WILL NOT BE SAVED: No output directory specified") t0 = time.time() fastFit = FastXRFLinearFit() fastFit.setFitConfigurationFile(configurationFile) print("Main configuring Elapsed = % s " % (time.time() - t0)) result = fastFit.fitMultipleSpectra(y=dataStack, weight=weight, refit=refit, concentrations=concentrations) print("Total Elapsed = % s " % (time.time() - t0)) if outputDir is not None: save(result, outputDir, fileRoot=fileRoot, tif=False) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/LegacyMcaAdvancedFitBatch.py�������������������������������0000644�0000000�0000000�00000127332�14741736366�024010� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy from . import ClassMcaTheory from PyMca5.PyMcaCore import SpecFileLayer from PyMca5.PyMcaCore import EdfFileLayer from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaIO import LuciaMap from PyMca5.PyMcaIO import AifiraMap from PyMca5.PyMcaIO import EDFStack from PyMca5.PyMcaIO import LispixMap from PyMca5.PyMcaIO import NumpyStack try: import h5py from PyMca5.PyMcaIO import HDF5Stack1D HDF5SUPPORT = True except ImportError: HDF5SUPPORT = False from PyMca5.PyMcaIO import ConfigDict from . import ConcentrationsTool class McaAdvancedFitBatch(object): def __init__(self,initdict,filelist=None,outputdir=None, roifit=None,roiwidth=None, overwrite=1, filestep=1, mcastep=1, concentrations=0, fitfiles=1, fitimages=1, filebeginoffset = 0, fileendoffset=0, mcaoffset=0, chunk = None, selection=None, lock=None, nosave=None, quiet=False): #for the time being the concentrations are bound to the .fit files #that is not necessary, but it will be correctly implemented in #future releases self._lock = lock if nosave: self._nosave = True else: self._nosave = False self.fitFiles = fitfiles self._concentrations = concentrations if type(initdict) == type([]): self.mcafit = ClassMcaTheory.McaTheory(initdict[mcaoffset]) self.__configList = initdict self.__currentConfig = mcaoffset else: self.__configList = [initdict] self.__currentConfig = 0 self.mcafit = ClassMcaTheory.McaTheory(initdict) self.__concentrationsKeys = [] if self._concentrations: self._tool = ConcentrationsTool.ConcentrationsTool() self._toolConversion = ConcentrationsTool.ConcentrationsConversion() self.setFileList(filelist) self.setOutputDir(outputdir) if fitimages: self.fitImages= 1 self.__ncols = None else: self.fitImages = False self.__ncols = None self.fileStep = filestep self.mcaStep = mcastep self.useExistingFiles = not overwrite self.savedImages=[] if roifit is None:roifit = False if roiwidth is None:roiwidth = 100. self.pleaseBreak = 0 self.roiFit = roifit self.roiWidth = roiwidth self.fileBeginOffset = filebeginoffset self.fileEndOffset = fileendoffset self.mcaOffset = mcaoffset self.chunk = chunk self.selection = selection self.quiet = quiet def setFileList(self,filelist=None): self._rootname = "" if filelist is None: filelist = [] if type(filelist) not in [type([]), type((2,))]: filelist = [filelist] self._filelist=filelist if len(filelist): if type(filelist[0]) is not numpy.ndarray: self._rootname = self.getRootName(filelist) def getRootName(self,filelist=None): if filelist is None:filelist = self._filelist first = os.path.basename(filelist[ 0]) last = os.path.basename(filelist[-1]) if first == last:return os.path.splitext(first)[0] name1,ext1 = os.path.splitext(first) name2,ext2 = os.path.splitext(last ) i0=0 for i in range(len(name1)): if i >= len(name2): break elif name1[i] == name2[i]: pass else: break i0 = i for i in range(i0,len(name1)): if i >= len(name2): break elif name1[i] != name2[i]: pass else: break i1 = i if i1 > 0: delta=1 while (i1-delta): if (last[(i1-delta)] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']): delta = delta + 1 else: if delta > 1: delta = delta -1 break rootname = name1[0:]+"_to_"+last[(i1-delta):] else: rootname = name1[0:]+"_to_"+last[0:] return rootname def setOutputDir(self,outputdir=None): if outputdir is None:outputdir=os.getcwd() self._outputdir = outputdir def processList(self): self.counter = 0 self.__row = self.fileBeginOffset - 1 self.__stack = None for i in range(0+self.fileBeginOffset, len(self._filelist)-self.fileEndOffset, self.fileStep): if not self.roiFit: if len(self.__configList) > 1: if i != 0: self.mcafit = ClassMcaTheory.McaTheory(self.__configList[i]) self.__currentConfig = i self.mcafit.enableOptimizedLinearFit() inputfile = self._filelist[i] self.__row += 1 #should be plus fileStep? self.onNewFile(inputfile, self._filelist) self.filehandle = self.getFileHandle(inputfile) if self.pleaseBreak: break if self.__stack is None: self.__stack = False if hasattr(self.filehandle, "info"): if "SourceType" in self.filehandle.info: if self.filehandle.info["SourceType"] in\ ["EdfFileStack", "HDF5Stack1D"]: self.__stack = True if self.__stack: self.__processStack() if self._HDF5: # The complete stack has been analyzed break else: self.__processOneFile() # Needed for cleanup self.filehandle = None if self.counter: if not self.roiFit: if self.fitFiles: self.listfile.write(']\n') self.listfile.close() if (self.__ncols is not None) and (not self._nosave): if self.__ncols:self.saveImage() self.onEnd() def getFileHandle(self,inputfile): try: self._HDF5 = False if type(inputfile) == numpy.ndarray: try: a = NumpyStack.NumpyStack(inputfile) return a except Exception as e: # print e raise if HDF5SUPPORT: if h5py.is_hdf5(inputfile): self._HDF5 = True # if (len(self._filelist) == 1) && (self.mcaStep > 1) # it should attempt to avoid loading many times # the stack into memory in case of multiple processes return HDF5Stack1D.HDF5Stack1D(self._filelist, self.selection) ffile = self.__tryEdf(inputfile) if ffile is None: ffile = self.__tryLucia(inputfile) if ffile is None: if inputfile[-3:] == "DAT": ffile = self.__tryAifira(inputfile) if ffile is None: if LispixMap.isLispixMapFile(inputfile): ffile = LispixMap.LispixMap(inputfile, native=False) if (ffile is None): del ffile ffile = SpecFileLayer.SpecFileLayer() ffile.SetSource(inputfile) return ffile except Exception: raise IOError("I do not know what to do with file %s" % inputfile) @property def filehandle(self): return self._filehandle @filehandle.setter def filehandle(self, value): try: del self._filehandle.Source except AttributeError: pass self._filehandle = value def onNewFile(self,ffile, filelist): if not self.quiet: self.__log(ffile) def onImage(self,image,imagelist): pass def onMca(self,mca,nmca, filename=None, key=None, info=None): pass def onEnd(self): pass def __log(self,text): print(text) def __tryEdf(self,inputfile): try: ffile = EdfFileLayer.EdfFileLayer(fastedf=0) ffile.SetSource(inputfile) fileinfo = ffile.GetSourceInfo() if fileinfo['KeyList'] == []: ffile=None elif len(self._filelist) == 1: #Is it a Diamond stack? if len(fileinfo['KeyList']) > 1: info, data = ffile.LoadSource(fileinfo['KeyList'][0]) shape = data.shape if len(shape) == 2: if min(shape) == 1: #It is a Diamond Stack ffile=EDFStack.EDFStack(inputfile) return ffile except Exception: return None def __tryLucia(self, inputfile): f = open(inputfile) line = f.readline() f.close() ffile = None if line.startswith('#\tDate:'): ffile = LuciaMap.LuciaMap(inputfile) return ffile def __tryAifira(self, inputfile): if sys.platform == "win32": f = open(inputfile,"rb") else: f = open(inputfile,"r") line = f.read(3) f.close() if '#' in line: #specfile return None ffile = None try: ffile = AifiraMap.AifiraMap(inputfile) except Exception: ffile = None return ffile def __processStack(self): stack = self.filehandle info = stack.info data = stack.data xStack = None if hasattr(stack, "x"): if stack.x not in [None, []]: if type(stack.x) == type([]): xStack = stack.x[0] else: print("THIS SHOULD NOT BE USED") xStack = stack.x nimages = stack.info['Dim_1'] self.__nrows = nimages numberofmca = stack.info['Dim_2'] keylist = ["1.1"] * nimages for i in range(nimages): keylist[i] = "1.%04d" % i for i in range(nimages): if self.pleaseBreak: break self.onImage(keylist[i], keylist) self.__ncols = numberofmca colsToIter = range(0+self.mcaOffset, numberofmca, self.mcaStep) self.__row = i self.__col = -1 try: cache_data = data[i, :, :] except Exception: print("Error reading dataset row %d" % i) print(sys.exc_info()) print("Batch resumed") continue for mca in colsToIter: if self.pleaseBreak: break self.__col = mca mcadata = cache_data[mca, :] y0 = numpy.array(mcadata) if xStack is None: if 'MCA start ch' in info: xmin = float(info['MCA start ch']) else: xmin = 0.0 x = numpy.arange(len(y0))*1.0 + xmin else: x = xStack #key = "%s.%s.%02d.%02d" % (scan,order,row,col) key = "%s.%04d" % (keylist[i], mca) #I only process the first file of the stack? filename = os.path.basename(info['SourceName'][0]) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key if "McaLiveTime" in info: infoDict["McaLiveTime"] = \ info["McaLiveTime"][i * numberofmca + mca] self.__processOneMca(x, y0, filename, key, info=infoDict) self.onMca(mca, numberofmca, filename=filename, key=key, info=infoDict) def __processOneFile(self): ffile=self.filehandle fileinfo = ffile.GetSourceInfo() if 1: i = 0 for scankey in fileinfo['KeyList']: if self.pleaseBreak: break self.onImage(scankey, fileinfo['KeyList']) scan,order = scankey.split(".") info,data = ffile.LoadSource(scankey) if info['SourceType'] == "EdfFile": nrows = int(info['Dim_1']) ncols = int(info['Dim_2']) numberofmca = ncols self.__ncols = len(range(0+self.mcaOffset,numberofmca,self.mcaStep)) self.__col = -1 for mca_index in range(self.__ncols): mca = 0 + self.mcaOffset + mca_index * self.mcaStep if self.pleaseBreak: break self.__col += 1 mcadata = data[mca,:] if 'MCA start ch' in info: xmin = float(info['MCA start ch']) else: xmin = 0.0 key = "%s.%s.%04d" % (scan,order,mca) y0 = numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 + xmin filename = os.path.basename(info['SourceName']) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key infoDict['McaLiveTime'] = info.get('McaLiveTime', None) self.__processOneMca(x,y0,filename,key,info=infoDict) self.onMca(mca, numberofmca, filename=filename, key=key, info=infoDict) else: if info['NbMca'] > 0: self.fitImages = True numberofmca = info['NbMca'] * 1 self.__ncols = len(range(0+self.mcaOffset, numberofmca,self.mcaStep)) numberOfMcaToTakeFromScan = self.__ncols * 1 self.__col = -1 scan_key = "%s.%s" % (scan,order) scan_obj= ffile.Source.select(scan_key) #I assume always same number of detectors and #same offset for each detector otherways I would #slow down everything to deal with not very common #situations #if self.__row == 0: if self.counter == 0: self.__chann0List = numpy.zeros(info['NbMcaDet']) chan0list = scan_obj.header('@CHANN') if len(chan0list): for i in range(info['NbMcaDet']): self.__chann0List[i] = int(chan0list[i].split()[2]) # The calculation of self.__ncols is wrong if there are # several scans containing MCAs. One needs to multiply by # the number of scans assuming all of them contain MCAs. # We have to assume the same structure in all files. # Only in the case of "pseudo" two scan files where only # the second scan contains MCAs we do not multiply. if (len(fileinfo['KeyList']) == 2) and (fileinfo['KeyList'].index(scan_key) == 1): # leave self.__ncols untouched self.__ncolsModified = False else: # multiply by the number of scans self.__ncols *= len(fileinfo['KeyList']) self.__ncolsModified = True #import time for mca_index in range(numberOfMcaToTakeFromScan): i = 0 + self.mcaOffset + mca_index * self.mcaStep #e0 = time.time() if self.pleaseBreak: break if self.__ncolsModified: self.__col = i + \ fileinfo['KeyList'].index(scan_key) * \ numberofmca else: self.__col += 1 point = int(i/info['NbMcaDet']) + 1 mca = (i % info['NbMcaDet']) + 1 key = "%s.%s.%05d.%d" % (scan,order,point,mca) autotime = self.mcafit.config["concentrations"].get(\ "useautotime", False) if autotime: #slow info reading methods needed to access time mcainfo,mcadata = ffile.LoadSource(key) info['McaLiveTime'] = mcainfo.get('McaLiveTime', None) else: mcadata = scan_obj.mca(i+1) y0 = numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 + \ self.__chann0List[mca-1] filename = os.path.basename(info['SourceName']) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key infoDict['McaLiveTime'] = info.get('McaLiveTime', None) self.__processOneMca(x,y0,filename,key,info=infoDict) self.onMca(i, info['NbMca'],filename=filename, key=key, info=infoDict) #print "remaining = ",(time.time()-e0) * (info['NbMca'] - i) def __getFitFile(self, filename, key): fitdir = self.os_path_join(self._outputdir,"FIT") fitdir = self.os_path_join(fitdir,filename+"_FITDIR") outfile = filename +"_"+key+".fit" outfile = self.os_path_join(fitdir, outfile) return outfile def os_path_join(self, a, b): try: outfile=os.path.join(a, b) except UnicodeDecodeError: toBeDone = True if sys.platform == 'win32': try: outfile=os.path.join(a.decode('mbcs'), b.decode('mbcs')) toBeDone = False except UnicodeDecodeError: pass if toBeDone: try: outfile = os.path.join(a.decode('utf-8'), a.decode('utf-8')) except UnicodeDecodeError: outfile = os.path.join(a.decode('latin-1'), a.decode('latin-1')) return outfile def __processOneMca(self,x,y,filename,key,info=None): self._concentrationsAsAscii = "" if not self.roiFit: result = None concentrationsdone = 0 concentrations = None outfile=self.os_path_join(self._outputdir, filename) fitfile = self.__getFitFile(filename,key) if self.chunk is not None: con_extension = "_%06d_partial_concentrations.txt" % self.chunk else: con_extension = "_concentrations.txt" self._concentrationsFile = self.os_path_join(self._outputdir, self._rootname+ con_extension) # self._rootname+"_concentrationsNEW.txt") if self.counter == 0: if os.path.exists(self._concentrationsFile): try: os.remove(self._concentrationsFile) except Exception: print("I could not delete existing concentrations file %s" %\ self._concentrationsFile) #print "self._concentrationsFile", self._concentrationsFile if self.useExistingFiles and os.path.exists(fitfile): useExistingResult = 1 try: dict = ConfigDict.ConfigDict() dict.read(fitfile) result = dict['result'] if 'concentrations' in dict: concentrationsdone = 1 except Exception: print("Error trying to use result file %s" % fitfile) print("Please, consider deleting it.") print(sys.exc_info()) return else: useExistingResult = 0 try: #I make sure I take the fit limits configuration self.mcafit.config['fit']['use_limit'] = 1 self.mcafit.setData(x,y, time=info.get("McaLiveTime", None)) except Exception: print("Error entering data of file with output = %s\n%s" %\ (filename, sys.exc_info()[1])) # make sure the configuration is restored if self.mcafit.config['fit'].get("strategyflag", False): config = self.__configList[self.__currentConfig] print("Restoring fitconfiguration") self.mcafit = ClassMcaTheory.McaTheory(config) self.mcafit.enableOptimizedLinearFit() return try: self.mcafit.estimate() if self.fitFiles: fitresult, result = self.mcafit.startfit(digest=1) elif self._concentrations and (self.mcafit._fluoRates is None): fitresult, result = self.mcafit.startfit(digest=1) elif self._concentrations: fitresult = self.mcafit.startfit(digest=0) try: fitresult0 = {} fitresult0['fitresult'] = fitresult fitresult0['result'] = self.mcafit.imagingDigestResult() fitresult0['result']['config'] = self.mcafit.config conf = self.mcafit.configure() tconf = self._tool.configure() if 'concentrations' in conf: tconf.update(conf['concentrations']) else: #what to do? pass concentrations = self._tool.processFitResult(config=tconf, fitresult=fitresult0, elementsfrommatrix=False, fluorates = self.mcafit._fluoRates) except Exception: print("error in concentrations") print(sys.exc_info()[0:-1]) concentrationsdone = True else: #just images fitresult = self.mcafit.startfit(digest=0) except Exception: print("Error fitting file with output = %s: %s)" %\ (filename, sys.exc_info()[1])) if self.mcafit.config['fit'].get("strategyflag", False): config = self.__configList[self.__currentConfig] print("Restoring fitconfiguration") self.mcafit = ClassMcaTheory.McaTheory(config) self.mcafit.enableOptimizedLinearFit() return if self._concentrations: if concentrationsdone == 0: if not ('concentrations' in result): if useExistingResult: fitresult0={} fitresult0['result'] = result conf = result['config'] else: fitresult0={} if result is None: result = self.mcafit.digestresult() fitresult0['result'] = result fitresult0['fitresult'] = fitresult conf = self.mcafit.configure() tconf = self._tool.configure() if 'concentrations' in conf: tconf.update(conf['concentrations']) else: pass #print "Concentrations not calculated" #print "Is your fit configuration file correct?" #return try: concentrations = self._tool.processFitResult(config=tconf, fitresult=fitresult0, elementsfrommatrix=False) except Exception: print("error in concentrations") print(sys.exc_info()[0:-1]) #return self._concentrationsAsAscii=self._toolConversion.getConcentrationsAsAscii(concentrations) if len(self._concentrationsAsAscii) > 1: text = "" text += "SOURCE: "+ filename +"\n" text += "KEY: "+key+"\n" text += self._concentrationsAsAscii + "\n" f=open(self._concentrationsFile,"a") f.write(text) f.close() #output options # .FIT files if self.fitFiles: fitdir = self.os_path_join(self._outputdir,"FIT") if not os.path.exists(fitdir): try: os.mkdir(fitdir) except Exception: print("I could not create directory %s" % fitdir) return fitdir = self.os_path_join(fitdir,filename+"_FITDIR") if not os.path.exists(fitdir): try: os.mkdir(fitdir) except Exception: print("I could not create directory %s" % fitdir) return if not os.path.isdir(fitdir): print("%s does not seem to be a valid directory" % fitdir) else: outfile = filename +"_"+key+".fit" outfile = self.os_path_join(fitdir, outfile) if not useExistingResult: result = self.mcafit.digestresult(outfile=outfile, info=info) if concentrations is not None: try: f=ConfigDict.ConfigDict() f.read(outfile) f['concentrations'] = concentrations try: os.remove(outfile) except Exception: print("error deleting fit file") f.write(outfile) except Exception: print("Error writing concentrations to fit file") print(sys.exc_info()) #python like output list if not self.counter: name = os.path.splitext(self._rootname)[0]+"_fitfilelist.py" name = self.os_path_join(self._outputdir,name) try: os.remove(name) except Exception: pass self.listfile=open(name,"w+") self.listfile.write("fitfilelist = [") self.listfile.write('\n'+outfile) else: self.listfile.write(',\n'+outfile) else: if not useExistingResult: if 0: #this is very slow and not needed just for imaging if result is None: result = self.mcafit.digestresult() else: if result is None: result = self.mcafit.imagingDigestResult() #IMAGES if self.fitImages: #this only works with EDF if self.__ncols is not None: if not self.counter: if not self._nosave: imgdir = self.os_path_join(self._outputdir,"IMAGES") if not os.path.exists(imgdir): try: os.mkdir(imgdir) except Exception: print("I could not create directory %s" %\ imgdir) return elif not os.path.isdir(imgdir): print("%s does not seem to be a valid directory" %\ imgdir) self.imgDir = imgdir self.__peaks = [] self.__images = {} self.__sigmas = {} if not self.__stack: self.__nrows = len(range(0, len(self._filelist), self.fileStep)) for group in result['groups']: self.__peaks.append(group) self.__images[group]= numpy.zeros((self.__nrows, self.__ncols), numpy.float64) self.__sigmas[group]= numpy.zeros((self.__nrows, self.__ncols), numpy.float64) self.__images['chisq'] = numpy.zeros((self.__nrows, self.__ncols), numpy.float64) - 1. if self._concentrations: layerlist = concentrations['layerlist'] if 'mmolar' in concentrations: self.__conLabel = " mM" self.__conKey = "mmolar" else: self.__conLabel = " mass fraction" self.__conKey = "mass fraction" for group in concentrations['groups']: key = group+self.__conLabel self.__concentrationsKeys.append(key) self.__images[key] = numpy.zeros((self.__nrows, self.__ncols), numpy.float64) if len(layerlist) > 1: for layer in layerlist: key = group+" "+layer self.__concentrationsKeys.append(key) self.__images[key] = numpy.zeros((self.__nrows, self.__ncols), numpy.float64) for peak in self.__peaks: try: self.__images[peak][self.__row, self.__col] = result[peak]['fitarea'] self.__sigmas[peak][self.__row, self.__col] = result[peak]['sigmaarea'] except Exception: pass if self._concentrations: layerlist = concentrations['layerlist'] for group in concentrations['groups']: self.__images[group+self.__conLabel][self.__row, self.__col] = \ concentrations[self.__conKey][group] if len(layerlist) > 1: for layer in layerlist: self.__images[group+" "+layer] [self.__row, self.__col] = \ concentrations[layer][self.__conKey][group] try: self.__images['chisq'][self.__row, self.__col] = result['chisq'] except Exception: print("Error on chisq row %d col %d" %\ (self.__row, self.__col)) print("File = %s\n" % filename) pass else: dict=self.mcafit.roifit(x,y,width=self.roiWidth) #this only works with EDF if self.__ncols is not None: if not self.counter: if not self._nosave: imgdir = self.os_path_join(self._outputdir,"IMAGES") if not os.path.exists(imgdir): try: os.mkdir(imgdir) except Exception: print("I could not create directory %s" %\ imgdir) return elif not os.path.isdir(imgdir): print("%s does not seem to be a valid directory" %\ imgdir) self.imgDir = imgdir self.__ROIpeaks = [] self._ROIimages = {} if not self.__stack: self.__nrows = len(self._filelist) for group in dict.keys(): self.__ROIpeaks.append(group) self._ROIimages[group]={} for roi in dict[group].keys(): self._ROIimages[group][roi]=numpy.zeros((self.__nrows, self.__ncols), numpy.float64) if not hasattr(self, "_ROIimages"): print("ROI fitting only supported on EDF") for group in self.__ROIpeaks: for roi in self._ROIimages[group].keys(): try: self._ROIimages[group][roi][self.__row, self.__col] = dict[group][roi] except Exception: print("error on (row,col) = %d,%d" %\ (self.__row, self.__col)) print("File = %s" % filename) pass #update counter self.counter += 1 def saveImage(self,ffile=None): self.savedImages=[] if ffile is None: ffile = os.path.splitext(self._rootname)[0] ffile = self.os_path_join(self.imgDir,ffile) if not self.roiFit: if (self.fileStep > 1) or (self.mcaStep > 1): # REMARK: makes merging difficult and not necessary anyway trailing = "" #trailing = "_filestep_%02d_mcastep_%02d" % ( self.fileStep, # self.mcaStep ) else: trailing = "" #speclabel = "#L row column" speclabel = "row column" if self.chunk is None: suffix = ".edf" else: suffix = "_%06d_partial.edf" % self.chunk iterationList = self.__peaks * 1 iterationList += ['chisq'] if self._concentrations: iterationList += self.__concentrationsKeys for peak in iterationList: if peak in self.__peaks: a,b = peak.split() speclabel +=" %s" % (a+"-"+b) speclabel +=" s(%s)" % (a+"-"+b) edfname = ffile +"_"+a+"_"+b+trailing+suffix elif peak in self.__concentrationsKeys: speclabel +=" %s" % peak.replace(" ","-") edfname = ffile +"_"+peak.replace(" ","_")+trailing+suffix elif peak == 'chisq': speclabel +=" %s" % (peak) edfname = ffile +"_"+peak+trailing+suffix else: print("Unhandled peak name: %s. Not saved." % peak) continue dirname = os.path.dirname(edfname) if not os.path.exists(dirname): try: os.mkdir(dirname) except Exception: print("I could not create directory %s" % dirname) Append = 0 if os.path.exists(edfname): try: os.remove(edfname) except Exception: print("I cannot delete output file") print("trying to append image to the end") Append = 1 edfout = EdfFile.EdfFile(edfname, access='ab') edfout.WriteImage ({'Title':peak} , self.__images[peak], Append=Append) edfout = None self.savedImages.append(edfname) #save specfile format if self.chunk is None: specname = ffile+trailing+".dat" else: specname = ffile+trailing+"_%06d_partial.dat" % self.chunk if os.path.exists(specname): try: os.remove(specname) except Exception: pass specfile=open(specname,'w+') #specfile.write('\n') #specfile.write('#S 1 %s\n' % (file+trailing)) #specfile.write('#N %d\n' % (len(self.__peaks)+2)) specfile.write('%s\n' % speclabel) specline="" imageRows = self.__images['chisq'].shape[0] imageColumns = self.__images['chisq'].shape[1] for row in range(imageRows): for col in range(imageColumns): specline += "%d" % row specline += " %d" % col for peak in self.__peaks: #write area specline +=" %g" % self.__images[peak][row][col] #write sigma area specline +=" %g" % self.__sigmas[peak][row][col] #write global chisq specline +=" %g" % self.__images['chisq'][row][col] if self._concentrations: for peak in self.__concentrationsKeys: specline +=" %g" % self.__images[peak][row][col] specline += "\n" specfile.write("%s" % specline) specline ="" specfile.write("\n") specfile.close() else: for group in self.__ROIpeaks: i = 0 grouptext = group.replace(" ","_") for roi in self._ROIimages[group].keys(): #roitext = roi.replace(" ","-") if (self.fileStep > 1) or (self.mcaStep > 1): edfname = ffile+"_"+grouptext+("_%04deVROI_filestep_%02d_mcastep_%02d.edf" % (self.roiWidth, self.fileStep, self.mcaStep )) else: edfname = ffile+"_"+grouptext+("_%04deVROI.edf" % self.roiWidth) dirname = os.path.dirname(edfname) if not os.path.exists(dirname): try: os.mkdir(dirname) except Exception: print("I could not create directory %s" % dirname) edfout = EdfFile.EdfFile(edfname) edfout.WriteImage ({'Title':group+" "+roi} , self._ROIimages[group][roi], Append=i) if i==0: self.savedImages.append(edfname) i=1 if __name__ == "__main__": import getopt options = 'f' longoptions = ['cfg=','pkm=','outdir=','roifit=','roi=','roiwidth='] filelist = None outdir = None cfg = None roifit = 0 roiwidth = 250. opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt,arg in opts: if opt in ('--pkm','--cfg'): cfg = arg elif opt in ('--outdir'): outdir = arg elif opt in ('--roi','--roifit'): roifit = int(arg) elif opt in ('--roiwidth'): roiwidth = float(arg) filelist=args if len(filelist) == 0: print("No input files, run GUI") sys.exit(0) b = McaAdvancedFitBatch(cfg,filelist,outdir,roifit,roiwidth) b.processList() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/MShell.py��������������������������������������������������0000644�0000000�0000000�00000032577�14741736366�020322� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2025 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import numpy from PyMca5.PyMcaIO import specfile from PyMca5 import getDataFile sf=specfile.Specfile(getDataFile("MShellRates.dat")) ElementM1ShellTransitions = sf[0].alllabels() ElementM2ShellTransitions = sf[1].alllabels() ElementM3ShellTransitions = sf[2].alllabels() ElementM4ShellTransitions = sf[3].alllabels() ElementM5ShellTransitions = sf[4].alllabels() ElementM1ShellRates = numpy.transpose(sf[0].data()).tolist() ElementM2ShellRates = numpy.transpose(sf[1].data()).tolist() ElementM3ShellRates = numpy.transpose(sf[2].data()).tolist() ElementM4ShellRates = numpy.transpose(sf[3].data()).tolist() ElementM5ShellRates = numpy.transpose(sf[4].data()).tolist() sf=specfile.Specfile(getDataFile("MShellConstants.dat")) ElementM1ShellConstants = sf[0].alllabels() ElementM2ShellConstants = sf[1].alllabels() ElementM3ShellConstants = sf[2].alllabels() ElementM4ShellConstants = sf[3].alllabels() ElementM5ShellConstants = sf[4].alllabels() ElementM1ShellValues = numpy.transpose(sf[0].data()).tolist() ElementM2ShellValues = numpy.transpose(sf[1].data()).tolist() ElementM3ShellValues = numpy.transpose(sf[2].data()).tolist() ElementM4ShellValues = numpy.transpose(sf[3].data()).tolist() ElementM5ShellValues = numpy.transpose(sf[4].data()).tolist() sf=None fname = getDataFile("EADL97_MShellConstants.dat") sf = specfile.Specfile(fname) EADL97_ElementM1ShellConstants = sf[0].alllabels() EADL97_ElementM2ShellConstants = sf[1].alllabels() EADL97_ElementM3ShellConstants = sf[2].alllabels() EADL97_ElementM4ShellConstants = sf[3].alllabels() EADL97_ElementM5ShellConstants = sf[4].alllabels() EADL97_ElementM1ShellValues = numpy.transpose(sf[0].data()).tolist() EADL97_ElementM2ShellValues = numpy.transpose(sf[1].data()).tolist() EADL97_ElementM3ShellValues = numpy.transpose(sf[2].data()).tolist() EADL97_ElementM4ShellValues = numpy.transpose(sf[3].data()).tolist() EADL97_ElementM5ShellValues = numpy.transpose(sf[4].data()).tolist() EADL97 = True sf = None Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def getsymbol(z): return Elements[z-1] def getz(ele): return Elements.index(ele)+1 #fluorescence yields def getomegam1(ele): zEle = getz(ele) index = ElementM1ShellConstants.index('omegaM1') value = ElementM1ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementM1ShellConstants.index('omegaM1') value = EADL97_ElementM1ShellValues[zEle-1][index] return value def getomegam2(ele): zEle = getz(ele) index = ElementM2ShellConstants.index('omegaM2') value = ElementM2ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementM2ShellConstants.index('omegaM2') value = EADL97_ElementM2ShellValues[zEle-1][index] return value def getomegam3(ele): zEle = getz(ele) index = ElementM3ShellConstants.index('omegaM3') value = ElementM3ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementM3ShellConstants.index('omegaM3') value = EADL97_ElementM3ShellValues[zEle-1][index] return value def getomegam4(ele): zEle = getz(ele) index = ElementM4ShellConstants.index('omegaM4') value = ElementM4ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementM4ShellConstants.index('omegaM4') value = EADL97_ElementM4ShellValues[zEle-1][index] return value def getomegam5(ele): zEle = getz(ele) index = ElementM5ShellConstants.index('omegaM5') value = ElementM5ShellValues[zEle-1][index] if (value <= 0.0) and EADL97: if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... zEle = 99 index = EADL97_ElementM5ShellConstants.index('omegaM5') value = EADL97_ElementM5ShellValues[zEle-1][index] return value #Coster Kronig transitions def getCosterKronig(ele): ck = {} transitions = [ 'f12', 'f13', 'f14', 'f15', 'f23', 'f24', 'f25', 'f34', 'f35', 'f45'] zEle = getz(ele) if zEle > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... EADL_z = 99 else: EADL_z = zEle ckEADL = {} ckSum = 0.0 for t in transitions: if t in ElementM1ShellConstants: index = ElementM1ShellConstants.index(t) ck[t] = ElementM1ShellValues[zEle-1][index] if EADL97: #try to extend with EADL97 values index = EADL97_ElementM1ShellConstants.index(t) ckEADL[t] = EADL97_ElementM1ShellValues[EADL_z-1][index] elif t in ElementM2ShellConstants: index = ElementM2ShellConstants.index(t) ck[t] = ElementM2ShellValues[zEle-1][index] if EADL97: #try to extend with EADL97 values index = EADL97_ElementM2ShellConstants.index(t) ckEADL[t] = EADL97_ElementM2ShellValues[EADL_z-1][index] elif t in ElementM3ShellConstants: index = ElementM3ShellConstants.index(t) ck[t] = ElementM3ShellValues[zEle-1][index] if EADL97: #try to extend with EADL97 values index = EADL97_ElementM3ShellConstants.index(t) ckEADL[t] = EADL97_ElementM3ShellValues[EADL_z-1][index] elif t in ElementM4ShellConstants: index = ElementM4ShellConstants.index(t) ck[t] = ElementM4ShellValues[zEle-1][index] if EADL97: #try to extend with EADL97 values index = EADL97_ElementM4ShellConstants.index(t) ckEADL[t] = EADL97_ElementM4ShellValues[EADL_z-1][index] else: print("%s not in M-Shell Coster-Kronig transitions" % t) continue ckSum += ck[t] if ckSum > 0.0: #I do not force EADL97 because of compatibility #with previous versions. I may offer forcing to #EADL97 in the future. return ck elif EADL97: #extended values if defined #for instance, the region from Mg to Cl return ckEADL else: return ck #Jump ratios following Veigele: Atomic Data Tables 5 (1973) 51-111. p 54 and 55 def getjm1(z): return 1.1 def getjm2(z): return 1.1 def getjm3(z): return 1.2 def getjm4(z): return 1.5 def getjm5(z): return (225.0/z) - 0.35 def getwjump(ele,excitedshells=[1.0,1.0,1.0,1.0,1.0]): """ wjump represents the probability for a vacancy to be created on the respective M-Shell by direct photoeffect on that shell """ z = getz(ele) #weights due to photoeffect jm = [getjm1(z), getjm2(z), getjm3(z), getjm4(z), getjm5(z)] wjump = [] i = 0 cum = 0.00 for jump in jm: v = excitedshells[i]*(jump-1.0)/jump wjump.append(v) cum += v i+=1 for i in range(len(wjump)): wjump[i] = wjump[i] / cum return wjump def getweights(ele,excitedshells=None): if type(ele) == type(" "): pass else: ele = getsymbol(int(ele)) if excitedshells == None:excitedshells=[1.0,1.0,1.0,1.0,1.0] w = getwjump(ele,excitedshells) #weights due to Coster Kronig transitions and fluorescence yields ck= getCosterKronig(ele) w[0] *= 1.0 w[1] *= (1.0 + ck['f12'] * w[0]) w[2] *= (1.0 + ck['f13'] * w[0] + ck['f23'] * w[1]) w[3] *= (1.0 + ck['f14'] * w[0] + ck['f24'] * w[1] + ck['f34'] * w[2]) w[4] *= (1.0 + ck['f15'] * w[0] + ck['f25'] * w[1] + ck['f35'] * w[2] + ck['f45'] * w[3]) omega = [ getomegam1(ele), getomegam2(ele), getomegam3(ele), getomegam4(ele), getomegam5(ele)] for i in range(len(w)): w[i] *= omega[i] cum = sum(w) for i in range(len(w)): if cum > 0.0: w[i] /= cum return w ElementMShellTransitions = ElementM1ShellTransitions + \ ElementM2ShellTransitions[2:] + \ ElementM3ShellTransitions[2:] + \ ElementM4ShellTransitions[2:] + \ ElementM5ShellTransitions[2:] for i in range(len(ElementMShellTransitions)): ElementMShellTransitions[i]+="*" nele = len(ElementM1ShellRates) elements = range(1,nele+1) weights = [] for ele in elements: weights.append(getweights(ele)) weights = numpy.array(weights).astype(numpy.float64) ElementMShellRates = numpy.zeros((len(ElementM1ShellRates),len(ElementMShellTransitions)),numpy.float64) ElementMShellRates[:,0] = numpy.arange(len(ElementM1ShellRates)) + 1 n1 = len(ElementM1ShellTransitions) ElementMShellRates[:,2:n1] = numpy.array(ElementM1ShellRates).astype(numpy.float64)[:,2:] * \ numpy.resize(weights[:,0],(nele,1)) n2 = n1 + len(ElementM2ShellTransitions) - 2 ElementMShellRates[:,n1:n2] = numpy.array(ElementM2ShellRates).astype(numpy.float64)[:,2:] * \ numpy.resize(weights[:,1],(nele,1)) n1 = n2 n2 = n1 + len(ElementM3ShellTransitions) - 2 ElementMShellRates[:,n1:n2] = numpy.array(ElementM3ShellRates).astype(numpy.float64)[:,2:] * \ numpy.resize(weights[:,2],(nele,1)) n1 = n2 n2 = n1 + len(ElementM4ShellTransitions) - 2 ElementMShellRates[:,n1:n2] = numpy.array(ElementM4ShellRates).astype(numpy.float64)[:,2:] * \ numpy.resize(weights[:,3],(nele,1)) n1 = n2 n2 = n1 + len(ElementM5ShellTransitions) - 2 ElementMShellRates[:,n1:n2] = numpy.array(ElementM5ShellRates).astype(numpy.float64)[:,2:] * \ numpy.resize(weights[:,4],(nele,1)) if __name__ == "__main__": import sys if len(sys.argv) > 1: ele = sys.argv[1] if ele in Elements: z = getz(ele) print("Atomic Number = ",z) print("M1-shell yield = ",getomegam1(ele)) print("M2-shell yield = ",getomegam2(ele)) print("M3-shell yield = ",getomegam3(ele)) print("M4-shell yield = ",getomegam4(ele)) print("M5-shell yield = ",getomegam5(ele)) print("M1-shell jump = ",getjm1(z)) print("M2-shell jump = ",getjm2(z)) print("M3-shell jump = ",getjm3(z)) print("M4-shell jump = ",getjm4(z)) print("M5-shell jump = ",getjm5(z)) print("Coster-Kronig = ",getCosterKronig(ele)) EADL97 = False print("Coster-Kronig no EADL97 = ",getCosterKronig(ele)) ���������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/McaAdvancedFitBatch.py�������������������������������������0000644�0000000�0000000�00000141363�14741736366�022663� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import time import logging import numpy from . import ClassMcaTheory from PyMca5.PyMcaCore import SpecFileLayer from PyMca5.PyMcaCore import EdfFileLayer from PyMca5.PyMcaIO import EdfFile from PyMca5.PyMcaIO import LuciaMap from PyMca5.PyMcaIO import AifiraMap from PyMca5.PyMcaIO import EDFStack from PyMca5.PyMcaIO import LispixMap from PyMca5.PyMcaIO import NumpyStack try: import h5py from PyMca5.PyMcaIO import HDF5Stack1D HDF5SUPPORT = True except ImportError: HDF5SUPPORT = False from PyMca5.PyMcaIO import ConfigDict from . import ConcentrationsTool from .XRFBatchFitOutput import OutputBuffer _logger = logging.getLogger(__name__) def getRootName(filelist=None): if filelist is None: filelist = self._filelist first = os.path.basename(filelist[ 0]) last = os.path.basename(filelist[-1]) if first == last: return os.path.splitext(first)[0] name1, ext1 = os.path.splitext(first) name2, ext2 = os.path.splitext(last) i0 = 0 for i in range(len(name1)): if i >= len(name2): break elif name1[i] == name2[i]: pass else: break i0 = i for i in range(i0, len(name1)): if i >= len(name2): break elif name1[i] != name2[i]: pass else: break i1 = i if i1 > 0: delta = 1 while (i1-delta): if (last[i1-delta] in ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']): delta = delta + 1 else: if delta > 1: delta = delta - 1 break rootname = name1[0:]+"_to_"+name2[(i1-delta):] else: rootname = name1[0:]+"_to_"+name2[0:] return rootname class McaAdvancedFitBatch(object): """ XRF or ROI fit of a list of files, representing XRF data from a 2D map. It is currently assumed that one file contains either the data from the entire map (one .h5 file) or the data from one row (multiple .edf files). """ def __init__(self, initdict, filelist=None, outputdir=None, roifit=False, roiwidth=100, overwrite=1, filestep=1, mcastep=1, fitfiles=0, fitimages=1, concentrations=0, fitconcfile=1, filebeginoffset=0, fileendoffset=0, mcaoffset=0, chunk=None, selection=None, lock=None, nosave=None, quiet=False, outbuffer=None, **outbufferkwargs): """ Range of filelist indices to be processed: .. code:: python range(filebeginoffset, len(filelist)-fileendoffset, filestep) Range of column indices to be processed for each file: .. code:: python range(mcaoffset, nColumns, mcastep) """ #for the time being the concentrations are bound to the .fit files #that is not necessary, but it will be correctly implemented in #future releases self._lock = lock self.setFileList(filelist) self.pleaseBreak = 0 # stop the processing of filelist self.roiFit = roifit self.roiWidth = roiwidth self.selection = selection self.quiet = quiet self.fitFiles = fitfiles self.fitConcFile = fitconcfile self._concentrations = concentrations # Assume each file in filelist = 1 row of XRF spectra # Files to be fitted: range(filebeginoffset, nFiles-fileEndOffset, filestep) # Columns to be fitted: range(mcaOffset, nColumns, mcaStep) self.fileBeginOffset = filebeginoffset self.fileEndOffset = fileendoffset self.fileStep = filestep self.mcaStep = mcastep self.mcaOffset = mcaoffset self.chunk = chunk if isinstance(initdict, list): self.mcafit = ClassMcaTheory.McaTheory(initdict[mcaoffset]) self.__configList = initdict self.__currentConfig = mcaoffset else: self.__configList = [initdict] self.__currentConfig = 0 self.mcafit = ClassMcaTheory.McaTheory(initdict) self.__concentrationsKeys = [] if self._concentrations: self._tool = ConcentrationsTool.ConcentrationsTool() self._toolConversion = ConcentrationsTool.ConcentrationsConversion() self.outbuffer = outbuffer self.overwrite = overwrite self.nosave = nosave self.outputdir = outputdir self.outbufferkwargs = outbufferkwargs if fitimages: self._initOutputBuffer() @property def useExistingFiles(self): return not self.overwrite @property def nosave(self): return self._nosave @nosave.setter def nosave(self, value): self._nosave = bool(value) if self.outbuffer is not None: self.outbuffer.nosave = self._nosave @property def overwrite(self): return self._overwrite @overwrite.setter def overwrite(self, value): self._overwrite = bool(value) if self.outbuffer is not None: self.outbuffer.overwrite = self._overwrite def _initOutputBuffer(self): if self.outbuffer is None: self.outbuffer = OutputBuffer(outputDir=self.outputdir, outputRoot=self._rootname, fileEntry=self._rootname, overwrite=self.overwrite, nosave=self.nosave, suffix=self._outputSuffix(), **self.outbufferkwargs) # Always save figures-of-merit (HDF5: all, EDF/CSV: chisq only) self.outbuffer.saveFOM = True self.outbuffer['configuration'] = self.mcafit.getConfiguration() def _outputSuffix(self): suffix = "" if self.roiFit: suffix = "_%04deVROI" % self.roiWidth # REMARK: makes merging difficult and not necessary anyway #if (self.fileStep > 1) or (self.mcaStep > 1): # suffix += "_filestep_%02d_mcastep_%02d" %\ # (self.fileStep, self.mcaStep) if self.chunk is not None: suffix += "_%06d_partial" % self.chunk return suffix def setFileList(self, filelist=None): self._rootname = "" if filelist is None: filelist = [] if type(filelist) not in [type([]), type((2,))]: filelist = [filelist] self._filelist = filelist if len(filelist): if type(filelist[0]) is not numpy.ndarray: self._rootname = getRootName(filelist) @property def outputdir(self): return self._outputdir @outputdir.setter def outputdir(self, value): if value is None: value = os.getcwd() self._outputdir = value def processList(self): if self.outbuffer is None: self._processList() else: with self.outbuffer.saveContext(): self._processList() self.onEnd() def _processList(self): # Initialize list processing variables self.counter = 0 # spectrum counter self.__ncols = 0 self.__nrows = 0 self.__stack = None self._fitlistfile = None # Loop over the files in filelist (1 file = 1 row in image) start = self.fileBeginOffset stop = len(self._filelist)-self.fileEndOffset for i in range(start, stop, self.fileStep): if not self.roiFit: if len(self.__configList) > 1: if i != 0: self.mcafit = ClassMcaTheory.McaTheory(self.__configList[i]) self.__currentConfig = i # TODO: outbuffer does not support multiple configurations # Only the first one is saved. self.mcafit.enableOptimizedLinearFit() # TODO: why???? # Load file inputfile = self._filelist[i] self.__row = i self.onNewFile(inputfile, self._filelist) self.filehandle = self.getFileHandle(inputfile) if self.pleaseBreak: break if self.__stack is None: self.__stack = False if hasattr(self.filehandle, "info"): if "SourceType" in self.filehandle.info: if self.filehandle.info["SourceType"] in\ ["EdfFileStack", "HDF5Stack1D"]: self.__stack = True # Fit spectra in current file if self.__stack: self.__processStack() if self._HDF5: # The complete stack has been analyzed # TODO: what if the user gave more than one HDF5 file? break else: _logger.warning("Multiple stacks may no work yet") # TODO: I doubt this works for multiple non-HDF5 stacks # because __processStack restarts from __row = 0 else: self.__processOneFile() # Needed for cleanup self.filehandle = None if self.counter: # Finish list of FIT files if not self.roiFit and self.fitFiles and \ self._fitlistfile is not None: self._fitlistfile.write(']\n') self._fitlistfile.close() def getFileHandle(self, inputfile): try: self._HDF5 = False if type(inputfile) == numpy.ndarray: return NumpyStack.NumpyStack(inputfile) if HDF5SUPPORT: if h5py.is_hdf5(inputfile): self._HDF5 = True # if (len(self._filelist) == 1) && (self.mcaStep > 1) # it should attempt to avoid loading many times # the stack into memory in case of multiple processes if len(self._filelist) == 1: scanlist = self.selection.get("entry", None) else: scanlist = None return HDF5Stack1D.HDF5Stack1D(self._filelist, self.selection, scanlist=scanlist) ffile = self.__tryEdf(inputfile) if ffile is None: ffile = self.__tryLucia(inputfile) if ffile is None: if inputfile[-3:] == "DAT": ffile = self.__tryAifira(inputfile) if ffile is None: if LispixMap.isLispixMapFile(inputfile): ffile = LispixMap.LispixMap(inputfile, native=False) if ffile is None: del ffile ffile = SpecFileLayer.SpecFileLayer() ffile.SetSource(inputfile) return ffile except Exception: _logger.critical("I do not know what to do with file %s" % inputfile) raise @property def filehandle(self): return self._filehandle @filehandle.setter def filehandle(self, value): try: del self._filehandle.Source except AttributeError: pass self._filehandle = value def onNewFile(self, ffile, filelist): if not self.quiet: self.__log(ffile) def onImage(self, image, imagelist): pass def onMca(self, imca, nmca, filename=None, key=None, info=None): pass def onEnd(self): pass def __log(self,text): _logger.info(text) def __tryEdf(self,inputfile): try: ffile = EdfFileLayer.EdfFileLayer(fastedf=0) ffile.SetSource(inputfile) fileinfo = ffile.GetSourceInfo() if fileinfo['KeyList'] == []: ffile=None elif len(self._filelist) == 1: #Is it a Diamond stack? if len(fileinfo['KeyList']) > 1: info, data = ffile.LoadSource(fileinfo['KeyList'][0]) shape = data.shape if len(shape) == 2: if min(shape) == 1: #It is a Diamond Stack ffile = EDFStack.EDFStack(inputfile) return ffile except Exception: return None def __tryLucia(self, inputfile): f = open(inputfile, "rb") line = f.read(10) f.close() ffile = None if line.startswith(b'#\tDate:'): ffile = LuciaMap.LuciaMap(inputfile) return ffile def __tryAifira(self, inputfile): f = open(inputfile,"rb") line = f.read(3) f.close() if '#' in line: #specfile return None ffile = None try: ffile = AifiraMap.AifiraMap(inputfile) except Exception: ffile = None return ffile def __processStack(self): """ Fit spectra from one file, which corresponds to the spectra from the entire image. """ stack = self.filehandle info = stack.info data = stack.data xStack = None if hasattr(stack, "x"): if stack.x not in [None, []]: if type(stack.x) == type([]): xStack = stack.x[0] else: _logger.warning("THIS SHOULD NOT BE USED") xStack = stack.x nrows = stack.info['Dim_1'] self.__nrows = nrows self.__ncols = stack.info['Dim_2'] mcaIndices = list(range(self.mcaOffset, self.__ncols, self.mcaStep)) nmcaToFit = len(mcaIndices) keylist = ["1.1"] * nrows for i in range(nrows): keylist[i] = "1.%04d" % i for i in range(nrows): if self.pleaseBreak: break self.onImage(keylist[i], keylist) self.__row = i try: cache_data = data[i, :, :] except Exception: _logger.error("Error reading dataset row %d" % i) _logger.error(str(sys.exc_info())) _logger.error("Batch resumed") continue for imca, mcaIndex in enumerate(mcaIndices): if self.pleaseBreak: break self.__col = mcaIndex mcadata = cache_data[mcaIndex, :] y0 = numpy.array(mcadata) if xStack is None: if 'MCA start ch' in info: xmin = float(info['MCA start ch']) else: xmin = 0.0 x = numpy.arange(len(y0))*1.0 + xmin else: x = xStack #key = "%s.%s.%02d.%02d" % (scan,order,row,col) key = "%s.%04d" % (keylist[i], mcaIndex) #I only process the first file of the stack? filename = os.path.basename(info['SourceName'][0]) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key if "McaLiveTime" in info: infoDict["McaLiveTime"] = \ info["McaLiveTime"][i * self.__ncols + mcaIndex] self.__processOneMca(x, y0, filename, key, info=infoDict) self.onMca(imca, nmcaToFit, filename=filename, key=key, info=infoDict) def __processOneFile(self): """ Fit spectra from one file, which corresponds to the spectra from one image row. """ ffile = self.filehandle fileinfo = ffile.GetSourceInfo() if self.counter == 0: self.__nMcaPerScan = None # In case of multiple scans: # assume they have the same number of spectra for scankey in fileinfo['KeyList']: if self.pleaseBreak: break self.onImage(scankey, fileinfo['KeyList']) scan, order = scankey.split(".") info, data = ffile.LoadSource(scankey) if info['SourceType'] == "EdfFile": # nMcaChan = info['Dim_1']) self.__ncols = int(info['Dim_2']) mcaIndices = list(range(self.mcaOffset, self.__ncols, self.mcaStep)) nmcaToFit = len(mcaIndices) for imca, mcaIndex in enumerate(mcaIndices): if self.pleaseBreak: break self.__col = mcaIndex mcadata = data[mcaIndex, :] if 'MCA start ch' in info: xmin = float(info['MCA start ch']) else: xmin = 0.0 key = "%s.%s.%04d" % (scan, order, mcaIndex) y0 = numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 + xmin filename = os.path.basename(info['SourceName']) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key infoDict['McaLiveTime'] = info.get('McaLiveTime', None) self.__processOneMca(x, y0, filename, key, info=infoDict) self.onMca(imca, nmcaToFit, filename=filename, key=key, info=infoDict) else: if info['NbMca'] == 0: continue scan_key = "%s.%s" % (scan, order) scan_obj = ffile.Source.select(scan_key) if self.__nMcaPerScan is None: self.__nMcaPerScan = info['NbMca'] * 1 self.__chann0List = numpy.zeros(info['NbMcaDet']) chan0list = scan_obj.header('@CHANN') if len(chan0list): for i in range(info['NbMcaDet']): self.__chann0List[i] = int(chan0list[i].split()[2]) if (len(fileinfo['KeyList']) == 2) and (fileinfo['KeyList'].index(scan_key) == 1): # "pseudo": two scans and only the second contains MCA's self.__ncols = self.__nMcaPerScan else: self.__ncols = self.__nMcaPerScan*len(fileinfo['KeyList']) else: # Skip scan when not enough spectra # When more spectra than the first scan: skip the excess spectra if (info['NbMca'] * 1) < self.__nMcaPerScan: _logger.error('Skip scan {} (not enough MCA spectra)' .format(repr(scan_key))) continue mcaIndices = list(range(self.mcaOffset, self.__nMcaPerScan, self.mcaStep)) nmcaToFit = len(mcaIndices) multipleScans = self.__ncols > self.__nMcaPerScan for imca, mcaIndex in enumerate(mcaIndices): if self.pleaseBreak: break self.__col = mcaIndex if multipleScans: self.__col += fileinfo['KeyList'].index(scan_key) * \ self.__nMcaPerScan point = int(mcaIndex/info['NbMcaDet']) + 1 mca = (mcaIndex % info['NbMcaDet']) + 1 key = "%s.%s.%05d.%d" % (scan, order, point, mca) autotime = self.mcafit.config["concentrations"].get("useautotime", False) if autotime: # slow info reading methods needed to access time mcainfo, mcadata = ffile.LoadSource(key) info['McaLiveTime'] = mcainfo.get('McaLiveTime', None) else: mcadata = scan_obj.mca(mcaIndex+1) y0 = numpy.array(mcadata) x = numpy.arange(len(y0))*1.0 + self.__chann0List[mca-1] filename = os.path.basename(info['SourceName']) infoDict = {} infoDict['SourceName'] = info['SourceName'] infoDict['Key'] = key infoDict['McaLiveTime'] = info.get('McaLiveTime', None) self.__processOneMca(x, y0, filename, key, info=infoDict) self.onMca(imca, nmcaToFit, filename=filename, key=key, info=infoDict) def __getFitFile(self, filename, key, createdirs=False): fitdir = self.os_path_join(self.outputdir, "FIT") if createdirs: if not os.path.exists(fitdir): try: os.makedirs(fitdir) except Exception: _logger.error("I could not create directory %s" % fitdir) return fitdir = self.os_path_join(fitdir, filename+"_FITDIR") if createdirs: if not os.path.exists(fitdir): try: os.makedirs(fitdir) except Exception: _logger.error("I could not create directory %s" % fitdir) return if not os.path.isdir(fitdir): _logger.error("%s does not seem to be a valid directory" % fitdir) return fitfilename = filename + "_" + key + ".fit" fitfilename = self.os_path_join(fitdir, fitfilename) return fitfilename def __getFitConcFile(self): if self.chunk is not None: con_extension = "_%06d_partial_concentrations.txt" % self.chunk else: con_extension = "_concentrations.txt" if not os.path.exists(self.outputdir): os.makedirs(self.outputdir) cfitfilename = self.os_path_join(self.outputdir, self._rootname + con_extension) if self.counter == 0: if os.path.exists(cfitfilename): try: os.remove(cfitfilename) except Exception: _logger.error("I could not delete existing concentrations file %s" %\ cfitfilename) return cfitfilename def os_path_join(self, a, b): try: outfile=os.path.join(a, b) except UnicodeDecodeError: toBeDone = True if sys.platform == 'win32': try: outfile=os.path.join(a.decode('mbcs'), b.decode('mbcs')) toBeDone = False except UnicodeDecodeError: pass if toBeDone: try: outfile = os.path.join(a.decode('utf-8'), a.decode('utf-8')) except UnicodeDecodeError: outfile = os.path.join(a.decode('latin-1'), a.decode('latin-1')) return outfile def __processOneMca(self,x,y,filename,key,info=None): if not self.__nrows: self.__nrows = len(self._filelist) bOutput = self.outbuffer is not None and \ self.__ncols and self.__nrows if self.roiFit: result = self.__roiOneMca(x,y) if bOutput and result is not None: if not self.outbuffer.hasAllocatedMemory(): self._allocateMemoryRoiFit(result) self._storeRoiFitResult(result) else: result, concentrations = self.__fitOneMca(x,y,filename,key,info=info) if bOutput and result is not None: result['ydata0'] = y if not self.outbuffer.hasAllocatedMemory(): if self._concentrations and (concentrations is None): # if concentrations were requested but unsuccessful on the first MCA # the memory allocation crashes the program _logger.error("Cannot allocate memory due to error on concentrations") else: self._allocateMemoryFit(result, concentrations) self._storeFitResult(result, concentrations) _logger.info("Memory allocated") else: self._storeFitResult(result, concentrations) self.counter += 1 def __fitOneMca(self,x,y,filename,key,info=None): fitresult = None result = None concentrations = None concentrationsInFitFile = False # Fit MCA fitfile = self.__getFitFile(filename,key,createdirs=False) if os.path.exists(fitfile) and not self.overwrite: # Load MCA data when needed if outbuffer.saveDataDiagnostics: if not self._attemptMcaLoad(x, y, filename, info=info): return result, concentrations # Load result from FIT file try: fitdict = ConfigDict.ConfigDict() fitdict.read(fitfile) concentrations = fitdict.get('concentrations', None) concentrationsInFitFile = bool(concentrations) result = fitdict['result'] except Exception: _logger.error("Error trying to use result file %s" % fitfile) _logger.error("Please, consider deleting it.") _logger.error(str(sys.exc_info())) return result, concentrations else: # Load MCA data if not self._attemptMcaLoad(x, y, filename, info=info): return result, concentrations # Fit XRF spectrum fitresult, result, concentrations = self._fitMca(filename) # Extract/calculate + save concentrations if result: # TODO: 'concentrations' in result, when does this happens and should we pop it???? concentrationsInResult = 'concentrations' not in result else: concentrationsInResult = False if self._concentrations and concentrationsInResult: result, concentrations = self._concentrationsFromResult(fitresult, result) if self.fitConcFile and concentrations is not None and not concentrationsInFitFile: self._updateConcFile(concentrations, filename, key) # Digest fit result when not already digested if self.fitFiles: # Create/update existing FIT file fitfile = self.__getFitFile(filename, key, createdirs=True) if fitresult: # TODO: why not "and result is None"? result = self.mcafit.digestresult(outfile=fitfile, info=info) if fitfile: if concentrations and not concentrationsInFitFile: self._updateFitFile(concentrations, fitfile) self._updateFitFileList(fitfile) else: if fitresult and result is None: # Use imagingDigestResult instead of digestresult: # faster and digestresult is not needed just for imaging result = self.mcafit.imagingDigestResult() return result, concentrations def _attemptMcaLoad(self, x, y, filename, info=None): try: #I make sure I take the fit limits configuration self.mcafit.config['fit']['use_limit'] = 1 # TODO: why??? self.mcafit.setData(x, y, time=info.get("McaLiveTime", None)) except Exception: self._restoreFitConfig(filename, 'entering data') return False return True def _restoreFitConfig(self, filename, task): _logger.error("Error %s of file with output = %s\n%s" %\ (task, filename, sys.exc_info()[1])) # Restore when a fit strategy like `matrix adjustment` is used if self.mcafit.config['fit'].get("strategyflag", False): config = self.__configList[self.__currentConfig] _logger.info("Restoring fitconfiguration") self.mcafit = ClassMcaTheory.McaTheory(config) self.mcafit.enableOptimizedLinearFit() # TODO: why??? def _fitMca(self, filename): result = None concentrations = None fitresult = None try: self.mcafit.estimate() # Avoid digest=1 when possible (slow but more detailed information) digest = self.fitFiles or\ (self._concentrations and (self.mcafit._fluoRates is None)) if self.outbuffer is not None: # TODO: we need a full digest although only yfit and ydata # are needed, which are thrown away by Gefit.LeastSquaresFit digest |= self.outbuffer.saveDataDiagnostics if digest: fitresult, result = self.mcafit.startfit(digest=1) elif self._concentrations: fitresult = self.mcafit.startfit(digest=0) try: fitresult0 = {} fitresult0['fitresult'] = fitresult fitresult0['result'] = self.mcafit.imagingDigestResult() fitresult0['result']['config'] = self.mcafit.config conf = self.mcafit.configure() tconf = self._tool.configure() if 'concentrations' in conf: tconf.update(conf['concentrations']) else: #what to do? pass concentrations = self._tool.processFitResult(config=tconf, fitresult=fitresult0, elementsfrommatrix=False, fluorates = self.mcafit._fluoRates) except Exception: concentrations = None _logger.error("error in concentrations") _logger.error(str(sys.exc_info()[0:-1])) self._restoreFitConfig(filename, 'calculating concentrations') else: #just images fitresult = self.mcafit.startfit(digest=0) except Exception: self._restoreFitConfig(filename, 'fitting data') return fitresult, result, concentrations def _concentrationsFromResult(self, fitresult, result): if fitresult: fitresult0 = {} if result is None: result = self.mcafit.digestresult() fitresult0['result'] = result fitresult0['fitresult'] = fitresult conf = self.mcafit.configure() else: fitresult0 = {} fitresult0['result'] = result conf = result['config'] tconf = self._tool.configure() if 'concentrations' in conf: tconf.update(conf['concentrations']) else: pass #_logger.error("Concentrations not calculated") #_logger.error("Is your fit configuration file correct?") try: concentrations = self._tool.processFitResult(config=tconf, fitresult=fitresult0, elementsfrommatrix=False) except Exception: _logger.error("error in concentrations") _logger.error(str(sys.exc_info()[0:-1])) concentrations = None return result, concentrations def _updateFitFile(self, concentrations, outfile): """Add concentrations to fit file """ try: f = ConfigDict.ConfigDict() f.read(outfile) f['concentrations'] = concentrations try: os.remove(outfile) except Exception: _logger.error("error deleting fit file") f.write(outfile) except Exception: _logger.error("Error writing concentrations to fit file") _logger.error(str(sys.exc_info())) def _updateFitFileList(self, outfile): """Append FIT file to list of FIT files """ if self.counter: self._fitlistfile.write(',\n'+outfile) else: name = self._rootname +"_fitfilelist.py" name = self.os_path_join(self.outputdir,name) try: os.remove(name) except Exception: pass self._fitlistfile = open(name,"w+") self._fitlistfile.write("fitfilelist = [") self._fitlistfile.write('\n'+outfile) def _updateConcFile(self, concentrations, filename, key): if not self.fitConcFile or concentrations is None: return concentrationsAsAscii = self._toolConversion.getConcentrationsAsAscii(concentrations) if len(concentrationsAsAscii) > 1: text = "" text += "SOURCE: "+ filename +"\n" text += "KEY: "+key+"\n" text += concentrationsAsAscii + "\n" f = open(self.__getFitConcFile(),"a") f.write(text) f.close() def __roiOneMca(self,x,y): return self.mcafit.roifit(x,y,width=self.roiWidth) def _allocateMemoryFit(self, result, concentrations): if self._concentrations: if 'mmolar' in concentrations: self.__conKey = "mmolar" else: self.__conKey = "mass fraction" outbuffer = self.outbuffer # Fit parameters and their uncertainties labels = result['groups'] nFree = len(labels) imageShape = self.__nrows, self.__ncols paramShape = nFree, self.__nrows, self.__ncols dtypeResult = numpy.float32 dataAttrs = {} #{'units':'counts'} paramAttrs = {'errors': 'uncertainties', 'default': not self._concentrations} outbuffer.allocateMemory('parameters', shape=paramShape, dtype=dtypeResult, fill_value=numpy.nan, labels=labels, dataAttrs=dataAttrs, groupAttrs=paramAttrs, memtype='ram') outbuffer.allocateMemory('uncertainties', shape=paramShape, dtype=dtypeResult, fill_value=numpy.nan, labels=labels, dataAttrs=dataAttrs, groupAttrs=None, memtype='ram') # Concentrations if self._concentrations: groupAttrs = {'default': True} if 'mmolar' in concentrations: concentration_key = 'molarconcentrations' dataAttrs = {} #{'units': 'mM'} else: concentration_key = 'massfractions' dataAttrs = {} self._concentration_key = concentration_key labels = concentrations['groups'] layerlist = concentrations['layerlist'] if len(layerlist) > 1: labels += [(group, layer) for group in concentrations['groups'] for layer in layerlist] nConcFree = len(concentrations['groups']) paramShape = nConcFree, self.__nrows, self.__ncols outbuffer.allocateMemory(concentration_key, shape=paramShape, dtype=dtypeResult, fill_value=numpy.nan, labels=labels, dataAttrs=dataAttrs, groupAttrs=groupAttrs, memtype='ram') # Model ,residuals, chisq ,... if outbuffer.diagnostics: xdata0 = self.mcafit.xdata0.flatten().astype(numpy.float32) # x (channels or energy) xdata = self.mcafit.xdata.flatten().astype(numpy.float32) # x (after fit limits) stackShape = self.__nrows, self.__ncols, len(xdata0) mcaIndex = 2 iXMin, iXMax = int(max(numpy.where(xdata0 <= xdata[0])[0])), \ int(min(numpy.where(xdata0 >= xdata[-1])[0])) + 1 self._mcaIdx = slice(iXMin, iXMax) nObs = iXMax-iXMin if outbuffer.saveFOM: outbuffer.allocateMemory('nFreeParameters', group='diagnostics', shape=imageShape, fill_value=nFree, dtype=numpy.int32, dataAttrs=None, groupAttrs=None, memtype='ram') outbuffer.allocateMemory('nObservations', group='diagnostics', shape=imageShape, fill_value=nObs, dtype=numpy.int32, dataAttrs=None, groupAttrs=None, memtype='ram') outbuffer.allocateMemory('chisq', group='diagnostics', shape=imageShape, fill_value=numpy.nan, dtype=dtypeResult, dataAttrs=None, groupAttrs=None, memtype='ram') dataAttrs = {} #{'units':'counts'} fitAttrs = {} if outbuffer.saveDataDiagnostics: # Generic axes dataAxesNames = ['dim{}'.format(i) for i in range(len(stackShape))] dataAxes = [(name, numpy.arange(n, dtype=dtypeResult), {}) for name, n in zip(dataAxesNames, stackShape)] if 'config' in result: cfg = result['config'] else: cfg = self.mcafit.getConfiguration() mcacfg = cfg['detector'] linear = cfg["fit"]["linearfitflag"] if linear or (mcacfg['fixedzero'] and mcacfg['fixedgain']): #zero = result['fittedpar'][result['parameters'].index('Zero')] #gain = result['fittedpar'][result['parameters'].index('Gain')] zero = mcacfg['zero'] gain = mcacfg['gain'] xenergy = zero + gain * xdata0 dataAxesNames[mcaIndex] = 'energy' dataAxes[mcaIndex] = 'energy', xenergy.astype(dtypeResult), {'units': 'keV'} dataAxes.append(('channels', xdata0.astype(numpy.float32), {})) fitAttrs['axes'] = dataAxes fitAttrs['axesused'] = dataAxesNames if outbuffer.saveFit: fitmodel = outbuffer.allocateMemory('model', group='fit', shape=stackShape, dtype=dtypeResult, fill_value=numpy.nan, chunks=True, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') #idx = [slice(None)]*fitmodel.ndim #idx[mcaIndex] = slice(0, iXMin) #fitmodel[tuple(idx)] = numpy.nan #idx[mcaIndex] = slice(iXMax, None) #fitmodel[tuple(idx)] = numpy.nan if outbuffer.saveData: outbuffer.allocateMemory('data', group='fit', shape=stackShape, dtype=dtypeResult, fill_value=numpy.nan, chunks=True, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') if outbuffer.saveResiduals: outbuffer.allocateMemory('residuals', group='fit', shape=stackShape, dtype=dtypeResult, fill_value=numpy.nan, chunks=True, dataAttrs=dataAttrs, groupAttrs=fitAttrs, memtype='hdf5') def _storeFitResult(self, result, concentrations): outbuffer = self.outbuffer # Fit parameters and their uncertainties output = outbuffer['parameters'] outputs = outbuffer['uncertainties'] for i, group in enumerate(outbuffer.labels('parameters')): output[i, self.__row, self.__col] = result[group]['fitarea'] outputs[i, self.__row, self.__col] = result[group]['sigmaarea'] # Concentrations if self._concentrations: output = outbuffer[self._concentration_key] for i, label in enumerate(outbuffer.labels(self._concentration_key)): if isinstance(label, tuple): group, layer = label output[i, self.__row, self.__col] = concentrations[layer][self.__conKey][group] else: output[i, self.__row, self.__col] = concentrations[self.__conKey][label] # Diagnostics: model, residuals, chisq ,... if outbuffer.diagnostics: if outbuffer.saveFOM: outbuffer['chisq'][self.__row, self.__col] = result['chisq'] idx = self.__row, self.__col, self._mcaIdx idxall = self.__row, self.__col, slice(None) if outbuffer.saveFit: output = outbuffer['model'] output[idx] = result['yfit'] if outbuffer.saveData: output = outbuffer['data'] output[idxall] = result['ydata0'] if outbuffer.saveResiduals: output = outbuffer['residuals'] output[idx] = result['yfit'] - result['ydata'] def _allocateMemoryRoiFit(self, result): outbuffer = self.outbuffer # Fit parameters (ROIs) labels = [(group, roi.replace(' ROI', '')) for group, rois in result.items() for roi in rois] nFree = len(labels) paramShape = nFree, self.__nrows, self.__ncols dtypeResult = numpy.float32 dataAttrs = {} #{'units':'counts'} groupAttrs = {'default': True} outbuffer.allocateMemory('roi', shape=paramShape, dtype=dtypeResult, labels=labels, dataAttrs=dataAttrs, groupAttrs=groupAttrs, memtype='ram') def _storeRoiFitResult(self, result): outbuffer = self.outbuffer output = outbuffer['roi'] for i, label in enumerate(outbuffer.labels('roi')): group, roi = label output[i, self.__row, self.__col] = result[group][roi+' ROI'] def main(): import getopt options = 'f' longoptions = ['cfg=', 'pkm=', 'outdir=', 'roifit=', 'roi=', 'roiwidth=', 'concentrations=', 'overwrite=', 'outroot=', 'outentry=', 'outprocess=', 'edf=', 'h5=', 'csv=', 'tif=', 'dat=', 'diagnostics=', 'debug=', 'multipage='] filelist = None cfg = None roifit = 0 roiwidth = 250. tif = 0 edf = 1 csv = 0 h5 = 1 dat = 0 multipage = 0 debug = 0 outputDir = None concentrations = 0 diagnostics = 0 overwrite = 1 outputRoot = "" fileEntry = "" fileProcess = "" opts, args = getopt.getopt( sys.argv[1:], options, longoptions) for opt,arg in opts: if opt in ('--pkm','--cfg'): cfg = arg elif opt in ('--outdir'): outputDir = arg elif opt in ('--roi','--roifit'): roifit = int(arg) elif opt in ('--roiwidth'): roiwidth = float(arg) elif opt in ('--tif', '--tiff'): tif = int(arg) elif opt == '--edf': edf = int(arg) elif opt == '--csv': csv = int(arg) elif opt == '--dat': dat = int(arg) elif opt == '--h5': h5 = int(arg) elif opt == '--overwrite': overwrite = int(arg) elif opt == '--concentrations': concentrations = int(arg) elif opt == '--outroot': outputRoot = arg elif opt == '--outentry': fileEntry = arg elif opt == '--outprocess': fileProcess = arg elif opt == '--debug': debug = int(arg) elif opt == '--diagnostics': diagnostics = int(arg) elif opt == '--edf': edf = int(arg) elif opt == '--csv': csv = int(arg) elif opt == '--h5': h5 = int(arg) elif opt == '--dat': dat = int(arg) elif opt == '--multipage': multipage = int(arg) logging.basicConfig() if debug: _logger.setLevel(logging.DEBUG) else: _logger.setLevel(logging.INFO) filelist=args if len(filelist) == 0: _logger.error("No input files, run GUI") sys.exit(0) t0 = time.time() outbuffer = OutputBuffer(outputDir=outputDir, outputRoot=outputRoot, fileEntry=fileEntry, fileProcess=fileProcess, diagnostics=diagnostics, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, multipage=multipage, overwrite=overwrite) from PyMca5.PyMcaMisc import ProfilingUtils with ProfilingUtils.profile(memory=debug, time=debug): b = McaAdvancedFitBatch(cfg,filelist=filelist, fitfiles=False, outputdir=outputDir, roifit=roifit, roiwidth=roiwidth, concentrations=concentrations, outbuffer=outbuffer, overwrite=overwrite) b.processList() print("Total Elapsed = % s " % (time.time() - t0)) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main() �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/PyMcaEPDL97.py���������������������������������������������0000644�0000000�0000000�00000034415�14741736366�020765� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= "Interface to the PyMca EPDL97 description" import os import sys from PyMca5.PyMcaIO import specfile from PyMca5 import getDataFile import numpy log = numpy.log exp = numpy.exp ElementList = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] EPDL97_FILE = getDataFile("EPDL97_CrossSections.dat") EADL97_FILE = getDataFile("EADL97_BindingEnergies.dat") EPDL97_DICT = {} for element in ElementList: EPDL97_DICT[element] = {} #initialize the dictionary, for the time being compatible with PyMca 4.3.0 EPDL97_DICT = {} for element in ElementList: EPDL97_DICT[element] = {} EPDL97_DICT[element]['binding'] = {} EPDL97_DICT[element]['EPDL97'] = {} EPDL97_DICT[element]['original'] = True #fill the dictionary with the binding energies def _initializeBindingEnergies(): #read the specfile data sf = specfile.Specfile(EADL97_FILE) scan = sf[0] labels = scan.alllabels() data = scan.data() scan = None sf = None i = -1 for element in ElementList: if element == 'Md': break i += 1 EPDL97_DICT[element]['binding'] = {} for j in range(len(labels)): if j == 0: #this is the atomic number continue label = labels[j].replace(" ","").split("(")[0] EPDL97_DICT[element]['binding'][label] = data[j, i] _initializeBindingEnergies() def setElementBindingEnergies(element, ddict): """ Allows replacement of the element internal binding energies by a different set of energies. This is made to force this implementaticon of EPDL97 to respect other programs absorption edges. Data will be extrapolated when needed. WARNING: Coherent resonances are not replaced. """ if len(EPDL97_DICT[element]['EPDL97'].keys()) < 2: _initializeElement(element) EPDL97_DICT[element]['original'] = False EPDL97_DICT[element]['binding']={} if 'binding' in ddict: EPDL97_DICT[element]['binding'].update(ddict['binding']) else: EPDL97_DICT[element]['binding'].update(ddict) def _initializeElement(element): """ _initializeElement(element) Supposed to be of internal use. Reads the file and loads all the relevant element information contained int the EPDL97 file into the internal dictionary. """ #read the specfile data sf = specfile.Specfile(EPDL97_FILE) scan_index = ElementList.index(element) if scan_index > 99: #just to avoid a crash #I do not expect any fluorescent analysis of these elements ... scan_index = 99 scan = sf[scan_index] labels = scan.alllabels() data = scan.data() scan = None #fill the information into the dictionary i = -1 for label0 in labels: i += 1 label = label0.lower() #translate the label to the PyMca keys if ('coherent' in label) and ('incoherent' not in label): EPDL97_DICT[element]['EPDL97']['coherent'] = data[i, :] EPDL97_DICT[element]['EPDL97']['coherent'].shape = -1 continue if ('incoherent' in label) and ('plus' not in label): EPDL97_DICT[element]['EPDL97']['compton'] = data[i, :] EPDL97_DICT[element]['EPDL97']['compton'].shape = -1 continue if 'allother' in label: EPDL97_DICT[element]['EPDL97']['all other'] = data[i, :] EPDL97_DICT[element]['EPDL97']['all other'].shape = -1 continue label = label.replace(" ","").split("(")[0] if 'energy' in label: EPDL97_DICT[element]['EPDL97']['energy'] = data[i, :] EPDL97_DICT[element]['EPDL97']['energy'].shape = -1 continue if 'photoelectric' in label: EPDL97_DICT[element]['EPDL97']['photo'] = data[i, :] EPDL97_DICT[element]['EPDL97']['photo'].shape = -1 #a reference should not be expensive ... EPDL97_DICT[element]['EPDL97']['photoelectric'] =\ EPDL97_DICT[element]['EPDL97']['photo'] continue if 'total' in label: EPDL97_DICT[element]['EPDL97']['total'] = data[i, :] EPDL97_DICT[element]['EPDL97']['total'].shape = -1 continue if label[0].upper() in ['K', 'L', 'M']: #for the time being I do not use the other shells in PyMca EPDL97_DICT[element]['EPDL97'][label.upper()] = data[i, :] EPDL97_DICT[element]['EPDL97'][label.upper()].shape = -1 continue EPDL97_DICT[element]['EPDL97']['pair'] = 0.0 *\ EPDL97_DICT[element]['EPDL97']['energy'] EPDL97_DICT[element]['EPDL97']['photo'] = \ EPDL97_DICT[element]['EPDL97']['total'] -\ EPDL97_DICT[element]['EPDL97']['compton']-\ EPDL97_DICT[element]['EPDL97']['coherent']-\ EPDL97_DICT[element]['EPDL97']['pair'] atomic_shells = ['M5', 'M4', 'M3', 'M2', 'M1', 'L3', 'L2', 'L1', 'K'] # with the new (short) version of the cross-sections file, "all other" contains all # shells above the M5. Nevertheless, we calculate it if scan_index > 17: idx = EPDL97_DICT[element]['EPDL97']['all other'] > 0.0 delta = 0.0 for key in atomic_shells: delta += EPDL97_DICT[element]['EPDL97'][key] EPDL97_DICT[element]['EPDL97']['all other'] =\ (EPDL97_DICT[element]['EPDL97']['photo'] - delta) * idx else: EPDL97_DICT[element]['EPDL97']['all other'] = 0.0 * \ EPDL97_DICT[element]['EPDL97']['photo'] #take care of rounding problems idx = EPDL97_DICT[element]['EPDL97']['all other'] < 0.0 EPDL97_DICT[element]['EPDL97']['all other'][idx] = 0.0 def getElementCrossSections(element, energy=None, forced_shells=None): """ getElementCrossSections(element, energy, forced_shells=None) Returns total and partial cross sections of element at the specified energies. If forced_shells are not specified, it uses the internal binding energies of EPDL97 for all shells. If forced_shells is specified, it enforces excitation of the relevant shells via log-log extrapolation if needed. """ if forced_shells is None: forced_shells = [] if element not in ElementList: raise ValueError("Invalid chemical symbol %s" % element) if len(EPDL97_DICT[element]['EPDL97'].keys()) < 2: _initializeElement(element) if energy is None and EPDL97_DICT[element]['original']: return EPDL97_DICT[element]['EPDL97'] elif energy is None: energy = EPDL97_DICT[element]['EPDL97']['energy'] if hasattr(energy, "__len__"): energy = numpy.array(energy, copy=True) else: energy = numpy.array([energy], copy=True) binding = EPDL97_DICT[element]['binding'] wdata = EPDL97_DICT[element]['EPDL97'] ddict = {} ddict['energy'] = energy ddict['coherent'] = numpy.zeros(energy.shape, dtype=numpy.float64) ddict['compton'] = numpy.zeros(energy.shape, dtype=numpy.float64) ddict['photo'] = numpy.zeros(energy.shape, dtype=numpy.float64) ddict['pair'] = numpy.zeros(energy.shape, dtype=numpy.float64) ddict['all other'] = numpy.zeros(energy.shape, dtype=numpy.float64) ddict['total'] = numpy.zeros(energy.shape, dtype=numpy.float64) atomic_shells = ['M5', 'M4', 'M3', 'M2', 'M1', 'L3', 'L2', 'L1', 'K'] for key in atomic_shells: ddict[key] = 0.0 * energy #find interpolation point len_energy = len(energy) for i in range(len_energy): x = energy[i] if x > wdata['energy'][-2]: #take last value or extrapolate? print("Warning: Extrapolating data at the end") j1 = len(wdata['energy']) - 1 j0 = j1 - 1 elif x <= wdata['energy'][0]: #take first value or extrapolate? print("Warning: Extrapolating data at the beginning") j1 = 1 j0 = 0 else: j0 = numpy.max(numpy.nonzero(wdata['energy'] < x), axis=1) if hasattr(j0, "__len__"): j0 = j0[0] j1 = j0 + 1 x0 = wdata['energy'][j0] x1 = wdata['energy'][j1] if x == x1: if (j1 + 1 ) < len(wdata['energy']): if x1 == wdata['energy'][j1 + 1]: j0 = j1 j1 += 1 x0 = wdata['energy'][j0] x1 = wdata['energy'][j1] #coherent and incoherent for key in ['coherent', 'compton', 'pair', 'all other']: if (j0 == j1) or ((x1 - x0) < 5.E-10) or ((x1 - x) < 5.E-10) : ddict[key][i] = wdata[key][j1] else: y0 = wdata[key][j0] y1 = wdata[key][j1] if (y0 > 0) and (y1 > 0): ddict[key][i] = exp((log(y0) * log(x1/x) +\ log(y1) * log(x/x0))/log(x1/x0)) elif (y1 > 0) and ((x-x0) > 1.E-5): ddict[key][i] = exp((log(y1) * log(x/x0))/log(x1/x0)) #partial cross sections for key in atomic_shells: y0 = wdata[key][j0] if (y0 > 0.0) and (x >= binding[key]): #standard way y1 = wdata[key][j1] if (((x1 - x0) < 5.E-10) or ((x1 - x) < 5.E-10)): # no interpolation needed ddict[key][i] = y1 else: ddict[key][i] = exp((log(y0) * log(x1/x) +\ log(y1) * log(x/x0))/log(x1/x0)) elif (forced_shells == []) and (x < binding[key]): continue elif (key in forced_shells) or (x >= binding[key]): l = numpy.nonzero(wdata[key] > 0.0) if not len(l[0]): continue j00 = numpy.min(l) j01 = j00 + 1 x00 = wdata['energy'][j00] x01 = wdata['energy'][j01] y0 = wdata[key][j00] y1 = wdata[key][j01] ddict[key][i] = exp((log(y0) * log(x01/x) +\ log(y1) * log(x/x00))/log(x01/x00)) for key in ['all other'] + atomic_shells: ddict['photo'][i] += ddict[key][i] for key in ['coherent', 'compton', 'photo']: ddict['total'][i] += ddict[key][i] for key in ddict.keys(): ddict[key] = ddict[key].tolist() return ddict def getPhotoelectricWeights(element, shelllist, energy, normalize = None, totals = None): """ getPhotoelectricWeights(element,shelllist,energy,normalize=None,totals=None) Given a certain list of shells and one excitation energy, gives back the ratio mu(shell, energy)/mu(energy) where mu refers to the photoelectric mass attenuation coefficient. The special shell "all others" refers to all the shells not in the K, L or M groups. Therefore, valid values for the items in the shellist are: 'K', 'L1', 'L2', 'L3', 'M1', 'M2', 'M3', 'M4', 'M5', 'all other' For instance, for the K shell, it is the equivalent of (Jk-1)/Jk where Jk is the k jump. If normalize is None or True, normalizes the output to the shells given in shelllist. If totals is True, gives back the dictionary with all the mass attenuation coefficients used in the calculations. """ if normalize is None: normalize = True if totals is None: totals = False #it is not necessary to force shells because the proper way to work is to force this #module to respect a given set of binding energies. ddict = getElementCrossSections(element, energy=energy, forced_shells=None) w = [] d = ddict['photo'][0] for key in shelllist: if d > 0.0: wi = ddict[key][0]/d else: wi = 0.0 w += [wi] if normalize: total = sum(w) for i in range(len(w)): if total > 0.0: w[i] = w[i]/total else: w[i] = 0.0 if totals: return w, ddict else: return w ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/Scofield1973.py��������������������������������������������0000644�0000000�0000000�00000003400�14741736366�021171� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2016 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os from PyMca5.PyMcaIO import ConfigDict from PyMca5 import getDataFile dict = ConfigDict.ConfigDict() dictfile = getDataFile("Scofield1973.dict") dict.read(dictfile) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/SingleLayerStrategy.py�������������������������������������0000644�0000000�0000000�00000017210�14741736366�023062� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import copy import logging from . import Elements from . import ConcentrationsTool _logger = logging.getLogger(__name__) class SingleLayerStrategy(object): def __init__(self): self._tool = ConcentrationsTool.ConcentrationsTool() def applyStrategy(self, fitResult, fluorescenceRates, currentIteration=None): """ Provided a fit result, it returns an new fit configuration and a positive integer to indicate the strategy procedure has not finished. Returning an empty fit configuration, or a number of iterations equal 0 will indicate the process is over. """ _logger.debug("SingleLayerStrategy called with iteration %s", currentIteration) newConfiguration = copy.deepcopy(fitResult['config']) strategyConfiguration = newConfiguration['SingleLayerStrategy'] if currentIteration is None: currentIteration = strategyConfiguration['iterations'] if currentIteration < 1: # enough for the journey return {}, 0 # calculate concentrations with current configuration ddict = {} ddict.update(newConfiguration['concentrations']) ddict, addInfo = self._tool.processFitResult( \ config=ddict, fitresult={"result":fitResult}, elementsfrommatrix=False, fluorates = fluorescenceRates, addinfo=True) # find the layer to be updated the matrix matrixKey = None for attenuator in list(newConfiguration['attenuators'].keys()): if not newConfiguration['attenuators'][attenuator][0]: continue if attenuator.upper() == "MATRIX": if newConfiguration['attenuators'][attenuator][1].upper() != \ "MULTILAYER": matrixKey = attenuator else: matrixKey = "MULTILAYER" if matrixKey: break if matrixKey != "MULTILAYER": parentKey = 'attenuators' daughterKey = matrixKey else: parentKey = "multilayer" daughterKey = None if newConfiguration["SingleLayerStrategy"]["layer"].upper() == \ ["AUTO"]: # we have to find the layer where we should work firstLayer = None for layer in newConfiguration[parentKey]: if newConfiguration[parentKey][layer][0]: material = newConfiguration[parentKey][layer][1] composition = Elements.getMaterialMassFractions( \ [material], [1.0]) for group in strategyConfiguration["peaks"]: if "-" in group: continue ele = group.split()[0] if ele in composition: daughterLayer = layer break if firstLayer is None: firstLayer = layer if daughterKey is None: daughterKey = firstLayer else: daughterKey = newConfiguration["SingleLayerStrategy"]["layer"] if daughterKey is None: raise ValueError("Cannot find appropriate sample layer") # newConfiguration[parentKey][daughterKey] composition is to be updated # get the new composition total = 0.0 CompoundList = [] CompoundFraction = [] materialCounter = -1 previousElements = [] for group in strategyConfiguration["peaks"]: materialCounter += 1 if "-" in group: continue if strategyConfiguration["flags"][materialCounter] in ["0", 0]: _logger.debug("ignoring %s", group) continue ele = group.split()[0] if ele in previousElements: print("Strategy element %s considered twice! Ignoring second entry" % ele) _logger.critical("Strategy element %s considered twice. Ignoring second entry" % ele) continue else: previousElements.append(ele) material = strategyConfiguration["materials"][materialCounter] if material in ["-", ele, ele + "1"]: CompoundList.append(ele) CompoundFraction.append(\ ddict["mass fraction"][group]) else: massFractions = Elements.getMaterialMassFractions( \ [material], [1.0]) CompoundFraction.append( \ ddict["mass fraction"][group] / massFractions[ele]) CompoundList.append(material) total += CompoundFraction[-1] if strategyConfiguration["completer"] not in ["-"]: if total < 1.0: CompoundList.append(strategyConfiguration["completer"]) CompoundFraction.append(1.0 - total) else: for i in range(len(CompoundFraction)): CompoundFraction[i] /= total; else: for i in range(len(CompoundFraction)): CompoundFraction[i] /= total; materialName = "SingleLayerStrategyMaterial" newConfiguration["materials"][materialName] = \ {"Density": newConfiguration[parentKey][daughterKey][2], "Thickness":newConfiguration[parentKey][daughterKey][3], "CompoundList":CompoundList, "CompoundFraction":CompoundFraction, "Comment":"Last Single Layer Strategy iteration"} # and update it newConfiguration[parentKey][daughterKey][1] = materialName _logger.debug("Updated sample material: %s", newConfiguration["materials"][materialName]) return newConfiguration, currentIteration - 1 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/Strategies.py����������������������������������������������0000644�0000000�0000000�00000003335�14741736366�021236� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from . import SingleLayerStrategy # for the time being only one strategy STRATEGIES = {"SingleLayerStrategy":SingleLayerStrategy.SingleLayerStrategy} ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRFBatchFitOutput.py���������������������������������������0000644�0000000�0000000�00000007512�14741736366�022412� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os from PyMca5.PyMcaIO.OutputBuffer import OutputBuffer as OutputBufferBase class OutputBuffer(OutputBufferBase): def __init__(self, saveResiduals=False, saveFit=False, saveData=False, diagnostics=False, saveFOM=False, **kwargs): super(OutputBuffer, self).__init__(**kwargs) self.fileProcessDefault = 'xrf_fit' self._defaultgroups = 'molarconcentrations', 'massfractions', 'parameters' self._defaultorder = 'molarconcentrations', 'massfractions', 'parameters', 'uncertainties' self._optionalimage = 'chisq', self.saveResiduals = saveResiduals self.saveFit = saveFit self.saveData = saveData self.saveFOM = saveFOM if not self.diagnostics: # None of the above diagnostics # are enabled specifically self.diagnostics = diagnostics self.labelFormat('uncertainties', 's') self.labelFormat('massfractions', 'w') self.labelFormat('molarconcentrations', 'mM') @property def saveFOM(self): # For all non-hdf5 formats: FOM needs to be in # self._optionalimage to be saved return self._saveFOM @saveFOM.setter def saveFOM(self, value): self._checkBufferContext() self._saveFOM = value @property def saveData(self): return self._saveData and self.h5 @saveData.setter def saveData(self, value): self._checkBufferContext() self._saveData = value @property def saveFit(self): return self._saveFit and self.h5 @saveFit.setter def saveFit(self, value): self._checkBufferContext() self._saveFit = value @property def saveResiduals(self): return self._saveResiduals and self.h5 @saveResiduals.setter def saveResiduals(self, value): self._checkBufferContext() self._saveResiduals = value @property def saveDataDiagnostics(self): return self.saveResiduals or self.saveFit or self.saveData @property def diagnostics(self): return self.saveDataDiagnostics or self.saveFOM @diagnostics.setter def diagnostics(self, value): self.saveResiduals = value self.saveFit = value self.saveData = value self.saveFOM = value ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8437665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRFMC/�����������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017416� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRFMC/XMSOParser.py����������������������������������������0000644�0000000�0000000�00000013452�14741736366�021747� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2014 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import logging import xml.etree.ElementTree as ElementTree _logger = logging.getLogger(__name__) def getXMSOFileFluorescenceInformation(xmsoFile): f = ElementTree.parse(xmsoFile) ddict = {} root = f.getroot() transitions = ['K', 'Ka', 'Kb', 'L', 'L1', 'L2', 'L3', 'M'] for i in root.iter('fluorescence_line_counts'): _logger.debug("%s", i.attrib) for key in ['symbol', 'total_counts']: _logger.debug('%s = %s', key, i.get(key)) element = i.get('symbol') ddict[element] = {} #ddict[element]['z'] = i.get('atomic_number') for key in transitions: ddict[element][key] = { 'total':0.0, 'counts': [], 'correction_factor':[]} for a in i.iter('fluorescence_line'): _logger.debug("%s", a.attrib) for key in ['type', 'total_counts']: _logger.debug('%s = %s', key, a.get(key)) line = a.get('type') ddict[element][line] = {} #ddict[element][line]['total'] = float(a.get('total_counts')) ddict[element][line]['counts'] = [] ddict[element][line]['total']=0 transitionsAffected = [] for key in transitions: if line.startswith(key): transitionsAffected.append(key) elif line.startswith('KL') and (key == 'Ka'): transitionsAffected.append(key) elif line.startswith('K') and (key == 'Kb'): if not line.startswith('KL'): transitionsAffected.append(key) cumulator = 0 for b in a.iter('counts'): _logger.debug("%s", b.attrib) value = float(b.text) ddict[element][line]['counts'].append(value) cumulator += value ddict[element][line]['total'] = cumulator single = ddict[element][line]['counts'][0] multiple = 0.0 ddict[element][line]['correction_factor'] = [] excitationCounter = 0 for value in ddict[element][line]['counts']: multiple += value ddict[element][line]['correction_factor'].append(\ multiple/single) for key in transitionsAffected: nValues = len(ddict[element][line]['counts']) while(len(ddict[element][key]['counts']) < nValues): ddict[element][key]['counts'].append(0.0) ddict[element][key]['counts'][excitationCounter] += value excitationCounter += 1 ddict[element][key]['correction_factor'] = [] for key in transitions: multiple = 0.0 if len(ddict[element][key]['counts']) == 0: nValues = len(ddict[element][line]['counts']) ddict[element][key]['counts'] = [0.0] * nValues ddict[element][key]['correction_factor'] = [1.0] * nValues else: single = ddict[element][key]['counts'][0] for value in ddict[element][key]['counts']: multiple += value ddict[element][key]['correction_factor'].append(\ multiple/single) ddict[element][key]['total'] = multiple return ddict def test(xmsoFile='t.xmso'): ddict = getXMSOFileFluorescenceInformation(xmsoFile) for element in ddict: for line in ddict[element]: if line == "z": #atomic number continue if 1 or line in ['K', 'Ka', 'Kb', 'L', 'L1', 'L2', 'L3', 'M']: correction1 = ddict[element][line]['correction_factor'][1] correctionn = ddict[element][line]['correction_factor'][-1] print("Element %s Line %s Correction 2 = %f Correction n = %f" %\ (element, line,correction1, correctionn)) if __name__ == "__main__": if len(sys.argv) < 2: if os.path.exists('t.xmso'): test() else: print("Usage:") print("python XMSOParser.py xmso_file") sys.exit(0) else: test(sys.argv[1]) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRFMC/XRFMCHelper.py���������������������������������������0000644�0000000�0000000�00000037016�14741736366�022025� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import tempfile import subprocess import time import shutil from PyMca5.PyMcaIO import ConfigDict from . import XMSOParser getXMSOFileFluorescenceInformation =\ XMSOParser.getXMSOFileFluorescenceInformation XMIMSIM_PYMCA = None if sys.platform == "win32": try: # try to get the installation directory from the registry if sys.version < '3.0': import _winreg as winreg else: import winreg HKLM = winreg.ConnectRegistry(None, winreg.HKEY_LOCAL_MACHINE) try: # 32 bit softwareKey = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"Software\XMI-MSIM") except Exception: try: # 64 bit softwareKey = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, r"Software\Wow6432Node\XMI-MSIM") except Exception: # XMI-MSIM not installed ... softwareKey = None if softwareKey is not None: subKeyName = "InstallationDirectory" value = winreg.QueryValueEx(softwareKey, subKeyName) pathToExecutable = os.path.join(value[0], "bin", "xmimsim-pymca.exe") if not os.path.exists(pathToExecutable): pathToExecutable = None XMIMSIM_PYMCA = pathToExecutable except Exception: # this cannot afford failing pass else: try: testDirectories = ["/Applications", "/usr/local/bin", "/usr/bin", os.getcwd()] #look in the user PATH path = os.getenv('PATH') if path is not None: testDirectories += path.split(":") scriptName = "xmimsim-pymca" if sys.platform == "darwin": scriptName = os.path.join("XMI-MSIM.app", "Contents", "Resources", scriptName) for dirName in testDirectories: pathToExecutable = os.path.join(dirName, scriptName) if not os.path.exists(pathToExecutable): pathToExecutable = None else: break XMIMSIM_PYMCA = pathToExecutable except Exception: # this cannot afford failing pass def getScriptFile(pathToExecutable=None, args=None, name=None): if pathToExecutable is None: pathToExecutable = XMIMSIM_PYMCA if pathToExecutable is None: raise ValueError("Path to xmimsim-pymca needed") if not os.path.exists(pathToExecutable): raise IOError("xmimsim-pymca executable does not exist") if args is None: args = [] executable = os.path.basename(pathToExecutable) if not executable.startswith("xmimsim-pymca"): if sys.platform == "win32": raise ValueError("Path to xmimsim-pymca.exe needed") else: raise ValueError("Path to xmimsim-pymca needed") xmimsim_directory = os.path.dirname(pathToExecutable) if os.path.basename(xmimsim_directory).lower() == "bin": xmimsim_directory = os.path.dirname(xmimsim_directory) if sys.platform == "win32": binDir = os.path.join(xmimsim_directory, "bin") libDir = os.path.join(xmimsim_directory, "lib") gtkDir = os.path.join(xmimsim_directory, "GTK") if os.path.exists(gtkDir+"2"): gtkDir += "2" path = os.getenv("PATH") txt = "echo off\n" txt += "set PATH=%s;%s;%s;%s\n" % (binDir, libDir, gtkDir, os.getenv("PATH")) txt += "%s " % executable if len(args): for arg in args: txt += arg + " "; txt += "\n" else: txt += "%*" if name is None: handle, fullPath = tempfile.mkstemp(suffix=".bat", prefix="pymca", text=False) os.write(handle, txt) os.close(handle) else: fullPath = name if not fullPath.endswith(".bat"): fullPath = name + ".bat" if sys.version < '3.0': f = open(fullPath, "wb") else: f = open(fullPath, "w", newline='') f.write(txt) f.close() elif sys.platform == "darwin": #the bundle has everything needed txt = "#!/bin/bash\n" #this line is critical in order to avoid interference by the bundled PyMca txt += 'DYLD_LIBRARY_PATH=""\n' txt += "%s " % pathToExecutable if len(args): for arg in args: txt += arg + " "; txt += "\n" else: txt += "$*" if name is None: handle, fullPath = tempfile.mkstemp(suffix=".sh", prefix="pymca", text=False) os.write(handle, txt) os.close(handle) else: fullPath = name if not fullPath.endswith(".sh"): fullPath = name + ".sh" f = open(fullPath, "w") f.write(txt) f.close() os.system("chmod +x %s" % fullPath) else: binDir = xmimsim_directory libDir = os.path.join(xmimsim_directory, "lib") path = os.getenv("PATH") txt = "#!/bin/bash\n" txt += "export PATH=%s:%s:%s\n" % (binDir, libDir, os.getenv("PATH")) txt += "%s " % executable if len(args): for arg in args: txt += arg + " "; txt += "\n" else: txt += "$*" if name is None: handle, fullPath = tempfile.mkstemp(suffix=".sh", prefix="pymca", text=False) os.write(handle, txt) os.close(handle) else: fullPath = name if not fullPath.endswith(".sh"): fullPath = name + ".sh" f = open(fullPath, "w") f.write(txt) f.close() os.system("chmod +x %s" % fullPath) return fullPath def getOutputFileNames(fitFile, outputDir=None): if outputDir is None: outputDir = os.path.dirname(fitFile) ddict = {} newFile = os.path.join(outputDir, os.path.basename(fitFile)) if newFile.lower().endswith(".fit"): rootName = newFile[:-4] elif newFile.lower().endswith(".cfg"): rootName = newFile[:-4] else: rootName = newFile scriptName = rootName + "_script" csvName = rootName + ".csv" speName = rootName + ".spe" xmsoName = rootName + ".xmso" if sys.platform == 'win32': scriptName = scriptName + ".bat" fitName = rootName + ".fit" ddict={} ddict['fit'] = rootName + ".fit" ddict['script'] = scriptName ddict['csv'] = csvName ddict['spe'] = speName ddict['xmso'] = xmsoName return ddict def getXRFMCCorrectionFactors(fitConfiguration, xmimsim_pymca=None, verbose=False): outputDir=tempfile.mkdtemp(prefix="pymcaTmp") if 'result' in fitConfiguration: # we have to create a .fit file with the information ddict = ConfigDict.ConfigDict() ddict.update(fitConfiguration) else: # for the time being we have to build a "fit-like" file with the information import numpy from PyMca5.PyMca import ClassMcaTheory fitConfiguration['fit']['linearfitflag']=1 fitConfiguration['fit']['stripflag']=0 fitConfiguration['fit']['stripiterations']=0 xmin = fitConfiguration['fit']['xmin'] xmax = fitConfiguration['fit']['xmax'] #xdata = numpy.arange(xmin, xmax + 1) * 1.0 xdata = numpy.arange(0, xmax + 1) * 1.0 ydata = 0.0 + 0.1 * xdata mcaFit = ClassMcaTheory.McaTheory() mcaFit.configure(fitConfiguration) #a dummy time dummyTime = 1.0 if "concentrations" in fitConfiguration: dummyTime = fitConfiguration["concentrations"].get("time", dummyTime) mcaFit.setData(x=xdata, y=ydata, xmin=xmin, xmax=xmax, time=dummyTime) mcaFit.estimate() fitresult, result = mcaFit.startfit(digest=1) ddict=ConfigDict.ConfigDict() ddict['result'] = result ddict['xrfmc'] = fitConfiguration['xrfmc'] handle, fitFile = tempfile.mkstemp(suffix=".fit", prefix="pymca", dir=outputDir, text=False) os.close(handle) ddict.write(fitFile) ddict = None # we have the input file ready fileNamesDict = getOutputFileNames(fitFile, outputDir) scriptFile = getScriptFile(pathToExecutable=xmimsim_pymca, name=fileNamesDict['script']) xmsoName = fileNamesDict['xmso'] # basic parameters args = [scriptFile, "--enable-single-run", #"--set-threads=2", #"--verbose", #"--spe-file=%s" % speName, #"--csv-file=%s" % csvName, #"--enable-roi-normalization", #"--disable-roi-normalization", #default #"--enable-pile-up" #"--disable-pile-up" #default #"--enable-poisson", #"--disable-poisson", #default no noise #"--set-threads=2", #overwrite default maximum fitFile, xmsoName] if verbose: args.insert(2, "--verbose") process = subprocess.Popen(args, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) while process.poll() is None: # process did not finish yet time.sleep(0.1) line = process.stdout.readline() if verbose: if len(line) > 1: print("OUTPUT = <%s>" % line[:-1]) returnCode = process.returncode line = process.stdout.readline() while len(line) > 1: if verbose: print("OUTPUT = %s" % line[:-1]) line = process.stdout.readline() if returnCode: text = "" line = process.stderr.readline() while len(line) > 1: text += line if verbose: print("ERROR = %s" % line[:-1]) line = process.stderr.readline() removeDirectory(outputDir) raise IOError("Program terminated with error code %d:\n%s" % (returnCode, text)) corrections = getXMSOFileFluorescenceInformation(xmsoName) xmsoName = None removeDirectory(outputDir) return corrections def removeDirectory(dirName): if os.path.exists(dirName): if os.path.isdir(dirName): shutil.rmtree(dirName) def start(fitFile, outputDir, xmimsim_pymca, parameters=None, verbose=True): args = XRFMCHelper.getBasicSubprocessCommand(fitFile, outputDir, xmimsim_pymca) if parameters is None: parameters = ["--enable-single-run", "--set-threads=2"] i = 0 for parameter in parameters: i += 1 args.insert(1, parameter) process = subprocess.Popen(args, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) while process.poll() is None: # process did not finish yet time.sleep(0.1) line = process.stdout.readline() if verbose: if len(line) > 1: print("OUTPUT = <%s>" % line[:-1]) returnCode = process.returncode line = process.stdout.readline() while len(line) > 1: if verbose: print("OUTPUT = %s" % line[:-1]) line = process.stdout.readline() if returnCode: text = "" line = process.stderr.readline() while len(line) > 1: text += line if verbose: print("ERROR = %s" % line[:-1]) line = process.stderr.readline() raise IOError("Program terminated with error code %d:\n%s" % (returnCode, text)) def getBasicSubprocessCommand(fitFile, outputDir=None, xmimsim_pymca=None): ddict = getOutputFileNames(fitFile, outputDir) scriptFile = getScriptFile(pathToExecutable=xmimsim_pymca, name=ddict['script']) if ddict['fit'] != fitFile: if outputDir is None: # this should never happen raise ValueError("Inconsistent internal behaviour!") # recreate input in output directory new = ConfigDict.ConfigDict() new.read(fitFile) if os.path.exists(ddict['fit']): os.remove(ddict['fit']) new.write(ddict['fit']) new = None speName = ddict['spe'] csvName = ddict['csv'] newFitFile = ddict['fit'] xmsoName = ddict['xmsoName'] args = [scriptFile, #"--enable-single-run", "--verbose", "--spe-file=%s" % speName, "--csv-file=%s" % csvName, #"--enable-roi-normalization", #"--disable-roi-normalization", #default #"--enable-pile-up" #"--disable-pile-up" #default #"--enable-poisson", #"--disable-poisson", #default no noise #"--set-threads=2", #overwrite default maximum newFitFile, xmsoName] return args def test(filename): fitConfig = ConfigDict.ConfigDict() fitConfig.read(filename) ddict = getXRFMCCorrectionFactors(fitConfig, verbose=True) fitConfig = None for element in ddict: for line in ddict[element]: if line == "z": #atomic number continue if line in ['K', 'Ka', 'Kb', 'L', 'L1', 'L2', 'L3', 'M']: correction1 = ddict[element][line]['correction_factor'][1] correctionn = ddict[element][line]['correction_factor'][-1] print("Element %s Line %s Correction 2 = %f Correction n = %f" %\ (element, line,correction1, correctionn)) if __name__ == "__main__": if len(sys.argv) > 1: test(sys.argv[1]) else: print("Usage:") print("python XRFMCHelper.py path_to_cfg_or_fit_file") ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRFMC/__init__.py������������������������������������������0000644�0000000�0000000�00000000000�14741736366�021524� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/XRayTubeEbel.py��������������������������������������������0000644�0000000�0000000�00000061352�14741736366�021422� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from . import Elements import math import numpy def continuumEbel(target, e0, e=None, window=None, alphae=None, alphax=None, transmission=None, targetthickness=None, filterlist=None): """ Calculation of X-ray Tube continuum emission spectrum Parameters: ----------- target : list [Symbol, density (g/cm2), thickness(cm)] or atomic ymbol If set to atomic symbol, the program sets density and thickness of 0.1 cm e0 : float Tube Voltage in kV e : float or array of floats Energy of interest. If not given, the program will generate an array of energies from 1 to the given tube voltage minus 1 kV in keV. window : list Tube window [Formula, density, thickness] alphae : float Angle, in degrees, between electron beam and tube target. Normal incidence is 90. alphax : float Angle, in degrees, of X-ray exit beam. Normal exit is 90. transmission : Boolean, default is False If True the X-ray come out of the tube target by the side opposite to the one receiving the exciting electron beam. targetthickness : Target thickness in cm Only considered in transmission case. If not given, the program uses as target thickness the maximal penetration depth of the incident electron beam. filterlist : [list] Additional filters [[Formula, density, thickness], ...] Return: ------- result : Array Spectral flux density. Flux of photons at the given energies in photons/sr/mA/keV/s Reference: H. Ebel, X-Ray Spectrometry 28 (1999) 255-266 Tube voltage from 5 to 50 kV Electron incident angle from 50 to 90 deg. X-Ray take off angle from 90 to 5 deg. """ if type(target) in [type([]), type(list())]: element = target[0] density = target[1] thickness = target[2] else: element = target density = Elements.Element[element]['density'] thickness = 0.1 if e is None: energy = numpy.arange(e0 * 1.0)[1:] elif type(e) == type([]): energy = numpy.array(e, dtype=numpy.float64) elif type(e) == numpy.ndarray: energy = numpy.array(e, dtype=numpy.float64) else: energy = numpy.array([e], dtype=numpy.float64) if alphae is None: alphae = 75.0 if alphax is None: alphax = 15.0 if transmission is None: transmission = False sinalphae = math.sin(math.radians(alphae)) sinalphax = math.sin(math.radians(alphax)) sinfactor = sinalphae / sinalphax z = Elements.getz(element) const = 1.35e+09 x = 1.109 - 0.00435 * z + 0.00175 * e0 # calculate intermediate constants from formulae (4) in Ebel's paper # eta in Ebel's paper m = 0.1382 - 0.9211 / math.sqrt(z) logz = math.log(z) eta = 0.1904 - 0.2236 * logz + 0.1292 * pow(logz, 2) - \ 0.0149 * pow(logz, 3) eta = eta * pow(e0, m) # dephmax? in Ebel's paper p3 = 0.787e-05 * math.sqrt(0.0135 * z) * pow(e0, 1.5) + \ 0.735e-06 * pow(e0, 2) rhozmax = (Elements.Element[element]['mass'] / z) * p3 # print "max depth = ",2 * rhozmax # and finally we get rhoz u0 = e0 / energy logu0 = numpy.log(u0) p1 = logu0 * (0.49269 - 1.09870 * eta + 0.78557 * pow(eta, 2)) p2 = 0.70256 - 1.09865 * eta + 1.00460 * pow(eta, 2) + logu0 rhoz = rhozmax * (p1 / p2) # the term dealing with the photoelectric absorption of the Bremsstrahlung tau = numpy.array( Elements.getMaterialMassAttenuationCoefficients(element, 1.0, energy)['photo']) if not transmission: rhelp = tau * 2.0 * rhoz * sinfactor if len(numpy.nonzero(rhelp <= 0.0)[0]): result = numpy.zeros(rhelp.shape, numpy.float64) for i in range(len(rhelp)): if rhelp[i] > 0.0: result[i] = const * z * pow(u0[i] - 1.0, x) * \ (1.0 - numpy.exp(-rhelp[i])) / rhelp[i] else: result = const * z * pow(u0 - 1.0, x) * \ (1.0 - numpy.exp(-rhelp)) / rhelp # the term dealing with absorption in tube's window if window is not None: if window[2] != 0: w = Elements.getMaterialTransmission(window[0], 1.0, energy, density=window[1], thickness=window[2], listoutput=False)['transmission'] result *= w if filterlist is not None: w = 1 for fwindow in filterlist: if fwindow[2] == 0: continue w *= Elements.getMaterialTransmission(fwindow[0], 1.0, energy, density = fwindow[1], thickness = fwindow[2], listoutput=False)['transmission'] result *= w return result # transmission case if targetthickness is None: #d = Elements.Element[target]['density'] d = density ttarget = 2 * rhozmax print("WARNING target thickness assumed equal to maximum depth of %f cm" % (ttarget/d)) else: #ttarget = targetthickness * Elements.Element[target]['density'] ttarget = targetthickness * density # generationdepth = min(ttarget, 2 * rhozmax) rhelp = tau * 2.0 * rhoz * sinfactor if len(numpy.nonzero(rhelp <= 0.0)[0]): result = numpy.zeros(rhelp.shape, numpy.float64) for i in range(len(rhelp)): if rhelp[i] > 0.0: result[i] = const * z * pow(u0[i] - 1.0, x) * \ (numpy.exp(-tau[i] *(ttarget - 2.0 * rhoz[i]) / sinalphax) - \ numpy.exp(-tau[i] * ttarget / sinalphax)) / rhelp[i] else: result = const * z * pow(u0 - 1.0, x) * \ (numpy.exp(-tau *(ttarget - 2.0 * rhoz) / sinalphax) - \ numpy.exp(-tau * ttarget / sinalphax)) / rhelp # the term dealing with absorption in tube's window if window is not None: if window[2] != 0.0 : w = Elements.getMaterialTransmission(window[0], 1.0, energy, density=window[1], thickness=window[2] / sinalphax, listoutput=False)['transmission'] result *= w if filterlist is not None: for fwindow in filterlist: if fwindow[2] == 0: continue w = Elements.getMaterialTransmission(fwindow[0], 1.0, energy, density=fwindow[1], thickness=fwindow[2], listoutput=False)['transmission'] result *= w return result def characteristicEbel(target, e0, window=None, alphae=None, alphax=None, transmission=None, targetthickness=None, filterlist=None): """ Calculation of target characteritic lines and intensities Parameters: ----------- target : list [Symbol, density (g/cm2), thickness(cm)] or atomic ymbol If set to atomic symbol, the program sets density and thickness of 0.1 cm e0 : float Tube Voltage in kV e : float Energy of interest window : list Tube window [Formula, density, thickness] alphae : float Angle, in degrees, between electron beam and tube target. Normal incidence is 90. alphax : float Angle, in degrees, of X-ray exit beam. Normal exit is 90. transmission : Boolean, default is False If True the X-ray come out of the tube target by the side opposite to the one receiving the exciting electron beam. targetthickness : Target thickness in cm Only considered in transmission case. If not given, the program uses as target thickness the maximal penetration depth of the incident electron beam. filterlist : [list] Additional filters [[Formula, density, thickness], ...] Result: list Characteristic lines and intensities in the form [[energy0, intensity0, name0], [energy1, intensity1, name1], ...] Energies in keV Intensities in photons/sr/mA/keV/s """ if type(target) == type([]): element = target[0] density = target[1] thickness = target[2] if targetthickness is None: targetthickness = target[2] else: element = target density = Elements.Element[element]['density'] thickness = 0.1 if alphae is None: alphae = 75.0 if alphax is None: alphax = 15.0 if transmission is None: transmission = False sinalphae = math.sin(math.radians(alphae)) sinalphax = math.sin(math.radians(alphax)) sinfactor = sinalphae/sinalphax z = Elements.getz(element) const = 6.0e+13 # K Shell energy = Elements.Element[element]['binding']['K'] # get the energy of the characteristic lines lines = Elements._getUnfilteredElementDict(element, None, photoweights = True) if 0: # L shell lines will have to be entered directly by the user # L shell lpeaks = [] for label in lines['L xrays']: lpeaks.append([lines[label]['energy'], lines[label]['rate'], element+' '+label]) lfluo = Elements._filterPeaks(lpeaks, ethreshold=0.020, ithreshold=0.001, nthreshold=6, absoluteithreshold=False, keeptotalrate=True) lfluo.sort() peaklist = [] rays = 'K xrays' if rays in lines.keys(): #K shell for label in lines[rays]: peaklist.append([lines[label]['energy'], lines[label]['rate'], element + ' ' + label]) fl = Elements._filterPeaks(peaklist, ethreshold=0.020, ithreshold=0.001, nthreshold=4, absoluteithreshold=False, keeptotalrate=True) fl.sort() if (energy > 0) and (e0 > energy): zk = 2.0 bk = 0.35 else: for i in range(len(fl)): fl[i][1] = 0.00 return fl u0 = e0 / energy logu0 = numpy.log(u0) # stopping factor oneovers = (numpy.sqrt(u0) * logu0 + 2 * (1.0 - numpy.sqrt(u0))) oneovers /= u0 * logu0 + 1.0 - u0 oneovers = 1.0 + 16.05 * numpy.sqrt(0.0135 * z / energy) * oneovers oneovers *= (zk * bk / z) * (u0 * logu0 + 1.0 - u0) # backscattering factor r = 1.0 - 0.0081517 * z + 3.613e-05 * z * z +\ 0.009583 * z * numpy.exp(-u0) + 0.001141 * e0 # Absorption correction # calculate intermediate constants from formulae (4) in Ebel's paper # eta in Ebel's paper m = 0.1382 - 0.9211 / numpy.sqrt(z) logz = numpy.log(z) eta = 0.1904 - 0.2236 * logz + 0.1292 * pow(logz, 2) - 0.0149 * pow(logz, 3) eta = eta * pow(e0, m) # depmax? in Ebel's paper p3 = 0.787e-05 * numpy.sqrt(0.0135 * z) * pow(e0, 1.5) + \ 0.735e-06 * pow(e0, 2) rhozmax = (Elements.Element[element]['mass'] / z) * p3 # and finally we get rhoz p1 = logu0 * (0.49269 - 1.09870 * eta + 0.78557 * pow(eta, 2)) p2 = 0.70256 - 1.09865 * eta + 1.00460 * pow(eta, 2) + logu0 rhoz = rhozmax * (p1 / p2) # the term dealing with the photoelectric absorption energylist = [] for i in range(len(fl)): energylist.append(fl[i][0]) tau = numpy.array( Elements.getMaterialMassAttenuationCoefficients(element, 1.0, energylist)['photo']) if not transmission: rhelp = tau * 2.0 * rhoz * sinfactor w = None if window is not None: if window[2] != 0.0: w = Elements.getMaterialTransmission(window[0], 1.0, energylist, density=window[1], thickness=window[2], listoutput=False)['transmission'] if filterlist is not None: for fwindow in filterlist: if fwindow[2] == 0: continue if w is None: w = Elements.getMaterialTransmission(fwindow[0], 1.0, energylist, density=fwindow[1], thickness=fwindow[2], listoutput=False)['transmission'] else: w *= Elements.getMaterialTransmission(fwindow[0], 1.0, energylist, density=fwindow[1], thickness=fwindow[2], listoutput=False)['transmission'] for i in range(len(fl)): if rhelp[i] > 0.0 : rhelp[i] = (1.0 - numpy.exp(-rhelp[i])) / rhelp[i] else: rhelp[i] = 0.0 intensity = const * oneovers * r * Elements.getomegak(element) * rhelp[i] #the term dealing with absorption in tube's window if w is not None: intensity = intensity * w[i] fl[i][1] = intensity * fl[i][1] return fl #transmission case if targetthickness is None: d = density ttarget = 2 * rhozmax print("WARNING target thickness assumed equal to maximum depth of %f cm" % (ttarget/d)) else: ttarget = targetthickness * density #generationdepth = min(ttarget, 2 * rhozmax) rhelp = tau * 2.0 * rhoz * sinfactor w = None if (window is not None) or (filterlist is not None): if window is not None: if window[2] != 0.0: w = Elements.getMaterialTransmission(window[0], 1.0, energylist, density=window[1], thickness=window[2] / sinalphax, listoutput=False)['transmission'] if filterlist is not None: for fwindow in filterlist: if w is None: w = Elements.getMaterialTransmission(fwindow[0], 1.0, energylist, density=fwindow[1], thickness=fwindow[2], listoutput=False)['transmission'] else: w *= Elements.getMaterialTransmission(fwindow[0], 1.0, energylist, density=fwindow[1], thickness=fwindow[2], listoutput=False)['transmission'] for i in range(len(fl)): if rhelp[i] > 0.0: rhelp[i] = (numpy.exp(-tau[i] *( ttarget - 2.0 * rhoz) / sinalphax) - numpy.exp(-tau[i] * ttarget / sinalphax)) / rhelp[i] else: rhelp[i] = 0.0 intensity = const * oneovers * r * Elements.getomegak(element) * rhelp[i] if w is not None: intensity = intensity * w[i] fl[i][1] = intensity * fl[i][1] return fl def generateLists(target, e0, window=None, alphae=None, alphax=None, transmission=None, targetthickness=None, filterlist=None): """ Generate a theoretical X-Ray Tube emission profile Parameters: ----------- target : list [Symbol, density (g/cm2), thickness(cm)] or atomic ymbol If set to atomic symbol, the program sets density and thickness of 0.1 cm e0 : float Tube Voltage in kV window : list Tube window [Formula, density, thickness] alphae : float Angle, in degrees, between electron beam and tube target. Normal incidence is 90. alphax : float Angle, in degrees, of X-ray exit beam. Normal exit is 90. transmission : Boolean, default is False If True the X-ray come out of the tube target by the side opposite to the one receiving the exciting electron beam. targetthickness : Target thickness in cm Only considered in transmission case. If not given, the program uses as target thickness the maximal penetration depth of the incident electron beam. filterlist : [list] Additional filters [[Formula, density, thickness], ...] Return: ------- result : Tuple [Array of Energies, Array of relative intensities, Array of flags] Flag set to 1 means it is a target characteristic energy Flag set to 0 means it corresponds to a continuum energy """ e0w = 1.0 * e0 x1min = 1.4 step1 = 0.2 x2min = min(e0 - 2 * step1, 20.0) if x2min < 20: step2 = step1 else: step2 = 0.5 x3min = e0w x1 = numpy.arange(x1min, x2min+step1, step1) x2 = numpy.arange(x2min+step1, x3min, step2) # get K shell characteristic lines and intensities fllines = characteristicEbel(target, e0, window, alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=targetthickness, filterlist=filterlist) energy = numpy.ones(len(x1) + len(x2), dtype=float) energy[0:len(x1)] *= x1 energy[len(x1):(len(x1)+len(x2))] *= x2 energyweight = continuumEbel(target, e0, energy, window, alphae=alphae, alphax=alphax, transmission=transmission, targetthickness=targetthickness, filterlist=filterlist) energyweight[0:len(x1)] *= step1 energyweight[len(x1):(len(x1) + len(x2))] *= step2 energyweight[len(x1)] *= (energy[len(x1)] - energy[len(x1) - 1]) / step2 finalenergy = numpy.zeros(len(fllines) + len(energyweight), numpy.float64) finalweight = numpy.zeros(len(fllines) + len(energyweight), numpy.float64) scatterflag = numpy.zeros(len(fllines) + len(energyweight)) finalenergy[len(fllines):] = energy[0:] finalweight[len(fllines):] = energyweight[0:] / 1.0e7 for i in range(len(fllines)): finalenergy[i] = fllines[i][0] finalweight[i] = fllines[i][1] / 1.0e7 scatterflag[i] = 1 return finalenergy, finalweight, scatterflag if __name__ == "__main__": import sys import getopt options = '' longoptions = ['target=', 'voltage=', 'wele=', 'window=', 'wthickness=', 'anglee=', 'anglex=', 'cfg=', 'deltae=', 'transmission=', 'tthickness='] opts, args = getopt.getopt( sys.argv[1:], options, longoptions) target = 'Ag' voltage = 40 wele = 'Be' wthickness = 0.0125 anglee = 70 anglex = 50 cfgfile = None transmission = None ttarget = None filterlist = None for opt, arg in opts: if opt in ('--target'): target = arg elif opt in ('--tthickness'): ttarget = float(arg) if opt in ('--cfg'): cfgfile = arg if opt in ('--voltage'): voltage = float(arg) if opt in ('--wthickness'): wthickness = float(arg) if opt in ('--wele', 'window'): wele = arg if opt in ('--transmission'): transmission = int(arg) if opt in ('--anglee', '--alphae'): anglee = float(arg) if opt in ('--anglex', '--alphax'): anglex = float(arg) try: e = numpy.arange(voltage * 10 + 1)[1:] / 10 y = continuumEbel(target, voltage, e, [wele, Elements.Element[wele]['density'], wthickness], alphae=anglee, alphax=anglex, transmission=transmission, targetthickness=ttarget, filterlist=filterlist) fllines = characteristicEbel(target, voltage, [wele, Elements.Element[wele]['density'], wthickness], alphae=anglee, alphax=anglex, transmission=transmission, targetthickness=ttarget, filterlist=filterlist) fsum = 0.0 for l in fllines: print("%s %.4f %.3e" % (l[2], l[0], l[1])) fsum += l[1] energy, weight, scatter = \ generateLists(target, voltage, [wele, Elements.Element[wele]['density'], wthickness], alphae=anglee, alphax=anglex, transmission=transmission, targetthickness=ttarget, filterlist=filterlist) f = open("Tube_%s_%.1f_%s_%.5f_ae%.1f_ax%.1f.txt" % (target, voltage, wele, wthickness, anglee, anglex), "w+") text = "energyweight=" for i in range(len(energy)): if i == 0: text += " %f" % weight[i] else: text += ", %f" % weight[i] text += "\n" f.write(text) text = "energy=" for i in range(len(energy)): if i == 0: text += " %f" % energy[i] else: text += ", %f" % energy[i] text += "\n" f.write(text) text = "energyflag=" for i in range(len(energy)): if i == 0: text += " %f" % 1 else: text += ", %f" % 1 text += "\n" f.write(text) text = "energyscatter=" for i in range(len(energy)): if i == 0: text += " %f" % scatter[i] else: text += ", %f" % scatter[i] text += "\n" f.write(text) f.close() except Exception: print("Usage:") print("options = ", longoptions) sys.exit(0) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPhysics/xrf/__init__.py������������������������������������������������0000644�0000000�0000000�00000000000�14741736366�020645� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8517666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/���������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015737� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/AdvancedAlignmentScanPlugin.py���������������������������������0000644�0000000�0000000�00000130761�14741736366�023660� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tonn Rueter & V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Due to uncertainties in the experimental set-up, recorded data might be shifted unrelated to physical effects probed in the experiment. The present plug-in calculates this shift and corrects the data using a variety of different methods. Usage and Description --------------------- Data that is subject to a shift must be loaded into the plot window of the main application. The plug-in offers two ways to treat the data: - A shortcut options, called *Perform FFT Shift*, calculates the shift and directly corrects the data. - The *Show Alignment Window* option, showing a window that allows for specification of the shift and alignment methods, as well as offering the possibility to save calculated shifts and load previously calculated shifts from a file. It is also possible to enter shift values by hand. Once the *Alignment Window* is opened, the alignment method and the shift method must be specified. The alignment method specifies how the shift is calculated, while the shift method determines how the shift is applied to the data. The table shows three columns: - The first one shows the plot legend of the data that will be corrected by the shift method. - The second column shows the plot legend from which the shift is calculated. - The third column shows the shift values calculated by the alignment method in units of the plot windows x-axis. While columns one and two can not be edited, shift values can be entered by hand. Another way of setting the shift values is to load them from a existing .shift file using the Load button. Once the shift values are set, they can either be directly applied to the data present in the plot window, using the *Apply* button, or the data can be stored in memory. The latter options allow to use a reference signal recorded during the experiment, to determine the shift and then apply the shift values to a different set of data. .. note:: In order to match different sets of data to another, as necessary in the case of a reference signal, the order in which the data is added to the plot window is crucial. If one switches between two sets of data, where one set aligns the other one, it is highly encouraged to consult the table in the *Alignment window* to check if every element in the two different sets of data is assigned to its correct counterpart before applying the shift. If the data in the plot window is zoomed-in to a distinct feature, only this range of the data is used to calculate the shift. Methods used by the plug-in --------------------------- Alignment methods are used to calculate the shift. Present methods include FFT, MAX, FIT and FIT DRV. *FFT*: Uses the Fourier Transform of the curves to calculate their cross-correlation. The maximum of the correlation is determined, and yields the shift value. This method is the default option. Since it is not affected by the peak shape, it is fast and numerically robust. .. note:: The shifts are given in real space values. *MAX*: Determines the maximum of each curve. The shift is given by the differences in the x-position of the maxima. Note that this method is highly vulnerable to noise in the data and spikes. *FIT*: This method subtracts a background from the data using the SNIP algorithm and searches for peaks in the data. For every curve, the single most pronounced feature is selected. The peak is fitted by a Gaussian model. The shifts are then given by differences in the x-offsets of the fitted Gaussians. *FIT DRV*: Uses the same procedure as the FIT method. However the fit is applied to the first derivative of the data. This method is only recommended for X-ray absorption data. Shift methods are used to apply the calculated shift to the data. Present methods include *Shift x-range* and *Inverse FFT shift*. *Shift x-range*: This method adds the calculated shift value to every point. *Inverse FFT shift*: Takes the Fourier Transform of a curve and multiplies the shift as a phase factor. The multiplication of a phase factor in Fourier space translates to a shift in the x-range in real space. The shifted data is given by the inverse Fourier transform. .. note:: For this process, the data needs to have a equidistant x-range. If this is not the case, the data will be interpolated on a equidistant x-range. Due to the cyclic nature of the Fourier transform, this method is recommended for data that has linear background. """ import numpy import logging import sys import traceback from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5 import PyMcaDataDir, PyMcaDirs from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaMath.fitting import SpecfitFunctions as SF from PyMca5.PyMcaMath import SNIPModule as snip from PyMca5.PyMcaMath.fitting.Gefit import LeastSquaresFit as LSF from PyMca5.PyMcaMath.fitting.SpecfitFuns import gauss from PyMca5.PyMcaMath.fitting import SpecfitFuns from os.path import join as pathjoin _logger = logging.getLogger(__name__) try: from PyMca5 import Plugin1DBase except ImportError: _logger.warning("WARNING:AlignmentScanPlugin import from somewhere else") from . import Plugin1DBase class AlignmentWidget(qt.QDialog): _storeCode = 2 _colLegend = 0 # Column number of current legends from plot window _colShiftLegend = 1 # Column number of curve from which the shift was calculated _colShift = 2 # Shift def __init__(self, parent, ddict, llist, plugin): qt.QDialog.__init__(self, parent) self.setWindowTitle('Alignment Window') nCols = 2 nRows = len(ddict) self.plugin = plugin # Buttons buttonSave = qt.QPushButton('Save') buttonSave.setToolTip('Shortcut: CTRL+S\n' +'Save shifts to file') buttonSave.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_S)) buttonLoad = qt.QPushButton('Load') buttonLoad.setToolTip('Shortcut: CTRL+O\n' +'Load shifts from file') buttonLoad.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_O)) buttonStore = qt.QPushButton('Store') buttonStore.setToolTip('Shortcut: ALT+S\n' +'Store shifts in memory.\n') buttonStore.setShortcut(qt.QKeySequence(qt.Qt.ALT + qt.Qt.Key_S)) buttonApply = qt.QPushButton('Apply') buttonApply.setToolTip('Shortcut: CTRL+Return\n' +'Apply shift to curves present' +' in the plot window') buttonApply.setShortcut(qt.QKeySequence(qt.Qt.CTRL + qt.Qt.Key_Return)) buttonCancel = qt.QPushButton('Cancel') buttonCancel.setToolTip('Shortcut: ESC\n' +'Closes the window') buttonCalc = qt.QPushButton('Calculate') buttonCalc.setToolTip('Shortcut: F5') buttonCalc.setShortcut(qt.QKeySequence(qt.Qt.Key_F5)) # Table self.shiftTab = qt.QTableWidget(nRows, nCols) self.shiftTab.verticalHeader().hide() self.shiftTab.horizontalHeader().setStretchLastSection(True) self.shiftTab.setHorizontalHeaderLabels(['Legend','Shift']) # Shift Method selector self.shiftMethodComboBox = qt.QComboBox() self.shiftMethodComboBox.addItems( ['Shift x-range', 'Inverse FFT shift']) shiftMethodToolTip =\ ('Select the method that shifts the spectra\n\n' +'Shift x-range:\n' +' Directly applies the shift to the data\'s\n' +' x-range\n' +'Inverse FFT shift:\n' +' Shifts the spectra by multiplying a\n' +' phase factor to their Fourier transform. The result is\n' +' transformed back to real space. Recommended for data with\n' +' resp. regions with constant background.') self.shiftMethodComboBox.setToolTip(shiftMethodToolTip) # Alignment Method selector self.alignmentMethodComboBox = qt.QComboBox() self.alignmentMethodComboBox.addItems( ['FFT', 'MAX', 'FIT', 'FIT DRV']) alignmentMethodToolTip =\ ('Select the method used to calculate the shift is calculated.\n\n' +'FFT:\n' +' Calculates the correlation between two curves using its\n' +' Fourier transform. The shift is proportional to the distance of\n' +' the correlation function\'s maxima.\n' +'MAX:\n' +' Determines the shift as the distance between the maxima of\n' +' two peaks\n' +'FIT:\n' +' Guesses the most prominent feature in a spectrum and tries\n' +' to fit it with a Gaussian peak. Before the fit is perform, the\n' +' background is substracted. The shift is given by the difference\n' +' of the center of mass between two peaks.\n' +'FIT DRV:\n' +' Like FIT, but the fit is performed on the derivate of the\n' +' spectrum. Recommended procedure for XAFS data.') self.alignmentMethodComboBox.setToolTip(alignmentMethodToolTip) # Fill table with data self.setDict(llist, ddict) self.shiftTab.resizeColumnToContents(self._colLegend) self.shiftTab.resizeColumnToContents(self._colShiftLegend) #Layouts topLayout = qt.QHBoxLayout() topLayout.addWidget(buttonCalc) topLayout.addWidget(qt.HorizontalSpacer()) topLayout.addWidget(qt.QLabel('Alignment method:')) topLayout.addWidget(self.alignmentMethodComboBox) topLayout.addWidget(qt.QLabel('Shift method:')) topLayout.addWidget(self.shiftMethodComboBox) buttonLayout = qt.QHBoxLayout() buttonLayout.addWidget(buttonSave) buttonLayout.addWidget(buttonLoad) buttonLayout.addWidget(qt.HorizontalSpacer()) buttonLayout.addWidget(buttonApply) buttonLayout.addWidget(buttonStore) buttonLayout.addWidget(buttonCancel) mainLayout = qt.QVBoxLayout() mainLayout.addLayout(topLayout) mainLayout.addWidget(self.shiftTab) mainLayout.addLayout(buttonLayout) mainLayout.setContentsMargins(1,1,1,1) self.setLayout(mainLayout) # Connects self.shiftTab.cellChanged.connect(self.validateInput) buttonApply.clicked.connect(self.accept) buttonCancel.clicked.connect(self.reject) buttonStore.clicked.connect(self.store) buttonSave.clicked.connect(self.saveDict) buttonLoad.clicked.connect(self.loadDict) # ..to Plugin instance buttonCalc.clicked.connect(self._triggerCalculateShiftClickedSlot) self.alignmentMethodComboBox.activated['QString'].\ connect(self.triggerCalculateShift) def _triggerCalculateShiftClickedSlot(self): return self.triggerCalculateShift() def triggerCalculateShift(self, methodName=None): # Need to call the plugin instance to perform calculations try: if methodName is not None: self.plugin.setAlignmentMethod(methodName) llist, ddict = self.plugin.calculateShifts() self.setDict(llist, ddict) except Exception: msg = qt.QMessageBox(self) msg.setIcon(qt.QMessageBox.Critical) msg.setWindowTitle("Plugin error") msg.setText("An error has occured while executing the plugin:") msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def store(self): self.done(self._storeCode) def loadDict(self): openDir = PyMcaDirs.outputDir filters = 'PyMca (*.shift)' filename = qt.QFileDialog.\ getOpenFileName(self, 'Load Shifts obtained from FFTAlignment', openDir, filters) # PyQt5 gives back a tuple if type(filename) in [type([]), type(())]: filename = filename[0] if len(filename) == 0: return inDict = ConfigDict.ConfigDict() try: inDict.read(filename) except IOError: msg = qt.QMessageBox() msg.setTitle('FFTAlignment Load Error') msg.setText('Unable to read shifts form file \'%s\''%filename) msg.exec() return if 'Shifts' not in inDict.keys(): # Only if the shift file consists exclusively of ShiftList orderedLegends = [legend for legend in self.plugin.getOrder()] try: shiftList = inDict['ShiftList']['ShiftList'] except KeyError: msg = qt.QMessageBox() msg.setWindowTitle('FFTAlignment Load Error') msg.setText('No shift information found in file \'%s\''%filename) msg.exec() ddict = dict(zip(orderedLegends, shiftList)) llist = self.plugin.getOrder() else: llist = inDict['Order']['Order'] ddict = inDict['Shifts'] self.setDict(llist, ddict) def saveDict(self): saveDir = PyMcaDirs.outputDir ffilter = ['PyMca (*.shift)'] try: filename = PyMcaFileDialogs.\ getFileList(parent=self, filetypelist=ffilter, message='Save FFT Alignment shifts', mode='SAVE', single=True)[0] except IndexError: # Returned list is empty return False if len(filename) == 0: return False if not str(filename).endswith('.shift'): filename += '.shift' _logger.debug('saveOptions -- Filename: "%s"', filename) currentOrder = self.plugin.getOrder() outDict = ConfigDict.ConfigDict() llist, ddict = self.getDict() outDict['Order'] = {'Order': currentOrder} outDict['Shifts'] = ddict outDict['ShiftList'] = { 'ShiftList':[ddict[legend] for legend in currentOrder]} try: outDict.write(filename) except IOError: msg = qt.QMessageBox() msg.setWindowTitle('FFTAlignment Save Error') msg.setText('Unable to write configuration to \'%s\''%filename) msg.exec() return True def getAlignmentMethodName(self): return self.alignmentMethodComboBox.currentText() def getShiftMethodName(self): return self.shiftMethodComboBox.currentText() def getDict(self): llist, ddict = [], {} for idx in range(self.shiftTab.rowCount()): # Loop through rows legend = self.shiftTab.item(idx, self._colLegend) shiftLegend = self.shiftTab.item(idx, self._colShiftLegend) value = self.shiftTab.item(idx, self._colShift) try: floatValue = float(value.text()) except ValueError: floatValue = float('NaN') ddict[str(legend.text())] = floatValue llist.append(str(shiftLegend.text())) return llist, ddict def setDict(self, llist, ddict): # Order in which shift are shown is not # necessarily the order in which they were # added to plot window curr = self.plugin.getOrder() keys = llist vals = [ddict[k] for k in keys] # ..or just leave them in random ddict order #dkeys = ddict.keys() #dvals = ddict.values() self.shiftTab.clear() self.shiftTab.setColumnCount(3) self.shiftTab.setHorizontalHeaderLabels( ['Legend','Shift calculated from','Shift']) self.shiftTab.setRowCount(len(keys)) if len(ddict) == 0: return for j, dlist in enumerate([curr, keys, vals]): # j denotes the column of the table # j = 0: Legend, set cells inactive (greyed out) # j = 1: Legend from which the shift was calculated (greyed out) # j = 2: Shift values, set cells active for i in range(len(dlist)): # i loops through the contents of each list # setting every row of the table if (j == 0) or (j == 1): elem = qt.QTableWidgetItem(dlist[i]) elem.setFlags(qt.Qt.ItemIsSelectable) elif j == 2: elem = qt.QTableWidgetItem(str(dlist[i])) elem.setTextAlignment(qt.Qt.AlignRight) elem.setTextAlignment(qt.Qt.AlignRight + qt.Qt.AlignVCenter) elem.setFlags(qt.Qt.ItemIsEditable | qt.Qt.ItemIsEnabled) else: elem = qt.QTableWidgetItem('') self.shiftTab.setItem(i,j, elem) self.shiftTab.resizeColumnToContents(self._colLegend) self.shiftTab.resizeColumnToContents(self._colShiftLegend) self.shiftTab.resizeRowsToContents() def validateInput(self, row, col): if (col == 0) or (col == 1): return elif col == 2: item = self.shiftTab.item(row, 2) try: floatValue = float(item.text()) item.setText('%.6g'%floatValue) except ValueError: floatValue = float('NaN') item.setText(str(floatValue)) class AdvancedAlignmentScanPlugin(Plugin1DBase.Plugin1DBase): '''It calculates and corrects shifts using a variety of different methods.''' def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.__randomization = True self.__methodKeys = [] self.methodDict = {} function = self.calculateAndApplyShifts method = "Perform FFT Alignment" text = "Performs FFT based alignment and\n" text += "inverse FFT based shift" info = text icon = None self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) function = self.showShifts method = "Show Alignment Window" text = "Displays the calculated shifts and\n" text += "allows to fine tune the plugin" info = text icon = None self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) function = self.showDocs method = "Show documentation" text = "Shows the plug-ins documentation\n" text += "in a browser window" info = text icon = None self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) self.alignmentMethod = self.calculateShiftsFFT self.shiftMethod = self.fftShift self.shiftDict = {} self.shiftList = [] #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ # if self.__randomization: # return self.__methodKeys[0:1] + self.__methodKeys[2:] # else: # return self.__methodKeys[1:] return self.__methodKeys def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ return self.methodDict[name][0]() def calculateAndApplyShifts(self): # Assure that FFT alignment & shift methods are set self.alignmentMethod = self.calculateShiftsFFT self.shiftMethod = self.fftShift self.calculateShifts() self.applyShifts() # Reset shift Dictionary and legend List self.shiftDict = {} self.shiftList = [] def calculateShifts(self): """ Generic alignment method, executes the method that is set under self.alignmentMethod. Choices are: - calculateShiftsFit - calculateShiftsFFT - calculateShiftsMax Sets self.shiftList and self.shiftDict """ self.shiftList, self.shiftDict = self.alignmentMethod() return self.shiftList, self.shiftDict def getOrder(self): """ Returns the legends of the curves in the plot winow in the order they were added. """ return self.getAllCurves(just_legend=True) # BEGIN Alignment Methods def calculateShiftsFitDerivative(self): return self.calculateShiftsFit(derivative=True) def calculateShiftsFit(self, derivative=False, thr=30): retDict = {} retList = [] curves = self.getAllCurves() nCurves = len(curves) if nCurves < 2: raise ValueError("At least 2 curves needed") # Check if scan window is zoomed in xmin, xmax = self.getGraphXLimits() # Determine largest overlap between curves xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves) if xmin0 > xmin: xmin = xmin0 if xmax0 < xmax: xmax = xmax0 _logger.debug('calculateShiftsFit -- xmin = %.3f, xmax = %.3f', xmin, xmax) # Get active curve activeCurve = self.getActiveCurve() if activeCurve is None: # If active curve is not set, continue with first curve activeCurve = curves[0] else: activeLegend = activeCurve[2] idx = list.index([curve[2] for curve in curves], activeLegend) activeCurve = curves[idx] x0, y0 = activeCurve[0], activeCurve[1] idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0] x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) if derivative: # Take first derivative y0 = numpy.diff(y0)/numpy.diff(x0) x0 = .5 * (x0[1:] + x0[:-1]) peak0 = self.findPeaks(x0, y0, .80, derivative) if peak0: xp0, yp0, fwhm0, fitrange0 = peak0 else: raise ValueError("No peak identified in '%s'"%activeCurve[2]) fitp0, chisq0, sigma0 = LSF(gauss, numpy.asarray([yp0, xp0, fwhm0]), xdata=x0[fitrange0], ydata=y0[fitrange0]) if derivative: _logger.debug('calculateShiftsFit -- Results (Leg, PeakPos, Shift):') else: _logger.debug('calculateShiftsFitDerivative -- Results (Leg, PeakPos, Shift):') for x,y,legend,info in curves: idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0] x = numpy.take(x, idx) y = numpy.take(y, idx) if derivative: # Take first derivative y = numpy.diff(y)/numpy.diff(x) x = .5 * (x[1:] + x[:-1]) peak = self.findPeaks(x, y, .80, derivative) if peak: xp, yp, fwhm, fitrange = peak else: raise ValueError("No peak identified in '%s'"%activeCurve[2]) try: fitp, chisq, sigma = LSF(gauss, numpy.asarray([yp, xp, fwhm]), xdata=x[fitrange], ydata=y[fitrange]) # Shift is difference in peak's x position shift = fitp0[1] - fitp[1] except numpy.linalg.linalg.LinAlgError: msg = qt.QMessageBox(None) msg.setWindowTitle('Alignment Error') msg.setText('Singular matrix encountered during least squares fit.') msg.setStandardButtons(qt.QMessageBox.Ok) msg.exec() shift = float('NaN') fitp, chisq, sigma = [None, None, None], 0., 0. key = legend retList.append(key) retDict[key] = shift _logger.debug('\t%s\t%.3f\t%.3f', legend, fitp[1], shift) return retList, retDict def calculateShiftsMax(self): retDict = {} retList = [] curves = self.getAllCurves() nCurves = len(curves) if nCurves < 2: raise ValueError("At least 2 curves needed") return # Check if plotwindow is zoomed in xmin, xmax = self.getGraphXLimits() # Determine largest overlap between curves xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves) if xmin0 > xmin: xmin = xmin0 if xmax0 < xmax: xmax = xmax0 # Get active curve activeCurve = self.getActiveCurve() if activeCurve is None: # If active curve is not set, continue with first curve activeCurve = curves[0] else: activeLegend = activeCurve[2] idx = list.index([curve[2] for curve in curves], activeLegend) activeCurve = curves[idx] x0, y0 = activeCurve[0], activeCurve[1] idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0] x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) # Determine the index of maximum in active curve shift0 = numpy.argmax(y0) _logger.debug('calculateShiftsMax -- Results:') _logger.debug('\targmax(y) shift') for x, y, legend, info in curves: idx = numpy.nonzero((xmin <= x) & (x <= xmax))[0] x = numpy.take(x, idx) y = numpy.take(y, idx) shifty = numpy.argmax(y) shift = x0[shift0] - x[shifty] key = legend retList.append(key) retDict[key] = shift _logger.debug('\t%d %.3f', x[shifty], shift) return retList, retDict def calculateShiftsFFT(self, portion=.95): retDict = {} retList = [] curves = self.interpolate() nCurves = len(curves) if nCurves < 2: raise ValueError("At least 2 curves needed") # Check if scan window is zoomed in xmin, xmax = self.getGraphXLimits() # Determine largest overlap between curves xmin0, xmax0 = self.getXLimits(x for (x,y,leg,info) in curves) if xmin0 > xmin: xmin = xmin0 if xmax0 < xmax: xmax = xmax0 _logger.debug('calculateShiftsFFT -- xmin = %.3f, xmax = %.3f', xmin, xmax) # Get active curve activeCurve = self.getActiveCurve() if activeCurve is None: # If active curve is not set, continue with first curve activeCurve = curves[0] else: activeLegend = activeCurve[2] idx = list.index([curve[2] for curve in curves], activeLegend) activeCurve = curves[idx] x0, y0 = activeCurve[0], activeCurve[1] idx = numpy.nonzero((xmin <= x0) & (x0 <= xmax))[0] x0 = numpy.take(x0, idx) y0 = self.normalize(y0) y0 = numpy.take(y0, idx) fft0 = numpy.fft.fft(y0) _logger.debug('calculateShiftsFFT -- results (Legend len(idx) shift):') for x,y,legend,info in curves: idx = numpy.nonzero((x >= xmin) & (x <= xmax))[0] x = numpy.take(x, idx) y = numpy.take(y, idx) ffty = numpy.fft.fft(y) shiftTmp = numpy.fft.ifft(fft0 * ffty.conjugate()).real shiftPhase = numpy.zeros(shiftTmp.shape, dtype=shiftTmp.dtype) m = shiftTmp.size//2 shiftPhase[m:] = shiftTmp[:-m] shiftPhase[:m] = shiftTmp[-m:] # Normalize shiftPhase to standardize thresholding shiftPhase = self.normalize(shiftPhase) # Thresholding xShiftMax = shiftPhase.argmax() left, right = xShiftMax, xShiftMax threshold = portion * shiftPhase.max() while (shiftPhase[left] > threshold)&\ (shiftPhase[right] > threshold): left -= 1 right += 1 idx = numpy.arange(left, right+1, 1, dtype=int) # The shift is determined by center-of-mass around shiftMax shiftTmp = (shiftPhase[idx] * idx/shiftPhase[idx].sum()).sum() shift = (shiftTmp - m) * (x[1] - x[0]) key = legend retList.append(key) retDict[key] = shift _logger.debug('\t%s\t%d\t%f', legend, len(idx), shift) return retList, retDict # END Alignment Methods def applyShifts(self): """ Generic shift method. The method shifts curves according to the shift stored in self.shiftDict and executes the method stored in self.shiftMethod. Curves are sorted with respect to their legend, the values of self.shiftDict are sorted with respect to their key. """ if len(self.shiftDict) == 0: msg = qt.QMessageBox(None) msg.setWindowTitle('Alignment Error') msg.setText('No shift data present.') msg.setStandardButtons(qt.QMessageBox.Ok) msg.exec() return False # Check if interpolation is needed if self.shiftMethod == self.fftShift: curves = self.interpolate() else: curves = self.getAllCurves() if len(self.shiftList) != len(curves): msg = qt.QMessageBox(None) msg.setWindowTitle('Alignment Error') msg.setText( """Number of shifts does not match the number of curves. Do you want to continue anyway?""") msg.setStandardButtons(qt.QMessageBox.Ok) msg.setStandardButtons(qt.QMessageBox.Ok | qt.QMessageBox.Cancel) msg.setDefaultButton(qt.QMessageBox.Ok) if msg.exec() != qt.QMessageBox.Ok: return False _logger.debug('applyShifts -- Shifting ...') for idx, (x, y, legend, info) in enumerate(curves): shift = self.shiftDict[legend] if shift is None: _logger.debug('\tCurve \'%s\' not found in shiftDict\n%s', legend, str(self.shiftDict)) continue if shift == float('NaN'): _logger.debug('\tCurve \'%s\' has NaN shift', legend) continue # Limit shift to zoomed in area xmin, xmax = self.getGraphXLimits() mask = numpy.nonzero((xmin<=x) & (x<=xmax))[0] # Execute method stored in self.shiftMethod xShifted, yShifted = self.shiftMethod(shift, x[mask], y[mask]) if idx == 0: replace = True else: replace = False if idx == (len(curves)-1): replot = True else: replot = False # Check if scan number is adopted by new curve _logger.debug('\'%s\' -- shifts -> \'%s\' by %f', self.shiftList[idx], legend, shift) #selectionlegend = info.get('selectionlegend', legend) selectionlegend = legend self.addCurve(xShifted, yShifted, (selectionlegend + ' SHIFT'), info=info, replace=replace, replot=replot) return True # BEGIN Shift Methods def fftShift(self, shift, x, y): yShifted = numpy.fft.ifft( numpy.exp(-2.0*numpy.pi*numpy.sqrt(numpy.complex(-1))*\ numpy.fft.fftfreq(len(x), d=x[1]-x[0])*shift)*numpy.fft.fft(y)) return x, yShifted.real def xShift(self, shift, x, y): return x+shift, y # END Shift Methods def showShifts(self): """ Creates an instance of Alignment Widget that allows to - Calculate, display & save/store shifts - Load existing shift data - Select different alignment and shift methods """ # Empty shift table in the beginning widget = AlignmentWidget(None, self.shiftDict, self.shiftList, self) ret = widget.exec() if ret == 1: # Result code Apply self.shiftList, self.shiftDict = widget.getDict() # self.shiftList = self.getOrder() self.setShiftMethod(widget.getShiftMethodName()) self.applyShifts() self.shiftDict = {} self.shiftList = [] elif ret == 2: # Result code Store self.shiftList, self.shiftDict = widget.getDict() self.shiftList = self.getOrder() # Remember order of scans self.setShiftMethod(widget.getShiftMethodName()) else: # Dialog is canceled self.shiftDict = {} self.shiftList = [] widget.destroy() # Widget should be destroyed after finishing method return # BEGIN Helper Methods def setShiftMethod(self, methodName): """ Method receives methodName from AlignmentWidget instance and assigns the according shift method. """ _logger.debug('setShiftMethod -- %s', methodName) methodName = str(methodName) if methodName == 'Inverse FFT shift': self.shiftMethod = self.fftShift elif methodName == 'Shift x-range': self.shiftMethod = self.xShift else: # Unknown method name, use fftShift as default self.shiftMethod = self.fftShift def setAlignmentMethod(self, methodName): """ Method receives methodName from AlignmentWidget instance and assigns the according alignment method. """ _logger.debug('setAlignmentMethod -- %s', methodName) methodName = str(methodName) if methodName == 'FFT': self.alignmentMethod = self.calculateShiftsFFT elif methodName == 'MAX': self.alignmentMethod = self.calculateShiftsMax elif methodName == 'FIT': self.alignmentMethod = self.calculateShiftsFit elif methodName == 'FIT DRV': self.alignmentMethod = self.calculateShiftsFitDerivative else: # Unknown method name, use fftShift as default self.alignmentMethod = self.calculateShiftsFFT def getAllCurves(self, just_legend=False): """ Ensures that the x-range of the curves is strictly monotonically increasing. Conserves curves legend and info dictionary. """ curves = Plugin1DBase.Plugin1DBase.getAllCurves(self, just_legend=just_legend) if just_legend: return curves processedCurves = [] for curve in curves: x, y, legend, info = curve[0:4] xproc = x[:] yproc = y[:] # Sort idx = numpy.argsort(xproc, kind='mergesort') xproc = numpy.take(xproc, idx) yproc = numpy.take(yproc, idx) # Ravel, Increasing xproc = xproc.ravel() idx = numpy.nonzero((xproc[1:] > xproc[:-1]))[0] xproc = numpy.take(xproc, idx) yproc = numpy.take(yproc, idx) processedCurves += [(xproc, yproc, legend, info)] return processedCurves def interpolate(self, factor=1.): """ Input ----- factor : float factor used to oversample existing data, use with caution. Interpolates all existing curves to an equidistant x-range using the either the active or the first curve do determine the number of data points. Use this method instead of self.getAllCurves() when performin FFT related tasks. Returns ------- interpCurves : ndarray Array containing the interpolated curves shown in the plot window. Format: [(x0, y0, legend0, info0), ...] """ curves = self.getAllCurves() if len(curves) < 1: _logger.debug('interpolate -- no curves present') raise ValueError("At least 1 curve needed") return activeCurve = self.getActiveCurve() if not activeCurve: activeCurve = curves[0] else: activeLegend = activeCurve[2] idx = list.index([curve[2] for curve in curves], activeLegend) activeCurve = curves[idx] activeX, activeY, activeLegend, activeInfo = activeCurve[0:4] # Determine average spaceing between Datapoints step = numpy.average(numpy.diff(activeX)) xmin, xmax = self.getXLimits([x for (x,y,leg,info) in curves], overlap=False) num = int(factor * numpy.ceil((xmax-xmin)/step)) # Create equidistant x-range, exclude first and last point xeq = numpy.linspace(xmin, xmax, num, endpoint=False)[:-1] # Interpolate on sections of xeq interpCurves = [] for (x,y,legend,info) in curves: idx = numpy.nonzero((x.min()<xeq) & (xeq<x.max()))[0] xi = numpy.take(xeq, idx) yi = SpecfitFuns.interpol([x], y, xi.reshape(-1,1), y.min()) yi.shape = -1 interpCurves += [(xi, yi, legend, info)] return interpCurves def getXLimits(self, values, overlap=True): """ Input ----- overlap : bool True -> returns minimal and maximal x-values that are that are still lie within the x-ranges of all curves in plot window False -> returns minimal and maximal x-values of all curves in plot window Returns ------- xmin0, xmax0 : float """ if overlap: xmin0, xmax0 = -numpy.inf, numpy.inf else: xmin0, xmax0 = numpy.inf, -numpy.inf for x in values: xmin = x.min() xmax = x.max() if overlap: if xmin > xmin0: xmin0 = xmin if xmax < xmax0: xmax0 = xmax else: if xmin < xmin0: xmin0 = xmin if xmax > xmax0: xmax0 = xmax _logger.debug('getXLimits -- overlap = %s, xmin = %.3f, xmax =%.3f', overlap, xmin0, xmax0) return xmin0, xmax0 def normalize(self, y): """ Normalizes spectrum to values between zero and one. """ ymax, ymin = y.max(), y.min() return (y-ymin)/(ymax-ymin) def findPeaks(self, x, y, thr, derivative): """ Input ----- x,y : ndarrays Arrays contain curve intformation thr : float Threshold in percent of normalized maximum derivative : bool The derivative of a curve is being fitted Finds most prominent feature contained in y and tries to estimate starting parameters for a Gaussian least squares fit (LSF). Recommends values used to fit the Gaussian. Return ------ xpeak, ypeak, fwhm : float Estimated values for x-position, amplitude and width of the Gaussian fwhmIdx : ndarray Indices determine the range on which the LSF is performed """ # Use SNIP algorithm for background substraction & # seek method for peak detection sffuns = SF.SpecfitFunctions() if derivative: # Avoid BG substraction & normalization if # fitting the derivate of a curve ybg = y ynorm = y/(abs(y.max())+abs(y.min())) else: ybg = y-snip.getSnip1DBackground(y, len(y)//thr) # USER INPUT!!! # Normalize background substracted data to # standardize the yscaling of seek method #ynorm = (ybg - ybg.min())/(ybg.max()-ybg.min()) ynorm = self.normalize(ybg) # Replace by max()? try: # Calculate array with all peak indices peakIdx = numpy.asarray(sffuns.seek(ybg, yscaling=1000.), dtype=int) # Extract highest peak sortIdx = y[peakIdx].argsort()[-1] except IndexError: _logger.debug('No peaks found..') return None except SystemError: _logger.debug('Peak search failed. Continue with y maximum') peakIdx = [ybg.argmax()] sortIdx = 0 xpeak = float(x[peakIdx][sortIdx]) ypeak = float(y[peakIdx][sortIdx]) ypeak_norm = float(ynorm[peakIdx][sortIdx]) ypeak_bg = float(ybg[peakIdx][sortIdx]) # Estimate FWHM fwhmIdx = numpy.nonzero(ynorm >= thr*ypeak_norm)[0] #fwhmIdx = numpy.nonzero(ybg >= thr*ypeak_bg)[0] # Underestimates FWHM x0, x1 = x[fwhmIdx].min(), x[fwhmIdx].max() fwhm = x1 - x0 return xpeak, ypeak, fwhm, fwhmIdx # END Helper Methods def showDocs(self): """ Displays QTextBrowser showing the documentation """ helpFileName = pathjoin(PyMcaDataDir.PYMCA_DOC_DIR, "HTML", "AdvancedAlignmentScanPlugin.html") self.helpFileBrowser = qt.QTextBrowser() self.helpFileBrowser.setWindowTitle('Alignment Scan Plug-in Documentation') self.helpFileBrowser.setLineWrapMode(qt.QTextEdit.FixedPixelWidth) self.helpFileBrowser.setLineWrapColumnOrWidth(500) self.helpFileBrowser.resize(520,300) try: helpFileHandle = open(helpFileName) helpFileHTML = helpFileHandle.read() helpFileHandle.close() self.helpFileBrowser.setHtml(helpFileHTML) except IOError: msg = qt.QMessageBox() msg.setWindowTitle('Alignment Scan Error') msg.setText('No help file found.') msg.exec() _logger.debug('XMCDWindow -- init: Unable to read help file') self.helpFileBrowser = None if self.helpFileBrowser is not None: self.helpFileBrowser.show() self.helpFileBrowser.raise_() MENU_TEXT = "Advanced Alignment Plugin" def getPlugin1DInstance(plotWindow, **kw): ob = AdvancedAlignmentScanPlugin(plotWindow) return ob if __name__ == "__main__": app = qt.QApplication([]) a = AlignmentWidget() a.show() x = numpy.arange(250, 750, 2, dtype=float) y1 = 1.0 + 50.0 * numpy.exp(-0.001*(x-500)**2) + 2.*numpy.random.random(250) y2 = 1.0 + 20.5 * numpy.exp(-0.005*(x-600)**2) + 2.*numpy.random.random(250) app.exec() ���������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/AlignmentScanPlugin.py�����������������������������������������0000644�0000000�0000000�00000020563�14741736366�022230� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin aligns all curves with the active curve, using the FFT. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5.PyMcaCore import Plugin1DBase except ImportError: print("AlignmentScanPlugin import from somewhere else") from . import Plugin1DBase from PyMca5.PyMcaMath.fitting import SpecfitFuns class AlignmentScanPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.__methodKeys = [] self.methodDict = {} text = "FFT based alignment\n" info = text icon = None function = self.fftAlignment method = "FFT Alignment" self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ return self.__methodKeys def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ return self.methodDict[name][0]() def fftAlignment(self): curves = self.getMonotonicCurves() nCurves = len(curves) if nCurves < 2: raise ValueError("At least 2 curves needed") return # get legend of active curve try: activeCurveLegend = self.getActiveCurve()[2] if activeCurveLegend is None: activeCurveLegend = curves[0][2] for curve in curves: if curve[2] == activeCurveLegend: activeCurve = curve break except Exception: activeCurve = curves[0] activeCurveLegend = activeCurve[2] # apply between graph limits x0, y0 = activeCurve[0:2] xmin, xmax =self.getGraphXLimits() for curve in curves: xmax = float(min(xmax, curve[0][-1])) xmin = float(max(xmin, curve[0][0])) idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax))[0] x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) #make sure values are regularly spaced xi = numpy.linspace(x0[0], x0[-1], len(idx)).reshape(-1, 1) yi = SpecfitFuns.interpol([x0], y0, xi, y0.min()) x0 = xi * 1 y0 = yi * 1 y0.shape = -1 fft0 = numpy.fft.fft(y0) y0.shape = -1, 1 x0.shape = -1, 1 nChannels = x0.shape[0] # built a couple of temporary array of spectra for handy access shiftList = [] curveList = [] i = 0 activeCurveIndex = 0 for idx in range(nCurves): x, y, legend, info = curves[idx][0:4] if legend == activeCurveLegend: needInterpolation = False activeCurveIndex = idx elif x.size != x0.size: needInterpolation = True elif numpy.allclose(x, x0): # no need for interpolation needInterpolation = False else: needInterpolation = True if needInterpolation: # we have to interpolate x.shape = -1 y.shape = -1 xi = x0[:] * 1 y = SpecfitFuns.interpol([x], y, xi, y0.min()) x = xi y.shape = -1 i += 1 # now calculate the shift ffty = numpy.fft.fft(y) if numpy.allclose(fft0, ffty): shiftList.append(0.0) x.shape = -1 else: shift = numpy.fft.ifft(fft0 * ffty.conjugate()).real shift2 = numpy.zeros(shift.shape, dtype=shift.dtype) m = shift2.size//2 shift2[m:] = shift[:-m] shift2[:m] = shift[-m:] threshold = 0.80*shift2.max() #threshold = shift2.mean() idx = numpy.nonzero(shift2 > threshold)[0] #print("max indices = %d" % (m - idx)) shift = (shift2[idx] * idx/shift2[idx].sum()).sum() #print("shift = ", shift - m, "in x units = ", (shift - m) * (x[1]-x[0])) # shift the curve shift = (shift - m) * (x[1]-x[0]) x.shape = -1 y = numpy.fft.ifft(numpy.exp(-2.0*numpy.pi*numpy.sqrt(numpy.complex(-1))*\ numpy.fft.fftfreq(len(x), d=x[1]-x[0])*shift)*ffty) y = y.real y.shape = -1 curveList.append([x, y, legend + "SHIFT", False, False]) curveList[-1][-2] = True curveList[-1][-1] = False x, y, legend, replot, replace = curveList[activeCurveIndex] self.addCurve(x, y, legend=legend, replot=True, replace=True) for i in range(len(curveList)): if i == activeCurveIndex: continue x, y, legend, replot, replace = curveList[i] self.addCurve(x, y, legend=legend, info=None, replot=replot, replace=False) return MENU_TEXT = "Alignment Plugin" def getPlugin1DInstance(plotWindow, **kw): ob = AlignmentScanPlugin(plotWindow) return ob if __name__ == "__main__": import os try: from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.plotting import PlotWindow app = qt.QApplication([]) QT = True plot = PlotWindow.PlotWindow() except Exception: # test without graphical interface QT = False from PyMca5.PyMcaGraph import Plot plot = Plot.Plot() pluginDir = [os.path.dirname(__file__)] plot.getPlugins(method="getPlugin1DInstance", directoryList=pluginDir) i = numpy.arange(1000.) y1 = 10.0 + 5000.0 * numpy.exp(-0.01*(i-50)**2) y2 = 10.0 + 5000.0 * numpy.exp(-((i-55)/5.)**2) plot.addCurve(i, y1, "y1") plot.addCurve(i, y2, "y2") plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() #for curve in curves: # print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) if QT: plot.show() app.exec() ���������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/BackgroundScanPlugin.py����������������������������������������0000644�0000000�0000000�00000020657�14741736366�022375� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin provides 3 methods: - subtract a SNIP1D background from the active curve - apply a Savitsky-Golay filter on the active curve - smooth and replace current curve by its SNIP1D background (deglitch) """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5 import Plugin1DBase from PyMca5.PyMcaGui import SGWindow from PyMca5.PyMcaGui import SNIPWindow from PyMca5.PyMcaGui import PyMca_Icons class BackgroundScanPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) SGtext = "Replace active curve by a\n" SGtext += "Savitsky-Golay treated one." SNIP1Dtext = "Replace active curve by a\n" SNIP1Dtext += "SNIP1D treated one." self.methodDict = {} function = self.replaceActiveCurveWithSavitzkyGolayFiltering info = SGtext icon = PyMca_Icons.substract self.methodDict["Savitzky-Golay Filtering"] =[function, info, icon] function = self.subtract1DSnipBackgroundFromActiveCurve info = SNIP1Dtext self.methodDict["Subtract SNIP 1D Background"] =[function, info, icon] function = self.deglitchActiveCurveWith1DSnipBackground info = "Smooth and replace current curve\n" info += "by its SNIP1D background." self.methodDict["Deglitch with SNIP 1D Background"] =[function, info, PyMca_Icons.smooth] self.__methodKeys = ["Subtract SNIP 1D Background", "Savitzky-Golay Filtering", "Deglitch with SNIP 1D Background"] self.subtract1DSnipParameters = None self.deglitch1DSnipParameters = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ if 0: names = self.methodDict.keys() names.sort() return names else: return self.__methodKeys def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def replaceActiveCurveWithSavitzkyGolayFiltering(self): activeCurve = self.getActiveCurve() if activeCurve is None: return x, spectrum, legend, info = activeCurve[:4] snipWindow = SGWindow.SGDialog(None, spectrum, x=x) snipWindow.graph.setGraphXLabel(info['xlabel']) snipWindow.graph.setGraphYLabel(info['ylabel']) #snipWindow.setModal(True) snipWindow.show() ret = snipWindow.exec() if ret: ydata = snipWindow.parametersWidget.background xdata = snipWindow.parametersWidget.xValues operations = info.get("operations", []) operations.append("SG Filtered") info['operations'] = operations self.addCurve(xdata, ydata, legend=legend, info=info, replot=True) def subtract1DSnipBackgroundFromActiveCurve(self, smooth=False): activeCurve = self.getActiveCurve() if activeCurve is None: return x, spectrum, legend, info = activeCurve[:4] snipWindow = SNIPWindow.SNIPDialog(None, spectrum, x=x, smooth=False) if self.subtract1DSnipParameters is not None: snipWindow.setParameters(self.subtract1DSnipParameters) snipWindow.graph.setGraphXLabel(info['xlabel']) snipWindow.graph.setGraphYLabel(info['ylabel']) snipWindow.show() ret = snipWindow.exec() if ret: ydata = snipWindow.parametersWidget.spectrum -\ snipWindow.parametersWidget.background xdata = snipWindow.parametersWidget.xValues operations = info.get("operations", []) operations.append("SNIP Background Removal") info['operations'] = operations # we cannot aford to change the name of the curve in order to properly # handle the calibration in an MCA window if "McaCalib" not in info: self.removeCurve(legend, replot=False) legend = legend + " Net" self.addCurve(xdata, ydata, legend=legend, info=info, replot=True) self.subtract1DSnipParameters = snipWindow.getParameters() def deglitchActiveCurveWith1DSnipBackground(self): activeCurve = self.getActiveCurve() if activeCurve is None: return x, spectrum, legend, info = activeCurve[:4] snipWindow = SNIPWindow.SNIPDialog(None, spectrum, x=x, smooth=True) if self.deglitch1DSnipParameters is not None: snipWindow.setParameters(self.deglitch1DSnipParameters) snipWindow.graph.setGraphXLabel(info['xlabel']) snipWindow.graph.setGraphYLabel(info['ylabel']) snipWindow.show() ret = snipWindow.exec() if ret: ydata = snipWindow.parametersWidget.background xdata = snipWindow.parametersWidget.xValues operations = info.get("operations", []) operations.append("SNIP Deglith") info['operations'] = operations self.addCurve(xdata, ydata, legend=legend, info=info, replot=True) self.deglitch1DSnipParameters = snipWindow.getParameters() MENU_TEXT = "Background subtraction tools" def getPlugin1DInstance(plotWindow, **kw): ob = BackgroundScanPlugin(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication([]) from PyMca5.PyMcaGraph import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) #app = qt.QApplication() ���������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/BackgroundStackPlugin.py���������������������������������������0000644�0000000�0000000�00000022706�14741736366�022553� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This stack plugin provides filtering and background subtraction methods: - Savitzky-Golay Filtering (smoothing) - Deglitch with SNIP 1D Background - Subtract SNIP 1D Background - Subtract SNIP 2D Background - Subtract active curve """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui import SGWindow from PyMca5.PyMcaGui import SNIPWindow from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons import numpy _logger = logging.getLogger(__name__) class BackgroundStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) SGtext = "Replace current stack by a\n" SGtext += "Savitsky-Golay treated one." SNIP1Dtext = "Replace current stack by a\n" SNIP1Dtext += "SNIP1D treated one." SNIP2Dtext = "Replace current stack by a\n" SNIP2Dtext += "SNIP2D treated one." self.methodDict = {} function = self.replaceStackWithSavitzkyGolayFiltering info = SGtext icon = PyMca_Icons.substract self.methodDict["Savitzky-Golay Filtering"] = [function, info, icon] function = self.subtract1DSnipBackground info = SNIP1Dtext self.methodDict["Subtract SNIP 1D Background"] = [function, info, icon] function = self.replaceWith1DSnipBackground info = "Smooth and replace current stack\n" info += "by its SNIP1D background." self.methodDict["Deglitch with SNIP 1D Background"] = [function, info, PyMca_Icons.smooth] function = self.subtract2DSnipBackground info = SNIP2Dtext self.methodDict["Subtract SNIP 2D Background"] = [function, info, icon] function = self.subtractActiveCurve info = "Replace current stack by one in which\nthe active curve has been subtracted" self.methodDict["Subtract active curve"] = [function, info, icon] self.__methodKeys = ["Savitzky-Golay Filtering", "Deglitch with SNIP 1D Background", "Subtract SNIP 1D Background", "Subtract SNIP 2D Background", "Subtract active curve"] def stackUpdated(self): self.dialogWidget = None #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def replaceStackWithSavitzkyGolayFiltering(self): activeCurve = self.getActiveCurve() if activeCurve is None: return x, spectrum, legend, info = activeCurve snipWindow = SGWindow.SGDialog(None, spectrum, x=x) snipWindow.graph.setGraphXLabel(info['xlabel']) snipWindow.graph.setGraphYLabel(info['ylabel']) #snipWindow.setModal(True) snipWindow.show() ret = snipWindow.exec() if ret: snipParametersDict = snipWindow.getParameters() snipWindow.close() function = snipParametersDict['function'] arguments = snipParametersDict['arguments'] stack = self.getStackDataObject() function(stack, *arguments) self.setStack(stack) def subtract1DSnipBackground(self, smooth=False): activeCurve = self.getActiveCurve() if activeCurve is None: return x, spectrum, legend, info = activeCurve snipWindow = SNIPWindow.SNIPDialog(None, spectrum, x=x, smooth=smooth) snipWindow.graph.setGraphXLabel(info['xlabel']) snipWindow.graph.setGraphYLabel(info['ylabel']) #snipWindow.setModal(True) snipWindow.show() ret = snipWindow.exec() if ret: snipParametersDict = snipWindow.getParameters() snipWindow.close() function = snipParametersDict['function'] arguments = snipParametersDict['arguments'] stack = self.getStackDataObject() function(stack, *arguments) self.setStack(stack) def replaceWith1DSnipBackground(self): return self.subtract1DSnipBackground(smooth=True) def subtract2DSnipBackground(self): imageList = self.getStackROIImagesAndNames() if imageList is None: return imageList, imageNames = imageList if not len(imageList): return snipWindow = SNIPWindow.SNIPDialog(None, imageList[0] * 1) #snipWindow.setModal(True) snipWindow.show() ret = snipWindow.exec() if ret: snipParametersDict = snipWindow.getParameters() snipWindow.close() function = snipParametersDict['function'] arguments = snipParametersDict['arguments'] stack = self.getStackDataObject() function(stack, *arguments) self.setStack(stack) def subtractActiveCurve(self): curve = self.getActiveCurve() if curve is None: raise ValueError("No active curve") x, y, legend, info = curve[:4] stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) x0, y0, legend0, info0 = self.getStackOriginalCurve()[:4] if self.getGraphXLabel().upper() not in ["CHANNEL", "POINTS"]: # get the used calibration a, b, c = info.get("McaCalib", [0.0, 1,0, 0.0]) x0 = a + b * x0 + c * x0 * x0 interpolate = True if x0.size == x.size: if numpy.allclose(x, x0): interpolate = False if interpolate: xmin = max(x.min(), x0.min()) xmax = min(x.max(), x0.max()) selection = (x0 >= xmin) & (x0 <= xmax) idx = numpy.nonzero(selection)[0] if not idx.size: raise ValueError("Curves do not overlap") xwork = x0[idx] # we have got the final x values, interpolate into the # curve to be subtracted ywork = numpy.interp(xwork, x, y) #proceed to subtract the data notIdx = numpy.nonzero(selection == False)[0] mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: #for i in range(stack.data.shape[-1]): stack.data[:, :, idx] = stack.data[:, :, idx] - ywork stack.data[:, :, notIdx] = 0.0 elif mcaIndex == 0: counter = 0 for i in range(stack.data.shape[0]): if i in idx: stack.data[i] -= ywork[counter] counter += 1 else: stack.data[i] = 0.0 else: raise ValueError("Invalid 1D index %d" % mcaIndex) else: mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: for i in range(stack.data.shape[-1]): stack.data[:, :, i] -= y[i] elif mcaIndex == 0: for i in range(stack.data.shape[0]): stack.data[i] -= y[i] else: raise ValueError("Invalid 1D index %d" % mcaIndex) self.setStack(stack) MENU_TEXT = "Stack Filtering Options" def getStackPluginInstance(stackWindow, **kw): ob = BackgroundStackPlugin(stackWindow) return ob ����������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ConsolePlugin.py�����������������������������������������������0000644�0000000�0000000�00000007167�14741736366�021114� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase from PyMca5.PyMcaGui.misc import QIPythonWidget class ConsolePlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} self.methodDict["console"] = [self._embed, "Open IPython console", None] self._widget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def _embed(self): if self._widget is None: try: banner = "%s Console 1D Window.\n" % self.windowTitle() except Exception: banner = "%s Console 1D Window.\n" % self.windowTitle() banner += "Use plt to access the plot.\n" banner += "Use plugin to access the plugin interface.\n" self._widget = QIPythonWidget.QIPythonWidget(customBanner=banner) self._widget.pushVariables({"plt": self._plotWindow, "plugin": self}) self._widget.show() self._widget.raise_() MENU_TEXT = "Interactive Console" def getPlugin1DInstance(plotWindow, **kw): ob = ConsolePlugin(plotWindow) return ob ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ConsoleStackPlugin.py������������������������������������������0000644�0000000�0000000�00000007031�14741736366�022070� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5 import StackPluginBase except ImportError: from . import StackPluginBase from PyMca5.PyMcaGui.misc import QIPythonWidget class ConsoleStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} self.methodDict["console"] = [self._embed, "Open IPython console", None] self._widget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def _embed(self): if self._widget is None: try: banner = "%s Stack Console Window.\n" % self.windowTitle() except Exception: banner = "Stack Console Window.\n" banner += "Use plugin to access the stack plugin interface.\n" self._widget = QIPythonWidget.QIPythonWidget(customBanner=banner) self._widget.pushVariables({"plugin":self}) self._widget.show() self._widget.raise_() MENU_TEXT = "Interactive Console" def getStackPluginInstance(stackWindow, **kw): ob = ConsoleStackPlugin(stackWindow) return ob �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ExternalImagesStackPlugin.py�����������������������������������0000644�0000000�0000000�00000014156�14741736366�023404� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin open a file selection dialog to open one or more images in a new window. Usual image data formats are supported, as well as standard image formats (JPG, PNG). The tool is meant to view an alternative view of the data, such as a photograph of the sample or a different type of scientific measurement of the same sample. The window offer a cropping tool, to crop the image to the current visible zoomed area and then resize it to fit the original size. The mask of this plot widget is synchronized with the main stack widget. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.pymca import ExternalImagesWindow from PyMca5.PyMcaGui.pymca import ExternalImagesStackPluginBase from PyMca5.PyMcaGui.pymca import StackPluginResultsWindow from PyMca5.PyMcaGui.plotting import PyMca_Icons as PyMca_Icons _logger = logging.getLogger(__name__) class ExternalImagesStackPlugin( \ ExternalImagesStackPluginBase.ExternalImagesStackPluginBase): def __init__(self, stackWindow, **kw): ExternalImagesStackPluginBase.ExternalImagesStackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Load': [self._loadImageFiles, "Load Images", PyMca_Icons.fileopen], 'Show': [self._showWidget, "Show Image Browser", PyMca_Icons.brushselect]} self.__methodKeys = ['Load', 'Show'] self.widget = None def stackUpdated(self): self.widget = None def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self.widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _createStackPluginWindow(self, imagenames, imagelist): self.widget = StackPluginResultsWindow.StackPluginResultsWindow(parent=None, usetab=False) self.widget.buildAndConnectImageButtonBox() self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) self.widget.setStackPluginResults(imagelist, image_names=imagenames) self._showWidget() def _createStackPluginWindowQImage(self, imagenames, imagelist): self.widget = ExternalImagesWindow.ExternalImagesWindow(parent=None, rgbwidget=None, selection=True, colormap=True, imageicons=True, standalonesave=True) self.widget.buildAndConnectImageButtonBox() self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) self.widget.setImageData(None) shape = self._requiredShape self.widget.setQImageList(imagelist, shape[1], shape[0], clearmask=False, data=None, imagenames=imagenames) #data=self.__stackImageData) self._showWidget() def _showWidget(self): if self.widget is None: return self.widget.show() self.widget.raise_() self.selectionMaskUpdated() @property def _dialogParent(self): return self.widget MENU_TEXT = "External Images Tool" def getStackPluginInstance(stackWindow, **kw): ob = ExternalImagesStackPlugin(stackWindow) return ob ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/FastXRFLinearFitStackPlugin.py���������������������������������0000644�0000000�0000000�00000024455�14741736366�023552� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ Fast XRF Linear fit of data stack by: - fixing non-linear parameters to its starting values - processing the data in chunks instead of point by point """ import sys import os import numpy import logging import traceback from PyMca5 import StackPluginBase from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit from PyMca5.PyMcaPhysics.xrf import XRFBatchFitOutput from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.physics.xrf import FastXRFLinearFitWindow from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaGui.pymca import StackPluginResultsWindow from PyMca5.PyMcaGui.plotting import PyMca_Icons as PyMca_Icons _logger = logging.getLogger(__name__) class FastXRFLinearFitStackPlugin(StackPluginBase.StackPluginBase): """ Fast XRF Linear fit of data stack by: - fixing non-linear parameters to its starting values - processing the data in chunks instead of point by point """ def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} function = self.calculate info = "Fast XRF Linear fit of data stack" icon = PyMca_Icons.fit self.methodDict["Fit Stack"] =[function, info, icon] function = self._showWidget info = "Show last results" icon = PyMca_Icons.brushselect self.methodDict["Show"] =[function, info, icon] self.__methodKeys = ["Fit Stack", "Show"] self.configurationWidget = None self.fitInstance = None self._widget = None self.thread = None def stackUpdated(self): _logger.debug("FastXRFLinearFitStackPlugin.stackUpdated() called") self._widget = None def selectionMaskUpdated(self): if self._widget is None: return if self._widget.isHidden(): return mask = self.getStackSelectionMask() self._widget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot ", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "addAllClicked": for i in range(len(ddict["images"])): self.addImage(ddict['images'][i], ddict['titles'][i]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self._widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() # The specific part def calculate(self): if self.configurationWidget is None: self.configurationWidget = \ FastXRFLinearFitWindow.FastXRFLinearFitDialog() ret = self.configurationWidget.exec() if ret: self._executeFunctionAndParameters() def _executeFunctionAndParameters(self): self._parameters = self.configurationWidget.getParameters() self._widget = None if self.fitInstance is None: self.fitInstance = FastXRFLinearFit.FastXRFLinearFit() #self._fitConfigurationFile="E:\DATA\COTTE\CH1777\G4-4720eV-NOWEIGHT-Constant-batch.cfg" if _logger.getEffectiveLevel() == logging.DEBUG: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.result = self.actualCalculation() else: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.start() message = "Please wait. Calculation going on." CalculationThread.waitingMessageDialog(self.thread, parent=self.configurationWidget, message=message) self.threadFinished() def actualCalculation(self): activeCurve = self.getActiveCurve() if activeCurve is not None: x, spectrum, legend, info = activeCurve else: x = None spectrum = None if not self.isStackFinite(): # one has to check for NaNs in the used region(s) # for the time being only in the global image # spatial_mask = numpy.isfinite(image_data) spatial_mask = numpy.isfinite(self.getStackOriginalImage()) # WDN: any effect? stack = self.getStackDataObject() fitparams = self._parameters['fit'].copy() fitConfigurationFile = fitparams.pop('configuration') self.fitInstance.setFitConfigurationFile(fitConfigurationFile) if fitparams['weight']: # force calculation of the unnormalized sum spectrum spectrum = None if stack.x in [None, []]: x = None else: x = stack.x[0] outparams = self._parameters['output'] outbuffer = XRFBatchFitOutput.OutputBuffer(**outparams) outbuffer = self.fitInstance.fitMultipleSpectra(x=x, y=stack, ysum=spectrum, outbuffer=outbuffer, save=False, # do it later **fitparams) return outbuffer def threadFinished(self): try: self._threadFinished() except Exception: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _threadFinished(self): result = self.thread.result self.thread = None if type(result) == type((1,)): #if we receive a tuple there was an error if len(result): if result[0] == "Exception": # somehow this exception is not caught raise Exception(result[1], result[2])#, result[3]) return # Show results with result.bufferContext(update=True): if 'molarconcentrations' in result: imageNames = result.labels('parameters', labeltype='title') + \ result.labels('molarconcentrations', labeltype='title') images = numpy.concatenate((result['parameters'], result['molarconcentrations']), axis=0) elif 'massfractions' in result: imageNames = result.labels('parameters', labeltype='title') + \ result.labels('massfractions', labeltype='title') images = numpy.concatenate((result['parameters'], result['massfractions']), axis=0) else: imageNames = result.labels('parameters', labeltype='title') images = result['parameters'] self._widget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=False) self._widget.buildAndConnectImageButtonBox(replace=True, multiple=True) qt = StackPluginResultsWindow.qt self._widget.sigMaskImageWidgetSignal.connect(self.mySlot) self._widget.setStackPluginResults(images, image_names=imageNames) self._showWidget() # Save results result.save() def _showWidget(self): if self._widget is None: return #Show self._widget.show() self._widget.raise_() #update self.selectionMaskUpdated() MENU_TEXT = "Fast XRF Linear Fit" def getStackPluginInstance(stackWindow, **kw): ob = FastXRFLinearFitStackPlugin(stackWindow) return ob �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/FitAllCurvesPlugin.py������������������������������������������0000644�0000000�0000000�00000007755�14741736366�022060� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2018 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin allows to perform a fit on all curves in the plot. A widget is provided to configure the fit parameters and to specify the output file. The fit results are saved as a NeXus HDF5 file, with one entry per fitted curve.""" try: from PyMca5.PyMcaCore import Plugin1DBase except ImportError: from . import Plugin1DBase from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui.math.fitting.SimpleFitAllGui import SimpleFitAllGui class FitAllCurvesPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self._configure_method = "Configure fit" self._fit_all_method = "Fit All Curves" self.widget = SimpleFitAllGui() def getMethods(self, plottype=None): return [self._configure_method, self._fit_all_method] def getMethodToolTip(self, methodName): if methodName == self._configure_method: return "Configure fit prior to fitting all curves" if methodName == self._fit_all_method: return "Open a fit window to run a fit on all curves" raise RuntimeError("Unrecognized method name '%s'" % methodName) def applyMethod(self, methodName): activeCurve = self.getActiveCurve() allCurves = self.getAllCurves() if not allCurves: msg = qt.QMessageBox() msg.setWindowTitle("No curves to be fitted") msg.setIcon(qt.QMessageBox.Warning) msg.setText("There are no curves to be fitted on this plot.") msg.setStandardButtons(qt.QMessageBox.Ok) msg.exec() return if activeCurve is None: activeCurve = allCurves[0] xmin, xmax = self.getGraphXLimits() self.widget.setSpectrum(activeCurve[0], activeCurve[1], xmin=xmin, xmax=xmax) if methodName == self._configure_method: self.widget.configureButtonSlot() if methodName == self._fit_all_method: curves_x, curves_y, legends, xlabels, ylabels = [], [], [], [], [] for x, y, legend, info in allCurves: curves_x.append(x) curves_y.append(y) legends.append(legend) xlabels.append(info["xlabel"]) ylabels.append(info["ylabel"]) self.widget.setSpectra(curves_x, curves_y, legends=legends, xlabels=xlabels, ylabels=ylabels) self.widget.show() MENU_TEXT = "Fit all curves" def getPlugin1DInstance(plotWindow, **kw): ob = FitAllCurvesPlugin(plotWindow) return ob �������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/FitStackPlugin.py����������������������������������������������0000644�0000000�0000000�00000011355�14741736366�021214� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin allows to configure and execute a batch fitting for all spectra in the stack. The user can select the fit function and a background function from a selection of functions, and must provide the initial estimation for the iterative fit. The fit result is saved to file, at the end. A 2D map is created for each fitted parameter, and saved in EDF and ASCII formats.""" __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging _logger = logging.getLogger(__name__) try: from PyMca5 import StackPluginBase from PyMca5.PyMcaGui import StackSimpleFitWindow from PyMca5.PyMcaGui import PyMca_Icons except ImportError: _logger.warning("FitStackPlugin importing from somewhere else") class FitStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} function = self.fitStack info = "Fit stack with user defined functions" icon = PyMca_Icons.fit self.methodDict["Fit Stack"] =[function, info, icon] self.__methodKeys = ["Fit Stack"] self.simpleFitWindow = None def stackUpdated(self): if self.simpleFitWindow is None: return self.__updateOwnData() def selectionMaskUpdated(self): if self.simpleFitWindow is None: return self.simpleFitWindow.setMask(self.getStackSelectionMask()) def stackClosed(self): if self.simpleFitWindow is not None: self.simpleFitWindow.close() #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def __updateOwnData(self): activeCurve = self.getActiveCurve() if activeCurve is None: return #this can be problematic if a fit is going on... x, spectrum, legend, info = activeCurve xlabel = info['xlabel'] ylabel = info['ylabel'] xmin, xmax = self.getGraphXLimits() ymin, ymax = self.getGraphYLimits() mcaIndex = self.getStackInfo()['McaIndex'] self.simpleFitWindow.setSpectrum(x, spectrum, xmin=xmin, xmax=xmax) self.simpleFitWindow.setData(x, self.getStackData(), data_index=mcaIndex, mask=self.getStackSelectionMask()) def fitStack(self): if self.simpleFitWindow is None: self.simpleFitWindow = StackSimpleFitWindow.StackSimpleFitWindow() self.__updateOwnData() self.simpleFitWindow.show() MENU_TEXT = "Stack Simple Fitting" def getStackPluginInstance(stackWindow, **kw): ob = FitStackPlugin(stackWindow) return ob �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ImageAlignmentStackPlugin.py�����������������������������������0000644�0000000�0000000�00000102705�14741736366�023353� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin provides two methods to align stack images, one based on a FFT algorithm and the other one based on the SIFT algorithm (on GPU). The result of the alignment computation may be applied directly to the data, or saved to a file. This plugin also allows to apply the results from a file. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import os import numpy import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import FFTAlignmentWindow from PyMca5.PyMcaMath import ImageRegistration from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaIO import ArraySave from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import specfilewrapper from PyMca5.PyMcaGui import HDF5Widget _logger = logging.getLogger(__name__) try: from PyMca5.PyMcaGui.math import SIFTAlignmentWindow sift = SIFTAlignmentWindow.sift ocl = SIFTAlignmentWindow.silx.opencl.ocl SIFT = True except Exception: _logger.info("SIFTAlignmentWindow not successful") SIFT = False try: import h5py HDF5 = True except Exception: HDF5 = False class ImageAlignmentStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'FFT Alignment':[self._fftAlignment, "Align using FFT", None]} self.__methodKeys = ['FFT Alignment'] if SIFT: key = 'SIFT Alignment' self.methodDict[key] = [self._siftAlignment, "Align using SIFT Algorithm", None] self.__methodKeys.append(key) key = 'From File Alignment' self.methodDict[key] = [self._shiftFromFile, "Align using shifts from file", None] self.__methodKeys.append(key) self.widget = None def stackUpdated(self): self.widget = None #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _fftAlignment(self): stack = self.getStackDataObject() if stack is None: return mcaIndex = stack.info.get('McaIndex') if not (mcaIndex in [0, -1, 2]): raise IndexError("1D index must be 0, 2, or -1") if self.widget is None: self.widget = FFTAlignmentWindow.FFTAlignmentDialog() self.widget.setStack(stack) ret = self.widget.exec() if ret: ddict = self.widget.getParameters() self.widget.setDummyStack() offsets = [ddict['Dim 0']['offset'], ddict['Dim 1']['offset']] widths = [ddict['Dim 0']['width'], ddict['Dim 1']['width']] if mcaIndex == 0: reference = stack.data[ddict['reference_index']] else: reference = ddict['reference_image'] crop = False if ddict['file_use']: filename = ddict['file_name'] else: filename = None if filename is not None: self.__hdf5 = self.initializeHDF5File(filename) if _logger.getEffectiveLevel() == logging.DEBUG: shifts = self.calculateShiftsFFT(stack, reference, offsets=offsets, widths=widths, crop=crop) result = self.shiftStack(stack, shifts, crop=crop, filename=filename) else: result = self.__calculateShiftsFFT(stack, reference, offsets=offsets, widths=widths, crop=crop) # result[0] contains the string "Exception" in case # of error. However, direct comparison will raise an # error if isinstance(result[0], str): if result[0] == 'Exception': # exception occurred raise Exception(result[1], result[2], result[3]) else: shifts = result result = self.__shiftStack(stack, shifts, crop=crop, filename=filename) if result is not None: # exception occurred raise Exception(result[1], result[2], result[3]) if filename is not None: hdf = self.__hdf5 alignmentGroup = hdf['/entry_000/Alignment'] outputShifts = self.getHDF5BufferIntoGroup(alignmentGroup, shape=(stack.data.shape[mcaIndex], 2), name="shifts", dtype=numpy.float32) outputShifts[:,:] = shifts attributes={'interpretation':'image'} referenceFrame = self.getHDF5BufferIntoGroup(alignmentGroup, shape=reference.shape, name="reference_frame", dtype=numpy.float32, attributes=attributes) referenceFrame[:,:] = reference[:,:] maskFrame = self.getHDF5BufferIntoGroup(alignmentGroup, shape=reference.shape, name="reference_mask", dtype=numpy.uint8, attributes=attributes) maskData = numpy.zeros(reference.shape, dtype=numpy.uint8) maskData[offsets[0]:offsets[0] + widths[0], offsets[1] : offsets[1] + widths[1]] = 1 maskFrame[:,:] = maskData[:,:] # fill the axes information dataGroup = hdf['/entry_000/Data'] try: activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = self.getAllCurves()[0] x, y, legend, info = activeCurve dataGroup[info['xlabel']] = numpy.array(x, dtype=numpy.float32) dataGroup[info['xlabel']].attrs['axis'] = numpy.int32(1) axesAttribute = '%s:dim_1:dim_2' % info['xlabel'] except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise dataGroup['dim_0'] = numpy.arange(stack.data.shape[mcaIndex]).astype(numpy.float32) dataGroup['dim_0'].attrs['axis'] = numpy.int32(1) axesAttribute = 'dim_0:dim_1:dim_2' dataGroup['dim_1'] = numpy.arange(reference.shape[0]).astype(numpy.float32) dataGroup['dim_1'].attrs['axis'] = numpy.int32(2) dataGroup['dim_2'] = numpy.arange(reference.shape[1]).astype(numpy.float32) dataGroup['dim_2'].attrs['axis'] = numpy.int32(3) dim2 = numpy.arange(reference.shape[1]).astype(numpy.float32) dataGroup['data'].attrs['axes'] = axesAttribute self.finishHDF5File(hdf) else: self.setStack(stack) def __calculateShiftsFFT(self, *var, **kw): self._progress = 0.0 thread = CalculationThread.CalculationThread(\ calculation_method=self.calculateShiftsFFT, calculation_vars=var, calculation_kw=kw) thread.start() CalculationThread.waitingMessageDialog(thread, message="Please wait. Calculation going on.", parent=self.widget, modal=True, update_callback=self._waitingCallback) return thread.result def __shiftStack(self, *var, **kw): self._progress = 0.0 thread = CalculationThread.CalculationThread(\ calculation_method=self.shiftStack, calculation_vars=var, calculation_kw=kw) thread.start() CalculationThread.waitingMessageDialog(thread, message="Please wait. Calculation going on.", parent=self.widget, modal=True, update_callback=self._waitingCallback) return thread.result def __calculateShiftsSIFT(self, *var, **kw): self._progress = 0.0 thread = CalculationThread.CalculationThread(\ calculation_method=self.calculateShiftsSIFT, calculation_vars=var, calculation_kw=kw) thread.start() CalculationThread.waitingMessageDialog(thread, message="Please wait. Calculation going on.", parent=self.widget, modal=True, update_callback=self._waitingCallback) return thread.result def _waitingCallback(self): ddict = {} ddict['message'] = "Calculation Progress = %d %%" % self._progress return ddict def _siftAlignment(self): if not SIFT: try: import pyopencl except Exception: raise ImportError("PyOpenCL does not seem to be installed on your system") if ocl is None: raise ImportError("PyOpenCL does not seem to be installed on your system") stack = self.getStackDataObject() if stack is None: return mcaIndex = stack.info.get('McaIndex') if not (mcaIndex in [0, 2, -1]): raise IndexError("Unsupported 1D index %d" % mcaIndex) widget = SIFTAlignmentWindow.SIFTAlignmentDialog() widget.setStack(stack) mask = self.getStackSelectionMask() widget.setSelectionMask(mask) ret = widget.exec() if ret: ddict = widget.getParameters() widget.setDummyStack() reference = ddict['reference_image'] mask = ddict['mask'] if ddict['file_use']: filename = ddict['file_name'] else: filename = None if filename is not None: self.__hdf5 = self.initializeHDF5File(filename) crop = False device = ddict['opencl_device'] if _logger.getEffectiveLevel() == logging.DEBUG: result = self.calculateShiftsSIFT(stack, reference, mask=mask, device=device, crop=crop, filename=filename) else: result = self.__calculateShiftsSIFT(stack, reference, mask=mask, device=device, crop=crop, filename=filename) if result is not None: if len(result): if isinstance(result[0], str): if result[0] == 'Exception': # exception occurred raise Exception(result[1], result[2], result[3]) if filename is None: self.setStack(stack) def calculateShiftsSIFT(self, stack, reference, mask=None, device=None, crop=None, sigma=None, filename=None): mask = self.getStackSelectionMask() if mask is not None: if mask.sum() == 0: mask = None if device is None: siftInstance = sift.LinearAlign(reference.astype(numpy.float32), devicetype="cpu", init_sigma=sigma) else: siftInstance = sift.LinearAlign(reference.astype(numpy.float32), deviceid=device, init_sigma=sigma) data = stack.data mcaIndex = stack.info['McaIndex'] if not (mcaIndex in [0, 2, -1]): raise IndexError("Unsupported 1D index %d" % mcaIndex) total = float(data.shape[mcaIndex]) if filename is not None: hdf = self.__hdf5 dataGroup = hdf['/entry_000/Data'] attributes = {} attributes['interpretation'] = "image" attributes['signal'] = numpy.int32(1) outputStack = self.getHDF5BufferIntoGroup(dataGroup, shape=(data.shape[mcaIndex], reference.shape[0], reference.shape[1]), name="data", dtype=numpy.float32, attributes=attributes) shifts = numpy.zeros((data.shape[mcaIndex], 2), dtype=numpy.float32) if mcaIndex == 0: for i in range(data.shape[mcaIndex]): _logger.debug("SIFT Shifting image %d", i) result = siftInstance.align(data[i].astype(numpy.float32), shift_only=True, return_all=True) _logger.debug("Index = %d shift = %.4f, %.4f", i, result['offset'][0], result['offset'][1]) if filename is None: stack.data[i] = result['result'] else: outputStack[i] = result['result'] shifts[i, 0] = result['offset'][0] shifts[i, 1] = result['offset'][1] self._progress = (100 * i) / total else: image2 = numpy.zeros(reference.shape, dtype=numpy.float32) for i in range(data.shape[mcaIndex]): _logger.debug("SIFT Shifting image %d", i) image2[:, :] = data[:, :, i] result = siftInstance.align(image2, shift_only=True, return_all=True) _logger.debug("Index = %d shift = %.4f, %.4f", i, result['offset'][0], result['offset'][1]) if filename is None: stack.data[:, :, i] = result['result'] else: outputStack[i] = result['result'] shifts[i, 0] = result['offset'][0] shifts[i, 1] = result['offset'][1] self._progress = (100 * i) / total if filename is not None: hdf = self.__hdf5 alignmentGroup = hdf['/entry_000/Alignment'] outputShifts = self.getHDF5BufferIntoGroup(alignmentGroup, shape=(stack.data.shape[mcaIndex], 2), name="shifts", dtype=numpy.float32) outputShifts[:,:] = shifts attributes={'interpretation':'image'} referenceFrame = self.getHDF5BufferIntoGroup(alignmentGroup, shape=reference.shape, name="reference_frame", dtype=numpy.float32, attributes=attributes) referenceFrame[:,:] = reference[:,:] maskFrame = self.getHDF5BufferIntoGroup(alignmentGroup, shape=reference.shape, name="reference_mask", dtype=numpy.uint8, attributes=attributes) if mask is None: maskData = numpy.ones(reference.shape, dtype=numpy.uint8) else: maskData = mask maskFrame[:,:] = maskData[:,:] # fill the axes information dataGroup = hdf['/entry_000/Data'] try: activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = self.getAllCurves()[0] x, y, legend, info = activeCurve dataGroup[info['xlabel']] = numpy.array(x, dtype=numpy.float32) dataGroup[info['xlabel']].attrs['axis'] = numpy.int32(1) axesAttribute = '%s:dim_1:dim_2' % info['xlabel'] except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise dataGroup['dim_0'] = numpy.arange(stack.data.shape[mcaIndex]).astype(numpy.float32) dataGroup['dim_0'].attrs['axis'] = numpy.int32(1) axesAttribute = 'dim_0:dim_1:dim_2' dataGroup['dim_1'] = numpy.arange(reference.shape[0]).astype(numpy.float32) dataGroup['dim_1'].attrs['axis'] = numpy.int32(2) dataGroup['dim_2'] = numpy.arange(reference.shape[1]).astype(numpy.float32) dataGroup['dim_2'].attrs['axis'] = numpy.int32(3) dim2 = numpy.arange(reference.shape[1]).astype(numpy.float32) dataGroup['data'].attrs['axes'] = axesAttribute self.finishHDF5File(hdf) def calculateShiftsFFT(self, stack, reference, offsets=None, widths=None, crop=False): _logger.debug("Offsets = %s", offsets) _logger.debug("Widths = %s", widths) data = stack.data if offsets is None: offsets = [0.0, 0.0] if widths is None: widths = [reference.shape[0], reference.shape[1]] fft2Function = numpy.fft.fft2 if 1: DTYPE = numpy.float32 else: DTYPE = numpy.float64 image2 = numpy.zeros((widths[0], widths[1]), dtype=DTYPE) shape = image2.shape USE_APODIZATION_WINDOW = False apo = [10, 10] if USE_APODIZATION_WINDOW: # use apodization window window = numpy.outer(SpecfitFuns.slit([0.5, shape[0] * 0.5, shape[0] - 4 * apo[0], apo[0]], numpy.arange(float(shape[0]))), SpecfitFuns.slit([0.5, shape[1] * 0.5, shape[1] - 4 * apo[1], apo[1]], numpy.arange(float(shape[1])))).astype(DTYPE) else: window = numpy.zeros((shape[0], shape[1]), dtype=DTYPE) window[apo[0]:shape[0] - apo[0], apo[1]:shape[1] - apo[1]] = 1 image2[:,:] = window * reference[offsets[0]:offsets[0]+widths[0], offsets[1]:offsets[1]+widths[1]] image2fft2 = fft2Function(image2) mcaIndex = stack.info.get('McaIndex') shifts = numpy.zeros((data.shape[mcaIndex], 2), numpy.float64) image1 = numpy.zeros(image2.shape, dtype=DTYPE) total = float(data.shape[mcaIndex]) if mcaIndex == 0: for i in range(data.shape[mcaIndex]): image1[:,:] = window * data[i][offsets[0]:offsets[0]+widths[0], offsets[1]:offsets[1]+widths[1]] image1fft2 = fft2Function(image1) shifts[i] = ImageRegistration.measure_offset_from_ffts(image2fft2, image1fft2) _logger.debug("Index = %d shift = %.4f, %.4f", i, shifts[i][0], shifts[i][1]) self._progress = (100 * i) / total elif mcaIndex in [2, -1]: for i in range(data.shape[mcaIndex]): image1[:,:] = window * data[:,:,i][offsets[0]:offsets[0]+widths[0], offsets[1]:offsets[1]+widths[1]] image1fft2 = fft2Function(image1) shifts[i] = ImageRegistration.measure_offset_from_ffts(image2fft2, image1fft2) _logger.debug("Index = %d shift = %.4f, %.4f", i, shifts[i][0], shifts[i][1]) self._progress = (100 * i) / total else: raise IndexError("Only stacks of images or spectra supported. 1D index should be 0 or 2") return shifts def _shiftFromFile(self): stack = self.getStackDataObject() if stack is None: return data = stack.data mcaIndex = stack.info.get('McaIndex') if not (mcaIndex in [0, -1, 2]): raise IndexError("1D index must be 0, 2, or -1") filefilter = ['HDF5 Files (*.h5 *.nxs *.hdf *.hdf5)', 'CSV 2-column (*.csv)', 'ASCII 2-column (*)'] filename, ffilter = PyMcaFileDialogs.\ getFileList(parent=None, filetypelist=filefilter, message='Load', mode='OPEN', single=True, getfilter=True, currentfilter=filefilter[0]) if len(filename): _logger.debug("file name = %s file filter = %s", filename, ffilter) else: _logger.debug("nothing selected") return filename = filename[0] if ffilter.startswith('HDF5'): # browse self.__hdf5Dialog = qt.QDialog() self.__hdf5Dialog.setWindowTitle('Select your data set by a double click') self.__hdf5Dialog.mainLayout = qt.QVBoxLayout(self.__hdf5Dialog) self.__hdf5Dialog.mainLayout.setContentsMargins(0, 0, 0, 0) self.__hdf5Dialog.mainLayout.setSpacing(0) fileModel = HDF5Widget.FileModel() fileView = HDF5Widget.HDF5Widget(fileModel) with h5py.File(filename, "r") as hdfFile: fileModel.appendPhynxFile(hdfFile, weakreference=True) self.__shiftsDataset = None fileView.sigHDF5WidgetSignal.connect(self._hdf5WidgetSlot) self.__hdf5Dialog.mainLayout.addWidget(fileView) self.__hdf5Dialog.resize(400, 200) ret = self.__hdf5Dialog.exec() if not ret: return shifts = hdfFile[self.__shitfsDataset].value else: sf = specfilewrapper.Specfile(filename) nScans = len(sf) targetScan = None for scan in sf: if scan.lines() == data.shape[stack.info['McaIndex']]: targetScan = scan break if targetScan is None: scan = None sf = None raise IOError("Number of read lines does not match stack shape") shifts = targetScan.data() targetScan = None scan = None sf = None if shifts.shape[0] == 3 and\ shifts.shape[1] == data.shape[stack.info['McaIndex']]: # one column was added (point number) shifts = shifts[1:].T filename = None if not isinstance(data, numpy.ndarray): filefilter = ['HDF5 Files (*.h5)'] filename = PyMcaFileDialogs.\ getFileList(parent=None, filetypelist=filefilter, message='Select output file', mode='SAVE', single=True, getfilter=False, currentfilter=filefilter[0]) if len(filename): filename = filename[0] _logger.debug("file name = %s", filename) else: raise IOError("No output file selected") if filename is not None: self.__hdf5 = self.initializeHDF5File(filename) crop = False if _logger.getEffectiveLevel() == logging.DEBUG: result = self.shiftStack(stack, shifts, crop=crop, filename=filename) else: result = self.__shiftStack(stack, shifts, crop=crop, filename=filename) if result is not None: # exception occurred raise Exception(result[1], result[2], result[3]) if filename is not None: hdf = self.__hdf5 alignmentGroup = hdf['/entry_000/Alignment'] outputShifts = self.getHDF5BufferIntoGroup(alignmentGroup, shape=(stack.data.shape[mcaIndex], 2), name="shifts", dtype=numpy.float32) outputShifts[:,:] = shifts attributes={'interpretation':'image'} # fill the axes information dataGroup = hdf['/entry_000/Data'] if mcaIndex == 0: reference_shape = data[0].shape else: reference_shape = data.shape[0], data.shape[1] try: activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = self.getAllCurves()[0] x, y, legend, info = activeCurve dataGroup[info['xlabel']] = numpy.array(x, dtype=numpy.float32) dataGroup[info['xlabel']].attrs['axis'] = numpy.int32(1) axesAttribute = '%s:dim_1:dim_2' % info['xlabel'] except Exception: if _logger.getEffectiveLevel() == logging.DEBUG: raise dataGroup['dim_0'] = numpy.arange(stack.data.shape[mcaIndex]).astype(numpy.float32) dataGroup['dim_0'].attrs['axis'] = numpy.int32(1) axesAttribute = 'dim_0:dim_1:dim_2' dataGroup['dim_1'] = numpy.arange(reference_shape[0]).astype(numpy.float32) dataGroup['dim_1'].attrs['axis'] = numpy.int32(2) dataGroup['dim_2'] = numpy.arange(reference_shape[1]).astype(numpy.float32) dataGroup['dim_2'].attrs['axis'] = numpy.int32(3) dim2 = numpy.arange(reference_shape[1]).astype(numpy.float32) dataGroup['data'].attrs['axes'] = axesAttribute self.finishHDF5File(hdf) else: self.setStack(stack) def _hdf5WidgetSlot(self, ddict): if ddict['event'] == "itemDoubleClicked": if ddict['type'].lower() in ['dataset']: self.__shitfsDataset = ddict['name'] self.__hdf5Dialog.accept() def shiftStack(self, stack, shifts, crop=False, filename=None): """ """ data = stack.data mcaIndex = stack.info['McaIndex'] if mcaIndex not in [0, 2, -1]: raise IndexError("Only stacks of images or spectra supported. 1D index should be 0 or 2") if mcaIndex == 0: shape = data[mcaIndex].shape else: shape = data.shape[0], data.shape[1] d0_start, d0_end, d1_start, d1_end = \ ImageRegistration.get_crop_indices(shape, shifts[:, 0], shifts[:, 1]) window = numpy.zeros(shape, numpy.float32) window[d0_start:d0_end, d1_start:d1_end] = 1.0 self._progress = 0.0 total = float(data.shape[mcaIndex]) if filename is not None: hdf = self.__hdf5 dataGroup = hdf['/entry_000/Data'] attributes = {} attributes['interpretation'] = "image" attributes['signal'] = numpy.int32(1) outputStack = self.getHDF5BufferIntoGroup(dataGroup, shape=(data.shape[mcaIndex], shape[0], shape[1]), name="data", dtype=numpy.float32, attributes=attributes) for i in range(data.shape[mcaIndex]): #tmpImage = ImageRegistration.shiftFFT(data[i], shifts[i]) if mcaIndex == 0: tmpImage = ImageRegistration.shiftBilinear(data[i], shifts[i]) #tmpImage = ImageRegistration.shiftImage(data[i], -shifts[i], method="fft") if filename is None: stack.data[i] = tmpImage * window else: outputStack[i] = tmpImage * window else: tmpImage = ImageRegistration.shiftBilinear(data[:,:,i], shifts[i]) if filename is None: stack.data[:, :, i] = tmpImage * window else: outputStack[i] = tmpImage * window _logger.debug("Index %d bilinear shifted", i) self._progress = (100 * i) / total def initializeHDF5File(self, fname): #for the time being overwriting if os.path.exists(fname): os.remove(fname) hdf = h5py.File(fname, 'w') entryName = "entry_000" nxEntry = hdf.require_group(entryName) if 'NX_class' not in nxEntry.attrs: nxEntry.attrs['NX_class'] = 'NXentry'.encode('utf-8') nxEntry['title'] = numpy.bytes_("PyMca saved 3D Array".encode('utf-8')) nxEntry['start_time'] = numpy.bytes_(ArraySave.getDate().encode('utf-8')) alignmentGroup = nxEntry.require_group('Alignment') dataGroup = nxEntry.require_group('Data') dataGroup.attrs['NX_class'] = 'NXdata'.encode('utf-8') return hdf def finishHDF5File(self, hdf): #add final date toplevelEntry = hdf["entry_000"] toplevelEntry['end_time'] = numpy.bytes_(ArraySave.getDate().encode('utf-8')) hdf.flush() hdf.close() def getHDF5BufferIntoGroup(self, h5Group, shape, name="data", dtype=numpy.float32, attributes=None, compression=None, shuffle=False, chunks=None, chunk_cache=None): dataset = h5Group.require_dataset(name, shape=shape, dtype=dtype, chunks=chunks, shuffle=shuffle, compression=compression) if attributes is None: attributes = {} for attribute in attributes: dataset.attrs[attribute] = attributes[attribute] return dataset MENU_TEXT = "Image Alignment Tool" def getStackPluginInstance(stackWindow, **kw): ob = ImageAlignmentStackPlugin(stackWindow) return ob �����������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/KineticsPlugin.py����������������������������������������������0000644�0000000�0000000�00000015660�14741736366�021260� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase try: from PyMca5.PyMcaGui.math.fitting import RateLawWindow except ImportError: print("KineticsPlugin problem") class KineticsPlugin(Plugin1DBase.Plugin1DBase): '''Calculate Rate Laws plot and Arrhenius plot''' def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = "Graphical calculation of Rate Laws" function = self.rateLaw info = text icon = None self.methodDict["Rate Law Plots"] =[function, info, icon] text = "Replace current (x, y) plot by (1/x, log(y)) plot" info = text icon = None function = self.arrhenius method = "Arrhenius Plot" self.methodDict[method] = [function, info, icon] self.widget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def rateLaw(self): #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve[:4] xmin, xmax = self.getGraphXLimits() idx = (x >= xmin) & (x <= xmax) x = x[idx] y = y[idx] if self.widget is None: parent = None self.widget = RateLawWindow.RateLawWindow(parent) self.widget.setSpectrum(x, y, legend=legend0, xlabel=info["xlabel"], ylabel=info["ylabel"]) self.widget.show() self.widget.raise_() def arrhenius(self): curves = self.getMonotonicCurves() nCurves = len(curves) if nCurves < 1: raise ValueError("At least one curve needed") return # get legend of active curve try: activeCurveLegend = self.getActiveCurve()[2] if activeCurveLegend is None: activeCurveLegend = curves[0][2] for curve in curves: if curve[2] == activeCurveLegend: activeCurve = curve break except Exception: activeCurve = curves[0] activeCurveLegend = curves[0][2] # apply between graph limits xmin, xmax =self.getGraphXLimits() toPlot = [] for curve in curves: x0, y0, legend, info = curve[:4] idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax) & (x0 != 0))[0] x = numpy.take(x0, idx) y = numpy.take(y0, idx) idx = numpy.nonzero(y > 0)[0] x = numpy.take(x, idx) y = numpy.take(y, idx) if not x.size: continue x = 1.0 / x y = numpy.log(y) toPlot.append((x, y, legend, info)) for i in range(len(toPlot)): if i == 0: replace=True else: replace=False if i == (len(toPlot) - 1): replot = True else: replot=False x, y, legend, info = toPlot[i] self.addCurve(x, y, legend=legend, info=info, ylabel="log(%s)" % info["ylabel"], xlabel="1/%s" % info["xlabel"], replot=replot, replace=replace) self.setActiveCurve(activeCurveLegend) MENU_TEXT = "Kinetics Tools" def getPlugin1DInstance(plotWindow, **kw): ob = KineticsPlugin(plotWindow) return ob if __name__ == "__main__": import os from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import PlotWindow # first order, k = 4.820e-04 x = [0, 600, 1200, 1800, 2400, 3000, 3600] y = [0.0365, 0.0274, 0.0206, 0.0157, 0.0117, 0.00860, 0.00640] order = "First" slope = "0.000482" print("Expected order: First") print("Expected slope: 0.000482") sigmay = None app = qt.QApplication([]) plot = PlotWindow.PlotWindow() plot.setPluginDirectoryList([os.path.dirname(__file__)]) plot.getPlugins() plot.addCurve(x, y, "Test Data") plot.show() plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) #plugin.applyMethod(plugin.getMethods()[1]) app.exec() ��������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/LoadPositionersStackPlugin.py����������������������������������0000644�0000000�0000000�00000015260�14741736366�023607� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*######################################################################### # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """ This plugin is used to load motor positions from a CSV or HDF5 file. The number of values associated with a given positioner should be equal to the number of pixels in the stack image. A single scalar value can also be provided for a motor, if it didn't move during the experiment. A CSV file should have unique motor names in the header line, and can have an arbitrary number of motors/columns. Motor positions in a HDF5 files are 1-dimensional datasets whose names are the motor names. The user is allowed to select the HDF5 group containing all motor datasets. Data loaded with this plugin can then be used by other tools, such as the "Stack motor positions" plugin. """ __authors__ = ["P. Knobel"] __license__ = "MIT" import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.io.hdf5.HDF5Widget import getGroupNameDialog from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaIO import specfilewrapper try: import h5py except ImportError: h5py = None try: # if silx is available, we can open SPEC from silx.io import open as silx_open h5open = silx_open from silx.io import is_dataset except ImportError: silx_open = None if h5py is not None: # at least we can open hdf5 files def h5open(filename): return h5py.File(filename, "r") def is_dataset(item): return isinstance(item, h5py.Dataset) else: # no luck, only CSV files available h5open = None is_dataset = None # suppress errors and warnings if fabio is missing if silx_open is not None: logging.getLogger("silx.io.fabioh5").setLevel(logging.CRITICAL) _logger = logging.getLogger(__name__) class LoadPositionersStackPlugin(StackPluginBase.StackPluginBase): """ This plugin is used to load motor positions from a CSV or HDF5 file. The number of values associated with a given positioner should be equal to the number of pixels in the stack image. A single scalar value can also be provided for a motor, if it didn't move during the experiment. A CSV file should have unique motor names in the header line, and can have an arbitrary number of motors/columns. Motor positions in a HDF5 files are 1-dimensional datasets whose names are the motor names. The user is allowed to select the HDF5 group containing all motor datasets. Only compatible motors will be loaded. Data loaded with this plugin can then be used by other plugins. """ def __init__(self, stackWindow): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow) self.methodDict = {'Load positioners': [self._loadFromFile, "Load positioners from file"]} self.__methodKeys = ['Load positioners'] #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _loadFromFile(self): stack = self.getStackDataObject() if stack is None: return mcaIndex = stack.info.get('McaIndex') if not (mcaIndex in [0, -1, 2]): raise IndexError("1D index must be 0, 2, or -1") # test io dependencies if h5py is None: filefilter = [] else: filefilter = ['HDF5 (*.h5 *.nxs *.hdf *.hdf5)'] filefilter.append('CSV (*.csv *.txt)') if silx_open is not None: filefilter.append('Any (*)') filename, ffilter = PyMcaFileDialogs.\ getFileList(parent=None, filetypelist=filefilter, message='Load', mode='OPEN', single=True, getfilter=True, currentfilter=filefilter[0]) if len(filename): _logger.debug("file name = %s file filter = %s", filename, ffilter) else: _logger.debug("nothing selected") return filename = filename[0] positioners = {} if not ffilter.startswith('CSV'): h5GroupName = getGroupNameDialog(filename) if h5GroupName is None: return with h5open(filename) as h5f: h5Group = h5f[h5GroupName] positioners = {} for dsname in h5Group: # links and subgroups just ignored for the time being if not is_dataset(h5Group[dsname]): continue positioners[dsname] = h5Group[dsname][()] else: sf = specfilewrapper.Specfile(filename) scan = sf[0] labels = scan.alllabels() data = scan.data() scan = None sf = None for i, label in enumerate(labels): positioners[label] = data[i, :] self._stackWindow.setPositioners(positioners) MENU_TEXT = "Load positioners from file" def getStackPluginInstance(stackWindow, **kw): ob = LoadPositionersStackPlugin(stackWindow) return ob ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MaskScatterViewPlugin.py���������������������������������������0000644�0000000�0000000�00000037232�14741736366�022562� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin opens a widget to view a stack as a scatter plot, by using positioner data as X and Y coordinates. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging import numpy from contextlib import contextmanager # import order may matter for qt binding selection from PyMca5.PyMcaGui import PyMcaQt as qt from silx.gui import qt as silx_qt from PyMca5 import StackPluginBase from silx.gui.plot.ScatterView import ScatterView from silx.gui.widgets.BoxLayoutDockWidget import BoxLayoutDockWidget from silx.gui.colors import Colormap _logger = logging.getLogger(__name__) # _logger.setLevel(logging.DEBUG) # Probe OpenGL availability and widget isGLAvailable = False try: import OpenGL except ImportError: _logger.debug("pyopengl not installed") else: # sanity check from silx.gui._glutils.OpenGLWidget if not hasattr(silx_qt, 'QOpenGLWidget') and\ (not silx_qt.HAS_OPENGL or silx_qt.QApplication.instance() and not silx_qt.QGLFormat.hasOpenGL()): _logger.debug("qt has a QOpenGLWidget: %s", hasattr(silx_qt, 'QOpenGLWidget')) _logger.debug("qt.HAS_OPENGL: %s", silx_qt.HAS_OPENGL) _logger.debug("silx_qt.QGLFormat.hasOpenGL(): %s", silx_qt.QApplication.instance() and not silx_qt.QGLFormat.hasOpenGL()) else: isGLAvailable = True _logger.debug("GL availability: %s", isGLAvailable) class AxesPositionersSelector(qt.QWidget): sigSelectionChanged = qt.pyqtSignal(object, object) def __init__(self, parent=None): qt.QWidget.__init__(self, parent) hlayout = qt.QHBoxLayout() self.setLayout(hlayout) self._initializing = True xlabel = qt.QLabel("X:", parent=parent) self.xPositioner = qt.QComboBox(parent) self.xPositioner.currentIndexChanged.connect(self._emitSelectionChanged) ylabel = qt.QLabel("Y:", parent=parent) self.yPositioner = qt.QComboBox(parent) self.yPositioner.currentIndexChanged.connect(self._emitSelectionChanged) self._initializing = False hlayout.addWidget(xlabel) hlayout.addWidget(self.xPositioner) hlayout.addWidget(ylabel) hlayout.addWidget(self.yPositioner) self._nPoints = None """If set to an integer, only motors with this number of data points can be added.""" self._initComboBoxes() def _initComboBoxes(self): self.xPositioner.clear() self.xPositioner.insertItem(0, "None") self.yPositioner.clear() self.yPositioner.insertItem(0, "None") def _emitSelectionChanged(self, idx): if not self._initializing: self.sigSelectionChanged.emit(*self.getSelectedPositioners()) def setNumPoints(self, n): self._nPoints = n def unsetNumPoints(self): self._nPoints = None def fillPositioners(self, positioners): """ :param dict positioners: Dictionary of positioners The key is the motor name, the value are the motor's position data """ currentX, currentY = self.getSelectedPositioners() self._initializing = True self._initComboBoxes() i = 0 for motorName, motorValues in positioners.items(): if not numpy.isscalar(motorValues) and self._nPoints is not None and self._nPoints != motorValues.size: # checks consistency of number of data points (but accepts scalars) continue else: i += 1 self.xPositioner.insertItem(i, motorName) self.yPositioner.insertItem(i, motorName) if currentX in positioners and currentY in positioners: self.xPositioner.setCurrentIndex(self.xPositioner.findText(currentX)) self.yPositioner.setCurrentIndex(self.yPositioner.findText(currentY)) self._initializing = False def getSelectedPositioners(self): """ :return: 2-tuple of selected positioner names (or None) """ selected = [None, None] if self.xPositioner.currentText() != "None": selected[0] = self.xPositioner.currentText() if self.yPositioner.currentText() != "None": selected[1] = self.yPositioner.currentText() return selected class MaskScatterViewWidget(qt.QMainWindow): def __init__(self, parent=None, backend="mpl"): qt.QMainWindow.__init__(self, parent) self._scatterView = ScatterView(parent=self, backend=backend) self._scatterView.setColormap(Colormap("temperature")) self._scatterView.getScatterItem().setSymbol("s") self._axesSelector = AxesPositionersSelector(parent=self._scatterView) self._axesSelector.sigSelectionChanged.connect(self._setAxesData) self.setCentralWidget(self._scatterView) _axesSelectorDock = BoxLayoutDockWidget() _axesSelectorDock.setWindowTitle('Axes selection') _axesSelectorDock.setWidget(self._axesSelector) self.addDockWidget(qt.Qt.BottomDockWidgetArea, _axesSelectorDock) self._positioners = {} self._xdata = None self._ydata = None self._stackImage = None def getMaskToolsWidget(self): return self._scatterView.getMaskToolsWidget() def resetZoom(self): return self._scatterView.resetZoom() def fillPositioners(self, positioners): self._positioners = positioners self._axesSelector.fillPositioners(positioners) def setNumPoints(self, n): self._axesSelector.setNumPoints(n) def _setAxesData(self, xPositioner, yPositioner): """ :param str xPositioner: motor name, or None :param str yPositioner: motor name, or None :return: """ if xPositioner not in [None, ""]: assert xPositioner in self._positioners self._xdata = self._positioners[xPositioner] else: self._xdata = None if yPositioner not in [None, ""]: assert yPositioner in self._positioners self._ydata = self._positioners[yPositioner] else: self._ydata = None if self._stackImage is not None: self.setData() if not self._scatterView.getMaskToolsWidget().isVisible(): # synchronization inactive, force mask redrawing mask = self._scatterView.getMaskToolsWidget().getSelectionMask() if mask is not None: self._scatterView.getMaskToolsWidget().setSelectionMask(mask) self._scatterView.resetZoom() def setData(self, stackImage=None): first_time = self._stackImage is None if first_time: assert stackImage is not None if stackImage is None: # use previous data stackImage = self._stackImage else: # update stored data self._stackImage = stackImage nrows, ncols = stackImage.shape # flatten image stackValues = stackImage.reshape((-1,)) # get regular grid coordinates as a 1D array if self._xdata is None or self._ydata is None: defaultX, defaultY = numpy.meshgrid(numpy.arange(ncols), numpy.arange(nrows)) defaultX.shape = stackValues.shape defaultY.shape = stackValues.shape xdata = self._xdata if self._xdata is not None else defaultX ydata = self._ydata if self._ydata is not None else defaultY if numpy.isscalar(xdata): xdata = xdata * numpy.ones_like(stackValues) _logger.debug("converting scalar to constant 1D array for x") elif len(xdata.shape) > 1: _logger.debug("flattening %s array", str(xdata.shape)) xdata = xdata.reshape((-1,)) if numpy.isscalar(ydata): ydata = ydata * numpy.ones_like(stackValues) _logger.debug("converting scalar to constant 1D array for y") elif len(ydata.shape) > 1: _logger.debug("flattening %s array", str(ydata.shape)) ydata = ydata.reshape((-1,)) self._scatterView.setData(xdata, ydata, stackValues, copy=False) if first_time: self._scatterView.resetZoom() class MaskScatterViewPlugin(StackPluginBase.StackPluginBase): """ Widget to handle a stack as a scatter plot, by using positioner data as X and Y coordinates. The position data can be loaded via the load positioners plugin if not detected automatically. """ def __init__(self, stackWindow, **kw): StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) tooltip = "Stack as a scatter plot, using positioners as axes" self.methodDict = {'Show (mpl)': [self._showWidgetMpl, tooltip + " (matplotlib backend)", None]} self.__methodKeys = ['Show (mpl)'] self._createdBackends = [] if isGLAvailable: self.methodDict['Show (gl)'] = [self._showWidgetGL, tooltip + " (OpenGL backend)", None] self.__methodKeys.append('Show (gl)') self._scatterViews = {"gl": None, "mpl": None} def _buildWidget(self, backend): scatterView = MaskScatterViewWidget(parent=None, backend=backend) self._scatterViews[backend] = scatterView self._createdBackends.append(backend) self._setData(backend) callback = self._scatterMaskChangedGl if backend == "gl" else self._scatterMaskChangedMpl scatterView.getMaskToolsWidget().sigMaskChanged.connect( callback) nPoints = self._getNumStackPoints() scatterView.setNumPoints(nPoints) positioners = self._getStackPositioners() scatterView.fillPositioners(positioners) # try to figure out if there are good X and Y candidates X = None Y = None for key in positioners: if key.lower() == "x": if len(positioners[key]) == nPoints: X = key elif key.lower() == "y": if len(positioners[key]) == nPoints: Y = key if X: scatterView._axesSelector.xPositioner.setCurrentText(X) if Y: scatterView._axesSelector.yPositioner.setCurrentText(Y) def _showWidgetMpl(self): self._showWidget(backend="mpl") def _showWidgetGL(self): self._showWidget(backend="gl") def _showWidget(self, backend): if self._scatterViews[backend] is None: self._buildWidget(backend=backend) # Show self._scatterViews[backend].show() self._scatterViews[backend].raise_() # Draw mask, if any self.selectionMaskUpdated() @contextmanager def _scatterMaskDisconnected(self, backend): # This context manager allows to call self.setStackSelectionMask # without entering an infinite loop, by temporarily disconnecting # callbacks from our mask signals. # Disconnect callback = self._scatterMaskChangedGl if backend == "gl" else self._scatterMaskChangedMpl self._scatterViews[backend].getMaskToolsWidget().sigMaskChanged.disconnect( callback) try: yield finally: # Reconnect callback = self._scatterMaskChangedGl if backend == "gl" else self._scatterMaskChangedMpl self._scatterViews[backend].getMaskToolsWidget().sigMaskChanged.connect( callback) def _setData(self, backend): stack_images, stack_names = self.getStackROIImagesAndNames() self._scatterViews[backend].setData(stack_images[0]) self._scatterViews[backend].resetZoom() def _isScatterViewVisible(self, backend): if self._scatterViews[backend] is None: return False if self._scatterViews[backend].isHidden(): return False return True def _scatterMaskChangedGl(self): self._scatterMaskChanged("gl") def _scatterMaskChangedMpl(self): self._scatterMaskChanged("mpl") def _scatterMaskChanged(self, backend): scattermask = self._scatterViews[backend].getMaskToolsWidget().getSelectionMask() if scattermask is not None: shape = self.getStackOriginalImage().shape mask = scattermask.reshape(shape) else: mask = scattermask with self._scatterMaskDisconnected(backend): self.setStackSelectionMask(mask) def _getNumStackPoints(self): stack_images, stack_names = self.getStackROIImagesAndNames() return stack_images[0].size def _getStackPositioners(self): info = self.getStackInfo() return info.get("positioners", {}) def stackUpdated(self): for backend in self._createdBackends: if not self._isScatterViewVisible(backend): return self._setData(backend) self._scatterViews[backend].setNumPoints(self._getNumStackPoints()) self._scatterViews[backend].fillPositioners(self._getStackPositioners()) def selectionMaskUpdated(self): for backend in self._createdBackends: if not self._isScatterViewVisible(backend): return mask = self.getStackSelectionMask() if mask is not None: scatterMask = mask.reshape((-1,)) else: scatterMask = None self._scatterViews[backend].getMaskToolsWidget().setSelectionMask(scatterMask) def stackClosed(self): for sv in self._scatterViews.values(): if sv is not None: sv.close() def stackROIImageListUpdated(self): self.stackUpdated() # Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() MENU_TEXT = "Mask Scatter View" def getStackPluginInstance(stackWindow, **kw): ob = MaskScatterViewPlugin(stackWindow) return ob ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MathPlugins.py�������������������������������������������������0000644�0000000�0000000�00000012652�14741736366�020561� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2020 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin provide simple math functions, to derivate or invert the active curve. """ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase from PyMca5.PyMcaGui import PyMca_Icons import PyMca5.PyMcaMath.SimpleMath as SimpleMath swapsign = PyMca_Icons.swapsign derive = PyMca_Icons.derive class MathPlugins(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {'Invert':[self.invert, "Multiply active curve by -1", swapsign], 'Derivate':[self.derivate, "Derivate zoomed active curve", derive], 'Derivate 3':[self.derivate3, "3-point Smoothed Derivative of zoomed active curve", derive], 'Derivate 5':[self.derivate5, "5-point Smoothed Derivative of zoomed active curve", derive], } self.simpleMath = SimpleMath.SimpleMath() #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def invert(self): activeCurve = self.getActiveCurve() if activeCurve is None: return x, y, legend, info = activeCurve [0:4] operations = info.get("operations", []) operations.append("Invert") info['operations'] = operations legend = "-("+legend+")" self.addCurve(x, -y, legend=legend, info=info, replot=True) def derivate(self, option="Single point"): activeCurve = self.getActiveCurve() if activeCurve is None: return x, y, legend, info = activeCurve [0:4] xlimits=self.getGraphXLimits() x, y = self.simpleMath.derivate(x, y, xlimits=xlimits, option=option) info['ylabel'] = info['ylabel'] + "'" operations = info.get("operations", []) operations.append("derivate") info['operations'] = operations info['plot_yaxis'] = "right" legend = legend+"'" self.addCurve(x, y, legend=legend, info=info, replot=True) def derivate3(self): return self.derivate(option="SG Smoothed 3 point") def derivate5(self): return self.derivate(option="SG Smoothed 5 point") MENU_TEXT = "Built-in Math" def getPlugin1DInstance(plotWindow, **kw): ob = MathPlugins(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGraph import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) ��������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/Medfilt2DPlugin.py���������������������������������������������0000644�0000000�0000000�00000015652�14741736366�021262� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ import numpy from PyMca5.PyMcaCore.Plugin2DBase import Plugin2DBase from PyMca5.PyMcaGui import PyMcaQt as qt from silx.gui.plot import Plot2D from silx.math.medianfilter import medfilt2d class Medfilt2DPlugin(Plugin2DBase): def __init__(self, plotWindow): Plugin2DBase.__init__(self, plotWindow) self.methods = { "Median filter": [self._medfilt2D, "Open a plot showing a filtered image", None] } self.widget = None def getMethods(self, plottype=None): """ :return: A list with the NAMES associated to the callable methods that are applicable to the specified type plot. The list can be empty. :rtype: list[string] """ return list(self.methods.keys()) def _getMethod(self, name): method = self.methods.get(name) if method is None: raise NameError("method %s not found" % name) return method def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. :param name: The method for which a tooltip is asked :rtype: string """ return self._getMethod(name)[1] def getMethodPixmap(self, name): """ :param name: The method for which a pixmap is asked :rtype: QPixmap or None """ return self._getMethod(name)[2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ return self._getMethod(name)[0]() def _medfilt2D(self): if self.widget is None: self.widget = Plot2DMedFilt() self.widget.show() active_image = self._plotWindow.getActiveImage() if active_image is None: return data = active_image.getData() if data.ndim > 2: raise NotImplementedError("Median filter not implemented for RGB images") self.widget.setColormap(active_image.getColormap()) self.widget.setLegend("medfilt2d(%s)" % active_image.getLegend()) self.widget.setRawData(data) def activeImageChanged(self, prev, new): if self.widget is None or not self.widget.isVisible() or new is None: return self._medfilt2D() class Plot2DMedFilt(Plot2D): # TODO: we could allow setting different X- and Y-filter width. def __init__(self, parent=None): Plot2D.__init__(self, parent=parent) self.toolBar().addSeparator() label = qt.QLabel(self) label.setText("Median filter width:") self.spinbox = qt.QSpinBox(self) self.spinbox.setMinimum(1) self.spinbox.setValue(1) self.spinbox.setSingleStep(2) self.spinbox.valueChanged[int].connect(self._medfiltWidthChanged) self.spinbox.setEnabled(False) self.toolBar().addWidget(label) self.toolBar().addWidget(self.spinbox) self._data = None self._legend = None self._colormap = None def setLegend(self, legend): """ :param str legend: :return: """ self._legend = legend def setRawData(self, data, legend=None): """Set raw image data to be filtered. :param numpy.ndarray data: :param str legend: :return: """ if data is None: self.spinbox.setEnabled(False) self._data = None return if data.ndim != 2: raise TypeError("Data must be a 2D array") self._data = data self.spinbox.setMaximum(max(data.shape)) self.spinbox.setEnabled(True) self._applyFilter() def setColormap(self, colormap): self._colormap = colormap @property def medfilt_width(self): return self.spinbox.value() def _medfiltWidthChanged(self, width): self._applyFilter() def _applyFilter(self): # medfilt2D requires the data to be C-contiguous with silx <= 0.9 self.addImage(medfilt2d(numpy.ascontiguousarray(self._data), kernel_size=self.medfilt_width), colormap=self._colormap, legend=self._legend) MENU_TEXT = "2D median filter" def getPlugin2DInstance(plotWindow, **kw): """ """ ob = Medfilt2DPlugin(plotWindow) return ob if __name__ == "__main__": # python -m PyMca5.PyMcaPlugins.Medfilt2DPlugin from PyMca5.PyMcaGui.PluginsToolButton import PluginsToolButton from PyMca5 import PyMcaPlugins import os from silx.test.utils import add_relative_noise from silx.gui.plot import PlotWidget # build a plot widget with a plugin toolbar button app = qt.QApplication([]) main_plot = PlotWidget() toolb = qt.QToolBar(main_plot) plugins_tb_2d = PluginsToolButton(plot=main_plot, parent=toolb, method="getPlugin2DInstance") plugins_tb_2d.getPlugins( method="getPlugin2DInstance", directoryList=[os.path.dirname(PyMcaPlugins.__file__)]) toolb.addWidget(plugins_tb_2d) main_plot.addToolBar(toolb) main_plot.show() # add a noisy image a, b = numpy.meshgrid(numpy.linspace(-10, 10, 500), numpy.linspace(-10, 5, 400), indexing="ij") myimg = numpy.asarray(numpy.sin(a * b) / (a * b), dtype='float32') myimg = add_relative_noise(myimg, max_noise=10.) # % main_plot.addImage(myimg) app.exec() ��������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MedianFilterScanDeglitchPlugin.py������������������������������0000644�0000000�0000000�00000022224�14741736366�024315� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin uses a median filter smoothing to remove glitches from curves. A configuration widget can be used to configure the median filter (width and threshold), and the user can choose to apply it on the active curve or on all curves. """ __author__ = "T. Rueter - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5 import Plugin1DBase from PyMca5.PyMcaMath.PyMcaSciPy.signal import medfilt1d from PyMca5.PyMcaGui import PyMcaQt as qt import numpy import logging _logger = logging.getLogger(__name__) class MedianFilterScanDeglitchPlugin(Plugin1DBase.Plugin1DBase): """ Median-filter-based deglitching """ def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = { 'Apply to active curve': [self.removeSpikesActive, 'Apply sliding median filter to active curve', None], 'Apply to all curves': [self.removeSpikesAll, 'Apply sliding median filter to all curves', None], 'Configure median filter': [self.configureFilter, 'Set threshold and width of the filter', None] } self._methodList = ['Configure median filter', 'Apply to active curve', 'Apply to all curves'] self.threshold = 0.66 self.width = 9 self._widget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ return list(self._methodList) def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def configureFilter(self): if self._widget is None: # construct a widget msg = qt.QDialog() msg.setWindowTitle("Deglitch Configuration") msgLayout = qt.QGridLayout() buttonLayout = qt.QHBoxLayout() inpThreshold = qt.QDoubleSpinBox() inpThreshold.setRange(0.,10.) inpThreshold.setSingleStep(.1) inpThreshold.setValue(self.threshold) inpThreshold.setToolTip('Increase width for broad spikes') inpWidth = qt.QSpinBox() inpWidth.setRange(1,101) inpWidth.setSingleStep(2) inpWidth.setValue(self.width) inpWidth.setToolTip('Set low threshold for multiple spikes of different markedness') labelWidth = qt.QLabel('Width (must be odd)') labelThreshold = qt.QLabel('Threshold (multiple of deviation)') buttonOK = qt.QPushButton('Ok') buttonOK.clicked.connect(msg.accept) buttonCancel = qt.QPushButton('Cancel') buttonCancel.clicked.connect(msg.reject) allActiveBG = qt.QButtonGroup() buttonAll = qt.QCheckBox('Apply to All') buttonActive = qt.QCheckBox('Apply to Active') allActiveBG.addButton(buttonAll, 0) allActiveBG.addButton(buttonActive, 1) buttonActive.setChecked(True) buttonLayout.addWidget(qt.HorizontalSpacer()) buttonLayout.addWidget(buttonOK) buttonLayout.addWidget(buttonCancel) msgLayout.addWidget(labelWidth,0,0) msgLayout.addWidget(inpWidth,0,1) msgLayout.addWidget(labelThreshold,1,0) msgLayout.addWidget(inpThreshold,1,1) msgLayout.addWidget(buttonActive,2,0) msgLayout.addWidget(buttonAll,2,1) msgLayout.addLayout(buttonLayout,3,0,1,2) msg.setLayout(msgLayout) msg.inputWidth = inpWidth msg.inputThreshold = inpThreshold msg.applyToAll = buttonAll self._widget = msg self._widget.buttonActive = buttonActive self._widget.buttonAll = buttonAll if self._widget.exec(): self.threshold = float(self._widget.inputThreshold.value()) self.width = int(self._widget.inputWidth.value()) if not (self.width%2): self.width += 1 if self._widget.buttonAll.isChecked(): _logger.debug('AllChecked') self.removeSpikesAll() elif self._widget.buttonActive.isChecked(): _logger.debug('ActiveChecked') self.removeSpikesActive() def removeSpikesAll(self): self.medianThresholdFilter(False, self.threshold, self.width) def removeSpikesActive(self): self.medianThresholdFilter(True, self.threshold, self.width) def medianThresholdFilter(self, activeOnly, threshold, length): if activeOnly: active = self.getActiveCurve() if not active: return else: x, y, legend, info = active[:4] self.removeCurve(legend) spectra = [active] else: spectra = self.getAllCurves() for (idx, spec) in enumerate(spectra): x, y, legend, info = spec[:4] xlabel=info.get("xlabel", None) ylabel=info.get("ylabel", None) filtered = medfilt1d(y, length) diff = filtered-y mean = diff.mean() sigma = (y-mean)**2 sigma = numpy.sqrt(sigma.sum()/float(len(sigma))) ynew = numpy.where(abs(diff) > threshold * sigma, filtered, y) legend = info.get('selectionlegend',legend) + ' SR' if (idx==0) and (len(spectra)!=1): self.addCurve(x, ynew, legend, info, xlabel=xlabel, ylabel=ylabel, replace=True, replot=False) elif idx == (len(spectra)- 1): self.addCurve(x, ynew, legend, info, xlabel=xlabel, ylabel=ylabel, replace=False, replot=True) else: self.addCurve(x, ynew, legend, info, xlabel=xlabel, ylabel=ylabel, replace=False, replot=False) #self._plotWindow.replot() MENU_TEXT = "Remove glitches from curves" def getPlugin1DInstance(plotWindow, **kw): ob = MedianFilterScanDeglitchPlugin(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGui import PlotWindow app = qt.QApplication([]) sw = PlotWindow.PlotWindow() x = numpy.linspace(0, 1999, 2000) y0 = x/100. + 100.*numpy.exp(-(x-500)**2/1000.) + 50.*numpy.exp(-(x-1200)**2/5000.) + 100.*numpy.exp(-(x-1700)**2/500.) + 10 * numpy.random.random(2000) y1 = x/100. + 100.*numpy.exp(-(x-600)**2/1000.) + 50.*numpy.exp(-(x-1000)**2/5000.) + 100.*numpy.exp(-(x-1500)**2/500.) + 10 * numpy.random.random(2000) for idx in range(20): y0[idx*100] = 500. * numpy.random.random(1) y1[idx*100] = 500. * numpy.random.random(1) sw.addCurve(x, y0, legend="Curve0") sw.addCurve(x, y1, legend="Curve1") sw.setActiveCurve("Curve0") plugin = getPlugin1DInstance(sw) plugin.configureFilter() sw.show() app.exec() ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MedianFilterScanPlugin.py��������������������������������������0000644�0000000�0000000�00000020522�14741736366�022650� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin provides methods to replace curves by their median filter average. 3-, 5-, 7- or 9-points filters are provided. The filter can be applied on the data in its original order, or in a randomized order. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5 import Plugin1DBase from PyMca5.PyMcaMath.fitting import SpecfitFuns from PyMca5.PyMcaMath.PyMcaSciPy.signal.median import medfilt1d class MedianFilterScanPlugin(Plugin1DBase.Plugin1DBase): '''Methods to replace curves by their median filter average.''' def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.__randomization = True self.__methodKeys = [] self.methodDict = {} text = "Use a random order instead\n" text += "of the plotting order." info = text icon = None function = self.toggleRandomization method = "Toggle Randomization OFF" self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) method = "Toggle Randomization ON" text = "Use plotting order instead\n" text += "of a random order." self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) function = self.applyMedianFilter for i in [3, 5, 7, 9]: info = "Replace curves by their %d-point median filter average" % i method = "Replace by %d-point median filter" % i self.methodDict[method] = [function, info, icon] self.__methodKeys.append(method) #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ if self.__randomization: return self.__methodKeys[0:1] + self.__methodKeys[2:] else: return self.__methodKeys[1:] def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return None def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ if name.startswith('Toggle'): return self.methodDict[name][0]() n = int(name.split('-')[0].split()[-1]) return self.applyMedianFilter(width=n) def toggleRandomization(self): if self.__randomization: self.__randomization = False else: self.__randomization = True def applyMedianFilter(self, width=3): curves = self.getAllCurves() nCurves = len(curves) if nCurves < width: raise ValueError("At least %d curves needed" % width) return if self.__randomization: indices = numpy.random.permutation(nCurves) else: indices = range(nCurves) # get active curve activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = curves[0] # apply between graph limits x0 = activeCurve[0][:] y0 = activeCurve[1][:] xmin, xmax =self.getGraphXLimits() idx = numpy.nonzero((x0 >= xmin) & (x0 <= xmax))[0] x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) #sort the values idx = numpy.argsort(x0, kind='mergesort') x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) #remove duplicates x0 = x0.ravel() idx = numpy.nonzero((x0[1:] > x0[:-1]))[0] x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) x0.shape = -1, 1 nChannels = x0.shape[0] # built a couple of temporary array of spectra for handy access tmpArray = numpy.zeros((nChannels, nCurves), numpy.float64) medianSpectra = numpy.zeros((nChannels, nCurves), numpy.float64) i = 0 for idx in indices: x, y, legend, info = curves[idx][0:4] #sort the values x = x[:] idx = numpy.argsort(x, kind='mergesort') x = numpy.take(x, idx) y = numpy.take(y, idx) #take the portion of x between limits idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0] if not len(idx): # no overlap continue x = numpy.take(x, idx) y = numpy.take(y, idx) #remove duplicates x = x.ravel() idx = numpy.nonzero((x[1:] > x[:-1]))[0] x = numpy.take(x, idx) y = numpy.take(y, idx) x.shape = -1, 1 if numpy.allclose(x, x0): # no need for interpolation pass else: # we have to interpolate x.shape = -1 y.shape = -1 xi = x0[:] y = SpecfitFuns.interpol([x], y, xi, y0.min()) y.shape = -1 tmpArray[:, i] = y i += 1 # now perform the median filter for i in range(nChannels): medianSpectra[i, :] = medfilt1d(tmpArray[i,:], kernel_size=width) tmpArray = None # now get the final spectrum y = medianSpectra.sum(axis=1) / nCurves x0.shape = -1 y.shape = x0.shape legend = "%d Median from %s to %s" % (width, curves[0][2], curves[-1][2]) self.addCurve(x0, y, legend=legend, info=None, replot=True, replace=True) MENU_TEXT = "Median Filter Average" def getPlugin1DInstance(plotWindow, **kw): ob = MedianFilterScanPlugin(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication([]) from PyMca5.PyMcaGraph import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) #app = qt.QApplication() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MedianFilterStackPlugin.py�������������������������������������0000644�0000000�0000000�00000013373�14741736366�023037� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin open a new stack window with a configurable median filter applied to the data. The user can select the frame and modify the filter width. He can also choose to apply a conditional median filter instead of the regular median filter. With a regular median filter, each pixel value is replaced with the median value of all pixels in the window. With the conditional option enabled, the pixel value is only replaced if it is the minimum or the maximum value in the smoothing window. """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.pymca import Median2DBrowser from PyMca5.PyMcaGui import PyMca_Icons _logger = logging.getLogger(__name__) class MedianFilterStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Show':[self._showWidget, "Image Browser with Median Filter", PyMca_Icons.brushselect]} self.__methodKeys = ['Show'] self.widget = None def stackUpdated(self): _logger.debug("StackBrowserPlugin.stackUpdated() called") if self.widget is None: return if self.widget.isHidden(): return stack = self.getStackDataObject() self.widget.setStackDataObject(stack, stack_name="Stack Index") self.widget.setBackgroundImage(self._getBackgroundImage()) mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def _getBackgroundImage(self): images, names = self.getStackROIImagesAndNames() B = None for key in names: if key.endswith("ackground"): B = images[names.index(key)] return B def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def stackROIImageListUpdated(self): if self.widget is None: return self.widget.setBackgroundImage(self._getBackgroundImage()) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _showWidget(self): if self.widget is None: self.widget = Median2DBrowser.Median2DBrowser(parent=None, rgbwidget=None, selection=True, colormap=True, imageicons=True, standalonesave=True, profileselection=True) self.widget.setKernelWidth(1) self.widget.setSelectionMode(True) qt = Median2DBrowser.qt self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) #Show self.widget.show() self.widget.raise_() #update self.stackUpdated() MENU_TEXT = "Image Browser with Median Filter" def getStackPluginInstance(stackWindow, **kw): ob = MedianFilterStackPlugin(stackWindow) return ob ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MotorInfoPlugin.py���������������������������������������������0000644�0000000�0000000�00000013546�14741736366�021424� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin opens a widget displaying values of various motors associated with each spectrum, if the curve originates from a file whose format provides this information. """ __author__ = "Tonn Rueter" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase try: from PyMca5.PyMcaPlugins import MotorInfoWindow except ImportError: try: # Frozen version from PyMcaPlugins import MotorInfoWindow except Exception: print("MotorInfoPlugin importing from somewhere else") import MotorInfoWindow import logging _logger = logging.getLogger(__name__) class MotorInfo(Plugin1DBase.Plugin1DBase): """This plugin opens a widget displaying values of various motors associated with each spectrum, if the curve originates from a file whose format provides this information. """ def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = 'Show values of various motors.' function = self.showMotorInfo icon = None info = text self.methodDict["Show Motor Info"] =[function, info, icon] self.widget = None def getMethods(self, plottype=None): names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): self.methodDict[name][0]() return def showMotorInfo(self): legendList, motorValuesList = self._getLists() if self.widget is None: self._createWidget(legendList, motorValuesList) else: self.widget.table.updateTable(legendList, motorValuesList) self.widget.show() self.widget.raise_() def _getLists(self): curves = self.getAllCurves() nCurves = len(curves) _logger.debug("Received %d curve(s)..", nCurves) legendList = [leg for (xvals, yvals, leg, info) in curves] infoList = [info for (xvals, yvals, leg, info) in curves] motorValuesList = self._convertInfoDictionary(infoList) return legendList, motorValuesList def _convertInfoDictionary(self, infosList): ret = [] for info in infosList : motorNames = info.get('MotorNames', None) if motorNames is not None: if type(motorNames) == str: namesList = motorNames.split() elif type(motorNames) == list: namesList = motorNames else: namesList = [] else: namesList = [] motorValues = info.get('MotorValues', None) if motorNames is not None: if type(motorValues) == str: valuesList = motorValues.split() elif type(motorValues) == list: valuesList = motorValues else: valuesList = [] else: valuesList = [] if len(namesList) == len(valuesList): ret.append( dict( zip( namesList, valuesList ) ) ) else: print("Number of motors and values does not match!") return ret def _createWidget(self, legendList, motorValuesList): parent = None self.widget = MotorInfoWindow.MotorInfoDialog(parent, legendList, motorValuesList) self.widget.buttonUpdate.clicked.connect(self.showMotorInfo) self.widget.updateShortCut.activated.connect(self.showMotorInfo) MENU_TEXT = "Motor Info" def getPlugin1DInstance(plotWindow, **kw): ob = MotorInfo(plotWindow) return ob if __name__ == "__main__": # Basic test setup import numpy from PyMca5.PyMcaGraph import Plot from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication([]) x = numpy.arange(100.) y = numpy.arange(100.) plot = Plot.Plot() plot.addCurve(x, y, "Curve1", {'MotorNames': "foo bar", 'MotorValues': "3.14 2.97"}) plot.addCurve(x+100, y, "Curve2", {'MotorNames': "baz", 'MotorValues': "6.28"}) plugin = getPlugin1DInstance(plot) plugin.applyMethod(plugin.getMethods()[0]) app.exec() ����������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MotorInfoWindow.py���������������������������������������������0000644�0000000�0000000�00000032445�14741736366�021434� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2020 T. Rueter, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tonn Rueter" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import IconDict from PyMca5.PyMcaGui.misc.TableWidget import TableWidget if hasattr(qt, 'QString'): QString = qt.QString else: QString = qt.safe_str _logger = logging.getLogger(__name__) class MotorInfoComboBox(qt.QComboBox): loadColumnSignal = qt.pyqtSignal(object) def __init__(self, parent, mlist, nCol): qt.QComboBox.__init__(self, parent) self.motorNamesList = [""] + mlist self.nColumn = nCol self.addItems([QString(elem) for elem in self.motorNamesList]) self.activated.connect(self.emitLoadColumnSignal) def emitLoadColumnSignal(self): ddict = {} ddict['column'] = self.nColumn ddict['motor'] = str(self.currentText()) ddict['event'] = "activated" self.loadColumnSignal.emit(ddict) def currentMotor(self): return str(self.currentText()) def updateMotorNamesList(self, newMotorNamesList): currentMotorName = self.currentMotor() self.clear() newMotorNamesList = [''] + newMotorNamesList self.motorNamesList = newMotorNamesList self.addItems([QString(elem) for elem in self.motorNamesList]) newIndex = self.findText(currentMotorName) if newIndex < 0: newIndex = 0 self.setCurrentIndex(newIndex) class MotorInfoHeader(qt.QHeaderView): xOffsetLeft = 5 xOffsetRight = -5 yOffset = 0 def __init__(self, parent): qt.QHeaderView.__init__(self, qt.Qt.Horizontal, parent) self.boxes = [] self.sectionResized.connect( self.handleSectionResized ) if hasattr(self, "setClickable"): # Qt 4 self.setClickable(True) else: # Qt 5 self.setSectionsClickable(True) self.setDefaultSectionSize(120) self.setMinimumSectionSize(120) def showEvent(self, event): if len(self.boxes) == 0: self.boxes = [None] * self.count() for idx in range(1, self.count()): if self.boxes[idx] is None: newBox = MotorInfoComboBox(self, self.parent().motorNamesList, idx) newBox.loadColumnSignal.connect(self.parent().loadColumn) newBox.resize(self.sectionSize(idx) - 30, self.height()) self.boxes[idx] = newBox self.boxes[idx].setGeometry(self.sectionViewportPosition(idx) + self.xOffsetLeft, self.yOffset, self.sectionSize(idx) + self.xOffsetRight, self.height()) #if idx > 0: # self.setTabOrder(self.boxes[idx-1], self.boxes[idx]) self.boxes[idx].show() qt.QHeaderView.showEvent(self, event) def handleSectionResized(self, index): for idx in range(self.visualIndex(index), len(self.boxes)): if idx > 0: logical = self.logicalIndex(idx) self.boxes[idx].setGeometry(self.sectionViewportPosition(logical) + self.xOffsetLeft, self.yOffset, self.sectionSize(logical) + self.xOffsetRight, self.height()) def deleteLastSection(self): self.boxes[-1].close() del( self.boxes[-1] ) def addLastSection(self): idx = self.count()-1 newBox = MotorInfoComboBox(self, self.parent().motorNamesList, idx) newBox.loadColumnSignal.connect(self.parent().loadColumn) newBox.setGeometry(self.sectionViewportPosition(idx) + self.xOffsetLeft, self.yOffset, self.sectionSize(idx) + self.xOffsetRight, self.height() ) newBox.show() self.boxes += [newBox] def fixComboPositions(self): for idx in range(1, self.count()): self.boxes[idx].setGeometry(self.sectionViewportPosition(idx) + self.xOffsetLeft, self.yOffset, self.sectionSize(idx) + self.xOffsetRight, self.height()) class MotorInfoTable(TableWidget): def __init__(self, parent, numRows, numColumns, legList, motList): TableWidget.__init__(self, parent) self.setRowCount(0) self.setColumnCount(numColumns) self.currentComboBox = 1 self.legendsList = legList self.motorsList = motList self.motorNamesList = self.getAllMotorNames() self.motorNamesList.sort() self.infoDict = dict( zip( self.legendsList, self.motorsList ) ) self.header = MotorInfoHeader(self) self.setHorizontalHeader(self.header) self.setHorizontalHeaderItem(0, qt.QTableWidgetItem('Legend')) #self.setSortingEnabled(True) self.verticalHeader().hide() self.setSelectionBehavior(qt.QAbstractItemView.SelectRows) self.setShowGrid(False) for idx in range(len(self.legendsList)): curveLegend = self.legendsList[idx] self.insertRow(idx) self.setItem(idx, 0, curveLegend ) for jdx in range(1, self.columnCount()): self.setItem(0, jdx, '') #self.sortByColumn(0, qt.Qt.AscendingOrder) def addColumn(self): currentColumn = self.columnCount() self.insertColumn(currentColumn) self.header.addLastSection() def delColumn(self): if self.columnCount() > 1: self.removeColumn(self.columnCount()-1) self.header.deleteLastSection() def fillRow(self, currentRow): legend = self.legendsList[currentRow] self.setItem(currentRow, 0, legend ) def updateTable(self, legList, motList): _logger.debug("updateTable received lengths = %d %d", len(legList), len(motList)) _logger.debug("updateTable received legList = %s", legList) _logger.debug("updateTable received motList = %s", motList) if legList is None: nItems = 0 else: nItems = len(legList) if self.legendsList == legList and self.motorsList == motList: _logger.debug("Ignoring update, no changes") else: nRows = self.rowCount() if nRows != nItems: self.setRowCount(nItems) self.infoDict = dict(zip(legList, motList)) self.legendsList = legList self.motorsList = motList motorNamesList = self.getAllMotorNames() motorNamesList.sort() for idx in range(0, self.columnCount()): cBox = self.header.boxes[idx] if cBox is not None: cBox.updateMotorNamesList(motorNamesList) self.motorNamesList = motorNamesList for idx in range(len(legList)): self.fillRow(idx) for idx in range(0, self.columnCount()): cBox = self.header.boxes[idx] if cBox is not None: cBox.emitLoadColumnSignal() def loadColumn(self, ddict): for key in ddict.keys(): if str(key) == str("motor"): motorName = ddict[key] elif str(key) == str("column"): column = ddict[key] if len(motorName) > 0: for idx in range(self.rowCount()): legend = str( self.item(idx, 0).text() ) curveInfo = self.infoDict.get(legend, None) if curveInfo is not None: motorValue = curveInfo.get(motorName, '---') else: motorValue = '---' self.setItem(idx, column, str(motorValue)) else: for idx in range(0, self.rowCount()): self.setItem(idx, column, '') # self.resizeColumnToContents(column) def getAllMotorNames(self): nameSet = [] for dic in self.motorsList: for key in dic.keys(): if key not in nameSet: nameSet.append(key) return nameSet def setItem(self, row, column, text=''): item = self.item(row, column) if item is None: item = qt.QTableWidgetItem(text) item.setFlags(qt.Qt.ItemIsSelectable | qt.Qt.ItemIsEnabled) qt.QTableWidget.setItem(self, row, column, item) else: item.setText(text) def scrollContentsBy(self, dx, dy): qt.QTableWidget.scrollContentsBy(self, dx, dy ) if (dx != 0): self.horizontalHeader().fixComboPositions() class MotorInfoDialog(qt.QWidget): def __init__(self, parent, legends, motorValues): """ legends List contains Plotnames motorValues List contains names and values of the motors """ qt.QWidget.__init__(self, parent) self.setWindowTitle("Motor Info Plugin") if len(legends) != len(motorValues): _logger.warning('Consistency error: legends and motorValues do not have same length!') self.numCurves = len(legends) # Buttons self.buttonAddColumn = qt.QPushButton("Add", self) self.buttonDeleteColumn = qt.QPushButton("Del", self) self.buttonUpdate = qt.QPushButton( qt.QIcon(qt.QPixmap(IconDict["reload"])), '', self) # Table self.table = MotorInfoTable(self, self.numCurves, 4, legends, motorValues) # Layout self.mainLayout = qt.QGridLayout(self) self.mainLayout.setContentsMargins(1, 1, 1, 1) self.mainLayout.setSpacing(2) self.buttonLayout = qt.QHBoxLayout(None) self.buttonLayout .setSpacing(1) # Add widgets to layour self.mainLayout.addWidget(self.table, 0, 0) self.mainLayout.addLayout(self.buttonLayout, 1, 0) self.buttonLayout.addWidget(self.buttonUpdate) self.buttonLayout.addWidget(self.buttonAddColumn) self.buttonLayout.addWidget(self.buttonDeleteColumn) self.buttonLayout.addWidget(qt.HorizontalSpacer(self)) self.resize(700, 400) # Create shortcuts self.updateShortCut = qt.QShortcut(qt.QKeySequence('F5'), self) self.addColShortCut = qt.QShortcut(qt.QKeySequence('Ctrl++'), self) self.delColShortCut = qt.QShortcut(qt.QKeySequence('Ctrl+-'), self) # Make connections self.buttonAddColumn.clicked.connect(self.table.addColumn) self.buttonDeleteColumn.clicked.connect(self.table.delColumn) self.addColShortCut.activated.connect(self.table.addColumn) self.delColShortCut.activated.connect(self.table.delColumn) def keyPressEvent(self, event): if (event.key() == qt.Qt.Key_Escape): self.close() def main(): import sys, random legends = ['Curve0', 'Curve1', 'Curve2', 'Curve3'] motors = [{'Motor12': 0.5283546103038855, 'Motor11': 0.8692713996985609, 'Motor10': 0.2198364185388587, 'Motor 8': 0.19806882661182112, 'Motor 9': 0.4844754557916431, 'Motor 4': 0.3502522172639875}, {'Motor18': 0.4707468826876532, 'Motor17': 0.6958160702991127, 'Motor16': 0.8257808117546283, 'Motor13': 0.09084289261899736, 'Motor12': 0.5190253643331453, 'Motor11': 0.21344565983311958}, {'Motor12': 0.6504890336783156, 'Motor11': 0.44400576643956124, 'Motor10': 0.613870067851634, 'Motor 8': 0.901968648110583, 'Motor 9': 0.3197687710845185, 'Motor 4': 0.5714322786278168}, {'Motor13': 0.6491598094029021, 'Motor12': 0.2975843286841311, 'Motor11': 0.006312468992195397, 'Motor 9': 0.014325738753558803, 'Motor 4': 0.8185362197656616, 'Motor 5': 0.6643614796103005}] app = qt.QApplication(sys.argv) w = MotorInfoDialog(None, legends, motors) w.show() app.exec() if __name__ == '__main__': main() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/MultipleScanToMeshPlugin.py������������������������������������0000644�0000000�0000000�00000035214�14741736366�023224� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Mauro Rovezzi & V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import sys import numpy import logging _logger = logging.getLogger(__name__) try: from matplotlib.mlab import griddata GRIDDATA = "matplotlib" except ImportError: # matplotlib 3.x got rid of griddata try: from scipy.interpolate import griddata GRIDDATA = "scipy" except ImportError: GRIDDATA = None _logger.info("matplotlib.mlab.griddata not available") from PyMca5 import Plugin1DBase from PyMca5.PyMcaGui import MaskImageWidget from PyMca5.PyMcaGui import PyMcaQt as qt class MultipleScanToMeshPlugin(Plugin1DBase.Plugin1DBase): """ This plugin attempts to create an image from multiple scans. It is aimed at dealing with: - ID26 RIXS Data - Meshes generated line by line. """ def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} self.methodDict['RIXS Etransfer'] = [self._energyTransfer, "Show RIXS E transfer image", None] self.methodDict['RIXS Eout'] = [self._energyAnalyzer, "Show RIXS E out image", None] self.methodDict['Mesh'] = [self._mesh, "Show mesh image", None] self._silx = None self._rixsWidget = None self._lastFixedMotorMne = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ try: self.methodDict[name][0]() except Exception: _logger.error(sys.exc_info()) raise def _mesh(self): return self._energyTransfer(mode="mesh") def _energyAnalyzer(self): return self._energyTransfer(mode="energyout") def _energyTransfer(self, mode="energytransfer"): allCurves = self.getAllCurves() nCurves = len(allCurves) if nCurves < 2: msg = "RIXS scans are built combining several single scans" raise ValueError(msg) self._xLabel = self.getGraphXLabel() self._yLabel = self.getGraphYLabel() if self._xLabel not in \ ["energy", "Energy", "Spec.Energy", "arr_hdh_ene", "Mono.Energy"]: if not self._xLabel.lower().startswith("energy"): msg = "X axis does not correspond to a supported RIXS scan" raise ValueError(msg) motorNames = allCurves[0][3]["MotorNames"] CHESS = False if self._xLabel == "Spec.Energy": # ID26 fixedMotorMne = "Mono.Energy" elif (self._xLabel == "Energy") and ("xes_dn_ana" in motorNames): # CHESS fixedMotorMne = "xes_dn_ana" CHESS = True msg = "Please use CHESS provided plugin. Contact beamline staff" raise RuntimeError(msg) elif (self._xLabel == "energy") and ("xes_en" in motorNames): # BM20 case fixedMotorMne = "xes_en" elif "Spec.Energy" in motorNames: # ID26 fixedMotorMne = "Spec.Energy" elif (self._xLabel == "energy_enc") and ("spenean0" in motorNames): # ID24-DCM fixedMotorMne = "spenean0" else: if self._lastFixedMotorMne is None: # TODO: Show a combobox to allow the selection of the "motor" pass if self._lastFixedMotorMne not in motorNames: self._lastFixedMotorMne = None msg = "Cannot automatically recognize motor mnemomnic to be used" raise ValueError(msg) fixedMotorIndex = allCurves[0][3]["MotorNames"].index(fixedMotorMne) #get the min and max values of the curves if fixedMotorMne != "Mono.Energy": xMin = allCurves[0][0][0] # ID26 data are already ordered xMax = allCurves[0][0][-1] minValues = numpy.zeros((nCurves,), numpy.float64) minValues[0] = xMin nData = len(allCurves[0][0]) i = 0 for curve in allCurves[1:]: i += 1 tmpMin = curve[0][0] tmpMax = curve[0][-1] minValues[i] = tmpMin if tmpMin < xMin: xMin = tmpMin if tmpMax > xMax: xMax =tmpMax nData += len(curve[0]) else: info = allCurves[0][3] xMin = info["MotorValues"][fixedMotorIndex] xMax = xMin nData = 0 i = 0 minValues = numpy.zeros((nCurves,), numpy.float64) for curve in allCurves: info = curve[3] tmpMin = info['MotorValues'][fixedMotorIndex] tmpMax = info['MotorValues'][fixedMotorIndex] minValues[i] = tmpMin if tmpMin < xMin: xMin = tmpMin if tmpMax > xMax: xMax =tmpMax nData += len(curve[0]) i += 1 #sort the curves orderIndex = minValues.argsort() #print "ORDER INDEX = ", orderIndex # express data in eV if (xMax - xMin) < 5.0 : # it seems data need to be multiplied factor = 1000. else: factor = 1.0 motor2Values = numpy.zeros((nCurves,), numpy.float64) xData = numpy.zeros((nData,), numpy.float32) yData = numpy.zeros((nData,), numpy.float32) zData = numpy.zeros((nData,), numpy.float32) start = 0 for i in range(nCurves): idx = orderIndex[i] curve = allCurves[idx] info = curve[3] nPoints = max(curve[0].shape) end = start + nPoints x = curve[0] z = curve[1] x.shape = -1 z.shape = -1 if fixedMotorMne == "Mono.Energy": xData[start:end] = info["MotorValues"][fixedMotorIndex] * factor yData[start:end] = x * factor elif CHESS: xData[start:end] = x * factor #yData[start:end] = info["MotorValues"][fixedMotorIndex] thetaDeg = 78.1119 + 0.5 * (info["MotorValues"][fixedMotorIndex] + 5.25) yData[start:end] = 12398.4 / (1.656446 * numpy.sin(numpy.pi*thetaDeg/180.)) else: xData[start:end] = x * factor yData[start:end] = info["MotorValues"][fixedMotorIndex] * factor zData[start:end] = z start = end # construct the grid in steps of eStep eV eStep = 0.05 n = int((xMax - xMin) * (factor / eStep)) grid0 = numpy.linspace(xMin * factor, xMax * factor, n) grid1 = numpy.linspace(yData.min(), yData.max(), n) # create the meshgrid xx, yy = numpy.meshgrid(grid0, grid1) if 0: # get the interpolated values etData = xData - yData grid3 = numpy.linspace(etData.min(), etData.max(), n) xx, yy = numpy.meshgrid(grid0, grid3) try: zz = griddata(xData, etData, zData, xx, yy) except RuntimeError: zz = griddata(xData, etData, zData, xx, yy, interp='linear') # show them if self._rixsWidget is None: self._rixsWidget = MaskImageWidget.MaskImageWidget(\ imageicons=False, selection=False, profileselection=True, scanwindow=self) shape = zz.shape xScale = (xx.min(), (xx.max() - xx.min())/float(zz.shape[1])) yScale = (yy.min(), (yy.max() - yy.min())/float(zz.shape[0])) self._rixsWidget.setImageData(zz, xScale=xScale, yScale=yScale) self._rixsWidget.setXLabel("Incident Energy (eV)") self._rixsWidget.setYLabel("Energy Transfer (eV)") self._rixsWidget.show() elif 1: if mode == "mesh": etData = yData else: etData = xData - yData grid3 = numpy.linspace(etData.min(), etData.max(), n) # create the meshgrid xx, yy = numpy.meshgrid(grid0, grid3) # get the interpolated values if GRIDDATA == "matplotlib": try: zz = griddata(xData, etData, zData, xx, yy) except Exception: # Natural neighbor interpolation not always possible zz = griddata(xData, etData, zData, xx, yy, interp='linear') elif GRIDDATA == "scipy": zz = griddata((xData, etData), zData, (xx, yy), method='linear') else: raise RuntimeError("griddata function not available") if self._rixsWidget is None: try: from PyMca5.PyMcaGui.pymca import RGBImageCalculator self._rixsWidget = \ RGBImageCalculator.RGBImageCalculator( \ math=False, usesilx=True) if not hasattr(self._rixsWidget, "setXLabel"): self._rixsWidget.setXLabel = \ self._rixsWidget.graphWidget.plot.setGraphXLabel self._rixsWidget.setYLabel = \ self._rixsWidget.graphWidget.plot.setGraphYLabel self._silx = True except Exception: _logger.info("Cannot use SilxMaskImageWidget") self._silx = False self._rixsWidget = MaskImageWidget.MaskImageWidget(\ imageicons=False, selection=False, aspect=True, profileselection=True, scanwindow=self) self._rixsWidget.setLineProjectionMode('X') #actualMax = zData.max() #actualMin = zData.min() #zz = numpy.where(numpy.isfinite(zz), zz, actualMax) shape = zz.shape xScale = (xx.min(), (xx.max() - xx.min())/float(zz.shape[1])) if mode == "energyout": yScale = (yy.min() + yData.min(), (yy.max() - yy.min())/float(zz.shape[0])) else: yScale = (yy.min(), (yy.max() - yy.min())/float(zz.shape[0])) self._rixsWidget.setXLabel("Incident Energy (eV)") if mode == "mesh": self._rixsWidget.setYLabel("Emitted Energy (eV)") elif mode == "energyout": self._rixsWidget.setYLabel("Emitted Energy (eV)") else: self._rixsWidget.setYLabel("Energy Transfer (eV)") if self._silx: self._rixsWidget.graphWidget.setImageData(zz, xScale=xScale, yScale=yScale) else: self._rixsWidget.setImageData(zz, xScale=xScale, yScale=yScale) # self._rixsWidget.graph.replot() self._rixsWidget.show() self._rixsWidget.raise_() return MENU_TEXT = "MultipleScanToMeshPlugin" def getPlugin1DInstance(plotWindow, **kw): ob = MultipleScanToMeshPlugin(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGraph import Plot app = qt.QApplication([]) #w = ConfigurationWidget() #w.exec() #sys.exit(0) _logger.setLevel(logging.DEBUG) x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/NNMAStackPlugin.py���������������������������������������������0000644�0000000�0000000�00000030631�14741736366�021221� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ A Stack plugin is a module that will be automatically added to the PyMca stack windows in order to perform user defined operations on the data stack. These plugins will be compatible with any stack window that provides the functions: #data related getStackDataObject getStackData getStackInfo setStack #images related addImage removeImage replaceImage #mask related setSelectionMask getSelectionMask #displayed curves getActiveCurve getGraphXLimits getGraphYLimits #information method stackUpdated selectionMaskUpdated """ import numpy import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaGui.math.NNMAWindow import NNMAParametersDialog from PyMca5.PyMcaGui import StackPluginResultsWindow from PyMca5.PyMcaGui import PyMca_Icons qt = StackPluginResultsWindow.qt _logger = logging.getLogger(__name__) class NNMAStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Calculate': [self.calculate, "Perform NNMA", None], 'Show': [self._showWidget, "Show last results", PyMca_Icons.brushselect]} self.__methodKeys = ['Calculate', 'Show'] self.configurationWidget = None self.widget = None self.thread = None def stackUpdated(self): _logger.debug("NNMAStackPlugin.stackUpdated() called") self.configurationWidget = None self.widget = None def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "addAllClicked": for i in range(len(ddict["images"])): self.addImage(ddict['images'][i], ddict['titles'][i]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self.widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() #The specific part def calculate(self): stack = self.getStackDataObject() mcaIndex = stack.info.get('McaIndex') shape = stack.data.shape stack = None if mcaIndex not in [0, -1, len(shape) - 1]: raise IndexError("NNMA only support stacks of images or spectra") return if self.configurationWidget is None: self.configurationWidget = NNMAParametersDialog(None, regions=True) self._status = qt.QLabel(self.configurationWidget) self._status.setAlignment(qt.Qt.AlignHCenter) font = qt.QFont(self._status.font()) font.setBold(True) self._status.setFont(font) self._status.setText("Ready") self.configurationWidget.layout().addWidget(self._status) activeCurve = self.getActiveCurve() if activeCurve is None: #I could get some defaults from the stack itslef raise ValueError("Please select an active curve") return x, spectrum, legend, info = activeCurve spectrumLength = int(max(spectrum.shape)) oldValue = self.configurationWidget.nPC.value() self.configurationWidget.nPC.setMaximum(spectrumLength) self.configurationWidget.nPC.setValue(min(oldValue, spectrumLength)) binningOptions = [1] for number in [2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19]: if (spectrumLength % number) == 0: binningOptions.append(number) # TODO: Should inform the configuration widget about the possibility # to encounter non-finite data? ddict = {'options': binningOptions, 'binning': 1, 'method': 0} self.configurationWidget.setParameters(ddict) y = spectrum self.configurationWidget.setSpectrum(x, y, legend=legend, info=info) self.configurationWidget.show() self.configurationWidget.raise_() ret = self.configurationWidget.exec() if ret: self._executeFunctionAndParameters() def _executeFunctionAndParameters(self): _logger.debug("NNMAStackPlugin _executeFunctionAndParameters") self.widget = None self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.configurationWidget.show() message = "Please wait. NNMA Calculation going on." _logger.debug("NNMAStackPlugin starting thread") self.thread.start() _logger.debug("NNMAStackPlugin waitingMessageDialog") CalculationThread.waitingMessageDialog(self.thread, message=message, parent=self.configurationWidget) _logger.debug("NNMAStackPlugin waitingMessageDialog passed") self.threadFinished() def actualCalculation(self): _logger.debug("NNMAStackPlugin actualCalculation") nnmaParameters = self.configurationWidget.getParameters() self._status.setText("Calculation going on") self.configurationWidget.setEnabled(False) #self.configurationWidget.close() #At some point I should make sure I get directly the #function and the parameters from the configuration widget function = nnmaParameters['function'] ddict = {} ddict.update(nnmaParameters['kw']) ddict['ncomponents'] = nnmaParameters['npc'] ddict['binning'] = nnmaParameters['binning'] ddict['spectral_mask'] = nnmaParameters['spectral_mask'] #ddict['kmeans'] = False if not self.isStackFinite(): # one has to check for NaNs in the used region(s) # for the time being only in the global image # spatial_mask = numpy.isfinite(image_data) spatial_mask = numpy.isfinite(self.getStackOriginalImage()) ddict['mask'] = spatial_mask del nnmaParameters stack = self.getStackDataObject() if isinstance(stack, numpy.ndarray): if stack.data.dtype not in [numpy.float64, numpy.float32]: _logger.warning("WARNING: Non floating point data") text = "Calculation going on." text += " WARNING: Non floating point data." self._status.setText(text) oldShape = stack.data.shape mcaIndex = stack.info.get('McaIndex') if mcaIndex == 0: # image stack. We need a copy _logger.info("NNMAStackPlugin converting to stack of spectra") data = numpy.zeros(oldShape[1:] + oldShape[0:1], dtype=numpy.float32) data.shape = -1, oldShape[0] for i in range(oldShape[0]): tmpData = stack.data[i] tmpData.shape = -1 data[:, i] = tmpData data.shape = oldShape[1:] + oldShape[0:1] result = function(data, **ddict) data = None else: result = function(stack, **ddict) if stack.data.shape != oldShape: stack.data.shape = oldShape return result def threadFinished(self): _logger.debug("NNMAStackPlugin threadFinished") result = self.thread.result self.thread = None if type(result) == type((1,)): #if we receive a tuple there was an error if len(result): if isinstance(result[0], str) and result[0] == "Exception": self._status.setText("Ready after calculation error") self.configurationWidget.setEnabled(True) raise Exception(result[1], result[2]) return self._status.setText("Ready") curve = self.configurationWidget.getSpectrum(binned=True) if curve not in [None, []]: xValues = curve[0] else: xValues = None self.configurationWidget.setEnabled(True) self.configurationWidget.close() images, eigenValues, eigenVectors = result imageNames = None vectorNames = None nimages = images.shape[0] imageNames = [] vectorNames = [] vectorTitles = [] for i in range(nimages): imageNames.append("NNMA Image %02d" % i) vectorNames.append("NNMA Component %02d" % i) vectorTitles.append("%g %% explained intensity" %\ eigenValues[i]) _logger.debug("NNMAStackPlugin threadFinished. Create widget") self.widget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=True) _logger.debug("NNMAStackPlugin threadFinished. Widget created") self.widget.buildAndConnectImageButtonBox(replace=True, multiple=True) qt = StackPluginResultsWindow.qt self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) if xValues is not None: xValues = [xValues] * nimages self.widget.setStackPluginResults(images, spectra=eigenVectors, image_names=imageNames, xvalues=xValues, spectra_names=vectorNames, spectra_titles=vectorTitles) self._showWidget() def _showWidget(self): if self.widget is None: return #Show self.widget.show() self.widget.raise_() #update self.selectionMaskUpdated() MENU_TEXT = "PyMca NNMA" def getStackPluginInstance(stackWindow, **kw): ob = NNMAStackPlugin(stackWindow) return ob �������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/NormalizationPlugins.py����������������������������������������0000644�0000000�0000000�00000030735�14741736366�022520� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin provides methods to normalize all curves. Following normalization methods are available: - Normalize to maximum y / max(y) - Subtract offset and normalize to new maximum (y-min(y))/(max(y)-min(y)) - Subtract offset and normalize to integrated area (y-min(y))/trapz(max(y)-min(y),x) - Subtract offset and normalize to counts (y-min(y))/sum(max(y)-min(y)) - Divide all curves by active curve - Take the negative of the log of the previous division """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase import numpy from PyMca5.PyMcaGui import PyMca_Icons try: from PyMca5.PyMcaMath.fitting import SpecfitFuns HAS_SPECFIT = True except ImportError: HAS_SPECFIT = False class NormalizationPlugins(Plugin1DBase.Plugin1DBase): '''Normalization methods to simplify curve comparison''' def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {'y/max(y)':[self.toMaximum, "Normalize to maximum", None], '(y-min(y))/(max(y)-min(y))':[self.offsetAndMaximum, "Subtract offset and normalize to new maximum", None], '(y-min(y))/trapz(max(y)-min(y),x)':[self.offsetAndArea, "Subtract offset and normalize to integrated area", None], '(y-min(y))/sum(max(y)-min(y))':[self.offsetAndCounts, "Subtract offset and normalize to counts", None]} self._plotType = None if HAS_SPECFIT: self.methodDict['y/yactive'] = [self.divideByActiveCurve, "Divide all curves by active curve", None] self.methodDict['-log(y/yactive)'] = [self.minusLogDivideByActiveCurve, "Take the negative log of the division of each curve by active curve", None] #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ self._plotType = plottype names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def toMaximum(self): curves = self.getAllCurves() nCurves = len(curves) if not nCurves: return xmin, xmax = self.getGraphXLimits() i = 0 for curve in curves: x, y, legend, info = curve[0:4] i1 = numpy.nonzero((x >= xmin) & (x <= xmax))[0] yMax = numpy.take(y, i1).max() try: y = y/yMax except Exception: continue if i == 0: replace = (self._plotType != "MCA") replot = True i = 1 else: replot = False replace = False self.addCurve(x, y, legend=legend, info=info, replot=replot, replace=replace) self.addCurve(x, y, legend=legend, info=info, replot=True, replace=False) def offsetAndMaximum(self): curves = self.getAllCurves() nCurves = len(curves) if not nCurves: return xmin, xmax = self.getGraphXLimits() i = 0 for curve in curves: x, y, legend, info = curve[0:4] i1 = numpy.nonzero((x >= xmin) & (x <= xmax))[0] x = numpy.take(x, i1) y = numpy.take(y, i1) try: ymin = numpy.nanmin(y) y = y - ymin ymax = numpy.nanmax(y) if ymax != 0: y = y / ymax except Exception: print(sys.exc_info()) continue if i == 0: replace = (self._plotType != "MCA") replot = True i = 1 else: replot = False replace = False self.addCurve(x, y, legend=legend, info=info, replot=replot, replace=replace) self.addCurve(x, y, legend=legend, info=info, replot=True, replace=False) def offsetAndCounts(self): curves = self.getAllCurves() nCurves = len(curves) if not nCurves: return xmin, xmax = self.getGraphXLimits() i = 0 for curve in curves: x, y, legend, info = curve[0:4] i1 = numpy.nonzero((x >= xmin) & (x <= xmax))[0] x = numpy.take(x, i1) y = numpy.take(y, i1) try: ymin = numpy.nanmin(y) y = y - ymin ysum = numpy.nansum(y) y = y / ysum except Exception: print(sys.exc_info()) continue if i == 0: replace = (self._plotType != "MCA") replot = True i = 1 else: replot = False replace = False self.addCurve(x, y, legend=legend, info=info, replot=replot, replace=replace) self.addCurve(x, y, legend=legend, info=info, replot=True, replace=False) def offsetAndArea(self): curves = self.getAllCurves() nCurves = len(curves) if not nCurves: return xmin, xmax = self.getGraphXLimits() i = 0 for curve in curves: x, y, legend, info = curve[0:4] i1 = numpy.nonzero((x >= xmin) & (x <= xmax))[0] x = numpy.take(x, i1) y = numpy.take(y, i1) try: ymin = numpy.nanmin(y) y = y - ymin y = y / numpy.trapz(y, x) except Exception: print(sys.exc_info()) continue if i == 0: replace = (self._plotType != "MCA") replot = True i = 1 else: replot = False replace = False self.addCurve(x, y, legend=legend, info=info, replot=replot, replace=replace) self.addCurve(x, y, legend=legend, info=info, replot=True, replace=False) def minusLogDivideByActiveCurve(self): return self.divideByActiveCurve(minusLog=True) def divideByActiveCurve(self, minusLog=False): #all curves curves = self.getAllCurves() nCurves = len(curves) if nCurves < 2: raise ValueError("At least two curves needed") return #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve xmin, xmax = self.getGraphXLimits() y = y.astype(numpy.float64) #get the nonzero values idx = numpy.nonzero(abs(y) != 0.0)[0] if not len(idx): raise ValueError("All divisor values are zero!") x0 = numpy.take(x, idx) y0 = numpy.take(y, idx) #sort the values idx = numpy.argsort(x0, kind='mergesort') x0 = numpy.take(x0, idx) y0 = numpy.take(y0, idx) i = 0 for curve in curves: x, y, legend, info = curve[0:4] if legend == legend0: continue #take the portion ox x between limits idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0] if not len(idx): #no overlap continue x = numpy.take(x, idx) y = numpy.take(y, idx) idx = numpy.nonzero((x0 >= numpy.nanmin(x)) & (x0 <= numpy.nanmax(x)))[0] if not len(idx): #no overlap continue xi = numpy.take(x0, idx) yi = numpy.take(y0, idx) #perform interpolation xi.shape = -1, 1 yw = SpecfitFuns.interpol([x], y, xi, yi.min()) y = yw / yi if minusLog: y = -numpy.log(y) legend = "-log(%s/%s)" % (legend, legend0) else: legend = "%s/%s" % (legend, legend0) if i == 0: replace = (self._plotType != "MCA") replot = True i = 1 else: replot = False replace = False # this line is absolutely necessary! xi.shape = y.shape self.addCurve(xi, y, legend=legend, info=info, replot=replot, replace=replace) lastCurve = [xi, y, legend] self.addCurve(lastCurve[0], lastCurve[1], legend=lastCurve[2], info=info, replot=True, replace=False) MENU_TEXT = "Normalization" def getPlugin1DInstance(plotWindow, **kw): ob = NormalizationPlugins(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGraph import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) �����������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/PCAStackPlugin.py����������������������������������������������0000644�0000000�0000000�00000035711�14741736366�021077� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin opens a window allowing to configure and compute the principal component analysis. Each spectrum is considered an *observation*, and each channel is considered a *variable*. The user can configure following parameters: - PCA method (*Covariance, Expectation Max, Covariance Multiple Arrays*) - Number of Principal Components - Spectral Binning - Spectral Regions After the configuration dialog is validated, the eigenimages and the eigenvectors are computed and displayed in another window. """ # TODO: explain PCA methods and regions # TODO: provide a practical use case for a PCA. Isolating elements? __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaMath.mva import KMeansModule from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaGui.math.PCAWindow import PCAParametersDialog from PyMca5.PyMcaGui import StackPluginResultsWindow from PyMca5.PyMcaGui.pymca import RGBImageCalculator from PyMca5.PyMcaGui import PyMca_Icons qt = StackPluginResultsWindow.qt _logger = logging.getLogger(__name__) class PCAStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Calculate': [self.calculate, "Perform PCA", None], 'Show': [self._showWidget, "Show last results", PyMca_Icons.brushselect]} self.__methodKeys = ['Calculate', 'Show'] if 0 and KMeansModule.KMEANS: self.methodDict['KMeans'] = [self._showKMeansWidget, "KMeans", None] self.__methodKeys.append('KMeans') self.configurationWidget = None self.widget = None self._kMeansWidget = None self.thread = None def stackUpdated(self): _logger.debug("PCAStackPlugin.stackUpdated() called") self.configurationWidget = None self.widget = None self._kMeansWidget = None def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): if self._kMeansWidget is None: return elif self._kMeansWidget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) if self._kMeansWidget: self._kMeansWidget.graphWidget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "addAllClicked": for i in range(len(ddict["images"])): self.addImage(ddict['images'][i], ddict['titles'][i]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self.widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() #The specific part def calculate(self): if self.configurationWidget is None: stack = self.getStackDataObject() index = stack.info.get("McaIndex", -1) if index == len(stack.data.shape): index = -1 stack = None self.configurationWidget = PCAParametersDialog(None, regions=True, index=index) self._status = qt.QLabel(self.configurationWidget) self._status.setAlignment(qt.Qt.AlignHCenter) font = qt.QFont(self._status.font()) font.setBold(True) self._status.setFont(font) self._status.setText("Ready") self.configurationWidget.layout().addWidget(self._status) self.configurationWidget.setEnabled(True) activeCurve = self.getActiveCurve() if activeCurve is None: #I could get some defaults from the stack itslef raise ValueError("Please select an active curve") return x, spectrum, legend, info = activeCurve spectrumLength = max(spectrum.shape) oldValue = self.configurationWidget.nPC.value() self.configurationWidget.nPC.setMaximum(spectrumLength) self.configurationWidget.nPC.setValue(min(oldValue, spectrumLength)) binningOptions = [1] for number in [2, 3, 4, 5, 7, 9, 10, 11, 13, 15, 17, 19]: if (spectrumLength % number) == 0: binningOptions.append(number) # TODO: Should inform the configuration widget about the possibility # to encounter non-finite data? ddict = {'options': binningOptions, 'binning': 1, 'method': 0} self.configurationWidget.setParameters(ddict) y = spectrum self.configurationWidget.setSpectrum(x, y, legend=legend, info=info) self.configurationWidget.show() ret = self.configurationWidget.exec() if ret: self._kMeansWidget = None self._executeFunctionAndParameters() def _executeFunctionAndParameters(self): self.widget = None self.configurationWidget.show() if _logger.getEffectiveLevel() == logging.DEBUG: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.result = self.actualCalculation() self.threadFinished() else: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.start() message = "Please wait. PCA Calculation going on." CalculationThread.waitingMessageDialog(self.thread, message=message, parent=self.configurationWidget) self.threadFinished() def actualCalculation(self): pcaParameters = self.configurationWidget.getParameters() self._status.setText("Calculation going on") self.configurationWidget.setEnabled(False) #self.configurationWidget.close() self.__methodlabel = pcaParameters.get('methodlabel', "") function = pcaParameters['function'] pcaParameters['ncomponents'] = pcaParameters['npc'] # At some point I should make sure I get directly the # function and the parameters from the configuration widget del pcaParameters['npc'] del pcaParameters['method'] del pcaParameters['function'] del pcaParameters['methodlabel'] # binning = pcaParameters['binning'] # mask = pcaParameters['mask'] regions = pcaParameters['regions'] spectral_mask = pcaParameters['spectral_mask'] #print("regions = ", regions) #del pcaParameters['regions'] #del pcaParameters['spectral_mask'] #print("Regions and spectral mask not handled yet") if not self.isStackFinite(): # one has to check for NaNs in the used region(s) # for the time being only in the global image # spatial_mask = numpy.isfinite(image_data) spatial_mask = numpy.isfinite(self.getStackOriginalImage()) pcaParameters['mask'] = spatial_mask pcaParameters["legacy"] = False _logger.info("PCA function %s" % function.__name__) _logger.info("PCA parameters %s" % pcaParameters) if "Multiple" in self.__methodlabel: stackList = self.getStackDataObjectList() oldShapes = [] for stack in stackList: oldShapes.append(stack.data.shape) result = function(stackList, **pcaParameters) for i in range(len(stackList)): stackList[i].data.shape = oldShapes[i] return result else: stack = self.getStackDataObject() if isinstance(stack, numpy.ndarray): if stack.data.dtype not in [numpy.float64, numpy.float32]: _logger.warning("WARNING: Non floating point data") text = "Calculation going on." text += " WARNING: Non floating point data." self._status.setText(text) oldShape = stack.data.shape result = function(stack, **pcaParameters) if stack.data.shape != oldShape: stack.data.shape = oldShape return result def threadFinished(self): result = self.thread.getResult() self.thread = None if type(result) == type((1,)): #if we receive a tuple there was an error if len(result): if isinstance(result[0], str) and result[0] == "Exception": self._status.setText("Ready after calculation error") self.configurationWidget.setEnabled(True) raise Exception(result[1], result[2]) return self._status.setText("Ready") curve = self.configurationWidget.getSpectrum(binned=True) if curve not in [None, []]: xValues = curve[0] else: xValues = None self.configurationWidget.setEnabled(True) self.configurationWidget.close() if hasattr(result, "keys"): # new way images = result["scores"] eigenValues = result["eigenvalues"] eigenVectors = result["eigenvectors"] variance = result.get("variance", None) if variance is not None: explainedVariance = [] for value in eigenValues: explainedVariance.append(100 * (value/variance)) else: variance = None images, eigenValues, eigenVectors = result methodlabel = self.__methodlabel imageNames = None vectorNames = None nimages = images.shape[0] imageNames = [] vectorNames = [] itmp = nimages if " ICA " in methodlabel: itmp = int(nimages / 2) for i in range(itmp): imageNames.append("ICAimage %02d" % i) vectorNames.append("ICAvector %02d" % i) if "Multiple" in methodlabel: xValues = None for i in range(itmp): imageNames.append("Eigenimage %02d" % i) vectorNames.append("Eigenvector %02d" % i) if variance is not None: vectorNames[-1] = "EV%02d Explained variance %.4f %%" % \ (i, explainedVariance[i]) self.widget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=True) self.widget.buildAndConnectImageButtonBox(replace=True, multiple=True) qt = StackPluginResultsWindow.qt self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) if xValues is not None: xValues = [xValues] * nimages self.widget.setStackPluginResults(images, spectra=eigenVectors, image_names=imageNames, xvalues=xValues, spectra_names=vectorNames) self._showWidget() def _showWidget(self): if self.widget is None: return #Show self.widget.show() self.widget.raise_() #update self.selectionMaskUpdated() def _showKMeansWidget(self): if self._kMeansWidget is None: self._kMeansWidget = RGBImageCalculator.RGBImageCalculator( \ math="kmeans", selection=True) #self._kMeansWidget = MaskImageWidget.MaskImageWidget() #labels = KMeansModule.label(view, k=int(min(nImages, 4))) #labels.shape = nRows, nColumns self._kMeansWidget.graphWidget.sigMaskImageWidgetSignal.connect( \ self.mySlot) # self._kMeansWidget.setImageData(labels) imageDict = {} for i in range(len(self.widget.imageList)): imageDict[self.widget.imageNames[i]] = \ {"image":self.widget.imageList[i]} self._kMeansWidget.imageList = list(imageDict.keys()) self._kMeansWidget.imageDict = imageDict #Show self._kMeansWidget.show() self._kMeansWidget.raise_() #update self.selectionMaskUpdated() MENU_TEXT = "PyMca PCA" def getStackPluginInstance(stackWindow, **kw): ob = PCAStackPlugin(stackWindow) return ob �������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/Plugin1DBase.py������������������������������������������������0000644�0000000�0000000�00000003531�14741736366�020540� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" # What does it make more sense: to import from PyMca5.PyMcaPlugins, from # PyMca5.PyMcaCore or from PyMca5? # All the possibilities make sense, message removed # print("Please update your plugins") # print("Use from PyMca5 import Plugin1DBase") try: from PyMca5.PyMcaCore.Plugin1DBase import * except Exception: from PyMca5.Plugin1DBase import * �����������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ROIStackPlugin.py����������������������������������������������0000644�0000000�0000000�00000013074�14741736366�021123� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin opens a stack ROI window providing alternative views: - Usual sum of counts in the region - Channel/Energy at data Max in the region. - Channel/Energy at data Min in the region. - Map of the counts at the first channel of the region - Map of the counts at the middle cahnnel of the region - Map of the counts at the last channel of the region - Background counts This window also provides a median filter tool, with a configurable filter width, to get rid of outlier pixel. The mask of this plot widget is synchronized with the primary stack widget. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.pymca import StackROIWindow from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons _logger = logging.getLogger(__name__) class ROIStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Show':[self._showWidget, "Show ROIs", PyMca_Icons.brushselect]} self.__methodKeys = ['Show'] self.roiWindow = None def stackUpdated(self): _logger.debug("ROIStackPlugin.stackUpdated() called") if self.roiWindow is None: return if self.roiWindow.isHidden(): return images, names = self.getStackROIImagesAndNames() self.roiWindow.setImageList(images, imagenames=names, dynamic=False) mask = self.getStackSelectionMask() self.roiWindow.setSelectionMask(mask) def selectionMaskUpdated(self): if self.roiWindow is None: return if self.roiWindow.isHidden(): return mask = self.getStackSelectionMask() self.roiWindow.setSelectionMask(mask) def stackClosed(self): if self.roiWindow is not None: self.roiWindow.close() def stackROIImageListUpdated(self): self.stackUpdated() def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _showWidget(self): if self.roiWindow is None: self.roiWindow = StackROIWindow.StackROIWindow(parent=None, crop=False, rgbwidget=None, selection=True, colormap=True, imageicons=True, standalonesave=True, profileselection=True) self.roiWindow.setSelectionMode(True) qt = StackROIWindow.qt self.roiWindow.sigMaskImageWidgetSignal.connect(self.mySlot) #Show self.roiWindow.show() self.roiWindow.raise_() #update ROIs self.stackUpdated() MENU_TEXT = "Alternative ROI Options" def getStackPluginInstance(stackWindow, **kw): ob = ROIStackPlugin(stackWindow) return ob ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/RegularMeshPlugin.py�������������������������������������������0000644�0000000�0000000�00000020414�14741736366�021716� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import sys import logging from PyMca5 import Plugin1DBase from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import MaskImageWidget _logger = logging.getLogger(__name__) class RegularMeshPlugins(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} self.methodDict['Show Image'] = [self._convert, "Show mesh as image", None] self.imageWidget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ try: self.methodDict[name][0]() except: _logger.error(sys.exc_info()) raise def _convert(self): x, y, legend, info = self.getActiveCurve() self._x = x[:] self._y = y[:] if 'Header' in info: # SPEC command = info['Header'][0] elif "title" in info: command = info["title"] else: raise ValueError("Active curve does not seem to be a mesh scan") if "mesh" not in command: raise ValueError("Active curve does not seem to be a mesh scan") idx = command.index("mesh") item = command[idx:].split() xLabel = self.getGraphXLabel() yLabel = self.getGraphYLabel() m0idx = 1 m1idx = 5 self._motor0Mne = item[m0idx] self._motor1Mne = item[m1idx] _logger.info("Scanned motors are %s and %s" % (self._motor0Mne, self._motor1Mne)) #print("MOTOR 0 ", float(item[m0idx + 1]), # float(item[m0idx + 2]), # int(item[m0idx + 3])) #print("MOTOR 1 ", float(item[m1idx + 1]), # float(item[m1idx + 2]), # int(item[m1idx + 3])) _logger.info("Assuming scans written in terms of number of intervals") plusOne = 1 #Assume an EXACTLY regular mesh for both motors self._motor0 = numpy.linspace(float(item[m0idx + 1]), float(item[m0idx + 2]), int(item[m0idx + 3]) + plusOne) self._motor1 = numpy.linspace(float(item[m1idx + 1]), float(item[m1idx + 2]), int(item[m1idx + 3]) + plusOne) #Didier's contribution: Try to do something if scan has been interrupted if y.size < (int(item[m0idx + 3])+plusOne) * (int(item[m1idx + 3])+plusOne): _logger.warning("WARNING: Incomplete mesh scan") self._motor1 = numpy.resize(self._motor1, (y.size // (int(item[m0idx + 3])+plusOne),)) y = numpy.resize(y,((y.size // (int(item[m0idx + 3])+plusOne) * \ (int(item[m0idx + 3])+plusOne)),1)) try: if xLabel.upper() == motor0Mne.upper(): self._motor0 = self._x self._motor0Mne = self._xLabel elif xLabel.upper() == motor1Mne.upper(): self._motor1 = self._x self._motor1Mne = self._xLabel elif xLabel == info['selection']['cntlist'][0]: self._motor0 = self._x self._motor0Mne = self._xLabel elif xLabel == info['selection']['cntlist'][1]: self._motor1 = self._x self._motor1Mne = self._xLabel except Exception: _logger.debug("XLabel should be one of the scanned motors") if "dmesh" in command: # relative positions, we have to provide an offset # the offset should be in the positioners if present offsets = [] if ["MotorNames" in info] and ["MotorValues" in info]: for key in [self._motor0Mne, self._motor1Mne]: if key in info["MotorNames"]: idx = info["MotorNames"].index(key) offsets.append(info["MotorValues"][idx]) if len(offsets) == 2: self._motor0 += offsets[0] self._motor1 += offsets[1] else: _logger.warning("Using relative positions") self._legend = legend self._info = info yView = y[:] yView.shape = len(self._motor1), len(self._motor0) if self.imageWidget is None: self.imageWidget = MaskImageWidget.MaskImageWidget(\ imageicons=False, selection=False, profileselection=True, aspect=True, scanwindow=self) deltaX = self._motor0[1] - self._motor0[0] deltaY = self._motor1[1] - self._motor1[0] self.imageWidget.setImageData(yView, xScale=(self._motor0[0], deltaX), yScale=(self._motor1[0], deltaY)) self.imageWidget.setXLabel(self._motor0Mne) self.imageWidget.setYLabel(self._motor1Mne) self.imageWidget.show() MENU_TEXT = "RegularMeshPlugins" def getPlugin1DInstance(plotWindow, **kw): ob = RegularMeshPlugins(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGraph import Plot app = qt.QApplication([]) _logger.setLevel(logging.DEBUG) x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/ReverseStackPlugin.py������������������������������������������0000644�0000000�0000000�00000021314�14741736366�022101� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin offers 4 methods for rearranging spectra within the stack data cube: - Reverse Odd Rows - Reverse Even Rows - Reverse Odd Columns - Reverse Even Columns """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5 import StackPluginBase _logger = logging.getLogger(__name__) class ReverseStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} text = "Replace current stack by one\n" text += "with odd rows reversed." function = self.reverseOddRows info = text icon = None self.methodDict["Reverse Odd Rows"] = [function, info, icon] text = "Replace current stack by one\n" text += "with even rows reversed." function = self.reverseEvenRows info = text icon = None self.methodDict["Reverse Even Rows"] = [function, info, icon] text = "Replace current stack by one\n" text += "with odd columns reversed." function = self.reverseOddColumns info = text icon = None self.methodDict["Reverse Odd Columns"] = [function, info, icon] text = "Replace current stack by one\n" text += "with odd columns reversed." function = self.reverseEvenColumns info = text icon = None self.methodDict["Reverse Even Columns"] = [function, info, icon] self.__methodKeys = ["Reverse Odd Rows", "Reverse Even Rows", "Reverse Odd Columns", "Reverse Even Columns"] #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def reverseOddRows(self): self.reverseRows(offset=1) self.reversePositioners(offset=1, direction="rows") def reverseEvenRows(self): self.reverseRows(offset=0) self.reversePositioners(offset=0, direction="rows") def reverseOddColumns(self): self.reverseColumns(offset=1) self.reversePositioners(offset=1, direction="columns") def reverseEvenColumns(self): self.reverseColumns(offset=0) self.reversePositioners(offset=0, direction="columns") def reverseRows(self, offset=1): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: ndata = stack.data.shape[1] limit = 0.5 * ndata for i in range(offset, stack.data.shape[0], 2): j = 0 while j < limit: tmp = stack.data[i, j, :] * 1 stack.data[i, j, :] = stack.data[i,(ndata-j-1),:] * 1 stack.data[i,(ndata-j-1),:] = tmp j += 1 elif mcaIndex == 0: ndata = stack.data.shape[2] limit = 0.5 * ndata for i in range(offset, stack.data.shape[1], 2): j = 0 while j < limit: tmp = stack.data[:, i, j] * 1 stack.data[:, i, j] = stack.data[:, i,(ndata-j-1)] * 1 stack.data[:, i,(ndata-j-1)] = tmp j += 1 else: raise ValueError("Invalid 1D index %d" % mcaIndex) self.setStack(stack) def reverseColumns(self, offset=1): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: ndata = stack.data.shape[0] limit = 0.5 * ndata for i in range(offset, stack.data.shape[1], 2): j = 0 while j < limit: tmp = stack.data[j, i, :] * 1 stack.data[j, i, :] = stack.data[(ndata-j-1), i,:] * 1 stack.data[(ndata-j-1), i,:] = tmp j += 1 elif mcaIndex == 0: ndata = stack.data.shape[1] limit = 0.5 * ndata for i in range(offset, stack.data.shape[2], 2): j = 0 while j < limit: tmp = stack.data[:, j, i] * 1 stack.data[:, j, i] = stack.data[:,(ndata-j-1), i] * 1 stack.data[:, (ndata-j-1), i] = tmp j += 1 else: raise ValueError("Invalid 1D index %d" % mcaIndex) self.setStack(stack) def reversePositioners(self, offset=1, direction="rows"): """Re-arrange positioners data to preserve the match between a pixel of the stack image and the corresponding values when reversing half the rows or half the columns. :param int offset: 1 to reverse odd rows orcolumns, 0 to reverse even ones. :param str direction: "rows" or "columns" """ assert direction in ["rows", "columns"] stackImageShape = self.getStackOriginalImage().shape positioners = self.getStackInfo().get("positioners", None) if positioners is None: return newPositioners = {} for motorName, motorValues in positioners.items(): if numpy.isscalar(motorValues) or (hasattr(motorValues, "ndim") and motorValues.ndim == 0): # scalar newPositioners[motorName] = motorValues else: # non-scalar positioners are always stored as arrays in info originalShape = motorValues.shape motorValues2d = numpy.array(motorValues, copy=True) motorValues2d.shape = stackImageShape if direction == "rows": motorValues2d[offset::2] = numpy.fliplr(motorValues2d[offset::2]) elif direction == "columns": motorValues2d[:, offset::2] = numpy.flipud(motorValues2d[:, offset::2]) newPositioners[motorName] = motorValues2d.reshape(originalShape) self._stackWindow.setPositioners(newPositioners) MENU_TEXT = "Stack Row or Column Reversing" def getStackPluginInstance(stackWindow, **kw): ob = ReverseStackPlugin(stackWindow) return ob ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/SilxExternalImagesStackPlugin.py�������������������������������0000644�0000000�0000000�00000027021�14741736366�024237� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*######################################################################### # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """This plugin open a file selection dialog to open an image in a new window. Usual image data formats are supported, as well as standard image formats (JPG, PNG). The tool is meant to view an alternative view of the data, such as a photograph of the sample or a different type of scientific measurement of the same sample, and to compare it with the image displayed in the primary stack window. The primary image is overlaid with the newly opened image, and its level of transparency can be configured with a slider. The window offer a cropping tool, to crop the image to the current visible zoomed area and then resize it to fit the original size. It also provides a tool to rotate the image. The mask of the plot widget is synchronized with the primary stack widget.""" __authors__ = ["V.A. Sole", "P. Knobel", "W. De Nolf"] __contact__ = "sole@esrf.fr" __license__ = "MIT" import os import numpy from PyMca5.PyMcaGui import ExternalImagesStackPluginBase from PyMca5.PyMcaGui import SilxExternalImagesWindow from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons # temporarily disable logging when importing silx and fabio import logging logging.basicConfig() logging.disable(logging.ERROR) from silx.image.bilinear import BilinearImage logging.disable(logging.NOTSET) # TODO: in the future maybe we want to change the RGB correlator to accept different image # sizes and we won't need resizing anymore def resize_image(original_image, new_shape): """Return resized image :param original_image: :param tuple(int) new_shape: New image shape (rows, columns) :return: New resized image, as a 2D numpy array """ bilinimg = BilinearImage(original_image) row_array, column_array = numpy.meshgrid( numpy.linspace(0, original_image.shape[0], int(new_shape[0])), numpy.linspace(0, original_image.shape[1], int(new_shape[1])), indexing="ij") interpolated_values = bilinimg.map_coordinates((row_array, column_array)) interpolated_values.shape = new_shape return interpolated_values class SilxExternalImagesStackPlugin(ExternalImagesStackPluginBase.ExternalImagesStackPluginBase): def __init__(self, stackWindow): ExternalImagesStackPluginBase.ExternalImagesStackPluginBase.__init__(self, stackWindow) self.methodDict = {'Load': [self._loadImageFiles, "Load Images", PyMca_Icons.fileopen], 'Show': [self._showMenu, "Select an image to show it", PyMca_Icons.brushselect], 'Clear images': [self._clearAllWidgets, "Clear open images"]} self.__methodKeys = ['Load', 'Show', 'Clear images'] self.windows = {} """Dictionary of SilxExternalImagesWindow widgets indexed by their background image label.""" def stackUpdated(self): self.windows = {} def selectionMaskUpdated(self): if not self.windows: return mask = self.getStackSelectionMask() for w in self.windows.values(): if not w.isHidden(): w.setSelectionMask(mask) def stackClosed(self): for label in self.windows: self.windows[label].close() def onWidgetSignal(self, ddict): """triggered by self.windows["foo"].sigMaskImageWidget""" if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict["current"]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] in ["addImageClicked", "replaceImageClicked"]: # resize external image to the stack shape stack_image_shape = self._getStackImageShape() external_image = ddict['image'] resized_image = resize_image(external_image, stack_image_shape) if ddict['event'] == "addImageClicked": self.addImage(resized_image, ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(resized_image, ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) elif ddict['event'] in ["cropSignal", "flipUpDownSignal", "flipLeftRightSignal", "rotateRight", "rotateLeft"]: self._onBgImageChanged() #Methods implemented by the plugin def getMethods(self): if not self.windows: return [self.__methodKeys[0]] # only Load else: return self.__methodKeys # Load and show def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): if len(self.methodDict[name]) < 3: return None return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _createStackPluginWindow(self, imagenames, imagelist): image_shape = self._getStackImageShape() origin, delta = self._getStackOriginDelta() h = delta[1] * image_shape[0] w = delta[0] * image_shape[1] stack_images, stack_names = self.getStackROIImagesAndNames() stack_info = self.getStackInfo() if "bgimages" not in stack_info: stack_info["bgimages"] = {} for bgimg, bglabel in zip(imagelist, imagenames): if bglabel not in self.windows: self.windows[bglabel] = SilxExternalImagesWindow.SilxExternalImagesWindow() self.windows[bglabel].sigMaskImageWidget.connect( self.onWidgetSignal) self.windows[bglabel].show() # add the stack image for mask operation self.windows[bglabel].setImages([stack_images[0]], labels=[stack_names[0]], origin=origin, width=w, height=h) self.windows[bglabel].plot.getImage("current").setAlpha(0) # add the external image self.windows[bglabel].setBackgroundImages([bgimg], labels=[bglabel], origins=[origin], widths=[w], heights=[h]) self.windows[bglabel].plot.setGraphTitle(bglabel) # also store bg images as a stack info attribute stack_info["bgimages"][bglabel] = {"data": bgimg, "origin": origin, "width": w, "height": h} self._showWidget(bglabel) def _createStackPluginWindowQImage(self, imagenames, imagelist): imagelist = list(map(self.qImageToRgba, imagelist)) self._createStackPluginWindow(imagenames, imagelist) def _onBgImageChanged(self): """Update bg images in stack info dict""" stack_info = self.getStackInfo() if "bgimages" not in stack_info: stack_info["bgimages"] = {} for win in self.windows.values(): stack_info["bgimages"].update(win.getBgImagesDict()) def _getStackOriginDelta(self): info = self.getStackInfo() xscale = info.get("xScale", [0.0, 1.0]) yscale = info.get("yScale", [0.0, 1.0]) origin = xscale[0], yscale[0] delta = xscale[1], yscale[1] return origin, delta def _getStackImageShape(self): """Return 2D stack image shape""" image_shape = list(self.getStackOriginalImage().shape) return image_shape def _showWidget(self, label): if label not in self.windows: return #Show self.windows[label].show() self.windows[label].raise_() #update self.selectionMaskUpdated() def _showMenu(self): """Create a show menu allowing to show any of the existing external image windows""" if len(self.windows) == 1: label = self.windows.keys()[0] self.windows[label].showAndRaise() return showMenu = qt.QMenu() for label in self.windows: action = qt.QAction(label, showMenu) action.setToolTip('Show window displaying image "%s"' % label) action.triggered.connect(self.windows[label].showAndRaise) showMenu.addAction(action) showMenu.exec_(qt.QCursor.pos()) def _clearAllWidgets(self): # delete widgets for label in self.windows: self.windows[label].deleteLater() # clear dict self.windows.clear() @staticmethod def qImageToRgba(qimage): width = qimage.width() height = qimage.height() if qimage.format() == qt.QImage.Format_Indexed8: pixmap0 = numpy.frombuffer(qimage.bits().asstring(width * height), dtype=numpy.uint8) pixmap = numpy.zeros((height * width, 4), numpy.uint8) pixmap[:, 0] = pixmap0[:] pixmap[:, 1] = pixmap0[:] pixmap[:, 2] = pixmap0[:] pixmap[:, 3] = 255 pixmap.shape = height, width, 4 else: qimage = qimage.convertToFormat(qt.QImage.Format_ARGB32) pixmap0 = numpy.frombuffer(qimage.bits().asstring(width * height * 4), dtype=numpy.uint8) pixmap = numpy.array(pixmap0) # copy pixmap.shape = height, width, -1 # Qt uses BGRA, convert to RGBA tmpBuffer = numpy.array(pixmap[:, :, 0], copy=True, dtype=pixmap.dtype) pixmap[:, :, 0] = pixmap[:, :, 2] pixmap[:, :, 2] = tmpBuffer return pixmap @property def _dialogParent(self): if self.windows: return next(iter(self.windows.values())) else: return None MENU_TEXT = "Silx External Images Tool" def getStackPluginInstance(stackWindow, **kw): ob = SilxExternalImagesStackPlugin(stackWindow) return ob ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/SilxRoiStackPlugin.py������������������������������������������0000644�0000000�0000000�00000015553�14741736366�022067� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*######################################################################### # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """ This plugin opens a stack ROI window providing alternative views: - Usual sum of counts in the region - Channel/Energy at data Max in the region. - Channel/Energy at data Min in the region. - Map of the counts at the first channel of the region - Map of the counts at the middle cahnnel of the region - Map of the counts at the last channel of the region - Background counts The background image can be subtracted from the other images to show a net count. If positioner data is available, the values corresponding to the mouse cursor position in the plot are displayed in a widget underneath the plot. If an external background images, such as a photo of the sample, has been loaded using the external images plugin, it is displayed on the background layer. A slider allows to increase the transparency of the foreground data image to view this background image. This window also provides a median filter tool, with a configurable filter width, to smooth the stack image. The mask of the plot widget is synchronized with the primary stack widget. """ __authors__ = ["V.A. Sole", "P. Knobel"] __contact__ = "sole@esrf.fr" __license__ = "MIT" from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.plotting import SilxMaskImageWidget from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons class SilxRoiStackPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow): StackPluginBase.StackPluginBase.__init__(self, stackWindow) self.methodDict = {'Show': [self._showWidget, "Show ROIs", PyMca_Icons.brushselect]} self.__methodKeys = ['Show'] self.widget = None def _getStackOriginScale(self): """Return origin and scale, as defined in silx plot addImage method """ info = self.getStackInfo() xscale = info.get("xScale", [0.0, 1.0]) yscale = info.get("yScale", [0.0, 1.0]) origin = xscale[0], yscale[0] scale = xscale[1], yscale[1] return origin, scale def _getStackImageShape(self): """Return 2D stack image shape""" image_shape = list(self.getStackOriginalImage().shape) return image_shape def stackUpdated(self): if self.widget is None: return if self.widget.isHidden(): return images, names = self.getStackROIImagesAndNames() image_shape = self._getStackImageShape() origin, scale = self._getStackOriginScale() info = {"positioners": self.getStackInfo().get("positioners", {})} if info["positioners"]: self.widget.setMotorPositionsVisible(True) else: self.widget.setMotorPositionsVisible(False) infos = [info] # for _img in images] h = scale[1] * image_shape[0] w = scale[0] * image_shape[1] self.widget.setImages(images, labels=names, origin=origin, width=w, height=h, infos=infos) self.widget.setSelectionMask(self.getStackSelectionMask()) self._updateBgImages() def _updateBgImages(self): bgimages = self.getStackInfo().get("bgimages", {}) if bgimages: datas, labels, origins, heights, widths = [], [], [], [], [] for lab, bgimg in bgimages.items(): labels.append(lab) datas.append(bgimg["data"]) origins.append(bgimg["origin"]) heights.append(bgimg["height"]) widths.append(bgimg["width"]) self.widget.setBackgroundImages(datas, labels, origins, heights, widths) def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def stackROIImageListUpdated(self): self.stackUpdated() def stackClosed(self): if self.widget is not None: self.widget.close() def mySlot(self, ddict): if ddict['event'] == "selectionMaskChanged": mask = ddict["current"] self.setStackSelectionMask(mask) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _showWidget(self): if self.widget is None: self.widget = SilxMaskImageWidget.SilxMaskImageWidget() self.widget.setMedianFilterWidgetVisible(True) self.widget.setBackgroundActionVisible(True) self.widget.setProfileToolbarVisible(True) self.widget.setAlphaSliderVisible(True) self.widget.sigMaskImageWidget.connect(self.mySlot) # Show self.widget.show() self.widget.raise_() self.stackUpdated() MENU_TEXT = "Silx Alternative ROI Options" def getStackPluginInstance(stackWindow): ob = SilxRoiStackPlugin(stackWindow) return ob �����������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/SimpleShift.py�������������������������������������������������0000644�0000000�0000000�00000006040�14741736366�020547� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2016 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin replaces all curves with a normalized and shifted curve. The minimum is subtracted, than the data is normalized to the maximum, and finally it is shifted up by i*0.1 (i being the curve index). """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5 import Plugin1DBase class Shifting(Plugin1DBase.Plugin1DBase): def getMethods(self, plottype=None): return ["Shift"] def getMethodToolTip(self, methodName): if methodName != "Shift": raise KeyError("Method %s not valid" % methodName) return "Subtract minimum, normalize to maximum, and shift up by 0.1" def applyMethod(self, methodName): if methodName != "Shift": raise ValueError("Method %s not valid" % methodName) allCurves = self.getAllCurves() increment = 0.1 for i in range(len(allCurves)): x, y, legend, info = allCurves[i][:4] delta = float(y.max() - y.min()) if delta < 1.0e-15: delta = 1.0 y = (y - y.min())/delta + i * increment if i == (len(allCurves) - 1): replot = True else: replot = False if i == 0: replace = True else: replace = False self.addCurve(x, y, legend=legend + " %.2f" % (i * increment), info=info, replace=replace, replot=replot) MENU_TEXT="Simple Vertical Shift" def getPlugin1DInstance(plotWindow, **kw): ob = Shifting(plotWindow) return ob ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackAxesPlugin.py���������������������������������������������0000644�0000000�0000000�00000013203�14741736366�021364� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin can be used to replace the stack's X data with data from a text file, or with the MCA curve's X or Y data. When loading from a file, the data should be in a format that can be loaded using `numpy.loadtxt <https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.loadtxt.html>`_, i.e. must be a CSV file without a header line and with a single column. """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMcaGui import PyMca_Icons _logger = logging.getLogger(__name__) class StackAxesPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) text = "Replace current 1D axis by list of numbers found in ASCII file" self.methodDict = {} function = self.replace1DAxisWithASCII info = text icon = None self.methodDict["1D axis from ASCII file"] = [function, info, icon] self.__methodKeys = ["1D axis from ASCII file"] function = self.replace1DAxisWithActiveCurveXValues text = "Replace current 1D axis by X values in current MCA curve" info = text icon = None self.methodDict["1D axis from MCA curve X values"] = [function, info, icon] self.__methodKeys.append("1D axis from MCA curve X values") function = self.replace1DAxisWithActiveCurveYValues text = "Replace current 1D axis by Y values in current MCA curve" info = text icon = None self.methodDict["1D axis from MCA curve Y values"] = [function, info, icon] self.__methodKeys.append("1D axis from MCA curve Y values") #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def replace1DAxisWithASCII(self): stack = self.getStackDataObject() mcaIndex = stack.info.get('McaIndex', -1) nPoints = stack.data.shape[mcaIndex] fileList = PyMcaFileDialogs.getFileList(None, filetypelist=["ASCII files (*)"], message="Select ASCII file", mode="OPEN", getfilter=False, single=True) if not len(fileList): return filename = fileList[0] data = numpy.loadtxt(filename) data.shape = -1 if data.size != nPoints: raise ValueError("Number of read values not equal to %d" % nPoints) else: stack.x = [data] self.setStack(stack, mcaindex=mcaIndex) def replace1DAxisWithActiveCurveYValues(self): stack = self.getStackDataObject() mcaIndex = stack.info.get('McaIndex', -1) nPoints = stack.data.shape[mcaIndex] curve = self.getActiveCurve() data = curve[1] data.shape = -1 if data.size != nPoints: raise ValueError("Number of read values not equal to %d" % nPoints) else: stack.x = [data] self.setStack(stack, mcaindex=mcaIndex) def replace1DAxisWithActiveCurveXValues(self): stack = self.getStackDataObject() mcaIndex = stack.info.get('McaIndex', -1) nPoints = stack.data.shape[mcaIndex] curve = self.getActiveCurve() data = curve[0] data.shape = -1 if data.size != nPoints: raise ValueError("Number of read values not equal to %d" % nPoints) else: stack.x = [data] self.setStack(stack, mcaindex=mcaIndex) MENU_TEXT = "Stack Axes Options" def getStackPluginInstance(stackWindow, **kw): ob = StackAxesPlugin(stackWindow) return ob ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackBrowserPlugin.py������������������������������������������0000644�0000000�0000000�00000012701�14741736366�022111� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This plugin open a plot window with a browser to browse all images in the stack. A averaging filter with a configurable width is provided, to display an average of several consecutive frames rather than a single frame. The plot has also mask tools synchronized with the mask in the primary window. """ import logging from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.pymca import StackBrowser from PyMca5.PyMcaGui import PyMca_Icons _logger = logging.getLogger(__name__) class StackBrowserPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {'Show':[self._showWidget, "Show Stack Image Browser", PyMca_Icons.brushselect]} self.__methodKeys = ['Show'] self.widget = None def stackUpdated(self): _logger.debug("StackBrowserPlugin.stackUpdated() called") if self.widget is None: return if self.widget.isHidden(): return stack = self.getStackDataObject() self.widget.setStackDataObject(stack, stack_name="Stack Index") self.widget.setBackgroundImage(self._getBackgroundImage()) mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def _getBackgroundImage(self): images, names = self.getStackROIImagesAndNames() B = None for key in names: if key.endswith("ackground"): B = images[names.index(key)] return B def selectionMaskUpdated(self): if self.widget is None: return if self.widget.isHidden(): return mask = self.getStackSelectionMask() self.widget.setSelectionMask(mask) def stackROIImageListUpdated(self): if self.widget is None: return self.widget.setBackgroundImage(self._getBackgroundImage()) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _showWidget(self): if self.widget is None: self.widget = StackBrowser.StackBrowser(parent=None, rgbwidget=None, selection=True, colormap=True, imageicons=True, standalonesave=True, profileselection=True) self.widget.setSelectionMode(True) qt = StackBrowser.qt self.widget.sigMaskImageWidgetSignal.connect(self.mySlot) #Show self.widget.show() self.widget.raise_() #update self.stackUpdated() MENU_TEXT = "Stack Image Browser" def getStackPluginInstance(stackWindow, **kw): ob = StackBrowserPlugin(stackWindow) return ob ���������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackMotorInfoPlugin.py����������������������������������������0000644�0000000�0000000�00000021731�14741736366�022405� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*######################################################################### # Copyright (C) 2017-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """If positioners data is available for this stack, this plugin opens a stack plot with a widget displaying motor positions at the current mouse position in the plot.""" __authors__ = ["P. Knobel"] __contact__ = "sole@esrf.fr" __license__ = "MIT" from PyMca5 import StackPluginBase import PyMca5.PyMcaGui.PyMcaQt as qt from PyMca5.PyMcaGui.pymca import StackROIWindow try: from PyMca5.PyMcaPlugins import MotorInfoWindow except ImportError: from . import MotorInfoWindow from PyMca5.PyMcaGui.plotting import MaskImageTools class PointInfoWindow(qt.QWidget): """Display an image next to a MotorInfoWindow showing the values from `info["positioners"]` associated with the data underneath the mouse cursor.""" def __init__(self, parent=None, plugin=None): super(PointInfoWindow, self).__init__(parent) assert isinstance(plugin, StackPluginBase.StackPluginBase) self.plugin = plugin layout = qt.QVBoxLayout() self.setLayout(layout) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) self.maskImageWidget = StackROIWindow.StackROIWindow(self, crop=False, rgbwidget=None, selection=True, colormap=True, imageicons=True, standalonesave=True, profileselection=True) self.maskImageWidget.setSelectionMode(True) # self.maskImageWidget.setWindowFlags(qt.Qt.W) self.motorPositionsWindow = MotorInfoWindow.MotorInfoDialog(self, ["Stack"], [{}]) self.motorPositionsWindow.setMaximumHeight(120) self.maskImageWidget.sigMaskImageWidgetSignal.connect( \ self.onMaskImageWidgetSignal) self.maskImageWidget.graph.sigPlotSignal.connect(self._updateMotors) layout.addWidget(self.maskImageWidget) layout.addWidget(self.motorPositionsWindow) self._first_update = True def onMaskImageWidgetSignal(self, ddict): """triggered by self.widget.sigMaskImageWidget""" if ddict['event'] == "selectionMaskChanged": self.plugin.setStackSelectionMask(ddict["current"]) elif ddict['event'] == "removeImageClicked": self.plugin.removeImage(ddict['title']) elif ddict['event'] == "addImageClicked": self.plugin.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "replaceImageClicked": self.plugin.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.plugin.setStackSelectionMask(None) def _updateMotors(self, ddict): if not ddict["event"] == "mouseMoved": return motorsValuesAtCursor = self.plugin.getPositionersFromXY(ddict["x"], ddict["y"]) self.motorPositionsWindow.table.updateTable( legList=["Stack"], motList=[motorsValuesAtCursor]) if self._first_update: self._select_motors() self._first_update = False def _select_motors(self): """This methods sets the motors in the comboboxes when the widget is first initialized.""" for i, combobox in enumerate(self.motorPositionsWindow.table.header.boxes): # First item (index 0) in combobox is "", so first motor name is at index 1. # First combobox in header.boxes is at index 1 (boxes[0] is None). if i == 0: continue if i < combobox.count(): combobox.setCurrentIndex(i) class StackMotorInfoPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow): StackPluginBase.StackPluginBase.__init__(self, stackWindow) self.methodDict = {'Show motor positions': [self._showWidgets, "Show motor positions in a popup window"], } self.__methodKeys = ['Show motor positions'] self.widget = None def stackClosed(self): if self.widget is not None: self.widget.close() def _getStackOriginDelta(self): """Return (originX, originY) and (deltaX, deltaY) """ info = self.getStackInfo() xscale = info.get("xScale", [0.0, 1.0]) yscale = info.get("yScale", [0.0, 1.0]) origin = xscale[0], yscale[0] delta = xscale[1], yscale[1] return origin, delta def stackUpdated(self): if self.widget is None: return if self.widget.isHidden(): return images, names = self.getStackROIImagesAndNames() image_shape = list(self.getStackOriginalImage().shape) info = self.getStackInfo() xScale = (0.0, 1.0) # info["xScale"] yScale = (0.0, 1.0) # info["yScale"] self.widget.maskImageWidget.setImageList(images, imagenames=names, #xScale=xScale, #yScale=yScale, dynamic=False) self.widget.maskImageWidget.setSelectionMask(self.getStackSelectionMask()) def selectionMaskUpdated(self): if self.widget is None: return mask = self.getStackSelectionMask() if not self.widget.maskImageWidget.isHidden(): self.widget.maskImageWidget.setSelectionMask(mask) def _showWidgets(self): if "positioners" not in self.getStackInfo(): msg = qt.QMessageBox() msg.setWindowTitle("No positioners") msg.setIcon(qt.QMessageBox.Information) msg.setInformativeText("No positioners are set for this stack.") msg.raise_() msg.exec() return if self.widget is None: self.widget = PointInfoWindow(plugin=self) # Show self.widget.show() self.widget.raise_() self.stackUpdated() # fixme: is this necessary? def getPositionersFromXY(self, x, y): """Return positioner values for a stack pixel identified by it's (x, y) coordinates. """ nRows, nCols = self.getStackOriginalImage().shape info = self.getStackInfo() xScale = (0.0, 1.0) # info["xScale"] yScale = (0.0, 1.0) # info["yScale"] r, c = MaskImageTools.convertToRowAndColumn(x, y, shape=(nRows, nCols), xScale=xScale, yScale=yScale, safe=True) idx1d = r * nCols + c return self._stackWindow.getPositionersFromIndex(idx1d) #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): if len(self.methodDict[name]) < 3: return None return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() MENU_TEXT = "Stack Motor Positions" def getStackPluginInstance(stackWindow, **kw): ob = StackMotorInfoPlugin(stackWindow) return ob ���������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackNormalizationPlugin.py������������������������������������0000644�0000000�0000000�00000034556�14741736366�023330� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin provides normalisation methods. Two methods can be applied to normalize the stack based on the active curve (I0): - I/I0 Normalization: divide all spectra by the active curve - -log(I/I0) Normalization - -log10(I) Particular case not needing an active curve, for FTIR for instance - -log10(I/100) Same as above for data expressed in percentage. Three methods are provided to normalize the stack images based on an external image (I0) read from a file: - Image I/I0 Normalization - Image I * (max(I0)/I0) Scaling - Image -log(I/I0) Normalization External images can be read from following file formats: - EDF - HDF5 - ASCII If a multiframe EDF file is opened, the first frame is used. In case a HDF5 file is selected, a browser is used to select a 2D dataset. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5 import StackPluginBase # Add support for normalization by data from PyMca5.PyMcaGui.io import PyMcaFileDialogs from PyMca5.PyMca import EdfFile from PyMca5.PyMca import specfilewrapper from PyMca5.PyMca import HDF5Widget try: import h5py HDF5 = True except Exception: HDF5 = False _logger = logging.getLogger(__name__) class StackNormalizationPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} text = "Stack/I0 where I0 is the active curve\n" function = self.divideByCurve info = text icon = None self.methodDict["I/I0 Normalization"] =[function, info, icon] text = "-log(Stack/I0) Normalization where I0 is the active curve\n" function = self.logNormalizeByCurve info = text icon = None self.methodDict["-log(I/I0) Normalization"] =[function, info, icon] text = "-log10(Stack) Convert from transmission to absorption\n" function = self.logNormalizeByOne info = text icon = None self.methodDict["-log10(I) Normalization"] =[function, info, icon] text = "-log10(Stack) Convert from percentual transmission to absorption\n" function = self.logNormalizeByHundred info = text icon = None self.methodDict["-log10(I/100) Normalization"] =[function, info, icon] text = "External Image I/I0 Normalization where\n" text += "I0 is an image read from file\n" function = self.divideByExternalImage info = text icon = None self.methodDict["Image I/I0 Normalization"] =[function, info, icon] text = "External Image (I/I0) * max(I0) Normalization where\n" text += "I0 is an image read from file\n" function = self.scaleByExternalImage info = text icon = None self.methodDict["Image I * (max(I0)/I0) Scaling"] =[function, info, icon] text = "External Image -log(Stack/I0) Normalization\n" text += "where I0 is an image read from file\n" function = self.logNormalizeByExternalImage info = text icon = None self.methodDict["Image -log(I/I0) Normalization"] =[function, info, icon] self.__methodKeys = ["I/I0 Normalization", "-log(I/I0) Normalization", "-log10(I) Normalization", "-log10(I/100) Normalization", "Image I/I0 Normalization", "Image I * (max(I0)/I0) Scaling", "Image -log(I/I0) Normalization"] #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def _loadExternalData(self): getfilter = True fileTypeList = ["EDF Files (*edf *ccd *tif)"] if HDF5: fileTypeList.append('HDF5 Files (*.h5 *.nxs *.hdf *.hdf5)') fileTypeList.append('ASCII Files (*)') fileTypeList.append("EDF Files (*)") message = "Open data file" filenamelist, ffilter = PyMcaFileDialogs.getFileList(parent=None, filetypelist=fileTypeList, message=message, getfilter=getfilter, single=True, currentfilter=None) if len(filenamelist) < 1: return filename = filenamelist[0] if ffilter.startswith('HDF5'): data = HDF5Widget.getDatasetValueDialog( filename=filename, message='Select your data set by a double click') elif ffilter.startswith("EDF"): edf = EdfFile.EdfFile(filename, "rb") if edf.GetNumImages() > 1: # TODO: A dialog showing the different images # based on the external images browser needed _logger.warning("WARNING: Taking first image") data = edf.GetData(0) edf = None elif ffilter.startswith("ASCII"): #data=numpy.loadtxt(filename) sf = specfilewrapper.Specfile(filename) targetScan = sf[0] data = numpy.array(targetScan.data().T, copy=True) targetScan = None sf = None return data def scaleByExternalImage(self): self._externalImageOperation("scale") def divideByExternalImage(self): self._externalImageOperation("divide") def logNormalizeByExternalImage(self): self._externalImageOperation("log") def _externalImageOperation(self, operation="divide"): if operation == "log": operator = numpy.log stack = self.getStackDataObject() if stack is None: return if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks yet" raise TypeError(text) normalizationData = self._loadExternalData() if normalizationData is None: return mcaIndex = stack.info.get('McaIndex', -1) stackShape = stack.data.shape if mcaIndex < 0: mcaIndex = len(stackShape) - mcaIndex imageSize = stack.data.size / stackShape[mcaIndex] if normalizationData.size != imageSize: if normalizationData.shape[0] == imageSize: if len(normalizationData.shape) == 2: # assume the last column are the normalization data normalizationData = normalizationData[:, -1] if normalizationData.size != imageSize: raise ValueError("Loaded data size does not match required size") if normalizationData.dtype not in [numpy.float32, numpy.float64]: normalizationData = normalizationData.astype(numpy.float32) if operation == "scale": normalizationData /= normalizationData.max() # TODO: Use an intermediate array and set divisions 0/0 to 0. if stack.data.dtype in [numpy.int32, numpy.uint32]: view = stack.data.view(numpy.float32) elif stack.data.dtype in [numpy.int64, numpy.uint64]: view = stack.data.view(numpy.float64) else: view = stack.data if mcaIndex == 0: normalizationData.shape = stackShape[1:] if operation in ["divide", "scale"]: for i in range(stackShape[mcaIndex]): view[i] = stack.data[i] / normalizationData elif operation == "log": for i in range(stackShape[mcaIndex]): view[i] = -operator(stack.data[i]/normalizationData) elif mcaIndex == 2: normalizationData.shape = stackShape[:2] if operation in ["divide", "scale"]: for i in range(stackShape[mcaIndex]): view[:, :, i] = stack.data[:, :, i] / normalizationData else: for i in range(stackShape[mcaIndex]): view[:, :, i] = -operator(stack.data[:, :, i]/ \ normalizationData) elif mcaIndex == 1: normalizationData.shape = stackShape[0], stackShape[2] if operation in ["divide", "scale"]: for i in range(stackShape[mcaIndex]): view[:, i, :] = stack.data[:, i, :] / normalizationData else: for i in range(stackShape[mcaIndex]): view[:, i, :] = -operator(stack.data[:, i, :]/ \ normalizationData) else: raise ValueError("Unsupported 1D index %d" % mcaIndex) self.setStack(view) def divideByExternalCurve(self): stack = self.getStackDataObject() if stack is None: return if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks yet" raise TypeError(text) def divideByCurve(self): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) curve = self.getActiveCurve() if curve is None: text = "Please make sure to have an active curve" raise TypeError(text) x, y, legend, info = self.getActiveCurve() yWork = y[y!=0].astype(numpy.float64) mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: for i, value in enumerate(yWork): stack.data[:, :, i] = stack.data[:,:,i]/value elif mcaIndex == 0: for i, value in enumerate(yWork): stack.data[i, :, :] = stack.data[i,:,:]/value elif mcaIndex == 1: for i, value in enumerate(yWork): stack.data[:, i, :] = stack.data[:,i,:]/value else: raise ValueError("Invalid 1D index %d" % mcaIndex) self.setStack(stack) def logNormalizeByOne(self): return self.logNormalizeByCurve(divider=1.0) def logNormalizeByHundred(self): return self.logNormalizeByCurve(divider=100.) def logNormalizeByCurve(self, divider=None): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) if divider is None: curve = self.getActiveCurve() if curve is None: text = "Please make sure to have an active curve" raise TypeError(text) x, y, legend, info = self.getActiveCurve() if divider is None: yWork = y[y>0].astype(numpy.float64) mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex in [-1, 2]: for i, value in enumerate(yWork): stack.data[:, :, i] = -numpy.log(stack.data[:,:,i] / value) elif mcaIndex == 0: for i, value in enumerate(yWork): stack.data[i, :, :] = -numpy.log(stack.data[i,:,:] / value) elif mcaIndex == 1: for i, value in enumerate(yWork): stack.data[:, i, :] = -numpy.log(stack.data[:,i,:] / value) else: raise ValueError("Invalid 1D index %d" % mcaIndex) else: # this loop is to try to avoid avoid huge temporary arrays if stack.data.shape[0] > 1: for i in range(stack.data.shape[0]): stack.data[i] = -numpy.log10(stack.data[i] / divider) else: stack.data[:] = -numpy.log10(stack.data[:] / divider) self.setStack(stack) MENU_TEXT = "Stack Normalization" def getStackPluginInstance(stackWindow, **kw): ob = StackNormalizationPlugin(stackWindow) return ob ��������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackPluginBase.py���������������������������������������������0000644�0000000�0000000�00000003543�14741736366�021344� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" # What does it make more sense: to import from PyMca5.PyMcaPlugins, from # PyMca5.PyMcaCore or from PyMca5? # All the possibilities make sense, message removed # print("Please update your plugins") # print("Use from PyMca5 import StackPluginBase") try: from PyMca5.PyMcaCore.StackPluginBase import * except Exception: from PyMca5.StackPluginBase import * �������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackROIBatchPlugin.py�����������������������������������������0000644�0000000�0000000�00000022210�14741736366�022055� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ A Stack plugin is a module that will be automatically added to the PyMca stack windows in order to perform user defined operations on the data stack. These plugins will be compatible with any stack window that provides the functions: #data related getStackDataObject getStackData getStackInfo setStack #images related addImage removeImage replaceImage #mask related setSelectionMask getSelectionMask #displayed curves getActiveCurve getGraphXLimits getGraphYLimits #information method stackUpdated selectionMaskUpdated """ import sys import os import numpy import logging import traceback from PyMca5 import StackPluginBase from PyMca5.PyMcaCore import StackROIBatch from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaGui import StackPluginResultsWindow from PyMca5.PyMcaGui import StackROIBatchWindow from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons from PyMca5.PyMcaGui import PyMcaQt as qt _logger = logging.getLogger(__name__) class StackROIBatchPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} function = self.calculate info = "Calculate ROI images from a configuration file" icon = PyMca_Icons.roi self.methodDict["Calculate"] =[function, info, icon] function = self._showWidget info = "Show last results" icon = PyMca_Icons.brushselect self.methodDict["Show"] =[function, info, icon] self.__methodKeys = ["Calculate", "Show"] self.configurationWidget = None self.workerInstance = None self._widget = None self.thread = None def stackUpdated(self): _logger.debug("StackROIBatchPlugin.stackUpdated() called") self._widget = None def selectionMaskUpdated(self): if self._widget is None: return if self._widget.isHidden(): return mask = self.getStackSelectionMask() self._widget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "addAllClicked": for i in range(len(ddict["images"])): self.addImage(ddict['images'][i], ddict['titles'][i]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self._widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() # The specific part def calculate(self): if self.configurationWidget is None: self.configurationWidget = \ StackROIBatchWindow.StackROIBatchDialog() ret = self.configurationWidget.exec() if ret: self._executeFunctionAndParameters() def _executeFunctionAndParameters(self): self._parameters = self.configurationWidget.getParameters() self._widget = None if self.workerInstance is None: self.workerInstance = StackROIBatch.StackROIBatch() if _logger.getEffectiveLevel() == logging.DEBUG: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.result = self.actualCalculation() else: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.start() message = "Please wait. Calculation going on." CalculationThread.waitingMessageDialog(self.thread, parent=self.configurationWidget, message=message) self.threadFinished() def actualCalculation(self): activeCurve = self.getActiveCurve() if activeCurve is not None: x, spectrum, legend, info = activeCurve else: x = None spectrum = None stack = self.getStackDataObject() procparams = self._parameters['process'].copy() configurationFile = procparams.pop('configuration') self.workerInstance.setConfigurationFile(configurationFile) procparams['xLabel'] = self.getGraphXLabel() outparams = self._parameters['output'] outbuffer = StackROIBatch.OutputBuffer(**outparams) outbuffer = self.workerInstance.batchROIMultipleSpectra(x=x, y=stack, outbuffer=outbuffer, save=False, # do it later **procparams) return outbuffer def threadFinished(self): try: self._threadFinished() except Exception: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _threadFinished(self): result = self.thread.result self.thread = None if type(result) == type((1,)): #if we receive a tuple there was an error if len(result): if isinstance(result[0], str) and result[0] == "Exception": # somehow this exception is not caught raise Exception(result[1], result[2])#, result[3]) return # Show results with result.bufferContext(update=True): imageNames = result.labels('roisum', labeltype='title') images = result['roisum'] self._widget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=False) self._widget.buildAndConnectImageButtonBox(replace=True, multiple=True) qt = StackPluginResultsWindow.qt self._widget.sigMaskImageWidgetSignal.connect(self.mySlot) self._widget.setStackPluginResults(images, image_names=imageNames) self._showWidget() # Save results result.save() def _showWidget(self): if self._widget is None: return #Show self._widget.show() self._widget.raise_() #update self.selectionMaskUpdated() MENU_TEXT = "Stack ROI Batch" def getStackPluginInstance(stackWindow, **kw): ob = StackROIBatchPlugin(stackWindow) return ob ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackScanWindowPlugin.py���������������������������������������0000644�0000000�0000000�00000007527�14741736366�022554� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """This plugin opens a scan window the first time it is called. The user can then send the current active curve to it, for further analysis. """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import logging from PyMca5.PyMcaGui import ScanWindow from PyMca5 import StackPluginBase _logger = logging.getLogger(__name__) class StackScanWindowPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} text = "Add active curve to plugin scan window\n" function = self.addActiveCurve info = text icon = None self.methodDict["ADD"] =[function, info, icon] text = "Replace scan window curves with current active curve\n" function = self.replaceByActiveCurve info = text icon = None self.methodDict["REPLACE"] =[function, info, icon] self.__methodKeys = ["ADD", "REPLACE"] self.widget = None #Methods implemented by the plugin def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() def addActiveCurve(self): self._add(replace=False) def replaceByActiveCurve(self): self._add(replace=True) def _add(self, replace=False): curve = self.getActiveCurve() if curve is None: text = "Please make sure to have an active curve" raise TypeError(text) x, y, legend, info = self.getActiveCurve() if self.widget is None: self.widget = ScanWindow.ScanWindow() self.widget.addCurve(x, y, legend=legend, replot=True, replace=replace) self.widget.show() self.widget.raise_() MENU_TEXT = "Stack Scan Window Plugin" def getStackPluginInstance(stackWindow, **kw): ob = StackScanWindowPlugin(stackWindow) return ob �������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/StackShowSpectra.py��������������������������������������������0000644�0000000�0000000�00000014163�14741736366�021555� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ This plugin opens a scan window displaying a number of spectra. The user can choose to display 1/10th,1/100th, 1/1000th of/or all the spectra. """ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5 import StackPluginBase from PyMca5.PyMca import ScanWindow import numpy import logging _logger = logging.getLogger(__name__) class ShowSpectra(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} function = self.showSpectra info = "Show 1D Plot with all spectra" icon = None self.methodDict["Show_All"] =[function, info, icon] function = self.showOneOver10 info = "Show 1/10th of all spectra" icon = None self.methodDict["Show_10"] =[function, info, icon] function = self.showOneOver100 info = "Show 1/100 th of all spectra" icon = None self.methodDict["Show_100"] =[function, info, icon] function = self.showOneOver1000 info = "Show 1/1000 th of all spectra" icon = None self.methodDict["Show_1000"] =[function, info, icon] self.widget = None def stackUpdated(self): if self.widget is not None: self.widget.close() self.widget = None def getMethods(self, plottype=None): keys = list(self.methodDict.keys()) keys.sort() return keys def getMethodToolTip(self, methodName): return self.methodDict[methodName][1] def applyMethod(self, methodName): delta = methodName.split("_")[1] if delta == "All": self.showSpectra() else: self.showSpectra(step=int(delta)) def showOneOver10(self): return self.showSpectra(step=10) def showOneOver100(self): return self.showSpectra(step=100) def showOneOver1000(self): return self.showSpectra(step=1000) def showSpectra(self, step=1): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) activeCurve = self.getActiveCurve() if activeCurve in [None, []]: return x, spectrum, legend, info = activeCurve if self.widget is None: self.widget = ScanWindow.ScanWindow() data = stack.data replot = False mcaIndex = stack.info.get('McaIndex', -1) if mcaIndex < 0: mcaIndex = len(stack.data) - mcaIndex if mcaIndex == 0: dim0 = 1 dim1 = 2 elif mcaIndex == 2: dim0 = 0 dim1 = 1 else: text = "This method only works with stacks of images or stacks of spectra" if step in [None, 1]: for i in range(data.shape[dim0]): for j in range(data.shape[dim1]): if (i==0) and (j==0): replace = True else: replace = False if mcaIndex == 0: y = data[:, i, j] else: y = data[i, j] self.widget.addCurve(x, y, legend="Row %03d Col %03d" % (i, j), replace=replace, replot=replot) else: counter = 0 for i in range(data.shape[dim0]): for j in range(data.shape[dim1]): if not counter % step: if (i==0) and (j==0): replace = True else: replace = False if mcaIndex == 0: y = data[:, i, j] else: y = data[i, j] self.widget.addCurve(x, y, legend="Row %03d Col %03d" % (i, j), replace=replace, replot=replot) counter += 1 self.widget.resetZoom() self.widget.show() self.widget.raise_() MENU_TEXT = "Show Spectra" def getStackPluginInstance(plotWindow, **kw): ob = ShowSpectra(plotWindow) return ob �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XASPlugin.py���������������������������������������������������0000644�0000000�0000000�00000032663�14741736366�020144� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ """ """ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5.PyMcaCore import Plugin1DBase try: from PyMca5.PyMcaPhysics.xas import XASClass from PyMca5.PyMcaGui.physics.xas import XASWindow except ImportError: print("XASPlugin problem") class XASPlugin(Plugin1DBase.Plugin1DBase): '''Normalization, EXAFS signal extraction and FT of XAS data''' def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = "Configure normalization parameters." function = self.configure info = text icon = None self.methodDict["Configure"] =[function, info, icon] text = "Replace all curves by normalized ones." function = self.getNormalization info = text icon = None self.methodDict["Normalize"] =[function, info, icon] text = "Replace all curves by their EXAFS FTs." function = self.getFT info = text icon = None self.methodDict["FT"] =[function, info, icon] text = "Replace all curves by their EXAFS Signal." function = self.getSignal0 info = text icon = None self.methodDict["EXAFS"] =[function, info, icon] text = "Replace all curves by their EXAFS Signal." function = self.getSignal1 info = text icon = None self.methodDict["EXAFS * k"] =[function, info, icon] text = "Replace all curves by their EXAFS Signal." function = self.getSignal2 info = text icon = None self.methodDict["EXAFS * k^2"] =[function, info, icon] text = "Replace all curves by their EXAFS Signal." function = self.getSignal3 info = text icon = None self.methodDict["EXAFS * k^3"] =[function, info, icon] self.analyzer = XASClass.XASClass() self.widget = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def configure(self): #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve xmin, xmax = self.getGraphXLimits() idx = (x >= xmin) & (x <= xmax) x = x[idx] y = y[idx] if self.widget is None: self._createWidget() self.widget.setSpectrum(x, y) oldConfiguration = self.analyzer.getConfiguration() self.widget.setConfiguration(oldConfiguration) ret = self.widget.exec() if ret: # it should be already configured pass else: self.analyzer.setConfiguration(oldConfiguration) def _createWidget(self): parent = None self.widget = XASWindow.XASDialog(parent, analyzer=self.analyzer) def processAllCurves(self): # for the time being we do not calculate just # what is asked but everything results = [] curves = self.getMonotonicCurves() for curve in curves: x, y, legend, info = curve[0:4] self.analyzer.setSpectrum(x, y) ddict = self.analyzer.processSpectrum() results.append([ddict, legend, info]) return results def getNormalization(self): xlabel="Energy (eV)" ylabel="Absorption (a.u.)" results = self.processAllCurves() n = len(results) i = 0 for result in results: ddict, legend, info = result idx = (ddict["NormalizedEnergy"] >= ddict["NormalizedPlotMin"]) & \ (ddict["NormalizedEnergy"] <= ddict["NormalizedPlotMax"]) x = ddict["NormalizedEnergy"][idx] y = ddict["NormalizedMu"][idx] if i == 0: replace = True else: replace = False i += 1 if i == n: replot = True else: replot = False self.addCurve(x, y, legend, info, xlabel=xlabel, ylabel=ylabel, replot=replot, replace=replace) def getFT(self): xlabel="R (Angstrom)" ylabel="Intensity (a.u.)" results = self.processAllCurves() n = len(results) i = 0 for result in results: ddict, legend, info = result x = ddict["FT"]["FTRadius"] y = ddict["FT"]["FTIntensity"] if i == 0: replace = True else: replace = False i += 1 if i == n: replot = True else: replot = False self.addCurve(x, y, legend, info, xlabel=xlabel, ylabel=ylabel, replot=replot, replace=replace) def getSignal(self, weight=0): xlabel="K" weight = int(weight) if weight == 0: ylabel = "Signal" elif weight == 1: ylabel = "Signal * k" else: ylabel = "Signal * k^%d" % int(weight) results = self.processAllCurves() n = len(results) i = 0 for result in results: ddict, legend, info = result idx = (ddict["EXAFSKValues"] >= ddict["KMin"]) & \ (ddict["EXAFSKValues"] <= ddict["KMax"]) x = ddict["EXAFSKValues"][idx] if ddict["KWeight"] != weight: y = ddict["EXAFSNormalized"][idx] * (pow(x, weight-ddict["KWeight"])) else: y = ddict["EXAFSNormalized"][idx] if i == 0: replace = True else: replace = False i += 1 if i == n: replot = True else: replot = False self.addCurve(x, y, legend, info, xlabel=xlabel, ylabel=ylabel, replot=replot, replace=replace) def getSignal0(self): self.getSignal(0) def getSignal1(self): self.getSignal(1) def getSignal2(self): self.getSignal(2) def getSignal3(self): self.getSignal(3) def XASNormalize(self): #all curves curves = self.getAllCurves() nCurves = len(curves) if nCurves < 1: raise ValueError("At least one curve needed") return #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve #sort the values idx = numpy.argsort(x, kind='mergesort') x0 = numpy.take(x, idx) y0 = numpy.take(y, idx) xmin, xmax = self.getGraphXLimits() # get calculation parameters if self.widget is None: self._createWidget() parameters = self.parameters if parameters['auto_edge']: edge = None else: edge = parameters['edge_energy'] energy = x pre_edge_regions = parameters['pre_edge']['regions'] post_edge_regions = parameters['post_edge']['regions'] algorithm ='polynomial' algorithm_parameters = {} algorithm_parameters['pre_edge_order'] = parameters['pre_edge']\ ['polynomial'] algorithm_parameters['post_edge_order'] = parameters['post_edge']\ ['polynomial'] i = 0 lastCurve = None for curve in curves: x, y, legend, info = curve[0:4] #take the portion ox x between limits idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0] if not len(idx): #no overlap continue x = numpy.take(x, idx) y = numpy.take(y, idx) idx = numpy.nonzero((x0>=x.min()) & (x0<=x.max()))[0] if not len(idx): #no overlap continue xi = numpy.take(x0, idx) yi = numpy.take(y0, idx) #perform interpolation xi.shape = -1, 1 yw = SpecfitFuns.interpol([x], y, xi, yi.min()) # try: ... except: here? yw.shape = -1 xi.shape = -1 x, y = XASNormalization.XASNormalization(yw, energy=xi, edge=edge, pre_edge_regions=pre_edge_regions, post_edge_regions=post_edge_regions, algorithm=algorithm, algorithm_parameters=algorithm_parameters)[0:2] # if i == 0: replace = True replot = True i = 1 else: replot = False replace = False newLegend = " ".join(legend.split(" ")[:-1]) if not newLegend.startswith('Norm.'): newLegend = "Norm. " + newLegend self.addCurve(x, y, legend=newLegend, info=info, replot=replot, replace=replace) lastCurve = [x, y, newLegend] self.addCurve(lastCurve[0], lastCurve[1], legend=lastCurve[2], info=info, replot=True, replace=False) MENU_TEXT = "XAS" def getPlugin1DInstance(plotWindow, **kw): ob = XASPlugin(plotWindow) return ob if __name__ == "__main__": import sys import os from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import PlotWindow from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR if len(sys.argv) > 1: fileName = sys.argv[1] else: fileName = os.path.join(PYMCA_DATA_DIR, "EXAFS_Ge.dat") data = specfile.Specfile(fileName)[0].data()[-2:, :] energy = data[0, :] mu = data[1, :] app = qt.QApplication([]) plot = PlotWindow.PlotWindow() plot.setPluginDirectoryList([os.path.dirname(__file__)]) plot.getPlugins() plot.addCurve(energy, mu, os.path.basename(fileName)) plot.show() plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) #plugin.applyMethod(plugin.getMethods()[1]) app.exec() �����������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XASScanNormalizationPlugin.py����������������������������������0000644�0000000�0000000�00000021526�14741736366�023514� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy try: from PyMca5 import Plugin1DBase except ImportError: from . import Plugin1DBase try: from PyMca5.PyMcaPhysics.xas import XASNormalization from PyMca5.PyMcaGui.physics.xas import XASNormalizationWindow from PyMca5.PyMcaMath.fitting import SpecfitFuns except ImportError: print("XASScanNormalizationPlugin problem") class XASScanNormalizationPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = "Configure normalization parameters." function = self.configure info = text icon = None self.methodDict["Configure"] =[function, info, icon] function = self.XASNormalize text = "Replace all curves by normalized ones." info = text icon = None self.methodDict["Normalize"] =[function, info, icon] self.widget = None self.parameters = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def configure(self): #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve if self.widget is None: self._createWidget(y, energy=x) else: oldParameters = self.widget.getParameters() oldEnergy = self.widget.parametersWidget.energy oldEMin = oldEnergy.min() oldEMax = oldEnergy.max() self.widget.setData(y, energy=x) if abs(oldEMin - x.min()) < 1: if abs(oldEMax - x.max()) < 1: self.widget.setParameters(oldParameters) ret = self.widget.exec() if ret: self.parameters = self.widget.getParameters() def _createWidget(self, spectrum, energy=None): parent = None self.widget = XASNormalizationWindow.XASNormalizationDialog(parent, spectrum, energy=energy) self.parameters = self.widget.getParameters() def XASNormalize(self): #all curves curves = self.getAllCurves() nCurves = len(curves) if nCurves < 1: raise ValueError("At least one curve needed") return #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return x, y, legend0, info = activeCurve #sort the values idx = numpy.argsort(x, kind='mergesort') x0 = numpy.take(x, idx) y0 = numpy.take(y, idx) xmin, xmax = self.getGraphXLimits() # get calculation parameters if self.widget is None: self._createWidget(y0, x0) parameters = self.parameters if parameters['auto_edge']: edge = None else: edge = parameters['edge_energy'] energy = x pre_edge_regions = parameters['pre_edge']['regions'] post_edge_regions = parameters['post_edge']['regions'] algorithm ='polynomial' algorithm_parameters = {} algorithm_parameters['pre_edge_order'] = parameters['pre_edge']\ ['polynomial'] algorithm_parameters['post_edge_order'] = parameters['post_edge']\ ['polynomial'] i = 0 lastCurve = None for curve in curves: x, y, legend, info = curve[0:4] #take the portion ox x between limits idx = numpy.nonzero((x>=xmin) & (x<=xmax))[0] if not len(idx): #no overlap continue x = numpy.take(x, idx) y = numpy.take(y, idx) idx = numpy.nonzero((x0>=x.min()) & (x0<=x.max()))[0] if not len(idx): #no overlap continue xi = numpy.take(x0, idx) yi = numpy.take(y0, idx) #perform interpolation xi.shape = -1, 1 yw = SpecfitFuns.interpol([x], y, xi, yi.min()) # try: ... except: here? yw.shape = -1 xi.shape = -1 x, y = XASNormalization.XASNormalization(yw, energy=xi, edge=edge, pre_edge_regions=pre_edge_regions, post_edge_regions=post_edge_regions, algorithm=algorithm, algorithm_parameters=algorithm_parameters)[0:2] # if i == 0: replace = True replot = True i = 1 else: replot = False replace = False legend_words = legend.split(" ") if len(legend_words) > 1: newLegend = " ".join(legend_words[:-1]) else: newLegend = " ".join(legend_words) if not newLegend.startswith('Norm.'): newLegend = "Norm. " + newLegend self.addCurve(x, y, legend=newLegend, info=info, replot=replot, replace=replace) lastCurve = [x, y, newLegend] self.addCurve(lastCurve[0], lastCurve[1], legend=lastCurve[2], info=info, replot=True, replace=False) MENU_TEXT = "XAS Normalization" def getPlugin1DInstance(plotWindow, **kw): ob = XASScanNormalizationPlugin(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGraph import Plot x = numpy.arange(100.) y = x * x plot = Plot.Plot() plot.addCurve(x, y, "dummy") plot.addCurve(x+100, -x*x) plugin = getPlugin1DInstance(plot) for method in plugin.getMethods(): print(method, ":", plugin.getMethodToolTip(method)) plugin.applyMethod(plugin.getMethods()[0]) curves = plugin.getAllCurves() for curve in curves: print(curve[2]) print("LIMITS = ", plugin.getGraphYLimits()) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XASSelfattenuationPlugin.py������������������������������������0000644�0000000�0000000�00000013654�14741736366�023231� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy from PyMca5 import Plugin1DBase from PyMca5.PyMcaPhysics.xas import XASSelfattenuationCorrection from PyMca5.PyMcaGui.physics.xas import XASSelfattenuationWindow class XASSelfattenuationPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = "Configure fluorescent XAS self-\n" text += "attenuation correction parameters.\n" text += "Input curves need to be normalized.\n" text += "For the time being thick sample is assumed." function = self.configure info = text icon = None self.methodDict["Configure"] =[function, info, icon] function = self.correctActive text = "Add corrected active curve." info = text icon = None self.methodDict["Correct Active"] =[function, info, icon] function = self.correctAll text = "Replace all curves by normalized ones." info = text icon = None self.methodDict["Correct All"] =[function, info, icon] self.widget = None self.instance = XASSelfattenuationCorrection.XASSelfattenuationCorrection() self.parameters = None self.configuration = None #Methods to be implemented by the plugin def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def configure(self): if self.widget is None: self.widget = XASSelfattenuationWindow.XASSelfattenuationDialog() ret = self.widget.exec() if ret: self.configuration = self.widget.getConfiguration() self.instance.setConfiguration(self.configuration) def correctActive(self): #check we have a configuration if self.configuration is None: raise RuntimeError("Please configure the plugin") #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: raise ValueError("Please select an active curve") return energy, spectrum, legend, info = activeCurve[0:4] spectrum = self.instance.correctNormalizedSpectrum(energy, spectrum) self.addCurve(energy, spectrum, legend="CORR"+legend, info=info, replace=False, replot=True) def correctAll(self): #check we have a configuration if self.configuration is None: raise RuntimeError("Please configure the plugin") curves = self.getAllCurves() nCurves = len(curves) if nCurves < 1: raise ValueError("At least one curve needed") return #get active curve activeCurve = self.getActiveCurve() if activeCurve is None: activeCurve = curves[0] for i in range(nCurves): energy, spectrum, legend, info = curves[i][0:4] if i == 0: replace = True else: replace = False if i == nCurves - 1: replot = True else: replot = False spectrum = self.instance.correctNormalizedSpectrum(energy, spectrum) self.addCurve(energy, spectrum, legend="CORR"+legend, info=info, replot=replot, replace=replace) MENU_TEXT = "XAS Self-Attenuation Correction" def getPlugin1DInstance(plotWindow, **kw): ob = XASSelfattenuationPlugin(plotWindow) return ob ������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XASStackBatchPlugin.py�����������������������������������������0000644�0000000�0000000�00000022603�14741736366�022065� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__= """ This plugin perform XAS data reduction in the complete stack, using a previously generated configuration file (XAS plugin in plot window). It generates secondary stacks corresponding to - The normalized spectra - The EXAFS signal - The Fourier transform of the signal The user can then perform selections based on those features and not just on the raw data. """ import sys import os import logging import traceback from PyMca5 import StackPluginBase from PyMca5.PyMcaGui.misc import CalculationThread # only EDGE and JUMP are always small enough to be shown from PyMca5.PyMcaGui import StackPluginResultsWindow from PyMca5.PyMcaGui import StackXASBatchWindow from PyMca5.PyMcaGui import PyMca_Icons as PyMca_Icons from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMca import XASStackBatch _logger = logging.getLogger(__name__) class XASStackBatchPlugin(StackPluginBase.StackPluginBase): """ This plugin perform XAS data reduction of the complete stack, using a previously generated configuration file (XAS plugin in plot window). It generates secondary stacks corresponding to - The normalized spectra - The EXAFS signal - The Fourier transform of the signal The user can then perform selections based on those features and not just on the raw data. """ def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} function = self.calculate info = "Perform XAS Data reduction using a configuration file" icon = None self.methodDict["Calculate"] =[function, info, icon] self.__methodKeys = ["Calculate"] self.configurationWidget = None self.workerInstance = XASStackBatch.XASStackBatch() self._widget = None self.thread = None def stackUpdated(self): _logger.debug("StackXASBatchPlugin.stackUpdated() called") if self._widget is not None: self._widget.close() self._widget = None def selectionMaskUpdated(self): if self._widget is None: return if self._widget.isHidden(): return mask = self.getStackSelectionMask() self._widget.setSelectionMask(mask) def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "addAllClicked": for i in range(len(ddict["images"])): self.addImage(ddict['images'][i], ddict['titles'][i]) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) #Methods implemented by the plugin def getMethods(self): if self._widget is None: return [self.__methodKeys[0]] else: return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() # The specific part def calculate(self): if self.configurationWidget is None: self.configurationWidget = \ StackXASBatchWindow.StackXASBatchDialog() ret = self.configurationWidget.exec() if ret: self._executeFunctionAndParameters() def _executeFunctionAndParameters(self): self._parameters = self.configurationWidget.getParameters() self._widget = None if _logger.getEffectiveLevel() == logging.DEBUG: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.result = self.actualCalculation() else: self.thread = CalculationThread.CalculationThread(\ calculation_method=self.actualCalculation) self.thread.start() message = "Please wait. Calculation going on." CalculationThread.waitingMessageDialog(self.thread, parent=self.configurationWidget, message=message) self.threadFinished() def actualCalculation(self): activeCurve = self.getActiveCurve() if activeCurve is not None: x, spectrum, legend, info = activeCurve else: x = None spectrum = None stack = self.getStackDataObject() configurationFile = self._parameters['configuration'] net = self._parameters['mask'] self.workerInstance.setConfigurationFile(configurationFile) if net: mask = self.getStackSelectionMask() else: mask = None outputDir = self._parameters["output_dir"] if outputDir in [None, ""]: outputDir=None if not (self._parameters["file_root"] in [None, ""]): fileRoot = self._parameters["file_root"].replace(" ","") if fileRoot in [None, ""]: fileRoot = None if not os.path.exists(outputDir): os.mkdir(outputDir) result = self.workerInstance.processMultipleSpectra(x=x, y=stack, weight=None, ysum=spectrum, mask=mask, directory=outputDir, name=fileRoot) return result def threadFinished(self): try: self._threadFinished() except Exception: msg = qt.QMessageBox() msg.setIcon(qt.QMessageBox.Critical) msg.setInformativeText(str(sys.exc_info()[1])) msg.setDetailedText(traceback.format_exc()) msg.exec() def _threadFinished(self): result = self.thread.result self.thread = None if type(result) == type((1,)): #if we receive a tuple there was an error if len(result): if isinstance(result[0], str) and result[0] == "Exception": # somehow this exception is not caught raise Exception(result[1], result[2])#, result[3]) return imageNames = result['names'] images = result["images"] nImages = images.shape[0] self._widget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=False) self._widget.buildAndConnectImageButtonBox(replace=True, multiple=True) qt = StackPluginResultsWindow.qt self._widget.sigMaskImageWidgetSignal.connect(self.mySlot) self._widget.setStackPluginResults(images, image_names=imageNames) self._showWidget() def _showWidget(self): if self._widget is None: return #Show self._widget.show() self._widget.raise_() #update self.selectionMaskUpdated() MENU_TEXT = "XAS Batch" def getStackPluginInstance(stackWindow, **kw): ob = XASStackBatchPlugin(stackWindow) return ob �����������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XASStackNormalizationPlugin.py���������������������������������0000644�0000000�0000000�00000037154�14741736366�023701� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" """ A Stack plugin is a module that will be automatically added to the PyMca stack windows in order to perform user defined operations on the data stack. These plugins will be compatible with any stack window that provides the functions: #data related getStackDataObject getStackData getStackInfo setStack #images related addImage removeImage replaceImage #mask related setSelectionMask getSelectionMask #displayed curves getActiveCurve getGraphXLimits getGraphYLimits #information method stackUpdated selectionMaskUpdated """ import numpy import logging _logger = logging.getLogger(__name__) try: from PyMca5 import StackPluginBase except ImportError: _logger.warning("XASStackNormalizationPlugin importing bases from somewhere else") from . import StackPluginBase from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import StackPluginResultsWindow from PyMca5.PyMcaGui.misc import CalculationThread from PyMca5.PyMcaPhysics.xas import XASNormalization from PyMca5.PyMcaGui.physics.xas import XASNormalizationWindow class XASStackNormalizationPlugin(StackPluginBase.StackPluginBase): def __init__(self, stackWindow, **kw): if _logger.getEffectiveLevel() == logging.DEBUG: StackPluginBase.pluginBaseLogger.setLevel(logging.DEBUG) StackPluginBase.StackPluginBase.__init__(self, stackWindow, **kw) self.methodDict = {} text = "Replace current stack by a normalized one." function = self.XASNormalize info = text icon = None self.methodDict["XANES Normalization"] =[function, info, icon] self.__methodKeys = ["XANES Normalization"] self.widget = None self.imageWidget = None #Methods implemented by the plugin def stackUpdated(self): if self.widget is not None: self.widget.close() self.widget = None def selectionMaskUpdated(self): if self.imageWidget is None: return if self.imageWidget.isHidden(): return mask = self.getStackSelectionMask() self.imageWidget.setSelectionMask(mask) def stackClosed(self): if self.imageWidget is not None: self.imageWidget.close() if self.widget is not None: self.widget.close() def getMethods(self): return self.__methodKeys def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): return self.methodDict[name][0]() # own stuff def mySlot(self, ddict): _logger.debug("mySlot %s %s", ddict['event'], ddict.keys()) if ddict['event'] == "selectionMaskChanged": self.setStackSelectionMask(ddict['current']) elif ddict['event'] == "addImageClicked": self.addImage(ddict['image'], ddict['title']) elif ddict['event'] == "removeImageClicked": self.removeImage(ddict['title']) elif ddict['event'] == "replaceImageClicked": self.replaceImage(ddict['image'], ddict['title']) elif ddict['event'] == "resetSelection": self.setStackSelectionMask(None) def XASNormalize(self): stack = self.getStackDataObject() if not isinstance(stack.data, numpy.ndarray): text = "This method does not work with dynamically loaded stacks" raise TypeError(text) activeCurve = self.getActiveCurve() if activeCurve in [None, []]: return x, spectrum, legend, info = activeCurve if self.widget is None: self.widget = XASNormalizationWindow.XASNormalizationDialog(None, spectrum, energy=x) else: oldParameters = self.widget.getParameters() oldEnergy = self.widget.parametersWidget.energy oldEMin = oldEnergy.min() oldEMax = oldEnergy.max() self.widget.setData(spectrum, energy=x) if abs(oldEMin - x.min()) < 1: if abs(oldEMax - x.max()) < 1: self.widget.setParameters(oldParameters) ret = self.widget.exec() if ret: parameters = self.widget.getParameters() # TODO: this dictionary adaptation should be made # by the configuration if parameters['auto_edge']: edge = None else: edge = parameters['edge_energy'] energy = x pre_edge_regions = parameters['pre_edge']['regions'] post_edge_regions = parameters['post_edge']['regions'] algorithm ='polynomial' algorithm_parameters = {} algorithm_parameters['pre_edge_order'] = parameters['pre_edge']\ ['polynomial'] algorithm_parameters['post_edge_order'] = parameters['post_edge']\ ['polynomial'] result = self.__replaceStackByXASNormalizedData(stack, energy=energy, edge=edge, pre_edge_regions=pre_edge_regions, post_edge_regions=post_edge_regions, algorithm=algorithm, algorithm_parameters=algorithm_parameters) if isinstance(result[0], str) and result[0] == 'Exception': # handled exception occurred raise Exception(result[1], result[2], result[3]) else: edges, jumps, errors = result images, names = self.getStackROIImagesAndNames() edges.shape = images[0].shape jumps.shape = images[0].shape errors.shape = images[0].shape self.setStack(stack) if self.imageWidget is None: self.imageWidget = StackPluginResultsWindow.StackPluginResultsWindow(\ usetab=False,profileselection=True) self.imageWidget.buildAndConnectImageButtonBox() qt = StackPluginResultsWindow.qt self.imageWidget.sigMaskImageWidgetSignal.connect(self.mySlot) self.methodDict["Show Images"] =[self._showImageWidget, "Show calculated jump and edge position images", None] self.__methodKeys.append("Show Images") self.imageWidget.setStackPluginResults([jumps, errors, edges], image_names=['Jump', 'Errors', 'Edge Position']) self._showImageWidget() def __replaceStackByXASNormalizedData(self, *var, **kw): self._progress = 0.0 thread = CalculationThread.CalculationThread(\ calculation_method=self.replaceStackByXASNormalizedData, calculation_vars=var, calculation_kw=kw) thread.start() CalculationThread.waitingMessageDialog(thread, message="Please wait. Calculation going on.", parent=self.widget, modal=True, update_callback=self._waitingCallback) return thread.result def _waitingCallback(self): ddict = {} ddict['message'] = "Calculation Progress = %d %%" % self._progress return ddict def _showImageWidget(self): if self.imageWidget is None: return #Show self.imageWidget.show() self.imageWidget.raise_() #update self.selectionMaskUpdated() def replaceStackByXASNormalizedData(self, stack, energy=None, edge=None, pre_edge_regions=None, post_edge_regions=None, algorithm='polynomial', algorithm_parameters=None): """ Performs an in place replacement of a set of spectra by a set of normalized spectra. """ mcaIndex = -1 if hasattr(stack, "info") and hasattr(stack, "data"): actualData = stack.data mcaIndex = stack.info.get('McaIndex', -1) else: actualData = stack if not isinstance(actualData, numpy.ndarray): raise TypeError("Currently this method only supports numpy arrays") # Take a data view oldShape = actualData.shape data = actualData[:] DONE = 0 if mcaIndex in [-1, len(data.shape)-1]: data.shape = -1, oldShape[-1] edges = numpy.zeros(data.shape[0], numpy.float32) jumps = numpy.zeros(data.shape[0], numpy.float32) errors = numpy.zeros(data.shape[0], numpy.float32) total = 0.01 * data.shape[0] for i in range(data.shape[0]): self._progress = i / total try: ene, spe, ed, jmp = XASNormalization.XASNormalization(data[i,:], energy=energy, edge=edge, pre_edge_regions=pre_edge_regions, post_edge_regions=post_edge_regions, algorithm=algorithm, algorithm_parameters=algorithm_parameters)[0:4] except Exception: # what to do? # for the data is clear (set to 0) # for the jump 0 is also a good compromise # for the edge? data[i, :] = 0 errors[i] = 1 jumps[i] = 0 edges[i] = 0 continue if not DONE: c0 = (numpy.nonzero(energy >= (ed + pre_edge_regions[0][0]))[0]).min() c1 = (numpy.nonzero(energy <= (ed + post_edge_regions[-1][1]))[-1]).max() c1 += 1 DONE = True if ((spe.max()-spe.min()) > 10.) or (jmp < 0): data[i, :] = 0.0 # should I give some useless values? edges[i] = 0.0 # perhaps the case of large jump should be kept ... jumps[i] = 0.0 elif 0: # this approach removed data[i,:c0] = spe[c0] data[i, c0:c1] = spe[c0:c1] if c1 < data.shape[1]: data[i, c1:] = spe[c1] edges[i] = ed jumps[i] = jmp else: # it seems more appropriate to set the channels below and # above limits to 0 than to the corresponding limits of the region data[i,:c0] = 0.0 data[i, c0:c1] = spe[c0:c1] data[i, c1:] = 0.0 edges[i] = ed jumps[i] = jmp self._progress = 100 data.shape = oldShape elif mcaIndex == 0: data.shape = oldShape[0], -1 edges = numpy.zeros(data.shape[-1], numpy.float32) jumps = numpy.zeros(data.shape[-1], numpy.float32) errors = numpy.zeros(data.shape[-1], numpy.float32) total = 0.01 * data.shape[-1] for i in range(data.shape[-1]): self._progress = i / total try: ene, spe, ed, jmp = XASNormalization.XASNormalization(data[:, i], energy=energy, edge=edge, pre_edge_regions=pre_edge_regions, post_edge_regions=post_edge_regions, algorithm=algorithm, algorithm_parameters=algorithm_parameters)[0:4] except Exception: # what to do? # for the data is clear (set to 0) # for the jump 0 is also a good compromise # for the edge? data[:, i] = 0 jumps[i] = 0 edges[i] = 0 errors[i] = 1 continue if not DONE: c0 = (numpy.nonzero(energy >= (ed + pre_edge_regions[0][0]))[0]).min() c1 = (numpy.nonzero(energy <= (ed + post_edge_regions[-1][1]))[-1]).max() c1 += 1 DONE = True if ((spe.max()-spe.min()) > 10.) or (jmp < 0): data[:, i] = 0.0 # should I give some useless values? edges[i] = 0.0 jumps[i] = 0.0 else: # it seems more appropriate to set the channels below and # above limits to 0 than to the corresponding limits of the region data[:c0, i] = 0.0 data[c0:c1, i] = spe[c0:c1] if c1 < data.shape[0]: data[c1:, i] = 0.0 edges[i] = ed jumps[i] = jmp self._progress = 100 data.shape = oldShape else: raise ValueError("Unsupported 1D index %d" % mcaIndex) return edges, jumps, errors MENU_TEXT = "XAS Stack Normalization" def getStackPluginInstance(stackWindow, **kw): ob = XASStackNormalizationPlugin(stackWindow) return ob ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/XMCDPlugin.py��������������������������������������������������0000644�0000000�0000000�00000011315�14741736366�020233� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2014 T. Rueter, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Tonn Rueter" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" from PyMca5.PyMcaGui import PyMca_Icons from PyMca5 import Plugin1DBase from PyMca5.PyMcaGui.pymca import XMCDWindow from platform import node as gethostname import logging _logger = logging.getLogger(__name__) class XMCDAnalysis(Plugin1DBase.Plugin1DBase): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) self.methodDict = {} text = 'Perform grouped operations as function of motor value.' function = self.showXMCDWindow icon = None info = text self.methodDict["Sort plots"] =[function, info, icon] self.widget = None def getMethods(self, plottype=None): names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): return self.methodDict[name][1] def getMethodPixmap(self, name): return self.methodDict[name][2] def applyMethod(self, name): self.methodDict[name][0]() return def showXMCDWindow(self): if self.widget is None: self._createWidget() else: self.widget.updatePlots() self.widget.show() self.widget.raise_() def _createWidget(self): guess = gethostname().lower() beamline = '#default#' for hostname in ['dragon']: if guess.startswith(hostname): beamline = 'ID08' break _logger.debug('_createWidget -- beamline = "%s"', beamline) parent = None self.widget = XMCDWindow.XMCDWidget(parent, self._plotWindow, beamline, nSelectors = 5) MENU_TEXT = "XLD/XMCD Analysis" def getPlugin1DInstance(plotWindow, **kw): ob = XMCDAnalysis(plotWindow) return ob if __name__ == "__main__": from PyMca5.PyMcaGui import PyMcaQt as qt from PyMca5.PyMcaGui import ScanWindow import numpy app = qt.QApplication([]) # Create dummy ScanWindow swin = ScanWindow.ScanWindow() info0 = {'xlabel': 'foo', 'ylabel': 'arb', 'MotorNames': 'oxPS Motor11 Motor10', 'MotorValues': '1 8.69271399699 21.9836418539'} info1 = {'MotorNames': 'PhaseD oxPS Motor16 Motor15', 'MotorValues': '0.470746882688 -0.695816070299 0.825780811755 0.25876374531'} info2 = {'MotorNames': 'PhaseD oxPS Motor10 Motor8', 'MotorValues': '2 0.44400576644 0.613870067852 0.901968648111'} x = numpy.arange(100.,1100.) y0 = 10*x + 10000.*numpy.exp(-0.5*(x-500)**2/400) + 1500*numpy.random.random(1000) y1 = 10*x + 10000.*numpy.exp(-0.5*(x-600)**2/400) + 1500*numpy.random.random(1000) y2 = 10*x + 10000.*numpy.exp(-0.5*(x-400)**2/400) + 1500*numpy.random.random(1000) swin.newCurve(x, y2, legend="Curve2", xlabel='ene_st2', ylabel='zratio2', info=info2) swin.newCurve(x, y0, legend="Curve0", xlabel='ene_st0', ylabel='zratio0', info=info0) swin.newCurve(x, y1, legend="Curve1", xlabel='ene_st1', ylabel='zratio1', info=info1) plugin = getPlugin1DInstance(swin) plugin.applyMethod(plugin.getMethods()[0]) app.exec() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/__init__.py����������������������������������������������������0000644�0000000�0000000�00000003703�14741736366�020062� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2019 V.A. Sole, European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ PyMca5.PyMcaPlugins contains plugins associated to PyMca. They import either from Plugin1DBase (for instances of classes respecting the Plot1DBase interface) or from StackPluginBase (for instances respecting the StackBase interface) See :mod:`PyMca5.PyMcaCore.Plugin1DBase` for more information about 1D plugins and :mod:`PyMca5.PyMcaCore.StackPluginBase` for information about stack plugins. """ �������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8517666 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/optional/������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�017564� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/optional/JsonRpc1DPlugin.py������������������������������������0000644�0000000�0000000�00000045343�14741736366�023100� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*######################################################################### # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __author__ = "T. Vincent - ESRF Data Analysis" __contact__ = "thomas.vincent@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This module provides a PyMca plugin allowing to either download or receive `JSON-RPC 2.0 <http://www.jsonrpc.org/specification>`_ requests that are interpreted as commands for the 1D plot window. Two modes are supported: - *A client mode*, where the plugin downloads JSON-RPC files. In this mode, it is possible to download files from a given URL either on demand or at regular intervals (i.e., polling). - *A server mode*, where the plugin is a TCP server that parses incoming data as JSON-RPC files. As is, only :meth:`Plugin1DBase.addCurve` is available through RPC, but more methods can be supported by populating the ``_handlers`` attribute of :class:`PyMcaJsonRpc1DPlugin`. Remote code in either server or client mode can use the :func:`addCurveToJsonRpc` that has the same signature as :meth:`Plugin1DBase.addCurve` and returns the corresponding JSON-RPC string that can be interpreted by the plugin. """ # import ###################################################################### import json import numpy as np import sys if sys.version_info.major == 2: from urllib2 import urlopen from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer from SocketServer import StreamRequestHandler, TCPServer else: from urllib.request import urlopen from http.server import BaseHTTPRequestHandler, HTTPServer from socketserver import StreamRequestHandler, TCPServer from PyMca5.PyMcaCore import Plugin1DBase from PyMca5.PyMcaGui import PyMcaQt as qt # JSON-RPC #################################################################### # Light implementation of JSON-RPC 2.0 : http://www.jsonrpc.org/specification _PARSE_ERROR = -32700 _INVALID_REQUEST = -32600 _METHOD_NOT_FOUND = -32601 _INVALID_PARAMS = -32602 _INTERNAL_ERROR = -32603 _SERVER_ERROR = -32000 _ERRORS = { _PARSE_ERROR: 'Parse Error', _INVALID_REQUEST: 'Invalid Request', _METHOD_NOT_FOUND: 'Method Not Found', _INVALID_PARAMS: 'Invalid Parameters', _INTERNAL_ERROR: 'Internal Error', _SERVER_ERROR: 'Server Error', } def _jsonRpcError(code, data=None): assert code in _ERRORS return {'code': code, 'message': _ERRORS[code], 'data': data} def jsonRpcProcessRequest(requestFileObj, handlers): """Parse a single JSON-RPC request and call the associated handler function Limitations: Do not support batch, not checking parameters :param requestFileObj: JSON-RPC request document :type requestFileObj: A .read()-supporting file-like object :param dict handlers: RPC method handlers: {method name: handler function} :returns: The JSON-RPC reply or None if request was a notification :rtype: str """ try: request = json.load(requestFileObj) except ValueError: return {'jsonrpc': '2.0', 'id': None, 'error': _jsonRpcError(_PARSE_ERROR)} try: reply = {'jsonrpc': '2.0', 'id': request['id']} except KeyError: reply = None try: methodName = request['method'] except KeyError: if reply is not None: reply['error'] = _jsonRpcError(_INVALID_REQUEST, 'Request has no method name') return reply try: method = handlers[methodName] except KeyError: if reply is not None: data = 'Unknown method: {}'.format(methodName) reply['error'] = _jsonRpcError(_METHOD_NOT_FOUND, data) return reply params = request.get('params', {}) # Convert list to np.array if isinstance(params, dict): for key in params: value = params[key] if isinstance(value, list): params[key] = np.array(value) else: params = [np.array(v) if isinstance(v, list) else v for v in params] try: if isinstance(params, dict): result = method(**params) else: result = method(*params) except Exception as exception: if reply is not None: if isinstance(exception, TypeError): reply['error'] = _jsonRpcError(_INVALID_PARAMS, params) else: reply['error'] = _jsonRpcError(_SERVER_ERROR, (exception.errno, exception.strerror)) return reply if reply is not None: reply['result'] = result reply = json.dumps(reply) return reply # dialog box ################################################################## class _DialogBox(qt.QDialog): LOAD = "Load" START_POLL = "Start Polling" STOP_POLL = "Stop Polling" START_SERVER = "Start Server" STOP_SERVER = "Stop Server" def __init__(self, parent, plugin): self._plugin = plugin qt.QDialog.__init__(self, parent) self.setWindowTitle('JSON-RPC Plugin') # Poll GUI pollLayout = qt.QFormLayout() pollGroup = qt.QGroupBox() pollGroup.setTitle('Client mode (Polling)') pollGroup.setLayout(pollLayout) pollUrlLabel = qt.QLabel("URL:") pollUrlLabel.setToolTip( "The URL to download JSON-RPC file from\n" + "Supported protocols: http:, ftp: file:") self.pollUrlLineEdit = qt.QLineEdit(self._plugin.pollUrl) pollLayout.addRow(pollUrlLabel, self.pollUrlLineEdit) pollTimeoutLabel = qt.QLabel("Timeout (s):") pollTimeoutLabel.setToolTip( "The interval in seconds at which the plugin is polling the URL") self.pollTimeoutLineEdit = qt.QLineEdit(str(self._plugin.pollTimeout)) # Bounds timeout to avoid to small timeout self.pollTimeoutLineEdit.setValidator( qt.CLocaleQDoubleValidator(0.02, 1000.0, 2)) pollLayout.addRow(pollTimeoutLabel, self.pollTimeoutLineEdit) self.pollLoadBtn = qt.QPushButton(self.LOAD) pollLayout.addRow(self.pollLoadBtn) if self._plugin.isPollRunning(): pollBtnText = self.STOP_POLL else: pollBtnText = self.START_POLL self.pollBtn = qt.QPushButton(pollBtnText) pollLayout.addRow(self.pollBtn) # Server GUI serverLayout = qt.QFormLayout() serverGroup = qt.QGroupBox() serverGroup.setTitle('TCP Server mode') serverGroup.setLayout(serverLayout) serverPortLabel = qt.QLabel("TCP Port:") serverPortLabel.setToolTip( "The TCP port the server is listening to.\n" + "Ranging in [1024-65535]") self.serverPortLineEdit = qt.QLineEdit(str(self._plugin.serverPort)) # Bounds port to 'user' ports self.serverPortLineEdit.setValidator(qt.QIntValidator(1024, 65535)) serverLayout.addRow(serverPortLabel, self.serverPortLineEdit) if self._plugin.isServerRunning(): serverBtnText = self.STOP_SERVER else: serverBtnText = self.START_SERVER self.serverBtn = qt.QPushButton(serverBtnText) serverLayout.addRow(self.serverBtn) # Main layout closeBtn = qt.QPushButton('Close') mainLayout = qt.QVBoxLayout() mainLayout.addWidget(pollGroup) mainLayout.addWidget(serverGroup) mainLayout.addWidget(closeBtn) self.setLayout(mainLayout) # Signals self.pollTimeoutLineEdit.editingFinished.connect(self.pollTimeoutCB) self.pollUrlLineEdit.editingFinished.connect(self.pollUrlCB) self.serverPortLineEdit.editingFinished.connect(self.serverPortCB) self.pollLoadBtn.clicked.connect(self.pollLoadBtnCB) self.pollBtn.clicked.connect(self.pollBtnCB) self.serverBtn.clicked.connect(self.serverBtnCB) closeBtn.clicked.connect(self.accept) def pollTimeoutCB(self): self._plugin.pollTimeout = float(self.pollTimeoutLineEdit.text()) def pollUrlCB(self): self._plugin.pollUrl = self.pollUrlLineEdit.text() def serverPortCB(self): self._plugin.serverPort = int(self.serverPortLineEdit.text()) def pollLoadBtnCB(self): self._plugin.load() def pollBtnCB(self): if self.pollBtn.text() == self.START_POLL: self._plugin.startPoll() else: self._plugin.stopPoll() if self._plugin.isPollRunning(): pollBtnText = self.STOP_POLL else: pollBtnText = self.START_POLL self.pollBtn.setText(pollBtnText) def serverBtnCB(self): if self.serverBtn.text() == self.START_SERVER: self._plugin.startTcpServer() else: self._plugin.stopTcpServer() if self._plugin.isServerRunning(): serverBtnText = self.STOP_SERVER else: serverBtnText = self.START_SERVER self.serverBtn.setText(serverBtnText) # plugin ###################################################################### class PyMcaJsonRpc1DPlugin(Plugin1DBase.Plugin1DBase): def __init__(self, *args, **kwargs): super(PyMcaJsonRpc1DPlugin, self).__init__(*args, **kwargs) self._handlers = { 'addCurve': self.addCurve, } # Parameters used by poll and server self.pollTimeout = 1. self.pollUrl = '' self.serverPort = 8000 self._serverTimeout = 0.1 def __del__(self): self.stopPoll() self.stopTcpServer() def getMethods(self, plottype=None): return ("JSON-RPC",) def getMethodToolTip(self, methodName): return "Allow to control the plot through JSON-RPC" def applyMethod(self, methodName): dialogBox = _DialogBox(None, self) dialogBox.exec() def load(self): try: fileObj = urlopen(self.pollUrl) except ValueError: print('PyMcaJsonRpc1DPlugin.load: Bad URL:', self.pollUrl) return False else: jsonRpcProcessRequest(fileObj, self._handlers) fileObj.close() return True def startPoll(self): self.stopPoll() # Load file once to check if URL is correct if not self.load(): return False else: self._pollTimer = qt.QTimer() self._pollTimer.timeout.connect(self.load) self._pollTimer.start(1000. * self.pollTimeout) return True def stopPoll(self): if hasattr(self, '_pollTimer'): self._pollTimer.stop() del self._pollTimer def isPollRunning(self): return hasattr(self, '_pollTimer') def startTcpServer(self): self.stopTcpServer() handlers = self._handlers class RequestHandler(StreamRequestHandler): def handle(self): reply = jsonRpcProcessRequest(self.rfile, handlers) if reply is not None: self.wfile.write(reply) self._server = TCPServer(('', self.serverPort), RequestHandler, bind_and_activate=False) self._server.allow_reuse_address = True self._server.timeout = 0.01 self._server.server_bind() self._server.server_activate() # Should do it differently self._serverTimer = qt.QTimer() self._serverTimer.timeout.connect(self._server.handle_request) self._serverTimer.start(1000. * self._serverTimeout) def stopTcpServer(self): if hasattr(self, '_serverTimer'): self._serverTimer.stop() del self._serverTimer if hasattr(self, '_server'): del self._server def isServerRunning(self): return hasattr(self, '_server') MENU_TEXT = "JSON-RPC" def getPlugin1DInstance(plotWindow, **kwargs): return PyMcaJsonRpc1DPlugin(plotWindow) # helper ###################################################################### def addCurveToJsonRpc(x, y, legend=None, info=None, replace=False, replot=True, **kw): """Generate a JSON-RPC request for calling :meth:`Plugin1DBase.addCurve` on a :class:`PyMcaJsonRpc1DPlugin` plugin. See :class:`Plugin1DBase` for details. :returns: A JSON-RPC request corresponding to the addCurve call :rtype: str """ if not isinstance(x, (list, tuple)): x = tuple(x) if not isinstance(y, (list, tuple)): y = tuple(y) params = { "info": info, "x": x, "y": y, "legend": legend, "replace": replace, "replot": replot } params.update(kw) request = { "jsonrpc": "2.0", "method": "addCurve", "params": params } return json.dumps(request) # demo polling ################################################################ def _testServer(address): # Create a test http server class TestRequestHandler(BaseHTTPRequestHandler): def do_GET(self): self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() request = addCurveToJsonRpc( np.arange(100.), np.random.random(100) * 10, legend="test {:.2f}".format(time.time()), replace=True, replot=True) self.wfile.write(request) return HTTPServer(address, TestRequestHandler) class _DemoClientModeAuto(object): def __init__(self, plugin, onFinish): self._plugin = plugin self._onFinish = onFinish def start(self): import threading # Start server in a thread self._httpdServer = _testServer(('localhost', 8000)) self._httpdThread = threading.Thread( target=self._httpdServer.serve_forever) self._httpdThread.start() # Set-up URL to download self._plugin.pollUrl = 'http://localhost:8000' print("Load JSON from server once") self._plugin.load() qt.QTimer.singleShot(2000., self._startPoll) def _startPoll(self): print("Start polling JSON from server") self._plugin.startPoll() qt.QTimer.singleShot(5000., self._stopPoll) def _stopPoll(self): print("Stop polling JSON from server") self._plugin.stopPoll() self._httpdServer.shutdown() self._httpdServer.socket.close() self._onFinish() # demo server mode ############################################################ def _sendJsonRpcAddCurve(address): import socket request = addCurveToJsonRpc( np.arange(100.), np.random.random(100) * 10, legend="test {:.2f}".format(time.time()), replace=True, replot=True ) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(address) sock.send(request) sock.close() class _DemoServerModeAuto(object): def __init__(self, plugin, onFinish): self._plugin = plugin self._onFinish = onFinish def start(self): import threading print("Start TCP server") self._plugin.startTcpServer() print("Start sending JSON-RPC through TCP") self._isSending = True self._senderThread = threading.Thread(target=self._sender) self._senderThread.start() qt.QTimer.singleShot(5000., self._stop) def _sender(self): while self._isSending: _sendJsonRpcAddCurve(('localhost', 8000)) time.sleep(1) print("Stop sending JSON-RPC through TCP") def _stop(self): self._isSending = False self._senderThread.join() print('Stop server') self._plugin.stopTcpServer() self._onFinish() # main ######################################################################## if __name__ == "__main__": import time import sys import os.path from PyMca5.PyMcaGui.plotting.PlotWindow import PlotWindow if len(sys.argv) == 1 or \ sys.argv[1] not in ('plugin', 'demoServer', 'demoClient', 'auto'): print(""" Options: plugin, demoServer demoClient, auto - plugin: Start a 1D plot window with JSPON-RPC plugin available - demoServer: HTTP server, to load JSON-RPC from URL: http://localhost:8000 - demoClient: TCP client that sends JSPN-RPC to localhost:8000 - auto: Starts demo of polling and server that runs alone """) sys.exit() if sys.argv[1] in ('plugin', 'auto'): # Create Qt main application app = qt.QApplication([]) # Create plot window plot = PlotWindow(roi=True) plot.show() # Load plugin pluginDir = os.path.dirname(os.path.abspath(__file__)) pluginName = os.path.splitext(os.path.basename(__file__))[0] plot.setPluginDirectoryList([pluginDir]) nbPlugins = plot.getPlugins() # Update plug-in list assert nbPlugins >= 1 plugin = plot.pluginInstanceDict[pluginName] if sys.argv[1] == 'auto': # Run automated demos serverDemo = _DemoServerModeAuto(plugin, onFinish=app.quit) clientDemo = _DemoClientModeAuto(plugin, onFinish=serverDemo.start) clientDemo.start() app.exec() elif sys.argv[1] == 'demoServer': httpdServer = _testServer(('localhost', 8000)) httpdServer.serve_forever() elif sys.argv[1] == 'demoClient': while True: _sendJsonRpcAddCurve(('localhost', 8000)) time.sleep(1) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/PyMcaPlugins/optional/TaurusPlugin1D.py�������������������������������������0000644�0000000�0000000�00000015456�14741736366�023007� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole & T. Coutinho - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __doc__ = """ This plugin allows to monitor TANGO attributes in a plot window. It needs PyTango and Taurus installed to be operational. To use it from withing PyMca, just add this file to your PyMca/plugins folder. You can also run it as a stand alone script. """ import numpy from PyMca5.PyMcaCore import Plugin1DBase from PyMca5.PyMcaGui import PyMcaQt as qt Qt = qt from taurus import Attribute from taurus import Release from taurus.core import TaurusEventType from taurus.qt.qtcore.taurusqlistener import QObjectTaurusListener from taurus.qt.qtgui.panel import TaurusModelChooser class TaurusPlugin1D(Plugin1DBase.Plugin1DBase, QObjectTaurusListener): def __init__(self, plotWindow, **kw): Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw) QObjectTaurusListener.__init__(self) # "standard" way to handle multiple calls self.methodDict = {} text = "Show the device selector.\n" text += "Make sure your TANGO_HOST\n" text += "environment variable is set" function = self._showTaurusTree info = text icon = None self.methodDict["Show"] =[function, info, icon] self._oldModels = [] self._newModels = [] self._widget = None def handleEvent(self, evt_src, evt_type, evt_value): if evt_type not in (TaurusEventType.Change, TaurusEventType.Periodic): return y = evt_value.value x = numpy.arange(y.shape[0]) self.addCurve(x, y, legend=evt_src.getNormalName()) def onSelectionChanged(self, models): if self._oldModels in [None, []]: self._attrDict = {} for model in models: try: attr = Attribute(model) except Exception: # old PyTango versions do not handle unicode attr = Attribute(str(model)) #force a read -> attr.read() attr.addListener(self) legend = qt.safe_str(attr.getNormalName()) self._attrDict[legend] = attr self._oldModels = models else: keptModels = [] newModels = [] for model in models: if model in self._oldModels: keptModels.append(model) else: newModels.append(model) for model in self._oldModels: if model not in keptModels: attr = Attribute(model) attr.removeListener(self) legend = qt.safe_str(attr.getNormalName()) if legend in self._attrDict: del self._attrDict[legend] print("Trying to remove ", legend) self.removeCurve(legend, replot=False) for model in newModels: attr = Attribute(model) # attr.read() attr.addListener(self) legend = qt.safe_str(attr.getNormalName()) self._attrDict[legend] = attr self._oldModels = keptModels + newModels #Methods to be implemented by the plugin # I should put this mechanism in the base class ... def getMethods(self, plottype=None): """ A list with the NAMES associated to the callable methods that are applicable to the specified plot. Plot type can be "SCAN", "MCA", None, ... """ # visualize everywhere, therefore ignore MCA or SCAN # if plottype in ["MCA"]: # return [] names = list(self.methodDict.keys()) names.sort() return names def getMethodToolTip(self, name): """ Returns the help associated to the particular method name or None. """ return self.methodDict[name][1] def getMethodPixmap(self, name): """ Returns the pixmap associated to the particular method name or None. """ return self.methodDict[name][2] def applyMethod(self, name): """ The plugin is asked to apply the method associated to name. """ self.methodDict[name][0]() return def _showTaurusTree(self): if self._widget is None: self._widget = TaurusModelChooser() #self._adapter = TaurusPyMcaAdapter() if Release.version_info >= (4,): self._widget.updateModels.connect(self.onSelectionChanged) else: Qt.QObject.connect(self._widget, Qt.SIGNAL("updateModels"), self.onSelectionChanged) self._widget.show() MENU_TEXT = "Taurus Device Browser" def getPlugin1DInstance(plotWindow, **kw): ob = TaurusPlugin1D(plotWindow) return ob if __name__ == "__main__": app = qt.QApplication([]) import os from PyMca5.PyMcaGui import ScanWindow plot = ScanWindow.ScanWindow() pluginDir = os.path.dirname(os.path.abspath(__file__)) SILX = False if silx: plot.pluginsToolButton.setPluginDirectoryList([pluginDir]) plot.pluginsToolButton.getPlugins() else plot.setPluginDirectoryList([pluginDir]) plot.getPlugins() plot.show() app.exec() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/__init__.py�����������������������������������������������������������������0000644�0000000�0000000�00000020756�14741736366�015516� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2025 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __version__ = "5.9.4" import os import sys from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR try: from fisx.DataDir import FISX_DATA_DIR except ImportError: FISX_DATA_DIR = None import logging as _logging _logging.getLogger(__name__).addHandler(_logging.NullHandler()) _logger = _logging.getLogger(__name__) if sys.platform.startswith("win"): import ctypes from ctypes.wintypes import MAX_PATH def version(): return __version__ def getDefaultSettingsDirectory(): """ Return the path to the directory containing the default settings file, user plugins and user fit functions. This function tries to create the directory if not already created. """ if sys.platform == 'win32': # recipe based on: http://bugs.python.org/issue1763#msg62242 dll = ctypes.windll.shell32 buf = ctypes.create_unicode_buffer(MAX_PATH + 1) if dll.SHGetSpecialFolderPathW(None, buf, 0x0005, False): directory = buf.value else: # the above should have worked home = os.getenv('USERPROFILE') try: directory = os.path.join(home, "My Documents") except Exception: home = '\\' directory = '\\' if os.path.isdir('%s' % directory): directory = os.path.join(directory, "PyMca") else: directory = os.path.join(home, "PyMca") else: home = os.getenv('HOME') directory = os.path.join(home, ".pymca") if not os.path.isdir('%s' % directory): # if legacy directory exists, possibly containing user plugins, # we should keep using it legacy_directory = os.path.join(home, "PyMca") if os.path.exists(os.path.join(legacy_directory, "plugins")): directory = legacy_directory if not os.path.exists('%s' % directory): os.mkdir('%s' % directory) return directory def getDefaultSettingsFile(): """ Return the path to the default settings file (PyMca.ini). The file itself may not exist, but this function tries to create the containing directory if not already created. """ filename = "PyMca.ini" return os.path.join(getDefaultSettingsDirectory(), filename) def getDefaultUserPluginsDirectory(): """ Return the default directory to look for user defined plugins. The directory will be created if not existing. In case of error it returns None. """ try: settingsDir = getDefaultSettingsDirectory() if os.path.exists(settingsDir): userPluginDir = os.path.join(settingsDir, "plugins") if not os.path.exists(userPluginDir): os.mkdir(userPluginDir) return userPluginDir else: return None except Exception: _logger.info("WARNING: Cannot initialize plugins directory") return None def getDefaultUserFitFunctionsDirectory(): """ Return the default directory to look for user defined fit functions. The directory will be created if not existing. In case of error it returns None. """ try: settingsDir = os.path.dirname(getDefaultSettingsFile()) if os.path.exists(settingsDir): fitFunctionsDir = os.path.join(settingsDir, "fit") if not os.path.exists(fitFunctionsDir): os.mkdir(fitFunctionsDir) return fitFunctionsDir else: return None except Exception: print("WARNING: Cannot initialize fit functions directory") return None def getUserDataFile(fileName, directory=""): """ Look for an alternative to the given filename in the default user data directory """ userDataDir = None try: settingsDir = getDefaultSettingsDirectory() if os.path.exists(settingsDir): userDataDir = os.path.join(settingsDir, "data") if not os.path.exists(userDataDir): os.mkdir(userDataDir) except Exception: _logger.info("WARNING: cannot initialize user data directory") if userDataDir is None: return fileName baseName = os.path.basename(fileName) if len(directory): userDataFile = os.path.join(userDataDir, directory, baseName) else: userDataFile = os.path.join(userDataDir, baseName) if os.path.exists(userDataFile): _logger.debug("Using user data file: %s", userDataFile) return userDataFile else: _logger.debug("Using data file: %s", fileName) return fileName def getDataFile(fileName, directory=None): """ Look for the provided file name in directories following the priority: 0 - The provided file 1 - User data directory (~/.pymca/PyMcaData) 2 - PyMca data directory (PyMcaDataDir.PYMCA_DATA_DIR) 3 - fisx data directory (fisx.DataDir.FISX_DATA_DIR) """ # return the input file name if exists if os.path.exists(fileName): _logger.debug("Filename as supplied <%s>", fileName) return fileName # the list of sub-directories where to look for the file if directory is None: directoryList = [""] else: directoryList = [directory, ""] # user for subdirectory in directoryList: newFileName = getUserDataFile(fileName, directory=subdirectory) if os.path.exists(newFileName): _logger.debug("Filename from user <%s>", newFileName) return newFileName # PyMca for subdirectory in directoryList: newFileName = os.path.join(PYMCA_DATA_DIR, subdirectory, os.path.basename(fileName)) if os.path.exists(newFileName): _logger.debug("Filename from PyMca Data Directory <%s>", newFileName) return newFileName # fisx if FISX_DATA_DIR is not None: for subdirectory in directoryList: newFileName = os.path.join(FISX_DATA_DIR, subdirectory, os.path.basename(fileName)) if os.path.exists(newFileName): _logger.debug("Filename from fisx Data Directory <%s>", newFileName) return newFileName # file not found txt = "File not found: <%s>" % fileName if FISX_DATA_DIR is None: txt += " Please install fisx module (command 'pip install fisx [--user]')." raise IOError(txt) # workaround matplotlib MPLCONFIGDIR issues under windows if sys.platform.startswith("win"): try: #try to avoid matplotlib config dir problem under windows if os.getenv("MPLCONFIGDIR") is None: os.environ['MPLCONFIGDIR'] = getDefaultSettingsDirectory() except Exception: _logger.info("WARNING: Could not set MPLCONFIGDIR. %s", sys.exc_info()[1]) # mandatory modules for backwards compatibility from .PyMcaCore import Plugin1DBase, StackPluginBase, PyMcaDirs, DataObject #all the rest can be imported using from PyMca5.PyMca import ... from . import PyMca ������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8557665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/��������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015053� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/edfviewer�����������������������������������������������������������0000644�0000000�0000000�00000000615�14741736366�016767� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'EdfFileSimpleViewer.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) �������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/elementsinfo��������������������������������������������������������0000644�0000000�0000000�00000000614�14741736366�017476� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.physics.xrf as target fname = os.path.join(os.path.dirname(target.__file__), 'ElementsInfo.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) ��������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/mca2edf�������������������������������������������������������������0000644�0000000�0000000�00000000601�14741736366�016303� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'Mca2Edf.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) �������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/peakidentifier������������������������������������������������������0000644�0000000�0000000�00000000616�14741736366�017773� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.physics.xrf as target fname = os.path.join(os.path.dirname(target.__file__), 'PeakIdentifier.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) ������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/pymca���������������������������������������������������������������0000644�0000000�0000000�00000000603�14741736366�016115� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'PyMcaMain.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) �����������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/pymcabatch����������������������������������������������������������0000644�0000000�0000000�00000000604�14741736366�017120� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'PyMcaBatch.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) ����������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/pymcapostbatch������������������������������������������������������0000644�0000000�0000000�00000000610�14741736366�020023� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'PyMcaPostBatch.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) ������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/pymcaroitool��������������������������������������������������������0000644�0000000�0000000�00000000607�14741736366�017531� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'QStackWidget.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) �������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/scripts/rgbcorrelator�������������������������������������������������������0000644�0000000�0000000�00000000610�14741736366�017651� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!python import os import sys import PyMca5.PyMcaGui.pymca as target fname = os.path.join(os.path.dirname(target.__file__), 'PyMcaPostBatch.py') if sys.version < '3.0': execfile(fname) else: f = open(fname, "rb") code_txt = f.read() f.close() if sys.version_info < (3, 6): code = compile(code_txt, fname, 'exec') else: code = code_txt exec(code) ������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8597665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/����������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�014526� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/ConfigDictTest.py�����������������������������������������������������0000644�0000000�0000000�00000017227�14741736366�017771� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import gc import tempfile if sys.version_info < (3,): from StringIO import StringIO else: from io import StringIO try: import h5py HAS_H5PY = True except Exception: HAS_H5PY = None class testConfigDict(unittest.TestCase): def setUp(self): """ import the module """ try: from PyMca5.PyMcaIO import ConfigDict self._module = ConfigDict except Exception: self._module = None self._tmpFileName = None def tearDown(self): """clean up any possible files""" gc.collect() if self._tmpFileName is not None: if os.path.exists(self._tmpFileName): os.remove(self._tmpFileName) if os.path.exists(self._tmpFileName + ".h5"): os.remove(self._tmpFileName + ".h5") def testConfigDictImport(self): #"""Test successful import""" self.assertTrue(self._module is not None,\ "Unsuccessful PyMca.ConfigDict import") def testConfigDictIO(self): # create a dictionary from PyMca5.PyMcaIO import ConfigDict testDict = {} testDict['simple_types'] = {} testDict['simple_types']['float'] = 1.0 testDict['simple_types']['int'] = 1 testDict['simple_types']['string'] = "Hello World" testDict['simple_types']['string_with_1'] = "Hello World %" testDict['simple_types']['string_with_2'] = "Hello World %%" testDict['containers'] = {} testDict['containers']['list'] = [-1, 'string', 3.0] if ConfigDict.USE_NUMPY: import numpy testDict['containers']['array'] = numpy.array([1.0, 2.0, 3.0]) testDict['containers']['dict'] = {'key1': 'Hello World', 'key2': 2.0} tmpFile = tempfile.mkstemp(text=False) os.close(tmpFile[0]) self._tmpFileName = tmpFile[1] writeInstance = ConfigDict.ConfigDict(initdict=testDict) writeInstance.write(self._tmpFileName) #read the data back readInstance = ConfigDict.ConfigDict() readInstance.read(self._tmpFileName) # get read key list testDictKeys = list(testDict.keys()) readKeys = list(readInstance.keys()) self.assertTrue(len(readKeys) == len(testDictKeys), "Number of read keys not equal to number of written keys") topKey = 'simple_types' for key in testDict[topKey]: original = testDict[topKey][key] read = readInstance[topKey][key] self.assertTrue( read == original, "Read <%s> instead of <%s>" % (read, original)) topKey = 'containers' for key in testDict[topKey]: original = testDict[topKey][key] read = readInstance[topKey][key] if key == 'array': self.assertTrue( read.all() == original.all(), "Read <%s> instead of <%s>" % (read, original)) else: self.assertTrue( read == original, "Read <%s> instead of <%s>" % (read, original)) @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testHdf5Uri(self): # create a dictionary from PyMca5.PyMcaIO import ConfigDict testDict = {} testDict['simple_types'] = {} testDict['simple_types']['float'] = 1.0 testDict['simple_types']['int'] = 1 testDict['simple_types']['string'] = "Hello World" testDict['containers'] = {} testDict['containers']['list'] = [-1, 'string', 3.0] if ConfigDict.USE_NUMPY: import numpy testDict['containers']['array'] = numpy.array([1.0, 2.0, 3.0]) testDict['containers']['dict'] = {'key1': 'Hello World', 'key2': 2.0} tmpFile = tempfile.mkstemp(text=False) os.close(tmpFile[0]) self._tmpFileName = tmpFile[1] writeInstance = ConfigDict.ConfigDict(initdict=testDict) writeInstance.write(self._tmpFileName) #read the data back into a string with open(self._tmpFileName, "r") as f: contentsAsText = f.read() f = None hdf5FileName = self._tmpFileName + ".h5" path = "/entry_1/process/data" with h5py.File(hdf5FileName, "w") as f: f[path] = contentsAsText f.flush() f = None uri = hdf5FileName + "::" + path readInstance = ConfigDict.ConfigDict() readInstance.read(uri) # get read key list testDictKeys = list(testDict.keys()) readKeys = list(readInstance.keys()) self.assertTrue(len(readKeys) == len(testDictKeys), "Number of read keys not equal to number of written keys") topKey = 'simple_types' for key in testDict[topKey]: original = testDict[topKey][key] read = readInstance[topKey][key] self.assertTrue( read == original, "Read <%s> instead of <%s>" % (read, original)) topKey = 'containers' for key in testDict[topKey]: original = testDict[topKey][key] read = readInstance[topKey][key] if key == 'array': self.assertTrue( read.all() == original.all(), "Read <%s> instead of <%s>" % (read, original)) else: self.assertTrue( read == original, "Read <%s> instead of <%s>" % (read, original)) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testConfigDict)) else: # use a predefined order testSuite.addTest(testConfigDict("testConfigDictImport")) testSuite.addTest(testConfigDict("testConfigDictIO")) testSuite.addTest(testConfigDict("testHdf5Uri")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/DataTest.py�����������������������������������������������������������0000644�0000000�0000000�00000016555�14741736366�016634� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy class testData(unittest.TestCase): ELEMENTS = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def setUp(self): """ Get the data directory """ self._importSuccess = False try: from PyMca5 import PyMcaDataDir self._importSuccess = True self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR except Exception: self.dataDir = None try: self.docDir = PyMcaDataDir.PYMCA_DOC_DIR except Exception: self.docDir = None def testDataDirectoryPresence(self): self.assertTrue(self._importSuccess, 'Unsuccessful PyMca5.PyMcaDataDir import') self.assertTrue(self.dataDir is not None, 'Unassigned PyMca5.PyMcaDataDir.PYMCA_DATA_DIR') self.assertTrue(os.path.exists(self.dataDir), 'Directory "%s" does not exist' % self.dataDir) self.assertTrue(os.path.isdir(self.dataDir), '"%s" expected to be a directory' % self.dataDir) def testFisxDataDirectoryPresence(self): try: from fisx import DataDir dataDir = DataDir.FISX_DATA_DIR except Exception: dataDir = None self.assertTrue(dataDir is not None, 'fisx module not properly installed') self.assertTrue(os.path.exists(dataDir), 'fisx directory "%s" does not exist' % dataDir) self.assertTrue(os.path.isdir(dataDir), '"%s" expected to be a directory' % dataDir) for fname in ['BindingEnergies.dat', 'EADL97_BindingEnergies.dat', 'EADL97_KShellConstants.dat', 'EADL97_LShellConstants.dat', 'EADL97_MShellConstants.dat', 'EPDL97_CrossSections.dat', 'KShellConstants.dat', 'KShellRates.dat', 'LShellConstants.dat', 'LShellRates.dat', 'MShellConstants.dat', 'MShellRates.dat', 'XCOM_CrossSections.dat']: actualName = os.path.join(dataDir, fname) self.assertTrue(os.path.exists(actualName), 'File "%s" does not exist.' % actualName) self.assertTrue(os.path.isfile(actualName), 'File "%s" is not an actual file.' % actualName) def testDataFilePresence(self): # Testing file presence self.testDataDirectoryPresence() for fname in ['LShellRatesCampbell.dat', 'LShellRatesScofieldHS.dat', 'McaTheory.cfg', 'Scofield1973.dict', 'XRFSpectrum.mca', 'Steel.cfg', 'Steel.spe']: actualName = os.path.join(self.dataDir, fname) self.assertTrue(os.path.exists(actualName), 'File "%s" does not exist.' % actualName) self.assertTrue(os.path.isfile(actualName), 'File "%s" is not an actual file.' % actualName) actualName = os.path.join(self.dataDir, 'attdata') self.assertTrue(os.path.exists(actualName), 'Directory "%s" does not exist' % actualName) self.assertTrue(os.path.isdir(actualName), '"%s" expected to be a directory' % actualName) for i in range(92): fname = "%s%s" % (testData.ELEMENTS[i], ".mat") actualName = os.path.join(self.dataDir, 'attdata', fname) self.assertTrue(os.path.exists(actualName), 'File "%s" does not exist.' % actualName) self.assertTrue(os.path.isfile(actualName), 'File "%s" is not an actual file.' % actualName) def testDocDirectoryPresence(self): self.assertTrue(self._importSuccess, 'Unsuccessful PyMca5.PyMcaDataDir import') self.assertTrue(self.docDir is not None, 'Unassigned PyMca5.PyMcaDataDir.PYMCA_DOC_DIR') self.assertTrue(os.path.exists(self.dataDir), 'Directory "%s" does not exist' % self.docDir) self.assertTrue(os.path.isdir(self.dataDir), '"%s" expected to be a directory' % self.docDir) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testData)) else: # use a predefined order testSuite.addTest(testData("testFisxDataDirectoryPresence")) testSuite.addTest(testData("testDataDirectoryPresence")) testSuite.addTest(testData("testDataFilePresence")) testSuite.addTest(testData("testDocDirectoryPresence")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ���������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/EdfFileTest.py��������������������������������������������������������0000644�0000000�0000000�00000011234�14741736366�017246� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import gc import tempfile import numpy class testEdfFile(unittest.TestCase): def setUp(self): """ import the EdfFile module """ tmpFile = tempfile.mkstemp(text=False) os.close(tmpFile[0]) self.fname = tmpFile[1] try: from PyMca5.PyMcaIO.EdfFile import EdfFile self.fileClass = EdfFile except Exception: self.fileClass = None def tearDown(self): """clean up any possible files""" gc.collect() if self.fileClass is not None: if os.path.exists(self.fname): os.remove(self.fname) def testEdfFileImport(self): #"""Test successful import""" self.assertTrue(self.fileClass is not None) def testEdfFileReadWrite(self): # create a file self.assertTrue(self.fileClass is not None) data = numpy.arange(10000).astype(numpy.int32) data.shape = 100, 100 edf = self.fileClass(self.fname, 'wb+') edf.WriteImage({'Title': "title", 'key': 'key'}, data) edf = None # read it edf = self.fileClass(self.fname, 'rb') # the number of images nImages = edf.GetNumImages() self.assertEqual(nImages, 1) # the header information header = edf.GetHeader(0) self.assertEqual(header['Title'], "title") self.assertEqual(header['key'], "key") #the data information readData = edf.GetData(0) self.assertEqual(readData.dtype, numpy.int32, 'Read type %s instead of %s' %\ (readData.dtype, numpy.int32)) self.assertEqual(readData[10,20], data[10,20]) self.assertEqual(readData[20,10], data[20,10]) edf =None # add a second Image edf = self.fileClass(self.fname, 'rb+') edf.WriteImage({'Title': "title2", 'key': 'key2'}, data.astype(numpy.float32), Append=1) edf = None # read it edf = self.fileClass(self.fname, 'rb') # the number of images nImages = edf.GetNumImages() self.assertEqual(nImages, 2) # the header information header = edf.GetHeader(1) self.assertEqual(header['Title'], "title2") self.assertEqual(header['key'], "key2") # the data information readData = edf.GetData(1) self.assertEqual(readData.dtype, numpy.float32) self.assertTrue(abs(readData[10,20]-data[10,20]) < 0.00001) self.assertTrue(abs(readData[20,10]-data[20,10]) < 0.00001) edf =None gc.collect() def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testEdfFile)) else: # use a predefined order testSuite.addTest(testEdfFile("testEdfFileImport")) testSuite.addTest(testEdfFile("testEdfFileReadWrite")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/ElementsTest.py�������������������������������������������������������0000644�0000000�0000000�00000033040�14741736366�017523� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import numpy DEBUG = 0 class testElements(unittest.TestCase): ELEMENTS = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr', 'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr', 'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk', 'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg', 'Bh', 'Hs', 'Mt'] def setUp(self): """ Get the data directory """ try: from PyMca5 import PyMcaDataDir self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR except Exception: self.dataDir = None from PyMca5.PyMcaPhysics import Elements self._elements = Elements def testDataDirectoryPresence(self): # Testing directory presence try: self.assertTrue(self.dataDir is not None) self.assertTrue(os.path.exists(self.dataDir)) self.assertTrue(os.path.isdir(self.dataDir)) except: print("\n Cannot find PyMcaData directory: %s" % self.dataDir) raise def testPeakIdentification(self): # energy in keV energy = 5.9 # 10 eV threshold threshold = 0.010 lines = self._elements.getcandidates(energy, threshold=threshold, targetrays=['K']) self.assertTrue(len(lines[0]['elements']) == 1) self.assertTrue(lines[0]['energy'] == energy) self.assertTrue(lines[0]['elements'][0] == 'Mn') energy = 10.550 threshold = 0.030 lines = self._elements.getcandidates(energy, threshold=threshold, targetrays=['K']) self.assertTrue(len(lines[0]['elements']) == 1) self.assertTrue(lines[0]['energy'] == energy) self.assertTrue('As' in lines[0]['elements']) self.assertTrue('Pb' not in lines[0]['elements']) # Test K and L lines lines = self._elements.getcandidates(energy, threshold=threshold, targetrays=['K', 'L']) self.assertTrue(len(lines[0]['elements']) > 1) self.assertTrue('As' in lines[0]['elements']) self.assertTrue('Pb' in lines[0]['elements']) # Test all energy = 2.280 threshold = 0.030 lines = self._elements.getcandidates(energy, threshold=threshold) self.assertTrue(len(lines[0]['elements']) > 1) self.assertTrue('As' not in lines[0]['elements']) self.assertTrue('Pb' not in lines[0]['elements']) self.assertTrue('S' in lines[0]['elements']) self.assertTrue('Hg' in lines[0]['elements']) def testElementCrossSectionsReadout(self): if DEBUG: print() print("Test XCOM Cross Sections Readout") from PyMca5 import getDataFile from PyMca5.PyMcaIO import specfile xcomFile = getDataFile('XCOM_CrossSections.dat') sf = specfile.Specfile(xcomFile) for ele in ['Si', 'Fe', 'Pb', 'U']: if DEBUG: print("Testing element %s" % ele) z = self._elements.getz(ele) scan = sf[z-1] xcomLabels = scan.alllabels() self.assertTrue('ENERGY' in xcomLabels[0].upper()) self.assertTrue('COHERENT' in xcomLabels[1].upper()) self.assertTrue('COMPTON' in xcomLabels[2].upper()) self.assertTrue('PHOTO' in xcomLabels[-3].upper()) self.assertTrue('PAIR' in xcomLabels[-2].upper()) self.assertTrue('TOTAL' in xcomLabels[-1].upper()) xcomData = scan.data() # WARNING: This call is to read XCOM data # only in case energy is None the data are the same as # those found later on in the 'xcom' key of the element. data = self._elements.getelementmassattcoef(ele, energy=None) # The original data are in the xcom key data = self._elements.Element[ele]['xcom'] # Energy grid self.assertTrue(numpy.allclose(data['energy'], xcomData[0, :])) # Test the different cross sections self.assertTrue(numpy.allclose(data['coherent'], xcomData[1, :])) self.assertTrue(numpy.allclose(data['compton'], xcomData[2, :])) self.assertTrue(numpy.allclose(data['photo'], xcomData[-3, :])) self.assertTrue(numpy.allclose(data['pair'], xcomData[-2, :])) self.assertTrue(numpy.allclose(data['total'], xcomData[-1, :])) total = xcomData[1, :] + xcomData[2, :] +\ xcomData[-3, :] + xcomData[-2, :] # Check the total is self-consistent self.assertTrue(numpy.allclose(total, xcomData[-1, :])) def getCrossSections(self, element, energy): # perform log-log interpolation in the read data # to see if we get the same results # now perform a log-log interpolation when needed # lin-lin interpolation: # # y0 (x1-x) + y1 (x-x0) # y = ------------------------- # x1 - x0 # # log-log interpolation: # # log(y0) * log(x1/x) + log(y1) * log(x/x0) # log(y) = ------------------------------------------ # log (x1/x0) # log = numpy.log10 # make sure data for the element are loaded # the test for proper loading is made somewhere else self._elements.getelementmassattcoef(element) # and work with them xcomData = self._elements.Element[element]['xcom'] i0 = numpy.nonzero(xcomData['energy'] <= energy)[0].max() i1 = numpy.nonzero(xcomData['energy'] >= energy)[0].min() x = numpy.array(energy) x0 = xcomData['energy'][i0] x1 = xcomData['energy'][i1] ddict = {} total = 0.0 for key in ['coherent', 'compton', 'photo']: y0 = xcomData[key][i0] y1 = xcomData[key][i1] if x1 != x0: logy = (log(y0) * log(x1/x) + log(y1) * log(x/x0))\ /log(x1/x0) y = pow(10.0, logy) else: y = y1 ddict[key] = y total += y ddict['total'] = total return ddict def testElementCrossSectionsCalculation(self): if DEBUG: print() print("Testing Element Mass Attenuation Cross Sections Calculation") for ele in ['Ge', 'Mn', 'Au', 'U']: if DEBUG: print("Testing element = %s" % ele) # take a set of energies not present in the grid energyList = [1.0533, 2.03166, 5.82353, 10.3123, 24.7431] data = self._elements.getelementmassattcoef(ele, energy=energyList) energyIndex = 0 for x in energyList: if DEBUG: print("Testing energy %f" % x) refData = self.getCrossSections(ele, x) for key in ['coherent', 'compton', 'photo', 'total']: if DEBUG: print("Testing key = %s" % key) yRef = refData[key] yTest = data[key][energyIndex] delta = 100.0 * abs(yTest-yRef)/yRef self.assertTrue( delta < 0.01, "{x} {ele} {key} {delta} not smaller than 0.01") energyIndex += 1 def testMaterialCrossSectionsCalculation(self): if DEBUG: print() print("Testing Material Mass Attenuation Cross Sections Calculation") formulae = ['H2O1', 'Hg1S1', 'Ca1C1O3'] unpackedFormulae = [(('H', 2), ('O', 1)), (('Hg', 1), ('S', 1)), (('Ca', 1), ('C', 1.0), ('O', 3.0))] for i in range(len(unpackedFormulae)): if DEBUG: print("Testing formula %s" % formulae[i]) # calculate mass fractions totalMass = 0.0 massFractions = numpy.zeros((len(unpackedFormulae[i]),), numpy.float64) j = 0 for ele, amount in unpackedFormulae[i]: tmpValue = amount * self._elements.Element[ele]['mass'] totalMass += tmpValue massFractions[j] = tmpValue j += 1 massFractions /= totalMass # the list of energies energyList = [1.5, 3.33, 10., 20.4, 30.6, 90.33] # get the data to be checked data = self._elements.getmassattcoef(formulae[i], energyList) energyIndex = 0 for energy in energyList: if DEBUG: print("Testing energy %f" % energy) # initialize reference data refData = {} for key in ['coherent', 'compton', 'photo', 'total']: refData[key] = 0.0 # calculate reference data for j in range(len(unpackedFormulae[i])): ele = unpackedFormulae[i][j][0] tmpData = self.getCrossSections(ele, energy) for key in ['coherent', 'compton', 'photo', 'total']: refData[key] += tmpData[key] * massFractions[j] # test for key in ['coherent', 'compton', 'photo', 'total']: if DEBUG: print("Testing key %s" % key) yRef = refData[key] yTest = data[key][energyIndex] self.assertTrue((100.0 * abs(yTest-yRef)/yRef) < 0.01) energyIndex += 1 def testMaterialCompositionCalculation(self): if DEBUG: print() print("Testing Material Composition Calculation (issue #298)") mat1 = "Kapton" mat2 = "Mylar" c1 = self._elements.getMaterialMassFractions([mat1, mat2], [0.5, 0.5]) c2 = self._elements.getMaterialMassFractions([mat2, mat1], [0.5, 0.5]) for key in c1: self.assertTrue(abs(c1[key] - c2[key]) < 1.0e-7, "Inconsistent calculation for element %s" % key) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testElements)) else: testSuite.addTest(testElements("testDataDirectoryPresence")) testSuite.addTest(testElements("testPeakIdentification")) testSuite.addTest(testElements("testElementCrossSectionsReadout")) testSuite.addTest(testElements("testElementCrossSectionsCalculation")) testSuite.addTest(testElements("testMaterialCrossSectionsCalculation")) testSuite.addTest(testElements("testMaterialCompositionCalculation")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': DEBUG = 1 test() ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/FastXRFLinearFitTest.py�����������������������������������������������0000644�0000000�0000000�00000012334�14741736366�021025� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������# /*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V.A. Sole" __contact__ = "sole@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import numpy import tempfile import shutil from PyMca5.tests import XrfData from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit from PyMca5.PyMcaPhysics.xrf.XRFBatchFitOutput import OutputBuffer try: import h5py HAS_H5PY = True except ImportError: HAS_H5PY = False class testFastXRFLinearFit(unittest.TestCase): _rtolLegacy = 1e-5 def setUp(self): self.path = tempfile.mkdtemp(prefix="pymca") super(testFastXRFLinearFit, self).setUp() def tearDown(self): shutil.rmtree(self.path) @unittest.skipUnless(HAS_H5PY, "h5py not installed") def testCommand(self): from PyMca5.PyMcaIO import HDF5Stack1D # generate the data data, livetime = XrfData.generateXRFData() configuration = XrfData.generateXRFConfig() configuration["fit"]["stripalgorithm"] = 1 # create HDF5 file fname = os.path.join(self.path, "FastXRF.h5") h5 = h5py.File(fname, "w") h5["/data"] = data h5["/data_int32"] = (data * 1000).astype(numpy.int32) h5.flush() h5.close() fastFit = FastXRFLinearFit.FastXRFLinearFit() fastFit.setFitConfiguration(configuration) outputDir = None outputRoot = "" fileEntry = "" fileProcess = "" refit = None filepattern = None begin = None end = None increment = None backend = None weight = 0 tif = 0 edf = 0 csv = 0 h5 = 1 dat = 0 concentrations = 0 diagnostics = 0 debug = 0 overwrite = 1 multipage = 0 outbuffer = OutputBuffer( outputDir=outputDir, outputRoot=outputRoot, fileEntry=fileEntry, fileProcess=fileProcess, diagnostics=diagnostics, tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, multipage=multipage, overwrite=overwrite, ) # test standard reading scanlist = None selection = {"y": "/data"} dataStack = HDF5Stack1D.HDF5Stack1D([fname], selection, scanlist=scanlist) with outbuffer.saveContext(): fastFit.fitMultipleSpectra( y=dataStack, weight=weight, refit=refit, concentrations=concentrations, outbuffer=outbuffer, ) # test dynamic reading h5 = h5py.File(fname, "r") with outbuffer.saveContext(): fastFit.fitMultipleSpectra( y=h5["/data"], weight=weight, refit=refit, concentrations=concentrations, outbuffer=outbuffer, ) # test dynamic reading of integer data with outbuffer.saveContext(): fastFit.fitMultipleSpectra( y=h5["/data_int32"], weight=weight, refit=refit, concentrations=concentrations, outbuffer=outbuffer, ) h5.close() h5 = None def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest( unittest.TestLoader().loadTestsFromTestCase(testFastXRFLinearFit) ) else: # use a predefined order testSuite.addTest(testPyMcaBatch("testCommand")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == "__main__": if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/GefitTest.py����������������������������������������������������������0000644�0000000�0000000�00000006671�14741736366�017017� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import numpy class testGefit(unittest.TestCase): def setUp(self): """ import the module """ try: from PyMca5.PyMcaMath.fitting import Gefit self.gefit = Gefit except Exception: self.gefit = None def gaussianPlusLinearBackground(self, param, t): dummy = 2.3548200450309493 * (t - param[3])/ param[4] return param[0] + param[1] * t +\ param[2] * numpy.exp(-0.5 * dummy * dummy) def testGefitImport(self): self.assertTrue(self.gefit is not None) def testGefitLeastSquares(self): self.testGefitImport() x = numpy.arange(500.) originalParameters = numpy.array([10.5, 2, 1000.0, 200., 100], numpy.float64) fitFunction = self.gaussianPlusLinearBackground y = fitFunction(originalParameters, x) startingParameters = [0.0 ,1.0,900.0, 150., 90] fittedpar, chisq, sigmapar =self.gefit.LeastSquaresFit(fitFunction, startingParameters, xdata=x, ydata=y, sigmadata=None) for i in range(len(originalParameters)): self.assertTrue(abs(fittedpar[i] - originalParameters[i]) < 0.01) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testGefit)) else: # use a predefined order testSuite.addTest(testGefit("testGefitImport")) testSuite.addTest(testGefit("testGefitLeastSquares")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() �����������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/HDF5UtilsTest.py������������������������������������������������������0000644�0000000�0000000�00000003006�14741736366�017455� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������import os import shutil import tempfile import unittest import h5py from PyMca5.PyMcaIO import HDF5Utils def _cause_segfault(*args, **kwargs): import ctypes i = ctypes.c_char(b"a") j = ctypes.pointer(i) c = 0 while True: j[c] = b"a" c += 1 def _safe_cause_segfault(*args, **kwargs): return HDF5Utils.run_in_subprocess(_cause_segfault, *args, **kwargs) class testHDF5Utils(unittest.TestCase): def setUp(self): self.path = tempfile.mkdtemp(prefix="pymca") def tearDown(self): shutil.rmtree(self.path) def testHdf5GroupKeys(self): filename = os.path.join(self.path, "test.h5") with h5py.File(filename, "w", track_order=True) as f: for i in range(5): f[str(i)] = i names = list(map(str, range(5))) self.assertEqual(HDF5Utils.get_hdf5_group_keys(filename), names) self.assertEqual(HDF5Utils.safe_hdf5_group_keys(filename), names) def testSegFault(self): self.assertEqual(_safe_cause_segfault(default=123), 123) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testHDF5Utils)) else: # use a predefined order testSuite.addTest(testHDF5Utils("testHdf5GroupKeys")) testSuite.addTest(testHDF5Utils("testSegFault")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == "__main__": test() ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/McaAdvancedFitWidgetTest.py�������������������������������������������0000644�0000000�0000000�00000023022�14741736366�021703� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import os import sys import time import unittest import PyMca5.PyMcaGui.PyMcaQt as qt from PyMca5.PyMcaGui.misc.testutils import TestCaseQt if os.environ.get('WITH_OPENGL_TEST', 'True') in ['False', '0', 0, 'FALSE']: OPENGL = False else: try: import OpenGL OPENGL = True except Exception: OPENGL = False # Debian packaging for armhf does not support OpenGL extensions in the # implementation of the packaging machine. Disable the OpenGL tests. ARM32 = False if OPENGL: import platform if platform.machine().startswith("arm"): if platform.architecture()[0].startswith('32'): ARM32 = True try: import silx.gui SILX = True except ImportError: SILX = False class TestMcaAdvancedFitWidget(TestCaseQt): def setUp(self): super(TestMcaAdvancedFitWidget, self).setUp() def _workOnBackend(self, backend): from PyMca5.PyMcaGui.physics.xrf import McaAdvancedFit from PyMca5.PyMcaGraph.Plot import Plot Plot.defaultBackend = backend widget = McaAdvancedFit.McaAdvancedFit() widget.show() self.qapp.processEvents() # read the data from PyMca5 import PyMcaDataDir dataDir = PyMcaDataDir.PYMCA_DATA_DIR from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaPhysics.xrf import ClassMcaTheory from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool from PyMca5.PyMcaIO import ConfigDict dataFile = os.path.join(dataDir, "Steel.spe") self.assertTrue(os.path.isfile(dataFile), "File %s is not an actual file" % dataFile) sf = specfile.Specfile(dataFile) self.assertTrue(len(sf) == 1, "File %s cannot be read" % dataFile) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float64) sf = None widget.setData(x, y) self.qapp.processEvents() # read the fit configuration configFile = os.path.join(dataDir, "Steel.cfg") self.assertTrue(os.path.isfile(configFile), "File %s is not an actual file" % configFile) configuration = ConfigDict.ConfigDict() configuration.read(configFile) widget.configure(configuration) self.qapp.processEvents() time.sleep(1) # switch log axis # widget.graphWindow.yLogButton clicked isLogy0 = widget.graphWindow.isYAxisLogarithmic() self.mouseClick(widget.graphWindow.yLogButton, qt.Qt.LeftButton) self.qapp.processEvents() isLogy1 = widget.graphWindow.isYAxisLogarithmic() self.assertTrue(isLogy0 != isLogy1, "Y scale not toggled!") time.sleep(1) # reset zoom widget.graphWindow.resetZoom() # swith energy axis: # widget.graphWindow._energyIconSignal # widget.graphWindow.energyButton clicked label0 = widget.graphWindow.getGraphXLabel() self.mouseClick(widget.graphWindow.energyButton, qt.Qt.LeftButton) self.qapp.processEvents() label1 = widget.graphWindow.getGraphXLabel() self.assertTrue(label0 != label1, "Energy scale not toggled!") self.assertTrue(label0.lower() in ["channel", "energy"], "Unexpected plot X label <%s>" % label0) self.assertTrue(label1.lower() in ["channel", "energy"], "Unexpected plot X label <%s>" % label0) # reset zoom widget.graphWindow.resetZoom() # fit: # callback widget.fit # widget.graphWindow.fitButton clicked # widget.graphWindow._fitIconSignal self.assertTrue(not widget._fitdone(), "Bad fit widget state. Fit should not be finished") self.mouseClick(widget.graphWindow.fitButton, qt.Qt.LeftButton) self.qapp.processEvents() self.assertTrue(widget._fitdone(), "Bad fit widget state. Fit should be finished") # toggle matrix spectrum curveList0 = widget.graphWindow.getAllCurves(just_legend=True) self.mouseClick(widget.matrixSpectrumButton, qt.Qt.LeftButton) self.qapp.processEvents() curveList1 = widget.graphWindow.getAllCurves(just_legend=True) self.assertTrue(abs(len(curveList0) - len(curveList1)) == 1, "Matrix spectrum not working!!") # toggle peaks curveList0 = widget.graphWindow.getAllCurves(just_legend=True) for curve in ["Data", "Fit", "Continuum", "Pile-up"]: self.assertTrue(curve in curveList0, "Curve <%s> expected but not found" % curve) self.mouseClick(widget.peaksSpectrumButton, qt.Qt.LeftButton) self.qapp.processEvents() curveList1 = widget.graphWindow.getAllCurves(just_legend=True) self.assertTrue(len(curveList0) != len(curveList1), "Peaks spectrum not working!!") time.sleep(1) # calculate concentrations tabBar = widget.mainTab.tabBar() idx = -1 for i in range(tabBar.count()): if tabBar.tabText(i).lower().startswith("concentrations"): idx = i break self.assertTrue(idx >= 0, "CONCENTRATIONS tab not found!!") tabBar.setCurrentIndex(idx) widget._tabChanged(idx) time.sleep(1) from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() @unittest.skipUnless(SILX, "silx not installed") def testInteractionSilxMpl(self, backend="silx-mpl"): return self._workOnBackend(backend) @unittest.skipIf(ARM32, "OpenGL tests disabled on ARM-32 bit") @unittest.skipUnless(SILX and OPENGL, "silx and/or OpenGL disabled") def testInteractionSilxGL(self, backend="silx-gl"): return self._workOnBackend(backend) def testInteractionMpl(self, backend="mpl"): return self._workOnBackend(backend) @unittest.skipIf(ARM32, "OpenGL tests disabled on ARM-32 bit") @unittest.skipUnless(OPENGL, "OpenGL not imported or disabled") @unittest.skipUnless(SILX, "silx not installed") def testInteractionOpenGL(self, backend="gl"): return self._workOnBackend(backend) def getSuite(auto=True): with_qt_test = True skip_msg = "" if sys.platform.startswith('linux') and not os.environ.get('DISPLAY', ''): # On Linux and no DISPLAY available (e.g., ssh without -X) skip_msg = 'Widgets tests disabled (DISPLAY env. variable not set)' with_qt_test = False elif os.environ.get('WITH_QT_TEST', 'True') in ['False', 'FALSE', 0, "0"]: skip_msg = "Widgets tests skipped by WITH_QT_TEST env var" with_qt_test = False testSuite = unittest.TestSuite() if not with_qt_test: class SkipGUITest(unittest.TestCase): def runTest(self): self.skipTest( skip_msg) testSuite.addTest(SkipGUITest()) return testSuite if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase( \ TestMcaAdvancedFitWidget)) else: # use a predefined order testSuite.addTest(TestMcaAdvancedFitWidget("testInteractionMpl")) testSuite.addTest(TestMcaAdvancedFitWidget("testInteractionSilxMpl")) testSuite.addTest(TestMcaAdvancedFitWidget("testInteractionOpenGL")) testSuite.addTest(TestMcaAdvancedFitWidget("testInteractionSilxGL")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True if os.environ.get('WITH_QT_TEST', 'True') not in ['False', 'FALSE', 0, "0"]: app = qt.QApplication([]) result = test(auto) app = None sys.exit(not result.wasSuccessful()) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/McaStackExportTest.py�������������������������������������������������0000644�0000000�0000000�00000017531�14741736366�020646� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2020-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy import gc import shutil import tempfile try: import h5py HAS_H5PY = True except Exception: HAS_H5PY = None DEBUG = 0 class testMcaStackExport(unittest.TestCase): def setUp(self): """ Get the data directory """ self._importSuccess = False self._outputDir = None self._h5File = None try: from PyMca5 import PyMcaDataDir self._importSuccess = True self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR except Exception: self.dataDir = None def tearDown(self): gc.collect() if self._h5File is not None: fileName = self._h5File if os.path.exists(fileName): os.remove(fileName) if self._outputDir is not None: shutil.rmtree(self._outputDir, ignore_errors=True) if os.path.exists(self._outputDir): raise IOError("Directory <%s> not deleted" % self._outputDir) @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testSingleStackExport(self): from PyMca5 import PyMcaDataDir from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaCore import StackBase from PyMca5.PyMcaCore import McaStackExport spe = os.path.join(self.dataDir, "Steel.spe") cfg = os.path.join(self.dataDir, "Steel.cfg") sf = specfile.Specfile(spe) self.assertTrue(len(sf) == 1, "File %s cannot be read" % spe) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float64) sf = None configuration = ConfigDict.ConfigDict() configuration.read(cfg) calibration = configuration["detector"]["zero"], \ configuration["detector"]["gain"], 0.0 initialTime = configuration["concentrations"]["time"] # create the data nRows = 5 nColumns = 10 nTimes = 3 data = numpy.zeros((nRows, nColumns, counts.size), dtype = numpy.float64) live_time = numpy.zeros((nRows * nColumns), dtype=numpy.float64) xpos = 10 + numpy.zeros((nRows * nColumns), dtype=numpy.float64) ypos = 100 + numpy.zeros((nRows * nColumns), dtype=numpy.float64) mcaIndex = 0 for i in range(nRows): for j in range(nColumns): data[i, j] = counts live_time[i * nColumns + j] = initialTime * \ (1 + mcaIndex % nTimes) xpos[mcaIndex] += j ypos[mcaIndex] += i mcaIndex += 1 # create the stack data object stack = DataObject.DataObject() stack.data = data stack.info = {} stack.info["McaCalib"] = calibration stack.info["McaLiveTime"] = live_time stack.x = [channels] stack.info["positioners"] = {"x": xpos, "y": ypos} tmpDir = tempfile.gettempdir() self._h5File = os.path.join(tmpDir, "SteelStack.h5") if os.path.exists(self._h5File): os.remove(self._h5File) McaStackExport.exportStackList(stack, self._h5File) # read back the stack from PyMca5.PyMcaIO import HDF5Stack1D stackRead = HDF5Stack1D.HDF5Stack1D([self._h5File], {"y":"/measurement/detector_00"}) # let's play sb = StackBase.StackBase() sb.setStack(stackRead) # positioners data = stackRead.info["positioners"]["x"] self.assertTrue(numpy.allclose(data, xpos), "Incorrect readout of x positions") data = stackRead.info["positioners"]["y"] self.assertTrue(numpy.allclose(data, ypos), "Incorrect readout of y positions") # calibration and live time x, y, legend, info = sb.getStackOriginalCurve() readCalib = info["McaCalib"] readLiveTime = info["McaLiveTime"] self.assertTrue(abs(readCalib[0] - calibration[0]) < 1.0e-10, "Calibration zero. Expected %f got %f" % \ (calibration[0], readCalib[0])) self.assertTrue(abs(readCalib[1] - calibration[1]) < 1.0e-10, "Calibration gain. Expected %f got %f" % \ (calibration[1], readCalib[0])) self.assertTrue(abs(readCalib[2] - calibration[2]) < 1.0e-10, "Calibration 2nd order. Expected %f got %f" % \ (calibration[2], readCalib[2])) self.assertTrue(abs(live_time.sum() - readLiveTime) < 1.0e-5, "Incorrect sum of live time data") @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testSingleArrayExport(self): from PyMca5.PyMcaCore import StackBase from PyMca5.PyMcaCore import McaStackExport tmpDir = tempfile.gettempdir() self._h5File = os.path.join(tmpDir, "Array.h5") data = numpy.arange(3*1024).reshape(3, 1024) McaStackExport.exportStackList([data], self._h5File) # read back the stack from PyMca5.PyMcaIO import HDF5Stack1D stackRead = HDF5Stack1D.HDF5Stack1D([self._h5File], {"y":"/measurement/detector_00"}) # let's play sb = StackBase.StackBase() sb.setStack(stackRead) # check the data self.assertTrue(numpy.allclose(data, stackRead.data), "Incorrect data readout") def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(\ testMcaStackExport)) else: # use a predefined order testSuite.addTest(testMcaStackExport("testSingleStackExport")) testSuite.addTest(testMcaStackExport("testSingleArrayExport")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/McaStackViewTest.py���������������������������������������������������0000644�0000000�0000000�00000037652�14741736366�020305� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2022 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import tempfile import shutil import os import sys import numpy import itertools from contextlib import contextmanager try: from PyMca5.PyMcaCore import McaStackView except ImportError: McaStackView = None try: import h5py except ImportError: h5py = None class testMcaStackView(unittest.TestCase): def setUp(self): self.path = tempfile.mkdtemp(prefix='pymca') def tearDown(self): shutil.rmtree(self.path) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') def testViewUtils(self): n = 20 slices = [slice(None), slice(1, -2), slice(8, 2, -1), slice(0, n, 3), slice(0, n, -2), slice(n-2, 2, -3), slice(n-1, None, -1), slice(None, -2, 3)] lst = list(range(n)) for idx in slices: idxn = McaStackView.sliceNormalize(idx, n) self.assertEqual(lst[idx], lst[idxn]) for idx in slices: self.assertEqual(McaStackView.sliceLen(idx, n), len(lst[idx])) for idx in slices: idxi = McaStackView.sliceReverse(idx, n) self.assertEqual(lst[idx][::-1], lst[idxi]) for idx in slices: idxc = McaStackView.sliceComplement(idx, n) self.assertEqual(list(sorted(lst[idx]+idxc)), lst) for idx in slices: start, stop, step = idx.indices(n) lst1 = list(range(start, stop, int(numpy.sign(step)))) it = McaStackView.chunkIndexGen(start, stop, step) self.assertEqual(len(lst1), sum(ns for it, ns in it)) it = McaStackView.chunkIndexGen(start, stop, step) lst2 = [i for idxc, ns in it for i in lst[idxc]] self.assertEqual(lst1, lst2) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') def testfullChunkIndex(self): for ndim in [2, 3, 4]: shape = tuple(range(3, 3+ndim)) data = numpy.zeros(shape, dtype=int) for chunkAxes, axesOrder, nChunksTot in self._chunkIndexAxes(shape, ndim): for nChunksMax in range(nChunksTot+2): data[()] = 0 result = McaStackView.fullChunkIndex(shape, nChunksMax, chunkAxes=chunkAxes, axesOrder=axesOrder) chunkIndex, chunkAxes, axesOrder, nChunksMax2 = result self.assertTrue(nChunksMax2 <= max(nChunksMax, 1)) for i, (idxChunk, idxShape, nChunks) in enumerate(chunkIndex, 1): data[idxChunk] += i self.assertEqual(data[idxChunk].shape, idxShape) self.assertTrue(nChunks <= nChunksMax2) # Verify data coverage: self.assertFalse((data == 0).any()) # Verify single element access and chunk access order: arr = data.transpose(axesOrder[::-1]+chunkAxes).flatten() lst1 = [k for k, g in itertools.groupby(arr)] lst2 = list(range(1, i+1)) self.assertEqual(lst1, lst2) def _chunkIndexAxes(self, shape, ndim): axes = set(range(ndim)) for ndimChunk in range(ndim+1): nOther = ndim-ndimChunk for chunkAxes in itertools.permutations(axes, ndimChunk): nChunksTot = numpy.prod([shape[i] for i in axes]) yield chunkAxes, None, nChunksTot other = axes-set(chunkAxes) if other: nChunksTot = numpy.prod([shape[i] for i in other]) else: nChunksTot = 1 for axesOrder in itertools.permutations(other, nOther): yield chunkAxes, axesOrder, nChunksTot def assert_array_equal(self, *var): if sys.maxsize > 2**32: # 64-bit interpreter return numpy.testing.assert_array_equal(*var) else: # 32-bit interpreter return numpy.testing.assert_allclose(*var) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') def testMaskedChunkIndex(self): for ndim in [2, 3, 4]: shape = tuple(range(3, 3+ndim)) data = numpy.zeros(shape, dtype=int) for chunkAxes, axesOrder, nChunksTot in self._chunkIndexAxes(shape, ndim): # Create Mask mask, indices, nmask = self._randomMask(shape, chunkAxes, axesOrder) # Mask entire array maskFull = numpy.zeros(shape, dtype=bool) if mask is None: maskFull[()] = False nmask = 0 else: indicesFull = [slice(None)]*ndim if axesOrder: for i, ind in zip(axesOrder, indices): indicesFull[i] = ind elif chunkAxes: tmp = tuple(i for i in range(ndim) if i not in chunkAxes) for i, ind in zip(tmp, indices): indicesFull[i] = ind else: indicesFull = indices indicesFull = tuple(indicesFull) maskFull[indicesFull] = True for nChunksMax in [2, nmask//3, nmask-1, nmask+1]: for usedmask in [mask, None]: data[()] = 0 self.assertFalse((data != 0).any()) chunkIndex, chunkAxes2, axesOrder, nChunksMax2 =\ McaStackView.maskedChunkIndex(shape, nChunksMax, mask=usedmask, chunkAxes=chunkAxes, axesOrder=axesOrder) for i, (idxChunk, idxShape, nChunks) in enumerate(chunkIndex, 1): data[idxChunk] += i self.assertEqual(data[idxChunk].shape, idxShape) self.assertTrue(nChunks <= nChunksMax2) # Verify data coverage: if usedmask is None: self.assertFalse((data == 0).any()) else: self.assertFalse((data[maskFull] == 0).any()) self.assertTrue((data[~maskFull] == 0).all()) # Verify single element access: lst1 = numpy.unique(data).tolist() lst2 = list(range(int(usedmask is None), i+1)) self.assertEqual(lst1, lst2) def _randomMask(self, shape, chunkAxes, axesOrder): if axesOrder: mshape = tuple(shape[i] for i in axesOrder) elif chunkAxes: mshape = tuple(shape[i] for i in range(len(shape)) if i not in chunkAxes) else: mshape = shape if mshape: mask = numpy.zeros(mshape, dtype=bool) indices = numpy.arange(mask.size) numpy.random.shuffle(indices) indices = indices[:mask.size//2] nmask = indices.size indices = numpy.unravel_index(indices, mshape) mask[indices] = True else: mask = None indices = None nmask = 0 return mask, indices, nmask @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') def testFullViewNumpy(self): for ndim in [2, 3, 4]: shape = range(6, 6+ndim) data = numpy.random.uniform(size=shape) self._assertFullView(data) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') @unittest.skipIf(h5py is None, 'h5py cannot be imported') def testFullViewH5py(self): for ndim in [2, 3]: shape = range(6, 6+ndim) data = numpy.random.uniform(size=shape) with self.h5Open('testFullView') as f: name = 'data{}'.format(ndim) f.create_dataset(name, data=data, chunks=(1,)*ndim) self._assertFullView(f[name]) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') def testMaskedViewNumpy(self): for ndim in [2, 3, 4]: shape = range(6, 6+ndim) data = numpy.random.uniform(size=shape) self._assertMaskedView(data) @unittest.skipIf(McaStackView is None, 'PyMca5.PyMcaCore.McaStackView cannot be imported') @unittest.skipIf(h5py is None, 'h5py cannot be imported') def testMaskedViewH5py(self): for ndim in [2, 3]: shape = range(6, 6+ndim) data = numpy.random.uniform(size=shape) with self.h5Open('testMaskedView') as f: name = 'data{}'.format(ndim) f.create_dataset(name, data=data, chunks=(1,)*ndim) self._assertMaskedView(f[name]) def _assertFullView(self, data): mcaSlice = slice(2, -1) for nMca in range(numpy.prod(data.shape[1:])+2): for mcaAxis in range(data.ndim): dataView = McaStackView.FullView(data, readonly=False, mcaAxis=mcaAxis, mcaSlice=mcaSlice, nMca=nMca) npAdd = numpy.arange(data.size).reshape(data.shape) addView = McaStackView.FullView(npAdd, readonly=True, mcaAxis=mcaAxis, mcaSlice=mcaSlice, nMca=nMca) idxFull = dataView.idxFull for readonly in [True, False]: dataView.readonly = readonly dataOrg = numpy.copy(data) iters = dataView.items(), addView.items() chunks = McaStackView.izipChunkItems(*iters) for (key, chunk), (addKey, add) in chunks: chunk += add for idxFullComplement in dataView.idxFullComplement: self.assert_array_equal(data[idxFullComplement], dataOrg[idxFullComplement]) if readonly: self.assert_array_equal(data[idxFull], dataOrg[idxFull]) else: self.assert_array_equal(data[idxFull], dataOrg[idxFull]+npAdd[idxFull]) def _assertMaskedView(self, data): mcaSlice = slice(2, -1) isH5py = isinstance(data, h5py.Dataset) for mcaAxis in range(data.ndim): mask, indices, nmask = self._randomMask(data.shape, (mcaAxis,), None) it = itertools.product([2, nmask//3, nmask-1, nmask+1], [mask, None]) for nMca, usedmask in it: dataView = McaStackView.MaskedView(data, mask=usedmask, readonly=False, mcaAxis=mcaAxis, mcaSlice=mcaSlice, nMca=nMca) npAdd = numpy.arange(data.size).reshape(data.shape) addView = McaStackView.MaskedView(npAdd, mask=usedmask, readonly=True, mcaAxis=mcaAxis, mcaSlice=mcaSlice, nMca=nMca) idxFull = dataView.idxFull for readonly in [True, False]: dataView.readonly = readonly dataOrg = numpy.copy(data) iters = dataView.items(), addView.items() chunks = McaStackView.izipChunkItems(*iters) for (key, chunk), (addKey, add) in chunks: chunk += add if isH5py: _data = data[()] else: _data = data for idxFullComplement in dataView.idxFullComplement: self.assert_array_equal(_data[idxFullComplement], dataOrg[idxFullComplement]) if readonly: self.assert_array_equal(_data[idxFull], dataOrg[idxFull]) else: self.assert_array_equal(_data[idxFull], dataOrg[idxFull]+npAdd[idxFull]) @contextmanager def h5Open(self, name): filename = os.path.join(self.path, name+'.h5') with h5py.File(filename, mode='a') as f: yield f def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest( unittest.TestLoader().loadTestsFromTestCase(testMcaStackView)) else: # use a predefined order testSuite.addTest(testMcaStackView('testViewUtils')) testSuite.addTest(testMcaStackView('testfullChunkIndex')) testSuite.addTest(testMcaStackView('testFullViewNumpy')) testSuite.addTest(testMcaStackView('testFullViewH5py')) testSuite.addTest(testMcaStackView('testMaskedChunkIndex')) testSuite.addTest(testMcaStackView('testMaskedViewNumpy')) testSuite.addTest(testMcaStackView('testMaskedViewH5py')) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ��������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/NexusUtilsTest.py�����������������������������������������������������0000644�0000000�0000000�00000034570�14741736366�020103� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import tempfile import shutil import os import numpy from contextlib import contextmanager try: import h5py except Exception: h5py = None else: import h5py.h5t try: from PyMca5.PyMcaIO import NexusUtils except ImportError: NexusUtils = None try: from PyMca5.PyMcaIO import ConfigDict except ImportError: ConfigDict = None class testNexusUtils(unittest.TestCase): def setUp(self): self.path = tempfile.mkdtemp(prefix='pymca') def tearDown(self): shutil.rmtree(self.path) @contextmanager def h5open(self, name): filename = os.path.join(self.path, name+'.h5') with NexusUtils.nxRoot(filename, mode='a') as h5group: yield h5group def validateNxRoot(self, h5group): attrs = ['NX_class', 'creator', 'HDF5_Version', 'file_name', 'file_time', 'file_update_time', 'h5py_version'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) self.assertEqual(h5group.attrs['NX_class'], 'NXroot') self.assertEqual(h5group.name, '/') def validateNxEntry(self, h5group): attrs = ['NX_class'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) files = ['start_time', 'end_time'] self.assertEqual(set(h5group.keys()), set(files)) self.assertEqual(h5group.attrs['NX_class'], 'NXentry') self.assertEqual(h5group.parent.name, '/') def validateNxProcess(self, h5group): attrs = ['NX_class'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) files = ['program', 'version', 'configuration', 'date', 'results'] self.assertEqual(set(h5group.keys()), set(files)) self.assertEqual(h5group.attrs['NX_class'], 'NXprocess') self.assertEqual(h5group.parent.attrs['NX_class'], 'NXentry') self.validateNxNote(h5group['configuration']) self.validateNxCollection(h5group['results']) def validateNxNote(self, h5group): attrs = ['NX_class'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) files = ['date', 'data', 'type'] self.assertEqual(set(h5group.keys()), set(files)) self.assertEqual(h5group.attrs['NX_class'], 'NXnote') def validateNxCollection(self, h5group): attrs = ['NX_class'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) self.assertEqual(h5group.attrs['NX_class'], 'NXcollection') def validateNxData(self, h5group, axes, signals): attrs = ['NX_class', 'axes', 'signal', 'auxiliary_signals'] self.assertEqual(set(h5group.attrs.keys()), set(attrs)) files = list(next(iter(zip(*axes)))) + list(next(iter(zip(*signals)))) self.assertEqual(set(h5group.keys()), set(files)) self.assertEqual(h5group.attrs['NX_class'], 'NXdata') @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxRoot(self): with self.h5open('testNxRoot') as h5group: self.validateNxRoot(h5group) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxEntry(self): with self.h5open('testNxEntry') as h5group: entry = NexusUtils.nxEntry(h5group, 'entry0001') self.assertRaises(RuntimeError, NexusUtils.nxEntry, entry, 'entry0002') self.validateNxEntry(entry) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') @unittest.skipIf(ConfigDict is None, 'PyMca5.PyMcaIO.ConfigDict cannot be imported') def testNxProcess(self): with self.h5open('testNxProcess') as h5group: entry = NexusUtils.nxEntry(h5group, 'entry0001') configdict = ConfigDict.ConfigDict(initdict={'a': 1, 'b': 2}) process = NexusUtils.nxProcess(entry, 'process0001', configdict=configdict) self.assertRaises(RuntimeError, NexusUtils.nxProcess, h5group, 'process0002', configdict=configdict) self.validateNxProcess(process) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxData(self): with self.h5open('testNxEntry') as h5group: entry = NexusUtils.nxEntry(h5group, 'entry0001') process = NexusUtils.nxProcess(entry, 'process0001') data = NexusUtils.nxData(process['results'], 'data') s = (4, 3, 2) axes = [('y', numpy.arange(s[0]), {'units': 'um'}), ('x', numpy.arange(s[1]), {}), ('z', {'shape': (s[2],), 'dtype': int}, None)] signals = [('Fe K', numpy.zeros(s), {'interpretation': 'image'}), ('Ca K', {'data': numpy.zeros(s)}, {}), ('S K', {'shape': s, 'dtype': int}, None)] NexusUtils.nxDataAddAxes(data, axes) NexusUtils.nxDataAddSignals(data, signals) self.validateNxData(data, axes, signals) signals = NexusUtils.nxDataGetSignals(data) self.assertEqual(signals, ['Fe K', 'Ca K', 'S K']) NexusUtils.markDefault(data['Ca K']) data = entry[NexusUtils.DEFAULT_PLOT_NAME] signals = NexusUtils.nxDataGetSignals(data) self.assertEqual(signals, ['Ca K', 'Fe K', 'S K']) self.assertEqual(data['y'].attrs['units'], 'um') self.assertEqual(data['Fe K'].attrs['interpretation'], 'image') for name in signals: self.assertEqual(data[name].shape, s) for n, name in zip(s, list(next(iter(zip(*axes))))): self.assertEqual(data[name].shape, (n,)) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxStringAttribute(self): self._checkStringTypes(attribute=True, raiseExtended=True) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxStringDataset(self): self._checkStringTypes(attribute=False, raiseExtended=True) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxExtStringAttribute(self): self._checkStringTypes(attribute=True, raiseExtended=True) @unittest.skipIf(NexusUtils is None, 'PyMca5.PyMcaIO.NexusUtils cannot be imported') def testNxExtStringDataset(self): self._checkStringTypes(attribute=False, raiseExtended=True) def _checkStringTypes(self, attribute=True, raiseExtended=True): # Test following string literals sAsciiBytes = b'abc' sAsciiUnicode = u'abc' sLatinBytes = b'\xe423' sLatinUnicode = u'\xe423' # not used sUTF8Unicode = u'\u0101bc' sUTF8Bytes = b'\xc4\x81bc' sUTF8AsciiUnicode = u'abc' sUTF8AsciiBytes = b'abc' # Expected conversion after HDF5 write/read strmap = {} strmap['ascii(scalar)'] = sAsciiBytes,\ sAsciiUnicode strmap['ext(scalar)'] = sLatinBytes,\ sLatinBytes strmap['unicode(scalar)'] = sUTF8Unicode,\ sUTF8Unicode strmap['unicode2(scalar)'] = sUTF8AsciiUnicode,\ sUTF8AsciiUnicode strmap['ascii(list)'] = [sAsciiBytes, sAsciiBytes],\ [sAsciiUnicode, sAsciiUnicode] strmap['ext(list)'] = [sLatinBytes, sLatinBytes],\ [sLatinBytes, sLatinBytes] strmap['unicode(list)'] = [sUTF8Unicode, sUTF8Unicode],\ [sUTF8Unicode, sUTF8Unicode] strmap['unicode2(list)'] = [sUTF8AsciiUnicode, sUTF8AsciiUnicode],\ [sUTF8AsciiUnicode, sUTF8AsciiUnicode] strmap['mixed(list)'] = [sUTF8Unicode, sUTF8AsciiUnicode, sAsciiBytes, sLatinBytes],\ [sUTF8Bytes, sUTF8AsciiBytes, sAsciiBytes, sLatinBytes] strmap['ascii(0d-array)'] = numpy.array(sAsciiBytes),\ sAsciiUnicode strmap['ext(0d-array)'] = numpy.array(sLatinBytes),\ sLatinBytes strmap['unicode(0d-array)'] = numpy.array(sUTF8Unicode),\ sUTF8Unicode strmap['unicode2(0d-array)'] = numpy.array(sUTF8AsciiUnicode),\ sUTF8AsciiUnicode strmap['ascii(1d-array)'] = numpy.array([sAsciiBytes, sAsciiBytes]),\ [sAsciiUnicode, sAsciiUnicode] strmap['ext(1d-array)'] = numpy.array([sLatinBytes, sLatinBytes]),\ [sLatinBytes, sLatinBytes] strmap['unicode(1d-array)'] = numpy.array([sUTF8Unicode, sUTF8Unicode]),\ [sUTF8Unicode, sUTF8Unicode] strmap['unicode2(1d-array)'] = numpy.array([sUTF8AsciiUnicode, sUTF8AsciiUnicode]),\ [sUTF8AsciiUnicode, sUTF8AsciiUnicode] strmap['mixed(1d-array)'] = numpy.array([sUTF8Unicode, sUTF8AsciiUnicode, sAsciiBytes]),\ [sUTF8Unicode, sUTF8AsciiUnicode, sAsciiUnicode] strmap['mixed2(1d-array)'] = numpy.array([sUTF8AsciiUnicode, sAsciiBytes]),\ [sUTF8AsciiUnicode, sAsciiUnicode] with self.h5open('testNxString{:d}'.format(attribute)) as h5group: h5group = h5group.create_group('test') if attribute: out = h5group.attrs else: out = h5group for name, (value, expectedValue) in strmap.items(): decodingError = 'ext' in name or name == 'mixed(list)' if raiseExtended and decodingError: with self.assertRaises(UnicodeDecodeError): ovalue = NexusUtils.asNxChar(value, raiseExtended=raiseExtended) continue else: ovalue = NexusUtils.asNxChar(value, raiseExtended=raiseExtended) # Write/read out[name] = ovalue if attribute: value = out[name] else: if hasattr(out[name], "asstr"): charSet = out[name].id.get_type().get_cset() if charSet == h5py.h5t.CSET_ASCII: value = out[name][()] else: value = out[name].asstr()[()] else: value = out[name][()] if 'list' in name or '1d-array' in name: self.assertTrue(isinstance(value, numpy.ndarray)) value = value.tolist() self.assertEqual(list(map(type, value)), list(map(type, expectedValue)), msg=name) firstValue = value[0] else: firstValue = value msg = '{} {} instead of {}'.format(name, type(value), type(expectedValue)) self.assertEqual(type(value), type(expectedValue), msg=msg) self.assertEqual(value, expectedValue, msg=name) if not attribute: # Expected character set? charSet = out[name].id.get_type().get_cset() if isinstance(firstValue, bytes): # This is the tricky part, CSET_ASCII is supposed to be # only 0-127 while we actually allow expectedCharSet = h5py.h5t.CSET_ASCII else: expectedCharSet = h5py.h5t.CSET_UTF8 msg = '{} type {} instead of {}'.format(name, charSet, expectedCharSet) self.assertEqual(charSet, expectedCharSet, msg=msg) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest( unittest.TestLoader().loadTestsFromTestCase(testNexusUtils)) else: # use a predefined order testSuite.addTest(testNexusUtils('testNxStringAttribute')) testSuite.addTest(testNexusUtils('testNxStringDataset')) testSuite.addTest(testNexusUtils('testNxExtStringAttribute')) testSuite.addTest(testNexusUtils('testNxExtStringDataset')) testSuite.addTest(testNexusUtils('testNxRoot')) testSuite.addTest(testNexusUtils('testNxEntry')) testSuite.addTest(testNexusUtils('testNxProcess')) testSuite.addTest(testNexusUtils('testNxData')) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ����������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/PCAToolsTest.py�������������������������������������������������������0000644�0000000�0000000�00000021762�14741736366�017403� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import numpy import numpy.linalg try: import mdp MDP = True except Exception: # MDP can give very weird errors MDP = False class testPCATools(unittest.TestCase): def testPCAToolsImport(self): from PyMca5.PyMcaMath.mva import PCATools def testPCAToolsCovariance(self): from PyMca5.PyMcaMath.mva.PCATools import getCovarianceMatrix x = numpy.array([[0.0, 2.0, 3.0], [3.0, 0.0, -1.0], [4.0, -4.0, 4.0], [4.0, 4.0, 4.0]]) nSpectra = x.shape[0] # test just multiplication tmpArray = numpy.dot(x.T, x) for force in [True, False]: pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=force, center=False) self.assertTrue(numpy.allclose(tmpArray, pymcaCov * (nData - 1))) # calculate covariance using numpy numpyCov = numpy.cov(x.T) numpyAvg = x.sum(axis=0).reshape(-1, 1) / nSpectra tmpArray = x.T - numpyAvg numpyCov2 = numpy.dot(tmpArray, tmpArray.T) / nSpectra numpyAvg = numpyAvg.reshape(1, -1) # calculate covariance using PCATools and 2D stack # directly and dynamically loading data for force in [False, True]: pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=force, center=True) self.assertTrue(numpy.allclose(numpyCov, pymcaCov)) self.assertTrue(numpy.allclose(numpyAvg, pymcaAvg)) self.assertTrue(nData == nSpectra) # calculate covariance using PCATools and 3D stack # directly and dynamically loading data x.shape = 2, 2, -1 for force in [False, True]: pymcaCov, pymcaAvg, nData = getCovarianceMatrix(x, force=force, center=True) self.assertTrue(numpy.allclose(numpyCov, pymcaCov)) self.assertTrue(numpy.allclose(numpyAvg, pymcaAvg)) self.assertTrue(nData == nSpectra) def testPCAToolsPCA(self): from PyMca5.PyMcaMath.mva.PCATools import numpyPCA x = numpy.array([[0.0, 2.0, 3.0], [3.0, 0.0, -1.0], [4.0, -4.0, 4.0], [4.0, 4.0, 4.0]]) # that corresponds to 4 spectra of 3 channels nSpectra = x.shape[0] # calculate eigenvalues and eigenvectors with numpy tmpArray = numpy.dot(x.T, x)/(nSpectra - 1) numpyEigenvalues, numpyEigenvectors = numpy.linalg.eigh(tmpArray) # sort from higher to lower idx = list(range(numpyEigenvalues.shape[0]-1, -1 , -1)) numpyEigenvalues = numpy.take(numpyEigenvalues, idx) numpyEigenvectors = numpyEigenvectors[:, ::-1].T # now use PyMca # centering has to be false to obtain the same results ncomp = x.shape[1] for force in [True, False]: images, eigenvalues, eigenvectors = numpyPCA(x, ncomponents=ncomp, force=force, center=False, scale=False) self.assertTrue(numpy.allclose(eigenvalues, numpyEigenvalues)) for i in range(ncomp): if (eigenvectors[i,0] >= 0 and numpyEigenvectors[i,0] >=0) or\ (eigenvectors[i,0] <= 0 and numpyEigenvectors[i,0] <=0): # both same sign self.assertTrue(numpy.allclose(eigenvectors[i], numpyEigenvectors[i])) else: self.assertTrue(numpy.allclose(-eigenvectors[i], numpyEigenvectors[i])) # test with a different shape x.shape = 2, 2, -1 ncomp = 3 for force in [True, False]: images, eigenvalues, eigenvectors = numpyPCA(x, ncomponents=ncomp, force=force, center=False, scale=False) self.assertTrue(numpy.allclose(eigenvalues, numpyEigenvalues)) for i in range(ncomp): if (eigenvectors[i,0] >= 0 and numpyEigenvectors[i,0] >=0) or\ (eigenvectors[i,0] <= 0 and numpyEigenvectors[i,0] <=0): # both same sign self.assertTrue(numpy.allclose(eigenvectors[i], numpyEigenvectors[i])) else: self.assertTrue(numpy.allclose(-eigenvectors[i], numpyEigenvectors[i])) if MDP: def testPCAToolsMDP(self): from PyMca5.PyMcaMath.mva.PCATools import getCovarianceMatrix, numpyPCA x = numpy.array([[0.0, 2.0, 3.0], [3.0, 0.0, -1.0], [4.0, -4.0, 4.0], [4.0, 4.0, 4.0]]) # use mdp pcaNode = mdp.nodes.PCANode() pcaNode.train(x) pcaNode.stop_training() pcaEigenvectors = pcaNode.v.T # and compare with PyMca ncomp = x.shape[1] for force in [True, False]: images, eigenvalues, eigenvectors = numpyPCA(x, ncomponents=ncomp, force=force, center=True, scale=False) # the eigenvalues must be the same self.assertTrue(numpy.allclose(eigenvalues, pcaNode.d)) # the eigenvectors can be multiplied by -1 for i in range(ncomp): if (eigenvectors[i,0] >= 0 and pcaEigenvectors[i,0] >=0) or\ (eigenvectors[i,0] <= 0 and pcaEigenvectors[i,0] <=0): # both same sign self.assertTrue(numpy.allclose(eigenvectors[i], pcaEigenvectors[i])) else: self.assertTrue(numpy.allclose(-eigenvectors[i], pcaEigenvectors[i])) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testPCATools)) else: # use a predefined order testSuite.addTest(testPCATools("testPCAToolsImport")) testSuite.addTest(testPCATools("testPCAToolsCovariance")) testSuite.addTest(testPCATools("testPCAToolsPCA")) if MDP: testSuite.addTest(testPCATools("testPCAToolsMDP")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ��������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/PyMcaBatchTest.py�����������������������������������������������������0000644�0000000�0000000�00000067320�14741736366�017732� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import numpy from random import randint import tempfile import shutil from glob import glob import logging from PyMca5.tests import XrfData import PyMca5.PyMcaGui.PyMcaQt as qt from PyMca5.PyMcaGui.misc.testutils import TestCaseQt try: import h5py HAS_H5PY = True except ImportError: HAS_H5PY = False _logger = logging.getLogger(__name__) class testPyMcaBatch(TestCaseQt): _rtolLegacy = 1e-5 def setUp(self): self.path = tempfile.mkdtemp(prefix='pymca') super(testPyMcaBatch, self).setUp() def tearDown(self): shutil.rmtree(self.path) from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() super(testPyMcaBatch, self).tearDown() def testCommand(self): from PyMca5.PyMcaGui.pymca import PyMcaBatch cmd = PyMcaBatch.Command('command') cmd.addOption('a', value=1, format='"{:04d}"') cmd.b = 2 parts = {'command', '--a="0001"', '--b=2'} self.assertEqual(parts, set(str(cmd).split(' '))) cmd.a = 10 parts = {'command', '--a="0010"', '--b=2'} self.assertEqual(parts, set(str(cmd).split(' '))) cmd['a'] = 5 cmd['c'] = 'test' parts = {'command', '--a=5', '--b=2', '--c=test'} self.assertEqual(parts, set(str(cmd).split(' '))) dict1 = cmd.getAllOptions() dict2 = {'a': 5, 'b': 2, 'c': 'test'} self.assertEqual(dict1, dict2) dict1 = cmd.getAllOptionsBut('a', 'b') dict2 = {'c': 'test'} self.assertEqual(dict1, dict2) dict1 = cmd.getOptions('a', 'b') dict2 = {'a': 5, 'b': 2} self.assertEqual(dict1, dict2) def testSubCommands(self): """ Check multi processing slicing of 2D maps for different map dimensions, number of files and number of processes. Assumes a file contains one or more rows (i.e. columns are never split over files). """ for i in range(10000): nRows = randint(1, 10) nColumns = randint(1, 10) nRowsPerFile = randint(1, 5) if (nRows % nRowsPerFile) == 0: nFiles = nRows//nRowsPerFile else: nFiles = nRows nBatches = randint(1, 30) chunks = (i % 2) == 0 self.assertSubCommands(nRows, nColumns, nFiles, nBatches, chunks) def assertSubCommands(self, nRows, nColumns, nFiles, nBatches, bchunks): """ Checks whether each spectrum is processed exactly once and chunk indices are sequential. """ from PyMca5.PyMcaGui.pymca import PyMcaBatch msg = '\nnRows={}, nColumns={}, nFiles={}, nBatches={}'\ .format(nRows, nColumns, nFiles, nBatches) coverage = numpy.zeros((nRows, nColumns), dtype=int) nRowsPerFile = nRows//nFiles chunks = [] def runProcess(cmd): iFiles = list(range(cmd.filebeginoffset, nFiles-cmd.fileendoffset, cmd.filestep)) iCols = list(range(cmd.mcaoffset, nColumns, cmd.mcastep)) iRows = list(range(nRowsPerFile)) for ifile in iFiles: for irow in iRows: for icol in iCols: coverage[ifile*nRowsPerFile+irow, icol] += 1 self.assertTrue(bool(iFiles), msg + '\n no files processed') if bool(iCols): chunks.append(cmd.chunk) cmd = PyMcaBatch.Command() PyMcaBatch.subCommands(cmd, nFiles, nBatches, runProcess, chunks=bchunks) # Check: each spectrum is processed exactly once self.assertTrue((coverage == 1).all(), msg + '\n {}'.format(coverage)) # Check: chunk indices sequential self.assertTrue((numpy.diff(sorted(chunks)) == 1).all(), msg) self.assertTrue(len(chunks) <= nBatches, msg) def testFastFitEdfMap(self): self._assertFastFitMap('edf') def testSlowFitEdfMap(self): self._assertSlowFitMap('edf') def testSlowRoiFitEdfMap(self): self._assertSlowFitMap('edf', roiwidth=100, outputdir='fitresulta') self._assertSlowGuiFitMap('edf', roiwidth=100, outputdir='fitresultb') @unittest.skipIf(numpy.version.version == '1.17.0', "skipped numpy issue 13715") def testSlowMultiFitEdfMap(self): self._assertSlowMultiFitMap('edf') def testFastFitSpecMap(self): self._assertFastFitMap('specmesh') def testSlowFitSpecMap(self): self._assertSlowFitMap('specmesh') def testSlowRoiFitSpecMap(self): self._assertSlowFitMap('specmesh', roiwidth=100, outputdir='fitresulta') self._assertSlowGuiFitMap('specmesh', roiwidth=100, outputdir='fitresultb') @unittest.skipIf(numpy.version.version == '1.17.0', "skipped numpy issue 13715") def testSlowMultiFitSpecMap(self): self._assertSlowMultiFitMap('specmesh') @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testFastFitHdf5Map(self): self._assertFastFitMap('hdf5') @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testSlowFitHdf5Map(self): self._assertSlowFitMap('hdf5') @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testSlowRoiFitHdf5Map(self): self._assertSlowFitMap('hdf5', roiwidth=100, outputdir='fitresulta') self._assertSlowGuiFitMap('hdf5', roiwidth=100, outputdir='fitresultb') @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testSlowMultiFitHdf5Map(self): self._assertSlowMultiFitMap('hdf5') def _assertFastFitMap(self, typ, outputdir='fitresults'): info = self._generateData(fast=True, typ=typ) # Compare with legacy FastXRFLinearFit result1 = self._fitMap(info, fast=True, outputdir=outputdir+'1') result2 = self._fitMap(info, fast=True, legacy=True, outputdir=outputdir+'2') self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy) def _assertSlowFitMap(self, typ, outputdir='fitresults', **kwargs): info = self._generateData(typ=typ) # Compare with legacy McaAdvancedFitBatch result1 = self._fitMap(info, outputdir=outputdir+'1', **kwargs) result2 = self._fitMap(info, legacy=True, outputdir=outputdir+'2', **kwargs) self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy) def _assertSlowMultiFitMap(self, typ, outputdir='fitresults', **kwargs): from PyMca5.PyMcaGui.pymca.PyMcaBatch import ranAsBootstrap info = self._generateData(typ=typ) # Compare single vs. multi processing result1 = self._fitMap(info, nBatches=2, outputdir=outputdir+'1', **kwargs) result2 = self._fitMap(info, nBatches=1, outputdir=outputdir+'2', **kwargs) self._assertEqualFitResults(result1, result2, rtol=0) if not ranAsBootstrap() and typ != 'hdf5': # REMARK: not supported by legacy code # - testing from source # - hdf5 selection without user interaction # - multi process on single non-hdf5 file # Compare legacy single vs. multi processing if typ != 'specmesh': result3 = self._fitMap(info, nBatches=2, legacy=True, outputdir=outputdir+'3', **kwargs) result4 = self._fitMap(info, nBatches=1, legacy=True, outputdir=outputdir+'4', **kwargs) if typ != 'specmesh': self._assertEqualFitResults(result3, result4, rtol=0) # Compare with legacy PyMcaBatch if typ != 'specmesh': self._assertEqualFitResults(result1, result3, rtol=self._rtolLegacy) self._assertEqualFitResults(result2, result4, rtol=self._rtolLegacy) # Compare thread vs. process result5 = self._fitMap(info, nBatches=0, outputdir=outputdir+'5', **kwargs) self._assertEqualFitResults(result2, result5, rtol=0) # Compare blocking vs. non-blocking process result6 = self._fitMap(info, nBatches=1, blocking=True, outputdir=outputdir+'6', **kwargs) self._assertEqualFitResults(result2, result6, rtol=0) def _assertSlowGuiFitMap(self, typ, outputdir='fitresults', **kwargs): from PyMca5.PyMcaGui.pymca.PyMcaBatch import ranAsBootstrap info = self._generateData(typ=typ) result1 = self._fitMap(info, nBatches=1, outputdir=outputdir+'1', **kwargs) if not ranAsBootstrap() and typ != 'hdf5': # Compare with legacy PyMcaBatch result2 = self._fitMap(info, nBatches=1, legacy=True, outputdir=outputdir+'2', **kwargs) self._assertEqualFitResults(result1, result2, rtol=self._rtolLegacy) def _fitMap(self, info, fast=False, nBatches=-1, outputdir='fitresults', **kwargs): outputdir = os.path.join(self.path, outputdir) if fast: # Single process fast fitting (FastXRFLinearFit) result = self._fastFitMap(info, outputdir, **kwargs) elif nBatches < 0: # Single process slow fitting (McaAdvancedFitBatch) result = self._slowFitMap(info, outputdir, **kwargs) else: # Multi process slow fitting (PyMcaBatch) result = self._slowMultiFitMap(info, outputdir, nBatches, **kwargs) # Validate result labels, scanData = self._readResult(result) self._checkFitResult(labels, scanData, info['liveTimeCorrection'], multiprocessing=nBatches > 1, fast=fast) return labels, scanData def _fastFitMap(self, info, outputdir, legacy=False): """ Multi process fast fitting """ if legacy: from PyMca5.PyMcaPhysics.xrf import LegacyFastXRFLinearFit as FastXRFLinearFit else: from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit batch = FastXRFLinearFit.FastXRFLinearFit() kwargs = {'y': info['input'], 'livetime': info['liveTime'], 'weight': 0, 'configuration': info['configuration'], 'concentrations': True, 'refit': 1} if not legacy: kwargs['outputDir'] = outputdir kwargs['dat'] = True kwargs['edf'] = False kwargs['h5'] = False kwargs['diagnostics'] = True outbuffer = batch.fitMultipleSpectra(**kwargs) if legacy: FastXRFLinearFit.save(outbuffer, outputdir, csv=False) return self._fitResultFileName(None, outputdir, fast=True, legacy=legacy) def _slowFitMap(self, info, outputdir, legacy=False, roiwidth=0): """ Single process slow fitting """ if legacy: from PyMca5.PyMcaPhysics.xrf import LegacyMcaAdvancedFitBatch as McaAdvancedFitBatch os.mkdir(outputdir) else: from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch kwargs = {'filelist': info['input'], 'outputdir': outputdir, 'concentrations': True, 'selection': info['selection'], 'quiet': True, 'roifit': bool(roiwidth), 'roiwidth': roiwidth} if not legacy: kwargs['dat'] = True kwargs['edf'] = False kwargs['h5'] = False kwargs['diagnostics'] = True batch = McaAdvancedFitBatch.McaAdvancedFitBatch(info['cfgname'], **kwargs) batch.processList() return self._fitResultFileName(info['input'], outputdir, legacy=legacy, roiwidth=roiwidth) def _slowMultiFitMap(self, info, outputdir, nBatches, legacy=False, roiwidth=0, **startargs): """ Multi process slow fitting nBatches == 0: thread nBatches == 1, blocking == False: single monitored process nBatches == 1, blocking == True: single unmonitored process nBatches > 1: multi processing """ os.mkdir(outputdir) kwargs = {'actions': True, 'showresult': False, 'filelist': info['input'], 'config': info['cfgname'], 'outputdir': outputdir} if legacy: from PyMca5.PyMcaGui.pymca.LegacyPyMcaBatch import McaBatchGUI else: from PyMca5.PyMcaGui.pymca.PyMcaBatch import McaBatchGUI kwargs['dat'] = True kwargs['edf'] = False kwargs['h5'] = False kwargs['diagnostics'] = True kwargs['concentrations'] = True kwargs['roifit'] = bool(roiwidth) kwargs['roiwidth'] = roiwidth kwargs['nproc'] = nBatches kwargs['selection'] = info['selection'] result = self._fitResultFileName(info['input'], outputdir, legacy=legacy, roiwidth=roiwidth) widget = McaBatchGUI(**kwargs) if legacy: widget._McaBatchGUI__concentrationsBox.setChecked(True) widget._McaBatchGUI__roiBox.setChecked(bool(roiwidth)) widget._McaBatchGUI__roiSpin.setValue(roiwidth) widget._McaBatchGUI__splitSpin.setValue(min(nBatches, 1)) widget._McaBatchGUI__splitBox.setChecked(nBatches > 1) #widget.show() # show widget for debugging self.qapp.processEvents() widget.start(**startargs) self._waitForFitResult(result) widget.close() self.qapp.processEvents() #self.qapp.exec() # block for debugging return result def _fitResultFileName(self, filelist, outputdir, fast=False, legacy=False, roiwidth=0): ext = '.dat' if filelist: # Slow fit from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch rootname = McaAdvancedFitBatch.getRootName(filelist) if legacy: subdir = 'IMAGES' else: #subdir = rootname subdir = 'IMAGES' else: # Fast fit rootname = 'images' subdir = 'IMAGES' if roiwidth: if legacy: rootname += '_*' ext = '.edf' rootname += '_{:04d}eVROI'.format(roiwidth) return os.path.join(outputdir, subdir, rootname+ext) def _generateData(self, fast=False, typ='hdf5'): # Generate data (in memory + save in requested format) nDet = 1 # TODO: currently only works with 1 detector nRows = 5 nColumns = 4 nTimes = 3 filename = os.path.join(self.path, 'Map') if typ == 'edf': genFunc = XrfData.generateEdfMap filename += '.edf' elif typ == 'specmesh': genFunc = XrfData.generateSpecMesh filename += '.dat' elif typ == 'hdf5': genFunc = XrfData.generateHdf5Map filename += '.h5' else: raise ValueError('Unknown data type {} for XRF map'.format(repr(typ))) # TODO: cannot provide live time when fitting .edf list of files liveTimeIsProvided = fast or typ == 'hdf5' def modfunc(configuration): configuration["concentrations"]["usematrix"] = 0 configuration["concentrations"]["useautotime"] = int(liveTimeIsProvided) if fast: configuration['fit']['stripalgorithm'] = 1 else: configuration['fit']['linearfitflag'] = 1 info = genFunc(filename, nDet=nDet, nRows=nRows, nColumns=nColumns, nTimes=nTimes, modfunc=modfunc) # Concentrations are multiplied by this factor to # normalize live time to preset time # TODO: currently only works with 1 detector info['liveTime'] = info['liveTime'][0, ...] if liveTimeIsProvided: info['liveTimeCorrection'] = float(info['presetTime'])/info['liveTime'] else: info['liveTimeCorrection'] = numpy.ones_like(info['liveTime']) if typ == 'specmesh': # REMARK: spec file data is flattened by the spec loaders nRows, nColumns = info['liveTimeCorrection'].shape info['liveTimeCorrection'] = info['liveTimeCorrection'].reshape((1, nRows*nColumns)) # Batch fit input (list of strings or stack object) filelist = info['filelist'] if typ == 'edf': if fast: from PyMca5.PyMca import EDFStack info['input'] = EDFStack.EDFStack(filelist, dtype=numpy.float32) else: info['input'] = filelist info['selection'] = None elif typ == 'specmesh': if fast: from PyMca5.PyMcaIO import SpecFileStack info['input'] = SpecFileStack.SpecFileStack(filelist) else: info['input'] = filelist info['selection'] = None elif typ == 'hdf5': datasets = ['/xrf/mca{:02d}/data'.format(k) for k in range(nDet)] if fast: from PyMca5.PyMcaIO import HDF5Stack1D info['selection'] = selection = {'y': datasets[0]} info['input'] = HDF5Stack1D.HDF5Stack1D(filelist, selection) else: info['selection'] = {'x': [], 'm': [], 'y': [datasets[0]]} info['input'] = filelist # Batch fit configuration info['cfgname'] = os.path.join(self.path, 'Map.cfg') return info def _assertEqualFitResults(self, result1, result2, rtol=0, atol=0): labels1, scanData1 = result1 labels2, scanData2 = result2 self.assertEqual(set(labels1), set(labels2)) for label, data in zip(labels1, scanData1): idx = labels2.index(label) numpy.testing.assert_allclose(data, scanData2[idx, :], err_msg=label, rtol=rtol, atol=atol) def _convertLegacyLabel(self, label): if label.endswith('-mass-fraction'): label = label.replace('-mass-fraction', '') label = 'w({})'.format(label) label = label.replace('C(', 'w(') label = label.replace('-', '_') label = label.replace(' ', '_') if label.endswith('_ROI'): label = label[:-4] return label def _convertLegacyLabels(self, labels, data): labels = list(map(self._convertLegacyLabel, labels)) excluded_labels = 'row', 'column', 'point' included = [label.lower() not in excluded_labels for label in labels] if not all(included): # woraround numpy issue https://github.com/numpy/numpy/pull/13715 # by creating an intermediate array # data = data[included, ...] data = data[numpy.array(included, copy=True), ...] labels = [label for label, b in zip(labels, included) if b] return labels, data def _readResult(self, filenames): """ :param str or list filenames: :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns) """ if isinstance(filenames, list): filename0 = filenames[0] elif '*' in filenames: filenames = glob(filenames) filename0 = filenames[0] else: filename0 = filenames filenames = [filenames] ext = os.path.splitext(filename0)[1] if ext == '.dat': labels, data = self._parseDatResults(filenames[0]) elif ext == '.edf': labels, data = self._parseEdfResults(filenames) else: raise NotImplementedError return self._convertLegacyLabels(labels, data) def _parseDatResults(self, filename): """ :param str filename: :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns) """ from PyMca5.PyMcaIO import specfilewrapper as specfile self.assertTrue(os.path.isfile(filename), "Batch fit result file <%s> not present" % filename) sf = specfile.Specfile(filename) labels = sf[0].alllabels() scanData = sf[0].data() sf = None nParams, nPoints = scanData.shape idxRow = labels.index('row') idxColumn = labels.index('column') nRows = int(numpy.round(max(scanData[idxRow, :]))) + 1 nColumns = int(numpy.round(max(scanData[idxColumn, :]))) + 1 colfast = scanData[idxRow, 0] == scanData[idxRow, 1] if colfast: order = 'C' else: order = 'F' scanData = scanData.reshape((nParams, nRows, nColumns), order=order) return labels, scanData def _parseEdfResults(self, filenames): """ :param list filenames: :returns tuple: list(nparams), ndarray(nparams, nrows, ncolumns) """ labels = [] data = [] from PyMca5.PyMcaIO import EdfFile for filename in filenames: # REMARK: each file can contain multiple images (roifit) #stack = EDFStack.EDFStack(filename) stack = EdfFile.EdfFile(filename) for i in range(stack.GetNumImages()): data.append(stack.GetData(i)) labels.append(stack.GetHeader(i)['Title']) return labels, numpy.asarray(data) def _waitForFitResult(self, filenames): """ :param list filenames: """ # Wait until result is created from time import sleep msg = 'Waiting for {} ...'.format(filenames) while not self._resultExists(filenames): sleep(3) if msg: _logger.info(msg) msg = '' self.qapp.processEvents() # Wait until result is finished writting bytes0 = self._resultSize(filenames) nfiles0 = self._resultNFiles(filenames) while True: sleep(1) bytes1 = self._resultSize(filenames) nfiles1 = self._resultNFiles(filenames) if bytes1 == bytes0 and nfiles0 == nfiles1: break else: bytes0 = bytes1 nfiles0 = nfiles1 _logger.info('Finished {}'.format(filenames)) def _resultExists(self, filenames): if isinstance(filenames, list): if filenames: return all(map(self._resultExists, filenames)) else: return False elif '*' in filenames: return self._resultExists(glob(filenames)) elif filenames: return os.path.exists(filenames) else: return False def _resultSize(self, filenames): if isinstance(filenames, list): if filenames: return sum(map(self._resultExists, filenames)) else: return 0 elif '*' in filenames: return self._resultExists(glob(filenames)) elif filenames: return os.stat(filenames).st_size else: return 0 def _resultNFiles(self, filenames): if isinstance(filenames, list): if filenames: return sum(map(self._resultExists, filenames)) else: return 0 elif '*' in filenames: return self._resultExists(glob(filenames)) elif filenames: return int(os.path.exists(filenames)) else: return 0 def _checkFitResult(self, labels, paramStack, liveTimeCorrection, multiprocessing=False, fast=False): """ Validate fit result :param list labels: parameter names :param ndarray paramStack: nParams x nRows x nColumns :param ndarray liveTimeCorrection: nRows x nColumns :param bool multiprocessing: merged result of multiple processes :param bool fast: result of fast processing """ nParams, nRows, nColumns = paramStack.shape self.assertTrue((nRows, nColumns), liveTimeCorrection.shape) for label, param in zip(labels, paramStack): if label in ["Point", "row", "column"]: continue if label.startswith("w("): # Same spectrum in each pixel but live time changes. # This means peak areas are the same but concentrations # are corrected for this live time. param = param/liveTimeCorrection # TODO: why rounding errors? rtol = 1e-5 else: # Same spectrum in each pixel so fitted parameters # should have the same value in each pixel rtol = 0 numpy.testing.assert_allclose(param, param[0, 0], err_msg=label, rtol=rtol, atol=0) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testPyMcaBatch)) else: # use a predefined order testSuite.addTest(testPyMcaBatch("testCommand")) testSuite.addTest(testPyMcaBatch("testSubCommands")) testSuite.addTest(testPyMcaBatch("testFastFitEdfMap")) testSuite.addTest(testPyMcaBatch("testSlowFitEdfMap")) testSuite.addTest(testPyMcaBatch("testSlowRoiFitEdfMap")) testSuite.addTest(testPyMcaBatch("testSlowMultiFitEdfMap")) testSuite.addTest(testPyMcaBatch("testFastFitHdf5Map")) testSuite.addTest(testPyMcaBatch("testSlowFitHdf5Map")) testSuite.addTest(testPyMcaBatch("testSlowRoiFitHdf5Map")) testSuite.addTest(testPyMcaBatch("testSlowMultiFitHdf5Map")) testSuite.addTest(testPyMcaBatch("testFastFitSpecMap")) testSuite.addTest(testPyMcaBatch("testSlowFitSpecMap")) testSuite.addTest(testPyMcaBatch("testSlowRoiFitSpecMap")) testSuite.addTest(testPyMcaBatch("testSlowMultiFitSpecMap")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True app = qt.QApplication([]) result = test(auto) app = None sys.exit(not result.wasSuccessful()) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/ROIBatchTest.py�������������������������������������������������������0000644�0000000�0000000�00000022712�14741736366�017346� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy import gc import shutil DEBUG = 0 try: from PyMca5.PyMcaCore import LegacyStackROIBatch from PyMca5.PyMcaCore import StackROIBatch except ImportError: LegacyStackROIBatch = StackROIBatch = None def generatePeakDataPositiveX(): x = numpy.arange(2000) / 2. peakpos = 500 y = 2*x + 200 * numpy.exp(-0.5*(x-peakpos)**2) config = {} config["ROI"] = {} config["ROI"]["roilist"] = ["roi1", "roi2", "roi3"] config["ROI"]["roidict"] = {} config["ROI"]["roidict"]["roi1"] = {} config["ROI"]["roidict"]["roi1"]["from"] = 10.01 config["ROI"]["roidict"]["roi1"]["to"] = 20.01 config["ROI"]["roidict"]["roi1"]["type"] = "Channel" config["ROI"]["roidict"]["roi2"] = {} config["ROI"]["roidict"]["roi2"]["from"] = 400.01 config["ROI"]["roidict"]["roi2"]["to"] = 600.01 config["ROI"]["roidict"]["roi2"]["type"] = "Channel" config["ROI"]["roidict"]["roi3"] = {} config["ROI"]["roidict"]["roi3"]["from"] = 700.01 config["ROI"]["roidict"]["roi3"]["to"] = 800.01 config["ROI"]["roidict"]["roi3"]["type"] = "Channel" return x, y, config, peakpos def generatePeakDataNegativeX(): x = numpy.arange(2000) / 2. peakpos = 500 y = x + 200.0 * numpy.exp(-0.5*(x-peakpos)**2) x = -x peakpos = -peakpos config = {} config["ROI"] = {} config["ROI"]["roilist"] = ["roi1", "roi2", "roi3"] config["ROI"]["roidict"] = {} config["ROI"]["roidict"]["roi1"] = {} config["ROI"]["roidict"]["roi1"]["to"] = -10.01 config["ROI"]["roidict"]["roi1"]["from"] = -20.01 config["ROI"]["roidict"]["roi1"]["type"] = "Channel" config["ROI"]["roidict"]["roi2"] = {} config["ROI"]["roidict"]["roi2"]["to"] = -400.01 config["ROI"]["roidict"]["roi2"]["from"] = -600.01 config["ROI"]["roidict"]["roi2"]["type"] = "Channel" config["ROI"]["roidict"]["roi3"] = {} config["ROI"]["roidict"]["roi3"]["to"] = -700.01 config["ROI"]["roidict"]["roi3"]["from"] = -800.01 config["ROI"]["roidict"]["roi3"]["type"] = "Channel" return x, y, config, peakpos class testROIBatch(unittest.TestCase): @unittest.skipIf(StackROIBatch is None, "cannot import PyMca5.PyMcaCore.StackROIBatch") def testPeakPositiveX(self): self.assertROIsumWithLegacy(generatePeakDataPositiveX, xAtMinMax=True, net=True) @unittest.skipIf(StackROIBatch is None, "cannot import PyMca5.PyMcaCore.StackROIBatch") def testPeakNegativeX(self): self.assertROIsumWithLegacy(generatePeakDataNegativeX, xAtMinMax=True, net=True) def assertROIsumWithLegacy(self, datagen, **parameters): result1 = self.assertROIsum(datagen, legacy=False, **parameters) result2 = self.assertROIsum(datagen, legacy=True, **parameters) self.assertEqual(set(result1.keys()), set(result2.keys())) for k1, v1 in result1.items(): v2 = result2[k1] numpy.testing.assert_array_equal(v1, v2) def assertROIsum(self, datagen, legacy=False, **parameters): x, y, config, peakpos = datagen() y.shape = 1, 1, -1 y = y.repeat(2, axis=0).repeat(3, axis=1) if legacy: instance = LegacyStackROIBatch.StackROIBatch() outputDict = instance.batchROIMultipleSpectra(x=x, y=y, configuration=config, **parameters) names = outputDict["names"] images = outputDict["images"] else: instance = StackROIBatch.StackROIBatch() outputDict = instance.batchROIMultipleSpectra(x=x, y=y, configuration=config, save=False, **parameters) names = outputDict.labels('roisum') images = outputDict['roisum'] outputDict = dict(zip(names, images)) for row in y: for yspectrum in row: self.assertResult(x, yspectrum, peakpos, outputDict, config["ROI"]["roidict"], **parameters) return outputDict def assertResult(self, x, y, peakpos, outputDict, roidict, xAtMinMax=True, net=True): for roi in roidict: toData = roidict[roi]["to"] fromData = roidict[roi]["from"] idx = numpy.nonzero((fromData <= x) & (x <= toData))[0] if len(idx): xw = x[idx] yw = y[idx] rawCounts = yw.sum(dtype=numpy.float64) deltaX = xw[-1] - xw[0] deltaY = yw[-1] - yw[0] if abs(deltaX) > 0.0: slope = (deltaY/deltaX) background = yw[0] + slope * (xw - xw[0]) netCounts = rawCounts -\ background.sum(dtype=numpy.float64) else: netCounts = 0.0 else: rawCounts = 0.0 netCounts = 0.0 roidict[roi]["rawcounts"] = rawCounts roidict[roi]["netcounts"] = netCounts rawName = "ROI " + roi + "" netName = "ROI " + roi + " Net" imageRaw = outputDict[rawName] imageNet = outputDict[netName] self.assertTrue(imageRaw[0, 0] > -1.0e-10, "Expected positive value for raw roi %s got %f" % (roi, imageRaw[0, 0])) self.assertTrue(imageNet[0, 0] > -1.0e-10, "Expected positive value for net roi %s got %f" % (roi, imageNet[0, 0])) self.assertTrue(abs(imageRaw[0, 0] - rawCounts) < 1.0e-8, "Incorrect calculation for raw roi %s" % roi) self.assertTrue(abs(imageNet[0, 0] - netCounts) < 1.0e-8, "Incorrect calculation for net roi %s delta = %f" % (roi, imageNet[0, 0] - netCounts)) xAtMinName = "ROI " + roi + " Channel at Min." xAtMaxName = "ROI " + roi + " Channel at Max." if xAtMinMax: self.assertTrue(xAtMinName in outputDict, "xAtMin not calculated for roi %s" % roi) self.assertTrue(xAtMaxName in outputDict, "xAtMax not calculated for roi %s" % roi) imageMin = outputDict[xAtMinName] imageMax = outputDict[xAtMaxName] if roi == "roi2": self.assertTrue(imageMax[0, 0] == peakpos, "Max expected at %d got %f" % (peakpos, imageMax[0, 0])) else: self.assertTrue(xAtMinName not in outputDict, "xAtMin calculated for roi %s" % roi) self.assertTrue(xAtMaxName not in outputDict, "xAtMax calculated for roi %s" % roi) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testROIBatch)) else: # use a predefined order testSuite.addTest(testROIBatch("testPeakPositiveX")) testSuite.addTest(testROIBatch("testPeakNegativeX")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) ������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/SimpleMathTest.py�����������������������������������������������������0000644�0000000�0000000�00000006031�14741736366�020012� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy class testSimpleMath(unittest.TestCase): def _testDerivativeHelper(self, option=None): from PyMca5.PyMcaMath import SimpleMath x = numpy.arange(100.)*0.25 y = x*x + 2 * x a = SimpleMath.SimpleMath() xplot, yprime = a.derivate(x, y, option=option) for i in range(yprime.size - 10): self.assertTrue(numpy.abs(yprime[i] - 2 * xplot[i] - 2 ) < 1.0e-4, "Error 1 at %d yprime = %f x = %f" % (i, yprime[i], xplot[i])) x = -x y = x*x + 2 * x xplot, yprime = a.derivate(x, y) for i in range(yprime.size - 10): self.assertTrue(numpy.abs(yprime[i] - 2 * xplot[i] - 2 ) < 1.0e-4, "Error 2 at %d yprime = %f x = %f" % (i, yprime[i], xplot[i])) def testDerivativeSinglePoint(self): self._testDerivativeHelper() def testDerivativeSavitzkyGolay(self): self._testDerivativeHelper(option="SG smoothed 3 point") def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testSimpleMath)) else: # use a predefined order testSuite.addTest(testSimpleMath("testDerivativeSinglePoint")) testSuite.addTest(testSimpleMath("testDerivativeSavitzkyGolay")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/SpecfileTest.py�������������������������������������������������������0000644�0000000�0000000�00000020255�14741736366�017505� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import gc import tempfile import locale current_locale = locale.getlocale() for l in ['de_DE.utf8', 'fr_FR.utf8']: try: locale.setlocale(locale.LC_ALL, l) except Exception: other_locale = False else: other_locale = l break try: locale.setlocale(locale.LC_ALL, current_locale) except locale.Error: # cleanup python 3.12 issue on same machines if isinstance(current_locale, tuple): # if the returned tuple is (None, 'UTF-8') it cannot restore the locale current_as_list = list(current_locale) for i in range(len(current_as_list)): if current_as_list[i] is None: print(f"Returned locale <{current_locale}> reset to None") current_locale = None locale.setlocale(locale.LC_ALL, current_locale) class testSpecfile(unittest.TestCase): def setUp(self): """ import the module """ try: from PyMca5.PyMcaIO import specfile self.specfileClass = specfile except Exception: self.specfileClass = None if self.specfileClass is not None: text = "#F \n" text += "\n" text += "#S 10 Undefined command 0\n" text += "#N 3\n" text += "#L First label Second label Third label\n" text += "10 100 1000\n" text += "20 400 8000\n" text += "30 900 270000\n" text += "\n" text += "#S 20 Undefined command 1\n" text += "#N 3\n" text += "#L First Second Third\n" text += "1.3 1 1\n" text += "2.5 4 8\n" text += "3.7 9 27\n" text += "\n" tmpFile = tempfile.mkstemp(text=False) if sys.version < '3.0': os.write(tmpFile[0], text) else: os.write(tmpFile[0], bytes(text, 'utf-8')) os.close(tmpFile[0]) self.fname = tmpFile[1] def tearDown(self): """clean up any possible files""" # make sure the file handle is free self._sf = None self._scan = None # this should free the handle gc.collect() # restore saved locale locale.setlocale(locale.LC_ALL, current_locale) if self.specfileClass is not None: if os.path.exists(self.fname): os.remove(self.fname) def testSpecfileImport(self): #"""Test successful import""" self.assertTrue(self.specfileClass is not None, 'Unsuccessful PyMca5.PyMcaIO.specfile import') def testSpecfileReading(self): #"""Test specfile readout""" self.testSpecfileImport() self._sf = self.specfileClass.Specfile(self.fname) # test the number of found scans self.assertEqual(len(self._sf), 2, 'Expected to read 2 scans, read %s' %\ len(self._sf)) self.assertEqual(self._sf.scanno(), 2, 'Expected to read 2 scans, got %s' %\ self._sf.scanno()) # test scan iteration selection method self._scan = self._sf[1] labels = self._scan.alllabels() expectedLabels = ['First', 'Second', 'Third'] self.assertEqual(len(labels), 3, 'Expected to read 3 scans, got %s' % len(labels)) for i in range(3): self.assertEqual(labels[i], expectedLabels[i], 'Read "%s" instead of "%s"' %\ (labels[i], expectedLabels[i])) # test scan number selection method self._scan = self._sf.select('20.1') labels = self._scan.alllabels() sf = None expectedLabels = ['First', 'Second', 'Third'] self.assertEqual(len(labels), 3, 'Expected to read 3 labels, got %s' % len(labels)) for i in range(3): self.assertEqual(labels[i], expectedLabels[i], 'Read "%s" instead of "%s"' %\ (labels[i], expectedLabels[i])) gc.collect() def testSpecfileReadingCompatibleWithUserLocale(self): #"""Test specfile compatible with C locale""" self.testSpecfileImport() self._sf = self.specfileClass.Specfile(self.fname) self._scan = self._sf[1] datacol = self._scan.datacol(1) data = self._scan.data() self._sf = None self.assertEqual(datacol[0], 1.3, 'Read %f instead of %f' %\ (datacol[0], 1.3)) self.assertEqual(datacol[1], 2.5, 'Read %f instead of %f' %\ (datacol[1], 2.5)) self.assertEqual(datacol[2], 3.7, 'Read %f instead of %f' %\ (datacol[2], 3.7)) self.assertEqual(datacol[1], data[0][1], 'Read %f instead of %f' %\ (datacol[1], data[0][1])) gc.collect() @unittest.skipIf(not other_locale, "other locale not installed") def testSpecfileReadingCompatibleWithOtherLocale(self): self.testSpecfileImport() self._sf = self.specfileClass.Specfile(self.fname) locale.setlocale(locale.LC_ALL, other_locale) self._scan = self._sf[1] datacol = self._scan.datacol(1) data = self._scan.data() locale.setlocale(locale.LC_ALL, current_locale) self._sf = None self.assertEqual(datacol[0], 1.3, 'Read %f instead of %f' %\ (datacol[0], 1.3)) self.assertEqual(datacol[1], 2.5, 'Read %f instead of %f' %\ (datacol[1], 2.5)) self.assertEqual(datacol[2], 3.7, 'Read %f instead of %f' %\ (datacol[2], 3.7)) self.assertEqual(datacol[1], data[0][1], 'Read %f instead of %f' %\ (datacol[1], data[0][1])) gc.collect() def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testSpecfile)) else: # use a predefined order testSuite.addTest(testSpecfile("testSpecfileImport")) testSuite.addTest(testSpecfile("testSpecfileReading")) testSuite.addTest(\ testSpecfile("testSpecfileReadingCompatibleWithUserLocale")) testSuite.addTest(\ testSpecfile("testSpecfileReadingCompatibleWithOtherLocale")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/StackBaseTest.py������������������������������������������������������0000644�0000000�0000000�00000021571�14741736366�017615� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2024 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF Data Analysis" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import numpy class DummyArray(object): def __init__(self, data): """ This class forces ROI and spectra calculation to be performed as it is made for a dynamically loaded array. This allows detection of the PyMca bug track issue 3544665 """ self.data = numpy.asarray(data) def __getitem__(self, *var): if len(var) == 1: return self.data[var[0]] elif len(var) == 2: return self.data[var[0], var[1]] elif len(var) == 3: return self.data[var[0], var[1], var[2]] def getShape(self): return self.data.shape def getDType(self): return self.data.dtype def getSize(self): s = 1 for item in self.__shape: s *= item return s shape = property(getShape) dtype = property(getDType) size = property(getSize) class testStackBase(unittest.TestCase): def testStackBaseImport(self): from PyMca5.PyMcaCore import StackBase def testStackBaseStack1DDataHandling(self): from PyMca5.PyMcaCore import StackBase nrows = 50 ncolumns = 100 nchannels = 500 a = numpy.ones((nrows, ncolumns), numpy.float64) referenceData = numpy.zeros((nrows, ncolumns, nchannels), numpy.float64) for i in range(nchannels): referenceData[:, :, i] = a * i a = None mask = numpy.zeros((nrows, ncolumns), numpy.uint8) mask[20:30, 15:50] = 1 dummyArray = DummyArray(referenceData) defaultMca = referenceData.sum(axis=0, dtype=numpy.float64).sum(axis=0) maskedMca = referenceData[mask>0, :].sum(axis=0) for fileindex in [0, 1]: #usually only one file index case is used but #we test both to have a better coverage j = 0 for data in [referenceData, dummyArray]: if j == 0: dynamic = "" j = 1 else: dynamic = "dynamic " stackBase = StackBase.StackBase() stackBase.setStack(data, mcaindex=2, fileindex=fileindex) channels, counts = stackBase.getActiveCurve()[0:2] self.assertTrue(numpy.allclose(defaultMca, counts), "Incorrect %sdefault mca" % dynamic) # set mask stackBase.setSelectionMask(mask) self.assertTrue(numpy.allclose(stackBase.getSelectionMask(), mask), "Incorrect mask set and get") # get mca from mask mcaDataObject = stackBase.calculateMcaDataObject() self.assertTrue(numpy.allclose(mcaDataObject.y[0], maskedMca), "Incorrect %smca from mask calculation" % dynamic) #get image from roi i0 = 100 imiddle = 200 i1 = 400 # calculate imageDict = stackBase.calculateROIImages(i0, i1, imiddle=imiddle) self.assertTrue(numpy.allclose(imageDict['ROI'], data[:,:,i0:i1].sum(axis=-1)), "Incorrect ROI image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Left'], data[:,:,i0]), "Incorrect Left image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Right'], data[:,:,i1-1]), "Incorrect Right image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Middle'], data[:,:,imiddle]), "Incorrect Middle image from %sROI calculation" % dynamic) stackBase = None data = None dummyArray = None referenceData = None def testStackBaseStack2DDataHandling(self): from PyMca5.PyMcaCore import StackBase nrows = 50 ncolumns = 100 nchannels = 500 a = numpy.ones((nrows, ncolumns), numpy.float64) referenceData = numpy.zeros((nchannels, nrows, ncolumns), numpy.float64) for i in range(nchannels): referenceData[i] = a * i a = None mask = numpy.zeros((nrows, ncolumns), numpy.uint8) mask[20:30, 15:50] = 1 dummyArray = DummyArray(referenceData) defaultMca = referenceData.sum(axis=2, dtype=numpy.float64).sum(axis=1) maskedMca = referenceData[:,mask>0].sum(axis=1) for fileindex in [1, 2]: #usually only one file index case is used but #we test both to have a better coverage j = 0 for data in [referenceData, dummyArray]: if j == 0: dynamic = "" j = 1 else: dynamic = "dynamic " stackBase = StackBase.StackBase() stackBase.setStack(data, mcaindex=0, fileindex=fileindex) channels, counts = stackBase.getActiveCurve()[0:2] self.assertTrue(numpy.allclose(defaultMca, counts), "Incorrect %sdefault mca" % dynamic) # set mask stackBase.setSelectionMask(mask) self.assertTrue(numpy.allclose(stackBase.getSelectionMask(), mask), "Incorrect mask set and get") # get mca from mask mcaDataObject = stackBase.calculateMcaDataObject() self.assertTrue(numpy.allclose(mcaDataObject.y[0], maskedMca), "Incorrect %smca from mask calculation" % dynamic) #get image from roi i0 = 100 imiddle = 200 i1 = 400 # calculate imageDict = stackBase.calculateROIImages(i0, i1, imiddle=imiddle) self.assertTrue(numpy.allclose(imageDict['ROI'], data[i0:i1, :,:].sum(axis=0)), "Incorrect ROI image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Left'], data[i0,:,:]), "Incorrect Left image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Right'], data[i1-1,:,:]), "Incorrect Right image from %sROI calculation" % dynamic) self.assertTrue(numpy.allclose(imageDict['Middle'], data[imiddle,:,:]), "Incorrect Middle image from %sROI calculation" % dynamic) stackBase = None data = None dummyArray = None referenceData = None def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testStackBase)) else: # use a predefined order testSuite.addTest(testStackBase("testStackBaseImport")) testSuite.addTest(testStackBase("testStackBaseStack1DDataHandling")) testSuite.addTest(testStackBase("testStackBaseStack2DDataHandling")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ���������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/StackInfoTest.py������������������������������������������������������0000644�0000000�0000000�00000063415�14741736366�017641� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2018-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy import gc import shutil try: import h5py HAS_H5PY = True except Exception: HAS_H5PY = None if sys.version_info < (3,): from StringIO import StringIO else: from io import StringIO DEBUG = 0 class testStackInfo(unittest.TestCase): def setUp(self): """ Get the data directory """ self._importSuccess = False self._outputDir = None self._h5File = None try: from PyMca5 import PyMcaDataDir self._importSuccess = True self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR except Exception: self.dataDir = None def tearDown(self): gc.collect() if self._outputDir is not None: shutil.rmtree(self._outputDir, ignore_errors=True) if os.path.exists(self._outputDir): raise IOError("Directory <%s> not deleted" % self._outputDir) if self._h5File is not None: fileName = self._h5File if os.path.exists(fileName): os.remove(fileName) fileName = self._h5File + "external.h5" if os.path.exists(fileName): os.remove(fileName) def testDataDirectoryPresence(self): self.assertTrue(self._importSuccess, 'Unsuccessful PyMca5.PyMcaDataDir import') self.assertTrue(self.dataDir is not None, 'Unassigned PyMca5.PyMcaDataDir.PYMCA_DATA_DIR') self.assertTrue(os.path.exists(self.dataDir), 'Directory "%s" does not exist' % self.dataDir) self.assertTrue(os.path.isdir(self.dataDir), '"%s" expected to be a directory' % self.dataDir) def testDataFilePresence(self): for fileName in ["Steel.spe", "Steel.cfg"]: dataFile = os.path.join(self.dataDir, fileName) self.assertTrue(os.path.exists(dataFile), "File %s does not exists" % dataFile) self.assertTrue(os.path.isfile(dataFile), "File %s is not an actual file" % dataFile) def testStackBaseAverageAndSum(self): from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaCore import DataObject from PyMca5.PyMcaCore import StackBase from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit spe = os.path.join(self.dataDir, "Steel.spe") cfg = os.path.join(self.dataDir, "Steel.cfg") sf = specfile.Specfile(spe) self.assertTrue(len(sf) == 1, "File %s cannot be read" % spe) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float64) sf = None configuration = ConfigDict.ConfigDict() configuration.read(cfg) calibration = configuration["detector"]["zero"], \ configuration["detector"]["gain"], 0.0 initialTime = configuration["concentrations"]["time"] # create the data nRows = 5 nColumns = 10 nTimes = 3 data = numpy.zeros((nRows, nColumns, counts.size), dtype = numpy.float64) live_time = numpy.zeros((nRows * nColumns), dtype=numpy.float64) mcaIndex = 0 for i in range(nRows): for j in range(nColumns): data[i, j] = counts live_time[i * nColumns + j] = initialTime * \ (1 + mcaIndex % nTimes) mcaIndex += 1 # create the stack data object stack = DataObject.DataObject() stack.data = data stack.info = {} stack.info["McaCalib"] = calibration stack.info["McaLiveTime"] = live_time stack.x = [channels] # let's play sb = StackBase.StackBase() sb.setStack(stack) x, y, legend, info = sb.getStackOriginalCurve() readCalib = info["McaCalib"] readLiveTime = info["McaLiveTime"] self.assertTrue(abs(readCalib[0] - calibration[0]) < 1.0e-10, "Calibration zero. Expected %f got %f" % \ (calibration[0], readCalib[0])) self.assertTrue(abs(readCalib[1] - calibration[1]) < 1.0e-10, "Calibration gain. Expected %f got %f" % \ (calibration[1], readCalib[0])) self.assertTrue(abs(readCalib[2] - calibration[2]) < 1.0e-10, "Calibration 2nd order. Expected %f got %f" % \ (calibration[2], readCalib[2])) self.assertTrue(abs(live_time.sum() - readLiveTime) < 1.0e-5, "Incorrect sum of live time data") mask = sb.getSelectionMask() if mask is None: mask = numpy.zeros((nRows, nColumns), dtype=numpy.uint8) mask[2, :] = 1 mask[0, 0:2] = 1 live_time.shape = mask.shape sb.setSelectionMask(mask) mcaObject = sb.calculateMcaDataObject(normalize=False) live_time.shape = mask.shape readLiveTime = mcaObject.info["McaLiveTime"] self.assertTrue(abs(live_time[mask > 0].sum() - readLiveTime) < 1.0e-5, "Incorrect sum of masked live time data") mcaObject = sb.calculateMcaDataObject(normalize=True) live_time.shape = mask.shape tmpBuffer = numpy.zeros(mask.shape, dtype=numpy.int32) tmpBuffer[mask > 0] = 1 nSelectedPixels = float(tmpBuffer.sum()) readLiveTime = mcaObject.info["McaLiveTime"] self.assertTrue( \ abs((live_time[mask > 0].sum() / nSelectedPixels) - readLiveTime) < 1.0e-5, "Incorrect average of masked live time data") def testStackFastFit(self): # TODO: this is done in PyMcaBatchTest on multiple input formats # so not needed here return from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaCore import DataObject spe = os.path.join(self.dataDir, "Steel.spe") cfg = os.path.join(self.dataDir, "Steel.cfg") sf = specfile.Specfile(spe) self.assertTrue(len(sf) == 1, "File %s cannot be read" % spe) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") counts = sf[0].mca(1) channels = numpy.arange(counts.size) sf = None configuration = ConfigDict.ConfigDict() configuration.read(cfg) calibration = configuration["detector"]["zero"], \ configuration["detector"]["gain"], 0.0 initialTime = configuration["concentrations"]["time"] # Fit MCA data with different dimensions: vector, image, stack for ndim in [1, 2, 3]: # create the data imgShape = tuple(range(3, 3+ndim)) data = numpy.tile(counts, imgShape+(1,)) nTimes = 3 live_time = numpy.arange(numpy.prod(imgShape), dtype=int) live_time = initialTime + (live_time % nTimes)*initialTime # create the stack data object stack = DataObject.DataObject() stack.data = data stack.info = {} stack.info["McaCalib"] = calibration stack.info["McaLiveTime"] = live_time stack.x = [channels] # Test the fast XRF # we need to make sure we use fundamental parameters and # the time read from the file configuration["concentrations"]["usematrix"] = 0 configuration["concentrations"]["useautotime"] = 1 # make sure we use the SNIP background configuration['fit']['stripalgorithm'] = 1 self._verifyFastFit(stack, configuration, live_time, nTimes) def _verifyFastFit(self, stack, configuration, live_time, nTimes): from PyMca5.PyMcaPhysics.xrf import FastXRFLinearFit ffit = FastXRFLinearFit.FastXRFLinearFit() firstIndex = tuple([0]*(stack.data.ndim-1)) for refit in [0, 1]: outputDict = ffit.fitMultipleSpectra(y=stack, weight=0, configuration=configuration, concentrations=True, refit=refit) parameter_names = outputDict.labels('parameters') parameters = outputDict["parameters"].astype(numpy.float32) uncertainties = outputDict["uncertainties"].astype(numpy.float32) for i, (name, values, uvalues) in enumerate(zip(parameter_names, parameters, uncertainties)): if DEBUG: print(name, values[firstIndex]) delta = (values - values[firstIndex]) self.assertTrue(delta.max() == 0, "Different fit value for parameter %s delta %f" % \ (name, delta.max())) self.assertTrue(delta.min() == 0, "Different fit value for parameter %s delta %f" % \ (name, delta.min())) delta = (uvalues - uvalues[firstIndex]) self.assertTrue(delta.max() == 0, "Different sigma value for parameter %s delta %f" % \ (name, delta.max())) self.assertTrue(delta.min() == 0, "Different sigma value for parameter %s delta %f" % \ (name, delta.min())) massfraction_names = outputDict.labels('massfractions') massfractions = outputDict["massfractions"] for i, (name, fractions) in enumerate(zip(massfraction_names, massfractions)): # verify that massfractions took into account the time reference = fractions[firstIndex] cTime = configuration['concentrations']['time'] values = fractions.flatten() for point in range(live_time.size): current = values[point] if DEBUG: print(name, point, reference, current, point % nTimes) if (point % nTimes) and (abs(reference) > 1.0e-10): self.assertTrue(reference != current, "Incorrect concentration for point %d" % point) corrected = current * live_time[point] / cTime if abs(reference) > 1.0e-10: delta = 100 * abs((reference - corrected) / reference) self.assertTrue(delta < 0.01, "Incorrect concentration(t) for point %d" % point) else: self.assertTrue(abs(reference - corrected) < 1.0e-5, "Incorrect concentration(t) for point %d" % point) @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testFitHdf5Stack(self): import tempfile from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaIO import ConfigDict from PyMca5.PyMcaIO import HDF5Stack1D from PyMca5.PyMcaPhysics.xrf import McaAdvancedFitBatch from PyMca5.PyMcaPhysics.xrf import LegacyMcaAdvancedFitBatch spe = os.path.join(self.dataDir, "Steel.spe") cfg = os.path.join(self.dataDir, "Steel.cfg") sf = specfile.Specfile(spe) self.assertTrue(len(sf) == 1, "File %s cannot be read" % spe) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float64) sf = None configuration = ConfigDict.ConfigDict() configuration.read(cfg) calibration = configuration["detector"]["zero"], \ configuration["detector"]["gain"], 0.0 initialTime = configuration["concentrations"]["time"] # create the data nRows = 5 nColumns = 10 nTimes = 3 data = numpy.zeros((nRows, nColumns, counts.size), dtype = numpy.float64) live_time = numpy.zeros((nRows * nColumns), dtype=numpy.float64) mcaIndex = 0 for i in range(nRows): for j in range(nColumns): data[i, j] = counts live_time[i * nColumns + j] = initialTime * \ (1 + mcaIndex % nTimes) mcaIndex += 1 self._h5File = os.path.join(tempfile.gettempdir(), "Steel.h5") # write the stack to an HDF5 file if os.path.exists(self._h5File): os.remove(self._h5File) h5 = h5py.File(self._h5File, "w") h5["/entry/instrument/detector/calibration"] = calibration h5["/entry/instrument/detector/channels"] = channels h5["/entry/instrument/detector/data"] = data h5["/entry/instrument/detector/live_time"] = live_time # add nexus conventions h5["/entry"].attrs["NX_class"] = u"NXentry" h5["/entry/instrument"].attrs["NX_class"] = u"NXinstrument" h5["/entry/instrument/detector/"].attrs["NX_class"] = u"NXdetector" h5["/entry/instrument/detector/data"].attrs["interpretation"] = \ u"spectrum" # case with softlink h5["/entry/measurement/mca_soft/data"] = \ h5py.SoftLink("/entry/instrument/detector/data") # case with info h5["/entry/measurement/mca_with_info/data"] = \ h5["/entry/instrument/detector/data"] h5["/entry/measurement/mca_with_info/info"] = \ h5["/entry/instrument/detector"] h5.flush() h5.close() h5 = None # check that the data can be read as a stack as # single top level dataset (issue #226) external = self._h5File + "external.h5" if os.path.exists(external): os.remove(external) h5 = h5py.File(external, "w") h5["/data_at_top"] = h5py.ExternalLink(self._h5File, "/entry/measurement/mca_soft/data") h5.flush() h5.close() h5 = None stack = HDF5Stack1D.HDF5Stack1D([external], {"y":"/data_at_top"}) # check that the data can be read as a stack through a external link external = self._h5File + "external.h5" if os.path.exists(external): os.remove(external) h5 = h5py.File(external, "w") h5["/data_at_top"] = h5py.ExternalLink(self._h5File, "/entry/measurement/mca_soft/data") h5["/entry/data"] = h5py.ExternalLink(self._h5File, "/entry/measurement/mca_soft/data") h5.flush() h5.close() h5 = None fileList = [external] for selection in [{"y":"/data_at_top"}, # dataset at top level {"y":"/data"}, # GOOD: selection inside /entry {"y":"/entry/data"}]: # WRONG: complete path stack = HDF5Stack1D.HDF5Stack1D(fileList, selection) info = stack.info for key in ["McaCalib", "McaLiveTime"]: self.assertTrue(key in info, "Key <%s> not present but it should be there") readCalib = info["McaCalib"] readLiveTime = info["McaLiveTime"] self.assertTrue(abs(readCalib[0] - calibration[0]) < 1.0e-10, "Calibration zero. Expected %f got %f" % \ (calibration[0], readCalib[0])) self.assertTrue(abs(readCalib[1] - calibration[1]) < 1.0e-10, "Calibration gain. Expected %f got %f" % \ (calibration[1], readCalib[0])) self.assertTrue(abs(readCalib[2] - calibration[2]) < 1.0e-10, "Calibration 2nd order. Expected %f got %f" % \ (calibration[2], readCalib[2])) self.assertTrue(live_time.size == readLiveTime.size, "Incorrect size of live time data") self.assertTrue(numpy.allclose(live_time, readLiveTime), "Incorrect live time read") self.assertTrue(numpy.allclose(stack.x, channels), "Incorrect channels read") self.assertTrue(numpy.allclose(stack.data, data), "Incorrect data read") # check that the data can be read as a stack fileList = [self._h5File] for selection in [{"y":"/measurement/mca_with_info/data"}, {"y":"/measurement/mca_soft/data"}, {"y":"/instrument/detector/data"}]: stack = HDF5Stack1D.HDF5Stack1D(fileList, selection) info = stack.info for key in ["McaCalib", "McaLiveTime"]: self.assertTrue(key in info, "Key <%s> not present but it should be there") readCalib = info["McaCalib"] readLiveTime = info["McaLiveTime"] self.assertTrue(abs(readCalib[0] - calibration[0]) < 1.0e-10, "Calibration zero. Expected %f got %f" % \ (calibration[0], readCalib[0])) self.assertTrue(abs(readCalib[1] - calibration[1]) < 1.0e-10, "Calibration gain. Expected %f got %f" % \ (calibration[1], readCalib[0])) self.assertTrue(abs(readCalib[2] - calibration[2]) < 1.0e-10, "Calibration 2nd order. Expected %f got %f" % \ (calibration[2], readCalib[2])) self.assertTrue(live_time.size == readLiveTime.size, "Incorrect size of live time data") self.assertTrue(numpy.allclose(live_time, readLiveTime), "Incorrect live time read") self.assertTrue(numpy.allclose(stack.x, channels), "Incorrect channels read") self.assertTrue(numpy.allclose(stack.data, data), "Incorrect data read") # TODO: this is done in PyMcaBatchTest on multiple input formats # so not needed here return # perform the batch fit self._outputDir = os.path.join(tempfile.gettempdir(), "SteelTestDir") if not os.path.exists(self._outputDir): os.mkdir(self._outputDir) cfgFile = os.path.join(tempfile.gettempdir(), "SteelNew.cfg") if os.path.exists(cfgFile): try: os.remove(cfgFile) except Exception: print("Cannot remove file %s" % cfgFile) # we need to make sure we use fundamental parameters and # the time read from the file configuration["concentrations"]["usematrix"] = 0 configuration["concentrations"]["useautotime"] = 1 if not os.path.exists(cfgFile): configuration.write(cfgFile) os.chmod(cfgFile, 0o777) # Test batch fitting (legacy) batch = LegacyMcaAdvancedFitBatch.McaAdvancedFitBatch(cfgFile, filelist=[self._h5File], outputdir=self._outputDir, concentrations=True, selection=selection, quiet=True) batch.processList() imageFile = os.path.join(self._outputDir, "IMAGES", "Steel.dat") self._verifyBatchFitResult(imageFile, nRows, nColumns, live_time, nTimes, legacy=True) # Test batch fitting batch = McaAdvancedFitBatch.McaAdvancedFitBatch(cfgFile, filelist=[self._h5File], outputdir=self._outputDir, concentrations=True, selection=selection, quiet=True) batch.outbuffer.extensions = ['.dat'] batch.processList() imageFile = batch.outbuffer.filename('.dat') self._verifyBatchFitResult(imageFile, nRows, nColumns, live_time, nTimes) # Batch fitting went well # Test the fast XRF configuration["concentrations"]["usematrix"] = 0 configuration["concentrations"]["useautotime"] = 1 configuration['fit']['stripalgorithm'] = 1 self._verifyFastFit(stack, configuration, live_time, nTimes) def _verifyBatchFitResult(self, imageFile, nRows, nColumns, live_time, nTimes, legacy=False): from PyMca5.PyMcaIO import specfilewrapper as specfile # recover the results self.assertTrue(os.path.isfile(imageFile), "Batch fit result file <%s> not present" % imageFile) sf = specfile.Specfile(imageFile) labels = sf[0].alllabels() scanData = sf[0].data() sf = None self.assertTrue(scanData.shape[-1] == (nRows * nColumns), "Expected %d values got %d" % (nRows * nColumns, scanData.shape[-1])) if legacy: ismassfrac = lambda label: label.endswith("-mass-fraction") else: ismassfrac = lambda label: label.startswith("w(") referenceResult = {} for point in range(scanData.shape[-1]): for label in labels: idx = labels.index(label) if label in ["Point", "row", "column"]: continue elif point == 0: referenceResult[label] = scanData[idx, point] elif ismassfrac(label): #print("label = ", label) #print("reference = ", referenceResult[label]) #print("current = ", scanData[idx, point]) reference = referenceResult[label] current = scanData[idx, point] #print("ratio = ", current / reference) #print("time ratio = ", live_time[point] / live_time[0]) if point % nTimes: if abs(reference) > 1.0e-10: self.assertNotEqual(reference, current, "Incorrect concentration for point %d" % point) corrected = current * \ (live_time[point] / live_time[0]) if abs(reference) > 1.0e-10: delta = \ 100 * abs((reference - corrected) / reference) self.assertTrue(delta < 0.01, "Incorrect concentration(t) for point %d" % point) else: self.assertTrue(abs(reference - corrected) < 1.0e-5, "Incorrect concentration(t) for point %d" % point) else: self.assertEqual(reference, current, "Incorrect concentration for point %d" % point) else: reference = referenceResult[label] current = scanData[idx, point] self.assertEqual(reference, current, "Incorrect value for point %d" % point) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testStackInfo)) else: # use a predefined order testSuite.addTest(testStackInfo("testDataDirectoryPresence")) testSuite.addTest(testStackInfo("testStackBaseAverageAndSum")) testSuite.addTest(testStackInfo("testDataFilePresence")) testSuite.addTest(testStackInfo("testStackFastFit")) testSuite.addTest(testStackInfo("testFitHdf5Stack")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/TestAll.py������������������������������������������������������������0000644�0000000�0000000�00000005476�14741736366�016473� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import glob import unittest def getSuite(auto=True): pythonFiles = glob.glob(os.path.join(os.path.dirname(__file__), "*.py")) sys.path.insert(0, os.path.dirname(__file__)) testSuite = unittest.TestSuite() for fname in pythonFiles: if os.path.basename(fname) in ["__init__.py", "TestAll.py"]: continue modName = os.path.splitext(os.path.basename(fname))[0] try: module = __import__(modName) except ImportError: print("Failed to import %s" % fname) continue if hasattr(module, "getSuite"): testSuite.addTest(module.getSuite(auto)) return testSuite def main(auto=True): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" if len(sys.argv) > 1: auto = False else: auto = True try: from PyMca5.PyMcaGui import PyMcaQt as qt app = qt.QApplication([]) except Exception: # if GUI tests are requested they will crash somewhere else pass result = main(auto) ret = not result.wasSuccessful() # make sure there is no remaining QApplication handle app = None sys.exit(ret) ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/WidgetsInstantiationTest.py�������������������������������������������0000644�0000000�0000000�00000024236�14741736366�022131� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # Copyright (C) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ import logging import os import sys import unittest import PyMca5.PyMcaGui.PyMcaQt as qt from PyMca5.PyMcaGui.misc.testutils import TestCaseQt _logger = logging.getLogger(__name__) class TestQtWrapper(unittest.TestCase): """Minimalistic test to check that Qt has been loaded.""" def testQObject(self): """Test that QObject is there.""" obj = qt.QObject() self.assertTrue(obj is not None) class TestPlotWidget(TestCaseQt): def setUp(self): super(TestPlotWidget, self).setUp() def testShow(self): from PyMca5.PyMcaGui.plotting import PlotWidget widget = PlotWidget.PlotWidget() widget.show() self.qapp.processEvents() class TestRGBCorrelatorGraph(TestCaseQt): def setUp(self): super(TestRGBCorrelatorGraph, self).setUp() def testShow(self): from PyMca5.PyMcaGui.plotting import RGBCorrelatorGraph widget = RGBCorrelatorGraph.RGBCorrelatorGraph() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestRGBCorrelatorWidget(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import RGBCorrelatorWidget widget = RGBCorrelatorWidget.RGBCorrelatorWidget() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestXASNormalizationWindow(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xas import XASNormalizationWindow spectrum = [1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5] widget = XASNormalizationWindow.XASNormalizationWindow(None, spectrum) widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestMaskImageWidget(TestCaseQt): def setUp(self): super(TestMaskImageWidget, self).setUp() def testShow(self): from PyMca5.PyMcaGui.plotting import MaskImageWidget widget = MaskImageWidget.MaskImageWidget() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestPlotWindow(TestCaseQt): def setUp(self): super(TestPlotWindow, self).setUp() def testShow(self): from PyMca5.PyMcaGui.plotting import PlotWindow widget = PlotWindow.PlotWindow() widget.show() self.qapp.processEvents() class TestQPyMcaMatplotlibSave1D(TestCaseQt): def setUp(self): super(TestQPyMcaMatplotlibSave1D, self).setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import QPyMcaMatplotlibSave1D widget = QPyMcaMatplotlibSave1D.QPyMcaMatplotlibSaveDialog() w = widget.plot w.setLimits(0, 3, 0, 9) w.addDataToPlot([0, 1, 2, 3], [0, 1, 4, 9], legend="1") widget.setXLabel('Channel') widget.setYLabel('Counts') w.plotLegends() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestScanWindow(TestCaseQt): def setUp(self): super(TestScanWindow, self).setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import ScanWindow widget = ScanWindow.ScanWindow() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestMcaCalWidget(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xrf import McaCalWidget widget = McaCalWidget.McaCalWidget(y=[1,2,3,4]) widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestMcaWindow(TestCaseQt): def setUp(self): super(TestMcaWindow, self).setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import McaWindow widget = McaWindow.McaWindow() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestMaterialEditor(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xrf import MaterialEditor widget = MaterialEditor.MaterialEditor() widget.show() self.qapp.processEvents() class TestFitParam(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xrf import FitParam widget = FitParam.FitParamWidget() widget.show() self.qapp.processEvents() class TestPeakIdentifier(TestCaseQt): def setUp(self): super().setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xrf import PeakIdentifier widget = PeakIdentifier.PeakIdentifier() widget.show() self.qapp.processEvents() class TestMcaAdvancedFit(TestCaseQt): def setUp(self): super(TestMcaAdvancedFit, self).setUp() def testShow(self): from PyMca5.PyMcaGui.physics.xrf import McaAdvancedFit widget = McaAdvancedFit.McaAdvancedFit() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestXMCDWindow(TestCaseQt): def setUp(self): super(TestXMCDWindow, self).setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import XMCDWindow widget = XMCDWindow.main() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestPCAParametersDialog(TestCaseQt): def setUp(self): super(TestPCAParametersDialog, self).setUp() def testShow(self): from PyMca5.PyMcaGui.math import PCAWindow widget = PCAWindow.PCAParametersDialog() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() class TestPyMcaMain(TestCaseQt): def setUp(self): super(TestPyMcaMain, self).setUp() def testShow(self): from PyMca5.PyMcaGui.pymca import PyMcaMain widget = PyMcaMain.PyMcaMain() widget.show() self.qapp.processEvents() from PyMca5.PyMcaGui.plotting import PyMcaPrintPreview PyMcaPrintPreview.resetSingletonPrintPreview() def getSuite(auto=True): test_suite = unittest.TestSuite() with_qt_test = True skip_msg = "" if sys.platform.startswith('linux') and not os.environ.get('DISPLAY', ''): # On Linux and no DISPLAY available (e.g., ssh without -X) skip_msg = 'Widgets tests disabled (DISPLAY env. variable not set)' with_qt_test = False elif os.environ.get('WITH_QT_TEST', 'True') == 'False': skip_msg = "Widgets tests skipped by WITH_QT_TEST env var" with_qt_test = False if not with_qt_test: class SkipGUITest(unittest.TestCase): def runTest(self): self.skipTest( skip_msg) test_suite.addTest(SkipGUITest()) return test_suite for TestCaseCls in (TestQtWrapper, TestPlotWidget, TestPlotWindow, TestRGBCorrelatorGraph, TestRGBCorrelatorWidget, TestXASNormalizationWindow, TestMaskImageWidget, TestScanWindow, TestQPyMcaMatplotlibSave1D, TestMcaCalWidget, TestMcaWindow, TestMaterialEditor, TestFitParam, TestPeakIdentifier, TestMcaAdvancedFit, TestXMCDWindow, TestPCAParametersDialog, TestPyMcaMain, ): test_suite.addTest( unittest.defaultTestLoader.loadTestsFromTestCase(TestCaseCls)) return test_suite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True app = qt.QApplication([]) result = test(auto) app = None sys.exit(not result.wasSuccessful()) ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/XRFBatchFitOutputTest.py����������������������������������������������0000644�0000000�0000000�00000041620�14741736366�021237� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import tempfile import shutil import os import numpy from contextlib import contextmanager import itertools try: import h5py except Exception: h5py = None class testXRFBatchFitOutput(unittest.TestCase): def setUp(self): self.path = tempfile.mkdtemp(prefix='pymca') self.saveall = {'outputDir': self.path, 'outputRoot': 'sample', 'fileEntry': 'sample_dataset', 'fileProcess': 'test', 'tif': True, 'edf': True, 'csv': True, 'h5': True, 'dat': True, 'multipage': True, 'diagnostics': True} def tearDown(self): if os.path.isdir(self.path): shutil.rmtree(self.path) def _getFiles(self, outputDir): files = [] for root, dirnames, filenames in os.walk(outputDir): for filename in filenames: files.append(os.path.join(root, filename)) return files def testOverwrite(self): h5name = os.path.join(self.path, self.saveall['outputRoot']+'.h5') #subdir = os.path.join(self.path, self.saveall['outputRoot']) subdir = os.path.join(self.path, 'IMAGES') outbuffer = self._initOutBuffer(**self.saveall) outdata, outlabels, outaxes = self._generateData(outbuffer, memtype='mix') expected = self._getFiles(self.path) self._verifyHdf5(h5name, outdata, outlabels, outaxes) self._verifyEdf(subdir, self.saveall['multipage'], outdata, outlabels) for overwrite in ['False', 'True']: outbuffer = self._initOutBuffer(overwrite=overwrite, **self.saveall) outdata, outlabels, outaxes = self._generateData(outbuffer, memtype='mix') reality = self._getFiles(self.path) self.assertEqual(set(reality), set(expected)) self._verifyHdf5(h5name, outdata, outlabels, outaxes) self._verifyEdf(subdir, self.saveall['multipage'], outdata, outlabels) def testNoSave(self): outbuffer = self._initOutBuffer(nosave=True, **self.saveall) outdata, outlabels, outaxes = self._generateData(outbuffer, memtype='hdf5') self.assertFalse(bool(self._getFiles(self.path))) def testOutputFormats(self): parameters = [(True, False)]*7 + [('ram', 'hdf5', 'mix')] for i, params in enumerate(itertools.product(*parameters)): outputDir = self.path+str(i) tif, h5, edf, csv, dat, multipage, diagnostics, memtype = params outbuffer = self._initOutBuffer(outputDir=outputDir, outputRoot='sample', fileEntry='sample_dataset', fileProcess='test', tif=tif, edf=edf, csv=csv, h5=h5, dat=dat, multipage=multipage, diagnostics=diagnostics) outdata, outlabels, outaxes = self._generateData(outbuffer, memtype=memtype) if h5py is None: h5 = False # Make sure the expected files are saved h5name = os.path.join(outputDir, 'sample.h5') #subdir = os.path.join(outputDir, 'sample') subdir = os.path.join(outputDir, 'IMAGES') expected = [] if h5: expected.append(h5name) if multipage: for b, ext in zip([edf, tif], ['.edf', '.tif']): if b: expected.append(os.path.join(subdir, 'sample_dataset'+ext)) else: for b, ext in zip([edf, tif], ['.edf', '.tif']): if not b: continue expected += [os.path.join(subdir, 'sample_dataset_{}{}'.format(label, ext)) for labeldict in outlabels['filename'].values() for label in labeldict.values()] if csv: expected.append(os.path.join(subdir, 'sample_dataset.csv')) if dat: expected.append(os.path.join(subdir, 'sample_dataset.dat')) reality = self._getFiles(outputDir) self.assertEqual(set(reality), set(expected)) # Verify file content if h5: self._verifyHdf5(h5name, outdata, outlabels, outaxes) if edf: self._verifyEdf(subdir, multipage, outdata, outlabels) def _verifyEdf(self, subdir, multipage, outdata, outlabels): from PyMca5.PyMcaIO import EdfFile ext = '.edf' if multipage: filename = os.path.join(subdir, 'sample_dataset'+ext) f = EdfFile.EdfFile(filename) edfdata = {f.GetHeader(i)['Title']: f.GetData(i) for i in range(f.GetNumImages())} for group, datadict in outdata.items(): if group not in outlabels['title']: continue if not multipage: edfdata = {} for label, data in datadict.items(): suffix = outlabels['filename'][group].get(label, None) if not suffix: continue filename = os.path.join(subdir, 'sample_dataset_{}{}'.format(suffix, ext)) f = EdfFile.EdfFile(filename) edfdata[f.GetHeader(0)['Title']] = f.GetData(0) for label, data in datadict.items(): edflabel = outlabels['title'][group].get(label, None) if edflabel: numpy.testing.assert_array_equal(data, edfdata[edflabel], '{}: {}'.format(group, label)) def _verifyHdf5(self, filename, outdata, outlabels, outaxes): outlabels = outlabels['h5'] with h5py.File(filename, mode='a') as f: nxprocess = f['sample_dataset']['test'] self.assertEqual(set(nxprocess.keys()), {'configuration', 'date', 'program', 'version', 'results'}) nxresults = nxprocess['results'] self.assertEqual(set(nxresults.keys()), set(outdata.keys())) for group, datadict in outdata.items(): nxdata = nxresults[group] # Check signals attribute signals = [outlabels[group][label] for label in datadict.keys()] nxsignals = [] name = nxdata.attrs.get('signal', None) if name: nxsignals.append(name) names = nxdata.attrs.get('auxiliary_signals', numpy.array([])).tolist() if names: nxsignals.extend(names) self.assertEqual(set(nxsignals), set(signals)) # Check signals data for label, data in datadict.items(): numpy.testing.assert_array_equal(data, nxdata[outlabels[group][label]], '{}: {}'.format(group, label)) if group in outaxes: # Check axes attribute names = nxdata.attrs.get('axes', numpy.array([])).tolist() self.assertEqual(names, outaxes[group]['axesused']) # Check axes data for name in names: i = outaxes[group]['axesused'].index(name) data = outaxes[group]['axes'][i][1] numpy.testing.assert_array_equal(data, nxdata[name], name) else: # Check axes attribute names = nxdata.attrs.get('axes', numpy.array([])).tolist() self.assertEqual(names, []) def _initOutBuffer(self, **kwargs): from PyMca5.PyMcaPhysics.xrf.XRFBatchFitOutput import OutputBuffer return OutputBuffer(**kwargs) def _generateData(self, outbuffer, memtype='mix'): outaxes = {} outdata = {} outlabels = {} if memtype == 'mix': memsmall = 'ram' membig = 'hdf5' else: memsmall = membig = 'hdf5' labels = ['zero', 'Ca K', ('Ca K', 'Layer1'), 'Fe-K', ('Fe-K', 'Layer1')] nparams = len(labels) imgshape = 4, 5 paramshape = (nparams,)+imgshape parameters = numpy.random.uniform(size=paramshape) uncertainties = numpy.random.uniform(size=paramshape) paramAttrs = {'default': True, 'errors': 'uncertainties'} uncertaintyAttrs = None axes = [('axis{}'.format(i), numpy.arange(n), {'units': 'um'}) for i, n in enumerate(paramshape)] axesused = ['axis{}'.format(i) for i, n in enumerate(paramshape)] dummyAttrs = {'axes': axes, 'axesused': axesused} outaxes['dummy'] = dummyAttrs nmca = 6 stackshape = imgshape+(nmca,) residuals = numpy.random.uniform(size=stackshape) axes = [('axis{}'.format(i), numpy.arange(n), {'units': 'um'}) for i, n in enumerate(stackshape)] axes.append(('axis0_', numpy.arange(stackshape[0]), {})) axesused = ['axis{}'.format(i) for i, n in enumerate(stackshape)] fitAttrs = {'axes': axes, 'axesused': axesused} outaxes['fit'] = fitAttrs chisq = numpy.random.uniform(size=imgshape) axes = [('axis{}'.format(i), numpy.arange(n), {'units': 'um'}) for i, n in enumerate(imgshape)] axesused = ['axis{}'.format(i) for i, n in enumerate(imgshape)] diagnosticsAttrs = {'axes': axes, 'axesused': axesused} outaxes['diagnostics'] = diagnosticsAttrs with outbuffer.saveContext(): # Parameters + uncertainties buffer = outbuffer.allocateMemory('parameters', shape=parameters.shape, dtype=parameters.dtype, labels=labels, memtype=memsmall, groupAttrs=paramAttrs) for dout, din in zip(buffer, parameters): dout[()] = din outdata['parameters'] = {label: img for label, img in zip(labels, parameters)} buffer = outbuffer.allocateMemory('uncertainties', data=uncertainties, labels=labels, memtype=memsmall, groupAttrs=uncertaintyAttrs) outdata['uncertainties'] = {label: img for label, img in zip(labels, uncertainties)} # Diagnostics buffer = outbuffer.allocateMemory('residuals', group='fit', shape=residuals.shape, dtype=residuals.dtype, memtype=membig, groupAttrs=fitAttrs) buffer[:] = residuals outdata['fit'] = {'residuals': residuals} buffer = outbuffer.allocateMemory('chisq', group='diagnostics', data=chisq, memtype=memsmall, groupAttrs=diagnosticsAttrs) buffer = outbuffer.allocateMemory('nFree', group='diagnostics', shape=chisq.shape, dtype=chisq.dtype, memtype=memsmall, fill_value=nparams, groupAttrs=diagnosticsAttrs) outdata['diagnostics'] = {'nFree': numpy.full_like(chisq, nparams), 'chisq': chisq} # Others buffer = outbuffer.allocateMemory('dummy', shape=parameters.shape, dtype=parameters.dtype, memtype=memsmall, fill_value=10, groupAttrs=dummyAttrs) outdata['dummy'] = {'dummy': numpy.full_like(parameters, 10)} # Non-data objects (not list or ndarray) outbuffer['misc'] = {'a': 1, 'b': 2} # Hdf5 group names, edf file suffixes and edf titles outlabels = {} outlabels['h5'] = h5labels = {} outlabels['title'] = titlelabels = {} outlabels['filename'] = filelabels = {} h5labels['parameters'] = {'zero': 'zero', 'Ca K': 'Ca_K', ('Ca K', 'Layer1'): 'Ca_K_Layer1', 'Fe-K': 'Fe-K', ('Fe-K', 'Layer1'): 'Fe-K_Layer1'} titlelabels['parameters'] = {'zero': 'zero', 'Ca K': 'Ca_K', ('Ca K', 'Layer1'): 'Ca_K_Layer1', 'Fe-K': 'Fe-K', ('Fe-K', 'Layer1'): 'Fe-K_Layer1'} filelabels['parameters'] = {'zero': 'zero', 'Ca K': 'Ca_K', ('Ca K', 'Layer1'): 'Ca_K_Layer1', 'Fe-K': 'Fe_K', ('Fe-K', 'Layer1'): 'Fe_K_Layer1'} h5labels['uncertainties'] = h5labels['parameters'] titlelabels['uncertainties'] = {'zero': 's(zero)', 'Ca K': 's(Ca_K)', ('Ca K', 'Layer1'): 's(Ca_K)_Layer1', 'Fe-K': 's(Fe-K)', ('Fe-K', 'Layer1'): 's(Fe-K)_Layer1'} filelabels['uncertainties'] = {'zero': 'szero', 'Ca K': 'sCa_K', ('Ca K', 'Layer1'): 'sCa_K_Layer1', 'Fe-K': 'sFe_K', ('Fe-K', 'Layer1'): 'sFe_K_Layer1'} h5labels['diagnostics'] = {'nFree': 'nFree', 'chisq': 'chisq'} titlelabels['diagnostics'] = {'chisq': 'chisq'} filelabels['diagnostics'] = {'chisq': 'chisq'} h5labels['fit'] = {'residuals': 'residuals'} h5labels['dummy'] = {'dummy': 'dummy'} return outdata, outlabels, outaxes def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest( unittest.TestLoader().loadTestsFromTestCase(testXRFBatchFitOutput)) else: # use a predefined order testSuite.addTest(testXRFBatchFitOutput('testOutputFormats')) testSuite.addTest(testXRFBatchFitOutput('testNoSave')) testSuite.addTest(testXRFBatchFitOutput('testOverwrite')) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() ����������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/XrfData.py������������������������������������������������������������0000644�0000000�0000000�00000026343�14741736366�016450� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import numpy import time import os import sys import numbers def generateXRFConfig(modfunc=None): """ :param callable modfunc: modify configuration on loading :returns: ConfigDict """ from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR as dataDir from PyMca5.PyMcaIO import ConfigDict configuration = ConfigDict.ConfigDict() cfg = os.path.join(dataDir, "Steel.cfg") configuration.read(cfg) if modfunc is not None: modfunc(configuration) return configuration def generateXRFData(nRows=5, nColumns=10, nDet=1, nTimes=3, presetTime=1, same=True): """ :param int nRows: :param int nColumns: :param int nDet: :param int nTimes: number of different live times :param int presetTime: exposure time for each spectrum :param bool same: same spectrum in all pixels (add pixel index as constant background otherwise) :returns: data(nRows, nColumns, nChannels), liveTime(nRows*nColumns) """ from PyMca5.PyMcaDataDir import PYMCA_DATA_DIR as dataDir from PyMca5.PyMcaIO import specfilewrapper as specfile spe = os.path.join(dataDir, "Steel.spe") sf = specfile.Specfile(spe) counts = sf[0].mca(1).astype(numpy.int32) #counts = numpy.arange(counts.size, dtype=int) # for testing data = numpy.zeros((nDet, nRows, nColumns, counts.size), dtype=counts.dtype) liveTime = numpy.zeros((nDet, nRows, nColumns), dtype=numpy.float64) nTimes *= nDet initialTime = presetTime mcaIndex = 0 for i in range(nRows): for j in range(nColumns): for k in range(nDet): if same: data[k, i, j] = counts else: data[k, i, j] = counts + mcaIndex*nDet + k liveTime[k, i, j] = initialTime * (1 + mcaIndex % nTimes)/float(nTimes) mcaIndex += 1 return data, liveTime def generate(modfunc=None, **kwargs): """ :param callable modfunc: modify configuration on loading :param **kwargs: see `generateXRFData` :returns dict: {configuration: ConfigDict, data: ndarray(nDet, nRows, nColumns, nChannels), liveTime: ndarray(nDet, nRows, nColumns), presetTime: number} """ configuration = generateXRFConfig(modfunc=modfunc) presetTime = configuration["concentrations"]["time"] data, liveTime = generateXRFData(presetTime=presetTime, **kwargs) return {'configuration': configuration, 'data': data, 'liveTime': liveTime, 'presetTime': presetTime} def generateSpecMesh(filename, nmaps=1, **kwargs): """ :param str filename: save data under this name :param num nmaps: number of mesh scans :param **kwargs: see `generate` :returns dict: {filelist: list(str), configuration: ConfigDict, data: ndarray(nDet, nRows, nColumns, nChannels), liveTime: ndarray(nDet, nRows, nColumns), presetTime: number} """ info = generate(**kwargs) nDet, nRows, nColumns, nChannels = info['data'].shape expoTime = info['presetTime'] zero = info['configuration']["detector"]["zero"] gain = info['configuration']["detector"]["gain"] command = 'mesh samy 0 %d %d samz 0 %d %d %g' % \ (nRows, nRows-1, nColumns, nColumns-1, expoTime) if sys.version < "3.0": mode = 'wb' oparams = {} else: mode = 'w' oparams = {'newline': ''} with open(filename, mode, **oparams) as ffile: ffile.write("#F %s\n" % filename) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("\n") for scan in range(nmaps): ffile.write("#S %d %s\n" % (scan+1, command)) ffile.write("#D %s\n" % (time.ctime(time.time()))) ffile.write("#@MCA %16C\n") ffile.write("#@CHANN %d %d %d 1\n" % (nChannels, 0, nChannels-1)) ffile.write("#@CALIB %.7g %.7g %.7g\n" % (zero, gain, 0.0)) # Live time changes for each spectrum, so this doesn't work: #ffile.write("#@CTIME %.7g %.7g %.7g\n" % (preset, live, real)) ffile.write("#L col row\n") for i in range(nRows): for j in range(nColumns): ffile.write('%d %d\n' % (j, i)) for k in range(nDet): ffile.write(mcaToSpecString(info['data'][k, i, j, :])) ffile.write("\n") basename = os.path.splitext(os.path.basename(filename))[0] path = os.path.dirname(filename) cfgname = os.path.join(path, basename+'.cfg') info['configuration'].write(cfgname) info['filelist'] = [filename] return info def generateEdfMap(filename, fastpulsefraction=0.01, **kwargs): """ Result of a digital pulse processor with fast and slow channel for pile-up rejection and paralyzable deadtime. :param str filename: save data under this name :param num fastpulsefraction: ratio of fast pulse width (in time) over slow pulse width :param **kwargs: see `generate` :returns dict: {filelist: list(str), configuration: ConfigDict, data: ndarray(nDet, nRows, nColumns, nChannels), liveTime: ndarray(nDet, nRows, nColumns), presetTime: number} """ from PyMca5.PyMcaIO.EdfFile import EdfFile info = generate(**kwargs) nDet, nRows, nColumns, nChannels = info['data'].shape Treal = float(info['configuration']["concentrations"]["time"]) nstats = 6 stats = numpy.empty((nRows, nColumns, nDet*nstats), dtype=info['data'].dtype) for k in range(nDet): # Slow channel events Nslow = info['data'][k, ...].sum(axis=-1) LTslow = info['liveTime'][k, ...] Rslow = Nslow/Treal DTslow = 1-LTslow/Treal Rreal = Rslow/LTslow*Treal tauslow = -numpy.log(1-DTslow)/Rreal # Fast channel events taufast = tauslow*fastpulsefraction factor = numpy.exp(-Rreal*taufast) LTfast = Treal*factor #Rfast = Rreal*factor #DTfast = 1-Rfast/Rreal stats[..., k*nstats+0] = k # detector index stats[..., k*nstats+1] = Nslow # slow channel events stats[..., k*nstats+2] = Rreal # real count rate (Hz) stats[..., k*nstats+3] = Rslow # slow channel count rate (Hz) stats[..., k*nstats+4] = LTfast*1000 # fast channel live time (msec) stats[..., k*nstats+5] = DTslow*100 # dead time % basename = os.path.splitext(os.path.basename(filename))[0] path = os.path.dirname(filename) cfgname = os.path.join(path, basename+'.cfg') filelist = [] for i in range(nRows): for k in range(nDet): filename = os.path.join(path, '{}_xia{:02d}_0001_0000_{:04d}.edf' .format(basename, k, i)) edf = EdfFile(filename, 'wb+') edf.WriteImage({'time': Treal}, info['data'][k, i, ...]) edf = None filelist.append(filename) filename = os.path.join(path, '{}_xiast_0001_0000_{:04d}.edf'.format(basename, i)) edf = EdfFile(filename, 'wb+') edf.WriteImage({'time': Treal}, stats[i, ...]) edf = None info['configuration'].write(cfgname) info['filelist'] = sorted(filelist) return info def generateHdf5Map(filename, **kwargs): """ :param str filename: save data under this name :param **kwargs: see `generate` :returns dict: {filelist: list(str), configuration: ConfigDict, data: ndarray(nDet, nRows, nColumns, nChannels), liveTime: ndarray(nDet, nRows, nColumns), presetTime: number} """ from PyMca5.PyMcaIO import NexusUtils info = generate(**kwargs) preset_time = info['configuration']["concentrations"]["time"] basename = os.path.splitext(os.path.basename(filename))[0] path = os.path.dirname(filename) cfgname = os.path.join(path, basename+'.cfg') with NexusUtils.nxRoot(filename, mode='w') as f: entry = NexusUtils.nxEntry(f, basename) instrument = NexusUtils.nxInstrument(entry) xrf = NexusUtils.nxSubEntry(entry, 'xrf') for iDet, (detData, detLT) in enumerate(zip(info['data'], info['liveTime'])): name = 'mca{:02}'.format(iDet) detector = NexusUtils.nxDetector(instrument, name) detector['data'] = detData detector['data'].attrs['interpretation'] = 'spectrum' xdetector = NexusUtils.nxCollection(xrf, name) xdetector['data'] = NexusUtils.h5py.SoftLink(detector['data'].name) xdetector['preset_time'] = preset_time xdetector['live_time'] = detLT xdetector['live_time'].attrs['interpretation'] = 'image' xdetector['live_time'].attrs['units'] = 's' #nxprocess = NexusUtils.nxProcess(entry, 'fit') #NexusUtils.nxProcessConfigurationInit(nxprocess, configdict=info['configuration']) info['configuration'].write(cfgname) info['filelist'] = [filename] return info def mcaToSpecString(mca): """ :param mca: vector(list or ndarray) :returns str: formatted for spec file """ tmpstr = "@A" length = len(mca) nChanPerLine = 16 if isinstance(mca[0], numbers.Integral): fmt = " %d" else: fmt = " %.4f" for idx in range(0, length, nChanPerLine): if idx+nChanPerLine-1 < length: for i in range(0, nChanPerLine): tmpstr += fmt % mca[idx+i] if idx+nChanPerLine != length: tmpstr += "\\" else: for i in range(idx, length): tmpstr += fmt % mca[i] tmpstr += "\n" return tmpstr ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/XrfDataTest.py��������������������������������������������������������0000644�0000000�0000000�00000014320�14741736366�017300� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2019 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF by the Software group. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "Wout De Nolf" __contact__ = "wout.de_nolf@esrf.eu" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import tempfile import shutil import os import sys import numpy from PyMca5.tests import XrfData try: from PyMca5.PyMcaIO import HDF5Stack1D HAS_H5PY = True except ImportError: HAS_H5PY = False class testXrfData(unittest.TestCase): def setUp(self): self.path = tempfile.mkdtemp(prefix='pymca') def tearDown(self): shutil.rmtree(self.path) def testSpecMesh(self): filename = os.path.join(self.path, 'meshscan.dat') # SpecFileStack: only works with one detector nDet = 1 info = XrfData.generateSpecMesh(filename, nDet=nDet, same=False) nDet0, nRows0, nColumns0, nChannels = info['data'].shape from PyMca5.PyMcaIO import SpecFileStack stack = SpecFileStack.SpecFileStack(filelist=[filename]).data self.assertEqual(nDet, nDet0) self.assertEqual(stack.shape, (1, nRows0*nColumns0, nChannels)) for i in range(nRows0): for j in range(nColumns0): for k in range(1): # C-order (row-major) mca = stack[k, i*nColumns0+j] numpy.testing.assert_array_equal(mca, info['data'][k, i, j]) # SpecFileLayer: works with more than one detector nDet = 2 info = XrfData.generateSpecMesh(filename, nDet=nDet, same=False) nDet0, nRows0, nColumns0, nChannels = info['data'].shape nCounters0 = 2 from PyMca5.PyMcaCore import SpecFileLayer ffile = SpecFileLayer.SpecFileLayer() ffile.SetSource(filename) fileinfo = ffile.GetSourceInfo() scaninfo, counters = ffile.LoadSource('1.1') scan = ffile.Source.select('1.1') nCounters, nRows, nColumns = counters.shape self.assertEqual(scaninfo['NbMcaDet'], nDet) self.assertEqual(scaninfo['NbMca'], nDet*nColumns*nRows) self.assertEqual(nColumns, nColumns0) self.assertEqual(nRows, nRows0) self.assertEqual(nCounters, nCounters0) self.assertEqual(nDet, nDet0) for i in range(nRows): for j in range(nColumns): for k in range(nDet): mca = scan.mca(i*nColumns*nDet+j*nDet+k+1) # TODO: bug in specfile (reads one channel less) numpy.testing.assert_array_equal(mca, info['data'][k, i, j]) del ffile.Source def testEdfMap(self): filename = os.path.join(self.path, 'xrfmap.edf') nDet = 2 info = XrfData.generateEdfMap(filename, nDet=nDet, same=False) nDet0, nRows0, nColumns0, nChannels = info['data'].shape from PyMca5.PyMcaIO import EDFStack files = [os.path.join(self.path, 'xrfmap_xia{:02d}_0001_0000_{:04d}.edf'.format(k, i)) for i in range(nRows0) for k in range(nDet0)] stack = EDFStack.EDFStack(filelist=sorted(files)).data self.assertEqual(nDet, nDet0) self.assertEqual(stack.shape, (nDet0*nRows0, nColumns0, nChannels)) for i in range(nRows0): for j in range(nColumns0): for k in range(nDet): mca = stack[i+k*nRows0, j] numpy.testing.assert_array_equal(mca, info['data'][k, i, j]) @unittest.skipIf(not HAS_H5PY, "skipped h5py missing") def testHdf5Map(self): from PyMca5.PyMcaIO import HDF5Stack1D filename = os.path.join(self.path, 'xrfmap.h5') # TODO: only works for 1 detector nDet = 1 info = XrfData.generateHdf5Map(filename, nDet=nDet, same=False) nDet0, nRows0, nColumns0, nChannels = info['data'].shape datasets = ['/xrf/mca{:02d}/data'.format(k) for k in range(nDet)] selection = {'y': datasets[0]} stack = HDF5Stack1D.HDF5Stack1D([filename], selection).data self.assertEqual(stack.shape, (nRows0, nColumns0, nChannels)) for i in range(nRows0): for j in range(nColumns0): for k in range(nDet): numpy.testing.assert_array_equal(stack[i, j], info['data'][k, i, j]) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testXrfData)) else: # use a predefined order testSuite.addTest(testXrfData("testSpecMesh")) testSuite.addTest(testXrfData("testEdfMap")) testSuite.addTest(testXrfData("testHdf5Map")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/XrfTest.py������������������������������������������������������������0000644�0000000�0000000�00000066760�14741736366�016525� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2018-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole - ESRF" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import os import sys import numpy if sys.version_info < (3,): from StringIO import StringIO else: from io import StringIO cfg = """[attenuators] kapton = 0, -, 0.0, 0.0, 1.0 atmosphere = 1, Air, 0.00120479, 0.14, 1.0 Matrix = 1, Sample, 1.0, 0.01, 0.1, 90.0, 0, 90.1 deadlayer = 0, Si1, 2.33, 4.5e-06, 1.0 BeamFilter1 = 0, -, 0.0, 0.0, 1.0 BeamFilter0 = 0, -, 0.0, 0.0, 1.0 absorber = 0, -, 0.0, 0.0, 1.0 window = 1, Be1, 1.85, 0.0008, 1.0 contact = 0, Al1, 2.72, 3e-06, 1.0 Filter 6 = 0, -, 0.0, 0.0, 1.0 Filter 7 = 0, -, 0.0, 0.0, 1.0 Detector = 1, Si1, 2.33, 0.045, 1.0 [peaks] Ni = K Zn = K, L Co = K Sr = K, L Ca = K Mn = K As = K, L Cd = L Pb = L, M Tl = L, M Ar = K Ti = K Fe = K V = K Sb = L Cu = K, L Se = K, L Cr = K [fit] stripwidth = 10 linearfitflag = 1 xmin = 290 scatterflag = 0 snipwidth = 20 stripfilterwidth = 4 escapeflag = 1 exppolorder = 6 fitweight = 1 stripflag = 1 stripanchorsflag = 0 use_limit = 1 maxiter = 10 stripiterations = 6000 sumflag = 0 linpolorder = 5 stripalgorithm = 0 deltaonepeak = 0.01 deltachi = 0.001 continuum = 0 hypermetflag = 1 stripconstant = 1.0 xmax = 3400 fitfunction = 0 energy = 17.5, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None stripanchorslist = 3400, 290, 0, 0 energyscatter = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 energyweight = 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 energyflag = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 [multilayer] Layer3 = 0, -, 0.0, 0.0 Layer2 = 0, -, 0.0, 0.0 Layer1 = 0, -, 0.0, 0.0 Layer0 = 1, Water, 1.0, 0.01 Layer7 = 0, -, 0.0, 0.0 Layer6 = 0, -, 0.0, 0.0 Layer5 = 0, -, 0.0, 0.0 Layer4 = 0, -, 0.0, 0.0 Layer9 = 0, -, 0.0, 0.0 Layer8 = 0, -, 0.0, 0.0 [tube] windowdensity = 1.848 anodedensity = 10.5 windowthickness = 0.0125 anodethickness = 0.0002 transmission = 0 alphax = 90.0 deltaplotting = 0.1 window = Be filter1thickness = 0.0 anode = Ag voltage = 30.0 filter1density = 0.000118 alphae = 90.0 filter1 = He [materials] [materials.Kapton] Comment = Kapton 100 HN 25 micron density=1.42 g/cm3 Thickness = 0.0025 Density = 1.42 CompoundFraction = 0.628772, 0.066659, 0.304569 CompoundList = C1, N1, O1 [materials.Teflon] Comment = Teflon density=2.2 g/cm3 Density = 2.2 CompoundFraction = 0.240183, 0.759817 CompoundList = C1, F1 [materials.Gold] Comment = Gold CompoundFraction = 1.0 Thickness = 1e-06 Density = 19.37 CompoundList = Au [materials.Water] Comment = Water density=1.0 g/cm3 CompoundFraction = 1.0 Density = 1.0 CompoundList = H2O1 [materials.Sample] Comment = Water with 500 ppm Co Thickness = 0.01 Density = 0.1 CompoundFraction = 0.9995, 0.0005 CompoundList = H2O1, Co [materials.Air] Comment = Dry Air (Near sea level) density=0.001204790 g/cm3 Thickness = 1.0 Density = 0.0012048 CompoundFraction = 0.000124, 0.75527, 0.23178, 0.012827, 3.2e-06 CompoundList = C1, N1, O1, Ar1, Kr1 [materials.Mylar] Comment = Mylar (Polyethylene Terephthalate) density=1.40 g/cm3 Density = 1.4 CompoundFraction = 0.041959, 0.625017, 0.333025 CompoundList = H1, C1, O1 [materials.Viton] Comment = Viton Fluoroelastomer density=1.8 g/cm3 Density = 1.8 CompoundFraction = 0.009417, 0.280555, 0.710028 CompoundList = H1, C1, F1 [concentrations] usemultilayersecondary = 0 reference = Co area = 0.10 flux = 190000.0 time = 600.0 useattenuators = 1 usematrix = 1 mmolarflag = 0 distance = 0.3 [detector] noise = 0.0781703 fixednoise = 0 fixedgain = 0 deltafano = 0.114 fixedfano = 0 sum = 0.0 deltasum = 1e-08 fano = 0.120159 fixedsum = 0 fixedzero = 0 zero = -0.492773 deltazero = 0.1 deltanoise = 0.05 deltagain = 0.001 detele = Si nthreshold = 4 gain = 0.00502883 [peakshape] lt_arearatio = 0.2 fixedlt_arearatio = 0 fixedeta_factor = 0 st_arearatio = 0.04 deltalt_arearatio = 0.015 deltaeta_factor = 0.2 deltalt_sloperatio = 7.0 deltastep_heightratio = 5e-05 st_sloperatio = 0.6 lt_sloperatio = 10.0 fixedlt_sloperatio = 0 deltast_arearatio = 0.03 eta_factor = 0.2 fixedst_sloperatio = 0 fixedst_arearatio = 0 deltast_sloperatio = 0.49 step_heightratio = 0.0005 fixedstep_heightratio = 0""" class testXrf(unittest.TestCase): def setUp(self): """ Get the data directory """ self._importSuccess = False try: from PyMca5 import PyMcaDataDir self._importSuccess = True self.dataDir = PyMcaDataDir.PYMCA_DATA_DIR except Exception: self.dataDir = None def testTrainingDataDirectoryPresence(self): self.assertTrue(self._importSuccess, 'Unsuccessful PyMca5.PyMcaDataDir import') self.assertTrue(self.dataDir is not None, 'Unassigned PyMca5.PyMcaDataDir.PYMCA_DATA_DIR') self.assertTrue(os.path.exists(self.dataDir), 'Directory "%s" does not exist' % self.dataDir) self.assertTrue(os.path.isdir(self.dataDir), '"%s" expected to be a directory' % self.dataDir) def testTrainingDataFilePresence(self): trainingDataFile = os.path.join(self.dataDir, "XRFSpectrum.mca") self.assertTrue(os.path.exists(trainingDataFile), "File %s does not exists" % trainingDataFile) self.assertTrue(os.path.isfile(trainingDataFile), "File %s is not an actual file" % trainingDataFile) def testTrainingDataFit(self): from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaPhysics.xrf import ClassMcaTheory from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool from PyMca5.PyMcaIO import ConfigDict trainingDataFile = os.path.join(self.dataDir, "XRFSpectrum.mca") self.assertTrue(os.path.isfile(trainingDataFile), "File %s is not an actual file" % trainingDataFile) sf = specfile.Specfile(trainingDataFile) self.assertTrue(len(sf) == 2, "Training data not interpreted as two scans") self.assertTrue(sf[0].nbmca() == 0, "Training data 1st scan should contain no MCAs") self.assertTrue(sf[1].nbmca() == 1, "Training data 1st scan should contain no MCAs") y = mcaData = sf[1].mca(1) sf = None # perform the actual XRF analysis configuration = ConfigDict.ConfigDict() configuration.readfp(StringIO(cfg)) mcaFit = ClassMcaTheory.ClassMcaTheory() configuration=mcaFit.configure(configuration) x = numpy.arange(y.size).astype(numpy.float64) mcaFit.setData(x, y, xmin=configuration["fit"]["xmin"], xmax=configuration["fit"]["xmax"]) mcaFit.estimate() fitResult, result = mcaFit.startFit(digest=1) # fit is already done, calculate the concentrations concentrationsConfiguration = configuration["concentrations"] cTool = ConcentrationsTool.ConcentrationsTool() cToolConfiguration = cTool.configure() cToolConfiguration.update(configuration['concentrations']) # make sure we are using Co as internal standard cToolConfiguration["usematrix"] = 1 cToolConfiguration["reference"] = "Co" concentrationsResult, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) referenceElement = addInfo['ReferenceElement'] referenceTransitions = addInfo['ReferenceTransitions'] self.assertTrue(referenceElement == "Co", "referenceElement is <%s> instead of <Co>" % referenceElement) cobalt = concentrationsResult["mass fraction"]["Co K"] self.assertTrue( abs(cobalt-0.0005) < 1.0E-7, "Wrong Co concentration %f expected 0.0005" % cobalt) # we should get the same result with internal parameters cTool = ConcentrationsTool.ConcentrationsTool() cToolConfiguration = cTool.configure() cToolConfiguration.update(configuration['concentrations']) # make sure we are not using an internal standard cToolConfiguration['usematrix'] = 0 cToolConfiguration['flux'] = addInfo["Flux"] cToolConfiguration['time'] = addInfo["Time"] cToolConfiguration['area'] = addInfo["DetectorArea"] cToolConfiguration['distance'] = addInfo["DetectorDistance"] concentrationsResult2, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) referenceElement = addInfo['ReferenceElement'] referenceTransitions = addInfo['ReferenceTransitions'] self.assertTrue(referenceElement in ["None", "", None], "referenceElement is <%s> instead of <None>" % referenceElement) for key in concentrationsResult["mass fraction"]: internal = concentrationsResult["mass fraction"][key] fp = concentrationsResult2["mass fraction"][key] delta = 100 * (abs(internal - fp) / internal) self.assertTrue( delta < 1.0e-5, "Error for <%s> concentration %g != %g" % (key, internal, fp)) def testStainlessSteelDataFit(self): from PyMca5.PyMcaIO import specfilewrapper as specfile from PyMca5.PyMcaPhysics.xrf import ClassMcaTheory from PyMca5.PyMcaPhysics.xrf import ConcentrationsTool from PyMca5.PyMcaIO import ConfigDict # read the data dataFile = os.path.join(self.dataDir, "Steel.spe") self.assertTrue(os.path.isfile(dataFile), "File %s is not an actual file" % dataFile) sf = specfile.Specfile(dataFile) self.assertTrue(len(sf) == 1, "File %s cannot be read" % dataFile) self.assertTrue(sf[0].nbmca() == 1, "Spe file should contain MCA data") y = counts = sf[0].mca(1) x = channels = numpy.arange(y.size).astype(numpy.float64) sf = None # read the fit configuration configFile = os.path.join(self.dataDir, "Steel.cfg") self.assertTrue(os.path.isfile(configFile), "File %s is not an actual file" % configFile) configuration = ConfigDict.ConfigDict() configuration.read(configFile) # configure the fit # make sure no secondary excitations are used configuration["concentrations"]["usemultilayersecondary"] = 0 mcaFit = ClassMcaTheory.ClassMcaTheory() configuration=mcaFit.configure(configuration) mcaFit.setData(x, y, xmin=configuration["fit"]["xmin"], xmax=configuration["fit"]["xmax"]) mcaFit.estimate() fitResult, result = mcaFit.startFit(digest=1) # concentrations # fit is already done, calculate the concentrations concentrationsConfiguration = configuration["concentrations"] cTool = ConcentrationsTool.ConcentrationsTool() cToolConfiguration = cTool.configure() cToolConfiguration.update(configuration['concentrations']) # make sure we are using Fe as internal standard matrix = configuration["attenuators"]["Matrix"] self.assertTrue(matrix[1] == "SRM_1155", "Invalid matrix. Expected <SRM_1155> got <%s>" % matrix[1]) cToolConfiguration["usematrix"] = 1 cToolConfiguration["reference"] = "Fe" concentrationsResult, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) referenceElement = addInfo['ReferenceElement'] referenceTransitions = addInfo['ReferenceTransitions'] self.assertTrue(referenceElement == "Fe", "referenceElement is <%s> instead of <Fe>" % referenceElement) # check the Fe concentration is 0.65 +/ 5 % self.assertTrue( \ abs(concentrationsResult["mass fraction"]["Fe Ka"] - 0.65) < 0.03, "Invalid Fe Concentration") # check the Cr concentration is overestimated (more than 30 %) % testValue = concentrationsResult["mass fraction"]["Cr K"] self.assertTrue( testValue > 0.30, "Expected Cr concentration above 0.30 got %.3f" % testValue) # chek the sum of concentration of main components is above 1 # because of neglecting higher order excitations elements = ["Cr K", "V K", "Mn K", "Fe Ka", "Ni K"] total = 0.0 for element in elements: total += concentrationsResult["mass fraction"][element] self.assertTrue(total > 1, "Sum of concentrations should be above 1 got %.3f" % total) # correct for tertiary excitation without a new fit cToolConfiguration["usemultilayersecondary"] = 2 concentrationsResult, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) # check the Fe concentration is 0.65 +/ 5 % self.assertTrue( \ abs(concentrationsResult["mass fraction"]["Fe Ka"] - 0.65) < 0.03, "Invalid Fe Concentration Using Tertiary Excitation") # chek the sum of concentration of main components is above 1 elements = ["Cr K", "Mn K", "Fe Ka", "Ni K"] total = 0.0 for element in elements: total += concentrationsResult["mass fraction"][element] self.assertTrue(total < 1, "Sum of concentrations should be below 1 got %.3f" % total) # check the Cr concentration is not overestimated (more than 30 %) % testValue = concentrationsResult["mass fraction"]["Cr K"] self.assertTrue( (testValue > 0.18) and (testValue < 0.20), "Expected Cr between 0.18 and 0.20 got %.3f" % testValue) # perform the fit already accounting for tertiary excitation # in order to get the good fundamental parameters configuration["concentrations"]['usematrix'] = 1 configuration["concentrations"]["usemultilayersecondary"] = 2 mcaFit.setConfiguration(configuration) mcaFit.setData(x, y, xmin=configuration["fit"]["xmin"], xmax=configuration["fit"]["xmax"]) mcaFit.estimate() fitResult, result = mcaFit.startFit(digest=1) # concentrations # fit is already done, calculate the concentrations concentrationsConfiguration = configuration["concentrations"] cTool = ConcentrationsTool.ConcentrationsTool() cToolConfiguration = cTool.configure() cToolConfiguration.update(configuration['concentrations']) matrix = configuration["attenuators"]["Matrix"] self.assertTrue(matrix[1] == "SRM_1155", "Invalid matrix. Expected <SRM_1155> got <%s>" % matrix[1]) cToolConfiguration["usematrix"] = 1 cToolConfiguration["reference"] = "Fe" concentrationsResult, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) # make sure we are not using an internal standard # repeat everything using a single layer strategy configuration["concentrations"]['usematrix'] = 0 configuration["concentrations"]['flux'] = addInfo["Flux"] configuration["concentrations"]['time'] = addInfo["Time"] configuration["concentrations"]['area'] = addInfo["DetectorArea"] configuration["concentrations"]['distance'] = \ addInfo["DetectorDistance"] configuration["concentrations"]["usemultilayersecondary"] = 2 # setup the strategy starting with Fe as matrix matrix[1] = "Fe" configuration["attenuators"]["Matrix"] = matrix configuration["fit"]["strategyflag"] = 1 configuration["fit"]["strategy"] = "SingleLayerStrategy" configuration["SingleLayerStrategy"] = {} configuration["SingleLayerStrategy"]["layer"] = "Auto" configuration["SingleLayerStrategy"]["iterations"] = 3 configuration["SingleLayerStrategy"]["completer"] = "-" configuration["SingleLayerStrategy"]["flags"] = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0] configuration["SingleLayerStrategy"]["peaks"] = [ "Cr K", "Mn K", "Fe Ka", "Ni K", "-", "-", "-","-","-","-"] configuration["SingleLayerStrategy"]["materials"] = ["Cr", "Mn", "Fe", "Ni", "-", "-", "-","-","-"] mcaFit = ClassMcaTheory.ClassMcaTheory() configuration=mcaFit.configure(configuration) mcaFit.setData(x, y, xmin=configuration["fit"]["xmin"], xmax=configuration["fit"]["xmax"]) mcaFit.estimate() fitResult, result = mcaFit.startFit(digest=1) # concentrations # fit is already done, calculate the concentrations concentrationsConfiguration = configuration["concentrations"] cTool = ConcentrationsTool.ConcentrationsTool() cToolConfiguration = cTool.configure() cToolConfiguration.update(configuration['concentrations']) concentrationsResult2, addInfo = cTool.processFitResult( \ config=cToolConfiguration, fitresult={"result":result}, elementsfrommatrix=False, fluorates = mcaFit._fluoRates, addinfo=True) # chek the sum of concentration of main components is above 1 elements = ["Cr K", "Mn K", "Fe Ka", "Ni K"] total = 0.0 for element in elements: if element == "Cr K": tolerance = 6 # 6 % else: tolerance = 5 # 5 % previous = concentrationsResult["mass fraction"][element] current = concentrationsResult2["mass fraction"][element] delta = 100 * (abs(previous - current) / previous) self.assertTrue(delta < tolerance, "Strategy: Element %s discrepancy too large %.1f %%" % \ (element.split()[0], delta)) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(unittest.TestLoader().loadTestsFromTestCase(testXrf)) else: # use a predefined order testSuite.addTest(testXrf("testTrainingDataDirectoryPresence")) testSuite.addTest(testXrf("testTrainingDataFilePresence")) testSuite.addTest(testXrf("testTrainingDataFit")) testSuite.addTest(testXrf("testStainlessSteelDataFit")) return testSuite def test(auto=False): return unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': if len(sys.argv) > 1: auto = False else: auto = True result = test(auto) sys.exit(not result.wasSuccessful()) ����������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/__init__.py�����������������������������������������������������������0000644�0000000�0000000�00000004732�14741736366�016654� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import os from PyMca5.tests.ConfigDictTest import test as testConfigDict from PyMca5.tests.DataTest import test as testDataTest from PyMca5.tests.EdfFileTest import test as testEdfFile from PyMca5.tests.ROIBatchTest import test as testROIBatch from PyMca5.tests.ElementsTest import test as testElements from PyMca5.tests.GefitTest import test as testGefit from PyMca5.tests.PCAToolsTest import test as testPCATools from PyMca5.tests.SpecfileTest import test as testSpecfile from PyMca5.tests.specfilewrapperTest import test as testSpecfilewrapper from PyMca5.tests.XrfTest import test as testXrf from PyMca5.tests.McaStackViewTest import test as testMcaStackView from PyMca5.tests.NexusUtilsTest import test as testNexusUtils from PyMca5.tests.StackInfoTest import test as testStackInfo from PyMca5.tests.FastXRFLinearFitTest import test as testFastXRFLinearFit def testAll(): from PyMca5.tests.TestAll import main as testAll return testAll() ��������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5/tests/specfilewrapperTest.py������������������������������������������������0000644�0000000�0000000�00000015675�14741736366�021160� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#/*########################################################################## # # The PyMca X-Ray Fluorescence Toolkit # # Copyright (c) 2004-2023 European Synchrotron Radiation Facility # # This file is part of the PyMca X-ray Fluorescence Toolkit developed at # the ESRF. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #############################################################################*/ __author__ = "V. Armando Sole" __contact__ = "sole@esrf.fr" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" import unittest import sys import os import gc import tempfile class testSpecfilewrapper(unittest.TestCase): def setUp(self): """ import the module """ try: from PyMca5.PyMcaIO import specfilewrapper as specfile self.specfileClass = specfile except Exception: self.specfileClass = None if self.specfileClass is not None: text = "1.3 1 1\n" text += "2.5 4 8\n" text += "3.7 9 27\n" text += "\n" tmpFile = tempfile.mkstemp(text=False) if sys.version < '3.0': os.write(tmpFile[0], text) else: os.write(tmpFile[0], bytes(text, 'utf-8')) os.close(tmpFile[0]) self.fname = tmpFile[1] def tearDown(self): """clean up any possible files""" # make sure the file handle is free self._sf = None self._scan = None # this should free the handle gc.collect() if self.specfileClass is not None: if os.path.exists(self.fname): os.remove(self.fname) def testSpecfilewrapperImport(self): #"""Test successful import""" self.assertTrue(self.specfileClass is not None, 'Unsuccessful PyMca5.PyMcaIO.specfilewrapper import') def testSpecfilewrapperReading(self): #"""Test specfile readout""" self.testSpecfilewrapperImport() self._sf = self.specfileClass.Specfile(self.fname) # test the number of found scans self.assertEqual(len(self._sf), 2, 'Expected to read 2 scans, read %s' %\ len(self._sf)) self.assertEqual(self._sf.scanno(), 2, 'Expected to read 2 scans, got %s' %\ self._sf.scanno()) # test scan iteration selection method self._scan = self._sf[0] labels = self._scan.alllabels() expectedLabels = ['Point', 'Column 0', 'Column 1', 'Column 2'] self.assertEqual(len(labels), 4, 'Expected to read 4 labels, got %s' % len(labels)) for i in range(3): self.assertEqual(labels[i], expectedLabels[i], 'Read "%s" instead of "%s"' %\ (labels[i], expectedLabels[i])) # test scan number selection method self._scan = self._sf.select('1.1') labels = self._scan.alllabels() expectedLabels = ['Point', 'Column 0', 'Column 1', 'Column 2'] self.assertEqual(len(labels), 4, 'Expected to read 4 labels, got %s' % len(labels)) for i in range(3): self.assertEqual(labels[i], expectedLabels[i], 'Read "%s" instead of "%s"' %\ (labels[i], expectedLabels[i])) # test scan number of mca self._scan = self._sf[0] nbmca = self._scan.nbmca() self.assertEqual(nbmca, 0, 'Expected to read 0 mca, got %s' % nbmca) self._scan = self._sf[1] nbmca = self._scan.nbmca() self.assertEqual(nbmca, 3, 'Expected to read 3 mca, got %s' % nbmca) def testSpecfilewrapperReadingCompatibleWithUserLocale(self): #"""Test specfile compatible with C locale""" self.testSpecfilewrapperImport() self._sf = self.specfileClass.Specfile(self.fname) self._scan = self._sf[0] datacol = self._scan.datacol(2) data = self._scan.data() self._sf = None self.assertEqual(datacol[0], 1.3, 'Read %f instead of %f' %\ (datacol[0], 1.3)) self.assertEqual(datacol[1], 2.5, 'Read %f instead of %f' %\ (datacol[1], 2.5)) self.assertEqual(datacol[2], 3.7, 'Read %f instead of %f' %\ (datacol[2], 3.7)) self.assertEqual(datacol[1], data[1][1], 'Read %f instead of %f' %\ (datacol[1], data[1][1])) gc.collect() def testTrainingSpectrumReading(self): from PyMca5 import PyMcaDataDir import numpy fname = os.path.join(PyMcaDataDir.PYMCA_DATA_DIR, 'XRFSpectrum.mca') self._sf = self.specfileClass.Specfile(fname) self._scan = self._sf[0] # I find awful that starts counting at 1 # 1 is the point number # 2 is the actual spectal data datacol = self._scan.datacol(2) self._scan = self._sf[1] # The "second" scan is the readout as mca mca = self._scan.mca(1) self.assertTrue(numpy.all(datacol == mca)) def getSuite(auto=True): testSuite = unittest.TestSuite() if auto: testSuite.addTest(\ unittest.TestLoader().loadTestsFromTestCase(testSpecfilewrapper)) else: # use a predefined order testSuite.addTest(testSpecfilewrapper("testSpecfilewrapperImport")) testSuite.addTest(testSpecfilewrapper("testSpecfilewrapperReading")) testSuite.addTest(\ testSpecfilewrapper(\ "testSpecfilewrapperReadingCompatibleWithUserLocale")) testSuite.addTest(testSpecfilewrapper("testTrainingSpectrumReading")) return testSuite def test(auto=False): unittest.TextTestRunner(verbosity=2).run(getSuite(auto=auto)) if __name__ == '__main__': test() �������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000034�00000000000�010212� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������28 mtime=1736948995.8597665 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/�������������������������������������������������������������������0000755�0000000�0000000�00000000000�14741736404�015056� 5����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948995.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/PKG-INFO�����������������������������������������������������������0000644�0000000�0000000�00000003076�14741736403�016160� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Metadata-Version: 2.2 Name: PyMca5 Version: 5.9.4 Summary: Mapping and X-Ray Fluorescence Analysis Home-page: http://pymca.sourceforge.net Download-URL: https://github.com/vasole/pymca/archive/v5.9.4.tar.gz Author: V. Armando Sole Author-email: sole@esrf.fr License: MIT Platform: any Classifier: Development Status :: 5 - Production/Stable Classifier: Programming Language :: Python :: 3 Classifier: Intended Audience :: Developers Classifier: Intended Audience :: End Users/Desktop Classifier: Intended Audience :: Science/Research Classifier: License :: OSI Approved :: MIT License Classifier: Topic :: Software Development :: Libraries :: Python Modules Classifier: Operating System :: Microsoft :: Windows Classifier: Operating System :: Unix Classifier: Operating System :: MacOS :: MacOS X Classifier: Operating System :: POSIX Classifier: Topic :: Scientific/Engineering :: Chemistry Classifier: Topic :: Scientific/Engineering :: Physics Classifier: Topic :: Scientific/Engineering :: Visualization License-File: LICENSE License-File: LICENSE.GPL License-File: LICENSE.LGPL License-File: LICENSE.MIT Requires-Dist: numpy Requires-Dist: matplotlib>1.0 Requires-Dist: fisx>=1.1.6 Requires-Dist: h5py Dynamic: author Dynamic: author-email Dynamic: classifier Dynamic: description Dynamic: download-url Dynamic: home-page Dynamic: license Dynamic: platform Dynamic: requires-dist Dynamic: summary Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948995.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/SOURCES.txt��������������������������������������������������������0000644�0000000�0000000�00000114001�14741736403�016736� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������LICENSE LICENSE.GPL LICENSE.LGPL LICENSE.MIT MANIFEST.in README.rst build-cxfreeze.py build-deb.sh build-pyinstaller.py changelog.txt copyright pyproject.toml qtconffile requirements.txt setup.py version.py ./src/PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx ./src/PyMca5/PyMcaGraph/ctools/_ctools/src/Colormap.c ./src/PyMca5/PyMcaGraph/ctools/_ctools/src/InsidePolygonWithBounds.c ./src/PyMca5/PyMcaGraph/ctools/_ctools/src/MinMaxImpl.c ./src/PyMca5/PyMcaIO/PyMcaIOHelper/PyMcaIOHelper.c ./src/PyMca5/PyMcaIO/specfile/src/locale_management.c ./src/PyMca5/PyMcaIO/specfile/src/sfdata.c ./src/PyMca5/PyMcaIO/specfile/src/sfheader.c ./src/PyMca5/PyMcaIO/specfile/src/sfindex.c ./src/PyMca5/PyMcaIO/specfile/src/sfinit.c ./src/PyMca5/PyMcaIO/specfile/src/sflabel.c ./src/PyMca5/PyMcaIO/specfile/src/sflists.c ./src/PyMca5/PyMcaIO/specfile/src/sfmca.c ./src/PyMca5/PyMcaIO/specfile/src/sftools.c ./src/PyMca5/PyMcaIO/specfile/src/specfile_py3.c ./src/PyMca5/PyMcaIO/sps/Src/sps.c ./src/PyMca5/PyMcaIO/sps/Src/sps_lut.c ./src/PyMca5/PyMcaIO/sps/Src/sps_py.c ./src/PyMca5/PyMcaIO/sps/Src/spslut_py.c ./src/PyMca5/PyMcaMath/PyMcaSciPy/signal/medianfilter.c ./src/PyMca5/PyMcaMath/PyMcaSciPy/signal/mediantools.c ./src/PyMca5/PyMcaMath/fitting/specfit/SpecfitFuns.c ./src/PyMca5/PyMcaMath/fitting/specfit/smoothnd.c ./src/PyMca5/PyMcaMath/fitting/specfit/snip1d.c ./src/PyMca5/PyMcaMath/fitting/specfit/snip2d.c ./src/PyMca5/PyMcaMath/fitting/specfit/snip3d.c ./src/PyMca5/PyMcaMath/mva/_cython_kmeans/kmeans.pyx ./src/PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx ./src/PyMca5/PyMcaPhysics/xas/_xas/src/bessel0.c ./src/PyMca5/PyMcaPhysics/xas/_xas/src/polspl.c ./src/PyMca5/scripts/edfviewer ./src/PyMca5/scripts/elementsinfo ./src/PyMca5/scripts/mca2edf ./src/PyMca5/scripts/peakidentifier ./src/PyMca5/scripts/pymca ./src/PyMca5/scripts/pymcabatch ./src/PyMca5/scripts/pymcapostbatch ./src/PyMca5/scripts/pymcaroitool ./src/PyMca5/scripts/rgbcorrelator doc/man/edfviewer.1 doc/man/elementsinfo.1 doc/man/mca2edf.1 doc/man/peakidentifier.1 doc/man/pymca.1 doc/man/pymcabatch.1 doc/man/pymcapostbatch.1 doc/man/pymcaroitool.1 doc/man/rgbcorrelator.1 doc/source/changelog.rst doc/source/conf.py doc/source/faq.rst doc/source/index.rst doc/source/install.rst doc/source/license.rst doc/source/overview.rst doc/source/recipes.rst doc/source/tutorials.rst doc/source/_templates/localtoc.html doc/source/_templates/pagesource.html doc/source/customization/index.rst doc/source/customization/plugins/index.rst doc/source/customization/plugins/plugins1d.rst doc/source/customization/plugins/stackplugins.rst doc/source/customization/settings/index.rst doc/source/customization/settings/img/settings_01.png doc/source/customization/settings/img/settings_02.png doc/source/hdf5/index.rst doc/source/img/PyMca.ico doc/source/img/PyMca_256x256.png doc/source/modules/index.rst doc/source/modules/core/index.rst doc/source/modules/core/nexustools.rst doc/source/recipes/xrfembedpyqt.rst doc/source/recipes/xrfhdf5stack.rst doc/source/recipes/recipescode/GenerateHDF5Stack.py doc/source/training/matrix/index.rst doc/source/training/matrix/img/matrix_01.png doc/source/training/matrix/img/matrix_02.png doc/source/training/matrix/img/matrix_03.png doc/source/training/matrix/img/matrix_04.png doc/source/training/matrix/img/tertiary_01.png doc/source/training/matrix/img/tertiary_03.png doc/source/training/matrix/img/tertiary_04.png doc/source/training/quantification/index.rst doc/source/training/quantification/img/quantification_01.png doc/source/training/quantification/img/quantification_02.png doc/source/training/quantification/img/quantification_03.png doc/source/training/quantification/img/quantification_04.png doc/source/training/quantification/img/quantification_05.png doc/source/training/quantification/img/quantification_06.png doc/source/training/quantification/img/quantification_07.png doc/source/training/quantification/img/quantification_08.png doc/source/training/quantification/img/quantification_09.png doc/source/training/quantification/img/quantification_10.png doc/source/training/quantification/img/quantification_11.png doc/source/training/quantification/img/quantification_12.png doc/source/training/tertiary/index.rst doc/source/training/tertiary/img/tertiary_01.png doc/source/training/tertiary/img/tertiary_02.png doc/source/training/tertiary/img/tertiary_03.png doc/source/training/tertiary/img/tertiary_04.png doc/source/training/xraydata/index.rst doc/source/training/xraydata/img/xraydata_01.png doc/source/training/xraydata/img/xraydata_02.png doc/source/xrf/material-definition/index.rst doc/source/xrf/material-definition/img/materials_01.jpg doc/source/xrf/material-definition/img/materials_02.jpg doc/source/xrf/material-definition/img/materials_03.jpg doc/source/xrf/material-definition/img/materials_04.jpg doc/source/xrf/material-definition/img/materials_05.jpg doc/source/xrf/material-definition/img/materials_06.jpg doc/source/xrf/material-definition/img/materials_07.jpg doc/source/xrf/material-definition/img/materials_08.jpg doc/source/xrf/material-definition/img/materials_09.jpg doc/source/xrf/strip-background/index.rst doc/source/xrf/strip-background/img/stripbackground_01.png doc/source/xrf/strip-background/img/stripbackground_02.png doc/source/xrf/strip-background/img/stripbackground_03.png doc/source/xrf/strip-background/img/stripbackground_04.png doc/source/xrf/strip-background/img/stripbackground_05.png icons/PyMca.icns icons/PyMca.ico icons/PyMca_256x256.png package/cxfreeze/cx_setup.py package/cxfreeze/nsisscript.nsi.in package/debian11/control package/debian11/rules package/desktop/PyMca.png package/desktop/edfviewer.desktop package/desktop/edfviewer.metainfo2.xml package/desktop/elementsinfo.desktop package/desktop/elementsinfo.metainfo2.xml package/desktop/peakidentifier.desktop package/desktop/peakidentifier.metainfo2.xml package/desktop/pymca.desktop package/desktop/pymca.metainfo2.xml package/desktop/pymca.xml package/desktop/pymcapostbatch.desktop package/desktop/pymcapostbatch.metainfo2.xml package/desktop/pymcaroitool.desktop package/desktop/pymcaroitool.metainfo2.xml package/py2app/PlatypusScript package/py2app/README.rst package/py2app/py2app_setup.py package/pyinstaller/DS_Store package/pyinstaller/PyMca.txt package/pyinstaller/background.pdf package/pyinstaller/create-dmg.sh.in package/pyinstaller/nsisscript.nsi.in package/pyinstaller/pyinstaller.spec scripts/edfviewer.bat scripts/elementsinfo.bat scripts/mca2edf.bat scripts/peakidentifier.bat scripts/pymca.bat scripts/pymca_win_post_install.py scripts/pymcabatch.bat scripts/pymcapostbatch.bat scripts/pymcaroitool.bat scripts/rgbcorrelator.bat src/PyMca5/PyMcaDataDir.py src/PyMca5/__init__.py src/PyMca5.egg-info/PKG-INFO src/PyMca5.egg-info/SOURCES.txt src/PyMca5.egg-info/dependency_links.txt src/PyMca5.egg-info/requires.txt src/PyMca5.egg-info/top_level.txt src/PyMca5/EPDL97/EADL.DAT src/PyMca5/EPDL97/EADLParser.py src/PyMca5/EPDL97/EADLSubshells.py src/PyMca5/EPDL97/EPDL97.DAT src/PyMca5/EPDL97/EPDL97Parser.py src/PyMca5/EPDL97/GenerateEADLBindingEnergies.py src/PyMca5/EPDL97/GenerateEADLShellConstants.py src/PyMca5/EPDL97/GenerateEADLShellNonradiativeRates.py src/PyMca5/EPDL97/GenerateEADLShellRadiativeRates.py src/PyMca5/EPDL97/GenerateEPDL97CrossSections.py src/PyMca5/EPDL97/GenerateEPDL97TotalCrossSections.py src/PyMca5/EPDL97/LICENSE src/PyMca5/EPDL97/__init__.py src/PyMca5/PyMca/__init__.py src/PyMca5/PyMcaCore/DataObject.py src/PyMca5/PyMcaCore/EdfFileDataSource.py src/PyMca5/PyMcaCore/EdfFileLayer.py src/PyMca5/PyMcaCore/EventHandler.py src/PyMca5/PyMcaCore/HtmlIndex.py src/PyMca5/PyMcaCore/LegacyPyMcaBatchBuildOutput.py src/PyMca5/PyMcaCore/LegacyStackROIBatch.py src/PyMca5/PyMcaCore/LoggingLevel.py src/PyMca5/PyMcaCore/McaStackExport.py src/PyMca5/PyMcaCore/McaStackView.py src/PyMca5/PyMcaCore/NexusDataSource.py src/PyMca5/PyMcaCore/NexusTools.py src/PyMca5/PyMcaCore/Plugin1DBase.py src/PyMca5/PyMcaCore/Plugin2DBase.py src/PyMca5/PyMcaCore/PyMcaBatchBuildOutput.py src/PyMca5/PyMcaCore/PyMcaDirs.py src/PyMca5/PyMcaCore/PyMcaLogo.py src/PyMca5/PyMcaCore/PyMcaMatplotlibSave.py src/PyMca5/PyMcaCore/RedisTools.py src/PyMca5/PyMcaCore/SPSLayer.py src/PyMca5/PyMcaCore/SpecFileDataSource.py src/PyMca5/PyMcaCore/SpecFileLayer.py src/PyMca5/PyMcaCore/SpsDataSource.py src/PyMca5/PyMcaCore/StackBase.py src/PyMca5/PyMcaCore/StackPluginBase.py src/PyMca5/PyMcaCore/StackROIBatch.py src/PyMca5/PyMcaCore/XiaCorrect.py src/PyMca5/PyMcaCore/XiaEdf.py src/PyMca5/PyMcaCore/__init__.py src/PyMca5/PyMcaData/EXAFS_Cu.dat src/PyMca5/PyMcaData/EXAFS_Ge.dat src/PyMca5/PyMcaData/KShellRatesScofieldHS.dat src/PyMca5/PyMcaData/LShellRatesCampbell.dat src/PyMca5/PyMcaData/LShellRatesScofieldHS.dat src/PyMca5/PyMcaData/McaTheory.cfg src/PyMca5/PyMcaData/PyMcaSplashImage.png src/PyMca5/PyMcaData/Scofield1973.dict src/PyMca5/PyMcaData/Steel.cfg src/PyMca5/PyMcaData/Steel.spe src/PyMca5/PyMcaData/XRFSpectrum.mca src/PyMca5/PyMcaData/HTML/AdvancedAlignmentScanPlugin.html src/PyMca5/PyMcaData/HTML/Display-HOWTO.html src/PyMca5/PyMcaData/HTML/MCA-HOWTO.html src/PyMca5/PyMcaData/HTML/Menu.html src/PyMca5/PyMcaData/HTML/N4f.png src/PyMca5/PyMcaData/HTML/PyMCA.html src/PyMca5/PyMcaData/HTML/PyMCA.pdf src/PyMca5/PyMcaData/HTML/SumRulesToolInfotext.html src/PyMca5/PyMcaData/HTML/XMCDInfotext.html src/PyMca5/PyMcaData/HTML/aM4.png src/PyMca5/PyMcaData/HTML/aM5.png src/PyMca5/PyMcaData/HTML/lz.png src/PyMca5/PyMcaData/HTML/mOrb.png src/PyMca5/PyMcaData/HTML/mOrb_K.png src/PyMca5/PyMcaData/HTML/mOverM.png src/PyMca5/PyMcaData/HTML/mSpin.png src/PyMca5/PyMcaData/HTML/mSpin_K.png src/PyMca5/PyMcaData/HTML/mu.png src/PyMca5/PyMcaData/HTML/nMax.png src/PyMca5/PyMcaData/HTML/pInt.png src/PyMca5/PyMcaData/HTML/qInt.png src/PyMca5/PyMcaData/HTML/rInt.png src/PyMca5/PyMcaData/HTML/sz.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula1.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula2.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula3.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula4.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula5.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula6.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula7.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula8.png src/PyMca5/PyMcaData/HTML/IMAGES/Formula9.png src/PyMca5/PyMcaData/HTML/IMAGES/image002.gif src/PyMca5/PyMcaData/HTML/IMAGES/image004.gif src/PyMca5/PyMcaData/HTML/IMAGES/image006.gif src/PyMca5/PyMcaData/HTML/IMAGES/image008.gif src/PyMca5/PyMcaData/HTML/IMAGES/image010.gif src/PyMca5/PyMcaData/HTML/IMAGES/image012.gif src/PyMca5/PyMcaData/HTML/IMAGES/image014.gif src/PyMca5/PyMcaData/HTML/IMAGES/image016.gif src/PyMca5/PyMcaData/HTML/IMAGES/image018.gif src/PyMca5/PyMcaData/HTML/IMAGES/image020.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/filelist.xml src/PyMca5/PyMcaData/HTML/PyMCA_files/image001.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image002.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image003.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image004.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image005.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image006.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image007.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image008.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image009.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image010.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image011.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image012.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image013.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image014.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image015.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image016.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image017.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image018.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/image019.wmz src/PyMca5/PyMcaData/HTML/PyMCA_files/image020.gif src/PyMca5/PyMcaData/HTML/PyMCA_files/oledata.mso src/PyMca5/PyMcaData/attdata/Ac.mat src/PyMca5/PyMcaData/attdata/Ag.mat src/PyMca5/PyMcaData/attdata/Al.mat src/PyMca5/PyMcaData/attdata/Am.mat src/PyMca5/PyMcaData/attdata/Ar.mat src/PyMca5/PyMcaData/attdata/As.mat src/PyMca5/PyMcaData/attdata/At.mat src/PyMca5/PyMcaData/attdata/Au.mat src/PyMca5/PyMcaData/attdata/B.mat src/PyMca5/PyMcaData/attdata/Ba.mat src/PyMca5/PyMcaData/attdata/Be.mat src/PyMca5/PyMcaData/attdata/Bi.mat src/PyMca5/PyMcaData/attdata/Bk.mat src/PyMca5/PyMcaData/attdata/Br.mat src/PyMca5/PyMcaData/attdata/C.mat src/PyMca5/PyMcaData/attdata/Ca.mat src/PyMca5/PyMcaData/attdata/Cd.mat src/PyMca5/PyMcaData/attdata/Ce.mat src/PyMca5/PyMcaData/attdata/Cf.mat src/PyMca5/PyMcaData/attdata/Cl.mat src/PyMca5/PyMcaData/attdata/Cm.mat src/PyMca5/PyMcaData/attdata/Co.mat src/PyMca5/PyMcaData/attdata/Cr.mat src/PyMca5/PyMcaData/attdata/Cs.mat src/PyMca5/PyMcaData/attdata/Cu.mat src/PyMca5/PyMcaData/attdata/Dy.mat src/PyMca5/PyMcaData/attdata/EGRID.TXT src/PyMca5/PyMcaData/attdata/Er.mat src/PyMca5/PyMcaData/attdata/Es.mat src/PyMca5/PyMcaData/attdata/Eu.mat src/PyMca5/PyMcaData/attdata/F.mat src/PyMca5/PyMcaData/attdata/Fe.mat src/PyMca5/PyMcaData/attdata/Fm.mat src/PyMca5/PyMcaData/attdata/Fr.mat src/PyMca5/PyMcaData/attdata/Ga.mat src/PyMca5/PyMcaData/attdata/Gd.mat src/PyMca5/PyMcaData/attdata/Ge.mat src/PyMca5/PyMcaData/attdata/H.mat src/PyMca5/PyMcaData/attdata/He.mat src/PyMca5/PyMcaData/attdata/Hf.mat src/PyMca5/PyMcaData/attdata/Hg.mat src/PyMca5/PyMcaData/attdata/Ho.mat src/PyMca5/PyMcaData/attdata/I.mat src/PyMca5/PyMcaData/attdata/In.mat src/PyMca5/PyMcaData/attdata/Ir.mat src/PyMca5/PyMcaData/attdata/K.mat src/PyMca5/PyMcaData/attdata/KCl.mat src/PyMca5/PyMcaData/attdata/Kr.mat src/PyMca5/PyMcaData/attdata/La.mat src/PyMca5/PyMcaData/attdata/Li.mat src/PyMca5/PyMcaData/attdata/Lu.mat src/PyMca5/PyMcaData/attdata/MATERIALS.DICT src/PyMca5/PyMcaData/attdata/Mg.mat src/PyMca5/PyMcaData/attdata/Mn.mat src/PyMca5/PyMcaData/attdata/Mo.mat src/PyMca5/PyMcaData/attdata/N.mat src/PyMca5/PyMcaData/attdata/Na.mat src/PyMca5/PyMcaData/attdata/Nb.mat src/PyMca5/PyMcaData/attdata/Nd.mat src/PyMca5/PyMcaData/attdata/Ne.mat src/PyMca5/PyMcaData/attdata/Ni.mat src/PyMca5/PyMcaData/attdata/Np.mat src/PyMca5/PyMcaData/attdata/O.mat src/PyMca5/PyMcaData/attdata/Os.mat src/PyMca5/PyMcaData/attdata/P.mat src/PyMca5/PyMcaData/attdata/Pa.mat src/PyMca5/PyMcaData/attdata/Pb.mat src/PyMca5/PyMcaData/attdata/Pd.mat src/PyMca5/PyMcaData/attdata/Pm.mat src/PyMca5/PyMcaData/attdata/Po.mat src/PyMca5/PyMcaData/attdata/Pr.mat src/PyMca5/PyMcaData/attdata/Pt.mat src/PyMca5/PyMcaData/attdata/Pu.mat src/PyMca5/PyMcaData/attdata/Ra.mat src/PyMca5/PyMcaData/attdata/Rb.mat src/PyMca5/PyMcaData/attdata/Re.mat src/PyMca5/PyMcaData/attdata/Rh.mat src/PyMca5/PyMcaData/attdata/Rn.mat src/PyMca5/PyMcaData/attdata/Ru.mat src/PyMca5/PyMcaData/attdata/S.mat src/PyMca5/PyMcaData/attdata/Sb.mat src/PyMca5/PyMcaData/attdata/Sc.mat src/PyMca5/PyMcaData/attdata/Se.mat src/PyMca5/PyMcaData/attdata/Si.mat src/PyMca5/PyMcaData/attdata/Sm.mat src/PyMca5/PyMcaData/attdata/Sn.mat src/PyMca5/PyMcaData/attdata/Sr.mat src/PyMca5/PyMcaData/attdata/Ta.mat src/PyMca5/PyMcaData/attdata/Tb.mat src/PyMca5/PyMcaData/attdata/Tc.mat src/PyMca5/PyMcaData/attdata/Te.mat src/PyMca5/PyMcaData/attdata/Th.mat src/PyMca5/PyMcaData/attdata/Ti.mat src/PyMca5/PyMcaData/attdata/Tl.mat src/PyMca5/PyMcaData/attdata/Tm.mat src/PyMca5/PyMcaData/attdata/U.mat src/PyMca5/PyMcaData/attdata/V.mat src/PyMca5/PyMcaData/attdata/W.mat src/PyMca5/PyMcaData/attdata/Xe.mat src/PyMca5/PyMcaData/attdata/Y.mat src/PyMca5/PyMcaData/attdata/Yb.mat src/PyMca5/PyMcaData/attdata/Zn.mat src/PyMca5/PyMcaData/attdata/Zr.mat src/PyMca5/PyMcaData/attdata/atomsf.dict src/PyMca5/PyMcaData/attdata/atomsf.lib src/PyMca5/PyMcaData/attdata/incoh.dict src/PyMca5/PyMcaData/attdata/mylar.mat src/PyMca5/PyMcaGraph/Colormap.py src/PyMca5/PyMcaGraph/Colors.py src/PyMca5/PyMcaGraph/MatplotlibColormaps.py src/PyMca5/PyMcaGraph/Plot.py src/PyMca5/PyMcaGraph/PlotBackend.py src/PyMca5/PyMcaGraph/PlotBase.py src/PyMca5/PyMcaGraph/PluginLoader.py src/PyMca5/PyMcaGraph/__init__.py src/PyMca5/PyMcaGraph/backends/GLUTOpenGLBackend.py src/PyMca5/PyMcaGraph/backends/MatplotlibBackend.py src/PyMca5/PyMcaGraph/backends/OSMesaGLBackend.py src/PyMca5/PyMcaGraph/backends/OpenGLBackend.py src/PyMca5/PyMcaGraph/backends/SilxBackend.py src/PyMca5/PyMcaGraph/backends/_OpenGLPlotCanvas.py src/PyMca5/PyMcaGraph/backends/__init__.py src/PyMca5/PyMcaGraph/backends/_patch_matplotlib.py src/PyMca5/PyMcaGraph/backends/_utils.py src/PyMca5/PyMcaGraph/backends/GLSupport/FontLatin1_12.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLContext.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLFramebuffer.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotCurve.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotFrame.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLPlotImage.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLProgram.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLSupport.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLText.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLTexture.py src/PyMca5/PyMcaGraph/backends/GLSupport/GLVertexBuffer.py src/PyMca5/PyMcaGraph/backends/GLSupport/Interaction.py src/PyMca5/PyMcaGraph/backends/GLSupport/LabelLayout.py src/PyMca5/PyMcaGraph/backends/GLSupport/PlotEvents.py src/PyMca5/PyMcaGraph/backends/GLSupport/PlotImageFile.py src/PyMca5/PyMcaGraph/backends/GLSupport/PlotInteraction.py src/PyMca5/PyMcaGraph/backends/GLSupport/__init__.py src/PyMca5/PyMcaGraph/backends/GLSupport/gl/__init__.py src/PyMca5/PyMcaGraph/ctools/__init__.py src/PyMca5/PyMcaGraph/ctools/_ctools/setup.py src/PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pxd src/PyMca5/PyMcaGraph/ctools/_ctools/cython/Colormap.pyx src/PyMca5/PyMcaGraph/ctools/_ctools/cython/ColormapLUT.pxd src/PyMca5/PyMcaGraph/ctools/_ctools/cython/ColormapLUT.pyx src/PyMca5/PyMcaGraph/ctools/_ctools/cython/InsidePolygonWithBounds.pxd src/PyMca5/PyMcaGraph/ctools/_ctools/cython/InsidePolygonWithBounds.pyx src/PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pxd src/PyMca5/PyMcaGraph/ctools/_ctools/cython/MinMax.pyx src/PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.py src/PyMca5/PyMcaGraph/ctools/_ctools/cython/_ctools.pyx src/PyMca5/PyMcaGraph/ctools/_ctools/cython/default/_ctools.c src/PyMca5/PyMcaGraph/ctools/_ctools/include/Colormap.h src/PyMca5/PyMcaGraph/ctools/_ctools/include/ColormapLUT.h src/PyMca5/PyMcaGraph/ctools/_ctools/include/InsidePolygonWithBounds.h src/PyMca5/PyMcaGraph/ctools/_ctools/include/MinMax.h src/PyMca5/PyMcaGraph/ctools/_ctools/include/Types.h src/PyMca5/PyMcaGraph/ctools/_ctools/src/Colormap.c src/PyMca5/PyMcaGraph/ctools/_ctools/src/ColormapLUT.c src/PyMca5/PyMcaGraph/ctools/_ctools/src/InsidePolygonWithBounds.c src/PyMca5/PyMcaGraph/ctools/_ctools/src/MinMaxImpl.c src/PyMca5/PyMcaGraph/ctools/_ctools/test/testColormap.py src/PyMca5/PyMcaGraph/ctools/_ctools/test/testFastLog10.py src/PyMca5/PyMcaGraph/ctools/_ctools/test/testMinMax.py src/PyMca5/PyMcaGui/PluginsToolButton.py src/PyMca5/PyMcaGui/PyMcaPrintPreview.py src/PyMca5/PyMcaGui/PyMcaQt.py src/PyMca5/PyMcaGui/__init__.py src/PyMca5/PyMcaGui/io/ConfigurationFileDialogs.py src/PyMca5/PyMcaGui/io/PyMcaFileDialogs.py src/PyMca5/PyMcaGui/io/QEdfFileWidget.py src/PyMca5/PyMcaGui/io/QSelectorWidget.py src/PyMca5/PyMcaGui/io/QSourceSelector.py src/PyMca5/PyMcaGui/io/QSpecFileWidget.py src/PyMca5/PyMcaGui/io/QSpsWidget.py src/PyMca5/PyMcaGui/io/SpecFileCntTable.py src/PyMca5/PyMcaGui/io/SpecFileDataInfo.py src/PyMca5/PyMcaGui/io/SpecFileMcaTable.py src/PyMca5/PyMcaGui/io/__init__.py src/PyMca5/PyMcaGui/io/hdf5/DataViewerSelector.py src/PyMca5/PyMcaGui/io/hdf5/HDF5CounterTable.py src/PyMca5/PyMcaGui/io/hdf5/HDF5DatasetTable.py src/PyMca5/PyMcaGui/io/hdf5/HDF5Info.py src/PyMca5/PyMcaGui/io/hdf5/HDF5McaTable.py src/PyMca5/PyMcaGui/io/hdf5/HDF5Selection.py src/PyMca5/PyMcaGui/io/hdf5/HDF5Widget.py src/PyMca5/PyMcaGui/io/hdf5/Hdf5NodeView.py src/PyMca5/PyMcaGui/io/hdf5/NexusInfo.py src/PyMca5/PyMcaGui/io/hdf5/QNexusWidget.py src/PyMca5/PyMcaGui/io/hdf5/QNexusWidgetActions.py src/PyMca5/PyMcaGui/io/hdf5/__init__.py src/PyMca5/PyMcaGui/math/FFTAlignmentWindow.py src/PyMca5/PyMcaGui/math/NNMADialog.py src/PyMca5/PyMcaGui/math/NNMAWindow.py src/PyMca5/PyMcaGui/math/PCADialog.py src/PyMca5/PyMcaGui/math/PCAWindow.py src/PyMca5/PyMcaGui/math/SGWindow.py src/PyMca5/PyMcaGui/math/SIFTAlignmentWindow.py src/PyMca5/PyMcaGui/math/SNIPWindow.py src/PyMca5/PyMcaGui/math/SimpleActions.py src/PyMca5/PyMcaGui/math/StripBackgroundWidget.py src/PyMca5/PyMcaGui/math/__init__.py src/PyMca5/PyMcaGui/math/fitting/CheckField.py src/PyMca5/PyMcaGui/math/fitting/EntryField.py src/PyMca5/PyMcaGui/math/fitting/FitActionsGui.py src/PyMca5/PyMcaGui/math/fitting/FitConfigGui.py src/PyMca5/PyMcaGui/math/fitting/FitStatusGui.py src/PyMca5/PyMcaGui/math/fitting/McaTable.py src/PyMca5/PyMcaGui/math/fitting/MultiParameters.py src/PyMca5/PyMcaGui/math/fitting/Parameters.py src/PyMca5/PyMcaGui/math/fitting/QScriptOption.py src/PyMca5/PyMcaGui/math/fitting/RateLawWindow.py src/PyMca5/PyMcaGui/math/fitting/SimpleFitAllGui.py src/PyMca5/PyMcaGui/math/fitting/SimpleFitBatchGui.py src/PyMca5/PyMcaGui/math/fitting/SimpleFitConfigurationGui.py src/PyMca5/PyMcaGui/math/fitting/SimpleFitControlWidget.py src/PyMca5/PyMcaGui/math/fitting/SimpleFitGui.py src/PyMca5/PyMcaGui/math/fitting/SpecfitConfigGui.py src/PyMca5/PyMcaGui/math/fitting/SpecfitGui.py src/PyMca5/PyMcaGui/math/fitting/TabSheets.py src/PyMca5/PyMcaGui/math/fitting/TextField.py src/PyMca5/PyMcaGui/math/fitting/__init__.py src/PyMca5/PyMcaGui/misc/CalculationThread.py src/PyMca5/PyMcaGui/misc/CloseEventNotifyingWidget.py src/PyMca5/PyMcaGui/misc/DoubleSlider.py src/PyMca5/PyMcaGui/misc/FrameBrowser.py src/PyMca5/PyMcaGui/misc/NumpyArrayTableModel.py src/PyMca5/PyMcaGui/misc/NumpyArrayTableView.py src/PyMca5/PyMcaGui/misc/NumpyArrayTableWidget.py src/PyMca5/PyMcaGui/misc/QIPythonWidget.py src/PyMca5/PyMcaGui/misc/SelectionTable.py src/PyMca5/PyMcaGui/misc/SubprocessLogWidget.py src/PyMca5/PyMcaGui/misc/TableWidget.py src/PyMca5/PyMcaGui/misc/__init__.py src/PyMca5/PyMcaGui/misc/testutils.py src/PyMca5/PyMcaGui/physics/__init__.py src/PyMca5/PyMcaGui/physics/xas/XASFourierTransformParameters.py src/PyMca5/PyMcaGui/physics/xas/XASNormalizationParameters.py src/PyMca5/PyMcaGui/physics/xas/XASNormalizationWindow.py src/PyMca5/PyMcaGui/physics/xas/XASParameters.py src/PyMca5/PyMcaGui/physics/xas/XASPostEdgeParameters.py src/PyMca5/PyMcaGui/physics/xas/XASSelfattenuationWindow.py src/PyMca5/PyMcaGui/physics/xas/XASWindow.py src/PyMca5/PyMcaGui/physics/xas/__init__.py src/PyMca5/PyMcaGui/physics/xrf/AttenuatorsTable.py src/PyMca5/PyMcaGui/physics/xrf/ConcentrationsWidget.py src/PyMca5/PyMcaGui/physics/xrf/ElementsInfo.py src/PyMca5/PyMcaGui/physics/xrf/EnergyTable.py src/PyMca5/PyMcaGui/physics/xrf/FastXRFLinearFitWindow.py src/PyMca5/PyMcaGui/physics/xrf/FitParam.py src/PyMca5/PyMcaGui/physics/xrf/FitParamForm.py src/PyMca5/PyMcaGui/physics/xrf/FitPeakSelect.py src/PyMca5/PyMcaGui/physics/xrf/MaterialEditor.py src/PyMca5/PyMcaGui/physics/xrf/MatrixEditor.py src/PyMca5/PyMcaGui/physics/xrf/MatrixImage.py src/PyMca5/PyMcaGui/physics/xrf/McaAdvancedFit.py src/PyMca5/PyMcaGui/physics/xrf/McaAdvancedTable.py src/PyMca5/PyMcaGui/physics/xrf/McaCalWidget.py src/PyMca5/PyMcaGui/physics/xrf/PeakIdentifier.py src/PyMca5/PyMcaGui/physics/xrf/PeakTableWidget.py src/PyMca5/PyMcaGui/physics/xrf/QPeriodicTable.py src/PyMca5/PyMcaGui/physics/xrf/QXTube.py src/PyMca5/PyMcaGui/physics/xrf/QtMcaAdvancedFitReport.py src/PyMca5/PyMcaGui/physics/xrf/StrategyHandler.py src/PyMca5/PyMcaGui/physics/xrf/TransmissionTableEditor.py src/PyMca5/PyMcaGui/physics/xrf/TransmissionTableGui.py src/PyMca5/PyMcaGui/physics/xrf/XRFMCPyMca.py src/PyMca5/PyMcaGui/physics/xrf/__init__.py src/PyMca5/PyMcaGui/plotting/ColormapDialog.py src/PyMca5/PyMcaGui/plotting/ImageView.py src/PyMca5/PyMcaGui/plotting/LegendSelector.py src/PyMca5/PyMcaGui/plotting/MaskImageTools.py src/PyMca5/PyMcaGui/plotting/MaskImageWidget.py src/PyMca5/PyMcaGui/plotting/MaskScatterWidget.py src/PyMca5/PyMcaGui/plotting/MaskToolBar.py src/PyMca5/PyMcaGui/plotting/McaROIWidget.py src/PyMca5/PyMcaGui/plotting/ObjectPrintConfigurationDialog.py src/PyMca5/PyMcaGui/plotting/PlotWidget.py src/PyMca5/PyMcaGui/plotting/PlotWindow.py src/PyMca5/PyMcaGui/plotting/ProfileScanWidget.py src/PyMca5/PyMcaGui/plotting/PyMcaPrintPreview.py src/PyMca5/PyMcaGui/plotting/PyMca_Icons.py src/PyMca5/PyMcaGui/plotting/Q4PyMcaPrintPreview.py src/PyMca5/PyMcaGui/plotting/RGBCorrelatorGraph.py src/PyMca5/PyMcaGui/plotting/RenameCurveDialog.py src/PyMca5/PyMcaGui/plotting/ScatterPlotCorrelatorWidget.py src/PyMca5/PyMcaGui/plotting/SilxMaskImageWidget.py src/PyMca5/PyMcaGui/plotting/SilxPlotActions.py src/PyMca5/PyMcaGui/plotting/SilxRGBCorrelatorGraph.py src/PyMca5/PyMcaGui/plotting/Silx_Icons.py src/PyMca5/PyMcaGui/plotting/Toolbars.py src/PyMca5/PyMcaGui/plotting/_ImageProfile.py src/PyMca5/PyMcaGui/plotting/__init__.py src/PyMca5/PyMcaGui/pymca/ChangeLog.py src/PyMca5/PyMcaGui/pymca/EdfFileSimpleViewer.py src/PyMca5/PyMcaGui/pymca/ExternalImagesStackPluginBase.py src/PyMca5/PyMcaGui/pymca/ExternalImagesWindow.py src/PyMca5/PyMcaGui/pymca/Fit2Spec.py src/PyMca5/PyMcaGui/pymca/ImageListStatsWidget.py src/PyMca5/PyMcaGui/pymca/LegacyPyMcaBatch.py src/PyMca5/PyMcaGui/pymca/Mca2Edf.py src/PyMca5/PyMcaGui/pymca/McaCalibrationControlGUI.py src/PyMca5/PyMcaGui/pymca/McaCustomEvent.py src/PyMca5/PyMcaGui/pymca/McaLegendselector.py src/PyMca5/PyMcaGui/pymca/McaSimpleFit.py src/PyMca5/PyMcaGui/pymca/McaWindow.py src/PyMca5/PyMcaGui/pymca/Median2DBrowser.py src/PyMca5/PyMcaGui/pymca/PyMcaBatch.py src/PyMca5/PyMcaGui/pymca/PyMcaFileDialogs.py src/PyMca5/PyMcaGui/pymca/PyMcaHKLImageWindow.py src/PyMca5/PyMcaGui/pymca/PyMcaImageWindow.py src/PyMca5/PyMcaGui/pymca/PyMcaMain.py src/PyMca5/PyMcaGui/pymca/PyMcaMdi.py src/PyMca5/PyMcaGui/pymca/PyMcaNexusWidget.py src/PyMca5/PyMcaGui/pymca/PyMcaPostBatch.py src/PyMca5/PyMcaGui/pymca/PyMca_help.py src/PyMca5/PyMcaGui/pymca/QDataSource.py src/PyMca5/PyMcaGui/pymca/QDispatcher.py src/PyMca5/PyMcaGui/pymca/QHDF5Stack1D.py src/PyMca5/PyMcaGui/pymca/QHDF5StackWizard.py src/PyMca5/PyMcaGui/pymca/QPyMcaMatplotlibSave.py src/PyMca5/PyMcaGui/pymca/QPyMcaMatplotlibSave1D.py src/PyMca5/PyMcaGui/pymca/QSource.py src/PyMca5/PyMcaGui/pymca/QSpsDataSource.py src/PyMca5/PyMcaGui/pymca/QStack.py src/PyMca5/PyMcaGui/pymca/QStackWidget.py src/PyMca5/PyMcaGui/pymca/RGBCorrelator.py src/PyMca5/PyMcaGui/pymca/RGBCorrelatorSlider.py src/PyMca5/PyMcaGui/pymca/RGBCorrelatorTable.py src/PyMca5/PyMcaGui/pymca/RGBCorrelatorWidget.py src/PyMca5/PyMcaGui/pymca/RGBImageCalculator.py src/PyMca5/PyMcaGui/pymca/ScanFit.py src/PyMca5/PyMcaGui/pymca/ScanFitToolButton.py src/PyMca5/PyMcaGui/pymca/ScanWindow.py src/PyMca5/PyMcaGui/pymca/ScanWindowInfoWidget.py src/PyMca5/PyMcaGui/pymca/SilxExternalImagesWindow.py src/PyMca5/PyMcaGui/pymca/SilxGLWindow.py src/PyMca5/PyMcaGui/pymca/SilxMcaWindow.py src/PyMca5/PyMcaGui/pymca/SilxScanWindow.py src/PyMca5/PyMcaGui/pymca/SilxScatterWindow.py src/PyMca5/PyMcaGui/pymca/StackBrowser.py src/PyMca5/PyMcaGui/pymca/StackPluginResultsWindow.py src/PyMca5/PyMcaGui/pymca/StackROIBatchWindow.py src/PyMca5/PyMcaGui/pymca/StackROIWindow.py src/PyMca5/PyMcaGui/pymca/StackSelector.py src/PyMca5/PyMcaGui/pymca/StackSimpleFitWindow.py src/PyMca5/PyMcaGui/pymca/StackXASBatchWindow.py src/PyMca5/PyMcaGui/pymca/SumRulesTool.py src/PyMca5/PyMcaGui/pymca/TomographyRecons.py src/PyMca5/PyMcaGui/pymca/XMCDWindow.py src/PyMca5/PyMcaGui/pymca/XiaCorrectWizard.py src/PyMca5/PyMcaGui/pymca/__init__.py src/PyMca5/PyMcaIO/APSMEDFileParser.py src/PyMca5/PyMcaIO/AifiraMap.py src/PyMca5/PyMcaIO/ArraySave.py src/PyMca5/PyMcaIO/ArtaxFileParser.py src/PyMca5/PyMcaIO/BAXSCSVFileParser.py src/PyMca5/PyMcaIO/BlissSpecFile.py src/PyMca5/PyMcaIO/BrukerBCF.py src/PyMca5/PyMcaIO/ConfigDict.py src/PyMca5/PyMcaIO/EDFStack.py src/PyMca5/PyMcaIO/EdfFile.py src/PyMca5/PyMcaIO/Fit2DChiFileParser.py src/PyMca5/PyMcaIO/FsmMap.py src/PyMca5/PyMcaIO/FsmReader.py src/PyMca5/PyMcaIO/HDF5Stack1D.py src/PyMca5/PyMcaIO/HDF5Utils.py src/PyMca5/PyMcaIO/JcampFileParser.py src/PyMca5/PyMcaIO/JcampOpusStack.py src/PyMca5/PyMcaIO/JcampReader.py src/PyMca5/PyMcaIO/LabSpec6TxtMap.py src/PyMca5/PyMcaIO/LispixMap.py src/PyMca5/PyMcaIO/LuciaMap.py src/PyMca5/PyMcaIO/MEDFile.py src/PyMca5/PyMcaIO/MRCMap.py src/PyMca5/PyMcaIO/MarCCD.py src/PyMca5/PyMcaIO/NexusUtils.py src/PyMca5/PyMcaIO/NumpyStack.py src/PyMca5/PyMcaIO/OlympusCSVFileParser.py src/PyMca5/PyMcaIO/OmdaqLmf.py src/PyMca5/PyMcaIO/OmnicMap.py src/PyMca5/PyMcaIO/OpusDPTMap.py src/PyMca5/PyMcaIO/OutputBuffer.py src/PyMca5/PyMcaIO/PilatusCBF.py src/PyMca5/PyMcaIO/RTXMap.py src/PyMca5/PyMcaIO/RenishawMap.py src/PyMca5/PyMcaIO/SPXFileParser.py src/PyMca5/PyMcaIO/SRSFileParser.py src/PyMca5/PyMcaIO/SpecFileAbstractClass.py src/PyMca5/PyMcaIO/SpecFileStack.py src/PyMca5/PyMcaIO/SupaVisioMap.py src/PyMca5/PyMcaIO/TextImageStack.py src/PyMca5/PyMcaIO/ThermoEMSFileParser.py src/PyMca5/PyMcaIO/TiffIO.py src/PyMca5/PyMcaIO/TiffStack.py src/PyMca5/PyMcaIO/__init__.py src/PyMca5/PyMcaIO/specfilewrapper.py src/PyMca5/PyMcaIO/spswrap.py src/PyMca5/PyMcaIO/PyMcaIOHelper/PyMcaIOHelper.c src/PyMca5/PyMcaIO/edf/FastEdf.c src/PyMca5/PyMcaIO/edf/setup.py src/PyMca5/PyMcaIO/specfile/MANIFEST.in src/PyMca5/PyMcaIO/specfile/setup.py src/PyMca5/PyMcaIO/specfile/include/Lists.h src/PyMca5/PyMcaIO/specfile/include/SpecFile.h src/PyMca5/PyMcaIO/specfile/include/SpecFileP.h src/PyMca5/PyMcaIO/specfile/include/locale_management.h src/PyMca5/PyMcaIO/specfile/src/locale_management.c src/PyMca5/PyMcaIO/specfile/src/sfdata.c src/PyMca5/PyMcaIO/specfile/src/sfheader.c src/PyMca5/PyMcaIO/specfile/src/sfindex.c src/PyMca5/PyMcaIO/specfile/src/sfinit.c src/PyMca5/PyMcaIO/specfile/src/sflabel.c src/PyMca5/PyMcaIO/specfile/src/sflists.c src/PyMca5/PyMcaIO/specfile/src/sfmca.c src/PyMca5/PyMcaIO/specfile/src/sftools.c src/PyMca5/PyMcaIO/specfile/src/sfwrite.c src/PyMca5/PyMcaIO/specfile/src/specfile_py.c src/PyMca5/PyMcaIO/specfile/src/specfile_py3.c src/PyMca5/PyMcaIO/sps/LICENSE src/PyMca5/PyMcaIO/sps/MANIFEST.in src/PyMca5/PyMcaIO/sps/setup.py src/PyMca5/PyMcaIO/sps/Include/blissmalloc.h src/PyMca5/PyMcaIO/sps/Include/spec_shm.h src/PyMca5/PyMcaIO/sps/Include/sps.h src/PyMca5/PyMcaIO/sps/Include/sps_lut.h src/PyMca5/PyMcaIO/sps/Src/sps.c src/PyMca5/PyMcaIO/sps/Src/sps_lut.c src/PyMca5/PyMcaIO/sps/Src/sps_py.c src/PyMca5/PyMcaIO/sps/Src/spslut_py.c src/PyMca5/PyMcaMath/ImageListStats.py src/PyMca5/PyMcaMath/ImageRegistration.py src/PyMca5/PyMcaMath/SGModule.py src/PyMca5/PyMcaMath/SNIPModule.py src/PyMca5/PyMcaMath/SimpleMath.py src/PyMca5/PyMcaMath/SpecArithmetic.py src/PyMca5/PyMcaMath/__init__.py src/PyMca5/PyMcaMath/linalg.py src/PyMca5/PyMcaMath/PyMcaSciPy/__init__.py src/PyMca5/PyMcaMath/PyMcaSciPy/signal/LICENSE.txt src/PyMca5/PyMcaMath/PyMcaSciPy/signal/__init__.py src/PyMca5/PyMcaMath/PyMcaSciPy/signal/median.py src/PyMca5/PyMcaMath/PyMcaSciPy/signal/medianfilter.c src/PyMca5/PyMcaMath/PyMcaSciPy/signal/mediantools.c src/PyMca5/PyMcaMath/fitting/Gefit.py src/PyMca5/PyMcaMath/fitting/LinearRegression.py src/PyMca5/PyMcaMath/fitting/RateLaw.py src/PyMca5/PyMcaMath/fitting/SimpleFitAll.py src/PyMca5/PyMcaMath/fitting/SimpleFitModule.py src/PyMca5/PyMcaMath/fitting/SimpleFitUserEstimatedFunctions.py src/PyMca5/PyMcaMath/fitting/Specfit.py src/PyMca5/PyMcaMath/fitting/SpecfitFunctions.py src/PyMca5/PyMcaMath/fitting/StackSimpleFit.py src/PyMca5/PyMcaMath/fitting/__init__.py src/PyMca5/PyMcaMath/fitting/specfit/SpecfitFuns.c src/PyMca5/PyMcaMath/fitting/specfit/setup.py src/PyMca5/PyMcaMath/fitting/specfit/smoothnd.c src/PyMca5/PyMcaMath/fitting/specfit/snip1d.c src/PyMca5/PyMcaMath/fitting/specfit/snip2d.c src/PyMca5/PyMcaMath/fitting/specfit/snip3d.c src/PyMca5/PyMcaMath/mva/KMeansModule.py src/PyMca5/PyMcaMath/mva/Lanczos.py src/PyMca5/PyMcaMath/mva/NNMAModule.py src/PyMca5/PyMcaMath/mva/PCAModule.py src/PyMca5/PyMcaMath/mva/PCATools.py src/PyMca5/PyMcaMath/mva/__init__.py src/PyMca5/PyMcaMath/mva/_cython_kmeans/kmeans.pyx src/PyMca5/PyMcaMath/mva/_cython_kmeans/setup.py src/PyMca5/PyMcaMath/mva/_cython_kmeans/default/kmeans.c src/PyMca5/PyMcaMath/mva/py_nnma/LICENSE src/PyMca5/PyMcaMath/mva/py_nnma/README src/PyMca5/PyMcaMath/mva/py_nnma/__init__.py src/PyMca5/PyMcaMath/mva/py_nnma/nnma.py src/PyMca5/PyMcaMath/mva/py_nnma/setup.py src/PyMca5/PyMcaMath/sift/__init__.py src/PyMca5/PyMcaMath/sift/algebra.cl src/PyMca5/PyMcaMath/sift/alignment.py src/PyMca5/PyMcaMath/sift/convolution.cl src/PyMca5/PyMcaMath/sift/gaussian.cl src/PyMca5/PyMcaMath/sift/image.cl src/PyMca5/PyMcaMath/sift/interpolation.cl src/PyMca5/PyMcaMath/sift/interpolation.py src/PyMca5/PyMcaMath/sift/keypoints_cpu.cl src/PyMca5/PyMcaMath/sift/keypoints_gpu1.cl src/PyMca5/PyMcaMath/sift/keypoints_gpu2.cl src/PyMca5/PyMcaMath/sift/match.py src/PyMca5/PyMcaMath/sift/matching_cpu.cl src/PyMca5/PyMcaMath/sift/matching_gpu.cl src/PyMca5/PyMcaMath/sift/memset.cl src/PyMca5/PyMcaMath/sift/opencl.py src/PyMca5/PyMcaMath/sift/orientation_cpu.cl src/PyMca5/PyMcaMath/sift/orientation_gpu.cl src/PyMca5/PyMcaMath/sift/param.py src/PyMca5/PyMcaMath/sift/plan.py src/PyMca5/PyMcaMath/sift/preprocess.cl src/PyMca5/PyMcaMath/sift/reductions.cl src/PyMca5/PyMcaMath/sift/sift.py src/PyMca5/PyMcaMath/sift/transform.cl src/PyMca5/PyMcaMath/sift/utils.py src/PyMca5/PyMcaMisc/PhysicalMemory.py src/PyMca5/PyMcaMisc/ProfilingUtils.py src/PyMca5/PyMcaMisc/__init__.py src/PyMca5/PyMcaPhysics/SixCircle.py src/PyMca5/PyMcaPhysics/__init__.py src/PyMca5/PyMcaPhysics/xas/XASClass.py src/PyMca5/PyMcaPhysics/xas/XASNormalization.py src/PyMca5/PyMcaPhysics/xas/XASSelfattenuationCorrection.py src/PyMca5/PyMcaPhysics/xas/XASStackBatch.py src/PyMca5/PyMcaPhysics/xas/__init__.py src/PyMca5/PyMcaPhysics/xas/_xas/setup.py src/PyMca5/PyMcaPhysics/xas/_xas/cython/_xas.pyx src/PyMca5/PyMcaPhysics/xas/_xas/cython/bessel0.pxd src/PyMca5/PyMcaPhysics/xas/_xas/cython/polspl.pxd src/PyMca5/PyMcaPhysics/xas/_xas/cython/default/_xas.c src/PyMca5/PyMcaPhysics/xas/_xas/include/bessel0.h src/PyMca5/PyMcaPhysics/xas/_xas/include/polspl.h src/PyMca5/PyMcaPhysics/xas/_xas/src/bessel0.c src/PyMca5/PyMcaPhysics/xas/_xas/src/polspl.c src/PyMca5/PyMcaPhysics/xrf/BindingEnergies.py src/PyMca5/PyMcaPhysics/xrf/ClassMcaTheory.py src/PyMca5/PyMcaPhysics/xrf/CoherentScattering.py src/PyMca5/PyMcaPhysics/xrf/ConcentrationsTool.py src/PyMca5/PyMcaPhysics/xrf/ElementHtml.py src/PyMca5/PyMcaPhysics/xrf/Elements.py src/PyMca5/PyMcaPhysics/xrf/FastXRFLinearFit.py src/PyMca5/PyMcaPhysics/xrf/FisxHelper.py src/PyMca5/PyMcaPhysics/xrf/GenerateXCOMCrossSections.py src/PyMca5/PyMcaPhysics/xrf/IncoherentScattering.py src/PyMca5/PyMcaPhysics/xrf/KShell.py src/PyMca5/PyMcaPhysics/xrf/LShell.py src/PyMca5/PyMcaPhysics/xrf/LegacyFastXRFLinearFit.py src/PyMca5/PyMcaPhysics/xrf/LegacyMcaAdvancedFitBatch.py src/PyMca5/PyMcaPhysics/xrf/MShell.py src/PyMca5/PyMcaPhysics/xrf/McaAdvancedFitBatch.py src/PyMca5/PyMcaPhysics/xrf/PyMcaEPDL97.py src/PyMca5/PyMcaPhysics/xrf/Scofield1973.py src/PyMca5/PyMcaPhysics/xrf/SingleLayerStrategy.py src/PyMca5/PyMcaPhysics/xrf/Strategies.py src/PyMca5/PyMcaPhysics/xrf/XRFBatchFitOutput.py src/PyMca5/PyMcaPhysics/xrf/XRayTubeEbel.py src/PyMca5/PyMcaPhysics/xrf/__init__.py src/PyMca5/PyMcaPhysics/xrf/XRFMC/XMSOParser.py src/PyMca5/PyMcaPhysics/xrf/XRFMC/XRFMCHelper.py src/PyMca5/PyMcaPhysics/xrf/XRFMC/__init__.py src/PyMca5/PyMcaPlugins/AdvancedAlignmentScanPlugin.py src/PyMca5/PyMcaPlugins/AlignmentScanPlugin.py src/PyMca5/PyMcaPlugins/BackgroundScanPlugin.py src/PyMca5/PyMcaPlugins/BackgroundStackPlugin.py src/PyMca5/PyMcaPlugins/ConsolePlugin.py src/PyMca5/PyMcaPlugins/ConsoleStackPlugin.py src/PyMca5/PyMcaPlugins/ExternalImagesStackPlugin.py src/PyMca5/PyMcaPlugins/FastXRFLinearFitStackPlugin.py src/PyMca5/PyMcaPlugins/FitAllCurvesPlugin.py src/PyMca5/PyMcaPlugins/FitStackPlugin.py src/PyMca5/PyMcaPlugins/ImageAlignmentStackPlugin.py src/PyMca5/PyMcaPlugins/KineticsPlugin.py src/PyMca5/PyMcaPlugins/LoadPositionersStackPlugin.py src/PyMca5/PyMcaPlugins/MaskScatterViewPlugin.py src/PyMca5/PyMcaPlugins/MathPlugins.py src/PyMca5/PyMcaPlugins/Medfilt2DPlugin.py src/PyMca5/PyMcaPlugins/MedianFilterScanDeglitchPlugin.py src/PyMca5/PyMcaPlugins/MedianFilterScanPlugin.py src/PyMca5/PyMcaPlugins/MedianFilterStackPlugin.py src/PyMca5/PyMcaPlugins/MotorInfoPlugin.py src/PyMca5/PyMcaPlugins/MotorInfoWindow.py src/PyMca5/PyMcaPlugins/MultipleScanToMeshPlugin.py src/PyMca5/PyMcaPlugins/NNMAStackPlugin.py src/PyMca5/PyMcaPlugins/NormalizationPlugins.py src/PyMca5/PyMcaPlugins/PCAStackPlugin.py src/PyMca5/PyMcaPlugins/Plugin1DBase.py src/PyMca5/PyMcaPlugins/ROIStackPlugin.py src/PyMca5/PyMcaPlugins/RegularMeshPlugin.py src/PyMca5/PyMcaPlugins/ReverseStackPlugin.py src/PyMca5/PyMcaPlugins/SilxExternalImagesStackPlugin.py src/PyMca5/PyMcaPlugins/SilxRoiStackPlugin.py src/PyMca5/PyMcaPlugins/SimpleShift.py src/PyMca5/PyMcaPlugins/StackAxesPlugin.py src/PyMca5/PyMcaPlugins/StackBrowserPlugin.py src/PyMca5/PyMcaPlugins/StackMotorInfoPlugin.py src/PyMca5/PyMcaPlugins/StackNormalizationPlugin.py src/PyMca5/PyMcaPlugins/StackPluginBase.py src/PyMca5/PyMcaPlugins/StackROIBatchPlugin.py src/PyMca5/PyMcaPlugins/StackScanWindowPlugin.py src/PyMca5/PyMcaPlugins/StackShowSpectra.py src/PyMca5/PyMcaPlugins/XASPlugin.py src/PyMca5/PyMcaPlugins/XASScanNormalizationPlugin.py src/PyMca5/PyMcaPlugins/XASSelfattenuationPlugin.py src/PyMca5/PyMcaPlugins/XASStackBatchPlugin.py src/PyMca5/PyMcaPlugins/XASStackNormalizationPlugin.py src/PyMca5/PyMcaPlugins/XMCDPlugin.py src/PyMca5/PyMcaPlugins/__init__.py src/PyMca5/PyMcaPlugins/optional/JsonRpc1DPlugin.py src/PyMca5/PyMcaPlugins/optional/TaurusPlugin1D.py src/PyMca5/scripts/edfviewer src/PyMca5/scripts/elementsinfo src/PyMca5/scripts/mca2edf src/PyMca5/scripts/peakidentifier src/PyMca5/scripts/pymca src/PyMca5/scripts/pymcabatch src/PyMca5/scripts/pymcapostbatch src/PyMca5/scripts/pymcaroitool src/PyMca5/scripts/rgbcorrelator src/PyMca5/tests/ConfigDictTest.py src/PyMca5/tests/DataTest.py src/PyMca5/tests/EdfFileTest.py src/PyMca5/tests/ElementsTest.py src/PyMca5/tests/FastXRFLinearFitTest.py src/PyMca5/tests/GefitTest.py src/PyMca5/tests/HDF5UtilsTest.py src/PyMca5/tests/McaAdvancedFitWidgetTest.py src/PyMca5/tests/McaStackExportTest.py src/PyMca5/tests/McaStackViewTest.py src/PyMca5/tests/NexusUtilsTest.py src/PyMca5/tests/PCAToolsTest.py src/PyMca5/tests/PyMcaBatchTest.py src/PyMca5/tests/ROIBatchTest.py src/PyMca5/tests/SimpleMathTest.py src/PyMca5/tests/SpecfileTest.py src/PyMca5/tests/StackBaseTest.py src/PyMca5/tests/StackInfoTest.py src/PyMca5/tests/TestAll.py src/PyMca5/tests/WidgetsInstantiationTest.py src/PyMca5/tests/XRFBatchFitOutputTest.py src/PyMca5/tests/XrfData.py src/PyMca5/tests/XrfDataTest.py src/PyMca5/tests/XrfTest.py src/PyMca5/tests/__init__.py src/PyMca5/tests/specfilewrapperTest.py�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948995.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/dependency_links.txt�����������������������������������������������0000644�0000000�0000000�00000000001�14741736403�021123� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948995.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/requires.txt�������������������������������������������������������0000644�0000000�0000000�00000000046�14741736403�017455� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������numpy matplotlib>1.0 fisx>=1.1.6 h5py ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948995.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/src/PyMca5.egg-info/top_level.txt������������������������������������������������������0000644�0000000�0000000�00000000007�14741736403�017604� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������PyMca5 �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������././@PaxHeader��������������������������������������������������������������������������������������0000000�0000000�0000000�00000000026�00000000000�010213� x����������������������������������������������������������������������������������������������������ustar�00�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������22 mtime=1736948982.0 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������pymca5-5.9.4/version.py�����������������������������������������������������������������������������0000644�0000000�0000000�00000011641�14741736366�013550� 0����������������������������������������������������������������������������������������������������ustar�00root����������������������������root�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������#!/usr/bin/env python # coding: utf-8 # /*########################################################################## # # Copyright (c) 2015-2017 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Unique place where the version number is defined. provides: * version = "1.2.3" or "1.2.3-beta4" * version_info = named tuple (1,2,3,"beta",4) * hexversion: 0x010203B4 * strictversion = "1.2.3b4 * debianversion = "1.2.3~beta4" * calc_hexversion: the function to transform a version_tuple into an integer This is called hexversion since it only really looks meaningful when viewed as the result of passing it to the built-in hex() function. The version_info value may be used for a more human-friendly encoding of the same information. The hexversion is a 32-bit number with the following layout: Bits (big endian order) Meaning 1-8 PY_MAJOR_VERSION (the 2 in 2.1.0a3) 9-16 PY_MINOR_VERSION (the 1 in 2.1.0a3) 17-24 PY_MICRO_VERSION (the 0 in 2.1.0a3) 25-28 PY_RELEASE_LEVEL (0xA for alpha, 0xB for beta, 0xC for release candidate and 0xF for final) 29-32 PY_RELEASE_SERIAL (the 3 in 2.1.0a3, zero for final releases) Thus 2.1.0a3 is hexversion 0x020100a3. """ from __future__ import absolute_import, print_function, division import os __authors__ = ["Jérôme Kieffer"] __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "16/11/2017" __status__ = "production" __docformat__ = 'restructuredtext' __all__ = ["date", "version_info", "strictversion", "hexversion", "debianversion", "calc_hexversion"] RELEASE_LEVEL_VALUE = {"dev": 0, "alpha": 10, "beta": 11, "gamma": 12, "rc": 13, "final": 15} def get_major_minor_micro(): __version__ = None ffile = open(os.path.join('src', 'PyMca5', '__init__.py'), 'r').readlines() for line in ffile: if line.startswith('__version__'): #remove spaces and split __version__ = "%s" % line.replace(' ','').split("=")[-1][:-1] #remove " or ' present __version__ = __version__[1:-1] break if __version__ == None: raise ValueError("Cannot figure out version") return [int(x) for x in __version__.split(".")] MAJOR, MINOR, MICRO = get_major_minor_micro() RELEV = "final" # <16 SERIAL = 0 # <16 date = __date__ from collections import namedtuple _version_info = namedtuple("version_info", ["major", "minor", "micro", "releaselevel", "serial"]) version_info = _version_info(MAJOR, MINOR, MICRO, RELEV, SERIAL) strictversion = version = debianversion = "%d.%d.%d" % version_info[:3] if version_info.releaselevel != "final": version += "-%s%s" % version_info[-2:] debianversion += "~adev%i" % version_info[-1] if RELEV == "dev" else "~%s%i" % version_info[-2:] prerel = "a" if RELEASE_LEVEL_VALUE.get(version_info[3], 0) < 10 else "b" if prerel not in "ab": prerel = "a" strictversion += prerel + str(version_info[-1]) def calc_hexversion(major=0, minor=0, micro=0, releaselevel="dev", serial=0): """Calculate the hexadecimal version number from the tuple version_info: :param major: integer :param minor: integer :param micro: integer :param relev: integer or string :param serial: integer :return: integer always increasing with revision numbers """ try: releaselevel = int(releaselevel) except ValueError: releaselevel = RELEASE_LEVEL_VALUE.get(releaselevel, 0) hex_version = int(serial) hex_version |= releaselevel * 1 << 4 hex_version |= int(micro) * 1 << 8 hex_version |= int(minor) * 1 << 16 hex_version |= int(major) * 1 << 24 return hex_version hexversion = calc_hexversion(*version_info) if __name__ == "__main__": print(version) �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

t\_zMʘ_qjm>Z4Үd>ך͜SПCe)C*;nϱy-W߽u㯟@C|hꐁ$Ցk$M8n܁梆K xgI#ڱ, "vuu:bdUuDħ$=mu]hK5uyY`">@i>MX2N a Iet_y^t q Ң{L~y7.^C|3%?0 h:TRXJE'ns7vhOZ=DP&Gi:[Δ:6Q7?#i a)r$?7爻L Gѓm!M;olƒN UӽYԆ.^}zO-^VJRfNr$ϡU]/oK+ؠ_C x#;J(Y 9ї}+gnͫW,b sF b+"@Ʈ%<ž9k:4D@r}WW%?omO@M$C8G5y=FEr%vHeml|dϔf> endobj 8 0 obj<>/ProcSet[/PDF/Text]/ExtGState<>>> endobj 9 0 obj<>stream HWrF}W#k"s֖e֮+X+ Zp(R!@==3e{i{ONFOll`DȂY2oY]-O84sl1T']ͺ]is]ɧpYls[l d7kmW*LƪMۜglk>f1{7;X5{_~5[Y/բ,Xa]8Y[:6v6ojޜ2WemvO> "!/e֛B$,I^$h`Yx w,A31>9X:WFGw}Ԧ@>>)I<{ɛ?5$KyN͊Ymڮt CY֛2d k &>PM}ԻP]Ɵ)'%/|YsK4޴5Ķu@%W*gRe!Q}2{ȧ2MZuW/=iGU/f}l 6۲>Sx餜z.SuwM ݖUv^XWֲvtW=(#M9~оXuD@1c`Qkꯤ639ܻR噏Cǁzb;Rنλ ]pu 4LgLy9:rm5'4Њ`/uݨp=8Дх5;:NhǤ.|ckZdS\lw:7ȣEЇ!E[Mְt rMuv5jDa;ۤQV1ƂGnJޠ'l}y$q @zFEx8{ q=2?8[&W*$$ DQדdljph )ElGϋ\L>8j[VVBL@4fYe=RX.-->~FB%0˧Ȯri,5RÐdNkwxÐ3Һ4Pr.A! W7J_REgW'Շ-b2\"%$#QRE!}S A)1+Pa#͌G Oq h2(Lq^/N\m6( BXQ@H팈͌tr9 hԈ>  1d'<#21JVsh o@m51 L4,mi/E) 3 hmqS ZZzMzX}T@ 0}Ǻ9p0 Aͧx LdU<#Ei1f=}hI`;DlV &o<"nvQ=׺ !8'AR PV*cc]eZFC'-dlM qU Uf߼މ8ą &Yk{j>tS?WO3h[" bMaY\L^u j{Z76[//Ѓ 8Nfka/,|`ͦ#ݧPJ{$zG6/3vTѮI vogN-&?m T?)?r|k䃮bjG+[m#o[·5$=LHeCYqLE;!~xW*^a ZQ'2Ԑ>Z7x+ݫْA4_]]1wxq3l8jΫAhYFI k1g܀ѹys9ùVT$"{87f [d@ ɟ )6*C+]_bc#݁\*;y"0|VV) lO)N|ah86a/SFHFqv6D sa{fe1"S.LHx02{h}ب:4""rq`|j"P 8Vp }Lr`csb] p/,UDi"dS0)0g:@˛ 3X1 ]A-"xk$Q΃(Xs1Kw_b.—*śf+1ND81abQH*KafAVخuc.Ѻc8doB02-!^4+[ tX$fP=q=N9Eb Kf0ݩ^ES93ϠJ՘M ڊͺY@KOpGҙO鰮ILs,yRzӰkufd@ Mnly6n_ ,bpr @"BI-/! zOuOHJ^IvL?jT-jK]j*N J?N8} Ȳq1RJ9f,*zJQcFC_ۮC c˦VCLn[!)8ˬIHhH3+}SyH5/n !AB=mے&8J =ztP|Tڼږޤ(}sz J=I|Jd. I"utߚ7'-m*:L_ۿsyBQ#DOxȺ#aMq' V}|ey*F͈`'~QDOthN)_XJ.YAZM1?h+$8ÔM򞠅o Hn(pooQ@u@裪4מ5q^R:֢Nx>cFh'ԀDE4=I0lg<$0KlnGdf&ΰW9:郌.1dkDzzs"+W%3肛& νuF \IWyTE< 4)\G c$, ifiγ(ue4%QOuKHH0ܤ3ܚ РKnv%i&tlE]_O|/Q,stD)(A+ MڌBUWїM6+M/)KPڿ99C<+K-n뱸ZHUDH.4 #ܻ/?& ¡ J>vwHv>%w| AJyt-ۍl5æYU r!@";%?aY3{]Ll Ldm,z1ieLV)PZ8z&@ >OyGIکrWp_Q}DupB=#{* :BFzs:[cn| ho5SEMU]k[3R5nR0=39nd'̂`Th!FrG~dU4{$YADV_ endstream endobj 10 0 obj<> endobj 11 0 obj<>/ProcSet[/PDF/Text]/ExtGState<>>> endobj 12 0 obj<>stream HWے}WLih\rٔˣ !C4/^4涕E}On~syݴff36+.K/\7):iJٯRv9"oIS yH4KRQʰyLyRFcUXofvgIyV[&'c\~\(/}ˤi|V%_EGf\&E5rTx-1nCpGsox ۅQRrfF6 G,ut=dRiqy"aLd)ll[3k<n+|!l!1r^G"ȐtĨ1D"x@ߦiɓ&rx,zC{EREdϽyU{S35rPT:[~1 TPY> k<;Na&(#y5n(Jy(A@Z2'H 8=BiR(vR-K-+4aU!VteL;,tݙŤoAO0gOS=6wnh)n7&:Y_גg7 h_kOe]Zݫ~;KKG9ޛnxes(NvsoԴWD}cWY\Ex\wrLdC6r >6^)?nڭ{S-wobvz˼4]ό]ڜaaiNk ?$^cEa ʟ"T%@ ΊL(M endstream endobj 13 0 obj<>stream HUoEfv@J4nR I$ 1Po%H{6QrYz@R{ȁ?`+.)BBpˡ'$'!CeoC3y{?yy0.!Osc Sǂ8ׯ(\-;}тߺjR?]!!@^#>Y(׷z>$#.*,~DmGF$̖[ ;NVgߩNƙ?B<1".#Cޖi-Y$~Cə9$5+me\gZn*&_jk%s]hDrst!&UjtyaԤNf"jBRͻưt k\Hg_Θn e=K14O"Ef K DW2/eKɰHZaTsJKMbTRʷ';XshJg%MRXdtpD["fS7z1ṦHhW"b=CČJ+̱:D?+;{K^v8v.9}Oe?}1OڶU9}ѭ3 žd =N"ߡN(pD=OoF}Gnx}߻pkJH7>>s'uLПG^&ص"0A w~>3V{o}um8ozJ/Ҿ݂E>u%zq_`H A}CԳgZ(HWmީrM-l*UR|\MNLSӥ5UkvuΏͦS sguz(bG)i]M=͘6ʔ dTy޳ڗGILp(qC5lJrKg9=tz 7&̹=~g^v߮N~݇]n'%3 endstream endobj 14 0 obj<> endobj 15 0 obj<> endobj 16 0 obj<> endobj 17 0 obj<>stream HW TSWYD6:PT^@B@Ihc$VT *VK]p"uez*8պTVtQ֙s朙3g; %KE^^ UX7*i >5h8l[v8aHv1e/@ N4ڬ?5N%/DQpe0<# f dnU׸{#`8BũC-Z3ѭ @L=a9,0zo =z/#!u ._ĕĬu!e&!vqfsy!\dkX:&[{oX Bc,}cul şOix/9\ps0bz *N.QwȣkW oQi>\_qeOñw 6O0DC؍*cy$U`żi_ E/ ྉ~K*Jk-9PEz*VJ< C0$⩸z2Ht,IGb|ƌ" ]S#C@gVbt̲2pZf CEe>;<]']Puuuܬz2ϿWi^xkv9\#2U{Bue>-g=řMinލoԬTwkI:ّ_,_9u\,{2$[%k=Ly+[*_a.9xh.1arU e9xtV4+5w3U$WT#>Ǿ˝ߺ|<1wzI[(n!(g)Ea ;MR.6yN3^誸ֶ$c<}qcO2~acTC˕֑ s"%mjE>ab}i/wV7ӫv04}#Z>s9G p>%~=L3>]l &Ŗ#MVWTXTNx]^º~',󓓒Dkz7.40m?KÜ^V7`qc^w.!% `hײ &ӣ(2wG^`KMs;1%N}~RLF TNBs Xy҂7IKPQVs; '%eZľayy"V{̣ۗoV ޙ`0@Sթwv sD{j mJ9<_"{7*/x}GmO Ϝw \I#כgub])[}9 L+c;~_%1r VlI>/Lpu14'6Ɖ7uu8*t(Hp=ޱ[~ښ>c[$>Frԡ[Ks޵A-?gO *eN|c. n3i;c >vl9u'TțKs7:L `|՝f19XY-1e؜R꿞V=>aؠ/lB_̈́``ż0˯nT Pbݍ3F_Kת߶#ۧYsC?Mm(XLrw?R=  *7K&km0Ej)>6!,>yMi K W̘"cG%v#r/n8>/Qy?.Q'~*:^+PW^81୫?wJF%gOll2*)rUMgk9R^YI;u/cǤ}Y떌qZD. VFϹ|Mmh\okotlWu+o_Lk _w0J5>v3do&R*uGFZpnKKyG4Ϥ_H2Y: Wjg6;<iIfM ƩnoCJ0L{VzW+9kȭfL_´ Ѝ;UZ>: z}Jwnye8ԭ!F{z+|tub`cH|}Ԣ(2Y<>7e;>Q-`Ҹ̩j>2ۧf$߽)( 0v3}^\~=cO=[iᮐ|B~6M~JK塊QCh4]R}/+=c_|̯*}) X$5%Cx;@ `?Jp:z0& B#ppl'dW{~Q8%4__VHp7Q(x@,!ΞbԲ+> JpQLMAHL(^h} s"?Bdk1F,Ch=x8# A Gbb[YQB1\!O ռS9[Y|k qhbX I .,Ě[J|HDt2aY Ke-٭&zI%AeIĹ!h].J>WR|V|J+Cx f;JZkQhC을*[נ݆x->C2Oye))5%sD9On!J "tMt+Mw;s-^9(|%oK%%JITӦ/*,2TgqLMKHwsq-|\3bB"$^6` !JMBA_o ϡ3NJȥ;KE2=s3&:;ML'U`+l{hRGx7q]swWkI~F,k-M+K2/G*Am tR 㐊Q&-ʹ6aWR:_̴>Bdg`ecL+}{=޽sV?*>#_h's2ٷtnO?!;K w ;݀n /pIss9rRhB߼ѝM;굺ښ*6ZUQ,+-).rm7[dI +Ъ8n $ TAQFM3e>gXkĦ W"BJ!1 gM^2;xC8 %q%B&ƒxK[Cjh꫇5|hz2Mډpe4r!fE+pa彑E.SV(tf@ C08/dl0 Fԑđa0n}].ί׺d9n2y^k=5 }9oW<م_*FM1J0&Whک%qn*O{f+*-(.H!Jo6Jaӛ6瘂LsE*KXFc"2`&1ϚQ?$hAЋӼPu>ϝ8/4Ci)β.ryyͩ "~+H/K)E)%vKRJR^)M*M$VYEY9L_, &oX6:> 8"suG(~-YRp,MȴR=!0ː,Mة=d.r0HCtHjXAeQ; uD!:҉g~Hϵڃ˩79>W$K4eJSL2Jz):3mbL WIW#801g%_˽ TŇMkhjXI'dNdd0GóA=QaczPnzCst:2#fE~HiaYiG1#F:I7ǤW|+NU1:Km'yk8q]x{]!|A_p0&ʗS9i󸮓r*j'h]O 0f2:MA'M*J(Y~{ar9j[bEY*"vIG1I `Xɡhrvݝ}vl}c۱q8Q!ee֑ ŠBaU6!Z pA۪MI˲4Lv.wgwLnCB񾞯6$o7dp/ЛL?›BmW  :9 SKп;y/|͆4mkD5$xs"ɩ43a8LL_=ۮmDp1PRCS9ϐ4C$SPAf[_05w5>X?s3 Rmކ im/Nxp'NppC&ڽUžfl65}/&dCiYEl eڿf^݅L>53ϊR 503SNWeRN[gI'M_eK4#eE[eϕ,~QVǮ4<cOI -:DKeK$y4(0y|A""h1 c˖G"Xg-t7u l,2UI>1f_j R ~>;Y#\>#\ WB_XPE*'%ͭ@9(J0HJ$8fMlrLj3V,9K"vQCK%|vۚeXwSq5R*1ok3'|G(ppxwǶ>u?Ҩ$^i)?dḃ[yWxuQpc ~wTjk%vYe7Kv^9aO&;2LKxyOX D^9<xA!L ٞ6!DDUC5⚓NJ;(K\+ y ( Q_Dd8]>p Fa05'VR(KEgTBd3I8=s#nn(i6~2h5>yc`5yў떖J_\✒KƆv߾4xc<6>yj+z-܁/00#} .1o!Z0VFՀ8r$h rvn)G,8*p|,@`V!w^C9Dݪ5o݆@ԿTP)WPm4.խi=ԌbGWFS<ʘV(Sz˂OC76QݔZ^tʋ$3N$g0c~^΂.q-->N䘌ӿv'qBl 9Ҳ ;{GXɡ ;W?g_:tO?Ho1vT(0xuȁO)Û|\9=n҈[#7r08 4wT J5V]2 ߖ @-~<ޙ)\fHWn#]bHEwPԣ&`&S!0ʺvNΉwRVH6:=8ht~QíX]D6L7^H;ۣ-nZm+衑pIm+͉Kv.C˛V,>zJcjI OQB()BRL!^gX;(1ps`E) /@:\'`#0< \[.߿Eӊ.=f_} (:%h¼`m^AOx n S*W<ai)Zz7ˍ{>1c-+v:UÏ;T*wW`}vssϭ<}~qrzGzB|2A/㺎tᰛ9 fˀkf*TGьpuӚv6+Kts&-m^ 4A z(}V8c361P~?n6~O=\0<}a-Ǐ^NY'n!PF+Z謘ibmjtC;d!gsϲ)Q֨9!PPX}vGg7v*@'VQbz rKq-a)rI0! -lq( ƿs:OFS,N^Z4SG I{ƞMo~vp,[_UEm`SlR(m!"ٶG98zpw"!"%@l !@Mhb  ꙐA嶾b)(̛ٙ~cwnd}Yv-ZU5'o s/Vu`ߺÿ}ӵ=}5ۋ2?ݼζvW _W|4I PI4|V~QU]}+ƨ[ „f Rr3%$UrsvU,Ș-[XciL&:# F#eht,&V5L DQd䣔$Fw l $(+{~ƫ}}gpFg5E) &K"$Rpz@=CWPګڇ ,]"*b`H j"Mn['|`W0SΚ`hK0D.@{V(OYT s۴sE+*++\Mq*p6;7Df_6ton [y [AvpVFBޑ*'(*8+8y%S=;/.g#+A.*Z YO?֟Y)u|K64 endstream endobj 18 0 obj<> endobj 19 0 obj<>/FontDescriptor 18 0 R/DW 1000>> endobj 20 0 obj<>stream HTMo0 7@HX ;!i(%6~Ino7?x. x,d یAI_x=C?S3DqD;$m{#BJ!Hl9{A a-hiM h$7_'Q$:R&II")(vD6(cԶ"*X-u iETFϫ 㞺d/YAo^axGv̸aEA}Պ'֚VlFeb#Wkp[xJwv6X]'7$? endstream endobj 21 0 obj<>stream xԕ[o7 A3ǩ4WD`Aq6PGRY)#m{r[ ޑgՖ\`(\e(&G\ QM(\b,.4GJH2%Q"xB^ES쀠:]lGPQH1|$%\ʎ#{ *x=x % "0 ^/kryg Ղ5̷װH"74U8 %7W"*^YX|dT `ɸAWXYڀU98\^aB¢Tdj𨂗'C!+lzr şBS^$ZeXTC[Eb`p!4G'O0y@c1D"7%%q=c+O$D rm"I:1؊O"n$y&HHaK$7g@"θHsqD rYOwqXbnx);ɻr+[J-q=dwmrs4܌sS 3Íl^j/m.Bp/KN;%vJ)S+V:tXajR;vJ)SjNi:uJ)SZNi:E+ieAkԚfEkժ- yٍoϏ7?4/ւSI}!\~;NWjY?pV>6۳Vpr `r~8,;t'5~;pΝ^vxK_=/H_9/J_>/I_:/K_u9O?#mɏl|e7N˧~zD=(YYlV&2dJoU#6{f=bGl#6{Df="Gd#2{Df7{yG7{yG7{Qkfe5+YdVF2lVYi=f٣j=fkY endstream endobj 22 0 obj<>stream xjU1E%_I2IP&>R-߻i?  瞹ɚRgʩXN*i4^5x[*1xT(OՅES\OfF.nP Vg85K>ZKa=qu{n+_&WrrA47JyS8ߑCt>ʞ #>H endstream endobj 23 0 obj<>stream x܌A 0D2'0m@)+Ep$BMީTw>H:D!N#YTC\ =jHޑ6PaƮmkfc1,[f7>Jޤ\.<;3~ewmQі endstream endobj 24 0 obj<> endobj 25 0 obj<> endobj 26 0 obj<> endobj 27 0 obj<>stream 14 Continuum/background ModelsName endstream endobj 28 0 obj<> endobj xref 0 240 0000000000 65535 f 0000007039 00000 n 0000007165 00000 n 0000007296 00000 n 0000010503 00000 n 0000010629 00000 n 0000010748 00000 n 0000014301 00000 n 0000014427 00000 n 0000014546 00000 n 0000018627 00000 n 0000018756 00000 n 0000018877 00000 n 0000020882 00000 n 0000021963 00000 n 0000022093 00000 n 0000022324 00000 n 0000022476 00000 n 0000033094 00000 n 0000033323 00000 n 0000033633 00000 n 0000034048 00000 n 0000035458 00000 n 0000036203 00000 n 0000036450 00000 n 0000036485 00000 n 0000036509 00000 n 0000036587 00000 n 0000040595 00000 n 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f 0000000000 65535 f trailer <> startxref 116 %%EOF ././@PaxHeader0000000000000000000000000000003300000000000010211 xustar0027 mtime=1736948995.727766 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/0000755000000000000000000000000014741736404020026 5ustar00rootroot././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/filelist.xml0000644000000000000000000000144214741736366022373 0ustar00rootroot ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image001.wmz0000644000000000000000000000020614741736366022075 0ustar00rootroot ~,0P`T`bb @dbN&bd?(ㆫaR`R` A?d-@1aP5< %!  \PQ.NFK$?G././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image002.gif0000644000000000000000000000016314741736366022030 0ustar00rootrootGIF89a w1!Software: Microsoft Office!,D;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image003.wmz0000644000000000000000000000164714741736366022111 0ustar00rootroot VMhA~M&MVJ+VKmTj)"1քRED Azğx$A<("-HUh73]egys ==Ra؈B j3O@5 [!<X}(?{Gs)xQ:E(DyGSm49ؙٗجϾ ^b ?Y5 sl9FȑNv*br-@W!MV/=?V6'ūxs8J{([S"[yWӳ_`l*QL[}vLq8#_eS(tW<ŪxJw/Ћfd5'c)-Udٟl\YfRϋY$?YnJYdy;qX>3IGfg=t+DLcS%Wڹ[;Yhuu'uGn#q^$&Cf4wի=CUZkx:ax{455F l.Aa\ʂⲶvdI} `@gs Yi ReuHEu{Ee9#ezGkCA:} />H7gC&GY%5WHXq2y(f::$:J8 R + kr{wI 49:D)Y2\l׭mRj]}>RM|ex/9̳x٢O ]tKDy m1i*uTgȑ$7RTkDOv( 6KT2:T5TبLke,tR@LdT{2}|yյ:g Uiqxӑ&輼gu^F]w10F| ܦ5su|*O3uXQE<.(ay6F7WOK>-A@VxP<ǷV(xE7ZvLֺ\EM~^/ T~w9'pr #cr(aVCb!v&nKwjcR{8{Kex J=eT[W3PhgϪ >re%TG0rZ\z)>2'f:Mq8ijd% τJ) .L謞XVO_!|ѯ6kvs!K(WӰGR3o7l4k>F`.j jȊ=E C|*] KmkR)aIڵ#b<^&!B#&,u!HO8[;P `H~H]M]1K l\p#?L;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image006.gif0000644000000000000000000000065614741736366022043 0ustar00rootrootGIF89aw1!Software: Microsoft Office!, ڋfH9P0}D'+)۱tԪiI [ rQaRnϹĦc^r99s/-}eSЩ#EE11^TlweA >ц% B!:J;+#גżpPzwq s4jI9HߺPPS9pt0p\GXTOHoOIԯGqq00.SWx[:%yy1,ܘ qJq2c;cm[\^_?Ƭ'^eA1 ?>3ކ̗ GKףm1~nc&YGϑVۛMw8ydj80LybիRvG9~ғ `$Dzs)gHK8VIp̭7s(T]l~9,0~!48+i UY58˟ö$~uuG<pZ43k+؇M9j6L$NkD7?Y eX+ѭʪF;VeӘu+zZ} rh6drnxnq9TkyfrN<)j{cOB7p+.zEGoTEҐljAΘqa TWMP(. mnhb%zz}e] sGWKm-y[+ z7v61]uU?# ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image008.gif0000644000000000000000000000163514741736366022043 0ustar00rootrootGIF89aCw1!Software: Microsoft Office!,>3XK<]܅Hn_P" rζiK} :VqL6JlJL4׮KV<m,N tR^nމqZXDzs2HdHD(Y6rt%qR9Z2')%JzkzW 5 3{JꜪ:ڗccl\T==GHLͻl~Q>>9? )/ >diݲjIP*g )M+>%Ǽv!1y2%ʍSdO^8CUiψAWM$ZTV,Vg0g=P, :Y%MF@ >Ҡk+gZ+)בŋP$|Y h2^ʤrk2*Xp-f;'2ؙo`;VN}tڊmċۚ ̛;|5bGv2ݺVH;v!쉚(ZΧvhʪ5+Zk';././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image009.wmz0000644000000000000000000000141314741736366022106 0ustar00rootroot UMLQv-HhbI& K %&^jժ%^c^L8rIOL^1 +̾mK6ٯfwG 2Tx` C4*xs,x>75Xj^spP 'g 59e0\,?0_XGG8D:>_Ij턪 Z-bp,$'L%c{=oSmfY=tDy&rw񏰻/|CpLEtzr6yw\z\E.!o/r[ҍVWb?ReUlU9;44qص-5-_.АƵ+zK*0|ooÙgjT;V~fi[g@2+d[S S?2 #>Sqml7N LJcip+tKVn%2O`ģ_A ؛l]6\Qmx }N 8dd{\=_m25=FVޏ@kA?`hŠvPsTjLTÝTnF7gH  & q%IG_tGaFPA[J"{eU-"F4s,J|20Sxds=v3x4A35SQ_5VT,Ɍk3././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image010.gif0000644000000000000000000000140414741736366022026 0ustar00rootrootGIF89a 1w1!Software: Microsoft Office!,-c Aڋ޼0扦ze Qd/)rLWѓz VIʮN2:5د KAgVm_qt7Ux6ח!GEH7&fhy8hE)V9JJwy9ixY zȚ )׉S s꠹e씦ZͶ썖c%~.t jR~8FyoU?"7}2Y Y]z8;&ÐGkLc16f<zބtYc +s~@$]A‘4i1ؼ3 JT MQ*ѧ<~U,6ld13B,P8=|/'c,G`v8~`z9R9`\CdBiǟUIx&Ɯm=;#q{ wcѨM:f#?YM>L"K;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image011.wmz0000644000000000000000000000137414741736366022105 0ustar00rootroot UMLA~3YkI4) %Uޚ.mpsSqmZP I1'^`Mgx &ANzzo-+Հvyy3`>=y' pw8 K_J-&:F}{c|Q{Ȍ!",">(l+/DSzV(^?~L?&DߩgsՌ: `x∞>I<B=epvI(Z3i0tVw'iAxS7-*qZe^1\0N3D-űHcfswer(@b:IVԐ&j6 V٥Rڸvwe[3M&6SWdVM}_]4]GZklywNwOB[nv9[Dwt༶u3}]#)7::K<<$?0MHTo"eΨCsj8;/saRS' h<(_Li]Ґ!ih0Fl1 ">yTכ͞#/]D u*lA(> :90 ,9sA8Ȣdpf4V~7:_!9pL+$-9a@fHt6Trt[k7x+ƒ}hh]ۇQq .X05:45GW)ܵƙ#?b././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image012.gif0000644000000000000000000000102314741736366022025 0ustar00rootrootGIF89a1w1!Software: Microsoft Office!,+ً޼ H9*ʶ+Lי,>9 () LȪ ʢTj~Oصq^zVnxZ W#◧FxtVH(X6vyA!) y:y3jWxHȐ[+JRQ qH$ :L| ͬ|gZt +=InWݛZK͞NL;~nln_9u}J`4YSaZX6[I⥈r8 "󏢊Ah<2^Ln(vyՄd /t!b;{-& OT"5U9\z0Pc2jVϴicD<q={5?Ʃ>Yq)ʗu# 8֜y'7̕nv)vzl|#P(JCߧ&TQ$!xhģo4BL9ϸԀCk#O[|Φ PjB\|hÕIfV$r-iEѐltnc:=[|5_ςY 3,VŧUfɺ>)mZ5 4hIBcc=Bz7-MH'ﭳYtjOhz8?ԶvpW(jx=PtFO h7J= ^T31"4R D8 ,A~ DX2+՚ mN* BHc[4N*3{& =v]'׶.d7212QǼP# k TB+<x~˟Uz h././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image014.gif0000644000000000000000000000114014741736366022027 0ustar00rootrootGIF89aAw1!Software: Microsoft Office!,y;Fҋvvdujf{6s0]@<"L5%戛Ҕj]BlkևM"hMFcz&l7wF(GUgXB蕆ظHh)y5"ǃٙSjzg3YId$W4" |;єL2ˋuD z;M~~[YΌB/?O_o/n/ _UG #A9QmE2gbr#0߅1j-i4OJѸ f%:!ޤbrCBAZ0A<bFSGbgEC^=Z꼖􎬤ҨuuFT4.Su),RgnͶ$\:.aOxg;/g3-@kE #Y~  iۆ|[yÎ[n;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image015.wmz0000644000000000000000000000171214741736366022105 0ustar00rootroot V]HQ>gԝ]խs5RL"tks4*-v][Mz(?@"""zz^z)3-5ޙ;>6=s=νgO]j( \ڱq,(10B t:KѲΉ<ä5y 4 !p3&%w)rAKH@FL05Ȉ0Ӡs !-Ez卯ɷ~KF] d6ɆwGbDk 0%"(i$\⼳1^,Q-d`ǜoayXwYUJ#qLUt2)bpM6/' Q6q4B0Ta~*K5x /T,yHEGjG8Hu_Y,k6$[sM\y(yͺ>[t$7?s%(;9Zj /֛:L55p;LVY5bg~d;&uu'm3{MGulDL?pƼckv,!pS[KFivw-CN5rX"^E$ERcX[Kp#іvox"PPVnʶut(~HR-a&F> RUDiH O 7)+.Vav z˼X/>[7n]bV>?yW̻s߃e:#cͫ1Jte-o:CO=#IͲƃQjjHḋ}[̯&me4p$.qu>py@_gC21gI"/.2 ././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image016.gif0000644000000000000000000000200614741736366022033 0ustar00rootrootGIF89a85w1!Software: Microsoft Office!,21rhHrb, |O(Cǟ%(UʸZq,I4Au_2}<^dSWija6d'8wB95T񉣸$uzzgJ v`+X{5 "\k ̺zl"(,y,]=|J%Ē-]E~[=yNN>j M4]=BDpu2!a6nx5l c8[yzV d̑4-DCqIN4$wn%lPi"9ZsVBjPkI$ő@zr: -;^JaQ?fj0%).3#M]xEϖkik_pPZ۰qE|e@7v<ƙu|㺷1KW~ ;lbA+ZJ16hԺ&9NεA?|\ڙow|T潫^*#V8>BF黻EG{qGW1^yf)7v]d je Wu]LeWyA嵢%sȎ!O.3&"D6^Z: }H#o5I*/Xv2*`Sv"NZiYZf6ecWӜttٙ&ilцxi+9dQh c(NT D& CvJ֙iujQz,]:%g;zIAbvZJkeڊJ%*)ڳ*[~:lt< [ mhÃb+v&c-['nZɼUo'p譯q5L}Wlq;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image017.wmz0000644000000000000000000000122214741736366022103 0ustar00rootroot TkA~3Im P5&\IDm"E@ⱈ xċA[׋nBP!͛f}{s$pr%@]cֆb"Bá mZ~.ZzN?v7`ȝ! E< W^.Hۥ\rA>EG~ݢmKݲ]wrbv]ɕj+V;;jw~u`wf627d/t = &'ǟG4lԠCNlHrU#Ә6d,y/SZ{eT TcTWvuL~061k3]cZ$6: k(Jh<ėv\S*b|?Vfj {W-V_k&"`f~1я/*㾝W2sw+'+z9Ƀ9ò'IB>O] FK0zFeL +Qi# Qƫz=.b12`G)i'kb|A _(,LXj֍aG(m*?YyxnPqέo>s=(f^././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/image018.gif0000644000000000000000000000057014741736366022041 0ustar00rootrootGIF89ae/w1!Software: Microsoft Office!,`(ׄkin)oyH.0*"Ԫi\,E3;Ra 1b<~+疟Dv Yr(سCzbrK`lj$zdgu.mޤT N´;K2wOW< pћt> 9eJ]ŸĮvg''; ,0H^%Ӓu!BX*`t2cG ͭax(6F,x*jbDd!Grl~5 M0r<*m 'H$Zr;["1P}b?1K)(21hͦ`_xz&WZP!^ JHwXSD9idBKnwFm/5*-=Xl&8֔NJϕwT"~bgwU¸ONT(=W-AҮ˺׃Ukn\#! EbՋ`]I" r l x1ULVxb86v3cI˜2bBKTz]λ;Vf-0=ihx@) HdR얊NONT^X&Y;././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/PyMCA_files/oledata.mso0000644000000000000000000002400014741736366022162 0ustar00rootrootࡱ>  Root Entry@Ø_1160990284._1160990285 _1160990287  !"#$%&'()+,-./012346789:;<=>?ABCDEFGHIJKLNOPQRSTUVWXY[\]^_`abcdfghijklmno xp^RЀ3ÿ lHbP  LPÄ!1 4axĐ% y@( XyT0cH!-v><Ff ہV30d'2b`bDD`;PtGC y'b/zC? rB x#"ZX Re7hywm?ؠy޽@ƇҌI{y_Hf&秕(d)*&&&g+0+&E|GϘBdAH͠rP C(@#:`ɦ`ː̐q&jǬ;qX!(dFFf.. 3<3bAK @ߓ!h;C8C(~S! @q npdʇ2\*`~>7~J ψ1 N@2X"6Ae}1BR`x0dC#?(RYz-R&F!T |xVo@ِQ5HHPBt`Au"6j#1 `( ɄT*-[ll`d}F T/9˻|ݙu`sD&" r8ov8VM9yka,4A *ס.?<Qt;{18v~rw_`%0DD!N?/CױTiOQxˌǽW;)G|Z_{*t27=h4 ="$Pٵ\*ע,,6{kPvwR2ٓť 2owgK(lQ&F̂ "p'V#:IaJU6Xх&5A t̴էy_ړHUY ¡"G_aUvaqQ00mzT=y0ũ1Y " 9f]'zaۗҎW4#9G~oHOiat'xVKo@I = D ZE8&㐇HH 9`(rVq3p G$8k0DT%;]?$>|} p DOxs8?7l?yt؀N T+7P/OJ[7#)Y(9M? 0?a~@ QCGTɧii]ӿ;dW>ի=7\w[׍sQD]f^Ob6Zw ϞSzhYvb~ r6.\zdl{>,Alwe1x/f`UEiH7͜qlBB.XfjޮUHkJ.*i %$tAȩ9rN\Y.jHS4pt],"W4tug3J.;] t1UkJa@OV#y<(C~]'$H[")=](ס FSŸg8w/TUVaÜ7Uc{N a7L<.O]3آ&30֗iF*u]k>7Ƚ*'yxKlֻظFdxxVKo@{mHHyzD E8M!iFPМq_1160990288_1160990289*_11609902905_1160990291@._Њ$$84T%~;O/oޝ  9|t:3P6̟POT!2Խw횗8g^ E֔uȂ9P~( ;c1-xrxVKkQMHVP EZpQqNZy\:%f%PN\ rZZݹՅ e&;;`'"J5_rgs=g/O~BB@;# QwNu!w/4ğCꐠD*৘@g@x[m[nzxgͻ=%|zywq"?FYd{-8~ߦH~?+7QA#`gl@{ D8 !d^ݟGR5˚4?{QR* %%rvi5 ʫbj{$44wLzEe̒Op,y`^ EߌzG!E&R(%Ąfq(*n4VeJdNRԫ*94'ghd9/g&}""Tf{1OT4gbW&-5-?\!B/H,pN/8x ]ؔ %P,Zusڔ'J&$C')SJ?.<5_{}n~yga!2HQR*4xμr ߃hq [ND :iW|6Wyo۶TTcϦ_XJciml~r~ڰu!*[1Jsf&uD&t$ZsKvF; vxr->D3,Ji$?s!:FWl.x"`7I2.|K3 qK6yԭYy6N3;S'11%ENk0SRrY $brp&6ɓJF$k$tRFVorv_uO}ͨﴻI5Ba0ԶP>sR͹n yCn{-FxVDn pAA38-H4IS؏4)i@."^i2h[[R) _þGZ1B3A[._Bq#كg[_ ØZ!>k L?hu-?`|liѡ=8Q4I,2D]?ab(ZpȀg(O+mhe5uq9; 0P4tZoe؆3RxVMLQm*XMH@]Ԗ MiJ)P?Jr1xă^Lԃ1{^kmR hwh4cچ/I2)M\i+)ԓqY?މuA_<7Zzs_1160990292 M2_1160990293 Z_1160990294e%+Hl,=eg1HS^۱(]-ȶS6?;G$5TŪ7\X&vD5|6\J#%QnY!2s* $S!Jk?9靋25ObQ-4J?vLjMgS?ނWlf6p~P']&.%TE@&3rj.bl(hz.p? ccA"8MV7 N<dF"0TL"L0%Y . ?*Hqt<|g66`l#UQL#HFQ[|䌚smE؉LLq zWb%Iܘp1 M #C͹eueS&}M,*a+icf5 JJnv']Pŷl$Sgþh N{أUaDQjp-jq> |JbV7[wpuKzČ\aLr@~(|S`oR[E͎ 1IM'q oo/w똡xV;l@H< QԚJ Tp26lJrjkԩiYQՖnT!YUNgss`V̘͜O^')lAl|NY<8 ]+zU*Ԧ~=mЊM IWnKFEB]TV2Fk $+VC99#23RL/)Rq{bGy-(8JӴ攲=aI.=")%&J(;!XX v6a( 4FPKҎmEdںH mHNI2yY Vĭ tX?ARϙܩ :#EKsܓ{}.džvqĝY%l=&~ %|Vm?E?H;w[]6[|לKP=O7sx; $_2cO_do0Z`~/_ǝ+O{uz͹tpD]>}+Bwk{qJk\ӓeY+iGCyG9ZN΁uiO1c5;_>?/x>'lYO8t()œV3V5=krFQdąfq,*i6^%%tNVo׫)RV,WCH*` 5G*MңZa[2k;H(T^D#f H@$!Dv͔1aрlP`PhiO aM_]YƷ9okcA6493X ML%m,.uVD 8ˉD?X11xd9U4hZuhtʼn:}Qu1 ZG>z]|&zp././@PaxHeader0000000000000000000000000000002600000000000010213 xustar0022 mtime=1736948982.0 pymca5-5.9.4/src/PyMca5/PyMcaData/HTML/SumRulesToolInfotext.html0000644000000000000000000004264214741736366022776 0ustar00rootroot

|{-SaZgpRxN>o҅q-T{ gha ȸpC}`X_4k _TVeioه!@/liv= Y76nhP;3 QS{GoL~!ʑŷL97 {} *@v=$g3f{aso -N8Ow4?vݵ5GS8VyOy{:l>X{e2_M~?R` C@l!XIZ4>Tz40q]F'[ha|/C!|7Zp;zx|(.^ewU}<խXG{e×.Hjn>ڤ>OvϠ^v&QvLx}˨LVlʩIOiؽa?; 4@p/nVL12W' neI> IGQln EE SX.PS_1 T8@ #|K&ՀǙTbSV7X&-vsbdpt7fa1?@Vb+}N7}>)+1l Wqᮖm W; ?vg<3ƄN7?%7É$8CiO j&;_%2_w50dD5n{Ko!6<4G"ANmÅ Cky)vnn֞ĥptxC|pZr$o߿}+: ř c5bfţFU 7^ԡ _ʰ[1o/iU'%]^R^7{{ *}٤u-z,d.oQz(`"_?wO[z~[{X9z7޵ (ߛqu#>~n~֤ׯ$\?`bC<X;F # u@L'PCoylʲE"Э,' Lfuz4el^6$˧ꝁeXy3ԭ0YAkJrg'(H=v!їȜ-{ɕpЩhSuZ28 )G/f9U7s 7gt]Xױf/"Y.XcF^yHE+xjqf.R࿗C8$*RKҠkfNm3Uh*.h+ dF;blԘ%G$n ~זU:Ne̴=Tuuu-KyRH#m –M]]]X¦700ڌFov ͧ \aG: p&2}xe,̿@@Sx۷f0=T99It} h~FN97sJl&)5n`@ Mt1KlwI]2)| kB۽ʮnUJ6O>ĵV/}*% HKXk"K~Wkx4:z^Kp%#{uO,COiȮ 4Y/EDقl/=\̇ }of{tᗋNEF 76|xliG! GխHQ HL~;_/ex.i9ч:?s4>qy'[.zk:,ȁ_o=/Z~nYfe%T]/=}l^y{XA/Ȁa|=Mts{ ;As[t9w =7)-/h2f| i?Afx}6%;9&ԩ}~Ԍo+bd#Q|zO ܾ,!UVoOeyH_hek;8o IGvMq/Y.QH~KEnSñ &pFjwpܒ膋$|\Dې@x=#u{Y=Ol^Gԋ jv @RAgU 3hClIɸ9 =j%@:, _XoU?#c>j{(-[_ ZN5yƣ'I?rtƵ69q8apZ4CtX5+ɪ5@ճEip\g'\Ǹv&/{*K?;SWlE$2z }jHy$TxCsO3/&AK2}4U}_}0!f]}XC ^98Oqz1+z᧸B߹SCvF?J%HٲϑHmΟ|phZ/ #I$,/^d"c҇Hu gþwZ{^nOCAHW>WV6mN{ID|Uy~(Am{1ApJÅ\|Ggz.a} p$hxӁCO>9~ إt0l#n hӠf08 9`ʽڋV}NoklnX/=O,WL>^̺r@$qr%*USӅ &6U2;4ȍ VoY. | 7}m[" lVo[\׏FcxCOkLSIS:kvM3_k둱9_&z#h$Z q_rA>C+~l68Ɂ3R3 ~L@Q{*cc_Csm6ť@ y}j0JD-%opP k\խ]M]׵sz?c{"`]Kɽ;C=x:NcFBbˌC:U6ގ>kׂx8$d$6'zcɉbW~%3p pP+aCA훝^3r^X#}Hxp2AP"Ig&_]giϜd͙Ws ep:@%U-we;hQ 8o7h,ݵVr_kdeå6y=P\d}]y &:G`P0A}< +2Ȍ4+ -DUJw{L˞Igd9;iA5:aǏj3KB XȽ ɒk8ftl :gK9_M&^YHM3⨡n]@v3x-"gr ~|I?A*0`[7}L9t9+D`Af$w{Ah豨 @*Yy;I^(Nt,>_Lgv^\O:oA4Z7Hg|ooUK=͖|_5jJ.LWKsYe~h`'\~ll)*' L,CW^VpI2G[%-~\GFÏfs6j 0)5_y}}p\8֗HQG[:r4K/A JV{o0x3-U$( b%{*H',e}yCzBW}x^tkهs'0hg!`b3 dcazD!ܭ`HFK7fpX\=?5艍I B>MfV@Ïګ-y_+N౰|/G*ӹ꤭OF蝠~ѺfMa_Ҿ`$Yg%^%^΁ډ|xBlwG_뼠["%O^5ǣK?[0O{%%[(X4I<.o\%[@moK\|ntіusP*J7ݡF*w' Vk:1'q򔘒q|LȣJAs7Nt% p犬YV-cCݔix_ȌRPV'y}+NP<(OtasG3 `]uA!9pJuM%B8;y7 9қ >̘/&;T1ǖo-"[/s][BF?a,En.q'eu\?'*|Hj6V#%^\Œhxs[_y #:ysJr6QUO dZ 9eympS e4[/#>D|taҲdYۦ> 6 ƛ"8NfK⇙'o8U2g?݃ca:C| 6sr9m]{y7{UĒc䎾>K"M>'WVI(ΒMݳԗ<^ãʄ?\|3p_d8Zpkq >&lޣl\3x.|W^DͷmJux60/.aa:ܟC=|^Vu&[*KK_v%̅1_B~jtz7^ -~Do{@$ ]_K}ų>/ǯCpex^ 4@[î /{ 0=d"\P?3/e-)l s.g͜79(u9nHn뽩 2+Ͼࣧ0O4 piV=[K{ˣ⯿|^]l!~Yd[Zp*ܫ]</&pH%G xS}"}@':MO21t-].|jBӃDV1xDO'mUYn'pG6;Jbw+2$?7 2Ga?hv N_SkR:BB}Y& LRH.QRj/ ]E[ EcHc+;ڱaU=O' !lEWmOnВ܃IߛfO x/EMnOEĢ]t-2g5y dF(ыV'+Kw_ml!*~Pxq:oA9B(f,x1*9nQ_Xgp>Tw3`:p#Y,EY3BAta?6s]7*}vիv$4|l9ܩ4 B, ~@o|AtL/ I76Ҧɣ# jPf,gn|zkxn;` ƈ\9:7ǵexH!ULa~P yĐ(tͲKw]POC#>پ.oLᣙi![ӝjPK x[(DH>@4J17Hf9laTD@|s_먫0_R5!O$ p !C<" 8\pl>]n8JO/ڷϊ%'>;-ϓ飘`zj t#y;J id@#d"no~ 7avFJy Gt1LO~a1)}"7j %ЛY5B&ʙGs3 Zf^b@O2oVr2[4F>[c/A5Ph9'ZVwTp8j ,3;>,e_-ir\35}ԲGQaX t̶"rGǀ#tJx#ް.]#?oC-oN@ȂRdZ%k5))jK }g+c̏DML$ / sJ<>uΕn.)1ң+s< ~8Kpv48ڡMwΨs*ӝCiNy+jiN.M.uЇZN]T6|_KS7V{8Rxʧ,[ן뀫s#-v+,K?U]3W-ѻ\ZYpQ: m6o;뷓ph*S`R={{FAem);QY?̷CQmϮښA$eJn_⑾OpS3">ڃ0d|з2*J/G{߿~wCN } C5\|V OrVS~uth٥e.OEwf@m -ʀ#a'`]s\@IDAT!|?$iBeC' ѽx$<5AqwCO/`,c܊fvI0x >@g3l&SyFmCehSϱӕ}i> MHIp@Rj*8+}Ci1?:^߸ݠ-\a'{/+PB×eofp@*.vM99$, /?n;q2G&2e6?ƠӦہ\A06VlN3t zoLE-ml5$ Ymgl}EQ (K* x ?% ,Y7cMq2p;vPvuk#߱tlQAu:+<^NSm=Ulw1u衮 &RۊYţU $pdPIMt+ng,Bz>VCEcOG懏mܕ8@pYUe3<^7^- 畱L_^xJo["%:e#Q<\E0jϵVࠠCN،;7`g/7;8F}*1gGYb56.h|?ά#m`6],*Ho:.ӫ~1{ u%@G{;|\RuJ45FZ5dj~hs&ݒ. ;qڒx/~SzaK< }Jd|1سt=vXGoϷleww[['ޓ1ޕHC>p_Z`- ZGoڮSǓ [3Cp_ r+nb#y ;@Ft-lY/~KɏwanvCe~zzن6>|t:.!}56ty-n]LV_SN@1{3XTZ#y #`;ls ݫ^{;}`qQ7u>#7ͮ5uokpXB'҉fC>>-[$Rt!٣6gnB~@R4{!H6w}3@zet+>t*#zc%8s&Vߡqn59okdzBƧ?䯭PCW\,J=VjOk/1NW9-JC[M! .>#G&w{D pEIg1I)# }"Zcr쀍t?*'_` ;Fnw3MrbcW–*>d%[L1 ^άX 7{ 8m/8ZpCƁh1Zf{Pb(5v1DC16[d^diDy=P̆G_mMvg#< Ch{TEv]gȮfK:?޻ek.uuH^#u5p\"lz&ӽlj(jAo-{VTj[?fdʚE~ٲ ߶ ݁47j2$L߶>_ |?t/?:ῃv^=+.mafhřl3uh/_Kͮ/!ג ٧5fRp2?$rk z ^۟Yn+O/{^@{Њft4Hx۶$c8xs%%E"` d,'46l,7pJp.YmGV|89vm7[)&kI2h.zDCTf27{Z{]m%{*F 0ᩋݳ⩻V[G[COz*bn/~3O`Gbxeg_qĊ=C"+zHR.m%[;ѸЈe=!>G3݁ڑ9NdFwװ #Ǩpr -k1M@]`s:: J! JD<-T+}K|Ʀ ߌW#L\2 ̱ ] 3spuvn H oPY¡սr :-wś#^0jA}t J9YA"i0fxu D$^Dwᔧs> j5XC&w28F(݂ϙd](u*+^(~pwQjpK{qdt}=ϵd:*j¿CWNBK$o:$Rrʓ-Aכz )_k) S_ݢ;:8NA^dxvR[ds Urg#fL81}!Mk?z\'s+>I:bB'8%G+Ba%ӀgWw dqW&t6huƎh͖%֮ QI9x1k^?XHSolpgDNPJ N6 fUVVU@vNW^y@ Ѷ|?THNHvi:`*bOY3޳>K&$y]-35g\c:A{:Gϼt@19<zZ0ZUIp~ӠoAcx]=| uuAmo.cɭo- | 'iVq{<%OxUfOV֛CɯY4 p!A;$ G~ ڊ&?t2} }oW?|g}4 M;tp Wi&^Afv%`?5Wwnz]k3?\0bSI7jQ3Їs$33#Oaatt]vl= /U LΌ髲sdf#O*Sdl.vOu?aq[ M[9ᗚ=$:~mZw/XxR]kC2P\Q3)ZO C@eW>Du@VKh"hX|е'$tz10}]_L y?}m}%9|]~qig+$-&.j_L\TJ,{[rE[dRl);ߪ|U<:qx:[4{VPm_}|x9;Fʒ!^jtϟ:yh\h*;<M,l黣S;d *ETOqM\M$J>JB^W&%%Jt ~[y6.O?VY b>ŷ}maHl3gWUM$ЪxB нe e%ۍ)^U8;$4:dp7 wHm10q$S,S:NFl_*n'#g\G5sɭT%+]aiìzxvt]b:R_GO7Od[:O'+וaVT[ f22r /wfguJ@eenW$CG4"O9'9~' Bs`rVg}6K( IHt<$>ӟ:?u[J\p[)A>agW Sm:Y#}4F:vhQbrZXLB|cfjX$ǒq_wm d$<$u~.mw/#՞sQcIzAY/蠻vN);ל6}# YuCsXWn4{ݟ=K.}VS%SGl]{/=ϭ p {tUlppЏNML2YGҖ >:㷥nW `6~1-.fpV=HҾ/h GG&Oq VN-$_߸[m-wpoJ|r|t}2:cǛ5~S3Ȯl#h, BVsnkP:wݗpif {a8$ lV*dtNV/p(ɣv~z{-^Tw;"ڥK r%O *'fsk`˕j*>Zx(&GivMʄV3tmʜ>GpfyOwQkwĥcm_G1;swf〬Jzx艹ӫ'X+:p x"pQu_t:!Sb0mJG9:ڣ{ y9$6Ow~h`-f?ԖQClP ?LOp |Ӷr} 2,`ippC'b%؟%Q>8cPU[:<q+=nDy : !p=d e_l: SGu-;h`_DxFqz̜ǭJmj }2kי5F#9L{#oRMPŊ}S+y6x|cT7(YA [_ԧ>[5?}dûI.`iam 7߮cshXݛI\|'>o!a[ 4i1{4He|ehrxܷzf3"V8-J\%Ty 7~R"5_l_2t<~8q<YZYB,_xheWm}G '}?Zl,<,YR[O&&h$U? 31U@ qqkBAM2dKEN-؟& F@9xۃb 'xSdi˔'pZ st%}WrҤ䲤p~zhW><r쾃v -eǠdkqX c̎ez/գw3sՌ``Mfk{TMx4.¯:?Fƶ oIupb0t ڪ £fӏP>=# )3];wNasAJɆ,j80X'8u0aL03HȎ-[ـ@~U2;snP.@Yu y͒>:t[V k7W/^ pWg5qꅖGG;ԺX=mh>u/ΫXڛ \1kk Ð0nŽmtr>CZth*XLͮrGOⰲq|cg٠ h̙@i++ GTG?`D}ݧx8;..~Ё{7ؒ_KѣZ) A4 R%%0/<;yYl- f?x!-K?J0ek:NW>^&'>)uڷ ,mef'_ܽHNbѓ8?oic+.N) ypd/[i&GB~ t2@UR1 6X;_tl$o~*y&/Il W9Ktu˩u3Gf xYY9[ xBk&f!& _l>V?nFO V )1D|u Jt($XkdBWb>ID=>+qk}E$Itቲ©}_.7}kX]'J$mjӻ/mU隟]Ń]cMU)1KwU'}F.VU{!NW1=U6`&i^t^dL+ Q@يuMG~o uPuc_suKj3_L'Ofu>xPN{|xNZaPZ&_[m`;kGLZAl 8_n)*i6?Br 3/ugkOg6&.+Ig6DAדO{+Z6鲾*Di~@3?n|{ӱp-TWuW>JIN1M,GgB7|׊ek*!>:'^;/RZ߿s,=Ў. lr! ˢ6a1_6%Wɀ*ʣ ,~!zCq'ɪѮU4^*g tLݽB 60k5+Ź5y@-?qN}Y"P\l"|5Rj,tL0G~8Z.LU7$^%eqI=eqRY95 !1S Ի sJ[ZP՝]`-f=xqnmqhۊU%!dW)18(G|6 0]I9AsLJ+~*(e29u|(}s:ck$":ypq1\\?%0A_gfK )ܾ3F!^C}]4L ͎ BeE&^_1;]_Y&,g5l溢sb2e)%"`RIZbO])h)ἃ +ޖʖ%Y1HG6w͏}gOt;s 떪 sddG^aYbA,U%>U#ͦc ;YɆO,vg^-+b^oJl-cD#AtڈdM,P^xlp]N4ˆgыC&́m ^h}r:ek8}pu3ȵ@+A 7`)dujz]5z{ӪP_-Ɠ`L}_|AgxUzx$/KbYg"0">%w@ =ls~yQq(L襥^ܭ $dǏ@l)Z$#`Ǘ>ga}쏾|]ucǬ93do0q#hk>Za !~h>o-{|׀u~TJ=ϯ?^㶆8ȏ1~(< ,wK;7/$jm<{F>C:>- ?ҡ9\{oo}ꋋ_+1/?Z(1tS>o:wX%? ^;@%t6y6nvos`Vt\,#2Lo%j$gnz.3jgGjbem[w"|~ `%gtlhJyR/>=/{>🼇_=oCvv@=!5!\c+T?~}!؋S yV% V"sOFVܷnd}}RI,|xV7%*g]nBLksFCp.XWN_w+׺@msߗhS`<3Ԓ^5bϪo=R"k'j_Bw<;֠uzpbMآ= Zku}vY k~q,|Pm+$*GSEOWKT['ӲdVj_c;NڥyD7T$;3.zdګo>+Cp'b=d?Y5V>Zâ=i6>Ð'z3oÀ2׽r u2Sc#谌J4ߓr§x \YԷ[_:yfx>ƅIu>2G_J;jn?hvxkwӓ:d/qe"ENwm{4~lū-Cnnxla1x:uxb!AJf}{E87v1~PL*TڇV~[>(2X4Ql (m*aV~Jf`!" GR>$|eqHSQN{2?a|\c˦p,p%e 3%/iH K&>d<9 1dY+x`q{(kVb1DNsT1#`gp5+9b-ie D,N7 SpIӾPI,"#q_ @6x o%fǂfV3V,>MBF@zN\be;.y"9?*T.Nw7CY]+ԝH$izc͈̪$$r#<ϧY4_UQUTt9ofN̶lb6i_[ -.IFe[tqgjtinN0XVD\A#}ԖtYumroNj{yx4fڷ"lCǩ:?nÐhYivB&I6d}lGOll~~)1:]Y'Iz|YT@~XmPyA/Adti$Vc<Ұq>kc.Ze8YxK":B?}3+ys{|[-:W7C!VIx/V3fcƛBǷ jz:G m2q1#{>r-~p6@{M-[lmsp.dד,gD_`i3݂]d}%4Xch~p4>ȼ.Ԏ.u.L?{^|jO͈7DI8AH\_B!y|RFf| fZg/ӭ۫:ף,.~!D5 j0OGcD( MFɊ/O9PNVzbF|V[Oou7IGfc;HWq]ǶEA@%YlC a} _ Ͷ}}$ X C'[ޠ-b~}`~Ajp*lx@X+9i+|[‚Ytb)^aϏCW¡6pɇ>Q8ʾpr!؊vÇ'%f|~OwwK.5vp4py%=C#Trӫd]grKn[Gh8;sGkCpOⒾ~`3T Odk/q:Qm%Зk0(1e]G1e:yq|V>*L|2|wF!d3 6+m hAe#SKm3PNX#Z?&*;ml&nzě{\ruEDM7;SӰßPW^So'bK⃎ƻJh8ΨQY>;;Fܫ$?C?&/ B^b&NKX&1_*UӇ GZoÊ Բ=lPb)'c66FQB\K=c#C0zs?|:D69@2oiO lx3t1OǠiYB4Dʀuq] { F`~9Ш\ jN TV릁,x b38ucZNe`pP`; )ҕ]--O9I bM`1րG=zs9iFX;K9gHSZ;C`nų^AEOr:a3[T}NkK΃GZv3)aD`Q"5W8<1:VP{N}ZePF@#0{A1:#8`8^Ó\*C (:& Û֜ަ%x@^1vA$Tz"9LG8r ncӭNq&Z ~@&e UX^P>9<3^q|c~kS뗾vɊ~zѠ[6(ԫvc\<|H:t5]@gI4c] ^,)&/;^i :8YZW V+ldδ6֥k?:?ŸAJVHz `yddUi&Xf̿yo~:OlXn/r|~l)cT {%S Y7neOIw60Գ+=ެ/^\7G9Owj[,7|U+1]qWkŌ.Z" u%+x%B5៮F'jՁC6+FnW?\|%Ba+ g~hEAOYGv@ _F` 0 ?\f~(1AF[7H_ٻ"< :%GN 4xAӧ~KW$8{RjNM̦n|JC8 If#xLԮ3>|gFg>?ʮtglZMYY7'x<$Xs껣 w=IWw;KVR4PKd `&aM3~mb:%&d1鐶+i+X .ovJ/QϿJs }'h@^1p_y3>*eĽ7-THÑwmvi/sWyKN q UPFb[pG-#z6yˡ.}[?U'E{jO.tJN\IਮYG^vv,7W2$r4'ak5{]:wqmˑaj WzmO)<1LɆe+&+aovOǒʋdPcUߦϧ`SkΎ%_ӧn}vd$]p=%V1Ao*bqRђkxc#JLzbA~!ƋSvmO5d5.oaKbc+5H]0=,Hk}}"5UbI&1|pÄ Im h-_% c>K3]ٮg?%;|{-_P܄3}нU{i)| `7{+zW-cHAa>fmc[N U;ލ9|g9KLkb:6f|NzMf3G+EYI^WK\D忖<{vq}?;7ٻdfxp}Lcᨨg g?ܙ识cM j-V,wg3X[3:OV_)fU%!(&*V&l"vi/"e:Y|3ѣ-k&욚hcJbt$׮ǥv8ճ} `~h>7St HF{b99`x@)X6p(Xb@v@IDATY$GݤJ89 [m]kjOM8ncĦ$14HyR1>2xUAY6N/<"t|z"sVn?"*%?WCÏ _El놫ײе˙.񅃡`/ BJ,&~1D~%Kɹ~ K/Ius{dX# |(m(MT,>->@03/ 8,1:,uE|!rzW Xwpܺi TbJ4M"8,'po;XIgp,o ;zzkm ^ǒS䁟Yrd:Q^/5+)`f4}=g4;OqǵctБ:c2'v`{G<x  *X$JtH"y?cMqvI3 F~z~ -I ];'tNa7]9鞠HL&D}fէcm܆w҉KxH6L<>{&^0j. l /1}$Z8Wg^O3*1A߈o)*覄οG$M|CAt×O/kg4tK$=Jn1V$؉A /mV3Zu݀ݣh|9X)˻O_7WG Ž{[QɥhF͏#O$Z De(1[aw[ֿӟUh>$ #b2eƼzp+x;N3;d[T‹10t\*Yہj~^x~`RȬ.0pNWb6,f .疯hm8}Vh 캢 H:pe]L ij0H|_2@ڽ^;T`%0"d~ٗ,!‡(zU۵'7[z#>JD%xU`5Q'tE뇻x’#P -G(=_8y—%otmDVINå/Tx/.j_Z6}g;A.z5+ڄ*:~1.z lc4C2`]3{bA>{7iڷn5R|┞{?0-Ӄ/p+* &Guc &7KSIZ4*b, ' N1;pcN0((紈fZ]KX)Ͳ0:|#4 WY`mQlꞽSro@rpzI@(til;Up9mr oNBq-˨$XbŰL9*wMUJ o邶Nw37Ek/|x~nädmiQ(o)*YG. CIkl}Ok`|YsÓ.[y"7R>{umm,\t$ɷe"E.TA&u $GgQ&Dm*;z.Ksޕ^€"J'?T3ǿph_Lj-'X?Gد(lEגUgFOZ5`Pch}L@U\ܠ}| {SɭS]?/ᱤp^mg|O-bZM{Xz~RO^d*Vd>m ʈw y0tTKC[U$=#B- WK%-|+#>?q(՛?<P2 x{C#х g.{_`*3"ե1W'leGjK[Aqg֜..1 V̾h}1 %,ZvAIM{U7[%~ 룷"}4 _La Nk$ư_$> pqe8ZmR] IёPYy}.*]3g?P*b7_oY0<$}OȆ_dk&{/|?4 63\)JTKHNN%=eN Zh>8"\X6&~X]%'V>t9pOntsËb=QD wI+}l my&{7Gd!̀~|V3]D$cReJBNÇӧ;e Vˊ~ _[nxśpbϋUd݁Wg<'񇓳ul+SK|/AS=1L"E[a%wtA@ r%E4wv'< 4Jv v=œ8|:Ƅ]mG:e)WVTSYwl@NDz(c G/[vMJ`(#CAx TtS&!v}sVө-M,pp+EI/ '22Y ψաZNkuv˖vtBt=89,AL 9u[C0z׾M]33NbJIK2 #hƻF,ЉQJF5֮sy3FqaV93=y7F;0`appͶ"8]7SKrrbǬت{Zgd61-(=z&<~>yI5$HXn:x<8±9`?ڜ[|=eMEYֱ3A޽ I֫ ̡{[_ :;+ YbI=Hг% jgky>"G!rCs[(\8ܬY0[h^0JJ5[K?< d9̬ VoHt*{/Mw Ɲ%]>닷fK_yfMW1ن j%쩗L|cC?2y+PL/ $Kd<)/٠UKzC5}&;ye6m? gm%Ir[^>]fR؎lˁQ%[%z|l nJ+Gc:[M$Z%OHf%^< =[# /ھ  :ؕdԎ+-`>'K@TZQ_.)(;H9|N*?d:e[o9Y>-=^KPVP4=qP a׵mE8YyNͽtq_$_eN9K eᰕ d]y5s+ iV <2ϑEJ3]ǂ/pB<9!om{YUF ,rSkP1<$*q3PoNB(F'~. kmW(B/\ݻD ۂc-&s*p̀6uX'mR9pLF|JwlBx% ~W۪?΄K:j';. e25!f9لۀ1e?;(4mT5(FD~gfh~bFm_6s y<#aگ TUOZ?ͿO-zgm d3hG/J'/x6Ͼ$TEM%?:%WO?ǖ;~zA]Xsx߽KBz>t@_4< ou߿mz3 $p_mih@b48GV^ {>L #/8={y`6'&/Xy ͐mPp +xȿHVXbĒd Vu5X j 'J&|(a n~Χl/?sY뱋_Jz|vcFu _uM!hůoߦ_73b [$6(c]o AzpVm~f>-/i`.z鏓W%vVYgǵGOylA\77X)Gn׶qA|39]wh4(`Y"}@gM}># |d ws kUfchyb+ܓ#*͏0x@@n_;pX"ZfCA =\8{3,iA,O臓MlgW߶L V<⛻~ Z{Ge<9֏>h2sVJ?>ǖJ]eڧN_@Վ[ `ueQ? W98 n%~ls1NlV|z){%jsܖ[+ Ϋ~ ٫x|$>q3t@}bI80Zȏ;TѽS'`6dzLޓ:﹟.j'ԿNdyG>=p~)X[?_7~HxV]xwb42Nصt(2q2x1\A)]A6.3gF0lfRP ce(⃩/ϔzpQaŒѲ7hO SIwQ5Ԙ9ܳ嵥`jwB]p hA8 H <:RخB-:;'b<î(aiep5?JGp=Ќc+-+>D&NEG7PI~}r!˿ k}!Ǚ2FөW4[x79o^;mWCq>| ~J8_YZ'39>S3V?T$R,G6:$D+9q3u5psC0s[A |xJ,3ٝyɄS6sC'"Sv̑W/8}t&߲YQڥ5_(p2ڢWhu`mz[f<Y]J;ݲeGUMP@B4wg/ {I |DZ/T/ѢF0pl8۬N#r5.ov|lϺ ԉ-ΓOi[Z!;d;&W~zfqwi:(,@qþn'V^HT\}ON%:_eL?vz}=wH}ڠ_O\?o7qz7W/~|IU' 'CD`k0kC,}P3t2[ov;3_Kt4 >t=,8u G'ʔ/MPūV kt ]8? pE_l?~r9ۮ\/{ׯ79 so<WI2y 3V -ͬMY-I~lz ox9]Nd2-# fI?ď|`~r=;su%]?յ%cRD+ju~n9-`Np755d)x6!+6KSGOwc[xPO][z}${UU*-Z vﴵZ+W2GGDOw* j@l.TnO0Q8 (;}M&G'gy3ʊ"mA9W}©R1B#>/O2"IT+T߾>x܊ BnQ2AdКmPʙ|މ{Uw+UtطxL}(i2AGZ|mWحo\'+D q1;%b[ڀ]Eeח}W:ڱzdOǏg(]dOx *YqvCt+ } 2w=Ζ.[ʧh|k6{l5?Tkk40.=,g?^_+g)w鰡v?;WG7OauS%ôVs};g{<]|ď?xVu&LZYە&8*O7. X[sjA V3h//li']=hL߇GtG=/x.Q% ?'*?nA퉧sIzlel<~Mq`cbV yd %n[5ȸǁE+5-t& !* eϱӐϮ08`qnT.=OfKbgGHt2MO .INz1texqAwt:_k3jwBBxؖ+}Y>Qfpm g|P~\qZT%Vʼ8)B?is*;v-&aN)nf PEAMXܫ4sd>AV([m$kC^Bȳ3k|uرls 5v} یAV/ nVlb72B/L_@e_%wM .` u`}r?p0 {5Ycß^V2e&8HP_sM&fIshSPz`=n{AY~? Rtѽ{'Dٻf!J¤>Nt$u l,>6LrNǧw?p׿lc7;p/zꑅǟ' ?|l uЁ_ruaūYo_K|OQj6۶ {VqWt.}1/0S$tf`DŽ2XO~w%Aǻ&%# 6fB./,9i4݉K3mHtur1oh>:tX9L& 1ɇ6&V8ރS[1ߍ𳒍4__|{Q% =j9[||bG&j:S bJk\qt6κ'DIl0S/X{?_?ݨI&\aB8 8i QRFtmC'E/@9p !쀓q,rN#Ǽk"HGq$!?ӱspѩ:L!G-h֣cу~d8A Eb3nGTq?u'“c׌a}ZX%42WlUGK~w/r<'c2o=~xJjͨE[FY]"bQO-i΢s Z6c+Xa`"H6{saKit$ DZܩE ]8B-ֽ4:dh@*ǁ䪸ƑeDʌ hǣ@^fdg+ 0˖ Ug &R~r0$bnloRozb񒢬'M'7`/6LP~NwAg\axZzmuK%I-5]D P2d;;S:]R6N=ytV=tkyzuєо\U!yʚ֕H)aO?n6}lw?4`~YĽ/7IAduZ:A3.?ijИ=L'?Kf-2DUi6{??k%7/D7o/.u_̼$JH}߬\6;_ۇfYX3K35+̞׍隧 X掾?z2PWMﲁ18kAk oߴ>xr`rKQ7H?7wuɖ)K?|9X"O/ ҳ_~|=]yɯ %=khxꐭ8C+*]f=@Pr`%X I4 PLxI stx>なGU1oFygGߟ|9p RZpeS^G\h)WUӏ7YE.!-0ѕ P$,mΊ|%ABV#vי đ6o)UMï&{|vxNcKCY[ӏ}@G m I PX]q.BoFƝ+=txTo~!kb.1>IYe{65Zb 1A6{%7‡-i.A_5#^cl:v;"܊ԫ"L,>}뢺gڧKŪ]S[P9p">(p#7ߡpO1w/.O)jz< -ehǜ6]jơDUA`6BTndM%WI?ga5ڻrk}bv'րU{nnu`QDp*=~c|1 o8V" O>VڲE$K4;GBY/-]b݉OY AƄN_UffZG"`>[H]R7˲`?&JN @+ak`ߠ5Z](c >"+ւjLb:b8hk;BRcw0js;9tzW@+6,oFh68V/ P. IxMKjd ɚ7{L!t)[u<=]t4^=zh5d=hD xߪFk;e?<'=F\p5Яd'ݙ##9lF{h`7C=iNdc8:ZJ`Wdғڭ^4С=!GqhJgISoIO‡ƷVϐL'|xTw]}~(ޟn_D6|ٙ,7{+^< TU$uj$POo0 db)N=226,4Lj٭ʺ.K6?CA`܏#71::, 𬬱 'x..^hO?{CG h [KDN473Κo5I{S?~U/;@1n'3G ̚ 'qe3W!vU GbF Ozz5+ xLC׾d^<)$ dA6O{_T^ֹ/xA<2~Z=48 NAoXȌ$1 K@#d鑐7>iv'e`|`騃b腯C/@>xbD_ɦng{G>vI  y t}<6.#RF{_ڧdYZ?:6e'D # ح`X?ⴻXM͒#ԇ?V,LZ]6J{h;}g_d>4: NFw<%)󯗾̠*1p=mv&yǫSݿںŹhW<}f'){f77xPzj0­QJ[!O}ƣ%4Gb@걒K4#2δp2trt+l$Ӡ%ڻkC=%"I";b>o.nl景] Le'v-|Zl $$s'G>}, [B(>OQ^هv ++3`VHt]Y[ Tbx hv?GG6 ZpEK࣐?au%o4=(ڬceMw'ϣ]6ꝭ,nOoCa%OˡiI, _jL?ϸ oʺxA9iV1ۧbuV@W_54>kXWg\ xKcW,5HU ](u^. Dpf#5#AXk:mA: |fZJ43ux]v3l\BS)D5(Yߖ4O[z.6;|z*xGѸN/ȿ™ޏ9ɱdr4wD>HJ˨GNs{yhT0Jj٢'J)u Mz%Poonx3wz~Va`-U 9-5`wc:U?GN9j&C|x/TK B/Ua5sKYwMG:%[Κ4 C_ndoF{Z!#?4VVaK.IAi$k;%!|iQ-ͮYp"^<=Y0 9F ÂSSfvퟦ3DfiہF%;wY~L8R7l@&|ڬtfQf "_~h"!XF^ϖ-7KwmbvJt[xiNNA"rʳUmt}ix@,|P%u@ʑ ?F.̭FkN|J^Ckg׿!^Nx 5h!|t?> {m4'{#qƻcIϟCѓů[>+@HgnZޔ.P|~ؠ 5oY~'||h^aA.A8ت-W[Km"iU?q8a~kz;\wIAuum_[ `,)A<]~TR"_^-$L"I+ϟ̂ vA&?W2H}`)ìs66ŮcczpT#A#OoV1UX]Uȏ/9=JkTW)- t؋}| ~Z0l~.fU/F`k0?LʹvQ}xnz}Nj6 ^*wxp͋Y?Vp@qb n#WIӅu}׿FC\JG㤯/$J6,.?kx$vӟC8k[K9B-6rL& 1Cܮ@riL =BG@ݗMl'B>L׾Y *&E3+ ꝾnׅZ y|r3@IDAT[F.K6RFq8O}w2@ O)TtNdD]?t |(Im V+$Wⷾ0W0:<綧v-ᵤIړ )`?Z*YFO\bhicM l+Dw4+SGnoV[hk@ 螂J`'dzr4`T[PR.~hyChǃL1u/~qe+/o YY?_=Y>QW(}It`@ɕ_}nv!rٵ%@@ aP)#8SX'R, ̀Ձ[ &Vp25n?N[A4@\It;,˲1ڤ4\|FWXEߊ86?P-U,OR 9өŇ~N@'$blKNn3}' C?EZSJE=Zhf Ǖܵ^ۯf x;IbȊR/ޅL] I^m_r̠W^'DCG)Iᛎy!,5)f %OO6kK{9ھq'PDgmmVz%cc q>*ug29~̮t-{/m)ӗ0ȧ|}8"zvGؒP[JhI }?l{S ܓ8oؽY <_‚YzGV^|o͠SK|}mSp`{.Eic`+ݿl`;V^r}[vs1HW6Cwx nOlO Gk,mgw-в>m+дYG$L:ס,^\`mbW+ rbBO=>ktTpP_V>p$ϭqךۚ*$Gmv`o"B:fxV=3y7gTxcmFM;';DCE;[Y?8WH຺3 \p<+$J`Awpؓ}GȮ7Ox#sF׶CDž>O=\xʰ]`MV&$%yS+] @K *8w_O}+*ҥt&-Ƨa))YM*/fc^{MlQ}=44zf g"q&T Τ"˽f¯=["6,6!-~[ͧỄpTg&Hم8C(p[}d=69V;ӝ DfctƓtW4vMOj}7xCǓhc/$*` g7CNLJ[ψNYUzdTx͟מ@5ҿ}dD44VXg-u1kxMOF)W94!KHlB'}D N0f)=~X{#8ȀVMd :aEAUHU.-uUE!45\R՘ב1)NU}*"Տ|`lH66ڷ L2v\e޲dG_nb 93J4g 1\63 # u`k7ǶOlx=X ݰBJgF8uM=:%}(Ve=~r3#|_./ySB/yu_pf/=! 2` kˋ_ۖР)~OknC{ұ_([Eo_hɤ $67pl5_ z^bGV^;w1AB[hp VCn1wku)/чG"шЭ>߫sɚ(]ؤN yE 7cݷ!z Ł3zibߊo%QV#i M˞/Ӂɠ[X+ 2m D~tt4qya?)%BڛeXLNVx)])0&E.e4OXcl~tǎE [;tm nIW[/5؞WFF/%RЦRAog5teF1&Ff>MZKu?V`.ifVrxio=!xNв=腙ͱe@NY5"5`DuӘl609Ï15m1]\4룾/A]'~l"*|е% Җdvo?!5|A-AZsVKWT\աջ$:VK6޶~.VW6/R2Q>Z0!TT&>K֛޹@ g NrEWB_J|`OP}U'߽Bh&{ow)Jfn؊~ 3H{Tvb0c6 3F 7#T6B >9D]g^ '22l-^7p'mc ZI>/y1 ~ TԙV ҋS y#L/$B]'8S 31rK.Wj? rGFV[=4H$!( JchB*rnd7p|!F>DZVuwx*f7b"^v@DxP7|3k^8h)t ,lAZ&Vt^ ?,"-7j9Å2ڗ} ש2cǓxEtȎy4j T8d}3E[W(-OoՋg Kdg[rHt^}8>/dW竮2Emr:ZM-5%ڽUY 9?] 5LZw)%p oY$Bz^|-v{ɑndD[k/Iu>]8U~&?22 3@/ɑJh73\dh`٥|Mo,$,oPNyoae]` :5  ?@מak4*!]mFR|@\D_%^ j ?]$(8fŏ/Jd~$#fQDt;E*Avoaz2« mIO Cyq(Ж[^w>}o%A ȷ=Ei_{lGuބ+e|wvU cVأlkB~coH:FC%=Ӄdf:wSl{l| _GzKJ"%c4>'%g%n*UtmX FOo>AxBTf+- 'sK $b<*-XW}׫=zװxXbS8Ӆ_ͩ1"+ǶDJoߣ䃋w>{Cd/Z?{> t[[2 p@;h^]_=76]fY-+6}{W<Wz<:tNO\6>)=hJui*C 8w[IOT^7zڤܶxVuvyN>KC)XC}TY9V #4X|Y߳C4MG%_P }Zۖdc"d)I_+#fr 6`y[AEv|Wv;uH㐾pz|I}ylq$Z%h@#*_k|-`5QF\h]ޓu1 VnDՁ^ 1>+ {3N|`ILw^0^ &)`?΋XF<'İNMH8 BI>LXz080(Fդx@ߵ}1 n#3 2҄>GR(sza@mD?w @~u*0!lGwB{k;  Fg"(+MuCf},`g:L2u04y,xf:C̲9.+*,tn< ̸c;j21P ':P^ 1EC[st]PcGr(~y'Akf0WhtkItk3z^۪Hʜz.,4)X!%&*ꂹؾG[2>w}{˩ZWsfjUFEL"4Xd8.QWe"9P6n^ C`q'OƂ`Fl={~p]@QExKVtim >wg;n ԆCEWӛ&= mSŠp`GN˶Py;#\Nf8 L=ӦĪ,H>˳})eȉW[?% νJ6vPDW^wm0R#:;k[({f fLm/ol U:ezUkMg?Tn;A[mfI_7߀2+"' %K0;LWX%*yw8i8_;wh`Ēh?< xet Ԁ " 6Bad V?ꄿ/?z:3Q; :0s>&C+JI=]n  hHW l%1hPS3biu:0sړZV GE9'iĎ,ɧNxKJѫ~O/ix 䟾{oDѩx2xdX*cjeS)oV& ; ׮ʽ RѕbW}npp)w仁[8C~V@v Éal"X64DpT&s8ă~jW#/Cb@ }&d&K溒,Mp&#"#3%ѝL&Y˺U9Izρᜳ5[Ij7~<AĖX*s#;p^-jö( -i[=+sc75o.7?3?lquz;~%~u$dᅾ~mz҇b1TUu&DǮ+oK|[چMn%D8|v2bL%ԵZxF趍ԊHcaH|KS [%9[xel8TR6ռI\ ׬JA#*,i$YŋyE[q>ZB'?lQqd^IX`epF6nbh8D@g]~w2HH=r~;Q aQd8i t!k TJp0FDz~KƪJ`åA 4'`WW[E;ᶂ aȒ ,szAI}:7-`u٤.&E៍Z`}̗9p9!0zSqaw1֎ߕ;U[Sꬷ>Q*xt0#GxOg2}sY#zn++ \/-ډ_3>9Gk`> ¦AJA vr`ѓ];3]*lѽ:ht1$,'-UHeu@KdmGG򵂄, 'ckʹLwggP[Ge|,4]y+u-5Lg LEո찎܁s]\Ajf  MG#gash_uwE5f<8eow.ş0FK3fK&|,$O2hi%x=sx[,9w9MK-Ӿ}?t ˋJKtK+i[9nj6_#uAM$;,{U/_<ʆZ ?÷e tS_~oŁ1%h|#)Z޽PJԮ>aAuզ$KD0N9: xz=hk%N8 ,!\{? $H̉ۜyXqixc3׿aizʌ 5A M{T'Yh۬\+M" 5;X[[Y=.CƇASZMg  xKΏ,y}…ںoQлkK^CKvG`2ʪӿ;GyÛʐ}qδk2|-)7DVQ~7[<-+u^TvC|`iRU[% ؝Z#6{{2z#U|UTO!!nnVΏKH+Ҝw<@Қޓ9OVCk JqxLvg$S]2ɎO'pk[%䓼P{|:%OsHy!g}۾GK%>U̓l742gt*#Zګ2TTzZr Nnm8(cj FO"ɨyV=.B*L[}W]Jj%$i lIs/@ [c0IK([3;͎1Sp6LvS@Z4֘BW{f{́vyˏ7د 7s4h@? NἑH2>&h+/9 ٱ%KYƏ'JuIߠ2 RJd,YCED-݊@NjӅ%/Փ:<󲪃"$̵?gxxUɞ3cnDw,X`tL*xg1׏BckoF)czq@Z3&\W%novlF2A G/NsAzUoTt aSwkӽ-${^ w o+6bve !]hC3Z]tO:Ŵɲhe^}[ t(1A?(7hNJ*+u*-AUW<ʹhf蕣 :I(B5! 1J U˻؄6)fl5,-x \!3P[.Y`/ XגHߟ%0drg+@/wՏ7_ 0 :h%'8#-<:T'ؠlultp~I$;GկO'H=ܴt3d0ů̿h;xL|O-o=]w'%Y~-^/;Prd|EC<,ɻzک%+2,69:|DG>p^{P_?Kiz4va3Jfߴ2A|Lcx9, Xׯ:?9 e0*aum=8?X-e^%YlO'_xo+m^ =7J Řѽ_Rm/DcY6Q'h7$,'+ pzU/7{9}bĺDlF q8Wf K:Z>to'MN2 yh^Ośj`NfF2/\0f$mRĻ-p!74v~zh~bA/Nndwtd+Dݤ ' C{ GϔLO% 9B /eGv9? NR^@Pe Ju> :IؠrKhǭ )~1PR,|' 9%xz_vuNxf:M~adZ>Jb/HF|[{X][⭭>Kmx*6ac^`XkrB8dWbGs@=!Y-L!F|-FY++&&dֿ&'5b>{_!LI@?&vHehLSq*;B izV,U5nJIϟ7}y3z㌫Z})I=Oo? /#/hm 3\hxh)~'zճW > \ @a3,C}D}fӧl QTƦgd^WO.yK x)DȮdžbkb3zd`3f9VY2++F9h]F~_?ӧpO}jҕ)<! )"X"oK uwrm>dsֆ}x1,aRA_}߿^$C^x%Rk'ϫ7sCOhYt[KH!$gjefү[!]܃ѳ <M|G ;(^|OU8&ixTmO(Rb_ S6"6QQOa@SEV1?>tMTOU{>_%ZCk 9%->l=ϗgGSNsFMzi> ?z"y8?Nr绻<a%5£ơ6`;+ڠJql lµECٵ0zA}೒y+ͷnѢ~c>]! s(.*<oHKz^fл'slHC>sj=();d+7ɜ%>7A5>gjY l }ۋp>;m;:@׫؋>8$.#o^>GuNfg٪!e;}{;YYE kl?Q|xђp Z SjԡVc$_p^"\bm6ڎ'LGo/[w#] >f8J`q/v C?u޴Ӯ+W(^3Э9/vnx7zl߃g#ޥ'р{qJ?cpϏ:FBs}mjm70&)_e̴bƏ귮n/Rev|DvRcW"yw׳G+xOz[ºo^hŖh+˗I>hϓZvyxl _G,˖ڄ۠_dUGs}F7iwt~t<]?)Izad:IukmkrL1R 2{ DpP {-01_3 *r )^.PeP^P$ NPƢŠm=E1l, qR)Yp>11 ƆꚥD o!]'F?&`m&!qBЩ=(&|M'3d68nr>5XV̠;9Dm m amq"ZV{QLH7PÃ9`fڙ!N^ݡwA|y'm=ڃrsY++ah^k98**UϜڔ\۳ʤj-h%Klh(+G[@g%AZl^eAVt|n⡝_ZYtR`awg{ ПUP]1ȒnъN 򂻭Wn1^g:t8d 8d=u8ZOVp*a ?.޷9}A͖?^\FC_6[l`]_|?}'c榯;Z ^ܖ;bOꜳj_>k煩`ORxhy^ d.7GP-}(YE%l3;ݻwo{ę2e^[;?$IR`H/ !'G~{m|pđO%˻fN̮Wx&4d'{v:zn>Tflres\̖2Hquԓ_a*I13`:˴<>wFe+V>LnxmJcR#F7бbSl >XFxΖ˴ƼUyw-Hf,Z)ծ4P}™( L¡{x-aiԀ91; Zv+ g ᄃ >俺x[~6%`O=|X#N8R&LM;p.k6*-$&UX v|wf3yIb%ụoq'Kr|N6=gU٪m;:_|j٠>{Iڹ+劐wZc:+϶Kl6e\VoB2>%KL誾b(ٲ~@ӛ{3-I' $0#k0fQ |<;qiex?nI6 E?25d/{i+@ 3a7GqD%ˆ4YbZUWˀVSM1ϻecH:؞F_лלÝҬ<8d)ҝqÅSXB"l;Ayy-pbhJbn tSk@~S|PVtzî]s3ƑR^)ɜ5w+aၯHf۶L*@lL0 N u]Vg)3T{@D=z[Xo ukeI(o{;$ZCY|/&+|wt_Vpbf +)|@gp{e d9pNnbN*9s-?spptP8AoN7؃Kffʞx: .^%:!ug-gty+az[ HK# J&ËpӔ;BGq} n|)`A,0bTGvbsi߱jg&|p,A/nωV,= MCUl3*Ӯa @@IDATB8!GOD >ұ7,c'[ =1{`v4'ȅcS[;$>DZ>-oDZ>id ejI0? vOVu:\"ܡ{y V?8f _ "u-җptee~݀ Di?; {Oy9?$Z^= 'xVy'1#prh~?~-wDmU"Cc{n{W OW؆w% b`:aAP6{.xŗa=̜$8ZYI\VJI3>ā/{DOmyؠ8Y:́Hxoz_`伈jX# %sctaF/CnZz)?$Wj'Ncm4P%LU{\-E2&O?x|3>B"UX=ţo`V\BM-lҭ}+ݜhA[ou2U}`4$/q5m ~i*Qc+g?p>эᚈ*}G jNC86fGtk?{@~.VNe V%Ÿcv-.ݕ%# >lP^|$gJ= '<t7:ǡΔM,/^f],_ 9k|b[ j>3ӊ:4 | /TUnxL3[7m;-67+{aldhs+ijw?z L גb\^<3ZHA?OO1Yl{&qP@sFp6F*5]{QYVꋕ,SlKKt`l929ؓU`z ]HR,vȬcfg}:֍u3+o5&G0 ??bVChӊ_ANVbt.O+n 7A@ԛ+dG<=0Qz.#a!GG$aklGz==/6I[.`"q>M2ģ59A&P,捂$8wHX)Utg%G73zk9*g3BcGJ8g 9iyފheg/$Q. M@: /Έw]ùNq N Zwh20XY:S "G$hFn1 {<^ɇ5Q<]_t8U>sXjA/-uWtr?;9Pp`@m4QU3:3˜ypN+z'YSN.f@99aLsd .}T5~tWqd/c ,,+HXF09ONogA%B}*c :,8kk6mNz3[Lnﳛdå:I1/6ml7 $n*.3'%=m&ö"p: Otx1!M E^:o]"8ؐc`J)l/?@⇎=7gnϩሊo}[]@}hѯWkGtаTnl/q^q6R[9f(Y}q_gI"3L#|nv; {4y7[nbB0wЭ|^ CfS%%7j{ 4exۻ-A~۬3lEJ e8G3sڿ{؞{a˗/;i,C%*neAmEKobҘ}Kk[Еі/W2{fncHy'mSR:=- oC;bA~uP4~ v(1ym%߿yL3 .^x{ݗx Y  ^_t0wB}ff)2muΖ9t*z `#Zse͂D6`@zha@Wj9zY-x_ey▦Wch 'xr*?IrZ>vp-?C59{ Tm&rhY356וJ\gUWݧ/w$|ya5_2a0_nDj9TwwyD U>MhhzId{ ?>P P?|7r$u׶{b<}\szp̫F$Lf 4On\%@6:U?|0ӥV?WO%-?x6H@_ .I.=F6ާ"=.񩏏rd ~k|;E"CV[.=z}&ɧJ7t}Zt*#`o̎uEtv,~WDg3OԸ{U|qwWZE72; -K `4t{K%8t0tw1L7Sw- ɖ3x+$}pt+\kjO8 ܪFxJ4↺3;|;ڏ5a|']󩯤EWIV`v5ŋRt_ =X$Y*o|Qf1F}&cޞ2UA?A҆|`aI΀Ry^/~] j1vo sIJ!f4<xb+W[4u+7qVRԶó ZU8Z^K ? v(o^sV-n"DgI 7Mg{E˫Bh5MG'!XG17dc}IcQP@CcUAja鄸0Gilm&h1+8{}J)%C(x Ort$lM7CES49= VOU >~Wj7:o o+> :B%3fp1-óNs@i2BP F }T>g]4NX)GZ8T2҉0'tu|-#s:y8Ss.כH=jpE~:/NO7$"S֬9y}uݟdKse% _l8ş}A@Zf'oɋo6cL0Zd3t ޷MK?t: foŋN^wHtx鿁)9 dI1c}dg6ݶJBC-%8<:v O'؃s'(%+f~ʆ4Zh't2}K>?וO036b^",W5cpʘӯg뇔O}73` QM=Ǵq ^zkvTo־ve}>= D~π/L5N-Ƈ%mU28T  ܄Mjv #Š+߰17/0|9 1~\ h傩MLb^kJowI~W>/AݕMtbOO\LĎ6j?g>z%tj)(AO [6ڵQ)Н}չ"WΝ0ߊ /1?g@7XtK sƔp= 7A@cڙ͢%؏o@. R-7phNjVAY>R t}0|S& RN3t%%>1K1>lYKH `)fBr'2'sd0q,O~Paŏ`Э`DL㲴g΢3ɞD:Lxx1^OUx=79%'!M#  9e 2hi}l2 FO[ ӹf *MrQmN'r<1W3$/Eюfc8Cv%Y5$` ^ J ) >̩F``3N5}G2{39/OT=42>2'sr,_;Y4Tp{_@rƖS.z^` ۬vT-VGf4Tl\5Z&: nvВr V(l믿,:h2@5h;)y_0lۿ}eş^xc!x#`ٹW]oEh9ԌuD񔬐af ^k;/#ɪW& h4Sg:iz445c>o| }OϿ]WmiV%KmU^rS]x} tybP ߊ.~m)VW1ؾ60}m!Ɏ7oN^لXEKФ1L%4\ w#˧wSU=TE$]0ʗxojK-MsZy쾼Ս_`>18e:$j!_ Vcxw~k,YٞHVO< tgXݕcll[#M{ٹOcXNsEJ;dԚwۖlj0MV_Y8ksEFDui%(ƩtW`Ǻ*Vy<q@pMxгx 갣>yn;} m@ɯ߈V- "×m\ݮc, FF6 x~0KA_[LJ mO<d7=mk]p!ؒ)} JvmÏK,ocw>8O~^K*gx2y|ZjuԪz~O.[}rm};nѣMY!IƩe~l{ }7ưY?{ A-sߏ)* F<;@Ik`\ #<h0$/^{R|f ^ 3tRۂS` ȍm\g*8} 1oE0 } wK7ӉTŒ$Q]upک%D k oԏ眾 DmTeIxHa9wJI,_4UpP>3Z;)*z!,a s>F.tܕfuP6:0/yokrN>Al̩VBY2f$ _r[Z0vK^ ߿sb7&S;# > -_1ρ@ >QknxH{ cOXjȃ5Ouz:|{3rߘ.+ċlLر29( m8s .7^cƖW!:vZwYijqwG0Ì};rZF^ג%B}nyF L3'և_Pҥ եM`'_7IfJq$ YvK@/=64: @^3F3ZZkGgVqLP+;{sChI ?><޽}{q/P{2@p,`/:TwT5&+{<Nj'ϋ_;MW2j&[o_~KfG#+'OJT;4<2'lokztkdG* wo:*ݒw_L8l89_'g/KO(`ߵnw6Cc򳢃}HlHlξ|ig@~^MQrEgySl 'gI+/=K21ׂ@rDVK%~ǯ=jy+J>6w^³: ϣe(Ɏf5'd^a/Opu3s:uIwR[AmtWW:]_fW }zw:/t9CGe$ub$_-n7c}f'jwz~l,Z^T9I5>ⴁ 쳋}[=ʋ9sz:'?>2 +ڽUd">wqJ>dluB gf`O~wwx^Y~\;D6m}-Pҩ*UL6VgБ֋h蜕Uqܝ-rTʶhӇ/bl ɯob`? D?'jεb+?+\E3'tiLI\ x"ZDs0vaӯRg'+`G1K$WGG7j2[hV)n\N2? +8*?akyCCלGÅۓK`[ؼ|*"ۊ9#I)tPB&J7s+X ' U0잾? 2cjs{ji KVwItiOgbMfT]Dl)'%d`ἄ3>3joFܾ2 LKMt{tϮIdܡ]=w0B}V_pB?ʅK?*6}uzWhhۏ^?|ۓ=lO?*퇓|{ؘ;X$>E 4ɯߑTЧJ"6qwBԉ=f3EՏۺ-qHR0ΌGt2 {ݠ@2 ^Zhb9]-f6=@"m<02ӛf17G~C.*"[VS3@S?=9rD )O_2Km `H[0ѸAw̢L Ryے`pP8 Xeu̎ojSc[U]p] =m?8㧔RN9D*;l`Ym;q f3Yv .FLap+E@1VFVxdOѣzG#'e8 Z1]C #Ęk#g~G4WS\R!6:Q/VK:]leˍxp[Tw!} #JF=68g9t!|)X" 8=&I$d]ccOȿ9)9/zd Vl Nle3Iۉ`=(]w8HrhSZM%JJO уKlfKT[UJς{[ie{&*O JTKFruI8}A|=\<5Ľh,ٵWge`Ά}\Ob6-,0^8>x*x|$4kS<đˬN|_[`eX ̀/FwL:_i .a{4u{Ƕ.^NVIh>%?:9:L.xm~}ᰃ i2\!Ӂsu1? tv f^Ɋ_> fQ҂tj|U% aIn' ?Xͫ z?%‰y{?mW(CD)9xN[uC_7S7cXh((`7%7,&)m)<߶u֣ G>/ђ’d}4LsÕG\}_[ 9ά D<,/iδ_Yfc$wCgD~gAIşD;OAr)քm>d?KxzN,;YV=&-/ }=KQjguWm}g~}bv=Uރ_2sPߞ /8Ւ~ؓVpJ y |s-jquٽ)ά,:[/ 󃻖W]~tZnG^e *K:1q 5ߕ$ = bԿhaʤ4/Sx~w?e_%cQO^<]\IihYVoeԀ9y}7Ɇ`ȗYAG?էY5;]f1샩x"dw_͏aH_oP^DC]Tm; &)ጓ%ßnU`ō/g -zvș֠>:ݳ*<^k0 XNtZy'R]ۓe:}']sSׇ/8ӳp5;Bz kB{pwxopqrrY\&f$~xO"]~t' j倥ا-N8e0͊f2w_hKM5N߶m\L`⹮#% '$|>~`vhq:{a28mJt,K0Vtv={2Wο„1[k& %L7G0 ;I b#8?W"jd2]L-fO=K c%ؠ8m+8pm$y!xtFK+8/ܢˋz5))=Xyl spJ( |/)ts FwWm +CR8i#(WT`qj٠bko<4ƁÔpMv=A@Fu lAgʜ0lydc[xՒL X؞%u>HG ѱ~oOWQ< AUP V2fRutd72mBl 1]Z$8t9sbsx3z1M{}Bf `z :O{0w*=U`Y}dea>[3)SoJ)tXf^oiQr5 =mύ2l K6rCw}vb{ze?蚏 kNlw#|!=`wH0.ՠLxJwf:]3 ^.q?:|~/ BgM4XA+_B}|n ;3D. B04F炏UւFLs~iEg[~ ?:>fC?MJZ@7jr.KgOV$ŋh pp.zv(| KA\sYſ7s /]LCЈ5%34?m9De1<]l+0(d`Q}gZ#M<)J '`'f"X1KvCo |ׇE&Khݭ^hg>"IyB^ 3G~MCy=dZ= mJq0駓WiV+Nc b$U O)rb7V%5~}-6EWOJxM}%>WeNኲGj.VЯ]j߯ԏyv!ێlN(l1goa&{~ N*]!S32Z a0*cׇU:+lٶuû}`ծkjxdUO)}ӧyzd̉ﲩujMh N|gqa&LCUBN_U_ KtTsKGy&iLXawV!+ ̒jE).I:z[6}>Sхo+Luu6ϟXN˧hU]>> l(]"q#+Go&|=\8A+8πl-l¿j ޠVXɋKgș/EAE7rZIh\ NN1FhR Q:r%llYe#K:U[V>v8p쳸ex}Ɵ{14+ d$!Om48lNt+/a1^ql'ۘ󎇚[\or^h7w}<3WȿDq`9Y~T3+E2t/3sKnȗr@ף(]jB5 w 5 XN{I1Xcrz#_Č4 6I <˕ Mh1@"@S6L;&5p 3Q7k:&`:85}qj2%9X3YRޱ::n@)iUniTlz>=, sۻ޷ Csp`$$G^JVW`Z8m߉P[Toz@*Ssx%@RxTl0Y\%ZLiq`w+"`K !mGs;IZA/[ڰZF[ݴGNM?<{K5ſ'l,>kN7i{ sUux`]+`l /txE&޼zdXO'78>ѵ,~"OzSyIDQ3}C8ܖ޽&v+|VYHGMwv|Rlٖ4 E}_XMR‡|6Zʶdl%?lU?lzp#~_O{ ?OYp_y$ZɅ'E q!;- 3ʜa\I-d(AY HGג^7T>V]@QOyvw|ulp+t =rZ Q>2VB>Vt4~D,1Vy3rI־IUb%.g)n|vRCA7`{|M? N/K:ɷ ͮv/z\|q|YL->Ds <L6CMǂw:4L<CXW%F7^)?wΤ6yµ21pc>1 3b@v̇fM[TԪ#c,4p.`;e!W.}rf5{!bxdUɾ' 'ҭ1])_=I0R#uT8Y}~ǎȻy餕M8NOh_g|xXZSLn>JF]@/ļl$\aK&{y\I &k<#U^ss♃ @I;6  ܠ\9I0i<+`F:mVH$PϽ lxr\l|6T{T6J#,}%G! UjZ %&N359aV)BVyMq38$8 ٌn6b4:c 53V¡JR؅C 7Ū Y;_Vn >˘hz@.3\WcZJCGp8EAKn.eXu9`ʮ<rfc詫Pۻңm55]eEpCΝjS`r*{TĈ8q,~ʏ?'dz%\ a'(pPZ!ÅxuK*( QϳllW*wrv^t:x9U2䙲 Ġs0Z^OoeR97%ЀtA6_k^X[a{r ^seYT~V vaݾn s˲99K4zR| V4>4tv|&\p +*ެFG nuF8luzdo}~DpSzlt{9Xrmz#ѠqxRE$$'(-Yʨ 0 ̳@ o"7m/$ܽӷ"R '-^TY'!ީx\U[4sfn<*JdK.G'f=}zX"|z\3ś[yo.k^[;-< Ve*6^h?M}(EUY?t|nG-!CpX,77䰛>&?bcƈ1~[0ŗ( &[~z5<\>/R In$4=֝y덛AW bkuޣT<7<}ĦWg7@1[] {cJK8bqYqmdVXZGolH8 JDN? ~'H Yz@@IDAT1[pY6U |YuttGj>ayMu8,c_]tЖ?VcXm!mL bFeh nx%ri'?xVc50*oGtA]m6.%P< rk ƇoV[B_*{{v73>2u3x`4'wsT8ŨMxC(tlyH1W.gL)"',tqtXj4K Tn48H5(ωNS=; jot-I˸Z&$@}M2\myStXY}#mJӵǨ$IK $eN6AdavT#k6ՙ{$Z^3p1hwN J#gޙAwG[21έeU ci`Ƞm,~HK{6b4"ST̖[}։;Gc\oh6K;$0},悡C!Qx*` }NfG$)̊iSr,+]j|zK.jsi`/@묏~с{/MaXi QaM] h0^о}_1e[ն·~=8 CYֳ:K[Ɠ%5loVW>̼6;:̀K^`ճѓo/^@QIxG!\Y/.ӻI;v.GwB||~m{gL]y3%#;K_eO }!G|؅䇄ڜg2O,} ȟY7cJmlKhumVKq*dSK(?|aQMp? oK@mKmzϟ>pqXO 0t~CI$Ƽj 7)ɡyĔda9kmD`FROWMNt L?đFTɵ E-.^d]sV&.sHn~9^tpƜk$ 0W}_U;;'$?W2Y{%@%xۿ^-oR7P;<7G@m WAFi :79t+vN]xsx/N_ ñwa=3~Y佉.c?۠?!!*9}ch?\yltm`WG=zA_ë(=ۈl }ӀfY;etIBv+7|ՙ"~}KV".]x\L+V:-B>nx%8bxtDᲃѲ_>/RȶFmDCqr3Q\:c1ЋN|7E{kN/űUL39 oV2>;{!>IP/l;8k No=Aw ぺ' 9֘2s1#0\ѩM{̞&F>losVkRBxw1 @w╲Av 3pYxBaJtGs!4VAYe/%pF_K`!YƮs+@+`]+"mpG{h. Q#3ėDs.@!]iu-FW@Op,7mJsC NJ@F|:wHi0HtTj="J>7&h_l }&*&gysײes{ًthG`shf"4aC"1g{3 3fc.F'3 7Ȝ=M񇎲xbL\:ڵWgI"QE&S&9Ju(|e+'0ЂA23:u~vhq3#O[]#)C^g3f<mR:+AU#`M֪] | GG~0%._ẕNza؂_~Yn3ӝf`{){р}37Zu^ Ÿ;CrX>'//ߒ˒ύ~ѵg}_.~7Cg߭Z79lKT\9/>tFfU?W% b2%ڜ\mVYddNhW|g%[zD{/ItւIo>v&|Ppp~tAKdnE2\GޔևWLY\IT{/(OxIP3=]\H6gc-i [5͘ї8HK˂ zסt8- K& MP[E3w,kO2#YI`$\.o +opB.>Dt|A}Ы %'=徎ﺨ@F_W>얯كGGX26]UD,>] `ȪI b , șeOB3xG >҉Z@} $<?3cpg|SѮuhCP80D1hyĝ*6VP2|~7d^ FUmHY4}iP%xr& =F/b%{#|K+;)GܷM -Z0N(:NNS8~elY G' =C^/­6Mr$Mk&T2_PK0'tLҟ,6[HW=fP}0-MџDS}u LioV٪Xl! Љl'i[bJYUݵ mJK$Ukw/~w@ U/ҟo%Ix^ɑ; u'f6cIw^4s3lq$}h ض~I-F fa=1+hb^|x'D+bcq~Vv["~pŠXqa̕UC8s#=('D75XAJPkb8mep.fL7cmqN2}H{~)P7p%?H U5⌶4'S }d* ںTpJ9 IFf :-o : kQ^ շA{p⠦9 FIB|ֲd0݌cZ$=$jurppQw88×m\F5s"Vuˏ a|?ÔJ7\-F{r:ϋ1WHDžGg :Vy式ā@tledGFњM!qra#HP`0ϥh,Öd%:Ef r#܁avcr^ +80 3 ڣg&ģQ_4~m-qM#"vOeXB9Kp$j/HR=گ[I-Ǟ j5 y)fRx:X5.eሿ | n9,ϠSϿNﷴO|\ Ջ~ﶴ?[2"K8~`zޠOݪ?,&5,&A8ƯT[ j-Iɨ!GJ\m~䥡+Gq.UZk0t3u;׶DV^VBQg:Do`."5B6ZTV£iEHtlPw}6S1e;nJX?M&|E?jY2B fupMԦ1 >7&nckN}> 0ݧ#U+fƭI/w.Bb&ny79QY=0}Hh~St~D`9xOJb]f2Yj3t¸#0#%'|em 7xeA,'`9czMQ=T;@a@Nv!u6t`ga8["ΓVQ "Y$}+8qd)1.~hAo턓}ET[095甑rc6][B<4pw9:)e1SqA9}+(Z$$})Xz\81UtN}5䶮o@tP2Gvi]hvap^noX0ܿ bJóL,y#mKPŃ[Xs{s CT +Zvjv (hXbA'Ǒans 'ɻ-40By] #c8૑+Z0G*|wk 7:ffk;%``y՟t:|W8#㑠ș)}:?RWuHFjf&`G S#PŕmQsn'9u/1 %#IP8Ov7<3#x$408lSE3r_ N6\p}Yrdg=i?zSx9StFe'/ЬN7u[UK}nfAw9>Hּ3Y,쇫; x–?~Q"t6U:Mŷz>Kk\ jv5OSYlgO,sw@uh"C8]ZD!Az_տOW_q/~c'>'U7H؆ߏViHzdqX~a=ʝ7eN}DEg$i=Ӫ}0a{Ip~mu?l[=lAU`E< ǟ eߒAǝdӊ=*A{-"\=voAq-xZXAD !g C0s/_oֿ9빗G[{;ؚJ˶6kTaS!|w[xEO[zӡ+,S_O㑭st^K(g@l$S.OISnZ`{<'aM >Ol2OVy~Exéb@f(I6: >}~-k/XEݥMwp]?~kቯ|p}p_F(1.7̟P]%K>us5`zr~C2:&]v8K;QX)O<ҋVfMTЖ*\z-pt<T{CTP89[3xG!.o,$"=+3Ӎ{6["~V=xɋ8ME 7m%Q+w)Nդ䛏OYձzIq%>1㲖-Nת^})P!gvO̖8p/m|EڋW]#v!nҲA`my x)Sq-d烫W qOy[n ;ۮYmOybLٖX]<{n'&^hFczӯz^)tƥoM7t)qlufS^cOg؟oQ<]U(@p2RE!ddÇHdjo`% ouRKNvtƀn,;8ќC[`kn.ZaPqoyHA<_|2p==aWìN-@Io9p.GOQEouê.УN/g $;JIH 9pIvwUtS'3J0lM4t pfVŠ[N-93y^u2Q5}x%:M}ڲ*_n[G6:Ti I, k"=G `ٟKg"K{D(WгA;l,Gi"Sz $Y\Ed&dzy}Ni-s/MG'Y`Y!jlCt⮡р]{ h7W&wP7ֲx˔= 1C|YEon ug?nKfVD~ݓx[kpBDdf 0?l6bgn}ɉ)'p=}!>ۋt}`6/8_.Fe϶?pR$HɅy,.zw%7 hն$mz'!.ѵDx+\5[1ĆC|?%>&V'|:);>J|OM 9VΜ3,4Y1z׫uب2Cھ/O{{O}F}T hxŎ 7 Jmk`X|3U!^CT>:\ zZ (2$mB2|y`U$XXƀdu D>do`TN;Ս<ħz]F&ਬ>gǟ\xw[k/жՏإ6%Ӈ%!D'C`&xڶMZ<"=}2[+y?|,| R|y<^?%9lDO5x R@ 4Ө?c[E#g^ӕ Û3@$$oOxowXOV֖ӜY,5*q|ugqP4iS#m"WЏ6XA_ DX)Ԗ cv[Jmcd d'//?D',ǩgaNJ$3dIhIg\øNN]å Ҵt9Bzΐq&nɚ)'{~fZhl3}}0|G 8IJa3NI8-1halbz-nxZ b+.#Fb.&f8YjRŕV R#89AfkgK[.3{x!$tWx+68R,i#k/S# ]>O4~QS dгu=1@i--9톕SU:sy /m1>Ŭx}k)-]~;^GCcDo/ ʂ\}AKN _3x"0&`r~ Ai1q7obG ZswikEGnW=,%> c0:4N~hХFgCo9"LJDC/N F۪ Ll@Aw4Ȩ- 2tmDh!;I[ԙnu waE]R: u,OD? 74a!rAl@7UyeնKtȬ`Krm/TpSlU{_L%׭ 0@\;;lj)n %h$~u_5е,-ܒT[goZt^/׫7qf3h~GuoAf'_z~zyQXs7nVA/wW?wORuБݖ[3J09k fcMIoq^ItyElw)AV:{`S =Id;_~ݠ!n~>N b8چDg93X[*SmFɽPso톛b2 `88ک-M B]Po"?e> Ҁj[ v^TC8܂qex8{ˇ*^Z(yV^4iF "'/El|ѫ^> 6Ӆ~?G}G_3uΣWت]qTnH6'9>yV2tUC폞M]'!ʞ<=Rv&Crh=uB0E l} nKEh9+Vӛ%oꢏ2fGLb7dAx|+>w]DW%8}evظm?_U&Sxw N!рᇟY}= >3 #iOR_9P|21Cl#3' ,k`8LA3٪A&e: Qiu/pO92)lה0nkjQ(v~cfaecI:#it Q]Ta=z-XZwdul;7' #=&3p _mp$sJ!p9N 2޽6O3>` ~?{6_r,:YO?72__iP)1ȬVh v$ܯ}.(}eZGǹxAzf#7tI(SR~j7c+$ o-Z=Q[//YP3ksʘ;Fْe-xK_J$0(2S^<-fxޚI~l#0~9 /O3Ds07MX];pe:i[ϖǘG|k]Li+|'~͒&y N?[|aKt SIxR#ݎ>a$Sz_fR$n~3{p'pM*nwxΧs57튄ت՗냻?upTKI[`Hny׏ϫh%jV}F%?Ak?FZt@`E_݊acnaAJV]p -?&}zBL_VP?݄y?C[8*Ye%Gvl$OD.QXUWZx>.[jU2pA Ħh61R^y'{tpԠ ?{]c&8i[تg!ulxCe>pO}:C5q]͗u< ×Vtxza?ܺğw>?Yd3*ٽQT&ylDAqꬡg?!auJ>9D`mu=}3:16qS6)Xw&OV_Jf|s!s$rd{68 q'@LT]hh:I .Ө s2fQGi{yt:t̑эOU`8&<(V>?Q˺RX Z8c4` dLT}]p<-ǫ3ed!,It vyȀՠ - X .gDTK;x[)>9uz0Ѓ< NjP7")Y֟t7\8~A \9gXoM|<%as9S@+ʲM2y\jϽ8B׺ I>f4Ro|qpfG,k ǂosҴ$2 VZ[Ǥ2x&#͟Nݖ43Hdu5Le;)/m&%fta+'(1]'$N> }zl%^+|lyt 3+ѿx3@8ޛwfȵx!iSNjo:VUғ~Lɒ/o mzˇK/di_#qQ5K2$k1$bMxX03,e ܷdS ~$~)9x'6V|jRqEMNՇbkʭ.e@so~/ONz!G@>78~mT涟Lp+&b/ n ^q)v>! :LK%w2 [t`@jê a-^/ 2Dz.8}mGov,ݼTЮē- o]K?rb78<(c7  [ [puL9V%M4Cjd:oO$ Ł&189]a2ܱU, T&q:8JNBkLڷ+'sdű_l?:VpIM dW3ΑXI;K~ru\Kt6J WMvc-GP5Mds')v xLH<'O%cڗdx|CCȌ%L}?L@$83$beF s>}=dUOo!0TޓuSq)茊&&j& iP} R6)X1 }Spl4sdO a1="MfΉ)i ‘3a(Z]9Ɖilt] Fпj2^ >눇']7PWi2_Y1CaH𐉯fXx^QB)hq)˧ 3b+)#_W3o8n\k[;yG\`-%i #ǣ~rddA9!/NH29W'tbey ~Gz0}2'ļ9G]/ޠr @&JóـK\{:nQ#dc3<**P!KbT fLnCqѨ| #G:ֵ,M=,z;6xI@U[W#' <2>Ab-d/uV>^BAz9ފ_[_@Vtd8G) 4~h˸@)9oeB ^h8`ba;%$YwnoBA6:R`«  <,ի'޶/,K\ foJYI"L7R/:)G4}rDmA(֌_?Y|q&:O%T/!]:},pxҊwow' ?orU?У{'BVZQ;}d@ǓGt:@IDATϓ#Q'{{|V^|{}4c:uI^="iw:o>Y@t8`2#9 #ƨ=%{߽\bʋ䵧y ,Qxۺ9y s*3gC˩d# xg<1wK *in& ʰ-dZE'~=Nq3XIs.}[=ˀC[/^%1+zxu|ODޖηPo@B$܇CB 8bx݂~D;8`!hQ7^S;M}+>(h\6'v xvr]_ u29E|jd?Kbh}_q]L=߮Nl `_0ƚxd9%SE<1j|!:\;.v*Z^_ X=bѹ*~ X^OeMēB0Fl!YߞߣAuqM8eLsu GxDtw̝v>1-默&ߢ&83ڽv|e_җbCdN| A\lM #nth:o?v~r$8n%k_•;w4%79ȌBՓtk~g|;]>_\=3>@@ZofYxf $imOD(Y޾Gi 1xU_Gߙ0/X%OF*o2%w&PGk_Mڎm{&x_ъ~5J*F7|A[߃Β&I{GJA ѐ׽[VfA}'?uiU7 + (,;R[f)^u6`@k)o&Ҽ8t`_R\e1LTCJOSYob) X~J8V E3Z8B džR>P,cVB86sn gށ6 .#Y )PNkl@ SʇViԀ ΠaLrO^H (? 8g$(,e1&|ͬo8W_):z({7h+4sA~JyV||pz5sD[BUEڗ Q "81g>}=p^hʓ[brp}- @N!,EVW:AWƓ.g^+[Ͼ["F26 p'''&5O`j`wts8ſ`: |s3 ڮ-r_ G(c?YxMBp$t;CɌ ۳n@_@.et%hM^[8 vCѤ(ڽ`~BiCaVD2f z?ؠ/./_xNfи**A98p'YMFP|œ:^3" w}y t>:Elƛrlyy[U{+4:=_Jܘ4H'_wQ27;6ЭMeGW/K#aMO6܆ې{qާaH8x. w~b9&8C@LJ{nL 0]Mb+O):Oo>|U`PƑ\{mi=]rGN轶?`GF@B|*yX]zz[Hz͗v#׽xot ~s/%4cWuPm7ķ/_־|7%¦KhH "K ޙ*5>[~L!lc~c8'J.D?JA;:Yb2}xKoזͮT5?kK̢ɓ,N͎E 7Qa01o_Sw8I?NL rdcvu6(񀌶~+3WL2#x7V!?Hgxk7?<_ɏXDhN?Q$gV*}V9S|cm㦣5YLv Ml@Zt׺>ߖ w94v G?A&|2 Ner W wϳ#TjS.j{ +XxR-ڗ<+vtt]b\߳ui 1T ]ÿt+Ke ,wՔٟzK_}Q)@l'd(㮁Z rInj?AǢЮ[U~ E鬎cRbFwNOA⛖"Z+c|"XZŰ6j}HIggIXr )s?}lY'O- 5@4s\ W^B>Ղ\tPKlo6%|-|,C_ڡh;~cP ?4ozsh3n^ N :C4vt_nA] VN"go`c{?6k+"2vz߫t߻ߑtQߗ[U)e'w>ه{<0s7w>f ̆[ qdn;UfB+}s&eGlmm+OͲs0*ʟx 8UN/e;$^WcvnqA^55$euܠ_fKᵗ &ۼVսy 2?)wA4M8o +T]IMt* [f;\䜴Su5$^+6){_%dyYZ0>t擗-\ )Zb_:@tJg >4z+>w}}^fQؾ^SİkN(?/ ЕA2xT*H2Į*Wu g|϶-)ZTX{pƺ|ߝW{o -Or_U+W 8}{k;{^~̢99V3(@}Fvx;7Ā6ki4~Vv0Z :ŀ_ʪ*yu$WgrCc\+ʪ !?:G`]Eϫ̖>b)<)>ٜdkV(@.KZE0=V5x-Xt7a<w30% %4AV|jSh=Dj@W6b) otR4c$@f8;}ZXUlmWqB'*|uA3,~m{fl3K\C٥gGnL`|al ,Ό?]sNst:owom«Hҵy`̇VuY[N>.V;7{U> 2>6 o}C>hL#H77 B['PK~>ylmoOƖ'>._VI9a'Vg׫?/YC .BNOO`92;mxa>?TOoā1 yC+yڣžC.Z4tKlW {1`_x}x5[H[~`S^t`f|4tv݂3hIf6EC(gXS]:.ZDT~eIp3XڐC 6(m"u~ʆJKպߕgWG]ysP<(f ҁb:'8Y4MlQo6U,!)EH %\r0\my]Gy5#CR$\՜[H2|Ѩ#%3@"<K8KΐcPE:A:.VJnlEXӳF9]mH(鵽A8x [#dpt-.vKtfކ u]+6\}6HjA g Nb&>Fx~*CxO:gͶTN]< FQbPȦ-ѵ><߁Mp׾q)?{Gey;`~ ӗx=~ǡQ~!3f w=DfjDgjx都?lM:D=rIRdb3s/-yAdP3<ͦI=Rl'?ހ]2ȗ+oԕL!}?`Évw|l!Vߐ~Ob9(a! xx.On:| a/0H9z>śj|OJxE^>GiLlnT;Ef _ѿqu3Kzs-Q|OD@l/-,F9gg+>BaYNU}]MČJ,%f:Dyɟ-Y\pv^@fWj06^+\uŚI1VFrcg1^4e?g2 "G/nr|'◭ ~c,qy"٤fu*19`~9env{9RQo>.ҳF"!u`} ʆDܭyJ4e,'3.8"v-{iC.`8߽-bյjף_ ( & *a9YܞKV_#V,2×cDL@p"@&+@@<6A:0?YNLB'@.ʠZ5 <2Cϩ6w?T 2=3i<՜5.~˙Vema)Y!<. Pr Pw Gm ^#ƽ-d 8 koN:X,l80pd7S'|B uï̅e9x)Ia;DrC^h |>#dI j,3[ Ӓ]8hwBԀܧ;pǃD3*ѕɸ$8Wl24OؿJ%8꘶4Q/GiA: N~ '>Lp #sThm[nu7ngӝ)l5!>/3ͬ7$h#%kA ( {+o߂~(h0v^/ Y_?/мǿ|{kyfM.E- .߼~wߥ_,>&^9ݓ=n#px`r!zOȣ`L9A0?[C--ɛ_ڷ 5Uxƀ-Yb4se /t/}8CFWAU>" H>h!g~?mS&`0(x- Xv' q}L >wj(ֽb]9QA/n&BGgke8E_LIBڮ60Ί 7cx+ 0EKmsVm%d&]!w1]LdTN||T#¯Z}ŗ҉9Ik>XÇ%ԝUwc fEkEǠ%zGlѧXŞq=% ".t}faTkto[%Ivb7*މ^F&ݫ'Iw|t>(ۣ$f͙'es`dDɘ)nKoO{ŬpKh^#y= B$ߞ:}O p}TmWX#T&ËhLUu*nd<~2dX~Oo(B 8xOϣ7cqIL4F8dgsPC8:<*ݹ(bٌ)]wk0al`Sӄ$b3mL)p$lx'ea :ȗS9EdfrA+K8.v3gQ cZ:uHTs&h,uL2G!w1 J&`9[\}΄嘴1(.!-Q? }̞Q&չh,_S> h}'_2?&AXpA2tI zCg @['$J*@ z_]ot;/Bt&Vӕ4 HҧmSUH:D%#Z_~o' 8] Ctkנ __JЙˣE3=" &סO.V6I[tc#z)Y >2EMd'{'{|c}]Yl1{:|ң7%[QE>qO}Y͵e ]3_ǟrhٔ!ЋoVu9t@vt~ nVЈv}%) ?]oAX8#nG؋kUEwH \pmmoF`=VDᾄ& _҂r[`9G%x(NeB7sΐA|T5K[}}rz9Y=%^{iwe% $¢Ā~dPk yx^jQ e`8*pPK;9$?:()0ߕ?[*uHeMm}Jp[`j CLOgۅ3G&v+{BGȉsb❭A4uRq{?z_aݶlNwO+VAU0ˊ8~у +nܜ]74l ](ـXAA}%;㯆(0G8ur14A@e}:/skP3 ŕ޵+$-2И؊L1*vƜq - VݪU7 As&fҬp D]2S @lY Ng^IGC18(&sGG}? 鍣P&8F7X idtAHuX=Ǥg FYJS6vyt%gL$iI`QY 0'IWn:A=I|{O"/ Y ets6`{v/}qzyl|!d,&?Cdj^/A@xٟ)YxeUys!nm#*p:Gs:ؾB^uR:!-CL u,y0W+ 8w`'!Rv,3;|j-.PuZg1Lߑ{Yj+ Y#G|rй󃟠N쑝z ^ΆQ8,ͽӋt(\ڼ纤IbT+8Z֏?bh>2v9ퟚ%حL0<.g0[4 ӷA/}u2Sh(gc_^KK;m?0K*b`- M\>lp HzA| _FTmzO?.ʹ:0sA란NLDݭ}ZLeM?5@rK<ԷOK.T_Ƶ}9];w|7>]Pv{YW.Oz@ l[G.rxt ы?2d zJE|/ˎ@{2560q'FRw#F'lPrh Uٲuxtg fG”pm7x&oKPڞgFζ*/].v+&*>/[aO daVżUN |d[{MV!V >D?Cvp8*UᫌNO)3d a.`R'Ww1ʓe8;az>CBpp® VDPeH(NȞ {W7_1dT@q¬-Jp}DV>a˨,k3u8&ou3B7RoIbٱ "@8MYlv(-p[wiˠ~V_MVʆ 8jstreL, G8\iwUk_ԏ7ȐfQ3B/ bPQ}{?>-L-;ě#'kMh}t(? 1ynO9aP rڿ`w l١<5sPvJ E'iYZZrNvWo¯q ~7?^&mEkIiOzT\v>{6>0fGϓ+8?%(#ZޒC $]9!N(ydm\զ>W{:[$EtS(vwVt#H 1VI[C{{g {ws|-/m)=OEAdTzeܝ=zal8߲%;c~iйYha9dIɆ;TAi ;0Z@j7J zAA0E\ǹ3 HobA<!p;H2'uoΠ#u&D /$G'OvBWC_ #,#Ζ{m xY$[}|W/[ ~?7w?| Ͷ[j+Ko߿%F7u`t7FǏ'mwJ(Ӷ)DxHvI8oϢϩBຳVZugo%W#v.7nC-~L3<#heN]rUZN#qomvP>]mwr\#v[2"!s8+ ݜo:=/ŋo`TҨIХCn9X1G c N>2vΦriq6-^i}7ls [qM+GMze!H>dq032/ֻ}p(ifnf>6C2M6VrfJ|\x.Fy%BqWAGg8/ F֏̕?]OH&(V/e+ʎu~6dZů^w!QTL ?%iG!,:^n`f}e7|G[/|&9Oa Vj}C=$̔]|O  O L+ھDd0c5o}c7 .tcX&1ֹ.BӀr@wMCtʒ02 R&mLʻNboW9^I5h)Q@Ns 8F^b-\`pZ`\ P\zlYw°q *Xm/\-_ lZ[ 8|zZ5I|VD@}wfޝ;@QYA Puzԑ_6=ΝmJЎ BHu-[\b.G[]1cQe|XbL3aҡJZ tL>b3S|im;Nڷ<A .IEm%\6˙Y>v,u[qzaik2e,lÌrSTNwok K49ڵ|O^7cOB_^?tNt +d-!yixEC˒|\8t:{3F tnvhևp*e[./ |Kǖӑa7W+9okWL:@k%Ǘ_^|hD3FWw>%ZoZYA4,h}oZy-?&g%V-q#r4П-c2鳕X~R=~":๓S鶁s qe\n<.^ЯU:Bw>8XQ>wPcP %R}~ 7lCV( ]&s?fn~lB~.Jd$16w^p$OfpmKJ Є!=$+>7N1]oF UT;Ou雴Ͷ?DxFV XJx' 2JZ:e3|?hI}*wU 8jd]skg,kw/:\@b~"}E:ADٕ>㎤LXxz 1VR8_E۝g1ӷ'6&qdV@Sc&,N*WQ.>ベÛËҗ,N2WKdU} KRmpEY[=N+ ߹ofRdHw6FW3b4~k $6ଟ_(g2=*')wwU`e liX#{\?@>xdrNy>;S1VƒDS7<Q" [=㿶ZsP}2 ν;|r4Om`V / }{+ߥ/u-ꃰ€b/ɯ~窃iʺ?7OP\lguZZE7I3I8bd-D+ws]?I#XyI /C9_@İ~:K ãg ئ+mu~sCjڵ8{ Uw^ @RIH8GX!k83p!AMa v nwCp먃͑`͌jSFזT!2&,q`kaLZB_dbG͆FQ}0'u ܪ'?[ x8>1$,+5(\w3SFOA8!F!=t3'y'ޡ}S4{/c_WZ0 E[OhÓsbq*o$wjhA`Q}j7.+W/|MM;x^PQ:xhjYe>78m!$p( .(q[\0aK-%p>ώ~'<%NN/'7t9|[v4$޴Ԭw z'>.d'I3W%`~?#l~hPK+#k=t߿%6Z`- `;&i~P[.!-lնW/ߖ7k3\[ uϯ_~ig@ i^FKw~ @ά% $S>[umY+>+ n\[rqovz`n^Sꦬ: oq˽OM˰'> Ow}廼l@́ڏpc|K2Q 5Q~O~-+/k2,*Ȟa[‚-~ &ѳ>>ao9صM.2/"[eS'w;8lCߍP9=q> n؅ŒH~K$j~ LBIWߋȭL HaUNUvOS^HHceٰ8vqPkpf_zn;f k%<|;W Ja- *Vxs`ѷjr>O*s~oaVuեO-[1 ZJOdU>Nww6?XBI>4 Aor"dya[a.ikk^bԱZܶ ݛދhb<WTh,V<9?u?{tU:{9ϾXmU)7~}vj~mK%W#g۽Q}u[b{=cB޴I%q・6VY\U2+dɈMN.̍n#Gl2 k{IoOG@}DY#9s8:M0(M|){ +F7S f,>;%|ɡpA |Ƀ+LV5]D`z Q~:?Uɑ[xL#|>KU~*&D[3oF&]0,u 9ANw d*Vh\=K&% [y\(zyߟZҭԫ +{* b{/]->7z7;H*KY2%_ݶDpHcI 7la-2QA2uթ %2eK<ҕR ZW2'v2*=o`:cFekL'5FLQ+oȄ7D`s3} lkeHpνWr&+A+HGīT cݞw2/G]cɆl3ɦgr9SDP%*=8&ps2j("J$%:#kzxé̏&DџiSd'@U`h9Ǒ&O0D1{"F(0W2Sˠ$ڽXЫ9}]xЎa=h6VdA:A!wG E8wzew8|Fe5 ]Ў/2UHuO' _ū+#) C|7g3X_my ҆7̠V#Tk40IČ{K^JVJÛ6~Xe,~u0*/vbYs5v:~*5Yz􆞄xF H$Ku[纃YƜNLRu6HVf_F#F];pm.DlYS|-NO`{R"sAoLoC0g$yڌ?[)},;;N̒a3mKF|zEfǞn?XNZƶW\lypx?^ⷖomo6sPko:Ȱv1~7tyjzgV!Hܴ6lF0q&k%<+ '%?Gd7&Ӷo/1*,&Y=\/>'%VdÛm5p Ͻ"%Va%3yL73@-ěz_Qߕ8G KL mSN6+<Ձ jɣOcE|6WU<:QPn{gHѯPg,Y/|4Uݫ}e?Y-ipO/Q+wqDk70tG#k]A^>LJ*?`&\M@l5ߵ "e {(>/ s;>Ft+an=ΧOחs =N~><ш6I]q>acdS@9(ބV/k*=FIʟLY~k7FA9r[7/ 2[_ tѿ/&L&ptDw=wV ̽^M`b ;cb0 &h 7yb2>=e$vu ʰح*0nٛ 'l@fLvU 'tn|+bv֔g0<:/ٜ1l)v21Æo ^UGurfA6p>ewWm=v4y`o?2^٘Ep7^UV8oIr p/89)`R ,b0[R>gR%$)ǐ+E!{0AFK1M&zPY8Ε'0s^1xe(j af@ޠZRY4)n1W,/FPe<&CF3왧b)b1BK~&k +ǵqgAq%ʠN.:|,ϒ2^#$@< T`YDv[֟0Vulӯ/-J[5Cx:v{Ψ4.#3 e~X=#W3ŻCԓlU% 86gҫz7=^f0A քXQ;k1}HǙpH<#YHeoafm dlEmPƣѩ<|"^<>6;4F}ғɸg`IO_%7lkW[e]䂪W/y: i.ys]s]ѩ7, |uݓ dK"?c|+6ؓie1۬- Xe@%N7TR|6:Uʽnfߵr{H&ދ>c! 6A[FLZ~ Gv0yźpIwsޟLo~*ήya}J`vLEvuN i+Oѯo1Y4Mz{Qn`_Po%\j1X.씽H(BF:PA>d*;'(}0BK+8)vKTϪpz-\,%ZN7aI_uYɆ>tnxsqL*6uKլd9pW*$N`ɘG% 1 Zf0Nm\%:|\lH{1lrb3_v|pP]ҬMo m#}|p^]mix)f a%tz{I`W6x9OM: 8hoC_Z_ڒI~a)'6Gbw~W2~k4G_C;^u¯[/ 6ʓ2h>UvV=3pźBx"/؋1ǰ9=V+>C>3W3ި"WO7}k%U1-L-3Npj.I4X##X&|Xq@4>b-쬢~q!Z؎(ϖD48$<Kg rZѾLUM%`S` kDAFΩ\= j&JN@#Po iyN <> Nߟ\0 b@KJ}SwiAW ×9ʔ*ȁ 6S4>TS0g <0{"g7sޜx56֦Yx ?)ݔibGCASmGxMYx2qNh2 ٳV Y>{jP]_õ?2_p 1{.RsF8ŷsAgX9 I/LVO'P#wovMxfNӱ[mewHx;HqK_[]" 1\QeOpșAjqO #;tpTGʹg~xJg>A$qh uKqrx@gle C 1=I.0#z ,0\9y?gq}W4g.4ǴphmUY>N{+8AR뎯!1NāVY(P#Ja~mA Ҝzr2 =qe}~ܬxEǒu'50C^-7uճsGAl n|=08/P īe> GxMVlw-|L~C* >S 3|J|V4}g35;;y{_.Л )[sua9[[%Y􌽴>. ~y/Zw|nڬhk~6~_8?{tCfx̮nweoL߶Z C˟7džDF;_4]do ZUb):?vB+ =qND%|rfH>f2lm?حdXK*@v !C4 1O=I`7fP[ypPhyDlӠzw@r2]o*xmeVG+kó~迃C*g7.9ƈV¹S8k Pڿ?rٵJB;(mIb@ 1}nUWg`bm$Ł-O&GԡV"b`v0Mn' _ d0w±Րkp}fGe)R7Yԟ~ NUUxzxMOd7Z5.ghc'to+"e>9s49UǏ6sԟYqQlܖIHί۹)5Aݱn׮Ģd7c?|* jI/;C$ɀoۊhY AT(,0?n}^ }pط"exm>*j.q,%=~qʒ3=X~f*B! Nا"8 oqgb98Fŗ>̤+_]T%:?;'=wR+k g؆8 힘oc^:" zY1.^b!Ԉ~m ^Ime,n;U8NB =֯ÓlŒwB_2Z}KdwOxO!_[.`c_ӯʬ*D LX r9BfBHT@,{zC('Q=\[PsP!vE꓆ )k@!>szgܲe[$Q|e9SjCqm*R1!\P\]<: ճ9h}O}Н'^A _ ze9j`V&#hNf9%a:I#Xn٢r`+|g*:W|H,,AYʮ Ȟ,#> AG#KT S<wem51з`Caޣ's&@^ Dw:N *;^ *$ d݉Gª )w΃NEK0 0u|Ӟ'^ⱙSq(}W'˂t\h2_D^~(@cgK)3w2}یGlCzW_93cl %MD>g{ҩ.:P@Sm?ֶsޗ׽罽pO$ۛsK ֬,0}EJAiJ44_ӎ&>IOSex>[A8.}[ok. .{lwM/>V)/(z\fB^ͮ &/C{o)xu~O>&hn[etēhө[%;8)j~(Θ܀2A- k &rO:#!e.aXD芙at`b'ݤfl;&?Y1G+Hp>e+*62ofrO#5uL4xCJVegps1`zE2.w9rE}4W2},.m1pH泱7{i2KSXKwk1W?{_U|⳶j ~wE+?mlkDoʦ;bxܿrqbjwfp'~J>[0OsTyV>iou,O [3#GȃU׵[ ɇ @T[1T$7֔Qw>T\W>s^Aiq:%}?ɲ7|./rrzJRNoJxmeC>l}I ]51m<=<<8Qħ% 9]S*y-5M{][:Ɵ$kgSt5s緈.b|h!80WDk%ԍ#A>^V) L}?<9d$NJ;9VN}~ 2.4 ^ЂAqEY`D:;oЙ~<_Y;9j+]mdrhj zui`Ҙ]% @]&co8+Xk/  ~@-DNeZH$JQ>Cي#jlIxwyV?"ż}ӻ9߰p{{Vޜ oۇM..w%#mcg6;~88vi} -kgբ+9=mGCNt$_G {.~>%wŏ{>'7/&6c!엖TRGtq&L"fAp{x<&\qr()BQ}h[3X£5A'Q>(r;4Vf/ܻ/ TSG fu*~o*m '@ll8pTh9w),*GœhY:ȣ8Eկw4e#@X}c۲NQt  8wPX}gx29e>P7#ӸQLruLIY\!+ sr8C8ZKXQ7έmԪE^o3o@Sy\zqw̭gh 8¹K_\m?ސՋs_YL|>r4he(%F{,9N&tGAzc!;-$ yغ6#l@LH|KÓaK8Cp-96aj5TXx\`|_}v3Ǚ'C @(힄U Y`%<1 {]O~f*z#T+| k-_ &4+hp=窥7?+;rϚPpj64;3Wy; j ےNUw>+휄*N}Kh#>H[l$J|xU蓪6e jgK9k[~n{Z|h-y$]}iIq:Џ᭭ OWF{}ԻoM :؎RnO7lKH@>L~&__~l:fΎ(x)]9{qzoJa`{4bw5Lw\t[KxʧeKp6tzg7t<ؒ Cv63pÇ%C੾Z?3S=:I u'f;gC!K.nІO_jjc}0 B/5Ot󘺄~E8O%6{x==v@1|0^޵Gȁgp4/UFB~b_0? N*}jzb;bq{ta|  ˮa5N ny'[]gr2, %`{x:枝=@ t\L9THƌ% 9= i/%h\v rl >l n2*ٱ_3ؑPe&oz2p8:;&rڵej12'J>/J|URgղq1לK?JlEC[ddX(Y|=WN|mp\4w @Bt@#;ѽ+=y.lxmw< +14Xbr>Ų߲s\yg;X2[7lz׏\>}886zFvcqLr@qe{XAGϛkSrce[Q&7H71ەӄވeKI k8v-w}Ucx?~$L]ӛn|$G=m'5<!w87sZɾc+rѓѦH"J 䲗J|gq 0CY֏e,pi7AnW;-M:@8xgp-tf]kLN= 2dDDgossූ>fp ;_? -y!Bd7Uo՝<6+^KA%?\=dr+6.4#d;g\9`R>UPrxǥG.xun ;n67L]~z?>U8^HyJMO)1(]Fȑa^!h>Pn h3n7U 4TË,:%\5<['b')6Ѷn M8=:1.4t@} 38óe̗.:7[,3ԎdDrM. o[@UB=ymO%GO%'/>~ɡn.םo5To˓1rxZNyр:Toõ^' ^wOlI>yj3vt'Љ*hw/9`n5PoKfdzFVh?5 +9T|4k$HW[m߽j>>|ٟ/~hkgARle<ھV ItWoy ^{֊8z܌}[}KϟA)h4x3N;w N %Y護(}8YQׇ6ئVPu>*so1@ӂ"GMg?-t (~jqهlY&=MٱO)\tk>wG>N>:;a-uq$'MKJʧ9u5* <\2uɸa`JZ֜8{ZJl6o o{:0';V7zt1 cO-~D9WA~b.-ǯOS[|uaW"7>Aip7)diLz%H=IZZg|.0ZA/`;=ţOÆI$wx3B1.S%cšͯF}7hoƗo79 _l]~գɃ ŋo%a.6ndcV5q@IDATTL ^6@jXtЮD2$zPp9>'?GYM~'$Vt:*fzRk+k/#NN.r,_hQwķNF'X!2G5ts nkتw“ݍG&L,pmuw2͠|Zp e+lW2j>LGpMjS9(Mf_tnW >Hzo4^i,C2z)haɏ᜴ 2X>27*\Y>~nuO4;r$'S2Hlf;Cp݊Ge$+U=1-+X=ɵz펞o64mo}tpI0CYY3u[5GD>Ĺp;rd\r;8rc,}f>}GǛ߱*uhxYN<ֆ:-9=х`o-F~0"f~\edY0Y- 9vAd k|pY'eӛqGOFFMÍë@Y1F5Q[QпuZ|ȉxSnC+>j'fC̪P&KhH (E+F, ޙ9J̱jUdG#9eXCQ:ûFᇗK j`%|O&5rلA`: Dё[fn.'vҎnFL SIp"kFܻd2}/a<تaMt 80'˫➮Cٿb~JˆܬzKmSH+[7o y;_͞vI$6"~t^IJp!k?5Of=J^\AYG Xi0ެ86^]oxq^xxSңArf8+aަ(v1yF{^HFDq&dr}CI}`SgI,) ]' zELòGg$q;,i^W2f zBBC*sI';TC\jh 4VUޛ@ˆˇGNVGtN e@?u[H}&ۃ^JpyeU)u=l+dxU!=4(_K2~p3G*7E3 ^-W^Pdãs {_=Av~&/٫NQtua{ս9x^Ɓ[mxs[x/vªGo Ot]2Ndmƃd.]k/oื*|FD Ά}V~}Qe=tL3t GO?JZD^76;z=p= vUak$[M}V$;­@7NzK.!ާDl:KJ1}LpJrQZ7yԇ(}r֝]?>4}1$tog~)/|{Xkpy`W%:::A•[C&$0nT~ϭ6h%X<w`QЄB+xs=dD;8#Y+s$/˄~ǔߒ0ihSxGk$Eko@R`"c\l!$g+{r`WK}i)x @C@k,bp| npo{uݳ`V|xxNM>deyH"CeaTYOr8f0wW38pFb$ژ%s{aI5~g,ŷM|tXI#?ɓ8hLʓQ y䍰xi@n<>6 |G\sYnӦmU1{I횊El Xl4-a`1 |X:fvz6t8S#ýx"?7(p&Wj;i"X-${|#]^uz:"Mf{Hgp커@tN{/_ntl p5pц:xOt{]]>~ZPbݻ:pC%[d/;'؛e?f fKw=Tmށ+Q§lK_f-9\|N돚inl f]  ؁ʖo׋i3tI"Ds\Y~ހ?f+n \z?f͒Zf mi:E9 }ۊ_޸돿]wSI\7X~޼,V=HPX=f޾!c; ^$%$We( ]55ٖU}yYtwYloLCxՠCw}{w6nbfb3w_ x_K^?FeMrT8􉿘u;aMiBeF| T<]`N#Y!6h8|~?]ξV?k_ds[)1ʽf#3p1oy6-UUa]tu>>+v{pq Yff@)xAYp$w~?S 0ɨ53w=חg1;W&ѥ\ݺ õ}_y>[A)ԇ+]})i@+]>͞N?< s - m}7bm Bp{6ΞG\Ia*Cz2d[X۟فGn/>ZT_ wQ-eEqPIх$;T|~JIf!x]w9whZb4_K+.)z${[ء xm*"\~>f8:S&w /՛'y46'_M67m$?>f*|.cg0X; ;g7[I=KexX|Q^gKtx AP'RmJ! ~-<V OJ]1x(`t>-Pfmj?TMdٳ+m=u8&Y_"[ߧ8hW@?W2}O}>aXã, -RW_3yp…os5>l+ |P&76?>qR RrŖ*\򙔂0At2(c!1)4Tw(${ƀk N{{be:E>R f ӞgCвkF$ni0~$Ơ G.'!27zPKr몜0e!ݽmUErz X{?Kñ,]0x}E~/I,ؽ ~bZjn%Sk.">IH:I@ly aW*w` 3f@Ɨag;Tm+F<d񷿣>'4h[J Fg=e^2.B0:Yvxgxh`+:Oz9tB2x6K̗l{<lߴǶ,nWHbG_ j8,.Or& %785A+Om?}@'1 ѫb^{w^z%Sm"j_.nFmDޣ>(q~9SUeX GKO VYv:PxhMx;&n۾vTaZ*[ij؊ 1hǑ }Oos@ЬLw}^Nl^6,6]^;><5go};X52<hG|5=8bwF]ۏkoG$߳{M^D֮Xn.sBvTsGhg.ftV≤,~U>4fGo\|Buq^p肘.z7+> /@bږ|L"9*Ħ~NR.`56}ݕ*؊ @`0g(&D vZgHp |Kk\=+vcBYplt>~ 8W'XIw)yWuF9x1iSqiLxJ(c޲1x[pl}`t8%C?]۴y%ͫ$3u!7fd;/1j-3v Lh aJN`/1qN/^rd^xW zN+Q[ _4a=4t%bB.礃MS P$GA~ &o۾I9Z94VKwt ?ԡ-2f ,&S y,։sv lĩcOGo64ݡW$ʧT)NGﰺc|$`h@Tn_ۋ]GY 0?^أGu.!`U^o'Z3^![Ջv_urup~x`IҦiꖧ;P*/a{r4If7~}f? vHUO}'އ+>+X"45>0َ|V4½RE"[EosRdi.Os͇TI+#nfz f:╒Ozퟁ'3&.y#}|]*$kIt8&2fbj$ŽsH}M: ƶIޝ f[=|nq¦% |]҇0V6~?K5AxM}4Z=΄zU?g,I&oxOv \3׭>~nxԮo &ك!7v#~U qC.~OXlb4lR C D.,O3$~ ^ @[W mpYO 3rMxW>F[ѰDHŒ8Ѽ6 _ -q&U@fnI[Wk{y] kkg$.ص Lu0+8ckzT4}hO }*8Mtވ2_m-,X-=)t /e@33`/"1$| nO\߈hDbhvW 7?pqE룢|ѠɞT{(}l*-IK$\jpj[LvRq6g\Ow>-7V4$[&Ӽhkz|g"=.:,4ssm_Af5W)>VKlL'dOd1F %֞Y_Sz2kbW}(#2L^cJ\}k$FTw[}$dW5rt)}L;ڡOz<Յ67{7EѪcEa_i^J6ob; P5rT9=@dx5yr?_*ȄԠUQ*ŒaqpJYu } 쁜cA Js0 % j_'AANZ aU?6KS g&8~m9&$}O+SgyGksۻHf;lϘf-dGyCYj$8ɽ̕kΕ+K;vkҚc|uY6 @}н*y+#tmL' `rhbpM(,`sdKUy.E`SV֍ù8&/#DkD&R<8ᬭ:Tv\toAS*2r1vjKx4q59n`_a y2F*Уm#~Q$}~Rq~u%jw?m@0Ta#qϪ'50|sxkUc^/「荆O=Ý/efjѸ=)RY9:)vn`ݛ@l Eϝ/vgo/y?ţGvDތ<!d#Gd {oՋ~|lv_ N]b{7% %A[N2r<- ^=CW/1܉_a 䩎?￯\?o&6r[?`noW0%>-h_Ҁ2l ky>I? :ho~i!&Ԁ^r}S v'[G $>|  oQ?jŧtc{$i&xQbY`;{uUي1RIIV*W϶7f UR=xagaAax ҹP9C5/H lDql\Ƿ)7PNw?nea}v't/TzJh V>A6٧;RL!):g&T[Ν_}0<ٖzhPOG.dV%*|WM}s4 ĮQ u1 :OxX?>|ĺx9y NpE dVů1\v-7ѡ~f':EIʂqCwA0HDw'iB 3t\ -bF<|ܬ6w~dX" L= `C!_'yX-I^%ӷ vn`5'8HcS.}PGnAY?W2oc~h4`}y y4EYvZtvo-=nEk G4)-yO~qZgC#;+o]}NW٣(bmI0`kw 9>/FEUfۮG :,ٟ,}bIJ0b$;UvߠR^dP\6*pB&⫘F='Cltoꦏ]WULnϏvm{?\a-cL68#\~.f 2Mp1ydd/2VIt CGEپ$IH;/vtL` =AlmٌrVV/ hKO9=}=¢ I-@Ё(' dC!3T=i9e_!N[ w:w6#H,[yjǬG2]; ,s"),>V+<WKkxκR(2̵8c b%U">iUG3dIA:fLyAkRFL&j:~/7! ux>=+A_ґf?_RڵV T&Ns8KuSۦ,ntSgnqd*_2 Q]҉S8 Qu8cAS:f|HFш[.2#E{,3h\I$9nĊDУ颶(rS)H&qv:B0۽bM-c&P L$x~w{t'zB՞0Fo9Nx[&߾{Ov ~gCz5Jdv+SN֝[uM3[JV(kU18pM?`u^q tSp۲[Q#Y/NUwԹ!t TQ k7݀j+iOKn9R36ҁ,uRX֮M\2rf;9跁&!ȢIӏi0GW—.H,1iZWL2}<%6?{ѳv#:̒O?ߵ^]c_٢/[nA~r0~Y(Uf;7k==T@:1ǖ[ii q]׭Pxko=6"_|_{#Z#>ak8|xw޿sɤ{+ď'ɲ%s"$MF7C:{܂Nu 4 QBk`t*$C,=vg0x ޒ? 6~fҳ^ZPS{nzc<zf}?A|k6k4H/ܛNHYa/Y=o%ւG>?86$sɐ &l!\+-3tL3|6Yѭx`ҏ'> sus"y.k2J$fWe.CǬ&vscJaw;Hv3jHUW<:sGJKO@  _|W/ʱᾬF?`&0Zو=9u ' GSrEott҃ZkṯvH*1$@I'ӫh4I7ߕ@|{CzW񜸓 _tC K0mbVǞ p\1Zvn876e !N8q t_YkN.^T5 ^LDA0p_}XUU$UV<`A2G簔+W{s]xnu=69"zUG1Y|_ L }aЄ98tP^jt E[)jm0Gܟ.ݝaHQ$C1 ͰluxZ Aɔ 6AY'fV&Plx[ 8V5\r2J4cY'rb@GGBV%2AS_iH+r#@,j~8΀vQS^炇>t^)Ni̡?X/\Qr9|S~P#K jE,,'}:UCmӓXs-At3՞[ՏPh|"WhY!}3*oYRHL,^@v.GѯN'Vks[v(֑ +h{^|:81G#9h֖$] j.yE##T& I3IRι[$?7ْpX;SN:o>=Ƨ#fsu)9y6ۀdjv\iIp_[ftFޠ*>H|xoü}u!#yȒwK_lr+hӾ燿67{m`~hg{~iLYީOfmiKhl,m&{>wgVZ`wOA㜾==o!XbD1D Ɠ'*au0cF4cY|z5ԧf}y2!x X@wqd^YV)`7ڐݛhH3q'c[lh u6VxGrc6-sQh0$}ǣxưܽ fLM_ӳ(/}&X΍Ⱥ?Gee1>b] W.וʋo9>Ɠtk:<*nlꬒ x; &y`~ѽ >p-cd^%o#ֽlGoR7ԫ2@ߡ +o*Bp:A^ڼҼdRtL<Л-o]5+$#e, )Nd`|$dG*[s6nov3`q]8~`k&?ki({x\yÝ suO,Mdٵ_}. M~þՓ0ieD,' %k92np˝VnEv+_j $\ v=xWÿR 5bbGӁ3)U@߱s}k\D\1fI%lJvI/xZbv0_A9<$i2]yXC<h\ˇǑ`@f=wm(= k)bfح-յAvO#'!32awk}t-kVC_@" %SBs249OGɽF;O@8 !va45 n=Sl^锓J9,NT$"@h){KJD2pΉt 싏`r aLc{SEʊwfYRʓT?9+ڤ32Sx\: :9+0lC3@[R ։SҲڌH1x!f#vh*KPx9Wk-Ð0̡Zgp:o2ȞAf2W7[Ul;)hk Ϫ{۪tqd+G7}r" I/j/- ~zp !JhX"c.~%dɳV64{vA'a? Lpe {n=2^"!^=JOwV '3̀ìz Kx's~*9:~| 3{G~>8z@IDAT >E{FܖXھ|$c+? 5,%ا灯AYq Kςf;iǦ~zTtKi߃Uu6mu]2yN?w~,^ە*ª1Y }`5 p贑%L JH{5 F>1m`;p.9E?|&F&pR?gA_/mV@*gctʱ7QTCl %x⽘ÇUp:%81.i`tP']wv.=MbY VE}/*mEyJ[C) ϤQe#nt'W]:LjMVצ.T#o`t1's3Nu6+qx4MoS>:&߁QQ;&y«{^ | X+b3ts:;_bLc{?l#8ĖetF? D|P wp}Nj nK~Gn}b0IǷ/Rظe $ajokE <7#݋(8U{ׁ#^W+/xXkutcᭉaO{K*k)qsBـPC ޥ B'бJG}-7k)K@0mrGž.;`TOjJWہJ\ZWgG0X8{ x$CN&քgG w}fq 6Flu,n\J sz?}/1d {oIT=7t< kS1Y5w:hئ=nZ@~Ư=0Sjq :;Lz"KOySN'[ !O!V%@@qA眾b jSJ{0Hr?S$Momz%@ϩ h eπ n|1ǴttPeFeá眑{9˞2q+<,f\)_m^ɄYϙw rDfiL-J?1`9,c- οz@?2o\2"|v\Z@Үc*#?Mo@:sΑ7 gӻys'т@Yxm۪ `#f$rd;f_=DΊvq孖(%s׍A!t@7تv>oGq|2a:Û kp#=t&-KYjim~׉jT~dmvpbc<pV,U4c.ga-8Z"~(LBpuΕFc*C.q/aC}7x@~]MoY~] x Ap1 N߾#_+: þAϦC$AB5 vc7(_Jyp}RkԦdO[nt1ʂ~er*f C] sɧU 'Z&ſK9.,,${fA GVĕ"|Wb}>˳ G'tD'_qNm1EuK*Uoe@5;ϑ%Nmx6b'ޞ$ g_`k uCōl) @M!@`I[;l+Z#R"ݶc {)/ cxfM爈+ .| >lƮ+nd07gQC/` uE]f_[JB~vz8<+^;Gku \N_[䑬>VNxޫpcKCe6XG*Wqw>:L[0go"+C39C.oz#1Kq];^-i*r{ɱrsJ:T(!{aNW8#. 7#M7?l|H$Ŵ[Dٰ39mEڬtƫ ǯC|Q0 +[ʑ3Y_v_EW S OĻ~k4A;:qg94`2-Kq>i.[?~@|KX*[xgbXoonC,g[:}|]P/T+~bPv̩D36&XAӁ*/=n-q!Ճ1ޚOߓ>WvKf&Yud;<iT*"}54?қ"vy:tmp ?{VQC+iS2h(]'A+&Zm90foLepMj",^rA[5 R\VٱLr22s!YE^8Tl;/)m9R1Lxu$3ucVblcmk?)U[gOxAjFά/~)wkeDPFD|SL!,ݻ 2Gpg (0tA3lnCLV?l5'я5؀+m)w<:͹w:~ 7r1N]31P?vn6q|p*7Aӂ/}TCʻo=<ɋ's8h.xO Cz~$6 y pqU? zrfKʀ#,;K9G"{dZ# 8pAu z5Y=*@*"kיrf*Pv%9|µDׂ9.|HYpdS48E*+po\r& Ӿi32S*X:G?X=k \-M h[>4Pz2xTf{ۮu(.Vnf }>c:E|~7 O7XofT j:`'~k [Y>~hsDx{]wJ0w`G+t` ~sYW/5XmA)_(Qq/\^g'XK(1`E+A (z:ܓ_FY%|W{vˏ?{=9cyzvkMFfDl=-MvhH~\7=9}_z«y~$f*3[Mhg൧wFk6ӁT$MlQ5w ŐZokܷ79mއS4߯ZBWpIKT% Rkwh8d(M-ᶾ-y-W ;O*AhKtfr[RyBKNlG&WÍ8(>[Ix~hds`~r!"f,W NGJׇ]#GK<)U3 8EC?n\T+:7/}X =9̗xaryGwmE]paNо_=S>˿өwV|i$l$zB>?}vg'DZybҒhk8Fl tMf-}+xl>x}}Mlx//٦m̐ a?Xxr1|4wWxfKfo{kH,l(xn(8]MFj3ߎ*__ivo&HC=t!yx/1W;PLepRL˲]7TAva^@o[^jN9]_`)W>D)RXUYo9!;0: J6q8O*M)vFY%H_gVevd)]7'맖baR‡ (Q.w*p$*J4*X"Xt~NvwpbQͷtd{%u }٨9\/ijgf?r\c2,-y^Q#rf8f7NjOǍae඙ 5Tf݌!iPM<_ΊƟ b ++G7T#-K+[p:{+) YI 2 ^Yxr %PF @d0\iK:$XvIp 9+?<AiGD10x O9>+w)f&D :]S{9t𫠹ٷ.|V\ zbEkxH̆2{:XN~8v5U9;k<}rd:Đ5zCf9)[$ c\d4{cGQ8o{߾k涠I7@H%T/u0}l:oէn\Lnp٫x`<^Ѕ_,?o0~Ľ,Q}!YK 82 $ǿw%HQtdt|.$^(tF1OnmcD-1ڬq2'9k#KIOOo =bM63##+w=J|zm׾m{|M: љt=zY Z >q'0f+(DQ"x?i m+$?>Ԃ)l=Ȍ+$">L 7!]ėm ;/KC _B !:o5d럛?g—Ggr~Xo/`67e`%aGZ7Q!yByZӭ~1KDAO]͒_.O%O4@w_;՝W>ELxN79oȊ?lu_m-j`HI⣆WYIyB9bn&mH@t:5z>Y{xdS4͗sfW#t':\ރw`%<Єfy+%0h0T80|[e⎻V/U쫳$Dx# S&UvOר +Ź`pL3Tva{`v[..U:$v %c k6ocmmfV{Cxy% .aBQhJ/9ܣ0t`s*[]%FyWGO\mf#l<^ SO>Z:.2r~=8=],!?(I*ݻ~g/w_dK]aWh,6`Z7Qg6cѭpW۽pϓ$% T׍=2\d}V{Dkڈ|U @TdVtn^>E۫(_tU&qQ+l (. ^g6 59gn7]Y|֯Tws.`w,Aҽq~^a@?_ ;5Oҫ`.=q^|:Ic'o,H^W?ls:܌~a +wӮ>hL%BD*2ȀNKĈUg[A(1-1x c?^1HSG ٍ6{Wi^O(@cLK9 povB$Kh 嘝RNw!iTN#@79J1(i09fJ;ϚM $99HN̒ :懗Qnt:<( ZR-wӌ5Й{ǖm $ޮPhΔkuҪUSLe1v4]LJLB7+öBYtִ{~]T{ G.Ox2bor9~<9MV䗑Ỿ&v0f;Kw8O ђfKY͞t]]6v7Aւ4= ; WŸO`Xh:O'+-Hv]")sSiy쪁VHxdȿ9rDt%w%_ t@4Ȣ9(:@8nm{Agwd f% A'n?y$c/9XnF /?oV`|E KVxsAȤ^wK|nxnV ]-$g{%~6*Gɀߧ7-o6PG:o+~vop9~2dS/%plkYdN`dwG<}L.F˵}||{xnAe}|ѫ $~jx-c w`co:¯'<*k p!#R}TPxO^aG% Hs Eo64XY3,n?l~ͩ}/H~5:c|%%ݼΔ~=^L[n̞w)](+.bGs~䎲ଏn0W s|JY#n*ٵ{?:\,Zw !NڦC@'NvH&&O5t[pǨN,$0]A6ƾ.Ux?r::ѺQNH~g@@*Rfu8{`dO`raS_q%Hi &&/ ~VΕ@N'qW/:pUvޠr1N-ⅤmԀ'l]_걭8sxy:b?@>?^Mgcg WiT- 魾em;>vI6NcVkr:Vt8k6RF!SMQbQe᜜%ޭ)A0w4ﺏ'R7]_,;-? =x U{U?7p*Z~A=*ni#ȝlj+3>'9љd=VL,}N_Vj]Nޒ>4Vd}痝S _5s-&ac{02etcglNn:TX_ȝM;sfݻ]f=}u_^;`0,޼ygM|W 6Cky?v3}Hvh_mY/؅99ICFCbQu@ o[ ςbW^hǛjo􌟑lV gA+-uU[ۘS2VQfKoe1R 4>qzF"dS'?Z:o ˮO6 g͟֎@<9)¬^9^I _B[fF:h~Y߭m?)f"%ܮz`nw +pY_t9'ko3R`Ť88rj -U/}ҁJ<`B7ắ? ` ~u.y08|մs:%.08j_fe|J_D)k6|;iOʴY#1e6LhGG@1zVۿQ5((TO8h ;/72,k>vqjx\3KR= CոB!Tn1-P'#[dEt[bz[l-:_N<Atik*{-!v,ت-sxrȁMߴG >`*N𴇚EJ/c3湑z= c4`k`m}]2qJOuO}Xs4+A z qI(|r&%"j?I%deOIR2`ìֺ/OG]I9ߙ X0 S=ӒIC{bJ~F30FN|VOG ڸ$9is}c#w~| p{GﱵW;[%84ijkw\A ~IxTg1m ºN[^i5;Q̧F`W8A -:}DpB<<0;/AWkֻ| 79)u tvBՑb S -?tvxhi/@V 4\G,8|]x`ɎUa2A76dZ3/sA&~{xlͧslWl[Z:;Ʌ9B?xֹ i4飂 Pt ^F눎Ev։v6j@щ!Ɓj34&<6hsyK O:<| ux)3aAhqDrzX'!`8XB&^[s讵R4;39`fϬFp 3sPpr0G>~S?Kc"/v9 5lu,Ku:~tRIuvxzi0:dͫȶZ]?_G.nm^> \';f=va<2x'MR*3qĠ WfߒT~/87=sOm̨&OC> Uwu8|/tA#ɠ j#!H[وd V(9fqC~e:ŦJ?.T5=?+_]0Oizx>Ə6k&>+_>؇UM}N@F䫍N?(34BL)}d-X܌w;10p0܃-nҋGk/_',6KH>+ߠI88Y 1*vQ rvT6C쵒)&{@m_?=?_/F+K S9gEkjl_E-:tT$4%\ {9,NWѳ"g7}k?oX[!tmm_xh}ȉ1ê;_f} Fc`Lc=aF~wz9jyahKgt;>+%6?^#]x v6(\[\AS7<~ ~X0n'dAZ|ߒ:dͫ!0~+Ӹ'T\pVG6 HA -b(b`1wI /ebd'E"b80qeu pYbqnF?}0}xa(0s%'3QG4I#l+6 ͚MiEc'SR@9 b=443X#Β$OZFi$!Kۖq{ʠ]gnm;;mW>k0>aAPؤQ < -=Vɥu<>(ƳTۥp1ðW?ŎkmzUɶB7e?|gd:dKt~y3ȪMH%wDz3_&7 kr2TnZ{@|_uۼ%l#Sq쌞#IbHł2obfpli?\K;|Ut vluj&eR5mvozkKwCc@,K'jжMw8uw_mNw-V{Ljl"D[kW9ߓnl{=MÑM[3gGZ.5D@F aN-8˖Ё(=l#yxz6%Q3 j]b~O} ޲lM4x~[U;_{S~8 WKxu"?ȯk*߶ς~l.Z_[@%N~f` f3)`|XfkHP1m)?iR{v4yֱ'y—>},5x46 @KI6X ]h 2{˱cMgضv'\s8'!+a(C_b1]_M(}j|y<\k:'t7C/nn^fQhĞ1t:g@/]\K3; %rtqA>k}_W6traZ;K{oo~G V9/[n@,+1k(3k4r1;MJwc[Bu pQ_^yob%r>>In@Ր >O#Л F:ggM#4_:u^吋~~lր5qh%Vѽ^O /͊A6j]*Wa|?ù=?ţ|NU&S|uJwF>}QtfBr;k|:|{32K𥟳p֟zl`/õƽDȊ>rig M&e3L-֦n3pm8ܖb xHVGgxwg@G |7_^8.[ 𹘙rSS4QZ`=t(80To|WVaa/M3;[y)k mwf\,AB ײu:k6HPk4>[TfKg Gi/`t:;t8gC.jPO R,X3=Ty `:BO;1ҕ`|'tmվ> Ȭ`#΂Vxfá_xD l=w_m`O3JI֎6 =u|OEs2vwl+Y *v ]~Up#f?F B縪׏ 'Xgk+G,/` mHNO}Gd1u :6ݤwjN; ^ vGh4l f͐N_ip pf_Ӗ~!._$_;&>aĖۜf*#t3I)W}w/Al|FEiLλ>ݳ{=mG~J8o'0i3:%w=A뗒Mf_Ӿ^[2'`'-dxa &0-X]3o g?40hnC? vhz_{mW%NJ%ps+";6wSzW6^ Z}dheG}ӌwxh V&Α`7.ҋxݟ&"է-i>/I$3Hg;oYLZu_4{ի4_?_Ձ NxW@d 0.I]o|x$j{O9Ow?|}f'I/2II^S4-G~Sk4: %gO߬,G&<9&SO;>v<"'>~$udQ3P Vg`.u5v.I#}ju+K=F'ibpu/NQ r<}̹ҏS:XɀjZ"9PTO8%:ڗկJ*׏A~DOXD3[Ob%<Ϯ}O(FEL鱠,wK?  \8288|B XH.@bJ>ӱ ?`X  {:~د/x6{ŨN_ #yDa>͕dǛ(=x.Kf{=qvݒ#֍)Ɗ NP`x Y̅菧%bIeo)A+d$+LΆfl!Z S~.a+J֓wze2n{I!Go.E!V/ZխM*ޏ~uz/Ы3U0z<307gD!ҽ _6Ռ#AUtZoEs Y,ڂ}O}v*@ѳ*ُrX|q CO1ᔆjBߚHutd+7ìHm@I@=3{lČoOr{%=)%}Y9g)&#V,Ćh[nOA"D6~蘣$*SX(v߀aC7S58ns -HЛqe9*cs_%D*-30IZڷ90 ߮ NP:U2:\AU6M.()Gx .k&vD.-ǧx34Bl$(;zE:Eξ'y3'9-A'pa;^p 3~i|:$ E5tˌHtTooJ&HcxVGe W{< 2mz=8TYEx `H2HBO;/|xuZ @dzW;XKƀ%hݸWiK0o$"9@IDATw{ !V6XՀу_{#/oOB3^=lS YINf|ݓh[fF`K/u!ȕ`0DaF@Bm0[zU^ >3)E*)Z~I8g7I_Euo|kEe:*@!vePYv~scxP+( Ʌ0?!S+RWb/>YXH}=.q<"i{Ƥ+nI4QF}8xA <$WPխ23es%I&i$ճN(]%__z }l9O1JgwA/p|o Ay~\נΆB ï25Pd]wOĽ|o57ܑOnmd{M`7r7D 6 =<*jz7- /mdIdJ%̮$Aç/i]1)[Mnh|o=M`8VeUٵ]è;c*ݣx`Յ]]K#lRݬN[!ӓK$[%w??:+\KLH"#A/.1a5NpX_“k/kb:YCdO).0Sl^v7VYJ  L|waL4eŔĖYІz&5cv1U_jȑfzafוO{S@c,vf ޘ&?Uk97t6%촫_Y _tO$ochK~cZ!$3xBPCUxˉ4Yy xPOwLHe|ewAS9x@>|˖O)c]6s vVPmZ"88珱2Z-]gl8;:5F >1bD{ӣvj33`)a3n?Z*`{ xQJ4lS=Zs gsdJo:f3\+dgJ&8$ՍN}/x#zEjB|D/!pB*_}fu49M|i@}mduwi% {:(hfI2-M:ɒliÇ'8L<יFG_]|+'CdR/YR {3Y(epGuaGJځ]]e:v̚՜WI]GHy\'/阃ҽm8n`w_ϛS6tHf3QS*8?ХYYPӋp/[bs [NʱWm)puTqk>Y{F1-IN:;|t:M6XM%Y#ZaVll>إ,|[~ @`HQ6{z|y}ɄX== gvUjǣk=gv l[@ 0֏ dJp0㫥JM5苪ws k~h)AI6ڀU~II)ZJ"Gj۲dvwP2c[=z JţyNm&K̴7|]+ɒ|ͨ: /!>BCu>Wu{V-6Wǽ ~@]x36d/7HtՄwG lN}[VyO^SiuI{$>K2Kt$zEd4[ر+ZMTg)(}ښ4Q<ǹK:r@<ӉD;\!i༄JV5<*$({OX-2 +!> .'5Y*G+xqȦ9|:W/}߭DV׎vMOAq}p^W֪U+y^zy+M3皮mvq/^CL}?z~xx_>7G=}x=1|w.]v?!䴩ï곙%􍝘t7|DGEN jW+"$3D6Kbl SDV*5nkc41 y]gխAv>(ڂ>>i`uISljB$=l)?پIcT^um2^p$ٜW~Ɠ>{ 3h?2_ӽO ':ܣ7U 'ؗxV<WC&:X[wO)Qެj,R1}28Εӧ,̌*G)AVj7 :w#/ޘo&e|&umɷJJ </e2]ߚϜ B?"ȟOq0#rzzw0`@q`s"1m2?gdGh4aЕ9#*;d@cY, &X g&͊ SGޕa uPq} h3\ PbmQ>db14c(@۟_p\@2QdG0+ w4"6`0dΘψ~ 7S}A 4 Ev\ `̓\Yx1e3om+[7p)6\"L {qY0d6e^xWeÇx8Iw J]{n cDԳfiϮcKڊ D"4IfGW3`u 2 t7VuIwx!ׯP]Ig{?˽_ qm nl?*&ůtۄo'c5{ pv"mԷwT{܂| puѹ0͜ӇF3㖜; *e /zoyM#TR YKgO:!"\`6#K)Gݽ~M % ,~#+3d^]VKM~x/*k˪ z%l/Tieva):kbEMZ,|X1KF]mNVT0MȯRBٙoUt@yfJy|&ZٻmgVh\}dMT㏺?͵ӥpno<6}#g}GsG ߌYvFCw/VSi{mUo[@E=?wbl3eq_/>҉ P{dFH 5OXl ßS!ktoC֒L/_4R1xmʐXpSf]e\ؠ%+W׺k9:G'^iՎ]7BbM<0Ơv+v /A&)4|>J)<vcU ŷ)vN nJ|V"r䎗<,s ]9L=g%};]$Do~4nJt]Č>L4yoGMC4>Sqg>8vzV Uwc`+O;]?zdI(Pz9YЯNܧ˃1ZW\:wi[~mTo\KlɐGd_āZGf+8sp,x|^[].(fLX'VlҜLNsm¡T Ž=l?$xt] TaK{Ԡkicc ,M>J`ߔdVP93}s5p-U, wr%}OW~cC[h=y8Y$=udfbͱbŰZX8 c4l)_ Ngd^sZ\v S BégQc 0^@Tk07fmVQq=y$MI LԥL DNf7Ag>{ bM)9=,q5 E? J~veoF4 (kg`iRǏPKZ8%#/Gw03ɢu}NB }}D cſUj$^$-U/pϊقƇgvhkw8u0Gdɧy>>Hw"P W:ʻW3 fIαExۺ$W{hp>0rv%2Ջ;Đ{vOO%A0=9 5O'8ϕZp1䭭U ѵ] cAL09!tr;mTBc l,Ets;4Tw|kOE a+Yzy={>(ԍz;Jo|3(%P~i<'ܣ$,prd2Oc\]ëɀr8T~疪ҭx/Xd;.u=cŷ,oz@yXm`ӓ ҟ(1{*dms[lmm|cwx O;mK-g7'V{kaAAe%؀6|%UKlE۬ߞؠ}3hӟ. |YPTk&-ٻ@4>4ɝ^nƭZɝ~'9۫׍NKYkOXZ9>MFD^Pnm]|KpcC; ]g'8ŨE 0>?ή>x`;n_+5ERmwzc`b(m@9Gp!d6KA*r]yW<_uW8{ZT÷ǭlhb}q;):V\ʼnhsFs>"H?j`%)G|je>;QXby8eGs}r`|~mn.|ɀϪ|L?Un;׻zWu dY97.vjًXC1lܐvm ]`|/iԋ+KO%W\"\o6Pft_>]d+ڇ+>_x=|:3cU>Jcs|Z'} ۧ=Fb$@* NѫiG5z16wh!@6VA޽$k`ܖ :6 )&hB[= 4wŪ߽xғǧϳxgmkg$m9oHbО8HxZb,ƋQ}ݓ9h7< Z_aXIΖـF\S-AMd0nS2.ry]Qj-#nm1Ӿ@/9z,WבJKjPi*nu ک $ŭA[nUl `GN2|k8o8hDfpkeÜVاz_R P5xы|%|$}[ח쀶msD UhIl&;Th['Ź{o ҍ.N3Ld{YjBR5%xmxևOtz|KdNT- ka.lSxI}ic6Z*O;VI&/6̒ X,}7hEj#rKv6N F/ul(zB2Kײ' OaTtɇIA 3cddO;Ox%՗ tȶX߇xD,V]~4$Z iJ\o{ Ҷ‚`Ӟ_|=xVq G[04h|LK)bNnG6}?_lXy eq4؏xH"k~dSrDrHFB^lhA6aj5}(Y7jg+7m CA$W0ko b"DZɮ]Ï) YzmBO@%Tw.?7 t]7|:hz6ѡ o%yi+kCd풑 k/4\ʹvf#Et9^%ņq0*:.9aK}%YC\ ?O.̕TO ֒TǺ2ꉛA@Ѫ>7x 62Ѐ$.,;lI|VJeSl`>^}}?O !͎]ZB#DIB r&q|j' /岝TᚉFSPڀ7ܟwC\|X%NJ)g^h Tl';H>-q,YmbJUG8\ '-IU){GHD;![{iu:GI(2{.O#NsY頚20$Z &>&+Zs;MQǑ;InDhŃJg*8@zI2eܫvh>҃ bgϦـؾA&&d _'qp`U)xx$cT'<g;ʑo\I2 ^%ʏ+뜵L"Aq vpimn ӡ.>oA'Ac l]3~h7k~~'7{ۊ&Oy UqG`z ;珢c>t7nς+$_Ry¹] I)^ {9?Hx?~-2K.aFkA G0d$L[W埘wjY)ah7{?u)IOh?Jec]A6ʳ×!Z~߷)͸әh*9O0kzߕ乍Z?kYDMT>~KV7WKR$f:xM`xmDTUbaK.CmY> ϽO:"@zKs;ҧ|WmqF)?L`1{zEs{}T49D 3Hps^|S$^z^xSI^#tl2p{ZIUO5' \%{2:\ c~BlgcW*j_[c#^q8_#@L=j{=߀(­ tout M|u{ qix@ 7(^bPt<dx&Px]C1x ͮ 8ˋ#}tux/6g A|RR)dHjzfCn׿֞$*y=]\4p{\Re&C8C3UpƟ..LӍA,Qvw #x9(8akg=)q{W yRIR>cLb(Ӫ#5;N.Yxe~r ^l;fVib/'M:rbiCL|c~DV6W/_$h%jʬMdt~M9q펰XҬ8|N'op^]3> nZ8g~ovmƘ`Oe[*e{[Bl2IGy`pE@[`ι`#Ǻ̜KI89NSщ/0L GᏑQ=PӳDPEp G@-f%yamCQ/g2 .uj L75n#'ƱhachGg:\ӼeP3g uXYN`b,ZH6xe<2ٗ|$j Q.?.qqk]Вy0>+2DN9de:%{hT=}4:}QANhk8iyh=!@;2Ȩ2V{В?N"9KpŜ|n*0Z6 "ѡ1ux 9jYHpȰ3~ʵj|f5~m&~ɳ08/0;op8ZBp| w@ AK3exsU˛O@6_O;^6Sk&h̾y>UkGx8l#βA` ZAjnۯ=MOŧN0t/Xd]@ά}_ 쒉I6;]?7_jED;A| ?gKt#^U4gG\dIA#yUzԬ:_YL~xb h{}cOO|>ogW?6n'6b:rt!hOن=w=&dV:I+ lߴ>w,"%+KZB:O2+ OuiM?v?+٧ٙ fM^IJgPwtSpl&-w;8Ɂ燬2BE_ 8N|36f53NW%@GAsa5*sN]~X=&V@In黬TXxc& o@-ʖ}ftaѲ%)$?>I*̯4Z[ ?`#-e3o;m?ǛEtW/va٠`XYm3{`D+k݄;a oq&c )`╤7G4@h>v/+J}Gd yWOMlP(7P5Pm;Jv$]dX{EfGWI_ tR66qU!P~R9M@ViaO'%kc LE}غ|9KCQ9g2?][i}RΪOL_0@?=mpc';6,X5|7(Go١/l,\c&7FV{}"p0v4+66E>%UѱTlc Mkvْ#n@'!sk=^!zn >Fă Ak5bz>[xx.<N7pj$:7_O n4Āp<ށ/yT/.~ίd 1>7l$["_ҁ HZN<3d %#lbg*C+(i?$]G^8=:mԏ~ Q#^p D\;ap!G(ܒ܂Vh,lR1yE[ ULGu`z2\ Z !9[ً3 hxA;0|ܖu3:AHBp_ f=sھy59^9ѷbhe:fNQL`p8i@.$(5"`D¡t?CPtxǭ#iG'CN- S[: <07$领];3lCYvAU ub @Eoܚ%'%rqr':h ͹VKdGx'c3. *ls!PPd?N h/xѹ*'(ˌi?,G$X.a0.n{+ByteUgAY'-iЛ$xz 3kƾ@nߵtݣ>(Sg@i=a `1:Dо׾ratyגc%Q>8Ql dt}o N=/P [_> f {I-wUWSvL^ fOl,YI.h-b!XK_VB}U zMI_޶$>7oooN`߾}? O"1fL]xJ/݇w@tOv^¤o -eWP }oUle@+`O&;, bhF_%m%@һM  &=Q'@^t26v8c=ArI(t3ݙ/V1VegO3gH8ڔf$p>1dCޚQ tY|A@RDox{~/7{nl ΀df<8}8E 8Fs^'ik[Mw~7tU`t1vWϮ/i?CJF'|Ѵ?座V.4P[Ѯ}fʑ#ݘMB)P:Ѱ鯃 P@s?rdxݕ @USeYB']Tx2[ >aXw#`4ҿc z}%}TAĸ[(&MCzL.[;&Wo)|0)xaxMtdS,hH~+YbbTxɮoHrCcy]c׍,VohWgW;l_RH[Cdqi0S2KAWd>nTCi*܇gnǴ{;kUMIu_-Ю= :ŋSWC%`wj{mra?ϧ{YE_.]Άsb`H`l5a|gxar8 f wcUí۲`nF f&H\89k)Aǻj& w?e# Mv cUIPc CC7T<_8ea'?@iT]Voν*9`cmL36!u51gsz@OBCj#'2# (o*[PU9)OpجM2@e,1w%deΚkN->ټʁg \oBI2 쵦ɺN>O_zNFd@|d_@`W`' iˀ9nN?|eoc !]ni1>< %0eη"vtz\g?%/ Aێ_CHwK~oξ>一ZGGFx_r0wuf/35:ݭmJŠG9,M_BLnT~''3ЫucƻW : sk@+7A,zSBIl7X{E HauC:PtXe~PMY=ݫ$V#!>'𔈳#f߾~z?~{Ks` $ MH[J6 --/4*krXP G M;*HNl_ӏ%J%34D^{=E۰l>_g'əM--hgUSKh v~<ɯO$G/dvu>5ۇ, ww%>SCp6ʡId0Pp 8$TЯ\p ݿ3O` zǾ{TnJ.MB0¤0M"@8^]C$;8( %JqtW8fR}YLw{Udx˯+6oqYΞ]U_ᓗ̽[iN#vݭ.>]FaHYh*bq/҉x~qpq߅;A<"E &?f@L ̊5|Sޓ6 ^"j?sOT޲1MN< M ~^hq%q4V=:v(;8"*@:+'FYÕ>`ۋn<ȟ_\%GAW4drP@z:.ί <הf:7&BC&HH׻$ݽӝ~inoµryB؅ ȵU9WF<+O&Ҁ`EFac&(k@lt=C+oDgx6߅KlY_6x Vw̖y[2|}ciYVRVHa1eG#tki:@IDAT׍+!r@qk@f $,I :5 #'J4NPr'A)[eG@lS;Qv3qf1iߚ9,үTzF6~j/w͌%j-8Pp!x;:2H.ӣv+)0rВ qf-:Cp!AubCBv4tt P 7˽xTOr_W<ߣ E`LЂH,{k$zǶU{+dF7Vcnpr0)΋U~{r*m3(WXI,/T[:YgxݓYZ8+2G9C}+9*/{dga:?|rW@k˩.d~67@,zJ7_#߽"]iGOصI@Κ ]E| yIZ!+%^dn{Xz&6ZIfDn.|W s 2 zAp~QUIt. t P"<9<̶yS/#i+ey0 C (/`#wFF-pƃ`tw6O}]rL# IxsUĻ48:04zAY ߙEV:Wu ~oJ:%N, ͡⻁Xd,Vp1 Ǿy$UIe2ӛ/yRv1IvcJ`b ɡ|)L݇[W2cF89n U@omN>[ug@"oJEU&ӘQUW^'!pTgDZ=x Wh$WF ߲{[ӡ^kQ&L>nz? _@iC5^EĬ'G%ɺBc+/'`?~i7v^}?*J MǺ//l68cQzͯ>|Jp^PJoI yCx$CyȤkعh;` /hQ^ }芬4d'} u QnL~']}w(;?7kxc.oGLx5 e}78lO;>?l ?}g-Io|K(l]b)S{[G~/z{ʐ&@~W(1),aK0:[B82[0hx<bژv.4{]}Y!AS3hQN 9,TP GS=FC ,/Jm>@DV=PBSyƇe.+(pn!sɀN>)lh:P{wj)Qs=d6 fw/(\Aa#dx\/6 nRv^ L\}12{r*R}ηoVbz*\8?l+= |@?#YPY:N%[jn۩ٕeS\8$cd@חKow2~}ϪOSWʵ$N Hxcَߒ1tRZ4]m(w)]޼ B[fm/١ճea ⿵]"*/R c}~oWf_g.(jTLH K^-$Ŗzg0Rg=HR%|V_عcVFXOY<֓y8ł||\ ^#k7nugyaIh֖>~WWw;ǍO@)*_-ьVlNɽ=?5 !pX^Ƴ pqX?<k5d[lQ'nnx\$HM)u> =~`6pMu}#Ml% *.1֣z-zк?=~7*Cb>bUZ?}H`3o>G:=ʮMxމD w3x?*PzDoIM7UGTbm!:Y8WKe'g|?~zV)W8W@9n vN#+EDb%nZd{Woa!~%&|mf.7ý*%4ڇtYɜm6:"gd6ћ1OpB$.h'1ӆ]td\uE|^9mY7-Kh{hl %ۆF^ڟPgZ6$T8`eq|8ׇf4hԀO<`tS6(:9uVK,õv6J8xkTr#Tux1+0R(v pCo:IqJfHj Wf}V].1㳧Cacu6cD[#^GA!sO>W%LeX- kgx+l55'I<#$)I0)AZg(hチ{At&lPhEN{kQ|X JT|$!ch Ys:h5S,`NonuEǧo=%hSvq%AF5=}y-ekMF=k?9fa6ș)t3]T'r. 2 q7$N*qxe@\'T⛾]]໠@[%lk`u$HXqn;ģu_%û'7/gfD핑)_E9Of?0]{1J}t/8b$4ю3Tܧcxl&& @cz۳P`ZidO/Y?3=}i0+{ j'h}m_~f<dW?7~wɀ~Uՠo=IgwK߫`x|+_‰OweD|%L2^k v?eU:/c~N=_GfXM'+a;/9*?%݊ |{zNOom_*ېC V)$X1ACD M7ڊ&: w59W,K9>[R}>0(:3`9ΌGw܉-$%2 R뎌׏ TϬq{ b1?-<COn`IXi[zұ>'q/ Ò&*tF-:/|9řxfgH ^ܢohOvKtLm'0~|Uc_CGɎhV9ݚ{>t<{Rш w!XlQF[_=I&[[4ʾ0MGWuc/Q;iQ;}N]2KOB2x vdMFqw2m v:_Hr1s  QUFH'sO|oR4}0VurS>%4£zN7qZ,G6تq_&gF&zi/nzE`ѹz6t<\!sE}`?j÷?m"gM_+bP&\HW<k5񓧵nt2@G_/.wϢU wǣC#*xw;I gO hioڶh 6ŭluDWkSj/޲n_2m<Č۽θnAMt1)A,A!F şˌ"QVe7ZkSaWնu>TCyT 狲esV"4xvd\gos=ƃ`'FMo/bhC|%tj/Xn^B̟ [ Z @d ? ON)L 7 wxMuẁy25_.TO-8{GOI# ƅ~gV@9/Q4NvqoxvDz^А!m&oH?8`o_^kY n[*&WOK 2+FfjIlLlφ7#N<1pꟄF%^EM/ۖJ E`}E]Ս#ֵ1J_? ί:Nvv 0WlwGO 3JP;öj.swM4F g8Է;t V?Gzx~E9:fˁn&$xWSmuluWd8'=X=<h*nhdjD h=[ oxф 7>J;ˡp@s /~Jq|A>^۲K=sⱃ~|߾{3"[h>l<>\x OcAi `곒e.SrS6@ $9vVUZNP̟?-v/oӗqf\9U6(ʅϝ1.kll(.ҷO_t襵K#,~oӑ}@*{XvhD[9~aE vO&t7˪څVV^ÿdcuEI3y@/)^xӌ|ƒ7}'N? v{}W/vOWl!F 3u^&.vz2IV\f%|O DU)o:4|ZY+dM#쇜| v8Tb%A!Kw_;T^*/O|O"^gT F1᫯IWuvo7HoW*k.ǧhJxmx6}s&.:-"7v #pocW-fNT?Ѧa~ec@+fɈ2Id#r|,I@Ȉ@#0s`Jj JZT^0YڢǴ`໱$űde`:8Eڧ@EŽy+Um>chLy5.{h^蝏5vCؘ|u3 9@cx8^9"{ŧKƲ`ʡvjC|jt7NA :V|C~$NZጝj~$@)A7KaUm݌~<& Kb:'K۰Bډ%e=F\}4>Ӓ^ cܓf1ÄO{YtsSg2-ujb 7, omV%l2j'|,g9| sQ.tЉ%3(0s^pi*8ک?C[( m7S Vcd*( @kzx{l۶1I$xuڕț -i|9h<`pN-lv,iW!1`޲t-8Yf .͘.Sm9Ā1iV`tg2 o\ X0ozlzNk? =ҿu9 #G>؎I 7ett2#64 0>N ^0nX:^>^t?I1za3~Y͖F~Q/Jzh-Kɯ9RjG.4mv bFՆWP9nK;[= aәD䊍6OͬǏXg/xáO:C*d\_6Zy:er Zruk0CL"][?>7 o u{L&daXz- Q|ly%l(Pup~64@%%4aoxضVqitAjUmQɆp|?85{k1z T`t(oBVfHܩhlٞtfѺwÏ_%?57F/Yw΀Y#>ވSr{< ~*q03U10t`ӣWC߷/޽s^_L_D_Wg=e5S EO; >zTv"x&>{ؓr0[P3۝}=_8=GuMHH6;7ׯ$Ԋ9xEm%3ѻxcKqƏmZ^2ާϲ&)u9xdU0,_ݒtN| #%X&{|> OzmkLc5#kA2jg`'~#FWH5|GU|4TWN6V0\`1}V8֓S]p0͵%+xz09IH'[ڨro+h-?~Ҿ9D[ct?+_s/n Fx pIʆl ݊G M#}ʻ,+Yvl=?.|:*N?7˫5:Z95 8nP﬏zUj Y%;C0}G1({:3m= C:2l+#?W9*Q2i] Rvv_Nu0ԁ9Iִ,hNd6r/'96 .UnnUsХ=PPib-fi%Yn$S褱i /4"[Bb{KBgڛ& Q7 v&?[\3I @{=膾d;3b' Yg䜱>.>h|?6=TŠD+ (/a#;%aQD1&MbbkxbhwČHpAR ΀ρxQr0\C59(,8r 8 X P F{mH0NNKֲ Vyo;21u s.Tj\m9FboUʨ-0fy‡1OR`3s(]<֫d@ ?Yzڞg9BmڢL3f W-r0g@WM jG@hqfPs<;JMd|@hs[ U#kѡjէLPClK-qTDYˆyuk5[pw2d:s]V$ w?~iT6|jC^HENq_2mי 0sRR?TnIho~yO,tq!9}:]-cV4P3Q[{gDA :{,)gk4$capfrhOD_EV%K}l T'{V`52:|ˠ HkA@9EwpS,F< fD\=cS,D5{8$ܳϚ|ɖʨ۶ӣ>l0~d0Zu)fRVD:=ۖÕo7knSǷv%rfՓfӔe8tRG~[golMg}_r m:P|m_J{K8CFa)^YnEcXmOlo~jzp_f{~,Aтۗ O'ÏWǶ V@rOd?U{,^}Ɉ-1|S MVYv3o{,_; ٗ{?9#8G㷯x!BqVHr=+^wIJ~[W4'? q /(Il{3i|D$[vndf{GSʱAӧeJJܦhڶ??t}%#~O휄Ag+YnSٹVZ<j5/=̈́޻ûVGPlA@f8щe}>zEz*ϵd[f:Y|BE>%K>`~/; X xor,FFZ~vn}Fp:Rj~P x poT^գG߭^6T7íD\a[j28?N*].L2?x۔/3NK$Ka˶@?.k~)hRAbK?췷|~G<gƅh^!v X_۽&]ٶ܄8AgvJXI>OaЭM~xY A޽ bә>Up+A }kȤX7WV0SV(?z A2K'9[+7[2N-S/Z?l5Ngqgp]itʬǙ z]x ؍=gQo۔dfNz @&@8XVZGP"}՛n7G*Ɉ@Ňc)Y Bj`*eAtj^I :9%oc'C{VEt1Oҧϯ@Gh|6ou_2{ۂ=ݗLٌ(~HLH36%jPkNjم -$v^g_ @T6 [RPD'.Ks+`ȵ6W KpK ]]쬇_YsVe(maCŇ(ޗnPdͫ fd>ָIQ矏ܷ% s,2ݚ=5m¡{mQ'?΅ $\}cu7T3Zî]u_\ ſ]}\$Ow%zO;";K[-`SܤZ󠮭u2 F7aݯNo5{-;⪐z)6mD.WęU6Ofh@9('*07eJ+7C^,b=0e0<<"<ğbxf/2׹XCس`6~D:ӗBhGuBI.|]ۗZx<;~̻`g:Kvf7R3r;k%gm8[9kNS28VLj$ Gf^1%Hb+hB+i#X%ZשG/ ]oE/鞗6+V%b4;U̎o]/SiS7G,I5ܧ_jЙ ^̯oezuxIŖFfFϩG`A|7>=^# $ fu0d`(mN 6%410Fʄ zf>:xr5}T_(!+ω0 'Y,%p]p[a3S2CWjK]”"oJ<{x2O \y r4qP/􂊧Rt31򏧖f% WYjsV&G"XG:u L~2t9==z~P~ߛ<3X^9ˡu}S4w]tlEK_(͢ԡ҇@>2M 38rv^S ؈mAwϾ~{M*Gh4]o|@3[Q"|R[I2osյo{k/[$舃nfҥ+w_39BJ>~|w?;?]5M',}dkNhOW7aG8&\~,t-7%OO[IoC'. ւipaކxS߃ 7ȘDGKe]2HThǯBB+,zkV-N]Wﮯ޷YxgU\ Nַ$/Y"&(Xt3+/Y>["X_"cEgUO-O\+@bsv {Oz+Iõx̎\U\ kn_{!- `یv>-3ӆ1/FlCu.V?T'Zq L:^)<{oM] E4>*{U;[r%{$CF/< Jp .IRU:bڲG |lZ-0.)A):۵wtS]B,~'S%MG>Rx)\ O8I,ևQrcl~~9kO[hW[$'Xd2z~%+w{/a<ߙhHC]_̖A1p,Fg8 @P M<%Gp[5|o@DA*C ORNO!l 0F5},G|6)`c$ 5VQ 8v~yiF C =E|'.tߡQf< t2;4e*+'&_ &O(9`/7uP@רܲA4Gͅ/XYth4A2 cWݐc@ |`uf̖&XtЄoxhɷ"}[^h_xa@:^:Tхğ|ѾDG\md=c=3 !;r;8̞2^tȯÖ͒~WN聿 d{D+Xai' 8'x4 ^:J+ـ̡{17~<9 _6PqSZj=;_*%m&k4OOإ[L u[f%7|Fr6D  Ӡ⏛ l=VG0;K,U_gt첵CqMSl>;4k>ѡnf2?AYך"x.0/ p%4>}~ӣJ&JϛnM/~j_nO)pR=D7:/ѵUHz&9~G[v؏A}%a$lF }zo=2)߲>S5Iqdqm &p6Dz^7t5Ef^_[I̗Mɗ,EmUЎۖ'J X>Mv:xz'dEj#~iow>B̊zʄfo!Y[ /8]ffrnKGn bEɜg$ _LO ,pU@ R43~65zI<%v~&N%6 G?f~}s)̜ 1V%da~nw ѩn49yk2~\<쀐uQ`IھX]>ؐ3cf@IDAT42}sO1{Y2U{^|e9hFҭ0B/WɧJGQ`)QI61S` ܡC`{]~>2 g[S}'ً.`O0I0ɟNlh3+G4ყ쌤*w@0=px8"\ttMGܯx 0bt}o}VbTh0NuNn$sT8.P'P|NVTcd c8.U)MTN z!@\z V;2 qD!DlU| L?cdLTS^1? 7YLg%uj[]mf00z_MhIZIcw}=qj,sd~I$Lp+ ha>ਖ਼:]U3Huk \*p(te&hl1/|ؔ(~,ﱑq: N|3YoTW6 %:}e؛s}i=)9[G+M'{0ZvAe3#d%'R8_.̋ZJ/@SXY dӯYp߫9ƌf]n]Q6ղo+ꛞR9Psm^kXGܜe9"P 6:eOKC_.`ɰ O<[ ~isK%V(2) g|I{. /%<= Im>0XnZp);두|2}AD.zヨG7 6>L^P%~ 6f =slSieP͆.P({`06Kדͭ8oLJl?+ '%h9 Ӿps4Fzt]#cPp/6; %rsenߦђYmawdٯZxNvfSuc3ɵNB ̻ N! DKk%xnnvHжS(9L&#<&w=mt1J<u6spA7KSh*^`y\;~%S8gu^UD|_̣eC;:G L6;Rd F|_k.EKq}pzĈ$/O82ZOѲ~) ]R XVS1'"][;Ńuà馉 S:"& tU@ǁpԗV:i˥_v/ߥ(xbیhɘ=bŌGQc4x=KJ =]Y4m<V#&g _51Iu&v5VS5s B lFSi;>l6^ñ hژ23Ǝ_U>L[ϘW0, Y0h+XN{w-t=d~O+e/R͡wısYqU^%Xpcn%)̞a,2@{/~`I8[Wn< Ap0t@[&5BS~ Ý'rh`GbK R)^X8]c.y3ermkNZ0Z9fԞBI}@e)~r2CO<dG/d8ln@s49G9ѓ`t(=BF Q^ӿ[rJnRq}Y:[60a{|)ReVz/`8 @r1BlK6ybVldQS_{܊f? |M~bk;a t٦gƷg(`f7+~yϲ"8޲~6C} zƄ?7:.8#wASnP$hVgdvd6]|_.vɌdF% U0ѿ {j[+[ F1 _TY9MD~u=MnHu,X1:;hu3A I>Y 4Y>}W9}dQR];`B!?yawMD_jDQ:.ncU]`ɀcu}c1΃dsZ=/ߎ OIP25hb?I jPmTt0jc׵܀qə V}?J8 ETXKn'xp>^/`ހ[: v9r Kx8nP5 x6VZmO-]^dʃ{,x7b6G2i&Fb=m|3Ījl`z+~ Y:*_Yw2O3ɟ/F} :]>jwߞ0%Xn烻y^ѫ?vh+͘st:TF =۞d W l_6"M}O HLDGrZ¯(!JI? ʯpE{k=#;dpቶwOy;A'} 8m٩ْylt9yķ|D=~`9}J7_1͚GINj  zsK@8hV21{9r8/ol ՞%@MVR8&'#Bh("f׆R_r&@}7@}L рQAGibSC+?t(( Po\A2Hŭ<0Y-{:q5(5c<>  Vd}Ⱦ^u.׎зpɮX/c@ YEG- 3\(?p9Ʒ*[I<{(uqN /#1ҕC'FaK49` d\"~p;M(QsԮ0;5Y~NyD1Nɵ]]v*ٮWgeE3 ̑SϹ $j`me }!K JiB2Uʀa9ܾo&z-oL͈ej!s,,yX[bߌdUqgw8tU۴9mvMr D*IF%7#_Ll %׻U=$nh@^ył yԧ'\FopZu#Rhk]g][~usN&GSCN#fcV:y=Un4mAh6F$[6qKm` G%3^!l6@bgI7wP O/9),!_5q:o[oG+XgÃiwQڤSvvO9F$f۫Swd]BNJxj~yr9!cs fcFҏ:]oS!b urG uV}Xq[@M~~ztxjoh{^f|~ );Z=v=qKu͐YN_696`۾uK<*SRpr.u<_ AD?-Ip7n+|+:,En*PlED2Od'=uYMX(ЕZf#`vHJ4@,z4Fomr?-J+EhU,% t𳳷?FQt |> _A L!(`v}ዙ5ڨZmw0ȟJpu;r8)S+kk'*'$:l]YGM~ EOPdMJv]N;|ytbpwIi}Ngt~ĀMmS&Vg oeK$$6?yF>xUh>:_+Z9A}٧faCG'xTG=2L6n& XCZG'Y<5ް]ߣ]:tc<~bd>%jXs> 17@}%C%ud΁1wk+-B.7$^:?&KVLll1.8U1=V[b6y)d<3w? 0N' c>/ р*j_lJlC9Ndq,bĝ61pn:lKP(d\A5"  [~C+GۖԏA r2di@+8_?Gb`R Pf鞝|BrI'l5qFyㄭ6g0|όVWZe )LI 50m>VoGel]Y hj,]{:P3@sh]M :2+ame&`pk%4B5R;#g)90`Ė-o a?^,3ahz[=|gX~{L3zЦWd (:_nyZߒ9 (;9Aޞ͍$f'2Yxxs00&< ^s<;-gD^3RhʹEWݟ]ڻ<^'G/_.5y"G6KA jOo`ϼWM3pd+s۪zi+{ip2ɹ m5VUMɞ~Z(ϳf 0 Cc9Xapw~errPΑIrrV$5; p{ړ\)%6yNu=VG-{wm>~}>=Pm%}nG:$pG\溺dm{\X' SK0' LQ|tǫ;?Zf /CRZ2$".q&S_8BK++CдOꛘYoH$w~9x.P{8ؐ{ c\Qm+58Y u )_wk?@i0)DgeVP@YA,xO{f-bdP[ޅYBo[ug V.Tj,^[xŦey3?{T?6EŽ& j>":z+m3!ˎ1G2A?աAŖkD;3&Vw룢՘ӏ.'oX_w~.x+$L6C&2N_xZ@VK2&z C/J~^tࠊ[nD ]75tݮZiν&:͡1`L+$vSd?JB|T$ $ r} X1# U!('gDNtZ?W#b3ͷ&u)~.a"'r,=x>\0~+OF .v0'_aݨl#0>0])#*wqrZrgYUaeV▔ 3%NfM {C\؅8 }%Qn5PmxTZu+݈˳\HeWb034NV`T/:+;K ΁)"Bsc\?+m_!3b0(>X5}ώ#Bkc 3@R 73c|!.МcXpOlv ctF,9Li(ф0o me)3!}UD2m1 : X%?&)i|R$LsZݟ[hp_ghA׵uZc- $)B0P0_1'lfJ#$ %j9hEE(X^_c;lY'E_%RT\cmT$wR}pRrZq ֢QsMO~3 /~fp"ʟim@ fl۔]ß=i3:*7  I}TN'IcQloON=/ uΑr}b#yGSPV7yFW U'oxy5xqYUcNOɟO>s*pl#{sғs|tNQS2& "N|fA[os1obyA9xYE_P{F|ݷ>}K]=j@f ث! atSpo~?Hxdm4yƷ?? lP~ȀW(rO}P%u1"h |z֮QwWo%K~&w\vd@-M'@6xL䞍oϦvY{I803@ٔ1۫'V'YaGpE}%eVx~ʴ@\oc6Օz̿oo[gfnI|lrrldɸߌrvUB C=d!6Oy_M&|瑑xnl2viЬPJ$lϯ&ٳtXY'tfv&|>96ߓ%  4v[F [4$Rz4Yr5I_|q;&;{a'.8DIJ6Nd?Ppa*x%e -M&f5/m.wyxxyCj&C 7ijϨwqáĎ;["S,X{* `M"W=Q+\9V0>i-Jg_[䃽T83Z'V =Z0Xղ >CwvtmwUW>x#ԆhLJ,q\&OG}+p'pJ& -o9*&P_?o1;U-p+n\a+ 3XFdI|Ljv Wutw4ṭmn @)|7/Q7啣U6W%ށgo?m'YplAwg='$Xnc#2yl9IZF+f$9K  .m^+ 0:Qʮ|6ީ-Ӕs'73iFSvs͗ )o̘23 A(_bgQg wƀBk=8ɌʆLW6bsΟ5[I9v%(?ǣ8[JG13s9)BWJ3=Lb@\qL ~'(w²`v:r3Hg S;iO4Y**Cٳ{+^r95(q b&#pdbA%TV 0JF<nUQj?983Cޝ`N&5d%J]60K*}֐ w#ڳm`E/Jn35`+A\~x6O (Le+#,5}V$j'xãXYI'B:ު]P4^](pˠZYUA x=Z6!92Ĩp{xr>> hdYYvZ*¨D`70Ow $Ǐ`dU"4t8|dA] ]2=p8/'ԝme [R]KP5V%j|ʴ-qM:}W-}*S?D4= VT-o#g%0N9"^){K67ݰջV}i7okfO}:Y}}hG3x[D_C!Zh ⓱w ]-鵉!;=>$q+dj`#a0K޴cSx,f~TP—|8ؤPu3&]5{)31Pmvq@g}dO z m{ G[MQ%̆I0q–d趷ăcsdZ]<:lk׳\ዛWA@c@ɘS diDzwtm`t}lp|ne93j;EG/6_wѶ;-]wgmE8y|ANPG ³9ȶbի~Z9m4/r[ @J,>{vA}|v/;{6>fQLK%_Dxu)br߬̔((94SC9lmq_ a/l}E|k$Ggvc~܉‹\fVG3Y,7@NV!xVmDOoxʭu_VWZkf&I_nd,y1A#vV^t7{#W{H%8cpanMߺx!yF@OЕv*Ov!tm>w>ˎ- \Ys{⳻$K}jM pQ|_V!c=_',Kb:TpC@woM&0O+tgxll/n<^pߒ G?sk_gwJ4=A6Je듬/Ir kwo>ء+bph}qܽ ev mVv}ƌS- gRQkh}1C1҉\0'eB~6@HIڨlpdNFI` ^FCyQ~xY9.E[wʲK.8*]TXs$٘9o@sBQ'f cvjth~^mL+@Goqh,d*G?p6CTJ K[Úh J^duEQ@V.!|o3,sgtt$?"G"7(O  R*dCQ3<ڱ L ?'j ,:Dj6.3Q;sk.Hn~ZQ9YI( ~}ᑁC83>UqTn& o}W]D"^=Z4d?,ћ&ctQ_4xneD2J;vġi9KOSkpVu;Hp1ƜC- wጬ:,:X7ϢOؠ, t_&eX{]`;dҭSDc~·:XHad:r[}ڣso߼ p 7C1~?eDϟ%%>_]M}zG$( =mlύ7kC0mi5 |voϻ:YfZ+_kdn[Q\= ާ/z Iye{)[安7f7{S{:ŪM,haV"hwCsO:ۀ?Sn+;f|وTOOv1Cr9@dY2u9I`cO @ߝoܵWDo,nG/8Ǐ "Rzhl>؇ `k]Mxk73W^$|Hh,wU{n mÈ}vJa*wb뛽$[63jl r ߵ$ {TyqlWg <Oզ{ _o|?Izd^VT! ^9-FJVӇ%?펛Cda7H·p/f7KTfkh6 ^ ;dK=qfEEq}r VɂߊGwxBԀ=vYI3Vyd,?{@hm~y\ 4>DzYua7o{ Kb\FK;MҌ}X%O3e1,QpGѕcw%~AlƓO3ll >oU6y;Y20.v~9bSvQE0I}Ia!o5ћ蛞z =}\l"9lMe/ې\t}^Փl}Н'E'j7b /C0]_xZ}FD?Ww{BQik8~ԄU7DϳrUbB nhQKt?gv-':alȵWkKh`*/$PK_z;W^IaeE<3u; X2ɧ͈JK$8JȀ΋Qҿ$F[59Dxl.mw.VtȎaxqgWUlc>'jߜN{rXUgx,|Z}_}h^22[LMCp@״N;uW3*v,΋`p%0 KJ*OU^ܩ FӞ軲R}H9qT,A`%\}0Ԯ߭6FrN+ G瘳EWMƌhCJ :o-;*f} `"6;  )ZZRf 2]4XҀHxT=V0Rp^?ñ-# hKogJ :#X-ϺHt^hM2$h ^h0Q#|(=NdPmldNGd-!t K<ڱh:yb6ByRkzEfdmLSyD&]-38Kp5< rGIrbkm3@}m?vV&}80:&4EGwv8K0mF%dBntvO4O?Qp gjwI9vZjk'QVK Zlwf#G '7ٽ$70Iff+{3܀b z%޷իW nΠ%`Y!`7ImÛYn - @N;9 O@IDATh~wmZut2=>~1sfɘAl,~ǫǫߞ%{?V%]K:xlFWpYɗC墒tlC|xR٢KP'Y`'4@Ʃ?:o\MXkm|x삻49K߯^??9TgY6wkHnͫKՖrL-*. |k|_aRV [updKdrykʋ٬?Cn2 CϘ.@Fm?xZO5ֽ ϾBr^O%"vm5T %Jzgwȹ^OjO 0J~hk7LӨpLS߻PGٓUI P1bb:-h%z'L4h#; c7K872|-OGrM6U-0@|JaN tlpٷc1j ~^-o~xY?ןC(B[}4g3Qh}2꼀T[~\qUĠ vm(%ތ&%W6z#d#=$h@M-p#`Ǭ9$9KЅkB[FÔ$GB,k0ȑ)מ}4G V:Le_=l=I[90g|21$\YzǗ3HL.;_v=lI<7;Hy\ۼ"VxʳGA֝_͐,2O _ۭ, ԯZ^3/I,&*6ҮwFLZÐ 3tsiw^_eJ6d3a67 3`5;8GmCUΎ<¡v3K.U6|t}`?V& b+ݾj]py=pqֻul>++<Ǿ2AC >mnF%'ug96kf~lEKW^6nI{X^g D$?T}Lf_$ZYYayrMqMJڔ~ gςn`+x]a A`/@ ֓fKo?\/ ~0<_vx>Kϻ-fId㛒"oPО]M^ Jq!6%}xNlEL Q#ө7}2#=W`F Ee%۷ 8y,'yn27/Kv HzDgٝ%>F~˿QMF-no1Byƙ|{.=?,ӵ*ÆIo-ێ_E?mւ =؅zLy:qVBv 'Y@F' l3⽊1(Y.tN7UᘭtH`0Y¹x>;uz0v*&|blu+xʣDwb nWI b=y࿞5%7g^Yi6x X+T+3j0+\.i28]fΒ+\]&Z1 # B`ɏu} Djh8̓Ib_6ݕf'ɫDfrkS7"Od(?=]W-a2lVYBg?oOu.v3`$]mbze|+pN&ÑC]L']xиB쁞$gnjfsŞ"Xuv?\'w - CV$Fq#&6ߕ5&>|8(-ȘS]5+p{̃"!Ҭ`1jÀ >#Lz6}{$^xWѶ?l|6}jSK8/-WuAH#StWB H0k`S< qUGPYr Fx*HؙL &hÃËp4L94j6Q v}Aq vc.Ũ? k|FSGMyۚmWv,YYb$C[z;-ߌ{d$И(a}dw?&s^tc{݅y|8.RKİ3kƑ00X(Z'lQS>7jPGOʊ8嘋-hh8QY_ItVH8!E0 Yy}s0l}lW9f~)xFmQ$^m`afU,zJ>L`=Vx?CWLDj:Y̜slGx~ S< f6a~տ?wO`KGȷ"-yug=o0\?ewo>Ͻi8skFM+olf^gi{t$ͤ//O?~xym߄I av*%\gGRb{Gɾ:zJ?.)f}[;3`tڳxE<Vx !}U o7|3~7鯰'h6 |U ;Kd^?%5(NhQ < rm~ߌ@L#ƛ Uz^cߺY;^ w+;CKS},!I9=dsvAZUuM>$yg1±˦Fm>>s^,y=| Thd@70=g~J֪ώ1 R%SL4Ѣءrx4_}mDCr iU7QڂxD$}dqM =< ~zW R7o_=rCye,N4W.y^A&)zEXT_O1)~-\w+B1&!ULx3lCKo{#UꣳZ X/$!?}#m$;I&z Ia%b9 \ďQ'1lZ' V{&ڣf.JʁĂg+VLJЧ3RtG?[Zݧj%6y}ǎзzPwqp{1s?^S+/S챂[]brMt*JV&١- ߙ]Fg1yIwGzXu-_obQs3q#*:Ggr0) վ?l/3f Xϴ'FVB>mi792Sxd"Qxx, \;>}—d(E,zHLHIyr9\dw+&xxY 'ˮi t,7Uh^]gPG"$P}`"xj,d&gftf,%  v=Psv~7tVD?} S33gAtW$ZU_$8=4 9FV&"N`Y I>h? p{kXc2Ȁ?8\l@ߢś2yWWῂ%=s_2EXbS) ,Co_~ l%I~|x=<_:V.**;^ݻ~9/e{Ml&ߟ[E%^"?yx!Acm#N x[僄IY h& [%` ?қ 7]Au726e n5qٟx`6}[P /{e$pbgW>ܾ>4=$X؈#oV6DžJ>Zqfq>GAVd dMQhu чx]'Ix͠+M Z' ˂x6ߵ?緵Rml0V" ]K@V_!pzta7dOc&Z{# H*]]s?^ ߝϥs"[0Nln˰W^ NI!- wS'Vr§ U'\`;ӄ"n߫NSܾ)|˳D}uw/B>L<Yb7>l[3,8O\_~-?Wu/)0[)fݐcu ,?0hMxLаI_;&h%NjG V`BIm+>DNMG@YGs—;r&&bmWnCl'.$2dFke`HW. ;WhPߘ0Hct@cxzPT;gGp#3X fm9V75?Xl$/yRL,(̌ x0f>YT٥QR3;AhSFէ4,cwƖt:%8(t\ǵ͑ܜM.c *O^e޻^=3 '{Xɜc@-L Hb`=yXg *iP>׾//yZMEHԮmrǙ zG4^R K5}3߄}? -XUڝ* 3jƄ.hcecV64N`72vmo6p/@&6ԧ^Q$5Vs}erqQ @@MA}~4:=rfOӁ J?q 0t.|n'9q:l4]a[X;>7oM5xyYO70Q*<@K}z)6; Y4#;Y]|퓓 R}m^c`Im6kO?@~w?Os?~Gv77Ӏڀrp\ϵ?(7O{Շ$Oj'Vف>DS=>р P:[hp}YK"o4Mdkd={oO[M#@Y1}05k^x}~o~ EW!%q*A3u3dxƉvEʱ=߶m21 Q3ZVd̯w' |KJxϳ`R_}^[-hG<$k%+2S<Px< kz+"IkeC21o PѸzUZu?oDMN0tw8ސ_It:W~4Z{M0O $#K ya;\`ߊn*+\rclŊ~߽ѲW|wΒ6>_*| zt{{5!)ɭ<>jWp^bl>~wk]K͞dk3 /;nj'em<xIw9B E2֠K_ʂ]Bdk@g5VX%l _L`6Km& }nq 7b l{6ݬ]P|PfOmi3_Am%]DY>&zL^; 780PK%ey1(ώml}5mXeUF8`0F#)Qa?xZp@ V;4@c7޵5-#UO,2~T]fk|Т^r^FM`ۿ$Bwi&Ս .wu7a;+tAmx^p'}¡]/i_ _WDu_;X\'WI:8WlooKS1o@: ISJ)[3(5p2b 7x} B4e- :)1 Ep^3F q}3&%9Xꐿڏ&2%RrF  =)FجCp}?8T_RQ߭ľ8M+A] ub,GOd|hmՆzf7u4">#ܧUW` :{S'm:|%K @ZLTd6Ce\H'XИEtrM'3G Gp9_Ֆ@K{Gn/];r'ǧZDo6["ケ1u6co 6#y€*l]pTOۄv I= 8m`:;a2@׹]\@K[y*ZȪdzͺ<߼}S`f=C??tտ{NcEm7vWr-|t7a{޵*tu}c:vKk'/_,3||:ڵ~zl2mC%[Pr* UscRlģsY zU3~ f/~$T1iC1_[m7 9hUh֛Ȕh(]v\P-+,SO>B6Z|Z%'ZD<6wm OB'Q,a #Z-YĹV1s7%/l*|{N+kl,{QF#^z V)_2_\lkؒV̊`mRwVw0~leĻʱture5\h]',쥼|K* ֵ>{`棿Y k*$4VykC7 `^4G}؇ C&O\|( s}s9>N^{ ẁW}jy#7yYt'/s~ŀ4K ^IVB| p~c{VtC|!!%EfС.֮ 4GݗX[:&+kYe>5e%YW,coMOolM4RތA{wn^ &'ml/#U<t/P8.Nw{t]btŕ _$3tѪ!|J:# chՏh7`xh@uÿ)ޒɉP8~VVݾпoM^}h9'B8GFtcc+? 2O( X7{oo:vпT* yN_:3xHz@v}T᣻g9Ca:g!^xOp-.GڙF 'ߥ]n!yS?`gbB7l{(ׁ.%W3[?gOj`1Hkdc# gz0@;K[ zlɾ˧OM4NC*jsubnhէMʷ-Yj>W&!>,׾ t5Ӂ)Iͨ%˙C0fOQ!aM`k-xB:e fM9 lpܧ[KjKS88wBn၆~JڵL ?N6TvTh\ r$ FWL8Y-ŃޔoiȜx@=Fe-sr[:@a7qr3 ;|.PhtUrASW9Z(tՎ-f\NQy{sB|M~dxZO./ }EVhb+;/휋}W{ G{>F#wX6p8ņiC g@xLn9N njj{Cfz!b*)R|9A[$>gc2;Gt[o'nMjЅˇ3q[9 T29RX3<$We}+obx NSqz陙PIv Nv:$jjv/e&qwEql>dXɶ`1~U(#USp]dj^`wU@Rȴ?͒}/ihu(uNrrL׼%ì mO}7F@`$;?9L ~/@MK9f. 5Cf ^~=ɏDŇn: ]|V^B(KR'HDB+)$OnKQW=%u$wi0ZbFIZt)op8v:QuX*@>ـAbjb>ɵyqb1*˪\k.LS'>G)ٯ\~6A b UKx}lDDxӓxeڴdٛ,!TF䷉ͮVȚ: jQcd=AoXcK߻tneYKE6)W1[&X|ڭ7I9ћ1<! to z2++QE`*]ڻALW$`@o_ӵltɅ EH$k$rV+q{D{wG{BFI u X 'ۣ5H$n(n{7+j]w~XBsAxW8npЁsFIvVv.B1x޴^]TlƎ0^賸.OYIT0ѐ=}]v`W_x},]rߒ)Kag;D+v22̅h=qI Ѐk_a}sU]qwA I? ٥3Ę:g"SYkR#h,):~V+0qe5<@:{ Iz מ_093cUA1=>J fE!Mk ؔ_$9K|ytc/pxQOxUgtFT [pvsܕLe^όjkRG{B2{M7ؾڛ\5ɍ t0: .ONӎ2L:@ ţԥOvq%Rc&L`;t?>TnwsVl؞kG)f1z  ,kE ɴ揤׵dU5ι:P/O kmz~ =Ns|^˂|Qx7 3[ fh|HX0}`[.c|n0tfZ:U|X鼵mv3y 0Y/w- HTxp%<8$RLy¡:n9N}8Y҆8Pp}ߔr(-۔tv]|Gų'5@Ϟ6_t"9 –ޖxN՗s`48םTͽ51`7Y$y|^lݲ{6O5}+(O>7^RZIKAImXn>NPc?GqXd'L/_<nCm (GoT|xǗ=b[YsxWί3ߒY` VE  2CnzI=MwFKbع=115XG2x|';VԞتj+Yk|ľz6`Wx%V`[!DnR + 27藸5=VG5} *ከWL7z"v݃!pe{EI.]RY}s_g@wBWfKa8uj#cUzi&.J0G07x7/n"Fʬ5}t$>PJS.[ŷXoq#d`m$3}&z G)TX]HhJOE񔲓]=In)2oZu1b,@^̀ c:Ԑ/1 藙OIJ1tvW/.:ŠS?γ Թ5>bԤ@IDAT k᤬ì{xf٫>:EKL'$Cx2yb^tZ?_ B3LFNqGKvu La$nY?}T6F$VqP]a'7^1:`.aC:dFRoIWoEbzCN桬aujW1R8v6quv|`uc8} wN¥&lXD%m l6~YCUAƿ@lK|d0187it^p7Ahu+ѿa 8qu <ƇL,(p odYA[n(id9/\pa[Df9u܌m.=̢*s ۿér~ջ 9g,ЈI/IiJEthb><Ӂr<.pOt^orY t^5[>y9O $MηV룷KtUvg$l8^k*.`0veQ o>Q--/Uh%+pbmv~L˲\nIUANub@EU5UCɳi֏7!䬤9 N1,0ydS mUxu] !G7=>gݏ˙P\F{z# f z(Yn)~v3HMޙiߞ.Kحߕ0@hQv!ga3 }O(x}+%\|şS@m_trȖ ޏr`/PKۃ{v۠LȗLzr$]zqu?rJp+z~ RN8iM{@lVf`Mnfx2‹/ZaZ%w 6[Ox?fϯ^Ym3VB[7NltY,ӞtsSHzÃ47j%)0(RꞰ hF>Kmx:o}[9|4%13y %å]Z _rP}b 8)R:|AŒ&)XNl7lv pټ,$f_݋om(^(E'MNVvL2B\[ ǘ"_l:|ѷab;(hH6^b\ͶI:3;YŚ4g0՟&{аf?w^]& \!l?cR{3]NtIwO2Av>[ FZ苶k<}Ԩ~~+ p7y.NpXOd(aLw*7Ԑ8R>`Y ; Se&V.]mي ]|B-"X}5ʻStD@=Zn:p]0u5q$2!cZ/ِe{mNj|1!ۋ ke- \r "v'!3Ȃ;e_TPd)Yc#1@9`0 Y<'h/) x[jy cc/~ U*w}?8DA =:+'T0z95\n ч`G2gL. xl@cY4:Ēzq| 5ak};,36..dK¦[Z[<8dz8'CԱᅶpE+ )CV 8ٱЮM֖iY6p2t{AQg]OOd`)XwLq| `P%j>H_}_`uH-rfg)?P<] hXē\ΗvkKLB+E .Ad̺$ <צ}7$ [6sm;M>)Gj[Zkߒl?xoY/^0\ v'^}j/K`i@-&:6e ?G3Rm3y[\ ^r=+YZ:Om ?MZVj;SmVak=:pУEN[z|S%n%1jl_㏛^xyy[H"#DG?J _)_ڹ Y/SۯjAqdz- RB=!X87+ﴔ Km$-')|~2w+s7'9EP2uѲ-_ʫ PkgN婼>ϲ잀6dfm? ذ2msmNװ]/hԘN-CÇB@h)1״7GodCg 7z5~yI"0'g"R EbKB6ƚ=Z?{M!9cڪ.8>-"OT>*ph~$uĨ~V_ dwN<.Tt{M|_BWbMU5JpV*z kbVx׍%@O7#^n.̀58}L:<dK[ƿ'LT&kvcM6QʐIb1!лKҸ)࿓`Cg:3@c,ΝW创:_A<C|_aY*NY+ jڴ~aDe  Ce\C@ r6@ƿYjzNIuu;xpѨ=n.3S(b:œZd8Ÿ3^āZ+ 0pgIqڸ0ewܢxH@훼+`IC@tN"-5 UG. wml`hhpMrmKbzXaP #x0ЬTuKO9ă97Ŀ,mu/nobtTok$F 97spNkNq |[ZD'Z/ N9BƙĂQ!dEHN{#QXmq=ݒNhk>o (l0[gcl_e_2%6߀-A>c  6 >4XlItsLkN'A_QgŮ;n+)%hm%cO  r<3K <~?|c{Uk|s/Ȼ]. Se7D|JffJx |Eh%͸SӸL\yᣳ:N8;[\5#m-˗(_~`3T<ܶ}GK7C?HxJ$`PWPB £,ϓ%oП|}WQg3yh* ^_m0G~:J w'?c-6X-RAܗ͈[5q[6*!8-Fr|Qm 3l0H'Lᚤٞn~GK(ϓtϼk\uzS`W|LWsW- `-t+<9=!$ieA;`V(GWCu1 oӵj1 |QrJ g*iyI?>Ud|twfwSe%ѹFƃ땯nOt8r4j|<|p+O5H] RPW ݂6'JՅ}n LdW+OuOZY3n\']mUJۈ]_CҵJ C+lmFd<=` xg0'5+P{qgC5HN>^ eI ``VwHmuCB#%9R:<- U/Q ,:L.L{\au D:5ݫxQ9{k2}xoVn o1u6:X {f<2؍vr T_LK,;c.@gu>Sw3xhQ q|pk3dKiw xg.Hf: 6צ !'y`갠,X!/hIQ%YrAaS٣o vrK+5ghf bTJ.ep_M =I_7 ~6OC?wwA*A%CȠ.^x;O/^h%6{-F*uIaNfx&]lo _uˋ;P^睖?o}u/>|V>P }:H"^+ϿDx {L ?SL N 9 D$/f_WI_wYԆYjӤ|h)AVNN:)}; HL7;gdD3[՞ lXͨBO9}r[qR?.L;QmI, , (hZJDbmk~;[ O ԝ@?r΀ۦmys۪N#YvY7oYR/؊t_\Ɵ%|,P]Cuج"|W$hI%z[c%|mmNP?RMe?m|y}2DC .YN2z⽋O@<( jnNjW֦w7+NαWo\ ڔק*SVw:>lxkxXLK-ufɁ3_|GCoO\Q1 |=W֤m6L6}*M#G '6|1XʿnmHT^` kݔ Rb}t8v _F >I,Ngp۟hW"+{iV-<ԗ߸$X _eqqae#UXcUDLIr S> ģb%^k+ǧH-a [4MlU~F6v ;TשҢ$¯_"[t/ .;n1ė*[2~n7fo}]:*ct[)|.^$I/OF3 j|&_0kn1aߎdM -*S#󫵳ned$%=%CFZz/Oh `:9Gw?\x1$]O ۴%T}UFuΐAmHW?8*X;цfis1P2dd,k*Q n]u.Bj"-'5v!p6cX)b$=`Bp+0gв8vvB;{'?t4DcQh4<:K`#$,OIRΉw[-Tx9}ܔϾ` N3y<;! T~#0КBռ۞uN~xg m)s7cIv{ synx/Kf8QU:f)eDŽnG麛$l/aӉ=kk 9Y"SͣWQYPpp؀ӭ]bV=ȖoTڥYp&C_0&Nӭ%>kܣ8q\JJlΙwI8[L% !UO J‡獋xv j*bHwHXM: lN{[h^cx`d.+zu }~ktYv(9+'1.Zd[]{ֹ52tg8;S,17=u]gxO~HUgG/+kfQ@/kZ}*W) jO^]u}Z*=fS}흮o/%ƟGe_^?~Z;[)VK˶84sm/\zI3l--dȻfFJgm0欃-bSғ{tϖQYb t:|LPvGtsG$,`BU`lv.r ?l ߵwNj_^tv }}֝WK2ˮ?W?a?mUí,kdHz '~x_u?8yY`;tC޼m~O_j燒t9%mëf $xc6{XR].$ wP0ɏMV"x?yV%m,wd)˩% V%ŞML [)v@}oجDxO$:vD)M':L|Xx~ɣVTv}|8HkEmphfTr XS+)W` A>v_^U̮m@9Wf<9dYdmgo%"mIw:IcdzXyx[]E0 oO~i ZlkCt*&: Q~q:M^&zߧ[)'ʊ#B2r_­>f 2xзM$zvJ{pX_7|>E>B妽ob PX>*Vc#uUugr\s'쮌7+CW*W.Cu$E딦7~%Wo,~DK >*}K0 FC'3 Տ/2o&'$è>{ŭDmql%"b7>wL(W _7[M7bH(-P̖ZEOvy=khƲsBzgC' tllm:0. B{Q;bN/n{J׆Lg2J~|ށVXOkqx+7/-#п Z5K<[!! w uP *ʡYj6@D1-?J!1(2dr&bDbiYHGy3آxl f&| toAÃ۪[=Yu6W/3J~C a4.8Γ39ɵϔ=ѡ_Jc9ul5D' qil}3+ ;3yfb)&dQ@%{`[% uJf#ѝg2Xq}@Zkr3#}D8Mn{]sBd8=6|T8C_}_gU+aW nVX2,AD/A)C`6N_ݗo,09]tG3<oN;M(gYޞ$@{ޱxE~B祃 #)cdda`Yկ? t]0.MI7Zt~.68\"82l~6x^f엀cG!gSn V^j Ϭsh:Pk۝7]ǟ;E_?tVȘí%anw+Q>u3E R7KifguP" pÓ @ޗ %sՏ6(jjm#-/sU,Oy[8s.$a$?>GA\x:^O2s:XIf Mw 9]ί^ӽ&CĞ̒[MaVS3V} W/gʋ 1pE+l)?hbW[OeKHg߇O?9ZЧoo[月xF<,TrݪdWO$zzD݊,>$>[W]<|ԣc/%x%C$QQ?1/{wg*mrdvg\?I7&ѻ5yxGzaϵϭz58^86aDNx\x/x_cu-V︆.M8B~gx]-.a7lHluy8=LşmoG,{`ۤ6 y8YADȿ Ma9UA$N%`'z '藃ѷ?gխ vڊu#t}ubW$'6p@r3!n5e AL\ 2 $2%>*+|Q.;>5vRnّV&!8 u_ߏ?ʱp ,f D#/-ap_ބVzaRM&]NKD&?͗ic+g}^(}4n/tWJ$ۯ_Ƀxm/ﭺ?1r˶xf5R'3AĈ  I,6pP7Za&  8du K\>0Ʊd!R~Sp ;$e:B tZ2.skYʬcJX\ = \ѣ^$ׯF_CSCSV w.,@wvk|yJRQV1z$`&܂ !o2gW Nx$I˧=ޘhƳh>U&YqnQ|':*r_`/~xYI`N역,ZaQw:@IZ\o}S?NGPkwK ;%ɘs("H:HpNL8>4jY Hƒl{B2K?nt`fĬ{- S~C0xdnV ^8(6w6YOf91>A`$@7 ltKdC%-'rx@$ $IȯWnyvjzb6~6~85yvSuɆ Y>?ջ=z8o}6t8 `:}'鐼-n?L|z=>ՌxWR dPi=<V{_5[jPlFǴ=xP"A?^نT .<~4|_@3C= <߭M~~i K<E W˸-3xù,IOg{:>y^PAZb/e_D>?6^]]|ӣwmIEp-̻cf ۖ3"Vxv4^ޣ o݊i/HafjRV77nUv˱ŝ?AY r&\ (1yz1˜d], 6u2t=<^>_2fSف~<%jI& @!$KaF/%dȇC|;3KN*=,YIڂ6=1Dq6Ǵ65~cϮ)tkr=iƉbp! \"V&<:O>bC ~/NEYxT"~mH.^h5-MlU}c`"< )Qژͮ^E%7wW{B^%Z`Z9EtW*i=mk|=fϕhӷa#ԟ^C4ict;2$[vhJ6`<û8u\8/%pmv@L3X ,0=kI+ kX-仭+ZxNSw-~\|s傏W,"F ^h$g"8<\s<ᙏ5)Mgmy\@b,QFlC#䮟v\~j3d R4@lx4 :Z>)8K M[ܬ™.vJJ/ c )<&m} 2ʪV-o<{sd̎vFJxEdOOoEo7Ψ ~BNR}>x΃(C2_z-Vۍ)j[-ѳM&uK|~q'r|cG t*Pϯ Ncp꥟;舫X%˶P-y*vg2]ĭ0`l$u,}ң㮬B@C@1Pptg`9Cͧ}B,X Ce^] ="bd+'dT]fmB40AIp2 `o89aÂOe,}$ dL[